The Global Effects of Carbon Border Adjustment Mechanisms

Kimberly Clausing, UCLA Jonathan Colmer, Virginia Allan Hsiao, Stanford Catherine Wolfram, MIT Sloan

April 23, 2025

Carbon pricing around the world (2024)

Carbon border adjustment mechanism (CBAM)

Cement, iron and steel, aluminium, fertilisers, electricity and hydrogen

Three motivations and one concern

- Boost domestic competitiveness
- Curb foreign emissions leakage
- Encourage foreign regulation
- But may disadvantage lower-income trading partners
 - Guardian (2024): "India seeks UK carbon tax exemption in free trade deal talks"
 - Bloomberg (2024): "EU CBAM Damaging ASEAN Businesses?"

This paper

- Detailed global data on aluminum and steel
 - Key sectors targeted in first phase of EU/UK CBAM
 - Most emissions-intensive and heavily traded
- ② Descriptive analysis of emissions
 - Lower-income countries not more emissions-intensive
- 3 Quantitative equilibrium model of regulation and trade
 - Welfare impacts of carbon taxation and CBAM

EU/UK carbon taxation with a CBAM

- At \$100 (90€) per ton of CO₂
- Increased competitiveness: EU/UK producer losses 13% ↓ (\$17.8B to \$15.5B)
- Reduced leakage: non-EU/UK emissions increases 42% ↓ (13.6 Mt to 7.87 Mt)
- Incentives for regulation: free revenue for non-EU/UK markets (up to \$251B)
- Similar incidence across lower- and higher-income countries

Literature

International climate coordination

Nordhaus 2015, Böhringer et al. 2016, Kortum & Weisbach 2022, Bourany 2024, Farrokhi & Lashkaripour 2024, Hsiao 2024

Environmental impacts of trade policy

Copeland & Taylor 2003, Kortum & Weisbach 2017, Shapiro 2021, Abuin 2024, Harstad 2024, Casey et al. 2025

CBAMs as a specific policy proposal

Markusen 1975, Copeland & Taylor 1994, 1995, Hoel 1996, Rauscher 1997, Fowlie 2009, Elliott et al. 2010, Fowlie et al. 2016, Kortum & Weisbach 2017, Clausing & Wolfram 2023, Coster et al. 2024

Contributions

- Quantitative global analysis of current CBAM policies
 - Simple equilibrium framework: producers respond to tariffs by reallocating sales
 - Microdata on two key target industries
- 2 Distributional implications for lower-income countries

Policy timeline

- EU CBAM proposed in 2021
 - Phase-in starting October 1, 2023 with reporting only
 - Full implementation from January 1, 2026 for target sectors
- UK CBAM announced in 2023, targeting implementation by 2027
- In discussion in Canada, Australia, and Taiwan
- Expansion of Chinese ETS to cover target sectors

Initial target sectors

(%)	Trade Intensity	Global Emissions
Steel	23	11
Aluminum	41	3
Electricity	2	33
Fertilizers	60	1
Cement	2	6
Hydrogen	0.1	2

Aluminum and steel

- Globally traded commodities
 - London Metal Exchange reports global prices and facilitates trade
- Aluminum
 - Primary: smelted from alumina with CO₂ from chemistry and electricity
 - Secondary: recycled from scrap with 5-10% emissions
- Steel
 - Primary: blast furnace/basic oxygen furnace (BF-BOF) from iron ore
 - Secondary: electric arc furnace (EAF) from scrap with 35-40% emissions

Global data by plant for 2023

- Aluminum smelters from WoodMac
 - 153 worldwide with some Chinese smelters aggregated
 - Public data and site visits
 - LIC producers: 7% of global production, 9% of global emissions
- Steel mills from Climate TRACE
 - 892 worldwide with capacity above 500k tons
 - Satellite and mill-level sensor data
 - LIC producers: 7% of global production, 6% of global emissions
- Production, capacity, costs, and emissions
 - Primary and secondary plants, Scope 1 and 2 emissions

Production costs and capacity

Aluminum quantities

Producers		
Country	Mt	%
China	48.9	57.9
India	4.7	5.6
EU + UK	4.6	5.5
USA	4.1	4.9
Russia	4.0	4.7
Rest of world	18.1	21.5

Consumers			
Country	Mt	%	
China	50.8	60.2	
EU + UK	9.1	10.8	
USA	8.6	10.2	
India	3.0	3.6	
Japan	2.9	3.4	
Rest of world	10.0	11.8	

Steel quantities

Producers			
Country	Mt	%	
China	860	51	
EU + UK	153	9	
Japan	88	5	
USA	86	5	
India	76	5	
Rest of world	409	25	

Consumers			
Country	Mt	%	
China	827	49	
EU + UK	169	10	
USA	101	6	
India	77	5	
Japan	68	4	
Rest of world	431	26	

Emissions intensity by income

Controlling for compositional differences in production

CBAMs add to costs

CBAM impacts by income

Environmental regulation with global trade

- Demand by market, supply by plant
 - ullet Regulated and unregulated markets R and U
- Regulator in R considers a CBAM
 - Plants can shift sales across markets
 - Will quantify distributional effects

Demand by market m

$$\log D^m = \delta^m + \varepsilon^m \log P^m$$

ullet Log-linear with calibrated $arepsilon^m = -0.25$ (Söderholm & Ekvall 2020)

Supply by plant *i*

$$s_i^m = \bar{s}_i o_i^m, \quad o_i^m = rac{\exp(v_i^m)}{1 + \exp(v_i^m)}$$
 $u_{il}^m = v_i^m + \epsilon_{il}, \quad v_i^m = \beta(p_i^m - c_i) + \epsilon_i$

