New Approaches To Analysing Psychological Time Series

SAA 2023 Symposium

Oisín Ryan, Jonas Haslbeck, Nick Jacobson, Marieke Helmich, Merlijn Olthof

Extracting Dynamic Features from Irregularly Spaced Time Series R package *expct*

Oisín Ryan^{1,2}, Kejin Wu³, Nicholas C. Jacobson⁴

¹Department of Methodology and Statistics, Utrecht University
²Department of Data Science and Biostatistics, University Medical Centre Utrecht
³Department of Mathematics, University of California, San Diego
⁴Departments of Biomedical Data Science, Psychiatry, and Computer Science, Dartmouth College

SAA 2023 Amsterdam

Descriptive / Exploratory Tools

- Autocorrelation function (ACF)
- Cross-Correlation function (CCF)

Y *y*₁

*y*₂

*У*3 *У*4

> У5 У6

*У*7 *У*8

. . .

УТ

Υ	Y at lag 1	Y at lag 2
<i>y</i> 1		
<i>y</i> ₂	y_1	
<i>y</i> 3	<i>y</i> ₂	y_1
<i>y</i> 4	<i>y</i> 3	<i>y</i> ₂
<i>y</i> 5	<i>y</i> 4	<i>y</i> 3
<i>y</i> ₆	<i>y</i> 5	<i>y</i> 4
<i>y</i> ₇	<i>y</i> ₆	<i>y</i> 5
<i>y</i> 8	<i>y</i> 7	<i>y</i> ₆
• • •		
УТ	y_{T-1}	<i>YT</i> -2
	УТ	y_{T-1}
		УТ

Autocorrelation

Descriptive / Exploratory Tools

- Autocorrelation function (ACF)
- Cross-Correlation function (CCF)

Models such as VAR and ARIMA

► AR(1), AR(2), VAR(p)

Assumption: Equally Spaced Measurements

Time

Equally Spaced Data

Reality: Irregularly Spaced Measurements

Time

Reality: Irregularly Spaced Measurements

Time

Measurement Spacing in Empirical Data

Wichers & Groot (2016)

Unequally Spaced Data

Continuous-Time Modeling

Avoids time-interval problems by modelling moment-to-moment dynamics directly:

$$rac{doldsymbol{Y}(t)}{dt} = oldsymbol{A} oldsymbol{Y}(t) + oldsymbol{G} rac{doldsymbol{W}(t)}{dt}$$

Re-written allows us to model variable relations at different time-intervals (Δt)

$$oldsymbol{Y}(t+\Delta t) = \mathbf{e}^{oldsymbol{A}\Delta t} oldsymbol{Y}(t) + \epsilon(\Delta t)$$

Can be estimated, e.g., using the ctsem package (Driver et al. 2017)

- lackbox Use $\mathbf{e}^{\hat{m{A}}\Delta t}$ to inspect auto-and cross regression effects at different time-intervals
- Or transform to find model-implied auto and cross correlations

Boker (2002); Oud & Delsing (2010); Voelkle et al (2012); Ryan & Hamaker (2022)

Problem: Model Misspecification

Model-based correlations accurate only if the model is correctly specified

In reality the model is never correctly specified.

- We may have the order of the model (first vs second) wrong
- Functional form of the relationships may not be linear at the DE level
- ► Even if we have a linear first order model, if we have unobserved **confounders** or even **mediators**, we may run into problems

ctsem estimation: Simple Model

ctsem estimation: Misspecified Model

Traditional ACF estimation:

- ▶ Data-driven and exploratory method for exploring dynamic features
- ▶ Does not perform well with unequally spaced time series

Continuous-Time (CT) model estimation:

- ► Can be estimated from unequally spaced time series
- Inferences rely on correct model specification
- Without a data-driven way of computing auto- and cross- correlations: no easy way to check model misspecification

expct: Exploratory Continuous Time Modeling

Method to estimate ACF and CCFs from unequally spaced data R package: github: ryanoisin/expct

expct: Exploratory Continuous Time Modeling

Method to estimate ACF and CCFs from unequally spaced data R package: github: ryanoisin/expct

Two-step procedure

1. Create a "stacked" data frame

Υ	Time stamp		
y_1	0		
<i>y</i> ₂	Δs_1		
<i>y</i> 3	Δs_2		
<i>y</i> 4	Δs_3		
<i>y</i> 5	Δs_4		
<i>y</i> ₆	Δs_5		
<i>Y</i> 7	Δs_6		
<i>y</i> ₈	Δs_7		

... ∆s⊤

. . . УТ

expct: Exploratory Continuous Time Modeling

Method to estimate ACF and CCFs from unequally spaced data R package: github: ryanoisin/expct

Two-step procedure

- 1. Create a "stacked" data frame
- 2. Use Generalized Additive Model (GAM) to estimate how lagged correlations depend on the time-interval

$$Y_{t+\Delta t} = f(\Delta t)Y_t + \epsilon$$

expct: Exploratory Continuous Time Modeling

Method to estimate ACF and CCFs from unequally spaced data R package: github: ryanoisin/expct

Two-step procedure

- 1. Create a "stacked" data frame
- 2. Use Generalized Additive Model (GAM) to estimate how lagged correlations depend on the time-interval

$$Y_{t+\Delta t} = f(\Delta t)Y_t + \epsilon$$

By rescaling $f(\Delta t)$ we estimate

$$cor(Y_t, Y_{t+\Delta t}) \propto f(\Delta t)$$

expct estimation: unequally spaced

Simulation Study

```
Time-series length: [ 50 - 2000]
Sampling Scheme: { Equal, Unequal Bimodal, Unequal Uniform }
Data-generating models: { Simple, Oscillating, Complex (missing variables) }
```

Methods for computing CIs:

Point-wise, Simultaneous, Analytic

We use "function-wide" averages to summarize performance:

► Function-wide bias: Average distance between true and estimated correlation function evaluated at a range of time-intervals / lags

Bias: Simple Model, Equal Spacing

Bias: Complex Model, Equal Spacing

Bias: Complex Model, Unequal Spacing

Coverage: Complex Model, Unequal Spacing

Empirical Data

Wichers & Groot (2016)

Empirical Data

Autocorrelation Self-Doubt (acf)

Empirical Data

Future work

In principle this method can be used in other situations than those studied here

- Systems of variables measured at different timescales (e.g., daily diary vs hourly ratings vs minute-to-minute physiological measurements)
- "Panel" data: multi-subject low repeated measures

Extensions in progress:

- ► Multi-level time-series data (random effects)
- Partial relationships (PACF, PCCF)

Extracting Dynamic Features from Irregularly Spaced Time Series

expct: Exploratory continuous-time modeling

- Available as an R package github: ryanoisin/expct
- Overcomes equal-interval limitation of traditional ACF/CCF estimation
- Avoids reliance on correct lagged model specification in confirmatory continuous-time models
 - ctsem, dynr

Ryan O., Wu, K., & Jacobson, N.K. (in preperation). Exploratory Continuous-Time Modeling (expct): Extracting Dynamic Features from Irregularly Spaced Time Series

oisin.ryan.stats@gmail.com | oisinryan.org

