Chapitre 5

Les suites

I. Suites numériques

1) Définition

Définition:

Une **suite numérique** est fonction u définie sur \mathbb{N} par : $u : \mathbb{N} \to \mathbb{R}$

 $n \mapsto u(n)$

pour tout entier naturel n, u(n), noté aussi u_n , est le **terme** de **rang** n de la suite.

On note (u_n) l'ensemble des termes de la suite pour $n \in \mathbb{N}$.

Exemples:

• Le tableau ci-dessous donne le nombre de bacheliers en France de 2000 à 2009.

Année	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Nombre de bacheliers	516550	499228	493755	502671	498372	506608	524057	521353	512815	530218

La suite (u_n) du nombre de bacheliers peut être définie en choisissant comme rang n le nombre d'années écoulées depuis l'an 2000.

On a alors : $u_0 = 516550$ le nombre de bacheliers de l'année 2000 ;

 u_5 =506608 le nombre de bacheliers de l'année 2005.

502671 est le terme de rang 3 de la suite (u_n) .

• Soit (v_n) la suite des multiples de 7 avec $u_0=0$. On a alors $u_1=7$, $u_2=14$,..., $u_9=63$...

Remarques:

- Le terme de rang n d'une suite u peut être noté u(n) ou u_n .
- Certaines suites peuvent être définies seulement à partir d'un rang n_0 autre que 0.

Par exemple, pour des questions pratiques, on aurait pu définir la suite de l'exemple précédent à partir du rang 2000, avec $u_{2000} = 516550$.

Dans d'autres situations, la définition de la suite interdit l'existence de certains termes. Par exemple la suite (u_n) telle que $u_n = \frac{1}{n}$ ne peut être définie que pour $n \ge 1$.

2) Mode de génération d'une suite

Définition:

Une suite peut être définie :

- au moyen d'une **fonction** f de la variable $n: u_n = f(n)$.
- au moyen d'une **relation de récurrence** : (u_n) est alors définie par son **premier terme** et une **relation de récurrence** permettant de calculer un terme à partir d'un ou plusieurs termes précédents.
- par un autre moyen, par exemple par un **algorithme**, par un **motif géométrique**, par certaines propriétés (la suite des décimales de π), ...

Suite explicite

Définition:

Soit *a* un réel *f* une fonction définie sur $[a; +\infty[$.

On peut définir une suite, par une **formule explicite**, (u_n) en posant pour tout entier $n \ge a$:

$$u_n = f(n)$$
.

Exemple:

Soit la suite u définie sur \mathbb{N} par : $u_n = \sqrt{2n+6}$.

Ainsi pour tout entier $n \ge 0$, $u_n = f(n)$ où f est définie sur $[-3; +\infty[$ par :

$$f(x) = \sqrt{2x+6}$$

 $u_0 = f(0) = \sqrt{2 \times 0 + 6} = \sqrt{6} \; ; \; u_1 = f(1) = \sqrt{2 \times 1 + 6} = \sqrt{8} \; ; \; u_2 = \sqrt{10} \; ; \ldots \; ; \; u_{100} = f(100) = \sqrt{206}$

Graphiquement les termes de la suite (u_n) sont les ordonnées des points $A_n(n;u_n)$ d'abscisses entières de la courbe \mathcal{C}_f .

NORMAL SCI ING FLOTT 0123456789 RADIAN DEGRE FONC PAR POL SUMME RECTE NONRELIE SEQUENTIES SIMUL RECTE 0+bi re^6i RECTE HORIZ G-T RECHEURE	Graphi Graph2 Graph3 nMin=0 hu(n)■1(2*n+6) u(nMin)■ hv(n)=■ v(nMin)= hw(n)= hw(n)= w(nMin)=	n u(n) 2.4495 1 2.8284 2 3.1623 3 3.4641 4 3.7417 5 4 6 4.2426 n=0
FENETRE nMin=0 nMax=10 PremPoint=1 Pas=1 Xmin=0 Xmax=10 ↓X9rad=1	u=f(2*xx+6) 	u(0) 2.449489743 u(18) 6.480740698

Remarque:

On peut calculer **directement** chaque terme à partir de son rang (ou indice).

Suite récurrente

Définition :Soit f une fonction définie sur un ensemble I. On suppose que, si $x \in I$, alors $f(x) \in I$. Soit a un nombre réel de I et p un entier. On peut définir une suite, **par récurrence**, (u_n) en posant :

$$\begin{cases} u_p = a \\ u_{n+1} = f(u_n) \text{ pour tout entier } n \geqslant p \end{cases}$$

Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = -1$ et $u_{n+1} = \sqrt{2u_n + 6}$.

