Лабораторная работа №5

Изучение принципа работы WDM сплиттеров

Выполнила: Величкина А. С.

<u>Цель работы</u>: изучить принцип работы WDM сплиттеров, представленных на лабораторном стенде. Построение матрицы передачи сплиттера.

Описание оборудования и методики эксперимента: оптические кабели (ВОК), патч-корды с различными комбинациями разъемов, WDM сплиттеры, представленные на стенде, многофункциональный оптический тестеррефлектометр ТОПАЗ-7315-AR.

Теоретическая часть

WDM — Wavelength Division Multiplexing (Спектральное уплотнение каналов). Это технология, которая позволяет собирать в одно оптическое волокно несколько «потоков» оптического сигнала. Каждый поток транслируется на своей длине волны.

Существует три способа передачи сигнала по одному волокну:

- 1. разделение мощности сигнала на концах линии;
- 2. за счет учета поляризации излучения;
- 3. с использованием WDM-систем наиболее распространенный способ.

Принципиальная схема разделителя:

Рис. 1. Принципиальная схема WDM-разделителя

Оптические свойства волоконно-оптических устройств ветвления могут быть определены в терминах матрицы коэффициентов пхп, где n - число портов, а коэффициенты представляют часть мощности, передаваемой между назначенными портами.

Коэффициентом передачи является элемент tij матрицы передачи. Каждый коэффициент tij определяет минимальную часть мощности, переданную от порта i к порту j, для любого состояния, при условии, что путь ij включен.

Экспериментальная часть

1. Измерение уровня мощности

Для длины волны 1310 нм результаты измерений приведены в таблицах:

$\lambda = 1310 \text{ HM}$	Вывод для подключения измерителя					Избыточные		
81		COM		1310&1490 нм		1550 нм		потери ELi
ени	COM	0,00	дБ	-0,61	дБ	-67,60	дБ	-2,715240891
h 04		-0,42	дБм	-1,04	дБм	-68,10	дБм	
KJI 1Ka		907,40	мкВт	788,20	мкВт	0,00	мкВт	
для подкл	1310&1490	-0,48	дБ	0,00	дБ	-85,60	дБ	
1Я 1		-0,89	дБм	-0,42	дБм	-86,00	дБм	-2,770721089
H H		810,00	мкВт	907,40	мкВт	0,00	мкВт	
Вывод для подключения источника	1550 нм	-68,42	дБ	-85,70	дБ	0,00	дБ	
		-68,84	дБм	-86,10	дБм	-0,42	дБм	-1,14867E-07
		0,00	мкВт	0,00	мкВт	907,40	мкВт	

Матрица переключения сплиттера Т была вычислена из результатов измерений по формуле:

$$t_{ij} = \frac{P_{ij}}{P_i},$$

где t_{ij} – элементы матрицы переключения Т.

Матрица переключения					
1	0,868633212	1,10205E-07			
0,89265783	1	1,32246E-08			
1,32246E-08	1,32246E-08	1			

Логарифмическая матрица переключения сплиттера А была вычислена из результатов измерений по формуле:

$$a_{ij} = -10 * \lg(t_{ij})$$

Логарифмическая матрица переключения						
переключения						
0	0,611635695	69,578				
0,493149811	0	78,78618754				
78,78618754	78,78618754	0				

Избыточные потери вычислялись по формуле: $\mathrm{EL_i} = -10 lg \; (\sum_{\mathrm{j}} \mathrm{t_{ij}}).$

Проанализируем полученный результат. Как и ожидалось, при длине волны излучения источника 1310 нм большая часть энергии проходит на выход 1310&1490нм, однако при этом наблюдаются потери порядка 120 мкВт, что и видно из избыточных потерь в тракте. Стоит отметить хорошую развязку между выходами устройства: на соседние выходы проходит минимальное количество мощности сигнала, значения составляли пВт.

