CHE261A Patent Application

Nature of Invention: Process design

Applicant: Catalysta Industries Pvt. Ltd

Inventors:

- Anmol Bansal
- Vishal Kumar
- Tanzeela Akhtar
- Manisha Balot
- Saurabh Yadav
- Mosham

Chemical Formula: C₈H₉NO₂ (HOC₆H₄NHCOCH₃)

Chemical Name: Acetaminophen

Process Title: Integrated Process for the Production and Purification of Paracetamol from Nitrobenzene.

Process Description:

Block Diagram:

Unit operations and process conditions:

unit operation	design gauge pressure (barg)	design temperature(C)
Reactor 1	4.71	121.11
Reactor 2	0	121.11
Flash drum	4.71	121.11

unit operation	design gauge pressure bottom(barg)	design temperature bottom(C)	operating bottom temperature(C)	bottom tray type
Distillation column 1	1.034	311.264	283.487	sieve
Distillation column 2	1.034	236.729	208.952	sieve
Distillation column 3	1.034	150	130	sieve

unit operatio n	design gauge pressure (barg)	vacuum design gauge pressure(barg)	operating temperature (C)	design temperature (C)
Decante r	1.03425	-1.00667	30	121.11

Material balance scaled-up process:

Specie data:

Species	Molar Weight	Average Density (kg/m3)	
Ammonia	17	701	
Hydrogen	2	0.08988	
Nitrobenzene	123.11	1109	
Aniline	93.13	998	
Water	18	947.99	
Para aminophenol	109.13	1250	
Acetic Anhydride	102.09	1080	
Acetic Acid	60.05	1050	
Ethanol	46.07	789	
Acetaminophen	151.163	1263	

Material balance:

Assumptions:

- 100% conversion of NH3 to H2 and N2 is separated out.
- In flash drum 100% hydrogen move to stripper.
- In Distillation column 1 100% para aminophenol gets separated in stream 13 and all other species move to stream 12.
- In Distillation column 2 100% nitrobenzene is separated in stream 14 and all other species move to stream 15.

	kmol	kg/d	kmol	kg/d	kg/m3	m3 /
	/day	ay	/day	ay		day

Str	Remarks	Relevant Species	Mola r Flow Rate	Mass Flow Rate	Mass Fractio n	1	1	Averag e Densit Y	Volume Flow Rate
1	90% conversion to pure H2	Ammonia	24.4 9	416. 28	1	24.4 9	416. 28	701	0.59384 40377
2		Hydrogen	33.0 6	66.1 2	1	33.0 6	66.1 2	0.0898	735.600 8077
3		Hydrogen	94.8 8	189. 77	1	94.8 8	189. 77	0.0898	2111.36 8564
4	PAP formed = 0.7 * 0.6 * every 2 Hydrogen required; Aniline formed = 0.3 * 0.6 * every 3 Hydrogen Required	Hydrogen	94.8 8	189. 77	1	94.8 8	189. 77	0.0898 8	2111.36 8564
5		Nitroben zene	11.3 9	1401 .75	1	11.3 9	1401 .75	1109	1.26397 9849
6	Conversion of NB = 60%	Nitroben zene	18.9 8	2336 .26	1	18.9 8	2336 .26	1109	2.10663 3082
7	NB used = PAP and Aniline formed	Paraamin ophenol	7.97	869. 80	0.3 44 30 52238	102. 48	2526 .25	1066.2 78673	2.36922 4558
	Selectivit y of PAP = 70%	Aniline	3.42	318. 12	0.12592 50913				
	Used H2 = 2*PAP + 3*Aniline	Hydrogen	68.7 0	137. 39	0.05438 620213				

	Unreacted = 40% of Fed	Nitroben zene	7.59	934. 50	0.36991 63174				
	Water = 2*Aniline + PAP	Water	14.8 0	266. 44	0.10546 71655				
8		Hydrogen	68.7 0	137. 39	1	68.7 0	137. 39	0.0898 8	1528.63 084
9		Paraamin ophenol	7.97	869. 80	0.36410 76564	33.7 8	2388 .86	1127.5 99647	2.11853 5851
		Aniline	3.42	318. 12	0.13316 75696				
		Nitroben zene	7.59	934. 50	0.39119 1751				
		Water	14.8 0	266. 44	0.11153 3023				
10		Hydrogen	61.8 3	123. 65	1	61.8 3	123. 65	0.0898	1375.76 7756
11		Hydrogen	6.87	13.7 4	1	6.87	13.7 4	0.0898	152.863 084
12		Aniline	3.42	318. 12	0.20941 84196	25.8 1	1519 .06	1057.5 14033	1.43644 2367
		Nitroben zene	7.59	934. 50	0.61518 55026				
		Water	14.8 0	266. 44	0.17539 60778				
13	PAP needed = Acetaminop hen formed	Paraamin ophenol	7.97	869. 80	1	7.97	869. 80	1250	0.69584 1854
14		Nitroben zene	7.59	934. 50	1	7.59	934. 50	1109	0.84265 32329
15		Aniline	3.42	318. 12	0.54420 61591	18.2 2	584. 56	975.20 575	0.59941 76366

		Water	14.8 0	266. 44	0.45579 38409				
16		Aniline	3.42	318. 12	1	3.42	318. 12	998	0.31875 62299
17		Water	14.8 0	266. 44	1	14.8 0	266. 44	947.99	0.28105 44503
18	PAP : Anhydride = 1 : 3	Acetic Anhydrid e	23.9	2441 .07	1	23.9	2441 .07	1080	2.26025 3281
19	Post Filter Yield : 83%	Acetamin ophen	7.97	1204 .82	0.36390 35805	31.8 8	3310 .82	1142.2 57498	2.89848 8365
		Acetic Anhydrid e	15.9 4	1627 .38	0.49153 45227				
		Acetic Acid	7.97	478. 62	0.14456 18968				
20		Acetic Anhydrid e	15.9 4	1627 .38	0.77273 5874	23.9	2106	1073.1 82076	1.96238 9084
		Acetic Acid	7.97	478. 62	0.22726 4126				
21		Acetamin ophen	7.97	120 4 .82	1	7.97	1204 .82	1263	0.95393 45029
22		Acetamin ophen	7.97	1204 .82	1	7.97	1204 .82	1263	0.95393 45029
23	Recrystall isation Filter causes drop by	Acetamin ophen	7.17	1084	1	7.17	1084	1263	0.85854 10526
24		Acetamin ophen	7.17	1084 .34	1	7.17	1084 .34	1263	0.85854 10526

25		Acetamin ophen	7.17	1084 .34	1	7.17	1084 .34	1263	0.85854 10526
26	Last Filter causes remaining drop	Acetamin ophen	7.17	1084	1	7.17	1084 .34	1263	0.85854 10526
27	Basis Given	Acetamin ophen	6.62	1000	1	6.62	1000	1263	0.79176 56374

Capital cost (only for the reactor):

Equipment	Design Capacity (L)	No. of units	Cost/unit (\$ for year 2014)	Total Cost (\$ for year 2014)
Reactor 1 (Jacketed reactor, agitated, Carbon steel, 25 - 150psi pressure)	118.46	1	10,000	10,000
Reactor 2 (Jacketed reactor, agitated, Carbon steel, atm-25 psi pressure)	207.034	1	8,100	8,100

References: Provide reference for a research paper or an actual patent.

- 1. <u>Matches' Reactor cost autoclave, fermenter, kettle, mixer settler.</u>
- 2. e-journal: Multistep Synthesis of Paracetamol in Continuous Flow

CHE261A Patent Application

- 3. Patent: FR3109581A1 Continuous paracetamol synthesis process Google Patents
- 4. link: Synthesis of paracetamol from p-aminophenol Labmonk
- 5. https://arxiv.org/ftp/arxiv/papers/2110/2110.15750.pdf

List the contributions of each author:

- Authors 1 and 2 contributed to the block diagram and calculations.
- Author 3 contributed to block diagram and deciding process conditions.
- Author 4 calculated the capital cost of the reactors.
- Author 5 helped find good resources and references.
- Author 6 proofread the document and helped in correcting some information.

Name	Roll No	Signature(by name)
Ujjwal Bisaria	221154	Ujjwal
Anmol Bansal	220162	Anmol
Vishal Kumar	221202	Vishal
Tanzeela Akhtar	221134	Tanzeela
Manisha Balot	220622	Manisha
Saurabh Yadav	220991	Saurabh
Mosham	220671	Mosham