04_Dimension_Reduction

4.0 A Quick View

What does it do?

Dimension Reduction:

- Reduces the dimension of data.
 - Changes the data representation into a lower-dimensional one.
- It preserves the structure of the data.
- Usually unsupervised.

Why do we need DR?

- Computation Complexity
- Pre-processing stage before further learning
- Data Visualization
- Data Interpretation

4.1 Singular Value Decomposition (SVD) 奇异值分解

4.1.0 Why SVD?

- Redundancy within dimensions of a single data sample. 多维间存在冗余信息
 - In a set of high-dimensional data samples, not all dimensions are useful.
 - There may be redundancies among some dimensions.
 - That is, some dimensions are highly related.
 - e.g., Suppose in a data set, for most data samples, $x_2 = 2x_1 + 3$. Therefore we only need x_1 since it could already describe x_2 with itself. This creates a redundancy.
 - SVD picks out main features, and project data into lower dimensions to remove such redundancies.
- Existence of noise samples. 存在噪声数据
 - Among data, smaller eigenvalues always comes with unimportant features.
 - By ignoring these data, we could reduce the noise when we are reducing data dimension.
 - That's why, during the process of SVD, we need to sort the eigenvalues.

4.1.1 Definition

- **1** Suppose that matrix $A \in \mathbb{R}^{m \times n}$ contains a set of training data.
 - *m*: Dimensions within a data sample.
 - That is, a column vector of *A* represents a data sample.
 - n: The number of data samples.
 - In fact, the role of $m \times n$ could be reversed.
 - In the current version, A is a "fat" matrix; In the reversed version, A is a "tall" matrix.
- The Singular Value Decomposition process could be described as follows.

$$A_{m imes n} = U_{m imes m} S_{m imes n} V_{n imes m}^ op$$

where,

- A is any $m \times n$ matrix.
- U is any $m \times m$ orthogonal matrix. 酉矩阵、正交矩阵
 - ullet $U^ op = U^{-1}$
 - $UU^{\top} = U^{\top}U = I$
- S is any $m \times n$ diagonal matrix. 对角矩阵
 - Singular values $\sigma_1 > \sigma_2 > \cdots > \sigma_{\min(m,n)} > 0$ is the *main* diagonal of S.

$$oldsymbol{\circ} S = egin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \ dots & dots & \ddots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma_m & \cdots & 0 \end{bmatrix}$$

- $\sigma_1^2 > \sigma_2^2 > \dots > \sigma_{\min(m,n)^2}$ are the eigenvalues of AA^{\top} and $A^{\top}A$.
- V is any $n \times n$ orthogonal matrix. 酉矩阵

Left Singular Matrix \boldsymbol{U}

- $oxed{1}$ When we look at the Left Singular Matrix U, we pay attention to its *Column Vectors*.
 - Since $U \in \mathbb{R}^{m imes m}$, it has m column vectors. They are the Left Singular Vectors.
 - These column vectors represents the Main Directions of the Row Space of matrix A.
 - Row space: The space of Row Vectors, consider the row number, i.e. the height of the matrix.
 - In other words, ${\cal U}$ denotes the relationships among the dimensions in data samples.
- i How exactly?

- Each column vector of U is a unit vector, and U's column vectors are all perpendicular 垂直 to each other, with dot product of 0.
- Each column vector of *U* represents a *co-tendency* among all the features within a data sample.
- The more left the column vector is located, the more important it is.

4.1.2 Calculation Procedures

Problem Setup

Given

 $\bullet \ \ \text{A matrix } A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 2 & 0 \end{bmatrix}.$

Do

• Find U, S, and V for Singular Value Decomposition.

Basic Knowledge

$$egin{aligned} AA^ op &= \left(USV^ op
ight)\left(USV^ op
ight)^ op\ &= \left(USV^ op
ight)\left(VS^ op U^ op
ight)\ &= US\left(V^ op V
ight)S^ op U^ op\ &= USS^ op U \end{aligned} \ A^ op A &= \left(USV^ op
ight)^ op \left(USV^ op
ight)\ &= \left(VS^ op U^ op
ight)\left(USV^ op
ight)\ &= VS^ op \left(U^ op U
ight)SV^ op\ &= VS^ op SV^ op \end{aligned}$$

Step 1. Calculate AA^{\top} and $A^{\top}A$

Known that:

$$A = egin{bmatrix} 2 & 0 & 1 \ -1 & 2 & 0 \end{bmatrix}, \ A^ op = egin{bmatrix} 2 & -1 \ 0 & 2 \ 1 & 0 \end{bmatrix}$$

