Middle Eastern Video on Demand

Kaiwen Wu kw1820

Background

Mevod

Dubai based video on demand company trying to expand and become dominant regional player

Subscription business - customers pay a monthly fee for access to the service.

Moving into the **OTT** space (a new delivery method for video and audio over the Internet,)

Since this is a new business, marketing team is piloting several pricing schemes

- No trial fee / Discounted trial fee
- 14 day trial period / 7 day trial period

What we are going to do

<u>AB testing</u> to understand what marketing strategies have been most effective to date

<u>Customer segmentation</u> to help the marketing team design acquisition strategies supporting the Executive team's growth objective

Build a churn model and develop recommendation(s) on an alternative product pricing structure as well as a distribution of expected CLV, representing the uncertainty of future payments given the current customer base.

Data Overview

CSR

2208643 rows 1031 representatives 136930 customers

Subscribers

227628 rows 227459 customers

Engagement

2585724 rows 135019 customers

Data & Findings

Age - Most of customers are **female** in the age range of **35-60**, with an average of **45**, and we had almost **89%** of female customers.

Most customers (more than 99%) chose <u>base_usa_14_day_trial</u> plan with a <u>monthly price</u> of <u>4.7343</u> and a <u>discounted price</u> of <u>4.5141</u>

Most customers had a <u>14 days trial</u> and <u>4.065%</u> chose to refund after the trial, <u>7/3</u> of them uses ios system

Most customers has a relatively **low stickiness**, most of them does not rate videos or send messages to customer rep

Most customers watched **4-5** videos on average

Data & Findings

Now, let's take a closer look at the three channel

		Renew	<u>Cancel</u>	<u>Cust</u>	<u>Rep</u>	
55280 (4.56%) missing	←	396657	758007	1209872	1031	OTT
		0	0	17235	953	google
Requires manual chec		0	34	142253	1007	<u>itunes</u>

Proposed analyses

Data preprocessing

Get rid of outliers and do some manual checking (including outliers of the ages, account cancel before created, [creation until cancel day] does not match trial period etc) and deal with imbalanceness.

AB Testing

Conduct AB testing twice, once regarding the length of the trial period and the other regarding trial fee.

HO: 14 Days Trial is better than 7 days

H1: 7 Days Trial is better than 14 days

HO: Free Trial is better than discounted trial fee

H1: Discounted trial fee is better than free trial

Segmentation

Conducting clustering and get customer segmentation, then prepare a customer profile to help the marketing team design acquisition strategies.

Proposed analyses Churn

Mainly use <u>logistic regression</u> and tree based models like <u>decision tree and</u> <u>GBDT.</u>

logistic regression

Outputs have a nice probabilistic interpretation, and the algorithm can be regularized to avoid overfitting.

It can be updated easily with new data using stochastic gradient descent. Logistic regression tends to underperform when there are multiple or non-linear decision boundaries. They are not flexible enough to naturally capture more complex relationships.

Tree based

We can get feature importance, use it as a reference and visualize the branches and results.

Fairly robust to overfitting, doesn't require careful normalization or scaling of features.

Conduct AB testing twice, once regarding the length of the trial period and the other regarding trial fee.

H0: 14 Days Trial is better than 7 days **H1**: 7 Days Trial is better than 14 days

H0: Free Trial is better than discounted trial fee **H1**: Discounted trial fee is better than free trial

What does a converted customer looks like?

H0: 14 days = 7 days (14 days is better than 7) H1: 7 days > 14 days (7 days is better than 14)

	Converted	Total	Conversion Rate
14 Days	523596	1281127	0.408699
7 Days	35314	64043	0.55141

```
z = diff /np.sqrt(((p_B * (1-p_B)/64043)+(p_A * (1-p_A)/1281127)))
z
70.90511117706859
```

According to the Z table, Z 0.05 = 1.644854, 70.905 > 1.644854, so we reject the null hypothesis

We would recommend **7 days trial** for better conversion rate

H0: high = low (high is better than low) H1: low > high(low is better than high)

	Converted	Total	Conversion Rate
High	97	325	0.29846
Low	82558	227096	0.36353

$$z = diff1 /np.sqrt(((p_B1 * (1-p_B1)/227096)+(p_A1 * (1-p_A1)/325)))$$

z

2.561838752550662

According to the Z table, Z 0.05 = 1.644854, 2,56183 > 1.644854, so we reject the null hypothesis

