

Statistik I

Prof. Dr. Simone Abendschön Letzte Sitzung am 8. Februar 2024

Plan heute

Grundlagen der Inferenzstatistik

- Zentrales Grenzwerttheorem
- (Standardfehler → SoSe 24)
- Wiederholung Inhalte mit Übungen

Lernziele heute

 Kennen und Verstehen des Zentralen Grenzwerttheorems

Einführung

Bislang haben wir die Konzepte der Wahrscheinlichkeit, z-Wert-Transformation und Normalverteilung nur für Stichproben mit der Größe n = 1 angewendet, d.h.

Wie groß ist die Wahrscheinlichkeit per Zufallsauswahl bei gegebenem Mittelwert und Standardabweichung einen Fall in einem bestimmten Werteintervall auszuwählen?

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

Inferenzstatistik

Grundgesamtheit

(Erwartungswert – "Durchschnitt der Grundgesamtheit")

Stichprobe

Statistik $\bar{\chi}$

(Arithmetisches Mittel Stichprobe)

Inferenzstatistik

Inferenzstatistik

Grundgesamtheit

Grundannahmen über die Verteilung von Stichprobenkennwerten

(Erwartungswert – "Durchschnitt der Grundgesamtheit")

Inferenz hätzung

Statistik $\bar{\chi}$ (Arithmetisches Mittel

Stichprobe)

Stichproben und Grundgesamtheit

- Aber sozialwissenschaftliche Forschungspraxis:
 Stichproben sind typischerweise (sehr) viel größer
 - Z.B. ALLBUS: > 3000 Befragte; European Social Survey: ca. 35.000 Befragte
- Schätzungen auf Basis von Stichprobenkennwerten (z.B. Mittelwerte oder Anteilswerte)
- Diese Kennwerte können ebenfalls in z-Werte transformiert und für Wahrscheinlichkeitsaussagen genutzt werden

Stichproben und Grundgesamtheit

- Stichprobenfehler (Stichprobenschwankung/Sampling Error):
 - Empirische Ergebnisse einer Zufallsstichprobe weichen immer (mehr oder weniger) vom tatsächlichen Wert in Grundgesamtheit ab
 - \rightarrow Diskrepanz zwischen Stichprobenkennwert \bar{x} und Populationskennwert μ
 - Berechnung eines Standardfehlers
- Da wir den "wahren" Wert in der GG nicht kennen, wissen wir nicht ob unser Stichprobenfehler groß oder klein ist
 - Stichprobenergebnisse variieren wir können eine "gute" oder "schlechte" Stichprobe erwischen
 - Zufällige Einflüsse: Unterschiedliche Stichproben = unterschiedliche Beobachtungseinheiten
- Aber: Grundannahmen über die Verteilung von Stichprobenkennwerten!

Zentrales Grenzwerttheorem

Auch: zentraler Grenzwertsatz

Definition:

- Eine Stichprobenkennwerteverteilung für unendlich viele Stichproben von Mittelwerten nähert sich der Normalverteilung an, falls die Stichprobe ausreichend groß ist (n>= 30) oder die Werte in der GG normalverteilt sind
- Der Erwartungswert E der Stichprobenmittelwerte entspricht dem "wahren" Mittelwert der GG
- μ : $E(\bar{x}) = \mu$

Stichprobenkennwerteverteilung

"Nachweis" über Simulation

- Es werden theoretisch unendlich viele Stichproben vom jeweils gleichen Umfang n aus derselben Grundgesamtheit gezogen.
- Für jede einzelne Stichprobe wird der interessierende Kennwert (hier arithmetisches Mittel) berechnet
- → Stichprobenmittelwerteverteilung
 (Stichprobenkennwerteverteilung), "theoretische"
 Verteilung

- Es werden theoretisch unendlich viele Stichproben vom jeweils gleichen Umfang n aus derselben Population gezogen (Simulationsbeispiel n=100.000)
- Für jede einzelne Stichprobe wird der interessierende Kennwert (hier arithmetisches Mittel, funktioniert aber auch mit Anteilswert) berechnet

- Simulierte Daten, Modellpopulation N= 100.000,
- Unterschiedliche Verteilungsformen
- Für jede Verteilungsform: jeweils 1.000 Zufallsstichproben vom Umfang n= 500; Berechnung \bar{x} für jede einzelne Stichprobe
- Berechnung des arithmetischen Mittels aus diesen 1000 Mittelwerten
- Wie sieht die Verteilung der Mittelwerte aus? Was passiert? (Siehe auch Abbildung 22 im Lehrbrief)

Verteilung der Stichprobenmittelwerte:

Normalverteilung

Population:

Verteilung der Stichprobenmittelwerte:

Gleichverteilung

Population:

Verteilung der Stichprobenmittelwerte:

Zentrales Grenzwerttheorem

- Zentrale Tendenz der Verteilung von Stichprobenkennwerten (Mittelwerte, aber auch Anteilswerte)
- Unabhängig von der Verteilung eines interessierenden Merkmals in der Population wird die Verteilung der Stichprobenmittelwerte (und Anteilswerte) normalverteilt um μ sein
 - falls die Stichprobe ausreichend groß ist (n>= 30)
 - oder die Werte in der Population normalverteilt sind

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Die arithmetischen Mittel verschiedener Stichproben sind (mit zunehmender Anzahl an Beobachtungen n) normalverteilt um das arithmetische Mittel μ der

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Die arithmetischen Mittel verschiedener Stichproben sind (mit zunehmender Anzahl an Beobachtungen n) normalverteilt um das arithmetische Mittel μ der

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Standardfehler des Mittels

- Standardabweichung der Stichprobenmittelwerte als Standardfehler der Stichprobenmittelwerte oder Standardfehler des Mittels (kurz: Standardfehler, $\sigma_{\bar{\chi}}$)
- Durchschnittliche Streuung der arithmetischen Mittel
- informiert darüber, wie präzise ein
 Stichprobenmittelwert den Populationsmittelwert schätzt
- Informiert über die Größe der Diskrepanz zwischen einem Stichprobenmittelwert \bar{x} und dem Populationsmittelwert μ
- Fortsetzung folgt...

Plan heute

Grundlagen der Inferenzstatistik

- Zentrales Grenzwerttheorem
- (Standardfehler → SoSe 24)
- Wiederholung Inhalte mit Übungen

Wiederholungsquiz

Quiz über Pingo

https://pingo.coactum.de

Zugang: 017613 QR Code #017613

Q

pingo.coactum.de \rightarrow 017613