o1再升级!人大&清华提出Search-o1: 赋予推理模型主动搜索的能力

原创 PaperAgent PaperAgent 2025年01月10日 13:30 湖北

近年来,推理模型如OpenAl-o1和千问QwQ等,展示出了令人印象深刻的逐步推理能力。然而,这些模型在进行长链式推理时,常常面临知识不足的问题,导致推理过程中出现不确定性和潜在错误。为了解决这一挑战,本文提出了一种新的框架——Search-o1,旨在通过自主知识检索,提升大型推理模型的可靠性和适用性。

Search-o1: Agentic Search-Enhanced Large Reasoning Models

Xiaoxi Li¹, Guanting Dong¹, Jiajie Jin¹, Yuyao Zhang¹, Yujia Zhou²,
Yutao Zhu¹, Peitian Zhang¹, Zhicheng Dou^{1*}

¹Renmin University of China ²Tsinghua University

{xiaoxi_li, dou}@ruc.edu.cn

Project Page: https://search-ol.github.i公众号·PaperAgent

Paper: https://arxiv.org/abs/2501.05366

HuggingFace:

https://huggingface.co/papers/2501.05366

Github:

https://github.com/sunnynexus/Search-o1

推理模型的现状与挑战

大型推理模型通过大规模的强化学习,能够进行长步骤的逐步推理,适用于科学、数学、编码等复杂领域。这种"慢思考"模式不仅增强了推理的逻辑连贯性和可解释性,但也带来了一个显著的问题: 知识不足。在推理过程中,模型可能会遇到无法确定的知识点,导致整个推理链条的错误传播,影响最终的答案质量。

研究动机

在初步实验中,本文发现,类似OpenAI-o1的推理模型在处理复杂问题时,平均每个推理过程中会出现超过30次的不确定词汇,如"或许"、"可能"等。这不仅增加了推理的复杂性,还使得手动验证推理过程变得更加困难。因此,如何在推理过程中自动补充所需知识,成为提升大型推理模型可信度的关键。

Cases of Model-Expressed Uncertainty

Wait, perhaps it's referring to dimethyl sulfone, but that doesn't seem right.

Alternatively, perhaps there's a mistake in my understanding of epistasis. Let me look up epistasis quickly. Epistasis is ...

Alternatively, HBr could also abstract a hydrogen atom from the alkene, leading to a ...

As I recall, Quinuclidine is a seven-membered ring with a nitrogen atom, **likely** not having the required symmetry.

Figure 1: Analysis of reasoning uncertainty with QwQ-32B-Preview. Left: Examples of uncertain words identified during the reasoning process. Right: Average occurrence of high-frequency uncertain words per output in the GPQA diamond set.

Search-o1: 自主知识检索增强的推理框架

为了解决上述问题,本文提出了Search-o1框架。该框架通过集成自主检索增强生成 (Agentic Retrieval-Augmented Generation) 机制和文档内推理模块 (Reason-in-Documents),实现了在推理过程中动态获取和整合外部知识的能力。

Figure 2: Comparison of reasoning approaches: (a) Direct reasoning without retrieval often results in inaccuracies due to missing knowledge. (b) Our agentic retrieval-augmented reasoning approach improves knowledge access but usually returns lengthy, redundant documents, disrupting coherent reasoning. (c) Our Search-o1 integrates concise and accurate retrieved knowledge seamlessly into the reasoning process, enabling precise and coherent problem-solving.

核心组件

- **1.自主检索增强生成机制**: Search-o1 使模型能够在推理过程中自主决定何时检索外部知识。当模型在推理中遇到不确定的知识点时,会自动生成检索查询,获取相关的外部文档。这种动态检索方式相比传统的静态检索,更加灵活和高效。
- 2.文档内推理模块: 为了避免直接插入冗长且可能含有噪音的检索文档, Search-o1 引入了知识精炼模块。该模块能够对检索到的文档进行筛选和精炼, 提取出与当前推理步骤高度相关的关键信息, 确保推理过程的连贯性和逻辑一致性。

