FICHE DE COURS 10

ÉQUILIBRES ACIDO-BASIQUES

Ce que je dois être capable de faire après avoir appris mon cours

Donner la définition de Brönsted d'un acide et d'une base.
Définir par une équation de réaction simple un réaction de type acido-basique.
Présenter la notion de couple acido-basique et connaître ceux relatifs à l'eau.
Définir le produit ionique de l'eau et en donner la valeur.
Donner dans le cas général l'expression de la constante d'acidité associé à un couple acido-basique donné.
Connaître les valeurs des constantes d'acidité associées aux couples de l'eau.
Définir le pH d'une solution et son approximation dans le cas de solutions diluées.
Distinguer acides forts et faibles, bases fortes et faibles.
Établir et utiliser la formule d'Henderson afin de construire un diagramme de majorité et de prédominance.
Utiliser les constantes d'acidité associées à deux couples distincts pour établir l'expression de la constante de réaction acido-basique associée à ces deux couples.
Prévoir le sens d'évolution d'un équilibre acido-basique à partir d'une échelle de pK_a
Déterminer la composition finale d'un système chimique en utilisant éventuellement les méthodes de simplification adéquates.
Tracer et/ou interpréter un diagramme distribution des espèces.
Montrer que la détermination de la composition finale d'un système est fortement liée à la précision de la mesure du pH.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \Box$ Auto-protolyse de l'eau :

$$2H_2O(l) \rightleftharpoons H_3O^+(aq) + HO^-(aq)$$

et

$$K_{\rm e} = \frac{\left[H_3 O^+\right]_{\rm \acute{e}q} \left[H O^-\right]_{\rm \acute{e}q}}{(C^{\circ})^2} = 1,00 \times 10^{-14}$$

 $\hfill \Box$ Couple acido-basique :

$$AH(aq) + H_2O(l) {\ \Longleftrightarrow \ } A^-(aq) + H_3O^+(aq)$$

et

$$\mathrm{K_a} = \frac{\left[\mathrm{A}^-\right]_{\mathrm{\acute{e}q}} \left[\mathrm{H_3O}^+\right]_{\mathrm{\acute{e}q}}}{\left[\mathrm{AH}\right]_{\mathrm{\acute{e}q}} C^{\circ}}$$

 \Box Formule d'Henderson :

$$pH = pK_a + \log \left(\frac{\left[A^-\right]_{\acute{e}q}}{\left[AH\right]_{\acute{e}q}}\right)$$