成绩

通信工程学院

实 验 报 告

(信号与系统)

实验题目:线性系统的频率特性

专业:	通信工程	年级:	2022 级
姓名:	苏睿杰	学号:	20220826
实验时间:	2023年11月3日	班级:	42

实验十九 线性系统的频率特性

一、实验目的和要求

- 1. 设计高通和低通电路。
- 2. 应用选频表测量线性系统输入、输出信号的幅度频度,从而求得系统的频率幅度特性。
- 3. 应用示波器观察信号通过线性系统后波形变化情况,并将其与该系统的频率特性作对照。

二、提供仪器设备

- 1. JH5014 选频电平表。
- 2. 数字信号发生器。
- 3. 数字示波器。

三、实验原理

电路用频域表示时,输入和输出信号的关系可用式

图 1

$$V_2(\omega) = V_1(\omega)H(\omega) \tag{1}$$

其中 $H_1(t)$ 称之为该系统的频率特性,它的幅值 $|H(\omega)|$ 称为幅频特性。 $|H(\omega)|$ 只与系统的结构组成有关,而与输入信号无关。本次设计就是要研究简单的 RL 低通网络和 RC 高通网络的幅频特性。由上式得 $H(\omega)=\frac{V_2(\omega)}{V_1(\omega)}$,两边取对数再乘以 20,则有

 $20 \lg H(\omega) = 20 \lg V_2(\omega) - 20 \lg V_1(\omega)$,

$$N(\omega) = N_2(\omega) - N_1(\omega) \tag{2}$$

图 2

根据电压电平的定义 $20 \log V_2(\omega)$ 和 $20 \log V_1(\omega)$ 正好分别与输出,输入电压电平的定义相符。故 $|H(\omega)|$ 可由系统的输出信号与输入信号的电平差 $N(\omega)$ 求得。这是测量系统的频率特性的另一种方法。在实际工作

中常常直接用 $N(\omega)$ 來表征 $H(\omega)$ 而不须求出 $H(\omega)$,它清楚地表示了如图一线性时不变网络对任一个确定 频率的正弦信号具有 $N(\omega)$ dB 的衰减 $[N(\omega)$ 为负值时] 或增益 $[N(\omega)$ 为正值时]。下图(a)是一个简单的低 通网络,其频率特性:

$$H(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\frac{\omega L}{R}} \tag{3}$$

经过推导变换,可得

$$|H(\omega)| = \left|\frac{V_2}{V_1}\right| = \left|\frac{1}{1+j\frac{\omega L}{R}}\right| = \left|\frac{1}{\sqrt{1+(\frac{2\pi fL}{R})^2}}\right| \tag{4}$$

 $H(\omega) \sim \omega$ 幅频特性曲线如下图(b)所示,在半功率频率 $f_c = \frac{1}{\tau} = \frac{R}{2\pi L}$ 时, $H(\omega) = 0.707$ 。下图(a)是一个简单的高通网络,其频率特性为:

$$H(\omega) = \frac{V_2}{V_1} = \frac{j\omega RC}{1 + i\omega RC} \tag{5}$$

经过推导变换,可得

$$|H(\omega)| = \left| \frac{V_2}{V_1} \right| = \left| \frac{j\omega RC}{1 + j\omega RC} \right| = \left| \frac{2\pi fRC}{\sqrt{1 + (2\pi fRC)^2}} \right| \tag{6}$$

 $\mathrm{H}(\omega)\sim\omega$ 幅频特性曲线如下图(b)所示,在半功率频率 $f_c=\frac{1}{\tau}=\frac{1}{2\pi RC}$ 时, $H(\omega)=0.707$ 。

四、说明

本次实验是利用选频电平表分别测出线性网络的输入和输出电平, 根据 $N(\omega)$ 得到该网络的幅频特性。信号源输出阻抗置 50Ω 。选频表输人阻抗置 600Ω 输人阻抗代替。

- 1. 测量输入信号频谱。
 - A、 电路图连接。(图 4)

图 4

- B、 用示波器和选频表精确校准信号, 输人信号为: 周期 $T=200\mu s$, 脉宽 $\tau=60\mu s$: 幅度 V=5V 的 矩形脉冲并画出波形图。
- C、 按表一第二栏的要求测出信号各次谱波的电平值 N_1 。
- D、 观察示波器的波形并画在坐标纸上。
- 2. 测量低通网络的输出电平。
 - A、 电路如图 5 连接。
 - B、 按表一第四栏的要求测出低通网络输出电平值 $N_d(\omega)$ 。
 - C、观察示波器的波形并画在坐标纸上。
- 3. 测量高通网络的输出电平。
 - A、 将图五电路中的电感 L 改为 $0.01\mu F$ 的电容。
 - B、 按表一第七栏的要求测出高通网络输出电平值 $N_d(\omega)$ 。
 - C、 观察示波器的波形并画在坐标纸上.
- 4. 分别计算高,低通滤波电路的幅频特性 $N_d(\omega)$ 。画出幅频特性曲线。

