Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	

Laboratorio: Ecuaciones en derivadas parciales parabólicas.

1. Introducción

Con esta actividad se pondrá en práctica los conceptos relacionados con las EDP's parabólicas. Concretamente, la técnica de diferencias finitas aplicada a un problema con condiciones no Dirichlet.

1.1. Descripción:

Consideramos la siguiente ecuación en derivadas parciales parabólica:

$$u_t = u_{xx} - u_x + u, \qquad 0 < x < 1, t > 0$$
 (1)

Con las siguientes condiciones de contorno:

$$u_x(0,t) = 2t, \quad u(1,t) = \frac{t^2}{2}, \qquad t > 0$$

y la condición inicial:

$$u(x,0) = \sin(x) + \cos(x), \qquad 0 < x < 1$$

2. Actividades

2.1. Método explícito

Transformaremos el problema en un esquema de diferencias finitas de orden $\mathcal{O}(k+h^2)$, para ello aproximaremos usando las diferencias progresivas en u_t y centrales en u_{xx} y u_x . Por tanto, nuestro problema se transforma en:

$$\frac{u(x,t+k) - u(x,t)}{k} = \frac{u(x+h,t) - 2u(x,t) + u(x-h,t)}{h^2} - \frac{u(x+h,t) - u(x-h,t)}{2h} + u(x,t)$$

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	

Evaluaremos esta expresión en los pares (x_i,t_j) , con $i=0,\ldots,nx-1$ y $j=0,\ldots,nt-1$. Por simplificar, usaremos la notación $u(x_i,t_j)=u_{i,j}$. Por tanto, nuestra ecuación anterior se convierte en

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} - \frac{u_{i+1,j} - u_{i-1,j}}{2h} + u_{i,j}$$

Si definimos $\lambda=\frac{k}{2h^2}$ y hacemos las transformaciones pertinentes para despejar $u_{i,j+1}$, obtendremos

$$u_{i,j+1} = \lambda(2-h)u_{i+1,j} + \lambda(2+h)u_{i-1,j} + (1+2h^2\lambda - 4\lambda)u_{i,j}$$

que es la expresión que usaremos para iterar y encontrar la solución al problema. Hemos de tener en cuenta, que cuando tomemos i=0, tendremos un término $u_{-1,j}$ que no pertenece al dominio, para suplirlo, utilizaremos las condiciones de contorno.

$$u_x(0,t) = \frac{u_{1,j} - u_{-1,j}}{2h} = 2t$$

por tanto, despejando, obtenemos que $u_{-1,j}=u_{1,j}-4ht$. Así pues, nuestro sistema será, para $j=0,\ldots,nt$

$$\begin{cases} u_{0,j+1} = 4\lambda u_{1,j} + (1+2h^2\lambda - 4\lambda)u_{0,j} \\ u_{i,j+1} = \lambda(2-h)u_{i+1,j} + \lambda(2+h)u_{i-1,j} + (1+2h^2\lambda - 4\lambda)u_{i,j}, & i = 1,\dots, nx-1. \end{cases}$$

Programando el código en matlab, obtenemos

Página 2 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
Metodos Mulliericos II	Nombre: Adán	20/00/2022

```
u = zeros (nx+1, nt+1);
    u(:, 1) =cix';
    c2t = feval(h2,t);
    u(nx+1,:) = c2t;
    % Condicion de estabilidad/convergencia
    lambda = k/(2*h^2);
    if lambda>1/2
        disp ('No se cumple el criterio de convergencia')
    else
        disp ('sin problema ')
    end
    L = 1:nx-1; C = 2:nx; R = 3:nx+1;
    for j = 1:nt
        u(1, j+1) = 4*lambda*u(2,j) - lambda*(2+h)*(4*h*t(j))...
                         +(1+2*h^2*lambda-4*lambda)*u(1,j);
        u(C, j+1) = lambda*(2-h)*u(R,j)+lambda*(2+h)*u(L,j)...
                         +(1+2*h^2*lambda-4*lambda)*u(C,j);
    \quad \text{end} \quad
La solución en t = 0.5, tomando h = 0.1 (nx = 10) y k = 0.005 (nt = 1000) es:
```

end

Página 3 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

x	u(x,0,5)
0	0,337102
0,1	0,425285
0,2	0,488653
0,3	0,526422
0,4	0,538272
0,5	0,524413
0,6	0,485668 =
0,7	0,423562
0,8	0,340420
0,9	0,239476
1	0,125000

2.2. Método implícito

Usaremos ahora las diferencias regresivas en u_t y centrales en u_{xx} y u_x . Además, como en el paso anterior, denotaremos $u(x_i,t_j)=u_{i,j}$, así pues tendremos:

$$\frac{u_{i,j} - u_{i,j-1}}{k} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} - \frac{u_{i+1,j} - u_{i-1,j}}{2h} + u_{i,j}$$

Tomando el mismo lambda que en el método explícito, y haciendo las transformaciones pertinentes, llegamos a la expresión implícita:

$$(1 + 4\lambda - 2h^2\lambda)u_{i,j} + \lambda(h-2)u_{i+1,j} - \lambda(h+2)u_{i-1,j} = u_{i,j-1}$$

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

Como en el caso anterior, en i=0, tenemos $u_{-1,j}$, que tendremos que paliar también. En este caso (gracias a haber despejado de las condiciones de contorno), la relación será:

$$(1+4\lambda-2h^2\lambda)u_{0,j}+\lambda(h-2)u_{1,j}-\lambda(h+2)(u_{1,j}-4ht_j)=u_{0,j-1}$$

reordenando, obtenemos:

$$(1 + 4\lambda - 2h^2\lambda)u_{0,j} - 4\lambda u_{1,j} + \lambda(h+2) * 4ht_j = u_{0,j-1}$$

Si lo expresamos en forma matricial, tendremos:

$$A \begin{pmatrix} u_{0,j} \\ u_{1,j} \\ \vdots \\ u_{nx-2,j} \\ u_{nx-1,j} \end{pmatrix} = \begin{pmatrix} u_{0,j-1} \\ u_{1,j-1} \\ \vdots \\ u_{nx-2,j-1} \\ u_{nx-1,j-1} \end{pmatrix} + \begin{pmatrix} -\lambda(h+2)4ht_j \\ 0 \\ \vdots \\ 0 \\ \lambda \frac{t_j^2}{2} \end{pmatrix}$$

donde

$$A = \begin{pmatrix} 1 & -2h^2\lambda & -4\lambda & 0 & \dots & 0 & 0 \\ -\lambda(2+h) & 1 - 4\lambda - 2h^2\lambda & \lambda(h-2) & \dots & 0 & 0 \\ 0 & -\lambda(2+h) & 1 - 4\lambda - 2h^2\lambda & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 - 4\lambda - 2h^2\lambda & \lambda(h-2) \\ 0 & 0 & 0 & \dots & -\lambda(2+h) & 1 - 4\lambda - 2h^2\lambda \end{pmatrix}$$

Página 5 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

si lo implementamos en Matlab, obtendremos:

```
function [U,x,t] = metodo_implicito_practica(ci, c2,x0, xf,nx, Tmax, nt)
    h = (xf-x0)/nx;
    x = 0: h:xf;
    k = Tmax/nt;
    t = 0:k:Tmax;
    U = zeros(nx+1, nt+1);
    U(end,:) = feval(c2, t);
    U(:,1) = feval(ci,x);
    lambda = k/(2*h^2);
    %Calculo de diagonales
    dp = (1+4*lambda-2*h^2*lambda)*ones(1,nx-1);
    ds= [-4*lambda lambda*(h-2)*ones(1, nx-3)];
    di = -lambda*(h+2)*ones(1, nx-2);
    for j =2:nt+1
        d=U(2:nx, j-1);
        d(1) = d(1) - lambda*(2+h)*4*h*t(j);
        d(end) = d(end) + lambda*U(equal_{j-1});
        z= Crout(dp ,ds ,di ,d);
        U(2:nx, j)=z;
    end
```

end

Una vez implementado, lo ejecutamos:

```
[U,x,t] = metodo_implicito_practica(@(x) sin(x)+cos(x), @(x) x.^2./2, 0, 1, 10, 0.5, 1000); obteniendo como resultados:
```

Página 6 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

x	u(x,0,5)
0	0,336820
0,1	0,424576
0,2	0,487964
0,3	0,525769
0,4	0,537669
0,5	0,523875
0,6	0,485211
0,7	0,423201
0,8	0,340167
0,9	0,239345
1	0,125000

2.3. Método de Crank-Nicholson

Para la realización de este método, hemos de realizar la media aritmética entre el resultado de aproximar en el instante t_j con diferencias progresivas en u_t ,

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} - \frac{u_{i+1,j} - u_{i-1,j}}{2h} + u_{i,j}$$

y el resultado de aproximar en t_{j+1} con diferencias regresivas para \boldsymbol{u}_t

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} - \frac{u_{i+1,j+1} - u_{i-1,j+1}}{2h} + u_{i,j+1}$$

Página 7 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

obteniendo la expresión:

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{1}{2} \left(\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} - \frac{u_{i+1,j} - u_{i-1,j}}{2h} - \frac{u_{i+1,j+1} - u_{i-1,j+1}}{2h} + u_{i,j} + u_{i,j+1} \right)$$

tomando $\lambda = \frac{k}{2h^2}$ y reordenando,

$$(1 + 2\lambda - h^2\lambda)u_{i,j+1} + (\frac{h\lambda}{2} - \lambda)u_{i+1,j+1} - (\frac{h\lambda}{2} + \lambda)u_{i-1,j+1} = (1 - 2\lambda + h^2\lambda)u_{i,j} + (-\frac{h\lambda}{2} + \lambda)u_{i+1,j} + (\frac{h\lambda}{2} + \lambda)u_{i-1,j}$$

Como vemos, los coeficientes son muy similares y hemos de tener cuidado con los signos. Vamos a reescribir esta expresión en forma matricial, pero antes hemos de tener cuidado en el caso de i=0, pues tendremos $u_{-1,j}$ y $u_{-1,j+1}$, así que usaremos las condiciones de contorno para evitarlo (como en los métodos anteriores), obteniendo que $u_{-1,j}=u_{1,j}-4ht_j$ y que $u_{-1,j+1}=u_{1,j+1}-4ht_{j+1}$. Así, la expresión para i=0 será:

$$(1 + 2\lambda - h^2\lambda)u_{0,j+1} - 2\lambda u_{1,j+1} - (\frac{h\lambda}{2} + \lambda)4ht_{j+1} =$$

$$(1 - 2\lambda + h^2\lambda)u_{0,j} + 2\lambda u_{1,j+1} + (\frac{h\lambda}{2} + \lambda)4ht_j$$

Página 8 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

Ahora sí, podemos pasar a reescribir la ecuación en forma $Au^{j+1}=Bu^j+d_j$, con $j=0,1,\ldots,nt-1$. Entonces, tendremos:

$$A = \begin{pmatrix} 1 + 2\lambda - h^2\lambda & -2\lambda & 0 & \dots & 0 & 0 \\ -\lambda(1 + \frac{h}{2}) & 1 + 2\lambda - h^2\lambda & \lambda(\frac{h}{2} - 1) & \dots & 0 & 0 \\ 0 & -\lambda(1 + \frac{h}{2}) & 1 + 2\lambda - h^2\lambda & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 + 2\lambda - h^2\lambda & \lambda(\frac{h}{2} - 1) \\ 0 & 0 & 0 & \dots & -\lambda(1 + \frac{h}{2}) & 1 + 2\lambda - h^2\lambda \end{pmatrix}$$

$$B = \begin{pmatrix} 1 - 2\lambda + h^2\lambda & 2\lambda & 0 & \dots & 0 & 0 \\ \lambda(1 + \frac{h}{2}) & 1 - 2\lambda + h^2\lambda & \lambda(1 - \frac{h}{2}) & \dots & 0 & 0 \\ 0 & \lambda(1 + \frac{h}{2}) & 1 - 2\lambda + h^2\lambda & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 - 2\lambda + h^2\lambda & \lambda(1 - \frac{h}{2}) \\ 0 & 0 & 0 & \dots & \lambda(1 + \frac{h}{2}) & 1 - 2\lambda + h^2\lambda \end{pmatrix}$$

$$d_{j} = \begin{pmatrix} \lambda(1 + \frac{h}{2})4h(t_{j+1} - t_{j+1}) \\ 0 \\ \vdots \\ 0 \\ \frac{\lambda}{4}(t_{j+1}^{2} + t_{j}^{2}) \end{pmatrix}$$

Página 9 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	20/00/2022

implementamos el método en matlab:

end

```
function [U,x,t] = metodo_crank_nicholson(ci, c2, a, b, nx, T, nt)
   h = (b-a)/nx;
   x = a:h:b;
   k = T/nt;
   t = 0:k:T;
   U = zeros(nx+1, nt+1);
   U(end,:) = feval(c2, t);
   U(:,1) = feval(ci,x);
    lambda = k/(2*h^2);
    %Calculo de diagonales
    dpA = (1+2*lambda-h^2*lambda)*ones(1,nx+1);
    dsA = [-2*lambda lambda*(h/2-1)*ones(1, nx-1)];
   diA = -lambda*(1+h/2)*ones(1, nx);
    d = zeros(nx+1,1);
    dpB = (1-2*lambda+h^2*lambda)*ones(1,nx+1);
    dsB= [2*lambda lambda*(-h/2+1)*ones(1, nx-1)];
    diB = lambda*(1+h/2)*ones(1, nx);
    B = diag(dpB)+diag(dsB,1)+diag(diB,-1);
    for j =1:nt
       d(1) = d(1) - lambda*(1+h/2)*4*h*(t(j+1)-1(j));
       d(end) = d(end) + (lambda/2)*(U(end, j+1)+U(end, j));
       d = B*U(:,j)+d;
       U(:,j+1) = Crout(dpA,dsA,diA,d)';
    end
```

En este caso, claramente el resultado no es correcto, ya que me salen valores del orden de 10^3 . Tras repasar las cuentas, no logro ver donde está el fallo, si en el código o en la obtención de las matrices. Dicho eso, esa es la idea general del método. Probablemente en el código esté machacando algún

Página 10 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	20/06/2022
	Nombre: Adán	

subíndice que no deba, pues no se mantiene ni el $0,\!125$ final, pero no consigo ver el error.

Página 11 Métodos Numéricos II