REDUÇÕES

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

Cotas para um problema

Formalizando problema

Como formalizar um problema **GENERICAMENTE**?

Definição (Problema computacional)

Um problema computacional é uma **RELAÇÃO** $P \subseteq \mathcal{I} \times \mathcal{S}$, onde:

- ▶ I é o conjunto de entradas e
- S é o conjunto de saídas.

Algoritmo para um problema

Definição

Dizemos que um algoritmo ALG **RESOLVE** um problema $P = (\mathcal{I}, \mathcal{P})$ se para toda entrada $I \in \mathcal{I}$, ele devolve uma saída $S \in \mathcal{S}$ tal que $(I, S) \in P$.

- Escrevemos $I \in P$ para representar uma entrada.
- \triangleright Escrevemos A(I) para representar a saída do algoritmo.
- ightharpoonup Denotamos por n o "tamanho" de I.
- Normalmente *n* é o números de bits de *l*.

Revisitando a complexidade de um algoritmo

Seja ALG um algoritmo para um problema P e n um parâmetro.

Notação O:

Se o algoritmo leva tempo **NO MÁXIMO** f(n) para toda entrada de tamanho n, então dizemos que ALG executa em tempo O(f(n)).

Notação Ω :

Se o algoritmo leva tempo **PELO MENOS** g(n) para alguma entrada de tamanho n, então dizemos que ALG executa em tempo $\Omega(g(n))$.

Cotas superior e inferior de um problema

Seja P um problema e seja n um parâmetro:

Definição (Cota superior)

Uma função f(n) é chamada de cota superior para P se **existe algum algoritmo** que resolve P em tempo O(f(n)).

Definição (Cota inferior)

Uma função g(n) é chamada de cota inferior para P se **todo algoritmo** que resolve P leva tempo $\Omega(f(n))$.

Algoritmo ótimo

Um algoritmo ALG é **ÓTIMO** para um problema P se:

- 1. ALG resolve P em tempo O(f(n)) e
- 2. f(n) é uma cota inferior de P.
- ► HEAP-SORT e MERGE-SORT são ótimos para ordenação:
 - ightharpoonup Eles têm complexidade $O(n \log n)$.
 - ightharpoonup Ordenação tem cota inferior $\Omega(n \log n)$.
- ▶ Busca-Binaria é ótimo para busca em vetor ordenado:
 - ightharpoonup Tem complexidade $O(\log n)$.
 - **Proof** Qualquer algoritmo leva tempo $\Omega(\log n)$.

Comparando problemas

Como comparamos dois algoritmos para **UM ÚNICO PROBLEMA**?

- Comparamos a complexidade de cada algoritmo.
- Descobrimos se um algoritmo é mais "rápido" que outro.

E se quisermos comparar DOIS PROBLEMAS A e B?

- Queremos descobrir se então A é mais "fácil" do que B.
- Podemos comparar as cotas de cada algoritmo.

Exemplo: Achar o máximo é mais **FÁCIL** que ordenar um vetor!

- Máximo tem cota superior O(n).
- ▶ Ordenação tem cota inferior $\Omega(n \log n)$.

Combinando problemas

Uma analogia

Um certo editor de literatura internacional é especialista em publicar livros em português. Ele conta com um time de tradutores, entre os quais:

- Cook, responsável por traduzir de inglês para português.
- Levin, responsável por traduzir de russo para inglês.

Em uma edição especial, ele irá publicar Crime e Castigo. Como traduzir de **RUSSO PARA PORTUGUÊS**?

- Em geral, lidamos com problemas bem conhecidos.
- Mas eventualmente, topamos com problemas novos.

Pergunta: como relacionar esses problemas?

Redução

Problema A:

► Instância: *I_A*

Solução: S_A

Problema B:

► Instância: *I_B*

▶ Solução: S_B

Definição

Uma **REDUÇÃO** do problema A ao problema B é um par de sub-rotinas τ_L e τ_S tais que:

- π transforma uma instância I_A de A em uma instância I_B de B.
- τ_S transforma uma solução S_B de I_B em uma solução S_A de I_A.

