2022-2023 MP2I

DM 2, pour le vendredi 21/10/2022

Je vous rappelle les consignes en devoir à la maison :

- Vous pouvez chercher les exercices à plusieurs, me poser des questions dessus mais la rédaction doit être personnelle.
- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les différents exercices sont indépendants.

Pour le premier problème, vous aurez besoin (principalement pour la rédaction) du cours du lundi 10 octobre (théorème de la bijection continue).

PROBLÈME FONCTIONS HYPERBOLIQUES RÉCIPROQUES

On introduit les fonctions cosinus hyperbolique (ch), sinus hyperbolique (sh) et tangente hyperbolique (th) définie par :

$$\operatorname{ch}: x \mapsto \frac{e^x + e^{-x}}{2}, \ \operatorname{sh}: x \mapsto \frac{e^x - e^{-x}}{2} \ \operatorname{et} \ \operatorname{th}: x \mapsto \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}.$$

Le but de ce problème est de déterminer quelques propriétés de ces fonctions et d'étudier leurs fonctions réciproques.

Partie I. Cosinus et sinus hyperboliques

- 1) À (re)faire sans son cours.
 - a) Vérifier que les fonctions ch et sh sont bien définies et dérivables sur \mathbb{R} , étudier leur parité et vérifier que sh' = ch et que ch' = sh.
 - b) Que peut-on dire du signe de ch sur \mathbb{R} ? En déduire le tableau de variations de sh, puis son tableau de signe et en déduire le tableau de variations de ch.
 - c) Déterminer les limites de ch et sh en $\pm \infty$. Déterminer la limite en $+\infty$ de $\mathrm{ch}(x) \mathrm{sh}(x)$.
 - d) Vérifier que $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) \ge \operatorname{sh}(x)$.
 - e) Représenter alors sur un même tracé les graphes de ch et sh.
- 2) Définition des fonctions réciproques.
 - a) Montrer que sh est bijective de \mathbb{R} dans \mathbb{R} et que ch est bijective de \mathbb{R}_+ dans $[1, +\infty[$.

Ceci nous permet de définir les fonctions réciproques de sh et ch que l'on notera argsh : $\mathbb{R} \to \mathbb{R}$ et argch : $[1, +\infty[\to \mathbb{R}^+]$. On fera bien attention au fait que la fonction argch n'est définie que sur $[1, +\infty[$.

- b) Justifier que argsh et argch sont continues sur leur domaine de définition. Déterminer leur domaine de dérivabilité.
- 3) Graphe des fonctions réciproques.

- a) Montrer que pour tout $x \in \mathbb{R}^+$, $sh(x) \ge x$.
- b) Tracer alors sur un même dessin le graphe de sh et de argsh. On fera également apparaître la droite y = x.
- c) Tracer également sur \mathbb{R}_+ le graphe de ch, la droite y=x et le graphe de argch.
- 4) Dérivées des fonctions réciproques.
 - a) Montrer que $\forall y \in \mathbb{R}, \ \mathrm{ch}^2(y) \mathrm{sh}^2(y) = 1.$
 - b) En déduire que $\forall x \in [1, +\infty[$, $\operatorname{sh}(\operatorname{argch}(x)) = \sqrt{x^2 1}$ et que $\forall x \in \mathbb{R}$, $\operatorname{ch}(\operatorname{argsh}(x)) = \sqrt{1 + x^2}$.
 - c) En dérivant (après avoir justifié que vous avez le droit de dériver bien entendu) alors la relation (valable pour tout $x \in \mathbb{R}$) sh(argsh(x)) = x, montrer que $\forall x \in \mathbb{R}$, argsh'(x) = $\frac{1}{\sqrt{1+x^2}}$.
 - d) En effectuant le même raisonnement que ci-dessus, déterminer la dérivée de argch.
- 5) Détermination de argch et argsh à l'aide de fonctions usuelles.
 - a) On fixe $y \in \mathbb{R}$ et on considère l'équation $\operatorname{sh}(x) = y$ d'inconnue $x \in \mathbb{R}$.
 - i) Montrer que si l'on pose $X = e^x$, alors cette équation est équivalente à $X^2 2Xy 1 = 0$.
 - ii) Résoudre cette équation et prouver qu'une des deux solutions est toujours strictement positive et que l'autre est toujours négative ou nulle.
 - iii) En déduire que $\forall y \in \mathbb{R}$, $\operatorname{argsh}(y) = \ln(y + \sqrt{1 + y^2})$. Retrouver alors en dérivant cette fonction la valeur de argsh' .
 - b) On fixe $y \in [1, +\infty[$ et on considère l'équation ch(x) = y d'inconnue $x \in \mathbb{R}^+$. En suivant les mêmes étapes qu'à la question précédente (en montrant cette fois que l'une des racines est toujours supérieure ou égale à 1 tandis que l'autre est toujours inférieure ou égale à 1), déterminer une expression de argch en fonction d'un logarithme (en expliquant en quoi la disjonction de cas précédente nous est utile) et vérifier la valeur de argch' trouvée précédemment.

