

Bioinformatics Computational Methods 1 - BIOL 6308

November 19th 2013

http://155.33.203.128/cleslin/home/teaching6308F2013.php

Last Time

- Entropy and Information Content
- Exact vs. Heuristic
- Dynamic Programming
 - Needleman and Wunsch
 - Smith-Waterman
- Heuristic Methods for Sequence Database Searching
 - FASTA

Heuristics for Large-Scale Database Searching

- Exact solution to sequence alignment are computationally demanding
 - *O(mn)* too slow for large databases with high query traffic
- In practice algorithms are used that run much faster
 - Heuristic methods do fast approximation to dynamic programming
 - At the expense of possibly missing some significant hits due to the heuristics employed
- Such algorithms are usually seed-and-extend approaches in which first small exact matches are found which are then extended to obtain long inexact ones
 - FASTA
 - We know
 - BLAST
 - We'll learn about now

BLAST

- Of all the sequence alignment algorithms, BLAST (basic local alignment search tool) is the most common
 - Cited by <u>43931</u> 2012(November) <u>48619</u> 2013 (November)
- Typically used to compare one query nucleotide/protein sequence against a database of sequences
 - Uncover similarities and sequence matches
 - The success and popularity stems from combination of
 - Speed
 - Sensitivity
 - Statistical assessment of the results
- Web version:
 - http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Standalone version
 - ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

Different Usages of BLAST

- If you are:
 - Looking for species
 - Sequencing DNA from unknown species
 - BLAST may help identify the correct species or homologous species
 - Looking for domains
 - BLAST a protein sequence (or a translated nucleotide sequence
 - BLAST will look for known domains in the query sequence
 - Mapping DNA to a known chromosome
 - Sequencing a gene from a known species but have no idea of the chromosome location, BLAST can help you
 - BLAST will show you the position of the query sequence in relation to the hit sequences
 - Annotations
 - Used to map annotations from one organism to another
 - Look for common genes in two related species

BLAST Method

- Heuristic method to find the high-scoring locally optimal alignments between a query sequence and a database
- Algorithm and family of programs rely on the statistics of gapped and ungapped sequence alignments
- The statistics allow the probability of obtaining an alignment with a particular score to be estimated
- BLAST is unlikely to be as sensitive as a full dynamic programming algorithm
 - However, the underlying statistics provide a direct estimate of the significance of any match found
 - There's no comparison in terms of speed when compared to dynamic programming

Types of BLAST

- BLASTn
 - Nucleotide vs Nucleotide
- BLASTp
 - Protein vs Protein
- BLASTx
 - NT translated in all reading frames vs Protein
- tBLASTn
 - Protein vs NT database dynamically translated in all reading frames
- tBLASTx
 - NT translated 6 frames vs NT translated 6 frames
- PSI-BLAST
 - Compares a protein sequence to a protein database
 - Performs the comparison in an iterative fashion in order to detect homologs that are evolutionarily distant
 - Uses a dynamically calculated scoring matrix from the actual BLAST search
- BLAST2seq
 - Compares two protein or two nucleotide sequences

An Overview of BLAST

BLAST To the Rescue

>gi|4504347|ref|NP_000549.1| alpha 1 globin [Homo sapiens]

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK VADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA SLDKFLASVSTVLTSKYR

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVK AHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTP PVQAAYQKVVAGVAN ALAHKYH

Dynamic programming or BLAST can be used

Antoine van Kampen

But BLAST Finds The Result Much Faster

```
>lcl|10055 gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]
Length=147
Score = 114 bits (286), Expect = 5e-31, Method: Compositional matrix adjust. Identities = 63/145 (43%), Positives = 88/145 (60%), Gaps = 8/145 (5%)
Query 3
            LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS----HGSAQV
             L+P +K+ V A WGKV + E G EAL R+ + +P T+ +F F DLS
Sbjct 4
             LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTORFFESFGDLSTPDAVMGNPKV
Query 57
             KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 116
             K HGKKV A ++ +AH+D++
                                        + LS+LH KL VDP NF+LL + L+ LA H
Sbjct 62
             KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 121
            EFTPAVHASLDKFLASVSTVLTSKY 141
             EFTP V A+ K +A V+ L KY
             EFTPPVQAAYQKVVAGVANALAHKY
```


Complexity Filtering – 1st Step

- Masks segments of query sequence with low compositional complexity
 - For:
 - proteins : SEG [Wootton & Federhen]
 - DNA: DUST [Tatusov and Lipman]
- Real biological sequences have many regions where one or a few characters are overrepresented (so-called low complexity regions):

ATGGPTIVLLVAAAAAAAAAGPTPGLILW

EVVIKPSMCDHAAAATAAAAALCMKFC

- Regions bias the alignment because they tend to align with each other
 - Even absolutely unrelated sequences will have regions of false "similarity"
 - Filtering can eliminate statistically significant, but biologically uninteresting hits from the BLAST output
 - Hits against common acidic, basic, or proline-rich regions
- Leaving more biologically interesting regions of the query sequence available for specific matching against the database sequences

Masking Low Complexity Regions in Proteins (PSEG program)

MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQRGSSMVLFSSPPVILLISFLIFLIVG

Filter (Mask for lookup table only) – 1st Step

- This option masks only for purposes of constructing the lookup table used by BLAST
 - F "m D" (dna) or -F "m S" (proteins) (Legacy flags)
 - 2 phases of BLAST
 - Finding the hits based upon a lookup table
 - Extend those hits
- This option will "Mask for lookup table only"
 - No hits during lookup table generation have low-complexity sequence
- BLAST extensions are preformed w/o masking
 - Can be extended through low-complexity sequence
- Mask Lower Case Letters
 - Give regions or your sequence you liked masked in lower case letters
 - Allows you to customize what is filtered
 - U T

Nucleotide Words – 2nd Step

GTACTGGACATGGACCCTACAGGAACGTATACGTAAG

Query

11-mer

Make a lookup table of words

GTACTGGACAT

GTACTGGACATGGACCCTACAGGAACGT TACTGGACATG

ACTGGACATGG

CTGGACATGGA

TGGACATGGAC

TGGACATGGACCCTACAGGAACGTATAC GGACATGGACC

GACATGGACCC

ACATGGACCCT

WORD SIZE	Def.	Min.
blastn	11	7
megablast	28	12

CATGGACCCTACAGGAACGTATACGTAA

Protein Words- 2nd Step

GTQITVEDLFYNIATRRKALKN

```
TVE

Word size = 3 (default)

Word size can only be 2 or 3

Word size can only be 2 or 3

Neighborhood Words

TVE
```

Make a lookup table of words

VED

EDL

DLF

These words exceed the threshold of *T*, score obtained using

BLOSUM62

Neighbor Words in Proteins – 3rd Step

We know how BLOSUM62 and other matrices are generated

Hash Table – 4th step

• Now the algorithm organizes words into Hash Table Query: LAALLN......

position	1	2	3	4	•••		
	LAA	AAL	ALL	LLN			
ords	LAG	AAA	AAL	LVN			
Jr WC	AAA	AGL	ALA	$_{ m LLD}$	•••		
Veighbor words	LGA	GAL	GLL	LLE			
Nei	IAA	AAV		VVN			
		AAI					
		AGL					

Word list

Hash Table

ſ	word	position
	AAA	1,2,15,16
ı	AAL	2,3,10,11
	LAA	1,5,7,
	GLL	3,8,34,
	VVN	4,21,25,
	:	:

Scanning the Database – 5th Step

- Scanning DB
- For each words list, identify all exact matches with DB sequences

Minimum Requirements for a Seed - 6th Step

DNA

CATGCTTAATT

exact word match
one hit

of length w (w=11)

- Nucleotide BLAST requires one exact match
- •Protein BLAST requires two neighboring matches within 40 aa

BLASTn

Alignment matrix:

- Perfect match: 1

- Mismatch: -3

Notice: All mismatched are equally penalized:

- E.g. A:G == A:C == A:A

- Heuristics:
 - Perfect match "word" of the size: 7, 11 (default) or 15.

BLASTp

Match >= word size

- Alignment matrix:
 - PAM and BLOSUM-series (default: BLOSUM 62)
- Notice: These alignment matrices incorporate knowledge about protein evolution
- Heuristics:
 - 2 x "Near match" within a windows (two hit method)
 - Default word length: 3 aa
 - Default window length: 40 aa
 - A flag command line

An Alignment of DNA Sequences that BLAST Would Not Find Using W = 11

Why?

After Initial Words Found, Do Extension - 7th Step

- Extend hits in both directions
 - Each time alignment is extended, an alignment increases/decreases
 - Extension is continued until drop-off score reaches a threshold
 - Ensures alignment is not extended to regions where only very poor alignment occurs
 - Permits the match to cross a region of marginal homology or mismatching (e.g. a small intron in tBLASTn) if it flanks a region of high similarity
- If the Score of the alignment receives a score above threshold its reported

How Does Extension Work?

