2. kontrolná písomka z Matematickej logiky konaná dňa 2.4.2009

1. príklad. Zostrojte neurónovú sieť pre Boolovu funkciu určenú tabuľkou

p	q	r	y	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	0	

(3 body)

2. príklad Zostrojte neurónovú sieť, ktorá simuluje formulu výrokovej logiky $\varphi = (p \lor q) \Rightarrow (p \land q)$

(2 body)

3. príklad. Pomocou metódy (α) sémantických tabiel a (β) rezolventy zistite, či platí $T \vDash \alpha$ pre

$$T = \{r \Rightarrow q, q \Rightarrow (p \lor \neg r), \neg t \Rightarrow (t \land \neg p), t \Rightarrow r\}, \ \alpha = p$$

(4 body)

- **4. príklad.** Výroky v prirodzenom jazyku prepíšte do formuly predikátovej logiky, vykonajte operáciu negácie nad formulami, upravte pomocou štandardných zákonov predikátovej logiky, na záver prepíšte výsledok do prirodzeného jazyka:
- (α) niekto hovorí po nemecky alebo anglicky
- (β) v každom okresnom meste existuje radnica
- (γ) každý prezident sa niekomu nepáči

(3 body)

- **5. príklad.** Definujme interpretáciu \mathcal{I} nad univerzom prirodzených čísel $U = \{0,1,2,3,...\}$, kde predikáty a funkcie majú túto interpretáciu:
 - (1) predikát P(x) "x je deliteľné 2"
 - (2) predikát Q(x), x je deliteľné 3"
 - (3) funkcia "nasledovník" f(x)=x+1
 - (4) funkcia "súčet" g(x,y)=x+y

Pomocou tejto interpretácie preložte do prirodzeného jazyka tieto formuly predikátovej logiky a rozhodnite, či takto získaný výrok je pravdivý:

(
$$\alpha$$
) $\forall x [P(x) \Rightarrow \neg P(f(x))]$

(
$$\beta$$
) $\forall x \forall y [P(x) \land P(y) \Rightarrow P(g(x,y))]$

$$(\gamma) \quad \forall x \ \forall y \Big[Q(x) \land Q(y) \Rightarrow P(g(x,y)) \Big]$$

$$(\delta) \quad \forall x \, \forall y \Big[\big(P(x) \land P(y) \big) \lor \big(\neg P(x) \land \neg P(y) \big) \Rightarrow P\big(g(x,y) \big) \Big]$$

(3 body)

Prémia: Neurónovú sieť zostrojenú v príklade 1 zoptimalizujte

(1 bod)

Riešenie

1. príklad. Zostrojte neurónovú sieť pre Boolovu funkciu určenú tabuľkou

p	q	r	У
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Riešenie. Boolova funkcia v DNF určená tabuľkou má tvar

$$\phi_{\textit{NDF}} = \left(\neg p \land q \land \neg r\right) \lor \left(\neg p \land q \land r\right) \lor \left(p \land \neg q \land \neg r\right)$$

Príklad 2. Zostrojte neurónovú sieť, ktorá simuluje formulu výrokovej logiky $\varphi = (p \lor q) \Rightarrow (p \land q)$

Príklad 3. Pomocou metódy (α) sémantických tabiel a (β) rezolventy zistite, či platí $T \vDash \alpha$ pre

$$T = \left\{ r \Rightarrow q, q \Rightarrow (p \lor \neg r), \neg t \Rightarrow (t \land \neg p), t \Rightarrow r \right\}, \ \alpha = p$$

Riešenie (a)

$$\Phi = (r \Rightarrow q) \land (q \Rightarrow (p \lor \neg r)) \land (\neg t \Rightarrow (t \land \neg p)) \land (t \Rightarrow r) \Rightarrow p$$

Dokázali sme, že platí $T \models \alpha$.

Riešenie (β). Pomocou rezolučnej metódy zistite, či platí $T \models \alpha$ pre

$$T = \left\{ r \Rightarrow q, q \Rightarrow (p \lor \neg r), \neg t \Rightarrow (t \land \neg p), t \Rightarrow r \right\}, \ \alpha = p$$

$$T' = \left\{ \neg r \lor q, \neg q \lor p \lor \neg r, t \lor (t \land \neg p), \neg t \lor r, \neg p \right\}$$

$$T' = \left\{ \neg r \lor q, \neg q \lor p \lor \neg r, t, t \lor \neg p, \neg t \lor r, \neg p \right\}$$

	1	2	3	4	5	6					
	$\neg r \lor q$	$\neg q \lor p \lor \neg r$	t	$t \lor \neg p$	$\neg t \lor r$	$\neg p$	7	8			
r	0	0			1		$q \lor \neg t$	$\neg q \lor p \lor \neg t$	9		
p				0		0		1	$\neg q \lor \neg t$	10	
q							1		0	$\neg t$	11
t			1							0	

Dokázali sme, že platí $T \models \alpha$.

