Assignment2_Xin Huang

Answer for Question 1

Run the following code to generate the figures:

```
#set workspace and read file
setwd("/Users/xinhuang/Google Drive/CSC 522 R Language Programming /Homework2")
sfData <- read.csv("AirQualitySanFranciscoData.csv", header = TRUE)
sdData <- read.csv("AirQualitySanDiegoData.csv", header = TRUE)</pre>
# set layout
mat \leftarrow matrix(1 : 4, nrow = 2)
layout (mat)
with(sfData, {
   plot(Year, ExceedStateLevelDays1.hr, col = "red", ylim = c(0, 100),
         type = "b", ylab = "Number of Days over Standard",
         pch = 20, 1ty = 2)
   points(Year, ExceedStateLevelDays8.hr, col = "yellow",
           type = "b", pch = 20, lty = 3)
   points(Year, ExceedNationalLevelDays8.hr, col = "green",
           type = "b", pch = 20, lty = 4)
    title(main = "San Francisco Air Quality")
   legend("topright",
           c("State Days 1 hour", "State Days 8 hours", "National Level 8 hours"),
           col = c("red", "yellow", "green"),
           pch = 1, cex = 0.5, title = "Over standard")
})
with(sfData, {
   plot(Year, MaxConcentration1.hr, col = "cyan", ylim = c(0.04, 0.17),
         type = "b", ylab = "Maximum Concentration", pch = 20, lty = 2)
   points(Year, MaxConcentration8.hr, col = "blue",
           type = "b", pch = 20, lty = 3)
   legend("topright", c("Max 1 hour", "Max 8 hour"),
           col = c("cyan", "blue"), pch = 1, cex = 0.5, title = "ppm")
})
with(sdData, {
   plot(Year, ExceedStateLevelDays1.hr, col = "red", ylim = c(0, 100),
         type = "b", ylab = "Number of Days over Standard",
         pch = 20, lty = 2)
   points(Year, ExceedStateLevelDays8.hr, col = "yellow",
           type = "b", pch = 20, lty = 3)
    points(Year, ExceedNationalLevelDays8.hr, col = "green",
           type = "b", pch = 20, lty = 4)
   title(main = "San Diego Air Quality")
   legend("topright",
           c("State Days 1 hour", "State Days 8 hours", "National Level 8 hours"),
           col = c("red", "yellow", "green"),
           pch = 1, cex = 0.5, title = "Over standard")
```

```
with(sdData, {
    plot(Year, MaxConcentration1.hr, col = "cyan", ylim = c(0.04, 0.17),
        type = "b", ylab = "Maximum Concentration",
        pch = 20, lty = 2)
    points(Year, MaxConcentration8.hr, col = "blue",
            type = "b", pch = 20, lty = 3)
    legend("topright", c("Max 1 hour", "Max 8 hour"),
            col = c("cyan", "blue"), pch = 1, cex = 0.5, title = "ppm")
})

mtext("Main title", line=2, font=2, cex=1.2, outer = TRUE)
```


Answer for Question 2

Run the following code to generate the figures:

```
plot(d, col = "red", lwd = 2,
    xlim=c(min(myState$Area),max(myState$Area)),
    xlab = "Land Area in Square Miles",
    ylab = "Density",
    xaxt = "n",
    main = "Probability Density Plot \n State Land Area in Square Miles")
axis(1, at = axisV, labels = axisV)
abline(v=mean(myState$Area),col = "black", lty = 5)
text(2 * mean(myState$Area) + 20000, 11e-06,
    paste("mean = ",round(mean(myState$Area), digits=0)))
text(myState$Area[rownames(myState)=="Alaska"]-85000, 8e-06,
    paste("Alaska Area = \n",myState$Area[rownames(myState)=="Texas"]))
text(myState$Area[rownames(myState)=="Texas"]-3000, 8e-06,
    paste("Texas Area = \n",myState$Area[rownames(myState)=="Texas"]))
```

Probability Density Plot State Land Area in Square Miles

Land Area in Square Miles

```
hist(myState$Area,
    breaks= 50,
    col="red",
    xaxt = "n",
    xlim=c(min(myState$Area),max(myState$Area)),
    xlab = "Land Area in Square Miles",
    main = "Histogram of State Land Area in Square Miles")
axis(1, at = axisV, labels = axisV)
```

