บทที่ 4

การเขียนภาพออโธกราฟิก

หลังจากเข้าใจการฉายภาพออโธกราฟิกที่ได้นำเสนอในบทที่ 3 แล้ว เนื้อหาในบทนี้จะ ลงลึกเข้าไปในรายละเอียดและขั้นตอนในการเขียนภาพออโธกราฟิก ซึ่งหัวข้อที่จะบรรยายประกอบ ไปด้วยหลักในการเลือกมุมมองวัตถุ ทั้งมุมมองด้านหน้า ด้านข้าง (ซ้าย-ขวา) หรือด้านบน ระบบ การฉายภาพออโธกราฟิก ขั้นตอนในการเขียนภาพออโธกราฟิก และหัวข้อปลีกย่อยที่ควรรู้ เช่น หลักการลงขนาดเบื้องต้น และสิ่งที่จะเกิดขึ้นเมื่อพื้นผิวสองผิวสัมผัสหรือตัดซึ่งกันและกัน

4.1 ขั้นตอนการเลือกมุมมองวัตถุ

ขั้นตอนในการเลือกมุมมองวัตถุก่อนที่จะวาดภาพออโธกราฟิกจะเริ่มจากเลือกลักษณะ การวางตัวของวัตถุ จากนั้นให้เลือกมุมมองที่ดีที่สุดสำหรับมุมมองด้านหน้า (front view) ต่อไปค่อย เลือกมุมมองด้านข้างเคียง ซึ่งอาจจะเป็นมุมมองด้านบน (top view) หรือด้านข้าง (side view) ก็ได้

- ข**ั้นตอนที่ 1** การเลือกลักษณะการวางตัวของวัตถุ

ในบทที่ 3 ได้อธิบายการใช้กล่องแก้วในการสร้างภาพออโธกราฟิก โดยจะเริ่มจากการ นำวัตถุที่ต้องการฉายภาพใส่เข้าไปในกล่องแก้ว แล้วจินตนาว่าเดินไปรอบ ๆ กล่อง จากนั้นวาด ภาพที่เห็นลงไปบนผนังกล่องแล้วคลื่ออกก็จะได้ภาพออโธกราฟิกตามต้องการ แต่ในขั้นตอนที่ 1 นี้ จะกล่าวเน้นในเรื่องของการนำวัตถุใส่ลงไปในกล่องแก้ว ซึ่งหลักการก็คือเมื่อใส่วัตถุเข้าไปในกล่อง แก้วแล้ววัตถุควรจะอยู่ในตำแหน่งธรรมชาติของตัวมันเอง และต้องแสดงขนาดและรูปร่างที่แท้จริง ของตัวเองเมื่อฉายภาพออโธกราฟิกแล้ว เพื่อให้เกิดความเข้าใจมากยิ่งขึ้นให้พิจารณาตัวอย่างในรูป ที่ 4.1 ประกอบ จากรูปจะเห็นได้ว่าถ้านำวัตถุใส่ในกล่องแก้วในลักษณะเอียงแปลก ๆ ดังแสดงในรูป ซ้ายมือของรูปที่ 4.1 แล้ว ภาพฉายที่ได้จะไม่สามารถเห็นรูปร่างที่แท้จริงของวัตถุได้ และไม่สามารถ

ใช้ไม้บรรทัดในการวัดขนาดของวัตถุจากรูปได้ด้วย เนื่องจากขอบของวัตถุนั้นเอียงแบบ oblique (ทบทวนลักษณะของเส้น oblique ได้ในบทที่ 3) ดังนั้นขอบของวัตถุที่ปรากฏบนผนังกล่องจึงสั้น กว่าความเป็นจริง แต่ถ้าวางวัตถุในลักษณะที่แสดงในรูปด้านขวาของรูปที่ 4.1 จะเห็นได้ว่าเรา สามารถเห็นรูปร่างหน้าตาของวัตถุได้ชัดเจนขึ้น เช่น ในภาพด้านหน้าก็จะเห็นวัตถุคล้ายกับ ทรงกระบอกที่มีรูและมีวัตถุลักษณะคล้ายปีกยื่นออกไปทั้งสองข้างด้าน อีกทั้งเมื่อมองจากด้านบนก็ จะเห็นว่าปลายปีกที่ยื่นไปมีลักษณะโค้งมนและมีรูด้วย และข้อดีอีกประการหนึ่งของการวางวัตถุใน ลักษณะนี้คือ เราสามารถใช้ไม้บรรทัดวัดขนาดของวัตถุได้โดยตรงเนื่องจากขอบวัตถุนั้นวางตัวใน ลักษณะของเส้น normal line ซึ่งภาพของเส้นที่ได้ก็จะมีขนาดความยาวที่ตรงตามความเป็นจริง

รูปที่ 4.1 การวางวัตถุให้มีลักษณะที่เหมาะสมในกล่องแก้ว

- ข**้นตอนที่ 2** การเลือกมุมมองด้านหน้า (front view)
 การเลือกมุมมองที่จะให้เกิดภาพด้านหน้านั้นมีเงื่อนไขที่ช่วยพิจารณา 3 ข้อด้วยกัน
 - 1. ให้เลือกด้านที่มีความยาวที่สุดมาเป็นความกว้างในภาพด้านหน้า ดัง

แสดงในรูปที่ 4.2 จากรูปจะเห็นว่าถ้าเลือกเอาด้านหน้ารถมาเป็นภาพด้านหน้าของการสร้างภาพ ออโธกราฟิก ภาพด้านบนที่ได้จะมีลักษณะรูปที่สูงซึ่งทำให้สูญเสียพื้นที่ในการวาดรูปเป็นอย่างมาก แต่ถ้าเลือกด้านข้างของรถ (ซึ่งเป็นด้านที่มีความยาวมากที่สุด) มาเป็นภาพด้านหน้า ผลลัพธ์ที่ได้ก็ คือภาพออโธกราฟิกที่เหมาะสมดังแสดงในรูป

2. ภาพด้านข้างที่ได้จากการเลือกมุมมองด้านหน้าต้องวางตัวอยู่ใน

ลักษณะที่เป็นธรรมชาติ ดังแสดงในรูปที่ 4.3 จากรูปแสดงตัวอย่างการเลือกภาพหลังคารถเป็น ภาพด้านหน้า (ทำตามเงื่อนไขข้อแรกคือเลือกด้านที่มีความยาวมากที่สุดเป็นภาพด้านหน้า) แต่จะ เห็นว่าถ้าเลือกเช่นนี้แล้วภาพด้านข้างที่เกิดขึ้นหรือแม้แต่ภาพด้านบนจะปรากฏเป็นรูปรถที่เอียงข้าง หรือตีลังกากลับด้านซึ่งเป็นภาพที่ไม่เป็นธรรมชาติ ดังนั้นการเลือกเอาภาพหลังคารถเป็นภาพ ด้านหน้าจึงไม่เหมาะสม

