Вопрос 7

Определение подпоследовательности. Её предел(частичный предел последовательности).

Пусть дана последовательность $\{a_n\}_{n=1}^{\infty}$. Так же, пусть задана какая-то возрастающая последовательность натуральных чисел $n_1 < n_2 < n_3 < \dots$

Тогда, говорят, что последовательность $b_k = a_{n_k}$ является подпоследовательностью последовательности $\{a_n\}_{n=1}^{\infty}$.

Тогда **частичным пределом** последовательности $\{a_n\}_{n=1}^{\infty}$ называют число $a \in \mathbb{R}$ такое, что $a = \lim_{k \to \infty} a_{n_k}$, для некоторой подпоследовательности $\{a_{n_k}\}_{k=1}^{\infty}$.

То есть другими словами число $a \in \mathbb{R}$ называют **частичным пределом**, если a является пределом некоторой бесконечной подпоследовательности последовательности $\{a_n\}_{n=1}^{\infty}$.

Предложение №1

Любая подпоследовательность сходящейся последовательности сходится к пределу этой последовательности.

Докозательство. Рассмотрим последовательность $\{a_n\}_{n=1}^{\infty}$. Пусть $\lim_{n\to\infty} a_n = A$ и пусть $\{a_{n_k}\}_{k=1}^{\infty}$ - некоторая подпоследовательность.

Тогда по поределению предела $\forall (\epsilon > 0) \exists N(\epsilon) : \forall (n > N(\epsilon)) |a_n - A| < \epsilon$.

Теперь рассмотрим индексы подпоследовательности. Т.к. $1 \le n_1$ и $n_{k-1} < n_k$ по индукции получим, что $k \le n_k$. Тогда заметим, что для всех k > N, получим, что $|a_{n_k} - A| < \epsilon$.

Верхний и нижний пределы ограниченной последовательности.

Рассмотрим последоваетельность $M_n := \sup_{k>n} a_k$ и $m_n := \inf_{k>n} a_k$. Ясно, что посделовательность M_n - невозрастает, а последовательность m_n - неубывает. Поэтому для <u>ограниченной</u> последовательности существует:

$$\varliminf_{n o \infty} a_n := \lim_{n o \infty} m_n$$
 — нижний частичный предел

$$\varlimsup_{n o \infty} a_n := \lim_{n o \infty} M_n$$
 – верхний частичный предел.

Теорема №1

Пусть $\{a_n\}_{n=1}^{\infty}$ – ограниченная последовательность. Тогда $\varlimsup_{n\to\infty} a_n, \varliminf_{n\to\infty} a_n$ – частичные пределы последовательности $\{a_n\}_{n=1}^{\infty}$ и любой другой предел принадлежит отрезку

$$\left[\underline{\lim}_{n\to\infty}a_n, \overline{\lim}_{n\to\infty}a_n\right]$$

Доказательство. Покажем, что $M:=\varlimsup_{n\to\infty}a_n$ – частичный предел. Для этого индуктивно построим последовательность, которая сходится к $\varlimsup_{n\to\infty}a_n$. Пусть $n_1=1$. Пусть индексы $n_1< n_2< ... < n_k$ уже построены. Тогда подберём такой номер $n_{k+1}> n_k$, что

$$M_{n_k} - \frac{1}{k+1} < a_{n_{k+1}} \le M_{n_k}.$$

Как подпоследовательность сходящейся последовательности $M_{n_k} \to M$, поэтому по теореме о сходимости зажатой последовательности (по теореме о двух полицейских и преступнике) получаем, что $\lim_{k\to\infty} a_{n_k} = M$.

Аналогично проверяется и то, что $\varliminf_{n\to\infty} a_n$ – частичный предел.

Пусть теперь a — частичный предел. Это означает, что $a=\lim_{k\to\infty}a_{n_k}$ для некоторой подпоследовательности $\{a_{n_k}\}_{n=1}^\infty$. Тогда $m_{n_{k-1}}\le a_{n_k}\le M_{n_{k-1}}$. По теореме о переходе к пределу в неравенствах получаем, что $\lim_{n\to\infty}a_n\le a\le \lim_{n\to\infty}a_n$.

Следствие из Теоремы 1

Теорема Больцано - во всякой ограниченной последовательности можно найти сходящуюся подпоследовательность.

Теорема №2

Oграниченная последовательность сходится тогда, и только тогда, когда множество её частичных пределов состоит из одного элемента.

Докозательство. То, что у сходящейся последовательности только один предел, уже доказано ранее.

Теперь предположим, что у ограниченной последовательности $\{a_n\}_{n=1}^{\infty}$ только один частичный предел. По доказаному в Теорема №1 в частности это означает, что

$$\underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = A$$

Тогда, $m_{n-1}\leqslant a_n\leqslant M_{n-1}$, и по теореме о сходимости зажатой последовательности, получаем что $\lim_{n\to\infty}a_n=A$