Value Function Approximation

CSCI 2951-F Ron Parr Brown University

Value function approximation

- Markov assumption, "curse of dimensionality" -> big state spaces
- Often impractical to run value iteration/policy iteration
- Classical approach:
 - Use an over-simplified model, designed by hand
 - Gives correct answer to the "wrong" question.
- Increasingly popular approach (though has classical roots)
 - Use function approximation to represent value function
 - Not obviously/theoretically better but has had some practical success

Living with imperfect value functions

$$\|V - TV\|_{\infty} \le \epsilon \to \|V - V^*\|_{\infty} \le \frac{\epsilon}{1 - \gamma}$$
 T is the Bellman operator

- How reassuring is this?
- Does this worst case hold in practice?

Fitted value iteration (model-based)

- Assume:
 - Very large state space can't represent the value function as a vector
 - Generic machine learning "fit" operator that fits a continuous function based upon a set of training points
- Fitted VI algorithm:
 - Randomly initialize approximate value function V₀
 - i=0
 - Repeat until done*
 - Sample states S=s1...sm
 - Fit V_{i+1} on TV_i(s¹)...TV_i(s^m). ← T is the Bellman operator
 - i=i+1
- Shorthand: V_{i+1}=fit(TV_i)
- How do we define "done"?

How to compute TV(s) in approximate VI

- Challenges:
 - V is not a vector, but some other representation
 - TV involves an expectation over next states, next states which may not be in original sample set S, i.e. off-sample extrapolation is likely required
- If number of next states is large and/or no model is available
 - · Sample next states too
 - Evaluate expected next state value by Monte Carlo
 - · Generate many next states for each state
 - Possible if model/simulator can be easily reset

Properties of Fitted VI (FVI) – part I

- Properties of FVI depend upon properties of Fit function
- Recall that Bellman operator "T" is a contraction in max norm, i.e., $||V_1 V_2||_{\infty} < \epsilon \rightarrow ||TV_1 TV_2||_{\infty} < \gamma \epsilon$, $0 \le \gamma < 1$
- If two operators, F and G are contractions (i.e. for any value function FV and GV are contractions) then F(GV) is a contraction
- Non-expansion: If H is a non-expansion in max norm, then: $||V_1 V_2||_{\infty} < \epsilon \rightarrow ||HV_1 HV_2||_{\infty} \le \gamma \epsilon$
- If one of F or G is a non-expansion in max norm, and the other is a contraction, the F(GV) is a contraction

Properties of Fitted VI (FVI) - part II

- Follows from previous slide that if Fit is a non-expansion in max norm, then fitted VI is a contraction in max norm
- What choices of Fit are non-expansions?
- Most common examples are averagers, e.g., interpolation
- Fitted VI with interpolation:
 - Pick S=s¹...s^m to be a grid of points
 - Implementing Fit:
 - For points in S, store TV(s) exactly
 - For points outside of S, use a distance-weighted average of nearest neighbors

Properties of Fitted VI with averagers

- It converges!
- But to what?
- Suppose ϵ = largest approximation error introduced at any iteration
- Total error is bounded by $\epsilon/(1{-}\gamma)$

Is this good news?

- Good news:
 - Convergence yay!
 - In some cases it may be possible to estimate ϵ
- Bad news:
 - Averagers do not scale well
 - Keeping ε small requires dense S
 - Achieving dense S is exponentially expensive in dimension of space

Beyond Averagers

- Moving beyond averagers requires more powerful function approximation
- Linear approximation is more powerful than averagers because it can extrapolate beyond points in S=s¹...s^m

(For averagers, any point not in $s^1...s^m$ has value > $min(V(s^1)...V(s^m))$ and < $max(V(s^1)...V(s^m))$

• Non-linear approximation (e.g. neural networks) is even more powerful than linear approximation

Linear Value Function Approximation

- |S| typically quite large
- Pick linearly **independent** features $\Phi = (\phi_1 ... \phi_k)$ (basis functions)
- Desire weights **w**=w₁...w_k, s.t.

$$V^*(s) \approx \hat{V}(s) = \sum_{i=1}^k w_i \phi_i(s)$$

 $\hat{V} = \Phi \mathbf{w}$

Why is linear regression so important?

- Averagers interpolate (weak, resource hungry approximation)
- Regression extrapolates (potentially more powerful)
- Linear regression = special case of most other methods
 - Neural networks
 - Kernel methods
- If regression fails, not much optimism on other methods

Linear Fixed Point

• Π_{Φ} V=projection of V into span(Φ)

• If we converge, we have: $\Pi_{\Phi} T \Phi_W = \Phi_W$

Example: Stability Problem [Tsitsiklis & Van Roy 1996]

Problem: Convergence not guaranteed

No rewards, $\gamma = 0.9$: V* = 0

Consider linear approx. w/ single feature $\boldsymbol{\varphi}$ with weight w.

$$\hat{V}(s) = w \cdot \phi(s)$$
 Optimal w = 0
since V*=0

Example: Stability Problem

$$\phi(s_1)=1$$
 $V^i(s_1)=w^i$
 $\phi(s_2)=2$
 $V^i(s_2)=2w^i$

From iteration i, Belman equation gives

$$T[\hat{V}^i](s_1) = \gamma \hat{V}^i(s_2) = 1.8w^i$$

$$T[\hat{V}^i](s_2) = \gamma \hat{V}^i(s_2) = 1.8w^i$$

Can't be represented in our space so find wi+1 that gives least-squares approx. to exact backup

After some math linear fit gives us: wi+1 = 1.2 wi

What does this mean?

Example: Stability Problem

Each iteration of approximation makes things worse! Even for this simple problem fitted VI diverges.

Van Roy's Result

- Bellman operator *fixed policy* is a contraction in the weighted L₂ norm
- Weights come from the stationary distribution of P
- Linear regression in the weighted L₂ norm is non expansive in the weighted L₂ norm
- Understanding this:
 - Weighted norm redefines distance function so that different dimensions in the original space have different importance
 - Equivalent scaling the dimensions of the space
- Combined Regression-Bellman operator is a contraction!

To what does it converge?

$$\|V^{\pi} - \widehat{V}^{\widehat{\pi}}\|_{2,\rho} \le \frac{1}{\sqrt{1-\kappa^2}} \|V^{\pi} - \Pi V^{\pi}\|_{2,\rho}$$

- ρ is the stationary distribution of P_{π}
- κ is the effective contraction rate (<\gamma)

Q-iteration: Generalization of Value Iteration

- $\forall s, a : Q(s, a) \leftarrow R(s, a) + \gamma \Sigma'_s P(s'|s, a) V(s')$
- $V(s') = \max_{a'} Q(s', a')$
- Q-iteration has similar convergence properties to value iteration

Application to stopping

- What about optimization?
- How to think about Bellman operator with max
 - Define T*_Q as the Q-iteration operator
 - T_Q^* is a contraction is Max Norm
- Is T^*_Q a non-expansion in weighted L_2 ?
- No. 🙁
- But... It is non-expansion if max is always done with a constant
- Optimal stopping: Should I continue or stop and receive a payout?

Financial application

- Want to assign a price to an asset with following properties:
 - Can be held by owner for an arbitrary amount of time
 - Can cash out at some future time and receive a state-dependent reward
- Want to compute present value of this asset
- Features:
 - Variables relevant to immediate value of asset
 - Variables relevant to future value of the asset
- Supposedly used by some financial institutions to price assets

Perspective: Is weighted L₂ reasonable?

- In many ways more reasonable than Max norm
 - Worst case over entire state space hard to evaluate
 - Sampling methods can never provide guarantees without additional assumptions
- How do you achieve weighted L₂ in practice? (Sample from "real world" states)
- Weighted L₂ gives lower weight to less frequently occurring states
 - · Common cases get the most weight
 - Rare events may be wrong but that is forgivable(?)

Q-iteration in general

- What if "Fit" is a neural network?
- Linear value function approximation is a special case of this
- (Lack of) convergence guarantees from linear VFA apply to neural networks, but...
- If approximation error introduced at each step can be bounded by a constant, then overall approximation error is low (Note: this is false for the Van Roy counterexample.)
- Is this a reasonable assumption? (discuss)

Properties of approximate VI methods

- Convergence not guaranteed, except in special cases
- Success has traditionally required very carefully chosen features and/or dense coverage to achieve low error
- Deep learning, which "automatically" learns feature representations, and uses massive numbers of samples, partially overcomes this