Greenhouse Environmental Control — Descriptive Walkthrough

1) Function: FC_SensorScaling (ST)

What this block has

• Inputs (raw):

TempRaw, HumRaw, LightRaw (analog words, 0...27648).

Optional spans: TempMaxEU, HumMaxEU, LightMaxEU to define engineering-unit ranges.

Outputs (scaled):

TempValue (°C), HumValue (%RH), LightValue (Lux).

What it does when activated

- It reads the three raw analog values each scan.
- It **converts** each raw value to an engineering value by simple linear scaling:
 - o TempValue = (TempRaw / 27648) * TempMaxEU (e.g., 0–50 °C)
 - HumValue = (HumRaw / 27648) * HumMaxEU (e.g., 0–100 %RH)
 - LightValue= (LightRaw/ 27648) * LightMaxEU (e.g., 0–1000 Lux)
- It writes the scaled results into the global DB (where OB1 connected it).

If conditions are... it does this

- If sensors are normal (within 0...27648): it outputs a proportional number in EU.
- If a **sensor reads very low/high** (close to 0/27648): the output approaches the span limits (near 0 or near the MaxEU).
- If you pass a different MaxEU (e.g., TempMaxEU = 80.0): the °C scale stretches accordingly no other code changes needed.

Why it exists

Keeps all scaling math in one place, reusable for any channel, and makes the rest of the program
work with clean, meaningful units.

2) Function Block: FB_ClimateControl (ST)

What this block has

Inputs (from FC & DB):

TempValue, HumValue, LightValue (scaled);
TempSet, HumSet, LightSet (setpoints);
EnTempCtrl, EnHumCtrl, EnLightCtrl (feature enables);
optional min on/off times for each actuator to avoid short cycling.

Outputs (to field):

Fan, Heater, Humidifier, GrowLight (BOOLs).

• Static internals (remembered across scans):

Hysteresis values (TempHyst, HumHyst), request latches (Req*), **TON timers** for min on/off enforcement, and **latched states** (*StateLatched).

• Temp (scratch):

One-scan booleans like WantFan, WantHeater, WantHumid, WantLight.

What it does when activated (sequence of operation)

- 1. **Reads current measurements** (TempValue, HumValue, LightValue) and **targets** (TempSet, HumSet, LightSet).
- 2. Makes an intent ("Want...") decision for each actuator:
 - o Temperature logic with hysteresis (mutually exclusive heat/cool):
 - If TempValue > TempSet + TempHyst → WantFan = TRUE, WantHeater = FALSE (cooling).
 - If TempValue < TempSet TempHyst → WantFan = FALSE, WantHeater = TRUE (heating).</p>
 - If within TempSet ± TempHyst → both FALSE (deadband, no action).
 - Humidity logic with hysteresis:
 - If HumValue < HumSet HumHyst → WantHumid = TRUE.
 - If HumValue ≥ HumSet → WantHumid = FALSE.
 - If in the gap (HumSet HumHyst ≤ value < HumSet) → hold previous request to avoid chatter.
 - Light logic (threshold):
 - If LightValue < LightSet → WantLight = TRUE, else FALSE.
 - If a control is disabled (En*Ctrl = FALSE), that actuator's Want is forced FALSE.
- 3. **Stores the "Want" decisions** in static request latches (Req*) so they persist through deadbands.
- 4. **Enforces minimum ON/OFF times** per actuator using TON timers and state latches:
 - o If a request changes (e.g., OFF→ON):
 - It checks the opposite minimum time (e.g., MinOff must be satisfied before allowing ON).
 - It starts the appropriate TON gate and updates the latched state when allowed.
 - o If no request change, timers stay idle and the latched state holds.
- 5. **Drives outputs** by combining the **latched state** and the **current request**:

Output := StateLatched AND Reg.

This pattern ensures outputs only change when both the intent and the timing rules agree.

If conditions are... it does this

- If **TempValue jumps high** above TempSet + TempHyst: it **requests Fan ON**, **Heater OFF**; Fan will turn on immediately **or** after MinOff is satisfied (if configured).
- If **TempValue drops low** below TempSet TempHyst: it **requests Heater ON**, **Fan OFF**; Heater will turn on immediately **or** after its MinOff is satisfied.
- If **humidity is low** (below HumSet HumHyst): it **requests Humidifier ON**; it will turn OFF once humidity reaches HumSet and any MinOn requirement is met.
- If **light is low** (below LightSet): it **requests GrowLight ON**; OFF when light ≥ setpoint (and MinOn satisfied if used).
- If an enable is OFF: that actuator remains OFF regardless of measurements.
- If MinOn/MinOff = 0s: the actuator follows the request immediately (only hysteresis applies).

