

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶: C12N 15/82, 9/10, A01H 5/00 // C12R 1:89

A1

(11) Numéro de publication internationale:

WO 99/66056

- (43) Date de publication internationale: 23 décembre 1999 (23.12.99)
- (21) Numéro de la demande internationale:

PCT/FR99/01446

(22) Date de dépôt international:

16 juin 1999 (16.06.99)

(30) Données relatives à la priorité:

98/07589

16 juin 1998 (16.06.98)

FR

- (71) Déposant (pour tous les Etats désignés sauf US): BIOGEMMA [FR/FR]; 1, rue Edouard-Colonne, F-75001 Paris (FR).
- (72) Inventeur; et
- (75) Inventeur/Déposant (US seulement): BALL, Steven [US/FR]; 58, rue Maurice Molhant, F-59830 Bourghelles (FR).
- (74) Mandataire: MONCHENY, Michel; Cabinet Lavoix, 2, place d'Estienne d'Orves, F-75441 Paris Cedex 09 (FR).

(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: METHOD FOR OBTAINING MODIFIED POLYSACCHARIDES
- (54) Titre: PROCEDE D'OBTENTION DE POLYSACCHARIDES MODIFIES

(57) Abstract

The invention concerns a method for obtaining plants producing modified polysaccharides (such as starch or glycogen), said modified polysaccharides extracted from said plants and the products prepared from said modified polysaccharides. The invention also concerns a method for obtaining modified starch or modified glycogen which consists in contacting a starch or a glycogen with an α -1,4 glucanotransferase enzyme.

(57) Abrégé

La présente invention concerne un procédé d'obtention de plantes produisant des polysaccharides modifiés (tels que de l'amidon ou du glycogène), ces polysaccharides modifiés extraits de ces plantes et les produits préparés à partir de ces polysaccharides modifiés. L'invention concerne également un procédé d'obtention d'amidon modifié ou de glycogène modifié dans lequel on met en contact un amidon ou un glycogène avec une enzyme $\alpha-1,4$ glucanotransférase.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaĭdjan	GB	Royaume-Uni	MC	Мопасо	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	ΙE	Irlande	MN	Mongolie	UA:	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	us	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	J apon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougostavie
СН	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KР	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	Lľ	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		
]							

WO 99/66056 PCT/FR99/01446

Procédé d'obtention de polysaccharides modifiés

La présente invention concerne un procédé d'obtention de plantes produisant des polysaccharides modifiés (tels que de l'amidon ou du glycogène), ces polysaccharides modifiés extraits de ces plantes et les produits préparés à partir de ces polysaccharides modifiés.

5

10

15

20

25

30

L'amidon est le polyoside de stockage énergétique chez les végétaux. Il constitue le principal apport calorique de l'alimentation animale et humaine et est également une source majeure de matière première végétale pour des utilisations non alimentaires. L'amidon est composé de deux fractions polysaccharidiques distinctes : l'amylose et l'amylopectine. L'amylose, qui représente la fraction minoritaire de l'amidon, est constitué de résidus glucose unis par des liaisons α -1,4, et présente moins de 1% de ramifications. L'amylopectine, qui représente la fraction majoritaire de l'amidon, est constituée de résidus glucose unis par des liaisons α -1,4, et présente environ 5% de ramifications, constituées par des résidus de glucose liés au polymère principal par une liaison α -1,6. La distribution asymétrique de la ramification de l'amylopectine est responsable de la croissance illimitée des molécules et par conséquent des grains d'amidon, et rend également compte de la plupart des propriétés physico-chimiques de l'amidon.

La biosynthèse de l'amidon dépend d'une voie dont les étapes biochimiques principales sont la synthèse d'ADP-glucose suivie par le transfert de ce précurseur en position α -1,4 sur un glucane par des (ADP-glucose :1,4- α -D-glucane 4- α -D-glucosyl)transférases, le polymère formé étant ramifié par l'action des enzymes dites de ramification ou de « branchement » : les 1,4- α -D-glucane 6- α -D-(1,4- α -D-glucano)-transférases. La figure 1 annexée est un schéma simplifié du métabolisme de l'amidon jusqu'à présent connu de l'homme du métier.

Les α -1,4 glucanotransférases (ou 4- α -D-glucanotransférases) végétales connues sont communément désignées par "enzymes D" pour "disproportionating enzymes" ("enzymes disproportionnantes"). Elles catalysent le transfert de glucane d'une molécule 1,4- α -glucane vers une autre

15

20

25

30

(transglycosylation intermoléculaire). Les règles d'action de l'enzyme D sur des substrats oligosaccharidiques sont schématisées comme suit :

<u>Schéma</u>: Exemple d'activité disproportionnante par l'enzyme D sur le maltotriose

	Accepteur (n)	Donneur (x)	↔ Produit (n + 2)	+ Donneur –2
	*G~G~GoH	+ *G~G~G _{он}	↔ *G~G~G~G ₀ H	₊*Goн
10	*G~G~G~G ₀ н	+ *G~G~G _{OH}	+ G~G~G~G~G~G~G 0H	+ *G _{OH}
	*G~G~G _{OH}	+ *G~G~G~G~G~G~G он	+G~G~G~G~G 0H	+ *G~G~G~G~G
	он			
	*G~G~G~G ₀ н	+ *G~G~G~G~Gон	→ *G~G~G~G~G~G~G oH	+ *G~G~G он .

Le maltose ne peut servir de substrat donneur et seule une liaison à l'extrémité du maltotriose peut être attaquée. En outre, la première liaison du côté non-réducteur et l'avant-dernière liaison du côté réducteur sont résistantes à l'action de l'enzyme.

Takaha et al. ont rapporté au Congrès de l'AAB (Association of Applied Biologists) qui s'est tenu du 6 au 8 avril 1998, à Edinburgh, UK, (congrès sur le thème : « production et utilisation de l'amidon ») que des pommes de terre sans enzyme D poussaient plus lentement que les pommes de terre contrôles et que, malgré cela, la teneur en amidon présent dans les tubercules et sa composition apparaissaient normales en ce qui concerne notamment l'aspect des grains d'amidon en microscopie optique ou électronique, les proportions en amylose et amylopectine, le poids moléculaire de l'amylopectine débranchée et le nombre et la longueur des ramifications α -1,6. Takaha et al. en ont conclu que l'enzyme D n'a pas un rôle direct sur les structures et les quantités d'amidon produit mais joue un rôle dans la croissance de la plante et son développement, l'amylopectine et l'amylose servant de molécules donneuses pour le transfert de maltooligosaccharide vers le glucose, permettant ainsi la dislocation et la solubilisation des grains d'amidon (Takada et al, 1998).

10

15

20

25

30

De manière surprenante, les auteurs de la présente invention ont découvert que les α-1.4 glucanotransférases, et notamment les enzymes D sont en fait impliquées dans la biosynthèse de l'amidon, en transférant des oligosaccharides sur un précurseur de l'amylopectine. Ces enzymes peuvent particulier transférer les oligosaccharides provenant du pool en d'oligosaccharides produits in vivo par déramification du précurseur de l'amylopectine lors de la maturation de l'amylopectine. Elles peuvent notamment transférer les oligosaccharides pouvant contenir par exemple de 2 à 20, en particulier de 2 à 6, résidus de glucose. La figure 2 annexée présente le rôle de l'enzyme D dans le cycle du métabolisme de l'amidon, tel que découvert par les auteurs de la présente invention.

Cette découverte a été mise à profit pour modifier, en fonction du taux d'enzyme α -1,4 glucanotransférase active présent, la distribution des longueurs des chaînes de l'amylopectine, présent en particulier dans les organes de réserve des plantes. L'invention s'applique aussi au glycogène, présent en plus faible quantité que l'amylopectine dans les plantes mais que l'on peut trouver par exemple dans les grains de maïs doux, en permettant de la même façon la modification de la distribution de la longueur des chaînes de glycogène.

La présente invention a donc pour objet l'utilisation d'un acide nucléique codant pour une enzyme α -1,4 glucanotransférase glucanotransférase ou une séquence antisens de ladite séquence codant pour une enzyme α -1,4 glucanotransférase, pour modifier la distribution de la longueur des chaînes externes de l'amidon (à savoir de l'amylopectine et/ou de l'amylose) ou du glycogène.

La présente invention a plus particulièrement pour objet un procédé de modification de la distribution de la longueur des chaînes de l'amylopectine d'un amidon ou des chaînes d'un glycogène dans lequel on augmente ou on diminue l'activité d'une enzyme α -1,4 glucanotransférase dans les cellules d'une plante de telle sorte que ladite plante produise un amidon modifié différant de l'amidon produit naturellement par les plantes par la

10

15

20

25

30

distribution de la longueur des chaînes de l'amylopectine ou produise un glycogène modifié différant du glycogène produit naturellement par la distribution de la longueur de ses chaînes externes.

Selon un premier mode de réalisation de l'invention, on diminue le taux d'expression d'enzyme α -1,4 glucanotransférase endogène, de façon à conduire à la production d'un amidon comprenant une amylopectine présentant un enrichissement en chaînes comportant moins de 6 résidus de glucose par rapport à un amidon produit naturellement. La diminution de l'expression d'une enzyme α -1,4 glucanotransférase endogène peut être notamment réalisée selon le procédé comprenant les étapes consistant à :

- a) construire un vecteur d'expression comprenant une séquence nucléotidique antisens du gène codant pour ladite enzyme α -1,4 glucanotransférase endogène;
- b) transformer une cellule de plante avec ledit vecteur d'expression;
- c) régénérer la plante à partir de la cellule transformée à l'étape b, ladite plante transgénique ainsi obtenue produisant un amidon comprenant une amylopectine dont la distribution des longueurs de chaînes est altérée, notamment dans le sens d'un enrichissement en chaînes comportant moins de 6 résidus de glucose.

De manière avantageuse, ladite cellule de plante transformée selon l'étape b) est également transformée par des séquences nucléotidiques antisens des gènes codant pour des enzymes affectant la répartition de la longueur des oligosaccharides produits lors du métabolisme de l'amidon, telles que les phosphorylases et les amylases.

