1.3 **Vector Equations**

McDonald Fall 2018, MATH 2210Q 1.3 Slides

Homework: Read the section and do the reading quiz. Start with practice problems, then do

• Hand in: 6, 9, 11, 15, 21, 23, 25

• Extra Practice: 3, 9, 12, 14, 22

Definition 1.3.1 (Vectors in \mathbb{R}^2). A matrix with only one column is called a **column** vector, or just a vector. Examples of vectors with two entries are

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \qquad \mathbf{v} = \begin{bmatrix} \sqrt{2} \\ \pi \end{bmatrix} \qquad \qquad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$\mathbf{w} = \left[\begin{array}{c} w_1 \\ w_2 \end{array} \right]$$

where w_1, w_2 are real numbers. The set of all vectors with two entries is called \mathbb{R}^2 . Two vectors are **equal** if and only if their corresponding entries are equal.

Definition 1.3.2. Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their sum is the vector $\mathbf{u}+\mathbf{v}$ obtained by adding the corresponding entries of \mathbf{u} and \mathbf{v} . For example,

$$\left[\begin{array}{c}1\\2\end{array}\right] + \left[\begin{array}{c}2\\3\end{array}\right] = \left[\begin{array}{c}1+2\\2+3\end{array}\right] = \left[\begin{array}{c}3\\5\end{array}\right]$$

Given a vector \mathbf{v} and a real number c, the scalar multiple of \mathbf{u} is the vector $c\mathbf{u}$ obtained by multiplying each entry of \mathbf{u} by c. For example if

$$c=2$$
 and $\mathbf{u}=\left[\begin{array}{c}1\\2\end{array}\right]$, then $c\mathbf{u}=2\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}2\\4\end{array}\right]$.

Example 1.3.3. Given vectors $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$, find $(-2)\mathbf{u}$, $(-2)\mathbf{v}$, and $\mathbf{u} + (-3)\mathbf{v}$.

1

Observation 1.3.4 (Vectors in \mathbb{R}^2). We can identify the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$ with the point (a,b) in the plain, so we can consider \mathbb{R}^2 as the set of all points in the plain. We usually visualize a vector by including an arrow from the origin.

Example 1.3.5. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$. Graph \mathbf{u} , \mathbf{v} and $\mathbf{u} + \mathbf{v}$ on the plane.

Proposition 1.3.6 (Parallelogram Rule). If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented in the plain, then $\mathbf{u} + \mathbf{v}$ corresponds to the last vertex of the parallelogram with vertices are \mathbf{u} , \mathbf{v} and $\mathbf{0}$.

Example 1.3.7. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
. Graph \mathbf{u} , $(-2)\mathbf{u}$, and $3\mathbf{u}$. What's special about $c\mathbf{u}$ for any c ?

Observation 1.3.8 (Vectors in \mathbb{R}^3). Vectors in \mathbb{R}^3 are 3×1 matrices. Like above, we can represent them geometrically in three-dimensional coordinate space. For example,

$$\mathbf{a} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Definition 1.3.9 (Vectors in \mathbb{R}^n). If n is a positive integer, \mathbb{R}^n denotes the collection of ordered n-tuples of n real numbers, usually written as $n \times 1$ column matrices, such as

$$\mathbf{a} = \left[\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right],$$

we we again, sometimes denote (a_1, a_2, \ldots, a_n) . The **zero vector**, denoted **0** is the vector whose entries are all zero. We also denote $(-1)\mathbf{u} = -\mathbf{u}$.

Proposition 1.3.10 (Algebraic Properties of \mathbb{R}^n). For \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n , and scalars c, d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

Remark 1.3.11. Sometimes, for ease of notation, we denote $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix}$ as (a_1, a_2, \dots, a_n) .

Example 1.3.12. Prove properties (i) and (v) of the Algebraic Properties above.

Definition 1.3.13 (Linear Combinations). Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ in \mathbb{R}^n , and scalars c_1, c_2, \dots, c_m . The vector

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m$$

is called a linear combination of the $\mathbf{v}_1, \dots \mathbf{v}_m$ with weights c_1, \dots, c_m .

Example 1.3.14. The figure below shows linear combinations of $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ where with integer weights. Estimate the linear combinations of \mathbf{v}_1 and \mathbf{v}_2 that produce \mathbf{u} and \mathbf{w} .

Example 1.3.15. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$. Is \mathbf{b} a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?

Remark 1.3.16. In the previous example, the vectors \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{b} became the columns of the augmented matrix that we reduced:

$$\left[
\begin{array}{ccc}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-5 & 6 & -3
\end{array}
\right]$$

For brevity, we will write this matrix, using vectors, as $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix}$. This suggests the following.

Procedure 1.3.17. A vector equation $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$, has the same solution set as the linear system whose augmented matrix is

In particular, **b** can be represented as a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to this matrix.

Definition 1.3.18. If $\mathbf{v}_1, \dots, \mathbf{v}_m$ are in \mathbb{R}^n , then the set of all linear combinations of is denoted by $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ and is called the **subset of** \mathbb{R}^n **spanned by** $\mathbf{v}_1, \dots, \mathbf{v}_m$. In other words, $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is the collection of all vectors of the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_m\mathbf{v}_m$$
, with c_1, \ldots, c_m scalars.

Example 1.3.19. Let
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Prove that \mathbf{v}_1 and \mathbf{v}_2 span all of \mathbb{R}^2 .

Remark 1.3.20. Actually, for any \mathbf{u} and \mathbf{v} in \mathbb{R}^3 , Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane!

Observation 1.3.21 (Geometric Descriptions of $\mathrm{Span}\{\mathbf{u}\}$ and $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$). Let \mathbf{u} and \mathbf{v} be nonzero vectors in \mathbb{R}^3 , with \mathbf{u} not a multiple of \mathbf{v} . Then $\mathrm{Span}\{\mathbf{v}\}$ is the set of points on the line in \mathbb{R}^3 through $\mathbf{0}$ and \mathbf{v} , and $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$ is the plane in \mathbb{R}^3 containing $\mathbf{0}$, \mathbf{u} and \mathbf{v} , that is, it contains the line in \mathbb{R}^3 through \mathbf{u} and the line through $\mathbf{0}$ and \mathbf{v} and $\mathbf{0}$.

Example 1.3.22. If $\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$. Is (-3, 8, 1) in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 ?