รูปที่ 4.3 การเลือกภาพด้านหน้าที่ไม่เหมาะสมเพราะทำให้ภาพด้านข้างไม่เป็นธรรมชาติ

3. ภาพด้านหน้าที่เลือกควรมีเส้นประปรากฏอยู่น้อยที่สุด รูปที่ 4.4 แสดง

ตัวอย่างการเลือกมุมมองสำหรับภาพด้านหน้าโดยมีให้เลือก 2 แบบด้วยกัน ซึ่งจากภาพฉายที่ได้จะ เห็นว่าภาพด้านซ้ายมีเส้นประน้อยกว่าจึงควรเลือกมุมมองด้านนี้เป็นมุมมองด้านหน้า ส่วนสาเหตุที่ ต้องเลือกภาพที่มีเส้นประน้อย ๆ ก็เพราะว่าถ้าภาพที่เห็นมีเส้นประ ผู้อ่านภาพต้องคอยตีความว่า เส้นประดังกล่าวคืออะไร? เป็นพื้นผิวอะไร? ทำให้เข้าใจภาพที่เห็นได้ยากขึ้น และการลากเส้นประก็ ไม่สะดวกเท่ากับการลากเส้นธรรมดาด้วย

รูปที่ 4.4 การเลือกภาพด้านหน้าให้มีเส้นประน้อยที่สุด

- ข**ั้นตอนที่ 3** การเลือกภาพด้านข้าง (adjacent view)

จากตัวอย่างของการสร้างภาพออโธกราฟิกด้วยกล่องแก้ว จะเห็นว่าภาพด้านข้างไม่ได้ จำกัดแต่ภาพด้านซ้ายหรือด้านขวาเท่านั้น แต่อาจเป็นภาพด้านบนหรือด้านล่างก็ได้ โดยในขั้นตอน ที่ 3 นี้ก็จะเสนอหลักในการเลือกภาพด้านข้าง ซึ่งมีเงื่อนไขในการพิจารณา 3 ข้ออีกเช่นกันคือ

1. เลือกมุมมองด้านข้างที่ทำให้ภาพมีเส้นประน้อยที่สุด จากรูปที่ 4.5 ซึ่ง แสดงภาพด้านข้างที่เป็นไปได้ทั้งหมดของวัตถุตัวอย่าง (ภาพด้านหน้าจะอยู่ตรงกลาง ส่วนภาพ ด้านข้างนั้นมีภาพด้านซ้าย ด้านขวา ด้านบนและด้านล่าง) จากรูปก็จะเห็นได้ว่าถ้าพิจารณาตาม เงื่อนไขในข้อนี้ ภาพด้านข้างที่เหมาะสมก็คือภาพด้านขวาและภาพด้านบนเพราะมีเส้นประน้อยกว่า

รูปที่ 4.5 การเลือกภาพด้านข้างที่มีเส้นประน้อยที่สุด

2. เลือกมุมมองด้านข้างที่เมื่อวาดแล้วเหมาะสมกับกระดาษ พิจารณาวัตถุ ตัวอย่างในรูปที่ 4.6 ถ้าเลือกวาดภาพด้านหน้าและด้านบนของวัตถุบนกระดาษในแนวนอน จะ พบว่าเหลือช่องว่างด้านบนและล่างระหว่างรูปกับขอบกระดาษน้อยมาก ทำให้การบอกขนาดวัตถุทำ ได้ลำบาก แต่ถ้าเปลี่ยนไปเลือกวาดภาพด้านหน้าและด้านขวาแทนจะเห็นได้ว่าภาพที่ได้เหมาะสม กับแนวกระดาษมากยิ่งขึ้น และมีที่ว่างเหลือพอสำหรับการบอกขนาดด้วย

รูปที่ 4.6 การเลือกภาพด้านข้างให้เหมาะสมกับแนวของกระดาษ

3. จำนวนภาพด้านข้างที่วาดควรมีจำนวนน้อยที่สุดแต่ต้องพอเพียงต่อ

การแสดงรูปร่างหน้าตาของวัตถุด้วย จากรูปตัวอย่างที่แสดงในรูปที่ 4.7 จะเห็นว่ารูปร่างที่คล้าย พนักพิงด้านหลังของวัตถุซึ่งทำให้วัตถุมีลักษณะคล้ายตัวแอลนั้น (ดังที่แสดงด้วยเส้นขอบสีแดง) จำเป็นต้องใช้มุมมองด้านขวาเพื่อให้ผู้อ่านแบบได้เห็นว่าวัตถุมีลักษณะอีกด้านที่คล้ายตัวแอลด้วย ส่วนรูวงกลมที่อยู่บนวัตถุนั้นก็ต้องอาศัยภาพด้านบนเพื่อที่จะแสดงได้ชัดเจนว่าเส้นประที่ปรากฏบน ภาพอื่น ๆ นั้นคือรูวงกลม อีกทั้งภาพที่เห็นรูวงกลมนี้ยังสามารถที่จะบอกตำแหน่งของรูได้สะดวก กว่าด้วย เพราะสามารถบอกบนภาพเดียวกันได้ดังแสดงในรูปที่ 4.7 ดังนั้นจากตัวอย่างนี้เราจำเป็น ที่ต้องวาดภาพทั้งหมด 3 รูปด้วยกันเพื่อให้เพียงพอต่อการอธิบายรูปร่างของวัตถุ แต่ในบางกรณี การวาดเพียง 2 รูปก็เพียงพอแล้ว หรือในกรณีเฉพาะจริง ๆ อาจวาดเพียงรูปเดียวก็ได้

