

Bulevar oslobođenja 133/I, 21000 Novi Sad, Serbia

Tel +381 21 63 50 932

www.cmt.edu.rs

e-mail: info@cmt.edu.rs

Ocena efikasnosti algoritma - Zadaci

Bulevar oslobođenja 133/I, 21000 Novi Sad, Serbia

Tel +381 21 63 50 932

www.cmt.edu.rs

e-mail: info@cmt.edu.rs

Istorija revizija

Verzija	Autori	Datum	Status	Komentar
1.00w	Saša Tošić	16 - Mar - 2018	Inicijalna verzija	Početna verzija dokumenta
1.1	Marko Vasiljević	15-Apr-2018	Radna verzija	Prilagođen online kursu Cosnovni

Bulevar oslobođenja 133/I, 21000 Novi Sad, Serbia

Tel +381 21 63 50 932

www.cmt.edu.rs

e-mail: info@cmt.edu.rs

Reference

Bulevar oslobođenja 133/I, 21000 Novi Sad, Serbia

Tel +381 21 63 50 932

www.cmt.edu.rs

e-mail: info@cmt.edu.rs

Sadržaj

Zadatak 1:	Broj nula cifara	5
	Kvadratna jednačina	
Zadatak 3:	Koren broja	5
	Broj ocena 2	
Zadatak 5:	Broj ocena 1	5
Zadatak 6:	Podniz sa najvećim zbirom 3	5
	Podniz sa najvećim zbirom 2	
Zadatak 8:	Podniz sa najvećim zbirom 1	6

Bulevar oslobođenja 133/I, 21000 Novi Sad, Serbia

Tel +381 21 63 50 932

www.cmt.edu.rs

e-mail: info@cmt.edu.rs

Zadatak 1: Broj nula cifara

Napisati program koji učitava pridodan broj \mathbf{n} i ispisuje koliko u broju \mathbf{n} postoji cifara 0. Algoritam realizovati u efikasnosti $\mathbf{O}(\log_{10}(\mathbf{n}))$.

Ideja: odvajati jednu po jednu cifru broja **n** i proveravati da li je dobijena cifra 0.

Zadatak 2: Kvadratna jednačina

Pronaći približno rešenje kvadratne jednačine $n^2 - 5 \cdot n + 2$ na intervalu [1, 10]. Algoritam realizovati u efikasnosti $O(\log_2(n))$.

Ideja: za vrednost 1, jednačina daje vrednost manju od 0, a za vrednost 10 veću od 0. Deliti interval na pola traženjem sredine intervala, i ako se dobije broj manji od 0, tada odbaciti levu polovinu intervala, a u suprotnom odbaciti desnu polovinu intervala.

Zadatak 3: Koren broja

Napisati program koji učitava broj **n** veći od 1 i pronalazi i ispisuje koren broja **n**, na dve decimale. Algoritam realizovati u efikasnosti $O(100 \cdot \sqrt{n})$.

Ideja: krenuti od broja 1 i dodavati mu 0.01, sve dok se ne dobije vrednost **n** takva da je $n^2 \le n < (n + 0.01)^2$. Ispisati dobivenu vrednost x.

Zadatak 4: Broj ocena 2

Neka je dat niz od \mathbf{n} školskih ocena iz intervala [1, 5]. Ispisati kojih ocena ima najviše. Algoritam rešiti u efikasnosti $\mathbf{O}(\mathbf{n} \cdot \mathbf{k})$ gde je \mathbf{k} najveća moguća ocena, u ovom slučaju ocena 5.

Ideja: Za svaku ocenu od 1 do 5, prebrojati koliko ima tih ocena, i videti kojih ocena ima najviše.

Zadatak 5: Broj ocena 1

Neka je dat niz od \mathbf{n} školskih ocena iz intervala [1, 5]. Ispisati kojih ocena ima najviše. Algoritam rešiti u efiksnosti $\mathbf{O}(\mathbf{n})$.

Ideja: Napraviti niz brojača (za svaku ocenu po jedan brojač). Proći kroz sve ocene i povećati brojač za datu ocenu za 1. Nakon toga, pronaći koji je brojač najveći.

