2 | Preliminaries

To get started with deep learning, we will need to develop a few basic skills. All machine learning is concerned with extracting information from data. So we will begin by learning the practical skills for storing, manipulating, and preprocessing data.

Moreover, machine learning typically requires working with large datasets, which we can think of as tables, where the rows correspond to examples and the columns correspond to attributes. Linear algebra gives us a powerful set of techniques for working with tabular data. We will not go too far into the weeds but rather focus on the basic of matrix operations and their implementation.

Additionally, deep learning is all about optimization. We have a model with some parameters and we want to find those that fit our data *the best*. Determining which way to move each parameter at each step of an algorithm requires a little bit of calculus, which will be briefly introduced. Fortunately, the autograd package automatically computes differentiation for us, and we will cover it next.

Next, machine learning is concerned with making predictions: what is the likely value of some unknown attribute, given the information that we observe? To reason rigorously under uncertainty we will need to invoke the language of probability.

In the end, the official documentation provides plenty of descriptions and examples that are beyond this book. To conclude the chapter, we will show you how to look up documentation for the needed information.

This book has kept the mathematical content to the minimum necessary to get a proper understanding of deep learning. However, it does not mean that this book is mathematics free. Thus, this chapter provides a rapid introduction to basic and frequently-used mathematics to allow anyone to understand at least *most* of the mathematical content of the book. If you wish to understand *all* of the mathematical content, further reviewing Chapter 17 should be sufficient.

2.1 Data Manipulation

In order to get anything done, we need some way to store and manipulate data. Generally, there are two important things we need to do with data: (i) acquire them; and (ii) process them once they are inside the computer. There is no point in acquiring data without some way to store it, so let's get our hands dirty first by playing with synthetic data. To start, we introduce the *n*-dimensional array (ndarray), MXNet's primary tool for storing and transforming data. In MXNet, ndarray is a class and we call any instance "an ndarray".

If you have worked with NumPy, the most widely-used scientific computing package in Python, then you will find this section familiar. That's by design. We designed MXNet's ndarray to be an

extension to NumPy's ndarray with a few killer features. First, MXNet's ndarray supports asynchronous computation on CPU, GPU, and distributed cloud architectures, whereas NumPy only supports CPU computation. Second, MXNet's ndarray supports automatic differentiation. These properties make MXNet's ndarray suitable for deep learning. Throughout the book, when we say ndarray, we are referring to MXNet's ndarray unless otherwise stated.

2.1.1 Getting Started

In this section, we aim to get you up and running, equipping you with the basic math and numerical computing tools that you will build on as you progress through the book. Do not worry if you struggle to grok some of the mathematical concepts or library functions. The following sections will revisit this material in the context practical examples and it will sink. On the other hand, if you already have some background and want to go deeper into the mathematical content, just skip this section.

To start, we import the np (numpy) and npx (numpy_extension) modules from MXNet. Here, the np module includes functions supported by NumPy, while the npx module contains a set of extensions developed to empower deep learning within a NumPy-like environment. When using ndarray, we almost always invoke the set_np function: this is for compatibility of ndarray processing by other components of MXNet.

```
from mxnet import np, npx
npx.set_np()
```

An ndarray represents a (possibly multi-dimensional) array of numerical values. With one axis, an ndarray corresponds (in math) to a *vector*. With two axes, an ndarray corresponds to a *matrix*. Arrays with more than two axes do not have special mathematical names—we simply call them *tensors*.

To start, we can use arange to create a row vector x containing the first 12 integers starting with 0, though they are created as floats by default. Each of the values in an ndarray is called an *element* of the ndarray. For instance, there are 12 elements in the ndarray x. Unless otherwise specified, a new ndarray will be stored in main memory and designated for CPU-based computation.

```
x = np.arange(12)
x
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])
```

We can access an ndarray's *shape* (the length along each axis) by inspecting its shape property.

```
x.shape
```

```
(12,)
```

If we just want to know the total number of elements in an ndarray, i.e., the product of all of the shape elements, we can inspect its size property. Because we are dealing with a vector here, the single element of its shape is identical to its size.

```
x.size
```

To change the shape of an ndarray without altering either the number of elements or their values, we can invoke the reshape function. For example, we can transform our ndarray, x, from a row vector with shape (12,) to a matrix with shape (3, 4). This new ndarray contains the exact same values, but views them as a matrix organized as 3 rows and 4 columns. To reiterate, although the shape has changed, the elements in x have not. Note that the size is unaltered by reshaping.

```
x = x.reshape(3, 4)
x
```

```
array([[ 0., 1., 2., 3.],
        [ 4., 5., 6., 7.],
        [ 8., 9., 10., 11.]])
```

Reshaping by manually specifying every dimension is unnecessary. If our target shape is a matrix with shape (height, width), then after we know the width, the height is given implicitly. Why should we have to perform the division ourselves? In the example above, to get a matrix with 3 rows, we specified both that it should have 3 rows and 4 columns. Fortunately, ndarray can automatically work out one dimension given the rest. We invoke this capability by placing -1 for the dimension that we would like ndarray to automatically infer. In our case, instead of calling x.reshape(3, 4), we could have equivalently called x.reshape(-1, 4) or x.reshape(3, -1).

The empty method grabs a chunk of memory and hands us back a matrix without bothering to change the value of any of its entries. This is remarkably efficient but we must be careful because the entries might take arbitrary values, including very big ones!

Typically, we will want our matrices initialized either with zeros, ones, some other constants, or numbers randomly sampled from a specific distribution. We can create an ndarray representing a tensor with all elements set to 0 and a shape of (2, 3, 4) as follows:

Similarly, we can create tensors with each element set to 1 as follows:

```
np.ones((2, 3, 4))
```

Often, we want to randomly sample the values for each element in an ndarray from some probability distribution. For example, when we construct arrays to serve as parameters in a neural network, we will typically initialize their values randomly. The following snippet creates an ndarray with shape (3, 4). Each of its elements is randomly sampled from a standard Gaussian (normal) distribution with a mean of 0 and a standard deviation of 1.

We can also specify the exact values for each element in the desired ndarray by supplying a Python list (or list of lists) containing the numerical values. Here, the outermost list corresponds to axis 0, and the inner list to axis 1.

2.1.2 Operations

This book is not about software engineering. Our interests are not limited to simply reading and writing data from/to arrays. We want to perform mathematical operations on those arrays. Some of the simplest and most useful operations are the *elementwise* operations. These apply a standard scalar operation to each element of an array. For functions that take two arrays as inputs, elementwise operations apply some standard binary operator on each pair of corresponding elements from the two arrays. We can create an elementwise function from any function that maps from a scalar to a scalar.

In mathematical notation, we would denote such a *unary* scalar operator (taking one input) by the signature $f: \mathbb{R} \to \mathbb{R}$. This just mean that the function is mapping from any real number (\mathbb{R}) onto another. Likewise, we denote a *binary* scalar operator (taking two real inputs, and yielding one output) by the signature $f: \mathbb{R}, \mathbb{R} \to \mathbb{R}$. Given any two vectors \mathbf{u} and \mathbf{v} of the same shape, and a binary operator f, we can produce a vector $\mathbf{c} = F(\mathbf{u}, \mathbf{v})$ by setting $c_i \leftarrow f(u_i, v_i)$ for all i, where c_i, u_i , and v_i are the ith elements of vectors \mathbf{c} , \mathbf{u} , and \mathbf{v} . Here, we produced the vector-valued $F: \mathbb{R}^d, \mathbb{R}^d \to \mathbb{R}^d$ by *lifting* the scalar function to an elementwise vector operation.

In MXNet, the common standard arithmetic operators (+, -, *, /, and **) have all been *lifted* to elementwise operations for any identically-shaped tensors of arbitrary shape. We can call element-

wise operations on any two tensors of the same shape. In the following example, we use commas to formulate a 5-element tuple, where each element is the result of an elementwise operation.

```
x = np.array([1, 2, 4, 8])
y = np.array([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y # The ** operator is exponentiation
```

```
(array([ 3., 4., 6., 10.]),

array([-1., 0., 2., 6.]),

array([ 2., 4., 8., 16.]),

array([0.5, 1., 2., 4.]),

array([ 1., 4., 16., 64.]))
```

Many more operations can be applied elementwise, including unary operators like exponentiation.

```
np.exp(x)
```

```
array([2.7182817e+00, 7.3890562e+00, 5.4598148e+01, 2.9809580e+03])
```

In addition to elementwise computations, we can also perform linear algebra operations, including vector dot products and matrix multiplication. We will explain the crucial bits of linear algebra (with no assumed prior knowledge) in Section 2.3.

We can also *concatenate* multiple ndarrays together, stacking them end-to-end to form a larger ndarray. We just need to provide a list of ndarrays and tell the system along which axis to concatenate. The example below shows what happens when we concatenate two matrices along rows (axis 0, the first element of the shape) vs. columns (axis 1, the second element of the shape). We can see that, the first output ndarray's axis-0 length (0) is the sum of the two input ndarrays' axis-0 lengths (0); while the second output ndarray's axis-0 length (0) is the sum of the two input ndarrays' axis-0 lengths (0).

```
x = np.arange(12).reshape(3, 4)
y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
np.concatenate([x, y], axis=0), np.concatenate([x, y], axis=1)
```

Sometimes, we want to construct a binary ndarray via *logical statements*. Take x == y as an example. For each position, if x and y are equal at that position, the corresponding entry in the new ndarray takes a value of 1, meaning that the logical statement x == y is true at that position; otherwise that position takes 0.

```
x == y
```

Summing all the elements in the ndarray yields an ndarray with only one element.

```
x.sum()

array(66.)
```

For stylistic convenience, we can write x.sum() as np.sum(x).

2.1.3 Broadcasting Mechanism

In the above section, we saw how to perform elementwise operations on two ndarrays of the same shape. Under certain conditions, even when shapes differ, we can still perform elementwise operations by invoking the *broadcasting mechanism*. These mechanisms work in the following way: First, expand one or both arrays by copying elements appropriately so that after this transformation, the two ndarrays have the same shape. Second, carry out the elementwise operations on the resulting arrays.

In most cases, we broadcast along an axis where an array initially only has length 1, such as in the following example:

```
a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(1, 2)
a, b
```

```
(array([[0.],
        [1.],
        [2.]]), array([[0., 1.]]))
```

Since a and b are 3×1 and 1×2 matrices respectively, their shapes do not match up if we want to add them. We *broadcast* the entries of both matrices into a larger 3×2 matrix as follows: for matrix a it replicates the columns and for matrix b it replicates the rows before adding up both elementwise.

