

```
name:
               <unnamed>
         log: D:\macroeconomics ps3\tarea3 p2.smcl
    log type:
               smcl
   opened on: 12 Apr 2022, 10:00:12
2
 . /*
                                 El Colegio de México
  >
                           Maestría en Economía (2021-2023)
  >
                              Macroeconomía II - Tarea 3
                           Autora: Claudia Josselyn Barranco
3
5
 . cd "D:\macroeconomics ps3"
  D:\macroeconomics ps3
8 . global graf = "D:\macroeconomics ps3\graphs"
9.
10.
11. /*
  > 2. Estudie los determinantes de la inversión agregada en México siguiendo estos paso
  > (a) Obtenga, del Inegi, datos DESESTACIONALIZADOS para México del consumo "C", datos
    de "I", la inversión privada (inversión fija bruta), y de "Y", el PIB, entre 1980 y 2021/IV, A FRECUENCIA TRIMESTRAL, EN TÉRMINOS REALES y grafique las tres series.
  > Después de realizar la búsqueda correspondiente notamos que para el PIB hay datos di
  > sponibles de 1980-2021; sin embargo, para el resto de las series esto no ocurre. Por
    esa razón se tomó la decisión de acotar el periodo de estudio hasta el primer dato
  > disponible quedandonos, así, con un periodo de análisis de 1993-2021 para las tres v
  > ariables de interés.
  > */
12.
13. * Llamamos a la base de datos
14. import delimited "dataset.csv"
  (encoding automatically selected: ISO-8859-1)
  (4 vars, 118 obs)
15.
16. * Eliminamos missing generados por el sistema
17. drop if gdp ==
  (2 observations deleted)
20. * Elaboramos el formato de tiempo antes de graficar para declarar como series de tie
 > mpo
21.
22. gen periodo2= n /*Creamos una variable secuencia para ordenar las fechas*/
24. generate time = tq(1993q1) + periodo2 - 1 /*Generamos una nueva variable de tiempo*/
```

```
25.
26. drop periodo2
28. format time %tg /*Damos un formato trimestral a la variable de tiempo*/
30. order time, after(date) /*Ordenamos para fines prácticos*/
32. tsset time, quarterly /*Damos el formato de fecha a nuestra variable, con ello la
 > > volvemos una serie de tiempo*/
  Time variable: time, 1993q1 to 2021q4
          Delta: 1 quarter
33.
34. *** Ahora, graficamos las 3 series
36. graph twoway (line gdp time, legend(label(1 "PIB"))) (line con time, legend(label(2 > "Consumo Agregado"))) (line inv time, legend(label(3 "Inversión Privada"))), ///
 > scheme (s2mono) ///
 > xtitle("Año y trimestre", size(vsmall)) ytitle("Millones mxn a precios 2013", size(v
  > small)) ///
  > ylabel(0(2000000)1.86e+07, valuelabel angle(horizontal) labsize(vsmall)) ///
  > xlabel(132(8)247, valuelabel angle(vertical) labsize(vsmall)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
 > legend(size(vsmall) col(2)) ///
  > caption("Fuente: Elaboración propia a partir de datos INEGI", size(tiny) span)
38. graph export "$graf/Cifrasreales trim 1993a2019.png", as(png) replace
  (file D:\macroeconomics ps3\graphs/Cifrasreales trim 1993a2019.png not found)
  file D:\macroeconomics ps3\graphs/Cifrasreales trim T993a2019.png saved as PNG
      format
39.
40. /*
 > En el gráfico podemos notar una tendencia similar entre las tres series de tiempo. D
  > estaca, sobretodo la caída generada por la crisis sanitaria de Covid-19. Sin embargo
  > , es posible ver que todos los efectos negativos se suavizan en la línea correspondi
  > ente a inversión pues, si comparamos con el PIB notaremos que los picos, positivos y
  > negativos, están más pronuniciados. Así mismo, podemos ver que entre el consumo y 1
 > a inversión, el consumo agregado es que mayor aporta a los niveles de producto inter
 > no bruto del país.
41.
 > (b) Grafique la relación entre los cambios de I y los de Y, es decir, grafique
