

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Технология машинного обучения» на тему:

Разведочный анализ данных. Исследование и визуализация данных.

Выполнил: студент группы № ИУ5-62 Чернышев Павел подпись, дата

Проверил: Ю.Е. Гапанюк подпись, дата

Задание:

- Выбрать набор данных (датасет).
 - Для лабораторных работ не рекомендуется выбирать датасеты большого размера.
- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.

In [18]: import numpy as np import pandas as pd from sklearn import datasets import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks") In [19]: data = pd.read_csv('heart.csv', sep=",") data.head() Out[19]: sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target age 2.3 3.5 1.4 8.0 0.6 2 0 In [20]: data.tail() Out[20]: age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target 0.2 1.2 3.4 1.2 0.0 In [21]: data.shape stroki = data.shape[0] stolbec = data.shape[1] print('Всего строк: {}'.format(stroki), ', всего столбцов: {}'.format(stolbec)) Всего строк: 303, всего столбцов: 14 In [22]: data.columns Out[22]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'], dtype='object') In [23]: data.dtypes

Out[23]:

age

int64

```
11110-
ср
          int64
trestbps
            int64
chol
          int64
fbs
          int64
restecg
            int64
            int64
thalach
            int64
exang
oldpeak
           float64
slope
           int64
          int64
ca
thal
          int64
           int64
target
dtype: object
```

In [24]:

for col in data.columns:
 #Количество пустых значений - все значения заполнены
 temp_null_count = data[data[col].isnull()].shape[0]
 print('{} - {}'.format(col, temp_null_count))

age - 0 sex - 0

cp - 0

trestbps - 0

chol - 0

fbs - 0

restecg - 0 thalach - 0

exang - 0

oldpeak - 0

slope - 0

ca - 0

thal - 0

target - 0

In [25]:

data.describe()

Out[25]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	C
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.399340	0.72937
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.616226	1.02260
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.00000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.00000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.000000	0.00000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.00000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.00000
4)

idition bear the thirty of the terms of the

In [26]:

data['target'].unique()

Out[26]:

array([1, 0], dtype=int64)

In [27]:

sns.pairplot(data = data)

Out[27]:

<seaborn.axisgrid.PairGrid at 0x250ea414278>

In [34]:

$$\label{eq:figsize} \begin{split} &\text{fig, ax = plt.subplots(figsize=(10,10))}\\ &\text{sns.heatmap(data.corr(), ax=ax, annot=} \textbf{True}, \, \text{fmt='.3f'}) \end{split}$$

▼

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x250ffabddd8>

In [32]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='age', y='thalach', data=data)
```

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x250ff578da0>

In []: