Space, rocket and aerospace technologies in science and programming.

Author, MSc: Adrian Szklarski: 11.2023

Subject: Satellite technologies, part 1.

Temat: Technologie satelitarne, cześć 1.

Fig.1.: Satellite, [1]

Space, rocket and aerospace technologies in science and programming.

A ground station with a 4m diameter parabolic antenna and an efficiency of 0.6 to which a signal of 100W and a frequency of 14GHz is fed radiates toward a satellite 40.000km away. Determine the power received by the satellite antenna with a 3dB main beam width of 2° and an efficiency of 0.55. Data: PT [dBW], η_T, f_u GHz, R [km], D_T [m], α_{3dB_R} [°], η_R .

Solution:

$$\begin{split} G_{T} &= \eta_{T} \left(\frac{\pi D_{T}}{\lambda_{u}} \right)^{2} = \eta_{T} \left(\frac{\pi D_{T} f_{u}}{c} \right)^{2} \\ G_{R} &= \eta_{R} \left(\frac{\pi \cdot 70^{o}}{\alpha_{3 \, dB_{R}}} \right)^{2} = 0,55 \cdot \left(\frac{\pi \cdot 70^{o}}{2^{o}} \right)^{2} \\ L_{FS} &= \left(\frac{4 \, \pi R}{\lambda_{u}} \right)^{2} = \left(\frac{4 \, \pi \, R f_{u}}{c} \right)^{2} \\ P_{R[\, dBW]} &= P_{T[\, dBW]} + G_{T[\, dBi]} + G_{R[\, dBi]} - L_{FS[\, dB]} \end{split}$$

Stacja naziemna z antena paraboliczna o średnicy 4m i sprawności 0,6 do której doprowadzono sygnał 0 mocy 100W i częstotliwości 14 GHz promieniuje w kierunku satelity odległego o 40.000km. Wyznaczyć moc odbieraną przez antenę satelity o 3dB szerokości wiązki głównej równej 2° i sprawności 0,55. Dane: P_T [dBW], η_{T,}f_u GHz, R [km], D_T [m], α_{3dB_n} [°], η_R

Rozwiązanie:

```
GT: 53.15 dBi
GR: 38.23 dBi
LFS: 207.41 dBi
Power received by the antenna: -96.03 dBW
```

[1] https://pixabav.com/pl/illustrations/satelita-wszech%C5%9Bwiat-atmosfera-t%C5%82o-3977166/