Redução como um algoritmo

Čomo podemos resolver o problema A?

- 1. Suponha que existe um algoritmo ALG_B para o problema B.
- 2. Podemos usar ALGB como uma CAIXA-PRETA.

Algoritmo: Redução(I, A)

- 1 $I_B \leftarrow \tau_I(I_A)$
- $S_B \leftarrow \mathrm{ALG}_B(I_B)$
- $S_A \leftarrow \tau_S(I_A, S_B)$
- 4 devolva S_A

Em outras palavras:

- Se sabemos resolver B, então também sei resolver A!
- ► A não é mais "difícil" que B.
- ▶ Denotamos $A \leq B$.

Um problema de origem

Problema (Alocação de Centros (AC))

Entrada: Um grafo bipartido conexo $G = ((X \cup Y), E)$ e uma função de pesos nas arestas $w : E \to \mathbb{R}_+$.

Saída: Uma função $\phi: X \to Y$ que aloque cada vértice v em X a um vértice $\phi[v]$ em Y tal que o peso $w(v, \phi[v])$ seja **MÍNIMO**.

Um problema de destino

Problema (Caminho Mínimo (CM))

Entrada: Um grafo direcionado acíclico G = (V, E), uma função de peso $w : E \to \mathbb{R}_+$ nas arestas e um vértice origem origem s.

Saída: Um vetor d com d[v] = dist(s, v) para $v \in V$ e um vetor π definindo uma **ÁRVORE DE CAMINHOS** M**ÍNIMOS**.

Reduzindo. Transformação da entrada

Recebemos uma ENTRADA do problema de origem AC:

Algoritmo: $\tau_I(G, w)$

$$\mathbf{1} \ \ G' \leftarrow G$$

$$2 w' \leftarrow w$$

3 Adicione um novo vértice s a G'

4 para cada $v \in Y$

5 Adicione a aresta (s, v) a G'

6 $w'(s,v) \leftarrow 0$

7 devolva (G', w', s)

X Y

Tempo: O(Y).

Reduzindo. Transformação da saída

Também recebemos uma SOLUÇÃO do problema de destino CM:

Algoritmo: $\tau_S(G, w, \mathbf{d}, \pi)$

- 1 para cada $v \in X$
- $\mathbf{2} \quad \boxed{\quad \phi[\mathbf{v}] \leftarrow \pi[\mathbf{v}]}$
- $_{
 m 3}$ devolva ϕ

Tempo: O(X).

Reduzindo. AC ≼ CM

Seja ALG_{CM} um algoritmo para Caminho Mínimo.

- ► Alg_{CM} poderia ser Dijkstra, Bellman-Ford...
- Pode ser que NÃO CONHEÇAMOS um algoritmo para o problema de destino!

Algoritmo: Redução-AC-CM(G, w)

- 1 $(G', w', s) \leftarrow \tau_I(G, w)$
- 2 $(d,\pi) \leftarrow ALG_{CM}(G',w',s)$
- $3 \phi \leftarrow \tau_S(G, w, d, \pi)$
- 4 devolva ϕ

Tempo total: [tempo da redução] + [tempo de $\mathrm{ALG}_{\mathsf{CM}}$]

Tempo da redução

Quanto tempo gastamos só com a redução?

- ▶ Não contamos o tempo do algoritmo para o problema B.
- A COMPLEXIDADE DE UMA REDUÇÃO f(n) é a soma dos tempos das transformações τ₁ e τ₅.
- \triangleright Escrevemos $A \preccurlyeq_{f(n)} B$.

No caso de Redução-AC-CM: $AC \leq_{|X|+|Y|} CM$.

Reduções polinomiais

Queremos construir algoritmos rápidos. Mas, o que é "rápido"?

- Normalmente, dizemos que um algoritmo é rápido se ele executa em TEMPO POLINOMIAL.
- Daí, queremos reduções de tempo polinomial.
- Nesse caso, escrevemos A ≼poli B.

