CAPSTONE PROJECT

PREDICTING OF IMDB RATINGS USING SUPERVISED MACHINE LEARNING

HALAK DESAI APRIL 2021

WHY THIS PROJECT?

- like watching movies as most people do. I get recommendations on my subscription service all the time.
- observed that whenever I get a recommendation, I would immediately search for its ratings meaning how other people have liked the movie.
- This got me thinking about what drives these ratings and why people like certain movie more than others and to take it a step further, What if I can Predict a Rating!
- If I can predict a rating, then model could be helpful to investors, casting crew, producer, writers, etc. when creating a movie!

Considered Movies from year 2010-2020

Popular Actor (acted in more than 15 movies – top 15 by weighted average rating) Popular Director (directed more than 5 movies — top 15 by weighted average rating) Popular Genre (more than 4500 movies in a genre—top 4)

Duration divided into 3 buckets (0 to 60 mins, more than 60 mins and less than 90 mins, and more than 90 mins)

FEATURE ENGINEERING

TARGET VALUE AND CLASS IMBALANCE PROBLEM

Class 0

Ratings Less than 7=85%

Class 1

Ratings Equal to or More than 7 = 15%

Class 0 and 1

Positive Indicators

- Popular Actor
- Popular Director
- Popular Genre
- Releasing movie in month of December
- Duration of movie more than 90 mins

Negative Indicators

Releasing a movie on Wednesday

STATISTICAL ANALYSIS WITH LOGISTIC REGRESSION

Features	Imbalance Train Set	Imbalance Test Set	Oversampled – Train Set	Imbalance Test Set	Undersampled – Train Set	Imbalance Test Set
Score	85%	86%	61%	46%	61%	46%
Best Model	Decision Tree		Logistic Regression		Logistic Regression	
Precision – Class 0	Rating Less Than 7		Rating Less Than 7 − ↑		Rating Less Than 7 − ↑	
Recall- Class 0	Rating Less Than 7 − ↑		Rating Less Than 7 – ↓		Rating Less Than 7 – ↓	
Precision – Class 1	Rating More Than $7 - \uparrow$		Rating More Than 7 — ↓		Rating More Than 7 — ↓	
Recall – Class 1	Rating More Than 7 − ↓		Rating More Than 7 − 🕇		Rating More Than 7 − 🕇	
Decision Tree, Logistics Regression and SVM Used in Pipeline and GridSearchCV						

MODEL RESULTS

NEXT STEPS...

OPTIMIZE MODEL TO IMPROVE PRECISION SCORE TO MAKE MY MODEL MORE RELIABLE.

- TRY ENSEMBLE MODELS

- FIND DATASET FOR REVENUE AND BUDGET FOR MOVIES

- FIND IF RATING OR BUDGET AFFECTS REVENUE AND OR MODEL

CONTACT INFORMATION:

Email: halakmajmudar@gmail.com

LinkedIn: linkedin.com/in/HalakDesai

Github: HD208