Documento Tecnico

SPS BAND

Fecha: 31/07/2025

Profesor:

- Juan Cruz Becerra

Alumnos:

- Mateo Paes
- Matias Sanchez
- Agustin Schiada

Presentación del Proyecto

Descripción del Problema y Solución Propuesta

En los parques nacionales de Argentina, la creciente afluencia turística ha incrementado los casos de extravío de personas, especialmente en zonas de difícil acceso o con señalización deficiente. Estos incidentes generan demoras en los operativos de rescate, altos costos económicos y riesgos para la integridad de los visitantes.

Como solución, se propone el desarrollo de una **pulsera S.O.S.** equipada con geolocalización satelital, monitoreo de signos vitales y un botón de emergencia. El dispositivo enviará datos en tiempo real a una estación de control, permitiendo detectar situaciones críticas rápidamente, optimizar los protocolos de búsqueda y reducir significativamente los costos operativos, especialmente en zonas de alta concurrencia como la Patagonia y el Litoral.

Objetivo del Proyecto

Objetivo General de la Pulsera S.O.S.

El objetivo principal de la pulsera S.O.S. es **reducir los tiempos de búsqueda** en reservas naturales y parques nacionales, dado que estos pueden extenderse por períodos indefinidos, desde un día hasta varios días. Este retraso representa un riesgo significativo para la integridad del visitante. La solución busca **acortar esos plazos** y permitir que los protocolos de rescate cuenten con una **estimación horaria más precisa**, optimizando la eficiencia operativa y mejorando la seguridad del usuario.

Objetivo Específicos de la Pulsera S.O.S.

La pulsera S.O.S. incorpora un módulo GPS para la localización del usuario, y se activa en dos situaciones principales:

- Activación manual: Si el usuario sufre una lesión o se desvía del sendero pero permanece consciente, podrá presionar dos veces un botón de emergencia que enviará su ubicación actual en tiempo real.
- 2. **Activación automática**: En caso de desmayo, un sensor de pulsos incorporado detectará una frecuencia cardíaca anormalmente baja (por ejemplo, <20 ppm) y

activará automáticamente el envío de ubicación a la estación de control.

Además, la pulsera incluirá indicadores LED que informarán al usuario sobre el estado de funcionamiento de los componentes clave: señal de envío, cobertura, nivel de batería, y confirmación de transmisión de datos. Esto brinda al usuario mayor confianza y seguridad durante su uso.

Especificaciones del Sistema

Requerimientos

ID	Categorí a	Elemento	Descripción	Tipo (HW/F W)	Priori dad	Comentarios	Columna 1
REQ-F W-01	Fimware	Comunic acion	Envio de la ubicacion cada 30 minutos,para establecer un recorrido en el servidor	FW	Alta	No más frecuente porque la comunicación implica un gran uso de energía	
REQ-F W-02	Fimware	Pulsóme tro	Precisión requerida para la concentración de ppm y O2 en sangre.	FW	Media	Permite conocer los datos vitales del usuario	FALSE
REQ-F W-03	Fimware	Sensado	El dispositivo debe leer todos los sensores cada 30 minutos	FW	Media	Al igual que la comunicación, implica un consumo significativo además del tiempo adecuado para llevar un rastreo eficiente	
REQ-F W-04	Fimware	Estacion terrena	Interfaz grafica que muestre la ubicacion exacta de cada dispositivo,su	FW	Media	Tiene que dar una facilidad para leer y observar todos los datos, asi	FALSE

			estado actual y la respectiva informacion de usuario			cualquier usuario lo puede entender, técnico o no	
REQ-G EN-01	Genral	-	-	HW	Alta	Debe funcionar con baterias	FALSE
REQ-G EN-02	Genral	Energía	Determinar el ahorro/carga de batería mediante células solares	HW	Baja	Brindaría una pequeña durabilidad adicional de funcionamiento	
REQ-H W-01	Hardware	Microcon trolador	Debe ser reducido en su tamaño ; un bajo consumo ; compatibilidad con 4G	HW	Alta	Compatible con Deep Sleep	FALSE
REQ-H W-02	Hardware	Comunic acion	debe ser capaz de conectarse a tecnologia 4G; mantener un bajo consumo; gran alcance de conectividad	HW	Alta	El sisetma debe tener una comunicación de largo alcance	FALSE
REQ-H W-03	Hardware	Bateria	precisa una autonomia de 7 dias promedio para un correcto uso del dispositivo	HW	Media	Debe tener un tamaño apropiado, mas o menos a la par con el tamaño del micro	FALSE
REQ-H W/FW -01	Hardware/ Fimware	Rastreo/ Ubicació n	Ubicacion precisa en un rango ±10m	HW/FW	Alta	No se necesita una precisión mayor, al ser un radio en el que se va a buscar una persona	FALSE
REQ-H W/FW -02	Fimware	Pulsador SOS	Pulsador que activa la baliza SOS	HW/FW	Alta	Interrumpe el modo de ahorro de energía para enviar una alerta y los datos actuales	FALSE

