Name: SUN RUI

Student ID: 18083229g

Answer 1:

a)

sort the column Age: [17, 18, 18, 22, 22, 27, 29, 34, 35, 38, 39, 39, 46, 54, 59] sort the column Monthly Income: [3000, 4000, 7500, 7800, 7800, 7900, 8500, 14000, 18000, 21000, 24700, 30000, 31000, 31110, 40500]

sort the column Service Plan: [100, 100, 100, 200, 200, 400, 600, 600, 600, 600, 800, 1000, 1600, 1600, 1600]

sort the column Extra Usage: [0, 0, 0, 7, 25, 31, 31, 50, 54, 64, 211, 254, 290, 303, 311]

Equal-width:

Age: $(59-17)/3=14 \rightarrow a=[17, 31), b=[31, 45), c=[45, 59]$

Monthly Income: $(40500-3000)/3=12500 \rightarrow x=[3000, 15500), y=[15500, 28000),$

z=[28000, 40500]

Service Plan: $(1600-100)/3=500 \rightarrow A=[100, 600), B=[600, 1100), C=[1100, 1600]$

Extra Usage: $(311-0)/3=103.67 \rightarrow X=[0, 103.67), Y=[103.67, 207.34), Z=[207.34, 311.01]$

Change the data into below table according to above ranges:

(0)	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage
1	54 c	FEMALE	3000 x	YES	100 A	O X
2	59 с	FEMALE	4000 x	NO	600 B	54 X
3	38 b	MALE	7800 x	NO	200 A	31 X
4	18 a	FEMALE	8500 x	NO	600 B	311 Z
5	27 a	MALE	14000 x	YES	100 A	211 Z
6	29 a	FEMALE	31000 z	YES	1600 C	25 X
7	17 a	MALE	7500 x	NO	600 B	254 Z
8	22 a	FEMALE	7900 x	NO	200 A	31 X
9	34 b	MALE	24700 y	NO	100 A	7 X
10	46 c	FEMALE	31110 z	YES	600 B	0 X
11	39 b	FEMALE	21000 y	YES	800 B	64 X
12	35 b	FEMALE	30000 z	NO	1600 C	0 X
13	39 b	MALE	40500 z	YES	1600 C	50 X
14	18 a	MALE	7800 x	NO	1000 C	290 Z
15	22 a	MALE	18000 у	YES	400 A	303 Z

initial cluster centers:

		Locus											
Ref	Age	Age Sex Monthly Marital Se Income Status		Service Plan	Extra Usage								
1 (1)	54 c	FEMALE	3000 x	YES	100 A	O X							
2 (8)	22 a	FEMALE	7900 x	NO	200 A	31 X							
3 (15)	22 a	MALE	18000 у	YES	400 A	303 Z							

cluster distances of first step:

(0)	(i)	(ii)	(iii)	(iv)	(v)	(vi)	di	stand	ce
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage	1	2	3
1	54 c	FEMALE	3000 x	YES	100 A	O X	0	2	4
2	59 c	FEMALE	4000 x	NO	600 B	54 X	2	2	6
3	38 b	MALE	7800 x	NO	200 A	31 X	3	2	4
4	18 a	FEMALE	8500 x	NO	600 B	311 Z	4	2	4
5	27 a	MALE	14000 x	YES	100 A	211 Z	3	3	1
6	<mark>29 a</mark>	FEMALE	31000 z	YES	1600 C	<mark>25 X</mark>	<mark>3</mark>	3	4
7	17 a	MALE	7500 x	NO	600 B	254 Z	5	3	3
8	22 a	FEMALE	7900 x	NO	200 A	31 X	2	0	4
9	34 b	MALE	24700 y	NO	100 A	7 X	4	3	3
10	46 c	FEMALE	31110 z	YES	600 B	O X	2	4	5
11	39 b	FEMALE	21000 y	YES	800 B	<mark>64 X</mark>	<mark>3</mark>	4	4
12	35 b	FEMALE	30000 z	NO	1600 C	O X	4	3	6
13	39 b	MALE	40500 z	YES	1600 C	50 X	4	5	4
14	18 a	MALE	7800 x	NO	1000 C	290 Z	5	3	3
15	22 a	MALE	18000 y	YES	400 A	303 Z	4	4	0

update cluster centers:

