A Model of Political Competition with Citizen-Candidates Osborne and Slivinski (1996)

Manna S., Pulvirenti A., Roccuzzo T.

Advanced Political Economics

15 November 2022

Outline

- Introduction
- 2 Model
 - Model Assumptions
- Results: Plurality vs Runoff
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Outline

- 1 Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runofl
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Introduction

- Novel spatial model of electoral competition
- Used to study the electoral outcomes under different majority rules setting
 - Plurality rule: the winner of the election is the candidate who obtains the most votes
 - Runoff system: if no candidate obtains a majority in the first-round election, a second round is held between the two most voted candidates
- Main novelty: notion of citizen-candidate

Definition: Citizen-candidate

- Each citizen in the population chooses **whether** to run for election or not
- The winner of the election implements her favourite policy

Introduction

- The Model focuses on two main questions:
 - How does the **number of candidates** at equilibrium differ between the two systems?
 - How does the **dispersion between different positions** change under the two systems?

Preview of Results

- The number of candidates depends negatively on the cost of running for office, c; and positively on the benefit of winning elections, b
- Two-candidate elections are more likely under plurality
 - Result in line with Duverger's Law: runoff elections favour multi-partism
- Maximum dispersion of candidates' position is smaller under runoff
 - Equilibria with many candidates in the same position are possible under runoff but not plurality
- There exist equilibria in which losing candidates always runs

Outline

- Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runofl
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Model Assumptions - Set Up

- Continuum of citizens
- Each citizen has *single-peaked* preferences over the set of policy positions, assumed to be the interval $[0,1] \subset \mathbb{R}$
- F is the distribution of citizen's ideal points over [0,1], it is continuous and with unique median m
- No cost of voting, no abstention
- The 'ideological' payoff of each citizen i depends on the distance between her ideal point, x_i and the ideal point of the winner, x^* :

$$-|x^*-x_i|$$

Model Assumption - Rules of the Game

- Each citizen can choose either to enter the electoral competition (E), or not (N)
- A citizen who chooses (E) is referred to as *candidate*, and incurs a (utility) cost c > 0 to run for office
- The benefit of winning the elections is b > 0
- A candidate can only propose her preferred/ideal policy, and citizens rationally anticipate that a winning candidate will implement her preferred policy – thus computing the expected payoff on this
- Voting is *sincere*:
 - A candidate whose position x_j is occupied by k candidates (including herself), attracts 1/k of the votes of the citizens whose ideal points are closer to x_j than to any other candidate.
 - No strategic voting

Model Assumptions - Payoffs

- Assume that the ideal position of the winner is x^*
- If a citizen i decides not to enter the competition (N) and her ideal position is x_i , then her payoff is:

$$-|x^* - x_i|$$

• If a citizen instead enters the competition, then her payoff is:

$$\begin{cases} b-c & \text{if she wins outright} \\ -|x^*-x_i|-c & \text{if she loses outright} \end{cases}$$

• If no one runs, everyone gets $-\infty$

Model Assumptions - Timing of the Game

- Stage 1: all citizens simultaneously make a choice of entering or not the electoral competition
 - Candidates are assumed to perfectly anticipate how citizens will vote for any given set of candidates
- Stage 2: after choosing between E (becoming a candidate) and N (not entering the competition), citizens cast a vote
 - <u>Important</u>: citizens are assumed to know each candidate's true favourite policy (complete information)
 - Everybody votes, no abstention
- Stage 3: the winning candidate is elected and implements her favourite policy when in office
 - Citizens rationally anticipate this

Model Assumptions - Solution Concept

• The model is solved through Pure Strategy Nash Equilibrium

PSNE in this game

An equilibrium is a set of candidates such that, given perfect anticipation of voting behaviour:

- Every citizen who is a candidate is better off being in the race given who else is in the race
- Every citizen who is not a candidate is better off not being in the race

Outline

- 1 Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runoff
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Some elections are won by acclamation!

Proposition 1 — One-candidate equilibrium

There exists a one-candidate equilibrium $\iff b \leq 2c$.

Moreover:

- if $c \leq b \leq 2c$, then the candidate's ideal position is m
- ② if $b \le c$, then it may be any position $x \in [m \pm \frac{(c-b)}{2}]$

▶ See Proof

Sketch of the Proof:

• Start by noting that, to ensure that no other citizen with the same ideal position as the candidate wants to run, the costs of running must outweigh the expected benefits: $\frac{1}{2}b \leq c \Rightarrow b \leq 2c$

Proof of (1): if $c \leq b \leq 2c$, then the candidate's ideal position is m.

