Hilbert Class Field and the Artin Map

Albert Lopez Bruch

16 May, 2024

Recall the main results from last week:

Theorem

Let K be a number field. Then K has a maximal unramified abelian extensions H, denoted as the **Hilbert class field** of K.

Recall the main results from last week:

Theorem

Let K be a number field. Then K has a maximal unramified abelian extensions H, denoted as the **Hilbert class field** of K. Furthermore,

• $Gal(H/K) \cong Cl(K)$ and hence [H : K] = h(K).

Recall the main results from last week:

Theorem

Let K be a number field. Then K has a maximal unramified abelian extensions H, denoted as the **Hilbert class field** of K. Furthermore,

- $Gal(H/K) \cong Cl(K)$ and hence [H : K] = h(K).
- Splitting Property: If $\mathfrak p$ is a prime ideal of K, and f is the order of $[\mathfrak p]$ in $\mathrm{Cl}(K)$, then $\mathfrak p$ splits into h(K)/f. In particular, $\mathfrak p$ is totally split in H if and only if $\mathfrak p$ is principal.

Recall the main results from last week:

Theorem

Let K be a number field. Then K has a maximal unramified abelian extensions H, denoted as the **Hilbert class field** of K. Furthermore,

- $Gal(H/K) \cong Cl(K)$ and hence [H : K] = h(K).
- Splitting Property: If $\mathfrak p$ is a prime ideal of K, and f is the order of $[\mathfrak p]$ in $\mathrm{Cl}(K)$, then $\mathfrak p$ splits into h(K)/f. In particular, $\mathfrak p$ is totally split in H if and only if $\mathfrak p$ is principal.
- Capitulation property: Every ideal p of K becomes principal in H.

Using Galois correspondence and the fact that subfields of abelian unramified extensions are also abelian and unramified, the following correspondence holds.

Corollary

Let K be a number field. Then we have an inclusion-revsersing correspondence

 $\{Unramified \ abelian \ K \subseteq F\} \longleftrightarrow \{Subgroups \ of \ \mathrm{Cl}(K)\}$

Hilbert Class Field

In the previous talk, we saw that $\mathbb{Q}(i,\sqrt{5})/\mathbb{Q}(\sqrt{-5})$ is unramified and since h(K)=2, then $H=\mathbb{Q}(i,\sqrt{5})$.

Hilbert Class Field

In the previous talk, we saw that $\mathbb{Q}(i,\sqrt{5})/\mathbb{Q}(\sqrt{-5})$ is unramified and since h(K)=2, then $H=\mathbb{Q}(i,\sqrt{5})$.

Capitulation Property

The map $Cl(K) \to Cl(H)$, $[\mathfrak{a}] \mapsto [\mathfrak{a}\mathcal{O}_H]$ is a well-defined homomorphism and $\mathfrak{p} = (2, 1 + \sqrt{-5})$ is non-principal, so it is enough to show that $\mathfrak{p}\mathcal{O}_H$ is principal.

Hilbert Class Field

In the previous talk, we saw that $\mathbb{Q}(i,\sqrt{5})/\mathbb{Q}(\sqrt{-5})$ is unramified and since h(K)=2, then $H=\mathbb{Q}(i,\sqrt{5})$.

Capitulation Property

The map $Cl(K) \to Cl(H)$, $[\mathfrak{a}] \mapsto [\mathfrak{a}\mathcal{O}_H]$ is a well-defined homomorphism and $\mathfrak{p}=(2,1+\sqrt{-5})$ is non-principal, so it is enough to show that $\mathfrak{p}\mathcal{O}_H$ is principal. This is true because

$$\frac{2}{1+i} = 1-i$$
 and $\frac{1+\sqrt{-5}}{1+i} = \frac{1+\sqrt{5}}{2} - i\frac{1-\sqrt{5}}{2}$

are algebraic integers and $N(\mathfrak{p}\mathcal{O}_H) = N((1+i)\mathcal{O}_H) = 4$.

Splitting Property: Let \mathfrak{p} be a prime in K, and let $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Q}$.

• If p=2, then $\mathfrak{p}=(2,1\pm\sqrt{-5})$ and $\mathfrak{p}\mathcal{O}_H=(1\mp i)\mathcal{O}_H$ is prime.

- If p=2, then $\mathfrak{p}=(2,1\pm\sqrt{-5})$ and $\mathfrak{p}\mathcal{O}_H=(1\mp i)\mathcal{O}_H$ is prime.
- If p = 5, then $\mathfrak{p} = (\sqrt{-5})\mathcal{O}_K$ splits in H since 5 splits in $\mathbb{Q}(i)$.

- If p=2, then $\mathfrak{p}=(2,1\pm\sqrt{-5})$ and $\mathfrak{p}\mathcal{O}_H=(1\mp i)\mathcal{O}_H$ is prime.
- If p = 5, then $\mathfrak{p} = (\sqrt{-5})\mathcal{O}_K$ splits in H since 5 splits in $\mathbb{Q}(i)$.
- If $p \equiv 11, 13, 17, 19 \pmod{20}$, then $\mathfrak{p} = p\mathcal{O}_K$ is principal, and \mathfrak{p} splits in H since p splits in $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{5})$.

- If p=2, then $\mathfrak{p}=(2,1\pm\sqrt{-5})$ and $\mathfrak{p}\mathcal{O}_H=(1\mp i)\mathcal{O}_H$ is prime.
- If p = 5, then $\mathfrak{p} = (\sqrt{-5})\mathcal{O}_K$ splits in H since 5 splits in $\mathbb{Q}(i)$.
- If $p \equiv 11, 13, 17, 19 \pmod{20}$, then $\mathfrak{p} = p\mathcal{O}_K$ is principal, and \mathfrak{p} splits in H since p splits in $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{5})$.
- If $p \equiv 3,7 \pmod{20}$, then p is inert in $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{5})$ but split in $\mathbb{Q}(\sqrt{-5})$. Thus \mathfrak{p} is inert in H and non-principal since $x^2 + 5y^2 = p$ has no solutions.

- If p=2, then $\mathfrak{p}=(2,1\pm\sqrt{-5})$ and $\mathfrak{p}\mathcal{O}_H=(1\mp i)\mathcal{O}_H$ is prime.
- If p = 5, then $\mathfrak{p} = (\sqrt{-5})\mathcal{O}_K$ splits in H since 5 splits in $\mathbb{Q}(i)$.
- If $p \equiv 11, 13, 17, 19 \pmod{20}$, then $\mathfrak{p} = p\mathcal{O}_K$ is principal, and \mathfrak{p} splits in H since p splits in $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{5})$.
- If $p \equiv 3,7 \pmod{20}$, then p is inert in $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{5})$ but split in $\mathbb{Q}(\sqrt{-5})$. Thus \mathfrak{p} is inert in H and non-principal since $x^2 + 5y^2 = p$ has no solutions.
- If $p \equiv 1,9 \pmod{20}$, then p is totally split in H.

