AIR Q ASSESMENT TN

Phase 5: Project Documentation& Submission:

Project objectives:

- The project involves analyzing air quality data to assess the suitability of air for specific purposes, such as breathing.
- The objective is to identify potential issues or deviations from regulatory standards and determine air probability based on various parameters.
- This project involves analysis objectives, collecting air quality data, designing relevant visualizations, building a predictive model.
 - Define objectives such as analyzing air quality trends, identifying pollution hotspots and building a predictive model for RSPM/PM10 levels using air quality dataset.

 $\textbf{Dataset Link:} \ \ \texttt{https://tn.data.gov.in/resource/location-wise-daily-ambient-air-quality-tamil-nadu-year-2014}$

Analyzing approach:

- Plan the steps to load the dataset and preprocess, visualizing the dataset and visualizing air quality data using different visualizing techniques.
- Using air quality dataset. This dataset may include information about air pollutants like PM2.5, PM10, CO, SO2, NO2, temperature, humidity, etc.
- Preprocessing the data: Handling missing values, outliers, and ensure it's in a suitable format machine learning.

Example: Checking for missing values using isnull() and notnull()

Filling for missing values using fillnull() and replace()

Loading the dataset:

Load your dataset into a pandas DataFrame, as we discussed in the previous response.

import pandas as pd

```
Import matplotlib.pyplot as plt
Import seaborn as sns
df=pd.read_csv("C:\\Air Q TN.csv")
print(df.head())
```

This will display the first few rows of the dataset, including column names and some sample data.

Output:

```
State City/Town/Village/Area \
       Stn Code Sampling Date
0
        38
                01-02-14 Tamil Nadu
                                                    Chennai
1
                01-07-14 Tamil Nadu
                                                    Chennai
         38
2
         38
                21-01-14 Tamil Nadu
                                                    Chennai
3
        38
                23-01-14 Tamil Nadu
                                                    Chennai
4
        38
                28-01-14 Tamil Nadu
                                                    Chennai
                    Location of Monitoring Station \
0 Kathivakkam, Municipal Kalyana Mandapam, Chennai
1 Kathivakkam, Municipal Kalyana Mandapam, Chennai
2 Kathivakkam, Municipal Kalyana Mandapam, Chennai
3 Kathivakkam, Municipal Kalyana Mandapam, Chennai
4 Kathivakkam, Municipal Kalyana Mandapam, Chennai
                                                                   NO2 \
                                   Agency Type of Location
                                                             S02
0 Tamilnadu State Pollution Control Board Industrial Area
                                                            11.0
                                                                 17.0
1 Tamilnadu State Pollution Control Board
                                           Industrial Area
                                                            13.0
                                                                 17.0
2 Tamilnadu State Pollution Control Board Industrial Area
                                                            12.0 18.0
3 Tamilnadu State Pollution Control Board Industrial Area
                                                            15.0 16.0
4 Tamilnadu State Pollution Control Board Industrial Area 13.0 14.0
  RSPM/PM10 PM 2.5
0
       55.0
                NaN
       45.0
1
                NaN
2
       50.0
                NaN
3
       46.0
                NaN
       42.0
                NaN
        print(df.info())
```

#	Column	Non-Null Count	Dtype			
0	Stn Code	2879 non-null	int64			
1	Sampling Date	2879 non-null	object			
2	State	2879 non-null	object			
3	City/Town/Village/Area	2879 non-null	object			
4	Location of Monitoring Station	2879 non-null	object			
5	Agency	2879 non-null	object			
6	Type of Location	2879 non-null	object			
7	S02	2868 non-null	float64			
8	NO2	2866 non-null	float64			
9	RSPM/PM10	2875 non-null	float64			
10	PM 2.5	0 non-null	float64			
dt C1tC4/4)						

dtypes: float64(4), int64(1), object(6)

memory usage: 247.5+ KB

None

print(df.describe())

Output:

	Stn Code	S02	NO2	RSPM/PM10 PM	2.5
count	2879.000000	2868.000000	2866.000000	2875.000000	0.0
mean	475.750261	11.503138	22.136776	62.494261	NaN
std	277.675577	5.051702	7.128694	31.368745	NaN
min	38.000000	2.000000	5.000000	12.000000	NaN
25%	238.000000	8.000000	17.000000	41.000000	NaN
50%	366.000000	12.000000	22.000000	55.000000	NaN
75%	764.000000	15.000000	25.000000	78.000000	NaN
max	773.000000	49.000000	71.000000	269.000000	NaN

print(df.isnull().sum())

Output:

Stn Code		0
Sampling Date	0	
State	0	
City/Town/Village/Area	0	
Location of Monitoring Station	0	
Agency	0	
Type of Location	0	
S02	11	
NO2	13	
RSPM/PM10	4	
PM 2.5	2879	
dtype: int64		

print(df['SO2'].mean())

Output:

```
11.503138075313808
    print(df['SO2'].median())
Output:
```

Visualization:

12.0

The graphic depiction of data and information is known as data visualization. Converting unstructured data into visual representations like maps, charts, graphs, and infographics helps users comprehend the data's patterns, trends, and relationships.

Histogram

Barchart

Heatmap

Linechart

Scatter plot

Histogram:

A histogram is a graph that shows the frequency of numerical data using rectangles. The height of a rectangle (the vertical axis) represents the distribution frequency of a variable (the amount, or how often that variable appears).

```
plt.title("HISTOGRAM")
plt.hist(df["NO2"])
plt.xlabel("NO2")
plt.ylabel("frequency")
plt.show()
```


Barchart:

A bar chart or bar graph is a chart or graph that presents categorical data with rectangular bars with heights or lengths proportional to the values that they represent. The bars can be plotted vertically or horizontally. A vertical bar chart is sometimes called a column chart.

```
plt.title("BAR PLOT")

x=df["City/Town/Village/Area"].value_counts().nlargest(10)

plt.bar(x.keys(),x.values)

plt.xlabel("cities")

plt.ylabel("counts")
```


Heatmap:

A heatmap is a graphical representation of data that uses a system of color coding to represent different values. Heatmaps are used in various forms of analytics but are most commonly used to show user behavior on specific web pages or webpage templates

```
numeric_columns = ['SO2', 'NO2', 'RSPM/PM10', 'PM 2.5']
    correlation_matrix = df[numeric_columns].corr()
    plt.figure(figsize=(8, 6))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',
linewidths=0.5)
    plt.title('Air Quality Correlation Heatmap')
    plt.show()
```


Line plot:

Line plots are used to display numerical, discrete data only, not the continuous data. Line plots organize the data by indicating the occurrences of each value on a number line. These graphs are easily constructed with small data sets, and allow for interpretation based on the frequency patterns that are revealed.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("C:\\Air Q TN.csv")
x=df["NO2"]
y=x*2
plt.plot(x,y)
plt.show()
```

Output:

Scatter plot:

The collected data of the temperature and humidity can be presented in the form of a scatter plot. Temperature is marked on the x-axis and humidity is on the y-axis. To calculate the humidity at a temperature of 60 degrees Fahrenheit, we need to first draw a line of best fit.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("C:\\Air Q TN.csv")
plt.title("scatter plot")
plt.scatter(df["NO2"],df["SO2"],color='blue')
plt.show()
```


Conclusion:

Concluding a project of air quality analysis involves the project definition and design thinking with various methods and techniques along the subject of the given project.

Thus we have outlined our project objectives with project definition, outlining the analysis approach by selecting the appropriate visualization techniques.