Riconoscere che un linguaggio non è regolare

Pumping Lemma Sia $\mathfrak{L} \in \Sigma^*$ un linguaggio regolare. Allora esiste un $n \in N$ tale che per ogni $z \in \mathfrak{L}$, con $|z| \geq n$ esistono $u, v, w \in \Sigma^*$, dove:

- 1. z = uvw;
- 2. $|uv| \le n$;
- 3. |v| > 0;
- 4. $(\forall i \in \mathbb{N})(uv^iw \in L)$.

Sia $M=\langle\{q_0,\ldots,q_{n-1}\},\Sigma,\delta,q_0,F\rangle$ un ASFD con n stati tale che L=L(M). Sia $z=a_1,\ldots,a_m.m\geq n,z\in L$. Per $i=1,\ldots,n$ si consideri $\hat{\delta}(q_0,a_1\ldots a_i)$. Vengono attraversati quindi n+1 stati. Avendo per costruzione il nostro automa n stati esiste almeno uno stato \bar{q} raggiunto almeno 2 volte.

Avremmo quindi $\hat{\delta}(q_0, a_1 \dots a_{i_1}) = \bar{q} = \hat{\delta}(q_0, a_1 \dots a_{i_1} \dots a_{i_2})$. Dunque prendiamo $u = a_1 \dots a_{i_1}, v = a_{i_1+1} \dots a_{i_2}, w = a_{i_2+1} \dots a_m$. Dunque $\hat{\delta}(q_0, u) = \bar{q} = \hat{\delta}(q_0, uv) = \hat{\delta}(\bar{q}, v)$. Dato che $\hat{\delta}(q_0, uvw) = q'$ per qualche $q' \in F$ e $\hat{\delta}(q_0, uv) = \bar{q}$, allora $\hat{\delta}(\bar{q}, w) = q'$.

Per induzione si mostra che $\hat{\delta}(q_0, uv^i) = \bar{q}$ e quindi $\hat{\delta}(q_0, uv^iw) = q' \in F$.