计算机组成

时序电路 (从RS锁存器到D寄存器)

高小鹏

北京航空航天大学计算机学院

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

双稳态电路

- □ 问题: *Q*和 Q 到底取何值?
- □ 答案: 取决于电路的初始状态
 - ◆ Q=0,则Q永远为0
 - ◆ Q=1,则Q永远为1
- □ 可以保存1位信息,但缺乏实用价值
 - ◆ 没有输入!

Q	$\overline{m{Q}}$
0	1
1	0

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

RS锁存器

□ 结构特征: 2个或非门输出信号交叉反馈

• 2个输入信号: 1个来自外部输入, 1个来自另一门的输出

□ 输出诉求: 2个输出值应该为互补(一个若为0, 另一个则1)

□ *Q_{nrev}/Q* : 代表推理<mark>前</mark>/后的值

由于内部输入就是外部输出,为了便于书写表达式和推理,因此使用独立的命名

$$Q = \overline{R} | \overline{\overline{Q}}_{prev}$$

$$\overline{Q} = \overline{S} | \overline{Q}_{prev}$$

$$\bar{Q} = \overline{S|Q_{prev}}$$

5

RS锁存器

- 先分析:外部輸入能直接决定輸出值的组合
 - 以或非门为例:如果任意外部输入为1,则输出必为0
- □ 再分析:外部输入不能直接决定输出值的组合
 - 假设 Q_{prev} 值然后推理。重点关注:推理得出的Q和假设的 Q_{prev} 是否一致

序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Х	1	0
3	1	1	Х	0	0
4.1	0	0	0	0	1
4.2	0	0	1	1	0

假设Q_{prev}为0

RS锁存器:一个R/S为开关的盒子

- □ 1) 当R和S为0/1或1/0组合时,则电路的内部取值与R/S取值相关
- □ 2)当R和S为0/0时,则电路的内部取值与R/S取值无关,而是取决于<mark>之前的</mark>内部取值
- □ 如果内部电路看成是一把可以能放入0或1的盒子, 那么R/S的取值就是开关
 - ◆ R/S取值为0/0: 开关在正中, 盒子关闭。之前放入了什么, 那盒子就永远是什么
 - R/S取值为0/1: 开关往左拧, 盒子打开&放入1
 - R/S取值为1/0: 开关往右拧, 盒子打开&放入0

序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Х	1	0
3	1	1	Х	0	0
4.1	0	0	0	0	1
4.2	0	0	1	1	0

-

如何使用RS锁存器,才能保存0或1?

- □ 以保存1为例,进行反向推理
 - ◆ -1步:要想保存1,意味着R/S取值为0/0,并且Q_{orev}必须为1
 - ◆ -2步: 如果Q_{prev}为1, 则必须让R/S取值为0/1
- 正向设置
 - ◆ 第1步: 设置R/S取值为0/1, 目的在于设置Q(即Qprey)为1
 - ◆ 第2步: 设置R/S取值为0/0, 目的在于让内部状态与R/S(外部信号)无关

	序	S	R	Q_{prev}	Q	$ar{Q}$	
	1	0	1	Х	0	1	
	2	1	0	Х	1	0	
	3	1	1	Х	0	0	
	4.1	0	0	0	0	1	
U	4.2	0	0	1	1	0	

8

保存1的动态过程分析

- □ 分析要点: N1和N2独立工作, 执行时间相同
 - 以N1为例,其计算结果在N2计算完成之前,仅与N1当前输入有关
- $^{\square}$ T0: R=0, S=1, Q=1, \bar{Q} =0
- □ T1: R=0, S=0

□ 在S从1变为0后, N1和N2的计算结果, 均不再改变

RS锁存器

- □ RS锁存器功能: 清除、置位、保持
 - ◆ S: 代表Set的意思
 - ◆ R: 代表Reset的意思
- □ 使用禁忌: R和S不能同时为1

$R \longrightarrow N1$	-R	Q-
S $N2$ Q	S	\overline{Q}

序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Х	1	0
3	1	1	Х	0	0
4.1	0	0	0	0	1
4.2	0	0	1	1	0

功能	S	R	Q	$ar{Q}$
清除	0	1	0	1
置位	1	0	1	0
保持	0	0	Q_{prev}	$ar{Q}_{prev}$
非法	1	1	0	0

RS锁存器的局限性

- □ 从语义上看:寄存器保存的是数据,因此外部特性应该是有数据输入和数据输出
 - R和S的语义是控制,与寄存器的外部特性的需求不一致
- □ 从时序上看:数字系统为协调各部分电路运行,要求电路在<mark>时钟信号</mark>控制下统一动作
 - ◆ 仅在时钟<mark>边沿处(0→1</mark>)保存输入,但RS锁存器不具有时间特性
- □ D锁存器的输入输出信号
 - ◆ D: 输入
 - Q: 输出
 - CLK: 时钟

