Chapter 3

# SLR Estimation & Prediction

Chanwoo Yoo, Division of Advanced Engineering, Korea National Open University

This work is a derivative of 'Regression Methods' by Iain Pardoe, Laura Simon and Derek Young, used under CC BY-NC.



#### Contents

- 1. The Research Questions
- 2. Confidence Interval for the Mean Response
- 3. Prediction Interval for a New Response

- What is the mean college entrance test score for the subpopulation of students whose high school gpa is 3? (Answering this question entails estimating the mean response  $\mu_Y$  when x = 3.)
- What college entrance test score can we predict for a student whose high school gpa is 3? (Answering this question entails predicting the response  $y_{new}$  when x = 3.)



- What is the mean college entrance test score for the subpopulation of students whose high school gpa is 3
  - confidence interval for  $\mu_Y$
- What college entrance test score can we predict for a student whose high school gpa is 3?
  - prediction interval for  $y_{new}$

## 2. Confidence Interval for the Mean Response

#### 1. Confidence Interval for the Mean Response

- $100(1-\alpha)$  percent confidence interval for  $\mu_Y$ 
  - sample estimate ± (t-multiplier × standard error)

• 
$$\hat{y}_h \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

$$2 \times t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

- As the mean square error (MSE) decreases, the width of the interval decreases.
- As we decrease the confidence level, the t-multiplier decreases, and hence the width of the interval decreases.

$$2 \times t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

- As we increase the sample size *n*, the width of the interval decreases.
- The more spread out the predictor values, the larger the quantity  $\sum (x_i \bar{x})^2$  and hence the narrower the interval.

$$2 \times t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

- As we increase the sample size *n*, the width of the interval decreases.
- The more spread out the predictor values, the larger the quantity  $\sum (x_i \bar{x})^2$  and hence the narrower the interval.

$$2 \times t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

• The closer  $x_h$  is to the average of the sample's predictor values  $\bar{x}$ , the smaller the quantity  $(x_h - \bar{x})^2$ , and hence the narrower the interval.

### 3. When is it okay to use the formula for the confidence interval for $\mu_Y$ ?

- When  $x_h$  is a value within the range of the x values in the data set that is, when is a value within the "scope of the model."
- When the "LINE" conditions linearity, independent errors, normal errors, equal error variances — are met. The formula works okay even if the error terms are only approximately normal.

## 3. Prediction Interval for a New Response

#### 1. Prediction Interval for a New Response

•  $100(1-\alpha)$  percent confidence interval for  $y_{new}$ 

• 
$$\hat{y}_h \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

•  $100(1-\alpha)$  percent confidence interval for  $\mu_Y$ 

• 
$$\hat{y}_h \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

•  $100(1-\alpha)$  percent confidence interval for  $y_{new}$ 

• 
$$\hat{y}_h \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \times \sqrt{MSE \times \left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$

• If we know population parameters  $\mu_Y$  and  $\sigma^2$  at specific  $x_h$ , and y is normally distributed, it says that 95% of the measurements are in the interval sandwiched by  $\mu_Y - 2\sigma$  and  $\mu_Y + 2\sigma$ 

- The mean  $\mu_Y$  is typically not known. The logical thing to do is estimate it with the predicted response  $\hat{y}$ . The cost of using  $\hat{y}$  to estimate  $\mu_Y$  is the variance of  $\hat{y}$ . That is, different samples would yield different predictions  $\hat{y}$ , and so we have to take into account this variance of  $\hat{y}$ .
- The variance  $\sigma^2$  is typically not known. The logical thing to do is to estimate it with MSE.

- The variation in the prediction of a new response depends on two components:
  - The variation due to estimating the mean  $\mu_Y$  with  $\hat{y}_h$ , which we denote " $\sigma^2(\hat{Y}_h)$ ".
  - The variation in the responses y, which we denote as "  $\sigma^2$ "

$$\quad \quad \sigma^2 + \sigma^2(\hat{Y}_h)$$

• 
$$MSE + MSE \times \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right) = MSE \times \left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)$$

#### 3. Confidence Interval and Prediction Interval



#### 4. Code: Confidence Interval

#### 5. Results: Confidence Interval for $\mu_Y$

```
> predict(model, interval="confidence", se.fit=T, level = 0.95,
         newdata=data.frame(Lat=40))
$fit
       fit lwr
                        upr
1 150.0839 144.5617 155.6061
$se.fit
[1] 2.745
$df
```

#### 6. Results: Prediction Interval for $y_{new}$

### 7. When is it okay to use the formula for the prediction interval for $y_{new}$ ?

- When  $x_h$  is a value within the scope of the model. Again,  $x_h$  does not have to be one of the actual x values in the data set.
- When the "LINE" conditions linearity, independent errors, normal errors, equal error variances — are met. Unlike the case for the formula for the confidence interval, the formula for the prediction interval depends **strongly** on the condition that the error terms are normally distributed.

Next

# Chapter 4 SLR Model Assumptions