Algoritmy na mřížích

Pavel Příhoda

3. listopadu 2021

Obsah

1	Úvo	od	2	
	1.1	Algebraická struktura mříží	2	
	1.2	Rozložení mříže v \mathbb{R}^n	2	

1 Úvod

Definice 1.1. Mříž v *n*-dimenzionálním prostoru je množina $L \subseteq \mathbb{R}^n$ taková, že $\exists b_1, b_2, \dots, b_d \in \mathbb{R}^n$, LN (nad \mathbb{R}) tak, že $L = \mathbb{Z}b_1 + Zb_2 + \dots + \mathbb{Z}b_d = \{z_1b_1 + z_2b_2 + \dots + z_db_d | z_1, \dots z_d \in \mathbb{Z}\}.$

Poznámka 1.2. $\{b_1, b_2, ..., b_d\}$ se nazývá *báze L*. Není určená jednoznačně. $d = \dim \langle L \rangle$, d je hodnost (rank) určená množinou L, $0 \le d \le n$.

1.1 Algebraická struktura mříží

- L je komutativní grupa (podgrupa grupy $(R^n, +)$)
- L je konečně generovaná (báze je množina generátorů)
- L je beztorzní $(\forall z \in \mathbb{Z} \ \forall \underline{l} \in L : z \cdot \underline{l} = 0 \implies z = 0 \lor \underline{l} = 0)$

Věta 1.3. Každá beztorzní konečně generovaná komutativní grupa je volná.

Důsledek 1.4. $(L,+) \simeq (\mathbb{Z}^d,+)$

Definice 1.5 (Euklidovská norma v \mathbb{R}^n). Nechť $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$. Potom standradní

skalární součin · definujeme jako $u \cdot v = \sum_{i=1}^n u_i v_i = u^T v$. Euklidovskou normu definujeme jako $||u|| := \sqrt{u \cdot u} = \left(\sum_{i=1}^n u_i v_i\right)^{\frac{1}{2}}$.

1.2 Rozložení mříže v \mathbb{R}^n

Definice 1.6 (Diskrétní podgrupy $(\mathbb{R}^n,+)$). Podgrupa $G\subseteq (\mathbb{R}^n,+)$ je diskrétní, pokud

$$\forall q \in G \ \exists \varepsilon > 0 : G \cap \{v \in \mathbb{R}^n | ||v - q|| < \varepsilon\} = \{0\}.$$

Pozorování 1.7. $G \subseteq (\mathbb{R}^n, +)$ je diskrétní $\iff \exists \varepsilon > 0 : G \cap \{v \in \mathbb{R}^n | ||v|| < \varepsilon\} = \{0\}$

 $D\mathring{u}kaz. \Rightarrow \checkmark$

 $\Leftarrow \text{ vezmi } \varepsilon > 0 \text{ tak, aby platila pravá strana tvrzení. Zvol } g \in G \text{ libovolné. Potom pro každé } v \in G \text{ splňující } \|v-g\| < \varepsilon \text{ platí } v = g, \text{ neboť } v-g \in G \text{ a tedy z předpokladu } v-g = 0.$ Celkem tedy $G \cap \{v \in \mathbb{R}^n | \|v-g\| < \varepsilon\} = \{g\}.$