## Replicação de dados

- 1. Tipos de replicação de dados
- 2. Tecnologias e protocolos mais utilizados
- 3. RAID
- 4. Noção de SAN
- 5. SCSI
- 6. iSCSI
- 7. Fiber-Channel

# Enquadramento



Adapted by Marcus E, Stern H., "Blueprints for high availability"; 2003; Wiley; ISBN: 0471430269;



### **Enquadramento**



### Enquadramento



- A replicação trata os conjuntos de discos separadamente
- Os discos de cada site podem ter uma configuração em RAID
- Replicação assegura a existência de duas cópias consistentes
- Numa estratégia de DR, cópias estão fisicamente distantes.

### Motivação

- Operações de disaster recovery. Recuperação dos dados do negócio após falha do site principal
- Dados no site de backup podem ser usados para outras tarefas, sem comprometer site principal (p.e. reports, datamining, ...)
- Nalgumas situações, site de backup pode ser usado para estratégias de *failover*.

## Tipos de replicação

### Latency-based

- Síncrona
- Assíncrona
- Periódica

#### **Initiator-based**

- Hardware
- Software
- Filesystem
- Aplicação (p.e. DB)
- Transações

### Tipos de replicação — latency-based - síncrona

- Cópia simultânea entre os nós master e slave
- Latência entre a cópia dos dados pela rede e a respetiva confirmação
- Distância pode variar de acordo com a tecnologia usada
- Garante sincronismo entre as cópias dos site principal e do de DR
- Consistência garantida pela atomicidade das operações.
- Exemplo: BD distribuídas, via cloud (Google, Amazon, ...)

Solução que garante o mínimo de perda em caso de desastre

### Tipos de replicação — latency-based - assíncrona

- Dados são guardados localmente no servidor master
- Cópia para o destino é feito de acordo com condições definidas: largura de banda, carga do servidor, etc...
- Diminuição da periodicidade de cópia melhora atualização do slave

Perda de dados como compromisso do tempo de latência



## Tipos de replicação – latency-based - periódica

- Backup do master é realizado periodicamente e enviado pela rede para o slave.
- O modo de envio dos dados pela rede é manual.
- A periodicidade de realização do backup é definida manualmente

Perda de dados como compromisso da periodicidade da cópia



### Tipos de replicação – exemplo da Google

#### **Americas**

Berkeley County, South Carolina Council Bluffs, Iowa Douglas County, Georgia Quilicura, Chile Jackson County, Alabama Mayes County, Oklahoma Lenoir, North Carolina

#### Asia

Changhua County, Taiwan Singapore

The Dalles, Oregon

#### Europe

Hamina, Finland St Ghislain, Belgium Dublin, Ireland Eemshaven, Netherlands



http://www.google.com/about/datacenters/inside/locations/ http://www.datacentermap.com



### Tipos de replicação – failover remoto

- Deteção automática da falha no site principal
- Promoção automática do site de backup a principal
- Disponibilizar automaticamente os recursos principais
- Arrancar com as aplicações críticas no site de DR
- Clusters remotos de HA com monitorização dedicada
- Aplicam-se os conceitos tradicionais de clusters de HA



## Noção de SAN





### Noção de SAN

- Acesso partilhado ás unidades de storage (discos, tapes, ...)
- Acesso ao storage numa perspetiva <u>block-based</u>
- Acesso transparente para os utilizadores
- Facilita a gestão de storage e é fator chave na replicação de dados e em disaster recovery
- Protocolos mais utilizados: FiberChannel (FC) e SCSI.
- Implementação "over IP" (iFCP e iSCSI) permite topologias de área alargada.

# Noção de NAS



http://programming4us.eu



### Noção de NAS

- Centralização do storage num servidor dedicado, com RAID e outras funções de redundância disponibilidade.
- Acesso pela rede local, essencialmente sobre a rede TCP/IP
- Acesso ao storage numa perspetiva *file-based*.
- Acesso transparente para os utilizadores por protocolos NFS e CIFS
- Servidores dedicados para NAS: FreeNAS, NAS4Free, ...

