Topology Basics

This course is about geometry, and a large bulk of the study is about drawing visual elements in some Space (e.g. R2, R3, the surface of a Sphere). As computer scientists, we usually care about a finite system of visual elements. How do the elements interact? What are the combinatorial properties of the system? And how can we efficiently construct, store, manipulate and traverse the system algorithmically? These are typical questions that we try to tackle.

The first part of the notes concerns with drawing an abstract graph in the plane \mathbb{R}^2 —in the "typical" way where a point represents a vertex and an arc (curre)

represents an edge. But what is an arc exactly and how do we argue about it? of course one may resort to his intuition, but it turns out that all these intuitive Concepts could be made formal and rigorous by a deep field called topology. We will touch some basics of topology and axiomize some results from topology, in this and the following section. The point is to Convince the readers that the possibility of formalisation if they wish.

def. open & closed.

Let ASS be a set where S is the "ambient space" or "universe". A is called open if $\forall \alpha \in A$, $\exists r > 0$: the neighbourhood $U(\alpha,r) \subseteq A$. It is called closed if S\A is open; equivalently, if the limit of any convergent sequence in A is contained in A, too. (why?)

Remark. In the definition we used the notion of "neighbourhood" U(a,t), which relies upon the notion of distance. So S is implicitly assumed a metric space.

But we ware remind the reader that, in pure topological sense, there are other definitions of open/closed sets which don't require distance at all! Such defs are too general for our purpose.

def. compact set: both bounded and closed.

Theorem 1. A set $A \subseteq \mathbb{R}^n$ is compact \iff For any family $\mathcal{F} = \{F_i\}$, \iff $F_i \subseteq \mathbb{R}^n$ open, and $\bigcup \bigoplus F_0 \supseteq A$. We bould find a finite subfamily "Cover of A" $\mathcal{F}' \subseteq \mathcal{F} : \bigcup_{F \in \mathcal{G}'} F \supseteq A$.

Now we are prepared for the more "geometry" side of topology.

def. arc and Forden curve. Let $f: [0,1] \rightarrow \mathbb{R}^n$ be a Continuous function.

(1) If f is injective, then we call its image an arc. f(0) and f(1) are the empoints

(a) If f(0) = f(1) and f is injective on [0,1), then we call its image a Jordan curve.

We shall denote & = e | endpoints of e for arc e)

(Fust a side note: the definition could be rephrased in Concise topological terms "an arc is homeomorphic to [0,1]; a fordan curve is homeomorphic to a unil circle".)

(denoted a Ra')

We call a, a' ∈ Ask Connected if ∃an arctuhose endpoints are a and a'. Clearly, & is an equivalence relation, thus classifying A into one or more equivalence classes. We call each of these classes a region. If A is open, then so are its regions. (why?) def boundary.

The boundary of region RM, denoted OR, is all the points $x \in \mathbb{R}^n$ s.t. $\forall r > 0$, $U(x,r) \cap \mathbb{R} \neq \emptyset$ \wedge $U(x,r) \cap \mathbb{R}^n \setminus \mathbb{R}$ $\neq \emptyset$.

i.e. lies exactly upon the "separation" of R and RIR.

At this point, we don't have much tools except some basic definitions and a well-known theorem. But these are sufficient for the Core definitions of this course: plane and planar graphs.

Exercise. Show that if an arc e lie in different regions, say R1 and Ra, then endR1 #0, endR2 #0.

PLANARITY

For the moment, we shall make a little twist of the concept of graphs:

def plane graph.

a plane graph is a pair (v, E) where

(1) $V \subseteq \mathbb{R}^2$ is a finite set of points.

(a) E⊆R² is a finite set of arcs whose endpoints are always in V.

Also, we require that \(\forall \), \(\epsilon \) \(\epsilon

So strictly speaking, a plane graph is not a graph, because they are separatificant types of objects. However if we inspect the above definition carefully, we see that there's always an example "abstract" graph behind the scenes. Hence we don't actually distinguish a plane graph or the its Corresponding abstract graph.

a plane graph

({Pi, ..., Pot.

Though a plane graph does correspond to an abstract graph, the Converse is not necessarily true (and we shall prove that Sections later). The reason is that a plane graph imposes the strong restriction that no two edges could cross in the plane, while a general graph doesn't care about the strong the strong concrete graphical representation.

def. Planar graph.

An abstract graph G is planar if we could find a plane graph that G corresponds to G'.

If G is planar, then we call the G'above an embedding of G.

Proposition 2.

In the definition of plane graph, we could impose an even stronger Condition without changing the meaning:

"all the arcs are required to be sefinite consecutive line segments."

×

proof. The intuitive idea is to cut the (edges) fine knough and straighten piecesi So that no edges would cross. To make the argument rigorous, we appeal to Theorem 1

For each edge e and $x \in \mathcal{A}$, define d(x) to be the minimum distance between x and all other edges. Clearly d(x) > 0. Now we draw a square with side length d(x), centered at x. So we collect a family of squares \mathcal{F} after going through all $x \in \mathring{e}$.

Obviously I covers é, So by Theorem 1 we could find a subfamily F' finite

that covers & as well.

Since by our choice of squares, (UF) A Me' = Ø for all e'≠e, it's always safe to walk along the sides of these squares without Crossing other edges. This gives us the desired "finite Linearization" of edge e.

def face.

For a plane graph G=(v,E), the Set R'G (which means R'((VUE)) is open "whose regions are called the faces of G. We use F(G) to denote the set of faces of G.

Proposition3 called "outer face" A plane graph G always has one unbounded face. All other faces (if

any) are bounded.

proof. Since G is finite, and any are is bounded (why?), there exists a "bounding box" that Contain the entire G. The exterior of the box CAN TIME Clearly belongs to the Same equivalence class in R2/G, so 18°16 has at least one unbounded region, the G has at least one unbounded face. As two faces must be disjoint, the rest of the faces must reside in the bounding box, thus bounded.