

Nat 5 Nat 5 Nat 5 Nysics 2017 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade
Α	68+	31.7%
В	56+	21.5%
С	45+	20.0%
D	39+	9.4%
No award	< 39	17.5%

Section:	Multiple Cho	ice	Extended A	nswer	Assignment	
Average Mark:	11.9	/20	31.7	/60	13.5	/20

2017 Nat5 Physics Marking Scheme

Question	Anguar	%	Physics Covered								
Question	Answer	Correct	·								
1	Α	59	 The kinetic energy is at its greatest when velocity is at its greatest due to the equation E_k = ½mv². The mass of cyclist & cycle will be constant the greater the velocity the greater the kinetic energy 								
			Current in branch with lamp = $A_1 - A_2 = 5.0A - 2.0A = 3.0A$								
2	D	57	Q = ? I = 3.0A t = 30 s $Q = I t$								
			Q = 3.0 x 30 Q = 90 C								
3	Α	71	☑A Voltage is constant & current decreases ∴ resistance must <i>increase</i> if $R = \sqrt[V]{I}$ ☑B Voltage is constant & current decreases ∴ resistance must <i>increase</i> if $R = \sqrt[V]{I}$ ☑C Current <i>decreases</i> from 0.4A to 0.2A between 0.05 s to 0.45s ☑D Current <i>decreases</i> from 0.4A to 0.2A between 0.05 s to 0.45s ☑E Current <i>decreases</i> from 0.4A to 0.2A between 0.05 s to 0.45s								
4	E	60	☑ Current decreases from 0.4A to 0.2A between 0.03 s to 0.43s ☑ A The battery supplies energy to the circuit ☑ B The variable resistor increasing in resistance will decrease the voltage across R₁ ☑ C The motor changes electrical energy into kinetic energy ☑ D The transistor will only supply energy to the motor only when the transistor is switched on ☑ E The transistor will switch on the motor when the voltage is correct								
5	В	86	☑A The copper block should be insulated to give a more accurate value of specific heat capacity ☑B The thermometer is in the copper block and the block is insulated ☑C The copper block should be insulated to give a more accurate value of specific heat capacity ☑D The copper block should be insulated to give a more accurate value of specific heat capacity ☑E The reading on the thermometer will only be accurate if the thermometer is in the block when read								
6	D	64	$W = ?$ $m = 1200 \text{kg}$ $W = m \times g$ $W = 1200 \times 5.0$ $W = 6000 \text{N}$ $P = ?$ $P = \frac{F}{\Delta} = \frac{6000}{1.5} = 4000 \text{ Pa} = 4.0 \times 10^3 \text{ Pa}$								
7	В	63	Temperature Change in degrees Celsius = 60°C − (-15°C) = 75°C ∴ Temperature Change in Kelvin = 75K								
8	E	62	Statement I - Incorrect Transverse waves have the direction of vibration at right angles to the direction of wave travel Statement II - Correct All electromagnetic waves are transverse and water waves are transverse longitudinal								
9	С	65	AmplitudeWavelengthFrequencyAmplitude = $\frac{2.6m}{2}$ = 1.3m4 wavelengths = 12m 1 wavelength = 3m $f = \frac{N}{t} = \frac{4}{0.5s} = 8.0 \text{ Hz}$								
10	С	37	Total distance = 30km up to aeroplane and 30km back from aeroplane = $60km = 60,000m$ $t = \frac{d}{v} = \frac{60000 \text{ m}}{3.0x10^8 \text{ m s}^{-1}} = 0.0002 \text{ s} = 2x10^{-4} \text{ s}$								
11	В	71									

