Name :	••••••	••••••
Roll No. :		••••••
Invigilator's Sign	nature:	••••••
C	3/B.TECH(EE-NEW)	/SEM-8/EE-801A/2010
	2010	
ADVANC	ED HIGH VOLTA	GE ENGINEERING
Time Allotted: 3	Hours	Full Marks : 70
The f	igures in the margin inc	dicate full marks.
and the second of the second of	医二类 医内侧 医二甲二甲基甲二磺磺二甲	inswers in their own words
	as far as prac	
	GROUP - A	
C	Multiple Choice Type	Questions)
1. Choose the	correct alternatives fo	r any ten of the following:
		$10\times1=10$
i) Averag	ge electrical field is the	he magnitude of electrica
fleld		
a) at	t mid-point between co	onductors
b) ra	atio of potential dif	fference to the distance
b	etween the conductors	
c) at	surface of the lower p	ootential electrode
d) ra	itio of potential differ	rence to half the distance

between the conductors.

[Turn over

- ii) An experimental method for computing the field distribution is
 - a) solution of Laplace equation
 - b) electrolytic tank method
 - c) digital simulation
 - d) field intensity method.
- iii) Field enhancement factor is the ratio of
 - a) maximum field to average field
 - b) rms value to electric field to average value
 - c) potential difference to radius of the conductor
 - d) electric field at the surface of the h.v. conductor to electric field at ground conductor.
- iv) A unique feature of the Boundary Element Method is that
 - a) it can be used for electric fields which are uniform only
 - b) it can be used only with bounded fields
 - c) electric field is proportional to the charge densities

 on an enclosed electrode which is simulated by

 real charges
 - d) none of these.

2

- v) Finite Element Method can be used only
 - a) with fields which are bounded
 - b) with fields which are unbounded
 - c) with fields which are both bounded and unbounded
 - d) when high accuracy is not required.
- vi) A comparison of the accuracies of various computational methods shows a good agreement between the results of
 - a) FEM and FDM
 - b) FDM and BEM
 - c) FEM and CSM
 - d) BEM and FEM.
- vii) Corona discharge is
 - a) an internal discharge
 - b) surface discharge
 - c) a spark between conductors
 - d) partial discharge around a high voltage conductor.

Turn over

viii) Partial discharge magnitude is

- a) quantity of charge measured at the terminals of the specimen
- b) quantity of charge inside a specimen
- c) voltage across the terminals of a specimen
- d) average current through the terminals of the specimen.
- ix) Partial discharge detector is a device that measures or detects
 - a) a partial discharge
 - b) corona discharge
 - c) leakage current
 - d) fault current.
- x) A simple partial discharge detector circuit consists of a power unit and a
 - a) coupling capacitor and test capacitor
 - b) coupling capacitor, test capacitor, measuring impedance and detector
 - c) test capacitor, measuring impedance and a detector
 - d) test capacitor, calibratng unit and detector.

4

- xi) The discharge energy in a partial discharge in terms of discharge magnitude q and inception voltage v is
 - a) q_{ui}

b) $0.707 q_{vi}$

c) $0.5 q_{vi}$

d) $1.414 q_{vi}$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Explain the difference between photo-ionization and photoelectric emission.
- 3. Discuss the advantages and limitations of Charge Simulation method.
- 4. How would you measure dielectric constant and loss angle for a cable?
- 5. How would you measure resistivity of a dielectric?
- 6. What are formitive and statistical time lags? Explain.

8218

5

[Turn over

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. What is PD? Find out the relation between measured charge and apparent charge in case of a PD. Draw the PD equivalent circuit for a cavity within a dielectric. Write down the different techniques of PD measurement. 2'+7+3+3
- 8. What are the different types of voltage dividers used in HV laboratory? Describe the method of impulse voltage measurement with the help of such dividers with proper mathematical analysis.

 3+12
- a) Draw the circuit diagram and explain the principle and operation of Cockroft-Walton cascade rectifier circuit for generation of high d.c. voltage.
 - b) Derive an expression for the voltage drop in a loaded Cockcroft-Walton voltage multiplier circuit. Also, derive the expression for the ripple voltage. 3 + 6 + 6
- 10. Explain the mechanism involved in the breakdown of vacuum.

- 11. Write short notes on any thee of the following: 3×5
 - a) Electron attachment and its role in the breakdown of electronegative gases.
 - b) Voltage measurement by sphere gaps.
 - c) Determination of front and tail time of lightning impulse wave as per I.S.
 - d) Generation of high impulse current.
 - e) Discharge characteristics of a rod-plane gap in air.

8218