

RTL8711AF

SINGLE-CHIP 802.11b/g/n 1T1R WLAN SoC

Pre-Release DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev.0.1

26 July 2015

Track ID: JATR

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiw ar

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2015 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into anguage in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the produdescribed in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registeretdademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and teccome information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary
0.0	2014/09/30	Preliminaryrelease.
0.0	2015/03/05	update PINMUX table
		, 6

2015-10-14 iii

Table of Contents

1.	GENERAL DESCRIPTION	1
2.	FEATURES	2
۷.		∠
3.	BLOCK DIAGRAM	4
3.1	I. FUNCTIONAL BLOCK DIAGRAM	4
3.2	2. WIFI AND NFC APPLICATION DIAGRAM	5
3.3	B. POWER SUPPLY APPLICATION DIAGRAM	6
4.	MEMORY MAPPING	7
4.1		
4.2		
4.3		
_		
5.		
5.1		13
6.	PIN DESCRIPTIONS	
6.1	I. POWER ON TRAP PIN	14
6.2	RF AND NFC	15
6.3	B. Power Pins	15
6.4	4. CLOCK PINS	16
6.5	5. DIGITAL IO PINS	16
6.6	S. SDIO Interface	18
7.	PIN FUNCTION TABLE	19
7.1		
8.	FUNCTIONAL DESCRIPTION	20

8.1. POWER MANAGEMENT CONTROL UNIT	20
8.1.1. Features	20
8.1.2. Power Mode Description	20
8.2. MEMORY SYSTEM	22
8.2.1. Memory Architecture	22
8.2.2. Internal ROM	22
8.2.3. Internal SRAM	23
8.2.4. SPI NOR Flash	23
8.3. GENERAL PURPOSE DMA CONTRLLER	25
8.3.1. Features of GDMA	25
8.4. GENERAL PURPOSE TIMER	25
8.4.1. Features of GTimer	25
8.5. GPIO FUNCTIONS	25
8.5.1. Features of GPIO	25
8.6. UART Interface Characteristics	26
8.6.1. Features of UART	
8.6.2. High Speed UART Specification	26
8 6.3. UART Interface Signal Levels	
8.7. SPI Interface	
8.7.1. Features of SPI	28
8.8. I2C Interface	29
8.8.1. Features of I2C	
8.9. PWM Interface	30
8.9.1. Features of PWM	
8.10. EXTERNAL TRIGGER EVENT INTERFACE	
8.10.1. Features of External Trigger Event	30

8.11. SDIO/RTK SPI Device Mode Interface	30
8.11.1. Features of SDIO/RTK SPI Device Mode Interface	30
8.11.2. SDIO Device Mode Specifications	31
8.12. I2S INTERFACE	32
8.12.1. Features of I2S	32
8.13. PCM Interface	32
8.13.2. PCM Specifications	33
8.14. SECURITY ENGINE	37
8.14.1. Features	37
9. ELECTRICAL CHARACTER ISTICS	39
9.1. TEMPERATURE LIMIT RATINGS	
9.2. Temperature Characteristics	39
9.3. Power Supply DC Characteristics	39
9.3.1. Power Mode Description	
9.4. MECHANICAL DIMENSIONS	43
9.4.1. Package Specification	43
9.4.2. Mechanical Dimensions Notes	44
9.5. DIGITAL IO PIN DC CHARACTERISTICS	44
9.5.1. Electrical Specifications	
10. ORDERING INFORMATION	

List of Tables

POWERON TRAPPINS	
RF AND NFC PINS.	15
PowerPins.	15
OLOCK AN OTHER PINS.	16
SDIOTRANSCEIVERTERFACE	18
PIN FUNCTIONGROUPTABLE	19
FLASHBUSDCPARAMETERS	24
FLASHBUSDCPARAMETERS	24
UARTBAUDRATESPECIFICATIONS	26
SDIONTERFACTIMING PARAMETERS	31
PCMINTERFACE_OCKPECIFICATIONS	36
PCMINTERFACEMING	36
TEMPERAURELIMIT RATINGS	39
THERMAIPROPERTIES	39
POWERSUPPLYDCOHARACTERISTICS	39
TYPICADIGITALIC DCPARAMETER(3.3VCAS)	44
TYPICADIGITALIO DCPARAMETER(\$1.8 VCAS);	45
ORDERINGNFORMATION	
	RF AND NFC PINS

