Problème. Polynômes de Tchebychev et inégalité de Bernstein.

Partie A Étude des polynômes de Tchebychev.

La suite $(T_n)_{n\in\mathbb{N}}$ est définie par $T_0=1$ $T_1=X$ et $\forall n\in\mathbb{N}$ $T_{n+2}=2XT_{n+1}-T_n$.

- 1. Premières propriétés
 - (a) $|T_2(X)| = 2X^2 1$, $|T_3(X)| = 4X^3 3X$ et $|T_4| = 8X^4 8X^2 + 1$
 - (b) On procède par récurrence "double", la relation de récurrence définissant la suite (T_n) étant d'ordre 2. Pour $n \in \mathbb{N}$, on pose

$$\mathcal{P}(n)$$
: « $\deg T_n = n$ ».

- $\star \mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.
- \star On suppose que pour un entier $n \in \mathbb{N}$, $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.

On sait que $T_{n+2} = 2XT_{n+1} - T_n$.

On constate que $deg(2XT_{n+1}) = n + 2 > n = deg T_n$.

Le cours nous assure que deg $T_{n+2} = \deg(2XT_{n+1}) = n+2$

On a bien vérifié $\mathcal{P}(n+2)$.

$$\forall n \in \mathbb{N} \quad \deg T_n = n$$

- (c) On constate que T_0 est de coefficient dominant égal à 1.
 - ullet On montre par récurrence sur n que T_n est de coefficient dominant égal à 2^{n-1} si n > 1.
 - * Le polynôme T_1 est bien de coefficient dominant égal à 2^0 .
 - * Supposons que T_n est de coefficient dominant égal à 2^{n-1} pour un $n \in \mathbb{N}^*$. Connaissant les degrés de T_n et T_{n-1} , on observe que

$$\deg(T_{n-1}) < n$$

$$T_n = 2^{n-1}X^n + R_n \quad \text{avec } \deg(R_n) < n.$$

On en déduit que

$$T_{n+1} = 2XT_n - T_{n-1} = 2^n X^{n+1} + 2XR_n - T_{n-1}$$

Puisque $deg(2XR_n - T_{n-1}) < n+1$, cela montre que T_{n+1} est de coefficient dominant 2^{n+1} .

Pour tout n supérieur à 1, T_n est de coefficient dominant 2^{n-1}

- (d) Montrons par récurrence double sur $n \in \mathbb{N}$ que $T_n(-X) = (-1)^n T_n(X)$.
 - \star C'est vrai pour n=0 et n=1.
 - \star On suppose que pour un entier n,

$$T_n(-X) = (-1)^n T_n(X)$$
 et $T_{n+1}(-X) = (-1)^{n+1} T_{n+1(X)}$.

L'égalité $T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X)$ donne alors

$$T_{n+2}(-X) = 2 \cdot (-X) \cdot T_{n+1}(-X) - T_n(-X)$$
$$= (-1)^{n+2} (2XT_{n+1}(X) - T_n(X))$$
$$= (-1)^{n+2} T_{n+2}(X).$$

terminant ainsi la récurrence.

 T_n et n sont de même parité.

(e) Il s'agit de démontrer pour tout entier naturel n la propriété

$$\mathcal{P}(n): \quad \forall P \in \mathbb{R}_n[X] \quad \exists (\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1} \quad P = \sum_{k=0}^n \lambda_k T_k$$
 ».

- \star La propriété $\mathcal{P}(0)$ est vraie. En effet, si P est un polynôme de $\mathbb{R}_0[X]$, il s'agit d'un polynôme constant de la forme $\lambda 1_{\mathbb{K}[X]}$, qu'on peut écrire λT_0 .
- \star Supposons que la propriété est vraie pour un entier n de \mathbb{N} . Soit $P \in \mathbb{R}_{n+1}[X]$ Deux cas se présentent.
 - $\cdot P$ est de degré inférieur à n. Alors la propriété au rang n s'applique : P est une combinaison linéaire de polynômes de Tchebychev.
 - · P est de degré n+1. Il existe donc $\lambda \in \mathbb{R}^*$ et $R \in \mathbb{R}_n[X]$ tels que

$$P = \lambda X^{n+1} + R.$$

Puisque T_{n+1} est de degré n+1 et de coefficient dominant 2^n , on a

$$P - \frac{\lambda}{2^n} T_{n+1} \in \mathbb{R}_n[X].$$

La propriété $\mathcal{P}(n)$ s'applique : il existe $(\mu_0, \dots, \mu_n) \in \mathbb{R}^{n+1}$ tel que

$$P - \frac{\lambda}{2^n} T_{n+1} = \sum_{k=0}^n \mu_k T_k$$
, soit $P = \frac{\lambda}{2^n} T_{n+1} + \sum_{k=0}^n \mu_k T_k$.

