Análisis espectral de señales: Transformada de Fourier

Teoría de Sistemas lineales

Marco Teran Universidad Sergio Arboleda

Contenido

- De la Serie de Fourier de tiempo continuo a la transformada de Fourier
- 2 De la Serie de Fourier de tiempo discreto a la transformada de Fourier
- 3 Par de la transformada de Fourier, FT
 - Espectro de Fourier
- 4 Propiedades de la transformada de Fourier
- 5 Ejemplos y ejercicios
- 6 Tarea

- lacksquare Si una señal x(t) de tiempo continuo es periódica con periodo T, se puede representar de forma analítica mediante la **Serie de Fourier**
- Representar mediante la composición de una **suma** de funciones armónicamente relacionadas

$$x(t) = \sum_{k = -\infty}^{\infty} c_k e^{j\omega_k t}$$

Donde,

$$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\omega_k t} \, \mathrm{d}t$$

¿Pero qué ocurre cuando la señal de análisis no es periódica?

En este caso tenemos a x(t), una señal **no periódica de duración finita**, es decir x(t)=0 para $|t|>T_1$, tal cual como se puede observar en la siguiente gráfica:

Figura 1: Señal continua de duración finita

- lacktriangle Definimos la secuencia $x_{T_0}(t)$ representación periódica de x(t)
- Se obtiene mediante la **periodización**, es decir repetición del **patrón**.
- \blacksquare T_0 el periodo fundamental de la nueva señal.
- La nueva secuencia $x_{T_0}(t)$ es diferente a la original x(t)

Figura 2: Señal continua periódica obtenida de la periodización de x(t)

La secuencia $\boldsymbol{x}_{T_0}(t)$ si puede ser representada mediante la serie de Fourier

$$x_{T_0}(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\omega_0 kt} \tag{1}$$

donde,

$$\omega_0 = \frac{2\pi}{T_0}$$

con coeficientes de la serie de Fourier

$$c_k = \frac{1}{T_0} \int_{\langle T_0 \rangle} x_{T_0}(t) e^{-jk\omega_0 t} dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x_{T_0}(t) e^{-jk\omega_0 t} dt$$
 (2)

Podemos afirmar que

$$x_{T_0}(t) = x(t), \text{ para } |t| \le T_1$$
 (3)

y x(t) = 0 fuera de los limites de $[-T_1, T_1]$.

Podemos rescribir la ecuación 2 de la siguiente forma:

$$c_k = \frac{1}{T_0} \int_{-T_1}^{T_1} x(t)e^{-jk\omega_0 t} dt = \frac{1}{T_0} \int_{-\infty}^{\infty} x(t)e^{-jk\omega_0 t} dt$$
 (4)

Definamos de acuerdo la ecuación 4 una nueva función de una variable independiente ω de la siguiente manera:

$$X(\boldsymbol{\omega}) = \int_{-\infty}^{\infty} x(t)e^{-j\boldsymbol{\omega}t} \,\mathrm{d}t$$
 (5)

Reescribamos la ecuación 4 implementando la nueva función definida por la ecuación 5, donde para este caso $\omega = k\omega_0$:

$$c_k = \frac{1}{T_0} X(\mathbf{k}\omega_0) \tag{6}$$

Podemos representar el periodo T_0 de la siguiente forma:

$$\frac{1}{T_0} = \frac{\omega_0}{2\pi} \tag{7}$$

Entonces,

$$x_{T_0}(t) = \sum_{k=-\infty}^{\infty} \frac{\omega_0}{2\pi} X(k\omega_0) e^{jk\omega_0 t}$$
 (8)

Luego reescribimos,

$$x_{T_0}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(k\omega_0) e^{jk\omega_0 t} \omega_0 \tag{9}$$

Si
$$T_0 \to \infty$$
 entonces

$$\lim_{T_0 \to \infty} x_{T_0}(t) = x(t) \tag{10}$$

Podemos representar el periodo T_0 de la siguiente forma:

si
$$T_0 \to \infty$$
 entonces $\omega_0 = \frac{2\pi}{T_0} \to 0$ entonces $\omega_0 \to \Delta \omega$

