Lecture 10

CIS 341: COMPILERS

Announcements

- HW3: LLVM lite
 - Available on the course web pages.
 - Due: Weds., February 23rd at 11:59:59pm

START EARLY!!

- Midterm: March 3rd
 - In class
 - One-page, letter-sized, double-sided "cheat sheet" of notes permitted
 - See examples of previous exams on the web pages

Last Time: Lexing

```
Source Code
(Character stream)
if (b == 0) \{ a = 1; \}
                                                              Lexical Analysis
Token stream:
 if
           b
                      0
                ==
                                     a
                                                                    Parsing
Abstract Syntax Tree:
         Ιf
                                    Intermediate code:
                                                                 Analysis &
                                      %cnd = icmp eq i64 %b,
                                                              Transformation
    Eq
              Assn
                         None
                                     br il %cnd, label %12,
                                    label %13
                                    12:
 b
                                      store i64* %a, 1
                                     br label %13
                                                                  Backend
                                    13:
Assembly Code
 cmpq %eax, $0
 jeg 12
 jmp 13
12:
```

Lexing By Hand

- How hard can it be?
 - Tedious and painful!

• Problems:

- Precisely define tokens
- Matching tokens simultaneously
- Reading too much input (need look ahead)
- Error handling
- Hard to compose/interleave tokenizer code
- Hard to maintain

PRINCIPLED SOLUTION TO LEXING

Regular Expressions

- Regular expressions precisely describe sets of strings.
- A regular expression R has one of the following forms:
 - Epsilon stands for the empty string
 'a' An ordinary character stands for itself
 R₁ | R₂ Alternatives, stands for choice of R₁ or R₂
 R₁R₂ Concatenation, stands for R₁ followed by R₂
 R* Kleene star, stands for zero or more repetitions of R
- Useful extensions:

```
- "foo" Strings, equivalent to 'f''o''o'
- R+ One or more repetitions of R, equivalent to RR*
- R? Zero or one occurrences of R, equivalent to (ε|R)
- ['a'-'z'] One of a or b or c or ... z, equivalent to (a|b|...|z)
- [^'0'-'9'] Any character except 0 through 9
- R as x Name the string matched by R as x
```

Example Regular Expressions

- Recognize the keyword "if": "if"
- Recognize a digit: ['0'-'9']
- Recognize an integer literal: '-'?['0'-'9']+
- Recognize an identifier:
 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-'Z'])*

• In practice, it's useful to be able to *name* regular expressions:

```
let lowercase = ['a'-'z']
let uppercase = ['A'-'Z']
let character = uppercase | lowercase
```

How to Match?

- Consider the input string: ifx = 0
 - Could lex as: if x = 0 or as: if x = 0
- Regular expressions alone are ambiguous, need a rule for choosing between the options above
- Most languages choose "longest match"
 - So the 2nd option above will be picked
 - Note that only the first option is "correct" for parsing purposes
- Conflicts: arise due to two tokens whose regular expressions have a shared prefix
 - Ties broken by giving some matches higher priority
 - Example: keywords have priority over identifiers
 - Usually specified by order the rules appear in the lex input file

Lexer Generators

- Reads a list of regular expressions: $R_1, ..., R_n$, one per token.
- Each token has an attached "action" A_i (just a piece of code to run when the regular expression is matched):

- Generates scanning code that:
 - 1. Decides whether the input is of the form $(R_1 | ... | R_n) *$
 - 2. Whenever the scanner matches a (longest) token, it runs the associated action

lexlex.mll

DEMO: OCAMLLEX

Implementation Strategies

- Most Tools: lex, ocamllex, flex, etc.:
 - Table-based
 - Deterministic Finite Automata (DFA)
 - Goal: Efficient, compact representation, high performance
- Other approaches:
 - Brzozowski derivatives
 - Idea: directly manipulate the (abstract syntax of) the regular expression
 - Compute partial "derivatives"
 - Regular expression that is "left-over" after seeing the next character
 - Elegant, purely functional, implementation
 - (very cool!)

Finite Automata

- Consider the regular expression: '"'[^'"']*'"'
- An automaton (DFA) can be represented as:
 - A transition table:

	II	Non-"
0	1	ERROR
1	2	1
2	ERROR	ERROR

– A graph:

RE to Finite Automaton?

- Can we build a finite automaton for every regular expression?
 - Yes! Recall CIS 262 for the complete theory...
- Strategy: consider every possible regular expression (by induction on the structure of the regular expressions):

Nondeterministic Finite Automata

- A finite set of states, a start state, and accepting state(s)
- Transition arrows connecting states
 - Labeled by input symbols
 - Or ε (which does not consume input)
- *Nondeterministic*: two arrows leaving the same state may have the same label

RE to NFA?

