

Boucle interne

Le coeur de l'algorithme consiste à insérer l'élément d'indice k dans le tableau supposé déjà trié des éléments d'indices 0 à k-1.

- copier l'élément k dans une variable temporaire tmp
- tant que tmp est plus petit que l'élément précédent
 - déplacer cet élément vers la droite
 - reculer d'une position dans le tableau
- écrire tmp dans l'emplacement libéré.

```
In [1]: def inserer_un_element(T,k):
    tmp = T[k]
    i = k
    while i > 0 and tmp < T[i-1]:
        T[i] = T[i-1]
        i -= 1
    T[i] = tmp</pre>
```

Un tableau de 1 élément est toujours trié.

On commence donc par insérer le deuxième élément (d'indice 1) dans le tableau ne contenant que le premier élément

```
In [2]: T = [ 5, 3, 8, 1, 4, 2, 7, 6 ]
inserer_un_element(T,1); print(T[:2],T[2:])
[3, 5] [8, 1, 4, 2, 7, 6]
```

Les deux premiers éléments sont maintenant triés. Insérons le troisième

```
In [3]: inserer_un_element(T,2); print(T[:3],T[3:])
[3, 5, 8] [1, 4, 2, 7, 6]
```

Et ainsi de suite ...

```
In [4]: inserer_un_element(T,3); print(T[:4],T[4:])
        [1, 3, 5, 8] [4, 2, 7, 6]

In [5]: inserer_un_element(T,4); print(T[:5],T[5:])
        [1, 3, 4, 5, 8] [2, 7, 6]

In [6]: inserer_un_element(T,5); print(T[:6],T[6:])
        [1, 2, 3, 4, 5, 8] [7, 6]

In [7]: inserer_un_element(T,6); print(T[:7],T[7:])
        [1, 2, 3, 4, 5, 7, 8] [6]

In [8]: inserer_un_element(T,7); print(T[:8],T[8:])
        [1, 2, 3, 4, 5, 6, 7, 8] []
```

Boucle externe

On répète donc l'insertion jusqu'à ce qu'on aie inséré tous les éléments

```
In [9]: T = [ 5, 3, 8, 1, 4, 2, 7, 6 ]; N = len(T)
print(T[:1],T[1:])

for i in range(1,N):
    inserer_un_element(T,i)
    print(T[:i+1],T[i+1:])

[5] [3, 8, 1, 4, 2, 7, 6]
[3, 5] [8, 1, 4, 2, 7, 6]
[3, 5, 8] [1, 4, 2, 7, 6]
[1, 3, 5, 8] [4, 2, 7, 6]
[1, 3, 4, 5, 8] [2, 7, 6]
[1, 2, 3, 4, 5, 8] [7, 6]
[1, 2, 3, 4, 5, 7, 8] [6]
[1, 2, 3, 4, 5, 7, 8] []
```

En résumé

Le tri par insertion effectue deux boucles imbiquées.

- La boucle interne insère l'élément d'indice k dans le soustableau le précédant.
- La boucle externe fait varier cet indice k de la deuxième à la dernière position.

```
In [11]: def tri_par_insertion(T, comparer = asdl.plus_petit):
    N = len(T)
    for k in range(1,N):
        tmp = T[k]
        i = k
        while i > 0 and comparer(tmp,T[i-1]):
        T[i] = asdl.assigner(T[i-1])
        i -= 1
        T[i] = asdl.assigner(tmp)
```

Complexité

Pour évaluer la complexité de cet algorithme, évaluons d'abord la complexité du tri d'un tableau au contenu généré aléatoirement.

N	Comp.	Ecr.
10	33	34
19	105	105
37	403	406
71	1167	1171
138	4828	4831
268	18327	18333
517	68577	68582
1000	254774	254779
	-	

Notons que

- le nombre de comparaisons et d'écritures est quasiment égal (*).
- leur complexité est d'ordre **quadratique en** $\Theta(\mathbf{n}^2)$ pour trier n éléments.
- le nombre exact de comparaisons varie, sans doute en fonction du contenu du tableau
- (*) La seule différence provient des rares fois ou la boucle while s'arrête sur le test i>0 et ne teste pas comparer (tmp, T[i-1]) par court-circuit

Vérifions cette dernière hypothèse en triant un tableau déjà trié

N	Comp.	Ecr.
10	9	9
19	18	18
37	36	36
71	70	70
138	137	137
268	267	267
517	516	516
1000	999	999
<u>'</u>		

La complexité est **linéaire** en $\Theta(n)$. Le test comparer (tmp, T[i-1]) renvoye toujours False. C'est **le meilleur cas** pour le tri par insertion.

