Team Id	PNT2022TMID38741			
Team leader	Dhivya V			
Team members	Pasca Mary C			
	Sathyapriya S			
	Shanmathi M			
Project title	Detecting parkinsons diseases using machine learning			

Literature survey

Paper 1:

1 apet 1.				
Title	oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy			
Author	suman dutta, Simon hornung, adria kruayatidee, katherinen.maina,irish del rosario			
Journal	Springer link			
Year	2021			
Methodology	electrochemiluminescence ELISA.			
Scope	They tested and validated a blood-based diagnostic biomarker in two independent cohorts, which separates two related synucleinopathies, PD, and MSA, with high sensitivity and specificity. The biomarker is based on measurement of α -syn concentrations in putative neuronal and oligodendroglial exosomes isolated from patients serum or plasma. Additional validation in larger cohorts, and eventually in pathologically confirmed sample when those become available, may facilitate the use of this biomarker, potentially in combination with recently discovered ones, such as clusterin and fibrillar α -syn, for routine clinical diagnosis of these diseases.			

Paper 2

1 apel 2	
Title	Profiling novel metabolic biomarkers for Parkinson's disease using in-depth
	metabolomic analysis
Author	wei han, shraddha sapkota, richard camicoli, roger A Dixon
Journal	Movement disorder
Year	2017
Methodology	Metabolomic profiling using dansylation isotope labeling liquid chromatography massspectrometry
Scope	The significantly altered metabolites can be used to differentiate PD patients from healthy controls with high accuracy and the stable PD with no dementia group from those with incipient dementia

Paper- 3:

Title	Medical record review to differentiate between idiopathic parkinsons disease and parkinsonism			
Author	xin cui, naomi greene, eva schernhammer, beate ritz			
Journal	hindawi			
Methodology	chi-square tests,NHR			
Scope	The electronic medical records provide new and unprecedented opportunities for large population-based and clinical studies if valid and reliable diagnoses be obtained, to determine what information is needed to distinguish idiopathic PD from Parkinsonism in electronic medical records. Thus, they Data suggest that electronic data source Need to be developed that provide Information not only on ICD codes but also on cardinal and atypical symptoms, symmetry of onset, comorbidities, and			

	treatment modalities for all PD patients. To be most informative in terms of predictive validity for IPD, these data need to be used in combination and patients need to be followed up over at least 5 years into disease to improve diagnostic accuracy in studies that rely solely on record .
Year	2015

Paper-4:

Paper-4:			
Title	Machine learning for the diagnosis of		
	Parkinson's disease: A systematic		
Author	jie sei, johannas fransneli		
Journal	Research gate		
Year	2020		
Methodology	Machine Learning; Diagnosis;		
	Differential Diagnosis		
Scope	Diagnosis of Parkinson's disease (PD)		
_	is commonly based on medical		
	observations and assessment of clinical		
	signs,these symptoms are often		
	overlooked, making diagnosis of PD		
	at an early stage challenging. To		
	address these difficulties and to refine		
	the diagnosis and assessment		
	procedures of PD, machine learning		
	methods have been implemented for		
	the classification of PD and healthy		
	controls or patients .the first exhaustive		
	review which included results from all		
	studies that applied machine learning		
	methods to the diagnosis of PD		

Paper-5

Title	Monitoring Parkinson's Disease in Smart Cities
Author	MUSAED ALHUSSEIN

Journal	IEEE
Year	2017
Methodology	cloud computing,ELM,SVM,GMM,RFT.
Scope	Parkinson's Disease (PD) is one of the
	most severe neurological diseases
	prevalent in the world.A
	neurodegenerative disease, it impairs the
	body's balance, damages motor skills,
	and leads to disorder in speech
	production. These problems also affect
	decision-making processes and the
	expression of emotions.

Paper-6:

Author	Machine Learning Approaches for Detecting Parkinson's Disease from EEG Analysis: A Systematic Review Ana María Maitín Alvaro José García-Tejedor and Juan Pablo Romero Muñoz
Journal	Applied science
Year	2020
Methodology	Parkinson's disease (PD);electroencephalography(EEG) machine learning (ML)
Scope	parkinson's disease (PD) is the second most common neurological Alzheimer's disease, Electroencephalography (EEG) is a non-invasive technique that records the electrical activity of the pyramidal neurons of the brain, giving an indirect insight of the function with a great time resolution efficiently. These techniques are increasingly being applied to EEG analysis, facilitating the use of this low-cost clinical test to detect or extract information on various neurological diseases.it should be emphasized that ML techniques have experienced significant growth in recent years, incorporating

more complex models, and thus, this review and the conclusions obtained herein should be considered as a first step in the analysis of the role played by ML techniques and EEG in the study of PD.

Paper-7:

i apei-/.		
Title	Automatic Diagnosis of	
	Parkinson's Disease Using	
	Machine Learning	
Author	JEANNIE HE	
Journal	KTH VETENSKAP OCH KONST	
Year	2021	
Methodology	Machine learning, Feature Selection,	
	Greedy Search, Genetic Algorithm.	
Scope	This system was chosen as the best	
	system for the diagnosis of Parkinson's	
	disease based on its comparative	
	predictive performance on two sets of	
	data - one from drawing exams and one	
	from voice exams. while none of the	
	systems in this thesis have shown a	
	significantly higher performance than all	
	other systems in any metric, it can be	
	stated that, amongst those systems tested	
	in this thesis, the best system for the	
	diagnosis of PD appears to be RFGA+ as	
	a combination of RF, GA and random	
	oversampling.	