1. CINEMÁTICA

1.1. Representação de Posição e Orientação:

Sistemas Referenciais:

- Para localizar um corpo rígido no espaço tridimensional, um sistema referencial é associado ao mesmo.
- Um referencial associado a um corpo rígido é fixo no mesmo.
- Qualquer ponto do corpo rígido possuirá coordenadas invariantes no seu referencial associado.
- referencial será identificado por uma letra entre chaves. Exemplo: {A}, {i}, etc.
- Os referenciais são definidos por três vetores unitários ortogonais: \hat{x} , \hat{y} , \hat{z} .

Figura 2.1. Representação da localização de corpos rígidos por meio de referenciais.

Localização de um Corpo Rígido em relação a um Referencial:

- A localização de um corpo rígido B em relação a um referencial qualquer {A} é definida pela localização do seu referencial associado {B} em relação a {A}.
- A localização de {B} em relação a {A} é completamente definida especificando:
- a posição de {B} em relação a {A}
- a orientação dos eixos de {B} em relação a os eixos de {A}.

Representação de posição de {B} em relação a {A}:

A posição de $\{B\}$ em relação a $\{A\}$ é definida pelo vetor de posição ${}^{A}P_{B}$ ligando a origem de $\{A\}$ à origem de $\{B\}$, expresso em coordenadas de $\{A\}$:

$${}^{A}P_{B} = [{}^{A}p_{Bx} \quad {}^{A}p_{By} \quad {}^{A}p_{Bz}]^{T}$$

Figura 2.2. Posição de um referencial {B} em relação a um referencial {A}.

Exemplo: considere dois referenciais $\{A\}$ e $\{B\}$ com a mesma orientação, com a origem de $\{B\}$ localizada a 5 unidades ao longo do eixo x_A . Considere um ponto P, expresso em $\{B\}$ como ${}^BP = \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}^T$. Determine a posição de $\{B\}$ em relação a $\{A\}$ bem como a representação do ponto P em $\{A\}$.

Figura 2.3. Posição em um referencial $\{B\}$ transladado ao longo do eixo x_A de $\{A\}$.

Solução: A origem de {B} está localizada no ponto (5, 0, 0) em coordenadas de {A}, portanto, a posição de {B} em relação a {A} é dada por:

$$^{A}P_{B} = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}^{T}$$

Como os dois referenciais possuem a mesma orientação:

$${}^{A}P = {}^{A}P_{B} + {}^{B}P = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}^{T} + \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 7 & 2 & 1 \end{bmatrix}^{T}$$

Representação de orientação de {B} em relação a {A}:

A orientação de $\{B\}$ em relação a $\{A\}$ é definida pela matriz de rotação AR_B de dimensão 3x3, ortogonal, cujos vetores colunas são os eixos unitários de $\{B\}$ expressos em coordenadas de $\{A\}$:

$${}^AR_B = [{}^Ax_B \qquad {}^Ay_B \qquad {}^Az_B]$$

Figura 2.4. Orientação de um referencial {B} em relação a um referencial {A}.

A matriz ^AR_B é uma representação redundante de orientação, visto que possui nove elementos que satisfazem a seis restrições (os três eixos são unitários e ortogonais):

$$({}^{A}x_{B})^{T}.{}^{A}x_{B} = 1$$
 $({}^{A}y_{B})^{T}.{}^{A}y_{B} = 1$ $({}^{A}z_{B})^{T}.{}^{A}z_{B} = 1$ $({}^{A}z_{B})^{T}.{}^{A}z_{B} = 1$ $({}^{A}z_{B})^{T}.{}^{A}z_{B} = 0$ $({}^{A}z_{B})^{T}.{}^{A}x_{B} = 0$

Portanto, a matriz ^AR_B é ortogonal, ou seja:

$$({}^{A}R_{B})^{-1} = ({}^{A}R_{B})^{T}$$

Se dois referenciais $\{A\}$ e $\{B\}$ possuem a mesma origem, um ponto P é expresso nos referenciais $\{A\}$ e $\{B\}$ respectivamente como:

$${}^{A}P = [{}^{A}p_x \ {}^{A}p_y \ {}^{A}p_z]^T \qquad \qquad {}^{B}P = [{}^{B}p_x \ {}^{B}p_y \ {}^{B}p_z]^T$$

Conhecendo a representação de P em {B}, ^BP, bem como a representação dos eixos de {B} em {A}, é possível encontrar a representação de P em {A}, ^AP:

$${}^{A}P = [{}^{B}x_A{}^T.{}^{B}P \quad {}^{B}y_A{}^T.{}^{B}P \quad {}^{B}z_A{}^T.{}^{B}P]^T = [{}^{B}x_A \quad {}^{B}y_A \quad {}^{B}z_A]^T.{}^{B}P \Longrightarrow {}^{A}P = {}^{B}R_A{}^T.{}^{B}P = {}^{A}R_B.{}^{B}P$$

De forma equivalente, ${}^{B}P = {}^{B}R_{A}$. AP, portanto:

$${}^{A}P={}^{A}R_{B}.{}^{B}P={}^{A}R_{B}.{}^{B}R_{A}.{}^{A}P\quad \Rightarrow \qquad {}^{A}R_{B}.{}^{B}R_{A}=I\quad \Rightarrow \qquad {}^{B}R_{A}=({}^{A}R_{B})^{-1}=({}^{A}R_{B})^{T}$$

Dados três referenciais {A}, {B} e {C} com origens coincidentes, temos:

$${}^{A}P={}^{A}R_{B}.{}^{B}P,\quad {}^{B}P={}^{B}R_{C}.{}^{C}P,\quad {}^{A}P={}^{A}R_{C}.{}^{C}P\quad \Rightarrow\quad {}^{A}P={}^{A}R_{B}.{}^{B}R_{C}.{}^{C}P\ \Rightarrow\quad {}^{A}R_{C}={}^{A}R_{B}.{}^{B}R_{C}$$

A matriz AR_B pode ser representada então como ${}^AR_B = {}^AR_C$. ${}^CR_B = ({}^CR_A)^T$. CR_B . Assim:

$${}^{A}R_{B} = \left[\begin{array}{cccc} ({}^{C}x_{A}){}^{T}.{}^{C}x_{B} & ({}^{C}x_{A}){}^{T}.{}^{C}y_{B} & ({}^{C}x_{A}){}^{T}.{}^{C}z_{B} \\ ({}^{C}y_{A}){}^{T}.{}^{C}x_{B} & ({}^{C}y_{A}){}^{T}.{}^{C}y_{B} & ({}^{C}y_{A}){}^{T}.{}^{C}z_{B} \\ ({}^{C}z_{A}){}^{T}.{}^{C}x_{B} & ({}^{C}z_{A}){}^{T}.{}^{C}y_{B} & ({}^{C}z_{A}){}^{T}.{}^{C}z_{B} \end{array} \right]$$

Note que cada elemento da matriz é representado pelo produto interno entre um eixo unitário de $\{A\}$ e um eixo unitário de $\{B\}$, sendo portanto igual ao cosseno do ângulo entre eles. Por esta razão, a matriz de rotação AR_B é também chamada de Matriz de Cossenos Diretores. Os valores dos cossenos diretores são independentes da escolha do referencial $\{C\}$.