Reemplacemos el inverso del periodo (ecuación 7) en la ecuación de síntesis de la serie de Fourier (ecuación 1)

$$x(t) = \lim_{T_0 \to \infty} x_{T_0}(t) = \lim_{\omega_0 \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(k\omega_0) e^{jk\omega_0 t} \omega_0 \quad (11)$$

entonces,

$$x(t) = \lim_{\Delta\omega \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \underbrace{X(k\Delta\omega)e^{jk\Delta\omega t}}_{altura} \underbrace{\Delta\omega}_{ancho}.$$
 (12)

Figura 3: Interpretación de la ecuación analítica de Fourier como suma de integral

Por tanto la ecuación 11 se transforma en una integral,

$$x(t) = \lim_{\substack{T_0 \to \infty \\ \Delta\omega \to 0}} x_{T_0}(t) = \lim_{\Delta\omega \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(k\Delta\omega) e^{jk\Delta\omega t} \Delta\omega$$
(13)

área bajo la función,

$$X(\omega)e^{j\omega t}$$

entonces,

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

- lacktriangle Si una señal x[n] de tiempo discreto es periódica con periodo N, se puede representar de forma analítica mediante la **Serie de Fourier**
- Representar mediante la composición de una **suma** de funciones *armónicamente relacionadas*

$$x[n] = \sum_{k=\langle N \rangle} c_k e^{j\Omega kn} = \sum_{k=\langle N \rangle} c_k e^{j\frac{2\pi}{N}kn}.$$

Donde,

$$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$

¿Pero qué ocurre cuando la señal de análisis no es periódica?

En este caso tenemos a x[n] una secuencia **no periódica de duración finita**, es decir x[n]=0 para $|n|>N_1$, tal cual como se puede observar en la siguiente gráfica:

Figura 4: Señal discreta de duración finita

- lacktriangle Definimos la secuencia $x_{N_0}[n]$ representación periódica de x[n]
- Se obtiene mediante la **periodización**, es decir repetición del **patrón**.
- $lue N_0$ el periodo fundamental de la nueva señal.
- lacksquare La nueva secuencia $x_{N_0}[n]$ es diferente a la original x[n]

Figura 5: Señal discreta periódica obtenida de la periodización de x[n]

La secuencia $\boldsymbol{x}_{N_0}[n]$ puede ser representada mediante la serie de Fourier

$$x_{N_0}[n] = \sum_{k=\langle N_0 \rangle} c_k e^{jk\Omega_0 n}.$$
 (14)

donde,

$$\Omega_0 = \frac{2\pi}{N_0}$$

con coeficientes de la serie de Fourier

$$c_k = \frac{1}{N_0} \sum_{n = \langle N_0 \rangle} x_{N_0}[n] e^{-jk\Omega_0 n}.$$
 (15)

Podemos afirmar que

$$x_{N_0} = x[n], \text{ para } |n| \le N_1$$
 (16)

y x[n] = 0 fuera de los limites de $[-N_1, N_1]$.

Podemos rescribir la ecuación 15 de la siguiente forma:

$$c_k = \frac{1}{N_0} \sum_{n=-N_1}^{N_1} x[n] e^{-jk\Omega_0 n} = \frac{1}{N_0} \sum_{n=-\infty}^{\infty} x[n] e^{-jk\Omega_0 n}$$
 (17)

Definamos de acuerdo la ecuación 17 una nueva función de una variable independiente Ω de la siguiente manera:

$$X(\mathbf{\Omega}) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\mathbf{\Omega}n}$$
 (18)

Reescribamos la ecuación 17 implementando la nueva función definida por la ecuación 18, donde para este caso $\Omega = k\Omega_0$:

$$c_k = \frac{1}{N_0} X(\mathbf{k}\Omega_0) \tag{19}$$

Podemos representar el periodo N_0 de la siguiente forma:

$$\frac{1}{N_0} = \frac{\Omega_0}{2\pi} \tag{20}$$

Reemplacemos el inverso del periodo (ecuación 20) en la ecuación de síntesis de la serie de Fourier (ecuación 14)

$$x_{N_0}[n] = \sum_{k=\langle N_0 \rangle} c_k e^{jk\Omega_0 n} = \sum_{k=\langle N_0 \rangle} \frac{\Omega_0}{2\pi} X(k\Omega_0) e^{jk\Omega_0 n}$$
 (21)

reescribimos la ecuación 22,

$$x_{N_0}[n] = \frac{1}{2\pi} \sum_{k=\langle N_0 \rangle} X(k\Omega_0) e^{jk\Omega_0 n} \Omega_0$$
 (22)