Partie II. Tangente hyperbolique

- 6) Justifier que the st définie et dérivable sur \mathbb{R} , déterminer sa dérivée, son tableau de variation, ses limites en $\pm \infty$ et son graphe.
- 7) Montrer que th est bijective de \mathbb{R} dans]-1,1[.

Ceci nous permet de définir la fonction réciproque de th que l'on notera $\operatorname{argth}:]-1,1[\to \mathbb{R}.$

- 8) Montrer que argth est continue et dérivable sur son domaine de définition.
- 9) Exprimer th' en fonction de th. On pourra utiliser la relation démontrée en I.4.a
- 10) En déduire que $\forall x \in \mathbb{R}_+$, $\operatorname{th}(x) \leq x$. Tracer alors sur un même dessin le graphe de th et celui de argth (on fera également apparaître la droite d'équation y = x).
- 11) En dérivant la relation th $(\operatorname{argth}(x)) = x$ (valable pour $x \in [-1,1[)$, montrer que :

$$\forall x \in]-1,1[, \text{ argth}'(x) = \frac{1}{1-x^2}.$$

12) Déterminer des constantes a et b telles que pour tout $x \in]-1,1[, \frac{1}{1-x^2} = \frac{a}{1+x} + \frac{b}{1-x}]$. En déduire alors une expression de $\operatorname{argth}(x)$ en fonction d'un logarithme.

On peut aussi retrouver cette expression en procédant comme dans la partie I et en résolvant l'équation th(x) = y.

PROBLÈME

Une bijection explicite entre $\mathbb N$ et $\mathbb Q$

Un ensemble E est dit dénombrable s'il existe une bijection de N dans E, autrement dit si N et E ont la « même taille ».

1) Justifier que $f: \mathbb{N} \to \mathbb{Z}$ définie par $\begin{cases} f(n) = n/2 & \text{si } n \text{ est pair} \\ f(n) = -(n+1)/2 & \text{si } n \text{ est impair} \end{cases}$ est bien définie et bijective.

Ceci entraine que $\mathbb Z$ est dénombrable. Le but du problème est de montrer que $\mathbb Q$ est dénombrable.

On rappelle que $\mathbb{Q} = \left\{ \frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N}^* \right\}$. Pour avoir l'unicité de l'écriture d'un élément $\frac{p}{q} \in \mathbb{Q}$, on suppose que p et q sont premiers entre eux, c'est à dire qu'ils n'ont aucun facteur commun (autrement dit qu'aucun entier supérieur ou égal à 2 ne divise à la fois p et q). On dit alors que la fraction est sous forme irréductible.

On définit une fonction φ sur \mathbb{N}^* de la manière suivante :

- $\varphi(1) = 1$.
- $\forall k \in \mathbb{N}^*, \ \varphi(2k) = \varphi(k) + 1.$ $\forall k \in \mathbb{N}^*, \ \varphi(2k+1) = \frac{1}{\varphi(2k)}.$

Nous admettons que ceci définit bien une unique application, les valeurs de $\varphi(n)$ pour $n \in \mathbb{N}^*$ se calculant de proche en proche. Ceci se démontre par récurrence, et il y en a déjà suffisamment dans ce devoir!

