

Wydział Mechaniczny Energetyki i Lotnictwa Politechnika Warszawska

Projektowanie

mgr inż. Grzegorz Kamiński

11 marca 2025

Zalety zastosowania

- * spokojna, cicha i płynna praca urządzenia,
- * tanie przeniesienie napędu (niskie koszty eksploatacji i konserwacji),
- łagodzenie gwałtownych zmian obciążenia i tłumienie drgań,
- * zmiana parametrów pracy urządzenia,
- * wariatory paskowe,
- * niewrażliwe na brak właściwego ustawienia osi wałów [1].

Co wpływa na żywotność przekładni

- liczba pasów (optymalna),
- * naciąg (poślizg na kole nie powinien przekraczać 1%),
- stan techniczny kół pasowych,
- * typ pasa.

W najkorzystniejszych warunkach najlepiej pracuje pas pojedynczy.

Nie stosować pasów od różnych producentów.

Nie wolno, na koła dla zespołów pasowych, stosować pasów zespolonych.

Co wpływa na żywotność przekładni

- * napinacze (unikać, bo użycie rolek zwiększa częstotliwość przegięć pasa oraz wprowadza dodatkowe naprężenia zginające, co skraca jego żywotność),
- * rolki napinające umieszczone po zewnętrznej stronie pasa powodują ugięcie pasa w przeciwną stronę niż przy normalnej pracy,
- * czystość.

Pasy wąskoprofilowe

- przenoszone moce są znacznie większe od wersji klasycznej,
- * prędkością pasa do $40 \frac{m}{s}$,
- * minimalne średnice kół pasowych są większe niż dla pasów klasycznych,
- duża powierzchnia zewnętrzna pasa w stosunku do pola przekroju polepsza odprowadzenie ciepła,
- * mogą pracować w temperaturze od 35°C do 100°C.

Geometria pasów wąskoprofilowych

Pas wąski oznaczenie ISO, DIN	SPZ	SPA	SPB	SPC	
orientacyjna <mark>szero</mark> kość górna l _O	9,7	12,7	16,3	22	
szerokość podziałowa Ip	8,5	11	14	19	
wysokość pasa h ₀	8	10	13	18	
wysokość nad linią podziałową <i>b_p</i>	2	2,8	3,5	4,8	
minimalna ś <mark>redn</mark> ica podziałowa koła d _p	63	90	140	224	
dopuszczalna prędkość pasa	40 [m/s]				

Zestawienie długości pasa wąskoprofilowego

SPZ			SPA			PB	S	PC	
IIII	Lp	III)	III.	Lp	_(111)	L	-p		Lp
537	875	1212	723	1232	3750	1250	4000	1800	6700
562	887	1237	757	1250	4000	1320	4250	2240	7100
587	900	1250	782	1320	4250	1400	4500	2360	7500
612	912	1320	832	1400	4500	1500	4750	2500	8000
637	925	1400	857	1500	4750	1600	5000	2650	8500
662	937	1500	882	1600	5000	1700	5300	2800	9000
687	947	1600	932	1700	,[III]	1800	5600	3000	9500
700	962	1700	957	1800		1900	6000	3150	10000
712	987	1800	982	1900		2000		3350	1000
719	1000	1900	1007	2000		2120	- m	3550	- (IIII)
721	1012	2000	1032	2120	7	2240	6	3750	4.1
737	1037	2120	1057	2240		2360		4000	
762	1062	2240	1082	2360	Mh	2500	Mh	4250	Th
787	1087	2360	1107	2500	6)	2650	4)	4500	") (
800	1112	3000	1132	2650		2800	_	4750	
812	1125	(0)	1157	2800	100	3000	r0n-	5000	rib.
825	1137	Giiii	1180	3000	0	3150	Chini	5300	Chin
837	1162		1182	3150	_	3350		5600	
850	1187		1207	3350	10.20	3550	929	6000	
862	1200	m -	III.	3550	.Jim	3750	JIIII	6300	m

- * maszyna napędzająca: silnik trójfazowy indukcyjny włączany przełącznikiem gwiazda-trójkąt o mocy N=10~kW i obrotach $n_d=2920~\frac{obr}{min}$,
- * maszyna napędzana: wentylator o obrotach $n_b = 1950 \frac{obr}{min}$,
- * parametry przekładni: dzienny czas pracy: T = 10 16 h,
- średnice kół i rozstaw osi optymalne.