- Once search space is seeded, alignments generated by extending in both directions from the seed
- Example:

```
The quick brown fox jumps over the lazy dog. The quiet brown cat purrs when she sees him.
```

- Can align first six characters
- How far should we continue?

Extension (Continued)

- *X* parameter How much is score allowed to drop off after last maximum?
- Example (assume identical scores +1 and mismatch scores -1)
- See *X* on the next slide

```
The quick brown fox jump
The quiet brown cat purr
123 45654 56789 876 5654 <- score
000 00012 10000 123 4345 <-drop off score (X)
```

Extending the High Scoring Segment Pair (HSP)

Neighborhood Threshold - Proteins

- The program declares a hit if the word taken from the query sequence has a score >= T
 when a scoring matrix is used
- Allows word size (W) to be kept high (for speed) without sacrificing sensitivity
- If T is increased
 - # of background hits is reduced and the program will run faster
 - Possible limit search space by increasing T or Word Size (W)
 - Increase the speed of BLAST
 - Loss of sensitivity
 - Legacy Flags
 - \rightarrow -f from command line for T
 - » -W for Word Size

The Two Hit Method

- Extension step typically accounts for 90% of BLAST's execution time
- Key idea:
 - Do extension only when there are two hits on the same diagonal within distance A of each other
 - To maintain sensitivity, lower T parameter
 - More single hits found
 - But only small fraction have associated 2nd hit
- Main parameter controlling the sensitivity vs. running-time trade-off is T
 - Small T: greater sensitivity, more hits to expand
 - Large T: lower sensitivity, fewer hits to expand

The Two Hit Method

Word Size for DNA

- Changing word size has a great impact on the seeded sequence space
 -W 11 is default for DNA, 3 for protein
 - Change the word size to find sequence matches which would otherwise not be found using default parameters
- For instance, word size can be decreased when searching for primers or short nucleotides
 - BLASTn decrease word size of 11 to 7
 - Increase the E-value to 1000
 - Turn of complexity filtering

Keys to Speed with BLAST

- Use word matching and prior indexing
- BLAST local alignment is slow (like dynamic programming)
 - Only a small part of total search space is analyzed
 - B/c positions of all possible dataset word matches are indexed and stored prior to the BLAST search
 - Relevant parts of search space are reached quickly
- Tradeoff is in accuracy and certainty
- Occasionally matches will be missed
 - When they are distant enough and dispersed enough that no local word pairs match well enough

Only a fraction of the whole DP matrix is computed

The E-value

- False positive expectation value
- Describes number of "hits" one can "expect" to see just by chance when searching a database of a particular size
- Decreases exponentially as the Similarity Score (S) increases
 - Inverse relationship
 - Higher the Similarity Score, the lower the E-value
- Describes random background noise that exists for matches between two sequences
- Used as a convenient way to create a significance threshold for reporting results
- When E-value increased from 10 prior, a larger list with more low-similarity scoring hits can be reported

BLAST Match Statistics

- What should I use?
- It suffices to look at the E-value
 - Likelihood that matches of this score or better would be found by chance in the search
 - This is an expectation value, not a P-value
- # of matches of this score or better that would be expected if the database were composed of random sequences
- Scores (bit scores) are independent of dataset size
 - They simply measure the path weight of the specific alignment found
- E-values are DEPENDENT on database size
 - This is intuitive: in a random dataset, the more data more likely find a match of a given score or higher

E value (Karlin-Altschul statistics)

- $E = K m n e^{-\lambda S}$
 - *K* is a scaling factor (constant)
 - *m* is the length of the query sequence
 - *n* is the length of the database sequence
 - λ is the decay constant
 - *S* is the similarity score
- If *S* increases, *E* decreases exponentially
- If the decay constant increases, E decreases exponentially
- If *m n* increases the "search space" increases
 - Then there is a greater chance for a random "hit" and *E* increases
 - A larger database will increase E
 - However, larger query sequence often decreases E. Why???

The parameters K and lambda can be thought of simply as natural scales for the search space size and the scoring system respectively

Score

- Score is a numerical value that describes the overall quality of an alignment
- Score indicates how good the alignment sequence are
- Higher numbers correspond to higher similarity of alignment

...Score

• For nucleotides, each identical match is given the same score, and all mismatches are given a penalty (negative) score

• Match: 1

Mismatch: -2

• Gap opening: -2

• Gap extension : -3

Example 1

Matches (+1): 18

Mismatches (-2): 5

Gaps (opening -2, extension -1): 1, 2

Score =
$$18 * (+1) + 5 * (-2) + 1 * (-2) + 2 * (-1) = 4$$

...Score

- For amino acid, blosum62 scoring matrices are used to obtain the S value
- BLOSUM = $\underline{\mathbf{BLO}}$ cks $\underline{\mathbf{SU}}$ bstitution $\underline{\mathbf{M}}$ atrix
- Gap opening scoring is -4 and extension is -1

Blosum62 Scoring Matrix

```
Arg R -1 5
Asn N -2 0 6
Asp D -2 -2 1 6
Cys C 0 -3 -3 -3 9
Gin Q -1 1 0 0 0 3 5
Glu E -1 0 0 2 -4 2 5
Gly G 0 -2 0 -1 -3 -2 -2 6
His H -2 0 1 -1 -3 0 0 -2 8
Ile I -1 -3 -3 -3 -3 -1 -3 -3 -4 -3 4
Leu L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
Lys K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
Met M -1 -1 -2 -3 -3 1 0 -2 -3 -2 1 5
Phe F -2 -3 -3 -3 -3 -2 -3 -3 -3 -1 0 0 0 -3 0 6
Pro P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -3 -1 -2 -4 7
Ser S 1 -1 1 0 -1 0 0 0 0 -1 -2 -2 0 -1 -2 -1 4
Thr T 0 -1 0 -1 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
Trp W -3 -3 -4 -4 -2 -2 -3 -3 -2 -2 -3 -3 -1 1 4
Tyr Y -2 -2 -2 -3 -3 -3 -1 -2 -2 -3 -3 -3 1 -2 -1 3 -3 -2 -2 2 7
Val V 0 -3 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 11 -1 -2 -2 0 -3 -1 4
```

Example 2

Query NLCENFVQATF

Sbjct NYCENTIQSII

Going from left to right the score is summed as follows:

Score =
$$5 + (-1) + 9 + 5 + 6 + (-2) + 3 + 5 + 1 + (-1) + 0$$

= 30

How to Get Score From Blosum62?

Bit-Score

- Log-scaled version of a score
- Normalized score expressed in *bits*
- Formula:

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

Where λ and K are parameters that characterize the expected distribution of S
for the scoring system used (scoring matrix dependent)

Example 3

```
As referred from Example 2,
score = 30
########From Bottom of the Blast report
Gapped
Lambda K
 0.318 0.14
##########
S' = (\lambda S - \ln K) / \ln 2
  = (0.318 * 30 - \ln (0.14) / \ln 2
  = 16.5998
```

E-value

- An expectation value, *E* for the alignment is calculated as:
- $E = m n 2^{-s'}$

where *m* is the length of the database *n* is the length of the query sequence *S'* is the normalized bit score from above

Example 4

As referred from Example 3, bit-score = 16.5998 assume m = 11 , n = 11

E =
$$mn2^{-s'}$$

= $11 * 11 * 2^{-16.5998}$
= 1.22×10^{-03}

...E-value

- There is another way to calculate E-value without having bit-score.
- $E = K m n e^{-\lambda S}$
- Where S is the score

λ and *K* are constant parameter,*m* is the length of the database*n* is the length of the query sequence

Example 5

- As referred from Example 2, Score = 30
- $\lambda = 0.318$ and K= 0.14.
- Assume, m = 11 and n = 11
- $E = K m n e^{-\lambda S}$ = 0.14 * 11 * 11 * $e^{-(0.318 * 30)}$ = 1.22 x 10⁻⁰³

BLAST Alignment Statistics

- In a million entry database would leave
 - E = 0.001 1000 entries **due** to **chance**
 - E = 1e−6 would only leave **one** entry due to **chance**

BLAST Alignment Statistics

 Scores of local alignments between two random sequences follow the Extreme Value Distribution

Expect Value

E = number of database hits you expect to find by chance

Database Searching: E-values in BLAST

- BLAST uses pre-computed extreme value distributions to calculate Evalues from alignment scores
- Why certain combinations of substitution matrices and gap penalties
- This also means that the fit is based on a different data set than the one you are working on
- A word of caution: BLAST tends to overestimate the significance of its matches
- E-values from BLAST are fine for identifying sure hits
 - Be careful using E-values to judge if a marginal hit can be trusted (e.g., you may want to use E-values of 10⁻⁴ to 10⁻⁵)