Une autre possibilité pour réduire l'activité de l'enzyme α -1,4 glucanotransférase dans les cellules des plantes est d'exprimer des ribozymes qui sont des molécules d'ARN qui agissent comme des enzymes catalysant spécifiquement le clivage des transcrits codant pour l'enzyme l'enzyme α -1,4 glucanotransférase, par des techniques connues de l'homme du métier (EP 321 021).

Il est également possible d'obtenir une plante présentant une altération de l'expression d'enzyme α-1,4 glucanotransférase par le procédé dit "transwitch" décrit dans WO90/12084.

L'activité de l'enzyme α -1,4 glucanotransférase endogène peut également être réduite par mutagénèse des cellules de plante soit par irradiation U.V ou par un agent mutagène chimique, soit par insertion de transposons. Les éléments transposables ont la capacité de perturber l'expression de gènes dans lesquels ils sont insérés et de générer des délétions, réarrangements, et mutations au locus cible (McClintock et al., 1950).

Une technique de mutagénèse par transposons qui peut être avantageusement utilisée est la mutagénèse par transposon Mutator confirmée par un criblage en génétique inverse (Bensen et a I., 1995) (Das et al., 1995). Cette technique met en œuvre les étapes consistant à croiser une lignée "Mutator" avec des hybrides des plantes d'intérêt puis à cribler les plantes F1 obtenues par PCR avec une amorce spécifique des transposons et une amorce spécifique de la séquence nucléotidique codant pour l'enzyme α -1,4 glucanotransférase. Les graines F2 obtenues à partir des plantes criblées F1 permettent d'obtenir des plantes dont le phénotype est alors analysé.

20

25

30

5

10

15

Selon un deuxième mode de réalisation de l'invention, on augmente le taux d'expression d'enzyme α -1,4 glucanotransférase dans la plante, de façon à conduire à la production d'un amidon comprenant une amylopectine présentant un enrichissement en chaînes comportant au moins 9 résidus de glucose par rapport à un amidon produit naturellement, ladite enzyme α -1,4 glucanotransférase étant identique à l'enzyme α -1,4 glucanotransférase endogène ou étant d'origine hétérologue.

L'augmentation du taux d'enzyme α-1,4 glucanotransférase peut être notamment réalisée selon le procédé comprenant les étapes consistant à :

a) construire un vecteur d'expression comprenant une séguence nucléotidique codant pour une enzyme α -1,4 glucanotransférase, qui

peut être une enzyme α -1,4 glucanotransférase identique à l'enzyme α -1,4 glucanotransférase endogène ou qui peut être d'origine hétérologue ;

- b) transformer une cellule de plante avec ledit vecteur d'expression;
- c) régénérer la plante à partir de la cellule transformée à l'étape b), ladite plante transgénique ainsi obtenue produisant un amidon comprenant une amylopectine dont la distribution des longueurs de chaînes est altérée, notamment dans le sens d'un enrichissement en chaînes comportant au moins 9 résidus de glucose.

De manière avantageuse, ladite cellule de plante transformée selon l'étape b) est également transformée par des séquences nucléotidiques codant pour des enzymes affectant la répartition de la longueur des oligosaccharides produits lors du métabolisme de l'amidon, telles que les phosphorylases et les amylases. De manière préférentielle, l'enzyme α -1,4 glucanotransférase visée est une enzyme D.

Ladite séquence nucléotidique codant pour une enzyme α -1,4 glucanotransférase peut être d'origine hétérologue. Elle peut ainsi correspondre notamment à une enzyme choisie parmi l'enzyme D de la pomme de terre (Takaha et al, 1993) ou l'enzyme D de *Chlamydomonas reinhardtii*.

20

5

10

15

Est également compris dans l'invention un acide nucléique comprenant une séquence nucléotidique choisie parmi la séquence SEQ ID n° 1, une séquence homologue et un fragment de cette séquence codant pour une protéine présentant une activité enzymatique d'α-1,4 glucanotransférase.

25

L'invention comprend encore les séquences complémentaires de la séquence SEQ ID n°1 ou de ses homologues et fragment, pouvant servir de séquences antisens dans le procédé de l'invention.

La séquence SEQ ID n° 1 représente un fragment d'ADN génomique du gène codant pour l'enzyme D de *Chlamydomonas reinhardtii*.

30

Par "séquence nucléotidique homologue", on entend toute séquence nucléotidique qui diffère de la séquence SEQ ID n° 1 par substitution, délétion, et/ou insertion d'un nucléotide ou d'un nombre réduit de nucléotides, à des positions telles que ces séquences nucléotidiques

10

15

20

25

30

homologues codent pour des polypeptides homologues tels que définis ciaprès.

De préférence, une telle séquence nucléotidique homologue est identique à au moins 75 % de la séquence SEQ ID n° 1, de préférence moins 85 %, de préférence encore au moins 95 %.

De manière préférentielle, une telle séquence nucléotidique homologue hybride spécifiquement à la séquence complémentaire de la séquence SEQ ID n° 1, dans des conditions stringentes. Les paramètres définissant les conditions de stringence dépendent de la température à laquelle 50% des brins appariés se séparent (Tm).

Pour les séquences comprenant plus de 30 bases, Tm est définie par la relation : Tm=81,5+0,41(%G+C)+16,6Log(concentration en cations) – 0,63(%formamide) –(600/nombre de bases) (Sambrook et al, Molecular Cloning, A laboratory manual, Cold Spring Harbor laboratory Press, 1989, pages 9.54-9.62).

Pour les séquences de longueur inférieure à 30 bases, Tm est définie par la relation : Tm= 4(G+C) + 2 (A+T).

Dans des conditions de stringence appropriées, auxquelles les séquences aspécifiques n'hybrident pas, la température d'hybridation est approximativement de 5 à 30°C, de préférence de 5 à 10°C en dessous de Tm, et les tampons d'hybridation utilisés sont de préférence des solutions de force ionique élevée telle qu'une solution 6xSSC par exemple.

Par « fragment nucléotidique », on entend tout fragment de la séquence SEQ ID n° 1, ou des séquences nucléotidiques homologues de la séquence SEQID n° 1, qui code pour un peptide ou une protéine présentant une activité enzymatique d' α -1,4 glucanotransférase, telle que définie précédemment.

La présente invention a également pour objet un vecteur de clonage et/ou d'expression comprenant une séquence nucléotidique telle que définie précédemment.

La construction d'un vecteur d'expression mentionné ci-dessus est à la portée de l'homme du métier suivant les techniques standard. Ledit

10

15

20

25

30

vecteur d'expression peut contenir une séquence nucléotidique antisens du gène codant pour ladite enzyme α -1,4 glucanotransférase endogène, selon le premier mode de réalisation de l'invention, ou une séquence nucléotidique codant pour une enzyme α -1,4 glucanotransférase, selon le deuxième mode de réalisation de l'invention. La séquence nucléotidique codant pour une enzyme α -1,4 glucanotransférase est associée aux éléments permettant son expression dans la plante, à savoir notamment un promoteur et un terminateur de transcription.

La transformation de cellules végétales peut être réalisée par transfert des vecteurs susmentionnés dans les protoplastes, notamment après incubation de ces derniers dans une solution de polyéthylèneglycol en présence de cations divalents (Ca²⁺).

La transformation des cellules végétales peut également être réalisée par électroporation notamment selon la méthode décrite dans l'article de Fromm et al., 1986.

La transformation des cellules végétales peut également être réalisée par utilisation d'un canon à gène permettant la projection, à très grande vitesse, de particules métalliques recouvertes des séquences d'ADN d'intérêt, délivrant ainsi des gènes à l'intérieur du noyau cellulaire, notamment selon la technique décrite dans l'article de Sanford, (1988).

Une autre méthode de transformation des cellules végétales, est celle de la micro-injection cytoplasmique ou nucléaire.

Selon un mode de réalisation particulièrement préféré du procédé de l'invention, les cellules végétales sont transformées par biolistique, c'est-à-dire par projection, au moyen d'un canon à particules, de microparticules recouvertes des séquences nucléotidiques à transférer (J. Finner, 1992).

Selon un autre mode de réalisation du procédé de l'invention, les cellules végétales sont transformées par un vecteur selon l'invention, ledit hôte cellulaire étant susceptible d'infecter lesdites cellules végétales en permettant l'intégration dans le génome de ces dernières, des séquences d'ADN d'intérêt initialement contenues dans le génome du vecteur susmentionné.

Avantageusement, l'hôte cellulaire susmentionné utilisé est Agrobacterium tumefaciens, notamment selon la méthode décrite dans l'article

10

15

20

25

30

d'An et al., 1986, ou encore Agrobacterium rhizogenes, notamment selon la méthode décrite dans l'article de Jouanin et al., 1987.

De manière préférentielle, la transformation des cellules végétales est réalisée par le transfert de la région T du plasmide circulaire extra-chromosomique inducteur de tumeurs Ti d'Agrobacterium tumefaciens, en utilisant un système binaire (Watson et al.).

Pour ce faire, deux vecteurs sont construits. Dans un de ces vecteurs, la région d'ADN-T a été éliminée par délétion, à l'exception des bords droit et gauche, un gène marqueur étant inséré entre eux pour permettre la sélection dans les cellules de plantes. L'autre partenaire du système binaire est un plasmide Ti auxiliaire, plasmide modifié qui n'a plus d'ADN-T mais contient toujours les gènes de virulence *vir*, nécessaires à la transformation de la cellule végétale. Ce plasmide est maintenu dans *Agrobacterium*.

Parmi les terminateurs de transcription pouvant être utilisés, on peut citer le terminateur polyA 35S du virus de la mosaïque du chou-fleur (CaMV), décrit dans l'article de Franck et al., (1980), ou le terminateur polyA NOS, qui correspond à la région en 3' non codante du gène de la nopaline synthase du plasmide Ti d'Agrobacterium tumefaciens souche à nopaline (Depicker et al., 1982).

