Imperative programming Introduction

Kozsik Tamás, Porkoláb Zoltán

ELTE Eötvös Loránd Tudományegyetem

Outline

- Course Criteria
- Paradigms and Languages
 - Low-level and High-level Programming
 - History of Programming Languages
- Structure of Programs
- 4 Compiling and Running Programs

Course Goals

- Concepts
- Terminology
- Knowledgeable language usage
 - Imperative Programming
 - Procedural Programming
 - Modular Programming
- Only partly: programming skills
- Usage of Linux and CLI tools
 - see Jurassic Park (link)
 - and TadeusTaD note: \$su root -c "killall raptors"

Programming Languages Used

• C (Why do we learn C? link!)

Course Format

- Lecture
- Practice
- Consultation

Passing the Course

• Continuous: small tests on practice

• End of Semester: exam

Expected Workload

Total 150 work hours

- Contact hours: 13x5
- At home practice and learning: 12x5
- Preparation for exam: 20
- Exam: 5

More information

Course homepage (Hungarian yet):

http://kto.web.elte.hu/hu/oktatas/

In canvas

http://canvas.elte.hu/

Outline

- Course Criteria
- Paradigms and Languages
 - Low-level and High-level Programming
 - History of Programming Languages
- Structure of Programs
- 4 Compiling and Running Programs

Programming Languages

- Human-Machine Communication
- Human-Human Communication

Programming Paradigms

Cognitive schemes, required language tools

For example:

- Imperative Programming
- Functional Programming
- Logic Programming
- Sequential Programming
- Concurrent Programming
- Parallel Programming
- Distributed Programming

- Procedural Programming
- Modular Programming
- Object-oriented Programming
- Aspect-oriented Programming
- Component-based Programming
- Service-oriented Programming
- Contract-based Programming

Machine code

```
$èüÿÿÿ<83:
    E^H<89>^D$èüÿÿÿ<89×Eô<8b>Eô<83>è^A<89>D$^H<8b>E^L<89>D$^D$^D<8b>E^H<89>^D$èüÿÿÿ<8b>Eô<8d
                         å<83>i^P<8b>E^LÁà^B^CE^H<8b>^@<89
                $èüÿÿÿÉÃU<89
 ·Eð^A<8b>EðÁà^B^CE^H<8b>^@;Eø^?^H<8b>Eð;E^P~ä<83>mô^A<8b>EôÁà^B^CE^H<8b>^@;Eø^?i<8b>Eð;Eô}4
   <89>Eü<8b>EðÁà
Unsorted array is: 🖊 %d 🗛
el.text^@.data^@.bss^@.rodata^@.comment^@.note.GNU-stack^@.rel.eh_frame^@^@
ort.c^@main^@printf^@quickSort^@partition^@^@^@^@@Ŕ^@^@^@^A^E^@^@Z^@^@^&
```


Assembly

```
quickSort:
.LFB1:
       .cfi_startproc
       pushl %ebp
       .cfi_def_cfa_offset 8
       .cfi_offset 5, -8
       mov1
            %esp, %ebp
       .cfi_def_cfa_register 5
       subl $40, %esp
       movl 12(%ebp), %eax
       cmpl 16(%ebp), %eax
       jge .L6
       movl 16(%ebp), %eax
       mov1
               %eax, 8(%esp)
       movl
               12(%ebp), %eax
       movl
               %eax, 4(%esp)
```


"High-level' Programming Languages

- Fortran
- LISP
- Algol
- COBOL
- BASIC
- C

etc.

Modern, Comfortable Languages

- Python
- Haskell
- C++
- Java
- Ada

etc.

