Data Mining

군집화 과제

2021년 5월 6일

1. 데이터셋

붓꽃 데이터셋 (Iris dataset)

세가지 붓꽃 종에 대한 데이터셋

Iris setosa

Iris versicolor

Iris virginica

속성	설명	타입	
sepal length (cm)	꽃받침 길이	continuous	
sepal width (cm)	꽃받침 폭	continuous	
petal length (cm)	꽃잎 길이	continuous	
petal width (cm)	꽃잎 폭	continuous	
target	붓꽃 종류 • Iris Setosa • Iris Versicolour • Iris Virginica	multi-valued discrete	

- 150개 (각 종별로 50개씩)1936년 영국 통계학자이자 생물학자인 도널드 피셔 (Ronald) Fisher)의 논문에서 사용됨

붓꽃데이터셋 (Iris dataset)

데이터 파일:

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa

엑셀과 같은 형태로 포맷팅

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa

데이터 탐색

꽃받침의 길이와 너비로 'versicolor'와 'virginica' 종이 구분되지 않음

이 두 종은 꽃받침이 비슷하다.

데이터셋 다운로드

데이터 다운로드

```
import requests
import os

data = requests.get("https://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")
path = os.path.join('data', 'iris.data')
with open(path, "w") as f:
   f.write(data.text)
```

• URL에서 데이터를 다운로드해서 "iris.dat" 파일에 저장

데이터셋 읽기

데이터 읽기

```
import pandas as pd

column_names = ['sepal length', 'sepal width', 'petal length', 'petal width',

'species']

dataset = pd.read_csv(path, names=column_names)

dataset.sample(5)
```

• Csv 파일에 column 이름이 없으므로 이름을 지정해서 읽어 옴

	sepal length	sepal width	petal length	petal width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

데이터셋 읽기

데이터 정보

dataset/info()

memory usage: 6.0+ KB

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Column Non-Null Count Dtype sepal length 150 non-null float64 sepal width 150 non-null float64 petal length 150 non-null float64 petal width 150 non-null float64 150 non-null 4 species object dtypes: float64(4), object(1)

THE US

2. 데이터 탐색

요약통계량

dataset.describe()

	sepal length	sepal width	petal length	petal width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

© 2021 SeongJin Yoon. All Rights Reserved.

히스토그램(단일 변수 분석)

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=[20,4])
for i, column in enumerate(dataset.describe().columns):
    plt.subplot(1,4,i+1)
    sns.histplot(data=dataset, x=column, kde=True)
plt.show()
```


두 변수 관계 분석

sns.pairplot(dataset)
plt.show()

히트맵

```
fig, ax = plt.subplots(figsize=(4, 4))
sns.heatmap(dataset.corr(), linewidths=.5, annot=True, fmt=".2f", cmap='Blues')
plt.title('Iris Data Correlations')
plt.show()
```


3. 데이터 전처리

데이터 추출

of the york

columns = ['sepal length', 'sepal width', 'petal length', 'petal width'] column2index = {'sepal length': 0, 'sepal width': 1, 'petal length': 2, 'petal width': 3}

데이터 표준화

```
from scratch.working_with_data import scale, rescale, Vector
from typing import List
inputs_normed = rescale(inputs)
```

4. K-평균 군집화

17

군집 개수 K 선택 (Q1)

손실 그래프를 그려서 군집 개수 K를 찾아보시오. 단, K는 20까지 확인해 볼 것

그래프 그리기

```
import random
optimal_k = errors.index(min(errors)) + 1

fig, ax = plt.subplots(figsize=(10, 5))
plt.plot(ks, errors)
plt.xticks(ks)
plt.xticks(ks)
plt.xlabel(f"k (Optiaml k = {optimal_k})")
plt.ylabel("total squared error")
plt.title("Total Error vs. # of Clusters")
plt.show()
```


K = 3 군집화 (Q2)

19

K = 3으로 군집화를 해서 다음과 같이 군집화 결과를 확인해 보라.

Dataset에 k_means 군집화 결과 추가

dataset["k_means"] = assignments
dataset.head()

	sepal length	sepal width	petal length	petal width	species	k_means
0	5.1	3.5	1.4	0.2	Iris-setosa	1
1	4.9	3.0	1.4	0.2	Iris-setosa	1
2	4.7	3.2	1.3	0.2	Iris-setosa	1
3	4.6	3.1	1.5	0.2	Iris-setosa	1
4	5.0	3.6	1.4	0.2	Iris-setosa	1

K = 3 군집화

Cluster 0에 데이터 확인

dataset[dataset['k_means']==0].head()

	sepal length	sepal width	petal length	petal width	species	/ k_mear	1S
50	7.0	3.2	4.7	1.4	Iris-versicolor		0
51	6.4	3.2	4.5	1.5	Iris-versicolor		0
52	6.9	3.1	4.9	1.5	Iris-versicolor		0
56	6.3	3.3	4.7	1.6	Iris-versicolor		0
65	6.7	3.1	4.4	1.4	Iris-versicolor		0

© 2021 SeongJin Yoon. All Rights Reserved.

K = 3 군집화

K_means 결과와 species 비교

classify. assignment 新县里宝

dataset.groupby(["k_means", "species"])['k_means'].count()

