

DISTANCE LEARNING PROGRAMME

(Academic Session: 2024 - 2025)

JEE (Main)
UNIT TEST # 04
01-09-2024

JEE(Main): LEADER TEST SERIES / JOINT PACKAGE COURSE

ANSWER KEY

PART-1: PHYSICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	Α	D	В	В	С	Α	С	А	В	D
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	Α	D	В	Α	D	В	D	D	В	А
SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	1	5	2	30	200	10	172	10	2	25

PART-2: CHEMISTRY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	С	С	D	А	С	В	В	С	D	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	С	С	А	С	А	D	С	С	В	D
SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	3	4	5	4	7	8	2	4	3	1

PART-3: MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	А	В	Α	А	А	С	D	А	А	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	В	А	С	А	В	С	А	С	В	А
SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	-2	-5	3	5	1	2	16	180	25	48

(HINT – SHEET)

PART-1: PHYSICS SECTION-I

1. Ans (A)

$$V = \varepsilon - ir$$

$$\varepsilon = 10V$$

$$\frac{\varepsilon}{}=2$$

$$\frac{10}{10} = 2$$

$$r = 5\Omega$$

$$i_{mix} = \frac{\varepsilon}{r} = \frac{10}{5} = 2A$$

0999DJM262103240004

2. Ans (D)

Equivalent resistance $R_{eq} = 10 \Omega$ so current

passing through battery and 3 Ω resistance is

$$i = \frac{10}{10} = A$$

and current passing through 4 Ω is 0.25 A

3. Ans (B)

4. Ans (B)

5. Ans (C)

When C is fused $R\uparrow$, hence $I\downarrow$ Thus brightness of A will decrease. Also as now entire current I will pass through B, hence brightness of B will increase.

7. Ans (C)

$$R = \frac{V}{i_g} - G$$

$$910 = \frac{V}{10 \times 10^{-3}} - 90$$

$$V = 10 \text{ volt}$$

$$N(0.1) = 10$$

$$N = 100$$

8. Ans (A)

Resistance of copper wire $R_{Cu} = \rho_c \frac{\ell}{\pi r^2}$ $(: A = \pi r^2)$

Resistance of Nickle wire

$$A_{Ni} = \pi (2r)^2 - \pi r^2 = 3\pi r^2$$

$$R_{Ni} = \rho_n \frac{\ell}{3\pi r^2}$$

Both wire are connected in parallel. So equivalent resistance

$$R = \frac{R_{Cu}R_{ni}}{R_{Cu^+}R_{ni}} = \left(\frac{\rho_C\rho_n}{3\rho_C + \rho_n}\right) \ \frac{\ell}{\pi r^2} \label{eq:R_cu}$$

9. Ans (B)

$$V_{1} = \frac{15E}{5+15} = \frac{3E}{4} = 0.75E$$

$$V_{2} = \frac{30E}{5+35} = \frac{6E}{7} = 0.85E$$

$$V_{3} = \frac{10E}{10+5} = \frac{2E}{3} = 0.67E$$

$$V_{2} > V_{1} > V_{3}$$

Ans (A) 11.

$$\begin{split} V_{max} &= \sqrt{\frac{(\mu + \tan \theta)}{(1 - \mu \tan \theta)}} Rg \\ &= \sqrt{\frac{1 + 0.5}{1 - 0.5}} \times 1000 \times 10 = 172 \text{m/s} \end{split}$$

12. Ans (D)

$$Mg - N = \frac{mv^2}{r}$$

$$N = mg - \frac{mv^2}{r}$$

$$Mg$$

14. Ans (A)

 $N\sin\theta = m(R\sin\theta)w^2$

$$N\cos\theta = mg$$

$$\cos \theta = \frac{g}{R\omega^2}$$

15. Ans (D)

Net force towards centre

$$= 2T \sin \frac{\Delta \theta}{2} = (\Delta m) r\omega^2$$

$$2T \frac{\Delta \theta}{2} = (\Delta m) r \omega^2$$

When $\frac{\Delta \theta}{2}$ is small

$$T = \left[\frac{\Delta m}{\Delta \theta}\right] r\omega^2$$

$$T = \left[\frac{\Delta m}{\Delta \theta}\right] r\omega^{2}$$

$$T = \frac{0.4}{2\pi \times 1000} \times \frac{0.628}{2 \times 3.14} \times \omega^{2}$$

$$T = \frac{0.4}{2\pi \times 100} \times (2\pi \times 60)^{2}$$

$$T = \frac{0.4}{2\pi \times 100} \times (2\pi \times 60)^2$$

T = 90 Newton approx

 $T\approx 9.2\;Kgf$

16. Ans (B)

By solving projectile motion from A to B

$$2R\sin\alpha = \frac{v^2\sin 2\alpha}{g}$$

$$v = \sqrt{\frac{gR}{\cos \alpha}}$$

by solving vertical circular

motion from lowest point to A

$$KE_L + PE_L + KE_A + PE_A$$

$$\frac{1}{2}mu^2 + 0 = \frac{1}{2}m\frac{gR}{\cos\alpha} + mg(R + R\cos\alpha)$$
$$u = \sqrt{gR \sec\alpha + 2gR(1 + \cos\alpha)}$$

