Universidade Federal do Rio Grande do Norte Métodos Computacionais em Engenharia - T01

Aplicação dos métodos de Runge-Kutta de 4^a e 6^a ordem para a resolução de Equações Diferenciais Ordinárias de 2^a ordem

Grupo 4: Alan Lima de Medeiros Clayton Rylmer Paiva Maia de Almeida Enzo Hêndrio Gomes Araújo João Lucas Freitas Dantas Borges

Docente: Paulo Sérgio da Motta Pires

Natal-RN 06/2022

Sumário

1	Introdução			
2	Metodologia Problema			
3				
	3.1	Resolução: Excel	7	
	3.2	Resolução: Python	7	
	3.3	Resultados	9	
	3.4	Conversões	11	
4	Con	usão	12	

1 Introdução

O presente trabalho tem como objetivo aplicar os métodos de Runge-Kutta de 4ª (RK4) e 6ª (RK6) ordem para se resolver uma Equação Diferencial Ordinária de 2ª Ordem (EDO2). Em síntese, os métodos citados compreendem parte de um grupo de técnicas iterativas para a resolução numérica de Equações Diferenciais Ordinárias (EDO).

Sob essa perspectiva, esses métodos utilizam equações bem estabelecidas para se tentar encontrar uma solução aproximada da EDO em questão. Desse modo, para o RK4, os elementos do conjunto solução são encontrados pela equação abaixo.

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \tag{1}$$

Onde os termos $k_1,\,k_2,\,k_3$ e k_4 são encontrados pelas equações:

$$k_1 = hz_n \tag{2}$$

$$k_2 = h\left(z_n + \frac{l_1}{2}\right) \tag{3}$$

$$k_3 = h\left(z_n + \frac{l_2}{2}\right) \tag{4}$$

$$k_4 = h(z_n + l_3) \tag{5}$$

Pelas equações de 2 a 5, observa-se que aparecem os termos z_n , l_1 , l_2 e l_3 . Isso se dá, pois ao se trabalhar com uma EDO2, faz-se necessário separar a equação de segunda ordem em duas de primeira ordem. Sendo assim, essas componentes representam uma dessas equações e seus valores podem ser encontrados pelas equações:

$$z_{n+1} = z_n + \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4)$$
(6)

$$l_1 = hf(x_n, y_n) \tag{7}$$

$$l_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right) \tag{8}$$

$$l_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$$
 (9)

$$l_4 = hf(x_n + h, y_n + k_3) (10)$$

O termo h que aparece em praticamente todas as equações representa a distância entre os valores do eixo das abscissas e a função f(x,y) é a função em análise

Analogamente, o RK6 utiliza equações similares, como se pode observar pelas equações abaixo:

$$y_{n+1} = y_n + hz_n \frac{1}{90} (7k_0 + 24k_1 + 6k_2 + 8k_3)$$
(11)

$$z_{n+1} = z_n + \frac{1}{90h} (7k_0 + 32k_1 + 12k_2 + 32k_3 + 7k_4)$$
 (12)

Onde os coeficientes k_0 , k_1 , k_2 , k_3 e k_4 são quantificados por:

$$k_0 = h^2 f(x_n, y_n) (13)$$

$$k_1 = h^2 f\left(x_n + \frac{1}{4}h, y_n + \frac{1}{4}hz_n + \frac{1}{32}k_0\right)$$
 (14)

$$k_2 = h^2 f\left(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hz_n - \frac{1}{24}k_0 + \frac{1}{6}k_1\right)$$
 (15)

$$k_3 = h^2 f\left(x_n + \frac{3}{4}h, y_n + \frac{3}{4}hz_n + \frac{3}{32}k_0 + \frac{1}{8}k_1 + \frac{1}{16}k_2\right)$$
 (16)

$$k_4 = h^2 f\left(x_n + h, y_n + hz_n + \frac{3}{7}k_1 - \frac{1}{14}k_2 + \frac{1}{7}k_3\right)$$
 (17)

Cabe ressaltar que ambos os métodos necessitam de condições iniciais, sendo elas para uma EDO2 um valor inicial para a função e outro para a sua derivada primeira. Além disso, o que diferencia um método do outro é o grau de precisão. Essa diferença se acentua a medida que o h aumenta, de forma que, para h muito pequeno, os dois métodos basicamente são equivalentes em termos de resultados.

