

Security in CI/CD pipelines with F5

Shain Singh, Principal Security Architect @ F5, ss@f5.com

Leon Seng, Modern Apps Practice Lead @ F5, leon@f5.com

Hi! Nice to meet you

Shain Singh
Principal Security Architect
ss@f5.com

- https://github.com/shsingh
- https://www.linkedin.com/in/shsingh/

Leon Seng
ANZ Modern Apps Lead
leon@f5.com

- https://github.com/leonseng
- https://www.linkedin.com/in/leonseng/

DevSecOps has not been successful in most enterprise organisations

This sentiment is seen throughout industry

https://sched.co/1BSRd

70% Of developers admit to skipping security due to delivery timeframes

81% Of devs admit to pushing code with known vulnerabilities

96% Of cloud breaches are self-inflicted

Source: Osterman Research

Why have we not made much progress?

EMPHASIS HAS BEEN ON EFFICACY FOR INDIVIDUAL APPLICATIONS OVER FULL COVERAGE OF ALL DEPLOYMENTS

Identification of the degree of the implementation

DevSecOps Maturity Model (DSOMM) Level 1

Basic understanding of security practices

Recommendations:

- Never fail a build pipeline security scans will have false positives
- Investigate static and dynamic tools for the DevOps pipeline
- Build expertise with tools and analyse results
- Collaborate with development teams to resolve issues

DevSecOps Maturity Model (DSOMM) Level 2

Adoption of basic security practices

Recommendations:

- Investigate tweaking tools from their default settings for tuning
- Storing results from tools in a consolidated environment
- Starting a security champion program

DevSecOps Maturity Model (DSOMM) Level 3

High adoption of security practices

DevSecOps Maturity Model (DSOMM) Level 4

Advanced deployment of security practices at scale

Compliance can be continuous and automated

Cloud Controls Matrix Security Guidance For Critical Areas of Focus in Cloud Computing

Benefits, Risks and Recommendations For Information Security

Cybersecurity Framework

CIS Benchmarks

Secure Cloud Computing Architecture

Separating tasks into domains of ownership

7 ©2023 F5

I thought F5 made load balancers – what do they have to do with DevSecOps?

App Services in a Modern Architecture

■ Ingress (with API Gateway)

- Layer 7 routing for traffic entry point coming into Kubernetes
- Built for HTTP traffic. TCP/UDP for non-HTTP traffic
- May include API Gateway implementation

Pods

Runs app in a container / CNF

Service Mesh

- Open Source Service Mesh implementation (Istio)
- Injects Sidecar to every pod
- Enforces routing, security with mTLS, etc.
- Provides traceability of pod communication

Cloud Microservices PaaS

- On-prem private cloud (e.g: VMware)
- Public cloud (e.g: AWS, Azure, GCP)

App Services in macro-services (global) environment

App Services in micro-service environment

Capabilities:

- DoS protection for:
 - HTTP
 - gRPC
 - Websocket
- Web application and API security
- **Bot Mitigation**
- OpenAPI Spec (Swagger) enforcement
- Attack Signature/Schema Validation inside:
 - HTTP
 - XML
 - **JSON**
 - gRPC
 - Websockets
 - GraphQL
- TCP SYN flood protection via eBPF
- Comprehensive Ingress and AuthN/AuthZ capabilities

Deployment:

- **NGINX Ingress Controller**
 - (Kubernetes native manifest)

Should we put a WAF in front of all applications?

Security controls that are now mainstream

"Should I create ACLs for non-internet facing apps"

- Docker/Kubernetes service definitions
- Public cloud network ACLs (e.g. AWS security groups)

"Do I need encrypted data at rest and in transit for internal apps"

- Secrets management (e.g Hashicorp Vault)
- mTLS via service mesh
- LetsEncrypt Certbot for TLS certificates

Can we not implement web application protection if we make deployment simple?

- NGINX App Protect WAF and DoS configuration via Kubernetes manifests, deployed via Continuous Delivery tooling
- Functional testing of application post WAF deployment removes potential for false positives

Example – Post deployment WAF effectiveness

Example – Post deployment compliance


```
sec-package.gitlab-ci.yml 🔓 760 Bytes
                                                                                                          Web IDE
 1 services:
      - docker:dind
  4 sec-os_hardening:
      stage: sec-package
       image: ansible/galaxy
       before_script:
        - mkdir -p ~/.ssh
        - echo "$DEPLOYMENT_SERVER_SSH_PRIVKEY" | tr -d '\r' > ~/.ssh/id_rsa
        - chmod 600 ~/.ssh/id_rsa
        - eval "$(ssh-agent -s)"
         - ssh-add ~/.ssh/id rsa
        - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config
        - echo "[prod]" >> inventory.ini
        - echo "$DEPLOYMENT_SERVER" >> inventory.ini
        - export ANSIBLE_STDOUT_CALLBACK=json
        - ansible-galaxy install dev-sec.os-hardening
        - ansible-playbook -i inventory.ini ansible-hardening.yml > sec-os_hardening-results.json
         paths: [sec-os_hardening-results.json]
         when: always
         expire_in: one week
       allow_failure: true
```

```
sec-compliance.gitlab-ci.yml 🔓 694 Bytes
                                                                                                                                            倍 🗈 🕹
                                                                                                                    Lock Replace Delete
     services:
       docker:dind
     sec-compliance:
       stage: sec-compliance
         name: chef/inspec
       only:
       environment: production
       before_script:
         - echo "$DEPLOYMENT SERVER SSH PRIVKEY" | tr -d '\r' > ~/.ssh/id rsa
14
         - chmod 600 ~/.ssh/id_rsa
         - eval "$(ssh-agent -s)"
16
         ssh-add ~/.ssh/id_rsa
         - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config
18
19
         - inspec exec https://github.com/dev-sec/linux-baseline -t ssh://root@$DEPLOYMENT_SERVER -i /id_rsa --chef-license accept --reporter json:/opt/sec-
20
         paths: [sec-compliance-results.json]
         when: always
       allow_failure: true
```


Reference Implementation – hapi.f5labs.dev

Remember the "People" and "Process" portions of DevOps

Key Takeaways

Start small, then increment - DSOMM Level 1

Apply declarative WAF policies for use in pipelines

Intent is to have security across all apps, everywhere

A manual WAF policy in transparent mode may be less effective than an automated declarative policy in blocking mode

A force for a better digital world