图 5

吉林大学通信工程学院 信号与系统实验报告

五、数据处理

注:由于实际实验中测量的是 f,故接下来部分自变量均用 f 表示。

表 1: 实际值测量

$f(KH_z)$		5	10	15	20	25	30	35	40	45	50
输入信号电平 N ₁	实 测值	7.2	2.7	-10.2	-7.6	-4.9	-10.9	-20.5	-9.3	-11.9	-59.5
低通滤波电路 N_d	实 测值	6.1	0.7	-13.4	-12.1	-10.4	-17.7	-26.7	-17.8	-22.7	-56.2
	N(f)	-1.1	-2	-3.2	-4.5	-5.5	-6.8	-6.2	-8.5	-10.8	3.3
	H(f)	0.88	0.79	0.69	0.60	0.53	0.46	0.49	0.38	0.29	1.46
低通滤波电路 N_d	实 测 值	-6.2	-5.5	-16	-11.9	-8.3	-13.7	-21.8	-11.5	-13.5	-58.7
	N(f)	-13.4	-8.2	-5.8	-4.3	-3.4	-2.8	-1.3	-2.2	-1.6	0.8
	H(f)	0.21	0.39	0.51	0.61	0.68	0.72	0.86	0.78	0.83	1.1

注: $H(\omega) = 10^{\frac{N(\omega)}{20}}$

表 2: 理论值计算

$f(KH_z)$		5	10	15	20	25	30	35	40	45	50
	N(f)	-0.52	-1.78	-3.31	-4.81	-6.20	-7.45	-8.58	-9.60	-10.5	-11.4
RL 电路	H(f)	0.94	0.81	0.68	0.57	0.49	0.42	0.37	0.33	0.30	0.27
	N(f)	-14.7	-9.05	-6.16	-4.41	-3.28	-2.51	-1.97	-1.58	-1.30	-1.08
RC 电路	H(f)	0.19	0.35	0.49	0.60	0.69	0.75	0.80	0.83	0.86	0.88

- 1. 输入信号 $T=200\mu s, t=60\mu s, V_{p-p}=5V$,占空比为 30%
- 2. 分别将电容,电感接入电路中,依次测出不同 f 下输出电平值,数据见表 1,并且计算出理论值,数据见表 2。

3. 对于低通滤波电路,

$$|H(f)| = \left|\frac{V_2}{V_1}\right| = \left|\frac{1}{1+j\frac{\omega L}{R}}\right| = \left|\frac{1}{\sqrt{1+(\frac{2\pi fL}{R})^2}}\right|$$
 (7)

当 $f\to 0$ 时, $|H(f)|\to 1$,当 $f\to \infty$ 时, $|H(\omega)|\to 0$,所得图像与数据也大致与理论值相等,不过 当 f=35 时,数据稍有偏差,当 f=50 时,误差较大,已略去。

半功率点
$$\omega_c = \frac{R}{L}$$
, $f_c = \frac{R}{2\pi L}$,此时 $|H(f)| = 0.707$ 。

示波器上的波形图见图 6 (a), 幅频曲线见图 7。

4. 对于高通滤波电路,

$$|H(f)| = \left| \frac{V_2}{V_1} \right| = \left| \frac{j\omega RC}{1 + j\omega RC} \right| = \left| \frac{2\pi fRC}{\sqrt{1 + (2\pi fRC)^2}} \right| \tag{8}$$

当 $f\to 0$ 时, $|H(f)|\to 0$,当 $f\to \infty$ 时, $|H(f)|\to 1$,所得图像与数据也大致与理论值相等,不过 当 f=35 时,数据稍有偏差。

半功率点
$$\omega_c=rac{1}{RC}$$
, $f_c=rac{1}{2\pi RC}$,此时 $|H(f)|=0.707$ 。

示波器上的波形图见图 6 (b), 幅频曲线见图 8。

图 6: 低通电路中示波器的波形 (a) 以及高通电路中示波器的波形 (b)

图 7: 低通滤波幅频曲线实际与理论对比图

图 8: 高通滤波幅频曲线实际与理论对比图

六、实验结论

- 1. 对于低通滤波电路,|H(f)| 随 f 的增大而减小,并且 $f \to 0$, $|H(f)| \to 1$, $f \to \infty$, $|H(f)| \to 0$ 。
- 2. 对于高通滤波电路,|H(f)| 随 f 的增大而增大,并且 $f \to 0$, $|H(f)| \to 0$, $f \to \infty$, $|H(f)| \to 1$ 。
- 3. 高通滤波电路和低通滤波电路上示波器的波形并不相同,且从波形上可以大致看出,高通滤波电路基本实现了通高频阻低频,低通滤波电路基本实现了通低频阻高频。总体与预计实验结果一致。