Application - Twitter data

University of California, Los Angeles ECE 219 Project 5

Joshua Hannan (UID: 805221851) James (Zach) Harris (UID: 105221897) Dennis Wang (UID: 105229662) Akash Deep Singh (UID: 405228294)

jhannan@g.ucla.edu
 jzharris@g.ucla.edu
 dmwang626@g.ucla.edu
akashdeepsingh@g.ucla.edu

Introduction

By using social network analysis, we will predict the future popularity of feeds corresponding to Super Bowl ILIX. Twitter, with its public discussion model, is chosen as the platform with which to perform this analysis. Our aim is to predict the future tweet activity of a particular hashtag knowing its current and previous tweet activity. More specifically, we aim to predict how popular the tweet activity of a particular hashtag is over the span of Super Bowl ILIX.

Part 1: Popularity Prediction

1. A first look at the data

The tweet data used in this project is separated into a train¹ and test² set. Each set contains six text files with information recorded by a particular hashtag specified by the file name. We take these files, extract the features we require for a particular section, and perform our analysis on these features. The twitter data was collected by querying hashtags realted to Super Bowl ILIX spanning a period starting from 2 weeks before the game to a week after the game.

Question 1 The training data was downloaded, parsed, and analyzed. Key features were extracted from every tweet object. Table 1 displays the average tweets per hour, followers per tweeter, and retweets per tweet for every hashtag. These statistics give us an idea of how to approach popularity prediction. The average tweets per hour varies per hashtag, and is the reason why we will be training a separate model for every hashtag.

shtag Avg tweets per hour Avg	followers per tweet Avg retweets p	per tweet
awks 292	1587	2.0
triots 41	1306	1.4
nfl 397	4356	1.5
triots 751	1697	1.8
sb49 1277	2343	2.5
bowl 2072	3652	2.4

Table 1. Popularity statistics of hashtags

Question 2 The number of tweets per hour for the #superbowl hashtag is shown in Figure 1. The number of tweets per hour for the #nfl hashtag is shown in Figure 2. It is noticeable from Figure 2 that there are short bursts of activity when there are many tweets followed by brief points in time when few tweets are

¹ https://ucla.box.com/s/24oxnhsoj6kpxhl6gyvuck25i3s4426d

² https://ucla.box.com/s/nkgqr39embdt67lod4pc289xe07eg6wr

present. There is a spike towards the beginning of the time period, which can be taken as discussion of the upcoming game. The second spike occurs after the game has ended, and can be taken as discussion of the results of the game. We will use these properties in the data to help us predict the number of tweets in the hour following the one which we sampled.

Fig. 1. tweets per hour for #superbowl

Fig. 2. tweets per hour for #nfl

2. Linear regression

Question 3 For this question, we divide our data into two sets, training and testing in the ratio of 9:1 i.e. 10% of all data is used as testing data. We report the MSE on both training and testing sets while the R-squared measure is reported on the testing set.

For the significance of features analysis, we use the **testing dataset** to fit our OLS model.

In the analysis, the features are numbered from x1 to x5, these correspond to:

- 1. **x1:** Total number of tweets
- 2. **x2:** Total number of retweets
- 3. **x3:** Total number of followers
- 4. **x4:** Maximum number of followers
- 5. **x5:** Time of Day

1. #gohawks

(a) MSE training: 803087.59

(b) MSE testing: 382082.60

4 J. Hannan, J. Harris, D. Wang, A.D. Singh

Hashtag: goha	awks						
X shape: (586							
y shape: (586	5,)						
MSE: train =	803087.597	78721752					
MSE: test = 3	382082.6092	2302024					
R2: 0.886763	37310828246						
		OLS Re	gressi 	on Re	sults 		
Dep. Variable	e:		у	R-squ	ared:		0.887
Model:			OLS	Adj.	R-squared:		0.876
Method:		Least Squa	res	F-sta	tistic:		84.58
Date:	Th	nu, 21 Mar 2	019	Prob	(F-statistic)	:	2.72e-24
Time: 11:34:45			:45	Log-L	ikelihood:		-340.32
No. Observati			59	AIC:			690.6
Df Residuals:	:		54	BIC:			701.0
Df Model:			5				
Covariance Ty	ype: 	nonrob	ust 				
	coef	std err		t	P> t	[0.025	0.975]
×1	-0.0299	0.060	-0.	498	0.620	-0.150	0.090
k2	0.0154	0.007	2.	154	0.036	0.001	0.030
x3	0.0005	8.52e-05	5.	384	0.000	0.000	0.001
x4	-0.0004	9.16e-05	-4.	866	0.000	-0.001	-0.000
x5	3.2400	0.965	3.	.359	0.001	1.306	5.174
======== Omnibus:		 8.	===== 613	Durbi	n-Watson:		 1.979
Prob(Omnibus)):	0.	013	Jarque	e-Bera (JB):		8.369
Skew:	-	0.	910	Prob(` '		0.0152
Kurtosis:		3.	302	Cond.	No		9.26e+04

Fig. 3. Feature analysis for #gohawks

2. #gopatriots

(a) MSE training: 18859.59

(b) MSE testing: 153476.51

Hashtag: gopatriots X shape: (586, 5) y shape: (586,) MSE: train = 18859.599533908844 MSE: test = 153476.51743000178 R2: 0.9637555236015055 OLS Regression Results ______ Dep. Variable: y R-squared: OLS Adj. R-squared:
Least Squares F-statistic: 0.960 287.2 Model: 0.960 287.2 1.35e-37 Method: Prob (F-statistic): Thu, 21 Mar 2019 Date: 11:34:45 Log-Likelihood: -184.05 Time: No. Observations: 59 AIC: 378.1 Df Residuals: 54 BIC: 388.5 Df Model: Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.975]
 1.2462
 0.313
 3.986
 0.000
 0.619
 1.873

 0.0432
 0.021
 2.090
 0.041
 0.002
 0.085

 -0.0013
 0.000
 -4.786
 0.000
 -0.002
 -0.001

 0.0019
 0.000
 6.037
 0.000
 0.001
 0.002

 0.0074
 0.115
 0.064
 0.949
 -0.223
 0.238
 x2 x3x4x5 _____ 23.859 Durbin-Watson:
0.000 Jarque-Bera (JB):
0.940 Prob(JB):
8.613 Cond. No. Omnibus:
Prob(Omnibus):
Skew: 1.760 86.139 1.97e-19 Skew: 2.31e+05 Kurtosis:

Fig. 4. Feature analysis for #gopatriots

3. #nfl

(a) MSE training: 187019.44

(b) MSE testing: 1574527.91

J. Hannan, J. Harris, D. Wang, A.D. Singh

Hashtag: nfl X shape: (586, 5) y shape: (586,) MSE: train = 187019.44258428575 MSE: test = 1574527.917336355 R2: 0.7482686765262225

6

OLS	Regression	Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	101.5 Least Squares Thu, 21 Mar 2019 11:34:45 59	Adj. R-squared: F-statistic: Prob (F-statisti Log-Likelihood: AIC: BIC:	0.748 0.725 32.10 c): 4.98e-15 -401.72 813.4 823.8
Covariance Type:	nonrobust	<u> </u>	
coe	f std err	t P> t	[0.025 0.975]
x1 -0.7349	9 0.292	-2.514 0.015	-1.321 -0.149
x2 -0.192	0.165	-1.168 0.248	-0.523 0.138
x3 0.000	3 5.18e-05	6.572 0.000	0.000 0.000
x4 -0.0003	3 5.86e-05	-5.738 0.000	-0.000 -0.000
x5 22.292	2.508	8.887 0.000	17.263 27.321
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.036	Durbin-Watson: Jarque-Bera (JB) Prob(JB): Cond. No.	2.474 : 5.976 0.0504 4.57e+05

Fig. 5. Feature analysis for #nfl

4. #patriots

(a) MSE training: 4490876.82

(b) MSE testing: 14134817.89

Hashtag: patriots X shape: (586, 5) y shape: (586,) MSE: train = 4490876.826579147 MSE: test = 14134817.891468015 R2: 0.921584767880181 OLS Regression Results
 Dep. Variable:
 y
 R-squared:
 0.922

 Model:
 OLS
 Adj. R-squared:
 0.914

 Method:
 Least Squares
 F-statistic:
 126.9

 Date:
 Thu, 21 Mar 2019
 Prob (F-statistic):
 1.41e-28

 Time:
 11:34:45
 Log-Likelihood:
 -385.31
 0.914
0.914
126.9
1 Mar 2019 Prob (F-statistic): 1.41e-28
11:34:45 Log-Likelihood: -385.31
59 AIC:
54 BIC: Time: No. Observations: Df Residuals: Df Model: Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975]
 -0.3302
 0.053
 -6.276
 0.000
 -0.436
 -0.225

