Elektronika

XIX. Impulzustechnika Oszcillátorok

19.1. Impulzus jellemzők

<u>Impulzus</u>

Ugrásszerűen változik a feszültség vagy áram

Négyszög impulzus jellemzői

Amplitúdó, felfutási, lefutási idő

19.1. Impulzus jellemzők

Négyszög impulzus jellemzői

Impulzusidő, kitöltési tényező idő

Ti impulzus idő (amikor "1" értékű az impulzus → 0,5Umax – 0,5Umax)

Kitöltési tényező
$$\rightarrow$$
 $k = \frac{T_i}{T}$

T impulzus periódus idő (ismétlődési idő)

Integráló négypólus

alul áteresztő szűrő

Időállandó → = R*C

Határ frekvencia \rightarrow fh = $\frac{1}{2\pi RC}$

Integráló tag \rightarrow ha (f>>fh)

$$U_{ki} = \frac{1}{R^*C} * \int U_{be} dt$$

<u>Differenciáló négypólus</u>

felül áteresztő szűrő

Határ frekvencia

$$fh = \frac{1}{2\pi RC}$$

$$U_{ki} = -R*C*\frac{dU_{be}}{dt}$$

Integráló áramkör műveleti erősítővel

ic ~ ibe
$$\frac{U_{be}}{R}$$

$$Uc = \frac{1}{C} * \int ic dt$$

$$U_{ki} = -\frac{1}{R^*C} * \int U_{be} dt$$

Szinuszos bemenet esetén
$$\rightarrow$$
 Auv = - $\frac{1}{j*\omega*R*C}$

$$|Auv| = \frac{1}{\omega * R*C}$$

Frekvencia függő erősítés!! (aluláteresztő szűrő)

Differenciáló áramkör műveleti erősítővel

Szinuszos bemenet esetén
$$\rightarrow$$
 Auv = -j* ω *R*C

$$|Auv| = \omega^*R^*C$$

Frekvencia függő erősítés !! (felül áteresztő szűrő)

19.3. Vágó áramkörök

vágó áramkör

Feladata: az áramkör valamely pontján megakadályozni a feszültség adott érték fölé növekedését.

Működési elve: a kinyitott dióda feszültsége csak nagyon kismértékben változik.

Felhasználása: áramkörök bemenetének védelme a túl nagy pozitív illetve negatív feszültségtől

Oki e fole nem nagyon megy, csak minimálisan (0,1-0,2 V)

1. minta áramkör

19.3. Vágó áramkörök

2. minta áramkör

3. minta áramkör

19.3. Vágó áramkörök

4. minta áramkör

5. minta áramkör

19.4. Billenőkörök

<u>Billenőkör</u>

- pozitívan visszacsatolt áramkör, négyszög impulzus előállítására
- típusai: astabil multivibrátor, mono stabil multivibrátor, bistabil multivibrátor, schmitt-trigger

<u>Felépítésük</u>

19.4. Billenőkörök

Bistabil multivibrátor

- a visszacsatoló áramkör → egy ellenállás
- két stabil állapota van ! → csak külső vezérlőjel hatására billen át egyik állapotból a másikra

Egy egyszerű megvalósítása

<u>Alaphelyzet</u>

ha valamelyik tranzisztor előbb kinyit (pl. T1) → telítésbe kerül → UCE néhány tized volt (Q=L) → R1-en keresztül a másik tranzisztor bázisára kerül → a másik tranzisztor lezár (T2) → a másik kimenet közel Ut (Q=H) Ha a másik tranzisztor nyit ki előbb → hasonló jelenség játszódik le, csak a tranzisztorok és kimenetek szerepet cserélnek

Vezérlés, Set

A Set bemenetre H szintet kapcsolva (\sim Ut) \rightarrow T₁ kinyit (\overline{Q} =L) \rightarrow az előbb leírt folyamat játszódik le \rightarrow T₂ lezár \rightarrow Q=H

19.4. Billenőkörök

Bistabil multivibrátor

Vezérlés, Reset

A Reset bemenetre H szintet kapcsolva (\sim Ut) \rightarrow T2 kinyit (Q=L) \rightarrow T1 bázisára nagyon alacsony szint kerül \rightarrow lezár \rightarrow Q=H

<u>Vezérlés</u>

Set=Reset=L → egyik tranzisztort sem tudja kinyitni vagy lezárni → állapota marad! → Tároló (SR), 1 bitet tárol

