On the category of 9BC's Pierre Colmez

Setup Yx lagger var, ner.

$$\chi^{r,n} := \left(H^n_{HK}(\gamma_c) \otimes \mathcal{B}_{st}^{+}\right)^{N=0, \varphi=p^*}, \qquad C = \widehat{K}.$$

$$F^{r,n} := H^n(\operatorname{Fil}^r(\mathcal{B}_{sp}^{+} \otimes \operatorname{RT}_{sp}(\gamma_k))) \qquad Sub$$

$$\mathcal{D}_{sp}^{r,n} := H^n(\mathcal{B}_{sp}^{+} \otimes \operatorname{RT}_{sp}(\gamma_k) / \operatorname{Fil}^r) \qquad \varphi_{ust}^{-}$$

$$H_{\text{prost}}^{n}(Y_{c}, Q_{p}(r)) = \left[\frac{8^{\frac{1}{4}} \otimes H^{n-1}}{\Im} / \frac{1}{4^{\frac{1}{4}}} + \chi^{r,n-1} - \frac{DR^{r,n-1}}{\Im} (\frac{9^{\frac{1}{4}} \otimes H^{n-1}}{\Im} / \frac{1}{4^{\frac{1}{4}}}) - \ker \left(\frac{\chi^{r,n}}{\Im} - \frac{9^{\frac{1}{4}} \otimes H^{n}}{\Im} / \frac{1}{4^{\frac{1}{4}}} \right)\right]$$

O C-pts of a BC,

with no nonzero map to Bix-mod (curvature >0)

Bix-mod, killed by t² (curature =0)

C-pts of a BC, evaluated in a free 8ix-mod (curvature <0).

Pef A sympathetic algebra S is a spectral C-banach alg. $w/x \longrightarrow x^2$ is surjective on $(\{x: ||x-1|| < 1\})$ + S separable $(\iff 5/p)$ countable $\iff 6c/p$ countable).

S sympathetic /c => S perfectoil /c.

A TYS W is a functor S - W(S) to Qp-top v.S. TVS Sympathetic

Quotient Warw, = (W, -, Wa) if the map is strict.

Note o - Wi - W - W2 - o is exact € 0 -> W1(8) -> W(8) -> W2(8) -> 0 is exact, 45.

Eq. /Q, S → C(πω(s), Qρ), Ga: 8 → S, Bm: S → Buc(8)/tm.

Def ABC W is of the form

 $0 \rightarrow V_2$ W betermined by d $V_1 \rightarrow V_2 \rightarrow G_a \rightarrow 0$ W difference of k difference of V1 & V2. ~ ~ ~ °

dimW=d, ht W = dimapV1 - dimapV2.

Thm BC is well-def'd & additive in exact seq.

Det A GBC W is a TVS + a filtration of curvature [W20 - W=0 - W20].

- · Wzo is a BC with curvature < 0
- · W>0 is a BC with curvature >0
- · W=0 is a Bdp-pair S.t.

 $W_{=0}(\varepsilon) = \left\{ \mathcal{B}_{m}(\varepsilon) \stackrel{\circ}{\otimes} W_{1} \rightarrow \mathcal{B}_{m}(\varepsilon) \stackrel{\circ}{\otimes} W_{2} \right\}$

where (N: - N) is a pair of 3m - mods, Bm = Bm(c).

Say W is a $\overline{q}BC$ if $(W_1 \rightarrow W_2) \stackrel{\triangle}{=} W_2/W_1$, i.e. $W_{=0}$ is a B_{ex}^+ -mod.

Illustrative example $[W_{co} - W_{=o} - W_{>o}]$ $[H'(X_{FF}, E) - H'(X_{FF}, F) - H'(X_{FF}, E)]$

Def A morphism $W \to W'$ of qBcs is a morphism of TVSs respecting the filtration, 8.1. $W=_0 \to W'=_0$ is Bir-linear.

Thm (i) If W is a reasonable qBC, then

Who is the biggest sub-BC of curvature to a lie the filtration is unique.

(2) If w, w' are reasonable of the same type, then $Hom_{qoc}(w, w') = Hom_{rvs}(w, w')$.

Thm qBc's form an abelian cat & the ht fct is additive, i.e. It $W = ht W_{50} + ht W_{60}$ (ht W=0=0).

Thm W $\overline{9}BC$ \Rightarrow non-canonically, W \simeq W>0 Θ W=0 Θ W<0

 $W \neq BC \Rightarrow \text{non-canonically},$ $W \simeq W_{>0} \oplus W_{<0},$ but $0 \to W_{>0} \to W_{>0} \to W_{=0} \to 0$

is not necessarily split.

Anschitz-Le Bras Ext_{BC} (W, W') = o for n > 2, Y W, W' & BC.

or VS (need more work than BC)

Thm (i) If $W \in \overline{q}BC$, $W' \in BC$, then $Ext_{qBC}(W, W') = 0, \quad n > 2.$ Application: for Poincaré duality, need $W' = \Omega_p$.

(a) If $W \in \overline{q}BC$, $W' \in BC$, then $Ext_{qBC}(W', W) = 0$.

Rule (i) Not true that $\operatorname{Exf}_{qpc}(w,w') = 0$ for any $w,w' \in qBC$. $b/c = \operatorname{Ext}^1 \neq 0$ for TVS.

> e.g. $0 \rightarrow LC(\mathbb{Z}_p, \mathbb{Q}_p) \rightarrow LA(\mathbb{Z}_p, \mathbb{Q}_p) \xrightarrow{d} LA(\mathbb{Z}_p, \mathbb{Q}_p) \rightarrow 0$ hot split. loc const (oc an

e.g. $0 \rightarrow W_1 \rightarrow (U_1 \otimes W_1) + W \rightarrow U_2 \otimes W \rightarrow B_1 \otimes W_2 \rightarrow 0$ $0 \rightarrow W_1 \rightarrow W \rightarrow W_2 \rightarrow 0$ $0 \rightarrow Q_1 \rightarrow U_1 \rightarrow B_4 \rightarrow 0$

(ii) If W & qBC, can happen that Ext2(W, Rp) \$0.

(iii) Possibly, can happen $\pm x i^n = 0$ if $n \ge 3$ e.g. $\mathcal{N} = (w_1 \rightarrow w_2)$.

Slogen Most of the work is to deal with top issues of Bar-mods.

Thm W1, W2 top Bn-mode of the same type.

 $W_{\hat{z}} := (S \longrightarrow \mathcal{P}_m(S) \otimes_{\mathcal{P}_m} W_{\hat{z}}).$

Then for N = 0 or 1, $\operatorname{Ext}_{\mathsf{B}_{2R}^+}(W_2, W_1) \longrightarrow \operatorname{Ext}_{\mathsf{R}_{\mathsf{Tris}}^+}^{\mathsf{N}}(W_2, W_1)$ $\stackrel{\sim}{\longrightarrow} \operatorname{Ext}_{\mathsf{Tris}}^{\mathsf{N}}(W_2, W_1)$

k M=1, W, = W2 = C,

Hom (Ga, Ga) \simeq Hom (C, C) = C Ext¹ (Ga, Ga) \simeq Ext²_{Sup} (c, C) \simeq C (0 \rightarrow C \rightarrow B₂ \rightarrow C \rightarrow 0). Works / TVS or VS.

Note S, 8' ∈ qBC. Her Hom(S, S) × W(S) → W(S')

bounded → bounded.