THE UNIVERSITY OF SYDNEY

MATH1902 LINEAR ALGEBRA (ADVANCED)

Semester 1

Exercises for Week 5 (beginning 02 April)

2012

Preparatory exercises should be attempted before coming to the tutorial. Questions labelled with an asterisk are suitable for students aiming for a credit or higher.

Important Ideas and Useful Facts:

(i) Algebraic definition of cross product: If $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ and $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$ then

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2) \mathbf{i} + (v_3 w_1 - v_1 w_3) \mathbf{j} + (v_1 w_2 - v_2 w_1) \mathbf{k}$$
.

which can be evaluated by

- (a) using the "up-and-down-diagonal" method;
- (b) using the "expanding brackets" method and the facts that

$$\mathbf{i} \times \mathbf{j} = \mathbf{k} = -(\mathbf{j} \times \mathbf{i}), \quad \mathbf{j} \times \mathbf{k} = \mathbf{i} = -(\mathbf{k} \times \mathbf{j}), \quad \mathbf{k} \times \mathbf{i} = \mathbf{j} = -(\mathbf{i} \times \mathbf{k}),$$

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0;$

- (c) evaluating a 3×3 determinant (explained later): $\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$.
- (ii) The cross product $\mathbf{v} \times \mathbf{w}$ is always perpendicular to both \mathbf{v} and \mathbf{w} so that

$$(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{v} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{w} = 0$$
.

- (iii) Anti-commutativity of cross product: $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$.
- (iv) Distributivity of cross over plus: $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$.
- (v) If \mathbf{v} and \mathbf{w} are vectors and λ is a scalar then

$$(\lambda \mathbf{v}) \times \mathbf{w} = \lambda(\mathbf{v} \times \mathbf{w}) = \mathbf{v} \times (\lambda \mathbf{w})$$
 and $\mathbf{v} \times \mathbf{v} = \mathbf{0}$.

- (vi) The area of the parallelogram inscribed by \mathbf{v} and \mathbf{w} is $|\mathbf{v} \times \mathbf{w}|$.
- (vii) The area of the triangle inscribed by ${\bf v}$ and ${\bf w}$ is $\frac{|{\bf v}\times{\bf w}|}{2}$.
- (viii) Geometric formula for cross product: if θ is the angle between vectors \mathbf{v} and \mathbf{w} chosen so that $0 \le \theta \le \pi$ then

$$\mathbf{v} \times \mathbf{w} = |\mathbf{v}||\mathbf{w}|\sin\theta \ \mathbf{u} ,$$

where \mathbf{u} is the unit vector perpendicular to both \mathbf{v} and \mathbf{w} such that the triple \mathbf{u} , \mathbf{v} , \mathbf{w} is right-handed. In particular

$$|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}|\sin\theta$$
.

(ix) Triple product: If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

and its magnitude is the volume of the parallelopiped spanned by the three vectors, when placed tail-to-tail in space. If nonzero, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is positive if and only if the triple \mathbf{u} , \mathbf{v} , \mathbf{w} is right-handed.

Preparatory Exercises:

1. Write down

- (i) $\mathbf{i} \times \mathbf{j}$ (ii) $2\mathbf{i} \times 3\mathbf{j}$ (iii) $\mathbf{i} \times (-4\mathbf{j})$ (iv) $\mathbf{j} \times \mathbf{i}$ (v) $\mathbf{j} \times (-4\mathbf{i})$
- (vi) $\mathbf{j} \times \mathbf{k}$ (vii) $\mathbf{k} \times \mathbf{k}$ (viii) $\mathbf{k} \times (-\mathbf{k})$ (ix) $(-\mathbf{k}) \times \mathbf{i}$ (x) $(-\mathbf{k}) \times (-\mathbf{j})$
- (xi) $\mathbf{k} \times (\mathbf{i} + \mathbf{k})$ (xii) $(3\mathbf{j} \mathbf{k}) \times 2\mathbf{j}$ (xiii) $(\mathbf{j} \mathbf{k}) \times (\mathbf{k} + \mathbf{j})$

Evaluate 2.

