重庆大学学生实验报告

实验课程名称		(数学模型	型》		
	2019	至	2020	学年第	2	学期

小组成员信息										
	小组	成 员 1								
姓名	姓名									
邓露	20184275	004	94							
小组成员 2										
姓名	姓名									
王桂梅	20181814	004	62							
	小组月	成员 3								
姓名	姓名									
杨紫怡	20184272	004	76							

邓露 94 号 4 班 20184275

(1) 作图确定方程 $x^3-x+4=0$ 的实根分布情况,并用二分法(不熟悉可以在网上百度)求在开区间(-2,-1)内的实根近似值,要求精度为0.001,用函数M文件实现。

作图:

>> x=-2:0.2:2;

>> $y=x.^3-x+4$;

>> plot(x,y,'y')

方程有一个实根,分布在-2到-1之间。

二根法求实根近似值:

%函数 M 文件实现

```
function [res] = binsearch(a,b,n)
t=a;
y=t^3-t+4;
y1=y;
t=b;
y=t^3-t+4;
y2=y;
t=(a+b)/2;
y=t^3-t+4;
y3=y;
k=1;
while(rem((b-a)/k,n)==0)
    if(y1*y2 > 0)
    break;
```

```
elseif(y3==0)
      break;
   elseif(y1*y3<0)</pre>
      y2=y3;
      b=t;
   elseif(y2*y3<0)</pre>
      y1=y3;
      a=t;
   end
   t = (a+b)/2;
   y=t^3-t+4;
   у3=у;
   k=k+1;
end
res=t;
end
>> res=binsearch(a,b,n);
>> res
res =
   -1.8750
方程 x^3-x+4=0 的实根在开区间 (-2,-1)内的实根近似值为-1.875.
```

(2) 设有 8 种投资选择:5 支股票,2 种债券,黄金. 投资者收集到这些投资项目的年收益率的历史数据,请将如下数据用 txt 或 EXCEL 导入到 MATLAB(方法可以百度),计算每个项目的平均收益率和方差。(选做)

项目 年份	债券 1	债券 2	股票 1	股票 2	股票 3	股票 4	股票 5	黄金
1973	1.075	0.942	0.852	0.815	0.698	1.023	0.851	1.677
1974	1.084	1.020	0. 735	0.716	0.662	1.002	0.768	1.722
1975	1.061	1.056	1.371	1.385	1.318	1. 123	1.354	0.760
1976	1.052	1. 175	1.236	1.266	1.280	1. 156	1.025	0.960
1977	1.055	1.002	0.926	0.974	1.093	1.030	1. 181	1.200
1978	1.077	0.982	1.064	1.093	1.146	1.012	1.326	1. 295
1979	1.109	0.978	1.184	1.256	1.307	1.023	1.048	2. 212
1980	1. 127	0.947	1.323	1. 337	1. 367	1.031	1.226	1.296
1981	1.156	1.003	0.949	0.963	0.990	1.073	0.977	0.688
1982	1.117	1.465	1.215	1. 187	1.213	1.311	0.981	1.084
1983	1.092	0.985	1.224	1.235	1.217	1.080	1.237	0.872
1984	1.103	1.159	1.061	1.030	0.903	1.150	1.074	0.825

1985	1.080	1.366	1.316	1.326	1.333	1. 213	1.562	1.006
1986	1.063	1.309	1.186	1.161	1.086	1. 156	1.694	1.216
1987	1.061	0.925	1.052	1.023	0. 959	1.023	1.246	1.244
1988	1.071	1.086	1. 165	1.179	1. 165	1.076	1. 283	0.861
1989	1.087	1.212	1.316	1.292	1.204	1.142	1.105	0.977
1990	1.080	1.054	0.968	0.938	0.830	1.083	0.766	0.922
1991	1.057	1. 193	1.304	1.342	1.594	1. 161	1.121	0.958
1992	1.036	1.079	1.076	1.090	1.174	1.076	0.878	0.926
1993	1.031	1.217	1.100	1.113	1.162	1.110	1.326	1.146
1994	1.045	0.889	1.012	0.999	0. 968	0. 965	1.078	0.990