0999DJM262103240004

17. Ans (D)

by COME

$$v = \sqrt{2gl\sin\theta}$$

$$a_{cp} = \frac{v^2}{r} = \frac{2g\ell \sin \theta}{\ell}$$
$$= 2\alpha \sin \theta$$

and
$$a_t = g\cos\theta$$

$$a_{net} = \sqrt{(g\cos\theta)^2 + (2g\sin\theta)^2}$$
$$= g\sqrt{1 + 3\sin^2\theta}$$

18. Ans (D)

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \tan \theta = x$$

Ans (A) 20.

By energy conservation

$$TE_A = TE_B$$

$$\frac{1}{2}$$
mu² = $\frac{1}{2}$ mv_B² + mgR

PART-1: PHYSICS

SECTION-II

$$i = \frac{6-2}{1+3} = 1 A$$

$$V_2 = \varepsilon + ir = 2 + 1 \times 3 = 5V$$

Ans (2)

$$\frac{P}{Q} = \frac{S}{625}$$

$$\frac{Q}{P} = \frac{S}{676}$$

$$\therefore \frac{S}{625} = \frac{676}{S}$$

$$S = 25 \times 26$$

$$=650 \Omega$$

4. Ans (30)

$$E_1 = E - ir$$

$$E_2 = E - ir$$

$$= 10 - i20 = 0 = 10 - 0.5 \times 5$$

$$i = 0.5 A$$

$$= 7.5 \text{ V}$$

$$E_{net} = E_1 + E_2 = 7.5 \text{ V}$$

$$i = i_1 + i_2$$

$$0.5 = \frac{7.5}{x} + \frac{7.5}{30}$$

$$x = 30 \Omega$$

5. Ans (200)

$$I_g = 4 \times 10^{-4} \times 25 = 10^{-2} A$$

$$2.5 = (50 + R) \cdot 10^{-2}$$

$$\therefore$$
 R = 200 Ω

6. Ans (10)

$$r = \frac{100}{\sqrt{19}} m$$

at 2 sec,
$$v = 2 \times 2^2 + 2 = 10 \text{ m/s}$$

$$v = 2t^2 + t$$

$$a_{cp} = \frac{v^2}{r} = \frac{100}{100/\sqrt{19}} = \sqrt{19} \text{ m/s}^2$$

$$a_t = \frac{dv}{dt} = ut + 1$$

at
$$t = 2 \text{ sec}$$

$$a_t = 9 \text{ m/s}^2$$

then,
$$a_{net} = \sqrt{a_{cp}^2 + a_t^2}$$

$$a_{net} = \sqrt{\left(\sqrt{19}\right)^2 + 9^2} = 10 \text{ m/s}^2$$

7. Ans (172)

$$V_{max} = \sqrt{\left(\frac{\tan \theta + \mu}{1 - \mu \tan \theta}\right) Rg}$$

$$= \sqrt{\left(\frac{\tan 45 + 0.5}{1 - 0.5 \tan 45}\right) \times 1000 \times 9.8} = 172 \text{ m/s}$$

8. Ans (10)

$$|\Delta \overline{v}| = \sqrt{v_1^2 + v_2^2 + 2v_1v_2\cos(\pi - \theta)}$$

$$= 2v\sin\frac{\theta}{2} \text{ since } [|\overline{v}_1| = |\overline{v}_2|]$$

$$= (2 \times 10) \times \sin(30^\circ) = 10 \text{ m/s}$$

9. Ans (2)

$$\mu mg = m\sqrt{a_t^2 + a_n^2}$$

$$r\omega^2 = (\alpha t)^2 = x^2$$

$$(0.5 \times 10)^2 = x^4 + 9$$

$$x^2 = 16$$

$$x = 2$$

10. Ans (25)

$$\omega = \omega_0 + \alpha t$$

$$20 = 0 + \alpha(5)$$

$$\alpha = 4 \text{ rad/s}^2$$

$$\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$$

$$(20)^2 = 0 + 2(4) \Delta \theta$$

$$\Delta \theta = \frac{400}{8} = 50 \text{ rad}$$

$$n = \frac{\Delta \theta}{2\pi} = \frac{25}{\pi} rev.$$

PART-2: CHEMISTRY SECTION-I

2. Ans (C)

 $K_3[Cu_{3410}(CN)_4]$ Hybridization sp³, tetrahedral, diamagnetic

Ans (B) 6.

In $[Cr(NH_3)_6]^{3+}$ EAN of Cr = 24 - 3 + 12 = 33

8. Ans (C)

[Cr(NH₃)₄Cl₂] Cl

11. Ans (C)

n-factor for $FeSO_4 \Rightarrow Fe (+2 \text{ to } + 3) \times 1 = 1$

n -factor for $FeC_2O_4 \Rightarrow$ $Fe(+2 \text{ to } + 3) \times 1 = 1e^{-1} loss$

 $C(+3 \text{ to } + 4) \times 2 = 2e - loss = 3$

Equivalent of FeSO4 = Equivalent of $KMnO_4$

 \Rightarrow x mol \times 1 = y mol \times 5

Similarly,

Equivalent of FeC_2O_4 = Equivalent of $KMnO_4$

 \Rightarrow x mol \times 3 = (mol of KMnO₄ = ?) \times 5 ...(ii)

 \therefore Mol of KMnO4 required = 3y

12. Ans (C)

Compounds where oxidation state of central atom \Rightarrow O.S. between min. & max.

 \downarrow

Act as both

Oxidant, Reductant

13. Ans (A)

Caro's acid = H_2SO_5

= Peroxomono-sulphuric acid

Marshell's acid = $H_2S_2O_8$

= Peroxodi-sulphuric acid

The oxidation state in both the acids is +6 each because oxidation state cannot be greater than the number of valuence electrons.

14. Ans (C)

 $2BrO_3^- + 12H^+10Br^- \rightarrow 6Br_2 + 6H_2O$ 10 mole e required for formation of 6 moles of Br₂ n-factor of Br₂ = $\frac{10}{6}$ = $\frac{5}{2}$ eq. wt. = $\frac{\text{mol. wt.}}{n} = \frac{m}{\frac{5}{3}} = \frac{3m}{5}$

15. Ans (A)

meq. $FeSO_4(NH_4)_2SO_4.6H_2O = meq of KMnO_4$

$$\frac{W}{392} \times 1 \times 1000 = 0.1 \times 50$$
; W = 1.96 g

Hence, % purity of Mohr's salt

$$=\frac{1.96}{2.5}\times100=78.4\%$$

16. Ans (D)

 M_4O_5

 $M_{x}(+1) M_{v}(+3) O_{5}$

$$x + y = 4$$

$$x + 3y = 10$$
 $x + 3y = 10$
 $-2y = -6$ $y = 3 ; x = 1$ $-2y = -6$

17. Ans (C)

 $M^{+3} \rightarrow M^{+n}$ (Reduction)

n-factor = $(3 - n)^{e}$ gain

$$SO_3^{-2} \rightarrow SO_4^{-2}$$
 (oxidation)

n-factor = $(+ 4 \text{ to } + 6) = 2e^{-1} \log 8$

Total loss = Total gain

$$0.1 \text{ M} \times (3 - \text{n}) \times 50 \text{ ml}$$

$$= 0.1 \text{ M} \times (2) \times 25 \text{ ml}$$

$$3 - n = 1$$

n = 2

18.

Ans (C)

$$P_4S_3 \longrightarrow 2P_2O_5 + 3SO_2$$

 $14e^ 18e^-$

19. Ans (B)

In above reaction

valency factor of $N_2H_4 = 4$

∴ eq. wt. of N2H4 =
$$\frac{\text{mol. wt}}{\text{valency factor}} = \frac{32}{4} = 8$$

and valency factor of KIO₃ = 4

∴ eq. wt. of
$$KIO_3 = \frac{214}{4} = 53.5$$

20. Ans (D)

Balanced chemical reaction is

$$2MnO4^- + 3CN^- + H2O$$

$$\rightarrow 2MnO2 + 3CNO^- + 2OH^-$$

PART-2: CHEMISTRY SECTION-II

3. Ans (5)

Ions in aq. solution

3 $[Cr(NH_3)_5Cl]Cl_2$ $[Cr(NH_3)_4Cl_2]Cl$ 3 + 2 = 5 ions

5. Ans (7)

$$[\text{CoCl}_6]^{-3}$$
, $\text{Co}^{+3} \Rightarrow 4\text{s}^2 3\text{d}^7 = \text{d}^6$

$$\boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1}$$

$$[Cr(NH_3)_6]^{+3}$$
, $Cr^{+3} \Rightarrow 4s^2 3d^5 d^3$

$$[Zn(NH_3)_4]^{+2}, Zn^{+2} \Rightarrow 4s^23d^{10}$$

unpaired
$$e^- = 0$$

$$Sum = 7e^{-}$$

6. Ans (8)

Valency factor of $H_2S = 8$.