- (i) $\mathbf{i} \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$ (ii) $(\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{i} + \mathbf{k})$ (iii) $(2\mathbf{i} + 4\mathbf{j} 3\mathbf{k}) \times (2\mathbf{i} 3\mathbf{j} + 4\mathbf{k})$ (iv) $(\mathbf{i} \mathbf{j} + 3\mathbf{k}) \times (3\mathbf{i} + \mathbf{j} \mathbf{k})$

3. Given that

$$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
, $\mathbf{b} = \mathbf{i} + \mathbf{j} - \mathbf{k}$,

find

- (i) $|\mathbf{a}|$ (ii) $|\mathbf{b}|$ (iii) $\mathbf{a} \times \mathbf{b}$ (iv) $|\mathbf{a} \times \mathbf{b}|$
- (\mathbf{v}) the sine of the angle between **a** and **b**.

4. Evaluate

- (ii) $((\mathbf{i} + \mathbf{j}) \times (\mathbf{j} + \mathbf{k})) \times (\mathbf{k} + \mathbf{i})$ $(\mathbf{i} \times \mathbf{j}) \times \mathbf{k}$ (i)
- (iv) $(\mathbf{i} + \mathbf{j}) \times ((\mathbf{j} + \mathbf{k}) \times (\mathbf{k} + \mathbf{i}))$ $\mathbf{i} \times (\mathbf{j} \times \mathbf{k})$ (iii)

Given that P = (8, 4, -1), Q = (6, 3, -4) and R = (7, 5, -5), find **5**. $\overrightarrow{OP} \times \overrightarrow{OR}$

and the area of the triangle $\triangle PQR$.

- Consider the vectors $\mathbf{u} = \mathbf{i} + \mathbf{j}$, $\mathbf{v} = \mathbf{j} + 2\mathbf{k}$ and $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$. 6.
 - (i) Verify by direct calculation that

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = -(\mathbf{v} \times \mathbf{u}) \cdot \mathbf{w}$$
.

(This identity holds in general, the verification of which is an exercise below.)

(ii) Find the volume of the parallelopiped inscribed by **u**, **v** and **w**.

Tutorial Exercises:

7. Given that $\mathbf{a} = 2\mathbf{i} - \mathbf{j}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{c} = -2\mathbf{i} + \mathbf{k}$ find

- (i) $\mathbf{a} \times \mathbf{b}$ (ii) $\mathbf{a} \times \mathbf{c}$ (iii) $\mathbf{b} \times \mathbf{c}$ (iv) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ (v) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
- (vi) $\mathbf{a} \times (\mathbf{a} \times \mathbf{c})$ (vii) $\mathbf{a} \times (\mathbf{a} + \mathbf{c})$ (viii) $(\mathbf{a} \times \mathbf{a}) \times \mathbf{c}$ (ix) $\mathbf{a} \times (\mathbf{b} 2\mathbf{c})$
- (x) the sine of the angle between **a** and **b**
- (xi) the area of the parallelogram inscribed by \mathbf{a} and \mathbf{c}
- (xii) the area of the triangle inscribed by \mathbf{b} and \mathbf{c}
- (xiii) the volume of the parallelopiped inscribed by \mathbf{a} , \mathbf{b} and \mathbf{c}

Given that \mathbf{v} and \mathbf{w} are vectors such that $\mathbf{v} \times \mathbf{w} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ find 8.

- $\mathbf{w} \times \mathbf{v}$ (ii) $(\mathbf{v} + 3\mathbf{w}) \times (2\mathbf{w} \mathbf{v})$ (i)
- Calculate $|\mathbf{a} \times \mathbf{b}|$ given that $|\mathbf{a}| = 7$, $|\mathbf{b}| = 4$ and $\mathbf{a} \cdot \mathbf{b} = -21$. 9.

