

NEW PAMPHLET

— OF —

The James Leffel Water Wheels

STANDARD CASCADE NO REDUCED.

BUILT BY

THE RELIABLE AND CELEBRATED HOUSE OF

JAMES LEFFEL & CO. 32 YEARS IN BUSINESS.

SPRINGFIELD, OHIO, U.S.A.

NEW YORK CITY.
1894.

PREFACE AND INTRODUCTION.

This pamphlet contains some matter, in regard to our James Leffel Wheel, but it is intended especially, for our new Patented Impulse and Reaction or "Hurdy Gurdy" wheel. A description of this wheel will be found in other parts, with preliminary tables of power, quantity of water used, revolutions per minute, miners' inches, etc. These tables are entirely new, and original in several features. The use of fractional parts of horse power, being omitted where practicable; but when retained, the common fraction is substituted for the decimal. Our Company introduced this important change,

and improvement in water wheel tables, for which they have the copyright.

Several members of our firm, have had a practical hydraulic experience, extending throughout a period of more than 40 years. They have witnessed the evolution of the Turbine, from the Crude Paddle Wheel, to its present high state of perfection, as exemplified in such wheels as James Leffel & Co. have recently furnished for Niagara Falls. The early, simpler forms of water wheels, were purely of the reaction class, mostly on horizontal shafts, such as the Parker, Rose, and others used in this country. This reaction type of wheels, was succeeded in this country, by the French Fourneyron and Fontaine, as well as other foreign wheels, which added the principle of Pressure to that of Reaction. Improvements were soon afterwards made in this country, by such practical men as James Leffel. Two of the best styles or forms of Pressure and Reaction wheels were combined, obtaining thereby a double wheel; and upon that line, the unexcelled improvements of the James Leffel Turbine were introduced. The Pressure and Reaction wheel, has been very generally applied to moderate heads, throughout this and other countries. It is well adapted to large volumes of water, and head pressure ranging from two to sixty feet, and sometimes even more. The James Leffel Wheel has been used, under head pressure as high as Three Hundred and Fifty feet.

A new combination has been invented, in quite recent years, generally known as the "Jet" or "Hurdy Gurdy" wheel. The Impulse and Reaction principles are employed in this water wheel, thus substituting impulse for pressure, but retaining the reaction principle of the turbine. Hereinafter will be shown, by illustrations and descriptions, several forms and styles of a wheel of this character, Patented February, 1891, which we have named our "CASCADE" Wheel; and which we are now prepared to manufacture extensively. It is hoped, therefore, that the following pages devoted especially to this new Patented Impulse and Reaction wheel, will be important to those interested in water power improvements.

IAMES LEFFEL & CO., SPRINGFIELD, OHIO, U. S. A.

Copyright, 1894, by The James Leffel & Co.

Water Power

The subject of water power, has engaged the attention of mankind from time immemorial. This interest has not been confined to one people, or one community alone, but all nations have utilized its benefits, in some special manner. Perhaps the earliest application and use of this kind of power, was that for urrigation purposes. The simplest method employed, to obtain the power for elevating the water, was a modification of the large or high Underfolt or breast Wheel, carrying a part of the water to the top, which had aided in propelling the wheel at the bottom. The small quantity thus carried, being dropped into a trough near the top, and therein conducted to the tract requiring irrigation. A more plant, is supplied with a fine system of Turbines, Centrifugal or Reciprocating Pumps, and iron or steel piping, through which the water is forced, in large quantities to any height of distance.

The use of water power has shown rapid advancement, and perfection of application, equally as great in many other directions; and for a multitude of their purposes. The use of the James Leffel Turbine, may be taken as an instance of directive in the utilization of water power; as this celebrated wheel is driving more than 100 different kinds of Mills, shops, Factories and other power plants. The country's increase in population, its advance in material growth, the extension of its undeveloped territory, and the great inventions rapidly developing, offer new opportunities, for the extension of water nower utilization. The wonderful achievements in electrical science, have shown new and unexceeted advantage.

for streams heretofore considered useless; and the field enlarges, as practical science advances.

The contrast between an ancient irrigation plant, and a modern system, is well illustrated in Street Railway service; where the best Hydraulic Engineering, and the finest Mechanical execution, are supplemented by intelligent electronic and the supplemented by intelligent electronic and another difficult to perform, than perhaps any other use made of this kind of power. All streams whether large or such with the perform that the perform the sum and once difficult to perform, than perhaps any other use made of this kind of power. All streams whether large or such with the add of great or light pressure, may be utilized by modern Turbines or Hurdy-Curdy Wheels. It is to the class of high head orespaces, and the latter strive of wheel, that the following matter is expectably devoted.

Measuring Water Power Streams.

The first consideration, in the contemplated development of a water power, is the measurement of the water in the stream; and the height of head or pressure that can be obtained. This Pamplike will be devoted particularly, to the use of small streams and high heads. It will therefore, be necessary often to accertain, with a considerable degree of accuracy, the quantity of water afforded; that a when may be properly designed or selected, securing thereby the most hardware the property of the contemplate of the property of

Several methods will be hereinsfer illustrated and described; and to make the information quite complete on this subject, large streams are also included. We give our decided preference, however, for small stream measurements to the weir method commencing on the following page. It is always more easily and cheaply done, and is accurate and cellular, if properly stream easily of the stream of

Improving a Water Power. (Measuring Streams.)

The first thing necessary is to know the amount of head and fall that can be secured. The next step is to ascertain the quantity of water the stream affords. The quantity of water can be closely estimated by the following plan suggestions and the illustration on premarked by the following plan suggestions and the illustration on prewith each end set in the bank. Cut a notch in the board, deep enough to reach about two-thirds across the water, and long enough to reach about two-thirds across the stream. The bottom and ends of the notch B in the board should be beveled on the down stream side, leving the upper edge alserom for above 1 to board, on a level with the notch B; this level being easily found, when the water is beginning to spill over the board,

After the water has come to a stand, and reached its greatest depth, a careful measurement can be made of the depth of water over the top of stake E. Such measurement gives the true depth of water passing over the notch, because if measured directly on the notch, the curvature of water would reduce the depth. The line D is a level from the bottom of notch B, to the top of stake E; while the dotted line C represents the top of the water, and the distance between the hnes gives the true depth, or spill over the weir board. The line D has the appearance of running over the top of the board; when in fact it passes behind it-the reader is supposed to look through the board and the post. The surface of water after passing below the board, should not be nearer the notch B than ten inches. Neither should the nature of the channel above the board, be such as to force or hurry the water to the board; but should be amply wide and deep, to allow the water to approach the notch quietly. If it passes the channel rapidly, it will be forced over the notch and a larger quantity will pass, than the table indicates.

The weir table herewith gives the number of cubic feet of water passing per minute, over the notch for each inch in breadth. The figures 1. 2, 3, etc., in the first vertical column, are the inches depth of water over the weir; the first or top horizontal line is

1/8 1/4 3/8 1/2 5/8 3/4 7/8 1.14 1.24 1.36 1.47 1.59 1.71 1.83 1.96 2.09 2.23 2.36 2.50 2.63 2.78 2.92 3.07 3.22 3.37 3.52 3.68 3.83 3.99 4.16 4.32 4.50 4.67 4.84 5.01 5.18 5.36 5.54 5.72 5.90 6.00 6.28 6.47 6.65 6.85 7.05 7.25 7.44 7.64 7.84 8.05 8.25 8.45 8.66 8.86 0.10 0.31 0.52 0.74 0.06 10.18 10.40 10.62 10.86 11.08 11.31 11.54 11.77 12.00 12.23 12.47 10 12.71 13.95 13.19 13.43 13.67 13.93 14.16 14.42 11 14.67 14.92 15.18 15.43 15.67 15.96 16.20 16.46 12 16.73 16.99 17.26 17.52 17.78 18.05 18.32 18.58 13 18.87 19.14 19.42 19.69 19.97 20.24 20.52 20.80 14 21.00 21.37 21.65 21.04 22.22 22.51 22.70 23.08 15 23, 18 23, 67 23, 97 24, 26 24, 56 24, 86 25, 16 25, 46 16 25,76 26.00 26, 36 26.66 26,97 27.27 27.58 27.89 17 28.20 28.51 28.82 29.14 29.45 29.76 30.08 30.39 14 30.70 31.02 31.34 31.66 31.98 32.31 32.63 32.96 19 33.29 33.61 33.94 34.27 34.60 34.94 35.27 35.60 20 35.94 36.27 36.60 36.94 37.28 37.62 37.96 38.31 21 38.65 39.00 39.34 39.69 40.04 40.39 40.73 41.09 22 41.43 41.78 42.13 42.49 42.84 43.20 43.56 43.92 83 44.28 44.64 45.00 45.38 45.71 46.08 46.43 46.81 24 47.18 47.55 47.91 48.28 48.65 49.02 49.39 49.76

Weir Table, 1 to 25 Inches.

WEIR DAM MEASUREMENT.

fractional parts of an inch. The body of the table shows the cubic feet, that will pass each minute, for each inch depth of weir, from 1 to 25 inches. Each of these results is for one inch in width; for any particular number of inches width of weir, the result obtained in table, must be multiplied by the number of inches of breadth the weir may be. Suppose the notch in the board is twenty inches wide; and the water at the stake E, 5½ inches deep; in the first column find figure 9. Follow the horizontal line of figures until a vertical column is reached containing ½ fraction at the top. The square where these two columns meet will contain 3; 16 (five and eighteen-hundredths) cubic feet. This is the quantity square where these two columns meet will contain 3; 16 (five and eighteen-hundredths) cubic feet. This is the quantity which gives 10; 6 (one hundred and three and six-tenths) cubic feet per minute. In this manner the water passing awith of weir, of any depth from 1 to 3 inches, can be easily calculated.

