DAM Desarrollo de Aplicaciones Multiplataforma 2º Curso

AD Acceso a Datos

UD 5
Programación de componentes
de acceso a datos
(Parte 5 - 02)

IES BALMIS Dpto Informática Curso 2023-2024 Versión 4 (02/2024)

UD5 – Azure para el proyecto de ciclo

ÍNDICE

- 1. VM Linux en Azure
 - 1.1 Instalación
 - 1.2 Configuración de disco
 - 1.3 Configuración de red
- 2. Conexión y actualización
 - 2.1 Conexión con clave pública SSH
 - 2.2 Conexión con contraseña (solo si no se ha indicado clave pública SSH)
 - 2.3 Actualizar
 - 2.4 Añadir otros usuarios (solo si no se ha indicado clave pública SSH)
 - 2.5 Cambiar máquina de tamaño
- 3. Instalación de MySQL
 - 3.1 Instalar servicio de MySQL
 - 3.2 Crear usuario
 - 3.3 Permiso de acceso a MySQL
 - 3.4 Abrir puerto de MYSQL en el firewall de Azure
 - 3.5 Prueba de acceso desde Workbench
- 4. Instalación de Apache Tomcat
 - 4.1 Actualizar sistema e instalar utilidades
 - 4.2 Instalar Java 17
 - 4.3 Instalar Apache Tomcat
 - 4.4 Abrir puertos de Tomcat en el firewall de Azure
 - 4.5 Pruebas de acceso
 - 4.6 Detener la VM cuando no se use
- 5. Despliegue de aplicaciones
 - 5.1 Preparar una aplicación en NetBeans
 - 5.2 Despliegue en VM mediante navegador
 - 5.3 Despliegue manual (no es necesario)

1. VM Linux en Azure

Una máquina virtual (VM) es un entorno que funciona como un sistema informático virtual con su propia CPU, memoria, interfaz de red y almacenamiento, pero el cual se crea en un sistema de hardware físico, ya sea **on-premise** u **on-cloud**.

El hipervisor es el sistema de software sobre el que se instala una VM, y se encarga de separar los recursos de la máquina host (máquina del sistema de hardware) e implementarlos adecuadamente para que la VM pueda utilizarlos.

Azure nos permite crear máquinas virtuales (VM) en Linux y Windows pero solo será gratuito durante las primeras 750 horas.

1.1 Instalación

Identificados en el portal de Azure, accederemos a **Servicios gratuitos**:

Y aquí seleccionaremos **Máquina virtual con Linux**:

Nos aparecerá un formulario donde indicaremos:

 Grupo de recursos: nombre del grupo donde se agruparán todos los recursos que tendrá la VM

- **Nombre de la máquina virtual**: nombre con el que identificaremos nuestra VM
- **Región:** lugar donde se alojará nuestra VM. Este dato afectará al precio final.
- Imagen: es la versión del sistema operativo que se instalará.
- **Tamaño:** Hay que recordar que la única gratuita es la B1s (durante las primeras 750 horas)

Crear una máquina virtual

máquina virtual con parámetros predeterminados o bien revise cada una de las pestañas para personalizar la configuración. Más información 🖻

Detalles del proyecto

Seleccione la suscripción para administrar recursos implementados y los costes. Use los grupos de recursos como carpetas para organizar y administrar todos los recursos.

Con clave pública SSH

• **Tipo de autentificación:** si vamos a utilizar la VM para instalar servicios es recomendable con **Cláve pública SSH.** Solo si se va a utilizar con varios usuarios en pruebas, seleccionaremos **Contraseña**.

Seleccionar puertos de entrada: utilizaremos SSH(22)

Al generar la máquina obtendremos un archivo de clave con la extensión **.pem** que deberemos guardar.

1.2 Configuración de disco

El disco duro creado es el de 64Gb porque es el gratuito.

1.3 Configuración de red

Por defecto se crea con IP Dinámica pero no tenemos nombre DNS.

Desde información general podremos dar nombre a nuestra VM pulsando en **Configurar**.

En nuestro ejemplo, el nombre DNS de nuestra máquina será:

ubuntudam.westeurope.cloudapp.azure.com

2. Conexión y actualización

2.1 Conexión con clave pública SSH

Cliente ssh de Windows

Para instalar el cliente OpenSSH de Windows debemos ir a:

Configuración → Sistema → Características opcionales

Una vez instalado disponemos del comando ssh desde un terminal de Windows:

Para conectarnos a nuestra máquina virtual, necesitamos proporcionarle el **usuario**, el **host** y el archivo **.pem** descargado. En nuestro ejemplo:

```
C:\> ssh azureuser@ubuntudam.westeurope.cloudapp.azure.com -i ubuntu2301_key.pem
```

Si aparece el mensaje:

Es porque lo estamos ejecutando desde el USB y no tenemos los permisos suficientes. **Debemos copiarlo al HD y ejecutarlo desde ahí**.