Qual a consequência de $A \preccurlyeq_{poli} B$?

- 1. Se *B* tem um algoritmo de tempo polinomial, então *A* também.
- 2. Se A NÃO tem algoritmos de tempo polinomial, tampouco B.
- Isso é útil para distinguir problemas fáceis de difíceis!
- Mas, é assunto para depois...

Exemplos de reduções

Problema de origem

Problema (Sistema Linear (LS))

Entrada: Uma matriz M de dimensões $n \times n$ com determinante $N\tilde{AO}$ nulo e um vetor b de dimensão n.

Saída: Um vetor x de dimensão n que satisfaz o seguinte sistema linear:

$$Mx = b$$
.

Problema de destino

Problema (Sistema Linear Simétrico (SLS))

Entrada: Uma matriz M **SIMÉTRICA** de dimensões $n \times n$ com determinante **NÃO** nulo e um vetor b de dimensão n.

Saída: Um vetor x de dimensão n que satisfaz o seguinte sistema linear:

Mx = b.

Perguntas

SLS é um caso particular de LS.

- ▶ Logo, trivialmente SLS \leq LS.
- Será que LS é estritamente mais difícil?

A resposta é **NÃO!**

- ► Iremos reduzir LS para SLS.

Um fato simples

Lema

Um vetor x é solução de Mx = b se, e só se, x é solução de $M^T Mx = M^T b$.

Demonstração:

- (⇒) ► Multiplicamos Mx = b por M^T .
 - ightharpoonup Obtemos $M^T M x = M^T b$.
- (\Leftarrow) \triangleright M^T tem determinante não nulo.
 - ▶ Logo, M^T tem inversa Z.
 - Multiplicamos $M^T M x = M^T b$ por Z.
 - ightharpoonup Obtendo Mx = b

Observe que $M' = M^T M$ é uma matriz simétrica!

LS ≼ SLS

Algoritmo: Redução-LS-SLS(M, b)

- $1 M' \leftarrow M^T M$
- $b' \leftarrow M^T b$
- $x \leftarrow ALG_{SLS}(M', b')$
- 4 devolva x

Concluímos que de fato LS ≼ SLS.

Problema de origem

Problema (Casamento cíclico de strings (CSM))

Entrada: Um alfabeto Σ , uma cadeia $A = a_0 a_1 \dots a_{n-1}$ com n símbolos e uma cadeia $B = b_0 b_1 \dots b_{n-1}$ com n símbolos.

Saída: SIM, se B for um **DESLOCAMENTO CÍCLICO** de A, ou NAO, caso contrário. Se SIM, então o número k de letras deslocadas faz parte da saída.

Exemplo:

▶ Entrada: A = acgtact e B = gtactac

Saída: SIM, k=2

Problema de destino

Problema (Casamento de strings (SM))

Entrada: UM alfabeto Σ , uma cadeia $A = a_0 a_1 \dots a_{n-1}$ com n símbolos e uma cadeia $B = b_0 b_1 \dots b_{m-1}$ com m símbolos.

Saída: SIM, se B for **SUBCADEIA** de A, ou NAO, caso contrário. Se SIM, o índice k da primeira ocorrência de B em A, faz parte da saída.

Exemplo:

▶ Entrada: A = acgttaccgtacccg e B = tac

Saída: SIM, k=4

Observação: o problema SM pode ser resolvido em tempo O(n+m) pelo algoritmo KMP de Knuth, Morris and Pratt (1977).

$CSM \leq SM$

Ålgoritmo: Redução-CSM-SM(A, B, n)

- $1 A' \leftarrow AA$
- $\mathbf{2} \ B' \leftarrow B$
- $3 n' \leftarrow 2n$
- 4 $m' \leftarrow n$
- 5 devolva $ALG_{SM}(A', n', B', m')$
 - ► Tempo da redução: *O*(*n*)
 - Correção: basta mostrar que k é a solução de SM, se e só se, k é solução de CSM.