- Production s_i depends capacity utilization o_i^m via choice to operate lines ℓ
- Observed capacity \bar{s}_i , cost c_i , and price p_i^m
- Constant marginal costs, so only capture heterogeneity across plants
- No market power, but have many plants

Logit estimation with metals j, countries k

$$\log\left(\frac{o_{ijk}}{1 - o_{ijk}}\right) = \beta(P_j - \bar{\tau}_k \bar{e}_{ijk} - c_{ijk}) + \mu_j + \mu_k + \epsilon_{ijk}$$

Carbon taxation

$$p_i^m = P^m - \tau^m e_i$$
$$\log e_i = \log \bar{e}_i - \gamma (\tau^m - \bar{\tau}^m)$$

- Without a CBAM, $P^m = P$ and $D(P^*) = S(P^*)$
- ullet Regulation-induced abatement with calibrated $\gamma=0.3$ (Sen & Vollebergh 2018)
 - Relative to emissions $ar{e}_i$ and regulation $ar{ au}^m$ in the data

Carbon border adjustment mechanism

$$\begin{split} \alpha^R &= \tau^R - \tau^U > 0 \\ p_i^m &= \max\{p_i^{mR}, p_i^{mU}\} & p_i^{RR} &= P^R - \tau^R e_i & p_i^{UR} &= P^R - \tau^R e_i \\ r_i^m &= \mathbbm{1}(p_i^{mR} > p_i^{mU}) & p_i^{RU} &= P^U - \tau^R e_i & p_i^{UU} &= P^U - \tau^U e_i \end{split}$$

- ullet Plants choose destination market with best net price p_i^m
 - \bullet Given prices (P^R,P^U) and home regulation (τ^R,τ^U)
 - Pay home + border regulation (without export rebate)

Markets clear

$$D^{R}(P^{R*}) = S^{R}(P^{R*}, P^{U*}; \alpha^{R})$$

$$D^{U}(P^{U*}) = S^{U}(P^{R*}, P^{U*}; \alpha^{R})$$

- CBAM induces reallocation and price divergence
 - ullet $P^R > P^U$: R expresses green preference and must pay for it
- Can compute welfare: CS, PS, G, E

Policy simulations

- Carbon taxation in market R
 - Relative to zero regulation with $\tau^R = \tau^U = 0$
 - With and without a CBAM
- Evaluate global effects
 - *R*: EU + UK [+ China]
 - U: all other countries
 - *UL*: low and lower-middle income (World Bank)
 - *UH*: upper-middle and high income (World Bank)

Results

- EU/UK policy evaluation
- Regulation and reallocation effects
- 3 CBAMs boost competitiveness
- 4 CBAMs curb leakage
- **5** CBAMs encourage regulation

1. EU/UK policy evaluation

 $\mbox{EU/UK}$ carbon taxation at \$100 per ton of \mbox{CO}_2

	No CBAM		With CBAM	
Impact	\overline{R}	U	R	U
Price (%)	0.64	0.64	2.52	0.46
Emissions (Mt CO ₂)	-93.2	13.6	-91.3	7.87
Welfare (1B USD)	-0.02	1.02	0.05	0.87
Consumer surplus (1B USD)	-1.22	-11.0	-4.40	-8.20
Producer surplus (1B USD)	-17.8	12.0	-15.5	9.07
Government revenue (1B USD)	19.0	0.00	19.9	0.00
Welfare with emissions reductions (1B USD)	7.94	1.02	8.39	0.87

2. Regulation and reallocation effects

- Without a CBAM, regulation effect alone
 - World price P rises as regulation reduces world supply
- With a CBAM, regulation + reallocation effect
 - Price P^R rises and pulls clean supply to R
 - ullet Price P^U falls as dirty supply pushed to U
- Modest price effects: no more than 10%
- Modest welfare effects: sometimes small gain for R, less than \$10B for U
 - But large component effects: up to \$100B for CS and PS, \$200B for G

Price effects (%)

Welfare effects (1B USD)

3. CBAMs boost competitiveness

- Regulation in R hurts producers in R, helps producers in U
 - Profits losses in R of up to \$15B (EU/UK), \$100B (+China)
- CBAM reduces losses for R by 15% (EU/UK) and 10% (+China)
 - Also reduces gains for U by roughly 25%
 - But with equal incidence on lower- and higher-income countries

Producer surplus effects (1B USD)

Producer surplus effects (CBAM vs. no CBAM, %)

4. CBAMs curb leakage

- Regulation in R lowers emissions in R, raises emissions in U
 - Because of higher world price P
- CBAM reduces emissions increases in *R* by 25-50%
 - With similar pressure on lower- and higher-income countries
- Despite leakage, total emissions reductions are large
 - Up to 1 Gt when R includes China and $au^R=100$ per ton of $extsf{CO}_2$
 - Relative to 3.9 Gt in our baseline data

Emissions effects (Mt CO₂)

Emissions effects (CBAM vs. no CBAM, %)

5. CBAMs encourage regulation

- ullet Joining in regulation is mostly unappealing for U
 - Especially given carbon regulation by R, which helps U
 - ullet U gains up to \$7B in welfare by not regulating
- But a CBAM closes the gap for global regulation
 - Reduces welfare gains for U
 - Offers revenue incentives for U
 - Increases emission reductions for U

Welfare effects for *UL* (1B USD)

Welfare effects for *UH* (1B USD)

Summary

- Quantitative equilibrium analysis of EU/UK CBAM
 - Emissions intensity not necessarily higher in lower-income countries
- CBAM boosts competitiveness, curbs leakage, and encourages regulation
 - Without disproportionate impacts on lower-income countries
 - Domestic advantages may help to pass carbon regulation