OTRA FORMA DE HALLAR LA DISTANCIA DE UN PUNTO A UN PLANO

La distancia de un punto \mathbf{P} a un plano $\boldsymbol{\pi}$ es la distancia de \mathbf{P} a \mathbf{Q} donde \mathbf{Q} es el punto del plano que está más cerca de \mathbf{P} y *coincide* con el pie de la recta perpendicular a $\boldsymbol{\pi}$ que pasa por \mathbf{P} .

¿Cómo hallarla?

Nuestros datos son \mathbf{P} y $\boldsymbol{\pi}$; de este último tomamos alguna de sus normales \vec{n} . Utilizando como ayuda el esquema inferimos el procedimiento a desarrollar:

a) Determinamos r recta perpendicular a π que pasa por P.

$$r$$
: $(x, y, z) = \mathbf{P} + \lambda . \vec{n}$

- b) Calculamos la intersección $r \cap \pi = \{\mathbf{Q}\}$
- c) A partir de \mathbf{Q} se obtiene la distancia: dist $(\mathbf{P}, \boldsymbol{\pi}) = \text{dist}(\mathbf{P}, \mathbf{Q})$

Ejemplo:

Obtener la distancia del punto P = (7, -7, 4) al plano Π : 2x - 2y + z = 5.

a) La recta r perpendicular al plano y que pasa por P es:

$$(x, y, z) = (7, -7, 4) + \lambda.(2, -2, 1) \rightarrow \begin{cases} x = 7 + 2.\lambda \\ y = -7 - 2.\lambda \\ z = 4 + \lambda \end{cases}$$

b) La intersección con Π se obtiene reemplazando en su ecuación:

$$2.(7 + 2\lambda) - 2.(-7 - 2\lambda) + 4 + \lambda = 5 \rightarrow 14 + 4\lambda + 14 + 4\lambda + 4 + \lambda = 5$$

$$\rightarrow 32 + 9\lambda = 5 \rightarrow 9\lambda = -27 \rightarrow \lambda = -3$$

Q=
$$\begin{cases} x = 7 + 2.(-3) \\ y = -7 - 2.(-3) \rightarrow Q = (1, -1, 1) \\ z = 4 + (-3) \end{cases}$$

c) dist(P,
$$\pi$$
) = dist(P, Q) = $\|\overrightarrow{QP}\|$ = $\|(6, -6, 3)\|$ = $\sqrt{36+36+9}$ = 9