Problem Recap

Input: a shape P and its trunk T, shape Q as the riot of P, and its trunk T'.

Target: to fabricate common pieces of P and Q, which can be assembled along a chain, so that rotating the chain clockwise forms one figure and counter-clockwise forms the other figure.

Problem: The red exterior contour Q (Right figure) is split by T' into curves, forming the red interior curves of P (Left figure). Each piece, denoted as {Qi} in the following figure, is represented by a red boundary curve and a polygon edge. In the left figure, they may have overlaps which would cause piece conflictions after fabrication. The **target** is to deform the boundary curves in {Qi} to eliminate overlaps in P, and minimize gaps, while preserving the curve details as much as possible, so that when we reverse P to Q (Right figure), the shape Q is still recognizable.

Boundary deformation

1. Deformation method - Laplacian editing is used for deforming boundary curves while preserving curve details.

Refer: [Laplacian Surface Editing. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Roessl, and H.-P. Seidel. Proc. SGP 2004]

2. Moving directions – Attraction-Repulsion force is applied to both overlap and gaps. Each curve has a set of sample points, and the force is defined between points from two nearby curves.

Take the following figure for example, to eliminate the overlaps, we should pull

the green part along p_{j} direction, and red part along p_{i} direction.

Refer: Organic Labyrinths and Mazes, H. Pedersen, K. Singh, NPAR 06

And a brief description can be found from my previous document:

https://docs.google.com/document/d/1Ew4pw0Arjmo31uNVXHfO5A1IDfwZYxYSnbLcbG8p_F

3. Iteratively compute the moving vectors (step) of each point on a curve, select the largest step, and apply Laplacian deformation to the curve.

Some Results

Original P

Iter1: overlap-area:0, gap-area:0.11323

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:-1.25e-05, gap-area:0.01286

Minimizing gaps – Iter 12

Original Q

Iter1: overlap-area:-0.000225, gap-area:0.07698

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:0, gap-area:0.0062125

Minimizing gaps – Iter 12

RIOT 2

Original P

Iter1: overlap-area:-3.75e-05, gap-area:0.055675

Minimizing gaps – Iter 1

After eliminating overlaps

Iter8: overlap-area:0, gap-area:0.007775

Minimizing gaps – Iter 8

Original Q

Iter1: overlap-area:-0.0001625, gap-area:0.0666

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:-2.5e-05, gap-area:0.0463

Minimizing gaps – Iter 12

RIOT 3

Iter1: overlap-area:-1.25e-05, gap-area:0.1052

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:0, gap-area:0.0056375

Minimizing gaps – Iter 12

Iter1: overlap-area:-0.00015, gap-area:0.044737

After eliminating overlaps

Iter12: overlap-area:-1.25e-05, gap-area:0.0071

Minimizing gaps – Iter 12

RIOT 4

To Do: In the case that boundary curves are straight lines, the curve deformation cannot handle it well, maybe we should take it as a special case to solve, such as vertices merge.

Original Q

Iter1: overlap-area:-5e-05, gap-area:0.020025

Minimizing gaps – Iter 1

After eliminating overlaps

Iter2: overlap-area:5.5511e-17, gap-area:0.019

Minimizing gaps – Iter 2

Original P

Iter1: overlap-area:-0.0001625, gap-area:0.1019

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:-1.25e-05, gap-area:0.041925

Minimizing gaps – Iter 12

RIOT 5

Original Q

Iter1: overlap-area:-2.5e-05, gap-area:0.09238

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:-0.00013/5, gap-area:0.0

Minimizing gaps – Iter 5

Original P

Iter1: overlap-area:-7.5e-05, gap-area:0.0961

Minimizing gaps – Iter 1

After eliminating overlaps

Iter12: overlap-area:-1.25e-05, gap-area:0.004737

Minimizing gaps – Iter 12