An important matter in measuring small streams, is the possibility of damming or holding the water, and using it a part of the time instead of constantly. If the water is held for twelve hours, and the whole quantity used in the next twelve hours, with the supply that the stream affords in the same time, the power of the atternam would be doubled, for the vertex hours, and give a better effect than if used constantly. This method may appear simple, but we request that par-

whether storage room can be had to hold the water part of the time, especially if the stream is a small one.

Measurement of Water by Miners' Inches.

Minery inch measurement is still another method, of ascertaining the quantity of water flowing in small streams. It is common and frequently practiced, throughout mountainous or mining sections of this country. It was early adopted in California, as a means of leasing or letting water to mining claims. by Hydraulic Companies, who invested large sums for a california, as a means of leasing or letting water to mining claims, by Hydraulic Companies, who invested large sums for a california contained to the contained of the contain

number of large companies, and their engineers, as a reliable one.

The accompanying illustration will show, and the following power tables contain estimates, based upon this standard opening; which will be 50 inches long, and 2 inches wide, in a 2-inch board; said opening being from its center to the surface of the water, 7 inches, or from the top of the opening to the surface, 6 inches. The opening represents too minered 'inches, which will discharge 157 cubic feet per minute, ascertained upon reflaible and practical experiments by competent engineers. When the opening is narrower or wider, the discharge will differ slightly from that stated, being more with larger and longer openings, and less with smaller and shorter ones. Each miners into thin may, however, close, in estimating for any size of stream adapted to this method. The plan, however, has not the simplicity and accuracy, in the hands of the ordinary or inexperienced man, as the weir method, laready illustrated and described.

The illustration herewith shows an aperture 50 inches long, 2 inches wide, through a 2-inch board. The outside lower edge of the board being chamfered an inch. The slot is shown one-half drawn open; but the board or gate which slides

MINER'S INCH MEASUREMENT.

by means of a rabbit or a shoulder upon the top board, carries a piece fastened to its end, which slides back and forth in the slot, making the spill of water more or less in width, to suit the size of stream, or to keep the depth of the water over this notch, exactly six inches from the surface to the upper edge of the notch. A colored line may be painted on the up stream side of the board, giving the exact height above the notch, or the board itself may be so located, that the width of it above the notch is exactly of inches and the stream of the stream

When the gate has been sufficiently drawn, or properly adjusted by means of its handle, so that the upper level of the water will stand exactly at the line, the length of the opening through which the water is passing, can be easily measured. This length multiplied by the two inches opening, gives the exact number of miners' inches. As an instance, if he gate is afficiently drawn to make a wide, multiplied by the two inches of the exact number of miners' inches. As an instance, if he gate is afficiently drawn to make wide, multiplied to be inches by a obtain the 6s quarte inches, or 66 miners' inches, Nowe, assuming that each miners' inch will discharge 1.57 cubic feet, there will pass 60 times that quantity, or nextly minery-fer and most-table cubic feet per minates. We stated in the foregoing that where the notes is less in with thus 50 inches, it discharges a little less than the quantity or co-efficient of the where the notes is less in with thus 50 inches, it discharges a little less than the quantity or co-efficient and upon the co-efficient of discharge just named, and may therefore be assumed an early correct; used infectedly so for all practical purposes.

If some other width of notch is taken, or some different depth of water over the notch is used, by parties in their correspondence with us, such measurements should be carefully stated. We would thereby be enabled to estimate the quartity their stream affords, by the particular method then employed. There are different methods used even in the same state, and especially in the different parts of mining and irrigation countries; but the one herein adopted as the standard for the purpose of this book and these tables, seems the most popular and satisfactory.

The New CASCADE Water Wheel.

THE SIMPLEST AND FINEST JET WHEEL NOW BUILT.

Our experience of 22 years building and applying Tubines, has frequently furnished instances, where the Turbine type of Wheel, could not be accessfully ased. High, heads and small quantities of water, require so fine adjustment of various parts of the Turbine, and, such close fitting of the movable water joints, that leakage becomes a source of annoyance, and can not be avoided. So many small apartures are also necessary, and therefore so much frictional surface, that the efficiency and percentage utilized, from the quantity of water afforded is seriously affected. The speed of the Turbine is also so great for many uses, that wear becomes rapid and therefore a want of durability.

We have applied the James Leffel Turbine, to heads as high as 350 feet, in capacities ranging from 250 to 1200 Horse Power. The same heads under which these wheels are used, if supplied with very small quantities of water,

could be better utilized by an Impulse and Reaction type of Wheel, such as the Cascade, which will be found hereinafter fully described. Its advantages will be readily seen in the great simplicity of its structure, its slower speed, for many purposes, its small frictional surface, and its almost entire freedom from wear. Besides the foregoing good qualities. this wheel is guaranteed to give a far higher efficiency or percentage of the use of water, than any Turbine under similar conditions. This wheel is also applicable to heads ranging from 40 feet to 2000 feet and upwards; head pressures so high, that they are absolutely impossible of application to Turbines.

The illustration on foregoing page, shows this new Cascade, Hurdy Gurdy, or Impulse and Reaction Wheel. This Wheel was patented by us February 1891; and by careful thought and attention to its proper design and its strongest. simplest, and best method of construction, it has now reached that state of excellence, which justifies us in its production for the trade. It is shown in this first illustration, in its completed form; and on pages following, parts of its cover are removed, showing the style and character of the runner or wheel proper, the triple nozzle system, and the general internal arrangement in different positions.

Advantages of the CASCADE Water Wheel.

The great simplicity of this Water Wheel is readily apparent upon a mere inspection of the illustrations. There are really no wearing parts except the journals of the shaft, which guarantees durability and a minimum of cost or expense for repair. The application of the water being at one, two, or three points only, its action upon the wheel is very greatly simplified, and the frictional surface of the water materially reduced. The occasional rubbing and consequent wearing of the metal surfaces, causing serious leakage, where close and neat fits are so often necessary in Turbines, are entirely obviated in this wheel. This ease of applying the water to an open bucket, which receives it by impulse and discharges it by re-action, secures the highest possible efficiency in power. Economy in water, especially in small streams, being a matter of great importance, it is successfully secured in this type of our wheel,

Admitting the water to wheel through one, two or more tips or nozzles, does not decrease the useful effect of water; but the percentage remains the same, whether one or more, or a half dozen should be used. Each nozzle increases the power in the direct proportion of the increase of their number, requiring a proportional increase in the quantity of water. This is an advantage of great importance, since there is scarcely any stream that does not vary considerably during a season. Various sizes of nozzles can be conveniently substituted at any time, to suit the changing condition of water supply at all seasons and at all stages; and, as already mentioned, with the same high economy of power.

Another advantage in the use of this wheel is its slower motion than turbines under high heads. With but slight changes or modifications, we can so adapt this wheel in size as to obtain almost any required speed, it being merely a matter of diameter, number of buckets, and size of nozzle. The velocity of the wheel, of course, depending upon the head pressure, and the speed upon the diameter, thus changing the number of revolutions, with every change in diameter of the wheel for the same head. They are easily and frequently applied to dynamos direct without the use of belting or gearing. This is also true as to their application to Centrifugal Pumps, and occasional other machinery. Our experience

in the application of water wheels to mining work is extensive; and like the Turbine, this Jet or Impulse wheel can preferably be applied separately to different parts of the same plant. It is often convenient to use a wheel for the Concentrator, another for Electric Lighting Plant, a third for the Batteries, and a fourth for the Stamping and Crushing Department. Each of these different branches of the establishment being run independently of the other, greater regularity is secured in the performance of the entire plant, and either can be stopped and started without interfering with any other departments. If one or more departments require an intermittent or irregular power, a governor can be applied to wheel as may be driving that portion of the works, thus obviating the necessity of using governors on the other wheels. If automatic regulation is necessary, and one water wheel only is used, a large heavy governor must be applied.

Triple Nozzle CASCADE Water Wheel.

The following page shows the new Cascade Jet Wheel, already partially described, with its cover and side removed, for the purpose of showing the triple jet system. It will be observed in this plate, as already seen in the preceding plate, that a vertical gate stem and gate are used. This sliding gate covers two partitions between three openings or extracted of the water into the pipes, conducting it to the nozies or discharge tipes. If it is desired to run with but we will be a seen to the propose of the propos

The same idea is shown in the third illustration, with the side and top removed; the position only of the wheel and frame work being changed. While these nozales consitute really one piece, the water is admitted separately to each, and the whole branch or system of nozales, are easily set and fastened within the casing, upon a perfectly tight and planted joint. Our system admits of moving these jets, thereby obtaining the proper inclination or projection upon the bueled of the wheel, without guages, patterns or other means sometimes resorted to, by different makes of wheels of this class. Either of these tips or nozales, may be removed, and others put in their place, of different size or bore; or either of them may be capped over, and one or more used, or all used together. The system gives a wide range of variability in power, ounnitive of water used. and fluctuations of the stream.

The two plates show three nozles. The power and capacity of the wheel is not limited to these three alone; but by a modification of the casing or frame work, three or more others may be added, extending the stream further around the incumerrance of the wheel or runner. The usual requirements, however, of this class of wheels, will be limited to one, two or three jets, the number and range of sizes that can be applied, giving variety sufficient to cover a large majority of

of jets shown in these plates; but we can extend the variety, that we will be able to meet any special or particular case that may arise. Our long experience with water wheels has enabled us to fully master all of the difficulties heretofore presented in the large and varied use and application of the Turbines we have built.

Construction of CASCADE Water Wheel.

