Amendments to the Claims

	1. (Currently Amended) A general computer network controller <u>for a</u>
2	network node, coupled to a system area network, said controller comprising:
	a network protocol engine configured to schedule packets for transmission onto
4	the system area network;
	a data buffer configured to handle one or more payloads;
6	a fully associative context block configured to hold a plurality of last recently
	used contexts to provide a dynamic resource allocation scheme reflecting run time
8	situations;
	an address translation table coupled to said network protocol engine and
10	configured to:
	maintain inbound address mapping; and
12	store context information not currently stored in said context block; and
	a dedicated, programmable micro sequencer tightly coupled to said context block
14	and configured to:
	control said context block; and
16	handle control flow and process multiple types of network packets and
	protocols;
18	wherein said micro sequencer is packet format independent and network
	independent; and
20	wherein said contexts are updated by said micro sequencer, by an inbound
	scheduler and by said a-network protocol engine.
	2. (Previously Presented) The computer network controller of claim 1, further
2	comprising:
	a scalable memory array configured as a table for Inbound address mapping of
4	registered memory and access protection, and further configured as a means for keeping
	context information about all active channels.
	3. (Previously Presented) The computer network controller of claim 1

- wherein said fully associative context block couples said inbound scheduler and said network protocol engine, thereby facilitating an ability of said network controller to
- 4 pipeline tasks and execute in parallel.
 - 4. (Currently Amended) The computer network controller of claim 3,
- 2 wherein:

said context block is configured for dynamic allocation of contexts between

- 4 inbound remote direct memory access, inbound remote memory access and outbound remote memory access;
- two upper contexts are reserved for locally driven remote direct memory access;; and
- said context block is configured to store information including one or more of the following events:
- 10 expected sequence number of a next packet for sequence checking,
 - input gathering size in order to optimize use of an attached bus,
- 12 packet type defined by the network for a specific virtual channel,
 - accumulated message cyclic redundancy check for data integrity,
- 14 source addresses,
 - destination addresses,
- 16 mapping for remote direct memory access operations,
 - dedicated flags to facilitate new mapping,
- 18 word count zero detection, and
 - protection tag check; and
- wherein said events:

are received from said inbound scheduler, said micro sequencer and said

22 network protocol engine;

are synchronized by said context block; and

- are used by said micro sequencer to invoke, restart, switch or terminate a thread immediately.
 - 5. (Currently Amended) The computer network controller of claim 1,

^	1	
')	whe	rain
_	WILL	10111.

said micro sequencer is further configured to control said network protocol

4 engine;

said network protocol engine is configured to perform link injection control,

- based on feedback from a link layer and intervention from an operative system;; and said network protocol engine is further configured to schedule packets to the
- 8 network.
 - 6. (Previously Presented) The computer network controller of claim 1,
- wherein said inbound scheduler is configured to decode, schedule and invoke running tasks or allocate new tasks, based on:
- 4 i) packets received from the network,
 - -ii) memory mapped operations received from a bus attachment module,
- 6 iii) descriptors inserted in first-in, first-out work queues by a user application, and
 - iv) tasks received from said context block.
- 7. (Currently Amended) In a system area network comprising a plurality of host channel adapters, a plurality of target channel adapters and a switching fabric, each said adapter comprising:
- 4 <u>a network protocol engine configured to schedule packets for transmission onto</u> the system area network;
- a data buffer configured to handle one or more payloads;
 - a fully associative context block configured to hold a plurality of last recently
- 8 used contexts to provide a dynamic resource allocation scheme reflecting run time situations; and
- an address translation table coupled to said network protocol engine and configured to:
- 12 <u>maintain inbound address mapping; and</u>

store context information not currently stored in said context block; and

a dedicated, programmable micro sequencer tightly coupled to said context block and configured to:

