

NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering

Yifan Wang
Dec 2023 Vlab Workshop

About Me

- Graduated from Vlachos Group Dec 2021
- ML Research Scientist at Meta
- Based in San Francisco
- Research interests: Al data annotation, active learning, generative Al, reinforcement learning from human feedback (RLHF)
- LinkedIn: https://www.linkedin.com/in/wangyifan411/

Global Optimization of Blackbox Functions

Blackbox functions [1]

- Expensive computer model or laboratory experiments
- Unknown explicit model form
- Multi-dimensional

Active learning [2]

 An algorithm "learning" from data, proposing next experiments, and improving prediction accuracy with fewer training data or lower cost

Use active learning to reduce experimental (computational) cost and improve accuracy of the surrogate model

Computations/Experiments

[1] D.R. Jones, M. Schonlau, and W. J. Welch, J. Glob. Optim. 13, 455 (1998).

[2] Settles, B. Active Learning Literature Survey. Active Learning Literature Survey (2009).

Bayesian Optimization (BO)

Bayesian Statistics

Posterior Data Prior $P(f|D) \propto P(D|f)P(f)$

Thomas Bayes

- Initial sampling can be generated through design of experiments (DoE)
- The surrogate model is typically a Gaussian Process (GP)
- Next experiment points are generated by acquisition functions (exploration vs. exploitation)

NEXTorch

Toolkit for Design of Experiments + Bayesian Optimization

Workflow

(1) Automated (2) Human-in-the-loop optimization

- Install via pip pip install nextorch
- Key dependencies

[1] Y. Wang, T. Chen, and D.G. Vlachos, J. Chem. Inf. Model. 61, 5312–5319 (2021).

GitHub: https://github.com/VlachosGroup/nextorch

Documentation: https://nextorch.readthedocs.io/en/latest/index.html

Online Documentation Page

GETTING STARTED

NEXTorch

USER DOCUMENTATION

Introduction

Installation

Overviev

nput and Outpu

Paramet

Design of Experiment

Data Type and Preprocessing

BoTorch Models and Function

Experiment

Visualization

Examples

INTRO TO BO

(ev Concepts in BO

Applications of BO

API REFERENCE

nextorch.io

nextorch.doe

nextorch.parameter

Read the Docs

v: latest 🔻

» Welcome to nextorch's documentation!

Welcome to nextorch's documentation!

Getting Started

NEXTorch

User Documentation

- Introduction
- Installation
- Overview
- · Input and Output
- Parameter
- Design of Experiment
- Data Type and Preprocessing
- BoTorch Models and Functions
- Experiment
- Visualization
- Examples

Intro to BO

- Key Concepts in BO
- Applications of BO

API Reference

- nextorch.io
- nextorch.doe
- · nextorch.parameter
- nextorch.utils
- nextorch.bo
- nextorch.plotting

Appendix

NEXTorch modules and functions

- Tutorials with code examples
- Introduction to BO theory
- BO applications in literature

C Edit on GitHub

reactor yield

of the microwave cavity

(----

- [1] E.O. Ebikade, et al, React. Chem. Eng. (2020).
- [2] T. Chen, et al, Ind. Eng. Chem. Res. 59, 10418 (2020).

https://nextorch.readthedocs.io/en/latest/index.html

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Starting from x = 0, 0.25, 0.5, 0.75

Demo instructions: https://github.com/VlachosGroup/vlab_workshop_2023/tree/main/NEXTorch

Notebook location: https://github.com/VlachosGroup/nextorch/blob/main/examples/notebooks/01_simple_1d.ipynb

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 1, acquisition function expected improvement (EI)

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 2

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 3

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 4

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 5

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 6

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 7

- Find the minima of $f(x) = (6x 2)^2 sin(12x 4); x \in [0,1]$
- Iteration 8

Case Study – HMF Yield Optimization

- Goal: maximize the HMF yield (Y) to improve productivity and reduce downstream costs.
- Three key input parameters (X) and bounds: χ_1 , Temperature (140 200 °C)
 - X_2 , pH (0-1)
 - X₃, Residence time (0.01 100 min),
 sampled in log space (-2,2)

[1] T.D. Swift et al., ACS Catal. 4, 2014, 259.

[2] Desir, P.; Saha, B.; Vlachos, D. G. Energy Environ. Sci. 2019.

Optimized Latin Hypercube design (LHS)

Initial Sampling plan:

- Monte Carlo sampling
- Maximize the distance between points
- Maximize the information gain in the sampling space

2D example (level = 4, 16 samples)

Sampling Plans

Design 1
Full factorial (level = 4)
64 samples

Design 2 64 random samples

Design 3

10 samples from Latin hypercube (LHS)

54 samples from 54 BO loops,

Acquisition function – El

- LHS is an efficient space-filling, Monte Carlo sampling method
- We compare response surfaces of HMF yield at pH=0.7 with varying temperature and residence time

Surrogate Model Performance

LHS+BO produces more accurate surrogate models

Single-, Multi-Objective Optimization

Maximize HMF Yield

• Optimal condition: Temperature – 200 $^{\circ}$ C pH – 0.705

Residence time -0.076 min (4.56 s)

Co-maximize HMF Yield and Selectivity

- HMF Yield = Fructose Conversion × HMF Selectivity
- Fructose Conversion ≤ 100 %

Expected Hypervolume Improvement (EHVI)

- LHS+BO locates a higher optimal value compared to others
- The runtime of core BO functions completes in seconds per iteration on a laptop CPU
- NEXTorch requires little code and reduces the time or materials for computations or lab experiments
 ccei.udel.edu

More Examples

Basic API Usage

Example 1 - Simple 1d nonlinear function

Example 2 - Sin(x) 1d function

Mixed Type Parameters

Example 10 - Plug flow reactor yield with mixed type inputs

Applications in Reaction Engineering

Multi-Objective Optimization(MOO)

