

6MHz, 600µA, RRIO, Op Amps

Features

Supply Voltage: 2.7V to 5.5V

Low Supply Current: 600µA per channel

Rail to Rail Input and Output

Bandwidth: 6 MHzSlew Rate: 4.5V/µs

Excellent EMI Suppress Performance

Offset Voltage: ±3mV Maximum

Offset Voltage Temperature Drift: 1 μV/°C

Low Noise: 19 nV/√Hz at 1kHz
 High Output Capability: 100mA

−40°C to 125°C Operation Temperature Range

Green, Popular Type Package

TP10-2: SOP-8TP10-4: SOP-14

Applications

E-Bike

Motor Control

Portable Audio

Description

The TP10 series are CMOS dual, and quad RRIO op-amps with low offset, low power and stable high frequency response. They incorporate 3PEAK's proprietary and patented design techniques to achieve very good AC performance with 6MHz bandwidth, 4.5V/µs slew rate and low distortion while drawing only 600µA of quiescent current per amplifier. The input common-mode voltage range extends 300mV beyond V— and V+, and the outputs swing rail-to-rail. The TP10 family can be used as plug-in replacements for many commercially available op-amps to reduce power and improve input/output range and performance.

The combination of features makes the TP10 ideal choices for motor control and portable audio amplification, sound ports, and other consumer Audio. The TP10 Op-amp is very stable, and it is capable of driving heavy capacitive loads such as those found in LCDs. The ability to swing rail-to-rail at the inputs and outputs enables designers to buffer CMOS DACs, ASICs, or other wide output swing devices in single-supply systems.

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity
TP10-2-SR	-40 to 125°C	8-Pin SOP	TP102	3	Tape and Reel, 4000
TP10-4-SR	-40 to 125°C	14-Pin SOP	TP104	3	Tape and Reel, 2500

$6MHz,\;600\mu A,\;RRIO,\;Op\;Amps$

Table of Contents

Features	
Applications	1
Description	
Order Information	
Table of Cpntents	2
Revision History	
Pin Configuration	4
Order Information	4
Absolute Maximum Ratings Note 1	5
ESD Rating	5
Thermal Information	5
Electrical Characteristics	
Typical Performance Characteristics	7
Application Information	
Low Supply Voltage and Low Power Consumption	10
Ground Sensing and Rail to Rail Output	10
Driving Large Capacitive Load	10
Tape And Reel Information	11
Package Outline Dimensions	12
SOIC-8	12
SOP-14	13

 $6MHz,\;600\mu A,\;RRIO,\;Op\;Amps$

Revision History

Date	Revision	Notes
2017/3/1	Rev.Pre	Pre-Release Version
2017/7/5	Rev.0	Release Version, confirm spec limit

6MHz, $600\mu A$, RRIO, Op Amps

Pin Configuration

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity
TP10-2-SR	-40 to 125°C	8-Pin SOP	TP102	3	Tape and Reel, 4000
TP10-4-SR	-40 to 125°C	14-Pin SOP	TP104	3	Tape and Reel, 2500

Absolute Maximum Ratings Note 1

Parameters	Rating
Supply Voltage, (+V _S)– (-V _S)	7 V
Input Voltage	$(-V_S) - 0.3$ to $(+V_S) + 0.3$
Differential Input Voltage	±7V
Input Current: +IN, -IN Note 2	±10mA
Output Short-Circuit Duration Note 3	Infinite
Maximum Junction Temperature	150°C
Operating Temperature Range	-45 to 125°C
Storage Temperature Range	-65 to 150°C
Lead Temperature (Soldering, 10 sec)	260°C

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 300mV beyond the power supply, the input current should be limited to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

ESD Rating

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	MIL-STD-883H Method 3015.8	8	kV
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	2	kV

