WikipediA

Convex series

In mathematics, particularly in <u>functional analysis</u> and <u>convex analysis</u>, a <u>convex series</u> is a <u>series</u> of the form $\sum_{i=1}^{\infty} r_i x_i$ where x_1, x_2, \ldots are all elements of a <u>topological vector space</u> X, and all r_1, r_2, \ldots

are non-negative <u>real numbers</u> that sum to 1 (that is, such that $\sum_{i=1}^{\infty} r_i = 1$).

Contents

Types of Convex series

Types of subsets

Conditions (Hx) and (Hwx)

Multifunctions

Relationships

Preserved properties

Properties

See also

Notes

References

Types of Convex series

Suppose that S is a subset of X and $\sum_{i=1}^{\infty} r_i x_i$ is a convex series in X.

- If all x_1, x_2, \ldots belong to S then the convex series $\sum_{i=1}^{\infty} r_i x_i$ is called a **convex series with** elements of S.
- If the set $\{x_1, x_2, \ldots\}$ is a (von Neumann) bounded set then the series called a **b-convex series**.
- The convex series $\sum_{i=1}^{\infty} r_i x_i$ is said to be a **convergent series** if the sequence of partial sums $\left(\sum_{i=1}^n r_i x_i\right)_{n=1}^{\infty}$ converges in X to some element of X, which is called the **sum of the convex series**.

The convex series is called **Cauchy** if $\sum_{i=1}^{\infty} r_i x_i$ is a <u>Cauchy series</u>, which by definition means that the sequence of partial sums $\left(\sum_{i=1}^{n} r_i x_i\right)_{n=1}^{\infty}$ is a <u>Cauchy sequence</u>.

Types of subsets

Convex series allow for the definition of special types of subsets that are well-behaved and useful with very good stability properties.

If S is a subset of a topological vector space X then S is said to be a:

- cs-closed set if any convergent convex series with elements of S has its (each) sum in S.
 - In this definition, X is *not* required to be Hausdorff, in which case the sum may not be unique. In any such case we require that every sum belong to S.
- **lower cs-closed set** or a **lcs-closed set** if there exists a Fréchet space Y such that S is equal to the projection onto X (via the canonical projection) of some cs-closed subset B of $X \times Y$ Every cs-closed set is lower cs-closed and every lower cs-closed set is lower ideally convex and convex (the converses are not true in general).
- ideally convex set if any convergent b-series with elements of S has its sum in S.
- lower ideally convex set or a li-convex set if there exists a Fréchet space Y such that S is equal to the projection onto X (via the canonical projection) of some ideally convex subset B of X × Y. Every ideally convex set is lower ideally convex. Every lower ideally convex set is convex but the converse is in general not true.
- cs-complete set if any Cauchy convex series with elements of S is convergent and its sum is in S.
- bcs-complete set if any Cauchy b-convex series with elements of S is convergent and its sum is in S.

The <u>empty set</u> is convex, ideally convex, bcs-complete, cs-complete, and cs-closed.

Conditions (Hx) and (Hwx)

If X and Y are topological vector spaces, A is a subset of $X \times Y$, and $x \in X$ then A is said to satisfy: [1]

■ Condition (Hx): Whenever $\sum_{i=1}^{\infty} r_i(x_i,y_i)$ is a <u>convex series</u> with elements of A such that $\sum_{i=1}^{\infty} r_i y_i$ is convergent in Y with sum y and $\sum_{i=1}^{\infty} r_i x_i$ is Cauchy, then $\sum_{i=1}^{\infty} r_i x_i$ is convergent in X and its sum x is such that $(x,y) \in A$.

■ Condition (Hwx): Whenever $\sum_{i=1}^{\infty} r_i(x_i, y_i)$ is a <u>b-convex series</u> with elements of A such that

$$\sum_{i=1}^{\infty}r_iy_i$$
 is convergent in Y with sum y and $\sum_{i=1}^{\infty}r_ix_i$ is Cauchy, then $\sum_{i=1}^{\infty}r_ix_i$ is convergent in X and its sum x is such that $(x,y)\in A$.