Exemplo:

- $I_{CSM} = (acgtact, gtactac, 7).$
- $I_{SM} = (acgtactacgtact, 14, gtactac, 7).$
- $S_{SM} = S_{CSM} = (SIM, 2).$

Problema de origem

Problema (Existência de triângulo (PET))

Entrada: Um grafo conexo G = (V, E) sem laços com n = |V| e m = |E|.

Saída: Decidir se G contém um triângulo.

Exemplo:

Observações sobre o PET

Alguns algoritmos conhecidos:

- ▶ Um algoritmo trivial de tempo $O(n^3)$:
 - Verifica todas as triplas de vértices.
- ▶ Um algoritmo O(mn):
 - É muito bom se o grafo é ESPARSO.

Vamos supor que o grafo é denso:

G será representado por uma matriz de adjacência A:

$$a_{ij} = \begin{cases} 1 & \text{se } (i,j) \in E \\ 0 & \text{se } (i,j) \notin E \end{cases}$$

Um lema útil

Lema

Seja $A^2 = A \times A$, ou seja, $a_{ij}^2 = \sum_{k=1}^n a_{ik} a_{kj}$. Então, $a_{ij}^2 > 0$ se e somente se existe caminho de tamanho dois saindo de i e chegando em j.

Demonstração:

- (\Rightarrow) Se $a_{ij}^2 > 0$, então algum termo $a_{ik}a_{kj}$ é positivo.
 - Segue que $a_{ik} = 1$ e $a_{kj} = 1$.
 - Ou seja, há arestas (i, k) e (k, j).
- (\Leftarrow) Seja um caminho (i, k, j) de i até j.
 - Então, $a_{ik} = 1$ e $a_{ki} = 1$.
 - ▶ Daí, $a_{ik}a_{kj} > 0$ e, portanto, $a_{ij}^2 > 0$.

Problema destino

Problema (Multiplicação de Matrizes Quadradas (MMQ))

Entrada: Uma matriz quadrada A de ordem n e uma matriz quadrada B de ordem n.

Saída: O produto $P = A \times B$.

Observações:

- ▶ Há um algoritmo óbvio de complexidade $O(n^3)$.
- MMQ pode ser resolvida mais rapidamente:
 - Em tempo $O(n^{2,807})$ pelo algoritmo de Strassen (1969).
 - Em tempo $O(n^{2,376})$ pelo algoritmo de Coppersmith e Winograd (1990).
 - Em tempo $O(n^{2,3728639})$ pelo de François Le Gall (2014).

PET ≼ MMQ

Öbserve que só existe triângulo com aresta (i, j) se:

- 1. Existir um caminho de tamanho 2 de i a j.
- 2. Existir a aresta (i, j).

Algoritmo: REDUÇÃO-PET-MMQ(A, n)

```
1 A^2 \leftarrow \operatorname{ALG}_{\mathsf{MMQ}}(A, n)

2 para i = 1 até n

3 para j = 1 até n

4 se a_{ij}^2 > 0 e a_{ij} = 1

5 devolva SIM
```

6 devolva NAO

- ► Tempo da redução: $O(n^2)$.
- **Tempo total:** $O(n^{2,3728639})$.

$\overline{\mathsf{PET}} \preccurlyeq \overline{\mathsf{MMQ}}$

Α	1	2	3	4	5	
1	0	1	1	0	0	
1 2	1	0	0	1	1	
3	1	0	0	1	0	
4 5	0	1	1	0	1	
5	0	1	0	1	0	

42	4	^	2		_	
Α	1	2	3	4	5	
1	2	0	0	2	1	
2	0	3	2	1	1	
3	0	0 3 2	2	0	1	
4	2	1	0	3	1	
5	1	1	1	1	2	

Considerando o caso particular

Considere um caso particular de MMQ:

Problema (Multiplicação de Matrizes Simétricas (MMS))

Entrada: Uma matriz **SIMÉTRICA** quadrada A de ordem m e uma matriz **SIMÉTRICA** quadrada B de ordem m.

Saída: O produto $P = A \times B$.

Claro que MMS \leq_{m^2} MMQ.

