Melo1897 Estiple $D = \{x_1, n_1, \dots, n_n\}$ $O_{ML} = arg man P(D) = arg man log P(D)$ (1 $Lu(\theta) = \sum_{i=1}^{n} ln f(ui|\theta) \qquad \frac{dLu(\theta)}{d\theta} = 0 \implies \theta_{ML}$ $= \frac{1}{d\theta} \ln f(ni|\theta) = \frac{1}{(21)} \frac{1}{ni^2} = \frac{1}{\theta} = \frac{n}{\theta}$ $= \frac{1}{d\theta} > 0 = \frac{n}{d\theta} > 0 = \frac{n}{d\theta} > 0 = 0$ وهر صید ه بنواند ، مسار کاج (۵) ما نیز بشر (ست. (زطری قدوری دار و دور دارد که Q = min {n, n2, m, nn} = 0 < ni

 $m_1 = M = \int_{-\infty}^{+\infty} \chi f(n) dn = \int_{-1}^{+1} (4 + \theta n^2) dn = \frac{\chi^2}{4} + \frac{\theta n^3}{6}$ $=\frac{0}{3}\Rightarrow 0=\text{Pm}_1=\text{Pm}$ $\hat{m}_1=\frac{1}{r}\sum_{i=1}^{r}n_i=\hat{n}$ $\hat{\theta} = \psi \hat{m}_{i} = \psi \hat{n}$ $d_{i}b_{i}$. $\lim_{n \to \infty} E[\hat{\theta}] = \lim_{n \to \infty} E[\psi \hat{m}] = \lim_{n \to \infty} \psi E[\hat{m}] =$ = ME[lim û]=ME[lim text] = ME[M]=MM=MXD = OV ρορί: $lin Var(\hat{\theta}) = lin Var(Υμ) = 4 lin Var(μ) = 4 lin <math>\frac{6^2}{n \to \infty} = 0$ Γ $\frac{1}{n \to \infty}$ $\frac{1}{n \to \infty}$

 $\hat{P} = \frac{X}{n} \sim N(P, \frac{P(1-P)}{n}) \qquad (P)$ $\hat{P} = \frac{X}{n} \sim N(P, \frac{P(1-P)}{n}) \qquad (P)$ $P(\hat{p}-P(0)) = P(\frac{\hat{p}-P}{\sqrt{\frac{p(1-\hat{p})}{n}}} < 0) = P(z<0) = \emptyset(0) = 0$ $\Rightarrow \sum_{n=1}^{\infty} P(X_{n}(P(n)) = P(X_{n}(P(1)) + P(1)P(\infty))$ = P(P(P)= 0/0) $\Rightarrow P\left(\frac{X}{n} - \frac{\sqrt{X}(1-X)}{\sqrt{X}(1-X)}\right) P\left(\frac{X}{n} + \frac{\sqrt{X}(1-X)}{\sqrt{X}(1-X)}\right)$ $= P(\hat{p} - 0.94 \sqrt{\frac{p(1-\hat{p})}{n}} < P(\hat{p} + 0.94 \sqrt{\frac{p(1-\hat{p})}{n}})$ ري المال للله دريازه الانتخاب" سيند سبر المات.

, HA: M=1.

prévieus sample ident = révisions M=1., 6=1 $P(\bar{X} < M-\Delta) = P(\bar{X} > M+\Delta)$ $\Rightarrow od = YP(\bar{X} < 1.16 - \Delta) = YP(\bar{X} - 1.16 < -\frac{\Delta}{6})$ $\Rightarrow od = YP(\bar{X} < 1.16 - \Delta) = YP(\bar{X} - 1.16 < -\frac{\Delta}{6})$ $\frac{6}{\sqrt{n}} = \frac{r}{\sqrt{r0}} = 0$ =) $P(Z\langle -\frac{\partial}{r}\Delta) = P(-\frac{\partial}{r}\Delta) = 0.00$ => (+0 D)= 1-0,00=0,400 => 0D= 1,94=> D=0, UNE $B = P(Not(X < 1., E-D \text{ or } X > 1., E+D) \mid Not N = N.)$ $\Rightarrow \beta = \rho \left(\stackrel{M}{\sim} - \Delta \left(X < \stackrel{M}{\sim} + \Delta \right) \middle| M \neq M_0 = 1., \epsilon \right)$ $\Rightarrow B = P\left(\frac{h}{h} - \Delta \left\langle \overline{X} \right\rangle \right) M = 10$ = P (. 9,914 < X < 11, INE | M= 10) $= P\left(\frac{9,919-1.7}{2} < Z < 11.1182_1.2\right) = P(-0,994Z < 199)$ $= \frac{6}{5} \leftarrow \sqrt{150}$ = P(Y,99) - (1-P(.99)) = [-1,7]

