XIII. Turing Reducibility

Yuxi Fu

BASICS, Shanghai Jiao Tong University

The problem with m-reduction is that it imposes too strong a restriction on the use of a result obtained by revoking a subroutine.

Synopsis

- 1. Relative Computability
- 2. Turing Reduction
- 3. Jump Operator
- 4. Use Principle
- 5. Modulus Lemma and Limit Lemma

1. Relative Computability

Computation with Oracle

Suppose \mathcal{O} is a total unary function.

Informally a function f is computable relative to \mathcal{O} , or \mathcal{O} -computable, if f can be computed by an algorithm that is effective in the usual sense, except from time to time during computation f is allowed to consult the oracle function \mathcal{O} .

If f is computable in \mathcal{O} , the degree of undecidability of f is no more than that of \mathcal{O} .

Partial Recursive Function with Oracle

Formally an \mathcal{O} -partial recursive function f is constructed from the initial functions and \mathcal{O} by substitution, primitive recursion and minimization.

URM with Oracle

A URM with Oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every $n \ge 1$.

If \mathcal{O} is the oracle function, then the effect of O(n) is to replace the content r_n of R_n by $\mathcal{O}(r_n)$.

Turing Machine with Oracle

A Turing Machine with Oracle, TMO for short, has an additional read only oracle tape.

If $\mathcal O$ is the oracle function, then the oracle tape is preloaded with the string of 0's and 1's that represents $\mathcal O$.

In the above definition it is convenient to restrict to those oracles that are characteristic functions.

Numbering URMO Programs

We fix an effective enumeration of all URMO programs

$$P_0^{\mathcal{O}}, P_1^{\mathcal{O}}, P_2^{\mathcal{O}}, \dots$$

It is important to notice that the Gödel number of an oracle machine is independent of any specific oracle function.

Notation and Terminology

```
P_e^{\mathcal{O}} is the e-th URMO. \phi_e^{\mathcal{O},n} \text{ is the } n\text{-ary function } \mathcal{O}\text{-computed by } P_e^{\mathcal{O}}. \phi_e^{\mathcal{O},1} \text{ is simplified to } \phi_e^{\mathcal{O}}. W_e^{\mathcal{O}} \text{ is } dom(\phi_e^{\mathcal{O}}). E_e^{\mathcal{O}} \text{ is } rng(\phi_e^{\mathcal{O}}). \mathcal{C}^{\mathcal{O}} \text{ is the set of all } \mathcal{O}\text{-computable functions.}
```

Relative Computability

Fact.

- (i) $\mathcal{O} \in \mathcal{C}^{\mathcal{O}}$.
- (ii) $C \subseteq C^{\mathcal{O}}$.
- (iii) If \mathcal{O} is computable, then $\mathcal{C} = \mathcal{C}^{\mathcal{O}}$.
- (iv) $\mathcal{C}^{\mathcal{O}}$ is closed under substitution, recursion and minimalisation.
- (v) If ψ is a total function that is \mathcal{O} -computable, then $\mathcal{C}^{\psi} \subseteq \mathcal{C}^{\mathcal{O}}$.

Relative S-m-n Theorem

Relative S-m-n Theorem. For all $m, n \ge 1$ there is an injective primitive recursive (m+1)-ary function $s_n^m(e, \tilde{x})$ such that for each oracle \mathcal{O} the following holds:

$$\phi_e^{\mathcal{O},m+n}(\widetilde{x},\widetilde{y}) \simeq \phi_{s_n^m(e,\widetilde{x})}^{\mathcal{O},n}(\widetilde{y}).$$

Notice that $s_n^m(e, \widetilde{x})$ does not refer to \mathcal{O} .

Relative Enumeration Theorem

Relative Enumeration Theorem. For each n, the universal function $\psi_U^{\mathcal{O},n}$ for n-ary \mathcal{O} -computable functions given by

$$\psi_U^{\mathcal{O},n}(e,\widetilde{x}) \simeq \phi_e^{\mathcal{O},n}(\widetilde{x})$$

is \mathcal{O} -computable.

Relative Recursion Theorem

Relative Recursion Theorem. Suppose f(y,z) is a total \mathcal{O} -computable function. There is a primitive recursive function n(z) such that for all z

$$\phi_{f(n(z),z)}^{\mathcal{O},n}(\widetilde{x}) \simeq \phi_{n(z)}^{\mathcal{O},n}(\widetilde{x}).$$

Relative Theory

Once we have the three foundational theorems, we can do the recursion theory relative to an oracle function.

