

Skeletal muscle MR spectroscopy at high field

H.E. Kan, PhD
C.J. Gorter Center for High Field MRI
Department of Radiology

Financial disclosures:

Research support from Philips Healthcare, Research consultancy support from aTyr Pharma

Skeletal muscle

- Over 600 muscles in the body
- Function: deliver force
- Very dynamic organ
- Long cylindrical cells
- Different layers of connective tissue
- Highly structured

2 6-Mar-16

Types of muscle architecture

Applications

- Measurements at rest and during/after activity
- Important metabolites: lipids, phosphocreatine, ATP, glycogen
- Common applications:
 - Diabetes
 - Aging
 - Sports medicine
 - Muscular dystrophies

High field MRS

- Specific challenges of MRS:
 - Intrinsic low concentration of metabolites
 - Low gyromagnetic ratio (³¹P, ¹³C)
 - Overlapping signals
- Specific high field advantages:
 - Higher SNR
 - Higher spectral resolution

Nuclei with spin and MRS

Isotope	Spin	Gyromagnetic ratio (10 ⁷ rad s ⁻¹ T ⁻¹)	Natural abundance (%)	Relative sensitivity
¹ H	1/2	26.752	99.985	1.00
² H	1	4.107	0.015	1.45 x 10 ⁻⁶
¹³ C	1/2	6.728	1.108	1.76 x 10 ⁻⁴
¹⁴ N	1	1.934	99.63	1.01 x 10 ⁻³
15 N	1/2	-2.714	0.37	3.85 x 10 ⁻⁶
¹⁹ F	1/2	25.181	100	0.833
²³ Na	3/2	7.08	100	9.27 x 10 ⁻²
31 p	1/2	10.841	100	6.65 x 10 ⁻²

¹H MRS

Muscle ¹H MRS

- Energy metabolism, diabetes
- Creatine, intra and extra myocellular lipids, carnitine, acetylcarnitine
- Dipolar couplings and bulk susceptibility effects

IMCL/EMCL: bulk susceptibility effects

- IMCL:
 - Metabolically active
 - Lipid droplets
- EMCL:
 - Not metabolically active
 - Located between fibers
 - Shift in resonance frequency
- Different spectrum for each muscle

Boesch et al, NMR in Biomed 2006

Residual dipolar couplings

- Creatine, Carnitine,
 Acetylcarnitine, Carnosine,
 Taurine
- Singlet at the magic angle
- 'Optimal' angle for IMCL and metabolites is different!

Vermathen et al. Magn Reson Med 2003

Muscles of the calf

Added value of 7T

- Tibialis anterior muscle
- Creatine triplet is quantifiable at 7T

12

Carnitine and acetyl carnitine

- Important metabolite in energy metabolism
- Scans pre- and post exercise
- Split in TMA signal after exercise and extra resonance at 2.1 ppm
- Recovery of 2.1 and 3.17
 signal are the same
- Observation of acetylcarnitine by its TMA resonance

Ren et al. Magn Reson Med 2013

Carnosine

- pH buffering, anti-inflammatory function
- Dependent on fiber type, age, sex, training, nutritional intake
- Splitting of the 8 ppm resonance after exercise
- Two different pH compartments

7.75

Kukurova et al. NMR Biomed 2016

8.25

8.5

ppm

Summary ¹H MRS

15

- Combination of higher SNR and spectral resolution enables:
 - Fully resolved Cr CH₃ in dipolar coupled muscles
 - Assessment of acetyl carnitine by its TMA signal
 - Observation of splitting of 8 ppm carnosine signal

³¹P MRS

Muscle ³¹P MR

Static measurements of energy metabolism:

- Phosphocreatine
- Tissue pH
- ATP, phosphorylated sugars

Dynamic measurements

- Mitochondrial 'capacity'
- pH response during exercise
- Exchange kinetics

Phosphorous energy metabolism

Membrane transporters and pumps for sodium, potassium, glutamate, calcium, etc.

7T facilitates use of localization

L U M C

- Comparison of semi-laser vs coil-localized MRS
- More PCr breakdown and narrow line widths

Meyerspeer et al, Magn Res Med 2012

Differences between muscles

Localized 31P MR spectra (single acquisitions)

20

Meyerspeer et al, MAGMA 2015

³¹P MRS in muscular dystrophy at 7T

- Progressive muscle wasting
- Muscle symptoms:
 - Fatty infiltration
 - Inflammation/edema
 - Fibrosis

- Disturbed energy metabolism
- Not all muscles affected equally
- Previous studies using surface coils: mixture of tissue types

Changes in metabolism in absence of fatty infiltration

Wokke et al, NMR in Biomed 2014

7T boosts the use of ³¹P imaging

Parasoglou et al, Magn Res Med 2013

PCr and b-ATP mapping

23

Steinseifer et al, Magn Res Med 2013

Saturation transfer

Parasoglou et al, Sci Rep 2014

Exchange kinetics by inversion transfer

- CEST like approach using low power
- Assessment of many exchanging ³¹
- No assumptions needed on which |
- Large dynamic range

Ren et al, Magn Res Med 2015

EKIT spectrum

Ren et al, Magn Res Med 2015

t_d (sec) 3

1

0

Second Pi compartment

Common methods to assess mitochondrial capacity:

- Recovery of phosphocreatine (PCr) signal after exercise
- Saturation transfer

Alkaline Pi

- Resonance frequency of Pi depends on tissue pH
- Mitochondrial pH is 0.4 units more alkaline than cytosol
- Assessment of mitochondrial Pi possible at 7T?

Kan et al, NMR Biomed 2010

Alkaline Pi

- Resonance frequency of Pi depends on tissue pH
- Mitochondrial pH is 0.4 units more alkaline than cytosol
- Assessment of mitochondrial Pi possible at 7T?

Mitochondrial Pi?

- Differences between muscles
- Differences between trained and untrained subjects
- Correlation with PCr recovery

Kan et al, NMR Biomed 2010

Van Oorschot et al, PlosOne 2013

Alkaline Pi lower in overweight subjects

- Alkaline Pi most predictive of exercise capacity
- GPC also correlates with exercise capacity

30

vuicovic et ui, sci nep 2016

Specific advantages of high field ³¹P MRS

- Signal localization:
 - Assessment of individual muscles instead of mixture of tissue types
 - Imaging approaches
- Use of increased SNR and spectral resolution
 - Exchange kinetics by Inversion Transfer
 - Alkaline Pi

Thank you for your attention