$$f(x_{i} | f, 6) = \frac{1}{\sqrt{n}6} e^{-\frac{(n_{i} - f_{i})^{2}}{26^{2}}}$$

$$\Rightarrow L(6^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{n}6} e^{-\frac{(n_{i} - f_{i})^{2}}{26^{2}}} = \sum_{i=1}^{n} \ln f_{n_{i}} | s_{0}^{2}$$

$$= \sum_{i=1}^{n} \ln \left(\frac{1}{\sqrt{n}6} e^{-\frac{(n_{i} - f_{i})^{2}}{26^{2}}} \right) = \sum_{i=1}^{n} \frac{(n_{i} - f_{i})^{2}}{26^{2}} - \ln \sqrt{n} - \ln 6$$

$$\Rightarrow \frac{dLL(6^{2})}{d(6^{2})} = \sum_{i=1}^{n} \left(\frac{2(n_{i} - f_{i})^{2}}{464} - \frac{1}{\sqrt{62}} \right) = 0$$

$$\Rightarrow \left(\sum_{i=1}^{n} \frac{(m_{i} - f_{i})^{2}}{264} \right) = \frac{n}{\sqrt{62}} \Rightarrow \sum_{i=1}^{n} (n_{i} - f_{i})^{2} = n \cdot 6^{2}$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} var(n_{i}) = \frac{1}{n} \sum_{i=1}^{n} E[var(n_{i})]$$

$$= \frac{1}{n} \sum_{i=1}^{n} 6^{2} = 6^{2} \Rightarrow E(\frac{n}{m}) = 6^{2} \Rightarrow consider \text{ and } \text{ bis solutions}$$

$$(\frac{n}{n}) \int_{n_{i}}^{n_{i}} f^{2} \int_{n$$

عن الله الما الله المين و بالسفاد. (زوزع t مواني (ون ساد فرنا) (ب. (زوزع t مواني (ون ساد فرنا) (ب. والان جامعه ما يُزِهُم . هُ ولِمَا منكن و وليان عَذِه و ما ما في وعدلد آله از وزع المسادق . X = 9+1,7+4,2+2,0+1,4+1+4+4,0+1,1+0,1 = V,01 unbiased supplies : $S = \frac{1}{n-1} \left(\frac{S}{i-1} \right)^2 = 1/07 \Rightarrow S = 1/7$ $(\bar{x} - t g_2(p) \frac{s}{\sqrt{n}} < f < \bar{x} + t g_2(p) \frac{s}{\sqrt{n}})$ $= (y_{\circ \Lambda} - (y_{\circ \Lambda}) \times \frac{y_{\uparrow \prime \prime}}{\sqrt{1.}} < y_{\circ \Lambda} + (y_{\circ \Lambda} \times \frac{y_{\uparrow \prime \prime}}{\sqrt{1.}})$ = (0, 114 < M < 1, TEE) = 10 016 it o so ci reject. Ho of cholo du pas 99 : 1. = 40 /6/13 که دی عزیم از ترزادان کیسود وزن دارند. Ho: M= 40 $t_{\chi}(r) = t_{1.0}(9) = 1,70$ (= 1,00 (9) = 1,70
(= 1,00 (1) to 2,50 (1) to 2,50 (1) HA: M < V,O

one-tail	P						
	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	0.2	0.1	0.05	0.02	0.01	0.002	0.001
DF	ji i						
1	3.078	6.314	12.706	31.821	63.656	318.289	636.578
2	1.886	2.92	4.303	6.965	9.925	22.328	31.6
3	1.638	2.353	3.182	4.541	5.841	10.214	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.63
5	1.476	2.015	2.571	3.365	4.032	5.894	6.869
6	1.44	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3,499	4.785	5.408
8	1.397	1.86	2.306	2.896	3.355	4.501	5.04
9	1.383	1.833	2.262	2.821	3.25	4.297	4.78
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587

