Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Builetin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int Cl.⁷: C12Q 1/68, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)

(72) Inventors:

Nakagawa, Satochi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

Mizoguchi, Hiroshi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)

Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Ochiai, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

Yokoi, Haruhiko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)

(74) Representative: VOSSIUS & PARTNER
Slebertstrasse 4
81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucletides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

BASUUCIO- ~ED

1108790A2 1 :

Descripti n

10

20

30

35

40

45

55

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-ducing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-dysine which is a valuable glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-dysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of Lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

in whether a minimum

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with Escherichia coli, Bacillus subtilis, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science*, 277: 1453-62 (1997); *Nature*, 393: 537-544 (1998); *Nature*, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

15

20

25

30

40

50

55

[0009] An object of the present invintion is to provid a polynucleotide and a polypeptide derived frim a microorganism of coryneform bactinia which are industrially us ful, sequence information of the polynucleotid and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for us in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hel. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotid deriv d from a mutant of the coryneform bacterium or a labeled polynucl of the examined, under hybridization conditions
 - (c) detecting any hybridization, and
 - (d) analyzing the result of the hybridization.

As used her in, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
- (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
- (6) A polynucleotide array, comprising:

5

10

15

20

25

30

35

40

45

50

5£

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by th polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucl otide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
- (17) A polypeptide comprising the amino acid sequence selected from SEO ID NOS:3502 to 693:
- (18) The polypeptide according to (16) or (17), wher in at least one amino acid is delet id, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptid comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to th target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to th target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (26) A method bas d on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

(ii) at least temporarily storing said information;

5

10

15

20

25

30

35

40

45

50

54

- (iii) comparing the at least on amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with r analogous t the target sequence or target structur motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

and the same of the way a later with the same with

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acic sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any on of (23), (25), (27) and (29), wherein a corynetorm bact rium is a micro r-

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

(33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.

- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium Illium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
- (37) The recording medium or storage device according to
- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pr residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431.
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i):
 - (iii) introducing the mutation point into a corynetorm bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

5

10

15

20

25

30

35

40

45

50

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point r lating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a co-
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and ryneform bacterium;
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
 - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
 - (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a corynetorm bacterium of any on of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an ganic acid, and analogues thereof; recovering the compound from the culture.

(64) The method according to (63), wherein the compound is L-lysine.

(65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising th following:

(i) preparing

5

10

15

20

25

30

45

50

55

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

(iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;

(iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;

(v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and

(vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ

ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

(66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

ţ.

(67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.

(68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

[0018] The present invention will be described below in more detail, based on the determination of the full nucleotid 35 sequence of coryneform bacteria.

1. Determination of full nucleotide sequence of coryneform bacteria

[0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacte-40

[0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.

[0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactolermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965. Corynebacterium thermoaminogenes FERM 9244. Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

5

10

20

30

35

40

50

55

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the lik which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/i Tris hydrochloride, 25 mmol/ I ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 t 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the tysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer. [0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmo// Tris hydrochloride, 1 mo// EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinafter referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a genom DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo)

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Exampl s of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for Escherichia coli. The electroporation method can be carried out und r the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for xample, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any

(3) Production of cosmid library

10

20

30

35

40

45

55

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instruc-

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in Molecular Cloning, 2nd ed. and then used in transforming Escherichia coli. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into Escherichia coli XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makinc et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-strand d DNA plasmid as a template.

[0061] The doubl -stranded DNA plasmid used as the templat can be obtained by the following method.

[0062] The clone derived from the whole genom—shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

15

35

40

45

50

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the instrated fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results ar compared with known physical maps to map th cosmids and th contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by th following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, s quencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

The state of the second second

[Q088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an. oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence s lected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the

thus determined ORF can be determined. [0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acio sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulat the expression of the ORF or another sequence ligated operatably ther to The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

20

25

30

35

40

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned bit ween two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target to structural motif (or a target motif) using an appropriate softwar are comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Alse, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or 246753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NOS:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman. (Meth. Enzym., 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucl offide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

10

15

20

30

35

40

[0104] Moreover, the characteristics of respective microorganisms can b clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in Molecular Cloning, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence informa-

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide s quence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of Ix SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach, S cond Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial s tting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotid is (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

10

15

20

25

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucl ic acid bond, analogous olig nucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous ligonucleotides in which uracil in an ligonucleotid is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

15

20

30

35

45

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can b obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in Molecular Cloning, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowerec

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, sacchandes, organic acids, and the like, hav been obtained. Howev r, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutage nic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zw of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosin to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, ther is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild typ strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed c nsumption of saccharides, and poor resistance to stresses such as temperature and oxyg n) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being fr quently contaminated with misc flaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

10

20

30

35

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefor , it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be ffici ntly specified from among many mutation points accumulated in the chromosome of a production strain which has b n bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus Corynebacterium which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include Corynebacterium thermoaminogenes, such as Corynebacterium thermoaminogenes FERM 9244, FERM 9245, FERM 9246 and ... Tours

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotice under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucl otides in th nucleotide sequence of the polynucleotide is adh if d; and a polynucleotide array comprising a solid support to

15

25

30

35

40

which at least on of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotid under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynu-

[0155] Polynucleotide arrays of the pres int invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides r fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (Nat. Genet., 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (Nat. Genet., 21: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

10

20

25

30

40

45

50

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

. talen mit ... aum 6

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression 35 profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2.300 kb has been identified using polynucleotide arrays (Science, 280, 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in Science, 278: 680-686 (1997): Proc. Natl. Acad. Sci. USA. 96: 12833-38 (1999); Science, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acio, a vitamin, a saccharide, an organic acid, r the lik can b id ntified and the gene

expression amount and the expression profil ther of can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can b obtained according to the general method described in Molecular Cloning, 2nd ed. or the like. mRNA derived from Corynebacterium glutamicum can also be obtained by the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)) r the lik .

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to th biotin moiety (Nat. Biotechnol., 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (Proc. Natl. Acad. Sci. USA, 96, 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

a ha in what what

Late of the same of the same

[0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R. CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like: electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for xample, magnetic/optical recording media, such as MO and the like). [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

20

25

35

40

50

5£

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording me-20 dium of the present invention which is readable by a computer.
 - [0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.
 - [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.
 - [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software d vice, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

to sight time is given as in the character.

- [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to
 - [0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.
- [0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.
- [0192] Namely, the system based on a computer according to the present invention comprises the following:
 - (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

10

15

25

30

40

50

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

- 10. Production of polypeptide using ORF derived from coryneform bacteria
- [0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, and the like, for example, according to the following method.
 - [0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.
- [0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.
 - [0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.
 - [0198] The recombinant vector is introduced to a host cell suitable for the expression vector.
 - [0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.
 - [0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.
 - [0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.
 - [0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Publish d Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.
 - [0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from Escherichia coli, phage and the like, such as trp promoter (Ptp), lac promoter, Pt promoter, Pp promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two Ptrp are linked in series (P_{+m}×2) , *lac* promoter, *lac*T7 promoter *let*i promoter and the like, can be used.
 - [0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).
 - [0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.
 - [0206] One of orginary skill in the art will appreciate that the codons of the above-described lements may be opti-

25

30

35

40

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host c II include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli G1698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present inv ntion contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in ' perable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in Gene, 17: 107 (1982) and Molecular & General Genetics, 168: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gen in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF al promoter, CUP 1 promoter, and the like. [0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (Methods. Enzymol., 194: 182 (1990)), a spheroplast method (Proc. Natl. Acad. Sci. USA, 75: 1929 (1978)), a lithium acetate method (J. Bacteriol., 153: 163 (1983)), a method described in Proc. Natl. Acad. Sci. USA, 75: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRa promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84. 7413 (1987)). the method described in Virology, 52: 456 (1973).

[0218] When insect cells are us id as the host cells, the polypeptide can be expressed, for example, by the method described in Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Fr eman and Company, New York (1992), Bio/lechnology, 6: 47 (1988), or the like

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

5

10

15

20

25

30

40

50

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

- [0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.
 - [0222] Examples of the insect cells include Spodoptera frugiperda occytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni occyte High 5 (manufactured by Invitrogen) and the like.
- 10 [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.
 - [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
 - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
 - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.
- 20 [0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the Agrobacterium method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
 - [0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.
 - [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
 - [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide express d under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
 - [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
 - [0232] When the transformant of the present invention is obtained using a prokaryote, such as Escherichia coli r the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
 - [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.
 - [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbo-hydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
- [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
 - [0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
 - [0238] Als antibitics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary
 - [0239] When a microorganism transformed with a recombinant vector containing an inducible pr m ter is cultured,

55

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing lac promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto wh n a microorganism transformed with an expression vector c ntaining trp prom ter

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (The Journal of the American Medical Association, 199. 519 (1967)), Eagle's MEM medium (Science, 122: 501 (1952)), Dulbecco's modified MEM medium (Virology, 8, 396 (1959)), 199 Medium (Proceeding of the Society for the Biological Medicine, 73:1 (1950)), the above-described media to which fetal calf serum has been added,

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5%

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added,

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days. [0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the cul-

10

25

30

40

50

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in Molecular Cloning, 2nd ed., in addition to direct

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method fir producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63. 627S (1996), Bio/Technology, 9. 830 (1991))

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal t which th DNA encoding the polypeptide of the present invention has been inserted to produce and accumulat the polyp ptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like f the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable xamples include an αcasein promoter, a (β-casein promoter, a β-lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (Tissue Culture, 20 (1994), Tissue Culture, 21 (1994), Trends in Biotechnology, 15: 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. In vitro translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an in vitro transcription/translation system E. coli T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as lacUV5, tac, \(\lambda PL \)(con), \(\lambda PL \), or the like, can be carried out using an in vitro transcription/translation system E. coli S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCRamplified DNA product, a duplicated oligonucleotide ligation, an in vitro transcriptional RNA, a prokaryotic RNA, and

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Nam ly, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (fin example, c ntrifugation). Then, a purific d product can be obtained from the culture medium using a purification/isolation method similar to the above

[0268] The polypeptid obtained by th abov method is within the scop of the polypeptide of the pr sent invention,

20

30

35

40

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any on of SEQ ID

[0269] Furthermore, a polypeptid comprising an amino acid sequence in which at least one amin acids is deleted, replaced, inserted or added in the amino acid sequ nce of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide* means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10. 6487 (1982), Proc. Natl. Acad. Sci. USA, 79. 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

20

25

30

40

55

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

Group C: 35

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E: '

[0276] proline, 3-hydroxyproline, 4-hydroxyproline; 45

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is pr 1 rred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not be in mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA. or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the lik . It can als be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elm r, Pharmacia, Protein Technology Instrument, Synthecell-Vega, P rSeptiv , Shimadzu Corporation, or the lik .

[0281] The transformant of the present inv ntion can be used for objects other than the production of the polypeptid

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, sacchandes, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from Escherichia coli (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the lik , when the host is a eukaryote (Molecular Cloning, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

:·

Sandard sandres

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carner protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976): Antibodies - A Laboratory Manual, Cold Spring

Harbor Laboratory (1988)) or the like. [0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen us d for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

25

30

40

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-S pharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the lik alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.

[0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.

[0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

[0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.

(b) Preparation of myeloma cells

20

25

30

35

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10⁻⁵ mol/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitat d fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10⁻⁴ mol/l hypoxanthine, 1.5×10⁻⁵ mol/l thymidine and 4×10⁻⁷ mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory, Chapter 14 (1998) and the lik . [0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

5

10

15

20

25

35

40

50

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been remov d from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody tit r is selected as a hybridoma capable of producing a monoclonal antibody of the pres nt invention.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetramethylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

[0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

The antibody obtained in the above is within the scope of the antibody of the present invention.

The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (J. Histochem. Cytochem., 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109. 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

12. Production and use of polypeptide array

(1) Production of polypeptide array

[0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in Biotechniques, 27: 1258-61 (1999): Molecular Medicine Today, 5: 326-7 (1999); Handbook of Experimental Immunology, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); Meth. Enzym., 34 (1974); Advances in Experimental Medicine and Biology. 42 (1974): U.S. Patent 4,681,870; U.S. Patent 4.282,287; U.S. Patent 4,762.881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use f polypeptide array

5

10

15

20

25

30

35

40

45

50

[0322] A polypeptid or a compound capable of binding to and interacting with the polypeptides of the present invention adher d to the array can be identified using the polypeptide array to which the polypeptides of the present invention have b en adhered thereto as describ d in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypep-
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed. by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of co-
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

- [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.
 - 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional lectrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the 55 polypeptide using a mass sp. ctrometer (MS) and searching a data base
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. N xt, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474). In searching the data base, the amino acid sequence information of the polypeptides of the present invintion and the recording medium of the present invintion provid for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

5 Example 1

15

20

25

30

40

45

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride. 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the sam manner as the above. The genome DNA was subjected to is -

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buff r to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

10

20

25

30

35

40

50

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/lammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. ∞li* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with SauSAI (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the incepted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] Th clon derived from the whol genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was pr pared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

5

10

20

25

[0357] Το 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μ l of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. Th sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh 35 platform using X Window System. The base call was carried out using phred (The University of Washington). Th vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simul-40 taneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method. [0365] Clones containing sequences positioned at the ends of contigs were selected. Among thes clones, about 1.000 clones wherein only one and of the instricted fragmant had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequ no s at the respective ends of the inserted fragm in two contigs was identified, the full nucleotide sequence

of the ins rted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, prim is complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was distermined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and G neMark.hmm on UNIX platform according to the respective manual attached to the software.

Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were iden-

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

15

25

30

35

40

45

50

5
10
15
20
25
30
35
40
45
50

											_			$\overline{}$								
	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	ONA topoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524		390	392	174	704					422			854	112	329	268		285	155	117
	Similarity (%)	93.8		81.8	79.9	58.1	88.9					50.7			98.1	69.6	63.5	62.3		57.4	64.5	70.1
	Identity (%)	99.8		50.5	53.3	35.1	71.9			İ		29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		SD:DP3B MYCSM	SP.RECF_MYCSM	Sp:YREG STRCO	pir:S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	Sp.YEIH ECOLI	gp:A8042619_1		gp:AF156103_2	pir:A49232	pir.F70664
	OŘF (bp)	1572	\rightarrow	1 -		534	+ -	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	\top		5299	7486	8795	8628	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2262	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	<u> </u>		<u> </u>
;	SEO NO S	3502	1 5	200	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	35.17	3518	3519	3520	3521	3522
	S S					6	· ~	. 60	: 6	9	=	12	13	14	15	16	17	<u> </u>	0	, 5	3 5	22

36

_			•	\neg		\neg		1	\top		T			U	٦	چ	\top	4	\neg
	Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5-nucleotidase precursor	5-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA nelicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP. biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
	Matched length (a.a.)	321	26	196	270	51	139	217		449	311	266	222	283	312	236	347	169	228
	Similarity (%)	8.08	88.5	56.1	29.7	72.6	79.9	80.8		54.1	63.7	74.1	70.3	56.5	68.3	78.7	44.4	89.9	53.1
	Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
Table 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788,18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae ewiA	Streptococcus pyogenes SF370	Escherichia coli K12 fecE	Thermotoga maritima MSB8	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marlnus	Mycobacterium leprae H37RV RV0009 pplA	Bacillus subtilis 168 yqgP
	db Match	gp:MLCB1788_6	pir:140838	Sp:5NTD_VIBPA		orf 2513302C		SP.RECG_THIFE		SP:AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	SD:FECE ECOLI	pir.A72417	art 1207243B	SPIRES BACSU	pir 151116	sp.CYPA_MYCTU	sp:YQGP_BACSU
(ORF (bp)	993	8	528	1	165		1413	438	1278	954	849	657	981	1033	3 8	816	561	687
	Terminal (nt)	21065	21074	22124	23399	21815	24729	24885	26775	26822	28164	29117	30651	31677	00000	32050	33465	34899	35668
	Initial (nt)	20073	21253	215.07	22164	02750	24295	76297	26338	28099	29117	79965	20005			_	34280		34982
	SEO NO.	3523	3524	3636	3526	18	3528	26.20	25.30	3531	3532	3533	25.34	3535		3536	323/	3539	3540
	SEO			ļ	ī	;	2/	2 2	6 6	3 5	32	: 2	3 3	. £	3.	98	2 3	₹ 8	6

		_							$\neg \tau$		-				1	- 1	- 1	1		- 1	i	1	1
5	·		Function	ferric enterobactin transport system permease protein			vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serine/threonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothelical membrane proteln
				ferric en permeas		ATPase	vulnibac	hypothe	serineA	serineA	penicilli	stage V	phosph	hypoth	hypoth			-	+	phenol			
15			Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	526					117	490	242	- 262
20			Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	65.6	70.8	66.5	38.8					63.3	78.2	57.0	64.1
			Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
25	ı	ılinued)	gene	fepG			3-24 viuB	rculosis	se pknB	olor pksC	s pbpA	spoVE	rculosis	rculosis	erculosis					eum ATCC	2 gabD	I	naschii
30	•	Table 1 (continued)	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae vluC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschli MJ0441
35												2								RICU	COL	ACSU	ALT
40			db Match	sp:FEPG_ECOLI		gp:VCU52150_9	Sp:VIUB_VIBVU	sp:YO11_MYCTU	SP. PKNB MYCLE	gp:AF094711_1	gp:AF241575_1	SP:SPSE BACSU		pir.A70700	plr:B70700					Sp:PH2M_TRICU	sp:GABD_ECOLI	Sp.YRKH BACSU	sp:Y441_METJA
			ORF (bp)	978	966	777	822	270	1938	1		1143	1353	462	864	147	720	219	471	954	1470	1467	789
45			Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46669	48024	48505	49455	49897	50754	99609	54008	51626	55546	55629
50			Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	
			SEO NO.	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	25,50	3560
55			SEO NO.	41	42	43	. 44	45	46	47	4 A	ş	S S	ļ &	52	53	54	55	56	57	e.	9	9

_							ī	_		-	_	\neg		 Г	T	Т	- 1			Т	
	Function	hypothetical protein	hypothetical protein	hypothetical protein		nypotnetical protein			magnesium and codait (taitspurit		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)citrate complex securiosiy transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacld dehydrogenase
	Matched length (a.a.)	74	179	62		310			390		400	241	340				497	563		229	293
	Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	60.0				68.8	9.09		63.3	73.7
	Identity (%)	40.5	_ 36.3	53.2		28.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
Table 1 (continued)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
	db Match	SD.YRKF BACSU		pir:G70988		gp:LMFL4768_11			pir.F70952		nn. AF179611 12	Sp. PNIC SALTY	Sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		Sp.DPIA ECOLI	gp:AF134895_1
	ORF (bp)	16	1	174	855	840	711	1653	1119	447	1260	3 8	1122	132	384	292	1467	1653	570	55	912
	Terminal (nt)	۱,	+-	57651	58941	59930	60662	62321	62390	63594	66469	8650	67972	68301	68251	69824	68720	72158	71474	72814	72817
	Initial (nt)	37333	57270	57478	58087	59091	59952	69909	63508	64040	2	04 190	66851	68170	68634	09069	!	70506	72043	77464	_!
	SEO	(3.3.)	3562	3563	3564	3565	3566	3567	3568	2660		35.70	1572	3573	3574	3575	3576	3577	36.70	0 20	3580
		(ONO)		6.7	26	Ť	i	1				۱ ۶	 -	 73	74	7,5			9	٥١٩	80

	Function	hypothelical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacylglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
	Matched length (a.a.)	127	334	43	85		42	84	507	394			279	251	262		171	5	162	- 570
	Similarity (%)	76.4	99.7	79.1	63.5		75.0	66.0	59.0	9.66	÷		50.2	29.0	56.1		94.7	100.0	100.0	100.0
	Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bio8	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chiamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
	db Match	gp:SCM2_3	sp:BIOB_CORGL	pir.H70542	sp:YKI4_YEAST		PIR:F81737	GSP: Y35814	prf.2512333A	gp:D38505_1			sp:HST2_YEAST	orf 2316378A	prf.2316378A		gp:AB029154_1	gp:AB029154_2	gp:CGL251883_2	gp:CGL251883_3
	ORF (bp)	429	1002	237	339	117	141	273	1449	1245	306	615	924	272	006	888	513	30	486	1710
	Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85098	85683	87241	A7561	88545	90445	90461	91473	91988	93701
	Initial (nt)	73844	74490	75506	75697	76353	80753	R1274	RASER	84935	85403	86277	86318	00532	89444	89558	90973	91174	91503	91992
	SEO.	3581	3582	3583	3584	3585	3586	35.87	3 3	2,000	250	3591	3592	2020	3594	3595	3596	3597	3598	3599
		(A) 16		8	984	2		7.0	5 8	8 8	g s	8 5	92	8	S : 8	. ! &	98	- 6	86	66

	_							-,								-								\neg
5		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/PSC dehydrogenase		aryl-alcohol dehydrogenasu (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
15		Matched length (a.a.)	157	226	205	283	279		347			668	481		196		1297		338	513	352		8	
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
		identity (%)	100.0	100.0	100.0	100.0	21.2		28.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	-
25 30	Table 1 (continued)	Homologous gene	m glutamicum eE	m glutamicum eF	m glutamicum eG	m glutamicum eD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			K12 htpG	i K12 amn		Aeropyrum pernix K1 APE2509		ոյասուսա putA		Phanerochaete chrysosporium aad	i K12 ydaH	gglomerans		i K12 yidH	:
35	Table 1	Homolog	Corynebacterlum glutamicum ATCC 13032 ureE	Corynebacterium glutamlcum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium		Streptomyces v			Escherichla coli K12 htpG	Escherichia coli K12 amn		Aeropyrum per		Salmonella typhimurium putA		Phanerochaete aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	-
40		db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf:2318326B		gp:AF148322_1			sp:HTPG_ECOLI	SP:AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		sp:AAD_PHACH	SP:YDAH_ECOLI	prt:2422424A		sp:YIDH_ECOLI	
•	:	ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	252	999	3456	114	945	1614	1332	669	366	315
45		Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	111161	111374	112470	114147	115262	115578	115949
		SEO NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
5 5		SEO NO. DNA)	100	101	, 201	103	104	105	106	107	108	109	110	111	112	113	Ξ	115	116	117	118	119	2	121

						Table 1 (continued)				
SEO	SEO NO.	Initial (nt)	Terminal (nt)	ORF (pg)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
22	3622	118599	116548	2052						
123	3623	119589	118810	780	sp:ACCR_AGRTU	Agrobacterium tumefaciens accR	29.5	59.7	258	transcriptional repressor
12	3624	120021	120410	390	pir.C70019	Bacillus subtilis yurT	57.9	78.6	126	methylglyoxalase
125	3625	120922	120413	510	sp:YC76_MYCTU	Mycobacterium tuberculosis H37Rv Rv1276c	37.0	64.8	162	hypothetical protein
126	3626	122459	120951	1509	prf.2309180A	Pseudomonas fluorescens mttD	43.5	70.4	497	mannitol dehydrogenase
12	3627		122507	1335	5 prf.2321326A	Klebsiella pneumoniae dalT	30.3	68.3	435	D-arabinitol transporter
128	3628	123842	124030	189						
129	3629	124130	124966	837	SP.GATR_ECOLI	Escherichia coli K12 gatR	27.3	64.6	260	galactitol utilization operon repressor
23	3630		126350	1419	sp:XYLB_STRRU	Streptomyces rubiginosus xylB	45.0	1.89	451	xylulose kinase
15	3631	127171	127992	822		•				
132	3632	<u> </u>	126353	837	gp:CGPAN_2	Corynebacterium glutamicum ATCC 13032 panC	100.0	100.0	279	pantoatebeta-alanine ligase
133	3633	128004	127192	813	gp:CGPAN_1	Corynebacterium glutamicum ATCC 13032 panB	100.0	100.0	27.1	3-methyl-2-oxobulanoate hydroxymethyltransferase
134	3634	129049	128099	951						
135	3635		129489	630	sp:3MG_ARATH	Arabidopsis thaliana mag	42.0	67.6	188	DNA-3-methyladenine glycosylase
136	3636	130145	130798	954						
137	3637		130815	924	gp:AB029896_1	Petroleum-degrading bacterium HD-1 hde	39.3	69.3	270	esterase
138	3638	131798	132424	627			_			
2 2	3639		132981	558	SP:CAH_METTE	Methanosarcina thermophila	30.9	53.2	201	carbonate dehydratase
5	3640		╀	1143	Sp:XYLR_BACSU	Bacillus subtilis W23 xyfR	24.1	49.3	357	xylose operon repressor protein
Ξ:	3641	1_	—	1272		Lactococcus lactis mef214	21.1	61.2	418	macrolide efflux protein
142	3642	136321	135518	804						
143	3643	136565	136122	444						
į										

	Function				O S C Harris Co. H.	Cellulose symmase	hypothetical membrane protein			other makenion consilive professi	Culoramburgus acustos	hypothetical memorarie protein		Cia Con tocare	ilatisput process	nypometra memora posta		ATO Accordant helicase	Alr-dependent negatives		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxombicin biosynthesis enzynie	
	Matched length (a.a.)				Ş	2	593			200	202	98		190	9 3	748		8	878	_	188	219	168	217	55	284	7
	Similarity (%)					51.2	51.8				60.7	59.1			62.3	70.2			64.3		66.0	60.7	65.1	61.3	707	53.1	36.1
	Identity (%)					24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	9	3 2	31.0
Table 1 (continued)	Homologous gene					Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1Jl nodL	Escherichia coli o373#1 alkB	Facherichia coli K12 tag	Ecchanishia coli K12 rhfC		Bacillus subtilis yaan	Streptomyces peucetius dnrv
	db Match			2		pir:139714	sp:HKR1_YEAST				SP. RARD_PSEAE	sp:YADS_ECOLI			SP. ABRB_ECOLI	sp:YFCA_ECOLI			Sp.HRPB_ECOLI		sp:NODL_RHILV	SP.ALKB_ECOLI	_	_		_	prf.2510326B
	ORF (gg)	j	1941	1539	636	1461	1	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	15	╅	- †		825
	Terminal (nt)		138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	4	4		159159	160013
	Initial		136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	-150930	151572	<u>-</u>	152410	┷	155853	-	156848		-+	158154	158869	159162
	SEO	(9.9.)	3644	3645	3646			3649	3650	3651	2652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663		3664	3665	3666	3667
	SEO	(ONV)	144	145			148	140	150	2	S	153	154	155	156	15	158	159	18	161	162	1 5	3	164	165	166	167

	Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase		transcriptional regulator, Grith family or fatty acyl-responsive regulator	fructokinase or carbonydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inosital 2-dehydrugunase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase	
	Matched length (a.a.)	104				118			722		238	332	296	498	268	586	290	335	287	457		35	
	Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	1.98	58.2	69.8	51.0	72.2	72.1	61.5		65.5	_
	Identity (%)	35.6		İ		41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1	
Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c		,		Neisseria meningitidis MC58 NMB0662			Mus musculus nl1		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis folB	Bacillus subtilis iolD	Rhizobium meliloti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tcmA		Bacillus subtilis yvaA	
	db Match	gp:SPAC1250_3				gp:AE002420_13			gp:AF176569_1		sp.FARR_ECOLI	oir:T14544	gp:SC8F11_3	prf.2204281A	Sp.10LB BACSU					sp.TCMA_STRGA		sp:YVAA_BACSU	
	ORF (bp)	342	930	657	933	405	639	741	2067	963	759	1017	921	1512	888	1728	954	15	2 2	1374	621	1023	456
	Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	1,50091	170916	172444	173355	175275	176272	177318	17R203	179658	178461	180711	181297
	Initial (nl)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	158075		170933	172468		-i -		:_		1790R1	 -	<u> </u>
	SEO	3668	3669	36.70	3671	3672	3673	3674	3675	3676	3677	26.70	3679	3680	100	9 9	2002	200	2004	3686	26.07	3688	3689
		16.8			. 7	:72	173	172	175	176	:77	15		90	13	5	701	3 3	8 6	186	107	188	<u>\$</u>

.

	Function		regulatory protein	oxidoreductase	hypothetical protein			cold shock pratein			caffeoyl-CoA 3-O-metriyu diisici ase		glucose-resistance amylase regulator regulator			D-xylose proton symborier		transposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	giutamine 2-oxoglutarate aminotransferase small subunit		hypothetical protein	
	Matched length (a.a.)		331	442	303	T		64			134		338			458		401	145	1510	909		496	
	Similarity (%)	_	61.9	52.5	64.7			92.2			58.2		62.1			70.5	.	100.0	60.7	100.0	8.88		72.8	
	Identity (%)		32.0	24.4	33.7			70.3			30.6		28.7			36.0		100.0	27.6	86.9	99.4		44.6	
Table 1 (continued)	Homologous gene		Strentomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Docilles cubtiles of H	Dacillos succins y in t		Streptomyces coelicolor A3(2) csp			Stellaria fongipes		Bacillus subtilis ccpA			Lactobacillus brevis xyfT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixt	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698	
	db Match			BP SKESTSO I	T	Sp.YFIM BACSU		sp.CSP_ARTGO			prf.2113413A		sp:ccPA_BACSU			3 SP:XYLT_LACBR		gp:AF189147_1	Sp:FIXL_RHIME	gp:AB024708_1	gp:AB024708_2		pir:C70793	
	ORF (bp)	787	\neg	5223			429	201	534	306	_	426	066	402	240	1473	300	1203	435	4530	1518	240	1485	369
	Terminal (nt)	101617	181047	18168/	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	<u>: </u>	205956
	Initial (nt)	, , ,	181264	182679	182819	184077	185214	186508	186769	187302	187687	188725	189736	189920	190628	192175	193248	1	195038		199772	201580		205588
	SEO	(9.9.)	-+			3693	3694	3695	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	37.10	3711
	<u> </u>		-;		192	193	194	195	196	197	198	199	2002	201	202	23	Š	205	200	2 (2	208	200	210	211

		\neg					<u> </u>		Ī	1		1		ı		!			nease			ase
	Function		arabinosyl transferase	in the second contract of the second contract	hypothetical memorane protein	acetoacetyl CoA reductase	oxidoreductase				proteophosphogiycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease		hypothetical protein	NADPH quinone oxidoreductase
	Matched length (a.a.)		1122	1		223	464				350	124		206	302		214	236	262		416	302
	Similarity (%)		70.6		66.1	56.5	85.1				57.4	83.9		73.8	79.1		55.1	78.4	75.6		63.0	71.5
	Identity (%)		39.8		35.0	31.4	0.99				24.3	60.5		43.2	63.6		31.3	47.0	31.3		36.5	41.1
Table 1 (continued)	Homologous gene		Adme avier syling embB	Aycobacterium aylum cimos	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790			¥ *	Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rbE		Agrobacterium tumefaciens	Yersinia enterocolitica rfbE	Vorsing automorphism (B)		Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
	db Match			pri:2224383C	pir.D70697	prf:2504279B					gp:LMA243459_1			pir:H70666	pir.B70696		gp:AB016260_100	SO.RFBE YEREN		SP:KFBU_TEKEN	pir.F70695	gp:AF010309_1
	ORF (bp)	1	_	3471	1983	759	1 -	234	205	453	2	10	402	633	939	342	597	789		804	1173	954
	Terminal (nt)		206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116		\dashv	217943	220151	220154
	Initial (nt)	1	206068	207011	208989	SAGOAR	211455	211768	71177	242283	212656	213712		214527	216100	7,60,64	216712	217030	676717	218746	218979	
	SEO		3712	3713	3714		37.16	3717	27.18	2 6	27.20	3721	1	3723	3724		37.25	5 5	3/2/	3728	3729	3730
	<u> </u>	_		213		1		217			81.7	22.1		222	224		% I %	\	22,	22A	229	230

5

EP 1 108 790 A2

_	 -	_		_		Γ-			1	$\neg \tau$	\neg		Ī	1		1		T					
	Function		probable electron transfer protein	amino acid carrier protein		molybdopterin biosynthesis protein	moeB (sullurylase)	molybaopterin syrinasse, in 35 subunit	molybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	mothydate hinding periolasmic	protein	molybdopterin converting factor subunit 1	maltose transport protein		hypothetical memorarie protein	histidinol-phosphate aminotransferase				
	Matched length (a.a.)		18	475	\top		368	150	158	154	377	227		258	86	365		121	330				
	Similarity (%)		51.0	75.8	2		70.1	75.3	63.3	84.4	58.6	70.5		0.89	70.8	80.8		76.9	65.8				
	Identity (%)		35.0	46.7	40.7		43.8	44.7	33.5	61.7	34.5	44.1		34.0	37.5	34.3		36.4	37.3		1		
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis	13/17V NV33/1	Bacillus subtifis als I		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans	Arthrobacter nicolinovorans	Arthrobacter nicotinovorans	mod8	Arthrobacter nicotinovorans	Mycobacterium tuberculosis	Thermococcus literalis malk		Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC				
	db Match		PIR-A70606	\dashv	sp.ALST_BACSU	-	gp:SYPCCMOEB_	prf:2403296D	SP:MOCB_SYNP7	prf:2403296C	7	1	prf:2403296F	prf:2403296E	pir:D70816	4100000	PT.2518354A	sp:YPT3_STRCO	Sp:HISB ZYMMO				
	ORF (bp)	55	+		1476	606	1083	456	471	468	1185		723	80	321		912	420	1023		8	294	120
	Terminal (224424	+		222210	225244	225242	228312	226760	227218	227703		229891	229711	23092R	270007	230931	231848	232260	-	234818	234910	235409
	Initial (nt)	4-		116177	223685	224336	226324	226767	227230	227685	228887		229613	230514	909060	230000	231842	232287			233913	235203	235290
	SEO	<u>-</u> -		3/32	3733			3736				<u></u>	3740	3741	5 5	3/42	3743	3744	2746	3/43	3746	3747	3748
	\ · · · —			232		23.1	+					3	240	1 5	,	242	243	244		245	246	247	248

_									т-				7		Г	\neg	T	Т	\neg	Т			Π		\neg	$\neg \neg$	7
	Function	transcription factor		alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter		oxidoreductase	hypothetical protein	nitrogen fixation protein				membrane transport protein	queuine (RNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	olutamyi-tRNA synthetase			transposase		
	Matched length (a.a.)	252		335	451	444		587	106	317	160	144				266	400	203			526	316	5		380		
	Similarity (%)	57.1		0.99	38.1	68.5		9 0	0.80	69.1	73.8	70.1				45.7	68.0	62.1			49.6	613	250		55.0	_	_
	Identity (%)	29.4	7.23	34.0	21.5	30.9		3	33.2	48.1	48.8	45.1				20.7	41.3	28.1			243	+	9.4°.0		34.2		
Table 1 (continued)	Hamologous gene	Oracle and a second	Brucella abonus oxyn	Bacillus stearothermophilus OSM 2334 adh	Micrococcus rubens puo	Distributed advantage	Borreila pulguonen ingre		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum				Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			With address of the second stands	Sirepionyces glaucescens sire	Bacillus subtilis gltX		- Pseudomonas syringae tnpA		-
	db Match	1	gp:BAU81286_1	sp:ADH2_BACST	LIGOIM CHO.	\top	prf:2305239A		prf.2320140A	pir.C70800	pir:870800	PANENEXP 1	1			sp:YV34_MYCTU	SD. TGT. ZYMMO	sn.YPDP BACSU				pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_1		
	ORF	-	762 g	1017	_	\neg	1350	174	1530	1020	525	į	7	201	351	2403	1283	13.8	1080		5	1437	879	990	1110	383	138
	<u>a</u>		235451	-		238145	239525	239945	241515	241883	243431	0,000	743910	244215	244816	247304	248572	210012	250507	10000	249/22	251939	252830	252830	254329	255492	256204
	-	()()	236212	236326		237345	238176	239772	239986	242902	242910		243494	244015	244466		<u>.</u>		467647		250369	250503	251952	253819		255794	
	SEO	(a.a.)	3749	. !——		3751	3752	3753	3754	3755	3756		3757	3758	3759	3760		13/61	3/62	3/63	3764	3765	3766	+	-	3769	
	SEO	_		-	3	251	252	253	254	255	256		257	258	25.0	260		192	262	2	264	265	266	267	26A	269	270

10

	Function	aspartate transaminase		DNA polymerase III holoenzyme lau	subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide	synthetase	DNA polymerase III epsilon chain	hypothelical membrane protein	aspartate kinase alpha chain			extracytoplasmic function afternative	sigma factor	vegetative catalase		A Company of the Comp	leucine-responsive regulatory protein	branched-chain amino acid transport
	Matched length (a.a.)	. 432			642		101	214	248		444	346	270	421	-		}	-189	492			143	203
	Similarity (%)	100.0			53.1		74.3	72.4	61.7		9.09	55.2	100.0	93.8		-	-	63.5	76.4			72.0	68.0
	Identity (%)	98.6			31.6		41.6	42.5	38.3		31.3	25.7	100.0	99.5		-		31.2	52.9	\perp	-	37.1	30.5
Table 1 (continued)	Homologous gene	Brevibacterium lactofermentum	aspC		Thermus thermophilus dnaX		Bacillus subtilis yaak	Desiling cubille rock	Dacinus submits recit	Heliopacinus mobilis cood	Heliobacillus mobilis murC	Mycobacterium tuberculosis H37Rv dnaO	Corynebacterium glutamicum (Brevibacterium flavum) ATCC	Corynebacterium glutamicum	lysC-alpha			Mycobacterium smegmatis sigE	Bacillus subtilis katA			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azlC
	db Match	A SOUTH THE SECTION AND A SECTION AND A SECTION AND A SECTION ASSECTION ASSE	:		gp:AF025391_1		SENVANK RACSU	D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Sp:RECK_BACSU	prf:2503462B	prf:2503462C	pir.H70794	sp:YLEU_CORGL	ED. AKAB CORGL	about a solution			prf.2312309A	Sp.CATV_BACSU			Sp.LRP_KLEPN	sp:AZLC_BACSU
	ORF (bp)		6 0671	930	2325 9	717	\top	-	$\overline{}$	750	1269	1080	867	1283	507	1053	1434	579	1506	342	291	462	753
	Terminal (nt)		25/894	258529	260875	258596	20000	C67107	262055	262546	263298	264599	268258	210633	27.0033	269524	273194	273542	275871	276232	275957	276302	
	Initial		256599	257900	258551	250262	710607	260987	261402	263295	264566	265678	269124		269371	270576	271761	274120	— <u>; </u>	_			
	SEO.		3771	3772	3773			3775	3776	3777	3778	3779	3780		3781	3782	3783	3784	3705	3/85 2786	27.5	3/0/ 3788	
	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		176	272			2/3	275	276	277	278	270	ZBO	į	. 82	282	283	284	1 8	667	2 6	787	289