It will be seen in the several plates illustrating this wheel, that it has two separate sets of buckets. These buckets are located alternately on each side of a central, sharp, continuous, dividing ridge, projecting a little in from of the entering edge of the buckets. This dividing ridge has a sharp, cutting edge, which edge serves to separate or divide the jet of water before it touches or reaches the buckets, and to keep it continuously divided in two equal portions, so that each portion or each half of this single jet is received separately on each side of the dividing ridge. One half of the jet is therefore received by one series of buckets, separate and independent of the other half, which is received by the other series. Each series of buckets, on each side of this continuous dividing edge, is so arranged that they each the water alternately, or in such manner than no two come opposite each other, their upper front edges not being on a line.

This alternating arrangement of buckets secures greater steadiness of motion, since it is equivalent to write the number of buckets, and the shocks or forces are therefore divided more regularly on the wheel, as each bucket passes the point of the nozzle, and catches its half portion of water. These buckets are cast solidly and firmly upon each side of the circular dividing; ridge, and upon the face or into first wheel on each side of this central division; this circular ridge being clearly divided to the circular ridge being effective curve. This arrangement of buckets and form of construction enables us to secure great strength, firmness and stability. They are not subject to the difficulty of becoming loose, as those avides in which boths, runts, and other applications.

ances are used to fasten them upon the face or rim of the runner.

Our method of dividing the stream is the most perfect yet applied to Impulse Wheels. The water commenced dividing immediately on outsubing the circular ridge, and continues that divided until the last portion enters the bucket of divided until the last portion enters the bucket of address much better impulsive scation; receiving the water against the inclined side of the bucket, which is an essential requisite of the highest efficiency, or the presents among of power from the continues of the present among the power from the continues of the present among the power from the continues to receive our best thought and attention.

1891, and will continue to receive our best thought and attention.

Mounting the CASCADE Wheel.

The three plates herewith, illustrate iron mountings for our Cascade Wheel. This style, however, is solid and compact occupying the least possible space, and is not expensive. We believe it will meet the views and requirements of our customers, more satisfactorily than the method, sometimes employed, of mounting them upon wooden frames. The latter

style may occasionally be somewhat cheaper, but it cannot be by any means as desirable. It is not always convenient to employ a good mechanic for building a wooden mounting, nor can they in any instance be so constructed that they may be as durable, substantial, and as solid as the iron frame work employed by us. This style of mounting is simple, compact, the contract of the contraction of

Our style of mounting admits of easy transportation, in snall and comparatively light parts, and great convenience and certainty in setting it up. Each piece can be easily marked and come snugly to its place when sasembled or set to gether. In our construction there is no difficulty in setting and placing the nozzles properly, and thereby greater accuracy of position is attained, and a certainty of higher efficiency or conouncy in water, because of their certain and proper adjustment. With wooden mountings it is always more or less difficulty in the control of the certain and proper adjustment. With wooden mountings it is always more or less difficulty in the control of the certain and proper adjustment. With wooden mountings it is always more or less difficulty in recessary that the stream be projected into the backets just at the right point, to secure the best possible results with a Hurdy Gordy or Impulse and Reaction What.

Our Water Wheel Patents.

We have published in several editions of our pamphlet, a decision and decree of the United States Circuit Court, in a said instituted by the firm of James Leffel & Co., plantifis, against Thos. Leffel & Co., the manufacturers of a so-called Leffel Wheel, who were the defendants. This sait was brought to restrain the said Thos. Leffel & Co. from infringing the parents of the James Leffel wheel. The court fully and completely sustained our patents in every particular, absolutely confirming their validity, and a decree was rendered granting an injunction forbidding the manufacture of the said water wheel by the said Thos. Leffel & Co., who soon afterward went out of business.

We beg to remind those who intend buying water wheels, that the wheels made by James Leffel & Co., are not liable to the state of the s

60, 70 and 80 Inch CASCADE Water Wheels.

The following tables are compiled for three sizes, or three diameters of this new wheel; but we are prepared to furnish smaller wheels and larger ones of the same design. Our works can supply on short notice, 20, 60, 70 or 80 inch wheels, when the necessity of the case requires them. The principal is not limited to any special size, or to those only, mentioned in tables. A want of space prevented a more extended list at this time, but we can give full information, regarding smaller or larger sizes, and of less or even greater expactities, than those to which the tables are adapted.

The facilities of our works, and our long experience in the manufacture and application of water wheels, enables us to furnsh promptly any design, and to advise fully and competently, as to the application of this type of wheel, under any

combination of circumstances, that may arise. It is hoped that those requiring wheels, of this class, or the Turbine type, will not hesistate to write us fully, making any inquiry, that they may desire answered, when it will receive our prompt and special attention.

Tables of the CASCADE Water Wheel.

HEAD, POWER, VELOCITY, MINERS' INCHES AND QUANTITY OF WATER.

The opposite page contains a table of our 26-inch CASCADE. Wheel. This table is unique and original in a number of respects. The first vertical column give head pressures, ranging from 60 to 240 feet; at interval of very 1, feet, from 60 to 195 feet; and intervals of 10 feet, from 200 to 240 feet; at flips that had flaf page continues these head pressures, from 250 to 740 feet—a portion being at intervals of 10 feet each, and the balance of 20 feet differences the second vertical column, in both parts of this table, gives the number of revolutions per minute that this 26-inch Cascade charged, for which at labor under each of the heads, opposite to which it is set. Powers, revolutions, and water discharged, for the power, two flowers in the tables, can be estimated in the following simple manner: Four times the head, gives sight times the power, two flowers and uses 25 critical revolutions. Earning to—flag 18, 4, 28 finch wheels the feet of the control of the control

The vertical columns following, at the head of each of which is found "H. P.," represent the horse-power that will be obtained, with each of the head pressures for this size of wheel. In giving these horse powers we have omitted decimal fractions, and give only the nearest common fraction, as we have done in our tables for the James Leffel Turbine-we being the first parties to originate and adapt this system and plan, which we regard far more simple, and better suited to our general class of correspondents, than where the decimal is retained. The vertical columns with "C, F," at the head of each, show the number of cubic feet of water discharged per minute, for each horse-power just preceding it in the horizontal line, and for each of the vents under each of the head pressures named. We have adopted the same plan in drop ping the decimals in giving the cubic feet, as we have done with the horse-power. Each of the columns, at the head of which is found "M. I.," represent the Miners' Inches, already fully explained on page 9, that will give the horse power, and cubic feet of water discharged, just preceding in the horizontal line and under the head pressure, to which each of these are opposite. While the common fraction gives these quantities approximately by eighths, it may not be quite so accurate as the decimals, which gives it by tenths and hundredths; but they are sufficiently close and so nearly, correct, as to answer every purpose that the customer may desire. The beauty, simplicity and convenience of this style, recommends itself to every correspondent, and every user of water wheels. The table gives four vents and discharges for this 26-inch wheel, which are seen in a third horizontal line, at the head of the table, reading Vent F, Vent H, etc. The wheel can be built for either one or all of these vents, if the circumstances in the case require it. All that (See page 21.)

