Math 531 - Partial Differential Equations Introduction to Partial Differential Equations

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

 ${\bf http://jmahaffy.sdsu.edu}$

Spring 2020

Outline

- The Class Overview
 - Grading
 - Expectations and Procedures
 - Programming
- 2 Introduction
 - Learning Objectives
 - Examples

Contact Information

Professor Joseph Mahaffy

Office	GMCS-593
Email	jmahaffy@mail.sdsu.edu
Web	http://jmahaffy.sdsu.edu
Phone	(619)594-3743
Office Hours	TBA and by appointment

Basic Information: Text

Text: Richard Haberman:

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems

 4^{th} Edition

 5^{th} Edition

Basic Information: Topics

- Review Ordinary Differential Equations
- Applications
 - Heat, Laplace's, and Wave Equations
- Primary techniques
 - Separation of Variables/Fourier Series
 - Sturm-Liouville Problems
- Other Problems/techniques
 - Higher Dimensional PDEs
 - Nonhomogeneous Problems
 - Green's Functions
 - Fourier Transforms
 - Method of Characteristics

Prerequisite Courses

- Math 252: Calculus III
 - Series and Integration of Trigonometric Functions
 - Vectors, Partial derivatives, and Gradients
 - Divergence Theorem or Gauss's Theorem
 - Multivariable Integration
- Math 254: Linear Algebra
 - Linear Independence
 - Orthogonality
 - Eigenvalues
- Math 337: Ordinary Differential Equations
 - Existence and Uniqueness of Solutions of ODEs
 - Solutions of Second Order Linear Differential Equations
 - Solving Non-homogeneous ODEs
 - Series Solutions of ODEs
 - Laplace Transforms for Solving ODEs

Basic Information: Grading

Approximate Grading

Homework*	34%
Exams and Final $^{\times}$	66%

- * Written HW, which includes problems from WeBWorK. Some exercises will include **MatLab** and/or **Maple** programs.
- \times Likely to be 2 Midterms and Final with half being Take-home. Final: Monday, May 13, 15:30 17:30.

Expectations and Procedures, I

- Most class attendance is OPTIONAL Homework and announcements will be posted on the class web page.
 If/when you attend class:
 - Please be on time.
 - Please pay attention.
 - Please turn off cell phones.

- . Alida la animatica et tata e and all annicalia la alidate
- Abide by university statutes, and all applicable local, state, and federal laws.

Expectations and Procedures, II

- Please, turn in assignments on time. (The instructor reserves the right not to accept late assignments.)
- The instructor will make special arrangements for students with documented learning disabilities and will try to make accommodations for other unforeseen circumstances, e.g. illness, personal/family crises, etc. in a way that is fair to all students enrolled in the class. *Please contact the* instructor EARLY regarding special circumstances.
- Students are expected **and encouraged** to ask questions in class!
- Students are expected **and encouraged** to to make use of office hours! If you cannot make it to the scheduled office hours: contact the instructor to schedule an appointment!

Expectations and Procedures, III

- Missed midterm exams: Don't miss exams! The instructor reserves the right to schedule make-up exams and/or base the grade solely on other work (including the final exam).
- Missed final exam: Don't miss the final! Contact the instructor ASAP or a grade of incomplete or F will be assigned.
- Academic honesty: Submit your own work. Any cheating will be reported to University authorities and a ZERO will be given for that HW assignment or Exam.

MatLab/Maple Programs

Some Programming in MatLab and/or Maple

- Students can obtain MatLab from EDORAS Academic Computing – Google SDSU MatLab or access http://edoras.sdsu.edu/~download/matlab.html
- You may also want to consider buying the student version of MatLab: http://www.mathworks.com/
- MatLab and Maple can also be accessed in the Computer Labs GMCS 421, 422, and 425.
- To purchase Maple the following hyperlink gives information – Maple adoption

Ordinary Differential Equation (ODE) – Studied in Math 337 (or equivalent Math 342A or AE 280) Typically, an ODE can be written

$$\frac{dy}{dt} = f(t, y),$$

where y(t) is an unknown function and may be a vector in \mathbb{R}^n

Partial Differential Equation (PDE) is an equation of an unknown function $u(t, \tilde{\mathbf{x}})$ that includes partial derivatives of this unknown function.

Often, u is a scalar quantity, e.g., temperature, t is time, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$

Heat Equation: Let u(t,x) be temperature in a rod:

$$\frac{\partial u(t,x)}{\partial t} = \frac{\partial^2 u(t,x)}{\partial x^2}, \qquad t > 0, \quad 0 < x < L.$$

Math 531: Learning Objectives for PDEs

Learning Objectives for Partial Differential Equations (PDEs)

- Connect significant physical problems with PDEs
- 2 Learn tools for solving PDEs, including visualization through programming
- 3 Manage the methods and details for large multi-step problems
- ② Explore decomposition of continuous functions with Fourier series
- Oevelop intuition for extending finite dimensional vector spaces (254/524) to infinite dimensions
- Appreciate the complexities and varied techniques for PDEs

Heat Equation in a Rod: Let z(t,x) be temperature in a rod:

$$\frac{\partial z(t,x)}{\partial t} = \frac{\partial^2 z(t,x)}{\partial x^2}, \qquad t > 0, \quad 0 < x < 10.$$

Initial and boundary conditions:

$$z(0,x) = 100,$$
 $z(t,0) = 0 = z(t,10).$

Vibrations on a Circular Membrane

Vibrations on a Circular Membrane: Let $u(t, r, \theta)$ be displacement of a circular membrane:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u, \qquad t > 0, \quad 0 < r < 1, \quad -\pi < \theta \le \pi.$$

Maple Worksheet - Vibration

More Partial Differential Equations

Laplace's Equation or Steady-State: Let u(x, y, z) be temperature in a rectangular box in \mathbb{R}^3 :

$$\nabla^2 u = 0$$
, $0 < x < a$, $0 < y < b$, $0 < z < c$.

Reaction-Diffusion Equation: Let c(t, x, y, z) be the concentration in a region $R \in \mathbb{R}^3$, D be diffusivity, and f(c) represent a chemical reaction:

$$\frac{\partial c}{\partial t} = f(c) + \nabla \cdot (D\nabla c), \qquad t > 0, \qquad (x, y, z) \in R.$$

More Partial Differential Equations

Age-structured model or McKendrick/von Foerster equation:

Let p(t, a) be the population in time t with individual ages a:

$$\frac{\partial p}{\partial t} + V(p)\frac{\partial p}{\partial a} = r(t, p), \qquad t > 0, \quad a > 0.$$

Nonlinear waves - Korteweg-deVries: Let u(t,x) be the wave height in shallow water:

$$\frac{\partial u}{\partial t} + (w'(0) + \beta u) \frac{\partial u}{\partial x} = \frac{w'''(0)}{3!} \frac{\partial^3 u}{\partial x^3}, \qquad t > 0.$$

Schrödinger Equation: Let A(t,x) be the amplitude of the wave height for monochromatic light:

$$\frac{\partial A}{\partial t} + w'(k_0) \frac{\partial A}{\partial x} = i \frac{w''(k_0)}{2!} \frac{\partial^2 A}{\partial x^2}, \qquad t > 0.$$