				•		Table 1 (continued)				
SEO NO.	SEO NO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
290		277581	277904	324						
291	3791	278301	277987	315						
292	3792	278732	278388	345	gp:AF178758_1	Sinorhizobium sp. As4 arsR	34.4	68.9	8	metalloregulatory protein
293	3793	278814	279893	1080	gp:AF178758_2	Sinorhizobium sp. As4 arsB	52.2	84.2	341	arsenic oxyanion-translocation pump membrane subunit
294	3794	279893	280279	387	Sp. ARSC_STAXY	Staphylococcus xylosus arsC	31.1	6.89	119	arsenate reductase
295	3795	280666	280349	318						
296	3796	280939	280670	270						
797	3797	281401	280949	453						
298	3798		281404	1530	gp:AF097740_4	Bacillus firmus OF4 mrpD	32.4	70.4	503	Na+/H+ antiporter or multiple resistance and pH regulation related protein D
8	27.0	202217	780080	381	ort 2504285D	Staphylococcus aureus mnhC	37.0	70.6	119	Na+/H+ antiporter
300	3800	<u> </u>	283317	ي ا	gp.AF097740_1	Bacillus firmus OF4 mrpA	34.1	64.3	824	Na+/H+ antiporter or multiple resistance and pH regulation related protein A
301	3801	286373	287857	1485						
302	3802	287661	287059	603						
303	3803	-	287966	864						
304	3804		289131	999	sp:CZCR_ALCEU	Alcaligenes eutrophus CH34 czcR	38.6	70.4	223	transcriptional activator
305	3805	291243	289777	1467	prf.2214304B	Mycobacterium tuberculosis mtrB	26.7	56.8	521	two-component system sensor histidine kinase
306	3806	291815	292417	693	sp:APL_LACLA	Lactococcus lactis MG1363 apl	28.3	90.0	180	aikailne phosphatase
30/	3807	291833	291273	561						
88	3808	293511	292597	915	pir.869865	Bacillus subtilis ykuE	26.1	54.7	307	phosphoesterase
98	+- -		293991	453	sp:YQEY_BACSU	Bacillus subtilis yqeY	37.6	71.8	149	hypothetical protein

						·			_	ī —	T	-		Ţ	Т	\top	Ī		\neg	Τ	T	\top	\top			
	Function	class A penicillin-binding	protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		Long chain fatty, acid. Co.A. ligase	יסוול-נויפון-ופויל	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein)	200	giutamine synthetase	short-chain acyl CoA oxidase	nodulation protein		hydrolase			CAMP receptor protein		ultraviolet N-glycosylase/AP lyase		cytochrome c biogenesis protein
	Matched length (a.a.)	787	T	2		20	149	440	1	1	234	127	251		254	394	153		272			202		240		211
	Similarity (%)	7.4		63.4		96.0	89.9	0 89	3		59.9	65.4	72.5		52.0	66.5	72.6		72.4			65.7		77.1		58.3
	Identity (%)	1	5.3	40.9		84.0	65.1	27.2	5.75		31.1	33.9	410		27.2	38.8	45.8	_	41.2		<u>'</u>	30.9	_	57.5	3	34.6
Table 1 (continued)	Homologous gene		Mycobacterium leprae pon 1	Streptomyces coelicolar A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis	H3/KV KV30/ 0C	Escherichia coli K12 shiA		Bacillus subtills IcfA	Streptomyces coelicolor A3(2)	Substitute of the substitute o		Emericella nidulans fluG	Arabidoosis thallana atd6	Nbon minesoniminos animo no do	Knizabium leguminosaram	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp			Micrococcus Intens pag	Mycobacterium tuberculosis H37Rv Rv3673c
	db Match	1	rt:2209359A	oir:S20912		gp:SCH17_10	pir.G20790		sp:SHIA_ECOLI		sp.LCFA_BACSU	gp:SCJ4_28		sp:FABG_BACSU	ENERILIS FMENI	3p.: CO	DI. 23 1 23 000	SP:NOON_RHILV	pir.F70790			A40222348A	20104		sp:UVEN_MICLU	pir:870790
	ORF.	-	2385 p	339 p	5	+	350	\dashv	1353	609	1536		_	933	5			471	843	1173	705	604	9	192	780	558
	Terminal (1	294004 2	297402	CCATOC	297783	09000	007067	298332	300695	t	 		303099	10100	304074	305263	305758	306700	305195	ᆜ	- -	4	307727	308734	309302
	Initial	(III)	296388	297064		297431		76//67	299684	300087	301261			302167		+	304070	305288	305858	306367	-		_	307918	307955	308745
	SEO NO.	(a.a.)	3810	3811	<u> </u>	3812		3814	3815	28.16	2 2 2	30 00	0 00	3819		3820	3821	3822	3823	282		3872	3826	3827	3828	3829
	<u>0</u> 0		- <u></u>	=		2 : 5			315	1 2	2 5	, ,	9	319		320	321	325	373	125	77	325	326	327	328	320

EP 1 108 790 A2

																			_		\neg
5		Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane prolein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
15		Matched length (a.a.)	192 hy	396 ser	280 ep	156 hy	287 ph	349 hy	319 CO		262 hy	201 hy	59 hy				764 A	67 cc		977 DI	
20		Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				1.99	98.1		91.6	
		Identity (%)	30.7	38.6	29.6	.46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
25	inued)	ene	еаВ	ulosis	С12 сЕН	culosis	. M	culosis			culosis	culosis	culosis					mis SI55		rculosis A	
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv3671c	Corynebacterium sp.	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SISS csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
<i>35</i>		db Match	sp:YEAB_ECOLI	pir.H70789	prf:2411250A	pir:F70789	pir.S72914	pir.E70788	pir.C44020		pir.C70788	pir.B70788	pir.A70788				sp:YPRA_BACSU	sp.CSP_ARTGO		pir:G70563	
		ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
45		Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50		Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	·	SEO NO.	3830	3831	3032	7833	3834	3835	3836	3837	389	1839	3840	3841	3842	3843	3844	3845	3846	3847	3848
55		0 0 g	 -	-	332	٠.:	334	335	336	337	334	טננ	340	341	342	343	344	345	346	347	348

	hed Function	3 adenylate cyclase	13 DNA polymerase III subunit tau/gamma	1	144 hypothetical protein	172 hypothetical protein	314 ribosomal large subunit pseudouridine synthase C	558 beta-glucosidase/xylosidase	101 beta-glucosidase	362 NAD/mycothiol-dependent formaldehyde dehydrogenase		160 metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	415 valanimycin resistant protein	320 dTDP-glucose 4,6-detrydratase	108 hypothetical protein	dolichol phosphate mannose synthase	寸	寸	586 UDP-sugar hydrolase
	matched length (a.a.)	4 263	7 423		\dashv					2		S			66.3	88.9	66.5 2		57.3	54.4 5
	y Similarity (%)	62.4	52.7		29.0	63.4	65.0	60.2	61.4	. 86.		47	55.8	56.4	\dashv			-	\dashv	
	identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1
Table 1 (conlinued)	Homologous gene	Stigmatella aurantiaca B17R20 cvaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces vindifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichla coli K12 yefJ	Salmonella typhimurium ushA
	db Match	sp:CYAB_STIAU	sp:DP3X_BACSU		gp:AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	SO'BGLX ERWCH	ap:AF090429 2	Sp.FADH_AMYME		SP:YTH5 RHOSN	sp:FABG_ECOU	qp:AF148322_1		pir.A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	Sp.USHA_SALTY
	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	+-	375	759	1029	1035	2082
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	↓	345717
	Initla! (nt)	327735	328283	329748	329933	330973	331552	010000	332313	335009	335805	336212		137539			341327	341347		-
	SEO	3849	1850	3851	3852	3853	3854	000	3000	7857	305	2 2 2	3860	1861	1862	3863	3864	3865	3866	7867
		יייר פאר		751	353	353	354	1	cer	95. 35.7	260	0.00	360	181	3 6	363	364	365	366	7,87

								_				$\neg \neg$		\neg	\neg				$\neg \tau$		$\neg \top$		
5		Function		NADP-dependent alconol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane prolein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase	
15	- 4	Matched length (a.a.)		343 del	285 glu	192 dT	343 dT	206 NA	325 Fe		423 hy	461 m	708 pr	T	258 hy	363 се	453 Rii	102 pr		613 C.	90	394 lip	
			_	<u> </u>	- 5	_	6	7		_				4	``				_				
20		Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5	`	68.3	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3	
		Identity (%)		52.2	62.8	49.5	81.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1	
<i>25</i> ,	(par			sis	ф	일	C rmlB	хог	sirA		osis		a		A3(2)	872	¥d	ptp		M capD		¥e	
30	Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A, 19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter Johnsonil ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK	
35 40		db Match		SP. ADH_MYCTU	Sp:RFBA_SALAN	ap. D78182 5	TRMU	HETH	\Box		sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A		gp:SCF43_2	gsp:W56155	prf:2404346B	prf.2404346A		sp:CAPD_STAAU	PRF:2109288X	pri:2423410L	
		ORF (bp)	351	1059 s	855 \$		1131	+-	+	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155	
45		Terminal (nt)	346110	346961	348098	348057	T	1	+	353749	 	355849	357237	359762	\vdash	362057	365257	365852	366838	368643	367701	1	
50		Initial (nt)	346460	348019	348952	250340	351443	15194R	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647	
		SEO NO.	+		3871	100				<u> </u>		3878	3879	3880	3881	3882	3883	3884	3885	3886	7887	3888	
55		NO.			371	<u> </u>	2/2	÷			377	378	379	380	39.1	342	383	384	385	386	787	388	į

																					_	\neg
5			Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence (S31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
15			Matched length (a.a.)	196	380	504	427	273	356	53		02		404	354	65	388			243	221	
20			Similarity (%)	75.0	69.2	69.8	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	
			identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
25	,	Table 1 (continued)	Homologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichla coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhH	
35		Tat	훈	Neisseria n	_	+-	\top	 	Vibrio cho	Coryneba		Corynebacter ATCC 31831		Mycobacterium t H37Rv Rv1565c	Pseudom	Coryneba	П			Escherich		
40			db Match	Ap. AF014804 1	sp:CAPM_STAAU	pir.S67859	sp:MURA_ENTCL	sp:MURB_BACSU	9 88d 1077.40			pir:S43613		pir.G70539	gsp:W37352	PIR: S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
			ORF (bp)	_		1491		\div	4026		135	327	276	1170	993	231	1161	273	1209	822	645	195
45			Terminat (nt)	1	+	— —				377832	378227	378511	378287	378668	379850	381495	+	383496	383982	385374	387200	387463
50			Initial (nt)		359794	371929	373500	374833		375842	378093	378185	378562	<u> </u>	380842	181265	-	-		386195		387657
			SEO.	<u> </u>	3889	9	3892	3893		3894	3896	3897	3898	3899	006ಒ	2002		3903	3904	3905		
54					68		5. 6		i	394	396	39.7	308	300	400	15	402	403	6	\$ 5	406	407

	Function	dihydrolipoamlde dehydrogenase	UTP-glucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothelical protein	hypothetical protein		-	tetracenomycin C transcription repressor		transporter
	Matched length (a.a.)	469	295	153	477	230	608	258						259	431			197		499
	Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
	Identity (%)	9.66	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		38.1
- Toble 4 (recallated)	Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 ortX	Mycobacterium tubarculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA.0 tcmR		Streptomyces fradiae T#2717 urdJ
	db Match	gp:CGLPD_1	pir.JC4985	gp:PAU49666_2	pir:E70828	gp:SCM10_12	pir.A27763	gp.BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOLI			sp:TCMR_STRGA		gp:AF164961_8
1	ORF (bp)	1407	921	498	1422	77.1	1875	837	336	261	630	96	339	975	1251	420	303	678	204	1647
	Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
•	Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
	SEO NO	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
		408	409	4 10	411	4:2	413	414	415	416	417	418	419	420	421	422	423	424	425	426

.	
10	
15	
20	-
25	
30	
35	
40	
45	
50	

	Identity Similarity Hength (%) (%) (%) (a.a.)	39.6 74.6 508 transporter	40.9 72.7 286 formyltetrahydrofolate deformylase	38.5 74.0 208 deoxyribose-phosphate aldolase			26.8 53.6 280 hypothetical protein	58.7 85.9 92 hypothetical protein		45.7 75.3 748 calion-transporting P-type ATPase B		27.3 56.1 626 glucan 1,4-alpha-glucosidase	57.2 83.6 hemin-binding periplasmic protein	65.2 90.3 330 ABC transporter	63.8 85.0 254 ABC transporter ATP-binding protein	28.6 56.4 266 hypothetical protein	32.6 61.6 258 hypothetical protein			1
Table 1 (continued)	Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avlum GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A.17c	-		
	db Match	gp:AF164961_8 u	Sp:PURU_CORSP C				prf:2413441K	pir.A70907		Sp:CTPB_MYCLE		sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
	ORF (bp)	1632	912	999	150	897	198	300	900	2265	450	1863	1077	1068	813	957	837	810	813	501
	Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
	Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
	SEO NO (a a)	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	7695	3938	3939	3940	1941	3942	3943	3944	3945
	SEO NO.	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

	Function	UDP-N-acetylpyruvoylglucosamine reductase			The state of the s	long-chain-latty-acidCon ligase	transferase	phosphoglycerate mulase	two-component system sensor histidine kinase	two-component response reguistor		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
	Matched length (a.a.)	356				558	416	246	417	231		921	269	306	302	269	394	55	
	Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.06		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
Table 1 (continued)	Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae 82168_C1_172	
	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp:SC2G5_6	sp:PMGY_STRCO	prf:2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp:PROC_CORGL	gp:D88733_1	pir.S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	189	1122	198	219
	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062		434886	434986	435940	436321
	SEO NO.	3946	3947	<u> </u>	3949	<u></u>	<u>. </u>	3952	3953	3954	1955	3956	3957	3958	3959	3960	1961	3962	3963
		446	147	448	449	·		452	453	154	155	156	157	45R	.: 459	160	461	462	463

	Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
	Matched length (a.a.)	29			296	74		455	308		321	417	309	282		363		578		347	486	
	Similarity (%)	100.0			77.4	66.2	·	74.3	75.3		57.6	72.2	57.9	98.6		68.6		55.2		59.9	71.6	
	Identity (%)	89.7			51.0	40.5		44.4	50.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508	-	Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA.	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
	db Match	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU		Sp:HEM1_MYCLE			sp.CATM_ACICA	SD:SHIA ECOLI	SP:3SHD_NEUCR	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		ap SHU75349 1	pir.S72909	-
	ORF (bp)	88	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113			426
	Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100		451961	+	-	454875
	Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	1		44275B	_ - -		447670	ч—			450849		<u> </u>	454450
	SEO	3964	3965	3966	3967	3968	2969	30,00	3071	3972	3973	2074	7975	3976	7077	3978	3979	3980	3081		3983	
		464 464	465	456	167	468	460	2 5	471	472	1,3	1 2 7	7.5	476	17	478	479	480	١		483	484

	[!		1	Se		יע	,	•	1		i	1	= :	·	;	!	l	ł	
	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase		uroporphyrinogen decarboxylase	protoporphyrinogen IX uxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein	•	transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
	Matched length (a.a.)	337			828		364	464	425	161	208	245	533	338		144	8		82	301
	Similarity (%)	83.1			56.5		7.92	6.63	83.5	62.7	71.2	85.3	76.0	77.8		69.4	72.2		78.1	61.5
	Identity (%)	60.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (conlinued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hem?	Mycobacterium leprae heml.	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium Iuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
-	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	sp. PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir.A70545	pir:B70545	pir.C70545	pir:D70545		pir:G70790	prf:2420312A -		pir.F70545	sp:MENA_ECOL!
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	5	100	471	357	ဓ္က	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEO NO.	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	00 5	93	98	87				15		18	5.	95	96		18	66	8	150	202	63

5

•	

	Function	glycosył transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglularate semialdenyde dehydrogenase	5-dehydroase dehydratase	als operon regulatory protein	hypothetical protein	!	2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphale transporter			naphthoate synthase	peplidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
	Matched length (a.a.)	238	421	139	520	303	293	94		267				410			293	202	11	335
	Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2	64.9		54.7				83.2			70.3	82.7	68.8	76.7
	identity (%)	- 32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				90.0			48.5	57.9	37.7	54.0
Table 1 (continued)	Homologous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yqiF	Pseudomonas pulida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR 1070	Aquifex aeolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
	db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOLI		sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:870547		gp:SSP277295_9				pir.D70547			SP:MENB_BACSU	gp:AE001957_12	pir.C70304	pir.D70548
•	ORF (bp)	864	1323	411		948	879	315	444	750	417	378	261	1275	222	308	957	603	369	1014
	Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
	Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062		485385	
	SEQ.	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	1021	4022
	SEO NO.	505	505	99	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522

ĺ		<u> </u>	· · · · ·							. <u></u>	E				
	Function	2-oxoglutarate decarboxylase and 2- succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein transfocase SecE subvirit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrale aminotransferase
	Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
	Similarity (%)	54.0	64.9	54.2	89.9	66.7		7.97	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
Table 1 (continued)	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rplK	Corynebacterium glutamicum ATCC 13032 mIA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
	db Match	1629 sp:MEND_BACSU	pir:G70548	pir:H70548	1359 sp:CYCA_ECOLI	sp:UBIE_ECOLI		pir.D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5.	gp:SC5H4_2	1344 sp.GABT_MYCTU
	ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
	Initial (n1)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEO NO. (a.a.)	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
	SEO NO (UNA)	۲23	23	\$2\$	\$26	527	528	529	530	634	532	533	534	535	536

_										1		—	- 1		1	Т	
	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein - 10	50S ribosomal protein L7/L12		hypothelical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase ueta chain	hypothetical protein		DNA-binding protein	hypothetical protein
	Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
	identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rpiL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A. 15c	Mycobacterium tuberculosis H37Rv RV2908C
	db Match	sp:GABD_ECOLI	GP.ABCARRA_2	sp:TYRP_ECOLI	sp:CTPG_MYCTU	sp:P49_STRLI		sp:RL10_STRGR	sp:RL7_MYCTU		pir:A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU
	ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3999	582	99	780	798
	Terminal (nt)	504283	503272	505569	507647	509081	969609	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
	Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO.	4037	4038	4039	4040	4041	4042	1043	4044	4045	4046	4047	4048	4049	4050	4051	4052
	SEO NO.	537	 538	530	540	541	542	543	<u> </u>	545	546	547	848	519	850	551	552

5	
10	
15	
20	
25	
30	•
35	
40	
45	
50	

	Function	protein S12	protein S7	lor G	-					ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	I protein S10	I protein L3		Il protein L.4	Il protein L23		Il protein L2	30S ribosomal protein S19	
		30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lipoprotein			ferric enterobad binding protein	ferric enteroba	ferric enteroba	butyryl-CoA:a	30S rlbosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosome	
Ì	Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	88		280	92	
	Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	90.6	79.3	99.0	9.68		90.1	90.6		92.9	98.9	
	Identity (%)	90.9	81.8	71.7			58.0			29.5	45.6	48.1	58.8	84.2	66.5		71.2	74.0		60.7	87.0	
Table 1 (continued)	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolylicum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
	db Match	sp.RS12_MYCIT	sp.RS7_MYCSM	sp.EFG_MICLU			GSP:Y37841			sp:FEPC_ECOLI	Sp. FEPG ECOLI	Sp. FEPD_ECOLI	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		sp:RL4_MYCBO	sp:RL23_MYCBO	•	Sp:RL2_MYCLE	sp.RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
	Terminal (nt)	523059	523533	526010	523911	526013	526894	527807	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
	Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530628			533099	533437	534087	<u> </u>	534746	535072	535076	535935	536183
	SEO NO.	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062			4065	4066	4067	4068	4069	4070	4071	4072	4073
	NO.	553	554	555	556	557	558	559	260	561	563	563	564	i 6:	566	567	568	569	570	571	572	573

									,		_				т.		\top	T	$ \tau$	-	\top	\top	=	\top	\neg
5				22	S3	116	1.29	S1/	!			1114	1 L24	1.15		acid reductase	Osiado	De Citality	ne dinucieoude	ase H or alpria			Dinding protein		
10			Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reduciase		Tormare denyologenesse chain	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpna chain.			ABC transporter ATP-binding protein		
15			Matched length (a.a.)	109	239	137	67	82				122	105	183		260		987	94	758			624		
20			Similarity (%)	91.7	91.2	88.3	1.88	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.8		
			Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	78.2	73.6		52.3		28.9	37.2	24.3		_	26.9		
25					ပ္တ	묠	pmc	DSQ					in.		_			او	<u>.</u>				<u>.</u>		
30	•	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0708 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rplP	Mycobacterium bowls BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rplE		Corynébacterium sp.		Wolinella succinogenes fdh@	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdif			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
35 40			db Match	sp.RL22_MYCTU	Sp.RS3 MYCBO	Sp.RL16 MYCBO	SP:RL29 MYCBO	Sp.RS17_MYCBO				Sp.RL14_MYCTU	sp:RL24_MYCTU	Sp:RL5_MICLU		sp:2DKG_CORSP	-	Sp:FDHD_WOLSU	gp:SCGD3_29	SP. FDHF_ECOLI			sp:YC81_MYCTU		
			ORF (bp)	360	744	· •	100	ĺω	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1148	1074
45			Terminal (nt)	536576	527722	1-	+-	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
50	•		Initial (nt)	536217	073573	53737B	537744	537977	538267	538698	539413		540112	540426			543412	544329		546889	547329	548990	550651	551844	552927
			SEO	4074	1	40/0		4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
				574 		-	0 1 7		÷-		÷	5. r	583	584	585	586	587	588	5.49	590	591	592	593	594	595

	Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmatonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or belaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
	Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	S	629	378	422
	Similarity (%)	50.4	66.7	7.76	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.8	66.4	70.8	26.0	. 45.0	66.7	85.2
	Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
Table 1 (continued)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rptR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rpIO		Streptomyces coelicolor msdA		Azospirlium brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
	db Match	pir.E69424	gp:AE001931_13	pir. S29885	pir.S29886	sp:RL18_MICLU	Sp:RS5_MICLU	Sp.RL30_ECOLI	sp:RL15_MICLU		prf.2204281A		GP:ABCARRA_2	prf.2518398E			prf.2411257B	prf.2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	1290 prf.2104333G
	ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	$\overline{}$
	Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
	Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	SSRORG	559805	560634	561368	562632	562633	562963	563736			566759	568088
	SEO NO.	+-		ADOR	-	100	-	-	4103	4104	4105	4017	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
	SEO			89	+		+	1	Ţ	-+-		8	: : : : : : :	- · - 60.8	609	610	1-9	612	613	9 6	615	616	617

																		_	_				
	Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		1. H. Paris initiation factor IF. 1	Hansiation intraction tacks	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	oseudouridylate synthase A		hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		T	27	122	134	132	311	i	122	265	201	786			485	505	423	100
	Similarity (%)	0.99	81.0		747			86.0	91.0	93.3	93.9	77.8		111	61.1	-	51.2			53.8	50.9	56.0	29.0
	Identity (%)	28.5	48.9		13.4			77.0	66.4	81.3	82.6	51.1		51.8	3,70	2, 5	24.8			27.4	22.8	30.7	28.0
Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdqR	Micrococcus luteus adk		007 107	Bacillus subtilis 106 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Cies (44) 241	Escherichia coll N.Z. Ipid	Escherichia coli K12 muA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV OfM	Escherichia coli K12 da	Streptomyces coelicolor A3(2) SCL2.30c.
	db Match	prf.2512309A	Sn.KAD MICLU			SP. AMPM_BACSU		pir.F69644	prf:2505353B	sp.RS11_STRCO	prt.2211287F	SD: RPOA BACSU			Sp:RL1/_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	1545 Sp. DIM_ARATH	sp:CFA_ECOLI	9p.SCL2_30
•	ORF (bp)	804	183	_		792	828	216	366	402	603	1014		_		867	2397	456	303	1257	1545	1353	426
	Terminat (nt)	568272	87121A	01 12 10	Ť	572267	573176	573622	574181	574588	575217	576351		1176/6	576898	577923	580429	580436	580919	582662	584228	ㅗ	586248
-	Initial (nt)	569075	477013	10/0/4	571367	571476	572349	573407	573816	574187	574615	67571B			576410	577057	578033	580891	581221		582884		585823
	SEO	+ -	<u> </u>		4120	4121	4122	4123	4124	4125	4126	7,537	17	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
	NO SEO	→—	- :	619	920	621	622	†		625	626	13	170	628	629	630	631	632	633	634	675	929	637

·

	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAI-6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothelical protein	alanine racemase	hypothetical protein
	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
	Similarity (%)	58.0	50.6	38.4				6.99	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
	Identity (%)	31.3	_24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3		_	44.0	41.6	48.7
Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 sir1753		-	Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
	db Match	SP.ELYA BACAO		pir:E70977				pir:C70977	prf:2111376A	sp:RL13_STRCO	sp:RS9_STRCO	pri:2320260A		pir.S75138	-		pir.S73000	SP. ALR_MYCTU	sp:Y097_MYCTU
	ORF (pp)	1359		3567	822	663	906	324	288	441	546	1341	303	1509	573	234	855	1083	495
	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
	Initial (nt)	737703	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEO No	-	4139	4140	141		.		4145	1146	4147	1148	4149	4150	4151	4152	4153	4154	4155
		_	95.6 6.79	640	179	i		644	645	- P	64.7	648	679	650	651	652	653	654	655

hypothetical protein

53.0

39.0

Pyrococcus horikoshii PH0308

627 PIR:F71456

673 4173 616231

	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-slaloglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	handhotical protoin
	Matched length (a.a.)	550	411	207	132	319	571			100	537	76	138	94	174		116	504	,
	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		8.69	93.9	3
	Identity (%)	28.9	51.3	52.2	30.3	48.1	38.4			78.0	63.3	50.0	34.0	64.9	55.2	'	41.4	80.8	
Table 1 (continued)	Homologous gene	Escherichia coli K12 yidE	Proplonibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 rimi	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	GP:MSGTCWPA_3 Mycobacterium tuberculosis	Mycobacterium smegmatis whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	
	db Match	Sp:YIDE ECOLI		_	sp:RIMI_ECOLI	sp:GCP_PASHA	sp:Y115_MYCTU			sp:CH10_MYCTU	SP.CH61_MYCLE	GP:MSGTCWPA_1		gp:AF073300_1	sp:Y09F_MYCTU		Sp:Y09H_MYCLE	1518 gp. AB003154_1	
	ORF (bp)	1599			507	1032	1722	429	453	297	16.14	255	1158	297	564	1026	378	1518	
	Terminal (nt)	804409	605708	606392	606898	607936	609679	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	
	Initial (nt)	800811	604470	605718	606392	606909	607958	609747	610268	610348	610659	611200		612714	613156	613722		615336	
	SEO		4157		4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	
		(CNA)			659	999	661	662	\dashv	•	665	999	299	899	699	670	671	672	

	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
	Matched length (a.a.)	381	274	262	517				513	411	218				201	563		275	288	
	Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	6.07	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobaclerium tuberculosis H37Rv Rv3394c	-	Streptomyces coelicolor A3(2) SC588.20c	Deinococcus radiodurans DR0809	
	db Match	gp:AB003154_2	SD: YBIF ECOLI	prf: 1516239A	sp:GUAA_CORAM				gp:SCD63_22	gp:SC6E10_15	sp.DEGU_BACSU				pir.B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
	ORF (bp)	1122	921		1569	663	441	189	1176	1140	069	324	489	963	825	1590	980	861	861	390
	Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	830151	631809	631824	632690
	tnitial (nt)	616973	610013	619086	620004	620926	621717	622269	623635	623800	624985	625677				628551	630810		632684	633079
	SEO NO (a a)	<u> </u>	7476	4176	4177	4178	4179	4180	4181	4182	4183	4104	4185	4186	4187	4188	4189	4190	4191	4192
	SEO NO.		37.5		677	678	679	680	189	6A2	r.83	3	200	8 8	687	688	689	690	- 69	692

	Function	hypothetical membrane protein		phytoene desaturase	phytoene synthase	transmembrane transport protein	geranylgeranyl pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein		DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ADC transporter	Soc wantspecies		ABC Kansporei	lipoprotein	DNA polymerase III	hypothetical protein	
Ī	Matched length (a.a.)	95		524	288	722	367	188	145	462		497	205	897	223		900	3		340	268	1101	159	
		67.4		76.2	71.2	75.6	63.8	68.1	62.1	74.2		63.2	53.7	54.9	222		,	7.67		75.4	67.2	57.5	62.3	
	Identity Similarity (%)	36.8		50.4	42.0	48.6	32.7	38.3	33.1	48.7	2	40.0	25.9	24.3	25.4	3		35.9		43.6	28.7	30.2	41.5	
Table 1 (continued)	Homologous gene	Wildiam maria	Mycobacterium maining	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2)	Brevibacterium linens cnE	Brevibacterium linens	Citrohacter freundii bic OS60 bic	organi militare di	Brevioactenum mens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2)	Cres 694 - 111-121	Bacillus subtilis 100 yvio		Hellcobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus Influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11	
	db Match	Ť	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	AF139916 11	ap: AF139916_14	oric original	Sp.BLC_CIITN	gp:AF139916_1	gp:AF139916_5	an AF155804 7			pri:2420410P		prf:2320284D		Sp. ABC_ECOLI	sp:HLPA_HAEIN	prt:2517386A		
	ORF	-	396	1644 g	912	2190			 -	_	1425	1404	753	2415		717	153	999	846	1080	697	3012	4	
	Terminal	/	633079	633532	635178	636089	2000	638317 640208	20200	640232	642557	642556	844778	645176		647593	648315	648440	650187	649114	650392	654612		
	-	(m)	633474	635175	636089	87685		639462	639024	640879	641133	643959	90000	647590		648309	648467	649105	649342	1-		651601		
	SEO	(9.9.)	4193		4195	 -		4197	4196	4199	4200	4201		4202	602	4204	4205	4206	4207	4208	4209	5	4211	
	SEO	=	693	-:					869	669	182	5		702	SO	704	705	706	102	100	2 E	5	= =	

Initial Terminal ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	Table 1 (continued)	db Match Homologous gene (%) (%) (a.a.)	Strentomyces coelicolor A3(2) 26 4 56 0 468 hypothetical membrane protein	20.0		Mycobacterium tuberculosis 50.3 76.4 203 transcriptional repressor pir.C70884 H37Rv Rv2788 sirR	gp:SCG8A_5 ScG8A,05c 34.9 61.7 264 hypothetical protein		pir.C69459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 transcriptuorial regularity	gp:SC5H1_34 SC5H1.34 SC5H1.34 SC5H1.34	gp:CDU02617_1 irp1	pir.E70971 Mycobacterium tuberculosis 62.9 86.1 151 rRNA methylase H37Rv Rv3366 spoU	Mycobacterium tuberculosis 70.9 87.4 278 methylenetetrahydrofolate pir.C70970 H37Rv Rv3356c folD	gp:MLCB1779_8 Mycobacterium leprae 31.3 76.3 80 hypothetical membrane protein	gp:SC66T3_18		gp.AF052652_1 Corynebacterium glutamicum 99.5 99.5 379	orf.2317335A	sp:CSTA_ECOLI		Sp.YJIX ECOLI Escherichia coli K12 yjiX 40.0 66.0 50 hypotnetical protein	
Initial Terminal ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	Tab									34									2		sp:YJIX_ECOLI Escherich	
Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)			738	+		138	+-	+		$\overline{}$	+	+-		963	1131	1344	2202	609	201	1
655122 655834 655834 656547 658005 658005 658155 658155 658150 661166 1 661166 1 661166 1 661166 1 661166 1 661166 1 661166 1 661166 1 661066 1 665088 659543 665088 1 665088 1 66508 1				656534	655097	657215	657205	658142	658928	659424	660538	660650	662017	662374	662382	664126	665183	GERARO	670465	669445	-	
20 20 20 20 20 20 20 20 20 20 20 20 20 2		-		355122	355834	556547	658002	658005	658155	658933	659543	661120	661166	662120	663761	SESORB	666313	022770	668264			
		SEO	(a.a.)	4212 B								4220	4221	4222	4223	Ş	4224	9	4220	422B	4229	

50

	Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrale synthase		hypothetical protein		L-malate dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding prote	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control proteir	hypothetical protein	
	Matched length (a.a.)	317	281	380		53		338	226		284	269	339	330	356	395	303	219	
	Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
	Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	58.3	63.0	53,1	32.2	30.4	56.2	
- Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxidR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae Irp1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae Irp1B	Corynebacterium diphtheriae	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
	db Match	pir.C70539	prf. 1902224A	sp:CISY_MYCSM		sp:YNEC_ECOLI		sp:MDH_METFE	prf.2514353L		sp:VIUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf:2202262A	prt:2222220B	sp:YICG_HAEIN	
•	OŘF (bp)	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
	Terminal (nt)	672653	673576	674758	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
•	Initial (nt)	671700	672685	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	686435	687351	688141
	SEO NO (9.6)	4231	4232	4233	4234	4235	4236	4237	4238	1239	1240	4241	1242	4243	1244	4245	4246	4247	4248
	SEO NO.	731	732	733	734	735	736	737	738	739	740	74.	742	743	744	745	746	747	748

	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein	initialization atology 68	pencilin-amaing pratein on precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, laci family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (a.a.)		244	346	331	278		301	417	323			209	11	385	561	468	1140	263	127
	Similarity (%)	İ	73.8	69.1	79.8	72.3		57.5	7.07	52.6			72.3	66.2	80.5	53.8	65.0	100.0	1.09	6.99
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.8	51.4	22.1	31.6	100.0	26.2	30.7
Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2 11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
	db Match		gp.AF109162_3	pir.S54438	COLI	_	i	sp:DACD_SALTY	pir.F70842	gp:SC6G10_8			Sp. LIPP LACLA	gp:SC1A2_11	pir.H70841	SP. MANB MYCPI	Sp:DLDH_HALVO	prf:2415454A	sp.YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	780	1017	_	\rightarrow	903	1137	1227	858	195	35.	533	384	1182	1725	1407	3420	870	486
	Terminal (nt)	688916	689917	80708	80,000	694110	695074	695077	696769	698065	800266	20000	600013	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	GRORGO	969069	504723	27/160	693028	694172	696213	697995	698922	670003	210660	2/2669	866669				705211	708839	709793
	SEQ NO.	+=		135		4254			4256	4257	9367	007	4259	4261	4262	4263	4264	4265	4266	4267
	0 0 8			÷	$\overline{}$	35 55	_	+-		757	1	, y	759	761	762	26.2	767	765	766	792

	1 (continued)
	Table

											$\overline{}$	T							
	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpy; uvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
	Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
	Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	76.7	63.4	66.2	69.8	100.0	100.0
	Identity (%)	44.6	24.6	24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	8.66	93.6
Table 1 (continued)	Homologous gene	Bacillus subtills 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prp0	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichla coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
	db Malch	pir.869760	sp:TRXB_BACSU		prf:1902224A	PIR: E72779	sp:CISY_MYCSM	-	pir:B70539			sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	sp:YCEF_ECOLI	prf.2323363CF_	gp:AB018531_2	pir.JC4991
	ORF (bp)	1086	924		888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
	Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
	SEO NO.	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
	SEO	768	1	•	177	772	773	77.4	775	776	777	778	779	780	7.9.1	782	783	784	785

۲		<u>"</u>	$\overline{}$	$ \Gamma$	T	i	T		\top									
	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein	1		5'-phosphoribosyl-5-arnino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
	Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142	
	Identity Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	64.8	68.8		66.3	76.8	
٠	Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
Table 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purK	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2)	Chelatobacter heintzii ATCC	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhil	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
	db Match	sp.BIRA_ECOLI	pir.G70979	sp:PURK_CORAM	sp:KUP_ECOLI		-	sp.PUR6_CORAM	an APU33059 5	gp:SCF43A_36	sp:NTAA_CHEHE			pir.A72258		SP: YWJB BACSU		
	ORF (bp)	-i -	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	+-	+	222
	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	728251	737204	737216	738673	740228	741765	742195	741818	742828	742831
	Initial (nt)	730436	731312	731857	733072	733797	734984	735402	125000	736413				741397	741854			743052
	SEO	4286	4287	4288	4289	4290	4291	4292	188	4293	4295	4206	4297	4298	1200	200	430	4302
		(DNA) 786	787	788	780	8 8		792		26 6	785	9 9	797	798	0	2 2	80	802

	Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		and proprietose binding of Oten	וופווסוסיבין ומוסיבים בייים בייים		ABC transporter A I P-binding profits (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase				hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated prutein (ATP-dependent helicase)
	Matched length (a.a.)	27.1	308	T	1:3			332		1783				240	720	707					2033	869	873
	Similarity (%)	75.3	70.3		1	62.4		73.9		49.9				59.2	62.5	41.1					45.8	53.2	48.6
	Identity (%)	42.4	37.3		1	30.9		57.2		25.1				31.7	30.0	20.7			_	_	22.4	24.4	23.1
Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Town oil cooki constitution	Thermococcus incidents in air		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1	UKBU135			Mycobacterlum tuberculosis H37Rv Rv3268	Hellcobacter pylori J99 jhp0462	Escherichia coli K12 uvrD	·				Streptomyces caelicolar SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	-4.040E366C		prf:2406355B		prf.2406355A		prf.2308356A		pir R75633				pir.E70978	pir.C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp:HEPA_ECOLI
	ORF (bp)	1	_	132	468	1272	423	966	360	P P P		372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)		/43007	743900	745046	745622	748442	747031	748814	74888	20001	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
	Initial (nt)		743900	744931	745513	746893	748020	748026	740446	20007	(33003	757063	757395	758262	760798	762468	762497	762730	762977	768191		774142	777035
•	SEO NO.	_	4303	4304	↓	<u> </u>	4			500 S	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
		寸	803 4		805	-					0 r8	1.0	ī		814	815	816	817	818	819	820	821	822