2) Montrer que $\forall n \in \mathbb{N}^*, \ \varphi(n) \in \mathbb{Q}_+^*$.

Ceci nous permet d'affirmer que φ est bien définie et que $\varphi: \mathbb{N}^* \to \mathbb{Q}_+^*$.

- 3) Premiers résultats.
 - a) Montrer que $\forall k \in \mathbb{N}^*, \, \varphi(2k) > 1 \text{ et } \varphi(2k-1) \leq 1.$
 - b) Pour $n \in \mathbb{N}$, déterminer $\varphi(2^n)$ en fonction de n.
- 4) Injectivité.
 - a) Calculer $\varphi(k)$ pour $k \in [1, 8]$.
 - b) Soit $k \geq 4$ un entier. On suppose que $\varphi(1), \varphi(2), \ldots, \varphi(2k)$ sont distincts deux à deux. Montrer qu'il en est de même de $\varphi(1), \varphi(2), \ldots, \varphi(2k), \varphi(2k+1), \varphi(2k+2)$.
 - c) Montrer (soigneusement!) que φ est injective.
- 5) Surjectivité. Soit $q \geq 3$ un entier. On considère la propriété \mathcal{P}_q suivante :

 \mathcal{P}_q : « Tous les rationnels mis sous forme irréductible appartenant à]0,1[et dont le dénominateur appartient à [1,q] ont un antécédent par φ », que l'on peut aussi écrire :

3

$$\mathcal{P}_q: \text{\langle} \forall b \in [\![2,q]\!], \ \forall a \in [\![1,b-1]\!], \ (a \text{ et } b \text{ premiers entre eux}) \Rightarrow (\exists k \in \mathbb{N}^* \ / \ \varphi(k) = \frac{a}{b}) \text{ } \text{\rangle}.$$

a) Vérifier que \mathcal{P}_3 est vraie.

Soit maintenant un entier $q \geq 3$. On suppose \mathcal{P}_q vraie. Soit alors $a \in [1, q]$ tel que a et q + 1 soient premiers entre eux.

- b) Vérifier que si a=1, alors il existe un entier k tel que $\varphi(k)=\frac{a}{q+1}$.
- c) Peut-on avoir $a = \frac{q+1}{2}$?
- d) On suppose que $a > \frac{q+1}{2}$.
 - i) Vérifier que a et q + 1 a sont premiers entre eux et que 0 < q + 1 a < a.
 - ii) En déduire l'existence d'un entier k tel que $\varphi(k) = \frac{q+1-a}{a}$.
 - iii) Déterminer alors un entier m dépendant de k tel que $\varphi(m) = \frac{a}{q+1}$.
- e) On suppose à présent $2 \le a < \frac{q+1}{2}$. On pose alors $n \in \mathbb{Z}$ l'unique entier tel que $n \le \frac{q+1}{a} < n+1$. On dit que n est la partie entière de $\frac{q+1}{a}$, c'est à dire le plus grand entier inférieur ou égal à $\frac{q+1}{a}$. On justifiera son existence plus tard dans l'année et on notera $n = \left\lfloor \frac{q+1}{a} \right\rfloor$.
 - i) Justifier que $n \in \mathbb{N}^*$ et que 0 < q+1-na < a.
 - ii) En procédant alors d'une manière similaire au c), prouver que $\frac{a}{q+1}$ admet un antécédent par φ .
- f) Montrer (soigneusement!) que φ est surjective.

On a donc montré grâce aux questions 4 et 5 que φ est bijective de \mathbb{N}^* dans \mathbb{Q}_+^* .

- 6) Construire grâce à φ une bijection entre \mathbb{Z} et \mathbb{Q} .
- 7) En déduire que \mathbb{Q} est dénombrable.