电子科技大学 2020-2021 学年第 2 学期期末考试 A 卷

考试科目: <u>电磁场与波</u>考试形式: <u>闭卷</u>考试日期: <u>2021</u>年<u>7</u>月<u>6</u>日

本试卷由 三 部分构成, 共 8 页。考试时长: 120 分钟

成绩构成比例:平时成绩 50 %,期末成绩 50 %

注: 可使用非存储功能的简易计算器

题号	_	=	Ξ	四	五.	六	七	八	合计
得分									

附录: $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} F / m$, $\mu_0 = 4\pi \times 10^{-7} H / m$

得 分

一、填空题(每空1分,共20分)

- 1. 在两种电导率均为有限值的导电媒质分界面上,电磁场的边界条件为______
- 2. 静电比拟法中,与静电场中电位移矢量、介电常数相对偶的恒定电场的物理量分别 是 。
- 3. 如图 1 所示,在一块厚度为d 的导电板上, 由两个半径为 r_1 和 r_2 的圆弧,以及夹角为 α (弧度)的两半径割出的一块扇形体。该导电板的电导率为 σ 。那么,沿厚度方向的电阻为______。

图 1

4. 在时变电磁场的分析中,规定矢量磁位 \vec{A} 散度的洛伦兹条件

5. 一均匀平面波在空气中传播,其电场强度矢量的瞬时表达式为
$\vec{E}(z,t) = \vec{e}_x 5 \sin(\omega t + 4\pi z) \text{ V/m}$,将其写成复数形式为 $\vec{E}(z) = $
平面波的磁场强度矢量的复数形式为 $\vec{H}(z)$ =
为 $\vec{S}_{av} = $ W/m ² 。
6. 当均匀平面波从电介质 1 (ε_1)斜入射到电介质 2 (ε_2 ,且 ε_1 > ε_2)时,发生全反射的临界
角 $\theta_c =$,当入射角大于该角度时,电介质 2 中(填"存在"或"不存在")
电磁场。
7. 当均匀平面波从理想介质 1 (阻抗 η_1)垂直入射到理想介质 2 (阻抗 η_2)时,透射系数
$ au =$,反射系数 Γ 与透射系数 $ au$ 的关系是。
8. 矩形波导中,模式 TE ₁₁ 与模式
9. 电偶极子的近区场指的是
得分 二、选择题(每小题 2 分, 共 20 分)
1. 麦克斯韦方程组中的磁场强度旋度方程: $\nabla \times \bar{H} = \bar{J} + \frac{\partial \bar{D}}{\partial t}$, 其中的 \bar{J} 可代表 ()。
A. 传导电流密度 B. 传导电流密度与磁化电流密度之和
C. 磁化电流密度 D. 位移电流密度
2. 下列关于恒定电场说法错误的是()
A. 恒定电场满足欧姆定理的微分形式,可表示为 $\vec{E}=rac{\vec{J}}{\sigma}$ 。
B. 两种导电媒质分界面上,恒定电场的电场强度切向连续,即 $E_{1t}=E_{2t}$ 。
C. 两种导电媒质分界面上,可能存在自由电荷分布。
D. 内部存在恒定电场的导体是等势体。

3. 同轴线内导体半径为a, 外导体半径为b, 厚度可忽略不计。内、外导体间为空气。则该同轴 线单位长度的外自感为(

A.
$$\frac{\mu_0}{8\pi}$$

B.
$$\frac{\mu_0}{\pi} \ln(\frac{b}{a})$$

C.
$$\frac{\mu_0}{2\pi} \ln(\frac{b}{a})$$

A.
$$\frac{\mu_0}{8\pi}$$
 B. $\frac{\mu_0}{\pi} \ln(\frac{b}{a})$ C. $\frac{\mu_0}{2\pi} \ln(\frac{b}{a})$ D. $\frac{2\mu_0}{\pi} \ln(\frac{b}{a})$

4. 两块成 45° 的接地导体板,角形区域内有点电荷-q,若用镜像法求解角形区域的电位分布,

则共有() 个带电量是q的像电荷。

- A.3 个 B. 4 个 C. 5 个 D. 7 个

5. 海水的媒质参数为 $\varepsilon_r=81$, $\mu_r=1$, $\sigma=4$ S/m,频率为10 kHz的电磁波在海水中传播时,

可以被视为(

- A. 弱导电媒质

- B. 良导体 C. 理想导体 D. 理想介质

6. 均匀平面波的电场强度为 $\vec{E}(y) = \vec{e}_x 5 e^{j\pi y} + \vec{e}_z A e^{j\pi y}$, 当常数 A=()时,其极化方式为 右旋圆极化波。

