НОВЫЙ ТИП ЯДЕРНЫХ РЕАКЦИЙ, НАБЛЮДАЕМЫЙ В ФОТОЭМУЛЬСИЯХ

В последнее время фотопластинки с толстыми эмульсионными слоями стали особенно успешно применяться для изучения ядерных реакций.

Их применение дало возможность открыть новые типы расщеплений ядер. Фаулер, Бэрроуз и Кэрри*) сосбщают об интересной реакции, наблюдённой ими при облучении фотопластинок дейтронами с энергией в 9 MeV.

Дейтроны, получавшиеся от циклотрона, падали на фотопластинку под углами, близкими к углу скольжения. При экспозиции фотопластинок в 0,01 сек. в эмульсии создавалось достаточное число следов. Наряду с прочими следами были замечены 5 случаев, в которых из одной точки фотопластинки исходят 5 треков. Один из них следует приписать падающему дейтрону, вызывающему расщепление ядра с вылетом четырёх заряженных частиц. Авторы выдвинули гипотезу, что реакция ведёт в данном случае к полному расщеплению ядра азота на с-частицы, а именно:

$N^{14} + H^2 \rightarrow 4He^4$.

В самом деле, характер следов позволяет утверждать, что четыре более плотных следа принадлежат α -частицам (более тонкий след принадлежит падающему дейтрону, создающему меньшую сравнительно с α -частицами ионизацию). Метод фотопластинок позволяет регистрировать как энергию α -частиц, так и их импульс. Это дало авторам возможность проверить справедливость высказанного ими предположения с помощью сравнения результатов эксперимента с требованиями законов сохранения. Очевидно, составляющая суммарного импульса α -частиц в плоскости, перпендикулярной к направлению дейтрона, должна равняться 0. В исследованных трёх случаях это имеет место с точностью до ошьбки эксперимента. Если направление дейтрона принять за ось x, то согласно закону сохранения импульса $P_x^d = \sum_{i=1}^{n} P_{x_i}^{\alpha}$ где P_x^d — импульс дейтрона, а P_x^d — составляютная импульса $\frac{1}{2}$ — составляютная импульса $\frac{1}{2}$ — в направлении оси x. Если импульс измерять по

щая импульса α -частицы в направлении оси x. Если импульс измерять по формуле $P=\sqrt{2mE}$, где E— энергия частицы в MeV, а m— массовое число, то результаты наблюдений могут быть сведены в следующую таблицу:

^{*)} P. H. Fowler, H. B. Burrows, W. J. J. Curry, Nature, 159, 569 (1947).

N	P_x^d	$\sum P_x^{\alpha}$	$\sum E^{\alpha}_{(\text{B MeV})}$	E^{d}	Q
1	5,61	5,75	14,20	8,29	5,91
2	5,49	5,69	14,3;	8,10	6,23
3	5,80	5,52	18,19	7,58	5,61

Здесь Q сзначает энергию, выделившуюся при расщепленци ядра азота, равную разности эне; гии α -частиц и энергии дейтрона. Среднее значение Q отличае ся от вычисленного из дефектов масс N^{14} , He^4 и H^2 лишь на 0.4 MeV. Таким сбразсм, проверка с помощью законов сохранения доказывает справедливость выдвинутого авторами предположения α 0 ходе ядерной реакции.

П. Немировский