Active Noise Control for Acoustic Sensors

Presented at

DARPA Air-Coupled Acoustic Microsensors Workshop August 24-25, 1999 Crystal City, VA

Larry Riddle, Ph.D.
Signal Systems Corporation
877 Baltimore and Annapolis Boulevard, Suite 210
Severna Park, MD 21146
Iriddle@signalsystemscorp.com
www.signalsystemscorp.com
410-431-7148

VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for fadoes not display a currently valid OMB control number.	ailing to comply with a	Highway, Suite 1204, Arlington a collection of information if it	
1. REPORT DATE 2. REPORT TYPE N/A	3. DATES COVERED		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER	
Active Noise Control for Acoustic Sensors	5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)		5d. PROJECT NUMBER	
	5e. TASK NUMBER		
	5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Signal Systems Corporation Severna Park, MD		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)	
	11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited			
13. SUPPLEMENTARY NOTES DARPA, Air-Coupled Acoustic Microsensors Workshop held on August 24 a VA., The original document contains color images.	and 25, 1999	in Crystal City,	
14. ABSTRACT			
15. SUBJECT TERMS			
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT b. ABSTRACT c. THIS PAGE UUU unclassified unclassified unclassified	OF PAGES 10	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Active Noise Control

- Application Areas in Acoustics
 - Industrial Noise and Vibration Reduction
 - Acoustic Stealth
 - Acoustic Sensor Interference Rejection (Presentation Emphasis)
- Acoustic Sensor Interference Rejection Applications
 - Unmanned Vehicle Acoustic Sensors
 - Undersea Weapons
 - Unmanned Ground Vehicles
 - Internetted Unmanned Ground Sensors
 - Surveillance Systems
 - Communications Intelligence
 - Speech Recognition
 - Biomedical Acoustic Sensors
 - Multistatic Active Sonar

Air Coupled Acoustic Microsensor Technology Applications

- Wideband Self Noise Cancellation
 - Reduce broad band self-noise by > 15 dB while retaining low farfield signal distortion
 - Develop coherent wind noise reduction techniques
 - Improve wind noise reduction by at least 20 dB using new sensors and adaptive noise control technology when compared to passive foam windscreens
 - Improves surveillance detection and classification performance
- Acoustic Skin
 - Conformal acoustic surveillance array
 - Integrated MEMS sensors, electronics and VLSI analog controller
 - Unobtrusive, compact and low cost

Self Noise Reduction for Acoustic Sensors

Demo III Experimental Unmanned Vehicle (XUV) Built By Robotic Systems Technology

Self noise reduction uses adaptive noise control techniques with microphone arrays and reference accelerometers

Signal Systems Corporation

Composite Smart Materials (CSM)

Successfully Demonstrated First Truly Smart Material with Polyvinylidene fluoride (PVDF) pressure sensors Micro-machined piezoelectric accelerometers

PMN Actuators

Embedded Electronics

DARPA/ONR Sponsored

Team Members
Lockheed Martin Advanced Technology Center
Active Signal Technologies
Naval Research Laboratory
Signal Systems Corporation
Virginia Power Technologies
Virginia Tech

3" Piston PMN
Actuator with
Integrated
Sensor and
Power Amplifier
Electronics

Smart Skins Control Technology for Echo Control

Reference: L. Riddle and J. Murray, 'Smart Structure Active Sonar Echo Cancellation Using Frequency Scheduled Control, Applications of Smart Structures Technologies, San Diego CA March 3-5, 1998.

Smart Sleeve Self Noise Power Flow Isolation

DARPA/ONR Sponsored
Lockheed Martin Advanced Technology Center
Active Signal Technology
Signal Systems Corporation
NUWC

Fuller Technology Inc.
Virginia Power Technologies

Ring of circumferentially-spaced internal accelerometers to sense structure-borne vibrations approaching actuators (~60)

Circumferential internal skin of composite proofmass actuators and associated electronics

internal accelerometers to measure power flow of structure-borne vibrations

S2D Uses a Distributed Hierarchical Control System to Achieve Smart Material Control

- High speed /wide band central control
- •Controller sample rate > 80 khz
- •Fan-in/fan-out with gain to interconnect with large numbers of sensor and actuators
- •Hardware built to fit as a skin, with distributed processing and no backplane
- •Single channel demo is a partial build of the full control architecture
- •Genetic algorithm reconfiguration of sensors

<w,x> : scale and sum

 $\mathbf{w} \otimes \mathbf{x}$: shade & fan out

DSP Based Controller

Active Noise Controller SW
>80 kHz sample rate, 2 reference ch
wavenumber error filters
Regulation BW: 3 kHz @ > 10 dB CX
Tunable band selection
In-situ system ID and optimization

Active Noise Control HW
16 Ch. I/O with anti-alias/anti-imposter
filters, 16 bit ADC/DAC, TMS320C62
DSP @ 160 MHz
Compatible with Embedded Skin
Applications

Smart Sleeve Single Channel Test Results 3 Khz Bandwidth Power Flow Control

Inward power flow measurement (Regions of net outward flow not plotted)

Real time controller error sensor spectra

ignal Systems Corporation

Controller uses SW selectable bands to create frequency band windows in the TBL noise. Power flow measurement verifies proper control operation. 18 dB cancellation performance.