2.1.4 Indexing and Slicing

Just as in any other Python array, elements in an ndarray can be accessed by index. As in any Python array, the first element has index 0 and ranges are specified to include the first but *before* the last element. As in standard Python lists, we can access elements according to their relative position to the end of the list by using negative indices.

Thus, [-1] selects the last element and [1:3] selects the second and the third elements as follows:

Beyond reading, we can also write elements of a matrix by specifying indices.

```
x[1, 2] = 9
x
```

If we want to assign multiple elements the same value, we simply index all of them and then assign them the value. For instance, [0:2, :] accesses the first and second rows, where : takes all the elements along axis 1 (column). While we discussed indexing for matrices, this obviously also works for vectors and for tensors of more than 2 dimensions.

```
x[0:2, :] = 12
x
```

2.1.5 Saving Memory

In the previous example, every time we ran an operation, we allocated new memory to host its results. For example, if we write y = x + y, we will dereference the ndarray that y used to point to and instead point y at the newly allocated memory. In the following example, we demonstrate this with Python's id() function, which gives us the exact address of the referenced object in memory. After running y = y + x, we will find that id(y) points to a different location. That is because Python first evaluates y + x, allocating new memory for the result and then makes y point to this new location in memory.

```
before = id(y)
y = y + x
id(y) == before
```

This might be undesirable for two reasons. First, we do not want to run around allocating memory unnecessarily all the time. In machine learning, we might have hundreds of megabytes of parameters and update all of them multiple times per second. Typically, we will want to perform these updates *in place*. Second, we might point at the same parameters from multiple variables. If we do not update in place, this could cause that discarded memory is not released, and make it possible for parts of our code to inadvertently reference stale parameters.

Fortunately, performing in-place operations in MXNet is easy. We can assign the result of an operation to a previously allocated array with slice notation, e.g., $y[:] = \langle expression \rangle$. To illustrate this concept, we first create a new matrix z with the same shape as another y, using zeros_like to allocate a block of 0 entries.

```
z = np.zeros_like(y)
print('id(z):', id(z))
z[:] = x + y
print('id(z):', id(z))
```

```
id(z): 139970839878544
id(z): 139970839878544
```

If the value of x is not reused in subsequent computations, we can also use x[:] = x + y or x += y to reduce the memory overhead of the operation.

```
before = id(x)
x += y
id(x) == before
```

True

2.1.6 Conversion to Other Python Objects

Converting an MXNet ndarray to a NumPy ndarray, or vice versa, is easy. The converted result does not share memory. This minor inconvenience is actually quite important: when you perform operations on the CPU or on GPUs, you do not want MXNet to halt computation, waiting to see whether the NumPy package of Python might want to be doing something else with the same chunk of memory. The array and asnumpy functions do the trick.

```
a = x.asnumpy()
b = np.array(a)
type(a), type(b)
```

```
(numpy.ndarray, mxnet.numpy.ndarray)
```

To convert a size-1 ndarray to a Python scalar, we can invoke the item function or Python's built-in functions.

```
a = np.array([3.5])
a, a.item(), float(a), int(a)
```

```
(array([3.5]), 3.5, 3.5, 3)
```

Summary

- MXNet's ndarray is an extension to NumPy's ndarray with a few killer advantages that make it suitable for deep learning.
- MXNet's ndarray provides a variety of functionalities including basic mathematics operations, broadcasting, indexing, slicing, memory saving, and conversion to other Python objects.

Exercises

- 1. Run the code in this section. Change the conditional statement x == y in this section to x < y or x > y, and then see what kind of ndarray you can get.
- 2. Replace the two ndarrays that operate by element in the broadcasting mechanism with other shapes, e.g., three dimensional tensors. Is the result the same as expected?

2.2 Data Preprocessing

So far we have introduced a variety of techniques for manipulating data that are already stored in ndarrays. To apply deep learning to solving real-world problems, we often begin with preprocessing raw data, rather than those nicely prepared data in the ndarray format. Among popular data analytic tools in Python, the pandas package is commonly used. Like many other extension packages in the vast ecosystem of Python, pandas can work together with ndarray. So, we will briefly walk through steps for preprocessing raw data with pandas and converting them into the ndarray format. We will cover more data preprocessing techniques in later chapters.

2.2.1 Reading the Dataset

As an example, we begin by creating an artificial dataset that is stored in a csv (comma-separated values) file. Data stored in other formats may be processed in similar ways. We will save the csv file into ../data/house_tiny.csv. The following function makes sure the directory ../data exist. The comment # Saved in the d2l package for later use is a special mark where the following function, class, or import statements are also saved in the d2l package so that we can directly invoke d2l.mkdir_if_not_exist() later.

```
import os

# Saved in the d2l package for later use
def mkdir_if_not_exist(path):
    if not isinstance(path, str):
        path = os.path.join(*path)
    if not os.path.exists(path):
        os.makedirs(path)
```

Write the dataset row by row into a csv file.

```
data_file = '../data/house_tiny.csv'
mkdir_if_not_exist('../data')
with open(data_file, 'w') as f:
    f.write('NumRooms,Alley,Price\n') # Column names
    f.write('NA,Pave,127500\n') # Each row is a data point
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')
```

To load the raw dataset from the created csv file, we import the pandas package and invoke the read_csv function. This dataset has 4 rows and 3 columns, where each row describes the number of rooms ("NumRooms"), the alley type ("Alley"), and the price ("Price") of a house.

```
# If pandas is not installed, just uncomment the following line:
# !pip install pandas
import pandas as pd

data = pd.read_csv(data_file)
print(data)
```

```
      NumRooms
      Alley
      Price

      0
      NaN
      Pave
      127500

      1
      2.0
      NaN
      106000

      2
      4.0
      NaN
      178100

      3
      NaN
      NaN
      140000
```

2.2.2 Handling Missing Data

Note that "NaN" entries are missing values. To handle missing data, typical methods include *imputation* and *deletion*, where imputation replaces missing values with substituted ones, while deletion ignores missing values. Here we will consider imputation.

By integer-location based indexing (iloc), we split data into inputs and outputs, where the former takes the first 2 columns while the later only keeps the last column. For numerical values in inputs that are missing, we replace the "NaN" entries with the mean value of the same column.

```
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)
```

For categorical or discrete values in inputs, we consider "NaN" as a category. Since the "Alley" column only takes 2 types of categorical values "Pave" and "NaN", pandas can automatically convert this column to 2 columns "Alley_Pave" and "Alley_nan". A row whose alley type is "Pave" will set values of "Alley_Pave" and "Alley_nan" to 1 and 0. A row with a missing alley type will set their values to 0 and 1.

```
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
```

```
NumRooms Alley_Pave Alley_nan
         1
0
   3.0
   2.0
            0
                   1
1
2
    4.0
            0
                   1
3
    3.0
            0
                   1
```

2.2.3 Conversion to the ndarray Format

Now that all the entries in inputs and outputs are numerical, they can be converted to the ndarray format. Once data are in this format, they can be further manipulated with those ndarray functionalities that we have introduced in Section 2.1.

```
from mxnet import np

X, y = np.array(inputs.values), np.array(outputs.values)
X, y
```

Summary

- Like many other extension packages in the vast ecosystem of Python, pandas can work together with ndarray.
- Imputation and deletion can be used to handle missing data.

Exercises

Create a raw dataset with more rows and columns.

- 1. Delete the column with the most missing values.
- 2. Convert the preprocessed dataset to the ndarray format.

2.3 Linear Algebra

Now that you can store and manipulate data, let's briefly review the subset of basic linear algebra that you will need to understand and implement most of models covered in this book. Below, we introduce the basic mathematical objects, arithmetic, and operations in linear algebra, expressing each of them through mathematical notation and the corresponding implementation in code.

2.3.1 Scalars

If you never studied linear algebra or machine learning, then your past experience with math probably consisted of thinking about one number at a time. And, if you ever balanced a checkbook or even paid for dinner at a restaurant then you already know how to do basic things like adding and multiplying pairs of numbers. For example, the temperature in Palo Alto is 52 degrees Fahrenheit. Formally, we call values consisting of just one numerical quantity *scalars*. If you wanted to convert this value to Celsius (the metric system's more sensible temperature scale), you would evaluate the expression $c = \frac{5}{9}(f - 32)$, setting f to f to f to f and f are called *variables* and they represent unknown scalar values.

In this book, we adopt the mathematical notation where scalar variables are denoted by ordinary lower-cased letters (e.g., x, y, and z). We denote the space of all (continuous) *real-valued* scalars by \mathbb{R} . For expedience, we will punt on rigorous definitions of what precisely *space* is, but just remember for now that the expression $x \in \mathbb{R}$ is a formal way to say that x is a real-valued scalar. The symbol \in can be pronounced "in" and simply denotes membership in a set. Analogously, we could write $x, y \in \{0, 1\}$ to state that x and y are numbers whose value can only be 0 or 1.

In MXNet code, a scalar is represented by an ndarray with just one element. In the next snippet, we instantiate two scalars and perform some familiar arithmetic operations with them, namely addition, multiplication, division, and exponentiation.

```
from mxnet import np, npx
npx.set_np()

x = np.array(3.0)
y = np.array(2.0)

x + y, x * y, x / y, x ** y
```

```
(array(5.), array(6.), array(1.5), array(9.))
```

2.3.2 Vectors

You can think of a vector as simply a list of scalar values. We call these values the *elements* (*entries* or *components*) of the vector. When our vectors represent examples from our dataset, their values hold some real-world significance. For example, if we were training a model to predict the risk that a loan defaults, we might associate each applicant with a vector whose components correspond to their income, length of employment, number of previous defaults, and other factors. If we were studying the risk of heart attacks hospital patients potentially face, we might represent each patient by a vector whose components capture their most recent vital signs, cholesterol levels, minutes of exercise per day, etc. In math notation, we will usually denote vectors as bold-faced, lower-cased letters (e.g., x, y, and z).