Al conectarnos la primera vez, seguramente recibiremos el mensaje de fingerprint:

y debemos contestar **yes**.

Cliente Putty

Para conectar utilizaremos un generador de clave privada y un cliente ssh.

El más utilizado es **PuTTY** con **PuTTYgen**. Podemos descargar las utilidades del portal oficial:

https://www.putty.org/

Lo primero será generar nuestro archivo **ppk** con la utilidad **PuTTYgen,** siguiendo estos pasos:

File → Load private key

 seleccionar archivo .pem que descargamos de Azure al crear la máquina virtual

- Dejar marcado **RSA**
- Pulsar "Save private key"

Nos dará un aviso y pulsaremos "Sí":

Por último, guardaremos el archivo con extensión **.ppk**

Ahora conectaremos usando **PuTTY**, donde indicaremos el nombre DNS de nuestra máquina y si usamos proxy, indicar su configuración.

Para la conexión con clave pública SSH deberemos indicar el archivo PPK generado con PuTTYgen en "**Connection** → **SSH** → **Auth** → **Credentials**.

Ahora, pulsando en Open, conectará con nuestra máquina virtual abriendo un terminal que nos pedirá el **usuario** que se indicó en la creación de la VM (en nuestro ejemplo **azureuser**) y utilizará la clave cifrada que contiene el archivo ppk:

2.2 Conexión con contraseña (solo si no se ha indicado clave pública SSH)

En nuestro caso no lo haremos porque es un servidor.

Si al crear la máquina virtual en **Tipo de autentificación** hemos seleccionado **Contraseña** porque vamos a utilizarla con varios usuarios en pruebas (esto no es recomendable para una máquina en producción), habremos indicado por ejemplo:

Con contraseña:

Cuenta de administrador	
Tipo de autenticación ①	Clave pública SSH Contraseña
Nombre de usuario * ①	useradm
Contraseña * ①	······································
Confirmar contraseña * ①	··············

Para conectar utilizaremos un cliente ssh.

El más utilizado es **PuTTY**. Podemos descargar la utilidad del portal oficial

https://www.putty.org/

Para conectar, solo será necesario indicar el nombre DNS de nuestra máquina y si usamos proxy, indicar su configuración.

En la ventana de terminal que aparecerá, indicaremos el usuario y la contraseña.

```
useradm@ubuntudemo: ~
                                                                         Х
💤 useradm@ubtdemo.eastus.cloudapp.azure.com's password:
Welcome to Ubuntu 18.04.5 LTS (GNU/Linux 5.4.0-1040-azure x86 64)
 * Documentation: https://help.ubuntu.com
 * Management:
                  https://landscape.canonical.com
                  https://ubuntu.com/advantage
 * Support:
 System information as of Thu Mar 11 08:04:07 UTC 2021
 System load: 0.46
                                 Processes:
                                                       112
  Usage of /:
               2.4% of 61.86GB
                                 Users logged in:
 Memory usage: 23%
                                 IP address for eth0: 10.1.1.4
 Swap usage:
O packages can be updated.
0 of these updates are security updates.
New release '20.04.2 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Last login: Thu Mar 11 07:58:08 2021 from 213.0.87.0
useradm@ubuntudemo:~$
```

2.3 Actualizar

Lo primero que haremos será actualizar el sistema:

```
# sudo apt-get update
# sudo apt-get upgrade
# sudo apt-get autoremove
```

Además podemos instalar algunas herramientas

```
# sudo apt-get install net-tools
# sudo apt-get install nano
```

Actualmente tenemos la versión 22.04 LTS:

```
# lsb_release -a
# cat /etc/os-release
PRETTY_NAME="Ubuntu 22.04.3 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.3 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
```

El comando para actualizar a una versión posterior que esté disponible sería:

```
# sudo do-release-upgrade
```

2.4 Añadir otros usuarios (solo si no se ha indicado clave pública SSH)

En nuestro caso no lo necesitamos porque es un servidor.

Si hemos seleccionado conexión con **Contraseña** en la VM para disponer de varios usuarios en pruebas, podremos añadirlos utilizando el script **useradd**:

```
# sudo useradd -m -d /home/juan juan
# sudo passwd juan
```

2.5 Cambiar máquina de tamaño

La máquina de tipo/tamaño B1s, gratuita durante las primeras 750 horas, luego tiene un coste de 8,25\$/mes. El problema es que si instalamos servicios y software que requieran de recursos, irá muy lenta.