Parmi les promoteurs de transcription pouvant être utilisés, on peut citer notamment :

- le promoteur 35S, ou avantageusement le promoteur constitutif double 35S (pd35S) du CaMV, décrits dans l'article de Kay et al., 1987;
- le promoteur PCRU du gène de la cruciférine de radis permettant l'expression des séquences associées uniquement dans les semences (ou graines) de la plante transgénique obtenue;
- les promoteurs PGEA1 et PGEA6 correspondant à la région 5' non codante des gènes de la protéine de réserve de graines, GEA1 et GEA6, respectivement, d'*Arabidopsis thaliana* (Gaubier et al., 1993) et permettant une expression spécifique dans les graines ;
- le promoteur chimérique super-promoteur PSP (Ni M et al., 1995), constitué de la fusion d'une triple répétition d'un élément activateur transcriptionnel du promoteur du gène de l'octopine synthase d'*Agrobacterium*

tumefaciens, d'un élément activateur transcriptionnel du promoteur du gène de mannopine synthase et du promoteur mannopine synthase d'Agrobacterium tumefaciens :

- le promoteur actine du riz suivi de l'intron actine de riz (PAR-IAR) contenu dans le plasmide pAct1-F4 décrit par Mc Elroy et al., 1991 ;
 - le promoteur HMGW (High Molecular Weight Glutenine) d'orge ;
- le promoteur du gène de γzéine de maïs (Pγzéine) contenu dans le plasmide pγ63, et permettant l'expression dans l'albumen des semences de maïs.

10

15

20

25

30

5

Parmi les cellules végétales susceptibles d'être transformées conformément à la présente invention, on peut citer celles de la pomme de terre, du blé, du maïs et du riz.

La présente invention a également pour objet une plante ou partie de plante telle que notamment la pomme de terre, le blé, le maïs ou le riz, produisant un amidon modifié différant de l'amidon produit naturellement par les plantes par la distribution des longueurs de ses chaînes externes ou produisant du glycogène modifié différant du glycogène produit naturellement par la distribution de la longueur de ses chaînes externes, ladite plante ou partie de plante étant obtenue par le procédé de l'invention tel que décrit précédemment.

Par « partie de plante », on entend notamment les organes de réserve naturellement riches en amidon, tels que les graines ou les tubercules, ou les organes naturellement riches en glycogène, par exemple les grains de maïs doux. Par « partie de plante », on entend également les cellules de ladite plante.

L'invention concerne également un procédé d'obtention d'amidon modifié ou de glycogène modifié dans lequel on met en contact un amidon ou un glycogène avec une enzyme α-1,4 glucanotransférase.

La présente invention a plus particulièrement pour objet un procédé d'obtention d'amidon modifié différant de l'amidon produit

10

15

20

naturellement par les plantes par la distribution des longueurs de ses chaînes externes, dans lequel :

- on extrait l'amidon modifié à partir des plantes ou parties de plantes obtenues selon le procédé de l'invention. tel que décrit précédemment.
- ou on met en contact un amidon, préalablement extrait de plantes ou parties de plantes puis solubilisé, avec une enzyme α-1,4 glucanotransférase, en présence de polysaccharides ou d'oligosaccharides éventuellement modifiés.

L'extraction de cet amidon est réalisée selon les techniques standard connues de l'homme du métier. La solubilisation de l'amidon est également connue de l'homme du métier et peut être réalisée par trempage et fractionnement du grain d'amidon (Whistler et al. (1967)), ou par exemple par chauffage. De manière alternative, on peut utiliser des enzymes destructurant l'amidon, telles que les amylases.

Selon un mode de réalisation de l'invention, on met en contact ledit amidon solubilisé avec une enzyme α -1,4 glucanotransférase, telle qu'une enzyme D, en présence de saccharides. Les dits saccharides peuvent être en particulier des oligosaccharides modifiés chimiquement, de façon à modifier les propriétés de l'amidon, par exemple sa digestibilité.

De manière avantageuse, on peut ajouter à l'enzyme α -1,4 glucanotransférase des enzymes affectant la répartition de la longueur des oligosaccharides produits lors du métabolisme de l'amidon, telles que les phosphorylases et les amylases.

25

La présente invention a également pour objet un procédé d'obtention de glycogène modifié différant du glycogène produit naturellement (par les plantes ou par un organisme animal) par la distribution des longueurs de ses chaînes externes, dans lequel :

30

- on extrait le glycogène modifié à partir des plantes ou parties de plantes obtenues selon le procédé de l'invention. tel que décrit précédemment.

10

15

20

25

30

ou on met en contact un glycogène (d'origine végétale ou animale) avec une enzyme α -1,4 glucanotransférase, en présence de polysaccharides ou d'oligosaccharides éventuellement modifiés.

Ladite enzyme α -1,4 glucanotransférase, telle qu'une enzyme D, mise en contact avec l'amidon ou le glycogène, peut provenir de la même espèce de plante que celle dont on extrait l'amidon ou peut avoir une origine hétérologue. On peut en particulier choisir l'enzyme D parmi l'enzyme D de la pomme de terre (Takaha et al, 1993) ou l'enzyme D de *Chlamydomonas reinhardtii* de 62 kD telle que définie ci-après. De manière avantageuse l'enzyme D utilisée est thermostable.

L'enzyme D de *Chlamydomonas reinhardtii* est purifiée par le procédé comprenant les étapes consistant à :

- centrifuger la souche Chlamydomonas reinhardtii;
- précipiter la fraction acellulaire au sulfate de protamine ;
- passer le surnageant obtenu à l'étape précédente sur une chromatographie d'échange d'anions ;
- soumettre la fraction non retenue à l'étape précédente à une précipitation différentielle au sulfate d'ammonium ;
- soumettre le surnageant obtenu à l'étape précédente à une chromatographie de tamisage moléculaire ;
- concentrer par une chromatographie d'échange de cations le culot obtenu à l'étape précédente.

L'enzyme D de *Chlamydomonas reinhardtii* purifiée ainsi obtenue a un poids moléculaire de 62kD. Plus généralement, on peut utiliser, comme protéine présentant une activité enzymatique α-1,4 glucanotransférase, une protéine ou un peptide codé par un acide nucléique comprenant une séquence nucléotidique choisie parmi la séquence SEQ ID n° 1, une séquence homologue ou un fragment de cette séquence.

La présente invention a également pour objet l'amidon modifié différant de l'amidon produit naturellement par les plantes par la distribution

10

15

20

25

30

des longueurs de ses chaînes, ledit amidon modifié étant obtenu par le procédé de l'invention. En particulier l'amidon modifié obtenu par extraction et solubilisation de l'amidon de plantes ou parties de plantes, puis mise en contact dudit amidon solubilisé avec une enzyme α -1,4 glucanotransférase, éventuellement en présence de saccharides, comporte une amylopectine dont la distribution des longueurs des chaînes externes est modifiée par rapport à un amidon produit naturellement.

La présente invention a également pour objet le glycogène modifié différant du glycogène produit naturellement (par exemple par les plantes, mais aussi du glycogène d'origine animale), par la distribution des longueurs de ses chaînes, ledit glycogène modifié étant obtenu par le procédé de l'invention.

L'amidon modifié conformément à la présente invention peut être utilisé directement ou hydrolysé afin de produire des oligosaccharides d'intérêt (en particulier le glucose). L'obtention d'amidon modifié conformément à l'invention peut permettre de diminuer les quantités d'enzymes nécessaires pour une telle hydrolyse.

Par ailleurs, l'amidon modifié conformément à l'invention peut être utilisé lors de la fabrication de divers aliments, en particulier en tant qu'additif augmentant la viscosité ou favorisant la formation d'un gel.

L'amidon modifié conformément à l'invention peut également être utilisé dans de nombreuses industries : industrie du papier et du carton, industrie des adhésifs, industrie textile, industrie pharmaceutique (pour la formulation des médicaments), etc.

L'amidon modifié conformément à l'invention peut également subir d'autres modifications, en particulier des modifications chimiques telles qu'un traitement acide, une oxydation, une estérification, etc avant son utilisation.

La présente invention a également pour objet l'utilisation de cet amidon modifié ou de ce glycogène modifié pour la préparation de produits dérivés, notamment de produits alimentaires. La présente invention a également pour objet les produits ainsi préparés comprenant de l'amidon modifié différant de l'amidon produit naturellement par les plantes par la longueur de ses chaînes externes ou du glycogène modifié différant du glycogène produit naturellement par la longueur de ses chaînes externes.

Les figures et exemples ci-après illustrent l'invention sans en limiter la portée.

10

15

5

LEGENDES DES FIGURES:

La <u>figure 1</u> représente un schéma simplifié du métabolisme de l'amidon jusqu'à présent connu de l'homme du métier.

Toutes les étapes décrites sont compartimentées dans le plaste.

- ①. Phosphoglucomutase
- ②. ADP-glucose pyrophosphorylase
- 3. Amidon synthétases solubles et liées
- Enzymes de branchement

20

25

30

- ⑤. Phosphorylase
- 6. Amylases, enzymes de débranchement, maltases
- ②. Hexokinase

Glc=glucose; Pi=phosphate inorganique

La <u>figure 2</u> représente un schéma simplifié de la synthèse d'amylopectine, dans lequel est mis en évidence le rôle de l'enzyme D.

Toutes les étapes décrites sont compartimentées dans le plaste :

- ①.Conversion du G-6-P en G-1P par la phosphoglucomutase plastidiale
- ②.Synthèse du glycosylnucléotide précurseur ADP-glucose par l'ADP-glucose pyrophosphorylase (AGPase)
 - ③. Elongation par les amidons synthétases solubles (SS)
 - ④ ramification par les enzymes de branchement (BE)

10

15

20

25

30

- ⑤. débranchement par l'isoamylase (DBE) et libération d'oligosaccharides (MOS)
- ©. réinsertion des oligosaccharides produits par débranchement par l'enzyme D.

WSP=Polysaccharides solubles dans l'eau ;
MOS=Maltooligosaccharides; G-6-P= glucose-6-phosphate ; Glc=glucose.

