

CLAIMS

1. A process of production of a high strength galvannealed steel sheet comprising continuously hot-dip galvanizing a high strength steel sheet having a content of Si of 0.4 to 2.0 wt% during which making the atmosphere of the reducing zone an atmosphere containing H₂ to 1 to 60 wt% and comprised of the balance of N₂, H₂O, O₂, CO₂, CO, and unavoidable impurities, controlling, in the atmosphere, the log(PCO₂/PH₂) of the carbon dioxide partial pressure and hydrogen partial pressure to 5
log(PCO₂/PH₂)≤-0.5, the log(PCO₂/PH₂) of the water partial pressure and hydrogen partial pressure to
log(PH₂O/PH₂)≤-0.5, and the log(P_T/PH₂) of the total 10
partial pressure P_T of the carbon dioxide partial pressure PCO₂ and water partial pressure PH₂O and the
hydrogen partial pressure to -3≤log(P_T/PH₂)≤-0.5,
performing the annealing in the reducing zone in a 15
ferrite-austenite two-phase temperature region at 720°C to 880°C, then cooling by a plating bath and performing
the molten zinc plating so as to form a hot-dip
galvanizing layer on the surface of the cold rolled steel
sheet, then heating for alloying the steel sheet on which
the hot-dip galvanizing layer is formed at 460 to 550°C,
it is possible to produce a high strength galvannealed
steel sheet. 20
25

2. A process of production of a high strength galvannealed steel sheet as set forth in claim 1,
characterized by performing the hot-dip galvanizing in a
hot-dip galvanizing bath of a composition comprised of an
effective Al concentration in the bath of at least 0.07
wt% and the balance of Zn and unavoidable impurities and
performing the alloying at a temperature (°C) satisfying
30
 $450 \leq T \leq 410 \times \exp(2 \times [Al\%])$
where, [Al%]: effective Al concentration (wt%)
35
in the hot-dip galvanizing bath

3. A process of production of a high strength

galvannealed steel sheet as set forth in claim 1 or 2 superior in bondability, characterized by being performed at an effective Al concentration (wt%) in the bath satisfying the effective Al concentration in the bath of:

5 $[Al\%] \leq 0.092 - 0.001 \times [Si\%]^2$

where, [Si%]: Si content in steel sheet (wt%)

4. A manufacturing equipment of hot-dip galvanized steel sheet comprising providing a hot-dip galvanizing bath and continuously plating a steel sheet by molten zinc, said system for production of a hot-dip galvanized steel sheet for working the process of production of a high strength galvannealed steel sheet described in claim 1 characterized by making the annealing furnace an all radiant tube type annealing furnace and providing an apparatus for introducing into the annealing furnace a gas containing CO₂ in an amount of 1 to 100 wt% and comprised of the balance of N₂, H₂O, O₂, CO, and unavoidable impurities.

20 5. A system for production of a hot-dip galvanized steel sheet comprising providing a hot-dip galvanizing bath and continuously plating a steel sheet by molten zinc, said system for production of a hot-dip galvanized steel sheet for working the process of production of a high strength galvannealed steel sheet described in claim 1 characterized by making the annealing furnace an all radiant tube type annealing furnace and providing an apparatus for burning CO or a hydrocarbon in the annealing furnace and producing a gas containing CO₂ in an amount of 1 to 100 wt% and comprised of the balance of N₂, H₂O, O₂, CO, and unavoidable impurities.