Übungsblatt 2

Lehrstuhl für Sprachen und Beschreibungsstrukturen Einführung in die Informatik 2

Prof. Dr. Helmut Seidl, Ralf Vogler, Stefan Schulze Frielinghaus

Aufgabe 2.1 [5 Punkte] Logik

Zeigen Sie, dass die folgenden Schlüsse korrekt sind:

a)
$$\frac{(\neg F \lor (G \lor H)) \land (H \lor F)}{(G \land F) \lor H}$$

b)
$$\frac{x+y=3}{x>0}$$
 $\frac{x-y=5}{x}$

c)
$$\frac{((A \Longrightarrow B) \Longrightarrow A) \Longrightarrow B}{A \Longrightarrow B}$$

d)
$$\exists x.(t(x) \implies \forall y.t(y))$$

e)
$$\frac{(\forall x. P(x)) \implies A}{\exists x. (P(x) \implies A)}$$

Lösungsvorschlag 2.1

a)
$$\frac{(\neg F \lor (G \lor H)) \land (H \lor F)}{(\neg F \land (H \lor F)) \lor (G \land (H \lor F)) \lor (H \land (H \lor F))} \frac{((G \land H) \lor (G \land F)) \lor (H \lor (H \land F))}{(G \land F) \lor H}$$

b)
$$\frac{x+y=3 \quad x-y=5}{\frac{x+(x-5)=3}{\frac{x=4}{x>0}}}$$

c)
$$\frac{((A \Longrightarrow B) \Longrightarrow A) \Longrightarrow B}{\frac{(\neg(\neg A \lor B) \lor A) \Longrightarrow B}{((A \land \neg B) \lor A) \Longrightarrow B}}$$

$$A \Longrightarrow B$$

d)
$$\frac{\exists x. (t(x) \Longrightarrow \forall y. t(y))}{\exists x. \neg t(x) \lor \forall y. t(y)} \frac{\exists x. \neg t(x) \lor \forall y. t(y)}{\neg \forall x. t(x) \lor \forall y. t(y)} \frac{\forall z. t(z) \lor \neg t(z)}{\forall z. true}$$

e)
$$\frac{(\forall x. P(x)) \implies A}{(\neg \exists x. \neg P(x)) \implies A}$$
$$\frac{\exists x. \neg P(x) \lor A}{\exists x. (P(x) \implies A)}$$

Aufgabe 2.2 [1+4 Punkte] (Schwächste) Vorbedingung

a) Geben Sie die schwächste Vorbedingung für die Nachbedingung x>42 hinsichtlich der Zuweisung x=y+z an, also

$$WP[x = y + z](x > 42)$$

b) Kreuzen Sie die folgenden Vorbedingungen an, die die schwächste Vorbedinung aus a) implizieren:

true true	\boxtimes false		
$ y = 40 \land z = 10 $	y>z>0	$\sum z > y > 21$	

Lösungsvorschlag 2.2

- a) WP[x = y + z](x > 42) = y + z > 42
- b) Lösung siehe oben. $\frac{1}{2}$ Punkt pro richtige, Abzug (nur innerhalb der Teilaufgabe b) pro falsche Antwort.

Aufgabe 2.3 Präsenzaufgabe

Gegeben sei folgendes Programm:

Zeigen Sie, dass am Programmende x=n und $n\geq 0$ gilt, indem Sie Bedingungen (A, B, C, D, E) der Kanten angeben. Terminiert das Programm immer (Begründung!)?

Betrachten Sie nun folgendes Program:

Zeigen Sie, dass an dem ersten join-Knoten $i \geq 0$ gilt, indem Sie Bedingungen (A, B, C, D) der Kanten angeben.

Lösungsvorschlag 2.3

Das Programm terminiert nicht immer! Beispiel: Für ein $n \in \mathbb{Z} \setminus \mathbb{N}_0$ terminiert das Programm nicht.