Si necesitamos más velocidad podemos cambiarla de tamaño, pero el siguiente que es B2s tiene un coste de 32,85\$/mes.

Si se hace el cambio, es muy importante **Detener** la máquina cuando no se use para evitar quedarnos sin saldo.

3. Instalación de MySQL

3.1 Instalar servicio de MySQL

En la mayoría de los casos, añadiremos servicios que se ofrecen a través de puertos. Por ejemplo, si instalamos **MySQL Server**:

```
# sudo apt-get install mysql-server
Indicar password de root durante la instalación si la pide
```

3.2 Crear usuario

Si NO ha pedido contraseña en la instalación, le indicaremos una:

```
// Si NO ha pedido contraseña en la instalación
# sudo mysql -u root
mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'XXXXXXXXX';
mysql> FLUSH PRIVILEGES;
mysql> EXIT;
```

Ahora podremos conectar desde el terminal en local indicando la contraseña de root:

```
// Conectaremos indicando la contraseña de root
# <mark>sudo</mark> mysql -u root -p
Password:
mysql>
```

Pero para conectar desde remoto, es decir, desde nuestra máquina local, deberemos crear un usuario de mysql:

```
mysql> CREATE USER 'uremoto'@'%' IDENTIFIED BY 'XXXXXXXXXX';
mysql> GRANT ALL ON *.* TO 'uremoto'@'%';
mysql> EXIT;
```

Ahora podremos conectar con **uremoto** en local sin sudo indicando la contraseña:

```
# mysql -u uremoto -p
Password:
mysql> EXIT;
```

3.3 Permiso de acceso a MySQL

Ahora configuraremos el servicio de MySQL para dar acceso desde cualquier IP, cambiando el valor de la variables **bind_address a 0.0.0.0**:

```
# sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf
#
# Instead of skip-networking the default is now to listen only on
# localhost which is more compatible and is not less secure.
bind-address = 0.0.0.0
```

Y ahora reiniciamos el servicio y comprobamos que está iniciado ([+] mysql):

```
# sudo service mysql stop
# sudo service mysql start
# sudo service --status-all
# netstat -at
```

3.4 Abrir puerto de MYSQL en el firewall de Azure

Pero el problema es que el puerto 3306 del MySQL no es accesible por defecto en la VM y deberemos indicar en **Azure** que deseamos abrirlo.

Desde la opción Redes, añadiremos una nueva regla para permitir el acceso al puerto 3306:

En el formulario indicaremos el servicio si ya está preconfigurado como es el caso de **MySQL**), o bien se indica de forma personalizada (**Custom** para otros casos):

Hay que tener en cuenta que estos puertos de los servicios quedan expuestos en internet y puede haber problemas de seguridad por ataques informáticos por lo que conviene tener el sistema bien controlado.

3.5 Prueba de acceso desde Workbench

Ahora podremos conectar a nuestro servidor de Azure con **Workbench** indicando:

host	ubuntudam.westeurope.cloudapp.azure.com (ver apartado 1.3)
port	3306
usuario	uremoto
password	(contraseña indicada en apartado 3.2)

4. Instalación de Apache Tomcat

4.1 Actualizar sistema e instalar utilidades

Lo primero antes de una instalación es actualizar el sistema:

```
# sudo apt update
# sudo apt upgrade
# sudo apt autoremove
```

A continuación instalaremos dos utilidades que necesitaremos:

```
# sudo apt install nano
# sudo apt install wget
```

4.2 Instalar Java 17

Si instaláramos la versión de Java por defecto, seguramente no será la versión 17:

```
// No realizar, es solo para ver cómo se haría
# sudo apt install default-jre
# java -version
openjdk version "1.8.0_292"
OpenJDK Runtime Environment (build 1.8.0_292-8u292-b10-0ubuntu1~16.04.1-b10)
OpenJDK 64-Bit Server VM (build 25.292-b10, mixed mode)

# sudo apt install default-jdk
# javac -version
javac 1.8.0_292
```

Como deseamos tener la **versión 17**, añadiremos el repositorio oficial de **openjdk** y lo instalaremos:

```
# sudo apt install openjdk-17-jdk openjdk-17-jre
# java -version
openjdk version "17.0.5" 2022-10-18
OpenJDK Runtime Environment (build 17.0.5+8-Ubuntu-2ubuntu118.04)
OpenJDK 64-Bit Server VM (build 17.0.5+8-Ubuntu-2ubuntu118.04, mixed mode, sharing)
# javac -version
javac 17.0.5
```

