MATH 3940-1 Numerical Analysis for Computer Scientists Problem Set 5 Solutions

Note: You can use Octave or Matlab for the questions that says to use Matlab.

Find the least-squares line $f(x) = a_1x + a_0$ for the data and calculate the error.

Solution.

	x_i	y_i	x_i^2	$x_i y_i$
	1	1.4	1	1.4
	2	2.0	4	4.0
	3	2.3	9	6.9
	4	3.0	16	12.0
	5	3.4	25	17.0
Sum	15	12.1	55	41.3

The normal equations are

$$5a_0 + 15a_1 = 12.1$$

 $15a_0 + 55a_1 = 41.3$

Multiplying first equation by -3 and adding to the second equation, we have

$$\begin{array}{rcrrr}
-15a_0 & - & 45a_1 & = & 36.3 \\
15a_0 & + & 55a_1 & = & 41.3 \\
\hline
& & 10a_1 & = & 5
\end{array}$$

Thus $a_1 = \frac{5}{10} = 0.5$. Substituting $a_1 = 0.5$ into the first equation we obtain

$$5a_0 + 15a_1 = 12.1 \implies 5a_0 + 15(0.5) = 12.1 \implies 5a_0 = 12.1 - 7.5 = 4.6 \implies a_0 = \frac{4.6}{5} = 0.92$$

Therefore the least-squares line is $f(x) = a_1x + a_0 = 0.5x + 0.92$.

The error
$$E = \sum_{i=1}^{m} (y_i - f(x_i))^2 = \sum_{i=1}^{5} (y_i - (0.5x_i + 0.92))^2$$

Substituting the values from the data

$$E = (1.4 - 1.42)^{2} + (2 - 1.92)^{2} + (2.3 - 2.42)^{2} + (3 - 2.92)^{2} + (3.4 - 3.42)^{2}$$
$$= (-0.02)^{2} + (0.08)^{2} + (-0.12)^{2} + (0.08)^{2} + (-0.02)^{2} = 0.028$$

x_i	-1	0	1	2	3
y_i	6.62	3.94	2.17	1.35	0.89

- (a) Find the least-squares approximation $y = be^{ax}$ by data linearization method (the change of variable method) and calculate the error.
- (b) Find the least-squares approximation $y = be^{ax}$ by nonlinear method using Matlab (Hint: Use Matlab built-in function to minimize error).

Solution. (a)
$$y = be^{ax} \Rightarrow \ln y = \ln b + \ln e^{ax} \Rightarrow \ln y = \ln b + ax$$
.

The change of variables are: X = x, $Y = \ln y$, and $a_0 = \ln b$ (this means $b = e^{a_0}$).

	x_i	y_{i}	$X_i = x_i$	$Y_i = \ln y_i$	X_i^2	X_iY_i
	-1	6.62	-1	1.890095	1	-1.890095
	0	3.94	0	1.371181	0	0
	1	2.17	1	0.774727	1	0.774727
	2	1.35	2	0.300105	4	0.60021
	3	0.89	3	-0.116533	9	-0.349599
Sum			5	4.219574	15	-0.864757

The normal equations are

$$5a_0 + 5a_1 = 4.219574$$

 $5a_0 + 15a_1 = -0.864757$

Subtracting second equation from the first equation, we have

$$-10a_1 = 5.084327 \implies a_1 = \frac{5.084327}{-10} = -0.50843$$

Substituting $a_1 = -0.50843$ into the first equation we obtain

$$5a_0 + 5(-0.50843) = 4.219574 \Rightarrow 5a_0 = 6.761738 \Rightarrow a_0 = 1.35235$$

Thus
$$b = e^{a_0} = e^{1.35235} = 3.8665$$
.

Therefore the least-squares approximation is $y = be^{ax} = 3.8665e^{-0.50843x}$.

The error is
$$E = \sum_{i=1}^{m} (y_i - f(x_i))^2 = \sum_{i=1}^{5} (y_i - 3.8665e^{-0.50843x_i})^2$$

Substituting the values from the data

$$E = (6.62 - 6.4287)^{2} + (3.94 - 3.8665)^{2} + (2.17 - 2.3255)^{2} + (1.35 - 1.3986)^{2} + (0.89 - 0.8412)^{2}$$

= $0.03658 + 0.00540 + 0.02417 + 0.00236 + 0.00238 = 0.07089$

(b) See Matlab sheets for the solution.

3. Consider the data

x_i	1	3	5	
y_i	0.465	0.202	0.129	

Find the least-squares approximation $y = \frac{1}{a_1x + a_0}$ by data linearization method (the change of variable method).

Solution.
$$y = \frac{1}{a_1 x + a_0} \Rightarrow \frac{1}{y} = a_1 x + a_0$$
.

Thus the change of variables will be X = x and $Y = \frac{1}{y}$.

	x_i	y_i	$X_i = x_i$	$Y_i = \frac{1}{y_i}$	X_i^2	X_iY_i
	1	0.465	1	2.1505	1	2.1505
	3	0.202	3	4.9505	9	14.8515
	5	0.129	5	7.7519	25	38.7595
Sum			9	14.8529	35	55.7615

The normal equations are

$$3a_0 + 9a_1 = 14.8529$$

 $9a_0 + 35a_1 = 55.7615$

Multiplying first equation by -3 and adding to the second equation, we have

$$\begin{array}{rcrrr}
-9a_0 & - & 27a_1 & = & -44.5587 \\
9a_0 & + & 35a_1 & = & 55.7615 \\
\hline
8a_1 & = & 11.2028
\end{array}$$

Thus
$$a_1 = \frac{11.2028}{8} = 1.40035$$
.

Substituting $a_1 = 1.40035$ into the first equation we obtain

$$3a_0 + 9(1.40035) = 14.8529 \Rightarrow 3a_0 = 14.8529 - 12.60315 = 2.24975 \Rightarrow a_0 = 0.7499$$

Therefore the least-squares approximation is $y = f(x) = \frac{1}{a_1x + a_0} = \frac{1}{1.40035x + 0.7499}$.

4. Suppose you have to find the least-squares approximation $y = \frac{x}{a_1 + a_0 x}$ by data linearization method, what would be the change of variable formulas?

Solution.
$$y = \frac{x}{a_1 + a_0 x} \Rightarrow \frac{1}{y} = \frac{a_1 + a_0 x}{x} = \frac{a_1}{x} + \frac{a_0 x}{x} = \frac{a_1}{x} + a_0$$

The change of variables will be $X = \frac{1}{x}$ and $Y = \frac{1}{y}$.