DISCRETE MATHEMATICS NICHOLAS HAYEK

Lectures by Prof. Sergie Norin

CONTENTS

I	Preliminaries and Trees	1
Def	initions	1
Cor	nnectivity	2
Tre	es and Forests	4
Spa	inning Trees	6

I Preliminaries and Trees

DEFINITIONS

Graph theory is the study of pairwise relations between objects, e.g. computer networks, interpersonal relationships, airport flights. Graphs will help us simplify and abstract networks.

A graph G is comprised of a set of vertices, denoted V(G), where $|V(G)| < \infty$, a set of edges, denoted E(G), where every edge is associated with two vertices.

At least in this course

We say that an edge *joins* the two vertices it's associated with. Similarly, an edge is *incident* to a vertex which is an end of it. Conversely, a vertex is incident to an edge if it is an end of it.

Two vertices are *adjacent* or *neighbors* if they are joined by an edge, and a vertex has *degree* edges incident to it.

The *null graph* is the graph such that $V(G) = \emptyset$. The *complete graph* on *n* vertices, denoted K_n , is such that $|V(K_n)| = n$ and $|E(K_n)|$ is maximal.

For a graph of *n* vertices, the maximal number of edges it may have is $\binom{n}{2}$.

PROP 1.1

Suppose every vertex is connected to every other vertex. Then
$$\sum_{v \in V(G)} \deg(v) = n(n-1) \implies |E(G)| = \frac{n(n-1)}{2} = \binom{n}{2}$$
.

A graph of n vertices, where v_i is only adjacent to v_{i-1} and v_{i+1} , is called a path and is sometimes denoted P_n . v_1 and v_n are called the ends of P_n .

For
$$n \ge 3$$
, a cycle C_n is a graph with $V(G) = \{v_1, ..., v_n\}$ and $E(G) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1\}$.

An *adjacency matrix* is a matrix contained all vertices on both axis. Pairwise adjacency is denoted by a 1 entry, and 0 otherwise. For example, the following is an adjacency table for a 4 element cycle:

		v_1	v_2	v_3	v_4
_	v_1	×	1	0	1
	v_2	1	×	1	0
	v_3	0	1	×	1
	v_4	1	0	1	×

Similarly, an *incidence* matrix has rows in V(G) and columns in E(G), and marks with 1 pairs which are incident to eachother. The following is the incidence

matrix for a 4 element cycle:

	v_1	v_2	v_3	v_4
e_1	1	1	0	0
e_2	0	1	1	0
e_3	0	0	1	1
e_4	1	0	0	1

PROP 1.2

For a graph G, we always have $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$.

PROOF.

Every edge has two vertices incident to it. Thus, $\sum \deg(v)$ will be the number of times an edge is incident to a vertex, i.e. the number of edges \times 2.

H is a *subgraph* of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

We cannot do the same for " $G \setminus H$," since we may delete vertices and keep their incident edges!

For two graphs G, H, the union $G \cup H$ is a graph such that $V(G \cup H) = V(G) \cup V(G)$ and $E(G \cup H) = E(G) \cup E(H)$. We similarly define the intersection $G \cap H$ to be such that $V(G \cap H) = V(G) \cap V(H)$ and $E(G \cap H) = E(G) \cap E(H)$.

PROP 1.3

There are $2^{\binom{n}{2}}$ graphs with *n* vertices.

PROOF.

We know the maximal number of edges of this graph is $\binom{n}{2}$. Then, for each edge, one may make a binary choice whether to include it or not \therefore the number of graphs is $2^{\binom{n}{2}}$.

We can now ask: how many graphs are there with *n* vertices up to isomorphism?

An isomorphism between H and G is a bijection $\varphi: V(G) \to V(H)$ such that $uv \in E(G) \implies \varphi(u)\varphi(v) \in E(H)$..

CONNECTIVITY

A *walk* in *G* with ends u_0 and u_k is a sequence $(u_0, u_1, ..., u_k)$ such that $u_i \in V(G)$ and $u_i u_{i+1} \in E(G)$. The length of this walk is k.

u and v are called *connected* if there exists a walk in G with ends u and v OR, equivalently, there exists a path $P \subseteq G$ with ends u and v.

 \exists a walk in G with ends u and $v \iff \exists$ a path $P \subseteq G$ with ends u and v.

PROP 1.4

(\iff) Let $P \subseteq G$ be a path with ends u and v. Then V(P) can be numbered $u = v_0, v_1, ..., v_k = v$, where $v_i v_{i+1} \in E(P)$. Then $(v_0, ..., v_k)$ is a walk in G.

(\Longrightarrow) Let there exist a walk ($u=v_0,...,v_k=v$) with $v_iv_{i+1}\in E(G)$. WLOG suppose this is the walk of minimal length. If $v_i\neq v_j$, i.e. are pairwise distinct, then we already have a path. Suppose otherwise, and let $v_i=v_j$. Then

 $(v_0, ..., v_i, v_{i+1}, ..., v_k)$ is a *smaller* walk with ends u and v, which establishes the contradiction 4. A graph G is called *connected* if $\forall u, v \in V(G)$, u and v are connected. A partition of V(G) is $(X_1, ..., X_k)$ such that $\bigcup_{i=1}^k X_i = V(G)$ and $X_i \cap X_j = \emptyset \ \forall i \neq j$. A graph G is not connected $\iff \exists$ a partition (X, Y) of V(G) such that no edge **PROP 1.5** of *G* is incident to one vertex in *X* and one in *Y*. (\Leftarrow) Suppose *G* were connected. Then choose $u \in X$, $v \in Y$ such that there PROOF. exists a walk $(u = u_0, ..., u_k = v)$. Let u_i be minimal over i such that $u_i \in Y$. Then $u_{i-1} \in X$, and $u_{i-1}u_i \in E(G) \ \ \ \ \ \ \ \ .$ (\Longrightarrow) Let $u,v\in V(G)$ be such that there is no walk from u to v. Let X be the set of all $w \in V(G)$ such that \exists a walk with ends u and w. Similarly, let $Y = V(G) \setminus X$. Clearly $V(G) = X \cup Y$, $X \cap Y = \emptyset$, and (X, Y) is a partition. Suppose there exists an edge from a vertex in X to a vertex in Y, i.e. $x \in X$, $y \in Y$. Then we have the walk (u, ..., w, ..., x, y). But $y \notin X \nleq$. Let G be a graph. $H \subseteq G$ is called a connected component of G if H is a maximal connected subgraph of G, i.e. if $\exists H \subseteq H' \subseteq G$ with H' connected, then H = H'. Sometimes we just say "component." If H_1, H_2 are connected graphs, and $V(H_1) \cap V(H_2) \neq \emptyset$, then $H_1 \cup H_2$ is also **PROP 1.6** connected. Let $u \in H_1$, $v \in H_1 \cap H_2$, $w \in H_2$. Then (u, ..., v) and (v, ..., w) are both walks, PROOF. and thus (v, ..., v, ..., w) is a walk. Every $v \in V(G)$ is a member of a unique connected component $H \subseteq G$. **PROP 1.7** $\{v\}$ is connected. If there does not exist $H \supseteq \{v\}$ also connected, then we are PROOF. done. Otherwise, we may choose the maximal such connected superset. Suppose $v \in H_1$ and H_2 , two connected components. Then by Prop 1.6, $H_1 \cup H_2$ is connected. But since $H_1 \cup H_2 \supseteq H_1$, H_2 , this violates maximality. We conclude that $H_1 = H_2$. Let G be a graph, and let $H \subseteq G$ be a non-null and connected subgraph. Then H PROP 1.8 is a connected component of $G \iff \forall e \in E(G)$ with an end in V(H), we have $e \in E(H)$. For (\implies) , let e = uv, with $u \in V(H)$. If $v \in V(H)$, then we are done. PROOF.

Otherwise, suppose $e \notin E(H)$. We know v is a member of a unique connected component. But adding e to H would yield a further connected graph: take the graphs of $\{uv\}$ and H. Both are clearly connected, so $H \cup \{uv\}$ is connected.

 (\Leftarrow) Proof idea.

Obtained from *G* by deleting *e*

For $e \in E(G)$, $G \setminus e$ is a graph such that $V(G \setminus e) = V(G)$ and $E(G \setminus e) = E(G) \setminus \{e\}$.

