

PROGRAMAÇÃO IMPERATIVA

SITUAÇÃO PROBLEMA

Recebemos
a tarefa de
efetuar um
levantamento
de dados
acerca de
freezers.

4	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

Observar que temos dados em formato tabular matriz.

Ą	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

N.	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

	4	Deia	Sul	NSul	Frio	Fri	Lux
253	Capacidade (litros)	385	534	309	546	503	477
Quais os dados analisados?	Garantia (meses)	12	12	12	3	24	12
	Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
	Temperatura Mínima °C	-28	-18	-18	-18	-22	-18 (

25
Como
registrar a
GARANTIA
do freezer
FRI?
do freezer

á	Dois	S. CIII	NCUL	Frio	- Cri	- www.
3	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

4	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

A A	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

4	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (litros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (Kwh/mês)	35,9	72,1	46,2	74,3	78	96
Temperatura Mínima °C	-28	-18	-18	-18	-22	-18

DEFINIÇÃO & SINTAXE

Uma matriz consiste num item de composição de programas de computador **útil ao armazenamento de dados <u>encadeados</u>**, dispostos em duas dimensões: linhas e colunas; ou mais.

```
<tipo> <Identificador> [N][M];
```

Onde:

- <identificador> nome da matriz
- N quantidade máxima de elementos de composição da primeira dimensão (linhas) da estrutura
- M quantidade máxima de elementos de composição da segunda dimensão (colunas) da estrutura
- <tipo> tipo dos dados a serem mantidos na estrutura.

Matrizes (array bidimensional) EXEMPLO

Uma matriz é **útil ao armazenamento de dados encadeados**, dispostos em duas dimensões: linhas e colunas; ou mais.

```
<tipo> <Identificador> [N][M];
```

Matrizes SITUAÇÃO PROBLEMA INICIALIZAÇÃO

777	Deia	Sul	NSU	Frio	Eti	Lux
Capacidade (iffros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWMmēs)	35,9	72,1	46,2	74,3	78	96
Temperatura Minima S	-28	-18	-18	-18	-22	-18

(array bidimensional)

OPERAÇÕES

Quais os consumos de energia (mensais) identificados?

777	Deia	Sul	NSU	Frio	Eti	Lux
Capacidade (iffros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWMmēs)	35,9	72,1	46,2	74,3	78	96
Temperatura Minima 50	-28	-18	-18	-18	-22	-18

(array bidimensional)

OPERAÇÕES

Quais os consumos de energia (mensais) que identificamos?

```
void ExibeLinha(float Matriz[][6],int L,int C){
  for(int i=0;i<C;i++)
    printf("%.1f ",Matriz[L][i]);}</pre>
```

, Aller	Deia	Sul	NSUL	Frio	Eri	Lux
Capacidade (iffros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWMmės)	35,9	72,1	46,2	74,3	78	96
Temperatura Minima SC	-28	-18	-18	-18	-22	-18

(array bidimensional)

OPERAÇÕES

Quais os dados do freezer Lux?

(array bidimensional)

OPERAÇÕES

Quais os dados do freezer Lux?

```
void ExibeColuna(float Matriz[][6],int L,int C) {
  for(int i=0;i<L;i++)
    printf("%.1f\n",Matriz[i][C]);}</pre>
```

77	Deia	Sul	NSul	Frio	Eri	Lux
Capacidade (iffros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWMmēs)	35,9	72,1	46,2	74,3	78	96
Temperatura Minima 50	-28	-18	-18	-18	-22	-18

(array bidimensional)

OPERAÇÕES

Quais os dados coletados?

(array bidimensional) **OPERAÇÕES**

Quais os dados coletados?

```
float M[][6]={{385,534,309,546,503,477},
               {12,121,12,3,24,12},
               {35.9,72.1,46.2,74.3,78,96},
               \{-28, -18, -18, -18, -22, -18\}\};
```

```
void ExibeMatriz(float Matriz[][6], int L, int C){
  for (int i=0; i<L; i++) {
    if (i==0) printf("Capacidade (litros) ");
    if (i==1) printf("Garantia (meses)
                                           ");
    if (i==2) printf("Economia (KWh/mês)
                                           ");
    if (i==3) printf("Temperatura Min (C) ");
    for (int j=0; j< C; j++)
      printf("%6.1f", Matriz[i][j]);
    printf("\n");}}
```

77	Deia	Sul	NSul	Frio	Eri	Lux
Capacidade (iftros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWMmės)	35,9	72,1	46,2	74,3	78	96
Temperatura Minima 50	-28	-18	-18	-18	-22	-18

(array bidimensional)

OPERAÇÕES

Como ajustar dados da matriz?