Observons maintenant le cas inverse d'une entrée triée à l'envers

N	Comp.	Ecr.
10	45	54
19	171	189
37	666	702
71	2485	2555
138	9453	9590
268	35778	36045
517	133386	133902
1000	499500	500499
	· ·	

La complexité est ici **quadratique** en $\Theta(n^2)$. C'est **le pire cas**.

Regardons enfin un cas d'importance pratique, celui d'un tableau **presque trié**. Ecrivons d'abord une fonction générant un tel tableau.

```
In [16]: import numpy as np; import matplotlib.pyplot as plt

def tableau_presque_trie(n):
    return [ i + np.random.randint(-3,3) for i in range(0,n) ]

plt.stem(tableau_presque_trie(50),markerfmt=',',linefmt='black',basefmt='black')
    plt.show()
```


Utilisons cette fonction pour évaluer une dernière fois la complexité du tri par insertion

Comp.	Ecr.
13	14
26	26
54	54
104	105
206	206
441	442
787	788
1541	1541
'	'
	26 54 104 206 441 787

La complexité est ici approximativement linéaire en $\Theta(n)$.

La fonction de génération de tableau presque trié utilisée ici garantit qu'aucun élément n'est à plus de 5 places de sa position finale.

La boucle interne itère au maximum 5 fois.

Le tri par insertion est remarquablement efficace pour trier un tableau *presque* trié.

A quel point il est efficace en pratique dépend évidemment de ce que l'on entend par *presque*

Stabilité

Le tri par insertion est **stable**.

En effet, le test tmp < T[i-1] garantit qu'on ne déplace pas vers la droite un élément égal à celui que l'on cherche à insérer. L'ordre des éléments égaux est donc préservé.

Vérifions le graphiquement en triant par parties fractionnaires puis entières.

In [19]: asd1.test_stabilite(tri_par_insertion)

Le tri est stable

Notons que le test strict tmp < T[i-1] est essentiel à la stabilité. Remplacer le test tmp <= T[i-1], ou not (T[i-1] < tmp) rend le tri instable

```
In [20]: def tri_par_insertion_errone(T,plus_petit):
    N = len(T)
    for k in range(1,N):
        tmp = T[k]
        i = k
        while i > 0 and not plus_petit(T[i-1],tmp):
            T[i] = T[i-1]
            i -= 1
        T[i] = tmp
```

```
In [21]: asd1.test_stabilite(tri_par_insertion_errone)
```

Le tri n'est pas stable

Visualisation

Finalement, visualisons graphiquement le tri d'un tableau de 20 entiers aléatoires entre 0 et 100

```
In [29]: T = np.random.randint(0,100,20)
    asd1.afficheIteration(T,'Tableau original')
```



```
In [30]: i = 1
    inserer_un_element(T,i)
    asd1.afficheIteration(T,'Iteration {0}'.format(i))
```



```
In [31]: i += 1
   inserer_un_element(T,i)
   asd1.afficheIteration(T,'Iteration {0}'.format(i))
```



```
In [32]: i += 1
    inserer_un_element(T,i)
    asdl.afficheIteration(T,'Iteration {0}'.format(i))
```



```
In [33]: for k in range(7):
    i += 1
    inserer_un_element(T,i)
    asd1.afficheIteration(T,'Iteration {0}'.format(i))
```



```
In [34]: while i < len(T):
    inserer_un_element(T,i)
    i += 1
    asd1.afficheIteration(T,'Iteration {0}'.format(i))</pre>
```


ASD1 Notebooks on GitHub.io (https://ocuisenaire.github.io/ASD1-notebooks/)

© Olivier Cuisenaire, 2018

