Trabajo Práctico 1 "Con 15 θ s discretizo alto horno"

Métodos Numéricos

Segundo cuatrimestre - 2015

Alto horno

El problema

El horno

- ▶ El alto horno se compone de un cilindro en cuyo interior se fusionan distintos tipos de materiales a altas temperaturas.
- ▶ La pared del horno esta compuesta por materiales resistentes al calor, que son expuestos a altas temperaturas.
- ► Asumimos que la temperatura en el interior del horno es $T_i = 1500^{\circ}$ C, y que en el exterior puede tomar distintos valores $T_e(\theta)$ en diferentes puntos de la pared.
- ► La distancia de la isoterma 500°C dentro la pared del horno respecto a la pared externa es importante para que la estructura no colpase.

Nos interesa

- Determinar la isoterma 500°C.
- Analizar como evoluciona el sistema ante distintos parámetros y evaluar distintos métodos para aproximar las temperaturas

El horno

- $ightharpoonup r_e = radio interior (mts.)$
- $ightharpoonup r_i = radio exterior (mts.)$
- ▶ $T_i = 1500 = \text{temp. pared interior.}$
- $T_e(\theta) = \text{temp. pared exterior en ángulo } \theta$.

El modelo

Sea $T(r,\theta): \mathbb{R}^2 \to \mathbb{R}$ la función de temperatura en el punto dado por las coordenadas polares (r,θ) , siendo r el radio y el ángulo.

Conocemos:

- La temperatura en la pared interior, 1500°C, i.e., $T(r_i, \theta) = 1500$ °C
- ▶ La temperatura en la pared exterior, $T(r_e, \theta) = T_s(\theta)$.

¿Qué buscamos?:

 $T(r,\theta)$ para todo punto de la pared del horno ($r_i \leq r \leq r_e$ y $\theta \in [0,2\pi]$), y así podemos calcular la posición de la isoterma 500^oC y determinar si la estructura es estable o no.

El modelo

¿Cómo buscamos la temperatura dentro de la pared?

Llamamos a nuestro amigo físico y nos dice que (después de un tiempito) los puntos internos van a cumplir:

$$\frac{\partial^2 T(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial T(r,\theta)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T(r,\theta)}{\partial \theta^2} = 0$$
 (1)

Ecuación de Laplace

Ecuación diferencial en derivadas parciales, utilizadas en muchos campos aplicados. En nuestro caso, describen las condiciones que se cumplen en el estado estacionario del sistema.

Discretización

- ► Transformamos el problema *continuo* en un problema *discreto*.
- ▶ En lugar de obtener una función $T(r, \theta)$ que describa la temperatura en todos los puntos, calculamos la temperatura en los puntos de la discretización y la llamamos t_{jk} .

Discretización (cont.)

Consideramos la siguiente discretización del horno:

- una partición $0 = \theta_0 < \theta_1 < ... < \theta_n = 2\pi$ en n ángulos discretos con $\theta_k \theta_{k-1} = \Delta \theta$ para k = 1, ..., n,
- ▶ una partición $r_i = r_0 < r_1 < ... < r_m = r_e$ en m+1 radios discretos con $r_j r_{j-1} = \Delta r$ para j=1,...,m

Llamamos $t_{jk} = T(r_j, \theta_k)$ al valor (desconocido) de la función T en el punto (r_j, θ_k) .

Relación con la derivada

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \underset{\text{Fijado } h}{\approx} \frac{f(a+h) - f(a)}{h}$$

Definición

Diferencia finita atrasada:

$$\frac{\partial T(r,\theta)}{\partial r}(r_j,\theta_k) \cong \frac{t_{j,k}-t_{j-1,k}}{\Delta r}$$

Diferencia finita adelantada:

$$\frac{\partial T(r,\theta)}{\partial r}(r_j,\theta_k) \cong \frac{t_{j+1,k}-t_{j,k}}{\Delta r}$$

Diferencias finitas (cont.)

Discretizamos las de segundo orden

$$\frac{\partial^{2} T(r,\theta)}{\partial r^{2}} (r_{j},\theta_{k}) \cong \frac{\partial \left(\frac{\partial T(r,\theta)}{\partial r}\right)}{\partial r} (r_{j},\theta_{k})$$

$$= \frac{\frac{t_{j+1,k}-t_{j,k}}{\Delta r} - \frac{t_{j,k}-t_{j-1,k}}{\Delta r}}{\Delta r}$$

$$= \frac{t_{j-1,k}-2t_{j,k}+t_{j+1,k}}{\Delta r^{2}}$$

Análogamente,

$$\frac{\partial T(r,\theta)}{\partial r}(r_{j},\theta_{k}) \cong \frac{t_{j,k}-t_{j-1,k}}{\Delta r}$$

$$\frac{\partial^{2} T(r,\theta)}{\partial \theta^{2}}(r_{j},\theta_{k}) \cong \frac{t_{j,k-1}-2t_{jk}+t_{j,k+1}}{(\Delta \theta)^{2}}$$

Finalmente, reemplazamos estas ecuaciones en (1)

$$\frac{\partial^2 T(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial T(r,\theta)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T(r,\theta)}{\partial \theta^2} = 0$$

Sistema de ecuaciones

Variables

Como ya dijimos, la temperatura en cada punto de la discretización, t_{jk} , $j=0,\ldots,m$ y $k=1,\ldots,n$.

