Name: Veronica womis

Problem 6.7

Given: Heavy waved steel nottle

15 second test firing

. Steel meeting temp: 2500°F /1370°C / 1643. IS K

Find: Temp profile at throat at t=2,5,10, 15 sec. Will steel melt?

5 18 in diam. BAR CRS

Assumptions:

hg = 10000 W/m2K for steel k = 60.5 W/mK

x = 17.7 × 10 0 m2/s

Pc = 300 psi (10f/in2) = 2.060 x 10 N/m2 Oxidizer: 85% aq H202 & HTPB as fuel

0/F = 7

8=1.4

one dimensional constant k, cp, &

heat never conducted to back side

Basic Equations:

Equations:
$$\frac{T(x,t) - T_i}{T - T_i} = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) - \operatorname{Exp}\left[\frac{hx}{k} + \frac{h^2 \alpha t}{k^2}\right] \operatorname{erfc}\left[\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right]$$

$$T_t = T_c \left[\frac{1}{1 + \frac{1}{2}} \right]$$

Analysis:

In CEQUEL, find To

Find Tt using
$$T_t = T_c \left[\frac{1}{1 + \frac{8-1}{2}} \right]$$

Substitute Tt = Too, Ti = 298 K

Plot in MATLAB - Answer:

If one uses the temperature given in solutions,

the steel will met. If the temperature is calculated in CEQUEL,

It will not melt.

The difference between given Too and CEQUEL/converted Too Comment:

might have been a typo.

It may have also been a miscalculation since if I swap It and Ic in the equation above, my CEQUEL/calculated

value becomes a lot closer to the one given in the solution.

	_			_	
OF	7		OF	7	
Pc (psi)	300		Pc (psi)	300	
Pc (bar)	20.6843		Pc (bar)	20.6843	
Area Ratio	4		Area Ratio	4	
OF	#NAME?	DIMENSIONLESS	OF	7	DIMENSIONLESS
FPCT	#NAME?	DIMENSIONLESS	FPCT	12.5	DIMENSIONLESS
ERATIO	#NAME?	DIMENSIONLESS	ERATIO	0.984183	DIMENSIONLESS
Phi	#NAME?	DIMENSIONLESS	Phi	0.968289	DIMENSIONLESS
T	#NAME?	DEG K	Т	2180.01	DEG K
			T @ throat	1816.675	

Problem 6.7 in textbook

```
% Given
h = 10000; % W/Km**2
k = 60.5; % W/Km
alpha = 17.7e-6; % m**2/s
Pc = 300; % psi (2.068e6 N/m**2)
% oxidizer = 85% aqueous H2O2
% fuel = HTPB
OF = 7;
t = [2, 5, 10, 15];
xDist = (2.5625 - 0.535)/39.37; % convert in to m
x = linspace(0,xDist,100); % range of x values we are interested in
Ti = 298; % K - initial wall temperature
TinfGiven = 2667.2; % K - hot gas temperature
TinfCEQ = 1816.675; % K - hot gas temperature
                    % found from CEQUEL and converting to throat temp
% Equation
% iterate over x, plug in t values that we want for plot purposes
for i=1:100
    for j = 1:4
        T \text{ given}(i,j) = Ti + (TinfGiven - Ti)*(erfc(x(i)/(2*sqrt(alpha*t(j)))))
 -\exp((h*x(i)/k) + (h^2*alpha*t(j))/(k^2)).*erfc((x(i)/k))
(2*sqrt(alpha*t(j)))+(h*sqrt(alpha*t(j))/k)));
        T CEQ(i,j) = Ti + (TinfCEQ - Ti)*(erfc(x(i)/(2*sqrt(alpha*t(j)))))
 -\exp((h*x(i)/k) + (h^2*alpha*t(j))/(k^2)).*erfc((x(i)/k))
(2*sqrt(alpha*t(j))))+(h*sqrt(alpha*t(j))/k)));
    end
end
figure(1)
plot(x, T given)
hold on
% Plot steel melting temperature
plot (x, ones (1, length (x)) *1643.15, 'k--')
grid on
legend('t=2','t=5','t=10','t=15')
title({'Temperature vs. Distance from Wall', 'Using Temp given in solution'})
xlabel('Distance into wall [m]')
figure(2)
plot(x,T CEQ)
hold on
% Plot steel melting temperature
plot(x, ones(1, length(x)) *1643.15, 'k--')
grid on
legend('t=2','t=5','t=10','t=15')
title({'Temperature vs. Distance from Wall', 'Using CEQUEL'})
xlabel('Distance into wall [m]')
```