Ans (2) 7.

eq. of
$$MnO_4^- = eq.$$
 of A^{+x}
 $1 \times 5 = 1.67 \times (5 - x)$
 $x = 2$

8. Ans (4)

$$\underbrace{\frac{N\,a_{2}C_{2}O_{4}\ +\ H_{2}C_{2}O_{4}}_{448\ g}}_{}$$

Let moles of each be x

$$x \times 134 + x \times 90 = 448$$

$$x = 2$$

Equivalents of NaOH required = Equivalent of $H_2C_2O_4$

(only for
$$H_2C_2O_4$$
) = 2 × 2 = 4

9. Ans (3)

$$P_2H_4 \xrightarrow{-10e^-} (P_2H_4)^{+10}$$
[Compound Y]
in compound Y;
$$2x + 4 = +10$$

 $2x = +6 \Rightarrow [x = +3]$

10. Ans (1)

$$BrO_3^- \rightarrow Br^-$$
; n-factor = (+ 5 to - 1) = 6 e⁻ gain $N_2H_4 \rightarrow N_2$; n-factor = (- 2 to 0) × 2 = 4e⁻ loss Total loss = Total gain

$$n \times 4e^- = \frac{2}{3} \times 6e^-$$

$$n = 1 \text{ mole}$$

PART-3: MATHEMATICS

SECTION-I

Ans (A) 1.

$$\int \frac{1}{x} \sqrt{\frac{1-x}{1+x}} \, dx = g(x) + c$$
Put $x = \cos 2\theta$

$$dx = -2\sin 2\theta \cdot d\theta$$

$$= \int \frac{1}{\cos 2\theta} \tan \theta \left(-4\sin \theta \cdot \cos \theta \right) d\theta$$

$$= \int \frac{1}{\cos 2\theta} \left(-4\sin^2 \theta \right) d\theta$$

$$= -2\int \frac{1-\cos 2\theta}{\cos 2\theta} d\theta$$

$$= -2\int \ln|\sec 2\theta + \tan 2\theta| + 2\theta + c$$

$$= \ln|\sec 2\theta - \tan 2\theta| + 2\theta + c$$

$$= \ln\left|\frac{1-\sin 2\theta}{\cos 2\theta}\right| + \cos^{-1}x + c$$

$$= \ln\left|\frac{1-\sqrt{1-x^2}}{x}\right| + \cos^{-1}x + c$$

$$\therefore g(1) = 0$$

$$g(x) = \ln\left|\frac{1-\sqrt{1-x^2}}{x}\right| + \cos^{-1}x$$

$$g(x) = \ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + \cos^{-1} x$$

$$g\left(\frac{1}{2}\right) = \ln\left|2 - \sqrt{3}\right| + \frac{\pi}{3}$$

$$g\left(\frac{1}{2}\right) = \ln\left|\frac{\sqrt{3}-1}{\sqrt{3}+1}\right| + \frac{\pi}{3}$$

2.

$$\int \left(\frac{x^2 + 1}{(x+1)^2}\right) e^x dx$$

$$= \int \left(\frac{x^2 - 1 + 2}{(x+1)^2}\right) e^x dx$$

$$= \int \left(\frac{x - 1}{x+1} + \frac{2}{(x+1)^2}\right) e^x dx$$

$$= \int (f(x) + f'(x)) e^x dx$$

$$= f(x) e^x + c$$
Where $f(x) = \frac{x - 1}{x+1}$

$$f'(x) = \frac{2}{(x+1)^2}$$

$$f''(x) = \frac{-4}{(x+1)^3}$$

$$= \frac{12}{(x+1)^4}$$

$$f''(1) = \frac{12}{16} = \frac{3}{4}$$

3.

$$I = \int \frac{\left(1 - \frac{1}{\sqrt{3}}\right)(\cos x - \sin x)}{\left(1 + \frac{2}{\sqrt{3}}\sin 2x\right)} dx$$

$$\frac{\sqrt{3}}{2} \int \frac{\left(1 - \frac{1}{\sqrt{3}}\right)(\cos x - \sin x)}{\left(\frac{\sqrt{3}}{2} + \sin 2x\right)} dx$$

$$\int \frac{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)(\cos x - \sin x)}{\sin 60^{\circ} + \sin 2x} dx$$

$$\int \frac{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)(\cos x - \sin x)}{2\sin \left(x + \frac{\pi}{6}\right)\cos \left(x - \frac{\pi}{6}\right)} dx$$

$$\int \frac{\left(\cos \left(x - \frac{\pi}{6}\right) - \sin \left(x + \frac{\pi}{6}\right)\right)}{2\sin \left(x + \frac{\pi}{6}\right)\cos \left(x - \frac{\pi}{6}\right)} dx$$

$$\int \frac{1}{2} \int \frac{dx}{\sin \left(x + \frac{\pi}{6}\right)} - \int \frac{dx}{\cos \left(x - \frac{\pi}{6}\right)} dx$$

$$\int \frac{1}{2} \ln \left|\frac{\tan \left(\frac{x}{2} + \frac{\pi}{12}\right)}{\tan \left(\frac{x}{2} + \frac{\pi}{6}\right)}\right|$$

$$I(x) = \int \sec^2 x \cdot \sin^{-2022} x \, dx - 2022 \int \sin^{-2022} x \, dx$$

$$II \qquad I$$

$$= \tan x \cdot (\sin x)^{-2022} + \int (2022) \tan x \cdot (\sin x)^{-2023} \cos x \, dx$$