List of Figures

FIGURÉI.	BLOCKDIAGRAM	4
Figuri2.	SINGLEBAND 11N (1X1) AND NFCT AGSOLUTION	5
FIGURES.	PowerSuppl Architecture	6
Figur ∉ 1.	PinAssignments	13
Figure5.	UAR TINTERFACIA AVEFORM	28
Figure6.	SDIONTERFACTIMING	31
Figur₽.	LONGFRAMESYNC	33
Figuri8.	SHORTFRAMESYNC	33
FIGURE9.	16-BIT OUTPUTDATA WITH&-BIT PCMSAMPLEDATA AND GNEXTENSION	34
Figure 0.	16-BIT OUTPUTDATA WITH BIT PCMS AMPLEDATA AND ZERO PADDING	34
Figure 1.	16-BIT OUTPUTDATA WITH 3-BIT PCMSAMPLEDATA AND GNEXTENSION	34
Figure 2.	16-BIT OUTPUTDATA WITH 3-BIT PCMSAMPLEDATA AND AUDIOGAIN	34
Figure 3.	PCMINTERFAC(LONGFRAMESYN)	35
FIGURE 4.	PCMINTERFAC(SHORTFRAMISYNO)	36

1. General Description

RealtekRTL8711As a highly integrated inglechip low power 802.11n Wireless LAN (WLAM) etwork controller. It combines a ARMCM3 MCU, WLAN MAC, a 1T1Rpade WLAN baseband, and Rfain single clip. It also provides a bunch of configurable GPIOs which are configured as digital periphrerals f different applications and ontrol usage.

RTL8711AIntegrates internal memoriefor complete WiFI protocol functions heembeddedmemory configurationalsoprovidessimple application developments.

2. Features

General

- Packag@FN48 (6x6m²n)
- CMOS MAŒpaseband PHY, and RF in a single chip for802.11b/g/n compatible WLAN
- Complete 802.11 solution for 2.4GHz band
- 72.2Mbps receive PHY rate and 72.2Mbps transmit PHY rate using 20Mldandwidth
- 150Mbps receive PHY rate and 150Mbps transmit PHY rate using 40Hz bandwidth
- Compatible with 802.11n specification
- Backward compatible with 802.11b/g devices while operation 802.11nmode

StandardsSupported

- 802.11b/g/n compatible WLAN
- 802.11e QoS Enhancement (WMM)
- 802.11i (WPA, WPA2). Open, shared key, and pairwise key authentication services

- WIFI WPS support
- WIFI Direct support
- Light Weight TCP/IP protocol

WLANMAC Features

- Frame aggregation for increased MAC efficiency (AMSDU, AMPDU)
- Low latency immediate Highroughput
 Block Acknowledgement (HBA)
- Long NA for media reservation with CFEnd for NAV release
- ▶ PHYlevel spoofing to enhance legacy compatibility
- Power saving mechanism

WLAN PHYFeatures

- 802.11n OFDM
- One Transmit and one Receive path (1T1R)
- 20MHz and 40MHz bandwidth transmission

- Short Guard Interva(400ns)
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble
- OFDM with BPSK, QPSK, 16QAM, and 640QAM modulationConvolutional Coding Rate: 1/2, 2/3, 3/4, and 5/6
- Maximum data rate 54Mbps in 802.11g and 150Mbps in 802.11n
- Fast receiver Atomatic Gain Control (AGC)
- On-chip ADC and DAC

Peripheral Interfacs

- SDIOSlave
- Maximum 2 high speed UART interface with baud rate up to 4MHz

- 1 log UART with standard baud rate support
- Maximum 3 ²C interface
- I²S with 8/16/24/32/48/96/44 1/88.2 KHz sampling rate
- Maximum 2PCM with 8/16KHz sample rate
- Maximum 2 SPI supported with baud rate up to 41.5MHz
- Support4 PWM with configurable duration and duty cycle from 0 ~ 100%
- Support4 External Timer Trigger EventTE function) with configurable period inolw power mode
- Maximum21 GPIO pins

3. Block Diagram

3.1. Functional Block Diagram

Figure 1. Block Diagram

3.2. WIFI and NFC Application Diagram

Figure 2. Single -Band 11n (1x1) and NFC Tag Solution

3.3. Power Supply Application Diagram

Figure 3. Power Supply Architecture

The integrated Power Management Unit (PMU) provides the following featur

- 1.2V power bulk or LDO selectable.
- 3.3V power source integrated power cut controlled by FW.

