Midterm Exam - DSC 10, Summer 2022

Instructions:				
• You have 50 minutes to complete this exam.				
• This exam consists of 13 questions, worth a total of 60 points.				
• Write your name in the top right of each page in the space provided.				
• Please write neatly in the provided answer boxes. We will not grade work that appears elsewhere.				
• Completely fill in bubbles and square boxes.				
○ A bubble means that you should only select one choice .				
A square box means you should select all that apply .				
• You may refer to the DSC 10 reference sheet and one hand-written page of notes. No other resources or technology (including calculators) are permitted.				
Full Name:				
PID:				
Name of student to your left : Name of student to your right :				
(Write "N/A" if a wall/aisle is to your left/right.)				
By signing below, you are agreeing that you will behave honestly and fairly during and after this exam.				
Signature:				

Do not open your exam until instructed to do so.

This page is intentionally left blank. You can use it as scratch paper.

			N	Name:	
•	tion 1 (1	point) of: df.shape	e[1]?		
$\bigcirc 2$	3	$\bigcirc 4$	\bigcirc 5	\bigcirc 20	<u> </u>
	,	points) of: df.shape	e[0]?		
$\bigcirc 3$	\bigcirc 5	\bigcirc 20	1 00	\bigcirc 150	\bigcirc Need more information
The cod	le below co	points) mputes the n		tes late (a f	loat) using all the rows in the data
a) Fi	ll in blank	(a).			
	Solution:	get("mins_l	ate")		
b) Fi	ll in blank	(b).			

Solution: mean()

Question 4 (8 points)

The code below computes the bus route of the latest bus on July 5th (an int).

a) Fill in blank (a).

Solution: df.get("day") == 5

b) Fill in blank (b).

Solution: sort_values("mins_late", ascending=False)

c) Fill in blank (c).

Solution: get("route")

d) Which of these can fill in blank (d)? Select all that apply.

■ loc[0]
■ iloc[0]
□ max()
□ min()

Question 5 (4 points)

Select all the expressions that evaluate to **True**. Note that **groupby** automatically sorts the index in ascending order.

df.groupby("day").count() == 20

df.groupby("day").mean().shape[0] == 20

df.groupby("day").min().index[0] == 0

df.groupby("day").max().index[19] == 20

None of the above.

Name:	

Question 6 (6 points)

We ran the following code:

Below are the first three rows of mystery (there are many more rows in the actual DataFrame).

	day	route	mins_late
0	1	30	2
1	1	201	5
2	2	30	3

a)	Which of the following statements is true based on the first three rows of mystery?			
	On July 1, the latest 30 bus was 2 minutes late.			
	On July 1, at least one 30 bus was 5 minutes late.			
	One of the above because we used max().			
	None of the above because we used reset_index().			
b)	We can't determine the number of rows in mystery without more information about df. Which single additional piece of information will let us do so?			
	The number of rows in df.			
	The number of times each day appears in df.			
	The number of unique bus routes in df.			
	The chronological order of bus arrivals in df.			
	None of the above.			
	Question 7 (2 points)			
	Which plot would most clearly show that some bus routes were very late on average which others were very punctual?			
	○ Scatter plot ○ Line plot ○ Bar plot ○ Histogram			

Question 8 (2 points)

Which plot would most clearly show that buses generally arrived earlier as July went on?

 \bigcirc Scatter plot \bigcirc Line plot \bigcirc Bar plot \bigcirc Histogram

Question 9 (6 points)

The density histogram below shows the distribution of the "mins_late" column in the df DataFrame. The x-axis units are in minutes. The y-axis units are in proportion per minute.

- a) What percent of buses were between [3, 4) minutes late?
 - \bigcirc 5%
- **10**%
- \bigcirc 15%
- \bigcirc 20%
- \bigcirc 25%
- \bigcirc 30%
- b) The x-axis label marked (b) is missing. What should it be?
 - \bigcirc 6
- \bigcirc 7
- \bigcirc 8
- **9**
- \bigcirc 10
- c) Suppose that we split the bar marked (c) into two bars, one for the bin [0, 2) and one for the bin [2, 3). Using only the information in the histogram, complete the sentence:

The [0, 2) bar will have a height of _____

- \bigcirc at least 0 and at most 0.15
- \bigcirc at least 0 and at most 0.2
- lacksquare at least 0 and at most 0.3
- \bigcirc at least 0.2 and at most 0.3
- \bigcirc at least 0.2 and at most 0.4
- \bigcirc exactly 0.2
- o exactly 0.3
- Can't tell based on information given.

