Caculus 2 – SUMMARY – Chapter 2: Double Integral. Book: Page 973 – 1004.

Topic 0: Iterated integral
$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
. More general: $\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) dy dx$.

Example: Evaluate
$$a/I = \iint_{R} x^2 y dy dx$$
 where $R = \{(x, y) | 0 \le x \le 3, 1 \le y \le 2\}$

b/ I =
$$\iint_{D} (1+2y)dydx$$
, D = $\{(x, y) | 0 \le x \le 1, x^2 \le y \le x\}$

Answer:
$$a/I = \int_{0}^{3} \left[\int_{1}^{2} x^{2} y dy \right] dx = \frac{27}{2}$$

$$b/I = \int_{0}^{1} \int_{x^{2}}^{x} (1+2y) dy dx = \int_{0}^{1} \left[y + y^{2} \right]_{y=x^{2}}^{y=x} dx = \int_{0}^{1} \left(x - x^{4} \right) dx = \frac{3}{10}.$$

Topic 1: Double Integral over General Domain D: $\iint f(x, y) dA$.

Easiest: D – rectangle [a, b] x [c, d] or D:
$$\begin{cases} a \le x \le b \\ c \le y \le d \end{cases}$$

$$\Rightarrow \iint_D f(x, y) dA = \iint_{a}^{b} \int_{c}^{d} f(x, y) dy dx.$$

Separable case:
$$\begin{cases} D = [a,b] \times [c,d] \\ f(x,y) = g(x)h(y) \end{cases} \Rightarrow \iint_D f(x,y)dA = \int_a^b g(x)dx \cdot \int_c^d h(y)dy.$$

Example: Evaluate numerically
$$I = \iint_D \frac{e^{2x+y}}{\sqrt{xy}} dA$$
 where $D = [1, 2] \times [1,3]$.

Answer:
$$I = \int_{1}^{2} \frac{e^{2x}}{\sqrt{x}} dx \cdot \int_{1}^{3} \frac{e^{y}}{\sqrt{y}} dy$$
. Calculator $\Rightarrow I \approx 216.92$

Basic case: D is
$$\begin{cases} a \le x \le b \\ g(x) \le y \le h(x) \end{cases}$$

Example: Evaluate
$$I = \iint_D y^2 dA$$
, $D = \{(x, y) | -1 \le y \le 1, -y - 2 \le x \le y\}$.

Answer:
$$I = \int_{-1}^{1} \int_{-y-2}^{y} y^2 dx dy = \int_{-1}^{1} y^2 [x]_{x=-y-2}^{x=y} dy = \int_{-1}^{1} y^2 (2y+2) dy = \frac{4}{3}.$$

Remark: The case D:
$$\begin{cases} c \le y \le d \\ g(y) \le x \le h(y) \end{cases}$$
 is solved similarly.

Special: D is bounded by
$$\begin{vmatrix} y = g(x) \\ y = h(x) \end{vmatrix}$$
 \Rightarrow Technique: Solve Intercept

$$g(x) = h(x)$$

Example: Evaluate
$$I = \iint_D x \cos y dA$$
, D is bounded by $y = 0$, $y = x^2$, $x = 1$.

D:
$$\begin{vmatrix} y = 0, \ y = x^2 \\ x = 1 \end{vmatrix}$$
 \Rightarrow Miss one x. Intercept equation: $x^2 = 0 \Rightarrow x = 0 \Rightarrow$

D:
$$\begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases} \Rightarrow I = \int_0^1 \int_0^{x^2} x \cos y dy dx = \int_0^1 x [\sin y]_{y=0}^{y=x^2} dx = \int_0^1 x \sin(x^2) dx.$$

Calculator or Change
$$t = x^2 \Rightarrow I = \frac{1}{2} \int_0^1 \sin t dt = \frac{1}{2} (1 - \cos 1)$$
.

3rd case: D is described by geometry, for example triangle with 3 vertices.

Example:

Evaluate I = $\iint y^3 dA$, D: triangular region with vertices (0;2), (1;1), (3;2).

D:
$$\begin{vmatrix} 1 \le y \le 2 \\ x_{AB} \le x \le x_{BC} \end{vmatrix}$$
. AB: $y = ax + b$. Through A(0; 2), B(1; 1) $\Rightarrow \begin{cases} 0 \cdot a + b = 2 \\ 1 \cdot a + b = 1 \end{cases} \Rightarrow \begin{cases} a = -1 \\ b = 2 \end{cases} \Rightarrow$

A(0; 2), B(1; 1)
$$\Rightarrow$$

$$\begin{cases} 0 \cdot a + b = 2 \\ 1 \cdot a + b = 1 \end{cases} \Rightarrow \begin{cases} a = -1 \\ b = 2 \end{cases} \Rightarrow$$

$$y = -x + 2 \implies x = 2 - y$$
. Same for BC: $y = \frac{x+1}{2}$

$$\Rightarrow x = 2y - 1$$

$$\Rightarrow x = 2y - 1$$

$$\Rightarrow D: \begin{vmatrix} 1 \le y \le 2 \\ 2 - y \le x \le 2y - 1 \end{vmatrix} \Rightarrow I = \int_{1}^{2} \int_{2-y}^{2y-1} y^3 dx dy = \int_{1}^{2} y^3 [x]_{x=2-y}^{x=2y-1} dy = \frac{147}{20}.$$

Topic 2: Application – Mass & Charge: Formula (1) – (2) page 1004.