50

	Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc-	diphosphoryl polyprenol, a-3-L rhamnosyl transferase	mannose-1-phosphate guanylyltransferase	regulatory protein		hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase				pheromone-responsive profetin	ania pomocution	S-adenosyr-L-momocy some			thymidylate kinase
	Matched length (a.a.)	527		289	353	96		139	136	460	327	420	3			180		476		-	209
	Similarity (%)	71.4		77.9	6.99	81.9		74.8	71.3	66.3	56.3	699	80.5			57.8		83.0	-	-	56.0
	Identity (%)	45.5		56.4	29.8	73.4		48.9	51.5	38.0	31.2	18	30.0			35.6		59.0		_	25.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	HS/RV RVS201	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae	Mycobacterium smegmatis	whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicalor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis	H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
	db Match	nir.D70978		gp:AF187550_1	SD MPG1 YEAST		gp.Ar loanss_r	pir:B70847	gp:SCE34_11	SP:MANB_SALMO	-ir. 0.70504	pii. Or occ	SP:MANA_ECOLI			prf: 1804279K		sp:SAHH_TRIVA			SP:KTHY_ARCFU
	ORF (bp)	1554	_	897	1044		908	456	390	1374	1	_	1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	97777	201	779910	781171		781875	782162	783101	784557		65058/	786824	787045	787983	787170	788546		788719	789002	790704
	Initial (nt)	101	(/8//	779014	80100	23.00	781468	782617	782712	783184		784635	785643	786896	787624	787733	788196	٠	789426		
	SEO NO		4323	4324	1 5	6767	4326	4327	4328	4329		4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
			#23	R24	 -	C74	8.26	827	828	829		830	831	832	33	834	25.0	83	74.0	5 8	839

_										$\overline{}$		-			. (i i	
	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
	Matched length (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
	Similarity (%)	90.6		78.9	65.6	72.8		61.6	9.66		78.8	82.9	99.0	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	99.0	3 <u>8</u> .3	100.0	21.6	61.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tubercutosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c lpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterlum flavum (Corynebacterlum glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium (uberculosis sigH
	db Match	pri:2214304A		prl:2214304B	pir.F70592	pir.D70592		sp.RR30_SPIOL	gsp:R74093		plr.A70591	pir.F70590	gp:AF114233_1	pir.D70590	GP:AF114233_1	pir.G70506	pri:2515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	818
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	799691	800200	800208	801190	803128	802565	803131	805025
	initial (nt)	790732	791421	791512	793008	794714	795447	795448	796250	799020		801194	802602	802649	802687	804240	804408
	SEO	4340	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
	NO SEO	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855

										-		i			\neg	\neg		\neg
	Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA neticase		ATP-dependent DNA nelicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
	Matched length (a.a.)	84	129	415	458		291	249	1155		1126		302	230	099		280	
	Similarity (%)	96.4	65.1	62.2	64.0		8.69	62.9	48.9		65.7		64.2	58.3	58.8		49.3	
	Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus Jannaschil JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3189c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis H37Rv Rv3196	
	db Match	pir.D70596	pir.B70596	pir:E70595	SP. DEAD_KLEPN		pir:H70594	pir.F70594	pir.G70951		pir:G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI	•	pir.B70951	
	ORF (bp)	258	420	1200	1272	225	846	759	3048	780	3219	1332	1005	714	2034	591	816	603
	Terminat (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	819236	821287	822669	821290	823391
	Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165		815541	817519	818523	819254	822079	822105	822789
	SEO NO.	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
	SEO NO.	<u> </u>	487	 858	859	860	. 198	- L	 	864	965	966	 R67	A GA	869	100	871	872

EP 1 108 790 A2

major secreted protein PS1 protein precursor alpha-lytic proteinase precursor **DNA-directed DNA polymerase** 5 ethylene-inducible protein Function hypothetical protein hypothetical protein hypothetical protein monophosphatase hypothetical protein hypothetical protein regulatory protein 10 Matched length 255 1023 15 301 208 363 (a.a) 201 408 463 350 9 Similarity 74.9 73.6 51.5 89.0 53.0 51.4 74.9 73.5 76.4 57.7 44.4 8 20 Identity (%) 51.8 67.4 49.0 40.8 25.0 27.0 34.3 26.7 42.8 43.4 Lysobacter enzymogenes ATCC 29487 Neurospora intermedia LaBelle-Aeropyrum pernix K1 APE0247 Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1 25 Hevea brasiliensis laticifer er1 Streptomyces alboniger pur3 Mycobacterium tuberculosis H37Rv Rv3193c Fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv3195 Mycobacterium tuberculosis H37Rv Rv3194 1b milochondrion plasmid Deinococcus radiodurans DR0840 Bacillus subtilis 168 yaaE Homologous gene 30 35 sp:YAAE_BACSU sp:CSP1_CORGL sp:ER1_HEVBR gp:AE001938_5 prf.2207273H db Match PIR:F72782 pir.TRYX84 pir.S03722 pir.G70950 pir:H70950 pir.A70951 40 2955 1581 780 951 1062 1446 1050 1359 345 909 585 429 510 222 309 363 유 (한 (한 675 522 501 832570 832795 834633 838892 839353 840139 840437 841517 829570 831971 831578 840210 Terminal 829627 825239 825242 825996 835388 835837 822680 45 3 840745 837312 838925 839630 826616 834888 825916 830985 831021 831971 833157 833572 835253 840431 842296 826517 831922 824125 824190 Initial (nt) 50 4388 4389 4390 4385 4386 4387 4391 4380 4383 4384 4375 4376 4378 4379 4381 4382 4373 4374 1377 SEO. (9.9.) 888 890 889 (ANG) 880 882 875 876 887 891 A77 878 881 õ 55

	Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division pratein	small protein B (SSRA-binding protein)	hypothetical protein	!				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
	Matched length (a.a.)	243	359	228	72	301	145	116					272	319	191	325	313	312	250
	Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3					52.9	58.3	71.2	61.5	80.8	76.0	82.0
	Identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0					26.8	29.5	36.1	27.7	39.3	35.6	48.4
Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) priB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO			-		Vibrio chalerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacilius subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
	db Match	gp:U70376_9	sp.RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp.SMPB_ECOLI	en.YFAO FCOLI	do.				sp:VIUB_VIBCH	prf.2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir.869763	pir.C69763	pir. D69763
	ORF (bp)	819	1104	687	264	006	492	25.1	3	537	300	405	825	918	588	1014	666	942	753
	Terminal (nt)	842306	844360	845181	844842	846097	846628	0.0000	040305	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
	Initial (nt)	843124	843257	844495	845105	845198	846137	20000	840032	846805	847727	848122	849323	R50243	850999	851351	852618	853783	
	SEQ.	(a.a.) 4392		4394	4305	4396	7927		4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	4408
		(DNA)		. 894		96			868	839	006	901	902	6	S G		9	§ 6	806

	Function	hypothelical protein	hypothetical protein	kynurenine aminotransferase/glutainine transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothetical protein	glutamine cyclotransferase			permease		rRNA(adenosine-2'-0-)- methyltransferase	
	Matched length (a.a.)	48 h	84 h	442 a		613	764	57		198	61	159	273			477		319	-
	Similarity (%)	72.0	0.89	64.9		62.3	65.2	62.0		64.7	75.4	58.5	67.8			79.3		51.7	
	Identity (%)	0.99	61.0	33.5		30.7	36.1	44.0		39.4	45.6	28.3	41.8			43.6		27.9	.
Table 1 (continued)	Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Rattus norvegicus (Rat)		Saccharomyces cerevisiae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863	•	Micrococcus luteus rpf	Lactococcus lactis cspB	Mycobacterium leprae MLCB57.27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
,	db Match	PIR:F81737	GSP:Y35814-	pir.S66270		sp:RA25_YEAST	pir.F70815	pir:G70815		prt.2420502A	prf.2320271A	gp:MLCB57_11	gp:AE001874_1			6_32625.qg		sp:TSNR_STRAZ	
	ORF (bp)	147	273		639	1671	2199	219	843	597	381	525	774	669	138	1473	912	828	876
	Terminal (nt)	860078	860473	862752	862753	863396	865119	867571	968830	867803	869318	869379	869918	870721	871660	873210	872018	874040	874069
	Initial (nt)	860224	860745	861544	863391	865066	867317	867353	867788		<u> </u>		870691	871419	871523		872927	_!	874944
	SEO NO.	+-	1054		4412	4413	4414	4415	4416	7194	4418	4419	4420	4421	4422	4423	4424	4425	4426
	SEO NO.		6		912	913	914	915	1 0	0 0	918	919	920	921	126	923	924	925	926

											$\overline{}$	T-	1	\neg	1	$\neg \tau$		\neg		
	Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter		hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
	Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
	Similarity (%)	55.1	52.9	69.5	90.6	58.1		77.4	83.4			59.7			72.6	62.0	88.9	56.4	1.89	51.0
	identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCIB.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX		-	Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.18c	Synechococcus elongatus naegeli mutM
	db Match	sp:YZ11_MYCTU	pir:S71439	ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir:S55505			prf.2317335B			gp:AE002044_8	prf:2408256A	Sp.TYSY ECOLI	sp:CYSQ_ECOLI		sp.FPG_SYNEN
	ORF (bp)	933	1128		339	1653	916	840	8907	489	186	1047	428	267	237	456	798	756	4560	768
	Terminal (nt)	874951	875985	† —	881985	883647	884541	884549	894578	895191	895593	895598	896719	89768	897727	897979	898434	899253	904602	905382
	Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408		897144	897423	897963	898434	-			904615
	SEO NO.	4427	442B	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	0440	0443	4444	4445
	SEO NO.			626	930	931	932	933	934	935	936	937	938	939	940	041		9.6	0.44	945

	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		S'-phosphoribosylglycinamide formyltransferase	5-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128	196	403		557	195		78	763	885	217		236	434	_	189	525	- 217
	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.8	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SCI28.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	pir:F70816	SO:APL LACLA	pir.T36776		pir.NUEC	pir:G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf.2420410P		pir.D70716	sp:YT19_MYCTU		gp:AB003159_Z	gp:AB003159_3	gp:CGL133719_3
	ORF (bp)	408	009	 _	717	+-	1176	381	309	2289	2223	999	507	717	1425	228	627	1560	819
	Terminal (nt)	902796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921528	922412
	Initial (nt)	905389	1908191	907731	008617	909378	910698	910843	911163	911226	915699	916364			917928	918054		919967	921594
	SEO	4446	7447	1448	7440	4450	4451	4452	4453	1454	4455	4456	4457	4458	4459	4460	4461	4462	4463
	SFO	946		876	i 6	2 0	951	052	953	951	: 556	1 85.0	8 2	85.6	959	960	95.1	962	963

- 10

5.5

_
g
.⊆
Ξ
8
_
-
8
_
5
ī

											-	T	- 1	1							
	Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothelical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
	Matched length (a.a.)	222	109		67	100	49	77	529	80	78	55		227	484	406	188		131	210	- 191
	Similarity (%)	100.0	100.0		76.1	80.0	83.7	81.8	71.1	5.77	65.4	78.2		73.6	50.1	59.9	54.3		77.1	60.0	59.7
	Identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	0.09		48.0	24.4	33.3	7.72		50.4	28.6	25.1
lable I (collinated)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A, 14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium tuberculosis H37Rv Rv0985c mscl.	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
	db Match	gp:CGL133719_2	gp:CGL133719_1		sp:RR18_CYAPA	sp:RS14_ECOLI	sp:RL33_ECOLI	pir.R5EC28	pir:B70033	prf:2420312A	sp:RL31_HAEDU	gp:SC51A_14		SP.COPR_PSESM	sp:BAES_ECOLI	pir.S45229	sp:CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
	ORF (bp)	999	327	321	249	303	162	234	1611	312	264	171	447	969	1365	1239	585	198	405	651	570
	Terminal (nt)	952396	923138	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	933733
	Initial (nt)	923061	923464	923661	924407	924727	924895	925134	926935	927242	927474	927752	927785		928884	930410		932290	932974	933710	934302
	SEO NO.	4464	4465	4466	4467	4468	4469	4470	4471	4472	4473	4474	4475	4476	4477	4478	4479	4480	4481	4482	4483
		964	965	198	796	998	696	\top	-	22	973	974	975	976	710	978	676	980	180	982	983

														\neg			\neg	_
	Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothelical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-IRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
	Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		98
	Simlarity (%)	689	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	29.0		29.6
	Identify (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterlum tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yx8G	-	Enterococcus faecium
	db Match	pir.JC4985	prf.2403296B	SP:RIMJ_ECOLI	pir:G70601	Sp:CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	sp:SYM_METTH	prt: 1306383A		sp:YXAG_BACSU		gp:AF029727_1
	ORF (bp)		1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
	Terminal (nt)	6	-i	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
	SEO	(9.9.)		4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	1486	4497	4498	4499	4500
		(DNA)			987	988	080	066	06	206	663	994	995	900	Zuiti	866	666	1000

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

														- 1							$\overline{}$
	Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methylicansferase		fransposase	transposase	transcriptional regulator	cadmium resistance protein		hypothelical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl manophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
	Matched length (a.a.)	139	112		585	231		94	139	91	205		263	362	265	315		478	242	159	108
	Similarity (%)	67.6	88.4		75.6	62.8		59.6	9′.29	84.6	66.8		70.7	63.5	65.3	67.0		85.8	67.4	58.5	78.7
	Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coli did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA 🕠	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
	db Match	pir.TQEC13	gp:AF052055_1	,	prf:2014253AE	sp:MTK1_KLEPN		gp:AF029727_1	pir.TQEC13	sp:YJ94_MYCTU	prf.2514367A		pir.C70603	pir.D70603	sp:KSGA_ECOLI	pir.F70603		pir.S47441	sp:PDXK_ECOLI	sp:YX05_MYCTU	gp:SCF1_2
	OŘF (bp)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
	Terminal (nt)	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	099896	969458	969461	970349
	Initial (nt)	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629	961662	962809	963864	964974	965852	966591	966828	968667	969940	970029
	SEO NO.	4501	4502	1503	1504	4505	4506	4507	4508	4509	4510	4511	4512	4513	4514	4515	4516	4517	4518	4519	4520
			- -	1001		1005	9001	÷	-i		010	150	1012	1013	1014	1015	1016	1017	1018	1019	1020

	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release tactor 3	amide-urea transport protein
	Matched length (a.a.)	107	261	270	337				440	100	802	157		121	482		546	404
	Similarity (%)	69.2	1.88	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
	Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87,17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
	db Match	gp.SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir:E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA6Z2491_21	pir.A70539		pir:159305	prf:2406311A
*	ORF (bp)	321	096	792	1017	654	111	1212	1386	579	2373	498	666	381	1551	936	1647	1269
	Terminal (nt)	920738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
	SEO NO.	4521	4522	4523	4524	4525	4526	4527	4528	1529	4530	4531	4532	4533	1534	4535	4536	4537
	SEO NO (DNA)	1021	1022	1023	1024	1025	1026	1027	tn7R	υζυ .	1030	160.	10.32	1033	1034	1035	1036	1037

																$\overline{}$	$\overline{}$	$\overline{}$
	Function	amide-urea transport protein	amide-urea transport protein	high-affnity branched-chain annno acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		suff protein precursor	nodulation ATP-binding protein I
	Matched length (a.a.)	11	234	253	236	187	361	342	51	174	194	143	208	316	452		909	- 310
	Identity Similarity (%)	61.0	68.0	70.0	69.1	9.02	54.0	72.8	61.0	63.2	65.0	54.6	62.5	79.1	71.9		61.7	64.8
	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
Table 1 (continued)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987	Bacillus subtilis prs	Bacillus subtlis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
	db Match	prf:2406311B	prl:2406311C	SP.BRAF_PSEAE	sp:BRAG_PSEAE	Sp:PTH_ECOLI	SP.2NPD_WILMR	sp.G3P_ZYMMO	GSP:Y75094	Sp.PTH_ECOLI	pir.B70622	sp:LGUL_SALTY	prf.2516401BW	sp.KPRS_BACCL	pir.S66080		SP. SUFI_ECOLI	SP. NODI_RHIS3
	ORF (bp)	882	1077	726	669	612	1023	1065	369	531	909	429	624	975	1455	1227	1533	918
	Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	
	Initial (nt)	988023	988904	086686	912066	992028	992058	993549	994474	995375	_i	996402	997456	998440	606666	1001242		1003013
	SEO NO.	4538	4539	4540	1541	4542	4543	4544	4545	4546	15.17	1548	4549	4550	4551	4552		
	SEO NO (DNA)		1039	U; v;	1041	1042	1043	1044	1015	1046	1017	1 dto.	1049	1050	1051	1052	1053	1054

EP 1 108 790 A2

	T					_				v o										÷	protein	
	Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamytranspeptidase precursor					transposase protein fragment	transposase (IS1628 Tnpb)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
	identity (%)	30.2	- 24.6	36.6		31.5	28.6		44.0	32.4					64.0	9.66				23.0	36.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coll tetR	Escherichia coli mfd	
	db Match	air JN0850	I COLI			gp:SCF15_7	pir.S65587		pir.T14180	sp:GGT_ECOL!					GPU: AF164956_23	gp:AF121000_8				sp.TETC_ECOU	3627 sp.MFD_ECOLI	
	ORF (bp)	33		$\overline{}$	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	597	312	651		1
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393		1022716	
	Initial (nt)	1902001	1004829	1006089	1006937	1006998	1008622	_1	1010057	1013761	1014016	1014861				1015852	1016557	-;	+		1019090	
	SEO		4556				4560	1561	4562	4563	4564	4565	1566	4567	1568	4569	4570	 -				4575
			1055				1060	190	1067	1063	1064	1065	1056	10.57	1058	1069	1070	100	1072	1073	1074	1075

						Table 1 (continued)				
0.00	SEO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
970	4576	1021305	1021078	228	GSP:Y75301	Neisseria gonorrhoeae	48.0	0.69	92	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics
	4577	1024666	1022699	1968	Sp:MDLB_ECOL!	Escherichia coli mdIB	31.3	62.7	632	multidrug resistance-like ATP- binding protein, ABC-type transport protein
1078	4578	1026396	1024666	1731	sp:YC73_MYCTU	Mycobacterium tuberculosis H37Rv Rv1273c	50.2	81.9	574	ABC transporter
1079	4579	1028886	1026505	2382	sp:YLI3_CORGL	Corynebacterium glutamicum ATCC 13032 orf3	100.0	100.0	368	hypothetical membrane protein
1080	4580	1031885	1032181	297						
1081	4581		1032780	585	sp:YABN_BACSU	Bacillus subtilis yabN	33.4	57.4	183	hypothetical protein
1082	4582	1033185	1032760	426						
1083		1033646	1033269	378						
1084		1033954	1034739	786	pir.A70623	Mycobacterium tuberculosis H37Rv Rv1022 lpqU	46.5	689	241	IpqU protein
1085	4585	1034949	1036223	1275	sp:ENO_BACSU	Bacillus subtills eno	64.5	98.0	422	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)
TORG	4586	1036159	1036016	144	PIR:872477	Aeropyrum pernix K1 APE2459	68.0	58.0	41	hypothetical protein
1087		•	1036855	540	pir.C70623	Mycobacterium tuberculosis H37Rv Rv1024	31.9	55.0	191	hypothelical protein
1088	4588	1036900	1037445	546	pir.D70623	Mycobacterium tuberculosis H37Rv Rv1025	59.5	77.8	153	hypothelical protein
1089	4589	1037448	1038410	963	sp:GPPA_ECOLI	Escherichia coli gppA	25.2	55.0	329	guanosine pentaphosphatase or exopolyphosphatase
1090	4590	1037481	1036498	984						
1091			1038721	930	sp:THD2_ECOLI	Escherichia coli tdcB	30.3	64.7	314	threonine dehydratase
1092		4592 1039783	1039977	195						

40

5				of L-rhamnose				n factor				ptulosonate-7-		r undecaprenyl stase					transferase	synthase	
10	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7- phosphate synthase		hypothetical protein or undecaprenyl pyrophosphate synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
15	Matched length (a.a.)		56	242	282		140	143	140	300		367		97	28			308	434	969	<u>.</u>
20	Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	58.3		99.5		97.3	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
25 (panul)	ene		MSB8		culosis		lor A3(2)		culosis	ensis ImbE		tamicum		tamicum	tamicum Im)				m MJ-233	s pabS	
S Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
40	db Match		pir.B72287	SP. RHAR_ECOLI	pir:F70893		gp:SCF55_39	Sp.GREA_ECOLI	pir.G70894	pir:S44952		sp:AROG_CORGL		sp:YARF_CORGL	SP:YARF_CORGL			sp:coaa_Ecol1	gsp:R97745	sp:PABS_STRGR	
	ORF (bp)	330	189	993	816	387	450	525	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
45	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
50	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	1046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	4612 1053880
	SEO NO.	1593	1594	4595	4596	4597	4598	4599	1600	1601	4602	4603	1601	4605	1606	4607	4608	4609	4610	4611	
55	SEO NO.	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1101	1105	90··	1107	1108	1109	1110	=======================================	1112

						Table 1 (continued)				
	SEO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length: (a.a.)	Function
() ()	76.8.7	1054859	1055722	864						
		1055032	1054640	393						
7	<u> </u>	1055783	1056319	•	qp:A01504 1	Alcaligenes faecalis ptcR	30.3	58.8	165	phosphinothricin resistance protin
2 4		1057200	1056322	+	恴	Escherichia coli ybgK	30.3	29.0	300	hypothetical protein
2 5		1057573	1	1.0						
2 : 3		2001001	1	689	Sp. YBGJ ECOLI	Escherichia coli ybgJ	37.8	57.8	225	hypothetical protein
2 3			1057843	_		Emericella nidulans lamB	30.8	52.2	276	lactam utilization protein
9111	2 0 0	1059214	1058624		1_	Bacillus subtilis ycsH	40.6	81.2	165	hypothetical membrane protein
12		1059218	1059889	672						
3 5		1059360	1059962	603						
1123	_	1060112		681	sp.YDHC_BACSU	Bacillus subtilis ydhC	26.0	63.2	204	transcriptional regulator
2	4624		1062146	1278	+					
7 1 7			٠	1419	Sp.FUMH_RAT	Rattus norvegicus (Rat) fumH	52.0	79.4	456	fumarate hydralase precuisor
3				489		Rhodococcus erythropolis IGTS8 dszD	32.7	65.4	159	NADH-dependent FMN oxydoreductase
1127	4627	1064738	1064478	261						
1128			1064754	447						
1129			1065304	564	gp:SCAH10_16	Streptomyces coelicolor A3(2) StAH10.16	55.4	81.0	184	reductase
1130	4630	1066083	1067570	1488	sp.SOXA_RHOSO	Rhodococcus sp. IGTS8 soxA	39.1	67.7	443	dibenzothiophene desulfurization enzyme A
1131	1631	1067570	1068649	99	Sp. SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	25.8	51.3	372	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1132	4632	1068649	1069845	1197	Sp:SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	28.9	61.6	391	dibenzothiophene desulturization enzyme C (DBT sultur dioxygenase)
1133	4633	1069692	1068913	780			·			
1134	$\overline{}$	1069808	1069119	9						
-	_		_:	┥						

5		Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		Iransmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	peniciliin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyltransferase	hypothetical protein
15		Matched length (a.a.)	397 FA	325 gly	211 hy	227 hy		82 tra	62 ex	466 ex	311 pe	131 an		338 pe		552 so	412 m	361 G	75 vi	301 or	143 hy
20		Similarity (%)	73.1	75.7	56.4	1.99		78.1	67.7	55.6	78.8	47.0		63.9		61.4	60.0	98.6	80.0	58.8	6.69
		Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacilius subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xse8	Escherichia coli K12 MG1655 xseA	Escherichia coll K12 lyt8	Neisseria gonorrhoeae		Escherichia coli K12 perM	•	Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
40		db Match	gp:ECO237695_3	sp:GLPX_ECOLI	pir:B70897	pir:H70062		gp:SCH24_37	sp.EX7S_ECOLI	sp:EX7L_ECOLI	sp:LYTB_ECOLI	GSP:Y75421		sp:PERM_ECOLI		sp:NTPR_RAT	sp:CSP1_CORGL	sp:YYAF_BACSU	sp. VAPI_BACNO	sp:OTCA_PSEAE	sp:YKKB_BACSU
		980 (94)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	201
45		Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	1086917	1087044
50		Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544
		SEO NO.	4635	1636	1637	4638	4639	4640	4641	4642	1543	1644	4645	4646	4647	4648	4649	4650	4651	4652	4653
5 <i>t</i>		SEO.	135	1.35	137	138	139	140	141	142	5	-	145	146	147	148	140	150	151	152	153

EP 1 108 790 A2

												$\overline{}$	-				$\overline{}$	
	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			fenolicin gene cluster protein involved in frenolicin blosynthetic
	Matched length (a.a.)	198	396	1153	259			97	125	48				264	108			146
	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
Table 1 (conlinued)	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
	db Match	gp:AF013288_1	sp:YIS1_STRCO	Sp: YEGE ECOLI	ш			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp:DC4C_ACICA	-		gp:AF058302_19
	ORF (bp)	630	1206	3042	765	219	333	291	375	144	141	366	498	843	321	663	195	854
	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	!
	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052		1096093	1096331	1096471			<u> </u>	1098609	1099088	1099209	
	SEO NO.		4655	4656			4659		4661	4662	4663	4664	4665	4666	4667	4668	4669	
	SEO NO.		1155	1156			1159	0911	1.61	29:1	1163	1164	1165	<i>y</i> b	1167	1168	1169	1170

				_											<u> </u>			T		
	Function	biotin carboxylase							hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding	protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence (S31831)
	matched length (a.a.)	563 t							655	329	160	262	248	593		136	111	134	367	436
	Similarity (%)	78.5							80.3	52.6	62.5	60.7	59.3	54.1		6.99	82.0	62.7	59.4	99.8
	dentity (%)	48.1							57.9	27.7	33.8	38.2	29.4	34.7		29.4	55.0	32.1	22.6	99.5
Table 1 (continued)	Homologous gene	Synechococcus sp. PCC 7942 accC							Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus	Call celled	Streptornyces itadiae uto	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtills 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
	db Match	gp:SPU59234_3							Sp.YT15_MYCTU	SP:BCHI_RHOSH	gp:AMU73808_1	pir.A70577	ap:STMBCPA 1		Sp:TLRC_SIRFR	sp:Y06C_MYCTU	sp:PHNA_ECOLI	SP:YXAD_BACSU	1	pir.S43613
	ORF (bp)	1737	597	ę	200	345	153	639	1956	1296	642	705	762		1641	396	342	474	1218	1308
	Terminal (nt)	1101653	1102639	20,00	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754		1111432	1111425	1112230	1112484	1114319	1115793
	Initial (nt)	1099917	1102043		1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201			1109792	1111820	1111889	1112957	<u> </u>	1114486
	SEO	4671	7677		4673	4674	4675	4676	4677	4678	4679	1680	100	9	1682	4683	4684	46.05		4687
		21 12	15	÷	173	174	175	1/6		1178		1 6	· ;	 	195	1183	1184	90	1186	1187

·

										<u>_</u>									\neg
	Function	cysteine desulphurase	nicolinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrane protein
	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
	Identity Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	60.7	80.8	64.3	9.89	9.69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC588.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdf	Escherichia coli K12 IpIA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtills 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
	db Match	gp:RFAJ3152_2	Sp.NADC_MYCTU	pir.E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	qp:AAA21740_1	sp:PHNB_ECOLI	sp.PCAK_PSEPU	sp.PHHY_PSEAE	pir. A69859	Sp:YJJK ECOLI	pir.G69858	٠	sp:CHAA_ECOLI	pir:C75001	sp: YWAF_BACSU
	ORF (bp)	1074	837	1182	642	909	909	342	789	114	1293	1185	588	1338	753	531	1050	708	723
	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704		1131401
	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606		1124826	1126020	1126422			1129102			1132123
	SEO NO.	\div	4689	4690		4692	4693	4694	4605		4697	4698	4600	4700	4701	4702			4705
	FO O		96	18		192	193	1.61	90	. 19k	<u>7</u> 6,	1.98	0	6 0	312	1202	5	1204	1205

					_															_	\neg
·	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membiane profession	oxidoreductase or thiamin biosynthesis protein					chymotrypsin Bil	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
	Matched length (a.a.)	946	164			318	282					271	111	340	147	221	614	909	315		103
	Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7	ī	78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicolor A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv 1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	Sp. UVRA_THETH				sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOL!	pir.F70874	pir:B70875	·	sp:FER_STRGR
	ORF (bp)	2340	495	216	1776	954	900	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
	Initial (nt)	1134472	1134581	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273		1143739	1144118	1146097	1147592	1148445	1148953
	SEO	4706		4708	4709	<u> </u>		47.12	4713	47.14	47.15		4717	4718	47.19	4720	4721	4722	4723	4724	
		1206		1208	1209	1210		1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225

EP 1 108 790 A2

	T			7			$ \top$	1		$\neg \neg$	s.		Ţ			Т	Ţ	
	Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6-dicarboxylate	*	hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucose—starch(bacterial glycogen) glucosyttransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
	Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	93	194	
	Similarity (%)	52.9			100.0		100.0	69.0	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
Table 1 (continued)	Homologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicolor A3(2) dhpS	Mycobacterlum leprae u17561	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicalar A3(2) gigC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
	db Match	sp:AAT_BACSP			gp:CGAJ4934_1		pir:S60064	gp:SCP8_4	gp:MLU15180_14	pir:G70609	gsp:W32443	sp:MYRA_MICGR	SP:SCRB_PEDPE	sp:GLGA_ECOLI	sp.GLGC_STRCO	sp:MDMC_STRMY	sp:RPOE_ECOLI	
	ORF (bp)	1101	621	1185	891	663	768	831	729	306	165	864	1494	1227	1215	639	639	492
	Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379	1164916	1164974	1166384	1167067
	Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	1163605	1163702	1165612	1165746	1166576
	SEQ NO.		4727	4728	<u>·</u>	4730	4731	4732	4733		4735	4736	4737	4738	4739	4740	4741	4742
	SEO NO NO (DNA)		:			1230	1231	1232	1233	٠٤٤.	٠۶٤٢،	1236	1237		1239	1240	1241	1242

Table 1 (continued)	Terminal ORF db Match Homologous gene (%) (%) (a.a.) (nt) (bp)	1167577 468 pir.C70508 Mycobacterium tuberculosis 45.5 73.2 112 hypothetical protein H37Rv Rv1224	1167587 1125 Sp:MRP ECOLI Escherichia coli mrp 43.6 72.0 257 ATPase	579	1169321 1290 pir.C70509 Mycobacterlum tuberculosis 49.8 77.0 434 hypothetical protein H37Rv Rv1232c	1171187 516 pir.A70952 Mycobaclerium tuberculosis 57.9 87.1 140 hypothetical protein H37Rv Rv1234	1171871 666	1171869 594	1172501 3771 prf.2306387A AJ12036 odhA AJ12036 odhA	1176308 3741 sp:MDR2_CRIGR hamster) MDR2 28.8 60.4 1288 resistance protein 2 (P-glycoprotein 2)	1180121 717 pir.H70953 Mycobacterium tuberculosis 31.7 72.1 240 hypothetical protein	1180872 804 sp:AROE_ECOLI Escherichia coll aroE 25.5 61.2 255 shikimate dehydrogenase	1183603 1611 sp:PNBA_BACSU Bacillus subtilis pnbA 35.7 64.7 501 para-nitrobenzyl esterase	1184257 651	1185155 876	1185218 525	1187039 1215 sp.TCR1_ECOLI Escherichia coli transposon 27.1 61.4 409 tetracycline resistance protein	1188389 1347 sp. TCMA_STRGA Streptomyces glaucescens tcmA 32.4 84.2 444 metabolite export pump of	
	<u>a</u>	┼	+-	 	-	 	1	 	ī		+_	+-	+-	-	1185155	1185218	1187039	1188389	
	SEQ Initial NO. (nt)	4743 1167110	4744 1168711		4746 1170610	4747 1170672	4748 1171206	4749 1172462	4750 1176271	4751 1180048	4752 1180837	4753 1181675		4755 1183607	4756 1184280	4757 1185742		4759 1187043	
	SEO SI		4 4464	-	1246 4	1247 4	1248 4	-	+	1251	1252	1253			1256	- -		1259	_

EP 1 108 790 A2

															_			\neg
	Function	5- methyltetrahydropteroyltriglularnate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mut T protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP pyrophosphohydrolase)		proline-specific permease
	Matched length (a.a.)	774		444						526	551	333	512	402		88 .		- 433
	Similarity (%)	72.2		79.5						63.5	58.4	93.0	0.98	55.0		65.6		85.0
	(%)	45.2		55.2						28.7	29.4	92.0	93.6	26.4		36.9		51.3
Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1855 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cyd8	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		sp:MUTT_PROVU Proteus vulgaris mutT		Salmonella typhimurium proY
	db Match	pir.S57636		gsp:Y29930						sp:CYDC_ECOLI	sp:cYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp:YEJH_ECOLI		sp:MUTT_PROVU		1404 SP:PROY_SALTY
	ORF (bp)	2235	456	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	1404
	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657		1208138	1208212
	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316		1207374	1209615
	SEO		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774		4776	4777
		1261	1262	1263	1264	1265	1266	1267	1268	1769	 u221	. 22.	.272	- 1273	1,274	1275	1276	1277

| | | | | |

 |
 | | |
 | | | | | _ |
 | | |
|-----------------------------|--|---|---|--
--

--
---|---|---
--|--|--|--|---|--
---|--|---|
| Function | DEAD box ATP-dependent RNA
helicase | bacterial regulatory protein, tetR
family | pentachlorophenol 4-
monooxygenase | maleylacetate reductase | catechol 1,2-dioxygenase

 |
 | hypothetical protein | transcriptional regulator |
 | hypothetical protein | phosphoesterase | hypothetical protein | | | esterase or lipase
 | | |
| Matched
length
(a.a.) | 643 | 247 | . 595 | 354 | 278

 |
 | 185 | 878 |
 | 203 | 395 | 915 | | | 220
 | | |
| Similarity
(%) | 74.3 | 47.4 | 47.7 | 72.0 | 59.4

 |
 | 58.4 | 55.4 |
 | 56.2 | 67.3 | 59.6 | | | 64.6
 | | |
| Identity
(%) | 48.1 | 24.7 | 24.5 | 40.4 | 30.6

 |
 | 31.9 | 24.9 |
 | 29.6 | 39.2 | 29.7 | | | 37.3
 | | |
| Homologous gene | Klebsiella pneumoniae CG43
DEAD box ATP-dependent RNA.
nelicase deaD | Mycobacterium leprae
81308_C2_181 | Sphingomonas flava pcpB | Pseudomonas sp. B13 clcE | Acinetobacter calcoaceticus
catA

 |
 | Mycobacterium tuberculosis
H37Rv Rv2972c | Saccharomyces cerevisiae
SNF2 |
 | Streptomyces coelicolor A3(2) | Mycobacterium tuberculosis
H37Rv Rv1277 | Mycobacterium tuberculosis
H37Rv Rv1278 | | | Petroleum-degrading bacterium
HD-1 hde
 | | |
| db Match | | | | SP.CLCE_PSESB | sp:CATA_ACICA

 |
 | pir.A70672 | sp:SNF2_YEAST |
 | gp:SCO007731_6 | pir.E70755 | sp:Y084_MYCTU | | | gp:AB029896_1
 | | - |
| ORF
(bp) | 2196 | 687 | 1590 | 1068 | 885

 | 471
 | 540 | 3102 | 1065
 | 858 | 1173 | 2628 | 306 | 318 | 774
 | 378 | 786 |
| Terminal
(nt) | 1212129 | 1212429 | 1214858 | 1215938 | 1216836

 | 1216904
 | 1217443 | 1222996 | 1221841
 | 1223843 | 1225059 | 1227693 | 1227282 | 1227340 | 1228636
 | 1229095 | 1229935 |
| Initial
(nt) | 1209934 | 1213115 | 1213269 | 1214871 | 1215952

 | 1217374
 | 1217982 | 1219895 | 1222905
 | 1222986 | 1223887 | 1225066 | 1227587 | 1227657 | 1227863
 | 1228718 | 4794 1229150 |
| SEO
NO. | | | 4780 | |

 | 4783
 | 4784 | 4785 | 4786
 | 4787 | 4788 | 4789 | 4790 | 4791 |
 | | 4794 |
| | | 1279 | 1280 | 1281 | 1287

 | 1283
 | 1284 | 1285 | 1286
 | 1287 | 1288 | ú8č. | 1290 | 1291 | 1292
 | 1293 | 1294 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (ht) (bp) (aa) | SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) (bp) Klebsiella pneumoniae CG43 (8.1 T4.3 643 helicase deaD | SEQ Initial NO. Terminal (nt) OFF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) (nt) (nt) (nt) (nt) (bp) Klebsiella pneumoniae CG43 (%) (%) (%) (%) (aa) 4778 1209934 1212129 2196 sp:DEAD_KLEPN DEAD box ATP-dependent RNA 48.1 74.3 643 A779 1212129 687 prf.23233638T Mycobacterium leprae 24.7 47.4 247 | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (8a) (aa) (a.a.) (nt) (bp) (bp) Match Homologous gene (%) (%) (aa) (a.a.) (nt) (bp) (bp) Mobie Match Homologous gene (%) (%) (aa) (a.a.) (aa) (aa) (a.a.) (aa) (aa) DEAD box ATP-dependent RNA 48.1 74.3 643 helicase helicase deaD 4779 121315 1212429 687 prf.23233638T Mycobacterium leprae (24.7 47.4 247 family 4780 1213269 1214858 1590 sp.PCPB_FLAS3 Sphingomonas flava pcpB 24.5 47.7 595 pentachlorophenol 4- | SEQ (a.a.) Initial (bt) Terminal (bt) OFF (bt) db Match Homologous gene (sa.a.) Identity (%) Similarity (%) Matched (%) Function NO. (nt) (nt) <td>SEO (nt) is all (nt) Terminal (nt) ORF (nt) db Match Homologous gene (94s) Identity (94s) Similarity (94s) Matched (94s) Function (14sa) (A.3.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) <t< td=""><td>SEO (nt) (nt)</td><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(a.a.) Similarity
(m) Similarity
(a.a.) Similarity
(a.a.) Function Function 47.76 120934 1212129 2196 sp.DEAD_KLEPN
DEAD box ATP-dependent RNA
helicase
helicase dead
helicase br/>helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
hipothetical protein
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
he</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Function NO. (n1) (n1) (n1) (pp) (pp) Match Homologous gene (%) (%</td><td> No (nt) (n</td><td> National Terminal ORF</td><td> Terminal Terminal</td><td> Namiar Color Col</td><td> No. Initial Terminal ORF 4b March Homologous gene (%) Initial d><td>SED Initial Terminal ORF dab Match Homologous gene (%) (</td><td> SEC Initial Terminal ORF Chap Abatch Homologous gene (Ye) Similariny Initial Initial Chap /td></t<></td> | SEO (nt) is all (nt) Terminal (nt) ORF (nt) db Match Homologous gene (94s) Identity (94s) Similarity (94s) Matched (94s) Function (14sa) (A.3.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) <t< td=""><td>SEO (nt) (nt)</td><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(a.a.) Similarity
(m) Similarity
(a.a.) Similarity
(a.a.) Function Function 47.76 120934 1212129 2196 sp.DEAD_KLEPN
DEAD box ATP-dependent RNA
helicase
helicase dead
helicase br/>helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
hipothetical protein
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
he</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Function NO. (n1) (n1) (n1) (pp) (pp) Match Homologous gene (%) (%</td><td> No (nt) (n</td><td> National Terminal ORF</td><td> Terminal Terminal</td><td> Namiar Color Col</td><td> No. Initial Terminal ORF 4b March Homologous gene (%) Initial d><td>SED Initial Terminal ORF dab Match Homologous gene (%) (</td><td> SEC Initial Terminal ORF Chap Abatch Homologous gene (Ye) Similariny Initial Initial Chap /td></t<> | SEO (nt) (nt) | SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(a.a.) Similarity
(m) Similarity
(a.a.) Similarity
(a.a.) Function Function 47.76 120934 1212129 2196 sp.DEAD_KLEPN
DEAD box ATP-dependent RNA
helicase
helicase dead
helicase br>helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
hipothetical protein
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
helicase
he | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Function NO. (n1) (n1) (n1) (pp) (pp) Match Homologous gene (%) (% | No (nt) (n | National Terminal ORF | Terminal Terminal | Namiar Color Col | No. Initial Terminal ORF 4b March Homologous gene (%) Initial SED Initial Terminal ORF dab Match Homologous gene (%) (| SEC Initial Terminal ORF Chap Abatch Homologous gene (Ye) Similariny Initial Initial Chap
5	
10	
15	
20	
25	
30	
35	
40	1
45	
50	•

	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransterase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase garrina chain	nitrate reductase della chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	81	605	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	69.7	9.99			67.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	9.99	36.0	36.0	46.9	32.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	sp:ATOE_ECOLI	SP. PECS_ERWCH			sp:FNR_ECOLI	Sp:MERP_SHEPU	sp:ATZN_ECOLI	sp.RELA_VIBSS	gsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU	SP:NARH_BACSU	PIR:D72603	PIR:B72603	sp:NARG_BACSU	sp:NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	128	108	1260	069	777	732	1593	594	273	3744	1350
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	1247199	1250444	1251817	↓	
	Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125		1242275	1243621	1245201	1245532	1246498		-				1253906
	SEO NO.		4796		4798		4800	4801	4802	4803	4804	4805	4806	4807	4808	4809	4810	4811	4812	4813		
	SEO		1296		- -		1300	1301	ćuć.	1303	30,00	1305	1306	1307	1308	1309	1310		3	33	1314	1315

											•			_		_	_		—
	Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biosynthisisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acidCoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
100	Malcheo length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	- 322
	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		96.0	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
Table 1 (continued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichla coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
	db Match	sp.CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp.YOD2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOLI	sp.CNX2_ARATH	en.AI KK PSEOL	Sp. RHO MICI U	Spirit China			sp:RF1_ECOLI	SP:HEMK_ECOLI		sp:YD01_MYCTU	6 sp:RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	22 PB CC	2022	500	1023	1074	837	774	648	= =
	Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	4.06.28BG	4267427	1201421	1200201	1265427		4-	1268267	1270043	1271192
	Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201					1265655					1269396	1270047
	SEO	(a.a.) 4816	4817		4819	4820	4821	4822	4823		4824	4825	4826	4827	4829				4833
		31F	317			320	321	322	- 1323		1324	1325	1326	75	220		1331	1332	1333

														$\overline{}$			$\overline{}$
	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-Iransporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical proteln	putative ATP/GTP-binding protein	hypothelical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)	1	80	245	71	151	274	516	320	483	122	132	230	95	134	101	301
	Similarity (%)	99.0 56.7 85.9		6.99	67.2	88.4	76.6	100.0	73.0	67.4	85.7	26.0	68.7	79.2	71.4		
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
Table 1 (continued)	Hamologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum ASO19 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coeticolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	SP. ATPB ECOLI	sp:ATPL_STRLI	sp:ATPF_STRLI	sp:ATPO_STRLI	sp:ATPA_STRLI	sp:ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	488	249	810	240	564	813	1674	975	1449	372	471	989	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	╀-	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967			1282194
	SEQ NO.	4834		4836		4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	SEO S	1334			1337	1338	1339	1340		1342	1343	1344	1345	1346	1347	1348	1349

													r		$\overline{}$	- T	_	
	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-atpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
	Matched length (a.a.)	366	240	228	311	710	467		211	260	367		244	335		375		- 397
	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2	 i	29.5
Table 1 (continued)	Homologous gene	Escherichla coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fapC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloli fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
	db Match	gp:ECO237695_3	sp:SSUC_ECOLI	sp:SSUB_ECOLI	sp:SSUA_ECOLI	sp:GLGB_ECOLI	sp:AMY3_DICTH		sp:FEPC_ECOLI	pir:C70860	pir.H70859		sp:FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZOVI		sp:Y4ME_RHISN
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1058	612	786	951	615	1128	312	1146
	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
	toitiat (nt)	1283324	1284517	1285302	1286043	1289473	1291007	1291026		1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	1300145
	SEO NO.	4850	1851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	
	SEO NO.		1351	1352	1351		1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

	Function	transcriptional regulator	acetyltransferase				IRNA (5-methylaminometnyr-z- thioundylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical prolein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-IRNA(Gln) amidofransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothelical membrane protein	pyrophosphate-fructose 6- phosphate 1-phosphotransrefase
	Matched length (a.a.)						361		332	200		677	220	97	484	263	96	358
Table 1 (continued)	Similarity (%)		55.3				6.08		66.0	65.B		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	Identity (%)	34.8					61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
	Homologous gene	Rhizoblum sp. NGR234 plasmid pNGR234a Y4mF Escherichia coli K12 MG1655					Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	SP:Y4MF_RHISN	Sp.YHBS_ECOLI				pir.C70858		pir:B70857	sp:TCMA_STRGA		sp:DNLJ_RHOMR	pir.H70856	sp:GATC_STRCO	sp:GATA_MYCTU	sp:VIUB_VIBVU	gp:SCE6_24	71 Sp.PFP_AMYME
	ORF. (bp)			942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	1-2-1
	Terminal (nt)	(nt) 1300145		1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462		1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	1300552	1301929	1303123	1303299		1304536	1304932	1307384	9010001		1311097	1311320	1311625	1313270	1314775	1315013
	SEQ		4868	4869		4871		4873	4874	4875	27.04	4877	4878	4879	4880	4881	4882	4883
	SEO S	<u> </u>	1368	1369				1373		1375		1378	1378	1379	1380	1381	1387	1383

	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iran-siderophare binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydralase	hypothetical protein
	Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
	Similarity (%)		31.4	76.2	76.9	7.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coll K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichla coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34.13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 rat8	Methanococcus jannaschii MJ1501 (4re	Escherichia coli K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
	db Match		Sp:CCPA_BACME	sp:RBSA_ECOLI	sp:RBSC_ECOLI	sp:RBSB_ECOU	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir.A70672	pir.H70855		gp:AJ012293_1	pir.G70855
4	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
	Terminat (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nl)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
	SEQ NO.	4884	4885	4886	4887	4888	4889	1890	1891	4892	4893	4894	4895	4896	1897	4898	4899	4900
	SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1,799	004.

_					- 1				-т				\neg	_		T	ī	Т	Т	;	\neg
	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	maltose/maltodextrin ti ansport ATP- binding protein	nitrate transporter protein	,		actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
	Matched length (a.a.)	62	99		167	87	324			142	304			642		530	105			620	
	Identity Similarity (%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		93.8	29.0			32.9	
Table 1 (continued)	Homalogous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enlerobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA		•	Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus Jannaschii	-	Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
	db Match	sp:YILV_CORGL	GP:SSU18930_26 3		sp NRTD_SYNP7	sp:MALK_ENTAE	sp:NRTA_ANASP			SP.DIM6_STRCO	sp.czcD_ALCEU			sp:Y686_METJA		gsp. Y22646	SP:YEN1_SCHPO			pir.T03476	
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	9	1815	1743	1590	327	867	1062	1866	402
	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344484	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935		1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	4920 1356452
	SEO NO.	4901	4902	4903	4904	4905	4906	4907	4908	4909	4910	4911	4912	4913	4914	4915	4916	4917		4919	
	SEO.	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1415	1417	1418	1419	1420

								-			- -									_
5			catabolism ase (includes: ene-1,7-dioate grase); 5- nex-3-ene-1,7- opet	3.0.	9	lase	100							!						rotein
10	Function		homoprotocatechiuate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2, 4-diene-1, 7-dioate isomerase(hhdd isomerase): 5- carboxymethyt-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-O: methyltransferase	isochorismate synthase	glutamyl-tRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
15	Matched length (a.a.)		228	192	371	485	29													298
20	Similarity (%)		59.2	55.7	70.4	69.7	90.0													81.0
	Identity (%)		33.3	23.4	38.0	37.3	77.0								-		-		_	65.1
S Table 1 (continued)	Homologous gene		oli C hpcE	oji K12	is dhbC	is gftX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
32 Table	Homol		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis gftX	Streptomyces				_	-								Bacillus subt
40	db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI	1128 Sp.DHBC BACSU	1488 SP.SYE BACSU	gp:SCJ33_10													sp:THIC_BACSU
,	ORF (bp)	654	804	618	1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
45	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50	Initial (nt)	1357557	1358259	1359052	1361295			1363657	1364253	1364915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	4939 1371637
	SEO NO.	1921	4922	4923	4924	4925	4926	4927	4928	4929	4930	1931	4932	4933	4934	4935	4936	4937	4938	
55	SEQ NO.	1421			1024	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

_									_	-	-					_	1					
	Function			lipoprotein		glycogen phosphorylase		Line the distance of the state of the	nypometical protein	hypothetical memorane protein		guanosine 3',5'-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-isopropyimalate dehydratase large subunit	3-isopropylmalate dehydralase small	1110000	17 B. dibydro.	mutato muta protein (1, 25 m.y s. 8. e. e. e. e. e. e. e. e. e. e. e. e. e.		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase	
	Matched length (a.a.)			44	1	797		6	\top	256		178	257	473	195			294		331	374	
	Similarity (%)			74.0		74.0		3	52.8	64.8		60.1	60.7	87.5	89.2			71.4		72.2	67.4	
	Identity (%)			61.0		44.2			25.4	25.4		29.8	28.1	68.1	67.7			45.9		45.0	40.4	
Table 1 (continued)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus Jannaschil Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus	Salmonella tvohimurlum			Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddlA	
	db Match			GSP:Y37857		sp:PHS1_RAT		\neg	sp:YRKH_BACSU	Sp:Y441_METJA		SP:SPOT_ECOU	Sprict R ECOLI	sp:LEU2_ACTTI	Ţ	ap. ccooooc.		gp:MLCB637_35		sp:GPDA_BACSU	080 sp:DDLA_ECOLI	
	ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	$\overline{}$	Ç	- $ -$	318	954	156	966	1080	
	Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1370555	1381882	207.0007	1382492	1382502	1382845	1384085		1386232	
	Initial (nt)	1372326	!	1373798	1374556	1375776	1375987	1376088	1377555	1378415			4300060		_ 1 _	1381902	1382819	1383798	1281010		1385153	
	SEO NO.			_	4943		4945	4946	4947				, ,	4951		4953	4954	4955	4066		4958	_
	NO.				443		445	446	447	-:		1450	1	1451	3	1453	1454	•455	974	1457	1458	1

₹	3
,	5
-	ב כ
1	

	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	Ilpopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutarnine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
	Matched length (a.a.)		335 thi	245 Ura	568 hy	693 AT	108 an	67 bic	167 m	155 llp		85 be	252 AE	220 no	234 gh		322 h)		223 pt
	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
	identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		07.0	56.4	32.7	27.4		28.6		26.9
Table 1 (continued)	Homologous gene		Escherichia coli K12 thil.	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Nelsseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus ginQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		Sp:THIL_ECOLI	SP.UNG_MOUSE	sp:Y369_MYCGE	Sp. RECG_ECOLI	GSP:Y75303	sp:BCCP_PROFR	Sp:YHHF_ECOLI	sp:KDTB_ECOU		GSP:Y75358	sp:GLNQ_BACST	sp:NOCM_AGRT5	sp:GLNH_ECOLI		pir:H69160		sp:VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	Initial (nt)	1387270	1387332	1388312	1389208	1390796		1392939	1393154	1393742	1394854		1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEQ NO NO	4959	<u> </u>			1963		4965	1966		4968	1969	4970	1971	4972	4973	4974	4975	4976
	SEO NO.					1463		1465	1466	1467	1468	1460	1470	1471	1472	1473	1474	1475	1476

Table 1 (continued)	(bp) db Match Homologous gene (%) (%) (2a.)	76 744	03 432	68 507	91 864	115 219	192 pir.S60890 Corynebacterium glutamicum 88.5 96.2 26 insertion etement (IS3 related)	720 855	111 PIR:S60890 Corynebacterium glutamicum 89.0 97.0 37 hypothetical protein	67 369		03 321	28 375	964 948	19 306	37 564	7.2 2.2.2	726 291	159 2715 sp.DPO1_MYCTU Mycobacterium tuberculosis 56.3 80.8 896 DNA polymerase I	1422 sp.CMCT_NOCLA Streptomyces ladamdurans 33.8 67.8 456 cephamycin export protein	170 909 gp: SCJ9A_15 Streptomyces coelicolor A3(2) 41.3 65.4 283 DNA-binding protein	48 873 sp:MORA_PSEPU Pseudomonas putida morA 48.5 78.1 284 morphine-8-dehydrogenase	. 159
	_			•							•								sp:DPO1_MYCTU	sp:CMCT_NOCLA			
r:	ORF (bp)	744	432	205	864	219	192	855	111	369	315	321	375	948	306	564	222	291		1422	606	873	159
	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
	Initial (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	4998 1420036
	SEQ NO. (a.a.)	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	4995	4996	4997	4998
	SEO NO. (DNA)	1477	1478	1479	1480	1481		1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

									,										T-	$\neg \tau$	\top		- ;	_		- !		
	Function	hypothetical protein	ans sinceparal profeio S1	303 ribosoriiai process		hypothetical protein					increase, uniding preferring nucleoside	hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	crintic asc operon repressor,	ranscription regulator		excinuclease ABC subunit B		hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein		hypothetical protein	hydrolase	
-	Matched length (a.a.)	183	Ť	451		195						310	517	293		337		671		152	121	279		839	3	150	214	
}	Similarity 1	583		71.4		93.9						81.0	53.8	87.8	2	65.6		83.3	3	59.2	80.2	77.1		17.2	¥!;	0.89	58.4	1
	Identity (%)	5	;	39.5		80.5						61.9	23.6	3,50	33.3	30.0		4 73	r.	33.6	38.8	53.8		156	77.7	32.7	30.4	
Table 1 (continued)	Homologous gene	Strentomyces coelicolor	SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum	ATCC 13869 yacE					Crithidia fasciculata iunH	Allegion and account of the state of the sta	Staphylococous aciecos	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae	plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yttH	Facherichia coll K12 vtlG			Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL	
	db Match	1	Sp:YAFE_ECOLI	SO RS1 ECOLI		Ť	Sp:YACE_BRELA				İ	SD:IUNH CRIFA			Sp. RBSK_ECOLI	sp. ASCG_ECOLI			sp:UVRB_STRPN	sp. Y531_METJA	SEVTEH ECOLI	SPLINITE COST	Sp. 11FG_COCE		pir:H70040	gp:SC9H11_26	Sp:YCBL_ECOLI	
	ORF	1	654 s	1458 S			009	1098	582	246	957	+		1449	921	1038	90,	8	2097	. 44	18		2	684	2349	912	89	_
	ē	(m)	1420071	147755A	_		1425878	1427354	1427376	1427804	1429246	4478774	14505	1429194	1430659	1431575		1433547	1436201	1436775	0000	<u>:</u>		1440028	1438212	ᆜ	1441793	
		(2)	1420724 1	_!_	_		1425279	1426257	₩		-			1430642	1431579	1432612		1432750	1434105	1436335			1437356	5016 1439343	1440560		5010 1442392	111111
	SEO	(a.a.)	4999			5001	5002	5003	<u> </u>		900		200	5008				5011	5012	5013	3	5014	5015					
	1	DIMA)			95		505	19					1507	1508	<u></u> -		<u>.</u>	1511	1512	15.12	: :	1514	1515	1516	16.17	15.18		200

10	Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)			translation initiation factor IF-3	50S rlbosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate fransport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2'-0-)- methlytransferase	phenylalanyl-IRNA synthetase alpha chain
15	Matched length (a.a.)	952	100	142			179	09	117			292	270	436	393	74	244	153	
20	Similarity (%)	9.08	67.0	47.0			78.2	76.7	92.7			71.6	70.4	57.6	71.3	26.0	50.0	71.2	
	Identity (%)	2.95	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
55 - Table 1 (continued)	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus ,			Rhodobacter sphaeroides InfC	Mycopiasma fermentans	Pseudomonas syringae pv. syringae	•		Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugp8	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
40	db Match	So UVRA ECOLI	1	PIR:JQ0406			Sp.IF3_RHOSH R	u	Ι			sp:UGPA_ECOLI	sp:UGPE_ECOLI	Sp.UGPB_ECOLI	sp:UGPC_ECOLI	PIR:E72756	sp.GLPQ_BACSU	SP.TRMH_ECOLI	1020 sp. SYFA_BACSU
1	ORF (bp)	2847		450	717	2124	$\overline{}$	+	+	822	567	903	834	1314	1224	249	717	594	+
45	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
50	Initial (nt)	16		1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350		1456355	5037 1457047
	SEO		5021	5022						5028	50.5	5030	5031	5032	5033	5034		5036	
55	<u> </u>		1521		$\overline{}$	-:-				1528	 -	1530	1531	1533	.533	1534	1535	1536	1537

	Function	phenylalanyl-tRNA synthetase beta	Chain		esterase	macrolide 3-O-acyltransferase	abytableimes 3 charters	N-acetyglutamate-5-sermandinyed dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		asest atectorisacetrisas	argininosuccinate year			hynothetical protein	"The state of the	(RNA ligase)	hypothetical protein		hypothetical protein
	Matched length (a.a.)	343		18	25	423		347	388	391	401			8/8			9	8	417	149		- 45
	Similarity (%)	717			55.1	56.3		1.66	7.66	99.2	99.5			0.06			Ş	0.2/	79.6	64.4		75.0
	Identity (%)	A CA	2		26.5	30.0		98.3	99.5	99.0	99.5	_		83.3	1	1	- 3	98.0	48.4	26.9		71.0
Table 1 (continued)	Homologous gene	Fscherichia coli K12 MG1855	syſB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Minima de la mentra de la constanta de la cons	Corynebactenum giutamicum ASO19 argH				Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia mundarum Nigg TC0129
	db Match	Ť	sp:SYFB_ECOU		SDESTA STRSC	STRMY		qp:AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp:ASSY_CORGL			gp:AF048764_1				Sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF		2484 5	12.	12	1 8	402			1173	1203	1	1208	1431	1143	1575	612	177	1260	465	88	14
	la la	(III)	1460616	1458196	1452128	+	463034	_		1468548	1471413		1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1 '
	_	()	1458133	1 ASBORR	-		-	5042 1403333	1485210	1467376	1470211		1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	
	SEO	(9.9.)	5038	65		5041		5042	2 2	5045	5046		5047	5048	5049	5050	5051	5052		5054	505	
	SEO S	=	1538 5			1540			24.3				1547	1548	1549	1550	1551	1552	1553	1554	400	1556

	Function	hypothetical protein	translation initiation factor IF-2		hypothetical protein		hypothetical protein		hypothetical protein	DNA repair protein	hypothetical protein		hypothetical protein	CTP synthase (UTP-annormaligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding	protein	chromosome partitioning protein or	A rease involved in control partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurfransferase		hypothetical protein	ribosomal large subunit pseudouridine synthase B
	Matched length (a.a.)	84	Τ	T	311		260		225	574	394	1	313	549	157	90%		551		258	251		270		17.2	229
	Similarity (%)	0.99		67.0	60.1		808	03.0	31.6	63.4	73.1		68.1	7.97	71.3	1		29.7		73.6	64.5		67.0	+	65.7	72.5
	Identity (%)	610	;	-36.3	29.6		300	38.5	31.6	31.4	41.9		30.4	55.0	76.3		PS -	30.5		44.6	28.3		19	33.0	33.1	45.9
Table 1 (continued)	Homologous gene		Chlamydia pneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgD			Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis	חאלא אין נפון אין אין ניין	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG		Bacilius subtilis yang	Staphylococcus aureus xerD	Streptomyces fradiae tlrC		Caulobacter crescentus parA	Oronillise embtilis vonG	ם שכוונתם פתחמוום לאתכ		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
	db Match		GSP:Y35814	So IF2 BORBU	1 7	Ť	7	sp:Yaxc_BACSU	sp:YFJB_HAEIN	en RECN ECOLI	_	_	pir.A70503	on PYRG ECOLI		sp:YOKG_BACSU	gp:AF093548_1	sp:TLRC_STRFR		gp.CCU87804_4	-+	sp:YPUG_BACSU		gp:AF109156_1	_	+
	ORF	<u>a</u>	273	7.			162	819	873	4770		2	963	1862		657	912	1530	$\neg \tau$	783		-+	261	1 867	543	<u> </u>
	-F	(m)	1483724	1486027	1400021	1487025	1487193	1488056	1489018	100001	1490991	1456	1493109	1406174	1480111	1495861	1496772	1496795		1499645	_+		1500911	1502578		1
	<u> </u>	<u>-</u>	1483996	+-	_+	1486042	1487032	+		-+-		5064 1490944	1492147		14935	1495205	1495861	1498324	12000	5070 1498863		1499931	1501471			
	SEO	. (e)	٠,	_1_		5059 1	5060 1	-1	290	+	5063	5064	5065		2066	5067			2002	5070		5071	5072	5073	200	
	SEO S			_	_	1559 5	1560 5					1564			ກີອີກີ.	1567	1568		: : : :	U25.		1571	1572	673	5/5/	15/4

	Function	cytidylate kinase	CTP hinding protein				methyltransferase	ABC transporter	in the second se	Abo l'alispare	diatory good	hypothetical meriorarie protein		Na+/H+ antiporter				hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoale hydrolase	preprotein translocase SecA subunit	or and transfer of the protein	Signal Hallsdoor Process	hypothetical protein	hypothetical protein
	Matched length (a.a.)	220	426	25			232	499	3	202		257		499	-			130	210	805	1	752	234	133
	Similarity (%)	73.8	1	0.4.0	İ		67.2	1.09		56.3		73.2		61.5				57.7	63.8	81.7		93.2	74.4	63.2
	dentity (%)	38.6		42.8			36.2	29.7		31.2		39.7		25.7				36.9	25.2	26.3	+	75.8	41.9	30.8
Table 1 (continued)	Homologous gene	31-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M828	Let'A	Corynebactenum striatum mozortet8		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372	nhaG			Escherichia coli K12 o249#9	Archaeoglobus fulgidus AF0675		Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
	db Match	\neg	sp:KCY_BACSU_E	Sp. YPHC_BACSU E	<u> </u>		sp:YX42_MYCTU	ort 2513302B		prf.2513302A		Sp. YGIE ECOLI			gp:AB029555_1			sp:YCHJ_ECOLI			sp:SECA_BACSU	gp:AF173844_2_	sp:Y0DF_MYCTU	Sp:YODE_MYCTU
	ORF (hp)	+	9	1557	999	498	813	1554	,	1767	825				1548	186	429	375	1487		2289	429	756	633
	la la	(III)	1504945	1	1506662	1507405	1507917	4540366	1310300	1512132	1510843	1512977	1514603	2021	1512980	1514974	1515815	_1		8876161	1519458	1520029	1520945	1521589
		 Ē	1504256			ᆚ		_	1508813	1510366	1611667	1311007	2017101	1314303	1514527	1515159	1515396	5089 1515782		1516962	1517170			
	SEO	(a.a.)	÷					!	5081	5082	•		•	5085	5086	5087	-+-	2000	200	2090	5091	5092	5093	
	SEO S	=	_	0/0/2		0 1 6			1581	1582			1584	1585	yby.	1697		000	6	1590	1501	1,02,	1593	1594

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Table 1 (continued)	db Match	1 1522343 573 sp:Y0DE_MYCTU H37Rv Rv1828 71.4 84.3	1 1522432 510	0 1523052 1449	1525973	1524568 930	1525473 1062 sp.YHDP_BACSU Bacillus subtilis yndr	1526534 1380 sp.YHDT_BACSU Bacillus subtilis yhdT 31.4	1528186 219	1527987 1344 gp.TTHERAGEN 1 Thermus (nermopnisus nerm	1530220 735 sp. YD48_MYCTU H37Rv Rv1348	1530341 1478 0SD:W27613	1532394 462	4522008 A75	1532781 74	1534521 741	LICOS HENNES CON OCCUPANT	1534529 8/3 sp. ITIM, ECOLI	1536227 804 \$0; PHNE ECOLI	1537030 804 Sp. PHNC_ECOLI	452806B 210	1330300
Initial Te (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	-		i 	+	-		-		+	-			+	+	╅╴	_	+-	+	_			46200AB	1330300
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>					└				!													-+
SEQ NO. NO. NO. S5095 S5096 S5096 S5100 S5	<u> </u>			1	<u> </u>	5098 15253	5099 15254	5100 1526			5103 1529	5104 1529	15										

	Function		phosphomethylpyrimidine kinase	hydowyalbyllbiazole kinase	nydoxyeniymiazolo kiido	cyclopropane-tatty-acyt-prosprioripio	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosyltransferase	hypothetical protein	arsenic oxyanion-translocation pump membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase
	Matched length (a.a.)		262		248	451	468	156	506	361		222	469	26					110	217	527		- 392
	Similarity (%)		70.2	,	c:)	55.0	66.9	59.0	68.5	54.6		83.8	83.6	50.0					87.3	71.0	55.8		55.8
	Identity (%)		47.3	3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0					71.8	39.2	25.1		23.7
Table 1 (continued)	Homologous gene		Salmonella typhimurlum thiD	Salmonella tvohimurium I. T.2	thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701 moo8	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp. R9 ORFA	Pseudomonas sp. R9 ORFG					Mycobacterlum tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1
	db Match		SALTY SALTY	1	sp:THIM_SALTY	pir.H70830	prf.2223339B	ort 2120352B	la			gp:SCI7_33	ap.PSTRTETC1 6	GP PSTRTETC1_7					pir:A70945	prf:2317468A	SP:LNT_ECOLI		224 gp:AF188894_1
	ORF (bp)	202	+-	,	804	1314	1386	474	. 0			8	1455	428	615	207	189	750	396	810	1635	147	1-
	Terminal (nt)	1528083	_	1539820	1542119	1546289	1548307	1547087	1540340	1550398	1550051	1552237	1553072	1553297	1554070	1555067	1554891	1555086	1556771	1557014	1557859	ــــــــــــــــــــــــــــــــــــــ	. J —
	Initial (nt)	+		1541403	1542922	1544976	5120 1547692	0640440	1340440	1549403		1551545	4553648	!			1555079	1555835		1557823	1559493		1561660
	SEQ NO.			5117	5118	5119	5120	13	!_	2716		5125	1	5120	5128	5129	5130	5131	5132	5133	5134		
				1,1	1618	1619	1620	_		1622	370	1524	18	162h	1628	1629	1630	1631	1632	1633	1674	1635	1636

5136 1562802 1562525 1278 sp:COBL_PSEDE Pseudomonas denitrificans 5138 1563802 1562525 1278 sp:COBL_PSEDE Pseudomonas denitrificans 5139 1563872 1564237 366 Sp:COBL_PSEDE Pseudomonas denitrificans 5140 1564237 1564482 246 April 1565302 146 5141 1565302 156486 1567106 639 Sp:YY12_MYCTU Mycobacterium tuberculosis 5142 1566468 1567107 2787 sp:MTR4_YEAST Sp:Charomyces cerevisiae 5144 1569903 1567117 2787 sp:MTR4_YEAST YJL050W dob1 5145 1570933 1569932 1002 sp:TATC_ECOLI Escherichia coli K12 tatC 5146 1571382 1571508 981 sp:YY34_MYCLE Mycobacterium tuberculosis 5148 1572486 1571508 981 sp:YY36_MYCLE Mycobacterium tuberculosis 5148 1573463 1572492 972 sp:YY38_MYCLE Mycobacterium leprae
1570933 1569932 1002 sp.:TATC_ECOLI 1571382 1571068 315 sp.:YY34_MYCLE 1572486 1571508 981 sp:YY35_MYCTU
1564237 1564482 24 1565302 1564565 77 1566468 1567106 6 1569903 1567117 27 1570933 1569932 10 1571382 1571068 3 157346 1571508 9
1563802 1 1563872 1 1564237 1 1568438 1 1566468 1 1569903 1 1570933 1 1571382 1 1573463
1563802 1563872 1564237 1566438 1566468 1566468 1570933 1571382 7 1572486
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

-											T		 -				-	\neg
	Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinoton resistance protein	aspartate ammonia-lyase	ATP phosphoribosyltransferase	beta-phosphoglucomutase	5-methylletrahydrofolate- homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenale reductase		cysteinyl-tRNA synthetase
- - - -	Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	93.8	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	93.8	86.8	30.8	31.6		22.4	33.0	32.6	47.2		35.9
Table 1 (continued)	Homologous gene	Rhodococcus enythropolis arc	Mycobacterium leprae pimT	Ното sapiens	Mycobacterium tuberculosis H37Rv RV2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Bravibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmld pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
	db Match	prf.24223820	pir:S72844	gp:AF005050_1	pir.B70513	sp:VAPI_BACNO	prt:2513299A	sp:ASPA_CORGL	gp:AF050166_1	plr:H72277	sp:METH_ECOLI		sp:AHPF_XANCH	sp:ACR3_YEAST	sp.ARSC_STAAU	pir.G70964		12 sp.SYC_ECOU
	ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
	Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
	Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481		1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	1596221	1597460
	SEO NO.	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164	5165	5166	5167	5168	5169	5170
	SEO NO DNA		1655	1556		1658	1659	1660	: 55.	- 1995	1463	1664	1665	აგგი.	1667	1668	1669	1670

																_			
	Function	bacitracin resistance profein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Nelsserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha subunit
	Matched length (a.a.)	255	326	359	334			360		152	198		287		535		28	338	741
	Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		58.4	72.3	87.5
	dentity (%)	37.3	33.4	27.0	44.0			34.7		44:1	26.0		43.6		36.8		32:4	43.1	72.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tubercutosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
	db Match	SP.BACA_ECOLI	prf.2214302F	pir.F70577	SP. PYRD_AGRAE			gp:PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		prf:2513302B		pir.JU0052	sp. ARGK_ECOLI	2211 sp.MUTB_STRCM
İ	ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	2211
	Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1605281	1606689	160824B	1605861	1609335	1607661	1609842	1610844		1612234
	Initial (nt)	1598623	↓	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607646	1607657	1609087	1609247	1610192			161444
•	SEQ.	+=		5173	5174		•		5178		5180	100	5182	5183		5185	5.18 5.18 6.18	5187	5188
		1671	$\dot{-}$	1673	1674		<u> </u>	<u> </u>	1678			į	1582	1687	1684	1685	2 8	1687	1688

	Identity Similarity Hength (%) (%) (a.a.)	SB 7 610	;	39.7 70.1 224 hypothetical membrane protein		64.1 87.0 370 hypothetical membrane protein	44.7 78.7 141 hypothetical membrane protein	51.0 72.8 261 hypothetical protein		1 36.8 65.7 364 ferrochelatase	25.5 56.5 611 invasin		69.9 85.9 959 aconitate hydratase	54.8 81.6 174 transcriptional regulator	21.3 51.9 235 GMP synthetase	32.6 62.0 221 hypothetical protein	37.2 80.2 86 hypothetical protein		61.2 86.1 446 hypothetical protein
Table 1 (confinued)	Terminal ORF db Match Homologous gene	:	1614451 1848 sp:MUTA_STRCM A3823.5 muta	1617300 723 sp.YS13_MYCTU H37Rv Rv1491c	1617994 597	+	1619672 435 pir.B70711 Mycobacterium tuberculosis	1620167 843 gp:SCC77_24 Srccptomyces coelicolor A3(2)	1621838 783	1621841 1110 sp. HEMZ_PROFR subsp. Shermanii hemH	4800 cn.PS4 FNTFC	408	_	1629861 564 pir.E70873 Mycobacterium tuberculosis	1630668 756 pir:F64496 MJ1575 guaA	1630667 663 gp:SCD82_4 SCD82.04c	1631926 267 pir.E64494 MJ1558	1631353 393	+-
	SEO Initial Terr	$\frac{1}{1}$	5189 1616298 161	5190 1616578 161	1617208		1620106	5194 1621009 162	5105 1621056 16	1622950	0000	1624820	5199 1626279	5200 1629298	5201 1629913	5202 1631329	5203 1631660	1631745	5204 1631933
	<u> </u>	<u> </u>	689	069		193	693	1694	100	1696		1697	1698	1700	1701	1702	1703		70%

	Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
	Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88		107	149
	Similarity (%)	60.0	69.0	73.2		58.3			Ì		73.8	60.4	64.4		72.4	100.0	72.0	43.0		70.1	85.2
	Identity (%)	54.0	59.0	42.8		35.8					43.0	34.4	32.8		51.9	9.66	64.0	32.0		32.7	63.8
Table 1 (continued)	Hamologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sll1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yijK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
	db Match	GSP:Y38838	GSP: Y38838	sp:ATA1_SYNY3		gp:SC3D11_2					рт.2408488Н	prf.2510491A	sp:YJJK_ECOLI		SP:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir:B75015	pir.S72754
	ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	261	585	423	447
	Terminal (nt)	1632109	1632682	1636241	1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645801	1647133	1647212	1647651
	Initial (nt)	1632588	1633137	1633566	1634563	1636732	1637081	1639132	1639365	1639656	1639781	1640546	1642674	1644218	1645499	1645661	1645821	1845861	1646549	:647634	1648097
	SEQ NO.	5206			5209	5210	5211	5212	5213	5214	5215	5216	5217	5218	5219	5220	5221	5222	5223	5224	5225
	SEO NO (DNA)	1706		 	1709	1710	171				1715	1716		1718	1719	1720	1721	1722	1723	1724	1725