BLAST Output: DNA Alignments

```
> ref NM 001604.4 UEGM Homo sapiens paired box 6 (PAX6), transcript variant 2, mRNA
Length=6891
 GENE ID: 5080 PAX6 | paired box 6 [Homo sapiens] (Over 100 PubMed links)
 Score = 4996 bits (5540), Expect = 0.0
 Identities = 2770/2770 (100%), Gaps = 0/2770 (0%)
 Strand=Plus/Plus
Query 1
            GGTGCATTTGCATGTTGCGGAGTGATTAGTGGGTTTGAAAAGGGAACCGTGGCTCGGCCT
Sbjct 1
Query 61
Sbjct 61
                                                                          120
Query 121
Sbjct 121
Query 181
                                                                          240
Sbjct 181
Query 241
            CAAAAAACCCCAACCAAACAAAACTCTTGACAGAAGCTGTGACAACCAGAAAGGATGCCT
Sbjct 241
                                                                          300
Query 301
Sbjct 301
Query
      361
Sbjct 361
```

BLAST Output: Protein Alignments

```
>qi|127552|sp|P23367|MUTL ECOLI DNA mismatch repair protein mutL
           Length = 615
  Score = 42.0 bits (97), Expect = 3e-04
  Identities = 26/59 (44%), Positives = 33/59 (55%), Gaps = 9/59 (15%)
             LPKNTHPFLYLSLEISPQNVDVNVHPTKHEVHF----LHE---ESILEV-QQHIESKL
                                                                         58
 Query 9
                      L LEI P VDVNVHP KHEV F
                                                  +H+
                                                        + +L V QQ +E+ L
            LGADQQPAFVLYLEIDPHQVDVNVHPAKHEVRFHQSRLVHDFIYQGVLSVLQQQLETPL
 Sbjct 280
                                                                         338
                              Negative Substitution
Identical Match
                   Positive score
                                                        Gap
                   (conservative)
```

Biologically Meaningful BLAST Hits

- Low E-value does not always imply "biologically meaningful"
- No strict rule how to choose E-value
- Trade-off between *sensitivity* and *specificity*
- E-value < 10⁻⁶ **almost surely homologous**
 - Will miss remote homologues
- Between 10⁻² and 10⁻⁶ **probably homologous**
- Between 10⁻² and 10 might or might not be interesting...
 - Use your own judgments
 - Pairwise sequence comparison cannot detect remote homologues reliably when sequence identity drops below 20-35%
 - Need more sophisticated approaches

Advanced Parameters (Legacy Blast)

- -G Cost to open gap [Integer] default = 5 for nucleotides 11 proteins
- -E Cost to extend gap [Integer] default = 2 nucleotides 1 proteins
- ¬q Penalty for nucleotide mismatch [Integer] default = -3
- -r reward for nucleotide match [Integer] default = 1
- -e expect value [Real] default = 10
- -W wordsize [Integer] default = 11 nucleotides 3 proteins
- -y Dropoff (X) for BLAST extensions in bits (default if zero) default = 20 for BLASTn, 7 for other programs
- –z final X dropoff value for gapped alignment (in bits)50 for BLASTn, 25 for other programs
- Easy to determine new flags in BLAST+ with Perl script provided by NCBI

Biological Relevance

- Were you looking for a **short region of nearly identical sequence** or a **longer region of general similarity**?
 - If it's a protein
 - Are the mismatches conservative ones?
 - Is it a shared domain?
 - Is there a shared motif?
 - Are key residues conserved i.e. (active site or ligand binding sites)
 - If it's DNA
 - Are the matching regions important structural components of the gene?
 - Are these matching regions just introns or flanking regions?
 - Why am I using DNA?

Borderline Similarity (1)

- What about matches with E-values in the 0.5 range?
 - Depends on what you're looking for?
 - Length dependent
 - Long genes with short matches probably not significant
 - But what about primers/probes
 - » Searching much shorter sequence matches which will have much higher E-values?
 - » Have to set the E-value to 1000 and Wordsize 7
 - » You can still potentially miss hits?

Borderline Similarity (2)

- Retest the sequences you're concerned with
 - Similarity is transitive:
 - If $A \sim B$, $B \sim C$, then $A \sim C$
 - How could we do this?
 - We could use Perl for this project, right!
 - But be careful hits might not be transitive with multi-domain proteins

The Twilight Zone

- Identity (proteins) drops into 20-35%
 - Estimates of statistical significance fail to distinguish between related and unrelated sequences
 - Relatedness cannot be distinguished from random match
 - referred to as the twilight zone of pairwise sequence alignment
 - pinkish area of the overlap you will see in the upcoming lab
- Proteins with similar structure/function that have pairwise sequence identity below 20-35% can score lower than structurally and functionally dissimilar proteins

A Sequence to BLAST

>YP 003565295

MKAKLIQYVYDAECRLFKSVNQHFDRKHLNRFLRLLTHAGGATFTIVIACLLLFLYPSSV AYACAFSLAVSHIPVAIAKKLYPRKRPYIQLKHTKVLENPLKDHSFPSGHTTAIFSLVTP LMIVYPAFAAVLLPLAVMVGISRIYLGLHYPTDVMVGLTLGIFSGAVALNIFLT

- NCBI--> BLAST --> Protein BLAST
- Write in accession
- Note the database: default is nr
- Algorithm: BLASTp is the standard one used for protein sequences
- Algorithm parameters: just under the BLAST button on the bottom of the page
 - Maximum number of sequences to display (default = 100)
 - Expect threshold: maximum e-value to display (default = 10)
 - Scoring matrix and gap penalties
 - Low complexity filters
- When in doubt, accept the default

BLAST Online Results (1)

- Conserved Domains Database (CDD) automatically searched
 - ex. PAP2-like superfamily, which can be clicked on for more info
- Graphic Summary: Representation of top 100 hits
 - Length bars illustrates extent of homologous region
 - Color shows alignment scores (bit scores)
 - Mouse-over bars to get info about each hit
- Descriptions: A list of the sequences hitting your query
 - Has a link:
 - to that gene
 - gene name and (often) species, bit score, e-value

BLAST Online Results (2)

- Alignments: Detailed alignments for each hit
 - Get percentage of identities and positives
 - Number of gap bases, sequence length
 - "Expect" = e-value
 - Aligned query and subject sequences, with identities and positives shown between them, and position numbers in the sequences
- One of the top hits is annotated incorrectly:
 - Everything else including the CDD domain information says this is a phsophatase
 - But this hit says it is ribosomal protein S2 from Bacillus licheniformis (what's new!)

BLAST Two Sequences

- Get the *B. licheniformis* ribosomal S2 protein sequence (one of the top hits)
- Or, you can just paste in the reference number: YP_080329.1
- Now do a BLAST2Seq
 - Results: same as with regular BLAST
 - Also has Dot matrix view: click it
 - Full length alignment, with 2 small gaps

Blast 2 Sequences is a great tool!

Getting Catalytic Residues

- 1d2tA Acid phosphatase
 - http://www.ncbi.nlm.nih.gov/protein/1D2T_A
 - http://www.ebi.ac.uk/thornton-srv/databases/CSA/

YP_003565295 vs 1d2t_A

Score = 42.7 bits (99), Expect = 5e-10, Method: Compositional matrix adjust.

Identities = 25/88 (28%), Positives = 42/88 (48%), Gaps = 4/88 (5%)

Query 114 AKDHYMRIRPFAFYGVSTCNTTEQDKLSKNGSYPSGETSIGWATALVLAEINPQRQNEIL 173

AK Y R RP+ + +T + K+ S+PSGET+ + + L + P +L

Sbjct 78 AKKLYPRKRPY----IQLKHTKVLENPLKDHSFPSGETTAIFSLVTPLMIVYPAFAAVLL 133

Query 174 KRGYELGQSRVICGYHWQSDVDAARVVG 201

+G SRP G H+ +DV ++G

Sbjct 134 PLAVMVGISRIYLGIHYPTDVMVGLILG 161

YP_003565295 vs YP_080329.1

More Gene Names

- Do the names of the top BLAST hits agree with each other?
- They should:
 - But there are always annotation errors, and our knowledge of gene function increases over time
 - With some sloppiness due to different naming conventions practiced by different scientists
- Here we have a classic case of misnaming

More Gene Names

- Why is the one of the top hits a ribosomal protein S2?
 - Ribosomal proteins are **highly conserved in evolution**
 - Query: Ribosomal protein S2 AND Bacillus licheniformis[ORGN]
 - No homology exists between:
 - [YP_080329.1] and the actual ribosomal protein S2 found in Bacillius licheniformis [YP_091458]
- The other names are similar although not identical
 - What is "PAP2"?
 - A quick Google search shows that it stands for "phosphatidic acid phosphatase"
 - fits the other names well
 - There is probably some uncertainty about its exact function, given the variety of names and the "family protein" designation in several of them

Remember it's up to you the bioinformatician to scrutinize these alignments!