#### Sistema RAID

- Redundant Array of Independent/Inexpensive Drives
- Os dados são replicados por vários discos
- RAID
  - Hardware: transparente ao sistema operativo
  - Software: implementado ao nível do sistema operativo
- Conceitos chaves
  - Replicação (mirroring)
  - Particionamento dos dados por vários discos (stripping)



#### Níveis de RAID

### RAID 0 (striping)

- Cada ficheiro é particionado
- Respectivos blocos (e.g. 1,A2,A3,...) guardados em cada um dos discos
- Aumenta o desempenho A leitura de um ficheiro pode ocorrer em paralelo (A1 e A2 podem ser lidos ao mesmo tempo, dado que estão em discos diferentes)
- Não oferece redundância adicional Se <u>um</u> disco falhar, os dados ficam perdidos...



#### Níveis de RAID

### • RAID 1 (mirroring)

- O disco 1 é uma réplica do disco 0
- Não há melhoria do desempenho
- Há melhoria da tolerância a falhas











#### Níveis de RAID

#### • **RAID** 5

- Mínimo 3 discos
- Paridade distribuída



- Para cada bloco de dados existe um bloco de paridade
   \*\*noutro\*\* disco
- Tolera a falha de <u>um</u> disco Se um disco avariar, o sistema mantém-se operacional. O disco em falta pode ser recuperado através da paridade
- É contudo necessário recuperar o sistema (sistema está vulnerável à falha de um segundo disco)



#### Ainda sobre o RAID

Um sistema RAID só protege de falha(s) de hardware:

→Não protege de acidentes provocados por humanos/software, ...

Portanto há sempre necessidade de complementar RAID com sistemas de salvaguarda da informação

- → O RAID aumenta a disponibilidade e induz alguma tolerância a falhas ...
- → ...mas NÃO substitui os backups!



### Evolução do storage distribuído/partilhado



https://sandipbagwe.wordpress.com



### Evolução do storage distribuído/partilhado





### Evolução do storage distribuído/partilhado





### Hardware



Synology DS1813+ 8-Bay Scalable NAS



FC cable – optical fiber



Fiber Channel switch

### Soluções híbridas - SAN / NAS



http://www.cityu.edu.hk



- Small Computer System Interface
- Inicialmente desenvolvido pela Shugart Associates SASI (Shugart Associates System Interface)
- Atualmente denominado SCSI e com um ANSI standard (T10)
- 3 versões: SCSI-1, SCSI-2 e SCSI-3
- Dispositivos comunicam através de um <u>bus</u>.
- Acesso dos hosts aos dispositivos: block based
- Principais limitações: comprimento (25 m); número de dispositivos suportados;



Configuração simples: um *initiator* → um *target* LUN0 Initiator ID ID Target (PC) (disco) LUN1 SCSI Bus CONNECT DICONNECT RECONECT **EXECUTE** REQUEST LUN2 Logical **Units** SCSI ADDRESS (Port) ID = (0-F)



Configuração: um *initiator* → vários *target* 





Configuração: vários *initiators* → vários *target* 





#### **Arquitetura**



Comandos de I/O entre os dispositivos

Regras de comunicação entre os dispositivos

Detalhes da interface, adaptadores, etc..

### Tecnologia SCSI - endereçamento



#### **Host Addressing:**

Storage Volume 1 - c0t0d0 Storage Volume 2 - c0t0d1 Storage Volume 3 - c0t0d2





## Tecnologia SCSI - standard





• internet Small Computer System Interface

### Motivação:

- enviar comandos SCSI por rede TCP/IP (p.e. Internet).
- acesso/partilha de storage através de longas distâncias
- Estabelece ligações "initiator \( \rightarrow \) target "numa sessão TCP
- Topologia em estrela
- Normas IETF: RFCs 3720, 3721



#### Acesso remoto por iSCSI



Acesso a uma LUN remota (target) a partir de um dispositivo iSCSI (initiator).

- Connection Ligação TCP usada para enviar mensagens de controlo, comandos SCSI, parâmetros e iSCSI PDUs. Poderá haver várias "connections" entre o *target* e o *initiator*, todas na mesma "session".
- **Session** Define um grupo de "connections" TCP a partir de um *initiator*. As "connections" podem ser adicionadas e removidas dinamicamente. O *initiator* consegue aceder a todas as "connections" numa sessão e o respetivo *target*.

