Metaheuristic Methods and Their Applications

Lin-Yu Tseng (曾怜玉)

Department of Computer Science Graduate Institute of Networking and Multimedia National Chung Hsing University

OUTLINE

- I. Optimization Problems
- II. Strategies for Solving NP-hard Optimization Problems
- III. What is a Metaheuristic?
- IV. Trajectory Methods
- V. Population-Based Methods
- VI. The Applications of Metaheuristics
- VII. Conclusions

I. Optimization Problems

Computer Science

- Traveling Salesman Problem
- Maximum Clique Problem

Operational Research

- Flow Shop Scheduling Problem
- P Median Problem

Many optimization problems are NP-hard.

Optimization problems

Calculus-based method

How about this?

An example : TSP (Traveling Salesman Problem)

A solution ← → A sequence

12345 Tour length = 31

13452 Tour length = 63

There may be (n-1)! tours in total

II. Strategies for Solving NP-hard Optimization Problems

- Branch-and-Bound → Find exact solution
- Approximation Algorithms
 - e.g. There is an approximation algorithm for TSP which can find a tour with tour length $1.5 \times$ (optimal tour length) in $O(n^3)$ time.
- Heuristic Methods → Deterministic
- Metaheuristic Methods → Heuristic + Randomization

III. What is a Metaheruistic Method?

- Mata: in an uper level
- Heuristic: to find

A metaheuristic is formally defined as an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space, learning strategies are used to structure information in order to find efficiently near-optimal solutions. [Osman and Laporte 1996].

Fundamental Properties of Metaheuristics [Blum and Roli 2003]

- Metaheuristics are strategies that "guide" the search process.
- The goal is to efficiently explore the search space in order to find (near-)optimal solutions.
- Techniques which constitute metaheuristic algorithms range from simple local search procedures to complex learning processes.
- Metaheuristic algorithms are approximate and usually non-deterministic.

Fundamental Properties of Metaheuristics (cont.)

- They may incorporate mechanisms to avoid getting trapped in confined areas of the search space.
- The basic concepts of metaheuristics permit an abstract level description.
- Metaheuristics are not problem-specific.
- Metaheuristics may make use of domain-specific knowledge in the form of heuristics that are controlled by the upper level strategy.
- Today's more advanced metaheuristics use search experience (embodied in some form of memory) to guide the search.

IV. Trajectory Methods

1. Basic Local Search: Iterative Improvement

```
s \leftarrow \text{GenerateInitialSolution()}

oldsymbol{repeat}

s \leftarrow \text{Improve}(\mathcal{N}(s))

oldsymbol{until} no improvement is possible
```

- Improve (N(S)) can be
 - ① First improvement
 - ② Best improvement
 - ③ Intermediate option

Trajectory Methods

2. Simulated Annealing – Kirkpatrick 1983

```
s \leftarrow GenerateInitialSolution()
T \leftarrow T_0
while termination conditions not met do
 s' \leftarrow \mathsf{PickAtRandom}(\mathcal{N}(s))
 if (f(s') < f(s)) then
     s \leftarrow s' % s' replaces s
 else
     Accept s' as new solution with probability p(T, s', s)
 endif
  \mathsf{Update}(T)
endwhile
```

- Probability $p(T, s', s) = \exp\left(-\frac{f(s') f(s)}{T}\right)$
- Temperature T may be defined as $T_{k+1} = \alpha T_k$, $0 < \alpha < 1$
- Random walk + iterative improvement

3. Tabu Search – Glover 1986

Simple Tabu Search

```
s \leftarrow \text{GenerateInitialSolution()} \ TabuList \leftarrow \emptyset \ 
while termination conditions not met do s \leftarrow \text{ChooseBestOf}(\mathcal{N}(s) \setminus TabuList) \ 
Update(TabuList)
endwhile
```

- Tabu list
- Tabu tenure: the length of the tabu list
- Aspiration condition

Tabu Search

```
s \leftarrow GenerateInitialSolution()
Initialize TabuLists (TL_1, \ldots, TL_r)
k \leftarrow 0
while termination conditions not met do
  AllowedSet(s, k) \leftarrow \{s' \in \mathcal{N}(s) \mid s \text{ does not violate a tabu condition,}\}
                           or it satisfies at least one aspiration condition}
  s \leftarrow \mathsf{ChooseBestOf}(AllowedSet(s, k))
  UpdateTabuListsAndAspirationConditions()
  k \leftarrow k + 1
endwhile
```

4. Variable Neighborhood Search — Hansen and Mladenović 1999

- Composed of three phase ① shaking ② local search ③ move
- A set of neighborhood structures, $|N_1| < |N_2| < ... < |N_{k_{\text{max}}}|$

$$N_{k}^{'}, k = 1, ..., k_{\text{max}}^{'}$$

$$k \leftarrow 1$$
 $k = k_{\text{max}}$

$$x' \qquad x(x' \in N_k(x))$$

x'

x''

$$x \leftarrow x'' \qquad k \leftarrow 1$$

$$k \leftarrow k + 1$$

Initialia

Variable Neighborhood Search

V. Population-Based Methods

- 1. Genetic Algorithm Holland 1975
 - Coding of a solution --- Chromosome
 - Fitness function --- Related to objective function
 - Initial population

