الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

المستوى: السنة الثالثة ثانوي

السنة الدراسية: 2024/2023

المدة: 03 ساعة و 30 دقيقة

ثانوية:

الشعب : علوم تجريبية - تقني رياضي - رياضيات

اختبار الفصل الأول الموحد في مادة : العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأول: (5,50 نقاط):

" قبل أيام انتشرت على الفيسبوك صور ومقاطع لمجموعة من الأجرام اللامعة تتحرك في السماء على شكل قطار ، مشهد غريب وغير اعتيادي" و هي تتابع مجموعة من الأقمار الاصطناعية تسمى قطار ستارلينك حيث أطلقت شركة Space X في يوم 17 أوت 2023 ، 21 قمرا اصطناعيا على متن صاروخ فالكون 9 من قاعدة Vandenberg في كاليفورنيا

Starlink هو نظام ضخم من الأقمار الاصطناعية يهدف إلى توفير اتصال إنترنت عالي السرعة حتى في المناطق الأكثر انعزالا على الأرض ، تتحرك الأقمار في مدارات مختلفة حول الأرض ، فعادة تطلق الأقمار إلى مدارها في شكل مجموعات ، ومع مرور الوقت تبدأ هذه الاقمار في الانفصال عن بعضها البعض بسبب اختلاف مداراتها وسرعاتها.

- 1- يخضع القمر الاصطناعي (S) فقط إلى قوة جذب الأرض (T) له $\vec{\mathrm{F}}_{T/S}$ ، مثل في رسم مناسب هذه القوة ثم اكتب عبارتها الشعاعية بدلالة : m_s , m_s , m_s , m_s , m_s , m_s عبارتها الشعاعية بدلالة : m_s , m_s , m_s , m_s , m_s , m_s , m_s
 - $v^2 = G.\,M_T\cdotrac{1}{\pi}$: بتطبيق القانون الثاني لنيوتن بين أن عبارة السرعة المدارية تكتب على الشكل $rac{1}{\pi}$
 - 9- يوضح الجدول التالي خصائص بعض الأقمار ، علما أن $\frac{T^2}{m^3}=K$ أكمل الجدول

Starlink D	Starlink C	Starlink B	Starlink A	أقمار اصطناعية
1436			100	الدور المداري T (min)
		5710	770	الارتفاع عن سطح $h(km)$
	4,285			$\frac{1}{r} (10^{-8} m^{-1})$
				$v^2 (10^7 m^2/s^2)$

- $v^2 = f(1/r)$ مثل بیانیا مربع سرعة الأقمار بدلالة مقلوب نصف قطر الدوران $v^2 = f(1/r)$ ؟
 - 5- اعط العبارة الرياضية التي يترجمها البيان ؟
 - 6- بالاعتماد على العلاقتين النظرية والبيانية ، استنتج كتلة الأرض ؟
- 7- حدد من بين الأقمار الموجودة في الجدول القمر الذي يمكن اعتباره جيو مستقر ، علل ؟

دور الأرض $T_M = 24 h$ نصف قطر الدوران $r = R_T + h$

نصف قطر الأرض $R_T = 6380 \ km$ $G = 6.67 \cdot 10^{-11} \ SI$

ثابت الجذب العام

المعطيات:

التمرين الثانى: (07 نقاط):

الزنك Zn معدن خفيف الوزن ولونه فضي يعد الأكثر استخراجا بعد الحديد والألومينيوم والنحاس. z_0 تعتبر أسقف الزنك من أكثر أنواع الأسقف انتشارا وذلك لتكلفتها القليلة مقارنة بالأسقف الخرسانية أو الخشبية ، يعد الزنك تغطية مثالية لحماية المباني المعرضة لظروف الطقس ، حيث أنه مقاوم جيد. ﴿ ﴿ كُاسْتُهُ وَاسْ

عند تلامسه مع الماء والملح تتشكل طبقة من صدأ الزنك تمنحه مظهرا خشنا وتعمل على عزله وحمايته من التأكل

: ننمذج تفاعل الزنك $Zn_{(s)}$ مع محلول حمض كلور الهيدروجين $(H_3O^+ + Cl^-)_{(aq)}$ بالمعادلة الكيميائية التالية

 $Zn_{(s)} + 2H_3O^+_{(aq)} == Zn^{2+}_{(aq)} + H_{2(q)} + 2H_2O_{(l)}$ لدراسة حركية هذا التفاعل التام نسكب في زجاجية مناسبة حجمها من محلول $V_A=75\ mL$ عند اللحظة $V_A=1\ L$ حمض كلور الهيدروجين تركيزه المولي : $C=0.4 \ mol/L$ والتي تحتوي كتلة m=0.6~g من مسحوق الزنك $Zn_{(s)}$ و نقيس في كل لحظة t الضغط P داخل الزجاجية بواسطة لاقط الضغط

، مكنت الدراسة التجريبية عند الدرجة $^{\circ}$ 25 $^{\circ}$ من رسم منحنى الشكل (1) الممثل لتغيرات $^{\Delta}P$ بدلالة الزمن

- 1- ارسم التركيب التجريبي المستعمل لهذه الدراسة مرفق بالبيانات المناسبة ؟
 - 2- حدد طرق أخرى لمتابعة هذا التحول ؟
- X_{max} التفاعل الكيميائي وحدد المتفاعل المحد X_{max} التفاعل الكيميائي وحدد المتفاعل المحد X_{max}
- ΔP و V ، T ، R التفاعل عند اللحظة t بدلالة V ، V ، V ، V ، V ، V ، V و V . حيث $P_0 = P - P_0$ مع P_0 الضغط الابتدائي عند اللحظة t=0 عند اللحظة الابتدائي عند اللحظة عند $x(t) = \frac{\Delta P \cdot V}{D.T}$: الشكل
 - ج وف زمن نصف التفاعل $t_{1/2}$ ، بين أن : $\frac{\Delta P(t_{1/2})}{2} = \frac{\Delta P_{max}}{2}$ ، ثم حدد $t_{1/2}$ بيانيا ؟ -5
 - ين أنها تكتب : $v_{(vol)}=rac{V}{V_A:R:T}\cdotrac{d\Delta P}{dt}$: بين أنها تكتب ، بين أنها تكتب أنها تكتب -6

