Kleene Algebra and Kleene Algebra with Tests Part II

December 8, 2015

Today - Completeness and Complexity

- Introduction to KAT
- Encoding Hoare logic
- Completeness for the equational theory
- Completeness for the Hoare theory (reasoning under assumptions)
- Completeness and incompleteness results for PHL
- Complexity (PSPACE completeness)
- Typed KA and KAT and relation to type theory

Kleene Algebra with Tests (KAT)

Axioms of Boolean Algebra

$$a + (b + c) = (a + b) + c$$

$$a + b = b + a$$

$$a + 0 = a$$

$$a + a = a$$

$$a(b + c) = ab + ac$$

$$a0 = 0$$

$$\overline{a + b} = \overline{a} \overline{b}$$

$$\overline{a} = a$$

$$a(bc) = (ab)c$$

$$ab = ba$$

$$a1 = a$$

$$(a + b)c = ac + bc$$

$$\overline{a + b} = \overline{a} \overline{b}$$

$$\overline{ab} = \overline{a} + \overline{b}$$

Kleene Algebra with Tests (KAT)

A Mix of Kleene and Boolean Algebra

$$(K, B, +, \cdot, *, -, 0, 1), B \subseteq K$$

- \bullet $(K,+,\cdot,^*,0,1)$ is a Kleene algebra
- \bullet $(B,+,\cdot,\bar{},0,1)$ is a Boolean algebra
- ullet $(B,+,\cdot,0,1)$ is a subalgebra of $(K,+,\cdot,0,1)$
- p, q, r, \ldots range over K
- a, b, c, \ldots range over B

Kleene Algebra with Tests (KAT)

A Mix of Kleene and Boolean Algebra

 $+,\cdot,0,1$ serve double duty

- applied to actions, denote choice, composition, fail, and skip, resp.
- applied to tests, denote disjunction, conjunction, falsity, and truth, resp.
- these usages do not conflict!

$$bc = b \wedge c$$
 $b + c = b \vee c$

Models of KAT

- Relational models
 - K = binary relations on a set X
 - B =subsets of the identity relation
- Trace models
 - $K = \text{sets of traces } s_0 p_0 s_1 p_1 s_2 \cdots s_{n-1} p_{n-1} s_n$
 - B = traces of length 0
- Language-theoretic models
 - $K = \text{sets of guarded strings over } \Sigma, T$
 - B =free Boolean algebra generated by T
- $n \times n$ matrices over K, B

Guarded Strings over Σ , T [Kaplan 69]

 Σ action symbols T test symbols

B= free Boolean algebra generated by T At = atoms of $B=\{\alpha,\beta,\ldots\}$

E.g. if $T = \{a, b, c\}$, then $\overline{a}b\overline{c}$ is an atom

Guarded strings
$$\alpha_0 p_0 \alpha_1 p_1 \alpha_2 \cdots \alpha_{n-1} p_{n-1} \alpha_n \in (At \cdot \Sigma)^* \cdot At$$

Guarded strings are the join-irreducible elements of the free KAT on generators Σ, \mathcal{T}

Standard Interpretation of KAT

Regular sets of guarded strings over Σ , T

$$A + B = A \cup B$$

$$AB = \{x\alpha y \mid x\alpha \in A, \ \alpha y \in B\}$$

$$A^* = \bigcup_{n \ge 0} A^n = A^0 \cup A^1 \cup A^2 \cup \cdots$$

$$1 = At$$

$$0 = \emptyset$$

- $p \in \Sigma$ interpreted as $\{\alpha p\beta \mid \alpha, \beta \in At\}$
- $b \in T$ interpreted as $\{\alpha \mid \alpha \leq b\}$
- $GS(e) = \{ \text{guarded strings represented by } e \}$

Modeling While Programs

$$p; q \stackrel{\text{def}}{=} pq$$
if b then p else $q \stackrel{\text{def}}{=} bp + \overline{b}q$
while b do $p \stackrel{\text{def}}{=} (bp)^* \overline{b}$