推理过程

在Search-o1的推理过程中,模型会在生成推理链条的过程中,自动检测是否需要检索外部知识。当需要时,模型会生成特定的检索查询,获取相关文档,并通过文档内推理模块精炼这些文档,将精炼后的知识无缝整合到推理链条中。这一过程能够反复进行,确保模型在整个推理过程中都能获得所需的外部知识支持。

```
Algorithm 1 Search-ol Inference
Require: Reasoning Model M, Search function Search
 1: Input: Questions Q, Task instruction I, Reason-in-documents instruction I_{docs}
 2: Initialize set of unfinished sequences \mathcal{S} \leftarrow \{I \oplus q \mid q \in \mathcal{Q}\}
 3: Initialize set of finished sequences \mathcal{F} \leftarrow \{\}
 4: while S \neq \emptyset do
 5:
          Generate next tokens for all sequences in S: T \leftarrow \mathcal{M}(S)
                                                                                                                ▶ Batch Generate
          Initialize empty set S_r \leftarrow \{\}
 6:
                                                                                               ▶ Reason-in-documents Inputs
 7:
          for each sequence Seq \in \mathcal{T} do
 8:
               if Seq ends with | | | then
 9:
                    Pause generation for Seq
                                                                                                             ▶ Pause Generation
10:
                    Extract search query: q_{\text{search}} \leftarrow \text{Extract}(\text{Seq}, | \text{<|begin_search_query|>}), | \text{<|end_search_query|>})
                    Retrieve documents: \mathcal{D} \leftarrow \text{Search}(q_{\text{search}})
11:
                    Construct input for Reason-in-documents: I_{\mathcal{D}} \leftarrow I_{\text{docs}} \oplus q_{\text{search}} \oplus \text{Seq}
12:
                    Append the tuple (I_{\mathcal{D}}, \operatorname{Seq}) to \mathcal{S}_r
13:
               else if Seq ends with EOS then
14:
                    Remove Seq from S, add Seq to F

    ▶ Sequence Finished

15:
16:
          if S_r \neq \emptyset then
17:
               Prepare batch inputs: \mathcal{I}_r \leftarrow \{I_{\mathcal{D}} \mid (I_{\mathcal{D}}, \operatorname{Seq}) \in \mathcal{S}_r\}
               Reason-in-documents: \mathcal{T}_r \leftarrow \mathcal{M}(\mathcal{I}_r)
                                                                                                                ▶ Batch Generate
18:
               for i \leftarrow \{1, ..., |\mathcal{T}_r|\} do
Let r \leftarrow \mathcal{T}_r[i], Seq \leftarrow \mathcal{S}_r[i].Seq
19:
20:
                    Extract knowledge-injected reasoning step: r_{\text{final}} \leftarrow \text{Extract}(r)
21:
                    22:
23: Output: Finished Sequences \mathcal{F}
                                                                                                                PaperAgent
```

实验结果

为了验证Search-o1的有效性,本文在多个复杂推理任务和开放域问答基准上进行了广泛的实验。以下是主要的实验结果:

复杂推理任务

Table 1: Main results on challenging reasoning tasks, including PhD-level science QA, math and code benchmarks. We report Pass@1 metric for all tasks. For models with 32B parameters, the best results are in **bold** and the second-best are <u>underlined</u>. Results from larger or non-proprietary models are in gray color for reference. Symbol "†" indicates results from their official releases.

Method	GPQA (PhD-Level Science QA)				Math	LiveCodeBench					
	Physics	Chemistry	Biology	Overall	MATH500	AMC23	AIME24	Easy	Medium	Hard	Overall
Direct Reasoning (w/o	Retrieva	<i>l</i>)									
Qwen2.5-32B	57.0	33.3	52.6	45.5	75.8	57.5	23.3	42.3	18.9	14.3	22.3
Qwen2.5-Coder-32B	37.2	25.8	57.9	33.8	71.2	67.5	20.0	61.5	16.2	12.2	25.0
QwQ-32B	75.6	39.8	68.4	58.1	83.2	82.5	53.3	61.5	29.7	20.4	33.0
Qwen2.5-72B	57.0	37.6	68.4	49.0	79.4	67.5	20.0	53.8	29.7	24.5	33.0
Llama3.3-70B	54.7	31.2	52.6	43.4	70.8	47.5	36.7	57.7	32.4	24.5	34.8
DeepSeek-R1-Lite†				58.5	91.6	-	52.5	_	-	-	51.6
GPT-40 [†]	59.5	40.2	61.6	50.6	60.3	-	9.3	4	-	-1	33.4
o1-preview [†]	89.4	59.9	65.9	73.3	85.5	+1	44.6	-	-	-	53.6
Retrieval-augmented I	Reasonin	g									
RAG-Qwen2.5-32B	57.0	37.6	52.6	47.5	82.6	72.5	30.0	61.5	24.3	8.2	25.9
RAG-QwQ-32B	76.7	38.7	73.7	58.6	84.8	82.5	50.0	57.7	16.2	12.2	24.1
RAgent-Qwen2.5-32B	58.1	33.3	63.2	47.0	74.8	65.0	20.0	57.7	24.3	6.1	24.1
RAgent-QwQ-32B	<u>76.7</u>	46.2	68.4	<u>61.6</u>	<u>85.0</u>	85.0	56.7	65.4	18.9	12.2	<u>26.8</u>
Retrieval-augmented I	Reasonin	g with Reas	on-in-Do	ocument:	5						
Search-o1 (Ours)	77.9	47.3	78.9	63.6	86.4	85.0	56.7	57.7	32240	20/4 8	2 (33.0

