python 與 SPSS 的確認流程圖

1. SPSS 整理變數類別後,利用 python 將全部的值讀入

python output 總表結果

824]:	Company	Company_noC	Year	foundedyear	Ln_Firm_age	Ln_firm_size_emp	Ln_firm_size_sale	Ln_firm_size_at	$RD_intensity_xrdsale$	RD_intensity_
	C0000001	1.0	2009.0	1958.0	7.580189	0.464363	5.224246	5.266925	0.250892	0.2
	C0000001	1.0	2010.0	1958.0	7.580189	0.505009	5.274455	5.362690	0.244771	0.2
:	C0000003	3.0	1998.0	1958.0	7.580189	0.063913	2.221375	2.061787	0.516910	0.6
;	C0000003	3.0	1999.0	1958.0	7.580189	0.045929	2.121543	1.923957	0.388072	0.4
	C0000003	3.0	2000.0	1958.0	7.580189	0.030529	2.745924	1.536007	0.156389	0.6
	C0000005	5.0	1997.0	1958.0	7.580189	1.028905	7.675632	0.944723	0.001087	1.4
(C0000005	5.0	1998.0	1958.0	7.580189	0.109751	2.921709	2.901092	0.264667	0.2
	C0000005	5.0	1999.0	1958.0	7.580189	0.085260	2.706182	2.838903	0.460922	0.4
1	C0000005	5.0	2000.0	1958.0	7.580189	0.073250	2.890483	2.462320	0.299788	0.4
	C0000005	5.0	2001.0	1958.0	7.580189	0.114221	3.807840	3.145401	0.107575	0.2
10	C0000005	5.0	2002.0	1958.0	7.580189	0.115113	3.310689	3.085207	0.215876	0.2
4	0000000	E 0	2002.0	4050.0	7 500400	0.450440	2.072420	2 700 405	0.445004	0.4

#SPSS 截圖 給您確認

	Company	Company_n oC	Year	foundedyear	Ln_Firm_age	Ln_firm_size_emp	Ln_firm_size_sale	Ln_firm_size_at	RD_intensity_xrdsale	RD_intensity_xrdat
1	C0000001	1	2009.0	1958.0	7.580189417944541	.4643627493556498	5.2242455475869340	5.2669247338668220	.2508918856004461	.2403549442741639
2	C0000001	1	2010.0	1958.0	7.580189417944541	.5050087384444258	5.2744548580758880	5.3626902489682730	.2447705546916141	.2240011681692715
3	C0000003	3	1998.0	1958.0	7.580189417944541	.0639133257436529	2.2213750375685026	2.0617866064411150	.5169099756690997	.6193877551020407
4	C0000003	3	1999.0	1958.0	7.580189417944541	.0459289318883997	2.1215427176984716	1.9239566388394410	.3880718954248366	.4873461012311902
5	C0000003	3	2000.0	1958.0	7.580189417944541	.0305292050348228	2.7459238535302917	1.5360066343482173	.1563893271143425	.6253428414701042
6	C0000005	5	1997.0	1958.0	7.580189417944541	1.0289048762432895	7.6756324393110730	.9447226858683891	.0010867212471356	1.4890910247439730
7	C0000005	5	1998.0	1958.0	7.580189417944541	.1097508639591193	2.9217089132052050	2.9010918693998700	.2646673874694133	.2705013376759335
8	C0000005	5	1999.0	1958.0	7.580189417944541	.0852598439508234	2.7061817900421823	2.8389030095209720	.4609218436873748	.4000745480524321
9	C0000005	5	2000.0	1958.0	7.580189417944541	.0732504617395927	2.8904828072855087	2.4623201511152044	.2997882778372120	.4749347745061499
10	C0000005	5	2001.0	1958.0	7.580189417944541	.1142211440900229	3.8078395523158783	3.1454014980726960	.1075749689595480	.2131899770569976
11	C0000005	5	2002.0	1958.0	7.580189417944541	.1151128071005045	3.3106889881406527	3.0852072799815940	.2158763823663082	.2730931391337678
12	C0000005	5	2003.0	1958.0	7.580189417944541	.1501426584297194	3.8724294019599120	3.7904653548677487	.1456044570773807	.1583289044989255
13	C0000006	6	1995.0	1958.0	7.580189417944541	2.2475307715329800	3.4878642548727280	2.7042429627592560	.0345882204565519	.0786774725668794
14	C0000006	6	1996.0	1958.0	7.580189417944541	.1275133202989597	4.0936276386271160	3.6299253112702656	.0261546550876062	.0420049032961046
15	C0000006	6	1997.0	1958.0	7.580189417944541	.1889660995126232	4.5454626329105470	4.3332827194349510	.0312111071543186	.0386865973348937
16	C0000006	6	1998.0	1958.0	7.580189417944541	.4485245975686112	4.7497639147210750	4.7309831177835950	.0391333571933623	.0398818578914125
17	C0000006	6	1999.0	1958.0	7.580189417944541	.5247285289349821	5.4132830594409675	6.1180399276789650	.0597939740334953	.0294851360122215
18	C0000006	6	2000.0	1958.0	7.580189417944541	.5556077665378838	5.6053240108692380	5.9508352423551940	.0620592904345258	.0438818609459269
19	C0000006	6	2001.0	1958.0	7.580189417944541	.6760010217249748	5.9017613413048830	5.9923891195591170	.0761295509261396	.0695169892580815
20	C0000006	6	2002.0	1958.0	7.580189417944541	.7738050835773999	5.8248164868239420	5.9918069884682460	.0990228080954863	.0837557029290695