A vezérlések során Set és a Reset bemenetekre elég egy rövid impulzust adni → a pozitív visszacsatolás miatt az átbillenés gyorsan megtörténik

19.5. Billenőkörök

Monostabil multivibrátor

- az egyik visszacsatoló áramkör itt már egy kondenzátor → csak egy stabil állapot! külső vezérlőjel hatására átbillen a másik állapotba, de az nem stabil → egy idő után automatikusan visszabillen (kondenzátor)

Egy egyszerű megvalósítása

<u>Alaphelyzet</u>

- csak a T2 tranzisztor tud stabilan nyitva maradni → mert R1 ellenálláson keresztül stabilan tudja a T1 tranzisztort lezárni
- T2 nyitva → Q=L és C feltöltődik ~Ut-re

Billentés

Az S bemenetre H szintet kapcsolva (~Ut)

19.5. Billenőkörök

Monostabil multivibrátor

<u>Billentés</u>

Az S bemenetre H szintet kapcsolva (Ut)

→ T1 kinyit → UCE1=L (~0,3V) → a feltöltődött

C miatt T2 bázisára közel -Ut feszültség kerül

→ T2 lezár! → Q=H → T1 kinyit, mert R1
ellenálláson keresztül nyitó feszültséget kap,

DE csak egy ideig! Mert C elkezd kisülni ill.
áttöltődni ellentétes polaritásra RB ellenálláson és
T1-en keresztül → amikor C áttöltődik annyira hogy
T2 bázisára + 0,6V kerül → T2 kinyit (Q=L) → T1 lezár

→ visszabillen a stabil állapotába

S=H S=H UBE1 0,6 UCE1 Ut **UBE2** 0,6 -Ut UCE₂ Ut Q=H Q=L Q=L O=L Q=H $= R_B * C$

19.6. Billenőkörök

Astabil multivibrátor

nincs stabil állapota! → relaxációs oszcillátor négyszögjelet állít elő

<u>Alaphelyzet</u>

ha valamelyik tranzisztor előbb kinyit (pl. T1) → telítésbe kerül → UCE néhány tized volt (Q=L) → C-en keresztül másik tranzisztor lezár (T2) → a másik kimenet közel Ut (Q=H)
 C2 Rc-én és T1-en keresztül gyorsan feltöltődik ~Ut-re

19.6. Billenőkörök

Astabil multivibrátor

<u>Billenés</u>

- T1 nyitva → C1 töltődik R1-en és
 T1-en keresztül -Ut-ről +Ut-re
 → amikor feszültsége eléri a ~0,6V
 értéket T2 nyit → C2 közel -Ut
 feszültséget ad T1 bázisára →
 T1 lezár, és C1 Rc-én és T2-ön
 keresztül gyorsan feltöltődik ~Ut-re
- T₂ nyitva → C₂ töltődik
 (ellentétesen minden mint az előbb)
- $t_1 = R_{B1}*C_1*ln_2$
- t₂ = R_{B2}*C₂*In₂
- RB1max = RB2max = B*Rc

19.7. Komparátor

Komparátor műveleti erősítővel

Összehasonlítja a bemeneti feszültséget egy referencia feszültséggel:

Mivel a nyílthurkú erősítés (Auo) nagyon nagy

ha Ube < Uref → Uki = Ukimin

ha Ube $> Uref \rightarrow Uki = Ukimax$

Hátrány: ha Ube ≈ Uref → sok átbillenés lehet !! → jobb a hiszterézises komparátor

Invertáló változat:

Ha Ube az invertáló bemenetre és Uref a nem invertáló bemenetre van kötve →

ha Ube < Uref \rightarrow Uki = Ukimax

ha Uhe > Uref \rightarrow Uki = Ukimin

19.7. Komparátor

Komparátor műveleti erősítővel 2.

Nem azonnal billen át, az átbillenés meredeksége az ellenállások értékétől függ,

Meredekség: - Auo * $R_2 / (R_1 + R_2 + R_3)$

19.7. Komparátor

Pontos referencia feszültség előállítása

Schmitt-trigger

hiszterézises komparátor

Alkalmazása:

- Különböző amplitúdójú jelekből azonos amplitúdójúak készítése
- jel "négyszögesítése"

- Küszöbérték kapcsoló
- két állapota van és egy vezérlő bemenete
- a vezérlő bemenet feszültség szintje alapján vált állapotot
- DE! nem ugyanazon feszültség szinteknél vált oda ill. vissza!

Bemeneti feszültség kicsi

kisebb mint U1!