 0.2375
 0.040
 5.923
 0.000
 0.157
 0.318

 4.659e-05
 2.98e-05
 1.562
 0.124
 -1.32e-05
 0.000

 -2.53e-05
 3.88e-05
 -0.653
 0.517
 -0.000
 5.24e-05

 8.3328
 1.814
 4.595
 0.000
 4.697
 11.969
 x2 **x**3 x5 ______

 Omnibus:
 27.602
 Durbin-Watson:
 2.062

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 48.002

 Skew:
 1.606
 Prob(JB):
 3.77e-11

 Kurtosis:
 6.034
 Cond. No.
 8.44e+05

Fig. 6. Feature analysis for #patriots

5. #sb49

(a) MSE training: 17791079.68

(b) MSE testing: 829389.08

x2

x3

x4x5

Omnibus: Prob(Omnibus):

Skew:

Hashtag: sb49 X shape: (586, 5) y shape: (586,) MSE: train = 17791079.6837765 MSE: test = 829389.0810928787 R2: 0.9700598249543628 _____ Dep. Variable: Model: Method: Least Squ Date: Thu, 21 Mar Time: No. Observations: Df Residuals: Df Model: Covariance Type:

0.2690 0.031 0.0309 0.009

OLS Regression Results

able:	Least Sq	y OLS	Adj.	uared: R-squared: atistic:		0.970 0.967 349.9
	-			(F-statistic	١.	7.81e-40
		34:45		Likelihood:	, .	-386.78
	11:		-	rkerinood:		
vations:		59	AIC:			783.6
als:		54	BIC:			794.0
		5				
e Type:	nonr	obust				
	f std err			P> t	[0.025	0.975]
0.269				0.000	0.208	0.330
0.030	9 0.009	3	.547	0.001	0.013	0.048
4.099e-0	5.75e-06	7	.129	0.000	2.95e-05	5.25e-05
-7.411e-0	5 1.64e-05	-4	.527	0.000	-0.000	-4.13e-05
1.897	5 2.002	0	.948	0.347	-2.116	5.911
	6	0.565	Durbi	in-Watson:		2.043
.bus):		0.000	Jarqu	ie-Bera (JB):		808.340
		2.386	Prob	(JB):		2.96e-176
	2	0.494	Cond	No.		1.34e+06

Fig. 7. Feature analysis for #sb49

6. #superbowl

(a) MSE training: 40603248.51

(b) MSE testing: 187781139.51

```
Hashtag: superbowl
X shape: (586, 5)
y shape: (586,)
MSE: train = 40603248.516695604
MSE: test = 187781139.5116839
R2: 0.4821481610512124
                     OLS Regression Results
______
Dep. Variable:
                              R-squared:
                                                        0.482
Model:
                          OLS Adj. R-squared:
                                                        0.434
Method:
                  Least Squares
                              F-statistic:
                                                        10.06
                              Prob (F-statistic):
                                                      7.69e-07
Date:
                Thu, 21 Mar 2019
Time:
                      11:34:45
                              Log-Likelihood:
                                                       -489.15
No. Observations:
                           59
                               AIC:
                                                        988.3
Df Residuals:
                           54
                               BIC:
                                                        998.7
Df Model:
                           5
Covariance Type:
                     nonrobust
            coef std err
                                    P>|t|
                                             [0.025
          0.3440 0.562 0.611 0.543 -0.784 1.472 -0.1972 0.193 -1.023 0.311 -0.584 0.189
x1
                         -1.023
0.563
0.94
x2
         2.066e-05 3.67e-05
                                    0.576 -5.29e-05
                                                     9.42e-05
x3
                                           -0.000
x4
           0.0001
                    0.000
                                      0.348
                                                        0.000
          18.1275
                    12.436
                                      0.151
                                              -6.806
x5
                                                        43.061
_____
                       107.665 Durbin-Watson:
Omnibus:
                                                        2.016
Prob(Omnibus):
                        0.000 Jarque-Bera (JB):
                                                      3334.391
Skew:
                        5.571
                              Prob(JB):
                                                         0.00
                        38,103 Cond. No.
                                                      1.04e+07
Kurtosis:
______
```

Fig. 8. Feature analysis for #superbowl

3. Feature analysis

Question 4 For this part, in addition to the previous 5 features, we have used 6 other features selected from the data. These include:

- 1. **Influence Score:** Users who have more influence can generate higher activity and hence more number of tweets
- 2. Number of replies: If a tweet has generated a large number of replies, it means that the topic is engaging and we can expect more tweets.
- 3. **Impressions:** Higher number of impressions can correlate to more tweet activity.
- 4. **Peak:** Peak of acceleration. refer to [XZJ⁺16]
- 5. **Acceleration:** The rate of change of the velocity of tweet stream where velocity is the rate of change of the volume of tweet stream. refer to [XZJ⁺16]
- 6. **User's status verified or not:** Verified users have more followers on an average and any activity by them will generate a greater response.

Again, for this question, we divide our data into two sets, training and testing in the ratio of 9:1 i.e. 10% of all data is used as testing data. We report the MSE on both training and testing sets while the R-squared measure is reported on the testing set.

10 J. Hannan, J. Harris, D. Wang, A.D. Singh

For the significance of features analysis, we use the **testing dataset** to fit our OLS model.

In the analysis, the features are numbered from x1 to x11, these correspond to:

- 1. **x1:** Total number of tweets
- 2. **x2:** Total number of retweets
- 3. **x3:** Total number of followers
- 4. x4: Maximum number of followers
- 5. **x5:** Influence Score
- 6. x6: Number of Replies
- 7. **x7:** Number of Impressions
- 8. **x8:** Peak
- 9. **x9:** Acceleration
- 10. **x10:** User's status: verified or not?
- 11. **x11:** Time of Day

1. #gohawks

- (a) MSE training: 689619.01
- (b) MSE testing: 366067.65
- (c) R-squared measure: 0.9427

X shape: (586, 11) y shape: (586,) MSE: train = 689619.0155376416 MSE: test = 366067.64967003796 R2: 0.9427297968350369 OLS Regression Results Dep. Variable: y R-squared: Adj. R-squared: 0.930 Model: OLS Method: Least Squares F-statistic: 71.83 Date: Thu, 21 Mar 2019 Prob (F-statistic): 6.05e-26 Log-Likelihood: Time: 11:49:02 -320.21 No. Observations: 59 AIC: 662.4 Df Residuals: 48 BIC: 685.3 Df Model: 11 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.975] 0.168 3.566 0.049 -2.339 0.001 0.261 0.024 -0.212 0.5986 -0.1142 x2 0.049 -0.016 0.000 8.142e-05 0.000 0.777 0.441 -0.000 x3-1.043 x4-0.0001 0.000 0.302 -0.000 0.000 11.5325 3.642 3.167 0.003 4.210 18.855 1.000 1.137 8.1708 8.167 0.322 -8.251 24.592 x6 3.304e-05 2.91e-05 0.261 -2.54e-05 9.15e-05 **x**7 x8 -3.711e-09 4.16e-09 -0.892 0.377 -1.21e-08 4.65e-09 **x**9 -0.0794 0.117 -0.680 0.500 -0.314 0.155 x10 9.5903 5.967 1.607 0.115 -2.407 21.587 0.6043 0.863 0.700 0.487 -1.132 2.340 x11 ______ Omnibus: 10.353 Durbin-Watson: 2.064 Prob(Omnibus): 0.006 Jarque-Bera (JB): Skew: 0.311 Prob(JB): 8.93e-06 Kurtosis: 6.012 Cond. No. 3.39e+10

Fig. 9. Feature analysis for #gohawks

2. #gopatriots

Hashtag: gohawks

(a) MSE training: 12561.03

(b) MSE testing: 108210.94

Hashtag: gopatriots

MSE: train = 12561.034976186296 MSE: test = 108210.94481689823 R2: 0.945243695605184