قانون الغازات المثالية P.V = n.R.Tثابت الغازات المثالية R = 8,31 SIM(Zn) = 65.4 g/mol

التمرين التجريبي: (07 نقاط):

تسقط كرة مطاطية (S) في الهواء بحركة انسحابية شاقولية في اللحظة t=0 دون سرعة ابتدائية من موضع S مبدأ لمعلم S موجه نحو الأسفل ومرتبط بمرجع سطحي أرضي نعتبره غاليليا ، تخضع الكرة أثناء حركتها إلى :

- ((S) عجم الكرة V ، فوة الثقل V ، الكتلة الحجمية للمطاط ، $\vec{P}=
 ho_s.V.g.$ الكتلة الحجمية المطاط ، $\vec{P}=
 ho_s.V.g.$
 - دافعة أرخميدس $\vec{\Pi}=-m_{air}.\,g.\,ec{j}$ دافعة أرخميدس -
- قوة احتكاك مع الهواء $\vec{f}=-k.v.\vec{j}$ ، (حيث K:K: معامل الاحتكاك ، V:K: سرعة مركز عطالة الكرة (V:K: الكرة وبرمجية إعلام آلي تمكنا من رسم المنحنى الممثل لتغيرات شدة بالاعتماد على نتائج التصوير المتعاقب لحركة الكرة وبرمجية إعلام آلي تمكنا من رسم المنحنى الممثل لتغيرات شدة

 $F(imes 10^{-2}N)$ (1) الشكل $F=\left\|\sum \overrightarrow{F_{ext}}\right\|=h(t)$ محصلة القوى الخارجية المؤثرة على الكرة بدلالة الزمن

- 1- مثل القوى الخارجية المؤثرة على الكرة خلال مراحل الحركة ؟
- 2- احسب النسبة بين ثقل الكرة P و دافعة أر خميدس Π ، ماذا تستنتج ?
 - 3- بتطبيق القانون الثاني لنيوتن أثبت أن المعادلة التفاضلية تكتب :

حيث au و B ثابتين يطلب إيجاد عبار تيهما au حيث au حيث au

- 4- من الشروط الأساسية لتطبيق القانون الثاني لنيوتن
 هو أن يكون مرجع الدراسة غاليليا (عطاليا) ؟
- . اشرح كيف يحقق المرجع السطحي الأرضي هذا الشرط؟
 - k مستعملا التحليل البعدي جد وحدة قياس قيمة المعامل 5
 - بيانيا الثابت au ، استنتج k معامل الاحتكاك ؟ -6
- (2) محصلة القوى الخارجية في اللحظة t=0 ثم استنتج سلما لمحور تراتيب الشكل F_0
 - ا وجد عبارة السرعة الحدية v_{lim} ، احسب قيمتها -8
 - t = 2 s احسب شدة قوة الاحتكاك عند اللحظة -9

استنتج قيمة الطاقة الحركية للكرية عندها ؟

توضع الكرية السابقة داخل أنبوب زجاجي طوله L مفرغ تماما من الهواء وتترك لتسقط دون سرعة ابتدائية من النقطة O أعلى الأنبوب.

يمثل الشكل (3) منحنى تغيرات سرعة الكرة بدلالة الزمن.

- 1- ما نوع هذا السقوط، عرفه؟
- 2- احسب تسارع مركز عطالة الكرة ، واستنتج طبيعة الحركة ؟
 - $^{\circ}$ لا نبوب الزجاجي $^{\circ}$ احسب طول الأنبوب الزجاجي $^{\circ}$

 $m_{air} = 14 \; g$ $V = 10^{-2} \; m^3$ $\rho_s = 2 \; Kg/m^3$ $g = 10 \; m/s^2$: المعطيات

الموضوع الثانى

يحتوي الموضوع الثاني على 03 صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6)

التمرين الأول: (06 نقاط):

كرة المضرب أو التنس الأرضي نوع من رياضات الراح والتي يتنافس فيها لاعبان يحمل كل منهما مضربا لضرب الكرة نحو منطقة الخصم ، ملعب التنس طوله m 24 وعرضه m 8,2 وضعت في منتصفه شبكة ، عندما يرسل اللاعب الكرة يجب أن تسقط في منطقة محصورة بين الشبكة وخطٍ يوجد على بعد m 6,4 من الشبكة كما هو موضح في الشكل (1)

في بطولة ويمبلدون WIMBLEDON المفتوحة على الملاعب العشبية ، واحدة من بطولات الكبرى (الغراند سلام).

يريد اللاعب روجر فيدرير والمعروف بـ كوكب التنس اسقاط الكرة في النقطة (B) h_A لإنجاز الإرسال يقذف اللاعب الكرة بيده شاقوليا نحو الأعلى من النقطة (A) ارتفاعها من الأرض بسرعة ابتدائية \vec{v}_A وعندما تبلغ ذروتها (O) الواقعة على ارتقاع h_o يضربها بمضربه فتنطلق بسرعة ابتدائية أفقية \vec{v}_a ، الشكل (2) يبين مسار كرة التنس

- $v_y(t)$ و $V_x(t)$ اكتب معادلتي السرعة -2
- y(t) واستنتج معادلة المسار y(t) واستنتج معادلة المسار .
 - 4- ما هي قيمة السرعة v_0 حتى تمر الكرة بـ 0 فوق الشبكة ؟
- 5- احسب سرعة الكرة لحظة مرورها فوق الشبكة وكذا الزاوية eta التي يصنعها مع الأفق ؟

التمرين الثاني: (07 نقاط):

