Model Fitting: Anwendung Bayes Theorem

Dr. Michael Thrun thrun@deepbionics.de

Probalistisch-Generativer Ansatz

- Es wird davon ausgegangen, dass die Daten durch einen Prozess erzeugt wurden, welcher mit Wahrscheinlichkeiten beschrieben werden kann
- Die Erzeugung eines Datensatzes wird dabei in zwei Schritten vollzogen

Schritt 1:

- Der Daten erzeugende Prozess befindet sich mit einer gewissen Wahrscheinlichkeit, der sog. á priori Wahrscheinlickeit in einem bestimmten Zustand.
 - Zustände entsprechen de späteren Klassen c_i und haben Wahrscheinlichkeiten $p(c_i)$
 - "Gewichte der Klassen": $\sum_i p(c_i) = 1$

Schritt 2:

- Wenn eine Klasse c_i gewählt wurde wird im zweiten Schritt der Datenerzeugung ein Datenpunkt gemäß der speziellen Bedingungen der Klasse erzeugt.
- Dies wird mit bedingten Wahrscheinlichkeiten modelliert $p(x|c_i)$
 - Beschreibt die Wahrscheinlichkeiten p, mit der ein Prozess in einem Zustand c_i Daten x produziert

Anwendung des Bayes Theorems

- Klassen bedingteWahrscheinlichkeit
- $p(x|c_i)$ definiert das Vorkommen der Daten x in Klasse c_i
- Daraus lassen sich die Posterioris $p(c_i|x)$ bestimmen, also die die Wahrscheinlichkeit der Zugehörigkeit eines Datensatzes x zu einer Klasse

Beispiel: Betrachten wir das rote Fenster mit Komponente C_1 and Komponente C_2

Anwendung Bayes-Theorems

A-Priori:

Wahrscheinlichkeit, sich in dieser Klasse zu befinden

Bedingte Wahrscheinlichkeit: Wahrscheinlichkeit, Daten in dieser Klasse zu erzeugen

Posterior:

Wahrscheinlichkeit, dass Daten x der Klasse c_i zugehörig sind

$$\rightarrow p(c_i|x) = \frac{1}{2}$$

$$\sum_{i=1}^{L} p(c_i) = 1$$

$$\sum_{i=1}^{L} p(c_i|x) = 1$$

Normalisierung, entspricht

$$\sum_{i=1}^{L} w_i * N(m_i, SD_i)$$

Grenzen durch Verwendung des Bayes-Theorems

- Das Bayes Theorem erlaubt die Bestimmung der Posteriori $p(c_i|x)$
- $p(c_i|x)$ ist die Wahrscheinlichkeit der Zugehörigkeit eines Datensatzes zu einer Klasse.

$$p(c_i|x) = \frac{p(c) * p(x|c_i)}{\sum_{i=1}^{L} p(c_i) * p(x|c_i)} = \frac{Priori * bedingte Wahrscheinlicheit}{Normalisierung}$$

- Je nach Anwendung definiert man die Bayes Entscheidungsgrenze bei einem bestimmten Wert von p
 - z.B. bei Gesund vs.Krank möchte man sicher sein, das Kranke wirklich krank sind und damit ist p=0.95 => 95% Wahrscheinlichkeit dass wenn dem Datenpunkt das label krank zugeordnet wird, die Person auch wirklich krank ist

Exakte Entscheidungsgrenze in Magenta

GMM=Red, Posteriors=Green, Components=Blue

Green: Berechne Posteriori der Gauß-Mixtur der Komponenten

$$c_{i,i}=1,\ldots,4$$

Posteriori = 50%

⇒Bayes Entscheidungsgrenze

zwischen i=1 and i=2

(magenta)

Klassifizierung durch Anwendung des Bayes Theoremes

Schwarz= pdf(log(Data))

Magenta=Bayes Boundaries

Rot=GMM

Blau=Komponenten bzw. Moden

Wertebereich:

- 1. Gruppe: 0-1100 Euro
- 2. Gruppe: 1100-12000 Euro
- 3. Gruppe: 12000 -139000 Euro
- 4. Gruppe: > 139000 Euro

Knowledge Discovery der Einkommensverteilung

Ist der Modelfit gut?

- Statistische Tests:
 - Xi-Quadrat test: p<.001
 - Kolmogorov Smirnov test
- Visuell: QQ plot
 - Vergleicht zwei Verteilungen mit Hilfe von n-Quantilen
 - Empirische Verteilung vs. bekannte Verteilung
 - Wenn gerade Linie: Verteilungen gleich

QQ-plot Data vs Gauss Mixture Model

Zusammenfassung III: GMM

- Mehrere Moden sind ein Hinweis auf eine mögliche Gruppenbildung der Daten.
- Sollten Moden in Daten vorher erkennbar sein oder nach einer Transformation erkennbar werden, ist es möglich Gruppen zu definieren.
- In einer Variablen, welche nicht normalverteilt ist, ist dies mit leichtverständlichen Ansätzen nur heuristisch möglich.
- Bei normal verteilten Variablen wird das Gaußmixturen Model (GMM) verwendet.
- Über Bayes können empirisch Grenzen zwischen den Moden berechnet und somit den Daten Klassen zugeordnet werden

Danke fürs Zuhören, haben Sie Fragen?

Bücher Empfehlungen für Zwischendurch

- Wenig Mathematik
- Aber einige wichtige Konzepte der Data Science werden anschaulich erklärt

