# Extended geometrically finite representations

Teddy Weisman University of Texas at Austin

March 10, 2022

Goal: introduce a notion of geometrically finite subgroups of higher rank Lie groups (e.g.  $G = \mathrm{SL}(d,\mathbb{R})$  for d > 2).

Goal: introduce a notion of geometrically finite subgroups of higher rank Lie groups (e.g.  $G = \mathrm{SL}(d,\mathbb{R})$  for d > 2).

|                          | $\operatorname{Isom}(\mathbb{H}^d)$ | Higher rank            |
|--------------------------|-------------------------------------|------------------------|
| hyperbolic               | convex cocompact                    | Anosov representations |
| relatively<br>hyperbolic | geometrically<br>finite             |                        |

Goal: introduce a notion of geometrically finite subgroups of higher rank Lie groups (e.g.  $G = \mathrm{SL}(d,\mathbb{R})$  for d > 2).

|                          | $\operatorname{Isom}(\mathbb{H}^d)$ | Higher rank                       |
|--------------------------|-------------------------------------|-----------------------------------|
| hyperbolic               | convex cocompact                    | Anosov representations            |
| relatively<br>hyperbolic | geometrically<br>finite             | "relative Anosov"  This talk: EGF |

### Definition

Let  $\Gamma$  be a discrete subgroup of SO(d, 1). We say  $\Gamma$  is *convex cocompact* if  $\Gamma$  acts with compact quotient on a nonempty  $\Gamma$ -invariant convex subset of  $\mathbb{H}^d$ .

### Definition

Let  $\Gamma$  be a discrete subgroup of SO(d, 1). We say  $\Gamma$  is *convex cocompact* if  $\Gamma$  acts with compact quotient on a nonempty  $\Gamma$ -invariant convex subset of  $\mathbb{H}^d$ .

Example:  $\Gamma \simeq \pi_1 M$  for M a closed hyperbolic d-manifold.



## Proposition (Gromov, Coornaert, Bourdon)

A discrete group  $\Gamma \subset SO(d,1)$  is convex cocompact if and only if  $\Gamma$  is (abstractly) word-hyperbolic, and its Gromov boundary  $\partial \Gamma$  embeds equivariantly into  $\partial \mathbb{H}^d$ .

S hyperbolic surface,  $\pi_1 S \to SO(2,1) \hookrightarrow SO(3,1)$ 



## Proposition (Gromov, Coornaert, Bourdon)

A discrete group  $\Gamma \subset SO(d,1)$  is convex cocompact if and only if  $\Gamma$  is (abstractly) word-hyperbolic, and its Gromov boundary  $\partial\Gamma$ embeds equivariantly into  $\partial \mathbb{H}^d$ .

S hyperbolic surface,  $\pi_1 S \to SO(2,1) \hookrightarrow SO(3,1)$ 







### Definition

Let  $\rho: \Gamma \to \mathrm{SL}(d,R)$  be a representation of a word-hyperbolic group. We say  $\rho$  is  $P_1$ -Anosov if there are  $\rho$ -equivariant embeddings

$$\xi: \partial \Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial \Gamma \to (\mathbb{R}P^{d-1})^*$$

### Definition

Let  $\rho: \Gamma \to \mathrm{SL}(d,R)$  be a representation of a word-hyperbolic group. We say  $\rho$  is  $P_1$ -Anosov if there are  $\rho$ -equivariant embeddings

$$\xi: \partial \Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial \Gamma \to (\mathbb{R}P^{d-1})^*$$

which are transverse and dynamics-preserving.

S hyperbolic surface  $\rho: \pi_1 S \to SO(2,1) \hookrightarrow SL_3(\mathbb{R})$ 



$$\mathbb{H}^2 \subset \mathbb{R}P^2$$

### Definition

Let  $\rho: \Gamma \to \mathrm{SL}(d,R)$  be a representation of a word-hyperbolic group. We say  $\rho$  is  $P_1$ -Anosov if there are  $\rho$ -equivariant embeddings

$$\xi: \partial \Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial \Gamma \to (\mathbb{R}P^{d-1})^*$$

which are transverse and dynamics-preserving.

S hyperbolic surface  $\rho: \pi_1 S \to SO(2,1) \hookrightarrow SL_3(\mathbb{R})$ 

$$\gamma \in \pi_1 S$$
 acts on  $\partial \mathbb{H}^2 \subset \mathbb{R} P^2$ 



$$\mathbb{H}^2 \subset \mathbb{R}P^2$$

### Definition

Let  $\rho: \Gamma \to \mathrm{SL}(d,R)$  be a representation of a word-hyperbolic group. We say  $\rho$  is  $P_1$ -Anosov if there are  $\rho$ -equivariant embeddings

$$\xi: \partial \Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial \Gamma \to (\mathbb{R}P^{d-1})^*$$

which are *transverse* and *dynamics-preserving*.

