2017-2018 学年第一学期期末考试试题

课程名称 《算法设计与分析》 任课教师签名		1、能术用页记并否示取几种的问题, 放弃自由至女正应为。
		A. 重叠子问题性质与贪心选择性质
出题教师签名 <u>题库抽题</u> 审题	.教帅签名	B. 最优子结构性质与贪心选择性质
考试方式(闭)卷 适用专业 _2015	级计算机、智能科学	C. 最优子结构性质与重叠子问题性质
考试时间 (120)分钟		D. 预排序与递归调用
		2、最小生成树可以利用算法实现
题号 一 二 三 [四总分	A. 动态 <mark>规划 B. 分</mark> 治 C. 贪心 D. 回溯
得分		3、分治法的设计思想是将一个难以直接解决的大问题分割成规模较小
评卷人		的子问题,分别解决子问题,最后将子问题的解组合起来形成原问
11371		题的解。这要求原问题和子问题。
注意: 所有答案请依次填在试题后答题纸内, 否则不得分		A. 问题规模不同,问题性质相同
		B. 问题规模相同,问题性质相同
填空题(每空 1 分,共 10 分)		C. 问题规模不同,问题性质不同
、算法的复杂性有和之分。		D. 问题规模相同,问题性质不同
2、出自于"平衡子问题"的思想,通常分治治		4、投点法是一种算法。
干子问题时,这些子问题的规模都大致。		A. 贪心 B. 分治 C. 回溯 D. 概率
3、动态规划的基本要素是和最优子结构。		5、分支限界法解最大团问题时,活结点表的组织形式是。
以如果某算法的运行时间为 $T(n) = 15\log_4 n$,		A. 小顶堆 B. 大顶堆 C. 栈 D. 队列
为 0()。		6、当输入规模为 n 时,算法增长率最小的是。
5、舍伍德算法是的一种。		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
5、使用回溯法搜索解空间树时,常用的两种	1剪枝函数为 和	A. n^{-3} B. $n \log n$ C. $3n^4$ D. 2^n
), KE 30/1	7、在对问题的解空间树进行搜索的方法中,每个活结点只有一次机会
。 7. 以广度优先方式系统搜索问题解的管注称为	 	成为扩展结点的是。
N、以广度优先方式系统搜索问题解的算法称为。 B、当问题是从 n 个元素的集合 S 中找出满足某种性质的子集时,相应		A. 分支限界 B. 回溯法
		C. 分支限界和回溯法 D. 动态规划
的解空间树称为子集树,通常该树有		

二、单选题(每小题 2 分, 共 30 分)

1、能采用贪心算法求最优解的问题,一般具有的重要性质为____。

题 I,则问题 I 是	•	14、采用贪心算法解决的最优装载问题,其主要计算量在于将集 其重量从小到大排序,故算法的时间复杂度为。	装箱按
A. P 类问题	B. NP 类问题	A. $O(n\log n)$ B. $O(2^n)$ C. $O(n2^n)$ D. $O(n^n)$	n)
C. NP 难问题	D. NP 完全问题	15、渐进算法分析是指。	
9、设 $T(n)$ 表示当输入规模为 n 时的算法效率,以下算法效率中,最		A. 数据结构所占用的空间	
差的是。		B. 算法在最好情况、最坏情况和平均情况下的代价	
A. $T(n) = 2n^2$	B. $T(n) = T(\frac{n}{2}) + 1$, $T(1) = 1$	C. 在最小输入规模下算法的资源代价	
	D. $T(n) = T(n-1) + 1$, $T(1) = 1$	D. 当规模趋于无穷大时,对算法资源开销"增长率"上的	分析
10、算法分析中,记号		三、算法应用题(每题 10 分, 共 40 分)	
A. 渐进下界 B.	斩进上界 C. 非紧上界 D. 紧渐进界	1、有图 $G = (V, E)$, V 顶点, E 边,请简述深度优先搜索的思想	想。
11、某体育馆有一羽毛玛	场出租,现在总共有 11 位客户申请租用此羽	2、设 G 是一个有权无向连通图,且没有两条边有相同的权值,	试证明
毛球场,每个客户所	租用的时间单元如下表所示, $s(i)$ 表示第 i 个	G 有惟一的最小耗费生成树。	
客户开始租用的时刻	, f(i) 表示第 i 个客户结束租用的时刻。	3、考虑下列算法 COUNT,它的输入是正整数 n ,回答如下三个	`问题:
i 1 2 3	4 5 6 7 8 9 10 11	(1) 详细计算说明算法的第5步执行了多少次? (3分)
s(i) 2 3 1	5 0 5 2 8 8 12 6	(2) 要表示该算法时间复杂性, O 和 Θ 哪个符号更合适? (2分)
f(i) 6 5 4	9 8 7 13 12 11 14 10	为什么? (3分)
		(3) 算法的时间复杂性是多少? (2分)
	场只能租给一位客户。在这 11 位客户里面,	算法 COUNT 的伪码,其中的符号"ëû" 代表下取整	0
	位客户的需求。	1. $count = 0$	
	4 C. 5 D. 6	2. $\mathbf{FOR} i = 1 \mathbf{TO} \ddot{\mathbf{e}} \log n \hat{\mathbf{u}}$	
	能解决 0-1 背包问题的是。	3. FOR $j = i$ TO $i + 5$	
A. 动态规划 B. 贪心法		4. FOR $k = 1$ TO i^2	
C. 回溯法 D. 分支限界法		5. $count = count + 1$	
13、矩阵连乘问题的算法,可以由来高效地设计实现。		6. END FOR	
A. 分治算法 B. 回溯算法		7. END FOR	
C. 动态规划算法 D. 贪心算法		8. END FOR	

4、对于如下图,使用 3 种颜色去给图中各顶点着色,要求相邻接顶点的颜色不能相同。

(1) 请画出用回溯法求解该问题时的搜索情况。 (6分)

(2) 至少说明一种可行的着色方案。 (4分)

四、算法设计题(每题 10 分, 共 20 分)

1、设计一个贪心算法求解分数背包问题。

所谓分数背包问题与 0-1 背包问题的不同点在于,当选择物品装入背包时,可以只选择一部分物品,而不是要选择物品的全部。

- 已知 n 件物品的编号分别为 $U = \{u_1, u_2, ..., u_n\}$,各物品的体积大小分别为 $s_1, s_2, ..., s_n$,各物品的价值分别为 $v_1, v_2, ..., v_n$,唯一的背包容量大小为 C。
- 2、设A[1..n] 是一个由n 个整数组成的数组,x 是某个整数,设计分治算法,找出x 在数组A 中的频度,即x 在A 中出现的次数。