In MXNet, we work with vectors via 1-dimensional ndarrays. In general ndarrays can have arbitrary lengths, subject to the memory limits of your machine.

```
x = np.arange(4)
x
```

```
array([0., 1., 2., 3.])
```

We can refer to any element of a vector by using a subscript. For example, we can refer to the i^{th} element of \mathbf{x} by x_i . Note that the element x_i is a scalar, so we do not bold-face the font when referring to it. Extensive literature considers column vectors to be the default orientation of vectors, so does this book. In math, a vector \mathbf{x} can be written as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \tag{2.3.1}$$

where x_1, \ldots, x_n are elements of the vector. In code, we access any element by indexing into the ndarray.

```
x[3]
```

```
array(3.)
```

Length, Dimensionality, and Shape

Let's revisit some concepts from Section 2.1. A vector is just an array of numbers. And just as every array has a length, so does every vector. In math notation, if we want to say that a vector \mathbf{x} consists of n real-valued scalars, we can express this as $\mathbf{x} \in \mathbb{R}^n$. The length of a vector is commonly called the *dimension* of the vector.

As with an ordinary Python array, we can access the length of an ndarray by calling Python's built-in len() function.

2.3. Linear Algebra 55

```
len(x)
```

4

When an ndarray represents a vector (with precisely one axis), we can also access its length via the . shape attribute. The shape is a tuple that lists the length (dimensionality) along each axis of the ndarray. For ndarrays with just one axis, the shape has just one element.

```
x.shape
```

```
(4,)
```

Note that the word "dimension" tends to get overloaded in these contexts and this tends to confuse people. To clarify, we use the dimensionality of a *vector* or an *axis* to refer to its length, i.e., the number of elements of a vector or an axis. However, we use the dimensionality of an ndarray to refer to the number of axes that an ndarray has. In this sense, the dimensionality of some axis of an ndarray will be the length of that axis.

2.3.3 Matrices

Just as vectors generalize scalars from order 0 to order 1, matrices generalize vectors from order 1 to order 2. Matrices, which we will typically denote with bold-faced, capital letters (e.g., **X**, **Y**, and **Z**), are represented in code as ndarrays with 2 axes.

In math notation, we use $\mathbf{A} \in \mathbb{R}^{m \times n}$ to express that the matrix \mathbf{A} consists of m rows and n columns of real-valued scalars. Visually, we can illustrate any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as a table, where each element a_{ij} belongs to the i^{th} row and j^{th} column:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} . \tag{2.3.2}$$

For any $A \in \mathbb{R}^{m \times n}$, the shape of A is (m, n) or $m \times n$. Specifically, when a matrix has the same number of rows and columns, its shape becomes a square; thus, it is called a *square matrix*.

We can create an $m \times n$ matrix in MXNet by specifying a shape with two components m and n when calling any of our favorite functions for instantiating an ndarray.

```
A = np.arange(20).reshape(5, 4)
A
```

We can access the scalar element a_{ij} of a matrix **A** in (2.3.2) by specifying the indices for the row (i) and column (j), such as $[\mathbf{A}]_{ij}$. When the scalar elements of a matrix **A**, such as in (2.3.2), are not

given, we may simply use the lower-case letter of the matrix **A** with the index subscript, a_{ij} , to refer to $[\mathbf{A}]_{ij}$. To keep notation simple, commas are inserted to separate indices only when necessary, such as $a_{2,3j}$ and $[\mathbf{A}]_{2i-1,3}$.

Sometimes, we want to flip the axes. When we exchange a matrix's rows and columns, the result is called the *transpose* of the matrix. Formally, we signify a matrix **A**'s transpose by \mathbf{A}^{\top} and if $\mathbf{B} = \mathbf{A}^{\top}$, then $b_{ij} = a_{ji}$ for any i and j. Thus, the transpose of **A** in (2.3.2) is a $n \times m$ matrix:

$$\mathbf{A}^{\top} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} . \tag{2.3.3}$$

In code, we access a matrix's transpose via the T attribute.

Α.Τ

```
array([[ 0., 4., 8., 12., 16.],

[ 1., 5., 9., 13., 17.],

[ 2., 6., 10., 14., 18.],

[ 3., 7., 11., 15., 19.]])
```

As a special type of the square matrix, a symmetric matrix **A** is equal to its transpose: $\mathbf{A} = \mathbf{A}^{\top}$.

```
B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
```

```
B == B.T
```

Matrices are useful data structures: they allow us to organize data that have different modalities of variation. For example, rows in our matrix might correspond to different houses (data points), while columns might correspond to different attributes. This should sound familiar if you have ever used spreadsheet software or have read Section 2.2. Thus, although the default orientation of a single vector is a column vector, in a matrix that represents a tabular dataset, it is more conventional to treat each data point as a row vector in the matrix. And, as we will see in later chapters, this convention will enable common deep learning practices. For example, along the outermost axis of an ndarray, we can access or enumerate minibatches of data points, or just data points if no minibatch exists.

2.3. Linear Algebra 57

2.3.4 Tensors

Just as vectors generalize scalars, and matrices generalize vectors, we can build data structures with even more axes. Tensors give us a generic way of describing ndarrays with an arbitrary number of axes. Vectors, for example, are first-order tensors, and matrices are second-order tensors. Tensors are denoted with capital letters of a special font face (e.g., X, Y, and Z) and their indexing mechanism (e.g., x_{ijk} and $[X]_{1,2i-1,3}$) is similar to that of matrices.

Tensors will become more important when we start working with images, which arrive as ndarrays with 3 axes corresponding to the height, width, and a *channel* axis for stacking the color channels (red, green, and blue). For now, we will skip over higher order tensors and focus on the basics.

```
X = np.arange(24).reshape(2, 3, 4)
X
```

2.3.5 Basic Properties of Tensor Arithmetic

Scalars, vectors, matrices, and tensors of an arbitrary number of axes have some nice properties that often come in handy. For example, you might have noticed from the definition of an elementwise operation that any elementwise unary operation does not change the shape of its operand. Similarly, given any two tensors with the same shape, the result of any binary elementwise operation will be a tensor of that same shape. For example, adding two matrices of the same shape performs elementwise addition over these two matrices.

```
A = np.arange(20).reshape(5, 4)
B = A.copy() # Assign a copy of A to B by allocating new memory
A, A + B
```

```
(array([[ 0., 1., 2., 3.],
        [ 4., 5., 6., 7.],
        [ 8., 9., 10., 11.],
        [12., 13., 14., 15.],
        [16., 17., 18., 19.]]), array([[ 0., 2., 4., 6.],
        [ 8., 10., 12., 14.],
        [16., 18., 20., 22.],
        [24., 26., 28., 30.],
        [32., 34., 36., 38.]]))
```

Specifically, elementwise multiplication of two matrices is called their *Hadamard product* (math notation \odot). Consider matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ whose element of row i and column j is b_{ij} . The Hadamard

product of matrices A (defined in (2.3.2)) and B

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} & \dots & a_{1n}b_{1n} \\ a_{21}b_{21} & a_{22}b_{22} & \dots & a_{2n}b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & a_{m2}b_{m2} & \dots & a_{mn}b_{mn} \end{bmatrix}.$$
 (2.3.4)

```
A * B
```

Multiplying or adding a tensor by a scalar also does not change the shape of the tensor, where each element of the operand tensor will be added or multiplied by the scalar.

```
a = 2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
```

2.3.6 Reduction

One useful operation that we can perform with arbitrary tensors is to calculate the sum of their elements. In mathematical notation, we express sums using the \sum symbol. To express the sum of the elements in a vector \mathbf{x} of length d, we write $\sum_{i=1}^d x_i$. In code, we can just call the sum function.

```
x = np.arange(4)
x, x.sum()
```

```
(array([0., 1., 2., 3.]), array(6.))
```

We can express sums over the elements of tensors of arbitrary shape. For example, the sum of the elements of an $m \times n$ matrix **A** could be written $\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$.

```
A.shape, A.sum()
((5, 4), array(190.))
```

59

By default, invoking the sum function *reduces* a tensor along all its axes to a scalar. We can also specify the axes along which the tensor is reduced via summation. Take matrices as an example. To reduce the row dimension (axis 0) by summing up elements of all the rows, we specify axis=0 when invoking sum. Since the input matrix reduces along axis 0 to generate the output vector, the dimension of axis 0 of the input is lost in the output shape.

```
A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
```

```
(array([40., 45., 50., 55.]), (4,))
```

Specifying axis=1 will reduce the column dimension (axis 1) by summing up elements of all the columns. Thus, the dimension of axis 1 of the input is lost in the output shape.

```
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
```

```
(array([ 6., 22., 38., 54., 70.]), (5,))
```

Reducing a matrix along both rows and columns via summation is equivalent to summing up all the elements of the matrix.

```
A.sum(axis=[0, 1]) # Same as A.sum()
```

```
array(190.)
```

A related quantity is the *mean*, which is also called the *average*. We calculate the mean by dividing the sum by the total number of elements. In code, we could just call mean on tensors of arbitrary shape.

```
A.mean(), A.sum() / A.size
```

```
(array(9.5), array(9.5))
```

Like sum, mean can also reduce a tensor along the specified axes.

```
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
```

```
(array([ 8., 9., 10., 11.]), array([ 8., 9., 10., 11.]))
```

Non-Reduction Sum

However, sometimes it can be useful to keep the number of axes unchanged when invoking sum or mean by setting keepdims=True.

For instance, since sum_A still keeps its 2 axes after summing each row, we can divide A by sum_A with broadcasting.

If we want to calculate the cumulative sum of elements of A along some axis, say axis=0 (row by row), we can call the cumsum function. This function will not reduce the input tensor along any axis.

2.3.7 Dot Products

So far, we have only performed elementwise operations, sums, and averages. And if this was all we could do, linear algebra probably would not deserve its own section. However, one of the most fundamental operations is the dot product. Given two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, their *dot product* $\mathbf{x}^\top \mathbf{y}$ (or $\langle \mathbf{x}, \mathbf{y} \rangle$) is a sum over the products of the elements at the same position: $\mathbf{x}^\top \mathbf{y} = \sum_{i=1}^d x_i y_i$.

```
y = np.ones(4)
x, y, np.dot(x, y)

(array([0., 1., 2., 3.]), array([1., 1., 1.]), array(6.))
```

2.3. Linear Algebra 61

Note that we can express the dot product of two vectors equivalently by performing an element-wise multiplication and then a sum:

```
np.sum(x * y)
```

array(6.)

Dot products are useful in a wide range of contexts. For example, given some set of values, denoted by a vector $\mathbf{x} \in \mathbb{R}^d$ and a set of weights denoted by $\mathbf{w} \in \mathbb{R}^d$, the weighted sum of the values in \mathbf{x} according to the weights \mathbf{w} could be expressed as the dot product $\mathbf{x}^\top \mathbf{w}$. When the weights are non-negative and sum to one (i.e., $\left(\sum_{i=1}^d w_i = 1\right)$), the dot product expresses a *weighted average*. After normalizing two vectors to have the unit length, the dot products express the cosine of the angle between them. We will formally introduce this notion of *length* later in this section.

