Quantum Portfolio Optimization

Colli Simone¹ and Merenda Saverio Mattia¹

1 simone.colli@studenti.unipr.it
2 saveriomattia.merenda@studenti.unipr.it

December 23, 2024

Abstract

(MM: todo)

1 Introduzione

L'ottimizzazione del portafoglio (PO) è un'attività finanziaria di primaria importanza, con applicazioni significative in diversi contesti, come i fondi di investimento, i piani pensionistici e altre strategie di allocazione del capitale. Data una disponibilità di budget e/o un insieme di asset, l'obiettivo è individuare operazioni ottimali all'interno di un mercato che può includere un numero elevato di asset. La corretta allocazione degli asset ha un impatto diretto sulla redditività degli investimenti, consentendo di ottenere rendimenti più elevati e una migliore gestione del rischio. Data la rilevanza economica del problema, l'ottimizzazione del portafoglio rappresenta un'area strategica sia per le istituzioni finanziarie sia per gli investitori.

Limiti dei metodi classici I metodi tradizionali, come gli approcci geometrici o gli algoritmi euristici, presentano significative limitazioni, soprattutto in termini di scalabilità ed efficienza. Con l'aumentare della complessità e delle dimensioni del mercato, la risoluzione del problema diventa rapidamente intrattabile per i computer classici. Ad esempio, algoritmi come il branchand-bound (Land and Doig, 2010), utilizzati per trovare soluzioni esatte, faticano a gestire mercati con un numero elevato di asset.

Quantum computing L'introduzione del calcolo quantistico apre nuove possibilità per affrontare i limiti dei metodi classici. Sfruttando i principi della meccanica quantistica, come la sovrapposizione e l'entanglement, i computer quantistici promettono di risolvere problemi di ottimizzazione in modo più efficiente. In particolare, i problemi di ottimizzazione quadratica, come quello del portafoglio, possono beneficiare di algoritmi quantistici in grado di trovare soluzioni quasi ottimali in tempi significativamente ridotti rispetto ai metodi tradizionali.

Computer classici vs computer quantistici I computer classici (CPU) elaborano le informazioni utilizzando i bit, che possono assumere esclusivamente due stati, 0 o 1. Questa caratteristica limita la capacità di esplorare lo spazio delle soluzioni in parallelo, costringendo i calcoli a procedere in modo sequenziale o attraverso tecniche di parallelismo limitate.

Al contrario, i computer quantistici (QPU) sfruttano i qubit, che possono trovarsi in una sovrapposizione di stati, rappresentando simultaneamente sia 0 che 1. Grazie a questa proprietà unica, i computer quantistici sono in grado di eseguire calcoli in parallelo, esplorando uno spazio di soluzioni molto più vasto rispetto ai computer classici e rendendoli particolarmente adatti per affrontare problemi complessi come quelli di ottimizzazione.

2 Costruzione del problema

(MM: parlare di come sono stati estratti i dati (dalla libreria qiskit) e mostrare un esempio ridotto in tabella)

Per lo svolgimento di questo progetto, sono stati analizzati dataset di dimensioni contenute, selezionando un massimo di n asset distinti. Per ciascun asset i, con $1 \le i \le n$, è stato considerato

l'intervallo temporale tra il (MM: xx/xx/xxxx e il xx/xx/xxxx). Per ogni giorno t in questo intervallo ($0 \le t \le T$), la performance di un asset è rappresentata dal suo prezzo di chiusura p_i^t .

La prima informazione estratta da questo dataset consiste nell'elenco P dei prezzi correnti P_i degli asset considerati:

$$P_i = p_i^t. (1)$$

Inoltre, per ciascun asset, il rendimento r_i^t tra i giorni t-1 e t può essere calcolato come:

$$r_i^t = \frac{p_i^t - p_i^{t-1}}{p_i^{t-1}}. (2)$$

Grazie a questi rendimenti, è possibile definire il rendimento atteso di un asset come una stima ragionata della sua futura performance. Supponendo una distribuzione normale dei rendimenti, la media dei loro valori in ogni momento t nel set di osservazioni storiche è un buon stimatore del rendimento atteso. Pertanto, dato l'intero dataset storico, il rendimento atteso di ciascun asset μ_i è calcolato come:

$$\mu_i = E[r_i] = \frac{1}{T} \sum_{t=1}^{T} r_i^t.$$
 (3)

