Prediction error for categorical response variables

INTRODUCTION TO STATISTICAL MODELING IN R

Danny Kaplan
Instructor

Modeling marital status

Base model: Just age as the explanatory variables

```
mod_a <- rpart(married ~ age, data = Training_data, cp = 0.001)
```

Extended model: Both age and sector as explanatory variables

Categorical outputs

```
# Base model
mod_a_outputs <- predict(mod_a, newdata = Testing_data, type = "class")
head(mod_a_outputs)

Married Single Single Married Married</pre>
```

```
# Extended model
mod_b_outputs <- predict(mod_b, newdata = Testing_data, type = "class")
head(mod_b_outputs)</pre>
```

Married Single Single Married Married

```
# Actual values
head(Testing_data$married)
```

Married Single Married Single Single Married

Counting categorical errors

```
with(data = Testing_data, sum(married != mod_a_outputs))
```

109

```
with(data = Testing_data, sum(married != mod_b_outputs))
```

110

The categorical error rate

```
with(data = Testing_data, mean(married != mod_a_outputs))

0.3263473

with(data = Testing_data, mean(married != mod_b_outputs))
```

0.3293413

- Similar to assessing performance for quantitative outputs
- Test whether predicted values match actual values
- Calculate error rate

The output as probabilities

```
mod_a_probs <- predict(mod_a, newdata = Testing_data, type = "prob")</pre>
res_1 <- data.frame(actual = Testing_data$married, mod_a_probs)</pre>
head(res 1)
   actual Married
                      Single
2 Married 0.8265306 0.1734694
3 Single 0.2222222 0.7777778
4 Married 0.8265306 0.1734694
5 Married 0.5833333 0.4166667
7 Married 0.4090909 0.5909091
8 Single 0.8265306 0.1734694
mod_b_probs <- predict(mod_b, newdata = Testing_data, type = "prob")</pre>
res_2 <- data.frame(actual = Testing_data$married, mod_b_probs)</pre>
head(res 2)
             Married
                          Single
   actual
2 Married 0.90909091 0.09090909
```


3 Single 0.28571429 0.71428571

Summarizing all cases with likelihood

```
likelihood_a <- with(res_1, ifelse(actual == "Married", Married, Single))
sum(log(likelihood_a))

-214.863

likelihood_b <- with(res_2, ifelse(actual == "Married", Married, Single))
sum(log(likelihood_b))</pre>
```

Likelihood: extract the probability that the model assigned to the observed outcome

-227.8955

Let's practice!

INTRODUCTION TO STATISTICAL MODELING IN R

Exploring data for relationships

INTRODUCTION TO STATISTICAL MODELING IN R

Danny Kaplan Instructor

Exploring data for relationships

```
library(NHANES)
library(dplyr)

# National Health and Nutrition Evaluation Survey (NHANES)
names(NHANES) %>% head(20)
```

```
"SurveyYr"
    "ID"
                                                        "Age"
                                       "Gender"
 [5] "AgeDecade"
                      "AgeMonths"
                                       "Race1"
                                                        "Race3"
     "Education"
                      "MaritalStatus" "HHIncome"
                                                        "HHIncomeMid"
[13] "Poverty"
                      "HomeRooms"
                                       "HomeOwn"
                                                        "Work"
[17] "Weight"
                      "Length"
                                                        "Height"
                                       "HeadCirc"
```

Is body weight related to having diabetes?

Is body weight related to having diabetes?

What accounts for smoking?

```
NHANES %>%
select(SmokeNow, Poverty, MaritalStatus, Gender, BMI, TotChol, AgeFirstMarij, SmokeNow)
```

	SmokeNow	Poverty	MaritalStatus	Gender	BMI	TotChol	AgeFirstMarij
	<fctr></fctr>	<dbl></dbl>	<fctr></fctr>	<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	No	1.36	Married	male	32.22	3.49	17
2	No	1.36	Married	male	32.22	3.49	17
3	No	1.36	Married	male	32.22	3.49	17
4	NA	1.07	NA	male	15.30	NA	NA
5	Yes	1.91	LivePartner	female	30.57	6.70	18
6	NA	1.84	NA	male	16.82	4.86	NA
7	NA	2.33	NA	male	20.64	4.09	NA
8	NA	5.00	Married	female	27.24	5.82	13
9	NA	5.00	Married	female	27.24	5.82	13
10	NA	5.00	Married	female	27.24	5.82	13
• •	• • •	• • •	•••	• • •	• • •	• • •	• • •

Modeling with recursive partitioning (rpart)

Who smokes cigarettes?

Modeling with recursive partitioning (rpart)

Who smokes cigarettes?

Pushing rpart for more complexity

Pushing rpart for more complexity

Let's practice!

INTRODUCTION TO STATISTICAL MODELING IN R