2. 跑入統計函式庫 (如果全部係數都為 0,則不可以做回歸)

```
| Min [829]: #*** 設定自變數與因變數***
# 自變量
| X = df[['Ln_Firm_age','Ln_firm_size_emp','RD_intensity_xrdsale','Ln_number_of_alliances','Ln_Patent_stock']]
| # 因變量
| y = df['forwardcitationranking_prior5years_fixedeffectadjusttop5'].values
| X2 = sm.add_constant(X)
| res = sm.OLS(y, X2)
| res = res.fit()
| print(res.summary()) # 機回歸分析與核檢
| print(res.params) # beta值
| y_array = y.ravel() # 將y轉為一維矩陣
```

```
| M | In []: #***beta = 0'不能微回歸***|
| sum_beta = 0 |
| for i in range(len(beta)):
| sum_beta = sum_beta+beta[i]
| if sum_beta==0:
| print("all beta = 0") #beta = 0' 不能微回歸
| break
```

python 的回歸結果

OLS Regression Results

	_			
=======================================				
Dep. Variable:	у	R-squared:		0.306
Model:	OLS	Adj. R-squared:		0.304
Method:	Least Squares	F-statistic:		163.9
Date:	Tue, 31 Mar 2020	Prob (F-statistic):		2.57e-116
Time:	18:28:45	Log-Likelihood:		-7397.4
No. Observations:	1493	AIC:		1.480e+04
Df Residuals:	1488	BIC:		1.483e+04
Df Model:	4			
Covariance Type:	nonrobust			
============		=======================================		
	coef s	td err t	P> t	[0.025

=======================================	=========		=========	=======		=======
	coef	std err	t	P> t	[0.025	0.975]
const	-0.2281	0.023	-9.751	0.000	-0.274	-0.182
Ln_Firm_age Ln_firm_size_emp	-1.7293 8.7455	0.177 0.894	-9.751 9.785	0.000 0.000	-2.077 6.992	-1.381 10.499
RD_intensity_xrdsale Ln number of alliances	0.0162 -2.7832	0.073 1.141	0.221 -2.440	0.825 0.015	-0.128 -5.021	0.160 -0.546
Ln_Patent_stock	5.8746	0.482	12.189	0.000	4.929	6.820
=======================================	=========		=========	=======	=======	
Omnibus:	1667.870	Durbin	-Watson:		0.181	
Prob(Omnibus):	0.000	Jarque	e-Bera (JB):	1	46676.264	
Skew:	5.556	Prob(J	B):		0.00	
Kurtosis:	50.269	Cond.	No.		1.40e+16	
=======================================	=========				=======	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.15e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

