

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2015-2016 - 1º SEMESTRE

CI2	Parte teórica. Duração: 30m
Nome:	Código:
Notas: - Responda às questões seguintes, indicando a opção correta (em maiús - Cada resposta errada vale -15% da cotação da pergunta	sculas)
 Considere a função printN apresentada: 	
<pre>template <class t=""> void printN(T element, int n =</class></pre>	1) {
 A. T tem de ser obrigatoriamente um dos tipos de dados pré-definido B. T tem de incluir apenas a implementação do operador < C. T tem de incluir a implementação operador de igualdade e do ope D. T tem de incluir a implementação do construtor de cópia e do ope E. Nenhuma das possibilidades anteriores 	erador <<
Resposta:D	
2. Considere a definição das classes Box e OneBox:	
<pre>template <class t=""> class Box{}; template <class t=""> class OneBox: public Box<t> {}</t></class></class></pre>	;
Que atribuições são corretas?	
<pre>I. Box<string> b1 = OneBox<string>(); II. OneBox<string> b2 = Box<string>(); III. Box<string> b3 = OneBox<int>();</int></string></string></string></string></string></pre>	
A. I, II e IIIB. II apenasC. I apenasD. I e II apenasE. Nenhuma das possibilidades anteriores	

3. Considere o código seguinte em C++ e indique quando é escrita a mensagem "exception found".

```
try {
    // code
} catch (ExceptA e) { cout << "exception found"; }</pre>
```

- A. Quando em code é lançada uma exceção da classe ExceptA apenas
- B. Quando em code é lançada uma exceção da classe ExceptA ou classes derivadas de ExceptA
- C. Quando em code é lançada uma exceção da classe ExceptA apenas e esta inclui o operador <<
- D. Nunca \acute{e} escrita a mensagem "exception found"
- E. Nenhuma das possibilidades anteriores

Resposta:	В
-----------	---

Resposta: ____ C

CI2

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2015-2016 - 1º SEMESTRE

Parte teórica. Duração: 30m

4. Considere a função maximum, que determina o maior valor de um vetor passado como argumento.

```
template <class T> T maximum(const vector<T> &v)
{
   if ( v.size() == 0 ) throw EmptyVector();
   T max=v[0];
   for (int i=1; i<v.size(); i++)
       if ( v[i] > max ) max=v[i];
   return max;
}
```

- A. A função lança uma excepção sempre que o vetor v está vazio
- B. A função lança uma excepção se o operador > não está definido no tipo de dados ${ t T}$
- C. A função lança uma excepção apenas quando o vector ${\bf v}$ está vazio e ${\bf T}$ é um tipo de dados prédefinido em C++
- D. A função lança uma excepção sempre que T não é um tipo de dados pré-definido em C++
- E. Nenhuma das possibilidades anteriores

Resposta: A

- **5.** Suponha um algoritmo de complexidade temporal O(N^{1/2}). Para N=100, o tempo de execução do algoritmo é de 1 minuto. Qual o tempo aproximado de execução do algoritmo para N=1000?
 - A. Cerca de 1 minuto
 - B. Cerca de 3 minutos
 - C. Cerca de 10 minutos
 - D. Cerca de 30 minutos
 - E. Nenhuma das possibilidades anteriores

6. Indique a complexidade temporal da função methodX:

int methodX(int	n)	+
int $s=0;$		
while $(n > 1)$)	{
n = n/2;		
s++;		
}		
return s;		
;		

- A. $O(n \log n)$
- B. O(n)
- C. $O(\log n)$
- D. $O(n^2)$
- E. Nenhuma das possibilidades anteriores

Resposta: C

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EIC0013 | ALGORITMOS E ESTRUTURAS DE DADOS | 2015-2016 - 1º SEMESTRE

CI2 Parte teórica. Duração: 30m

No	ne: Código:
7.	Suponha que estava a verificar a implementação do algoritmo quickSort que efetua a ordenação de ur vetor em ordem ascendente. Após o término do primeiro passo, o conteúdo do vetor é o seguinte: [3, 9 1, 8, 17, 24, 22, 20]. Qual o pivot usado neste passo?
	A. 17 B. 8 C. 24 D. 1
	E. Nenhuma das possibilidades anteriores
	Resposta:A
8.	O algoritmo de ordenação insertionSort: mantém os primeiros k elementos do vetor ordenados; par o próximo elemento (k+1), procura a posição correta para o inserir entre os primeiros k de modo manter a ordenação. Neste passo de procurar a posição onde colocar o elemento k+1, é usado um métod de pesquisa sequencial. Suponha que o algoritmo insertionSort2 usa, neste passo, um método d pesquisa binária. A complexidade temporal do algoritmo insertionSort2 é:
	 A. O(n log n) B. O(n) C. O(log n) D. O(n²) E. Nenhuma das possibilidades anteriores
	Resposta:D
9.	Pretende-se pesquisar um elemento ${\tt X}$ num vetor que se sabe estar ordenado. É correto afirmar (no cas médio) que a pesquisa sequencial:
	 A. Possui melhor desempenho temporal que a pesquisa binária, no caso de o elemento x não existir B. Possui melhor desempenho temporal que a pesquisa binária, no caso do elemento X existir C. Possui desempenho temporal semelhante à pesquisa binária, no caso de o elemento x não existir D. Possui pior desempenho temporal que a pesquisa binária, quer o elemento x exista ou não E. Nenhuma das possibilidades anteriores
	Resposta:D
10	Na linguagem C++, um membro-dado estático (static):
	 A. Só pode ser acedido por membros-função estáticos B. Só pode ser acedido depois de ser criado o primeiro objeto da classe C. Pode ter um valor mesmo que não existam objetos da classe D. Não pode ser alterado E. Nenhuma das possibilidades anteriores
	Resposta: C