2.3.8 Matrix-Vector Products

Now that we know how to calculate dot products, we can begin to understand *matrix-vector products*. Recall the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and the vector $\mathbf{x} \in \mathbb{R}^n$ defined and visualized in (2.3.2) and (2.3.1) respectively. Let's start off by visualizing the matrix \mathbf{A} in terms of its row vectors

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^\top \\ \mathbf{a}_2^\top \\ \vdots \\ \mathbf{a}_m^\top \end{bmatrix}, \tag{2.3.5}$$

where each $\mathbf{a}_i^{\top} \in \mathbb{R}^n$ is a row vector representing the i^{th} row of the matrix \mathbf{A} . The matrix-vector product $\mathbf{A}\mathbf{x}$ is simply a column vector of length m, whose i^{th} element is the dot product $\mathbf{a}_i^{\top}\mathbf{x}$:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \\ \mathbf{a}_{m}^{\top} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{x} \\ \mathbf{a}_{2}^{\top} \mathbf{x} \\ \vdots \\ \mathbf{a}_{m}^{\top} \mathbf{x} \end{bmatrix}. \tag{2.3.6}$$

We can think of multiplication by a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as a transformation that projects vectors from \mathbb{R}^n to \mathbb{R}^m . These transformations turn out to be remarkably useful. For example, we can represent rotations as multiplications by a square matrix. As we will see in subsequent chapters, we can also use matrix-vector products to describe the most intensive calculations required when computing each layer in a neural network given the values of the previous layer.

Expressing matrix-vector products in code with ndarrays, we use the same dot function as for dot products. When we call np.dot(A, x) with a matrix A and a vector x, the matrix-vector product is performed. Note that the column dimension of A (its length along axis 1) must be the same as the dimension of x (its length).

A.shape, x.shape, np.dot(A, x)

2.3.9 Matrix-Matrix Multiplication

If you have gotten the hang of dot products and matrix-vector products, then *matrix-matrix multi*plication should be straightforward.

Say that we have two matrices $\mathbf{A} \in \mathbb{R}^{n \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times m}$:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{km} \end{bmatrix}.$$
(2.3.7)

Denote by $\mathbf{a}_i^{\top} \in \mathbb{R}^k$ the row vector representing the i^{th} row of the matrix \mathbf{A} , and let $\mathbf{b}_j \in \mathbb{R}^k$ be the column vector from the j^{th} column of the matrix \mathbf{B} . To produce the matrix product $\mathbf{C} = \mathbf{A}\mathbf{B}$, it is easiest to think of \mathbf{A} in terms of its row vectors and \mathbf{B} in terms of its column vectors:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^\top \\ \mathbf{a}_2^\top \\ \vdots \\ \mathbf{a}_n^\top \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_m \end{bmatrix}. \tag{2.3.8}$$

Then the matrix product $\mathbf{C} \in \mathbb{R}^{n \times m}$ is produced as we simply compute each element c_{ij} as the dot product $\mathbf{a}_i^{\top} \mathbf{b}_i$:

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \\ \mathbf{a}_{n}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{m} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{\top}\mathbf{b}_{1} & \mathbf{a}_{1}^{\top}\mathbf{b}_{2} & \cdots & \mathbf{a}_{1}^{\top}\mathbf{b}_{m} \\ \mathbf{a}_{2}^{\top}\mathbf{b}_{1} & \mathbf{a}_{2}^{\top}\mathbf{b}_{2} & \cdots & \mathbf{a}_{2}^{\top}\mathbf{b}_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n}^{\top}\mathbf{b}_{1} & \mathbf{a}_{n}^{\top}\mathbf{b}_{2} & \cdots & \mathbf{a}_{n}^{\top}\mathbf{b}_{m} \end{bmatrix}.$$
(2.3.9)

We can think of the matrix-matrix multiplication \mathbf{AB} as simply performing m matrix-vector products and stitching the results together to form an $n \times m$ matrix. Just as with ordinary dot products and matrix-vector products, we can compute matrix-matrix multiplication by using the dot function. In the following snippet, we perform matrix multiplication on A and B. Here, A is a matrix with 5 rows and 4 columns, and B is a matrix with 4 rows and 3 columns. After multiplication, we obtain a matrix with 5 rows and 3 columns.

```
B = np.ones(shape=(4, 3))
np.dot(A, B)
```

Matrix-matrix multiplication can be simply called *matrix multiplication*, and should not be confused with the Hadamard product.

2.3. Linear Algebra 63

2.3.10 Norms

Some of the most useful operators in linear algebra are *norms*. Informally, the norm of a vector tells us how *big* a vector is. The notion of *size* under consideration here concerns not dimensionality but rather the magnitude of the components.

In linear algebra, a vector norm is a function f that maps a vector to a scalar, satisfying a handful of properties. Given any vector \mathbf{x} , the first property says that if we scale all the elements of a vector by a constant factor α , its norm also scales by the *absolute value* of the same constant factor:

$$f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}). \tag{2.3.10}$$

The second property is the familiar triangle inequality:

$$f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y}). \tag{2.3.11}$$

The third property simply says that the norm must be non-negative:

$$f(\mathbf{x}) \ge 0. \tag{2.3.12}$$

That makes sense, as in most contexts the smallest *size* for anything is 0. The final property requires that the smallest norm is achieved and only achieved by a vector consisting of all zeros.

$$\forall i, [\mathbf{x}]_i = 0 \Leftrightarrow f(\mathbf{x}) = 0. \tag{2.3.13}$$

You might notice that norms sound a lot like measures of distance. And if you remember Euclidean distances (think Pythagoras' theorem) from grade school, then the concepts of non-negativity and the triangle inequality might ring a bell. In fact, the Euclidean distance is a norm: specifically it is the ℓ_2 norm. Suppose that the elements in the n-dimensional vector \mathbf{x} are x_1, \ldots, x_n . The ℓ_2 norm of \mathbf{x} is the square root of the sum of the squares of the vector elements:

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2},$$
 (2.3.14)

where the subscript 2 is often omitted in ℓ_2 norms, i.e., $\|\mathbf{x}\|$ is equivalent to $\|\mathbf{x}\|_2$. In code, we can calculate the ℓ_2 norm of a vector by calling linalg.norm.

```
u = np.array([3, -4])
np.linalg.norm(u)
```

array(5.)

In deep learning, we work more often with the squared ℓ_2 norm. You will also frequently encounter the ℓ_1 *norm*, which is expressed as the sum of the absolute values of the vector elements:

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|. \tag{2.3.15}$$

As compared with the ℓ_2 norm, it is less influenced by outliers. To calculate the ℓ_1 norm, we compose the absolute value function with a sum over the elements.

```
np.abs(u).sum()
```

array(7.)

Both the ℓ_2 norm and the ℓ_1 norm are special cases of the more general ℓ_p norm:

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$
 (2.3.16)

Analogous to ℓ_2 norms of vectors, the *Frobenius norm* of a matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ is the square root of the sum of the squares of the matrix elements:

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2}.$$
 (2.3.17)

The Frobenius norm satisfies all the properties of vector norms. It behaves as if it were an ℓ_2 norm of a matrix-shaped vector. Invoking linalg.norm will calculate the Frobenius norm of a matrix.

```
np.linalg.norm(np.ones((4, 9)))
```

array(6.)

Norms and Objectives

While we do not want to get too far ahead of ourselves, we can plant some intuition already about why these concepts are useful. In deep learning, we are often trying to solve optimization problems: *maximize* the probability assigned to observed data; *minimize* the distance between predictions and the ground-truth observations. Assign vector representations to items (like words, products, or news articles) such that the distance between similar items is minimized, and the distance between dissimilar items is maximized. Oftentimes, the objectives, perhaps the most important components of deep learning algorithms (besides the data), are expressed as norms.

2.3.11 More on Linear Algebra

In just this section, we have taught you all the linear algebra that you will need to understand a remarkable chunk of modern deep learning. There is a lot more to linear algebra and a lot of that mathematics is useful for machine learning. For example, matrices can be decomposed into factors, and these decompositions can reveal low-dimensional structure in real-world datasets. There are entire subfields of machine learning that focus on using matrix decompositions and their generalizations to high-order tensors to discover structure in datasets and solve prediction problems. But this book focuses on deep learning. And we believe you will be much more inclined to learn more mathematics once you have gotten your hands dirty deploying useful machine learning models on real datasets. So while we reserve the right to introduce more mathematics much later on, we will wrap up this section here.

If you are eager to learn more about linear algebra, you may refer to either Section 17.1 or other excellent resources (Strang, 1993; Kolter, 2008; Petersen et al., 2008).

2.3. Linear Algebra

65

Summary

- Scalars, vectors, matrices, and tensors are basic mathematical objects in linear algebra.
- Vectors generalize scalars, and matrices generalize vectors.
- In the ndarray representation, scalars, vectors, matrices, and tensors have 0, 1, 2, and an arbitrary number of axes, respectively.
- A tensor can be reduced along the specified axes by sum and mean.
- Elementwise multiplication of two matrices is called their Hadamard product. It is different from matrix multiplication.
- In deep learning, we often work with norms such as the ℓ_1 norm, the ℓ_2 norm, and the Frobenius norm.
- We can perform a variety of operations over scalars, vectors, matrices, and tensors with ndarray functions.

Exercises

- 1. Prove that the transpose of a matrix **A**'s transpose is **A**: $(\mathbf{A}^{\top})^{\top} = \mathbf{A}$.
- 2. Given two matrices **A** and **B**, show that the sum of transposes is equal to the transpose of a sum: $\mathbf{A}^{\top} + \mathbf{B}^{\top} = (\mathbf{A} + \mathbf{B})^{\top}$.
- 3. Given any square matrix **A**, is $\mathbf{A} + \mathbf{A}^{\top}$ always symmetric? Why?
- 4. We defined the tensor X of shape (2, 3, 4) in this section. What is the output of len(X)?
- 5. For a tensor X of arbitrary shape, does len(X) always correspond to the length of a certain axis of X? What is that axis?
- 6. Run A / A. sum(axis=1) and see what happens. Can you analyze the reason?
- 7. When traveling between two points in Manhattan, what is the distance that you need to cover in terms of the coordinates, i.e., in terms of avenues and streets? Can you travel diagonally?
- 8. Consider a tensor with shape (2, 3, 4). What are the shapes of the summation outputs along axis 0, 1, and 2?
- 9. Feed a tensor with 3 or more axes to the linalg.norm function and observe its output. What does this function compute for ndarrays of arbitrary shape?

