Sistemas de Computación Página 1 de 7

UNIVERSIDAD NACIONAL DE CÓRDOBA

Facultad de Ciencias Exactas, Físicas y Naturales República Argentina

Carrera: Ingeniería en Computación

Escuela: Ingeniería Electrónica y Computación.

Departamento: Computación.

Programa de:

Sistemas de Computación

Código: 2635

Plan: Carga Horaria:

Semestre:

285-05

Puntos: 3

72

Noveno

Hs. Semanales: 4,5

Año: Quinto

Carácter: Obligatoria

Objetivos:

Adquirir el manejo, desde los lenguajes de alto nivel y bajo nivel, de la programación del hardware de la arquitectura de un computador.

Programa Sintético:

- 1. Componentes principales de un computador. Conceptos básicos.
- 2. Procesador y memoria.
- 3. BIOS, DOS y Windows.
- 4. Arquitectura de un sistema de BUS.
- 5. Integrados de soporte.
- 6. Dispositivos de almacenamiento.
- 7. Estructura de los programas.
- 8. Periféricos y dispositivos externos.
- 9. Otros sistemas operativos.

Programa Analítico: de foja 2 a foja 3.

Programa Combinado de Examen (si corresponde): de foja a foja .

Bibliografía: de foja 4 a foja 4.

Correlativas Obligatorias:

Electrónica Digital III

Correlativas Aconsejadas:

Rige: 2005

Aprobado HCD, Res.:

Sustituye al aprobado por Res.:

Fecha:

Fecha:

El Secretario Académico de la Facultad de Ciencias Exactas, Físicas y Naturales (UNC) certifica que el programa está aprobado por el (los) número(s) y fecha(s) que anteceden. Córdoba, / / .

Carece de validez sin la certificación de la Decretaría Académica:

PROGRAMA ANALITICO

LINEAMIENTOS GENERALES

La presente asignatura es una actividad curricular que pertenece al noveno semestre de la carrera de Ingeniería en Computación e Ingeniería Electrónica.

La programación del hardware de computadoras y sus arquitecturas, han experimentado una gran expansión, debido a la confluencia de diversos factores entre los que debemos destacar.

- Lenguajes que implementan distintos paradigmas
- Arquitecturas orientadas a resolver problemas de tipo general
- Herramientas que facilitan las implementaciones para dar soluciones a problemas particulares sobre estas arquitecturas

Con estos factores como foco, en esta materia se desarrollan y se aplican conceptos dentro de dos líneas de trabajo:

Diseño de programas: Ser capaz, a partir de los requerimientos, de diseñar e implementar un sistema con la problemática del hardware específico.

Aprender cómo se representa un diseño de software que contemple el hardware a utilizar. Reconocer las actividades más importantes del proceso de diseño e implementación.

Hacer uso de los distintos modelos y su representación.

Identificar, evaluar y resolver los problemas que abarquen el software y el hardware.

Software de alto y bajo nivel: Ser capaz de diseñar y realizar sistemas de software de alto y bajo nivel en forma conjunta.

Realizar la programación de dispositivos de hardware con lenguajes de bajo y alto nivel. Aprender la mecánica de comunicación entre lenguajes de bajo y alto nivel. Realizar programas que interactúen directamente con diferentes Sistemas Operativos. Hacer uso de herramientas para lograr los objetivos arriba descriptos.

El dictado se orienta a capacitar al alumno para identificar y construir sistemas de software que exploten las ventajas del conocimiento de la interacción entre hardware y software; para lograr sistemas con eficiencia y eficacia donde los requerimientos son volátiles y flexibles. Todo expresado como un diseño, implementación y las pruebas de sistema.

METODOLOGIA DE ENSEÑANZA

Las clases impartidas son teóricas, prácticas y de laboratorio. Las actividades teóricas se realizan a través de exposiciones del docente orientadas a desarrollar en los alumnos la capacidad de saber identificar la interacción entre hardware y software y su entorno, el diseño y las pruebas de sistemas.

Durante el desarrollo de los Trabajos Prácticos se realizan actividades que le permiten al estudiante poner en práctica las habilidades y verificar los criterios y técnicas de modelado, diseño y prueba.

Por otra parte en las clases de Laboratorio el alumno verifica, a través de la implementación, el funcionamiento de sistemas y realizará los casos de pruebas

EVALUACION

Condiciones para la promoción de la materia

- 1. Tener aprobadas las materias correlativas.
- 2. Asistir al 80% de las clases teóricas y prácticas.
- 3. Rendir y aprobar los dos parciales con nota no inferior a 4 (50% de los requisitos del parcial). El alumno podrá recuperar una vez cada parcial.
- 4. Presentar y aprobar las implementaciones que se exijan durante el desarrollo de los trabajos prácticos.
- 5. Aprobar los trabajos de Laboratorio.
- 6. Aprobar un coloquio integrador.

Los alumnos que cumplan con las exigencias referidas en los puntos 1 al 6 serán considerados **promocionados**.

Los alumnos que cumplan con las exigencias referidas en los puntos 1 al 4 serán considerados regulares.

El resto será considerado **libre**.