Let $b \leq 2c$, then there is an equilibrium where a single citizen with ideal position m runs since:

- any other entrant i with $x_i \neq m$ surely loses
- if the candidate at m withdraws, she gets $-\infty$

If there is one candidate at m, another citizen with ideal point m can enter and win with probability 1/2, getting $\frac{1}{2}b-c$ $\Rightarrow b \leq 2c$ to have an eq.

Intuition (2): if $b \le c$, then it may be any position $x \in [m \pm \frac{(c-b)}{2}]$.

Note: for $x^* \neq m$, any citizen i with ideal point $x_i \in [x^*, 2m - x^*]$ wins for sure if she enters, getting b - c instead of $-|x^* - x_i|$.

Then, to have an eq. it must be that *all* such citizens do not want to run: $-|x^* - x_i| \ge b - c$ for all $x_i \in [x^*, 2m - x^*]$ $(\Rightarrow b \le c)$

$$\implies -|x^* - 2m + x^*| \ge b - c \iff 2|x^* - m| \le c - b$$

$$\iff |x^* - m| \le \frac{(c - b)}{2} \iff x^* \in [m \pm \frac{(c - b)}{2}]$$

Note: Proposition 1 holds for both plurality and runoff elections

Q: Can you think of a real-life example of One-candidate equilibrium?

- High cost...
- ...Low benefits of winning

Note: Proposition 1 holds for both plurality and runoff elections

Q: Can you think of a real-life example of One-candidate equilibrium?

- High cost...
- ...Low benefits of winning
 - \Longrightarrow Class representative elections!

Outline

- 1 Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runoff
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Candidates Running on the Same Platform

Imagine now an equilibrium where $k \geq 2$ candidates run at the median

- Under **plurality**, there cannot be two or more candidates: if there were, a citizen with ideal position nearby could enter and win.
 - c.f. Cox [1987]: no convergent equilibria under plurality for k > 2, with citizen-candidates this does not hold even with k = 2 \Rightarrow no Downsian convergence at the median voter
- Under **runoff** elections instead this is possible: the entrant would surely lose the second round against a candidate at the median ⇒ More convergence (less dispersion) under runoff!

Clustering at the median

Consider a 2-candidate equilibrium where both cluster at m

Under Plurality this is not possible: there are winning entrants

Clustering at the median

Consider a 2-candidate equilibrium where both cluster at m

Under Plurality this is not possible: there are winning entrants

Under Runoff this can hold since entrants lose the second round

The candidate at the median always wins the second round!

This result is more general: for an appropriate set of parameters (b, c), runoff elections can support any number of candidates clustered at the median.

Proposition 2 — Single-cluster equilibria under runoff

For any $k \geq 2$ there exists a k-candidate equilibrium in which the ideal position of every candidate is $m \iff kc \leq b \leq (k+1)c$

▶ See Proof

Outline

- Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runoff
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - \bullet Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Two-candidate Equilibria: Duverger's Law

Let i, j, be two candidates with different ideal positions x_i, x_j .

To have a two-candidate equilibrium it must hold that:

- 1 No other citizen wants to enter the race
- ② i and j want to run one against the other

We show that the set of parameter values for which this result holds under a runoff system is a subset of those under which it holds in plurality elections: the model is consistent with **Duverger's Law**

Moreover, the two candidates will be on **opposite sides of the** median voter's ideal point.

To simplify the analysis, we further assume that **preferences are** uniformly distributed over [0,1], but results extend to any density F continuous with unique median m

Two-Candidate Equilibria Under Plurality Rule

Suppose that $x_i = m - \varepsilon$, $x_j = m + \varepsilon$ so that each gets half of the votes

- if a candidate with ideal position m enters the race, i's share of votes is still the same as j's: $F[m-\varepsilon] = 1 F[m+\varepsilon]$,
- and m gets a share of votes of: $\frac{1}{2}(m + \varepsilon (m \varepsilon)) = \varepsilon$.

