1 Properties of smooth functions

Recall: f is called L-smooth w.r.t. $\|\cdot\|$ if

$$\forall x, y \in \text{dom}(f) : \|\nabla f(x) - \nabla f(y)\|_* \le L \|x - y\|.$$

Lemma 1. Let $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ be an L-smooth function w.r.t. $\|\cdot\|$. Then, $\forall x, y \in \text{dom}(f)$:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$
, \bigcirc

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} \|y - x\|^2.$$

Fr By Taylor's thm.
$$f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$$
, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$, $f(y) = f(x) + \int_{0}^{1} \langle \nabla f(x + t(y + x)) \rangle$

=
$$\int_0^1 \langle \nabla f(x) + t(y,x) \rangle - \nabla f(x)$$
, $f(x) + f(x)$ of $\int_0^1 ||\nabla f(x) + t(y,x) \rangle - |\nabla f(x)|| ||\nabla f(x)|| ||$

$$\leq \int_0^1 \left(\|Yx\|^2 + dt \right) = \frac{2}{2} \|Yx\|^2.$$

Remark 1. In fact, the condition in Lemma 1 is equivalent to L-smoothness; see Lemma 3.

Recall the Lowner order: For *symmetric* matrices *A* and *B*,

$$A \succcurlyeq B \Longleftrightarrow A - B \succcurlyeq 0 \Longleftrightarrow A - B \text{ is p.s.d.}$$

In particular,

$$aI \preccurlyeq A \preccurlyeq bI \iff a \leq \lambda_i(A) \leq b, \forall i$$

where $\lambda_1(A) \leq \cdots \leq \lambda_d(A)$ are the eigenvalues of A.

Lemma 2. Suppose that $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ is twice continuously differentiable on dom(f). Then f is L-smooth w.r.t. $\|\cdot\|_2$ if and only if $-LI \preccurlyeq \nabla^2 f(x) \preccurlyeq LI, \qquad \forall x \in dom(f).$

To give the proof, we use the matrix operator norm:

$$||A||_2 := \sup_{x:||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2} \stackrel{\text{for symmetric } A}{=} \max_i |\lambda_i(A)|.$$

Then by definition:

$$||Ax||_2 \le ||A||_2 \, ||x||_2 \,. \tag{1}$$

Pf: (a)
$$f$$
 is smooth. Show that $\nabla^2 f(x) \geq LI$.

Let x , $x+ap \in dom(f)$. $d>0$. By Toylor's than, $(fart + f(x)) = f(x) + (f(x), ap) + \frac{1}{2}(ap)^T \nabla^2 f(x+2ap) ap$

$$= f(x) + (\nabla^2 f(x), ap) + \frac{1}{2} \nabla^2 f(x+2ap) = \frac{1}{2}$$

$$||\nabla f(y) - \nabla f(x)||_{2} = ||\int_{0}^{1} |\nabla f(x+t(y+x))(y+x)| dt|$$

$$= \int_{0}^{1} ||\nabla f(x+t(y+x))(y+x)| dt$$

$$= \int_{0}^{1} ||\nabla f(x+t(y+x))(y+x)| dt$$

$$= \int_{0}^{1} ||\nabla f(x+t(y+x))(y+x)| dt$$

Characterizing minima of smooth functions

Where the task the smoothness in this In this part, we consider *unconstrained* optimization, that is, $\mathcal{X} = \mathbb{R}^d$ in the problem section 1 (P) $\min_{x \in \mathcal{X}} f(x)$

2.1 Necessary conditions for optimality

Theorem 1.

- 1. (First-order necessary condition) Suppose that $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is continuously differentiable. If x^* is a local minimizer of f, then $\nabla f(x^*) = 0$.
- 2. (Second-order necessary condition) Suppose that $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is twice continuously differentiable. Then in additional to 1), $\nabla^2 f(x^*) \geq 0$.

Remark 2. A point x satisfying $\nabla f(x) = 0$ is called a (first-order) stationary point of f. A point x satisfying $\nabla f(x) = 0$ and $\nabla^2 f(x) \geq 0$ is called a second-order stationary point (SOSP). Theorem 1 says a local minimizer must be a stationary point if f is continuously differentiable, and it must be a SOSP if *f* is twice continuously differentiable.

