EJERCICIOS DE LOGICA MATEMATICA

A) Usando tablas demostrar:

1)	(p')'	\Leftrightarrow	р	
----	---------	-------------------	---	--

р	p'	(p')'
V	F	V
F	V	F

2)
$$p \wedge p' \Leftrightarrow F$$

	р	p'	p ∧ p'
	V	F	F
ĺ	F	V	F

3)
$$p \lor p' \Leftrightarrow V$$

1	р	p'	p ∨ p'
	V	F	V
	F	V	V

4)
$$p \lor V \Leftrightarrow V$$

р	$V p \lor V$	
V	V	V
F	V	V

5)
$$p \wedge V \Leftrightarrow p$$

р	V	$p \wedge V$
V	V	V
F	V	F

6)
$$p \lor F \Leftrightarrow p$$

р	F	p v F
V	F	V
F	F	F

7)
$$p \wedge F \Leftrightarrow F$$

р	F	p∧F
V	F	F
F	F	F

8) $p \wedge (p \vee q) \Leftrightarrow p$

р	q	$p \lor q$	$p \wedge (p \vee q)$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

9) $p \lor (p \land q) \Leftrightarrow p$

р	q	p∧q	$p \lor (p \land q)$
V	V	V	V
V	F	F	V
F	V	F	F
F	F	F	F

10) ($p \wedge q$)' \Leftrightarrow $p' \vee q'$

р	q	p'	q'	$p \wedge q$	(p ∧ q)'	p' ∨ q'
V	V	F	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	F	V	V	F	V	V

11) ($p\vee q$)' \Leftrightarrow $p'\wedge q'$

р	q	p'	q'	$p \lor q$	(p ∨ q)'	p' ∧ q'
V	V	F	F	V	F	F
V	F	F	V	V	F	F
F	V	V	F	V	F	F
F	F	V	V	F	V	V

12) $(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$

р	q	r	p∧q	q∧r	(p∧q)∧r	p∧(q∧r)
V	>	>	V	V	V	V
V	>	F	V	F	F	F
V	F	>	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	V	F	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

13) $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

р	q	r	$p \lor q$	q∨r	(p ∨ q) ∨ r	p v (q v r)
V	V	V	V	V	V	V
V	V	F	V	V	V	V
V	F	V	V	V	V	V
V	F	F	V	F	V	V
F	V	V	V	V	V	V
F	V	F	V	V	V	V
F	F	V	F	V	V	V
F	F	F	F	F	F	F

14) $(p \leftrightarrow q) \leftrightarrow r \Leftrightarrow p \leftrightarrow (q \leftrightarrow r)$

р	q	r	$p \leftrightarrow q$	$q \leftrightarrow r$	$(p \leftrightarrow q) \leftrightarrow r$	$p \leftrightarrow (q \leftrightarrow r)$
V	٧	V	V	V	V	V
V	٧	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	V	V	V
F	٧	V	F	V	F	F
F	V	F	F	F	V	V
F	F	V	V	F	V	V
F	F	F	V	V	F	F

15) $p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$

р	q	r	$p \wedge q$	p∧r	q v r	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
V	>	٧	V	V	V	V	V
V	٧	F	V	F	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	F	F	F	F
F	٧	V	F	F	V	F	F
F	٧	F	F	F	V	F	F
F	F	٧	F	F	V	F	F
F	F	F	F	F	F	F	F

16) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

р	q	r	$p \lor q$	p v r	q∧r	p∨(q∧r)	$(p \lor q) \land (p \lor r)$
V	>	>	V	V	V	V	V
V	>	F	V	V	F	V	V
V	F	٧	V	V	F	V	V
V	F	F	V	V	F	V	V
F	٧	٧	V	V	V	V	V
F	٧	F	V	F	F	F	F
F	F	٧	F	V	F	F	F
F	F	F	F	F	F	F	F

17) $p' \vee q \Leftrightarrow p \rightarrow q$

р	q	p'	p' ∨ q	$p \rightarrow q$
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

18) $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V

19) $p \uparrow q \Leftrightarrow (p \land q)'$

р	q	p∧q	(p ∧ q)'	p↑q
V	V	V	F	F
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