Ainsi, pour tout entier $n \ge 0$, $u_{n+1} = f(u_n)$ où f est définie sur $[-3; +\infty[$ par :

$$f(x) = \sqrt{2x+6}$$

$$u_0 = -1$$
; $u_1 = f(u_0) = \sqrt{2u_0 + 6} = \sqrt{2 \times (-1) + 6} = 2$; $u_2 = f(u_1) = \sqrt{2u_1 + 6} = \sqrt{2 \times 2 + 6} = \sqrt{10}$; ...

Graphiquement, $B_0(u_0; u_1)$ appartient à la courbe \mathcal{C}_f .

Pour déterminer $B_1(u_1; u_2)$, il faut placer u_1 , l'ordonnée de B_0 , en abscisse.

On « reporte » donc u_1 sur l'axe (Ox) en utilisant la droite $\Delta : y = x$.

On poursuit de même pour construire $B_2(u_2;u_3)$, $B_3(u_3;u_4)$, ...

n	u(n)	
81225	14 16065 14 16065 151665 1606	
n=0		

Remarques:

- Lorsqu'une suite est définie par récurrence, on ne peut pas calculer directement un terme à partir de son rang ; il faut procéder de « proche en proche » : pour calculer le dixième terme, on utilise la valeur du neuvième, obtenue elle-même grâce au huitième terme, ...
- Le « **principe de récurrence** » est une propriété fondamentale dans la construction des nombres.

On peut le résumer ainsi : « En partant de 0, et en ajoutant 1 à chaque étape, on construit l'ensemble des entiers naturels ».

Définition:

Soit p un entier, et (u_n) et (v_n) deux suites définies à partir du rang p.

Les suites (u_n) et (v_n) sont **égales** si pour tout entier $n \ge p$, $u_n = v_n$.

Remarque:

Si les suites (u_n) et (v_n) ont le même premier terme et vérifient la même relation de récurrence alors elles sont égales.

3) Sens de variation d'une suite

Définitions:

Soit une suite (u_n) et un entier p.

• La suite numérique (u_n) est **croissante** à partir du rang p si pour tout entier $n \ge p$:

$$u_{n+1} \geqslant u_n$$
.

• La suite numérique (u_n) est **décroissante** à partir du rang p si pour tout entier $n \ge p$:

$$u_{n+1} \leq u_n$$
.

• La suite numérique (u_n) est **constante** (ou **stationnaire**) à partir du rang p si pour tout entier $n \ge p$:

$$u_{n+1}=u_n$$
.

Remarques:

- La suite numérique (u_n) est monotone à partir du rang p si elle est soit croissante à partir du rang p, soit décroissante à partir du rang p.
- Lorsqu'on ne précise pas « à partir du rang p », cela signifie que la suite est croissante, décroissante, monotone, constante à partir de son premier terme.

• La suite (u_n) de terme général $u_n = \frac{5}{n+1}$ est strictement décroissante.

En effet, pour tout entier n,
$$u_{n+1} - u_n = \frac{5}{(n+1)+1} - \frac{5}{n+1} = \frac{-5}{(n+1)(n+2)}$$
.

Donc pour tout entier n, $u_{n+1}-u_n < 0$, c'est-à-dire $u_{n+1} < u_n$.

• La suite (v_n) de terme général $v_n = 5 \times (-0.8)^n$ n'est pas monotone.

En effet, chaque terme d'indice pair, qui est positif, est supérieur au terme précédent d'indice impair, qui est négatif, et supérieur au terme suivant également négatif.

• La suite w définie sur $\mathbb N$ par : $\begin{cases} w_0 = 1 \\ w_{n+1} = \frac{1}{w_n} + 1 \end{cases}$ n'est pas monotone.

En effet
$$w_0 = 1$$
, $w_1 = \frac{1}{1} + 1 = 2$ donc $w_0 < w_1$. Et $w_2 = \frac{1}{2} + 1 = \frac{3}{2}$, donc $w_1 > w_2$.

Propriétés :

Soit une fonction f définie sur un intervalle $[a; +\infty[$.

Soit un entier $p \ge a$ et la suite u définie pour tout entier $n \ge p$ par $u_n = f(n)$.