BLAST result

```
Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.
Query= metL qi|16131778|ref|NP 418375.1| aspartokinase II and
homoserine dehydrogenase II; bifunctional: aspartokinase II
(N-terminal); homoserine dehydrogenase II (C-terminal) [Escherichia
coli K121
         (810 letters)
Database: /Users/jvanheld/rsa-
tools/data/genomes/Escherichia coli K12/genome/NC 000913.faa
           4242 sequences; 1,351,322 total letters
Searching.....done
                                                                  Score
Sequences producing significant alignments:
                                                                  (bits) Value
gi | 16131778 | ref | NP 418375.1 | aspartokinase II and homoserine deh... 1596
qi | 16127996 | ref | NP 414543.1 | bifunctional: aspartokinase I (N-te...
qi|16131850|ref|NP 418448.1| aspartokinase III, lysine sensitive...
                                                                       122
qi|16128228|ref|NP 414777.1| qamma-qlutamate kinase [Escherichia...
                                                                        31
>qi|16131778|ref|NP 418375.1| aspartokinase II and homoserine
           dehydrogenase II; bifunctional: aspartokinase II
           (N-terminal); homoserine dehydrogenase II (C-terminal)
           [Escherichia coli K12]
          Length = 810
 Score = 1596 bits (4132), Expect = 0.0
 Identities = 810/810 (100%), Positives = 810/810 (100%)
```

BLASTP 2.2.18 [Mar-02-2008]

- Query: E.coli protein MetL, a bifunctional enzyme combining aspartokinase and homoserine dehydrogenase activities.
- Database: all proteins from Escherichia coli K12.
- BLAST result file starts with a summary of
 - parameters used for the search
 - The matching sequences and the score of each match.

0.0

2e-95

7e-29

0.28

Jacques van Helden

BLAST Result – First Match

```
>qi | 16131778 | ref | NP 418375.1 | aspartokinase II and homoserine
           dehydrogenase II; bifunctional: aspartokinase II
           (N-terminal); homoserine dehydrogenase II (C-terminal)
           [Escherichia coli K12]
          Length = 810
 Score = 1596 bits (4132), Expect = 0.0
 Identities = 810/810 (100%), Positives = 810/810 (100%)
Query: 1
           MSVIAQAGAKGRQLHKFGGSSLADVKCYLRVAGIMAEYSQPDDMMVVSAAGSTTNQLINW 60
           MSVIAQAGAKGRQLHKFGGSSLADVKCYLRVAGIMAEYSQPDDMMVVSAAGSTTNQLINW
Sbjct: 1
           MSVIAQAGAKGRQLHKFGGSSLADVKCYLRVAGIMAEYSQPDDMMVVSAAGSTTNQLINW 60
Query: 61 LKLSQTDRLSAHQVQQTLRRYQCDLISGLLPAEEADSLISAFVSDLERLAALLDSGINDA 120
           LKLSQTDRLSAHQVQQTLRRYQCDLISGLLPAEEADSLISAFVSDLERLAALLDSGINDA
Sbjct: 61 LKLSQTDRLSAHQVQQTLRRYQCDLISGLLPAEEADSLISAFVSDLERLAALLDSGINDA 120
Query: 121 VYAEVVGHGEVWSARLMSAVLNQQGLPAAWLDAREFLRAERAAQPQVDEGLSYPLLQQLL 180
           VYAEVVGHGEVWSARLMSAVLNQQGLPAAWLDAREFLRAERAAQPQVDEGLSYPLLQQLL
Sbjct: 121 VYAEVVGHGEVWSARLMSAVLNQQGLPAAWLDAREFLRAERAAQPQVDEGLSYPLLQQLL 180
Query: 181 VQHPGKRLVVTGFISRNNAGETVLLGRNGSDYSATQIGALAGVSRVTIWSDVAGVYSADP 240
           VQHPGKRLVVTGFISRNNAGETVLLGRNGSDYSATQIGALAGVSRVTIWSDVAGVYSADP
Sbjct: 181 VQHPGKRLVVTGFISRNNAGETVLLGRNGSDYSATQIGALAGVSRVTIWSDVAGVYSADP 240
Query: 241 RKVKDACLLPLLRLDEASELARLAAPVLHARTLQPVSGSEIDLQLRCSYTPDQGSTRIER 300
           RKVKDACLLPLLRLDEASELARLAAPVLHARTLQPVSGSEIDLQLRCSYTPDQGSTRIER
Sbjct: 241 RKVKDACLLPLLRLDEASELARLAAPVLHARTLQPVSGSEIDLQLRCSYTPDQGSTRIER 300
Query: 301 VLASGTGARIVTSHDDVCLIEFQVPASQDFKLAHKEIDQILKRAQVRPLAVGVHNDRQLL 360
           VLASGTGARIVTSHDDVCLIEFQVPASQDFKLAHKEIDQILKRAQVRPLAVGVHNDRQLL
Sbjct: 301 VLASGTGARIVTSHDDVCLIEFQVPASQDFKLAHKEIDQILKRAQVRPLAVGVHNDRQLL 360
```

- First match is the query sequence itself (metL)
- Not surprising since we scanned the set of all E.coli proteins with a protein from E.coli
- The E-value (0) means that, with this level of similarity; one would expect 0 false positive by chance

Jacques van Helden

BLAST Result – Second Match

```
>gi|16127996|ref|NP_414543.1| bifunctional: aspartokinase I
           (N-terminal); homoserine dehydrogenase I (C-terminal)
           [Escherichia coli K12]
         Length = 820
 Score = 344 bits (882), Expect = 2e-95
Identities = 247/821 (30%), Positives = 410/821 (49%), Gaps = 44/821 (5%)
Query: 16 KFGGSSLADVKCYLRVAGIMAEYSQPDDMM-VVSAAGSTTNQLINWLKLSQTDRLSAHQV 74
           KFGG+S+A+ + +LRVA I+
                                      + V+SA
                                                  TN L+ ++ + + +
Sbjct: 5
          KFGGTSVANAERFLRVADILESNAROGOVATVLSAPAKITNHLVAMIEKTISGODALPNI 64
          QQTLRRYQCDLISGLLPAEEADSL--ISAFVSDLERLAALLDSGIN-----DAVYAEVV 126
Query: 75
              R + +L++GL A+
                                 L + FV
                                                   + GI+
Sbjct: 65
         SDAERIF-AELLTGLAAAOPGFPLAOLKTFVDOEFAOIKHVLHGISLLGOCPDSINAALI 123
Query: 127 GHGEVWSARLMSAVLNQQGLPAAWLDAREFLRAER---AAQPQVDEGLSYPLLQQLLVQH 183
            GE S +M+ VL +G
                                   +D E L A
Sbjct: 124 CRGEKMSIAIMAGVLEARGHNVTVIDPVEKLLAVGHYLESTVDIAESTRRIAASRIPADH 183
Ouery: 184 PGKRLVVTGFISRNNAGETVLLGRNGSDYSATOIGALAGVSRVTIWSDVAGVYSADPRKV 243
              +++ GF + N GE V+LGRNGSDYSA + A
                                                       IW+DV GVY+ DPR+V
Sbjct: 184 ---MVLMAGFTAGNEKGELVVLGRNGSDYSAAVLAACLRADCCEIWTDVDGVYTCDPROV 240
Query: 244 KDACLLPLLRLDEASELARLAAPVLHARTLQPVSGSEIDLQLRCSYTPDQ----GSTRI 298
                      EA EL+
                               A VLH RT+ P++ +I
Sbjct: 241 PDARLLKSMSYQEAMELSYFGAKVLHPRTITPIAQFQIPCLIKNTGNPQAPGTLIGASRD 300
Ouery: 299 ERVLASGTGARIVTSHDDVCLIEFOVPASODFKLAHKEIDOILKRAOVRPLAVGVHNDRO 358
                     + +++ +++ +
                                                    + RA++
Sbjct: 301 EDELP----VKGISNLNNMAMFSVSGPGMKGMVGMAARVFAAMSRARISVVLITQSSSEY 356
Ouery: 359 LLOFCYTSEVADSALKILDEA-----GLPGELRLROGLALVAMVGAGVTRNPLHCHRF 411
                       A + + E
                                                                    +F
                                           L + + LA++++VG G+
Sbjct: 357 SISFCVPQSDCVRAERAMQEEFYLELKEGLLEPLAVTERLAIISVVGDGMRTLRGISAKF 416
```

- Second match is another bifunctional protein, product of the gene thrA
- Contains the same two domains as metA (aspartokinase and homoserine dehydrogenase).
- Alignment covers almost the complete sequences (820 aa), with 30% identities and 49% similarity.
- E-value is very low
 (2e-95), indicating that
 thrA and metL are likely
 to be true homologs.