Secondary Control Co							Table 1 (conlinued)				
648548 1648709 162 PIR.C72506 Aeropyrum pernix K1 APE2025 48.0 57.0 52 648348 1648100 1263 pir.S72781 Mycobacterium leprae nilS 64.7 84.4 41.1 648362 1648100 1263 pir.S72781 Streptomyces coelicolor A3(2) 70.2 89.3 252 650122 1650249 1176 pir.A70872 Mycobacterium luberculosis 55.2 83.0 377 6522675 1651433 1443 sp.YO74_SYNY3 Synchocystis sp. PCC6803 41.0 73.0 493 1652676 1652894 693 gp.SCC22_8 Streptomyces coelicolor A3(2) 46.1 71.4 217 1654043 1652894 693 gp.SCC22_8 Streptomyces coelicolor A3(2) 46.1 71.4 217 1654041 1656700 1020 pir.S72789 Mycobacterium luberculosis 41.0 74.8 266 1655671 165816 804 pir.S72786 Mycobacterium luberculosis 43.0 74.8 291	10, —	S G	Initial (nt)		ORF (bp)	db Match					Function
668/3548 1768/103 172 Mycobacterium leprae nilS 64.7 64.4 411 668/352 1648/100 1263 pir.S72781 Mycobacterium leprae nilS 65.7 89.3 252 650/122 1649/367 756 gp.SCC22_4 Streptomyces coelicolor A3(2) 70.2 89.3 252 651424 1650/49 1176 pir.A70872 H37Rv Rv1462 41.0 73.0 493 6528/7 1651/433 1443 sp.Y074_SYNY3 Synechocystis sp. PCC6803 41.0 73.0 493 1652/675 1651/433 1443 sp.Y074_SYNY3 Synechocystis sp. PCC6803 41.0 73.0 493 1652/676 1651/433 1443 sp.Y074_SYNY3 Synechocystis sp. PCC6803 41.0 71.4 217 1653/68 1651/403 1620 pir.F70871 Mycobacterium leprae 50.2 77.3 317 1655/677 1656/70 1020 pir.S72783 Mycobacterium leprae 41.0 74.6 291 1655/507 <td><u>ت</u> ا</td> <td>ē</td> <td></td> <td>0070707</td> <td></td> <td></td> <td>Aeropyrum pernix K1 APE2025</td> <td>48.0</td> <td>57.0</td> <td></td> <td>hypothetical protein</td>	<u>ت</u> ا	ē		0070707			Aeropyrum pernix K1 APE2025	48.0	57.0		hypothetical protein
650122 1649367 756 gp.SCC22_4 Sireptomyces coelicolor A3(2) 70.2 89.3 252 650124 1650249 1176 pir.A70872 Mycobacterium fuberculosis 55.2 83.0 377 652875 1651433 1413 pir.A70872 Mycobacterium fuberculosis 41.0 73.0 493 1652876 1652894 693 gp.SCC22_8 Synechocystis sp. PCC6803 41.0 73.0 493 1653681 1655671 1629 pir.F70871 Mycobacterium leprae 50.2 77.3 317 1655671 1659 pir.C70871 Mycobacterium leprae 50.2 77.3 317 1655671 1659 pir.C70871 Mycobacterium leprae 41.0 74.8 266 1655671 1659 pir.C70871 Mycobacterium leprae 41.0 74.8 266 1655671 1658675 999 pir.C70871 Mycobacterium leprae 41.0 74.6 291 16585687 166138 1659 pir.C708	ഗി	226	1648548	1648709	- 1		Mycobacterium leprae nifS	-64.7	84.4		nitrogen fixation protein
651424 1650249 1176 pir.A70872 Mycobacterium luberculosis 55.2 83.0 377 n 652875 1651433 1443 sp.7074_SYNY3 Synechocysts sp. PCC6803 41.0 73.0 493 A 652875 1651894 693 pp.SCC22_8 Sineptomyces coeliculor A3(2) 46.1 71.4 217 I 1653681 1652894 693 pp.SCC22_8 Sineptomyces coeliculor A3(2) 46.1 71.4 217 I 1654043 165281 1629 pir.F70871 Mycobacterium leprae 50.2 77.3 317 1 1656712 165767 165767 Mycobacterium leprae 41.0 74.8 266 1 1656712 165767 Mycobacterium leprae 41.0 74.8 261 1 1656772 1658767 804 pir.S72778 Mycobacterium leprae 41.0 74.8 291 1658767 1658675 804 pir.S72778 Mycobacterium leprae 41.0 74.8	വിധ	227	1650122	1649367	_	4	Streptomyces coelicolor A3(2) SCC22.04c	70.2	89.3		ABC transporter ATP-binding protein
652875 1651433 1443 sp.YO74_SYNY3 Synechocystis sp. PCC6803 41.0 73.0 493 A 1653586 1652894 693 gp.SCC22_8 Streptomyces coelicolor A3(2) 48.1 71.4 217 1 1654043 165281 693 gp.SCC22_8 Streptomyces coelicolor A3(2) 48.1 71.4 217 1 1654043 1655671 1629 pir.F70871 Mycobacterium tuberculosis 36.3 67.8 518 1 1655671 1656705 1020 pir.S72778 Mycobacterium leprae 41.0 74.8 266 1656712 1655671 1658675 999 pir.C70871 Mycobacterium leprae 41.0 74.8 266 1659406 165110 pir.C71156 Pyrococcus horikoshii PH0450 23.4 51.0 418 1651578 16612630 969 pir.C71156 Pyrococcus horikoshii PH0450 37.5 70.9 323 1661578 16612630 969 pir.CA1156 Pyrococcus horikoshii Ph04	: 4,	6229	1651424	1650249	1176	plr.A70872	Mycobacterium tuberculosis H37Rv Rv1482	55.2	83.0		hypothetical protein
(653586 1652894 693 gp:SCC22_8 Streptomyces coelicolor A3(2) 46.1 71.4 217 I 1654043 1652894 693 gp:SCC22_8 Streptomyces coelicolor A3(2) 36.3 67.8 518 1 1654043 1655671 1629 pir.F70871 Mycobacterium tuberculosis 50.2 77.3 317 4 1656712 1657515 804 pir.S7278 Mycobacterium leprae 41.0 74.8 266 1 1656712 1658616 804 pir.S72778 Mycobacterium leprae 41.0 74.8 266 1 1656757 1658616 357 Mycobacterium leprae 41.0 74.8 266 1 1656757 1658675 399 pir.C71156 Pyrococcus horikoshii PH0450 23.4 51.0 418 1661578 1662562 975 sp.GOR_ECOL1 Escherichia coli K12 qor 37.5 70.9 323 1663596 1662630 969 gp.NMCOXABC_3 Nitrobacterium glutamicum <td>, -,</td> <td>3230</td> <td></td> <td><u> </u></td> <td>1443</td> <td>sp:Y074_SYNY3</td> <td>Synechocystis sp. PCC6803 slr0074</td> <td>41.0</td> <td>73.0</td> <td></td> <td>ABC transporter</td>	, -,	3230		<u> </u>	1443	sp:Y074_SYNY3	Synechocystis sp. PCC6803 slr0074	41.0	73.0		ABC transporter
1654043 1655671 1629 pir.F70871 Mycobacterium tuberculosis 36.3 67.8 518 F 1655681 1655671 1620 pir.S72783 Mycobacterium leprae 50.2 77.3 317 7 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 74.8 266 1 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 74.8 266 1 1659707 1658140 357 Mycobacterium tuberculosis 43.0 74.6 291 1659508 1661136 1629 pir.C71158 Pyrococcus horikoshii PH0450 23.4 51.0 418 1663508 1661136 1629 pir.C71158 Pyrococcus horikoshii PH0450 37.5 70.9 323 1663508 1661263 959 pir.C71158 Pyrococcus horikoshii PH0450 37.5 70.9 295 1663508 1662630 969 pir.NWCOXABC_3 Nitrobacter winogradskyi coxC 37.6	; -/	5231	1653586		693		Streptomyces coelicolor A3(2) SCC22.08c	48.1	71.4	217	DNA-binding protein
1656/01 1656700 1020 phr.S72783 Mycobacterium leprae 50.2 77.3 317 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 74.8 266 1657677 1658675 999 pir.C70871 Mycobacterium tuberculosis 43.0 74.8 266 1659406 1659140 357 Mycobacterium tuberculosis 43.0 74.8 291 1669508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 51.0 418 1661578 1662552 975 sp:GOR_ECOLI Escherichia coli K12 qor 37.5 70.9 323 1661578 1662630 969 gp:NWCOXABC_3 Nitrobacter winogradskyi coxC 37.6 66.8 295 1664403 1666502 2100 gp:NWCOXABC_3 Nitrobacterium leprae 62.0 85.2 358 1666764 16666673 1687752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0 85.2 358	•	5232			1629		Mycobacterium tuberculosis H37Rv Rv1459c	36.3	67.8	518	hypothetical membrane protein
1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 74.8 266 1657677 1658675 999 pir.C70871 Mycobacterium tuberculosis 43.0 74.8 291 1659406 1659140 357 H37Rv Rv1456c 23.4 51.0 418 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 51.0 418 1661578 1662552 975 sp:QOR_ECOLI Escherichia coli K12 qor 37.5 70.9 323 166359 166253 959 gp:NVMCOXABC_3 Nitrobacter winogradskyi coxC 37.6 66.8 295 1664403 1666502 2100 gp:AB02337_1 ATCC 31833 tkt 100.0 675 1667764 1666677 1666601 1164 Mycobacterium leprae 62.0 85.2 358		5233		4	1		Mycobacterium leprae MLCL536.31 abc2	50.2	77.3	317	ABC transporter
1659496 1659140 357 Mycobacterlum tuberculosis 43.0 74.6 291 1659496 1659140 357 H37Rv Rv1456c 23.4 51.0 418 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 51.0 418 1661578 1662552 975 sp:GOR_ECOLI Escherichia coli K12 qor 37.5 70.9 323 166136 1662630 969 gp:NWCOXABC_3 Nitrobacter winogradskyi coxC 37.6 66.8 295 1664403 1666502 2100 gp:AB023377_f ATCC 31833 tkt 100.0 875 1667764 1666677 1666677 1164 Mycobacterium leprae 62.0 85,2 358		5234		-	 -	pir:S72778	Mycobacterium leprae MLCL536.32	41.0	74.8	266	hypothetical protein
1659496 1659140 357 Pyrococcus horikoshii PH0450 23.4 51.0 418 1659508 166136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 51.0 418 1661578 1662552 975 sp:QOR_ECOLI Escherichia coli K12 qor 37.5 70.9 323 1661578 1662552 975 sp:QOR_ECOLI Escherichia coli K12 qor 37.6 66.8 295 1664403 1665502 2100 gp:AB023377_f ATCC 31833 tkt 100.0 100.0 675 1666673 1667752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0 85,2 358 1667764 1666601 1164 ATCL:536.39 tal 39 tal 358 358		5235					Mycobacterlum tuberculosis H37Rv Rv1456c	43.0	74.8	291	hypothetical protein
1659508 1661136 1629 pir.C71158 Pyrococcus horikoshii PH0450 23.4 51.0 416 1661578 1662552 975 sp:QOR_ECOLI Escherichia coli K12 qor 37.5 70.9 323 1663598 1662630 969 gp:NWCOXABC_3 Nitrobacter winogradskyi coxC 37.6 66.8 295 1664403 1666502 2100 gp:AB023377_f ATCC 31833 tkt 100.0 100.0 875 1666673 1667752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0 85,2 358 1667764 1666601 1164 ATCLS36.39 tal 39 tal 358 358		5236		↓_	\vdash						
1661578 1662552 975 sp:QOR_ECOLI Escherichia coli K12 qor 37.5 70.9 32.3 1663598 1662630 969 gp:NWCOXABC_3 Nitrobacter winogradskyi coxC 37.6 66.8 295 1664403 1666502 2100 gp:AB023377_f ATCC 31833 tkt 100.0 67.5 1666673 1667752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0 85,2 358 1667764 1666601 1164 ATCL536.39 tal ATCL536.39 tal 85,2 358		5237					Pyrococcus horikoshii PH0450	23.4	51.0	418	nelicase
1663598 1662630 969 gp:NWCOXABC_3 Nitrobacter winogradskyi coxC 37.6 66.8 295 1664403 1666502 2100 gp:AB023377_f Corynebacterium glutamicum 100.0 100.0 675 1666673 1667752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0 85,2 358 1667764 166601 1164 ATCL536.39 tai ATCL536.39 tai ATCL536.39 tai ATCL536.39 tai	_	5238		_	9	1	Escherichia coli K12 qor	37.5	70.9	323	duinone oxigore du crissis
1664403 1666502 2100 9p:AB023377_f Corynebacterium glutamicum 100.0 100.0 675 1666673 1667752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0 85,2 358 1667764 1666601 1164 ALCL536.39 tal	. 30 1.30	5239		 	 			37.6	66.8	295	cytochrome o unquinor extrasser assembly factor / herrie O synthase
1666673 1687752 1080 sp.TAL_MYCLE Mycobacterium leprae 62.0 85,2 358 1667764 166601 1164	1740	5240			2		Corynebacterium glutamicum ATCC 31833 tkt	100.0		675	Iransketolase
1667764 1666601	1741	5241			+	Sp:TAL_MYCLE	Mycobacterium leprae MLCL536.39 tal	62.0	85,2	358	transaldolase
	- I ·	5242			$\overline{}$						

Ð
ĕ
ontinue
3
_
Table
F

_		-			- 1		 -			\neg	- :	$\neg \neg$		1				
	Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane prutein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothelical protein	excinuclease ABC subunit C
	Matched length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	309	281	- 701
	Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4	82.5	76.2	61.5
	Identity (%)	99.8	40.6	28.7	35.2	24.8	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
ושמום ו (כמוויוומבמ)	Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W soi3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocystis sp. PCC6803 uvrC
	db Match	gsp:W27612	pir.A70917	sp:SOL3_YEAST	sp:SAOX_BACSN	gp:AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP:YCQ3_YEAST	sp:PGK_CORGL	sp:G3P_CORGL	pir.D70903	sp:YR40_MYCTŪ	sp:YR39_MYCTU	sp:UVRC_PSEFL
	ORF (bp)	1452	957	705	405	1401	840	174	687	981	777	408	1215	1002	981	1023	927	2088
	Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
	Initial (nt)	1667950	1669419	1670395	1671677	1671723		1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
	SEO NO.	+	5244	5245	5246	5247	5248	5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
	SEO NO.		992.	1745	1746	1747		1749	1750	1751	47.52	.35.	1754	1755	1756	.757	1758	1759

																			
4.00	Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n	S-adenosylmethionine synthetase	DNA/panlothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
	Matched length (a.a.)	150	154	72	217	106	404	211	365	234	448	308	150	725	407	409	1.8	186	103
	identity Similarity (%)	68.7	72.1	68.0	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	87.7	74.7	90.3
	Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtills	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevislae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 188 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevislae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
	db Match	sp:YR35_MYCTU	sp.RISB_ECOLI	GSP-Y83273	GSP-Y83272	GSP: Y83273	gp:AF001929_1	sp:RISA_ACTPL	Sp. RIBD_ECOLI	sp:RPE_YEAST	sp:SUN_ECOLI	SD:FMT PSEAE	SP.DEF BACSU	2064 Sp.PRIA ECOLI	gsp:R80060	sp:OFP_MYCTU	sp:YD90_MYCTU	pir.KIBYGU	pir.B70899
	ORF (bp)	579	477	9.0g		_	يو ا	633	984	657	1332	945	507	2064	1221	1260	291	627	318
	Terminal (nt)	1689201	1689869	1600021	1601421	1501347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	1702991
	Initial (nt)	1689779			-	1090/00		1692271	1603258	1693918	1695298	1606443					1702322	1703037	
	SEO NO.	5260				<u> </u>	5265	5266	5787		5269	6270	5371	5373	5273	5274	5275	5276	
		1750					1765	1766		1 4 L	1749	07.6	2/2	17.7	1773	1774	1775	1776	1777

						Table 1 (continued)				
000	SEO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
778	5278	1704350	1703517	834	sp:DCOP_MYCTU	Mycobacterium tuberculosis H37Rv uraA	51.8	73.6	276	orotidine-5'-phosphale decarboxylase
779	5279	1707697	1704359	3339	pir:SYECCP	Escherichia coli carB	53.1	77.5	1122	carbamoyl-phosphate synthase large chain
780	5280	1708884	1707706	1179	sp.CARA_PSEAE	Pseudomonas aeruginosa ATCC 15692 carA	45.4	70.1	381	carbamoyl-phosphate synthase small chain
1 5	5281	1710357	1709011	1341	sp:PYRC_BACCL	Bacillus caldolyticus DSM 405 pyrC	42.8	67.7	402	dihydroorotase
787	5282	1711348	1710413	936	sp:PYRB_PSEAE	Pseudomonas aeruginosa ATCC 15692	48.6	79.7	311	asparlate carbamoyltranstetase
1783	5283	1711927	1711352	576	sp:PYRR_BACCL	Bacillus caldolyticus DSM 405 pyrR	54.0	80.1	176	phosphoribosyl transferase or pyrimidine operon regulatory protein
1784	5284	1712596	1713759	1164	sp:Y00R_MYCTU	Mycobacterium tuberculosis H37Rv Rv2218	39.7	73.4	297	cell division inhibitor
1785	5285	1713830	1714306	477						
1786	5286	1714299	1714760	462						
1787	5287	1714741	1714950	210						
7.88		1716062	1715382	681	sp:NUSB_BACSU	Bacillus subtilis nusB	33.6	69.3	137	N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)
7 83	5289	1716692	1716132	561	Sp.EFP_BRELA	Brevibacterium lactofermentum ATCC 13869 efp	97.9	98.4	187	elongation factor P
1790	5290	1717868	1716780	1089	gp:AF124600_4	Corynebacterium glutamicum AS019 pepQ	99.5	100.0	217	cytoplasmic peptidase
1791	5291	1719032	1717938	1095	gp:AF124600_3	Corynebacterium glutamicum AS019 aroB	98.6	99.7	361	3-dehydroquinate synthase
1,92	5292	2 1719598	1719107	492	gp.AF124600_2	Corynebacterium glutamicum AS019 aroK	100.0	100.0	166	shikimate kinase
1793	5293	3 1721381	1720971	1 1 4	sp.LEP3_AERHY	Aeromonas hydrophila tapD	35.2	54.9	142	type IV prepilin-like protein specific leader peptidase
!	-									

.10

_		i		\neg		·				Ţ	Ţ	\top	Ţ	1		i	-	
	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothelical protein	alanyl-tRNA synthetase	hypothelical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
	Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	838	742		192
	Similarity (%)	68.7	73.2		50.7	7.1.7	90.0	70.1	89.8	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		==	46.1	26.1	23.1		29.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae		Pyrococcus abyssi Orsay PAB0349	Bacillus sublilis 168 muC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv RV2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Myčobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C stat	Bacilius subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp.AF109162_2		pir.A75169	sp.FHUC_BACSU	pir.D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		SP.SYD_MYCLE	sp:Y08Q_MYCTU	SP.AMYH_YEAST	7 sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2876	1857	648	584
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730168	1731599	1732988	<u></u>	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	1721780	1722807		1723826	1725439	1726625	1727170	1730048	1731542	1732822		_!	1738679	1740569	1741219	1741313
	SEO	5294	5295	5296		5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	_	
		1794		1796		1798	1799	1800	1001	1802	1,003	1804	1805	1806	1807	1808	1809	1810

- 25

	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidy-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein	٠	GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
	Matched length (a.a.)		371		116	462		869	421	211	175		128		760	185	48	558	332	
	Similarity (%)		88.1		9.77	71.4		53.9	72.2	62.1	61.1		100.0		99.9	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		99.9	99.5	98.0	30.7	25.9	
Table 1 (continued)	Homologous gene		Streptomyces coeticolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11188 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium giutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dc/AE	Mycobacterium tuberculosis H37Rv RvZ585c	Escherichia coli K12 secF	
	db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A	sp:SYH_STAAU	gp:CJ11168X3_12	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp:Y0BG_MYCTU	sp:SECF_ECOLI	
	ORF (bp)	714	1113	126	495	1347	861	1686	1287	639	507	237	555	342	2280	555	150	1743	1209	630
	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	1759707
	SEO NO (a.a.)	5311		5313		5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	5329
	SEO NO. (DNA)	1811	1812	. a.	1814	1815	1816	1817	1818	Q. 8.	1820	1821	1822	1823	1824	1875	1876	1827	1828	1829

5		Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosarrinyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphalidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
15		Matched length (a.a.)	616	108	331	210	180	250	283	111	170	414	295	78	194	647	400			
20	-	Similarity (%)	52.0	66.0	91.9	74.3	63.3	78.4	68.6	61.3	61.2	49.3	67.8	78.0	78.4	68.9	81.8			
		Identity (%)	24.4	39.6	55.3	45.2	35.8	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
25 30	Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF248 yebC	Escherichia coll K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2812c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtills ywbN			
35 40		db Match	prf:2313285A	sp:Y08D_MYCLE	sp:RUVB_ECOLI	sp:RUVA_MYCLE	sp:RUVC_ECOLI	sp:YEBC_ECOLI	sp:TESB_ECOLI	gp:SC10A5_9	pir:H70570	sp.GPl3_YEAST	gp:SCL2_16	plr.C70571	pir:D70571	sp:SYT2_BACSU	sp:YWBN_BACSU	-		
		ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	980	2058	1206	564	546	735
45		Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
50		Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
		SEO NO. (a.a.)	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5348	5347
	,	SEO NO (DNA)	1830	18.31	1832	1833	1834	1835	1836	1837	g.	9,19	1840	. 84.	1842	1843	1844	1845		1847

ļ						Table 1 (continued)				
	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	(%)	Identity Similarity (%)	Matched length (a.a.)	Function
	5348 17	1777269	1777646	378						
: 50	5349 17	1777444	1778037	594						
ı vo	5350 17	1779508	1778102	1407						
S	5351 1	1780168	1779554	615						
S	5352 17	1780905	1780507	399	,					
ויט	5353 17	1781585	1781019	567	Sp.PUAC_STRLP	Streptomyces anulatus pac	36.3	64.2	190	puromycin N-acetyltransferase
احت	5354 17	1781705	1782790	1086						
ا می	5355 1	1783281	1784381	1101						
ريا	5356 1	1784080	1783382	669		-				
1 4,	5357 1	1785473	1782894	2580						
1 41	5358 1	1786844	1785732	1113						
L",	5359 1	1788829	1786907	1923						
1860 5	5360 1	1789080	1789562	483						
, ,,	5361 1	1789580	1789768	189			_			
: 41	5362 1	1789746	1790057	312						
, 4,	5363 1	1790889	1790461	429						
1 47	5364 1	5364 1791842	1792438	597	sp:AFUC_ACTPL	Actinobacillus pleuropneumoniae afuC	28.7	28.7	202	ferric transport ATP-binding protein
, 4,	5365 1	1792428	1793426	666						
٠	5366 1	1793654	1793496	159						
,	5367 1	1793714	1794820	1107						;
	5368 1	1795202	1795621	420	•					- 1
	<u>. </u>	1795591	1796181	591	gp:AF088896_20	Zymomonas mobilis dfp	27.1	66.7	129	pantothenate metabolism flavoprotein
1870-	5370	1796186	1797049	864	·					
1871	5371	5371 1797350	1797769	420						
4				-						

10.

EP 1 108 790 A2

Table 1 (continued)	ORF db Match Homologous gene (%) (%) (a.a.) Function	120	735	225	894	156	474	753	423	289	429	465	237	981	096 9	3 480	9 681	285	375	812 sp.TNP2_ECOLI Escherichia coli tnpR 51.1 78.0 186 transposon TN21 resolvase	2 1005	3 375	477 sp.PVH1_YEAST Saccharomyces cerevisiae 29.3 51.8 164 protein-tyrosine phosphatase	5 726	0 423
	ļ						-	3	3	7	6	2	7	-	0	0	1	2	2	sp:TNP2_ECOLI	35	5	sp:PVH1_YEAST	9	13
		├	-	├-	┢	├			<u> </u>	-	\vdash	 		-					_	-		_		\vdash	
	Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
	Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
	SEQ NO.	÷	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
	SEO NO.		•	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

5

EP 1 108 790 A2

							- ;						$-\tau$		\neg		- 1		- ;	T		\neg	
	Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
	Matched length (a.a.)	216									545					166	298	101			622		381
	Similarity (%)	65.7									55.2					75.0	92.6	84.2			50.6		84.3
	Identity (%)	34.3		.):-							22.6					63.0	87.9	72.3			24.0		31.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSBB TM1189	*				Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
	db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.S60890	pir.S60889		•	sp:RECJ_ERWCH	,	pir.T13302
	ORF (bp)	738	789	456	186	672	417	315	369	202	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1850
	Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819168	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
	Inilial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	5417 1836675
	SEQ NO.	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
	SEQ NO.					1900	-	1902	1903	1904	Süö:	1906	1907	1908	1909	1910	1167	1012	1913	1914	1915	1916	1917

	Function				helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
	Matched length (a.a.)				620		109										422					347		630
	Similarity (%)				44.7		64.2										49.8					52.5		61.0
	Identity (%)				22.1		36.7										28.7					23.6		30.2
Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SCSC7.14		Escherichia coli K12 cipA
	db Match				sp:Y018_MYCPN		pir.T13144										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
	ORF (bp)	3789	447	534	1839	375	336	366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
	Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
	Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
	SEO NO. (a.a.)	5418	5419	5420	5421	5422	5423	5424	5425	5426	2457	5.128	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	5440
	SEO NO.	1918	1919	1920	1651	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

EP 1 108 790 A2

									<u> </u>						_						
Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothelical protein	
Matched length (a.a.)					693					224	208					363	358			504	-
Similarity (%)					45.9					47.8	61.5					99.7	99.7			45.8	
Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
db Match		:	٠		sp.PCRA_STAAU					gp:SCH17_7	prf:2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
ORF (bp)	474	156	324	312	2355	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
SEQ NO.	5441	5442	5443	5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
		1942	1943	1914	1945	1946	1947	1948	1949		190	1952	1953	1954	1955	1955	1957	1958	1959	1960	1961
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (hp) (bp) Homologous gene (%) (%) (a.a.)	SEQ Initial Terminal (ND) ORF (ND) db Match Homologous gene Identity (%) Similarity length length (%) Function NO. (nt) (nt) (nt) (pp) (aa.) (aa.)	SEQ Initial NO. (nt) Terminal (bp) CRF (bp) 4b Match Homologous gene (%) Identity (%) Simllarity length (a.a.) Function (a.a.) 5441 1860752 1861225 474 474 1861320 1861475 156 1861475 186147	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Simllarity (a.a.) Function (a.a.) 5441 1860752 1861225 474 1861320 1861475 156 1	SEQ Initial Terminal (N) QRF db Match Homologous gene Identity (%) Simllarity length length length length length Function NO (n1) (nt) (nt)	SEQ Initial NO. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (a.a.) Function 8.4.1 1860752 1861225 474 Chi (mi) 1861320 1861475 156 Chi (mi) <	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (41) (11) (11) (11) (11) (11) (11) (11)	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1)	SED (n.1) (n.	SEC (n.1) (n.	SEC (3.8.) Initial (III) Terminal (III) ORF (IV) db Match Homologous gene (46n) (48) Smillarily (48) Matched (48) Function 5.4.1 186.1225 14.2	SEC NO. (44) Initial (III) Terminal (III) ORF (III) db Match (III) Homdlogous gene (%) Homdlogous gene (%) Homdlogous gene (%) Function Function (4a.a.) (4a.a.) IR61320 474 476 474 Homble (M) 474 Homble (M) 474 Homble (M) Homble (M) <td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Match (%) Function A04 (A1) (B1) (B2) 474 Homologous gene (%)</td> <td>SEC NO. Innitial (m) Terminal (m) ORF (m) db Match Homologous gene Identity (%) Matched (%) Function 5441 1860722 1861226 474 Cm) Cm Cm</td> <td>SEC Initial Terminal ORF db Match Homologous gene (46) (74) (</td> <td>SEC Initial Terminal ORF db Match Homologous gene (461) (761) (761) (761) (762) (763)<td>SEC Initial CMI (PM) CM Match Homologous gene Identity Similarity Matched Function 6.4.1 (m) (m)</td></td>	SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Match (%) Function A04 (A1) (B1) (B2) 474 Homologous gene (%)	SEC NO. Innitial (m) Terminal (m) ORF (m) db Match Homologous gene Identity (%) Matched (%) Function 5441 1860722 1861226 474 Cm) Cm Cm	SEC Initial Terminal ORF db Match Homologous gene (46) (74) (SEC Initial Terminal ORF db Match Homologous gene (461) (761) (761) (761) (762) (763) <td>SEC Initial CMI (PM) CM Match Homologous gene Identity Similarity Matched Function 6.4.1 (m) (m)</td>	SEC Initial CMI (PM) CM Match Homologous gene Identity Similarity Matched Function 6.4.1 (m) (m)

EP 1 108 790 A2

ĺ			Ī		1	\neg		Ī						ī								1			
	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
	Matched length (a.a.)	90	163		537				724							1004									
	Simitarity (%)	70.0	56.4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7				25.3							20.1									
Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phl-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coll clpB							Homo sapiens numA									
	db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp:CLPB_ECOLI							plr:S23647									
	ÔRF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	900	1251	969	714.	1008	1659	1488	339	1509
	Terminat (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
	Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900918	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	5480 1909498	1910508	1912300	1913820	1914371	1916233
	SEQ NO.	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	5485
	SEO NO.	1962	1963	1964	1965	_	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	

EP 1 108 790 A2

	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
	Matched length (a.a.)										1408			61					114			328			,
	Similarity (%)										49.2	-		65.6					58.8			54.6			
	Identity (%)										23.2			42.6					38.6			27.1			
Table 1 (continued)	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
	db Match			•					,		pir. T03099			sp:MTE1_ECOLI			•		pir:H70638			sp:Y137_METJĀ			
	ORF (bp)	360	222	312	645	759	549	930	900	357	4464	579	945	171	375	1821	201	468	381	202	837	942	624	210	534
	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEO NO. (a.a.)	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5500	5501	5502	5503	5504	5505	5506	5507	5508	5509
!	SEO NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	199R	1999	2000	2001	2002	2002	2004	2005	2006	2007	2008	2009

i																								ı
	Function										surface protein				major secreted protein PS1 protein precursor		•	DNA topoisomerase III					major secreted protein PS1 protein precursor	
	Matched length (a.a.)										304				270			265					344	,
	Similarity (%)										44.1				54.4			50.9					54.7	
	Identity (%)										23.0				30.7			23.8					29.7	
Table 1 (continued)	Homologous gene							*			Enterococcus faecalis esp	•			Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB	•			-	Corynebacterlum glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
	db Match										prf:2509434A				sp.csP1_coRGL			sp:TOP3_ECOLI				5	sp:CSP1_CORGL	
į	ORF (bp)	1191	534	288	444	753	303	216	309	882	828	297	381	429	1581	2430	867	7227	2085	891	432	744	1887	291
;	Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
	Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	5532 1963429
	SEQ NO. (a.a.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522		5524	5525	5526	5527	5528	5529	5530	5531	5532
	SEO NO. (DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

	Function				thermonuclease										single stranded DNA-binding protein								serine protease				
	Matched length (a.a.)				227										225								249				
	Simitarity (%)				57.7										59.1								52.6				
	Identity (%)		-		30.4										24.9								25.7				
Table 1 (continued)	Homologous gane		1.127		Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				1
	db Match				sp:NUC_STAAU										prf:2313347B								sp:S24D_ANOGA				
	ORF (bp)	1230	1176	357	684	1	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	220	912	693	366	747	180
	Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979808	1980885	1981657	1982028	1982817	1981912
	Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
	SEO NO. (a.a.)	5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5558
	SEO NO: (DNA)	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	204B	2049	2050	2051	2052	2053	2054	2055	2056	2057	2050

Table 1 (continued)	Function								integrase	transposase (divided)	(ransposase (divided)		transposition repressor	insertion.element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
	Matched length (a.a.)								406	124	117		31	43	270					153	223
	Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
	identity (%)								29.6	83.9	70.9		80.7	74.4	31.1				'	25.0	28.7
	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL 2005 ISaB1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
	db Match			1					Sp.VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	plr.S60889	gp:SCJ11_12					1584 sp:CSP1_CORGL	SP:VINT_BPML5
	ŌRF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744	1584	687
	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
	Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEO NO.	5559	5560	5561	5562	5563	5564	5565	5566	5567	5568	5569		5571	5572	5573	5574	5575	5576	5577	5578
	SEO NO.	2059	2060	2061	2062	2063		2065	2066	2067	2068	2069	07.00	207	2072	2073	2074	2075	2076	7.705	2078

_									<u> </u>			$-\tau$	ī		Ť	Ī	1		
	Function	sodium-dependent fransporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease O	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase			deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
	Matched Jength (a.a.)	88	92			233 .	384	126		232	201	37.1	618	472		268	140	150	
	Similarity (%)	76.1			64.4		67.5		77.2	78.6	52.8	78.5	52.3		62.7	82.1	70.7		
	Identity (%)	39.8				33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
Table 1 (continued)	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 HI0390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv RV2698	
	db Match	pir:F64546	sp:YXAA_BACSU			pir.C70968	plr:E70968	gp:AF128284_2		pir.H70968	pir:C70528	sp:RND_HAEIN	gp:AB026631_1	1236 pir.E72298		pir.C70530	sp:DUT_STRCO	pir.E70530	
	ORF (bp)	388	432	345	336	969	1254	408	426	969	624	1263	1908	1236	282	861	447	549	207
	Terminal (nt)	1995783	1996537	+	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2003334	2003402	2005462	2006979	2006777	2007738	2008798	2008876
	(nt)	1996088	1996106	1996768	1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002072	2005309	2006697	2006698		2008184	2008250	2009082
	SEO NO	(a.a.) S579	5580		 -		5584	5585	5586	5587	5588	5589	5590	5591	5592	5593	5594	5835	5596
		(ONA) 2079		$\dot{-}$			20R4	2085			20AR	20R0	2090	2091	2092	2093	2094	2095	2096

5

:	Ę	•
,	כ	3
	2	

	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
	Matched length (a.a.)	100	198	248	200	422		578	127	92	523	144	228	11	329		305	661
	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.66	64.0	99.1		79.0	50.7
	Identity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
ומסוב ו (מסוונוווממ)	Homologous gene	Mycobacterium tuberculosis H37Rv RvZ699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO	-	Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dbR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
	db Match.	plr.F70530	sp.SUHB_ECOLI	sp:PPGK_MYCTU	prf.2204286A	sp:YRKO_BACSU		1710 sp:Y065_MYCTU	pir:H70531	pir.G70531	gp:SCH5_8	prf.2204286C	pir.140339	GP:AF010134_1	Sp.GALE_BRELA		pir.E70532	2550 sp:MTR4_YEAST
	ORF (bp)	291	818	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
	Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	2022546	2022959	2025270	2025423	2026494
	SEQ NO. (8.8.)	5597	5598	5599	2600	5601	5602	5603	5604	5605	9099	2607	5608	5609	5610	5611	5612	5613
	SEO NO. (DNA)	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	5016	2110	2111	2112	2113

continued)
_
Table 1
Table
Table
- Table

_										T			1		-	$\neg \tau$		\neg	Т	
	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructuse 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
	Matched length (a.a.)	299		1298	145		222	245	320	265	262	345	549	18		407	419			569
	Similarity (%)	65.6		76.2	86.2		71.6	87.8	55.6	64.0	62.6	55.7	69.6	71.6		70.5	90.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
Table 1 (continued)	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bācillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophitus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 H10750 dapF
	db Match	Sp.OXYR_ECOLI		Sp. HRPA_ECOLI	gp:SCAJ4870_3		sp:LEXA_BACSU	Sp.GATR_ECOLI	gp:SCE22_14	'04 sp.PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		sp:PYRP_BACCL	gp:AF145049_8			831 SP. DAPF_HAEIN
	ORF (bp)	981	1089	3908	450	420	969	777	960	1704	792	066	1836	267	582	1287	1458	786	537	831
	Terminal (nt)	2030157	2030277	T	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
	Initial (nt)	2029177	2031365	2031478	5617 2035880	2036409	2036812	5620 2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295					2052675
	SEO NO.	5614	5615	5616	5617	5618	5619	5620		5622	5623	5624	5625	5626	5627	_			5631	
	SEO	2114	2115			2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

	<u> </u>															i	 -	$\overline{}$
	Function	RNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched fength (a.a.)	300		445			190	494	242	1.1	225	273	142	67		197	223	228
	Similarity (%)	68.7		75.7			63.7	86.4	9'66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	99.6	66.0	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coli K12 mlaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorthoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp:MIAA_ECOLI		pir:870506			pir.C70506	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir:A70878		Sp:BIOY_BACSH	sp.POTG_ECOLI	pir.F69742
	ORF (bp)	903	675	1359	1020	1023	698	1566	726	219	684	819	597	234	738	576	669	609
	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894	2065627	2066404	2066566	2067168	2067866
	SEQ NO. (a.a.)	5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
	SEQ NO. (DNA)		2134	2135	2136	2137	2138	2139	2140	7141	2112	2.43	2144	2145	2146	2147	2148	2149

_										$\overline{}$	$\neg \tau$	-			\neg			$\neg \tau$	_
	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
	Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	89	319
	Similarity (%)	78.5	89.6	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	99.6			85.3	88.8	63.3
	Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			85.4	64.0	35.1
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv RV2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spoillE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibloticus gpsl	Bacillus subtilis rpsO	Leishmania major
	db Match	pir:860176	sp:35KD_MYCTU	pir:H70878	sp:CINA_STRPN	prf.2421334D	pir:T10888	gp:AF071810_1		prf.2119295D	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			prf.2217311A	plr.F69700	prf.2518365A
	ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
	Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
	Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066				2079275	2081136	2082115	2082368		2085702	
	SEO	. _		5652	5653	5654	5655	5656	5657	5658	5659	2660		5662	5663	- -		5666	
	SEO NO.			2152	2153	2154	2155	2156	2157	2158	2159	7150	2161	2162	2163	2164	2165	2166	2167

_	_
9	202
-	=
Š	3
-	_
401	2
۴	_

	Function	bifunctional protein (riboflavin kinase and FAD synthetase)	tRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	rlbosome-binding factor A	translation initiation factor IF-2	hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothelical protein	peptide-blnding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
	Matched length (a.a.)	329	303	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
	Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	62.9	66.3	71.0		65.5	6'09	69.4	69.2	81.3
	Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
lable (commueu)	Homologous gene	Corynebacterlum ammoniagenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Bacillus subtilis 168 rbfA	Stigmatella aurantlaca DW4 infB	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nus.A		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Bacillus subtills spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
	db Match	Sp.RIBF_CORAM	SP.TRUB BACSU	PIR:PC4007	gp:SC5A7_23	pir.B70885	plr:G70693	pir.H70693	SP.RBFA BACSU	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir:E70588	SP:DPPE_BACSU	Sp.DPPB_ECOU	prf:1709239C	pir.H70788
	ORF (bp)	1023	168	1	651	804	1305	966	447	3012	336	966	1254	534	1602	924	666	1731
	Terminal (nt)	2086919	2088863	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946		2105703
	Initial (nt)	2087941	2087973		2089868	2090664	2092055	2093046	2093501	2096723	2097179	2098375	2098562	2098945	2100240	2102023		
	SEO.	5668	5669	5670	5671	5672	5673	5674	5675			5678	5679		5681	 -		
	SEO	2168	2169	0717	2171	2172	2173	2174	2175	2176	7112	2178	2179	2180	2181	2182	2183	2184

_				- -							Ŧ	7	-	1		\neg			
	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	peniciliin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
	Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	630	216	424	360
	Similarity (%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
	Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Proplonibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv RV2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
•	db Match	sp:SYP_MYCTU	gp:Scc30_5.	SP BCHD_RHOSH	prf.2503462AA	prf.2108318B	1422 Sp.YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp.GSHR_BURCE					SP. AMPM_ECOLI	prf.2224268A	prf:2518330B	prf.2518330A	gp:AE001863_70
	ORF (bp)	1764	735	759	1101	750	1422	900	1014	1395	942	474	357	729	789	1866	630	1149	957
	Terminat (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
	initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628	2121147	2123161		2124996	5702 2125089
	SEQ NO.	+	5686	5687	5688		2690	5691	5692	5693	5694	5695	9699	5697	5698	5699		5701	
	SEO		2186	2187	2188		2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202
	٠																		

	Function	ABC transporter		hypothetical protein (qcpE protein)	The state of the s		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase				ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyliransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
	Matched length (a.a.)	225		350	丅		405	147	312				245	356	94	294	185	109		280	254
	Similarity (%)	71.1		73.0	73.0		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43,1		76.8	83.5
	identity (%)	37.3		, ;	44.3		43.0	36.0	22.8				37.1	66.0	41.5	33.3	47.0	28.4		49.6	54.7
Table 1 (continued)	Homologous gene	Racillus subtilis 168 vvrO			Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37RV	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
	db Match	9 d0140c4c3		T	sp:GCPE_ECOLI		pir:G70886	GSP:Y37145	76 sp.DXR_ECOLI				pir:B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	Sp.RRF_BACSU	_		sp.EFTS_STRCO	pir.A69699
	ORF (bp)	6	s!	162	1134	612	1212	645	1176	441	480	+-	855	1098	258	855	555	729	861	925	916
	Terminal (nt)	0.00	2170/23	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286	┵—	+	2139003	2140071
	Initial (nt)		-	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2133402		2135551	2135884	2137089	2137840				2140886
	SEO.	<u> </u>	5703	5704	5705	5706		5708	5709	6710	5711	5717	5713	5714	5715	5716	5717				5721
			2203	2204	2205			2208	2209	22.5	22.57	2212	2213	2214	2215	22.16	2217	22.18	22 19	2220	2221