KAT Subsumes Hoare Logic

$$\{b\} p \{c\} \stackrel{\text{def}}{\iff} bp \le pc$$

$$\iff bp = bpc$$

$$\iff bp\overline{c} = 0$$

The Hoare while rule

$$\frac{\{bc\}\ p\ \{c\}}{\{c\}\ \text{while}\ b\ \text{do}\ p\ \{\overline{b}c\}}$$

becomes the universal Horn sentence

$$bcp\overline{c} = 0 \Rightarrow c(bp)^*\overline{b}\overline{b}\overline{c} = 0$$

Deductive Completeness and Complexity

- The regular sets of guarded strings over Σ, \mathcal{T} form the free KAT on generators Σ, \mathcal{T}
- KAT is deductively complete over relational and trace models
- Subsumes propositional Hoare logic (PHL)
- KAT is deductively complete for all relationally valid Hoare-style rules

$$\frac{\{b_1\} p_1 \{c_1\}, \ldots, \{b_n\} p_n \{c_n\}}{\{b\} p \{c\}}$$

(PHL is not!)

PSPACE-complete (thus no harder to decide than KA or PHL)

Automata with Tests

aka Automata on Guarded Strings

- A generalization of classical automata theory to include Booleans
- An ε -transition is really a 1-transition (i.e., an ordinary automaton with ε -transitions is an automaton with tests over the two-element Boolean algebra)
- Classical constructions of ordinary finite-state automata generalize readily
 - determinization
 - state minimization
 - Kleene's theorem

Deductive Completeness

The Equational Theory

We have defined several different but related classes of algebras:

- Kleene algebras (KA)
- star-continuous Kleene algebras (KA*)
- closed semirings (CS)
- complete semirings or S-algebras (SA)
- relational models (Rel)
- trace models (Tr)
- language-theoretic models (Lan)
- Reg_{Σ} .

Will show: All these classes of models have the same equational theory over the signature $+, \cdot, *, 0, 1$ of Kleene algebra, and it is the same as the equational theory of the regular sets.

What are we talking about?

Let σ denote the signature $+,\cdot,*$, 0, 1 of Kleene algebra. A σ -algebra is any structure of signature σ . (Need not satisfy the axioms of Kleene algebra.)

Example: RExp_Σ can be regarded as a σ -algebra. The distinguished operations are defined syntactically; for example, + takes regular expressions s and t and produces the regular expression s+t.

Homomorphisms and Interpretations

For σ -algebras C, C', a homomorphism from $C \to C'$ is a map $h: C \to C'$ that commutes with all the distinguished operations and constants of σ ; that is, for all $x, y \in C$,

$$h(x + y) = h(x) + h(y)$$

$$h(xy) = h(x) \cdot h(y)$$

$$h(x^*) = h(x)^*$$

$$h(0) = 0$$

$$h(1) = 1.$$

Operators and constants on the left-hand side are interpreted in C and on the right-hand side in C'.

An interpretation is a homomorphism with domain RExp_Σ . Interpretations are uniquely determined by their values on Σ .

Equational Theories

Let s,t be regular expressions and $I: \mathsf{RExp}_\Sigma \to C$ an interpretation.

We write $C, I \vDash s = t$ and say that s = t holds under I and if I(s) = I(t).

If \mathcal{A} is a family of interpretations C, I, we write $\mathcal{A} \models s = t$ and say that s = t holds in \mathcal{A} if $C, I \models s = t$ for all $C, I \in \mathcal{A}$.

The equational theory of A, denoted $\mathcal{E}(A)$, is the set of equations that hold in A.

Equational Theories

Theorem

The following classes of algebras all have the same equational theory:

- Kleene algebras (KA)
- star-continuous Kleene algebras (KA*)
- closed semirings (CS)
- complete semirings or S-algebras (SA)
- relational models (Rel)
- trace models (Tr)
- language-theoretic models (Lan).

Moreover, for $s,t\in\mathsf{RExp}_{\Sigma}$, s=t is a member of this theory iff R(s)=R(t), where $R:\mathsf{RExp}_{\Sigma}\to\mathsf{Reg}_{\Sigma}$ is the standard interpretation.