الماء الأكسيجيني أو محلول بيروكسيد الهيدروجين يستعمل كمعقم للجروح . يتفكك H_2O_2 تلقائيا لذلك يحفظ في قارورة ذات لون بني يحمي من امتصاص الضوء ويمنع تفاعل الأكسدة وإذا تم تعريضه للتسخين أو كميات من المعادن أو شوارد المعادن فإنه سيتحول إلى الماء والأكسجين وفق المعادلة :

$$2H_2O_{2(aq)} ===== 2H_2O_{(l)} + O_{2(g)}$$

تحمل لصاقة القارورة الكتابة ماء أوكسيجين Vol ، والتي تعني أن 1 من الماء الأكسيجيني ينتج بعد تفككه 1 من غاز الأكسجين في الشرطين النظاميين

- 1- مثل جدول تقدم التفاعل المنمذج لتفكك الماء الأكسجيني
- $C_0 = rac{2}{V_M} \cdot rac{V(O_2)}{V(H_2O_2)}$: أثبت أن التركيز المولي الابتدائي ولماء الأكسيجيني يعبر عنه بالعلاقة التالية C_0
- $C_0 = 0.893 \ mol/L$: هو $10 \ Vol$ هو الأكسيجيني الموافق للكتابة C_0 هو الابتدائي C_0
- 4- نريد التأكد من أن قارورة للماء الأكسجيني المكتوب عليها Vol محضرة حديثا أو محضرة منذ مدة ، لذلك t=0 غذا مجموعة انابيب اختبار يحتوي كل منها حجم $V_0=10\ mL$ من القارورة ونضعها عند اللحظة t=0 في حمام مائي درجة حرارته ثابتة ، عند كل لحظة t=0 نفرغ انبوبة اختبار في بيشر ونضيف اليه ماء وقطع جليد وقطرات من حمض الكبريت المركز $(2H_3O^+ + SO_4^{2-})$ ، ثم نعاير المزيج بمحلول مائي لثنائي كرومات البوتاسيوم V_E تركيزه المولي V_E تركيزه المولي V_E فنحصل في كل مرة على الحجم V_E اللازم لبلوغ التكافؤ ، سمحت النتائج المتحصل عليها برسم المنحنى الممثل في الشكل(3).

 $3H_2O_2 + Cr_2O_7^{2-} + 8H^+ = 3O_2 + 2Cr^{3+} + 7H_2O$: ننمذج تفاعل المعايرة بالمعادلة

- أ- هل يؤثر اضافة الماء وقطع الجليد على قيمة التكافؤ V_F ! لماذا؟
- ب- هل يمكن اعتبار حمض الكبريت كوسيط في هذا التفاعل؟ علل.
- $m{V_E}(m{mL})$. $m{V_0}$ و $m{V_E}$ و C عبر عن التركيز المولي $m{H_2O_2}$ لمحلول الماء الأكسجيني بدلالة $m{C}$
 - 6- هل هذا المحلول محضر حديثا ؟ علل.
 - 7- بالاعتماد على المنحنى جد:
 - $t_{1/2}$ أ- زمن نصف التفاعل $t_{1/2}$
 - ب- قيمة السرعة الحجمية لاختفاء الماء
 - $t=200\,s$ الأكسجيني عند اللحظة
 - 8- لو أعدنا التجربة السابقة بتمديد المحلول
 الابتدائي للماء الأكسيجيني قبل بداية التجربة ،

ارسم كيفيا شكل المنحنى في هذه الحالة مع التبرير

 $V_M = 22,4 \ L/mol : المعطيات$

التمرين التجريبي: (07 نقاط):

- I لدراسة التحول الكيميائي البطيء و التام بين محلول حمض الكبريت $(aq)^{(aq)}(aq)^{(aq)}$ والألومينيوم M=810~mg والألومينيوم الذي يحوي كند اللحظة L=0 كتلة قدر ها L=0 كتلة قدر ها L=0 من الألومينيوم النقي في العنصر رقم 2 الذي يحوي حجم L=0 من محلول حمض الكبريت تركيزه المولي L=00,09 L=00 من محلول حمض الكبريت تركيزه المولي L=00,09 L=00 من محلول حمض الكبريت تركيزه المولى عاتمادا على التركيب التجريبي الموضح في الشكل (4)
 - 1- كيف نكشف تجريبيا عن الغاز المنطلق ؟
 - 2- صنف هذا التحول حسب مدته الزمنية المستغرقة ؟
 - 3- سم العناصر المرقمة في الشكل (4)
 - 2- علما أن الثنائيات (0x/Red) الداخلة في التفاعل هي : (Al^{3+}/Al) و (H_3O^+/H_2) ، اكتب : أ- المعادلتين النصفيتين الإلكتر ونيتين للأكسدة وللإرجاع ؟
 - ب ـ معادلة التفاعل أكسدة إرجاع ؟
 - 5- أ- أنشئ جدول تقدم التفاعل ؟
 - $x_{max}=1.8 imes10^{-3}~mol$ ب بين أن التقدم الأعظمي
- II- أجريت التجربة من طرف فوجين حيث استعمل الفوج الأول الألومينيوم على شكل مسحوق واستعمل الفوج الثاني على شكل مسحوق واستعمل الفوج الثاني على شكل شريط، النتائج المتحصل عليها مكنت من رسم المنحنيين (1) و (2) الموضحين في الشكل (5)
 - $V_f = 129,6 \ mL$: تحقق أن قيمة الحجم النهائي لغاز الهيدروجين المنطلق هو -1
 - بین أنه لما $t_{1/2}$ فإن : $t
 ightarrow t_{1/2} = rac{1}{2}$: أنه لما $t_{1/2}
 ightarrow t_{1/2}$ بين أنه لما $t_{1/2}$ فإن $t
 ightarrow t_{1/2}$ اكل منحى ?
 - $v_{Vol} = rac{1}{3 \cdot V \cdot V_M} rac{dV_{H_2}(t)}{dt}$: بين أن عبارة السرعة الحجمية للتفاعل تكتب من الشكل -3