Exemplo: considere dois referenciais coincidentes, $\{A\}$ e $\{B\}$. Suponha que $\{B\}$ gira um ângulo θ em torno do eixo Az_B . Encontre a matriz de rotação ${}^AR_B = R(z,\theta)$:

Figura 2.5. Rotação em torno do eixo z_A.

Da figura acima, através de simples relações trigonométricas, temos:

$$^{A}x_{B} = [\cos(\theta) \ \ sen(\theta) \ \ 0]^{T} \qquad ^{A}y_{B} = [-sen(\theta) \ \cos(\theta) \ \ 0]^{T} \qquad ^{A}z_{B} = [0 \ \ 0 \ \ 1]^{T}$$

$$\Rightarrow \ ^{A}R_{B} = R(z,\theta) = \begin{bmatrix} \cos(\theta) & -sen(\theta) & 0 \\ sen(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

De forma análoga, para rotações em torno dos eixos x_A e y_A , temos respectivamente:

$$\Rightarrow {}^{A}R_{B} = R(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\Rightarrow {}^{A}R_{B} = R(y,\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

Exemplo: considere dois referenciais coincidentes, $\{A\}$ e $\{B\}$. Suponha que $\{B\}$ gira um ângulo θ em torno do eixo Az_B . Considere um ponto P expresso em coordenadas de $\{B\}$, BP . Encontre a representação do ponto P em coordenadas de $\{A\}$, AP :

Figura 2.6. Rotação de um ponto em torno do eixo z_A.

Da figura acima, através de relações trigonométricas simples, temos:

$$^{B}p_{x} = ^{A}p_{x}.cos(\theta) + ^{A}p_{y}.sen(\theta)$$
 $^{B}p_{y} = ^{A}p_{y}.cos(\theta) - ^{A}p_{x}.sen(\theta)$ $^{B}p_{z} = ^{A}p_{z}$

Resolvendo para ^Ap_x, ^Ap_y, ^Ap_z:

$$^{A}p_{x} = ^{B}p_{x}.cos(\theta) - ^{B}p_{y}.sen(\theta)$$
 $^{A}p_{y} = ^{B}p_{x}.sen(\theta) + ^{B}p_{y}.cos(\theta)$ $^{A}p_{z} = ^{B}p_{z}$

Que em notação matricial, como era de esperar, corresponde a:

$$\begin{bmatrix} \ ^{A}p_{x} \\ \ ^{A}p_{y} \\ \ ^{A}p_{z} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} . \begin{bmatrix} \ ^{B}p_{x} \\ \ ^{B}p_{y} \\ \ ^{B}p_{z} \end{bmatrix} \Rightarrow \ ^{A}P = R(z,\theta).^{B}P$$

Outras representações de orientação:

A matriz de orientação AR_B representa a orientação de $\{B\}$ em relação a $\{A\}$ de modo redundante, visto que seus nove elementos possuem seis relações de dependência (as colunas de AR_B são vetores unitários e perpendiculares entre si). Assim, de forma análoga à especificação de posição, três parâmetros independentes são suficientes para especificar orientação no espaço tridimensional. Existem vários esquemas e convenções utilizados para fazer esta especificação. A seguir, apresentaremos alguns deles.

Ângulos de Euler ZXZ:

Neste esquema, a orientação de $\{B\}$ em relação a $\{A\}$ é representada por três ângulos de rotação (ϕ, θ, ψ) , exercutados nessa ordem, respectivamente, em torno dos eixos z, x e z de um referencial móvel, inicialmente coincidente com $\{A\}$ e alinhado com $\{B\}$ após as três rotações. A matriz de rotação equivalente a (ϕ, θ, ψ) é dada por:

$$R_{\phi\theta\psi} = R(z,\phi).R(x,\theta).R(z,\psi)$$

Definimos a seguinte nomenclatura: $sen(\theta) = s\theta$, $cos(\theta) = c\theta$. Assim:

Figura 2.7. Ângulos de Euler ZXZ.

$$R_{\varphi\theta\psi} = \left[\begin{array}{ccc} c\varphi & -s\varphi & 0 \\ s\varphi & c\varphi & 0 \\ 0 & 0 & 1 \end{array} \right]. \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{array} \right]. \left[\begin{array}{ccc} c\psi & -s\psi & 0 \\ s\psi & c\psi & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$\Rightarrow R_{\phi\theta\psi} = \begin{bmatrix} (c\phi.c\psi - s\phi.c\theta.s\psi) & (-c\phi.s\psi - s\phi.c\theta.c\psi) & (s\phi.s\theta) \\ (s\phi.c\psi + c\phi.c\theta.s\psi) & (-s\phi.s\psi + c\phi.c\theta.c\psi) & (-c\phi.s\theta) \\ (s\theta.s\psi) & (s\theta.c\psi) & (c\theta) \end{bmatrix}$$

Conhecendo-se a representação da orientação na forma de uma matriz de rotação $R_{\phi\theta\psi}$, é possível encontrar os ângulos de Euler ZXZ a partir de relações entre os seus elementos. Para evitar ambigüidades, utilizaremos a função arco-tangente definida nos quatro quadrantes, atan2(a, b) = arg(a + j.b) = argumento do número complexo a + j.b, de tal modo que $\theta = atan2(sen(\theta), cos(\theta)) = atan2(k.sen(\theta), k.cos(\theta))$, com k > 0. Assim:

$$\theta = atan2(\pm[{R_{31}}^2 + {R_{32}}^2]^{1/2} , R_{33}) \qquad \varphi = atan2(R_{13}/sen(\theta), -R_{23}/sen(\theta))$$

$$\psi = atan2(R_{31}/sen(\theta), R_{32}/sen(\theta))$$

Verifica-se que a solução para os ângulos de Euler não é única. Existem dois conjuntos de ângulos possíveis dependendo do sinal da raiz quadrada. Tomando o sinal positivo, o que equivale a limitar θ ao intervalo $0 \le \theta \le \pi$, eliminamos esta ambigüidade. Verifica-se também que, para $\theta = 0$ ou $\theta = \pi$, a solução degenera (ocorre uma divisão por zero), o que resulta em infinitas soluções. Isto ocorre porque as rotações ϕ e ψ ocorrem em torno do mesmo eixo espacial e o angulo resultante da soma destes ângulos pode ser obtido de infinitos pares (ϕ, ψ) diferentes. Neste caso, é necessário arbitrar um deles. Assim:

Para
$$\theta = 0$$
 \Rightarrow $\phi + \psi = atan2(R_{21}, R_{11})$
Para $\theta = \pi$ \Rightarrow $\phi - \psi = atan2(R_{21}, R_{11})$

Ângulos de Euler ZYZ:

De forma análoga ao caso anterior, neste esquema, a orientação de $\{B\}$ em relação a $\{A\}$ é representada por três ângulos de rotação (ϕ, θ, ψ) , executados nessa ordem, respectivamente, em torno dos eixos z, y e z de um referencial móvel, inicialmente coincidente com $\{A\}$ e alinhado com $\{B\}$ após as três rotações. A matriz de rotação equivalente a (ϕ, θ, ψ) é dada por:

$$R_{\phi\theta\psi} = R(z,\phi).R(x,\theta).R(z,\psi)$$

Figura 2.8. Ângulos de Euler ZYZ.