4. Memory Mapping

4.1. Programming Space

Name	Mode	Physical	Size	IP Function
Code		0x0000_0000	1MB	Instruction Memory (ROM)
		0x000F_FFFF	1	· 'O
		0x1000_0000	448KB	Inter SRAM: BD SRAM and Buffer
		0x1006_FFFF		SRAM share total 448KB physical sram
		0x1FFF_0000	64KB	TCM (Tightly-Coupled Memory)
		0x1FFF_FFFF		SRAM

4.2. IO Space

Name	Mode	Physical	Size	IP Function
Peripheral		0x4000_0000	4KB	SYS Control (SYSON)
		0x4000_0FFF		
		0x4000_1000	2KB	GPIO Control
		0x4000_17FF		
		0x4000_1800		RSVD
		0x4000_1FFF		X
		0x4000_2000	4KB	Timer Control
		0x4000_2FFF	120	
		0x4000_3000	1KB	UART for Log
		0x4000_33FF		X
		0x4000_3400	1KB	I2C_2 Control
		0x4000_37FF		
		0x4000_3800	1KB	I2C_3 Control
	N 1	0x4000_3BFF		
		0x4000_3C00		RSVD
X		0x4000_4FFF		
		0x4000_5000	4KB	SDR SDRAM controller
		0x4000_5FFF		
		0x4000_6000	4KB	SPI flash controller
		0x4000_6FFF		
	01	0x4000_7000		RSVD
	0	0x4000_FFFF		
		0x4001_0000	4KB	ADC
		0x4001_0FFF		
		0x4001_1000	4KB	DAC
		0x4001_1FFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4004_0000	1KB	UART_0 Control
		0x4004_03FF		
		0x4004_0400	1KB	RSVD
		0x4004_07FF		
		0x4004_0800	1KB	UART_2 Control
		0x4004_0BFF		. '0
		0x4004_0C00		RSVD
		0x4004_1FFF		
		0x4004_2000	1KB	SPI_0 Control
		0x4004_23FF	0	, vO,
		0x4004_2400	1KB	SPI_1 Control
		0x4004_27FF		
		0x4004_2800	1KB	RSVD
S X		0x4004_2BFF		.18
	1	0x4004_2C00		RSVD
		0x4004_3FFF		
	V	0x4004_4000	1KB	RSVD
		0x4004_43FF		
		0x4004_4400	1KB	I2C_1 Control
		0x4004_47FF		
		0x4004_4800		RSVD
		0x4004_FFFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4005_0000	16KB	RSVD
		0x4005_3FFF		. (2
		0x4005_4000		RSVD
		0x4005_7FFF		
		0x4005_8000	16KB	SDIO Host
		0x4005_BFFF		
		0x4005_C000		RSVD
		0x4005_FFFF		\times
		0x4006_0000	2KB	GDMA0
		0x4006_07FF	2KB	
		0x4006_0800		RSVD for other DMA
		0x4006_0FFF		
		0x4006_1000	2KB	GDMA1
		0x4006_17FF	ZKD	ODWAI
		0x4006_1800		RSVD for other DMA
		0x4006_1FFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4006_2000	1KB	RSVD
		0x4006_23FF		. (
		0x4006_2400	3KB	RSVD
		0x4006_2FFF		
		0x4006_3000	1KB	I2S_1 Control
		0x4006_33FF		
		0x4006_3400	3KB	RSVD
		0x4006_3FFF		X
		0x4006_4000	1KB	PCM_0 Control
		0x4006_43FF	< O	
		0x4006_4400		RSVD
		0x4006_4FFF		
		0x4006_5000	1KB	PCM_1 Control
	×	0x4006_53FF	1	
O X		0x4007_0000	16KB	Security Engine
		0x4007_3FFF		
		0x4007_4000	48KB	RSVD
		0x4007_FFFF		
		0x4008_0000	256KB	WIFI REG &
		0x400B_FFFF		TX/RX FIFO direct map
		0x400C_0000	256KB	RSVD
		0x400F_FFFF		No.
		0x403F_FFFF	1MB	RSVD

4.3. Extension Memory Space

Name	Mode	Physical	Size	IP Function
F1 1	0x9	0x9800_0000	1MD	Enternal flash was
Flash		0x9810_0000	1MB	External flash memory

5. Pin Assignments

Figure 4. Pin Assignments

5.1. Package Identification

"Green' package is indicated by'G' in the location marked "T" in Figure 2. The version is shown in the location marked 'VV', e.g., A0=VersionA0

2015-10-14 13 Track ID: Rev. 0.1

6. Pin Descriptions

The following signal type codes are used in the tables:

l:	Input	O:	Output
T/S:	Tri-State bidirectional input/output pin	S/T/S:	Sustained Tr&ate
O/D:	Open Drain	P:	Power pin

6.1. Power On Trap Pin

Table1. Power On Trap Pins

Symbol	Туре	Pin No	Description
NORMALMODE_SE	ı	2	Shared with GPIB 2
			1: Normal operation mode
X Q,		US,	0: Enter into test/debug mode
BOOT_SCENARIO	I	48	Shared with GPIOB_0
		J'	0: booting from flash
			1: booting from internal memory
EEPROM_SEL	I	25	Shared withGPIOF_5
			0: Internal NV memory select
1///			1: reserved for internal testing use
ICFG0	I	44	Shared with GPIOC_0
			When NORMALMODE_SEL "1", then ICFG0 is test mode BIT0.