2.4 Calculus

Finding the area of a polygon had remained mysterious until at least 2,500 years ago, when ancient Greeks divided a polygon into triangles and summed their areas. To find the area of curved shapes, such as a circle, ancient Greeks inscribed polygons in such shapes. As shown in Fig. 2.4.1, an inscribed polygon with more sides of equal length better approximates the circle. This process is also known as the *method of exhaustion*.

Fig. 2.4.1: Find the area of a circle with the method of exhaustion.

In fact, the method of exhaustion is where *integral calculus* (will be described in Section 17.5) originates from. More than 2,000 years later, the other branch of calculus, *differential calculus*, was invented. Among the most critical applications of differential calculus, optimization problems consider how to do something *the best*. As discussed in Section 2.3.10, such problems are ubiquitous in deep learning.

In deep learning, we *train* models, updating them successively so that they get better and better as they see more and more data. Usually, getting better means minimizing a *loss function*, a score that answers the question "how *bad* is our model?" This question is more subtle than it appears. Ultimately, what we really care about is producing a model that performs well on data that we have never seen before. But we can only fit the model to data that we can actually see. Thus we can decompose the task of fitting models into two key concerns: i) *optimization*: the process of fitting our models to observed data; ii) *generalization*: the mathematical principles and practitioners' wisdom that guide as to how to produce models whose validity extends beyond the exact set of data points used to train them.

To help you understand optimization problems and methods in later chapters, here we give a very brief primer on differential calculus that is commonly used in deep learning.

2.4.1 Derivatives and Differentiation

We begin by addressing the calculation of derivatives, a crucial step in nearly all deep learning optimization algorithms. In deep learning, we typically choose loss functions that are differentiable with respect to our model's parameters. Put simply, this means that for each parameter, we can determine how rapidly the loss would increase or decrease, were we to *increase* or *decrease* that parameter by an infinitesimally small amount.

Suppose that we have a function $f : \mathbb{R} \to \mathbb{R}$, whose input and output are both scalars. The *derivative* of f is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$
(2.4.1)

if this limit exists. If f'(a) exists, f is said to be differentiable at a. If f is differentiable at every number of an interval, then this function is differentiable on this interval. We can interpret the

2.4. Calculus 67

derivative f'(x) in (2.4.1) as the *instantaneous* rate of change of f(x) with respect to x. The so-called instantaneous rate of change is based on the variation h in x, which approaches 0.

To illustrate derivatives, let's experiment with an example. Define $u = f(x) = 3x^2 - 4x$.

```
%matplotlib inline
import d21
from IPython import display
from mxnet import np, npx
npx.set_np()

def f(x):
    return 3 * x ** 2 - 4 * x
```

By setting x = 1 and letting h approach 0, the numerical result of $\frac{f(x+h)-f(x)}{h}$ in (2.4.1) approaches 2. Though this experiment is not a mathematical proof, we will see later that the derivative u' is 2 when x = 1.

```
def numerical_lim(f, x, h):
    return (f(x + h) - f(x)) / h

h = 0.1
for i in range(5):
    print('h=%.5f, numerical limit=%.5f' % (h, numerical_lim(f, 1, h)))
    h *= 0.1
```

```
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003
```

Let's familiarize ourselves with a few equivalent notations for derivatives. Given y = f(x), where x and y are the independent variable and the dependent variable of the function f, respectively. The following expressions are equivalent:

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x),$$
 (2.4.2)

where symbols $\frac{d}{dx}$ and D are differentiation operators that indicate operation of differentiation. We can use the following rules to differentiate common functions:

- DC = 0 (C is a constant),
- $Dx^n = nx^{n-1}$ (the power rule, n is any real number),
- $De^x = e^x$,
- $D \ln(x) = 1/x$.

To differentiate a function that is formed from a few simpler functions such as the above common functions, the following rules can be handy for us. Suppose that functions f and g are both differentiable and G is a constant, we have the *constant multiple rule*

$$\frac{d}{dx}[Cf(x)] = C\frac{d}{dx}f(x), \tag{2.4.3}$$

the sum rule

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x), \tag{2.4.4}$$

the product rule

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)],$$
(2.4.5)

and the *quotient rule*

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$
 (2.4.6)

Now we can apply a few of the above rules to find $u' = f'(x) = 3\frac{d}{dx}x^2 - 4\frac{d}{dx}x = 6x - 4$. Thus, by setting x = 1, we have u' = 2: this is supported by our earlier experiment in this section where the numerical result approaches 2. This derivative is also the slope of the tangent line to the curve u = f(x) when x = 1.

To visualize such an interpretation of derivatives, we will use matplotlib, a popular plotting library in Python. To configure properties of the figures produced by matplotlib, we need to define a few functions. In the following, the use_svg_display function specifies the matplotlib package to output the svg figures for sharper images.

```
# Saved in the d2l package for later use
def use_svg_display():
    """Use the svg format to display a plot in Jupyter."""
    display.set_matplotlib_formats('svg')
```

We define the set_figsize function to specify the figure sizes. Note that here we directly use d21. plt since the import statement from matplotlib import pyplot as plt has been marked for being saved in the d21 package in the preface.

```
# Saved in the d2l package for later use
def set_figsize(figsize=(3.5, 2.5)):
    """Set the figure size for matplotlib."""
    use_svg_display()
    d2l.plt.rcParams['figure.figsize'] = figsize
```

The following set_axes function sets properties of axes of figures produced by matplotlib.

```
# Saved in the d2l package for later use
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    """Set the axes for matplotlib."""
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()
```

With these 3 functions for figure configurations, we define the plot function to plot multiple curves succinctly since we will need to visualize many curves throughout the book.

2.4. Calculus 69

```
# Saved in the d2l package for later use
def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None,
         ylim=None, xscale='linear', yscale='linear',
         fmts=['-', 'm--', 'g-.', 'r:'], figsize=(3.5, 2.5), axes=None):
    """Plot data points."""
    d2l.set_figsize(figsize)
    axes = axes if axes else d2l.plt.gca()
    # Return True if X (ndarray or list) has 1 axis
    def has_one_axis(X):
        return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
                and not hasattr(X[0], "__len__"))
    if has_one_axis(X):
       X = [X]
    if Y is None:
       X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
       Y = [Y]
    if len(X) != len(Y):
       X = X * len(Y)
    axes.cla()
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt)
       else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
```

Now we can plot the function u = f(x) and its tangent line y = 2x - 3 at x = 1, where the coefficient 2 is the slope of the tangent line.

```
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
```


2.4.2 Partial Derivatives

So far we have dealt with the differentiation of functions of just one variable. In deep learning, functions often depend on *many* variables. Thus, we need to extend the ideas of differentiation to these *multivariate* functions.

Let $y = f(x_1, x_2, ..., x_n)$ be a function with n variables. The partial derivative of y with respect to its ith parameter x_i is

$$\frac{\partial y}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}.$$
 (2.4.7)

To calculate $\frac{\partial y}{\partial x_i}$, we can simply treat $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ as constants and calculate the derivative of y with respect to x_i . For notation of partial derivatives, the following are equivalent:

$$\frac{\partial y}{\partial x_i} = \frac{\partial f}{\partial x_i} = f_{x_i} = f_i = D_i f = D_{x_i} f. \tag{2.4.8}$$

2.4.3 Gradients

We can concatenate partial derivatives of a multivariate function with respect to all its variables to obtain the *gradient* vector of the function. Suppose that the input of function $f: \mathbb{R}^n \to \mathbb{R}$ is an n-dimensional vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^\top$ and the output is a scalar. The gradient of the function $f(\mathbf{x})$ with respect to \mathbf{x} is a vector of n partial derivatives:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n} \right]^{\top}, \tag{2.4.9}$$

where $\nabla_{\mathbf{x}} f(\mathbf{x})$ is often replaced by $\nabla f(\mathbf{x})$ when there is no ambiguity.

Let \mathbf{x} be an n-dimensional vector, the following rules are often used when differentiating multivariate functions:

- For all $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\nabla_{\mathbf{X}} \mathbf{A} \mathbf{X} = \mathbf{A}^{\top}$,
- For all $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\nabla_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} = \mathbf{A}$,
- For all $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\nabla_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$,
- $\nabla_{\mathbf{x}} \|\mathbf{x}\|^2 = \nabla_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{x} = 2\mathbf{x}$.

Similarly, for any matrix **X**, we have $\nabla_{\mathbf{X}} \|\mathbf{X}\|_F^2 = 2\mathbf{X}$. As we will see later, gradients are useful for designing optimization algorithms in deep learning.

2.4.4 Chain Rule

However, such gradients can be hard to find. This is because multivariate functions in deep learning are often *composite*, so we may not apply any of the aforementioned rules to differentiate these functions. Fortunately, the *chain rule* enables us to differentiate composite functions.

Let's first consider functions of a single variable. Suppose that functions y = f(u) and u = g(x) are both differentiable, then the chain rule states that

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}. (2.4.10)$$

2.4. Calculus 71

Now let's turn our attention to a more general scenario where functions have an arbitrary number of variables. Suppose that the differentiable function y has variables u_1, u_2, \ldots, u_m , where each differentiable function u_i has variables x_1, x_2, \ldots, x_n . Note that y is a function of x_1, x_2, \ldots, x_n . Then the chain rule gives

$$\frac{dy}{dx_i} = \frac{dy}{du_1}\frac{du_1}{dx_i} + \frac{dy}{du_2}\frac{du_2}{dx_i} + \dots + \frac{dy}{du_m}\frac{du_m}{dx_i}$$
(2.4.11)

for any i = 1, 2, ..., n.

Summary

- Differential calculus and integral calculus are two branches of calculus, where the former can be applied to the ubiquitous optimization problems in deep learning.
- A derivative can be interpreted as the instantaneous rate of change of a function with respect to its variable. It is also the slope of the tangent line to the curve of the function.
- A gradient is a vector whose components are the partial derivatives of a multivariate function with respect to all its variables.
- The chain rule enables us to differentiate composite functions.

Exercises

- 1. Plot the function $y = f(x) = x^3 \frac{1}{x}$ and its tangent line when x = 1.
- 2. Find the gradient of the function $f(\mathbf{x}) = 3x_1^2 + 5e^{x_2}$.
- 3. What is the gradient of the function $f(\mathbf{x}) = ||\mathbf{x}||_2$?
- 4. Can you write out the chain rule for the case where u = f(x, y, z) and x = x(a, b), y = y(a, b), and z = z(a, b)?

