Diagram Kontrol Sign Chart

Diagram kontrol *sign chart* merupakan salah satu diagram kontrol non-parametrik yang digunakan ketika data tidak berdistribusi normal. Diagram ini berfungsi untuk mengevaluasi pengendalian varians. Diagram kontrol *sign chart* ini diimplementasikan untuk proses dari tiga variabel yang diteliti. Berikut ini langkah-langkah untuk membuat diagram kontrol *sign chart* secara manual yang ditampilkan untuk variabel Brix:

- 1. Menentukan nilai d, nilai d diambil dari banyaknya sampel ditiap subgrup. Jumlah sampel ditiap subgrup = 3. Maka d = 3.
- 2. Menghitung nilai kuartil pertama (Q_1) dan kuartil ketiga (Q_3) .

$$i = \left(\frac{p}{100}\right)n$$

$$Q_1 = \left(\frac{p}{100}\right)n$$

$$Q_1 = \left(\frac{25}{100}\right) 153 = 38.2.$$

Maka Q_1 = data ke-39.

Data ke-39 = 37.4.

$$Q_3 = \left(\frac{p}{100}\right)n$$

$$Q_3 = \left(\frac{75}{100}\right) 153 = 114.75.$$

Maka Q_3 = data ke-115.

Data ke-115 = 38.4.

3. Dari setiap sampel hitung nilai Uij.

Berikut ini data Brix untuk dua subgrup dan proses perhitungan U_{ij} pada masing-masing sampel yang ada ditiap subgrup. Contoh diberikan dari subgrup satu dan dua:

Subgrup	Brix
1	38
1	38
1	38
2	35
2	39
2	38

Subgrup 1 sampel pertama = 38, Karena $Q_1 \le 38 \le Q_3$ maka nilai U_{11} = -1.

Subgrup 1 sampel kedua = 38, Karena $Q_1 \le 38 \le Q_3$ maka nilai U_{12} = -1.

Subgrup 1 sampel ketiga = 38, Karena $Q_1 \le 38 \le Q_3$ maka nilai U_{13} = -1.

Subgrup 2 sampel pertama = 35, Karena $35 \le Q_1$ maka nilai $U_{21} = 1$.

Subgrup 2 sampel kedua = 39, Karena 39 > Q_3 maka nilai U_{22} = 1.

Subgrup 2 sampel ketiga = 38, Karena $Q_1 \le 38 \le Q_3$ maka nilai U_{23} = -1.

4. Selanjutnya menghitung nilai U_i yang merupakan penjumlahan nilai U_{ij} pada tiap subgrup.

$$\label{eq:normalized_equation} Nilai\ U_1 = sigma\ U_{ij} = \text{-}1\ + \text{-}1\ + \text{-}1 = \text{-}3.$$

Nilai
$$U_2 = sigma\ U_{2j} = 1 + 1 + -1 = 1$$
.

5. Nilai statistik yang digunakan adalah nilai positif dikarenakan diagram kontrol *sign chart* hanya menggunakan batas atas. Sehingga, nilai U_i diubah menjadi absolut

$$|U_1| = 3$$

$$|U_2|=1$$

Jika $|U_i| \ge 3$ maka subgrup tersebut diluar batas kontrol (out of control).

Diagram Kontrol EWMA Non-Parametrik

Diagram kontrol EWMA Non-Parametrik adalah salah satu diagram yang digunakan ketika data tidak berdistribusi normal. Diagram ini merupakan diagram non-parametrik yang berfungsi untuk mengevaluasi pengendalian rata-rata. Pada kasus ini diagram kontrol EWMA Non-parametrik digunakan untuk mengevaluasi tiga variabel yang digunakan. Pada contoh ini hanya menampilkan perhitungan secara manual untuk variabel brix. Berikut ini langkahlangkah dan contoh data untuk membuat diagram kontrol EWMA Non-Parametrik secara manual:

SubGrup	Brix
1	38
1	38
1	38
2	35
2	39
2	38
3	38
3	38
3	39

1. Menghitung nilai Y_j dengan cara , jika nilai $X_{ij} > \mu_0$ maka nilai $Y_j = 1$, jika tidak nilai $Y_j = 0$. Pada data Brix ditetapkan oleh perusahaan nilai target sebesar 39 °Brix, sehingga nilai $\mu_0 = 39$ (spesifikasi perusahaan). Berikut ini hasil perhitungan nilai Y_j . Untuk subgroup satu sampai tiga.