Le coût énergétique d'épissage par le DBE et l'enzyme D décrite dans cette invention est de 2 ATP par glucane clivé et réintroduit dans l'amylopectine en ® (WSP^{III}). Ce coût découle de la réactivation du glucose produit par l'enzyme D en ADP-glucose. Le pointillé tracé à partir de WSP^{III} illustre la possibilité offerte au polysaccharide de reservir de substrat d'élongation tant que la structure requise pour l'insolubilisation dans le grain n'aura pas été atteinte. L'entrée et la sortie du cycle sont illustrées par les flèches en traits gras et sont constituées d'une part par la synthèse d'ADP-glucose et d'autre part par la cristallisation et l'insolubilisation du polysaccharide à la surface du grain.

La synthèse d'amylose est postérieure à l'insolubilisation et se réalise exclusivement dans le granule.

La <u>figure 3A</u> représente la distribution des longueurs des oligosaccharides solubles non débranchés accumulés par la souche mutante JV45J de *Chlamydomonas reinhardtii*.

La <u>figure 3B</u> représente la distribution de longueurs des chaînes de l'amylopectine débranchée de la souche *Chlamydomonas reinhardtii* sauvage.

La <u>figure 3C</u> représente la distribution de longueurs des chaînes de l'amylopectine débranchée de la souche mutante JV45J *Chlamydomonas* reinhardtii.

La <u>figure 3D</u> représente la distribution de longueurs des chaînes de l'amylopectine débranchée de maïs « waxy » avec l'enzyme D pure de Chlamydomonas reinhardtii en l'absence d'oligosaccharides.

La <u>figure 3E</u> représente la distribution de longueurs du maltotriose incubé avec l'enzyme D pure de *Chlamydomonas reinhardtii*.

10

15

20

25

30

La <u>figure 4</u> représente l'incorporation de maltooligosaccharides sur l'amylopectine de la souche sauvage de *Chlamydomonas reinhardtii*.

La <u>figure 5</u> représente la séparation de l'amylopectine et de l'amylose des amidons de JV45J (*sta11-1*) et de 137C (*wt*) sur chromatographie de filtration sur gel CL-2B. Le mutant JV45J est représenté par l'amidon radiomarqué (DPM) et la souche 137C est représentée par l'absorbance.

EXEMPLES:

Les auteurs de la présente invention ont étudié la biosynthèse de l'amidon à partir d'un modèle approprié : l'algue *Chlamydomonas reinhardtii* (Buléon et al, 1997). En effet cet organisme unicellulaire stocke un amidon qui est identique à celui stocké dans l'albumen des céréales et contient en outre les mêmes enzymes de biosynthèse de l'amidon.

Les auteurs de la présente invention ont sélectionné un nouveau mutant de l'algue *Chlamydomonas reinhardtii* accumulant de petits oligosaccharides linéaires et présentant un taux de synthèse d'amidon réduit de 90% (Exemple 1).

L'amidon résiduel comporte une structure modifiée nouvelle caractérisée par un enrichissement en amylose et par une amylopectine dont les chaînes ultra-courtes (environ 2, 3, ou 4 résidus de glucose) sont surabondantes relativement aux chaînes de longueur moyenne (environ de 9 à 18 résidus de glucose) (<u>Exemples 2 et 3</u>).

Les auteurs de la présente invention ont en outre montré que ce mutant était dépourvu d'une protéine de 62kD normalement présente chez les souches sauvages de *Chlamydomonas reinhardtii*, ont identifié cette protéine comme étant une $4-\alpha$ -D-glucanotransférase (enzyme D), et ont mis en évidence de nouvelles fonctions de cette enzyme D vis-à-vis des polysaccharides (<u>Exemple 4</u>).

Ces résultats peuvent être mis à profit pour obtenir des plantes transgéniques productrice de polysaccharides (amidon, glycogène) modifiés (Exemple 5).

Les auteurs de la présente invention ont en outre mis en évidence le rôle de l'enzyme D dans la dégradation de malto-oligosaccharides par la phosphorylase (<u>Exemple 6</u>).

Les auteurs de la présente invention sont par ailleurs parvenus à cloner les séquences codant pour l'enzyme D de *Chlamydomonas reinhardtii* (Exemple 7).

Ils ont enfin montré que l'expression de la mutation pouvait varier en fonction des conditions physiologiques (Exemple 8).

10

5

EXEMPLE 1:

Isolement du mutant sta 11 de Chlamydomonas reinhardtii

Sélection de la souche JV45J de Chlamydomonas reinhardtii.

15

20

25

30

Au cours d'une mutagenèse UV (12 % de survie) réalisée sur la souche sauvage de référence 137C de Chlamydomonas reinhardtii, 5.104 plages cellulaires carencées en azote ont été criblées par une méthode de vaporisation d'iode (Delrue et al., 1992). Toutes les souches renfermant moins de 20 % de la quantité normale d'amidon accumulée par la souche 137C sont repérées par leur coloration jaune et ont été caractérisées. Un échantillon de cinq souches sauvages et sept mutants est inoculé en plage cellulaire sur un milieu carencé en azote. Les plages ont été vaporisées à deux reprises après cinq jours d'incubation en lumière vive continue. Les plages jaunes contiennent moins de 12 % de la quantité d'amidon accumulées par les plages noires. La teinte olive observée chez certaines plages peu colorées suggèrent l'existence d'un amidon résiduel enrichi en amylose. Parmi ces souches, ont été sélectionnées celles qui affichaient une complémentation en trans avec des mutants porteurs de sta-1, sta6-1 :: ARG7, sta7-1::ARG7, sta5-1 qui sont défectueux pour les loci codant pour la grosse et la petite sous-unité de l'AGPase (STA1 et STA6) pour l'isoamylase de 88 kDa (STA7) ou pour la phosphoglucomutase plastidiale (STA5). Seule une souche parmi les 5.104 colonies (JV45J) faisant preuve d'une réduction de 90 à 95 % de la quantité

d'amidon synthétisée en conditions d'accumulation (carence en azote) a été

retenue après cette sélection. Ce mutant a ensuite été croisé avec une souche sauvage et 257 produits de méiose ont respectivement classé en 119 souches de phénotype mutant pour 128 clones d'aspect sauvage.

Un nouveau type de mutant (JV45J), qui accumule 4 % de la quantité normale en amidon, a ainsi pu être isolé. Le caractère responsable du phénotype défectueux se comporte comme un caractère récessif mendélien au vu de la ségrégation après croisement, et définit un nouveau locus génétique nommé *STA11*, puisque la mutation complémente en trans et recombine avec l'ensemble des défectuosités testées.

10

5

EXEMPLE 2:

Caractérisation des polysaccharides du mutant sta11

15

Les polysaccharides présents dans les souches porteuses de *STA11* ont été isolés. En plus de l'amidon granulaire, les mutants *sta11-1* accumulent une quantité équivalente (5 %) de glucanes solubles, les maltooligosaccharides de petite taille (figure 3A).

20

25

30

La présence simultanée d'une fraction d'oligosaccharides et du phénotype "pauvre en amidon" a été retrouvée dans toutes les souches portant la mutation sta11-1 (n=50). La structure résiduelle de l'amidon granulaire a été mesurée par différentes techniques incluant l'analyse d'une diffraction grandangle aux rayons X , la microscopie électronique à transmission (TEM) et la microscopie électronique à balayage (SEM), la séparation de l'amylose et l'amylopectine par chromatographie sur gel filtration, la RMN (Résonnance Magnétique Nucléaire) du proton et le débranchement enzymatique sur l'amylose et l'amylopectine ainsi purifiées.

1. L'amidon granulaire

L'amidon granulaire et les glucanes solubles ont été analysés séparément. L'amidon dispersé dans le DMSO aqueux et délipidé par une précipitation avec quatre volumes d'éthanol a été resuspendu dans 10 mM

10

15

20

25

30

NaOH pour être ensuite fractionné par chromatographie de tamisage moléculaire sur gel de sépharose CL2B.

a) Composition en amylose et amlyopectine (filtration sur gel).

La séparation de l'amylopectine et de l'amylose est opérée par gel filtration de la souche mutante JV45J et la référence sauvage 137C. L'amidon dissous dans 10 mM NaOH a été fractionné par chromatographie de tamisage moléculaire selon la méthode décrite par Delrue et al. (1992). Un échantillon de chaque fraction a été coloré à l'iode et le spectre complet du complexe polysaccharide-iode a été enregistré. Des dosages à l'amyloglucosidase ont révélé la présence de 30 % d'amylose (15 % pour la référence sauvage). Relativement à la souche sauvage, l'amylopectine est caractérisée par une λ_{max} du complexe polysaccharide-iode qui s'est accru de 20 à 30 nm (de 550 à 570-580 nm). Cette dernière caractéristique est retrouvée dans un grand nombre d'amidons enrichis en amylose.

Les profils de filtration sur gel décrits montrent un doublement de la quantité d'amylose chez le mutant par rapport au sauvage ainsi qu'une modification apparente de la distribution en longueur de chaînes de la fraction amylosique. Une nouvelle analyse de ségrégation de l'amylopectine et de l'amylose sur chromatographie de filtration sur gel CL-2B a été réalisée à partir de 500µg d'amidon de JV45J (sta11-1) marqué au ¹⁴C et 10 mg d'amidon de 137C. Les résultats (Fig. 5) tendent à confirmer les données de l'étude de coségrégation, c'est-à-dire une diminution de la longueur des chaînes d'amylose produites par la souche JV45J; l'amylose apparaît donc comme plus abondante et de moindre masse.

Un comptage radioactif et l'absorbance sont déterminés pour chaque fraction. L'élution de la colonne s'effectue dans de la soude 10 mM.

b) forme des granules et structure cristalline

Les diffractogrammes des rayons X montrent un changement du réseau cristallin du type A sauvage de forte cristallinité vers un mélange de types A et B de cristallinités beaucoup plus faibles. La forme des granules est

particulièrement altérée et leur taille globale est réduite. En fait, la souche sauvage présente globalement des grains à surface lisse tandis que le mutant présente des grains de taille plus réduite avec une surface de grains rugueuse et irrégulière.