If X is locally convex then the statement "and $\sum_{i=1}^{\infty} r_i x_i$ is Cauchy" may be removed from the definition of condition (Hwx).

Multifunctions

The following notation and notions are used, where $\mathcal{R}: X \rightrightarrows Y$ and $\mathcal{S}: Y \rightrightarrows Z$ are <u>multifunctions</u> and $S \subseteq X$ is a non-empty subset of a topological vector space X:

- lacksquare The graph of a multifunction of $\mathcal R$ is the set $\operatorname{gr} \mathcal R := \{(x,y) \in X imes Y : y \in \mathcal R(x)\}.$
- \mathcal{R} is closed (respectively, cs-closed, lower cs-closed, convex, ideally convex, lower ideally convex, cs-complete, bcs-complete) if the same is true of the graph of \mathcal{R} in $X \times Y$.
 - The mulifunction \mathcal{R} is convex if and only if for all $x_0, x_1 \in X$ and all $r \in [0, 1]$, $r\mathcal{R}(x_0) + (1-r)\mathcal{R}(x_1) \subseteq \mathcal{R}(rx_0 + (1-r)x_1)$.
- The **inverse of a multifunction** \mathcal{R} is the multifunction $\mathcal{R}^{-1}:Y\rightrightarrows X$ defined by $\mathcal{R}^{-1}(y):=\{x\in X:y\in \mathcal{R}(x)\}$. For any subset $B\subseteq Y, \mathcal{R}^{-1}(B):=\cup_{y\in B}\mathcal{R}^{-1}(y)$.
- lacksquare The domain of a multifunction $\mathcal R$ is $\operatorname{Dom}\mathcal R:=\{x\in X:\mathcal R(x)
 eq\emptyset\}$.
- The image of a multifunction \mathcal{R} is $\operatorname{Im} \mathcal{R} := \cup_{x \in X} \mathcal{R}(x)$. For any subset $A \subseteq X$, $\mathcal{R}(A) := \cup_{x \in A} \mathcal{R}(x)$.
- lacksquare The composition $\mathcal{S} \circ \mathcal{R} : X
 ightharpoonup Z$ is defined by $(\mathcal{S} \circ \mathcal{R}) \, (x) := \cup_{y \in \mathcal{R}(x)} \mathcal{S}(y)$ for each $x \in X$.

Relationships

Let X,Y, and Z be topological vector spaces, $S \subseteq X, T \subseteq Y$, and $A \subseteq X \times Y$. The following implications hold:

complete \implies cs-closed \implies lower cs-closed (lcs-closed) and ideally convex.

lower cs-closed (lcs-closed) or ideally convex \implies lower ideally convex (li-convex) \implies convex.

 $(Hx) \implies (Hwx) \implies convex.$

The converse implications do not hold in general.

If X is complete then,

- 1. *S* is cs-complete (respectively, bcs-complete) if and only if *S* is cs-closed (respectively, ideally convex).
- 2. \mathbf{A} satisfies (H \mathbf{x}) if and only if \mathbf{A} is cs-closed.

3. A satisfies (Hwx) if and only if A is ideally convex.

If Y is complete then,

- 1. A satisfies (Hx) if and only if A is cs-complete.
- 2. A satisfies (Hwx) if and only if A is bcs-complete.
- 3. If $B \subseteq X \times Y \times Z$ and $y \in Y$ then:
 - 1. B satisfies (H(x, y)) if and only if B satisfies (Hx).
 - 2. B satisfies (Hw(x, y)) if and only if B satisfies (Hwx).

If X is locally convex and $Pr_X(A)$ is bounded then,

- 1. If A satisfies (Hx) then $\Pr_X(A)$ is cs-closed.
- 2. If A satisfies (Hwx) then $\Pr_X(A)$ is ideally convex.

Preserved properties

Let X_0 be a linear subspace of X. Let $\mathcal{R}: X \rightrightarrows Y$ and $\mathcal{S}: Y \rightrightarrows Z$ be multifunctions.

