Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

1. Sistemas Numéricos

Contamos na base decimal, o que significa que temos 10 algarismos (0 a 9) e, para contar quantidades maiores do que nove, passamos a contar dezenas, centenas, milhares, ou seja, potências de 10. Dizemos, então que os números estão representados na BASE 10.

Exemplo:
$$4392,78_{10} = 4x1000 + 3x100 + 9x10 + 2x1 + 7x0,1 + 8x0,01$$

= $4x10^3 + 3x10^2 + 9x10^1 + 2x10^0 + 7x10^{-1} + 8x10^{-2}$

Percebe-se que o peso (a base elevada a um expoente) de cada algarismo (no exemplo, 4, 3, 9 ...) depende de sua posição dentro do número. Esse conceito é chamado de notação posicional e esse princípio de formação pode ser aplicado a qualquer outra base numérica. A estrutura geral de um número expresso na base B é:

$$X = A_n B^n + A_{n-1} B^{n-1} + ... + A_2 B^2 + A_1 B^1 + A_0 B^0 + A_{-1} B^{-1} + A_{-2} B^{-2} + ...$$

A base **B** indica a quantidade de algarismos distintos utilizados, de 0 a B-1. Exemplos:

- ➤ Base 10: usa 10 algarismos, de 0 a 9 (= 10 1)
- ➤ Base 5: usa 5 algarismos, de 0 a 4 (= 5 1)
- ➤ Base 2: usa 2 algarismos, de 0 a 1 (= 2 1)
- ➤ Base 16: usa 16 algarismos, de 0 a F. As quantidades de 10 a 15 são representadas pelas letras de A a F, respectivamente (um símbolo por algarismo).

1.1. Conversão entre bases

Diversos métodos permitem transformar a representação de um número em uma base de origem para uma base destino:

- Método polinomial
- Método das divisões
- Método das subtrações
- Método da substituição direta
- Método da multiplicação (parte fracionária)

1.1.1. Método polinomial:

Utiliza a estrutura geral de um número em uma base B qualquer e interpreta-se esse número como um polinômio na aritmética da base destino. Por utilizar a forma geral, serve para converter de qualquer base para outra. Entretanto, é muito utilizado para a **conversão de uma base N para a base 10** já que a aritmética que utilizamos é a decimal.

Exemplos de conversão de uma base N (qualquer) para a base 10:

$$\rightarrow$$
 1001101₂ = 1x2⁶ + 0x2⁵ + 0x2⁴ + 1x2³ + 1x2² + 0x2¹ + 1x2⁰ = 64 + 8 + 4 + 1 = 77₁₀

$$\rightarrow$$
 423,1₅ = 4x5² + 2x5¹ + 3x5⁰ + 1x5⁻¹ = 100 + 10 + 3 + 0,25 = 113,25₁₀

$$\rightarrow$$
 A5D₁₆ = 10x16² + 5x16¹ + 13x16⁰ = 2560 + 80 + 13 = 2653₁₀

No entanto, conforme já foi dito, esse método serve para conversões entre quaisquer bases. Para uma conversão da base 3 para a base 6, por exemplo, avalia-se o polinômio na base destino, ou seja, a base 6:

$$ightharpoonup$$
 1222₃ \rightarrow X₆ \Rightarrow 1 x 3³ + 2 x 3² + 2 x 3¹ + 2 x 3⁰ = 43 + 30 + 10 + 2 = 125₆

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

1.1.2. Método das divisões:

Determinam-se os algarismos de menor peso (mais a direita) do polinômio tomando-se o resto da divisão do número X pela base destino B: $X \div B = (A_n B^n + A_{n-1} B^{n-1} + ... + A_1 B^1 + A_0 B^0) \div B = A_n B^{n-1} + A_{n-1} B^{n-2} + ... + A_1 B^0$ e resto A_0 . Repete-se o método sobre o quociente obtido até que este seja menor que a base B.

Novamente serve para conversões entre quaisquer bases, desde que as divisões sejam efetuadas utilizando-se a aritmética da base de origem. Assim, é muito utilizado para **conversões de números representados na base 10 para uma base qualquer N**, já que efetuamos as divisões na base 10.

Exemplo: converter 117₁₀ para a base 5

Número convertido é o resto das divisões, do último para o primeiro, além do último quociente menor que a base destino: 432_5

Exemplo: converter 23₁₀ para a base 2

Número convertido é o resto das divisões, do último para o primeiro, além do último quociente menor que a base destino: 10111₂

> Exemplo: converter 2803₁₀ para a base 16

Número convertido: AF5₁₆

Note que o número convertido é "montado" de trás para frente porque o primeiro resto é o coeficiente A_0 . A cada divisão, os coeficientes maiores vão sendo obtidos, até que o quociente seja menor que a base de destino. Esse quociente será o coeficiente de maior peso do número convertido.

1.1.3. Método das subtrações:

É uma variação do método anterior. Ele é feito com base na verificação direta de quantas vezes a base "cabe" no número que se deseja representar, o que nada mais é do que divisão.

> Exemplo: converter 23₁₀ para a base 2

 $16_{10} < 23_{10} < 32_{10}$ ($2^4 < 23_{10} < 2^5$), donde o bit mais significativo do número na base dois está na casa de potência 4 ($1x2^4 = 16$).

A partir daí, podemos ir "preenchendo" as demais casas (potências de 2)

Potências de 2:	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Expressas na base 10:	16	8	4	2	1
Quantas vezes a potência cabe no número que se deseja representar ?	1	0	1	1	1
Quanto sobra para a próxima casa ?	23 – 16 = 7	7 < 8	7 - 4 = 3	3 - 2 = 1	1 – 1 = 0

1.1.4. Método da substituição direta:

Nas conversões entre bases nas quais uma é potência da outra, a conversão pode ser feita diretamente pela substituição de algarismos da maior base por grupos de algarismos da menor base.

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

Note que 8 é a terceira potência de 2 ($2^3 = 8$). Assim, para converter um número de binário para octal, basta agrupar cada três bits a partir da casa de potência 0 e identificar o dígito octal equivalente, como mostram os exemplos:

1111001011102					
111	100	101	110		
7	4	5	6		
7456 ₈					

Da mesma forma, para converter um número da base 8 para a base 2, basta associar 3 dígitos binários a cada dígito octal, como mostra o exemplo a seguir. Note que os zeros à esquerda de cada dígito não podem ser desprezados.

5103,2 ₈					
5	1	0	3	2	
101	001	000	011	010	
101001000011,0102					

De forma similar à conversão entre as bases 2 e 8, para converter um número de binário para hexadecimal, basta agrupar cada quatro bits ($2^4 = 16$) a partir da casa de potência 0 e identificar o dígito hexadecimal equivalente, como mostra o exemplo:

1011111001011102					
0101	1111	0010	1110		
5	F	2	Е		
5F2E ₁₆					

Da mesma forma, para converter um número da base 16 para a base 2, basta associar 4 dígitos binários a cada dígito hexadecimal, como mostra o exemplo a seguir. Note que os zeros à esquerda de cada dígito não podem ser desprezados.

C 1 0 8 D _{1 6}					
С	1	0	8	D	
1100	0001	0000	1000	1101	
110000010000100011012					

1.1.5. Método das multiplicações:

É utilizado quando o número na base de origem é ou possui partes fracionárias. A parte fracionária do número é multiplicada pela base destino. Os algarismos a esquerda da vírgula produzidos por cada multiplicação fornecem a parte fracionária na base destino: $X \bullet B = (A_{-1}B^{-1} + A_{-2}B^{-2} + A_{-3}B^{-3} + ...) \bullet B = A_{-1} + (A_{-2}B^{-1} + A_{-3}B^{-2} + ...)$.

Exemplo: Decimal para binário: 0,8125₁0 → X₂

$$0.8125 \cdot 2 = 1.625 \Rightarrow A_{-1} = 1$$

 $0.625 \cdot 2 = 1.25 \Rightarrow A_{-2} = 1$
 $0.25 \cdot 2 = 0.5 \Rightarrow A_{-3} = 0$
 $0.5 \cdot 2 = 1.0 \Rightarrow A_{-4} = 1$
 $0.8125_{10} = 0.1101_{10}$

1.2. Bases especialmente úteis para sistemas computacionais

Como foi observado, é possível utilizar qualquer base numérica para representar uma dada grandeza. No "mundo" dos sistemas computacionais, há algumas bases que são especialmente úteis:

A base binária (base 2), pois os computadores utilizam apenas dois níveis lógicos, donde fica evidente a associação do código binário com o processamento binário de informações.

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

A base hexadecimal (base 16), pois facilita a visualização de grandezas binárias já que um número binário de 8 bits tem apenas 2 dígitos hexadecimais, donde fica muito mais fácil visualizar a grandeza, sem que seja difícil efetuar a conversão para o binário, em caso de necessidade.

A tabela a seguir facilita bastante as operações de conversões entre essas bases e delas para a decimal (e vice-versa):

Decimal	Binário	Hexa
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Decimal	Binário	Hexa
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

1.2.1. Conversões das bases 2 e 16 para a base 10:

- Se a conversão estiver sendo feita utilizando a **aritmética decimal** (um ser humano) o método mais apropriado é o **método polinomial**;
- Se a conversão estiver sendo feita dentro de um microprocessador, que utiliza a **aritmética hexadecimal**, o método mais apropriado é o **método das divisões**.
- Exemplo: A73₁₆ \rightarrow X₁₀ \Rightarrow 10 x 16² + 7 x 16¹ + 3 x 16⁰ = 2.560 + 112 + 3 = 2.675₁₀ (método polinomial já que o polinômio foi avaliado na base 10)

1.2.2. Conversões da base10 para as bases 2 e 16:

- Se a conversão estiver sendo feita utilizando a **aritmética decimal** (um ser humano) o método mais apropriado é o **método das divisões**;
- Se a conversão estiver sendo feita dentro de um microprocessador, que utiliza a **aritmética hexadecimal**, o método mais apropriado é o **método polinomial**.
- Exemplo: $2.675_{10} \rightarrow X_{16} \Rightarrow 2675 \div 16 = 167$ e resto 3, $167 \div 16 = 10$ e resto 7. Com o quociente menor que a base, o valor convertido é: $A73_{16}$.

Note que: $16^4 = 65.536$ e $A_3 \times 16^3 + A_2 \times 16^2 + A_1 \times 16^1 + A_0 \times 16^0 = (A_3 \times 16^1 + A_2) \times 16^2 + (A_1 \times 16^1 + A_0) = (A_3 \times 16^1 + A_2) \times 256 + (A_1 \times 16^1 + A_0)$. Com isso, podemos derivar a seguinte regra para converter um número menor que 65.536_{10} da base 10 para a base 16 utilizando o método das divisões (aritmética decimal):

- Se o número for menor que 256, é porque ele só é formado pelos coeficientes A_1 e A_0 . Dessa forma, basta dividir o número por 16, o quociente será o coeficiente A_1 e o resto será o coeficiente A_0 .
- Se o número for maior que 256, basta dividi-lo por 256. O quociente dessa divisão será formado pelos coeficientes A_3 e A_2 e o resto será formado pelos coeficientes A_1 e A_0 . Cada um desses termos será menor que 256 e aplica-se a regra anterior.
- Exemplo: $47.235_{10} \rightarrow X_{16} \Rightarrow 47.235 \div 256 = 184$ e resto 131, $184 \div 16 = 11$ e resto 8 (A₃ =B e A₂ = 8), $131 \div 16 = 8$ e resto 3 (A₁ = 8 e A₀ = 3) $\Rightarrow 47.235_{10} \rightarrow \textbf{B883}_{16}$
- Obs.: Um forma de indicar em qual base o número está representado é colocando uma letra no final desse número. Assim, 1001B estaria representado na base 2 (binário), 1001D estaria representado na base 10 (decimal), 1001H estaria representado na base 16 (hexadecimal). Essa notação será utilizada no decorrer desse texto e, caso a letra seja omitida, significa que o número está representado na base 10. Em outros casos, quando a base estiver implícita, como é o caso dos itens 3 e 4 (base 2), essa notação também será omitida.

2. Conceitos básicos:

2.1. Sistema binário:

Sistema de informação que utiliza o sistema numérico binário, ou seja, na base 2. Dessa forma, só possui dois símbolos para representação de valores, o 0 e o 1. É o caso dos sistemas computacionais.

2.2. Bit:

Do inglês *Binary digit* ou dígito binário. É a menor unidade de informação de um sistema binário, representado pelos valores lógicos 0 e 1.

2.3. Byte:

Do inglês *Binary term* ou termo binário. Um sistema computacional ao armazenar dados ou informações, não guarda apenas um bit por vez, mas sim um agrupamento de bits. Assim, o byte é uma unidade de armazenamento de informação em sistemas computacionais. Um byte é composto de **8** bits, sendo esses bits numerados de 0 a 7:

b7	b6	b5	b4	b3	b2	b1	b0
----	----	----	----	----	----	----	----

É importante guardar essa numeração pois ela será utilizada em futuras referências. Com ela é possível identificar a posição de um determinado bit dentro de um byte. O bit 0 é chamado de LSB (do inglês *least significant bit* ou bit menos significativo) e o bit 7 é chamado de MSB (do inglês *most significant bit* ou bit mais significativo).

Outro detalhe a ressaltar é que com 8 bits são possíveis 256 combinações ($2^8 = 256$). Dessa forma, um byte pode conter valores de 0 a 255 na base decimal ou de 00H a FFH na base hexadecimal.

2.4. Nibble:

Equivale a **4 bits**. Assim, um byte é composto por dois nibbles. O nibble composto pelos bits de 0 a 3 é chamado de nibble menos significativo. O nibble composto pelos bits de 4 a 7 é chamado de nibble mais significativo. Um nibble equivale a um dígito hexadecimal (de 0H a FH).

2.5. Registradores:

São unidades de memória dentro de um processador e servem para guardar resultados de operações e outros valores. Podem armazenar um ou mais bytes (registradores de 8 bits, registradores de 16 bits, etc.). Se um registrador for de **8 bits** o valor **máximo** que ele pode armazenar é **255** (ou **FFH**).

2.6. Flags:

São bits dentro de um determinado registrador. Servem para **indicar a ocorrência de algum evento** para o processador.

Exemplos:

- Flag Z (zero): é colocada em 1 quando o resultado de uma operação é igual a zero.
- **Flag C** (*carry*): é colocada em 1 quando ocorre um "vai um" em uma soma. É afetada também em operações de subtração e por algumas funções lógicas.

3. Principais funções lógicas em sistemas computacionais:

Nas funções a seguir as variáveis A e B são variáveis de entrada e S é o valor de saída da função.

3.1. Função INVERSORA ou NÃO (NOT):

Α	S
0	1
1	0

A saída dessa função é o inverso (complemento) de sua entrada.

3.2. Função E (AND):

В	Α	S
0	0	0
0	1	0
1	0	0
1	1	1

A saída só assume o valor lógico 1 se todas as entradas também estiverem no nível lógico 1. Na álgebra booleana, essa função é representada pelo operador: • . Observando a primeira coluna quando B = 0 e quando B = 1, podemos descrever a função E (AND) de uma outra forma:

- $\mathbf{A} \bullet \mathbf{0} = \mathbf{0}$, ou seja, se efetuarmos a operação E (AND) com uma das entradas igual a zero, o resultado (saída) será 0 independente do valor da outra variável.
- A 1 = A , ou seja, se efetuarmos a operação E (AND) com uma das entradas igual a um, o resultado (saída) será igual ao valor da outra variável de entrada. Essa operação é chamada de **neutra** pois não afeta o valor da variável.

A operação E é muito útil em sistemas computacionais quando queremos **zerar um ou mais bits de um byte sem alterarmos o valor (ou estado lógico) dos demais bits**. Por exemplo, suponhamos que queremos zerar os bits 3, 4 e 7 de um determinado byte. Para isso, é criado um valor chamado de **máscara** que irá executar essa função. Conforme foi visto da definição da função E, essa máscara deverá conter o seguinte valor: 01100111. Assim, ao efetuarmos a operação E dessa máscara com o byte em questão, teremos:

 Byte:
 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0

 Máscara:
 0
 1
 1
 0
 0
 1
 1
 1

 Resultado:
 0
 b6
 b5
 0
 0
 b2
 b1
 b0

Note que, no resultado final da operação, os bits 0, 1, 2, 5 e 6 permaneceram inalterados e o bits 3, 4 e 7 foram zerados.

3.3. Função OU (OR):

В	Α	S
0	0	0
0	1	1
1	0	1
1	1	1

A saída assume o valor lógico 1 sempre que uma das entradas também estiver no nível lógico 1. Na álgebra booleana, essa função é representada pelo operador: + . Observando a primeira coluna quando B = 0 e quando B = 1, podemos descrever a função OU (OR) de uma outra forma:

- A + 0 = A, ou seja, se efetuarmos a operação OU (OR) com uma das entradas igual a zero, o resultado (saída) será igual ao valor da outra variável de entrada. Essa operação é chamada de **neutra** pois não afeta o valor da variável.
- A + 1 = 1, ou seja, se efetuarmos a operação OU (OR) com uma das entradas igual a um, o resultado (saída) será 1 independente do valor da outra variável.

A operação OU é muito útil em sistemas computacionais quando queremos "setar" (colocar em nível lógico 1) um ou mais bits de um byte sem alterarmos o valor (ou estado lógico) dos demais bits. Por exemplo, suponhamos que queremos "setar" os bits 2, 5 e 7 de um determinado byte. Da mesma forma que na operação E, é preciso criar uma máscara que irá executar essa função. Conforme foi visto da definição da função OU, essa máscara deverá conter o seguinte valor: 10100100. Assim, ao efetuarmos a operação OU dessa máscara com o byte em questão, teremos:

 Byte:
 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0

 Máscara:
 1
 0
 1
 0
 0
 1
 0
 0

 Resultado:
 1
 b6
 1
 b4
 b3
 1
 b1
 b0

Note que, no resultado final da operação, os bits 0, 1, 3, 4 e 6 permaneceram inalterados e o bits 2, 5 e 7 foram setados.

3.4. Função XOR (Ou Exclusivo ou Exclusive OR):

В	Α	S
0	0	0
0	1	1
1	0	1
1	1	0

A saída assume o valor lógico 1 sempre que as entradas possuírem valores distintos (essa regra vale para uma tabela verdade de duas variáveis). Na álgebra booleana, essa função é representada pelo operador: \oplus . Observando a primeira coluna quando B=0 e quando B=1, podemos descrever a função OU (OR) de uma outra forma:

- $\mathbf{A} \oplus \mathbf{0} = \mathbf{A}$, ou seja, se efetuarmos a operação XOR com uma das entradas igual a zero, o resultado (saída) será igual ao valor da outra variável de entrada. Essa operação é chamada de **neutra** pois não afeta o valor da variável.
- $\mathbf{A} \oplus \mathbf{1} = \overline{\mathbf{A}}$, ou seja, se efetuarmos a operação XOR com uma das entradas igual a um, o resultado (saída) será o complemento (inverso) do valor da outra variável.

Além disso:

- $\mathbf{A} \oplus \mathbf{A} = \mathbf{0}$, ou seja, se efetuarmos a operação XOR com dois valores de entrada iguais, o resultado (saída) será igual a zero.

A operação XOR é muito útil em sistemas computacionais quando queremos **inverter um ou mais bits de um byte sem alterarmos o valor (ou estado lógico) dos demais bits**. Ela também serve para testarmos se **dois valores são iguais**. Por exemplo, suponhamos que queremos inverter os bits 0, 2 e 6 de um determinado byte. A máscara deverá conter o seguinte valor: 01000101. Assim, ao efetuarmos a operação XOR dessa máscara com o byte em questão, teremos:

Byte: b7 b6 b5 b4 b3 b2 b1 b0 Máscara: 0 1 0 0 0 1 0 1 0 1 Resultado: b7 b6 b5 b4 b3 b2 b1 b0

Note que, no resultado final da operação, os bits 0, 1, 3, 4 e 6 permaneceram inalterados e o bits 2, 5 e 7 foram setados.

Supondo agora que um byte B1 contém o valor 74H e o byte B2 contém o valor D3H. Dentro do sistema computacional o valor desses bytes não é conhecido, mas queremos determinar se algum deles é igual a D3H (cuja máscara é 11010011). Com o uso da função XOR efetuamos esse teste:

Byte B1:	0	1	1	1	0	1	0	0
Máscara:	1	1	0	1	0	0	1	1
Resultado:	1	0	1	0	0	1	1	1
Byte B2:	1	1	0	1	0	0	1	1
Máscara:	1	1	0	1	0	0	1	1
Resultado:	0	0	0	0	0	0	0	0

Note que para o byte B2 o resultado final da operação foi igual a zero. Esse resultado é facilmente testado dentro de um sistema computacional como veremos mais à frente.

3.5. Deslocamento para a esquerda (shift left):

	Valo	or ini	cial c	lo re	gistr	<u>ador</u>		_		_			lor fi	nal d	o reg	istrac	dor	
0	0	1	0	1	1	0	1]←	0	\Rightarrow	0	1	0	1	1	0	1	0

Um zero é inserido no lugar do bit 0, o bit 0 vai para a posição do bit 1, o bit 1 vai para a posição do bit 2 e assim, sucessivamente, até o bit 6 ocupar a posição do bit 7. Nessa operação, o bit 7 é perdido. Dessa forma, essa operação é irreversível, ou seja, nada garante que um deslocamento no sentido inverso irá recuperar o valor original contido no registrador.

Na aritmética decimal, se um número for deslocado à esquerda e um zero inserido na posição das unidades, teremos um valor multiplicado por 10. Assim, da mesma forma que na aritmética decimal, o uso dessa operação, no caso do bit 7 ser igual a 0, resulta em um valor multiplicado por 2. Note que, no exemplo dado, o valor inicial do registrador era 00101101B (45 em decimal) e após a operação seu valor passou para 01011010B (90 em decimal).

3.6. Deslocamento para a direita (shift right):

			Val	or ini	cial o	do re	gistr	ador	•			Va	lor fir	nal do	o reg	istrac	lor	
0	→	1	0	1	0	0	1	1	0	\Rightarrow	0	1	0	1	0	0	1	1

Um zero é inserido no lugar do bit 7, o bit 7 vai para a posição do bit 6, o bit 6 vai para a posição do bit 5 e assim, sucessivamente, até o bit 1 ocupar a posição do bit 0. Nessa operação, o bit 0 é perdido, ou seja, uma operação irreversível.

A aplicação dessa operação resulta em um valor dividido por 2. Note que, no exemplo dado, o valor inicial do registrador era 10100110B (166 em decimal) e após a operação seu valor passou para 01010011B (83 em decimal).

3.7. Rotação à esquerda (rotate left):

	Valo	r ini	cial c	do re	gistra	ador				Va	lor fi	nal d	o reg	istrac	dor	
1	0	1	0	1	1	0	0	$\Rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1
																

Nessa operação, o bit 0 vai para a posição do bit 1, o bit 1 vai para a posição do bit 2 e assim, sucessivamente, até o bit 6 ocupar a posição do bit 7 e o bit 7 ocupar a posição do bit 0. Nenhum bit é perdido e essa operação é reversível, ou seja, o valor original contido no registrador antes da operação pode ser restaurado com um deslocamento no sentido inverso.

3.8. Rotação à direita (rotate right):

Nessa operação, o bit 6 vai para a posição do bit 5, o bit 5 vai para a posição do bit 4 e assim, sucessivamente, até o bit 1 ocupar a posição do bit 0 e o bit 0 ocupar a posição do bit 7. Nenhum bit é perdido e essa operação é reversível.

3.9. Rotação à esquerda com a flag carry (rotate left through carry):

O valor da flag *carry* é inserido no lugar do bit 0, o bit 0 vai para a posição do bit 1, o bit 1 vai para a posição do bit 2 e assim, sucessivamente, até o bit 6 ocupar a posição do bit 7 e o bit 7 ir para a flag *carry*. Nenhum bit é perdido e essa operação é reversível.

No exemplo dado, o valor da flag carry após a operação seria 0.

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

3.10. Deslocamento para a direita (shift right):

С		\	/alor	inicia	al do	regi	istra	dor			Va	lor fi	nal d	o reg	istrac	dor	
0	1	0	1	0	0	1	1	0	\Rightarrow	0	1	0	1	0	0	1	1
<u> </u>																	

O valor da flag *carry* é inserido no lugar do bit 7, o bit 7 vai para a posição do bit 6, o bit 6 vai para a posição do bit 5 e assim, sucessivamente, até o bit 1 ocupar a posição do bit 0 e o bit 0 ir para a flag *carry*. Nenhum bit é perdido e essa operação é reversível.

No exemplo dado, o valor da flag carry após a operação seria 0.

3.11. Swap:

	Valo	or ini	cial c	do re	gistra	ador				Va	lor fi	nal de	o reg	istrac	dor	
1	1	1	1	0	0	0	0	\Rightarrow	0	0	0	0	1	1	1	1

Os dois nibbles (4 bits) do byte são trocados. O nibble mais significativo vai para o lugar do nibble menos significativo e vice-versa, ou seja, o bit 7 vai para a posição do bit 3, o bit 6 para o bit 2, o 5 para o 1 e o 4 para o 0, da mesma forma, o bit 3 vai para a posição do bit 7, o bit 2 para o bit 6, o 1 para o 5 e o 0 para o 4.

4. Aritmética binária

Apresentamos a seguir as operações básicas da aritmética binária. Note que elas seguem exatamente os mesmos princípios da aritmética decimal. Na verdade, ela é ainda mais simples do que esta, devido ao pequeno número de resultados possíveis. Como só há dois números na base, há menos combinações a considerar em cada operação, como veremos a seguir.

4.1. Soma

Somando dois bits, podemos ter as seguintes combinações:

Assim como na aritmética decimal, usamos o "vai 1" (ou *carry*, em inglês) quando o resultado da soma de dois dígitos não cabe mais na base. Na aritmética decimal, o "vai 1" surge quando a soma é maior do que 9. No caso da aritmética binária, o "vai 1" surge quando a soma é maior que 1.

Com o uso do "vai 1", a soma de dois bytes quaisquer demanda o uso da soma de 3 bits. Para uma soma de três bits, temos:

Com base nessa tabela, a soma de dois bytes, por exemplo 84H e DEH, pode ser efetuada:

"Vai um"	1			1	1	1			
94H		1	0	0	1	0	1	0	0
DEH		1	1	0	1	1	1	1	0
Resultado	1	0	1	1	1	0	0	1	0

Note que o resultado possui 9 bits (101110010B) e, se essa soma tivesse sido efetuada em um processador com registradores de 8 bits, ele não caberia dentro do registrador de operações aritméticas. Nesse caso, no registrador ficaria armazenado o valor 72H (01110010B) e a flag *carry* seria colocada em 1 indicando esse último "vai um".

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

4.2. Subtração

Subtraindo-se um bit de outro, podemos ter as seguintes combinações:

Na última coluna da tabela temos o caso A-B no qual B>A. Assim como na aritmética decimal, usamos o "vem 1" ou "empresta 1" (*borrow* em inglês) da próxima potência quando isso ocorre. Vindo 1 "emprestado", ficamos com o valor 10 que subtraído 1 resulta em 1.

A subtração, por exemplo, dos bytes DEH – A4H ficaria:

Note que, em A - B, o resultado será negativo quando A < B. A representação de números negativos será apresentada no próximo item. Assim como nos números decimais, é possível obter o resultado da subtração fazendo-se B - A e invertendo-se o sinal do resultado.

4.3. Multiplicação

A multiplicação binária é extremamente simples. Afinal, só existem dois resultados possíveis para a multiplicação A x B com apenas 1 bit:

- Se A = $0 \rightarrow A \times B = 0$
- Se A = $1 \rightarrow A \times B = B$

Assim sendo, para o caso dos números A e B possuírem mais bits, a multiplicação é feita exatamente como na álgebra decimal, como mostra o exemplo:

4.4. Divisão

Assim como a multiplicação, a divisão se torna extremamente simples em função de só termos dois resultados possíveis para A ÷B:

- Se A > B, A \div B = 1 + resto (onde o resto é A B)
- Se A < B, A ÷B = 0 + resto (onde o resto é o próprio A)

Observe o exemplo: $A \div B = 10111001_2 \div 101_2 = 100101_2$ (185 ÷ 5 = 37)

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações)

Sistemas Computacionais: Hardware

Note que esta divisão resultou exata. É possível que a divisão resulte em um número não inteiro, o que inclui a possibilidade de obter-se dízimas. A representação de números não inteiros em sistemas digitais necessita do uso de códigos especiais, a notação em ponto flutuante.

5. Números Binários Negativos

Como sabemos, sistemas binários apenas lidam com dígitos binários, que podem assumir os valores 0 ou 1. A representação de números negativos demanda o uso de códigos especiais. Veremos a seguir duas maneiras de representar números negativos.

Como em todos os códigos, é necessário ter em mente que o código funciona por ser uma convenção conhecida por todos os que lidam com o dado. O código é escolhido em função da aplicação e deve ser usado coerentemente.

5.1. Bit de sinal

Adiciona-se à palavra de dados um bit que indica o sinal. A convenção mais usual define o bit mais significativo (MSB ou bit 7) como sendo o bit de sinal, da seguinte forma:

- 0: número positivo
- 1: número negativo

Exemplo:

$+25_{10} = 00011001_2$	$+100_{10} = 01100100_2$	$+32_{10} = 00100000_2$
$-25_{10} = 10011001_2$	$-100_{10} = 11100100_2$	$-32_{10} = 10100000_2$

5.2. Complemento de 2

A codificação por bit de sinal normalmente não é utilizada por computadores e calculadoras, pois possui uma dupla representação para o zero e demanda o uso de circuitos distintos (diferentes) para efetuar operações de soma e subtração.

A representação de sinal por complemento de 2 é mais utilizada, pois permite que a subtração seja feita da mesma forma que a soma, como será mostrado.

As propriedades da representação em complemento de 2 advém do fato de trabalharmos com um número FIXO e LIMITADO de bits. Observe o que ocorre com o hodômetro (4 dígitos) de um carro 0 km:

Andando para frente	0000	0001	0002	0003	0004	0005	0006
Andando para trás	0000	9999	9998	9997	9996	9995	9994

Se considerarmos "andar para frente" como número positivo e "andar para trás" como número negativo, teríamos:

	+1=0001	+2=0002	+3=0003	+4=0004
ĺ	-1=9999	-2=9998	-3=9997	-4=9996

Se tivéssemos um hodômetro com 6 bits, no entanto, teríamos:

Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações) Sistemas Computacionais: Hardware

+1=000001	+2=000002	+3=000003	+4=000004
-1=999999	-2=999998	-3=999997	-4=999996

Note que é o tamanho do hodômetro que determina qual será o número negativo. No primeiro hodômetro, -1=9998, enquanto no segundo, -1=99998. Assim, se desejamos trabalhar com quantidades negativas representadas de acordo com este princípio, precisamos usar um *número fixo de bits*.

Aplicando o mesmo princípio para números binários, teríamos:

Andando para frente	0 000	0 001	0 010	0 011	0 100	0 101	0 110
Andando para trás	0 000	1 111	1 110	1 101	1 100	1 011	1 010
	0	-1	-2	-3	-4	-5	-6

Os números acima estão representados em *complemento de 2*. Note que todos os números positivos começam com **0** e os negativos começam com **1**, assim como quando usamos o bit de sinal. Os bits restantes indicam a magnitude (tamanho) do número.

Para números com 8 bits, como é o caso de vários processadores, a codificação em complemento de 2 gera números positivos de 0 a +127 e negativos de -1 a -128. Note que não existe mais a representação duplicada do número 0.

Para achar a representação em complemento de 2 (valor negativo) de um número binário devese executar os seguintes passos:

Procedimento	Exemplo: – 10
1. Achar o complemento de 1: toma-se o número positivo	00001010
e troca-se cada 1 por 0 e cada 0 por 1	$\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$
	11110101
2. Achar o complemento de 2: soma-se 1 ao complemento	11110101
de 1 calculado anteriormente	<u>+ 1</u>
	1 1 1 1 0 1 1 0 = -10

Os conceitos de complemento de 1 e complemento de 2 se aplicam a qualquer base numérica. O complemento de 1 é obtido achando-se a diferença entre o algarismo desejado e o maior algarismo da base. O complemento de 2 é obtido somando-se 1 ao resultado (da mesma forma que para os número binários).

5.2.1. Soma e subtração com complemento de 2

A operação de subtração de dois números binários pode ser efetuada como uma soma: A (minuendo) – B (subtraendo) = A + (-B). Logo, para efetuar uma subtração usando complemento de 2 basta somar o minuendo com a representação em complemento de 2 do subtraendo, como mostram os exemplos a seguir:

	Decimais	Binários	
Soma:	18	00010010	
	+ 11	+00001011	
	29	00011101	
	Decimais	Binários	
Subtração:	18	00010010	
	– 11	+11110101	(complemento de 2 de $11 = -11$)
	7	100000111	= 7 (desprezado o "vai um")
	Decimais	Binários	
Subtração:	18	00010010	
	– 18	+11101110	(complemento de 2 de $18 = -18$)
	0	100000000	= 0 (desprezado o "vai um")
	Decimais	Binários	
Subtração:	18	00010010	
		+11101001	(complemento de 2 de $23 = -23$)
	-5	11111011	(complemento de 2 de 5 = -5)

Note que:

- A soma é efetuada normalmente;
- Na subtração, o subtraendo é transformado em um número negativo (complemento de 2) e depois é efetuada uma soma;
- Se o resultado for positivo, ocorrerá um "vai um". Em um processador isso fará com que a flag *carry* seja setada (colocada em 1);
- Se o resultado for negativo, não ocorrerá um "vai um" e a flag *carry* será zerada. O valor obtido é a representação negativa (complemento de 2) do resultado. No último exemplo de subtração, o resultado obtido foi 11111011 que é a representação negativa de 5.

Os microcontroladores da família PIC que serão estudados efetuam as subtrações como somas em complemento de 2. É importante entender essas propriedades para se poder interpretar os resultados obtidos dentro do processador.

6. Códigos Binários

6.1. Códigos BCD

Como a base binária é "pequena" (possui apenas os dígitos 0 e 1), a codificação binária de números relativamente pequenos já exige uma grande quantidade de dígitos. Isto torna complexa a visualização dos números e, por vezes, seu processamento.

Para contornar esta dificuldade de conversão e visualização, são usados os códigos BCD − Binay Coded Decimal (decimais codificados como binários). Nesta codificação, é feito algo semelhante à conversão hexadecimal ↔ binário. A cada dígito DECIMAL são associados 4 bits. A diferença do uso do BCD para o hexadecimal é que cada 4 bits continuam associados a uma potência de 10, como mostra o exemplo a seguir.

32.947 ₁₀									
3 ₁₀	2 ₁₀	9 ₁₀	4 ₁₀	7 ₁₀					
0011	0010 1001		0100	0111					
0011 0010 1001 0100 0111 _{BCD8421}									

Note que, se convertermos o número acima de binário para decimal, ele será diferente de 32.947. O que fizemos não foi uma conversão puramente matemática – foi a aplicação de um código que associa a cada dígito decimal quatro dígitos binários. Apesar de o número BCD ser maior do que o binário equivalente a 32.947, ele tem a vantagem de ser mais facilmente convertido para decimal.

6.2. Alfanuméricos

Até aqui, foram vistos códigos que permitem a representação de números. Há também os códigos que permitem a representação de letras, símbolos e caracteres de controle (para impressoras, por exemplo). Os principais são apresentados a seguir.

ASCII - *American Standard Code for Information Interchange*: padroniza o uso de 7 bits. O bit mais significativo do byte (bit 7) era originalmente reservado ao uso de bit de segurança (bit de paridade).

Com o aumento da necessidade de símbolos (desenho de tabelas, caracteres acentuados, entre outros), passou-se a usar o bit mais significativo também para gerar códigos válidos. O grande problema desta ampliação foi a falta de padronização (o mesmo código era usado para símbolos diferentes, em diferentes softwares). Ainda hoje ocorrem erros devidos a esta falta de padronização.

A tabela a seguir mostra o código ASCII de 7 bits. As primeiras linha e coluna são o número hexadecimal equivalente a cada código. Por exemplo, a letra A (maiúscula) corresponde ao código 41_{16} (4 na primeira coluna, 1 na primeira linha), que corresponde ao binário $0100\ 0001_2$.

IESB - Instituto de Educação Superior de Brasília Engenharia de Computação e Eng. de Produção Elétrica (Telecomunicações) Sistemas Computacionais: Hardware

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	1	**	#	\$	*	&	r	()	#	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9		;	<	=	>	2
4	0	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	s	T	U	V	W	X	Y	Z	[1	1	٨	100
6	*	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7	p	q	r	3	t	u	v	w	x	У	Z	{	T	}	~	DEL

As palavras na tabela são nomes de códigos de controle (del = apagar, por exemplo). Uma versão do código ASCII para 8 bits é mostrada a seguir:

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
Ø		•	2	3 ♥ !! # 3 C S c	•	5 4 8 × 5 E	6 + - &6FVf v&ûº + п					B	ç		E	300
1	۲	1	‡		P	3		‡	Ť	1	-	+	2	++	•	▼/?0 o △ 8 f » 1 ■ n
2		•	17	#	\$	%	&	10	()	*	+		22	83	1
3	Ø	1 A	2 B	3	4	5	6	‡, 7 G	8	9		;	<	_ M	>	?
4	6	A	В	C	D	E	F	G	H	I	J	К	L	M	N	0
5	P	Q	R	S	T	U	U	W	Х	Y	\mathbf{z}	L	1	1	^	
6		Qa	b	C	d	e	f	g	↑〈8HXh	i	→ * :JZjzèÜ ː III ΓΩ	+;K[k{ï¢%nii	、くむ / 1 - 全年 巻り 片	m	· ^ X ^ c ? : a c ? * + + + + + + + + + + + + + + + + + +	0
7	p	qüæí Æí ■	réÆó∭⊤∏C	S	t	u	v	W	×	y	z	{	1	>	~	Δ
8	Ç	ü	é	â	ä	à	å	Ç	ê	ë	è	ï	î	ì	Ä	A
9	É	æ	Æ	ô	ö	ò	û	ù	ij	Ö	Ü	¢	£	¥	R€	£
A	á	í	ó	ú	ñ	Ñ	<u>•</u>	<u>•</u>	ż	г	7	1/2	4	i	~	>>
\mathbf{B}			8	Т	1	1	11	П	7	11	Ш	ī	71	П	4	1
C	Ľ	1	T	ŧ	8	t	Ŧ	Ił	Œ	Īī	11	ĪĪ	ŀ	=	#	Ξ.
D	щ	Ŧ	π	a	F	F	П	₩	÷	1	г		-		1	
0123456789ABCDEF	OOP POWE MILE A	∓ β ±	Γ	sâôú—tu ∏≤	4◆¶\$4DTdtäöñ†-⊦Σſ	U e u á ó ñ 🛨 🕂 F o J	μ	# a a o o o o o o o o o o o o o o o o o	Xeiyonuthoo	→2914198014640	Ω	δ	n] m < 1 ¥ + 山 = ø z	Ě	n
F	Ξ	±	2	<	ſ	J	÷	×	0	•	(*)	1	n	2		

Outros códigos:

BCDIC - Binary Coded Decimal Interchanging Code (7 bits) e

EBCDIC - Extended Binary Coded Decimal Interchanging Code (8 bits): Usado em mainframes IBM. O código original tinha 7 bits (128 símbolos) e sua versão estendida tem 8 bits (256 símbolos).

6.3. Códigos de Paridade

Acrescenta-se um bit à palavra de modo que a soma dos "1's" da palavra e do bit de paridade seja par ou ímpar. Tem por objetivo a detecção de erros simples na transmissão de dados.

Código	Paridade Par	Qtde de 1's
000	0	0
001	1	2
010	1	2
011	0	2
100	1	2
101	0	2
110	0	2
111	1	4

Código	Paridade Ímpar	Qtde de 1's
000	1	1
001	0	1
010	0	1
011	1	3
100	0	1
101	1	3
110	1	3
111	0	3