

Universidad Nacional Autónoma de México Facultad de Ingeniería

2018-1

Lab. Microcontroladores y Microprocesadores - Grupo 03 Pérez Navarro Maria Yesica - 414039694 dd/mm/yyyy

Previo 05: Programación en lenguaje Assembly (Ensamblador) 2

Seguridad en la Ejecución. 1.

	Peligro o fuente de energía	Riesgo asociado
1	Manejo de Corriente Alterna	Electrochoque
2	Manejo de corriente Continua	Daño al equipo

2. Objetivos de aprendizaje.

 El alumno aprenderá a utilizar las instrucciones de operaciones aritméticas y lógicas, así como emplear saltos condicionales y llamados a subrutinas.

3. Material y equipo.

- Calculadora en modo "Programador".
- Tarjeta de desarrollo.
- CCS IDE.

Actividad previa.

- a) ¿Cómo se obtiene la representación binaria de un número negativo en el formato de complemento a 2?
- b) ¿Cuál es la longitud en bytes del resultado de una multiplicación no signada (unsigned multiplication) al multiplicar: a) dos valores de 16 bits cada uno? b) dos valores de 32 bits cada uno?
- c) ¿Qué hace el salto condicional "BEQ etiqueta1"?
- d) ¿Qué hace el salto "BL etiqueta2"?
- e) Para cada uno de los dos saltos anteriores, ¿se debe regresar al lugar del salto?, ¿cómo?
- f) Examine el comportamiento de los segmentos del código proporcionado. Con ayuda de la calculadora, compruebe el resultado de las operaciones.

5. Desarrollo.

Escriba un programa que funcione como una calculadora de números enteros de hasta 32 bits, con operaciones de Suma, Resta, Multiplicación, AND, OR, XOR.

Para elegir la operación a realizar, desde el depurador se escribirá un valor en R0 del 1 al 6 (1:suma, 2:resta, etc.). El programa debe hacer llamados a dos subrutinas: una para carga de operandos y otra para guardar resultado.

Los dos operandos se encuentran definidos en memoria RAM y se deben colocar en R1 y R2. El resultado se escribe también en memoria RAM, usando R3.

Por tanto se debe hacer acceso de lectura y escritura (LDR, STR).

Los operandos se pueden modificar en cualquier sobre-escribiendo su valor en memoria RAM.

6. Cuestionario

1. Después de ejecutar la instrucción SUBS, ¿qué signo tiene el resultado cuando las bandera C = 0, y cuando C=1? En cada caso, qué valor debe tener la bandera N?

Para un valor en un Registro, en lenguaje ensamblador.

- 2. ¿Cómo se enciende un bit específico sin afectar a los demás? (2 maneras).
- 3. ¿Cómo se apaga un bit específico sin afectar a los demás? (2 maneras).
- 4. ¿Cómo se invierte el estado de un bit específico?.
- 5. Al emplear instrucción de comparación CMP, ¿Qué nos dice la bandera Z?.
- 6. Se quiere saber si los 4 LSB de un byte son '0', ¿cómo emplearía la instrucción TST y qué condición/bandera se debe cumplir/establecer?.
- 7. Se quiere saber si los 4 MSB de un byte son '1', ¿cómo emplearía la instrucción TEQ y qué condición/bandera se debe cumplir/establecer?
- 8. Para qué sirve la directiva .retain

7. Conclusiones.

Referencias

- [1] Como citar: http://www.cva.itesm.mx/biblioteca/pagina_con_formato_version_oct/apa.htm
- [2] Autor, (Fecha de publicacion), Titulo, paginas, Fecha de recuperacion, Sitio web: http://www.google.com
- [3] Repositorio del proyecto https://github.com/penserbjorne