%在 matlab 中导入 excel 数据为 x

%求平均收益率

>> disp(sprintf('The average of each item: ')); disp(sprintf('%g\n',mean(x,1)))

The average of each item:

1.07814

1.09291

1.11977

1.12364

1.12132

1.09177

1.14123

1.12895

%求方差

>> disp(sprintf('The variance of each item: ')); disp(sprintf('%g\n',var(x,0,1)))

The variance of each item:

0.000927742

0.0231523

0.0282829

0.031913

0.0500062

0.00648942

0.0554227

0.127085

数学模型第二周线下作业

4 班王桂梅 62 号

作图确定方程 $x^3-x+4=0$ 的实根分布情况,并用二分法(不熟悉可以在网上百度)求在开区间(-2, -1)内的实根近似值,要求精度为0. 001,用函数M文件实现。

二分法

```
1) function p=qh(a,b)
```

```
2) f=0(x)(x.^3-x+4);
```

```
4) else
```

5)
$$p=(a+b)/2;$$

$$fp=f(p)$$
;

9) if
$$f(a) *fp<0$$

11) else

13) end

14)
$$p=(a+b)/2;$$

15)
$$fp=f(p);$$

17) end

18)

19)

20) end

- 21) 结果
- 22) ans =-1.7964

作图法

function f=f(x) $f=x.^3-x+4$;

end

>> y1=f(x);

>> y2=f(x)-f(x);

>>plot(x, y1, x, y2);

第一题

- >> m=mean (Untitled, 1);//计算矩阵列的平均值
- >> t=std(Untitled,0,1);//计算矩阵列的标准差
- >> t=t.^2;//标准差的平方(方差)

平均值

	1	2	3	4	5	6	7	8	9
1	1.9835e+	1.0781	1.0929	1.1198	1.1236	1.1213	1.0918	1.1412	1.1290
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
	<								

方差

	1	2	3	4	5	6	7	8	9
	42.1667	9.2774e-04	0.0232	0.0283	0.0319	0.0500	0.0065	0.0554	0.1271
)									
1									
2									
3									
1									
5									
7									

数学模型第2周线下作业

姓名: 杨紫怡 **点名册序号**: 76 **班号**: 4

学号: 20184272

作业:

(1) 作图确定方程 $x^3-x+4=0$ 的实根分布情况,并用二分法(不熟悉可以在网上百度)求在开区间(-2, -1) 内的实根近似值,要求精度为0.001,用函数M文件实现。

程序:

```
%作图确定方程 x^3-x+4=0 的实根分布情况
\Rightarrow ezplot x-x;
>> grid on;
>> hold on;
\Rightarrow ezplot('x^3-x+4')
%将区间缩小,放大图片
\Rightarrowezplot x-x;
>>grid on;
>>hold on:
\Rightarrowezplot('x^3-x+4', [-2, -1]);
%用二分法求在开区间 (-2,-1)内的实根近似值,精度为0.001,函数M文件
 function root = solvefx(u,d,pre)%u: 上界, d: 下界, pre: 精度
    function y = f(x)
    y=x^3-x+4;
    end
while u-d>pre
        root=(u+d)/2;
        if f(root) == 0
           break;
        end
        if f(root)*f(u)<0
           d=root;
        else
           u=root;
        end
    end
    disp("root="), disp(root);
 end
```

结果: 1) 作图法:

- 2) 二分法:
- >> solvefx(-1, -2, 0.001)

root=

-1.7959

a end

a colvefx (line 5)

while u-d>pre

>> solvefx(-1, -2, 0.001)

root=

-1.7959

分析:

作图法: 由图片可知,该函数有一个实根,大概在(-2,-1)之间。放大后得实根在(-1.8,-1.7)之间。

二分法: 由运行结果得到该函数在开区间 (-2,-1)内的实根近似值为-1.7959。

```
|

>> fzero('x^3-x+4',2)

ans =

-1.7963
```

所得结果和调用fzero函数得到的差不多。

(2) 设有 8 种投资选择:5 支股票,2 种债券,黄金. 投资者收集到这些投资项目的年收益率的历史数据,请将如下数据用 txt 或 EXCEL 导入到 MATLAB(方法可以百度),计算每个项目的平均收益率和方差。(选做)