Le polynôme P est donc bien une combinaison linéaire de T_0, \ldots, T_{n+1} . \star D'après le principe de récurrence, la propriété $\mathcal{P}(n)$ est vraie pour tout entier naturel n.

Remarque. On vient de montrer, avec les moyens du bord, que la famille (T_0, \ldots, T_n) "engendre" l'espace vectoriel $\mathbb{R}_n[X]$. On aura bientôt les moyens de le faire plus efficacement...

2. La relation fondamentale

- (a) Montrons le résultat par récurrence à deux termes sur $n \in \mathbb{N}$.
 - \star C'est clair pour n=0 et n=1.
 - \star Soit $n \in \mathbb{N}$. Supposons le résultat vrai aux rangs n et n+1. L'égalité $T_{n+2}=2XT_{n+1}-T_n$ permet d'obtenir

$$T_{n+2}\left(\frac{1}{2}(z+z^{-1})\right) = (z+z^{-1})T_{n+1}\left(\frac{1}{2}(z+z^{-1})\right) - T_n\left(\frac{1}{2}(z+z^{-1})\right)$$
$$= (z+z^{-1})\frac{1}{2}(z^{n+1}+z^{-n-1}) - \frac{1}{2}(z^n+z^{-n})$$
$$= \frac{1}{2}(z^{n+2}+z^{-(n+2)}),$$

terminant ainsi la récurrence.

(b) Soit un réel α . Il suffit d'appliquer la question précédente à $z=e^{i\alpha}$ (qui est bien non nul) et d'utiliser une formule d'Euler :

$$T_n(\cos \alpha) = T_n\left(\frac{1}{2}(e^{i\alpha} + e^{-i\alpha})\right) = \frac{1}{2}(e^{in\alpha} + e^{-in\alpha}) = \cos n\alpha.$$

$$\left[\forall (n,\alpha) \in \mathbb{N} \times \mathbb{R} \quad T_n(\cos \alpha) = \cos(n\alpha)\right]$$

(c) Soit $P \in \mathbb{R}[X]$ tel que pour tout $\alpha \in \mathbb{R} : P(\cos \alpha) = \cos(n\alpha)$. Soit $Q = P - T_n$. On observe que $Q(\cos \alpha) = 0$ pour tout $\alpha \in \mathbb{R}$. La fonction $\cos : \mathbb{R} \to [-1,1]$ étant surjective, Q s'annule sur [-1,1]. Ce polynôme Q a donc une infinité de racines ; on sait alors que Q = 0, i.e.

$$P = T_n$$

3. Factorisation de T_n

Soit $n \in \mathbb{N}^*$.

(a) Le réel $\cos \alpha$ est racine de T_n si et seulement si $T_n(\cos \alpha) = \cos(n\alpha) = 0$ et donc si et seulement si

$$\exists k \in \mathbb{Z}$$
 : $\alpha = \frac{\pi}{2n} + k\frac{\pi}{n} = \boxed{\frac{(2k+1)\pi}{2n}}$

(b) Pour $0 \le k \le n-1$, posons $x_k = \cos\frac{(2k+1)\pi}{2n}$. Puisque les réels $\frac{(2k+1)\pi}{2n}$ sont dans $[0,\pi]$, les x_k sont n nombres réels distincts de [-1,1] (sur $[0,\pi]$, cos est strictement décroissante donc injective). D'après la question précédente, x_0,\ldots,x_{n-1} sont n racines réelles distinctes de T_n . Or T_n est de degré n. Les x_k sont donc exactement toutes les racines de T_n et elles sont nécessairement simples. Ainsi T_n est scindé à racines simples sur \mathbb{R} . Connaissant son coefficient dominant, on conclut que

$$T_n(X) = 2^{n-1} \prod_{k=1}^n \left(X - \cos \frac{(2k+1)\pi}{2n} \right)$$

Les facteurs sont de degré 1 : ce sont bien des irréductibles de $\mathbb{R}[X]$.

