PROYECTO DE GRADO

Modelo predictivo para el precio nacional del cacao.

Karen Dayana Culma Ramírez

Asesor: Santiago Pérez Angarita

Co-Asesor: Adriana Abrego Pérez

2022-1

CONTENIDOS

OBJETIVOS 02

DATOS

Adquisición, preprocesamiento y base de datos.

METODOLOGÍA

Exploraci+on de modelos predictivos.

RESULTADOSSelección de mejor modelo.

06 R

CONCLUSIONES Y RECOMENDACIONES.

07

BIBLIOGRAFIA

80

ANEXOS

Modelo predictivo univariado para el precio Internacional de cacao.

INTRODUCCIÓN

Contribución al PIB (7% en 2017)

Demanda de productos agrícolas crece.

Se pierde y desperdicia 9,76M de t.

Fuente: cálculos DNP.

COMERCIALIZACIÓN CACAO

- Mercado oligopsónico.
- Precio Internacional como referente.
- Casa Luker y Grupo Nutresa tienen 85% de participación.

Tomado de https://sac.org.co/wp-content/uploads/2019/01/CACAO.jpg

PREGUNTA DE INVESTIGACIÓN

¿Cómo pueden los modelos predictivos ser de ayuda para conocer el comportamiento futuro del precio nacional del cacao y así apoyar en las decisiones sobre la producción'

OBJETIVOS

Analizar y consolidar una base de datos.

Construir diferentes modelos predictivos.

Seleccionar el mejor modelo.

DATOS

PRECIO NACIONAL

Suministrada por por el Fondo Nacional del Cacao a través de la red de información y comunicación del sector Agropecuario Colombiano.

PRECIO INTERNACIONAL

Se cotiza en la bolsa de valores de Nueva York, suministrado por IFC Markets e IndexMundi

Media		Desviación Estándar	Curtosis	Sesgo	Máximo	Mínimo	Cuenta
7.644,5	2266295		-1,056	-254,24	11.283,75	4.253,62	407

DATOS

OTRAS VARIABLES

Precio internacional del cacao. TRM Precio del café, Valor de importación y exportación Cotización de Grupo Nutresa.

ARIMA UNIVARIADO

Metodología de Box-Jenkins

Lag

Prueba Dickey-Fuller

HO: La serie no es estacionaria.

H1: La serie es estacionaria

Augmented Dickey-Fuller Test

data: Price Dickey-Fuller = -2.0782, Lag order = 7, p-value = 0.5448 alternative hypothesis: stationary

La serie no es estacionaria

ARIMA UNIVARIADO

Metodología de Box-Jenkins

Prueba Dickey-Fuller

HO: La serie no es estacionaria.

H1:La serie es estacionaria

Augmented Dickey-Fuller Test

data: difserie

Dickey-Fuller = -7.4171, Lag order = 7, p-value = 0.01

alternative hypothesis: stationary

La serie es estacionaria

ARIMA UNIVARIADO

Metodología de Box-Jenkins

Entrenamiento-95% Prueba-5%.

Modelo	ARIMA(0,0,1)	ARIMA(1,0,1)	ARIMA(1,0,5)	ARIMA(5,0,5)	ARIMA(5,0,6)	ARIMA(6,0,7)
	(auto.arima)					
AIC	5649.98	5650,9	5647,84	5636,88	5635,84	5638,09

Modelo Autorregresivo Vectorial (VAR)

Prueba Dickey-Fuller en diferenciación

Serie	Valor p
Precio Nacional del Cacao	0,01492
Precio Internacional del Cacao	0,02011
TRM	0,01
Precio del Café	0,09974
Importación	0,01
Exportación	0,01
Grupo Nutresa	0,04566

Las series son estacionarias

```
Estimation results for equation cacaoNacional:
cacaoNacional = cacaoNacional.ll + cacaoInternacional.ll + trm.ll +
cafe.l1 + importación.l1 + exportacion.l1 + nutresa.l1 + const
                       Estimate Std. Error t value Pr(>|t|)
cacaoNacional.ll
                     -4.560e-01 1.596e-01 -2.858 0.00527 **
cacaoInternacional.ll 6.873e-01 1.524e-01
                                            4.511 1.88e-05 ***
trm.]1
                     -2.743e-01 4.361e-01
                                          -0.629 0.53091
cafe. 11
                    4.984e-02 5.977e-02
                                           0.834 0.40652
importación.l1
                     -1.692e-05 1.411e-05
                                          -1.199 0.23370
exportacion. 11
                     -1.292e-06 7.505e-06
                                           -0.172 0.86367
nutresa. 11
                     -8.841e-03 2.893e-02 -0.306 0.76060
                      2.749e+01 3.605e+01 0.763 0.44765
const
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 347.6 on 93 degrees of freedom
Multiple R-Squared: 0.2151, Adjusted R-squared: 0.1561
```

F-statistic: 3.642 on 7 and 93 DF, p-value: 0.001626

Modelo Autorregresivo Vectorial (VAR)

Entrenamiento-95% Prueba-5%.

