

# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| CANDIDATE<br>NAME |  |                     |  |
|-------------------|--|---------------------|--|
| CENTRE<br>NUMBER  |  | CANDIDATE<br>NUMBER |  |

912650567

PHYSICS 0625/53

Paper 5 Practical Test

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper

Additional Materials: As listed in the Confidential Instructions

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of the page.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | iner's Use |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| Total    |            |

This document consists of **10** printed pages and **2** blank pages.



2 1 In this experiment, you will determine the density of modelling clay by two methods. (a) Method 1. Carry out the following instructions referring to Fig. 1.1. You are provided with a piece of modelling clay. modelling clay W Fig. 1.1 Mould the piece of modelling clay into a shape that is approximately a cube. Measure the height *h*, width *w* and depth *d* of the piece of modelling clay. *h* = ..... cm *d* = ..... cm Calculate the volume V of the piece of modelling clay using the equation V = hwd. (ii) (iii) Measure the mass *m* of the piece of modelling clay using the balance provided. *m* = ...... g (iv) Calculate the density  $\rho$  of the modelling clay using the equation  $\rho = \frac{m}{V}$ .

 $\rho$  = ......[3]

For Examiner's Use

(b) Method 2.

For Examiner's Use

Carry out the following instructions referring to Fig. 1.2. You are provided with a beaker containing water at room temperature.



Fig. 1.2

Break the piece of modelling clay into two pieces with one piece approximately twice the size of the other piece.

(i) Using the **smaller** piece of modelling clay, measure its mass  $m_s$ .

 $m_{\rm S}$  = .....

(ii) Pour approximately  $50 \, \text{cm}^3$  of water into the measuring cylinder. Record the volume of water  $V_1$  in the measuring cylinder.

 $V_1 = \dots$ 

(iii) Tie the thread around the smaller piece of modelling clay and lower it into the measuring cylinder until it is completely covered with water. Record the new volume  $V_2$ .

V<sub>2</sub> = .....

(iv) Calculate the volume  $V_s$  of the modelling clay using the equation  $V_s = V_2 - V_1$ .

V<sub>s</sub> = .....

(v) Calculate the density  $\rho$  of the modelling clay using the equation  $\rho = \frac{m_{\rm s}}{V_{\rm s}}$ .

*ρ* = .....[5]

| (c) | Assuming that the experiment has been carried out with reasonable care, suggest two reasons why the two values obtained for the density of the modelling clay may not be the same. | For<br>Examiner's<br>Use |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | 1                                                                                                                                                                                  |                          |
|     |                                                                                                                                                                                    |                          |
|     | 2                                                                                                                                                                                  |                          |
|     | [2]                                                                                                                                                                                |                          |
|     | [Total: 10]                                                                                                                                                                        |                          |

# **BLANK PAGE**

|        |       | xperiment, you will investigate the energy changes that occur when hot and cold e mixed.                                                                                                                                        |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| You ar | re p  | provided with a supply of hot water and a supply of cold (room temperature) water.                                                                                                                                              |
| (a) (i |       | Pour 50 cm³ of cold water into the beaker labelled <b>A</b> . Measure and record the temperature $\theta_{\rm c}$ of this water.                                                                                                |
|        |       | $\theta_{\rm C}$ =                                                                                                                                                                                                              |
| (ii    |       | Pour 50 cm $^3$ of hot water into the beaker labelled <b>B</b> . Measure and record the temperature $\theta_{\rm h}$ of this water.                                                                                             |
|        |       | $\theta_{h} = \dots$                                                                                                                                                                                                            |
| (iii   |       | As soon as you have taken the temperature, pour the $50\mathrm{cm^3}$ of water from beaker <b>A</b> into beaker <b>B</b> . Briefly stir the mixture then measure and record the temperature $\theta_\mathrm{m}$ of the mixture. |
|        |       | $\theta_{m}$ =                                                                                                                                                                                                                  |
|        |       | [3]                                                                                                                                                                                                                             |
| (b) (i | i)    | Calculate the gain in thermal energy $E_c$ of the cold water using the equation                                                                                                                                                 |
|        |       | $E_{\rm c} = k(\theta_{\rm m} - \theta_{\rm c})$ where $k = 210{\rm J/^{\circ}C}$ .                                                                                                                                             |
|        |       |                                                                                                                                                                                                                                 |
|        |       | <i>E</i> <sub>c</sub> =                                                                                                                                                                                                         |
| /i     | ii)   | Calculate the loss in thermal energy $E_{\rm h}$ of the hot water using the equation                                                                                                                                            |
| (1     |       | where $k = 210  \mathrm{J/°C}$ .                                                                                                                                                                                                |
|        |       |                                                                                                                                                                                                                                 |
|        |       | $E_{h} = \dots$                                                                                                                                                                                                                 |
| (c) A  | \ eti | [2] udent suggests that all the thermal energy lost by the hot water is gained by the cold                                                                                                                                      |
|        |       | er. $E_{\rm c}$ and $E_{\rm h}$ should therefore be equal.                                                                                                                                                                      |
| (i     |       | State whether your experimental results support this suggestion and justify your statement by reference to your results.                                                                                                        |
|        |       | statement                                                                                                                                                                                                                       |
|        |       | justification                                                                                                                                                                                                                   |
|        |       |                                                                                                                                                                                                                                 |
|        |       | [2]                                                                                                                                                                                                                             |
| (ii    | i)    | Suggest a practical reason in this experiment why $E_c$ might be different from $E_h$ .                                                                                                                                         |
|        |       |                                                                                                                                                                                                                                 |
|        |       | [1]                                                                                                                                                                                                                             |

