인공지능 기반 설계 이론 및 사례 연구 2차) 지도학습의 기초 (Regression)

2020년 9월

강남우

기계시스템학부 숙명여자대학교

Linear Regression

Linear Regression

Which hypothesis is better?

$$H(x) = Wx + b$$

Hypothesis

Cost Function for Linear Regression

Cost: How fit the line to our (training) data

$$\frac{(H(x_1)-y_1)^2+(H(x_2)-y_2)^2+(H(x_3)-y_3)^2}{3}$$

$$cost(W,b) = rac{1}{m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

Cost function

Mean Squared Error (MSE)

Goal: Minimize cost

$$egin{aligned} minimize\ cost(W,b) \end{aligned}$$

Cost Function for Linear Regression

What cost looks like?

Simplified hypothesis

Hypothesis
$$H(x)=Wx$$

Cost
$$cost(W) = rac{1}{m} \sum_{i=1}^m {(Wx_i - y_i)^2}$$

Optimization

Gradient descent algorithm

Cost function

$$cost(W) = rac{1}{m} \sum_{i=1}^m {(Wx_i - y_i)^2}$$

$$cost(W) = rac{1}{2m} \sum_{i=1}^m \left(Wx_i - y_i
ight)^2$$

Updating W for minimizing cost

Learning rate

$$W:=W-lpharac{\partial}{\partial W}cost(W)$$

$$W := W - lpha rac{1}{m} \sum_{i=1}^m (W(x_i) - y_i) x_i$$

Logistic Regression

Linear

Continuous

Time / Weight / Height

Logistic

Classification

Discrete

What is Binary(Multi-class) Classification? variable is either 0 or 1 (0:positive / 1:negative)

• Exam : Pass or Fail

• Spam : Not Spam or Spam

• Face : Real or Fake

• Tumor : Not Malignant or Malignant

To start with machine learning, you must encode variable [0,1]

Logistic (Sigmoid) function

Cost Function for Logistic Regression

A Convex Logistic Regression Cost Function

Mean Squared Error (MSE)

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} \left[-y_i \log(H(x_i)) - (1 - y_i) \log(1 - H(x_i)) \right]$$

Cross-entropy

Multinomial Logistic Regression

Multinomial Classification

sigmoid

$$[w_{C1} \ w_{C2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = [w_{C1} x_1 + w_{C2} x_2] \implies C \text{ or not}$$

$$\begin{bmatrix} w_{A1} & w_{A2} \\ w_{B1} & w_{B2} \\ w_{C1} & w_{C2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} w_{A1}x_1 + w_{A2}x_2 \\ w_{B1}x_1 + w_{B2}x_2 \\ w_{C1}x_1 + w_{C2}x_2 \end{bmatrix}$$

Multinomial Logistic Regression

$$S = f(x_i; W)$$

$$\begin{bmatrix} w_{A1} & w_{A2} \\ w_{B1} & w_{B2} \\ w_{C1} & w_{C2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} w_{A1}x_1 + w_{A2}x_2 \\ w_{B1}x_1 + w_{B2}x_2 \\ w_{C1}x_1 + w_{C2}x_2 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.0 \\ 0.1 \end{bmatrix}$$

Softmax

One-hot encoding

Probabilities

$$\frac{e^2}{e^2 + e^1 + e^{0.1}} = 0.$$

Cost Function for Multinomial Logistic Regression

Cross entropy for multi-class

Cross entropy for binary class

where
$$p \in \{y, 1 - y\}$$
 and $q \in \{\hat{y}, 1 - \hat{y}\}$

$$cost = H(p,q) = -\sum_{i} p_i \log(q_i) = -y_i \log(\widehat{y}_i) - (1 - y_i) \log(1 - \widehat{y}_i)$$

Regression Metrics

RMSE (Root Mean Squared Error)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

• 예측하려는 값의 크기에 의존적임

MSE (Mean Squared Error)

MAPE (Mean Absolute Percentage Error)

$$\mathrm{M} = rac{100}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

- 예측하려는 값의 크기에 의존적이지 않음
 - 예측하려는 값이 1이상이어야 함

MAE (Mean Absolute Error)

Confusion Matrix for Classification

Confusion Matrix

n=165	Predicted: Negative	Predicted: Positive	
Actual: Negative	TN = 50	FP = 10	60
Actual: Positive	FN = 5	TP = 100	105
	55	110	

- true positives (TP): These are cases in which we predicted yes (they have the disease), and they do have the disease.
- true negatives (TN): We predicted no, and they don't have the disease.
- false positives (FP): We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")
- false negatives (FN): We predicted no, but they actually do have the disease. (Also known as a "Type II error.")

Confusion Matrix for Classification

Confusion Matrix

n=165	Predicted: Negative	Predicted: Positive	
Actual: Negative	TN = 50	FP = 10	60
Actual: Positive	FN = 5	TP = 100	105
	55	110	

성능지표

- Accuracy (실제 이상/정상인지 맞게 예측한 비율)
 - = (TP+TN)/(TP+FN+FP+TN) = 90.9%
- Precision (이상으로 예측한 것중에 실제 이상인 샘플의 비율)
 - = TP/(TP+FP) = 90.9%
- Recall (실제 이상 샘플중에 이상으로 예측한 비율)
 - = TP/(TP+FN) = 95.20%

What Questions Do You Have?

nwkang@sm.ac.kr

www.smartdesignlab.org