Equational Theories

Inclusions easy in one direction: since

$$\mathsf{KA} \ \supseteq \ \mathsf{KA}^* \ \supseteq \ \mathsf{CS} \ \supseteq \ \mathsf{SA} \ \supseteq \ \mathsf{Rel} \ \supseteq \ \mathsf{Tr} \ \supseteq \ \mathsf{Lan} \ \supseteq \ \{R\}$$

we have

$$\begin{array}{lll} \mathcal{E}(\mathsf{KA}) \; \subseteq \; \mathcal{E}(\mathsf{KA}^*) \; \subseteq \; \mathcal{E}(\mathsf{CS}) \; \subseteq \; \mathcal{E}(\mathsf{SA}) \; \subseteq \; \mathcal{E}(\mathsf{Rel}) \\ & \subseteq \; \mathcal{E}(\mathsf{Tr}) \; \subseteq \; \mathcal{E}(\mathsf{Lan}) \; \subseteq \; \mathcal{E}(\{\mathcal{R}\}). \end{array}$$

We have argued

$$\begin{array}{lll} \mathcal{E}(\mathsf{KA}) \;\subseteq\; \mathcal{E}(\mathsf{KA}^*) \;\subseteq\; \mathcal{E}(\mathsf{CS}) \;\subseteq\; \mathcal{E}(\mathsf{SA}) \;\subseteq\; \mathcal{E}(\mathsf{Rel}) \\ &\subseteq\; \mathcal{E}(\mathsf{Tr}) \;\subseteq\; \mathcal{E}(\mathsf{Lan}) \;\subseteq\; \mathcal{E}(\{\mathcal{R}\}). \end{array}$$

We now show that

$$\mathcal{E}(\{\mathcal{R}\}) \subseteq \mathcal{E}(\mathsf{KA}^*);$$

that is, if $RExp_{\Sigma}$, $R \vDash s = t$, then $KA^* \vDash s = t$. Thus

$$\mathcal{E}(\mathsf{KA}^*) = \mathcal{E}(\mathsf{CS}) = \mathcal{E}(\mathsf{SA}) = \mathcal{E}(\mathsf{Rel})$$

= $\mathcal{E}(\mathsf{Tr}) = \mathcal{E}(\mathsf{Lan}) = \mathcal{E}(\{\mathcal{R}\}).$

(The proof for KA is harder.)

Lemma

For any $s,t,u\in\mathsf{RExp}_\Sigma$, the following holds in any star-continuous Kleene algebra K:

$$stu = \sup_{x \in R(t)} sxu.$$

In other words, if K is star-continuous, then under any interpretation $I: \mathsf{RExp}_\Sigma \to K$, the supremum of the set

$$\{I(sxu) \mid x \in R(t)\}$$

exists and is equal to I(stu).

Proof: Induction on the structure of t. For the case *, we use the *-continuity axiom:

$$st^*u = \sup_{n \ge 0} st^n u$$

$$= \sup_{n \ge 0} \sup_{x \in R(t^n)} sxu$$

$$= \sup_{x \in \bigcup_{n \ge 0} R(t^n)} sxu$$

$$= \sup_{x \in R(t^*)} sxu.$$

Theorem

$$KA^* \models s = t \text{ iff } R(s) = R(t).$$

Proof.

 (\Rightarrow) is immediate, since Reg_Σ is a star-continuous Kleene algebra. Conversely, by two applications of the Lemma, if R(s)=R(t), then under any interpretation in any star-continuous Kleene algebra,

$$s = \sup_{x \in R(s)} x = \sup_{x \in R(t)} x = t.$$

Free Algebras

Another way of saying this is that $\operatorname{Reg}_{\Sigma}$ is the free star-continuous Kleene algebra on generators Σ . The term free intuitively means that $\operatorname{Reg}_{\Sigma}$ is free from any equations except those that it is forced to satisfy in order to be a star-continuous Kleene algebra.

Formally, an algebra A of a class of algebras C of the same signature is said to be free on generators X for the class C if

- A is generated by X;
- any function h from X into another algebra $B \in \mathcal{C}$ extends to a homomorphism $\widehat{h}: A \to B$.

The extension is necessarily unique, since a homomorphism is completely determined by its action on a generating set.

Equivalently, every interpretation $I: \operatorname{RExp}_{\Sigma} \to K$, where $K \in KA^*$, factors through R; that is, there exists a homomorphism $h: \operatorname{Reg}_{\Sigma} \to K$ such that $I = h \circ R$.

