$\mathbb{2}$ Regression

# Inferences in Regression Analysis

We will focus on the normal error model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where

- 1.  $\beta_0$  and  $\beta_1$  are parameters to be estimated,
- 2.  $X_i$ 's are known constants,
- 3.  $\epsilon_i$ 's are iid (independent and identically distributed)  $N(0, \sigma^2)$ .

For convenience, we often use  $b_0$  and  $b_1$  as the estimators of  $\beta_0$  and  $\beta_1$  respectively, *i.e.*,  $b_0 = \hat{\beta}_0$  and  $b_1 = \hat{\beta}_1$ .

# 1 Inferences concerning $\hat{eta}_1$

## 1.1 Distribution of $\hat{\beta}_1$

We want to test

$$H_0: \beta_1 = 0 \text{ and } H_1: \beta_1 \neq 0.$$

For the hypothesis test above, we have to know the distribution of  $\hat{\beta}_1$  under  $H_0$ .

**Fact.** If the independent random variable  $Y_i$  has a normal distribution with  $N(\mu_i, \sigma_i^2)$ , then the linear combination  $\sum_{i=1}^{n} (c_i Y_i + d_i)$  also has a normal with

$$N\left(\sum_{i=1}^{n} (c_i \mu_i + d_i), \sum_{i=1}^{n} c_i^2 \sigma_i^2\right).$$

We derived the regression estimator

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \sum_{i=1}^n k_i (Y_i - \bar{Y}) = \sum_{i=1}^n k_i Y_i, \tag{2.1}$$

where  $k_i = (X_i - \bar{X})/S_{xx}$  and  $S_{xx} = \sum_{i=1}^n (X_i - \bar{X})^2$ . Then we have

$$\hat{\beta}_1 \sim N\left(\sum_{i=1}^n k_i(\beta_0 + \beta_1 X_i), \sum_{i=1}^n k_i^2 \sigma^2\right).$$

Using  $\sum_{i=1}^{n} k_i = 0$ ,  $\sum_{i=1}^{n} k_i X_i = 1$ ,  $\sum_{i=1}^{n} k_i^2 = 1/S_{xx}$ , we have

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{S_{xx}}).$$

**Theorem 2.1.** The regression estimator  $\hat{\beta}_1$  is a BLUE (best linear unbiased estimator) of  $\beta_1$ . The term "best" here is used in the sense of minimum variance.

*Proof.* Let  $\hat{\beta}_1^*$  be another unbiased linear estimator of the form:

$$\hat{\beta}_1^* = \sum_{i=1}^n c_i Y_i,$$

where the  $c_i$ 's are constants. Since  $\hat{\beta}_1^*$  is unbiased, it should satisfy

$$E(\hat{\beta}_1^*) = \sum_{i=1}^n c_i E(Y_i) = \sum_{i=1}^n c_i (\beta_0 + \beta_1 X_i) = \beta_0 \sum_{i=1}^n c_i + \beta_1 \sum_{i=1}^n c_i X_i = \beta_1.$$

Hence, we have the following two conditions for the BLUE of  $\beta_1$ :

$$\sum_{i=1}^{n} c_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} c_i X_i = 1.$$
 (2.2)

The variance of  $\hat{\beta}_1^*$  is

$$Var(\hat{\beta}_1^*) = \sum_{i=1}^n c_i^2 Var(Y_i) = \sigma^2 \sum_{i=1}^n c_i^2.$$
 (2.3)

We know  $\operatorname{Var}(\hat{\beta}_1^* - \hat{\beta}_1) \geq 0$ . Let's try to find  $\operatorname{Var}(\hat{\beta}_1^* - \hat{\beta}_1)$ . Then we have

$$\operatorname{Var}(\hat{\beta}_1^* - \hat{\beta}_1) = \operatorname{Var}\left(\sum_{i=1}^n (c_i - k_i)Y_i\right) = \sigma^2 \sum_{i=1}^n (c_i - k_i)^2 = \sigma^2 \sum_{i=1}^n (c_i^2 + k_i^2 - 2c_i k_i).$$

Note that  $\sum_{i=1}^{n} c_i k_i = \sum_{i=1}^{n} c_i (X_i - \bar{X})/S_{xx} = (\sum c_i X_i - \sum c_i \bar{X})/S_{xx} = 1/S_{xx}$  and  $\sum_{i=1}^{n} k_i^2 = \sum_{i=1}^{n} [(X_i - \bar{X})/S_{xx}]^2 = 1/S_{xx}$ . Hence, we have  $\sum_{i=1}^{n} c_i k_i = \sum_{i=1}^{n} k_i^2$ . It is immediate from  $\text{Var}(\hat{\beta}_1^* - \hat{\beta}_1) \geq 0$  that

$$\operatorname{Var}(\hat{\beta}_1^* - \hat{\beta}_1) = \sigma^2 \sum_{i=1}^n (c_i^2 - k_i^2) = \operatorname{Var}(\hat{\beta}_1^*) - \operatorname{Var}(\hat{\beta}_1) \ge 0.$$

Hence,  $\operatorname{Var}(\hat{\beta}_1^*) \geq \operatorname{Var}(\hat{\beta}_1)$ . So  $\hat{\beta}_1$  has minimum variance among all unbiased linear estimators.

3

# 1.2 Sampling distribution of $(\hat{\beta}_1 - \beta_1)/SE(\hat{\beta}_1)$

Since  $\hat{\beta}_1 \sim N(\beta_1, \sigma^2/S_{xx})$ , we have

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sigma^2/S_{xx}}} \sim N(0, 1).$$

We need to estimate  $\sigma^2$ , we will use MSE as an estimator of  $\sigma^2$ :

MSE = 
$$\frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
.

Note that

$$\frac{(n-2)\text{MSE}}{\sigma^2} \sim \chi^2_{n-2} \quad \text{and} \quad \frac{N(0,1)}{\sqrt{\chi^2_d/d}} \sim t(d).$$

Hence, we have

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sigma^2/S_{xx}}} / \sqrt{\frac{(n-2)\text{MSE}}{\sigma^2}/(n-2)} \sim t(n-2),$$

and it follows that

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\text{MSE}/S_{xx}}} = \frac{\hat{\beta}_1 - \beta_1}{\text{SE}(\hat{\beta}_1)} \sim t(n-2)$$

where  $SE(\hat{\beta}_1) = \sqrt{MSE/S_{xx}}$ .

### 1.3 Confidence interval for $\beta_1$

Since  $(\hat{\beta}_1 - \beta_1)/SE(\hat{\beta}_1) \sim t(n-2)$ , we have

$$P\left[t(\frac{\alpha}{2}; n-2) \le \frac{\hat{\beta}_1 - \beta_1}{\operatorname{SE}(\hat{\beta}_1)} \le t(1 - \frac{\alpha}{2}; n-2)\right] = 1 - \alpha.$$

Using the symmetry of t distribution about 0, we have  $t(\frac{\alpha}{2}; n-2) = -t(1-\frac{\alpha}{2}; n-2)$ . Hence, the  $1-\alpha$  confidence limits for  $\beta_1$  are

$$\hat{\beta}_1 \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot SE(\hat{\beta}_1).$$

#### 1.4 Tests for $\beta_1$

• Two-sided test:  $H_0: \beta_1 = 0$  vs.  $H_1: \beta_1 \neq 0$ .

Test statistic:

$$T = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$$

Decision rule (at the significance level  $\alpha$ ):

If 
$$|T| \le t(1 - \frac{\alpha}{2}; n - 2)$$
, accept  $H_0$ .

If 
$$|T| > t(1 - \frac{\alpha}{2}; n - 2)$$
, reject  $H_0$ .

• One-sided test:  $H_0: \beta_1 \leq 0$  vs.  $H_1: \beta_1 > 0$ .

Test statistic:

$$T = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$$

Decision rule (at the significance level  $\alpha$ ):

If 
$$T \leq t(1-\alpha; n-2)$$
, accept  $H_0$ .

If 
$$T > t(1 - \alpha; n - 2)$$
, reject  $H_0$ .

• Test when  $H_0: \beta_1 = \beta_{10}$  or  $H_0: \beta_1 < \beta_{10}$ 

Test statistic:

$$T = \frac{\hat{\beta}_1 - \beta_{10}}{\text{SE}(\hat{\beta}_1)}$$

Decision rule (at the significance level  $\alpha$ ): the same as the above.