Ecuaciones

- ► Sabemos que cada punto en la pared interior del horno vale 1500° C.
- Sabemos que cada punto en la pared exterior del horno vale $T_e(\theta)$.
- Sabemos que cada uno de los puntos restantes cumple exactamente una ecuación (i.e., (1)) que depende de sus cuatro vecinos.

Objetivo general

El programa debe formular el sistema obtenido a partir de las ecuaciones (1) - (6) y considerar dos métodos posibles para su resolución: mediante el algoritmo clásico de Eliminación Gaussiana y la Factorización LU.

Proposición

Sea $A \in \mathbb{R}^{n \times n}$ la matriz obtenida para el sistema definido por (1)-(6). Demostrar que es posible aplicar Eliminación Gaussiana sin pivoteo.

Implementación

- 1. Implementar estructuras para representar el sistema lineal.
- 2. Implementar el algoritmo de Eliminación Gaussiana y Factorizacón LU.
- 3. Implementar el armado del sistema lineal del problema del alto horno.

Analizando la solución del sistema

Una vez que tenemos la solución del sistema, con las temperaturas estimadas en los puntos de la discretización:

- ▶ Dada una dirección (ángulo), en qué punto la temperatura es de 500°C? Cómo calculamos la isoterma?
- ▶ Ok, ya tenemos la isoterma 500. Está muy lejos de la pared externa del horno? Cómo determinamos la distancia?

Se pide

Proponer e implementar al menos una alternativa para abordar los dos puntos anteriores.

Experimentación (1/2): Comportamiento del sistema

- Considerar al menos dos instancias de prueba, generando distintas discretizaciones para cada una de ellas y comparando la ubicación de la isoterma buscada respecto de la pared externa del horno. Se sugiere presentar gráficos de temperatura o curvas de nivel para los mismos, ya sea utilizando las herramientas provistas por la cátedra o implementando sus propias herramientas de graficación.
- ► Estudiar la proximidad de la isoterma buscada respecto de la pared exterior del horno en función de distintas granularidades de discretización y las condiciones de borde.

Ejemplo solución graficada

Experimentación (2/2): Evaluación de los métodos

- Analizar el tiempo de cómputo requerido para obtener la solución del sistema en función de la granularidad de la discretización.
- Considerar un escenario similar al propuesto en el experimento 1. pero donde las condiciones de borde (i.e., T_i y $T_e(\theta)$) cambian en distintos instantes de tiempo.
 - Para ello, se considera una secuencia de ninst vectores con las condiciones de borde, y las temperaturas en cada estado es la solución del correspondiente sistema de ecuaciones.
 - Se pide formular al menos un experimento de este tipo, aplicar los métodos de resolución propuestos de forma conveniente y compararlos en términos de tiempo total de cómputo requerido para distintos valores de ninst.

Consideraciones generales

- Informe que incluya una descripción detallada de los métodos implementados y las decisiones tomadas, experimentos realizados, junto con el correspondiente análisis y siguiendo las pautas definidas en el archivo pautas.pdf.
- El programa debe ser compilado, ejecutado y testeado utilizando los scripts de Python provistos, verificando que los tests pasen satisfactoriamente. Además, se debe respetar el formato especificado en el enunciado.
- Es muy importante explicar las hipótesis previas de cada experimento, detallando los parámetros para poder replicarlo. Además, la discusión debe desprenderse de los resultados obtenidos y no debe limitarse a describir qué pasa en el gráfico, sino también incluir una justificación (o intuición) del por qué de los resultados.

Cronograma sugerido

- Viernes 21/08: Formulación del sistema, estructuras para la representación de matriz.
- ▶ Viernes 28/08: Factorización LU, primeros experimentos, algoritmos para resolver cambios de estado.
- ▶ Jueves 03/09: Entrega TP1 a metnum.lab@gmail.com

Aplicación

Laboratorio de Sistemas Complejos

El Laboratorio de Sistemas Complejos (LSC), Departamento de Computación (DC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), es un grupo interdisciplinario dedicado al estudio de sistemas complejos en electroquímica y bioelectroquímica, ciencias de la vida, computación de alto rendimiento (HPC) y Grid Computing (GC).