- 4. Calcul des bornes $\sup_{x \in [-1,1]} |T_n(x)|$ et $\sup_{x \in [-1,1]} |T'_n(x)|$
 - (a) Soit un réel x dans [-1,1]. Il existe un (une infinité...) réel α tel que $x=\cos(\alpha)$, de sorte que

$$|T_n(x)| = |T_n(\cos \alpha)| = |\cos(n\alpha)| \le 1.$$

En prenant $x = 1 = \cos(0)$, on obtient que $|T_n(1)| = 1$. Le majorant 1 est donc atteint : c'est un maximum; on a

$$\left| \sup_{x \in [-1,1]} |T_n(x)| = 1 \right|$$

(b) Les fonctions $\alpha \mapsto T_n(\cos \alpha)$ et $\alpha \mapsto \cos(n\alpha)$ sont dérivables par composition. En utilisant \bullet et en dérivant on trouve

$$\forall \alpha \in \mathbb{R} : -(\sin \alpha) T'_n(\cos \alpha) = -n \sin(n\alpha).$$

Si de plus $\alpha \in]0, \pi[$ alors $\sin(\alpha) \neq 0$ et on a bien $T'_n(\cos \alpha) = n \frac{\sin(n\alpha)}{\sin \alpha}$

(c) On va passer à la limite quand $\alpha \to 0$ dans l'égalité de la question précédente. Par continuité : $T'_n(\cos \alpha) \xrightarrow[\alpha \to 0]{} T'_n(1)$.

Par ailleurs, on sait que $\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$. On peut donc écrire

$$n\frac{\sin(n\alpha)}{\sin\alpha} = n^2 \cdot \frac{\frac{\sin n\alpha}{n\alpha}}{\frac{\sin \alpha}{\alpha}} \xrightarrow[\alpha \to 0]{} n^2 \cdot \frac{1}{1}$$

Un passage à la limite dans le résultat de la question précédente donne

$$T_n'(1) = n^2.$$

- (d) Pour $n \in \mathbb{N}$ on note $\mathcal{P}(n)$: « $\forall \alpha \in \mathbb{R}$, $|\sin(n\alpha)| \leq n |\sin \alpha|$ ».
 - $\mathcal{P}(0)$ est évidente (« $0 \le 0$ »).
 - On suppose $\mathcal{P}(n)$ pour un entier $n \in \mathbb{N}$ donné. Alors

$$\begin{aligned} |\sin((n+1)\alpha)| &= |\sin(n\alpha)\cos\alpha + \cos(n\alpha)\sin\alpha| \\ &\leq |\sin(n\alpha)| |\cos\alpha| + |\cos(n\alpha)| |\sin\alpha| \\ &\leq |\sin(n\alpha)| + |\sin\alpha| \\ &\leq n |\sin\alpha| + |\sin\alpha| \\ &\leq (n+1) |\sin\alpha| \, . \end{aligned}$$

- Le principe de récurrence conclut.
- (e) D'après les questions 4-(a) et 4-(c), on a

$$\forall \alpha \in]0, \pi[|T'_n(\cos \alpha)| \le n^2,$$

de sorte que

$$\forall x \in]-1,1[|T'_n(x)| \le n^2.$$

De $T_n(-X) = (-1)^n T_n(X)$ on déduit $T'_n(-X) = (-1)^{n+1} T'_n(X)$, si bien que $|T'_n(-1)| = |T'_n(1)| = n^2$. On a montré que

$$\forall x \in [-1, 1] \quad |T'_n(x)| \le n^2$$

et qu'il y a égalité si $x = \pm 1$.

Cela achève de prouver que

$$\sup_{x \in [-1,1]} |T'_n(x)| = n^2$$

- 5. Un théorème de Tchebychev.
 - (a) Grâce à \P , on calcule $T_n(x_k) = \cos\left(n\frac{k\pi}{n}\right) = \cos(k\pi) = (-1)^k$.

$$T_n(x_k) = (-1)^k$$

On sait que $x_k \in [-1, 1]$, donc $-1 < P(x_k) < 1$ (par hypothèse faite sur P). Ainsi $Q(x_k) = P(x_k) - (-1)^k$ est strictement positif si k est impair et strictement négatif si k est pair. Par conséquent

$$Q(x_k)$$
 et $Q(x_{k+1})$ sont de signes opposés, et non nuls.