20) $p \downarrow q \Leftrightarrow (p \lor q)'$

р	q	p v q	(p v q)'	p↓q
V	V	V	F	F
V	F	V	F	F
F	V	V	F	F
F	F	F	V	V

21) $p \oplus q \Leftrightarrow (p \vee q) \wedge (p \wedge q)'$

р	q	$p \wedge q$	(p∧q)'	$p \lor q$	(p∨q)∧(p∧q)'	p ⊕ q
V	>	V	F	V	F	F
V	F	F	V	V	V	V
F	V	F	V	V	V	V
F	F	F	V	F	F	F

B) A partir de los conectivos negación (') y disyunción (v) se definen:

$$\begin{array}{ll} p \wedge q &=_{def} & (p' \vee q')' \\ p \rightarrow q =_{def} & p' \vee q \\ p \leftrightarrow q =_{def} & (p \rightarrow q) \wedge (q \rightarrow p) \\ p \oplus q =_{def} & (p \wedge q') \vee (p' \wedge q) \\ p \uparrow q =_{def} & (p \wedge q)' \\ p \downarrow q =_{def} & (p \vee q)' \end{array}$$

Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:

1)
$$p \rightarrow q \Leftrightarrow q' \rightarrow p'$$

 $q' \rightarrow p' \Leftrightarrow (q')' \lor p'$ (Definición)
 $\Leftrightarrow q \lor p'$ (Doble Negación)
 $\Leftrightarrow p' \lor q$ (Conmutatividad)
 $\Leftrightarrow p \rightarrow q$ (Definición)
2) $(p \rightarrow q)' \Leftrightarrow p \land q'$
 $(p \rightarrow q)' \Leftrightarrow (p' \lor q)'$ (Definición)
 $\Leftrightarrow (p')' \land q'$ (De Morgan)
 $\Leftrightarrow p \land q'$ (Doble Negación)
3) $p \rightarrow (q \land q') \Leftrightarrow p'$
 $p \rightarrow (q \land q') \Leftrightarrow p \rightarrow F$ (Complemento)
 $\Leftrightarrow p' \lor F$ (Definición)
 $\Leftrightarrow p' \lor F$ (Definición)
 $\Leftrightarrow p' \lor F$ (Definición)
 $\Leftrightarrow p' \lor F \lor p$ (Complemento)
 $\Leftrightarrow p \rightarrow (1dentidad)$
5) $(p \land q) \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$ (Definición)
 $\Leftrightarrow (p' \lor q') \lor r$ (Definición)
 $\Leftrightarrow p' \lor (q' \lor r)$ (Asociatividad)
 $\Leftrightarrow p \rightarrow (q \rightarrow r)$ (Asociatividad)

```
6) p \rightarrow (q \rightarrow r) \Leftrightarrow q \rightarrow (p \rightarrow r)
           p \rightarrow (q \rightarrow r) \Leftrightarrow p' \lor (q' \lor r)
                                                                                         ( Definición )
                                  \Leftrightarrow (p' \vee q') \vee r
                                                                                         ( Asociatividad )
                                                                                         (Conmutatividad)
                                   \Leftrightarrow (q' \vee p') \vee r
                                   \Leftrightarrow q' \vee (p' \vee r)
                                                                                         ( Asociatividad )
                                   \Leftrightarrow q \rightarrow (p \rightarrow r)
                                                                                         ( Definición )
7) (p \rightarrow q) \leftrightarrow p \Leftrightarrow p \land q
           (p \rightarrow q) \leftrightarrow p \Leftrightarrow ((p \rightarrow q) \rightarrow p) \land (p \rightarrow (p \rightarrow q))
                                                                                                               ( Definición )
                                     \Leftrightarrow ((p \rightarrow q)' \vee p) \wedge (p' \vee (p \rightarrow q))
                                                                                                               ( Definición )
                                     \Leftrightarrow ((p'\veeq)'\veep)\wedge(p'\vee(p'\veeq))
                                                                                                               ( Definición )
                                     \Leftrightarrow ((p \land q') \lor p) \land (p' \lor (p' \lor q))
                                                                                                               ( De Morgan )
                                     \Leftrightarrow p \land (p' \lor (p' \lor q))
                                                                                                               (Absorción)
                                     \Leftrightarrow p \land ((p' \lor p') \lor q)
                                                                                                               ( Asociatividad )
                                                                                                               (Idempotencia)
                                     \Leftrightarrow p \land (p' \lor q)
                                     \Leftrightarrow (p \land p') \lor (p \land q)
                                                                                                               ( Distributividad )
                                     \Leftrightarrow F \lor (p \land q)
                                                                                                               (Complemento)
                                                                                                               (Identidad)
                                     \Leftrightarrow p \wedge q
8) (p \rightarrow q) \leftrightarrow q \Leftrightarrow p \lor q
           (p \rightarrow q) \leftrightarrow q \Leftrightarrow ((p \rightarrow q) \rightarrow q) \land (q \rightarrow (p \rightarrow q))
                                                                                                               ( Definición )
                                     \Leftrightarrow ((p \rightarrow q)' \vee q) \wedge (q' \vee (p \rightarrow q))
                                                                                                               ( Definición )
                                     \Leftrightarrow ((p' \lor q)' \lor q) \land (q' \lor (p' \lor q))
                                                                                                               ( Definición )
                                     \Leftrightarrow (((p')' \land q') \lor q) \land (q' \lor (p' \lor q))
                                                                                                               (De Morgan)
                                                                                                               ( Doble Negación )
                                     \Leftrightarrow ((p \land q') \lor q) \land (q' \lor (p' \lor q))
                                     \Leftrightarrow ((p \land q') \land q) \land (q' \land (q \land p'))
                                                                                                               (Conmutatividad)