1 session → n connections



### Fases das sessões/ligações iSCSI:

- LOGIN PHASE
  - Estabelece ligação TCP
  - Autenticação de ambos os pontos da ligação
  - Negociação de parâmetros operacionais
  - Associação "connection → session"

#### FULL-FEATURE PHASE

Transferência de dados

### Tipos de sessões

- Normal
- Discovery



### Tecnologia iSCSI

### Sessão discovery

iSCSI *initiator* inicia procura de possíveis iSCSI *targets* a que se possa ligar.

**Login Phase:** Autenticação do *initiator* no *target* selecionado.

Full-Feature Phase: Troca de mensagens entre *initiator* e *target*.





### Tecnologia iSCSI

#### Sessão normal

*Initiator* e *target* negoceiam parâmetros de comunicação (p.e. tamanho das mensagens individuais e número de sessões simultâneas.





# Tecnologia iSCSI – convenção de nomes



Dois formatos principais: iqn e eui

iqn (iSCSI qualified Name): definir para cada dispositivo um nome único com detalhes sobre o dispositivo.

Type Date Org.Unit Location

iqn.2001-04.com.example:diskarrays-sn-a8675309

Reverse DNS Opcional

# Tecnologia iSCSI – convenção de nomes



eui: utilizar a convenção IEEE EUI (Extended Unique Identifier) para a definição de IDs (hexadecimal)

Type EUI-64 identifier

eui.02004567A425678D

**iSCSI alias:** utilizar um nome apelativo para o dispositivo. Esta designação será utilizada durante a fase de login, entre o *initiator* e o *target*.

### Tecnologia iSCSI – identificação dos pontos



iSCSI Technical White Paper; White paper; Nishan Systems

#### **Normalmente:**

TCP Port = 860 e 3260

#### Identificação completa

- hostname ou endereço IP
- TCP Port
- iSCSI ID
- CHAP password (opcional)



# Tecnologia iSCSI



http://nextgencomputing.tumblr.com



# Tecnologia iSCSI - implementações

Sistemas operativos disponibilizam software para target e/ou initiator.

### **Targets**

Host Bus Adapter (HBA) instalados em discos (ou tapes).



#### Implementação para Linux:

- http://linux-iscsi.sourceforge.net
- http://www.open-iscsi.org



- Tecnologia de redes para acesso massivo a storage
- Substituto natural do SCSI: mais rápido e maiores distâncias
- Utiliza o Fiber-Channel Protocol (FCP), norma ANSI-T11
- Um dos interfaces mais usados para SAN (juntamente com iSCSI)
- Originalmente para fibra (~ 10Kms). Mais recentemente, cobre.
- Utiliza FC Protocol (FCP) na camada de transporte
- Interage com outros protocolos: p.e. IP e SCSI
- Noções similares ao SCSI: initiator, target e HBA.



Topologias disponíveis:





Topologias do tipo switch fabric:



N Port: porta de ligação de um nó FC ao switch

**F\_Port:** porta do switch para ligar a um nó FC

L\_Port: porta usada para ligação de um nó a um FC loop

NL\_Port: porta de um nó para ligação simultânea a um loop FC e a um switch



### Integração FC - iSCSI



www.siemon.com/



### Outras tecnologias

- ATA-over-Ethernet (AoE)
- InfiniBand (IB)
- Fibre Channel over Ethernet (FCoE)
- Fibre Channel over IP (FCIP)
- HyperSCSI SCSI over Ethernet
- iSCSI Extensions for RDMA (iSER)
- Internet Fibre Channel Protocol (iFCP)
- Serial Storage Architecture (SSA IBM)



### Conclusões

- Necessidades de replicação de dados é cada vez maior
- Um exemplo claro de clusters de HA associada à necessidade de balanceamento de carga
- Storage distribuído e virtualizado tomou maior interesse com a cloud
- A seguir de perto: cloud providers (Google et al.) e Apache (Apache Ecosystem)

### Bibliografia

- Marcus E, Stern H., "Blueprints for high availability"; 2003; Wiley; ISBN: 0471430269
- Luiz André Barroso, Jimmy Clidaras, Urs Holzle; "*The datacenter as a computer*"; Morgan and Claypool Editors; ISBN: 978-1627050098; 2013 [pdf]