Symbol	Type	Pin No	Description
ICFG1	I	43	Shared with GPIOC_1
			When NORMALMODE_SE&"1", then ICFG0 is test mode BIT1.
ICFG2	I	42	Shared with GPIOC_2
			When NORMALMODE_SEL "1", then ICFG0 is test mode BIT2.
ICFG3	I	41	Shared with GPIOC_3
			When NORMALMODE_SEL "1", then ICFG0 is test mode BIT3.

6.2. RF and NFC

Table 2. RF and NFC Pins

Symbol	Туре	Pin No	Description	, • •
NFC_IP	I	5	NFC input differential signal	(3)
NFC_IN	I	6	NFC input differential signal	,
RF_IO	Ю	13	WL RF signal	VO.

6.3. Power Pins

Table3. Power Pins

Symbol	Type	Pin No	Description
SW_LX	Р	37	Switching Regulator Output
SW_HV3	Р	36	Switching Regulatdnput
			Or Linear Regulator input from 3.3V to ₩.

Symbol	Type	Pin No	Description
VA33	Р	10, 12, 14, 23	3.3V for Analo@ircuit
VD33O	Р	4, 26, 35, 39	VDD3.3V for DigitaOor digital blocks
VDD_IO	Р	16, 45	GPIOE and GPIOC group IO power
VDIO_SDIO	Р	30	SDIO Bus IO power
VD12D	Р	34, 40	VDD 1.2V Digital Circuit
VA12	Р	7, 11, 15, 22	1.2V for analog blocks
SW_GND	Р	38	Switching Regulat@round

6.4. Cbck Pins

Table4. Clock and Other Pins

Symbol	Type	Pin No	Description
XI	آل	9	40MHz OSC Input
			Input of 40MHz Crystal Clock Reference
XO	0	8	Output of 40MHz Crystal Clock Reference

6.5. Digital IOPins

Please refer to section 6 Pinn Table for more detailed information.

Symbol	Туре	Pin No	Description
GPIOB_0	Ю	48	GPIO pinThe MUX function can be referred to Pin Function Table.
GPIOB_1	Ю	1	GPIO pinThe MUX function can be referred to Pin Function Table.
GPIOB_2	Ю	2	GPIO in. The MUX function can be referred to Pin Function Table.
GPIOB_3	Ю	3	GPIO pinThe MUX function can be referred to Pin Function Table.
GPIOE_0	Ю	21	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_1	Ю	20	GPIO pin. The MUXriotion can be referred to Pin Function Table.
GPIOE_2	Ю	19	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_3	10	18	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_4	Ю	17	GPIO pin. The MUX function canrieterred to Pin Function Table.
GPIOA_0	Ю	27	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_1	Ю	28	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_2	10	29	GPIO pin. The MUX function can be referred to Function Table.
GPIOA_3	Ю	31	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA4	Ю	32	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA <u>5</u>	Ю	33	GPIO pin. The MUX function can be referred to Pin FunctionTable.

Symbol	Type	Pin No	Description
GPIOC_0	Ю	44	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_1	Ю	43	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_2	Ю	42	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIO <u>C</u> 3	Ю	41	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_4	Ю	46	GPIO pinThe MUX function can be referred to Pin Function Table.
GPIOB_5	Ю	47	GPIO pinThe MUX function can be referred to Pin Function Table.
CHIP_EN	1 8	24	Enable chip. 1: enable chip; 0: shutdown chip

6.6. SDIOnterface

Table5. SDIOTransceiver Interface

Symbol	Туре	Pin No	Description
GPIOA_0	Ю	27	SDIO bus SD_D2
GPIOA_1	Ю	28	SDIO bus SD_D3
GPIOA_2	Ю	29	SDIO bus SD_CMD
GPIOA_3	Ю	31	SDIO bus SD_CLK
GPIOA_4	Ю	32	SDIO bus SD_D0
GPIOA_5	Ю	33	SDIO bus SD_D1

