

Assignment 3

Be sure to mark each problem # properly and your student ID (last 4 digits) shows up - no names, remember to number your pages. The submitted file should be PDF (preferably typed). Name your file with the last four digits of your student id followed by '-A3'. For example, if the last four digits of your ID are 1234, then the file name should be the following: 1234-A3.pdf

3_1 [30 points]. This assignment extends from Assignment-2. Q-1, which is reproduced below. Your assignment is to extend Part-b and use SVM, and provide a comparison with a discussion (note - need to do it only for 2.1 part-b).

PROGRAM

#import the dataset and make some changes

library(readr)

kc_weather_srt <- read_csv("C:/Users/bvkka/Desktop/ISL-Deep Medhi/kc_weather_srt.csv")</pre>

kc_weather_srt=kc_weather_srt[,2:9]

```
kc_weather_srt
# A tibble: 366 x 8
   Temp.F Dew_Point.F Humidity.percentage Sea_Level_Press.in Visibility.mi Wind.mph Precip.in Events
                 <int>
                                                          <db1>
                                                                         <int>
                                                                                  <int>
                                                                                             <dbl> <chr>
    <int>
                                      <int>
       26
                    12
                                                          30.19
                                                                                              0.03
 1
                                         73
                                                                             5
                                                                                                     Snow
                                                          29.95
 2
                                         68
                                                                             7
                                                                                              0.01
       31
                    18
                                                                                     11
                                                                                                     Snow
 3
       10
                     1
                                         63
                                                          30.24
                                                                             5
                                                                                                     Snow
                                                                                      14
                                                                                              0.02
 4
       38
                    35
                                         90
                                                          29.70
                                                                             6
                                                                                              0.00
                                                                                                     Rain
                                                                                      5
 5
       40
                                         75
                                                          29.80
                                                                                      7
                                                                                                     Rain
                    30
                                                                             9
                                                                                              0.00
 6
       49
                                                                                                     Rain
                    29
                                         51
                                                          29.64
                                                                            10
                                                                                      10
                                                                                              0.00
 7
                                                                                                     Rain
       36
                    19
                                         45
                                                          30.02
                                                                                              0.00
                                                                            10
 8
       29
                    11
                                         48
                                                          30.14
                                                                                              0.00
                                                                                                     Rain
                                                                            10
                                                                                      8
 9
       26
                     2
                                         38
                                                          30.13
                                                                                     13
                                                                                              0.00
                                                                            10
                                                                                                     Snow
10
       13
                    -3
                                         46
                                                          30.37
                                                                            10
                                                                                     12
                                                                                              0.00
                                                                                                     Snow
      with 356 more rows
```

#first make the response column to 0-snow, 1-rain and 2-rain_thunderstorm
#install.packages("plyr")

```
library(plyr)
kc weather srt$Events <- revalue(kc weather srt$Events,c("Snow"=1))</pre>
kc_weather_srt$Events <- revalue(kc_weather srt$Events,c("Rain"=0))</pre>
kc weather srt$Events <- revalue(kc weather srt$Events,c("Rain Thunderstorm"=2))</pre>
#small changes to Events column , making it to numeric from character
kc weather srt$Events<-as.numeric(as.character(kc weather srt$Events))</pre>
[196] 0 0 2 0 2 2 2 0 2 2 2 2 0 0 0 2 2 0 2 0 2 0 2 0 2 0 0 0 0 2 2 2 2 2 2 0 2 2 2 2 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0
[326] 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 0 2 2 2 0 0 2 0 2 2 0 0 0 0 2 0 0 1 1 0
#replications
rep=100
# newly added
accuracy1=dim(rep)
precision snow1=dim(rep)
precision rain1=dim(rep)
precision rainThunderstorm1=dim(rep)
recall snow1=dim(rep)
recall rain1=dim(rep)
```

```
recall rainThunderstorm1=dim(rep)
#splitting the dataset into training and test sets, also install caTools packages
#install.packages('caTools')
library(caTools)
set.seed(123)
for(k in 1:rep)
  split=sample.split(kc weather srt$Events,SplitRatio = 0.7923)
  training set=subset(kc weather srt,split==TRUE)
  test set=subset(kc weather srt,split==FALSE)
 Data

   kc_weather_srt

                           366 obs. of 8 variables
 test_set
                           76 obs. of 8 variables
 training set
                           290 obs. of 8 variables
#*****#
  #fitting SVM to the training set
  #install.packages('e1071')
  library(e1071)
  classifier=svm(Events~.,data=training set,type='C-
classification', kernel="radial", cost=1, gamma=0.04545455, coef.0=0, epsilon=0.1)
```

```
classifier
Call:
svm(formula = Events ~ ., data = training_set, type = "C-classification", kernel = "radial", cost = 1, gamma = 0.04545455,
   coef.0 = 0, epsilon = 0.1)
Parameters:
  SVM-Type: C-classification
SVM-Kernel: radial
     cost: 1
    gamma: 0.04545455
Number of Support Vectors: 195
  y pred1=predict(classifier,newdata = test set[-8])
  #making the confusion matrix
  cm1=table(test set$Events,y pred1)
   cm1
    y_pred1
   0 24 0 13
   1 1 9 0
       7 0 22
  #calculating the accuracy
  accuracy1[k]=mean(y_pred1==test_set$Events)
  #Precision of rain, rain thunderstorm and snow results
  precision1=precision1<-diag(cm1)/colSums(cm1)</pre>
```

```
precision rainThunderstorm1[k]=precision1[3]
  precision snow1[k]=precision1[2]
 precision rain1[k]=precision1[1]
  #Recall of rain, rain_thunderstorm and snow results
  recall1=recall1<-diag(cm1/rowSums(cm1))</pre>
  recall rainThunderstorm1[k]=recall1[3]
  recall snow1[k]=recall1[2]
  recall_rain1[k]=recall1[1]
#Calculating the end results using mean
  mean(accuracy1)
  mean(precision rain1)
  mean(precision rainThunderstorm1)
  mean(precision snow1)
  mean(recall rain1)
  mean(recall rainThunderstorm1)
  mean(recall snow1)
```