<u> </u>		Locus											
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage							
1 (1)	54 c	FEMALE	z	YES	В	0 X							
2(8)	22 a	MALE	7900 x	NO	200 A	31 X							
3 (15)	22 a	MALE	18000 y	YES	400 A	303 Z							

Equal-depth:

Age: a={17,18,18,22,22}, b={27,29,34,35,38}, c={39,39,46,54,59}

Monthly Income: $x=\{3000,4000,7500,7800,7800\}, y=\{7900,8500,14000,18000,21\}$

000}, $z=\{24700,30000,31000,31110,40500\}$

1600,1600,1600}

Extra Usage: X={0,0,0,7,25}, Y={31,31,50,54,64}, Z={211,254,290,303,311}

Change the data into below table according to above rules:

(0)	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage
1	54 c	FEMALE	3000 x	YES	100 A	0 X
2	59 с	FEMALE	4000 x	NO	600 B	54 Y
3	38 b	MALE	7800 x	NO	200 A	31 Y
4	18 a	FEMALE	8500 y	NO	600 B	311 Z
5	27 b	MALE	14000 y	YES	100 A	211 Z
6	29 b	FEMALE	31000 z	YES	1600 C	25 X
7	17 a	MALE	7500 x	NO	600 B	254 Z
8	22 a	FEMALE	7900 y	NO	200 A	31 Y
9	34 b	MALE	24700 z	NO	100 A	7 X
10	46 c	FEMALE	31110 z	YES	600 B	0 X
11	39 c	FEMALE	21000 y	YES	800 C	64 Y
12	35 b	FEMALE	30000 z	NO	1600 C	0 X
13	39 c	MALE	40500 z	YES	1600 C	50 Y
14	18 a	MALE	7800 x	NO	1000 C	290 Z
15	22 a	MALE	18000 y	YES	400 B	303 Z

initial cluster centers:

		Locus										
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage						
1 (1)	54 c	FEMALE	3000 x	YES	100 A	O X						
2 (8)	22 a	FEMALE	7900 y	NO	200 A	31 Y						
3 (15)	22 a	MALE	18000 у	YES	400 B	303 Z						

cluster distances of first step:

(0)	(i)	(ii)	(iii)	(iv)	(v)	(vi)	di	stanc	e
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage	1	2	3
1	54 c	FEMALE	3000 x	YES	100 A	O X	0	4	5
2	59 c	FEMALE	4000 x	NO	600 B	54 Y	3	3	5
3	38 b	MALE	7800 x	NO	200 A	31 Y	4	3	5
4	18 a	FEMALE	8500 y	NO	600 B	311 Z	5	2	2
5	27 b	MALE	14000 y	YES	100 A	211 Z	4	4	2
6	29 b	FEMALE	31000 z	YES	1600 C	25 X	3	5	5
7	17 a	MALE	7500 x	NO	600 B	254 Z	5	4	2
8	22 a	FEMALE	7900 y	NO	200 A	31 Y	4	0	4
9	34 b	MALE	24700 z	NO	<mark>100 A</mark>	<mark>7 X</mark>	4	4	5
10	46 c	FEMALE	31110 z	YES	600 B	O X	2	5	4
11	39 c	FEMALE	21000 y	YES	800 C	64 Y	3	3	4
12	35 b	FEMALE	30000 z	NO	1600 C	O X	4	4	6
13	39 c	MALE	40500 z	YES	1600 C	50 Y	4	5	4
14	18 a	MALE	7800 x	NO	1000 C	290 Z	5	4	3
15	22 a	MALE	18000 y	YES	400 B	303 Z	5	4	0

Update cluster centers:

		Locus										
Ref	Age	Sex	Monthly Income	Marital Status	Service Plan	Extra Usage						
1 (1)	54 c	FEMALE	z	YES	С	O X						
2(8)	22 a	FEMALE	7900 у	NO	200 A	31 Y						
3 (15)	22 a	MALE	18000 у	YES	400 B	303 Z						

b) the clustering result of k-means by Python with package sklearn (**initial centers are 1, 8 and 15**):

samples of 1, 2, 10, 11 are cluster 1 samples of 3, 4, 6, 8, 9, 12 are cluster 2 samples of 5, 7, 13, 14, 15 are cluster 3

the program:

