

DPP - 6

- Q 1. On an inclined plane of inclination 30°, a ball is thrown at an angle of 60° with the horizontal from the foot of the incline with a velocity of $10\sqrt{3}$ m/s. If g = 10 m/s², hen find the time in which ball will hit the inclined plane?
 - (a) 1 s
- (b) 2 s
- (c) 3 s
- (d) 4 s
- Q 2. Two bodies are projected from the same point with equal speeds in such a directions that they strike on the same point on a plane whose inclination is b. If a the angle of projection of the first, ratio of there times of flight is
 - (a) $\frac{\sin \alpha}{\cos \beta}$
- (b) $\frac{\sin \alpha}{\sin \beta}$
- (c) $\frac{\sin(\alpha-\beta)}{\cos\beta}$
- (d) $\frac{\sin(\alpha-\beta)}{\cos\alpha}$
- Q 3. A baseball is projected with a velocity v making an angle θ with the incline of indication α as shown in fig. Find the condition that the ball hits the incline at right angle.

- (a) $\cot \theta = 2 \tan \alpha$
- (b) $\sin \theta = \cos \alpha$
- (c) $\tan \theta = \sin \alpha$
- (d) $\cot \theta = \cos \alpha$
- Q 4. A projectile is required to hit a target whose coordinates relative to horizontal and vertical axes through the point of projection are (α, β) . If the gun velocity is $\sqrt{2g\alpha}$, it is impossible to hit the target if
 - (a) $\beta > 3\alpha/4$
- (b) $\beta \ge 1\alpha/4$
- (c) $\beta \leq 3\alpha/4$
- (d) $\beta \ge 3\alpha/4$
- Q 5. A marble rolls down from top of a staircase with constant horizontal velocity 10 m/s. If each step is y = 1 meter high and x = 1 meter wide. To which step the marble will strike directly? ($g = 9.8 \text{ m/s}^2$)

- (a) 21^{st}
- (b) 8th
- (c) 10th
- (d) 18^{th}

- A particle is projected from origin of coordinate system. A target is fixed at point (40m, Q 6. 30m). Find the minimum velocity of projectile to hit the target? $(g = 10 \text{ m/s}^2)$
 - (a) $10 \, m/s$

- (b) $17 \, m/s$
- (c) $20\sqrt{2} \ m/s$
- (d) $10\sqrt{5} \ m/s$
- Q 7. A particle is projected at an angle θ with an inclined plane making an angle β with the horizontal as shown in figure, speed of the particle is u, after time t find y component of velocity when particle is at maximum distance from the incline plane?

- (b) $\frac{2u}{\sqrt{3}}$
- (d) zero
- A ball is projected from point A with a velocity 10 m/s perpendicular to the inclined Q8. plane as shown in figure. Range of the ball on the inclined plane is:

- Q 9. A plane surface is inclined making an angle θ with the horizontal. From the bottom of this inclined plane, a bullet is fired with velocity v. The maximum possible range of the bullet on the inclined plane is

- (b) $\frac{V^2}{g(1+\sin\theta)}$ (d) $\frac{V^2}{g(1+\cos\theta)}$

- Q 10. A ball is projected horizontal with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?
 - (a) $\frac{V^2}{a}$

- (b) $\sqrt{2} \frac{V^2}{g}$ (c) $\frac{2V^2}{g}$ (d) $\sqrt{2} \left[\frac{2V^2}{g} \right]$
- Q 11. Two inclined planes OA and OB having inclination with horizontal) 30° and 60° respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u = 10\sqrt{3}$ m/s Along a direction perpendicular to plane OA. If the particle strikes plane OB perpendicularly at Q, calculate Velocity with which particle strikes the plane OB? ($g = 10 \text{ m/s}^2$)

(a) 10 m/s

(b) $10\sqrt{3}$ m/s

(c) $\sqrt{3}$ m/s

- (d) $5\sqrt{3}$ m/s
- Q 12. A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after t = 4 second. The speed of projection of P is :-

- (a) 5 m/s
- (b) 10 m/s
- (c) 15 m/s
- (d) 20 m/s
- Q 13. A ball is projected on smooth inclined plane in direction perpendicular to line of greatest slope with velocity of 8m/s. Find it's speed after 1 sec.

- (a) 10 m/s
- (b) 12 m/s
- (c) 15 m/s
- (d) 20 m/s
- Q 14. A particle is projected from a point P(2,0,0)m with a velocity 10m/s making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x-axis, xy plane is horizontal. The coordinates of the point where the particle will strike the line PQ is: -(take $g = 10 \text{ m/s}^2$)
 - (a) (10,6,0)m
- (b) (8,6,0)m
- (c) (10,8,0)m
- (d) (6,10,0)m

Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

Solution on YouTube:-

https://youtu.be/F0BVSYJhp_k

Answer Key

Q.1 b	Q.2 d	Q.3 a	Q.4 a	Q.5 a
Q.6 c	Q.7 d	Q.8 a	Q.9 b	Q.10 d
Q.11 a	Q.12 b	Q.13 a	Q.14 a	