						Water		. Copyright 1			17
	2	26 INCH 'CA	SCADE' W	TER WHEE	L.			26 INCH 'C	ASCADE' V	VATER WHEE	L.
Head in	Bev.	VENT F.	VENT H.	VENT 2 H.	VENT 3 H.	Head	Rev.	VENT F.	VENT H.	VENT 2 H.	VENT 3 H.
Feet.	Min.	H. P. C. F. M. 1.	B. P. C. F. M. 1.	H. P. C. F. M. I.	H. P. C. F. M. I.	Feet.	Min.	H. P. C. P. M. 1.	B. P. C. F. M. 1.	H. P. C. F. M. 1.	H. P. C. F. M. L
60 65 70 75	237 247 256 265			354 3814 2434 4 4036 2534 414 42 2634 5 4332 2734	5% 58% 37 6% 60% 39 6% 62% 40 7% 65 41	250 260 270 280	484 494 503 513	10½ 26½ 16½ 10½ 27 17½ 11½ 27½ 17½ 12½ 28 17½	15% 39% 25% 16% 40% 25% 17% 41% 26% 18% 42 26%	30½ 79½ 50½ 32½ 80½ 51½ 34½ 82½ 52½ 36% 83½ 53½	46 119 76 48% 121 77 51% 124 79 54% 126 80
80	274		2½ 22½ 14½	5½ 44½ 28½	8% 67% 43	290	522	12% 28% 18	1934 4234 2734	38 1/85 1/54 54 1/6	57½ 128 82
85	282		3 23 14½	6 46½ 29½	9% 69% 44	300	531	13% 29 18%	2034 4334 2734	40 1/86 1/55 1/6	60½ 130 83
90	291		3½ 23½ 15½	6½ 47½ 30¼	10 71% 45	310	539	14% 29% 18%	2134 44 28	42 1/88 1/56 1/6	63½ 132 84
95	299		3½ 24½ 15½	7½ 48¾ 3I	10% 73% 47	320	548	14% 30 19	2234 4434 2834	44 1/6 89 1/57	66½ 134 86
100 105 110 115	306 314 321 329	25/4 163/4 103/2 23/4 17 11 3 17 1/4 113/4 33/4 18 113/4	3½ 25 16 4½ 25½ 16½ 4½ 20¼ 16¾ 4½ 27 17	7½ 50 32 8½ 51½ 32½ 9 52½ 33½ 9½ 53½ 34½	11% 75% 48 12% 77 49 13% 78% 50 14% 80% 51	330 340 350 360	557 565 573 581	15½ 30½ 19½ 16½ 30½ 19½ 17 31½ 20 17¾ 31½ 20½	23½ 45½ 29 24½ 46½ 29½ 25½ 46½ 30 26½ 47½ 30½	50% 93% 59% 53 95 60%	69½ 137 87 73 139 88 76½ 141 90 79½ 143 91
120	336	3% 18% 11%	5½ 27½ 17½	10½ 55 35	15½ 82½ 52	370	589	18¾ 32½ 20½	27 % 48 % 30 %	621/8 100 64	82¼ 145 92
125	343	3% 18% 12	5½ 28 17½	10½ 56 35½	16½ 84 54	380	597	19⅓ 32½ 30¼	28 % 48 % 31		86¼ 147 93
130	349	3% 19 12%	5½ 28½ 18½	11½ 57 36½	17½ 85½ 55	390	605	20 33 21	30 49 % 31 %		89¾ 149 95
135	356	4 19% 12%	6 29 18½	12½ 58½ 37	18½ 87½ 56	400	613	20¾ 33½ 21½	31 50 32		93¼ 150 96
146	362	4½ 19½ 12½	6¾ 29¼ 18¾	12% 59% 37%	19½ 89 57	420	628	92½ 34½ 21½	33% 51% 32%	66 ½ 103 65½	100 154 98
145	369	4½ 20½ 12½	6¾ 30¼ 19¼	13% 60% 38%	20¾ 90½ 58	440	643	93½ 35 22½	35% 52% 33%	71½ 105 67	107 158 100
150	375	4½ 20½ 13	7¾ 30¾ 19⅓	14% 61% 39	21¾ 92 59	460	657	25½ 35½ 22½	38% 53% 34%	76 ½ 107 68½	115 161 103
155	381	5 20½ 13½	7⅓ 31¼ 20	15 62% 39%	22½ 93½ 60	480	671	27½ 36½ 23½	40% 55 35	81½ 109 70	122 165 105
166	388	5½ 21½ 13½	7 % 31 % 20 %	15% 63% 40%	23 ¹ / ₉ 95	500	685	29 37½ 23½	43% 56 35%	86¾ 112 71½	130 168 107
165	394	5½ 21½ 13½	8 % 32 % 20 %	16% 64% 41	24 ³ / ₉ 96 ¹ / ₉ 62	520	699	30% 38 24½	46 57 36%	92 114 72½	138 171 109
176	399	5½ 21½ 13½	8 % 32 % 20 %	17% 65% 41%	25 ³ / ₄ 98	540	712	32½ 38½ 24½	48% 58 37	97½ 116 74	146 174 111
175	405	6 22 14	9 33 21	18 66% 42%	27 99 ¹ / ₄ 63	560	725	34½ 39½ 25	51% 59 37%	102 118 75¼	154 177 113
186	411	6½ 22½ 14½	9% 33% 21%	18½ 67½ 42½	28½ 101 64	580	738	36½ 40½ 25½	54% 60% 38%	108 120 75¼	163 181 115
185	417	6½ 22½ 14½	9% 34 21%	19½ 68 43½	29½ 102 65	600	750	38 40½ 26	57 61% 39	114 122 78	171 184 117
196	422	6½ 23 14½	10% 34% 22	20½ 69 44	30½ 103 66	620	763	40 41½ 26½	60 62% 39%	120 125 80	179 187 119
195	428	7 23½ 14½	10% 35 22%	21½ 70 44¾	31½ 105 67	640	775	42 42½ 27	62% 63% 40%	125 127 81	188 190 121
200	433	734 2334 15	11 35½ 22½	22 70% 45%	33 106 68	660	787	43% 43 27%	66 64% 41	131 129 82	197 193 123
210	440	734 2444 1514	11½ 36½ 23½	23% 72% 40%	3514 109 69	680	799	40 43% 27%	68% 65% 41%	137 131 83	206 196 125
220	454	834 2434 1534	12½ 37 23½	25% 74% 47%	38 112 71	700	811	48 44% 28%	72 66% 42%	143 133 84	215 199 127
230	465	9 2534 16	13½ 38 24½	27 75% 48%	4054 114 72	720	822	50 44% 28%	75 67% 42%	150 135 86	225 202 129
240	475	934 26 1634	14½ 38½ 24¾	28% 77% 49%	434 116 74	740	833	52 45% 29	78% 68% 43%	196 136 87	234 209 130

18	38											VHE				Water		88 1	NCH	" C	ASC	ADI	E" V	VATE	R V	HEE	L.		
ead	Rev.	-	NT		1		ENT			VE				NT S	3 L.	Head	Bev.	V	ENT	J.	V	ENT	L.	VE	NT 2	L.	VEH	17 3	L.
in cet.	per Min.	B. P.	C. I	. H	. 1.	H. P	C. F	. у.		B. P.	C. P.	м. 1.	В. Р.	C. F	M. 1	Feet.	Min.	Н. Р.	C. F.	M. I.	В. Р.	C. F.	M. L	B. P.	C. F.	M. I.	H. P.	C. F.	W. I.
60	158	3 3 76		6 3	30 31 32	410	45 47 49	39 30 31		836	90 94 98	58 60 62	125	136 141 147	90	250 260 270	323 329 336	2516 2716 2834	66 67 69	42 43 44	35% 38 40%	94	59 60 61 62	71¾ 76 80¼	185 189 192	118 120 123 125	107 114 120 127	277 283 288 294	177 180 184 187
70 75 80	171 177 183	41/4	35	1	24	65	51	31		11)4 13	101	65 67 60	1756	157	100		342 348 354	307	70 71 72	443/g 45 46	44%	98 100 101	63	8434 8934 9434	199 203	127	134 141	304	190
96 95	188 194 199	51/2	381 40 41		456 25 26	75	55	34 35 36		161	111	71 73	23 ¼ 25 ½	170	100	320	360 365 371	3574 37 3834	74 75 76	47	4936 5134 5456	105	65 66	103	209	131 133 135	148	309 314 319	197
00 05 10	204 209 214	6 1/2 7 7 1/4 8	42		97 28 856	9	581 60 61 63	37 38 38 46		18% 19% 21 22%	117 120 123	75 76 78 80	29 5 31 3	180 180 180	111	340 350	377 382 387	40 42 44	77	49 50 501/	561	108	68 69 70	113 119 123	216 219 222	137 139 141	170 178 185	323 328 333	200
120 125 130	219 224 228 233	81	45 45 45	0	39 9 ¹ / ₂ 30	11	64	4		2334 2539 2634	138	82 83 85	35% 38 40%	19	125	380	393 399 403	46 48 49 71	80 81 52	51 52 5216	6434			129 134 139	225 228 231	143 145 147	193 201 209	337 341 346	21 23 23
1 40 1 45	237	10)		3	31	15	68	4	4	28)4 30	136		45	20	13:	420	408 419 428	51)4 55% 59%	84 86 88	53 54 1/2 56	723/ 78 833/	117	78	145 156 167	234 240 245	149 153 156	217 233 250	351 359 368	22
150 155	246 250 254	11)	5	1 3	33	16	73	45	6	33 14	145	91	52 5	21 21	13	450		6371 68	90 91	57 58	95%	125	80 82 83	198	251 256 262	160 163	268 285 303	376 384 392	24
160 165 170	258 252 266	135	53	4 2	34	19 20 21	5 74 77 77	5 48	8	3834	150	96	57 603 603	22	5 14 9 14	520 540	466	763 813 853	95	60 62 63	113	133	85	214 227 240	266 271 276	173	322 340 360	398 407 413	2:
180	274 278	15	1 5	6 3	35 35 ¹ 36	21	7 8 8	8 5	0	43 45	15	100		9 23	5 15	580	492	90 ½ 95	100	64	135	141	90	253 266 279	286	182	380 399 419	429	2
96	281 285 289		1 5	8	36 1/3 37 1/3	23 24 25	08 80	3 5	3	51%	16	5 10	74	24	5 I5	8 660	517	104	10	67	140	148	94	307	301	189	439 460 481	444	I
220 230 240	303 310 316	21	3 6		38 14 39 14 40 41	37 39 31	4 8 4 8	7 5	4 5 6 8	55 % 59 63 %	17	7 11	88	5 2t	6 16	6 700	540	110	111	70	16:	15	99	335	300	197	500 525 546	464	3

	5	0 11	КСН	".C/	SCA	DE	" W	ATE	R V	VHE	EL.				-	50 I	NCH	" C	ASC	ADI	E" \	VATE	R V	VHE	EL.		
Head in	Bev.	V	ENT	N.	V	ENT	P.	Vε	NT 2	P.	VE	NT S	3 P.	Head	Rev.	V	ENT	N.	V	ENT	P.	VE	NT 2	P.	VE	NT S	3 P.
Feet.	Min.	8. P.	€. F.	M. I.	a . P.	C. F.	M. 1.	H. P.	C. F.	M. I.	Н. Р.	C. F.	H. i.	Feet.	Min.	Я. P.	C. F.	M. 1.	H. P.	C. F.	M. 1.	H. P.	C. F.	M. I.	B. P.	C. F.	M.
60 65 70 75	119 123 128 133	7 ¹ / ₄ 8 ¹ / ₆ 9	77¾ 80¾ 83¾ 86¾	53%	12 13½ 15¼ 16¾	135	82½ 86 89 92	24 271/6 301/6 335/6	259 269 280 280	165 172 178 184	36 40% 45% 50%	388 404 419 434	247 257 257 267 277	250 260 270 280	242 247 251 256	61% 65% 68%	159 162 165 168	101 103 105	102 108 114 121	264 269 275 280	168 172 175 178	205 217 230 243	528 539 549 559	337 343 350 356	307 326 344 364	793 808 824 839	50 51 52 53
80 85 90 95	137 141 145 149	1134 1254 1354	891/4	57 5834 604	1814 2014 22 24	149 154 159 163	95 98 101 104	37 401/4 441/4 477/4	299 308 317 326	190 196 202 207	551/2 601/4 661/4 713/4	448 462 476 489	286 294 303 311	290 300 310 320	261 265 270 274	76% 80% 84% 88%	171 174 177 179	109 111 112 114	128 134 141 148	285 299 294 299	181 184 187 190	256 269 282 296	569 579 588 598	362 369 375 381	383 403 424 444	854 868 883 897	54 55 55 57
100 105 110 115	153 157 161 164	161/4		64 65½ 67 68	25 % 27 % 29 % 32	167 171 175 179	106 109 112 114	51 \ 55 \ 59 \ 63 \	334 342 350 358	213 218 223 228	77 1/2 83 1/2 89 1/2 95 1/4	501 514 526 538	319 327 335 342	330 340 350 360	278 282 287 291	93 97 1/4 101 106	182 185 188 190	116 118 119 121	155 162 169 177	304 308 313 317	193 196 199 202	310 325 339 354	607 616 625 634	387 392 398 404	465 487 508 530	911 924 938 951	58 58 59 60
$120 \\ 125 \\ 130 \\ 135$	168 171 175 178	2036 213/2 23 243/2	110 112 114 116	70 71 73 74	34 361/4 383/4 405/8	183 187 191 194	117 119 121 124	68 73½ 76½ 81½	381 388	233 238 243 247	102 108 115 122	549 560 572 582	350 357 364 371	370 380 390 400	295 299 303 306	115 119 124	193 195 198 201	123 124 126 128	184 192 199 207	321 325 330 334	205 207 210 213	368 383 397 414	643 650 660 668	409 414 420 425	552 575 598 621	964 975 990 1003	
$140 \\ 145 \\ 150 \\ 155$	181 184 188 191	251/2 271/2 281/2 30	121 123 125	76 77 78 79	42 % 45 % 47 % 50	198 201 205 208	125 128 130 133	8534 9034 95 9934	409 416	252 256 261 265	135 142 150	593 604 614 624	378 384 391 398	420 440 460 480	314 321 329 336	133 143 153 163	205 210 215 220	131 134 137 140	223 239 255 272	342 350 358 366	218 223 228 233	446 478 511 544	685 701 717 732	436 446 456 466	668 717 766 816	1027 1052 1075 1098	67 68 69
166 165 170 175	194 197 200 203	36	131 133	81 82 83 84	523/2 543/2 573/2 60	211 215 218 221	135 137 139 141	104 110 115 120	436	269 273 277 282	157 165 172 180	663	404 410 416 422	500 520 540 560	343 349 356 362	173 184 195 205	224 228 232 236	143 145 148 151	289 307 325 343	374 379 388 394	238 242 247 251	579 614 650 686	747 759 775 788	476 483 493 502		1121 1138 1163 1182	72 74 75
$180 \\ 185 \\ 190 \\ 195$	206 208 211 214	37 ⁵ / ₃₉ ⁵ / ₄₀ 40 ⁵ / ₄	136 138 140	85 87 88 89	62 1/4 65 67 1/4 70 1/2	224 227 230 234	143 145 147 149	135 135 141	461 467	285 289 293 297	187 195 203 211	672 682 691 701	428 434 440 446	580 600 620 640	369 375 381 388	217 228 240 251	241 245 250 254	154 156 159 162	352 380 400 419		256 260 265 269	723 761 799 838	804 816 832 845	512 520 530 538	1141 1199 1257	1206 1225 1248 1268	78 79 80
200 210 220 230 240	217 222 227 232 237	4374 4754 501 5414 5736	152	90 93 95 97	731/4 781/4 841/4 901/4	236 242 248 253 259	151 154 158 161 165	146 158 169 181 192	473 484 496 506 518	301 308 316 322 330	236 236 253 270 28q	709 726 744 759 777	452 463 473 483 494	660 680 700 720 740	394 399 405 411 417	263 275 288 300 313	258 252 256 259 273	164 167 169 171 174	439 459 479 500 521	429 435 442 448 455	273 278 282 286 200	878 918 958 1000 1042	858 871 885 897 909	547 555 563 571 579	1377	1287 1307 1327 1345 1364	83 84 85

	Ооив	LE S	50							TER				Water	Doug	_								ER	WHE	EL.	_
Head in	Rev.	VE	NT 2	N.	VE	NT 4	P.	Vε	NT 5	P.	VE	NT	6 P.	Head in	Rev.	VE	NT 2	N.	VE	NT 4	P.	VE	NT 5	P.	VE	NT 6	5 P
Feet.	Min.	Н. Р.	C. F.	M. I.	Н. Р.	C. F.	M. I.	8. P.	C. F.	M. I.	H. P.	C. F.	M. I.	Feet.	Min.	H. P.	C. F.	M. L	Н. Р.	C. F.	M. I.	Н. Р.	C. F.	M. I.	H. P.	C. F.	Ħ.
60 62 64 66	119 121 123 124	1436 1516 1656	158	99 101 103 104	481/4 501/4 53 551/4	518 526 535 543	330 335 341 346	60 631/4 661/4	647 658 668 679	412 419 426 432	721/4 751/4 791/2 831/4	777 789 802 815	495 503 511 519	126 128 130 132	172 173 175 176	44 45 46 47 ¹ / ₁	225 227 229 230	143 145 140 147	146 150 153 157	750 756 762 768	478 482 485 489	183 187 192 196	938 945 953 960	597 602 607 611	225	1125 1134 1143 1152	72
68 70 72 74	126 128 130 132	1734 1814 19	165 168 170 173	105 107 108 110	58 60½ 63¼ 66	552 559 567 575	351 356 361 366	721/2 751/4 79 821/4	691 699 709 719	439 445 452 458	87 91 9434 9834	827 839 851 863	527 534 542 549	134 136 138 140	177 179 180 181	481/a 491/ 501/ 511/	232 234 236 237	148 149 150 151	160 164	774 780 785 791	493 497 500 504	201 205 210 214	967 974 981 989	616 621 625 630	241 246 251	1161 1169 1178 1186	7: 7:
76 78 80 82	134 135 137 139	201/2 21/4 22/4 23	179	111 113 114 116	68% 71% 74 76%	583 590 598 605	371 376 381 386	85½ 89 92½ 96	728 738 747 757	464 470 476 482	103 107 111 115	874 886 897 908	557 564 571 578	142 144 146 148	183 184 185 186	521/3 531/3 541/4	239 241 242 244	152 153 154 155	175 179 182 186	797 802 808 813	507 511 514 518	219 224 228 233	996 1003 1010 1016	634 639 643 647	263 268 274	1195 1203 1212 1220	777
84 88 88 90	140 142 144 145	241/4 251/2 201/2	184 186 183 190	117 118 120 121	79 14 82 14 85 14 88 14	613 620 627 634	390 395 399 404	99 ¹ / ₂ 103 107 110	766 775 784 793	488 494 499 505	119 124 128 132	919 930 941 951	585 592 599 506	150 152 154 156	188 189 190 191	57 58 1/ 59 1/ 60 1/	246 247 249 251	156 158 159 160	190 194 198 202	819 824 830 835	521 525 528 532	238 243 247 252	1023 1030 1037 1044	652 656 660 665	285 291 297	1228 1236 1244 1252	777
92 94 96 98	147 149 150 152	271/2 281/4 291/4 301/8	194 197 199	123 124 125 126	91 ¼ 94¼ 97¼ 100	648 648 655 662	408 413 417 421	114 118 121 125	801 810 819 827	511 516 521 527	137 141 146 150	962 972 982 993	613 619 626 632	158 160 165 170	193 194 197 200	61 1/4 62 1/4 65 1/4	252 254 258 262	161 162 164 167	206 210 219 229	840 846 859 871	535 539 547 555	257	1050 1057 1073 1089	669 673 684 694	308 314 329	1260 1268 1287 1307	8 8
100 102 104 106	153 155 156 158	31 32 33 33%	201 203 205 207	128 129 130 132	113	669 675 682 688	436 430 434 438	133 137 141	836 844 852 860	532 538 543 548	164	1003 1013 1023 1032	651	175 180 185 190	203 206 208 211	71¾ 75 78¼ 81¾	265 269 273 277	169 171 174 176	240 250 250 271	884 897 909 921	563 571 579 587	300 313 326	1105 1121 1136 1152	704 714 724 734	359 375 391	1326 1345 1363 1382	8
108 110 112 114	159 161 162 164	34% 35% 36% 37%	208 210 212 214	133 134 135 135	116 119 122 126	695 701 707 714	442 447 451 455	145 149 153 157	868 876 884 892	553 558 563 568	179	1042 1052 1061 1071	670	195 200 205 210	214 217 219 222	8414 8714 9114 9414	280 284 287 291	179 181 183 185	282 293 304 315	934 945 957 969	595 602 610 617	352 366 380	1168 1182 1196	744 753 762	423 439 456	1401 1418 1436	8000
116 118 120 122 124	165 166 168 169	38 % 39 % 40 % 41 % 42 %	218 220 222	138 139 140 141 142	139 132 136 139 143	720 726 732 738 744	459 463 466 470 474	161 166 170 174 179	900 908 915 923 930	573 578 583 588 593	204 209	1080 1089 1098 1107 1116	694 700 705	215 220 225 230 235	225 227 230 232 235	98 101 105 108 112	294 297 301 304 307	187 189 192 194 196	326 338 349 361	980 991 1003 1014 1025	624 632 639 646	408 422 437 451	1225	771 780 789 798 807	490 507 524 542	1453 1470 1487 1504 1520	9999

has been said in the foregoing, regarding this style of wheel, is equally applicable to the other sizes in these tables. The table on foregoing page is for a Double 50-inch Cascade Wheel, or two wheels on the same shaft, each with one, two or three yens.