Example:

(a - last digit of student ID number, m = a + 1) Given one lamina of the

shape D:
$$\begin{cases} 1 \le x \le 2 \\ x \le y \le 2x \end{cases}$$
 with the limear density $\rho(x, y) = 2x + my + 3xy$,

find the lamina mass.

Answer:

(For example: m = 5) Mass =
$$\int_{1}^{2} \int_{x}^{2x} (2x + 5y + 3xy) dy dx$$

$$= \int_{1}^{2} \left[2xy + (3x+5) \cdot \frac{y^{2}}{2} \right]_{y=x}^{y=2x} dx \cdot \text{Calculator} \Rightarrow \text{Mass} \approx 39.04$$

Numerical Answer:

$$m = 1$$
: Mass = 25.04

$$m = 2$$
: Mass = 28.54

$$m = 3$$
: Mass = 32.04

$$m = 4$$
: Mass = 35.54

$$m = 5$$
: Mass = 39.04

$$m = 6$$
: Mass = 42.54

$$m = 7$$
: Mass = 46.04

$$m = 8$$
: Mass = 49.54

$$m = 9$$
: Mass = 53.04

$$m = 10$$
: Mass = 56.54

Topic 3:

Volume of the solid (S)

Simple case: Given
$$\begin{cases} f(x, y) \le z \le g(x, y) \\ (x, y) \in D \end{cases}$$
 (or Below $z = f(x, y)$ and

Above Domain D
$$\subseteq$$
 Oxy $\Rightarrow z = 0 \Rightarrow 0 \le z \le f(x, y)$

Example:

Find the volume of the solid (S) under the plane x + 2y - z = 0 and above the region bounded by y = x and $y = x^4$.

Answer: Region bounded by y = x, $y = x^4$ belongs to Oxy: $z = 0 \Rightarrow$

Solid (S): under the plane z = x + 2y & above $z = 0 \implies 0 \le z \le x + 2y$.

Domain D: bounded by $\begin{vmatrix} y = x \\ y = x^4 \end{vmatrix}$. Intercept equation: $x^4 = x \implies \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$.

Test with $x = \frac{1}{2} \in (0; 1)$: $\frac{1}{2^4} < \frac{1}{2} \implies x^4 \le x \ \forall \ x \in [0; 1]$

$$\Rightarrow D = \begin{cases} 0 \le x \le 1 \\ x^4 \le y \le x \end{cases} \Rightarrow V = \int_0^1 \int_{x^4}^x [(x+2y)-0] dy dx.$$

General case: Volume of solide (S), bounded by some equations \Rightarrow Find one variables, for example z, that appears exactly only TWO times in

equations $\Rightarrow \begin{vmatrix} z = f(x, y) \\ z = g(x, y) \end{vmatrix}$. Remaing equations (having only x, y) \rightarrow

Domain D. If D is not finite, add Intercept equation f(x, y) = g(x, y) to D.

Example: Find the volumes of the solid bounded by the coordinates planes and the plane 3x + 2y + z = 6.

$$\mathbf{Oxy}: z = 0$$

Answer: Coordinate planes: Oyz: x = 0. 2 equations with $z \Rightarrow Solid(S)$ is Oxz: y = 0

 $\begin{vmatrix} \operatorname{Oxz} : y = 0 \\ z = 0 \\ z = 6 - 3x - 2y \end{vmatrix}$ between $\begin{vmatrix} z = 0 \\ z = 6 - 3x - 2y \end{vmatrix}$ (*). 2 remaining equations: $\begin{vmatrix} x = 0 \\ y = 0 \end{vmatrix}$ &

Intercept equation (from (*)): $6-3x-2y=0 \implies y=\frac{6-3x}{2}$.

Draw picture \Rightarrow Domain D: $\begin{cases} 0 \le x \le 2 \\ 0 \le y \le \frac{6 - 3x}{2} \end{cases}$.

Test by P(1, 1) inside D \Rightarrow 0 \leq 6 -3x - 2y at D \Rightarrow

$$V = \int_{0}^{2} \int_{0}^{\frac{6-3x}{2}} [(6-3x-2y)-0] dy dx = \int_{0}^{2} [(6-3x)y-y^{2}]_{y=0}^{y=\frac{6-3x}{2}} dx = 6.$$

Topic 4: Domain D related to circle \Rightarrow Polar: $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$.

Example: Evaluate $I = \iint_D e^{-x^2 - y^2} dA$, where D is the disk $x^2 + y^2 \le 4$

Answer: Polar \Rightarrow D: $\begin{cases} 0 \le r \le 2 \\ 0 \le \theta \le 2\pi \end{cases} \Rightarrow I = \int_{0}^{2} \int_{0}^{2\pi} re^{-r^2} d\theta dr$. $t = r^2 \Rightarrow I = \pi \left(1 - \frac{1}{e^4}\right)$.

Example: Find the volume of the solid under $z = x^2 + y^2$, above Oxy – plane and insde the cylinder: $x^2 + y^2 = 2x$.

Answer: Solid (S): $\begin{cases} 0 \le z \le x^2 + y^2 \\ D: x^2 + y^2 \le 2x \end{cases}$. Polar for D: $x^2 + y^2 = 2x \iff r = 2\cos\theta \ge 0$

 $\Rightarrow D: -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \ 0 \le r \le 2\cos\theta \Rightarrow V = \iint_{D} \left[\left(x^2 + y^2 \right) - 0 \right] dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^2 \cdot r dr d\theta = \frac{3\pi}{2}.$