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

D锁存器1/4

□ D锁存器的内部结构

功能	S	R	Q	$ar{Q}$
保持	0	0	Q_{prev}	$\bar{Q}_{ m prev}$
清除	0	1	0	1
置位	1	0	1	0
非法	1	1		

D锁存器2/4

□ 保持功能

功能	S	R	Q	\bar{Q}
保持	0	0	$Q_{ m prev}$	$ar{Q}_{ exttt{prev}}$
清除	0	1	0	1
置位	1	0	1	0
非法	1	1		

D锁存器3/4

□ 清除功能

功能	S	R	Q	$ar{Q}$
保持	0	0	Q_{prev}	$\bar{Q}_{ m prev}$
清除	0	1	0	1
置位	1	0	1	0
非法	1	1		

D锁存器4/4

□ 置位功能

	功能	S	R	Q	$ar{Q}$
	保持	0	0	Q_{prev}	$\bar{Q}_{ m prev}$
	清除	0	1	0	1
	置位	1	0	1	0
Ī	非法	1	1		

D锁存器的意义

- □ 有了时间概念,即: When, What
 - ◆ When: CLK, 决定何时保存
 - ◆ What: D, 决定保存<mark>何值</mark>
 - ◆ CLK = 1: D传递至Q(透明传输)
 - ◆ CLK = 0: Q保持为前值

D

D

1

CLK

- □ 避免了非法状态,即确保了 $Q = NOT \overline{Q}$
 - ◆ 不会出现Q与Q同值

D锁存器的局限性

- □ 在时钟<mark>高电平</mark>阶段,Q会随D翻转
 - 这种特性被称为: 电平缓冲器
- □ CLK还没有完全达到对<mark>时钟</mark>的设计初衷

CLK	D	Q
0	Χ	$Q_{ m prev}$
1	D	D

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

D寄存器

- □ 内部结构:由2个锁存器串接而成,并且时钟反相
 - CLK = 0
 - L1: 透传; L2: 保持
 - D传递至N1
 - CLK = 1
 - L1: 保持; L2: 透传
 - N1传递至Q

CLK	CLK	D	N1	Q
0	1	0	0	Q _{prev}
0	1	1	1	Q _{prev}
1	0	Χ	0	0
1	0	Χ	1	1

D寄存器

- □ 内部结构:由2个锁存器串接而成,并且时钟反相
 - CLK = 0
 - L1: 透传; L2: 保持
 - D传递至N1
 - CLK = 1
 - L1: 保持; L2: 透传
 - N1传递至Q

□ 外部特性: CLK从0变为1(时钟边沿)时, D被L1锁存并透传至Q

CLK	D	Q		
0	Χ	$Q_{ m prev}$		
1	D	D		
D锁存器真值表				

CLK	CLK	D	N1	Q
0	1	0	0	Q _{prev}
0	1	1	1	Q _{prev}
1	0	Χ	0	0
1	0	Χ	1	1

D寄存器工作时序

- □ 实现了边沿处保存数据
- □ D在非边沿区域的任何变化都不会影响Q

D寄存器

- □ 输入: CLK, D
- □ 功能: CLK上升沿时采样D
 - ◆ CLK从0变为1: D传递至Q
 - ◆ 其他条件: Q保持前值
- □ 输出: Q, 仅在CLK上升沿处改变
- □ 这种特性被称为边沿触发

D寄存器的时间特性

- □ 决定D值能否被保存,取决于T_S和T_H
- □ 决定Q值最快多久能被<mark>看见</mark>,取决于*T*o
- □ T_S: 建立时间, Setup Time
 - ◆ CLK边沿前, D必须保持稳定的时间
- □ T_H: 保持时间, Hold Time
 - CLK边沿后, D必须保持稳定的时间
- □ To: 输出延迟, CLK-to-Q延迟
 - ◆ CLK边沿后, Q输出有效值的时间

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

多路选择器(MUX)

- □ MUX: 根据控制信号取值, 让输出信号的取值为多个输入信号的某个取值
- □ 二选一, 2:1 MUX

S	$D_\mathtt{1}$	D_0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

真值表

卡诺图/表达式

带使能的D寄存器

□ 输入: CLK, D, EN

◆ EN: EN有效时, D才能被写入寄存器

□ EN = 1: 当时钟上升沿时, D写入寄存器

□ EN = 0: 寄存器保持前值

带同步清除的D寄存器

□ 输入: CLK, D, Reset

□ Reset = 1: 寄存器被强制写入0

□ Reset = 0: 寄存器可以被自由写入