Seguendo lo stesso principio, la varianza del rendimento di ciascun asset, σ_{ij} , e la covarianza tra i rendimenti di asset differenti nel corso delle serie storiche, σ_i^2 , possono essere calcolate come segue:

$$\sigma_{ij} = E[(r_i - \mu_i)(r_j - \mu_j)] = \frac{1}{T - 1} \sum_{t=1}^{T} (r_i^t - \mu_i)(r_j^t - \mu_j), \tag{4}$$

$$\sigma_i^2 = E[(r_i - \mu_i)^2] = \frac{1}{T - 1} \sum_{t=1}^T (r_i^t - \mu_i)^2.$$
 (5)

Un portafoglio è definito come un insieme di investimenti x_i (misurati come frazione del budget o del numero di unità allocate) per ciascun asset i del mercato. Pertanto, il portafoglio è composto da un vettore di numeri reali o interi con dimensioni pari al numero di asset considerati.

Una strategia ottimale di allocazione del portafoglio punta a **massimizzare** il rendimento del portafoglio $\mu^{\top}x$ **minimizzando** il rischio, definito come la varianza del portafoglio $x^{\top}\Sigma x$, la cui radice quadrata rappresenta la volatilità del portafoglio. In questo caso, μ è il vettore dei rendimenti medi per ciascun asset i calcolato con la Formula 3,

$$\mu = \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_n \end{bmatrix}, \tag{6}$$

 Σ è la matrice di covarianza calcolata con le Formule 4 e 5,

$$\Sigma = \begin{bmatrix} \sigma_0^2 & \sigma_{10} & \cdots & \sigma_{n0} \\ \sigma_{01} & \sigma_1^2 & \cdots & \sigma_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{0n} & \sigma_{1n} & \cdots & \sigma_n^2 \end{bmatrix},$$
 (7)

e x è il vettore delle frazioni di budget allocate per ciascun asset.

L'obiettivo di trovare un portafoglio ottimale consiste quindi nel trovare il vettore x che minimizza la funzione obiettivo seguente:

$$\mathcal{L}(x) = qx^{\top} \Sigma x - \mu^{\top} x, \tag{8}$$

dove il parametro di avversione al rischio q esprime la propensione dell'investitore al rischio, i.e., un compromesso tra rischio e rendimento.

In uno scenario realistico, il budget disponibile B è fisso. Pertanto, il vincolo secondo cui la somma degli x_i deve essere pari a 1 è valido, e può essere espresso nel seguente modo:

$$B = \sum_{i=1}^{N} x_i = 1. (9)$$

Di conseguenza, il problema può essere espresso come segue:

$$\min_{x} (qx^{\top} \Sigma x - \mu^{\top} x), \tag{10}$$

dove:

- $x \in \{0,1\}^n$ denota il vettore delle variabili decisionali binarie, che indicano quali asset selezionare e quali no, identificati con $x_i = 1$ e $x_i = 0$, rispettivamente;
- $\mu \in \mathbb{R}^n$ definisce i rendimenti attesi degli asset;
- $\Sigma \in \mathbb{R}^{n \times n}$ specifica le covarianze tra gli asset;
- q > 0 controlla l'avversione al rischio del decisore;
- \bullet B denota il budget, ovvero il numero di asset da selezionare tra gli n disponibili.

Per poter risolvere il problema mediante algoritmi quantistici, è necessario formularlo senza vincoli espliciti. Per questo motivo, introduciamo un termine di penalità che favorisce le soluzioni in cui il numero di asset selezionati, i.e., il numero di 1 nel vettore x, sia il più vicino possibile al budget B.