2.5 Automatic Differentiation

As we have explained in Section 2.4, differentiation is a crucial step in nearly all deep learning optimization algorithms. While the calculations for taking these derivatives are straightforward, requiring only some basic calculus, for complex models, working out the updates by hand can be a pain (and often error-prone).

The autograd package expedites this work by automatically calculating derivatives, i.e., *automatic differentiation*. And while many other libraries require that we compile a symbolic graph to take automatic derivatives, autograd allows us to take derivatives while writing ordinary imperative code. Every time we pass data through our model, autograd builds a graph on the fly, tracking which data combined through which operations to produce the output. This graph enables autograd to subsequently backpropagate gradients on command. Here, *backpropagate* simply means

to trace through the *computational graph*, filling in the partial derivatives with respect to each parameter.

```
from mxnet import autograd, np, npx
npx.set_np()
```

2.5.1 A Simple Example

As a toy example, say that we are interested in differentiating the function $y = 2\mathbf{x}^{\top}\mathbf{x}$ with respect to the column vector \mathbf{x} . To start, let's create the variable x and assign it an initial value.

```
x = np.arange(4)
x
array([0., 1., 2., 3.])
```

Note that before we even calculate the gradient of y with respect to \mathbf{x} , we will need a place to store it. It is important that we do not allocate new memory every time we take a derivative with respect to a parameter because we will often update the same parameters thousands or millions of times and could quickly run out of memory.

Note also that a gradient of a scalar-valued function with respect to a vector \mathbf{x} is itself vector-valued and has the same shape as \mathbf{x} . Thus it is intuitive that in code, we will access a gradient taken with respect to \mathbf{x} as an attribute of the ndarray \mathbf{x} itself. We allocate memory for an ndarray's gradient by invoking its attach_grad method.

```
x.attach_grad()
```

After we calculate a gradient taken with respect to x, we will be able to access it via the grad attribute. As a safe default, x.grad is initialized as an array containing all zeros. That is sensible because our most common use case for taking gradient in deep learning is to subsequently update parameters by adding (or subtracting) the gradient to maximize (or minimize) the differentiated function. By initializing the gradient to an array of zeros, we ensure that any update accidentally executed before a gradient has actually been calculated will not alter the parameters' value.

```
x.grad
```

```
array([0., 0., 0., 0.])
```

Now let's calculate y. Because we wish to subsequently calculate gradients, we want MXNet to generate a computational graph on the fly. We could imagine that MXNet would be turning on a recording device to capture the exact path by which each variable is generated.

Note that building the computational graph requires a nontrivial amount of computation. So MXNet will only build the graph when explicitly told to do so. We can invoke this behavior by placing our code inside an autograd.record scope.

```
with autograd.record():
    y = 2 * np.dot(x, x)
y
```

```
array(28.)
```

Since x is an ndarray of length 4, np.dot will perform an inner product of x and x, yielding the scalar output that we assign to y. Next, we can automatically calculate the gradient of y with respect to each component of x by calling y's backward function.

```
y.backward()
```

If we recheck the value of x.grad, we will find its contents overwritten by the newly calculated gradient.

```
x.grad

array([ 0., 4., 8., 12.])
```

The gradient of the function $y = 2\mathbf{x}^{\top}\mathbf{x}$ with respect to \mathbf{x} should be $4\mathbf{x}$. Let's quickly verify that our desired gradient was calculated correctly. If the two ndarrays are indeed the same, then the equality between them holds at every position.

```
x.grad == 4 * x
array([ True, True, True])
```

If we subsequently compute the gradient of another variable whose value was calculated as a function of x, the contents of x. grad will be overwritten.

```
with autograd.record():
    y = x.sum()
y.backward()
x.grad
```

```
array([1., 1., 1., 1.])
```

2.5.2 Backward for Non-Scalar Variables

Technically, when y is not a scalar, the most natural interpretation of the gradient of y (a vector of length m) with respect to x (a vector of length n) is the *Jacobian* (an $m \times n$ matrix). For higher-order and higher-dimensional y and x, the Jacobian could be a gnarly high-order tensor.

However, while these more exotic objects do show up in advanced machine learning (including in deep learning), more often when we are calling backward on a vector, we are trying to calculate the derivatives of the loss functions for each constituent of a *batch* of training examples. Here, our intent is not to calculate the Jacobian but rather the sum of the partial derivatives computed individually for each example in the batch.

Thus when we invoke backward on a vector-valued variable y, which is a function of x, MXNet assumes that we want the sum of the gradients. In short, MXNet will create a new scalar variable by summing the elements in y, and compute the gradient of that scalar variable with respect to x.

```
with autograd.record():
    y = x * x # y is a vector
y.backward()

u = x.copy()
u.attach_grad()
with autograd.record():
    v = (u * u).sum() # v is a scalar
v.backward()

x.grad == u.grad
```

```
array([ True, True, True])
```

2.5.3 Detaching Computation

Sometimes, we wish to move some calculations outside of the recorded computational graph. For example, say that y was calculated as a function of x, and that subsequently z was calculated as a function of both y and x. Now, imagine that we wanted to calculate the gradient of z with respect to x, but wanted for some reason to treat y as a constant, and only take into account the role that x played after y was calculated.

Here, we can call u = y.detach() to return a new variable u that has the same value as y but discards any information about how y was computed in the computational graph. In other words, the gradient will not flow backwards through u to x. This will provide the same functionality as if we had calculated u as a function of x outside of the autograd. record scope, yielding a u that will be treated as a constant in any backward call. Thus, the following backward function computes the partial derivative of z = u * x with respect to x while treating u as a constant, instead of the partial derivative of z = x * x * x with respect to x.

```
with autograd.record():
    y = x * x
    u = y.detach()
    z = u * x
z.backward()
x.grad == u
```

```
array([ True, True, True])
```

Since the computation of y was recorded, we can subsequently call y . backward() to get the derivative of y = x * x with respect to x, which is 2 * x.

```
y.backward()
x.grad == 2 * x
```

```
array([ True, True, True])
```

Note that attaching gradients to a variable x implicitly calls x = x.detach(). If x is computed based on other variables, this part of computation will not be used in the backward function.

```
y = np.ones(4) * 2
y.attach_grad()
with autograd.record():
    u = x * y
    u.attach_grad() # Implicitly run u = u.detach()
    z = 5 * u - x
z.backward()
x.grad, u.grad, y.grad
```

```
(array([-1., -1., -1., -1.]), array([5., 5., 5., 5.]), array([0., 0., 0., 0.]))
```

2.5.4 Computing the Gradient of Python Control Flow

One benefit of using automatic differentiation is that even if building the computational graph of a function required passing through a maze of Python control flow (e.g., conditionals, loops, and arbitrary function calls), we can still calculate the gradient of the resulting variable. In the following snippet, note that the number of iterations of the while loop and the evaluation of the if statement both depend on the value of the input a.

```
def f(a):
    b = a * 2
    while np.linalg.norm(b) < 1000:
        b = b * 2
    if b.sum() > 0:
        c = b
    else:
        c = 100 * b
    return c
```

Again to compute gradients, we just need to record the calculation and then call the backward function.

```
a = np.random.normal()
a.attach_grad()
with autograd.record():
    d = f(a)
d.backward()
```

We can now analyze the f function defined above. Note that it is piecewise linear in its input a. In other words, for any a there exists some constant scalar k such that f(a) = k * a, where the value of k depends on the input a. Consequently d / a allows us to verify that the gradient is correct.

```
a.grad == d / a
array(True)
```

2.5.5 Training Mode and Prediction Mode

As we have seen, after we call autograd. record, MXNet logs the operations in the following block. There is one more subtle detail to be aware of. Additionally, autograd. record will change the running mode from *prediction mode* to *training mode*. We can verify this behavior by calling the is_training function.

```
print(autograd.is_training())
with autograd.record():
    print(autograd.is_training())
```

```
False
True
```

When we get to complicated deep learning models, we will encounter some algorithms where the model behaves differently during training and when we subsequently use it to make predictions. We will cover these differences in detail in later chapters.

Summary

- MXNet provides the autograd package to automate the calculation of derivatives. To use it, we first attach gradients to those variables with respect to which we desire partial derivatives. We then record the computation of our target value, execute its backward function, and access the resulting gradient via our variable's grad attribute.
- We can detach gradients to control the part of the computation that will be used in the backward function.
- The running modes of MXNet include training mode and prediction mode. We can determine the running mode by calling the is_training function.

Exercises

- 1. Why is the second derivative much more expensive to compute than the first derivative?
- 2. After running y.backward(), immediately run it again and see what happens.
- 3. In the control flow example where we calculate the derivative of d with respect to a, what would happen if we changed the variable a to a random vector or matrix. At this point, the result of the calculation f(a) is no longer a scalar. What happens to the result? How do we analyze this?
- 4. Redesign an example of finding the gradient of the control flow. Run and analyze the result.
- 5. Let $f(x) = \sin(x)$. Plot f(x) and $\frac{df(x)}{dx}$, where the latter is computed without exploiting that $f'(x) = \cos(x)$.
- 6. In a second-price auction (such as in eBay or in computational advertising), the winning bidder pays the second-highest price. Compute the gradient of the final price with respect to the winning bidder's bid using autograd. What does the result tell you about the mechanism? If you are curious to learn more about second-price auctions, check out the paper by Edelman et al. (Edelman et al., 2007).

2.6 Probability

In some form or another, machine learning is all about making predictions. We might want to predict the *probability* of a patient suffering a heart attack in the next year, given their clinical history. In anomaly detection, we might want to assess how *likely* a set of readings from an airplane's jet engine would be, were it operating normally. In reinforcement learning, we want an agent to act intelligently in an environment. This means we need to think about the probability of getting a high reward under each of the available action. And when we build recommender systems we also need to think about probability. For example, say *hypothetically* that we worked for a large online bookseller. We might want to estimate the probability that a particular user would buy a particular book. For this we need to use the language of probability. Entire courses, majors, theses, careers, and even departments, are devoted to probability. So naturally, our goal in this section is not to teach the whole subject. Instead we hope to get you off the ground, to teach you just enough that you can start building your first deep learning models, and to give you enough of a flavor for the subject that you can begin to explore it on your own if you wish.