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.cluster import KMeans
def load_data(file_path):
   df data = pd.read csv(file path)
   df_data.columns = ["Age", "Sex", "MonthlyIncome", "MaritalStatus",
"ServicePlan", "ExtraUsage"]
   scaled data = preprocessing.scale(df data)
   return scaled_data
def do k means(data):
   centers = np.vstack((data[0], data[7], data[14]))
   k_means = KMeans(n_clusters=3, init=centers, n_init=1, max_iter=1000)
   return k means.fit_predict(data), k means.fit(data).cluster_centers_
def print clusters(cluster index):
   cluster dict = \{0:[],1:[],2:[]\}
   for i in range(len(cluster index)):
       cluster dict[cluster index[i]].append(i+1)
   print("cluster result: {}".format(cluster_dict))
if __name__ == '__main__':
   df_scaled_data = load_data("data.csv")
   cluster index, cluster center = do k means(df scaled data)
   print("cluster index: {}".format(cluster_index))
   print_clusters(cluster_index)
   print("cluster centers:\n{}".format(cluster_center))
```

c)

to compare the performances between k-means and k-modes, I plan to use scatter picture to show the differences. Because the data has six attributes, I have to reduce dimensions from 6 to 2 or from 6 to 3 by PCA, so the information of origin data will be lossy and the results are a little different from part b). Let us see the results of k-means firstly: (the code "ref1" is at the end of this assignment)