An example: TSP

(Traveling Salesman Problem)

A solution ← → A sequence

12345 Tour length = 31

13452 Tour length = 63

Genetic Algorithm

- Reproduction (Selection)
- Crossover
- Mutation

Example 1

Maximize $f(x) = x^2$ where $x \in I$ and $0 \le x \le 31$

- 1. Coding of a solution: A five-bit integer, e.g. 01101
- 2. Fitness function : $F(x) = f(x) = x^2$
- 3. Initial population : (Randomly generated)01101110000100010011

Reproduction

TABLE 1.1 Sample Problem Strings and Fitness Values

No.	String	Fitness	% of Total
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9
Total		1170	100.0

Roulette Wheel

Reproduction

TABLE 1.2 A Genetic Algorithm by Hand

String No.	Initial Population (Randomly Generated)	x Value (Unsigned) Integer	f(x)	pselect, $\frac{f_i}{\sum f}$	Expected count $\frac{\int_{I}}{\hat{f}}$	Actual Count from Roulette Wheel
1	0 1 1 0 1	13	169	0.14	0.58	1
2	1 1 0 0 0	24	576	0.49	1.97	2
3	0 1 0 0 0	8	64	0.06	0.22	0
4	1 0 0 1 1	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4.0
Average			293	0.25	1.00	1.0
Max			576	0.49	1.97	2.0

Crossover

Mating Pool after Reproduction (Cross Site Shown)	Mate (Randomly Selected)	Crossover Site (Randomly Selected)	New Population	<i>x</i> Value	$f(x)$ x^2
0 1 1 0 1	2	4	0 1 1 0 0	12	144
1 1 0 0 0	1	4	1 1 0 0 1	25	625
1 1 0 0 0	4	2 ->	1 1 0 1 1	27	729
1 0 0 1 1	3	2	1 0 0 0 0	16	256

Mutation

The probability of mutation Pm = 0.001

20 bits *0.001 = 0.02 bits

Example 2 Word matching problem

- "to be or not to be" \rightarrow "tobeornottobe"
- $(1/26)^{13} = 4.03038 \times 10^{-19}$
- The lowercase letters in ASCII are represented by numbers in the range [97, 122]

[116,111,98,101,114,110, 116, 116, 111, 98,101]

Initial population

```
[114, 122, 102, 113, 100, 104, 117, 106, 97, 114, 100, 98, 101]
[110, 105, 101, 100, 119, 118, 121, 118, 106, 97, 104, 102, 106]
[115, 99, 121, 117, 101, 105, 115, 111, 115, 113, 118, 99, 98]
[102, 98, 102, 118, 114, 97, 109, 116, 101, 107, 117, 118, 115]
[107, 98, 117, 113, 114, 116, 106, 116, 106, 101, 110, 115, 98]
[102, 119, 121, 113, 121, 107, 107, 116, 122, 121, 111, 106, 104]
[116, 98, 120, 98, 108, 115, 111, 105, 122, 103, 103, 119, 109]
[101, 111, 111, 117, 114, 104, 100, 120, 98, 118, 116, 120, 97]
[100, 116, 114, 105, 117, 111, 115, 114, 103, 107, 109, 98, 103]
[106, 118, 112, 98, 103, 101, 109, 116, 112, 106, 97, 108, 113]
```

The corresponding strings

rzfqdhujardbe niedwryrjahfj cyueisosqvcb fbfvgramtekuvs kbuqrtjtjensb fwyqykktzyoih tbxblsoizggwm dtriusrgkmbg jvpbgemtpjalq

ble 1.2 The	e Best String f	for Each Gei	neration
Generation	String	Fitness	Generation

1	rzfqdhujardbe	2	16	rzbwornottobe	10
2	rzfqdhuoardbe	3	17	rzbwornottobe	10
3	rzfqghuoatdbe	4	18	rzbwornottobe	10
4	rzfqghuoztobe	5	19	rzbwornottobe	10
5	rzfqghhottobe	6	20	robwornottobe	11
6	rzfqohhottobe	7	21	tobwornottobe	12
7	rzfqohnottobe	8	22	tobwornottobe	12
8	rzfqohnottobe	8	23	tobeornottobe	13
9	rzfqohnottobe	8	24	tobeornottobe	13
10	rzfqohnottobe	8	25	tobeornottobe	13
11	rzfqornottobe	9	26	tobeornottobe	13
12	rzfqornottobe	9	27	tobeornottobe	13
13	rwfwornottobe	9	28	tobeornottobe	13
14	rwcwornottobe	9	29	tobeornottobe	13
15	rzcwornottobe	9	30	tobeornottobe	13
					R.

