Quality Assurance SWEN90016-S1-L2

Week 11 - Rachelle Bosua

Outline

- Last week recap
- This week:
 - What is Quality software/software quality?
 - Quality models
 - Product versus Process
 - Tools and Techniques
 - Improvement

Lecture 2 - Week 11 QUALITY ASSURANCE

Outline Quality Plan

- Product introduction
- Product plans
- Process descriptions
- Quality goals
- Risks and risk Management
- Quality Assurance

SW development process

Quality Assurance

Technical Reviews-importance

- 1) Can review any SW artefacts
- 2) Early reviews save '\$\$\$s, can find faults before testing & measurement
- 3) Pressure to release software, more mistakes occur
- 4) Review fault detection rate is high
- 5) Reviews excellent to identify faults in source code

Technical Reviews

- Peer review critical analysis of your work
- Useful when understanding of problem and assumptions differ
- SW developers rarely find their own faults and problems

Informal Peer Reviews (technical review)

- Simple Desk Check /casual meeting with a colleague
- Aims to improve quality of a document
- Gloss over 'something' and get feedback
- Less effective than formal reviews
- Checklists

Checklist for software requirements specification artifact			
Organisation and Completeness			
□ Are all internal cross-references to other requirements correct?			
☐ Are all requirements written at a consistent and appropriate level of detail?			
□ Do the requirements provide an adequate basis for design?			
☐ Is the implementation priority of each requirement included?			
☐ Are all external hardware, software, and communication interfaces defined?			
☐ Have algorithms intrinsic to the functional requirements been defined?			
□ Does the specification include all of the known customer or system needs?			
☐ Is the expected behaviour documented for all anticipated error conditions?			
Correctness			
□ Do any requirements conflict with or duplicate other requirements?			
☐ Is each requirement written in clear, concise, unambiguous language?			
☐ Is each requirement verifiable by testing, demonstration, review, or analysis?			
☐ Is each requirement in scope for the project?			
☐ Is each requirement free from content and grammatical errors?			
☐ Is any necessary information missing from a requirement? If so, is it identified as "to be decided"?			
□ Can all of the requirements be implemented within known constraints?			
☐ Are any specified error messages unique and meaningful?			
Quality Attributes			
☐ Are all performance objectives properly specified?			
☐ Are all security and safety considerations properly specified?			
Are other pertinent quality attribute goals explicitly documented and quantified, with the accepta tradeoffs specified?			
Traceability			
☐ Is each requirement uniquely and correctly identified?			
☐ Is each software functional requirement traceable to a higher-level requirement (e.g. system requi			

YO

- Can:
 - Uncover logical errors in artifact
 - Verify that the artifact meets spec
 - Ensure the artifact achieves the requirements set out by some specified standard

- Review Meeting have following constraints:
 - Small 3-5 people
 - Not more than 90 minutes
 - Roles
 - Review leader
 - Author
 - Reviewer
 - Recorder

- Start with an introduction of the artifact from author
- Author 'walks through', explains
- Reviewers raise 'issues'
- Recorded takes note of any issues identified by the team

Raising of issues, forces thinking

Recommendations following review:

- Accept the artifact without further changes
- Accept the artifact with minor changes, or
- 3) Reject artifact, request non-trivial changes, another review later

- Following the formal review:
- 1) Recorder produces a report on the findings of the review, list of issues
- 2) Authors change → response document outlining the where & how
- 3) Submit report and response as part of the project records

Walkthrough vs Inspections

Both technical, similar rely on groups

Differences:

- 1) Moderator roles
- 2) Preparation
- 3) Taking action

Reviewing tips

- 1) Constructive criticism
- 2) Keep to the agenda
- 3) Minimise discussion and
- 4) Allocate time for reviews

Reviews have its own METRICS

Total # errors found: *Err*

Total effort including preparation, review and rework: *Effort*

Size of the artefact: S (#pages, #models)

Error density = <u>Err</u>
S

Rate of error detection:

Rate of error detection: = <u>Err</u> <u>Effort</u>

Eg 18 Class diagrams over 32 pages and 22 errors,

Error Density = 22/18 = 1.2 errors per class diagram

Over 32 class diagrams=38-39 errors

- Metrics good for effectiveness of reviews
- Measure after further quality metrics have been collected e.g. test data
- Study shows cost effectiveness of reviews
- Why? Costs during testing bigger
- Value- reviewing artefact before review

- Error density artefact
 Calculate error density of each artefact
 using results of the review
- Teams can decide which artifacts are errorprone using error density
- E.g. 80 Class diagrams of sub-system team reviews 20, error density=1.2 Another subsystem: 0.7 errors /class diagram

Software Audits

Quality Assurance

SW Audit

- Type of review except, no defects in logic or meaning BUT assess whether artifact complies to a STD or process
- Authors not involved, totally external team

2 types:

- 1) Product audits and
- 2) Process audits

Improving Quality via process improvement

- Improve product quality requires new ways to produce them – change processes to produce
- CMM aims to provide an assessment of the *Process Maturity Model*
- Different levels of rating

CMM Levels- SEI

3.0 DEFINITIONS	- 3
4.0 GUIDELINES	4
4.1 SSO Responsibilities	4
4.1.1 Initial System Passwords	4
4.1.2 Initial Password Assignment	4
4.1.3 Password Change Authorization	6
4.1.4 Group IDs	6
4.1.5 User ID Revalidation	6
4.2 User Responsibilities	6
4.2.1 Security Awareness	6
4.2.2 Changing Passwords	6
4.2.3 Log into a Connected System	8
4.2.4 Remembering Passwords	8
4.3 Authentication Mechanism Functionality	9
4.3.1 Internal Storage of Passwords	9
4.3.2 Entry	9
4.3.3 Transmission	10
4.3.4 Login Attempt Rate	10
4.3.5 Auditing	10
4.4 Password Protection	11
4.4.1 Single Guess Probability	11
4.4.2 Password Distribution	11
APPENDIX A: Password Generation Algorithm	13
APPENDIX B: Password Encryption Algorithm	13
APPENDIX C: Determining Password Length	17
in 12.1211 of 20021111111 Tabbilla 2011geni (11.11.11.11.11.11.11.11.11.11.11.11.11.	
iii	

SCAMLAUD	7
ERSIT	
UR	N

See standards

- https://en.wikipedia.org/wiki/Rainbow
 Series (US Rainbow)
- See also all the ISO standards at
- https://www.iso.org/ iso-9001-qualitymanagement.html

Some questions? Week 12 Please download the SWEN90016 guide and work through the Sample Exam

