Origin: https://github.com/mridulrb/Predict-loan-eligibility-using-IBM-Watson-Studio/blob/master/Dataset/train_ctrUa4K.csv

```
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
import numpy as np

loan_data = pd.read_csv("loan_data.csv")
```

loan_data

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncom		
0	LP001002	Male	No	0	Graduate	No	584		
1	LP001003	Male	Yes	1	Graduate	No	458		
2	LP001005	Male	Yes	0	Graduate	Yes	300		
3	LP001006	Male	Yes	0	Not Graduate	No	258		
4	LP001008	Male	No	0	Graduate	No	600		
609	LP002978	Female	No	0	Graduate	No	290		
610	LP002979	Male	Yes	3+	Graduate	No	410		
611	LP002983	Male	Yes	1	Graduate	No	807:		
612	LP002984	Male	Yes	2	Graduate	No	758:		
613	LP002990	Female	No	0	Graduate	Yes	458		
614 rows × 13 columns									

Next steps: Generate code with loan_data View recommended plots

loan_data.describe()

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_Hist
count	614.000000	614.000000	592.000000	600.00000	564.000
mean	5403.459283	1621,245798	146.412162	342,00000	0.842
std	6109.041673	2926.248369	85.587325	65.12041	0.364
min	150.000000	0.000000	9.000000	12.00000	0.0000
25%	2877.500000	0.000000	100.000000	360.00000	1.0001
50%	3812.500000	1188.500000	128.000000	360.00000	1.0000
75%	5795.000000	2297.250000	168.000000	360.00000	1.0000
max	81000.000000	41667.000000	700.000000	480.00000	1.0000

```
Education
                          0.085884
     Property_Area
                          0.032112
     Gender
                          0.019857
     ApplicantIncome
                         -0.004710
     Loan_Amount_Term
                         -0.021268
                         -0.037318
     LoanAmount
     CoapplicantIncome
                        -0.059187
     Name: Loan_Status, dtype: float64
     <ipython-input-56-41a2481d504d>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve
       correlation = loan_data.corr()['Loan_Status'].sort_values(ascending=False)
#looking for missing values
loan\_data.apply(lambda \ x: \ sum(x.isnull()),axis=0)
     Loan ID
                           0
     Gender
                          13
     Married
     Dependents
                          15
     Education
                           0
     Self Employed
                          32
     ApplicantIncome
                           0
     CoapplicantIncome
                           0
     LoanAmount
                          22
     Loan_Amount_Term
                          14
     Credit_History
                          50
     Property_Area
                           0
     Loan_Status
     dtype: int64
import matplotlib.pyplot as plt
import seaborn as sns
# Histograms
plt.figure(figsize=(12, 6))
plt.subplot(2, 2, 1)
sns.histplot(data=loan_data, x='ApplicantIncome', bins=20, kde=True)
plt.title('Histogram of Applicant Income')
plt.subplot(2, 2, 2)
sns.histplot(data=loan_data, x='CoapplicantIncome', bins=20, kde=True)
plt.title('Histogram of Coapplicant Income')
plt.subplot(2, 2, 3)
sns.histplot(data=loan_data, x='LoanAmount', bins=20, kde=True)
plt.title('Histogram of Loan Amount')
# Bar Plots
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
sns.countplot(data=loan_data, x='Loan_Status')
plt.title('Count of Loan Status')
plt.subplot(1, 2, 2)
sns.countplot(data=loan_data, x='Gender')
plt.title('Count of Gender')
# Box Plots
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
sns.boxplot(data=loan_data, y='ApplicantIncome')
plt.title('Box Plot of Applicant Income')
plt.subplot(1, 2, 2)
sns.boxplot(data=loan_data, y='LoanAmount')
plt.title('Box Plot of Loan Amount')
# Scatter Plot
plt.figure(figsize=(8, 6))
sns.scatterplot(data=loan_data, x='ApplicantIncome', y='LoanAmount')
plt.title('Scatter Plot of Applicant Income vs Loan Amount')
# Heatmap (Correlation Matrix)
plt.figure(figsize=(10, 8))
correlation matrix = loan data.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix Heatmap')
plt.tight_layout()
plt.show()
```



```
#filling missing values
loan data['Gender'].fillna(loan data['Gender'].mode()[0], inplace=True)
loan_data['Married'].fillna(loan_data['Married'].mode()[0], inplace=True)