Power Tables for Small Turbines

Pages 22 and 32 contain tables of small Standard and Reduced James Leffel Wheels. The sizes on page 28, 8% to 17½ inches, are Standards. Page 23 is computed for Reduced capacities, the sizes being xx 13 to xx 23 inches inclusive. This page contains also three Standard capacity wheels. The head pressures range from $\frac{1}{2}$ to $\frac{1}{2}$ t

PRICES of Leffel Wheels and Globes.

The prices in the second columns in tables of powers, pages 22 and 23, are for Wheel and Globe complete. The Wheel, as shown at the left hand of inside page of front cover, opposite title page, is placed within the Globe, shown at the right hand of the same page. This Globe and Wheel within are ready for attachment to head pipe or penstock. The smaller wheels have bronze runners, and all having steel gates.

PRICES of Cascade Water Wheels.

The price list below is for the Cascade Wheel, pulley and mounting complete. They are ready for attachment by belt to the machinery, and to the head pipe, leading water to the Wheel. These mountings are all iron, which is far preferable to wood, and not much more expensive. They contain a gate operated by hand, for admitting water to the nozzles, and shutting it from them. We give the fullest exurantee for each wheel.

HEAD.	60	to 200 F	cet.	200	to 400 F	eet.	400	to 600 F	eet.
WHEEL.	z Nozzle.	2 Nozzles.	3 Nozzles.	1 Nozzle.	2 Nozzles.	3 Nozzles.	: Nozzle.	a Nozzles.	3 Nozzles
20	\$180	\$200	\$220	\$210	\$230	\$260	\$245	\$270	\$300
26	\$260	280	300	\$290	320	350	\$340	370	400
38	\$370	400	430	\$420	450	480	\$470	510	
50	\$500	550	600	\$575	640	710			
60								•	

2 Hev	Table :	Specially	arran	ged :	for the	Jam	es Le	ffel S	TAND	ARD 1	Water	Who	els.	Соруг	ight 1	894,	by Ti	e Jan	nes L	offel e	ds Co.	
Size of	Wheel &	Head in	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
10	Bronze \$225 Runner	Power Water Speed	6	SMT KG	2	1½ 120 392	13/4 123 414	2 126 436	2)-6 134 457	25/i 138 473	3 146 497	33/s 152 516	3¾ 158 534	4½ 163 551	4½ 167 568	5 173 585	5¾ 178 601	5½ 182 617	6½ 188 632	65% 191 647	7½ 196 661	75% 201 675
$11\frac{1}{2}$	Bronze 8235 Runner	Power Water Speed	WAT	ER W	HEEL	13% 146 339	2½ 158 359	25/8 166 379	3 172 397	31/2 184 415	4 194 432	4 ½ 202 448	475 206 464	536 213 479	576 218 494	61/2 226 508	7 232 522	7½ 236 536	8½ 244 549	85% 248 562	9% 254 574	9% 260 587
131	Bronze 8250 Runner	Power Water Speed		=	_	2½ 197 294	3 210 312	3½ 221 329	4 230 345	4½ 237 350	5¾ 255 375	5% 265 389	61/2 274 403	7½ 285 416	7.% 293 429	85% 303 441	9 ¼ 307 4 54	316 465	323 477	332 488	123% 340 499	13% 349 510
151	Iron \$260 Runner	Power Water Speed	1½ 202 204	23/6 224 22I	2½ 246 239	3¼ 257 256	4 281 271	4% 202 286	5¾ 309 300	6 316 313	6 ½ 328 326	7½ 344 338	81/2 358 350	9)6 370 362	10¼ 381 373	390 384	399 394	13 411 405	14 421 414	43I 424	439 433	17½ 451 443
$17\frac{1}{2}$	Iron 8285 Runner	Power Water Speed	21/6 269 176	2½ 289 193	3½ 316 208	4% 345 223	5½ 350 236	6 379 249	7 402 261	8 421 273	9 437 284	10 451 295	463 305	121/4 484 315	13)/s 497 325	509 334	15¾ 524 343	17 537 352	18¾ 553 361	19% 564 369	577 378	586 386
Size of WHEEL	Wheel &	Head in feet # #	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
83	Bronze \$215 Runner	Power Water Speed	6 151 788	6¾ 155 803	6¾ 157 819	7½ 159 834	7½ 163 848	7% 166 863	8½ 168 877	85% 170 891	9 172 905	9½ 176 919	9 % 178 923	10¼ 180 945	10)/s 183 958	111/6 186 971	115% 188 984	12 190 996	19½ 192 1008	13 195 1020	13½ 198 1032	14 201 104
10	Bronze 8225 Runner	Power Water Speed	8 202 689	81/2 206 703	9 210 716	9½ 214 729	10 218 742	10% 224 755	11½ 227 767	11½ 232 780	12½ 234 792	12)/4 237 804	133% 241 816	14 246 827	14% 250 838	15½ 252 850	15% 255 861	1634 259 872	17 262 882	175% 264 893	181/6 266 903	18) 260 914
$11\frac{1}{2}$	Bronze 8235 Runner	Power Water Speed	101/2 265 599	11½ 270 611	11¾ 275 622	12½ 282 634	131/a 286 645	13½ 293 656	14½ 295 667	15½ 301 678	16 306 688	16 ½ 311 699	17½ 316 709	18¼ 320 719	19 324 729	19¾ 328 738	20½ 332 748	336 758	339 707	22¾ 342 776	235% 347 785	245 352 794
131	8250 Runner	Power Water Speed	14 353 520	36x 530	368 540	16% 376 550	381 560	1834 387 570	395 579	201/4 401 589	21½ 407 598	22 ½ 413 607	23¼ 419 616	24½ 425 624	251/6 431 633	26¼ 436 641	271/4 442 650	283% 446 658	29¾ 453 665	30½ 459 674	315% 454 682	32) 470 690
151	lron \$260 Runner	Power Water Speed	18¼ 461 452	471 461	480 470	488 488 478	2234 495 487	24 505 495	95¼ 515 503	263% 521 511	2756 528 519	29 536 527	30% 545 535	31½ 553 542	323/4 560 550	34 ½ 569 557	35½ 575 564	36 % 582 572	381/4 589 579	39½ 595 586	41 602 593	423 610 600
$17\frac{1}{2}$	1ron 8285 Runner	Power Water Speed	23¾ 600 394	25¼ 613 402	263/ ₄ 626 409	281/4 637 417	29½ 648 424	31 3/6 660 431	32% 670 439	34 1/2 681 446	36½ 692 453	37¾ 702 450	39 1/2 713 466	41¼ 724 473	43 734 479	44% 744 486	46½ 753 492	48¼ 762 498	50 771 504	51 % 780 510	53¾ 790 516	553 801 521

		arranged :	for th	o Jam	es Lei	Tel RE	DUCE	Dane	STA	NDAR) Wat	er W	heels.	Cop	yrigh	1894	, by T	he Ja	mes I	effel	de Co.	2
Size of WHEEL	Wheel &	Head in	46	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84
xx 131	Bronze 8275 Runner	Power Water Speed	26 357 706	28 368 720	30 379 735	32 388 750	34 397 704	36 406 778	37% 411 792	39½ 416 806	41½ 420 819	43 424 832	45 430 845	47 436 858	49¾ 444 870	51½ 452 882	53¾ 459 895	56 465 908	581/4 471 920	60½ 477 930	623/4 483 941	65 489 953
151 154	Bronze 8290 Runner	Power Water Speed	34 466 613	36 479 626	39 492 640	41½ 504 052	44¾ 518 664	47 530 676	49 1/2 539 688	52 547 700	54¾ 558 712	57 1/2 567 724	579 735	63 1/2 590 746	66¼ 598 757	69 605 768	71½ 612 778	74½ 619 788	77 1/6 625 798	80 632 808	83 639 818	86 647 827
17½	Bronze 8315 Runner	Power Water Speed	45¼ 621 535	48 631 546	50¾ 641 557	54 653 568	57 665 578	60 677 589	63 1/2 690 600	67 705 610	71 723 620	75 740 630	78 ½ 751 640	82 762 650	85% 771 659	89 781 668	92½ 790 677	96 798 687	100 810 696	104 821 704	108 832 712	112 842 721
$\frac{8 \text{TANDARD}}{17 \frac{1}{2}}$	Bronze 8320 Runner	Power Water Speed	591/4 826 535	64 842 546	68 859 557	72 875 568	76 889 578	80 902 589	84 915 600	88 926 610	92 1/4 945 620	97 1/2 962 630	977 640	107 993 650	111 1005 659	116 1018 668	121 1033 677	126 1047 687	131 1061 696	136 1074 704	141 1085 712	147 1100 721
8tandard 20	Iron 8365 Runner	Power Water Speed	76 1044 467	81 1/6 1071 478	86)/s 1092 487	91½ 1109 497	96½ 1140 506	103 1170 516	110 1200 525	116 1223 534	122 1240 543	129 1275 551	135 1291 559	141 1310 568	147 1328 576	153 1344 585	160 1361 593	167 1388 601	173 1400 609	180 1422 617	186 1433 625	193 1448 632
8TANDARD 23	Iron 8425 Runner	Power Water Speed	104 1430 407	111 1461 416	118 1491 425	125 1520 434	133 1556 442	141 1591 449	149 1623 456	156 1643 463	164 1671 470	172 1698 477	180 1723 484	188 1747 491	196 1769 498	205 1799 507	214 1827 515	222 1846 522	231 1871 529	240 1896 536	249 1919 543	258 1941 550
Size of WHEEL	Wheel &	Head in feet 0.7	86	88	90	92	94	96	98	100	104	108	112	116	120	124	128	182	136	140	144	148
xx 13∤	Bronze 8300 Runner	Power Water Speed	67 1/4 494 964	69½ 499 976	71 1/4 503 987	74 508 998	76½ 514 1009	79 520 1020	82 528 1030	85 537 1040	89 545 1060	94 550 1080	99 558 1100	104 555 1120	110 570 1140	116 584 1158	121 698 1178	125 608 1196	133 618 1214	139 627 1232	145 636 1248	151 644 1260
×× 15∤	Bronze 8325 Runner	Power Water. Speed	891/4 655 837	92½ 663 647	95¾ 672 857	99 680 867	102 689 877	106 697 886	109 702 896	707 906	118 717 922	125 731 940	133 750 956	762 974	147 774 990	154 786 1006	162 799 1022	169 810 1038	177 822 1054	185 834 1070	193 847 1084	201 858 1100
17½	Bronze 8345 Runner	Power Water Speed	116 852 731	120 861 739	124 870 747	128 879 757	132 890 765	137 901 772	141 910 780	146 922 788	154 935 804	163 952 818	172 970 834	181 987 848	191 1005 862	200 1023 878	211 1041 892	921 1057 906	231 1073 918	6	ONT MA	2
20 20	Bronze 8400 Runner	Power Water Speed	152 1114 640	157 1127 647	162 1140 654	168 1154 661	173 1163 668	179 1178 675	184 1189 682	190 1200 690	201 1221 702	213 1245 716	225 1269 730	237 1292 742	250 1316 756	263 1339 768	276 1362 780	792	302 1403 804	WAT	ER W	HEEL
xx 23	Iron 8470 Runner	Power Water Speed	200 1468 556	207 1486 562	214 1502 568	221 1518 574	228 1532 581	236 1553 588	244 1573 504	252 1592 500	267 1632 612	283 1656 622	298 1681 634	315 1712 646	331 1743 656	348 1770	364 1797 678	382 1827 688	400 1858 700	4	EAT HO	"