- Portanto, MMQ é pelo menos tão difícil quanto MMS.
- Será que MMS também é pelo menos tão difícil quanto MMQ?

Reduzindo MMQ ≼ MMS

- 1. Considere uma instância de MMQ, $I_{MMQ} = (A, B, n)$.
- 2. Construa uma instância de MMS, $I_{MMS} = (A', B', 2n)$, em que

$$A' = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \quad \mathbf{e} \quad B' = \begin{bmatrix} 0 & B^T \\ B & 0 \end{bmatrix}.$$

3. A solução de MMS é:

$$P' = A'B' = \begin{bmatrix} AB & 0 \\ 0 & A^TB^T \end{bmatrix}.$$

4. Devolva o primeiro bloco da matriz P'.

Tempo da redução: $O(n^2)$.

- Construir I_{MMQ} leva tempo $O(n^2)$.
- Copiar o bloco e P' leva tempo $O(n^2)$.

Interpretando os fatos

- Suponha que exista um algoritmo para MMS de tempo O(T(m)) para algum polinômio T(m).
 - Lembre que m é a ordem das matrizes A' e B'.
- Quão pequeno pode ser T(m)?
 - ightharpoonup É claro que $T(m) = \Omega(m^2)$, pois é preciso ler a entrada.
 - Será que pode ser mais rápido que $o(m^{2,3728639})$?

Para responder isso, usamos a redução MMQ \leq_{n^2} MMS:

- ▶ Ela implica em um algoritmo de tempo total $O(T(m) + n^2)$.
- Como m = 2n, tempo é $O(T(2n) + n^2) = O(T(n) + n^2)$.
- ▶ Como T(n) domina n^2 , o tempo é simplesmente O(T(n)).

Ou seja: Um algoritmo com complexidade T(m) para MMS implica em um algoritmo com complexidade T(n) para MMQ!

REDUÇÕES PARA OBTENÇÃO DE COTA INFERIOR

Uma redução $A \preccurlyeq_{f(n)} B$

Suponha que:

- \triangleright A tem cota inferior h(n).
- ▶ ALG_B resolve B em tempo g(n).
- A redução gasta tempo $f(n) \leq \frac{h(n)}{2}$.

Então, um algoritmo baseado na redução $A \leq_{f(n)} B$ tem tempo:

$$f(n)+g(n) \geq h(n) \Rightarrow g(n) \geq h(n)-f(n) \geq h(n)-\frac{h(n)}{2}=\frac{h(n)}{2}$$

Conclusão: $g(n) \ge \Omega(h(n))$.

Transferindo cotas inferiores

Teorema

Considere dois problemas A e B e suponha que

- 1. h(n) é cota inferior para A e
- 2. $A \preccurlyeq_{f(n)} B$,
- 3. f(n) = o(h(n)).

Então h(n) é cota inferior para B.

- A cota inferior depende do MODELO DE COMPUTAÇÃO.
- Supomos o mesmo modelo para ambos problemas.

Problema de origem

Problema (Ordenação (ORD))

Entrada: Uma sequência $X = (x_1, x_2, ..., x_n)$ de n elementos comparáveis.

Saída: Uma permutação de X cujos elementos estejam ordenados.

- Só podemos comparar dois elementos por uma sub-rotina caixa-preta de tempo constante (chamada ORÁCULO).
- Esse problema tem cota inferior $\Omega(n \log n)$.

Problema de destino

Problema (Envoltória Convexa (EC))

Entrada: Um conjunto $\{(x_1, y_1), \dots, (x_n, y_n)\}$ de n pontos no plano.

Saída: MENOR POLÍGONO CONVEXO que contém os n pontos.

- Os vértices são representados em ordem anti-horária.
- Problema clássico de Geometria Computacional.
- Pode ser resolvido em tempo $O(n \log n)$.