CONTENIDOS TEMATICOS

Unidad 1. Componentes principales de un computador. Conceptos básicos.

Unidad Central de Proceso (CPU).

Concepto de Bus, mapa de direcciones.

Memoria básica, extendida y expandida.

Controlador de interrupciones.

Controlador de acceso directo a memoria.

Generador de reloj.

Controladores de vídeo.

Teclado.

Unidad 2. Procesador y Memoria.

Unidad Central de Proceso (CPU).

Estructura del CPU.

Set de instrucciones.

Memoria básica, extendida y expandida.

Acceso a memoria.

- Direccionamiento.
- Caché.

Unidad 3. BIOS, DOS y Windows.

La ROM de arranque. Mecanismo de arranque.

Vectores de interrupción.

Mecanismo de las interrupciones.

Extensiones del BIOS.

Servicios del BIOS.

Servicios del DOS.

Kernel del Windows DLL.

Unidad 4. Arquitectura del sistema de Bus.

Estructura de Bus ISA.

Estructura de Bus PCI.

Vesa Local Bus.

Unidad 5. Integrados de soporte.

Controlador de sonido y tiempo.

Los controladores de tiempo del sistema.

Control de sonido a través del controlador de tiempo.

Control directo del altavoz.

Interrupciones de tiempo.

Manejo de la fecha y hora del sistema.

El sistema de vídeo.

Sistemas de Computación Página 5 de 7

Introducción al manejo de memoria y a la creación de la imagen en pantalla.

Los modos de vídeo, utilización del color, páginas de visualización.

- Control del vídeo directo a través del hardware.
- Control del vídeo a través de los servicios del BIOS.
- 3. El sistema de teclado.

Formato de datos del teclado.

- 4. Control del teclado directo a través del hardware.
- 5. Control del teclado a través de los servicios del BIOS.
- Control del teclado a través de los servicios del DOS.

Unidad 6. Dispositivos de almacenamiento masivo.

- Organización de los datos en el disco.
- 2. Formato de discos y disquetes.
- 3. La estructura lógica del disco.
- 4. Como organiza el DOS el disco.
- 5. El sector de arranque.
- 6. El directorio raíz.
- 7. El área de archivos.
- 8. La tabla de asignación de archivos (FAT).
- 9. Control del disco directo a través del hardware.
- 10. Control del disco a través de los servicios del BIOS.
- Control del disco a través de los servicios del DOS.

Unidad 7. Estructura de los Programas.

- 1. El prefijo del segmento de programa.
- Introducción a la estructura de los programas .COM.
- 3. Introducción a la estructura de los programas .EXE.
- 4. Programas residentes.
- 5. Unidad 8. Periféricos y dispositivos externos.
- 6. Introducción a las comunicaciones asincrónicas serie RS232.
- 7. Programación del controlador de comunicaciones.
- 8. Salida paralela de impresora.
- 9. Comunicaciones en red RS422, Ethernet (IEE 802.3)

Unidad 9. Otros sistemas operativos.

1. Windows, Windows NT, UNIX, XENIX, Nobel, OS2, LINUX.

LISTADO DE ACTIVIDADES PRACTICAS Y/O DE LABORATORIO

Actividades Prácticas

Introducción a los entornos de desarrollo. Modos de direccionamiento en un compilador de C.

Programación estructurada en lenguaje ensamblador. Ensamblado en línea.

Llamadas a procedimientos y paso de parámetros. Identificación del procesador.

Programación modular con lenguaje ensamblador. Tratamiento de imágenes.

Introducción a la programación de sistemas en Linux.

Desarrollo de controladores para dispositivos sencillos.

Programación de dispositivos con gestión de interrupciones.

Actividades de Laboratorio

Introducción a los entornos de desarrollo. Modos de direccionamiento en un compilador de C.

Programación estructurada en lenguaje ensamblador. Ensamblado en línea.

Llamadas a procedimientos y paso de parámetros. Identificación del procesador.

Programación modular con lenguaje ensamblador. Tratamiento de imágenes

Introducción a la programación de sistemas en Linux

Desarrollo de controladores para dispositivos sencillos

Programación de dispositivos con gestión de interrupciones

DISTRIBUCION DE LA CARGA HORARIA

Actividad		HORAS
Teórica		33
Formación practica:		
	Formación experimental	6
	Resolución de problemas	16
	Actividades de proyecto y diseño	17
	PPS	
	Total de la carga horaria	72

BIBLIOGRAFIA

Principal

ENSAMBLADOR, Francisco Charte Ojeda (ANAYA MULTIMEDIA) MICROPROCESADORES INTEL, BREY BARRY B. Professional Assembly Language, Richard Blum

Complementaria

Intel Corp. "Intel Architecture Software Developer's Manual (P6 family)"

Volume 1: Basic Architecture. Disponible en

http://www.intel.com/design/PentiumII/manuals/243190.htm.

Volume 2: Instruction Set Reference Manual. En

http://www.intel.com/design/PentiumII/manuals/243191.htm.

Volume 3: System Programming Guide. En

http://www.intel.com/design/PentiumII/manuals/243192.htm.