We would recommend **lower trial fee** for better conversion rate

When conducting the optimal sample size, we found that the ab testing for trial length is larger than the optimal sample size, while the ab testing for trial fee is smaller than the optimal sample size

```
opt_sample_size(p_A, p_B - p_A, 0.8, 0.05)
192.38433493505244

opt_sample_size(p_A1, p_B1 - p_A1, 0.8, 0.05)
6781.632720282813
```

Used k-means to conduct clustering

First check correlation between features to see what feature to use

e.g.

```
num weekly services utilized
num_weekly_services_utilized
weekly_consumption_hour
                                                                      1.000000
                                                                       0.407255
num ideal streaming services
                                                                                       Dropped
                                                                      0.844068
                                                                       0.004579
age
months per bill period
                                                                            NaN
monthly price
                                                                       0.002487
discount price
                                                                       0.002170
age group Elderly(50-70)
                                                                      0.009531
age_group_Mid-aged(35-50)
                                                                       0.025959
age group Others
                                                                     -0.021079
age group Teenagers (<18)
                                                                     -0.003127
age group Youth(18-35)
                                                                     -0.030795
package type base
                                                                       0.015292
package type economy
                                                                       0.038315
package type enhanced
                                                                     -0.032840
preferred genre comedy
                                                                     -0.125202
preferred genre drama
                                                                       0.112720
```

Used k-means to conduct clustering, and printed out the cluster centers to see characteristics of each group

Features used :

- 'Num_weekly_services_utilized',
- 'Weekly_consumption_hour',
- 'age_group',
- 'months_per_bill_period',
- 'monthly_price',
- 'discount_price',
- 'package_type',
- 'Preferred_genre',
- 'Intended_use',
- 'plan_type'

	0	1	2
num_weekly_services_utilized	2.847	3.327	3.027
weekly_consumption_hour	23.659	36.057	29.171
months_per_bill_period	4.000	4.000	4.000
monthly_price	4.727	4.735	4.735
discount_price	4.508	4.515	4.515
age_group_Elderly(50-70)	0.378	0.348	0.368
age_group_Mid-aged(35-50)	0.322	0.366	0.352
age_group_Others	0.068	0.044	0.047
age_group_Teenagers(<18)	0.000	0.000	0.000
age_group_Youth(18-35)	0.231	0.241	0.234
package_type_base	0.457	0.440	0.456
package_type_economy	0.081	0.094	0.082
package_type_enhanced	0.263	0.311	0.281
preferred_genre_comedy	0.516	0.469	0.515
preferred_genre_drama	0.199	0.252	0.201
preferred_genre_international	0.027	0.040	0.033
preferred_genre_other	0.018	0.023	0.021
preferred_genre_regional	0.037	0.057	0.046
intended_use_access to exclusive content	0.353	0.387	0.367
intended_use_education	0.028	0.022	0.027
intended_use_expand international access	0.067	0.064	0.069
intended_use_expand regional access	0.074	0.062	0.076
intended_use_other	0.041	0.026	0.035

Using elbow method and append the SSE, we found that <u>3</u> clusters is the best. Then we print out the cluster center for each cluster to gather insights for recommendations

Then we print out the cluster centers to see characteristics of each group, the most distinguished feature is weekly consumption hour.

Group1:

23.6588219239869

Group2:

36.0574977111519

Group3:

29.171247787106

Then we looked in to the age distribution of each group and found that mid-aged could be our major target group.

Group1:

Proportion of elderly group is higher than mid-aged and all the other group

Group2:

Proportion of mid-aged is higher than elderly and all the other group

Group3:

Almost the same but the proportion of elderly group is slightly higher

Comedy and drama continues to be the most popular genres as we have found in the EDA. Generally, comedy is higher than drama in all groups.

Group2:

Consume more drama and regional than the other groups

Group1 & Group3:

Behaves similarly and consumes comedy followed by drama.

Exclusive content and replace OTT continues to be the most reasons for using our service and as we have found in the FDA.