                                     \Leftrightarrow ((p \land q') \lor q) \land ((q' \lor q) \lor p')
                                                                                                               (Asociatividad)
                                     \Leftrightarrow ((p \land q') \lor q) \land (V \lor p')
                                                                                                               (Complemento)
                                     \Leftrightarrow ((p \land q') \land q) \land V
                                                                                                               (Identidad)
                                     \Leftrightarrow ((p \land q') \lor q)
                                                                                                               (Identidad)
                                     \Leftrightarrow (p \vee q) \wedge (q' \vee q)
                                                                                                               ( Distributividad )
                                     \Leftrightarrow (p \lor q) \land V
                                                                                                               (Complemento)
                                                                                                               (Identidad)
                                     \Leftrightarrow p \vee q
9) p \leftrightarrow q \Leftrightarrow (p \land q) \lor (p' \land q')
           p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)
                                                                                                               ( Definición )
                        \Leftrightarrow (p' \vee q) \wedge (q' \vee p)
                                                                                                               ( Definición )
                        \Leftrightarrow (p' \land (q' \lor p)) \lor (q \land (q' \lor p))
                                                                                                               (Distributividad)
                        \Leftrightarrow ((p' \land q') \lor (p' \land p)) \lor ((q \land q') \lor (q \land p)) (Distributividad)
                        \Leftrightarrow ((p' \land q') \lor F) \lor (F \lor (q \land p))
                                                                                                               (Complemento)
                        \Leftrightarrow (p' \land q') \lor (q \land p)
                                                                                                               (Identidad)
                        \Leftrightarrow (p \land q) \lor (p' \land q')
                                                                                                               (Conmutatividad)
```

```
10) p' \leftrightarrow q' \Leftrightarrow p \leftrightarrow q
           p' \leftrightarrow q' \Leftrightarrow (p' \rightarrow q') \land (q' \rightarrow p')
                                                                                          ( Definición )
                          \Leftrightarrow ((p')' \vee q') \wedge ((q')' \vee p')
                                                                                          ( Definición )
                          \Leftrightarrow (p \lor q') \land (q \lor p')
                                                                                          ( Doble Negación )
                          \Leftrightarrow (q' \vee p) \wedge (p' \vee q)
                                                                                          (Conmutatividad)
                                                                                          ( Definición )
                          \Leftrightarrow (q \rightarrow p) \land (p \rightarrow q)
                          \Leftrightarrow (p\rightarrowq)\wedge(q\rightarrowp)
                                                                                          (Conmutatividad)
                                                                                          ( Definición )
                          \Leftrightarrow p \leftrightarrow q
11) (p \leftrightarrow q)' \Leftrightarrow p' \leftrightarrow q
           (p \leftrightarrow q)' \Leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))'
                                                                                                                            ( Definición )
                              \Leftrightarrow ((p' \vee q) \wedge (q' \vee p))'
                                                                                                                            ( Definición )
                              \Leftrightarrow (p' \vee q)' \vee (q' \vee p)'
                                                                                                                            ( De Morgan )
                              \Leftrightarrow ((p')' \land q') \lor ((q')' \land p')
                                                                                                                            ( De Morgan )
                              \Leftrightarrow (p \land q') \lor (q \land p')
                                                                                                                            ( Doble Negación )
                              \Leftrightarrow ((p \land q') \land q) \land ((p \land q') \lor p')
                                                                                                                            ( Distributividad )
                              \Leftrightarrow ((p \lor q) \land (q' \lor q)) \land ((p \lor p') \land (q' \lor p'))
                                                                                                                            (Distributividad)
                              \Leftrightarrow ((p\veeq)\wedgeV)\wedge(V\wedge(q'\veep'))
                                                                                                                            (Complemento)
                              \Leftrightarrow (p \vee q) \wedge (q' \vee p')
                                                                                                                            (Identidad)
                              \Leftrightarrow ((p')' \vee q) \wedge (q' \vee p')
