Lecture 3

Permutations with repetition. Combinations. Enumeration, ranking and unranking algorithms

October 2014

Outline

- Enumeration, ranking and unranking algorithms for permutations with repetition
- Binary represention of subsets
- Fast generation of all subsets
- Lexicographically ordered combinations (or subsets)
- r-combinations: ranking and unranking algorithms

Permutations with repetition

The *r*-permutations with repetition of an alphabet $A = \{a_1, \ldots, a_n\}$ are the ordered sequences of symbols of the form

$$\langle x_1,\ldots,x_r\rangle$$

with $x_1, \ldots, x_r \in A$.

- \triangleright The same symbol of A can occur many times
- By the rule of product, there are n^r r-permutations with repetition

Permutations with repetition

Ranking and unranking algorithms in lexicographic order

The *r*-permutations with repetition can be ordered lexicographically:

 $ho \langle x_1, \dots, x_r \rangle < \langle y_1, \dots, y_r \rangle$ if there exists $k \in \{1, \dots, n\}$ such that $x_k < y_k$ and $x_i = y_i$ for all $1 \le i < k$.

Example $(A = \{a_1, a_2\} \text{ with } a_1 < a_2, \text{ and } r = 3)$

r-permutation with repetition of A	lexicographic rank
$\langle a_1,a_1,a_1 angle$	0
$\langle a_1,a_1,a_2 angle$	1
$\langle a_1,a_2,a_1 angle$	2
$\langle {\sf a}_1, {\sf a}_2, {\sf a}_2 angle$	3
$\langle { extbf{\textit{a}}}_2, { extbf{\textit{a}}}_1, { extbf{\textit{a}}}_1 angle$	4
$\langle a_2, a_1, a_2 angle$	5
$\langle {\sf a}_2, {\sf a}_2, {\sf a}_1 angle$	6
$\langle a_2, a_2, a_2 angle$	7

Ranking and unranking of r-permutations with repetition

Let
$$A = \{a_1, a_2, \dots, a_n\}$$
 with $a_1 < a_2 < \dots < a_n$.

• If we define $index(a_i) := i - 1$ for $1 \le i \le n$, and replace a_i with $index(a_i)$ in the lexicographic enumeration of the r-permutations, we get

<i>r</i> -permutation	encoding as number	lexicogaphic rank
with repetition	in base <i>n</i>	
$\langle a_1,\ldots,a_1,a_1,a_1\rangle$	$\langle 0,\dots,0,0,0 \rangle$	0
<u>:</u>	:	:
$\langle a_1,\ldots,a_1,a_1,a_n\rangle$	$\langle 0,\ldots,0,0,n-1\rangle$	n-1
$\langle a_1,\ldots,a_1,a_2,a_1\rangle$	$\langle 0,\dots,0,1,0 angle$	n
<u>:</u>	:	:
$\langle a_1,\ldots,a_1,a_2,a_n\rangle$	$\langle 0,\ldots,0,1,n-1\rangle$	2 n – 1
:	:	:

REMARK: The r-permutation with repetition of the indexes is the representation in base n of its lexicographic rank.

Ranking and unranking of *r*-permutations with repetition Exercises

- **①** Define an algorithm which computes the rank of the *r*-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ of $A = \{1, \ldots, n\}$ with respect to the lexicographic order.
- ② Define an algorithm which computes r-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ with rank k of $A = \{1, \ldots, n\}$ with respect to the lexicographic order.
- **3** Define an algorithm which computes the *r*-permutation with repetition immediately after the *r*-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ of *A*, in lexicographic order.

Combinations

The binary representation of subsets

An *r*-combination of a set $A = \{a_1, a_2, \dots, a_n\}$ is a subset with *r* elements of A.

There is a bijective correspondence between the set of *n*-bit strings and the set of subsets of *A*:

$$B \subseteq A \mapsto b_{n-1}b_{n-2}\dots b_0$$
 where $b_i = \left\{ egin{array}{ll} 1 & ext{if } a_{n-i} \in B \\ 0 & ext{otherwise.} \end{array} \right.$
 $n ext{-bit string } b_0b_1\dots b_{n-1} \mapsto ext{subset } \left\{ a_{n-i} \mid b_i = 1 \right\} \text{ of } A$

Example $(A = \{a, b, c, d, e\})$ with a > b > c > d > e.)

subset	<i>n</i> -bit string encoding	canonic rank	
	edcba		
Ø	00000	0	
{a}	00001	1	
{ <i>b</i> }	00010	2	
$\{a,b\}$	00011	3	
:	:	:	