Similarly, for $v \in V(G)$, $G \setminus v$ is a graph such that $V(G \setminus v) = V(G) \setminus \{v\}$ and $E(G \setminus v) = E(G) \setminus \{e : e \text{ incident to } v\}$.

Let comp(G) = # of connected components of G.

PROP 1.9

 $comp(G) = 1 \iff G \text{ is connected.}$

PROOF.

(\Longrightarrow) direction is trivial. For (\Longleftrightarrow), if G is connected, then there cannot exist a more maximal connected subgraph, e.g. G is a connected component. Since every vertex belongs to a unique connected component, and this must be G, comp(G) = 1.

Let $e = \{u, v\} \in E(G)$. Define a *cut-edge* to be an edge which is not part of any cycle.

PROP 1.10

Exactly one of the following holds:

- 1. *e* is a cut-edge: $comp(G \setminus e) = comp(G) + 1$, and *u*, *v* belong to different components of $G \setminus e$.
- 2. *e* is not a cut-edge: $comp(G \setminus e) = comp(G)$, and *u*, *v* belong to the same component.

PROOF.

Let e be a cut-edge. Let $H_1, ..., H_k$ be the connected components of $G \setminus e$. If u, v belong to H_i , then \exists a path $P \subseteq H_i$ with ends u and v. Adding e, this is a cycle $\frac{1}{2}$.

WLOG, assume that u, v belong to $V(H_1), V(H_2)$, respectively. Then let H' be obtained by $H_1 \cup H_2$ by adding e. We claim that $H', H_2, ..., H_k$ are all components of G. By Prop 1.8, we only need to check the connectivity of H', and this holds by Prop 1.6. Since there do not exist any vertices not in $V(H_i)$: $i \geq 2$ or V(H'), these are all the components of G. Thus, $comp(G) + 1 = comp(G \setminus e)$.

TREES AND FORESTS

A forest is a graph with no cycles, i.e. every edge is a cut-edge.

A tree is a non-null connected forest.

Let *F* be a non-null forest. Then comp(F) = |V(F)| - |E(F)|.

PROOF.

PROP 1.11

We'll show by induction on |E(F)|. If n=0 then all vertices are their own connected components. Let |E(F)|=n, and assume $\operatorname{comp}(F)=|V(F)|-|E(F)|$. Let $e\in E(F)$. Since F is a forest, e is a cut-edge, and thus $\operatorname{comp}(G\setminus e)=\operatorname{comp}(G)+1=|V(F)|-|E(F)|+1=|V(F)|-(|E(F)|-1)=|V(F)|-|E(F\setminus e)|=|V(F\setminus e)|-|E(F\setminus e)|$.

A leaf is a vertex with degree 1.

Let *T* be a tree with $|V(T)| \ge 2$. let $X = \{\text{leaves of } T\}$, $Y = \{v \in V(G) : \deg(v) \ge 3\}$. Then $|X| \ge |Y| + 2$.

PROP 1.12 Thus, trees have \geq 2 leaves!

PROOF.

By Prop 1.1, we have

$$\sum_{v \in V(T)} \deg(v) = 2|E(T)| \stackrel{1.11}{=} 2(|V(T)| - \operatorname{comp}(G)) \stackrel{1.9}{=} 2(|V(T)| - 1)$$

$$\implies \sum_{v \in V(T)} (\deg(v) - 2) = 2(|V(T)| - 1) - 2|V(T)| = -2$$

$$= \sum_{v \in X} (\deg(v) - 2) + \sum_{v \in Y} (\deg(v) - 2) + \sum_{v \in V(T) - X - Y} (\deg(v) - 2)$$

$$= -|X| \ge |Y|$$

$$\implies -2 \ge -|X| + |Y| \implies |X| \ge |Y| + 2 \quad \square$$

A note for the following few proofs: if w is a leaf, then any path which exists in T (with ends not w) exists in $T \setminus w$.

Let T be a tree with 2 leaves, u and v. Then T is a path with ends u and v.

PROP 1.13

Let $P \subseteq T$ be a path with ends u and v. By Prop 1.12, $\deg_T(w) = 2 \ \forall w \in V(P) \setminus \{u,v\}$. Moreover, $\deg_T(w) = \deg_P(w)$, so no vertex in V(P) is incident to an edge in $E(T) \setminus E(P)$. Then, by Prop 1.8, P is a connected component. But T is connected, so T = P.

PROOF.

Let T be a tree and $v \in V(T)$ be a leaf. Then $T \setminus v$ is a tree.

PROP 1.14

 $T \setminus v$ is non-null, since v has a neighbor. $T \setminus v$ has no cycles, since T has no cycles, and $T \setminus V$ is connected. We know there exists a path between any two vertices in $V(T) \setminus \{v\}$. Such a path still exists.

PROOF.

If G is a graph, $v \in V(G)$ a leaf, and $G \setminus v$ a tree, then G is a tree.

PROP 1.15

G is non-null, since $G \setminus v$ is non-null. We know that v belongs to no cycles, since it is a leaf, so any cycles apparent in G would exist in $G \setminus v$. Thus, G has no cycles. For connectedness, let H be the graph containing v, its

incident edge, and that edge's other vertex v'. H is connected, as is $G \setminus v$, and $G \setminus v \cap H \neq \emptyset$, so $G \setminus v \cup H = G$ is connected by Prop 1.6.

PROP 1.16

Let T be a tree, $u, v \in V(T)$. Then T contains a unique path with ends u and v.

PROOF.

We'll show by induction on |V(T)|. This clearly holds for |V(T)| = 1. Let $|V(T)| \ge 2$. Suppose T contains a leaf $w \in V(T) \setminus \{u, w\}$. Then $T \setminus w$ is a tree by Prop 1.14. By our induction hypothesis, $T \setminus w$ contains a unique path with ends u and v. By connectedness, \exists a path with ends u, v in T. But this path must exist in $T \setminus w$, whose uniqueness follows.

If no such leaf exists, then T has exactly 2 leaves (u and v). Thus, by Prop 1.13, T is a path with ends u and v, and thus the only path in T.

SPANNING TREES

Let *G* be a graph. A subgraph $T \subseteq G$ is called a *spanning tree* of *G* if *T* is a tree and V(T) = V(G).

Let *G* be connected and non-null. Let $H \subseteq G$, chosen minimal such that V(H) = V(G) and *H* is connected. Then *H* is a spanning tree of *G*.

We only need to check that T is non-null and contains no cycles. The first is automatic, since V(T) = V(G), and G is non-null. If H has a cycle, then let e be an edge in the cycle. $H \setminus e$ is connected by Prop 1.9 and Prop 1.10. But this contradicts minimality, so T contains no cycles.

Let G be a connected non-null graph. Let $H \subseteq G$ be maximal such that H contains no cycles. Then H is a spanning tree of G.

We need to show that V(H) = V(G) and H is connected (it is non-null, since at least a singleton of G contains no cycles; it contains no cycles by construction). If $\exists v \in V(G) \setminus V(H)$, adding v such that $\deg(v) = 0$ would maintain H having no cycles, thus contradicting maximality.

Suppose H is not connected. Then by Prop 1.5 there exists a partition $H = X \cup Y$ such that no edge has a vertex in both X and Y. However, such an edge must exist in G, say $e \in E(G)$, so we may add this edge to H to produce H'. Observe that H' contains no cycles, since e belongs to no cycles in H. But this contradicts maximality, so H must contain no cycles.

Let T be a spanning tree of G. Let $f \in E(G) \setminus E(T)$. Then T with f has one cycle (by Prop 1.16). This is called the *fundamental cycle* of f with respect to T, and denoted FC(T, f).

PROP 1.17

PROOF.

PROP 1.18

Let T be a spanning tree of G, $f \in E(G) \setminus E(T)$. Let C = FC(T, f), $e \in E(C)$. Then PROP 1.19 $(T + f) \setminus \{e\}$ is a spanning tree.

Let $T' = (T + f) \setminus \{e\}$. T + f is connected, and since e is not a cut-edge, $(T + f) \setminus \{e\} = T'$ is also connected. C is a unique cycle in T + f, so T' contains no cycles. Thus, T' is a tree. V(T') = V(T) = V(G), since T is a spanning tree, so we conclude that T' is a spanning tree. \Box