```
The cluster result: (initial centers are 1, 8 and 15) samples of 6, 10, 11, 12, 13 are cluster 1
```

samples of 1, 2, 3, 8, 9 are cluster 2 samples of 4, 5, 7, 14, 15 are cluster 3 the scatter pictures of k-means:

Let us see the results of k-modes: (initial centers are 1, 8 and 15, the code "ref2" is at the end of this assignment)

① Equal-width without reducing dimension: samples of 1, 2, 6, 10, 11, 12, 13 are cluster 1 samples of 3, 4, 7, 8, 9, 14 are cluster 2 samples of 5, 15 are cluster 3

The result of cluster seems not good, because the cluster 3 only includes 2 samples.

reducing dimension:

The clusters are different between 2-dimensions and 3-dimensions:

2-dimension: 0: [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], 1: [4], 2: [11]

3-dimension: 0: [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], 1: [1], 2: [11]

In conclusion, the result of k-modes of Equal-width is terrible.

2 Equal-depth without reducing dimension:

samples of 1, 6, 10, 11, 12, 13 are cluster 1

samples of 2, 3, 4, 8 are cluster 2

samples of 5, 7, 9, 14, 15 are cluster 3

The result of cluster seems not bad, every cluster has about average number of samples.

reducing dimension:

The clusters are different between 2-dimensions and 3-dimensions:

2-dimension: 0: [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15], 1: [1], 2: [10]

3-dimension: 0: [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15], 1: [9], 2: [10]

In conclusion, the result of k-modes of Equal-depth is also not good.

Draw a conclusion about part c), the k-means algorithm has better performance before and after reducing dimensions than k-modes algorithm. But the data must be done normalized.

The performance of equal-depth is better than equal-width before reducing dimension. However, these two ways will loss information after reducing dimension seriously.

Answer 2:

a)

Breadth First Search:

path: ABCDFEGHJK

A- K:

All shortest paths between every two nodes:

	. Since the second state of the second state o											
	Α	В	С	D	Е	F	G	Н	J	K		
Α	-	AB	AC	AD	ADE	ABF	ADG	ABFH	ABFJ	ABFHK		
									ADGJ	ABFJK		
										ADGJK		
В	-	-	BAC	BAD	BFE	BF	BADG	BFH	BFJ	BFHK		
							BFJG			BFJK		
							BFEG					

С	-	-	-	CD	CDE	CABF CDEF	CDG	CABFH CDEFH CDGJH	CDGJ	CDGJK
D	-	-	-	-	DE	DEF	DG	DEFH DGJH	DGJ	DGJK
Е	-	-	-	-	-	EF	EG	EFH	EFJ EGJ	EFHK EGJK EFJK
F	-	-	-	-	-	-	FJG FEG	FH	FJ	FHK FJK
G	-	-	-	-	-	-	-	GJH	GJ	GJK
Н	-	-	-	-	-	-	-	-	HJ	HK
J	-	-	-	-	-	-	-	_	-	JK

b)
The total number of shortest paths between every node:

σAB=1	σAC=1	σAD=1	σΑΕ=1	σAF=1	σAG=1	σΑΗ=1	σAJ=2	σ A K=3
σBC=1	σBD=1	σBE=1	σBF=1	σBG=3	σBH=1	σBJ=1	σBK=2	
σCD=1	σCE=1	σCF=2	σCG=1	σCH=3	σCJ=1	σCK=1		
σDE=1	σDF=1	σDG=1	σDH=2	σDJ=1	σDK=1			
σEF=1	σEG=1	σΕΗ=1	σEJ=2	σEK=3				
σFG=2	σFH=1	σFJ=1	σFK=2					
σGH=1	σGJ=1	σGK=1						
σНЈ=1	σHK=1							
σJK=1								

The number of shortest paths of above table that pass along with every pair of neighbor node:

	AB	AC	AD	BF	CD	DE	DG	EG	EF	FH	FJ	GJ	HJ	HK	JK
AB	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AC	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
AD	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ΑE	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
AF	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
AG	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
АН	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0
AJ	1	0	1	1	0	0	1	0	0	0	1	1	0	0	0
AK	2	0	1	2	0	0	1	0	0	1	1	1	0	1	2
ВС	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
BD	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

BE	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