Ada Lovelace (Analytical Engine, Charles Babbage)

Number of Operation. Nature of Operation.	Variables acted upon.	receiving e	Indication of change in the value on any Variable.	Statement of Results.	Data.			Working Variables.									Result Variables.				
					IV100001	1V ₂ O 0 0 2 2	1V ₃	4V.4 00 0 0	°V _s ○ 0 0 0	°V ₄ ○ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*V.7	\$ 0000 o	°V,	°V₃3 ○ ○ ○ ○ □	ov _{II} ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	*V ₁₂ O 0 0 0 0 0	Ψ ₁₃ ○ 0 0 0 0	B, in a declinal O.A. fraction.	B ln a Official Officers of Grantion.	$\begin{bmatrix} B_{b} & \ln a \\ decimal \bigcirc S \end{bmatrix}$ fraction.	oV ₂₁ ○ 0 0 0 B ₇
- + + + -	${}^{1}V_{4} - {}^{1}V_{1}$ ${}^{1}V_{5} + {}^{1}V_{1}$ ${}^{2}V_{5} + {}^{2}V_{4}$ ${}^{2}V_{6} + {}^{2}V_{4}$ ${}^{1}V_{11} + {}^{1}V_{2}$ ${}^{2}V_{13} - {}^{2}V_{11}$	1V ₄ , 1V ₅ , 1V ₆ 2V ₄ 2V ₅	$ \begin{cases} 1V_2 = 1V_2 \\ 1V_3 = 1V_3 \\ 1V_4 = 2V_4 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_5 = 2V_5 \\ 1V_1 = 1V_1 \\ 2V_4 = 9V_4 \\ 1V_{11} = 7V_{11} \\ 1V_{12} = 1V_{21} \\ 2V_{11} = 9V_{11} \\ 9V_{12} = 1V_{21} \\ 1V_{12} = 1V_{21} \\ 1V_{13} = 1V_{31} \\ 1V_{14} = 1V_{11} \\ 1V_{15} = 1V_{31} \\ 1V_{15} = 1V_{31} \\ 1V_{15} = 1V_{31} \\ 1V_{15} = 1V_{15} \\ 1V_{15} =$		1 1	2		2 n 2 n - 1 0	2 n 2 n + 1 0	2 11				 n-1	$\begin{array}{c} 2n-1 \\ 2n+1 \\ 1 \\ 2 \\ 2n-1 \\ 2 \\ 2n+1 \\ 0 \end{array}$		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}-\Lambda_0$				
×	1V ₂₁ ×3V ₁₁ 1V ₁₂ +1V ₁₃	ıv ₁₂	$ \begin{cases} {}^{1}V_{2} = {}^{3}V_{2} \\ {}^{4}V_{1} = {}^{3}V_{1} \\ {}^{4}V_{4} = {}^{3}V_{4} \\ {}^{4}V_{11} = {}^{3}V_{11} \\ {}^{2}V_{11} = {}^{3}V_{21} \\ {}^{2}V_{11} = {}^{3}V_{21} \\ {}^{3}V_{12} = {}^{3}V_{22} \\ {}^{3}V_{12} = {}^{3}V_{12} \\ {}^{3}V_{12} = {}^{3}V_{12} \\ {}^{3}V_{12} = {}^{3}V_{12} \\ {}^{3}V_{11} = {}^{3}V_{12} \\ {}^{3}V_{11} = {}^{3}V_{12} \\ {}^{3}V_{11} = {}^{3}V_{12} \\ {}^{3}V_{11} = {}^{3}V_{12} \\ {}^{3}V_{12} = {}^{3}V_{12} \\ {}^{3}V_{12} = {}^{3}V_{12} \\ {}^{3}V_{13} = {}^{3}V_{12} \\ {}^{3}V_{13} = {}^{3}V_{12} \\ {}^{3}V_{13} = {}^{3}V_{12} \\ {}^{3}V_{13} = {}^{3}V_{12} \\ {}^{3}V_{12} = {}^{3}V_{12} \\ {}^{3}V_{13} = {}^{3}V_{13} \\ {}^{3}V$			2	-			2n	2 2			 n - 2		$B_1, \frac{2\pi}{2} = B_1 A$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	В			
+ + × - + + ×	1V ₁ + 1V ₂ 2V ₆ + 2V ₂ 1V ₈ × 2V ₁₁ 2V ₆ - 1V ₁ 1V ₁ + 2V ₂ 2V ₆ ÷ 2V ₇ 1V ₈ × 4V ₈	1V ₆ 1V ₇ 1V ₉	$\begin{cases} 1V_6 = 2V_6 \\ 1V_1 = 1V_2 \\ 1V_1 = 1V_1 \\ 1V_2 = 2V_2 \\ 1V_2 = 2V_2 \\ 2V_6 = 2V_6 \\ 2V_7 = 3V_2 \\ 3V_{11} = 3V_1 \\ 3V_{12} = 3V_1 \\ 3V_{13} = 3V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 2V_2 = 3V_2 \\ 1V_1 = 3V_1 \\ 3V_2 = 3V_2 \\ 3V_2 = 3V_2 \\ 3V_2 = 3V_2 \\ 3V_{11} = 5V_{11} \\ 4V_{11} = 5V_{11} \\ 4V_{12} = 5V_{12} \\ 4V_{12} = 5V_{12} \\ 4V_{12} = 5V_{12} \\ 4V_{12} = 5V_{13} \\ 4V_{12} = 5V_{13} \\ 4V_{12} = 5V_{13} \\ 4V_{12} = 5V_{13} \\ 4V_{13} = 5V_{13} \\ 4V_{12} = 5V_{13} \\ 4V_{13} = 5V_{1$	$\begin{array}{c} = 2n-1 \\ & = 2n+1 - 3 \\ & = \frac{2n-1}{3} \\ & = \frac{3n-1}{3} \\ & = 2n-2 \\ & = 2n-2 \\ & = 2n-2 \\ & = 3n+1 - 4 \\ & = \frac{2n-2}{3} \\$						2 n - 1 2 n - 1 2 n - 2 2 n - 5	3 3	2n-1	2n-1		$\begin{cases} \frac{2n}{2}, \frac{2n-1}{3} \\ \frac{2n}{3}, \frac{2n-1}{3}, \frac{2n-2}{3} \\ - A_3 \\ 0 \end{cases}$	B ₂ A ₂			tr)		
+	2V12+2V1	sv,,	{2V12=6V12}	2 3 3							of Ope	-		n - 3	ty-three.	0	$\left\{A_2 + B_1 A_1 + B_2 A_3^2\right\}$		B _a		TO THE

