SC 332 Lecture 3

Calvin Williamson FIT Fall 2006

Today's topics

- Interaction of Light and Matter
- Exponents
- Beer's Law
 - Filters
 - Dye Solutions

When Light Hits an Object

Photons incident on an object are

Reflected %R

Transmitted %T

Absorbed%a

$$%R + %T + %a = 100$$

Specular Reflection

- Surface is smooth, glossy, shiny, has highlights
- Reflection can be made out clearly
- Rays stay "organized"

Diffuse Reflection

- Surface is rough, matte, dull, has no highlights
- Reflection can not be easily made out
- Rays are scattered in many different directions

Specular Transmission

- Rays stay "organized" and pass straight through
- Can see clearly through it

Diffuse Transmission

- Rays scattered in different directions
- Cannot see clearly through it

Transparent Object

- Light is transmitted specularly or absorbed
- Absorbed light determines color
- Examples: Sunglasses, cellophane, clear window, food dye

$$%T + %a = 100$$

Translucent Object

- Light is transmitted diffusely or absorbed
- Absorbed light determines color
- Examples: Frosted glass, shower glass, plastics

Opaque Object

- No light is transmitted
- Absorbed light determines color

Selective Absorption

 Some wavelengths are absorbed more than others

Spectral Curve

Spectral Reflectance Curve – Opaque Object

$$%R + %a = 100$$

Spectral Transmittance Curve – Transparent Object

$$%T + %a = 100$$

Exponents

• Use the button y^x or \wedge on your calculator

Example (Exponents):

$$(.40)^3 = .064$$

$$(.75)^{\frac{1}{2}} = (.75)^{.5} = .866$$

$$(.60)^{\frac{5}{3}} = (.60)^{1.33} = .507$$

Square Roots and Exponents

Example (Square roots notation):

$$\sqrt{16} = (16)^{\frac{1}{2}} = (16)^{.5} = 4$$

$$4^2 = 16$$

$$\sqrt{.75} = (.75)^{\frac{1}{2}} = (.75)^{.5} = .866$$

 $(.866)^2 = .75$

Beer's Law

- Can calculate the spectral curve of a transparent object from it's physical properties
 - Thickness how far the light must travel through it
 - Concentration how dense the dye molecules are
- Applies to filters and dye solutions

Spectral Curves from Beer's Law

If we know the spectral curve for the thin filter,
 we can find the spectral curve for the thick filter

Beer's Law for Filters

Beer's Law (Filters)

Example (Three filters of same thickness):

Each filter removes 33% of the light. What is the transmittance at the end? Is it 1%?

Beer's Law - Filters All Same

Beer's Law (Filters of same thickness)

$$n =$$
 number of filters

$$T = (T_0)^n$$

Example(3 filters transmitting 66% each):

Beer's Law - Filters Different

Beer's Law (Filters with different thickness)

Beer's Law - Filters Different

Example (Filters of different thickness):

Beer's Law - Dye Solutions

Beer's Law (Dye Solutions)

$$n = \frac{\text{new concentration}}{\text{old concentration}} = \frac{c_1}{c_0}$$

$$T = (T_0)^n$$

Beer's Law – Dye Solutions

Example (Dye Solutions):

$$n = \frac{\text{new concentration}}{\text{old concentration}} = \frac{5}{2} = 2.5$$

$$T = (T_0)^n = (.55)^{2.5} = .22$$

Why is Yellow Food Dye Red?

Why does yellow food dye look red in the bottle?

- Hint: Draw a yellow spectral curve and show how to use Beer's Law to change it into a red spectral curve
- Convincing Answer worth 10 extra points on next test.

Transmittance and Absorbance

- Transmittance and absorbance are related
- Different ways of describing same thing

$$T = \text{Transmittance}$$
 $A = \text{Absorbance}$
 $T = 10^{-A}$

\boldsymbol{A}	10^{-A}	% <i>T</i>
0	10 ⁰	1.0 = 100%
1	10^{-1}	.1 = 10%
2	10^{-2}	.01 = 1%
3	10^{-3}	.001=.1%

Beer's Law – Absorbance Form

 Expresses absorbance in terms of concentration, thickness and dye characteristics

c =concentration

t =thickness

 ε_{λ} = extinction factor

 ε_{λ} = chance a photon of wavelength λ is absorbed if it hits a dye molecule

$$A_{\lambda} = c \cdot t \cdot \varepsilon_{\lambda}$$

Beer's Law – Absorbance Form

$$T_{\lambda} = 10^{-A_{\lambda}} A_{\lambda} = c \cdot t \cdot \varepsilon_{\lambda}$$

- Note $c = 0 \to A = 0 \to T = 1.0 \text{ or } 100\%$
- Note $t=0 \to A=0 \to T=1.0 \text{ or } 100\%$
- Since c and t do not depend on wavelength all selective absorption is contained in the extinction factor \mathcal{E}_{λ}
- Extinction factor is determined by dye characteristics

Beer's Law Experiment – Absorbance vs Concentration