Splitting Property: Let \mathfrak{p} be a prime in K, and let $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Q}$.

- If p=2, then $\mathfrak{p}=(2,1\pm\sqrt{-5})$ and $\mathfrak{p}\mathcal{O}_H=(1\mp i)\mathcal{O}_H$ is prime.
- If p = 5, then $\mathfrak{p} = (\sqrt{-5})\mathcal{O}_K$ splits in H since 5 splits in $\mathbb{Q}(i)$.
- If $p \equiv 11, 13, 17, 19 \pmod{20}$, then $\mathfrak{p} = p\mathcal{O}_K$ is principal, and \mathfrak{p} splits in H since p splits in $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{5})$.
- If $p \equiv 3,7 \pmod{20}$, then p is inert in $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{5})$ but split in $\mathbb{Q}(\sqrt{-5})$. Thus \mathfrak{p} is inert in H and non-principal since $x^2 + 5y^2 = p$ has no solutions.
- If $p \equiv 1,9 \pmod{20}$, then p is totally split in H. Hence,

Corollary

The splitting property for K holds if and only if every prime $p \equiv 1,9 \pmod{20}$ can be written as $p = x^2 + 5y^2$.

Today's Plan

Let L/K be an extension of number fields and let $\mathfrak p$ be a prime in K.

Let L/K be an extension of number fields and let $\mathfrak p$ be a prime in K. Then we have a decomposition

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^g \mathfrak{P}_i^{e_i},$$

where e_i is the ramification index and $f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}]$ is the residue degree.

Let L/K be an extension of number fields and let $\mathfrak p$ be a prime in K. Then we have a decomposition

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^g \mathfrak{P}_i^{e_i},$$

where e_i is the ramification index and $f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}]$ is the residue degree. We have the fundamental formula

$$[L:K] = \sum_{i=1}^{g} e_i f_i.$$

If L/K is Galois and G = Gal(L/K), then

$$\mathfrak{p}\mathcal{O}_L = \left(\prod_{i=1}^g \mathfrak{P}_i
ight)^e$$

and [L:K] = efg.

If L/K is Galois and G = Gal(L/K), then

$$\mathfrak{p}\mathcal{O}_L = \left(\prod_{i=1}^g \mathfrak{P}_i
ight)^e$$

and $[L:K]=\mathit{efg}$. For any $\mathfrak{P}\mid\mathfrak{p}$, the decomposition group $D_{\mathfrak{P}}=\{\sigma\in G:\sigma(\mathfrak{P})=\mathfrak{P}\}$ fits in the short exact sequence

$$0 \longrightarrow \mathit{I}_{\mathfrak{P}} \longrightarrow \mathit{D}_{\mathfrak{P}} \stackrel{\epsilon}{\longrightarrow} \mathrm{Gal}(\mathcal{O}_{\mathit{L}}/\mathfrak{P}/\mathcal{O}_{\mathit{K}}/\mathfrak{p}) \longrightarrow 0.$$

If L/K is Galois and G = Gal(L/K), then

$$\mathfrak{p}\mathcal{O}_{L} = \left(\prod_{i=1}^{g} \mathfrak{P}_{i}\right)^{\mathrm{e}}$$

and $[L:K]=\mathit{efg}$. For any $\mathfrak{P}\mid\mathfrak{p}$, the decomposition group $D_{\mathfrak{P}}=\{\sigma\in G:\sigma(\mathfrak{P})=\mathfrak{P}\}$ fits in the short exact sequence

$$0 \longrightarrow \mathit{I}_{\mathfrak{P}} \longrightarrow \mathit{D}_{\mathfrak{P}} \stackrel{\epsilon}{\longrightarrow} \mathrm{Gal}(\mathcal{O}_{L}/\mathfrak{P}/\mathcal{O}_{K}/\mathfrak{p}) \longrightarrow 0.$$

If $I_{\mathfrak{P}}=\{1\}\iff e=1\iff \mathfrak{p}$ unramified, then $D_{\mathfrak{P}}\cong \operatorname{Gal}(\mathcal{O}_L/\mathfrak{P}/\mathcal{O}_K/\mathfrak{p})$ and so there is one unique $\sigma_{\mathfrak{P}}\in G$ (denoted the Frobenius element of \mathfrak{P}) such that

$$\sigma_{\mathfrak{P}}(x) \equiv x^{N(\mathfrak{p})} \pmod{\mathfrak{P}}$$
 for all $x \in L$.

If
$$\mathfrak{P}'\mid \mathfrak{p}$$
 then $\mathfrak{P}'= au(\mathfrak{P})$ for some $au\in G$. Then
$$D_{\mathfrak{P}'}= au D_{\mathfrak{P}} au^{-1} \text{ and } \sigma_{\mathfrak{P}'}= au\sigma_{\mathfrak{P}} au^{-1}.$$

If $\mathfrak{P}' \mid \mathfrak{p}$ then $\mathfrak{P}' = \tau(\mathfrak{P})$ for some $\tau \in \mathcal{G}$. Then

$$D_{\mathfrak{P}'} = \tau D_{\mathfrak{P}} \tau^{-1}$$
 and $\sigma_{\mathfrak{P}'} = \tau \sigma_{\mathfrak{P}} \tau^{-1}$.

Definition

Suppose L/K is Galois with $G = \operatorname{Gal}(L/K)$ and let $\mathfrak{p} \subset \mathcal{O}_K$ unramified in L. Then the **Artin symbol** of \mathfrak{p} in L

$$\left(\frac{L/K}{\mathfrak{p}}\right) := \{\sigma_{\mathfrak{P}} \in G : \mathfrak{P} \mid \mathfrak{p}\}$$

defines a conjugacy class of G.

If $\mathfrak{P}' \mid \mathfrak{p}$ then $\mathfrak{P}' = \tau(\mathfrak{P})$ for some $\tau \in G$. Then

$$D_{\mathfrak{P}'} = \tau D_{\mathfrak{P}} \tau^{-1}$$
 and $\sigma_{\mathfrak{P}'} = \tau \sigma_{\mathfrak{P}} \tau^{-1}$.