Współczynniki warunków pracy

Gard Gard Gard Gard Gard Gard Gard Gard	Przykłady maszyn napędowych						
	silniki o normalnym M _{roz} silniki o wysokim M _{roz}						
Przykłady maszyn napędzanych	Współczynnik warunków pracy k_T						
		e <mark>nnego</mark> czasu trwa			ennego czas <mark>u trw</mark>		
	do 10	od 10 do 16	powyżej 16	do 10	od 10 do 16	powyżej 16	
Napędy lekkie: dmuchawy i wyciągi, mieszalnik <mark>i cieczy,</mark> pompy i sprężarki odśrodkowe, przenośniki taśmowe do materiatów lekkich, wentylatory o mocy do 7,5 <i>kW</i> ;	1,0		1,2	1,1	1,2	1,3	
Napędy średnie: naszyny drukars <mark>kie,</mark> mieszadła do c <mark>iast</mark> a, obrabiarki do metali (tokarki, szlifierki), pędnie,	9	.	9	0	6	0	
ompy i sprężarki tłokowe trzy i więcej cylindrowe, oralki, prasy, tłocznie, nożyce, prądnice, przenośn <mark>iki</mark> adki, prasy, tłocznie, nożyce, prądnice, przenośniki aita obrotowe i wibracyjne, wentylatory i pompy o mocy powyżej 7,5 kW;	1,1	1,2	1,3	1,2	1,3	1,4	
Napędy ciężkie: Imuchawy wyporowe, maszyny: cegielniane, papiernicze włókiennicze, młyny młotkowe, piły tartaczne, pompy sprężarki tłokowe jedno i dwu cylindrowe, prasy, brykieciarki, przenośniki: kubełkowe, zgarniakowe	1,2	1,3	1,4	1,4	1,5	1,6	
ślimakowe, rozpyłacze, wzbudnice; lapędy bardzo ciężkie: "Zwigniki i podnośniki, kalandry do gumy, ruszarki do kamieni, młyny: kulowe, prętowe i rurowe.	1,3	1,4	1,5	1,5	1,6	1,8	

Moc obliczeniowa N₀

$$N_0 = N \cdot k_T \tag{1}$$

$$N_0 = 10 \, \text{kW} \cdot 1.2 = 12 \, \text{kW}$$

Na podstawie wykresu dobrano pas **SPZ**. Średnicę małego koła przyjęto $d_p = 160 \, mm$.

Prędkość pasa *v*:

$$\mathbf{v} = \frac{\mathbf{n}_d \cdot \mathbf{d}_p}{2}$$

$$v = 24,46 \frac{m}{s} < v_{max}$$

Przełożenie przekładni i

$$i = \frac{n_d}{n_b}$$

$$i = 1,497$$

Średnica dużego koła D_p

$$D_p = 239.6 \, \text{mm}$$

Najbliższa znormalizowana wielkość koła wynosi $D_p=250\,mm$. Wstępny rozstaw osi A_0

$$A_{max} = 2 \cdot (D_p + d_p)$$

$$A_{min} = 0.7 \cdot (D_p + d_p)$$
$$A_{max} = 820 \, mm$$

$$A_{min} = 287 \, \text{mm}$$

Przyjęto rozstaw osi
$$A_0 = 540 \, mm$$
.

Kąt opasania mniejszego koła φ wynosi:

$$\varphi = 2 \cdot a\cos(\frac{D_p - d_p}{2 \cdot A_0}) = 170,44^{\circ} \tag{7}$$

a kąt γ odchylenia pasa od linii środków kół rowkowych $\gamma=90^\circ-\frac{\varphi}{2}=4,78^\circ$. Długość pasa L_p

$$L_p \approx 2 \cdot A_0 + 1.57 \cdot (D_p + d_p) + \frac{(D_p + d_p)^2}{4 \cdot A_0}$$
 (8)

$$L_{p} = 2 \cdot A_{0} \cdot \sin(\frac{\varphi}{2}) + \frac{\pi}{2} \cdot (D_{p} + d_{p}) + \frac{\gamma \cdot \pi}{180^{\circ}} \cdot (D_{p} - d_{p})$$
(9)
$$L_{p} \approx 1727.8 \text{ mm}$$

Wybrano pas o $L_p = 1700 \, mm$.

6III		SIII)
	SPZ	
000	Lp	On.
537	875	1212
562	887	1237
587	900	1250
612	912	1320
637	925	1400
662	937	1500
687	947	1600
700	962	1700
712	987	1800
719	1000	1900
721	1012	2000
737	1037	2120
762	1062	2240
787	1087	2360
800	1112	3000
812	1125	
825	1137	fffh
837	1162	6
850	1187	
862	1200	Do.

$$p=0.25\cdot L_p-0.393\cdot (D_P+d_p)$$
 (10) Zakres ruchu osi $q=0.125\cdot (D_P-d_p)^2$ (11)

$$A \approx p + \sqrt{p^2 - q} \tag{12}$$

$$q = 1012,5 \, \text{mm}^2$$

$$A \approx 526 \, \text{mm}$$

$$y \ge 0.015 \cdot L_p$$

$$x \ge 51 \, mm$$

$$\frac{1}{y} \ge 25.5 \frac{mm}{m}$$

Współczynnik kąta opasania k_{φ} wyznaczono na podstawie danych z tabeli dla współczynnika $\frac{D_p-d_p}{A}$. W przykładzie wynosi on 0.15

$(D_p - d_p)/A$	kąt opasania φ	współczynnik kąta opasania k_{arphi}
0,00	180°	1,00
0,05	177°	0,99
0,10	174°	0,99
0,15	171°	0,98
0,20	169°	0,97
0,25	166°	0,97
0,30	163°	0,96
0,35	160°	0,95
0,40	157°	0,94
0,45	154°	0,93
0,50	151°	0,93
0,55	148°	0,92
0,60	145°	0,91
0,65	142°	0,90
0,70	139°	0,89
0,75	136°	0,88
0,80	133°	0,87
0,85	130°	0,86
0,90	127°	0,85
0,95	123°	0,83
1,00	120°	0,82
1,05	117°	0,81
1,10	113°	0,80
1,15	110°	0,78
1,20	106°	0,77
1,25	103°	0,75
1,30	99°	0,73
1,35	95°	0,72
1,40	91°	0,70
1,45	87°	0,68
1,50	83°	0,65

Współczynnik długości pasa k_L wyznaczono na podstawie danych z tabeli stosując interpolację wartości. W przykładzie wynosi on $k_L=1{,}005$

Pas SPZ		Pas	Pas SPA		Pas SPB		PC
Lp	k _L	Lp	k _L	Lp	k _L	Lp	k _L
630	0,82	800	0,81	1250	0,82	2240	0,83
710	0,84	900	0,83	1400	0,84	2500	0,86
800	0,86	1000	0,85	1600	0,86	2800	_0,88
900	0,88	1120	0,87	1800	0,88	3150	0,90
1000	0,90	1250	0,89	2000	0,90	3550	0,92
1120	0,93	1400	0,91	2240	0,92	4000	0,94
1250	0,94	1600	0,93	2500	0,94	4500	0,96
1400	0,96	1800	0,95	2800	0,96	5000	0,98
1600	1,00	2000	0,96	3150	0,98	5600	1,00
1800	1,01	2240	0,98	3550	1,00	6300	1,02
2000	1,02	2500	1,00	4000	1,02	7100	1,04
2240	1,05	2800	1,02	4500	1,04	8000	1,06
2500	1,07	3150	1,04	5000	1,06	9000	1,08
2800	1,09	3550	1,06	5600	1,08	10000	1,10
3150	1,11	4000	1,08	6300	1,10	11200	1,12
3550	1,13	4500	1,09	7100	1,12	12500	1,14
IIh		In .	_1111	8000	1,14		11h

Na podstawie danych z tabeli określono moc przenoszoną przez jeden pas $N_1 = 7.99 \, kW$. Wymaga liczba pasów

$$z \ge \frac{N \cdot k_T}{N_1 \cdot k_{\varphi} \cdot k_L} \tag{15}$$

 $z \ge 1.55$

Wynik zostaje zaokrąglony w górę do najbliższej liczby całkowitej z = 2.

