C-Tran Data Pipeline

Team Breadbytes

Ebele Esimai, Genevieve Lalonde, Sara Alotaibi, Ahmed Dulaimi

Portland State University
Maseeh College of Engineering
Computer Science
CS410: Data Engineering
Instructor: Bruce Irvin

Ahmed

Introduction

C-Tran is the regional transit organization for Clark County in the State of Washington.

C-Tran captures GPS and transit data (bread crumbs) for each bus in its fleet daily.

We built a system that handles validation, transport and storage of the data for further analysis and visualization of congestion and transit patterns

System Architecture

Data Sources

- Data is provided by C-Tran
- Served from 2 simple web servers providing access to a day's worth of C-Tran GPS 5-second interval "breadcrumb" data, as well as stop event data.
- Breadcrumbs contain instantaneous information about a bus trip, including trip index, GPS data, odometer reading, etc.
- Stop event data provides C-Tran vehicles' stop events for a single day of operation

```
"EVENT NO TRIP": "167311280",
"EVENT NO STOP": "167311285",
"OPD DATE": "07-SEP-20",
"VEHICLE ID": "2262",
"METERS": "269",
"ACT TIME": "31702",
"VELOCITY": "8",
"DIRECTION": "178",
"RADIO QUALITY": "",
"GPS LONGITUDE": "-122.604935",
"GPS LATITUDE": "45.637342",
"GPS SATELLITES": "10",
"GPS HDOP": "0.9",
"SCHEDULE DEVIATION": ""
```

Sample bread crumb

ETL Process

Kafka, an asynchronous event system, is a key component of the system for transporting the data

We split the ETL process into 2 stages in our data pipeline

Producer:

- Automatically gather the GPS sensor data from the web servers.
- Initially clean and parse it into individual breadcrumb and stop event readings.
- Publish each breadcrumb and stop event to a Kafka topic

Consumer:

- Automatically consume each breadcrumb and stop event
- Validate the data
- Transform the data to the shape needed by the database tables
- Enhance the data to have absolute timestamps, correct data types and correct default values
- Load the data into the Postgres database, either inserting new records for each table (bread crumb data) or updating existing records in a table (stop events data)

Pipeline and Data Summaries

Ebele

Pipeline Metrics

Crumb_topic - automated pipeline for daily GPS sensor readings for each bus in C-Tran's fleet.

Stop_topic - automated pipeline for daily stop events for the buses. Augments the bread crumb data

	Average # Kafka
DOW	Messages
Monday	371,292
Tuesday	368,449
Wednesday	369,417
Thursday	369,199
Friday	371,343
Saturday	175,313
Sunday	134,574

	Week range (06/03/2021 - 12/03/2021)									
	Saturday Sunday		Monday	Tuesday	Wednesday	Thursday	Friday			
# Kafka Messages on crumb_topic	172,896	134,976	365,496	364,554	365,570	373,534	375,773			
# Kafka Messages on stop_topic	720	640	1,499	1,702	1,696	1,530	1,523			
# rows inserted in breadcrumb table	172,896	134,976	365,496	364,554	365,570	373,534	375,773			
# rows inserted in trip table	863	714	1,702	1,702	1,696	1,735	1,733			
# rows updated with stop events	720	640	1,499	1,497	1,491	1,530	1,523			

Data Summaries

- Data is loaded on PostgreSQL database hosted on a GCP VM.
- Our database has two tables
 - BreadCrumb table: 9,806,199 records (size : 716 MB)
 - Trip table: 44,607 records (size: 2384 kB)
- Some data summaries include
 - Dates of loaded breadcrumb records range from 2020-09-25 to 2020-10-31
 - 104 vehicles in the system with 24 distinct routes
 - South-most location: 45.494323 , -122.683057 (Homestead, Portland, OR)
 - North-most location: 45.866877, -122.408082 (Yacolt, WA 98675)
 - Maximum bus speed: 159, Average bus speed: 10.345

