Introdução ao Cálculo Numérico

Primeira Lista de Exercícios

Prof. Ricardo Chicalé Lemes

1. Converta os seguintes números decimais para sua forma binária com, no máximo, 10 dígitos na parte fracionária:

a)
$$x = 25$$

b)
$$x = 1789$$

c)
$$x = 0.2$$

d)
$$x = 0.31$$

2. Converta os seguintes números binários para sua forma decimal:

a)
$$x = (10111011)_2$$

b)
$$x = (10111110111011101)_2$$

c)
$$x = (0.110110101)_2$$

d)
$$x = (0.100101110)_2$$

3. Considere o sistema S[10, 5, -2, 4] de aritmética de ponto flutuante. Escreva, se possível, os números abaixo nesse sistema, adotando aproximações por trucamento ou arredondamento, quando necessário. Se o número não pertecer ao sistema, indique se é um underflow ou overflow, justificando a afirmativa.

a)
$$x = 79.1954$$

b)
$$x = 12762.58$$

c)
$$x = 0.023157$$

d)
$$x = 137.98$$

e)
$$x = 0.000324955$$

4. Sejam x = 739.034, y = 19.3304, z = 0.96514 e considere o sistema de aritmética de ponto flutuante S[10, 3, -5, 5]. Realize as operações aritméricas abaixo nesse sistema, fazendo aproximações por arredondamento, quando necessário.

a)
$$x + y$$

b)
$$x \cdot z - y$$

c)
$$x + y \cdot z$$

d)
$$y^2 - x$$

5. Determine os erros absoluto $|EA_x|$ e relativo $|ER_x|$ na aproximação de x por \overline{x} nos seguintes casos:

a)
$$x = 3.7215 \text{ e } \overline{x} = 3.72$$

b)
$$x = 1478.7309 \ e \ \overline{x} = 1479$$

c)
$$x = 0.0026487 \text{ e } \overline{x} = 0.003$$

- 6. Determine estimativas para os erros de arredondamento e truncamento na aproximação dos seguintes números no sistema S[10, 3, -8, 8]:
 - a) x = 0.0032783

b) x = 13452.5087

- c) x = 12.39076
- 7. Sejam x e y com aproximações \overline{x} e \overline{y} , e erros absolutos $EA_x = 0.02$ e $EA_y = -0.12$, respectivamente. Determine os erros absolutos, $EA_{(x+y)}$ e $EA_{(x-y)}$, e relativos, $ER_{(x+y)}$ e $ER_{(x-y)}$, na aproximação de x+y por $\overline{x}+\overline{y}$ e de x-y por $\overline{x}-\overline{y}$ nos seguintes casos:
 - a) $\bar{x} = 13.6 \text{ e } \bar{y} = 9.65$

- b) $\bar{x} = 1.27 \ e \ \bar{y} = 1.25$
- c) $\overline{x} = 1456.1 \text{ e } \overline{y} = 12.5$
- 8. Considere números x_1 , x_2 e x_3 com aproximações \tilde{x}_1 , \tilde{x}_2 e \tilde{x}_3 , respectivamente. Sabendo que os erros nas aproximações são $EA_{x_1}=0.12$, $EA_{x_2}=-0.045$ e $EA_{x_3}=0.27$, determine o erro absoluto cometido quando aproximamos $x_1+x_2+x_3$ por $\tilde{x}_1+\tilde{x}_2+\tilde{x}_3$.
- 9. (*) Considere números x, y e z com aproximações $\tilde{x} = 1.103, \tilde{y} = -3.09$ e $\tilde{z} = 5.77$ e erros absolutos $EA_x = 0.003, EA_y = 0.2$ e $EA_z = 0.33$, respectivamente. Determine os erros absoluto e relativo totais cometidos no cálculo da expressão $x \cdot y 2z$, quando aproximamos por $\tilde{x} \cdot \tilde{y} 2\tilde{z}$.
- 10. (**) Considere três números x_1 , x_2 e x_3 com aproximações $\tilde{x_1}$, $\tilde{x_2}$ e $\tilde{x_3}$, respectivamente. Sabendo que todos esses números pertencem ao intervalo I = [1.28, 1.30], determine estimativas para os erros absoluto e relativo quando aproximamos $x_1 + x_2 + x_3$ por $\tilde{x_1} + \tilde{x_2} + \tilde{x_3}$.
- 11. (**) Considere n números reais x_1, \ldots, x_n que foram aproximados, respectivamente, por $\tilde{x}_1, \ldots, \tilde{x}_n$ com erros absolutos $EA_{x_1}, \ldots, EA_{x_n}$. Mostre que o erro absoluto que se comete quando aproximamos $x_1 + \ldots + x_n$ por $\tilde{x}_1 + \ldots + \tilde{x}_n$ é

$$EA_{x_1+\dots+x_n} = \sum_{j=1}^n EA_{x_j}$$

e escreva uma fórmula para o erro relativo $ER_{x_1+...+x_n}$ em função dos erros relativos $ER_{x_1}, \ldots, ER_{x_n}$.

12. (**) Dada uma função (n+1) vezes derivável $f:(a,b)\to\mathbb{R}$, a fórmula de Taylor com resto de Lagrange de f em torno de $x_0\in(a,b)$ é dada por

$$f(x) = f(x_0) + \sum_{j=1}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

onde $f^{(j)}$ representa a derivada de ordem j de fe $\xi \in (x_0,x).$ O termo

$$R_n(x_0, x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

é o resto (ou erro) de ordem n na aproximação da função f(x) pelo polinômio de Taylor de grau n:

$$P_n(x) = f(x_0) + \sum_{j=1}^n \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.$$

Seja $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = e^x$.

- a) Escreva o polinômio de Taylor de grau 4 de f(x) em torno de $x_0 = 0$.
- b) Calcule o valor aproximado de $e^{0.82}$ utilizando o polinômio de Taylor do item a). Faça uma aproximação por arredondamento em 4 casas decimais.
- c) Determine uma estimativa para os erros absoluto |EA| e relativo |ER| na aproximação de $e^{0.82}$ feita no item b), ignorando o erro de arredondamento. (Dica: utilize o fato de que e < 2.72 e $0 < \xi < 0.82 < 1$.)