OLS Regression Results

========	OLD Regression Results								
Dep. Varia	able:		y R-so	guared:		0.945			
Model:			OLS Adj	. R-squared:		0.933			
Method:		Least Squ	ares F-st	tatistic:		75.33			
Date:	r	hu, 21 Mar	2019 Prob	o (F-statist	ic):	2.08e-26			
Time:		11:4	9:02 Log-	-Likelihood:		-196.23			
No. Observ	ations:		59 AIC	:		414.5			
Df Residua	als:		48 BIC	:		437.3			
Df Model:			11						
Covariance	e Type:	nonro	bust						
	coef	std err	t	P> t	[0.025	0.975]			
	0 1002	0.415		0.666	1 015	0.655			
x1 x2	-0.1803 0.1664	0.415 0.155	-0.434 1.073	0.889	-1.015 -0.145	0.655 0.478			
x2 x3	0.1664		0.316		-0.145 -0.005	0.478			
x3 x4	0.0009	0.003	0.515	0.754		0.007			
x4 x5	2.2300		0.313		-9.566	14.026			
x6	-1.4972	4.901	-0.305	0.761		8.357			
x6 x7	-0.0014		-0.497	0.761	-0.007				
x8	2.586e-09		1.230	0.022		6.81e-09			
x9	-0.0930	0.087	-1.073		-0.267	0.081			
x10	-54.2876	69.056	-0.786	0.436		84.560			
x11	0.4449	0.130	3.411	0.001	0.183	0.707			
========		.=======	========			========			
Omnibus:		50	.172 Durl	oin-Watson:		1.587			
Prob(Omnik	ous):	0	.000 Jaro	que-Bera (JB	3):	251.437			
Skew:	•	2) (JB):	•	2.52e-55			
Kurtosis:		12	.002 Cond	d. No.		7.56e+11			
========									

Fig. 10. Feature analysis for #gopatriots

3. **#nfl**

(a) MSE training: 163832.03

(b) MSE testing: 2707278.00

Hashtag: nfl X shape: (586, 11) y shape: (586,) MSE: train = 163832.03576963246 MSE: test = 2707278.003069478R2: 0.9223838132661387 OLS Regression Results ______ Dep. Variable: 0.922 R-squared: OLS Adj. R-squared:
Least Squares F-statistic:
Thu, 21 Mar 2019 Prob (F-statistic): Model: 0.905 51.86 8.12e-23 Method: Prob (F-statistic):
11:49:02 Log-Likelihood:
59 AIC: Prob (F-statistic): Date: Time: -367.01 No. Observations: 756.0 Df Residuals: 48 778.9 Df Model: 11 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.975] ______
 0.1378
 0.195
 0.706
 0.484
 -0.255
 0.530

 0.2012
 0.142
 1.416
 0.163
 -0.084
 0.487

 0.0004
 0.000
 2.849
 0.006
 0.000
 0.001
 0.1376 0.135 0.2012 0.142 0.0004 0.000 -0.0002 5.63e-05 -12.2182 7.493 11.9740 10.741 x30.000 0.110 -4.253 -0.000 -0.000 x4-1.631 x5 -27.283 2.847 0.110 -2...2 0.270 -9.622 0.099 -0.000 33.571 1.115 x7 -0.0002 0.000 -1.683 3.88e-05 0.099 -0.000 -1.93e-09 0.020 -2.19e-08 -1.93e-09 -1.193e-08 4.97e-09 x8 -2.399
 -0.1675
 0.157
 -1.066

 9.3487
 6.778
 1.379

 6.4120
 2.129
 3.012
 0.292 -0.483 0.174 -4.279 0.004 2.132 x9 0.148 x10 22.977 x11 10.692 ______ 4.105 Durbin-Watson: 1.950 Omnibus: Prob(Omnibus): 0.128 Jarque-Bera (JB): 3.560 0.601 Prob(JB): 3.071 Cond. No. Kurtosis: 3.44e+10

Fig. 11. Feature analysis for #nfl

4. #patriots

(a) MSE training: 4018431.97

(b) MSE testing: 9747408.08

14 J. Hannan, J. Harris, D. Wang, A.D. Singh

Hashtag: patriots
X shape: (586, 11)
y shape: (586,)
MSE: train = 40184

MSE: train = 4018431.979524465 MSE: test = 9747408.085532961 R2: 0.9608887502574825

OLS	Reg	ressi	on	Res	ults
-----	-----	-------	----	-----	------

Dep. Variable:	У	R-squared:	0.961
Model:	OLS	Adj. R-squared:	0.952
Method:	Least Squares	F-statistic:	107.2
Date:	Thu, 21 Mar 2019	Prob (F-statistic):	6.96e-30
Time:	11:49:02	Log-Likelihood:	-364.79
No. Observations:	59	AIC:	751.6
Df Residuals:	48	BIC:	774.4
Df Model:	11		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
x1	0.2212	0.139	1.595	0.117	-0.058	0.500
x2	-0.0987	0.203	-0.486	0.629	-0.507	0.310
x 3	-0.0002	0.000	-1.146	0.258	-0.000	0.000
x4	2.761e-05	3.12e-05	0.886	0.380	-3.51e-05	9.03e-05
x 5	5.1592	6.676	0.773	0.443	-8.263	18.582
x 6	1.9024	2.614	0.728	0.470	-3.353	7.158
x 7	0.0001	0.000	1.027	0.310	-0.000	0.000
x 8	7.691e-10	5.17e-09	0.149	0.882	-9.63e-09	1.12e-08
x 9	-0.0933	0.167	-0.560	0.578	-0.428	0.242
x10	26.1065	4.182	6.243	0.000	17.699	34.514
x11	2.8370	1.613	1.759	0.085	-0.407	6.080
=======	=========				=========	

 Omnibus:
 52.837
 Durbin-Watson:
 2.043

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 272.941

 Skew:
 2.460
 Prob(JB):
 5.39e-60

 Kurtosis:
 12.318
 Cond. No.
 5.88e+10

Fig. 12. Feature analysis for #patriots

5. #sb49

(a) MSE training: 16620518.44

(b) MSE testing: 2519209.44

Hashtag: sb49 X shape: (586, 11) y shape: (586,) MSE: train = 16620518.44350101 MSE: test = 2519209.4423165093R2: 0.9912782264602494 OLS Regression Results _____ Dep. Variable: y R-squared: 0.989 Model: OLS Adj. R-squared: Method: Least Squares
Thu, 21 Mar 2019 Least Squares F-statistic: 1.82e-45 Prob (F-statistic): Date: Log-Likelihood: Time: 11:49:02 -350.40 No. Observations: 59 AIC: 722.8 Df Residuals: 48 745.7 Df Model: 11 Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975]
 0.6637
 0.178
 3.738
 0.000
 0.307
 1.021

 0.1009
 0.021
 4.774
 0.000
 0.058
 0.143

 6.267e-05
 2.29e-05
 2.740
 0.009
 1.67e-05
 0.000

 -5.394e-05
 2.33e-05
 -2.319
 0.025
 -0.000
 -7.17e-06
 x1 x26.267e-05 2.29e-05 -5.394e-05 2.33e-05 -9.9948 2.993 -3.6774 1.635 x30.025 -0.000 0.002 -16.012 0.029 -6.965 -3.977 x5 -3.340 0.029 -6.965 0.237 -3.02e-05 x6 -2.249 -0.390 -1.128e-05 9.42e-06 **x**7 -1.197 7.66e-06 -6.352e-09 3.33e-09 -1.908 0.062 -1.3e-08 3.43e-10 -0.116 0.047 -0.425 **x**9 -0.0202 0.673 0.075 3.793 11.1295 3.649 3.050 0.004 18.466 x10 -0.959 0.210 x11 1.6518 1.299 1.272 4.263 ______ 18.273 Durbin-Watson: Omnibus: 0.000 Prob(Omnibus): Jarque-Bera (JB): 34.640 0.949 3.01e-08 Skew: Prob(JB): Kurtosis: 6.239 Cond. No. 2.55e+10

Fig. 13. Feature analysis for #sb49

6. #superbowl

(a) MSE training: 37809842.29

(b) MSE testing: 143138928.97

Hashtag: superbowl X shape: (586, 11) y shape: (586,) MSE: train = 37809842.29122893 MSE: test = 143138928.97942558 R2: 0.6052682417738593 OLS Regression Results Dep. Variable: R-squared: 0.605 Model: 0.515 Adj. R-squared: OLS Method: F-statistic: 6.691 Least Squares Date: Thu, 21 Mar 2019 Prob (F-statistic): 1.21e-06 Time: 11:49:02 Log-Likelihood: -481.14 No. Observations: 59 AIC: 984.3 Df Residuals: 48 BIC: 1007. Df Model: 11 Covariance Type: nonrobust [0.025 0.975] coef std err P>|t| 0.7341 0.801 0.917 0.364 -0.876 2.344 x2 1.2343 0.712 1.734 0.089 -0.197 2.666 x3 -0.0001 0.000 -0.498 -0.001 0.000 0.621 0.0002 0.000 1.390 -8.2e-05 0.000 x4 0.171 x5 -25.0769 29.488 -0.850 0.399 -84.367 34.213 13.4032 37.945 0.353 0.725 -62.891 89.698 х6 **x**7 6.719e-06 0.000 0.028 0.978 -0.000 0.000 -5.195e-08 0.088 -1.12e-07 7.98e-09 **x8** 2.98e-08 -1.743x9 0.3160 0.592 0.534 0.596 -0.874 1.506 x10 50.2192 16.559 3.033 0.004 16.924 83.514 x11 4.2407 12.789 0.332 0.742 -21.473 29.955 1.836 Omnibus: 104.118 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB): 3077.834 Skew: 5.265 Prob(JB): 0.00 Kurtosis: 36.781 Cond. No. 2.42e+11