4.3 Instalar Apache Tomcat

Instalación inicial

Para comenzar, descargaremos el software, lo descomprimiremos:

```
# cd /opt

// Descargar Apache Tomcat
# sudo wget https://archive.apache.org/dist/tomcat/tomcat-10/v10.1.16/bin/apache-tomcat-
10.1.16.tar.gz

// Crear carpeta para descomprimir Apache Tomcat
# sudo mkdir -p /opt/tomcat

// Descomprimir Apache Tomcat
# sudo tar xzvf apache-tomcat-*tar.gz -C /opt/tomcat --strip-components=1
```

Crear usuario dedicado

```
// Crear usuario dedicado para Apache Tomcat y asignarle permisos
# sudo groupadd tomcat
# sudo useradd -s /bin/false -g tomcat -d /opt/tomcat tomcat
# sudo chown -R tomcat: /opt/tomcat
# sudo sh -c 'chmod +x /opt/tomcat/bin/*.sh'
```

Crear el servicio

Ahora crearemos Apache Tomcat como service. Para ello crearemos el archivo **tomcat.service** con el editor **nano:**

```
# sudo nano /etc/systemd/system/tomcat.service
```

El contenido del archivo debe ser:

```
/etc/systemd/system/tomcat.service
```

```
[Unit]
Description=Tomcat webs servlet container
After=network.target

[Service]
Type=forking

User=tomcat
Group=tomcat
RestartSec=10
Restart=always
Environment="JAVA_HOME=/usr/lib/jvm/java-1.17.0-openjdk-amd64"
Environment="JAVA_OPTS=-Djava.awt.headless=true
-Djava.security.egd=file:/dev/./urandom"
```

```
Environment="CATALINA_BASE=/opt/tomcat"
Environment="CATALINA_HOME=/opt/tomcat"
Environment="CATALINA_PID=/opt/tomcat/temp/tomcat.pid"
Environment="CATALINA_OPTS=-Xms512M -Xmx1024M -server -XX:+UseParallelGC"

ExecStart=/opt/tomcat/bin/startup.sh
ExecStop=/opt/tomcat/bin/shutdown.sh

[Install]
WantedBy=multi-user.target
```

En el código anterior para crear el archivo en **systemd**, debemos mencionar la ruta de Java. Sin embargo, en el código anterior se indica la ruta predeterminada, y aún así, para confirmar lo mismo, podemos ejecutar el siguiente comando:

```
# sudo update-java-alternatives -l
```

Habilitar el servicio

```
# sudo systemctl daemon-reload
# sudo systemctl start tomcat
# sudo systemctl enable tomcat
```

Comprobar que el servicio está funcionando

```
# sudo systemctl status tomcat --no-pager -l
# netstat -at
```

Añadir usuario tomcat de administrador

Debemos editar el archivo **tomcat-users.xml** y añadir el contenido en la sessión **<tomcat-users>**:

```
# sudo nano /opt/tomcat/conf/tomcat-users.xml
```


Habilitar el acceso remoto al Host Manager de Tomcat

De forma predeterminada, no podrá acceder a las secciones de Tomcat Manager instaladas (interfaz web) fuera del sistema local. Para eso, tenemos que habilitarlo editando individualmente el archivo **context.xml** disponible para **Tomcat Manager** y **Host Manager**.

Comenzaremos por el archivo de Tomcat Manager:

```
# sudo nano /opt/tomcat/webapps/manager/META-INF/context.xml
```

Debemos deshabilitar la etiqueta que añade la restricción de acceso local añadiendo <! - - antes y - -> después:

```
/opt/tomcat/webapps/manager/META-INF/context.xml
...
<!-- <Valve className="org.apache.catalina.valves.RemoteAddrValve"
allow="127\.\d+\.\d+\.\d+\:1|0:0:0:0:0:0:0:1" /> -->
...
```

Ahora hacemos lo mismo para el archivo de Host Manager:

```
# sudo nano /opt/tomcat/webapps/<mark>host-manager</mark>/META-INF/context.xml
```

Igual que en el anterior, debemos deshabilitar la etiqueta que añade la restricción de acceso local añadiendo <! - - antes y - -> después:

```
/opt/tomcat/webapps/host-manager/META-INF/context.xml
...
<!-- <Valve className="org.apache.catalina.valves.RemoteAddrValve"
allow="127\.\d+\.\d+\.\d+\:1|0:0:0:0:0:0:0:0:1" /> -->
...
```

Reiniciar el servicio de Tomcat

```
# sudo systemctl restart tomcat
```

4.4 Abrir puertos de Tomcat en el firewall de Azure

El problema es que el puerto **8080** del Servidor Web Apache Tomcat no es accesible por defecto en la VM y deberemos indicar en **Azure** que deseamos abrirlos.