Si
$$N_0 \to \infty$$
 entonces

$$\lim_{N_0 \to \infty} x_{N_0}[n] = x[n] \tag{23}$$

Podemos representar el periodo T_0 de la siguiente forma:

$$\text{si }N_0\to\infty, \text{ entonces }\Omega_0=\frac{2\pi}{N_0}\to0, \text{ entonces }\Omega_0\to\Delta\Omega$$

Reemplacemos el inverso del periodo (ecuación 20) en la ecuación de síntesis de la serie de Fourier (ecuación 14)

$$x[n] = \lim_{\substack{N_0 \to \infty \\ \Delta\Omega \to 0}} x_{N_0}[n]$$

$$= \lim_{\substack{\Delta\Omega \to 0}} \frac{1}{2\pi} \sum_{k=\langle N_0 \rangle} \underbrace{X(k\Delta\Omega)e^{jk\Delta\Omega n}}_{altura} \underbrace{\Delta\Omega}_{ancho}$$

$$\underbrace{(24)}_{rectangulo}$$

Figura 6: Interpretación de la ecuación analítica de Fourier como suma de integral

 $X(\Omega)$ es periódica con periodo 2π . La secuencia $e^{j\Omega n}$ también lo es, por tanto el producto $X(\Omega)e^{j\Omega n}$ es periódico con periodo $N=2\pi$.

De la Serie de Fourier de tiempo discreto a la transformada de Fourier

Por tanto la ecuación 22 se transforma en una integral, donde la suma $\sum_{k=\langle N_0\rangle}$ se realiza sobre N_0 intervalos de un ancho cada

uno de
$$\Omega_0=rac{2\pi}{N_0}.$$

Para un intervalo total de ancho 2π .

De la Serie de Fourier de tiempo discreto a la transformada de Fourier

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$
 (25)

 $\text{Es decir: } k\Omega_0 \text{ va desde} \lim_{\substack{N_0 \to \infty \\ \Omega_0 \to 0}} k\frac{2\pi}{N_0}\bigg|_{k=1} = 0 \text{ a } \lim_{\substack{N_0 \to \infty \\ \Omega_0 \to 0}} k\frac{2\pi}{N_0}\bigg|_{k=N_0} = 2\pi,$

es decir desde $\Omega=0$ a $\Omega=2\pi$

Par de la transformada de Fourier, FT

Par de la transformada de Fourier de tiempo continuo, CTFT

Se entiende como al par de la transformada de Fourier de tiempo continuo la siguiente relación

$$x(t) \xrightarrow{\mathcal{F}} X(\omega)$$
 (26)

Donde la transformada de Fourier de tiempo continuo se expresa mediante

$$X(\omega) = \mathfrak{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (27)

y la transformada inversa de Fourier de tiempo continuo se obtiene

$$x(t) = \mathfrak{F}^{-1}\{X(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$
 (28)

Par de la transformada de Fourier de tiempo discreto, DTFT

Se entiende como al par de la transformada de Fourier de tiempo discreto la siguiente relación

$$x[n] \xrightarrow{\mathcal{F}} X(\Omega)$$
 (29)

Donde la transformada de Fourier de tiempo discreto se expresa mediante

$$X(\Omega) = \mathfrak{F}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
(30)

y la transformada inversa de Fourier de tiempo discreto se obtiene

$$x[n] = \mathfrak{F}^{-1}\{X(\Omega)\} = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$
 (31)

Recordemos que la DTFT $X(\Omega)$ es periódica con periodo 2π , es decir

$$X(\Omega) = X(\Omega + k2\pi) \tag{32}$$

Espectro de Fourier

 $\overline{\mathsf{A}\ X(\omega)/X(\Omega)}$ se le conoce también como la representación en la frecuencia o el espectro de x(t)/x[n].

Tiempo continuo:

La transformada de Fourier de la secuencia x(t) es de carácter complejo.

Forma polar:

$$X(\omega) = |X(\omega)|e^{j\Phi(\omega)} \tag{33}$$

donde, $|X(\omega)|$ — espectro de magnitud; $\Phi(\omega)$ — espectro de fase. Si $x(t) \in \Re$ entonces el espectro de magnitud es **par** y el espectro de fase **impar**.