احسب قيمتها عند اللحظة t=0 لكل منحنى ؟

4- ارفق كل منحنى بالفوج المناسب

واذكر العامل الحركي المدروس

ؤساتنرة ماوة ولعلوم ولفيزيائية يتمنوني لكم ولتوفيق وولنجاح

 $V_M = 24 L/mol$ M(Al) = 27 g/mol المعطيات <u>:</u> الحجم المول*ي*

// الشعب: علوم تجريبية - تقني رياضي - رياضيات	اختبار الفصل الأول الموحد في مادة: العلوم الفيزيائية

وزارة التربية الوطنية

المستوى: السنة الثالثة ثانوي

الموسم الدراسي: 2024/2023

ثانوية : الشعب : علوم تجريبية - تقني رياضي - رياضيات

الاجابة النموذجية لاختبار الفصل الأول الموحد مادة: العلوم الفيزيائية

الموضوع الأول

العلامة		عناصر الإجابة		
مجموع	مجزأة		10CF 154.	tı
0.25	0.25		رين الأول : (06,5 ا	
0,25	0,25	$\vec{F}_{T/S} = -G \cdot \frac{M_T \cdot m_S}{r} \cdot \vec{u}.$	الرسم العبارة	
	0,25	$\sum \vec{F}_{ext} = m\vec{a}.$	الشعاعية	
0,75	0,25	$F_{M/p} = m_p \cdot a_n$ $F_{m_T \cdot m_S} = v^2$		
	0,25	$G\frac{m_T \cdot m_s}{r^2} = m_s \cdot \frac{v^2}{r}.$ $v^2 = \frac{G \cdot m_T}{r} \rightarrow v^2 = GM_T \cdot \frac{1}{r}$	عبارة السرعة المدارية	2
	0,25	$r_A = (770 + 6380) \cdot 10^3 = 7150 \text{ km}.$ $\frac{1}{r_A} = \frac{1}{7150 \cdot 10^3} = \frac{14 \cdot 10^{-8}}{14 \cdot 10^{-8}} \text{ m}^{-1}.$	$\frac{1}{r_A}$	
	0,25	$v_A = \frac{2\pi \cdot r_A}{r_A} = \frac{2\pi \times 7150.10^3}{(100 \times 60)} = 7487,46 \text{ m/s}.$ $v_A^2 = (7487,46)^2 = 5,6.10^7 \text{ m}^2/\text{s}^2.$	v_A^2	
	0,25	$v_A^2 = (7487,46)^2 = \frac{5,6.10^7}{r^3} m^2/s^2.$ $K = \frac{T^2}{r^3} = \frac{(100 \times 60)^2}{((770 + 6380).10^3)^3} \approx 9,84.10^{-14}.$	K	-
	0.01	$T_B^2 = K. r_B^3 = 9.84 \times 10^{-14} \times ((5710 + 6380).10^3)^3.$ $T_B = \sqrt{173.88.10^3} = 13.18.10^3 s \approx \frac{220}{100} min.$	T_B	-
	0,25 0,25	$\frac{1}{r_B} - \frac{1}{((5710 + 6380).10^3)} - \frac{6.27.10}{(1.5710 + 6380).10^3)} = \frac{1}{100}$	$\cdot \frac{1}{r_B}$	
	0,23	$v_B = \frac{2\pi \cdot r_B}{r_B} = \frac{2\pi \times ((5710 + 6380) \cdot 10^3)}{(220 \times 60)} = 5754,82 \text{ m/s}.$ $v_B^2 = (5754,82)^2 = \frac{3,3.10^7}{3} \text{ m}^2/\text{s}^2.$	v_B^2	
3,5	0,25	$r_C = \frac{1}{4,285.10^{-8}} = 23337,22 \text{ km}.$ $r_C = \frac{1}{4,285.10^{-8}} = 23337,22 \text{ km}.$	h_C	3
		$T_C^2 = K.r_C^3 = 9.84 \times 10^{-14} \times (23337,22.10^3)^3.$ $T_C = \sqrt{1,25.10^9} = 35,364.10^3 s \approx \frac{590}{1000} min.$	T_{C}	
	0,25	$\frac{1}{r_C} = \frac{1}{(23337,22 \times 10^3)} = 4,28.10^{-8} m^{-1}.$ $v_C = \frac{2\pi \cdot r_C}{T_C} = \frac{2\pi \times (23337,22 \times 10^3)}{(590 \times 60)} = 4142,15 m/s.$	2	
		$v_c^2 = (4142.15)^2 = \frac{1.71.10^7}{1.71.10^7} m^2/s^2$	v_c^2	
	0,25	$r_D^3 = \frac{T_D^2}{K} = \frac{(1436 \times 60)^2}{9,84.10^{-14}} = 7,54.10^{22}.$	h_D	
		$r_{-} = \sqrt[3]{7.54.10^{22}} \approx 42246.47 \text{ km}$		
	0,25	$h_D = 42246,47.10^3 - 6380.10^3 = 35866,47 \text{ km}.$ $\frac{1}{r_D} = \frac{1}{(42246,47.10^3)} = 2,36.10^{-8} \text{ m}^{-1}.$	$\frac{1}{r_D}$	

