Machine Learning Spectral Clustering

Kevin Moon (kevin.moon@usu.edu)
STAT/CS 5810/6655

Clustering

- Given data points $x_1, ..., x_n \in \mathbb{R}^d$
 - No labels ⇒ unsupervised learning
- **Goal**: Partition the set $\{x_1, \dots, x_n\}$ into disjoint subsets called clusters
 - Points in the same cluster are more "similar" to each other than they are to points in different clusters
 - Can be represented as a clustering map $C: \{1, ..., n\} \rightarrow \{1, ..., k\}$
 - The unsupervised analog to classification

of Clusters

• Different definitions of "similar" lead to different algorithms

Motivation

- k-means and Gaussian Mixture Models (which we'll cover next) assume convex clusters
- Kernel k-means (k-means + the kernel trick) can find nonconvex clusters
- Spectral clustering is another method that can find nonconvex clusters

Original Points

K-means (2 Clusters)

Outline

- 1. Graph theory
- 2. Similarity graphs
- 3. Graph Laplacian
- 4. Graph cuts
- 5. Relaxation of an optimization problem
- 6. Spectral clustering
- 7. Comparing clusterings/partitions via the ARI

Graphs

- A graph is a set of nodes/vertices V and edges E
 - G = (V, E)
- Vertices are often ordered for convenience
- Graphs connections described with an adjacency matrix
- The adjacency matrix W indicates the strength and direction of edges

Why graphs?

- Many data are naturally described as graphs
 - Social networks, molecules, chromosome interactions, routing networks, the human body, etc.
- Most data can be represented using a similarity graph
 - Data points → vertices
 - Edges determined by the similarity of the data points
- Graphs have a lot of structure that can be leveraged in ML
 - E.g. the manifold assumption
- Neural networks are (directed) graphs
 - Neurons are the vertices and edges denote flow of information

Undirected vs. directed graphs

Undirected graph

- $V = \{a, b, c, d, e, f, g\}$
- $E = \{ab, bc, cd, da, ag, gf, ef, ec\}$
- Edges are not directed
 - ab = ba

Directed graph

- $V = \{a, b, c, d, e, f, g\}$
- $E = \{ab, cb, dc, ad, ga, gf, fe, ec\}$
- Edges are directed
 - $ab \neq ba$

- Let's (mostly) consider undirected graphs for now
- We're also (for now) considering unweighted edges
- Simple graph: a graph with at most one edge between any two distinct nodes and no self-connecting edges (loops)
 - Most graphs in ML are of this type
- Multigraph: parallel edges and loops are allowed

https://commons.wikimedia.org/w/index.php?curid=12247695

https://commons.wikimedia.org/w/index.php?curid=92847820

- Walk: a sequence of edges which joins a sequence of vertices
- **Trail**: a walk in which all edges are distinct
- Path: a trail in which all vertices are distinct
- Connected graph: there exists a path between every pair of vertices
- Component: an induced subgraph (a subset of vertices and all of their edges) which is connected and which is connected to no other vertices

Trail from A to E, but not path (B vertex repeated)

- Degree of a vertex: the number of edges connected to a vertex
- Null graph: no edges between nodes
 - Degree of each vertex is zero
- Complete graph: all nodes are connected to all other nodes
 - Degree of each vertex is n-1
- Cycle: a path that starts and ends with the same vertex
- Cyclic graph: a graph that contains at least one cycle

- Acyclic Graph: a graph that contains no cycles
- Tree: a connected, undirected acyclic graph
 - Applications include decision trees, random forests, data structures

- Bipartite graph: a simple graph with vertex partition $V = \{V_1, V_2\}$ where every edge connects a vertex in V_1 to a vertex in V_2
 - G is a bipartite graph iff it has no cycles with odd length (hence trees are bipartite graphs)

- Planar Graph: a graph that can be embedded on a plane without any edges intersecting each other
- Application: integrated circuits

Wikipedia article on planar graphs

Weighted Graphs

- Each edge has a weight associated with it
- One approach: weights are associated with cost or distance
 - Graph structure (i.e. presence or absence of an edge) indicates viable paths
 - Weights indicate distance or cost
 - E.g. route planning, travel planning search engines, etc.
 - Shortest path algorithms take edge weights into account
 - What is the shortest path from light green to pink? From yellow to pink?