Definition

Suppose L/K is Galois with $G = \operatorname{Gal}(L/K)$ and let $\mathfrak{p} \subset \mathcal{O}_K$ unramified in L. Then the **Artin symbol** of \mathfrak{p} in L

$$\left(\frac{L/K}{\mathfrak{p}}\right) := \{\sigma_{\mathfrak{P}} \in G : \mathfrak{P} \mid \mathfrak{p}\}$$

defines a conjugacy class of G.

Clearly, if G is abelian, then $((L/K)/\mathfrak{p})$ is an element of G.

Examples

Example

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{D})$ a quadratic extension. If $p \nmid D$ is an odd rational prime, then

$$\left(\frac{\mathbb{Q}(\sqrt{D})/\mathbb{Q}}{(p)}\right)(a+b\sqrt{D})=a+\left(\frac{D}{p}\right)b\sqrt{D}.$$

Examples

Example

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{D})$ a quadratic extension. If $p \nmid D$ is an odd rational prime, then

$$\left(\frac{\mathbb{Q}(\sqrt{D})/\mathbb{Q}}{(p)}\right)(a+b\sqrt{D})=a+\left(\frac{D}{p}\right)b\sqrt{D}.$$

Example

Let $K=\mathbb{Q}$ and $L=\mathbb{Q}(\zeta_N)$ be the *N*-th cyclotomic extension. If $p\nmid N$ is a rational prime, then

$$\left(\frac{\mathbb{Q}(\zeta_N)/\mathbb{Q}}{(p)}\right)(\zeta_N)=\zeta_N^p.$$

The Artin Map

Definition (Artin Map)

Let K be a number and let L be an abelian extension. We define \mathcal{I}_K to be the group of fractional ideals of K and $\mathcal{I}_{L/K}$ be the subgroup of \mathcal{I}_K generated by the primes of K unramified in L.

The Artin Map

Definition (Artin Map)

Let K be a number and let L be an abelian extension. We define \mathcal{I}_K to be the group of fractional ideals of K and $\mathcal{I}_{L/K}$ be the subgroup of \mathcal{I}_K generated by the primes of K unramified in L.

If $\mathfrak{a} = \prod \mathfrak{p}_i^{n_i} \in \mathcal{I}_{L/K}$, then $n_i \neq 0 \implies \mathfrak{p}_i$ is unramified.

The Artin Map

Definition (Artin Map)

Let K be a number and let L be an abelian extension. We define \mathcal{I}_K to be the group of fractional ideals of K and $\mathcal{I}_{L/K}$ be the subgroup of \mathcal{I}_K generated by the primes of K unramified in L.

If $\mathfrak{a} = \prod \mathfrak{p}_i^{n_i} \in \mathcal{I}_{L/K}$, then $n_i \neq 0 \implies \mathfrak{p}_i$ is unramified.

Definition

Let L/K be an abelian extension. The **Artin Map** is defined as

$$\left(\frac{L/K}{\cdot}\right): \mathcal{I}_{L/K} \longrightarrow \operatorname{Gal}(L/K)$$

$$\mathfrak{a} = \prod_{i=1}^{m} \mathfrak{p}_{i}^{n_{i}} \longmapsto \prod_{i=1}^{m} \left(\frac{L/K}{\mathfrak{p}_{i}}\right)^{n_{i}}.$$

The Artin Map satisfies many important properties.

The Artin Map satisfies many important properties.

• It is a homomorphism.

The Artin Map satisfies many important properties.

- It is a homomorphism.
- It is compatible with restrictions. That is, if $K \subseteq F \subseteq L$ is a tower of abelian extensions, then the diagram

$$\mathcal{I}_{K} \xrightarrow{Art_{L/K}} \operatorname{Gal}(L/K)$$

$$\downarrow^{Res_{L/F}}$$

$$\operatorname{Gal}(F/K)$$

commutes.

The Artin Map satisfies many important properties.

- It is a homomorphism.
- It is compatible with restrictions. That is, if $K \subseteq F \subseteq L$ is a tower of abelian extensions, then the diagram

$$\mathcal{I}_{K} \xrightarrow{Art_{L/K}} \operatorname{Gal}(L/K)$$

$$\xrightarrow{Art_{F/K}} \downarrow_{Res_{L/F}}$$

$$\operatorname{Gal}(F/K)$$

commutes. This follows directly from

$$\left(\frac{L/K}{\mathfrak{p}}\right)\bigg|_{F} = \left(\frac{F/K}{\mathfrak{p}}\right).$$

The Artin Map satisfies many important properties.

- It is a homomorphism.
- It is compatible with restrictions. That is, if $K \subseteq F \subseteq L$ is a tower of abelian extensions, then the diagram

$$\mathcal{I}_{K} \xrightarrow{Art_{L/K}} \operatorname{Gal}(L/K)$$

$$\xrightarrow{Art_{F/K}} \downarrow_{Res_{L/F}}$$

$$\operatorname{Gal}(F/K)$$

commutes. This follows directly from

$$\left(\frac{L/K}{\mathfrak{p}}\right)\bigg|_{F} = \left(\frac{F/K}{\mathfrak{p}}\right).$$

It is surjective (next slide).

Theorem (Chebotarev Density Theorem)

Let L/K be Galois with $G = \operatorname{Gal}(L/K)$. Let $\sigma \in G$ and let C_{σ} be its conjugacy class.

Theorem (Chebotarev Density Theorem)

Let L/K be Galois with $G = \operatorname{Gal}(L/K)$. Let $\sigma \in G$ and let C_{σ} be its conjugacy class. Then the set

$$\mathcal{S}_{\sigma} := \left\{ \mathfrak{p} \subset \mathcal{O}_{K} | \left(\frac{L/K}{\mathfrak{p}} \right) = C_{\sigma} \right\}$$

has dirichlet Density

$$\delta(S_{\sigma}) = \frac{|C_{\sigma}|}{|G|}$$

Corollary

Let L/K be an abelian extension. Then the Artin map is a surjective homomorphism.

Corollary

Let L/K be an abelian extension. Then the Artin map is a surjective homomorphism.

Proof.

Let $\sigma \in G$ and since $|C_{\sigma}|/|G| = 1/[L : K] > 0$, there is some $\mathfrak{p} \subset \mathcal{O}_K$ (in fact, infinitely many) such that $((L/K)/\mathfrak{p}) = \sigma$.

Corollary

Let L/K be an abelian extension. Then the Artin map is a surjective homomorphism.

Proof.

Let $\sigma \in G$ and since $|C_{\sigma}|/|G| = 1/[L : K] > 0$, there is some $\mathfrak{p} \subset \mathcal{O}_K$ (in fact, infinitely many) such that $((L/K)/\mathfrak{p}) = \sigma$.

