Monte-Carlo methods Examination TP1 Numeric simulations

The simulations should be written as a **Jupyter Notebook**. At the end of the computer sessions,

please send an email with your jupyter notebook to randal.douc@telecom-sudparis.eu with the subject: TP1JVN.

You can add any additional graphs and comments on your results!!!!

Exercice 1. Recall that $\max_{0 \le s \le T} B_s \stackrel{\mathcal{L}}{=} |B_T|$ for any standard Brownian motion $(B_s)_{s \ge 0}$.

- 1. Write a function which gives the trajectory of a Brownian motion $(B_s)_{0 \le s \le T}$ between 0 and T on some grid containing N equal segments. The input variables of the function should be T and N. The output should be the values of the Brownian motion on the grid. There should be no loop in this function.
- 2. From now on, we set T = 1. Check that the maximum of the Brownian motion a grid on [0, T] has approximately the same distribution as B_T (we can use qqplotSample which is given in the padlet).
- 3. Write in the jupyter notebook, the calculations that gives the theoretical value of $\mathbb{E}[\max_{0 \leq s \leq T} B_s]$. (In latex, equations are between dollars, integrals are written with $\setminus int$ and fraction using $\setminus frac$).
- 4. Illustrate that the Law of Large Numbers $\lim_{m\to\infty} \frac{1}{m} \sum_{i=1}^m |B_T^i| = \mathbb{E}[|B_T|]$, \mathbb{P} -a.s. where $(B_T^i)_{i\geq 1}$ are iid Brownian motions.
- 5. Plot an histogram of an approximation of $\max_{0 \le s \le T} B_s$ on the grid (see question 1) and compare with the theoretical density of $|B_T|$.

 $\overline{R.Douc}$