The *n*-bit string encoding of a subset

The subset of an *n*-bit string encoding

```
Combination(b[0..n-1]: bit string,

A: ordered set \{a_1, \ldots, a_n\})

B:=\emptyset

for i:=0 to n-1 do

if b[i]=1 then

add a_{n-i} to B

return B
```

The ordering of combinations via bit string encodings

There is a bijective correspondence between the *n*-bit string encodings and the numbers from 0 to $2^n - 1$:

- ho *n*-bit-string $b[0 \dots n-1] \mapsto \operatorname{number} \sum_{i=0}^{n-1} b[i] \cdot 2^i \in \{0,1,\dots,2^n-1\}$
- ightarrow number $0 \le r < 2^n \mapsto \textit{n}\text{-bit-string } \textit{b}[0\mathinner{\ldotp\ldotp\ldotp} n-1]$ where
 - $b[i] := \left\lfloor \frac{c_i}{2^i} \right\rfloor$ where c_i is the remainder of dividing r with 2^{i+1} .

Definition

The canonic rank of a a subset B of an ordered set A with n elements is

$$\mathsf{CanonicRank}(B,A) := \sum_{i=0}^{n-1} b[i] \cdot 2^i$$

where b[0..n-1] is the *n*-bit-string encoding of B as subset of A.

The ordering of combinations via bit string encodings (2)

REMARK. This way of enumerating the subsets of a set is called canonic ordering, and the n-bit string $b_{n-1} \ldots, b_1 b_0$ is called canonic (or binary) code.

The ordering of combinations via bit string encodings (3)

Given an ordered set $A = \{a_0, a_1, \dots, a_{n-1}\}$, and $0 \le r < 2^n$ Find the subset B of A with rank r

Enumerating subsets in minimum change orde Grey codes

- Frank Grey discovered in 1953 a method to enumerate subsets in an order so that adjacent subsets differ by the insertion or deletion of only one element.
- His enumeration scheme is called standard reflected Grey code.

Example

With Grey's method, the subsets of $\{a, b, c\}$ are enumerated in the following order:

$$\{\}, \{c\}, \{b, c\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{a\}\}$$

The 3-bit-string encodings of these subsets are

000, 100, 110, 010, 011, 111, 101, 001

The standard reflected Grey code Description

We want to enumerate the subsets of $A = \{a_1, \ldots, a_n\}$ in minimum change order G_n . (G_n is the list of those subsets)

The standard reflected Grey code Description

We want to enumerate the subsets of $A = \{a_1, \dots, a_n\}$ in minimum change order G_n . (G_n is the list of those subsets)

We proceed recursively:

- **①** Compute the list G_{n-1} of subsets of $B = \{a_2, \ldots, a_n\}$ in the minimum change order of Gray.
- 2 Let G'_{n-1} be the list of subsets obtained by adding a_1 to every element of a reversed copy fo G_{n-1} .
- **3** G_n is the concatenation of G_{n-1} with G'_{n-1} .

Properties of Grey's codes reflected

Assume that B is a subset of the ordered set A with n elements. If

- m is the rank of B in the order of the Grey's enumeration and $m = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- The codification as a n bit string of B is $c_0c_1 \dots c_{n-1}$ then
 - $c_i = (b_i + b_{i+1}) \mod 2$ for all $0 \le i < n$, where $b_n = 0$.
 - On the other hand, one can prove that

$$b_i = (c_i + c_{i+1} + \ldots + c_{n-1}) \mod 2$$
 for all $0 \le i < n$.

Grey's codes

Example $(A = \{a, b, c\} \text{ cu } a < b < c)$

subset	Grey rank	$b_0 b_1 b_2$	bit string	rank
В	m	such that	of B	of B
		$m = \sum_{i=0}^{2} b_{2-i} 2^{i}$	<i>c</i> ₀ <i>c</i> ₁ <i>c</i> ₂	
{}	0	000	000	0
{ <i>c</i> }	1	100	100	4
{ <i>b</i> , <i>c</i> }	2	010	110	6
{ <i>b</i> }	3	110	010	2
$\{a,b\}$	4	001	011	3
$\{a,b,c\}$	5	101	111	7
$ \begin{cases} a, b, c \\ a, c \end{cases} $	6	011	101	5
{a}	7	111	001	1

Notice that $c_i = (b_i + b_{i+1}) \mod 2$ for all $0 \le i < 3$, where $b_3 = 0$.