 > los puntos (%\DeltaYt, %\DeltaIt) poniendo la inversión en el eje de las ordenadas.
 > Sabemos que %\Delta Yt = (Yt - Yt-1)/Yt-1
43.
44. * Generamos la variable Yt-1
45. gen lag_gdp = gdp[ n-1]
  (1 missing value generated)
46. replace lag gdp=0 if lag gdp==.
  (1 real change made)
```

```
47. order lag gdp, after(gdp)
48.
49. * Generamos su tasa de crecimiento
50. gen crec_gdp = ((gdp-lag_gdp)/lag_gdp)*100
  (1 missing value generated)
51. replace crec_gdp=0 if crec_gdp==.
  (1 real change made)
52.
53.
54. * Generamos It-1
55. gen lag inv = inv[ n-1]
  (1 missing value generated)
56. replace lag_inv=0 if lag_inv==.
  (1 real change made)
57. order lag_inv, after(inv)
59. * Generamos su tasa de crecimiento
60. gen crec_inv = ((inv-lag_inv)/lag_inv)*100
(1 missing value generated)
61. replace crec_inv=0 if crec_inv==.
  (1 real change made)
62
63.
64. * Graficamos la relación entre los cambios en I y cambios en Y
65. graph twoway (scatter crec_inv crec_gdp, msymbol(Oh)), // > xtitle("%\DeltaYt", size(vsmall)) ytitle("%\DeltaIt", size(vsmall)) ///
  > ylabel( , valuelabel angle(horizontal) labsize(vsmall)) ///
  > xlabel( , valuelabel angle(horizontal) labsize(vsmall)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > caption("Fuente: Elaboración propia con datos del INEGI", size(vsmall) span) ///
  > scheme (s2mono)
67. graph export "$graf/VariacionGDPvsInv.png", as(png) replace
  (file D:\macroeconomics ps3\graphs/VariacionGDPvsInv.png not found)
  file D:\macroeconomics ps3\graphs/VariacionGDPvsInv.png saved as PNG format
69. /*
  > Al momento de analizar el gráfico, notamos un agolpamiento de los datos en un interv
  > alo de 0 a 10% en cuanto a tasas de crecimiento de ambas variables. Así mismo, desta
  > can algunos outliers tanto en valores negativos como positivos, lo que indica que ha
  > y casos donde la relación entre el crecimiento del PIB y la inversión se comporta de
  > manera distinta a la mayoría. De manera general, observamos una relación positiva p
  > ero que muestra una variación mínima en inversión.
  > */
70.
71. ***
72. /*
  > (c) Calcule la volatilidad de cada serie y la covarianza entre las tres series de ta
  > sas de crecimiento (%\DeltaI, %\DeltaC y %\DeltaY ), describa cuál es más volátil y cuales cambios,
  > si los de I o los de C están más relacionados con los de Y
```

```
74. * Generamos la variable de crecimiento del consumo
75. * Generamos Ct-1
76. gen lag con = con[ n-1]
 (1 missing value generated)
77. replace lag_con=0 if lag_con==.
  (1 real change made)
78. order lag_con, after(con)
80. * Generamos su tasa de crecimiento
81. gen crec_con = ((con-lag_con)/lag_con)*100
  (1 missing value generated)
82. replace crec_con=0 if crec_con==.
  (1 real change made)
83.
84.
85. /*
 > Ahora, para calcular la volatilidad de cada serie se utiliza, comúnmente, una medida
 > de dispersión de la variable que en este caso es la desviación estándar o la varian
 > za. También se puede medir a partir del error estándar de los residuos en un modelo
 > univariante.
 > Para este caso utilizaremos la desviación estándar bajo el entendimiento de que una
 > mayor volatilidad significa una mayor desviación estándar de la serie.
 > De este modo, obtenemos las estadísticas descriptivas para las tres series tanto par
 > a las variables originales como para las tasas de crecimiento.
 > */
86.
87. label variable crec_gdp "$\% \triangle Y$"
88. label variable crec con "$\% \triangle C$"
89. label variable crec_inv "$\% \triangle I$"
91. outreg2 using descriptive, tex replace sum(detail) keep(crec_gdp crec_con crec_inv)
 > eqkeep(N mean sd Var min max) label
                               time
```

