Chapter14 Unsupervised Learning – Generation

- 1. Pixel RNN
- 2. Variational Auto-Encoder
 - a) Encoder's output: $c_i = exp(\sigma_i) * e_i + m_i$
 - b) Minimize: Reconstruction Error & $\sum (exp(\sigma_i) (1 + \sigma_i) + (m_i)^2)$
 - i) m_i means original code
 - ii) c_i means code with noisy
 - iii) $(m_i)^2$ means L2 Regularization
 - c) VAE may just memorize the existing images, instead of generating new images
 - d) Conditional VAE
- 3. Generative Adversarial Network
 - a) A generator G is a network. The network defines a probability distribution
 - b) The loss of discriminator is related to JS divergence
 - c) Using gradient descent to update the parameters in g, but fix the d
 - d) GANs are difficult to optimize
 - e) No explicit signal about how good the generator is
 - f) When d fails, it doesn't guarantee that g generates realistic images, sometimes g finds a specific example to fail the d

Chapter15 Unsupervised Learning – Linear Dimension Reduction

- 1. Unsupervised Learning is all about reduction and generation
- 2. Clustering
 - a) K-means
 - b) Hierarchical Agglomerative Clustering HAC
 - i) Build a tree
 - ii) Pick a threshold
- 3. Distributed Representation
- 4. Principle Component Analysis
 - a) z = Wx
 - i) Project all the data points x onto W, and obtain a set of z
 - ii) We want the variance of z as large as possible
 - b) $||w^1||_2 = 1$ $w^1 \cdot w^2 = 0$
 - c) $x \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$
 - i) Reconstruction Error: $||(x \bar{x}) \hat{x}||_2$

ii)
$$L = min \sum ||(x - \bar{x}) - (\sum_{k=1}^{K} c_k u^k)||_2$$

- d) PCA looks like a neural network with one hidden layer(linear activation function)
- e) Weakness of PCA

Can not handle non-linear dimension reduction

f) PCA involves adding up and subtracting some components

Non-negative Matrix Factorization NMF

Forcing a and W to be non-negative