Principle Components Analysis

Background

inding Principal omponents

Principal Components Analysis in Practice

Lecture 9

Principle Components Analysis

Reading: Zelterman Chapter 8.1-8.4; DSA 8020 Lecture 12 [Link]

DSA 8070 Multivariate Analysis October 11-October 15, 2021

> Whitney Huang Clemson University

Agenda

Principle Components Analysis

Background

Finding Principal Components

Principal Components Analysis in Practice

Background

2 Finding Principal Components

 First introduced by Karl Pearson (1901) as a procedure for finding lines and planes which best fit a set of points in p-dimensional space

> LIII. On Lines and Planes of Closest Fit to Systems of Points in Syster. By Kart. Pearson, P.R.S., University College, London*.

 TN many physical, statistical, and biological investigations it is desirable to represent a system of points in plane, three, or higher dimensional space by the *best-fitting" straight line or plane. Analytically this consists in taking
 Tankers, or z=a,+a,x+b,v.

or $z = a_0 + a_1x_1 + a_2x_2 + a_2x_3 + ... + a_nx_n$

where y_s , z_s , z_s , z_s , ..., are variables, and determining the sheat "values for the constants a_s , a_s , b_s , a_s , b_s , a_s , ..., a_s , ..., and in relation to the observed corresponding values of the considers. In nerry all the cases duelt with in the text-dooks are treated as the independent, those on the left as the degree of the constant values. The result of this treatment is that we got one straight line or place if we treat some one variables as traight of the constant value of the value of value of values of valu

 Harold Hotelling (1933) published a paper on PCA to find a smaller "fundamental set of independent variables" that determines the values of the original set of p variables

ANALYSIS OF A COMPLEX OF STATISTICAL VARIABLES INTO PRINCIPAL COMPONENTS:

HAROLD HOTELLING Columbia University

Consider a variable attaching to each individual of a population. These statistical variables v_{ij} as, v_{ij} and plot example be score made by school children in tests of speed and skill a solving attachmentian pricions or in reading, or they might be various physical extractions of the school of the

 $x_i = f_i(\gamma_1, \gamma_2, ...)$ (i = 1, 2, ..., n) (1) Quantities such as the γ 's have been called mental factors in recent psychological literature. However in view of the prospect of appliestion of these ideas outside of psychology, and the conflicting uages attaching to the word "fischer" in mathematics, it will be better simply to call the γ 's components of the complex depicted by the tests.

CLEMS N UNIVERSITY

ackground

Components

Analysis in Practice

Components Analysis

ackground

Finding Principal Components

- Reduce the dimensionality of a data set in which there is a large number (i.e., p is "large") of inter-related variables while retaining as much as possible the variation in the original set of variables
 - The reduction is achieved by transforming the original variables to a new set of variables, "principal components", that are uncorrelated
 - These principal components are ordered such that the first few retains most of the variation present in the data
 - Goals/Objectives
 - Reduction and summary
 - Study the structure of covariance/correlation matrix

Some Applications

Background

Finding Principal Components

- Interpretation (by studying the structure of covariance/correlation matrix)
- Select a sub-set of the original variables, that are uncorrelated to each other, to be used in other multivariate procedures (e.g., multiple regression, classification)
- Detect outliers or clusters of multivariate observations

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

- Mean Vector: $\bar{\boldsymbol{X}} = (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_p)^T$
- Covariance Matrix: $\Sigma = \{\sigma_{ij}\}_{i,j=1}^p$, where $\sigma_{ii} = \operatorname{Var}(X_i), i = 1, \cdots, p \text{ and } \sigma_{ij} = \operatorname{Cov}(X_i, X_j), i \neq j$

Background

Finding Principal Components

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

- Mean Vector: $\bar{\boldsymbol{X}} = (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_p)^T$
- Covariance Matrix: $\Sigma = \{\sigma_{ij}\}_{i,j=1}^p$, where $\sigma_{ii} = \operatorname{Var}(X_i), i = 1, \cdots, p \text{ and } \sigma_{ij} = \operatorname{Cov}(X_i, X_j), i \neq j$

Next, we are going to discuss how to find **principal components**

CLEMS#N UNIVERSITY

background

Finding Principal Components

- Principal Components (PCs) are uncorrelated **linear** combinations $\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_p$ determined sequentially, as follows:
 - The first PC is the linear combination $\tilde{X}_1 = c_1^T X = \sum_{i=1}^p c_{1i} X_i$ that maximize $\text{Var}(\tilde{X}_1)$ subject to $c_1^T c_1 = 1$
 - The second PC is the linear combination $\tilde{X}_2 = \mathbf{c}_2^T \mathbf{X} = \sum_{i=1}^p c_{2i} X_i$ that maximize $\operatorname{Var}(\tilde{X}_2)$ subject to $\mathbf{c}_2^T \mathbf{c}_2 = 1$ and $\mathbf{c}_2^T \mathbf{c}_1 = 0$

÷

The p_{th} PC is the linear combination $\tilde{X}_p = \boldsymbol{c}_p^T \boldsymbol{X} = \sum_{i=1}^p c_{pi} X_i$ that maximize $\operatorname{Var}(\tilde{X}_p)$ subject to $\boldsymbol{c}_p^T \boldsymbol{c}_p = 1$ and $\boldsymbol{c}_p^T \boldsymbol{c}_k = 0, \ \forall k < p$

Background

Finding Principal Components

Analysis in Practice

• Let Σ , the covariance matrix of X, have eigenvalue-eigenvector pairs $(\lambda_i,e_i)_{i=1}^p$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ Then, the k_{th} principal component is given by

$$\tilde{X}_k = \boldsymbol{e}_k^T \boldsymbol{X} = e_{k1} X_1 + e_{k2} X_2 + \dots + e_{kp} X_p$$

 \Rightarrow we can perform a single matrix operation to get the coefficients to form all the PCs!