	0,25	$v_D = \frac{2\pi \cdot r_D}{r_B} = \frac{2\pi \times (42246,47.10^3)}{(1436 \times 60)}$ $v_D^2 = (3080,8)^2 = 0.95.10^3$	$m = 3080,8 m/s.$ $m^2/s^2.$	v_D^2	
1,5	0,5 0,25 0,25 0,25 0,25	,	البيان خط مستقيم يمر بالمبدأ معادلته $y=a.x$ من الشكل : $v^2=a.\frac{1}{r}.$ $a=\frac{(5,6-3,3)\times 10^7}{(14-8,2)\times 10^{-8}}\approx 4.10^{14}.$ $v^2=4.10^{14}.\frac{1}{r}.$ بالمطابقة بين العلاقة النظرية و البيانية $G.M_T=4.10^{14}$ $M_T=\frac{4.10^{14}}{G}=\frac{4.10^{14}}{6,67.10^{-11}}.$ $M_T=6.10^{24}~kg$	المنحى البيانية العبارة البيانية كتلة الأرض	5
0,5	0,25 0,25	مستقر إذا كان دوره المداري مساوي $T_T=24\ h=24 imes60=144$ ومستقر	لدور الأرض	القمر الجيو مستقر	7

لامة	العا			المارة	ic				
مجموع	مجزأة		عناصر الإجابة						
						.6 نقاط)	رين الثاني: (50	التم	
	0,25 0,25				تابعة هذا	بمكن ما	التركيب التجريبي	1	
1,5	0,25 0,25	(01)	(02)	1- ارلينة 2- وسط تفاعلي 3- جهاز قياس الضغط	عن طريق : الناقلية	التحول ـ قياس	طرق أخرى	2	
	0,25 0,25		(03)		,	المنطلق	لمتابعة		
		$Zn_{(s)}$ + 2h	$H_3 O^+_{(aq)} =$	$Zn^{2+}{}_{(aq)} + I$	$H_{2(g)} + 2$	$H_2O_{(l)}$			
0,5	0,5	$n_{0}{}_{1}$	$n_{0}{}_{2}$	0	0	٠؉;	جدول التقدم		
0,0	0,0	$n_{0_1} - x_t$	$n_{0_2}-2x_t$	x_t	x_t	بزيادة	, 5,		
		$n_{0_1} - x_{max}$	$n_{0_2}-2x_{max}$	x_{max}	x_{max}	•			
0,5	0,25 0,25	$n_{0_{1}} - x_{max} = 0$ $\frac{m}{M} - x_{max} = 0 = x_{max} = \frac{m}{M} = \frac{0.6}{65.4}$ $x_{max} = \frac{C.V - 2x_{max}}{2} = \frac{0}{0.4 \times 0.075}$ $x_{max} = \frac{C.V}{2} = \frac{0.4 \times 0.075}{2}$ $x_{max} = 15 \times 10^{-3} \text{ mol}$ مرفوض		x_{max}	3				
0,25	0,25			نك Zn	للمحد هو الز	المتفاعل	المتفاعل المحد		

01	0,25	$P_{(t)} = P_0 + P_{H_2} P_{H_2} = P_{(t)} - P_0 P_{H_2} \cdot V = n \cdot R \cdot T P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$ $P_{H_2} \cdot V = x_t \cdot R \cdot T$	عبارة التقدم $\chi_{(t)}$	4
0,25	0,25	$x_{t1/2}=rac{x_{max}}{2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الاعظمي		
0,75	0,25 0,25	$\Delta P \cdot V = x(t) \cdot R \cdot T$ $\Delta P_{max} \cdot V = x_{max} \cdot R \cdot T \longrightarrow x_{max} = \frac{\Delta P_{max} \cdot V}{R \cdot T}$ $\Delta P_{t1/2} \cdot V = x_{t1/2} \cdot R \cdot T = \frac{x_{max}}{2} \cdot R \cdot T = \frac{\frac{\Delta P_{max} \cdot V}{R \cdot T}}{2} \cdot R \cdot T$	<i>t</i> .	5
	0,25	$\Delta P_{t1/2} = \frac{\Delta t \max}{2}.$	$t_{1/2}$	3
0,25	0,25	$\Delta P\left(t_{rac{1}{2}} ight)=rac{\Delta P_{max}}{2}=rac{740}{2}=370\ hpa$ من البيان $t_{1/2}pprox40\ min$ بالاسقاط نجد		
	0,25	هي سرعة التفاعل في وحدة الحجم		
1	0,5	$v_{vol} = \frac{1}{V_A} \cdot \frac{dx}{dt}$. $x = \frac{\Delta P.V}{R.T}$. $v_{vol} = \frac{1}{V_A} \cdot \frac{d\frac{\Delta P.V}{R.T}}{dt}$.	السرعة الحجمية	
1	0,25	$v_{vol} = \frac{v}{v_{A} \cdot R \cdot T} \cdot \frac{d\Delta P}{dt}.$ $v_{vol} = \frac{925.10^{-6}}{0.075.8,31.298} \cdot \frac{600.10^{2} - 0}{50 - 0}.$ $v_{vol} = 5.97 \times 10^{-3} \cdot \frac{mol}{L.min}.$	الحجمية للتفاعل	6
0,5	0,5	$\Delta P(hPa) \qquad \Delta P = g(t)$ $\Delta P = f(t)$ $t(min)$	البيان $\Delta P = g(t)$ في حالة إجراء التفاعل عند درجة حرارة $ heta_2$	

رمة ا	العا	عناصر الإجابة		
مجموع	مجزأة	عناصر الإجابة		
		70 نقاط) :	رين التجريبي: (التم
				Ι
0,5	0,25 0,25		تمثيل القوى	1
0,5	0,25 0,25	$\frac{P}{\Pi} = \frac{\rho_s.V.g}{m_{air}.g} = \frac{2.10^{-2}}{14.10^{-3}} = 1,42$ (ضعف)مرة $P = 1,2$ Π اذن دافعة ار خميدس Π غير مهملة أمام الثقل P	النسبة	2