12									
ED The angle of incidence must be outside the glass so cannot be R EE Q is the angle of incidence but R is not the angle of refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle is measured from the not refraction as the angle of incidence but R is not the angle of refraction as the angle is measured from the not refraction is not all not refraction as the angle of refraction as the angle is measured from the not refraction is not acceleration due to gravity and the notation and the notation and refraction is the same at any point as the gravitational field strength is the same. Each acceleration is the same at any point as the gravitational field strength is the same. Each acceleration is the same at any point as the gravitational field strength is the same. Each acceleration is the same at any point as the gravitational field strength is the same. Each acceleration is the same at any point as the gravitational field strength is the same. Each acceleration is the same at any point as the gravitational field strength is the same. Each acceleration increases and average velocity is less when released from y. Each as Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars	e normal								
Total Equivalent Dose = Equivalent does for Alpha Radiation + Equivalent Dose for Gamma = D W _R + D W _R = (15 μGy x 20) + (20 μGy x 1) = 300 μSv + 20 μSv = 320 μSv Magnitude of force Bearing of Force									
13 B 56									
B 56 = (15 μGy x 20) + (20 μGy x 1) = 300 μSv + 20 μSv = 320 μSv Magnitude of force Bearing of Force	adiation								
$= 300 \mu \text{SV} + 20 \mu \text{SV}$ $= 320 \mu $									
14 C 31									
Magnitude of force Bearing of Force									
14 C 31									
14 C 31 $x = \sqrt{(40)^2 + (30)^2}$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 15 C 40 $x = \sqrt{1600 + 900}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ $x = \sqrt{1600 + 900}$ $x = \sqrt{1600}$ x									
14 C 31 $x = \sqrt{(40)^2 + (30)^2}$ $x = \sqrt{1600 + 900}$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 15 C 40 $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 26 $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 27 $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 28 A A ball falling freely would increase in velocity due to acceleration due to gravity $x = \sqrt{2500}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 29 A ball falling freely would increase in velocity due to acceleration due to gravity $x = \sqrt{2500}$ $x $									
14 C 31 $x = \sqrt{1600 + 900}$ $x = \sqrt{1600 + 900}$ $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 15 C 40 $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^\circ + 37^\circ = 21^\circ$ 16 E 46 $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $x = \sqrt{2500}$ Bearing = $x $									
$x = \sqrt{2500}$ $x = 50 \text{ N}$ Bearing = $180^{\circ} + 37^{\circ} = 21$ 30N EAA a ball falling freely would increase in velocity due to acceleration due to gravity EB A rocket accelerating upwards would have an increasing velocity not a decreasing velocity CA ball thrown into the air would decrease in velocity, come to a stop (zero) and reverse direction ED A ball falling to Earth would increase in velocity due to gravity EE Graph shows a reversal of direction when the lone goes below zero on x-axis EA acceleration is the same at any point as the gravitational field strength is the same. EB the average velocity from Y is less through light gates as trolley has not accelerated for as long as fine the same at any point as the gravitational field strength is the same. ED acceleration is the same at any point as the gravitational field strength is the same. ED acceleration increases and average velocity is less when released from Y. EAAS Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars) = 37°								
Bearing = 180° + 37° = 21 30N SA A ball falling freely would increase in velocity due to acceleration due to gravity SB A rocket accelerating upwards would have an increasing velocity not a decreasing velocity CA ball thrown into the air would decrease in velocity, come to a stop (zero) and reverse direction DA ball falling to Earth would increase in velocity due to gravity SE Graph shows a reversal of direction when the lone goes below zero on x-axis Acceleration is the same at any point as the gravitational field strength is the same. SB the average velocity from Y is less through light gates as trolley has not accelerated for as long as fine the same at any point as the gravitational field strength is the same. Dacceleration is the same at any point as the gravitational field strength is the same. Acceleration increases and average velocity is less when released from Y. As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars									
30N EA A ball falling freely would increase in velocity due to acceleration due to gravity BB A rocket accelerating upwards would have an increasing velocity not a decreasing velocity CA ball thrown into the air would decrease in velocity, come to a stop (zero) and reverse direction DA ball falling to Earth would increase in velocity due to gravity EG Graph shows a reversal of direction when the lone goes below zero on x-axis A acceleration is the same at any point as the gravitational field strength is the same. BB the average velocity from Y is less through light gates as trolley has not accelerated for as long as field acceleration is the same at any point as the gravitational field strength is the same. Cacceleration is the same at any point as the gravitational field strength is the same. As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars	,								
15 C 40 SA A ball falling freely would increase in velocity due to acceleration due to gravity ■B A rocket accelerating upwards would have an increasing velocity not a decreasing velocity □C A ball thrown into the air would decrease in velocity, come to a stop (zero) and reverse direction □D A ball falling to Earth would increase in velocity due to gravity □E Graph shows a reversal of direction when the lone goes below zero on x-axis □A acceleration is the same at any point as the gravitational field strength is the same. □B the average velocity from Y is less through light gates as trolley has not accelerated for as long as formula to the same at any point as the gravitational field strength is the same. □D acceleration is the same at any point as the gravitational field strength is the same. □D acceleration is the same at any point as the gravitational field strength is the same. □E Acceleration increases and average velocity is less when released from Y. □EA As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars									
The state of the same at any point as the gravitational field strength is the same. Example 240 ■ Be A rocket accelerating upwards would have an increasing velocity not a decreasing velocity of the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket accelerating upwards would have an increasing velocity not a decreasing velocity of the verse direction when the lone goes below zero on x-axis ■ A acceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A acceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A acceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A cceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A cceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A cceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A cceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration when the lone goes below zero on x-axis ■ A cceleration is the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration in the same at any point as the gravitational field strength is the same. Example 246 ■ Be A rocket acceleration in the same at any point as the gravitational field strength is the same.									
ED A ball falling to Earth would increase in velocity due to gravity EE Graph shows a reversal of direction when the lone goes below zero on x-axis EA acceleration is the same at any point as the gravitational field strength is the same. EB the average velocity from Y is less through light gates as trolley has not accelerated for as long as fi Cacceleration is the same at any point as the gravitational field strength is the same. ED acceleration is the same at any point as the gravitational field strength is the same. EA Acceleration increases and average velocity is less when released from Y. EA As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars									
E Graph shows a reversal of direction when the lone goes below zero on x-axis □ A acceleration is the same at any point as the gravitational field strength is the same. □ B the average velocity from Y is less through light gates as trolley has not accelerated for as long as form of the same at any point as the gravitational field strength is the same. □ D acceleration is the same at any point as the gravitational field strength is the same. □ E Acceleration increases and average velocity is less when released from Y. □ A As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars									
EA acceleration is the same at any point as the gravitational field strength is the same. Be the average velocity from Y is less through light gates as trolley has not accelerated for as long as fi									
E 46									
 ☑D acceleration is the same at any point as the gravitational field strength is the same. ☑E Acceleration increases and average velocity is less when released from Y. ☑A As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars 	om X								
 ☑E Acceleration increases and average velocity is less when released from Y. ☑A As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars 									
THE BAS INIARS HAS A LOWER GRAVITATIONAL TIEID STRENGTH THAN EARTH. WEIGHT OF POCKET WILL BE IESS ON MARS									
17 D 60 © C As Mars has a lower gravitational field strength than Earth, weight of rocket will be less on mars									
☑D Rocket has less weight on Mars and unbalanced force is greater on Mars.									
図E Rocket is identical in its thrust but the rocket has less weight ∴ unbalanced force will be greater									
Statement I - Incorrect Statement II - Correct Statement III - Ir									
18 B 60 The greater the altitude A satellite has constant vertical Satellites will have a									
the <i>longer</i> the orbital period velocity due to gravity being constant velocity to maintain									
In 1s heat transfer is 1130 J \therefore in 120s the heat transfer is 1130x120 = 135600									
E = 135600 J m = ? l = 22.6x10	J kg ⁻¹								
19 B 39 E = m x l									
$22.6x10^5 = m x 22.6x10^5$									
$m = 0.06kg = 6.0x10^{-2} kg$									
Star X Contains Hydrogen and Helium									
Star Y Contains Helium but not Hydrogen									
20 D 76 Star Z Contains Hydrogen and Helium									
Helium									
Hydrogen									
Helium									