Minimal Spanning Tree

Consider a connected, weighted graph

 Find a subset of the edges that connects all vertices without any cycles and with the minimum total possible weight

 Application: laying cable in a new neighborhood

 Graph structure represents feasible paths (e.g. along roads)

Weights represent costs

 (e.g. distance, depth required, etc.)

Many algorithms exist

Adjacency and degree matrices

Example

Labelled graph	Degree matrix							Adjacency matrix						
	/ 2	0	0	0	0	0 \		/ 0	1	0	0	1	0 \	
$\binom{6}{2}$	0	3	0	0	0	0		1	0	1	0	1	0	
(4)	0	0	2	0	0	0		0	1	0	1	0	0	
	0	0	0	3	0	0		0	0	1	0	1	1	
(3)- (2)	0	0	0	0	3	0		1	1	0	1	0	0	
	0	0	0	0	0	1/		/ 0	0	0	1	0	0/	

- For weighted graphs, replace the 1's with edge weight
- Edges can be directed (one direction) or undirected (bidirectional)

Similarity Graphs

- Unlabeled data to be clustered: x_1 , ..., x_n
- Assume relationships between data points are captured entirely by a similarity graph
- Similarity graphs are defined by an affinity matrix

$$W = \begin{bmatrix} w_{11} & \dots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{n1} & \dots & w_{nn} \end{bmatrix}$$

• Weights are nonnegative, symmetric:

$$w_{ij} \ge 0$$
, $w_{ij} = w_{ji}$

- Associated graph: Nodes i and j are connected iff $w_{ij} > 0$
 - w_{ij} are the edge weights

Similarity Graphs

- Similarity graphs are defined by two things
- Graph structure (which edges are connected)
 - Examples
 - *k*-nn graph
 - ϵ —ball graph
 - Complete graph

Examples

$$w_{ij} = \exp\left(-\frac{1}{2\sigma^2} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2\right)$$
 11-nn graph
$$w_{ij} = \begin{cases} 1 & \text{if } \exists \text{ an edge between nodes } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}$$

Similarity Graphs

- Applications of k-nn graphs
 - Data compression, motion planning (e.g. of a robot), facilities location, manifold learning, density estimation
- Applications of ϵ -ball graphs
 - Similar to k-nn graphs including density estimation, spectral clustering, etc.

Graph Laplacian

• The (weighted) degree of a node x_i is

$$d_i \coloneqq \sum_{j=1}^{N} w_{ij}$$

• The degree matrix is the diagonal matrix

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & d_n \end{bmatrix}$$

- The unnormalized graph Laplacian is L=D-W
- Note: L is independent of the self-similarity weights since

$$L_{ii} = d_i - w_{ii} = \sum_{j \neq i} w_{ij}$$

Properties of the Graph Laplacian

1. For every $\mathbf{f} \in \mathbb{R}^n$

$$m{f}^T L m{f} = rac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$$

- 2. L is symmetric and PSD
- 3. The smallest eigenvalue of L is 0, and

$$\mathbf{1} = egin{bmatrix} 1 \ 1 \ dots \ 1 \end{bmatrix} \in \mathbb{R}^n$$

is a corresponding eigenvector.

4. The number of connected components of the similarity graph is equal to the dimension of the 0-eigenspace (i.e., the subspace of eigenvectors for the eigenvalue zero, which is also the nullspace of L)

Proofs

1.

$$f^{T}Lf = f^{T}Df - f^{T}Wf = \sum_{i=1}^{n} d_{i}f_{i}^{2} - \sum_{i,j} w_{ij}f_{i}f_{j}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_{i}f_{i}^{2} - 2\sum_{i,j} w_{ij}f_{i}f_{j} + \sum_{j=1}^{n} d_{j}f_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j} w_{ij}(f_{i}^{2} - 2f_{i}f_{j} + f_{j}^{2}) = \frac{1}{2} \sum_{i,j} w_{ij}(f_{i} - f_{j})^{2}$$

2. Follows from the first property and symmetry of W.

3.

$$L \cdot \mathbf{1} = D \cdot \mathbf{1} - W \cdot \mathbf{1} = \begin{vmatrix} d_1 \\ \vdots \\ d_n \end{vmatrix} - \begin{vmatrix} d_1 \\ \vdots \\ d_n \end{vmatrix} = \mathbf{0} = 0 \cdot \mathbf{1}$$

Normalized Graph Laplacian

• The normalized graph Laplacian is

$$\tilde{L} := D^{-1}L.$$

- \tilde{L} is symmetric and PSD
- The smallest eigenvalue of \tilde{L} is 0, and

$$\mathbf{1} = egin{bmatrix} 1 \ 1 \ dots \ 1 \end{bmatrix} \in \mathbb{R}^n$$

is a corresponding eigenvector.