7. Pin Function Table

7.1. Pin Configurable Function Group Summary Table

Table 6. Pin Function Group Table

PIN name J	TAG SE	OIO	UART Group	I2C Group	SPI G	roup	I2S (Group	PCM Gr	oup	WL_LED	PWM	ETE	WKDT	GPIO IN	IT De	efault State	SCHMT
GPIOA_0	SD_	_D2	UART2_IN		SPI1	_MIS()								GPIO_IN	١T	PH	0
GPIOA_1	SD_	_D3	UART2_CTS		SPI1	_MO\$	SI								GPIO_IN	١T	HI	
GPIOA_2	SD_	CME	WART2_RTS		SPI1	_CLK											PH	0
GPIOA_3	SD_	CLK															PH	0
GPIOA_4	SD_	_D0	UART2_OUT	•	SPI1	_CS											PH	
GPIOA_5	SD_	_D1												D_SBY)		PH	
GPIOB_0			UART_LOG_	OUT									ETE0				HI	
GPIOB_1			UART_LOG_	ΪΝ							WL_LED	0	ETE1	D_SLP0			PH	
GPIOB_2				I2C3_SCL									ETE2				HI	0
GPIOB_3				I2C3_SDA									ETE3		GPIO_IN	١T	PH	
GPIOC_0			UART0_IN		SPI0	CS0	12S1 _.	_WS	PCM1_	SYN	С	PWM0	ETE0				HI	
GPIOC_1			UART0_CTS		SPI0	CLK	12S1 _.	_CLK	PCM1_	CLK		PWM1			GPIO_IN	٧T	HI	0
GPIOC_2			UART0_RTS		SPI0	_MO\$	SII2S1.	_SD_1	RCM1_	TUC		PWM2	ETE2				HI	
GPIOC_3			UART0_OUT						PCM1_	N		PWM3	ETE3		GPIO_IN	٧T	HI	0
GPIOC_4				I2C1_SDA	SPI0	_CS1	12S1 _.	_SD_F	₹X						GPIO_IN	٧T	HI	
GPIOC_5				I2C1_SCL	SPI0	_CS2									GPIO_IN	٧T	HI	0
GPIOE_0 JTA	G_TRST		UARTO_OUT	12C2_SCL	SPI0	_CS0			PCM0_	SYN	С	PWM0					PH	0
GPIOE_1 JTA	.G_TDI		UARTO_RTS	I2C2_SDA	SPI0	_CLK			PCM0_	CLK		PWM1			GPIO_IN	١T	PH	Ö
GPIOE_2 JTA	.G_TDO		UARTO_CTS	I2C3_SCL	SPI0	_MOS	SI		PCM0_	TUC		PWM2			GPIO_IN	٧T	PH	0
GPIOE_3 JTA	.G_TMS		UARTO_IN	I2C3_SDA	SPI0	MIS	2		PCM0_	N		PWM3		D_SBY3	GPIO_IN	١T	PH	-0
GPIOE_4 JTA	.G_CLK				SPI0	_CS1											PH	0

NOTE: PH = Pull-ligh, HI + High-impedance

NOTE2GPIOA_1 needexternal Circuit to do the pulligh control; others' pull control can be done by register setting (includingGPIOA_1's PD).

8. Functional Description

8.1. PowerManagementControlUnit

8.1.1. Features

The PMU provides the followirfgnctions:

- Bulk/LDO to output 1.2V
- 2 very Low power clock source with less accuracy: 1K and 500K
- 1 low power 32.768KHz clock source with moderate accuracy
- Wakeup system detector to resume from low power state

8.1.2. Power Mode Description

8.1.2.1 Shutdown Mode

CH!!PEN deasserts to shutdown whole chip without external powercontponents required

8.1.2.2Deep Sleep lode

CHIP_EN keeps hig Interinto Deep Sleep mode by API. The trigger timer period can be configured or GPIOB1 can be used as external trigger even the DLSP trigger timer can be configured with the range 1 ~ 3600 sec.

8.1.2.3Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all PIO group can be used as external trigger event.

8.2 Memory System

8.2.1. Memory Architecture

RTI8711AF integrates ROM, internal SRAM, extended NOR flash to provide applications waitile by of memory requirements.

8.2.2. Internal ROM

RTB711AF integrates 1MB ROM to provide high access speed, low leakage memory. The ROM memory clock speed is up to 166MHz. The ROM lib provides the following functions:

2015-10-14 22 Track ID: Rev. 0.1

- Boot Code and MClaitialization
- Default UART driver
- Non-flash booting functions and drives
- Peripheral libs
- Security function libs

8.2.3. Internal SRAM

448KB SRAM is integrated provide instruction, data, and buffer usagene maximum clock speed is up to 166MHz.

Additional 64KB fast access data memory (TCM) is provided for FW data section of the section of

8.2.4. SPI NOR Flash

Features

- Targeted SPI flash frequency: Up8ta3MHz (whenCPU clock is 166MHz
- In addition to a programmed I/O interface, also supports a membayoped I/O interface for read operation
- Supports Read and StaRead in memorynapped I/O mode

Supported NOR Flash List

Table 7. Flash Bus DC Parameters

Vendor	Part Number	Density	Voltage	Ю
MXIC	MXIC_MX25L8006E	8M Bits	3.3V	1I/2O

Electrical Specifications

Table 8 Flash Bus DC Parameters

)					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V _{IH}	Input-High Voltage	LVTTL	2.0	-	-	V	1
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V	2
V _{OH}	Output-High Voltage	-	2.4	-	-	V	3
V _{OL}	Output-Low Voltage	-	-	-	0.4	V	3
I _{IL}	Input-Leakage Current	$V_{IN}=3.3V$ or 0	-10	±1	10	μΑ	
I _{OZ}	Tri-State OutputLeakage Current	-	-10	±1	10	μА	-
R _{PU}	Input PullUp Resistance	-	-	75	-	ΚΩ	4
Red	Input PullDown Resistance	-	-	75	-	ΚΩ	4

Note 1: V_{IH} overshoot: VIH (MAX)=VDDH + 2V for a pulse width ≤ 3 ns.