	T			
0,5	0,25 0,25	$ \sum_{\vec{P}+\vec{\Pi}+\vec{f}=\rho_{s}.V\cdot\vec{a}} \frac{dv}{dt} + \frac{k}{\rho_{s}.V}v = g(1 - \frac{m_{air}}{\rho_{s}.V}). $		
0,75	0,25 0,25 0,25	(OZ) بالاسقاط على المحور $P-\Pi-f= ho_{S}.V.a$ بالاسقاط على المحور $rac{1}{ au}=rac{k}{ ho_{S}.V}.$ $P-\Pi-f= ho_{S}.V.a=rac{1}{ au}=rac{k}{ ho_{S}.V}.$ $P=0$	المعادلة	3
0,25	0,25	المرجع السطحي الأرضي ليس غاليليا بالمعنى الدقيق بسبب دوران الأرض نفسها (مسار إهليليجي) غير أننا نعتبره غاليليا في مجال زمني صغير جدا (زمن الدراسة $6s$) مقارنة مع مدة دوران الأرض حول نفسها ($24h = 86400 s$) في هذه المدة القصيرة جدا نعتبر حركة الأرض مستقيمة منتظمة ومن مبدأ العطالة محقق.	المرجع الغاليلي	4
0,5	0,25 0,25	$k = \frac{f}{v} = \frac{m.a}{v}.$ $k = \frac{m.\frac{v}{t}}{v} = \frac{m}{t}.$ $[k] = \frac{[M]}{[s]}.$ $[k] = [M]. [s^{-1}]$ $(k) = (Kg. s^{-1})$	التحليل البعدي	5
0,5	0,25 0,25	$\tau = 1 s$ $\left \frac{1}{\tau} = \frac{k}{\rho_{s.}V} \right $ $k = \frac{\rho_{s.}V}{\tau} = \frac{2.10^{-2}}{1} = \frac{0.02 \ kg/s}{1}$.	الثابت τ	6
0,75	0,25 0,25	$ \begin{array}{ll} t = 0 \\ \sum \overline{F_{ext}} = \vec{P} + \vec{\Pi} \\ F_0 = P - \Pi \\ F = 0 V a = m \\ \end{array} $ $ \begin{cases} 5 Cm \to 6. 10^{-2} N \\ 1 Cm \to x \end{cases} $ $ x = \frac{1 \times 6.10^{-2}}{5} = \frac{1, 2. 10^{-2}}{5}. $	محصلة القوى F_0	7
	0,25	$F_0 = \rho_s. V. g - m_{air}. g$ 5 $F_0 = (2.10^{-2}.10) - (14.10^{-3}.10) \rightarrow F_0 = 6.10^{-2} N$	سلم الرسم	
0,5	0,25	$rac{dv}{dt} + rac{1}{ au}v = g(1 - rac{m_{air}}{ ho_{s.V}}).$ $rac{dv}{dt} = 0 \ v = v_{lim}$ السرعة الحدية $rac{1}{ au}v_{lim} = g(1 - rac{m_{air}}{ ho_{s.V}}).$ $rac{dv}{dt} = 0 \ v = v_{lim}$ $rac{1}{v_{lim}} = au. \ g(1 - rac{m_{air}}{ ho_{s.V}}).$	عبارة السرعة الحدية	8
	0,25	$v_{lim} = 1 \times 10 \left(1 - \frac{14.10^{-3}}{2.10^{-2}} \right) \rightarrow v_{lim} = 3 \text{ m/s}.$		
		t = 2s $F_{t-2s} = 8.4 \cdot 10^{-3} N$ $f = P - \Pi - F_{t=2s}$ $f = 0.2 - 0.14 - 8.4 \cdot 10^{-3}$	شدة قوة	
1	0,25	$F_{t=2s} = 8,4. 10^{-3} N$ $\sum \overrightarrow{F_{ext}} = \overrightarrow{P} + \overrightarrow{\Pi} + \overrightarrow{f}$ $f = 0,2 - 0,14 - 8,4. 10^{-3}$ $f = 5,16. 10^{-2} N$	الاحتكاك	9
		$F_{t=2s} = P - \Pi - f \qquad \qquad f = k. v => v = \frac{f}{k}.$	الطاقة الحركية	
	0,25	$Ec = \frac{1}{2}.m.v^2 = \frac{1}{2}.m.(\frac{f}{k})^2 = 0.5.2.10^{-2}.(\frac{5.16.10^{-2}}{0.02})^2 = \frac{0.06 J}{0.02}.$		
0,5	0,25	تأثير قوة الثقل فقط	تعریف	1
0,5		$ \sum \overrightarrow{F_{ext}} = \rho_s. V \cdot \vec{a} \qquad \qquad \rho_s. V \cdot g = \rho_s. V \cdot a \vec{P} = \rho_s. V \cdot \vec{a} \qquad \qquad a = g = 10 \text{ m/s}^2 $	التسارع	2
0,0	0,25	ومنه الحركة مستقيمة متسارعة بانتظام $P = \rho_s. V \cdot a$	طبيعة الحركة	
0,25		ريقة 2: محذوفية الزمن $v_{(t)}^2 - v_0^2 = 2.g.(Z_{(t)} - Z_0)$ طريقة 1: مساحة الشكل $v_{(t)}^2 = 2.g.Z_{(t)}$ طول الأنبوب = مساحة الشكل $Z_{(t)} = \frac{v_{(t)}^2}{2.g} = \frac{10^2}{2 \times 5} = 5m.$ $S = \frac{1 \times 10}{2} = \frac{1 \times 10}{2} = \frac{5}{2} m.$	طول الأنبوب	3

