Fluid: Resource-aware Hyperparameter Tuning Engine

Peifeng Yu[†], Jiachen Liu[†], Mosharaf Chowdhury

† Equal contribution

Outline

I. Background and Motivation

2. Abstraction and Algorithms

3. Evaluation

- Hyperparameters
 - # of layers/# of neurons
 - Dropout rate
 - # of channels
 - Learning rate
 - Optimizer parameters
 - Etc.

Non-differentiable & high dimensional search space

- Evaluation of hyperparameters is time/resource consuming
 - train a model to know if it works

- Many algorithms & techniques
 - Random/Grid
 - Model-based config generation
 - Early stopping/successive halving
 - Many others

- Direct interaction with the cluster to execute trials
- Trials gets executed in FIFO order

Trials Execution

Trials Execution

- Lack of elasticity reduces utilization
 - Existing trials can not easily use new idle workers
- High utilization != useful work
 - Asynchronous Successive Halving (ASHA)
 - Trial concurrency == # of workers
 - Can not scale up beyond a certain # of workers

• Yet another hyperparameter tuning algorithm?

Trials Execution

- What about existing algorithms?
 - Mostly still FIFO
- Execution is tightly coupled with algorithm
 - Hard to apply to other algorithms
 - Hard to improve w/o deep knowledge of the algorithm itself

All problems in computer science can be solved by another level of indirection

--- Butler Lampson

Hyperparameter Execution Engine: Fluid

Hyperparameter Execution Engine: Fluid

Execution

Hyperparameter Execution Engine: Fluid

- Wide variety of tuning algorithms
 - Random/Iterative/Sequential
 - ✓ TrialGroup

- Heterogeneity & dynamicity
- ✓ Multiple source of parallelism
 - Inter-GPU: elastic distributed training
 - Intra-GPU: Nvidia MPS
- ✓ StaticFluid/DynamicFluid

Outline

I. Background and Motivation

2. Abstraction and Algorithms

3. Evaluation

The Interface: TrialGroup

Definition

A group of training trials with a training budget associated to each trial.

- Example
 - Given 5 trials to evaluate:

• Grid/random search:

• Sequential model-based algorithms:

The Interface: TrialGroup

Definition

A group of training trials with a training budget associated to each trial.

- Generalization
 - All kinds of hyperparameter tuning algorithms could be expressed by a sequence of TrialGroup and executed by Fluid.

Problem Definition: Strip Packing

- Input: Trial Group $A=\{a_1,a_2,\cdots,a_k\}$, resources $M=\{m_1,m_2,\cdots,m_n\}$
- Output: resource allocation $W = \{w_1, w_2, \cdots, w_n\}$
- Goal: minimize the length L of strips

$$w = 1$$

$$l = 30$$

$$w = 1$$

$$l = 1$$

Problem Definition: Strip Packing

- Input: TrialGroup $A=\{a_1,a_2,\cdots,a_k\}$, resources $M=\{m_1,m_2,\cdots,m_n\}$
- Output: resource allocation $W = \{w_1, w_2, \cdots, w_n\}$
- Goal: minimize the length L of strips

$$w = 1$$

$$l = 1$$

$$w=0.5$$

$$l = 2$$

Intra-GPU

Toy Example

Different solutions to execute 4 trials (I TrialGroup) scheduled on 5 workers

Fully utilize the resources and mitigate the straggler

Algorithm: StaticFluid

$$w_i = \min(\max(\left\lfloor \frac{h_{i,1}}{\sum_j h_{j,1}} n \right\rfloor, \frac{1}{c}), d)$$

- h: trial training budget
- n: available resources
- c: maximum intra-GPU parallelism (# of packing trials)
- d: maximum inter-GPU parallelism (# of distributed workers)

Intra-GPU overhead

Algorithm: DynamicFluid

$$w_i = \min(\max(\left\lfloor \frac{h_{i,1}}{\sum_j h_{j,1}} n \right\rfloor, \frac{1}{c}), d)$$

Minimize the makespan of multiple TrialGroups

Dynamically changing resources

Outline

I. Background and Motivation

2. Abstraction and Algorithms

3. Evaluation

Evaluation Setup

- Implementation: an alternative Ray^[1] executor
- Workloads

Task	Base Model	# of Params.	Target
CIFAR-10	AlexNet	7	Acc.>= 90%
WLM	RNN	10	PPL <= 140
DCGAN	CNN	2	Inception >= 5.2

Evaluation Results

- Average resource utilization: 10%-100% improvement
- Average job completion time: 10%-70% improvement

Evaluation Results: Visualization

Resource utilization over time

Evaluation Results: Visualization

Resource utilization over time

Conclusion

- Fluid
 - Hyperparameter tuning execution engine
 - Can be combined with most tuning algorithms
 - Improve utilization and end-to-end tuning time
- Open source
 - https://github.com/SymbioticLab/fluid
- Q&A

