Deflections and Slopes of Beams

Table(1:0

Deflections and Slopes of Cantilever Beams

Notation:

v = deflection in the y direction (positive upward)

v' = dv/dx = slope of the deflection curve

 $\delta_B = -v(L) = \text{deflection at end } B \text{ of the beam (positive downward)}$

 $\theta_B = -v'(L) = \text{angle of rotation at end } B \text{ of the beam (positive clockwise)}$

EI = constant

$$v = -\frac{qx^2}{24EI}(6L^2 - 4Lx + x^2) \qquad v' = \frac{qx}{6EI}(3L^2 - 3Lx + x^2)$$

$$\delta_B = \frac{qL^4}{8EI} \qquad \theta_B = \frac{qL^3}{6EI}$$

$$v = -\frac{qx^2}{24EI}(6a^2 - 4ax + x^2) \qquad (0 \le x \le a)$$

$$v' = -\frac{qx}{6EI}(3a^2 - 3ax + x^2) \qquad (0 \le x \le a)$$

$$v = -\frac{qa^3}{24EI}(4x - a)$$
 $v' = -\frac{qa^3}{6EI}$ $(a \le x \le L)$

At
$$x = a : v = -\frac{qa^4}{8EI}$$
 $v' = -\frac{qa^3}{6EI}$

$$\delta_B = \frac{qa^3}{24EI}(4L - a) \qquad \theta_B = \frac{qa^3}{6EI}$$

Table H-1 (Continued)

$$v = -\frac{qbx^2}{12FL}(3L + 3a - 2x) \qquad (0 \le x \le a)$$

$$v' = -\frac{qbx}{2EI}(L + a - x) \qquad (0 \le x \le a)$$

$$v = -\frac{q}{24EI}(x^4 - 4Lx^3 + 6L^2x^2 - 4a^3x + a^4) \qquad (a \le x \le L)$$

$$v' = -\frac{q}{6EI}(x^3 - 3Lx^2 + 3L^2x - a^3) \qquad (a \le x \le L)$$

At
$$x = a$$
: $v = -\frac{qa^2b}{12EI}(3L + a)$ $v' = -\frac{qabL}{2EI}$

$$\delta_B = \frac{q}{24EI}(3L^4 - 4a^3L + a^4)$$
 $\theta_B = \frac{q}{6EI}(L^3 - a^3)$

$$v = -\frac{Px^2}{6EI}(3L - x)$$
 $v' = -\frac{Px}{2EI}(2L - x)$

$$\delta_B = \frac{PL^3}{3EI} \qquad \theta_B = \frac{PL^2}{2EI}$$

$$v = -\frac{Px^2}{6EI}(3a - x)$$
 $v' = -\frac{Px}{2EI}(2a - x)$ $(0 \le x \le a)$

$$v = -\frac{Pa^2}{6EI}(3x - a)$$
 $v' = -\frac{Pa^2}{2EI}$ $(a \le x \le L)$

$$v' = -\frac{Pa^2}{2EI}$$

$$\delta_B = \frac{Pa^2}{6EI}(3L - a) \quad \theta_B = \frac{Pa^2}{2EI}$$

$$v = -\frac{M_0 x^2}{2EI} \qquad v' = -\frac{M_0 x}{EI}$$

$$\delta_B = \frac{M_0 L^2}{2EI} \quad \theta_B = \frac{M_0 L}{EI}$$

Appendix H Deflections and Slopes of Beams

1105

$$v = -\frac{M_0 x^2}{2EI}$$
 $v' = -\frac{M_0 x}{EI}$ $(0 \le x \le a)$

$$v = -\frac{M_0 a}{2EI}(2x - a)$$
 $v' = -\frac{M_0 a}{EI}$ $(a \le x \le L)$

At
$$x = a$$
: $v = -\frac{M_0 a^2}{2EI}$ $v' = -\frac{M_0 a}{EI}$

$$\delta_B = \frac{M_0 a}{2EI} (2L - a) \quad \theta_B = \frac{M_0 a}{EI}$$

Table (12)

Deflections and Slopes of Simple Beams

Notation:

v = deflection in the y direction (positive upward)

v' = dv/dx = slope of the deflection curve

 $\delta_C = -v(L/2) = \text{deflection at midpoint } C \text{ of the beam (positive downward)}$

 x_1 = distance from support A to point of maximum deflection

 $\delta_{\text{max}} = -v_{\text{max}} = \text{maximum deflection (positive downward)}$

 $\theta_A = -v'(0)$ = angle of rotation at left-hand end of the beam (positive clockwise)

 $\theta_B = v'(L)$ = angle of rotation at right-hand end of the beam (positive counterclockwise)

