ENGRI 1101 Software Installation

1 Anaconda Installation

In this class, we will use a Python distribution called Anaconda. More specifically, we will use the Individual Edition. First, download the Anaconda Graphical Installer. Over the course of the semester, you will complete some labs in Jupyter Notebooks which allow you to run Python code. Many of these labs rely on various Python packages. A Python package is essentially pre-bundled code that serves some functionality. You will need to install the following packages.

gilp	Visualize the simplex algorithm and solve linear programs
ortools	Google's optimization suite
networkx	Create and manipulate complex networks
matplotlib	Publication quality figures in python
pandas	High-performance, easy-to-use data structures and data analysis tools
bokeh	Statistical and novel interactive html plots for python
shapely	Manipulation and analysis of geometric objects in the cartesian plane
scipy	Scientific library for python
scikit-image	Image processing routines for scipy
numpy	Array processing for numbers, strings, records, and objects

Note: If you are using Windows, you must download the following software first: Microsoft Visual C++ Redistributable for Visual Studio 2019 (select the x64 version). This is because the OR-Tools library for Python is a wrapper for the C++ native library.

We will now walk through the steps for creating a virtual environment in Anaconda. In a virtual environment, the installed packages are isolated to that environment. Hence, if you install a python package in one environment, you could not reference it in another. You will import an environment that already has all necessary packages installed. First, open up the Anaconda application.

- 1. Navigate to the Environments tab
- 2. Click Import. You will get a pop-up like the one below. Name your environment engri_1101. For the specification file, select engri_1101.yml which has been distributed to you.

3. Once the installation is complete, you should see engri_1101 in your list of environments. Navigate back to the Home tab. Change the Applications on drop-down to your new engri_1101 environment.

- 4. Launch the Jupyter Notebook application which will open up a web-browser tab displaying the home directory of your system.
- 5. Navigate to the file test_install.ipynb and open it. Run the first block of code. This should run without errors if your virtual environment has been set up properly!

2 Gurobi Installation

The Python package ortools is Google's optimization suite. It contains an open-source linear program (LP) and integer linear program (ILP) solver. However, it can also serve as a way to interact with the cutting-edge Gurobi solver. In order to solve LPs and ILPs in ortools using Gurobi, you will need to download additional software. First, you will create an Academic User Account. Next, download the Gurobi Optimizer found at Gurobi Downloads. Lastly, you will need to create an academic license to use the software. Register for an Academic License. After generating your unique academic license, you will be given a line to run in your terminal. When prompted, select the default location for the license file.