Capítulo 8

Automatas de pila

8.1. Introducción

Los autómatas de pila son autómatas que cuentan con las mismas características que un AEFND pero ademas disponen de una pila de memoria en la que podrán leer o escribir símbolos, de forma de poder saber en cada momento si el autómata ya realizo alguna transición en el pasado. Durante cada transición el autómata ejecuta la siguiente secuencia:

- 1. Leer un símbolo de entrada.
- 2. Extraer un símbolo de la pila.
- 3. Insertar un símbolo en la pila.
- 4. Pasar a un nuevo estado.

A este proceso lo representaremos con la notación $(\sigma, l, \alpha; \beta, \tau)$ donde:

- \bullet σ es el estado actual.
- ullet l es el símbolo del alfabeto que se lee en la entrada.
- \bullet α es el símbolo que se extrae de la pila.
- ullet es el símbolo que se inserta en la pila.
- ullet au es el nuevo estado al que pasa el autómata.

Representaremos este proceso mediante el siguiente diagrama de transiciones:

Puesto que permitimos que l, α, β sean la cadena vacía, podemos en cualquier transición no leer un caracter, no extraer nada de la pila o no escribir nada en la pila si así lo necesitáramos. Llamaremos a las transiciones de la forma $(\sigma, \lambda, \lambda; \lambda, \tau)$ transiciones espontaneas.

Observación Nótese que las transiciones representada por $(\sigma, l, \lambda; \lambda, \tau)$ son las que realiza un AEFND. Por lo tanto los AEFND son un caso particular de AP y en consecuencia los lenguajes regulares son un subconjunto de los lenguajes aceptados por AP, es decir: $\mathcal{L}_3 \subseteq \mathcal{AC}(AP)$.

8.2. Definición formal

Un autómata de pila (AP) es una sextupla $A = (S, \Sigma, \Gamma, T, \sigma, Ac)$ donde:

- \blacksquare S es un conjunto finito de estados.
- \blacksquare Σ es un conjunto finito de símbolos de entrada.
- \blacksquare Γ es un conjunto finito de símbolos de pila.
- $T \subseteq S \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \times S$ es una relación de transición.
- $\sigma \in S$ es el estado inicial.
- $Ac \subseteq S$ es un conjunto de estados de aceptación.

8.3. Configuración

Una configuración de un autómata de pila $A = (S, \Sigma, \Gamma, T, \sigma, Ac)$ es un elemento de $\mathcal{C}_A = S \times \Sigma^* \times \Gamma^*$. Dicha configuración (σ, p, γ) indica que el autómata esta en el estado σ , le falta leer la cadena p de la entrada y el contenido completo de la pila es γ .

8.4. Relación entre configuraciones

Para una autómata de pila $A = (S, \Sigma, \Gamma, T, \sigma, Ac)$ definimos la relación «lleva en un paso» (que notaremos \Rightarrow_A) entre configuraciones, de la siguiente forma: $(\sigma, lp, \alpha\gamma) \Rightarrow_A (\tau, p, \beta\gamma)$ si y solo si $(\sigma, l, \alpha; \beta, \tau) \in T$. La relación «lleva en uno o mas pasos» (\Rightarrow_A^*) define recursivamente a partir de la relación \Rightarrow_A de forma análoga a lo hecho para la función de transición f de los AEF.

8.5. Lenguaje aceptado

Sea $A=(S,\Sigma,\Gamma,T,\sigma,Ac)$ un autómata de pila, el lenguaje aceptado por A es el conjunto: $\mathcal{AC}(A)=\{p\in\Sigma^*/(\sigma,p,\lambda)\Rightarrow^*(\tau,\lambda,\gamma):\gamma\in\Gamma^*\wedge\tau\in Ac\}$. Es decir, una cadena p sera aceptada por un AP si, arrancando desde su estado inicial y con la pila vaciá, es posible que el autómata llegue a un estado de aceptación después de leer toda la cadena.

Observación No necesariamente se llegara a un estado de aceptación luego de leer el ultimo caracter de una palabra pues a continuación el autómata podría realizar transiciones de la forma $(\sigma, \lambda, \alpha; \beta, \tau)$ y llegar luego al estado de aceptación.

8.6. Aceptacion de lenguajes no regulares

Ya hemos visto que $\mathcal{L}_3 \subseteq \mathcal{AC}(AP)$. Sin embargo esta inclusión es estricta, pues como veremos, el lenguaje $\{x^ny^n/n \in \mathbb{N}_0\}$ es aceptado por el siguiente autómata de pila:

8.7. Teorema del vaciado de pila

Enunciado Para cada $A \in AP$ existe $A' \in AP$ tal que A' vaciá su pila y ademas $\mathcal{AC}(A') = \mathcal{AC}(A)$.

Demostración Sea $A = (S, \Sigma, \Gamma, T, \sigma, Ac)$ un AP, fabricaremos A' de la siguiente manera:

- El estado inicial de A deja de serlo, pues introducimos un nuevo estado inicial y una transición del nuevo al anterior que lo único que hace es insertar en la pila un marcador # (suponiendo que $\# \notin \Gamma$).
- Los estados de aceptación de A dejan de serlo e introduciremos un nuevo estado P junto con transiciones espontaneas que pasan de cada uno de los antiguos estados de aceptación al nuevo estado P.
- Vaciamos la pila sin salir del estado P introduciendo transiciones de la forma $(P, \lambda, x; \lambda, P)$ para cada $x \in \Gamma$.
- Agregamos un nuevo y único estado de aceptación Q junto a la transición $(P, \lambda, \#; \lambda, Q)$.

