Lectures on Scientific Computing

Lise-Marie Imbert-Gerard

9/18/18

1 Building a basis of eigenvectors

(Variational Principles for the Symmetric Eigenvalue Problem)

1.1 Step 1

```
Since x\in C^m, ||x||=1 is compact, \omega with ||\omega=1 such Q(\omega)=\max Q(x), ||x||=1. \to \nabla Q(r)=0 Ar=Q(\omega)\omega
```

Iteration:

Remark: If $\omega_j^* = 0$ then $\omega_j^*(Ax) = (A^*\omega_j)^*x$ = $(A\omega_j)^*x$ since $A^+ = A$ Suppose $\omega_1, ..., \omega_m$ are orthogonal eigenvectors of A. If

2 Least Square Method

For this method we are only going to be looking at real matrices $(\in \mathbb{R})$. Assume that $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, where Ax = b.

Definition:

If n < m, the linear system Ax = b is **overdetermined**. The idea is that we have too many constraints to find the unknown, so there might not be an x that satisfies exactly Ax = b. We define the **Residual** as what remains when we look at the difference $\omega := Ax - b$. i.e. we might not be able to find an exact solution but we can find something that has a small residual ω . The **Least Square Problem** is to minimize the residual. Formally, we are looking for $min_x||Ax - b||_{l^2}$ (the l^2 norm of the residual).

Remark: $||\omega||_{l^2}^2 = \sum_{i=1}^m \omega_i^2$. This is used in linear regression in statistics. $||\omega||_{l^2}^2 = (Ax - b)^*(Ax - b) = x^*A^*Ax - 2x^*A^*b + b^*b(2)$.

Definition: The **normal equations** are $A^*Ax = A^*b$. A^*A is called either the **moment matrix** or the **Gram matrix**.

Remark: A^*A is symmetric, if A is of rank n (rnk(A) = n), which is the maximum rank it can have, then A^*A is positive definite so the Choshi decomposition is a good way to solve $A^*Ax = A^*b$.

Definition: We define the pseudo-inverse of A as $(A^*A)^{-1}A^*$. This is only possible when rnk(A) = m. Finally, one important thing to note is that there are problems with conditioning in Ax = b and $A^*Ax = A^*b$ This 'normal equation' approach is the fastest way to solve tense least-square problems but it is often not suitable in practice because of ill conditioning. It only works well if the initial problem Ax = b is well-condition.

3 Alternatives to LSM

3.1 Singular Values and Principle Components

Theorem: If you have a matrix you can break it down in the following way. Let $A \in \mathbb{R}^{m \times n}$. The **Singular Value Decomposition** of A is a factorization of the form $A = U\Sigma V^*$ where U is an $m \times n$ orthogonal matrix $(U^TU = I)$, Σ is an $m \times n$ diagonal matrix $(\sum_{ij} = 0)$ iff $i \neq j$, and V is an $n \times m$ orthogonal matrix $(V^TV = I)$.

Definition: The diagonal values of $\Sigma\{\sigma_j\}_{1\leq j\leq min(m,n)}$ are called the singular values of A. The columns $\{u_j\}_{1\leq j\leq m}$ of U are the left singular vectors of A. By convention $\sigma_j\geq \sigma_2,\ldots\geq 0,\ \sigma_k=0$ if k>min(m,n).

Construction of U and V: Suppose $A \neq 0$.

3.1.1 Step 1

We want to find σ_1, v_1 , and u_1 . σ_1 is the largest singular value of A. We define this as $\sigma_1 := \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{||x|| = 1} ||A_x|| > 0$

We can now define the vector v_1 . $\exists v_1$ such that $||v_1|| = 1$ and $||Av_1|| = \sigma_1 > 0$

We can now define $u_1 := \frac{Av_1}{||Av_1||} \to Av_1 = \sigma_1 u_1$

Remarks: The **Optimality Condition** $\sigma_1^2 = \max_{x \neq 0} \frac{x^*A^*Ax}{x^*x}$. The denominator is the Rayleigh Quotient of the matrix A^*A . Therefore with $\sigma_1^2 = v_1^*A^*Av_1$, $||v_1|| = 1$ so what remains is that $\sigma_1 = v_1^*A^*u_1$. We want to obtain $\sigma_1 v_1 = A^*u_1$ (prove this is true).

The Orthogonality Principle: $(Ax)^*u_1 = x^*(A^*u_1) = \sigma_1x^*v_1$ so $x^*v_1 = 0 \rightarrow (Ax)^*u_1 = 0$

3.1.2 Step 2

$$V_1 := \{x \in \mathbb{R}^n, x^*v_1 = 0\}$$

$$V_1 := \{x \in \mathbb{R}^m, x^*u_1 = 0\}$$

If A_1 is not identically 0, we can define $\sigma_2 := \max_{x \in v_1, x \neq 0} \frac{||Ax||}{||x||} = \max_x$