 $S \text{ hyperbolic surface} \\ \rho: \pi_1 S \to \mathrm{SO}(2,1) \hookrightarrow \mathrm{SL}_3(\mathbb{R})$ 

$$\gamma \in \pi_1 S \text{ acts on } \partial \mathbb{H}^2 \subset \mathbb{R} P^2$$

 $\xi$  maps attracting fixed points to attracting fixed points



## Theorem (Labourie, Guichard-Wienhard)

Let  $\rho: \Gamma \to \operatorname{SL}_d \mathbb{R}$  be a  $P_1$ -Anosov representation. Then an open neighborhood of  $\rho$  in  $\operatorname{Hom}(\Gamma, \operatorname{SL}_d(\mathbb{R}))$  consists of  $P_1$ -Anosov representations.

## Theorem (Labourie, Guichard-Wienhard)

Let  $\rho: \Gamma \to \operatorname{SL}_d \mathbb{R}$  be a  $P_1$ -Anosov representation. Then an open neighborhood of  $\rho$  in  $\operatorname{Hom}(\Gamma, \operatorname{SL}_d(\mathbb{R}))$  consists of  $P_1$ -Anosov representations.

S hyperbolic surface  $\pi_1 S \to SO(2,1) \hookrightarrow SL_3(\mathbb{R})$ 



## Theorem (Labourie, Guichard-Wienhard)

Let  $\rho: \Gamma \to \operatorname{SL}_d \mathbb{R}$  be a  $P_1$ -Anosov representation. Then an open neighborhood of  $\rho$  in  $\operatorname{Hom}(\Gamma, \operatorname{SL}_d(\mathbb{R}))$  consists of  $P_1$ -Anosov representations.

S hyperbolic surface $\pi_1 S \to \mathrm{SO}(2,1) \hookrightarrow \mathrm{SL}_3(\mathbb{R})$ 



Deform in  $\operatorname{Hom}(\Gamma, \operatorname{SL}_3(\mathbb{R}))$ :



Invariant under deformed action, quotient is *convex* projective surface

# What about geometrically finite groups?

#### Definition

Let  $\Gamma \subset SO(d,1)$  be a *finitely generated* discrete group. We say  $\Gamma$  is *geometrically finite* if it acts with finite covolume on a convex  $\Gamma$ -invariant subset of  $\mathbb{H}^d$  with nonempty interior.

Example: M = complete finite-volume noncompact hyperbolic3-manifold,  $\Gamma = \pi_1 M \subset SO(3, 1)$ .



# What about geometrically finite groups?

#### Definition

Let  $\Gamma \subset SO(d,1)$  be a *finitely generated* discrete group. We say  $\Gamma$  is *geometrically finite* if it acts with finite covolume on a convex  $\Gamma$ -invariant subset of  $\mathbb{H}^d$  with nonempty interior.

Example: M = complete finite-volume noncompact hyperbolic3-manifold,  $\Gamma = \pi_1 M \subset SO(3, 1)$ .



 $\Gamma$  is *not* a word-hyperbolic group.

Any geometrically finite group  $\Gamma$  is relatively hyperbolic, relative to its cusp subgroups  $\mathcal{P} = \{\pi_1 C : C \text{ a cusp of } \mathbb{H}^d/\Gamma\}.$ 



The parabolic subgroup  $A \simeq \mathbb{Z}^2$  is the fundamental group of the cusp  $C \subset M$ .

Any geometrically finite group  $\Gamma$  is relatively hyperbolic, relative to its cusp subgroups  $\mathcal{P} = \{\pi_1 C : C \text{ a cusp of } \mathbb{H}^d/\Gamma\}.$ 



The parabolic subgroup  $A \simeq \mathbb{Z}^2$  is the fundamental group of the cusp  $C \subset M$ .

A is the stabilizer of a point in  $\partial \mathbb{H}^3 = \partial(\Gamma, \mathcal{P})$ , the Bowditch boundary of the pair  $(\Gamma, \mathcal{P})$ 

# Relative hyperbolicity in higher rank

### Definition

Let  $\rho: \Gamma \to \mathrm{SL}(d,R)$  be a representation of a word-hyperbolic group. We say  $\rho$  is  $P_1$ -Anosov if there are  $\rho$ -equivariant embeddings

$$\xi: \partial\Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial\Gamma \to (\mathbb{R}P^{d-1})^*$$

# Relative hyperbolicity in higher rank

### Definition

Let  $\rho: \Gamma \to \mathrm{SL}(d,R)$  be a representation of a word-hyperbolic group. We say  $\rho$  is  $P_1$ -Anosov if there are  $\rho$ -equivariant embeddings

$$\xi: \partial\Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial\Gamma \to (\mathbb{R}P^{d-1})^*$$

which are *transverse* and *dynamics-preserving*.

## Definition (Kapovich-Leeb)

Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say  $\rho$  is relatively asymptotically embedded if there are  $\rho$ -equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$$

Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say  $\rho$  is relatively asymptotically embedded if there are  $\rho$ -equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$$

Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say  $\rho$  is relatively asymptotically embedded if there are  $\rho$ -equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$$

which are *transverse* and *dynamics-preserving*.

M finite-vol. hyp. 3-manifold  $\pi_1 M \to SO(3,1) \hookrightarrow SL_4(\mathbb{R})$ 



Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say  $\rho$  is relatively asymptotically embedded if there are  $\rho$ -equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$$

which are *transverse* and *dynamics-preserving*.