Formalmente definimos $A' = (S', \Sigma, \Gamma', T', \sigma', Ac')$ donde:

- $S' = S \cup \{R, P, Q\}$ donde $R, P, Q \notin S$.
- $\Gamma' = \Gamma \cup \{\#\} \text{ donde } \# \notin \Gamma.$
- $\quad \bullet \ \sigma_0' = R.$
- $Ac' = \{Q\}.$

$$T' = T \cup \{(R, \lambda, \lambda; \#, \sigma)\}$$
 (1)

$$\cup \{(\tau, \lambda, \lambda; \lambda, P) / \tau \in Ac\} \quad (2)$$

$$\cup \{(P, \lambda, \alpha; \lambda, P) / \alpha \in \Gamma\} \quad (3)$$

$$\cup \{(P, \lambda, \#; \lambda, Q)\}. \tag{4}$$

Veamos ahora que $\mathcal{AC}(A) = \mathcal{AC}(A')$:

• \subseteq : Sea $\alpha \in \mathcal{AC}(A)$. Sabemos que partiendo del estado inicial σ con la pila vaciá, α nos lleva en uno o mas pasos a un estado de aceptación. En términos de configuraciones: $(\sigma, \alpha, \lambda) \Rightarrow^* (\tau, \lambda, \gamma)$ donde $\tau \in Ac, \gamma \in \Gamma^*$. Luego en A' tenemos la derivación:

$$(R, \alpha, \lambda) \Rightarrow^{(1)} (\sigma, \alpha, \#) \Rightarrow^* (\tau, \lambda, \gamma \#) \Rightarrow^{(2)} (P, \lambda, \gamma \#) \Rightarrow^{(3)*} (P, \lambda, \#) \Rightarrow^{(4)} (Q, \lambda, \lambda)$$

Como $Q \in Ac'$ concluimos que $\alpha \in \mathcal{AC}(A')$ y la pila queda vacía.

■ ⊇: Análogo.

8.8. Igualdad entre \mathcal{L}_2 y $\mathcal{AC}(AP)$

Enunciado

- 1. Sea G una gramática independiente de contexto entonces existe un autómata de pila A tal que $L(G) = \mathcal{AC}(A)$.
- 2. Sea A un autómata de pila entonces existe una gramática independiente del contexto G tal que $L(G) = \mathcal{AC}(A)$.

Es decir $\mathcal{L}_2 = \mathcal{AC}(AP)$.

Demostración

- 1. Consultar «J. Glenn Brookshear. Teoría de la Computación. Lenguajes formales, autómatas y complejidad», pag 85.
- 2. Consultar «J. Glenn Brookshear. Teoría de la Computación. Lenguajes formales, autómatas y complejidad.», pag 90.

Conclusión De todo lo que hemos visto hasta ahora sabemos que:

$$\mathcal{L}_3 = \mathcal{AC}(AEF) = \mathcal{AC}(AEFND) = L_{ER} \subset \mathcal{L}_2 = \mathcal{AC}(AP)$$

8.9. Lema de bombeo para autómatas de pila

Enunciado Sea $L \in \mathcal{L}_2$, luego si L es infinito existe $p \in L$ de la forma p = xuyvz donde $uv \neq \lambda$ tal que $xu^nyv^nz \in L \ \forall n \in \mathbb{N}$.

Demostración Sabemos que existe una gramática independiente de contexto $G = (N, T, P, \sigma)$ tal que L(G) = L y sea m el máximo numero de símbolos de $N \cup T$ que aparecen en el lado derecho de las reglas de producción de G. Observemos que como m es la mayor cantidad de símbolos por los que se puede reemplazar un no terminal, al aplicar i reglas de producción cualesquiera, la longitud de la cadena resultante es a lo sumo m^i . Llamemos k a la cantidad de símbolos no terminales de G (k = |N|). Dada una palabra $p \in L$ tal que $|p| > m^k$ (que existe pues L es infinito), llamemos i a la cantidad de reglas de producción aplicadas para producir p. Por lo tanto $m^k \le |p| \le m^i \Rightarrow k < i$ es decir, para formar p debieron aplicarse mas de k reglas de producción (debieron expandirse mas de k no terminales). Como no hay k no terminales, existe un no terminal K que debió expandirse K0 veces que podremos «bombear» cuantas veces sea necesario.

8.10. Existencia de lenguajes sensibles al contexto

Enunciado Existen lenguajes sensibles al contexto.

Demostración Probaremos que $L = \{a^n b^n c^n / n \in \mathbb{N}\} \notin \mathcal{L}_2$. Como L es infinito el lema de bombeo nos permite asegurar que existe una cadena $xuyvz \in L$ tal que $xu^n yv^n z \in L \ \forall n \in \mathbb{N}$ con $uv \neq \lambda$. Supongamos sin perder generalidad que $u \neq \lambda$ luego hay dos posibilidades:

- *u* esta formado por un solo símbolo y al bombearlo se obtiene una palabra que no mantiene la igualdad entre exponentes resultando no pertenecer al lenguaje.
- u esta formado por mas de un caracter y al bombearlo se obtiene una palabra que altera el orden de los símbolos y por lo tanto no pertenece al lenguaje.

Llegamos al absurdo por cualquiera de las dos posibilidades, por lo que $L \notin \mathcal{L}_2$.