รูปที่ 4.7 การเลือกภาพด้านข้างเพื่อแสดงรูปร่างลักษณะของวัตถุได้ครบถ้วน

ข้อพิจารณาอีกอย่างที่ผู้เรียนสามารถนำมาช่วยในการเลือกภาพด้านข้างที่เหมาะสมก็คือ ภาพ ด้านข้างที่เลือกนั้นต้องสามารถให้ข้อมูลเกี่ยวกับ "ขนาด" และ "รูปร่าง" ของวัตถุได้ครบถ้วน สำหรับข้อมูลเรื่องขนาดนั้น โดยปกติแล้วการวาดภาพเพียง 2 ภาพ เช่นภาพด้านหน้าและภาพ ด้านข้างของวัตถุก็เพียงพอต่อการบอกขนาดของวัตถุสามมิติได้แล้ว (ข้อมูลกว้าง-สูงจากภาพ ด้านหน้า และข้อมูลลึก-สูงจากภาพด้านข้าง) แต่อาจจะไม่ครอบคลุมข้อมูลเรื่องรูปร่างก็ได้ ผู้เรียนจึง ต้องพิจารณาข้อกำหนดทั้งสองอย่างนี้ไปพร้อม ๆ กันเมื่อต้องการเลือกภาพด้านข้างของวัตถุ และ เพื่อให้เข้าใจมากยิ่งขึ้น ขอยกตัวอย่างวัตถุรูปทรงปริซึมสามเหลี่ยมดังที่แสดงในรูปที่ 4.8 จากรูปถ้า กำหนดให้ทิศทางหัวลูกศรเป็นทิศทางในการวาดภาพด้านหน้าก็จะได้ภาพด้านหน้าที่มีลักษณะเป็น สี่เหลี่ยมผืนผ้าซึ่งจะให้ข้อมูลความกว้างและความสูงของวัตถุ จากนั้นถ้าเราเลือกแสดงภาพด้านบน ก็จะได้ข้อมูลความลึกเพิ่มมาอีกหนึ่งอย่างซึ่งจะสามารถบอกขนาดของวัตถุได้แล้ว แต่จากรูปที่เลือก

อาจทำให้ผู้อ่านแบบเข้าใจผิดไปได้ว่าวัตถุนั้นคือปริซึมสี่เหลี่ยมหรือปริซึมสี่เหลี่ยมที่ถูกลบมุมดัง แสดงในรูปที่ 4.8 ดังนั้นการวาดภาพด้านข้างของวัตถุนี้เพิ่มเติมจึงมีความจำเป็นเพราะจะช่วยให้ ผู้อ่านแบบสามารถรู้ได้ทันทีว่าวัตถุนี้คือปริซึมสามเหลี่ยม อีกทั้งการวาดภาพด้านข้างก็จะให้ข้อมูล ด้านความลึกอยู่แล้วด้วย ดังนั้นภาพที่จำเป็นจริง ๆ สำหรับการสื่อสารข้อมูลที่เกี่ยวกับขนาดและ รูปร่างของวัตถุสำหรับตัวอย่างนี้คือ 2 ภาพ (ภาพด้านหน้า และภาพด้านขวา) ดังแสดงในรูปที่ 4.9

รูปที่ 4.8 การเลือกภาพด้านข้างที่ไม่เหมาะสมทำให้ได้ข้อมูลเกี่ยวกับรูปร่างไม่ครบถ้วน

รูปที่ 4.9 การเลือกภาพด้านข้างที่เหมาะสมจะทำให้ได้ทั้งข้อมูลเกี่ยวกับขนาดและรูปร่าง

จากตัวอย่างปริซึมสามเหลี่ยมจะเห็นว่าสำหรับวัตถุบางชนิดแล้ว การแสดงภาพ ออโธกราฟิกเพียงสองรูปก็สามารถให้ข้อมูลทั้งขนาดและรูปร่างได้ครบถ้วน ซึ่งในส่วนถัดไปจะขอ ยกตัวอย่างรูปวัตถุที่สามารถใช้รูปออโธกราฟิกเพียงสองรูปในการบอกขนาดและรูปร่างได้เพิ่มเติม รูปที่ 4.10 แสดงตัวอย่างของวัตถุที่มีลักษณะเป็นทรงกระบอกสองขนาดซ้อนกัน ซึ่งภาพด้านหน้าก็ จะเห็นเป็นรูปวงกลมสองวงซ้อนกันและมีรูเจาะขนาดเล็ก ๆ อยู่โดยรอบ ส่วนภาพด้านข้างนั้นถ้า เลือกวาดทั้งภาพด้านขวาและภาพด้านบน จะพบว่าภาพทั้งสองนี้ซ้ำกันและไม่ได้ให้ข้อมูลเพิ่มเติม จากอีกรูปหนึ่งเลย กรณีเช่นนี้เลือกวาดเพียงรูปเดียวก็พอ ดังนั้นรูปออโธกราฟิกสุดท้ายอาจเป็น ภาพด้านหน้ากับด้านขวา หรือภาพด้านหน้ากับภาพด้านบนก็ได้

รูปที่ 4.10 วัตถุที่มีภาพด้านข้างซ้ำซ้อนกันและสามารถเลือกเพียงรูปเดียวได้

ตัวอย่างถัดไปก็เป็นวัตถุที่ควรวาดเพียง 2 ภาพเช่นเดียวกัน แต่ไม่ใช่ด้วยสาเหตุที่ภาพที่ 3 นั้น ช้ำซ้อนกับภาพที่มีอยู่ก่อนแล้ว แต่เนื่องจากการวาดภาพที่ 3 นั้นไม่สามารถให้ข้อมูลอะไรเพิ่มเติม เลย (ข้อมูลที่เกี่ยวกับขนาดและรูปร่าง) กรณีเช่นนี้จึงควรวาดเพียง 2 ภาพก็พอ ดังตัวอย่างที่แสดง ในรูปที่ 4.11ก-ข

รูปที่ 4.11 ตัวอย่างวัตถุที่สามารถใช้เพียงสองภาพในการสื่อความหมาย

จากตัวอย่างในรูปที่ 4.11ก จะเห็นว่ารูปด้านขวาที่วาดจะให้ข้อมูลเพียงความลึกของวัตถุเท่านั้น ซึ่ง ข้อมูลดังกล่าวก็สามารถได้รับจากภาพด้านบนเช่นเดียวกัน และภาพด้านขวานี้ก็ไม่ได้ให้ข้อมูล เกี่ยวกับรูปร่างของวัตถุนี้เลย (ไม่ได้ให้ข้อมูลว่าวัตถุนี้มีลักษณะเป็นทรงกระบอก มีรูเจาะ มีปลายที่ ยื่นออกมาในลักษณะที่เหมือนปีก และปลายปีกยังมีรูเจาะด้วย) ดังนั้นจึงไม่มีความจำเป็นที่ต้องวาด ภาพนี้ เช่นเดียวกับภาพตัวอย่างในรูปที่ 4.11ข