0.03

0.04

0.06

0.05

0.01

0

0.02

SP04A

Name Veronica Loomis

Given: O/F = 7.934

Pc = 50 atm

Equilibrium Flow

Nozzle Area Ratios: 0, 1, 2, 5, 10, 20

Find: Plots of values as a function of the nozzle area ratio

Analysis: CEQUEL

O/F 7.934 Pc (atm) 50 Pc (bar) 50.6625

r c (bar)	30.0023						
Area Ratios	0	1	2	5	10	20	
OF	7.934	7.934	7.934	7.934	7.934	7.934	DIMENSIONLESS
FPCT	11.19319	11.19319	11.19319	11.19319	11.19319	11.19319	DIMENSIONLESS
ERATIO	1.000338	1.000338	1.000338	1.000338	1.000338	1.000338	DIMENSIONLESS
Phi	1.000338	1.000338	1.000338	1.000338	1.000338	1.000338	DIMENSIONLESS
AR	0	1	2	5	10	20	DIMENSIONLESS
P	50.6625	29.35713	6.780241	1.920466	0.791986	0.334503	BAR
T	3548.422	3381.747	2980.844	2673.461	2468.599	2270.965	DEG K
RHO	2.744301	1.691015	0.458145	0.148395	0.067298	0.031285	KG/M^3
Н	-860.601	-1837.49	-4187.76	-5934.71	-7028.45	-7996.04	KJ/KG
U	-2706.7	-3573.56	-5667.7	-7228.86	-8205.28	-9065.27	KJ/KG
GFE	-57163.8	-55496.1	-51485.2	-48354.8	-46198	-44029.7	KJ/KG
S	15.86712	15.86712	15.86712	15.86712	15.86712	15.86712	KJ/(KG K)
Z	1	1	1	1	1	1	DIMENSIONLESS
MW	15.98148	16.19614	16.74688	17.17609	17.44107	17.65943	MOL WT
СР	10.39491	10.16045	9.115419	7.783356	6.67492	5.540151	KJ/(KG K)
CPG	3.238026	3.215358	3.150319	3.085956	3.033401	2.973607	KJ/(KG K)
GammaG	1.191429	1.189994	1.187081	1.186048	1.186461	1.188121	DIMENSIONLESS
Gamma	1.128506	1.12541	1.119764	1.119001	1.121974	1.12928	DIMENSIONLESS
С	1443.376	1397.779	1287.313	1203.395	1149.075	1098.844	M/S
MW_MIX	15.98148	16.19614	16.74688	17.17609	17.44107	17.65943	MOL WT
Viscosity	1.110518	1.071734	0.975276	0.897615	0.843612	0.789487	milliPOISE
Specific_Heat	10.39516	10.16055	9.114248	7.782729	6.674583	5.54	KJ/(KG K)
Conductivity_	22.1023	20.77815	16.62412	12.60708	9.756744		milliW/(CM K)
Prandtl_Eq	0.522299	0.52408	0.5347	0.554125	0.577114	0.610839	DIMENSIONLESS
Specific_Heat	3.238087	3.215396	3.150436	3.085993	3.033415	2.973612	KJ/(KG K)
Conductivity_	4.909735	4.663019	4.058006	3.582104	3.259603	2.945546	milliWATTS/(CM K)
Prandtl_FR	0.732413	0.739017	0.757157	0.773298	0.785073	0.79701	DIMENSIONLESS
PINJ_P	-999.999	-999.999	-999.999	-999.999	-999.999	-999.999	N/A
PC_P	1	1.725731	7.472079	26.38032	63.96894	151.456	DIMENSIONLESS
MACH	0	0.999998	2.003862	2.647198	3.056562	3.437869	DIMENSIONLESS
AR	0	1	2	5	10	20	DIMENSIONLESS
CSTAR	0	2143	2143	2143	2143	2143	M/S
CF		0.652133	1.203513	1.486255	1.638628	1.762479	DIMENSIONLESS