Completeness of KA

To show completeness of KA, we will encode some classical combinatorial constructions of the theory of finite automata algebraically:

- construction of a transition matrix representing a finite automaton equivalent to a given regular expression (Kleene 1956, Conway 1971)
- elimination of ε -transitions (Kuich and Salomaa 1986, Sakarovitch 1987)

We will add two other fundamental constructions:

- determinization of an automaton via the subset construction, and
- state minimization via equivalence modulo a Myhill-Nerode equivalence relation.

We then use the uniqueness of the minimal deterministic finite automaton to obtain completeness.

Finite Automata over a KA

A finite automaton over a KA K is represented by a triple $\mathcal{A} = (u, A, v)$, where $u, v \in \{0, 1\}^n$ and A is an $n \times n$ matrix over K for some n.

The states are the row and column indices. A start state is an index i for which u(i) = 1. A final state is an index i for which v(i) = 1. The matrix A is called the transition matrix.

The language accepted by A is the element $u^T A^* v \in K$.

For automata over the free KA on generators Σ , this is essentially equivalent to the classical combinatorial definition. A similar definition can be found in (Conway 1971).

Example

Consider the two-state automaton

Classically, this automaton accepts the set of strings over $\Sigma = \{a, b\}$ containing at least one occurrence of b. In our formalism,

$$\left(\left[\begin{array}{c}1\\0\end{array}\right],\;\left[\begin{array}{cc}a&b\\0&a+b\end{array}\right],\;\left[\begin{array}{c}0\\1\end{array}\right]\right).$$

Modulo the axioms of KA,

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ 0 & a+b \end{bmatrix}^* \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a^* & a^*b(a+b)^* \\ 0 & (a+b)^* \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= a^*b(a+b)^*.$$

Simple Automata

Definition

Let $\mathcal{A}=(u,A,v)$ be an automaton over \mathcal{F}_{Σ} , the free Kleene algebra on free generators Σ . \mathcal{A} is said to be simple if A can be expressed as a sum

$$A = J + \sum_{a \in \Sigma} a \cdot A_a$$

where J and the A_a are 0-1 matrices. In addition, \mathcal{A} is said to be ε -free if J is the zero matrix. Finally, \mathcal{A} is said to be deterministic if it is simple and ε -free, and u and all rows of A_a have exactly one 1.

The automaton of the previous example is simple, ε -free, and deterministic.

The first lemma asserts that Kleene's theorem is a theorem of KA.

Lemma

For every regular expression s over Σ (or more accurately, its image in the free KA under the canonical interpretation), there is a simple automaton (u, A, v) such that

$$s = u^T A^* v$$

is a theorem of KA.

Proof: By induction on the structure of s.

For $a \in \Sigma$, the automaton

$$\left(\left[\begin{array}{c}1\\0\end{array}\right],\,\left[\begin{array}{c}0&a\\0&0\end{array}\right],\,\left[\begin{array}{c}0\\1\end{array}\right]\right)$$

suffices, since

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}^* \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= a.$$

For s+t, let $\mathcal{A}=(u,A,v)$ and $\mathcal{B}=(x,B,y)$ be automata such that

$$s = u^T A^* v \qquad t = x^T B^* y.$$

Consider the automaton with transition matrix

$$\begin{bmatrix} A & 0 \\ \hline 0 & B \end{bmatrix}$$

and start and final state vectors

$$\left[\begin{array}{c} u \\ \overline{x} \end{array}\right] \quad \text{and} \quad \left[\begin{array}{c} v \\ \overline{y} \end{array}\right],$$

respectively. (Corresponds to a disjoint union construction.)

Then

$$\left[\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array}\right]^* = \left[\begin{array}{c|c} A^* & 0 \\ \hline 0 & B^* \end{array}\right],$$

and

$$\begin{bmatrix} u^T \mid x^T \end{bmatrix} \cdot \begin{bmatrix} A^* \mid 0 \\ \hline 0 \mid B^* \end{bmatrix} \cdot \begin{bmatrix} v \\ \hline y \end{bmatrix}$$

$$= u^T A^* v + x^T B^* y$$

$$= s + t.$$

For st, let A = (u, A, v) and B = (x, B, y) be automata such that

$$s = u^T A^* v \qquad t = x^T B^* y.$$

Consider the automaton with transition matrix

$$\begin{bmatrix} A & vx^T \\ \hline 0 & B \end{bmatrix}$$

and start and final state vectors

$$\begin{bmatrix} \underline{u} \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} \underline{0} \\ y \end{bmatrix}$,

respectively. (Corresponds to forming the disjoint union and connecting the accept states of \mathcal{A} to the start states of \mathcal{B} .)