Augusta Ada King, Countess of Lovelace (née Byron, 1815–1852)

Kozsik Tamás, Porkoláb Zoltán (ELTE)

Introduction

Ancient Programming

- Physical wiring (e.g. ENIAC, 1945)
- Machine code (von Neumann-architecture, 1945)
- Assembly (1949–)
- High-level programming languages
 - Plankalkül (Konrad Zuse, 1942–1945)
 - Fortran (John Backus et al., 1954)
 - LISP (John McCarthy, 1958)
 - Algol (1958, 1960, 1968)
 - COBOL (1959)
 - BASIC (Kemény-Kurtz, 1964)

Important Languages

- Simula-67 (Dahl–Nygaard, 1967)
- Pascal (Niklaus Wirth, 1970)
- C (Dennis Ritchie, 1972)
- Ada (1980)
- SQL (Chamberlin-Boyce, 1974)
- C++ (Bjarne Stroustrup, 1985)
- Eiffel (Bertrand Meyer, 1986)
- Erlang (Armstrong-Virding-Williams, 1986)
- Haskell (1990)
- Python (Guido van Rossum, 1990)
- Java (James Gosling, 1995)
- JavaScript (Brendan Eich, 1995)
- PHP (Rasmus Lerdorf, 1995)
- C# (2000)
- Scala (Martin Odersky, 2004)

Most Popular Languages (September 2018., TIOBE-index)

Sep 2018	Sep 2017	Change	Programming Language	Ratings	Change
1	1		Java	17.436%	+4.75%
2	2		С	15.447%	+8.06%
3	5	^	Python	7.653%	+4.67%
4	3	•	C++	7.394%	+1.83%
5	8	^	Visual Basic .NET	5.308%	+3.33%
6	4	•	C#	3.295%	-1.48%
7	6	•	PHP	2.775%	+0.57%
8	7	•	JavaScript	2.131%	+0.11%
9	-	*	SQL	2.062%	+2.06%
10	18	*	Objective-C	1.509%	+0.00%
11	12	^	Delphi/Object Pascal	1.292%	-0.49%
12	10	•	Ruby	1.291%	-0.64%
13	16	^	MATLAB	1.276%	-0.35%
14	15	^	Assembly language	1.232%	-0.41%
15	13	•	Swift	1.223%	-0.54%
16	17	^	Go	1.081%	-0.49%
17	9	*	Perl	1.073%	-0.88%
18	11	*	R	1.016%	-0.80%

