Esercizio 2: Clustering in 3D

Dato un insieme di punti di coordinate note in uno spazio Euclideo in tre dimensioni, determinare:

- a) il raggio e la posizione della sfera di minimo volume che li contiene tutti.
- b) il raggio e la posizione delle due sfere di minimo volume complessivo che li contengono tutti;
- c) il raggio e la posizione delle tre sfere di minimo volume complessivo che li contengono tutti.

Formulare il problema, classificarlo e risolverlo con i dati del file CLUSTERS.TXT. Discutere ottimalità e unicità delle soluzioni ottenute.

I punti sono 12 e sono nelle posizioni seguenti.

Punto	X	Y	Z
1	12	8	4
2	15	20	-13
3	14	-3	6
4	8	- 9	- 5
5	-9	10	2
6	-15	14	-2
7	-22	-6	8
8	-1	-1	-10
9	17	3	-11
10	14	0	0
11	-3	0	12
12	0	-5	0