Definition 1.

Let X, Y be topological spaces.

$$X * Y := X \times Y \times [0,1]/(\{X \times \{y\} \times \{1\} | y \in Y\} \cup \{\{x\} \times Y \times \{0\} | x \in x\})$$

is called the join of topological spaces.

This gives rise to a simple definition of a cone.

Definition 2.

Let X be topological space. The cone of X can be defined via $CX := \Delta_{top}^0 * X$.

Definition 3.

Let $G = (V_G, E_G)$, $H = (V_H, E_H)$ be directed graphs.

The join of G and H is defined via

$$G * H := (V_G \cup V_H, E_G \cup E_H \cup V_G \times V_H).$$

Definition 4.

Let G = (V, E) be directed graph, $v \notin V$. We define $(\{v\}, \emptyset) * G$, resp. $G * (\{v\}, \emptyset)$, to be the right, resp. left, cone of G.

Definition 5.

Let $M_{pos} = (M, \geq_M)$, $N_{pos} = (N, \geq_N)$ be partially ordered sets and \geq the transitive relation on $M \cup N$ generated by $a \geq b \Leftrightarrow a \geq_N b \vee a \geq_M b \vee a \in N \wedge b \in M$. We define $M_{pos} * N_{pos} := (M \cup N, \geq)$ to be the join of M_{pos} and N_{pos} .

Definition 6.

Let $M_{pos} = (M, \geq)$ be a partially ordered set, $p \notin M$. We define $M_{pos} * (p, eq_p)$, resp. $(p, eq_p) * M_{pos}$, to be the right, resp. left, cone of M_{pos} .

Remark 7.

The join behaves well with the nerve operation, namely we obtain for X, Y directed graphs, partially ordered sets or ordenary categories that NX * NY = N(X * Y).

Definition 8.

Let X, Y be simplicial sets. We define X * Y via the n-simplicies

$$(X*Y)_n := \bigcup_{\substack{i,j \ge -1\\i+j=n-1}} X_i \times Y_j = X_n \cup Y_n \cup \bigcup_{\substack{i,j \ge 0\\i+j=n-1}} X_i \times Y_j$$

where the face and degeneracy maps are defined componentwise.

The representation of X_n and Y_n inside the join give rise to natural inclusions.

Remark 9.

Let X, Y be simplicial sets. We obtain |X * Y| = |X| * |Y|.

Definition 10.

Let X be simplicial set. We define $(\Delta^0 * X)$, resp. $(X * \Delta^0)$, to be the right, resp. left, cone of X.

Beispiel 11.

Let $i, j \in \mathbb{N}$. The we have $\Delta^i * \Delta^j \simeq \Delta^{i+j+1}$ via the canonical morphism

$$(f,g) \mapsto (x \mapsto \begin{cases} f(x), x < i \\ g(x), \text{ otherwise} \end{cases}$$

Proposition 12.

Let X, Y be ∞ -categories. Then X * Y is an ∞ -category.

Notation 13.

Let X,Y,Z be simplicial sets, $p:X\to Y$ simplicial map.

$$Hom_p(Z*X,y) := \{ f \in Hom_{Set_{\Lambda}}(Z*X,Y) | f|_X = p \}.$$

Definition 14.

Let X, Y be simplicial sets, $p: X \to Y$ simplicial map. We define the overcategory of p via the universal property: For every simplicial set Z we obtain the equality

$$Hom_{Set_{\Delta}}(Z, Y/p) = Hom_{p}(Z * X, Y)$$

Proposition 15.

We explicitly express Y/p via it's n-simplices $(Y/p)_n := Hom_p(\Delta^n * X, Y)$.

Remark 16.

Set Y be an ∞ -category, p simplicial map into Y. Then Y/p is an ∞ -category as well.

Beispiel 17.

Let Y be topological space and $p: \Delta_{top}^0 \to Y$.

$$(Sing(Y)/Sing(p))_n = \{ f \in Hom(\Delta_{top}^{n+1}, Y) | f(\chi_{n+1}) \in p(\Delta_{top}^0) \}$$

Beispiel 18.

Let X, Y be partially ordered sets and $p: X \to Y$ an orderpreserving map.

$$(NY/Np)_n = \{(x_i)_{i \in [n]} | \forall 0 \le i \le j \le n, x \in X : x_i \le x_j \le p(X) \}$$