Use the algebraic definition of the cross product to verify the following properties for 10. any vectors \mathbf{v} and \mathbf{w} :

- (i) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{v} = 0$ (ii) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{w} = 0$
- (iii) $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$ (iv) $\mathbf{v} \times \mathbf{v} = \mathbf{0}$

Use the parallelogram property of the cross product to deduce quickly that vectors \mathbf{u} 11. and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

12. (suitable for group discussion) Let **a** and **b** be the following vectors in the page:

True or false:

- $\mathbf{a} \times \mathbf{b}$ points upwards, away from the page, towards the ceiling
- (ii) $\mathbf{b} \times (\mathbf{a} \mathbf{b})$ points downwards, away from the page, towards the floor
- $\mathbf{a} \times (\mathbf{b} \times \mathbf{a})$ is perpendicular to \mathbf{a} but not to \mathbf{b}
- $\mathbf{b} \times (\mathbf{b} \times \mathbf{a})$ is the zero vector

13. (suitable for group discussion) Does the expression $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ make sense? Does the equation $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ imply $\mathbf{v} = \mathbf{w}$ whenever $\mathbf{u} \neq \mathbf{0}$?

3

A tetrahedron has four faces. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 be vectors perpendicular to the faces, pointing outwards, of length equal to the respective areas of the faces. Verify that

$$\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 = \mathbf{0}$$
.

Verify that, for any geometric vectors **a**, **b**, **c**,

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$
.

Give both algebraic and geometric verifications. Use anticommutativity of the crossproduct to deduce that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -(\mathbf{b} \times \mathbf{a}) \cdot \mathbf{c}$$
.

Further Exercises:

16. Find two unit vectors perpendicular to both \mathbf{v} and \mathbf{w} where

$$\mathbf{v} = \mathbf{i} + 2\mathbf{j} - 7\mathbf{k}$$
 and $\mathbf{w} = 5\mathbf{i} + \mathbf{j} + \mathbf{k}$.

Find the areas of the triangles having vertices 17.

$$(i) \ \ (0,0,0) \, , \ (2,2,-1) \, , \ (3,-4,2) \qquad \ (ii) \ \ (3,-1,2) \, , \ (1,-1,-3) \, , \ (4,-3,1)$$

- Consider the points P(1,1,1), Q(-1,-1,0) R(0,1,2), S(2,3,3) in space. 18.
 - (i) Use cross products to find the areas of the triangle PQR and QRS. Are you surprised? (What type of geometric figure is formed by PQRS?)
 - (ii) Find the distance d_1 from P to R, the distance d_2 from Q to S, and evaluate and interpret $\frac{d_1d_2}{4}$. Are you surprised? (What is the relationship between diagonals
- 19. Suppose v and w are the following vectors lying in this page:

Decide which of

- - (a) is perpendicular to \mathbf{v} but not to \mathbf{w} .
 - (b) is perpendicular to \mathbf{w} but not to \mathbf{v} .
 - (c) points upwards, away from the page, towards the ceiling.
 - (d) points downwards, away from the page, towards the floor.
 - (e) is the zero vector.

- 20. Use the cross product to find
 - (i) a unit vector perpendicular to both $-\mathbf{i} + 2\mathbf{j}$ and $\mathbf{j} + 3\mathbf{k}$,
 - (ii)* a unit vector which points in a direction which is perpendicular to the triangle with vertices

$$A(0,0,-1)$$
, $B(1,-2,-1)$, $C(1,-3,-4)$

such that looking backwards along the vector (from tip to tail) towards the triangle, the vertices A, B, C rotate anticlockwise (in that order).

21.* Verify that if **a** and **b** are geometric vectors then the following "correction" to the Cauchy-Schwarz Inequality holds:

$$\sqrt{|\mathbf{a}\cdot\mathbf{b}|^2+|\mathbf{a}\times\mathbf{b}|^2}\ =\ |\mathbf{a}|\ |\mathbf{b}|\ .$$

22.* Carefully verify one of the distributivity laws from the algebraic definition, say the law

$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$$
,

and deduce the other distributivity law using anti-commutativity.

