ESTUDO DE COEFICIENTES DE CORRELAÇÃO PARA MEDIDAS DE PROXIMIDADE EM DADOS DE EXPRESSÃO GÊNICA

Pablo Andretta Jaskowiak Orientador: Prof. Dr. Ricardo J. G. B. Campello

Sumário

- Introdução
- Análise de Dados de Expressão Gênica
- Medidas de Proximidade em Dados de Expressão Gênica
- Resultados
 - Agrupamento
 - Seleção de Atributos e Classificação
- Conclusões e Contribuições

- Próximo passo após o sequenciamento
 - Compreensão das conexões entre
 - Seqüências de DNA e características fenotípicas dos organismos
 - Proteínas e genes interagem em redes altamente conectadas
- Tradicionalmente
 - Biologia Molecular trabalha com o paradigma
 - Um gene uma função
- Novas tecnologias
 - Medição dos níveis de expressão de genes a nível genômico

- Tecnologia de *microarray*
 - Análise em alta escala
 - Custo relativamente baixo

- Duas principais tecnologias
 - Oligonucleotideos (Affymetrix)
 - □ cDNA

Figura adaptada de: Harrington, C. A., Rosenow, C., e Retief, J. (2000). Monitoring gene expression using DNA microarrays. Current Opinion in Microbiology.

- Dados com características especiais
 - Grande quantidade de genes
 - Pequena quantidade de amostras
 - Ruído
 - Outliers
 - Valores ausentes

Medição dos Níveis de Expressão

Análise dos Dados Obtidos

Análise de Dados de Expressão Gênica

- Três principais tarefas envolvidas na sua análise
 - Agrupamento de dados
 - Agrupamento de amostras
 - Agrupamento de genes
 - Seleção de atributos
 - Seleção de genes
 - Classificação
 - Classificação de amostras
- Métodos de diferentes áreas têm sido aplicados
 - Aprendizado de Máquina, Estatística, Mineração de Dados
 - Diversos métodos baseados em proximidade

Análise de Dados de Expressão Gênica

- Dados de Expressão Gênica
 - Considerando dois
 - Genes
 - Amostras
 - Duas sequências numéricas

$$a = (a_1, a_2, ...a_p)$$

$$b = (b_1, b_2, ...b_p)$$

Motivação

- Similaridade em tendência ou forma
 - Coeficientes de correlação
- Correlação de Pearson medida predominante
 - Em menor proporção correlação de Spearman
- Diferentes medidas existentes na literatura
 - Medidas específicas têm sido propostas
- Poucos trabalhos têm se preocupado com sua avaliação
 - Diferentes cenários possíveis

Objetivos

- Avaliar de maneira experimental
 - Diferentes coeficientes de correlação
 - Principais tarefas de análise de dados de microarray
 - Diferentes tipos de bases: cDNA e Affymetrix
- Tarefas consideradas
 - Agrupamento
 - Amostras
 - Genes
 - Seleção de genes para classificação de amostras
 - Classificação de amostras (sem seleção de genes)

- Dados de Expressão Gênica
 - Similaridade em forma ou tendência

- Coeficientes de Correlação
 - Medidas comumente utilizadas

- Considerando duas sequências a e b
 - Genes
 - Amostras

Correlação	Sensibilidade	Complexidade
Pearson	Magnitudes	O(n)
Spearman	Ranks	$O(n \log n)$
Kendall	Ranks	O(n log n)
Goodman-Kruskal	Ranks	O(n log n)
Goodman-Kruskal Ponderado	Magnitudes e ranks de ambas as sequências	$O(n^2)$
Rank-Magnitude*	Ranks de a e magnitudes de b	$O(n \log n)$
Jackknife	Magnitudes	$O(n^2)$

- Medidas baseadas em Coeficientes de Correlação
 - Propostas para agrupamento de genes
 - Genes vistos como séries temporais
- Consideradas para comparação
 - □ YR1¹
 - YS1¹
 - □ Dissimilaridade Short Time-Series²

¹Son, Y. S. e Baek, J. (2008). A modied correlation coefficient based similarity measure for clustering time-course gene expression data. Pat. Recognition Letters. ²Möller-Levet et al. (2005). Clustering of unevenly sampled gene expression time-series data. Fuzzy Sets and Systems.