EI = constant

$$v = -\frac{qx}{24EI}(L^3 - 2Lx^2 + x^3)$$

$$v' = -\frac{q}{24EI}(L^3 - 6Lx^2 + 4x^3)$$

$$\delta_C = \delta_{\text{max}} = \frac{5qL^4}{384EI}$$
 $\theta_A = \theta_B = \frac{qL^3}{24EI}$

$$v = -\frac{qx}{384EI}(9L^3 - 24Lx^2 + 16x^3) \qquad \left(0 \le x \le \frac{L}{2}\right)$$

$$v' = -\frac{q}{384EI}(9L^3 - 72Lx^2 + 64x^3) \qquad \left(0 \le x \le \frac{L}{2}\right)$$

$$v = -\frac{qL}{384EI}(8x^3 - 24Lx^2 + 17L^2x - L^3) \qquad \left(\frac{L}{2} \le x \le L\right)$$

$$v' = -\frac{qL}{384EI}(24x^2 - 48Lx + 17L^2) \qquad \left(\frac{L}{2} \le x \le L\right)$$

$$\delta_C = \frac{5qL^4}{768EI} \quad \theta_A = \frac{3qL^3}{128EI} \quad \theta_B = \frac{7qL^3}{384EI}$$

$$v = -\frac{qx}{24LEI}(a^4 - 4a^3L + 4a^2L^2 + 2a^2x^2 - 4aLx^2 + Lx^3) \qquad (0 \le x \le a)$$

$$v' = -\frac{q}{24LEI}(a^4 - 4a^3L + 4a^2L^2 + 6a^2x^2 - 12aLx^2 - 4Lx^3) \qquad (0 \le x \le a)$$

$$v = -\frac{qa^2}{24LEI}(-a^2L + 4L^2x + a^2x - 6Lx^2 + 2x^3) \qquad (a \le x \le L)$$

$$v' = -\frac{qa^2}{24LEI}(4L^2 + a^2 - 12Lx + 6x^2)$$
 ($a \le x \le L$)

$$\theta_A = \frac{qa^2}{24LEI}(2L - a)^2$$
 $\theta_B = \frac{qa^2}{24LEI}(2L^2 - a^2)$

Table H-2 (Continued)

$$v = -\frac{Px}{48EI}(3L^2 - 4x^2) \quad v' = -\frac{P}{16EI}(L^2 - 4x^2) \quad \left(0 \le x \le \frac{L}{2}\right)$$

$$\delta_C = \delta_{\text{max}} = \frac{PL^3}{48EI}$$
 $\theta_A = \theta_B = \frac{PL^2}{16EI}$

$$v = -\frac{Pbx}{6LEI}(L^2 - b^2 - x^2) \quad v' = -\frac{Pb}{6LEI}(L^2 - b^2 - 3x^2) \quad (0 \le x \le a)$$

$$\theta_{A} = \frac{Pab(L+b)}{6LEI} \qquad \theta_{B} = \frac{Pab(L+a)}{6LEI}$$

If
$$a \ge b$$
, $\delta_C = \frac{Pb(3L^2 - 4b^2)}{48EI}$ If $a \le b$, $\delta_C = \frac{Pa(3L^2 - 4a^2)}{48EI}$

If $a \ge b$, $x_1 = \sqrt{\frac{L^2 - b^2}{3}}$ and $\delta_{\text{max}} = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}LEI}$

If
$$a \ge b$$
, $x_1 = \sqrt{\frac{L^2 - b^2}{3}}$ and $\delta_{\text{max}} = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}LEI}$

$$v = -\frac{Px}{6EI}(3aL - 3a^2 - x^2) \quad v' = -\frac{P}{2EI}(aL - a^2 - x^2) \quad (0 \le x \le a)$$

$$v = -\frac{Pa}{6EI}(3Lx - 3x^2 - a^2) \quad v' = -\frac{Pa}{2EI}(L - 2x) \qquad (a \le x \le L - a)$$

$$\delta_C = \delta_{\text{max}} = \frac{Pa}{24EI}(3L^2 - 4a^2)$$
 $\theta_A = \theta_B = \frac{Pa(L-a)}{2EI}$

$$v = -\frac{M_0 x}{6LEI} (2L^2 - 3Lx + x^2) \quad v' = -\frac{M_0}{6LEI} (2L^2 - 6Lx + 3x^2)$$

$$\delta_C = \frac{M_0 L^2}{16EI} \quad \theta_A = \frac{M_0 L}{3EI} \quad \theta_B = \frac{M_0 L}{6EI}$$

$$x_1 = L\left(1 - \frac{\sqrt{3}}{3}\right)$$
 and $\delta_{\text{max}} = \frac{M_0 L^2}{9\sqrt{3}EI}$

$$v = -\frac{M_0 x}{24 LEI} (L^2 - 4x^2) \quad v' = -\frac{M_0}{24 LEI} (L^2 - 12x^2) \quad \left(0 \le x \le \frac{L}{2}\right)$$

$$\delta_C = 0$$
 $\theta_A = \frac{M_0 L}{24EI}$ $\theta_B = -\frac{M_0 L}{24EI}$

$$v = -\frac{M_0 x}{6LEI} (6aL - 3a^2 - 2L^2 - x^2) \quad (0 \le x \le a)$$

$$v' = -\frac{M_0}{6LEI}(6aL - 3a^2 - 2L^2 - 3x^2) \quad (0 \le x \le a)$$

At
$$x = a$$
: $v = -\frac{M_0 ab}{3LEI}(2a - L)$ $v' = -\frac{M_0}{3LEI}(3aL - 3a^2 - L^2)$

$$\theta_A = \frac{M_0}{6LEI}(6aL - 3a^2 - 2L^2)$$
 $\theta_B = \frac{M_0}{6LEI}(3a^2 - L^2)$