BF	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
BG	1	0	1	2	0	0	1	1	1	0	1	1	0	0	0
ВН	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
ВЈ	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
BK	0	0	0	2	0	0	0	0	0	1	1	0	0	1	1
CD	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
CE	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
CF	1	1	0	1	1	1	0	0	1	0	0	0	0	0	0
CG	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
СН	1	1	0	1	2	1	1	0	1	2	0	1	1	0	0
CJ	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0
CK	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1
DE	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
DF	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
DG	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
DH	0	0	0	0	0	1	1	0	1	1	0	1	1	0	0
DJ	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0
DK	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1
EF	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
EG	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
EH	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
EJ	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0
EK	0	0	0	0	0	0	0	1	2	1	1	1	0	1	2
FG	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0
FH	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
FJ	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
FK	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1
GH	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
GJ	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
GK	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
HJ	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
HK	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
JK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Edge-Betweenness values of the edges:

Vertex	А	В	С	D	E	F	G	Н	J	K
Α	0	7.333	2.833	5.167						
В	7.333	0				9.667				
С	2.833		0	6.167						
D	5.167		6.167	0	5.333		9.0			

Е		5.333	0	7.333	2.667			
F	9.667		7.333	0		6.833	5.5	
G		9.0	2.667		0		<mark>10.333</mark>	
Н				6.833		0	2.833	2.667
J				5.5	<mark>10.333</mark>	2.833	0	6.333
K						2.667	6.333	0

c)
According to the result of part b), Edge-Betweenness value of JG is largest, so remove edge JG:

Update all shortest paths between every two nodes:

	Α	В	С	D	Е	F	G	Н	J	K
Α	-	AB	AC	AD	ADE	ABF	ADG	ABFH	ABFJ	ABFHK
										ABFJK
В	-	-	BAC	BAD	BFE	BF	BADG	BFH	BFJ	BFHK
							BFEG			BFJK
С	-	-	-	CD	CDE	CABF	CDG	CABFH	CABFJ	CABFHK
						CDEF		CDEFH		CABFJK
D	-	-	-	-	DE	DEF	DG	DEFH	DEFJ	DEFHK
										DEFJK
Е	-	-	-	-	-	EF	EG	EFH	EFJ	EFHK
										EFJK
F	-	-	-	-	-	-	FEG	FH	FJ	FHK
										FJK
G	-	-	-	-	-	-	-	GEFH	GEFJ	GEFJK
										GEFHK
Н	-	_	-	-	_	_	_	-	HJ	HK

J	-	-	-	-	-	-	-	-	-	JK	
---	---	---	---	---	---	---	---	---	---	----	--

Update the total number of shortest paths between every node:

σAB=1	σAC=1	σAD=1	σAE=1	σAF=1	σAG=1	σAH=1	σAJ=1	σAK=2
σBC=1	σBD=1	σBE=1	σBF=1	σBG=2	σBH=1	σBJ=1	σBK=2	
σCD=1	σCE=1	σCF=2	σCG=1	σCH=2	σCJ=1	σCK=2		
σDE=1	σDF=1	σDG=1	σDH=1	σDJ=1	σDK=2			
σEF=1	σEG=1	σΕΗ=1	σΕͿ=1	σEK=2				
σFG=1	σFH=1	σFJ=1	σFK=2					
σGH=1	σGJ=1	σGK=2						
σHJ=1	σHK=1							
σJK=1								

Update the number of shortest paths of above table that pass along with every pair of neighbor node:

	AB	AC	AD	BF	CD	DE	DG	EG	EF	FH	FJ	HJ	HK	JK
AB	1	0	0	0	0	0	0	0	0	0	0	0	0	0
AC	0	1	0	0	0	0	0	0	0	0	0	0	0	0
AD	0	0	1	0	0	0	0	0	0	0	0	0	0	0
AE	0	0	1	0	0	1	0	0	0	0	0	0	0	0
AF	1	0	0	1	0	0	0	0	0	0	0	0	0	0
AG	0	0	1	0	0	0	1	0	0	0	0	0	0	0
АН	1	0	0	1	0	0	0	0	0	1	0	0	0	0
AJ	1	0	0	1	0	0	0	0	0	0	1	0	0	0
AK	2	0	0	2	0	0	0	0	0	1	1	0	1	1
ВС	1	1	0	0	0	0	0	0	0	0	0	0	0	0
BD	1	0	1	0	0	0	0	0	0	0	0	0	0	0