                                                                                                                            ( Doble Negación )
                              \Leftrightarrow (p' \rightarrow q) \land (q \rightarrow p')
                                                                                                                            ( Definición )
                                                                                                                            ( Definición )
                              \Leftrightarrow p' \leftrightarrow q
12) (p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow (q \land r)
           (p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow (p' \lor q) \land (p' \lor r) (Definición)
                                               \Leftrightarrow p' \vee (q \wedge r)
                                                                                          ( Distributividad )
                                               \Leftrightarrow p \rightarrow (q \wedge r)
                                                                                          ( Definición )
13) (p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow (q \lor r)
           (p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow (p' \lor q) \lor (p' \lor r)
                                                                                          ( Definición )
                                               \Leftrightarrow ((p'\veeq)\veep')\veer
                                                                                          ( Asociatividad )
                                               \Leftrightarrow (p'\vee(q\veep'))\veer
                                                                                          (Asociatividad)
                                               \Leftrightarrow (p'\vee(p'\veeq))\veer
                                                                                         (Conmutatividad)
                                                                                         ( Asociatividad )
                                               \Leftrightarrow ((p'\veep')\veeq)\veer
                                               \Leftrightarrow (p'\veeq)\veer
                                                                                          (Idempotencia)
                                               \Leftrightarrow p' \vee (q\veer)
                                                                                          (Asociatividad)
                                               \Leftrightarrow p \rightarrow (q \vee r)
                                                                                          ( Definición )
14) (p \rightarrow r) \land (q \rightarrow r) \Leftrightarrow (p \lor q) \rightarrow r
           (p \rightarrow r) \land (q \rightarrow r) \Leftrightarrow (p' \lor r) \land (q' \lor r)
                                                                                          ( Definición )
                                              \Leftrightarrow (p' \land q') \lor r
                                                                                          ( Distributividad )
                                               \Leftrightarrow (p \lor q)' \lor r
                                                                                          ( De Morgan )
                                               \Leftrightarrow (p \lor q) \rightarrow r
                                                                                          ( Definición )
```

```
15) (p \rightarrow r) \lor (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r
          (p \rightarrow r) \lor (q \rightarrow r) \Leftrightarrow (p' \lor r) \lor (q' \lor r)
                                                                                ( Definición )
                                         \Leftrightarrow p' \vee (r \vee (q' \vee r))
                                                                                ( Asociatividad )
                                          \Leftrightarrow p' \vee ( (r\veeq')\veer)
                                                                                (Asociatividad)
                                          \Leftrightarrow p'\vee((q'\veer)\veer)
                                                                                (Conmutatividad)
                                          \Leftrightarrow p' \vee (q' \vee (r\veer))
                                                                                ( Asociatividad )
                                                                                (Idempotencia)
                                          \Leftrightarrow p' \vee (q' \vee r)
                                          \Leftrightarrow (p' \vee q') \vee r
                                                                                (Asociatividad)
                                                                                ( De Morgan )
                                          \Leftrightarrow (p \land q)' \lor r
                                         \Leftrightarrow (p \land q) \rightarrow r
                                                                                ( Definición )
16) p \Rightarrow p \vee q
          Sea p Verdadero, entonces:
                    p \lor q \Leftrightarrow V \lor q
                                                            (p \Leftrightarrow V)
                              \Leftrightarrow V
                                                            (Identidad)
17) p \Rightarrow q \rightarrow p
          Sea p Verdadero, entonces:
                                                            ( Definición )
                    q \rightarrow p \Leftrightarrow q' \lor p
                                \Leftrightarrow q' \vee V
                                                            (p \Leftrightarrow V)
                                                            (Identidad)
18) p' \Rightarrow p \rightarrow q
          Sea p' Verdadero, entonces:
                    p \to q \Leftrightarrow p' \vee q
                                                            ( Definición )
                                                            (p' \Leftrightarrow V)
                                \Leftrightarrow V \lor q
                                \Leftrightarrow V