Now note: x_i and x_j cannot be **too dispersed**, because if $x_i \leq m - \frac{1}{3} \Rightarrow \varepsilon \geq \frac{1}{3}$, then m can enter and win for sure:

But x_i and x_j cannot be **too similar** either because otherwise either candidate may prefer to give up b, save c and let the other candidate implement their preferred policy for sure. That is:

$$\frac{b}{2} - c > -|x_i - x_j| \iff 2\varepsilon > c - \frac{b}{2} \iff \varepsilon > \frac{1}{2}(c - \frac{b}{2})$$

Proposition 3 — Two-Candidate Equilibria Under Plurality

- Two-candidate equilibria exist only if $\frac{1}{3} > \varepsilon > \frac{1}{2}(c \frac{b}{2})$
- In any two-candidate equilibrium, the candidate's ideal positions are $m-\varepsilon$ and $m+\varepsilon$

Two-Candidate Equilibria Under Runoff

- As per plurality, x_i and x_j cannot be **too similar**, or either candidate may prefer to give up b, save c and let the other candidate win. As before then: $\varepsilon > \frac{1}{2}(c \frac{b}{2})$.
- Also under runoff elections x_i and x_j cannot be **too dispersed**, but now any citizen with ideal policy in the interval $(m \varepsilon, m + \varepsilon)$ who receives more votes than **at least one** of the two candidates can enter the race, get to the second run and surely win (since she's closer to the median) \Longrightarrow max dispersion must be even smaller.

Two-Candidate Equilibria Under Runoff

Wlog, consider a citizen k marginally closer to m than x_i :

Then, for the equilibrium to exist, k must be unable to advance to the runoff, that is, k's share of votes must be smaller than i's:

$$\frac{h}{2} + \frac{x_j - x_i - h}{2} < x_i + \frac{h}{2} \iff \frac{x_j - x_i}{2} - \frac{h}{2} < x_i \text{ letting } h \to 0:$$

$$\frac{2\varepsilon}{2} < m - \varepsilon \iff \varepsilon < \frac{1}{4} \quad (< \frac{1}{3} \text{ c.f. plurality})$$

Two-Candidate Equilibria

Proposition 4 — Two-Candidate Equilibria Under Runoff

- Two-candidate equilibria exist only if $\frac{1}{4} > \varepsilon > \frac{1}{2}(c \frac{b}{2})$
- In any two-candidate equilibrium, the candidate's ideal positions are $m \varepsilon$ and $m + \varepsilon$

Therefore:

- Dispersion will be smaller under Runoff elections
- The values of (b, c) for which two-candidate equilibria are possible under runoff elections are a subset of those for which it exists under plurality
- ⇒ Two-candidate equilibria are *more likely* under plurality: This is in line with the first hypothesis of **Duverger's law**

Outline

- 1 Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runoff
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Three-Candidate Equilibria with a Sure-loser

Under **plurality**, there exist equilibria where one candidate surely loses, but runs anyway to change the identity of the winner:

- the two other candidates get the same share of votes,
- the sure-loser must prefer the resulting equal-probability lottery between the other two over the sure victory of one of them if she withdraws.
- This result never holds under runoff: a sure-loser does not affect who gets to the runoff and thus the ultimate winner.

Note: the distribution of voters' preferences **cannot be symmetric**, otherwise withdrawal by the sure-loser would result in a certain victory by the candidate she likes the most!

Three-Candidate Equilibria with a Sure-loser

Consider 3 candidates and an asymmetric distribution of preferences:

Under **plurality**, if the candidate at x_2 drops out, the one at x_3 wins! Under **runoff**, candidate 2 never affects the ultimate winner.

Q: Why can't the preference distribution be symmetric?

Three-Candidate Equilibria with a Sure-loser

Consider 3 candidates and an asymmetric distribution of preferences:

Under **plurality**, if the candidate at x_2 drops out, the one at x_3 wins! Under **runoff**, candidate 2 never affects the ultimate winner.

Q: Why can't the preference distribution be symmetric?

A: If it were, 2's withdrawal would result in the certain victory of candidate 1, since 1 is tying with 3 and is closer to 2 than 3 is. Then, since candidate 2 prefers x_1 over $x_3 \Rightarrow$ not running would be a dominant strategy for 2!

Three-Candidate Equilibria with Competitive Candidates

For 3 competitive candidates, the following characterizations hold.