		CIME		
1%	Percentiles 133 137	Smallest 132 133		
10%	143	134	Obs	116
25%	160.5	135	Sum of wgt.	116
50%	189.5		Mean	189.5
		Largest	Std. dev.	33.63034
75%	218.5	244		
90%	236	245	Variance	1131
95%	242	246	Skewness	0
99%	246	247	Kurtosis	1.799822
		gdp		
18 58 108	Percentiles 9921091 1.02e+07 1.07e+07	Smallest 9737224 9921091 1.01e+07	Obs	116
25%	1.27e+07	1.01e+07	Sum of wgt.	116
			-	

50%	1.46e+07	Largest	Mean Std. dev.	1.45e+07 2602960
75% 90% 95% 99%	1.68e+07 1.81e+07 1.85e+07 1.86e+07	1.85e+07 1.85e+07 1.86e+07 1.86e+07	Variance Skewness Kurtosis	6.78e+12 0436224 1.906911
		lag_gdp		
1% 5% 10% 25%	Percentiles 9737224 1.01e+07 1.05e+07 1.26e+07	Smallest 0 9737224 9921091 1.01e+07	Obs Sum of wgt.	116 116
50%	1.45e+07	Largest	Mean Std. dev.	1.43e+07 2911107
75% 90% 95% 99%	1.66e+07 1.81e+07 1.85e+07 1.86e+07	1.85e+07 1.85e+07 1.86e+07 1.86e+07	Variance Skewness Kurtosis	8.47e+12 9562865 6.328606
		con		
1% 5% 10% 25%	Percentiles 6236218 6321010 6557132 8243818	Smallest 6199643 6236218 6254858 6254898	Obs Sum of wgt.	116 116
50%	9946215	Largest	Mean Std. dev.	9602525 1910128
75% 90% 95% 99%	1.11e+07 1.22e+07 1.25e+07 1.25e+07	1.25e+07 1.25e+07 1.25e+07 1.26e+07	Variance Skewness Kurtosis	3.65e+12 2804081 2.009046
		lag_con		
1% 5% 10% 25%	Percentiles 6199643 6292015 6433826 8064288	Smallest 0 6199643 6236218 6254858	Obs Sum of wgt.	116 116
50%	9928903	T	Mean	9497551
75% 90% 95% 99%	1.10e+07 1.21e+07 1.25e+07 1.25e+07	Largest 1.25e+07 1.25e+07 1.25e+07 1.26e+07	Std. dev. Variance Skewness Kurtosis	2093240 4.38e+12 9211941 5.056592
		inv		
1% 5% 10% 25%	Percentiles 1496060 1812263 2128389 2441160	Smallest 1476357 1496060 1644143 1680780	Obs Sum of wgt.	116 116
50%	3025472	Largest	Mean Std. dev.	2933056 612800.3
75% 90% 95% 99%	3477301 3719040 3764970 3812613	3797272 3805746 3812613 3858342	Variance Skewness Kurtosis	3.76e+11 3158059 2.125399

		Tag_IIIV		
1% 5% 10% 25%	Percentiles 1476357 1717386 2083149 2438133	Smallest 0 1476357 1496060 1644143	Obs Sum of wgt.	116 116
50%	3015243	Largest	Mean Std. dev.	2905049 669830.6
75% 90% 95% 99%	3477301 3719040 3764970 3812613	3797272 3805746 3812613 3858342	Variance Skewness Kurtosis	4.49e+11 8499183 4.559746
		\$\% \triangle	Y\$	
1% 5% 10% 25%	Percentiles -5.735897 -1.4695156366509 .2006258	Smallest -17.8501 -5.735897 -5.12625 -4.894969	Obs Sum of wgt.	116 116
50%	.707109	Largest	Mean Std. dev.	.523475 2.464909
75% 90% 95% 99%	1.115955 1.88829 2.479084 3.476659	3.016405 3.291748 3.476659 13.49196	Variance Skewness Kurtosis	6.075777 -2.639808 34.68747
		\$\% \triangle	e I\$	
1% 5% 10% 25%	Percentiles -28.46052 -3.612738 -2.963491550311	Smallest -30.62304 -28.46052 -12.16239 -9.830785	Obs Sum of wgt.	116 116
50%	.9964206	Largest	Mean Std. dev.	.5444958 5.302109
75% 90% 95% 99%	2.554082 4.765697 6.372074 9.898236	6.951089 7.551298 9.898236 19.22062	Variance Skewness Kurtosis	28.11236 -2.879742 20.33911
		\$\% \triangle	e C\$	
1% 5% 10% 25%	Percentiles -6.762035 -1.2430774695049 .0671077	Smallest -20.34876 -6.762035 -4.176876 -3.765869	Obs Sum of wgt.	116 116
50%	.7353025	Largest	Mean Std. dev.	.6154123 2.629426
75% 90% 95% 99%	1.456375 2.227029 2.721716 4.561773	2.744046 3.071702 4.561773 12.47458	Variance Skewness Kurtosis	6.913882 -3.852141 39.87685