Fig. 14. Feature analysis for #superbowl

Question 5 Top 3 features for each hashtag: Top 3 features for #gohawks:

- 1. Total number of tweets
- 2. Total number of retweets
- 3. Influence Score

Fig. 15. Top 3 features for #gohawks

Top 3 features for #gopatriots:

- 1. Acceleration
- 2. Peak
- 3. Total number of retweets

Fig. 16. Top 3 features for #gopatriots

Top 3 features for #nfl:

- 1. Total number of followers
- 2. Maximum number of followers
- 3. Imopressions

Fig. 17. Top 3 features for #nfl

Top 3 features for #patriots:

- 1. Total number of tweets
- 2. Total number of followers
- 3. Impressions

Fig. 18. Top 3 features for #patriots

Top 3 features for #sb49:

- 1. Total number of tweets
- 2. Total number of retweets
- 3. Influence Score

Fig. 19. Top 3 features for #sb49

Top 3 features for #superbowl:

- 1. Total number of retweets
- 2. Peak
- 3. Maximum number of followers

Fig. 20. Top 3 features for #superbowl

Analysis: The accuracy of the Linear Regression model increases if we use more features. Also, we can notice that some of the newly introduced features

have a higher significance than the old features. In all of the plots above, we can observe a linear relationship between the predictant and the value of feature. This means that the features are a able to predict the number of tweets in the next hour very well.

The regression coefficients are basically the slope of the line. By looking at the plots above we can see that the **regressions coefficients agree with the plots.**

4. Piece-wise linear regression

In this section, instead of dividing our data into train and test sets, we perform a 10-fold cross validation. We report the MSE on both training and validation sets while the R-squared measure is reported on the validation set only.

Question 6

- 1. #gohawks
 - (a) Before Feb. 1, 8:00 a.m.: 1-hour window
 - i. MSE training: 713515.05
 - ii. MSE validation: 971076.11
 - iii. R-squared measure: 0.8981
 - (b) During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window
 - i. MSE training: 71272.59
 - ii. MSE validation: 88566.25
 - iii. R-squared measure: 0.9717
 - (c) After Feb. 1, 8:00 p.m.: 1-hour window
 - i. MSE training: 1653.48
 - ii. MSE validation: 10163.34
 - iii. R-squared measure: 0.1904
- 2. #gopatriots
 - (a) Before Feb. 1, 8:00 a.m.: 1-hour window
 - i. MSE training: 1739.24
 - ii. MSE validation: 1972.76
 - iii. R-squared measure: 0.9296
 - (b) During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window
 - i. MSE training: 13528.63
 - ii. MSE validation: 21219.55
 - iii. R-squared measure: 0.7610
 - (c) After Feb. 1, 8:00 p.m.: 1-hour window
 - i. MSE training: 40.81
 - ii. MSE validation: 422.29
 - iii. R-squared measure: 0.0
- 3. **#nfl**
 - (a) Before Feb. 1, 8:00 a.m.: 1-hour window
 - i. MSE training: 65822.01
 - ii. MSE validation: 68272.52

iii. R-squared measure: 0.9067

(b) During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window

- i. MSE training: 20897.52
- ii. MSE validation: 25105.72
- iii. R-squared measure: 0.9214

(c) After Feb. 1, 8:00 p.m.: 1-hour window

- i. MSE training: 16540.17
- ii. MSE validation: 18256.87
- iii. R-squared measure: 0.9986

4. #patriots

(a) Before Feb. 1, 8:00 a.m.: 1-hour window

- i. MSE training: 335489.9
- ii. MSE validation: 480760.85
- iii. R-squared measure: 0.9306

(b) During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window

- i. MSE training: 665369.2
- ii. MSE validation: 768002.08
- iii. R-squared measure: 0.8908

(c) After Feb. 1, 8:00 p.m.: 1-hour window

- i. MSE training: 10928.53
- ii. MSE validation: 556520.27
- iii. R-squared measure: 0.9044

5. #sb49

(a) Before Feb. 1, 8:00 a.m.: 1-hour window

- i. MSE training: 6810.38
- ii. MSE validation: 7985.99
- iii. R-squared measure: 0.8963

(b) During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window

- i. MSE training: 1298290.43
- ii. MSE validation: 1841917.33
- iii. R-squared measure: 0.9695

(c) After Feb. 1, 8:00 p.m.: 1-hour window

- i. MSE training: 72039.19
- ii. MSE validation: 129386.66
- iii. R-squared measure: 0.8758

6. #superbowl

(a) Before Feb. 1, 8:00 a.m.: 1-hour window

- i. MSE training: 511103.87
- ii. MSE validation: 658401.39
- iii. R-squared measure: 0.9297

(b) During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window

- i. MSE training: 6763117.23
- ii. MSE validation: 20853554.36
- iii. R-squared measure: 0.9764

(c) After Feb. 1, 8:00 p.m.: 1-hour window

- i. MSE training: 109427.01
- ii. MSE validation: 207211.56
- iii. R-squared measure: 0.9723

Question 7

1. Before Feb. 1, 8:00 a.m.: 1-hour window

(a) MSE training: 4415470.09(b) MSE validation: 4734751.73(c) R-squared measure: 0.9185

2. During Feb. 1, 8:00 a.m. and 8:00 p.m.: 5-minute window

(a) MSE training: 17177842.96(b) MSE validation: 32165266.55(c) R-squared measure: 0.9879

3. After Feb. 1, 8:00 p.m.: 1-hour window

(a) MSE training: 435691.47(b) MSE validation: 1319725.92(c) R-squared measure: 0.8989

Comparison of combined model with individual models: From the statistics in Questions 6 and 7, we can conclude that the combined model performs better for the second time period, i.e. During Feb. 1, 8:00 a.m. and 8:00 p.m. based on the R-squared measure and MSE. However, for the time period After Feb. 1, 8:00 p.m., the combined model performs considerably worse. For the time period: Before Feb. 1, 8:00 a.m., both show similar performance.

Model	Before F	eb. 1, 8:00 a	a.m.	During Feb.	1, 8:00 a.m. a	After Feb. 1, 8:00 p.m.			
	MSE train	MSE valid	R^2	MSE train	MSE valid	R^2	MSE train	MSE valid	R^2
Combined	4415470.09	4734751.73	0.9185	17177842.96	32165266.55	0.9879	435691.47	1319725.92	0.8989
#gohawks	713515.05	971076.11	0.8981	71272.59	88566.25	0.9717	1653.48	10163.34	0.1904
#gopatriots	1739.24	1972.76	0.9296	13528.63	21219.55	0.7610	40.81	422.29	0.0
#nfl	65822.01	68272.52	0.9067	20897.52	25105.72	0.9214	16540.17	18256.87	0.9986
#patriots	335489.9	480760.85	0.9306	665369.2	768002.08	0.8908	10928.53	556520.27	0.9044
#sb49	6810.38	7985.99	0.8963	1298290.43	1841917.33	0.9695	72039.19	129386.66	0.8758
#superbowl	511103.87	658401.39	0.9297	6763117.23	20853554.36	0.9764	109427.01	207211.56	0.9723

Table 2. Comparison between the combined and individual models

5. Nonlinear regressions

Ensemble methods The Random Forest Regressor (RFR) and Gradient Boosting Regressor (GBR) ensemble regressors are used to predict the number of tweets in the next hour given features of the data in the present hour.

Question 8 A grid search was performed over the parameters shown in Table 3. 5-fold cross validation was used, and the 'neg_mean_squared_error' scoring function was used to minimize the MSE. The original five features from Question 3. Table 4 shows the top results from performing the grid search on the aggregated

training set. The smallest test MSE that the grid search found was 2.06e+08, which is incredibly large. One explanation for this result is that the regression algorithms could not fit the large spikes in the data, such as those in Figures 1 and 2.