15 Resultados

Agrupamento

Metodologia de Avaliação

- Medidas avaliadas em quatro algoritmos
 - Single-Linkage
 - Average-Linkage
 - Complete-Linkage
 - k-medoids

- Metodologia de avaliação diferenciada
 - Agrupamento de amostras
 - Agrupamento de genes

Metodologia de Avaliação - Amostras

- Bases de dados
 - 35 bases de benchmark¹ agrupamento de câncer
- Três cenários de avaliação
 - Número de grupos fixo
 - Comparação entre partições com melhor Rand Ajustado
 - Número de grupos variável
 - Comparação entre partições com melhor Rand Ajustado
 - Número de grupos estimado
 - Melhor partição eleita pelo critério da Silhueta
 - Comparação entre os valores de Rand Ajustado das partições

Número de grupos fixo

- Melhores resultados
 - Algoritmo k-medoids

Número de grupos fixo

- Resultados superiores ou competitivos
 - Pearson, Jackknife e Rank-Magnitude

Número de grupos fixo

- Dentre todos os algoritmos
 - Piores resultados obtidos com o algoritmos Single-Linkage

- Melhores Resultados
 - Algoritmo k-medoids

- Resultados superiores ou competitivos
 - Pearson, Jackknife e Rank-Magnitude
- Medidas baseadas em ranks
 - Resultados similares

- Valores de Rand Ajustado
 - Superiores aos obtidos com número de grupos fixo
- Single-Linkage apresentou os piores resultados

Número de grupos estimado - Silhueta

Número de grupos estimado - Silhueta

- Menores diferenças entre algoritmos de agrupamento
 - Piores resultados obtidos novamente com o Single-Linkage

Número de grupos estimado - Silhueta

- Resultados superiores ou competitivos
 - Pearson, Jackknife e Rank-Magnitude

- Jackknife, Pearson e Rank-Magintude
 - Melhores resultados em média
- k-medoids
 - Resultados superiores ou competitivos
- Single-Linkage
 - Piores resultados independentemente da medida utilizada
- Melhores medidas em média não são sempre a melhor opção
- Medidas baseadas em ranks
 - Goodman-Kruskal e Kendall são boas alternativas à Spearman

Resultados

Agrupamento de Genes

Metodologia de Avaliação

- Comparação realizada em 17 bases de dados
 - Bases de dados de séries temporais
 - Ausência de rótulos externos
- Para cada par algoritmo correlação
 - Melhor partição eleita pelo critério da Silhueta
- Avaliação dos resultados
 - Heurística baseada na Gene Ontology (GO)
 - Análise de enriquecimento de grupos de genes
 - Comparação dos níveis de enriquecimento obtidos

Agrupamento de Genes - Resultados

- Dentre os algoritmos utilizados
 - Pior desempenho observado com o Single-Linkage

	Single	Average	Complete	k-medoids
Single	-	142/21/1537	135/8/1557	112/1/1587
Average	1537/21/142	-	955/16/729	831/12/857
Complete	1557/8/135	729/16/995	-	669/11/1020
k-medoids	1587/1/112	857/12/831	1020/11/669	-

Agrupamento de Genes - Resultados

- Menores diferenças entre as medidas avaliadas
 - Average-Linkage
 - Complete-Linkage

Agrupamento de Genes - Resultados

Comparação entre os níveis de enriquecimento obtidos

k-medoids

Melhores resultados: Jackknife, Pearson e Rank-Magnitude

Agrupamento de Genes - Resumo

- Independentemente do algoritmo utilizado
 - Melhores resultados resultados competitivos
 - Jackknife
 - Pearson
 - Rank-Magnitude
 - Piores resultados
 - Medidas baseadas em correlação
 - YR1 e YS1
 - Dissimilaridade STS

Resultados

Seleção de Atributos e Classificação

Metodologia de Avaliação

- Seleção de atributos
 - Simplified Silhouette Filter (SSF)¹
 - 1NN
 - Naïve Bayes

- Classificação
 - k-Nearest Neighbors (kNN)
 - 1NN

Metodologia de Avaliação

Correlações comparadas quanto às acurácias obtidas

- Estimação de erro
 - Validação cruzada de 10 pastas estratificada
 - Seleção de atributos somente na pasta de treinamento
 - 35 bases de benchmark¹ câncer

Seleção de Atributos - Resultados

- Variantes SSF x Todos atributos
 - A utilização de todos atributos levou a menores erros
 - Para ambos: kNN e Naïve Bayes

- Variantes utilizadas selecionaram poucos atributos
 - No geral por volta de 1% dos atributos ou menos

Seleção de Atributos - Resultados

- Comparação somente entre variantes
 - Bases cDNA
 - Apenas pequenas diferenças entre as medidas comparadas