python 的 beta 係數結果

 const
 -0.228140

 Ln_Firm_age
 -1.729343

 Ln_firm_size_emp
 8.745528

 RD_intensity_xrdsale
 0.016172

 Ln_number_of_alliances
 -2.783157

 Ln_Patent_stock
 5.874645

 dtype: float64

SPSS 跑完回歸的結果

模型摘要^b

模型	R	R 平方	調整後R平方	標準偏斜度錯 誤
1	.553ª	.306	.303	34.3909994

- a. 預測值:(常數)→ Ln_number_of_alliances, Ln_Firm_age, Ln_Patent_stock, R&D_intensity_xrd%sale, Ln_firm_size_emp
- b. 應變數: forward citation ranking_prior 5 years_fixed effect adjust top 5%

變異數分析^a

模型		平方和	df	平均值平方	F	顯著性
1	迴歸	774845.697	5	154969.139	131.025	.000b
	殘差	1758735.626	1487	1182.741		
	總計	2533581.324	1492			

- a. 應變數: forward citation ranking_prior 5 years_fixed effect adjust top 5%
- b. 預測值:(常數),Ln_number_of_alliances, Ln_Firm_age, Ln_Patent_stock, R&D_intensity_xrd%sale , Ln_firm_size_emp

係數^a

	非標準	化係數	標準化係數		
模型	В	標準錯誤	Beta	Т	顯著性
1 (常數)	-7.621E+11	5.426E+14		001	.999
Ln_Firm_age	1.005E+11	7.158E+13	.000	.001	.999
Ln_firm_size_emp	8.746	.894	.272	9.781	.000
R&D_intensity_xrd%sale	.016	.073	.005	.221	.825
Ln_Patent_stock	5.875	.482	.337	12.185	.000
Ln_number_of_alliances	-2.783	1.141	053	-2.439	.015

a. 應變數: forward citation ranking_prior 5 years_fixed effect adjust top 5%

3. 做標準殘差的計算

#標準殘差 = 殘差/標準化估計值 (根據 SPSS 官網)

#殘差 = 估計值-原值

#標準差估計值 = ((Σ (y-y')^2)/n)^1/2

SPSS 官網算法說明 (「標準差的估計值」我是用手算比對數字,推出公式的)

https://www.ibm.com/support/knowledgecenter/zh-

tw/SSLVMB sub/statistics mainhelp ddita/spss/base/idh regr sav.html

殘差。 該值算法為因變數的實際數值,再減去迴歸方琵式所預測之數值。

- 未標準化。觀察值與模型所預測的值之間的差異。
- 標準化。殘差除以其標準差的估計值。標準化殘差(也稱為 Pearson 殘差)的平均數為 0,標準差為 1。
- Studentized。殘差會根據自變數的平均數到自變數中每一個觀察值的值之距離,除以隨其觀察值類型變化之標準差的估計值。

#python 各項標準殘差的結果

```
#*** 求標準強差之計算***
#估計値
predict = res.predict()
predict_array = np.array(predict)
#愛差
subtract = y_array-predict_array
#標準化估計((∑(y-y')^2)/n)^1/2
std_predict = sqrt(sum(np.square(subtract))/len(y_array)) #豫差
#標準強差 - 豫差 標準化估計憶
std_subtract = subtract/std_predict
print(std_subtract)
```

[0.03285788 -0.15064541 0.25341239 ... 0.06663137 0.0601719 0.07661823]

#SPSS 各項標準殘差結果 (跟上面 python 矩陣裡的數字一樣)

		逐觀察值診斷	a		
		forward citation ranking_prior 5 years_fixed effect adjust			
個案編號	標準殘差	top 5%	預測值	殘差	
1	.033	.0000	-1.126429	1.1264293	
2	150	.0000	5.171738	-5.1717385	
3	.253	.0000	-8.696263	8.6962627	
4	.139	.0000	-4.783636	4.7836357	
5	.143	.0000	-4.922061	4.9220611	

