

Version: 7. November 2020 Abgabe: 16.11.2020

Algorithmen und Datenstrukturen

Aufgabenblatt 1

Betrachten Sie zwei Algorithmen A und B für das gleiche Problem. Algorithmus A benötigt bei einer Eingabe der Größe n genau $2n^2$ Basisoperationen, während Algorithmus B genau $100n\lceil\log_2 n\rceil$ Basisoperationen benötigt. Betrachten Sie zwei Computer C_1 und C_2 . Computer C_1 (Supercomputer) kann pro Sekunde $4,16\cdot 10^{17}$ Basisoperationen durchführen. Computer C_2 (Handy) kann hingegen nur $3\cdot 10^{11}$ Basisoperationen pro Sekunde durchführen.

- (a) Wie lange braucht Algorithmus A auf beiden Computern, um ein Problem der Größe $n_1 = 200$, $n_2 = 2.7 \cdot 10^9$ und $n_3 = 10^{16}$ zu lösen? (1 Punkt)
- (b) Wie lange braucht Algorithmus B auf beiden Computern, um ein Problem der Größe $n_1=200,\ n_2=2.7\cdot 10^9$ und $n_3=10^{16}$ zu lösen? (1 Punkt)
- (c) Für welche Problemgrößen ist Algorithmus A schneller und für welche ist Algorithmus B schneller, wenn beide Algorithmen auf dem gleichen Computer laufen? (1 Punkt)

Übung 2 _____/11 P.

Betrachten Sie das Problem Zweit-Kleinstes-Element:

- Eingabe: Ein Array A[1, ..., n] von n > 1 Zahlen.
- Ausgabe: Ein Index i, sodass es einen Index $j \neq i$ gibt mit $A[j] \leq A[i]$ und für alle Indizes $k \in \{1, 2, ..., n\} \setminus \{j\}$ gilt $A[k] \geq A[i]$.
- (a) Beschreiben Sie in Pseudocode einen Algorithmus der das Problem Zweit-Kleinstes-Element löst. (3 Punkte)
- (b) Beweisen Sie die Korrektheit Ihres Algorithmus mit Hilfe einer geeigneten Schleifeninvariante. (4 Punkte)
- (c) Analysieren Sie die worst-case Laufzeit des formulierten Algorithmus. (4 Punkte)

Übung 3 _____/3 P.

Zeigen Sie, dass $(\ln(x))^k = \mathcal{O}(x^{\epsilon})$. Hierbei sind k, ϵ Konstanten größer Null. Ein möglicher Hinweis: Zeigen Sie die Aussage zunächst für k = 1.

Übung 4

Ordnen Sie die folgenden Funktionen gemäß ihres asymptotischen Wachstums und begründen Sie Ihre Antwort: ----/3 P.

$$f_1(n) = 3^n$$
, $f_2(n) = n \cdot \ln(n)$, $f_3(n) = 2^n$, $f_4(n) = e^{\log_2(n)}$, $f_5(n) = n^n$, $f_6(n) = n^{3/2}$, $f_7(n) = n!$.

Übung 5

_____/4 P.

Bonusaufgabe

Zeigen Sie die Gültigkeit der Bemerkung zur Äquivalenz der Definitionen für O(f(n)) und o(f(n)) über Grenzwerte, d.h. Zeigen Sie, dass

$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow \limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty \quad \text{und}$$
$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow \limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0.$$