Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko Meritve magnetnega polja z indukcijo

Poročilo pri fizikalnem praktikumu III

avtor: Kristofer Č. Povšič

Asistentka: Jelena Vesić

Uvod

Magnetno polje merimo z majhno tuljavico z veliko ovoji, ki je postavljena vzporedno zunanjemu magnetnemu polju. Napetost se v tuljavi inducira v dveh primerih: ob prekinitvi toka elektromagneta ali premiku tuljavice iz področja polja. Inducirano napetost u izračunamo iz enačbe

$$U = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -NS\frac{\mathrm{d}B}{\mathrm{d}t}\cos\alpha\tag{1}$$

kjer je ϕ magnetni pretok, N število ovojev, S ploščina tuljavice, B gostota magnetnega polja in α kot med osjo tuljavice in smerjo magnetnega polja. Pri indukciji napetosti U je navitje porazdeljeno med notranjim r in zunanjim R radijem:

$$dU = -\frac{dB}{dt}\pi r^2 \cos\alpha dN \tag{2}$$

Gostota navitja dN naj bo konstantna:

$$\frac{\mathrm{d}N}{2\pi r \mathrm{d}r} = \frac{B}{\pi (R^2 - r^2)} \tag{3}$$

Iz tega dobimo po integriranju v mejah med r in R:

$$U = -N\pi \frac{R^2 + r^2}{2} \frac{\mathrm{d}B}{\mathrm{d}t} \cos \alpha \tag{4}$$

Inducirana napetost je sorazmerna s spremembo gostote magnetnega polja $\frac{dB}{dt}$. Zanima nas pa vrednost gostote magnetnega polja B. Na izhod priključimo integrator in dobimo

$$U_{iz} = \frac{N}{RC} \frac{R^2 + r^2}{2} \pi B_2 \tag{5}$$

Naloga

- 1. Izmeri odvisnost gostote magnetnega polja B na osi tokovne zanke z oddaljenostjo od njenega središča
- 2. Izmeri relacijo med jakostjo električne toka I in gostoto magnetnega polja B v elektromagnetu.

Potrebščine

- \bullet 2 merilni tuljavi z notranjim $2r=(18\pm0.1)mm$ in zunanjim premerom $2R=(23\pm0.5)mm,\,N_1=2000,\,N_2=200$
- integrator z $R = (10.0 \pm 0.5)k\omega$ in $C = (1.0 \pm 0.1)\mu F$
- $\bullet\,$ voltmeter, ampermeter, šolski usmernik omejen na 6Atoka, zaščita pred sunki
- \bullet velika tuljava s premerom $2R_0=(250\pm2)mm,\,N_3=200$ ovoji z navpičnim nosilcem za merilno tuljavico
- elektromagnet na lesenem nosilcu

Navodilo

Veliko tuljavo priključimo na šolski usmernik s tokom I=4A. Merilno tuljavo z večjim št. navojen nataknemo na navpični nosilec in jo priključimo na integrator. Izhod integratorja povežemo z voltmetrom. Zaradi neidealnosti elektronskih elementov izhod integratorja "leze" tudi kadar na vhodu pripeljemo ničlo. Lezenje vstavimo s primerno nastavitvijo potenciometra na integrator, ničlo pa nastavimo s tipko reset. Izmerimo gostoto magnetnega polja B na osi krožnega tokovodnika (tuljave) kot funkcijo razdalje od središča. Dobljeno vrednost B(h) narišemo na graf in jo primerjamo s teoretično krivuljo $B_{zanka}(h)$ za tokovno zanko radija r_0 po kateri teče tok I_0 .

Šolski usmernik zvećemo z elektromagnetom pritrjenim na leseno stojalo. Na integrator priključimo merilno tuljavo z manj navoji. Elektromagnet je sestavljen iz dveh isto orientiranih navitij na ogrodju z magnetno mehkega železa z režo med njima. V slednji sondiramo gostoto magnetnega polja. Z izmeničnim vlečenjem oz. potiskanjem tuljave v režo izmerimo odvisnost B(I) v intervalu od 0 do 5A. Narišemo graf. Iz naklona premice izračunamo kolikšen naj bi bil N/L dolge prazne tuljave, ki bi imela enako zvezo med B in I kot obravnan elektromagnet.

Obdelava podatkov

Za prvi del meritev sem dobil sledeče podatke:

h[cm]	U[mV]
5.00	180.00
6.00	171.00
7.00	168.00
8.00	143.00
9.00	125.00
10.00	111.00
11.00	97.00
12.00	84.00
13.00	76.00
14.00	69.00
15.00	63.00
16.00	60.00
17.00	59.00
18.00	56.00
19.00	53.00
20.00	27.00
25.00	13.00
30.00	9.00
35.00	3.00

Izrišem sledeč graf:

Slika 1: Pričakovana ter izmerjena gostota magnetnega polja z napakami pri različnih oddaljenostih h od središča velike tuljave

Za drugi del izmerim sledeče podatke:

I[A]	U[mV]
0.00	0.06
0.50	0.60
1.00	1.12
1.55	1.54
2.00	2.07
2.52	2.50
3.00	3.00
3.50	3.45
4.00	4.00
4.50	4.35
5.00	4.68

Izrišem sledeč graf:

Slika 2: Meritve magnetne gostote v reži elektromagneta pri različnih tokovih skozi elektromagnet z regresivno premico.

Na sliki ?? se jasno vidi linearna odvisnost. Naklon regresivne premice je:

$$k = (0.047 \pm 0.008) \frac{T}{A}$$

Če bi torej elektromagnet pri enakem toku nadomestili z dolgo prazno tuljavo, bi potrebovali navitje gostote:

$$\frac{N}{L} = (110000 \pm 6000) m^{-1}$$