FOREBAY RACK AND SCREEN.

Forebay, Rack or Screen.

Any kind of Water Wheel, whether Overshot, Hurdy Gurdy, or Turbine, requires a screen to prevent floating obstructions passing into the gates or nozzles. We invariably insist in all cases, upon the use of one or more well constructed racks or screens, in the flume or at the mouth of the head pipe; as a necessary precaution at all times against drift or leaves. The opposite page shows one of the simplest methods of constructing and placing a rack, which may be made of iron thin pieces of wood. Iron is perferable as the pieces can be thinner than wood, occupying much less space. The simplest arrangement of these pieces, whether iron or wood, is to place them aids by all is in a line, each perchaving two or more arrangement of these pieces, whether iron or wood, is to place them aids by all is in a line, each perchaving two or more hadden to be all the pieces firmly together. Upon these rods between each piece, an iron or wooden washer of proper thickness can be placed, leaving spaces for the water to pass. The large noized wheels admit of coarse spaces between them.

When two or more racks are used, the furthest one up stream may have large spaces for catching most of the heavy drift; lessening the labor of cleaning a finer rack, which must have frequent attention to prevent loss of head, which occurs if they are neglected. Small nozeles require small spaces or methes in the racks or screens. A coarse brass wire screen is excellent, as it does not rust in water. The meshes in this wise screen must always be less than the opening of the nozzle, which is used on the wheel. If the nozzle should be a half inch, then the meshes in the screen should be three-quarters to seveneighths inch. The cross section of the fune or pipe, where the racks or screens are placed, should be much larger than the average size of pipe, for the free and or opine, where the racks or screens are placed, should be much larger than the average size of pipe, for the free and opine, and the screen should be much larger than the average size of pipe, for the free and only the proposed cleaning; one or more ralways remaining while one is removed. Great care must always be exercised to keep the rack and nozzle clean, to prevent loss of head and power.

Artesian Well Water Powers.

Frequently inquiries are made, concerning the amount of power that can be obtained from artesian wells. The idea generally prevains, that they should supply considerable power, so there is always apparently a large quantity of water flowing from each well. This idea of power arises from the fact, that a high pressure is always obtained when the pipe is capped over or closed, and the water is supposed to flow under that pressure, who nicharburg from the open well at the surface. Our long experience however in the wheel business, and the many instances brought to our attention, have presented very few practical and successful powers from this source. Very small powers are quite often obtained from wells properly connected with motors, but large powers are exceedingly rare. It is not generally understood, that the flow occurs nearly always under a very low pressure; and that a high personance of sufficient power for large concerns. The well tubing is so small, and often so deep, that the necessary conditions of quantity and pressure rarely happen together. Occasionally a well is located on an eminence, where reservoir can be secured. Such a circumstance admits of the use of a larger when

Diam.	Vel. in Feet per Nec.C.		i	1	1/2	:	2	2	1/2	:	3		1		5		6		7		8		9		10
Inc	Area S	В	C	В	C	В	c	В	C	В	C	В	C	В	c	В	C	В	C	В	C	В	C	В	C
2 3	.785 3.141 7.068	·33 1.3 2.0	.58 .29	.49 1.9 4.3	1. 201 .600	. 66 2.62 5.88	2. 1. .67	.99 3 9 8.7	2 959 1 479 986		4.08 2.04 1.36	1.3 5.2	6.833 3.416	1.6	10.25 5.125 3.146	7.8	14 33 71.65 4 777		19.08 9.541 6.361	10.5	24.5 12.25 8.166		30 58 15 296 10 194	3.2 13.0	37 3
4 5 6	12.566 19.63 28.27	5 2 8.1 11.8	.145 .117 096	7.8 12.1 17.7	.300 .240 200	10.5 16.3 23.5	. 50 . 40 33	15.7 24.4 35.2	-739 -592 -493	15.7 24.4 35.3	1.02 .816 680	20.9 32.5 47.1	1.708 1.366 1.139	40.7	2.56 2.05 1.71	31 4 48 8 70 6	3.582 2.866 2.39	36.7 56.9 82.4	4.77 3.816 3.18	41.9 65.1 94.2	6.125 4.9 4.08	47.2 73.3 106.	7.895 6.116 5.097	42.4 81.4 117.8	9 - 333 7 - 466 6 225
7 8 9	38.48 50.26 63.61	16.0 20.9 26.5	.073 .055	24. 31. 40.	. 171 . 150 . 133	32.0 41.8 53.0	25 25	48 63. 79	422 .370 .328	48. 63. 80	. 583 . 51 454	64.1 83.7 106	.976 .855 .759	80 1 104 133	1.46 1.28 1.14	96 1 126 159	2.047 1.79 1.592	112. 146 186	2.726 2.385 2.12	128 168 128	3.5 3.062 3.933	144 188 239	4.37 3.823 3.4	160 208 266	5-332 4 666 4 148
10 11 12	78.54 95.03 113.	32.7 39 6 47.1	.058 .052 .048	49. 59. 71.	.120 .109 .100	65.4 79.2 94.2	. 18 . 16	98 118 141	295 269 247	98 120 141	.371 .340	131 160 188	.683 .621 .570	163 200 235	1.025 .98 .85	196 238 283	1.433 1.30 1.19	229 277 330	1.908 1.735 1.59	261 317 377	2.45 2.22 2.04	294 356 424	3.058 2.78 2.55	326 400 470	3 - 733 3 - 394 3 - 111
13 14 15	132 7 153.9 176.7	55-3 64 1 73-6	.045 .041 .039	83. 96. 110	.092 .078 .080	110 128 147	.15 .14 13	165 192 220	229 211 197	166 192 221	313 .292 .272	231 257 294	.526 488 -455	277 321 368	·79 ·73 .68	332 385 442	1.10	387 449 515	1.467 1 363 1.275	442 513 589	1.88 1.75 1.63	498 577 663	2.352 2.184 2.04	544 042 736	2 872 2 666 2 49
16 17 18	201. 226.9 254	83.7 94.5 106.	.036 .034 .032	125 141 159	.075 .070 066	167 189 212	.12 .12 11	250 283 318	.185 .174 164	251 284 318	255 240 227	235 378 424	-427 -402 -380	419 473 530	.64 .60	502 567 636	.89 .85	586 662 742	1.192 1.122 1.06	670 757 848	1.53 1 44 1.36	754 851 954	1 91 1 8 1 7	838 946 1060	2 333 2 196 2.074
19 20 22	263. 314 380.	118 130 158	.030	177 195 237	.063 060 .055	236 261 317	105 .100 .091	354 391 475	155 147 134	354 393 475	915 904 185	473 523 633	.360 .341 311	591 654 791	-54 -51 -46	709 785 950	-75 -71 -65	827 916 1109	1.00 .954 .867	945 1047 1267	1.29	1053 1178 1425	1.61 1.53 1.30	1182 1308 1582	1 965 1 866 1 697
24 26 24	452. 530. 615	188 221 256	.024 .022 .021	282 331 384	.050 .046 .042	377 442 513	083 077 .071	565 663 769	.123 .114 .108	565 664 770	.170 .157 .146	753 884 1026	285 263 .244	942 1106 1282	394 366	1131 1327 1539	-59 -55 -51	1320 1559 1796	-795 -736 -681	1508 1770 2052	1.02 .94 .87	1697 1991 2309	1 27 1.176 1.093	1884 2212 2564	1 55 1.43 1.33
30 32 34	706 804 907	294 335 378	.019 .018 .017	441 502 567	.040 .037 .035	589 670 756	066 .052 .059	888 1005 1134	.098 .092 .087	883 1005 1135	.136 .127 120	1177 1340 1513	213	1472 1675 1891	341 32 301	1767 2011 2270	.48 .44 .42	2062 2346 2648	.636 .596 .561	2356 2681 3026	.82 .76 .72	2651 2916 3405	955 .899	2944 3350 3782	1 24 1 16 1.00
36 34 40	1017. 1134 1256.	424 472 523	.016 .015 .014	636 708 784	033 .031 .030	848 945 1047		1272 1417 1570	.082 .078 .074	1272 1417 1571	.113 .107 .102	1696 1890 2094	.189 .180	2120 2362 2617	285 27 256	2544 2835 3141	-39 -37 -36	2969 3308 3665	-53 -502 -477	3393 3780 4189	.68 .64 .612	3817 4253 4713	.849 .805 .764	4740 4724 5234	982
42 48 54 60	1385. 1809 2290. 2827	577 754 954 1178	.013 .012 .010	865 1131 1431 1767	.028 .025 .022	1154 1508 1909 2356		1731 2262 2863 3534	.070 .051 .055	1732 2262 2863 3534	.097 .085 .075	2309 3015 3816 4712	. 162 . 142 . 126	2886 3769 4771 5890	244 213 .19 170	3464 4524 5725 7068	-34 -30 -26 -24	4041 5178 6680 8246	.456 .397 .353 .318	4619 6032 7624 9425	-45	5196 6786 8589 10603	.728 637 .566 .500	5772 7538 9542 11780	.888 777 .691 .622