Why it exists

• Centralizes all **control decisions** with stability features (**hysteresis**, **min-times**) so hardware isn't abused by rapid cycling and the greenhouse environment remains steady.

3) Global Data Block: DB_Greenhouse

What this block has

- Setpoints you can tune at runtime: TempSet (°C), HumSet (%RH), LightSet (Lux).
- Scaled measurements (written by the FC): TempValue, HumValue, LightValue.
- **Enables** for each control loop: EnTempCtrl, EnHumCtrl, EnLightCtrl.
- Min on/off time parameters per actuator: MinOnSec_*, MinOffSec_*.
- Actuator states (written by the FB): Fan, Heater, Humidifier, GrowLight.

What it does when used

- Serves as the single source of truth for HMI and commissioning:
 - o You watch live values here.
 - o You edit setpoints/enables/timers here.
 - o You **see** final output commands here.

If conditions are... it does this

- If you **change a setpoint** (e.g., TempSet from 25→27 °C), the FB on its next scan will use 27 °C and may **switch actions** accordingly.
- If you **disable** a loop (e.g., EnHumCtrl := FALSE), the FB **forces that output OFF** and **ignores humidity** until re-enabled.

Why it exists

 Keeps all operator-tunable and operator-visible values in one easy place, making HMI wiring and testing simple.

4) Main Program: OB1 (LAD, minimal)

What this block has

- Network 1: A call to FC_SensorScaling.
- Network 2: A call to FB_ClimateControl with its Instance DB.
- Network 3: Coils/assignments mapping DB outputs to physical outputs (Q0.x).

What it does when activated (every scan)

1. Net 1 — Scale sensors:

Reads IW64/IW66/IW68 → calls FC_SensorScaling → writes TempValue/HumValue/LightValue into DB Greenhouse.

2. Net 2 — Decide actions:

Calls FB_ClimateControl using:

- Inputs from DB_Greenhouse (values, setpoints, enables, min-times)
- Outputs back to DB_Greenhouse (Fan/Heater/Humidifier/GrowLight)

3. Net 3 — Drive hardware:

Assigns DB_Greenhouse.* outputs to Q0.0...Q0.3.

If conditions are... it does this

- If a **sensor changes**, Net 1 updates DB values; Net 2 **re-decides**; Net 3 **reflects** the new state on the outputs.
- If the **PLC scan repeats** (it does continuously), the chain **keeps updating** in this same order, ensuring a consistent read → decide → act loop.

Why it exists

Keeps Ladder to the bare minimum (block calls + I/O mapping) while the real logic lives in ST.

End-to-End "What Happens When..."

A) Temperature suddenly rises above setpoint + hysteresis

- 1. **FC** scales TempRaw → higher TempValue.
- 2. **FB** sees TempValue > TempSet + TempHyst → wants Fan ON, Heater OFF.
- 3. If MinOff for Fan is satisfied (or 0 s), FB latches Fan ON.
- 4. **OB1** maps Fan = TRUE to **Q0.0 ON**.
- 5. As temp falls back into the deadband, FB stops asking for fan; if MinOn is met, it turns Fan OFF.

B) Temperature drops below setpoint - hysteresis

- 1. **FC** scales TempRaw → lower TempValue.
- 2. **FB** sees TempValue < TempSet TempHyst → wants Heater ON, Fan OFF.
- 3. If MinOff for Heater is satisfied (or 0 s), FB latches Heater ON.
- 4. **OB1** maps Heater = TRUE to **Q0.1 ON**.

C) Humidity is too low

- 1. FC outputs low HumValue.
- 2. **FB** sees HumValue < HumSet HumHyst → wants Humidifier ON.
- 3. After MinOff (if any), Humidifier turns ON at Q0.2.
- 4. When humidity reaches HumSet, FB requests OFF; after MinOn (if any), Q0.2 turns OFF.

D) Ambient light is insufficient

- 1. **FC** outputs low LightValue.
- 2. **FB** checks LightValue < LightSet → wants GrowLight ON.
- 3. After any timer gates, **Q0.3 turns ON** until ambient light ≥ setpoint.

E) A control loop is disabled

• If EnTempCtrl = FALSE, the FB does not request Fan/Heater, and they remain OFF regardless of temperature.

Practical Notes & Good Habits

- **Hysteresis** prevents rapid chatter around a setpoint; adjust TempHyst and HumHyst to match your equipment and greenhouse volume.
- **Min on/off times** protect hardware (heaters especially). Start with: Fan 5–10 s, Heater 10–30 s, Humidifier 8–15 s, Light 0–10 s (often 0).
- Safety interlocks (E-stop, overtemp thermostat, door switch) should be hardwired and also checked in OB1 before energizing outputs.
- Keep all runtime-tunable parameters in DB_Greenhouse; this makes HMI design clean and commissioning fast.