ส่วนรูปที่สามารถวาดเพียงรูปเดียวได้นั้นก็จะเป็นวัตถุที่มีลักษณะเป็นแผ่นบาง หรือ เป็นวัตถุทรงกระบอกธรรมดาดังแสดงในรูปที่ 4.12ก-ข จากรูปจะเห็นว่าถ้าวัตถุเป็นแผ่นบาง (รูปที่ 4.12ก) ภาพด้านขวาหรือภาพด้านล่างของวัตถุก็จะให้ข้อมูลความหนาเท่านั้นไม่สามารถเห็นรูปร่าง ของวัตถุได้ ดังนั้นเราสามารถวาดภาพด้านหน้าเพียงรูปเดียวแล้วเพิ่มข้อความเพื่อบอกความหนา ต่างหากได้ ส่วนวัตถุที่เป็นทรงกระบอกธรรมดานั้น (รูปที่ 4.12ข) จะเห็นว่าภาพด้านหน้าและภาพ ด้านบนจะซ้ำกันจึงไม่จำเป็นต้องวาดภาพด้านบนก็ได้ และเนื่องจากเป็นทรงกระบอกภาพด้านหน้า จึงต้องแสดงเส้น center line เพื่อแสดงแกนทรงกระบอก ดังนั้นภาพด้านช้ายก็ไม่จำเป็นอีกเช่นกัน เพราะเมื่อผู้อ่านแบบเห็นเส้น center line แล้วก็จะทราบว่ารูปนี้เป็นทรงกระบอก

รูปที่ 4.12 ตัวอย่างวัตถุที่สามารถใช้เพียงภาพเดียวในการสื่อความหมาย

4.2 ระบบการฉายภาพออโธกราฟิก

ระบบการฉายภาพออโธกราฟิกในงานเขียนแบบวิศวกรรมในโลกนี้มีด้วยกัน 2 ระบบ คือระบบ first angle และระบบ third angle โดยระบบ first angle จะนิยมใช้ในประเทศที่อยู่ในทวีป ยุโรป ส่วนระบบ third angle จะใช้ในประเทศสหรัฐอเมริกา แคนาดา ญี่ปุ่น เป็นต้น ส่วนประเทศ ไทยนั้นใช้ระบบเหมือนประเทศญี่ปุ่นคือระบบ third angle นั่นเอง เพื่อให้เกิดความเข้าใจในระบบ การฉายภาพทั้งสองแบบ ให้ผู้เรียนพิจารณารูปที่ 4.13 ที่แสดงแกนหลัก x, y และ z ในสามมิติ พร้อมกับระนาบนอน (ระนาบ xz) และระนาบดิ่ง (ระนาบ yz) ซึ่งทั้งสองระนาบนี้จะแบ่งบริเวณใน สามมิติออกเป็น 4 ส่วนคือ quadrant ที่ 1, 2, 3 และ 4 ตามลำดับ (เรียกตามระบบพิกัดฉากที่เรียน ในสมัยมัธยม)

รูปที่ 4.13 แกนหลักและระนาบที่แบ่งบริเวณในสามมิติออกเป็น 4 ส่วน

การฉายภาพด้วยระบบ first angle จะนำวัตถุไปวางไว้ในบริเวณ quadrant ที่ 1 โดยมีผู้สังเกตุมอง กลับมาในแนวแกน z แล้วใช้ระนาบนอนและดิ่งที่มีอยู่เป็นฉากรับภาพ โดยเพิ่มฉากรับภาพทาง ด้านหลังของวัตถุอีก 1 ระนาบ (ระนาบ xy) ดังแสดงในรูปที่ 4.14 เมื่อสังเกตุให้ดีจะเห็นว่าการฉาย ภาพระบบนี้วัตถุจะอยู่ระหว่างผู้สังเกตุกับฉากรับภาพ

รูปที่ 4.14 ตำแหน่งของวัตถุเมื่อฉายภาพในระบบ first angle

ส่วนการฉายภาพในระบบ third angle นั้นจะนำวัตถุไปวางไว้ใน quadrant ที่ 3 โดยผู้สังเกตุอยู่ ณ ตำแหน่งเดิม แล้วใช้ระนาบเช่นเดียวกับในระบบ first angle เป็นฉากรับภาพ โดยเพิ่มระนาบดิ่ง ด้านหน้าวัตถุเป็นฉากรับภาพอีก 1 อัน ในกรณีของระบบ third angle นี้ฉากรับภาพจะอยู่ระหว่างผู้ สังเกตุกับวัตถุ ดังแสดงในรูปที่ 4.15

รูปที่ 4.15 ตำแหน่งของวัตถุเมื่อฉายภาพในระบบ third angle

ย้อนกลับไปที่ระบบฉายภาพแบบ first angle อีกครั้ง ภาพที่ผู้สังเกตุเห็นในด้านหน้าจะไปปรากฏบน ฉากรับภาพที่อยู่ด้านหลังของวัตถุ และเมื่อผู้สังเกตุเดินไปทางด้านขวาเพื่อดูภาพของวัตถุ ภาพนั้น จะไปปรากฏบนฉากรับภาพด้านข้าง (ซึ่งอยู่หลังวัตถุอีกเช่นเดียวกัน) ส่วนภาพวัตถุด้านบนก็จะไป ปรากฏบนฉากรับภาพด้านล่างดังแสดงในรูปที่ 4.16ก แต่การฉายภาพในระบบ third angle นั้นจะ เหมือนกับการฉายภาพโดยใช้กล่องแก้วที่ได้อธิบายไปแล้วในบทที่ 3 นั่นคือภาพฉายที่ได้จะมา ปรากฏบนฉากรับภาพที่อยู่ระหว่างผู้สังเกตุกับวัตถุดังแสดงในรูปที่ 4.16ข