$ORD \leq_n EC$

Reduzindo ORD \leq_n EC:

- 1. Considere uma instância de $I_{ORD} = (x_1, x_2, \dots, x_n)$.
- 2. Construa instância $I_{EC} = \{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_n, x_n^2)\}.$

- 3. Resolva I_{EC} e obtenha solução S_{EC} , que é uma lista **CÍCLICA** dos vértices do polígono.
- 4. Determine índice i de S_{EC} do ponto com menor abcissa.
- 5. Liste os todos os índices a partir de i.
- O tempo da redução é O(n).
- Portanto $\Omega(n \log n)$ também é **COTA INFERIOR** para EC.

Problema de origem

Problema (Unicidade de Elementos (UE))

Entrada: Uma sequência $X = (x_1, x_2, ..., x_n)$ de n elementos comparáveis.

Saída: Decidir se os elementos são **TODOS** distintos.

- Só podemos comparar dois elementos por uma sub-rotina caixa-preta de tempo constante (chamada ORÁCULO).
- Esse problema tem cota inferior $\Omega(n \log n)$.
- ▶ O problema pode ser resolvido em tempo $O(n \log n)$ (como?).

Problema de destino

Problema (Par Mais Próximo (PMP))

Entrada: Uma coleção $\{(x_1, y_1), \dots, (x_n, y_n)\}$ de n pontos no plano.

Saída: Par de pontos i e j que estejam A MENOR DISTÂNCIA.

Observação:

Pode ser resolvido em tempo $O(n \log n)$

Reduzindo UE \leq_n PMP

- 1. Considere instância $I_{UE} = (x_1, x_2, \dots, x_n)$.
- 2. Construa instância $I_{PMP} = \{(x_1, 0), (x_2, 0), \dots, (x_n, 0)\}.$

- 3. Resolva I_{PMP} e obtenha par de pontos $(x_i, 0), (x_j, 0)$.
- 4. Calcule a **DISTÂNCIA** d entre os pontos:
 - (a) Se d = 0, então devolva NAO.
 - (b) Se d > 0, devolva SIM.
- O tempo da redução é O(n).
- Portanto $\Omega(n \log n)$ também é **COTA INFERIOR** para PMP.

Problema de origem

Problema (3-Soma (3SUM))

Entrada: Uma sequência $X = (x_1, x_2, ..., x_n)$ de n reais.

Saída: Determinar se existem índices distintos i, j e k tais que:

$$x_i + x_j + x_k = 0.$$

Exemplo:

- Instância $X = (\underline{4}, -6, \underline{1}, 8, 7, -5)$
- Solução i = 1, j = 3 e k = 6

- Pode ser resolvido em $O(n^2)$ (como?).
- Acreditava-se que $\Omega(n^2)$ era **COTA INFERIOR**.
- Pode ser resolvido em $o(n^2)$ (Grønlund e Pettie, 2014).
- Ainda se acredita que não dá pra fazer melhor que $n^{2-\Omega(1)}$.

Problema de destino

Problema (Colinearidade Não Horizontal (COL))

Entrada: Um conjunto $\{(x_1, y_1), \dots, (x_n, y_n)\}$ de n pontos no plano.

Saída: Determinar se três pontos estão em alguma RETA NÃO HORIZONTAL

- Pode ser resolvido em tempo $O(n^2)$.
- Acredita-se que $\Omega(n^2)$ é **COTA INFERIOR**.

Reduzindo 3SUM $\leq_n COL$

- 1. Considere instância $I_{3SUM} = (x_1, x_2, \dots, x_n)$.
- 2. Construa instância $I_{COL} = \{(x_i, 0), (-x_i/2, 1), (x_i, 2) : i = 1, 2, ..., n\}.$ **Exemplo:** X = (4, -6, 1, 8, 7, -5):

- 3. Resolva I_{COL} e obtenha S_{COL} .
- 4. Se a resposta S_{COL} for SIM, responda SIM, e se a resposta S_{COL} for NAO, responda NAO.

$3SUM \leq_n COL (cont)$

A solução de *I_{COL}* (se houver) é uma tripla de pontos colineares. Claramente, cada um desses pontos deve estar em um dos eixos horizontais. Ou seja, tem a forma:

$$(x_i,0),(-x_j/2,1),(x_k,2).$$

Portanto, $x_i + x_j + x_k = 0$.

