Logical Consequence

LOGIC I Benjamin Brast-McKie September 17, 2024

From Last Time...

Semantics: For any interpretation \mathcal{I} of \mathcal{L}^{PL} , the VALUATION function $\mathcal{V}_{\mathcal{I}}$ from the wfs of \mathcal{L}^{PL} to truth-values is defined:

- $\mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{I}(\varphi)$ if φ is a sentence letter of \mathcal{L}^{PL} .
- $\mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \text{ (i.e., } \mathcal{V}_{\mathcal{I}}(\varphi) \neq 1).$
- $\mathcal{V}_{\mathcal{I}}(\varphi \wedge \psi) = 1$ iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ and $\mathcal{V}_{\mathcal{I}}(\psi) = 1$.
- $\mathcal{V}_{\mathcal{I}}(\varphi \vee \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 1 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$
- $\mathcal{V}_{\mathcal{I}}(\varphi \to \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$
- $\mathcal{V}_{\mathcal{I}}(\varphi \leftrightarrow \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\psi).$

Characteristic Truth Tables: As drawn in the textbook...

Complete Truth Tables

Setup: Write the sentence on the top right, add the constituent sentence

letters on the left, and use the characteristic truth tables.

Constituents: We define $[\varphi]$ to be the set of sentence letters that occur in φ :

• $[\varphi] = {\varphi}$ if φ is a sentence letter of \mathcal{L}^{PL} .

• For any wfss φ and ψ of \mathcal{L}^{PL} , and $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$:

 $(\neg) \quad [\neg \varphi] = [\varphi];$

 $(\star) \quad [\varphi \star \psi] = [\varphi] \cup [\psi];$

Rows: Add 2^n rows for n constituent sentence letters.

Examples: $[A \land (B \lor A)] \rightarrow A, C \leftrightarrow \neg C, D.$

Tautology: Only 1s under its main connective in its complete truth table.

Contradiction: Only 0s under its main connective in its complete truth table.

Logically Contingent: A 1 and a 0 under its main connective in its complete truth table.

Logical Entailment: On any row of a complete truth table, the consequent has a 1

under its main connective whenever the antecedent does.

Logical equivalence: Identical columns under the main connectives for the sentences.

Satisfiable: There is a row where all wfss have a 1 under all main connectives.

Logical Consequence: The conclusion has a 1 under its main connective in every row

in which every premise has a 1 under its main connectives.

Decidability

Effective Procedure: A finitely describable and (in principle) usable procedure that

always finishes and produces a correct answer to the question asked, requiring only that the instructions be followed accurately.

Question: How to define the main operators and distribute truth-values?

• Recursively, like the formation rules for the wfs of \mathcal{L}^{PL} .

Question: Is it always possible to construct a complete truth table for a wfs?

• Sentences have a finite number of constituent sentence letters.

Decidable: If there is an effective procedure for determining the answer to a

question, that question is *decidable*.

• It is decidable whether a wfs of \mathcal{L}^{PL} is a tautology, etc.

Question: What about a complete truth table for a set of sentences?

• Could require infinitely many sentence letters.

• We might be able to define an infinite table, but we can't use it.

Question: If one procedure is not effective, couldn't there be another one?

• It turns out that there is no effective procedure...

• There is always an effective procedure for finite sets of sentences.

Validity: So the validity of finite arguments is decidable.

Partial Truth Tables

Worry 1: It is not *that* effective... in practice it is daunting for n > 4.

Partial Truth Tables: Sometimes only one or two lines are needed.

• $A \rightarrow \neg (A \lor B)$: not a tautology or contradiction, so contingent.

• $B \leftrightarrow \neg (A \lor B)$ is a contradiction, so we need a complete table.

• $C \lor (A \to A)$ is a tautology, so we need a complete table.

Complete: To affirm equivalence, entailment, and logical consequence.

Partial: To affirm that a set is satisfiable.

Worry 2: Still daunting sometimes.

Worry 3: Definitions all refer to complete truth tables.

Definition of a complete truth table has some minor ambiguities.

• These could be fixed, but the result is cumbersome.

Heuristic: The truth table definitions are best taken to be a heuristic guide for grasping the abstract definitions we may now provide.