→ T₁ zárva → R_{c1} R₁ R₂ ellenállások nyitó feszültséget adnak T₂ bázisára

→ T2 nyitva → Q L szintű

 $U_{B2} = U_1 = U_t^* R_2 / (R_{c1} + R_1 + R_2) \rightarrow$ Adott kapcsolásnál $U_1 \sim 3,4V \rightarrow$

UE = 2,8V \rightarrow Ic2=2,8mA \rightarrow

 $U_{QL}=U_{t}-I_{c2}*R_{c2}$ $U_{QL}=3,4V$

Schmitt-trigger

<u>Vissza billenés</u>

Bemeneti feszültség lecsökken UE +0.6V alá! $(U2 \sim 2.8V)$ \rightarrow T1 zár \rightarrow T2 nyit, UE=2.8V

Ic1 ≠ Ic1 → U1≠ U2 → hiszterézis

<u>Billenés</u>

Bemeneti feszültség nagyobb mint U1!

→ T1 nyit → R1 és R2 ellenállásokon

kis feszültséget ad T2 bázisára

→ T2 lezár → Q H szintű

 $UE = Ut^* RE / (Rc1 + RE) \rightarrow$

Adott kapcsolásnál UE ~ 2,2V és

 \rightarrow Ic1=2,2mA \rightarrow UB2 = 1,1V

U_QH ~ 9V

Schmitt-trigger műveleti erősítővel

<u>fázisfordító</u>

Komparátor ez is → Összehasonlítja a bemeneti feszültséget egy referencia feszültséggel → a referencia feszültség most Up!

$$Up = Uki * R1 / (R1 + R2)$$

Mivel a nyílthurkú erősítés (Auo) nagyon nagy, és pozitív visszacsatolás van →

ha Un < Up \rightarrow beáll a maximális kimeneti feszültségre, Uki = Ukimax (pl. + 14V) \rightarrow és Up = Ukimax * R1 /(R1 + R2) \rightarrow és amíg Un ennél kisebb, addig így marad stabilan

ha Un > Up \rightarrow beáll a minimális kimeneti feszültségre, Uki = Ukimin (pl. - 14V) \rightarrow és Up = Ukimin * R1 /(R1 + R2) \rightarrow és amíg Un ennél nagyobb, addig így marad stabilan

Schmitt-trigger műveleti erősítővel

- 1. Ha Uki = Ukimax (pl. +14V) akkor \rightarrow Up = Ub1 = Ukimax * R1 /(R1 + R2) (pl. +9V)
- amíg Ube < Ub1 (Un < Up) \rightarrow Uki = Ukimax
- ha Ube > Ub1 → billenés, Uki = Ukimin
- 2. Ha Uki = Ukimin (pl. -14V) akkor \rightarrow Up = Ub2 = Ukimin * R1 /(R1 + R2) (pl. -9V) amíg Ube > Ub2 (Un > Up) \rightarrow Uki = Ukimin
- ha Ube < Ub2 → vissza billenés, Uki = Ukimax

Schmitt-trigger műveleti erősítővel (nem fázisfordító)

Up = Uki * R1 /(R1 + R2) + Ube * R2 /(R1 + R2) Un $\approx 0 \rightarrow$ átbillenés akkor lesz, ha Up ≈ 0 !! Up = 0 \rightarrow Ube = - Uki * R1 /R2

Ube < Ub1 → Uki = Ukimin

Ub1 = - Ukimin * R1 /R2

Ube > Ub1 → billenés, Uki = Ukimax

Ub2 = - Ukimax * R1 /R2

Ube < Ub2 → vissza billenés, Uki = Ukimin

Astabil multivibrátor műveleti erősítővel

 $T \approx 2*R*C*ln(1+ 2*R_1/R_2)$

19.9. Mintafeladatok

1. minta feladat (Schmitt-trigger)

Ha Ube
$$<$$
 Ub1 \rightarrow Uki $=$ Ukimax

$$Ub1 = Ukimax * R1 / (R1 + R2)$$

$$U_{b1} = 14 *30/40 = 10.5 V$$

Billenés

$$U_{be} > U_{b1} \rightarrow U_{ki} = U_{kimin}$$

Vissza billenés

Ube
$$< Ub2 \rightarrow Uki = Ukimax$$

19.9. Mintafeladatok

2. minta feladat (Schmitt-trigger)

$$Up = (Uki - Uref)*R1 / (R1 + R2) + Uref$$

Ha Ube
$$<$$
 Ub1 \rightarrow Uki = Ukimax
Ub1 = (Ukimax - Uref)*R1 /(R1 + R2) + Uref
Ub1 = (14-4)*30/40 + 4 = 11,5 V