Following variable is string, not included: date $% \label{eq:continuous} % \begin{center} \end{center} % \begin{center} \end$

descriptive.tex
dir : seeout

```
Tuesday April 12 10:00:50 2022
```

```
92.
93. /*
 > A partir de los resultados podemos ver que la serie más volátil es la de inversión,
 > pues tiene una desviación estándar de 5.30 y, por ende, también una mayor varianza.
 > La serie que presenta una menor volatilidad corresponde al consumo con una desviació
 > n estándar de 2.62
 > */
94.
95. * Observemos la covarianza entre las series de crecimiento
97. correlate crec gdp crec con crec inv, covariance // Con ello podemos obtener la matr
 > iz de covarianzas entre las variables; sin embargo, la covarianza nos permite conoce
 > r el signo de la relación pero no podemos inferir la fuerza de esta.
  (obs=116)
```

	crec_gdp	crec_con	crec_inv
crec_gdp crec_con crec_inv		6.91388 11.1746	28.1124

100

99. correlate crec_gdp crec_con crec_inv // No obstante, con la correlación es posible s > aber la magnitud de la fuerza de la relación entre las variables

	crec_gdp	crec_con	crec_inv
crec_gdp crec_con crec_inv	1.0000 0.9449 0.8513	1.0000	1.0000

```
101 /*
 > A partir de los resultados obtenidos, sabemos que el PIB está relacionado de manera
 > positiva con el consumo y la inversión. Si una de las variables incrementa, la otra
 > también lo hará, pues se mueven en la misma dirección. Lo mismo ocurre entre el cons
 > umo y la inversión.
 > Ahora bien, al analizar la matriz de correlación es posible observar que los cambios
 > del consumo tienen un mayor efecto sobre el PIB comparado con el efecto de la inver
 > sión. No obstante, la diferencia no es muy grande pero si es significativa.
103 *guardamos la base de datos en formato dta para fines practicos
104 save "dataset", replace
 file dataset.dta saved
105
106 ****
107 /*
 > // (d) Obtenga, del Banco de México, datos sobre las tasas de interés reales, es dec
 > ir, la tasa de interés nominal menos la tasa de inflación esperada (en cuyo caso se
 > trata de la tasa de interés real "ex-ante"), o menos la tasa de inflación observada
 > (en cuyo caso se trata de la "ex-post") y grafíquelas.
 > Para poder obtener la tasa de interés real, se extrajeron datos del Sistema de Infor
 > mación Económica del Banco de México. Obtuvimos la serie de 1995-2021 para datos de
 > inflación anual y TIEE 28 días ambas con datos mensuales. A partir de eso se realiza
    la resta de las variables obteniendo así la tasa de interés real ex-post.
 > Ligas de interés:
 > Inflación: https://www.banxico.org.mx/SieInternet/consultarDirectorioInternetAction.
 > do?sector=8&accion=consultarCuadro&idCuadro=CP151&locale=es
 > Tasa de interés: https://www.banxico.org.mx/SieInternet/consultarDirectorioInternetA
```

