

Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 2 – Additional Gates and Circuits

Asst.Prof.Dr. Preecha Tangworakitthaworn Semester 2/2023

Overview

- Part 1 Review Basic Logic Gates and Behavior
- Part 2 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates

Part 1 – Review Basic Logic Gates

What is the logic gate?

A logic gate is a device performing a Boolean Logic Operation on one or more binary inputs and then give a single binary output.

Part 1 – Review Basic Logic Gates

Three basic symbols for Logic gates:

Basic Logic Gates formation

A single-output Boolean function is a mapping from each of the possible combinations of input values 0 and 1 on the function variables to output value 0 or 1.

Truth table is a representation of gates' behavior described its basic logic operations:

AND					
$\begin{array}{ c c c c } \hline \mathbf{X} & \mathbf{Y} & \mathbf{Z} = \mathbf{X} \cdot \mathbf{Y} \\ \hline \end{array}$					
0	0	0			
0	1	0			
1	0	0			
1	1	1			

	OR				
X	Y	Z = X+Y			
0	0	0			
0	1	1			
1	0	1			
1	1	1			

NOT				
X	$Z = \overline{X}$			
0	1			
1	0			

Truth table for more variables can be listed the combination as follows:

2 Variables= 2 ²			3 Variables= 2 ³				
	A	В		A	В	C	
0	0	0	0	0	0	0	(
1	0	1	1	0	0	1	1
2	1	0	2	0	1	0	
3	1	1	3	0	1	1	
4	4 combinations 4 1 0 0						
			5	1	0	1	
			6	1	1	0	
			7	1	1	1	
				0	1 •	, •	

8 combinations

24

	A	В	C	D	
)	0	0	0	0	
	0	0	0	1	
2	0	0	1	0	
•	0	0	1	1	
•	0	1	0	0	
	0	1	0	1	
	0	1	1	0	1
	0	1	1	1	

A	В	C	D
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0 14
1	1	1	0 14

16 combinations

Timing Diagram is a representation of gates' behavior described its logic operations based on Time:

Logic Diagram (or Circuit Diagram) consists of gates and symbols that can directly replace an expression in Boolean function or Boolean equation:

Boolean Equation

$$F = X + \overline{Y} Z$$

Example of Circuit Diagram

$$F(X,Y,Z) = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

Example of Circuit Diagram

$$F(A,B) = \overline{A}B + BC$$

Software for Drawing [online]

- https://www.circuitlab.com/
- https://cloud.smartdraw.com/
- https://www.digikey.it/schemeit/project/

Part 2 – Other Gate Types

• Why?

- Implementation feasibility and low cost
- Power in implementing Boolean functions
- Convenient conceptual representation

Gate classifications

- Primitive (or basic) gate a gate that can be described using a single primitive operation type (AND or OR) plus an optional inversion (NOT).
- Complex gate a gate that requires more than one primitive operation type for its description.

NAND Gate

- The basic NAND gate has the following symbol, illustrated for three inputs:
 - AND-Invert (NAND)

• NAND represents <u>NOT AND</u>, i. e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle ("bubble") represents the invert function.

NAND Gate (continued)

Applying DeMorgan's Law gives Invert-OR (NAND)

- This NAND symbol is called Invert-OR, since inputs are inverted and then operate OR together.
- AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.
- A NAND gate with one input degenerates to an inverter.

$$X \longrightarrow F(X) = \overline{X}$$

NOR Gate

- The basic NOR gate has the following symbol, illustrated for three inputs:
 - OR-Invert (NOR)

NOR represents NOT - OR, i. e., the OR function with a NOT applied. The symbol shown is an OR-Invert. The small circle ("bubble") represents the invert function.

NOR Gate (continued)

Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then operate AND together.
- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.
- A NOR gate with one input degenerates to an inverter.

Exclusive OR/ Exclusive NOR

- The *eXclusive OR (XOR)* function is an important Boolean function used extensively in logic circuits.
- The *eXclusive NOR (XNOR)* function is the complement of the XOR function.
- By definition, XOR and XNOR gates are complex gates.

Exclusive OR/ Exclusive NOR

Recommend

- Definitions
 - The XOR function is:

$$X \oplus Y = X \overline{Y} + \overline{X} Y$$

• The eXclusive NOR (XNOR) function, otherwise known as *equivalence* is:

$$\overline{\mathbf{X} \oplus \mathbf{Y}} = \mathbf{X} \mathbf{Y} + \overline{\mathbf{X}} \overline{\mathbf{Y}}$$

Truth Tables for XOR/XNOR

Operator Rules: XOR

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

X	Y	(X⊕Y)
0	0	1
0	1	0
1	0	0
1	1	1

• The XOR function means:

X OR Y, but NOT BOTH

XOR/XNOR

The XOR function can be extended to 3 or more variables. Processing step by step will help you to not confuse!

A	В	A ⊕ B	С	(A⊕B) ⊕ C
0	0	0	0	0
0	0	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
<u> </u>				

XOR/XNOR (Continued) Recommend

The XOR function can be extended to 3 or more variables. For more than 2 variables, it is called an *odd function* or modulo 2 sum (Mod 2 sum), not an XOR:

$$X \oplus Y \oplus Z = \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y Z$$

- The complement of the odd function is the even function.
- The XOR identities:

$$X \oplus 0 = X$$
 $X \oplus 1 = \overline{X}$
 $X \oplus X = 0$ $X \oplus \overline{X} = 1$
 $X \oplus Y = Y \oplus X$
 $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$

Symbols For XOR and XNOR

XOR symbol:

XNOR symbol:

XOR Implementations

The simple implementation uses the following structure:

which is equivalent to.. XOR gate implementation:

