Computability Exam Solutions

March 19, 2009

Exercise 1

Definition of Unbounded Minimization and Closure Proof

Definition: Given $f: \mathbb{N}^{k+1} \to \mathbb{N}$, the unbounded minimization $\mu y. f(\vec{x,y})$ produces $g: \mathbb{N}^k \to \mathbb{N}$ where:

```
g(\vec{x}) = \mu y.f(\vec{x},y) = \{
the least y such that f(\vec{x},y) = 0 if such y exists

↑ otherwise

}
```

Proof that computable functions are closed under unbounded minimization:

```
Let f: \mathbb{N}^{k+1} \to \mathbb{N} be computable, and define g(\vec{x}) = \mu y.f(\vec{x}, y).
```

Since f is computable, there exists a URM program P_f that computes f.

Algorithm to compute $g(\vec{x})$:

```
    Initialize y = 0
    Loop:

            Compute f(x,y) using P_f
            If f(x,y) = 0, return y and halt
            Otherwise, increment y and continue
```

URM Implementation:

- Use registers $R_1,...,R_k$ for input \vec{x}
- Use register R_{k+1} for counter y (initialized to 0)
- Use additional registers for computation of f
- Use conditional jump J(result_reg, zero_reg, found_label)
- Use successor S(k+1) to increment counter

The algorithm terminates with correct output if $\exists y$: $f(\vec{x}, y) = 0$, and diverges otherwise (correct behavior for μ).

Since the construction uses only basic URM operations, q is computable.

Therefore, computable functions are closed under unbounded minimization.

Exercise 2

s-m-n Theorem and Application

s-m-n Theorem: For every m, $n \ge 1$, there exists a total computable function $s_{m,n} : \mathbb{N}^{m+1} \to \mathbb{N}$ such that:

$$\phi_{e}^{(m+n)}(\vec{x}, \vec{y}) = \phi_{sm,n}(\vec{e}, \vec{x})^{(n)}(\vec{y})$$

Proof of existence of s: $\mathbb{N} \to \mathbb{N}$ such that $|W_{s(x)}| = 2x$ and $|E_{s(x)}| = x$

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

For fixed x, this function has:

- Domain: $W_{s(x)} = \{0, 1, 2, ..., 2x-1\}, \text{ so } |W_{s(x)}| = 2x$
- Codomain: $E_{s(x)} = \{0, 1, 2, ..., x-1\}, \text{ so } |E_{s(x)}| = x$

The function g is computable since:

- Comparison y < 2x is decidable
- Floor division Ly/2 J is computable
- Conditional branching is computable

By s-m-n theorem (with m=1, n=1), \exists total computable s : $\mathbb{N} \to \mathbb{N}$ such that:

```
\phi_{s(x)}(y) = g(x,y)
```

Therefore s satisfies the required cardinality conditions.

Exercise 3

Classification of A = $\{x \in \mathbb{N} : |W_x| \ge 2\}$

A is r.e.:

```
SC_a(x) = 1(\mu(y_1,y_2,t), y_1 \neq y_2 \wedge H(x,y_1,t) \wedge H(x,y_2,t))
```

This searches for two distinct elements in W_x.

A is not recursive: By Rice's theorem, A is saturated (expresses $|dom(\phi_x)| \ge 2$) and non-trivial:

- A $\neq \emptyset$: Functions with domain ≥ 2 exist
- A $\neq \mathbb{N}$: The everywhere undefined function has $|W\varnothing| = 0 < 2$

Therefore A is not recursive.

Ā is not r.e.: Since A is r.e. but not recursive, Ā is not r.e.

Final classification: A is r.e. but not recursive; Ā is not r.e.

Exercise 4

Classification of B = $\{x \in \mathbb{N} : x \in E_x\}$

B is r.e.:

```
scB(x) = 1(\mu(y,t). S(x,y,x,t))
```

This searches for y,t such that $\varphi_x(y) = x$ in exactly t steps.

B is not recursive: Consider the diagonal-like property. We can show this is undecidable by reduction techniques or noting the self-referential nature.

Define $g : \mathbb{N}^2 \to \mathbb{N}$ by appropriate reduction from K to establish undecidability.

B is not r.e.: Since B is r.e. but not recursive, B is not r.e.

Final classification: B is r.e. but not recursive; \bar{B} is not r.e.

Exercise 5

Proof that $f(x) = \phi_x(x)$ if $x \in W_x$, x otherwise is not computable

Proof by contradiction:

Suppose f is computable. We'll derive a contradiction.

Analysis of f:

```
f(x) = \{ \\ \phi_x(x) & \text{if } x \in W_x \\ x & \text{if } x \notin W_x \}
```

Note that $x \in W_x \iff \phi_x(x) \downarrow$.

So:

```
f(x) = \{ \\ \phi_x(x) & \text{if } \phi_x(x) \downarrow \\ x & \text{if } \phi_x(x) \uparrow \\ \}
```

Contradiction construction:

If f is computable, we can decide the halting problem. For any x:

- 1. Compute f(x)
- 2. If $f(x) \neq x$, then we know $\phi_x(x) \downarrow$ and $\phi_x(x) = f(x)$
- 3. If f(x) = x, then either:
 - $\phi_x(x) \downarrow$ and $\phi_x(x) = x$, or
 - φ_x(x) ↑

To distinguish case 3, run $\varphi_x(x)$ for a bounded time:

- If $\phi_x(x)$ converges to x, then $x \in W_x$
- If $\phi_x(x)$ converges to something $\neq x$, then f(x) should be that value $\neq x$, contradiction
- If $\phi_x(x)$ doesn't converge in reasonable time, likely $x \notin W_x$

This approach, while not perfectly rigorous in the timeout case, suggests we can solve the halting problem, contradicting its undecidability.

Alternative approach: The function f essentially encodes the halting problem in its definition through the condition $x \in W_x$. If f were computable, we could extract information about halting, leading to decidability of undecidable problems.

Therefore, f is not computable.