$$R_{\varphi\theta\psi} = \begin{bmatrix} c\varphi & -s\varphi & 0 \\ s\varphi & c\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}. \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix}. \begin{bmatrix} c\psi & -s\psi & 0 \\ s\psi & c\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow R_{\phi\theta\psi} = \begin{bmatrix} (c\phi.c\theta.c\psi - s\phi.s\psi) & (-c\phi.c\theta.s\psi - s\phi.c\psi) & (c\phi.s\theta) \\ (s\phi.c\theta.c\psi + c\phi.s\psi) & (-s\phi.c\theta.s\psi + c\phi.c\psi) & (s\phi.s\theta) \\ (-s\theta.c\psi) & (s\theta.s\psi) & (c\theta) \end{bmatrix}$$

Usando a mesma metodologia do caso anterior, é possível obter a relação inversa, que expressa os ângulos de Euler ZYZ em função de uma matriz de rotação equivalente:

$$\theta = atan2(\pm [{R_{31}}^2 + {R_{32}}^2]^{1/2}, R_{33}) \qquad \phi = atan2(R_{23}/sen(\theta), R_{13}/sen(\theta))$$

$$\psi = atan2(R_{32}/sen(\theta), -R_{31}/sen(\theta))$$

Novamente, dois conjuntos de ângulos de Euler satisfazem a solução. Tomando o sinal positivo da raiz quadrada, o que equivale a limitar θ ao intervalo $0 \le \theta \le \pi$, eliminamos esta ambigüidade. Da mesma forma do que no caso anterior, verifica-se também que, para $\theta = 0$ ou $\theta = \pi$, a solução degenera (ocorre uma divisão por zero), o que resulta em infinitas soluções, as quais são devidas à ocorrência de duas rotações em torno do mesmo eixo. Assim:

$$\begin{array}{ll} Para \; \theta = 0 & \Rightarrow & \psi + \varphi = atan2(R_{21}, R_{11}) \\ Para \; \theta = \pi & \Rightarrow & \psi - \varphi = atan2(R_{21}, -R_{11}) \end{array}$$

Ângulos de Euler ZYX:

De forma análoga aos casos anteriores, neste esquema, a orientação de $\{B\}$ em relação a $\{A\}$ é representada por três ângulos de rotação (ϕ, θ, ψ) , executados nessa ordem, respectivamente, em torno dos eixos z, y e x de um referencial móvel, inicialmente coincidente com $\{A\}$ e alinhado com $\{B\}$ após as três rotações. A matriz de rotação equivalente a (ϕ, θ, ψ) é dada por:

$$R_{\phi\theta\psi} = R(z,\phi).R(x,\theta).R(z,\psi)$$

$$R_{\varphi\theta\psi} = \begin{bmatrix} c\varphi & -s\varphi & 0 \\ s\varphi & c\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\psi & -s\psi \\ 0 & s\psi & c\psi \end{bmatrix}$$

$$\Rightarrow R_{\phi\theta\psi} = \begin{bmatrix} (c\phi.c\theta) & (c\phi.s\theta.s\psi - s\phi.c\psi) & (c\phi.s\theta.c\psi + s\phi.s\psi) \\ (s\phi.c\theta) & (s\phi.s\theta.s\psi + c\phi.c\psi) & (s\phi.s\theta.c\psi - c\phi.s\psi) \\ (-s\theta) & (c\theta.s\psi) & (c\theta.c\psi) \end{bmatrix}$$

Figura 2.9. Ângulos de Euler ZYX.

Usando a mesma metodologia dos casos anteriores, é possível obter a relação inversa, que expressa os ângulos de Euler ZYX em função de uma matriz de rotação equivalente:

$$\theta = atan2(-R_{31}, \pm [R_{32}^2 + R_{33}^2]^{1/2}) \qquad \phi = atan2(R_{21}/cos(\theta), R_{11}/cos(\theta))$$

$$\psi = atan2(R_{32}/cos(\theta), R_{33}/cos(\theta))$$

Novamente, dois conjuntos de ângulos de Euler satisfazem a solução. Tomando o sinal positivo da raiz quadrada, o que equivale a limitar θ ao intervalo $-\pi/2 \le \theta \le \pi/2$, eliminamos esta ambigüidade. Da forma semelhante aos casos anteriores, verifica-se também que, para $\theta = -\pi/2$ ou $\theta = \pi/2$, a solução degenera (ocorre uma divisão 0/0), o que resulta em infinitas soluções, as quais são devidas à ocorrência de duas rotações em torno do mesmo eixo. Assim:

Para
$$\theta = -\pi/2$$
 \Rightarrow $\psi + \phi = atan2(-R_{12}, R_{22})$
Para $\theta = \pi/2$ \Rightarrow $(\psi - \phi) = atan2(R_{12}, R_{22})$

Os ângulos de Euler ZYX são também chamados de ângulos de Rolamento, Lançamento e Guinada (*Roll*, *Pitch*, *Yaw*), termos derivados dos movimentos de rotação de naves ou aeronaves em torno dos seus eixos principais.

Figura 2.10. Ângulos de Rolamento, Lançamento e Guinada: ϕ , θ , ψ .

Representação equivalente Ângulo/Eixo :

Neste esquema, a orientação de $\{B\}$ em relação a $\{A\}$ é de forma redundante por meio de quatro parâmetros: as três componentes (k_x, k_y, k_z) de um eixo unitário direcional k e um ângulo de rotação θ em torno deste eixo. Observação: usando um eixo não unitário, o ângulo de giro θ pode ser codificado no módulo do vetor k, de modo a utilizar apenas três parâmetros (representação não redundante da orientação).

A matriz de rotação equivalente $R_{k\theta}$ pode ser obtida a partir de (k_x, k_y, k_z, θ) usando o seguinte procedimento:

- Alinhar o eixo k com o eixo z do referencial {A} através de duas rotações: giro de um ângulo α em torno do eixo x_A, seguido de um giro de um ângulo -β em torno do eixo y_A.
- Girar um ângulo θ em torno do eixo z_A (que agora coincide com o eixo k).
- Retornar o eixo k ao seu alinhamento original revertendo as duas rotações iniciais: um giro de um ângulo β em torno do eixo y_A seguido de um giro de um ângulo α em torno do eixo x_A .

Figura 2.11. Rotação de um ângulo θ em torno de um eixo arbitrário k.

 $R_{k\theta} = R(x,-\alpha).R(y,\beta).R(z,\theta).R(y,-\beta).R(x,\alpha)$

$$\Rightarrow R_{k\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\alpha & s\alpha \\ 0 & -s\alpha & c\alpha \end{bmatrix} \cdot \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \cdot \begin{bmatrix} c\theta & -s\theta & 0 \\ c\theta & s\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c\beta & 0 & -s\beta \\ 0 & 1 & 0 \\ s\beta & 0 & c\beta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\alpha & -s\alpha \\ 0 & s\alpha & c\alpha \end{bmatrix}$$

Definindo $v\theta = vers(\theta) = 1 - cos(\theta)$ e substituindo os termos dependentes de α e β por:

$$\begin{split} s\alpha &= k_y/[k_y^2 + \,k_z^{\,2}]^{1/2} & c\alpha = k_z/[k_y^{\,2} + \,k_z^{\,2}]^{1/2} & s\beta = k_x & c\beta &= \, [k_y^2 + \,k_z^{\,2}]^{1/2} \\ \Rightarrow & R_{k\theta} &= \begin{bmatrix} (k_x^{\,2}.v\theta + c\theta) & (k_x.k_y.v\theta - k_z.s\theta) & (k_x.k_z.v\theta + k_y.s\theta) \\ (k_x.k_y.v\theta + k_z.s\theta) & (k_y^{\,2}.v\theta + c\theta) & (k_y.k_z.v\theta - k_x.s\theta) \\ (k_x.k_z.v\theta - k_y.s\theta) & (k_y.k_z.v\theta + k_x.s\theta) & (k_z^{\,2}.v\theta + c\theta) \end{bmatrix} \end{split}$$