BE	0	0	0	1	0	0	0	0	1	0	0	0	0	0
BF	0	0	0	1	0	0	0	0	0	0	0	0	0	0
BG	1	0	1	1	0	0	1	1	1	0	0	0	0	0
ВН	0	0	0	1	0	0	0	0	0	1	0	0	0	0
BJ	0	0	0	1	0	0	0	0	0	0	1	0	0	0
BK	0	0	0	2	0	0	0	0	0	1	1	0	1	1
CD	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CE	0	0	0	0	1	1	0	0	0	0	0	0	0	0
CF	1	1	0	1	1	1	0	0	1	0	0	0	0	0
CG	0	0	0	0	1	0	1	0	0	0	0	0	0	0
СН	1	1	0	1	1	1	0	0	1	2	0	0	0	0
CJ	1	1	0	1	0	0	0	0	0	0	1	0	0	0
CK	2	2	0	2	0	0	0	0	0	1	1	0	1	1
DE	0	0	0	0	0	1	0	0	0	0	0	0	0	0

DF	0	0	0	0	0	1	0	0	1	0	0	0	0	0
DG	0	0	0	0	0	0	1	0	0	0	0	0	0	0
DH	0	0	0	0	0	1	0	0	1	1	0	0	0	0
DJ	0	0	0	0	0	1	0	0	1	0	1	0	0	0
DK	0	0	0	0	0	2	0	0	2	1	1	0	1	1
EF	0	0	0	0	0	0	0	0	1	0	0	0	0	0
EG	0	0	0	0	0	0	0	1	0	0	0	0	0	0
EH	0	0	0	0	0	0	0	0	1	1	0	0	0	0
EJ	0	0	0	0	0	0	0	0	1	0	1	0	0	0
EK	0	0	0	0	0	0	0	0	2	1	1	0	1	1
FG	0	0	0	0	0	0	0	1	1	0	0	0	0	0
FH	0	0	0	0	0	0	0	0	0	1	0	0	0	0
FJ	0	0	0	0	0	0	0	0	0	0	1	0	0	0
FK	0	0	0	0	0	0	0	0	0	1	1	0	1	1
GH	0	0	0	0	0	0	0	1	1	1	0	0	0	0
GJ	0	0	0	0	0	0	0	1	1	0	1	0	0	0
GK	0	0	0	0	0	0	0	2	2	1	1	0	1	1
HJ	0	0	0	0	0	0	0	0	0	0	0	1	0	0
HK	0	0	0	0	0	0	0	0	0	0	0	0	1	0
JK	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Edge-Betweenness values of the edges except JG:

Vertex	Α	В	С	D	Е	F	G	Н	J	K
Α	0	10.5	5.0	4.5						
В	10.5	0				12.5				
С	5.0		0	4.0						
D	4.5		4.0	0	8.0		3.5			
Е				8.0	0	<mark>14.5</mark>	5.5			
F		12.5			<mark>14.5</mark>	0		10.5	10.5	
G				3.5	5.5		0			
Н						10.5		0	1	4.5
J						10.5		1	0	4.5
K								4.5	4.5	0

According to the result of above table, Edge-Betweenness value of FE is largest, so remove edge FE:

Update all shortest paths between every two nodes again:

	Α	В	С	D	Е	F	G	Н	J	K
Α	-	AB	AC	AD	ADE	ABF	ADG	ABFH	ABFJ	ABFHK
										ABFJK
В	-	-	BAC	BAD	BADE	BF	BADG	BFH	BFJ	BFHK
										BFJK
С	-	-	-	CD	CDE	CABF	CDG	CABFH	CABFJ	CABFHK
										CABFJK
D	-	-	-	-	DE	DABF	DG	DABFH	DABFJ	DABFHK
										DABFJK
Ε	-	-	-	-	-	EDABF	EG	EDABFH	EDABFJ	EDABFHK
										EDABFJK
F	-	-	-	-	-	-	FBADG	FH	FJ	FHK
										FJK
G	-	-	-	-	-	-	-	GDABFH	GDABFJ	GDABFHK
										GDABFJK
Н	-	-	-	-	-	-	-	-	HJ	HK
J	-	-	-	-	-	-	-	-	-	JK

Update the total number of shortest paths between every node again:

σAB=1	σAC=1	σAD=1	σAE=1	σAF=1	σAG=1	σΑΗ=1	σAJ=1	σAK=2
σBC=1	σBD=1	σBE=1	σBF=1	σBG=1	σBH=1	σBJ=1	σBK=2	
σCD=1	σCE=1	σCF=1	σCG=1	σCH=1	σCJ=1	σCK=2		
σDE=1	σDF=1	σDG=1	σDH=1	σDJ=1	σDK=2			
σEF=1	σEG=1	σΕΗ=1	σΕͿ=1	σEK=2				
σFG=1	σFH=1	σFJ=1	σFK=2					
σGH=1	σGJ=1	σGK=2						
σНЈ=1	σHK=1							

σJK=1				

Update the number of shortest paths of above table that pass along with every pair of neighbor node again:

	AB	AC	AD	BF	CD	DE	DG	EG	FH	FJ	НЈ	НК	JK
AB	1	0	0	0	0	0	0	0	0	0	0	0	0
AC	0	1	0	0	0	0	0	0	0	0	0	0	0
AD	0	0	1	0	0	0	0	0	0	0	0	0	0
AE	0	0	1	0	0	1	0	0	0	0	0	0	0
AF	1	0	0	1	0	0	0	0	0	0	0	0	0
AG	0	0	1	0	0	0	1	0	0	0	0	0	0
АН	1	0	0	1	0	0	0	0	1	0	0	0	0
AJ	1	0	0	1	0	0	0	0	0	1	0	0	0
AK	2	0	0	2	0	0	0	0	1	1	0	1	1
ВС	1	1	0	0	0	0	0	0	0	0	0	0	0
BD	1	0	1	0	0	0	0	0	0	0	0	0	0
BE	1	0	1	0	0	1	0	0	0	0	0	0	0
BF	0	0	0	1	0	0	0	0	0	0	0	0	0
BG	1	0	1	0	0	0	1	0	0	0	0	0	0
ВН	0	0	0	1	0	0	0	0	1	0	0	0	0
BJ	0	0	0	1	0	0	0	0	0	1	0	0	0
BK	0	0	0	2	0	0	0	0	1	1	0	1	1
CD	0	0	0	0	1	0	0	0	0	0	0	0	0
CE	0	0	0	0	1	1	0	0	0	0	0	0	0
CF	1	1	0	1	0	0	0	0	0	0	0	0	0
CG	0	0	0	0	1	0	1	0	0	0	0	0	0
СН	1	1	0	1	0	0	0	0	1	0	0	0	0
CJ	1	1	0	1	0	0	0	0	0	1	0	0	0
CK	2	2	0	2	0	0	0	0	1	1	0	1	1
DE	0	0	0	0	0	1	0	0	0	0	0	0	0
DF	1	0	1	1	0	0	0	0	0	0	0	0	0
DG	0	0	0	0	0	0	1	0	0	0	0	0	0
DH	1	0	1	1	0	0	0	0	1	0	0	0	0
DJ	1	0	1	1	0	0	0	0	0	1	0	0	0
DK	2	0	2	2	0	0	0	0	1	1	0	1	1
EF	1	0	1	1	0	1	0	0	0	0	0	0	0
EG	0	0	0	0	0	0	0	1	0	0	0	0	0
EH	1	0	1	1	0	1	0	0	1	0	0	0	0
EJ	1	0	1	1	0	1	0	0	0	1	0	0	0
EK	2	0	2	2	0	2	0	0	1	1	0	1	1

