KYJ Problem 1

KIM YONG JOON

 $26~{\rm August}~2025$

Problem (KYJ Problem 1). For triangle ABC, Let D, E be points on ray AB such that AD < AE. Let $P \neq C$ be the intersection of the circumcircles of EBC and ADC. Let Q be a point on ray CD such that $\angle EQD = \angle ACB$. Prove that if QE, PD, and AC are concurrent, then QECA is concyclic.

 \P Main Idea Angle chase and notice nice concyclicities, and finish off by rephrasing the statement using radical center theorem.

¶ Solution

Claim — QEDP is cyclic.

Proof.

$$\angle EPD = \angle EPC - \angle DPC$$

$$= \angle EBC - \angle DAC$$

$$= \angle DBC - \angle BAC$$

$$= 180 - \angle ABC - \angle BAC$$

$$= \angle BCA = \angle BQD$$

Let the concurrence point be K. Then by power of a point, we have

$$\bullet \ KE \times KQ = KD \times KP$$

$$\bullet \ KD \times KP = KC \times KA$$

$$\implies KE \times KQ = KC \times KA$$

and by converse of power of a point, we have that QECA is cyclic.