Procedure	Options
max depth	10, 20, 40, 60, 80, 100, 200, and None
max features	auto and sqrt
min samples leaf	1, 2, and 4
min samples split	2, 5, and 10
number of estimators	200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000

Table 3. Parameters for the ensemble methods

It is worth noting the difference between the test and train MSEs. The train MSE is always at least 3 orders of magnitude lower than the test MSE. The models are clearly over-fitting on the training examples they are given, and are unable to generalize the dataset. This is the case for every grid search example in Question 10 as well. There are models in the grid search with extremely low train MSEs on the order of e-08, which support this theory. Fitting the models on tweets which occurred before, during, and after the game may improve these results.

Table 5 shows the best parameters for the Random Forest grid search. The best test MSEs are higher than the test MSEs of the Gradient Boosting Regressor, however their training MSEs are closer to original test score. This suggests that the Random Forest Regressor performs less overfitting on the dataset. The Random Forest Regressor is therefore the more stable classifier.

mean_test_s	core me	ean_train_score	etype	depth	feature	leaves	splits	estimators
2143 -2.0619776	+08	-56849.752986	GBR	60.0	sqrt	4	5	800
2866 -2.0652026	+08	-2931.518875	GBR	NaN	sqrt	4	5	1400
2695 -2.0666466	+08	-8750.317487	GBR	200.0	sqrt	4	10	1200
2139 -2.0741786	+08	-153.364510	GBR	60.0	sqrt	4	2	2000
1609 -2.0790536	+08	-130.429872	GBR	10.0	sqrt	4	5	2000
1598 -2.0884456	+08	-436.409037	GBR	10.0	sqrt	4	2	1800
1954 -2.0887846	+08	-18063.586477	GBR	40.0	sqrt	4	2	1000
2864 -2.0913916	+08	-20336.807186	GBR	NaN	sqrt	4	5	1000
1955 -2.0927286	+08	-7293.322956	GBR	40.0	sqrt	4	2	1200
1596 -2.0953786	+08	-2680.138808	3 GBR	10.0	sqrt	4	2	1400

Table 4. Tuned parameters from Gradient Boosted Regressor grid search

	mean_test_score	mean_train_score	type	depth	feature	leaves	splits	estimators
760	-2.374766e+08	-9.993287e+07	RFR	80.0	auto	2	5	200
30	-2.389683e+08	-8.405991e+07	RFR	10.0	auto	2	2	200
754	-2.390084e+08	-8.493333e+07	RFR	80.0	auto	2	2	1000
1292	-2.390505e+08	-8.770154e+07	RFR	NaN	auto	2	2	600
579	-2.391917e+08	-8.487251e+07	RFR	60.0	auto	2	2	2000
752	-2.392440e+08	-8.438472e+07	RFR	80.0	auto	2	2	600
935	-2.394018e+08	-8.413976e+07	RFR	100.0	auto	2	2	1200
934	-2.394504e+08	-8.489432e+07	RFR	100.0	auto	2	2	1000
758	-2.396859e + 08	-8.333865e+07	RFR	80.0	auto	2	2	1800
933	-2.396979e + 08	-8.538250e+07	RFR	100.0	auto	2	2	800

Table 5. Tuned parameters from Random Forest Regressor grid search

Question 9 The best estimator from Question 8 scored a mean test MSE of 2.06e+08. OLS over the entire dataset yields a cross-validation test MSE of 2.16e+08. The ensemble methods were able to perform better than the Ordinary Least Squares method, which is to be expected since they are able to learn a more complex distribution on the training data. However it was expected that the nonlinear regressors would perform significantly better than OLS. Further fine-tuning is required to determine if there is a combination of hyperparameters for the RF and GB Regressors which gets a lower test MSE for the aggregated training data.

Question 10 The cross-validation error improves when the grid search is performed again but on time periods corresponding to before, during, and after game day. In each of the three time periods, the best parameters of the estimator changed with respect to the original best estimator. This fact alone suggests that the behavior of tweeters changed during these three time periods.

Table 6 shows the best parameters from a grid search performed on the time period corresponding to before game day. The best scoring GBR estimator scored an average MSE of **5.7e+06**, which is two orders of magnitude lower than when the model was fitted on the entire period. The max depth, number of leaves, number of splits, and number of estimators is lower than the previous estimator. This suggests that predicting the number of tweets before game day is an easier task than predicting the number of tweets across the entire period.

	$\underline{\hspace{1.5cm}} \\ mean_test_score mean_train_score type depth feature leaves splits estimators type depth feature leaves splits depth feature leaves splits depth feature leaves splits depth feature depth de$									
141	-5.689844e+06	-5.711139e-01	GBR	10.0	sqrt	2	10	400		
321	-5.695530e + 06	-7.716574e-02	GBR	20.0	sqrt	2	10	400		
685	-5.742796e+06	-9.941796e-08	GBR	60.0	sqrt	2	10	1200		
140	-5.775355e+06	-2.062176e + 02	GBR	10.0	sqrt	2	10	200		
1223	-5.813588e+06	-5.018112e-07	GBR	200.0	sqrt	2	10	800		
1351	-5.815243e+06	-9.846533e-08	GBR	NaN	sqrt	1	2	400		
688	-5.863930e+06	-9.950413e-08	GBR	60.0	sqrt	2	10	1800		
502	-5.866801e+06	-5.576346e-04	GBR	40.0	sqrt	2	10	600		
142	-5.870778e + 06	-2.062107e-03	GBR	10.0	sqrt	2	10	600		
1225	-5.883174e + 06	-9.916614e-08	GBR	200.0	sqrt	2	10	1200		

 ${\bf Table~6.}~{\bf Tuned~parameters~from~grid~search,~before~game}$

Table 7 shows the best parameters from a grid search performed on the time period corresponding to during game day. The best scoring GBR estimator scored an average MSE of 2.8e+07, which is yet again lower than when the model was fitted on the entire period. The mean train scores are much lower than the mean train scores for before game day, which suggest that the model is likely over-fitting on this portion of the dataset. The lesser number of samples for this period may be playing a role in why the models are over-fitting.

	mean_test_score	mean_train_score	type	depth	feature	leaves	splits	estimators
270	-2.848297e+07	-9.900099e-08	GBR	20.0	sqrt	1	2	200
92	-2.908657e + 07	-9.872871e-08	GBR	10.0	sqrt	1	2	600
1375	-2.913824e+07	-9.808062e-08	GBR	NaN	sqrt	1	10	1200
1357	-2.946787e+07	-9.836797e-08	GBR	NaN	sqrt	1	2	1600
520	-2.952291e+07	-1.194109e+05	GBR	40.0	sqrt	4	5	200
845	-2.961121e+07	-9.886103e-08	GBR	80.0	sqrt	2	2	1200
279	-2.986481e+07	-9.895955e-08	GBR	20.0	sqrt	1	2	2000
1174	-2.990555e+07	-9.868195e-08	GBR	200.0	sqrt	1	2	1000
678	-2.991034e+07	-9.950403e-08	GBR	60.0	sqrt	2	5	1800
994	-3.014752e + 07	-9.901552e-08	GBR	100.0	sqrt	1	2	1000

Table 7. Tuned parameters from grid search, during game

Table 8 shows the best parameters from a grid search performed on the time period corresponding to after game day. The best scoring GBR estimator scored an average MSE of **3.3e+05**, which is the lowest of all periods. This could be due to the fact that the tweets become less sporadic after game day. During and before game day, there are outside factors that are affecting when people tweet, such as a sudden change in the game, or speculation beforehand.

$\overline{\hspace{1cm}} \\ \text{mean_test_score} \\ \text{mean_train_score} \\ \text{type} \\ \text{depth} \\ \text{feature} \\ \text{leaves} \\ \text{splits} \\ \text{estimators} \\ \text{depth} \\ \text$									
169	-331572.339233	-1.110052e-07	GBR	10.0	sqrt	4	5	2000	
1236	-336085.514476	-8.297246e-07	GBR	200.0	sqrt	4	2	1400	
700	-337121.354505	-4.634730e+02	GBR	60.0	sqrt	4	5	200	
344	-338091.737329	-3.207575e-04	GBR	20.0	sqrt	4	5	1000	
525	-338362.920420	-1.345420e-05	GBR	40.0	sqrt	4	5	1200	
1410	-338972.416711	-4.568849e + 02	GBR	NaN	sqrt	4	2	200	
890	-340831.686698	-6.154387e + 02	GBR	80.0	sqrt	4	10	200	
888	-343294.875047	-1.255015e-07	GBR	80.0	sqrt	4	5	1800	
521	-343313.807463	-7.297854e+00	GBR	40.0	sqrt	4	5	400	
1237	-344354.934503	-2.197247e-07	GBR	200.0	sqrt	4	2	1600	

 ${\bf Table~8.~Tuned~parameters~from~grid~search,~after~game}$

Neural network

Question 11 We fit a neural network of varying sizes to the entire data set with 1-hour windows. From table 9, we see that the best size is 10*(50,), or 10 layers with 50 neurons each. After that, we notice that there is severe overfitting, as 10*(100,) has very low training MSE but high validation MSE.