- Plurality: candidates' positions are not all the same.
 - Two candidates may share the same positions with the third one running on a different position;
 - or all positions can be different.
 - Each candidate obtains $\frac{1}{3}$ of the votes.

HOWEVER, the necessary conditions set forth by the authors are **not sufficient**. Recall that if F is symmetric there is no equilibrium in which one candidate surely loses.

- If preferences are **symmetric and single-peaked** neither a sure loser, nor two candidates sharing the same position are feasible in equilibrium.
 - ⇒ All positions **must be different** to have an equilibrium!

Three-Candidate Equilibria with Competitive Candidates

- Runoff: the necessary condition is also sufficient, three-candidate equilibria exist for any distribution F if $3c \le b \le 4c$.
 - These are converging equilibria, where all candidates share the same position, m.
 - Equilibria are less dispersed than under plurality! This results holds also for k=4. See more
- **HOWEVER**, for some values of our parameters b, c there are three-candidate equilibria under plurality but not under runoff!

Electoral rules' effect on equilibria's likelihood is ambiguous!

- Notice that Runoff does not require any specific distributional assumption...
- ...but is more restrictive than Plurality on parameters' values!

Outline

- Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runoff
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Divide Duverger's Law into two statements:

- a two-candidate election is more likely under plurality rule than under a runoff system;
- ② an election with k candidates, for any k > 2, is more likely under a runoff system than under plurality rule.

The model predicts (1) in the strongest possible sense and predicts (2) for k equal to 3 or 4 in a weaker sense.

In particular, three- and four-candidate equilibria:

- exist under a **runoff** system **for any distribution** F, for appropriate values of parameters b and c,
- do not exist under **plurality** system for some distributions F, for any parameter values.

Figure 1: N° of Candidates in Possible Equilibria, as a function of b, c

Figure 2: Equilibria characterization for k = 1, as a function of b, c

Figure 3: Equilibria characterization for k = 2, as a function of b, c

Figure 4: Equilibria characterization for $k \geq 3$, as a function of b, c

Relation with Previous Work

- This paper departs from Hotelling (1929) in two respects:
 - the set of candidates is endogenous;
 - ② candidates are (also) policy-motivated, rather than just office-motivated.
- Palfrey (1984) studies a three-candidate model in which the third candidates chooses to enter after observing the two other candidates. The third candidate loses in equilibrium.
- Besley and Coate (1997) develop a notion citizen-candidate applied to a model of strategic voting behaviour. They find that there are never more than 2 candidates in plurality in equilibrium.

Relation with Previous Work

- Duverger's Law (**Duverger**, **1954** via Riker, 1982):
 - Two-candidate election is more likely under plurality than under a runoff system
 - ② An election with k > 2 candidates is more likely under a runoff system than under plurality
- Palfrey (1989) and Feddersen (1992) both predict that under plurality two candidates get (almost) all the votes, but that there might be more than two candidates.

Limitations and Open Questions (I)

- Everything showed holds also if we consider a separate pool of candidates with preferences drawn from the same distribution as the voters
 - This seems unrealistic: citizens who can/decide to run are a selected sub-sample of the voting population.
- If citizens can run (and credibly commit) to policies which are not their favourite ones the results no longer hold (agency problems).
- With strategic voting, some results no longer hold: there are never more than 2 candidates in plurality in equilibrium [Besley and Coate (1997a)].

Limitations and Open Questions (II)

- No analysis of the efficiency-properties of Citizen-candidates? [Basley and Coate (1997b)]
- Lack of pre-existing electoral candidates makes it hard to extend the model to include political parties [Persson and Tabellini 2002]
- \bullet No characterization of equilibria for k arbitrarily large
- Multiple equilibria make it hard to use the model to make testable predictions
- No empirics!

Outline

- Introduction
- 2 Model
 - Model Assumptions
- 3 Results: Plurality vs Runofl
 - One-Candidate Equilibrium
 - Candidates Running on the Same Platform
 - Two-Candidate Equilibria
 - Three-Candidate Equilibria
- 4 Conclusions
- 6 Appendix
 - Bibliography
 - Proofs
 - Four-Candidate Equilibria

Bibliography

- Besley, T., Coate, S. (1997). An Economic Model of Representative Democracy. The Quarterly Journal of Economics, 112(1), 85–114.
- Cox, G. W. (1987). Electoral Equilibrium under Alternative Voting Institutions. American Journal of Political Science, 31(1), 82.
- Cox, G. W. (1997). Making Votes Count: Strategic Coordination in the World's Electoral Systems (1st ed.). Cambridge University Press.
- Duverger, M. (1954). Political Parties, Their Organization and Activity in the Modern State. Methuen.
- Feddersen, T. J. (1992). A Voting Model Implying Duverger's Law and Positive Turnout. American Journal of Political Science, 36(4), 938.