5

10

15

2. Les glucanes solubles : malto-oligosaccharide de petite taille

La fraction des glucanes solubles (WSP) a été soumise à une triple extraction au méthanol chloroforme. La phase aqueuse a été lyophilisée et le culot sec redissous dans un tampon et fractionné par chromatographie de tamisage moléculaire sur colonne de TSK-HW-50 comme l'ont décrit Mouille et al., 1996. Contrairement aux fractions solubles (WSP) purifiées à partir de mutants déficients en isoamylase, aucun phytoglycogène ou autre polysaccharide soluble de masse importante n'a été trouvé. Par contre, la fraction WSP accumulée par les mutants *sta11* est constituée exclusivement par des oligosacharides peu ramifiés (moins de 1, 5 % de branchements) de faible masse (figure 3A).

EXEMPLE 3:

Mise en évidence d'une modification de l'amylopectine.

20

Débranchement enzymatique à l'isoamylase et examen de la distribution de longueur de chaînes :

25

Les fractions amylose et amylopectine obtenues par chromatographie de tamisage moléculaire ont ensuite subi un débranchement enzymatique à l'isoamylase suivi d'une séparation électrophorétique des chaînes débranchées. Les résultats illustrés par la figure 3 établissent la nouveauté de la structure présentée par l'amylopectine de la souche JV45J. En effet, l'amylopectine présente un accroissement en chaînes traditionnellement absent de la structure.

30

Un marquage par l'APTS (acide 8-amino-1,3,6pyrènetrisulfonique) a été effectué sur les extrémités réductrices avant de séparer les chaînes en fonction de leur longueur sur gel de séquence. Alors

10

15

20

25

30

qu'aucun changement n'est détecté au niveau de la distribution des longueurs de chaînes de l'amylose, une modification significative de la distribution des très courtes longueurs de chaînes est observée pour l'amylopectine (figure 3C comparée à figure 3B).

La distribution de la longueur des chaînes de l'amylopectine des souches sauvage et mutante après débranchement à l'isoamylase, a été confirmée par électrophorèse capillaire des glucanes marqués à l'APTS selon la méthode décrite par O'Shea et al., 1996. Une modification significative de la distribution des très courtes chaînes est observée chez le mutant JV45J, comparativement à la souche sauvage. Une analyse soustractive, dans laquelle le pourcentage différentiel de la masse totale de chaque oligosaccharide est obtenu par soustraction de la distribution de longueur de chaîne des amylopectines débranchées, confirme l'enrichissement trouvé dans les mutants de la gamme des glucanes extra-courts (DP 3, 4, 5 aux dépends de DP6 à DP11). Ces données confirment l'action de l'enzyme D *in vivo* sur la structure de l'amylopectine.

EXEMPLE 4:

Nouvelles fonctions de l'enzyme D

1. Détection de la défectuosité enzymologique dans les mutants et action de l'enzyme D sur les polysaccharides.

La détection de la défectuosité a été réalisée selon une technique de zymogramme sous conditions dénaturantes (Mouille et al., 1996). De plus, une étude enzymologique détaillée a été effectuée en extraits bruts et semi-purifiés pour toutes les enzymes connues susceptibles de participer à la biosynthèse de l'amidon.

Cette étude implique des mesures quantitatives et qualitatives des activités enzymatiques, parallèlement à des caractérisations cinétiques et des analyses des profils d'élution sur colonnes Mono-Q échangeuse d'anion (chromatographie FLPC). Les enzymes testées sont les suivantes : ADP-glucose pyrophosphorylase, phosphoglucomutase, amidon synthétase soluble

I, amidon synthétase soluble II, amidon synthétase liée au granule, enzymes de branchement (deux types), enzymes de débranchement (pullulanase et isoamylase), phosphorylases et toutes les hydrolases de l'amidon qui peuvent être détectées dans des gels de zymogramme contenant de l'amidon. Aucune différence qualitative ou quantitative de ces activités enzymatiques n'a co-ségrégé avec le gène mutant.

Lors de la réalisation de zymogrammes en conditions dénaturantes, l'absence d'une bande de 62 kD se colorant en rouge foncé à l'iode a été visualisée dans les produits de méiose portant la mutation *sta11-1* sur zymogramme en présence d'amidon ou d'amylopectine alors que cette bande de 62 kD apparaît distinctement chez les ségrégeants sauvages (n=75). Selon la technique mise au point par Mouille et al., 1996), le polysaccharide d'une bande de gel a été élué, le produit a été soumis à une analyse RMN. Le spectre du proton de l'amylopectine incubée s'était considérablement modifiée. En fait, le signal bimodal du proton, initialement de 5,3 à 5,2 ppm a été remplacé par un signal monomodal à la même position de 5,2 ppm, dans les conditions standard de RMN.

2. Purification de l'enzyme et activité de transfert de glucanes.

20

25

30

5

10

15

Une purification nécessite 20 litres de culture d'une souche sauvage de *Chlamydomonas reinhardtii* en milieu TAP (Harris, 1989) pendant trois jours afin d'obtenir une densité cellulaire de 2 x 10⁶ cellules par ml. Après centrifugation à 3000 rpm pendant 10 minutes, le culot cellulaire est passé deux fois à la presse de French et immédiatement congelé à –80°C. Cet extrait brut décongelé est centrifugé 20 minutes à 1000 rpm à 4°C. Les protéines de l'extrait (350 à 500 mg) sont dosées par la méthode de Bradford (kit de dosage Bio-rad).

Le surnageant est précipité par de la protamine sulfate 5 % (40 µl par ml d'extrait 15 minutes dans la glace) puis centrifugé à 10000 rpm pendant 20 minutes à 4°C.

Le surnageant (200 à 400 mg de protéines) est injecté grâce à un programme de multi-injections sur une colonne échangeuse d'ions MonoQ

10

15

20

25

30

(Pharmacia HR 10/10 d'un volume de 9 ml, débit : 2 ml.min⁻¹) équilibrée dans un tampon acétate de sodium 50 mM, DTT 2 mM (pH 6 par l'acide acétique).

La fraction non retenue (40 à 70 mg) subit une première précipitation au sulfate d'ammonium 30 % (176 mg/ml) 45 minutes à 4°C puis est centrifugée à 1 000 rpm pendant 20 minutes.

Le surnageant (30 à 60 mg) est ensuite précipité à 50 % 45 minutes à 4°C (126 mg/ml) puis est centrifugé à 10000 rpm pendant 20 minutes.

Le culot (10 à 20 mg de protéines) est resuspendu dans 2 ml de tampon acétate de sodium 50 mM, DTT 2 mM pH 6 puis injecté sur gel filtration S 100 (FPLC; Pharmacia séphacryl 2,6 x 60 cm; débit : 2 ml.min⁻¹; volume de fraction : 2 ml; support alkyl dextran ponté par du N,N' méthylène bisacrylamide; gel sphérique d'un diamètre de 25 à 75 µm; gamme de fractionnement : 1000 à 10000) équilibrée dans le même tampon. Les fractions d'intérêt sont collectées 30 minutes après l'injection puis repérées par révélation de l'activité sur zymogrammes selon la technique décrite par Mouille et al., (1996). L'enzyme d'intérêt est retrouvée dans les fractions 14 à 26. Ces fractions sont rassemblées et concentrées à l'aide d'une colonne échangeuse de cations UnoS12 commercialisée par Bio-Rad (gel d'un volume de 15 x 68 mm greffé de groupes d'acide sulfonique) dans un tampon acétate de sodium 50mM, DTT 2 mM. L'enzyme disproportionnante est éluée par un gradient continu de NaCl (tampon acétate de sodium 50 mM, NaCl 1 M) et l'enzyme est récupérée dans les fractions correspondant à l'élution par le NaCl 50 %.

Toutes les colonnes sont effectuées en FPLC sur un appareil Pharmacia LCC-500.

L'enzyme pure a reproduit les effets observés sur l'amylopectine par RMN du proton. L'incubation d'amylopectine avec l'enzyme pure a conduit des changements importants dans la distribution des chaînes longues de l'amylopectine (figure 3D). L'action sur l'amylopectine a pu être précisée par débranchement du produit incubé avant et après traitement à la β-amylase.

Comme les β-amylases sont des enzymes processives qui digèrent sélectivement les chaînes extérieures des polysaccharides, le résultat obtenu montre que les modifications majeures sont restreintes aux chaînes

10

15

20

25

30

externes du polymère. Il est important de noter qu'aucun oligosaccharide n'est libéré dans le processus alors que la quantité de liaisons α -1,6 reste constante. L'enzyme de 62kD est donc une α -1,4 glucanotransférase dont la fonction est de cliver les liaisons α -1,4 présentes sur les chaînes externes du donneur amylopectine pour les transférer aux extrémités non réductrices de chaînes voisines extérieures de l'accepteur. Dans les plantes, les seules α -1,4 glucanotransférases connues pour être présentes lors de la synthèse de l'amidon, sont communément appelées enzymes D. Elles sont connues pour agir sur des oligosaccharides solubles longs d'au moins trois résidus glucose (maltotriose) pour donner des oligosaccharides de longueurs variables aux dépends de la formation du glucose. La réaction consiste en un clivage d'un glucane donneur et un transfert sur une chaîne récepteur.

L'action de l'enzyme de 62 kD identifiée a parallèlement été testée sur le glucose, le maltose, le maltotriose, le maltotetraose, le maltopentaose, le maltohexaose et le maltoheptaose : l'enzyme disproportionne avec succès tous les oligosaccharides plus longs que le maltose et le glucose, sur lesquels elle n'a aucune action. Ses effets sur le maltotriose ont été décrits à la figure 3E. Les très faibles quantités de maltose dans tous les cas confirment que l'enzyme obéit aux règles présentées précédemment définissant l'action des enzymes disproportionnantes.

Le protocole de purification de l'enzyme D peut être modifié, par exemple selon la variante suivante :

Le surnageant obtenu après centrifugation de l'extrait brut tel que décrit à l'exemple 3 est précipité par de la protamine sulfate (50 µl de protamine sulfate 10% par ml d'extrait 15 minutes dans la glace) puis centrifugé à 10000 rpm pendant 20 minutes à 4°C.

