AE333

Mechanics of Materials

Lecture 6 - Mechanical Properties, Exam 1 Review Dr. Nicholas Smith Wichita State University, Department of Aerospace Engineering

February 6, 2019

schedule

- 6 Feb Mechanical Properties, Exam 1 Review, HW2 Due
- 8 Feb Exam 1
- 11 Feb Exam 1 Return, Axial Load
- 13 Feb Axial Load

outline

- stress-strain
- strain energy
- poisson's ratio
- shear stressstrain

stress-strain

stress-strain

- Most engineering materials can be characterized by their stressstrain diagram
- Comes from a tensile or compressive test, where a load is applied (gives stress) and the strain is measured (via an extensometer or strain gauge)
- *Engineering stress* is plotted on the y-axis vs. *engineering strain* on the x-axis

stress-strain

elastic behavior

- Most of the time, the linear region is the one we are most interested in
- In this region, the material is elastic, meaning when the load is removed the material will return to its original state

elastic behavior

- Because the stress-strain curve is a straight line, we can relate stress and strain with a single constant
- This constant is known as the *modulus of elasticity* or *Young's modulus*

$$\sigma = E\epsilon$$

plastic behavior

- Yielding occurs when stress increases beyond the *yield stress* or *elastic limit*, this is when plastic deformation occurs, meaning the material will not go back to its original shape
- Strain hardening is common in many metals, and means as more stress is applied the material becomes more stiff

plastic behavior

• Necking occurs when the material begins to have a noticeable "neck" due to being stretched very thin and lower forces are required to deform the material

true stress-strain

- True stress and strain use the actual material cross-section (instead of the original cross-section) to calculate stress and strain
- In the elastic region the difference is negligible, so in many cases we just stick with engineering strain, even if we know it is *wrong*

ductile materials

- Ductile materials can undergo large strains before failure
- One way to report how ductile a material is is known as percent elongation
- Steel, brass, molybdenum, and zinc exhibit similar ductile stressstrain characteristics
- Aluminum is often considered ductile, but itâTMs stress-strain behavior is a bit different

brittle materials

- Materials that exhibit little or no yielding before failure are called *brittle*
- Cast iron, concrete, and glass are common brittle materials
- Brittle materials fail easily in tension, but are very strong in compression

strain hardening

strain energy

strain energy

- Work in physics is defined as force times distance
- As a force is applied to a material, the energy from the work done by the load is stored in the material and called strain energy
- In engineering, we often use the strain energy density, or the amount of strain energy per unit volume of material

$$u=rac{1}{2}\sigma\epsilon$$

toughness

- Graphically, the area under the stress strain curve represents the strain energy density
- We call the entire region (usually for a ductile material) the *toughness*
- Some hardened steels have a high failure strength, but are not very ductile, this gives them a lower toughness

example 3.3

The aluminum rod shown has a circular cross-section. Determine the elongation of the rod when load is applied using the given stress-strain diagram.

poisson's ratio

poisson's ratio

- When a material is stretched in one direction, it tends to contract in the transverse direction
- The ratio of transverse to axial strain is called *Poisson's ratio*

$$u = -rac{\epsilon_{transverse}}{\epsilon_{axial}}$$

shear stress-strain

shear stress-strain

- It can be experimentally difficult to obtain a state of pure shear, but a common method for many materials is to place a thin tube in torsion
- For most engineering materials, the shear stress-strain behavior is linear in the elastic region, but has a different constant relating stress to strain, known as the *Shear Modulus*

$$au = G \gamma$$

elastic constants

• For most materials, E, G and ν are related by the following expression

$$G=rac{E}{2(1+
u)}$$

example 3.5

Determine G for the specimen shown. Also find the maximum distance d, that the top could be displaced horizontally while remaining elastic. What force V is required to cause this displacement?

review

exam

- 4 questions
- Same equation sheet as assessment test will be provided
- Follow directions

topics

- Chapter 1 stress
 - Equilibrium
 - Internal forces
 - Normal stress
 - Shear stress
 - Allowable stress, limit state design

topics

- Chapter 2 strain
 - Deformation
 - Normal strain
 - Shear strain

topics

- Chapter 3 mechanical behavior
 - Stress-strain
 - Strain energy
 - Poisson's ratio
 - Shear stress-strain