4. 取標準殘差的最大值在哪一行

(對照 excel 要 +2,因為程式中從 0 開始數且沒有標頭; 對照 SPSS 則 +1,因為 SPSS 本身標頭不算一數。)

output 第一次的答案為 1375.編號 379 公司 2015 的值。

```
N In [838]: #***取最大的標準殘差位置***
std_subtract_list = std_subtract.tolist()
max_std_index = std_subtract_list.index(max(std_subtract_list))
print(max(std_subtract_list)) #最大標準殘差的信
print(max_std_index) #比影excel要+2、SPSS則+1

12.1641440441928
```

##附上 SPSS 比對圖 (1375+1)

1375

	13/3	1	6.945		30	2.0000	63.14	13142	238.856	3580	ı
	1374		8.902		36	9.0000	62.84	13191	306.156	8092	ı
	1375	1	0.486		42	5.0000	64.37	78225	360.621	7749	ı
	1376	1	2.140		48	3.0000	65.50	5686	417.494	3140	
	1377	1	0.217		41	8.0000	66.64	11314	351.358	6863	l
	1407		3.366		18	9.0000	73.24	7991	115.752	0089	
	1374	C00003	79	;	379		2013.	0 19	58.0	7	.5
- 1											_

1374	C0000379	379	2013.0	1958.0	7.580189417944541	
1375	C0000379	379	2014.0	1958.0	7.580189417944541	
1376	C0000379	379	2015.0	1958.0	7.580189417944541	
1377	C0000379	379	2016.0	1958.0	7.580189417944541	
1378	C0000381	381	1992.0	1958.0	7.580189417944541	
1379	C0000381	381	1993.0	1958.0	7.580189417944541	
1200	C0000204	204	1004.0	10E0 0	7 500400447044544	

##附上 excel 比對圖 (1375+2)

13/3	C0000379 0000379	2011	1958	7.580189	4.196164	9.161885	9.001962	0.073798
1374	C0000379 0000379	2012	1958	7.580189	4.645458	9.431803	9.56149	0.084549
1375	C0000379 0000379	2013	1958	7.580189	4.463342	9.639001	9.549452	0.102404
1376	C0000379 0000379	2014	1958	7.580189	4.443498	9.624501	9.648595	0.109782
1377	C0000379 0000379	2015	1958	7.580189	4.34962	9.586926	9.627866	0.112956
1378	C0000379 0000379	2016	1958	7.580189	4.302415	9.47232	10.4001	0.125212
1379	C0000381 0000381	1992	1958	7.580189	2.247531	4.463607	4.123903	0.016317
1380	C0000381 0000381	1993	1958	7.580189	2,247531	5.679148	5.451038	0.027768

5. 判斷是否有標準殘差>3,如果有就刪除最大的那列

6. 儲存成新的 SPSS 檔案

```
In [841]: #***儲存SPSS檔案***
pyreadstat.write_sav(df, r'C:\Users\葉之晴\Pictures\fileName.sav')
#df.to_excel(r"C:\Users\萘之膊\Pictures\11.xlsx",header=True)
```

##新的 excel 截圖 (公司編號 379, 2015 年已刪除)

1372	C0000379	379.00	2011.00	1958.0	7.58	4.20
1373	C0000379	379.00	2012.00	1958.0	7.58	4.65
1374	C0000379	379.00	2013.00	1958.0	7.58	4.46
1375	C0000379	379.00	2014.00	1958.0	7.58	4.44
1376	C0000379	379.00	2016.00	1958.0	7.58	4.30
1377	C0000381	381.00	1992.00	1958.0	7.58	2.25
1378	C0000381	381.00	1993.00	1958.0	7.58	2.25
	1					

7. 我的說明上只有寫作單一次的結果,方便您確認我的計算方式是對的,但實質上我也放入迴圈。

讓他自動不斷做這件事情,直到該模型的標準殘差均小於3則輸出。

python 的 while 迴圈結果 (我只截圖前半部)

```
12.164144044192804
1375
11.133231801414706
1374
11.385702020196513
1374
10.45921562283536
1373
9.899800901732078
1369
9.77793856884444
1370
9.87537609153964
1369
9.942903737725668
1368
10.031260111811694
9.808434983241087
```