A proof of a proposition relativizes if essentially it is also a proof of the relativized proposition.

\mathcal{O} -Recursive Set and \mathcal{O} -r.e. Set

A is \mathcal{O} -recursive if its characteristic function c_A is \mathcal{O} -computable.

A is \mathcal{O} -r.e. if its partial characteristic function χ_A is \mathcal{O} -computable.

\mathcal{O} -Recursive Set and \mathcal{O} -r.e. Set

Theorem. The following hold.

- (i) A is \mathcal{O} -recursive iff A and \overline{A} are \mathcal{O} -r.e.
- (ii) The following are equivalent.
 - ▶ *A* is *O*-r.e.
 - $A = W_e^{\mathcal{O}}$ for some e.
 - $A = E_e^{\mathcal{O}}$ for some e.
 - ▶ $A = \emptyset$ or A is the range of a total \mathcal{O} -computable function.
 - ▶ For some \mathcal{O} -decidable predicate R(x, y), $x \in A$ iff $\exists y.R(x, y)$.
- (iii) $K^{\mathcal{O}} \stackrel{\text{def}}{=} \{x \mid x \in W_x^{\mathcal{O}}\} \text{ is } \mathcal{O}\text{-r.e. but not } \mathcal{O}\text{-recursive.}$

Computability Relative to Set

Computability relative to a set A means computability relative to its characteristic function c_A .

We write ϕ_e^A for $\phi_e^{c_A}$.

We say A-computability rather than c_A -computability.

We write $f \leq_T A$ to indicate that f is A-computable.

2. Turing Reduction

Turing Reducibility

A set A is Turing reducible to B, or is recursive in B, notation $A \leq_T B$, if $c_A \leq_T B$.

The sets A, B are Turing equivalent, notation $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

 $A <_T B$ if $A \leq_T B$ and $B \nleq_T A$.

Turing Completeness

An r.e. set C is (Turing) complete if $A \leq_T C$ for every r.e. set A.

Property of Turing Reducibility

Fact.

- (i) \leq_T is reflexive and transitive.
- (ii) \equiv_T is an equivalence relation.
- (iii) If $A \leq_m B$ then $A \leq_T B$.
- (iv) $A \equiv_{\mathcal{T}} \overline{A}$ for all A.
- (v) If A is recursive, then $A \leq_T B$ for all B.
- (vi) If B is recursive and $A \leq_T B$, then A is recursive.
- (vii) If A is r.e. then $A \leq_T K$.

Turing Degree, or Degree of Unsolvability

The equivalence class $d_T(A) = \{B \mid B \equiv_T A\}$ is called the (Turing) degree of A.

Let **D** be the set of all Turing degrees. **D** is an upper semi-lattice.

Turing Degree

The set of Turing degrees is ranged over by a, b, c, \ldots

 $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_{\mathcal{T}} B$ for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$.

 $\mathbf{a} < \mathbf{b}$ iff $\mathbf{a} \le \mathbf{b}$ and $\mathbf{a} \ne \mathbf{b}$.

Turing Degree

Theorem. Every pair **a**, **b** have a unique least upper bound.

Recursive Degree and Recursively Enumerable Degree

A degree containing a recursive set is called a recursive degree.

A degree containing an r.e. set is called an r.e. degree.

Theorem.

- (i) There is precisely one recursive degree **0**, which consists of all the recursive sets and is the unique minimal degree.
- (ii) Let $\mathbf{0}'$ be the degree of K.

Then 0 < 0' and 0' is the maximum of all r.e. degrees.

Post's Question

In his 1944 paper, Post raised the following question:

$$\exists a. \ 0 < a < 0' ?$$

3. Jump Operator

Relative Recursive Enumerability

A set A is recursively enumerable in B if $\chi_A \leq_T B$.

Lemma. A is r.e. in B iff A is r.e. in \overline{B} .

Lemma. $A \leq_T B$ iff both A and \overline{A} are r.e. in B.

Lemma. Suppose B is recursively enumerable in C. If $C \leq_{\mathcal{T}} D$, then B is recursively enumerable in D.

We say that \mathbf{a} is recursively enumerable in \mathbf{b} if some $A \in \mathbf{a}$ is recursively enumerable in some $B \in \mathbf{b}$.