Le surnageant (200 à 400 mg de protéines) est ensuite injecté grâce à un programme de multi-injections sur une colonne échangeuse d'anions MonoQ (Pharmacia HR10/10 d'un volume de 9 ml, débit : 2ml.min⁻¹) couplée à une colonne échangeuse de cations UNO-S12 (BIO-RAD d'un volume de 12 ml, débit : 2 ml.min⁻¹). Ces deux colonnes sont équilibrées dans un tampon acétate de sodium 50mM, DTT 2mM (pH 6 par acide acétique).

10

15

20

25

L'élution se fait par un palier de 30 mn à 5% NaCl. Les fractions d'intérêt sont recueillies puis repérées par révélation de l'activité sur zymogrammes amidon.

300 µl d'échantillon sont déposés sur colonne d'affinité maltotriose (SIGMA : Maltotriose immobilisé sur de l'agarose. Volume : 1ml) équilibrée dans un tampon acétate de Sodium 50mM, DTT 2mM (pH 6 par acide acétique). La colonne est lavée par 2 ml de ce même tampon et l'élution se fait par un tampon acétate de sodium 50 mM, NaCl 1M.

	Activité totale	Activité spécifique
}	nmol/min	nmol/min/mg
avant colonne d'affinité	92.1	2046
après colonne d'affinité	13.95	93000
	Rendement	Facteur de purification
	15%	45%

L'activité ainsi purifiée se manifeste à un pH optimum entre pH5 et pH7.5 et diminue de facon significative au-dessus de pH9.

3. Incorporation d'oligosaccharides sur les chaînes externes de glycogène

L'incorporation de maltooligosaccharides marqués sur le glycogène, donne un exemple supplémentaire de l'activité de l'enzyme D mise en évidence sur l'amylopectine, avec la procédure du zymogramme. La co-élution de la bande à 62kD (enzyme-D) manifeste une activité enzymatique retrouvée dans les procédures zymogramme et tests quantitatifs de purification de l'enzyme. Une coségrégation entre la présence des 3 activités (production de glucose à partir de maltotriose, modification de l'amylopectine et incorporation de glucanes débranchés dans le glycogène) et l'allèle sauvage STA11 dans les individus issus des croisements entre les souches sauvage et mutante de Chlamydomonas a également été démontrée.

Pour la mise en évidence de l'incorporation de maltooligosaccharides marqués de longueur contrôlée (DP1 : glucose à DP7 : maltoheptaose), la procédure de zymogramme décrite à l'exemple 3 a été suivie : 100 et 300 µg d'extraits bruts de protéines ont été chargés sur des gels contenant du glycogène et mis à incuber séparément avec 2mM DP1 (glucose) à DP7 (maltoheptaose) ou sans malto-oligosaccharides (témoin négatif), pendant la nuit à température ambiante. L'apparition d'une bande à 62 kD avec la longueur croissante du substrat donneur montre que l'efficacité de transfert sur les chaînes externes de glycogène augmente avec la longueur de la chaîne donneuse. Aucun marquage n'est observé lorsque le maltotriose est utilisé comme substrat donneur, même à très forte concentration de substrat (20mM) et après une incubation prolongée (48h). Les glucanes plus longs que le maltotetraose définissent donc le substrat actuel préféré pour la réaction d'incorporation. Ceux-ci seraient produits in vivo au cours de la maturation de la pré-amylopectine par les isoamylases.

Le système zymogramme mime assez bien la synthèse de polysaccharide à la surface du granule d'amidon en ce qu'il permet aux oligosaccharides de diffuser librement dans un large volume de tampon tandis que le polysaccharide est retenu dans un petit volume du gel, là où se manifeste une forte activité enzymatique spécifique.

4. Nouvelle fonction polymérase de l'enzyme D.

20

25

30

15

5

10

Des oligosaccharides sont marqués radioactivement au ¹⁴C par débranchement *in vivo* de l'amylopectine marquée. Il a été vérifié que la distribution de la longueur des chaînes dans le mélange des chaînes débranchées correspondait à celle présentée à la figure 3B.

L'incorporation des oligosaccharides dans l'amylopectine (figure 4) ou le glycogène de foie de lapin a été mesurée avec succès, à des concentrations physiologiques en maltooligosaccharides. En effet, l'enzyme D a manifesté une activité polymérase très efficace sur le glycogène et sur l'amylopectine. Les substrats et produits de la réaction ont été séparés par chromatographie de tamisage moléculaire en gel de TSK-HW-50 (glycogène) ou en sépharose CL2B.

L'incorporation du marquage des maltooligosaccharides sur l'amylopectine fournit un essai plus fiable sur l'activité de l'enzyme D comparativement à la production de glucose.

Il a par ailleurs été mis en évidence que la polymérisation *in vitro* était localisée sur les chaînes externes de l'amylopectine. En effet, le signal de radioactivité incorporée dans le polysaccharide disparaît lorsque l'amylopectine qui a subi l'incorporation des oligosaccharides est mise en présence de β-amylase, enzyme spécifique des chaînes externes de l'amylopectine.

EXEMPLE 5:

Obtention de plantes de maïs transgéniques

10

15

20

25

30

5

A. Obtention et utilisation de cal de maïs comme cible pour la transformation génétique.

La transformation génétique du maïs, quelle que soit la méthode employée (électroporation ; biolistique, microfibres, canon à particules), requiert généralement l'utilisation de cellules indifférenciées en divisions rapides ayant conservé une aptitude à la régénération de plantes entières. Ce type de cellules compose le cal friable embryogène (dit de type II) de maïs.

Ces cals sont obtenus à partir d'embryons immatures de génotype H1 II ou (A188 x B73) selon la méthode et sur les milieux décrits par Armstrong (1994).Les cals ainsi obtenus sont multipliés et maintenus par repiquages successifs tous les quinze jours sur le milieu d'initiation.

Des plantules sont ensuite régénérées à partir de ces cals en modifiant l'équilibre hormonal et osmotique des cellules selon la méthode décrite par Vain et al (1989). Ces plantes sont ensuite acclimatées en serre où elles peuvent être croisées ou autofécondées.

B. Utilisation du canon à particules pour la transformation génétique du maïs.

Le paragraphe précédent décrit l'obtention et la régénération des lignées cellulaires à la transformation. On décrit ici une méthode de transformation génétique conduisant à l'intégration stable des gènes modifiés dans le génome de la plante. Cette méthode repose sur l'utilisation d'un canon à particules. Les cellules cibles sont des fragments de cals décrits dans le

10

15

20

25

30

paragraphe A. Ces fragments d'une surface de 10 à 20 mm² ont été disposés, 4 heures avant bombardement, à raison de 16 fragments par boîte au centre d'une boîte de Pétri contenant un milieu de culture identique au milieu d'initiation, additionné de 0,2 M de mannitol + 0,2 M de sorbitol. Les plasmides portant les séquences nucléotidiques à introduire telles que l'ADNc codant pour l'enzyme D de la pomme de terre (Takada et al., 1993) ou les séquences antisens obtenues à partir de cet ADNc sont purifiées sur colonne Qiagen, en suivant les instructions du fabricant. Ils sont ensuite précipités sur des particules de tungsten (M10) en suivant le protocole décrit par Klein et al (1987). Les particules ainsi enrobées sont projetées vers les cellules cibles à l'aide du canon et selon le protocole décrit par J. Finner (1992).

Les boîtes de cals ainsi bombardés sont ensuite scellées à l'aide de ®Scellofrais, puis cultivées à l'obscurité à 27°C. Le premier repiquage a lieu 24 heures après, puis tous les quinze jours pendant trois mois sur milieu identique au milieu d'initiation additionné d'un agent sélectif. Les agents sélectifs utilisables consistent généralement en composés actifs de certains herbicides (®Basta, ®Roundup) ou certains antibiotiques (Hygromycine, kanamycine, ...).

On obtient après trois mois ou parfois plus tôt, des cals dont la croissance n'est pas inhibée par l'agent de sélection, habituellement et majoritairement composés de cellules résultant de la division d'une cellule ayant intégré dans son patrimoine génétique une ou plusieurs copies du gène de sélection. La fréquence d'obtention de tels cals est d'environ 0,8 cal pour boîte bombardée.

Ces cals sont identifiés, individualisés, amplifiés puis cultivés de façon à régénérer des plantules. Afin d'éviter toute interférence avec des cellules non transformées, toutes ces opérations sont menées sur des milieux de culture contenant l'agent sélectif.

Les plantes ainsi régénérées sont acclimatées puis cultivées en serre où elles peuvent être croisées ou autofécondées.

C. Utilisation d'Agrobacterium tumefaciens pour la transformation génétique du maïs.

La technique utilisée est décrite par Ishida et al., 1996.

5

10

15

20

EXEMPLE 6:

Mise en évidence du rôle de l'enzyme D dans la dégradation de malto-oligosaccharides par la phosphorylase

Dans la bactérie, il est suggéré que l'amylomaltase, une α -1,4 glucanotranferase similaire à l'enzyme D, augmente la production de glucose-1-phosphate par la maltodextrine phosphorylase, en générant des glucanes assez longs (DP5) pour être utilisables par la phosphorylase (Boos et al., 1998). Une mesure de la production de glucose-1-phosphate à partir de maltotriose, maltotétraose, maltopentaose et maltoheptaose (2.5mM) en présence de 100 μ g d'extraits de souche sauvage (137C) et mutante ta11-1 (JV45J) de Chlamydomonas, a mis en évidence une stimulation d'un facteur 5 au moins, en présence d'enzyme D, de la dégradation du maltotetraose et du maltotriose par la phosphorylase. Sachant que la production de glucose-1-phosphate à partir de glucane de longueur DP5 est retrouvée à la fois chez les bactéries et les plantes, l'enzyme D pourrait également faciliter l'action de la phosphorylase chez les plantes.