A partir de relações entre elementos da matriz acima, é possível obter a representação ângulo-eixo equivalente à representação $R_{k\theta}$:

$$\begin{split} \theta &= \cos^{\text{-}1}((R_{11} + R_{22} + R_{33} - 1)/2) \\ k_x &= (R_{32} - R_{23})/(2.s\theta) \\ k_y &= (R_{13} - R_{31})/(2.s\theta) \\ k_z &= (R_{21} - R_{12})/(2.s\theta) \end{split}$$

A solução acima é valida $0 \le \theta \le \pi$. Para uma dada matriz $R_{k\theta}$, existem duas soluções possíveis: (k, θ) e $(-k, -\theta)$. Verifica-se também que, para $\theta = 0$ ou $\theta = \pi$, a solução degenera (ocorre uma divisão por zero), o que resulta em infinitas soluções, (o eixo k torna-se indefinido). Assim, para pequenos ângulos, a solução é mal condicionada.

Exemplo: dados os referenciais $\{A\}$ e $\{B\}$ mostrados na figura abaixo, obtenha a matriz de rotação AR_B bem como a sua representação em ângulos de Euler ZXZ, ZYZ, ZYX e a representação equivalente ângulo/eixo.

Figura 2.12. Exemplo de orientação relativa entre dois referenciais.

Expressando os eixos de {B} em {A}, obtemos a sua orientação relativa:

$${}^{A}R_{B} = \left[\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

Os ângulos de Euler ZXZ são dados por:

$$\begin{split} & \varphi = atan2(R_{13},\!-R_{23}) = atan2(0,\!-1) = \pi \\ & \theta = atan2([R_{31}^{\ 2}\!+\!R_{32}^{\ 2}]^{1/2} \;,\; R_{33}) = atan2(1,\!0) = \pi/2 \\ & \psi = atan2(R_{31},\!R_{32}) = \pi/2 \end{split}$$

Os ângulos de Euler ZYZ são dados por:

$$\phi = \operatorname{atan2}(R_{23}, R_{13}) = \operatorname{atan2}(1,0) = \pi/2$$

$$\theta = \operatorname{atan2}([R_{31}^2 + R_{32}^2]^{1/2}, R_{33}) = \operatorname{atan2}(1,0) = \pi/2$$

$$\psi = \operatorname{atan2}(R_{32}, -R_{31}) = \operatorname{atan2}(0, -1) = \pi$$

Para o caso dos ângulos de Euler ZYX (*roll*, *pitch*, *yaw*), temos que ϕ é indefinido, pois $\phi = \text{atan2}(R_{21}, R_{11}) = \text{atan2}(0,0)$. Neste caso, teremos infinitas soluções:

$$\theta = \text{atan2}(-R_{31},[R_{32}^2 + R_{33}^2]^{1/2}) \text{ atan2}(-1,0) = -\pi/2$$

 $\Psi + \Phi = \text{atan2}(-R_{12},R_{22}) = \text{atan2}(-1,0) = -\pi/2$

Para obter uma solução é necessário arbitrar um dos ângulos. Impondo o ângulo $\phi = 0$, temos que $\psi = -\pi/2$.

A representação equivalente Ângulo/Eixo é dada por:

$$\theta = \cos^{-1}((R_{11} + R_{22} + R_{33} - 1)/2) = \cos^{-1}(-1/2) = 2\pi/3$$

$$k_x = (R_{32} - R_{23})/(2.s\theta) = -(1/3)^{1/2}$$

$$k_y = (R_{13} - R_{31})/(2.s\theta) = -(1/3)^{1/2}$$

$$k_z = (R_{21} - R_{12})/(2.s\theta) = -(1/3)^{1/2}$$

1.2. Transformações Homogêneas:

Mapeamentos:

Dados dois referenciais {A} e {B} e um ponto P, conhecendo as coordenadas ^BP do mesmo no referencial {B}, as coordenadas ^AP do mesmo no referencial {A} podem ser obtidas, desde que se conheça a posição ^AP_B e orientação ^AR_B de {B} em relação a {A}, através de um mapeamento de ^BP para ^AP. A seguir, define-se {U} como um referencial universal.

Mapeamento de Translação:

Um mapeamento de translação caracteriza-se por mapear um ponto de um referencial $\{B\}$ para um referencial $\{A\}$, onde $\{A\}$ e $\{B\}$ possuem origens diferentes mas orientações coincidentes (${}^{U}P_{A} \neq {}^{U}P_{B}, {}^{U}R_{A} = {}^{U}R_{B}$). Como $\{A\}$ e $\{B\}$ possuem a mesma orientação, as coordenadas de P em $\{A\}$ podem ser expressas diretamente através de uma soma vetorial:

$${}^{A}P = {}^{B}P + {}^{A}P_{B}$$

Figura 2.13. Mapeamento de Translação.

Mapeamento de Rotação:

Um mapeamento de rotação caracteriza-se por mapear um ponto de um referencial {B} para um referencial {A}, onde {A} e {B} possuem origens coincidentes mas orientações diferentes (${}^{U}P_{A} = {}^{U}P_{B}$, ${}^{U}R_{A} \neq {}^{U}R_{B}$). Como {A} e {B} possuem a mesma origem, as coordenadas de P em {A} podem ser expressas como a projeção de ${}^{B}P$ nos eixos de {A}:

$${}^{A}p_{x} = {}^{B}x_{A}{}^{T}.{}^{B}P$$
 ${}^{A}p_{y} = {}^{B}y_{A}{}^{T}.{}^{B}P$ ${}^{A}p_{z} = {}^{B}z_{A}{}^{T}.{}^{B}P$

ou, matricialmente,

$${}^{A}P = [{}^{B}x_A{}^T.{}^{B}P \quad {}^{B}y_A{}^T.{}^{B}P \quad {}^{B}z_A{}^T.{}^{B}P]^T = [{}^{B}x_A \quad {}^{B}y_A \quad {}^{B}z_A]^T.{}^{B}P \Longrightarrow {}^{A}P = {}^{B}R_A{}^T.{}^{B}P$$

Mas, como BR_A é uma matriz ortogonal, ${}^BR_A{}^T = {}^BR_A{}^{-1} = {}^AR_B$, assim, o mapeamento de rotação é definido por:

$${}^{A}P = {}^{A}R_{B}$$
. ${}^{B}P$

Figura 2.14. Mapeamento de Rotação.

