METODA SIMPSONA – ZAGADNIENIE UZUPEŁNIAJĄCE

Algorytm całkowania metoda Simpsona

Metoda Simpsona jest najdokładniejszą z opisanych tutaj metod przybliżonego całkowania. W **metodzie prostokątów** całka oznaczona przybliżana była funkcjami stałymi - liczyliśmy sumę pól prostokątów. W **metodzie trapezów** całkę przybliżaliśmy za pomocą funkcji liniowych - obliczaliśmy sumy pól trapezów. W metodzie Simpsona stosujemy jako przybliżenie parabolę - będziemy obliczali sumy wycinków obszarów pod parabolą. Zasada jest następująca:

Przedział całkowania $[x_p,x_k]$ dzielimy na n+1 równo odległych punktów $x_0, x_1, x_2,..., x_n$: dla i=0,1,2,...,n

$$x_i = x_p + \frac{i}{n} \cdot \left(x_k - x_p \right)$$

Dla każdych dwóch sąsiednich punktów wyznaczamy punkt środkowy t_i wg wzoru: dla i=1,2,...,n

$$t_i = \frac{x_{i-1} + x_i}{2}$$

Obliczamy odległość między dwoma sąsiednimi punktami.

$$dx = \frac{x_k - x_p}{n}$$

Dla każdego wyznaczonego w ten sposób punktu obliczamy wartość funkcji f(x) w tym punkcie:

$$\begin{aligned} & \textbf{punkty podziałowe} \\ & dla \ i = 0,1,2,...,n \\ & f_i = f(x_i) \\ & \textbf{punkty środkowe} \\ & dla \ i = 1,2,...,n \\ & f_{ti} = f(t_i) \end{aligned}$$

W każdym podprzedziale $[x_{i-1},x_i]$ przybliżamy funkcję za pomocą paraboli g(x) o następującej postaci:

dla i = 1,2,...,n

$$g_i(x) = a_i x^2 + b_i x + c_i; x \in [x_{i-1}, x_i]$$

Parabola $g_i(x)$ musi przechodzić przez punkty: (x_{i-1},f_{i-1}) , (t_i,f_{ti}) , (x_i,f_i) . Współczynniki a_i , b_i i c_i wyznaczymy zatem z układu trzech równań:

dla
$$i = 1,2,...,n$$

$$\begin{cases} a_{i}x_{i-1}^{2} + b_{i}x_{i-1} + c_{i} = f_{i-1} \\ a_{i}t_{i}^{2} + b_{i}t_{i} + c_{i} = f_{t_{i}} \\ a_{i}x_{i}^{2} + b_{i}x_{i} + c_{i} = f_{i} \end{cases}$$

Uwaga:

W metodzie Simpsona chodzi o wyznaczenia pola pod parabolą w danym podprzedziale, a nie jej współczynników. Możemy zatem pójść inną drogą. Załóżmy, iż powyższe współczynniki są znane (ostatecznie możemy je przecież wyliczyć).

Pole pod parabolą w przedziale $[x_{i-1},x_i]$ będzie równe całce oznaczonej: dla i=1,2,...,n

$$P_{i} = \int_{x_{i-1}}^{x_{i}} g_{i}(x) dx = \int_{x_{i-1}}^{x_{i}} (a_{i}x^{2} + b_{i}x + c_{i}) dx; \quad x \in [x_{i-1}, x_{i}]$$

Funkcja pierwotna jest bardzo prosta w tym przypadku i ma wzór następujący: dla i = 1,2,...,n

$$G_i(x) = \int g_i(x)dx = \frac{a_i}{3}x^3 + \frac{b_i}{2}x^2 + c_ix + C$$

Wartość całki obliczymy zgodnie z definicją <u>Newtona-Leibniza</u>: dla i = 1,2,...,n