EXEMPLE 7:

25

Clonage des séquences codant pour l'enzyme D

Une analyse préliminaire de dosage de gènes dans des souches diploïdes et triploïdes, sauvage et mutante respectivement, a permis d'établir une corrélation entre le nombre d'allèles sauvages *STA11* et la quantité d'enzyme correspondante.

30

L'isolement de séquences génomiques codant pour l'enzyme D de Chlamydomonas a suivi le protocole suivant : un alignement de séquences réalisé entre Solanum tuberosum, Streptococcus pneumoniae, Mycobacterium tuberculosis et Clostridium butyricum, a permis de choisir des oligonucléotides

correspondants aux régions conservées (régions 1 et 2), pour servir d'amorces à des réactions de PCR. Pour faciliter le clonage d'un éventuel fragment de PCR, une extension de 16 nucléotides contenant les séquences de restrictions de 3 enzymes différentes a été ajouté en 5' [EcoRI, SacII, NotI].

5

région 1	Région 2			
P.G.P.Y.G.I.G	R.I.D.H.F.R.G.F			
Oligonucléotide dégénéré correspondant	Oligonucléotide dégénéré correspondant			
⁵ [AGAATTCCGCGGCCGC]CCNGGYSC STAYGGYATYGG ³	⁵ [AGAATTCCGCGGCCGC]RAARCCV GCRAAATGRTCRATVCG ³ '			

Toutes les réactions de PCR ont été réalisées avec l'ADN polymérase *taq* de chez GibcoBRL Life Technologies, couplée à un anticorps et qui ne devient active qu'après un passage de 3 minutes à 94°C.

10

Les conditions optimales pour l'amplification spécifique de la région d'intérêt sont les suivantes: une concentration en MgCl₂ de 3 mM et la séquence de programmation qui suit :

- 3 minutes à 94°C
- 45 secondes à 94°C
- 30 secondes à 62°C
- 1 minute 30 secondes à 72°C
- répétition 35 fois des étapes 2 à 4
- 10 minutes à 72°C
- conservation à 4°C

20

25

15

Une bande d'environ 1,6 Kb a ainsi pu être amplifiée à partir d'ADN génomique.

Ce produit de PCR est extrait d'un gel TAE 0,8% selon le protocole "DNA Purification Kit" de PROLABO, et placé dans le site multiple de clonage du plasmide pBlueskipt II SK au site Notl. Une transformation de la souche d'*Escherichia coli* XL1-Blue rendue compétente permet alors l'amplification du clone. Un séquençage rapide des 1,6 Kb (entre les primers T3 et T7) suivant la méthode de Sanger a alors été réalisé (SEQ ID N°1).

Selon un protocole adapté, le clonage chez le mutant sta11-1 de la région correspondant au gène de l'enzyme D peut être réalisé, pour déterminer la nature de la mutation conduisant à l'absence de la protéine dans la cellule mutante. La mise en évidence de modifications allèle spécifique du profil de restriction de la souche mutée et l'étude de la coségrégation du polymorphisme de restriction et de la mutation chez les ségrégants d'un croisement entre une souche sauvage et une souche STA11 peuvent permettent de corréler définitivement le gène STA11 à l'enzyme D.

10

15

20

25

5

EXEMPLE 8:

Expression conditionnelle de la mutation

Une analyse comparative des souches sauvage et mutante sta11-1 en condition carencée en azote ou normale montre que l'expression du phénotype mutant sta11-1 est partiellement conditionnelle. Ceci indique que l'expressivité de la mutation sur le phénotype peut varier en fonction des conditions physiologiques pour un même organisme. Il est possible que ces variations d'expressivité du phénotype se retrouvent d'une espèce végétale à une autre. Il est possible de trouver des conditions dans lesquelles la baisse de la quantité d'amidon ne se produit pas alors que des modifications phénotypiques sont observées (présence d'oligosaccharides, modification de la structure de l'amylopectine).

Le tableau ci-après présente les résultats obtenus sur les phénotypes des souches sauvage et mutante lors de la synthèse de l'amidon de transition ou de stockage respectivement à partir de culture non carencée en azote (+N) et de culture carencée en azote (-N).

10

15

Phénotype des souches sauvage et mutante lors de la synthèse de l'amidon de transition ou de stockage :

Les valeurs listées sont la moyenne de trois mesures séparées dans une seule expérience.

Souche	Génotype	Арλ	max ^a	Amidon ^b		MOS ^c		Am % ^d	
		+N	-N	+N	-N	+N	-N	+N	-N
CO23	+	566	560	1.2	13	0.011	0.018	1	14
CO65	+	570	542	0.4	24.7	0.007	0.001	2	15
CO35	+	564	554	0.91	22.8	0.012	0.017	5	25
CO29	sta11-1	576	570	1	1.7	0.45	0.45	7	38
CO137	sta 1 1-1	572	564	2	0.83	0.3	0.17	10	25
CO214	sta	575	562	0.31	0.78	0.2	0.2	12	24

- a: Ap λmax, longueur d'onde de l'absorbance maximale d'un complexe polysaccharide iodé d'amylopectine purifiée par filtration sur gel.
 - ^b: quantité de polysaccharide insoluble, exprimée en μg.10⁻⁶ cellules, purifié par sédimentation (mesure par dosage standard de l'amyloglucosidase).
 - $^{\circ}$: MOS : quantité de malto-oligosaccharides solubles, exprimée $\mu g.10^{-6}$ cellules. 0.5 $\mu g.10^{-6}$ cellules correspond à une concentration plastidiale de 10 mM si tout le MOS devait être considéré comme étant du maltotriose
 - ^d : Le pourcentage d'amylose dans l'amidon purifié a été calculé par filtration sur gel des polysaccharides dispersés.

25

BIBLIOGRAPHIE

- An G.(1986), Plant Physiol. 81:86-91
- Armstrong et al., (1994), Maize handbook; M. Freeling, V. walbot Eds, 665-671
 - Bensen et a I., Janvier 1995, The Plant Cell, Vol. 7, 75-84
- Buléon et al., (1997), Plant Physiol., 115 :949-957
 - Das et al., March 1995, The Plant Cell, Vol. 7, 287-294
 - Delrue et al., (1992), J. Bacteriol., 174, 3612-3620
 - Depicker et al., (1982) J. Mol. Appl. Genet., 1, 561-573
 - Finner J. et al., (1992), Plant Cell Reports, 11, 323-328
- Franck et al., (1980) Cell. 21,285-294
 - Fromm M.E., Taylor L.P., Walbot V., (1986) Nature, vol. 319, 791-793
 - Gaubier et al., Mol. Gen., 238, 409-418 (1993)
 - Ishida et al., (1996), Nature biotechnology, 14, 745-750
 - Jouanin, Plant. Sci., 53, 53-63 (1987)
- Harris et al. (1989) San Diego: Academic Press, 25-63
 - Haseloff et al., Nature 334, 585-591, 1988
 - Kay, Science, (1987) 236, 1299-1302

- Klein et al., (1987), Nature, 327, 70-73
- Mc Elroy (1991) Mol. Gen. Genet. 231 : 150-160
 - McClintock, B. 1950, Proc. Natl. Acad. Sci. USA 36, 344-355
 - Mouille et al., (1996), Plant Cell 8, 1353-1366
 - Ni et al., Plnt J., (1995) 7, 661-676
 - O'Shea et al. (1996), electrophoresis 17, 681-688
- Sanford J.C., (1988) Trends in Biotechnology, 6, 299-302
 - Takaha et al., 1993, J. Biol. Chem. vol. 268, n° 2, 1391-1396
 - Takada et al., 1998, Planta, vol. 205, n° 3, 445-451
 - Vain et al., (1989), Plant Cell Tissue and Organ Culture, 18, 143-151.
 - Watson et al., ADN recombinant, Ed. De Boeck Université, p 273-292
- Whistler et al., (1967), Starch: chemistry and technology II Industrial aspects, Academic press, 432-458.

10

5

10

15

20

25

30

REVENDICATIONS

- 1. Procédé de modification de la distribution de la longueur des chaînes d'un amidon ou des chaînes d'un glycogène, dans lequel on augmente ou on diminue l'activité d'une enzyme α -1,4 glucanotransférase dans les cellules d'une plante de telle sorte que ladite plante produise un amidon modifié différant de l'amidon produit naturellement par les plantes par la distribution de la longueur de ses chaînes externes ou produise un glycogène modifié différant du glycogène produit naturellement par la distribution de la longueur de ses chaînes externes.
- 2. Procédé selon la revendication 1 dans lequel on diminue le taux d'expression d'enzyme α -1,4 glucanotransférase endogène de façon à conduire à la production d'amidon comprenant une amylopectine présentant un enrichissement des chaînes comportant moins de 6 résidus de glucose.
- 3. Procédé selon la revendication 2 comprenant les étapes consistant à :
- a) construire un vecteur d'expression comprenant une séquence nucléotidique antisens du gène codant pour ladite enzyme α -1,4 glucanotransférase ;
- b) transformer une cellule de plante avec ledit vecteur d'expression;
- c) régénérer la plante à partir de la cellule transformée à l'étape b, ladite plante transgénique ainsi obtenue produisant un amidon comprenant une amylopectine présentant un enrichissement des chaînes comportant moins de 6 résidus de glucose.
- 4. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite enzyme α -1,4 glucanotransférase est une enzyme D.
- 5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite enzyme α -1,4 glucanotransférase est une protéine comprenant une séquence d'acides aminés codée par la séquence

5

10

15

20

25

30

nucléotidique choisie parmi la séquence SEQ ID n° 1, ou une séquence homologue de celle-ci.