Desde la opción **Redes**, añadiremos una nueva regla para permitir el acceso al puerto 8080:

4.5 Pruebas de acceso

Las URL de nuestro ejemplo serían:

http://ubuntudam.westeurope.cloudapp.azure.com:8080/

http://ubuntudam.westeurope.cloudapp.azure.com:8080/manager/html

4.6 Detener la VM cuando no se use

Para detener la máquina virtual deberemos pulsar en Detener:

5. Despliegue de aplicaciones

5.1 Preparar una aplicación en NetBeans

Configurar conexión

Lo primero es parametrizar la conexión a la BD indicando el usuario y contraseña correcto en la **URL del jdbc** o en el archivo **persistence.xml.**

Lo único que hay que actualizar en nuestros proyectos para que funcionen en Azure es el usuario a **uremoto** y el **password** para acceder a MySQL, ya que **Tomcat** y **MySQL** están en la misma máquina virtual, por lo que el **host** sigue siendo **localhost** o **127.0.0.1**.

Si usamos **JDBC** lo indicaremos en el **código Java** al conectar, mientras que con **JPA** deberemos indicarlo en el archivo **persistence.xml**.

Obtener archivo WAR

Compilaremos el proyecto para obtener el archivo WAR en la carpeta dist.

5.2 Despliegue en VM mediante navegador

Al acceder al servicio público nos aparecerá una página de bienvenida:

http://ubuntudam.westeurope.cloudapp.azure.com:8080/

Al acceder a la consola de mantenimiento (Manager) nos pedirá el usuario y contraseña del administrador, que en nuestro caso será el usuario **tomcat** y la contraseña que hayamos indicado al crearlo en el archivo **tomcat-users.xml**:

http://ubuntudam.westeurope.cloudapp.azure.com:8080/manager/html

Mensaje:

Gestor de Aplicaciones Web de Tomcat

Una vez identificados en el **Manager**, podremos desplegar nuestros proyecto de java web.

Para ello pulsaremos en **Examinar** y seleccionaremos nuestra archivo **WAR.** Luego pulsaremos en **Desplegar** y tendremos desplegado nuestro proyecto.

5.3 Despliegue en VM manual

Recomendamos realizarlo a través del Manager aunque esta posibilidad también existe.

Copiar el archivo WAR en la máquina virtual

Pata copiar el archivo descargaremos la aplicación WinSCP. Esta aplicación permite realizar conexiones con servidor FTP y SFTP de forma similar a Filezilla. Descargaremos la versión portable de **WinSCP** desde:

https://winscp.net/eng/downloads.php

Una vez descomprimida, ejecutaremos **winscp.exe** y crearemos nuestra conexión **pulsando en la pestaña "New Session",** aunque al entrar ya se activa esta ventana.

Para que la conexión funcione con nuestro certificado PPK tendremos que pulsar en el botón **Advanced** y seleccionar el fichero (**el mismo que usamos en Putty**):

Al terminar podremos grabar nuestra conexión pulsando el botón Save

Cuando hayamos conectado, estaremos en la carpeta del usuario /**home**/azureuser que será la única en la que podamos copiar archivos. Así que copiaremos aquí nuestro proyecto:

Realizar el DEPLOY

Ahora conectaremos con **Putty** para realizar el Deploy.

```
azureuser@ubuntuwildfly: ~
                                                                                          ×
                                                                                   login as: azureuser
Authenticating with public key "imported-openssh-key"
Welcome to Ubuntu 16.04.7 LTS (GNU/Linux 4.15.0-1113-azure x86_64)
 * Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
  Support:
                    https://ubuntu.com/advantage
UA Infra: Extended Security Maintenance (ESM) is not enabled.
 updates can be applied immediately.
75 additional security updates can be applied with UA Infra: ESM
Learn more about enabling UA Infra: ESM service for Ubuntu 16.04 at
https://ubuntu.com/16-04
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.
New release '18.04.6 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Last login: Fri Nov 26 13:57:58 2021 from 84.124.160.81
azureuser@ubuntuwildfly:~$
```

Para realizar el Deploy bastará con copiar el archivo **WAR** que hayamos subido en la carpeta de /**opt/tomcat/webapps**:

```
# sudo cp /home/azureuser/<mark>ApiRest.war</mark> /opt/tomcat/webapps/
```

En unos segundos se habrá desplegado el archivo WAR y estará disponible su acceso.