		:
		1

											_							$\overline{}$
	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyrne thiS (thIG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
	Matched length (a.a.)	120	297	395	504	119	101	180		285	323		111	225	376	. 62	251	437
	Similarity (%)	58.0	68.7	66.8	75.8	72.3	96.0	69.5		61.1	59.1		88.3	6.09	64.1	74.2	76.9	26.8
-	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
lable i (confinied)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv RV2898c	Mycobacterium tuberculosis H37Rv RV2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	sp:YS91_MYCTU	prf:2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp:RNH2_HAEIN		prf.2514288H	prf.2510361A		sp:RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOLI	Sp.THIG_ECOLI	34 prf:2417383A
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
	Initial (nt)	2141257	2142686		2145586	2145941	2146586	2147192	2147231		2148231	2149571	2149972	5734 2150335	2151039	2152135	2152334	2153058
	SEO		5723		5725	5726	5727	5728	5729	5730	5731	5732	5733	5734	5735	5736	5737	5738
	SEQ NO.		2223		2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238

Terminal	Terminal		, g	Ш.	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length	Function
(nt) (nt) (pp)	(nt) (bp) 2154480 2274 sp. TEX BORPE	(op) 2274 Sp.TEX BORPE	Sp. TEX BORPE		Bord	Bordetella pertussis TOHAMA I	58.6	78.7	(aa) 776	transcriptional accessory protein
2157721 2156747 975 pir.A36940	2156747 975 pir.A36940	975 pir.A36940	pir.A36940		Bacille	Bacillus subtilis 168 degA	27.0	65.3	334	sporulation-specific degradation regulator protein
5741 2159181 2157754 1428 pir.H72105 CWLG	2157754 1428 pir.H72105	1428 pir.H72105	pir:H72105	pir:H72105	Chlan	Chlamydophila pneumoniae CWL029 ybhl	45.8	78.3	456	dicarboxylase translocator
5742 2159237 2159019 219 prf.2108268A Spina	2159019 219 prf.2108268A	219 prf:2108268A	prf:2108268A		Spina	Spinacia oleracea chloroplast	40.0	80.0	65	2-oxoglutarate/malate translocator
2160537 2159287 1251 sp. PCAB_PSEPU	2159287 1251 sp:PCAB_PSEPU	1251 sp.PCAB_PSEPU	1 sp:PCAB_PSEPU		Pseud	Pseudomonas putida pcaB	39.1	66.3	350	3-carboxy-cis, cis-muconate cycloisomerase
5744 2160670 2160768 99	2160768	⊢	66					·		
5745 2161503 2161111 393	2161111	-	393							
5746 2162196 2161507 690	2161507	-	069		: 				1	
2163014 2162196 819 sp.TRMD_ECOLI	2162196 819 sp.TRMD_ECOLI	819 sp:TRMD_ECOLI	9 SP:TRMD_ECOLI		Escheri	Escherichia coli K12 trmD	34.8	64.8	273	(RNA (guanine-N1)- methyltransferase
5748 2163098 2163745 648 gp:SCF81_27 Streptomy	2163745 648 gp:SCF81_27	648 gp:SCF81_27	8 gp:SCF81_27		Streptor SCF81.	Streptomyces coelicolor A3(2) SCF81.27	30.5	57.6	210	hypothetical protein
5749 2164260 2163748 513 Sp.RIMM_MYCLE MLCB2	2163748 513 Sp.RIMM_MYCLE	513 SP. RIMM_MYCLE	3 Sp.RIMM_MYCLE	i —	Mycob MLCB2	Mycobacterium leprae MLCB250.34. rimM	52.3	72.1	172	16S rRNA processing protein
5750 2164390 2164737 348 pir.B71881 Helico	2164737 348 pir.B71881	2164737 348 pir.B71881	pir.B71881		Helico	Helicobacter pylori J99 jhp0839	29.0	66.7	69	hypothetical protein
2165309 2164815 495 pir.C47154	2164815 495 pir.C47154	2164815 495 pir.C47154	pir.C47154		Bacillu	Bacillus subtilis 168 rpsP	47.0	79.5	83	30S ribosomal protein S16
2166098 576 pir.T14151	2166098 576 pir.T14151	576 pir.T14151	pir.T14151	pir.T14151	Mus rr	Mus musculus inv	32.1	61.7	198	inversin
2166990 2166124 867 prf.2512328G	2166124 867 prf.2512328G	867 prf.2512328G	prf.2512328G		Strept	Streptococcus agatactlae cytB	26.6	69.1	256	ABC transporter
5754 2167865 2166990 876 prf.2220349C Pyroco	2166990 876 prf:2220349C	2166990 876 prf:2220349C	6 prf:2220349C	prf:2220349C	Pyroc	Pyrococcus horikoshil OT3 mtrA	35.5	63.8	318	ABC transporter
2169584 2167944 1641 sp.SR54_BACSU	2167944 1641 sp.SR54_BACSU	2167944 1641 sp.SR54_BACSU	11 sp.SR54_BACSU	sp:SR54_BACSU	Bacillu	Bacillus subtilis 168 ffh	58.7	78.2	559	signal recognition particle protein
5756 2170426 2171058 633	2171058 633	2171058 633								
5757 2171715 2172131 417	2172131 41	2172131 41	417						<u> </u>	
5758 2172209 2172877 669	2172877 66	2172877 66	699			-				
5759 2175288 2173759 1530 sp:FTSY_ECOLI Esc	2173759 1530 sp:FTSY_ECOLI	2173759 1530 sp:FTSY_ECOLI	1530 sp:FTSY_ECOLI		Esc	Escherichia coli K12 ftsY	37.0	66.1	- 505	cell division protein

_								i		Т	<u>:</u>	-				:	Ţ						1
	Function			Annan 1 4-alpha-olucosidase of	glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein		;	cation efflux system protein	formamidopyrimidine-DNA		ribonuciease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
	Matched length (a.a.)				1144		1206	92		305	257			188	285		221	176	238	559	541	388	
	Similarity (%)				46.2		72.6	73.9		0.09	73.5			76.6	66.7		76.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)				22.4		48.3	51.1		23.9	39.3			46.8	38.1		40.3	35.8	50.0	28.3	26.6	35.3	
Table 1 (continued)	Homologaus gene				Saccharomyces cerevisiae S288C YIR019C sta1	-	Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581,28c			Dichelohacter nodosus geb	Escherichia coli K12 mutM or	lpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match				SP. AMYH_YEAST		sp:Y06B_MYCTU	Sp.ACYP_MYCTU		SP.YFER ECOLI				S CHINITOES 3	מיינסט ביינסט יינסט ביינסט ביינסט ביינסט ביינסט ביינסט ביינסט ביינט ביינסט ביינט ביינסט ביינסט ביינס	sp.rrd_ccor	pir.869693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf:2104260G -	SP:CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	15	E.	702	3393	963	3465	282	1854	1 00		183	24.7	- "	010	828	741	534	789	1644	1530	1122	441
	Terminal (nt)	-+-	2175888	2177103	2176110	2181880	 	2183110	2183405	2185351	2187129	2187342	•	- 1	769/817	2168313	2189166	<u> </u>	2190540	2193165			2198007
	Initiat (nt)	_	2176046	2176402	2179502	2180918	2183092	2183391	2185258	2186208		2187160	201013			21891/0	2189906		2191328	2101522			2198447
	SEQ NO.		2,0973	5761	<u> </u>	5763		5765	6766	7872	5768	6750	3		5771	5772	5773		5775	27.2			5779
			2260	2261		2263		2265	3366	2362	2268	10000	6077	2270	2271	2222	227.1	22.4	2275	2,5	2277	2278	2279

'

5				İ					doc /	İ	eryl	nate synthase	protein	clonydrolase	į		no-5- amide	erase	ance protein sport protein
10			Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribolide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
15		100	Matched length (a a.)	405	353	133			814	295	264	169	228	68	258	241	245	210	402
20			Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
			Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
25	, (point	()	9	4SB8	TCC	101			malP	ш	s FDA 485		ulosis	des ATCC	amicum	amicum	amicum	amicum	. 66 cmlR
30	Toble 1 (continued)	ומחוב ו (המוווו	Homologous gane	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmlR
<i>35</i>			db Match	pir.A72322	sp:HIPO_CAMJE 4	pir.S38197 A			prf.2513410A	Sp.YFIE BACSU		Sp.TRPG_EMENI	pir:H70556	Sp.HIS3_RHOSH	sp:HISB_CORG	prf.2419176B	gp.AF051846_1	gp:AF060558_1	sp:CMLR_STRLI
			ORF (bp)	1284 p	1263 s	336	135	276	2550	900		100	657	354	774	825	738	633	1266
45			Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
50			Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	0008000	2208249		2209888	2210273	2211046	2211875	2212619	2213273	2215586
			SEO NO.		5781	5782	<u> </u>	_		2072	5787	5788	5789	5790	5791	5792	5793	5794	5795
5£			NO SEO		1828	2282			2285	2000	2287	2709	2289	2290	2291	2292	2293	2294	2295

5		
10		
15		
20		
25		
30		•
35		
40	ŀ	
45		
50		

_			· · · · ·								-		•	-	- 1		1	- !		1
	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatuse	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	Iron-binding protein		hypothetical protein
	Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			59:7	60.8	75.5	76.0	55.2	60.9	64.4	68.3	71.1	68.0	9'29	73.5
	Identify (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterlum smegmatls ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13	-		Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti IdhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 yffH
	db Match		sp:HIS7_STRCO	sp:HISB_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			prt:2321269A	pir.RPECR1	prf:2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	SP.GALR_ECOLI	sp:FHUC_BACSU	prf:2423441E	pir.G70046	pir:G70046	sp.YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	1011	966	798	1038	348	594	441
	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	+		2229900	<u> </u>		2232016
	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611			2222528		2226763	2227779	2227906		2230937			5814 2232456
	SEO NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808			5811			
	SEO NO.			2298	5299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

Corynebacterium glutamicum AS019

49.6

DNA polymerase III

1183 415

80.5

53.3

Streptomyces coelicolor A3(2) dnaE Catharanthus roseus metE

prf.2508371A

2248358 2252856 2253659 2254642

2251939 2252017

5832 5833 5834

pir:S57636

1203 3582 840 468 918

2247006 2246295

5831 2248208 2246450

5830

2330 2331

histidine-binding protein precursor chloramphenicol sensitive protein

279

73.8

37.6 21.5

Escherichia coli K12 rarD

Sp.RARD_ECOLI sp:HISJ_CAMJE

55.7 64.7

hypothetical membrane protein

-198

22.7

Archaeoglobus fulgidus AF2388 Campylobacter Jejuni DZ72 hisJ

pir:D69548

2253192

2253725

2334

2333

5	- Co	epsilon cham		se synthase				*		lase alpha chain		! ! !	es e		es	
10	Function	DNA polymerase III epsilon cham		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		mallooligosyltrehalose trehalohydrolase	hypothetical protein	threonine dehydratase	
15	Matched length (a.a.)	355		814	322			-		375	120		999	214	436	
20	Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3	
	Identity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3	
25	s gene	color A3(2)		36 tre Y	durans					nescens	color A3(2)		36 tre.Z	3	lutamicum	
30 + McT	Homologous gene	Streptomyces coelicolor A3(2) SCIB.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA	
40	db Match	gp:SCI8_12	1	pir.S65769	gp:AE002006_4					sp:UXA1_PHOLU	gp:SC7H2_5		pir.S65770	sp:YVYE_BACSU	sp.THD1_CORGL	
	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	202
45	Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892
50	Initial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386
	SEO NO.	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829
55	SEO NO.	2315	2316	2317	2,718	2319	2320	2321	2322	2323	2324	2325	2326	1212	2328	2329

Į						Table 1 (continued)			Matched	
ш≌ .	SEO NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
	5836 225	225558	2254683	978	sp.GS39_BACSU	Bacillus subtilis 168 ydaD	48.2	80.0	280	short chain dehydrogenase or general stress protein
	5837 225	2257024	2255738	1287	sp:DCDA_PSEAE	Pseudomonas aeruginosa lysA	22.9	47.6	445	dlaminoplmetate (DAP) decarboxylase
. ~	5838 225	2259312	2258362	951	sp.CYSM_ALCEU	Alcaligenes eutrophus CH34 cysM	32.8	64.3	314	cysteine synthase
, ~	5839 225	2259999	2259421	579						
		2260931	2260002	930	sp:RLUD_ECOLI	Escherichia coli K12 rluD	36.5	61.0	326	ribosomal large subunit pseudouridine synthase D
1 .=	5841 226	2261467	2260934	534	sp:LSPA_PSEFL	Pseudomonas fluorescens NCIB 10586 IspA	33.8	61.7	154	lipoprotein signal peptidase
1.3	5842 226	2261688	2262689	1002						
1 1	5843 226	2262850	2264499	1650	pir.S67863	Streptomyces antibioticus oleB	36.4	64.0	550	oleandomycin resistance protein
110	5844 226	2264996	2265298	303						
LÓ	5845 226	2265108	2264509	900	prf:2422382P	Rhodococcus erythropolis orf17	38.7	57.6	158	hypothetical protein
110	5846 226	2265420	2266394	975	sp:ASPG_BACLI	Bacillus licheniformis	31.2	62.0	321	L-asparaginase
II	5847 226	2268297	2266897	1401	sp:DINP_ECOLI	Escherichia coli K12 dinP	31.8	60.7	37.1	DNA-damage-Inducible protein P
1 0		2269245	2268388	858	sp:YBIF_ECOLI	Escherichia coll K12 ybiF	31.5	61.5	286	hypothetical membrane protein
. 2	5849 22	2270261	2269260	1002	gp:SCF51_6	Streptomyces coelicolor A3(2) SCF51.06	44.3	73.1	334	transcriptional regulator
: 10	5850 22	2270304	2270435	132						
		2270884	2270258	627	gp:SCF51_5	Streptomyces coelicolor A3(2) SCF51.05	42.0	67.0	212	hypothetical protein
	5852 22	2274149	2270988	3162	sp:SYIC_YEAST	Saccharomyces cerevisiae A364A YBL076C ILS1	38.5	65.4	1066	isoleucyl-IRNA synthetase
1 10	5853 22	2274688	2274473	216						
ľ	5854 22	2275861	2274767	1095						
ı										

ĺ			-	:		!		=	:	÷ 2				1		
5 .	Function	nbrane protein	hypothetical protein (putative YAK protein)	lein	tein	tein	ein	cell division initiation protein of cell division protein	uramate alanine	UDP-N-acetylglucosamine-N- acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaptenol N- acetylglucosamine pyrophosphoryi- undecaprenol N-acetylglucosamine	lein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			ıylmuramoyl-	UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanyl ligase
10	J.	hypothetical membrane protein	hypothetical prol protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initis division protein	UDP-N-acetylmuramate ligase	UDP-N-acetylglucosamine-N- acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol acetylglucosamine pyrophosp undecaprenol N-acetylglucosa	cell division protein	UDP-N-acetylmu glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramo glutamyl-2,6-diaminop alanyl-D-alanyl ligase
15	Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110			365	494
20	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	93.8	99.5	9.66	1.66			63.8	64.2
	Identity (%)	46.3	99.3	7.78	99.2	39.0	98.6	93.6	99.4	98.9	99.4	99.1			38.6	35.0
<i>25</i> ହି		s	ntum	E	ntom		ntum	E	En	ntu	untru	entum entum				
8 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum tts.2	Corynebacterium glutamicum ttsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermenium ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
35		Mycol H37R	Brevil	Coryr	Brevil yfih	Mus	Brevi fts2	Con # So	Corya	Brevi	Brevi ATC	Brevi			Esch	Esch
40	db Match	plr:F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	prt:2420425C	GP. AB028868_1	Sp.FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			Sp:MRAY_ECOLI	sp.MURF_ECOLI
·	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
45	Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
50	Initial (nt)	2276637	2277336	2278078	2278859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEO NO.	5855	5856	5857		5859		5861	SR62	5863	5864		5866	5867	5868	5869
55	SEO NO.	2355	2356	2357	2358	2359	2360	2361	2362		2364	 2365	2366	2367	2368	2369

	٢		. !	1	T	T		$\neg \tau$		T	1	- !		T	T	1		T	
5			rialanyi-D-	e .	ii.			e protein				ydrofulate	sterase	ne protein		1	in kinase		ne protein
10		Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5, 10-methylenetetrahydrofolate reductase	dimethylallyltranstransterase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase	·	hypothetical membrane protein
15		Matched length (a.a.)	491	57	650	:	323	143	137		190	303	329	484		125	684		-411
20		Similarity (%)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	70.6	62.0	9.69		68.8	62.4		58.4
		Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
25 '	(pan	<u>.</u>	ų	nentum	sa рърв		losis		losis			1326	K 1050			ulosis	or A3(2)		
30	Table 1 (continued)	Homologous gene	Bacillus subtills 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
35			 	ъō	ď		Σï	ΣΣ	ΣI	<u> </u>		 	20			< 1	0, 1		
40		db Match	sp:MURE_BACSU	GSP:Y33117	pir:S54872		pir:A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp:METF_STRLI	pir.S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
		ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	207	369	2148	651	1236
45		Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
50		(nl)	1 60	2291197	2293164	2294117	!	2295804	2296898	2297653	2297866	2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
		SEO.	5870	5871	5872			5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	5886
55			(ANG)	2371	2372			2375	2376	2377		2379	2380	2381	2382	2383	2384	2385	2386

_		<u>-</u>	• •				-;-			 ;			;			
	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acytransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske (eF e-2S) iron-sulfur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
	Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201	203	278
	Similarity (%)	62.0	87.9	7.77	64.5	57.1			100.0	100.0	75.7	8.09	61.3	64.7	57.1	83.1
Ī	Identity (%)	30.4	6.99	58.4	35.1	28.2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268,21c	Mycobacterium tuberculosis H37Rv RV2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacilius mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir.G70936	gp:AF260581_2	gp:MLCB268_20	pir.G70936	sp.CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp:P60_LISGR	prf.2503462K	gp.AF107888_1	sp.Y005_MYCTU
•	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314038	2313916	2314236	2315678	2317633	2318804	2318968	2321472	2323088	2324311
	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833			2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEO NO.		5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	2900	5901
	SEO		2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

10	
15	
20	
25	
30	
35	
40	
45	
50	

		,			,												1	_	
	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrame c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivt, protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		- 210
	Similarity (%)	70.7		71.0	53.9	98.8	100.0	60.2	64.0	66.9	49.8		68.5	70.3	62.9	67.0	68.5		65.7
	Identity (%)	36.7		38.6	28.7	7'66	100.0	35.0	43.0	37.8	25.3		38.6	40.1	£.9E	40.2	48.9		36.7
Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv RvZ199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 IIsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seculensis pdhB		Arabidopsis thallana
	db Match	sp:COX3_SYNVU		Sp:Y00A_MYCTU	sp:COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	sp:coBU_PSEDE	sp: COBV_PSEDE		prf:2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf:2110282A	gp:AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
	SEQ NO.	5902	5903	5904	5905	5906	5907	2908	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
		2402	2403	2404	2405	2406	2407	2408	2409	241ن	2411	2412	2413	2414	2415	2416	2417	2418	2419

						Table 1 (confinued)				
SEO NO.	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2420	5920	2342304	2343347	1044	1044 Sp.LIPA_PELCA	Pelobacter carbinolicus GRA BD 1 lipA	44.6	70.9	285	lipoic acid synthetase
2421	5921	2343479	2344258	780	sp:Y00U_MYCTU	Mycobacterium tuberculosis H37Rv Rv2219	45.5	76.7	257	hypothetical membrane protein
2422	5922	2344431	2346047	1617	sp:YIDE_ECOLI	Escherichia coli K12 yidE	32.9	67.8	559	hypothetical membrane protein
2423	5923	2347491	2346289	1203	gp:AF189147_1	Corynebacterium glutamicum ATCC 13032 tnp	100.0	100.0	401	transposase (ISCg2)
2424	5924	2347505	2347804	300						
2425	5925	2348548	2348078	471	gp:SC5F7_34	Streptomyces coelicolor A3(2) SC5F7.04c	41.4	63.7	157	hypothetical membrane protein
2426	5926	2350620	2350408	213						!
2427	5927	2351022	2351996	975			31.0	44.0	145	mutator mutT domain protein
2428	5928	2351310	2350912	399	pir.872308	Thermotoga maritima MSB8 TM1010	36.7	65.6	128	hypothetical protein
2429	5929	2351909	2351310	900						
2430			2352828	849	sp:LUXA_VIBHA	Vibrio harveyi łuxA	25.0	6.09	220	alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)
2431	5931	2352833	2353225	393	pir.A72404	Thermotoga maritima MSB8 TM0215	40.5	73.0	111	protein synthesis inhibitor (translation inliation Inhibitor)
2432	5932	2355156	2355398	243						
2433	5933	2355440	2355180	261						
2434	5934	2355521	2356843	1323	prf:2203345H	Escherichia coli hpaX	21.9	53.4	433	4-hydroxyphenylacetate permease
2435	5935	2356794	2357354	561	gp:SCGD3_10	Streptomyces coelicolor A3(2) SCGD3.10c	42.4	72.8	158	transmembrane transport prutein
2436	5936	2357264	2357707	444	9p:SCGD3_10	Streptomyces coelicolor A3(2) SCGD3.10c	31.4	66.1	118	transmembrane transport protein
2437	5937	2357484	2357290	195						
2438	5938	2357726	2358130	405						

5	
10	
15	
20	
25	
30	•
35	
40	
45	
50	

Table 1 (continued)

																			_
	Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	Insertion element (IS402)
Matched	(a.a.)		214	809	441	392	601	. 54	374	358		382		249	378	204	156	281	129
Similarity	(%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	. 65.5	9.99
Identity			57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	28.0	46.2	40.9	32.6
	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) ginE	Thermotoga maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coellcolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacla
	db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp:GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	3 sp:GAL1_HUMAN	1266 gp:AF174645_1		6 sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	Sp:GPH_ECOLI_	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:YI21_BURCE
J G	(pb)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
\vdash	(nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
179	(tu)	2358695	2359416	2362748	2364155	2364352	2365587	2367652	2367791	2370381	2370423		2372561	2373289	2374462	2374544	2375214	2375787	5956 2377390
SEO	NO.	5939	5940	5941	5942	5943	5944	5945	5946	5947	5948	5949	5950	5951	5952	5953	5954	5955	5956
SEO	NO.	2439		2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

Table 1 (continued)	Function (nt) (nt) (bp) Homologous gene (%) (%) (aa) Homologous gene (%) (%) (aa)	357 2377726 2377484 243	2377899 2378276	359 2378292 2378489 198	360 2379312 2378884 429 sp.Y01K_MYCTU H37Rv Rv2239c 55.2 77.6 134 hypothetical protein	2379426 2379770 345	2380033	2382240 2380785 1478	2383615	2384464 2385426 963	2384509	967 2385447 2384509 939 pir.H71693 RP367 RP367	1968 2385771 2386580 810 sp.CBPA_DICDI cbpA.	969 2386284 2385913 372		2387667 2387957 291 sp.ACP_MYXXA 25232 acpP 42.7 80.0 75	2387997 2388821 825 sp:NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 N-acetylglucosamine-6-phosphate	3973 2388838 2389869 1032 gp:AE001968_4 DR1192 33.6 65.7 289 hypothetical protein	5974 2390904 2390434 471
	ļ																		974 23909
	SEO SEO Initial	5957	5958	2459 5959 237826	2960	2461 5961 23794	5962	5963	5964	2465 5965 23844	5966	2467 5967 23854	2468 5968 23857	2469 5969 23862	5970	2471 5971 23876	2472 5972 2387	2473 5973 2388	2474 5974 2390

		-	- T					precursor	!		!		4				osphate		!	บ	
10	Function	hypothetical protein						alkaline phosphatase D prec		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine D-fructose -6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15	Matched length (a.a.)	172					7	530		594	99		633	98			636			414	171
20	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
<i>25</i>	s gene	icolor A3(2)						B phoD		icolor A3(2)	oerculosis		negmatis	eofaciens BMK			negmatis			negmatis dgt	tidis NMA0251
30 - Table 1 (Continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
35 40	db Match	gp:SC4A7_8						sp:PPBD_BACSU E		gp:SCI51_17	pir:G70661		pri:2413330B	gp:XXU39467_1			gp:AF058788_1			prf:2413330A	gp:NMA1Z2491_23
1	ORF (bp)	825 91	492	171	546	465	342	1560 s	714	1836 9	240 p	675	1899 р	462 g	243	929	1869 g	324	1152	1272	675
45	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671		2494 5994 2406936
	SEQ.	5975	5976	5977	5978	5979	5980	5981	5982		5984	5985	5986	5987	5988	5989	2990	5991	5992		5994
. 55	SEO NO.	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2402	249.1	2494

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

ĺ		1					_		 -	0		\neg		· - 1	0.5		<u>_</u>	\neg
	Function	hypothelical protein	hypothetical protein	:	glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C.glutamicum?)	hypothelical membrane protein	undecaprenyl diphosphate synthase	hypothelical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
•	Matched length (a.a.)	692	138		508	89	132	529	224	233	245	296	432	157	85	344	248	,
	Similarity (%)	63.6	54.4		6.69	73.0	5.07	46.7	0.78	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichla coll K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2)	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterlum tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
	db Match	pir.B70662	gp:AE003565_26		pir: S58522	pir.E70585	sp:FUR_ECOLI	pir.A70539	gp:AF162938_1	sp:UPPS_MICLU	pir.A70586	gp:AF072811_1	sp:Y1DE_MYCTU	sp:YN67_MYCTU	GSP:Y75650	sp.PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
	Initial (nt)	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEO NO.	5995	5996	5997	5998	5999	9009	6001	6002	6003	6004	6005	9009	6007	8009	6009	6010	6011
	SEO NO (DNA)		2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2505	2507	250R	2509	2510	2511

EP 1 108 790 A2

glycosyl hydrolase or trehalose synthase

594

84.

Mycobacterium tuberculosis H37Rv Rv0126

pir.G70983

2439906

2438113

2527

hypothetical protein

449

58

32.1

Mycobacterium tuberculosis H37Rv Rv0127

pir:H70983

1089

2440994

2439906

6028

2528

peptidyl-dipeptidase

690 453

68.3

40.3

Salmonella typhimurium dcp

Anisopteromalus calandrae

gp:AF064523_1 Sp.DCP_SALTY

1179 1794

2034

2434805 2438049

2436838

6025

2525

2436871

6026 6027

45.7

24.1 65.2

carboxylesterase

Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics useful ABC transporter, Hop-Resistance long-chain-fatty-acid--CuA ligase oxygen-independent coproporphyrinogen III uxidase 5 agglütinin attachment subunit precursor (groEL repressor) polypeptides predicted to be a antigens for vaccines and heat-Inducible transcriptional 4-alpha-glucanotransferase heat shock protein dnaJ Function 10 diagnostics repressor protein 15 Matched length (a.a) 380 738 20 334 320 611 8 34 68 Similarity 64.9 51.0 53.0 79.6 75.1 55.4 64.4 77.4 3 64.1 20 Identity (%) 28.3 29.5 47.0 36.6 48.0 47.1 48.2 g 25 Streptomyces coelicolor A3(2) SC6G10.04 Table 1 (continued) Lactobacillus brevis plasmid horA Bacillus stearothermophilus hemN Saccharomyces cerevisiae YNR044W AGA1 Escherichia coll K12 malQ Streptomyces albus dnaJ2 Homologous gene Streptomyces albus hrcA Neisseria gonorrhoeae Neisseria meningitidis 30 35 sp:AGA1_YEAST Sp:MALQ_ECOLI gp:AB005752_1 1845 gp:SC6G10_4 db Match prf.2421342B prf.2421342A prf:2318256A GSP:Y74827 GSP:Y74829 40 2118 1146 1023 693 378 1863 255 333 519 204 180 ORP (pp) 99 2432413 2434573 2422700 2423915 2426776 2428184 2434370 2433614 2433875 2434440 45 2426699 Terminal 2424965 2427807 3 2434619 2434776 2423845 2427468 2430028 2432508 2433868 2430296 2424937 2426181 2428184 2434207 2425954 E 50 6015 6016 6018 6019 6020 6022 6012 6013 6014 6017 6021 6023 6024 õ 2518 2520 2512 2513 2514 2515 2516 2517 2519 2552 2523 2524 SEO NO.

168

		r		ī	Τ	τ_	_	Τ-	,	i -	T-	т—	T .			· T	_	_				,
5		Function	sopentenyl-diphosphate Detta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
15		Matched length (a.a.)	189						325	426	343		324	483	203		467		546	315	27.1 G	372
20		Similarity (%)	57.7						100.0	100.0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
		Identity (%)	31.8						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
30	ianie i (commueo)	Homologous gene	Chlamydomonas reinhardiii ipi1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebaclerium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium melilati mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichla coll K12 dppC	Escherichia coli K12 oppD
35	-		5						ATC		Ν		Sin	Esc	Esc		Salr		Has	Вас	Esc	Escl
40		db Match	pir. T07979						gp:CORCSLYS_1	sp.BRNQ_CORGL	Sp:LUXA_VIBHA		gp:AF155772_2	Sp.GLCD_ECOLI	sp:YDFH_ECOLI		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp.DPPC_ECOLI	prf:2308258MR
		ORF (bp)	585	222	438	1755	099	519	975	1278	826	225	927	2844	711	282	1347	423	1509	996	828	1437
45		Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
50		Initial (nt)	2441589	2441669	2442355	2443356	2444015	2444551	2444735	2445716	2447021	2450844	2451785	2454637	2454725	2455733	2457066	2457759	2457863	2459371	2460340	2461163
•		SEQ NO.	6029	6030	6031	6032	6033	6034	6035	6036	6037	6038	6039	6040	6041	6042	6043	6044	6045	6046	6047	6048
55		SEO NO (DNA)	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540		2542		2544	2545	2546	2547	2548

_		Ţ		-i		 -		1.				•	· ·		-	!	:	:		
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine blosynthesis protein a	hypothetical protein	glycine betaine transporter	-			large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
	Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603
	Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	71.7				71.9	73.7	29.0	73.0	83.6
	identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2, 16c		Homo sapiens	Chlamydomonas reinhardtii	-	Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	pir.D70367	4			sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp:BETP_CORGL			:	prt:2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	SP.LEPA_BACSU
	ORF (bp)	507	1_		+	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
	Terminal (nt)	2481543	2462602	2464143	1	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	0462046	- -		+	2465767	 	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379		2481692	2482480	2483845	6067 2484392
	SEO			9030		6053		6055	6056	6057	6058	6909	909	1909	6062	6063	6064	909	9909	5067
			6,000			2553		7555		<u> </u>	255B	2559	2560	2561	2562	2563	2564	2565	2566	2567

												-						
	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mulase	hypothetical protein	hypothetical protein		gamma-glutamyl phospitate reductase or glutamate-5- semialdehyde dehydrugenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
	Matched fength (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
	Similarity (%)	69.7	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8.66	100.0		78.2
	Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.6	68.0		99.1	99.3		58.9
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC 123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
	db Match	pir:H70883	sp:RS20_ECOLI	sp:RHTC_ECOLI	gp:SC6D7_25	pir:H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir:F70685	pir.G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
	ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	878	1023	1296	912	711	1503
	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
	Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911		2491858	2492343	2493178	2494237		2496607	2496803	2499511
	SEQ NO.	8909	6909		6071	6072	6073	6074	6075		6077	6078	6009	6080	6081	6082	6083	
	SEO NO (DNA)		2569			2572	2573	2574	2575	2576	2577	257R	2579	2580	25A.	2582	2583	2584

	Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	rlbonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothelical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	422	276			81	101	988				195	436	117	143	134		. 92	112	- 118
	Simitarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	76.9	67.8	89.6		67.4	64.3	68.6
	Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	38.8	33.9
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
	db Match	sp.PBUX_BACSU				sp:RL27_STRGR	prf:2304263A	sp:RNE_EÇOLI				gp:SCF76_8	pir:S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
	ORF (bp)	1887	843	621	396	264	303	2268	549	573	747	609	1308	378	450	408	380	342	465	423
	Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
	Initial (nt)	2499783		2502735	2503870	2504247	2504602	2507098	2507115	2507138	2508094		2510830	2511046	2511427	2512356	2512768		2513618	2514114
	SEQ NO.	 -	-	6087	6088		0609	1609	6092	6093	6094	6095	9609	2609	8609	6609	6100	6101	6102	6103
	SEO NO.			2587	_	<u> </u>	2590	2591		2593	2594	2595	25a6	2507	 259R	2599	2600	2601	2602	26n3

_				<u> </u>				\neg			 -	\neg	T		T	\neg		T	$\neg \neg$	
	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport systems	heat shock protein driak	lysine decarboxylase	malate dehydiogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachiorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA: 3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
	Matched length (a.a.)	451				915	521	909	170	319	207	208	357	338	444	286	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	82.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtills 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebslella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
-	db Match	pri:2410252B				sp:SYV_BACSU	pir.A38447	sp:DNAK_BACSU		sp:MDH_THEFL	gp:SC4A10_33	gp.AF065442_1	prf.2513416F	gp:FSU12290_2	prf.2513416G	gp:KPU95087_7	prf:2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522285	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209		2523248	2523561	2524915	2525099		2527135	2529480		2530891	2532601	2533353
	SEQ NO.		6105	6106	6107	6108	6109	6110		6112	6113	6114	6115		6117	6118	6119	6120	6121	6122
	SEO		2605	_		2608		2610		2612	2613	2614			2617			2620	2621	2622

EP 1 108 790 A2

			ein			rolase		rolase			alpha	Dela			!					ŧ
5			olic prot			actone	ı	one hyd actone		nate	genase	yenase		ase		ase		se		mqns a
		Function	protocatechuate catabolic protein	se		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	otein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
10		T.	itechuat	beta-ketothiolase		3-oxoadipate e and 4-carboxyr decarboxylase	iptional	3-oxoadipate en and 4-carboxyr decarboxylase		3-carboxy-cis, ci cycloisomerase	atechua I	atechua' I	hypothelical protein	olacton		ate cycl		ol 1,2-d		1,2 dio.
			protoca	beta-ke		3-oxoa and 4-d decarb	transcr	3-oxoa and 4-c decarb		3-carbo cyclois	protoca subunit	protocal subunit	hypoth	шпсоп		шпсоп		catech		toluate
15		Matched length (a.a.)	251	406		256	825	115	,	437	214	217	273	92		372		285		- 437
20		Similarity (%)	82.5	71.9		76.6	43.0	89.6		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
		Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		80.8		72.3		62.2
25 '	ed)		P pcaR			J.	43(2)	aL		38	g _G	H.	sis	sis		P catB		us catA		smid
	Table 1 (continued)	Homologous gene	acus 1C	ha bktB		acus pce	elicolor /	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA	,	utida pla
30	able 1	omologo	do snoo	a eutropl		do snoo	yces co)	do snoo		do snoo	do snoo	do snooc	sterium t sv0336	terium t		occus op		iu spoo		nonas pi
		Ι.	Rhodococcus opacus 1CP	Raistonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1.10	Rhodoca		Rhodoce	Rhodoce	Rhodoc	Mycobacterium H37Rv Rv0336	Mycoba catC		Rhodoc		Rhodoci		Pseudomonas putida plasmid pDK1 xylX
35		£								,	0					400F	,	À		
		db Match	prf:2408324F	prf.2411305D	,	prl:2408324E	gp:SCM1_10	prl:2408324E		prf:2408324D	prf:2408324C	pri.2408324B	pir:G70506	prf.2515333B		Sp:CATB_RHOOP		prf:2503218A		gp:AF134348_1
40		4 0	_	24 prf.2	-		61 gp:S		3	16 prf:2			64 pir.G		-	19 sp:C	9		-	170 gp:A
		ORF (bp)	792	12	912	753	8	366	829	-=	612	069	=	291	17.1	=	909	855	141	7
45		Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50		Inilial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2545315
		SEO NO.	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
55		SEO NO.	2623	2624	2625	292	2627	2628	2629	26.20	. 26.7	2632	2633	2634	2635	2636	2637	2638	2639	2640

					a l	<u>, i</u>	<u>5</u>		 				-							
5		Function	genase subunit	genase subunit	dohexa-3,5-dien drogenase	Remily with ATI	transport proteir ate transporter	rane transport	Clp protease nit 2	Clp protease nit 1	tein	olyl isomerase) eln)	tein	g protein	tein				tein	
10		Fu	toluate 1,2 dioxygenase subunit	toluate 1,2 dloxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP- binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolydic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15		Matched length (a.a.)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
20		Similarity (%)	83.2	91.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
		Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
25	ntinued)	gene	a plasmid	a plasmid	a plasmid	ropolis thcG	aceticus	aceticus	color M145	color M145	is ORF154	ı tig	color A3(2)	ans LC411	1		riatum ORF1		Irlatum ORF 1	Iriatum ORF1
30	- Table 1 (continued)	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xylL	Rhodococcus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptomyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtills 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterlum striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
35			:	6							4									
40		db Match	gp:AF134348_2	gp:AF134348_	gp:AF134348_4	gp:REU95170_1	sp.PCAK_ACICA	sp.BENE_ACICA	gp:AF071885_2	gp:AF071885_1	gp:SIS243537	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf:2301342A		prf:2513302C		prf:2513302C	prf.2513302C
	1	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45		Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50	•	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
		SEQ NO.	6141	6142	6143	6144	6145	6146	6147	6148	6149	6150	6151	6152	6153	6154	6155	6156	6157	6158
55		SEO NO.	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

5	
10	
15	
20	
25	
30	
35	
40.	
45	
50	

	Function	-		galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
	Matched length (a.a.)			140	248	199	890	358		!		104			381	290	392		538	286	316	
	Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
Table 1 (continued)	Homologous gene			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 crtl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes litB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
	db Match		•	sp:LACB_STAAU	sp:YAMY_BACAD	pir.A70866	Sp: AMPN_STRLI	pir:B70206				gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir.S47696	
	ORF (bp)	390	985	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	838	1707
	Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
	Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	2569211	2571460	2571510	2572193	2572677	2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	6:79 2582417
	SEO NO. (a.a.)	6159	6160	6161	6162	6163	6164	6165	6166	6167	6168	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178	
	SEO NO (DNA)		2992	266	2667	. <u> </u>	2664	2665	2666	2667	266R	5992	2670	2671	7677	. 2673	2674	2675	2676	2677	2678	5679