Tiempo discreto:

La transformada de Fourier de la secuencia x[n] es de carácter complejo.

Forma polar:

$$X(\Omega) = |X(\Omega)|e^{j\Phi(\Omega)} \tag{34}$$

donde, $|X(\Omega)|$ — espectro de magnitud; $\Phi(\Omega)$ — espectro de fase. Si $x[n] \in \Re$ entonces el espectro de magnitud es **par** y el espectro de fase **impar**.

Propiedades de la transformada de Fourier

Propiedades de la transformada de Fourier: Linealidad

Tiempo continuo:

$$\alpha x(t) + \beta y(t) \xrightarrow{\mathcal{F}} \alpha X(\omega) + \beta Y(\omega)$$
 (35)

Tiempo discreto:

$$\alpha x[n] + \beta y[n] \xrightarrow{\mathcal{F}} \alpha X(\Omega) + \beta Y(\Omega)$$
 (36)

Propiedades de la transformada de Fourier: Periodicidad del espectro de una señal discreta

$$X(\Omega + k2\pi) = X(\Omega) \tag{37}$$

 Ω se da en radianes y es continua de $-\pi \leq \Omega \leq \pi$ o también $0 < \Omega < 2\pi$.

Propiedades de la transformada de Fourier: Corrimientos de frecuencia y tiempo

Tiempo continuo:

$$x(t-t_0) \xrightarrow{\mathcal{F}} e^{-j\omega t_0} X(\omega)$$
 (38)

$$x(t)e^{j\omega_0t} \xrightarrow{\mathcal{F}} X(\omega - \omega_0)$$
 (39)

A la ecuación 39 se le conoce como modulación compleja.

Propiedades de la transformada de Fourier: Corrimientos de frecuencia y tiempo

Tiempo discreto:

$$x[n-N] \xrightarrow{\mathcal{F}} X(\Omega)e^{-j\Omega N}$$
 (40)

$$x[n]e^{j\Omega_0 n} \xrightarrow{\mathcal{F}} X(\Omega - \Omega_0) \tag{41}$$

A la ecuación 41 se le conoce como modulación compleja.

Propiedades de la transformada de Fourier: Conjugación

Tiempo continuo:

$$x^*(t) \xrightarrow{\mathcal{F}} X^*(-\omega)$$
 (42)

Tiempo discreto:

$$x^*[n] \xrightarrow{\mathcal{F}} X^*(-\Omega)$$
 (43)

Propiedades de la transformada de Fourier: Inversión en el tiempo

Tiempo continuo:

$$x(-t) \xrightarrow{\mathcal{F}} X(-\omega) \tag{44}$$

Tiempo discreto:

$$x[-n] \xrightarrow{\mathcal{F}} X(-\Omega)$$
 (45)

Propiedades de la transformada de Fourier: Escalamiento en el tiempo

Tiempo continuo:

Para una versión escalada en el tiempo de $x_s(t) = x(at)$:

$$x(at) \xrightarrow{\mathcal{F}} \frac{1}{|a|} X(\frac{\omega}{a}) \tag{46}$$

si a > 1 la señal se comprime en el tiempo.

Propiedades de la transformada de Fourier

Para una versión escalada en el tiempo de $x_d[n] = x[Mn]$, donde $M > 1 \in \mathbb{Z}$:

$$x_d[n] \xrightarrow{\mathcal{F}} \frac{1}{M} X(\frac{\Omega}{M})$$
 (47)

Propiedades de la transformada de Fourier: Paridad de la transformada de Fourier

Tiempo continuo:

Para $x(t) \in \mathfrak{R}$

$$x(t) = x_{even}(t) + x_{odd}(t) \xrightarrow{\mathcal{F}} X(\omega) = A(\omega) + jB(\omega) \quad \text{(48)}$$

donde.

$$x_{even}(t) \xrightarrow{\mathcal{F}} \text{Re}\{X(\omega)\} = A(\omega)$$
 (49)

$$x_{odd}(t) \xrightarrow{\mathcal{F}} j \operatorname{Im}\{X(\omega)\} = jB(\omega)$$
 (50)

Propiedades de la transformada de Fourier: Paridad de la transformada de Fourier

Tiempo discreto:

