Задача.

Исследовать поле за экраном с длинной щелью в зоне дифракции Френеля.

Решение.

Выберем систему координат так, чтобы щель лежала в плоскости z=0 и имела размеры $-\frac{b}{2}\leqslant x\leqslant \frac{a}{2},\,-\infty< y<\infty.$ Экран находится в плоскости $z_p\geqslant (a+b)\left(\frac{a+b}{\lambda}\right)^{1/3}$.

Поле в точке $P(x_p,z_p)$ экрана выражается интегралом Кирхгофа, сводящимся заменой переменных $\xi=\sqrt{\frac{2}{\lambda z_p}}(x-x_p)$ к интегралам Френеля:

$$\hat{E}(z_p, x_p) \sim \int_{x=-b/2}^{x=a/2} \exp\left(ik\frac{(x-x_p)^2}{2z_p}\right) dx = C \left(\int_{\sqrt{\frac{2}{\lambda z_p}} \left(-\frac{b}{2} - x_p\right)}^{\xi=0} \exp\left(i\frac{\pi}{2}\xi^2\right) d\xi + \int_{\xi=0}^{\sqrt{\frac{2}{\lambda z_p}} \left(\frac{a}{2} - x_p\right)} \exp\left(i\frac{\pi}{2}\xi^2\right) d\xi\right) = C \left(\int_{\sqrt{\frac{2}{\lambda z_p}} \left(-\frac{b}{2} - x_p\right)}^{\xi=0} \exp\left(i\frac{\pi}{2}\xi^2\right) d\xi + \int_{\xi=0}^{\sqrt{\frac{2}{\lambda z_p}} \left(\frac{a}{2} - x_p\right)} \exp\left(i\frac{\pi}{2}\xi^2\right) d\xi\right) d\xi$$

$$= C \left(\int_{\xi=0}^{\sqrt{\frac{2}{\lambda z_p}} \left(x_p + \frac{b}{2}\right)} \exp\left(i\frac{\pi}{2}\xi^2\right) d\xi - \int_{\xi=0}^{\sqrt{\frac{2}{\lambda z_p}} \left(x_p - \frac{a}{2}\right)} \exp\left(i\frac{\pi}{2}\xi^2\right) d\xi \right) = C \left(\widehat{J}(u_1) - \widehat{J}(u_2)\right).$$

где
$$u_1 = \sqrt{\frac{2}{\lambda z_p}}(x_p + b/2), u_2 = \sqrt{\frac{2}{\lambda z_p}}(x_p - a/2).$$

Искомое поле в точке P пропорционально длине отрезка между концами векторов $\hat{J}(u_1)$ и $\hat{J}(u_2)$. Разберем несколько случаев.

1. Бесконечно широкая щель $(b = \infty, a = \infty)$:

$$\widehat{E}(z_p, x_p) = 2C\widehat{J}(\infty) = (1+i)C = E_0,$$

откуда $C = \frac{E_0}{1+i}$.

2. Полубесконечный экран $(b = 0, a = \infty)$:

$$\widehat{E}(z_p, x_p) = C\left(\widehat{J}\left(\sqrt{\frac{2}{\lambda z_p}}x_p\right) - \widehat{J}(-\infty)\right) =$$

$$= C\left(\widehat{J}\left(\sqrt{\frac{2}{\lambda z_p}}x_p\right) - \left(-\frac{1+i}{2}\right)\right).$$

При $x_p > 0$ конец вектора $\widehat{J}(u_1)$ лежит на правой спирали кривой Корню (см. рисунок). Увеличению x_p соответствует движение по виткам внутрь спирали. При этом амплитуда по-

ля (длина вектора, показанного черным цветом) проходит через затухающие и учащающиеся осцилляции и стремится к значению E_0 .

При $x_p < 0$ конец вектора $J(u_1)$ лежит на левой спирали кривой Корню (см. рисунок). Увеличению $|x_p|$ соответствует движение по виткам внутрь спирали. При этом амплитуда поля (длина вектора, показанного черным цветом) монотонно затухает и стремится к нулю.

3. Щель шириной a (b = a):

Значения и знаки $u_1=u_+=\sqrt{\frac{2}{\lambda z_p}}(x_p+a/2),\ u_2=u_-=\sqrt{\frac{2}{\lambda z_p}}(x_p-a/2)$ зависят от взаимного расположения x_p и краев щели.

При
$$x_p = 0$$

$$\hat{E}(z_p, 0) = 2C\hat{J}\left(\sqrt{\frac{a^2}{2\lambda z_p}}\right),$$

где параметр $\sqrt{\frac{a^2}{2\lambda z_p}}$ в зоне дифракции Френеля $(z_p\geqslant a\left(\frac{a}{\lambda}\right)^{1/3})$ может принимать значения в интервале $\left[0, \sqrt{\frac{1}{2}\left(\frac{a}{\lambda}\right)^{1/3}}\right]$. При больших значениях $\frac{a}{\lambda}$ поле может принимать значения от 0(что соответствует $z_p \to \infty$) до E_0 (соответствует $z_p = a\left(\frac{a}{\lambda}\right)^{1/3}$ при условии $\left(\frac{a}{\lambda}\right)^{1/3} \gg 1$).