在复杂推理任务中,包括PhD级别的科学问答(GPQA)、数学(MATH500、AMC2023、AIME2024)和编码能力(LiveCodeBench),Search-o1均显著优于传统的直接推理方法和标准RAG方法。

- 1. 大型推理模型的优势:即使在没有检索增强的情况下,QwQ-32B-Preview模型在多个任务上也表现优异,甚至超过了一些更大规模的模型,如Qwen2.5-72B和Llama3.3-70B。这展示了大型推理模型在推理任务中的强大能力。
- **2. 自主检索增强的效果**:使用自主RAG机制的RAgent-QwQ-32B在大多数任务上超越了标准RAG和直接推理的QwQ-32B,表明自主检索能够有效提升推理模型的知识获取能力。
- 3. Search-o1的卓越表现: 进一步引入文档内推理模块后的Search-o1, 在大多数任务上超越了RAgent-QwQ-32B, 尤其在GPQA、数学和编码任务上取得了显著的性能提升。

检索文档数量的影响

Figure 3: Scaling analysis of top-k retrieved documents utilized in reasoning. All results are based on QwQ-32B-Preview model.

研究发现, Search-o1能够有效利用增加的检索文档数量, 进一步提升复杂推理任务的处理能力。即使只检索一篇文档, Search-o1也能够超过直接推理和标准RAG模型, 显示出自主检索和文档精炼策略的高效性。

开放域问答任务

Table 3: Performance comparison on open-domain QA tasks, including single-hop QA and multi-hop QA datasets. For models with 32B parameters, the best results are in **bold** and the second-best are <u>underlined</u>. Results from larger models are in gray color for reference.

Method	Single-hop QA				Multi-hop QA								
	NQ		TriviaQA		HotpotQA		2WIKI		MuSiQue		Bamboogle		
	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	
Direct Reasoning (w/o I	Retrieval)											
Qwen2.5-32B	22.8	33.9	52.0	60.3	25.4	34.7	29.8	36.3	8.4	18.0	49.6	63.2	
QwQ-32B	23.0	33.1	53.8	60.7	25.4	33.3	34.4	40.9	9.0	18.9	38.4	53.7	
Qwen2.5-72B	27.6	41.2	56.8	65.8	29.2	38.8	34.4	42.7	11.4	20.4	47.2	61.7	
Llama3.3-70B	36.0	48.7	68.8	76.8	37.8	49.1	46.0	54.2	14.8	23.6	54.4	67.8	
Retrieval-augmented Re	asoning												
RAG-Qwen2.5-32B	33.4	49.3	65.8	79.2	38.6	50.4	31.6	40.6	10.4	19.8	52.0	66.0	
RAG-QwQ-32B	29.6	44.4	65.6	77.6	34.2	46.4	35.6	46.2	10.6	20.2	55.2	67.4	
RAgent-Qwen2.5-32B	32.4	47.8	63.0	72.6	44.6	56.8	55.4	69.7	13.0	25.4	54.4	66.4	
RAgent-QwQ-32B	33.6	48.4	62.0	74.0	43.0	55.2	58.4	71.2	13.6	25.5	52.0	64.7	
Retrieval-augmented Re	asoning	with Re	eason-in	-Docun	ients								
Search-o1 (Ours)	34.0	49.7	63.4	74.1	45.2	57.3	58.0	71.4	16.6	- 28.2	56.0	5 (67) E	

在开放域问答任务中,尤其是多跳问答任务,Search-o1表现尤为突出,平均准确率提升了近30%,充分展示了其在知识密集型任务中的优势。而在单跳任务中,虽然提升不显著,但这也表明多跳任务更需要动态知识检索的支持。

结语:迈向更可信赖的智能系统

Search-o1 不仅提升了大型推理模型在复杂任务中的表现,更为智能系统的可靠性和适用性奠定了坚实的基础。通过自主知识检索和精炼整合,Search-o1有效解决了知识不足的问题,显著增强了推理模型的可信度和实用性。未来,随着这一框架的进一步优化和推广,我们可以赋予类o1的推理模型更多的工具,而不仅局限于Search这一个工具,在更多复杂问题的解决中展现出更强大的能力。

推荐阅读

- 对齐LLM偏好的直接偏好优化方法: DPO、IPO、KTO
- 2024: ToB、Agent、多模态
- RAG全景图:从RAG启蒙到高级RAG之36技,再到终章Agentic RAG!
- Agent到多模态Agent再到多模态Multi-Agents系统的发展与案例讲解(1.2万字,20+文献,27张图)

欢迎关注我的公众号"PaperAgent",每天一篇大模型(LLM)文章来锻炼我们的思维,简单的例子,不简单的方法,提升自己。

PaperAgent

日更,解读AI前沿技术热点Paper 209篇原创内容

公众号

LLM热点Paper 336