Therefore, we could get:

$$AA^ op = egin{bmatrix} 2 & 0 & 1 \ -1 & 2 & 0 \end{bmatrix} egin{bmatrix} 2 & -1 \ 0 & 2 \ 1 & 0 \end{bmatrix} = egin{bmatrix} 5 & -2 \ -2 & 5 \end{bmatrix}$$
 $A^ op A = egin{bmatrix} 2 & -1 \ 0 & 2 \ 1 & 0 \end{bmatrix} egin{bmatrix} 2 & 0 & 1 \ -1 & 2 & 0 \end{bmatrix} = egin{bmatrix} 5 & -2 & 2 \ -2 & 4 & 0 \ 2 & 0 & 1 \end{bmatrix}$

Step 2. Eigenvalues and S

As we obtained AA^{\top} and $A^{\top}A$, we can get their common eigenvalues, and construct S matrix.

• The eigenvalues AA^{\top} and $A^{\top}A$ are essentially the same, except for the zero-eigenvalue.

From the definition of Eigen Values:

$$AA^{\top} = \lambda I$$

where λ is the eigenvalue of AA^{\top} . Calculate the eigen values:

$$\implies |AA^{ op} - \lambda I| = 0$$

$$\implies \left| \begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right| = 0$$

$$\implies egin{array}{c|c} 5-\lambda & -2 \ -2 & 5-\lambda \ \end{array} = 0$$

$$\implies (5-\lambda)^2-4=0$$

$$\implies \lambda^2 - 10\lambda + 21 = 0$$

$$\implies (\lambda - 3)(\lambda - 7) = 0$$

$$\implies \begin{cases} \lambda_1 = 7 \\ \lambda_2 = 3 \end{cases}, \begin{cases} \sigma_1 = \sqrt{\lambda_1} = \sqrt{7} \\ \sigma_2 = \sqrt{\lambda_2} = \sqrt{3} \end{cases}$$

Calculate Eigenvalues for $A^{\top}A$:

$$|A^ op A - \lambda I| = 0$$

$$\implies \left| egin{pmatrix} 5 & -2 & 2 \ -2 & 4 & 0 \ 2 & 0 & 1 \end{pmatrix} - \lambda egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}
ight| = 0$$

$$\implies egin{array}{c|ccc} 5-\lambda & -2 & 2 \ -2 & 4-\lambda & 0 \ 2 & 0 & 1-\lambda \ \end{array} = 0$$

$$\implies (5-\lambda)\Big[(4-\lambda)(1-\lambda)\Big] - (-2)\Big[-2(1-\lambda)\Big] + 2\Big[-2(4-\lambda)\Big] = 0$$

$$\implies (5-\lambda)(\lambda^2-5\lambda+4)-4(1-\lambda)-4(4-\lambda)=0$$

$$\implies (5-\lambda)(\lambda^2-5\lambda+4)+8\lambda-20=0$$

$$\implies (5\lambda^2 - 25\lambda + 20 - \lambda^3 + 5\lambda^2 - 4\lambda) + 8\lambda - 20 = 0$$

$$\implies (-\lambda^3 + 10\lambda^2 - 29\lambda + 20) + 8\lambda - 20 = 0$$

$$\implies -\lambda^3 + 10\lambda^2 - 21\lambda = 0$$

$$\implies (\lambda^2 - 10\lambda + 21)\lambda = 0$$

$$\implies (\lambda - 3)(\lambda - 7)(\lambda - 0) = 0$$

$$\implies \begin{cases} \lambda_1 = 7 \\ \lambda_2 = 3, \\ \lambda_3 = 0 \end{cases} \begin{cases} \sigma_1 = \sqrt{\lambda_1} = \sqrt{7} \\ \sigma_2 = \sqrt{\lambda_2} = \sqrt{3} \\ \sigma_3 = \sqrt{\lambda_2} = 0 \end{cases}$$

Therefore, the diagonal matrix S would be:

$$S = egin{pmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \end{pmatrix} = egin{pmatrix} \sqrt{7} & 0 & 0 \ 0 & \sqrt{3} & 0 \end{pmatrix}$$