Then

$$\left[\begin{array}{c|c} A & vx^T \\ \hline 0 & B \end{array}\right]^* = \left[\begin{array}{c|c} A^* & A^*vx^TB^* \\ \hline 0 & B^* \end{array}\right],$$

and

$$\begin{bmatrix} u^T & 0 \end{bmatrix} \cdot \begin{bmatrix} A^* & A^* v x^T B^* \\ \hline 0 & B^* \end{bmatrix} \cdot \begin{bmatrix} 0 \\ y \end{bmatrix}$$

$$= u^T A^* v x^T B^* y$$

$$= st.$$

For s^* , let $\mathcal{A} = (u, A, v)$ be an automaton such that $s = u^T A^* v$. First produce an automaton equivalent to the expression ss^* . Consider the automaton

$$(u, A + vu^T, v).$$

This construction corresponds to the combinatorial construction of adding ε -transitions from the final states of $\mathcal A$ back to the start states. Using denesting and sliding,

$$u^{T}(A + vu^{T})^{*}v = u^{T}A^{*}(vu^{T}A^{*})^{*}v$$

= $u^{T}A^{*}v(u^{T}A^{*}v)^{*}$
= ss^{*} .

Once we have an automaton for ss^* , we can get an automaton for $s^* = 1 + ss^*$ by the construction for + given above, using a trivial one-state automaton for 1.

Removing ε -Transitions

This construction models ε -closure.

Lemma

For every simple automaton (u, A, v) over the free KA, there is a simple ε -free automaton (s, B, t) such that

$$u^T A^* v = s^T B^* t.$$

Proof.

Write A as a sum A = J + A' where J is 0-1 and A' is ε -free. Then

$$u^{T}A^{*}v = u^{T}(A'+J)^{*}v = u^{T}J^{*}(A'J^{*})^{*}v$$

by denesting, so we can take

$$s^T = u^T J^*$$
 $B = A' J^*$ $t = v$.

Then J^* is 0-1 and B is ε -free.

Determinization

$$NX = XD \Rightarrow N^*X = XD^*$$

Minimization via a Myhill-Nerode Relation

$$NX = XM \Rightarrow N^*X = XM^*$$

Isomorphic Automata

$$P^{-1} A P = B$$

$$(P^{-1}AP)^* = P^{-1}A^*P$$

Putting the Steps Together...

Completeness of KAT

Let $T=\{b_1,\ldots,b_n\}$ be the set of atomic tests. Let $\overline{T}=\{\overline{b_1},\ldots,\overline{b_n}\}$. Represent atoms as $c_1c_2\cdots c_n$, where each $c_i\in\{b_i,\overline{b_i}\}$, $1\leq i\leq n$. Then a guarded string can be regarded as a string in $(\Sigma\cup T\cup \overline{T})^*$.

Lemma

For every KAT term p, there is a KAT term \hat{p} such that

- KAT $\models p = \widehat{p}$,
- $G(\widehat{p}) = R(\widehat{p})$.

Theorem

$$\mathsf{KAT} \models p = q \iff \mathsf{G}(p) = \mathsf{G}(q).$$

Proof.

 (\Rightarrow) Immediate, since \mathcal{G} is a KAT.

 (\Leftarrow) Suppose G(p) = G(q). Since KAT $\vDash p = \widehat{p}$ and \mathcal{G} is a KAT,

 $G(\widehat{p}) = G(\widehat{q})$. By the Lemma, $R(\widehat{p}) = R(\widehat{q})$. By the completeness of

KA, KA $\models \widehat{p} = \widehat{q}$. By transitivity, KAT $\models p = q$.

Eliminating Assumptions s = 0

An ideal of a KA or KAT is a subset $I \subseteq K$ such that

- 0 ∈ I
- \bullet if $x, y \in I$, then $x + y \in I$
- \bullet if $x \in I$ and $r \in K$, then xr and rx are in I

Given I, define $x \leq y$ if there exists $z \in I$ such that $x \leq y + z$, and define $x \approx y$ if $x \leq y$ and $y \leq x$. Equivalently, we could define $x \approx y$ if there exists $z \in I$ such that x + z = y + z, and $x \leq y$ if $x + y \approx y$.

