Theorem (2.3.50). Let x be a real number. $\lfloor -x \rfloor = -\lceil x \rceil$, and $\lceil -x \rceil = -\lfloor x \rfloor$.

Proof. By the properties of ceiling functions,

 $\lceil x \rceil = n \iff (n-1) < x \le n$. Multiplying every side of this inequality by -1 yields $(-n+1) > -x \ge -n$. By the properties of floor functions, this means that $\lfloor -x \rfloor = -n$. And of course since $-1 \times \lceil x \rceil = -n$, we have $-n = \lfloor -x \rfloor = -\lceil x \rceil$.

By the properties of floor functions,

 $\lfloor x \rfloor = n \iff n \le x < (n+1)$. Multiplying every side of this inequality by -1 yields $-n \ge -x > (-n-1)$. By the properties of ceiling functions, this means that $\lceil -x \rceil = -n$. And of course since $-1 \times \lfloor x \rfloor = -n$, we have $-n = \lceil -x \rceil = -\lfloor x \rfloor$.