Лабораторная работа № 2

Определение кратчайших путей между всеми парами вершин методом Флойда.

Пусть требуется найти кратчайшие пути между всеми парами вершин графа. Очевидным способом решения этой задачи может стать п-кратное применение алгоритма поиска кратчайших путей для каждой из пвершин, в качестве такого алгоритма может быть применен, например, алгоритм Дейкстры.

Однако существует метод, который может сэкономить до 50% времени вычисления по сравнению с алгоритмом Дейкстры. Этот метдо был предложен Флойдом и развит Мэрчлендом. Он базируется на использовании последовательности из n-преобразований (итераций) начальной матрицы весов С. При этом на k-ой итерации матрица представляет длины кратчайших путей между каждой парой вершин с тем ограничением, что путь между x_i и x_j содержит в качестве промежуточных только вершины из множества $\{x_i, x_j, ..., x_n\}$.

Алгоритм Флойда для произвольной матрицы весов. Предположим, что в начальной матрице весов $c_{ii}=0$ $\forall i=\overline{1,n}$ и $c_{ij}=\infty$ если в графе отсутствует дуга (x_i,x_j) .

Присвоение начальных значений

Шаг 1. Положить k = 0.

Итерация

Шаг 2. k = k + 1

Шаг 3. Для всех $i\neq k$, таких, что $c_{ik}\neq \infty$ и для всех $j\neq k$, таких, что $c_{kj}\neq \infty$, выполнить операцию

$$c_{ij} = \min[c_{ij}, (c_{ik} + c_{kj})].$$
 (*)

Проверка на окончание

Шаг 4. (а) Если $c_{ii} < 0$, то в графе G существует цикл отрицательного веса, содержащий вершину x_i и решения нет. Останов.

- (б) Если все $c_{ii} \ge 0$ и k = n, то получено решение. Матрица $\begin{bmatrix} c_{ii} \end{bmatrix}$ дает длины всех кратчайших путей. Останов.
 - (в) Если все $c_{ii} \ge 0$, но k < n, то вернуться к шагу 2.

Сами кратчайщие пути можно найти с помощью рекурсивной процедуры, аналогичной той, что приведена в тексте лабораторной работы N 1. Можно также воспользоваться процедурой, предложенной X у.

В этом методе в дополнение к матрице весов C хранится и обновляется вторая $(n \times n)$ -матрица $\Theta = [\theta_{ij}]$. Элемент θ_{ij} указывает вершину, непосредственно предшествующую вершине x_j в кратчайшем пути от x_i к x_j . Матрице Θ присваиваются начальные значения $\theta_{ij} = x_i$ для всех x_i и x_j . Попутно с выполнением операции (*), происходит обновление Θ :

$$- \frac{\theta_{ij} = \theta_{kj}}{\theta_{ij}}, \text{ если } (c_{ik} + c_{kj}) < c_{ij} \text{ в выражении (*);}$$

$$- \frac{\theta_{ij}}{\theta_{ij}} \text{ не изменяется , если } (c_{ik} + c_{kj}) \ge c_{ij}.$$

В конце алгоритма кратчайшие пути получаются непосредственно из заключительной матрицы Θ . Таким образом, кратчайший путь между двумя вершинами x_i и x_j дается следующей последовательностью вершин:

$$x_i, x_{v}, \dots, x_{\gamma}, x_{\beta}, x_{\alpha}, x_{j},$$
 $x_{\alpha} = \theta_{ij}, x_{\beta} = \theta_{i\alpha}, x_{\gamma} = \theta_{i\beta} \quad \text{if } T.\Pi. \text{ for } x_i = \theta_{i\gamma}.$

Задание

- 1. Ознакомиться с алгоритмом Флойда.
- 2. Разработать программу, которая позволяет решить задачу отыскания кратчайшего пути между всеми парами вершин ориентированного графа с использованием алгоритмов Дейкстры и Флойда.

Требования к программе те же, что и в предыдущей лабораторной работе. В результате работы программа выдает список, каждый элемент которого содержит пару вершин, кратчайший маршрут между ними и длину этого маршрута.

3. Для сравнения получить список кратчайших путей между всеми вершинами п-кратным примениеми алгоритма Дейкстры. Время вычисления в случае применения методов Дейкстры и Флойда должно быть зафиксировано и выдано по запросу пользователя.