Machine Learning 101

Métricas

Índice

- 1. Métricas en clasificación
- 2. Problemas desbalanceados
- 3. Métricas en regresión

Teoría de la decisión

Regresión logística: P > 0.5 = Y

Métrica 1: tasa de error

Contar errores:

True: [1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0]

Pred: [1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1]

- Tasa de error (ERR): # errores / N
- Tasa de acierto (ACC): # aciertos / N
 - \blacksquare ACC = 1 ERR
- Da igual el sentido del error

Otras tasas de interés

 Si cuento el sentido de los errores, en un problema de clasificación binaria tengo cuatro posibilidades:

■ Matriz de confusión

Representamos estas tasas en modo de matriz de confusión

Métricas en clasificación

• Sobre la matriz de confusión se definen la siguientes métricas

		Etiquetas predichas	
		y_pred = 0	y_pred = 1
Etiquetas reales	y_true = 0	TN	FP
	y_true = 1	FN	TP

$$egin{aligned} ext{ACC} = rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$

$$\mathrm{SEN} = \mathrm{Recall} = \frac{TP}{TP + FN}$$

$$\mathrm{PPV} = \mathrm{Precisi\'on} = \frac{TP}{TP + FP}$$

$$ESP = \frac{TN}{TN + FP}$$

$$FSC = F1\text{-score} = \frac{2 \cdot PPV \cdot SEN}{PPV + SEN}$$

Compromiso entre métricas (I)

Hay un compromiso entre las métricas (no se puede tener todo)

	,		
		Etiquetas predichas	
		y_pred = 0	y_pred = 1
Etiquetas reales	y_true = 0	TN	FP
	y_true = 1	FN	TP

- Si umbral \Rightarrow , entonces TP \downarrow , TN \uparrow , FP \downarrow , FN \uparrow
 - SEN↓, ESP↑, PP↑

Compromiso entre métricas (II)

Hay un compromiso entre las métricas (no se puede tener todo)

	,		
		Etiquetas predichas	
		y_pred = 0	y_pred = 1
Etiquetas reales	y_true = 0	TN	FP
	y_true = 1	FN	TP

- Si umbral ←, entonces TP↑, TN↓, FP↑, FN↓
 - SEN↑, ESP↓, PP↓

Curva ROC

 Representa la SEN vs 1-ESP (Tasa de Falsos Positivos) cuando desplazo el umbral

Curva ROC: situación ideal

 Representa la SEN vs 1-ESP (Tasa de Falsos Positivos) cuando desplazo el umbral

Curva ROC: peor caso

 Representa la SEN vs 1-ESP (Tasa de Falsos Positivos) cuando desplazo el umbral

Curva ROC: utilidad

• Es un método interesante para comparar clasificadores

Clasificación multiclase

- Podemos calcular la matriz de confusión igualmente
 - Análisis de errores

Métricas en sklearn

Podéis consultar la documentación.

Índice

- Métricas en clasificación
- 2. Problemas desbalanceados
- 3. Métricas en regresión

Problemas desbalanceados

- ¿Qué pasa si la proporción de muestras y =1/0 es 90/10% y nuestro clasificador tiene una ACC = 0.9?
 - Decimos que estamos ante un problema desbalanceado cuando la proporción de una clase es mucho mayor que la proporción de la otra
 - Fraude: 0.1 %
 - Detección de anomalías
 - Fuga: 5-15%
- ¿Cómo entrenamos un clasificador en estas condiciones?
 - La ACC no nos sirve como métrica

Estrategias

- Utilizar métricas que ponderen la clases
 - \circ FSC
 - Balanced Error Rate = 1-0.5(SEN + ESP)
- Penalizar más los errores en la clase minoritaria: class weight
- Modificar el conjunto de entrenamiento para balancearlo
 - Sobremuestrear clase minoritaria
 - Crear muestras sintéticas de la clase minoritaria: <u>SMOTE</u>
 - Bajomuestrear clase mayoritaria

Índice

- 1. Métricas en clasificación
- 2. Problemas desbalanceados
- 3. Métricas en regresión

Regresión

Mean Squared Error

$$MSE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} (y_i - \hat{y}_i)^2.$$

Mean Absolute Value

$$MAE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} |y_i - \hat{y}_i|.$$

Root Mean Squared Error

$$RMSE(y, \hat{y}) = \sqrt{MSE(y, \hat{y})}$$

 \bullet R²

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}}-1} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=0}^{n_{\text{samples}}-1} (y_{i} - \bar{y})^{2}}$$

Referencias

- Introduction to Statistical Learning.
 - o Capítulo 4, Sección 4.4.3
- Hands On Machine Learning.
 - Capítulo 3
- Documentación scikit-learn

Let's code!