Diseño de Hardware

Diagrama en bloques

Selección de componentes

Esquemático eléctrico

Diseño de PCB Consumo estimado

Diseño de Firmware / Software Embebido

Arquitectura general:

 $\mbox{Diagrama modular: sensor} \rightarrow \mbox{procesador} \rightarrow \mbox{transmisión} \rightarrow \mbox{estación base}.$

Diagramas de flujo / estados

Diagrama de estados

Diagrama de Flujo:

Diagrama de Secuencia

Lenguaje / herramientas

- Lenguaje: C / C++ con Framework de Arduino
- IDE: PlatformIO o Arduino IDE

Tareas principales (pseudocódigo)

- Lectura periódica de sensores (MAX30102, GPS)
- Transmisión periódica cada 30 min
- Activación por pulsador → alerta inmediata
- Manejo de batería baja → priorizar solo GPS/SOS

Periféricos

• I2C: Sensor de pulso

• UART: GPS, LoRa

• GPIO: botón SOS

Manejo de errores

- Reintento de envío
- Estado de conexión fallida
- Alerta si no hay señal por más de N ciclos

Comunicación y Conectividad

Protocolos utilizados:

• I2C: para MAX 30102

UART: para GPS, LoRa y 2G

• BLE (en versiones futuras)

Formato de datos:

JSON con los siguientes valores:

- Ritmo cardíaco en distintos estados a definir (bajo, normal, alto e intermedios entre cada uno/advertencias)
- Saturación de oxígeno en sangre en porcentaje (%)
- Link de la ubicación en google maps en el siguiente formato: https://www.google.com/maps/place/[LONGITUD],[LATITUD]
- Flag de alerta 01 (activado por el usuario mediante pulsador)
- Flag de alerta 02 (activado por servidor o dispositivo según el ritmo cardíaco)

Envío a servidor:

- LoRa hacia estación base o gateway
- Alternativamente: módulo celular / satelital en versiones futuras

Pruebas y Validación

Metodología de pruebas:

- Pruebas en entorno urbano simulado (colegio)
- Medición de alcance de transmisión
- Validación de precisión GPS y lectura biométrica

Resultados esperados:

- GPS con precisión próxima a 10 metros o menor
- Transmisión de datos al servidor eficiente y funcional
- Lecturas biométricas precisas
- Dimensiones relativamente cercanas a las expectativas dentro del boceto de la maqueta; teniendo un diseño cómodo y ergonómico para la muñeca del usuario.

Ajustes:

- Asegurarse que la SIM, con la que se va a transmitir mediante el uso de la tecnología 2G, sea compatible y tenga suficiente saldo
- En el caso de que el resultado físico o dimensional del PCB del dispositivo sea menor al esperado, rediseñar la carcasa para ocupar menos espacio.

•

Conclusiones y Futuro Desarrollo

- La pulsera ofrece una solución costo-efectiva frente a rescates caros y prolongados.
- Puede reducir el tiempo de búsqueda hasta un 70%.
- A futuro se plantea reemplazo del hardware por una app móvil.
- Mejora la seguridad en actividades de senderismo y ecoturismo.

Anexos

• Código fuente relevante:

A completar una vez desarrollado el prototipo.

• Datasheets principales:

- o Supermini nRF52840 Nordic Semiconductor
- MAX30102 Medición de pulso y oxígeno Maxim Integrated (ahora Analog Devices)
- Telit MOT G30 GSM 2G Module
- o GP-02 GPS Module GlobalTop
- EN-EL 19 3.7V 700mAh Li-Ion Nikon Battery
- o BL-5CB 3.7V 800mAh Rechargeable Li-Ion NOKIA Battery

Planos y diagramas:

ightarrow Diagrama en bloques ya definido. Pendiente: esquemático eléctrico y diseño de PCB.

• Manual de uso del sistema (provisional):

o Colocarse la pulsera en la muñeca.

- o Encender el dispositivo.
- o Verificar que parpadee el LED de estado.
- o En caso de emergencia, presionar el botón SOS durante 3 segundos.
- o El sistema enviará ubicación y alerta al centro de monitoreo.