项目 年份	债券1	债券 2	股票 1	股票 2	股票 3	股票 4	股票 5	黄金
1973	1.075	0.942	0.852	0.815	0.698	1.023	0.851	1.677
1974	1.084	1.020	0. 735	0.716	0.662	1.002	0.768	1.722
1975	1.061	1.056	1.371	1.385	1.318	1. 123	1.354	0.760
1976	1.052	1. 175	1.236	1.266	1.280	1. 156	1.025	0.960
1977	1.055	1.002	0.926	0.974	1.093	1.030	1. 181	1.200
1978	1.077	0.982	1.064	1.093	1.146	1.012	1.326	1. 295
1979	1.109	0. 978	1.184	1.256	1.307	1.023	1.048	2. 212
1980	1.127	0. 947	1.323	1. 337	1.367	1.031	1.226	1.296
1981	1.156	1.003	0.949	0.963	0.990	1.073	0.977	0.688
1982	1. 117	1.465	1.215	1. 187	1.213	1.311	0.981	1.084
1983	1.092	0.985	1.224	1.235	1.217	1.080	1. 237	0.872
1984	1.103	1.159	1.061	1.030	0.903	1.150	1.074	0.825
1985	1.080	1.366	1.316	1.326	1.333	1.213	1.562	1.006
1986	1.063	1.309	1. 186	1. 161	1.086	1. 156	1.694	1.216
1987	1.061	0.925	1.052	1.023	0. 959	1.023	1.246	1.244
1988	1.071	1.086	1.165	1.179	1.165	1.076	1. 283	0.861
1989	1.087	1.212	1.316	1.292	1.204	1.142	1.105	0.977
1990	1.080	1.054	0.968	0.938	0.830	1.083	0.766	0.922
1991	1.057	1. 193	1.304	1.342	1.594	1. 161	1. 121	0.958
1992	1.036	1.079	1.076	1.090	1.174	1.076	0.878	0.926
1993	1.031	1.217	1.100	1.113	1.162	1.110	1.326	1.146
1994	1.045	0.889	1.012	0.999	0.968	0.965	1.078	0.990

程序:

- >> data=xlsread('C:\Users\HP\Desktop\shumoweek2.xlsx'); %将数据读入matlab中
- >> data2=data(1:22, 2:9); %选取表格的第二列至第九列
- >> ave=mean(data2); %每个项目的平均收益率
- >> d var=var(data2, 1, 1); %每个项目的方差
- >> disp('每个项目的平均收益率:'), disp(ave)
- >> disp('每个项目的方差:'), disp(d_var)

结果:

导入 excel 表

	data 🗶 d	ata2 🗶 a	ve x d v	/ar 🗶					
	2x9 double								
	1	2	3	4	5	6	7	8	9
1	1973	1.0750	0.9420	0.8520	0.8150	0.6980	1.0230	0.8510	1.6770
2	1974	1.0840	1.0200	0.7350	0.7160	0.6620	1.0020	0.7680	1.7220
3	1975	1.0610	1.0560	1.3710	1.3850	1.3180	1.1230	1.3540	0.7600
4	1976	1.0520	1.1750	1.2360	1.2660	1.2800	1.1560	1.0250	0.9600
5	1977	1.0550	1.0020	0.9260	0.9740	1.0930	1.0300	1.1810	1.2000
6	1978	1.0770	0.9820	1.0640	1.0930	1.1460	1.0120	1.3260	1.2950
7	1979	1.1090	0.9780	1.1840	1.2560	1.3070	1.0230	1.0480	2.2120
8	1980	1.1270	0.9470	1.3230	1.3370	1.3670	1.0310	1.2260	1.2960
9	1981	1.1560	1.0030	0.9490	0.9630	0.9900	1.0730	0.9770	0.6880
10	1982	1.1170	1.4650	1.2150	1.1870	1.2130	1.3110	0.9810	1.0840
11	1983	1.0920	0.9850	1.2240	1.2350	1.2170	1.0800	1.2370	0.8720
12	1984	1.1030	1.1590	1.0610	1.0300	0.9030	1.1500	1.0740	0.8250
13	1985	1.0800	1.3660	1.3160	1.3260	1.3330	1.2130	1.5620	1.0060
14	1986	1.0630	1.3090	1.1860	1.1610	1.0860	1.1560	1.6940	1.2160
15	1987	1.0610	0.9250	1.0520	1.0230	0.9590	1.0230	1.2460	1.2440
16	1988	1.0710	1.0860	1.1650	1.1790	1.1650	1.0760	1.2830	0.8610
17	1989	1.0870	1.2120	1.3160	1.2920	1.2040	1.1420	1.1050	0.9770
18	1990	1.0800	1.0540	0.9680	0.9380	0.8300	1.0830	0.7660	0.9220
19	1991	1.0570	1.1930	1.3040	1.3420	1.5940	1.1610	1.1210	0.9580
20	1992	1.0360	1.0790	1.0760	1.0900	1.1740	1.0760	0.8780	0.9260
21	1993	1.0310	1.2170	1.1000	1.1130	1.1620	1.1100	1.3260	1.1460
22	1994	1.0450	0.8890	1.0120	0.9990	0.9680	0.9650	1.0780	0.9900
22									

选取8个项目的数据:每个项目的平均收益率:

	data × 1	data2 🗶	ave 🗶 🖸	I_var 🗶 📗				
	1	2	3	4	5	6	7	8
1	1.0781	1.0929	1.1198	1.1236	1.1213	1.0918	1.1412	1.1290
2								

每个项目的方差:

	1	2	3	4	5	6	7	8
1	1.0750	0.9420	0.8520	0.8150	0.6980	1.0230	0.8510	1.6770
2	1.0840	1.0200	0.7350	0.7160	0.6620	1.0020	0.7680	1.7220
3	1.0610	1.0560	1.3710	1.3850	1.3180	1.1230	1.3540	0.7600
4	1.0520	1.1750	1.2360	1.2660	1.2800	1.1560	1.0250	0.9600
5	1.0550	1.0020	0.9260	0.9740	1.0930	1.0300	1.1810	1.2000
6	1.0770	0.9820	1.0640	1.0930	1.1460	1.0120	1.3260	1.2950
7	1.1090	0.9780	1.1840	1.2560	1.3070	1.0230	1.0480	2.2120
8	1.1270	0.9470	1.3230	1.3370	1.3670	1.0310	1.2260	1.2960
9	1.1560	1.0030	0.9490	0.9630	0.9900	1.0730	0.9770	0.6880
10	1.1170	1.4650	1.2150	1.1870	1.2130	1.3110	0.9810	1.0840
11	1.0920	0.9850	1.2240	1.2350	1.2170	1.0800	1.2370	0.8720
12	1.1030	1.1590	1.0610	1.0300	0.9030	1.1500	1.0740	0.8250
13	1.0800	1.3660	1.3160	1.3260	1.3330	1.2130	1.5620	1.0060
14	1.0630	1.3090	1.1860	1.1610	1.0860	1.1560	1.6940	1.2160
15	1.0610	0.9250	1.0520	1.0230	0.9590	1.0230	1.2460	1.2440
16	1.0710	1.0860	1.1650	1.1790	1.1650	1.0760	1.2830	0.8610
17	1.0870	1.2120	1.3160	1.2920	1.2040	1.1420	1.1050	0.9770
18	1.0800	1.0540	0.9680	0.9380	0.8300	1.0830	0.7660	0.9220
19	1.0570	1.1930	1.3040	1.3420	1.5940	1.1610	1.1210	0.9580
20	1.0360	1.0790	1.0760	1.0900	1.1740	1.0760	0.8780	0.9260
21	1.0310	1.2170	1.1000	1.1130	1.1620	1.1100	1.3260	1.1460
22	1.0450	0.8890	1.0120	0.9990	0.9680	0.9650	1.0780	0.9900

>>> disp('每个项目的平均收益率: '), disp(ave)
每个项目的平均收益率:
列 1 至 6

1.0781 1.0929 1.1198 1.1236 1.1213 1.0918

列 7 至 8

1.1412 1.1290

>>> disp('每个项目的方差: '), disp(d_var)
每个项目的方差:
 0.0009 0.0221 0.0270 0.0305 0.0477 0.0062 0.0529 0.1213

分析:

从所得结果来看,股票5的收益最高,债券1的年收益率波动最小。