		_																			—
10			Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacelyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
15			Matched length (a.a.)		411	482	, 218	235	240	94	238	126	396	196	127		. 55	563	172	200	536
20			Similarity (%)		63.5	47.9	79.4	60.0	55.0	47.0	65.1	77.0	60.4	68.9	61.4		0.09	79.6	62.2	56.7	52.6
			Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
30		Table 1 (continued)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actil	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10, 19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yijK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
35 40			db Match	•	sp:ARGD_CORGL A	pir.A70539 H	sp:YA26_MYCTU N	Sp:PHBB_CHRVI C	pir.A40046 S	GSP:Y74375 N	gp:AF106002_1 tt	9p:MLCB1610_9 N	SP.CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.B72589 A	Sp:YJJK_ECOLI E	pir.E70867	sp:Y05L_MYCLE	pir.C69676
	,	,	ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
45			Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
50			Initial (nt)	2582564	2584613	2586180	2587976	2589432	2589565		2592365	2592402	2592838	2594594	2595061	2595808	2595983	2597715	2598483	2600764	2601461
			SEO NO.	6180	6181	6182	6183	6184	6185	6186	6187	6188	6189	6190	6191	6192	6193	6194	6195	6196	6197
55			SEO NO.	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	7690	2691	2692	2693	2694	2695	2696	2697

																	$\overline{}$	\neg		\neg
5		Function			multiple sugar-binding transport system permease protein	muttiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or celloblose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
15		Matched length (a.a.)			279 8	292		462		386		154		207	183		412	255	258	179
20		Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
		Identity (%)		,	39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
25	Table 1 (continued)	Homologous gene			rutans G	nutans F		acterium		eticuli msiK		omyces pombe		hodochrous orf5	s sp. PCC7942		aritima MSB8	li K12 gip	tuberculosis	li K12 orn
30	Table 1	Homolog		٠	Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
40	·	db Match			SP. MSMG_STRMU	sp.MSMF_STRMU		prt.2206392C		prt.2308356A		prf.2317468A		prf.2516398E	prf.2513418A		pir.A72312	sp:GIP_ECOLI	pir.E70781	sp:ORN_ECOLI
•		ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	969	789	762	345	1182	750	798	657
45		Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
50		Initial (n1)	2604573	2604583	<u> </u>	2606369	2606444	2607889	2609426		2611523		2612462	2613712	2614649	2615451	<u></u>	2617246	2618072	2618882
		SEQ NO.	6198	6199	6200	6201	6202	6203	6204		8208	 -	6208	<u> </u>	6210	6211		6213		6215
55		SEO	2698	2600	2700	2701	2702	2703	2704	2705	270F	2707	2708	2700	27 10	2711	2712	2713	2714	2715

5	
10	
15	
20	
25	
30	•
35	
40	
45	
50	

	Function	ferric enterochelin esterase	lipaprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate Isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
	Matched length (a.a.)	454	398				436			131	358	26		335		291	185	75	141	41-
	Similarity (%)	50.9	71.9				8.66			63.4	69.3	72.2		60.9		45.0	74.8	80.0	73.8	61.4
	Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		28.0		32.0	48.1	42.7	46.8	32.5
Table 1 (continued)	Hamologous gene	Salmonella enterica IroD	Mycobacterium tuberculosis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coll K12 bcp	Streptomyces coelicolor A3(2) SC111.01c
	db Match	prf.2409378A	pir:C70870				gp:SCU53587_1			gp:AF085239_1	sp:GLSK_RAT	pir.A36940		sp:UXAC_ECOLI		prf.1814452C	prf:232444A	pir.E70870	sp:BCP_ECOLI	
•	ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	
	initia!	2620728	2622181	2622961	2623770	2623803	2625358	2625600			2628121	2628376	2628878		2630636	2631270	2632543	+	2633600	
	SEQ NO.	 -		6218		6220		6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
	SEO			2718				2722	2723	2724	2725	2726	7.67.6	2728	2729	2730	2731	2732	2733	2734

5	
10	
15	
20	
25	
30	•
35	
40	i
45	
50	•

		5	leii	rotein	!	İ			ıuteiti	rotein						notein			
	Function	phosphopantethlene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsufatase
	Matched length (a.a.)	145	473	113		3029	404	230	112	113	202	236				428	175		250
	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	0.69	76.7	81.4				58.2	97.2		74.4
	Identity (%)	9.9 <u>5</u>	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		48.0
Table 1 (conlinued)	Homologous gane	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	-	Mycobacterium leprae ats
	db Match	gp:8AY15081_1	gp:AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir.D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	sp:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8	-	Sp:Y03O_MYCLE
•	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	582	1362	534	099	765
	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657738
	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656236	2656452	2657633	2658500
	SEO NO.		6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
	SEO NO.	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

EP 1 108 790 A2

5	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		суtосhrome с охіdase chain I	
15	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
20	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
Table 1 (continued)	as gene	glutamicum		licolor A3(2)	berculosis		o. nylC	berculosis	iberculosis		ıberculosis		inG	iberculosis	elicolor A3(2)	(12 serB		ıbercutosis	
Table 1	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c	-	Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
40	db Match	pri.2516259A	,	gp:SCE22_22	Sp.Y03M_MYCTU		pir.A47039	SP.Y03H_MYCTU	sp:Y03G_MYCTU		sp:Y03F_MYCTU		prf: 1816252A	sp:Y0A8_MYCTU	pir.T34684	sp.SERB_ECOLI		pir.D45335	
	ORF (bp)	852	636	492	747	168	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
45	Terminal (nt)	2658608	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
50	Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEQ NO.	+	6254	6255	6256	6257	6258	6229	6260	6261	6262	6263	6264	6265	6266	6267	6268	6269	6270
55	SEO NO.	2753	2754	2755	2756	2757	2758	2759	2760	2761	2767	2763	2764	2765	2766	2767	2768	2769	2770

Bacillus subtilis mmg (for mother cell metabolic genes)

56.0 66.2

27.0 33.8

Bacillus subtilis 168 mmgE

sp:MMGE_BACSU

1371 834 792

2686289 2687148 2687449

2684919

6286

pir.T05174

6287 2686315

2787 2788

phosphoglucomutase

228

90.6

61.7

Escherichia coli K12 pgm

Sp.PGMU_ECOLI

1662

2688389

hypothetical protein

284

Arabidopsis thaliana T6K22.50

										-	$\neg \tau$	- 1	- 1			
5	ion	ctase beta-chain		plion factor	essor or	FIR2 precuisor	rane protein	ctase alpha-		ein L36	(D(+) synthetase					nase
10	Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase
15	Matched length (a.a.)	334	159	256	225	124	20	707		41	279			257	96	337
20	Similarity (%)	99.7	64.2	60.2	60.4	62.1	86.0	100.0		79.0	78.1			56.4	68.8	52.8
	Identity (%)	99.7	31.5	32.8	27.6	24.2	0.08	6.86		58.0	55.6			30.7	41.7	26.1
25 (juliuned)	gene	tamicum	finA	otor A3(2)	ıtamicum	evislae TIR2	dus AF0251	ıtamicum			nadE			CC6803	rculosis	ophilus
& - Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streplomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 slr1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh
40	db Match	gp:AF112536_1	SP:FTNA_ECOLI	gp.SCA32WHIH_4	pir.140339	sp:TIR2_YEAST	pir.C69281	gp:AF112535_3		SP:RL36_RICPR	sp:NADE_BACSU			pir:S76790	plr:G70922	sp:ADH2_BACST
1	ORF (bp)	1002	486	750	099	438	276	2121	315	141	831	93	498	747	288	1020
45	Terminal (nt)	2673338	2675289	2676240	2676243	2677377	2676918	2677478	2680784	2681223	2682376	2681464	2683616	2682379	2683131	2683627
50	Initial (nt)	2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470	2681363	2681546	2681556	2683119	2683125	2683418	2684646
	SEQ NO (a.a.)	6271	6272	6273	6274	6275	6276	6277	6278	6279	6280	6281	6282	6283	6284	6285
55	SEO NO.	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783	2784	2785

182

କ୍ର
inde
Sont
<u>ت</u>
읊
逕

						rapie i (confined)				
SEO NO.	SEO NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2790	6290	2690150	2690437	288	pir:F70650	Mycobacterium tuberculosis H37Rv Rv3069	41.7	64.3	84	hypothetical membrane protein
2791	1629	2690437	2690760	324	pir:D71843	Helicobacter pylori J99 jhp1146	25.4	61.5	122	hypothetical membrane protein
2792	6292	2690773	2691564	792	sp:YCSI_BACSU	Bacillus subtilis 168 ycsl	51.2	19.1	254	hypothetical protein
2793	6293	2691689	2693053	1365	gp:AF126281_1	Rhodococcus erythropolis	24.2	48.6	496	transposase (IS1676)
2794	6294	2693299	2694918	1620	sp.csP1_coRGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	24.8	49.6	355	major secreted protein PS1 protein precursor
2795	6295	2694926	2695279	354		-				
2796	9629	2695554	2695718	165						
2797	6297	2695766	2695320	447						1
2798	6298	2695812	2697212	1401	gp:AF126281_1	Rhodococcus erythropolis	24.8	46.6	200	transposase (IS1676)
2799	6539	2698150	2697383	768	-					
2800	6300	2699531	2698194	1338	sp:GLTT_BACCA	Bacillus subtilis 168	30.8	66.2	438	proton/sodium-glutamate symport protein
2801	6301	2700920	2701612	693						
2802	6302	2702466	2699926	2541	gp:SCE25_30	Streptomyces coelicolor A3(2) SCE25.30	33.0	69.0	873	ABC transporter
2803	6303	2702466	2703356	891						
2804	6304	2703194	2702487	708	gp:SAU18641_2	Staphylococcus aureus	45.4	79.8	218	ABC transporter ATP-binding protein
2805	6305	2704314	2704586	273	PIR:F81516	Chlamydophila pneumoniae AR39 CP0987	60.0	0.79	98	hypothetical protein
2806	9069	2704835	2704975	141	PIR:F81737	Chlamydia murldarum Nigg TC0129	71.0	75.0	42	hypothetical protein
2807	6307	2709878	2710555	878						
2808	6308	2710637	2711308	672	prf.2509388L	Streptomyces collinus Tu 1892 ansG	28.1	54.1	196	oxidoreductase or dehydrogenase
İ										

succinyl-CoA coenzyme A transferase

50

77.8

47.9

Clostridium kluyveri cat1 cat1

Sp:CAT1_CLOKL

1539

2729378

819

2728207

2729025 2730916

6325

6324

2824 2825

2821

transcriptional regulator

321

68.5

38.6

Azospirillum brasilense ATCC 29145 ntrC

sp:NIR3_AZOBR

1143

2732518

2731376

6327

2827

succinyl-CoA synthetase beta chain succinyl-CoA synthetase alpha chain UDP-N-acetylglucosamine 1-carboxyvinyltransferase 5 frenolicin gene E product O-acetylserine synthase transcriptional regulator Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein cysteine synthase methyltransferase 10 15 Matched length 400 213 305 172 (a.a) 8 205 417 281 291 75 83 8 42 Similarity 43.0 73.0 71.8 69.0 84.6 79.4 96.0 75.0 75.3 79.7 51.2 84.2 65.1 8 20 identity (%) 38,5 57.1 61.1 52.9 42.0 39.8 45.9 25.9 36.1 4 66 Aeropyrum pernix K1 APE1069 Bacillus subtilis 168 sucC 25 Streptomyces roseofulvus frnE. Streptomyces coelicolor A3(2) SC2G5.15c Coxiella burnetii Nine Mile Ph sucD Azotobacter vinelandii cysE2 Deinococcus radiodurans R1 DR1844 Fable 1 (continued) Mycobacterium tuberculosis H37Rv Rv0089 Mycobacterium tuberculosis H37Rv Rv1314c Acinetobacter calcoaceticus NCIB 8250 murA Chlamydia muridarum Nigg TC0129 Bacillus subtilis 168 cysK Homologous gene Chlamydia pneumoniae 30 35 sp:Suco_coxBu sp:SUCC_BACSU 924 sp.CYSK_BACSU SP:MURA_ACICA gp: AE002024_10 sp:Y02Y_MYCTU sp:Y089_MYCTU gp:AF058302_5 gp:SC2G5_15 prf.2417357C db Match GSP: Y35814 PIR:F72706 PIR:F81737 40 225 1194 1254 546 735 525 273 360 843 408 288 882 유 (학 141 195 570 2725384 2725843 2726786 2727399 2718436 2720319 2720385 2721295 2722857 2723609 2723770 2724478 2712374 2713453 2713842 2717993 45 Terminal 3 2727145 2728133 2721934 2723064 2725359 2725619 2726577 2718187 2721702 2724057 2719689 2719750 2721272 2713181 2713702 Initial (nt) 50 6315 6322 6316 6317 6319 6320 6321 6313 6314 6318 6323 6312 6309 6310 6311 SEO NO. (9.9.) 2815 2816 2817 2818 2819 2822 2823 2814 2820

2010 2811

DNA)

8

2813

2812

184

						—т			<u>-</u>			i		<u>-</u>		<u></u>	
5	Function			phosphate transport system regulatory protein	phosphate-specific transport component	phosphale ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
15		\dashv	-	Phore	phc cor	pho Per	pho	pho	BC		γ	η. Iy	bre arr	, h	γ	sy.	- al
	Matched	(a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482
20	Similarity	8		81.7	82.8	82.2	78.5	56.0	60.0		55.2	74.2	56.0	0.62	81.0	94.2	89.0
	. ≥	<u>8</u>		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
25 '	(2)			losis 2	sa pstB	losis	losis	losis	r A3(2)	•	יינ	losis	CAT2	6872	ılosis	6872	6872
30 Second	Homologous gene	n n		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c	•	Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosís H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterlum ammoniagenes ATCC 6872 purf
35	-	{		≨Ÿ	g G	ΣΫ́	££	£Ï.	<u>888</u>	_	1	ΣÏ	ပိ	0 % D	ΣÏ	2 2 2	2 4 2
40	Match			pir.E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir:H70583	gp:SCD84_18		sp:BMRU_BACSU	plr:E70809	gp:AF193846_1	gp:AB003158_6	pir.B70809	gp:AB003158_5	gp.AB003158_4
	ORF	(dq)	807	732	897	921	1014	1125	876	783	1095	289	942	1101	213	1074	1482
45	Terminal	(nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739558	2741358	2741636	2743785	2744222	2744881	2746083
50	Initial	(nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	5342 2747564
	SEO	(a. a.)	6328	6329	6330	6331	6332	6333	6334	6335	6336	A337	6338	6339	6340	6341	6342
55		(D N. C.	2828	2829	2830	2831	2832	2833	2834	2835	2836		2838	2839	2840	2841	2842

		_							-				_				$\overline{}$	$\overline{}$
5			Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15			Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
20			Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		77.9	.51.5		68.7	81.6	70.6
			tdentity (%)	57.3	75.9	67.7	64.0	77.8		80.3	81.0		48.2	28.0	-	37.4	49.0	41.8
25		Table 1 (continued)	us gene	ıberculosis	TCC 6872	TCC 6872	aricus	1 ATCC 6872		ATCC 6872	ATCC 6872		is gpo	ophila JMP636		uberculosis	imurium LT2	Pseudomonas sp. WO24 dapb1
30	•	Table 1 (Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium armmonlagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL	,	Corynebacterium arnmoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas s
<i>35</i>			db Match	pir:H70536	gp:AB003158_2		GP:SSU18930_21 4	gp.AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir.C70709	sp.DCTA_SALTY	prf:2408266A
	1		ORF (bp)	375	1017	741	186	2286	720	699	243	275	477	2748	276	687	1338	2118
45		٠	Terminal (nt)	2747683		2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50			Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402		2753237	2753298	2753804	2753992	2756851		2759200	2761649
			SEO NO.	6343	6344	6345	6346	6347	6348		6350	6351	6352	6353	6354	-	6356	6357
55			SEO NO.	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857

				i				<u>c</u>	: i		 i	5			ory.		ne or
10		Function		5-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthelase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthelase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity O-Thr aldolase
15		Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
20		Similarity (%)		89.1	95.0	62.3	86.4	80.2		58.4	67.6	98.8	99.6	70.5	72.7	69.5	53.9
		Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
25	Table 1 (continued)	s gene		rcc 6872	TCC 6872	ricus ATCC	TCC 6872	prae u296a		arkeri orf3	s subsp. lactis	glutamicum Iavum) MJ233	glutamicum lavum) MJ233	s M71plasmid	tima drrA	dans tipA	DK-38
30	Table 1 (c	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterlum ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammonlagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bloD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tlpA	Arthrobacter sp. DK-38
35					_2 P a C		-,			2				Ι,			
40		db Match		gp:AB003161 <u>_</u> 3	gp:A8003161	sp:AAT_SULSO	gp:AB00316	SP:YHIT_MYCLE		pir.S62195	sp.DTPT_LACLA	sp.BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf.2222216A	SP.TIPA_STRLI	prf.2419350A
		ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
45		Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
50		Initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137		2770511	2770714	2771989	2774098	2774814	2775689	2776879
		SEQ NO.	6358	r359	مي ج360	6361	6362	6363	6364	6365	6366	6367	6368	6369	6370	6371	6372
55		SEO NO.	2858	2859	286n	2861	2862	2863	2864	2865	2A6F	7867	786A	2869	2870	2871	2872

5
10
15
20
25
30
35
40
45
50

	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake system protein
	Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
	Similarity (%)	75.8	68.9	68.5	78.4	,	62.1	69.0	52.9	55.6		50.7	64.0	50.3	66.7		57.6	60.2	46.7
	Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7	-	28.6	36.0	32.3	38.8		27.4	24.7	22.4
lable 1 (continued)	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv RV2508c		Rhodococcus enythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd Hi0119 znuA
	db Match	gp:ECOPOXB8G_	prt:2212334B	sp:YCDC_ECOLI	1320 pir.D70551		gp:AF096929_2	sp.ALSR_BACSU	pir.C70982	pir.C69862		pir.A45264	pir.B70798	pir:S41307	sp:TPS1_SCHPO		sp:OTSB_ECOLI	sp:CCPA_BACME	942 sp.ZNUA_HAEIN
	ORF (bp)	1737	1482	531	1320	2142	096	705	813	813	459	399	1503	327	1455	513	768	1074	942
	Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797808
	Initial (nl)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300	2794870	2796749	2796865
	SEO NO.	6373	6374	6375	6376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6386	6387	6388	6388	6390
	SEO NO.	2873	2874	2875	2876	2877	2878	2879	288U	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890

. 5		٠	00		ane protein	63-5)		rogenase		oiosynthesis Ictase or	or myo-inositol 2-	protein	protein	ator	se methylase or ransferase	hetase	ecific IIABC	te hydrolase or	sphate	e-6-phosphate
10			Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or n dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or IRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
15			Matched length (a.a.)	223	135	303		561		204	128	292	130	212	334	464	899	473	248	368
20			Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	88.8	77.0	6.93	69.4	60.3
			Identity (%)	31.4	60.0	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
25		tluned)	Jene	us 8325-4	culosis	us		polis SQ1		MSB8	dh or iolG	shiA	shlA	olor A3(2)	svisiae	cysS	acB	ylicum	nagB	14 manD
30	•	Table 1 (continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bplA	Bacillus súbtilis 168 idh or iolG	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coll K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scr8	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
<i>35</i>			db Match	gp:AF121672_2	pir:E70507	pir:A69428		gp:AF096929_2		pir.872359	sp:MI2D_BACSU	Sp.SHIA_ECOLI	sp:SHIA_ECOLI	gp:SC5A7_19	sp.PT56_YEAST	Sp.SYC_ECOLI	prf.2511335C	gp:AF205034_4	sp:NAGB_ECOLI	1152 sp:NAGA_VIBFU
			ORF (bp)	069	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
45			Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279	2814081
50	•		Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	2805967	2806441	2807252	2808364	2809778	2811806	2813258	2814037	6407 2815232
			SEO NO.	6391	6392	6393	6394	6395	6396	6397	6398	6389	6400	6401	6402	6403	6404	6405	6406	
5 5			SEQ NO.		2882	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	7904	2905	2906	2907

EP 1 108 790 A2

5	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a.a.)	298 d	321	220		439 s	222	9099	342	314	258	193	142		152	235	157
20	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Table 1 (continued)	s gene	12 dapA	licolor A3(2)	gens NCTC		/iridifaciens A	S.R.	4 dppA	-4 dappB	Б8 орр	з оррЕ	(12 rhtB	aponicum Irp		berculosis	berculosis	uberculosis
Table 1 (0	Hamologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppO	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
40	db Match	sp:DAPA_ECOLI E	SP.GLK_STRCO	pri:2516292A 8		SP:NANH_MICVI	gp:AF181498_1 R	gp:BFU64514_1 B	sp:DPPB_BACFI B	sp:OPPD_BACSU E	Sp:OPPF_LACLA	sp:RHTB_ECOLI [prt;2309303A		pir.C70607	SP:Y18T_MYCTU	pir:H70803
	ORF (bp)	936 sp	ds 606	696 pr	177	1215 sp	729 91	1608	951 S	1068	816 S	621 s	483	360	480 p	768 s	594 р
45	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
50	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817		2829146	2829749
	SEO NO.	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
55	SEQ.			2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	292.1

10	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate
15	Matched length (a.a.)	223 h	341 th		463 C	345 h	231 . h	471 P		
20	Identity Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		
<i>25</i> (penuji	еле	culosis	saeS		Ape.	acK	culosis	NCIMB		
os Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		
35			1		Π		ΣÏ			
40	db Match	723 pri:2214304A	1116 sp:BAES_ECOLI		1392 Sp.RADA_ECOLI	sp:YACK_BACSU	pir.D70804	1452 gp.PPU96338_1		
1	ORF (bp)	723	1116	582	1392	1098	687	1452	147	
45	Terminal (nl)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	
50	Initial (nt)	6424 2830057	2830779	2832085	2832790		2835969	6430 2837499	6431 2837737	
٠	SEQ NO.	6424	6425	6426		6428	6429	 -		
55	O O	924	925	926	927	928	929	930	931	

104 "	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
		2830057	2830779	723	prl:2214304A	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	43.5	70.0	223	two-component system response regulator
	6425	2830779	2831894	1116	sp:BAES_ECOU	Escherichia coli K12 baeS	29.3	67.7	341	two-component system sensor histidine kinase
	6426	2832085	2832666	582						
_	6427	2832790	2834181	1392	sp:RADA_ECOLI	Escherichia coli K12 radA	41.5	74.3	463	DNA repair protein RadA
		2834188	2835285	1098	sp:YACK_BACSU	Bacillus subtilis 168 yacK	40.3	73.3	345	hypothetical protein
, –			2835283	687	pir.D70804	Mycobacterium tuberculosis H37Rv Rv3587c	29.4	53.3	231	hypothetical protein
. –	6430	2837499	2836048	1452	gp:PPU96338_1	Pseudomonas putida NCIMB 9866 plasmid pRA4000	59.5	85.1	471	p-hydroxybenzaldehyde dehydrogenase
• -	6431	2837737	2837591	147						
	6432	2838576	2837956	621	pir:T08204	Chlamydomonas reinhardtii ca 1	36.7	66.2	210	mitochondrial carbonate dehydratase beta
	6433	2838643	2839521	879	gp:AF121797_1	Streptomyces antibioticus IMRU 3720 mutY	48.4	7.07	283	A/G-specific adenine glycosylase
	6434	2839562	2840716	1155						
	6435	2841063	2840758	306						
	6436	6436 2841075	2841848	774	gp:AB009078_1	Brevibacterium saccharolyticum	99.2	99.6	258	L-2.3-butanediol dehydrogenase
	6437	2842130	2842453	324						
	6438	2842493	2843233	741						
	6439	2843405	2843716	312						
	6440	2843722	2843432	291	pir:E70552	Mycobacterium tuberculosis H37Rv Rv3592	48.5	69.1	97	hypothetical protein
	6441	2845139	2845558	420	GSP:Y29188	Pseudomonas aeruginosa ORF24222	57.0	63.0	66	virulence factor
	6442	2845889	2846101	213	GSP:Y29193	Pseudomonas aeruginosa ORF25110	54.0	55.0	72	virulence factor

dihydroneopterin aldolase dihydropteroate synthase

268

38.1

Bacillus subtilis 168 folB Mycobacterium leprae folP

69.5 75.0

		_															_			
5					sphatase /	te		ıase					protein			e ligase			ne protein	opteridine
10			Function	virulence factor	CIpC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase
15			Matched length (a.a.)	55	832	469	316	680					481	240	511	268			138	158
20			Similarity (%)	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6			69.6	69.0
			Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4
25	•	intinued)	gene	ginosa	mecB	lmpdh	ochrous nitR	eum ATCC					lutamicum	erculosis	mophilus lysS	lutamicum			rae	extordnens
30		Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 Impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK
35 40			db Match	GSP: Y29193	SP:MECB_BACSU B	gp.AB035643_1 B	pir.JC6117	Sp.PH2M_TRICU					gp:AF237667_1	pir.G70807	gp:AB012100_1 E	gp:CGPAN_2			gp:MLCB2548_4	sp.HPPK_METEX
			ORF (bp)	321	2775	1431	101	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477
45			Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867
50			Initial (nt)	2846186	2846940	2847229	2848769	-	2852017	2853769	2855795	2859044	2859055	2860145	2862082		2863621	2864421	2864848	2865343
			SEO NO.	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	• • • • • • • • • • • • • • • • • • • •		6459
55			SEO NO.	2943	7944	2945	2946	2947	2948	2949	2950	2951	7952	7957	2954	2955	2956	2957	2958	2959

1		\neg	T					\top	-:			!	1			i	Ţ		
5	ion	_		FtsH	slerase	esJ or cytosine protein		phatase		95	rane protein	-		_	glucosides- component		se	-	y protein, marR
10	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltranslerase	cell cycle protein MesJ or cytusine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	Inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothelical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
15	Matched length (a.a.)	188		782	165	310	459	159		205	132	144	173	202	68		411	97	135
20	Similarity (%)	86.2		69.0	83.0	86.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.6		69.6	73.2	59.3
	Identity (%)	9.09		56.0	51.5	41.0	27.2	49.7		96.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7
<i>25</i> (pen	9	Ą			n GP660	losis	dac	99		Josis	losis	ulosis	ulosis	ulosis	d.		DhdD	or A3(2)	allel ORF
e Eable 1 (continued)	Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bglP		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderla pseudomallel ORF E
35		i		-						ΣI				i			2	0, 0,	
40	db Match	Sp. GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp:DAC_ACTSP	Sp:IPYR_ECOLI		pir:H70886	sp:Y081_MYCTU	sp:Y0B2_MYCTU	sp:Y083_MYCTU	sp:Y084_MYCTU	sp:PTBA_BACSU		gp:AB017795	gp:SCH69_9	prf:2516298U
•	ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	498	609	249	264	1233	288	444
45	Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	; 	2880987
50	Initial (nt)	2867173	+	+-	2870444	2871389	2872677	2872926			2875832	2876280	71792	2877385	2877703	2877858			2880544
	SEO	6462				6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	6476			6479
55	SEO NO.	2962	2963	2964	2965	2966	2967	2968	2969	7970	797:	2972	2973	2974	2975	2976	2977	2978	2979

5		Function	peptide synthase		phenylacetaldehyde denydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
15		Matched length (a.a.)	1241		488	241	54	31	548			٠				1236			447			797
20		Similarity (%)	51.6		63.7	79.7	63.0	80.0	100.0				-		1	42.3			68.0			68.3
		Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5							24.7			37.1		-	35.6
30	Table 1 (continued)	Hamologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC58			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
35 40		db Match	prf:2413335A			gp:CJ11168X2_25	GP:MSGTCWPA 1	-	gsp:R94368							prf.2309326A	-		pir:G70870			prf.2504285B
ı		ORF (bp)	3885	1461	1563	918	162	12	1644	180	1209	963	1986	2454	2799	3591	2775	812	1371	579	88	3057
45		Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	2913228
50		Initial (nt)	8	+	┿—	!	2800185	<u> </u>		2890930	2892138		2895085	2897525	2900326	2903920	2906738	2907250	2907515	2909210	2909830	
		SEQ.	(a.a.)		<u> </u>	<u> </u>	2484			6487	6488	6489	6490	6491	6492	6493	6494	6495		6497		
55			(SN)				1000		2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2000	7990

	5		Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or calion transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein	
:	15		Matched length (a.a.)	104 P	523 II	161 P	77	121 r	178	334	_
i	20		identity Similarity (%)	81.7	72.1	60.9	66.2	63.6	54.5	61.7	
			Identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0	
•	25	Table 1 (continued)	is gene	4 mrpC	4 mrpD	4 mrpE	i phaF	ureus mnhG	berculosis	12 ybdK	
	30	Table 1 (c	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK	
	35 40		db Match	9p.AF097740_3 E	1668 gp.AF097740_4 E	.AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI	
			ORF (bp)	489 96	1668 95	441 99	273 pr	378 pr	594 pi	1128 sp	683
	45		Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	0400400
	50		tnitial (nt)	450n 2913235	R.501 2913749	2915482	A503 2915929	2916205	2917617	2918757	10101
			SEQ NO.			6502		4504	4505	6506	1000
			003		! 6	: 60	03	! 00	- 05	99	13

							 -								
Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or calion transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
Matched length (aa)	104	523	161	7.7	121	821	334		184	1.1	339			31	513
Similarity (%)	81.7	72.1	60.9	66.2	63.6	54.5	61.7		6.09	70.4	54.2			6.65	62.0
identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacilius firmus OF4 cls
db Match	gp:AF097740_3	1668 gp:AF097740_4	gp:AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir.D70631	pir:B70631	•		gp.AF108767_1	1500 gp:BFU88888_2
ORF (bp)	489	1668	441	273	378	594	1128	683	579	252	1005	699	630	789	1500
Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
tnitial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	6514 2922118
SEO NO.		4.032	4502	A503	6.504	4505	9059	6507	F508	- 6059	6510	6511	6512	6513	6514
	00uc	3001	2000	3003	100r	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

5	
10	
15	
20	
25	
<i>30</i>	
35	
40	
45	
50	

Table 1 (continued)	db Match Homologous gene (%) (%) (2a.) Function		sp:BCR_ECOLI Escherichia coli K12 bcr 31.8 67.2 393 membrane transport protein or bicyclomycin resistance protein	gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 382 sodium dependent phosphate purity	sp.PHZC_PSEAR Reudomonas aureofaciens 30- 38.8 56.4 289 phenazine biosynthesis protein		gp:SCE8_16 Streptomyces coelicolor A3(2) 24.3. 60.8 255 ABC transporter SCE8.16	sp.BCRA_BACI.1 Bacillus licheniformis ATCC 36.9 66.3 309 ABC transporter ATP-binding prutein g945A bcrA	pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 mutator mutT protein	pir.B70629 Mycobacterium tuberculosis 35.0 70.2 423 hypothetical membrane protein H37Rv Rv0412c	sp:GLNH_BACST Bacillus stearothermophllus 31.5 64.8 270 glutamine-binding protein precursur	plr.H70628 Mycobacterium tuberculosis 41.2 63.5 805 serine/threonine kinase H37Rv Rv0410c pknG		sp.ADRO_BOVIN Bos taurus 37.2 67.8 457 reductase	sp.ELAA_ECOLI Escherichia coli K12 elaA 34.0 60.3 156 acetyltransferase (GNAT) tarnily				sp:PURT_BACSU Bacillus subtilis 168 purT 59.1 82.6 379 formytransferase	
#										pir.B70629	sp:GLNH_BACST	plr.H70628		sp:ADRO_BOVIN	sp:ELAA_ECOLI			-	sp.PURT_BACSU	
	ORF (bp)	654	1194	1164	840	633	768	936	8	1386	1032	2253	747	1365	546	1062	1029	399	1194	888
	Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929258	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
	Initial (nt)	2924191	+	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398		2939907			2943007		2946526
	SEQ NO	+-		6517		6519		6521	6522	6523	6524	6525	6526	6527	6528	6529	6530	6531	8532	6533
	SEO S			3017		3019		3021	3022	3023	3024	3025	3026		3028	3029	3030	3031	3032	3033

				;			7						 ;	·	Ī	<u>i</u>		1	T	\neg
5			related)	related)	sensor			helase			e protein	aldolase			ıltransferase					
10		Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
15	Matched	length (a.a.)	295	83	349	218		427	204		359	344	304	182	174	.250	294			,
20		Similarity (%)	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	60.0	56.1			
		Identity (%)	77.8	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6		·	-
30	Olimined)	s gene	lutamicum	ılutamicum	moviolaceus	⟨36 deg∪		ľΑ	berculosis		glutamicum 59 ORF3	glutamicum 59 fda	glutamicum 59 ORF1	berculosis	i pyrE	berculosis)ST			
30	n) i aluai	Homologous gene	Corynebacterlum glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterlum ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum. AS019 ATCC 13059 ORF3	Corynebaclerium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT			
35	-		Con orf2	S.F.	क्ष व	-		ŭ ë	ΣÏ			OA	O 4	≥I	<u> </u>	ΣI				\dashv
40		db Match	pir.S60890	pir.S60889	gp:AB016841_1	sp.DEGU_BACBR		gp:AB003160_1	pir.G70575		sp:YFDA_CORGL	pir.S09283	gp:CGFDA_1	plr:G70833	gp:AF058713_1	pir.870834	sp:THTM_HUMAN			
		ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	388
45		Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952872	2952975	2954241	2955523	2958830	2957485	2958139	2959520	2960468	2962730	2963198
50		Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2954141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
		SEO NO.	4534	6535	6536	6537	6538	6539	6540	6541	5542	6543	6544	6545	6546	6547	6548	6249	6550	6551
55		SEO NO.		3035	3036	3037			3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051

f	
à	֭֓֝֝֝֝֟֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
2	3
4270	9
۴	_

ſ		i		:				"	=	1		:	- !		T	T	
	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidureductase or steroid monooxygenase	alkanal monooxygenase alpna chaar		cystathionine gamma-lyase	bacterial regulatory protein, lacl family	rlfampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
	Matched length (a.a.)	59	200	132	489	108	283	476	399		375	184	68	99	361	204	386
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09
	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
lable i (confined)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 sin0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous IF03338	Kryptophanaron alfredi symbioni luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptornyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0838c	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP: Y29188	GSP: Y29182	GSP: Y29193	pir.S76683	Sp.CADF_STAAU	pir.H75109	gp:AB010439_1	sp:LUXA_KRYAS		sp:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir.E70812	pir:D70812	pir.D70834
	(bp)	771	762	396	1347	387	828	1170	1041	762	1146	267	240	183	1125	732	1179
	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
	Initial (nt)	2964258	2965076	2965188	2967804	2968403	2968951	2969834	2971017	2972099	2973205		2973961	2974200	2974467	2975629	2976596
	SEQ NO.	6552	6553	6554	6555	6556	6557	6558	6559	6560	6561	6562	6563	6564	6565	9959	/959
	SEO NO.	3052	3053	3054	3055	3056		3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

		i		Ţ	1		\neg	T	I	= :		T	Se	i	1			Ţ	
5		stion	nino acid		u	tent regulatory	genase	ription regulator	Lana L	ige factor grpE he ATPase donia haperone DnaK	n dnaK	brane protein	S-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleusidase			regation protein			Jenase
10		Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase doniam of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	S-methylthioadenosine nucleosidase and S- adenosylhomocysteine			chromosome segregation protein			alcohol dehydrogenase
15		Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334
20		Similarity (%)	67.3		55.4	44.0	90.3	70.4	1.08	66.5	93.8	79.0	0.09			48.4			81.7
		Identity (%)	32.0		28.0	38.0	9.69	47.4	56.7	38.7	8.66	42.6	27.2	-		18.9			20.0
25	ined)	9.	etta H		r A3(2)	carR	olis thcA	hspR	losis	or grpE	MJ-233	or A3(2)	0089 mtn			s pombe			philus
30	Table 1 (continued)	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
35			M th M		\$ S	₹	₹	ळि		 	6 6	ω ω	Ĭ.	-					
40		db Match	pir:869109		gp:SC4A7_3	GP:ABCARRA_2	orf 2104333D			sp:GRPE_STRCO	gsp:R94587	gp:SCF6_8	sp:PFS_HELPY			sp.CUT3_SCHPO			sp.ADH2_BACST
		ORF (bp)	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	636	1485	1035
45		Terminat (nt)	2977847	2978979		2981216	2080181	_	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
50		Initiat (nt)	2978644	2978737	2978982	2980887	2001608	2982460	2983679	2984522	2986397	2986833	2988846	2990045			2993921		2996781
		SEO NO.	6568	6569	6570	1759	55.33	5772	6574	6575	6576	6577	6578	6579	6580		6582		
55			3068	2069	3070	3071	2000	2072		3075	3076	7,000	 3078	3079	980	3081	3082	3083	3084

	_		$\overline{}$			- :	Т							- 1					T		1	7
5		Function					hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, suburiil 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate reductase	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkyphosphonale uptake protein and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
15		Matched length (a.a.)				\dashv	301	252		414	308	212	502	487	144			142	80	161		<u>, </u>
20		Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	76.4		
		identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	20.0	39.1		
25 9 10 10	iningen)	gene				-	V	olor A3(2)		2 cysN	2 cysD		PCC 7942	revisiae	ш			2 phnB	color A3(2)	da DSMZ ID		
30 - Table 1 (Continued)	ומחום ו (הם	Homologous gene	·				Bacillus subtills ytnM	Streptomyces coelicolor A3(2) SC7A8.10c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicalor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35 40		db Match					pir.F69997	gp:SC7A8_10		sp:CYSN_ECOLI	sp:CYSD_ECOLI	sp:CYH1_BACSU	Sp. NIR SYNP7		prt:2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp.PPAMOA_1	-	
	1	ORF (bp)	216	207	189	261	927	723	915	1299	912	693	1683	1	1083	237		414	366	522	321	486
45		Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50		Initial (nt)	2997151	2997687	2997688	2998223	2999454		3001512	3001539	3002453	3003145	3005162		3007294		3008770	3009162	3009242	3010231	3010659	3010926
		SEO NO.	6585	9859		6588			6591	6592	6593	6594	2005		6597		629		6601	6602	6603	9804
55		SEO NO.	3085	3086					3091	3092	3093	3094	3000	3096	3097	3098	3099	3100	3101	3102	3103	3104