Layer sizes	Validation MSE	Train MSE
(50,50)	59745874037	9108725423
2*(100,)	3508811621	281766647889
3*(100,)	10658749042	30772545538
4*(100,)	8591186972	8205157949
10*(50,)	692571491	8027511120
10*(100,)	1038210307	2809171097

Table 9. Validation and Training MSEs for different neural networks

Question 12 By scaling the data, we see in Table 10 that the average MSEs are significantly lower for the suboptimal architectures. However, for the 10*(50,) architecture, we notice that the performance is not significantly better (only about a 3% improvement).

Layer sizes	Validation MSE	Train MSE
(50,50)	780638931	644161652
2*(100,)	662703464	376914873
3*(100,)	261528210	231483313
4*(100,)	319585942	189917573
10*(50,)	677650603	109547125
10*(100,)	697102371	70324031

Table 10. Validation and Training MSES on scaled data, neural network

Question 13 Using a grid search, we found different optimal architectures for each time period. These results are found in Table 11. These results make sense because there are the most tweets between 8am and 8pm, so having a deeper and wider architecture is better as it has a higher capacity to learn without overfitting. In contrast, the periods before and after the Super Bowl have fewer amount of tweets, so we would want a shallower or narrower architecture.

Time period	Architecture	Val MSE
Before 2/1, 8am	2*(200,)	4680478
Between 8am, 8pm	5*(250,)	37522544
After $2/1$, 8pm	5*(150,)	900373

Table 11. Grid search results for different time periods, neural network

6. Using 6x window to predict

In this section, we wish to predict the number of tweets in a 6x window for each time period. To do so, there are several methods we could use:

- 1. Predict window-by-window, so we get 6 numbers for each 6x window, and add all of them together.
- 2. Combine 6 windows together by adding / maxing in the train set (so we still have 5 features), then predict after fitting to this new train set.
- 3. Combine 6 windows by concatenating features (so we now have 30 features), then predict after fitting to this new train set.

The first two methods are very naïve, as we lose a lot of information. Thus, we chose to use the 3rd method.

Question 14 We tried multiple models, but it turned out that the vanilla linear regression performed the best.

Test file name	True # of tweets	Predicted # of tweets
sample0_period1	568	568
${\tt sample0_period2}$	13377	13407.92
${\tt sample0_period3}$	410	436.2
${\tt sample1_period1}$	2280	2280
${\tt sample1_period2}$	5549	5570.54
${\tt sample1_period3}$	305	432.34
${\tt sample2_period1}$	953	953
$sample2_period2$	152	187.62
sample2_period3	399	473.28

Table 12. Predicting # of tweets in test set

We also trained a linear regression to predict how many tweets would appear in the next time window using only the previous hour. The results are shown in Tables 13 - 21. As we can see, the predictions are significantly worse than when we used 30 features to predict the total amount of tweets in the test set.

	1	2	3	4	5	6	
True #	52	79	94	101	122	120	
Linear Regression	486.95	462.29	504.15	532.9	519.66	446.83	
Table 13. sampleO_period1							

	1	2	3	4	5	6
True #	3472	3834	2258	1455	1235	1123
Linear Regression	5402.06	5620.64	4021.69	3120.12	2993.65	2834.92
	- CD 11					

Table 14. sampleO_period2

	1	2	3	4	5	6	
True #							
Linear Regression	514.26	344.25	355.09	302.99	314.56	290.17	
Table 15, sample0 period3							

	1	2	3	4	5	6	
True #	203	180	202	294	555	846	
Linear Regression	591.83	567.96	576.28	657.88	824.76	1038.6	
Table 16, sample1 period1							

	1	2	3	4	5	6	
True #	960	995	870	960	861	903	
Linear Regression	1734.13	1817.2	1674.23	1979.44	1640.55	1732.81	
Table 17. sample1_period2							

	1	2	3	4	5	6		
True #	58	87	43	27	44	46		
Linear Regression	338.21	37.53	-79.15	-108.7	363.08	343.25		
Table 18. sample1_period3								

	1	2	3	4	5	6	
True #	401	141	102	144	104	61	
Linear Regression	605.77	478.23	456.98	477.07	432.08	419.06	
Table 19. sample2_period1							

	1	2	3	4	5	6	
True #							
Linear Regression	317.29	312.71	323.97	339.72	327.36	370.48	
Table 20 sample manie 40							

Table 20. sample2_period2

	1	2	3	4	5	6	
True #							
Linear Regression 48.52 56.63 -16.71 338.21 37.53 -7							
Table 21, sample2 period3							

Part 2: Fan Base Prediction

In this section we examine another characteristic of Twitter data: the geographic origin of tweets. The Twitter data corresponds to Superbowl XLIX in which teams (the New England Patriots and the Seattle Seahawks) with fan bases in the states of Massachusetts and Washington played. We use the textual content of tweets posted by users in either Massachusetts or Washington to predict their location. We limit the scope of our analysis to considering only tweets that include # superbowl, however our analysis could easily be extended to cover the entire dataset.

Defining Locations

To determine whether location of the tweet is in Washington or Massachusetts, we first extract the location of every tweet using the following location field extraction code:

```
location = json_obj['tweet']['user']['location']
locations.append(location)
```

We determined that the number of unique locations in the dataset is 179770 using the following code:

We then determined every unique location that is in Massachusetts or Washington using the following techniques. Firstly, we defined that locations must contain one of the following sub-strings:

```
[' MA',' WA', 'Massachusetts', 'Washington', 'Boston', 'Seattle']
```

We looked for strings that have a space before 'MA' or 'WA' to avoid selecting locations such as 'IOWA.' We then removed all locations from Washington DC / D.C. The umber of unique locations in MA or WA is 5119. The number of unique locations in MA or WA after removing DC is 4650. Having defined all the locations in Massachusetts and Washington, we selected all of the tweets originate from these states and extracted their textual data using the following code:

```
# get tweets that are only in MA and WA (not DC)
        location = json_obj['tweet']['user']['location']
2
        if not any(MAWA in location for MAWA in all_MA_WA_no_DC):
             continue
        if any (loc in location for loc in only_MA):
             # get textual data
             text = json_obj['tweet']['text']
             tweet_textual_data.append(text)
10
11
             # add location is in MA (0)
12
             tweet_location_labels.append(0)
13
             num_tweets_MA += 1
15
        if any (loc in location for loc in only_WA):
             if any (loc in location for loc in DC): # Check if contains DC
                 continue
             # get textual data
             text = json_obj['tweet']['text']
             tweet_textual_data.append(text)
             # add location is in WA (1)
             tweet_location_labels.append(1)
            num_tweets_WA += 1
```

The number of tweets from Massachusetts state is 19815 and the number of tweets from Washington state is 17243. Figure 21 is a plot of the number of tweets from Massachusetts vs Washington. We notice that the distribution is fairly equal between the two states.

Fig. 21. Number of tweets from Massachusetts vs Washington

Training and Testing Datasets

We defined our training dataset by taking 90% of the randomly shuffled textual data and location labels and defined our testing dataset by taking 10% of the randomly shuffled textual data and location labels. We performed this using the following code:

```
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split

X = np.asarray(tweet_textual_data)
y = tweet_location_labels

kf = KFold(n_splits=10, shuffle = True)

for trainset, testset in kf.split(X):
    X_train, X_test = X[trainset], X[testset]
y_train, y_test = y[trainset], y[testset]
```

We also experimented with using 66%/33%, 75%/25%, and 80%/20% training / testing splits, but we found that the results were approximately the same (if not worse, in the case of using a 66%/33% training / testing split).

Feature Extraction

Classification of the extracted Twitter textual data cannot be easily performed without first pre-processing the data. The textual data is first passed through a lemmatizer. The process of lemmatization uses vocabulary and morphological analysis to deconstruct each word into their base constituent, called a lemma.

After each document is lemmatized, frequently occurring words are removed by a dictionary of words called "stopwords". The english stopwords collection consists of 318 words that are too common in the English language to be of any use for classification. This collection includes the words "no, to, or, not, very, rather" and many others. All 318 words are removed from the Tweets.