الموضوع الثاني

		نقاط) :	رين الأول: (06	التم
				Ι
0,5	0,25 0,25	$ \begin{aligned} Epp_A + Ec_A &= Epp_O + Ec_O \\ Ec_A &= Epp_O - Epp_A \\ \frac{1}{2} \cdot m \cdot v_A^2 &= m \cdot g \cdot (h_O - h_A). \end{aligned} \qquad \begin{aligned} v_A^2 &= 2 \cdot g \cdot (h_O - h_A) \\ v_A &= \sqrt{2.10 \cdot (2 - 1.6)} \\ v_A &= \sqrt{8} = \frac{2.82 \text{ m/s}} \end{aligned} $	مبدأ انحفاظ الطاقة	1
	0,25	$ \begin{array}{ccc} y & \overrightarrow{v_0} \\ \overrightarrow{P} & = m\vec{a}. \end{array} $		
	0,25 0,25	بالإسقاط على المحورين: \vec{p} $0 = ma_x => a_x = 0$ $P = ma_y => a_y = -g$ الحركة و فق (ox) مستقيمة متسار عة الحركة و فق (oy) مستقيمة متسار عة بانتظام	طبيعة الحركة	2
2,25	0,25 0,25	$\begin{array}{lll} a_x = \frac{dv_x}{dt} = 0. & a_y = \frac{dv_y}{dt} = -g. \\ v_{x_{(t)}} = C_1 & t = 0 & v_{y_{(t)}} = -g \cdot t + C_2 \\ v_{x_{(0)}} = C_1 = > C_1 = v_0 & v_{y_{(0)}} = C_2 = 0 \\ v_{x_{(t)}} = v_0 & v_{y_{(t)}} = -g \cdot t \end{array}$	المعادلتين الزمنيتين السرعة	3
	~ ~ =	$\begin{array}{ll} v_{x(t)} = \frac{dx}{dt} = v_0 & \text{with} \\ x_{(t)} = V_0 \cdot t + C_3 & t = 0 \\ x_{(0)} = C_3 = 0 \\ x_{(t)} = V_0 \cdot t & y_{(t)} = \frac{dy}{dt} = g \cdot t \\ y_{(t)} = -\frac{1}{2} \cdot g \cdot t^2 + C_4. t = 0 \\ y_{(0)} = C_4 = y_0 \\ y_{(t)} = -\frac{1}{2} \cdot g \cdot t^2 + y_0. \end{array}$	المعادلتين الزمنيتين للموضع	
	0,5	$\left t = \frac{x_{(t)}}{V_0} \right y_{(t)} = \frac{1}{2} \cdot g \cdot \left(\frac{x_{(t)}}{V_0} \right)^2 + y_0. \left y_{(t)} = \frac{-g \cdot x_{(t)}^2}{2 \cdot V_0^2} + y_0. \right $	معادلة المسار	
0,75		$\frac{g \cdot x_{(t)}^2}{2 \cdot V_0^2} = (y_0 - y_{(t)}). V_0^2 = \frac{g \cdot x_{(t)}^2}{2 \cdot (y_0 - y_{(t)})} = \frac{10.12^2}{2.(2-1)} = 720.$ $V_0 = \sqrt{720} \approx \frac{27 m/s}{2.(2-1)} = \frac{10.12^2}{2.(2-1)} = \frac{10.12^2}$	السرعة الابتدائية	4
1,5	0,25	$v = \sqrt{v_x^2 + v_y^2}. x_B = V_0 \cdot t_B \to t_B = \frac{x_{(t)}}{V_0} = \frac{12}{27} = 0,44s.$ $v_{x_B} = 27 \text{ m/s} v_{y_B} = -g \cdot t_B = 10 \times 0,44 = 4,4 \text{ m/s}$ $v = \sqrt{27^2 + 4,4^2} = 27,35 \text{ m/s}.$	السرعة	5
	0,25	$\cos(\beta) = \frac{v_x}{v_0}$. $\beta = \cos(\frac{27}{27.35})^{-1} = \beta = 9.2^{\circ}$.	الزاوية	
1	0,25 0,25 0,25 0,25	$\begin{aligned} y_{\overline{p}} &= \frac{-g \cdot x_p^2}{2 \cdot V_0^2} + y_0 = > \frac{g \cdot x_p^2}{2 \cdot V_0^2} = y_0 = > x_p = \frac{2 \cdot V_0^2 \cdot y_0}{g}. \\ x_{(t)} &= \sqrt{\frac{2 \cdot V_0^2 \cdot y_{(t)}}{g}} = \sqrt{\frac{2 \times 27^2 \times 2}{10}} = 17 m. \\ 17 &< 18,4 = (12 + 6.4) : نعم الارسال ناجح لأن :$	حساب المدى	6

الإجابة النموذجية لاختبار الفصل الأول في مادة: العلوم الفيزيائية / الشعب: علوم تجريبية - تقني رياضي - رياضيات