Origins of C

Evolution of C

- 1969 Ken Thompson develops B language (simplified BCPL)
- 1969 Ken Thompson, Dennis Ritchie and others start working on UNIX
- 1972 Dennis Ritchie develops the C language
- 1972-73 UNIX kernel is rewritten in C
- 1977 Johnson's Portable C Compiler
- 1978 Brian Kernighan and Dennis Ritchie: The C Programming Language book
- 1989 ANSI C standard (C90) (32 keywords)
- 1999 ANSI C99 standard (+5 keywords)
- 2011 ANSI C11 standard (+7 keywords)
- 2018 C18 ISO/IEC standard

We will use mostly ANSI C (C90).

Outline

- Course Criteria
- Paradigms and Languages
 - Low-level and High-level Programming
 - History of Programming Languages
- Structure of Programs
- 4 Compiling and Running Programs

Structure of Programs

- Expressions
- Statements
- Subprograms (functions/procedures, routines, methods)
- Modules (libraries, classes, packages)

C Example

```
int factorial( int n )
{
    int result = 1;
    int i;
    for(i=2; i<=n; ++i)
    {
        result *= i;
    }
    return result;
}</pre>
```


Expressions

n

"Hello world!"

100

n+1

++i

range(2,n+1)

employees[factorial(3)].salary * 100

Statements

```
result = 1;
        result *= i;
                                      return result;
    for( i=2; i<=n; ++i ){ result *= i; }</pre>
                    while(1) printf("Gyurrrika szép!\n");
```


Simple Statements

- Assignment
- Empty Statement
- Subprogram Call
- Return from Function

Control Structures

- Branches
- Loops etc.

Braces in Control Structures

```
Braces left out
int gcd( int n, int m )
    while( n != m )
        if(n > m)
             n -= m;
        else
             m -= n:
    return n;
```

```
Foolproof solution
int gcd( int n, int m )
    while( n != m ){
        if( n > m ){
              n -= m:
        } else {
             m -= n;
    return n;
```


Dangling Else

I wrote this

It means this

I wanted this

See...

goto-fail (Apple) link!

Writing to Standard Output

We write an integer and a newline.

```
printf("%d\n",factorial(10));
```


More Complex Output

```
printf("10! = %d, ln(10) = %f\n", factorial(10), log(10));
```


Types

- Express how to interpret a sequence of bits
- Determine what valid values a variable can have
- Tie operations to certain, valid values

In C

- ullet int interval of integers (whole numbers), e.g. $[(-1)*2^{63}...2^{63}-1]$
- float subset of rational numbers
- char characters in the extended ASCII character set
- char[] array of characters, a text
- int[]— array of integers
- int* pointer to an integer

etc.

The Role of Types

- Protection from programmer errors
- Express thoughts of the programmer
- Helps forming abstractions
- Helps compiling efficient code

Type checking

- Are variables, functions used according to their types?
- Programs with type incorrectness are invalid.

Static and Dynamic Typing

The C compiler checks type-correctness in *compile time*.

Strongly and Weakly Typed Languages

- In a weakly typed language, values are automatically converted to other types if necessary
 - Comfortable at the beginning
 - Easy to write something completely different unintentionally
- In C and Python, type conversion rules are rather strict (they are strongly typed)

Subprograms

- Describing a computation of multiple steps
- General, can get Parameters, Reusable
- Structuring programs handling complexity
 - No longer than a page
- Has multiple names
 - routine or subroutine
 - function: computes a value and returns it
 - procedure: can change the program state
 - method: OOP terminology

Main Program

Where program execution starts.