(ก) การฉายภาพในระบบ first angle

(ข) การฉายภาพในระบบ third angle

รูปที่ 4.16 การฉายภาพในระบบ first angle และ third angle

เมื่อคลี่กล่องดังที่แสดงในรูปที่ 4.16ก-ข ออก โดยยึดภาพฉายด้านหน้าไว้เป็นหลักแล้วคลี่ผนังกล่อง ด้านอื่นจนได้ระนาบเดียวกับภาพด้านหน้าก็จะได้ภาพฉายออโธกราฟิกของระบบ first angle และ third angle ตามต้องการ รูปที่ 4.17 แสดงความแตกต่างระหว่างการฉายภาพในสองระบบนี้ ถ้า สังเกตุให้ดีจะเห็นว่าภาพที่วาดนั้นมีความเหมือนกันทั้งสามภาพ เพียงแต่ตำแหน่งการวางภาพ ต่างกันเท่านั้น นั่นคือในกรณีของ first angle เมื่อยึดภาพด้านหน้าเป็นหลักแล้ว ภาพที่มองเห็นทาง ด้านบนจะวาดอยู่ด้านล่างของภาพด้านหน้า และภาพที่เห็นเมื่อมองจากด้านขวาจะถูกวางทาง ด้านซ้ายของภาพด้านหน้า ส่วนการฉายภาพแบบ third angle นั้นเมื่อยึดภาพด้านหน้าเป็นหลัก ภาพที่มองจากด้านบนก็จะถูกวาดอยู่ด้านบนของภาพด้านหน้า เช่นเดียวกับภาพที่เห็นจากทาง ด้านขวาก็จะถูกวางอยู่ด้านขวาของภาพด้านหน้า

รูปที่ 4.17 ภาพออโธกราฟิกจากระบบการฉายภาพแบบ first angle และ third angle

ดำแหน่งการวางภาพในระบบ third angle นี้ทำให้ผู้อ่านแบบสามารถทำความเข้าใจได้ง่าย แม้แต่ คนที่ไม่ได้เรียนหลักการฉายภาพมาก่อนเลย เพราะภาพถูกวางในดำแหน่งที่ไม่ฝืนความรู้สึกของคน อ่านและยังสามารถกวาดสายตาไปยังภาพข้างเคียงเพื่อหาข้อมูลได้ไม่ยากอีกด้วย ส่วนการฉายภาพ ในระบบ first angle นั้นเกิดขึ้นก่อนระบบ third angle โดยนักคณิตศาสตร์ชาวฝรั่งเศสที่ชื่อ Gaspard Monge (1746–1818) ผู้ซึ่งคิดค้นทฤษฎีที่เป็นที่มาของหลักการฉายภาพ และเหตุผลหนึ่ง ที่นักคณิตศาสตร์นิยมเลือก quadrant ที่ 1 ในการฉายภาพก็คือข้อมูลที่อยู่ใน quadrant นี้มีค่าเป็น บวกทั้งหมด ทำให้การฉายภาพในระบบนี้เป็นที่นิยมในหมู่นักคณิตศาสตร์และในทวีปยุโรปที่เป็นต้น กำเนิดของหลักการฉายภาพนี้มาจนถึงปัจจุบัน ดังนั้นผู้เรียนจึงควรทำความเข้าใจกับระบบการฉาย ภาพทั้งสองระบบนี้ เพราะเป็นไปได้ที่จะพบการฉายภาพระบบใดระบบหนึ่งเมื่อออกไปทำงานใน ฐานะวิศวกร อย่างไรก็ดีเพื่อให้ผู้อ่านแบบสามารถทราบล่วงหน้าได้ก่อนว่าตนเองกำลังอ่านแบบที่ เขียนจากการฉายภาพระบบใดอยู่ จึงมีการกำหนดให้ใส่สัญลักษณ์บางอย่างลงในงานเขียนแบบเพื่อ

บ่งบอกว่างานเขียนแบบนั้นใช้ระบบการฉายภาพแบบใด โดยสัญลักษณ์ที่ใช้นั้นได้แสดงในรูปที่ 4.18 ซึ่งเป็นการนำเอากรวยที่ถูกตัดยอดมาฉายภาพด้วยระบบ first และ third angle ตามลำดับ นั่นเอง ดังนั้นทุกครั้งที่ผู้เรียนเขียนภาพออโธกราฟิกต้องแสดงสัญลักษณ์กำกับด้วยเสมอว่าภาพที่ ตนเองวาดนั้นใช้ระบบใด ซึ่งในวิชาเขียนแบบนี้จะใช้ระบบการฉายภาพแบบ third angle เท่านั้น

รูปที่ 4.18 สัญลักษณ์ของระบบการฉายภาพแบบ first angle และ third angle

4.3 ขั้นตอนการเขียนภาพออโธกราฟิก

ในหัวข้อที่จะกล่าวถึงต่อไปนี้เป็นขั้นตอนที่ผู้วาดจะได้นำความรู้ที่อยู่ในตอนต้นของบท เช่นหลักการในการเลือกภาพด้านหน้า การเลือกภาพด้านข้างและจำนวนภาพที่ต้องการสำหรับการ เขียนภาพออโธกราฟิก โดยหลักการที่แนะนำให้ปฏิบัติมีดังนี้

- 1. เลือกจำนวนภาพที่เหมาะสม เช่น วัตถุที่ต้องการวาดนี้ต้องการภาพทั้งหมดสาม ภาพ คือ ภาพด้านหน้า-ด้านขวา-ด้านบน หรืออาจจะต้องการเพียงสองภาพเท่านั้น คือ ภาพด้านหน้า-ด้านบน หรือภาพด้านหน้า-ด้านข้าง เป็นต้น
- 2. คำนวณพื้นที่ ๆ ต้องใช้ในการเขียนแบบ แล้วจัดให้พื้นที่ดังกล่าวได้ตำแหน่งที่ เหมาะสมบนกระดาษเขียนแบบ
- 3. เริ่มการเขียนภาพ แล้ว project ข้อมูลของภาพหนึ่งไปยังอีกภาพที่อยู่ข้างเคียง
- 4. ลงขนาด (dimensioning) กับภาพที่วาด พร้อมทั้งเขียนหมายเหตุอื่น ๆ ที่จำเป็น และสัญลักษณ์แสดงระบบการฉายภาพ

เพื่อให้เข้าใจขั้นตอนต่าง ๆ เหล่านี้ได้มากยิ่งขึ้น ขอให้ศึกษาจากตัวอย่างที่จะได้แสดงต่อไป

ขั้นตอนที่ 1 สมมติว่าต้องการเขียนภาพออโธกราฟิกของวัตถุดังที่แสดงในรูปที่ 4.19 ขั้นตอนนี้ผู้เขียนแบบต้องวิเคราะห์ก่อนว่าวัตถุนี้ต้องการภาพทั้งหมดที่ภาพในการสื่อสารข้อมูลที่ เกี่ยวกับขนาดและรูปร่าง ซึ่งอย่างน้อยที่สุดคือต้องการภาพสองภาพเพื่อให้ได้ข้อมูลของขนาดที่ ครบถัวน ส่วนที่ว่าต้องการภาพที่สามหรือไม่นั้นต้องพิจารณาแล้วตอบคำถามตัวเองให้ได้ว่าภาพที่ สามที่จะวาดเพิ่มนั้นให้ข้อมูลของรูปร่างเพิ่มหรือไม่ แต่จากวัตถุในรูปที่ 4.19 นี้ใช้ภาพเพียงสอง ภาพก็เพียงพอแล้ว โดยเลือกใช้ภาพด้านหน้าและด้านบนดังที่แสดงในรูปที่ 4.20