• The number of connected components of the similarity graph is equal to the dimension of the 0-eigenspace (i.e., the subspace of eigenvectors for the eigenvalue zero, which is also the nullspace of \tilde{L})

Big Picture

- Spectral clustering determines clusters from the eigenvalue (i.e., spectral) decomposition of L or \tilde{L} .
- There are many ways to derive spectral clustering.
- We will focus on one particular way based on graph cuts.

Graph Cuts

- Assume there are two clusters in the data
- A graph cut is a partition of the graph into disjoint sets ${\cal A}$ and ${\cal B}$
 - $A, B \subseteq \{1, ..., n\}$
- Idea: determine clusters by finding a good graph cut
- In particular, find a cut such that:
 - w_{ij} is large if x_i , x_j are in the <u>same</u> cluster
 - w_{ij} is small if x_i , x_j are in <u>different</u> clusters
- One way to quantify this:

$$\min_{A} C(A, \bar{A})$$

- Where $C(A,B) = \sum_{i \in A} \sum_{j \in B} w_{ij}$
- \bar{A} = the complement of \hat{A}

The Mincut Problem

- Now assume K clusters
- Given a similarity graph/affinity matrix, we want to find a partition $A_1, ..., A_K$ of $\{1, 2, ..., n\}$ such that:
 - w_{ij} is large if x_i , x_j are in the <u>same</u> cluster
 - w_{ij} is small if x_i , x_j are in <u>different</u> clusters
- The mincut problem aims to minimize:

$$cut(A_1, ..., A_K) = \frac{1}{2} \sum_{k=1}^{K} C(A_k, \bar{A}_k)$$

with respect to the partition A_1, \dots, A_K

Other Graph Cut Problems

- Mincut unfortunately leads to small and often singleton clusters. Therefore some modifications have been proposed:
- RatioCut (Hagen and Kahng, 1992)

RatioCut
$$(A_1, \dots, A_K) = \frac{1}{2} \sum_{k=1}^K \frac{C(A_k, \overline{A_k})}{|A_k|}$$

where |A| = # of nodes in A.

• Normalized Cut (Ncut) (Shi and Malik, 2000)

$$Ncut(A_1, \dots, A_K) = \frac{1}{2} \sum_{k=1}^K \frac{C(A_k, \overline{A_k})}{vol(A_k)}$$

where $vol(A) = \sum_{i \in A} \sum_{j \in V} w_{ij}$ and V is the set of all nodes (vertices) in the graph.

Relaxations

- Unfortunately, introducing these "balancing" terms causes these problems to be NP-hard.
- Therefore we will consider *relaxed* versions of these optimization problems
- A relaxation of a constrained optimization problem is obtained by enlarging the feasible set so as to make the problem (more) tractable.
- We will see that relaxations of RatioCut and NCut can be solved in terms of the spectral decomposition of L and \tilde{L} , respectively.

- Assume K=2 (the argument generalizes but this case is simpler)
- We wish to minimize

RatioCut
$$(A, \bar{A}) = \frac{1}{2} \left[\frac{C(A, \bar{A})}{|A|} + \frac{C(A, \bar{A})}{|\bar{A}|} \right]$$

• Given $A \subseteq \{1,2,\ldots,n\}$, define $\boldsymbol{f}_A = \left(f_{A_1},\ldots,f_{A_n}\right)^T \in \mathbb{R}^n$ by

$$f_{A_i} = \begin{cases} +\sqrt{|\bar{A}|/|A|} & : i \in A \\ -\sqrt{|A|/|\bar{A}|} & : i \notin A \end{cases}$$

• Example: $n = 5, A = \{3,4\} \Rightarrow$

$$f_A = \begin{bmatrix} -\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{2}} & -\sqrt{\frac{2}{3}} \end{bmatrix}^T$$

