

Oefening 1

Zij $f: \mathbb{R} \to \mathbb{R}$ een C^1 functie waarvoor constanten M, m > 0 bestaan z.d.

$$0 < m = \min_{x \in \mathbb{R}} |f'(x)| \le \max_{x \in \mathbb{R}} |f'(x)| = M < \infty$$

voor alle $x \in \mathbb{R}$.

- a) Toon aan dat er een $\alpha \in \mathbb{R}$ bestaat z.d. de functie $\Phi(x) = x + \alpha f(x)$ een contractie is.
- b) De foutschattingen voor de vast punt iteratie tonen aan dat hoe kleiner de contractie constante is hoe sneller de convergentie van de iteratie. Is er een optimale waarde α_{opt} die de snelste convergentie garandeert?

Hint: Zoek α z.d. er geldt $-1 < \Phi' < 1$. Om de optimale waarde te verkrijgen zoek α z.d. de maximale ondergrens en de minimale bovengrens van Φ' symmetrisch zijn, d.w.z. $-L \le \Phi' \le L$ voor een zekere L < 1.

Oefening 2

Zij $f:[1,2]\to\mathbb{R},\, f(x)=x^3+4x^2-10.$ Deze functie heeft een nulpunt $x^*=1.3652300134...$ in het gegeven interval. Zoals boven kan x^* tevens vast punt van een functie Φ zijn. Merk op, de keuze van α is niet eenduidig.

- a) Geef een conditie waaraan α moet voldoen z.d. Φ een contractie is.
- b) Is er een optimale waarde van α (d.w.z. de waarde die de snelste convergentie geeft)?
- c) Kies een zekere α die voldoet aan de contractie conditie en pas de vast punt menthode toe om x^* te benaderen met de absolute fout kleiner dan $TOL = 10^{-8}$. Hoeveel iteraties zijn hiervoor nodig? Komt het resultaat overeen met de a-priori en a-posteriori schattingen? Als er een optimale α_{opt} bestaat, herhaal deze procedure voor α_{opt} . Vergelijk de resultaten (aantal iteraties).

Oefening 3

Een simpele manier om de convergentieorde γ te schatten is gebaseerd op de aanname dat voor de fouten $e_k = |x_k - x^*|$ geldt $e_{k+1} \approx C e_k^{\gamma}$ voor een zekere C > 0 en dat er geldt $e_{k+1} \approx \tilde{C} e_k e_{k-1}$ voor een constante \tilde{C} die niet afhangt van k (vergelijk dit met de a-posteriori schatting). Gebruik dit in de a-posteriori schatting zoals gegeven in de convergentiestelling voor de secant-methode om aan te tonen dat $\gamma = \frac{1+\sqrt{5}}{2}$.

Hint: Voor de convergentie kun je $\gamma > 0$ aannemen (waarom is $\gamma \leq 0$ geen optie?).

Oefening 4

Als het nulpunt x^* de multipliciteit m heeft met m > 1 dan kan de Newton-methode minder goed convergeren (of helemaal niet). In dit geval zijn er twee mogelijkheden te bedenken:

- a) x^* is een simpel nulpunt voor $h = f^{(m-1)}$ en kan de Newton-methode dus toegepast worden voor h.
- b) Alternatief: voor elke x bestaat er een $\xi(x)$ z.d. $f(x) = \frac{(x-x^*)^m}{m!} f^{(m)}(\xi(x))$. Dan geldt ook $f'(x) = \frac{(x-x^*)^{m-1}}{(m-1)!} f^{(m)}(\xi(x)) + \frac{(x-x^*)^m}{m!} f^{(m+1)}(\xi(x)) \xi'(x)$. Toon nu aan dat als $f'(x_k) \neq 0$ geldt asymptotisch (d.w.z. als $x_k \to x^*$):

$$x_{k+1} - x^* = x_k - x^* - m \frac{f(x_k)}{f'(x_k)} = O((x_k - x^*)^2).$$

Dat rechtvaardigt de volgende variante van de Newton-methode:

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}.$$

Implementeer de twee varianten in MATLAB en gebruik deze om $x^* = 1$, het dubbele nulpunt van $f(x) = x^3 - x^2 - x + 1$ te benaderen met de absolute fout $TOL = 10^{-8}$. Vergelijk de resultaten voor de twee algoritmen en voor de standaard Newton-methode.