Convergence Clubs and Regression Trees

0686 - Spatial Economics

Nikolas, Philipp, Lukas & Daniel 17 Januar, 2019

Data

Recap: European Regional Database by Cambridge Econometrics

We limit the dataset to:

- timeframe 2000-2015
- no Croatia (i.e. two fewer NUTS 2 regions)

This means we get to:

- use the full set of variables
- keep a detailled London (five NUTS 2 regions)

CS excursion

Regression vs. Iteration

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, ...

Defined by

$$f(n) = f(n-1) + f(n-2)$$

with the base

$$f(1)=f(2)=1$$

Regression tree

Split observations into clubs:

```
tree <- function(data, split_vars, end_criteria) {</pre>
  split <- find_best_split(...)</pre>
  if (!end criteria) {
    return(list(tree(split$data1, ...),
                 tree(split$data2, ...)))
  } else { # if(end_criteria)
    return(data)
```

Oh what a merry regression tree

We receive a recursive, tree-like data structure that is:

- hard to deal with (a lot of helper functions are necessary)
- pretty nice

Figure 1: A partykit (Hothorn and Zeileis 2015) tree

Regression Tree

Our results are comparable to partykit (Hothorn and Zeileis 2015).

Still there's the caveat of spatially filtering the data.

Motivation

Table 1: Regression results using unfiltered data

	Dependent variable: GDP p.c. growth rate 2000-15				
	(1)	(2)	(3)	(4)	
Constant	-1.139***	-0.265	1.769***	2.922***	
	(0.323)	(0.360)	(0.146)	(0.147)	
Initial GDP p.c.	0.120***	0.035	-0.159***	-0.275***	
	(0.032)	(0.036)	(0.016)	(0.015)	
Observations	63	92	67	51	
Residual Std. Error	0.118 (df = 61)	0.105 (df = 90)	0.129 (df = 65)	0.086 (df = 49)	

Note:

p<0.1; p<0.05; p<0.05; p<0.01

Table 2: Regression results using SAR-filtered data

	Dependent variable: GDP p.c. growth rate 2000-15				
	(1)	(2)	(3)	(4)	
Constant	-1.174***	1.445***	1.296***	-0.037	
	(0.343)	(0.122)	(0.383)	(0.470)	
Initial GDP p.c.	0.109***	-0.142***	-0.128***	-0.003	
	(0.034)	(0.013)	(0.037)	(0.047)	
Observations	63	97	55	58	
Residual Std. Error	0.125 (df = 61)	0.124 (df = 95)	0.073 (df = 53)	0.110 (df = 56)	

Note:

*p<0.1; **p<0.05; ***p<0.01

- partykit
- flattening trees
- try model on all?
- only spatial filtering

Table 3: Regression results using SEM-filtered data

	Dependent variable: GDP p.c. growth rate 2000-15				
	(1)	(2)	(3)	(4)	
Constant	-0.039**	0.088***	0.016	-0.021	
	(0.018)	(0.014)	(0.020)	(0.022)	
Initial GDP p.c.	-0.277***	-0.265***	-0.061**	-0.132***	
	(0.022)	(0.026)	(0.028)	(0.047)	
Observations	55	89	59	70	
Residual Std. Error	0.117 (df = 53)	0.120 (df = 87)	0.086 (df = 57)	0.106 (df = 68)	

Note:

*p<0.1; **p<0.05; ***p<0.01

- where are our clubs
- why are they split this way
- how do they compare (unfiltered, sar, sem)

Literatur

Hothorn, Torsten, and Achim Zeileis. 2015. "partykit: A Modular Toolkit for Recursive Partytioning in R." *Journal of Machine Learning Research* 16: 3905–9. http://jmlr.org/papers/v16/hothorn15a.html.