SVM Radial Kernel Results

```
> mean(accuracy1)
[1] 0.7736842
> mean(precision_rain1)
[1] 0.7938852
> mean(precision_rainThunderstorm1)
[1] 0.7231856
> mean(precision_snow1)
[1] 0.8981612
> mean(recall_rain1)
[1] 0.7278378
> mean(recall_rainThunderstorm1)
[1] 0.7931034
> mean(recall_snow1)
[1] 0.7931034
> mean(recall_snow1)
[1] 0.887
> |
```

RESULTS:

I also changed the tuning parameters under SVM tuning to see the best results. I have used Kernels like linear, radial and sigmoid with different cost and gamma parameters. We see some differences.

SVM Linear Results

```
69/3684
 [64] 0.7631579 0.7631579 0.8157895 0.7631579 0.7763158 0.7763158 0
 6973684
 [71] 0.7763158 0.8026316 0.7631579 0.7631579 0.7631579 0.7500000 0
.8157895
 [78] 0.7631579 0.7763158 0.7631579 0.8421053 0.8684211 0.7500000 0
 7763158
 [85] 0.7631579 0.7763158 0.6973684 0.7763158 0.7763158 0.6710526 0
 .7894737
 [92] 0.7894737 0.7763158 0.7236842 0.7368421 0.7763158 0.8157895 0
.7763158
 [99] 0.7368421 0.7368421
> mean(accuracy1)
[1] 0.7638158
> mean(precision_rain1)
[1] 0.7856708
> mean(precision_rainThunderstorm1)
[1] 0.7071105
> mean(precision_snow1)
[1] 0.9012634
> mean(recall_rain1)
[1] 0.7132432
> mean(recall_rainThunderstorm1)
[1] 0.7817241
> mean(recall_snow1)
[1] 0.899
```

SVM RADIAL WITH GAMMA =0 AND COST =1 RESULTS

```
precision_snow1[k]=precision1[2]
precision_rain1[k]=precision1[1]
    recall1=recall1<-diag(cm1/rowSums(cm1))</pre>
    recall_rainThunderstorm1[k]=recall1[3]
    recall_snow1[k]=recall1[2]
recall_rain1[k]=recall1[1]
 > mean(accuracy1)
[1] 0.7765789
> mean(precision_rain1)
[1] 0.7504617
> mean(precision_rainThunderstorm1)
[1] 0.7881519
> mean(precision_snow1)
[1] 0.8908958
> mean(recall_rain1)
[1] 0.8143243
> mean(recall_rainThunderstorm1)
[1] 0.7182759
> mean(recall_snow1)
[1] 0.806
```

Model	Tuning Parameters	Accurac y	Precisio n Snow	Precisio n Rain	Precision Rain Thundersto rm	Reca II Sno w	Recall Rain	Recall ThunderSto rm
SVM	<pre>kernel="radial",cost=1, gamma=0.04545455,coef.0=0,epsi lon=0.1</pre>	0.77368 42	0.89816 12	0.79388 52	0.7231856	0.887	0.72783 78	0.7931034
SVM	kernel="linear"	0.76381 58	0.90126 34	0.78567 08	0.7071105	0.899	0.71324 32	0.7817241
SVM	kernel="radial",cost=1,gamma=0	0.77657 89	0.89089 58	0.75046 17	0.7881519	0.806	0.81432 43	0.7182759
SVM	kernel="sigmoid",cost=1, gamma=0.04545455,coef.0=0,epsi lon=0.1	0.75157 89	0.88259 27	0.78293 67	0.6924296	0.868	0.68	0.8027586

Comparing to the other models using in Assignment 2

Model	Accuracy	Precision Snow	Precision Rain	Precision Rain Thunderstorm	Recall Snow	Recall Rain	Recall ThunderStorm
LDA	0.9026316	0.6407459	0.9115871	0.9906168	0.911675	0.902705	0.9906152

0.7950919	0.7514844	0.7115056
0.9098042	0.7444542	0.701065

Discussion Note:

- 1. From Accuracy Results, we see that SVM model performs better than QDA and KNN, but LDA outperforms SVM too.
- 2. From Precision of Snow Results, SVM does better than LDA and KNN
- 3. From Precision of Rain Results, SVM does better than QDA and KNN, but less than LDA
- 4. From Precision of thunderstorm Results, SVM does better than QDA and KNN, but less than LDA.
- 5. From Recall of Snow Results, SVM does better than QDA and KNN
- 6. From Recall of Rain Results, SVM does better than QDA and KNN, but less than LDA
- 7. From Recall of thunderstorm Results, SVM does better than QDA and KNN, but less than LDA.
- 8. So, overall if we compare performance with respect to classifiers, LDA>SVM>KNN>QDA.