> ction.do?sector=18&accion=consultarCuadro&idCuadro=CF113&locale=es

```
108
109 clear
110 import delimited "data interestrate.csv"
  (encoding automatically \overline{\text{s}} elected: ISO-8859-2)
  (3 vars, 321 obs)
112 * Antes que nada, hay que dar un formato de fecha a la variable date 113 gen periodo = _n // ordenamos las fechas
114 gen time = tm(1995m4) + periodo-1 // Generamos una nueva variable de tiempo
115 drop periodo
116 format time %tm // Damos formato mensual
117 format time %10.0g // Damos un formato que nos permita transformar meses a trimestre
  > s
118 gen date2 = dofm(time) // Damos un formato de tiempo
119 format date2 %d // Asignamos un formato de día
120 gen month = month(date2) // Tomamos el mes de la fecha que generamos
121 gen year=year(date2) // Tomamos el año de la fecha que generamos
122 gen qdate = qofd(dofm(ym(year, month))) // creamos una variable de trimestres
123 format %tg gdate // Le damos formato de fecha
124
125 * Colapsamos para quedarnos, unicamente, con información trimestral 126 collapse (mean) tasa_nominal inflacion, by(qdate)
127
128 rename qdate date
129
130 * quardamos
131 save "dataset2", replace
  file dataset2.dta saved
133 * Declaramos la variable de tiempo*
134 tsset date, quarterly
  Time variable: date, 1995q2 to 2021q4
           Delta: 1 quarter
135
136 * Generamos la variable de interés que es la tasa de interés real
137 gen real_rate = tasa_nominal - inflacion
138
139 * Graficamos
140
141 graph twoway (line tasa_nominal date, legend(label(1 "Tasa de interés nominal"))) (l > ine inflacion date, legend(label(2 "Tasa de inflación observada"))) (line real_rate
  > date, legend(label(3 "Tasa de interés real"))), ///
  > scheme (s2mono) ///
  > xtitle("Año y trimestre", size(vsmall)) ytitle("(%)", size(vsmall)) ///
> ylabel(-6.25(10)66, valuelabel angle(horizontal) labsize(vsmall)) ///
  > xlabel(141(8)247, valuelabel angle(vertical) labsize(vsmall)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(vsmall) col(2)) ///
  > caption("Fuente: Elaboración propia a partir de datos Banxico", size(tiny) span)
```

164

165 * guardamos

```
142
143 graph export "$graf/interestrates.png", as(png) replace
  (file D:\macroeconomics_ps3\graphs/interestrates.png not found)
  file D:\macroeconomics ps3\graphs/interestrates.png saved as PNG format
145 save "dataset2", replace
 file dataset2.dta saved
146
147 /*
 > En la gráfica podemos ver una tendencia descendente tanto de la tasa de interés nomi
 > nal como de la tasa de inflación observada. Sin embargo, la tasa de interés real pre
 > senta bastante volatilidad al inicio del periodo. Eventualmente las tres series conv
 > ergen hacia un periodo de estabilidad donde vemos curvas más suaves.
148
149
150 *****
151 /*
 > (e) Estime una serie de modelos lineales con el objetivo de averiguar qué variables
 > predicen la tasa de crecimiento de la inversión A%It. Utilice valores corrientes y r
 > ezagados del crecimiento en el producto, de la tasa de interés real, valores rezagad
 > os de la propia tasa de cambio en la inversión y combinaciones de estas variables.
152
153 /*
 > Para empezar, debemos unir las dos bases de datos que hemos estado utilizando durant
 > e este ejercicio
154
155 clear
156 use "dataset.dta"
157 drop date
158 rename time date //ajustes de la base original para fines prácticos
159
160 merge m:m date using "dataset2" // Hacemos un merge para unir las bases de datos
      Result
                                  Number of obs
                                              9
     Not matched
          from master
                                              9
                                                  (merge==1)
          from using
                                              0
                                                  (_merge==2)
     Matched
                                            107
                                                  (merge==3)
162 drop if (merge==1) // Borramos las observaciones que no son de interés para acotar
  > el análisTs hasta un periodo con disponibilidad de datos de todas las variables
  (9 observations deleted)
163 drop _merge
```

```
166 save "data final", replace
  file data final.dta saved
167
168
169 /*
 > Ahora, para este inciso sugerimos los siguientes modelos lineales
 > Modelo 1: Valores Corrientes
 > \( \Delta \) It = B0 + B1 crec_gdp + B2 real_rate + u1
 > Modelo 2: Valores Rezagados
 > \( \Delta \) It = B0 + B1 lag_crec_gdp + B2 lag_real_rate + u2
 > Modelo 3:
 > \Delta%It = B0 + B1 lag crec gdp + B2 lag real rate + B3 lag crec inv + u3
 > A%It = B0 + B1 crec gdp + B2 lag crec gdp + B3 real rate + B4 lag real rate + B5 lag
 > _crec_inv + u4
 > Modelo 5:
 > \Delta%It = B0 + B1 lag crec gdp + B2 lag real rate + B3 crec gdp + u5
170
171 \, * Fijamos variable para decir que es serie de tiempo
172 tsset date, quarterly
 Time variable: date, 1995q2 to 2021q4
          Delta: 1 quarter
173
174 * Generamos variables que faltan para estimar los modelos
175 gen lag_crec_gdp = crec_gdp[_n-1]
 (1 missing value generated)
176 replace lag_crec_gdp=0 if lag_crec_gdp==.
 (1 real change made)
178 gen lag crec inv = crec inv[ n-1]
  (1 missing value generated)
179 replace lag crec inv=0 if lag crec inv==.
 (1 real change made)
181 gen lag_real_rate= real_rate[_n-1]
  (1 missing value generated)
182 replace lag_real_rate=0 if lag_real_rate==.
 (1 real change made)
184 * Etiquetamos las variables para fines prácticos
185 label variable real_rate "Tasa de interés real"
186 label variable lag crec gdp "Lag de $\% \triangle Y$ "
```

