$|a| = \begin{cases} a, & \text{if } a > 0. \\ -a, & \text{if } a \leq 0. \end{cases}$ #1: For a e F, Hence a = In | and -a = In | fa = F. <u>Claim</u>: lath ≤ la | + 16 | ∀a, b ∈ F. Pt: lathlis eather ash or -lath). • $atb \leq |a| + |b|$. • $-(a+b)=(-a)+(-b)\leq |a|+|b|$. Now we prove the desired statement by induction. The statement is true for n=2. Assume it's true for n-1, Then: [a1+ ··· + an] ≤ |a1+ ··· + ani| + |an|

E |ailt ... + |an-1| + |an|. []

†
inductive hypothesis.

#B: (a) at F is a lower bound of S If a \in there exists a lower bound of S

(b) SSF is bounded below If there exists a lower bound of S

(c) at F is the greatest bower bound of S. If a \in a' for any

lower bound a' of S.

(d) F satisfies the greatest lower bound property. If.

for any SEF bounded below, the greatest lower bound
(and nunempty)

of S. exists in F.

implies & satisfies the greatest lower bound property (the converse direction can be proved similarly). Let SEF be a nonempty set & bounded below. So Jack st. as & Yzus. - 103-8 Y265. => the set Ti= {-2 | 3653 SF is bounded above . Stree F satisfies the least upper bound property, the least upper bound of T exists in F, say it's wef. Claim, -web is the greatest lower bound of S. Pt: - -w is a lower bound of S: we know w> -3. 4365, hence z = -w. 4365. · -W is the greatest lower bound of S: let -w' be a lower bound of S, Then $-w' \leq z \quad \forall z \in S$. > Wis an upper bound of T. . . . w' > w since w is the least uppur. bound of T. $\Rightarrow \quad -\omega' \leq -\omega,$

#3: We show that F satisfies the least upper bound property

#4	: . ¥£70	3-6	< 3 =	sup S,	hence	. Z-E	. js ne	t an	upper	bound
0	ξ, =							•	•	•
	inu z							i a e	કે. [].
•		• •	• •	• •	•	•	• •	•	•	•
0	es may	not be	found	so th	at 2-	: £ < .a	۲.7.	•	•	•
10	or instal	nce, le	t. S=	{0}	ER.	Then	そこら	up S:	ンO,	•
B	nt Ye	70, th	ere is	NO R	6 S 5	rl	E 2 0	<0	. 🗅	•
K F	Λ.	ν1	• •	• •	•	• •	• •	•	•	•
11 5:	Assume	e. The c	outrary	that	xyy	•	• •	٠	•	•
•	Take	E= - 1	2 >0	•	•	•	•	•	•	•
•	Then		X+	y	. N			٠,	•	•
•	INLP	97.0	6	λ · · · · ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. Cor	17 radl	(116j.		•
<u># 6</u> ;	let f	· · · · · · · · · · · · · · · · · · ·	1 n	y IN }	•	•	•	٠	•	•
	It's o				upper	bourd	of 5.		•	•
•	,	the v							n bou	d of .
•	Then	J 670	5.4.	1-5	is an	upper	bound	of S	, . >.	•
•	•	•	•	•	•	•	•	•	•	•
•	Slace	NSR	·. i5. h	rot bou	nded o	ibove.,	JN	e IN.	sk. N	> \frac{1}{\xi}.
•	·=>·	1- 1	> 1-	٠٤.	Contra	dī(tìon.		٠	•	•

#7: By assumption, 3N, 20 st. an=bn. 4n>N, 420, 3 N200 St. n>N2 ⇒ lan-al < €. let N= max {N1, N2} >0. Then $n > N \Rightarrow |b_n - a| = |a_n - a| < \varepsilon$.

Hence lim by = a. [

#8: Assume the contrary that a>b. Let &= ab >0.

 $\exists N_1 > 0 \text{ st } n > N_1 \Rightarrow |a_n - a_1| < \varepsilon.$

JN>>0 50. n>N2 ⇒ |bn-b| < €.

 $J-N_3>0$ of $n>N_3 \Rightarrow a_n \leq b_n$

let N= Max {N1, N2, N3} >0. Then

 $n > N \Rightarrow \frac{a+b}{a} = a-\epsilon < a_n \leq b_n < b+\epsilon = \frac{a+b}{2}$

Contradiction.

#9: By #4, YneN, Janes st. Z-n< an < 3.

Claim: Vim an = z.

Pt: 420, Choose N > 2, Then.

n>N ⇒ z- E < z- 1 < an ∈ z: ⇒ |an-z| < E. □