Datensicherheit, Übung 4

HENRY HAUSTEIN

Aufgabe 1

Wenn ich mich nicht verguckt habe, dann hat Kode 1 ein $d_{min} = 2$ und Kode 2 ein $d_{min} = 3$. Damit sind beide Kodes in der Lage 1 bzw. 2 Fehler zu erkennen, aber nur Kode 2 kann einen Fehler korrigieren.

Aufgabe 2

- (a) Es gilt k = 3, damit $n = 2^3 1 = 7$, l = n k = 4 und $d_{min} = 3$ (?)
- (b) Maximal 2 Bitfehler oder maximal 3 Bündelfehler
- (c) Multiplikationsverfahren: $(x^3+x+1)\cdot(x^2+x+1)=x^5+x^4+1\mod 2\Rightarrow 110001$ Divisionsverfahren: ?
- (d) Es gilt:

$$\frac{x^6 + x^4 + x^2 + x + 1}{x^3 + x + 1} = x^3 - 1 + \frac{x^2 + 2x + 1}{x^3 + x + 1}$$

also wurde die Bitfolge nicht richtig übertragen.

$$\frac{x^6 + x^3 + x^2 + x}{x^3 + x + 1} = x^3 - x + \frac{2x^2 + 2x}{x^3 + x + 1}$$

allerdings ist in GF(2) der Rest äquivalent zu 0, damit wurde die Bitfolge richtig übertragen.

- (e) b_1 (?) Falls b_2 mit dem Multiplikationsverfahren kodiert wurde, so ist die dekodierte Folge 1010. Divisionsverfahren?
- (f) ?

Aufgabe 3

- (a) $k_1 = 4$ und k = 5, damit $n = 2^4 1 = 15$, l = 10 und $d_{min} = 4$ (?)
- (b) Maximal 3 Bitfehler oder maximal 4 Bündelfehler oder ungeradzahlige Fehlermuster
- (c) b_2 hat 7 Einsen und b_4 hat 9 Einsen

Aufgabe 4

Nein, Kodierung schützt nicht vor Angreifern. Angreifer können die Leitung abhören und die Nachricht dekodieren (\nearrow Vertraulichkeit), sie können sogar die Nachricht abfangen, verändern, neu kodieren und über die Leitung schicken! (\nearrow Integrität)