### 1.5 A geometry of the BLUE of $\beta_1$

The construction of BLUE of  $\beta_1$  can be explained by using the geometric description as in the figure. The goal is to minimize the variance,  $\sigma^2 \sum_{i=1}^n c_i^2$ , in (2.3) together with the conditions,  $\sum_{i=1}^n c_i = 0$  and  $\sum_{i=1}^n c_i X_i = 1$ , in (2.2). This is equivalent to finding the minimization of  $\sum_{i=1}^n c_i^2$  (hyper-sphere in  $\mathbb{R}^n$ ) with the two constraints (two hyper-planes in  $\mathbb{R}^n$ ).



Figure 2.1: Geometry of the BLUE of  $\beta_1$  with n=3.

#### 1.6 BLUE: Optimization with the constraints

We are to minimize  $\sum_{i=1}^{n} c_i^2$  subject to  $\sum_{i=1}^{n} c_i X_i = 1$  and  $\sum_{i=1}^{n} c_i = 0$ . Thus, this minimization can be obtained by using Lagrange multipliers. The auxiliary function with Lagrange multipliers ( $\lambda_1$  and  $\lambda_2$ ) is

$$\Psi = \sum_{i=1}^{n} c_i^2 + \lambda_1 \left( \sum_{i=1}^{n} c_i X_i - 1 \right) + \lambda_2 \sum_{i=1}^{n} c_i.$$

It follows from  $\partial \Psi / \partial c_i = 0$  that

$$2c_i + \lambda_1 X_i + \lambda_2 = 0. (2.4)$$

Taking the sum of the above, we have

$$2\sum_{i=1}^{n} c_i + \lambda_1 n\bar{X} + n\lambda_2 = 0.$$

It is immediate from the condition  $\sum_{i=1}^{n} c_i = 0$  that

$$\lambda_1 n \bar{X} + n \lambda_2 = 0. \tag{2.5}$$

Next, multiplying  $c_i$  to (2.4) gives

$$2c_i^2 + \lambda_1 c_i X_i + \lambda_2 c_i = 0.$$

Taking the sum of the above, we have

$$2\sum_{i=1}^{n} c_i^2 + \lambda_1 \sum_{i=1}^{n} c_i X_i + \lambda_2 \sum_{i=1}^{n} c_i = 0.$$

It is immediate from the two conditions in (2.2) that

$$2\sum_{i=1}^{n}c_i^2 + \lambda_1 = 0. (2.6)$$

Solving (2.5) and (2.6) for  $\lambda_1$  and  $\lambda_2$ , we have

$$\lambda_1 = -2\sum_{i=1}^n c_i^2$$
 and  $\lambda_2 = 2\sum_{i=1}^n c_i^2 \bar{X}$ .

Substituting the above results into (2.4) gives

$$c_i = (X_i - \bar{X}) \sum_{i=1}^n c_i^2. \tag{2.7}$$

Taking the square of (2.7) gives

$$c_i^2 = (X_i - \bar{X})^2 \left(\sum_{i=1}^n c_i^2\right)^2.$$

After taking the sum of the above, we can solve for  $\sum_{i=1}^{n} c_i^2$  which results in

$$\sum_{i=1}^{n} c_i^2 = \frac{1}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = \frac{1}{S_{xx}}.$$
(2.8)

It is immediate upon substituting (2.8) into (2.7) that

$$c_i = \frac{X_i - \bar{X}}{S_{rr}}.$$

⑥ 亞△士 CHANSEOK PARK

## **2** Inferences concerning $\beta_0$

The estimator for  $\beta_0$  is

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

The expectation and variance of  $\hat{\beta}_0$  can be shown as follows:

$$E(\hat{\beta}_0) = \beta_0 \text{ and } Var(\hat{\beta}_0) = \sigma^2 \left[ \frac{1}{n} + \frac{\bar{X}^2}{S_{xx}} \right].$$

First,  $E(\hat{\beta}_0) = E(\bar{Y}) - E(\hat{\beta}_1 \bar{X}) = \beta_0 + \beta_1 \bar{X} - \beta_1 \bar{X} = \beta_0$ . We denoted  $k_i = (X_i - \bar{X})/S_{xx}$ .