ISPV		2639.796	3153.305	3591.874	3847.288	4060.72 M/S
ISP		1397.776	2579.598	3185.626	3512.22	3777.682 M/S
ISPVRHO		0	0	0	0	0 KG/(M^2 S)
AR	0	1	2	5	10	20 DIMENSIONLESS
Н	0.001984	0.001678	0.000978	0.000524	0.000292	0.000137 MASS
H2	0.014558	0.013224	0.0097	0.00679	0.004873	0.003184 MASS
H2O	0.797388	0.819032	0.87361	0.915653	0.941706	0.963468 MASS
H2O2	6.93E-05	4.37E-05	1.18E-05	0	0	0 MASS
HO2	0.000375	0.000252	8.02E-05	2.58E-05	1.03E-05	0 MASS
0	0.014359	0.011811	0.006307	0.003074	0.001579	0.000672 MASS
O2	0.067528	0.063332	0.050333	0.037525	0.028067	0.019038 MASS
ОН	0.103738	0.090627	0.058981	0.036405	0.023471	0.013497 MASS

Answer:

Comment: The tempeartures are lower for liquid than they are for gaseous propellants This makes sense since gases usually exist at higher temperatures, so not as much work has to be done compared to converting them from liquid to gas.

Two-Page Annotated Bibliography Template

Summarize

Reference Document	Bartz, D.R., "Turbulent boundary layer heat transfer from fast		
Examined:	accelerating flow of rocket exhaust gases and heated air." NASA		
	CR-62615, December 1, 1963		
Reviewer:	Veronica Loomis		
Source of Document:	Canvas		
Date of Review:	March 1, 2023		
Electronic File Name:	ref_Bartz.pdf		

Summary of Paper:

It is important to know heat transfer and boundary layer development within the combustion chamber and nozzle of an engine. Many advancements are being made that are increasing the pressures and temperatures of the gases within the engine, which makes it more crucial to understand the fluxes that occur within. This problem is by no means solved yet, however there is a lot of analysis and experimentation that is ongoing to try and get a better grasp of it. There are many components that go into this analysis with their own constraints, so it is important to gather those and understand what the expectations are.

B. Assess:

Important Facts from Document:

- 1. Recent advancements have seen engines with chamber pressures reaching 1000 lb/in² and it's not unlikely that these will double in the future.
- 2. More energetic propellants being developed are driving up gas temperatures to roughly 8000°F.
- 3. It is becoming increasingly more important to know about heat transfer and boundary-layer development in combustion chambers and nozzles.
- 4. It is difficult to characterize these since free stream flow cannot be successfully described in terms of steady, average, 1-D flow variables.
- 5. There are three unique characteristics to the thrust chamber: rapid establishment of steady flow, high heat fluxes, and a sharp axial gradient of heat flux.

Key Figure from Document:

Figure 28: Since fluxes are high, the thrust chamber is divided into axially short segment lengths which are individually cooled.

Important Relationships among Parameters Described in the Paper:

- 1. Overdesigned wall protection led to excessive pressure drops and weight, or a shift towards lower performance.
- 2. A sharp axial gradient of heat flux creates a requirement for very localized measurements.

C. Reflect

This paper was interesting to read since it's a very real example of how this field of study is still ongoing and there is plenty more research to be done into it. Technology is always advancing and it is very important for the math and designs to stay up to date as well.