- If S is a cs-closed (resp. ideally convex) subset of X then $X_0 \cap S$ is also a cs-closed (resp. ideally convex) subset of X_0 .
- If X is first countable then X_0 is cs-closed (resp. cs-complete) if and only if X_0 is closed (resp. complete); moreover, if X is locally convex then X_0 is closed if and only if X_0 is ideally convex.
- $S \times T$ is cs-closed (resp. cs-complete, ideally convex, bcs-complete) in $X \times Y$ if and only if the same is true of both S in X and of T in Y.
- The properties of being cs-closed, lower cs-closed, ideally convex, lower ideally convex, cs-complete, and bcs-complete are all preserved under isomorphisms of topological vector spaces.
- The intersection of arbitrarily many cs-closed (resp. ideally convex) subsets of X has the same property.
- The <u>Cartesian product</u> of cs-closed (resp. ideally convex) subsets of arbitrarily many topological vector spaces has that same property (in the product space endowed with the <u>product topology</u>).
- The intersection of countably many lower ideally convex (resp. lower cs-closed) subsets of *X* has the same property.
- The <u>Cartesian product</u> of lower ideally convex (resp. lower cs-closed) subsets of countably many topological vector spaces has that same property (in the product space endowed with the <u>product</u> topology).
- Suppose X is a Fréchet space and the A and B are subsets. If A and B are lower ideally convex (resp. lower cs-closed) then so is A + B.
- Suppose X is a Fréchet space and A is a subset of X. If A and $\mathcal{R}: X \rightrightarrows Y$ are lower ideally convex (resp. lower cs-closed) then so is $\mathcal{R}(A)$.
- Suppose Y is a <u>Fréchet space</u> and $\mathcal{R}_2:X\rightrightarrows Y$ is a multifunction. If $\mathcal{R},\mathcal{R}_2,\mathcal{S}$ are all lower ideally convex (resp. lower cs-closed) then so are $\mathcal{R}+\mathcal{R}_2:X\rightrightarrows Y$ and $\mathcal{S}\circ\mathcal{R}:X\rightrightarrows Z$.

Properties

If S be a non-empty convex subset of a topological vector space X then,

- 1. If S is closed or open then S is cs-closed.
- 2. If X is Hausdorff and finite dimensional then S is cs-closed.
- 3. If X is first countable and S is ideally convex then int S = int(cl S).

Let X be a <u>Fréchet space</u>, Y be a topological vector spaces, $A \subseteq X \times Y$, and $\Pr_Y : X \times Y \to Y$ be the canonical projection. If A is lower ideally convex (resp. lower cs-closed) then the same is true of $\Pr_Y(A)$.

If X is a barreled first countable space and if $C \subseteq X$ then:

- 1. If C is lower ideally convex then $C^i = \operatorname{int} C$, where $C^i := \operatorname{aint}_X C$ denotes the <u>algebraic interior</u> of C in X.
- 2. If C is ideally convex then $C^i = \operatorname{int} C = \operatorname{int}(\operatorname{cl} C) = (\operatorname{cl} C)^i$.

See also

 Ursescu theorem – Generalization of closed graph, open mapping, and uniform boundedness theorem

Notes

1. Zălinescu 2002, pp. 1–23.

References

- Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces (https://archive.org/details/convexanalysisge00zali_934). River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556 (https://www.ams.org/mathscinet-getitem?mr=1921556). OCLC 285163112 (https://www.worldcat.org/oclc/285163112) via Internet Archive.
- Baggs, Ivan (1974). "Functions with a closed graph" (https://www.ams.org/). *Proceedings of the American Mathematical Society.* **43** (2): 439–442. doi:10.1090/S0002-9939-1974-0334132-8 (https://doi.org/10.1090%2FS0002-9939-1974-0334132-8). ISSN 0002-9939 (https://www.worldcat.org/issn/0002-9939).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Convex series&oldid=1053367817"

This page was last edited on 3 November 2021, at 13:41 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.