Note 2: V_{IL} undershoot: V_{IL} (MIN)=-2V for a pulse width \leq 3ns.

Note 3: The output current buffer is 8mA for the flash address and aata bus; and is 8mA for Flash control signals.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

8.3. General Purpose DMA Contrller

8.3.1. Features of GDMA

- Dual port DMA with totally 12 channels
- Configurable endian
- Support menory-memory, memoryperipheral, peripheralmemory, and peripheraperipheral DMA transfer
- Support block level flow control
- Support address autœload, linklisted mode
- Support scattegather mode

8.4. General Purpose Timer

8.4.1. Features of Gimer

- 8 Gtimer supported
- Time unit is 32us
- Support Counter mode and timer mode

8.5. GPIO Functions

8.5.1. Features of GPIO

- GPO and GPI function
- Support interrupt detection with configurable polariper GPIO
- Internal weak pull up and pull loper GPIO

Multiplexed with other specific digitatunctions

8.6. UART Interface Characteristics

8.6.1. Features of UART

- Support maximum HSUART (max baud rate 4MHz and DMA mode) and 2 low speed UART (IO mode)
- UART (RS232 Standard) Serial Data Format
- Transmit and Receive Data FIFO
- Programmable Asynchronous Closupport
- Auto Flow Control
- Programmable Receive Data FIFO Trigger Level
- DMA data moving support to save CPU loading

8.6.2. High Speed UART Specification

The RTL8711AEJART interface is a standardwire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2kbaud. In order to support high and low speed baud rate, RTEL8711AFrovides multiple UART clock

Table 9. UART Baud Rate Specifications

Desired Baud Rate	Actual Baud Rate	Error (%)	
300	300	0.00%	

Desired Baud Rate	Actual Baud Rate	Error (%)
600	600	0.00%

Desired Baud Rate	Actual Baud Rate	Error (%)
900	900	0.00%
1200	1200	0.00%
1800	1800	0.00%
2400	2400	0.00%
3600	3601	0.03%
4800	4798	-0.04%
7200	7198	-0.03%
9600	9603	0.03%
14400	14395	-0.03%
19200	19182	-0.09%
28800	28846	0.16%
38400	38462	0.16%
56000	55970	-0.05%
57600	57692	0.16%
76800	76531	-0.35%
115200	115385	0.16%
128000	127119	-0.69%
153600	153061	-0.35%

Desired Baud Rate	Actual Baud Rate	Error (%)
230400	229167	-0.54%
460800	458333	-0.54%
500000	500000	0.00%
921600	916667	-0.54%
1000000	1000000	0.00%
1382400	1375000	-0.54%
1444444	1437500	-0.48%
1500000	1500000	0.00%
1843200	1833333	-0.54%
2000000	2000000	0.00%
2100000	2083333	-0.79%
2764800	2777778	0.47%
3000000	3000000	0.00%
3250000	3250000	0.00%
3692300	3703704	0.31%
3750000	3750000	0.00%
4000000	4000000	0.00%

Figure 5. UART Interface Waveform

8.6.3. UART Interface Signal Level

The UART signal level ransignom 1.8V to 3.3V. The host provides the power source this targeted power level to the RTL8711ABART interface vitate IO power.

8.7. SPIInterface

8.7.1. Featuresof SPI

- Supportmaximum2 SPI port
- Support Master/Slave mod(SPI0 only), ant laster only (SPI1)
- Support DMAto offload CPU bandwidth
- 1 very high speed S(Nasteronly)
 - Support up to 3 CS (multilave mode up to 3 siave)
 - Supportbaud rate up to 41MH¢Master mode)

- 1 high speed SRMaster/Slave)
 - Support baud rate up to 20MHz (Master mode)
 - Support baud rate up to 5MHz (Slave mode Rx only)
 - Support baud rate up to 4MHz (Slave mode TRx)
- Programmable clock bitate
- Programmable clock polarity and phase
- Multiple Serial Interace Operations support
 - Motorola SPI
 - Texas InstrumentsSSI
 - National SemiconductorMicrowire

8.8. I2C Interface

8.8.1. Featuresof I2C

- Support maximum I2C port
- Three speeds:
 - Standard mode (0 to 100 Kb/s)
 - Fast mode (<400 Kb/s)
 - High-speed mode (<3.4 Mb/s) (writappropriate bus loading)
- Master or Slave I2C operation
- 7- or 10-bit addressing
- Transmit and receive buffers
- TX and RX DMA suppoper 0 and 1 only)

