

C2M0025120D

Silicon Carbide Power MOSFET C2M MOSFET Technology

N-Channel Enhancement Mode

Features

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitances
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

Benefits

- · Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency

Applications

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC converters
- Battery Chargers
- Motor Drive
- Pulsed Power Applications

V_{DS}

1200 V

|_D @ 25°C

90 A

 $\boldsymbol{R}_{\text{DS(on)}}$

25 mΩ

Package

TO-247-3

Part Number	Package
C2M0025120D	TO-247-3

Maximum Ratings (T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain - Source Voltage	1200	٧	V _{GS} = 0 V, I _D = 100 μA	
V_{GSmax}	Gate - Source Voltage	-10/+25	٧	Absolute maximum values	
V_{GSop}	Gate - Source Voltage	-5/+20	٧	Recommended operational values	
	Continuous Drain Current	90	А	V _{GS} =20 V, T _C = 25°C	Fig. 19
I _D		60		V _{GS} =20 V, T _C = 100°C	
$I_{D(pulse)}$	Pulsed Drain Current	250	А	Pulse width t _P limited by T _{jmax}	Fig. 22
$P_{\scriptscriptstyle D}$	Power Dissipation	463	W	T _c =25°C, T _J = 150 °C	Fig. 20
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-55 to +150	°C		
T _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	
M_{d}	Mounting Torque	1 8.8	Nm lbf-in	M3 or 6-32 screw	

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V _{(BR)DSS}	Drain-Source Breakdown Voltage	1200			٧	V _{GS} = 0 V, I _D = 100 μA	
\/	Octo Thomas and Marketine	2.0	2.6	4	V	V _{DS} = V _{GS} , I _D = 15mA	Fig. 11
$V_{\text{GS(th)}}$	Gate Threshold Voltage		2.1		V	V _{DS} = V _{GS} , I _D = 15mA, T _J = 150 °C	
I _{DSS}	Zero Gate Voltage Drain Current		2	100	μΑ	V _{DS} = 1200 V, V _{GS} = 0 V	
I_{GSS}	Gate-Source Leakage Current			600	nA	V _{GS} = 20 V, V _{DS} = 0 V	
$R_{\text{DS(on)}}$	Drain-Source On-State Resistance		25	34	mΩ	V _{GS} = 20 V, I _D = 50 A	Fig.
*DS(on)	Brain course on state Resistance		43		11132	$V_{GS} = 20 \text{ V, } I_D = 50 \text{ A, } T_J = 150 ^{\circ}\text{C}$	4,5,6
g fs	Transconductance		23.6		S	V _{DS} = 20 V, I _{DS} = 50 A	Fig. 7
915			21.7			V _{DS} = 20 V, I _{DS} = 50 A, T _J = 150 °C	19.7
C_{iss}	Input Capacitance		2788			V _{GS} = 0 V	
C_{oss}	Output Capacitance		220		pF	V _{DS} = 1000 V	Fig. 17,18
C_{rss}	Reverse Transfer Capacitance		15			f = 1 MHz	
E _{oss}	C _{oss} Stored Energy		121		μJ	Vac = 25 mV	Fig 16
E _{AS}	Avalanche Energy, Single Pluse		3.5		J	I _D = 50A, V _{DD} = 50V	Fig. 29
E _{on}	Turn-On Switching Energy		1.4			V _{DS} = 800 V, V _{GS} = -5/20 V,	Fin. 05
E _{OFF}	Turn Off Switching Energy		0.3		mJ	$I_D = 50A$, $R_{G(ext)} = 2.5\Omega$, $L = 412 \mu H$	Fig. 25
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = 800 V, V _{GS} = -5/20 V	
t _r	Rise Time		32			I_D = 50 A, $R_{G(ext)}$ = 2.5 Ω , R_L = 16 Ω Timing relative to V_{DS}	F: 07
$t_{\text{d(off)}}$	Turn-Off Delay Time		29		ns		Fig. 27
t _f	Fall Time		28		[Per IEC60747-8-4 pg 83	
$R_{G(int)}$	Internal Gate Resistance		1.1		Ω	f = 1 MHz, V _{AC} = 25 mV, ESR of C _{ISS}	
Q_{gs}	Gate to Source Charge		46			V _{DS} = 800 V, V _{GS} = -5/20 V	
Q_{gd}	Gate to Drain Charge		50		nC	I _D = 50 A	Fig. 12
Q_g	Total Gate Charge		161			Per IEC60747-8-4 pg 83	

Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _{SD}	Diode Forward Voltage	3.3		٧	V _{GS} = - 5 V, I _{SD} = 25 A	Fig. 8, 9,
V SD	Diode i oi ward voitage	3.1		٧	$V_{GS} = -5 \text{ V, } I_{SD} = 25 \text{ A, } T_{J} = 150 \text{ °C}$	10
Is	Continuous Diode Forward Current		90		T _c = 25 °C	Note 1
t _{rr}	Reverse Recovery Time	45		ns	V _{GS} = - 5 V, I _{SD} = 50 A ,T _J = 25 °C	
Q _{rr}	Reverse Recovery Charge	406		nC	VR = 800 V dif/dt = 1000 A/µs	Note 1
I	Peak Reverse Recovery Current	13.5		А		

Note (1): When using SiC Body Diode the maximum recommended $V_{\rm GS}$ = -5V

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
Reuc	Thermal Resistance from Junction to Case	0.24	0.27	°0 /\		Fig. 21
R _{eJC}	Thermal Resistance from Junction to Ambient	·	40	°C/W		

Figure 1. Output Characteristics T_J = -55 °C

Figure 3. Output Characteristics T_J = 150 °C

Figure 4. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

Figure 7. Transfer Characteristic For Various Junction Temperatures

Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 150 °C

Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristic

| T₁ = 25 °C | T₅ < 200 μs | V_{6S} = 5 V | V_{6S} = 10 V | V_{6S} = 15 V | -60 | -100 | -1

-2

-1

0

0

-3

-4

Conditions:

Figure 13. 3rd Quadrant Characteristic at -55 °C

Figure 15. 3rd Quadrant Characteristic at 150 °C

Figure 16. Output Capacitor Stored Energy

Figure 17. Capacitances vs. Drain-Source Voltage (0-200 V)

Figure 18. Capacitances vs. Drain-Source Voltage (0-1000 V)

Figure 19. Continuous Drain Current Derating vs.
Case Temperature

Figure 21. Transient Thermal Impedance (Junction - Case)

Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 800V)

Figure 20. Maximum Power Dissipation Derating vs.

Case Temperature

Figure 22. Safe Operating Area

Figure 24. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 600V)

Figure 25. Clamped Inductive Switching Energy vs. $R_{\text{G(ext)}}$

Figure 27. Switching Times vs. $R_{\rm G(ext)}$

Figure 29. Single Avalanche SOA curve

Figure 26. Clamped Inductive Switching Energy vs.
Temperature

Figure 28. Switching Times Definition

Test Circuit Schematic

Figure 30. Clamped Inductive Switching Waveform Test Circuit

Figure 31. Body Diode Recovery Test Circuit

ESD Ratings

ESD Test	Total Devices Sampled	Resulting Classification
ESD-HBM	All Devices Passed 1000V	2 (>2000V)
ESD-MM	All Devices Passed 400V	C (>400V)
ESD-CDM All Devices Passed 1000V		IV (>1000V)

Package Dimensions

Package TO-247-3

Pinout Information:

- Pin 1 = Gate
- Pin 2, 4 = Drain
- Pin 3 = Source

POS	Inc	hes	Millimeters		
PUS	Min	Max	Min	Max	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.042	.052	1.07	1.33	
b1	.075	.095	1.91	2.41	
b2	.075	.085	1.91	2.16	
b3	.113	.133	2.87	3.38	
b4	.113	.123	2.87	3.13	
С	.022	.027	0.55	0.68	
D	.819	.831	20.80	21.10	
D1	.640	.695	16.25	17.65	
D2	.037	.049	0.95	1.25	
E	.620	.635	15.75	16.13	
E1	.516	.557	13.10	14.15	
E2	.145	.201	3.68	5.10	
E3	.039	.075	1.00	1.90	
E4	.487	.529	12.38	13.43	
е	.214	BSC	5.44 BSC		
N	(7)	3	3		
L	.780	.800	19.81	20.32	
L1	.161	.173	4.10	4.40	
ØΡ	.138	.144	3.51	3.65	
Q	.216	.236	5.49	6.00	
S	.238	.248	6.04	6.30	
Т	9°	11°	9°	11°	
U	9°	11°	9°	11°	
V	2°	8°	2°	8°	
W	2°	8°	2°	8°	

Recommended Solder Pad Layout

TO-247-3

Part Number	Package	Marking
C2M0025120D	T0-247-3	C2M0025120

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support