Units and zero divisors in Z_n

MTH 350 -- Module 5B

Three important observations from last class:

In \mathbf{Z}_{n} (for any n),

- An additive identity exists, and it's [0].
- A multiplicative identity exists, and it's [1].
- Every class [a] has an additive inverse, and it's [n-a].

Two important questions:

- 1. Does every element in \mathbf{Z}_n have a *multiplicative* inverse? Given [a], is there a solution to [a][x] = 1?
- 2. If [a][b] = [0], does one of the two classes have to be zero?

Answers:

- 1. Not always (example: [3] in \mathbb{Z}_6) \rightarrow Which element of \mathbb{Z}_n have multiplicative inverses?
- 2. No (example: [3] in \mathbb{Z}_6) \rightarrow Which elements of \mathbb{Z}_n cause this to happen?

Activity 1: What are the zero divisors in \mathbb{Z}_n ?

Go to the spreadsheet from last class.

- Group 1: n = 7 and 8
- Group 2: n = 4 and 11
- Group 3: n = 5 and 10
- Group 4: n = 9

List all the zero divisors in your \mathbf{Z}_n 's. \mathbf{Z}_6 was done for you in the Daily Prep video.

Any patterns or shortcuts here?

Zero divisors

Z ₂	None
Z_3	None
Z ₄	
Z_5	
Z_6	[2], [3], [4]
Z_7	
Z ₈ Z ₉	
Z_9	
Z ₁₀	
Z ₁₁	

Let n be a natural number. Then [a] \neq [0] is a zero divisor in \mathbf{Z}_n if and only if...

Activity 2: What are the units in \mathbb{Z}_n ?

Go to the spreadsheet from last class.

- Group 1: n = 7 and 8
- Group 2: n = 4 and 11
- Group 3: n = 5 and 10
- Group 4: n = 9

List all the units in your \mathbf{Z}_n 's. \mathbf{Z}_6 was done for you in the Daily Prep video.

Any patterns or shortcuts here?

Units and multiplicative inverses

	Units	Multiplicative inverses of the units
Z ₂	[1]	[1]
Z_3	[1], [2]	[1], [2]
Z_4		
Z_5		
Z_6	[1], [5]	[1], [5]
Z_7		
Z ₈		
Z_9		
Z ₁₀		
Z ₁₁		

Let n be a natural number. Then [a] is a unit in \mathbf{Z}_n if and only if...

Finding multiplicative inverses without tables

If [a] is a unit,

- Corollary 3.11 says there are integer solutions to ax + ny = 1
- Since the two sides are equal integers, their congruence classes mod n are equal: $[ax + ny]_n = [1]_n$
- The left side is [a][x] + [n][y] (Why?)
- This simplifies to [a][x] (Why?)
- Therefore [a][x] = [1] and so [x] is the multiplicative inverse; can be computed using the Extended Euclidean Algorithm