loan_data['Dependents'].fillna(loan_data['Dependents'].mode()[0], inplace=True)
loan\_data['Loan\_Amount\_Term'].fillna(loan\_data['Loan\_Amount\_Term'].mode()[0], inplace=True)
loan_data['Credit_History'].fillna(loan_data['Credit_History'].mode()[0], inplace=True)
loan_data['Self_Employed'].fillna(loan_data['Self_Employed'].mode()[0], inplace=True)
loan_data['LoanAmount'].fillna(loan_data['LoanAmount'].mean(), inplace=True)
Γ 1
loan_data['LoanAmount_log']=np.log(loan_data['LoanAmount'])
loan_data['TotalIncome'] = loan_data['ApplicantIncome'] + loan_data['CoapplicantIncome']
loan_data['TotalIncome_log']=np.log(loan_data['TotalIncome'])
# Splitting data into features and target
X = loan_data.drop(columns=['Loan_Status', 'Loan_ID'])
y = loan_data['Loan_Status']
# Splitting data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Preprocessing pipeline for numerical features
numeric_features = X.select_dtypes(include=['float64', 'int64']).columns
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='mean')),
    ('scaler', StandardScaler())
1)
# Preprocessing pipeline for categorical features
categorical_features = X.select_dtypes(include=['object']).columns
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
# Column Transformer to apply different preprocessing pipelines to numerical and categorical features
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)
    ])
# Logistic Regression Pipeline
lr_pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                              ('classifier', LogisticRegression())])
# Decision Tree Pipeline
dt_pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                              ('classifier', DecisionTreeClassifier())])
# Random Forest Pipeline
rf pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                              ('classifier', RandomForestClassifier())])
# Parameter grids for hyperparameter tuning
lr_param_grid = {
    'classifier__C': [0.1, 1, 10, 100],
    'classifier__solver': ['liblinear', 'lbfgs']
dt_param_grid = {
    'classifier__max_depth': [None, 10, 20, 30],
    'classifier__min_samples_split': [2, 5, 10],
    'classifier__min_samples_leaf': [1, 2, 4]
}
rf_param_grid = {
    'classifier__n_estimators': [100, 200, 300],
    'classifier__max_features': ['auto', 'sqrt'],
    'classifier__min_samples_split': [2, 5, 10],
    'classifier__min_samples_leaf': [1, 2, 4],
    'classifier__bootstrap': [True, False]
# Grid search with cross-validation
lr_grid_search = GridSearchCV(lr_pipeline, lr_param_grid, cv=5)
dt_grid_search = GridSearchCV(dt_pipeline, dt_param_grid, cv=5)
rf_grid_search = GridSearchCV(rf_pipeline, rf_param_grid, cv=5)
# Fit the models
lr\_grid\_search.fit(X\_train, y\_train)
```

```
dt_grid_search.fit(X_train, y_train)
rf_grid_search.fit(X_train, y_train)
# Best hyperparameters for each model
best_lr_params = lr_grid_search.best_params_
best_dt_params = dt_grid_search.best_params_
best_rf_params = rf_grid_search.best_params_
# Best models
best_lr_model = lr_grid_search.best_estimator_
best_dt_model = dt_grid_search.best_estimator_
best_rf_model = rf_grid_search.best_estimator_
# Model evaluation
def evaluate_model(model, X_test, y_test):
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    report = classification_report(y_test, y_pred)
    return accuracy, report
lr_accuracy, lr_report = evaluate_model(best_lr_model, X_test, y_test)
dt_accuracy, dt_report = evaluate_model(best_dt_model, X_test, y_test)
rf_accuracy, rf_report = evaluate_model(best_rf_model, X_test, y_test)
# Print evaluation results
print("Logistic Regression:")
print("Best Parameters:", best_lr_params)
print("Accuracy:", lr_accuracy)
print("Classification Report:")
print(lr_report)
print("\nDecision Tree Classifier:")
print("Best Parameters:", best_dt_params)
print("Accuracy:", dt_accuracy)
print("Classification Report:")
print(dt_report)
print("\nRandom Forest Classifier:")
print("Best Parameters:", best_rf_params)
print("Accuracy:", rf_accuracy)
print("Classification Report:")
print(rf_report)
```