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = G_i(x_i) - G_i(x_{i-1})$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{a_i}{3} x_i^3 + \frac{b_i}{2} x_i^2 + c_i x_i - \frac{a_i}{3} x_{i-1}^3 - \frac{b_i}{2} x_{i-1}^2 - c_i x_{i-1}$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{a_i}{3} x_i^3 - \frac{a_i}{3} x_{i-1}^3 + \frac{b_i}{2} x_i^2 - \frac{b_i}{2} x_{i-1}^2 + c_i x_i - c_i x_{i-1}$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{a_i}{3} \left(x_i^3 - x_{i-1}^3 \right) + \frac{b_i}{2} \left(x_i^2 - x_{i-1}^2 \right) + c_i \left(x_i - x_{i-1} \right)$$

Teraz postaramy się uprościć maksymalnie otrzymane wyrażenie. W tym celu wyciągamy przed nawias wspólny czynnik i całość dzielimy przez 6:

dla
$$i = 1,2,...,n$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{\left(x_i - x_{i-1}\right)}{6} \left\{ 2a_i \left(x_i^2 + x_i x_{i-1} + x_{i-1}^2\right) + 3b_i \left(x_i + x_{i-1}\right) + 6c_i \right\}$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{\left(x_i - x_{i-1}\right)}{6} \left(2a_i x_i^2 + 2a_i x_i x_{i-1} + 2a_i x_{i-1}^2 + 3b_i x_i + 3b_i x_{i-1} + 6c_i \right)$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{\left(x_i - x_{i-1}\right)}{6} \left\{ \left(a_i x_{i-1}^2 + b_i x_{i-1} + c_i\right) + \left(a_i x_i^2 + b_i x_i + c_i\right) + a_i \left(x_{i-1} + x_i\right)^2 + 2b_i \left(x_{i-1} + x_i\right) + 4c_i \right\}$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{\left(x_i - x_{i-1}\right)}{6} \left\{ \left(a_i x_{i-1}^2 + b_i x_{i-1} + c_i\right) + \left(a_i x_i^2 + b_i x_i + c_i\right) + 4\left(a_i \left(\frac{x_{i-1} + x_i}{2}\right)^2 + b_i \frac{x_{i-1} + x_i}{2} + c_i \right) \right\}$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{\left(x_i - x_{i-1}\right)}{6} \left\{ \left(a_i x_{i-1}^2 + b_i x_{i-1} + c_i\right) + \left(a_i x_i^2 + b_i x_i + c_i\right) + 4\left(a_i t_i^2 + b_i t_i + c_i\right) \right\}$$

Zwróćcie uwagę, iż wyrażenia w nawiasach są odpowiednio wartościami funkcji f_{i-1} , f_i oraz f_{ti} . Natomiast różnica

$$x-x_{i-1}$$

jest odległością dx pomiędzy dwoma sąsiednimi punktami podziałowymi. Zatem po uproszczeniu otrzymujemy ostateczny wzór:

dla
$$i = 1,2,...,n$$

$$\int_{x_{i-1}}^{x_i} g_i(x) dx = \frac{x_k - x_p}{6n} \left(f_{i-1} + f_i + 4 f_{t_i} \right)$$

Wzór ten pozwala wyliczyć pole obszaru pod parabolą aproksymującą funkcję f(x) w przedziale [x_{i-1} , x_{i}]. Wartość całej całki otrzymamy sumując te pola, czyli:

$$\int_{x_n}^{x_k} f(x) dx \approx \frac{x_k - x_p}{6n} \left(\sum_{i=1}^n f_{i-1} + \sum_{i=1}^n f_i + 4 \sum_{i=1}^n f_{t_i} \right)$$

Jest to wzór wyliczania przybliżonej wartości całki oznaczonej za pomocą metody Simpsona. Ponieważ w obliczanych sumach wartości funkcji się powtarzają dwukrotnie (z wyjątkiem pierwszej i ostatniej), do obliczeń

komputerowych stosujemy efektywniejszy wzór otrzymywania powyższej sumy:

$$\sum_{i=1}^{n} f_{i-1} + \sum_{i=1}^{n} f_{i} = f_{0} + f_{n} + 2\sum_{i=1}^{n-1} f_{i}$$

$$\int_{x_p}^{x_k} f(x) dx \approx \frac{x_k - x_p}{6n} \left(f_0 + f_n + 2 \sum_{i=1}^{n-1} f_i + 4 \sum_{i=1}^{n} f_{t_i} \right)$$