Para além disso, os resultados podem divergir ainda mais, computacionalmente, a depender do tipo de precisão utilizada para os cálculos. A precisão simples faz uso de 32 bits para representar um número em ponto flutuante, enquanto a precisão dupla utiliza 64 bits. Nesse sentido, quanto maior a precisão, maior será o grau de certeza da representação de um número. Para o escopo deste projeto, apenas a precisão dupla (64 bits) será trabalhada.

2 Metodologia

O desenvolvimento deste projeto se deu em meio a aplicação da metodologia ágil Scrum. Dessa forma, o grupo de desenvolvedores se reuniu visando planejar as atividades que seriam realizadas para se atingir o resultado final dentro do prazo estabelecido. Após o refinamento do backlog, estipulou-se que o Menor Produto Viável (MVP) deveria ser construído em duas sprints de uma semana cada. O cronograma do projeto pode ser visualizado na figura 1.

Figura 1: Cronograma.

A organização dessas sprints foi feita com o aplicativo de gerenciamento de projetos Trello, figura 2. Nesse software, as atividades para cada sprint foram criadas e, dessa maneira, confirmou-se que para a primeira sprint ficariam as atividades de separação das equações diferenciais, a resolução utilizando o software de planilhas Excel e a linguagem de programação Python, bem como seriam feitos os gráficos e análises das soluções encontradas.

Figura 2: Gerenciador de projetos.

Complementarmente, a segunda sprint seria reservada para se converter o código feito em Python para outras linguagens de programação como C++, Julia e Matlab, utilizando a IDE Visual Studio Code (VSCode) e/ou repl.it. Ademais, nessa etapa o relatório técnico e a apresentação também seriam feitos.

Diante disso, separou-se primeiramente a equação diferencial de 2ª ordem em duas equações de 1ª ordem. Em seguida, a solução foi encontrada utilizando o Excel, visando facilitar a visualização dos cálculos e garantir, graficamente, os resultados obtidos em um primeiro momento. Após isso, o ambiente Colab foi utilizado para se desenvolver a solução em Python, na versão 3.7.13 e com precisão dupla. Como resultado, obteve-se um notebook Python contendo as soluções do RK4 e RK6, bem como as análises gráficas.

Aproveitando-se desse código, construiu-se uma aplicação Python e se colocou esse aplicativo em um servidor WEB, chamado Streamlit, para que se tivesse uma resolução mais interativa.

Por fim, o relatório foi escrito em LaTeX no editor de texto Overleaf, objetivando manter o padrão de desenvolvimento em nuvem, garantindo maior segurança no armazenamento do trabalho e integração da equipe no processo. O fluxo completo pode ser visto na figura 3.

Figura 3: Fluxo do projeto.

3 Problema

O problema em questão fornecia uma EDO2, equação 18, e solicitava que soluções fossem encontradas pelos métodos de RK4 e RK6 para cada h pedido. O h poderia assumir os valores de 0.025, 0.25 e 0.5.

$$\frac{d^2y(x)}{dx^2} = -\left(100 + \frac{1}{x^2}\right)y(x) = f(x,y) \tag{18}$$

Além disso, as condições iniciais, y(1) = -0.24593576 e y'(1) = -0.55769344, e o intervalo, de 1 a 10π , foram fornecidos. Diante disso, a equação 18 foi manipulada da seguinte forma:

$$z = y' \to z(1) = y'(1) = -0.55769344$$
 (19)

$$z' = y'' = -\left(100 + \frac{1}{x^2}\right)y(x) \tag{20}$$

3.1 Resolução: Excel

Em excel, foram-se criadas 6 planilhas, 3 para o método RK4 e 3 para o RK6, e em cada uma delas a EDO2 foi resolvida para um dado valor de h. Para as planilhas do RK4, criaram-se 13 colunas: n, x, k_1 , k_2 , k_3 , k_4 , l_1 , l_2 , l_3 , l_4 , z, y e Exato. Excetuando-se as colunas de n, x e Exato, foram-se aplicadas as equações de 1 a 10 nas células correspondentes. Em seguida, utilizou-se a função BESSELJ() para se calcular os valores exatos da solução. Por fim, após calculados os valores com o RK4, plotaram-se os gráficos comparando os resultados numéricos e os exatos.