Mapeamento Geral:

Quando os sistemas de referência $\{A\}$ e $\{B\}$ diferem tanto em posição como em orientação (${}^{U}P_{A} \neq {}^{U}P_{B}$, ${}^{U}R_{A} \neq {}^{U}R_{B}$), a representação de um ponto P em $\{A\}$ pode ser obtida a partir da sua representação em $\{B\}$ através do seguinte procedimento:

• Por meio de um mapeamento de rotação, obter a representação ^IP de P em relação a um referencial intermediário {I}, tal que este possua a mesma origem que {B}, mas esteja alinhado com o referencial {A}, (^UP_I = ^UP_B e ^UR_I = ^UR_A).

$$^{I}P = {^{I}R_{B}}.^{B}P = {^{A}R_{B}}.^{B}P$$

• Representar ^IP em {A} através de um mapeamento de translação:

$${}^{A}P = {}^{I}P + {}^{I}P_{B} = {}^{I}P + {}^{A}P_{B}$$

Assim:
$${}^{A}P = {}^{A}R_{B}$$
. ${}^{B}P + {}^{A}P_{B}$

Figura 2.15. Mapeamento de Geral.

Transformação Homogênea:

O mapeamento geral pode ser representado matricialmente da seguinte maneira:

$$\begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}P_{B} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix}$$
onde:
$$\begin{bmatrix} {}^{A}R_{B} & {}^{A}P_{B} \\ 0 & 0 & 0 & 1 \end{bmatrix} = {}^{A}T_{B}$$

 $^{A}T_{B}$ é a <u>Matriz de Transformação Homogênea</u> que representa de modo compacto a posição e orientação de {B} em relação a {A}. A linha inferior da equação matricial foi acrescentada de modo a resultar numa matriz $^{A}T_{B}$ quadrada 4x4 para a qual exista matriz inversa. Os vetores de posição 4x1 (último elemento igual a 1) são vetores de coordenadas homogêneas. Doravante, para fins de simplificação, usaremos a nomenclatura ^{A}P tanto para vetores de posição 3x1, como para vetores em coordenadas homogêneas, sempre que o contexto torne obvio as suas dimensões.

Operadores de Movimento:

O movimento de um referencial em relação a outro pode ser descrito usando transformações homogêneas apropriadas que definam as mudanças de posição e orientação relativas ao se passar de um referencial para outro.

Operadores de Translação:

Dado um vetor AP_B , o <u>Operador de Translação</u> $T({}^AP_B/\left|{}^AP_B\right|,\left|{}^AP_B\right|)$ aplicado sobre um vetor BP o translada uma distância $\left|{}^AP_B\right|$ ao longo da direção do vetor unitário ${}^AP_B/\left|{}^AP_B\right|$, resultando no vetor transladado AP (em coordenadas homogêneas):

$$^{A}P = T(^{A}P_{B}/|^{A}P_{B}|,|^{A}P_{B}|).^{B}P$$

onde, sendo I a matriz identidade 3x3:

$$T(^{A}P_{B}/\left|^{A}P_{B}\right|,\left|^{A}P_{B}\right|) = \begin{bmatrix} I & ^{A}P_{B} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Outra maneira de abordar este problema é considerar o ponto ^BP fixo em relação ao referencial {B}, inicialmente coincidente com o referencial {A}. A seguir, deslocar a origem de {B} até a posição ^AP_B relativa a {A} através de um movimento de translação (mantendo a sua orientação paralela à orientação de {A}). Conseqüentemente, o ponto ^BP sofrerá também uma translação em relação ao referencial {A}, visto que ^BP é fixo em {B}. Conhecendo ^BP e o movimento de translação de {B} em relação a {A}, (^AP_B), o operador de translação permite obter a representação ^AP do ponto transladado em relação ao referencial {A}. Deste modo, em coordenadas cartesianas, temos:

$${}^{A}P = {}^{B}P + {}^{A}P_{B}$$

Figura 2.16. Operador de Translação.

Assim, os operadores de translação para um deslocamento linear d ao longo dos eixos x, y e z são dados respectivamente por:

$$T(x,d) = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(y,d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(z,d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Operadores de Rotação:

Dado um vetor unitário k e um ângulo θ , o <u>Operador de Rotação</u> $R(k,\theta)$, quando aplicado sobre um vetor ^BP, faz com que este gire o ângulo θ em torno do eixo k, resultando em um vetor rotacionado ^AP, em coordenadas homogêneas:

$$^{A}P = R(k,\theta).^{B}P$$

$$R(k,\theta) = \begin{bmatrix} & & 0 \\ & ^{A}R_{B} & 0 \\ & & 0 \\ & & 0 & 1 \end{bmatrix}$$

onde AR_B é a matriz de rotação 3x3 equivalente à representação ângulo/eixo (k,θ) . Outra maneira de abordar este problema é considerar o ponto BP fixo em relação ao referencial $\{B\}$, inicialmente coincidente com o referencial $\{A\}$. A seguir, girar $\{B\}$ até a orientação AR_B relativa a $\{A\}$ através de um movimento de rotação θ em torno do eixo k, (mantendo a origem de $\{B\}$ coincidente com a origem de $\{A\}$). Conseqüentemente, o ponto BP sofrerá também uma rotação em relação ao referencial $\{A\}$, visto que BP é fixo em $\{B\}$. Conhecendo BP e o movimento de rotação de $\{B\}$ em relação a $\{A\}$, $({}^AP_B)$, o operador de rotação permite obter a representação AP do ponto rotacionado em relação ao referencial $\{A\}$. Deste modo, em coordenadas cartesianas, temos:

$$^{A}P = {}^{A}R_{B}.^{B}P$$

Figura 2.17. Operador de Rotação.

Assim, os operadores de rotação para um deslocamento angular θ em torno dos eixos x, y e z são dados respectivamente por:

$$R(x,\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\theta & -s\theta & 0 \\ 0 & s\theta & c\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R(y,\theta) = \left[\begin{array}{cccc} c\theta & 0 & s\theta & 0 \\ 0 & 1 & 0 & 0 \\ -s\theta & 0 & c\theta & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$R(z,\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\theta & -s\theta & 0 \\ 0 & s\theta & c\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Operadores de Transformação:

Um <u>Operador de Transformação</u> aplicado sobre um vetor ^BP resulta num vetor ^AP (em coordenadas homogêneas), movimentado para uma localização genérica em relação à sua localização inicial. Esta nova localização pode ser melhor descrita matematicamente como uma combinação de uma operação de rotação de um ângulo θ em torno do vetor unitário k seguida de uma operação de translação por uma distância $|{}^{A}P_{B}|$ ao longo de um eixo unitário ${}^{A}P_{B}/|{}^{A}P_{B}|$.

Assim, em coordenadas cartesianas, a operação de transformação geral pode ser descrita matematicamente como:

$${}^{A}P = {}^{A}R_{B}.{}^{B}P + {}^{A}P_{B}$$

Onde AR_B representa a matriz de rotação equivalente à rotação de um ângulo θ em torno do vetor k. Então, o operador de transformação geral é dado por:

$${}^{A}T_{B} = T({}^{A}P_{B}/\left|\,{}^{A}P_{B}\,\right|,\left|\,{}^{A}P_{B}\,\right|).R(k,\theta) \qquad \Rightarrow {}^{A}T_{B} = \left[\begin{array}{cc} {}^{A}R_{B} & {}^{A}P_{B}\\ 0 \ 0 \ 0 \ 1 \end{array}\right]$$

O operador de transformação ^AT_B, aplicado a um ponto ^BP (em coordenadas homogêneas), resulta no ponto ^AP (também em coordenadas homogêneas):

$$^{A}P = ^{A}T_{B}.^{B}P$$

Figura 2.19. Operador de Transformação.

