SEMAINE DU 20/04 AU 24/04

1 Cours

Intégration

Intégration des fonctions en escalier Définition d'une fonction en escalier sur un segment, de son intégrale sur ce segment. Propriétés de l'intégrale : linéarité, positivité, croissance, relation de Chasles.

Intégration des fonctions continues par morceaux Définition d'une fonction continue par morceaux sur un segment. Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier (hors-programme). Intégrale d'une fonction continue par morceaux. Propriétés de l'intégrale : linéarité, positivité, croissance, inégalité triangulaire, relation de Chasles. Une fonction **continue** et de signe constant admet une intégrale nulle sur [a, b] si et seulement si elle est nulle sur [a, b].

Calcul de primitives et d'intégrales Définition d'une primitive d'une fonction continue. Si f continue, $x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f nulle en a. Deux primitives différent d'une constante. Si F est une primitive de f, $\int_a^b f(t)dt = F(b) - F(a)$. Intégration par parties. Changement de variables.

Approximation d'intégrales Sommes de Riemann et convergence.

Intégration des fonctions à valeurs complexes Intégrale d'une fonction continue par morceaux à valeurs complexes. Inégalité triangulaire.

2 Méthodes à maîtriser

- ▶ Majorer, minorer, encadrer une intégrale par croissance de l'intégrale ou inégalité triangulaire.
- ▶ Étudier une suite définie par des intégrales (souvent une IPP pour déterminer une relation de récurrence).
- ▶ Étudier une fonction définie par une intégrale à bornes variables (notamment calculer sa dérivée).
- ► Connaître les différentes techniques de calcul d'intégrales et de primitives.
- ▶ Reconnaître des sommes de Riemann.

3 Questions de cours

- ▶ Lemme de Riemann-Lebesgue Soit f de classe \mathscr{C}^1 sur [a,b] à valeurs dans \mathbb{C} . Montrer que $\lim_{n\to+\infty}\int_a^b f(t)e^{int}\,\mathrm{d}t = 0$.
- ▶ Valeur moyenne Soit f continue sur [a,b]. Montrer qu'il existe $c \in]a,b[$ tel que $f(c) = \frac{1}{b-a} \int_a^b f(t) dt$.
- ► Cas d'égalité dans l'inégalité triangulaire Soit $f:[a,b] \to \mathbb{R}$ continue telle que $\left| \int_a^b f(t) \, \mathrm{d}t \right| = \int_a^b |f(t)| \, \mathrm{d}t$. Montrer que f est de signe constant sur [a,b].
- ▶ Sommes de Riemann Soit f de classe \mathscr{C}^1 sur [a,b]. Montrer que f est lipschitzienne sur [a,b] et en déduire que

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) = \int_a^b f(t) dt$$

▶ Limite d'une suite d'intégrales Soit f continue sur [0,1] à valeurs dans \mathbb{R} . Montrer que

$$\lim_{n\to+\infty} \int_0^1 f(t)t^n \, \mathrm{d}t = 0$$