8.9. PWM Interface

8.9.1. Featuresof PWM

- Support maximum 4 PWM functions
- 0~100% dutycan beconfigurable
- Minimum resolution is 64us
- The period can beonfiguredup to 8 seonds

8.10. External Trigger Event Interface

8.10.1. Featuresof External Trigger Event

- Support maximum 4 External Trigger Event functions without CPU active
- Triggered by GTIMER

8.11. SDIORTKSPIDevice ModeInterface

8.11.1. Features of SDIO/RTK SPI Device Mode Interface

- Support SDIO 2.0 SDR25
- CIS can be configured with internal nwolatile memoryfor last card detection
- RTK SPI provides high efficiency SPI interface with interrupt and full duplex mode
- Support high performane Ethernetto WIFI transformation
- Support non-flash booting in the use dethernetto WIFI transformation card

8.11.2. SDIO Device Mode Specifications

8.11.2.1Bus Timing Specification

Figure 6. SDIO Interface Timin g

Table 10. SDIO interface Timing Parameters

NO	Parameter	Mode	MIN	MAX	Unit
fpp	Clock Frequency	Default	0	25	MHz
		HS	0	50	MHz
T _{WL}	Clock Low Time	DEF	10	-	ns
,	70	HS	7	-	ns
T _{WH}	Clock High Time	DEF	10	-	ns
		HS	7	-	ns
Tisu	Input Setup Time	DEF	5	-	ns
		HS	6	-	ns
T _{IH}	Input Hold Time	DEF	5	-	ns
		HS	2	-	ns
T _{ODLY}	Output Delay Time	DEF	-	14	ns

NO	Parameter	Mode	MIN	MAX	Unit
		HS	5	14	ns

8.12. I2SInterface

8.12.1. Features of I2S

- Support 8/16/24/32/48/96KHz, 44.1/88.2KHz
- Support16 or 24 bitsformat
- IntegratedDMAengine to minimize SW efforts
- Support TX and RX direction
- Master or Slave mode support

8.13. PCM Interface

8.13 1.1 Features of PCM

The RTL8711A Fupports 2 PCM digital audio interfacter are used for transmitting digital audio/voice data to/from the Audio Codec. Featuseare supported as below

- Supports Master and Slave mode
- Programmable long/short Frame Sync
- Supports &bit A-law/μ-law, and 13/16bit linear PCM formats
- Supports sigrextension and zeropadding for 3bit and 13bit samples
- Supports padding of Audio Gain 16-bit samples
- PCM Master Clock Output: 64, 128, 256, or 512kHz

Supports SCO/ESCO link

8.13.2. PCMSpecifications

8.13.2.1PCM Format

FrameSync is the synchronizing function used to control the transfer of DAC_Data and AD6_Data. Long FrameSync indicates the start of CAData at the rising edge of FrameSynand a Short FrameSync indicates the start of ADC_Data at alling edge of FrameSync

Figure 7. Long FrameSync

Figure 8. Short Frame Sync

8.13.2.2Sign Extension and Zero Padding ioB& and 13Bit Samples

For 16bit linear PCM output3 or 8 unused bits maye sign exteded/zeropadded

Figure 9. 16-Bit Output Data with 8 -Bit PCM Sample Data and Sign Extension

Figure 10. 16-Bit Output Data with 8 -Bit PCM Sample Data and Zero Padding

Figure 11. 16-Bit Output Data with 13 -Bit PCM Sample Data and Sign Extension

For 16bit linear PCM output, Dit programmable audio gain value can be padded tebit3sample data.

Figure 12. 16-Bit Output Data with 13 -Bit PCM Sample Data and Audio Gain

8.13.2.3PCM Interface Timing

Figure 13. PCM Interface (Long FrameSync)

Figure 14. PCM Interface (Short FrameSync)

Table 11. PCM Interface Clock Spec ifications

Symbol	Description	Min.	Тур.	Max.	Unit
F _{BCLK}	Frequency of BCLK (Master)	64	-	512	kHz
F _{FrameSync}	Frequency of Frame Sync (Master)	-	8		kHz
F _{BCLK}	Frequency of BCLK (Slave)	64	^	512	kHz
F _{FrameSync}	Frequency of Frame Sync (Slave)	-	8	-	kHz
D	Data Size	8	8	16	bits
N	Number of Slots Per Frame	1	1	1	Slots

