Fast Lightweight Suffix Array Construction (and Checking)

Stefan Burkhardt Juha Kärkkäinen

MPI für Informatik

CPM 2003, Morelia, June 25–27

Yet Another Suffix Array Construction Algorithm

Fast

- $\triangleright \mathcal{O}(n \log n)$ time for general alphabet
- fast in practice

Lightweight

- ▶ sublinear $(\mathcal{O}(n/\sqrt{\log n}))$ extra space in addition to input (string) and output (suffix array)
- less than n bytes in practice

Tradeoff

 $\triangleright \mathcal{O}(vn + n \log n)$ time in $\mathcal{O}(n/\sqrt{v})$ extra space for $v \in [2, n]$

Related work

time	alphabet	extra space	reference		
Fast in the worst case					
$\mathcal{O}(n)$	integer	> 1m bytos	Larsson & Sadakane '99		
$\mathcal{O}(n \log n)$	general	$\geq 4n$ bytes	many others		
Fast on average (string sorting + heuristics)					
$\Omega(n^2)$ worst	general	little	Manzini & Ferragina '02		
$\mathcal{O}(n\log n)$ avg.	general	iitti C	others		
Compressed suffix array					
$\mathcal{O}(n \log n)$	constant	6n bits	Lam & al. '02		
$\mathcal{O}(n\log\log\sigma)$	integer	$\mathcal{O}(n\log\sigma)$ bits	Hon & al. FOCS '03		

Algorithm Outline

- 1. Choose a sample of suffixes
- 2. Sort the sample
- 3. Sort all suffixes with the help of the sample

Step 2: Sort the sample ...

... and store the ranks

Step 3: Sort all suffixes

Order two suffixes by the first pair of

mismatching characters or

```
      6
      w h o 1?
      1
      h 40 w 2h 30 w h o 1?

      3
      w 2h 30 w h o 1?
      0
      w h 40 w 2h 30 w h o 1?
```

aligned sample suffixes (anchor pair)

How to choose the sample?

Regular sample (every *k*-th suffix)

- regularity => fast sorting
- no anchor pairs for most pairs of suffixes

```
w 3h o 7w h 50 w 2h o 6w h 40 w 1h o 7w h 50 w 2h o 6w h 40 w 1h o
```

Random sample (of size n/k)

- \triangleright expected distance to an anchor pair is k^2
- **sorting** time $\Omega(n^2/k)$ in the worst case
- not good for any k

Choose a v-periodic sample $\{i \in [0, n) \mid i \mod v \in D\}$ for a difference cover D modulo v

A difference cover D modulo v is a subset of [0, v) such that for all $i \in [0, v)$ there exist $j, k \in D$ with $i \equiv k - j \pmod{v}$

Example:

 $D = \{2, 4, 5\}$ is a difference cover modulo 7

\underline{i}	k-j
0	2-2
1	5 - 4
2	4 - 2
3	5 - 2
4	2 - 5
5	2 - 4
6	4 - 5

Choose a v-periodic sample $\{i \in [0, n) \mid i \mod v \in D\}$ for a difference cover D modulo v

A difference cover D modulo v is a
subset of $[0, v)$ such that for all $i \in [0, v)$
there exist $j, k \in D$ with $i \equiv k - j \pmod{v}$

\imath	k-j	
0	2-2	

$$1 \mid 5-4$$

$$2 | 4-2$$

Example:

$$D = \{2, 4, 5\}$$
 is a difference cover modulo 7

$$3 \mid 5-2$$

$$4 \mid 2-5$$

$$5 \mid 2-4$$

$$6 \mid 4-5$$

Choose a v-periodic sample $\{i \in [0, n) \mid i \bmod v \in D\}$ for a difference cover D modulo v

A difference cover D modulo v is a
subset of $[0, v)$ such that for all $i \in [0, v)$
there exist $j, k \in D$ with $i \equiv k - j \pmod{v}$

i	k-j
0	2-2
1	5 - 4
\mathbf{O}	1 9

Example:

$$D = \{2, 4, 5\}$$
 is a difference cover modulo 7

$$\begin{array}{c|cccc}
2 & 4-2 \\
3 & 5-2 \\
4 & 2-5 \\
5 & 2-4 \\
6 & 4-5
\end{array}$$

D-sample:

Key properties

- ightharpoonup ensures an anchor pair within distance v
- ► closest anchor pair can be found in constant time after $\mathcal{O}(v)$ time and space preprocessing
- ► [Colbourn & Ling '00]: difference cover of size $\mathcal{O}(\sqrt{v})$ is easy to compute for all $v \Longrightarrow$ sample size $\mathcal{O}(n/\sqrt{v})$
- ▶ v-periodic \Longrightarrow sample sorting in $\mathcal{O}(\sqrt{v}n + (n/\sqrt{v})\log n)$ time and $\mathcal{O}(v + n/\sqrt{v})$ space

Difference cover sample algorithm

- 1. Compute and preprocess the difference cover $\mathcal{O}(v)$ time and space
- 2. Sort the sample $\mathcal{O}(\sqrt{v}n + (n/\sqrt{v})\log n)$ time and $\mathcal{O}(v + n/\sqrt{v})$ space
- 3. Sort all suffixes in place
 - (a) Sort suffixes by first v characters $\mathcal{O}(vn + n \log n)$ time and $\mathcal{O}(\log n)$ extra space
 - (b) Finish sorting using anchor pairs $\mathcal{O}(n \log n)$ time and $\mathcal{O}(v + n/\sqrt{v})$ extra space

Total: $\mathcal{O}(vn + n \log n)$ time and $\mathcal{O}(v + n/\sqrt{v})$ extra space If $v = \log n$: $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n/\sqrt{\log n})$ extra space

Experimental results

LS = Larsson & Sadakane '99 MF = Manzini & Ferragina '02 DC = difference cover algorithm with v=64

	time [sec]		space [MB]			
text	LS	DC	MF	LS	DC	MF
bible (4.0M)	12	5.5	2.1	33	24	22
e.coli (4.6M)	14	5.6	2.1	38	27	25
gcc source (86M)	529	512	299	694	484	439
$(A)^{50M}$	160	494	8.3	401	280	252
(1K random) 50K	1222	2251	1M ^a	401	280	252
$(500 \text{K random})^{100}$	1311	581	1M ^a	401	280	252

^aRough estimate by extrapolation

Experimental results

text length = 50M alphabet size = 26 Worst Case = $(1K \text{ random})^{50K}$

Conclusion

Summary

- fast and lightweight suffix array construction in theory and practice
- based on difference cover samples

Extensions

- LCP computation
- sorting arbitrary subsets of suffixes

Future work

still faster implementation