Step 3. Find U

We need to find U using the eigenvalues we obtained from Step 2. Again, by the property of eigenvalues of a matrix:

$$orall x \in \mathbb{R}^m, \ (AA^ op - \lambda I)x = 0$$

For
$$\lambda_1=7$$
: $(AA^{\top}-\lambda I)x_1=0$

$$\Rightarrow \begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix} - 7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} x_1=0$$

$$\Rightarrow \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix} x_1=0$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x_1=0 \text{ (row 2 - row 1)}$$

$$\Rightarrow x_1=\begin{pmatrix} a \\ -a \end{pmatrix}$$

$$\Rightarrow u_1=\frac{x_1}{\|x_1\|}=\frac{1}{\sqrt{x_1^{\top}x_1}}x_1=\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

For
$$\lambda_2=3$$
: $(AA^{\top}-\lambda I)x_2=0$ $\Longrightarrow \left(\begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix} - 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)x_2=0$ $\Longrightarrow \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}x_2=0$ (row 2 + row 1) $\Longrightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}x_2=0$

$$\implies x_2 = inom{a}{a}$$

$$\implies u_2 = rac{x_2}{\|x_2\|} = rac{1}{\sqrt{x_2^ op x_2}} x_2 = egin{pmatrix} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{pmatrix}$$

Construct matrix U:

$$U=egin{pmatrix} ert & ert \ u_1 & u_2 \ ert & ert \end{pmatrix}=egin{pmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

For $\lambda_3=0$

Step 4. Finding V

For
$$\lambda_1=7$$
:

$$(A^{ op}A - \lambda_1 I)x_3 = 0$$

$$\implies \left(\begin{pmatrix} 5 & -2 & 2 \\ -2 & 4 & 0 \\ 2 & 0 & 1 \end{pmatrix} - 7 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) x_3 = 0$$

$$\implies \begin{pmatrix} -2 & -2 & 2 \\ -2 & -3 & 0 \\ 2 & 0 & -6 \end{pmatrix} x_3 = 0$$

$$\implies egin{cases} -2x_{31} - 3x_{32} = 0 \ 2x_{31} - 6x_{33} = 0 \end{cases}$$

$$\implies egin{cases} x_{32} = -rac{2}{3}x_{31} \ x_{33} = rac{1}{2}x_{31} \end{cases}$$

$$\implies x_3 = egin{pmatrix} x_{31} \ -rac{2}{3}x_{31} \ rac{1}{3}x_{31} \end{pmatrix} = egin{pmatrix} 3a \ -2a \ a \end{pmatrix}$$
, $||x_3|| = a\sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{14} \cdot a$

$$\implies v_1 = \frac{x_3}{\|x_3\|} = \begin{pmatrix} \frac{3}{\sqrt{14}} \\ \frac{-2}{\sqrt{14}} \\ \frac{1}{\sqrt{14}} \end{pmatrix}$$

For
$$\lambda_2=3$$
:

$$(A^ op A - \lambda_2 I)x_4 = 0$$

$$\implies \left(\begin{pmatrix} 5 & -2 & 2 \\ -2 & 4 & 0 \\ 2 & 0 & 1 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right) x_4 = 0$$

$$\implies egin{pmatrix} 2 & -2 & 2 \ -2 & 1 & 0 \ 2 & 0 & -2 \end{pmatrix} x_4 = 0$$

$$\implies egin{cases} -2x_{41}+x_{42}=0\ 2x_{41}-2x_{43}=0 \end{cases}$$

$$\implies egin{cases} x_{42} = 2x_{41} \ x_{43} = x_{41} \end{cases}$$

$$\implies x_4=egin{pmatrix} x_{41}\ 2x_{41}\ x_{41} \end{pmatrix}=egin{pmatrix} a\ 2a\ a \end{pmatrix}$$
 , $||x_4||=a\sqrt{1^2+2^2+1^2}=\sqrt{6}\cdot a$

$$\implies v_2 = rac{x_4}{\|x_4\|} = egin{pmatrix} rac{1}{\sqrt{6}} \ rac{2}{\sqrt{6}} \ rac{1}{\sqrt{6}} \end{pmatrix}$$

For
$$\lambda_3=0$$
:

$$(A^{ op}A-0I)x_5=0$$

$$\implies egin{pmatrix} 5 & -2 & 2 \ -2 & 4 & 0 \ 2 & 0 & 1 \end{pmatrix} x_5 = 0$$

$$\implies egin{cases} -2x_{51} + 4x_{52} = 0 \ 2x_{51} + x_{53} = 0 \end{cases}$$

$$\Longrightarrow egin{cases} x_{52} = rac{1}{2}x_{51} \ x_{53} = -2x_{51} \end{cases}$$

$$\implies x_5 = egin{pmatrix} x_{51} \ rac{1}{2}x_{51} \ -2x_{51} \end{pmatrix} = egin{pmatrix} a \ rac{1}{2}a \ -2a \end{pmatrix}$$
, $||x_5|| = a\sqrt{1^2 + (rac{1}{2})^2 + (-2)^2} = rac{\sqrt{21}}{2}$

$$\implies v_3 = rac{x_5}{\|x_5\|} = egin{pmatrix} rac{2}{\sqrt{21}} \ rac{1}{\sqrt{21}} \ rac{-4}{\sqrt{21}} \end{pmatrix}$$

Construct matrix V:

$$V = egin{pmatrix} | & | & | \ v_1 & v_2 & v_3 \ | & | & | \end{pmatrix} = egin{pmatrix} rac{3}{\sqrt{14}} & rac{1}{\sqrt{6}} & rac{2}{\sqrt{21}} \ rac{-2}{\sqrt{14}} & rac{2}{\sqrt{6}} & rac{1}{\sqrt{21}} \ rac{1}{\sqrt{14}} & rac{1}{\sqrt{6}} & rac{-4}{\sqrt{21}} \end{pmatrix}$$

Transpose matrix V:

$$V^ op = egin{pmatrix} - & v_1^ op & - \ - & v_2^ op & - \ - & v_3^ op & - \end{pmatrix} = egin{pmatrix} rac{3}{\sqrt{14}} & rac{-2}{\sqrt{14}} & rac{1}{\sqrt{14}} \ rac{1}{\sqrt{6}} & rac{2}{\sqrt{6}} & rac{1}{\sqrt{6}} \ rac{2}{\sqrt{21}} & rac{1}{\sqrt{21}} & rac{-4}{\sqrt{21}} \end{pmatrix}$$

Step 5. Complete SVD

$$A = egin{bmatrix} 2 & 0 & 1 \ -1 & 2 & 0 \end{bmatrix} = egin{pmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix} egin{pmatrix} \sqrt{7} & 0 & 0 \ 0 & \sqrt{3} & 0 \end{pmatrix} egin{pmatrix} rac{3}{\sqrt{14}} & rac{-2}{\sqrt{14}} & rac{1}{\sqrt{14}} \ rac{1}{\sqrt{6}} & rac{2}{\sqrt{6}} & rac{1}{\sqrt{6}} \ rac{2}{\sqrt{21}} & rac{1}{\sqrt{21}} & rac{-4}{\sqrt{21}} \end{pmatrix}$$

4.2 Principle Component Analysis (PCA) 主成分分析

4.2.0 Why PCA?

- Project data from higher dimension to lower dimension, while preserving a low projection error.
- Maximizes data variance in low-dimensional representation.
- Simple & Non-parametric method of extracting relevant information from confusing data.
- Reduce a complicate dataset to a lower dimension.

Problem Setup

Given

• An
$$n imes m$$
 training data set $X = egin{pmatrix} |&&&&|\ x^{(1)}&x^{(2)}&\cdots&x^{(m)}\ |&&&&| \end{pmatrix}$

• where $x^{(i)} \in \mathbb{R}^n$

• that is,
$$X=egin{pmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(m)} \ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(m)} \ dots & dots & \ddots & dots \ x_n^{(1)} & x_n^{(2)} & \cdots & x_n^{(m)} \end{pmatrix}$$

- Structural Analysis:
 - *n* is the *dimension* of a data sample. Each row is a feature.

• *m* is the *amount* of data sample. Each column is a data sample.

Do

- Reduces the dataset from n-dimensions to k-dimensions.
 - That is, to convert each feature from a n-d vector to a k-d vector;
 - Namely, to convert X from an $n \times m$ matrix into a $k \times m$ matrix.

4.2.1 Data Pre-processing: Mean Normalization

Given

• The
$$n imes m$$
 training data set $X = egin{pmatrix} |&&&&|\\x^{(1)}&x^{(2)}&\cdots&x^{(m)}\\|&&&&|\end{pmatrix}$

Do

1. Calculate feature mean for all the vectors:

$$\bullet \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_m \end{pmatrix}$$

- where $\mu_j = \sum_{i=1}^n x_i^{(i)}$.
- A mean of a feature with respect to all the data samples.
- 2. Feature scaling:
 - For each row of X, that is a set of a specific feature of each data sample,
 - Reduce each value on this row by the row mean.

$$ullet \left(x_j^{(1)}-\mu_j \quad x_j^{(2)}-\mu_j \quad \cdots \quad x_j^{(m)}-\mu_j
ight)$$

What it does:

What we eventually get is:

- A scaled version of a dataset.
- Since different features may have their own range of values, which could vary, we need to normalize all features into a unified range of values.
 - E.g.: House Size is around 200 squared meters, while the price could be around 30,000.

