Two types of questions:

1.calculating K_{eq} from known concentration values

2.calculating concentration values when $K_{e\alpha}$ is given

Calculating K_{eq}

Example #1

$$N_2O_{4(g)} <===> 2 NO_{2(g)}$$

At 25°C, the equilibrium concentrations are:

$$[N_2O_4] = 0.0292 \text{ mol } / \text{L}$$

 $[NO_2] = 0.0116 \text{ mol } / \text{L}$
Calculate K_{eq} at 25°C.

$$K_{eq} = \frac{[NO_2]^2}{[N_2O_4]}$$

$$= [0.0116]^2$$
$$[0.0292]$$

$$= 4.61 \times 10^{-3}$$

$$k_{eq} = 4.61 \times 10^{-3}$$

Calculating K_{eq}

Example #2

$$N_{2(g)} + 3 H_{2(g)} <===> 2 NH_{3(g)}$$

At 200°C, the concentrations at equilibrium are:

 $[N_2] = 2.12, [H_2] = 1.75, and [NH_3] = 84.3$ Calculate K_{eq} at 200°C.

$$K_{eq} = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

$$= \frac{[84.3]^2}{[2.12][1.75]^3}$$

$$= 625$$
e. k., is 625

 \cdot : the k_{eq} is 625

Calculating K_{eq}

Example #3

$$H_{2(g)} + I_{2(g)} <===> 2 HI_{(g)}$$

Initial moles in a 2.00 L flask: $[H_2] = 0.200$ mol and $[I_2] = 0.200$ mol

At equilibrium, $[I_2] = 0.020 \text{ mol} / L$.

- a) What percent of jodine vapour reacted?
- b) What percent of iodine vapour reacted?

ICE tables

Whenever questions involve initial conditions changing to reach equilibrium, ICE tables are a good method to organize your information.

I = initial concentrations

C = change in concentrations

E = equilibrium concentrations

Calculating K_{eq} - Example #3

Initial moles in a 2.00 L flask: $[H_2] = 0.200$ mol and $[I_2] = 0.200$ mol At equilibrium, $[I_2] = 0.020 \text{ mol } / \text{ L}.$

$$H_{2(g)} + I_{2(g)} <=> 2 HI_{(g)}$$
 $I^{0.2/2} = 0.1M$ 0.1M 0.0M
 $C - x - x$ 2x
 $E 0.02M$ 0.02M 0.16M

- a) What is K_{eq} at steady conditions?
- b) What percent of iodine vapour reacted?

a)
$$K_{eq} = [HI]^2$$
 b) $\%I_{2 \text{ reacted}} = \underline{0.08} \times 100\%$ $[H_2][I_2]$ 0.1 $= [0.16]^2$ $= 80\%$ $[0.02][0.02]$.: $\%I_2 \text{ reacted} = 80\%$ $: K_{-} = 64$

$$K_{eq} = 64$$

% Reaction

% reaction = <u>actual yield</u> x 100% theoretical yield

- Actual yield: measured @ equilibrium
- Theoretical yield:
 - Maximum possible yield
 - Calculated with stoichiometry
 - Based on assumptions of forward reaction

Calculating K_{eq}

Example #4

2.00 mol of HI in 2.00 L flask at 425°C react to produce H_2 and I_2 . At equilibrium, $[H_2]$ and $[I_2] = 0.214$ mol / L.

What is K_{eq} for this reaction?

Calculating K_{eq} - Example #4

2.00 mol of HI in 2.00 L flask at 425°C react to produce H_2 and I_2 . At equilibrium, $[H_2]$ and $[I_2] = 0.214$ mol / L.

What is K_{eq} for this reaction?

Calculating K_{eq}

Example #5

$$N_{2(g)} + 3 H_{2(g)} <===> 2 NH_{3(g)}$$

Initial concentrations:

$$[N_2] = 0.32 \text{ M} \text{ and } [H_2] = 0.66 \text{ M}$$

What is K_{eq} when equilibrium $[H_2]$ is 0.30 M?

Calculating K_{eq} - Example #5

Initial concentrations: $[N_2] = 0.32 \text{ M}$ and $[H_2] = 0.66 \text{ M}$ What is K_{eq} when equilibrium $[H_2]$ is 0.30 M?

$$N_{2(g)} + 3 H_{2(g)} <=> 2 NH_{3(g)}$$
I 0.32M 0.66M 0
C -x -3x +2x
E 0.20 0.30M 0.24

$$0.66-3x = 0.30$$

 $0.66-0.30 = 3x$
 $x = 0.12$

$$K_{eq} = [NH_3]^2$$
 $[N_2][H_2]^3$
 $= [0.24]^2$
 $[0.20][0.30]^3$
 $= 11$
 $k_{eq} = 11$

$$:: k_{eq} = 11$$

Calculating K_{eq} - Example #6

Calculate K_{eq}.

$$K_{eq} = [CO]^{2}$$
 $[O_{2}]$
 $= [6]^{2}$
 $[15]$
 $= 2.4$

.:
$$k_{eq} = 2$$