Specyfikacja problemu

Dane wejściowe

 x_p - początek przedziału całkowania, $x_p \in \mathbb{R}$

 x_k - koniec przedziału całkowania, $x_k \in \mathbb{R}$

n - liczba punktów podziałowych, $n \in \mathbb{N}$

f(x) - funkcja rzeczywista, której całkę liczymy

Dane wyjściowe

s - przybliżona wartość całki oznaczonej funkcji f(x) w przedziale $[x_p,x_k]$, $s \in \mathbb{R}$

Zmienne pomocnicze

 s_t - suma wartości funkcji w punktach środkowych, $s_t \in \mathbb{R}$

dx - odległość między dwoma sąsiednimi punktami podziałowymi, $dx \in \mathbb{R}$

x - pozycja punktu podziałowego, $x \in \mathbb{R}$

i - licznik punktów podziałowych, $i \in N$

Lista kroków

K01:
$$s \leftarrow 0$$
; $s_t \leftarrow 0$

K02:
$$dx \leftarrow \frac{x_k - x_p}{n}$$

K03: **Dla**
$$i = 1,2,...,n$$
:

wykonuj kroki K04...K06

K04:
$$x \leftarrow x_p + i \cdot dx$$

K05:
$$s_t \leftarrow s_t + f\left(x - \frac{dx}{2}\right)$$

K06: **Jeśli**
$$i < n$$
, **to** $s \leftarrow s + f(x)$

K07:
$$s \leftarrow \frac{dx}{6} \cdot \left(f(x_p) + f(x_k) + 2s + 4s_t \right)$$

K08: Zakończ Schemat blokowy

Odczytujemy krańce przedziału całkowania $[x_p,x_k]$. Do obliczenia całki metodą Simpsona musimy zliczyć dwie sumy - wartości funkcji w punktach podziałowych x_i oraz wartości funkcji w punktach środkowych przedziałów t_i . Pierwszą sumę będziemy obliczać w zmiennej s, drugą w s_t . Obie na początku przyjmują wartość 0. Wyznaczamy dalej odległość pomiędzy dwoma sąsiednimi punktami podziałowymi dx i rozpoczynamy pętlę, w której zmienna i pełni rolę numeru punktu podziałowego i środkowego. Pętla ta wykonuje się n-razy od i=1 do i=n włącznie, czyli jest to zwykła pętla iteracyjna typu FOR.

W pętli wyznaczamy wartość punktu podziałowego x_i i umieszczamy ją w zmiennej x. Następnie obliczamy wartość funkcji w punkcie środkowym t_i , który jest odległy o połowę dx od wyznaczonego wcześniej punktu x_i . Wartość tę dodajemy do sumy s_t .

Drugą sumę tworzymy w zmiennej s. Jednakże powinna ona zawierać jedynie wartości funkcji dla punktów podziałowych od x_1 do x_{n-1} . Dlatego przed sumowaniem sprawdzamy, czy indeks i jest w odpowiednim zakresie.

Po zakończeniu pętli wyznaczamy wartość całki w zmiennej s zgodnie z podanym wzorem, wyprowadzamy ten wynik dla użytkownika i kończymy wykonywanie algorytmu.

ZADANIE DO ROZWIĄZANIA – METODA SIMPSONA

Napisz program obliczający pole obszaru metodą Simpsona przybliżoną wartość pola obszaru zamkniętego ograniczonego prostymi x = a, x = b, osią OX i funkcją f. Sprawdź jak będzie się zmieniała wartość pola dla n=4, 10, 50, 100.

a)
$$a = -4$$
, $b = 3$ oraz $f(x) = 2x^3 - x^2 + 5x - 1$

b)
$$a = -2$$
, $b = 5$ oraz $f(x) = \frac{-3x+12}{x+3}$

c)
$$a = 2, b = 12 \text{ oraz } f(x) = \sqrt{2x+3}$$