Il problema di ottimizzazione risulta quindi:

$$\min_{x} \left(qx^T \Sigma x - x\mu^T + \left(1^T x - B \right)^2 \right). \tag{11}$$

Questa formulazione rappresenta un Quadratic Unconstrained Binary Optimization problem (QUBO), che può essere risolto utilizzando algoritmi di ottimizzazione quantistica basati sul principio variazionale, come il Variational Quantum Eigensolver (VQE) e il Quantum Approximate Optimization Algorithm (QAOA), i quali verranno approfonditi nelle Sezioni 3.2 e 3.3, rispettivamente.

Perchè usare il Quantum Computing Nel contesto dell'ottimizzazione di portafoglio, l'analisi della complessità computazionale rivela differenze significative tra l'approccio classico e quello quantistico. Nel caso classico, il problema ricade nella classe dei problemi NP-hard, dove lo spazio delle soluzioni cresce esponenzialmente: per n variabili binarie, abbiamo 2^n possibili soluzioni, mentre per x variabili intere che variano da 0 a $x_{\rm max}$, lo spazio delle soluzioni diventa $(x_{\rm max}+1)^x$. Per gestire questa complessità, sono stati sviluppati metodi euristici che però mostrano limitazioni pratiche, risultando efficaci solo per portafogli con pochi asset.

L'approccio quantistico, invece, sfrutta fenomeni quantistici fondamentali come l'interferenza e l'entanglement per eseguire computazioni all'interno della classe di complessità BQP (Boundederror Quantum Polynomial). Questa classe di problemi richiede un tempo polinomiale per la risoluzione su un computer quantistico, ritornando una soluzione corretta con probabilità maggiore o uguale a $\frac{2}{3}$ (Buonaiuto et al., 2023).

3 Algoritmi esistenti (QUBU)

3.1 VQA

3.2 Variational Quantum Eigensolver

Il Variational Quantum Eigensolver (VQE) è un algoritmo ibrido che combina l'uso di computer quantistici e classici per risolvere problemi di ottimizzazione. Il suo funzionamento si basa sul principio variazionale e mira a trovare lo stato di energia minima di un sistema quantistico.

L'idea principale è quella di parametrizzare un circuito quantistico attraverso un insieme di parametri θ e utilizzare questi parametri per minimizzare l'energia del sistema, definita come:

$$E(\theta) = \frac{\langle \psi(\theta) | H | \psi(\theta) \rangle}{\langle \psi(\theta) | \psi(\theta) \rangle}, \tag{12}$$

dove H è l'Hamiltoniano che descrive il nostro problema di ottimizzazione e $\psi(\theta)$ è la funzione d'onda parametrizzata. In particolare, lo stato fondamentale E_0 corrisponde allo stato fondamentale (ground state) di energia minima:

$$E_0 \le \frac{\langle \psi(\theta) | H | \psi(\theta) \rangle}{\langle \psi(\theta) | \psi(\theta) \rangle}.$$
 (13)

Quindi, il compito del VQE è trovare l'insieme ottimale di parametri, tale che l'energia associata allo stato sia quasi indistinguibile dal suo stato fondamentale, cioè trovare l'insieme di parametri θ , corrispondente all'energia E_{\min} , per il quale $|E_{\min} - E_0| < \epsilon$, dove ϵ è una costante arbitrariamente piccola. Questo problema può essere formulato su un computer quantistico come una serie di gates, che vengono applicate allo stato iniziale per realizzare un ansatz strutturato per il problema Hamiltoniano.

Convenzionalmente, lo stato iniziale è impostato per essere lo stato di vuoto, i.e., per un sistema di N qubit $|0\rangle^{\otimes N} = |0\rangle$. Quindi, il problema di minimizzare l'energia del sistema (Equazione 12) può essere espresso come:

$$E_{\min} = \min_{\theta} \langle 0|U^{\dagger}(\theta)HU(\theta)|0\rangle, \tag{14}$$

dove $U(\theta)$ è l'operatore unitario parametrizzato che fornisce la funzione d'onda ansatz quando applicato allo stato iniziale, e E_{\min} è l'energia associata all'ansatz parametrizzato.