Nilai $X_{11} = 38 < \mu_0$, maka nilai $Y_1 = 0$.

Nilai $X_{12} = 38 < \mu_0$, maka nilai $Y_1 = 0$.

Nilai $X_{13} = 38 < \mu_0$, maka nilai $Y_1 = 0$.

Nilai $X_{21} = 35 < \mu_0$, maka nilai $Y_2 = 0$.

Nilai $X_{22} = 39 > \mu_0$, maka nilai $Y_2 = 1$.

Nilai $X_{23} = 38 < \mu_0$, maka nilai $Y_2 = 0$.

Nilai $X_{31} = 38 < \mu_0$, maka nilai $Y_3 = 0$.

Nilai $X_{32} = 38 < \mu_0$, maka nilai $Y_3 = 0$.

Nilai
$$X_{33} = 39 < \mu_0$$
, maka nilai $Y_3 = 0$.

2. Setelah mendapatkan nilai Y_j , menghitung nilai S_i yang merupakan hasil penjumlahan Y_j untuk setiap subgrup. Berikut ini hasil perhitungan nilai S_i untuk subgrup 1 sampai subgrup ke 3.

Nilai
$$S_1 = \sum Y_j = 0 + 0 + 0 = 0$$
.

Nilai
$$S_2 = \sum Y_i = 0 + 1 + 0 = 1$$
.

Nilai
$$S_3 = \sum Y_j = 0 + 0 + 0 = 0$$
.

- 3. Menghitung nilai P, nilai p diperoleh dari merata-ratakan variabel Y_j. Berdasarkan hasil perhitungan diperoleh nilai p sebesar 0.039216, yang merupakan rata-rata dari subgrup 1 sampai subgrup ke 51.
- 4. Menentukan nilai $\lambda = 0.9$.
- 5. Menghitung nilai EWMAS₁ dengan menggunakan rata-rata S_i. Nilai rata-rata dari S_i sebesar 0.117647, maka nilai EWMAS₁=0.117647.
- 6. Selanjutnya untuk menghitung nilai EWMAS_i subgrup kedua dan seterusnya menggunakan cara berikut: EWMAS_i = λ S_i + (1- λ)S_{i-1}.

$$EWMAS_2 = 0.9 * S_2 + (1 - 0.9) * S_1 = 0.9 * 1 + 0.1 * 0 = 0.9.$$

$$EWMAS_3 = 0.9 * S_3 + (1 - 0.9) * S_2 = 0.9 * 0 + 0.1 * 1 = 0.1.$$

Dan seterusnya hingga subgrup terakhir.

7. Menghitung nilai Upper Control Limit (UCL), Center Limit (CL), dan Lower Control Limit (LCL).

$$UCL = np + k \sqrt{\frac{\lambda}{(2-\lambda)} np(1-p)}.$$

UCL =
$$3 * 0.039216 + 1.96 \sqrt{\frac{0.9}{(2-0.9)}} 3 * 0.039216(1 - 0.039216) = 0.7137.$$

$$CL = 3 * 0.039216.$$

$$CL = 0.117647.$$

LCL = np - k
$$\sqrt{\frac{\lambda}{(2-\lambda)}}$$
 np $(1-p)$.

$$LCL = 3 * 0.039216 - 1.96 \sqrt{\frac{0.9}{(2-0.9)}} 3 * 0.039216 (1 - 0.039216) = -0.47841.$$

Nilai statistik yang digunakan adalah nilai positif dikarenakan diagram kontrol EWMA Non-Parametrik hanya memiliki nilai positif (dikarenakan seluruh nilai S_i bernilai positif), maka nilai LCL diubah menjadi 0.