# **Zillow House Prediction**

Springboard Data Science Career Track Program
Ly Nguyen

#### Introduction

- Selling and buying house demands are increased year by year
- Investors are interested in seeing accurate house price prediction before they actually buy or sell their properties

#### Data

- Data source: Zillow
- Data characteristics:
  - Train data: contains 77613 log errors of prediction from Jan to Sep 2017
  - Properties data: includes 2985217 rows and 58 columns. It include data from 3 counties in California: Los Angeles, Orange, Ventura
  - 50% of the columns have more than 65% of missing data

# Missing data



## Outliers







## Correlation Analysis



## **Exploratory Analysis**



Number of house sale in 2017



House Sales in California Counties

# **Exploratory Analysis**





# Building quality of house sale









## Log error





## Statistical Analysis

#### How does the total tax assessed value of the parcel change over time?



#### Is there any trend with the year when the houses were built?



## Data

|              | Los Angeles | Orange | Ventura |
|--------------|-------------|--------|---------|
| Training set | 20657       | 7932   | 2894    |
| Test set     | 5690        | 2066   | 798     |

| bathrooment | bedroomcnt | calculatedfinishedsquarefeet | fips | lotsizesquarefeet | rooment | unitcnt | yearbuilt | structuretaxvaluedollarcnt | taxvaluedollarcnt |
|-------------|------------|------------------------------|------|-------------------|---------|---------|-----------|----------------------------|-------------------|
| 1.0         | 2          | 1465                         | 6111 | 12647             | 5       | 1       | 1967.0    | 88000                      | 464000            |
| 2.0         | 3          | 1243                         | 6059 | 8432              | 6       | 1       | 1962.0    | 85289                      | 564778            |
| 3.0         | 4          | 2376                         | 6037 | 13038             | 0       | 1       | 1970.0    | 108918                     | 145143            |
| 2.0         | 3          | 1492                         | 6111 | 903               | 6       | 1       | 1982.0    | 198640                     | 331064            |
| 1.0         | 2          | 738                          | 6037 | 4214              | 0       | 1       | 1922.0    | 18890                      | 218552            |

#### **Evaluation Metrics**

- Mean Squared Error(MSE)
- Root-Mean-Squared-Error (RMSE)
- Mean-Absolute-Error (MAE)
- R<sup>2</sup> or Coefficient of Determination

#### **Evaluation Metrics**

- Mean Squared Error is one of the most preferred metrics for regression tasks. It is simply the average of the squared difference between the target value and the value predicted by the regression model. As it squares the differences, it penalizes even a small error which leads to over-estimation of how bad the model is. It is preferred more than other metrics because it is differentiable and hence can be optimized better. It is always a non-negative number. Values closer to zero represent a smaller error.
- Root Mean Square Error (RMSE) is the most widely used metric for regression tasks and is the square root of
  the averaged squared difference between the target value and the value predicted by the model. It is
  preferred more in some cases because the errors are first squared before averaging which poses a high
  penalty on large errors. This implies that RMSE is useful when large errors are undesired.
- Mean Absolute Error: MAE is the absolute difference between the target value and the value predicted by the model. The MAE is more robust to outliers and does not penalize the errors as extremely as MSE. MAE is a linear score which means all the individual differences are weighted equally. It is not suitable for applications where you want to pay more attention to the outliers.
- R<sup>2</sup> Error: Coefficient of Determination or R<sup>2</sup> is another metric used for evaluating the performance of a regression model. The metric helps us to compare our current model with a constant baseline and tells us how much our model is better. The constant baseline is chosen by taking the mean of the data and drawing a line at the mean. R squared value is always between 0 and 1, and that the best value is 1.0.

#### **Evaluation Metrics**

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (\hat{Y_i} - Y_i)^2$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

$$\boldsymbol{r} = \frac{n \left(\boldsymbol{\Sigma} \, \boldsymbol{x} \boldsymbol{y}\right) - \left(\boldsymbol{\Sigma} \boldsymbol{x}\right) (\boldsymbol{\Sigma} \boldsymbol{y})}{\sqrt{\left[\boldsymbol{n} \boldsymbol{\Sigma} \, \boldsymbol{x}^2 - \left(\boldsymbol{\Sigma} \boldsymbol{x}\right)^2\right] \left[\boldsymbol{n} \boldsymbol{\Sigma} \, \boldsymbol{y}^2 - \left(\boldsymbol{\Sigma} \boldsymbol{y}\right)^2\right]}}$$

# Linear Regression



# Linear Regression

|         | R2      | MSE   | RMSE | MAE    | MAPE |
|---------|---------|-------|------|--------|------|
| LA      | -0.0028 | 0.002 | 0.04 | 0.0356 | 48   |
| Orange  | -0.0278 | 0.002 | 0.04 | 0.0298 | 7.2  |
| Ventura | 0.0079  | 0.002 | 0.04 | 0.0312 | -6.5 |

### Random Forest



### Random Forest

|         | R2     | MSE   | RMSE | MAE    | MAPE |
|---------|--------|-------|------|--------|------|
| LA      | - 0.15 | 0.002 | 0.04 | 0.0387 | 178  |
| Orange  | -0.15  | 0.002 | 0.04 | 0.0321 | 92   |
| Ventura | -0.16  | 0.002 | 0.04 | 0.0344 | 96   |

Random Forest Results

## Hyperparameter Tuning

- n estimators = number of trees in the foreset
- max\_features = max number of features considered for splitting a node
- max\_depth = max number of levels in each decision tree
- min\_samples\_split = min number of data points placed in a node before the node is split
- min\_samples\_leaf = min number of data points allowed in a leaf node
- bootstrap = method for sampling data points (with or without replacement)

#### Best hyperparameters:

• {'n\_estimators': 400, 'min\_samples\_split': 10, 'min\_samples\_leaf': 4, 'max\_features': 'sqrt', 'max\_depth': 10, 'bootstrap': True}

### Results

- mape = 100 \* np.mean(errors / test\_labels)
- Accuracy = 100 MAPE

|                   |         | Accuracy |
|-------------------|---------|----------|
| Linear Regression | LA      | 51%      |
| Random Forest     |         | -78%     |
| Hyper Parameter   |         | 53%      |
| Linear Regression | Orange  | 92%      |
| Random Forest     |         | 7%       |
| Hyper Parameter   |         | 76%      |
| Linear Regression | Ventura | 106%     |
| Random Forest     |         | 3%       |
| Hyper Parameter   |         | 95%      |

#### Conclusion

- The model we have developed in this report have automated some level of human manual analysis. With sufficient data, the model will be easily to automate higher level analysis and reduce a lot of time and efforts for real estate experts.
- There are still limitations in the model in regards to the terms of timeline, percentage of growth, time decay, and seasonal factors therefore the model results are not very good at prediction of house price log error.
- There are several approach that consider time series forecasting like ARIMA model