universität freiburg

Machine Learning for Stochastics

Summer semester 2025

Lecturer: Prof. Dr. Thorsten Schmidt Assistance: Simone Pavarana, MSc.

Tutorial 1

Exercise 1 (3 Points).

Suppose a stationary Markov Decision Model with $\beta = 1$ is given with the following properties:

- 1. there exists a set $G \subset E$ such that r(x,a) = 0 and $Q(\{x\} \mid x,a) = 1$ for all $x \in G$ and $a \in D(x)$,
- 2. for each $x \in E$, there exists a finite $N(x) \leq N$ such that $\mathbb{P}_x^{\pi}(X_{N(x)} \in G) = 1$ for all policies $\pi \in F^N$.

Define $J(x) := J_{N(x)}(x)$.

- (a) Show that J(x) = g(x) for $x \in G$ and $J(x) = (\mathcal{T}J)(x)$ for $x \notin G$.
- (b) Show that if $f \in F$ satisfies

$$(\mathcal{T}J)(x) = (\mathcal{T}_f J)(x), \quad x \notin G,$$

and $f(x) \in D(x)$ arbitrary for $x \in G$, then then the stationary policy $(f, \ldots, f) \in F^N$ is optimal.

(c) Show that the red-and-black gambling model (Tutorial 2, Exercise 2) satisfies the assumptions of a terminating Markov decision model.

Exercise 2 (3 Points).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space. Let \mathbb{X} and \mathbb{Y} be Polish spaces equipped with their respective Borel σ -algebras \mathcal{X} and \mathcal{Y} . Consider two random variables: a *state* variable X taking values in \mathbb{X} , and an *observable variable* Y taking values in \mathbb{Y} .

Assume there exist a σ -finite measure ν on (\mathbb{Y},\mathcal{Y}) and a measurable function $\lambda: \mathbb{X} \times \mathbb{Y} \to \mathbb{R}_+$ such that the joint law of (X,Y) satisfies

$$P_{X,Y}(dx,dy) = \lambda(x,y) \nu(dy) P_X(dx).$$

Show that for any measurable set $A \in \mathcal{X}$ and for P_Y -almost every $y \in \mathbb{Y}$,

$$\mathbb{P}(X \in A \mid Y = y) = \frac{\int_A \lambda(x, y) P_X(dx)}{\int_{\mathbb{X}} \lambda(x, y) P_X(dx)}.$$

Hint: Use the disintegration theorem, which applies due to the assumption that \mathbb{X} and \mathbb{Y} are Polish spaces.

Exercise 3 (5 Points).

(a) **Exponential–Gamma Model:** Let $X_1, ..., X_n$ be independent observations from an exponential distribution with unknown rate $\theta > 0$,

$$f(x \mid \theta) = \theta e^{-\theta x}, \quad x > 0.$$

Assume a Gamma prior $\theta \sim \text{Gamma}(\alpha, \beta)$, with density

$$\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\beta \theta}, \quad \theta > 0.$$

Show that the posterior distribution of θ given the data is again Gamma, with parameters α_n , β_n expressed in terms of α, β , and the data.

(b) Gaussian-Gaussian Model: Let X_1, \ldots, X_n be i.i.d. observations from a normal distribution with unknown mean μ and known variance σ^2 . Assume a Gaussian prior $\mu \sim \mathcal{N}(\mu_0, \tau^2)$.

Show that the posterior distribution of μ given the data is Gaussian, with mean μ_n and variance τ_n^2 depending on μ_0, τ^2, σ^2 , and the sample mean \bar{X}_n .

Hint: Use Bayes' theorem and unnormalized densities to simplify the algebra. In the Gaussian case, complete the square in the exponent.