答题时不要超过此线

第十四届全国大学生数学竞赛预赛试卷参考答案 (数学 B 类, 2022 年)

考试形式: 闭卷 考试时间: _150_ 分钟 满分: _100_分

题号		=	三	四	五	六	总分
满分	15	15	15	20	15	20	100
得分							

注意:

- 1. 所有答题都须写在标准答题纸上,写在本试卷或其它纸上均无效.
- 2. 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3. 如答题空白不够,可写在当页背面,并标明题号.

得分	
评阅人	

一、(本题 15 分) 空间直角坐标系中两平面 x+y+z-3=0 和 x-2y-z+2=0 的交线为 L. 求过点 (1,2,3) 并与直线 L 垂直的平面方程.

解答. 两平面的法向量分别为

$$(1,1,1), (1,-2,-1).$$

它们的交线 L 的直线方向 v 垂直于这两个平面的法向量,故

$$v = (1, 1, 1) \times (1, -2, -1) = (1, 2, -3).$$

...... (5 分)

向量v也是所求的与L垂直的平面的法向量.于是,所求平面方程为

$$(x-1) + 2(y-2) - 3(z-3) = 0,$$

$$x + 2y - 3z + 4 = 0.$$

得分 评阅人 二、(本题 15 分) 设 $\lim_{n\to +\infty} \frac{a_n}{n^2} = a$, $\lim_{n\to +\infty} \frac{b_n}{n^2} = b$. 证 明极限 $\lim_{n\to +\infty} \frac{1}{n^5} \sum_{k=0}^n a_k b_{n-k}$ 存在并求其值.

解答. 对于 $n \ge 1$, 记 $A_n = \frac{a_n}{n^2} - a$, $B_n = \frac{b_n}{n^2} - b$. 则 $\lim_{n \to +\infty} A_n = \lim_{n \to +\infty} B_n = 0$. 从而 $\{A_n\}$, $\{B_n\}$ 有界. 记 $M = \sup_{n \ge 1} (|A_n| + |B_n|) + |a| + |b|$.

由 Stolz 公式或利用定积分, 我们有

$$\lim_{n \to +\infty} \frac{1}{n^5} \sum_{k=0}^{n} k^2 (n-k)^2 = \lim_{n \to +\infty} \left(\sum_{k=0}^{n} \frac{k^2}{n^3} - 2 \sum_{k=0}^{n} \frac{k^3}{n^4} + \sum_{k=0}^{n} \frac{k^4}{n^5} \right)$$

$$= \frac{1}{3} - \frac{2}{4} + \frac{1}{5} = \frac{1}{30}.$$

另一方面,对于 $n \ge 2$,有

$$\left| \frac{1}{n^5} \sum_{k=0}^{n} a_k b_{n-k} - \frac{ab}{n^5} \sum_{k=1}^{n-1} k^2 (n-k)^2 - \frac{a_0 b_n + a_n b_0}{n^5} \right|$$

$$= \left| \frac{1}{n^5} \sum_{k=1}^{n-1} k^2 (n-k)^2 \left(A_k B_{n-k} + b A_k + a B_{n-k} \right) \right|$$

$$\leqslant \frac{M}{n} \sum_{k=1}^{n-1} \left(|A_k| + |B_k| \right).$$

由 Stolz 公式,

$$\lim_{n \to +\infty} \frac{M}{n} \sum_{k=1}^{n-1} (|A_k| + |B_k|) = \lim_{n \to +\infty} M(|A_n| + |B_n|) = 0.$$

因此,

$$\lim_{n \to +\infty} \frac{1}{n^5} \sum_{k=0}^{n} a_k b_{n-k} = ab \lim_{n \to +\infty} \frac{1}{n^5} \sum_{k=1}^{n-1} k^2 (n-k)^2 = \frac{ab}{30}.$$
(15 $\frac{1}{2}$)

得分 评阅人

证明.令

三、(本题 15 分) 设 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, 矩阵 B 与 A 可

交换, 其元素均为正整数且行列式为 1. 证明存在正整数 k使得 $B = A^k$.

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

由于 B 与 A 可交换, 可得 c = b, d = a - b. B 的元素均为正整数, 故 a, b 为正整 数且 a > b. 再由 $\det B = 1$ 得到 $a^2 - ab - b^2 = 1$.