(d) Another student was asked to suggest quantities that should be kept constant if this experiment is repeated in order to check the readings. Table 2.1 shows the suggestions. Place a tick (✓) in the second column of the table next to each correctly suggested quantity.

For Examiner's Use

#### Table 2.1

| suggestion                                                      |  |
|-----------------------------------------------------------------|--|
| avoid parallax errors when taking readings                      |  |
| number of stirs                                                 |  |
| room temperature                                                |  |
| starting temperature of cold water                              |  |
| starting temperature of hot water                               |  |
| use only two or three significant figures for the final answers |  |

[2]

[Total: 10]

3 In this experiment, you will investigate the resistance of a wire.

You will use the circuit shown in Fig. 3.1.

For Examiner's Use



Fig. 3.1

- (a) (i) Switch on. Measure and record in Table 3.1 the current l in the circuit and the p.d. V across a length  $l = 0.250 \,\mathrm{m}$  of the wire **PQ** as shown in Fig. 3.1. Switch off.
  - (ii) Calculate the resistance R of the length  $l = 0.250 \,\mathrm{m}$  of wire using the equation

$$R = \frac{V}{I}$$
.

Record this value of R in the table.

- (iii) Repeat steps (i) and (ii) using *l* values of 0.500 m and 0.750 m.
- (iv) Complete the heading for each column of the table.

Table 3.1

| 1/    | V/ | 1/ | R/ |
|-------|----|----|----|
| 0.250 |    |    |    |
| 0.500 |    |    |    |
| 0.750 |    |    |    |

[5]

| (b) | Use data from the table to suggest and justify a relationship between the length <i>l</i> of the wire and its resistance <i>R</i> . Show your working. | For<br>Examiner's<br>Use |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | relationship                                                                                                                                           |                          |
|     | justification                                                                                                                                          |                          |
| (c) | Use your results to predict the resistance of a 1.500m length of the same wire. Show your working.                                                     |                          |
|     | prediction =[2]                                                                                                                                        |                          |
|     | [Total: 10]                                                                                                                                            |                          |

4 In this experiment, you will investigate the formation of images by a converging lens.

Carry out the following instructions referring to Fig 4.1.





Fig. 4.1

- (a) (i) Place the screen about 1.0 m from the illuminated object.
  - (ii) Place the lens between the object and the screen so that the centre of the lens is at a distance  $u = 0.200 \,\mathrm{m}$  from the object. Adjust the position of the screen until a clearly focused image is formed on the screen.
  - (iii) Measure (in metres) the distance v between the centre of the lens and the screen.
  - (iv) Record the values of u and v in Table 4.1.
  - (v) Repeat the steps in (i) (iv) using values for u of 0.250 m, 0.300 m, 0.350 m and 0.400 m.

Table 4.1

| u/m | v/m | $\frac{1}{u}/\frac{1}{m}$ | $\frac{1}{v}/\frac{1}{m}$ |
|-----|-----|---------------------------|---------------------------|
|     |     |                           |                           |
|     |     |                           |                           |
|     |     |                           |                           |
|     |     |                           |                           |
|     |     |                           |                           |

(vi) Calculate the values of  $\frac{1}{u}$  and  $\frac{1}{v}$  and enter them in the table.

[3]

**(b)** Plot the graph of  $\frac{1}{V} / \frac{1}{M}$  (*y*-axis) against  $\frac{1}{U} / \frac{1}{M}$  (*x*-axis).

For Examiner's Use



[4]

(c) (i) Use the graph to find the intercept on the y-axis.

intercept on the *y*-axis = .....

(ii) Use the graph to find the intercept on the *x*-axis.

intercept on the x-axis = .....[2]

(d) State and briefly explain one precaution you took in order to obtain reliable measurements.

precaution .....

evolenation

.....[1]

[Total: 10]

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.