Kapitel PTS:V

V. Zufallsgrößen und Maßzahlen

- □ Zufallsgrößen
- Wahrscheinlichkeitsverteilungen
- □ Verteilungsfunktionen
- □ Multiple Zufallsgrößen
- □ Erwartungswerte
- Varianz und Standardabweichung
- \Box Das \sqrt{n} -Gesetz
- □ Schätzwerte für Erwartungswert und Standardabweichung

Beispiel: Skat

- Drei Spieler:innen erhalten je 10 von 32 Karten; oft als "Blatt" bezeichnet.
- \Box Es gibt $|\Omega| = \binom{32}{10}$ Blätter.
- □ Die Unter (Bube) sind meist hohe Trumpfkarten.
- $\ \square$ Man ist daher an der Anzahl $X(\omega)$ der Unter im eigenen Blatt ω interessiert.
- \Box Die Funktion $X(\omega)$ ordnet jedem Blatt ω eindeutig eine der Zahlen 0, 1, 2, 3, oder 4 zu.
- Die fünf Ereignisse $X(\omega) = i$ ($i \in \{0; 1; 2; 3; 4\}$) bilden eine Zerlegung der Menge Ω möglicher Blätter.
- \Box Gezeigtes Blatt: $X(\omega) = 1$

Beispiel: Lotto "Super 6"

- "Super 6" ist eine Endziffernlotterie.
- Auf dem Spielschein ist eine sechsstellige Losnummer vorgegeben.
- □ Je mehr Endziffern der Losnummer mit denen der gezogenen Gewinnzahl übereinstimmen, desto höher der Gewinn; jede Ziffer stammt aus $\{0; 1; ...; 9\}$.
- Die Gewinnzahl 781568 hat zwei Endziffern mit der obigen Losnummer 561968 gemein.
- \Box Einer Losnummer ω mit i richtigen Endziffern ($i \in \{0; 1; 2; 3; 4; 5; 6\}$) werden Gewinne $X(\omega)$ nach einem Gewinnplan zugeordnet.
- Die sieben Ereignisse " $X(\omega) = i$ " bilden eine Zerlegung des Ergebnisraums Ω der 10^6 möglichen Losnummern bzw. Gewinnzahlen.

Beispiel: Französisches Roulette

- Ein Roulette-Spieler setzt eine Geldeinheit auf "1. Dutzend".
- Tritt dieses Ereignis ein, werden ihm 3
 Geldeinheiten ausgezahlt.
- Sonst verliert er seinen Einsatz.
- □ Der Reingewinn $X(\omega)$ des Spielers ist eine Funktion $X:\{0;1;\ldots;36\}\to\mathbf{R}$ der bei der Ausspielung fallenden Zahl ω :

$$X(\omega) = \left\{ \begin{array}{cc} 2 & \text{für } \omega \in \{1; 2; \dots; 12\}, \\ -1 & \text{sonst.} \end{array} \right.$$

Bemerkungen:

- \Box In den Beispielen wird jedem $\omega \in \Omega$ eine reelle Zahl $X(\omega)$ zugeordnet.
- \square X ist also eine auf Ω erklärte reellwertige Funktion, die Ereignisse aus Ω durch reelle Zahlen charakterisiert.
- ullet Wie die Ergebnisse ω hängen auch die Werte von $X(\omega)$ vom Zufall ab. Daher nennt man X eine Zufallsgröße.

Definition 1 (Zufallsgröße)

Eine Funktion X, die jedem Ergebnis ω eines Ergebnisraums Ω eine reelle Zahl $X(\omega)$ zuordnet, heißt Zufallsgröße X auf Ω . In formaler Schreibweise:

$$X:\Omega \to \mathbf{R} \ \ \mathrm{mit} \ \ \omega \mapsto X(\omega).$$

Bemerkungen:

- Das Wahrscheinlichkeitsmaß P des Wahrscheinlichkeitsraumes $(\Omega; P)$ geht nicht in die Definition mit ein.
- Zufallsgrößen werden üblicherweise mit großen lateinischen Buchstaben bezeichnet, vorwiegend vom Ende des Alphabets; die von ihnen angenommenen Werte dann mit den entsprechenden kleinen lateinischen Buchstaben.
- □ Bei einer Zufallsgröße X ist die Menge der Ergebnisse, die einen bestimmten Funktionswert x liefert, eine Teilmenge von Ω .
 - Im Roulette-Beispiel gehört zu x=2 die Teilmenge $\{1;2;\ldots;12\}$ von $\Omega=\{0;1;\ldots;36\}$, zu x=-1 die Restmenge $\{0;13;14;\ldots;36\}$.
 - Jeder Gleichung $X(\omega)=x$ mit $x\in\{-1;2\}$ ist also eindeutig eine Teilmenge von Ω , also ein Ereignis, zugeordnet: Im Roulette-Beispiel das Ereignis "1. Dutzend" für x=2 und das Gegenereignis "Nicht-1. Dutzend" für x=-1.
- □ Der Begriff der Zufallsgröße und alle damit zusammenhängenden Begrifflichkeiten bildeten sich erst im 19. Jahrhundert heraus.