Question	Answer	Physics Covered							
1a(i)		A fuse protects a circuit from too much current flowing and the fuse will blow when a specified current is exceeded.							
1a(ii)	One answer from:	stops too prevents protect wiring large a current wiring overheating (from damage)							
1a(iii)	3A Fuse	Power Rating Up to 720W Over 720W Fuse Selected 3A 13A							
1b	One answer from:	direction of electron (flow) charge (flow) (continually) changing back and forth to and fro							
2a(i)	7.50 V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
2a(ii)	2.25W	$P = ? \qquad V = 7.5 \text{ V} \qquad R = 25.0 \Omega$ $P = \frac{V^2}{R} = \frac{(7.5)^2}{25.0} = \frac{56.25}{25.0} = 2.25 \text{ W}$ $\text{(1 mark)} \qquad \text{(1 mark)} \qquad \text{(1 mark)}$							
2b(i)	10.5 Ω	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} $ (1 mark) $\frac{1}{R_{T}} = \frac{1}{15.0} + \frac{1}{35.0} $ (1 mark) $R_{T} = 10.5 \Omega $ (1 mark)							
2b(ii)	Answer to include:	1 mark (power dissipated is) greater increased higher 1 mark combined parallel total resistance less total 1 mark voltage across motor is greater increased or Current in motor is greater increased							
3a	2.5x10 ⁵ Pa	Temperature: Constant $p_1 = 1.0 \times 10^5 \text{Pa}$ $V_1 = 4.0 \times 10^{-4} \text{m}^3$ $V_2 = 1.6 \times 10^{-4} \text{m}^3$ (1 mark) $p_1 V_1 = p_2 V_2$ (1 mark) $1.0 \times 10^5 \times 4.0 \times 10^{-4} = p_2 \times 1.6 \times 10^{-4}$ $1.0 \times 10^5 \times 4.0 \times 10^{-4}$ $p_2 = p_2 \times 1.6 \times 10^{-4}$ $p_3 = p_4 \times 1.6 \times 10^{-4}$ $p_4 = p_5 \times 1.6 \times 10^{-4}$ $p_5 = p_6 \times 1.6 \times 10^{-4}$ $p_6 = p_6 \times 10^{-4}$ p_6							
3b	Answer to include:	1 mark (individual) particles collide with container walls more frequently (than before) 1 mark (overall) force (on walls) is greater 1 mark pressure increases							