Bibliography

- Hotelling, H. (1929). Stability in Competition. The Economic Journal, 39(153), 41.
- Osborne, M. J., Slivinski, A. (1996). A Model of Political Competition with Citizen-Candidates. The Quarterly Journal of Economics, 111(1), 65–96.
- Palfrey, T. R. (1984). Spatial Equilibrium with Entry. The Review of Economic Studies, 51(1), 139.
- Palfrey, Thomas R. (1989) A mathematical proof of Duverger's Law. In: Models of Strategic Choice in Politics. University of Michigan Press, Ann Arbor, pp. 69-91.
- Persson, T., Tabellini, G. (2002). Political Economics and Public Finance Handbook of Public Economics (Chapter 24, Vol. 3, pp. 1549–1659).
- Riker, W. H. (1982). The Two-Party System and Duverger's Law: An Essay on the History of Political Science. The American Political Science Review, 76(4), 753–766.

Appendix: Proof of Proposition 1

To ensure that no other citizens with the same ideal position wants to enter it must hold that $\frac{1}{2}b \leq c$.

Now, notice that if $\frac{1}{2}b \leq c$ there is an equilibrium where a single citizen with ideal position m enters since:

- any other entrant surely loses
- if the candidate at m with draws she gets $-\infty$

Instead, if there is a single candidate with position $x^* \neq m$, then any citizen i with ideal point $x_i \in [x^*, 2m - x^*]$ wins for sure if enters, getting b - c instead of $-|x^* - x_i|$.

- Then, $-|x^* x_i| \ge b c \ \forall x_i \in [x^*, 2m x^*]$ is a necessary condition for the existence of this equilibrium.
- Moreover, it implies $b \le c$ and $|m x^*| \le \frac{(c-b)}{2}$
- and is also a sufficient since a citizen with $x_i \notin [x^*, 2m x^*]$ wins with probability $\frac{1}{2}$ if enters, while the candidate gets $-\infty$ from withdrawing

Appendix: Proof of Proposition 2

Suppose that there are k candidates with common ideal position m.

For this to be an equilibrium it must hold that no other citizen wants to enter the race:

- Consider a citizen i with ideal position $x_i \neq m$. Then for $k \geq 2$:
 - if the candidate is too far from m, she fails to enter the runoff
 - ullet if she does gets to the runoff, she always lose against a candidate running on m
 - \implies for i it is optimal not to run

For this to be an equilibrium, it must also hold that no other citizen with ideal position m wants to run, then:

$$\bullet \ \frac{1}{(k+1)} \cdot b \le c$$

Finally, it must be optimal for the k candidates to run:

•
$$\frac{1}{k} \cdot b \geq c$$

◀ Return to Proposition 2

Appendix: Four-Candidate Equilibria

With k = 4, the following results hold.

- Plurality: there are four different equilibrium configurations depending on candidates' positions.
 - There can be a surely losing candidate,
 - or each candidate receives $\frac{1}{4}$ of votes.
 - No more than two positions can be exactly the same!
- Runoff: equilibria are more agglomerated!
 - As before, there is a converging equilibrium on the median,
 - or, there can be two clusters of candidates around the median, which was **impossible under plurality!**
 - The same characterization holds for any $k \geq 4$ even.

Appendix: Four-Candidate Equilibria

Under a generic F there is only one configuration resulting in an equilibrium under both Plurality and Runoff elections for k=4. It is one where:

- all candidates' positions are different,
- two extreme candidates and one of the middle candidates obtain the same number of votes in the first round,
- the remaining candidate obtains fewer votes.

Meaning that:

- under **Plurality** the two "extremists" and one of the "centrists" tie. Each one of them wins the election with probability $\frac{1}{3}$.
- Under **Runoff** two of the same three candidates move with equal probability to the second round to determine the winner.
- In both cases there is a **sure loser!**

