

Programme Name & Branch: B. Tech Course Name & Code: Applications of Differential and Difference Equations & MAT2002 Class Number: VL2019201000396, VL2019201000397, VL2019201000398, VL2019201000399, VL2019201000400 Stot: B2+TB2

V

Exam Duration: 90 minutes

Maximum Marks: 50

Answer All the Questions $(5 \times 10 = 50)$

By using the sine series for f(x) = 1 in $0 < x < \pi$, show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Compute the first two harmonics of the Fourier series of f(x) given in the following

θ 0° 60° 10°	outler series of f(x) given i
T 1.0 1.4 1.9	180° 240° 300°
Obtain the Fourier can	1.7 1.5 1.2 1.0

Obtain the Fourier series for y = x in (0, 1) and hence show that

$$1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \dots = \frac{\pi^4}{96}$$

Verify the Cayley – Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, show that 4. $A^n = A^{n-2} + A^2 - 1$. Hence find A^{50} .

$$A^n = A^{n-2} + A^2 - 1$$
. Hence find A^{50} .

Reduce the quadratic form $x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$ to a canonical form by an orthogonal reduction and discuss it's nature. Also find the model matrix.

> SPARCH YIT QUESTION PAPERS ON TELEGIRAM TO JOIN