- Si la fonction f est (strictement) croissante sur $[p;+\infty[$, alors la suite (u_n) est (strictement) croissante à partir du rang p.
- Si la fonction f est (strictement) décroissante sur $[p;+\infty[$, alors la suite (u_n) est (strictement) décroissante à partir du rang p.

Démonstration :

• Supposons f croissante sur l'intervalle $[k; +\infty[$.

Alors pour tout réels a et b de l'intervalle $[k; +\infty[$, si a < b alors f(a) < f(b).

Pour tout entier $n \ge k$, comme n < n+1, on aura f(n) < f(n+1), c'est-à-dire $u_n \le u_{n+1}$. On en déduit que (u_n) est croissante pour $n \ge k$. • On démontre de même que (u_n) est décroissante pour $n \ge k$ lorsque f est décroissante sur l'intervalle $[k; +\infty[$.

Exemple:

Dans l'exemple précédent, la suite (u_n) est définie sur \mathbb{N} par $u_n = f(n)$ avec $f(x) = \frac{5}{x+1}$. Or f est décroissante sur l'intervalle $[0;+\infty[$ donc la suite (u_n) est décroissante.

4) Comportement d'une suite à l'infini

Soit les suites u, v, w et t définies sur \mathbb{N} par :

$$u_n = n^2$$
 ; $v_n = \frac{(-1)^n}{n+2} + 1$; $w_n = -2n^2 + 2$; $t_n = \cos n + 1$

• (v_n) peut être rendu aussi proche de 1 qu'on veut si n est choisi suffisamment grand.

Pour tout entier n > 98, on a $|v_n - 1| < 0.01$; pour tout $|v_n - 1| < 10^{-6}$.

Plus généralement, pour tout écart e > 0, dès que $n > \frac{1}{e} - 2$, on a : $|v_n - 1| < e$, c'est-à-dire que la distance entre v_n et 1 est inférieure à e.

On dit que (v_n) converge vers 1 et on note : $\lim_{n \to +\infty} v_n = 1$.

Définition:

On dit qu'une suite numérique (u_n) admet une limite réelle ℓ si tous les termes de la suite (u_n) sont proches de ℓ à partir d'un certain rang.

On dit alors que la suite est **convergente** vers ℓ .

• (u_n) peut être rendu aussi grand qu'on veut si n est choisi suffisamment grand.

Pour tout entier $n \ge 1000$, on a $u_n > 10^6$; pour tout entier $n \ge 10^6$, $u_n \ge 10^{12}$.

Plus généralement, pour tout réel $M \ge 0$, dès que $n \ge \sqrt{M}$, on a $u_n \ge M$.

On dit que (u_n) diverge vers $+\infty$ ou qu'elle admet $+\infty$ comme limite et on note :

$$\lim_{n\to+\infty}u_n=+\infty$$

• (w_n) est négatif et peut être rendu aussi grand qu'on veut en valeur absolue si n est choisi suffisamment grand.

Pour tout entier $n \ge 108$, on a $w_n \le -10^6$; pour tout entier $n \ge 707107$, $w_n \le -10^{12}$.

Plus généralement, pour tout réel $M \ge 0$, dès que $n \ge \sqrt{\frac{M}{2} + 1}$, on a $w_n \le -M$.

On dit que (w_n) diverge vers $-\infty$ ou qu'elle admet $-\infty$ comme limite et on note :

$$\lim_{n\to+\infty} w_n = -\infty$$

• (t_n) ne se stabilise autour d'aucune valeur réelle : on dit que (t_n) diverge et n'admet pas de limite.

Définition:

On dit qu'une suite numérique (u_n) est **divergente** si elle n'est pas convergente.

Remarque:

Les suites étant définies sur des entiers positifs, on s'intéresse exclusivement à leur **comportement** en $+\infty$.

II. Suites arithmétiques

1) Généralités

Définition:

Une suite numérique (u_n) est **arithmétique** s'il existe un nombre r, appelé **raison** de la suite, tel que pour tout nombre entier naturel n, on ait :

$$u_{n+1} = u_n + r$$

Exemple:

La suite définie par $\left\{ \begin{array}{l} u_0=3\\ u_{n+1}=u_n-5 \end{array} \right.$ est une suite arithmétique de raison -5.

Remarque:

Une suite (u_n) est arithmétique si, et seulement si, la variation absolue entre deux termes consécutifs $u_{n+1}-u_n$ est constante.