(b) On sait que $Q(x_k)$ et $Q(x_{k+1})$ sont non nuls et de signes opposés. D'après le théorème des valeurs intermédiaires, il existe $y_k \in]x_{k+1}, x_k[$ tel que $Q(y_k) = 0$. Les inégalités

$$x_n < y_{n-1} < x_{n-1} < \ldots < x_1 < y_0 < x_0$$

justifient que y_0, \ldots, y_{n-1} sont n racines distinctes de Q

(c) Les polynômes P et T_n ont même degré n et même coefficient dominant 2^{n-1} . Dans $P-T_n$, les termes en X^n se simplifient. Donc deg $Q = \deg(P-T_n) < n$. On a vu précédemment que Q admet au moins n racines distinctes. Ceci amène Q = 0 puis $P = \frac{1}{2^{n-1}}T_n$. Or, d'après 4-(a), on a

$$\sup_{x \in [-1,1]} \frac{1}{2^{n-1}} |T_n(x)| = \frac{1}{2^{n-1}}.$$

Ceci contredit l'hypothèse initialement faite sur P. On a donc démontré que pour ce polynôme unitaire P quelconque de $\mathbb{R}_n[X]$,

$$\sup_{x \in [-1,1]} |P(x)| \ge \frac{1}{2^{n-1}}.$$

Remarque : on peut démontrer que $\frac{1}{2^{n-1}}T_n$ est le <u>seul</u> polynôme unitaire de $\mathbb{R}_n[X]$ pour lequel l'inégalité ci-dessus est une égalité, mais c'est assez technique.

Intermède Polynômes trigonométriques.

6. Considérons dans S_n une fonction $f: t \mapsto a_0 + \sum_{k=1}^n (a_k \cos(kt) + b_k \sin(kt))$, où les a_k et les b_k sont des constantes réelles. La dérivée de cette fonction est donnée par

$$\forall t \in \mathbb{R} \quad f'(t) = \sum_{k=1}^{n} \left(-ka_k \sin(kt) + kb_k \cos(kt) \right).$$

Ceci démontre que f' est encore une fonction de S_n .

7. Soit $P \in \mathbb{R}_n[X]$. D'après la question 1-(e), le polynôme P est une combinaison linéaire des n+1 premiers polynômes de Tchebychev:

$$\exists (\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1} \quad P = \sum_{k=0}^n \lambda_k T_k.$$

Pour un réel donné, on calcule

$$f(t) = P(\cos t) = \sum_{k=0}^{n} \lambda_k T_k(\cos t) = \sum_{k=0}^{n} \lambda_k \cos(kt),$$

ce qui démontre que $f \in \mathcal{S}_n$.

8. Soit $f \in \mathcal{S}_n$. Il lui est associé un 2n+1 uplet $(a_0, a_1, \ldots, a_n, b_1, \ldots, b_n)$. Avec les formules d'Euler, on a

$$f(t) = a_0 + \sum_{k=1}^{n} \left(\frac{a_k - ib_k}{2} e^{ikt} + \frac{a_k + ib_k}{2} e^{-ikt} \right)$$
$$= e^{-int} \left(a_0 e^{int} + \sum_{k=1}^{n} \left(\frac{a_k - ib_k}{2} e^{i(k+n)t} + \frac{a_k + ib_k}{2} e^{i(n-k)t} \right) \right)$$

Si on pose

$$U(X) = a_0 X^n + \sum_{k=1}^n \left(\frac{a_k - ib_k}{2} X^{k+n} + \frac{a_k + ib_k}{2} X^{n-k} \right)$$

on obtient un élément de $\mathbb{C}_{2n}[X]$ tel que $f(t) = e^{-int}U(e^{it})$.

$$\exists U \in \mathbb{C}_{2n}[X] \quad \forall \theta \in \mathbb{R} \quad f(\theta) = e^{-in\theta}U(e^{i\theta})$$

Partie B | Inégalité de Bernstein.