- Converting regular expressions to NFAs is easy.
- Assume each NFA has one start state, unique accept state

RE to NFA (cont'd)

• Sums and Kleene star are easy with NFAs

DFA versus NFA

• DFA:

- Action of the automaton for each input is fully determined
- Automaton accepts if the input is consumed upon reaching an accepting state
- Obvious table-based implementation

• NFA:

- Automaton potentially has a choice at every step
- Automaton accepts an input string if there exists a way to reach an accepting state
- Less obvious how to implement efficiently

NFA to DFA conversion (Intuition)

- Idea: Run all possible executions of the NFA "in parallel"
- Keep track of a set of possible states: "finite fingers"
- Consider: -?[0-9]+
- NFA representation:

DFA representation:

Summary of Lexer Generator Behavior

- Take each regular expression R_i and it's action A_i
- Compute the NFA formed by $(R_1 \mid R_2 \mid ... \mid R_n)$
 - Remember the actions associated with the accepting states of the Ri
- Compute the DFA for this big NFA
 - There may be multiple accept states (why?)
 - A single accept state may correspond to one or more actions (why?)
- Compute the minimal equivalent DFA
 - There is a standard algorithm due to Myhill & Nerode
- Produce the transition table
- Implement longest match:
 - Start from initial state
 - Follow transitions, remember last accept state entered (if any)
 - Accept input until no transition is possible (i.e. next state is "ERROR")
 - Perform the highest-priority action associated with the last accept state; if no accept state there is a lexing error

Lexer Generators in Practice

- Many existing implementations: lex, Flex, Jlex, ocamllex, ...
 - For example ocamllex program
 - see lexlex.mll, olex.mll, piglatin.mll on course website
- Error reporting:
 - Associate line number/character position with tokens
 - Use a rule to recognize '\n' and increment the line number
 - The lexer generator itself usually provides character position info.
- Sometimes useful to treat comments specially
 - Nested comments: keep track of nesting depth
- Lexer generators are usually designed to work closely with parser generators...

lexlex.mll, olex.mll, piglatin.mll

DEMO: OCAMLLEX

lexlex.mll, olex.mll, piglatin.mll

DEMO: OCAMLLEX

Creating an abstract representation of program syntax.

PARSING

Parsing

```
Source Code
(Character stream)
if (b == 0) { a = 1; }
                                                             Lexical Analysis
Token stream:
 if
           b
                      0
                                               0
                                     a
                ==
                                                                   Parsing
Abstract Syntax Tree:
                                    Intermediate code:
         Ιf
                                                                Analysis &
                                     %cnd = icmp eq i64 %b,
                                                             Transformation
    Eq
                         None
              Assn
                                     br il %cnd, label %12,
                                    label %13
                                    12:
 b
                                     store i64* %a, 1
                                     br label %13
                                                                  Backend
                                    13:
Assembly Code
 cmpq %eax, $0
 jeg 12
 jmp 13
12:
```

Parsing: Finding Syntactic Structure

Syntactic Analysis (Parsing): Overview

- Input: stream of tokens (generated by lexer)
- Output: abstract syntax tree
- Strategy:
 - Parse the token stream to traverse the "concrete" syntax
 - During traversal, build a tree representing the "abstract" syntax
- Why abstract? Consider these three *different* concrete inputs:

- Note: parsing doesn't check many things:
 - Variable scoping, type agreement, initialization, ...

Specifying Language Syntax

- First question: how to describe language syntax precisely and conveniently?
- Previously we described tokens using regular expressions
 - Easy to implement, efficient DFA representation
 - Why not use regular expressions on tokens to specify programming language syntax?
- Limits of regular expressions:
 - DFA's have only finite # of states
 - So... DFA's can't "count"
 - For example, consider the language of all strings that contain balanced parentheses easier than most programming languages, but not regular.

• So: we need more expressive power than DFA's

CONTEXT FREE GRAMMARS

Context-free Grammars

Here is a specification of the language of balanced parens:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

Note: Once again we have to take care to distinguish meta-language elements (e.g. "S" and "→") from object-language elements (e.g. "(").*

- The definition is *recursive* S mentions itself.
- Idea: "derive" a string in the language by starting with S and rewriting according to the rules:
 - Example: $S \mapsto (S)S \mapsto ((S)S)S \mapsto ((\varepsilon)S)S \mapsto ((\varepsilon)S)\varepsilon \mapsto ((\varepsilon)\varepsilon)\varepsilon = (())$
- You can replace the "nonterminal" S by one of its definitions anywhere
- A context-free grammar accepts a string iff there is a derivation from the start symbol

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a lexical token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - $LHS \mapsto RHS$ A set of productions:
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

$$S \mapsto \varepsilon$$

How many terminals? How many nonterminals? Productions?