Para $x[n] \in \mathfrak{R}$

$$x[n] = x_{even}[n] + x_{odd}[n] \xrightarrow{\mathcal{F}} X(\Omega) = A(\Omega) + jB(\Omega) \quad \text{(51)}$$

donde.

$$x_{even}[n] \xrightarrow{\mathcal{F}} \operatorname{Re}\{X(\Omega)\} = A(\Omega)$$
 (52)

$$x_{odd}[n] \xrightarrow{\mathcal{F}} j \operatorname{Im}\{X(\Omega)\} = jB(\Omega)$$
 (53)

Propiedades de la transformada de Fourier: Teorema de Parseval

Tiempo continuo:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$
 (54)

Propiedades de la transformada de Fourier: Teorema de Parseval

Tiempo discreto:

$$E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega$$
 (55)

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2} = \frac{1}{2\pi} \int_{2\pi}^{\infty} S_{x}(\Omega) d\Omega$$
 (56)

donde $S_r(\Omega)$ se conoce como densidad espectral de potencia y se calcula

$$S_x(\Omega) = \lim_{N \to \infty} \frac{|X_N(\Omega)|^2}{2N+1}.$$
 (57)

donde

$$X_N(\Omega) = \mathfrak{F}\{x[n]\{u[n+N] - u[n-N]\}\}. \tag{58}$$

Propiedades de la transformada de Fourier: Diferenciación y diferencia

Tiempo continuo:

Diferenciación:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \xrightarrow{\mathcal{F}} j\omega X(\omega) \tag{59}$$

Tiempo discreto:

Diferencia:

$$\underbrace{x[n] - x[n-1]}_{\text{secuencia de primera differencia}} \xrightarrow{\mathcal{F}} (1 - e^{-j\Omega}) X(\Omega) \tag{60}$$

Propiedades de la transformada de Fourier: Diferenciación en la frecuencia

Tiempo continuo:

$$tx(t) \xrightarrow{\mathcal{F}} j \frac{\mathrm{d}X(\omega)}{\mathrm{d}\omega}$$
 (61)

Tiempo discreto:

$$nx[n] \xrightarrow{\mathcal{F}} j \frac{\mathrm{d}X(\Omega)}{\mathrm{d}\Omega}$$
 (62)

Propiedades de la transformada de Fourier: Integración y Acumulación

Tiempo continuo:

Integración

$$\int_{-\infty}^{t} x(\tau) d\tau \xrightarrow{\mathcal{F}} \pi X(0) \delta(\omega) + \frac{1}{j\omega} X(\omega)$$
 (63)

Tiempo discreto:

Acumulación

$$\sum_{n=1}^{n} x[n] \xrightarrow{\mathcal{F}} \pi X(0)\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}} X(\Omega)$$
 (64)

Propiedades de la transformada de Fourier: Integral de convolución

Integral de convolución en el dominio del tiempo es multiplicación en el dominio de la frecuencia.

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$
 (65)

En el dominio de la frecuencia es el producto de ambas señales:

$$\underbrace{Y(\omega)}_{\text{espectro de}} = \underbrace{X(\omega)}_{\text{espectro de respuesta en entrada } x(t)} \underbrace{H(\omega)}_{\text{frecuencia del sistema}}$$
(66)

Propiedades de la transformada de Fourier: Integral de convolución

Se cumple que

$$|Y(\omega)| = |X(\omega)||H(\omega)| \tag{67}$$

$$\angle Y(\omega) = \angle X(\omega) + \angle H(\omega)$$
 (68)

Propiedades de la transformada de Fourier: Suma de convolución

Suma de convolución en el dominio del tiempo es multiplicación en el dominio de la frecuencia.

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
 (69)

en el dominio de la frecuencia se puede realizar mediante el calculo del producto de ambos argumentos de la suma de convolución

$$Y(\Omega) = X(\Omega)H(\Omega) \tag{70}$$

Propiedades de la transformada de Fourier: Suma de convolución

Se cumple que

$$|Y(\Omega)| = |X(\Omega)||H(\Omega)| \tag{71}$$

$$\angle Y(\Omega) = \angle X(\Omega) + \angle H(\Omega)$$
 (72)

Propiedades de la transformada de Fourier: Multiplicación en el dominio del tiempo Tiempo continuo:

$$x(t)y(t) \xrightarrow{\mathcal{F}} \frac{1}{2\pi}X(\omega) \circledast Y(\omega)$$
 (73)

