PROP LA SIGUIENTE SUCESIÓN DE BITT-HUDUUS ES EXACTA:

DONNE $\overline{\chi}_{a}$ = S HULTIPLICACIÓN POR LA

HATRIT CARACTERISTICA DE a, a-t. In \in RELITIVA

Y β = STA' DEFINIDO POR $\beta(e) = e$; i=1,...,n(σ SEA, $\beta(p_{1},...,p_{m}) = \sum_{i=1}^{\infty} p_{i}.e_{i} = \sum_{i=1}^{\infty} p_{i}(a).e_{i}$),

PARA $p_{i} \in h \in h \in h ,...,n$

DEM $\tilde{a}(l_i) = \sum_{i=1}^{n} e_{ij} e_{i}$ (=) $t \cdot l_i = \sum_{i=1}^{n} e_{ij} e_{i}$, t_i OBS $\{e_1, \dots, e_m\}$ SON GENERADORES DE $\{e_n^m\}$, $\{e_n^m\}$ SATISFACEN LAS RELACIONES $\{e_n^m\}$ (aij $-t \cdot s_{ij}^m\}$) $\{e_n^m\}$ $\{e_$

 $\overline{\chi}_{a}$ mono: TENEMOS det $\overline{\chi}_{n} = \chi_{a} \neq 0 \in \mathbb{A}[t]$ NONDE $\chi_{a} = \text{POLINDRIO}$ CANACTERISTICO DE a.

PENSAR LITT $\subset K = \mathbb{A}(t)$, $\mathbb{A}[t]^{n} \xrightarrow{\overline{\chi}_{n}} \mathbb{A}[t]^{n}$, V $\chi_{n} \xrightarrow{\overline{\chi}_{n}} \mathbb{A}^{n}$

im Tackerp (o sex, so Ta = 0):

 $\overline{\chi}_{a}(p_{i},\dots,p_{m}) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} (a-t.I_{m})_{ij} \cdot p_{j} \right) e_{i}, \quad p_{j} \in L(t).$

 $\Rightarrow \overline{\chi}_{a}(\ell_{j}) = \sum_{i} (a-t.\overline{L}_{n})_{ij} \ell_{i} = \sum_{i} a_{ij}.\ell_{i} - \hat{\tau}.\ell_{j}$

 $\Rightarrow P(\bar{\chi}_a(e_j)) = P(\bar{\chi}_a(e_j)) = P(\bar{\chi}_a(e_j)) = 0 \quad (*)$

im Xa = herp:

TENETIOS, POR EL PUNTO ANTERIOR,

nonfished of htt)-nonus.

QUQ; P ES INTECTIVA, COMO MONFISMO DE LITET-MONVOS,
O EQUIVALENTEMENTE, COMO MONFISMO DE R-MODULOS.

DENOTATION DE EM LA CLASE DE LE E BEXT)

EN M VALE t. ej = \(\sigma_i \) = \(\te_i \) = \(\te_i \) = \(\te_i \), \(\te_i \)

=> the field => prefield => M=5

=) EI, ---, En GENERAN M SOBRE & =) dim M = n

PERI = PERI = PIJO = PHOND V M = km, dimp m = n = di-km.

COP Si $a-t.Im \equiv diag(d_1,d_2,...,d_r)$ CON $2d_17 \supset (d_27) ---> (d_r7) \equiv NTONCES \quad \lim_{\tilde{a} \to 0} \cong \bigoplus_{i=1}^{r} hiteligraphi(2d_i^2)$

 $\uparrow \quad \alpha \sim \stackrel{r}{\bigoplus} C(d_{\epsilon}),$

di, dz, ---, dr son los pivisones ELEMENTALES DE a Elemen

FORTA CANDINICA DE JORDAN

COND EN WILA (PAG 102), COMBINEHOS $k_{\alpha}^{\gamma} \cong \bigoplus_{i=1}^{n} k[t]/cdi>$ CON LA DESCOMPOSICIÓN EN COMPONENTES p-PRIMARIAS $k[t]/cdi> \cong \bigoplus_{j=1}^{n} k[t+]/cij>$

de = Topieij, pi irrenvirues movicos e letat.

$$\Rightarrow k_{\widetilde{a}}^{n} \cong \bigoplus_{j=1}^{+} \left(\bigoplus_{i=1}^{n} k[t] / (t_{j}^{e_{ij}}) \right)$$

COMPONENTE pi - PRIMAR'A

=) a ~ $J_R(a) = FORMA CANÓNICA DE JOYZDAN SORRE LA DE Q$ $<math>J_R(a)$ ES UNA MATIRIZ EN BLOQUES QUE VAMOS A DESCRIBIR A CONTINUACIÓN.