若 b=1, 则由 $a^2-ab-b^2=1$ 易得 a=2, 因此

$$B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = A.$$

若 b > 1, 考察矩阵

$$B_1 = A^{-1}B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ b & a - b \end{pmatrix} = \begin{pmatrix} a - b & 2b - a \\ 2b - a & 2a - 3b \end{pmatrix}.$$

$$B_1 = \left(\begin{array}{cc} a_1 & b_1 \\ b_1 & a_1 - b_1 \end{array}\right).$$

显然 a_1 为正整数. 注意到 $a^2 - ab - b^2 = 1$, 若 $a \ge 2b$, 则有 $1 + b^2 = a^2 - b^2 = 1$ $ab = a(a - b) \ge 2b^2$, 即 $b^2 \le 1$, 矛盾, 由此得到 $b_1 = 2b - a$ 也是正整数. 显 然 $a_1^2 - a_1b_1 - b_1^2 = \det B_1 = (\det A)^{-1} \det B = 1$, 即 $a_1(a_1 - b_1) = 1 + b_1^2 > 0$, 从 而 $a_1 > b_1$. 这表明矩阵 B_1 中的元素 a_1, b_1 满足矩阵 B 中元素 a, b 所满足的条 件, 但是 $b_1 = b - (a - b) < b$. 若 $b_1 > 1$, 则类似地矩阵

$$B_2 = A^{-1}B_1 = (A^{-1})^2 B = \begin{pmatrix} a_2 & b_2 \\ b_2 & a_2 - b_2 \end{pmatrix}$$

中的元素 a_2, b_2 也满足矩阵 B 中元素 a, b 所满足的条件, 但是 $b_2 < b_1 < b$. 继续 进行下去,通过左乘 A^{-1} 有限次,比如 s 次后可以使得得到的矩阵

$$B_s = (A^{-1})^s B = \begin{pmatrix} a_s & b_s \\ b_s & a_s - b_s \end{pmatrix}$$

中的元素 a_s, b_s 满足 $a_s > b_s > 0, a_s^2 - a_s b_s - b_s^2 = 1$ 且 b_s 为最小正整数, 即	$ \parallel b_s = 1.$
***************************************	(12分)
由前面的证明得到 $B_s = A$, 从而 $B = A^{s+1}$, 令 $k = s+1$ 即可.	
	(15分)

THE BASE WILLIAM AND A SHARE WITH WITH A SHARE WITH A SHA

姓名:

	(2	0	1	\	$\left(\begin{array}{c} \frac{8}{3} \end{array}\right)$	y_1	y_2
四、(本题 20 分)设 A=	4	1	x	,B =	y_2	8 3	y_1
	$\sqrt{4}$	0	5)	y_1	y_2	$\frac{8}{3}$

得分 评阅人

为复数域上的两个 3 阶方阵,其中 x, y_1, y_2 为未知复数.若已知 A 与 B 有相同的 Jordan 标准型,求 x, y_1, y_2 .

解答. 1) 首先令
$$H = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
, 则有 $H^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $H^3 = E$. 于是 $B =$

 $\frac{8}{3}E + y_1H + y_2H^2$. 由于 $|\lambda E - H| = \lambda^3 - 1$, 故 H 的特征值为 $1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}$, 它们 各不相同, 因此 H 可对角化, 即

$$H \sim \begin{pmatrix} 1 & & \\ & e^{i\frac{2\pi}{3}} & \\ & & e^{i\frac{4\pi}{3}} \end{pmatrix}.$$

结果 B 也可对角化,

$$B \sim \begin{pmatrix} f(1) & & \\ & f(e^{i\frac{2\pi}{3}}) & \\ & & f(e^{i\frac{4\pi}{3}}) \end{pmatrix},$$

其中 $f(t) = \frac{8}{3} + y_1 t + y_2 t^2$.

2) 现由 $A \sim B$ 可知: A 可相似对角化. 直接计算可知 A 的特征值为 $\lambda_1 = 1$ (2 重), $\lambda_2 = 6$ (1 重). 故有 $\lambda_1 = 1$ 的几何重数为 2, 即相应于 $\lambda_1 = 1$ 的 A 的特征向量空间的维数为 2. 由 $(A - \lambda_1 E)z = 0$ 知: 秩 (A - E) = 1. 将A - E 进行初等行变换,将之化为行阶梯型:

$$A - 1E = \begin{pmatrix} 2 - 1 & 0 & 1 \\ 4 & 0 & x \\ 4 & 0 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & x - 4 \\ 0 & 0 & 0 \end{pmatrix},$$

 3) 下面求 y_1, y_2 . 现有 $A \sim \begin{pmatrix} 1 \\ 1 \\ 6 \end{pmatrix}$. 故有 $A \sim B \Leftrightarrow B$ 的三个特征值为1, 1, 6. 由此得下列三种情形:

$$(I) \begin{cases} f(1) &= 1, \\ f(e^{i\frac{2\pi}{3}}) &= 1, \\ f(e^{i\frac{4\pi}{3}}) &= 6; \end{cases}$$

$$(II) \begin{cases} f(1) &= 1, \\ f(e^{i\frac{4\pi}{3}}) &= 1, \\ f(e^{i\frac{2\pi}{3}}) &= 6; \end{cases}$$

$$(III) \begin{cases} f(1) &= 6, \\ f(e^{i\frac{2\pi}{3}}) &= 1, \\ f(e^{i\frac{2\pi}{3}}) &= 1, \\ f(e^{i\frac{4\pi}{3}}) &= 1; \end{cases}$$