Corollary (Dirichlet)

Let N, a be comprime integers. Then $S = \{p : p \equiv a \pmod{N}\}$ has density $\delta(S) = 1/\phi(N)$.

Corollary

Let L/K be an abelian extension. Then the Artin map is a surjective homomorphism.

Proof.

Let $\sigma \in G$ and since $|C_{\sigma}|/|G| = 1/[L : K] > 0$, there is some $\mathfrak{p} \subset \mathcal{O}_K$ (in fact, infinitely many) such that $((L/K)/\mathfrak{p}) = \sigma$.

Corollary (Dirichlet)

Let N, a be comprime integers. Then $S = \{p : p \equiv a \pmod{N}\}$ has density $\delta(S) = 1/\phi(N)$.

Proof.

Consider $\mathbb{Q}(\zeta_N)/\mathbb{Q}$ with $|\mathrm{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})| = \phi(N)$, and note $((L/K)/p)(\zeta_N) = \zeta_N^a$ if and only if $p \in S$.

For the reminder of the talk, we assume that L/K is unramified at finite primes, so that $\mathcal{I}_{L/K} = \mathcal{I}_K$.

For the reminder of the talk, we assume that L/K is unramified at finite primes, so that $\mathcal{I}_{L/K}=\mathcal{I}_K$. If L=H is the HCF, then we have the following

For the reminder of the talk, we assume that L/K is unramified at finite primes, so that $\mathcal{I}_{L/K}=\mathcal{I}_K$. If L=H is the HCF, then we have the following

Theorem (Artin Reciprocity for HCF)

Let H be the HCF of K. The Artin map $((H/K), \cdot) : \mathcal{I}_K \to \operatorname{Gal}(H/K)$ is a surjective homomorphism with kernel \mathcal{P}_K , the group of principal fractional ideals.

For the reminder of the talk, we assume that L/K is unramified at finite primes, so that $\mathcal{I}_{L/K}=\mathcal{I}_K$. If L=H is the HCF, then we have the following

Theorem (Artin Reciprocity for HCF)

Let H be the HCF of K. The Artin map $((H/K), \cdot) : \mathcal{I}_K \to \operatorname{Gal}(H/K)$ is a surjective homomorphism with kernel \mathcal{P}_K , the group of principal fractional ideals. Hence, then Artin map gives an explicit isomorphism $\operatorname{Cl}(K) = \mathcal{I}_K/\mathcal{P}_K \cong \operatorname{Gal}(H/K)$.

For the reminder of the talk, we assume that L/K is unramified at finite primes, so that $\mathcal{I}_{L/K}=\mathcal{I}_K$. If L=H is the HCF, then we have the following

Theorem (Artin Reciprocity for HCF)

Let H be the HCF of K. The Artin map $((H/K), \cdot) : \mathcal{I}_K \to \operatorname{Gal}(H/K)$ is a surjective homomorphism with kernel \mathcal{P}_K , the group of principal fractional ideals. Hence, then Artin map gives an explicit isomorphism $\operatorname{Cl}(K) = \mathcal{I}_K/\mathcal{P}_K \cong \operatorname{Gal}(H/K)$.

Example

Let $p \equiv 1 \pmod{4}$ be a rational prime. The field extension $\mathbb{Q}(i, \sqrt{-p})/\mathbb{Q}(\sqrt{-p})$ is unramified.

For the reminder of the talk, we assume that L/K is unramified at finite primes, so that $\mathcal{I}_{L/K}=\mathcal{I}_K$. If L=H is the HCF, then we have the following

Theorem (Artin Reciprocity for HCF)

Let H be the HCF of K. The Artin map $((H/K), \cdot) : \mathcal{I}_K \to \operatorname{Gal}(H/K)$ is a surjective homomorphism with kernel \mathcal{P}_K , the group of principal fractional ideals. Hence, then Artin map gives an explicit isomorphism $\operatorname{Cl}(K) = \mathcal{I}_K/\mathcal{P}_K \cong \operatorname{Gal}(H/K)$.

Example

Let $p \equiv 1 \pmod{4}$ be a rational prime. The field extension $\mathbb{Q}(i,\sqrt{-p})/\mathbb{Q}(\sqrt{-p})$ is unramified. Hence the class number of $\mathbb{Q}(\sqrt{-p})$ (which we denote h(p)) is even.

Corollary (Splitting Property)

Let $\mathfrak p$ be a prime in K and let f be the order of $[\mathfrak p]$ in $\mathrm{Cl}(K)$. Then $\mathfrak p$ factors into h(K)/f distinct primes in H all of degree f.

Corollary (Splitting Property)

Let $\mathfrak p$ be a prime in K and let f be the order of $[\mathfrak p]$ in $\mathrm{Cl}(K)$. Then $\mathfrak p$ factors into h(K)/f distinct primes in H all of degree f.

Proof.

The order of $[\mathfrak{p}]$ in $\mathrm{Cl}(K)$ equals the order of $((H/K)/\mathfrak{p})$ in $\mathrm{Gal}(H/K)$ and thus also the order of $D_{\mathfrak{p}}$.

Corollary (Splitting Property)

Let $\mathfrak p$ be a prime in K and let f be the order of $[\mathfrak p]$ in $\mathrm{Cl}(K)$. Then $\mathfrak p$ factors into h(K)/f distinct primes in H all of degree f.

Proof.

The order of $[\mathfrak{p}]$ in $\mathrm{Cl}(K)$ equals the order of $((H/K)/\mathfrak{p})$ in $\mathrm{Gal}(H/K)$ and thus also the order of $D_{\mathfrak{p}}$. Hence, if $\mathfrak{P} \mid \mathfrak{p}$, then $f = [\mathcal{O}_H/\mathfrak{P} : \mathcal{O}_K/\mathfrak{p}]$ is the residual degree.

Corollary (Splitting Property)

Let $\mathfrak p$ be a prime in K and let f be the order of $[\mathfrak p]$ in $\mathrm{Cl}(K)$. Then $\mathfrak p$ factors into h(K)/f distinct primes in H all of degree f.

Proof.

The order of $[\mathfrak{p}]$ in $\mathrm{Cl}(K)$ equals the order of $((H/K)/\mathfrak{p})$ in $\mathrm{Gal}(H/K)$ and thus also the order of $D_{\mathfrak{p}}$. Hence, if $\mathfrak{P} \mid \mathfrak{p}$, then $f = [\mathcal{O}_H/\mathfrak{P} : \mathcal{O}_K/\mathfrak{p}]$ is the residual degree.

Corollary

Let L/K be an abelian unramified extension and let $\mathfrak p$ be a principal prime of K. Then $\mathfrak p$ is completely split on L.

Definition (Transfer Maps)

Let $H \leq G$ be groups with $G = \bigcup_{i=1}^{n} x_i H$. Fix some $y \in G$ and let $h_{i,y} \in H$ be such that $yx_i = x_j h_{i,y}$ for some j.

Definition (Transfer Maps)

Let $H \leq G$ be groups with $G = \bigcup_{i=1}^n x_i H$. Fix some $y \in G$ and let $h_{i,y} \in H$ be such that $yx_i = x_j h_{i,y}$ for some j. The tansfer map is defined as

Ver:
$$G^{ab} \longrightarrow H^{ab}$$

 $y[G, G] \longmapsto \left(\prod_{i=1}^{n} h_{i,y}\right)[H, H].$

Definition (Transfer Maps)

Let $H \leq G$ be groups with $G = \bigcup_{i=1}^n x_i H$. Fix some $y \in G$ and let $h_{i,y} \in H$ be such that $yx_i = x_j h_{i,y}$ for some j. The tansfer map is defined as

Ver:
$$G^{ab} \longrightarrow H^{ab}$$

 $y[G, G] \longmapsto \left(\prod_{i=1}^{n} h_{i,y}\right)[H, H].$

Theorem

Let H = [G, G] be the commutator subgroup of G. Then $\operatorname{Ver}: G^{ab} \to H^{ab}$ is the trivial homomorphism.

Theorem (Capitulation Theorem)

Let K be a number field and let H be its HCF. Then any prime $\mathfrak p$ in K becomes principal in H.

Theorem (Capitulation Theorem)

Let K be a number field and let H be its HCF. Then any prime $\mathfrak p$ in K becomes principal in H.

Proof.

Let H' be the HCF of H, and H'/K is Galois since H' is intrinsic over K.

Theorem (Capitulation Theorem)

Let K be a number field and let H be its HCF. Then any prime $\mathfrak p$ in K becomes principal in H.

Proof.

Let H' be the HCF of H, and H'/K is Galois since H' is intrinsic over K. By definition, $\operatorname{Gal}(H/K)$ is the largest abelian quotient of $\operatorname{Gal}(H'/K)$, so $\operatorname{Gal}(H/K) = \operatorname{Gal}(H'/K)^{ab}$ and $\operatorname{Gal}(H'/H)$ is its commutator subgroup.

Theorem (Capitulation Theorem)

Let K be a number field and let H be its HCF. Then any prime $\mathfrak p$ in K becomes principal in H.

Proof.

Let H' be the HCF of H, and H'/K is Galois since H' is intrinsic over K. By definition, $\operatorname{Gal}(H/K)$ is the largest abelian quotient of $\operatorname{Gal}(H'/K)$, so $\operatorname{Gal}(H/K) = \operatorname{Gal}(H'/K)^{ab}$ and $\operatorname{Gal}(H'/H)$ is its commutator subgroup. We have a commutative diagram

$$\mathcal{I}_K \xrightarrow{Art_{H/K}} \operatorname{Gal}(H/K) = \operatorname{Gal}(H'/K)^{ab}$$

$$\downarrow \qquad \qquad \qquad \downarrow Ver$$

$$\mathcal{I}_H \xrightarrow{Art_{H'/H}} \operatorname{Gal}(H'/H) = \operatorname{Gal}(H'/H)^{ab}$$

Lemma

Let p be an odd prime and let $p^* = (-1)^{(p-1)/2}p$.

Lemma

Let p be an odd prime and let $p^* = (-1)^{(p-1)/2}p$. Then

• $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.

Lemma

Let p be an odd prime and let $p^* = (-1)^{(p-1)/2}p$. Then

- $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.
- $\mathbb{Q}(i), \mathbb{Q}(\sqrt{\pm p})$ are the unique quadratic subfields of $\mathbb{Q}(\zeta_{4p})$.

Proof.

The number of quadratic subfields is determined by Galois correspondence.

Lemma

Let p be an odd prime and let $p^* = (-1)^{(p-1)/2}p$. Then

- $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.
- $\mathbb{Q}(i), \mathbb{Q}(\sqrt{\pm p})$ are the unique quadratic subfields of $\mathbb{Q}(\zeta_{4p})$.

Proof.

The number of quadratic subfields is determined by Galois correspondence. Also, p is the only prime that ramifies in $\mathbb{Q}(\zeta_p)$, and the only quadratic subfield unramified outside p is $\mathbb{Q}(\sqrt{p^*})$.

Lemma

Let p be an odd prime and let $p^* = (-1)^{(p-1)/2}p$. Then

- $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.
- $\mathbb{Q}(i), \mathbb{Q}(\sqrt{\pm p})$ are the unique quadratic subfields of $\mathbb{Q}(\zeta_{4p})$.

Proof.

The number of quadratic subfields is determined by Galois correspondence. Also, p is the only prime that ramifies in $\mathbb{Q}(\zeta_p)$, and the only quadratic subfield unramified outside p is $\mathbb{Q}(\sqrt{p^*})$. The second part is similar with ramification at 2 and p.

Lemma

Let p be an odd prime and let $p^* = (-1)^{(p-1)/2}p$. Then

- $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.
- $\mathbb{Q}(i), \mathbb{Q}(\sqrt{\pm p})$ are the unique quadratic subfields of $\mathbb{Q}(\zeta_{4p})$.

Proof.

The number of quadratic subfields is determined by Galois correspondence. Also, p is the only prime that ramifies in $\mathbb{Q}(\zeta_p)$, and the only quadratic subfield unramified outside p is $\mathbb{Q}(\sqrt{p^*})$. The second part is similar with ramification at 2 and p.

Also, using Gauss sums, one can explicitly compute that

$$p^* = \left(\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta_p^a\right)^2.$$

Let $\mathfrak p$ be a prime in K not above 2 or 5 and let $H=\mathbb Q(i,\sqrt{5})$ be its HCF.

Let $\mathfrak p$ be a prime in K not above 2 or 5 and let $H=\mathbb Q(i,\sqrt{5})$ be its HCF. Then by Artin Reciprocity

$$\mathfrak{p}$$
 is principal $\iff \mathfrak{p}\mathcal{O}_H$ splits $\iff \left(\frac{H/K}{\mathfrak{p}}\right) = \mathrm{Id}_H$.

Let $\mathfrak p$ be a prime in K not above 2 or 5 and let $H=\mathbb Q(i,\sqrt{5})$ be its HCF. Then by Artin Reciprocity

$$\mathfrak{p}$$
 is principal $\iff \mathfrak{p}\mathcal{O}_H$ splits $\iff \left(\frac{H/K}{\mathfrak{p}}\right) = \mathrm{Id}_H$.