Another Example: Sum Grammar

A grammar that accepts parenthesized sums of numbers:

$$S \mapsto E + S \mid E$$

$$E \mapsto number \mid (S)$$

e.g.:
$$(1 + 2 + (3 + 4)) + 5$$

Note the vertical bar '|' is shorthand for multiple productions:

$$S \mapsto E + S$$
 4 productions
 $S \mapsto E$ 2 nonterminals: S, E
 $E \mapsto \text{number}$ 4 terminals: (,), +, number
 $E \mapsto (S)$ Start symbol: S

Derivations in CFGs

• Example: derive (1 + 2 + (3 + 4)) + 5

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

•
$$\mathbf{S} \mapsto \mathbf{E} + \mathbf{S}$$

$$\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$$

$$\mapsto (\underline{\mathbf{E}} + S) + S$$

$$\mapsto$$
 $(1 + \mathbf{S}) + \mathbf{S}$

$$\mapsto$$
 (1 + **E** + S) + S

$$\mapsto$$
 $(1 + 2 + \mathbf{S}) + \mathbf{S}$

$$\mapsto$$
 $(1 + 2 + \mathbf{E}) + \mathbf{S}$

$$\mapsto$$
 $(1 + 2 + (\mathbf{S})) + S$

$$\mapsto$$
 (1 + 2 + (**E** + S)) + S

$$\mapsto$$
 (1 + 2 + (3 + **S**)) + S

$$\mapsto$$
 (1 + 2 + (3 + **E**)) + S

$$\mapsto$$
 (1 + 2 + (3 + 4)) + **S**

$$\mapsto$$
 (1 + 2 + (3 + 4)) + **E**

$$\mapsto$$
 (1 + 2 + (3 + 4)) + 5

For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

$$\alpha A \gamma \mapsto \alpha \beta \gamma$$

(*substitute* β for an occurrence of A)

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.

From Derivations to Parse Trees

- Tree representation of the derivation
- Leaves of the tree are terminals
 - In-order traversal yields the input sequence of tokens
- Internal nodes: nonterminals
- No information about the order of the derivation steps

•
$$(1+2+(3+4))+5$$

 $S \mapsto E+S \mid E$
 $E \mapsto \text{number} \mid (S)$

From Parse Trees to Abstract Syntax

Derivation Orders

- Productions of the grammar can be applied in any order.
- There are two standard orders:
 - Leftmost derivation: Find the left-most nonterminal and apply a production to it.
 - Rightmost derivation: Find the right-most nonterminal and apply a production there.
- Note that both strategies (and any other) yield the same parse tree!
 - Parse tree doesn't contain the information about what order the productions were applied.

Example: Left- and rightmost derivations

Leftmost derivation:

•
$$\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}} + \mathbf{S}$$

 $\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + 2 + \underline{\mathbf{E}}) + \mathbf{S}$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}}) + \mathbf{S})$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}} + \mathbf{S})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + 2)) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + 4)) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + 4)) + \mathbf{E}$

 \mapsto (1 + 2 + (3 + 4)) + 5

Rightmost derivation:

$$\underline{S} \mapsto E + \underline{S} \\
\mapsto \underline{E} + 5 \\
\mapsto (\underline{S}) + 5 \\
\mapsto (E + \underline{S}) + 5 \\
\mapsto (E + E + \underline{S}) + 5 \\
\mapsto (E + E + \underline{E}) + 5 \\
\mapsto (E + E + (\underline{S})) + 5 \\
\mapsto (E + E + (E + \underline{S})) + 5 \\
\mapsto (E + E + (E + \underline{S})) + 5 \\
\mapsto (E + E + (E + \underline{E})) + 5 \\
\mapsto (E + E + (E + \underline{A})) + 5 \\
\mapsto (E + E + (E + \underline{A})) + 5 \\
\mapsto (E + E + (A + \underline{A})) + 5 \\
\mapsto (E + 2 + (A + \underline{A})) + 5 \\
\mapsto (1 + 2 + (A + \underline{A})) + 5$$

Loops and Termination

- Some care is needed when defining CFGs
- Consider:

$$\begin{array}{ccc} S & \longmapsto & E \\ E & \longmapsto & S \end{array}$$

- This grammar has nonterminal definitions that are "nonproductive".
 (i.e. they don't mention any terminal symbols)
- There is no finite derivation starting from S, so the language is empty.
- Consider: $S \mapsto (S)$
 - This grammar is productive, but again there is no finite derivation starting from S, so the language is empty
- Easily generalize these examples to a "chain" of many nonterminals, which can be harder to find in a large grammar
- Upshot: be aware of "vacuously empty" CFG grammars.
 - Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.