Techniki Optymalizacji

Laboratorium nr 3 Sprawozdanie

Paulina Sadowska, Rafał Araszkiewicz

24 października 2016

1. Wprowadzenie

Celem ćwiczenia było poprawienie wyników otrzymanych na ostatnich zajeciach laboratoryjnych poprzez zastosowanie Multiple Start Local Search (Lokalne przeszukiwanie z różnych punktów startowych) oraz Iterated Local Search (Iteracyjne Przeszukiwanie Lokalne).

2. Multiple Start Local search

2.1. Implementacja w pseudokodzie

3. Iterated Local search

Za preturbacje przyjęto złożenie dwóch zmian par wierzchołków, dwóch zmian par krawędzi, lub zmianę jednej pary wierzchołków i jednej pary krawędzi.

3.1. Implementacja w pseudokodzie

```
wykonaj 10 razy

wygeneruj rozwiazania algorytmu NNG GCG lub Random dla losowego punktu

→ startowego

dopoki nie uplynie zadany czas

perturbancja = zlozenie dwoch zniam wierzcholkow lub

→ krawedzi

wykonaj perturbacje
```

```
znajdz najlepszy ruch zgodnie z algorytmem Local

→ Search

wykonaj ruch

jezeli koszt trasy po wykonaniu perturbacji i ruchu

→ znalezionego przez LS jest wiekszy niz koszt

→ sprzed ruchow

przywroc poprzednia trase

koniec

koniec
```

4. Najlepsze ścieżki

4.1. Nearest Neighbour Grasp + Multiple Start Local Search

Najlepsza trasa: 0, 62, 5, 48, 74, 96, 3, 64, 65, 69, 21, 15, 87, 78, 17, 23, 37, 35, 83, 9, 71, 20, 73, 58, 16, 14, 10, 31, 44, 90, 97, 22, 76, 59, 61, 34, 85, 26, 11, 19, 6, 8, 56, 86, 50, 24, 60, 57, 27, 92, 0

Nearest Neighbour Grasp + MSLS

Rysunek 1: Najlepsza trasa - Nearest Neighbour Grasp + Local Search

4.2. Greedy Cycle Grasp + Multiple Start Local Search

Najlepsza trasa: 59, 61, 34, 85, 26, 11, 19, 6, 8, 56, 86, 50, 24, 80, 60, 57, 66, 27, 92, 0, 91, 7, 55, 96, 18, 52, 87, 15, 69, 21, 93, 17, 23, 37, 83, 9, 89, 48, 5, 62, 46, 10, 16, 14, 31, 44, 90, 97, 22, 76, 59

Greedy cycle + MSLS

Rysunek 2: Najlepsza trasa - Greedy Cycle Grasp + Local Search

4.3. Random + Multiple Start Local Search

 $\begin{array}{l} \text{Najlepsza trasa: } 60, 57, 27, 92, 0, 62, 5, 48, 74, 18, 52, 87, 15, 21, 93, 78, 17, 23, 37, 35, 71, 20, 73, 16, 14, 10, 31, 44, 90, 97, 22, 59, 61, 85, 26, 11, 19, 56, 8, 6, 54, 82, 33, 45, 28, 29, 38, 84, 80, 24, 60 \end{array}$

Random + MSLS

Rysunek 3: Najlepsza trasa - Random + Local Search

5. Nearest Neighbour Grasp + Iterated Local Search

Najlepsza trasa: 41, 79, 55, 96, 18, 74, 48, 5, 91, 7, 0, 94, 92, 66, 60, 24, 86, 8, 6, 11, 19, 26, 54, 82, 56, 85, 34, 61, 76, 59, 97, 22, 44, 90, 31, 16, 14, 10, 20, 71, 9, 89, 62, 78, 17, 93, 21, 87, 52, 15, 41

Nearest Neighbour Grasp + Iterated Local search

Rysunek 4: Najlepsza trasa - Nearest Neighbour Grasp + Iterated Local Search

6. Greedy Cycle Grasp + Iterated Local Search

Najlepsza trasa: 12 36 4 51 77 95 29 38 84 67 72 49 43 80 24 8 6 33 82 54 11 26 34 85 61 59 22 44 31 90 97 76 19 56 86 50 60 57 92 23 66 68 63 39 53 1 81 94 75 32 12

Greedy Cycle GRASP + Iterated Local search

Rysunek 5: Najlepsza trasa - Greedy Cycle Grasp + Iterated Local Search

7	Dandom 1	Itorotod 1	Local Search
1.	Kandom +	. Iteratea	Local Search

Najlepsza trasa:

8. Otrzymane wyniki

Tablica 1: Otrzymane wyniki

	NNG + MSLS	GCG + MSLS	Random + MSLS	NNG + ILS	GCG + ILS	Random + ILS
min cost	9510	11548	10189	9821	11737	
average cost	9525	10549	10301	10897	12262	
max cost	9664	10551	10375	11399	12818	
best time	36.4s	10.1s	52.6s	41.1s	11.1s	61.1s
average time	41.1s	11.1s	61.1s	41.1s	11.1s	61.1s
worst time	46.2s	11.9s	69.8s	41.2s	11.1s	61.1s