

Hands-On SMT Soldering Aaron Bonnell-Kangas Kim Concillado

Hi

Aaron Bonnell-Kangas

- ECE grad student
- Z750
- MetaFilter
- Giant Eagle frozen pierogies
 - Name brand way too expensive

Kim Concillado

- ECE undergrad student
- Ninja 250
- Tumblr
- Ravioli

Buckeye Current

- We do a lot of electronic hardware design
- For the past 2-3 years we've been working on low-cost, practical methods to assemble complex PCBs
- It's going okay

Agenda

- A little bit of background
- A little bit of technique
- A little bit about the project
- Make it!

What is soldering?

- A soldered joint is made by joining two materials together with a filler metal
- Compare to welding:
 joining two materials
 together by melting them
 and fusing them
- A good solder joint provides mechanical and electrical connections

What is solder?

- An alloy with a convenient melting point
- Commonly used solders:
 - Leaded
 - "63/37": 63% lead, 37% tin (eutectic)
 - "60/40": 60% lead, 40% tin
 - Lead-free formulations
 - Tin-silver-copper (SAC)
 - Tin-copper (SnCu)
- We're working with lead-based solder
 - Better wetting characteristics
 - Lower melting point
 - 182°C (63/37 Sn/Pb) vs. 217°C (SnAg3Cu.5)
 - Lead is not absorbed through the skin, but if it is present on your hands after soldering, it can be accidentally ingested
 - Wash your hands after soldering!

© 2007 CuriousInventor.com

Flux

- Everything you are soldering is dirty!
 - Pads and parts on your PCB have thin oxide layers
 - Your solder has an oxide layer
 - These oxides inhibit solder wetting and bond formation
- Flux is a mild acid that attacks these oxide layers while you're soldering
 - Also protects joint from oxygen (in the air) until soldering is done
- Available in many varieties and forms:
 - Rosin flux: generally made from tree rosins
 - Water-soluble flux: proprietary formulations that dissolve in water for cleaning
 - "No-clean" flux: mild enough not to require removal
- Formats
 - Flux-core solder
 - Liquid/paste flux
 - Flux pens

Flux-core solder

Paste flux

Surface-mount devices

- Why SMT?
 - Size reduction and PCB layout
 - Many components are now only available in SMD

- 1. Tin
- 2. Tack
- 3. Solder

1. Tin

- · Add solder to one pad on the PCB.
- 2. Tack
- 3. Solder

1. Tin

2. Tack

 Hold the component with tweezers and melt the solder you applied.

3. Solder

- 1. Tin
- 2. Tack

3. Solder

Solder the other pins of the component.

Heat and iron technique

Heat is the enemy!

- Unfortunately it is also the tool
- Overheating components (especially sensitive components like ICs) can cause them to fail
- High iron temperature and long soldering times increase the heat delivered to the component
- Solder at the lowest practical iron temperature, for the shortest practical time
 - Try 300-315 °C (575 600 °F) to start

Iron technique

- Your iron doesn't melt the solder your joint does
- Hold the iron on the component for a moment
- Then feed in solder

Station setup

- Soldering iron
- Tweezers
- Helping hands
- Parts bag
- Solder
- Flux

