## Homework 5

Due date: Dec. 7<sup>th</sup>, 2023

Turn in your hard-copy hand-writing homework in class

## Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. Assume the circuit has reached steady state at t < 0, find  $v_c(0^+)$ ,  $dv_c(0^+)/dt$ ,  $i_L(0^+)$ ,  $di_L(0^+)/dt$ .



2. When t<0, no energy is stored in the capacitor, the switch has been placed at node  $\boldsymbol{a}$  for a long time. The switch moves from node  $\boldsymbol{a}$  to node  $\boldsymbol{b}$  at  $\boldsymbol{t}=0$  immediately. Determine  $\boldsymbol{i}(\boldsymbol{t})$  for  $\boldsymbol{t}\geq 0$ .



3. Assume the circuit has reached steady state at t < 0, calculate the current of a 60hm resistor for t > 0.6.



4. For the following circuit, the switch has been placed at node a for a long time. At t=0 s, the switch is switched from a to b immediately. Please find the voltage on the capacitor  $v_c(t)$  for  $t \ge 0$ s.



5. Assume  $V_c(0^+) = 4V$ ,  $i_L(0^+) = 0A$ . find  $V_c(t)$  and  $i_L(t)$ .



6. For the following circuit, the switch closes at t = 0s immediately. Please find the voltage on the capacitors  $v_{CI}(t)$  and  $v_{C2}(t)$  for t > 0s, respectively. Note that the switch has been open for a long time before t = 0s.



7. Assume the circuit has reached steady state at t < 0, calculate the current of a 60hm resistor for t > 0 for t > 0.



8. The waveform of voltage source  $v_g$  as shown and the initial value of the capacitance are 0, find  $v_0(t)$  for  $t \ge 0$ .