Since
$$\mathbb{Q}(i, \sqrt{5}) \subset L := \mathbb{Q}(\zeta_{20})$$
, we have $((L/K)/\mathfrak{p})(\zeta_{20}) = \zeta_{20}^{N(\mathfrak{p})}$ and
$$\left(\frac{H/K}{\mathfrak{p}}\right) = \left(\frac{L/K}{\mathfrak{p}}\right)\bigg|_{H},$$

Let $\mathfrak p$ be a prime in K not above 2 or 5 and let $H=\mathbb Q(i,\sqrt{5})$ be its HCF. Then by Artin Reciprocity

$$\mathfrak{p}$$
 is principal $\iff \mathfrak{p}\mathcal{O}_H$ splits $\iff \left(\frac{H/K}{\mathfrak{p}}\right) = \mathrm{Id}_H$.

Since $\mathbb{Q}(i, \sqrt{5}) \subset L := \mathbb{Q}(\zeta_{20})$, we have $((L/K)/\mathfrak{p})(\zeta_{20}) = \zeta_{20}^{N(\mathfrak{p})}$ and $\left(\frac{H/K}{\mathfrak{p}}\right) = \left(\frac{L/K}{\mathfrak{p}}\right)\bigg|_{H},$

so \mathfrak{p} being principal depends only on $N(\mathfrak{p})$ (mod 20).

We can compute the behaviour explicitly. Note that

$$i=\zeta_{20}^{5}$$
 and $\sqrt{-5}=\zeta_{20}+\zeta_{20}^{3}+\zeta_{20}^{7}+\zeta_{20}^{9},$

We can compute the behaviour explicitly. Note that

$$i = \zeta_{20}^5$$
 and $\sqrt{-5} = \zeta_{20} + \zeta_{20}^3 + \zeta_{20}^7 + \zeta_{20}^9$,

and hence, for $a \in (\mathbb{Z}/20\mathbb{Z})^*$, the map $\sigma_a : \zeta_{20} \mapsto \zeta_{20}^a$ fixes i if a = 1, 9, 13, 17 and fixes $\sqrt{-5}$ if a = 1, 3, 7, 9.

We can compute the behaviour explicitly. Note that

$$i = \zeta_{20}^5$$
 and $\sqrt{-5} = \zeta_{20} + \zeta_{20}^3 + \zeta_{20}^7 + \zeta_{20}^9$,

and hence, for $a \in (\mathbb{Z}/20\mathbb{Z})^*$, the map $\sigma_a : \zeta_{20} \mapsto \zeta_{20}^a$ fixes i if a = 1, 9, 13, 17 and fixes $\sqrt{-5}$ if a = 1, 3, 7, 9. Hence,

$$\mathfrak{p}$$
 is principal $\iff N(\mathfrak{p}) \equiv 1,9 \pmod{20}$.

Example $\mathbb{Q}(\sqrt{-5})$ revisited

We can compute the behaviour explicitly. Note that

$$i = \zeta_{20}^5$$
 and $\sqrt{-5} = \zeta_{20} + \zeta_{20}^3 + \zeta_{20}^7 + \zeta_{20}^9$,

and hence, for $a \in (\mathbb{Z}/20\mathbb{Z})^*$, the map $\sigma_a : \zeta_{20} \mapsto \zeta_{20}^a$ fixes i if a = 1, 9, 13, 17 and fixes $\sqrt{-5}$ if a = 1, 3, 7, 9. Hence,

$$\mathfrak{p}$$
 is principal $\iff N(\mathfrak{p}) \equiv 1,9 \pmod{20}$.

If $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Q}$ then $N(\mathfrak{p}) \equiv 1,9 \pmod{20}$ if and only if $p \equiv 1,9,11,13,17,19 \pmod{20}$.

Example $\mathbb{Q}(\sqrt{-5})$ revisited

We can compute the behaviour explicitly. Note that

$$i = \zeta_{20}^5$$
 and $\sqrt{-5} = \zeta_{20} + \zeta_{20}^3 + \zeta_{20}^7 + \zeta_{20}^9$,

and hence, for $a \in (\mathbb{Z}/20\mathbb{Z})^*$, the map $\sigma_a : \zeta_{20} \mapsto \zeta_{20}^a$ fixes i if a = 1, 9, 13, 17 and fixes $\sqrt{-5}$ if a = 1, 3, 7, 9. Hence,

$$\mathfrak{p}$$
 is principal $\iff N(\mathfrak{p}) \equiv 1,9 \pmod{20}$.

If $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Q}$ then $N(\mathfrak{p}) \equiv 1,9 \pmod{20}$ if and only if $p \equiv 1,9,11,13,17,19 \pmod{20}$.

Hence, if $p \equiv 1,9 \pmod{20}$, then $N(\mathfrak{p})=p$ and \mathfrak{p} is principal, so we have shown

$$p = x^2 + 5y^2 \iff p \equiv 1, 9 \pmod{20}$$
.

If $K = \mathbb{Q}(\sqrt{-23})$, then $\mathrm{Cl}(K) = C_3$ and H is the splitting field of the polynomial $x^3 - x + 1$ over \mathbb{Q} (with discriminant -23, so $K \subset H$).

If $K = \mathbb{Q}(\sqrt{-23})$, then $\mathrm{Cl}(K) = C_3$ and H is the splitting field of the polynomial $x^3 - x + 1$ over \mathbb{Q} (with discriminant -23, so $K \subset H$).

Let \mathfrak{p} be a prime in K not above 2 and let $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Q}$. If (-23/p) = (p/23) = -1, then $\mathfrak{p} = p\mathcal{O}_K$ and \mathfrak{p} is split in H.

If $K = \mathbb{Q}(\sqrt{-23})$, then $\mathrm{Cl}(K) = C_3$ and H is the splitting field of the polynomial $x^3 - x + 1$ over \mathbb{Q} (with discriminant -23, so $K \subset H$).

Let $\mathfrak p$ be a prime in K not above 2 and let $p\mathbb Z=\mathfrak p\cap\mathbb Q$. If (-23/p)=(p/23)=-1, then $\mathfrak p=p\mathcal O_K$ and $\mathfrak p$ is split in H.

Let's assume (p/23) = 1, so $N(\mathfrak{p}) = p$.

Let's assume (p/23) = 1, so $N(\mathfrak{p}) = p$. Then

 \mathfrak{p} split in $H \iff p$ totally split in $H \iff$ $x^3 - x + 1 \pmod{p}$ has 3 distinct roots \iff $x^3 - x + 1 = 0 \pmod{p}$ has a solution.

