Electrical Machines

EEE 363

DC Generator

Whenever a conductor cuts magnetic flux, dynamically induced e.m.f. is produced in it according to <u>Faraday's Laws of Electromagnetic Induction</u>. This e.m.f. causes a current to flow if the conductor circuit is closed.

Fleming's Right Hand Rule

Right hand rule

Fleming's Right Hand Rule

Commutator

Constructions

Pole pitch and Coil pitch

Types of winding

Lap winding

Wave winding

Back/Front Pitch

Types of coil

Full-pitched coil

Fractional-pitched coil

Example 26.1. Draw a developed diagram of a simple 2-layer lap-winding for a 4-pole generator with 16 coils. Hence, point out the characteristics of a lap-winding.

Solution. The number of commutator segments = 16

Number of conductors or coil sides $16 \times 2 = 32$; pole pitch = 32/4 = 8

Now remembering that (i) Y_B and Y_F have to be odd and (ii) have to differ by 2, we get for a progressive winding $Y_B = 9$; $Y_F = -7$ (retrogressive winding will result if $Y_B = 7$ and $Y_F = -9$). Obviously, commutator pitch $Y_C = -1$.

[Otherwise, as shown in Art. 26.26, for progressive winding

$$Y_F = \frac{Z}{P} - 1 = \frac{32}{4} - 1 = 7 \text{ and } Y_B = \frac{Z}{P} - 1 = \frac{32}{4} + 1 = 9$$

The simple winding table is given as under:

Back Connections		Front Connections	
1 to (1+9) = 10	\longrightarrow	10 to (10 - 7) = 3	
3 to (3+9) = 12	\longrightarrow	12 to (12 – 7) = 5	
5 to (5+9) = 14	\longrightarrow	14 to (14-7) = 7	
7 to (7+9) = 16	\longrightarrow	16 to (16-7) = 9	
9 to (9+9) = 18	\longrightarrow	18 to $(18-7) = 11$	
11 to (11 + 9) = 20		20 to (20-7) = 13	
13 to (13+9) = 22		22 to (22 – 7) = 15	
15 to $(15 + 9) = 24$		24 to (24 - 7) = 17	
17 to (17 + 9) = 26	\longrightarrow	26 to (26-7) = 19	
19 to (19 + 9) = 28	\longrightarrow	28 to (28 - 7) = 21	

21 to
$$(21 + 9) = 30$$
 \longrightarrow 30 to $(20 - 7) = 23$
23 to $(23 + 9) = 32$ \longrightarrow 32 to $(32 - 7) = 25$
25 to $(25 + 9) = 34 = (34 - 32) = 2$ \longrightarrow 2 to $(34 - 7) = 27$
27 to $(27 + 9) = 36 = (36 - 32) = 4$ \longrightarrow 4 to $(36 - 7) = 29$
29 to $(29 + 9) = 38 = (38 - 32) = 6$ \longrightarrow 6 to $(38 - 7) = 31$
31 to $(31 + 9) = 40 = (40 - 32) = 8$ \longrightarrow 8 to $(40 - 7) = 33 = (33 - 32) = 1$

The winding ends here because we come back to the conductor from where we started

