Equazioni e sistemi lineari #GAL

Definizione: un'equazione lineare nelle variabili x_1 , x_2 , x_n è un'equazione del seguente tipo $a_1x_1 + a_2x_2 + a_nx_n = b$

 a_1 , a_2 , a_n , b = numeri reali fissati $\in \mathbb{R}$ (a_1 , a_2 , a_n coefficienti, b termine noto o costante)

nota: se le variabili sono poche potremmo usare diverse lettere al posto di x_1, x_2, x_n

vengono definite equazioni lineari soltanto le somme algebriche tra $\mathbf{x_n}$ moltiplicate per un coefficiente

Studio delle equazioni lineari

$$N = 1$$
 $a_1 x_1 = b$

Insieme di soluzioni: $S \{ x_1 \in R : a_1x_1 = b \} \subseteq R$

se
$$a_1 \neq 0 \rightarrow x_1 = b/a_1 \rightarrow S \{ b/a_1 \}$$

se
$$a_1 = 0$$
 e b $\neq 0$ -> S = \emptyset

se
$$a_1 = 0$$
 e b = 0 -> S = R

$$N = 2$$
 $a_1x_1 + a_2x_2 = b$

Insieme di soluzioni: S { $(x_1 x_2) \in \mathbb{R}^2 : a_1 x_1 + a_2 x_2 = b$ } $\subseteq \mathbb{R}^2$

se $a_1 \neq 0 \rightarrow x_1 = -(a_2/a_1) x_2 + b/a_1 \rightarrow x_2$ è una variabile libera $\rightarrow x_2 = t \in \mathbb{R}$ (parametro arbitrario)

$$S \; \{ \; (-(a_2/a_1)^*t \; + \; b/a_1 \; \; t) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; + \; t^*(-a_1/a_2 \; \; 1) \; : \; t \in R \; \} \subseteq R \; -> \; S \; \{ \; (b/a_1 \; \; 0) \; +$$

$$\in \mathbb{R} \} \subseteq \mathbb{R}^2 \longrightarrow \infty$$
 soluzioni

se
$$a_1 = 0$$
 e $a_2 \neq 0 -> x_2 = -b/a_2 -> x_1$ variabile libera -> $x_1 = t$

∈R)parametro arbitrario)

$$S \{ (t -b/a_2) : t \in R \} \subseteq R^2 -> \infty \text{ soluzioni}$$

se
$$a_1 = a_2 = 0$$
 e b $\neq 0$ -> S = \varnothing -> impossibile

se
$$a_1 = a_2 = b = 0 -> S = R^2 -> \infty$$
 soluzioni

$$N \ge 2$$
 $a_1x_1 + a_2x_2 + a_nx_n = b$

se $a_i \neq 0$ per qualche i -> ∞ soluzioni

se
$$a_1 = a_2 = a_n = 0$$
 e b $\neq 0$ -> S = \emptyset

se
$$a_1 = a_2 = a_n = b = 0 -> S = R^n$$

Definizione: un sistema lineare è un sistema di equazioni lineari in un certo numero di variabili

Forma generale:
$$\{a_{11}x_1 + a_{12}x_2 + a_{1n}x_n = b_1; \ a_{21}x_1 + a_{22}x_2 + a_{2n}x_n = b_2; \ a_{m1}x_1 + a_{m2}x_2 + a_{mn}x_n = b_m\}$$

m = numero di equazionin = numero variabili

a_{ii} = coefficiente della variabile j-esima nella i-esima equazione

i = equazione / riga nella matrice corrispondente j = variabile / colonna nella matrice corrispondente

 $\mathbf{b_{\hat{i}}} = \text{termine noto della i-esima equazione / riga nella matrice} \\$ corrispondente

Insieme delle soluzioni del sistema lineare: S $\{(x_1 x_2 x_n) \in \mathbb{R}^n : \text{soddisfi} \}$ tutte le equazioni del sistema $\} \subseteq \mathbb{R}^n$

Soluzione per sostituzione di un sistema:

- Scegliamo una variabile e un'equazione e risolviamo rispetto alla variabile
- Sostituiamo il risultato nelle equazioni rimanenti
- Ripetiamo i passaggi 1 e 2 fino ad esaurire le equazioni
- Sostituiamo al contrario tutte le soluzioni

Esempio di sistema con m = 2 e n = 3 -> S { $\underline{v} + t\underline{w} : t \in R$ } $\subseteq R^3$