CPU Architecture

Digital System Design with VHDL (Simple RISC Multi-Cycle CPU design)

1. Aim of the Task:

- System design using concurrent and sequential logic principles using advanced Simulation methods.
- Controller design based on methodology of Control and Datapath separation.
- Performing and understanding functional validation and verification of an architecture design.
- Proper analysis and understanding of architecture design.

2. Assignment definition:

In this task, you are required to design a controller-based processing machine as a Multi-cycle CPU to run a given program code. The preparation material for this lab has been learned in the prerequisites course "Central Processing Unit Architecture - theory" until lecture five and includes in addition to the self-leaning material given on a subjects of FSM methodology design and advanced functional verification.

3. Controller-based system:

Figure 1: Overall DUT structure

Figure 2: SRMC-I Datapath structure of a 2-BUS multicycle CPU

Control Unit

Signals Legend: Control, Status, Data to/from Test bench

Figure 3: SRMC-I Control unit module

Figure 4: SRMC-I Instruction Formats subdivided into three types

ADDRESS MODE	SYNTAX	INSTRUCTION FORMAT	EXAMPLE	OPERATION
Register	add ra,rb,rc	R-Type	add r4,r2,r1	$R[4] \leftarrow R[2] + R[1]$
Immediate	mov ra,imm	I-Type	mov r5,0x30 mov r5,Var	$R[5] \leftarrow 0x30$ $R[5] \leftarrow Var$
Direct	ld ra,imm(r0)		ld r4,0x20(r0) ld r4, Var(r0)	$R[4] \leftarrow M[0x20]$ $R[4] \leftarrow M[Var]$
Indirect	ld ra,0(rb)		ld r4,0(r3)	$R[4] \leftarrow M[R[3]]$
Indexed	ld ra,imm(rb)		ld r4,0x20(r3) ld r4, Var(r3)	$R[4] \leftarrow M[0x20 + R[3]]$ $R[4] \leftarrow M[Var + R[3]]$

Table 1: SRMC-I Addressing Mode

Instruction Format	Decimal value	ОРС	Instruction	Explanation		Z	С
R-Туре	0	0000	add ra,rb,rc	$R[ra] \le R[rb] + R[rc]$	*	*	*
			nop	R[0]<=R[0]+R[0] (emulated instruction)		*	*
	1	0001	sub ra,rb,rc	$R[ra] \le R[rb] - R[rc]$		*	*
	2	0010	and ra,rb,rc	$R[ra] \le R[rb]$ and $R[rc]$	*	*	-
	3	0011	or ra,rb,rc	R[ra]<=R[rb] or R[rc]	*	*	-
	4	0100	xor ra,rb,rc	R[ra]<=R[rb] xor R[rc]	*	*	-
	5	0101	unused				
	6	0110	unused				
J-Type	7	0111	jmp offset_addr	PC<=PC+1+offset_addr	-	-	-
	8	1000	jc /jhs offset_addr	If(Cflag==1) PC<=PC+1+offset_addr	-	-	-
	9	1001	jnc /jlo offset_addr	If(Cflag==0) PC<=PC+1+offset_addr	-	-	-
	10	1010	unused				
	11	1011	unused				
I-Type	12	1100	mov ra,imm	R[ra]<=imm	-	-	-
	13	1101	ld ra,imm(rb)	$R[ra] \le M[imm + R[rb]]$		-	-
	14	1110	st ra,imm(rb)	$M[imm+R[rb]] \le R[ra]$		-	-
Special	15	1111	done	Signals the TB to read the DTCM content	-	-	-

 $\underline{\text{Note}}$: * The status flag bit is affected , - The status flag bit is not affected

Table 2: SRMC-I instruction set, recall that R[0] is a zero value (hard-wired).