Glossary of notation for "Limits of Computation" module

 \bigodot Billiejoe Charlton and Bernhard Reus 2009-17

Symbol	Name	Description
Sets and functions:		
{-}	set brackets	E.g. $\{a,b,c\}$ is the set containing three elements a,b and c
{- -}	set comprehension	$\{x\mid P(x)\}$ is the set of objects x having property $P(x)$ E.g. $\{x\mid x\in\mathbb{N}\text{ and }x>3\}=\{4,5,6,\ldots\}$
N	natural numbers	The set of the natural numbers $0, 1, 2, 3, \dots$
\mathbb{D}	set of binary trees	The set of binary trees built from nil and $()$
U	union	$A \cup B$ is the set of all elements in either A or B or both E.g. $\{1,2,3\} \cup \{2,5\} = \{1,2,3,5\}$
$\bigcup_{x \in S} A(x)$	indexed union	Means the union of $A(x)$ for all x s in S E.g. $\bigcup_{x \in \{1,2,3\}} A_x$ means $A_1 \cup A_2 \cup A_3$
\subseteq	subset	$A\subseteq B$ means every element of A is also in B E.g. $\{1\}\subseteq\{1,2\}$ but not $\{1,2\}\subseteq\{1\}$
⊊	proper subset	$A \subsetneq B$ means that B contains all the elements of A and some more elements; A and B cannot be equal
×	Cartesian product	$A\times B$ is the set of pairs of one element from A and one from B E.g. $\{0,1\}\times\{a,b\}=\{(0,a),(0,b),(1,a),(1,b)\}$
\	set difference	$A\backslash B$ is the set of elements from A which are not in B E.g. $\{0,1,2\}\backslash\{1,3\}=\{0,2\}$
€	set membership	$x \in A$ means x is in (is an element of) the set A
€	set membership	$A \ni x$ means x is an element of set A (this is just $x \in A$ written in a different order)
\rightarrow		$A \to B$ denotes the set of functions from A to B $f:A \to B$ means that f is a function from A to B

Symbol	Name		Description
Sets and functions (continued):			
1	bottom		$f(x) = \bot$ means that (partial) function f is undefined at x In particular, \bot represents non-termination of programs
-1			X_{\perp} is the set X plus \perp as an additional element Hence $f:A\to B_{\perp}$ means f is a partial function from A to B
$f(a)\downarrow$			Means that partial function f is defined at a (same as $f(a) \neq \bot$)
$f(a)\uparrow$			Means that partial function f is not defined at a (same as $f(a) = \bot$)
L-programs			The set of programs written in language L
L- $data$			The set of data values used by programs written in language ${\cal L}$
L-store			The set of stores used when giving the semantics of language ${\cal L}$
$f^n(x)$			Function f applied n times to x, e.g. $f^3(x)$ is $f(f(f(x)))$
λx . —	lambda abs	traction	$\lambda x.f(x)$ means the function which maps x to $f(x)$ E.g. written this way, the squaring function is $\lambda x. \ x \times x$
Symbol Programming:	Name	Descri	ption
\Rightarrow		Used fo	or rewrite rules (not available in WHILE)
$[d_1,\ d_2,\ \cdots,\ d_n]$	list notation	A list o	of length n , with first element d_1 , second element d_2 etc.
$\langle d_1 \ . \ d_2 \rangle$			ry tree with left subtree d_1 and right subtree d_2 .E, one uses the cons operator: cons d_1 d_2
nil^n			-spined binary tree containing $n+1$ nils; encodes number n . $l^3 = (nil.(nil.(nil.nil)))$