23.* Verify that, for any geometric vectors a, b, c,

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}$$
.

Use anti-commutativity to deduce that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$
.

24.* Verify the *Jacobi identity*:

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} + (\mathbf{v} \times \mathbf{w}) \times \mathbf{u} + (\mathbf{w} \times \mathbf{u}) \times \mathbf{v} = \mathbf{0}$$
.

25.** Let u, v, w be vectors in space. Prove that the equation

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$$

holds if and only if \mathbf{u} and \mathbf{w} are parallel or \mathbf{v} is perpendicular to both \mathbf{u} and \mathbf{w} . Thus associativity of the cross product fails almost all of the time.

Short Answers to Selected Exercises:

- 1. (i) \mathbf{k} (ii) $6\mathbf{k}$ (iii) $-4\mathbf{k}$ (iv) $-\mathbf{k}$ (v) $4\mathbf{k}$ (vi) \mathbf{i} (vii) $\mathbf{0}$ (viii) $\mathbf{0}$ (viii) $\mathbf{0}$ (ix) $-\mathbf{j}$ (x) $-\mathbf{i}$ (xi) \mathbf{j} (xii) $2\mathbf{i}$ (xiii) $2\mathbf{i}$
- **2.** (i) $\mathbf{k} \mathbf{j}$ (ii) $\mathbf{i} + \mathbf{j} 2\mathbf{k}$ (iii) $7\mathbf{i} 14\mathbf{j} 14\mathbf{k}$ (iv) $-2\mathbf{i} + 10\mathbf{j} + 4\mathbf{k}$

- **3.** (i) 3 (ii) $\sqrt{3}$ (iii) $-\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ (iv) $\sqrt{26}$ (v) $\frac{\sqrt{78}}{9}$
- $\mathbf{4.} \quad \text{(i)} \quad \mathbf{0} \qquad \text{(ii)} \quad -\mathbf{i} + \mathbf{k} \qquad \text{(iii)} \quad \mathbf{0} \qquad \text{(iv)} \quad -\mathbf{i} + \mathbf{j}$
- **5.** $-7\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$, $\frac{\sqrt{83}}{2}$ **6.** 1
- 7. (i) $-\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ (ii) $-\mathbf{i} 2\mathbf{j} 2\mathbf{k}$ (iii) $\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ (iv) $-2\mathbf{i} 4\mathbf{j} 5\mathbf{k}$
 - $(v) \ -2\mathbf{i} 5\mathbf{j} 4\mathbf{k} \quad (vi) \ 2\mathbf{i} + 4\mathbf{j} 5\mathbf{k} \quad (vii) \ -\mathbf{i} 2\mathbf{j} 2\mathbf{k} \quad (viii) \ \mathbf{0} \quad (ix) \ \mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$
 - (x) $\sqrt{14}/\sqrt{15}$ (xi) 3 (xii) $\sqrt{14}/2$ (xiii) 5
- 8. (i) $-2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ (ii) $10\mathbf{i} 5\mathbf{j} + 15\mathbf{k}$ 9. $7\sqrt{7}$
- **12.** (i) False (ii) False (iii) True (iv) False **16.** $\pm \frac{\sqrt{2}}{6} (\mathbf{i} 4\mathbf{j} \mathbf{k})$
- **17.** (i) $7\sqrt{5}/2$ (ii) $\sqrt{165}/2$
- **18.** (i) $\sqrt{17}/2$, $\sqrt{17}/2$ (ii) $\sqrt{17}/2$
- **19.** (i) (c) (ii) (d) (iii) (c), (d), (e) (iv) (b) (v) (a)
- **20.** (i) $\pm \frac{1}{\sqrt{46}} (6\mathbf{i} + 3\mathbf{j} \mathbf{k})$ (ii) $\frac{1}{\sqrt{46}} (6\mathbf{i} + 3\mathbf{j} \mathbf{k})$