Seleção de Atributos - Resultados

Bases Affymetrix

- Menores erros produzidos com a correlação Jackknife
- Jackknife levou a menores erros que Pearson
- Entre as correlações baseadas em ranks, destacaram-se
 - Kendall
 - Spearman

Classificação - Resultados

Pequenas diferenças entre as medidas comparadas

Classificação - Resumo

- Resultados em média
 - Pequenas diferenças entre correlações comparadas
- Resultados individuais
 - Diferenças de até 20% nos valores de erros observados
- Em bases Affymetrix
 - Testes estatísticos indicam diferença favorável para a correlação Rank-Magnitude frente à Pearson e Goodman-Kruskal Ponderado

Conclusões e Contribuições

Conclusões

Agrupamento

- Pearson, Jackknife e Rank-Magnitude foram, no geral, superiores às demais medidas comparadas
- Rank-Magnitude torna-se uma alternativa interessante
- Correlações baseadas em ranks
 - Goodman-Kruskal e Kendall resultados competitivos aos apresentados pela correlação de Spearman
- Agrupamento de genes
 - Medidas específicas produziram piores resultados

Conclusões

- Seleção de atributos
 - Bases Affymetrix
 - Melhores resultados obtidos com a correlação Jackknife

- Classificação
 - Pequenas diferenças entre as medidas, na média

Conclusões

- Não houve medida superior em todos os cenários
- Avaliação prévia de um conjunto de correlações mostra-se uma estratégia mais apropriada
- Quando uma avaliação preliminar mostra-se inviável
 - Pearson, Jackknife e Rank-Magnitude
- Medidas baseadas em ranks pouco utilizadas mostraram resultados competitivos aos da correlação de Spearman

Contribuições

Estudo de diferentes coeficientes de correlação

- Comparação das medidas em diferentes cenários
- Revisão bibliográfica
 - Fundamentação biológica
 - Tecnologia de microarray
 - Análise de dados de expressão gênica

Publicações

Até o presente momento

Jaskowiak, P. A., Campello, R. J. G. B., Covões, T. F., Hruschka, E. R. (2010). A Comparative Study on the Use of Correlation Coefficients for Redundant Feature Elimination. Em 11th Brazilian Symposium on Neural Networks — **SBRN 2010**, páginas 13-18.

Em elaboração

- Comparing Correlation Coefficients as Proximity Measures for Cancer Classification in Gene Expression Data.
- Proximity Measures for Clustering Gene Expression Time-Series: A Comparative Study.
- Comparing Correlation Coefficients as Proximity Measures for Clustering Gene Expression Profiles of Cancer.

Agradecimentos

CNPq – Apoio Financeiro

ICMC – Recursos Físicos

Pearson

$$\rho(\mathbf{a}, \mathbf{b}) = \frac{\sum_{i=1}^{p} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\sum_{i=1}^{p} (a_i - \bar{a})^2} \sqrt{\sum_{i=1}^{p} (b_i - \bar{b})^2}}$$

Kendall

$$\tau(\mathbf{a}, \mathbf{b}) = \frac{S_+ - S_-}{p(p-1)/2}$$

Goodman-Kruskal

$$\gamma(\mathbf{a}, \mathbf{b}) = \frac{S_{+} - S_{-}}{S_{+} + S_{-}}$$

Goodman-Kruskal Ponderado

$$\hat{\gamma}(\mathbf{a}, \mathbf{b}) = \frac{\sum_{i=1}^{p-1} \sum_{j=i+1}^{p} \hat{w}_{ij}}{\sum_{i=1}^{p-1} \sum_{j=i+1}^{p} |w_{ij}|}$$

$$\hat{w}_{ij} = \begin{cases} \min\{\hat{w}_{ij}^{\mathbf{a}}/\hat{w}_{ij}^{\mathbf{b}}, \hat{w}_{ij}^{\mathbf{b}}/\hat{w}_{ij}^{\mathbf{a}}\} & \hat{w}_{ij}^{\mathbf{a}} \hat{w}_{ij}^{\mathbf{b}} > 0 \\ \max\{\hat{w}_{ij}^{\mathbf{a}}/\hat{w}_{ij}^{\mathbf{b}}, \hat{w}_{ij}^{\mathbf{b}}/\hat{w}_{ij}^{\mathbf{a}}\} & \hat{w}_{ij}^{\mathbf{a}} \hat{w}_{ij}^{\mathbf{b}} < 0 \\ 1 & \hat{w}_{ij}^{\mathbf{a}} = \hat{w}_{ij}^{\mathbf{b}} = 0 \\ 0 & \text{demais casos} \end{cases} \qquad w_{ij} = \begin{cases} w_{ij}^{\mathbf{a}}/w_{ij}^{\mathbf{b}} & \text{se } w_{ij}^{\mathbf{b}} \neq 0 \\ 1 & \text{se } w_{ij}^{\mathbf{a}} = 0 \text{ e } w_{ij}^{\mathbf{b}} = 0 \\ 0 & \text{demais casos} \end{cases}$$