$$-2022 \int (\sin x)^{-2022} \, dx$$

$$I(x) = (\tan x) (\sin x)^{-2022} + C$$

$$At \ X = \pi/4, \ 2^{1011} = \left(\frac{1}{\sqrt{2}}\right)^{-2022} + C \therefore C = 0$$
Hence
$$I(x) = \frac{\tan x}{(\sin x)^{2022}}$$

$$I(\pi/6) = \frac{1}{\sqrt{3} \left(\frac{1}{2}\right)^{2022}} = \frac{2^{2022}}{\sqrt{3}}$$

$$I(\pi/3) = \frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)^{2022}} = \frac{2^{2022}}{\left(\sqrt{3}\right)^{2021}}$$

$$= \frac{1}{3^{1010}} I\left(\frac{\pi}{6}\right)$$

$$3^{1010} I(\pi/3) = I(\pi/6)$$

Ans (A)

$$\int \frac{2x^3 - 1}{x^4 + x} dx$$

$$\int \frac{2x - \frac{1}{x^2}}{x^2 + \frac{1}{x}} dx$$

$$x^2 + \frac{1}{x} = t$$

$$\left(2x - \frac{1}{x^2}\right) dx = dt$$

$$\int \frac{dt}{t} = \ln(t) + C$$

$$= \ln\left(x^2 + \frac{1}{x}\right) + C$$

$$\int \frac{\tan x + \tan \alpha}{\tan x - \tan \alpha} dx = \int \frac{\sin(x + \alpha)}{\sin(x - \alpha)} dx$$
Let $x - \alpha = t$

$$\Rightarrow \int \frac{\sin(t + 2\alpha)}{\sin t} dt = \int \cos 2\alpha dt + \int \cot(t) \sin 2\alpha dt$$

$$= t \cdot \cos 2\alpha + \ln|\sin t| \cdot \sin 2\alpha + C$$

$$= (x - \alpha) \cos 2\alpha + \ln|\sin(x - \alpha)| \cdot \sin 2\alpha + C$$

7. Ans (D)

$$\int e^{\sec x} (\sec x \tan x \ f(x) + (\sec x \ \tan x + \sec^2 x) \ dx$$

$$= e^{\sec x} \ f(x) + C$$
Diff. both sides w.r.t. 'x'
$$e^{\sec x} (\sec x \ \tan x \ f(x) + (\sec x \ \tan x + \sec^2 x))$$

$$= e^{\sec x} \times \sec x \tan x \ f(x) + e^{\sec x} \ f \ \phi(x)$$

$$f'(x) = \sec^2 x + \tan x \sec x$$

8. Ans (A)

$$\int \frac{\cos x \, dx}{\sin^3 x \left(1 + \sin^6 x\right)^{2/3}}$$

$$= \frac{-6}{-6} \int \frac{\cos x \, dx}{\sin^7 x \left(\frac{1}{\sin^6 x} + 1\right)^{2/3}}$$

$$= -\frac{1}{6} \times 3 \left(\frac{1}{\sin^6 x} + 1\right)^{\frac{1}{3}} + c$$

$$= -\frac{1}{2} \frac{\left(1 + \sin^6 x\right)^{\frac{1}{3}}}{\sin^2 x} + c$$
Hence, $1 = 3$ and $f(x) = -\frac{1}{2\sin^2 x}$
so, $\lambda f\left(\frac{\pi}{3}\right) = -2$

 \Rightarrow f(x) = tan x + sec x + c

Remark : Technically, this question should be marked as bonus. Because f(x) and 1 cannot be found uniquely. For example, another such f(x) and 1 can be $-\frac{\left(1+\sin^6x\right)^{\frac{1}{6}}}{2\sin^2x}$ and 6 respectively.

9. Ans (A)

$$\begin{split} &I = \int \frac{d\theta}{\cos^2\theta \left(\tan 2\theta + \sec 2\theta\right)} \\ &= \int \frac{\sec^2\theta \ d\theta}{\frac{2\tan\theta}{1-\tan^2\theta} + \frac{1+\tan^2\theta}{1-\tan^2\theta}} = \int \frac{\left(1-\tan^2\theta\right)\sec^2\theta \ d\theta}{\left(1+\tan\theta\right)^2} \\ &\tan\theta = t \Rightarrow \sec 2\theta \ d\theta = dt \\ &I = \int \frac{1-t^2}{\left(1+t\right)^2} \ dt = \int \frac{\left(1-t\right)\left(1+t\right)}{\left(1+t\right)^2} \ dt \\ &= \int \frac{1}{1+t} - \frac{t}{1+t} \ dt \\ &= \ln|1+t| - \int \left(\frac{1+t}{1+t} - \frac{1}{1+t}\right) \ dt \\ &= \ln|1+t| - t + \ln|1+t| \\ &= 2\ln|1+t| - t + C] \\ &= 2\ln|1+\tan\theta| - \tan\theta + C \\ &\lambda = -1, \ f(\theta) = 1 + \tan\theta \end{split}$$