Per essere efficientemente implementato in un circuito quantistico, è importante che H venga espresso nella forma:

$$H = \sum_{l} c_{l} P_{l} = \sum_{l} c_{l} \otimes \sigma_{j}^{i}, \tag{15}$$

dove P_l sono stringhe di Pauli rappresentate dal prodotto tensore degli operatori di Pauli $\sigma_j^i \in \{I, \sigma_X, \sigma_Y, \sigma_Z\}$, con j che denota il qubit su cui l'operatore agisce e i il termine dell'Hamiltoniano. I coefficienti c_l sono pesi reali o complessi, adeguati per definire l'Hamiltoniano specifico del problema. In questa rappresentazione, l'Hamiltoniano è espresso come una combinazione lineare di stringhe di Pauli.

Quindi, l'obiettivo del VQE è risolvere il seguente problema di ottimizzazione:

$$E_{\min} = \min_{\theta} \sum_{l} c_{l} \langle 0|U^{\dagger}(\theta)P_{l}U(\theta)|0\rangle. \tag{16}$$

In questo contesto, si cerca lo stato $|\psi(\theta)\rangle$ che corrisponde allo stato fondamentale di H.

Il calcolo del valore atteso di una stringa di Pauli P_l è essenziale. Questo valore è ottenuto misurando ogni qubit coinvolto nella stringa P_l , operando nella base di misura adeguata. Ad esempio, per uno stato generico del tipo $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, il valore atteso sull'operatore di Pauli σ_Z è dato da:

$$\langle \psi | \sigma_Z | \psi \rangle = |\alpha|^2 - |\beta|^2. \tag{17}$$

Questo valore rappresenta la probabilità di osservare lo stato $|0\rangle$ meno la probabilità di osservare lo stato $|1\rangle$. Misure relative a σ_X o σ_Y richiedono una rotazione preliminare nella base di misura σ_Z .

Dato che i risultati delle misurazioni quantistiche sono binari, è necessario ripetere l'esperimento più volte per approssimare al meglio il valore medio di ogni termine. Questo processo è ripetuto separatamente per ogni stringa P_l che compone l'Hamiltoniano.

L'approccio VQE mira a bilanciare la complessità del circuito quantistico con il numero di misurazioni richieste, permettendo un'ottimizzazione efficiente degli stati parametrizzati. Il processo di ottimizzazione avviene in modo iterativo. Inizialmente, il computer quantistico prepara uno stato quantistico utilizzando i parametri correnti. Successivamente, viene misurata l'energia di questo stato preparato. Sulla base di questa misura, un ottimizzatore classico aggiorna i parametri nel tentativo di minimizzare l'energia del sistema. Questo ciclo di preparazione, misurazione e aggiornamento viene ripetuto fino a raggiungere la convergenza, ovvero fino a quando l'energia non può essere ulteriormente minimizzata in modo significativo.

Questo approccio ibrido sfrutta i punti di forza di entrambe le tipologie di computer: il computer quantistico si occupa della preparazione e della misurazione degli stati quantistici, mentre il computer classico gestisce l'ottimizzazione dei parametri. Nel contesto dell'ottimizzazione di portafoglio, il VQE viene impiegato per trovare la configurazione ottimale degli asset che minimizza una funzione obiettivo, tenendo conto sia del rischio che del rendimento atteso.

Figure 1: Schema del funzionamento del Variational Quantum Eigensolver (Buonaiuto et al., 2023).

3.3 QA OA

4 Qiskit

5 Risultati

Qualifica	# base	# effettivo
Docenza di riferimento	9	$\lfloor 9 \times (1+w) \rfloor$
Docenti a tempo indeterminato	5	$\lfloor 5 \times (1+w) \rfloor$
Docenti a contratto	2	$\lfloor 2 \times (1+w) \rfloor$

Table I: Formule per il calcolo del numero di docenti di riferimento in base alla numerosità degli studenti.

hello world

Listing 1: Esempio

6 Conclusioni

Acknowledgments

References

Buonaiuto, Giuseppe et al., (2023). "Best practices for portfolio optimization by quantum computing, experimented on real quantum devices", Scientific Reports, Vol. 13 No. 1, p. 19434. Land, Ailsa H and Doig, Alison G (2010). An automatic method for solving discrete programming problems, Springer.