$$\hat{w}_{ij}^{\mathbf{a}} = \begin{cases} \frac{a_{i-a_{j}}}{a_{max}-a_{min}} & \text{se } a_{max} \neq a_{min} \\ 0 & \text{outro caso} \end{cases} \qquad w_{ij}^{\mathbf{a}} = sign(a_{i}-a_{j})$$

$$\hat{w}_{ij}^{\mathbf{b}} = \begin{cases} \frac{b_{i}-b_{j}}{b_{max}-b_{min}} & \text{se } b_{max} \neq b_{min} \\ 0 & \text{outro caso} \end{cases} \qquad w_{ij}^{\mathbf{b}} = sign(b_{i}-b_{j})$$

Rank-Magnitude

$$\hat{r}(\mathbf{a}, \mathbf{b}) = \frac{2\sum_{i=1}^{p} R(a_i)b_i - r_m^{max} - r_m^{min}}{r_m^{max} - r_m^{min}}$$

$$r_m^{min}(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{p} (n+1-i)\overline{b}_i$$

$$r_m^{max} = \sum_{i=1}^{p} i\overline{b}_i$$

$$r(\mathbf{a}, \mathbf{b}) = \frac{\hat{r}(\mathbf{a}, \mathbf{b}) + \hat{r}(\mathbf{b}, \mathbf{a})}{2}$$

Jackknife

$$\varrho(\mathbf{a}, \mathbf{b}) = \min\{\rho^1(\mathbf{a}, \mathbf{b}), \rho^2(\mathbf{a}, \mathbf{b}), \rho^3(\mathbf{a}, \mathbf{b}), \dots, \rho^p(\mathbf{a}, \mathbf{b}), \rho(\mathbf{a}, \mathbf{b})\}$$

Son e Baek

$$YR1(\mathbf{a}, \mathbf{b}) = \omega_1 R(\mathbf{a}, \mathbf{b}) + \omega_2 A(\mathbf{a}, \mathbf{b}) + \omega_3 M(\mathbf{a}, \mathbf{b})$$

$$inclinação(\mathbf{x}, i) = \frac{x_{i+1} - x_i}{t_{i+1} - t_i}$$

$$YS1(\mathbf{a}, \mathbf{b}) = \omega_1 S(\mathbf{a}, \mathbf{b}) + \omega_2 A(\mathbf{a}, \mathbf{b}) + \omega_3 M(\mathbf{a}, \mathbf{b})$$

$$L(\mathbf{x}, i) = \begin{cases} 1, & \text{se } inclina \zeta \tilde{a} o(\mathbf{x}, i) > 0 \\ -1, & \text{se } inclina \zeta \tilde{a} o(\mathbf{x}, i) < 0 \\ 0, & \text{se } inclina \zeta \tilde{a} o(\mathbf{x}, i) = 0 \end{cases}$$

$$A(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n-1} \frac{I(L(\mathbf{a}, i) = L(\mathbf{b}, i))}{n-1}$$

$$M(\mathbf{a}, \mathbf{b}) = \begin{cases} 1 & \text{se } t_{\mathbf{a}}^{min} = t_{\mathbf{b}}^{min} \text{ e } t_{\mathbf{a}}^{max} = t_{\mathbf{b}}^{max} \\ 0.5 & \text{se } t_{\mathbf{a}}^{min} = t_{\mathbf{b}}^{min} \text{ ou } t_{\mathbf{a}}^{max} = t_{\mathbf{b}}^{max} \\ 0 & \text{se } t_{\mathbf{a}}^{min} \neq t_{\mathbf{b}}^{min} \text{ e } t_{\mathbf{a}}^{max} \neq t_{\mathbf{b}}^{max} \end{cases}$$

Dissimilaridade Short Time-Series

$$STS(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^{p-1} \left(\frac{b_{i+1} - b_i}{t_{i+1} - t_i} - \frac{a_{i+1} - a_i}{t_{i+1} - t_i} \right)^2}$$

Son e Baek - Motivação