Jacques van Helden

BLAST Result – Third Match

```
>qi|16131850|ref|NP 418448.1| aspartokinase III, lysine sensitive;
          aspartokinase III, lysine-sensitive [Escherichia coli
          K121
         Length = 449
Score = 122 bits (307), Expect = 7e-29
Identities = 121/452 (26%), Positives = 194/452 (42%), Gaps = 25/452 (5%)
Query: 16
          KFGGSSLADVKCYLRVAGIMAEYSOPDDMMVVSAAGSTTNOLINWLK-LSOTDRLSAHOV 74
          KFGG+S+AD
                        R A I+
                                      ++V+SA+
                                                TN L+
Sbjct: 8
          KFGGTSVADFDAMNRSADIVLSDANVR-LVVLSASAGITNLLVALAEGLEPGERF---EK 63
Ouery: 75
          OOTLRRYOCDLISGLLPAEEADSLISAFVSDLERLAALLDSGINDAVYAEVVGHGEVWSA 134
                                      + ++ LA
                                                     + A+ E+V HGE+ S
Sbjct: 64 LDAIRNIOFAILERLRYPNVIREEIERLLENITVLAEAAALATSPALTDELVSHGELMST 123
Query: 135 RLMSAVLNQQGLPAAWLDAREFLRA-ERAAQPQVDEGLSYPLLQQLLVQHPGKRLVVT-G 192
               +L ++ + A W D R+ +R +R + D
Sbjct: 124 LLFVEILRERDVOAOWFDVRKVMRTNDRFGRAEPDIAALAELAALOLLPRLNEGLVITOG 183
Ouery: 193 FISRNNAGETVLLGRNGSDYSATOIGALAGVSRVTIWSDVAGVYSADPRKVKDACLLPLL 252
               N G T LGR GSDY+A +
                                         SRV IW+DV G+Y+ DPR V A + +
Sbjct: 184 FIGSENKGRTTTLGRGGSDYTAALLAEALHASRVDIWTDVPGIYTTDPRVVSAAKRIDEI 243
Query: 253 RLDEASELARLAAPVLHARTLQPVSGSEIDLQLRCSYTPDQGSTRI----ERVLA 303
                      A VLH TL P
                                    S+I + + S P G T +
Sbjct: 244 AFAEAAEMATFGAKVLHPATLLPAVRSDIPVFVGSSKDPRAGGTLVCNKTENPPLFRALA 303
Query: 304 SGTGARIVTSHDDVCLIEFQVPASQDFKLAHKEIDQILKRAQVRPLAVGVHNDRQLLQFC 363
                                           Ι
                                                       +A+
                         L
                                              L
Sbjct: 304 LRRNQTLLTLHSLNMLHSRGFLAEVFGILARHNISVDLITTSEVSVAL-----TLDTT 356
Ouery: 364 YTSEVADSAL--KILDEAGLPGELRLROGLALVAMVGAGVTRNPLHCHRFWOOLKGOPVE 421
                       +L E
                                 + + +GLALVA++G +++
Sbjct: 357 GSTSTGDTLLTQSLLMELSALCRVEVEEGLALVALIGNDLSKACGVGKEVFGVLEPFNIR 416
```

- Third match is the product of the gene lysC: aspartokinase III
- Protein contains the aspartokinase domain, but not the homoserine dehydrogenase.
- Alignment only extends over the first half of the query protein (453aa)
- On this segment, there is a good level of identity (26%) and similarity (42%)
- E-value is very low (7e-29), indicating that the two domains are likely to be true homologs.

BLAST Result – Fourth Match

- Fourth match is a gamma-glutamate kinase, product of proB
- Same level of identity (30%) and similarity (51%) as the second match (thrA)
- Match only extends over 56aa, whereas the alignment between thrA and metL extends over 821aa
- E-value is quite high (0.28) suggesting that the similarity could be an artefact.
- This clearly illustrates the fact that the important parameter to evaluate the significance of an alignment is the E-value, not the percentage of similarity!

```
Database: /Users/jvanheld/rsa-
  tools/data/genomes/Escherichia coli K12/genome/NC 000913.faa
    Posted date: Sep 8, 2004 12:13 PM
  Number of letters in database: 1,351,322
  Number of sequences in database: 4242
Lambda
   0.320
            0.136
                     0.397
Gapped
Lambda
          0.0410
                     0.140
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 2,199,628
Number of Sequences: 4242
Number of extensions: 96525
Number of successful extensions: 290
Number of sequences better than 1.0: 4
Number of HSP's better than 1.0 without gapping: 4
Number of HSP's successfully gapped in prelim test: 0
Number of HSP's that attempted gapping in prelim test: 279
Number of HSP's gapped (non-prelim): 5
length of query: 810
length of database: 1,351,322
effective HSP length: 92
effective length of query: 718
effective length of database: 961,058
effective search space: 690039644
effective search space used: 690039644
T: 11
A: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 65 (29.6 bits)
```

BLAST Result – Summary

- The last part of the BLAST result gives some statistics about the search:
 - Number of hits
 - Number of sequences in the DB

- ...

BLAST Running Time

• Running Time

The length of Query: 153

DB size : 5997 sequences

Algorithm	Running Time		
D.P	16.989 [s]		
FASTA	0.618 [s]		
BLAST	0.118 [s]		

PC: Pentium 4

By Dr. Takeshi Kawabata

Nara Sentan Gijyutu University

FASTA vs BLAST

Conclusion

Algorithm	Sensitivity	Running Time
D.P	1	3
FASTA	2 better DNA	2
BLAST	2 better proteins	1,000

Comparison of Algorithm

- Dynamic Programming
 - Most sensitive result
 - D.P uses **all information** of two sequence
 - Running time is slow
 - D.P compute **the useless area** for computing the optimal sequence

Comparison of Algorithm

- FASTA
 - Less sensitive than D.P and BLAST (protein search)
 - FASTA uses partial information to speed up the computation
- Running time is faster D.P
 - The same reason as the above

Comparison of Algorithms

- BLAST
 - More sensitive than FASTA (protein search)
- Faster than FASTA
 - Because BLAST evaluates the entire DB with the same threshold based on statistics
 - BLAST **eliminate noises** and **reduces** the running time

Using BLAST to Get Quick Answers to Bioinformatics Problems

Task	BLAST method	Trad. Method
Predict protein function (1)	Perform BLASTp on PIR or Swiss-Prot database	Perform wet-lab experiment
Predict protein function (2)	Perform tBLASTn on NR database	Perform wet-lab experiment
Predict protein structure	Perform BLASTp against PDB	Structure prediction software, x-ray crystall., NMR

Using BLAST to Get Quick Answers to Bioinformatics Problems

Task	BLAST method	Trad. Method
Locate genes in a genome	Divide genome into 2-5 kb sequences. Perform BLASTx against NR protein datbase	Run gene prediction software. Perform microarray/RNAseq analysis
Find distantly related proteins	Perform psi-BLAST	No traditional method
Identify DNA sequence	Perform BLASTn	Screen genomic DNA library

PSI-BLAST

PSI-position specific iterative BLAST – Used for Finding new family members that do not hit the original query

What do you think we could use as a model?