10. Ans (C)

Put
$$x = \tan 2 \theta \Rightarrow dx = 2 \tan \theta \sec 2\theta d\theta$$

$$\int \theta \cdot (2 \tan \theta \cdot \sec^2 \theta) d\theta$$

$$\downarrow \qquad \downarrow$$
I II (By parts)
$$= \theta \cdot \tan^2 \theta - \int \tan^2 \theta d\theta$$

$$= \theta \cdot \tan^2 \theta - \int (\sec^2 \theta - 1) d\theta$$

$$= \theta (1 + \tan^2 \theta) - \tan \theta + C$$

$$= \tan^{-1} (\sqrt{x}) (1 + x) - \sqrt{x} + C$$

11. Ans (B)

Let the perimeter of the pentagon and decagon be 10x.

Then, each side of the pentagon is 2x and its area

$$\left(\text{using } \frac{1}{4} \text{na}^2 \cot \frac{\pi}{\text{n}}\right) = 5x^2 \cot \frac{\pi}{5} \qquad \dots (i)$$
$$[\because \text{n} = 5 \text{ and a} = 2x]$$

Also, as each side of decagon is x, so its area

$$= \frac{5}{2}x^{2} \cot \frac{\pi}{10} \ [\because n = 10 \text{ and } a = x]$$

$$\Rightarrow \frac{\text{Area of pentagon}}{\text{Area of decagon}} = \frac{2 \cot 36^{\circ}}{\cot 18^{\circ}}$$

$$= \frac{2 \cos 36^{\circ} \sin 18^{\circ}}{\sin 36^{\circ} \cos 18^{\circ}}$$

$$= \frac{2 \cos 36^{\circ} \sin 18^{\circ}}{2 \sin 18^{\circ} \cos 18^{\circ} \cos 18^{\circ}} = \frac{\cos 36^{\circ}}{\cos^{2} 18^{\circ}}$$

$$= \frac{2 \cos 36^{\circ}}{2 \cos^{2} 18^{\circ}} = \frac{2 \cos 36^{\circ}}{1 + \cos 36^{\circ}}$$

$$= \frac{2 \left(\sqrt{5} + 1\right)}{4 \left\{1 + \frac{\sqrt{5} + 1}{4}\right\}} = \frac{2 \left(\sqrt{5} + 1\right)}{5 + \sqrt{5}} = \frac{2}{\sqrt{5}}$$

ALLEN®

12. Ans (A)

Let
$$\angle CDA = \theta \implies \angle CDB = 180^{\circ} - \theta$$

and
$$\angle CBA = \phi \implies \angle CAB = 90^{\circ} - \phi$$

And AC = b, BC = a and CD = h

In \triangle ACD by sine rule

$$\frac{\sin 60}{3} = \frac{\sin \theta}{b} = \frac{\sin (90 - \phi)}{h}$$

$$A \xrightarrow{\frac{90^{\circ} - \phi}{60^{\circ}}} \xrightarrow{\frac{180^{\circ} - \phi}{5 \text{ cm}}} \xrightarrow{D} B$$

$$\Rightarrow \frac{\sqrt{3}}{6} = \frac{\sin \theta}{b} \qquad \dots (i)$$

In \triangle CBD by sine rule,

$$\frac{\sin 30}{2} = \frac{\sin (180 - \theta)}{a} = \frac{\sin \phi}{h}$$

$$\Rightarrow \frac{1}{4} = \frac{\sin \theta}{a} \qquad \dots (ii)$$

Dividing equation (i) by (ii), we get

$$\frac{\sqrt{3}}{6} \times 4 = \frac{a}{b} \Rightarrow a = \frac{2b}{\sqrt{3}} \qquad \dots (iii)$$

Now, in $\triangle ABC$ by pythagoras theorem.

$$a^{2} + b^{2} = 5^{2}$$

$$\Rightarrow \left(\frac{2}{\sqrt{3}}b\right)^{2} + b^{2} = 25 \text{ (using eq. (iii))}$$

$$\Rightarrow 4b^{2} + 3b^{2} = 75$$

$$\Rightarrow 7b^2 = 75 \Rightarrow b = 5\sqrt{\frac{3}{7}}$$
cm

13. Ans (C)

Let r and R be the in radius and circumradius respectively of in circle and circumcircle of a regular polygon of side n. So,

$$r + R = \frac{a}{2}\cot\frac{\pi}{n} + \frac{a}{2}\csc\frac{\pi}{n}$$

$$= \frac{a}{2}\left(\frac{1 + \cos\pi/n}{\sin\pi/n}\right) = \frac{a}{2}\frac{2\cos^2\frac{\pi}{2n}}{2\sin\frac{\pi}{2n}\cdot\cos\frac{\pi}{2n}}$$

$$= \frac{a}{2}\cot\frac{\pi}{2n}$$

14. Ans (A)

The circles are with centers (2, 0) and (-2, 0) and radius 4.