We have studied  $\hat{\beta}_1 = \sum k_i Y_i$  from (2.1). Thus, we have

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = \sum_{i=1}^n \frac{1}{n} Y_i - \sum_{i=1}^n k_i Y_i \bar{X} = \sum_{i=1}^n \left(\frac{1}{n} - k_i \bar{X}\right) Y_i.$$
 (2.9)

Note that  $\epsilon_i$  are independent, so is  $Y_i$ . Hence, we have

$$\operatorname{Var}(\hat{\beta}_0) = \sum_{i=1}^n \left(\frac{1}{n} - k_i \bar{X}\right)^2 \operatorname{Var}(Y_i)$$
$$= \sum_{i=1}^n \left(\frac{1}{n^2} - \frac{2}{n} k_i \bar{X} + k_i^2 \bar{X}^2\right) \sigma^2$$
$$= \left(\frac{1}{n} + \frac{\bar{X}^2}{S_{xx}}\right) \sigma^2.$$

Hence, an estimator of  $Var(\hat{\beta}_0)$ , also denoted by  $[SE(\hat{\beta}_0)]^2$ , is obtained by replacing  $\sigma^2$  by MSE:

$$\widehat{\operatorname{Var}}(\hat{\beta}_0) = [\operatorname{SE}(\hat{\beta}_0)]^2 = \operatorname{MSE}\left[\frac{1}{n} + \frac{\bar{X}^2}{S_{rec}}\right].$$

Similar to the case of  $\hat{\beta}_1$ , we have the following test statistic:

$$\frac{\hat{\beta}_0 - \beta_0}{\operatorname{SE}(\hat{\beta}_0)} \sim t(n-2).$$

The confidence limits:  $\hat{\beta}_0 \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot SE(\hat{\beta}_0)$ .

## 3 Interval estimation of $\mu_{Y_h} = E(Y_h) = \beta_0 + \beta_1 X_h$

Let  $X_h$  denote the level of X for which we wish to estimate the mean response,  $E(Y_h) = \beta_0 + \beta_1 X_h$ . We want to draw inference about  $E(Y_h)$ 

Given the estimators  $\hat{\beta}_0$  and  $\hat{\beta}_1$  of the regression parameters in the regression function  $\mu_Y = E(Y) = \beta_0 + \beta_1 X$ , we estimate the regression function as

$$\hat{\mu}_Y = \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X.$$

Thus, when  $X = X_h$ , the estimator of  $\mu_{Y_h} = E(Y_h)$  denoted by  $\hat{Y}_h$  is given by

$$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h.$$

The estimators  $\hat{\beta}_0$  and  $\hat{\beta}_1$  all consist of linear combination of  $Y_i$ 's. Hence,  $\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$  is also a linear combination of  $Y_i$  and so  $\hat{\beta}_0 + \hat{\beta}_1 X_h$  has a normal distribution. To find the parameters for this normal distribution, we need to find  $E(\hat{Y}_h)$  and  $Var(\hat{Y}_h)$ . First,  $E(\hat{Y}_h)$  is obtained by

$$E(\hat{Y}_h) = E(\hat{\beta}_0 + \hat{\beta}_1 X_h) = \beta_0 + \beta_1 X_h = \mu_{Y_h}.$$

Next, using  $\hat{\beta}_1 = \sum_{i=1}^n k_i Y_i$  from (2.1) and  $\hat{\beta}_0 = \sum_{i=1}^n \left(\frac{1}{n} - k_i \bar{X}\right) Y_i$  from (2.9), we have

$$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h = \sum_{i=1}^n \left\{ \frac{1}{n} + (X_h - \bar{X}) k_i \right\} Y_i.$$

It is immediate that

$$\operatorname{Var}(\hat{Y}_{h}) = \operatorname{Var}\left[\sum_{i=1}^{n} \left\{\frac{1}{n} + (X_{h} - \bar{X})k_{i}\right\}Y_{i}\right]$$

$$= \sum_{i=1}^{n} \left\{\frac{1}{n} + (X_{h} - \bar{X})k_{i}\right\}^{2} \operatorname{Var}(Y_{i})$$

$$= \sum_{i=1}^{n} \left\{\frac{1}{n^{2}} + \frac{2}{n}(X_{h} - \bar{X})k_{i} + (X_{h} - \bar{X})^{2}k_{i}^{2}\right\}\sigma^{2}$$

$$= \left\{\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{S_{mn}}\right\}\sigma^{2},$$

and

$$\widehat{\operatorname{Var}}(\widehat{Y}_h) = [\operatorname{SE}(\widehat{Y}_h)]^2 = \operatorname{MSE}\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}}\right].$$

Notice that  $SE(\hat{Y}_h)$  is minimized when  $X_h = \bar{X}$ .