<u>Billenés</u>

$$U_{be} > U_{b1} \rightarrow U_{ki} = U_{kimin}$$

Vissza billenés

$$U_{be} < U_{b2} \rightarrow U_{ki} = U_{kimax}$$

Ub2 =
$$(Ukimin - Uref)*R1 / (R1 + R2) + Uref$$

Ub2 = $(-14-4)*30/40 + 4 = -9,5 V$

$$Up = (Uki - Uref)*R1 / (R1 + R2) + Uref$$

Vagy szuperpozícióval:

$$Up = Uki *R1 /(R1 + R2) + Uref *R2 /(R1 + R2)$$

19.10. Feladatok

1. feladat

2. feladat

19.10. Feladatok

3. feladat

Ukimax =
$$\pm 14 \text{ V}$$

Billenési feszültségek: ± 5 V

4. feladat

Egyik billenési feszültség:

 $U_{b1} = + 8 V$

 $R_2 = ??$

Ub2 = ??

19.11. Oszcillátorok

1. Oszcillátor

Rezgéskeltő áramkör → váltakozó, periódikus jelet állít elő az egyenáramú tápfeszültségből Előállíthat:

- szinuszos jelet
- nem szinuszos jelet → impulzustechnikai áramkörök

2. Szinuszos oszcillátorok

- RC oszcillátor
 LC oszcillátor
 kvarc oszcillátor
- negatív ellenállású elemből felépített oszcillátor

3. Visszacsatolt oszcillátorok

Erősítő + visszacsatoló hálózat + frekvencia meghatározó elemek

19.11. Oszcillátorok

4. Az oszcillálás feltételei

A visszacsatolt erősítő erősítése
$$\longrightarrow$$
 Auv = $\frac{AU}{1 - \beta * AU}$

Hurok erősítés \rightarrow $\beta * AU$
 $\beta * AU < 0 \rightarrow \text{negatív visszacsatolás}$
 $\beta * AU > 0 \rightarrow \text{pozitív visszacsatolás}$
 $\Rightarrow \beta * AU > 1 \rightarrow \text{növekvő rezgés}$
 $\Rightarrow \beta * AU > 1 \rightarrow \text{növekvő rezgés}$
 $\Rightarrow \beta * AU > 1 \rightarrow \text{növekvő rezgés}$
 $\Rightarrow \beta * AU = 1 \rightarrow \text{Auv} = \text{végtelen (begerjedés !)}$

oszcillátor áramkör

<u>Amplitudó feltétel</u>

 $|\beta * A \cup | \geq 1$

az erősítés legyen nagyobb, (vagy legalább egyenlő) mint a visszacsatoló áramkör csillapítása

Fázis feltétel

 $\beta * A \cup > 0$

pozitív visszacsatolás legyen !! A visszacsatolt jel fázisban legyen a bemenő jellel

19.12. RC oszcillátorok

a visszacsatoló áramkör

Felüláteresztő szűrő!

Amelyik frekvencián pont 180°-os fázistolása lesz → pozitív lesz a visszacsatolás!

fo = 1 /
$$(2\pi*\sqrt{6}*R*C)$$

fo frekvencián $\rightarrow \beta = -1/29$

Az erősítő erősítése legalább 30 legyen!!

19.12. RC oszcillátorok

2. Wien-hidas oszcillátor (elve)

Wien-Robinson híd (a visszacsatoló tag)

19.12. RC oszcillátorok

3. Wien-hidas oszcillátor, egy megvalósítás

19.13. LC oszcillátorok

Nagy frekvenciákon (> 100 kHz)

Kapacitív három pontos

$$f_0 = 1 / (2\pi * \sqrt{L*C})$$

19.14. Kvarc oszcillátorok

Nagy frekvenciáig → ~ 100 MHz Ha nagy frekvencia stabilitás kell !!

frekvencia stabilitás, $S = \Delta f / f_0$ Jellemző érték $\rightarrow S \approx 10^{-6} - 10^{-10}$

1. Pierce oszcillátor

$$C_0 = C_a \times C_b$$

Rezgő kvarc, helyettesítő képe

Jellemző értékek →

$$Ls = 0.1H$$
 $rs = 10 \text{ ohm}$ $Cs = 0.01pF$ $C_0 = 10pF$