

2. a.
$$T(x, y) = (3x - 2y, -x + 4y)$$
 b. $T(x, y) = \left(-\frac{x + y}{3}, \frac{2x + 2y}{3}\right)$

c. No existe una TL que cumpla lo pedido. d.
$$T(x, y, z) = (8x + 9y + 6z, -5x-9y - 5z)$$

e. $T(x, y, z) = (z, x - z, 0)$.

3. a.
$$T(x;y) = (-x; y)$$
 b. $T(x;y) = (-y; -x)$ c. $T(x;y) = (x + 3y; y)$

4. a. i. (0, 0) ∈ Nu T ii. (2, 3) ∈ Nu T iii. (3, -2)
$$\notin$$
 Nu T iv. $\left(1, \frac{1}{3}\right) \notin$ Nu T b. i. (3, -6) ∈ Im T ii. (2, 3) \notin Im T iii. (1, -2) ∈ Im T iv. (4, -3) \notin Im T

5. a. Nu T =
$$\{(0\ 0)\}$$
 (no existe base del núcleo) Im T = $gen\{(1\ 0\ 0)\ (-2\ -5\ 0)\}$
b. Nu T = $gen\{(0\ 1\ 1)\}$ Im T = $gen\{(-2\ 0\ 1)\ (1\ -1\ 0)\}$
c. Nu T = $gen\{(3\ 0\ 1\ 0)(2\ 1\ 0\ 0)\}$ Im T = $gen\{(3\ 0\ 1)\ (0\ 1\ 0)\}$

6. a.
$$T(x, y) = (-x, 3x, 4x)$$
 b. $T(x, y, z) = (-x + 2z - y, 0, 0)$ c. No existe

7. Verdadero

8. a. M (T) =
$$\begin{pmatrix} \frac{1}{3} & \frac{2}{5} \\ -1 & 5 \end{pmatrix}$$
 b. M(T) = $\begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{4} \\ 0 & 1 & -1 \end{pmatrix}$ c. M(T) = $\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -4 & 0 \end{pmatrix}$

9. a.
$$T(1 -5 3) = (7 13 21)$$
, $T(0 0 0) = (0 0 0)$, $T(1 -1 1) = (3 3 5)$
b. Im $T = R^3$, base de Im $T = \{(2,1,0), (-1,-3,-3), (0,-1,2)\}$ Nu $T = \{(0 0 0)\}$, no tiene base.
c. $T(x, y, z) = (2x - y, x - 3y - z, -3y + 2z)$

a.
$$\sigma(T) = \{4, 2\}$$
 B = $\{(1, 1)(-1, 1)\}$
b. $\sigma(T) = \{4\}$ B = $\{(1, 0)\}$

c.
$$\sigma(T) = \{-1, 1, 3\}$$
 B = $\{(1, 0, 0), (-3/2, 1, -1), (2, 1, -2)\}$

d.
$$\sigma(T) = \{1, 2, 3\}$$
 B = $\{(1, 0, 0), (0, 1, 2), (1, 0, 1)\}$

13.

a.
$$k = -2$$
 b $\sigma(T) = \{1, -3\}$

14.

a.
$$\sigma(A) = \{1, -1\} P = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 b. $\sigma(A) = \{-1, 3, 2\}$ $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

c.
$$\sigma(A) = \{0, 6(doble)\}. P = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

c.
$$\sigma(A) = \{0, 6 \text{(doble)}\}. P = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
 d. $\sigma(A) = \{0, -\frac{3+\sqrt{41}}{2}, \frac{\sqrt{41}-3}{2}\}$ $P = \begin{pmatrix} 4 & \frac{3+\sqrt{41}}{4} & \frac{3-\sqrt{41}}{4} \\ 1 & 1 & 1 \\ 0 & -\frac{3+\sqrt{41}}{2} & \frac{-3+\sqrt{41}}{2} \end{pmatrix}$