Since last prelim

Dual Vector Spaces

define f: V > TF as ...

fev* means fis a 2T

- V*=Lin(V,IF)
- dim V* = dim V
- -given a basis V, dual basis for V*

Direct Sums

 $\gamma = W_1 \oplus W_2 \oplus \cdots \oplus W_r$

if $V = W_1 + W_2 + \cdots + W_r$

and if with with = 0 then with i

basis of W.D. -- Dwr := union of basis of each

dim V = Edin Wi

Quotient Vector Spaces

W EV, define V/W 2 Natural Maps

①
$$T: V \rightarrow V_W$$

 $\ker T = W$
 $\operatorname{im} T = V_W$

Hlynomials

division algorithm

roots

fund. The of Algebra

ideals. I CIF[x], <f(x)>
each ideal I: 3 f(x) s.t. I=<f(x)>

From HW

D= dr

P(D), ker(p(D)) solution to DE's

Elgenvalues + Diagonalizable

Similar Matrices

[T] a, [T] & Similar

and this is how all similar matrices occur.

Diagonalizable

Eigenvalues, Eigenvectors - A=2√

Define

 $E_{\lambda_1}(A)$, $E_{\lambda_2}(A)$, ..., $E_{\lambda_n}(A)$; $E_{\lambda_i}(A) = L_r(A-\lambda_i I)$

U

 $V_{1,...,V_{R}}$ LI if V_{i} is an eigenvector ω / λ_{i} , λ_{i} ALL distinct

 $E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{r}}(\tau)$ $= E_{\lambda_{1}} + \cdots + E_{\lambda_{r}}(\tau) \quad \xrightarrow{\lambda_{1} \neq \lambda_{1}} \quad \xrightarrow{\lambda_{1} \neq \lambda_{1}}$

⇒ T diagonalizable
⇒ basis of eigenvectors

Key Important Fact If $t \in \mathcal{L}(v)$, dim $v = n \ge \infty$ over C, then T has an eigenvalue

If p(x) E IF[x], considered P(T), p(A).

If A^{\dagger} = transpose, (A nxn) A^{\dagger} , A have the same eigenvalues

rank A^{\dagger} = rank AAnd have the same eigenvalues

Rank A^{\dagger} = rank A

NOT true if mxn

actually, if A in Fixn?

dim ker(A->I) = dim ker(AT->I)

dim
$$E_{\lambda}(A) = dim E_{\lambda}(AT)$$

Markon Chains

- Regular Stochastic Matrices

if A diagonalizable and all eigenvalues of A Satisfy 121 < 1 or 2=1 than lim An exists

Gers chyorin Disks

Main Theorem:

IF A is diagonalizable, Stochastic, regular then

- all cols

 all cols

 lim Aⁿ exists [p p ··· p] same

 n>∞
- (b) dim Ex, (A) = 1 and Ap = p
- C) lim Ang = 7

Inner Products

def, norm, 1

W1 (dim W < 00)

WEV If dim w< 00

WI

W + w+=V

orthogonal sets, orthonormal sets -> LI elements

Gram - Schmidt

Cor: If W = V is finite dim'd then W has an orthonormal basis ATB = matrix of dot products