Symbol	Name	Description
Semantics:		
$\{\mathtt{X}_i:\mathtt{d}_i\}$	store	E.g. $\{X: nil, Y: (nil.nil)\}$ means a store in which variable X contains value nil and variable Y contains value $(nil.nil)$
$\sigma[\mathtt{X}:=V]$	store update	Means a store that's the same as σ , except that variable ${\tt X}$ has the value V
$\llbracket - \rrbracket^L$	semantics of language ${\cal L}$	The semantics (meaning) of a programming language L , which is a function L -programs $\to (L$ -data $\to L$ -data_ $\bot)$
$\llbracket p rbracket^L$	semantics of program p	The meaning of a particular program p (written in language L) as a function from input to output, i.e. a function $L\text{-}data \to L\text{-}data_{\perp}$
$\mathscr{E}[\![E]\!]\sigma$		The value of a WHILE expression E in store σ
	For WHILE language:	
$C \vdash \sigma \to \sigma'$		Command C terminates when run in store σ , with resulting store σ'
	For machine models:	
$p \vdash s \to s'$		Program (or machine) p transits from state s to state s' in a single step
$p \vdash s \to^* s'$		Program (or machine) p transits from state s to state s' in 0, 1 or more steps
Computation models:		
TM		Turing Machines (with tapes and heads etc.)
GOTO		Goto language ("flowchart language"); has a "goto" statement instead of the "while" loop statement
SRAM		Successor Random Access Machines; has arbitrarily many registers holding natural numbers; allows indirect addressing
CM		Counter Machines: much simpler than SRAM; machines contain a limited number of counters
2CM		Counter Machines with only 2 counters

Symbol	Name	Description
Complexity symbols:		
$time^{\rm L}_{ m p}({\tt d})$	running time	The time taken for a program $p \in L$ -programs to run on input d
\mathcal{T}		$\mathcal{T}E$ is the time taken to evaluate WHILE expression E
$C \vdash^{time} \sigma \Rightarrow t$		WHILE command C terminates after t time steps, when run in store σ'
$L \preceq^{ptime} M$		Language M can simulate language L up to a polynomial difference in time
$L \preceq^{lintime} M$		Language M can simulate language L up to a linear difference in time
$L \preceq^{lintime-pg-ind} M$		M can simulate L up to a $\emph{program-independent}$ linear difference in time
$L \equiv^{ptime} M$		Languages L and M are polynomially equivalent
$L \equiv^{lintime} M$		Languages L and M are linearly equivalent
$L \equiv^{lintime\text{-}pg\text{-}ind} M$		Languages L and M are strongly linearly equivalent
$L^{time(f(n))}$		The set of $L\text{-}programs$ with time bound f (where $f: \mathbb{N} \to \mathbb{N}$)
\mathtt{L}^{ptime}		The set of L -programs bounded by some polynomial function
$\mathtt{L}^{lintime}$		The set of L -programs bounded by some linear function
$\mathbf{TIME}^{\mathtt{L}}(f)$		The set of decision problems (not programs!) that the language L can decide in time f
\mathbf{P}^{L}		The set of decision problems (not programs) that the language L can decide in polynomial time
$\mathbf{EXP}^{\mathtt{L}}$		The set of decision problems (not programs) that the language L can decide in exponential time
LIN^L		The set of decision problems (not programs) that the language L can decide in linear time
$\mathbf{NP}^{ ext{L}}$		The set of decision problems accepted by a nondeterministic L-program in polynomial time

Symbol	Name	Description
Other sym	bols:	
A		"for all"
iff		"if and only if"
~		$x \simeq y$ means either x and y are both undefined, or both are defined and they are equal
	language matching	$S \sqsubseteq T$ means: any program in language S is also a program in language T , and has the same semantics
x	size	Denotes the size of an object (e.g. binary tree) x
$\lceil X \rceil$		The encoding or translation of some object X (see e.g. rules for encoding numbers or programs as binary trees)
$n\stackrel{\cdot}{-}m$	cutoff subtraction	Gives $n - m$ if $n > m$ and 0 otherwise
X^*	Kleene star	Strings built from 0 or more repetitions of the string expression X as used in regular expressions; e.g. $\{0,1\}^*$ denotes binary strings
ϵ	empty string	ϵ is the empty string, i.e. the string of length 0