Homework Assignment 9

Matthew Tiger

November 15, 2016

Problem 8.2.2. If Sf(x) is the Schwarzian derivative of f(x) with $f \in C^3$ and $F(x) = \frac{f''(x)}{f'(x)}$, show that $Sf(x) = F'(x) - (F(x))^2/2$.

Solution. Recall that the Schwarzian derivative of f is given by

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left[\frac{f''(x)}{f'(x)} \right]^2.$$

We readily see from the definition of F(x) that

$$F'(x) - \frac{1}{2} [F(x)]^2 = \frac{f'(x)f'''(x) - f''(x)^2}{f'(x)^2} - \frac{1}{2} \left[\frac{f''(x)}{f'(x)} \right]^2$$
$$= \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left[\frac{f''(x)}{f'(x)} \right]^2$$
$$= Sf(x)$$

and we are done.

- **Problem 8.2.5.** i. Show that if p is a polynomial of degree n having n distinct fixed points, and negative Schwarzian derivative, then not all of the fixed points can be attracting.
 - ii. On the other hand, show that the logistic maps $L_{\mu}: \mathbb{R} \to \mathbb{R}$ for $\mu > 2 + \sqrt{5}$ have negative Schwarzian derivative but have no attracting periodic orbits.
- Solution. i. Suppose to the contrary that p is a polynomial of degree n with n distinct fixed points and negative Schwarzian derivative but all of its fixed points are attracting. Let x_1, \ldots, x_n denote these attracting fixed points.

Since p is a polynomial, it is continuous, which implies that for each attracting fixed point x_k , its immediate basin of attraction W_k is an open interval. Note that these fixed points are distinct and attracting so that the immediate basins of attraction of two fixed points x_k and x_j with $k \neq j$ are mutually exclusive, i.e. $W_j \cap W_k = \emptyset$ for any $k \neq j$.

Since $p \in C^3$ with negative Schwarzian derivative, we have by Singer's theorem that for every fixed point x_k , either W_k is an unbounded interval, or the orbit of some critical point of p is attracted to the orbit of x_k under f.

ii.

2

Problem 8.2.6.

Problem 8.2.10.

Problem 10.3.4.

Problem 10.3.6.

Problem 10.3.7.