10	control said context block and nandle control flow; and	
	process multiple types of network packets and protocols;	
18	a bus attachment module; and	
	a network link interface;	
20	wherein said micro sequencer is packet format independent and network	
	independent, and wherein said contexts are updated by said micro sequencer, by an	
22	inbound scheduler and by said a-network protocol engine,	
	a method for local and remote asynchronous completion control, the method	
24	comprising:	
	detecting a final packet of a message directed from a local node to a remote nod	e,
26	the final packet comprising:	
	an accumulated cyclic redundancy check covering the message; and	
28	an address of a process completion queue on the remote node;	-
	receiving the final packet at the remote node;	
30	at the remote node:	
	performing an integrity check on the final packet;	
32	signaling "receive complete" to the remote process completion queue; ar	nd
	issuing a response to the final packet to the local node; and	
34	at the local node, signaling "send complete" to a local process completion queue) .
	8. (Currently Amended) A protocol engine for a channel adapter configure	d
2	to interface a system area network with a network node, the protocol engine comprising	<u>;</u> :
	an inbound scheduler configured to schedule one or more of the following for	
4	each of a plurality of tasks: decoding, scheduling and invoking;	
	a multi-context micro sequencer configured to handle control flow for multiple	
6 communication channels between the network node and the system area network		
	wherein said multi-context micro sequencer is packet format independent and network	
8	independent;	
	a context block configured to store a set of least recently used contexts, wherein	l
10	each said context corresponds to one of the communication channels;	
	a data buffer configured to buffer payloads of packets for the multiple	

els:	and
	els;

a network protocol engine configured to schedule transmission of packets onto the

14 system area network;

wherein a subset of said set of contexts stored in said context blocks is reserved

16 for outbound RDMA (Remote Direct Memory Access); and

wherein a remainder of said contexts in said set of contexts are dynamically

- 18 <u>allocated among inbound RDMA, inbound RMA (Remote Memory Access) and</u> outbound RMA.
 - 9. (Previously Presented) The protocol engine of claim 8, wherein said multi-
- 2 context micro sequencer is further configured to:

detect page boundary crossing and word count zero; and

- perform an integrity check of a message, wherein the message comprises one or more packets.
 - 10. (Previously Presented) The protocol engine of claim 8, wherein said multi-
- 2 context micro sequencer is further configured to perform integrated local and remote completion.
 - 11. (Cancelled)
 - 12. (Cancelled)
 - 13. (Previously Presented) The protocol engine of claim 8, wherein each said
- 2 context stored in said context block comprises one or more of:

a source address;

4 a destination address;

RDMA operation mapping;

- 6 expected sequence number of a next packet;
 - an accumulated cyclic redundancy check; and
- 8 a set of dedicated flags for performing one or more of:

	word count zero detection;
10	packet integrity checking;
	sequence error checking;
12	protection tag checking; and
	data buffer management.

- 14. (Previously Presented) The protocol engine of claim 8, wherein said data
 2 buffer comprises a number of entries equivalent to the number of least recently used contexts stored in said context block.
- 15. (Previously Presented) The protocol engine of claim 8, wherein said data 2 buffer comprises:
 - multiple read ports; and
- 4 multiple write ports;
- wherein said multiple read ports and multiple write ports facilitate processing of multiple tasks in parallel by the protocol engine.
- 16. (Previously Presented) The protocol engine of claim 8, further comprising:
 2 one or more work queues configured to store descriptors inserted by applications executing on the network node; and
- 4 an inbound scheduler configured to schedule processing of said descriptors.
- 17. (Previously Presented) The protocol engine of claim 16, wherein said inbound scheduler is further configured to schedule:

receipt of a packet from the system area network;

- a memory-mapped operation received from the network node; and a task received from said context block.
- 18. (Previously Presented) The protocol engine of claim 8, further comprising:
 2 a first connection coupling the protocol engine to an internal bus of the network
 node; and

- a second connection coupling the protocol engine to the system area network.
 - 19. (Previously Presented) The protocol engine of claim 18, further
- 2 comprising:
 - a third connection coupling the protocol engine to an address translation table;
- 4 wherein the address translation table is configured to:
 - maintain inbound address mapping; and
- 6 store context information not currently stored in said context block.
 - 20. (Previously Presented) The protocol engine of claim 18, wherein the size of
- 2 packets exchanged between the protocol engine and the network node differ from the size of packets exchanged between the protocol engine and the system area network.