9. Soit $B \in \mathbb{C}_{2n-1}[X]$. Par hypothèse, et en notant λ le coefficient dominant de A,

$$A = \lambda \prod_{j=1}^{2n} (X - \alpha_j), \qquad A' = \lambda \sum_{k=1}^{2n} \prod_{\substack{1 \le j \le 2n \\ j \ne k}} (X - \alpha_j), \qquad A'(\alpha_k) = \lambda \prod_{\substack{1 \le j \le 2n \\ j \ne k}} (\alpha_k - \alpha_j).$$
Posons $L_k = \frac{A(X)}{(X - \alpha_k)A'(\alpha_k)}$. Le polynôme L_k est de degré $2n - 1$ et on le reconnaît

Posons $L_k = \frac{A(X)}{(X - \alpha_k)A'(\alpha_k)}$. Le polynôme L_k est de degré 2n - 1 et on le reconnaît comme étant un polynôme de Lagrange. On se passe du théorème correspondant dans ce qui suit, préférant redonner les arguments. On a (immédiat si $j \neq k$ et calcul précédent si j = k)

$$L_k(\alpha_j) = \delta_{j,k}$$

En particulier, $B - \sum_{k=1}^{2n} B(\alpha_k) L_k$ est nul en tous les α_j . Or $B \in \mathbb{C}_{2n-1}[X]$:c'est un polynôme de degré inférieur à 2n-1 qui est donc nul (puisqu''il a au moins 2n racines).

$$\forall B \in \mathbb{C}_{2n-1}[X] \quad B(X) = \sum_{k=1}^{2n} B(\alpha_k) \frac{A(X)}{(X - \alpha_k) A'(\alpha_k)}$$

On pouvait aussi utiliser la décomposition en éléments simples de $\frac{B}{A}$, particulièrement aisée puisque les pôles sont simples.

- 10. On évalue : $P_{\lambda}(1) = P(\lambda) P(\lambda) = 0$. Puisque 1 est racine de P_{λ} , on a bien que X - 1 divise P_{λ} .
- 11. Puisque $P(\lambda X) P(\lambda) = (X 1)Q_{\lambda}(X)$, on obtient en dérivant :

$$\lambda P_{\lambda}'(X) - 0 = (X - 1)Q_{\lambda}'(X) + Q_{\lambda}(X).$$

Il n'y a plus qu'à évaluer en 1 pour obtenir $Q_{\lambda}(1) = \lambda P_{\lambda}'(1)$.

12. On remarque tout d'abord que pour $k \in [1, 2n]$, on a $R(\omega_k) = e^{2in\varphi_k} + 1 = 0$. Ceci prouve que $\omega_1, \ldots, \omega_{2n}$ sont racines de R. De plus, pour $k, \ell \in [1, 2n]$

$$\varphi_k - \varphi_\ell = (k - \ell) \frac{\pi}{n}$$

Puisque $-2n < k - \ell < 2n$ et donc $\varphi_k - \varphi_\ell \in]-2\pi, 2\pi[$ n'est nul que si $k = \ell$. On a ainsi 2n racines deux à deux distinctes pour R unitaire de degré 2n et donc

$$R(X) = \prod_{k=1}^{2n} (X - \omega_k)$$

13. Si on applique \clubsuit avec A = R et $\alpha_k = \omega_k$ (qui sont bien distincts), on obtient,

$$B(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{B(\omega_k)R(X)}{X - \omega_k} \omega_k$$

en calculant $R'(\omega_k) = 2n\omega_k^{2n-1} = -\frac{2n}{\omega_k}$ (puisque $\omega_k^{2n} = -1$)

Ceci est vrai pour $B \in \mathbb{C}_{2n-1}[X]$ et en particulier pour Q_{λ} , pour un λ fixé. Comme les ω_k sont différents de 1, l'expression de Q_{λ} donne alors

$$\forall \lambda \in \mathbb{C}, \quad Q_{\lambda}(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{X^{2n} + 1}{X - \omega_k} \omega_k$$

Appliquous cette formule en $\lambda = 1$. Avec la question 11, on a alors

$$\lambda P'(\lambda) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{2}{1 - \omega_k} \omega_k$$

Il reste à couper la somme en deux pour conclure que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1-\omega_k)^2} - \frac{P(\lambda)}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2} \quad \bigstar$$

14. Écrire l'égalité \bigstar avec $P = X^{2n}$ donne

$$2n\lambda^{2n} = -\frac{1}{2n}\sum_{k=1}^{2n} \frac{2\lambda^{2n}\omega_k}{(1-\omega_k)^2} - \frac{\lambda^{2n}}{2n}\sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2} = -\frac{\lambda^{2n}}{n}\sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2}$$

Ceci est vrai pour tout λ , notamment non nul. En simplifiant par λ^{2n} , on obtient

$$\frac{1}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2} = -n$$

ce qui permet, après multiplication par $P(\lambda)$ de réécrire le second terme de \bigstar et de conclure que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1 - \omega_k)^2} + nP(\lambda)$$