- **4. príklad.** Výroky v prirodzenom jazyku prepíšte do formuly predikátovej logiky, vykonajte operáciu negácie nad formulami, upravte pomocou štandardných zákonov predikátovej logiky, na záver prepíšte výsledok do prirodzeného jazyka:
- (α) niekto hovorí po nemecky alebo anglicky
- (β) v každom okresnom meste existuje radnica
- (γ) každý prezident sa niekomu nepáči

Riešenie.

(α) niekto hovorí po nemecky alebo anglicky

$$\Phi = \exists x \left(nem(x) \lor ang(x) \right)$$

$$\neg \Phi = \neg \exists x \left(nem(x) \lor ang(x) \right) \equiv \forall x \left(\neg nem(x) \land \neg ang(x) \right)$$

$$\forall x (\neg nem(x) \land \neg ang(x))$$

Nikto nehovorí po nemecky a nikto nehovorí po anglicky

(β) v každom okresnom meste existuje radnica

$$\Phi = \forall x (OM(x) \Rightarrow Rad(x))$$

$$\neg \Phi = \neg \forall x \left(OM\left(x\right) \Rightarrow Rad\left(x\right) \right) \equiv \neg \forall x \left(\neg OM\left(x\right) \lor Rad\left(x\right) \right) \equiv \exists x \left(OM\left(x\right) \land \neg Rad\left(x\right) \right)$$

Existuje okresné mesto, ktoré nemá radnicu.

(γ) Niektorí prezidenti nie sú Záhoráci.

$$\Phi = \exists x \left(Pr(x) \land \neg Zh(x) \right)$$

$$\neg \Phi = \neg \exists x \left(Pr(x) \land \neg Zh(x) \right) \equiv \forall x \neg \left(Pr(x) \land \neg Zh(x) \right) \equiv \forall x \left(\neg Pr(x) \lor Zh(x) \right)$$

$$\equiv \forall x \big(Pr(x) \Rightarrow Zh(x) \big)$$

Každý prezident je Záhorák.

5. príklad. Definujme interpretáciu \mathcal{I} nad univerzom prirodzených čísel $U = \{0,1,2,3,...\}$,

kde predikáty a funkcie majú túto interpretáciu:

- (α) predikát P(x), x je deliteľné 2"
- (β) predikát Q(x) , x je deliteľné 3"
- (γ) funkciu "nasledovník" f(x)=x+1
- (δ) funkciu "súčet" g(x,y)=x+y

Pomocou tejto interpretácie preložte do prirodzeného jazyka tieto formuly predikátovej logiky a rozhodnite, či takto získaný výrok je pravdivý:

(
$$\alpha$$
) $\forall x [P(x) \Rightarrow \neg P(f(x))]$

V prirodzenom jazyku: "každé číslo deliteľné dvoma nemá nasledovníka deliteľného dvoma", pravdivý výrok.

(
$$\beta$$
) $\forall x \forall y [P(x) \land P(y) \Rightarrow P(g(x,y))]$

V prirodzenom jazyku: "každé dve čísla deliteľné dvoma majú súčet deliteľný dvoma", pravdivý výrok

$$(\gamma) \quad \forall x \, \forall y \Big[Q(x) \land Q(y) \Rightarrow P(g(x,y)) \Big]$$

V prirodzenom jazyku: "každé dve čísla deliteľné troma majú súčet deliteľný dvoma", neplatí pre 3 a 6, neplatný výrok.

$$(\delta) \forall x \forall y \left[(P(x) \land P(y)) \lor (\neg P(x) \land \neg P(y)) \Rightarrow P(g(x,y)) \right]$$

V prirodzenom jazyku: "každé dve čísla, ktoré sú buď deliteľné dvoma alebo nie sú deliteľné dvoma, majú súčet deliteľný dvoma", pravdivý výrok.

Prémia: Neurónovú sieť zostrojenú v príklade 1 zoptimalizujte

Riešenie. Boolova funkcia v DNF určená tabuľkou má tvar

$$\phi_{NDF} = (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land \neg r)$$

$$\equiv (\neg p \land q) \lor (p \land \neg q \land \neg r)$$