```
k_means species

0 Iris-setosa 1
Iris-versicolor 37
Iris-virginica 8

1 Iris-setosa 49

2 Iris-versicolor 13
Iris-virginica 42

Name: k_means, dtype: int64
```

군집 0에는 versicolor가 군집 1에는 setosa가 군집 2에는 versicolor와 virginica가 군집화 됨

군집화 및 결과 확인

박스 플롯으로 군집 별 범위 확인

```
plt.subplots(figsize=(20, 5))
plt.subplot(1,4,1)
sns.boxplot(x = 'k_means', y = 'sepal length', data= dataset)
plt.subplot(1,4,2)
sns.boxplot(x = 'k_means', y = 'sepal width', data= dataset)
plt.subplot(1,4,3)
sns.boxplot(x = 'k_means', y = 'petal length', data= dataset)
plt.subplot(1,4,4)
sns.boxplot(x = 'k_means', y = 'petal width', data= dataset)
plt.show()
```


군집화 및 결과 확인 (Q3)

不好处

각 군집이 구분되도록 두 변수의 산포도를 그리는 함수 plot_cluster 구현하시오.

```
plt.subplots(figsize=(20, 5))
plt.subplot(1,3,1)
plot_cluster(clusters, column2index["sepal length"], column2index["sepal width"])
plt.subplot(1,3,2)
plot_cluster(clusters, column2index["petal length"], column2index["petal width"])
plt.subplot(1,3,3)
plot_cluster(clusters, column2index["sepal length"], column2index["petal length"])
plt.show()
```


5. 상향식 계층 군집화

K = 3 군집화 (Q4)

K=3으로 최장 거리(\max) 기준 $\mathfrak P$ 로 군집화를 해서 다음과 같이 군집화 결과를 확인해 보라.

Dataset에 h_clustering 군집화 결과 추가

dataset["h_clustering"] = h_assignments
dataset.head()

	sepal length	sepal width	petal length	petal width	species	k_means	h_clustering
0	5.1	3.5	1.4	0.2	Iris-setosa	1	1
1	4.9	3.0	1.4	0.2	Iris-setosa	1	1
2	4.7	3.2	1.3	0.2	Iris-setosa	1	1
3	4.6	3.1	1.5	0.2	Iris-setosa	1	1
4	5.0	3.6	1.4	0.2	Iris-setosa	1	1

K=3 군집화

군집화 결과는 (군집 번호(k), 데이터 포인트의 리스트) 딕셔너리

```
h clusters = {0 : [[2.242171976289676, -0.12454037930146161, 1.32697020894639, 1.4431210532119516],
               [2.1214086741555813, -0.12454037930146161, 1.6103493822692243, 1.181053065340532],...]
            1:[...
            2:[...
                                                                                                        ]}
```


class Leaf(NamedTuple): 1. Leaf에 index를 저장 index : int

value: Vector

2. 군집 별로 index 목록 생성

3. 각 index 별로 배정된 k 리스트를 Assignment로 생성

h assignment≿ 각 데이터 포인트가 속한 군집 번호 (k) 리스트

K=3 군집화

K_clustering 결과와 species 비교

© 2021 SeongJin Yoon. All Rights Reserved.

군집화 및 결과 확인

박스 플롯으로 군집 별 범위 확인

```
plt.subplots(figsize=(20, 5))
plt.subplot(1,4,1)
sns.boxplot(x = 'h_clustering', y = 'sepal length', data= dataset)
plt.subplot(1,4,2)
sns.boxplot(x = 'h_clustering', y = 'sepal width', data= dataset)
plt.subplot(1,4,3)
sns.boxplot(x = 'h_clustering', y = 'petal length', data= dataset)
plt.subplot(1,4,4)
sns.boxplot(x = 'h_clustering', y = 'petal width', data= dataset)
plt.show()
```


© 2021 SeongJin Yoon. All Rights Reserved.

군집화 및 결과 확인

Cluster 0 : virginica,

Cluster 1: setosa

versicolor

```
plt.subplots(figsize=(20, 5))
                        plt.subplot(1,3,1)
                        plot_cluster(h_clusters, column2index["sepal length"], column2index["sepal width"])
                        plt.subplot(1,3,2)
                        plot_cluster(h_clusters, column2index["petal length"], column2index["petal width"])
                        plt.subplot(1,3,3)
                        plot_cluster(h_clusters, column2index["sepal length"], column2index["petal length"])
                        plt.show()
                                     Clusters
                                                                                  Clusters
                                                                                                                                Clusters
                                                                                                                    cluster 0
                                                     cluster 0
                                                                      cluster 0
                                                     cluster 1
                                                                1.5
                                                                      cluster 1
                                                                                                                    cluster 1
                                                                                                             1.5
                                                     cluster 2
                                                                      cluster 2
                                                                                                                   cluster 2
                                                               1.0
                                                                                                             1.0
Cluster 2 : versicolog
                                                                                                             0.5
                                                             width
                                                                                                          petal length
                                                                                                             0.0
                                                               0.0
                                                                                                            -0.5
                                                               -0.5
                                                                                                            -1.0
                                                               -1.0
                   -2
                                                                                                            -1.5
                                                               -1.5
                             -1
                                                                   -1.5
                                                                                   0.0
                                                                                        0.5
                                                                                             1.0
                                                                                                  1.5
                                                                                  petal length
                                    sepal length
                                                                                                                               sepal length
```

k-평균 vs. 상향식 계층 군집화 결과 비교

k-평균 vs. 상향식 계층 군집화 결과 비교

Thank you!

