

GBI Tutorium Nr. 41

Foliensatz 4

Vincent Hahn - vincent.hahn@student.kit.edu | 15. November 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

1 Wiederholung

Algorithmen

Schleifeninvarianzen

2 Division mit Rest

3 Algorithmen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Wiederholung

Algorithmen

Algorithmen

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

- A* ist eine formale Sprache!
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^*$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Algorithmen

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^*$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

- A^* ist eine formale Sprache! $\sqrt{}$
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

- A^* ist eine formale Sprache! $\sqrt{}$
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- Eine bijektive Relation ist eine Funktion.
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

- A^* ist eine formale Sprache! $\sqrt{}$
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- lacktriangle Eine bijektive Relation ist eine Funktion. $\sqrt{}$
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv.

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Algorithmen

- A* ist eine formale Sprache! √
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$.
- Eine bijektive Relation ist eine Funktion. √
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv. X
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

- A^* ist eine formale Sprache! $\sqrt{}$
- $(L_1 \cdot L_2)^* = L_1^* \cdot L_2^* X$
- $f(x) = x^3 x^2$ ist rechtstotal für $x, f(x) \in \mathbb{R}$. $\sqrt{}$
- lacktriangle Eine bijektive Relation ist eine Funktion. $\sqrt{}$
- Wenn $f: A \to B$ injektiv $\Rightarrow f^{-1}$ ist surjektiv. X
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A \sqrt{}$

Wiederholung - Aufgaben

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Algorithmen

Schleifeninvarianzen

- Schreiben sie die Injektivität als Prädikatenlogische Formel.
- Es sei $L \subseteq A^*$ eine formale Sprache. Beweisen oder widerlegen Sie:

5/24

Wiederholung - Aufgaben

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

- Schreiben sie die Injektivität als Prädikatenlogische Formel.
- Es sei $L \subseteq A^*$ eine formale Sprache. Beweisen oder widerlegen Sie: $L^+ \cdot L^+ \subset L^+$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

1 Wiederholung

Algorithmen

2 Division mit Rest

Schleifeninvarianzen

3 Algorithmen

Division mit Rest

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Definition

$$\forall x \in \mathbb{N}_0, \forall y \in \mathbb{N}_+$$
:

$$x = y \cdot (x \operatorname{div} y) + (x \mod y)$$

Hierbei ist div die Ganzzahldivision ohne Rest.

$$1 = 4 \mod 3$$

7/24

Division mit Rest

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzer

Definition

$$\forall x \in \mathbb{N}_0, \forall y \in \mathbb{N}_+$$
:

$$x = y \cdot (x \operatorname{div} y) + (x \mod y)$$

Hierbei ist div die Ganzzahldivision ohne Rest.

Beispiel

Den Rest a der Ganzzahldivision erhält man also mit $a = x \mod y$:

$$1 = 4 \mod 3$$

Division mit Rest

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzer

Folgerung

Aus der Definition kann direkt geschlossen werden:

$$x\operatorname{div} y\in\mathbb{N}_0$$

$$x \mod y \in \{0, \dots, y-1\}$$

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Х	у	x div y	Х	mod y
4	3			
2	1			
10	3			
8	3			
9	2			
4	3			

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

X	у	x div y	Х	mod y
4	3	1		1
2	1			
10	3			
8	3			
9	2			
4	3			

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

X	у	x div y	X	mod y
4	3	1		1
2	1	2		0
10	3			
8	3			
9	2			
4	3			

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

X	У	x div y	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3			
9	2			
4	3			

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Χ	у	x div y	X	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2			
4	3			

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

X	у	x div y	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2	4		1
4	3			

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

X	у	x div y	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2	4		1
4	3	1		1

Größter gemeinsamer Teiler

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Definition

Der größte gemeinsame Teiler zweier Zahlen ist die größtmögliche Zahl $m \in \mathbb{N}_0$, für die gilt:

$$a \operatorname{div} m = 0 \wedge bivm = 0$$

Bestimmung

Der größte gemeinsame Teiler kann mit Primfaktorzerlegung bestimmt werden:

$$a = 3528, b = 3780$$

 $\Rightarrow a = 2^{3} \cdot 3^{2} \cdot 5^{0} \cdot 7^{2}$
 $\Rightarrow b = 2^{2} \cdot 3^{3} \cdot 5^{1} \cdot 7^{1}$

Damit ist der **ggT** $2^2 \cdot 3^2 \cdot 5^0 \cdot 7^1 = 252$

Größter gemeinsamer Teiler

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Definition

Der größte gemeinsame Teiler zweier Zahlen ist die größtmögliche Zahl $m \in \mathbb{N}_0$, für die gilt:

$$a \operatorname{div} m = 0 \wedge bivm = 0$$

Bestimmung

Der größte gemeinsame Teiler kann mit Primfaktorzerlegung bestimmt werden:

$$a = 3528, b = 3780$$

$$\Rightarrow a = 2^3 \cdot 3^2 \cdot 5^0 \cdot 7^2$$

$$\Rightarrow b = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^1$$

Damit ist der **ggT** $2^2 \cdot 3^2 \cdot 5^0 \cdot 7^1 = 252$

10/24

Größter gemeinsamer Teiler

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Programmierung

Die **ggt**-Funktion lässt sich so programmieren:

$$ggt(a,b) = \begin{cases} a & \text{falls } b = 0 \\ ggt(b, a \mod b) \end{cases}$$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

1 Wiederholung

Algorithmen

2 Division mit Rest

Schleifeninvarianzen

3 Algorithmen

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte.
- ist skalierbar
- und ist nachvollziehbar

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzer

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzer

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist. for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzer

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt ist.