FG	1	0	1	1	0	0	1	1	0	0	0	0	0
FH	0	0	0	0	0	0	0	0	1	0	0	0	0
FJ	0	0	0	0	0	0	0	0	0	1	0	0	0
FK	0	0	0	0	0	0	0	0	1	1	0	1	1
GH	1	0	1	1	0	0	1	1	1	0	0	0	0
GJ	1	0	1	1	0	0	1	1	0	1	0	0	0
GK	2	0	2	2	0	0	2	2	1	1	0	1	1
HJ	0	0	0	0	0	0	0	0	0	0	1	0	0
HK	0	0	0	0	0	0	0	0	0	0	0	1	0
JK	0	0	0	0	0	0	0	0	0	0	0	0	1

Edge-Betweenness values of the edges except JG and FE:

Vertex	А	В	С	D	Е	F	G	Н	J	K
Α	0	<mark>25</mark>	6	18						
В	<mark>25</mark>	0				24				
С	6		0	3						
D	18		3	0	8		8			
Е				8	0		5			
F		24				0		10.5	10.5	
G				8	5		0			
Н						10.5		0	1	4.5
J						10.5		1	0	4.5
K								4.5	4.5	0

According to the result of above table, Edge-Betweenness values of AB is largest, so remove edge AB:

Finally, we discover two communities in the graph, one community includes A, C, D, E and G, another community includes B, F, H, K and J.

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from mpl toolkits.mplot3d import Axes3D
def load data(file path):
   df_data = pd.read_csv(file_path)
   df_data.columns = ["Age", "Sex", "MonthlyIncome", "MaritalStatus",
"ServicePlan", "ExtraUsage"]
   scaled_data = preprocessing.scale(df_data)
   return scaled data
def do_k_means(data):
   centers = np.vstack((data[0], data[7], data[14]))
   k_means = KMeans(n_clusters=3, init=centers, n_init=1,
max iter=1000)
   return k_means.fit_predict(data), k_means.fit(data).cluster_centers_
def plot distribution 2D(cluster index, data, cluster center2):
   cluster0 = []
   cluster1 = []
   cluster2 = []
   for i in range(len(cluster_index)):
       if cluster_index[i] == 0:
           cluster0.append(data[i])
       if cluster index[i] == 1:
           cluster1.append(data[i])
       if cluster_index[i] == 2:
           cluster2.append(data[i])
   color_ls = ["red", "green", "blue"]
   all clusters = [cluster0, cluster1, cluster2]
   for each_cluster, color in zip(all_clusters, color_ls):
       for each_item in each_cluster:
           X = each_item[0]
           Y = each item[1]
           plt.scatter(X, Y, s=200, c=color, alpha=.5)
   for each center,color in zip(cluster center2, color ls):
       plt.scatter(each_center[0], each_center[1], s=200, c=color,
alpha=.5, marker="*")
   plt.xlim(-3, 3)
   plt.ylim(-3, 3)
   plt.show()
```

```
def plot_distribution_3D(cluster_index, data, cluster_center3):
   cluster0 = []
   cluster1 = []
   cluster2 = []
   for i in range(len(cluster_index)):
       if cluster_index[i] == 0:
           cluster0.append(data[i])
       if cluster_index[i] == 1:
           cluster1.append(data[i])
       if cluster_index[i] == 2:
           cluster2.append(data[i])
   color_ls = ["red", "green", "blue"]
   all_clusters = [cluster0, cluster1, cluster2]
   fig = plt.figure()
   ax = Axes3D(fig)
   for each_cluster, color in zip(all_clusters, color_ls):
       for each_item in each_cluster:
           X = each_item[0]
           Y = each_item[1]
           Z = each item[2]
           ax.scatter(X, Y, Z, s=200, c=color, alpha=.5)
   for each_center,color in zip(cluster_center3, color_ls):
       plt.scatter(each_center[0], each_center[1], s=200, c=color,
alpha=.5, marker="*")
   ax.set_zlabel('Z')
   ax.set_ylabel('Y')
   ax.set_xlabel('X')
   plt.show()
def print_clusters(cluster_index):
   cluster_dict = {0: [], 1: [], 2: []}
   for i in range(len(cluster_index)):
       cluster_dict[cluster_index[i]].append(i+1)
   print("cluster result: {}".format(cluster_dict))
if name == ' main ':
   data = load data("data.csv")
   pca2 = PCA(2)
   reduce_data2 = pca2.fit_transform(data)
   cluster_index2, cluster_center2 = do_k means(reduce data2)
   print clusters(cluster index2)
