Introduction: Lecture 1

Software Projects

What Client expected.

What was delivered.

Background to systems development

- Central criticism of information systems has been (and still is) that:
 - many systems do not do what their users require and thus fall into disuse.
- In order for a system to be considered successful it needs to essentially do two things:
- Meet the users expectations (Quality target)
- Be delivered on time and to budget (Productivity target)

Quality targets

- The system meets the requirements specification (i.e. it serves the purpose for which it was originally intended)
- these targets relate to
 - an understanding of the business area
 - the user requirements
 - the organisational constraints
 - other environmental factors

Quality issues resulting in unsuccessful systems

- The wrong problem has been identified
- Neglect of wider organisational issues

Incorrect analysis

System developed for the wrong reasons

Productivity targets

- The system is delivered on time and within budget.
- These targets relate to:
 - successful management of the project, from inception to implementation

Productivity issues resulting in unsuccessful systems

- Users change their minds
- External events may occur that change the requirements
- Implementation may not be feasible

Another general cause for an unsuccessful system may be poor project control.

Systems failures

- Unsuccessful systems are not new.
- The complexity of a system does not necessarily relate to its chances of success or failure.
- Throughout the history of I.S development spectacular failures have been apparent

Systems failures

• DTI report (1983) showed that:

in the UK of 15 organisations, only a half found job reductions after computer systems were introduced. In some cases, many jobs were created.

DTI report (1985) found that:
time-scale overruns occurred in 66% of projects. 55% were over budget.

• KPMG (1990) quoted:

Runaway systems concerned over 30% of all major projects.

Major effects of these systems were:

- Loss of time
- reduction in staff morale
- loss of money
- customer satisfaction
- a negative market image

More recently:

- KPMG report for the 2005 survey:
 - 49% of participants experienced at least one project failure in the last year.
- KPMG report for the 2010 survey:
 - 70% of participants experienced at least one project failure in the last year.

Systems failures

- Many high-profile failures published in the 1990s.
 - Many of these systems in the public sector
 - Social security payments system (Pathway)
 - blighted from the outset
 - cost £180 million (written off in the end)
 - Should have been delivered in 1997
 - Finally scrapped

- More system failures thru the 1990s
 - London Ambulance system
 - Classic example of poor analysis and design
 - Complete misunderstanding of the environment and Human Activity Systems
 - Housing benefit systems
 - Millions wasted before realisation that integration of different procedures between different councils required understanding of the business processes

Systems failures

- New Millenium has seen just as many system failures
 - CSA system
 - Went live in March 2003
 - Was two years late and didn't work properly
 - Thousands of parents still waiting for files to be moved to new system
 - After awarding the system to EDS the CSA dept gave them over 2,500 changes to the system design

- Libra magistrates court system
 - Cost £390million
 - Supposed to deliver a unified case management system to Magistrates courts in England & Wales
 - Started in 1992. In September 2004 decided that it is unfit for purpose

NHS NPfIT

- 12.4 billion programme
- Plagued with problems from outset
- Systems didn't do what the users wanted it to do (little consultation)
- Emphasis was placed infrastructure and not on users needs
- Too many contractors (making money for themselves)
- 22nd September 2011
 - The Cabinet Office's Major Projects Authority reported that "it has not and cannot deliver to its original intent".

- NOMIS (service by office for national statistics for UK labour market statistics)
 - Joint project by Home Office, the Ministry of Justice
 - Developed by EDS
 - Purpose to provide a single database of offenders, to help with their management, from court appearances to release, and sometimes beyond that

Cont...

- But the National Audit Office (2009) found:
 - there was so little control of C-Nomis that the government spent £161m on systems without anyone knowing how or exactly on what.
 - The system development was guilty of 'basic' project management failures

FireControl

- 20th September 2011: "The doomed attempt to streamline fire control services in England is one of the worst cases of project failure' the Public Accounts Committee has seen" its chair said today.
- A minimum of £469 million spent on it since 2004 and has now been wasted.

Cont

- Main reasons for failure:
 - the project was launched too quickly
 - decisions taken before a business case or procurement strategy had been developed and tested.
 - There was an over-reliance on external consultants
 - A high turnover of senior managers, none of whom have been held accountable for FireControl's failure.

So, why do systems still fail?

- We have highly educated development staff.....
- We have IT literate users
- We have many different methodologies to support the life cycle across a wide range of different applications
- We have tried and tested technologies and development platforms

So, why do systems still fail?

- Any development framework/method, can only be used as a guide.
- Each organisation is unique with its own needs and problems.
- Each set of end-users is unique with its own aspirations and concerns.
- Developers still often focus too much upon the software development and not upon the requirements analysis

Human factors in systems development

- Role of end-user is significant in successful development of an information system.
- Modern methodologies stress technological development, but ignore human factors.
- Role of analyst is not only to elicit information system requirements but also to analyse the human environment to be supported by the system

Organisational factors

- Situational factors
- Organisational objectives
- Development methods currently used
- Organisational issues
- Application type

Requirement management

 A systematic approach to eliciting, organizing, and documenting the requirement of the system, and a process that establishes and maintains agreement between the customer and the project team on the changing requirements of the system.

Requirements Development (RD) and Management (RM

Requirements Management Activities

Requirements Management

Change control

- Proposing changes
- Analyzing impact
- Making decisions
- Updating requirements documents
- Updates plans
- Measuring requirements volatility

Version control

- Defining a version identification scheme
- Identifying requirements document versions
- Identifying individual requirement versions

Requirements status tracking

- Defining a possible requirement statuses
- Recording the status of each requirement
- Reporting the status distribution of all requirements

Requirements tracing

- Defining links to other requirements
- Defining links to other system elements