Position Specific Substitution Rates

210 220 230 240 250 260 270 * * * * * * * *	1
154 AT-CRR-AYSGG	
707 KV-CNR-YEYLG	
187 KGsCER-DAQYApgydkvkdisEVVTPRFLCTGGVSpyADPNTCRGDS GGPLIV-HKrsRFIQVGV 166 SS-CKS-AYPGQITSNMFCAGYLEGGKDS CQGDS GGPVVC-SGKLQGI 166 TN-CKKYWGTKIKDAMICAGASGVSSCMGDS GGPLVC-KKnGAWTLVGI 160 SD-CNN-SYPG	
166 SS-CKS-AYPG	ı
166 TN-CK-KYWGTKIKDAMICAGASGVS SCMGDS GGPLVC-KKNGAWTLVGI 160 SD-CNN-SYPGMITNAMFCAGYLE-GGKDS CQGDS GGPLVC-FEK	ı
160 SD-CNN-SYPG	ı
167 KV-CNRyEFLNG	
Typical serine DGIIS SCNGDS GGPLNC-QGanGQWQVHGI 156 AI-CSSSSYWG 169 EH-CSQYDWWGITVKKTN GGDTRSGCDGDS GGPLNC 156 HI-CDAkYHLGAYtgddvRIVRDDMLCAR-RDS CQGDS GGPLNC 168 AT-CSQrDWWGTTVKETMVCAGGDGVIS GCDGDS GGPLNC	
Typical serine DGVRSGCQGDSGGPLHC-Active site sering EH-CSQyDWWGITVKKTh GGDTRSGCDGDSGGPLNC-Active site sering HI-CDAkYHLGAYtgddvRIVRDDMLCAR-RDSCQGDSGGPLVC-W	
169 EH-CSQyDWWGITVKKTN GGDTRSGCDGDS GGPLNC ACTIVE SITE SECOND SITE SE	
156 HI-CDAKYHLGAYtgddvRIVRDDMLCACR-RDSCQGDSGGPLVC-K -gTWLQAGV 168 AT-CSQrDWWGTTVKETMVCAGGD GVISACNGDSGGPLN QAdgQWDVRGI 165 EE-CSQTWGNNMISDVMICAGAACATSCMGDSGCZLVC-QKdnVWTLVGI 185 NQ-CRQYWGSSITDSMICAGGAGASSCQGDSGGPLVC-QKgnTWVLIGI 518 ER-CSS-PEVHGdAFLSG-MLCAGFLEggTDACQGDSGGPLVC-Edea-aehRLILRGI 320 DV-CNGaDFYGNQIKPKMFCAGYPeGGIDACQGDSGGPLVC-EDsisrtpRWRLCGI 183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIA	rir
168 AT-CSQrDWWGTTVKETMVCAGGD GVISACNGDSGGPLN AdgQWDVRG1 165 EE-CSQTWGNNMISDVMICAGAAGATSCMGDSGGPLVC-QKdnVWTLVG1 185 NQ-CRQYWGSSITDSMICAGGAGASSCQGDSGGPLVC-QKgnTWVLIG1 518 ER-CSS-PEVHGdAFLSG-MLCAGFLEggTDACQGDSGGPLVC-Edea-aehRLILRG1 320 DV-CNGaDFYGNQIKPKMFCAGYPeGGIDACQGDSGGPLVC-EDsisrtpRWRLCG1 183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIANVTGTMLCAGDLAGGKDTCVGDSGGPLIC-DGVLQGV 182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQGV	,
165 EE-CS-QTWGNNMISDVMICAGAAGATSCMGDSGCLVC-QKdnVWTLVG1 185 NQ-CR-QYWGSSITDSMICAGGAGASSCQGDSGGPLVC-QKgnTWVLIG1 518 ER-CSS-PEVHGdAFLSG-MLCAGFLEg-gTDACQGDSGGPLVC-Edea-aehRLILRG1 320 DV-CNGaDFYGNQIKPKMFCAGYPeGGIDACQGDSGGPLVC-EDsisrtpRWRLCG1 183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIANVTGTMLCAGDLAGGKDTCVGDSGGPLIC-DGVLQGV 182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQGV	
185 NQ-CR-QYWGSSITDSMICAGGAGASSCQGDSGGPLVC-QKgnTWVLIG1 518 ER-CSS-PEVHGdAFLSG-MLCAGFLEggTDACQGDSGGPLVC-Edea-aehRLILRG1 320 DV-CNGaDFYGNQIKPKMFCAGYPeGGIDACQGDSGGPFVC-EDsisrtpRWRLCG1 183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIANVTGTMLCAGDLAGGKDTCVGDSGGPLIC-DGVLQGV 182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQGV	
518 ER-CSS-PEVHGdAFLSG-MLCAGFLEggTDACQGDSGGPLVC-Edea-aehRLILRG1 320 DV-CNGaDFYGNQIKPKMFCAGYPeGGIDACQGDSGGPFVC-EDsisrtpRWRLCG1 183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIANVTGTMLCAGDLAGGKDTCVGDSGGPLIC-DGVLQGV 182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQGV	
320 DV-CNGaDFYGNQIKPKMFCAGYPeGGIDACQGDSGGPFVC-EDsisrtpRWRLCG1 183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIANVTGTMLCAGDLAGGKDTCVGDSGGPLIC-DGVLQGV 182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQGV	
183 DE-CEK-AHVQKVTDFMLCVGHLEGGKDTCVGDSGGPLMC-DGVLQGV 160 KN-CDD-AHIANVTGTMLCAGDLAGGKDTCVGDSGGPLIC-DGVLQGV 182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQGV	
160 KN-CDD-AHIA	
182 DM-CAR-AYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVC-NGVLQG	
	4
678 RF-CKE-RYKGLFTGRMLCAGNLQedNRVDSCQGDSGGPLMC-EKpdeSWVVYGV	7
408 QR-CNSrYVYDNLITPAMICAGFLqGNVDSCQGDSGGPLVT-SNnnIWWLIGI	
475 TL-CNSrQLYDHMIDDSMICAGNLQk-pGQDTCQGDSGGPLTC-EKdgTYYVYGI	
181 AH-CSRyDWWGSLVTTSMVCAGGDGVLASCNGDSGGPLNC-QNadgSWDVHGV	
176 AE-CAA-ALVNvvPVTEQMICAGYAAgGKDSCQGDSGGPLVS-GDKLVGV	1
181 RE-CNChYQTILeqddEVIKQDMLCAGSEG-HDSCQMDSGGPLVC-RWkcTWIQVGV	7

Position Specific Score Matrix w/ BLAST

```
these two positions
Active site nucleophile
```

PSI-BLAST

- An iterative process:
 - DB searched with an initial query sequence
 - All hits with E-value lower cutoff (default = 0.005) are kept
 - A **PSSM** is constructed automatically from multiple HSPs of initial BLAST search
 - PSSM is then used to search the database again
 - A lower E-value threshold is now used (E=.001)
 - If new sequences with lower e-value than cutoff found PSSM is updated to include them, and search is run again
 - Eventually, no new sequences are found and the PSI-BLAST search is complete (converged)
- Result
 - 1) Obtains distantly related sequences
 - 2) Can find the **important residues** that provide function or structure
 - 3) Extensions of the matches, why's this?

Position-specific iterated BLAST

What Blast uses to Construct PSSM

- PSI-BLAST uses the pairwise sequence alignments from a database search in PSSM construction
 - The BLAST local alignments to query sequence (blue sequence) are shown as rectangles
 - At each residue position of the query, a PSSM is constructed using only those sequences whose BLAST alignments involve that position
 - Here, at position X only six residues are considered in order to derive the PSSM, as only six of the sequences (including the query sequence) have local alignments including this position

PSI-BLAST

Creating a PSSM from 1 sequence

PSI-BLAST

Creating a PSSM from Multiple Sequences

- Discard columns that contain gaps in the query
- For each column C
 - Compute relative sequence weights
 - Compute PSSM entries, taking into account
 - Observed residues in this column
 - Sequence weights
 - Substitution matrix

Discard Query Gap Columns

EEFG----SVDGLVNNA

OKYG----RLDVMINNA

RRLG----TLNVLVNNA

GGIG----PVD-LVNNA

KALG----GFNVIVNNA

ARFG----KID-LIPNA

FEPEGPEKGMWGLVNNA

AQLK----TVDVLINGA

EEFGSVDGLVNNA

QKYGRLDVMINNA

RRLGTLNVLVNNA

GGIGPVD-LVNNA

KALGGENVIVNNA

ARFGKID-LIPNA

FEPEGMWGLVNNA

AQLKTVDVLINGA

Compute Sequence eights

- Low weights are assigned to redundant sequences
- High weights are assigned to unique sequences

EEFGSVDGLVNNA	1.2
QKYGRLDVMINNA	1.2
RRLGTLNVLVNNA	0.8
GGIGPVDLLVNNA	0.8
KALGGFNVIVNNA	1.1
ARFGKIDTLIPNA	0.9
FEPEGMWGLVNNA	1.1
AQLKTVDVLINGA	1.3

Compute PSSM entries

PSI-BLAST

Example PSI-BLAST Aminoacyl tRNA Synthetases

- 20 enzymes for 20 amino acids
- Each is very different
 - Big, small, monomers, tetramers...
 - All bind to their appropriate tRNAs and amino acids, with high specificity
- Tryptophanyl-tRNA (TrpRS) and Tyrosyl-tRNA (TyrRS) share only 13% sequence identity
 - But, overall structures of TrpTRS and TyrTRS are similar
 - Structure ⇔ Function relationship

So is There Sequence Similarity between TyrRS and TrpRS?

- Given structural similarities, we would expect to find sequence similarity...
- BUT!
 - BLASTp of E.coli TyrRS (NP_416154.1) against bacterial sequences in SwissProt does NOT show similarity with TrpRS at e-value cutoff of 10

Not Found by BLASTP

Try Using PSI-BLAST...

- PSI-BLAST available from BLAST main page
- Query form just like for BLASTp
 - BUT: one extra formatting option must be used
 - "Program Selection" activate the check box
 - PSI-BLAST (Position-Specific Iterated BLAST)"
 - Second e-value cutoff used to determine which alignments will be used for PSSM build... "Threshold for inclusion"
- First search using **BLASTp of E.coli TyrRS** as query
 - Threshold for inclusion = 0.005