   plot_distribution_2D(cluster_index2, reduce_data2, cluster_center2)
   pca3 = PCA(3)
   reduce_data3 = pca3.fit_transform(data)
   cluster_index3, cluster_center3 = do_k_means(reduce_data3)
   print clusters(cluster index3)
   plot_distribution_3D(cluster_index3, reduce_data3, cluster_center3)
```

```
import pandas as pd
import numpy as np
from kmodes.kmodes import KModes
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from mpl toolkits.mplot3d import Axes3D
def load_data(file_path):
   df data = pd.read_csv(file_path)
   df_data.columns = ["Age", "Sex", "MonthlyIncome", "MaritalStatus",
"ServicePlan", "ExtraUsage"]
   one_hot_data = np.array(pd.get_dummies(df_data))
   return one hot data
def do k modes(data):
   centroids = np.vstack((data[0], data[7], data[14]))
   k_modes = KModes(n_clusters=3, init=centroids, n_init=1,
max iter=10000)
   return k_modes.fit_predict(data), k_modes.cluster_centroids_
def plot distribution 2D(cluster index, data, cluster center2):
   cluster0 = []
   cluster1 = []
   cluster2 = []
   for i in range(len(cluster index)):
       if cluster index[i] == 0:
           cluster0.append(data[i])
       if cluster_index[i] == 1:
           cluster1.append(data[i])
       if cluster_index[i] == 2:
           cluster2.append(data[i])
   color_ls = ["red", "green", "blue"]
   all clusters = [cluster0, cluster1, cluster2]
   for each_cluster, color in zip(all_clusters, color_ls):
       for each item in each cluster:
           X = each_item[0]
           Y = each_item[1]
           plt.scatter(X, Y, s=200, c=color, alpha=.5)
   for each_center,color in zip(cluster_center2, color_ls):
       plt.scatter(each_center[0], each_center[1], s=200, c=color,
alpha=.5, marker="*")
   plt.xlim(-3, 3)
   plt.ylim(-3, 3)
   plt.show()
```

```
def plot distribution 3D(cluster index, data, cluster center3):
    cluster0 = []
    cluster1 = []
    cluster2 = []
   for i in range(len(cluster index)):
       if cluster_index[i] == 0:
           cluster0.append(data[i])
       if cluster index[i] == 1:
           cluster1.append(data[i])
       if cluster index[i] == 2:
           cluster2.append(data[i])
    color_ls = ["red", "green", "blue"]
    all clusters = [cluster0, cluster1, cluster2]
   fig = plt.figure()
    ax = Axes3D(fig)
   for each cluster, color in zip(all clusters, color ls):
       for each_item in each_cluster:
           X = each_item[0]
           Y = each_item[1]
           Z = each_item[2]
           ax.scatter(X, Y, Z, s=200, c=color, alpha=.5)
   for each_center,color in zip(cluster_center3, color_ls):
       plt.scatter(each_center[0], each_center[1], s=200, c=color,
alpha=.5, marker="*")
   ax.set zlabel('Z')
    ax.set_ylabel('Y')
    ax.set_xlabel('X')
   plt.show()
def print_clusters(cluster_index):
    cluster_dict = {0: [], 1: [], 2: []}
   for i in range(len(cluster_index)):
       cluster_dict[cluster_index[i]].append(i+1)
   print("cluster result: {}".format(cluster_dict))
if __name__ == '__main__':
    data = load data("data_depth.csv") # data_width.csv
    cluster index1, cluster center1 = do k modes(data)
    print_clusters(cluster index1)
   pca2 = PCA(2)
    reduce data2 = pca2.fit transform(data)
    cluster index2, cluster center2 = do k modes(reduce data2)
   print clusters(cluster index2)
   plot distribution 2D(cluster index2, reduce data2, cluster center2)
   pca3 = PCA(3)
    reduce data3 = pca3.fit transform(data)
   cluster index3, cluster center3 = do k modes(reduce data3)
    print clusters(cluster index3)
    plot_distribution_3D(cluster_index3, reduce_data3, cluster_center3)
```