Let's assume (p/23) = 1, so $N(\mathfrak{p}) = p$. Then

$$\mathfrak{p}$$
 split in $H \iff p$ totally split in $H \iff$ $x^3-x+1 \pmod{p}$ has 3 distinct roots \iff $x^3-x+1=0 \pmod{p}$ has a solution.

Putting everything together,

$$p = x^2 + xy + 6y^2 \iff \mathfrak{p} \text{ is principal} \iff (p/23) = 1 \text{ and } x^3 - x + 1 = 0 \text{ has a solution mod } p.$$

Let's assume (p/23) = 1, so $N(\mathfrak{p}) = p$. Then

$$\mathfrak{p} \ \text{split in} \ H \iff p \ \text{totally split in} \ H \iff \\ x^3 - x + 1 \pmod{p} \ \text{has} \ 3 \ \text{distinct roots} \iff \\ x^3 - x + 1 = 0 \pmod{p} \ \text{has a solution}.$$

Putting everything together,

$$p = x^2 + xy + 6y^2 \iff \mathfrak{p} \text{ is principal} \iff (p/23) = 1 \text{ and } x^3 - x + 1 = 0 \text{ has a solution mod } p.$$

Finally,

$$p = x^2 + xy + 6y^2 \iff p = a^2 + 23b^2$$

since y must be even and $x^2 + xy + 6y^2 = (x + y/2)^2 + 23(y/2)^2$.

Following a similar reasoning to the previous example, one can prove the following.

Following a similar reasoning to the previous example, one can prove the following.

Theorem

Let n > 0 be a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$.

Following a similar reasoning to the previous example, one can prove the following.

Theorem

Let n > 0 be a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$. Then there is a monic irreducible polynomial $f_n(x) \in \mathbb{Z}[x]$ such that if an odd prime p does not divide n or the discriminant of $f_n(x)$, then

$$p = x^2 + ny^2 \iff \begin{cases} (-n/p) = 1 \text{ and } f_n(x) \equiv 0 \pmod{p} \\ \text{has an integer solution.} \end{cases}$$

Following a similar reasoning to the previous example, one can prove the following.

Theorem

Let n > 0 be a squarefree positive integer such that $n \not\equiv 3 \pmod{4}$. Then there is a monic irreducible polynomial $f_n(x) \in \mathbb{Z}[x]$ such that if an odd prime p does not divide n or the discriminant of $f_n(x)$, then

$$p = x^2 + ny^2 \iff \begin{cases} (-n/p) = 1 \text{ and } f_n(x) \equiv 0 \pmod{p} \\ \text{has an integer solution.} \end{cases}$$

Furthermore, $f_n(x)$ can be taken to be the minimal polynomial of a real algebraic integer α for which $H = K(\alpha)$ is the Hilbert class field of $K = \mathbb{Q}(\sqrt{-n})$.

Given *n* squarefree, let h(n) be the class number of $\mathbb{Q}(\sqrt{n})$.

Given *n* squarefree, let h(n) be the class number of $\mathbb{Q}(\sqrt{n})$.

Let p be a rational prime. We have seen that if $p \equiv 1 \pmod 4$, then h(-p) is even.

Given *n* squarefree, let h(n) be the class number of $\mathbb{Q}(\sqrt{n})$.

Let p be a rational prime. We have seen that if $p \equiv 1 \pmod{4}$, then h(-p) is even.

Theorem

Let p be a rational prime. Then h(p) is always odd and h(-p) is even if and only if $p \equiv 1 \pmod{4}$.

Proof sketch for $h(p^*)$.

Suppose that $h(p^*)$ is even and let H be the HCF of $K = \mathbb{Q}(\sqrt{p^*})$. Let $G = \operatorname{Gal}(H/\mathbb{Q})$ and $A = \operatorname{Gal}(H/K)$.

Proof sketch for $h(p^*)$.

Suppose that $h(p^*)$ is even and let H be the HCF of $K = \mathbb{Q}(\sqrt{p^*})$. Let $G = \operatorname{Gal}(H/\mathbb{Q})$ and $A = \operatorname{Gal}(H/K)$. Let L be a fixed field by a Sylow 2-subgroup P of A. Since $P \subseteq G$, L is Galois over \mathbb{Q} .

Proof sketch for $h(p^*)$.

Suppose that $h(p^*)$ is even and let H be the HCF of $K = \mathbb{Q}(\sqrt{p^*})$. Let $G = \operatorname{Gal}(H/\mathbb{Q})$ and $A = \operatorname{Gal}(H/K)$. Let L be a fixed field by a Sylow 2-subgroup P of A. Since $P \leq G$, L is Galois over \mathbb{Q} .

One can prove that $\operatorname{Gal}(L/\mathbb{Q})$ has a C_4 or $C_2 \times C_2$ quotient, and there is $K \subseteq F \subseteq L$ such that $\operatorname{Gal}(F/\mathbb{Q}) \cong C_4$ or $C_2 \times C_2$.

Proof sketch for $h(p^*)$.

Suppose that $h(p^*)$ is even and let H be the HCF of $K = \mathbb{Q}(\sqrt{p^*})$. Let $G = \operatorname{Gal}(H/\mathbb{Q})$ and $A = \operatorname{Gal}(H/K)$. Let L be a fixed field by a Sylow 2-subgroup P of A. Since $P \leq G$, L is Galois over \mathbb{Q} .

One can prove that $\operatorname{Gal}(L/\mathbb{Q})$ has a C_4 or $C_2 \times C_2$ quotient, and there is $K \subseteq F \subseteq L$ such that $\operatorname{Gal}(F/\mathbb{Q}) \cong C_4$ or $C_2 \times C_2$.

So there is a tower $\mathbb{Q} \subset K \subset F$ where p ramifies in K/\mathbb{Q} and F/K is unramified.

Proof sketch for $h(p^*)$.

Suppose that $h(p^*)$ is even and let H be the HCF of $K = \mathbb{Q}(\sqrt{p^*})$. Let $G = \operatorname{Gal}(H/\mathbb{Q})$ and $A = \operatorname{Gal}(H/K)$. Let L be a fixed field by a Sylow 2-subgroup P of A. Since $P \subseteq G$, L is Galois over \mathbb{Q} .

One can prove that $\operatorname{Gal}(L/\mathbb{Q})$ has a C_4 or $C_2 \times C_2$ quotient, and there is $K \subseteq F \subseteq L$ such that $\operatorname{Gal}(F/\mathbb{Q}) \cong C_4$ or $C_2 \times C_2$.

