

IN-DEPTH: DATA PROCESSING

March 23, 2015

Stacie Wolny , Brad Eichelberger and Dave Fisher swolny @ stanford.edu beichelb @ stanford.edu davefisher@stanford.edu

PREPARING INPUTS

SPATIAL INPUT LAYERS

- Have all data in the same projected coordinate system
- Check the units
- Use an appropriate resolution for your goals
 - Overall detail needed
 - Interaction between layers
 - Speed/memory

Stream buffers
← or
threat distance

r						
P	R	0	J	Ε	C	Т

Watershed	Resolution	Sediment Retention	Sediment Export
Guabas	90m	1,268,257	97,685
	30m	1,081,782	86,769
Fraile	90m	2,208,148	87,933
	30m	1,746,993	69,087

Resampling coarse layers

LAND USE

natural capital

Does it capture the detail you need?

- Habitat: Is the species' habitat represented?
- Carbon: Forest age classes?
- Nutrient/sediment: Different fertilizer/erosion practices
- Terrestrial: Do you have differentiating model coefficients?

LULC classes

- Bare rock Grass
- Bare soil Native montane bunchgrass
- Coffee Shrub
- Evergreen forest Unpaved road
- Forest Urban
- Forest plantation Water
- General agriculture

SOILS

natural capital

- If in the U.S., try USDA Soil Data Viewer
- If working with other soil databases...

SOILS

- If in the U.S., try USDA Soil Data Viewer
- If working with other soil databases...
 - Soil depth: add up horizons or find max depth field
 - AWC: Sum of provided AWC values across horizons

SOILS

- If in the U.S., try USDA Soil Data Viewer
- If working with other soil databases...
 - Soil depth: add up horizons or find max depth field
 - AWC: Sum of provided AWC values across horizons
 - Erodibility: %sand/silt/clay/carbon in top horizon; use table to convert to K values
 - Mapping unit value
 = weighted average across soil units

$$K_{mu} = (K1*.6) + (K2*.4)$$

TOPOGRAPHY/HYDROLOGY

- Preparing the DEM: Mosaic, fill holes, fill sinks, burn streams
- If reprojecting, don't use Nearest Neighbor
- Verify watersheds and/or create with ArcHydro/ArcSWAT/AGWA/BASINS...
- Determine threshold flow accumulation:

Threshold = 10,000

Threshold = 100

ROUTEDEM

A nifty new InVEST tool that:

- Resolves flat areas
- Fills pits

DEM

D-8

- Resolves flat areas
- Fills pits
- D-Infinity flow direction

ROUTEDEM

natural capital

A nifty new InVEST tool that:

- Resolves flat areas
- Fills pits
- D-Infinity flow direction

D-Infinity

ROUTEDEM

A nifty new InVEST tool that:

- Resolves flat areas
- Fills pits
- D-Infinity flow direction
- Flow accumulation

Flow accumulation

Streams 10000

- Resolves flat areas
- Fills pits
- D-Infinity flow direction
- Flow accumulation
- (Multiple) stream definition

ROUTEDEM

Distance to stream

- Resolves flat areas
- Fills pits
- D-Infinity flow direction
- Flow accumulation
- (Multiple) stream definition
- Distance to stream

ROUTEDEM

natural capital

Slope

- Resolves flat areas
- Fills pits
- D-Infinity flow direction
- Flow accumulation
- (Multiple) stream definition
- Distance to stream
- Slope

CLIMATE

- Precipitation from weather stations, gridded local or global data, climate change scenarios
- Derivative layers: Potential ET, Actual ET, Rainfall erosivity
- Average over 10+ years
- If weather stations:
 - Best to have full coverage
 - Test out interpolation methods
 - Adjust for elevation?

Build a **script** or a **workflow** that takes data from its raw form to InVEST-ready

- Document methods as you go
- Reproduce and share easily
- Easily plug in a new dataset later on

natural capital

Different options and technologies...

Desktop GIS:

- ArcGIS ModelBuilder
- QGIS Graphical Modeler

...more options

Scripting languages:

- Python shapely, gdal, arcpy
- Rsp, rgdal, raster, rgeos

```
library(rgdal)
 library(raster)
 library(rgeos)
 library(rasterVis)
 setwd("C:/Users/dfisher5/Documents/WestCoastAquatic/CV/output/9Dec2014 310
 ce.whole <- raster("outputs/coastal_exposure/1_i_coastal_exposure.tif")</pre>
 regions.shp <- readOGR(dsn="C:/Users/dfisher5/Documents/WestCoastAquatic/da
 regions <- spTransform(regions.shp, CRS(projection(ce)))</pre>
 ce <- mask(ce.whole, regions)</pre>
 vals <- getValues(ce)</pre>
 summary(vals)
 range <- max(vals, na.rm=T) - min(vals, na.rm=T)</pre>
 p25 <- min(vals, na.rm=T) + range/4
 p75 <- max(vals, na.rm=T) - range/4
 ce.cat <- ce
 lows <- which(vals <= p25)
 ce.cat[lows] <- 1</pre>
 meds <- which(vals > p25 & vals <= p75)
 ce.cat[meds] <- 2</pre>
highs <- which(vals > p75)
 ce.cat[highs] <- 3</pre>
 bark.ex <- unlist(extract(ce.cat, regions[1,]))</pre>
```


Keep track of InVEST runs

 Store input parameters with model outputs

Duplicate a past run,
 alter a single
 parameter

BATCH PROCESSING

natural capital

Why? Many scenarios, sensitivity testing, uncertainty analysis...

Requirements:

- Python programming skills
- Windows only, Python 2.7 only

How?