• Claim: For all $A \subseteq \{1,2,\ldots,n\}$,

$$\mathbf{f}_A^T L \mathbf{f}_A = n \cdot \text{RatioCut}(A, \bar{A})$$

• Proof of Claim:

$$f_A^T L f_A = \frac{1}{2} \sum_{i,j} w_{ij} \left(f_{A_i} - f_{A_j} \right)^2$$

$$= \frac{1}{2} \sum_{i \in A, j \in \overline{A}} w_{ij} \left(\sqrt{\frac{|\overline{A}|}{|A|}} + \sqrt{\frac{|A|}{|\overline{A}|}} \right)^2 + \sum_{i \in \overline{A}, j \in A} w_{ij} \left(-\sqrt{\frac{|A|}{|\overline{A}|}} - \sqrt{\frac{|\overline{A}|}{|A|}} \right)^2$$

$$= \frac{1}{2} C(A, \overline{A}) \left(\frac{|\overline{A}|}{|A|} + \frac{|A|}{|\overline{A}|} + 2 \right) + \frac{1}{2} C(A, \overline{A}) \left(\frac{|A|}{|\overline{A}|} + \frac{|\overline{A}|}{|A|} + 2 \right)$$

$$= C(A, \overline{A}) \left(\frac{|\overline{A}|}{|A|} + \frac{|A|}{|\overline{A}|} + 2 \right)$$

$$= C(A, \overline{A}) \left(\frac{|A| + |\overline{A}|}{|\overline{A}|} + \frac{|\overline{A}| + |A|}{|A|} \right)$$

$$= n \left(\frac{C(A, \overline{A})}{|\overline{A}|} + \frac{C(A, \overline{A})}{|A|} \right) = n \cdot \text{RatioCut}(A, \overline{A})$$

• Furthermore, f_A satisfies the following two properties (group exercise):

1.
$$\mathbf{1}^T \mathbf{f}_A = 0$$

2.
$$\|\mathbf{f}_A\|^2 = n$$

• Therefore, RatioCut can be written as the following optimization problem:

$$\min_{A \subset \{1,...,n\}} \quad \boldsymbol{f}_A^T L \boldsymbol{f}_A$$
 $s.t. \quad \boldsymbol{1}^T \boldsymbol{f}_A = 0$ $\|\boldsymbol{f}_A\| = \sqrt{n}$

• Note that it would still be RatioCut without the above two constraints, but we include them to keep the relaxation close to the original problem.

- We can now state the relaxation
- We have written RatioCut as

$$\min_{A \subset \{1,...,n\}} \qquad \mathbf{f}_A^T L \mathbf{f}_A$$

$$s. t. \qquad \mathbf{1}^T \mathbf{f}_A = 0$$

$$\|\mathbf{f}_A\| = \sqrt{n}$$

A relaxation of RatioCut is

$$\min_{f \in \mathbb{R}^n} \qquad f^T L f$$
 $s.t. \qquad \mathbf{1}^T f = 0$
 $||f|| = \sqrt{n}$

Group Exercise

Recall: Given $A \subseteq \{1, 2, ..., n\}$, define $\mathbf{f}_A = (f_{A_1}, ..., f_{A_n})^T \in \mathbb{R}^n$ by

$$f_{A_i} = \begin{cases} +\sqrt{|\overline{A}|/|A|} & : i \in A \\ -\sqrt{|A|/|\overline{A}|} & : i \notin A \end{cases}$$

- 1. Verify that $\mathbf{1}^T \mathbf{f}_A = 0$ for all $A \subseteq \{1, \dots, n\}$
- 2. Verify that $||f_A||^2 = n$ for all $A \subseteq \{1, \ldots, n\}$
- 3. Determine the solution of

$$\min_{\boldsymbol{f} \in \mathbb{R}^n} \boldsymbol{f}^T L \boldsymbol{f}$$
s.t. $\mathbf{1}^T \boldsymbol{f} = 0$

$$\|\boldsymbol{f}\| = \sqrt{n}$$

where L = D - W is the unnormalized graph Laplacian.

4. How can you recover a solution to the RatioCut problem from the solution the relaxed problem?

Remarks

- In practice the similarity graph is chosen to have only one connected component (if there is more then one connected component, just cluster each one separately). So the 0-eigenspace has dimension 1, and there is no ambiguity in the choice of 1 as the smallest eigenvector.
- A similar analysis applies to K > 2 and Ncut.
- The gap between the optimal value of RatioCut and the optimal value of its relaxation can be arbitrarily large.