Tiempo discreto:

$$x[n]y[n] \xrightarrow{\mathcal{F}} \frac{1}{2\pi}X(\Omega) \circledast Y(\Omega)$$
 (74)

donde

— implica convolución circular, que se calcula de la forma

$$X(\Omega) \circledast Y(\Omega) = \int\limits_{2\pi} X(\Theta) Y(\Omega - \Theta) \mathrm{d}\Theta \tag{75}$$

Propiedades de la transformada de Fourier: Dualidad

Tiempo continuo:

si

$$x(t) \xrightarrow{\mathcal{F}} X(\omega)$$
 (76)

entonces,

$$X(t) \xrightarrow{\mathcal{F}} 2\pi x(-\omega)$$
 (77)

Tiempo discreto:

si

$$x[n] \xrightarrow{\mathcal{F}} X(\Omega)$$
 (78)

entonces,

$$X[n] \xrightarrow{\mathcal{F}} 2\pi x(-\Omega) \tag{79}$$

Ejemplos y ejercicios: Transformada de Fourier

Ejemplo

Encuentre la DTFT de la siguiente señal:

$$x[n] = \begin{cases} A, & \text{para } -M \leq n \leq M; \\ 0, & \text{para otros casos.} \end{cases}$$

Transformada inversa de Fourier de tiempo continuo: Ejemplo

Ejemplo

Encuentre la iCTFT de la siguiente señal:

$$X(\omega) = \cos(\omega) \left\{ u \left(\omega + \frac{\pi}{2} \right) - u \left(\omega - \frac{\pi}{2} \right) \right\}$$

Transformada de Fourier de tiempo continuo: Ejemplo

Ejemplo

Encuentre la CTFT de la siguiente señal:

$$s(t)=\left|3t\right|\left\{ u\left(t+2\right)-u\left(t-2\right)\right\}$$

Ejemplo

Encuentre la DTFT de la siguiente señal:

$$x[n] = r^n u[n]$$
, donde $|r| < 1$.

Ejemplo

Encuentre la iDTFT del siguiente pulso rectangular $X(\Omega)$:

$$X(\Omega) \ = \ \begin{cases} 1, & \text{para } |\Omega| \leq W;; \\ 0, & \text{para } W < |\Omega| < \pi. \end{cases}$$

Ejercicio

Encuentre la DTFT de la siguiente señal:

$$x[n] \ = \ \begin{cases} 1, & \text{para} \ |n| \leq N_1; \\ 0, & \text{para} \ |n| > N_1. \end{cases}$$

Ejercicio

Encuentre la DTFT de la siguientes señales:

$$x[n] = a^{|n|}$$
, para $-1 < a < 1$.

$$\mathbf{b}\ s[n] = \sin(\frac{\pi n}{4})\left\{u[n] - u[n-5]\right\}$$

$$\mathbf{z}[n] = -a^n u[-n-1], \text{ donde } a \in \Re.$$

Ejercicio

Encuentre la iDTFT de la siguientes señales:

а

$$X(\Omega) \ = \ \begin{cases} 0, & \text{para } 0 \leq |\Omega| \leq \Omega_0; \\ 1, & \text{para } \Omega_0 < |\Omega| < \pi. \end{cases}$$

$$P(\Omega) = \cos^2(\Omega)$$

Ejercicio

Encuentre la iDTFT de la siguientes señales:

а

$$X(\Omega) \ = \ \begin{cases} 0, & \text{para } 0 \leq |\Omega| \leq \Omega_0; \\ 1, & \text{para } \Omega_0 < |\Omega| < \pi. \end{cases}$$

$$P(\Omega) = \cos^2(\Omega)$$

Allo, Dr. Elizabeth? Heu... J'ai accidentellement réalisé une transformation de Fourier sur mon chat... Miaou!

Fourier Transformation

Four year Transformation

Engineering Student

ENGINEERING STUDENT

Tarea

Ejercicio

Determine y dibuje la densidad espectral de potencia $S_x(\Omega)$ de la siguiente señal x[n]:

$$x[n] = a^n u[n]$$

¡Muchas gracias por su atención!

¿Preguntas?

Contacto: Marco Teran webpage: marcoteran.github.io/e-mail: marco teran@usa.edu.co