                                                            (Identidad)
19) (p \wedge p') \Rightarrow q
          Equivale a demostrar:
          q' \Rightarrow (p \wedge p')'
                                                            (Contra recíproco)
          Sea q' Verdadero, entonces:
                    (p \wedge p')' \Leftrightarrow F'
                                                            (Complemento)
                                    \Leftrightarrow V
                                                            (Complemento)
20) (p \rightarrow q) \land p \Rightarrow q
          Equivale a demostrar:
          q' \Rightarrow ((p \rightarrow q) \land p)'
                                                                                          (Contra recíproco)
          Sea q' Verdadero, entonces:
                    ((p \rightarrow q) \land p)' \Leftrightarrow ((p' \lor q) \land p)'
                                                                                          ( Definición )
                                              \Leftrightarrow (p' \vee q)' \vee p'
                                                                                          ( De Morgan )
                                               \Leftrightarrow ((p')' \land q') \lor p'
                                                                                          ( De Morgan )
                                              \Leftrightarrow (p \land q') \lor p'
                                                                                          ( Doble Negación )
                                              \Leftrightarrow (p \land V) \lor p'
                                                                                          (q' \Leftrightarrow V)
                                              \Leftrightarrow p \vee p'
                                                                                          (Identidad)
                                               \Leftrightarrow V
                                                                                          (Complemento)
```

```
21) (p \rightarrow q) \land q' \Rightarrow p'
          Equivale a demostrar:
          p \Rightarrow ((p \rightarrow q) \land q')'
                                                                                            (Contra recíproco)
          Sea p Verdadero, entonces:
                    ((p \rightarrow q) \land q')' \Leftrightarrow ((p' \lor q) \land q')'
                                                                                            ( Definición )
                                                 \Leftrightarrow ( ( p' \wedge q' ) \vee ( q \wedge q' ) )' ( Distributividad )
                                                 \Leftrightarrow ((p' \land q') \lor F)'
                                                                                            (Complemento)
                                                 \Leftrightarrow (p' \land q')'
                                                                                            (Identidad)
                                                                                            ( De Morgan y Doble Negación )
                                                 \Leftrightarrow p \lor q
                                                 \Leftrightarrow V \vee q
                                                                                            (p \Leftrightarrow V)
                                                 \Leftrightarrow V
                                                                                            (Identidad)
22) p' ⇔ p↑p
          ( Definición )
                                                   (Idempotencia)
23) p' ⇔ p↓p
         p \downarrow p \Leftrightarrow (p \lor p)' (Definición)
\Leftrightarrow p' (Idempotence
                                                  (Idempotencia)
24) p \wedge q \Leftrightarrow (p \uparrow q) \uparrow (p \uparrow q)
          (p \uparrow q) \uparrow (p \uparrow q) \Leftrightarrow ((p \land q)' \land (p \land q)')'
                                                                                            ( Definición )
                                         \Leftrightarrow ((p \land q)')'
                                                                                            (Idempotencia)
                                         \Leftrightarrow p \wedge q
                                                                                            ( Doble Negación )
25) p \wedge q \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)
          (p \downarrow p) \downarrow (q \downarrow q) \Leftrightarrow ((p \lor p)' \lor (q \lor q)')'
                                                                                            ( Definición )
                                         \Leftrightarrow (p' \vee q')'
                                                                                            (Idempotencia)
                                                                                            ( Definición )
                                         \Leftrightarrow p \wedge q
26) p \lor q \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)
          (p \downarrow q) \downarrow (p \downarrow q) \Leftrightarrow ((p \lor q)' \lor (p \lor q)')'
                                                                                            ( Definición )
                                         \Leftrightarrow ((p \left q)')'
                                                                                            (Idempotencia)
                                                                                            ( Doble Negación )
                                         \Leftrightarrow p \vee q
27) p \lor q \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)
          (p \uparrow p) \uparrow (q \uparrow q) \Leftrightarrow ((p \land p)' \land (q \land q)')'
                                                                                            ( Definición )
                                         \Leftrightarrow (p' \land q')'
                                                                                            (Idempotencia)
                                         \Leftrightarrow p \lor q
                                                                                            ( De Morgan y Doble Negación )
```