Um Estudo das Matrizes Associadas a Grafos Nãodirecionados

Juan LOPES

Programa de Pós-Graduação em Informática

Universidade Federal do Rio de Janeiro

Resumo

Com o avanço das redes de computadores e da computação como um todo, a teoria de grafos tem ficado mais e mais evidente. Sua aplicação vai desde o caso mais trivial, como os algoritmos de roteamento em si até os mais complexos, como busca por bons códigos corretores de erros, usando *expander graphs*. Muitos problemas já descritos pela álgebra linear aplicam-se à teoria de grafos. Neste material, tentaremos mostrar uma introdução à análise das matrizes associadas a um grafo não direcionado.

Introdução

O estudo de grafos propõe muitos problemas com aplicações diretas no mundo real. De fato, o mais famoso precursor da teoria de grafos, Euler, e sua proposição sobre o posteriormente chamado caminho Euleriano sobre as pontes de Königsberg, já é uma aplicação interessante.

Entretanto, muitos anos depois, diversos problemas foram propostos e algoritmos foram criados para resolvê-los. Dijkstra para menor caminho com único nó de início; Ford-Fulkerson para fluxo máximo; Bron-Kerbosch para encontrar clique máxima. Todos esses constituem de ferramental para análise e manipulação de grafos dirigidos ou não.

O que busca-se estudar aqui são quais as principais vantagens que a álgebra linear tem a oferecer à teoria de grafos. Dado que as arestas de um grafo podem ser representadas como uma *matrix de adjacência*, podemos utilizar alguma teoria algebra para tirar algumas conclusões.

Mais do que isso, podemos análisar também a *matriz laplaciana* do grafo para tirar conclusões sobre sua conectividade e esparsidade, dada a análise de seu espectro. Para tanto, é necessário que definamos algumas notações.

Notações Básicas

Seja G=(V, E) um grafo não direcionado, onde V é o conjunto de vértices e E o conjunto de arestas. Denote-se o número de vértices e arestas de G por n e m, respectivamente.

Seja *A* uma matriz associada ao grafo *G*, com a seguinte definição:

$$a_{ij} = \begin{cases} 1, \text{ se } (v_i, v_j) \in E \\ 0, \text{ se } (v_i, v_j) \notin E \end{cases}$$

Algumas propriedades cabem a essa matriz. Seguem.

Para grafos não direcionados, a matriz A é simétrica, isso implica em que A possui um conjunto completo de autovalores reais e que seus autovetores são ortogonais.

Dados dois grafos G_1 e G_2 , e suas matrizes de adjacência A_1 e A_2 , eles são isomórficos se existir uma matriz de permutação P, tal que $A_2 = PA_1P^{T}$;

As entradas $(A^k)_{ij}$ contém o número de passeios entre v_i e v_j de tamanho k, isso implica, por exemplo, em que o número de triângulos em G é igual a soma dos elementos da diagonal de A^3 dividida por 6;

A matriz de adjacência de um grafo bipartido é no formato $A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$, onde, se cada partição contém a e b vértices, a matriz B é de ordem $a \times b$.

Pelo fato do traço de A ser igual a o, sabemos então que a soma de seus autovalores também é igual a o.

Se G é um grafo bipartido, então o conjunto ordenado seus autovalores é simétrico em relação a o.

A relação entre o maior autovalor da matriz de adjacência e os graus dos vértices é dado por

$$d_{medio} < \lambda_{max} < d_{max}$$

Matriz Laplaciana

Uma outra matriz muito importante, que guarda diversas informações sobre o grafo é a matriz laplaciana. Ela tem este nome por ser a representação discreta do operador laplaciano. Ela é definida como

$$L = D - A$$

Onde D é matriz diagonal com os graus de cada vértice. Uma outra definição, dada elemento a elemento é

$$lij = \begin{cases} grau(v_i), \text{ se } i = j \in E \\ -1, & \text{ se } i \neq j \text{ e } (v_i, v_j) \in E \\ 0, & \text{ se } i \neq j \text{ e } (v_i, v_j) \notin E \end{cases}$$

Uma das aplicações mais famosas da matriz de adjacência é o cálculo do número de árvores geradoras, utilizando o teorema de Kirchhoff, que diz que, sejam $\lambda_1\lambda_2\cdots\lambda_{n-1}$ os autovalores não nulos da matriz laplaciana, então o número de árvores geradoras do grafo G é dado por

$$t(G) = \frac{1}{n} \lambda_1 \lambda_2 \cdots \lambda_{n-1}$$

Aplicativo

A fim de demonstrar os conceitos apresentados aqui, foi desenvolvida uma aplicação capaz de representar os grafos, calcular suas matrizes, seus autovalores, autovetores e fazer algumas afirmações com base em observação destes resultados.

Este aplicativo lê um arquivo contendo definição do número de vértices, assim como o as arestas que ligam estes vértices.

Estrela

0,00	1,00	1,00	1,00	1,00
1,00	0,00	1,00	1,00	1,00
1,00	1,00	0,00	1,00	1,00
1,00	1,00	1,00	0,00	1,00
1,00	1,00	1,00	1,00	0,00

Autovalores:

$$-1,00$$
 $-1,00$ $-1,00$ $4,00$

Matriz Laplaciana

Autovalores:

Petersen


```
0,00
       1,00
             1,00
                                        0,00
                                                           0,00
                    1,00
                          1,00
                                 1,00
                                              0,00
                                                     0,00
 1,00
       0,00
              1,00
                    1,00
                           1,00
                                 0,00
                                        1,00
                                              0,00
                                                     0,00
                                                           0,00
 1,00
       1,00
              0,00
                    1,00
                           1,00
                                 0,00
                                        0,00
                                              1,00
                                                     0,00
                                                           0,00
                                        0,00
       1,00
             1,00
                    0,00
                                                           0,00
 1,00
                           1,00
                                 0,00
                                              0,00
                                                     1,00
       1,00
              1,00
                    1,00
                           0,00
                                 0,00
                                        0,00
                                                           1,00
 1,00
                                              0,00
                                                     0,00
                                                           1,00
 1,00
       0,00
              0,00
                    0,00
                           0,00
                                 0,00
                                        1,00
                                              0,00
                                                     0,00
       1,00
             0,00
                    0,00
                           0,00
                                 1,00
                                        0,00
                                                    0,00
                                                           0,00
 0,00
                                              1,00
                                                           0,00
 0,00
       0,00
             1,00
                    0,00
                           0,00
                                 0,00
                                        1,00
                                              0,00
                                                    1,00
       0,00
              0,00
                    1,00
                           0,00
                                        0,00
                                              1,00
                                                           1,00
 0,00
                                 0,00
                                                     0,00
 0,00
       0,00
             0,00
                    0,00
                          1,00
                                 1,00
                                        0,00
                                              0,00
                                                     1,00
                                                           0,00
Autovalores:
-2,36 -2,36 -1,48 -1,48 -0,26 -0,26 1,10 1,10 1,59 4,41
```

Matriz Laplaciana

```
5,00 -1,00 -1,00 -1,00 -1,00
                                    0,00
                                           0,00
                                                 0,00
                                                       0,00
-1,00 5,00 -1,00 -1,00 -1,00
                              0,00 -1,00
                                           0,00
                                                 0,00
                                                       0,00
-1,00 -1,00 5,00 -1,00 -1,00
                              0,00
                                     0,00 - 1,00
                                                 0,00
                                                       0,00
-1,00 -1,00 -1,00
                  5,00 -1,00
                              0,00
                                     0,00
                                           0,00 - 1,00
                                                       0,00
-1,00 -1,00 -1,00 -1,00 5,00
                              0,00
                                    0,00
                                           0,00
                                                0.00 - 1.00
-1,00 0,00
            0,00
                  0,00
                        0,00
                              3,00 -1,00
                                           0,00
                                                 0,00 - 1,00
 0,00 - 1,00
            0,00
                  0,00
                        0,00 -1,00
                                     3,00 -1,00
                                                 0,00
                                                       0,00
0,00 0,00 -1,00
                  0,00
                        0,00
                              0,00 -1,00
                                           3,00 -1,00
                                                       0,00
                                                 3,00 -1,00
            0,00 - 1,00
                        0,00
                              0,00
                                    0,00 - 1,00
 0,00 0,00
 0,00
      0,00
           0,00
                  0,00 -1,00 -1,00
                                    0,00
                                          0,00 -1,00
                                                      3,00
Autovalores:
 0,00 2,00 2,12 2,12 4,09 4,09 6,26 6,26 6,52
                                                       6,52
```

Nauru

0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00
1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00
0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00
1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00
Autov	alores:																						
-2 00	-2,00	-2 00	-2 00	-2 00	-2 00	-2 00	-1 00	-1 00	-1 00	0.00	0.00	0.00	0.00	1 00	1 00	1 00	2 00	2 00	2 00	2 00	2 00	2 00	3.00
-3,00	-2,00	-2,00	-2,00	-2,00	-2,00	-2,00	-1,00	-1,00	-1,00	0,00	0,00	0,00	0,00	1,00	1,00	1,00	2,00	2,00	2,00	2,00	2,00	2,00	3,00

Matriz Laplaciana

3.00	-1.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00	-1.00
		-1,00															0,00			-,	0.00	-,	-,
		3,00						0.00									0,00				-1.00	•	
		-1.00															0,00			-,	0.00	-,	-,
		0.00	•	•													0,00		-1,00	0,00	•	0,00	
	0.00						0,00	0,00			0,00						0,00			0,00	0.00		0.00
		0.00															0,00		0.00	0.00	0.00		-1.00
		0,00																	0.00	0.00		0.00	
	0,00																0,00		0.00	0.00	-,	-,	0.00
		0,00																	0.00	0.00	0.00	•	
		0,00																	0.00	0.00	-,		-,
	0.00				0.00				0.00								0,00		0,00	0.00			0.00
0.00	0,00	0.00	0.00		-1.00												0,00		0.00	0.00	0.00	0.00	0.00
	0,00		0,00	0,00	0,00	0.00											0,00		0,00	0,00	0,00	-1,00	0,00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	-1.00	0.00	0.00	0.00	-1.00	3.00	-1.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0,00						0.00		0,00								0,00			-1,00	0.00	0,00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	-1.00										-1,00		0.00	0.00	0.00	0.00	0.00
-1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00									3,00			0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	0,00	0,00	0,00	0,00	0,00	-1,00	3,00	-1,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	-1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	3,00	-1,00	0,00	0,00	0,00
0,00	0,00	0,00	0.00	0,00	0.00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	0,00	0,00	0,00	-1,00	3,00	-1,00	0,00	0,00
0,00	0,00	-1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	3,00	-1,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	3,00	-1,00
-1,00	0,00	0,00	0,00	0,00	0,00	-1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	3,00
Autous	lavası																						
Autova	iores:																						
0 00	1 00	1 00	1 00	1 00	1 00	1 00	2 00	2 00	2 00	3 00	3 00	3 00	3 00	4 00	4 00	4 00	5 00	5 00	5 00	5 00	5 00	5 00	6 00

Referências

- Vejmelka, Martin. Spectral Graph Culstering. [Online] 2009. http://ai.ms.mff.cuni.cz/~sui/ Seminar2009MartinVejmelka.pdf
- Mohah, Bojan. Some Applications of Laplace Eigenvalues of Graphs. [Online]. http://www.fmf.uni-lj.si/~mohar/Papers/ Montreal.pdf
- Zhou, Dengyong; Burges, Christopher J.C. High-Order Regularization on Graphs. [Online]. http://research.microsoft.com/en-us/um/people/cburges/papers/highorder.pdf
- Weisstein, Eric W. "Königsberg Bridge Problem." From MathWorld -- A Wolfram Web Resource. http://mathworld.wolfram.com/ KoenigsbergBridgeProblem.html
- Ore, Oystein. Theory of Graphs. AMS Bookstore, 1967, 3 ed. Disponível online em: http://books.google.com/ books?id=uQPoHqzGBIUC
- Cormen, Thomas H. Introduction to Algorithms, p. 559. MIT Press, 2001. Disponível online em: http://books.google.com/ books?id=NLngYyWFl_YC
- Harary, Frank. The Determinant of the Adjacency Matrix of a Graph. [Online] 1962. http://www.yaroslavvb.com/papers/ harary-determinant.pdf
- Fox, Jacob. Lecture 18: Spectral graph theory. [Online]. http://www.princeton.edu/~jacobfox/MAT307/lecture18.pdf
- Spielman, Daniel. Spectral Graph Theory and its Applications. [Online]. http://www.cs.yale.edu/homes/spielman/sgta/ SpectTut.pdf