Estimation results for equation precioNacional1d:

precioNacional1d = precioNacional1d.l1 + precioInternacionald.l1 + p
recioNacional1d.l2 + precioInternacionald.l2 + precioNacional1d.l3 +
precioInternacionald.l3 + const

```
Estimate Std. Error t value Pr(>|t|)
precioNacional1d.l1
                        -0.18638
                                   0.05880
                                            -3.170
                                                    0.00165 **
                                   0.03278
precioInternacionald.ll 0.45367
                                            13.840
                                                     < 2e-16 ***
precioNacional1d. 12
                        -0.12750
                                   0.05718
                                                    0.02635 *
                                              5.854 1.05e-08 ***
precioInternacionald. 12 0.24134
                                   0.04123
precioNacional1d.13
                        0.03571
                                   0.04461
                                             0.800
                                                    0.42396
precioInternacionald.l3 0.10361
                                   0.03923
                                             2.641
                                                    0.00860 **
                         3.71695
                                   7.72676
                                             0.481 0.63076
const
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 150.3 on 376 degrees of freedom Multiple R-Squared: 0.3925, Adjusted R-squared: 0.3828 F-statistic: 40.49 on 6 and 376 DF, p-value: < 2.2e-16

trainVAR\$precioInternacionald & trainVAR\$precioNacional1

Modelo Autorregresivo Vectorial (VAR)

Entrenamiento-95% Prueba-5%.

Prueba de causalidad de Granger:

HO: La serie x no es Granger-Cause de la serie y.

H1: La serie x es Granger-Cause de la serie y.

```
Granger causality test
```

```
Model 1: trainVAR$precioNacionalld ~ Lags(trainVAR$precioNacionalld, 1:3) 
+ Lags(trainVAR$precioInternacionald, 1:3) 
Model 2: trainVAR$precioNacionalld ~ Lags(trainVAR$precioNacionalld, 1:3) 
Res.Df Df F Pr(>F) 
1 376 
2 379 -3 65.537 < 2.2e-16 *** 
--- 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

La serie de precios internacionales es Granger-Cause de la serie de precios nacionales.

Precio Nacional

Modelo de Vector de Corrección de Errores (VECM)

Entrenamiento-95%

Prueba-5%.

Prueba de cointegración de Phillips-Ouliaris

HO: No existe cointegración entre las series.

H1: Existe cointegración entre las series.

Phillips-Ouliaris Cointegration Test

data: cbind(precioNacional1, precioInternacional)
Phillips-Ouliaris demeaned = -61.367, Truncation lag
parameter = 4, p-value = 0.01

Las series estan cointegradas

```
###############
Full sample size: 387
                        End sample size: 384
Number of variables: 2 Number of estimated slope parameters 12
AIC 8049.626
                BIC 8100.984
                                SSR 36076525
Cointegrating vector (estimated by ML):
   precioNacional1 precioInternacional
                            -0.8552125
                             ECT
Equation precioNacional1
                             -0.0945(0.0224)***
Equation precioInternacional -0.0748(0.0409).
                             Intercept
Equation precioNacional1
                             19.4831(8.3768)*
Equation precioInternacional 25.6967(15.2964).
                             precioNacional1 -1
Equation precioNacional1
                             -0.1057(0.0565).
Equation precioInternacional -0.1182(0.1031)
                             precioInternacional -1
Equation precioNacional1
                             0.3676(0.0368)***
Equation precioInternacional -0.0079(0.0673)
                             precioNacional1 -2
Equation precioNacional1
                             -0.0221(0.0438)
Equation precioInternacional -0.0472(0.0800)
                             precioInternacional -2
Equation precioNacional1
                             0.1502(0.0386)***
Equation precioInternacional 0.0281(0.0704)
```

###Model VECM

Modelo de Vector de Corrección de Errores (VECM)

Entrenamiento-95%

Prueba-5%.

```
###Model VECM
##############
                       End sample size: 384
Full sample size: 387
Number of variables: 2 Number of estimated slope parameters 12
AIC 8049.626
                BIC 8100.984
                                SSR 36076525
Cointegrating vector (estimated by ML):
   precioNacional1 precioInternacional
                            -0.8552125
r1
Equation precioNacional1
                             -0.0945(0.0224)***
Equation precioInternacional -0.0748(0.0409).
                             Intercept
Equation precioNacional1
                             19.4831(8.3768)*
Equation precioInternacional 25.6967(15.2964).
                             precioNacional1 -1
Equation precioNacional1
                             -0.1057(0.0565).
Equation precioInternacional -0.1182(0.1031)
                             precioInternacional -1
Equation precioNacional1
                             0.3676(0.0368)***
Equation precioInternacional -0.0079(0.0673)
                             precioNacional1 -2
Equation precioNacional1
                             -0.0221(0.0438)
Equation precioInternacional -0.0472(0.0800)
                             precioInternacional -2
Equation precioNacional1
                             0.1502(0.0386)***
Equation precioInternacional 0.0281(0.0704)
```