Jump Operator

The jump K^A of A, notation A', is defined by

$$A' = \{x \mid x \in W_x^A\}.$$

The *n*-th jump:

$$A^{(0)} = A,$$

 $A^{(n+1)} = (A^{(n)})'.$

Jump Theorem. The following hold:

- (i) A' is r.e. in A.
- (ii) $A \leq_{\mathcal{T}} A' \not\leq_{\mathcal{T}} A$. (in fact $\overline{A}, A \leq_1 A'$)

Proof.

- (i) Given x calculate $\phi_x^A(x)$. If $\phi_x^A(x) \downarrow$ then output 1.
- (ii) Using the Relative S-m-n Theorem one constructs an injective primitive recursive function s(x) such that

$$\phi_{s(x)}^{A}(y) = \begin{cases} y, & \text{if } x \in A(\text{or } x \notin A); \\ \uparrow, & \text{otherwise.} \end{cases}$$
 (1)

Clearly $x \in A$ iff $s(x) \in A'$. Hence \overline{A} , $A \leq_1 A'$.

Had $A' \leq_T A$, one would be able to construct an A-recursive function that is different from any A-recursive function, which is a contradiction.

Jump Theorem. The following hold:

- (iii) A is r.e. in B iff $A \leq_1 B'$.
- (iv) $A \leq_T B$ iff $A' \leq_1 B'$. Consequently $A \equiv_T B$ iff $A' \equiv_1 B'$.

Proof.

(iii) Suppose A is r.e. in B. Using the Relative S-m-n Theorem, one gets an injective recursive function s(x) such that

$$\phi_{s(x)}^B(y) \simeq if \ x \in A \ then \ y \ else \uparrow.$$

Clearly $x \in A$ iff $s(x) \in B'$. Hence $A \leq_1 B'$.

Conversely if $d: A \leq_1 B'$ then $\chi_A(x)$ can be B-computed by "if $\phi_{d(x)}^B(d(x)) \downarrow then \ 1$ else \uparrow ".

(iv) This follows from (i,ii,iii) immediately.

Beyond R.E. Degree

The jump of \mathbf{a} , notation \mathbf{a}' , is defined by $d_T(A')$ for some $A \in \mathbf{a}$.

By definition $\mathbf{0}'$ is the jump of $\mathbf{0}$. Hence the infinite hierarchy

$$\mathbf{0} < \mathbf{0}' < \mathbf{0}'' < \mathbf{0}''' < \ldots < \mathbf{0}^{(n)} < \ldots$$

Notice that $\mathbf{0} = d_T(\emptyset)$ and $\mathbf{0}^{(n)} = d_T(\emptyset^{(n)})$.

4. Use Principle

String as Subset

A finite string σ of 0's and 1's can be seen as an initial segment of a characteristic function.

We write $\sigma \subset A$ if $\sigma \subset c_A$ when both are treated as graphs.

Let $|\sigma|$ denote the length of σ .

Let $A \upharpoonright x$ be $\{ y \in A \mid y < x \}$.

Similarly one defines $\sigma \upharpoonright x$.

Use Function

We write $\phi_{e,s}^A(x) = y$ if

- ▶ e, x, y < s;</p>
- $\triangleright P_s^A(x)$ outputs y in < s steps;
- only numbers < s are tested for membership of A.

The use function u(A; e, x, s) is "1 + the maximum number tested for membership of A during the computation of $\phi_{e,s}^A(x)$ " if $\phi_{e,s}^A(x) \downarrow$; and u(A; e, x, s) is 0 if $\phi_{e,s}^A(x) \uparrow$.

The use function u(A; e, x) is u(A; e, x, s) for some s such that $u(A; e, x, s) \downarrow$.

Use Function

$$\phi_{e,s}^{\sigma}(x)$$
 and $\phi_{e,s}^{A \upharpoonright u}(x)$ are defined accordingly.

$$\phi_e^{\sigma}(x) = y \text{ if } \exists s. \phi_{e,s}^{\sigma}(x) = y.$$

We shall also use notations like $W_{e,s}^A$, $W_{e,s}^\sigma$, W_e^σ .

Use Principle

Theorem. The following hold:

(i)
$$\phi_e^A(x) = y$$
 implies $\exists s. \exists \sigma \subset A. \phi_{e,s}^{\sigma}(x) = y$.

(ii)
$$\phi_{e,s}^{\sigma}(x) = y$$
 implies $\forall t \geq s. \forall \tau \supseteq \sigma. \phi_{e,t}^{\tau}(x) = y$.