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Algorithmen

Beispiel 1

```
Input: x \in \mathbb{N}
   i \leftarrow 0
   while x > 1 do
         x \leftarrow x \operatorname{div} 2
         i \leftarrow i + 1
   od
```

Output: i

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Beispiel 2

$$k \leftarrow 0$$

for
$$i \leftarrow 0$$
 to 20 do

$$k \leftarrow i$$

od

Output: k

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Beispiel 3

Gegeben sei ein Wort w der Länge |w|=n. Das Array W hat an i-ter Stelle den i-ten Buchstabe von w. w ist ϵ -frei.

$$c \leftarrow 0$$
for $i \leftarrow 0$ to $n-1$ do
$$c \leftarrow \begin{cases} c+1 & \text{falls } W[i] = x \\ c & \text{sonst} \end{cases}$$
od

Output: c

Schleifen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Übung 1, Winter 2008/2009

Es sei A ein Alphabet.

Schreiben Sie einen Algorithmus auf, der folgendes leistet: Als Eingaben erhält er ein Wort $w:\mathbb{G}_n\to A$ und zwei Symbole $x\in A$ und $y\in A$. Am Ende soll eine Variable r den Wert 0 oder 1 haben, und zwar soll gelten:

$$r = \begin{cases} 1 & \text{falls irgendwo in w direkt hintereinander erst } x \text{ dann } y \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

Benutzen Sie zum Zugriff auf das i-te Symbol von w die Schreibweise w (i). Formulieren Sie den Algorithmus mit Hilfe einer for-Schleife.

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Wiederholung

Algorithmen

Schleifeninvarianzen

Algorithmen

Schleifeninvarianzen

19/24

Schleifeninvariante

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Definition

Eine Schleifeninvariante ist eine Eigenschaft einer Schleife, die bei jedem Schleifenzeitpunkt gültig ist.

Ha?

Eine Schleifeninvariante ist zum Beispiel

- ein Wertebereich für eine Variable oder
- ein Verhältnis zweiter Variablen.

Schleifeninvariante

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Definition

Eine Schleifeninvariante ist eine Eigenschaft einer Schleife, die bei jedem Schleifenzeitpunkt gültig ist.

Hä?

Eine Schleifeninvariante ist zum Beispiel

- ein Wertebereich für eine Variable oder
- ein Verhältnis zweiter Variablen.

Schleifeninvarianzen

Wiederholung

Vincent Hahn - vincent.hahn@student.kit.edu

_...

Algorithmen

Schleifeninvarianzen

Wofür?

Mit Schleifeninvarianten lassen sich Algorithmen überprüfen.

Wie?

Mit vollständiger Induktion :-)

Schleifeninvarianzen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Wofür?

Mit Schleifeninvarianten lassen sich Algorithmen überprüfen.

Wie?

Mit vollständiger Induktion :-)

Schleifeninvarianzen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Beispiel

Input: $a, b \in \mathbb{N}_0$ $S \leftarrow a$ $Y \leftarrow b$ for $i \leftarrow 0$ to b - 1 do $S \leftarrow S + 1$ $Y \leftarrow Y - 1$

od

Output: S

Übung

Algorithmus mit a = 3 und b = 4 ausprobieren und Werte für S und Y bei iedem Schleifendurchlauf finden.

Schleifeninvarianzen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Beispiel

```
Input: a, b \in \mathbb{N}_0

S \leftarrow a

Y \leftarrow b

for i \leftarrow 0 to b-1 do

S \leftarrow S+1

Y \leftarrow Y-1

od

Output: S
```

Übung

Algorithmus mit a = 3 und b = 4 ausprobieren und Werte für S und Y bei jedem Schleifendurchlauf finden.

Schleifeninvarianzen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Res

Algorithmen

Schleifeninvarianzen

Beweis

Beweise die Schleifeninvariante mittels vollständiger Induktion!

Input: $a, b \in \mathbb{N}_0$

$$S \leftarrow a$$

$$Y \leftarrow b$$

for $i \leftarrow 0$ to b - 1 do

$$\mathcal{S} \leftarrow \mathcal{S} + 1$$

$$Y \leftarrow Y - 1$$

od

Output: S

Schleifeninvarianzen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Division mit Rest

Algorithmen

Schleifeninvarianzen

Winter 2008/2009

$$\begin{array}{l} \textbf{Input:} \ \ \, a,b \in \mathbb{N}_0 \\ X_0 \leftarrow a \\ Y_0 \leftarrow b \\ P_0 \leftarrow 1 \\ Z_0 \leftarrow X_0 \mod 2 \\ n \leftarrow 1 + [\log_2 a] \\ \textbf{for} \ \, i \leftarrow 0 \ \, \textbf{to} \ \, n-1 \ \, \textbf{do} \\ P_{i+1} \leftarrow P_i \cdot Y_i^{Z_i} \\ X_{i+1} \leftarrow X_i \ \, \text{div} \ \, 2 \\ Y_{i+1} \leftarrow Y_i^2 \\ Z_{i+1} \leftarrow X_{i+1} \mod 2 \\ \textbf{od} \end{array}$$

Beweisen Sie durch vollständige Induktion über *i* die Schleifeninvariante:

$$\forall i \in \mathbb{N}_0 : P_i \cdot Y_i^{X_i} = b^a$$