187 label variable lag crec inv "Lag de \$\% \triangle Y\$ "

188 label variable lag_real_rate "Lag de tasa de interés real"

189

190 save "data_final", replace
 file data_final.dta saved

191

192 * Estimamos los modelos sugeridos anteriormente

193 * Modelo 1

194 regress crec_inv crec_gdp real_rate, robust

Linear regression

Number of obs	=	107
F(2, 104)	=	324.61
Prob > F	=	0.0000
R-squared	=	0.8183
Root MSE	=	1.9424

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
crec_gdp	1.610388	.0639424	25.18	0.000	1.483588	1.737188
real_rate	072909	.0445016	-1.64	0.104	1611573	.0153393
_cons	.057796	.2351087	0.25	0.806	4084333	.5240253

195 outreg2 using myreg, tex replace ctitle(Modelo 1) label $\underline{\text{myreg.tex}}$

dir : seeout

196

197 * Modelo 2

198 regress crec_inv lag_crec_gdp lag_real_rate, robust

Linear regression

Number of obs	=	107
F(2, 104)	=	1.03
Prob > F	=	0.3598
R-squared	=	0.0256
Root MSE	=	4.4985

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lag_crec_gdp	236322	.4595557	-0.51	0.608	-1.147638	.6749941
lag_real_rate	1309283	.0932604	-1.40	0.163	315867	.0540105
_cons	1.246967	.7349536	1.70	0.093	210474	2.704407

199 outreg2 using myreg, tex append ctitle(Modelo 2) label
 myreg.tex

<u>dir</u>: <u>seeout</u>

200

201 * Modelo 3

202 regress crec_inv lag_crec_gdp lag_real_rate lag_crec_inv, robust

Linear regression

Number of obs	=	107
F(3, 103)	=	1.08
Prob > F	=	0.3623
R-squared	=	0.0334
Root MSE	=	4.5022

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lag_crec_gdp	5699473	.5605863	-1.02	0.312	-1.681738	.5418433
lag_real_rate	1155964	.0953727	-1.21	0.228	3047457	.0735529
lag_crec_inv	.2072621	.1689397	1.23	0.223	1277899	.5423141
_cons	1.233509	.7398952	1.67	0.099	2338985	2.700917

203 outreg2 using myreg, tex append ctitle(Modelo 3) label $\underline{\text{myreg.tex}}$

<u>dir</u>: <u>seeout</u>

204

205 * Modelo 4

206 regress crec_inv crec_gdp lag_crec_gdp real_rate lag_real_rate lag_crec_inv, robust

Number of obs	=	107
F(5, 101)	=	204.10
Prob > F	=	0.0000
R-squared	=	0.8251
Root MSE	=	1.934
	F(5, 101) Prob > F R-squared	F(5, 101) = Prob > F = R-squared =

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
crec_gdp lag_crec_gdp real_rate lag_real_rate lag_crec_inv _cons	1.643014	.0619899	26.50	0.000	1.520042	1.765985
	.1792964	.1898499	0.94	0.347	1973147	.5559075
	0554349	.0502669	-1.10	0.273	155151	.0442812
	0382755	.0447774	-0.85	0.395	1271019	.0505509
	0330939	.1026437	-0.32	0.748	2367113	.1705236
	.0277779	.2766094	0.10	0.920	5209406	.5764965

207 outreg2 using myreg, tex append ctitle(Modelo 4) label ${\tt myreg.tex}$

<u>dir</u>: <u>seeout</u>

208

209 * Modelo 5

210 regress crec_inv lag_crec_gdp lag_real_rate crec_gdp, robust

Linear regression	Number of obs	=	107
-	F(3, 103)	=	217.26
	Prob > F	=	0.0000
	R-squared	=	0.8225
	Root MSE	=	1.9294