(iii)
$$\phi_e^{\sigma}(x) = y$$
 implies $\forall A \supseteq \sigma.\phi_e^{A}(x) = y$.

The Use Principle implies the following

$$(\phi_{e,s}^A(x) = y \land A \upharpoonright u = B \upharpoonright u) \Rightarrow \phi_{e,s}^B(x) = y,$$

where u = u(A; e, x, s).

5. Modulus Lemma and Limit Lemma

Degrees $\leq_{\mathcal{T}} \mathbf{0}'$

We are mainly interested in degrees $\leq_{\mathcal{T}} \mathbf{0}'$, and particularly in the r.e. degrees.

We provide some alternative characterizations of such degrees.

Modulus of Convergence

- 1. A sequence $\{f_s(x)\}_{s\in\omega}$ of total functions is recursive if there is a recursive function $\widehat{f}(s,x)$ such that $f_s(x) = \widehat{f}(s,x)$ for all s,x.
- 2. The sequence $\{f_s(x)\}_{s\in\omega}$ converges pointwise to f(x), notation $f=\lim_s f_s$, if for each x, $f_s(x)=f(x)$ for all but finitely many s.
- 3. A modulus of convergence for the sequence $\{f_s(x)\}_{s\in\omega}$ is a function m(x) such that $f_s(x)=f(x)$ for all $s\geq m(x)$.

Modulus Lemma. Suppose A is r.e. and $f \leq_T A$. Then there are (1) a recursive sequence $\{f_s\}_{s\in\omega}$ such that (2) $f=\lim_s f_s$ and (3) a modulus m of $\{f_s\}_{s\in\omega}$ that is recursive in A.

Proof.

Suppose A is r.e. and $f = \phi_e^A$. Let $A_s = W_{i,s}$ for some $W_i = A$. Define a converging family $\{f_s\}_{s\omega}$ by

$$f_e(x) = \begin{cases} \phi_{e,s}^{A_s}(x), & \text{if } \phi_{e,s}^{A_s}(x) \downarrow, \\ 0, & \text{otherwise.} \end{cases}$$

Clearly $\{f_s\}_{s\in\omega}$ is a recursive sequence. Define m by

$$m(x) = \mu s. \exists z \leq s. (\phi_{e.s}^{A_s \upharpoonright z}(x) \downarrow \land A_s \upharpoonright z = A \upharpoonright z).$$

Now m is A-recursive, and by Use Principle is a modulus since

$$\phi_{e,s}^{A_s \upharpoonright z}(x) = \phi_{e,s}^{A \upharpoonright z}(x) = \phi_{e}^{A}(x) = f(x) \text{ for } s \ge m(x).$$

Limit Lemma. $f \leq_T A'$ iff there is an A-recursive sequence $\{f_s\}_{s \in \omega}$ such that $f = \lim_s f_s$.

Proof.

Suppose $f \leq_T A'$. Since A' is r.e. in A, the A-recursive sequence $\{f_s\}_{s\in\omega}$ exists by Relative Modulus Lemma.

Suppose $f = \lim_s f_s$ for an A-recursive sequence $\{f_s\}_{s \in \omega}$. Define

$$A_{x} = \{s \mid \exists t.(s \leq t \land f_{t}(x) \neq f_{t+1}(x))\},\$$

which is finite. Now $m(x) = \mu s.(s \notin A_x)$ is Turing equivalent to

$$B = \{ \langle s, x \rangle \mid s \in A_x \},\$$

which is r.e. in A. Hence $m \equiv_T B \leq_T A'$.

Conclude that $f \leq_T A'$ since $f(x) = f_{m(x)}(x)$.

Constructing Degrees below 0'

Corollary. A function f has degree $\leq \mathbf{0}'$ (meaning $f \leq_{\mathcal{T}} \emptyset'$) iff $f = \lim_{s} f_{s}$ for some recursive sequence $\{f_{s}\}_{s \in \omega}$.

Constructing R.E. Degrees

Corollary. A function f has r.e. degree iff f is the limit of a recursive sequence $\{f_s\}_{s\in\omega}$ that has a modulus $m\leq_T f$.

Proof.

If $f \equiv_{\mathcal{T}} A$ for some r.e. set A, then by Modulus Lemma $m \leq_{\mathcal{T}} A \equiv_{\mathcal{T}} f$.

Suppose $f = \lim_s f_s$ with modulus $m \leq_T f$. As in the proof of the Limit Lemma, $f \leq_T m$.