Similarmente, para o RK6, estabeleceram-se as colunas $n, x, k_0, k_1, k_2, k_3, k_4, z, y, Exato$. Excetuando-se as colunas n, x e Exato, foram-se aplicadas as equações de 11 a 17 nas respectivas células. Além disso, aplicou-se também a função BESSELJ() para se calcular os valores exatos da solução. Por último, com os valores encontrados pelo RK6 e os exatos, plotaram-se os gráficos comparativos.

3.2 Resolução: Python

O código em Python é composto basicamente por 3 funções: f(x,y), coeficientes(h,x,y,z) e termos(h,x,y,z). A função f representa a própria função dada pelo problema e as funções coeficientes e termos retornam partes das equações 1, 6, 11 e 12: $k_1+2k_2+2k_3+k_4$, $l_1+2l_2+2l_3+l_4$, $7k_0+24k_1+6k_2+8k_3$ e $7k_0+32k_1+12k_2+32k_3+7k_4$, respectivamente.

Em seguida, percorre-se o vetor h, contendo todas as suas variações. Além disso, criam-se os vetores que armazenarão os resultados. Para cada valor de h haverão quantidades diferentes de pontos, dessa forma, para cada um deles, percorre-se todos os pontos da vez, gerando-se todos os resultados

para o RK4 e o RK6. Por fim, com os valores exatos, calculados com a função de Bessel de ordem 0, e os valores do RK4 e RK6, gráficos foram plotados, visando analisar os resultados. O fluxo completo do código pode ser visto na figura 4. Além disso, o código pode ser visto no repositório do Github.

Figura 4: Fluxo do código em Python.

3.3 Resultados

A partir dos gráficos gerados, tanto no Excel quanto no Python, notouse que tanto para o RK4 quanto para o RK6, a exatidão é prejudicada à medida que o h aumenta. Analisando somente o RK4, nota-se pela figura 5 que para o h de 0.025, gráficos da primeira coluna, a curva do resultado exato, curva em cinza, e da solução numérica, curva tracejada em azul, se sobrepõem, denotando uma alta eficiência. Todavia, para os gráficos das segunda e terceira colunas, h de 0.25 e 0.5 respectivamente, as curvas citadas não coincidem em quase nenhum ponto, a não ser para um intervalo muito próximo do início das curvas. Vale ressaltar que para os gráficos da linha de cima da figura, a curva exata foi gerada usando os mesmos valores de x da solução numérica, já na segunda linha as curvas exatas foram geradas usando um x variando pouco de um para outro.

Figura 5: Variação das soluções do RK4 para h sendo 0.025, 0.25 e 0.5.

Analogamente, para o RK6 (curvas tracejadas em marrom) o fenômeno acontece de forma parecida como observado na figura 6.

Figura 6: Variação das soluções do RK6 para h sendo 0.025, 0.25 e 0.5.

Comparando os dois métodos, percebe-se que, muito embora a exatidão diminua com o aumento do h, o método do RK6 persiste fiel por mais tempo a solução exata, haja vista que para o h de 0.25 (segunda linha da figura 7), o RK6 (curvas da segunda coluna) poderia ser utilizado para um intervalo maior que o RK4 (curvas da primeira coluna).

Figura 7: Comparação RK4 e RK6.

Isso se torna ainda mais perceptível ao se comparar o RK4 e o RK6 com a curva exata com uma variação muito pequena de x, observar figura 8.

Figura 8: Comparação RK4 e RK6 com a curva exata.