Spectral Clustering

Input: $x_1, ..., x_n$, desired number of clusters K, parameters of similarity graph

- 1. Construct a similarity graph and form the graph Laplacian L (or \tilde{L})
- 2. Determine the K smallest eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_K$ of L (or \tilde{L}) and corresponding eigenvectors $u_1, \ldots, u_K \in \mathbb{R}^n$
- 3. Set $\mathbf{y}_i = \begin{bmatrix} u_1^{(i)} & u_2^{(i)} & \dots & u_K^{(i)} \end{bmatrix}^T$, $i \in \{1, 2, \dots, n\}$
 - I.e. y_i is the ith row in the matrix $[oldsymbol{u}_1 \quad oldsymbol{u}_2 \quad ... \quad oldsymbol{u}_K]$
- 4. Cluster $\{y_i\}_{i=1}^n$ using K-means clustering, and assign $\{x_i\}_{i=1}^n$ to the corresponding clusters

Example

- This figure shows y_1, \ldots, y_n for the circular clusters dataset shown earlier.
- The mapping $x \mapsto y$ is actually a form of nonlinear dimensionality reduction (called Laplacian eigenmaps) that transforms the data to a space where k-means can be successfully applied.

Final Remarks

- Model selection: Choose K such that λ_{K+1} is the first "large" eigenvalue.
- In practice \tilde{L} is preferred to L.
- There is yet a third graph Laplacian defined as

$$\tilde{\tilde{L}} = D^{-\frac{1}{2}} L D^{\frac{1}{2}}$$

It has properties similar to L and \tilde{L} , but the spectral clustering algorithm needs to be tweaked.

• For a very thorough tutorial on spectral clustering see U. von Luxburg, "A Tutorial on Spectral Clustering", 2007.

Comparing clusterings

- Given two clusterings or partitions of the data, how do you measure their correspondence and discrepancy?
- One way: the Rand index
- Given data set $X = \{x_1, ..., x_n\}$ and two partitions of X
 - $S = \{S_1, ..., S_s\}$ is a partition of X into s subsets
 - $R = \{R_1, ..., R_r\}$ is a partition of X into r subsets
- Define the following:
 - a = # of pairs of elements in X that are in the same subset in S and the same subset in R
 - b = # of pairs of elements in X that are in different subsets in S and different subsets in R
 - c=# of pairs of elements in X that are in the same subset in S and different subsets in R
 - d=# of pairs of elements in X that are in different subsets in S and the same subset in R

The Rand Index

- Define the following:
 - a=# of pairs of elements in X that are in the same subset in S and the same subset in R
 - b=# of pairs of elements in X that are in different subsets in S and different subsets in R
 - c=# of pairs of elements in X that are in the same subset in S and different subsets in R
 - d=# of pairs of elements in X that are in different subsets in S and the same subset in R
- The Rand index:

$$RI = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}}$$

- Intuition: a+b is the number of agreements between R and S while c+d is the number of disagreements
- The Rand index is the probability that R and S will agree on a randomly chosen pair

The Adjusted Rand Index

- The adjusted Rand index is the corrected-for-chance version of the Rand index
 - Uses a permutation model
- Can summarize the overlap between S and R with a contingency table where $n_{ij} = |S_i \cap R_j|$

$$\widehat{ARI} = \underbrace{\frac{\sum_{ij} \binom{n_{ij}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}]/\binom{n}{2}}{\frac{1}{2} [\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}] - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}]/\binom{n}{2}}}_{\text{Max Index}} = \underbrace{\frac{\sum_{ij} \binom{n_{ij}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}]/\binom{n}{2}}{\sum_{i} \binom{b_{i}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}]/\binom{n}{2}}}_{\text{Expected Index}}$$

The Adjusted Rand Index

- Rand index is between 0 and 1
 - Perfect correspondence is 1
- ARI is between -1 and 1
 - Negative values indicate the index is less than the expected index
 - Perfect correspondence is 1

Further Reading

- "A Tutorial on Spectral Clustering," 2007
- https://en.wikipedia.org/wiki/Rand_index
- ESL Section 14.5.3