5		_						rotein nomolog			ale					Iransport ATP.		c	ductase	ing nucleoside	ne protein	glycosylase	
0		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein nomolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP-binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	Navohemoprotein
15		Matched length (a.a.)	68		337	199	211	416			466				114	373		179	231	317	276	179	406
20		Similarity (%)	58.0		6'29	64.8	73.0	8.79			48.5				46.0	50.1		9.79	71.4	59.3	59.4	78.8	63.8
_		Identity (%)	41.0	-	26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
	Table 1 (continued)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata lunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
o o		db Malch	SP:YTZ3_AGRVI		sp:YG87_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir:A69778			sp.DAPE_ECOLI				GPU:DCA297422_1	sp:MALK_ECOLI		gp:AF036485_6	sp:FRP_VIBHA	SP:IUNH_CRIFA -	gp:SCE20_8	sp:3MG1_ECOLI	1158 sp.HMPA_ALCEU
ı		ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
2 5		Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
50		Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
	į	SEO NO.	6605	9099	2099	8608	6099	6610	6611	6612	6613	6614	6615	6616	4617	9199	619	2620	6621	6622	6623	6624	6625
55		SEO NO.	3105	18	3107		3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	1120	3121	3122	3123	3124	3125 6625

5	
10	
15	
20	
25	
30	•
3 5	
40	
45	

	Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)	ı	210		192		167		99	402		401	399		442	188		229		410
	Similarity (%)		63.8		69.3		59.9		78.8	6.08		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7	ļ	100.0	33.6		40.5	43.6		30.6		28.5
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 Inp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A, 16c		Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp. ABGA_CLOLO		sp. ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp:DCD_ECOLI	1	gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	267	237	77.1	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initiat (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	6644 3041932
	SEO NO.	9299	6627	8299	6299	6630	6631	6632	6633	6634	6635	9639	6637	6638	6639	6640	6641	6642	6643	6644
	SEO NO.	3126	3127	312R		3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141		3143	3144

	i	<u>-</u>	_	ī									:		e e	<u> </u>	:			
5		Function			hypothetical protein			hypothetical membrane protein	acytransferase or macrolide 3-O-acytransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
15		Matched length (a.a.)			1416 h			363 hy	408		529 h		369 h	251 m	601	332 C	241 hy	207 hy	768	
20		Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
		Identity (%)		•	29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
25	oullunea	s gene			rae			rae	асуА		rae		erculosis	erculosis	ıtalis pepck	Orsay	2 yggH	erculosis	erculasis ImpL3	
30	lable I (confinued)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
35					ΣΣ.			ΣΣ	S		ΣΣ		ΣÏ	ΣÏ		9,9		ΣÏ	ΣÏ	
40 .		db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pir.G70961	pir:F70961	SP:PPCK_NEOFR	pir:E75125	Sp: YGGH_ECOLI	pir.E70959	pir.C70839	
		ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699	1137	171	1830	1011	785	705	2316	1422
45		Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
50		Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
		SEQ NO.	6645	6646	6647	6648	6649	6650	6651	6652	6653	6654	6655	9299	6657	5658	6659	0999	6661	6662
55		SEO NO (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	7157	3154	3155	3156	3157	315R	150	3160	3161	3162

													 -						
5	[u	ne protein	ne protein	cylase complex					in PS1 protein		!		ane protein	:	:	 		nosphatase
10		Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor			antigen 85-C	hypothelical membrane protein	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase
15		Matched length (a.a.)	364	108	523	1747	592	319		657			331	299	295	168	929		170
20		Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4		99.5			62.5	61.2	51.5	75.0	74.7		56.5
		Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
25 ,	itinued)	gene	culosis	rculosis	olor A3(2)	aeus eryA	s BCG	rculosis		ntamicum um) ATCC	i		erculosis IC fbpC	erculosis	nodans	erculosis	erculosis		is ATCC
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterlum tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
40		db Match	pir.A70839	pir.H70633	gp:AF113605_1	SP.ERY1 SACER	1	pir:F70887		sp:CSP1_CORGL			sp:A85C_MYCTU	pir:A70888	sp:NOEC_AZOCA	pir:C70888	pir:D70888		sp:BCRC_BACLI
		ORF (bp)	1083	363	1548	4830	- 60	927	498	1971	1401	219	1023	2058	966	504	1968	1494	477
45		Terminal (nt)	3060733	3061095	3061380	3062951		3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
50		Initial (nt)	3059651	3060733	3062927	3067780	÷	+	3071644	3073620	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
		SEO		6664	5999	SARG			6999		6671	6672	6673	6674	6675	9299	6677	8678	6679
55		SEO		3164	3165	3166	-		3169		3171	3172	3173	3174	3175	3176	3177	3178	3179

5		Function			dimethylaniline monooxygenase (14-	oxide-forming)		UDP-galactopylatiose midase	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryl-iRNA synthelase	transcriptional regulator. GritR family	or fatty acyl-responsive regulator	hypothelical protein	hypothetical protein	- Copperate Copp	2,3-PUG dependent phosphoglycerale mulase		nicolinamidase of pyrazinamidase	
15		Matched length (a.a.)			;	377		377	629	499	279	261	419		235	356	113		218	1	460	
20		Similarity (%)				50.4		72.9	47.8	78.8	70.3	72.0	87.6	5	61.7	61.2	79.7	 	62.8		20.9	
•		Identity (%)				24.4		43.2	29.6	51.7	41.6	46.7	70.2	707	27.72	32.6	. 46.0		37.2		27.4	
25	outinged)							12 glf	oerculosis P	uginosa	berculosis	berculosis	berculosis		.12 farR	Iberculosis	berculosis		ethanolica pgm		megmatis pzaA	
30	Table 1 (conlinued)	Homologous gene				Sus scrofa fmo1		Escherichia coli K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	
		db Match				sp:FMO1_PIG S		SO GLF ECOLI E		SP.GLPK_PSEAE A	1	pir.D70521		gsp:W26465	Sp.FARR_ECOLI	pir.H70652	pir:A70653		gp:AMU73808_1		pri 2501285A	
•		ORF (bg)		11	510	1302 8	612	10	1 6	1527	834	876		1266	714	1113	342	66	699	630	1	729
45		Terminal		3084424	3085218	3087048	3088276	3087101	3090664	3090760	3092342	3093175		3094078	3096287	3097423	3097764	3097780	L	3099454		3101426
50		Initial		3085200	3085727	3085747	3227000	-		3092286	3093175			3095343	3095574	3096311	3097423	309787B		309825		3100698
		SEO		0899	6681				6685	6686	6687	8888	3	6689	0699	6691	6692	6607		8000		
55		SEO	$\overline{}$	3180	3181		_		3185		3187		2100	3189	3190	3191	3192	2400	3194		3196	3197

5		Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease				L-lactale dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GritR family	phosphoesterase	shikimate transport protein
15	100000	Matched length (a.a.)	380 tre		_		107 h	432 g		259 9	456 g			491	314	526	224	188	221	555	422
20		Similarity (%)	57.1				81.3	55.3		54.1	71.9			47.7	7.66	64.8	58.5	67.6	57.0	9.89	74.4
		Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
25 30	Table 1 (continued)	Homologous gane	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		otilis glpQ	btilis gntP			Corynebacterium glutamicum	Revibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
35	Tabl	HoH	Streptomyc SC6G4.33				Streptomyc ORF372	Saccharom S288C YIR		Bacillus subtilis glpQ	Bacillus subtilis gntP			Conynebac	Acoupacte	Mycobacterium t	Streptomy SC1C2.30	Brevibacte tmpA	Escherichi glcC	Mycobacterium to H37Rv Rv2795c	Escherich
40		db Match	gp:SC6G4_33				pir:B26872	sp:AMYH_YEAST		sp:GLPQ_BACSU	SD.GNTP BACSU			SP.KPYK CORGL	7005CV-22007	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:870885	sp:SHIA_ECOLI
1		ORF (bp)	1035	120	552	870	327	1314	918	19	1389	642	159	1617	5	1776	636	543	693	786	1299
45		Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	_ i	1_	3115394	3116042	3116621	3117332	3118121	3119582
50		Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	2108121					3113619		3116079	3116640	3117336	6716 3118284
		SEO	+	6699		6701	6702	6703	6704		907.9	00/0	20/0	9779	ŝ	6710		6713	6714	6715	
55			3198	3199	-		_	3203	2000	$\overline{}$	9000	3200	250	3208	3203	3210	3212	3213	3214	3215	3216

5	!	 ;	FMN	- 		1	 	neut)	1	ا و	-	e !	/Mn)	-	portei		!			ii.	T	sponse
10	:	Function	L-lactate dehydrogenase or FMN-dependent dehydrogenase		immunity repressor proferr			phosphalase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	mullidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
			L-lactat depend		immu			phosph		peptidase hydrolase		peptide m reductase	supero	transc	multid				hypoth	mem	transc	two-com regulator
15		Matched length (a.a.)	376		55			569		122		210.	164	292	384				216	447	137	212
20		Similarity (%)	68.9		80.0			51.3		63.1		1.69	92.7	65.8	49.0				64.8	59.3	65.0	75.5
		Identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
25 ·	(panul	904	IIdA		S ORF1			St		=			pos		amicum				culosis	genus land	жаD	htheriae
30	lable 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill1		Escherichla coll B msrA	Corynebacterium psaudodiphtheriticum sod	Bacillus subtilis gltC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
35			ž		Ba	_				¥	-		OE	i					ΣI	S		0 8
40		db Match	prf:2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		Sp.ILL1_ARATH		sp.PMSR_ECOLI	pir.140858	sp:GLTC_BACSU	gp:AF121000_10				pir:G70654	prf:2508244AB	sp.YXAD_BACSU	prf.2518330B
		(bp)	1215	405	312	138	711	1617	546	402	150	651	8	924	1134	1611	ŧ	1521	633	1491	456	636
45		Terminat (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
50		Initial (nt)	3119665	3120909		3122129	3123222	3124172	3124886	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	· · · · · ·	
÷		SEO	6717	6718		6720	6721		6723		6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
55			3217	3218		3220	-	+	3223		3225		3227	3228		3230	3231	3232	3233	3234	3235	3236

5		Function		someonent system sensor	histidine kinase	hypothetical protein	hypothetical protein	stage ili sporulation proteiti	transcriptional repressor	transgiycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	hypothetical protein	Situation and control of the control	Dacterial regulatory process, ginst family or glc operon transcription activator	hypothetical protein	hypothetical protein
15	Matched	length (a.a.)			408	48	277	265	192	67	296	314	334	8	42		109	488	267
20	Cimilarity	(%)			64.5	79.2	59.2	53.6	6.09	71.3	9.69	73.9	51.2	0.99	75.0		26.0	48.2	78.7
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	010	71.0		30.3	26.0	48.3
30 Subject (beautifued)		Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spottiJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coli K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
<i>35</i>	-	Ĭ			Corynebi	Streptomyce SCH69.22c	Strepton SCH69.	Bacillus	Mycobac H37Rv F	Escheric tag1		Escherie	Chlorob	Chlamy	Chlamyd TC0129		Escheri glcC	Streptomyce SC4G6.31c	
40		db Match			prf:2518330A	др:SCH69_22	gp:SCH69_20	Sp.SP3J BACSU	pir:C70948	sp:TAG1_ECOLI	sp:YW12_MYCTU	sp:YHBW_ECOLI	Sp:YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp.GLCC_ECOLI	gp:SC4G6_31	sp.35KD_MYCTU
1	-	ORF (bp)	639	588	1311	150	822	1302	639	261	903	987	996	273	4	207	363	1416	873
45		Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
50		Initial (n)	3136920	↓		3138630	3139455	1130651	3141523	3141969	3143356	3144482	3144661			3151575		3152413	3154766
	f	SEQ NO.	-		6739	6740			6743	6744	6745	6746	6747	6748		6750		6752	6753
55	j	SEQ.		$\overline{}$					3242	3244	3245	3246	777	32.4B	3249	3250	3251	3252	3253

											_		_		- :				- 1				\neg
5		Function						methyltransferase	nodulin 21-related protein				transposon tn501 resulvase		ferredoxin precuisor	hypothetical protein	Iransposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprolein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
15		Matched length (a.a.)					-	217 met	241 nod				56 tran		62 ferr	55 hyp	27 trar	46 tran		38 glyd	180 lipo	717 ATF	
20		Similarity Ma						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
		Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
25	unea)							or A3(2)					osa TNP5	,	ythraea fer	or A3(2)	amicum	amicum		de	C6803	us AF0152	
30	nable i (continued)	Homologous gene				 		Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
35		db Match						gp:SC035_11 S	sp:NO21_SOYBN se				sp:TNP5_PSEAE P		sp:FER_SACER S	gp:SCD31_14 S	GPU:AF164956_8	GPU:AF164956_23 C		Sp.G3P_PYRWO P	pir.S77018 s	pir.H69268	
40		7⊱ D)	53	52	88	6	60	-	720 sp:N	204	78	186	216 sp.T	483	321 sp:F	333 gp:S	11 GPL	162 GPU	38	126 sp:G	660 pir.S	2217 pir.t	11
45		Terminal ORF (bp)	3154969 15	3155246 1452	3156306 1068	3157223 24	3157479 30	3158834 71	3159081 72	3160419 20	3161065 37	3161001	3160723 2	3161701 40	3161087 3	3161682 3	3162804	3162871 10	3163889 10	3162858 1	3163074 6	3163789 22	3166267 1
50		initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
50		SEQ NO.	6754 3	6755	6756	6757	6758	6759	6760	6761	6762	6763	6764	6765	99/9	2929	6929	6929	6770	6771	6772	6773	6774
55		SEQ NO.	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

													$\overline{}$		\neg			
5	tion		stem sensor		sponse regulator atase synthesis alatory protein	!	Precursor A	change protein genesis protein	reductase)(Seta-		ATPase (Zn(li)· se ATPase	 		ATPase (Zn(II)- pe ATPase	in			
10	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(Seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
15	Matched length (a.a.)		301		233		630	101	322		78			909	72		73	20
20	Similarity (%)		71.4		72.1		47.9	63.4	6.09		66.7			68.5	54.0		73.0	77.0
	identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
20 Table 1 (continued)	us gene		12 baeS		поР		ringae pv.	aponicum tlpA	N). PCC6803			K12 MG1655	x K1 APE2572		n glutamicum	n glutamicum
Table 1 (c	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum IlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
35	db Match		sp.BAES_ECOLI E		sp:PHOP_BACSU E		Sp.COPA_PSESM	Sp.TLPA_BRAJA	sp.QOR_MOUSE		sp.ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU:AF164956_8	GPU.AF164956_8
	ORF (bp)	192	1197 sp.	828		672	1479 sp.	363 sp	918 sp	471	234 sp	315	207	1875 sp	390 PI	309	216 G	258 G
45	Terminal (nt)	3167169	3166450	3168566	i	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
50	Initial (nt)	3166978		3167739	3168401	3168669		3171254	3172536	3172995		3174066	3174990	3175027	3175643	3177174	3177304	6791 3177565
·	SEO	6775	9229	6777	8778	6779	6780	6781	6782	6783	6784	6785	6786		6788	62.9		
. 55	SEO NO.			┽	3278	3279		3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

																							 -		$\overline{}$	_	1
5			Function	transposase (IS1628)	thioredoxin	transmyrana transmyr professi of	4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hypothetical protein		penicilin-binding protein	hypothetical protein	bacterlat regulatory protein, mark family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein	
15			Matched length (a.a.)		100		421		208	461	į	154	229	92			480		647	107	137	296		1.1	298	433	
20			Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3			68.3		60.1	72.0	65.0	61.6		70.4	63.8	64.0	
20			Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		1	41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2	
25 30	•	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Fscherichia coli K12 RS6			Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yoff		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Fecherichia coli K12 vbiZ	
35 40			db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		SD:YOJI ECOLI	ECOLI		en.Bl 9 FCOLI	SPISSA FCOLI	Sp. BS6 FCOLL	1001		gp:AF187306_1		SP:PBPA_BACSU	Sp:YOHC_MYCTU	pir:B70912	Sp:Y0FF_MYCTU		Sp.YHGC BACSU	Sp.YCFA ECOLI	2 ECOL 1	Sp. r Duz_Evous
			ORF (bp)	159 9	447 S	264	1344 s	159		-			_	_	\neg	2	1458	882	2160	357	471	942	495	321	938	300	1,203
45			Terminal (nt)	3177525	3178112	3178872	3180392	3180946	+-	1	1	+-	+	+-	204010	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848		_	_	3193252
50			Initiat (nt)	3177683	3178558	3178609	3179049	2181104								3185536	3186993	3187912		3189652	3189877	3190378	3191354		3192242	3193201	6813 3194514
, 30			SEO.	6792	6793		6795	2706	25.5	6708	07.30	86/0	0090	נפפט		6803	3304 6804	6805	6806		6808	6089	010			7180	6815
			_	292	Š	_		900	2 2) S	0670	657	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	2240	0155		3312	3313

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
	Similarity (%)	80.1	42.0	0.06			64.9	55.6	9.99			63.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			sp:MGMT_HUMAN Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faeclum vanZ	Enterococcus faeclum vanZ
	db Match	sp.YBJZ_ECOU	pir.E81408	pir.F70912			sp:DPS_ECOLI	sp:FPG_ECOU	SP:RTCB_ECOLI			Sp:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	SP.GNTK_BACSU	Sp:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	Ξ	1176	1176	1482	591	525
	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	┿	
	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156	3205204	3206232	3206646		3208279	3211186		
	SEO NO.		6815		6817	6818	6819	6820	6821		6823	6824	6825	6826		6828	6829		
		3314	3315		3317	3318	3319	3320	3321	3322	3323	3374	3325	3326	3327	3328	1329	3330	3331

5	!	د ا		ogenase small						;			ine protein	protein		
10		Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				HADADA Signatura			STORY OF THE STORY	leucyi-tking synnierase	hypothetical membrane profein	virulence-associated protein		hypothetical protein
15		Matched length (a.a.)	448	444				150	76		95	943	104	98		247
20		(%) Similarity (%)	65.6	54.5				1	33.7			68.1	40.4	81.4		53.8
		identity (%)	29.9	27.3				1	25.8			47.7	40.4	55.8		31.6
25	ontinued)	s gene	reus merA	2 dadA					ilus nox				12	osus vapl		licolor
30	Table 1 (conlinued)	Homologous gene	Stanhviococcus aureus merA	Escherichia coli K12 dadA					Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor
<i>35</i> <i>40</i>	·	db Match	244 contiend STARII	\top				1	Sp:NOX_THETH			2856 sp.SYL_BACSU	Sp. YBAN_ECOLI	Sp. VAPI_BACNO		723 qp:SCC54 19
i		ORF (bp)	13,44	1230	1503	3 8	35	321	609	924	1452	2856 s	429		774	723
45		Terminal (nt)	\neg	3213934	2246267	1676176	3216886	3217457	3218601	3219700	3222495	3219778	3223150			
50		Initial (nt)		3212588		3216/38	3217215	6836 321777	6837 3217993	3218777	6839 3221044	6840 3222633	6841 322222	3723445	6843 3224601	2244 6044 3224714
				6832	3	6834	6835			6838		6840	6841			8044
55		SEO.	(DNA)	3332	2225	3334	3335	3338	3337	3338	3339	2340		3342	3343	27.5

isomerase/decarboxy.use.j.(2. hydroxyhepla-2,4-diene-1,7-dioule isomerase and 5-carboxymethyl 2-oxo-hex-3-ene-1,7dioate transmembrane transport protein or 4-hydroxybenzoale transporter hydroxy-2-naphthoate dioxygenase (homoprotocatechuate catabolism bacterial regulatory protein, laci family or pectin degradation gentisate 1,2-dioxygenase or 1bifunctional protein repressor protein decarboxylase) bifunctional 298 229 454 339 80.8 50.3 64.3 60.7 25.3 27.5 28.5 34.2 Pseudomonas alcaligenes xInE Pectobacterium chrysanthemi kdgR Pseudomonas putida pcaK Escherichia coli K12 hpcE Streptomyces coelicolor SCC54.19 SP.KDGR_ERWCH 1356 Sp:PCAK_PSEPU Sp:HPCE_ECOLI gp:AF173167_1 723 |gp:SCC54_19 1125 780 837 3223992 3225563 3226910 3229079 3224718 3224714 6848 3227724 3345 | 6845 | 3225554 | 3227689 3226687 6846 6847 6844

3346

3348

	Γ	i		!			- 1	_	:		- 1	
5		tion	ıse	ymporter of sid transporter?	реннеаѕе	ise component i		ise component	aspinase	hosphate nd N (5'- nthranilate		se beta chain
10		Function	salicylate hydroxylase	proton/glutamate symporter of excitatory amino acid transporter?	tryptophan-specific permease	anthranilate synthase component t		anthranilate synthase component เป	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphiate synthase (IGPS) and N (5: phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain
15		Matched length (a.a.)	476	507	170	515		208	348	474		417
20		Similarity (%)	49.4	54.4	99.4	93.8		100.0	99.4	98.3		97.9
		Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6
25 ,	Table 1 (continued)	us gene	ida	2	glutamicum	ctofermentum		ctofermentum	glutamicum	ctofermentum		ctofermentum
30	Table 1 (c	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermenlum trpC		Brevibacterium lactofermentum trpB
35		db Match		NAN		SP.TRPE_BRELA tr		TRPG_BRELA	1044 SP TRPD_CORGL	1422 sp:TRPC_BRELA		1251 Sp.TRPB_BRELA
40		8	1326 orf 1706191A	sp:EAT	pir.JC2326			TRPG	sp.TRI	sp:TR		sp.TR
		ORF (bp)	1326	1251	510	1554	12	624	1044	1422	969	1251
45		Terminal (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	
50		tnitial (nt)	2220440	3232304	3232596	3233403	3233420		3235602	6856 3236641	2227213	3238082
		SEO.		6850	6851	6852	6863	6854	6855	6856	5057	
				350	1351	352	26.3		3355	3358	7367	3358

ABC transporter ATP-binding protein PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component tryptophan synthase alpha chain hypothetical membrane protein ABC transporter 283 152 305 547 521 63.6 57.2 86.8 71.7 Ś 89 32.5 30.3 25.2 66.6 95.4 Brevibacterium lactofermentum trpA Streptomyces coelicolor A3(2) SCH10.12 Streptomyces coelicolor A3(2) SCJ21,17c Escherichia coli K12 ptxA Pseudomonas stutzeri SP:NOSF_PSEST sp:TRPA_BRELA Sp:PTXA_ECOLI gp:SCH10_12 gp:SCJ21_17 1584 1539 810 906 840 3243759 3245342 3240313 3241879 3240171 3243759 6861 3242688 3242854 3239332 3241851 6863 6889 0989 6862 3361 3363 3359 3360 3362 181

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	•

	Function	cytchrome b6-F complex iron-sulfur subunit (Rleske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADI4-dependent llavin oxidoreductase	hypothetical protein			a delimentary of the second		acetoin(diacetyl) reductase (acetoir) dehydrogenase)	hypothetical protein	di-/tripeptide transpote:		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dloxygenase
	Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188	246
	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					62.9	84.5	71.6		50.5	62.2
	Identity (%)	. 32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		28.1	31.7
Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
	db Match	sp:UCRI_CHLLT	sp:NADO_THEBR	Sp:YFEH_ECOLI	gp:SCI11_36	pir.A29606	sp:NADO_THEBR	sp.YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp:DTPT_LACLA		Sp:ACRR_ECOLI	sp.CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	121	555	903
	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549		3257373
	SEQ.	+	6865	6866		6868	6989	0289	6871	6872	6873	6874	6875	6876	6877	6878		0889
	SEQ.		3365	3366		3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

5		
10		
15		
20		
25		
30	1	
35		
40		
45		
50		

	Function	maleylacetate reductase	sugar transporter or O-xylose-prote symporter (O-xylose transporter)	bacterial transcriptional regulator o acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrugenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptornycin biosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase famil,	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
	Matched length (a.a.)	351	513	280	357	270	332	343	1242				206		1660	141		125	67	297
	Similarity (%)	75.5	58.3	60.7	55.7	58.2	9.65	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
Table 1 (continued)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium IcIR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizoblum meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiO	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
	db Match	SP. TCBF PSESQ	SP:XYLE_ECOLI	sp:ICLR_SALTY	SD: YDGJ ECOLI	gsp:W61761	sp:MI2D_BACSU	1083 sp.STRI_STRGR	pir.C70044				sp:UNC1_CAEEL		gp:MBO18605_3	prf:2323363AAM		sp:THID_BACSU	pir.F70041.	pri.2501295A
	ORF (bp)	1089	1524	861	1077		1005	1083	4032	645	618	1086	744	696	4929	203	8	009	243	837
	Terminal (nt)	3257403	3258561	3261989	3283221	3264115	3265146	3266266	3271093	3267913	3268618	3272477	3274488	3275602	3276671	3281866	3283101	3282347		3283473
	Initial (nt)	3258491		3261129	1262145	3263237	3264142		3267062		3269235	3271392	3275231	3276570	3281599	6895 3282172	3282742	3282946	3283141	3284309
	SEO NO.			6883	884		6886		6888	6889	.0689	6891	6892	6893	6894	6895	9689	6897		6889
	SEO NO		_	3383	7387		3388		338B	3389		3391	3392	3393	3394	3395	3396	3397	3398	3399

5		Function	iron(III) dicitrate-binding periplasınic protein precursor or fron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPri quinone oxidoreductase			phosphomethylpyrinidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-14 factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
15		Matched length (a.a.)	279	324		1	249		67	102	212	169	471	234		858	1201		189	308
20		Similarity (%)	9.09	58.0			75.5		70.1	65.7	67.0	29.5	51.8	69.2		54.3	60.1		6.09	82.5
		identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
25 30	Table 1 (conlinued)	Homologous gene	Escherichia coli K12 fec8	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azlO	Bacillus subtilis azID	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
<i>35</i>		db Match	sp.FECB_ECOLI	sp.MRF1_SCHPO			sp:THID_BACSU		pir.F70041	SP. AZLD BACSU	SP:AZLC BACSU	Sp. YOGE ECOLI	Sp.CCA_ECOLI	pir.E70800		pir.F70600	pir:G70600		Sp.RPSH_PSEAE	Sp.TRXB_STRCL
1		ORF (bp)	196	1122	384	219	798	345		345	15	567	1320	996	273	2511	3249	723	603	951
45		Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292810	3296007	3299404	3298428	3300263	3301321
50		Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265		3789315				3292532	3292882	3293497	3296156	3297706		6917 3300371
		SEQ	6900	6901	6902	6903	6904	6905	9069	6907	6908 808	9009	6910	6911	6912	6913	6914	6915		6917
			400 A	401	402	_	+	405		5			1410	3411	3412	3413	3414	3415	3416	3417

-	1				:	$\overline{}$!		I	ī			<u> </u>		:	-		
	Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane profess	ribonuclease P protein component	50S ribosornal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdeliyde dehydrogenase	3-dehydroquinase
	Matched length (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
	Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
	Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene		Chlamydomonas reinhardtii thi2_	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coll K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
	db Match		Sp.THI2_CHLRE	sp:CWLB_BACSU			pir:D70851	sp: YGI2_PSEPU	sp:YGI1_PSEPU	sp:GIDB_ECOLI	pir.A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp:LEU1_CORGL	sp.YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
	ORF (bp)	1185	372	1242	111	1041	618	1152	837	699	951	399	336	294	222	408	1848	255	1032	447
	Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
	Initial (nt)	3301303	3301358	+	3302765	3303435	3303616	3304787		3306532	3307632	3308369		3309028	3309043		268001	269068	270660	446075
	SEO NO.	i -	6919		6921	6922	6923	6924		6926	_1	6928		6930	6931	6932	6933	6934	6935	6936
	SEQ NO.		_		3421	1		3424		3426		3428	_	_	3431	3432	3433	3434	3435	3436

5			Function	elongation factor Tu	preprotein translocase secY subult	isocitrate dehydrogenase (oxalosuccinatedecarboxyrase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
15			Matched length (a.a.)	396	440	738	591	437	118	595	426	501	463	316	369	524	950
20			Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
			Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	,	Table 1 (continued)	is gene	glutamicum	glutamicum svum) MJ233	glutamicum	glutamicum 3C	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum E	glutamicum	glutamicum 159 argS
30	•	Table 1 (c	Homologous gene	Corynebacterium ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamlcum AS019 ATCC 13059 argS
35			db Match	sp.EFTU_CORGL CA	sp SECY_CORGL (I			Sp.CISY_CORGL	sp.FKBP_CORGL	sp.BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL				sp:SYR_CORGL
40			용			sp:IDH_CORGL	prf.2223173A							pir.S52753	prf:2106301A	gp:CGPUTP_1	sp.SYR
			ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
45			Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
50			Initial (nt)	526376	569452	680044	720352	877838	879276	944998	1030283	1031871	1154683	1155676	1155731	1219602	6950 1238274
	•		SEQ NO.	6937	6938	66939	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	
			SEQ NO.	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

											- I				1		
5		Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyrwate sugar phosphotransterase (mannose and glucuse transport)	acetylglutamate kinase	ornithine carbamoylı anslerase	arginine repressor	
15 .		Matched length (a.a.)	445 d	445 h	309 h	216 ir	236	290	929	172	338	340	683	294	319	171	
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
		Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
25	Table 1 (continued)	ena gene	glutamicum 359 lysA	glutamicum 359 hom	glutamicum 359 thrB	glutamicum	glutamicum	ı glutamicum	n glutamicum 3	n glutamicum V	n glutamicum S	n glutamicum JB	n glutamicum 1	n glutamicum g8	n glutamicum gF	n glutamicum	
30	Table 1 (Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR	
35		db Match	sp.DCDA_CORGL	SP: DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp.ILVB_CORGL	pir:B48648	pir.C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1	
40 .		ORF (bp)	1335 sp:[1335 sp.	27 sp:	27 gsp	90 8b:	870 sp:	878 sp	516 pir	014 pir	020 sp	2049 pri	882 sp	957 sp	513 gr	
I			T		1 65	"	 ^	-	 -	+	 -	1-	+ ``	 		 	-
45		Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040	
50		Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528	
		SEO	6951	6952	6953	6954	6955	9569	6957	6958	6929	0969	6961	6962	6963	6964	_
		SEO	(UNA)	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464	
55																	

5	Function	NADH dehydrogenase	phosphoribosyl-A l P- pyrophosphohydrolase	ornithine-cyclodecarbuxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxyluse	chorismate synthase (5- enolpyruvylshikirnate-3-priospriate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinale synthase	dihydrodipicolinale reductase	L-malate dehydrogenase (acceptor)
15	Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	200
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 Table 1 (continued)	us gene	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum G	glutamicum	glutamicum	i glutamicum	ı glutamicum B	n glutamicum B	n glutamicum	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	n glutamicum
30 Table 1	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgillR	Corynebacterlum glutamicum ATCC 13869 slgB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentu ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentu ATCC 13869 dapB	Corynebacterium glutamicum R127 mqo
35 40	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf: 1509267A	gp:AF124600_1	pir:855225	рп.2204286D	sp.GLUB_CORGL	sp.RECA_CORGL	sp:DAPA_BRELA	sp.DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	- -	 _	9	9	231 gp:	2757 prf.	1230 gp	1896 pir	993 pr	885 sp	1128 sp	903 sp	744 SF	1500 91
· 45	Terminal ORI	1543154 140	1586465 26	1674123 108	1675268 135	1677049 2	1677387 2	17 19869	1882385	2021846	2061504	2063989	2079281	2081191	2113864
50	Initial (nt)	<u> </u>	1586725	1675208	1676623	1677279	1680143		1880490		2060620	2065116	2080183	2081934	2115363
	SEO.	(a.a.)	9969	1969	6969	6969	0269	6971	6972	6973	6974	6975	9769	7269	8269
<i>55</i>	<u> </u>	(DNA)			+-		3470		3472		3474	3475	3476	3477	3478

																	
5	Function		se, unanyıyı-	y protein P-II	Dorter	glutamate dehydrogeוומאפ (אינוזף+)			itase	ese	lycine betaine			8SI	mma-symhase	eductase	
10	Fun		uridilylytransierase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydr	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectolne/proline/glycine betaine carrier	malate synthase	isocitrate Iyase	glutamate 5-kinase	cystathionine gamma-symhase	ribonucleotide reductase	glutaredoxin
15	Matched	(a.a.)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	11
20	Similarity	(%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity	(%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 (penujuos) 1 elder	9040 5	2	ılutamicum	glutamicum	glutamicum	glutamicum A	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum B	glutamicum A	glutamicum B	glutamicum	glutamicum I	glutamicum H
30 dreT	ando succeptomor	of the second se	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 met8	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
35	401074	מם ואשוכוו	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir:S32227	Sp:KPYK_CORGL	gp:AF096280_1	prf:2322244A	SP:THRC_CORGL	prt:2501295B	pir:140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
ı	ORF	(pb)	2076 g	336 g	1314 g	1341	1425 8	696	1431	1443	1845	2217	1296	1107	1158	444	231
45	Terminal		2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
50	nitia	(iii)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	SEO	(a. a.)	6269	0869	6981	6982	6983	6984	6985	9869	2869	6989	6869	0669	6991	6992	6993
55		o (§	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

5	
10	
15	
20	
25	
30	•
35	
40	
45	
50	

_									
	Function	meso-diaminopimelate D dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux purnp or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenale dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	397	329	459	852	315	. 504
	identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
•	db Match	Sp. DDH_CORGL	gp:CGL238703_1	sp. ACKA_CORGL	prf:2516394A	7 prt.2309322A	2556 sp.CLPB_CORGL	prf. 1210266A	2 prf:2501295A
	ORF (bp)	096	135	1191	987	1377	2556	945	1512
	Terminal (nt)	2786756	2887944	2935315	2936508	2962718 137	2963606	3098578	3272563
	Initial (nt)	2787715	3495 6995 2888078	6996 2936505	6997 2937494	2961342	2966161	7000 3099522	7001 3274074
	SEQ.	(8.8.)	5669		2669	8669	6669		7007
		(DNA)	3495	3496	3497	3498	3499	3500	3501

Example 2

20

25

35

Determination of effective mutation site

5 (1) Id ntification of mutation site based on the comparison of the g n nucl otide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32. 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196.* 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6.* 1195-1204 (1992)) were each digested with *Pstl.* Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*1 site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and punified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the pr sence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymin (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72.* 519 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gen , the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encod d by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of on strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gen replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito *et al.* PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the *hom* gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the *pyc* gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the *hom* or *pyc* gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated *hom* gene and *pyc* g n, respectively.

10

15

20

25

35

40

50

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into th lysine-producing No. 58 strain) were subjected to a cultur test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was xamined. [0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucos feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutati n, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

20

25

30

35

40

50

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among the sequences, a mutation, Val591Ala, in hom, a mutation. Thr311lle, in lysC, a mutation. Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

- (2) Construction of plasmid for gene replacement having mutated gene
- [0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwf* were produced as described below.
 - [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and punified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
 - [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
 - (3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in hysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated hysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
 - [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the abov (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

20

25

30

45

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained abov were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

10

15

20

25

30

35

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/Vh)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

- al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.
- [0405] As the oligo DNA primers used for the PCR.
- [0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,
- [0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,
- [0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,
- [0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,
 - [0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,
 - [0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,
 - [0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,
 - [0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,
- [0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,
 - [0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,
 - [0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,
 - [0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,
 - [0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,
- [0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,
 - [0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,
 - [0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,
 - [0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,
 - [0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,
 - [0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,
 - [0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,
 - [0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,
 - [0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,
 - [0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,
- [0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the am-55 plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and
 - [0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

25

30

40

as the respective primer set.

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the ouffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gine, a single-stranded cDNA which had be in synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactur d by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

10

15

20

25

30

40

45

50

55

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 µl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 μl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 µl.

(3) Hybridization

[0433] UltraHyb (110 μl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

Table 5 (continued)			
SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	3 944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in Corynebacterium glutamicum (Archives of Microbiology, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

20

25

35

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le-10 or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF naving adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

5

20

25

30

40

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine d-carboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequenc of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on thes results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenas activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)	
ATCC 13032	0	
FERM BP-7134	45	
FERM BP-158	60	

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmoVl Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at 12,000 × g for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor, manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

step 1: 1 hour under a gradient mode of 0 to 500V;

step 2: 1 hour under a gradient mode of 500 to 1,000 V;

step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and

step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip get was closely placed on 14% polyacrylamide slub get (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

10

15

20

25

30

40

45

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

15

25

40

45

- [0457] Coomassi staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.
 - [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.
 - (4) In-gel digestion of detected protein spot
 - [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- 30 [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method. [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolas—which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEO ID NO:5252.

- [0469] Thes genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
- [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- 20 (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
- [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteom analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points ar specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

10

15

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene d-rived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

20

25

30

35

45

50

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any on of SEQ ID NOS:1 to 3501, second polynucl otides which hybridiz with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides.
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus
 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected
 from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium
 acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium
 melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:
 - at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.
 - 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
 - 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in th m dium, and recoving the polypeptide from the medium.

15. Am thod for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

> culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 22. A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequ nce information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected fr m SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequenc or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by 40 a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequenc derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

5

10

15

20

25

30

35

45

50

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acids quenc information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide naving the target amino acid sequence which is coincident with or analogous to the polypeptide having at least on amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with r analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism 20 of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is select d from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence 40 is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium 50 is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

5

10

15

25

30

35

45

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryn form bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which th Pro residue at the 458th position in the amino acid sequence represented by SEQ ID°NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

45

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bact rium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic bathway or a signal transmission pathway.
- 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ 10 ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium
 - in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59. 35
 - 61. The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebac-40 terium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - 63. A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharid, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.

 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues ther of, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis:
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

242

5

10

20

25

30

35

40

45

50

GENOME AND/OR SEQUENCE DATA POLYNUCLEOTIDE
AND/OR
POLYPEPTIDE
SEQUENCE
RECOGNIZER AND
QUERY BUFFER NETWORK REQUEST RESULT USER INPUT DEVICE

FIG. 3

FIG. 4