After each lemmatized document is filtered by stopwords, features can be extracted. The frequency of each word used in the document is analyzed using the "Term Frequency-Inverse Document Frequency (TF-IDF)" metric. This metric measures the number of times a word is used in a single document, normalized over a function of how many times the word appears in the entire corpus. The following specs were used during lemmatization:

- Use the "english" stopwords of the CountVectorizer
- Use $\min_{d} df = 3$ for the CountVectorizer
- Exclude terms that are numbers (e.g. "123", "-45", "6.7", "5e07" etc.)
- Perform lemmatization with nltk.wordnet.WordNetLemmatizer and pos_tag

The resulting dimensions of the TF-IDF matrices are shown in Table 22.

Subset	TF-IDF Matrix shape
train	(33353, 6676)
test	(3705, 6676)

Table 22. Dimensions of TF-IDF matrices

Dimensionality Reduction

With large data sets, the dimensionality of the representation vectors will be extremely high, but our learning algorithms often are not efficient and do not perform well in high dimensions. This is referred to as the curse of dimensionality. To mitigate this, we can take advantage of the fact that our TF-IDF matrix is relatively sparse, so we can take a significantly smaller subset of data points that give us the most "information" about the data set as a whole. We used Latent

Semantic Indexing (LSI) and Non-negative Matrix Factorization (NMF) on our textual data.

To compare how each of these dimensionality-reducing algorithms performed, we compare their objective values: $\|X - U_k \Sigma_k V_k^T\|_F^2$ for LSI and $\|X - WH\|_F^2$ for NMF. For the training data, we get:

 $LSI_{train} = 25784.076295041883$ $NMF_{train} = 25678.749629641556$

and for the testing data we get

 $LSI_{test} = 2842.4320260810796$ $NMF_{test} = 2838.8071520811523$

In both cases, we see that LSI performed better, as it is a closer approximation to X than NMF is. This may be the case because LSI does not have any nonnegativity constraints, making it more flexible in the optimal $X_{reduced}$ found. In optimization terms, the LSI problem likely has a feasible set that contains a solution that is closer to the true X than the NMF problem, resulting in LSI being a better approximation. Furthermore, if there are a few ($\leq k$) terms that are significantly more important (i.e. have much higher singular values) than the others, then the SVD will give us a very accurate approximation to X because the information in X will be predominantly in the first k singular vectors and singular values. NMF will likely not be able to attain this level of accuracy because it is not directly computed using the SVD. As a result, we used LSI for all of our classification algorithms.

Classification Algorithms

In the following sections, we trained and tested different classifiers, namely soft and hard margin support vector machines, unregularized and regularized logistic classifiers, and Naïve Bayes classifiers, on our LSI dimension-reduced data set to predict the location of the author of a tweet. We treated this as a binary classification problem: users are either from Massachusetts or Washington. We then use various classification measures to determine how well each classifier performed.

Classification Measures To measure the performance of our classifiers, we look at the confusion matrix, ROC curve, accuracy score, precision and recall scores, and F-1 score.

1. SVM, Hard and Soft Margin Classifiers

A Linear Support Vector Machine (SVM) is a classifier that uses an optimal hyperplane to categorize data into separate classes.

In this report, we analyze the effects of a hard margin (when $\gamma \gg 1$) and a soft margin (when $\gamma \ll 1$). The performance scores of both the classifiers are plotted and compared in Tables 23 and 24. Fig. 22 and Fig. 23 show the Confusion matrices for hard margin linear SVM and soft margin linear SVM respectively. Fig. 24 and Fig. 25 depict the ROC curves for hard margin linear SVM and soft margin linear SVM respectively. The area under curve for the hard margin SVM is 0.8731 whereas it is 0.8596 for the soft margin SVM classifier.

Accuracy score: 0.787	3	Accuracy score:	0.5430
Precision score: 0.898	$\overline{32}$	Precision score:	0.6082
Recall score: 0.613	$\overline{32}$	Recall score:	0.0853
F-1 score: 0.728	88	F-1 score:	0.1497

Table 23. Hard Margin Linear SVM Table 24. Soft Margin Linear SVM

Fig. 22. Confusion matrix for linear SVM with hard margin ($\gamma = 1000$)

Fig. 23. Confusion matrix for linear SVM with soft margin ($\gamma = 0.0001$)

2. Logistic Regression without Regularization

We trained an unregularized logistic classifier on our training data set reduced by LSI. Fig. 26 and Fig. 27 show the confusion matrix and and ROC curve of our classifier. The area under the curve is 0.8745. Unregularized logistic classification had the following scores:

Accuracy	score:	0.7892
Precision	score:	0.8948
Recall	score:	0.6207
F-1	score:	0.7330

Fig. 24. ROC curve for linear SVM with hard margin ($\gamma = 1000$)

Fig. 26. Confusion matrix for unregularized Logistic Regression

Predicted label

Fig. 25. ROC curve for linear SVM with soft margin ($\gamma = 0.0001$)

Fig. 27. ROC curve for unregularized Logistic Regression

3. Logistic Regression With L1 and L2 Regularization Classifier

We trained two regularized logistic regressions with L1 and L2 regularization. Using 5-fold cross validation on the dimension-reduced-by-SVD training data, we found the optimal regularization strength C in the range $\{10^k | -3 \le k \le 3, k \in \mathbb{Z}\}$ for logistic regression with L1 and L2 regularization. We found that the best regularization strength for logistic regression with L1 regularization is 0.1. We found that the best regularization strength for logistic regression with L2 regularization is 0.01.

Fig. 28 and Fig. 29 show the confusion matrices of logistic regression with L1 and L2 regularization, respectively. Fig. 30 and Fig. 31 show the ROC curves of logistic regression with L1 and L2 regularization, respectively. The area under the curve for logistic regression with L1 regularization is 0.8746. The

area under the curve for logistic regression with L2 regularization is 0.8745. Logistic regression with L1 regularization had the following scores:

Accuracy score: 0.7889
Precision score: 0.8947
Recall score: 0.6202
F-1 score: 0.7326

Logistic regression with L2 regularization achieved:

Accuracy score: 0.7892
Precision score: 0.8948
Recall score: 0.6207
F-1 score: 0.7330

Fig. 28. Confusion matrix for logistic regression with L1 regularization

Fig. 29. Confusion matrix for logistic regression with L2 regularization

4. Naive Bayes Gaussian Classifier

We trained a Gaussian Naïve Bayes (NB) classifier on the train subset reduced using the LSI metric. Fig. 32 shows the confusion matrix after fitting. Fig. 33 shows the ROC of the classifier trained using the subset reduced by LSI. The Gaussian NB classifier had an ROC auc of 0.7896. The scores which the Gaussian NB classifier achieved when fitted with the LSI-reduced subset are the following:

Accuracy score: 0.7263

Precision score: 0.7437

Recall score: 0.6300

F-1 score: 0.6821

0.8 0.8

ROC curve for L2 Regularized Logistic Regression

 ${\bf Fig.\,30.}$ ROC curve for L1 Regularized Logistic Regression

 ${\bf Fig.\,31.}$ ROC curve for L2 Regularized Logistic Regression

sian NB from LSI reduction.

Fig. 32. Confusion matrix for Gaus-sian NB from LSI reduction.

Fig. 33. ROC curve for Gaussian NB from LSI reduction.

Analysis of Fan Base Prediction Classification Methods

Of the three main classes of classification algorithms that we implemented (SVM, logistic regression, and Gaussian NB), logistic regression demonstrated marginally better performance in general. The performance of the Gaussian NB is not as good as Logistic Regression or SVM, however. One reason why this might be the case is that the Gaussian NB assumes the data distribution to be fairly separable and to have a Gaussian probability distribution. Although these assumptions may be true in many real-world cases, we have not proven that they hold true for our corpus of textual data.

Part 3: Predicting ball possession during gameday using sentiment analysis

We analyzed the polarity and subjectivity of tweets before, after, and during game day using TextBlob. Figures 34 and 35 show the sentiment from the #gopatriots and #gohawks hashtags during game day, respectively. It is evident that these sentiments may be related to specific events that are occurring throughout the game. For example, if the Patriots are in possession of the ball, the sentiment of patriots fans may raise in the #patriots and #gopatriots hashtags.

gameday

Fig. 34. sentiment for #gopatriots during Fig. 35. sentiment for #gohawks during gameday

Therefore, we propose using the sentiment of tweets on game day to predict who is in possession of the ball. The during-game day tweets are separated into five-minute windows, giving 144 measurements over the day. There is no present dataset available which translates the events which occurred during Super Bowl ILIX to real-time, so we recorded these events manually. Table 25 shows the data which we recorded. A window of time is recorded for each time period that a particular team had possession of the ball. Any points the team scored during this time period are also recorded. The play-by-play times are first converted to PDT, then to PST, and finally to the particular bin the time window resides in.

These bins use the same scale as the sentiment analyses previous performed. We can now compare the change of sentiment with who had possession of the ball.

Q	play start	play end	vid start	vid end	event	possession	RT start	RT end	bin
1	15:00		00:00			Patriots	6:30 PM		90
1	15:00	11:44	00:00	05:31		Patriots	6:30 PM	6:35 PM	91
1	11:44	09:30	05:31	09:37		Seahawks	6:35 PM	6:39 PM	92
1	09:30	01:46	09:37	18:10		Patriots	6:39 PM	6:48 PM	94
2	01:46	14:01	18:10	23:02		Seahawks	6:48 PM	6:53 PM	95
2	14:01	09:47	23:02	30:10	TD+K	Patriots	6:53 PM	$7:00~\mathrm{PM}$	96
2	09:47	08:10	30:10	32:33		Seahawks	7:00 PM	$7:02~\mathrm{PM}$	97
2	08:10	07:13	32:33	35:31		Patriots	7:02 PM	$7{:}05~\mathrm{PM}$	97
2	07:13	02:17	35:31	41:17	TD+K	Seahawks	7:05 PM	$7:11~\mathrm{PM}$	98
2	02:17	00:31	41:17	50:48	TD+K	Patriots	7:11 PM	$7:20~\mathrm{PM}$	100
2	00:31	00:02	50:48	59:27	TD+K	Seahawks	7:20 PM	7:29 PM	102
						Halftime			
3	15:00	11:09	1:02:45	1:07:26	exta K	Seahawks	8:05 PM	8:10 PM	110
3	11:09	08:09	1:07:26	1:12:16		Patriots	8:10 PM	$8:14~\mathrm{PM}$	111
3	08:09	04:54	1:12:16	1:18:03	TD+K	Seahawks	8:14 PM	$8:20~\mathrm{PM}$	112
3	04:54	03:19	1:18:03	1:23:49		Patriots	8:20 PM	$8:26~\mathrm{PM}$	113
3	03:19	00:57	1:23:49	1:27:26		Seahawks	8:26 PM	8:30 PM	114
4	00:57	14:21	1:27:26	1:30:25		Patriots	8:30 PM	$8:33~\mathrm{PM}$	115
4	14:21	12:14	1:30:25	1:33:22		Seahawks	8:33 PM	$8:35~\mathrm{PM}$	115
4	12:14	07:55	1:33:22	1:40:29	TD+K	Patriots	8:35 PM	8:43 PM	117
4	07:55	07:00	1:40:29	1:44:19		Seahawks	8:43 PM	8:46 PM	117
4	07:00	02:02	1:44:19	1:53:56	TD+K	Patriots	8:46 PM	$8:56~\mathrm{PM}$	119
4	02:02	00:20	1:53:56	2:04:22		Seahawks	8:56 PM	$9:06~\mathrm{PM}$	121
4	00:20	00:18	2:04:22	2:08:23		Patriots	9:06 PM	9:10 PM	122

Table 25. Events during game recorded in real-time

Linear SGD Grid Search

A grid search is performed using Linear SGD as the classification model. This model is capable of applying many different linear classifiers to the problem including Linear SVM and Regression, depending on the loss. The grid search was used to step through these various classifiers and regressors, and to optimize the parameters of the best one. Table 26 lists the parameters which were used in this grid search.

Procedure	Options
loss	hinge, log (categorical cross-entropy), modified huber, squared hinge, and perceptron
penalty	l1, l2, and elasticnet
alpha	0.0001, 0.001, and 0.01
l1 ratio	0.15, 0.05, 0.25
learning rate	optimal
tol	1e-3, 1e-4, and 1e-5
max iters	3000, 5000, and 10000

Table 26. Parameters for the Linear SGD classifier

The grid search was performed for each hashtag. Table 27 shows the best classification accuracy of the grid search per hashtag. It is clear that none of the models tried were able to generalize well on the data. Since there are only two possibilities for who has possession (Patriots or Seahawks), a random guess would incur 50% accuracy. A smarter algorithm may simply choose to pick one option or the other, which would result in a 56.25% accuracy. The best accuracy out of the hashtags is 75.0%, which is marginally better than a smart guess.

Hashtag	Best cross-validation score
gohawks	
gopatriots	62.50%
$_{ m nfl}$	56.25%
patriots	59.38%
sb49	75.0%
superbowl	43.75%

Table 27. Best SGD classifier per hashtag

Table 28 shows the particular grid search for hashtag #sb49. Although the test accuracy score is high, the train accuracy score is low and both do not change as the parameters of the classifier are modified. It is evident that although the model is able to make some conclusion about which team had possession throughout the game, it is likely in part due to chance and not due to generalization of the training data.

	mean_test_score mean	_train_score alpha l1_	ratio lr	loss	max_ite	r penalty tol
422	0.75	$0.454\ 0.001$	0.15 opt	hinge	5000	elast 0.00001
693	0.75	$0.454\ 0.001$	$0.25 \mathrm{\ opt}$	hinge	10000	12 0.00100
803	0.75	$0.454\ 0.001$	$0.25 ext{ opt}$	percept	10000	12 0.00001
802	0.75	$0.454\ 0.001$	$0.25 ext{ opt}$	percept	10000	12 0.00010
801	0.75	$0.454\ 0.001$	$0.25 ext{ opt}$	percept	10000	12 0.00100
794	0.75	$0.454\ 0.001$	$0.25 ext{ opt}$	percept	5000	12 0.00001
793	0.75	$0.454\ 0.001$	0.25 opt	percept	5000	12 0.00010
792	0.75	$0.454\ 0.001$	$0.25 ext{ opt}$	percept	5000	12 0.00100
785	0.75	$0.454\ 0.001$	$0.25 \mathrm{\ opt}$	percept	3000	12 0.00001
784	0.75	$0.454\ 0.001$	0.25 opt	percept	3000	12 0.00010

Table 28. Tuned parameters from grid search, #sb49

Recurrent Neural Network

The SGD Classifier is capable of taking in the current sentiment and classifying possession. However, since this is time series data, a classifier may be able to use the sentiment of the previous bins to improve classification. We implemented a Long Short-term Memory (LSTM) Neural Network to take advantage of this time component. Figure 36 shows the structure of the LSTM.

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 20)	2080
dense (Dense)	(None, 50)	1050
dropout (Dropout)	(None, 50)	0
dense_1 (Dense)	(None, 2)	102

Total params: 3,232 Trainable params: 3,232 Non-trainable params: 0

Fig. 36. LSTM structure

Table 29 shows the accuracy of the LSTM with different window sizes. The larger the window, the farther back in time the LSTM will look in order to make a classification. The LSTM was trained for 500 epochs using each hash-tag sentiment window as a separate training sample. The Adam optimizer with learning rate 1e-5 was used for an optimizer, and categorical crossentropy was used for loss. The LSTM accuracy improves as the window is increased to 4.

After this, the accuracy degrades, suggesting that looking too far back confuses the network.

Window size LSTM classification acc		
1	54.69%	
2	55.38%	
3	57.70%	
4	58.60%	
E	EG 0007	

Table 29. LSTM performance per window

Future work

Overall, the performance of the LSTM and SGD Classifier are very low. This could be due to multiple factors.

The events of the game occurred one after another in very quick succession. An algorithm may see these as random events if not given enough information as context. The information could therefore be sub-sampled further to measure the sentiment every minute during the game.

The times we measured for the game were approximated, and may not be the actual times when events occurred. Increasing the accuracy of these approximations would enable both classifiers to make the most use out of the sentiment data.

Finally, the limited amount of information contained in the span of one game may not be enough for the LSTM neural network to make a prediction. Multiple games could be measured in real time, for different games of the NFL throughout the year to provide a better foundation for the LSTM to make a prediction.

Bibliography

- [Roy19] ROYCHOWDHURY, Vwani: Project 5: Application Twitter data, University of California, Los Angeles, 2019
- [XZJ⁺16] XIE, Wei ; ZHU, Feida ; JIANG, Jing ; LIM, Ee-Peng ; WANG, Ke: Topicsketch: Real-time bursty topic detection from twitter. In: *IEEE Transactions on Knowledge and Data Engineering* 28 (2016), Nr. 8, S. 2216–2229