18.445 Introduction to Stochastic Processes

Lecture 17: Martingle: a.s convergence and L^p -convergence

Hao Wu

MIT

15 April 2015

1/10

Hao Wu (MIT) 18.445 15 April 2015

Recall

- Martingale : $\mathbb{E}[X_n | \mathcal{F}_m] = X_m$ for $n \ge m$.
- Optional Stopping Theorem : $\mathbb{E}[X_T] = \mathbb{E}[X_0]$?

Today's goal

- a.s.martingale convergence
- Doob's maximal inequality
- convergence in L^p for p > 1

Hao Wu (MIT) 18.445 15 April 2015 2 / 10

Various convergences

Spaces

- L^1 space : $\mathbb{E}[|X|] < \infty$.
 - L^1 -norm : $||X||_1 = \mathbb{E}[|X|]$.
 - triangle inequality : $||X + Y||_1 \le ||X||_1 + ||Y||_1$.
- L^p space for p > 1 : $\mathbb{E}[|X|^p] < \infty$
 - L^p -norm : $||X||_p = \mathbb{E}[|X|^p]^{1/p}$.
 - triangle inequality : $||X + Y||_{\rho} \le ||X||_{\rho} + ||Y||_{\rho}$.

Lemma

For p > 1, L^p is contained in L^1 .

different notions of convergence

- almost sure convergence : $X_n \to X_\infty$ a.s.
- convergence in $L^p: X_n \to X_\infty$ in L^p .
- convergence in $L^1: X_n \to X_\infty$ in L^1 .

Hao Wu (MIT) 18.445 15 April 2015 3 / 10

A.S. Martingale Convergence

Theorem

Let $X = (X_n)_{n \ge 0}$ be a supermartingale which is bounded in L^1 , i.e. $\sup_n \mathbb{E}[|X_n|] < \infty$. Then

$$X_n \to X_\infty$$
, almost surely, as $n \to \infty$,

for some $X_{\infty} \in L^1$.

Proof Attached on the website.

Corollary

Let $X = (X_n)_{n \ge 0}$ be a non-negative supermartingale. Then X_n converges a.s. to some a.s. finite limit.

- ◆ロ ▶ ◆ 昼 ▶ ◆ 夏 ▶ ● ● 夕 Q ©

Hao Wu (MIT) 18.445 15 April 2015 4 / 10

Examples

Example 1 Let $(\xi_j)_{j\geq 1}$ be independent random variables with mean zero such that $\sum_{j=1}^{\infty} \mathbb{E}[|\xi_j|] < \infty$. Set

$$X_0=0, \quad X_n=\sum_{j=1}^n \xi_j.$$

- $(X_n)_{n>0}$ is a martingale bounded in L^1 .
- X_n converges a.s. to $X_\infty = \sum_{j=1}^\infty \xi_j$.
- In fact, X_n also converges to X_{∞} in L^1 .

Example 2 Let $(\xi_j)_{j\geq 1}$ be non-negative independent random variables with mean one. Set

$$X_0 = 1, \quad X_n = \prod_{j=1}^n \xi_j.$$

- $(X_n)_{n>0}$ is a non-negative martingale.
- X_n converges a.s. to some limit $X_\infty \in L^1$.

Question

Suppose that a martingale X is bounded in L^1 , then we have the a.s. convergence.

Question : Do we have $\mathbb{E}[X_{\infty}] = \mathbb{E}[X_0]$?

Answer: It is true when we have convergence in L^1 .

- Convergence in L^p for p > 1 implies convergence in L^1 . (Today)
- Convergence in L¹. (Next lecture)

6/10

Hao Wu (MIT) 18.445 15 April 2015

Doob's maximal inequality

Theorem

Let $X = (X_n)_{n \ge 0}$ be a non-negative submartingale. Define $X_n^* = \max_{0 \le k \le n} X_k$. Then

$$\lambda \mathbb{P}[X_n^* \geq \lambda] \leq \mathbb{E}[X_n \mathbf{1}_[X_n^* \geq \lambda]] \leq \mathbb{E}[X_n].$$

Theorem

Let $X = (X_n)_{n \ge 0}$ be a non-negative submartingale. Define $X_n^* = \max_{0 \le k \le n} X_k$. Then, for all p > 1, we have

$$||X_n^*||_p \leq \frac{p}{p-1}||X_n||_p.$$

Recall Hölder inequality : p > 1, q > 1 and 1/p + 1/q = 1, then

$$\mathbb{E}[|XY|] \leq \mathbb{E}[|X|^p]^{1/p} \times \mathbb{E}[|Y|^q]^{1/q}.$$

L^p Convergence for p > 1

Theorem

Let $X = (X_n)_{n \ge 0}$ be a martingale and p > 1, then the following statements are equivalent.

- **1** X is bounded in L^p : $\sup_{n>0} ||X_n||_p < \infty$
- ② X converges a.s and in L^p to a random variable X_{∞} .
- **1** There exists a random variable $Z \in L^p$ such that

$$X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$$
 a.s.

Corollary

Let $Z \in L^p$. Then

$$\mathbb{E}[Z \mid \mathcal{F}_n] \to \mathbb{E}[Z \mid \mathcal{F}_\infty],$$
 a.s.and in L^p .

4 D > 4 B > 4 B > 4 B >

Example

Let $(\xi_j)_{j\geq 1}$ be independent random variables with mean zero such that $\sum_{j=1}^{\infty} \mathbb{E}[\xi_j^2] < \infty$. Set

$$X_0=0, \quad X_n=\sum_{j=1}^n \xi_j.$$

- $(X_n)_{n\geq 0}$ is a martingale bounded in L^2 .
- X_n converges to $X_\infty = \sum_{j=1}^\infty \xi_j$ a.s. and in L^2 .
- $\mathbb{E}[X_{\infty}^2] = \sum_{j=1}^{\infty} \mathbb{E}[\xi_j^2].$

15 April 2015

9/10

Hao Wu (MIT) 18.445

Example

Let $(\xi_j)_{j\geq 1}$ be non-negative independent random variables with mean one. Set

$$X_0 = 1, \quad X_n = \prod_{j=1}^n \xi_j.$$

- \bigcirc $(X_n)_{n\geq 0}$ is a non-negative martingale.
- ② X_n converges a.s. to some limit $X_\infty \in L^1$.

Question:

1 Do we have $\mathbb{E}[X_{\infty}] = 1$?

Answer : Set $a_j = \mathbb{E}[\sqrt{\xi_j}] \in (0, 1]$.

- If $\Pi_j a_j > 0$, then X converges in L^1 and $\mathbb{E}[X_{\infty}] = 1$. (Next lecture)
- ② If $\Pi_j a_j = 0$, then $X_{\infty} = 0$ a.s.

Hao Wu (MIT)

10 / 10