The Power of a Single PSSM

NEW	▼ 07MHZ4.1	RecName: Full=Tyrosyl-tRNA synthetase 2; AltName: Full=Tyrosinet	122	122	90%	7e-30	G	
NEW	▼ 030SN2.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	122	122	87%	7e-30		
NEW	▼ Q319F8.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	122	122	89%	9e-30		
NEW	▼ Q6MNQ2.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	122	122	85%	1e-29		
NEW	▼ Q8Y240.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	121	121	87%	1e-29		
NEW	▼ Q3ARF2.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	121	121	92%	1e-29	G	
NEW	▼ Q7VAP7.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	121	121	94%	2e-29		
NEW	▼ Q67QD6.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	121	121	93%	3e-29		
NEW	▼ 08KEW9.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	120	120	93%	4e-29		
NEW	▼ Q9ZL69.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	120	120	85%	5e-29	G	
NEW	▼ Q3B5D0.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosinetRI	1 4	118	85%	3e-28	G	
NEW	▼ Q8EHB3.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=Tyrosine	117	117	91%	3e-28		
NEW	✓ Q3Z8V6.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: Full=TyrosyletRI	117	117	98%	7e-28	G	
NEW	▼ 09KU92.1	RecName: Full=Tyrosyl-tRNA synthetase 2; AltName: Full lyrosinet	115	115	89%	2e-27		
NEW	▼ P83453.1	RecName: Full=Tyrosyl-tRNA synthetase; AltName: all=TyrosinetRI	103	103	97%	6e-23	G	
NEW	▼ Q7N9W0.1	RecName: Full=Tyrosyl-tRNA synthetase 2; Althame: Full=Tyrosinet	102	102	87%	8e-23		
NEW	✓A3CYG9.1	RecName: Full=Tyrosyl-tRNA synthetase AltName: Full=TyrosinetRI	50.1	50.1	56%	1e-05		
NEW	▼ 029482.1	RecName: Full=Tyrosyl-tRNA synthese; AltName: Full=TyrosinetRI	48.5	48.5	52%	5e-05		
NEW	▼ 009692.1	RecName: Full=Tryptophanyl-tRNA synthetase, cytoplasmic; AltName:	43.5	43.5	14%	0.002	G	
Run F	SI-Blast iteration	on 2 with max 500 Go						

The last hit was a Trp-tRNA – Remember a PSSM

The Power of Iterations

	NEW	✓ A2BLD4.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	45.9	45.9	54%	4e-04	G
	NEW	▼P57956.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	45.1	45.1	41%	6e-04	
	NEW	▼ Q8P3Z4.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	<u>45.5</u>	45.5	22%	6e-04	
	NEW	▼ Q46127.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	52%	0.001	
	NEW	▼P43835.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	38%	0.001	G
	NEW	▼ 09UY11.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	28%	0.001	
	NEW	▼ 0976M1.2	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	68%	0.001	G
	NEW	 ✓ Q87B10.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	19%	0.001	G
	NEW	▼ 07W5T6.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	16%	0.001	
	NEW.	▼ 07VZ05.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	44.3	44.3	16%	0.001	
	NEW	▼P67596.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	43.9	43.9	29%	0.001	G
	NEW	▼ Q9PIB4.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	43.5	43.5	49%	0.002	
	NEW	▼ Q88NA1.1	RecName: Full=Tryptophanyl-tRNA synthetase; AltName: Full=Tryptop	43.9	43.9	19%	0.002	G
Y	NEW	<u>A6UPW5.1</u>	RecName: Full=30S ribosomal protein S4P	42.4	42.4	29%	0.002	G
1	NEW	_A6VGQ7.1	RecName: Full=30S ribosomal protein S4P	42.0	42.0	37%	0.002	G
	Dun DS	L-Blact iteratio	n 3 with may 500					

Uncheck why?

Iterations with a new PSSM bring about more TrpRS

Why (not) PSI-BLAST

- If the sequences used to construct the Position Specific Scoring Matrices (PSSMs) are all homologous, the sensitivity at a given specificity improves significantly
- However, if non-homologous sequences are included in the PSSMs, they are "corrupted"
 - Then they pull in more non-homologous sequences, and become worse than generic

Power of PSI-BLAST

- We knew TyrRS and TrpRS were similar
 - Functionally and structurally
- BLASTP gave no indication
 - PSI-BLAST able to detect their weak sequence similarity
- Words of caution:
 - Be sure to inspect and think about the results included in the PSSM build
 - Include/exclude sequences on basis of biological knowledge: you are in the driving seat!
 - PSI-BLAST performance varies according to choice of matrix, filter, statistics etc just like BLASTP

FYI - PSI-BLAST caveats

- Increased ability to find distant homologues
- Cost of additional required care to prevent non-homologous sequences from being included in the PSSM calculation
 - When in doubt, leave it out!
 - Examine sequences with moderate similarity carefully
- Be particularly cautious about matches to sequences with highly biased amino acid content
 - Low complexity regions, transmembrane regions and coiled-coil regions often display significant similarity without homology
 - Screen them out of your query sequences!

Another Sequence for PSI-BLAST

 $>gi|294497031|ref|YP_003560731.1|$ hypothetical protein BMQ_0196 [Bacillus megaterium QM B1551]

MDKLMNRSWVMKIIALLLAFMLYLSVNLDDGASSSNKILNRSSSANTGVETLTDVPVQVSYNEKNRIVRG VPDTVIMTLEGPKNILAQTKLQKDYQAYIDLDNLSLGQHRVKVQYRNISDNLNVVVKPDIVNVTIEERDS KQFSVEASYDKNKVKNGYEAGEATVSPRAVTVTGASSQLDQVAYVKAIIDLDNASKTVTKQATVVALDKN LNKLNVTVQPETVNVTIPVRNISKKVPIDVIQEGTPGDGVNITKLEPKTDTVKIIGPSDSLEKIDKIDNI PVDVTGITKSKDIKVNVPVPDGIDSVSPKQITVHVEVDKQGDEKDAEETDASAAETKSFKNLPVSLTGQS SKYTYELLSPTSVDADVKGPKSDLDKLTKSGISLSANVGNLSAGEHTVPIIINSPDSVTSTLSTKQAKVR VTAKKQSGTNDEQTDDKETSGSTSDKETSGSTSDKETKPDTGTGSGTNPGTGNSGDSADKPSEETDTPED NTDTPTDSTETGDDSSNQSDENSTPVDGQTDNTSGN

Exercise: Try is yourself!

You don't need to cut & paste, remember all you need is the accession number

PHI-BLAST

- Pattern Hit Initiated BLAST
- PHI-BLAST principle:
 - Same method as PSI-BLAST
 - Starts first search with query sequence + pattern for a motif in the query
- PHI-BLAST finds sequences containing the motif and having significant sequence similarity in the vicinity of the motif occurrence
 - Highly specific

Example: TyrRS

- TyrRS contains the aaRS class-I signature
- Want to find sequences containing that motif, and regional similarity to TyrRS
- First: get the pattern for the class-I signature
 - Where can I get this?
 - PROSITE = Database of protein domains, families and functional sites
 - Aminoacyl-transfer RNA synthetases class-I signature

P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-[HT]-[LIVMYAC]-G-[HNTG]-[LIVMFYSTAGPC]

Same as Before, but Use a Pattern

PHI-BLAST Results

- After first search, PHI-BLAST functions same as PSI-BLAST
- Result page is the same
- Can iterate in same way
- Try it later if you like...

RPS-BLAST

- Annotated collections of multiple sequence alignments defining where domains exist
 - Conserved domain database (CDD)
 - Contains 40,568 PSSMs (2011)
 - Contains 43,334 PSSMs (2012)
- Can search the CDD using CD search
 - Uses RPS-BLAST
 - Reverse Position Specific-BLAST
 - Opposite of PSI-BLAST
- CDD multiple alignments converted to PSSMs
- PSSMs are processed and turned into a searchable database
- Queries are searched against PSSMs using RPS-BLAST
- Output indicates conserved domains within the query sequence

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

Example: CRADD protein

DELTA-BLAST

- DELTA-BLAST (Domain Enhanced Look-up Time Accelerated BLAST) is a new application to perform protein-protein queries for the detection of distant protein homologs
- Generally, BLAST is used to compare a query sequence to a database of known sequences
- Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round A to construct a positionspecific score matrix (PSSM) for searching the database in round A + 1 and so on
- DELTA-BLAST searches a database of pre-constructed PSSMs before searching a protein-sequence database
 - Performs a multiple sequence alignment of the query sequence with domains described in the CDD (<u>Conserved Domain Database</u> from NCBI) database and then uses a <u>PSSM</u> derived from this alignment to search a sequence database

DELTA-BLAST

The difference with PSI-BLAST is that PSI-BLAST uses the results of a first blastp iteration to construct a PSSM and then uses it to search the sequence database

DELTA-BLAST uses PSSM derived from the CDD database, so the initial PSSM construction is much more quicker than PSI-BLAST

Functionality Offered by BLAST+

- BLAST + applications has been organized by program type
- Resembles Web BLAST
- Following graph depicts a correspondence between NCBI C Toolkit BLAST CLI and the BLAST+ applications

Step 1 – Installing BLAST+ tools

- http://blast.ncbi.nlm.nih.gov/Blast.cgi?
 CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download
- Windows 32/64: .exe installer
 - Linux 32/64: compiled binaries (RPM or tar.gz)
 - **Other Unix:** compiled binaries (in tar.gz)
- Apply platform-specific configuration details for your operating system
- Read the good documentation:

http://www.ncbi.nlm.nih.gov/books/NBK1763/

Installing From Linux .tar.gz Archive

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

```
$ ##DO NOT DO THIS ON FISHER
$ ##THIS IS ON YOUR OWN LINBOX or MAC
$ su
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/ \
blast+/LATEST/ncbi-blast-2.2.28+-x64-linux.tar.gz
$ tar -zxvf ncbi-blast-2.2.28+-x64-linux.tar.gz
$ mv ncbi-blast-2.2.28+ /usr/local
$ cd /usr/local/
$ ln -s ncbi-blast-2.2.28+ ncbi
$ exit
```