Histogram of State Land Area in Square Miles

Answer for Question 3

```
#Question 3
##Figure 1
myState <-as.data.frame(cbind(state.x77, region = state.region))</pre>
myState <- cbind(myState, regionName = levels(state.region)[state.region])</pre>
stateSum <- myState %>%
    group_by(regionName) %>%
    summarise_all(sum)
target <- c("Northeast", "South", "North Central", "West")</pre>
stateSum <- stateSum[match(target, stateSum$regionName), ]</pre>
barplot(stateSum$Area,
        names.arg = stateSum$regionName,
        col = c("red", "yellow", "green", "blue"),
        xlab = "Region",
        ylab = "Area in Square Miles",
        ylim = c(0, 1700000),
        main = "Area By Region")
```

Area By Region

Region

```
##Figure 2
myState <- myState[order(myState$regionName, myState$Area),]
myState$regionName <- factor(myState$regionName)
myState$color[myState$regionName == "Northeast"] <- "red"
myState$color[myState$regionName == "South"] <- "yellow"
myState$color[myState$regionName == "North Central"] <- "green"
myState$color[myState$regionName == "West"] <- "blue"

myState$Area[rownames(myState) == "Texas"]</pre>
```

[1] 262134

Area in Square Miles grouped by region

Area of State in Square Miles

```
#Figure 3
d1 <- density(myState[which(myState$regionName == "Northeast"),]$Area)</pre>
d2 <- density(myState[which(myState$regionName == "South"),]$Area)</pre>
d3 <- density(myState[which(myState$regionName == "North Central"),]$Area)
d4 <- density(myState[which(myState$regionName == "West"),]$Area)</pre>
plot(d1, col = "red", lwd = 2,
     xlim = c(-10000, 750000),
     xlab = "Area of States",
     ylim = c(0, 0.000030),
     ylab = "Density",
     lty = 2, main = "")
box(lty = 1, col = 'black')
lines(d2, col = "yellow", lty = 3)
lines(d3, col = "green", lty = 1)
lines(d4, col = "blue", lty = 4)
legend("topright", c("Northeast", "North Central", "South", "West"),
       col = c("red", "green", "yellow", "blue"),
       lty = 1, cex = 0.8,
       title = "Region Names")
mtext("Probability Density Comparison of Areas by Regions", line = 1, outer = FALSE)
```


Answer for Question 4

Run the following code to generate the figures:

Pairs Plot


```
##Figure 2
mat <- matrix(1 : 4, nrow = 2)</pre>
layout(mat)
plot(myState$Illiteracy, myState$`Life Exp`,
     col = myState$color, pch = 20, bg = myState$color,
     xlab = "Illiteracy",
     ylab = "Life Exp",
     main = "Illiteracy vs Life Expectancy")
legend("topright",
       legend = c("Region Names", "Northeast", "North Central", "South", "West"),
       col = c("blue", "red", "green", "yellow", "blue"),
       lty = 1, cex = 0.2,
       title = "Region Names")
plot(myState$Income, myState$`Life Exp`,
     col = myState$color, pch = 20, bg = myState$color,
     xlab = "Incoume",
     ylab = "Life Exp",
     main = "Income vs Life Expectancy")
plot(myState$Illiteracy, myState$`HS Grad`,
     col = myState$color, pch = 20, bg = myState$color,
     xlab = "Illiteracy",
     ylab = "HS Grad",
     main = "Illiteracy vs Illiteracy vs High School Graduation")
plot(myState$Income, myState$`HS Grad`,
     col = myState$color, pch = 20, bg = myState$color,
```


Illiteracy vs Life Expectancy

0.5 1.0 1.5 2.0 2.5 Illiteracy

racy vs Illiteracy vs High School Graduati

Income vs Life Expectancy

racy vs Income vs High School Graduatic

You can drive the following observations:

- 1. The higher education one has, the higher income he might have
- 2. The lower percentage of one region, the longer time spane of that region can have

Answer for Question 5

Using precip dataset

precip data

Using state.x77 dataset

```
Use plot3d() to plot column Income, Illiteracy, LifeExp
```

```
myState <-as.data.frame(cbind(state.x77, region = state.region))
attach(myState)
mames(myState)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area" "region"
plot3d(Income , Illiteracy, myState$`Life Exp`, col="red", size=10)</pre>
```