토큰(token), 토큰화(tokenization)

'He loves the cat.' —— [he, loves, the, cat] —— [10, 14, 12, 13] 영어 문장의 토큰화 : 모두 소문자, 구두점 삭제, 공백 기준 분리.

'그는 고양이를 사랑한다 ' ─────── [그, -는, 고양이, -를, 사랑, 하-, -ㄴ다]

한국어 문장의 토큰화 : 형태소 분석 (조사가 발달), KoNLPy

(형태소 : 뜻을 가진 가장 작은 말의 단위)

원-핫 인코딩

[10, 14, 12, 13] : mapping을 위한 수, 크기를 의도하지 않음

he, loves : 그대로 사용하면 loves가 he보다 더 큰 활성화 출력

10 -> [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

14 -> [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

다중 분류에서의 확률, 크로스 엔트로피 손실 계산 가능.

원-핫 인코딩의 단점 : 공간적 낭비

희소 표현, 희소 벡터 : 500차원의 원-핫 인코딩 배열의 경우

500개 성분 중 한 성분만 1, 나머지 성분은 0

원-핫 인코딩 x 뉴런 개수 +은닉 상태 x 뉴런 개수 +뉴런 개수 = 파라미터

 $500 \times 8 + 8 \times 8 + 8$ = 4072 (너무 많은 가중치)

model.summary()		
Model: "sequential"		
Layer (type)	Output Shape	Param #
simple_rnn (SimpleRNN)	(None, 8)	4072
dense (Dense)	(None, 1)	9
Total params: 4.081		

Trainable params: 4,081 Non-trainable params: 0

단어 임베딩 (word embedding)

Embed (타동사): 끼워 넣다, 꽂아 넣다, 파묻다

Spain =
$$(-1.6, -1)$$
, Madrid = $(1, -1.5)$
France = $(-1.3, -0.1)$, Paris = $(1.2, -06.)$

Madrid – Spain + France
=
$$(1 + 1.6 - 1.3, -1.5 + 1 - 0.1)$$

= $(1.3, -0.6)$ ~ Paris

마드리드 - 스페인 + 프랑스 = 스페인의 수도 - 스페인 + 프랑스 = _____의 수도 + 프랑스 = 프랑스의 수도 = 파리

(Two-dimensional PCA projection of the 1000 -dimensional Skip-gram vectors of countries and their capital cities.)

Word2vec Korean Word2Vec

: 단어의 효율적인 의미 추정 기법

```
한국 - 서울 + 파리 = 프랑스
사랑 + 이별 = ?
```

맥도날드 - 빅맥 + 와퍼 = ? 기계학습 + 인문학 = ? 도서관 - 책 = ?

단어 임베딩

cat -> [0.2, 0.1, 1.3, ...]

임베딩 벡터 x 뉴런 개수 + 은닉 상태 x 뉴런 개수 + 8개 절편

128 + 64 + 8 = 200

SimpleRNN층의 파라미터가 원-핫 인코딩(4072)에 비해 확연하게 줄어듦.

model2.summary()		
Model: "sequential_1"		
Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 100, 16)	8000
simple_rnn_1 (SimpleRNN)	(None, 8)	200
dense_1 (Dense)	(None, 1)	9
Total params: 8,209		

Trainable params: 8,209

Non-trainable params: 0

LSTM (Long Short – Term Memory), 장단기 기억

h:은닉 상태, 단기 상태, c:셀(cell) 상태, 장기 상태

GRU 셀

SimpleRNN

Model: "sequential"

Layer (type)	Output Shape	Param #
simple_rnn (SimpleRNN)	(None, 8)	4072
dense (Dense)	(None, 1)	9

Total params: 4,081

Trainable params: 4,081 Non-trainable params: 0

Epoch 54/100

- 26s 82ms/step - loss: 0.3964

- accuracy: 0.8282 - val loss: 0.4532

- val accuracy: 0.7930

LSTM

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 100, 16)	8000
Istm (LSTM)	(None, 8)	800
dense (Dense)	(None, 1)	9

Total params: 8,809

Trainable params: 8,809 Non-trainable params: 0

Fnoch 53/100

- 3s 9ms/step - loss: 0.4007

- accuracy: 0.8229

- val_loss: 0.4324

- val_accuracy: 0.7948

참고 자료

- 혼자 공부하는 머신러닝 + 딥러닝
- Tomas Mikolov 외, Distributed Representations of Words and Phrases and their Compositionality
- Tomas mikolob 외, Efficient Estimation of Word Representations in Vector Space
- https://www.youtube.com/watch?v=ub8S29bF6rk