Pf: Part I: Suppose for contrar Vf(x*) +0. Let $y = x^{*} - dVf(x^{*})$ and $x = x^{*}$, apply Taylor's thm. (d>0) $\exists \mathcal{N} \in (0,1)$, $f(x^{*}-\alpha \nabla f(x^{*})) - f(x^{*}) = \langle \nabla f(x^{*}+\mathcal{N}\cdot(-\alpha \nabla f(x^{*})), -\alpha \nabla f(x^{*}) \rangle$ $= -\alpha \langle \Delta f(X_{x} - \lambda f(X_{y})), \Delta f(X_{y}) \rangle$ for all sufficiently small d>0, -(\f(x*- 2\d \f(x*)), \f(x*)) = -\f(x*)||^2 (\f(x*-12\d \f(x*)), \f(x*)) \rightarrow ||\f(x*)||^2 $f(x^2 - dx) = f(x^2) - \frac{1}{2} ||x - f(x^2)||^2 = f(x^2)$. Contradicts with x^4 is local nin. 0 = (K)+7 (= Suppose for antra, Pfix has neg elvenralue & (250). x=x*, y=x+d0. d>0. Fix $\theta \in \mathbb{R}^d$, $\|\theta\|_2 = 1$. $\theta^T \nabla^2 f(x^0) \theta = -\lambda$. Apply Taylor, IDE(0,1) $f(x+y) = f(x) + \langle y(x), d\theta \rangle + \frac{1}{2} \theta^{T} f(x+y\theta) \theta$ for sufficiently small d, $\theta^T \nabla f(x + 2 d\theta) \theta \leq -\frac{\lambda}{2}$, $\theta^T \nabla f(x + 2 d\theta) \theta \leq -\frac{\lambda}{2}$. Contradicts with Xt is a minimize $\Rightarrow f(x^{*} + \alpha \theta) \leq f(x^{*}) - \frac{1}{4} < f(x^{*})$

2.1.1 An alternative proof

From calculus, we have the derivative tests for characterizing critical points of **1D** functions. Taking these 1D results as given, we can use them to prove the multivariate results in Theorem **1**.

Part 1: Define the 1-D function $\phi(\alpha) = f(x^* - \alpha \nabla f(x^*))$. If x^* is a local minimizer of f, then 0 is a local minimizer of ϕ , then $\phi'(0) = 0$ by Fermat's Theorem. But

$$\phi'(\alpha) = \langle \nabla f(x^* - \alpha \nabla f(x^*)), -\nabla f(x^*) \rangle,$$

$$\phi'(0) = -\|\nabla f(x^*)\|_2^2,$$

so we must have $\nabla f(x^*) = 0$.

Part 2: Fix an arbitrary $\theta \in \mathbb{R}^d$, define $\phi_{\theta}(\alpha) = f(x^* + \alpha\theta)$. Use 2nd derivative test on ϕ_{θ} and $\phi'_{\theta}(0) = 0$.

2.2 Sufficient condition for optimality

Theorem 2 (Second-order sufficient condition). Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be twice continuously differentiable and assume that for some $x^* \in \text{dom}(f)$,

$$\nabla f(x^*) = 0 \quad and$$
$$\nabla^2 f(x^*) \succ 0.$$

Then x^* is a strict local minimizer of f.

Pf Construct a uplid around
$$x'$$
, $B(x', \rho)$ let $\rho \Rightarrow 0$, we have $\sqrt[3]{k+\rho} \geq \epsilon I$.

for some $\epsilon \Rightarrow 0$ $\forall \rho$, $\|\rho\|_{\epsilon} = 1$, $\chi'' + \rho$ can represents all $\rho \Rightarrow 0$ in $\rho \Rightarrow 0$.

 $f(x'' + \rho) = f(x'') + \sqrt{\sqrt[3]{k+\rho}}, \ \rho \Rightarrow 0$
 $f(x'' + \rho) = f(x'') + \sqrt[3]{\sqrt[3]{k+\rho}}$
 $f(x'' + \rho) = f(x'') + \sqrt[3]{\sqrt[3]{k+\rho}}$
 $f(x'' + \rho) = f(x'') + \sqrt[3]{\sqrt[3]{k+\rho}}$
 $f(x'' + \rho) = f(x'' + \rho) = f(x'' + \rho)$
 $f(x'' + \rho) =$

Remark 3. We notice that there is a gap between the conditions in last two theorems. The condition $\nabla f(x^*) = 0, \nabla^2 f(x^*) \geq 0$ in Theorem 1 is necessary but not sufficient: it is possible that a point x satisfies this condition but is not a local min (e.g., $f(x) = x^3$ and x = 0). The condition $\nabla f(x^*) = 0, \nabla^2 f(x^*) > 0$ in Theorem 2 is sufficient but not necessary: it is possible that a local minimizer x^* has $\nabla^2 f(x^*) = 0$ (e.g., $f(x) = x^4$ and $x^* = 0$). In general, it is hard to check whether a point x is a local min, even for smooth unconstrained problems. For example, consider the function

$$f(x) = (x_1^2, x_2^2, \dots, x_d^2) D(x_1^2, x_2^2, \dots, x_d^2)^{\mathsf{T}},$$

which is a degree-4 polynomial in x. It is NP hard to decide whether x = 0 is a local min (by reduction from Subset Sum; Murty-Kabadi 1987),