We have already invoked probabilities in previous sections without articulating what precisely they are or giving a concrete example. Let's get more serious now by considering the first case: distinguishing cats and dogs based on photographs. This might sound simple but it is actually a formidable challenge. To start with, the difficulty of the problem may depend on the resolution of the image.

Fig. 2.6.1: Images of varying resolutions $(10 \times 10, 20 \times 20, 40 \times 40, 80 \times 80, \text{ and } 160 \times 160 \text{ pixels})$.

As shown in Fig. 2.6.1, while it is easy for humans to recognize cats and dogs at the resolution of 160×160 pixels, it becomes challenging at 40×40 pixels and next to impossible at 10×10 pixels. In other words, our ability to tell cats and dogs apart at a large distance (and thus low resolution)

might approach uninformed guessing. Probability gives us a formal way of reasoning about our level of certainty. If we are completely sure that the image depicts a cat, we say that the *probability* that the corresponding label y is "cat", denoted P(y = ``cat") equals 1. If we had no evidence to suggest that y = ``cat" or that y = ``dog", then we might say that the two possibilities were equally *likely* expressing this as P(y = ``cat") = P(y = ``dog") = 0.5. If we were reasonably confident, but not sure that the image depicted a cat, we might assign a probability 0.5 < P(y = ``cat") < 1.

Now consider the second case: given some weather monitoring data, we want to predict the probability that it will rain in Taipei tomorrow. If it is summertime, the rain might come with probability 0.5.

In both cases, we have some value of interest. And in both cases we are uncertain about the outcome. But there is a key difference between the two cases. In this first case, the image is in fact either a dog or a cat, and we just do not know which. In the second case, the outcome may actually be a random event, if you believe in such things (and most physicists do). So probability is a flexible language for reasoning about our level of certainty, and it can be applied effectively in a broad set of contexts.

2.6.1 Basic Probability Theory

Say that we cast a die and want to know what the chance is of seeing a 1 rather than another digit. If the die is fair, all the 6 outcomes $\{1, \ldots, 6\}$ are equally likely to occur, and thus we would see a 1 in one out of six cases. Formally we state that 1 occurs with probability $\frac{1}{6}$.

For a real die that we receive from a factory, we might not know those proportions and we would need to check whether it is tainted. The only way to investigate the die is by casting it many times and recording the outcomes. For each cast of the die, we will observe a value in $\{1, \ldots, 6\}$. Given these outcomes, we want to investigate the probability of observing each outcome.

One natural approach for each value is to take the individual count for that value and to divide it by the total number of tosses. This gives us an *estimate* of the probability of a given *event*. The *law* of large numbers tell us that as the number of tosses grows this estimate will draw closer and closer to the true underlying probability. Before going into the details of what is going here, let's try it out.

To start, let's import the necessary packages.

```
%matplotlib inline
import d21
from mxnet import np, npx
import random
npx.set_np()
```

Next, we will want to be able to cast the die. In statistics we call this process of drawing examples from probability distributions sampling. The distribution that assigns probabilities to a number of discrete choices is called the multinomial distribution. We will give a more formal definition of distribution later, but at a high level, think of it as just an assignment of probabilities to events. In MXNet, we can sample from the multinomial distribution via the aptly named np. random.multinomial function. The function can be called in many ways, but we will focus on the simplest. To draw a single sample, we simply pass in a vector of probabilities. The output of the np.random.multinomial function is another vector of the same length: its value at index i is the number of times the sampling outcome corresponds to i.

2.6. Probability 79

```
fair_probs = [1.0 / 6] * 6
np.random.multinomial(1, fair_probs)
```

```
array([0, 0, 0, 1, 0, 0], dtype=int64)
```

If you run the sampler a bunch of times, you will find that you get out random values each time. As with estimating the fairness of a die, we often want to generate many samples from the same distribution. It would be unbearably slow to do this with a Python for loop, so random.multinomial supports drawing multiple samples at once, returning an array of independent samples in any shape we might desire.

```
np.random.multinomial(10, fair_probs)
```

```
array([1, 1, 5, 1, 1], dtype=int64)
```

We can also conduct, say 3, groups of experiments, where each group draws 10 samples, all at once.

```
counts = np.random.multinomial(10, fair_probs, size=3)
counts
```

Now that we know how to sample rolls of a die, we can simulate 1000 rolls. We can then go through and count, after each of the 1000 rolls, how many times each number was rolled. Specifically, we calculate the relative frequency as the estimate of the true probability.

```
# Store the results as 32-bit floats for division
counts = np.random.multinomial(1000, fair_probs).astype(np.float32)
counts / 1000 # Reletive frequency as the estimate
```

```
array([0.164, 0.153, 0.181, 0.163, 0.163, 0.176])
```

Because we generated the data from a fair die, we know that each outcome has true probability $\frac{1}{6}$, roughly 0.167, so the above output estimates look good.

We can also visualize how these probabilities converge over time towards the true probability. Let's conduct 500 groups of experiments where each group draws 10 samples.

(continues on next page)

```
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
```


Each solid curve corresponds to one of the six values of the die and gives our estimated probability that the die turns up that value as assessed after each group of experiments. The dashed black line gives the true underlying probability. As we get more data by conducting more experiments, the 6 solid curves converge towards the true probability.

Axioms of Probability Theory

When dealing with the rolls of a die, we call the set $S = \{1, 2, 3, 4, 5, 6\}$ the *sample space* or *outcome space*, where each element is an *outcome*. An *event* is a set of outcomes from a given sample space. For instance, "seeing a 5" ($\{5\}$) and "seeing an odd number" ($\{1,3,5\}$) are both valid events of rolling a die. Note that if the outcome of a random experiment is in event A, then event A has occurred. That is to say, if 3 dots faced up after rolling a die, since A0 in A1, we can say that the event "seeing an odd number" has occurred.

Formally, *probability* can be thought of a function that maps a set to a real value. The probability of an event A in the given sample space S, denoted as P(A), satisfies the following properties:

- For any event A, its probability is never negative, i.e., $P(A) \ge 0$;
- Probability of the entire sample space is 1, i.e., P(S) = 1;
- For any countable sequence of events A_1, A_2, \ldots that are *mutually exclusive* $(A_i \cap A_j = \emptyset$ for all $i \neq j$), the probability that any happens is equal to the sum of their individual probabilities, i.e., $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

2.6. Probability 81

These are also the axioms of probability theory, proposed by Kolmogorov in 1933. Thanks to this axiom system, we can avoid any philosophical dispute on randomness; instead, we can reason rigorously with a mathematical language. For instance, by letting event A_1 be the entire sample space and $A_i = \emptyset$ for all i > 1, we can prove that $P(\emptyset) = 0$, i.e., the probability of an impossible event is 0.

Random Variables

In our random experiment of casting a die, we introduced the notion of a $random\ variable$. A random variable can be pretty much any quantity and is not deterministic. It could take one value among a set of possibilities in a random experiment. Consider a random variable X whose value is in the sample space $\mathcal{S}=\{1,2,3,4,5,6\}$ of rolling a die. We can denote the event "seeing a 5" as $\{X=5\}$ or X=5, and its probability as $P(\{X=5\})$ or P(X=5). By P(X=a), we make a distinction between the random variable X and the values (e.g., a) that X can take. However, such pedantry results in a cumbersome notation. For a compact notation, on one hand, we can just denote P(X) as the distribution over the random variable X: the distribution tells us the probability that X takes any value. On the other hand, we can simply write P(a) to denote the probability that a random variable takes the value a. Since an event in probability theory is a set of outcomes from the sample space, we can specify a range of values for a random variable to take. For example, $P(1 \le X \le 3)$ denotes the probability of the event $\{1 \le X \le 3\}$, which means $\{X=1,2,\mathrm{or},3\}$. Equivalently, $P(1 \le X \le 3)$ represents the probability that the random variable X can take a value from $\{1,2,3\}$.

Note that there is a subtle difference between *discrete* random variables, like the sides of a die, and *continuous* ones, like the weight and the height of a person. There is little point in asking whether two people have exactly the same height. If we take precise enough measurements you will find that no two people on the planet have the exact same height. In fact, if we take a fine enough measurement, you will not have the same height when you wake up and when you go to sleep. So there is no purpose in asking about the probability that someone is 1.80139278291028719210196740527486202 meters tall. Given the world population of humans the probability is virtually 0. It makes more sense in this case to ask whether someone's height falls into a given interval, say between 1.79 and 1.81 meters. In these cases we quantify the likelihood that we see a value as a *density*. The height of exactly 1.80 meters has no probability, but nonzero density. In the interval between any two different heights we have nonzero probability. In the rest of this section, we consider probability in discrete space. For probability over continuous random variables, you may refer to Section 17.6.

2.6.2 Dealing with Multiple Random Variables

Very often, we will want to consider more than one random variable at a time. For instance, we may want to model the relationship between diseases and symptoms. Given a disease and a symptom, say "flu" and "cough", either may or may not occur in a patient with some probability. While we hope that the probability of both would be close to zero, we may want to estimate these probabilities and their relationships to each other so that we may apply our inferences to effect better medical care.

As a more complicated example, images contain millions of pixels, thus millions of random variables. And in many cases images will come with a label, identifying objects in the image. We can also think of the label as a random variable. We can even think of all the metadata as random variables such as location, time, aperture, focal length, ISO, focus distance, and camera type. All

of these are random variables that occur jointly. When we deal with multiple random variables, there are several quantities of interest.

Joint Probability

The first is called the *joint probability* P(A=a,B=b). Given any values a and b, the joint probability lets us answer, what is the probability that A=a and B=b simultaneously? Note that for any values a and b, $P(A=a,B=b) \leq P(A=a)$. This has to be the case, since for A=a and B=b to happen, A=a has to happen and B=b also has to happen (and vice versa). Thus, A=a and B=b cannot be more likely than A=a or B=b individually.

Conditional Probability

This brings us to an interesting ratio: $0 \le \frac{P(A=a,B=b)}{P(A=a)} \le 1$. We call this ratio a *conditional probability* and denote it by $P(B=b \mid A=a)$: it is the probability of B=b, provided that A=a has occurred.

Bayes' theorem

Using the definition of conditional probabilities, we can derive one of the most useful and celebrated equations in statistics: *Bayes' theorem*. It goes as follows. By construction, we have the *multiplication rule* that $P(A,B) = P(B \mid A)P(A)$. By symmetry, this also holds for $P(A,B) = P(A \mid B)P(B)$. Assume that P(B) > 0. Solving for one of the conditional variables we get

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}.$$
 (2.6.1)

Note that here we use the more compact notation where P(A, B) is a *joint distribution* and $P(A \mid B)$ is a *conditional distribution*. Such distributions can be evaluated for particular values A = a, B = b.

Marginalization

Bayes' theorem is very useful if we want to infer one thing from the other, say cause and effect, but we only know the properties in the reverse direction, as we will see later in this section. One important operation that we need, to make this work, is *marginalization*. It is the operation of determining P(B) from P(A,B). We can see that the probability of B amounts to accounting for all possible choices of A and aggregating the joint probabilities over all of them:

$$P(B) = \sum_{A} P(A, B),$$
 (2.6.2)

which is also known as the *sum rule*. The probability or distribution as a result of marginalization is called a *marginal probability* or a *marginal distribution*.

2.6. Probability 83

Independence

Another useful property to check for is dependence vs. independence. Two random variables A and B are independent means that the occurrence of one event of A does not reveal any information about the occurrence of an event of B. In this case $P(B \mid A) = P(B)$. Statisticians typically express this as $A \perp B$. From Bayes' theorem, it follows immediately that also $P(A \mid B) = P(A)$. In all the other cases we call A and B dependent. For instance, two successive rolls of a die are independent. In contrast, the position of a light switch and the brightness in the room are not (they are not perfectly deterministic, though, since we could always have a broken light bulb, power failure, or a broken switch).

Since $P(A \mid B) = \frac{P(A,B)}{P(B)} = P(A)$ is equivalent to P(A,B) = P(A)P(B), two random variables are independent if and only if their joint distribution is the product of their individual distributions. Likewise, two random variables A and B are *conditionally independent* given another random variable C if and only if $P(A,B \mid C) = P(A \mid C)P(B \mid C)$. This is expressed as $A \perp B \mid C$.

Application

Let's put our skills to the test. Assume that a doctor administers an AIDS test to a patient. This test is fairly accurate and it fails only with 1% probability if the patient is healthy but reporting him as diseased. Moreover, it never fails to detect HIV if the patient actually has it. We use D_1 to indicate the diagnosis (1 if positive and 0 if negative) and H to denote the HIV status (1 if positive and 0 if negative). Table 2.6.1 lists such conditional probability.

Table 2.6.1: Conditional probability of $P(D_1 \mid H)$.

Conditional probability	H=1	H=0
$P(D_1 = 1 \mid H)$	1	0.01
$P(D_1 = 0 \mid H)$	0	0.99

Note that the column sums are all 1 (but the row sums are not), since the conditional probability needs to sum up to 1, just like the probability. Let's work out the probability of the patient having AIDS if the test comes back positive, i.e., $P(H=1\mid D_1=1)$. Obviously this is going to depend on how common the disease is, since it affects the number of false alarms. Assume that the population is quite healthy, e.g., P(H=1)=0.0015. To apply Bayes' Theorem, we need to apply marginalization and the multiplication rule to determine

$$P(D_1 = 1)$$

$$= P(D_1 = 1, H = 0) + P(D_1 = 1, H = 1)$$

$$= P(D_1 = 1 \mid H = 0)P(H = 0) + P(D_1 = 1 \mid H = 1)P(H = 1)$$

$$= 0.011485.$$
(2.6.3)

Thus, we get

$$P(H = 1 \mid D_1 = 1)$$

$$= \frac{P(D_1 = 1 \mid H = 1)P(H = 1)}{P(D_1 = 1)}.$$

$$= 0.1306$$
(2.6.4)

In other words, there is only a 13.06% chance that the patient actually has AIDS, despite using a very accurate test. As we can see, probability can be quite counterintuitive.

What should a patient do upon receiving such terrifying news? Likely, the patient would ask the physician to administer another test to get clarity. The second test has different characteristics and it is not as good as the first one, as shown in Table 2.6.2.

Table 2.6.2: Conditional probability of $P(D_2 \mid H)$.

Conditional probability	H=1	H = 0
$P(D_2 = 1 \mid H)$	0.98	0.03
$P(D_2 = 0 \mid H)$	0.02	0.97

Unfortunately, the second test comes back positive, too. Let's work out the requisite probabilities to invoke Bayes' Theorem by assuming the conditional independence:

$$P(D_1 = 1, D_2 = 1 \mid H = 0)$$

$$= P(D_1 = 1 \mid H = 0)P(D_2 = 1 \mid H = 0)$$

$$= 0.0003,$$
(2.6.5)

$$P(D_1 = 1, D_2 = 1 \mid H = 1)$$

$$= P(D_1 = 1 \mid H = 1)P(D_2 = 1 \mid H = 1)$$

$$= 0.98.$$
(2.6.6)

Now we can apply marginalization and the multiplication rule:

$$P(D_1 = 1, D_2 = 1)$$

$$= P(D_1 = 1, D_2 = 1, H = 0) + P(D_1 = 1, D_2 = 1, H = 1)$$

$$= P(D_1 = 1, D_2 = 1 \mid H = 0)P(H = 0) + P(D_1 = 1, D_2 = 1 \mid H = 1)P(H = 1)$$

$$= 0.00176955.$$
(2.6.7)

In the end, the probability of the patient having AIDS given both positive tests is

$$P(H = 1 \mid D_1 = 1, D_2 = 1)$$

$$= \frac{P(D_1 = 1, D_2 = 1 \mid H = 1)P(H = 1)}{P(D_1 = 1, D_2 = 1)}$$

$$= 0.8307.$$
(2.6.8)

That is, the second test allowed us to gain much higher confidence that not all is well. Despite the second test being considerably less accurate than the first one, it still significantly improved our estimate.

2.6.3 Expectation and Variance

To summarize key characteristics of probability distributions, we need some measures. The ex-pectation (or average) of the random variable X is denoted as

$$E[X] = \sum_{x} x P(X = x).$$
 (2.6.9)

When the input of a function f(x) is a random variable drawn from the distribution P with different values x, the expectation of f(x) is computed as

$$E_{x \sim P}[f(x)] = \sum_{x} f(x)P(x).$$
 (2.6.10)

2.6. Probability 85

In many cases we want to measure by how much the random variable X deviates from its expectation. This can be quantified by the variance

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}.$$
 (2.6.11)

Its square root is called the *standard deviation*. The variance of a function of a random variable measures by how much the function deviates from the expectation of the function, as different values x of the random variable are sampled from its distribution:

$$Var[f(x)] = E[f(x) - E[f(x)])^{2}.$$
 (2.6.12)

Summary

- We can use MXNet to sample from probability distributions.
- We can analyze multiple random variables using joint distribution, conditional distribution, Bayes' theorem, marginalization, and independence assumptions.
- Expectation and variance offer useful measures to summarize key characteristics of probability distributions.

Exercises

- 1. We conducted m=500 groups of experiments where each group draws n=10 samples. Vary m and n. Observe and analyze the experimental results.
- 2. Given two events with probability P(A) and P(B), compute upper and lower bounds on $P(A \cup B)$ and $P(A \cap B)$. (Hint: display the situation using a Venn Diagram⁴⁶.)
- 3. Assume that we have a sequence of random variables, say A, B, and C, where B only depends on A, and C only depends on B, can you simplify the joint probability P(A, B, C)? (Hint: this is a Markov Chain⁴⁷.)
- 4. In Section 2.6.2, the first test is more accurate. Why not just run the first test a second time?

2.7 Documentation

Due to constraints on the length of this book, we cannot possibly introduce every single MXNet function and class (and you probably would not want us to). The API documentation and additional tutorials and examples provide plenty of documentation beyond the book. In this section we provide you with some guidance to exploring the MXNet API.

⁴⁶ https://en.wikipedia.org/wiki/Venn_diagram

⁴⁷ https://en.wikipedia.org/wiki/Markov_chain

2.7.1 Finding All the Functions and Classes in a Module

In order to know which functions and classes can be called in a module, we invoke the dir function. For instance, we can query all properties in the np.random module as follows:

```
from mxnet import np
print(dir(np.random))
```

```
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '_

→ package__', '__spec__', '_mx_nd_np', 'absolute_import', 'choice', 'multinomial', 'normal',

→ 'rand', 'randint', 'shuffle', 'uniform']
```

Generally, we can ignore functions that start and end with __ (special objects in Python) or functions that start with a single _(usually internal functions). Based on the remaining function or attribute names, we might hazard a guess that this module offers various methods for generating random numbers, including sampling from the uniform distribution (uniform), normal distribution (normal), and multinomial distribution (multinomial).

2.7.2 Finding the Usage of Specific Functions and Classes

For more specific instructions on how to use a given function or class, we can invoke the help function. As an example, let's explore the usage instructions for ndarray's ones_like function.

```
help(np.ones_like)
Help on function ones_like in module mxnet.numpy:
ones_like(a)
    Return an array of ones with the same shape and type as a given array.
    Parameters
    _____
    a : ndarray
        The shape and data-type of a define these same attributes of
        the returned array.
    Returns
    out : ndarray
       Array of ones with the same shape and type as a.
    Examples
    -----
   >>> x = np.arange(6)
   >>> x = x.reshape((2, 3))
   >>> x
    array([[0., 1., 2.],
           [3., 4., 5.]])
    >>> np.ones_like(x)
    array([[1., 1., 1.],
```

2.7. Documentation 87

```
[1., 1., 1.]])
>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.], dtype=float64)
>>>
>>> np.ones_like(y)
array([1., 1., 1.], dtype=float64)
```

From the documentation, we can see that the ones_like function creates a new array with the same shape as the supplied ndarray and sets all the elements to 1. Whenever possible, you should run a quick test to confirm your interpretation:

```
x = np.array([[0, 0, 0], [2, 2, 2]])
np.ones_like(x)
```

In the Jupyter notebook, we can use ? to display the document in another window. For example, np.random.uniform? will create content that is almost identical to help(np.random.uniform), displaying it in a new browser window. In addition, if we use two question marks, such as np. random.uniform??, the code implementing the function will also be displayed.

2.7.3 API Documentation

For further details on the API details check the MXNet website at http://mxnet.apache.org/. You can find the details under the appropriate headings (also for programming languages other than Python).

Summary

- The official documentation provides plenty of descriptions and examples that are beyond this book.
- We can look up documentation for the usage of MXNet API by calling the dir and help functions, or checking the MXNet website.

Exercises

- 1. Look up ones_like and autograd on the MXNet website.
- 2. What are all the possible outputs after running np.random.choice(4, 2)?
- 3. Can you rewrite np.random.choice(4, 2) by using the np.random.randint function?