ARIMA con regresores

Entrenamiento-95%

Prueba-5%.

```
Series: trainArimaE$precioNacional1
Regression with ARIMA(0,1,0) errors
```

Coefficients:

xreg

0.2874

s.e. 0.0328

```
sigma^2 = 30465: log likelihood = -2539.81
AIC=5083.62 AICc=5083.65 BIC=5091.53
```

ARIMA(0,1,0)

$$Y_{i+1} - Y_i = \in_{i+1}$$

$$Y_{i+1} = Y_i + \in_{i+1}$$

Caminata aleatoria, un caso especial de los modelos ARIMA

ARIMA con regresores

Se revisan los residuales:

Prueba de Ljung-Box

HO: Los residuales se distribuyen de forma independiente.

H1: Los residuales exhiben correlación serial.

Ljung-Box test

data: Residuals from Regression with ARIMA(0,1,0) error $Q^* = 13.552$, df = 9, p-value = 0.1392

Model df: 1. Total lags used: 10

Las residuales se distribuyen de forma independiente.

Modelo de redes neuronales

Librería forecast de R se utiliza la función nnetar que estima un modelo NNAR

```
Series: trainRN[, 1]
Model: NNAR(2,2)
Call: nnetar(y = trainRN[, 1], xreg = trainRN[,
  lambda = "auto")

Average of 20 networks, each of which is
a 3-2-1 network with 11 weights
options were - linear output units

sigma^2 estimated as 5.96
```


RESULTADOS

Modelo	VAR	VECM	ARIMA con regresores
AIC	10212,12	8049,63	5083,62

Modelo	VAR	VECM	ARIMA con	NNAR
			regresores	
RMSE	211,73	233,87	315,62	251,79
MAPE	0,9656	0,0210	0,0294	0,0231

VALIDACIÓN

RESULTADOS

Prueba de Breusch-Godfrey

HO: Los residuales se distribuyen de forma independiente.

H1: Los residuales exhiben correlación serial.

Breusch-Godfrey LM test

data: Residuals of VAR object varmod1 Chi-squared = 22.145, df = 20, p-value = 0.3327

Prueba de ARCH

HO: No existe efecto ARCH.

H1: Existe efcto ARCH.

ARCH (multivariate)

data: Residuals of VAR object varmod1
Chi-squared = 147.92, df = 135, p-value = 0.211

Los residuales son independientes entre sí y no hay presencia de efecto ARCH.

PRONÓSTICO DE MODELO VEC

CONCLUSIONES Y RECOMENDACIONES

Se selecciona el modelo predictivo VEC, el cual tiene un MAPE de 2,1%

Mejorar la periodicidad de las series

Identificar otras variables explicativas

En partícular, aquellas que describen factores del clima. y variación de producción

Construir modelos econométricos y de aprendizaje automático

BIBLIOGRAFIA

Ahumada, O., & Villalobos, J. (2009). Application of planning models in the agri-food supply chain: A review. Elsevier, 196 (1), 1-20.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723

Alonso Rodríguez, A. (2019). Un modelo de red neuronal para el Índice de producción de la Construcción Total en España. Anuario Jurídico y Económico Escurialense.

Geisendorf, S., & Pietrulla, F. (2017). The circular economy and circular economic concepts. Thunderbird International Business Review, 60, 771-782.

Sodhi, M., & Tang, C. (2014). Supply-Chain Research Opportunities with the Poor as. Production and Operations Management, 1483-1494.

Martínez Covaleda, H. J., Ortíz Hermida, L., & Espinal G, C. F. (2005). La cadena del cacao Una mirada global de su estructura y dinámica 1991-2005. Bogotá: Ministerio de Agricultura y Desarrollo Rural.

Vásquez-Barajas, E. F., García-Torres, N. E., Bastos-Osorio, L. M., & Lázaro-Pacheco, J. M. (2018). Análisis económico del sector cacaotero en Norte de Santander, Colombia y a nivel internacional. Rev.investig. desarro.innov, 8(2), 237-250.

Oliveros, D., y Pérez, S. (2013). Medición de la competitividad de los productores de cacao en una región de Santander, Colombia. Revista Lebret (5). Bucaramanga, Colombia: Universidad Santo Tomás, pp 243-267

Zhu, Z., Chu, F., Dolgui, A., Chu, C., Zhou, W., & Piramuthu, S. (2018). Recent advances and opportunities in sustainable. International Journal of Production Research, 5700-5722.

ANEXO

Modelo predictivo univariado del precio internacional del cacao

Modelo	RMSE	MAPE
Simple Exponential Smoothing	326,2273	0,02959976
Metodos con Tendencia. holt ()	326,1477	0,02959970
Método HoltWinters ()	308,0072	0,02643114
Suavisamiento exponencial. Ets ()	333.1557	0,02923134
Método Hw ()	682,1321	0,06032489

ANEXO

Herramienta de apoyo a la decisión

Herramienta de flujo de caja

El precio para las proximas 30 semanas

El total de ingresos es:

