Recitation 02/21/20: Support Vector Machines

- 1. Geometric Interpretation of SVMs
- 2. Solving for \mathbf{w}
- 3. Slack Variables
- 4. Dual Formation
- 5. Kernels

Clarification on Lagrange Multiplier Derivation

Geometric Interpretation of SVMs

Predicting labels from a binary, linear classifier:

$$\hat{y_i} = sign(\mathbf{w}^T\mathbf{x_i})$$

where $y \in \{-1, 1\}$.

Positive Examples:

Negative Examples:

On the decision boundary:

If we classify all the data points correctly:

$$y_i\mathbf{w}^T\mathbf{x_i}>0, orall i$$

Computing the Margin

The margin is the distance between the

$$egin{aligned} \gamma_i &= y_i \mathbf{w}^T \mathbf{x_i} orall i \ \gamma &= min(\gamma_i) orall i \end{aligned}$$

If we classify all the data points correctly:

$$y_i \mathbf{w}^T \mathbf{x_i} > 0, \forall i$$

 $\gamma_i > 0, \forall i$

The Primal SVM Formation

We want to find the decision boundary that maximizes the margin, while still correctly classifying all samples:

$$\max_{\mathbf{w}} \gamma$$
 s.t. $y_i \mathbf{w}^T \mathbf{x_i} \ge \gamma \quad \forall i$

We can continue to increase γ by scaling \mathbf{w} . We will equivalently rewrite this as: find the smallest \mathbf{w} that produces a margin of 1:

$$\min_{\mathbf{w}} \mathbf{w}^T \mathbf{w}$$
 s.t. $y_i \mathbf{w}^T \mathbf{x_i} \ge 1 \quad \forall i$

This is a quadratic minimzation problem with a linear constraint. Solvers exist to find the optimal solution.

Slack Variables

What happens if our data is not linearly separable? We cannot find a solution that satisfies our constraint!

What happens if our data is linearly separable but "the best" classifier would sacrifice a small number of misclassifications to increase the margin for all other data points?

We address these two limitations of SVMs by adding **slack variables**. Slack variables allow some data points to be misclassified with a penalty. They find an optimal decision boundary with the minimal slack penalty:

$$\min_{\mathbf{w}} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^N \xi_i$$

s.t.
$$y_i \mathbf{w}^T \mathbf{x_i} + \xi_i \ge 1 \quad \forall i, \quad \xi_i \ge 0 \quad \forall i$$

What kind of regularization are we using on the ξ_i ? This encourages ξ_i 's to be **sparse!**

Lagrange Multipliers

Recall, Lagrange Multipliers solve for the optimal value of a function f(x,y) subject to the constraint g(x,y)=c. At the optimal value, $\mathbf{w_o}$:

$$\nabla f(\mathbf{w_o}) = \lambda \nabla g(\mathbf{w_o})$$

Using this we write the Langrangian:

$$\mathcal{L}(\mathbf{w}) = f(\mathbf{w}) + \lambda g(\mathbf{w})$$

Note that when we take the gradient and solve for zero we will solve:

$$\nabla \mathcal{L}(\mathbf{w}) = \nabla f(\mathbf{w}) + \lambda \nabla g(\mathbf{w}) = 0$$

If we solve the above equation for \mathbf{w} we find:

$$\nabla f(\mathbf{w}_0) = \lambda \nabla g(\mathbf{w}_0)$$

Let's formulate our SVM optimazation so we can solve it using Lagrange Multipliers:

$$f: \mathbf{w}^T \mathbf{w}$$

$$g: y_i \mathbf{w}^T \mathbf{x_i} - 1 \ge 0, \quad \forall i$$

In this formulation, we write the constant λ as $\alpha \in \mathbb{R}^N.$ The Lagrangian can be written as

$$\mathcal{L}(\mathbf{w}, lpha) = f(\mathbf{w}) + \sum_{i=1}^{N} lpha_i g(y_i, \mathbf{w}, \mathbf{x_i})$$

$$\mathcal{L}(\mathbf{w}, lpha) = \mathbf{w}^T \mathbf{w} - \sum_{i=1}^N lpha_i [y_i \mathbf{w}^T \mathbf{x_i} - 1]$$

$$abla \mathcal{L}(\mathbf{w}, lpha) = \mathbf{w} - \sum_{i=1}^N lpha_i y_i \mathbf{x_i}$$
 $\mathbf{w} = \sum_{i=1}^N lpha_i y_i \mathbf{x_i}$

Let's rewrite $\mathcal{L}(\mathbf{w}, \alpha)$ as $\mathcal{L}(\alpha)$:

$$egin{aligned} \mathcal{L}(lpha) &= (\sum_{i=1}^N lpha_i y_i \mathbf{x_i})^T (\sum_{i=1}^N lpha_i y_i \mathbf{x_i})^T - \sum_{i=1}^N lpha_i [y_i (\sum_{j=1}^N lpha_j y_j \mathbf{x_j})^T \mathbf{x_i} - 1] \ & \mathcal{L}(lpha) &= \sum_{i=1}^N lpha_i - \sum_{i=1}^N lpha_i [y_i (\sum_{j=1}^N lpha_j y_j \mathbf{x_j})^T \mathbf{x_i} - 1] \ & ext{s.t.} lpha_i \geq 0, \quad orall i \ & ext{s.t.} \sum_{i=1}^N lpha_i y_i = 0, \quad orall i \end{aligned}$$

Prediction in the Dual:

$$\hat{y_i} = \mathbf{w}^T \mathbf{x_i}$$

$$\hat{y_i} = \sum_{i=1}^N lpha_j y_j \mathbf{x_j}^T \mathbf{x_i}$$

Dual Formation

- Why solve the dual?
- · How does solving the dual relate to overfitting?

Kernels

- · Can you use kernels in the primal formation?
- Can you use the Kernel Trick in the primal formation?
- · How do kernels relate to overfitting?

References

- [1] Stanford CS229: SVMs
- © Molly O'Brien. All rights reserved. Design: HTML5 UP