String

Fitness

2. Ant Colony Optimization – Dorigo 1992

Initialization Loop

Loop

Each ant applies a state transition rule to incrementally build a solution and applies a local updating rule to the pheromone Until each of all ants has built a complete solution

A global pheromone updating rule is applied

Until End_Condition

Example: TSP

A simple heuristics – a greedy method: choose the shortest edge to go out of a node

Solution: 15432

- Each ant builds a solution using a step by step constructive decision policy.
- How ant k choose the next city to visit?

$$s = \begin{cases} \arg & \max_{u \in J_r} \{ \tau_{ru} \cdot (\eta_{ru})^{\beta} \} & if \quad q \leq q_0 \\ S, & otherwise \end{cases}$$

Where $\eta = \frac{1}{\delta}$, δ_{rs} be a distance measure associated with edge (r,s)

$$p_{rs}^{k} = \begin{cases} \frac{\tau_{rs} \cdot (\eta_{rs})^{\beta}}{\sum_{u \in J_{r}} \tau_{ru} \cdot (\eta_{ru})^{\beta}} & \text{if } s \in J_{r} \\ 0 & \text{if } s \notin J_{r} \end{cases}$$

Local update of pheromone

$$\tau_{rs} \leftarrow (1-\rho)\tau_{rs} + \rho \cdot \Delta \tau_{rs}, \quad 0 < \rho < 1$$

where $\Delta \tau_{rs} = \tau_0, \tau_0$ is the initial pheromone level

Global update of pheromone

$$\tau_{rs} \leftarrow (1-\alpha)\tau_{rs} + \alpha \cdot \Delta \tau_{rs}, \quad 0 < \alpha < 1$$

where
$$\Delta \tau_{rs} = \begin{cases} 1/L_{gb}, & if(r,s) \in \\ 0, & otherwise \end{cases}$$
 globally best tour

3. Particle Swarm Optimization — Kennedy and Eberhart 1995

- Population initialized by assigning random **positions** *and* **velocities**; potential solutions are then *flown* through hyperspace.
- Each particle keeps track of its "best" (highest fitness) position in hyperspace.
 - This is called "**pBest**" for an individual particle.
 - It is called "gBest" for the best in the population.
- At each time step, each particle stochastically accelerates toward its pBest and gBest.

Particle Swarm Optimization Process

- 1. Initialize population in hyperspace.
 - Includes position and velocity.
- 2. Evaluate fitness of individual particle.
- 3. Modify velocities based on personal best and global best.
- 4. Terminate on some condition.
- 5. Go to step 2.

Initialization:

- Positions and velocities

Modify velocities

- based on personal best and global best.

Particle Swarm Optimization

Modification of velocities and positions

$$V_{t+1} = V_t + c_1 * rand() * (pBest - x_t) + c_2 * rand() * (gBest - x_t)$$

$$X_{t+1} = X_t + V_{t+1}$$

VI. The Applications of Metaheuristics

- 1. Solving NP-hard Optimization Problems
 - Traveling Salesman Problem
 - Maximum Clique Problem
 - Flow Shop Scheduling Problem
 - P-Median Problem
- 2. Search Problems in Many Applications
 - Feature Selection in Pattern Recognition
 - Automatic Clustering
 - Machine Learning (e.g. Neural Network Training)

VII. Conclusions

- For NP-hard optimization problems and complicated search problems, metaheuristic methods are very good choices for solving these problems.
- More efficient than branch-and-bound.
- Obtain better quality solutions than heuristic methods.
- Hybridization of metaheuristics
- How to make the search more systematic?
- How to make the search more controllable?
- How to make the performance scalable?

References

- 1. Osman, I.H., and Laporte, G. "Metaheuristics: A bibliography". *Ann. Oper. Res. 63*, 513–623, 1996.
- 2. Blum, C., and Andrea R. "Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison". *ACM Computing Surveys*, *35(3)*, 268–308, 2003.
- 3. Kirkpatrick, S., Gelatt. C. D., and Vecchi, M. P. "Optimization by simulated annealing", *Science*, *13 May 1983 220*, 4598, 671–680, 1983.
- 4. Glover, F. "Future paths for integer programming and links to artificial intelligence", *Comput. Oper. Res. 13*, 533–549, 1986.
- 5. Hansen, P. and Mladenović, N. An introduction to variable neighborhood search. In *Metaheuristics: Advances and trends in local search paradigms for optimization*, S. Voβ, S. Martello, I. Osman, and C. Roucairol, Eds. Kluwer Academic Publishers, Chapter 30, 433–458, 1999.
- 6. Holland, J. H. *Adaption in natural and artificial systems*. The University of Michigan Press, Ann Harbor, MI. 1975.
- 7. Dorigo, M. Optimization, learning and natural algorithms (*in italian*). Ph.D. thesis, DEI, Politecnico di Milano, Italy. pp. 140, 1992.
- 8. Kennedy, J. and Eberhart, R. "Particle Swarm Optimization", *Proceedings of the 1995 IEEE International Conference on Neural Networks*, pp. 1942-1948, IEEE Press, 1995

謝謝!

祝各位 身體健康 心情愉快!

並祝 大會圓滿成功!

