NATURAL LANGUAGE PROCESSING

Gayane Petrosyan McGill University

Luys DAP 2012

Alan Turing

Enigma Machine

Alan Turing

Turing Machine

Alan Turing

- "Computing Machinery and Intelligence," in 1950
- 'Can machines think?'

<u>Loebner Prize</u> since 1991.

Natural Language Processing

- <u>APPLICATIONS</u>: Question Answering, Information Extraction, Sentiment Analysis, Machine translation,
- MOSTLY SOLVED: Spam classification, POS tagging, NER
- GOOD PROGRESS: Sentiment analysis, Information extraction, machine translation,
- HARD: Question Answering, paraphrase, summarization, Dialog
- WHY IS NLP DIFFICULT?: Ambiguities, idioms, Non-English word, world knowledge.

Spelling correction

Machine Translation

Sentiment Analysis

Nikon Zoom-Nikkor Zoom lens - 24 mm - 70 mm - F/2.8 - Nikon F \$1,489 online ★★★★ 1,205 reviews

December 2007 - Nikon - Wide Angle - Zoom - Nikon F - f/2.8 - Autofocus - Ultrasonic Motor - Aspherical

... ...

See more details

Reviews

Summary - Based on 1,205 reviews

Question Answering

Spelling correction

- Non dictionary word -> error
- Find similar words from dictionary -> candidate set
- Dictionary word -> consider all words
- Find similar pronunciation, spelling words -> candidate set

The Noisy channel model of Spelling

- Operations
 - Insertion
 - Deletion
 - Substitution
 - D(n, m) distance between n length string and m length string is the solution
 - Bottom-up
 - Compute D(i,j) for small i, j
 - Compute D(I,j) from previously computed values

Real systems

- If very confident in correction
 - Autocorrect, hte->the
- Less confident
 - Give the best correction
- Even less confident
 - Give a correction list
- Unconfident
 - Mark as an error

Computing Probabilities

Coin

Н

T

$$P(H) = \frac{count(H)}{Count(all\ cases)} = \frac{1}{2}$$

L	R
Н	Н
Н	Т
Т	Н
Т	Т

$$P(HH) = \frac{count(HH)}{Count(all\ cases)} = \frac{1}{4}$$

$$P(HH/H_L) = \frac{count(HH)}{Count(H_L)} = \frac{1}{2}$$

Language Models

- The goal is to assign probability to the sentence
- P(Water is so transparent) = P(transparent/ Water is so) *
 P(so/ water is) * P(is/ Water) * P (Water/ <Start>)
- Bigram model
 P(Water is so transparent) ≈ P(transparent/ so) *
 P(so/ is) * P(is/ Water) * P (Water/ <Start>)

•
$$P(is \mid Water) = \frac{count(Water is)}{count(Water)}$$

3-gram, 4-gram, 5-gram and that's it.

Example

- Corpus
 - <s> I am Sam </s>
 - <s> Sam I am </s>
 - <s> I do not like green ham </s>
- P(I/<s>) = ?
- P(</s> / Sam) = ?
- P(Sam / <s>) = ?
- P(am / I) = ?
- P(Sam / am) = ?
- P(not / do) = ?

Next Lecture

Date:

2-Aug-2012 9:00am

Topics:

- Sentiment Analysis and Text Classification more in detail,
- How does Google search work? What are the negative effects of search personalization on individuals and democracy?