Group2:

Consumers came for the replacement of OTT more than all the other groups

Group1 & Group3:

Behaves similarly and the most important for using the service is exclusive content followed by replace OTT.

Base_UAE_14_Days continues to be the most popular plan type as we have found in the EDA.

As for the rest of the plan types, High_UAE_14_Days is the second popular plan type and it's negatively correlated to the consumption of the Base_UAE_14_Days. group 1 is distinguished by using Low_UAE_no_trial

Our customer profile looks like.

Recommendations includes:

- Create packages consists exclusively drama and comedy
- Create packages for 30-hours-consumption
- Extend partnerships with exclusive content providers.
- Build exclusive marketing channel for IOS system.
- Create female and male exclusive package (most customers are female but male generates more revenue)

Data used:

Revenue_net_1month Payment_period Months_per_bill_period Creation_until_cancel_days Revenue_net monthly_price Discount_price op_sys_iOS Package_type_economy Package_type_enhanced Gender Cancel Paid Refund

Compersian between models

Logistic regression

```
accuracy_score(y_cest,y_preu)
```

- **|:** 0.8760705911390843
- from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
False True	0.93 0.72	0.90 0.80	0.92 0.76	30648 9867
accuracy macro avg weighted avg	0.83 0.88	0.85 0.88	0.88 0.84 0.88	40515 40515 40515

Compersian between models

Decision Tree

```
clf = DecisionTreeClassifier(max_depth = gsearch.best_pa
clf.fit(X_train,y_train)
y_pred = clf.predict(X_test)
accuracy_score(y_test,y_pred)
```

0.8767123287671232

print(classification report(y test, y pred))

	precision	recall	f1-score	support	
False True	0.98 0.68	0.85 0.95	0.91 0.79	30648 9867	
accuracy macro avg weighted avg	0.83 0.91	0.90 0.88	0.88 0.85 0.88	40515 40515 40515	

Compersian between models

Random Forest

accuracy_score(y_test,y_pred)

: 0.8783907194866099

: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
False True	0.97 0.69	0.86 0.92	0.91 0.79	30648 9867
accuracy macro avg weighted avg	0.83 0.90	0.89 0.88	0.88 0.85 0.88	40515 40515 40515

Compersian between models

GBDT

0.8936

<pre>print(classification_report(y_test, y_pred))</pre>					
	precision	recall	f1-score	support	
False True	0.95 0.75	0.91 0.84	0.93 0.79	30648 9867	
accuracy macro avg weighted avg	0.85 0.90	0.88 0.89	0.89 0.86 0.90	40515 40515 40515	

Decided on GBDT because of the higher model accuracy and we can get feature importance, use it as a reference and visualize the branches and results. Fairly robust to overfitting, doesn't require careful normalization or scaling of features.

Revenue_net_1month	0.748	
Payment_period	0.057	
Months_per_bill_period	0.023	D. 1.1
Creation_until_cancel_days	0	Price related
Revenue_net	0.083	features played an
Monthly_price	0.066	important role in
Discount_price	0	terms of making
op_sys_iOS	0.001,	predictions
Package_type_economy	0.001,	
Package_type_enhanced	0.009,	
Gender	0.012,	
Cancel	Ο	
Paid	0	
Refund	0	

Lowering the price can be effective when trying prevent customer churn given the current results based on modeling.

Then we generate the churn probability of the selected model to prepare for the calculation of CLV.

pd.DataFrame(churn_prob_gbdt).desc

As we can see from the predictions generated from GBDT model, the customer has a relatively low churn probability.

CLV analysis

Group the customer by entrance to sign-up form captured by product and also the month they signed to get the cost of different channels.

Then use 'monthly_price'* ((1+r)/(1+r-(1-'probofchurn'))) - ('monthly_price') to calculate future price and use net revenue+ future revenue - cac to calculate clv. Distribution is as follows, the clv has a mean of 85.50084918636045 and a median of 128.64801477068605

Given the low churn probability and a relatively high CLV, we can conclude that the uncertainty of future payments given the current customer base is low.

Conclusion

- AB Testing and model provides merely predictions, actual decision should be made based on the reality of the business and future developments.
- This result can give us a guidance on resource allocation in our business campaign, we can target customers with less uncertainty and avoid missed opportunities.

THANKS!

Any questions?