Visualizations

Longest trip

- Trip 169302880 on October 1st, 2020 is 5 hours and 30 minutes long, starting at 4:30 pm and ending at 10:02 pm
- However, the distance is only from the C-Tran facility in vancouver to downtown portland

```
project=# create temp table mytemp(diff interval, trip id int);
CREATE TABLE
project=# insert into mytemp select age(foo.stp, foo.str) as diff, foo.trip
id as tid from (select max(tstamp) as stp, min(tstamp) as str, trip id fro
m breadcrumb group by trip id) as foo;
TNSERT 0 44607
project=# select * from mytemp where diff = (select max(diff) from mytemp);
  diff | trip id
05:32:26 | 169302880
  row)
```

Longest trip

- Trip 169302880 on October 1st, 2020 is 5 hours and 30 minutes long, starting at 4:30 pm and ending at 10:02 pm.
- However, the distance is only from the C-Tran facility in vancouver to downtown portland
- Why is so long?

Ebele

Longest trip

2020-10-01	18:04:38	45.638033	1	-122.603113	1	6	Ī	4 169302880
2020-10-01	18:04:43	45.638215	1	-122.603127	1	357	1	4 169302880
2020-10-01	18:04:48	45.63836	1	-122.60313	1	359	1	3 169302880
2020-10-01	18:04:53	45.638438	1	-122.603132	1	359	1	1 169302880
2020-10-01	21:39:19	45.638388	1	-122.60346	1	258	1	0 169302880
2020-10-01	21:39:24	45.638378	1	-122.603445	1	134	1	0 169302880
2020-10-01	21:39:29	45.638347	1	-122.603443	1	178	1	0 169302880
2020-10-01	21:39:34	45.638337	1	-122.603422	1	123	1	0 169302880
2020-10-01	21:39:39	45.638278	1	-122.603283	1	121	I	0 169302880
2020-10-01	21:39:44	45.638275	1	-122.603238	1	96	1	0 169302880
2020-10-01	21:39:49	45.638287	1	-122.603247	1	333	1	0 169302880
2020-10-01	21:39:54	45.638287	1	-122.603235	Ī	90	1	0 169302880
2020-10-01	21:39:59	45.638283	1	-122.603213	1	102	1	0 169302880
2020-10-01	21:40:00	45.638283	1	-122.603213	1	0	1	0 169302880
2020-10-01	21:40:04	45.638333	٦	-122.603233	1	344	1	1 169302880
2020-10-01	21:40:09	45.63853	1	-122.603197	1	7	I	4 169302880
2020-10-01	21:40:14	45.638725	Ī	-122.603177	ĺ	4	Î	4 169302880

Morning vs Evening

- Bus 4008 on route 65 on October 18, 2020
- Morning outbound traffic (between 9am and 11 am)
- Evening outbound traffic (between 4pm and 6pm)
- Are there hotspots? If so where are they?

```
project=# select latitude ||' '||longitude, avg(speed) from BreadCrumb b join trip t on b.trip_id = t.trip_id where t.vehicle_i d = 4008 and t.route_id =65 and date_part('month',b.tstamp) = 10 and date_part('day',b.tstamp) = 18 and date_part('hour',b.tstamp) between 16 and 18 group by 1;

project=# select latitude ||' '||longitude, avg(speed) from BreadCrumb b join trip t on b.trip_id = t.trip_id where t.vehicle_i d = 4008 and t.route_id =65 and date_part('month',b.tstamp) = 10 and date_part('day',b.tstamp) = 18 and date_part('hour',b.tstamp) between 9 and 11 group by 1;

project=# ||
```

Morning

Evening

Our thoughts...

Challenges and actions

Working with Kafka

- Fine-tuning the producer code for polling and flushing
- Dealing with in memory buffer sizes
- Keeping the pipeline running and automated

Data validation

- Understanding the data to have reasonable validation criteria
- Dealing with missing values and uniqueness

System setup

- Memory and disk resizing to accommodate size of data
- Automation with cron jobs
- Fault tolerance of pipeline and storage

Lessons Learned

- Some domain knowledge and understanding of the data are key factors of success
- Extract, Transform, and Load (ETL) process is how most data pipelines are usually designed and structured
- Communication is a key factor in defining requirements and establishing shared understanding of the desired resulting data

Thank you!