รูปที่ 4.19 ภาพวัตถุตัวอย่าง

รูปที่ 4.20 มุมมองที่ต้องการสำหรับวัตถุตัวอย่าง

ขั้นตอนที่ 2 เมื่อได้มุมมองและจำนวนภาพที่ต้องการแล้วขั้นต่อไปให้คำนวณขนาด ของพื้นที่ ๆ ต้องการใช้เพื่อวาดภาพเหล่านั้น สมมติให้วัตถุตัวอย่างนี้มีขนาดเป็นมิลลิเมตรตามรูปที่
 4.21ก ซึ่งจะทำให้ผู้เขียนแบบทราบว่าถ้าต้องการวาดภาพด้านหน้าต้องใช้พื้นที่อย่างน้อยเท่ากับ สี่เหลี่ยมผืนผ้าที่มีขนาดกว้าง × สูง (ในกรณีที่วาดภาพด้วยสัดส่วน 1:1) เท่ากับ 152 × 45 มม. ส่วนภาพด้านบนก็ต้องใช้พื้นที่อย่างน้อยเท่ากับ 152 × 64 มม. และเผื่อพื้นที่ระหว่างภาพไว้อีก ประมาณ 25 มม. ซึ่งผู้เขียนแบบสามารถกำหนดระยะห่างระหว่างภาพนี้ได้เองตามความเหมาะสม ดังนั้นพื้นที่รวมทั้งหมดที่ต้องใช้ในการเขียนภาพนี้คือ 152 × 134 มม. ดังแสดงในรูปที่ 4.21ข จากนั้นให้ลองนำพื้นที่ดังกล่าวนี้ไปลองจัดวางตำแหน่งบนกระดาษเขียนแบบให้มีความสมดุลไม่ชิด ขอบข้างใดข้างหนึ่งจนเกินไปดังแสดงในรูปที่ 4.21ค

รูปที่ 4.21 การคำนวณพื้นที่สำหรับวาดภาพและจัดวางบนกระดาษให้เหมาะสม

ขั้นตอนที่ 3 เริ่มวาดภาพจากขนาดของวัตถุที่กำหนด โดยอาจจะวาดภาพด้านหน้า หรือภาพด้านบนก่อนก็ได้ สำหรับตัวอย่างนี้การวาดภาพด้านบนจะเหมาะสมกว่าเพราะสามารถ project ข้อมูลจากภาพด้านบนลงมาใช้ต่อด้านล่างได้อย่างสะดวก แต่ก่อนที่จะเริ่มลากเส้นรูปจริง ๆ ควรเริ่มจากการลากเส้นร่างก่อนเสมอดังแสดงในรูปที่ 4.22ก ซึ่งเส้นร่างนี้จะช่วยเราในการกำหนด ตำแหน่งสำคัญ ๆ ในรูป เช่น ตำแหน่งจุดศูนย์กลางของส่วนโค้งหรือวงกลม บริเวณที่มีการหักมุม หรือเป็นร่องเล็ก ๆ ในวัตถุ ช่วยกำหนดขนาดโดยรวมของภาพที่จะวาด เป็นตัน ทำให้ผู้วาด ตรวจสอบและแก้ไขได้ก่อนที่จะลากเส้นจริง เนื่องจากถ้าลากเส้นจริงแล้วการลบหรือเปลี่ยนแปลง แก้ไขจะทำได้ยากหรือทำได้ไม่สะอาดเพียงพอ

รูปที่ 4.22 ขั้นตอนการเขียนภาพออโธกราฟิกและการ project ข้อมูลไปยังภาพด้านล่าง

เมื่อได้เส้นร่างเรียบร้อยแล้วต่อไปก็เริ่มวาดรูป โดยควรวาดเส้นที่เป็นส่วนโค้งหรือวงกลมก่อน (รูปที่ 4.22ข) จากนั้นจึงค่อยลากเส้นตรง (รูปที่ 4.22ค) หลังจากวาดรูปด้านบนเสร็จแล้วให้ project ข้อมูล ที่จำเป็นลงมายังบริเวณภาพด้านหน้าโดยใช้เส้นดิ่ง ข้อมูลที่จำเป็นเหล่านี้คือ ตำแหน่งศูนย์กลาง วงกลม ตำแหน่งขอบวงกลม ขอบมุมอื่น ๆ ที่จะทำให้เกิดเส้นเมื่อมองทางด้านหน้า เป็นต้น (รูปที่ 4.22ง) เมื่อได้ข้อมูลที่ครบถ้วนแล้วให้วาดภาพด้านหน้าให้สมบูรณ์ (รูปที่ 4.22จ)

ขั้นตอนที่ 4 ขั้นตอนสุดท้ายจะเป็นการเก็บรายละเอียดปลีกย่อย เช่น การเขียนเส้น center line ในบริเวณที่เป็นแกนทรงกระบอกหรือในรูปวงกลม การลงขนาดของวัตถุ การให้หมาย เหตุของรูป และที่ลืมไม่ได้คือการเขียนสัญลักษณ์แสดงระบบการฉายภาพที่ใช้ ซึ่งจะทำให้ได้งาน เขียนแบบที่เสร็จสมบูรณ์ดังแสดงในรูปที่ 4.23

