Langage SQL - Exercices

CREATE TABLE z (

UNIQUE (a,c)

e INT,

);

a INT REFERENCES x(a),

c INT REFERENCES y(c),

On considère les trois tables suivantes.

Table x

<u>a</u>	b
1	1
2	2
3	2
4	2
5	1
6	9
7	1

Table y:

<u>c</u>	d
9	9
10	10
11	9
12	20
13	30
14	9
15	1
16	10
17	10

Table z:

<u>#a</u>	<u>#c</u>	е
1	11	30
2	14	9
5	15	1
7	17	3
1	10	50
2	9	8
2	15	15
3	17	19
4	16	12
5	10	20
2	11	30
7	14	9
7	9	12

Ces tables ont été créés à l'aide des requêtes SQL suivantes :

```
CREATE TABLE x (
                                    CREATE TABLE y (
                                      c INT PRIMARY KEY,
  a INT PRIMARY KEY,
                                      d INT,
  b INT,
  CHECK (b>=0)
                                      CHECK (d<=30)
);
                                    );
```

Exercice 1:

Indiquez le résultat de chacune des requêtes suivantes :

```
a. SELECT * FROM x WHERE b>3;
   (6,9)
```

b. SELECT DISTINCT e FROM z

```
WHERE e>10 AND e<50;
```

(30)

(15)

(19)

(12)

(20)

```
c. SELECT * FROM y
```

WHERE c%2=0

ORDER BY d ASC;

(14,9)

(10,10)

(16,10)

(12,20)

d. SELECT x.a, x.b FROM x

JOIN z ON z.a=x.a

WHERE z.e<9;

```
(z.e = 1, z.a = 5, x.a = 5) \Rightarrow (x.a = 1, x.b = 1)
(z.e = 3, z.a = 7, x.a = 7) \Rightarrow (x.a = 7, x.b = 1)
(z.e = 8, z.a = 2, x.a = 2) \Rightarrow (x.a = 2, x.b = 2)
Finalement, on obtient la liste suivante
(1,1)
```

```
(7,1)(2,2)
```

e. SELECT DISTINCT x.b,y.d FROM x

```
JOIN z ON z.a=x.a
JOIN y ON y.c=z.c;
```

A cause du mot-clé DISTINCT, le couple de valeurs (x.b,y.d) doit être unique.

On parcourt les valeurs de x.b. Les cheminements pour obtenir la valeur de y.d sont en rouge.

```
(x.b=1,x.a=1,z.a=1,z.c=11,y.c=11,y.d=9) \Rightarrow (x.b=1,y.d=9) (x.b=1,x.a=1,z.a=1,z.c=10,y.c=10,y.d=10) \Rightarrow (x.b=1,y.d=9) (x.b=2,x.a=2,z.a=2,z.c=14,y.c=14,y.d=9) \Rightarrow (x.b=2,y.d=9) (x.b=2,x.a=2,z.a=2,z.c=9,y.c=9,y.d=9) ignoré car doublon (x.b=2,x.a=2,z.a=2,z.c=15,y.c=15,y.d=1) \Rightarrow (x.b=2,y.d=1) (x.b=2,x.a=2,z.a=2,z.c=11,y.c=11,y.d=9) ignoré car doublon
```

On passe directement à x.b=9 car x.b=2 et x.b=1 ont déjà été traités et qu'on souhaite ne pas avoir de doublon.

```
(x.b=9, x.a=6, z.a=6 non trouvé) donc ignoré Finalement, on obtient la liste suivante (1,9) (1,10) (2,9)
```

Exercice 2:

(2,1)

Pour chacune des requêtes ci-dessous, indiquer si elle réussit ou si elle échoue.

Si elle réussit, indiquer comment la table est modifiée.

Si elle échoue, indiquer pourquoi.

Les questions sont indépendantes.

a. UPDATE x SET b=b+a

Table z:

<u>a</u>	b
1	2
2	4
3	5
4	6
5	6
6	15
7	8

b. UPDATE x SET b=b-2

Echec car 1-2=-1 pour la première ligne, ce qui ne respecte pas la contrainte b>=0.

c. INSERT INTO z VALUES (1,17,1)

Pas de problème. Respecte UNIQUE (a,c).

d. INSERT INTO z VALUES (1,18,1)

Echec car 18 n'existe pas dans la table y.

e. INSERT INTO z VALUES (1,10,1)

Echec car ne respecte pas UNIQUE (a,c). (1,10) existe déjà.

f. DELETE FROM y WHERE c>=12 AND c<=13;

Pas de problème. 12 et 13 ne sont pas référencés dans la table z.

g. DELETE FROM y WHERE c>=12 AND c<=14;

La valeur 14 est référencée dans la table z. Elle ne peut donc pas être supprimée de la table y.

h. INSERT INTO y VALUES (40,20);

Pas de problème.

i. INSERT INTO y VALUES (20,40);

Echec. Ne respecte pas d<=30.

j. DELETE FROM z WHERE a%2=0 OR c%2=0 OR e%2=0;

On obtient :

Table z :

<u>#a</u>	<u>#c</u>	е
5	15	1
7	17	3
3	17	19