Thermal Information

Package Type	θ_{JA}	θ_{JC}	Unit
SOP-8	158	43	°C/W
SOP-14	120	36	°C/W

Electrical Characteristics

All test condition is V_S = 5V, T_A = 25°C, R_L = 2k Ω , C_L =100pF, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Power Sup	oply				_	
Vs	Supply Voltage Range		2.7		5.5	V
IQ	Quiescent Current per Amplifier			600	900	μА
PSRR	Power Supply Rejection Ratio	V _S = 2.7V to 5.5V	70	95		dB
Input Chai	racteristics					
Vos	Input Offset Voltage	V _{CM} = 0V to 3V	-3		3	mV
V _{os} TC	Input Offset Voltage Drift	T _A = -40°C to 125°C		2		μV/°C
	Input Biog Current	T _A = 25 °C		1		pA
I _B	Input Bias Current	T _A = 85 °C		25		pA
los	Input Offset Current			1		pA
<u> </u>	Innut Conscitores	Differential Mode		10		pF
C _{IN}	Input Capacitance	Common Mode		10		pF
Av	Open-loop Voltage Gain	$R_{LOAD} = 10k\Omega$	80	100		dB
V_{CMR}	Common-mode Input Voltage Range		(V-) - 0.1		(V+) - 0.1	V
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3V	70	100		dB
Xtalk	Channel Separation	$f = 1kHz$, $RL = 2k\Omega$		110		dB
Output Ch	aracteristics					
V _{OH} , V _{OL}	Maximum Output Voltage Swing	$R_{LOAD} = 10k\Omega$		5	15	mV
I _{SC}	Output Short-Circuit Current			100		mA
Io	Output Current	1V Output Drop Voltage		50		mA
AC Specif	ications					
GBW	Gain-Bandwidth Product			6		MHz
SR	Slew Rate	$A_V = 1, \ V_{OUT} = 1.5V \ to \ 3.5V, \ C_{LOAD}$ $= 60pF, \ R_{LOAD} = 1k\Omega$		4.5		V/µs
	Settling Time, 0.1%	AV = 1, 2V Step, $C_{LOAD} = 60pF$,		0.8		μs
t _S	Settling Time, 0.01%	$R_{LOAD} = 1k\Omega$		1		μs
PM	Phase Margin	$R_{LOAD} = 1k\Omega$, $C_{LOAD} = 60pF$		60		0
GM	Gain Margin	$R_{LOAD} = 1k\Omega$, $C_{LOAD} = 60pF$		15		dB
Noise Per	formance				•	
E _N	Input Voltage Noise	f = 0.1Hz to 10Hz		8		μV _{PP}
e _N	Input Voltage Noise Density	f = 1kHz		19		nV/√Hz
i _N	Input Current Noise	f = 1kHz		2		fA/√Hz
THD+N	Total Harmonic Distortion and Noise	$f = 1kHz$, $AV = 1$, $RL = 2k\Omega$, $VOUT = 1Vp-p$		0.003		%
		i.				

Typical Performance Characteristics

 $V_S = 5V$, $V_{CM} = 2.5V$, RL = Open, unless otherwise specified.

Figure 1. Unity Gain Bandwidth vs. Temperature

Figure 2. Open-Loop Gain and Phase

Figure 3. Supply Current vs. Temperature

Figure 4. Short Circuit Current vs. Temperature

Figure 5. Quiescent Current vs. Supply Voltage

Figure 6. Offset Voltage vs. Common-Mode Voltage

6MHz, $600\mu A$, RRIO, Op Amps

Figure 12. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 11. Input Voltage Noise Spectral Density

6MHz, 600µA, RRIO, Op Amps

Application Information

Low Supply Voltage and Low Power Consumption

The TP10 family of operational amplifiers can operate with power supply voltages from 2.7 V to 5.5 V. Each amplifier draws only 600 µA quiescent current. The low supply voltage capability and low supply current are ideal for portable applications demanding high capacitive load driving capability and stable wide bandwidth. The TP10 family is optimized for wide bandwidth low power applications. They have an industry leading high GBWP to power ratio and are unity gain stable for any capacitive load. When the load capacitance increases, the increased capacitance at the output pushed the non-dominant pole to lower frequency in the open loop frequency response, lowering the phase and gain margin. Higher gain configurations tend to have better capacitive drive capability than lower gain configurations due to lower closed loop bandwidth and hence higher phase margin.

Ground Sensing and Rail to Rail Output

The TP10 family has excellent output drive capability, delivering over 100 mA of output drive current. The output stage is a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the inputs can go 300 mV beyond either rail, the op-amp can easily perform 'true ground' sensing.

The maximum output current is a function of total supply voltage. As the supply voltage to the amplifier increases, the output current capability also increases. Attention must be paid to keep the junction temperature of the IC below 150°C when the output is in continuous short-circuit. The output of the amplifier has reverse-biased ESD diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply, otherwise current will flow through these diodes.

Driving Large Capacitive Load

The TP10 family of OPA is designed to drive large capacitive loads. Refer to Typical Performance Characteristics for "Phase Margin vs. Load Capacitance". As always, larger load capacitance decreases overall phase margin in a feedback system where internal frequency compensation is utilized. As the load capacitance increases, the feedback loop's phase margin decreases, and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in output step response. The unity-gain buffer (G = +1V/V) is the most sensitive to large capacitive loads.

When driving large capacitive loads with the TP10 OPA family (e.g., > 200 pF when G = +1V/V), a small series resistor at the output (RISO in Figure 3) improves the feedback loop's phase margin and stability by making the output load resistive at higher frequencies.

Tape And Reel Information

Order Number	Package	D1	W1	Α0	В0	K0	P0	W0	Pin1
									Quadrant
TP10-2-SR	8-Pin SOIC	330.0	17.6	6.4	5.4	2.1	8.0	12.0	Q1
TP10-4-SR	14-Pin SOIC	330.0	21.6	6.5	9.0	2.1	8.0	16.0	Q1

 $6MHz,\;600\mu A,\;RRIO,\;Op\;Amps$

Package Outline Dimensions

SOIC-8

Table 1.

	Dimensions		Dimensions		
Symbol	In Millimeter	s	In Inches		
	Min Max		Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270TYP		0.050TYP		
L1	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SOP-14

6MHz, $600\mu A$, RRIO, Op Amps

♣ 3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.