So there is a tower $\mathbb{Q} \subset K \subset F$ where p ramifies in K/\mathbb{Q} and F/K is unramified. Hence, $\operatorname{Gal}(F/\mathbb{Q}) = C_4$ is impossible and if $\operatorname{Gal}(F/\mathbb{Q}) = C_2 \times C_2$, then F^{I_p} is a quadratic unramified extension of \mathbb{Q} , a contradiction.

Ramification at Infinite Places

Theorem (Artin Reciprocity for infinite primes)

Let K be a number field and let S be a subset of the set of real infinite places of K.

Ramification at Infinite Places

Theorem (Artin Reciprocity for infinite primes)

Let K be a number field and let S be a subset of the set of real infinite places of K. Then there is a maximal abelian extension H_S of K unramified at all finite primes and infinite primes outside S.

Ramification at Infinite Places

Theorem (Artin Reciprocity for infinite primes)

Let K be a number field and let S be a subset of the set of real infinite places of K. Then there is a maximal abelian extension H_S of K unramified at all finite primes and infinite primes outside S. Furthermore, the Artin map

$$\left(\frac{H_{\mathcal{S}}/K}{\cdot}\right): \mathcal{I}_K \longrightarrow \operatorname{Gal}(H_{\mathcal{S}}/K)$$

is surjective with kernel $\mathcal{P}_{K,S}$, the principal ideals generated by some α such that $\sigma(\alpha) > 0$ for all $\sigma \in \mathcal{S}$.

Definition (Narrow class group)

If S contains all real infinite places, then $H^+ := H_S$ is denoted the **extended Hilbert class field**.

Definition (Narrow class group)

If $\mathcal S$ contains all real infinite places, then $H^+:=H_{\mathcal S}$ is denoted the **extended Hilbert class field**. Furthermore, $\mathcal P_K^+:=\mathcal P_{K,\mathcal S}$ is the group of **totally positive principal fractional ideals** of K

Definition (Narrow class group)

If S contains all real infinite places, then $H^+ := H_S$ is denoted the **extended Hilbert class field**. Furthermore, $\mathcal{P}_K^+ := \mathcal{P}_{K,S}$ is the group of **totally positive principal fractional ideals** of K and $\mathrm{Cl}^+(K) = \mathcal{I}_K/\mathcal{P}_K^+$ is the **narrow class group** of K.

Definition (Narrow class group)

If S contains all real infinite places, then $H^+ := H_S$ is denoted the **extended Hilbert class field**. Furthermore, $\mathcal{P}_K^+ := \mathcal{P}_{K,S}$ is the group of **totally positive principal fractional ideals** of K and $\mathrm{Cl}^+(K) = \mathcal{I}_K/\mathcal{P}_K^+$ is the **narrow class group** of K.

Lemma

Let r_2 be the number of real infinite places. Then $(\mathbb{Z}/2\mathbb{Z})^{r_2}$ surjects onto the kernel of the quotient map $\mathrm{Cl}^+(K) \to \mathrm{Cl}(K)$.

Definition (Narrow class group)

If S contains all real infinite places, then $H^+ := H_S$ is denoted the **extended Hilbert class field**. Furthermore, $\mathcal{P}_K^+ := \mathcal{P}_{K,S}$ is the group of **totally positive principal fractional ideals** of K and $\mathrm{Cl}^+(K) = \mathcal{I}_K/\mathcal{P}_K^+$ is the **narrow class group** of K.

Lemma

Let r_2 be the number of real infinite places. Then $(\mathbb{Z}/2\mathbb{Z})^{r_2}$ surjects onto the kernel of the quotient map $\mathrm{Cl}^+(K) \to \mathrm{Cl}(K)$. Hence, $[H^+:H] \mid 2^{r_2}$.

Let D be a squarefree integer and let $K = \mathbb{Q}(\sqrt{D})$. If D < 0 then K has no real places, so $H^+ = H$.

Let D be a squarefree integer and let $K = \mathbb{Q}(\sqrt{D})$. If D < 0 then K has no real places, so $H^+ = H$.

Theorem

If D>0, let ϵ be a fundamental unit of K. Then $[H^+:H]=1$ or 2 according as $N_{K/\mathbb{Q}}(\epsilon)=-1$ or 1.

Let D be a squarefree integer and let $K = \mathbb{Q}(\sqrt{D})$. If D < 0 then K has no real places, so $H^+ = H$.

Theorem

If D > 0, let ϵ be a fundamental unit of K. Then $[H^+ : H] = 1$ or 2 according as $N_{K/\mathbb{Q}}(\epsilon) = -1$ or 1.

Lemma

Let D > 0 be a squarefree integer. Then -1 is the norm of an **element** of K^+ if and only if every odd prime divisor of D is congruent to $1 \pmod 4$.

Let D be a squarefree integer and let $K = \mathbb{Q}(\sqrt{D})$. If D < 0 then K has no real places, so $H^+ = H$.

Theorem

If D > 0, let ϵ be a fundamental unit of K. Then $[H^+ : H] = 1$ or 2 according as $N_{K/\mathbb{Q}}(\epsilon) = -1$ or 1.

Lemma

Let D > 0 be a squarefree integer. Then -1 is the norm of an **element** of K^+ if and only if every odd prime divisor of D is congruent to $1 \pmod 4$.

Corollary

If $D = p \equiv 3 \pmod{4}$ is a rational prime, then $[H^+ : H] = 2$.

Proposition

Let $D=p\equiv 1\pmod 4$ be a rational prime. Then $H^+=H$ and therefore $N_{K/\mathbb Q}(\epsilon)=-1$.

Proposition

Let $D=p\equiv 1\pmod 4$ be a rational prime. Then $H^+=H$ and therefore $N_{K/\mathbb Q}(\epsilon)=-1$.

Proof.

The same proof we did to show that h(p) is odd works to show that $[H^+:K]$ is odd. So $[H^+:H]=1$.

However, it is **not true** that if D is only divisible by primes $p \equiv 1 \pmod{4}$ then the fundamental unit is negative.

However, it is **not true** that if D is only divisible by primes $p \equiv 1 \pmod 4$ then the fundamental unit is negative.

Final fun fact!

However, it is **not true** that if D is only divisible by primes $p \equiv 1 \pmod{4}$ then the fundamental unit is negative.

Final fun fact!

Theorem (Maybe)

Let D(X) be the number of real quadratic fields whose discriminant $\Delta < X$ is not divisible by a prime congruent to 3 mod 4 and $D^-(X)$ is those who have a negative unit. Then

$$\lim_{X \to \infty} \frac{D^{-}(X)}{D(X)} = 1 - \prod_{j \ge 1 \text{ odd}} (1 - 2^{-j})$$

Thank you for listening!