Comments

Modules

Modularity: encapsulation, independence, narrow interfaces

- Reusable program libraries
 - e.g. standard library
- Bigger units of the program
- Making abstractions

Dividing into Modules

Reusable factorial

- factorial.c factorial function
- tenfactorial.c main program

```
tenfactorial.c
#include <stdio.h>
int factorial( int n ); /* declaring the function */
int main()
{
    printf("%d\n", factorial(10));
    return 0;
```

Outline

- Course Criteria
- Paradigms and Languages
 - Low-level and High-level Programming
 - History of Programming Languages
- Structure of Programs
- 4 Compiling and Running Programs

Source Code

- Code written in a programming language
- Computer: machine code
- Execution
 - interpretation (Python)
 - compilation, execution (C)
- Source file
 - factorial.c

Interpreter

- Executing the source code step-by-step, statement-after-statement
 - Invalid statement triggers an error
 - Valid statement is executed
- Execution of the statement: according to built-in machine code

Cons

- Runtime error on bad statement (rarely executed statement???)
- Slower running of the program

Pros

- Integration of program writing and execution
 - REPL = Read-Evaluate-Print-Loop
 - Making a prototype fast
- Easier for beginners

Source File in C

factorial.c

```
#include <stdio.h>
int factorial( int n ){  /* you can also put { here */
    int result = 1;
    int i;
    for(i=2; i<=n; ++i){
        result *= i;
    }
    return result;
int main(){
    printf("%d\n", factorial(10));
    return 0;
}
```

Separation of Compilation and Execution

- Lots of programming errors can be detected without running the program
- Checking the program prior to everything else
- Only has to be done once (during compilation)
- Less errors during execution
- Goal: efficient and reliable machine code!

"Compilation time" and "Execution time"

Compilation

- source code in source file
 - factorial.c
- compiler
 - gcc -c factorial.c
- target code, object code
 - factorial.o

Compilation Unit

- Part of the source code (e.g. a module)
- Compiler gets one at a time
- Object code is produced from it

One program usually consists multiple compilation units.

In C

Content of a source file

Linking, Executable Code

- Objects (target code, object code)
 - factorial.o etc.
- Linker
 - gcc -o factorial factorial.o
- Executable code
 - factorial
 - default name: a.out

Multiple objects (linked together) make one executable.

Execution

./factorial

Multiple Compilation Units

factorial.c int factorial(int n) int result = 1, i; for(i=2; i<=n; ++i) result *= i: return result:

tenfactorial.c

```
#include <stdio.h>
int factorial( int n );
int main()
{
    printf("%d\n", factorial(10));
    return 0;
}
```

Compilation, Linking, Execution

```
gcc -c factorial.c tenfactorial.c
gcc -o factorial factorial.o tenfactorial.o
./factorial
```

Two steps can be joint into one command

- source code in source files
 - factorial.c and tenfactorial.c
- compilation and linking in one step
 - gcc -o factorial factorial.c tenfactorial.c
- execution the binary
 - factorial

Compilation Errors

- Breach of language rules
- Detected by the compiler

```
factorial.c
int factorial( int n )
    int result = 1;
    for(i=2; i<=n; ++i)
        result *= i:
    return result;
```

```
gcc -c factorial.c
```

```
factorial.c: In function 'factorial':
factorial.c:6:9: error: i undeclared (first use in this function)
    for(i=2; i<=n; ++i)</pre>
```

Linking Errors

factorial.c

```
int factorial( int n )
{
    int result = 1, i;
    for(i=2; i<=n; ++i)
    {
        result *= i;
    }
    return result;
}</pre>
```

tenfactorial.c

```
#include <stdio.h>
int faktorial( int n );
int main()
{
    printf("%d\n", faktorial(10));
    return 0;
}
```

Compilation, Linking, Error

```
$ gcc -c factorial.c tenfactorial.c
$ gcc -o factorial factorial.o tenfactorial.o
tenfactorial.o: In function `main':
tenfactorial.c:(.text+0xa): undefined reference to `faktorial'
collect2: error: ld returned 1 exit status
```

Compilation and Run Time Linkage

Static Linkage

- Before execution of the program
- Right after creating object code
- Pros: Linkage problems at compile time

Dynamic Linkage

- During execution of the program
- Dynamically linkable object code
 - Linux shared object: .so
 - Windows dynamic-link library: .dll
- Pros
 - Smaller executable size
 - Smaller memory usage (memory footprint)

Preprocessing

C preprocessor: produces source code from source code

```
Macros
#define WIDTH 80
...
char line[WIDTH];
```

```
Sharing Declarations

#include <stdio.h>
...
printf("Hello world!\n");
```

```
Conditional Compilation
#ifdef FRENCH
printf("Salut!\n");
#else
printf("Hello!\n");
#endif
```

