

General Description

The VSM60N07 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

Features

- V_{DS} =75V; I_D =60A@ V_{GS} =10V; $R_{DS(ON)}$ <8.5m Ω @ V_{GS} =10V
- Special process technology for high ESD capability
- Special designed for Convertors and power controls
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

Package Marking and Ordering Information

· · · J · ·	J	<u> </u>				
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity	
VSM60N07-T2	VSM60N07	TO-252	-	-	-	

Table 1. Absolute Maximum Ratings (T_c=25℃)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage (V _{GS} =0V)	V _{DS}	75	V	
Gate-Source Voltage (V _{DS} =0V)	V _{GS}	±20	V	
Drain Current (DC) at Tc=25℃	I _{D (DC)}	60	А	
Drain Current (DC) at Tc=100℃	I _{D (DC)}	42	А	
Drain Current-Continuous@ Current-Pulsed (Note 1)	I _{DM (pluse)}	310	А	
Peak diode recovery voltage	dv/dt	30	V/ns	
Maximum Power Dissipation(Tc=25℃)	P _D	140	W	
Derating factor		0.95	W/℃	
Single pulse avalanche energy (Note 2)	E _{AS}	300	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$ C	

 ${f Notes}$ 1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.EAS condition: Tj=25°C,VDD=37.5V,VG=10V,L=0.5mH

Table 2. Thermal Characteristic

Parameter	Symbol	Value	Unit	
Thermal Resistance, Junction-to-Case (Maximum)	R _{thJC}	1.05	°C/W	
Thermal Resistance, Junction-to-Ambient (Maximum)	R _{thJA}	50	°C/W	

Table 3. Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
On/off states						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	75	84	-	V
Zero Gate Voltage Drain Current(Tc=25℃)	I _{DSS}	V _{DS} =75V,V _{GS} =0V	-	-	1	μΑ
Zero Gate Voltage Drain Current(Tc=125℃)	I _{DSS}	V _{DS} =75V,V _{GS} =0V	-	-	10	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250μA	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	6.8	8.5	mΩ
Dynamic Characteristics			•	•	•	
Forward Transconductance	g FS	V _{DS} =5V,I _D =30A		66	-	S
Input Capacitance	C _{lss}	V 051/1/ 01/		4400	-	PF
Output Capacitance	C _{oss}	V _{DS} =25V,V _{GS} =0V,		340	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		260	-	PF
Total Gate Charge	Qg	\/ 00\/ L 00A		100	-	nC
Gate-Source Charge	Q_{gs}	V _{DS} =30V,I _D =30A,		20	-	nC
Gate-Drain Charge	Q_{gd}	- V _{GS} =10V		30	-	nC
Switching times		1			•	
Turn-on Delay Time	t _{d(on)}		-	17.8	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_{D} =2A, R_{L} =15 Ω	-	11.8	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	56	-	nS
Turn-Off Fall Time	t _f		-	14.6	-	nS
Source- Drain Diode Characteristics		1			l	
Source-drain current(Body Diode)	I _{SD}		-	-	80	Α
Pulsed Source-drain current(Body Diode)	I _{SDM}		-	-	320	Α
Forward on voltage ^(Note 1)	V _{SD}	Tj=25°C,I _{SD} =30A,V _{GS} =0V	-	-	1.2	V
Reverse Recovery Time ^(Note 1)	t _{rr}	T: 05% 754 4:/44 4004/	-	-	36	nS
Reverse Recovery Charge ^(Note 1)	Q _{rr}	Tj=25℃,I _F =75A,di/dt=100A/µs	-	-	56	nC
Forward Turn-on Time	t _{on}	Intrinsic turn-on time is negligible(turn-on is dominated by L _S +			y L _S +L _D)	
		<u> </u>				

Notes

^{1.}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.5%, R_G=25 Ω , Starting Tj=25 $^{\circ}$ C

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

ID, Drain-to-Source Current (A)

Typical Electrical and Thermal Characteristics (curves)

Figure 1. Safe operating area

1000

OPERATION IN THIS AREA

LIMITED BY R DS(on)

100

TC = 25°C

Figure3. Output characteristics

10

V_{DS}, Drain-to-Source Voltage (V)

100

Tj = 175°C Single Pulse

Figure 5. Static drain-source on resistance

Figure 2. Source-Drain Diode Forward Voltage

Figure 4. Transfer characteristics

Figure 6. R_{DS(ON)} vs Junction Temperature

Figure 7. BV_{DSS} vs Junction Temperature

Figure 9. Gate charge waveforms

Figure 8. V_{GS(th)} vs Junction Temperature

Figure 10. Capacitance

Figure 11. Normalized Maximum Transient Thermal Impedance