Exercises

- Use the ecuations in the previous slide to implement the ordering method RankGrey(B,A) and the enumeration method UnrankGrey(A,r) for enumerationg the subsets based on Grey's codes.
- Define the method NextGreyRankSubset(A,B) which computes the subset of A which is the immediately next one after the subset B in the enumeration of subsets based on Grey's codes.

k-combinations Generate the *k*-combinations

Given an ordered set A with n elements and $0 \le k \le n$. Generate all the k-combinations of A. Given an ordered set A with n elements and $0 \le k \le n$. Generate all the k-combinations of A.

Method 1 (naive and inefficient): generate and test

- Generate all the 2^n subsets of A
- Eliminate the generated subsets which do not have k elements.

Given an ordered set A with n elements and $0 \le k \le n$. Generate all the k-combinations of A.

Method 1 (naive and inefficient): generate and test

- Generate all the 2^n subsets of A
- Eliminate the generated subsets which do not have k elements.

Method 2 (simple recursion): If $A = \{a\} \cup B$ where $a \notin B$ is the smallest element of A then

- Generate the list L_1 of all (k-1)-combinations of B, and let L_2 be the list of all k-combinations of B.
- 2 Let L_3 be the list obtained by adding a to all the elements of L_1 .
- **3** Return the result of the concatenation of L_2 with L_3 .

The Lexicographic Ordering of *k*-combinations Request. Preliminary remarks (1)

Assume
$$A = \{1, 2, ..., n\}$$
 and $X = \{x_1, x_2, ..., x_k\} \subseteq A$ such that $x_1 < x_2 < ... < x_k$.

Q: Which is the rank of X in the lexicographic enumeration of the k-combinations of A?

The k-combinations which occur before X in lexicographic order are of 2 kinds:

- 1 The ones which contain an element smaller than x_1 .
- ② The ones which contain the minimum element x_1 , but the rest of the elements is a (k-1)-combination smaller than $\{x_2, x_3, \ldots, x_k\}$.

The Lexicographic Ordering of k-combinations

Request. Preliminary remarks (1)

Assume
$$A = \{1, 2, ..., n\}$$
 and $X = \{x_1, x_2, ..., x_k\} \subseteq A$ such that $x_1 < x_2 < ... < x_k$.

Q: Which is the rank of X in the lexicographic enumeration of the k-combinations of A?

The k-combinations which occur before X in lexicographic order are of 2 kinds:

- **1** The ones which contain an element smaller than x_1 .
- ② The ones which contain the minimum element x_1 , but the rest of the elements is a (k-1)-combination smaller than $\{x_2, x_3, \ldots, x_k\}$.
- \Rightarrow the rank of X in the lexicographic enumeration of the k-combinations of A is $N_1 + N_2$ where
 - \triangleright N_1 is the number of k-combinations of the first kind
 - \triangleright N_2 is the number of the k-combinations of the second kind

HYPOTHESIS: $A = \{1, 2, ..., n\}$. How can we compute N_1 ?

Hypothesis: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

 The number of k-combinations of A which contain i as the smallest element is

Hypothesis: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

• The number of *k*-combinations of *A* which contain *i* as the smallest element is $\binom{n-i}{k-1}$

Hypothesis: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

• The number of *k*-combinations of *A* which contain *i* as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule)

HYPOTHESIS: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1)

Hypothesis: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \left(\binom{n-i+1}{k} - \binom{n-i}{k} \right) = \binom{n}{k} - \binom{n-x_1+1}{k}$

How can we compute N_2 ?

HYPOTHESIS: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \left(\binom{n-i+1}{k} - \binom{n-i}{k} \right) = \binom{n}{k} - \binom{n-x_1+1}{k}$

How can we compute N_2 ?

• N_2 is the rank of $\{x_2, \ldots, x_k\}$ in the lexicographic enumeration of the (k-1)-combinations of $\{x_1+1, x_1+2, \ldots, n-1, n\}$

HYPOTHESIS: $A = \{1, 2, ..., n\}$.

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i+1}{k} - \binom{n-i}{k} = \binom{n}{k} - \binom{n-x_1+1}{k}$

How can we compute N_2 ?

- N_2 is the rank of $\{x_2, \ldots, x_k\}$ in the lexicographic enumeration of the (k-1)-combinations of $\{x_1+1, x_1+2, \ldots, n-1, n\}$
- $\bullet \Rightarrow N_2$ can be computed recursively.

The lexicographic ordering of the k-combinations

From the previous remarks results the following recursive implementation for computing the rank:

• RankKSubset($\{x_1, \ldots, x_k\}, \{\ell, \ldots, n\}$) computes the rank in lexicographic order of the k-combination $\{x_1, \ldots, x_k\}$ of the ordered set $\{\ell, \ell+1, \ldots, n-1, n\}$. Assume that $x_1 < x_2 < \ldots < x_k$.

```
\begin{aligned} & \operatorname{RankKSubset}(\{x_1, \dots, x_k\}, \ \{\ell, \ell+1, \dots, n\}) \\ & \text{if } (n = k \text{ or } k = 0) \\ & \text{return 0,} \\ & p := x_1 - \ell + 1 \\ & \text{if } (k = 1) \\ & \text{return } p - 1 \\ & \text{else} \\ & \text{return } \binom{n}{k} - \binom{n-p+1}{k} + \operatorname{RankKSubset}(\{x_2, \dots, x_k\}, \{x_1 + 1, \dots, n\}) \end{aligned}
```

Hypothesis:

• $A = \{1, 2, ..., n\}$ and $X = \{x_1, x_2, ..., x_k\}$ with $x_1 < x_2 < ... < x_k$ is the subset of A with rank m in the lexicographic enumeration of all k-combinations of A. [Keep in mind that $0 \le m < \binom{n}{k}$.]

 $\hat{\mathbf{Q}}$: Which are the values x_1, x_2, \dots, x_k ?

① The total number of k-combinations of A which contain the element $< x_1$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1, \ldots, x_1 - 1\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.

1 The total number of k-combinations of A which contain the element $\langle x_1 \rangle$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1,\ldots,x_1-1\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.

② The total number of k-combinations of A which contain an element $\leq x_1$ is

$$\sum_{i=1}^{n} {n-i \choose k-1} = {n \choose k} - {n-x_1 \choose k} > m.$$
 (2)

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1,\ldots,x_1\}$. This number is > m because there are m+1 integers i between 0 and the rank of X (which is m), and all the k-combinations with such a rank i contain one element $\leq x_1$.

① The total number of k-combinations of A which contain the element $< x_1$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1, \ldots, x_1 - 1\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.

② The total number of k-combinations of A which contain an element $\leq x_1$ is

$$\sum_{i=1}^{x_1} {n-i \choose k-1} = {n \choose k} - {n-x_1 \choose k} > m.$$
 (2)

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1,\ldots,x_1\}$. This number is > m because there are m+1 integers i between 0 and the rank of X (which is m), and all the k-combinations with such a rank i contain one element $\leq x_1$.

 \Rightarrow one can use (1) and (2) to find x_1 : $\binom{n}{k} - \binom{n-x_1+1}{k} \leq m < \binom{n}{k} - \binom{n-x_1}{k}$

1 The total number of k-combinations of A which contain the element $\langle x_1 \rangle$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1,\ldots,x_1-1\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.

② The total number of k-combinations of A which contain an element $\leq x_1$ is

$$\sum_{i=1}^{x_1} {n-i \choose k-1} = {n \choose k} - {n-x_1 \choose k} > m.$$
 (2)

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1,\ldots,x_1\}$. This number is > m because there are m+1 integers i between 0 and the rank of X (which is m), and all the k-combinations with such a rank i contain one element $\leq x_1$.

 \Rightarrow one can use (1) and (2) to find x_1 : $\binom{n}{k} - \binom{n-x_1+1}{k} \le m < \binom{n}{k} - \binom{n-x_1}{k}$

The other elements x_2, \ldots, x_k can be computed recursively.

The lexicographic enumeration of k-combinations

```
UnrankKSubset (m, k, \{a_1, \ldots, a_n\}) produces the k-combination \{x_1, \ldots, x_k\} with rank m of \{a_1, \ldots, a_n\} in lexicographic order. Assume that x_1 < \ldots < x_k and a_1 < \ldots < a_n.
```

```
\begin{array}{l} \text{UnrankKSubset}(m, k, \{a_1, \dots, a_n\}) \\ \text{if } (k = 1) \\ \text{return } a_{k+1} \\ \text{else if } (m = 0) \\ \text{return } \{a_1, \dots, a_m\} \\ \text{else} \\ u := \binom{n}{k} \\ i := 1 \\ \text{while } \binom{i}{k} < u - m \\ i + + \\ \times 1 := n - (i - 1) \\ \text{return } \{a_{n-i+1}\} \cup \text{UnrankKSubset}(m - u + \binom{n - \times 1 + 1}{k}), k - 1, \{a_{n-i+2}, \dots, a_n\}) \end{array}
```

References

 S. Pemmaraju, S. Skiena. Combinatorics and Graph Theory with Mathematica. Section 2.3: Combinations. Cambridge University Press. 2003.