 \lesssim is a preorder and \approx is an equivalence relation. Let [x] denote the \approx -equivalence class of x and let K/I denote the set of all \approx -equivalence classes. The relation \lesssim is well-defined on K/I and is a partial order. Note also that I=[0].

Eliminating Assumptions s = 0

Theorem

pprox is a KAT congruence and K/I is a KAT. If $A \subseteq K$ and $I = \langle A \rangle$, then K/I is initial among all homomorphic images of K satisfying x = 0 for all $x \in A$.

To show $ax \leq x \Rightarrow a^*x \leq x$:

If $ax \leq x$, then $ax \leq x + z$ for some $z \in I$. Then

$$a(x + a^*z) = ax + aa^*z \le x + z + aa^*z = x + a^*z.$$

Applying the same rule in K, we have $a^*(x+a^*z) \le x+a^*z$, therefore $a^*x \le x+a^*z$. Since $a^*z \in I$, $a^*x \le x$.

Eliminating Assumptions s = 0

Corollary

Let $\Sigma = \{a_1, \dots, a_n\}$, $u = (a_1 + \dots + a_n)^*$. Then $\mathsf{KAT} \vDash r = 0 \Rightarrow s = t$ iff $\mathsf{KAT} \vDash s + uru = t + uru$.

Proof sketch: $\{y \mid y \leq uru\}$ is the ideal generated by r, so s + uru = t + uru iff $s \approx t$ iff s = t in \mathcal{G}/I .

Tomorrow

Automata and coalgebras!

Exercises

- Prove that while b do (p; while c do q) = if b then (p; while b + c do if c then q else p) else skip.
- Prove that the following KAT equations and inequalities are equivalent:
 - $\mathbf{0}$ bp = bpc
 - $bp\overline{c} = 0$
 - $bp \leq pc$
- **9** Prove that the expression bp = pc is equivalent to the two Hoare partial correctness assertions $\{b\}$ p $\{c\}$ and $\{\overline{b}\}$ p $\{\overline{c}\}$.

Exercises

• Let Σ be a finite alphabet and K a Kleene algebra. A power series in noncommuting variables Σ with coefficients in K is a map σ : Σ* → K. The power series σ is often written as a formal sum

$$\sum_{x \in \Sigma^*} \sigma(x) \cdot x.$$

The set of all such power series is denoted $K\langle\!\langle \Sigma \rangle\!\rangle$. Addition on $K\langle\!\langle \Sigma \rangle\!\rangle$ is defined pointwise, and multiplication is defined as follows:

$$(\sigma \cdot \tau)(x) \stackrel{\text{def}}{=} \sum_{x=yz} \sigma(y) \cdot \tau(z).$$

Define 0 and 1 appropriately and argue that $K\langle\!\langle \Sigma \rangle\!\rangle$ forms an idempotent semiring. Then define * as follows:

$$\sigma^*(x) \stackrel{\text{def}}{=} \sum_{x=y_1\cdots y_n} \sigma(\varepsilon)^* \sigma(y_1) \sigma(\varepsilon)^* \sigma(y_2) \sigma(\varepsilon)^* \cdots \sigma(\varepsilon)^* \sigma(y_n) \sigma(\varepsilon)^*$$

where ε is the null string and the sum is over all ways of expressing x as a product of strings y_1, \ldots, y_n . Show that $K(\langle \Sigma \rangle)$ forms a KA.

Exercises

3 Strassen's matrix multiplication algorithm can be used to multiply two $n \times n$ matrices over a ring using approximately $n^{\log_2 7} = n^{2.807...}$ multiplications in the underlying ring. The best known result of this form is by Coppersmith and Winograd, who achieve $n^{2.376...}$. Show that over arbitrary semirings, n^3 multiplications are necessary in general. (*Hint*. Interpret over Reg_{Σ} , where $\Sigma = \{a_{ij}, b_{ij} \mid 1 \leq i, j \leq n\}$. What semiring expressions could possibly be equivalent to $\sum_{j=1}^n a_{ij} b_{jk}$?)