15. On a $1 - \omega_k = e^{i\varphi_k/2}(e^{-i\varphi_k/2} - e^{i\varphi_k/2}) = -2ie^{i\varphi_k/2}\sin(\varphi_k/2)$ et ainsi

$$\frac{2\omega_k}{(1-\omega_k)^2} = \frac{2e^{i\varphi_k}}{-4e^{i\varphi_k}\sin^2(\varphi_k/2)} = \frac{-1}{2\sin^2(\varphi_k/2)}$$

En utilisant la question 14 avec le polynôme P constant égal à 1, on obtient

$$0 = \frac{1}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1 - \omega_k)^2} + n \quad \text{soit} \quad \boxed{\frac{1}{4n} \sum_{k=1}^{2n} \frac{1}{\sin^2(\varphi_k/2)} = n}.$$

16. Appliquons la question précédente au polynôme U associée à la fonction f. Avec l'expression ci-dessus, on obtient

$$\lambda U'(\lambda) = -\frac{1}{2n} \sum_{k=1}^{2n} U(\lambda \omega_k) \frac{1}{2\sin^2(\varphi_k/2)} + nU(\lambda).$$

En particulier, pour $\lambda = e^{it}$, on obtient (puisque $f'(t) = -inf(t) + ie^{-int}e^{it}U'(e^{it})$)

$$-ie^{int}(f'(t) + inf(t)) = -\frac{1}{2n} \sum_{k=1}^{2n} U\left(e^{i(t+\varphi_k)}\right) \frac{1}{2\sin^2(\varphi_k/2)} + nU(e^{it})$$
$$= -\frac{1}{2n} \sum_{k=1}^{2n} e^{in(t+\varphi_k)} f(t+\varphi_k) \frac{1}{2\sin^2(\varphi_k/2)} + ne^{int} f(t)$$

Comme $e^{in\varphi_k} = i(-1)^k$, on conclut que

$$-if'(t) = -\frac{1}{2n} \sum_{k=1}^{2n} i(-1)^k f(t+\varphi_k) \frac{1}{2\sin^2(\varphi_k/2)}$$

On a montré que $\forall t \in \mathbb{R}, \quad f'(t) = \frac{1}{4n} \sum_{k=1}^{2n} f(t + \varphi_k) \frac{(-1)^k}{\sin^2(\varphi_k/2)}$

17. Soit $t \in \mathbb{R}$. En appliquant l'inégalité triangulaire au résultat de la question précédente, on obtient

$$|f'(t)| \le \frac{1}{4n} \sum_{k=1}^{2n} |f(t+\varphi_k)| \frac{1}{\sin^2(\varphi_k/2)} \le \left(\frac{1}{4n} \sum_{k=1}^{2n} \frac{1}{\sin^2(\varphi_k/2)}\right) M,$$

où M est un majorant de |f| sur \mathbb{R} . En utilisant le résultat de la question précédente, et en prenant M le plus petit des majorant de |f|, on obtient

$$|f'(t)| \le n \sup_{t \in \mathbb{R}} |f(t)|.$$

Le nombre $n \sup_{t \in \mathbb{R}} |f(t)|$ est un majorant de |f'|, supérieur à son plus petit majorant : on obtient

$$\sup_{t \in \mathbb{R}} |f'(t)| \le n \sup_{t \in \mathbb{R}} |f(t)|$$

Partie C | Quelques conséquences.

18. Soit $P \in \mathbb{R}_n[X]$. Posons $f: t \mapsto P(\cos(t))$. La question 7 nous indique que c'est un élément de S_n et on peut donc lui appliquer l'inégalité de Bernstein. On a

$$\forall t \in \mathbb{R}, \ f'(t) = -\sin(t)P'(\cos(t))$$

Si $x \in [-1, 1]$, on applique ceci avec $t = \arccos(x)$. Comme $\sin(\arccos(x)) = \sqrt{1 - x^2}$ (car $\sin(\theta) = \sqrt{1 - \cos^2(\theta)}$ quand $\theta \in [0, \pi]$)

$$|-\sqrt{1-x^2}P'(x)| \le n \sup_{t \in \mathbb{R}} |f(t)|$$

Puisque $\sup_{t\in\mathbb{R}}|f(t)|=\sup_{x\in[-1,1]}|P(x)|$, en "passant au sup" sur l'inégalité précédente, on obtient le résultat voulu :

$$\left| \forall P \in \mathbb{C}_n[X], \quad \forall x \in [-1, 1], \quad \left| P'(x) \sqrt{1 - x^2} \right| \le n \sup_{x \in [-1, 1]} |P(x)| \right|$$