		$\frac{1 \text{ mark}}{\text{axes labelled } \mathbf{p} \text{ and } \mathbf{V}_{\text{(axes can be transposed)}} \qquad \frac{1 \text{ mark}}{\text{graph of } \mathbf{p} \text{ against } ^1/_{\nu} \text{ (or } \mathbf{V} \text{ against } ^1/_{\mathfrak{p}})}$							
		1 mark 1 mark							
		correct shape (curved) labelled with straight line through the origin							
3с	One graph from:								
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
		$T = \frac{1}{f} $ (1 mark)							
4a(i)	0.40 Hz	$2.5 = \frac{1}{f} $ (1 mark)							
		f = 0.40 Hz (1 mark)							
42(::)	One answer from:	measure the time for count the number of waves repeat (the measurement)							
4a(ii)	Offe allswer from.	more waves to pass in a longer period of time and average							
		$v = ?$ $f = 0.4 \text{ Hz}$ $\lambda = 8.0 \text{m}$							
4b	3.2 m s ⁻¹	$v = f \times \lambda$ (1 mark)							
40		$v = 0.40 \times 8.0 \text{ (1 mark)}$							
		$v = 3.2 \text{ m s}^{-1}$ (1 mark)							
		1 mark diffraction of waves into 'shadow' regions behind walls							
4c		1 mark straight sections in middle and consistent wavelengths before and after gap							
4d	energy decreases/lost	The amplitude of a wave is proportional to the energy of the wave. As the wave loses energy the amplitude of the wave decreases.							
		1 mark 2 marks 3 marks							
5	Answer to include:	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.							
6a	background count	The background count rate must be subtracted from the activity count to exclude the							
	(rate)	contribution of background radiation from the activity.							
6b(i)	4·4 mm	Count rate halves from 200 to 100 counts per minute Take any halving of the corrected count rate on the y-axis. Work out the thickness of lead absorber (mm) Time Interval = 12-8 mm Take any halving of the corrected count rate on the y-axis.							
		= 4 mm							

