## **Objectifs**

R. Metzdorff

- $\rightarrow$  Utiliser une balance de précision.
- → Repérer la position d'un centre de masse et mesurer un moment d'inertie à partir d'une période.
- $\rightarrow$  Mettre en œuvre un accéléromètre, par exemple avec l'aide d'un microcontrôleur.
- $\rightarrow$  Réaliser l'étude énergétique d'un pendule pesant et mettre en évidence une diminution de l'énergie mécanique.

# Étude préliminaire

On considère le pendule pesant décrit dans le document 2.

- 1. Montrer que, dans le cas où  $m_t \ll m$  et si les dimensions de la masselotte sont faibles (devant quoi?), on retrouve la période du pendule simple.
- 2. Exprimer les énergies cinétique  $\mathcal{E}_{c}$ , potentielle  $\mathcal{E}_{p}$  et mécanique  $\mathcal{E}_{m}$  du pendule pesant en fonction de r, m,  $r_{t}$ ,  $m_{t}$ , J,  $\theta$  et  $\dot{\theta}$ .
- 23. Ouvrir l'expérience « Gyroscope (vitesse angulaire) » de Phyphox et déterminer l'orientation des trois axes de la centrale inertielle du smartphone. Les représenter sur un schéma. Comparer les résultats obtenus à ceux du TP10 − Loi de Hooke.
- 4. Préparer un programme Python en vue de l'exploitation des résultats des mesures à réaliser lors du TP. En particulier : écrire les fonctions moment\_inertie(m, R, h, r, mt, Rt, ht, rt) et moment\_inertie\_periode(m, r, mt, rt, T) qui renvoient le moment d'inertie du pendule pesant en fonction des paramètres mesurables.

## Mesure du moment d'inertie



5. Proposer et mettre en œuvre deux protocoles permettant de mesurer le moment d'inertie du pendule pesant. Un comparaison quantitative entre les deux mesures est attendue.

# Étude énergétique



6. Proposer et mettre en œuvre un protocole permettant de tracer l'évolution de l'énergie mécanique au cours du temps.

## **Documents**

#### Document 1 - Matériel

- pendule pesant
- balance
- mètre à ruban

- smartphone (le vôtre!) + Phyphox
- ordinateur + Python

### Document 2 - Moment d'inertie du pendule pesant

#### Thèorème de Huygens

On considère un solide de centre de gravité G et de masse m. Le théorème de Huygens établit le lien entre le moment d'inertie  $J_{Oy}$  du solide par rapport à un axe (Oy) et  $J_{Gy}$ , moment d'inertie par rapport à l'axe (Gy), de même direction que (Oy) mais passant par le centre de gravité du solide. On a

$$J_{Oy} = J_{Gy} + mOG^2.$$

#### Moment d'inertie d'un cylindre

Pour un cylindre plein de masse m, de rayon R et de hauteur h, on a

$$J_{Gz} = \frac{1}{2}mR^2$$

et

$$J_{Gx} = J_{Gy} = m\left(\frac{R^2}{4} + \frac{h^2}{12}\right).$$



### Moment d'inertie du pendule pesant

Le pendule pesant utilisé en TP est formé de deux cylindres :

- une tige de masse  $m_t$ , de rayon  $R_t$  et de hauteur  $h_t$ ;
- une masselotte de masse m, de rayon R et de hauteur h.

La tige est accrochée à une liaison pivot d'axe (Oy). On peut ajuster les distances  $r_t = OG_t$  et r = OG entre l'axe de rotation et le centre de gravité de chaque cylindre.



D'après le théorème de Huygens, le moment d'inertie du pendule pesant par rapport à l'axe (Oy) est donc

$$J = J_{Oy} = m\left(r^2 + \frac{R^2}{4} + \frac{h^2}{12}\right) + m_t\left(r_t^2 + \frac{R_t^2}{4} + \frac{h_t^2}{12}\right).$$

Par ailleurs, on montre que pour des oscillations de faible amplitude, la période T du pendule est

$$T = 2\pi \sqrt{\frac{J}{(mr + m_t r_t)g}}.$$