QB Metrics Documentation

1. System Metrics

- (a) Number of electrons η
- (b) Number of natural orbitals N_{nao}
- (c) Number of qubits n
- (d) Log FCI Size $\log_{10} \left(\binom{N}{N_{\uparrow}} \binom{N}{N_{\downarrow}} \right)$
- 2. One-norm

$$\lambda(H) = \sum_{ij} |h_{ij}^{(1)}| + \frac{1}{2} \sum_{\ell=1}^{L} |\lambda_{\ell}| \left(\sum_{pq} |g_{pq}^{(\ell)}| \right)^2$$
 (1)

3. Double Factorization Metrics

- (a) Rank L
- (b) Eigenvalues $\{\lambda_\ell\}_{\ell=1}^L$
- 4. Hypergraph Metrics

Let $G_{Interaction}(H)=(V,E)$ where V=[n] for an n-qubit Hamiltonian H where the edge set contains hyperedges $e_i=(i_1,...,i_{k(i)})\in E$ where $i_1,...,i_{k(i)}\in \{X,Y,Z\}$ are all those non-identity Pauli string terms. The graph has edge weights $w(e)=h_e$ where h_e is the coefficient of Pauli string $e\in E$ where $H=\sum_{e\in E}h_eP_e$. We take statistics (max, min, mean, std. dev.) on edge order (Pauli weight), vertex degree, and edge weights.

(a) Number of Pauli Strings

$$|E| = \left| \left\{ P : |h_P| > 0, H = \sum_P h_P P \right\} \right|$$
 (2)

(b) Edge Order

$$\operatorname{ord}(e_i) = k(i) \tag{3}$$

(c) Vertex Degree

$$\deg(v) = |\{v \in e : e \in E\}| \tag{4}$$

5. Other Graphs

- (a) Frustration Graph G_{frus}
- (b) Fermionic Graph $G_F = (V = [N], E = E_F)$ comes from which terms appear in the one-body terms of the Hamiltonian $\sum_{ij} h_{ij}^{(1)} \hat{a}_i^{\dagger} \hat{a}_j$, two orbital are connected by an edge $e = (i, j) \in E_F$ if $|h_{ij}^{(1)}| > 0$