4.2.2 Reduce Data Dimension

Given

The normalized version of dataset X.

Do

1. Compute the covariance matrix by:

$$\Sigma_{n imes n} = rac{1}{m} \sum_{i=1}^m x^{(i)} (x^{(i)})^ op = rac{1}{m} X X^ op$$

2. Compute eigenvectors using Singular Value Decomposition on the covariate matrix Σ .

$$U_{n imes n}S_{n imes m}V_{m imes m}=svd(\Sigma)$$

3. Take the first k columns from U.

$$egin{aligned} U &= egin{pmatrix} ert & ert & ert & ert & ert \ u^{(1)} & u^{(2)} & \cdots & u^{(k)} & \cdots & u^{(n)} \ ert & ert & ert & ert & ert \end{pmatrix} \in \mathbb{R}^{n imes n} \ &\Longrightarrow U_{reduce} &= egin{pmatrix} ert & ert & ert & ert & ert & ert \ u^{(1)} & u^{(2)} & \cdots & u^{(k)} \ ert & ert & ert & ert \end{pmatrix} \in \mathbb{R}^{n imes k} \end{aligned}$$

4. We want to reduce $x^{(i)} \in \mathbb{R}^n \to z^{(i)} \in \mathbb{R}^k$ by:

$$z^{(i)} = U_{reduce}^{ op} x^{(i)}$$

Namely,

$$egin{pmatrix} - & (u^{(1)})^ op & - \ - & (u^{(2)})^ op & - \ dots \ - & (u^{(k)})^ op & - \end{pmatrix}_{k imes n} egin{pmatrix} x_1^{(1)} \ x_2^{(1)} \ dots \ x_k^{(1)} \ dots \ x_k^{(1)} \ dots \ x_n^{(1)} \end{pmatrix}_{n imes 1} = egin{pmatrix} z_1^{(i)} \ z_2^{(i)} \ dots \ z_k^{(i)} \ \end{pmatrix}_{k imes 1}$$

4.2.3 Choosing k

Reconstruct Original Data

After PCA, we obtain $z^{(i)} = U_{reduce}^{ op} x^{(i)}.$ We can reconstruct the original data from $z^{(i)}$ by:

$$\widetilde{x}^{(i)} = U_{reduce} z^{(i)}$$

The reconstruction comes with information loss. We will choose k based on the information loss.

Choosing k - Slow

Average Squared Projection Error:

$$egin{aligned} & rac{1}{m} \sum_{i=1}^m ||x^{(i)} - \widetilde{x}^{(i)}||^2 \ & = rac{1}{m} \sum_{i=1}^m (x^{(i)} - \widetilde{x}^{(i)})^ op (x^{(i)} - \widetilde{x}^{(i)}) \end{aligned}$$

Total variation of data:

$$egin{aligned} & rac{1}{m} \sum_{i=1}^m ||x^{(i)}||^2 \ & = rac{1}{m} \sum_{i=1}^m x^{(i)^ op} x^{(i)} \end{aligned}$$

Choose the target dimension number k to be the smallest value so that:

$$rac{rac{1}{m}\sum_{i=1}^{m}\|x^{(i)}-\widetilde{x}^{(i)}\|^2}{rac{1}{m}\sum_{i=1}^{m}\|x^{(i)}\|^2}\leq 0.01$$

i.e., 99% of the variance is retained.

Choosing k - Fast

After performing SVD on $\Sigma = \frac{1}{m} X X^{\top}$, we have obtained U, S, and V. Focusing on S, we pick the smallest k for:

$$rac{\sum_{i=1}^k s_{ii}}{\sum_{i=1}^k s_{ii}} \geq 0.99$$

i.e., 99% of the variance is retained.

4.2.4 Results

In this example, the training data X is of shape $2 \times m$, thus the covariate matrix $C = \frac{1}{m} X X^{\top}$ is of shape 2×2 . Performing SVD on C:

$$C_{2 imes2} = U_{2 imes2} S_{2 imes2} V_{2 imes2}^ op$$

There are 2 eigenvalues, with 2 principle vectors. The reduced U would be of shape 2×1 .

Red Line: 1st Principal Vector

Corresponds to the *largest* eigenvalue, indicating the most significant direction the data variates.

That is, on this line, the projected data varies the most.

Blue Line: 2nd Principal Vector

Corresponds to the second largest eigenvalue, being perpendicular to the first one.

4.3 Linear Discriminant Analysis (LDA) 线性判别分析

4.3.0 Problems of PCA

- The *directions* of maximum variance may be useless for classification.
 - I may indeed variates, but the classes could be completely mixed together.
- LDA solves this problem by:
 - · not seeking the best variance,
 - but seeking the best separability.
- LDA projects data to the direction useful for classification.

4.3.1 LDA

Given

- A set of d-dimensional samples $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$. From which,
 - N_1 samples belong to class ω_1 .
 - N_2 samples belong to class ω_2 .

Do

• We seek a set of scalar $\mathbf{y}=\{y_1,y_2,\cdots,y_N\}\subset\mathbb{R}$ by projecting the N samples in x onto a line.

$$y_i = \mathbf{w}^ op \mathbf{x}_i \subset \mathbb{R}$$

Namely,

$$y_i = (w_1 \quad w_2 \quad \cdots \quad w_d) egin{pmatrix} x_{i1} \ x_{i2} \ dots \ x_{id} \end{pmatrix}$$

 y_i is the projected value of \mathbf{x}_i in the new space.

- LDA selects the line that maximizes the separability of the scalars.
- In this new space, values of y could be easily separated.

4.3.2 Measure of Separation

Supposed that we have a obtained such a line.

Sample Means of each class in x-space:

$$\mu_i = rac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{x} \in \mathbb{R}^d$$

Sample Means of each class in y-space (projected mean):

$$egin{aligned} \widetilde{\mu}_i &= rac{1}{N_i} \sum_{y \in \omega_i} y \ &= rac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{w}^ op \mathbf{x} \ &= \mathbf{w}^ op \mu_i \end{aligned}$$

Distance of Means

The distance between the project mean is:

$$|\widetilde{\mu}_1 - \widetilde{\mu}_2| = |\mathbf{w}^ op(\mu_1 - \mu_2)| \in \mathbb{R}$$

Ignoring the standard deviation within classes.

Scatter

Fisher's solution is to *maximize* the difference between the means of each class.

- The means of each class is normalized by a measure of the within-class scatter.
- The scatter is equivalent to the variance of each class.

The within-class scatter of a class ω_i

$$ilde{s}_i^2 = \sum_{y \in \omega_i} (y - \widetilde{\mu}_i)^2$$

The total within-class scatter of all the project samples would be

$$(ilde{s}_1^2+ ilde{s}_1^2)$$

★ The criterion function would be:

$$\mathcal{J}(\mathbf{w}) = rac{|\widetilde{\mu}_1 - \widetilde{\mu}_2|^2}{s_1^2 + s_2^2}$$

We need to find the optimal w that maximizes the criterion function $\mathcal{J}(w)$.

4.3.3 Represent $\mathcal{J}(\mathbf{w})$ with \mathbf{w}

We want to find the optimal \mathbf{w} such that the criterion function $\mathcal{J}(\mathbf{w})$ is maximized.

- Given that $\mathcal{J}(\mathbf{w}) = rac{|\widetilde{\mu}_1 \widetilde{\mu}_2|^2}{s_1^2 + s_2^2}$,
- we need to use w to represent the scatters.

Within-Class Scatter

The scatter/variance in x-space:

$$S_i = rac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} (\mathbf{x} - \mu_i) (\mathbf{x} - \mu_i)^ op \in \mathbb{R}^d imes \mathbb{R}^d$$

The within-class scatter matrix:

$$S_W = S_1 + S_2$$

To express the scatter in y-space with \mathbf{w} :

$$egin{aligned} \widetilde{s}_i^2 &= rac{1}{N_i} \sum_{y \in \omega_i} (y - \widetilde{\mu}_i)^2 \ &= rac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} (\mathbf{w}^ op \mathbf{x} - \mathbf{w}^ op \mu_i)^2 \ &= rac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{w}^ op (\mathbf{x} - \mu_i) (\mathbf{x} - \mu_i)^ op \mathbf{w} \ &= \mathbf{w}^ op S_i \mathbf{w} \end{aligned}$$

★ That is,

$$ilde{s}_1^2 + ilde{s}_1^2 = \mathbf{w}^ op S_W \mathbf{w}$$

Between-Class Scatter

The between-class scatter:

$$S_B = |\mu_1 - \mu_2|^2 = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^{ op}$$

The difference between the projected means:

$$egin{aligned} (\widetilde{\mu}_1 - \widetilde{\mu}_2) &= (\mathbf{w}^ op \mu_1 - \mathbf{w}^ op \mu_2)^2 \ &= \mathbf{w}^ op (\mu_1 - \mu_2)(\mu_1 - \mu_2)^ op \mathbf{w} \ &= \mathbf{w}^ op S_B \mathbf{w} \end{aligned}$$

The optimal w

The optimal w will be:

$$egin{aligned} \mathbf{w}^* &= \mathrm{argmax}_{\mathbf{w}} \mathcal{J}(\mathbf{w}) \ &= \mathrm{argmax}_{\mathbf{w}} rac{\mathbf{w}^{ op} S_B \mathbf{w}}{\mathbf{w}^{ op} S_W \mathbf{w}} \end{aligned}$$

4.3.4 Find the optimal w

To find the optimal w, we find that:

$$\frac{d}{d\mathbf{w}}\mathcal{J}(\mathbf{w}) = 0$$

$$\Rightarrow \frac{d}{d\mathbf{w}} \left(\frac{\mathbf{w}^{\top} S_{B} \mathbf{w}}{\mathbf{w}^{\top} S_{W} \mathbf{w}} \right) = 0$$

$$\Rightarrow \frac{1}{(\mathbf{w}^{\top} S_{W} \mathbf{w})^{2}} \cdot \left(\mathbf{w}^{\top} S_{W} \mathbf{w} \frac{d}{d\mathbf{w}} (\mathbf{w}^{\top} S_{B} \mathbf{w}) - \mathbf{w}^{\top} S_{B} \mathbf{w} \frac{d}{d\mathbf{w}} (\mathbf{w}^{\top} S_{W} \mathbf{w}) \right) = 0$$
• 上导下不导-上不导下导

$$\implies rac{1}{(\mathbf{w}^ op S_W \mathbf{w})^2} igg(\mathbf{w}^ op S_W \mathbf{w} (2S_B \mathbf{w}) - \mathbf{w}^ op S_B \mathbf{w} (2S_W \mathbf{w}) igg) = 0$$

$$\implies \mathbf{w}^{\top} S_W \mathbf{w} (2S_B \mathbf{w}) - \mathbf{w}^{\top} S_B \mathbf{w} (2S_W \mathbf{w}) = 0$$

$$\implies S_B \mathbf{w} - \frac{\mathbf{w}^{\top} S_B \mathbf{w}}{\mathbf{w}^{\top} S_W \mathbf{w}} (S_W \mathbf{w}) = 0$$

$$\implies S_B \mathbf{w} - \mathcal{J}_{\max} S_W \mathbf{w} = 0$$

Set constant
$$\lambda = \mathcal{J}_{\max} = \dfrac{\mathbf{w}^{ op} S_B \mathbf{w}}{\mathbf{w}^{ op} S_W \mathbf{w}}$$

$$\implies S_B \mathbf{w} = \lambda S_W \mathbf{w}$$

$$\implies S_W^{-1} S_B \mathbf{w} = \lambda \mathbf{w}$$

Know that $S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^{ op}$ is the between-class scatter matrix.

- Therefore, $S_B \mathbf{w} = (\mu_1 \mu_2)(\mu_1 \mu_2)^{\top} \mathbf{w} = \alpha(\mu_1 \mu_2)$
- where $\alpha = (\mu_1 \mu_2)^{\top} \mathbf{w} \in \mathbb{R}$, that is α is a scalar.
- i.e., $S_B \mathbf{w}$ points to the same direction as $\mu_1 \mu_2$

$$\implies S_W^{-1}(\mu_1-\mu_2)=\lambda {f w}$$

$$\bigstar \implies \mathbf{w} = S_W^{-1}(\mu_1 - \mu_2)$$

Example:

Compute LDA projection of the following 2D dataset.

$$\bullet \ \ X_1=\{(4,1),(2,4),(2,3),(3,6),(4,4)\}$$

•
$$X_2 = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$$

LDA Solution:

Step 1: Data Arrangements

Arrange data into 2 separate matrices

$$X_1 = egin{pmatrix} 4 & 2 & 2 & 3 & 4 \ 1 & 4 & 3 & 6 & 4 \end{pmatrix} \ X_2 = egin{pmatrix} 9 & 6 & 9 & 8 & 10 \ 10 & 8 & 5 & 7 & 8 \end{pmatrix}$$

Step 2: Class Statistics

Sample means:

$$\mu_1 = \begin{pmatrix} \frac{4+2+2+3+4}{5} \\ \frac{1+4+3+6+4}{5} \end{pmatrix} = \begin{pmatrix} 3.0 \\ 3.6 \end{pmatrix}$$

$$\mu_2 = \begin{pmatrix} \frac{9+6+9+8+10}{5} \\ \frac{10+8+5+7+8}{5} \end{pmatrix} = \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix}$$

Sample Variants:

$$S_{1} = \frac{1}{5} \left(\begin{bmatrix} 1 \\ -2.6 \end{bmatrix} \begin{bmatrix} 1 & -2.6 \end{bmatrix} + \begin{bmatrix} -1 \\ 0.4 \end{bmatrix} \begin{bmatrix} -1 & 0.4 \end{bmatrix} + \begin{bmatrix} -1 \\ -0.6 \end{bmatrix} \begin{bmatrix} -1 & -0.6 \end{bmatrix} + \begin{bmatrix} 0 \\ 2.4 \end{bmatrix} \begin{bmatrix} 0 & 2.4 \end{bmatrix} + \begin{bmatrix} 1 \\ 0.4 \end{bmatrix} \begin{bmatrix} 1 & 0.4 \end{bmatrix} \right)$$

$$= \frac{1}{5} \begin{pmatrix} 1 & -1 & -1 & 0 & 1 \\ -2.6 & 0.4 & -0.6 & 2.4 & 0.4 \end{pmatrix} \begin{pmatrix} 1 & -2.6 \\ -1 & 0.4 \\ -1 & -0.6 \\ 0 & 2.4 \\ 1 & 0.4 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 13.2 \end{pmatrix}$$

$$= \begin{pmatrix} 0.8 & -0.4 \\ -0.4 & 2.64 \end{pmatrix}$$

$$S_{2} = \frac{1}{5} \begin{pmatrix} 0.6 & -2.4 & 0.6 & -0.4 & 1.6 \\ 2.4 & 0.4 & -2.6 & -0.6 & 0.4 \end{pmatrix} \begin{pmatrix} 0.6 & 2.4 \\ -2.4 & 0.4 \\ 0.6 & -2.6 \\ -0.4 & -0.6 \\ 1.6 & 0.4 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 9.2 & -0.2 \\ -0.2 & 13.2 \end{pmatrix}$$

$$= \begin{pmatrix} 1.84 & -0.04 \\ -0.04 & 2.64 \end{pmatrix}$$

Step 3: Between & Within Class Scatters

Within-class scatters:

$$egin{aligned} S_W &= S_1 + S_2 \ &= egin{pmatrix} 0.8 & -0.4 \ -0.4 & 2.64 \end{pmatrix} + egin{pmatrix} 1.84 & -0.04 \ -0.04 & 2.64 \end{pmatrix} \ &= egin{pmatrix} 2.64 & -0.44 \ -0.44 & 5.28 \end{pmatrix} \end{aligned}$$

Between-class Scatter:

$$egin{aligned} S_B &= (\mu_1 - \mu_2)(\mu_1 - \mu_2)^{ op} \ &= egin{pmatrix} -5.4 \ -4 \end{pmatrix} (-5.4 \ -4) \ &= egin{pmatrix} 29.16 & 21.6 \ 21.6 & 16 \end{pmatrix} \end{aligned}$$

Step 4: Calculate LDA Projection

Inverse of the between-class scatter matrix:

$$\begin{split} S_W^{-1} &= \begin{pmatrix} 2.64 & -0.44 \\ -0.44 & 5.28 \end{pmatrix}^{-1} \\ &= \frac{1}{5.28 \times 2.64 - 0.44^2} \begin{pmatrix} 5.28 & 0.44 \\ 0.44 & 2.64 \end{pmatrix} \\ &= \begin{pmatrix} 0.3841 & 0.0320 \\ 0.0320 & 0.1921 \end{pmatrix} \end{split}$$

The LDA projection w

$$\mathbf{w} = S_W^{-1}(\mu_1 - \mu_2)$$

$$= \begin{pmatrix} 0.3841 & 0.0320 \\ 0.0320 & 0.1921 \end{pmatrix} \begin{pmatrix} -5.4 \\ -4 \end{pmatrix}$$

$$= \begin{pmatrix} -2.2021 \\ -0.9412 \end{pmatrix}$$

Therefore, the LDA projection line would be:

$$y = (-2.2021 \quad -0.9412)\mathbf{x}$$