LVER GENTILE, ESTRUCTURAS ALGEBRAICAS II, PAT. 125)

```
PARA MAYOR CLARIDAD, RETOMEMOS LA NOTACIÓN
 DE PAG. 108: V h-ESPACIO VECTORIAL, OF E Endy (V),
 NEV, LN>CV, EL htt]-SUBMISHULD d'CLICO
 GENERADO POR N. COMO ANTES, BELT = <07 ( V)
 SUPUNGATIOS AHORA QUE MU = pe con pelitel, een.
 n = gr(m_v) = \varrho \cdot gr(\rho) = \varrho \cdot \delta, \delta = gr(\rho).
 HABIAHOS ELEGIOS LA BASE By = {N, r(n), ---, or-'(N)}
 AHURA VAMOS A ELEGIR OTRA BASE DE LW7.
 (UNA BASE "MEJOR", EN EL SENTIDO QUE VA A TENER
     BASE "MEJOR, EN EL JUNA POTENCIA)

CUENTA QUE m_{xy} = p^Q ES UNA POTENCIA)

p = t^3 + a_{3-1} \cdot t^{3-1} + \cdots + a_1 \cdot t + a_0, ai \in \mathbb{R}.

CASO ai \in \mathbb{R}.

CASO ai \in \mathbb{R}
     CUENTA QUE MA = pe ES UNA POTENCIA)
 TOMAMOS By = { No; = pi. vi (N), j=0,..., s-1; i=0,..., e-1}
  ORDENADOS DEL MODO SIGUIENTE
    ~, o(v), ---, o-3-1(v),
  p. v, p. o(い), ---, p. od-1(い),
  p2. N, p2. J(v), ---, p2. J4-1 (v),
 pe-1, v, pe-! o(v), ..., pe-!, os-1(v)
 OBS pi. of(w) = pi.ti. v = tipi. v = <v>, \ti,j.
 TODO q e httl, gr(q) < T, SE ESCRIPE
 q = = qi, pi con qi=0 5 qr(qi)<1
=) B'_ GENERA (~). WHO # B'_ = r = 1. R = di- (~)
BY ES BASE DE LUY.
```

ESCRIBATIOS [olan) By

のしょう:イツノ →イン>

EJ: SUPONGAHOS
$$A = 1$$
, $p = \pm + \alpha_0$, $m_{r} = (\pm + \alpha_0)^e$

SEA $G_{r}^{i} = \{N, p, N, ..., p^{e-1}, N\}$ (GASE OF LOT)

 $N_{c}^{i} = p^{i}$, $N = (\sigma + \alpha_{0})^{i}(N)$, $0 \le i \le e^{-1}$
 $\sigma(N_{0}^{i}) = \sigma(N) = (\sigma + \alpha_{0})^{i}(N) - \alpha_{0}N = -\alpha_{0}N_{0} + N_{1}$
 $\sigma(N_{1}^{i}) = (\sigma + \alpha_{0})^{i}(N_{1}^{i}) - \alpha_{0}N_{1} = -\alpha_{0}N_{1} + N_{2}$
 \vdots
 $\sigma(N_{e-1}^{i}) = (\sigma + \alpha_{0})^{i}(N_{e-1}^{i}) - \alpha_{0}N_{e-1}^{i} = -\alpha_{0}N_{e-1}^{i} = -\alpha_{0}N_{e-1}^{i}$
 $\sigma(N_{e-1}^{i}) = (\sigma + \alpha_{0})^{i}(N_{e-1}^{i}) - \alpha_{0}N_{e-1}^{i} = -\alpha_{0}N_{e-1}^{i} = -\alpha_{0}N_{e-1}^{i}$
 $\sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i})$
 $\sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i})$
 $\sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i})$
 $\sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i})$
 $\sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i})$
 $\sigma(N_{e-1}^{i}) = \sigma(N_{e-1}^{i}) - \sigma(N_{e-1}^{i})$

EJ SUPONGAMOS
$$\Delta=2$$
, $P=\pm^2+a_1\pm a_2$
 $m_{v}=P^2$
=) $C(P)=\begin{bmatrix}0&-a_0\\1&-a_1\end{bmatrix}$

EN CONCLUSIÓN, DE LA DESLO MPOSICIÓN EN SUMA DIRECTA DE MÓDULOS CICLICOS p-PRITARLIOS DE PAG. 113 ;

ortenemos que

Forma de Jordan sobre k:
$$a \sim \bigoplus_{j=1}^{+} \bigoplus_{i=1}^{+} J(h_j, \ell_{ij}) = J_k(a)$$

ADEMAS, POR TEO. 2, ESTA DESCOMPOSICIÓN ES UNICA. (SALVO ORDEN DE LOS tj)

OBS SI L= C, CON NOTACION OF PAG. 113, 1 = x-2; i=リーンナ (スンキカj PARA シャj) ヨ

DONDE J (X-7), Pij) ES COMO EN PAG. 116 ESTA ES LA DESCOMPOSICIÓN DE JORDAN CLASICA.

Si h= IR, PODEHOS TENER EN JR(a) BLOQUES DEL Tipo ANTERIOR I(t-2j, eig), 4 TAMBIÉN BLOQUES CORRESPONDIENTES A IEREDUCIBLES DE GRADO J(+2+a,++a0, e) con a=-4a0<0, cono EN PAG. 117. Si h = D PODEHOS TENER BLOQUES J(p,e) CON

PEQITI IRREDUCIBLE DE GRADO ARBITRARIO.

OBS PARA a & QMEM, PUEDE OCURRIR QUE Ja(a), JR(a), Ja(a) SEAN DIFFERENTES, YA QUE SE OBTIENEN FACTORIZANDO LOS DIVISORES ELEMENTALES do E GITTI DE a EN QTX], IRTX] - C[X].