Question Number	Scheme	Marks	
1.	(a) Kinetic Energy = $\frac{1}{2} \times 3 \times 8^2 = 96$, J	B1 B1	(2)
	(b) $F = \mu 3g$	B1	(2)
	Work-Energy $\mu 3gx12 = 96$	M1 A1ft	
	$\mu = 0.27 \text{ or } 0.272$	A1	
	Alternative for (b)		(4)
	$a = \frac{8^2 - 0^2}{2 \times 12} = \frac{8}{3}$		
	2×12 3 $\mu3g$	B1	
	N2L	M1 A1	
	0.27 0.272	A1	<i>(</i> 1)
	$\mu = 0.27 \text{ or } 0.272$		(4) 6
2.	(a) $\dot{\mathbf{r}} = (2t+4)\mathbf{i} + (3-3t^2)\mathbf{j}$	M1 A1	
	$\dot{\mathbf{r}}_3 = 10\mathbf{i} - 24\mathbf{j}$ substituting $t = 3$	M1	
	$ \dot{\mathbf{r}}_3 = \sqrt{(10^2 + 24^2)} = 26 \text{ (m s}^{-1})$	M1 A1	
	(1) 0.4((10; 0.4;)) 0; 10;		(5)
	(b) $0.4(\mathbf{v} - (10\mathbf{i} - 24\mathbf{j})) = 8\mathbf{i} - 12\mathbf{j}$ ft their $\dot{\mathbf{r}}_3$	M1 A1ft	
	$\mathbf{v} = 30\mathbf{i} - 54\mathbf{j} \left(\mathbf{m} \mathbf{s}^{-1} \right)$	A1	(3)
			8
3.	(a) $T_r = \frac{12000}{15} (=800)$	M1	
	N2L $800 - R = 1000 \times 0.2$ ft their 800	M1 A1ft	
	R = 600 * cso	A1	(4)
	(b) $1000g \times \frac{1}{40} + T_r = R$	M1 A1	(4)
	$T_r = \frac{7000}{U}$	M1	
	$U \approx 20$ accept 19.7	M1 A1	. .
			(5) 9

Question Number	Scheme	Marks
4.	(a) $\frac{3u}{x} + \frac{2u}{8u/3}$ LM $6mu - 2mu = 2mx + \frac{8}{3}mu$ $\left(x = \frac{2}{3}u\right)$ NEL $\frac{8}{3}u - x = 5ue$ Solving to $e = \frac{2}{5}$ (b) Initial K.E. $= \frac{1}{2} \times 2m(3u)^2 + \frac{1}{2} \times m(2u)^2 = 11mu^2$ Final K.E. $= \frac{1}{2} \times 2m\left(\frac{2}{3}u\right)^2 + \frac{1}{2} \times m\left(\frac{8}{3}u\right)^2 = 4mu^2$ both Change in K.E. $= 7mu^2 + M1$ Subtracting and simplifying to kmu^2 Alcso (c) $m\left(\frac{8}{3}u + v\right) = \frac{14}{3}mu$ $(v = 2u)$ $e = \frac{2}{8/3} = \frac{3}{4}$	M1 A1 M1 A1 (6)

Question Number	Scheme	Marks
5.	(a) $12m\overline{x} = 6m \times 9$ $\overline{x} = 4\frac{1}{2}$ $12m\overline{y} = 16m - 8m$ $\overline{y} = \frac{2}{3}$	M1 A1 M1 A1 (4)
	(b) $(12+k)m\times 4 = 12m\times 4\frac{1}{2} + km\times 3$ ft their \overline{x} $k=6$	M1 A1ft A1 (3)
	(c) $18m \times \lambda = 12m \times \frac{2}{3}, \implies \lambda = \frac{4}{9}$	M1 A1 (2)
	(d) $\tan \theta = \frac{4}{4/2}, \Rightarrow \theta \approx 83.7^{\circ}$ ft their λ , cao	M1 A1ft A1
		(3) 12
6.	(a) $R = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	
	μR $\uparrow R = 5W$ $M(B): 4Wa\cos\theta + W.2a\cos\theta + \mu R4a\sin\theta = R.4a\cos\theta$ Having enough equations & solving them for μ $\mu = 0.35$	B1 B1 M1 A1 M1 A1 (6)
	(b) $\uparrow S = (5+k)W$ Use of $F = 0.35S$ or $F \le 0.35S$ M(B): $kW4a\cos\theta + W.2a\cos\theta + F4a\sin\theta = S.4a\cos\theta$ Having enough equations & solving them for k $k = \frac{10}{7}$ awrt 1.42 $k \square \frac{10}{7}$ ft their k , accept > and decimals	B1 M1 M1 A1 M1 A1 A1ft (7)

Question Number	Scheme	Marks
7.	(a) $u_x = 11\cos 30^{\circ}$ $\rightarrow 11\cos 30^{\circ} \times t = 10 \implies t = 1.05 (s)$ cao	B1 M1 A1 (3)
	(b) $s = \underline{11\sin 30^{\circ}} \times t - 4.9t^{2} \approx 0.37$ $(2-1) - 0.37 = 0.63 (m)$	B1 M1 A1 A1 (4)
	(c) $V\cos 30^{\circ} \times t = 10 \qquad \left(t = \frac{10}{V\cos 30^{\circ}}\right)$	M1 A1
	$s = V \sin 30^{\circ} \times \frac{10}{V \cos 30^{\circ}} - \frac{4.9 \times 100}{V^{2} \cos^{2} \theta} = 1$ $V^{2} = 136.86$ $V \approx 12$ accept 11.7	M1 A1 M1 A1 (6)
	(d) B and/or T are not particles (They have extension giving a range of answers)	B1 (1) 14