M finite-vol. hyp. 3-manifold  $\pi_1 M \to \mathrm{SO}(3,1) \hookrightarrow \mathrm{SL}_4(\mathbb{R})$ 

Cusp group  $A \subset \pi_1 M$  acts on  $\partial(\Gamma, \mathcal{P}) = \partial \mathbb{H}^3 \subset \mathbb{R}P^3$ 



Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say  $\rho$  is relatively asymptotically embedded if there are  $\rho$ -equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$$

which are *transverse* and *dynamics-preserving*.

M finite-vol. hyp. 3-manifold  $\pi_1 M \to \mathrm{SO}(3,1) \hookrightarrow \mathrm{SL}_4(\mathbb{R})$ 

Cusp group  $A \subset \pi_1 M$  acts on  $\partial(\Gamma, \mathcal{P}) = \partial \mathbb{H}^3 \subset \mathbb{R}P^3$ 



# Deforming relative Anosov representations in $SL_d(\mathbb{R})$ $\pi_1 M \to SO(3,1) \hookrightarrow SL_4(\mathbb{R})$



$$A \simeq \mathbb{Z}^2 \subset \{\text{upper triangular}\}$$



# Deforming relative Anosov representations in $SL_d(\mathbb{R})$

 $\pi_1 M \to SO(3,1) \hookrightarrow SL_4(\mathbb{R})$ 



 $\begin{array}{c} \operatorname{deform} \\ \operatorname{in} \\ \operatorname{SL}_4(\mathbb{R}) \\ \to \end{array}$ 



(image from Ballas-Danciger-Lee)

 $A\simeq \mathbb{Z}^2\subset \{\text{upper triangular}\}$ 



 $A'\subset \{{\rm diagonalizable}\}$ 



Get  $convex\ projective\ 3$ -manifd.

# Deforming relative Anosov representations in $SL_d(\mathbb{R})$ $\pi_1 M \to SO(3,1) \hookrightarrow SL_4(\mathbb{R})$



deform in $\mathrm{SL}_4(\mathbb{R})$ 



(image from Ballas-Danciger-Lee)

 $A \simeq \mathbb{Z}^2 \subset \{\text{upper triangular}\}$  $M \simeq \mathbb{H}^3/\Gamma$ 



Get convex projective 3-manifd.

Bowditch boundary  $\partial \mathbb{H}^3$  is not equivariantly embedded into  $\mathbb{R}P^3!$ 

## Definition (W.)

Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say that  $\rho$  is extended geometrically finite if there are  $\Gamma$ -invariant subsets  $\Lambda \subset \mathbb{R}P^{d-1}$ ,  $\Lambda^* \subset (\mathbb{R}P^{d-1})^*$  and surjective transverse maps

$$\phi: \Lambda \to \partial(\Gamma, \mathcal{H}), \quad \phi^*: \Lambda^* \to \partial(\Gamma, \mathcal{H})$$

which extend convergence dynamics.

## Definition (W.)

Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say that  $\rho$  is extended geometrically finite if there are  $\Gamma$ -invariant subsets  $\Lambda \subset \mathbb{R}P^{d-1}$ ,  $\Lambda^* \subset (\mathbb{R}P^{d-1})^*$  and surjective transverse maps

$$\phi: \Lambda \to \partial(\Gamma, \mathcal{H}), \quad \phi^*: \Lambda^* \to \partial(\Gamma, \mathcal{H})$$

which extend convergence dynamics.



## Definition (W.)

Let  $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$  be a representation of a relatively hyperbolic group. We say that  $\rho$  is extended geometrically finite if there are  $\Gamma$ -invariant subsets  $\Lambda \subset \mathbb{R}P^{d-1}$ ,  $\Lambda^* \subset (\mathbb{R}P^{d-1})^*$  and surjective transverse maps

$$\phi: \Lambda \to \partial(\Gamma, \mathcal{H}), \quad \phi^*: \Lambda^* \to \partial(\Gamma, \mathcal{H})$$

which extend convergence dynamics.



Extended geometrically finite representations are *relatively* stable.

### Theorem (W.)

Let  $\rho: \Gamma \to G$  be EGF, and let  $W \subseteq \operatorname{Hom}(\Gamma, G)$  be a peripherally stable subspace at  $\rho$ . Then an open subset of W containing  $\rho$  consists of EGF representations.

In particular, the deformation of  $\pi_1 M \to SO(3,1) \hookrightarrow SL_4 \mathbb{R}$  shown previously is peripherally stable.

Extended geometrically finite representations are *relatively* stable.

### Theorem (W.)

Let  $\rho: \Gamma \to G$  be EGF, and let  $W \subseteq \operatorname{Hom}(\Gamma, G)$  be a peripherally stable subspace at  $\rho$ . Then an open subset of W containing  $\rho$  consists of EGF representations.

In particular, the deformation of  $\pi_1 M \to SO(3,1) \hookrightarrow SL_4 \mathbb{R}$  shown previously is peripherally stable.

This works for any relatively hyperbolic group  $\Gamma$  and semisimple Lie group G.



(not to scale)



(not to scale)