Name:	

Question 10 (8 points)

Let's say Sam wants to know: do buses arrive later on weekends? He has another DataFrame called days that has two columns:

- "day" (int): the day in July (1-31).
- "weekend" (bool): True if the day was a weekend, False if not.
- a) Which of the follow expressions produces a DataFrame called merged that Sam can use to determine the answer? Select all that apply.

merged = df.merge(days, left_on="day", right_on="day")

merged = df.merge(days, left_on="route", right_on="day")

merged = days.merge(df, left_on="day", right_on="mins_late")

merged = days.merge(df, left_on="weekend", right_on="mins_late")

- b) Sam uses merged to find that buses arrive 5.7 minutes later on weekdays compared to weekends on average. What can Sam conclude? Select all that apply.
 - There's an association between being on a weekday and buses arriving late.
 - Sam can expect the buses to be less late on weekends compared to weekdays.
 - Buses arrive earlier on weekends because there are less people taking the bus.
 - ☐ Buses arrive earlier on weekends because there are fewer buses running on weekends.
- c) Suppose that the data in df was collected as follows: each time a bus arrives, Sam flips a coin. If it lands heads, he records down the arrival. Otherwise, he doesn't. Sam waits at the bus stop until he records 5 arrivals each day.

Again, Sam uses merged to find out that buses arrive 5.7 minutes later on weekdays compared to weekends. Can Sam conclude a causal relationship between weekends and bus arrival times?

Question 11 (8 points)

Suppose that Sam wants to compute an "inconvenience" score for each bus arrival. Bigger scores mean more inconvenient. His scoring system works as follows:

- If the bus is ≥ 10 minutes late, the score is the square of the minutes late.
- If the bus is at least 1 and less than 10 minutes late, the score is 2 times the minutes late.
- If the bus is exactly on time, the score is 0.
- If the bus is early, the score is 1000. (Because Sam will definitely miss it.)

The score function below takes the minutes a bus was late as input (an int) and returns the inconvenience score (an int) for that bus arrival.

```
def score(mins):
    if ___(a)___:
        return mins * 2
    elif ___(b)___:
        return 1000
    else:
        return mins ** 2
```

a) What goes in blank (a)?

```
Solution: 0 <= mins and mins < 10
```

b) What goes in blank (b)?

```
Solution: mins < 0
```

c) The following line produces a scatter plot of the inconvenience scores, with the bus lateness on the x-axis and the score on the y-axis.

```
df.assign(_____).plot(kind='scatter', x='mins_late', y='inc')
What goes in the blank?
```

```
Solution: inc=df.get("mins_late").apply(score)
```

Name: _____

Question 12 (6 points)

The code below creates an array all_scores with the inconvenience scores for each arrival in df. Assume that the score function is implemented correctly.

all_scores = ___(a)___

for val in ___(b)___:
 s = ___(c)___
 all_scores = np.append(all_scores, s)

a) What goes in blank (a)?

Solution: np.array([])

b) What goes in blank (b)?

Solution: df.get("mins_late")

c) What goes in blank (c)?

Solution: score(val)

Question 13 (3 points)

Suppose that the probability that a bus arrives late is p.

a) What's the probability that the first bus you see arrives late, but the second one is early?

b) If you take one bus every day in July, what's the probability that at least one arrives early? There are 31 days in July.

 $\bigcirc p^{31}$ $\bigcirc 1 - p^{31}$ $\bigcirc (1 - p)^{31}$ $\bigcirc 1 - (1 - p)^{31}$

Before turning in your exam,	please make sure	that your PID	or name is on	every page.
Feel free to leave us a drawing	g here!			

Solution: