

AP3211

General Description

The AP3211 is a 1.4MHz fixed frequency, current mode, PWM buck (step-down) DC-DC converter, capable of driving a 1.5A load with high efficiency, excellent line and load regulation. The device integrates N-channel power MOSFET switch with low on-resistance. Current mode control provides fast transient response and cycle-by-cycle current limit.

A standard series of inductors are available from several different manufacturers optimized for use with the AP3211. This feature greatly simplifies the design of switch-mode power supplies.

The AP3211 is available in SOT-23-6 package.

Features

- Input Voltage Range: 4.5V to 18V
- Output Voltage Adjustable from 0.81V to 15V
- Fixed 1.4MHz Frequency
- High Efficiency: up to 92%
- Output Current: 1.5A
- Current Mode Control
- Built-in Over Current Protection
- Built-in Thermal Shutdown Function
- Built-in UVLO Function
- Built-in Over Voltage Protection
- Built-in Soft-start

Applications

- LCD TV
- DPF
- Portable DVD

Figure 1. Package Type of AP3211

AP3211

Pin Configuration

K Package (SOT-23-6)

Figure 2. Pin Configuration of AP3211 (Top View)

Pin Description

Pin Number	Pin Name	Function		
1	BS	Bootstrap pin. A bootstrap capacitor is connected between the BS pin and SW pin. The voltage across the bootstrap capacitor drives the internal high-side NMOS switch		
2	GND	Ground pin		
3	FB	Feedback pin. This pin is connected to an external resistor divider to program the system output voltage. When V_{FB} exceeds 20% of the nominal regulation value of 0.81V, the OVP is triggered. When $V_{FB} < 0.25$ V, the oscillator frequency is lowered to realize short circuit protection		
4	EN	Control input pin. Forcing this pin above 1.5V enables the IC. Forcing this pin below 0.4V shuts down the IC. When the IC is in shutdown mode, all functions are disabled to decrease the supply current below 1µA		
5	IN	Supply input pin. A capacitor should be connected between the IN pin and GND to keep the DC input voltage constant		
6	SW	Power switch output pin. This pin is connected to the inductor and bootstrap capacitor		

AP3211

Functional Block Diagram

Figure 3. Functional Block Diagram of AP3211

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
SOT-23-6	-40 to 85°C	AP3211KTR-G1	GCI	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AP3211

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Pin Voltage	V_{IN}	-0.3 to 20	V
EN Pin Voltage	V_{EN}	-0.3 to $V_{\rm IN}$ +0.3	V
SW Pin Voltage	V_{sw}	21	V
Bootstrap Pin Voltage	V_{BS}	-0.3 to $V_{\rm SW}$ +6	V
Feedback Pin Voltage	V_{FB}	-0.3 to 6V	V
Thermal Resistance	$\theta_{ m JA}$	220	°C/W
Operating Junction Temperature	T_{J}	150	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	$T_{ m LEAD}$	260	°C
ESD (Human Body Model)		2000	V
ESD (Machine Model)		200	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	4.5	18	V
Maximum Output Current	I _{OUT (MAX)}	1.5		A
Operating Ambient Temperature	\overline{T}_{A}	-40	85	°C

AP3211

Electrical Characteristics

 $V_{\text{IN}}\!\!=\!\!V_{\text{EN}}\!\!=\!\!12V,\,V_{\text{OUT}}\!\!=\!\!3.3V,\,T_{\text{A}}\!\!=\!\!25^{\circ}\!\text{C},$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Voltage	V _{IN}		4.5		18	V
Quiescent Current	I_Q	V _{FB} =0.9V		0.8	1.1	mA
Shutdown Supply Current	I_{SHDN}	V _{EN} =0V		0.1	1.0	μΑ
Feedback Voltage	V_{FB}		0.785	0.810	0.835	V
Feedback Over Voltage Threshold	V_{FBOV}			0.972		V
Feedback Bias Current	I_{FB}	V _{FB} =0.85V	-0.1		0.1	μΑ
Switch On-resistance	R_{DSON}	$I_{SW}=1A$		0.35		Ω
Switch Leakage Current	I _{LEAK}	$V_{IN}=18V,$ $V_{EN}=0V$		0.1	10	μΑ
Switch Current Limit	I_{LIM}		1.8	2.4		A
EN Pin Threshold	V_{ENH}		1.5			V
EN PIN THRESHOLD	V_{ENL}				0.4	V
Input UVLO Threshold	$V_{\rm UVLO}$	V _{IN} Rising	3.3	3.8	4.3	V
Input UVLO Hysteresis	V _{HYS}			0.2		V
Ossillator Eraguanay	f_{OSC1}		1.1	1.4	1.7	MHz
Oscillator Frequency	f_{OSC2}	Short Circuit		460		kHz
Max. Duty Cycle	D_{MAX}	$V_{FB}=0.6V$		90		%
Min. Duty Cycle	D_{MIN}	V _{FB} =0.9V			0	%
Minimum On Time	t _{ON}			100		ns
Thermal Shutdown	T _{OTSD}			160		°C
Thermal Shutdown Hysteresis	T _{HYS}			20		°C
Soft-start Time	t _{SS}			200		μs

Note 2: $R_{DSON,\,}t_{ON,\,}T_{OTSD,\,}T_{HYS}$ and t_{SS} are guaranteed by design.

AP3211

Typical Performance Characteristics

Figure 4. Efficiency vs. Output Current

Figure 5. Quiescent Current vs. Temperature

Figure 6. Feedback Voltage vs.Temperature

Figure 7. Output Voltage vs. Output Current

AP3211

Typical Performance Characteristics (Continued)

Figure 8. Output Voltage vs. Input Voltage

Figure 9. Maximum Output Current vs. Input Voltage

Figure 10. Output Ripple (I_{OUT}=1.5A)

Figure 11.Load Transient (I_{OUT}=1 to 1.5A)

AP3211

Typical Performance Characteristics (Continued)

 V_{EN} 3.4V/div V_{OUT} 1V/div V_{SW} 5V/div I_L 1A/div V_{SW} Time (10 μ s/div)

Figure 12. Enable Turn-on Characteristic (Resistance Load, R_{LOAD} =2.6 Ω)

Figure 13. Enable Turn-off Characteristic (Resistance Load, R_{LOAD} =2.6 Ω)

Figure 14. Short Circuit Protection (I_{OUT}=1.5A)

Figure 15.Short Circuit Recovery ($R_{LOAD}=2.6\Omega$)

AP3211

Typical Performance Characteristics (Continued)

Figure 16. Over Voltage Protection (I_{OUT}=1.5A)

Figure 17. Over Voltage Recovery (I_{OUT}=1.5A)

Typical Application

Figure 18. Typical Application Circuit of AP3211

AP3211

Mechanical Dimensions

SOT-23-6 Unit: mm(inch)

AP3211

Mounting Pad Layout

SOT-23-6

Dimensions	Z	G	X	Y	Е
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.600/0.142	1.600/0.063	0.700/0.028	1.000/0.039	0.950/0.037

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarter

BCD (Shanghai) Micro-electronics Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203,Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District Shenzhen 518057, China

Tel: +86-0755-8660-4900 Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei)

BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808

Fax: +886-2-2656-2806/26562950

BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA

Tel: +1-510-668-1950 Fax: +1-510-668-1990 BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong, Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430