Table 12. PCM Interface Timing

Symbol	Description	Min.	Тур.	Max.	Unit
T _{BCLKH}	High Period of BCLK	980	-	-	ns

Symbol	Description	Min.	Тур.	Max.	Unit
T _{BCLKL}	Low Period of BCLK	970	3	-	ns
T _{FrameSync_De}	Delay Time from BCLK High to Frasyec High	_		75	ns
T _{BCLKD_OUT}	Delay Time from BCLK High to Valid DAC_Data		-	125	ns
T _{SETUPIN}	Setup Time for ADC_Data Valid to BCL Low	10	- 3	-	ns
T _{HOLDIN}	Hold Time for BCLK Low to ADC_Data Invalid	125	1.8	•	ns

8.13.2.4PCM Interface Signal Levels

The PCM signal level ranges from 1.8V to 3.3V. The host provides the power sourthee waiting eted power level to the RTL8711APCM interface vithe VDD_IOpin.

8.14. Security Engine

8 14.1. Features

- Provide low SW computing and high performance encryption
- Supported athenticationalgorithms
 - MD5
 - SHA1
 - SHA2 (SHA224 / SHA256)

- HMAGMD5
- HMAGSHA1
- HMAGSHA2

•

- SupportedEncryption / Decryptionmechanisms
 - DES (CBC/ECB)
 - 3DES (CBC/E)CB
 - AES128 (CBC / ECB / CTR)
 - AES192 (CBC / ECB / CTR)
 - AE\$256 (CBC / ECB / CTR)

9. Electrical Characteristics

9.1. Temperature Limit Ratings

Table 13. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	-20	+85	°C
Junction Temperature	0	+125	°C

9.2. TemperatureCharacteristics

Table 14. Thermal Properties

Power (w)	PCB (layer)	Theat ja (C/W)	Theta jc(C/W)	Psi jt (C/W)
1	2	38.7	12.4	0.35
X	4	28.1	11.1	0.24

9.3. Power Supply DC Characteristics

Table 15. Power Supply DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA33, VD33IO, SW_HV3	3.3V Supply Voltage	3.0	3.3	3.6	V

Symbol	Parameter	Minimum	Typical	Maximum	Units
VDD_IO	Digital IO Supply Voltage	1.62	1.8~3.3	3.6	V
VA12_AFE, VA12_SYN, VA12_RF	1.2V Core Supply Voltage	1.08	1.2	1.32	V
IDD33	3.3V Rating Current (with internal regulator and integrated CMOS PA)	X	-	450	mA
IDD_IO	IO Rating Current (including VDD_IO)			200	mA
IDD_IO_33	3.3V IO Rating@rent		20)	50	mA

9.3.1. Power Mode Description

■ Shutdown Mode

CHIP_EN deasserts to shutdown whole chip without external power cut components required.

■ Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API.ggdc# timer period can be configured or GPIOB_0 can be used as external trigger event.DLSP trigger timer can be configured with the range 1 ~ 3600 sec.

■ Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep to potential. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

9.4. Mechanical Dimensions

9.4.1. Package Specification

9.4.2. Mechanical Dimensions Notes

Symbol	Di	mension in mm]	Dimension in inc	ch
Symbol	Min	Nom	Max	Min	Nom	Max
А	0.75	0.85	1.00	0.030	0.034	0.039
A ₁	0.00	0.02	0.05	0.000	0.001	0.002
A ₃	0.20 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E		6.00BSC			0.23@SC	
D2/E2	4.15	4.4	4.65	0.163	0.173	0.183
е		0.40BSC			0.016BSC	
L	0.30	0.40	0.50	0.012	0.016	0.020

Notes:

- 1. CONTROLLING DIMENSIONALLIMETER (mm).
- 2. REFERENCE DOCUMENJEDEC M220.

9.5. Digital IO Pin DC Characteristics

9.5.1. Electrical Specifications

Table16. Typical Digital IOC Parameter(3 3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VIH	Input-High Voltage	LVTTL	2.0	-	-	V
V _{IL}	Input-Low Voltage	LVTTL	-	-	8.0	V
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	V
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V
V_{T+}	Schmitttrigger High Level	9	1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{IL}	Input-Leakage Current	$V_{IN}=3.3V$ or 0	-10	#1	10	μΑ

Table17. Typical Digital IODC Parameter (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	CMOS	0.65x ℃ c	-	7-	V
V _{IL}	Input-Low Voltage	CMOS	-	76	0.35x ℃ c	V
V _{OH}	Output-High Voltage	CMOS	V _{CC} 0.45	V	-	V
V _{OL}	Output-Low Voltage	CMOS	- (-	0.45	V
V _{T+}	Schmitttrigger High Level		1.02	1.09	1.14	V
V _{T-}	Schmittrigger Low Level		0.67	0.73	0.8	V
I _{IL}	Input-Lækage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

10.Ordering Information

Table 18. Ordering Information

Part Number	Package	Status
RTL8711A₩B1CG	QFN48	MP