รูปที่ 4.23 ตัวอย่างการเขียนแบบออโธกราฟิกของวัตถุตัวอย่าง

จากตัวอย่างที่แสดงข้างต้นเป็นกรณีที่ต้องการวาดภาพออโธกราฟิกเพียง 2 ภาพเท่านั้นแต่ในกรณี ที่วัตถุนั้นต้องการภาพทั้งหมด 3 ภาพเพื่ออธิบายขนาดและรูปร่าง การ project ข้อมูลจากทั้ง 2 ภาพที่มีอยู่แล้วเพื่อนำมาใช้ในการวาดภาพที่ 3 นั้นสามารถทำได้ 2 รูปแบบด้วยกัน แบบแรกคือทำ การวัดระยะโดยตรงจากภาพหนึ่งเพื่อไปใช้ในอีกภาพหนึ่งดังตัวอย่างที่แสดงในรูปที่ 4.24 จากรูป สมมติว่าต้องการวาดภาพด้านซ้าย หลังจากที่วาดภาพด้านหน้าและด้านบนเรียบร้อยแล้ว ซึ่งความ กว้างของภาพด้านซ้ายจะมีค่าเท่ากับความลึกของวัตถุ โดยขนาดความลึกของวัตถุนี้ก็มีอยู่แล้วใน ภาพด้านบน (ความสูงของภาพด้านบน) ดังนั้นจึงสามารถใช้ไม้บรรทัดวัดขนาดความลึกจากภาพ ด้านบนแล้วนำขนาดดังกล่าวไปใช้กำหนดขอบเขตสำหรับวาดภาพด้านซ้ายได้ เมื่อทำการวัดขนาด เช่นนี้กับทุก ๆ ส่วนที่สำคัญของรูป แล้วเขียนเส้นรูปให้เรียบร้อยก็จะได้ภาพดังรูปที่ 4.25

รูปที่ 4.24 การส่งข้อมูลจากภาพหนึ่งไปยังอีกภาพหนึ่งโดยวิธีการวัดโดยตรง

รูปที่ 4.25 ภาพออโธกราฟิกจากการส่งข้อมูลระหว่างภาพด้วยการวัดโดยตรง

วิธีที่สองในการส่งข้อมูลจากภาพหนึ่งไปอีกภาพหนึ่งคือการใช้เส้น miter line ซึ่งเป็นเส้นตรงที่เอียง ทำมุม 45 องศากับแนวระดับ โดยมีทิศทางพุ่งออกจากภาพด้านหน้าและเอียงไปทางด้านที่ต้องการ ส่งข้อมูลไปดังแสดงในรูปที่ 4.26ก จากรูปแสดงตัวอย่างที่ต้องการวาดภาพด้านช้ายของวัตถุเมื่อมี ภาพด้านหน้าและด้านบน ดังนั้นเส้น miter line จะต้องลากพุ่งออกจากภาพด้านหน้าและเอียงไป ทางด้านช้ายทำมุม 45 องศากับแนวระดับ ส่วนการส่งข้อมูลจากภาพด้านบนด้วยการใช้เส้น miter line นี้สามารถทำได้โดยการลากเส้นนอนจากจุดที่ต้องการส่งข้อมูลไปตัดเส้น miter line และจากจุดตัดที่เกิดขึ้นบนเส้น miter line ให้ลากเส้นดิ่งลงมายังบริเวณที่ต้องการวาดภาพ สุดท้ายก็จะได้ ขอบเขตของการวาดภาพที่ต้องการดังรูปที่ 4.26ข จากนั้นก็วาดรูปตามที่ต้องการ แต่ถ้าพบว่าการ ส่งข้อมูลผ่านเส้น miter line นี้ทำให้รูปที่ได้ชิดกับรูปด้านหน้ามากเกินไปก็สามารถเลื่อนเส้น miter line ออกห่างจากรูปด้านหน้าได้ แต่เส้นต้องเอียงทำมุม 45 องศากับแนวระดับเช่นเดิมดังแสดงในรูป ที่ 4.27

รูปที่ 4.26 การใช้เส้น miter line ในการส่งข้อมูลจากภาพหนึ่งไปยังอีกภาพหนึ่ง

รูปที่ 4.27 การเลื่อนเส้น miter line ออกจากภาพด้านหน้าเพื่อให้ระยะห่างระหว่างรูปมากขึ้น

4.4 การบอกขนาดเบื้องต้น (basic dimensioning)

องค์ประกอบเบื้องต้นของการบอกขนาดจะประกอบไปด้วยส่วนสำคัญ 5 ส่วนคือ

1. Extension line

เส้น extension line เป็นเส้นเบา (4H) ที่ลากออกจากตำแหน่งที่ต้องการบอกขนาด โดยมักจะลากเป็นเส้นคู่ออกไป โดยเส้นคู่นี้จะเป็นตัวกำกับขอบเขตของขนาดที่ต้องการบอกดัง แสดงในรูปที่ 4.28

2. Dimension line

เส้น dimension line เป็นเส้นเบา (4H) ที่มีหัวลูกศรอยู่ที่ปลายทั้งสองข้าง โดยลากตั้ง ฉากและอยู่ระหว่างเส้น extension line ดังแสดงในรูปที่ 4.29

รูปที่ 4.28 เส้น extension line

รูปที่ 4.29 เส้น dimension line

3. Leader line

เส้น leader line เป็นเส้นเบา (4H) ที่มีหัวลูกศรอยู่ข้างเดียว มักใช้ในการบอกขนาด ของส่วนโค้งหรือวงกลม การใช้งานนั้นจะต้องวางหัวลูกศรจรดส่วนโค้งที่ต้องการบอกขนาดแล้ว ลากเส้นเอียงยาวออกไป จบท้ายด้วยเส้นนอนสั้น ๆ สิ่งที่สำคัญที่สุดคือแนวในการลากเส้นนี้ต้อง ผ่านจุดศูนย์กลางของส่วนโค้งหรือวงกลม (ไม่ใช่ลากไปจรดจุดศูนย์กลาง) ดังแสดงในรูปที่ 4.30

รูปที่ 4.30 เส้น leader line

รูปที่ 4.31 Dimension number

4. Dimension number

Dimension number เป็นตัวเลขที่ใช้บอกขนาด โดยจะเขียนด้วยเส้นเข้ม (2H) และ เขียนอยู่เหนือเส้น dimension line เล็กน้อย (ไม่ใช้เส้น dimension line เป็นเส้นบรรทัด) ในบางครั้ง การเขียนเลขบอกขนาดอาจจะต้องเขียนในแนวตั้ง เนื่องจากเส้น dimension line เป็นเส้นตั้ง ใน กรณีนี้ต้องขยับตัวเองไปด้านขวาแล้วเขียนตัวเลขให้อยู่บนเส้น dimension line ดังตัวอย่างการลง ขนาด "17" ที่แสดงในรูปที่ 4.31