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lag_crec_gdp	.1227219	.0703829	1.74	0.084	0168661	.2623098
lag_real_rate	0556335	.0417051	-1.33	0.185	1383458	.0270787
crec_gdp	1.659287	.0732219	22.66	0.000	1.514068	1.804505
_cons	0867795	.2682607	-0.32	0.747	6188114	.4452523

```
211 outreg2 using myreg, tex append ctitle (Modelo 5) label
 myreg.tex
  <u>dir</u>: <u>seeout</u>
212
213 /*
 > Estime otra serie de modelos lineales con el objetivo de averiguar
 > qué variables predicen la tasa de crecimiento de la inversión A&It: a
 > las especificaciones del inciso anterior, agregue valores corrientes y/o > rezagados de la confianza empresarial del Inegi y de la confianza del
 > consumidor elaborado por el Inegi y el Banco de México.
214
215 * Primero vamos a limpiar la base de datos con los indicadores de confianza
216 clear
217 cls
218 import delimited "confidence.csv"
  (encoding automatically selected: ISO-8859-2)
  (3 vars, 60 obs)
219
220 * Antes que nada, hay que dar un formato de fecha a la variable date
221 gen periodo = n // ordenamos las fechas
222 gen time = tm(2017m1) + periodo-1 // Generamos una nueva variable de tiempo
223 drop periodo
224 format time %tm // Damos formato mensual
225 format time %10.0g // Damos un formato que nos permita transformar meses a trimestre
 > s
226 gen date2 = dofm(time) // Damos un formato de tiempo
227 format date2 %d // Asignamos un formato de día
228 gen month = month(date2) // Tomamos el mes de la fecha que generamos
229 gen year=year(date2) // Tomamos el año de la fecha que generamos
230 gen qdate = qofd(dofm(ym(year, month))) // creamos una variable de trimestres
231 format %tq qdate // Le damos formato de fecha
233 * Colapsamos para quedarnos, unicamente, con información trimestral
234 collapse (mean) conf_cons conf_empr, by(qdate)
236 rename qdate date
238 * guardamos
239 save "confidence.dta", replace
 file confidence.dta saved
```

```
240
241 * Pegamos a la base que hemos estado usando todo este tiempo*
242 clear
243 use "data final.dta"
245 merge m:m date using "confidence.dta" // Hacemos un merge para unir las bases de dat
     Result
                                  Number of obs
     Not matched
                                              87
                                              87
          from master
                                                  (merge==1)
                                                  (_merge==2)
                                              0
          from using
     Matched
                                              20
                                                  (merge==3)
246
247 drop if ( merge==1) // Borramos las observaciones que no son de interés para acotar
 > el anális a hasta un periodo con disponibilidad de datos de todas las variables
  (87 observations deleted)
248 drop _merge
249
250 * guardamos
251 save "data final 2", replace
 file data final 2.dta saved
253 *fijamos formato fecha
254 tsset date, quarterly
 Time variable: date, 2017q1 to 2021q4
         Delta: 1 quarter
256 *Etiquetamos variables
257 label variable conf cons "Indicador confianza del consumidor"
25% label variable conf empr "Indicador confianza empresarial"
259
260 * Estimamos los modelos sugeridos anteriormente
261 * Modelo 1
262 regress crec inv crec gdp real rate conf cons conf empr, robust
                                                   Number of obs
 Linear regression
                                                                               20
                                                   F(4, 15)
                                                                           685.28
                                                                           0.0000
                                                   Prob > F
                                                                     =
                                                   R-squared
                                                                     =
                                                                           0.9598
                                                                           1.8541
                                                   Root MSE
                               Robust
     crec inv
                 Coefficient std. err.
                                            t
                                                 P>|t|
                                                            [95% conf. interval]
                                                   0.000
     crec_gdp
                   1.494262
                              .0356274
                                           41.94
                                                            1.418324
                                                                           1.5702
    real_rate conf_cons
                  -.3527782
                              .2035868
                                           -1.73
                                                   0.104
                                                            -.7867131
                                                                          .0811567
                                           1.00
                   .1275645
                              .1279126
                                                   0.334
                                                            -.1450747
                                                                          .4002038
    conf_empr
                  -.0614797
                              .1061186
                                           -0.58
                                                   0.571
                                                             -.287666
                                                                          .1647067
                                                                         6.455983
        _cons
                  -1.958049
                              3.947563
                                          -0.50
                                                            -10.37208
                                                   0.627
```