Propriété:

Soit (u_n) une suite arithmétique de premier terme u_0 et de raison r.

Pour tout entier naturel n, on a $u_n = u_0 + nr$.

Démonstration:

Soit (u_n) une suite arithmétique vérifiant donc la relation $u_{n+1} = u_n + r$.

Calculons quelques termes de cette suite :

$$u_0 = u_0$$
; $u_1 = u_0 + r$; $u_2 = u_1 + r = (u_0 + r) + r = u_0 + 2r$; ...

En répétant *n* fois le procédé, on obtient :

$$u_n = u_{n-1} + r = (u_0 + (n-1)r) + r = u_0 + nr$$

Remarque:

Terme général en fonction de n: $u_n = u_0 + n \times r$ (formule explicite)

Soit la suite arithmétique
$$(u_n)$$
 définie par $\left\{ \begin{array}{l} u_0=3 \\ u_{n+1}=u_n-5 \end{array} \right.$

Son premier terme est $u_0=3$ et sa raison est -5.

On a, pour tout entier naturel n, $u_n = u_0 + nr = 3 + n \times (-5) = 3 - 5n$.

Ce qui permet, par exemple, de calculer directement le 8^e terme : $u_7 = 3 + 7 \times (-5) = -32$.

Remarque:

Pour une suite arithmétique (u_n) de raison r si n et p sont deux entiers naturels, on peut toujours déterminer l'un des termes u_n ou u_n en fonction de l'autre par la relation :

$$u_n = u_p + (n-p)r$$

Cette relation est utile lorsqu'une suite arithmétique est définie à partir d'un certain rang ou lorsque l'on cherche sa raison connaissant deux termes.

Exemple:

On s'intéresse à la suite (u_n) des nombres impairs et on définit u_n comme le $n^{\text{ième}}$ nombre impair. On a donc $u_1=1$ et r=2.

Le terme général de la suite est donnée par $u_n = u_1 + (n-1)r = 1 + (n-1) \times 2 = 2n-1$.

On peut ainsi, par exemple, calculer le 100° nombre impair : $u_{100} = 2 \times 100 - 1 = 199$.

2) <u>Variations</u>

Propriétés :

 (u_n) est une suite arithmétique de raison r.

- Si r > 0, la suite (u_n) est **croissante** et $\lim_{n \to +\infty} u_n = +\infty$. (u_n) **diverge** vers $+\infty$.
- Si r < 0, la suite (u_n) est décroissante et $\lim_{n \to +\infty} u_n = -\infty$. (u_n) diverge vers $-\infty$.
- Si r=0, la suite (u_n) est constante et $\lim_{n\to+\infty} u_n = u_0$. (u_n) converge vers u_0 .

La suite arithmétique (u_n) , de premier terme $u_0=7$ et de raison -1,5, a pour représentation graphique des points situés sur la droite d'équation v=-1,5 x+7.

11

3) Somme

Propriété:

Soit (u_n) une suite arithmétique.

La formule suivante donne la somme des termes consécutifs :

$$S = u_0 + u_1 + u_2 + ... + u_n = (n+1) \left(\frac{u_0 + u_n}{2} \right)$$

Somme des termes d'une suite arithmétique = nombre de termes $\times \frac{\text{(premier terme + dernier terme)}}{2}$

Démonstration :

Soit (u_n) la suite arithmétique de raison r.

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ S = u_n + u_{n-1} + \dots + u_1 + u_0 \end{cases}$$

$$\begin{cases} S = u_0 + (u_0 + r) + \dots + (u_n - r) + u_n \\ S = u_n + (u_n - r) + \dots + (u_0 + r) + u_0 \end{cases}$$

En additionnant membres à membres on obtient :

$$2S = u_0 + u_n + (u_0 + r) + (u_n - r) + \dots + (u_n - r) + (u_0 + r) + u_n + u_0$$

$$2S = (u_0 + u_n) + (u_0 + r + u_n - r) + \dots + (u_n - r + u_0 + r) + (u_n + u_0)$$

$$2S = (n+1)(u_0 + u_n)$$

donc
$$S=(n+1)\left(\frac{u_0+u_n}{2}\right)$$
.

Notation:

On utilise la notation suivante :
$$\sum_{k=0}^{n} u_k = (n+1) \left(\frac{u_0 + u_n}{2} \right).$$

La suite des nombres impairs est arithmétique et l'on a déterminé dans un exemple précédent que le 100e nombre impair valait 199.

