WYPEŁNIA ZDAJACY **WYBRANE**: (system operacyjny) (program użytkowy) Miejsce na identyfikację szkoły (środowisko programistyczne) ARKUSZ PRÓBNEJ MATURY **MARZEC 2022 Z OPERONEM** INFORMATYKA, CZ. I POZIOM ROZSZERZONY Czas pracy: 60 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 11 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu. 3. Pisz czytelnie. Używaj tylko długopisu/pióra z czarnym tuszem/atramentem. 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 5. Pamietaj, że zapisy w brudnopisie nie będą oceniane. 6. Wpisz zadeklarowany przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne. 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin. 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. Za rozwiązanie Życzymy powodzenia! wszystkich zadań można otrzymać łącznie 15 punktów. Wpisuje zdający przed rozpoczęciem pracy

ZDAJĄCEGO

PESEL ZDAJACEGO

Zadanie 1. Szyfr tablicowy (0-6)

Szyfr tablicowy polega na uzupełnianiu znakami (literami, cyframi, spacjami, znakami przestankowymi, itd.) tekstu jawnego wierszy kwadratowej tabeli, o rozmiarze $N \times N$, a następnie spisywaniu liter kolumnami. Jeśli liter jest więcej niż pól w tabeli, to po spisaniu tekstu zaszyfrowanego, ponownie wypełnia się tabelę tekstem jawnym. Jeżeli jednak liter jest zbyt mało, to pola, których nie da się wypełnić, uzupełnia się losowymi literami.

Przykład:

Tekst jawny: LITWO OJCZYZNO MOJA TY JESTES JAK ZDROWIE – MICKIEWICZ Rozmiar tablicy N=6

Krok 2.

Krok 1.

L	I	Т	W	О	
О	J	С	Z	Y	Z
N	О		M	О	J
A		Т	Y		J
Е	S	Т	Е	S	
J	A	K		Z	D

R	О	W	I	Е	
_		M	I	С	K
I	Е	W	I	С	Z
Т	V	D	Е	S	X
V	R	J	L	О	R
W		R	Н	J	D

Tekst zaszyfrowany:

LONAEJIJO SATC TTKWZMYE OYO SZ ZJJ DR-ITVWO

EVRWMWDJRIIIELHECCSOJ KZXRD

Deszyfrowanie jest procesem odwrotnym. Wypełnia się tabelę kolumnami, a odczytuje wierszami.

Zadanie 1.1. (0-1)

Dla N=4 i tekstu "Czytanie książek to najpiękniejsza zabawa, jaką sobie ludzkość wymyśliła." przeprowadź proces szyfrowania szyfrem tablicowym. Tekst zaszyfrowany zapisz wielkimi literami. Dla zgodności ze wzorem odpowiedzi brakujące znaki uzupełnij znakiem X.

ODPOWIEDŹ

Tekst zaszyfrowany:

Miejsce na obliczenia:

Zadanie 1.2. (0-5)

Napisz algorytm (np. w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który dla podanej wartość N oraz tekstu jawnego wykona szyfrowanie tekstu algorytmem tablicowym.

Specyfikacja:

Dane:

N – liczba naturalna

TekstJ – tekst jawny, pojedyncza linia tekstu przeznaczona do zaszyfrowania

Wynik:

TekstZ – tekst zaszyfrowany

Miejsce na algorytm:

Informatyka. Poziom rozszerzony Próbna Matura z OPERONEM

	Nr zadania	1.1.	1.2.
Wypełnia egzaminator	Maks. liczba pkt	1	5
	Uzyskana liczba pkt		

Zadanie 2. (0-6)

Poniżej podano funkcję rekurencyjną, która wyznacza n-ty element pewnego ciągu.

```
funkcja wynik (n)
jeżeli n=1
    zwróć 2
jeżeli n=2
    zwróć -1
jeżeli n=3
    zwróć 1
jeżeli n>3
    zwróć wynik(n-1) + wynik(n-2)+wynik(n-3)
```

Zadanie 2.1. (0-1)

Dla podanego algorytmu uzupełnij poniższą tabelę.

n	wynik(n)
2	-1
3	1
4	
5	
6	
7	
8	
9	
10	

Miejsce na obliczenia:

Zadanie 2.2. (0–2)

Liczbę wywołań powyższej funkcji rekurencyjnej dla dowolnego n naturalnego oznaczmy jako W(n). Wyznacz liczbę wywołań dla kolejnych wartości n. Uzupełnij poniższą tabelę.

n	W(n)
1	1
2	1
3	1
4	4
5	
6	
7	
8	
9	
10	

W(n) można opisać rekurencyjnym wyrażeniem. Podaj ogólny wzór, który da poprawną liczbę wywołań dla dowolnego n.

W(n) =

Miejsce na obliczenia:

Zadanie 2.3. (0-3)

Każdą rekurencję można zapisać za pomocą iteracji. Zapisz podaną funkcję rekurencyjną w postaci iteracyjnej. Sformułuj specyfikację.

Miejsce na algorytm:

Wypełnia egzaminator	Nr zadania	2.1.	2.2.	2.3.
	Maks. liczba pkt	1	2	3
	Uzyskana liczba pkt			

Zadanie 3. (0-3)

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Wynik działania liczb, zapisanych odpowiednio w systemie ósemkowym i szesnastkowym, $6275_8 + AF3_{16}$ wynosi:

$0001\ 0111\ 1011\ 0000_2$	P	F
23550 ₈	P	F
$27\mathrm{B0}_{16}$	P	F
1132300_4	P	F

Miejsce na obliczenia:

Zadanie 3.2. (0–1)

Dla komputera o adresie sieciowym IPv4 192.168.2.5/24:

maska podsieci będzie miała postać 255.255.0.0.	P	F
będzie widoczny komputer o adresie 192.168.2.18/24.	P	F
będzie widoczny komputer o adresie 192.168.2.256/24.	P	F
maska podsieci będzie miała 24 jedynki w zapisie binarnym.	P	F

Zadanie 3.3. (0–1)

Dla tabeli bazy danych o nazwie Tabela:

	Tabela					
Identyfikator	imie	nazwisko	wiek	wyksztalcenie	staz_pracy	
1	Adam	Zawisza	26	wyższe	3	
2	Tomasz	Kowalski	54	średnie	25	
3	Zenon	Krawczyk	39	wyższe	12	
4	Piotr	Zenk	42	wyższe	15	
5	Michał	Zieliński	39	średnie	10	
6	Konrad	Kiszka	41	średnie	11	
7	Paweł	Kraska	62	średnie	35	
8	Tomasz	Wolny	43	średnie	22	

polecenie SQL SELECT Identyfikator, imie, nazwisko, staz_pracy FROM Tabela WHERE (staz_pracy>15) wyświetli dokładnie cztery wyniki.	Р	F
polecenie SQL SELECT Identyfikator, imie, nazwisko, staz_pracy FROM Tabela WHERE (staz_pracy>15) wyświetli dokładnie trzy wyniki.	P	F
polecenie SQL SELECT Avg(staz_pracy) AS SR FROM Tabela wyświetli wartość 16,625.	P	F
polecenie SQL SELECT Avg(staz_pracy) AS SR FROM Tabela wyświetli wartość 133.	P	F

Wypełnia egzaminator	Nr zadania	3.1.	3.2.	3.3.
	Maks. liczba pkt	1	1	1
	Uzyskana liczba pkt			

BRUDNOPIS (nie podlega ocenie)