Para melhor visualizar o impacto da variação do h, criou-se uma aplicação Python e disponibilizou-se na plataforma Streamlit para que de forma interativa se possa observar esse impacto para o RK4 e o RK6, observar figura 9. A aplicação pode ser acessada pelo link https://share.streamlit.io/alanldm/projeto_runge_kutta/metodos.py.

Figura 9: Aplicação Python para os métodos RK4 e RK6. Acessar com o link https://share.streamlit.io/alanldm/projeto_runge_kutta/metodos.py.

Por fim, um vídeo foi produzido para se verificar essa variação de forma mais rápida. Ele pode ser visto no link citado acima ou no próprio notebook Python disponibilizado.

3.4 Conversões

Utilizando como código guia o programa em Python, as soluções foram convertidas para as linguagens apresentadas na figura 3. Isto é, as soluções foram passadas também para Julia, C++ e Matlab. O código em Julia foi desenvolvido utilizando a IDE Visual Studio Code (VSCode), em C++ no ambiente de desenvolvimento Repl.it e em Matlab na sua própria IDE.

As maiores dificuldades para essas conversões foram as adaptações de sintaxe e mudanças nas bibliotecas utilizadas. Ademais, a manipulação de vetores em cada linguagem também representou uma barreira. Cabe ressaltar que as repostas em cada linguagem foram comparadas com os resultados em Python e Excel, que foram desenvolvidos independentemente, e todas foram iguais. Sendo assim, garantiu-se a redundância dos resultados e comprovação de seus valores.

4 Conclusão

Diante do exposto, conclui-se que os métodos de solução numérica RK4 e RK6 são muito precisos para um h muito pequeno, servindo muito bem como uma solução alternativa às integrais. Além disso, com este projeto, pôdese estudar melhor outras linguagens de programação, bem como verificar a aplicação dos conhecimentos da disciplina de métodos computacionais em diferentes linguagens. Exercitou-se ainda a construção de aplicações Python, bem como o desenvolvimento de gráficos nessa linguagem e em Excel.

Referências

- [1] LaTeX Documentation. URL: https://pt.overleaf.com/learn (acesso em 17/06/2022).
- [2] Operadores Matemáticos. URL: https://julia-doc-pt-br.readthedocs.io/en/latest/manual/mathematical-operations.html (acesso em 17/06/2022).
- [3] Linguagem de Programação Matemática Introdução à Julia. URL: https://abelsiqueira.github.io/calculo-numerico/intro-a-julia/ (acesso em 17/06/2022).
- [4] Working with Data Frames. URL: https://dataframes.juliadata.org/stable/man/working_with_dataframes/ (acesso em 17/06/2022).
- [5] Arrays with custom indices. URL: https://docs.julialang.org/en/v1/devdocs/offset-arrays/ (acesso em 17/06/2022).
- [6] Functions. URL: https://docs.juliahub.com/SpecialFunctions/78g0t/1.0.0/functions_overview/ (acesso em 17/06/2022).
- [7] Matplotlib: Visualization with Python. URL: https://matplotlib.org/(acesso em 10/06/2022).
- [8] Damian Boh. 3 Easy Ways to Deploy your Streamlit Web App Online. URL: https://towardsdatascience.com/3-easy-ways-to-deploy-your-streamlit-web-app-online-7c88bb1024b1 (acesso em 16/06/2022).
- [9] st.columns. URL: https://docs.streamlit.io/library/api-reference/layout/st.columns (acesso em 16/06/2022).
- [10] st.video. URL: https://docs.streamlit.io/library/api-reference/media/st.video (acesso em 16/06/2022).
- [11] Rafael K. Streamlit101: o básico para colocar seu projeto no ar. URL: https://rknagao.medium.com/streamlit-101-o-b%5C%C3%5C% A1sico-para-colocar-seu-projeto-no-ar-38a71bd641eb (acesso em 16/06/2022).
- [12] API reference. URL: https://docs.streamlit.io/library/api-reference (acesso em 16/06/2022).
- [13] st.latex. URL: https://docs.streamlit.io/library/api-reference/text/st.latex (acesso em 16/06/2022).
- [14] Cplusplus. URL: https://cplusplus.com/ (acesso em 17/06/2022).