<u>dir</u> : <u>seeout</u>

264

265 * Modelo 2

266 regress crec_inv lag_crec_gdp lag_real_rate conf_cons conf_empr, robust

Linear regression

Number of obs	=	20
F(4, 15)	=	0.95
Prob > F	=	0.4637
R-squared	=	0.2301
Root MSE	=	8.1153

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lag_crec_gdp lag_real_rate conf_cons conf_empr _cons	6033706	.6108321	-0.99	0.339	-1.905328	.6985872
	-1.627202	.9008911	-1.81	0.091	-3.547406	.2930019
	.4535006	.3336717	1.36	0.194	2577038	1.164705
	0895366	.7820063	-0.11	0.910	-1.756343	1.57727
	-10.46174	40.5016	-0.26	0.800	-96.78887	75.86538

267 outreg2 using myreg2, tex append ctitle(Modelo 2) label

myreg2.tex
dir : seeout

268

269 * Modelo 3

270 regress crec_inv lag_crec_gdp lag_real_rate lag_crec_inv conf_cons conf_empr, robust

Linear regression

Number of obs	=	20
F(5, 14)	=	0.98
Prob > F	=	0.4657
R-squared	=	0.2559
Root MSE	=	8.2586

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lag_crec_gdp lag_real_rate lag_crec_inv conf_cons conf_empr _cons	.5762406	.8966675	0.64	0.531	-1.34692	2.499401
	-1.932534	1.053467	-1.83	0.088	-4.191997	.3269288
	7900293	.4620719	-1.71	0.109	-1.781075	.2010164
	.5203958	.3706277	1.40	0.182	2745215	1.315313
	1047279	.7928252	-0.13	0.897	-1.805169	1.595713
	-12.14985	41.25324	-0.29	0.773	-100.6292	76.32955

271 outreg2 using myreg2, tex append ctitle(Modelo 3) label myreg2.tex

<u>dir</u>: <u>seeout</u>

272

273 * Modelo 4

274 regress crec_inv crec_gdp lag_crec_gdp real_rate lag_real_rate lag_crec_inv conf_con > s conf_empr, robust

Linear regression

Number of obs	=	20
F(7, 12)	=	946.13
Prob > F	=	0.0000
R-squared	=	0.9746
Root MSE	=	1.6482

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
crec_gdp lag_crec_gdp real_rate lag_real_rate lag_crec_inv conf_cons conf_empr _cons	1.504538	.0442133	34.03	0.000	1.408206	1.600871
	.4139447	.2824906	1.47	0.169	2015494	1.029439
	.3993161	.3945204	1.01	0.331	4602701	1.258902
	-1.123046	.4451287	-2.52	0.027	-2.092898	153194
	2845402	.1786118	-1.59	0.137	6737019	.1046216
	.2237026	.1195707	1.87	0.086	0368195	.4842248
	193828	.1399855	-1.38	0.191	4988303	.1111742
	1.411701	4.453049	0.32	0.757	-8.290659	11.11406

275 outreg2 using myreg2, tex append ctitle(Modelo 4) label myreg2.tex

<u>dir</u>: <u>seeout</u>

276

277 * Modelo 5

278 regress crec_inv lag_crec_gdp lag_real_rate crec_gdp conf_cons conf_empr, robust

Linear regression

crec_inv	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
<pre>lag_crec_gdp lag_real_rate</pre>	.0217697	.0522005	0.42	0.683	0901892	.1337285
	5586931	.2059294	-2.71	0.017	-1.000368	1170185
	1.508438	.0369127	40.87	0.000	1.429268	1.587608
	.1744222	.1239335	1.41	0.181	0913888	.4402331
	1411585	.1121933	-1.26	0.229	3817892	.0994721
	.5402863	4.116323	0.13	0.897	-8.288348	9.368921

279 outreg2 using myreg2, tex append ctitle(Modelo 5) label

myreg2.tex
dir : seeout

uii . seeou

280 281

282 log close

name: <unnamed>

log: D:\macroeconomics_ps3\tarea3_p2.smc1

log type: smcl

closed on: 12 Apr 2022, 10:00:48