Thus, we have the distribution

$$Z = \frac{\hat{Y}_h - E(\hat{Y}_h)}{\sqrt{\text{Var}(\hat{Y}_h)}} = \frac{\hat{Y}_h - \mu_{Y_h}}{\sqrt{\text{Var}(\hat{Y}_h)}} \sim N(0, 1).$$

⑥ 亞△士 CHANSEOK PARK

Replacing  $\sqrt{\operatorname{Var}(\hat{Y}_h)}$  with  $\sqrt{\widehat{\operatorname{Var}}(\hat{Y}_h)} = \operatorname{SE}(\hat{Y}_h)$ , we have the following test statistic

$$T = \frac{\hat{Y}_h - E(\hat{Y}_h)}{\sqrt{\widehat{\operatorname{Var}}(\hat{Y}_h)}} = \frac{\hat{Y}_h - \mu_{Y_h}}{\operatorname{SE}(\hat{Y}_h)} \sim t(n-2).$$

Converting the above for  $\mu_{Y_h}$ , we have the confidence limits for  $\mu_{Y_h}$ :

$$\hat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot \text{SE}(\hat{Y}_h).$$

That is,

$$\hat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot \sqrt{\text{MSE} \cdot \left\{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}}\right\}}.$$

## 4 Prediction Interval of New observation, $Y_{h(\text{new})}$

There is often confusion regarding the implication of the word prediction. Obviously the statistic  $\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$ , the point on the regression line at  $X = X_h$ , serves the dual purpose as the estimate of mean response  $(E(Y_h))$  at  $X = X_h$  and the predicted value. However, it is not appropriate for establishing any form of inference on a future single observation. Suppose the mean response at a fixed  $X = X_h$  is not of interest. Rather, one is interested in some type of bound on a future single response observation at  $X = X_h$ .

Consider a future single observation at  $X = X_h$ , denoted symbolically by  $Y_{h(\text{new})}$ , independent of  $\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$ . We can standardize by considering

$$| \operatorname{Var}(Y_{h(\text{new})} - \hat{Y}_h) = \operatorname{Var}(Y_{h(\text{new})}) + \operatorname{Var}(\hat{Y}_h) = \sigma^2 \left\{ 1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}} \right\}.$$

It immediate from  $E(Y_{h(\text{new})} - \hat{Y}_h) = 0$  that

$$Z = \frac{Y_{h(\text{new})} - \hat{Y}_h - 0}{\sigma \sqrt{1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}}}} \sim N(0, 1).$$

Replacing  $\sigma^2$  with MSE, we have

$$T = \frac{Y_{h(\text{new})} - \hat{Y}_h}{\sqrt{\text{MSE}} \cdot \sqrt{1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}}}} \sim t(n - 2).$$

ⓒ 亞△士 CHANSEOK PARK

Converting the above for  $Y_{h(\text{new})}$ , we have the prediction limits for  $\mu_{Y_h}$ :

$$\hat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot \sqrt{\text{MSE} \cdot \left\{1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}}\right\}}.$$

These limits are the same as

$$\hat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot \sqrt{\text{MSE} + \text{MSE} \cdot \left\{ \frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{xx}} \right\}}$$

$$\hat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2) \cdot \sqrt{\text{MSE} + \widehat{\text{Var}}(\hat{Y}_h)}.$$

### 5 ANOVA approach to regression analysis

#### 5.1 Partition of total sum of squares

In any regression, the analyst will observe variation in the response. We want to look at the variation of  $Y_i$  and  $\hat{Y}_i$ . Note that  $\sum Y_i = \sum \hat{Y}_i$ , i.e.,  $\bar{Y} = \bar{\hat{Y}}$ .