Результаты измерений для длины волны 1550 нм приведены в таблицах:

$\lambda = 1550 \text{ HM}$	Вывод для подключения измерителя					Избыточные		
51		COM		1310&1490 нм		1550 нм		потери ELi
эни	СОМ	0,00	дБ	-30,18	дБ	-0,94	дБ	
.		-0,59	дБм	-30,74	дБм	-1,52	дБм	-2,570462982
КЛ		873,98	мкВт	0,82	мкВт	704,80	мкВт	
HM HM	1310&1490	-30,12	дБ	0,00	дБ	-46,83	дБ	
		-30,71	дБм	-0,59	дБм	-47,30	дБм	-2,942796067
	HM	847,00	мкВт	873,98	мкВт	0,02	мкВт	
Вывод	1550 нм	-1,02	дБ	-46,88	дБ	0,00	дБ	
		-1,62	дБм	-47,00	дБм	-0,59	дБм	-2,524575867
		689,00	мкВт	0,02	мкВт	873,98	мкВт	

Матрица переключения						
1	0,00093824	0,806428551				
0,969133063	1	2,05955E-05				
0,788350272	2,05955E-05	1				

Логарифмическая матрица переключения						
0	30,27686148	0,934341046				
0,136165897	0	46,86227495				
1,032807781	46,86227495	0				

Проанализируем полученный результат. Также как и для сигнала с длиной волны 1330 нм, большая часть энергии проходит на выход устройства с соответствующей длинной волны: 1550 нм, потери составили порядка 170 мкВт. Стоит отметить худшую по сравнению с предыдущим случаем развязку устройства: между выходами проходит значительно больше мощности сигнала, значения составляют уже десятки нВт. Также наблюдаются большие избыточные потери. Возможное объяснение ухудшения результатов может быть объяснено особенностями распространения сигнала с большей длиной волны в сплиттере. Большие отражения для сигналов с большей длиной волны приводят к ухудшению развязки и, следовательно, увеличению потерь.

Вывод

В ходе лабораторной работы были исследованы оптические WDM-сплиттеры. Было подтверждено основное свойство устройства, связанное с разделением сигналов с разными длинами волн и частотами. Было замечено, что устройство обладает худшими параметрами при большей длине волны сигнала.

Ответы на контрольные вопросы

1. В чем состоит принцип работы WDM сплиттеров?

Ответ. Принцип работы заключается в следующем: оптический сигнал проходит по одному волокну, после чего разделяется на два, при этом мощность обычно также делится поровну. Разделение информационных потоков производится либо в частотной области, когда частотные подканалы изолированы друг от друга, а сигналы не пересекаются, либо по временной области, когда информация поступает в виде последовательно передающихся блоков, где в каждый отдельно взятый интервал времени передается часть отдельного сигнала, в этом случае необходима синхронизация передатчика с приемником.

2. Какова конструкция WDM сплиттеров?

Ответ. Применяется оптоволокно с буфером 0.9 мм. Диаметр кабеля составляет 3 мм. WDM сплиттеры могут быть оконечены оптическими коннекторами требуемого типа. Принцип работы заключается в следующем: оптический сигнал проходит по одному волокну, после чего разделяется на два, при этом мощность обычно также делится поровну. Разделение информационных потоков производится либо в частотной области, когда частотные подканалы изолированы друг от друга, а сигналы не пересекаются, либо по временной области, когда информация поступает в виде последовательно передающихся блоков, где в каждый отдельно взятый интервал времени передается часть отдельного сигнала, в этом случае необходима синхронизация передатчика с приемником.

3. Что такое коэффициент передачи?

<u>Ответ</u>. Коэффициентом передачи является элемент tij матрицы передачи. Каждый коэффициент tij определяет минимальную (в расчете на худший случай) часть мощности, переданную от порта i к порту j, для любого состояния, при условии, что путь ij включен.

4. Что такое матрица передачи?

<u>Ответ</u>. Оптические свойства волоконно-оптических устройств ветвления могут быть определены в терминах матрицы коэффициентов пхп, где n - число портов, а коэффициенты представляют часть мощности, передаваемой между назначенными портами. В общем случае матрица передачи Т имеет вид:

$$T = \begin{bmatrix} t_{11} & t_{12} & . & t_{1n} \\ t_{21} & t_{22} & . & t_{2n} \\ . & . & t_{ij} & . \\ t_{n1} & t_{n2} & . & t_{nn} \end{bmatrix}$$

5. Что такое логарифмическая матрица передачи?

<u>Ответ</u>. Логарифмической матрицей передачи называется матрица передачи, единицы которой переведены в д ${\sf F}$

6. Что такое избыточные потери WDM сплиттера?

<u>Ответ</u>. Избыточные потери — это общая мощность, потерянная в устройствах ветвления, когда оптический сигнал подается в порт i. Они определяются как:

$$EL_i = -10\lg\left(\sum_i t_{ij}\right)$$

где суммирование осуществляется только по тем значениям j, для которых i и j — проводящие порты. Для устройства ветвления с N входными портами будет существовать массив из N значений избыточных потерь, по одному значению для каждого входного порта i.