- 6. Plante ou partie de plante, telle que notamment pomme de terre, blé, maïs ou riz, produisant de l'amidon modifié différant de l'amidon produit naturellement par les plantes par la distribution de la longueur de ses chaînes externes ou produisant du glycogène modifié différant du glycogène produit naturellement par la distribution de la longueur de ses chaînes externes, ladite plante ou partie de plante étant obtenue par le procédé selon l'une quelconque des revendications précédentes.
- 7. Procédé d'obtention d'amidon modifié différant de l'amidon produit naturellement par les plantes par la distribution de la longueur de ses chaînes externes, dans lequel :
- on extrait l'amidon modifié à partir des plantes ou parties de plantes selon la revendication 6 ;
- ou on met en contact un amidon, préalablement extrait de plantes ou parties de plantes puis solubilisé, avec une enzyme α -1,4 glucanotransférase, en présence de polysaccharides ou d'oligosaccharides éventuellement modifiés.
- 8. Amidon modifié obtenu selon le procédé de la revendication 7.
- 9. Utilisation d'amidon modifié selon la revendication 8 pour la préparation de produits dérivés, notamment de produits alimentaires.
- 10. Produits contenant un amidon modifié selon la revendication 9.
- 11. Procédé d'obtention de glycogène modifié différant du glycogène produit naturellement par la distribution des longueurs de ses chaînes externes, dans lequel :
- on extrait le glycogène modifié à partir des plantes ou parties de plantes obtenues selon le procédé de l'invention, tel que décrit précédemment.
- ou on met en contact un glycogène avec une enzyme α -1,4 glucanotransférase, en présence de polysaccharides ou d'oligosaccharides éventuellement modifiés.

5

10

15

20

25

- 12. Enzyme D de *Chlamydomonas reinhardtii* purifiée par le procédé comprenant les étapes consistant à :
 - centrifuger la souche Chlamydomonas reinhardtii;
 - précipiter la fraction acellulaire au sulfate de protamine ;
- passer le surnageant obtenu à l'étape précédente sur une chromatographie d'échange d'anions ;
- soumettre la fraction non retenue à l'étape précédente à une précipitation différentielle au sulfate d'ammonium ;
- soumettre le surnageant obtenu à l'étape précédente à une chromatographie de tamisage moléculaire ;
- concentrer par une chromatographie d'échange de cations le culot obtenu à l'étape précédente.
- 13. Acide nucléique comprenant une séquence nucléotidique choisie parmi la séquence SEQ ID n° 1, et un fragment de cette séquence codant pour une protéine présentant une activité enzymatique d' α -1,4 glucanotransférase.
- 14. Acide nucléique comprenant une séquence complémentaire de la séquence telle que définie à la revendication 13.
- 15. Vecteur de clonage et/ou d'expression comprenant une séquence nucléotidique telle que définie dans la revendication 13 ou 14.
- 16. Protéine présentant une activité enzymatique d'α-1,4 glucanotransférase, comprenant une séquence d'acides aminés codée par une séquence nucléotidique telle que définie dans la revendication 13.
- 17. Utilisation d'un acide nucléique comprenant une séquence codant pour une enzyme α -1,4 glucanotransférase ou une séquence antisens de ladite séquence codant pour une enzyme α -1,4 glucanotransférase, pour modifier la distribution de la longueur des chaînes externes de l'amidon ou du glycogène.

1/5

FIG.1

- □ 2,5 mg/ml amylopectine
- o 1 mg/ml amylopectine
- △ 0,25 mg/ml amylopectine

FIG.5

- 1 -

LISTE DE SEQUENCES

```
<110> Biogemma
<120> Procédé d'obtention de polypeptides modifiés
<130> BFF 98/0267
<140>
<141>
<150> FR/9807589
<151> 1998-06-16
<160> 1
<170> PatentIn Ver. 2.1
<210> 1
<211> 1557
<212> ADN
<213> Chlamydomonas reinhardtii
<400> 1
cogggtgcgt acggtattgg cgatattggt gatgaggcca agcgcttcgt cgactggctc 60
geogaceacy geatgeagty etggeagety etgeogetyy tyccoccyga ecceatytae 120
tactcccct actcgggcac ggacgccaac tgcggcaacc cccttgtggt gagcattgag 180
gageteatea aggaeggaet getggagtte teggagaege eecegegegt geceategee 240
gacgttgact atcccgctgt ggccgcggcc aagctgcccc tgctcaagcg cgcggcgcag 300
cggctgctta aggaggaccg cttcacgcgg ctgcgggagg aatacctcaa gtaccgcaaa 360
gagcacccct gggtggagta cagcgcgctg tttgatgtgg cgcgcaacct gccggagctg 420
agccagttgg cgtggtggca gtggccggag cgttgcgctg cgcagaagga ggcgctcaag 480
gagttccggg agacaaacaa ggacgcaatt gacgagttcg ttgtgatcca gtacttcttc 540
gagaacagtg gaaggcgatc cgggtgggtt acggctgggg gtgagggtta ccgggagggt 600
ttggacgcca ggcttacggt gtccagccgg cccgcccgt tggcggcggg gaaacggcat 660
gcagggtggg ggcgtttgtg catggcctgg tgccacggac gtatggcgct gacatcacat 720
geogtgtgte gggtagegte tgeacgeage gagetggtge tetgtgeeta teageacace 780
gacccccacg cectegetea cactggteeg tggccatgtg cectgacect gtcacateeg 840
teettgettt tgeactgetg cagteetacg egaacggeaa gggeateaaa eteateggeg 900-
acatgccatc tacgtgggcg gccacagcgc agatgtgtgg ccaaccgcca cctgttcgag 960
etgaacgagg cggcctgccc gagcaggtca gcggagtgcc gccggacgcc ttctcagcaa 1020
```

- 2 -

tgcacggaat	ggggcatagc	tgtgcgctgg	agagttgggg	cgaggcgacg	attgggcatg	1140
gtggtggtgg	acacaggcgt	ccggtatccg	gagttacgag	ggagcaaggg	aaaggggtcg	1200
acaccgtgcg	tgcaggacgc	gcaagcaagc	cgtgcgccgc	tatctgtatt	acctggcgtt	1260
accgtgcgta	tgtgcgtagc	gcggcaggat	ggatgaagca	agggggctgg	cggcgctcag	1320
gcagccagta	ggaatatgag	cggggtgggg	cccacggtag	catacctcct	taacataacg	1380
gttcgccctg	ggactgaatc	gccgcgcctg	ctgccgtcac	caacaggcca	gctgtggggc	1440
agcccgcttt	acaagtggcc	ggcccacaag	aaggagggct	tcaagtggtg	gacggcgcgc	1500
atggcccgga	ccctggagct	gtacgacgag	tgccggatcg	accatttcqc	caatttc	1557

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/82 C12N C12N9/10 A01H5/00 //C12R1:89 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N A01H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ' Relevant to claim No. X WO 96 27674 A (INST GENBIOLOGISCHE 1-4,6-11,17FORSCHUNG ; KOSSMANN JENS (DE); SPRINGER FRANZI) 12 September 1996 (1996-09-12) the whole document Α BULEON A ET AL.: "Starches from A to C" 12 PLANT PHYSIOLOGY, vol. 115, no. 3, November 1997 (1997-11), pages 949-957, XP002096248 cited in the application the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international

- filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but
- later than the priority date claimed
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Date of mailing of the international search report

"&" document member of the same patent family

Date of the actual completion of the international search

31 August 1999

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

06/09/1999

Authorized officer

Oderwald, H

INTERNATIONAL SEARCH REPORT

C.(Continue	inuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
	FUCHS B ET AL.: "Disproportionating transglycosylase (D-enzyme) in green algae and cyanobacteria: Partial purification and characterization." ZEITSCHRIFT FUER NATURFORSCHUNG SECTION C BIOSCIENCES, (1994) VOL. 49,NO. 3-4, pages 163-170, XP002096249 the whole document	12				

2

Inte	al	Application No	
PCTFF	₹	99/01446	

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9627674 A	12-09-1996	DE 19509695 A AU 5104196 A CA 2214736 A EP 0813605 A HU 9801855 A JP 11501213 T PL 322142 A	12-09-1996 23-09-1996 12-09-1996 29-12-1997 30-11-1998 02-02-1999 05-01-1998

*RAPPORT DE RECHE HE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12N15/82 C12N9/10

A01H5/00

//C12R1:89

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 C12N A01H

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS				
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées		
X	WO 96 27674 A (INST GENBIOLOGISCHE FORSCHUNG; KOSSMANN JENS (DE); SPRINGER FRANZI) 12 septembre 1996 (1996-09-12) le document en entier	1-4, 6-11,17		
A	BULÉON A ET AL.: "Starches from A to C" PLANT PHYSIOLOGY, vol. 115, no. 3, novembre 1997 (1997-11), pages 949-957, XP002096248 cité dans la demande le document en entier	12		
X Voir	la suite du cadre C pour la fin de la liste des documents X Les documents de famille	es de brevets sont indiqués en annexe		

٠ .	-
° Catégories spéciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent	"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
"E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	"X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieure autres documents de même nature, cette combinaison étant évidente pour une personne du métier "&" document qui fait partie de la même (amille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 31 août 1999	Date d'expédition du présent rapport de recherche internationale 06/09/1999
Nom et adresse postale de l'administration chargée de la recherche international Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Per Fonctionnaire autorisé Oderwald, H

2

RAPPORT DE RECHECHE INTERNATIONALE

ď	e Int	ernationale No
PCT/	FR	99/01446

C (eulte) D	CUMENTS CONSIDERES COMME PERTINENTS	99/01446
Catégorie °	Identification des documents cités, avec,le cas échéant, l'indicationdes passages pertinents	no. des revendications visées
·	FUCHS B ET AL.: "Disproportionating transglycosylase (D-enzyme) in green algae and cyanobacteria: Partial purification and characterization." ZEITSCHRIFT FUER NATURFORSCHUNG SECTION C	12
	BIOSCIENCES, (1994) VOL. 49,NO. 3-4, pages 163-170, XP002096249 le document en entier	
		·

'RAPPORT DE RECHESTHE INTERNATIONALE

Renseignements relatifs and me

s de tamilles de brevets

Document brevet cité	Date de	Membre(s) de la	Date de
au rapport de recherche	publication	familie de brevet(s)	publication
WO 9627674 A	12-09-1996	DE 19509695 A AU 5104196 A CA 2214736 A EP 0813605 A HU 9801855 A JP 11501213 T PL 322142 A	12-09-1996 23-09-1996 12-09-1996 29-12-1997 30-11-1998 02-02-1999 05-01-1998