Definition (Group)

Consider a set \mathbb{C} and an operation $\otimes : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ defined on \mathbb{C} . Then $G := (\mathbb{C}, \otimes)$ is called a *group* if the following hold:

- **1** Closure of C under \otimes : $\forall x, y \in \mathbb{C}$: $x \otimes y \in \mathbb{C}$
- **2** Associativity: $\forall x, y, z \in \mathbb{C}$: $(x \otimes y) \otimes z = x \otimes (y \otimes z)$
- **3** Neutral element: $\exists e \in \mathbb{C} \ \forall x \in \mathbb{C} : x \otimes e = x \text{ and } e \otimes x = x$
- **1** Inverse element: $\forall x \in \mathbb{C} \exists y \in \mathbb{C} : x \otimes y = e \text{ and } y \otimes x = e$

If additionally, $\forall x, y \in \mathbb{C} : x \otimes y = y \otimes x$, then $G = (\mathbb{C}, \otimes)$ is an *Abelian group*.

Definition (Vector Space)

A real-valued *vector space* $V = (\mathcal{V}, +, \cdot)$ is a set \mathcal{V} with two operations

$$+: \ \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$
$$\cdot: \ \mathbb{R} \times \mathcal{V} \to \mathcal{V}$$

where

- \bullet $(\mathcal{V},+)$ is an Abelian Group.
- ② Distributivity

 - $\forall \lambda, \psi \in \mathbb{R}, x \in \mathbb{V} : (\lambda + \psi) \cdot x = \lambda \cdot x + \psi \cdot x$
- Associativity (outer operation)
- Neutral element with respect to the outer operation

Definition (Linear (In)dependence)

Consider a vector space V with $k \in \mathbb{N}$ and $\mathbf{x_1}, \dots, \mathbf{x_k} \in V$. If there is a non-trivial linear combination, such that $0 = \sum_{i=1}^k \lambda_i \mathbf{x}_i$ with at least one $\lambda_i \neq 0$, the vectors $\mathbf{x_1}, \dots, \mathbf{x_k}$ are linearly dependent. If only the trivial solution exists, i.e., $\lambda_1 = \dots = \lambda_k = 0$ the vectors $\mathbf{x_1}, \dots, \mathbf{x_k}$ are linearly independent.

 To investigate linear independency of n vectors → solve a homogenuous linear system of n equations.

Graphical interpretation of "Linear Independence"

Definition (Generating Set and Span)

For $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subseteq \mathcal{V}$, \mathcal{A} is a generating set of V if for every $\mathbf{v} \in V$:

$$\mathbf{v} = \lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k.$$

The set of all linear combinations of vectors in \mathcal{A} is the *span* of the \mathcal{A} and $V = \text{span}[\mathcal{A}]$ if \mathcal{A} spans V.

Definition (Basis)

For $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subseteq \mathcal{V}$, a generating set \mathcal{A} of V is *minimal* if there exists no smaller set $\tilde{\mathcal{A}} \not\subseteq \mathcal{A} \subseteq \mathcal{V}$ that spans V.

Every linearly independent generating set of V that is minimal, is a $\textit{basis}\xspace$ of V.

Graphical interpretation of "Basis Vectors"

Example 3. The first two sets are both bases in \mathbb{R}^3 , however the third set is not a base in \mathbb{R}^4 . (Why?)

$$\mathcal{B}_{1} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

$$\mathcal{B}_{2} = \left\{ \begin{bmatrix} 0.5\\0.8\\0.4 \end{bmatrix}, \begin{bmatrix} 1.8\\0.3\\0.3 \end{bmatrix}, \begin{bmatrix} -2.2\\-1.3\\3.5 \end{bmatrix} \right\}$$

$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-4 \end{bmatrix} \right\}$$

- No unique basis
- All bases have the same number of elements, called the basis vector
- Dimension of V, dim(V): The number of basis vectors of V
- $\bullet \ U \subseteq V \longrightarrow \text{dim}(U) \leq \text{dim}(V) \ \& \ U = V \longrightarrow \text{dim}(U) = \text{dim}(V)$
- ullet Intuitively, dim(V) is the number of independent directions in V.

Definition (Rank)

The *rank* of **A** is the number of linearly independent columns (or rows) of $\mathbf{A} \in \mathbb{R}^{m \times n}$.

- $rk(\mathbf{A}) = rk(\mathbf{A}^{\top})$
- ullet The columns of $oldsymbol{\mathsf{A}}$ span a subspace $U\subseteq\mathbb{R}^m$ with $\mathsf{dim}(U)=\mathsf{rk}(oldsymbol{\mathsf{A}})$
- ullet The rows of $oldsymbol{\mathsf{A}}$ span a subspace $W\subseteq\mathbb{R}^n$ with $\mathsf{dim}(W)=\mathsf{rk}(oldsymbol{\mathsf{A}})$
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ is regular \iff $\mathsf{rk}(\mathbf{A}) = n$
- $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved \iff $\mathsf{rk}(\mathbf{A}) = \mathsf{rk}(\mathbf{A}|\mathbf{b})$
- Subspace of solutions for $\mathbf{A}\mathbf{x} = \mathbf{0}$ (kernel or null space) have dimension $n \text{rk}(\mathbf{A})$
- A has full rank if rk(A) = min(m, n), otherwise has rank deficiency

Definition (Linear Mapping)

For vector spaces V,W, a mapping $\Phi:V\to W$ is a linear mapping/vector space homomorphism/linear transformation if

$$\Phi(\lambda \mathbf{x} + \psi \mathbf{y}) = \lambda \Phi(\mathbf{x}) + \psi \Phi(\mathbf{y})$$

Definition (Injective, Surjective, Bijective)

For sets \mathcal{V}, \mathcal{W} , a mapping $\Phi : \mathcal{V} \to \mathcal{W}$ is

- Injective if $\Phi(\mathbf{x}) = \Phi(\mathbf{y}) \Longrightarrow \mathbf{x} = \mathbf{y}$
- Surjective if $\Phi(\mathcal{V}) = \mathcal{W}$
- Bijective if satisfies both of above

Definition (Transformation Matrix)

For

- vector spaces V and W with corresponding (ordered) bases $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$.
- a linear mapping $\Phi: V \to W$ and $j = \{1, \ldots, n\}$, $\Phi(\mathbf{b}_j) = \alpha_{1j}\mathbf{c}_1 + \cdots + \alpha_{mj}\mathbf{c}_m = \sum_{i=1}^m \alpha_{ij}\mathbf{c}_i$ is the unique representation of $\Phi(\mathbf{b}_j)$ with respect to C.

 $m \times n$ -matrix \mathbf{A}_{Φ} , whose elements are given by

$$A_{\Phi}(i,j)=\alpha_{ij},$$

called transformation matrix of Φ (w.r.t. the ordered bases of B of V and C of W.)

Examples of Transformation of Vectors