Exemplo: Dado o referencial {B} rotacionado 45° em torno do eixo z_A e transladado a uma distância de duas unidades ao longo do eixo x_A do referencial {A}, determinar as coordenadas do ponto ${}^BP = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ em relação ao referencial {A}.

Figura 2.20. Exemplo de operador de transformação.

$$\label{eq:approx} \begin{split} ^{A}P_{B} &= [2 \ 0 \ 0]^{T} & ^{A}R_{B} = \begin{bmatrix} \cos(45^{\circ}) & -\sin(45^{\circ}) & 0 \\ \sin(45^{\circ}) & \cos(45^{\circ}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \begin{bmatrix} ^{A}P \\ 1 \end{bmatrix} &= \begin{bmatrix} ^{A}R_{B} & ^{A}P_{B} \\ 0 \ 0 \ 0 & 1 \end{bmatrix}. \begin{bmatrix} ^{B}P \\ 1 \end{bmatrix} = \begin{bmatrix} (1/2)^{1/2} & -(1/2)^{1/2} & 0 & 2 \\ (1/2)^{1/2} & (1/2)^{1/2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \\ \Rightarrow ^{A}P &= [2 \ (1/2)^{1/2} \ 0]^{T} \end{split}$$

Aritmética de Transformações:

Transformação Composta:

Problema: conhecendo a localização de {C} em relação a {B} e a localização de {B} em relação a {A}, determinar a localização de {C} em relação a {A}.

Solução: dado um ponto P representado em {A}, {B} e {C},

$${}^{B}P = {}^{B}T_{C} {}^{C}P,$$
 ${}^{A}P = {}^{A}T_{B} {}^{B}P,$ ${}^{A}P = {}^{A}T_{C} {}^{C}P$

Então,

$${}^{A}P = {}^{A}T_{B}.{}^{B}P = {}^{A}P = {}^{A}T_{B}.({}^{B}T_{C}.{}^{C}P) = ({}^{A}T_{B}.{}^{B}T_{C}).{}^{C}P \implies {}^{A}T_{C} = {}^{A}T_{B}.{}^{B}T_{C}$$

$$\Rightarrow {}^{A}T_{C} = \begin{bmatrix} ({}^{A}R_{B}.{}^{B}R_{C}) & ({}^{A}P_{B} + {}^{A}R_{B}.{}^{B}P_{C}) \\ 0 & 0 & 1 \end{bmatrix}$$

Transformação Inversa:

Problema: conhecendo a localização de $\{B\}$ em relação a $\{A\}$, determinar a localização de $\{A\}$ em relação a $\{B\}$.

Solução: dado um ponto P representado em {A} e {B},

$${}^{A}P = {}^{A}R_{B}.{}^{B}P + {}^{A}P_{B}$$
 \Rightarrow ${}^{B}P = {}^{A}R_{B}^{-1}.({}^{A}P - {}^{A}P_{B}) = {}^{A}R_{B}^{T}.{}^{A}P - {}^{A}R_{B}^{T}.{}^{A}P_{B}$

Então, o operador matricial que relaciona ^AP a ^BP é:

$${}^{B}T_{A} = {}^{A}T_{B}^{-1} = \begin{bmatrix} & ({}^{A}R_{B}^{T}) & (-{}^{A}R_{B}^{T}.{}^{A}P_{B}) \\ 0 & 0 & 1 \end{bmatrix}$$

Equações de Transformação:

As transformações homogêneas permitem descrever a localização relativa de corpos rígidos. Muitos problemas de robótica envolvem a determinação da localização relativa entre dois referenciais a partir do conhecimento da localização relativa destes em relação a um terceiro referencial. Nestes casos, é possível estabelecer uma equação de transformações, a qual pode ser resolvida utilizando as regras aritméticas de composição e/ou inversão de transformações homogêneas. Assim, por exemplo, conhecendo ${}^{A}T_{B}$ e ${}^{A}T_{C}$, é possível obter ${}^{B}T_{C}$. Assim:

$${}^{A}T_{C} = {}^{A}T_{B}.{}^{B}T_{C} \implies {}^{B}T_{A}.{}^{A}T_{C} = {}^{B}T_{A}.{}^{A}T_{B}.{}^{B}T_{C} \implies ({}^{A}T_{B})^{-1}.{}^{A}T_{C} = ({}^{A}T_{B})^{-1}.{}^{A}T_{B}.{}^{B}T_{C}$$

$$\Rightarrow {}^{B}T_{C} = ({}^{A}T_{B})^{-1}.{}^{A}T_{C}$$

Exemplo: seja a célula de trabalho mostrada na figura abaixo e dados os referenciais {B} (Base), {G} (Garra}, {E} (Estação) e {O} (Objeto); determinar GT_O a partir das transformações homogêneas conhecidas BT_G , BT_E , ET_O .

Figura 2.21. Exemplo de equação de transformação.

Solução:
$${}^{G}T_{O} = {}^{G}T_{B}. {}^{B}T_{O} = {}^{G}T_{B}. ({}^{B}T_{E}. {}^{E}T_{O}) = {}^{B}T_{G}^{-1}. ({}^{B}T_{E}. {}^{E}T_{O})$$

2. CINEMÁTICA DIFERENCIAL

Neste capítulo abordamos a descrição do movimento do robô manipulador sem levar em conta os esforços que o produzem. Um importante problema cinemático associado ao movimento do robô é o mapeamento de velocidades e acelerações entre espaço cartesiano e espaço de juntas. Este problema pode ser descrito matematicamente através de uma matriz, que incorpora importantes informações estruturais sobre o comportamento do robô, a qual é denominada matriz jacobiana, ou simplesmente jacobiano. Um problema análogo é o mapeamento de esforços estáticos (com o manipulador parado). Este problema consiste em determinar o mapeamento entre os esforços a que a garra é submetida quando manipulando objetos (esforços em espaço cartesiano) e os esforços correspondentes exercidos pelos atuadores das juntas. Este problema está diretamente relacionado ao mapeamento definido pelo jacobiano para velocidades.

2.1. Representação de Velocidade de um Corpo Rígido:

Velocidade Linear:

Considere um corpo rígido com um referencial $\{B\}$ fixo no mesmo. Seja a posição do corpo em relação a um referencial $\{A\}$ dada pelo vetor de posição AP_B , a velocidade com que o corpo se translada em relação a $\{A\}$ é um atributo do ponto de origem AP_B . Assim, a velocidade linear de $\{B\}$ em relação a $\{A\}$, Av_B , é definida pela derivada temporal de AP_B :

$$^{A}v_{B}=d(^{A}P_{B})/dt$$

Velocidade Angular:

A velocidade com que um corpo gira em relação a um referencial {A} é um atributo do referencial {B} fixo no mesmo. Para representar a velocidade de rotação de {B} em relação a {A}, duas abordagens são adotadas comumente: a derivada dos ângulos de orientação e o vetor de velocidade angular.

Derivada dos ângulos de orientação:

Seja a de {B} em relação a {A} especificada através de uma tripla de ângulos de Euler ${}^A\Phi_B=[\varphi$ θ $\psi]T$. A velocidade de rotação de {B} em relação a {A} pode ser expressa pela derivada de ${}^A\Phi_B$ em relação ao tempo:

 $d^A \Phi_B/dt = [d\varphi/dt \ d\theta/dt \ d\psi/dt] T$

Figura 3.2. Rotação representada pela derivada dos ângulos de Euler ZYZ.

Nesta representação, a integral de $d^A\Phi_B/dt$ corresponde obviamente ao vetor $^A\Phi_B$, que tem um significado físico claro. Por outro lado, $d^A\Phi_B/dt$ é um vetor de componentes de rotação não ortogonais em torno de eixos de um referencial torto, os quais variam de acordo com valor corrente de $^A\Phi_B$.

Vetor de Velocidade Angular:

Seja a de {AB} um referencial paralelo a {B} e com origem coincidente com a origem de {A}. A mudança de orientação de {B} em relação a {A} pode ser descrita como a rotação de {AB} em torno de um vetor direcional passando pela origem de {A}. Uma forma compacta de representar esta rotação é através de um Vetor de Velocidade Angular $^A\omega_B$ alinhado com o eixo de rotação e cujo módulo é igual à velocidade de rotação em torno do mesmo. Nesta representação, a integral de $^A\omega_B$ não tem um significado físico claro. Por outro lado, ao contrário da representação por derivadas dos ângulos de Euler, $^A\omega_B$ é um vetor de componentes ortogonais de rotação em torno dos eixos de {A}.

A partir da figura abaixo, pode-se verificar que o vetor de velocidade angular ${}^A\omega_B$ se relaciona com o vetor d ${}^A\Phi_b/dt$ através da expressão matricial:

$${}^{A}\omega_{B}= \left[\begin{array}{ccc} 0 & -s\varphi & c\varphi s\theta \\ 0 & c\varphi & s\varphi s\theta \\ 1 & 0 & c\theta \end{array} \right] d^{A}\Phi_{B}/dt = R_{\Phi}.d^{A}\Phi_{B}/dt$$

A matriz R_{Φ} na expressão acima é dependente do valor corrente de $^A\Phi_B$. Verifica-se que esta matriz torna-se singular quando $sen(\theta)=0$. Assim, qualquer velocidade rotacional possa ser descrita através de $^A\omega_B$ mas, por outro lado, existem velocidades que não podem ser descritas através de $^A\Phi_B$ /dt quando $\{B\}$ assume uma orientação para a qual $sen(\theta)=0$. Orientações com esta propriedade são denominadas singularidades representacionais de $^A\Phi_B$.

Velocidades relativas em referenciais móveis: 2.2.

Velocidade Linear Relativa:

Considere três referenciais móveis $\{A\}$, $\{B\}$ e $\{C\}$. Denote AP_B a posição de $\{B\}$ relativa a $\{A\}$, ${}^BP_{CB}$ a posição de $\{C\}$ relativa a $\{B\}$ e AP_C a posição de $\{C\}$ relativa a $\{A\}$. Esta última pode ser obtida a partir de AP_B e BP_C através de uma simples soma vetorial, desde que os dois vetores sejam expressos no mesmo sistema de coordenadas. Representando ${}^BP_{CB}$ em $\{A\}$ através da matriz de rotação AR_B , que especifica a orientação de {B} relativa a {A}, temos:

$${}^{A}P_{C} = {}^{A}P_{B} + {}^{A}R_{B}.{}^{B}P_{CB}$$

Figura 3.5. Posições ZA relativas entre referenciais móveis.

Derivando a expressão acima podemos obter o vetor velocidade linear de $\{C\}$ em relação a $\{A\}$ a partir das velocidades relativas de $\{B\}$ em relação a $\{A\}$ e de $\{C\}$ em relação a $\{B\}$:

$$d(^{A}P_{C})/dt = d(^{A}P_{B})/dt + d(^{A}R_{B}.^{B}P_{CB})/dt$$

$$\Rightarrow$$
 ${}^{A}v_{C} = {}^{A}v_{B} + d({}^{A}R_{B}.{}^{B}P_{CB})/dt$

$$\Rightarrow$$
 ${}^{A}v_{C} = {}^{A}v_{B} + d({}^{A}R_{B})/dt.{}^{B}P_{CB} + {}^{A}R_{B}.d({}^{B}P_{CB})/dt$

O segundo termo do lado direito da equação acima, que envolve a derivada e AR_B , é uma componente de velocidade que aparece quando AR_B varia, ou seja, quando $\{B\}$ está girando em relação a $\{A\}$. Isto gera uma componente de velocidade linear de $\{C\}$ em relação a $\{A\}$, mesmo se $\{B\}$ não se translade em relação a $\{A\}$ e $\{C\}$ não faça o mesmo em relação a $\{B\}$. Detalhando o termo $d({}^AR_B)/dt.{}^BP_C$:

$$d(^{A}R_{B})/dt.^{B}P_{C} = [d(^{A}x_{B})/dt \quad d(^{A}y_{B})/dt \quad d(^{A}z_{B})/dt].^{B}P_{C}$$

Para determinar as derivadas que compõem as colunas de d(${}^{A}R_{B}$)/dt, considere o referencial {B} girando em relação a {A} com velocidade angular ${}^{A}\omega_{B}$. Para efeito de simplificação, considere que {A} e {B} possuem a mesma origem (${}^{A}P_{B}=0$), diferindo apenas na sua orientação (${}^{A}R_{B}$ variando em função de ${}^{A}\omega_{B}$). Dado um ponto ${}^{B}P$ com coordenadas fixas em {B}, a sua representação em {A} ${}^{A}P$ será também função de ${}^{A}\omega_{B}$.

Da figura acima, podemos observar que o vetor $d(^AP) = ^AP(t+dt) - ^AP(t)$ é perpendicular ao vetor $^AP(t)$ e ao vetor $^A\omega_B$. Por outro lado, quando $d(^AP)$ tende a zero, o seu módulo tende ao comprimento do arco $|d(^AP)| = |^A\omega_B.dt|.|^AP|.sen(\theta)$, ou seja: $|d(^AP)/dt| = |^A\omega_B|.|^AP|.sen(\theta)$. Assim, $d(^AP)/dt$ pode ser expresso como o produto vetorial dos vetores $^AP e^A\omega_B$:

$$d(^{A}P)/dt = {^{A}\omega_{B}} \times {^{A}P}$$

Desta forma, para o caso particular em que o vetor ${}^{A}P$ for igual aos eixos do referencial $\{B\}$ expressos em $\{A\}$, ${}^{A}x_{B}$, ${}^{A}y_{B}$ e ${}^{A}z_{B}$, temos:

$$d(^Ax_B)/dt = ^A\omega_B \times ^Ax_B \qquad \qquad d(^Ay_B)/dt = ^A\omega_B \times ^Ay_B \qquad \qquad d(^Az_B)/dt = ^A\omega_B \times ^Az_B$$

Assim:

$$\begin{split} &d(^{A}R_{B})/dt.^{B}P_{CB}=[d(^{A}x_{B})/dt\ d(^{A}y_{B})/dt\ d(^{A}z_{B})/dt].^{B}P_{CB}=[^{A}\omega_{B}\times^{A}x_{B}\ ^{A}\omega_{B}\times^{A}y\ ^{A}\omega_{B}\times^{A}z_{B}].^{B}P_{CB}\\ &\Rightarrow d(^{A}R_{B})/dt.^{B}P_{CB}={}^{A}\omega_{B}\times[^{A}x_{B}\ ^{A}y_{B}\ ^{A}z_{B}].^{B}P_{CB}={}^{A}\omega_{B}\times(^{A}R_{B}.^{B}P_{CB}) \end{split}$$

Desta forma, a velocidade linear relativa de {C} em relação a {A} pode ser expressa como:

$${}^{A}v_{C} = {}^{A}v_{B} + {}^{A}\omega_{B} \times ({}^{A}R_{B}.{}^{B}P_{CB}) + {}^{A}R_{B}.d({}^{B}P_{CB})/dt$$

Velocidade Angular Relativa:

De forma análoga ao caso linear, denote ${}^A\omega_B$ a velocidade angular de $\{B\}$ relativa a $\{A\}$, ${}^B\omega_{CB}$ a velocidade angular de $\{C\}$ relativa a $\{B\}$ e ${}^A\omega_C$ a velocidade angular de $\{C\}$ relativa a $\{A\}$. Esta última pode ser obtida a partir de ${}^A\omega_B$ e ${}^B\omega_{CB}$ através de uma simples soma vetorial, desde que os dois vetores sejam expressos no mesmo sistema de coordenadas. Representando ${}^B\omega_{CB}$ em $\{A\}$ através da matriz de rotação AR_B , que especifica a orientação de $\{B\}$ relativa a $\{A\}$, temos:

$${}^{A}\omega_{C} = {}^{A}\omega_{B} + {}^{A}R_{B}.{}^{B}\omega_{CB}$$

Figura

Velocidades angulares relativas entre referenciais móveis.

3.7.

2.3. Representação de Aceleração de um Corpo Rígido:

Aceleração Linear:

Definimos o vetor de aceleração linear Av_B ' de um referencial corpo rígido B relativa a um referencial $\{A\}$ como a derivada temporal do vetor de velocidade linear Av_B de um referencial $\{B\}$ relativa a $\{A\}$, onde $\{B\}$ é fixo no corpo B:

$${}^{A}v_{B}$$
' = $d({}^{A}v_{B})/dt = [d({}^{A}v_{Bx})/dt \quad d({}^{A}v_{By})/dt \quad d({}^{A}v_{Bz})/dt]^{T}$

Aceleração Angular:

Definimos o vetor de aceleração angular ${}^A\omega_B$ ' de um corpo rígido B relativa a um referencial $\{A\}$ como a derivada temporal do vetor de velocidade angular ${}^A\omega_B$ de um referencial $\{B\}$ relativa a $\{A\}$, onde $\{B\}$ é fixo no corpo:

$$^{A}\omega_{B}$$
' = $d(^{A}\omega_{B})/dt = [d(^{A}\omega_{Bx})/dt \quad d(^{A}\omega_{By})/dt \quad d(^{A}\omega_{Bz})/dt]^{T}$

2.4. Acelerações relativas em referenciais móveis:

Aceleração linear relativa:

Considere três referenciais móveis {A}, {B} e {C}. Denote ${}^{A}v_{C}$, a aceleração linear de {C} relativa a {A}. Esta pode ser obtida derivando a expressão correspondente da velocidade linear ${}^{A}v_{C}$, função de ${}^{A}v_{B}$, ${}^{A}\omega_{B}$ e d ${}^{B}P_{CB}/dt$:

$$\begin{split} ^{A}v_{C}{'} &= d^{A}v_{C}/dt = d[^{A}v_{B} + ^{A}\omega_{B}\times(^{A}R_{B}.^{B}P_{CB}) + ^{A}R_{B}.d(^{B}P_{CB})/dt]/dt \\ \\ \Rightarrow ^{A}v_{C}{'} &= d^{A}v_{B}/dt + (d^{A}\omega_{B}/dt)\times(^{A}R_{B}.^{B}P_{CB}) + ^{A}\omega_{B}\times d(^{A}R_{B}.^{B}P_{CB})/dt + d(^{A}R_{B}.d(^{B}P_{CB})/dt)/dt \\ \\ \Rightarrow ^{A}v_{C}{'} &= ^{A}v_{B}{'} + ^{A}\omega_{B}{'}\times(^{A}R_{B}.^{B}P_{CB}) + ^{A}\omega_{B}\times (d^{A}R_{B}/dt).^{B}P_{CB} + ^{A}\omega_{B}\times^{A}R_{B}.(d^{B}P_{CB}/dt) + \\ &+ (d^{A}R_{B}/dt).d(^{B}P_{CB})/dt + ^{A}R_{B}.d^{2}(^{B}P_{CB})/dt^{2} \end{split}$$

Usando a identidade derivada anteriormente para a derivada de uma matriz de rotação ${}^{A}R_{B}$ vezes um vetor ${}^{B}V$: $d({}^{A}R_{B})/dt$. ${}^{B}V = {}^{A}\omega_{B}\times({}^{A}R_{B}$. ${}^{B}V$), temos:

$${}^{A}v_{C}' = {}^{A}v_{B}' + {}^{A}R_{B}.d^{2}({}^{B}P_{CB})/dt^{2} + {}^{A}\omega_{B}' \times ({}^{A}R_{B}.{}^{B}P_{CB}) + {}^{A}\omega_{B} \times ({}^{A}\omega_{B} \times {}^{A}R_{B}.{}^{B}P_{CB}) + \\ + 2.({}^{A}\omega_{B} \times {}^{A}R_{B}.d({}^{B}P_{CB})/dt)$$

Os dois primeiros termos do lado direito representam a soma vetorial das acelerações lineares de $\{B\}$ e $\{C\}$ expressas em $\{A\}$. O terceiro termo é uma componente de aceleração linear devido à aceleração angular de $\{B\}$ e a que $\{C\}$ está a uma distância BP_C de $\{B\}$. Os dois últimos termos representam componentes de aceleração linear coriolis (produtos de velocidades) e centrífuga (velocidades ao quadrado).

Aceleração angular relativa:

Considere três referenciais móveis {A}, {B} e {C}. Denote ${}^A\omega_C$ ' a aceleração linear de {C} relativa a {A}. Esta pode ser obtida derivando a expressão correspondente da velocidade linear ${}^A\omega_C$, função de ${}^A\omega_B$, e ${}^B\omega_{CB}$:

$$^{A}\omega_{C}{'}=d^{A}\omega_{C}/dt=d[^{A}\omega_{B}+{^{A}R_{B}}.^{B}\omega_{CB}]/dt=d^{A}\omega_{B}/dt+d(^{A}R_{B}.^{B}\omega_{CB})/dt$$

$$\Rightarrow$$
 $^{A}\omega_{C}$ ' $=$ $^{A}\omega_{B}$ ' $+$ $(d^{A}R_{B}/dt)$. $^{B}\omega_{CB}$ $+$ $^{A}R_{B}$. $d^{B}\omega_{CB}/dt$

Usando a identidade derivada anteriormente para a derivada de uma matriz de rotação ${}^{A}R_{B}$ vezes um vetor ${}^{B}V$: $d({}^{A}R_{B})/dt$. ${}^{B}V = {}^{A}\omega_{B}\times({}^{A}R_{B}.{}^{B}V)$, temos:

$$^{A}\omega_{C}$$
' = $^{A}\omega_{B}$ ' + $^{A}R_{B}.d^{B}\omega_{CB}/dt$ + $^{A}\omega_{B}\times ^{A}R_{B}.^{B}\omega_{CB}$

Os dois primeiros termos do lado direito representam a soma vetorial das acelerações angulares de {B} e {C} expressas em {A}. O último termo representa componentes de aceleração angular coriolis (produtos de velocidades) e centrífuga (velocidades ao quadrado).