	¹ / ₈ th of initial Corrected Count Rate = 3 half-thicknesses used							(1 mark)		
6b(ii)	ii) 13.2mm 1 half-thickness = 4.4 mm \therefore 3 half-thicknesses = $3 \times 4.4 = 13.2$ mm (1 mark)								mm (41)	
		Aluminium is used to prevent beta radiation passing through but will allow gamma								
6b(iii)	ii) Greater radiation through. Thicker aluminium will be needed to stop the same quantity									
		radiation that lead would stop. $\dot{H} = 3.5 \times 10^{-6} \text{ Sy h}^{-1} = 1.5 \times 10^{-20} Sy h$								
		$H = 2.5 \times 10^{-6} \text{ Sv h}^{-1}$ $H = 20 \text{mSv} = 20 \times 10^{-3} \text{ Sv}$ $t = 15 \text{min} = 15 \times 60 \text{s} = 900 \text{s}$								
		$\dot{H} = \frac{H}{t}$ (1 mark)								
6c	8000 h	·								
00	000011	$2.5x10^{-6} = \frac{20x10^{-3}}{t} $ (1 mark)								
		t (=)								
		t = 8000 h (1 mark)								
7-	80000 decays per unit time	80kBq = 80	000 Bq							
7a	or 80000 decays per second	A Becquere	el is a nu	clei dec	ау р	er second/u	nit time			
			1 mark	noutro	nc c	an go on to	∫ cause further	r fissio	n reactions	
7b(i)	Answer to include:					an go on to	split more ur			
_		<u>-</u>				nain reaction mark) = 9.6x	or this prod	cess re	epeats	
		P = ?	.UX1U)	3.2X10	1 (1	E = 9.6x			t = 1 min	ute = 60 s
7b(ii)	1.6x10 ⁹ W			P				Ω ⁹ W/		
			$P = \frac{E}{t} = \frac{9.6 \times 10^{10}}{60} = 1.6 \times 10^{9} \text{ W}$							
	Any suitable	treating smoke measur							measuring t	hickness
7c	use including:	treating tracers sterilisation smoke detectors						of paper		
8a	0 m	The distance travelled by 4 laps of track by motorbike = 4x380m = 1720m								
	0	However, displacement = 0m as the start and end positions are the same after four laps. Speed (m s ⁻¹) 25 25 20								four laps.
	46.5 m									
		15								
		10 3								
		5								
8b(i)		0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0								
		time (s)								
			Area ①			Δη	2 ea 2		Area 3	
		-		der gra	ph I		ea under graph	Dista		der graph
		=	½ x 1.0	x 3		= 3.	0 x 3		$=\frac{1}{2} \times 3.0 \times$	x 24
		=	1.5	T -		= 9.		16.5	= 36.0	
		Greatest A	ccolorat				st gradient (1.0s			
		a = ?	cceierat	v = 27			u = 3 m s ⁻²			3.0 s
8b(ii)	8 m s ⁻²		a	= -	ν	<u> </u>	3.0	= 8	m s ⁻²	
				(1 mark)		t	3.0 (1 mark)		1 mark)	
		d = 4x380n	າ = 1520				$\bar{v} = ?$		•	= 79s
	40 -1		d		=	$\bar{\mathfrak{v}}$	t t		(1 mark)	- -
8c	19 m s ⁻¹		152	0	=	$ar{\mathfrak{v}}$	x 79		(1 mark)	
			ΰ		=	19 m s ⁻¹			(1 mark)	
9a	Answer to include:	(The forces	are) en	ual (in s	size)	and opposite	e (in direction)			
	,		, 59		/		,			

		W = 1176 N			m = ?)			g = 9.8 N kg ⁻¹
	120 kg	,	W	=	m		g	(1 mark)	
9b		11	176	=	m	Х	9.8	(1 mark)	
			m	=	120 kg			(1 mark)	
		F = 1344 N - 1176 N = 16	8 N						
9c		F = 168 N	_		m = 1	.20	•	(4	a = ?
	1.4 m s ⁻²		F	=	m		а	(1 mark)	
		1	.68	=	120	Х	а	(1 mark)	
		<u></u>	а	=	1.4 m	s ⁻²		(1 mark)	
		1 mark		2	marks		Candidate has do	3 mark	
10	Answer to include:	Candidate has demonstrated a limited understanding of the physics involved. They	reas	onable u	as demonstrate nderstanding o	f the	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question pose		
10	Allswer to ilicidue.	make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics	statem	physics involved. They make some statement(s) that are relevant to the situation, showing that they have			This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to		
		within the problem.			od the problem			olem. The answer do ete' for the candidate	es not need to be 'excellent' or e to gain full marks.
		☑ Graph P					h Q	☑ Graph R	
11a	Q	Ball must start with ze							
	~	velocity just before the is hit by the racket	ball	tro	m zero v hit by t				ust before the ball by the racket
		1 mark equal (to)			THE DY I				achieve second mark)
11b	Answer to include:	1 mark vertical/downwa	ard a	accel	eration i			de attained to a	achieve second mark)
		E _w = 5.5 kJ = 5500 J				= ?			d = 25m
		Ew	, :	=	F		d (1 mark)	
11c	220 N	550	0 :	=	F x		25 (1 mark)	
		F	:	= 2	20 N		(1 mark)	
12a(i)	3.0x10 ⁸ m s ⁻¹	All electromagnetic wave	s tra	vel a	it 3.0x10	⁸ m	s ⁻¹		
		d = ν		Х			t		(1 mark)
12a(ii)	7.4x10 ¹⁶ m	2.408			7.0	2.		60 60	
12a(II)	7.4X10 111	$d = 3x10^8$		Х	7.8	X 3t	55.25 x 24	X 60 X 60	
		$d = 7.4x10^{16} \text{m}$	1						(1 mark)
12h/:	0.0000000000000000000000000000000000000	Photographic film		photodiode			de	charge coupled device/CCD	
12b(i)	One answer from:	LDR		r	etina (of	the	eye)	pho	ototransistor
12b(ii)	Equal (to)	All electromagnetic waves travel at 3.0x10 ⁸ m s ⁻¹ so radio waves and light waves will arrive at the same time.							

©JABstem 2024 National 5 Physics 2017 Nat5 Physics Marking Scheme