$$\underbrace{Y_i - \bar{Y}}_{\text{deviation}} = \underbrace{\hat{Y}_i - \bar{Y}}_{\text{deviation}} + \underbrace{Y_i - \hat{Y}_i}_{\hat{\epsilon}_i}$$

Then the sum of squares become

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y} + Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (\hat{Y}_i - \hat{Y}_i)^2 + 2\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}_i)^2 + 2\sum_{i=1}^{n$$

Considering the last term,

$$2\sum_{i}(\hat{Y}_{i} - \bar{Y})(Y_{i} - \hat{Y}_{i}) = 2\sum_{i}\hat{Y}_{i}(Y_{i} - \hat{Y}_{i}) - 2\sum_{i}\bar{Y}(Y_{i} - \hat{Y}_{i})$$
$$= 2\sum_{i}\hat{Y}_{i}\hat{\epsilon}_{i} - 2\sum_{i}\bar{Y}\hat{\epsilon}_{i} = 0,$$

We have

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$

Table 2.1: ANOVA Table:

| Source     | df  | SS   | MS              | $\overline{F}$                      |
|------------|-----|------|-----------------|-------------------------------------|
| Regression | 1   | SSR  | MSR=SSR         | $F = \frac{\text{MSR}}{\text{MSE}}$ |
| Error      | n-2 | SSE  | MSE = SSE/(n-2) |                                     |
| Total      | n-1 | SSTo |                 |                                     |

We denote this partition as follows:

$$SSTo = SSR + SSE.$$

The coefficient of determination  $(\mathbb{R}^2)$  is defined as

$$R^2 = \frac{\text{SSR}}{\text{SSTo}} = 1 - \frac{\text{SSE}}{\text{SSTo}}.$$

This  $R^2$  tells us what proportion of your variation in Y is explained by the regression on X. Clearly  $0 \le R^2 \le 1$ .

Notice that the df decomposition: n-1 = 1 + (n-2).

Why SSR has only df=1? Plugging  $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$  and  $\bar{Y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{X}$  into SSR =  $\sum (\hat{Y}_i - \bar{Y})^2$ , we have

$$SSR = MSR = \hat{\beta}_1^2 \cdot \sum (X_i - \bar{X})^2 = \hat{\beta}_1^2 \cdot S_{xx}.$$

Here, SSR has only one squared quantity  $(\hat{\beta}_1^2)$ .

ⓒ 亞△士 CHANSEOK PARK

#### **5.2** *F* test

**Fact.** If the errors  $\epsilon_i$  have a iid  $N(0, \sigma^2)$ , then SSE and SSR are independent and have scaled  $\chi^2$  distribution.

Thus, we have

1. SSE/
$$\sigma^2 \sim \chi^2_{n-2}$$
.

2. 
$$SSR/\sigma^2 \sim \chi_1^2 \ under \ H_0 : \beta_1 = 0.$$

If  $\beta_1 \neq 0$ , then SSR/ $\sigma^2$  follows a non-central  $\chi_1^2$  and is usually larger than a  $\chi_1^2$ .

Fact. If 
$$U \sim \chi_a^2$$
 and  $V \sim \chi_b^2$ , and  $U, V$  are independent, then 
$$\frac{U/a}{V/b} \sim F(a,b).$$

Hence, if the errors are  $N(0, \sigma^2)$ , then under  $H_0: \beta_1 = 0$ 

$$F^* = \frac{\text{SSR}/\sigma^2}{\text{SSE}/[(n-2)\sigma^2]} = \frac{\text{MSR}}{\text{MSE}} \sim F(1, n-2)$$

Decision rule:

If 
$$F^* \leq F(1 - \alpha; 1, n - 2)$$
, accept  $H_0 : \beta_1 = 0$ .

If 
$$F^* > F(1 - \alpha; 1, n - 2)$$
, reject  $H_0: \beta_1 = 0$ .

### 6 Case when X is random

In all of the preceding development, we assume throughout that  $X_i$  is a known constant. All the theories developed are based on this assumption. But two other situations occur frequently in practice, however:

1. The variables X and Y are both random and are observations from a joint density function.

- $\Rightarrow$  In this case, generally less interest is associated with prediction than in the case when X is non-random. Correlation analysis is more suitable
- 2. The variable X is a measure with non-ignorable error
  - $\Rightarrow$  Use EIV (Errors-In-Variables) model.