Formale Grundlagen der Informatik II 3. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D. Sommersemester 2013 17. 06. 2013

Gruppenübung

Aufgabe G7 (Erfüllbarkeit unendlicher Menge)

Seien p_1, p_2, \ldots AL-Variablen und seien die Formel
n φ_n induktiv definiert durch

$$\varphi_1 := 1, \quad \varphi_{n+1} := \varphi_n \to (p_n \oplus p_{n+1}).$$

Ist die Formelmenge $\Phi:=\{\varphi_n \mid n\geq 1\}$ erfüllbar? Wenn ja, finden Sie alle Modelle, die Φ erfüllen.

Aufgabe G8 (Kompaktheitssatz)

(a) Für (möglicherweise unendliche) Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

(b) Sei $V = \{p_1, p_2, p_3, ...\}$. Eine Interpretation $\mathfrak{I}: V \to \mathbb{B}$ kann aufgefasst werden als die unendliche Bit-Sequenz $\mathfrak{I}(p_1)\mathfrak{I}(p_2)\mathfrak{I}(p_3)...$

P sei irgendeine Teilmenge aller solchen Sequenzen, so dass sowohl P als auch das Komplement \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$P = \{ \mathfrak{I} \mid \mathfrak{I} \models \Phi \}$$

$$\overline{P} = \{ \mathfrak{I} \mid \mathfrak{I} \models \Psi \}$$

für geeignete $\Phi, \Psi \subseteq AL(V)$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} jeweils schon durch eine einzelne AL-Formel spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).

Aufgabe G9 (Resolutionsverfahren)

Seien
$$\varphi := (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q),$$

$$\psi := (p \land q) \lor (\neg p \land \neg q) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land \neg r).$$

Zeigen Sie mithilfe des Resolutionsverfahrens, dass

- (a) φ erfüllbar ist;
- (b) $\varphi \models \psi$ gilt.

Hausübung

- Abgabe am 26.6.-28.6. 2013 in der Übung. Denken Sie daran Ihre Antworten zu begründen. -

Aufgabe H7 (Graphenfärbung)

(5 Punkte)

Sei G = (V, E) ein einfacher Graph (V ist die Menge der Knoten, $E \subseteq V \times V$ die Menge der Kanten). Wir erlauben, dass V und E unendlich sind, aber wir nehmen an, dass sie abzählbar sind.

Eine k-Färbung des Graphen G ist per Definition eine Abbildung $f: V \to \{1, ..., k\}$ mit der Eigenschaft, dass für jede Kante $(v, w) \in E$ gilt $f(v) \neq f(w)$. Man sagt, dass G k-färbbar ist, wenn er eine k-Färbung besitzt.

- (a) Geben Sie einen Graphen G' = (V', E') an, für den Sie beweisen, dass er nicht 4-färbbar ist.
- (b) Geben Sie einen 4-färbbaren Graphen G'' = (V'', E'') an, zusammen mit seiner 4-Färbung. Für volle Punktzahl seien V'' und E'' unendlich und sei G'' nicht 3-färbbar.
- (c) Fixiere $k \in \mathbb{N}$ und einen beliebigen Graphen G = (V, E). Geben Sie eine (möglicherweise unendliche) AL-Formelmenge Φ an, abhängig von k und G, für die Sie zeigen, dass sie genau dann erfüllbar ist, wenn G k-färbbar ist.
- (d) Beweisen Sie die folgende Aussage: Ein Graph ist genau dann *k*-färbbar, wenn jeder seiner endlichen Teilgraphen *k*-färbbar ist.

Aufgabe H8 (Resolutionsverfahren)

(5 Punkte)

(a) Überprüfen Sie mithilfe der Resolutionsmethode, ob die folgende Formel unerfüllbar ist:

$$(p \vee \neg r) \wedge (q \vee r) \wedge (\neg p \vee \neg s) \wedge (p \vee \neg q \vee r \vee s) \wedge (q \rightarrow (s \rightarrow r)) \wedge (r \vee s) \wedge ((p \wedge r) \rightarrow s)$$

(b) Weisen Sie mithilfe der Resolutionsmethode die folgende Folgerungsbeziehung nach:

$$(p \vee \neg q \vee r) \wedge (p \vee q \vee \neg r) \models (p \wedge q \wedge \neg r) \vee (\neg q \wedge \neg r) \vee (\neg r \to 0)$$

(c) Bestimmen Sie das minimale Modell der folgenden Horn-Formelmenge:

$$H_0 = \{p, (p \land q) \rightarrow s, (r \land t) \rightarrow s, t \rightarrow r, t\}$$

Intuition dahinter: die Zahlen 1,..., *k* representieren Farben, mit denen wir die Knoten von *G* färben, wobei die benachbarten Knoten nicht dieselbe Farbe besitzen können.

linitest
ufgabe M6 (Resolutionsverfahren) eien φ und ψ AL-Formeln und $K(\varphi)$ die Klauselmenge zu φ . Betrachte die folgenden Aussagen.
1. φ is unerfüllbar.
2. φ is erfüllbar.
3. φ ist allgemeingültig.
4. φ ist nicht allgemeingültig.
5. $\varphi \models \psi$
6. Eine endliche Menge Φ von AL-Formeln ist unerfüllbar.
7. Eine unendliche Menge Φ von AL-Formeln ist unerfüllbar.
ür jede Aussage oben identifizieren Sie die äquivalente Bedingung unten.
$) \square \in \operatorname{Res}^*(K(\neg \varphi))$
$) \ \Box \notin \operatorname{Res}^*(K(\neg \varphi))$
$) \ \Box \notin \mathrm{Res}^*(K(\varphi))$
$\Box \in \operatorname{Res}^*(K(\bigwedge \Phi_0))$ für ein endliches $\Phi_0 \subseteq \Phi$
$) \square \in \operatorname{Res}^*(K(\varphi \wedge \neg \psi))$
$) \square \in \operatorname{Res}^*(K(\varphi))$
$) \square \in \operatorname{Res}^*(K(\bigwedge \Phi))$
ufgabe M7 (Kompaktheitssatz) estimmen Sie die korrekten Implikationen für allgemeine (abzählbare) AL-Formelmenge Φ .
es gibt eine endliche Teilmenge von Φ , die erfüllbar ist $\square \Longrightarrow \Phi$ ist erfüllbar $\square \Longrightarrow \Phi$ alle endlichen Teilmenge von Φ sind erfüllbar