لامة	العا			عناصر الإجاب			
مجموع	مجزأة			عقصر الإجاب	(† 1 <u>*</u> *0		- ti
		الحالة	$2H_2O_{2(aq)}$	$= 2H_2O_{(l)}$	`	رين الثاني : (17	اللم
		الابتدائية	$n_0(H_2O_2)$	2 (1)	0		
0,5	0,5	الانتقالية	$n_0(H_2O_2) - 2x$	بز باده	x	جدول التقدم	1
		النهائية	$n_0(H_2O_2) - 2x_{max}$		x_{max}		
1	0,25 0,25 0,25 0,25	$n(O_2) = x$	$n_0(H_2O_2)=2x$: خمية مادة H_2O_2 المتفككة : کمية مادة O_2 الناتجة : کمية مادة O_2 الناتجة : $n(O_2)=x$: خمية مادة O_2 الناتجة : $n(H_2O_2)=2n(O_2) \to C_0.V(H_2O_2)=2\frac{V(O_2)}{V_M}$.				2
0,5	0,5		$\frac{1}{.4} = \frac{0.893 mol/L}{}$			التركيز المولي الابتدائي <i>C</i> ₀	3
0,5	0,25 0,25	مية مادة الماء	ى قيمة التكافؤ V_E لان كـ بكمية المادة $)$		اضافة الماء وقطع اا الأكسجيني لا تتغير	Í	4
0,5	0,25 0,25	شارك في التفاعل	سيط في هذا التفاعل لأنه يـ	ں الکبریت کو س	لا يمكن اعتبار حمض	ب	
0,5	0,25 0,25	$\frac{n_0(H_2O_2)}{3} = \frac{n_0(Cr_2)}{3}$ $[H_2O_2] = \frac{3.C.V_E}{V_0}.$	و متري $\Rightarrow \frac{[H_2 O_2].V_0}{3} \Rightarrow C.$	_	عند نقطة التكافؤ يكو	التركيز المولي [H ₂ O ₂]	5
1,5	0,25 0,5 0,5 0,25		$[H_2O_2] = \frac{3.C.V_E}{V_0}$	$= \frac{3 \times 0.1 \times 25 \times 10}{10.10^{-3}}$ $5 \mod l/l < C_0$	$[H_2O_2]$ حساب $= 25ml$ من البيان $\frac{-3}{2} = 0.75 \ mol/l$. $= 0.893 \ mol/L$. اذن المحلول ليس حديث	هل هذا المحلول محضر حديثا	6
0,5	0,5	$V_E\left(t_{\frac{1}{2}}\right) = \frac{V_{E0}}{2} =$			من البيان بالاسقاط نجد	زمن نصف التفاعل	
01	0,5 0,5	$v_{vol} = -\frac{1}{V} \cdot \frac{d}{dt}$ $v_{vol}(t = 200)$	$\frac{t_{1/2}}{dt} = -\frac{d[H_2O_2]}{dt}$ $0s) = -30. \frac{(22 - 9)}{(0 - 20)}$	$\frac{1}{1} = -\frac{3.C}{V_0} \cdot \frac{dV}{dV_0} = \frac{1.95}{000}$	$\frac{V_E}{dt} = -30.\frac{dV_E}{dt}$ $5 \times 10^{-3} \frac{mol}{l.s}$	قيمة السرعة الحجمية	7
						شكل المنحنى	8

دمة	العا	07 نقاط) :	رين التجريبي: (التم
مجزأة	مجزأة			Ι
0,25	0,25	نقرب عود ثقاب فتحدث فرقعة دلالة على وجود غاز الهيدروجين	الكشف	1
0,5	0,5	تحول بطيئ : لأنه استغرق عدة دقائق	التصنيف	2
1	1	1- ارلینة 2- وسط تفاعلي 3- قمع به محلول حمضي	العناصر	3
0,75	0,25 0,25 0,25	$3 \times (2H_3O^+ + 2e^- = = = > H_2 + 2H_2O$	المعادلة	4
0,5	0,5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	جدول التقدم	5
1	0,5 0,5	$n_{0_{1}} - 2x_{max} = 0$ $x_{max} = \frac{m}{2M} = \frac{0.81}{2.27}.$ $x_{max} = 15 \times 10^{-3} \ mol$ $n_{0} - 2x_{max} = 0$ $x_{max} = \frac{n_{0}}{2} = \frac{2.C.V}{2} = \frac{2.0,09.0,06}{2}.$ $x_{max} = 1.8 \times 10^{-3} \ mol$	x_{max}	
0,5	0,25 0,25	$n_{(t)} = \frac{Vg_{(t)}}{V_M}$ $n_{(t)} = 3.x_{(t)}$ $x_{(t)} = \frac{Vg_{(t)}}{3.V_M}$ $Vg_{(f)} = 3.x_{(f)}.V_M$ $Vg_{(f)} = 3.1,8.10^{-3}.24$ $Vg_{(f)} = 0,196 L$ $Vg_{(f)} = 129,6 mL$		1

الإجابة النموذجية لاختبار الفصل الأول في مادة: العلوم الفيزيائية / الشعب: علوم تجريبية - تقني رياضي - رياضيات

1,25	0,25 0,25	$x_{(t_{1/2})} = \frac{v_{g_{(t_{1/2})}}}{3.V_M}.$ $x_{(f)} = \frac{v_{g_{(f)}}}{3.V_M}.$	$\begin{split} &\frac{Vg_{(t_{1/2})}}{3.V_{M\!\!\!/}} = \frac{\frac{Vg_{(f)}}{3.V_{M\!\!\!/}}}{\frac{3.V_{M\!\!\!/}}{2}}.\\ &Vg_{(t_{1/2})} = \frac{Vg_{(f)}}{2}.\\ &\frac{Vg_{(t_{1/2})}}{Vg_{(f)}} = \frac{1}{2}. \end{split}$	$t_{1/2}$	2
	0,25	$Vg_{(t_{1/2})} = \frac{Vg_{(f)}}{2} = \frac{129.6}{2} = 64.8$	<mark>mL</mark> .		
	0,25 0,25	$t_{\frac{1}{2}}(1) = 360 s$ $t_{\frac{1}{2}}(2) = 640 s$			
	0,25	$x_{(t)} = \frac{vg_{(t)}}{3.V_M}.$ $v_{vol} = \frac{1}{V}.\frac{dx}{dt} = \frac{1}{V}.$	$\frac{d(\frac{Vg_{(t)}}{3.V_M})}{dt} = \frac{1}{3.V.V_M} \cdot \frac{dVg_{(t)}}{dt}.$		
0,75	0,25	$v_{vol}(1) = \frac{1}{3.0,06.24} \cdot \frac{100-0}{400-0}.$	$v_{vol}(2) = \frac{1}{3.0,06.24} \cdot \frac{70-0}{400-0}.$	v_{vol}	3
	0,25	$v_{vol}(1) = 5.8 \cdot 10^{-5} \ mol/L. \ s$ $v_{vol}(2) = 4 \cdot 10^{-5} \ mol/L. \ s$			
			العامل الحركي المدروس هو تأثير مساء		
0,5	0,25		كلما زادت المساحة تزداد سرعة التفاعل	ت ت	4
	0.25	في الشريط المنحني (2) يوافق الفريق ا لثاني	مساحة سطح تلامس المسحوق أكبر منه المنحني (1) يوافق الفريق الأول	المدروس	
	0,25	المنحنى (2) يواقق القريق التاني	المنحلي (1) يواقق الفريق الأون		