Edit Your .bashrc File in /home/username

```
$ vi .bashrc
#added to my for blast+
export BLAST=/usr/local/ncbi
export PATH=$BLAST/bin:$PATH
#exit vi
$ source .bashrc
if it worked, then:
$ echo $BLAST
/usr/local/ncbi
```

Option A: Obtain a Existing NCBI Database... Manual Way (Automatic to Come)

```
$ su
$ mkdir $BLAST/db
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/swissprot.tar.gz
$ tar -zxvf swissprot.tar.gz $BLAST/db
$ exit
$ cd
```

Option B: Create a simple BLAST database from a local FASTA sequence file

- Makeblastdb (formerly formatdb) produces BLAST databases from FASTA files
 - In the simplest case the FASTA definition lines are not parsed by makeblastdb and may be completely unstructured (but can only be BLAST'ed and not be directly retrieved)

```
$ makeblastdb -in mydb.fsa -dbtype nucl
Legacy
```

- \$ formatdb -i mydb.fasta -p F -o F
- Creates a BLAST database from a nucleotide FASTA sequences which can be put into the "db" directory for searching
- Of course, like all blast programs, there are a rich set of parameters which can be used to customize the generation of the database (see the BLAST manual)

With Either Option, Still Need Some Configuration Details

```
$ cd # back to home directory
# need to point to the database...
$ cat >.ncbirc <<EOF
[BLAST]
BLASTDB=/usr/local/ncbi/db
EOF</pre>
```

Do not change your .ncbirc file on fisher!!!!

Adopted from Richard Bruskiewich

Step 3 – Executing a BLAST Operation

- Command line programs (only) but parameters are generally equivalent to (or a superset of) the NCBI web BLAST application
- Sample run:
 - Retrieve a sequence from the database and put it in test_query.txt:

```
$ blastdbcmd -db nr -entry Q9MAH0 -outfmt "%f" -out
test_query.txt
```

- Blast it back against the same database: %a = accession

\$ blastp -query test_query.txt -db swissprot -out
output.txt -outfmt 5 -seg yes

```
Alignment view options:

0 = pairwise,

1 = query-anchored, showing identities,

2 = query-anchored, no identities,

3 = flat query-anchored, show identities,

4 = flat query-anchored, no identities,

5 = XML BLAST output,

6 = tabular,

7 = tabular with comment lines,

8 = Text ASN.1,

9 = Binary ASN.1,

Adopted Richard Bruskiewich
```

10 = Comma-separated values

(Step 3) – **Legacy** - Executing a BLAST Operation

- Command line programs (only) but parameters are generally equivalent to (or a superset of) the NCBI web BLAST application
- Sample run:
 - Retrieve a sequence from the database and put it in test_query.txt:
- \$ fastacmd -s Q9MAH0 -d nr -o test_query.txt
 - Blast it back against the same database:

```
$ blastall -p blastp -i test_query.txt -d swissprot -o
output.txt -m 7
```

blastdbcmd outfmt

outfmt	string	%f	Output format, where the available format specifiers are: %f means sequence in FASTA format %s means sequence data (without defline) %a means accession %g means gi %o means ordinal id (OID) %t means sequence title %I means sequence length %T means taxid %L means common taxonomic name %S means scientific name %P means PIG %mX means sequence masking data, where X is an optional commaseparated list of integers to specify the algorithm ID(s) to display (or all masks if absent or invalid specification). Masking data will be displayed as a series of 'N-M' values separated by ';' or the word 'none' if none are available. For every format except '%f', each line of output will correspond to a sequence.
--------	--------	----	--

Command Line Parameters: Statistics

- **-evalue**: expect value, normally set to 10
- **-word_size**: "k-tuple" size; increase for speed, decrease for sensitivity
- **-gapopen**: cost to open a gap; increase for stringency
- **-gapextend**: cost to extend a gap; increase for stringency
- -matrix: substitution scoring matrix (default BLOSUM62); change if sequences too related or too distant
- To get more information use option "-help"

Command Line Parameters: Input/Output

- **-query** in.txt: specify input file
- -out out.txt: specify output file
- **-db** nr: which database (created with makeblastdb)
- -dust yes/no: filter low complexity regions in nucleotide sequence search yes/no (default is yes)
- **-seg** yes/no: filter low complexity regions in protein sequence search yes/no (default is no)
- -html format output as HTML
- **-outfmt** specify output format, e.g. 5 = XML blast output
 - (use -help flag to see other options)

Additional Useful Program Options

- Depending on program:
 - -num_threads: use multiple CPUs (speeds up search)
 - -subject: specify a second input sequence instead of a database (former 'bl2seq')
 - task megablast: much faster for highly similar nucleotide sequences
 - -task blastn_short: find similar short sequences (e.g. primer sequences)

Step 4 – Parse the Output

- If you just have one query sequence, simply view the BLAST+ text file
- If you are doing a lot of queries on the database and looking for "best hits", you may wish to use a parsing script (e.g. BioPerl to the rescue!)
- XML (-outfmnt 5) output is parsed easily, as we'll see, and -outfmnt 7 is a tab delimited output

Legacy Commands & Learning the All New Commands?

- Easiest way to get stared using new commands is by means of legacy_blast.pl
 - PERL script which is bundled along with the BLAST+ applications
- Script is part of blast+, and translates blastall commands into the blast+ syntax. E.g.:

```
$ legacy_blast.pl megablast -i query.fsa -d nt -o mb.out
--path /usr/local/ncbi-blast-2.2.27+/bin --print_only
```

```
/usr/local/ncbi-blast-2.2.27+/bin/blastn -query query.fsa -db nt -out mb.out
```

Getting the Blast Databases

- NCBI puts out a script, update_blastdb.pl to download the databases
 - http://www.ncbi.nlm.nih.gov/BLAST/docs/update_blastdb.pl
- See ftp://ftp.ncbi.nlm.nih.gov/blast/documents/blastdb.html for details

```
$ cd $BLAST/db
$ perl update_blastdb.pl nr nt refseq pdbaa swissprot refseq_protein taxdb
cdd_delta
```

```
my @arr = `ls *gz`;
foreach my $file (@arr) {
        chomp $file;
        system("tar -zxvf $file");
        system("rm $file");
}
```

use warnings;

FYI - The BLAST Taxonomy Database taxdb

- Required in order to print the scientific name, common name, blast name, or super kingdom as part of the BLAST report or in a report with blastdbcmd
- BLAST database contain only the taxid (an integer) for each entry, and the taxonomy database allow BLAST to retrieve the scientific name etc. from a taxid
- The BLAST taxonomy database consists of a pair of files (taxdb.bti and taxdb.btd) that are available as a compressed archive from the NCBI BLAST FTP site (ftp://ftp.ncbi.nlm.nih.gov/blast/db/taxdb.tar.gz)
- update_blastdb.pl script can be used to download and update this archive

```
$ blastdbcmd -entry AC147927 -outfmt "%L::%S::%T" -db nt
legacy version:
$ fastacmd -s AC147927 -d nt -T -t

$ blastdbcmd -entry CAA27203.1 -outfmt "%L::%S::%T" -db nr
legacy version:
$ fastacmd -s CAA27203.1 -d nr -T -t
```

:: used as a delimiter

RPS-BLAST & DELTA-BLAST

\$ deltablast -query test.protein2.fasta -db pdbaa -out test.protein2.fasta.delta.out

 DETA-BLAST performs a multiple sequence alignment of the query sequence with domains described in the CDD (<u>Conserved Domain Database</u> from NCBI) database and then uses a PSSM derived from this alignment to search a sequence database

\$ rpsblast -query test.protein2.fasta -db cdd_delta -out test.protein.fasta.rps.out

 RPS-BLAST (Reverse PSI-BLAST) searches a query sequence against a database of profiles, here the CDD

\$ perl update_blastdb.pl nr nt refseq pdbaa5 swissprot refseq_protein taxdb cdd_delta

Over the Next Couple Weeks

- Go over BLAST Command Line Applications User Manual
 - http://www.ncbi.nlm.nih.gov/books/NBK1763/
- Check out these online tutorials
 - http://evomics.org/learning/bioinformatics/blast-laboratory/
 - http://evomics.org/learning/bioinformatics/fastablast/

For Thursday

- Remember presentations begin Thursday
 - 20-25 minutes presentation
 - Practice your talk before you come
 - Get your timing down
 - Remember
 - breathe slowly when you get to your slides
 - you know more than the audience about the topic
 - 3-4 minutes (max 5) on Introduction
 - 15 Minutes on database (the algorithm, parameters, searching, etc)
 - 5 Minutes on conclusion (what it can be used for, why [or why not] you found the database to be useful, what type of improvements would be useful)
 - Read the two papers you are assigned to be peer-review for