- A. -5 B. -5j C. 5 D. 5j

7. 均匀平面波从电介质 1 ($\varepsilon=\varepsilon_1$) 斜入射到电介质 2 ($\varepsilon=\varepsilon_2$) 时,发生全透射的条件为(

A. 平行极化波,入射角
$$\theta_{\mathrm{i}}$$
= $\mathrm{arctan}\left(\sqrt{\frac{arepsilon_{\mathrm{l}}}{arepsilon_{2}}}\right)$

- B. 垂直极化波,入射角 θ_i =arctan $\sqrt{\frac{\varepsilon_1}{\varepsilon_2}}$
- C. 平行极化波,入射角 θ_i =arctan $\sqrt{\frac{\varepsilon_2}{\varepsilon_i}}$
- D. 垂直极化波,入射角 θ_i =arctan $\sqrt{\frac{\varepsilon_2}{\varepsilon_i}}$

8、均匀平面波从一种理想介质(波阻抗为 η_1)垂直入射到另一种理想介质(波阻抗为 η_2 ,

 $\eta_2 > \eta_1$)中,则一区中合成波电场的振幅的第一个最大值出现在(

- A. 分界面处
- B. 距离分界面 λ / 4 处
- C. 距离分界面 $\lambda/3$ 处 D. 距离分界面 $\lambda/2$ 处

- 9. 尺寸为 $\mathbf{a} \times \mathbf{b}$ =22.86×10.16mm² 的矩形波导,工作频率为 10GHz,传输 TE_{10} 模,其截止波长 λ_{c} 为()。
- A. 20.32mm
- B. 30mm
- C. 45.72mm
- D.39.7mm
- 10. 下列关于电偶极子的远区场描述中错误的是()
- A. 远区场是横电磁波(TEM波)
- B. 具有方向性,方向性因子为 $\sin \theta$
- C. 远区场是非均匀球面波
- D. 远区电磁场的振幅与 $\frac{1}{r^2}$ 成正比

三、计算题(共4小题,60分)

1.(17 分) 如图 2 所示,半径为 a 的无限长导体圆柱内流有电流密度为 $\vec{J}_z(r) = J_0 \rho \vec{e}_z (\rho \leq a)$ 的电流(其中 J_0 常数),导体柱内的介电常数与磁导率分别为 ε_0 , μ_0 。 导体柱外是两种均匀无耗介质,分界面为 z=0 平面。z>0 部分的介质介电常数与磁导率分别为 ε_1 , μ_1 ,z<0 部分的介质介电

- 常数与磁导率分别为 ϵ_2, μ_2 , 试求
- (1) 导体圆柱内的磁场强度与磁感应强度的分布;
- (2) 单位长度导体圆柱内的磁场能量;
- (3) 导体圆柱外的磁场强度与磁感应强度的分布;
- (4) 当在下半部分介质中,放置一个距圆柱轴距离为 b, 长宽分别为 c, d 的矩形回路(如图 2 所示)时,求矩形 回路的磁通量。

2. (15 分)已知一均匀平面波在可看作良导体的媒质中传播,且该媒质的磁导率 $\mu = \mu_0$,均匀平面波的电场强度瞬时表达式为

$$\vec{E}(x,t) = \vec{e}_y 5e^{-\alpha x} \cos(2\pi \times 10^6 t - 200\pi x) \text{ V/m},$$

试求: (1) 波的传播方向; (2) 衰减常数 α 和趋肤深度 δ ; (3) 良导体的导电率 σ ; (4) 波长 λ 和相速 v_p ; (5) 写出该均匀平面波在此良导体中传播的磁场强度瞬时表达式 $\vec{H}(x,t)$ 。

3. (10 分)均匀平面波从空气垂直入射到某磁介质($\varepsilon=\varepsilon_0, \mu=\mu_r\mu_0$)平面时,空气中合成波的驻波比为 1.5,介质平面上为驻波电场最大点,试求该磁介质的相对磁导率 μ_r 。

- 4. (18 分)均匀平面波从理想介质(ε =9 ε_0 , μ = μ_0)中垂直入射到 z=0 的无限大理想导体平板上,如图 3 所示,已知入射波的电场强度表达式为 $\vec{E}_i(z)$ = $\vec{e}_x 2e^{-j2\pi z}$ V/m,求:
 - (1) 该电磁波的频率;
 - (2) 反射波的电场强度 $\vec{E}_r(z)$ 、磁场强度 $\vec{H}_r(z)$ 表达式;
- (3)将理想导体板如图 4 所示旋转 45 度后,写出此时新的反射波电场强度 \vec{E}_r' 、磁场强度 \vec{H}_r' ,以及理想导体板表面电流密度 \vec{J}_s' 的复数表达式。