Then,

$$\begin{split} \operatorname{Var}(\tilde{X}_i) &= \lambda_i, \quad i = 1, \cdots, p \\ \mathsf{Moreover} \ \operatorname{Var}(\tilde{X}_1) &\geq \operatorname{Var}(\tilde{X}_2) \geq \cdots \geq \operatorname{Var}(\tilde{X}_p) \geq 0 \end{split}$$

$$\operatorname{Cov}(\tilde{X}_j, \tilde{X}_k) = 0, \quad \forall j \neq k$$

⇒ different PCs are uncorrelated with each other

It can be shown that

PCA and Proportion of Variance Explained

$$\sum_{i=1}^p \mathrm{Var}\big(\tilde{X}_i\big) = \lambda_1 + \lambda_2 + \dots + \lambda_p = \sum_{i=1}^p \mathrm{Var}\big(X_i\big)$$

• The proportion of the total variance associated with the k_{th} principal component is given by

$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

 If a large proportion of the total population variance (say 80% or 90%) is explained by the first k PCs, then we can restrict attention to the first k PCs without much loss of information ⇒ we achieve dimension reduction by considering k < p uncorrelated components rather than the original p correlated variables

Toy Example 1

Suppose we have $X = (X_1, X_2)^T$ where $X_1 \sim N(0, 4)$, $X_2 \sim N(0, 1)$ are independent

- Total variation = $Var(X_1) + Var(X_2) = 5$
- X₁ axis explains 80% of total variation
- ullet X_2 axis explains the remaining 20% of total variation

Dackground

Finding Principal Components

Toy Example 2

Suppose we have $\boldsymbol{X} = (X_1, X_2)^T$ where $X_1 \sim \mathrm{N}(0, 4)$, $X_2 \sim \mathrm{N}(0, 1)$ and $\mathrm{Cor}(X_1, X_2) = 0.8$

- Total variation $= \operatorname{Var}(X_1) + \operatorname{Var}(X_2) = \operatorname{Var}(\tilde{X}_1) + \operatorname{Var}(\tilde{X}_2) = 5$
- $ilde{\mathbf{O}}$ \tilde{X}_1 = $.9175X_1$ + $.3975X_2$ explains 93.9% of total variation
- \tilde{X}_2 = .3975 X_1 .9176 X_2 explains the remaining 6.1% of total variation

Background

Finding Principal Components

Background

Finding Principal Components

Principal Components Analysis in Practice

If we use standardized variables, i.e., $Z_j = \frac{X_j - \mu_j}{\sqrt{\sigma_{jj}}} \ j = 1, \cdots, p$ ("z-scores"). Then we are going to work with the correlation matrix instead of the covariance matrix of $(X_1, \cdots, X_p)^{\mathrm{T}}$

- We can obtain PCs of standardized variables by applying spectral decomposition of the correlation matrix
- However, the PCs (and the proportion of variance explained) are, in general, different than those from original variables
- If units of p variables are comparable, covariance PCA may be more informative, if units of p variables are incomparable, correlation PCA may be more appropriate

Example: Men's 100k Road Race

The data consists of the times (in minutes) to complete successive 10k segments (p = 10) of the race. There are 80 racers in total (n = 80)

Background

Finding Principal Components

Eigenvalues of $\hat{\Sigma}$

	Eigenvalue	Proportion	Cumulative
PC1	735.77	0.75	0.75
PC2	98.47	0.10	0.85
PC3	53.27	0.05	0.90
PC4	37.30	0.04	0.94
PC5	26.04	0.03	0.97
PC6	17.25	0.02	0.98
PC7	8.03	0.01	0.99
PC8	4.25	0.00	1.00
PC9	2.40	0.00	1.00
PC10	1.29	0.00	1.00

Much of the total variance can be explained by the first three PCs

Principle Components Analysis

Background

Finding Principal Components

CLEMS#N UNIVERSITY

Background

Finding Principal Components

Men's 100k Road Race Component Weights

	Comp.1	Comp.2	Comp.3
0-10 time	0.13	0.21	0.36
10-20 time	0.15	0.25	0.42
20-30 time	0.20	0.31	0.34
30-40 time	0.24	0.33	0.20
40-50 time	0.31	0.30	-0.13
50-60 time	0.42	0.21	-0.22
60-70 time	0.34	-0.05	-0.19
70-80 time	0.41	-0.01	-0.54
80-90 time	0.40	-0.27	0.15
90-100 time	0.39	-0.69	0.35

What these numbers mean?

Dackground

Visualizing the Weights to Gain Insight

Analysis

CLEMS N

Principle

IN I V E R S I T

Dackground

Principal Components

First component: overall speed

Second component: contrast long and short races

Mature runners: Age < 40 (M); Senior runners: Age >= 40 (S)

Background

Finding Principal Components

Relating to Original Data: Profile Plot

Principle Components Analysis

Background

Finding Principal Components

Correlation PCA versus Covariance PCA

0.0

3

0.0

8 9 10

of PCs

0.0 -

Principle Components Analysis

Background

0.0

9 10

of PCs

Finding Principal Components