Gを位数4の群とする。

このとき、 $G \cong \mathbb{Z}/4\mathbb{Z}$ または $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ であることを示せ。

.....

G は群であるので、単位元を e として、次のようにかける。

$$G = \{e, a, b, c\} \tag{1}$$

群に単位元は一つなので、 $a \cdot a \neq a$ である。

そこで、 $a \cdot a$ が e,b,c のどれかになるが、 $a \cdot a = b$ と $a \cdot a = c$ は b と c を入れ替えることで同じとなるので、 $a \cdot a = e$ と $a \cdot a = b$ の二つの場合に分ける。

 $a \cdot a = e$ **の場合** a の位数が 2 なので、 $\{e, a\}$ が部分群になる。

次に $a \cdot b = a$ とすると左から a^{-1} をかけるとb = e となる。その為、 $a \cdot b \neq a$ である。

 $a\cdot b=b$ とすると b が単位元となり、単位元が 2 つになるので $a\cdot b\neq b$ である。 $a\cdot b=e$ とすると $b=a^{-1}$ となり、 $a\cdot a=e$ と矛盾するので、 $a\cdot b\neq e$ である。 よって、 $a\cdot b=c$ ということになる。

ここまでをまとめると次のような関係がある。

残りの箇所も埋める。

 $a \cdot c$ は横の演算結果から $a \cdot c = b$ ということになる。これは左から a を異なる元にかければ異なる結果となるためである。

次に $b \cdot a$ を考える。もし、 $b \cdot a = b$ とすれば a が単位元であることになり矛盾する。よって、 $b \cdot a = c$ である。

次に $b \cdot c$ を考える。 $b \cdot c = e$ と仮定すれば $b = c^{-1}$ となる。この為、 $c \cdot b = e$ となり、残った $b \cdot b$, $c \cdot c$ はともにa となり矛盾する。よって、 $b \cdot c = a$ である。残りも同様に考えると次の表ができる。

 $a \cdot a = b$ **の場合** $a \cdot b$ と $a \cdot c$ のどちらかが単位元となるが、 $e \cdot c = c$ であるので $a \cdot c \neq c$ である。よって、 $a \cdot b = c$ と $a \cdot c = e$ となる。

同様に $b \cdot a = c$ と $c \cdot a = e$ となる。

 $a \cdot c = e$ であるので $b \cdot c \neq e$ である。 よって、 $b \cdot b = e$ と $b \cdot c = a$ となる。

同様に $c \cdot b = a$ となる。

残りは $c \cdot c = b$ となる。

これをまとめると次のようになる。

(3) の表が表す群について

群 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ 次のような 4 つの元を持ち、成分ごとの和でもって加法群となる。

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{ (\bar{0}, \bar{0}), (\bar{1}, \bar{0}), (\bar{0}, \bar{1}), (\bar{1}, \bar{1}) \}$$
 (5)

この群に対して写像 $f:G\to \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$ を次のように定義する。

$$f(e) = (\bar{0}, \bar{0}), f(a) = (\bar{1}, \bar{0}), f(b) = (\bar{0}, \bar{1}), f(b) = (\bar{1}, \bar{1})$$
 (6)

この f は同型写像となることから $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ となる。

(4) の表が表す群について

群 $\mathbb{Z}/4\mathbb{Z}$ は次のような集合であり、整数の和から自然に導入される加法により加法群となる。

$$\mathbb{Z}/4\mathbb{Z} = \{\bar{0}, \ \bar{1}, \ \bar{2}, \ \bar{3}\} \tag{7}$$

この群に対して写像 $g:G \to \mathbb{Z}/4\mathbb{Z}$ を次のように定義する。

$$g(e) = \bar{0}, \ g(a) = \bar{1}, \ g(b) = \bar{2}, \ g(b) = \bar{3}$$
 (8)

この g は同型写像となることから $G \cong \mathbb{Z}/4\mathbb{Z}$ となる。