- Export script from a model
- Lots of Python libraries to install

Details here:

_ D X Coastal Vulnerability Assessment Tool File Development Save to python script... InVEST Version 3.1.1 (32bit) | Model documentation | Report an issue Save to archivable JSON... Save args dict to file... Output Area: Sheltered/Exposed? both C:\installed_software\InVEST\InVEST_3_1_1_x86\coastal_vulne Workspace Results Suffix (Optional) C:\installed_software\InVEST\InVEST_3_1_1_x86\CoastalProtect Area of Interest (Vector) Land Polygon (Vector) C:\installed_software\InVEST\InVEST_3_1_1_x86\Base_Data\M C:\installed_software\InVEST\InVEST_3_1_1_x86\Base_Data\M Bathymetry Layer (Raster) Layer Value if Path Omitted C:\installed_software\InVEST\InVEST_3_1_1_x86\Base_Data\M Relief (Raster) Parameters reset to defaults. **Quit** Reset

https://code.google.com/p/invest-natcap/wiki/ScriptingInVESTOnWindows

INTERPRETING OUTPUTS

SCRUTINIZING RESULTS

- No areas of missing data
- Spatial pattern makes sense
- Model limitations how do they affect your interpretation?
- Uncertainty in inputs
- Output values look like they're in the right ballpark...

Threshold	Sensitivity	Specificity	TSS	AUC
0.0	00 1.00	0.00	1.00	0.87
0.0	01 1.00	0.00	1.00	
0.0	02 1.00	0.00	1.00	
0.0	1.00	0.00	1.00	
0.0	04 1.00	0.00	1.00	
0.0	05 1.00	0.00	1.00	
0.0	06 1.00	0.00	1.00	
0.0	1.00	0.00	1.00	
0.0	08 1.00	0.02	0.98	
0.0	09 1.00	0.03	0.98	
0.	1.00	0.03	0.98	
0.	11 1.00	0.03	0.98	
0.	12 1.00	0.03	0.98	
0.	13 1.00	0.04	0.96	
0.:	14 1.00	0.05	0.95	
0.:	15 1.00	0.05	0.95	
0.	16 0.95	0.08	0.95	
0.:	17 0.95	0.10	0.94	
0.:	18 0.95	0.12	0.93	
0.:	19 0.95	0.12	0.93	
0.3	20 0.95	0.12	0.93	
	24 0.05	0.43	0.03	

CALIBRATION

Inputs (like climate):

- Average over at least 10 years if possible
- Match time period with observations of services

Observed data (stream flow etc)

- Averaged over same 10+ years
- Match units with InVEST outputs

Do calibration before valuation

Nitrogen loading, Hainan, China

natural

capital

VALIDATION

Comparing model outputs with observed data

- Field data, stream gauge data, etc.
- Regressions, Receiver Operator Curves (ROC)

VISUALIZING RESULTS - OVERLAY WITH OTHER DATA

Carbon stock + tiger habitat

Services provided within tiger habitat versus outside

COMPARE CHANGE

Percent change can be very useful...

Return on Investment

Total budget (US\$ millions)

RANK ACROSS MULTIPLE SERVICES

Carbon

x 1

-

=

Normalized

Normalized

1.0

0.35

x 2

Total Relative ES provision

- natural capital
- Can aggregate within countries, administrative zones, land cover classes... Zonal Statistics
- Do the results cover the whole area of interest?

Serviceshed: A specific area that provides a service to a group of people

- Hydrology: watershed
- Pollination: foraging range
- Recreation: travel distance

If servicesheds overlap, total service > supply

natural capital

TABLE

Ecosystem Service	Infantry Training Capacity	Vehicle Training Capacity	Puget Sound Prairie Sustainability	Timber Production	Carbon Sequestration
Measure Management Scenarios	Suitable area (1000 ha)	Suitable area (1000 ha)	Low-risk habitat (1000 ha)	Net present value (1M \$)	Biomass (1000 Mg)
High Budget-	16.9	4.86	5.77	74.9	375
Decreased Training	(7%)	(5%)	(28%)	(0%)	(57%)
High Budget-	16.0	4.90	4.45	63.6	130
Increased Training	(1%)	(6%)	(-1%)	(-15%)	(-46%)
Business-As-Usual	15.9	4.62	4.51	74.9	239
	(0%)	(0%)	(0%)	(0%)	(0%)
Low Budget-	16.0	3.55	4.52	74.9	343
Decreased Training	(1%)	(-23%)	(0%)	(0%)	(44%)
Low Budget-Increased	15.1	3.60	3.98	62.1	92
Training	(-5%)	(-22%)	(-12%)	(-17%)	(-62%)

natural capital

BAR CHART

natural capital

TRADEOFF PLOT

natural capital

DETAIL MAP

- Direct map outputs from InVEST
- Provides spatial distribution of absolute biophysical or economic values for user defined GIS units

natural capital

MANAGEMENT UNIT MAP

- Aggregate pixel-based value to meaningful management unit (e.g., training area, subwatershed)
- May convert to consistent measures for comparison across services (e.g., relative contribution of each training area to total provision of each service)

natural capital

CHANGE MAP

- Visualize changes across scenarios
 - Biophysical/economic value per pixel
 - Biophysical/economic value per management unit
 - Number of services improved/degraded
- Highlight general trend of changes across scenarios and areas requiring more attention in resource management and monitoring

RESOURCES

InVEST User Guide:

http://naturalcapitalproject.org/download.html

NatCap User forum:

http://forums.naturalcapitalproject.org/

Stacie Wolny and Brad Eichelberger swolny @ stanford.edu beichelb @ stanford.edu