

DUBLIN CITY UNIVERSITY

AUGUST/RESIT EXAMINATIONS 2014/2015

MODULE:		CA446 – Statistical Machine Transla	ation
	E (S): ASE TT	BSc in Computer Applications (Sft.E MSc in Translation Technology	∃ng.)
YEAR OF STU	JDY:	1,4	
EXAMINERS:		Professor Qun Liu Dr. Ian Pitt	(Ext:5644)
TIME ALLOW	ED:	2 Hours	
INSTRUCTION	NS:	Answer Question One and two other	r questions.
The use of progra	mmable or tex where a candid	THIS PAGE UNTIL YOU ARE INSTRUCT t storing calculators is expressly forbidden. late answers more than the required number attempted and then select the highest scor	er of questions, the
Log Gra Dic	this paper (Plea 1 Tables 1ph Paper tionaries tistical Tables	ase mark (X) as appropriate) Thermodynamic Actuarial Table: MCQ Only – Do Attached Answe	s o not publish

Answer EIGHT of the following ten short questions. Each question is worth 5 marks.

- 1. In the distance-based reordering model, the distance for the i^{th} target phrase is: $start_i end_i + 1$, please explain the meaning of $start_i$ and end_i ?
- 2. Name and briefly explain the two techniques which are used to reduce the search space while decoding.
- 3. Brevity penalty does not punish candidates which are longer than references. Why?
- 4. It is said that in BLEU score, unigram precision accounts for adequacy, while other n-gram (n>1) precision represent fluency. Explain why.
- 5. Explain the idea of backoff smoothing for language models.
- 6. Assume that the size of the vocabulary is N. What is the number of parameters of an n-gram language model?
- 7. Draw the dependency trees of the following English sentences: (1) John bought a table with three legs (2) John bought a table with three dollars.
- 8. State and briefly explain the three components of a statistical machine translation system based on the noisy channel model.
- 9. Why are bi-directional word alignments necessary when we trained a phrase-based translation model?
- 10. State and briefly explain two submodels which are not included in IBM model 1 but are included in higher IBM models.

[End of Question 1]

Q 2(a)

[16 Marks]

Given the following pairs:

S_1	S_2	
fleur rouge	grande fleur	
red flower	big flower	

State what the following translation probabilities will be after two iterations of the Expectation Maximisation algorithm and show all the steps followed to arrive at these values:

t(red|fleur)
t(flower|fleur)
t(big|fleur)
t(red|rouge)
t(flower|rouge)
t(big|rouge)
t(red|grande)
t(flower|grande)
t(big|grande)

Assuming only one-to-one and one-to-zero patterns are allowed for source-to-target word alignments in these sentence pairs.

Q 2(b) [8 Marks]

Assuming any source can be aligned with any number (including zero) of target words and vice versa, please list all the possible word alignments for the sentence pair S_1 .

Q 2(c) [6 Marks]

List all phrase pairs that are consistent with the following word alignment:

[End of Question 2]

QUESTION 3

[TOTAL MARKS: 30]

Q 3(a)

[15 Marks]

Given the following sentences:

<s> Tom chases Jerry </s>

<s> Tom likes Jerry </s>

<s> Jerry hates Tom </s>

List all the parameters of the unigram model and the bigram language models trained with these sentences without smoothing.

Q 3(b)

[15 Marks]

Calculate the probabilities of the following sentences:

<s> Jerry likes Tome </s>

<s> Tome hates Jerry </s>

Use interpolated smoothing where: $\lambda_{unigram} = \lambda_{bigram} = 0.5$.

[End of Question 3]

Q 4(a) [14 Marks]

Given a partial phrase table:

ta	he	0.4	xihuan	likes	0.4
			xihuan	likes to	0.6

youyong	swimming	0.2
youyong	swim	0.8

ta xihuan	he likes	0.2
ta xihuan	He likes to	8.0

xihuan youyong	likes swimming	0.3
xihuan youyong	likes to swim	0.7

Considering we have the following input sentence:

Ta xihuan youyong

Assuming that:

- Only monotone word order is permitted;
- Language model is ignored.

Then we have the following searching diagram:

Questions:

- 1) Give the full texts and calculate the probabilities for all the candidates. Indicate which hypothesis provides the optimal translation for the input sentence.
- 2) Give all the groups of hypotheses which can be recombined and indicate which hypothesis should be selected to represent each group;

- 3) Assume histogram pruning after recombination, where the maximum number of hypotheses in each stack is 2. Indicate which hypotheses will be pruned;
- 4) Assuming threshold pruning after recombination, where the threshold is 0.5, please indicate which hypotheses will be pruned.

Q 4(b) [10 Marks] Provide the fundamental equation of the log-linear model of SMT and list three frequently used features.

Q 4(c) [6 Marks] Explain the terms hypothesis and future cost in the context of SMT decoding.

[End of Question 4]

[END OF EXAM]