Wymiary koła pasowego

pas waski	6	SPZ	SPA	SPB	SPC
pas klasyczny		Z	A	В	C
szerokość podziałov	M 2 M/	8,5	11	14	19
orientacyjna szerokość		9,7	12,7	16,3	22
wysokość rowka nad linia r		2	2,8	3,5	4,8
minimalna głębokość ro		1100h	13.8	17,5	23,8
podziałka koła		12 ± 0.3	15 ± 0.3	19 ± 0.4	$25,5 \pm 0,5$
podziałka brzegowa f		8 ± 0.6	10 ± 0.8	12.5 ± 0.8	17 ± 1
maksymalna suma odchyłek e		±0,6	± 0.6	±0,8	±1m
minimalna średnica koła	wąskie	63	90	140	224
minimatha siednica kota	normalny	50	71	112	180
średnica podziałowa dp	$\alpha = 34^{\circ}$	> 80	< 118	< 190	< 315
A III	$\alpha = 38^{\circ}$	< 80	> 118	> 190	> 315
dopuszczalne odchy	/łki α	±0,5°	±0,5°	±0,5°	$\pm 0.5^{\circ}$
szerokość wieńca koła	1	16	20	25	30
SZETOKOŚĆ WIETICA KOTA	2	28	35	44	53
$s = (z - 1) \cdot e + 2 \cdot f$	3	40	50	63	76
$3 = (2 - 1) \cdot e + 2 \cdot i$	4	52	65	82	99

- * to samo koło dla pasa wąskiego i klasycznego,
- * zmienny kąt α .

Średnice koła pasowego

Naciąg pasa

Określenie statycznej siły w cięgnie pasa T_s przez pomiar wartości ugięcia odcinka pomiarowego pasa pod działaniem siły kontrolnej (dla pasa SPZ $c=0.08 \frac{kg}{m}$).

$$T_{s} = \frac{(2,02 - k_{\varphi}) \cdot N \cdot k_{\tau}}{2 \cdot k_{\varphi} \cdot z \cdot v} + c \cdot v^{2} \quad (16)$$

$$T_{\rm s} = 178 \, {\rm N}$$

pas wąski	SPZ	SPA	SPB	SPC	Tolerancja
pas klasyczny	Z	Α	В	С	bicia t
	50*			1	, ,
	56*			1,151	
	63	mI	ln	_IIII)	
	71	71*)	6	0,2
	80	80			
	90	90	riin.	n)	la comu
Sun Contract	100	100	China China	- Cli	
g	112	112	112*		/
średnica podziałowa		118	(118)*		
Zi.	125	125	125	- (III)	m n
bo		132	(132)*	6)	0,3
O.	140	140	140		
. <u>S</u>	150	150	150	10	
dr	160	160	160	0	η
sin		(170)	(170)		
	180	180	180	180*	
In	190	190	190	190*	
	200	200	200	200*	0.4
		(212)	(212)	212*	0,4
	224	224	224	224	h m
Chan Can	Sim	236	236	236	
	250	250	250	250	/

Ugięcie pasa

Na tej podstawie można określić dopuszczalne ugięcie pasa dla siły kontrolnej $q=25\,\text{N}$ korzystając z wykresu. W przykładzie ta wartość wynosi U=2,49

$$U_p = \frac{U}{100} \cdot A \cdot \sin(\frac{\varphi}{2}) \tag{17}$$

$$U_p = 13,05 \, \text{mm}$$

Ugięcie pasa

Wyznaczenie statycznej siły naciągu pasa *N_{stat}*

$$N_{stat} = 2 \cdot T_s \cdot z \cdot sin(\frac{\varphi}{2})$$
 (18)

 $N_{\text{stat}} = 709,6 \, \text{N}$

Obciążenia dynamiczne wału i łożysk

Obciążenie osi od sił w cięgnach czynnych

$$T_c \approx \frac{1.02 \cdot N \cdot k_T}{k_{\varphi} \cdot v}$$

$$T_c \approx 510,6 \, \text{N}$$

Obciążenie osi od sił w cięgnach biernych

$$T_b pprox rac{1,02 \cdot (1,02 - k_{\varphi}) \cdot N \cdot k_{\mathsf{T}}}{k_{\varphi} \cdot \mathsf{v}}$$
 (

$$T_b \approx 20.4 \, \text{N}$$

Dynamicznej siła osiowa - siła działająca na wał

$$N_{\rm s} \approx \sqrt{T_{\rm c}^2 + T_{\rm b}^2 - 2 \cdot T_{\rm c} \cdot T_{\rm b} \cdot \cos(\varphi)}$$
 (21)

$$N_s \approx 530,7 \, N_s$$

Bibliografia

[1] W. STAREGO. Poradnik konstruktora przekładni pasowych.

Dziękuję za uwagę

grzegorz.kaminski@pw.edu.pl