hibe

by running part of the time, than if the flow was taken direct from the well. That a party may obtain approximately, the amount of power a well affords, a measurement of the presure ought to be obtained, at or near the surface of the ground, while the discharge is taking place. Greater accuracy would be secured if a hole or nozale of 1½ or 2 inches was discharged from the well at the time the pressure was measured. A record of the size and shaped of the hole, and the pressure shaped be made, and from this data, the power estimated. The exact height at which this water would spout, taken with the surface of the size of the

Loss of Head by Water Friction in Pipes.

The foregoing table is taken from a book published by James Leffel & Company on the construction of Mill Dams. Millwrighting, and Mechanics. The table has been modified to some extent, giving a velocity of the water per second not exceeding to feet, and embracing smaller and larger pipes, compiling and adapting it more fully to this edition of catalogue. The calculations for this table have been accurately made by formula deduced from a co-efficient for roughness of pipe, representing an average which we find quoted, for ordinary wrought iron riveted pipe, by some of the most eminent hydraulic engineers, who had the advantage of making extensive experiments. Our formula thus deduced affords results of sufficient accuracy to estimate loss of head, due to friction, in all cases within the scope of the table. It is useful in estimating the available power of water, moving through varying lengths of pipe, at velocities from I to 10 feet per second, in pipes ranging from 2 to 60 inches diameter. It should be remembered that the length of pine, for which this table has been calculated, is 100 feet. The loss of head by friction varies in the same direct ratio as the length of the pipe; therefore, the amount of such loss, in a pipe of greater or less length than 100 feet, can easily be ascertained, as we hereinafter show. The first horizontal line at top indicates the velocity of flow of water from one to ten feet per second. The first perpendicular column at left indicates the inside diameters of pipe from 2 to 60 inches. We give in the second vertical column the areas in square inches of the different diameters of pipe. The third and fourth perpendicular columns, headed B and C, as also all the subsequent perpendicular columns headed in the same way, indicate the discharge of water and loss of head; the discharge being cubic feet per minute through the different diameters of pipe. The column C show the loss of head in feet and parts of a foot for every 100 feet length of pipe.

That the foregoing may be more easily understood, we give the following example: Supposing it is desired to find the total loss of head for a fall of 200 feet, the water passing through a pipe 5 inches in diameter and 600 feet long, discharging about 40 cubic feet of water per minute: Taking the 5-inch pipe, and running on the same horizontal line in column B under 5 feet velocity of flow of water per second, 407 (forty and seven-tenths) cubic feet of water will be found discharged per minute. In the adjoining column to this amount, 105 (two and five-hundredths) of a foot too so head will be found for every 100 feet length of pipe. Having 600 feet length of pipe, we multiply 20 5 by 6, which is the total loss of head for 600 feet length of 5 (mich pipe, a low) flow feet per second. Now, by deducting the 12,3 (twelve and three-tenths) feet; which is the total loss of head for 600 feet length of 5 (mich pipe, allowing the water to flow) feet per second. Now, by deducting the 12,3 (twelve and three-tenths) feet; which is the total loss of

LONG AND CROOKED HEAD PIPE. (SEE FOLLOWING PAGE.)

from the 200 foot head, there remains 187.7 (one hundred and eighty-seven and seven-tenths) feet of actual or effective working head in this example. Where a still greater degree of accuracy is required, a further very small and unimportant loss is sometimes estimated for the "velociv head" and for the "entry head"."

Long Head Pipes and their Proper Setting.

The forgoing page shows a long, crooked, head pipe, supplying one of our small water wheels, now in us understanded of too feet. Correspondents frequently desire to know, whether the same power can be obtained by using piping, a may be had from ordinary open flumes, carrying the water to a point perpendicularly over the wheel. The illustration is not used to demonstrate, by an instance long in practice, that the same power or useful effect, can be realized by the use of a pipe, placed at an inclination and conforming with the contour of the ground, as if the water was led to the wheel, from a point directly over it. The power in the stream, depends entirely upon the perpendicular distance, between the tail water level and the head water level, and the length and position of the pipe does not effect the power, providing it is sufficiently large friction of the water, in it was a low welcotty. A serious loss of head pressure or power frequently results, by table we have computed and published on page 20. In instances, where the three conditions, that both may be committed to the greatest extent, consistent with the cost of the improvement. Abrupt and square turns or angles, should always be avoided where possible, and long, easy curves adopted, to ease the flow and lessen the friction.

The lower part of the pipe near the wheel, where it is attached to the wheel frame or casing, should be well anchored to strong manoury or otherwise securely fastened. This is necessary to prevent the weight of the pipe, and the force or pressure of the water moving in the pipe, from pushing the wheel and its mounting out of line. Unless such precaution is taken, or a previous made for retraining this usually unobserved or unforcess pressure, even though the pipe may lie to the product of the production of the

intimated in the foregoing.

3000 Complimentary Letters on File. James Leffel & Co., have been building the James Leffel Turbine for Interry-Two Years; in this time several thousand letters have been received, from users of this Celebrated Wheel, containing terms of highest praise of its performance. These are on file in the office of the company.

Leffels' Book of Mill Darms, an illustrated book of 286 pages, devoted largely to construction of practical mill dams designed by James Leffel & Co., with also various designs by other competent engineers. It contains much other used in matter to mechanics, engineers and millwrights. Published by James Leffel & Co. Price 50 cents.

Powerful Turbines for Niagara.

The opposite page shows the outward appearance of one of a plant of wheels, recently furnished the Cliff Paper Co, of Niagara Falls. It is our new style of James Leifel Double Discharge Wheel, admitting the watter between the seed foundation beams below, discharging horizontally from the wheel on each side, and finally passing down on each side of the mouth piece or supply pipe. The Casing is built of steel plates, and cast iron heads, substantially secured by sets belts. The shafting is of the best hammered scrap, and the runner, which is 67 inches in diameter, making 225 revolutions of the property of the part of the par

Both these wheels are supplied, from one pipe of 8 feet diameter, leading from a canal at the top of the cliff to the wheel house, affording a head pressure of 150 feet. A large air chamber is placed on the top of cosing, which is thown party broken away in the cut. This chamber relieves any pounding or concussion, that might occur during sudden irregular supplies of water, to the wheel from the canal or head pipe. The wheels are rated at something over 1100 H. P. each side and the contract of the contrac

1700 Horse Power; 17 Miles Transmission.

A plant of three pairs of Samson 20 inch Turbine Wheels, with horizontal shafts, is successfully operating at the Faulo of Juanacatlan, Mexico. They are the James Leftel Style 21, illustrated in our large Turbine Pamphiet, having a pulled each end of the shaft, on both sides of the wheel, each pulley containing if grooves, for hemp rope transmission. The wheels of the plant are also supplied, each with a Governor, as shown in the illustration on the following page (32) herewith. Each pair of these 20 inch SAMSON Wheels, is nominally rated 600 H. P. Two pairs transmitting electrically about 1100 H. P. to Guadalajara, a distance of nearly 18 miles. These were first put into practical service, the performance of which was 50 satisfactory, that a third pair was ordered, to fully complete the plant, and afford a reserve power. The runners are made of bronze, shafts of best hammered iron, and gates with other smaller parts of steel; affording a style and make of wheel, without an equal, in beauty of design, in durability, in ease of operation, and in its general artisectory performance. These wheels are under a head pressure of 62 feet, and are used for lighting and power purpose.

Two World's Fair Diplomas and Two Medals.

The Columbian Exposition have awarded James Leffel & Co., Two Diplomas and Two Medals for their excellent work exhibited at Chicago. The Medals are the highest awards issued by the Exposition for Water Wheels.

STYLE 23

NEW DESIGN DOUBLE DISCHARGE JAMES LEFFEL WATER WHEEL.

ENGINES and BOILERS.

Brief mention is here made of our Engines and Boliers, in the manufacture of which we were early engaged. The high reputation achieved by the splendid success of our Water Wheel in furnishing power resulting in our recoving many applications for steam power also. That our efforts to meet this demand in the fullest measure have been successful, is abundantly attested by more than 4,500 we have introduced giving excellent results.

Horizontal, Centre-Crank, Engines and Self-Contained, Return Flue Steel Boilers, we now build in a large number of sizes, above,

5, 8, 10, 16, 20 and 26

Improved Upright Engines, with Submerged Tubular Steel Boilers. We furnish in various sizes, above,

3, 4½ and 6½ Horse

We publish a separate Pamphlet devoted exclusively to illustrating and describing our Engines and Boilers. Copy of which, with prices, will be sent on application, stating power wanted, or kind and size machinery to be driven.

JAMES LEFFEL & CO., Springfield, Ohio, U. S. A.