On peut donc calculer la somme des 100 premiers nombres impairs :

$$S_{100} = 1 + 3 + 5 + ... + 199 = 100 \times \frac{1 + 199}{2} = 100 \times 100 = 10000$$

Propriété:

Pour tout entier naturel *n*, non nul:

$$1+2+3+...+n = \frac{n(n+1)}{2}$$

Exemple:

La somme des 100 premiers entiers naturels non nuls est :

$$1+2+3+...+100 = \frac{100(100+1)}{2} = 50 \times 101 = 5050$$

III. Suites géométriques

1) Généralités

Définition:

Une suite numérique (u_n) est **géométrique** s'il existe un nombre réel q, appelé **raison** de la suite, tel que, pour tout nombre entier naturel n, on ait :

$$u_{n+1} = q \times u_n$$

Exemples:

- La suite définie par $\left\{ \begin{array}{l} u_0=1 \\ u_{n+1}=3u_n \end{array} \right.$ est une suite géométrique de raison 3.
- Une ville peuplée de 800 habitants voit sa population augmenter de 5% par an.

Donc chaque année, sa population est multipliée par 1+5%=1,05.

Elle suit une progression géométrique de raison 1,05.

Remarque:

Une suite (u_n) est **géométrique** si, et seulement si, le **coefficient multiplicateur** entre deux termes consécutifs $\frac{u_{n+1}}{u_n}$ (ou la variation relative $\frac{u_{n+1}-u_n}{u_n}$) est **constant**.

Propriété:

Soit (u_n) une suite géométrique de premier terme u_0 et de raison q.

Pour tout entier naturel n, on a $u_n = u_0 \times q^n$.

Démonstration :

Soit (u_n) une suite géométrique vérifiant donc la relation $u_{n+1} = q \times u_n$.

Calculons quelques termes de cette suite :

$$u_0 = u_0$$
; $u_1 = q \times u_0$; $u_2 = q \times u_1 = q \times (q \times u_0) = q^2 \times u_0$; ...

En répétant *n* fois le procédé, on obtient :

$$u_n = q \times u_{n-1} = q \times (q^{n-1} \times u_0) = q^n \times u_0 = u_0 \times q^n$$

Remarque:

Terme général en fonction de $n: u_n = u_0 \times q^n$ (formule explicite)

Exemples:

• Soit la suite géométrique (u_n) de premier terme $u_0=1$ et de raison 3.

On a, pour tout entier naturel n, $u_n = u_0 \times q^n = 1 \times 3^n = 3^n$.

Ce qui permet, par exemple, de calculer directement le terme de rang 5 : $u_4=3^4=81$.

• Une ville peuplée de 800 habitants voit sa population augmenter de 5% par an. Comme vu précédemment, cette population suit une progression géométrique de raison 1,05.

En notant $u_0 = 800$ le terme initial de cette suite, on peut déterminer le terme général :

$$u_n = u_0 \times q^n = 800 \times 1,05^n$$

Après 6 années, la ville comptera $u_6 = 800 \times 1,05^6 \approx 1072$ habitants.

Remarque:

Pour une suite géométrique (u_n) de raison q non nulle, si n et p sont deux entiers naturels, on peut toujours déterminer l'un des termes u_n ou u_p en fonction de l'autre par la relation $u_n = u_p \times q^{n-p}$.

Ceci est utile lorsqu'une suite géométrique est définie à partir d'un certain rang ou lorsque l'on recherche la raison d'une suite géométrique connaissant deux termes.

Exemple:

La suite (u_n) est géométrique telle que $u_5=7$ et $u_7=63$.

Pour déterminer sa raison q, on utilise la relation :

$$u_7 = u_5 \times q^{7-5} = u_5 \times q^2$$

D'où q vérifie l'égalité $63=7\times q^2$, soit $q^2=9$.

Il y a donc deux valeurs de q possibles : 3 et -3.

2) Variations

Propriétés:

 (u_n) est une suite géométrique de premier terme non nul et de raison q.