对情形(I),解之得 $\begin{cases} y_1 = -\frac{5}{6} + \frac{5\sqrt{3}}{6}i \\ y_2 = -\frac{5}{6} - \frac{5\sqrt{3}}{6}i \end{cases}; 对情形(II),解之得 <math display="block">\begin{cases} y_1 = -\frac{5}{6} - \frac{5\sqrt{3}}{6}i \\ y_2 = -\frac{5}{6} + \frac{5\sqrt{3}}{6}i \end{cases};$ 对情形(III),解之得 $\begin{cases} y_1 = -\frac{5}{6} - \frac{5\sqrt{3}}{6}i \\ y_2 = -\frac{5}{6} + \frac{5\sqrt{3}}{6}i \end{cases}$

......(20分)

得分	
评阅人	

五、(本题 15 分) 设函数 $f(x) = \frac{1}{1-x-x^2}, a_n =$ $\frac{1}{n!}f^{(n)}(0) (n \ge 0)$. 证明:级数 $\sum_{n=0}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}}$ 收敛并求它的和.

证明. 我们有 $\delta > 0$ 使得

因此, $a_0 = 1$, $a_1 = a_0$,

$$a_{n+2} = a_{n+1} + a_n, \qquad \forall \, n \geqslant 0.$$

从而易见 $a_n \ge n$ 进而 $\lim_{n \to +\infty} a_n = +\infty$. 另一方面,

由此可得

$$\sum_{n=0}^{m} \frac{a_{n+1}}{a_n \cdot a_{n+2}}$$

$$= \frac{1}{a_0} + \frac{1}{a_1} - \frac{1}{a_{m+1}} - \frac{1}{a_{m+2}}, \quad \forall m \geqslant 2.$$

因此, 级数
$$\sum_{n=0}^{\infty} \frac{a_{n+1}}{a_n \cdot a_{n+2}}$$
 收敛且和为 $\frac{1}{a_0} + \frac{1}{a_1} = 2$. (15 分)

得分	
评阅人	

六、(本题 20 分) 证明: (1) 对任意 0 < a < 1, 存在 唯一实数 b > 1 满足 $a - \ln a = b - \ln b$; (2) 对于上述数对 a, b 有 ab < 1; (3) 对于上述数对 a, b 有 $b + \ln a > 1$.

证明. 设 $f(x) = x - \ln x$, 它是定义在 $(0, +\infty)$ 上的连续函数.

(1) 注意到 $f'(x) = 1 - \frac{1}{x}$, 于是该函数在 (0,1] 上严格递减, 在 $[1,+\infty)$ 上严格递 增, 并且 $f((0,1]) = f([1,+\infty)) = [1,+\infty)$. 于是, 对任意 0 < a < 1, 存在唯一实 数 b > 1 满足 $a - \ln a = b - \ln b$.

(2) 令 $h(a) = f(\frac{1}{a}) - f(a)$ ($a \in (0,1]$). 由 (1) 的讨论, 我们只要证明对任何 $a \in (0,1)$ 成立 h(a) > 0. 如果证明了这一点,则当 0 < a < 1 时有 $f(\frac{1}{a}) > f(a)$. 因为 f(b) = f(a) 并且函数 f(x) 在 $[1, +\infty)$ 上严格递增, 于是 $b < \frac{1}{a}$. 具体地, 我们有 h(1) = 0, 而

$$\frac{\mathrm{d}h}{\mathrm{d}a} = \frac{\mathrm{d}}{\mathrm{d}a} \left(\frac{1}{a} - \ln \frac{1}{a} - a + \ln a \right) = -\frac{1}{a^2} - 1 + \frac{2}{a} = -\frac{(a-1)^2}{a^2} < 0, \ 0 < a < 1.$$
因此, 对任何 $a \in (0,1)$ 成立 $h(a) > 0$.

(3) 类似于 (2), 令 $g(a) = f(1 + \ln a) - f(a)$ ($a \in (0,1]$). 我们只要证明对任何 $a \in (0,1)$ 成立 g(a) < 0.即

$$1 - a < \ln(1 - \ln a), \quad \forall a \in (0, 1).$$

这等价于

$$1 - e^{-x} < \ln(1+x), \quad \forall x > 0.$$

由中值定理,对于x > 0,我们有 $0 < \eta < \xi < x$ 使得

$$\ln(1+x) - 1 + e^{-x} = \left(\frac{1}{1+\xi} - e^{-\xi}\right)x = \frac{(e^{\eta} - 1)x\xi}{(1+\xi)e^{\xi}} > 0.$$

(20分)