19. Soit $Q \in \mathbb{R}_{n-1}[X]$. Posons $f: t \mapsto Q(\cos(t))\sin(t)$. On sait déjà que $t \mapsto Q(\cos(t))$ est dans \mathcal{S}_{n-1} et s'écrit donc comme combinaison de $\cos(kt)$ et $\sin(k\theta)$ pour $k \in [1, n-1]$ et d'une constante. Or,

$$\cos(k\theta)\sin(t) = \frac{1}{2}(\sin((k+1)\theta) - \sin((k-1)t)) \quad \sin(k\theta)\sin(t) = -\frac{1}{2}(\cos((k+1)t) - \cos((k-1)t))$$

et f(t) est donc combinaison de $\cos(jt)$ et $\sin(jt)$ pour $j \in [1, n]$ et de $\sin(t)$ (pour la constante multipliée par $\sin(t)$). C'est donc un élément de \mathcal{S}_n .

Comme $f'(t) = Q(\cos(t))\cos(t) - \sin^2(t)Q'(\cos(t))$, on a f'(1) = Q(1) (t = 0). L'inégalité de Bernstein donne alors

$$|Q(1)| \le n \sup_{t \in \mathbb{R}} |f(t)|$$

Remarquons alors que

 $\forall t \in \mathbb{R}, |f(t)| = |Q(\cos(t))\sin(t)| = |Q(x)|\sqrt{1-x^2} \text{ avec } x = \cos(t)$

et donc |f(t)| est plus petit que le sup des $|Q(x)|\sqrt{1-x^2}$ pour $x \in [-1,1]$. Ainsi

$$|Q(1)| \le n \sup_{-1 \le x \le 1} |Q(x)\sqrt{1 - x^2}|$$

20. Soit $R \in \mathbb{R}_{n-1}[X]$ et $u \in [-1, 1]$. Considérons $S_u(X) = R(uX) \in \mathbb{R}_{n-1}[X]$. La question précédente utilisée avec ce polynôme donne

$$|R(u)| \le n \sup_{-1 \le x \le 1} \left| R(ux)\sqrt{1-x^2} \right|$$

Pour tout $x \in [-1, 1]$, on a $1 - x^2 \le 1 - u^2 x^2$ et donc $\sqrt{1 - x^2} \le \sqrt{1 - u^2 x^2}$. Ainsi

$$\forall x \in [-1, 1], \ \left| R(ux)\sqrt{1 - x^2} \right| \le \left| R(ux)\sqrt{1 - (ux)^2} \right| \le \sup_{-1 \le y \le 1} |R(y)\sqrt{1 - y^2}|$$

On a ainsi montré que

$$\sup_{-1 \le x \le 1} \left| R(ux)\sqrt{1 - x^2} \right| \le \sup_{-1 \le y \le 1} |R(y)\sqrt{1 - y^2}|$$

et on a donc

$$|R(u)| \le n \sup_{-1 \le x \le 1} |R(x)\sqrt{1-x^2}|$$

21. Soit $P \in \mathbb{R}_n[X]$, on peut appliquer ce qui précède à $P' \in \mathbb{R}_{n-1}[X]$:

$$\forall u \in [-1, 1] \ |P'(u)| \le n \sup_{-1 \le x \le 1} |P'(x)\sqrt{1 - x^2}|$$

Avec la question 18, on a donc

$$\forall u \in [-1, 1] \quad |P'(u)| \le n^2 \sup_{x \in [-1, 1]} |P(x)|$$

et ainsi
$$\sup_{x \in [-1,1]} |P'(x)| \le n^2 \sup_{x \in [-1,1]} |P(x)|$$

22. Le polynôme de Tchebychev T_n appartient à $\mathbb{R}_n[X]$. D'une part, on sait que $\sup_{x \in [-1,1]} |T_n(x)| = 1$ (question 4-(a)).

D'autre part, on a $\sup_{x \in [-1,1]} |T'_n(x)| = n^2$ (question 4-(e)). Ainsi,

L'inégalité est une égalité quand $P = T_n$