Zadatak 6: Podniz sa najvećim zbirom 3

Napisati program koji učitava članove niza \mathbf{a} od \mathbf{n} elemenata i unutar njega pronalazi i ispisuje podniz uzastopnih elemenata datog niza koji ima najveći mogući zbir. Algoritam realizovati u efiksnosti $\mathbf{O}(\mathbf{n}^3)$.

Primer: neka je dat niz 2, -4, **3, 8, 4, -2, 3**, -6, 2, 1 sa 10 elemenata. Tada je traženi podniz niz brojeva 3, 8, 4, -2 i 3 i ima zbir 16.

Ideja: Sa dve **for** petlje generisati granice za sve podnizove, pri čemu prva petlja definiše početak niza, a druga kraj niza. Za svaki generisani podniz, sa novom **for** petljom izračunati sumu elemenata tog podniza i ukoliko se dobije veća suma, zapamtiti granice podniza. Program u sebi ima 3 ugnježdene **for** petlje.

Bulevar oslobođenja 133/I, 21000 Novi Sad, Serbia

Tel +381 21 63 50 932

www.cmt.edu.rs

e-mail: info@cmt.edu.rs

Zadatak 7: Podniz sa najvećim zbirom 2

Napisati program koji učitava članove niza \mathbf{a} od \mathbf{n} elemenata i unutar njega pronalazi i ispisuje podniz uzastopnih elemenata datog niza koji ima najveći mogući zbir. Algoritam realizovati u efiksnosti $\mathbf{O}(\mathbf{n}^2)$.

Primer: neka je dat niz 2, -4, **3, 8, 4, -2, 3**, -6, 2, 1 sa 10 elemenata Tada je traženi podniz niz brojeva 3, 8, 4, -2 i 3 i ima zbir 16.

Ideja: Kao pripremu za rad, kreirati niz \mathbf{c} , takav da je $\mathbf{c}[\mathbf{i}]$ suma svih elemenata niza \mathbf{a} , od nultog do \mathbf{i} -tog elementa. Za ovu pripremu dovoljna je jedna **for** petlja i formula da je $\mathbf{c}[\mathbf{i}] = \mathbf{a}[\mathbf{i}] + \mathbf{c}[\mathbf{i} - 1]$, pri čemu je $\mathbf{c}[0] = \mathbf{a}[0]$. Nakon toga, sa dve **for** petlje generisati granice za sve podnizove, pri čemu prva petlja definiše početak niza, a druga kraj niza. Za svaki generisani podniz, pomoću niza \mathbf{c} izračunati zbir elemenata u podnizu i ukoliko se dobije veća suma, zapamtiti granice podniza. Zbir elemenata od \mathbf{i} -tog do \mathbf{j} -tog elementa se definiše kao $\mathbf{c}[\mathbf{j}] - \mathbf{c}[\mathbf{i} - 1]$. Program u sebi ima 2 ugnježdene **for** petlje, a **for** petlja za računanje niza \mathbf{c} se zanemaruje u efikasnosti algoritma.

Zadatak 8: Podniz sa najvećim zbirom 1

Napisati program koji učitava članove niza **a** od **n** elemenata i unutar njega pronalazi i ispisuje podniz uzastopnih elemenata datog niza koji ima najveći mogući zbir. Algoritam realizovati u efiksnosti **O(n)**.

Primer: neka je dat niz 2, -4, **3, 8, 4, -2, 3**, -6, 2, 1 sa 10 elemenata. Tada je traženi podniz niz brojeva 3, 8, 4, -2 i 3 i ima zbir 16.

Ideja: sabirati elemente od početka niza i pamtiti granice podniza sa najvećim zbirom, kao i njegov zbir. Svaki put kada zbir elemenata bude negativan, zanemariti do sada izračunati zbir i krenuti sabiranja iz početka. Na primer, u datom primeru, prvo se kreće od broja 2 i to je najbolji zbir za sada. Kada se doda broj -4, zbir postaje -2, i tada zbir postavimo na 0 i nastavljamo od broja 3. Kako je 3 veće od 2, pamtimo da je to bolji zbir. Algoritam tako nastavlja da funkcioniše i za preostale elemente datog niza.