Examen Parcial de FCO - Temas 1 al 4

8 de Noviembre 2017

APELLIDOS:	-	NOMBRE:
DNI:	FIRMA:	

Normativa:

- La duración del examen es de 2:00hrs.
- Por favor, escriba su nombre y apellidos en letras <u>MAYÚSCULAS</u> y <u>firme</u> en <u>TODAS</u> las hoias.
- DEBE responder en el espacio asignado.
- No se permiten calculadoras ni apuntes.
- Debe permanecer en silencio durante la realización del examen.
- No se puede abandonar el examen hasta que el profesor lo indique.
- Debe tener una identificación en la mesa a la vista del profesor (DNI, carnet UPV, tarjeta residente, etc.)

1. (0,5 puntos) Dado el siguiente número en BCD

A =010100100001,01110101_{BCD}

Obtenga su valor en binario. (Justificar/mostrar cálculos)

Solución: Pasamos el valor a decimal agrupando de 4 dígitos en 4 dígitos

$$010100100001,01110101_{BCD} = 521,75_{10}$$

Y ahora a binario. Para la parte entera se pueden identificar fácilmente las potencias de dos: 521_{10} = 512+8+1= $2^9+2^3+2^0$ = 1000001001_2

Parte decimal, empleamos el método de las multiplicaciones por la base:

$$0.75 \times 2 = 1.5$$

 $0.5 \times 2 = 1.0$

Luego $0.75_{10} = 0.11_2$

Resultado final: $521,75_{10} = 1000001001,11_2$

2. (0,5 puntos) Dado el siguiente número en octal

B = 37412,568

Obtenga su valor en hexadecimal. (Justificar/mostrar cálculos)

Solución: Obtenemos, en primer lugar, su valor en binario

 $37412,56_8 = 011\ 111\ 100\ 001\ 010,101\ 110_2$

Reagrupamos de 4 en 4 bits para obtener el nº en hexadecimal

 $0011\ 1111\ 0000\ 1010,1011\ 1000_2 = 3F0A,B8_{16}$

3. (0,75 puntos) Se desea implementar un sistema combinacional que realice la multiplicación de dos números A (a1 a0) y B (b1 b0) de dos bits y que represente el resultado de dicha multiplicación M (m3 m2 m1 m0) con 4 bits. Realice la tabla de verdad

a1	a0	b1	b0	m3	m2	m1	m0
0	0	Χ	Χ	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

4. (1,5 punto) Dada la siguiente tabla de verdad, responda los siguientes tres apartados:

D	С	В	Α	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1 X 1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0 X 0 X 0 X 1 X
0	1	1	0	Х
0 1 1 1	1 0 0	1	1 0 1 0	0
1	0	0	0	Χ
1	0	0	1	0
1	0	1	0	0
1	0 1 1	1	0	Χ
1	1	0	0	1
1	1	0	1	Χ
1	1	1	0	1
1	1	1	1	1

a) (0,5 puntos) Obtenga las formas canónicas disyuntiva y conjuntiva para la función S descrita en la tabla de verdad anterior.

$$F.C.D.: S = \sum_{D,C,B,A} (1,3,4,12,14,15) + \sum_{\emptyset} (2,6,8,11,13)$$
$$F.C.C.: S = \prod_{D,C,B,A} (0,5,7,9,10) \cdot \prod_{\emptyset} (2,6,8,11,13)$$

b) (0,5 puntos) Simplifique la función correspondiente en forma de **producto de sumas**, mediante mapas de Karnaugh

Respuesta: $S=(/D+C)\cdot(D+/C+/A)\cdot(C+A)$									
	DC/]							
	BA	00	01	11	10				
	00	0			X				
	01		0	Χ	0				
	11		0		Х				
	10	Х	Χ		0				

c) b) (0,5 puntos) Simplifique la función en forma de suma de productos, mediante mapas de Karnaugh

productos, mod	.a				9	
Respuesta: $S=(/D\cdot/C\cdot A)+(D\cdot A)$	·C)+(C·/A))				
		1				
	DC/					
	BA	00	01	11	10	
	00		1	1	Χ	
	01	1		Х		
	11	1		1	Х	
	10	Χ	Χ	1		

5. (0,25 puntos) Realice la tabla de verdad de un decodificador BCD a decimal con entrada de habilitación activa a nivel bajo y salidas activas a nivel alto.

/G	D	С	В	Α	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0
1	Χ	Χ	Х	Χ	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	0	1	1	1	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
0	1	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
0	1	1	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
0	1	1	0	1	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ
0	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ
0	1	1	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х

6. (1 puntos) Implementar mediante un multiplexor del tamaño adecuado la siguiente función lógica:

$$F(C,B,A) = A + CB = \sum_{CBA} (1,3,5,6,7)$$

- **7. (1,5 puntos)** Para el diseño de un multiplexor de 16 a 1 sin entrada de habilitación se dispone de los siguientes componentes:
 - 4 multiplexores de 4 a 1 con entrada de habilitación /G
 - 3 multiplexores de 2 a 1 con entrada de habilitación /G

Dibuje el esquema y etiquete todas las entradas y salidas de los componentes. No se pueden utilizar puertas lógicas adicionales.

Solución:

- **8. (2 puntos)** Dado el siguiente registro de desplazamiento incompleto, complételo para que se cumpla el siguiente funcionamiento:
 - Si la señal **Carga** vale cero, la entrada $I_{3..0}$ se almacena en los biestables, en el orden correspondiente a su subíndice, es decir I_2 en Q_2 , I_1 en Q_1 , etc
 - Si la señal **Carga** vale uno, si **Sentido** vale cero, el desplazamiento sería $D_2 \rightarrow D_1 \rightarrow D_0 \rightarrow D_2$ (o sea es circular)
 - Si la señal **Carga** vale uno, si **Sentido** vale uno, el desplazamiento sería $D_0 \rightarrow D_1 \rightarrow D_2 \rightarrow D_0$ (o sea es circular)

9. (2 puntos) Dado el siguiente circuito:

a) (0,25 puntos) Indique las funciones lógicas de las entradas:

$$D_0 = /Q_1 + (Q_0 \cdot Q_2)$$

$$D_1 = Q_0 \cdot (/Q_1 + Q_2)$$

$$D_2 = /Q_1 \cdot Q_0$$

b) (1,5 puntos) Complete el siguiente cronograma:

c) (0,25 puntos) Asumiendo que los tres bits Q forman una valor, donde Q2 es el bit de mayor peso y Q0 el de menor, escriba el conteo que realiza el circuito (en decimal):

Respuesta: 0-1-7-3-0-1-7-3...