Therefore, the y-axis is their common chord.

 Δ ABC is equilateral. Hence

Area of ADBC =
$$\frac{2 \times \sqrt{3}}{4} (4)^2 = 8\sqrt{3}$$

15. Ans (B)

$$|MN| = |MC| + |CN| = \sqrt{3} + 1$$

$$\Rightarrow 2\cos\frac{\pi}{2K} + 2\cos\frac{\pi}{K} = \sqrt{3} + 1$$

$$\Rightarrow \cos \frac{\pi}{2K} + \cos \frac{\pi}{K} = \frac{\sqrt{3}}{2} + \frac{1}{2}$$

$$\Rightarrow \frac{\pi}{K} = \frac{\pi}{3} \Rightarrow K = 3$$

16. Ans (C)

Let O (0, 0) be the centre of the given circle.

Clearly
$$\angle$$
 QPR = $\frac{1}{2}$ \angle QOR = $\frac{\theta}{2}$

slope of QR =
$$\frac{3}{-4}$$
, slope of QQ = $\frac{4}{3}$

: OR and OQ are perpendicular

$$\therefore \theta = \frac{\pi}{2}$$

Hence
$$\angle$$
 QPR = $\frac{\theta}{2} = \frac{\pi}{4}$

17. Ans (A)

c (3, 3), OC =
$$\sqrt{3^2 + 3^2} = 3\sqrt{2}$$
, $c_1\left(\frac{3}{2}, \frac{3}{2}\right)$
c $c_1 = \sqrt{\left(3 - \frac{3}{2}\right)^2 + \left(3 - \frac{3}{2}\right)^2} = \frac{3\sqrt{2}}{2}$

Radius of smallest circle = $\frac{3\sqrt{2}-3}{2}$

Equation of smallest circle

$$(x-3)^2 + (y-3)^2 = \left(\frac{3\sqrt{2}-3}{2}\right)^2$$

18. Ans (C)

$$\frac{3\cos 2x + \cos^{3}2x}{\cos^{6}x - \sin^{6}x} = x^{3} - x^{2} + 6$$

$$\Rightarrow \frac{\cos 2x (3 + \cos^{2}2x)}{\cos 2x (1 - \sin^{2}x\cos^{2}x)} = x^{3} - x^{2} + 6$$

$$\Rightarrow \frac{4(3 + \cos^{2}2x)}{(4 - \sin^{2}2x)} = x^{3} - x^{2} + 6$$

$$\Rightarrow x^{3} - x^{2} + 2 = 0$$

$$\Rightarrow (x+1)(x^2-2x+2)=0$$

So, sum of real solutions = -1

19. Ans (B)

$$3\sin(\alpha+\beta)=2\sin(\alpha-\beta)$$

$$\Rightarrow$$
 3 sin α cos β + 3 sin β cos α
= 2 sin α cos β – 2 sin β cos α

$$\Rightarrow$$
 5 sin β cos $\alpha = -\sin \alpha \cos \beta$

$$\Rightarrow$$
 tan $\alpha = -5$ tan $\beta \Rightarrow k = -5$

20. Ans (A)

$$4 \sin^{2} x - 4\cos^{3} x + 9 - 4\cos x = 0;$$

$$x \in [-2\pi, 2\pi]$$

$$\Rightarrow 4 - 4\cos^{2} x - 4\cos^{3} x + 9 - 4\cos x = 0$$

$$\Rightarrow 4\cos^{3} x + 4\cos^{2} x + 4\cos x = 13$$

Since L.H.S. \leq 12, equation has no roots

PART-3: MATHEMATICS

SECTION-II

1. Ans (-2)

$$I = \int \frac{dx}{\sqrt{\sin^3 x \cos^5 x}}$$

$$I = \int \frac{dx}{\sqrt{\frac{\sin^3 x}{\cos^3 x} \cos^8 x}}$$

$$= \int \frac{\sec^4 x}{\sqrt{\tan^3 x}} dx$$

$$= \int \frac{(1 + \tan^2 x) \sec^2 x}{\sqrt{\tan^3 x}} dx$$

Let $\tan x = t \Rightarrow \sec^2 x \, dx = dt$

$$= \int \frac{(1+t^2)dt}{\sqrt{t^3}}$$

$$= \int \left(t^{-3/2} + t^{1/2}\right) dt$$

$$= 2t^{-1/2} + \frac{2}{3}t^{3/2} + c$$

$$= -2\sqrt{\cot x} + \frac{2}{3}\sqrt{\tan^3 x} + c$$

2. Ans (-5)

$$I = \int \frac{x^9}{(4x^2 + 1)^6} dx$$

$$= \int \frac{dx}{x^3 \left(4 + \frac{1}{x^2}\right)^6}$$
Let $4 + \frac{1}{x^2} = t$

$$-\frac{2}{x^3} dx = dt \implies \frac{dx}{x^3} = \frac{-dt}{2}$$

$$= -\frac{1}{2} \int \frac{dt}{t^6}$$

$$= -\frac{1}{2} \frac{t^{-6+1}}{-6+1}$$

$$= \frac{1}{10} \left(4 + \frac{1}{x^2}\right)^{-5} + c$$

3. Ans(3)

$$\int \frac{\left(\frac{4}{x^5} + \frac{7}{x^8}\right)}{\left(1 + \frac{1}{x^4} + \frac{1}{x^7}\right)^2}$$

