Programme de colle n°13

Primitives, intégrales et équations différentielles

- 1) Définition et formules pour les primitives usuelles.
- 2) Primitives de $x \mapsto e^{ax} \cos bx$ et $x \mapsto \frac{1}{ax^2 + bx + c}$.
- 3) Calcul d'intégrales : intégration par parties, changement de variable (de classe C^1).
- 4) Équation différentielle du premier ordre :
 - (a) résolution de l'équation homogène,
 - (b) méthode de la variation de la constante,
 - (c) second membre particulier : polynôme, $A\cos(\theta x) + B\sin(\theta x)$, e^{kx} .
 - (d) Principe de superposition.
- 5) Équation différentielle du second ordre à coefficient constant :
 - (a) résolution de l'équation homogène (distinguer les cas solutions réelles/complexes),
 - (b) second membre particulier : polynôme, $A\cos(\theta x) + B\sin(\theta x)$, e^{kx} .

Ensembles, applications et arithmétique

- 1) Appartenance, inclusion, $\mathcal{P}(E)$.
- 2) Intersection, union, produit cartésien.
- 3) Applications injectives, surjectives, bijectives.
- 4) Multiples et diviseurs dans N.
- 5) Division euclidienne dans \mathbb{N} .
- 6) Nombres premiers.
- 7) PGCD, PPCM.

Questions de cours

- 1) Déterminer si $f: \mathbb{C} \to \mathbb{C}$ telle que $f(z) = z^2 + z + 1$ est injective, surjective, bijective.
- 2) Soient $f \colon E \to F$ et $g \colon F \to G$. Montrer que $g \circ f$ injective $\Longrightarrow f$ injective et $g \circ f$ surjective $\Longrightarrow g$ surjective.
- 3) Soient E et F deux ensembles et $f \in \mathcal{F}(E,F)$. Soient A, A_1 et A_2 des parties de E, et B, B_1 et B_2 des parties de F. Montrer l'une ou l'autre des propriétés suivantes :

(a)
$$A \subset f^{-1}(f(A))$$

(d)
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

(b)
$$f(f^{-1}(B)) \subset B$$

(e)
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$

(c)
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

(f)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

- 4) Montrer que tout entier $n \ge 2$ admet un diviseur premier. En déduire qu'il y a une infinité de nombres premiers.
- 5) Présenter l'algorithme d'Euclide pour le calcul de pgcd. Réaliser cet algorithme pour calculer pgcd (584, 82).