Problem:
 Blink a LED at a rate of 5Hz without using loop delays

Problem:
 Blink a LED at a rate of 5Hz without using loop delays

- Solution:

 A periodic interrupt service routine will toggle the LED every 100ms
- Questions: which timer? which mode? which prescaler? which count value?

(Answers here)

Facts:

- $T_{INTR} = 100 ms$
- $-F_{CLK} = 16MHz$

Strategy:

- $T_{CLK} = 62,5 ns$
- $-T_{INTR} = 1.600.000 \cdot T_{CLK}$

 Goal: find CP, TP and CNT that verify:

 $CP \times TP \times CNT = 1.600.000$

Restrictions:

- CNT < 65535 (TC1)
- CNT < 255 (TC0, TC2)
- CP: 1,2,4,8,16,32,64,128
- TP: 1,8,32,64,128,256,1024

CP=1 to avoid changing other peripherals, so:

TP x CNT =
$$1600000$$

Some values, by trial and error:

```
1600000 = 1x1600000 (a) Too large count, even for 16-bit
```

= 8x200000 (b) Too large count, even for 16-bit

= 32x50000 (c) Illegal (needs a 16 bit number in TC2)

= 64x25000 (d) Ok: CP=1, TP=64, CNT=25000 (16-bit)

= 128x12500 (e) Illegal (needs a 16 bit number in TC2)

Best choice (why?): = 256x6250 (f) Ok: CP=1, TP=256, CNT=6250 (16-bit)

= 1024x1562,5 (g) Rounding error

- Solution (timer 1): CP=1, TP=256, CNT=6250
- Mode NORMAL
 - Counts from X to 65535, interrupt on overflow
 - -X = 65536 6250 = 59286
 - Needs to reinitiate X
- Mode CTC
 - Counts from X to OCR1A, interrupt when TCNT1=OCR1A
 - X = 0, OCR1A= 6250
 - Don't need to reinitiate X

Timer/Counter – Example 1

```
* example1.c
  A simple demo using periodic interrupts.
    Purpose: Blink an LED at 5Hz (T=200ms)
             without using delays.
  Solution: The LED has to toggle every 100ms.
             This will be accomplished by the
             ISR of a periodic interrupt
             request.
* If Fosc=16MHz, Tosc=62,5ns. To generate an
* interrupt request every 100ms we need to
* count 1600000 clock periods.
* We need to find combinations of CP, TP and
* COUNT verifying CPxTPxCOUNT=1600000.
* Let's start with CP=1 to avoid disturbing
* other peripherals:
 1600000 = 1 \times 1024 \times 1562,5 = 1 \times 256 \times 6250
          = 1x128x12500
                           = 1x64x25000
          = 1x32x50000
```

LP de Sousa

```
* The first combination will introduce a
* timing error because the count value is not
 an integer. All the others have zero error.
* We need a 16-bit counter/timer (TC1) which
* immediately eliminates TP=32 and TP=128
* that are only valid for the 8-bit timer TC2.
 We are then limited to 2 combinations:
  1600000 = 1 \times 256 \times 6250 = 1 \times 64 \times 25000
 Let's choose CP=1, TP=256, COUNT=6250 since
 the timer input frequency will be lower
* For the mode:
* Mode 0: TC1 starts at a given BOTTOM value.
* counts up to 65535, and overflows to zero
* without stopping.
* Mode 2: TC1 starts at a given BOTTOM value,
* counts up to the value in OCR1A and returns
* to zero without stopping
```

Timer/Counter – Example 1

```
* The other modes are for PWM generation
 * Let's choose mode NORMAL. Mode CTC is
 * left as an exercise for the student
 * Created: Oct 12, 2014
 * Author: jpsousa@fe.up.pt (eclipse+gcc)
#include <avr/io.h>
#include <avr/interrupt.h>
#define LED PB5
/* 100ms = 6250 clock cycles @ 16MHz/(1*256) */
#define T1BOTTOM 65536-6250
```

```
* The main loop is empty since everything
* is handled by the ISR of Timer 1 which
* is executed every 100ms
void main(void) {
 DDRB |= (1 << LED); // LED as output
 tc1_init(); // Init Timer 1
 sei(); // Enable global int
 while(1); // Main loop is empty!
```

Timer/Counter – Example 1

```
* Timer 1 initialization in NORMAL mode
* - Stop TC1 and clear pending interrupts
* - Define mode of operation & BOTTOM value
* - Set the required interrupt mask
* - Start timer with the proper prescaler
void tc1 init(void) {
 TCCR1A = 0; // NORMAL mode
 TCNT1 = T1BOTTOM; // Load BOTTOM value
 TIMSK1 = (1<<TOIE1); // Enable Ovf intrpt
 TCCR1B = 4; // Start TC1 (TP=256)
```

```
* Timer 1 ISR is executed each 100ms
   - Reload BOTTOM value
   - Toggle LED
ISR(TIMER1_OVF_vect) {
```

Example 1 – Design space exploration

Goal: CP x TP x COUNT = 1.600.000

Fosc (MHz) 16		Timer Prescaler (TP) Values in red only applicable to TC2									
TINTR (ms)			001/001	010/010	/011	011/100	/101	100/110	101/111		
100			1	8	32	64	128	256	1024		
CLK Prescaler (CP)	(2°)	1				25000		6250	1562,5		
	(2¹)	2				12500		3125	781,25		
	(2²)	4		50000		6250		1562,5	390,63		
	(2³)	8		25000		3125		781,25	195,31		
	(24)	16		12500		1562,5		390,63	97,66		
	(25)	32	50000	6250		781,25		195,31	48,83		
	(2 ⁶)	64	25000	3125		390,63	195,31	97,66	24,41		
	(2 ⁷)	128	12500	1562,5		195,31	97,66	48,83	12,21		
	(28)	256	6250	781,25	195,31	97,66	48,83	24,41	6,1		

Error (%)											
1	8	32	64	128	256	1024					
0	0	0	0	0	0	0,03					
0	0	0	0	0	0	0,03					
0	0	0	0	0	0,03	0,16					
0	0	0	0	0,03	0,03	0,16					
0	0	0	0,03	0,03	0,16	0,68					
0	0	0,03	0,03	0,16	0,16	1,7					
0	0	0,03	0,16	0,16	0,68	1,68					
0	0,03	0,16	0,16	0,68	1,7	1,72					
0	0,03	0,16	0,68	1,7	1,68	1,64					