A PARTY	Deia	Sul	NSul	Frio	Fri	Lux
Capacidade (iffros)	385	534	309	546	503	477
Garantia (meses)	12	12	12	3	24	12
Economia (KWMmēs)	35,9	72,1	46,2	74,3	78	96
Temperatura Minima S	-28	-18	-18	-18	-22	-18

(array bidimensional)

OPERAÇÕES

Como ajustar dados da matriz?

```
printf("Freezer: ");
int F;
scanf("%d",&F);
printf("Característica: ");
int C;
scanf("%d",&C);
printf("\n\nQual o novo valor? ");
scanf("%f",&M[C-1][F-1]);
```

Esquematicamente temos, por exemplo:

 Os dados são acessados por meio das coordenadas (linha e coluna) que ocupam na estrutura.

OUTRA SITUAÇÃO PROBLEMA

INICIALIZAÇÃO

int Placar[4][6];
 correspondente a
 4 times e 6 jogos.

Ą		J2	J 3	J4	J 5	16
T1	200	303	228	400	168	226
T2	252	314	115	142	172	215
Т3	154	285	292	236	265	356
T4	327	336	346	365	243	401

Placar [2] [4] corresponde à pontuação obtida pelo time 3 no jogo 5.

DEFINIÇÕES E OPERAÇÕES

 Cada célula de uma matriz bidimensional é identificada pelo nome da matriz seguido pelo par [linha][coluna] de localização desta (célula) na estrutura.

```
Tabuleiro[0][1]='X';
```

- Sendo dados valores de um tipo determinado qualquer.
- A estrutura completa é denominada matriz.
- **EXEMPLO:** Para composição do tabuleiro do jogo da velha poderia ser usada uma matriz com dimensão 3 x 3; como segue:

dados	X	dados
	[0][1]	
dados [1][0]	dados	dados
dados	dados	dados
		[2][2]

```
char Tabuleiro [3][3];
```

OPERAÇÕES

- Os dados de tipo T mantidos em matriz são manipulados um-a-um.
- Também, estes são manipulados da mesma forma como variáveis não-compostas de tipo T são manipuladas.
- Assim: if (Tabuleiro[0][1]>Tabuleiro[1][2]) é
 uma operação possível. Sendo Tabuleiro uma matriz
 de inteiros, de um quebra-cabeça, por exemplo.
- Ou seja, cada dado da matriz se comporta tal qual uma variável de mesmo tipo de seus elementos.

06	05	08	
01	04	03	
	07	02	

EXEMPLOS

Inicializando matrizes:

```
int matriz1[3][4]={\{1,2,3,4\},
                      {5,6,7,8},
                      {9,10,11,12}};
int matriz2[3][4]={\{11,21,13,41\},
                      {52,26,72,28},
                      {39,13,31,13}};
char matriz3[][3]={\{a,b,c\},
                      {d,e,f},
                      {q,h,i},
                      \{ j, k, l \} \};
```

a	b	O
d	е	f
g	h	i
j	k	

matriz3

EXIBIÇÃO DE MATRIZ

```
void Exibir(int Matriz[][5], int L, int C)
{
  int i, j;
  for (i=0; i<L; i++)
    for (j=0; j<C; j++) {
      printf(" %d ",Matriz[i][j]);
      if (j==C-1)
          printf("\n"); }
  return;
}

Para exibir matriz A:</pre>
```

Exibir (A, 5, 4);

Para exibir matriz B:

Exibir (B, 5, 3);

Para exibir matriz C:

Exibir (C, 4, 4);

Para exibir matriz D:

Exibir (D, 5, 3);

MATRIZES

	22		49 58		3	56
	52		54	14		15
	12		10	32		36
and the last	69		68	65	•	62
A	63		78	75	5	74
	14		5	5		18
	66		2	1		22
	25 12		85		74	
and the			36		65	
В	54		49		98	
40000						
	78		89	94	1	45
	78 56		89 61	94		
					2	45
C	56		61	12	<u>2</u>	45 23
C	56 32		61 21	12	<u>2</u>	45 23 65
C	56 32 54		61 21 09	12 16 87	<u>2</u>	45 23 65 02
C	56 32 54		61 21 09 4	12 16 87	<u>2</u>	45 23 65 02 15
C	56 32 54 12 78 43		61 21 09 4 1	12 16 87 2 6	<u>2</u>	45 23 65 02 15 29

SOMA MATRIZES

Para somar as matrizes B e D e obter a matriz E: (C

SomarM(B,D,5,3,E);

MATRIZES

22	,	49	58		56	
52	54		14		15	
12		10	32	<u> </u>	36	
69		68	65	5	62	
63		78	75	5	74	
14		5	5		18	
66		2	1	22		
25		8	85 74		74	
12	12		6	65		
54		4	9	98		
78		89	94		45	
56		61	12		23	
32		21	16		65	
54		09	87	7	02	
12		4	42		15	
78		1	6		29	
43		1	8		79	
17		6	8		60	
25		2	7	88		

SOMA MATRIZES

Para somar as matrizes B e D e obter a matriz E:

SomarM(B,D,5,3,E);

Se necessário o cômputo do total da matriz soma?