Put
$$t = 1 + \frac{1}{x^4} + \frac{1}{x^7}$$

$$= \int \frac{-dt}{t^2} = \frac{x^7}{x^7 + x^4 + 1} + C$$

4. Ans (5)

$$\int \frac{\sqrt{1+x^{1/3}}}{x^{2/3}} \cdot dx = x$$

Let
$$x1/3 = t$$

$$\frac{1}{3x^{2/3}}dx = dt$$

$$\Rightarrow \int 3\sqrt{t+1}dt \Rightarrow 3. \frac{(t+1)^{3/2}}{3/2} + c = 2t^{3/2} + c$$

$$\Rightarrow 2(1 + x^{1/3})^{3/2} + C \Rightarrow k = 2, m =$$

$$k + 2m = 2 + 3 = 5$$

5. Ans (1)

$$\int x^5 (1+x^3)^{2/3} dx$$

$$1 + x^3 = t^2$$
 and $3x^2 dx = 2t dt$

$$\because \int x^5 (1+x^3)^{2/3} dx = \int x^3 (1+x^3)^{2/3} x^2 dx$$

$$= \int (t^2 - 1)(t^2)^{2/3} x^2 dx$$

$$=\frac{2}{3}\int (t^2-1) t^{7/3} dt$$

$$=\frac{2}{3}\int (t^{13/3}-t^{7/3}) dt$$

$$= \frac{2}{3} \left[\frac{3}{16} t^{16/3} - \frac{3}{10} t^{10/3} \right] + c$$

$$=\frac{1}{8}(1+x^3)^{8/3}-\frac{1}{5}(1+x^3)^{5/3}+c$$

6. Ans (2)

In $\triangle ABD$,

$$\cos 60^{\circ} = \frac{2^2 + 5^2 - BD^2}{2(5)}$$

$$\Rightarrow BD^2 = 19$$

Now, in $\triangle BCD$

$$\cos 120^{\circ} = \frac{\text{CD}^2 + 9 - 19}{2(3) \text{ (CD)}}$$

$$\Rightarrow$$
 CD² + 3CD - 10 = 0

$$\Rightarrow$$
 CD = -5, 2

$$\Rightarrow$$
 CD = 2 (:: CD \neq -5)

7. Ans (16)

by similar triangle

$$\frac{h}{x_1} = \frac{80}{x_1 + x_2} \qquad \dots (1)$$

by
$$\frac{h}{x_2} = \frac{20}{x_1 + x_2}$$
 ...(2)

by (1) and (2)

$$\frac{x_2}{x_1} = 4 \text{ or } x^2 = 4x1$$

$$\Rightarrow \frac{h}{x_1} = \frac{80}{5x_1}$$

or
$$h = 16m$$

8. Ans (180)

Given lines are perpendicular

(∵
$$m_1 m_2 = -1$$
).

Hence P & Q are the end points of the diameter.

∴ Angle subtended by are PQ at its centre is 180°

9. Ans (25)

$$3\left(\frac{1}{2}r^2.\sin 120^\circ\right) = 27\sqrt{3}$$

$$\frac{r^2}{2} \frac{\sqrt{3}}{2} = \frac{27\sqrt{3}}{3}$$

$$r^2 = \frac{108}{3} = 36$$

Radius =
$$\sqrt{25 + 36 - C} = \sqrt{36}$$

$$C = 25$$

10. Ans (48)

$$\cos 2x + a \sin x = 2a - 7$$

$$\Rightarrow$$
 1 - 2 sin²x + a sin x = 2a - 7

$$\Rightarrow 2\sin^2 x - a\sin x + 2a - 8 = 0$$

$$\Rightarrow$$
 sin x = $\frac{a-4}{2}$, 2 (Not possible)

Now,
$$-1 \leqslant \frac{a-4}{2} \leqslant 1$$

$$\Rightarrow 2 \le a \le 6$$

$$\therefore$$
 p = 2 and q = 6

$$r = tan9^{\circ} + cot 9^{\circ} - tan 27^{\circ} - cot 27^{\circ}$$

$$= \frac{1}{\sin 9^{\circ} \cos 9^{\circ}} - \frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$$

$$= \frac{2}{\sin 18^{\circ}} - \frac{2}{\sin 54^{\circ}}$$

$$= 2\left[\frac{4}{\sqrt{5} - 1} - \frac{4}{\sqrt{5} + 1}\right] = 4$$

$$pqr = 2 \times 6 \times 4 = 48$$