5. Local note

Local note เป็นข้อความสั้น ๆ เขียนด้วยเส้นเข้ม (2H) มักใช้คู่กับ leader line ในการ บอกขนาดส่วนโค้งและวงกลม ดังแสดงในรูปที่ 4.32 จากรูปจะเห็นข้อความที่เขียนว่า "R16" วางอยู่ เหนือเส้นตรงเล็ก ๆ ของ leader line เส้นหนึ่ง ซึ่งมีความหมายว่าส่วนโค้งที่เส้น leader line นั้นชื้ อยู่มีค่ารัศมีเท่ากับ 16 มม. ส่วนอีกข้อความ "10 Drill, 2 Holes" ก็มีความหมายว่า วงกลมที่เส้น leader line ชื้อยู่นั้นเป็นรูที่ถูกเจาะซึ่งมีเส้นผ่าศูนย์กลางเท่ากับ 10 มม. และมีรูเช่นนี้ในรูป 2 รู

4.5 การสัมผัสและการตัดกันของพื้นผิว

หัวข้อสุดท้ายของบทนี้จะกล่าวถึงกรณีที่พื้นผิวสองพื้นผิวสัมผัสหรือตัดซึ่งกันและกัน โดยถ้าพื้นผิวทั้งสองสัมผัสกันดังแสดงในรูปที่ 4.33ก จะได้ว่าบริเวณที่พื้นผิวสัมผัสกันนั้นจะไม่ ก่อให้เกิดเส้นบนภาพเมื่อมองจากด้านขวาหรือด้านบน แต่ถ้าพื้นผิวทั้งสองตัดกันดังแสดงในรูปที่ 4.33ข กรณีเช่นนี้จะก่อให้เกิดเส้นหรือรอยตัดไปปรากฏบนภาพด้านขวาและภาพด้านบน

รูปที่ 4.33 พื้นผิวทั้งสองที่สัมผัสและตัดซึ่งกันและกัน

รูปที่ 4.33 (ต่อ) พื้นผิวทั้งสองที่สัมผัสและตัดซึ่งกันและกัน

ตัวอย่างเพิ่มเติมในกรณีที่พื้นผิวทั้งสองสัมผัสหรือตัดซึ่งกันและกันสามารถศึกษาได้ในรูปที่ 4.33ค-ง ส่วนรูปที่ 4.34ก-ง นั้นเป็นตัวอย่างที่มีความซับซ้อนขึ้นมากขึ้น โดยวัตถุในรูปมีลักษณะที่คล้าย ๆ กัน กล่าวคือประกอบด้วยทรงกระบอกและแท่งสี่เหลี่ยมหลากหลายรูปทรงและขนาด พุ่งเข้าชนกับ ทรงกระบอกก่อให้เกิดพื้นผิวที่สัมผัสหรือตัดกัน

รูปที่ 4.34 วัตถุทรงกระบอกและแท่งสี่เหลี่ยมที่มีพื้นผิวสัมผัสและตัดซึ่งกันและกัน

4.6 บทสรุป

ขั้นตอนในการเขียนภาพออโธกราฟิกที่แสดงในบทนี้เริ่มจากแนวทางในการเลือกภาพ ด้านหน้า ภาพด้านข้าง (ด้านบนหรือด้านซ้าย-ขวา) จำนวนภาพที่จำเป็นในการสื่อสารข้อมูล เกี่ยวกับขนาดและรูปร่าง ระบบในการฉายภาพออโธกราฟิกซึ่งมี 2 ระบบด้วยกันนั่นคือ ระบบ first angle และระบบ third angle โดยในวิชาเขียนแบบนี้จะใช้ระบบ third angle เท่านั้น หัวข้อต่าง ๆ ข้างต้นนี้เป็นเครื่องมือที่ต้องใช้ในการพิจารณาวัตถุก่อนที่จะเริ่มเขียนภาพออโธกราฟิกของวัตถุนั้น เมื่อดำเนินการตามขั้นตอนข้างต้นเสร็จสิ้นแล้ว ขั้นตอนต่อไปจะเป็นการประเมินขนาดโดยรวมของ ภาพที่จะวาดและจัดให้ได้ตำแหน่งที่เหมาะสมบนกระดาษเขียนแบบ เมื่อพร้อมแล้วก็ให้เริ่มจากการ ลากเส้นร่างก่อนโดยใช้เส้นน้ำหนักเบาเพื่อให้ได้ขนาดและตำแหน่งของจุดสำคัญ ๆ ตามที่ต้องการ แล้วค่อยเริ่มวาดภาพด้วยเส้นที่มีน้ำหนักเข้มโดยให้เขียนเส้นโค้งหรือวงกลมก่อนแล้วจบรูปด้วย ข้อมูลไปยังภาพข้างเคียงเพื่อสร้างภาพออโธกราฟิกที่สมบูรณ์ ซึ่ง เส้นตรง จากนั้นให้ project เทคนิคหนึ่งที่นิยมใช้ในการส่งข้อมูลจากภาพหนึ่งไปยังอีกภาพหนึ่งก็คือเทคนิคการใช้เส้น miter เมื่อได้ภาพออโธกราฟิกที่สมบูรณ์แล้วก็ให้ทำการบอกขนาด ซึ่งในบทนี้เป็นการแนะนำ องค์ประกอบของการบอกขนาดเบื้องต้นเท่านั้น (รายละเอียดเกี่ยวกับการบอกขนาดจะกล่าวถึงใน บทที่ 7) หัวข้อสุดท้ายเป็นการแสดงตัวอย่างเมื่อมีพื้นผิวสองพื้นผิวมาสัมผัสหรือตัดซึ่งกันและกัน โดยถ้าพื้นผิวสองพื้นผิวมาตัดกันแล้วรอยตัดที่เกิดขึ้นก็จะไปปรากฏเป็นเส้นในภาพด้านข้าง แต่ถ้า พื้นผิวทั้งสองสัมผัสกันก็จะไม่ก่อให้เกิดเส้น (ไม่มีรอยตัด) ไปปรากฏในภาพด้านข้าง

แบบฝึกหัด

1. จงเขียนภาพออโธกราฟิกของวัตถุต่อไปนี้ โดยเลือกสเกลให้เหมาะสมกับกระดาษ

ปัญหาฝึกสมอง

1. จากแผ่นคลี่ที่กำหนดให้ จงหาว่าเมื่อประกอบแผ่นคลี่กลับแล้วจะได้วัตถุในรูปใด

ปัญหา Mental Rotation (From Purdue Spatial Visualization Test)

3. ปัญหา Mental Rotation (From Purdue Spatial Visualization Test) จงเลือกภาพที่ปรากฏ เมื่อมองวัตถุจากมุมมองที่กำหนด โดยกำหนดให้จุดสีดำที่มุมกล่องคือตำแหน่งของมุมมอง

