Math 240C: Real Analysis, Spring 2020

Homework Assignment 6

Due 12:00 noon, Monday, May 18, 2020

1. Let $f \in C^1(\mathbb{R})$ be such that $f' \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and $\lim_{|x| \to \infty} x[f(x)]^2 = 0$. Prove the following:

(1)

$$\left[\int |f(x)|^2 dx \right]^2 \le 4 \int |xf(x)|^2 dx \int |f'(x)|^2 dx;$$

(2) (Heisenberg's Inequality) For any $b, \beta \in \mathbb{R}$,

$$\int (x-b)^2 |f(x)|^2 dx \int (\xi-\beta)^2 |\hat{f}(\xi)|^2 d\xi \ge \frac{\|f\|_2^4}{16\pi^2}.$$

(See Exercise 18 on page 255.)

- 2. Let $f \in L^1(\mathbb{R}^2)$ be radial, i.e., there exists $q:[0,\infty)\to\mathbb{R}$ such that f(x)=q(|x|) for all $x \in \mathbb{R}^2$. Prove that \hat{f} is also radial. (Note that this result is true for \mathbb{R}^n for a general n > 1. See Exercise 22 on page 256. Here, for n=2, you can use the polar coordinates and change of variables.)
- 3. Let 0 < r < 1. Consider the Poisson kernel on \mathbb{T} : $P_r(x) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{2\pi i k x}$.
 - (1) Prove that

$$P_r(x) = \frac{1 - r^2}{1 + r^2 - 2r\cos 2\pi x}.$$

- (2) Let $f \in L^1(\mathbb{T})$ and define $A_r f(x) = \sum_{k=-\infty}^{\infty} r^{|k|} \hat{f}(k) e^{2\pi i k x}$. Prove that $A_r f = f * P_r$.
- 4. Let $a_k \in \mathbb{C}$ (k = 0, 1, ...), $S_n = \sum_{k=0}^n a_k \ (n = 0, 1, ...)$, and $\sigma_m = (m+1)^{-1} \sum_{n=0}^m S_n$ $(m = 0, 1, \dots).$
 - (1) Show that $\sigma_m = (m+1)^{-1} \sum_{k=0}^m (m+1-k)a_k$.

 - (2) Assume $\lim_{n\to\infty} \hat{S}_n$ exists. Show $\lim_{m\to\infty} \sigma_m$ exists, and the two limits are equal. (3) Show that the series $\sum_{k=0}^{\infty} (-1)^k$ diverges but is Abel and Cesàro summable to 1/2.
- 5. Let $\sigma_m f$ denote the Cesàro means of the Fourier series of f given by (8.39) on page 261.
 - (1) Denote by $F_m = (m+1)^{-1} \sum_{k=0}^m D_k$, where D_k is the kth Dirichlet kernel. Prove that $\sigma_m f = f * F_m.$ $(F_m$ is called the $m{\rm th}$ Fejér kernel.)
 - (2) Prove that

$$F_m(x) = \frac{\sin^2(m+1)\pi x}{(m+1)\sin^2\pi x}.$$

- 6. (1) Let D_n denote the *n*th Dirichlet kernel. Show that $||D_n||_1 > (4/\pi^2) \sum_{j=1}^n 1/j$.
 - (2) Denote by $S_m f$ the mth symmetric partial sum of the Fourier series of $f \in L^1(\mathbb{T})$. Prove that the set of all $f \in C(\mathbb{T})$ such that the sequence $\{S_m f(0)\}$ converges is meager in $C(\mathbb{T})$.

(See Exercises 34 and 35 on page 269.)