Se $x_i + x_j + x_k = 0$, então, os pontos citados são colineares.

$3SUM \leq_n COL$

- \triangleright É claro que $\Omega(n)$ é uma cota inferior para 3SUM.
- **E SE** houver cota inferior $\Omega(h(n))$ maior para 3SUM?
 - A redução gasta tempo f(n) = O(n).
 - Nesse caso, f(n) = o(h(n)).
 - ightharpoonup Então, $\Omega(h(n))$ seria cota inferior para COL
- Mas só conhecemos a cota trivial $\Omega(n)$ para 3SUM.

Redução de Turing

Podemos reduzir P_1 para P_2 fazendo várias aplicações de P_2 .

Exemplo de redução de Turing

Problema (Multiplicação de Inteiros)

Entrada: Dois inteiros a e b.

Saída: O produto a · b.

Problema (Quadrado)

Entrada: Um inteiro x. **Saída:** O quadrado x^2 .

Redução:

- Podemos reduzir Multiplicação de Inteiros para Quadrado.
- Fazemos apenas um número constante de somas, subtrações e divisão por dois:

$$a \cdot b = \frac{(a+b)^2 - a^2 - b^2}{2}$$

Refletindo sobre reduções e cotas inferiores

Vamos fazer alguns exercícios?

O problema 3SUMplus consiste em: dados uma sequência $X = (x_1, x_2, ..., x_n)$ de reais e um valor real b, determinar se existem três índices distintos i, j e k tais que $x_i + x_j + x_k = b$.

- 1. Mostre que 3SUM \leq_n 3SUMplus.
- 2. Mostre que 3SUMplus \leq_n 3SUM.
- 3. Suponha que o Professor Sabit Udo descobriu uma **COTA INFERIOR** de $\Omega(n^{1,9})$ para 3SUMplus. Nesse caso, quais das afirmações abaixo são verdadeiras?
 - (i) Não existe algoritmo $O(n^{1,5})$ para 3SUMplus.
 - (ii) Não existe algoritmo $O(n^{1,5})$ para 3SUM.
 - (iii) Existe um algoritmo $O(n^{1,9})$ para 3SUMplus.
 - (iv) Existe um algoritmo $O(n^{1,9})$ para 3SUM.

Considere os problemas:

Problema (Sistema de Representantes Distintos (SRD))

Entrada: Uma coleção de conjuntos S_1, \ldots, S_k .

Saída: Conjunto $R = \{r_1, \dots, r_k\}$ tal que $r_i \in S_i$ para $i = 1, \dots, k$.

Problema (Emparelhamento Máximo (EM))

Entrada: Um grafo bipartido $G = (X \cup Y, E)$ com bipartição X e Y.

Saída: Um subconjunto de arestas M que não compartilham vértices, tal que |M| seja máximo.

Mostre que SRD \leq EM.

Considere os seguintes problemas:

Problema (Edição de String)

Entrada: Duas strings A e B.

Saída: Menor sequência de operações para transformar A em B, onde as possíveis operações são: **inserção** de um caractere,

remoção de um caractere, ou **troca** de um caractere por outro.

Problema (Caminho Mínimo)

Entrada: Um grafo direcionado G(V, E), um peso $c_{ij} \ge 0$ para cada aresta $(i, j) \in E$, dois vértices $s \in t$.

Saída: Um caminho de s a t em G de comprimento mínimo.

Mostre como reduzir Edição de String a Caminho Mínimo.

Considere os seguintes problemas:

Problema (Ordenação)

Entrada: Uma sequência de números naturais distintos

 x_1, x_2, \ldots, x_n .

Saída: Uma permutação ordenada dos números de entrada.

Problema (Codificação de Huffman)

Entrada: Um alfabeto C e uma tabela de frequências f.

Solução: Uma codificação de comprimento variável que minimize

o tamanho do texto codificado.

Mostre como reduzir Ordenação para Codificação de Huffman.

REDUÇÕES

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