- Si *q* > 1
 - Si $u_0 > 0$, alors la suite u_n est **croissante** et $\lim_{n \to +\infty} u_n = +\infty$.
 - Si $u_0 < 0$, alors la suite u_n est **décroissante** et $\lim_{n \to +\infty} u_n = -\infty$. (u_n) **diverge** vers $-\infty$.
- Si 0 < q < 1
 - Si $u_0 > 0$, alors la suite u_n est **décroissante** et $\lim_{n \to +\infty} u_n = 0$. (u_n) **converge** vers 0.
 - Si $u_0 < 0$, alors la suite u_n est **croissante** et $\lim_{n \to +\infty} u_n = 0$. (u_n) **converge** vers 0.
- Si q=1, alors la suite (u_n) est constante. Donc (u_n) converge vers u_0 .
- Si q=0, alors la suite (u_n) est constante et vaut 0 à partir du second terme.
 Donc (u_n) converge vers 0.
- Si q < 0, alors la suite (u_n) n'a pas de variations régulières.
 - ∘ Si -1 < q < 0 alors (u_n) converge vers 0.
 - ∘ Si $q \le -1$ alors (u_n) diverge et n'admet pas de limite.

Exemple:

La suite géométrique (u_n) de premier terme $u_0=4$ et de raison $\frac{1}{2}$ admet la représentation graphique ci-contre.

3) Somme

Propriété:

Soit (u_n) une suite géométrique de raison $q \neq 1$.

La formule suivante donne la somme des termes consécutifs :

Somme des termes d'une suite géométrique = premier terme
$$\times \frac{1 - \text{raison}^{\text{nombre de termes}}}{1 - \text{raison}}$$

En particulier, pour une suite géométrique de premier terme u_0 :

$$S = u_0 + u_1 + u_2 + ... + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

<u>Démonstration:</u>

Soit (u_n) la suite géométrique de raison q. Donc $u_p = u_{p-1} \times q$ pour tout $p \in \mathbb{N}$.

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ qS = q(u_0 + u_1 + \dots + u_{n-1} + u_n) \end{cases}$$

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ qS = qu_0 + qu_1 + \dots + qu_{n-1} + qu_n \end{cases}$$

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ qS = u_1 + u_2 + \dots + u_n + u_{n+1} \end{cases}$$

En soustrayant terme à terme, on obtient :

$$S - qS = u_0 - 0 + u_1 - u_1 + \dots + u_n - u_n + 0 - u_{n+1}$$

Donc
$$S - qS = u_0 - u_{n+1} = u_0 - u_0 \times q^{n+1}$$

Ainsi
$$(1-q)S = u_0(1-q^{n+1})$$
 et $S = u_0 \times \frac{1-q^{n+1}}{1-q}$.

Notation:

On utilise la notation suivante : $\sum_{k=0}^{n} u_k = u_0 \times \frac{1 - q^{n+1}}{1 - q}$

Exemple:

La suite (u_n) est géométrique de premier terme $u_0=3$ et de raison 2.

On peut exprimer la somme des n+1 premiers termes :

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q} = 3 \times \frac{1 - 2^{n+1}}{1 - 2} = 3 \times \frac{1 - 2^{n+1}}{-1} = 3 \times \left(2^{n+1} - 1\right)$$

Par exemple, pour n = 10, $S_{10} = 3 \times (1 + 2 + 4 + 8 + 16 + 32 + ... + 1024) = 3 \times (2^{11} - 1) = 3 \times 2047 = 6141$.

```
suite(2^N,N,0,10
)
                              suite(2^N,N,0,10 NOMS OPS MANT
) 1:min(
{1 2 4 8 16 32 ... 2:max(
]:moyenne(
NOMS W≇ MATH
1:Tricroi(
2:TriDécroi(
3:dim(
                                                                                            (1 2 4 8 16 32 ...
somme(suite(2^N,
N,0,10)
4:Remplir(
∌Bsuite(
6:somCum(
                                                                                                                  2047
                                                                :prod(
                                                                 ecart-type(
                                            Sum Seq(2<sup>N</sup>,N,0,10,1)
2047
                                            2047
   List L→M Dim Fill Se9 D
                                            Sum Prod Cum1 % 4 B
                                                                                      FMin FMάχ Σ( logab
                                                                                                                 D
```

Propriété:

Soit q un réel quelconque et n un entier naturel.

• Si
$$q \neq 1$$
, alors $1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$.

• Si
$$q = 1$$
, alors $1 + q + q^2 + ... + q^n = 1 + 1 + 1 + ... + 1 = n + 1$.

Exemple:

Soit (u_n) , la suite des puissances de 2 : $u_n = 2^n$.

La somme des 20 premières puissances de 2 est :

$$S = 1 + 2 + 2^{2} + 2^{3} + \dots + 2^{19} = \frac{1 - 2^{19+1}}{1 - 2} = 1 \ 048 \ 575.$$