MATRIZES

	22		49	58	3	56	
	52		54	14		15	
	12		10	32		36	
H	69		68	65	•	62	
	63		78	75	5	74	
	14	66 2		5		18	
	66			21 85		22	
	25					74	
b	12		36		65		
	54		4	9		98	
	78		89	94		45	
	56		61			23	
4	32		21	16		65	
	54		09	87	7	02	
	12		4	42		15	
	78	78		6	29		
	43		1	8		79	
W	17		6	8		60	
	25	2		7		88	

SOMA MATRIZES

```
void SomarM(int M1[][3], int M2[][3],
            int L, int C,
            int MSoma[][3], int *T)
  int i, j;
  *T=0;
  for (i=0; i<L; i++)
    for (j=0; j<C; j++) {
      MSoma[i][j]=M1[i][j]+M2[i][j];
      *T=*T+MSoma[i][j]; }
   return;
```

O cômputo do total deve ser sinalizado como parâmetro de saída, na definição e na invocação da função.

Para somar as matrizes B e D e obter a matriz E:

```
SomarM(B, D, 5, 3, E, &Total);
```

OPERAÇÃO SOBRE MATRIZES

```
int F(\text{int }M[][5], \text{ int }L, \text{ int }C)
  int Resultado;
  Resultado=M[0][0];
  int i, j;
  for (i=0; i<L; i++)
     for (j=0; j< C; j++)
       if (M[i][j] > Resultado)
          Resultado=M[i][j];
  return Resultado;
                                    Qual o objetivo alcançado a
                                     partir da execução deste?
```

OPERAÇÃO SOBRE MATRIZES

```
void Modulo(int M1[][3], int M2[][3],
             int L, int C,
             int *T)
  int i, j;
  *T=0;
  for (i=0; i<L; i++)
    for (j=0; j<C; j++) {
      *T=*T+M1[i][j]+M2[i][j]; }
```


Qual o objetivo alcançado a partir da execução deste?

Matrizes EXERCÍCIO


```
>>> Pesquisa Freezer <<<
Selecione a opção desejada:

1 - Exibir Levantamento

2 - Dados de um Freezer

3 - Dados de uma Característica

4 - Alterar Dado

5 - Melhor Freezer em Capacidade

6 - Melhor Freezer em Garantia

7 - Melhor Freezer em Economia

8 - Melhor Freezer em Temperatura

9 - Sair
```

Implementar opções de 4 a 9.

...Freezer.c

```
switch (Op) {
    case 1: ExibeMatriz(M, 4, 6);
            break;
    case 4: printf("\n Altera Dado ");
            break:
    case 5: printf("\n Melhor Freezer em
Capacidade ");
            break;
    case 6: printf("\n Melhor Freezer em Garantia ");
            break;
    case 7: printf("\n Melhor Freezer em Economia ");
            break;
    case 8: printf("\n Melhor Freezer em Temperatura ");
            break;
    case 9: printf("\n Sair ");
            break; }
```

Programação Imperativa

COMPLEMENTAR AULA...

Fundamentos da Programação de Computadores

Ana Fernanda Gomes Ascencio Edilene Aparecida Veneruchi de Campos

> Capítulos Matriz

Programação Imperativa

Curso de Linguagem C UFMG

COMPLEMENTAR AULA...

linux.ime.usp.br/~lucas mmg/livecd/documenta cao/documentos/curso_ de_c/www.ppgia.pucpr. br/_maziero/ensino/so/ projetos/curso-c/c.html

Aula 5
Matrizes e Strings

Aula 1: Introdução e Sumário

Aula 2 - Primeiros Passos

<u>Aula 3 - Variáveis, Constantes, Operadores e Expressões</u>

Aula 4 - Estruturas de Controle de Fluxo

Aula 5 - Matrizes e Strings

Aula 6 - Ponteiros

<u> Aula 7 - Funções</u>

Programação Imperativa PRÓXIMO PASSO

Registros / Structs