Mathematical Statistics II - Midterm Exam

October 29, 2019

- 1. Describe and prove the Central Limit Theorem (CLT).
- 2. Let X_1, \ldots, X_n be a random sample from the normal distribution, $N(\mu, \sigma^2)$. We know that the sample mean \overline{X} and the sample variance S^2 are independent.
 - (1) Find the distribution of the sample mean \overline{X} using the mgf of X_i .
 - (2) Find the distribution of

$$V = \frac{(n-1)S^2}{\sigma^2}.$$

(3) Find the distribution of

$$W = \frac{\overline{X} - \mu}{s/\sqrt{n}}.$$

- (4) Compute the mean and variance of W.
- 3. Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample following an exponential distribution with mean θ . We have order statistics $X_{(1)}, \ldots, X_{(n)}$ from X_1, \ldots, X_n .
 - (1) Find the pdf of $X_{(i)}$, i = 1, ..., n.
 - (2) Find the joint pdf of $X_{(i)}$ and $X_{(j)}$, where $1 \le i < j \le n$.
 - (3) Find a S.S for θ .
 - (4) Find the MLE of θ using a S.S for θ .
 - (5) Find the UE of θ using the pdf of MLE of θ an its mean.
 - (6) Find the MME of θ .
- 4. Let X_1, \ldots, X_n be a random sample from the distribution with a pdf

$$f(x|\theta) = \frac{2x}{\theta^2}I(0 \le x \le \theta), \quad \theta > 0.$$

where $I(\cdot)$ is the indicator function.

- (1) Find the MME of θ .
- (2) Find the MLE of θ .
- (3) Find the UE (unbiased estimator) of θ using the pdf of MLE for θ .
- 5. We have a random sample, X_1, \ldots, X_n with the following distribution.
 - (1) $N(0, \theta_1 = \sigma^2)$. Find the MLE of θ_1 using a S.S for θ_1 .
 - (2) We have a pdf of X_i ,

$$f(x|\theta_2) = \frac{1}{2}I(\theta_2 - 1 \le x \le \theta_2 + 1).$$

Find the MLE of θ_2 , if it exists.