Analysis of Machine Learning Approaches

Bauhaus Uni Weimar

Jula McGibbon

jula.mcgibbon@uni-weimar.de

Approaches

Analyzed ML Approaches

- CART (R)
- SARKAR (R)
- SPL Conqueror (C#)
- SPL Conqueror Active Learning (C#)

Cross Analysis program

Work flow

- Written in python, running on OSX or Windows
- Runs for xml or csv files
- Script Configuration options:
 - interactive script configuration
 - all script configurations in one input file
 - automatic script configuration generation (runnig all possible combinations)

• Outputs:

- All tested configurations and results in one log file
- Plots: Graphs, Boxplots, Bar charts
- Overview: Mean, Median, Standard Deviation, Variance

Analysis

Test Settings

Machines:

- ASUS GeForce GTX 1080 Ti STRIX OC GAMING
 - \rightarrow GPU: 1594 MHz
 - →RAM: 11.1 GHz, 11264 MB
- MacBook Air
 - → GPU: 1,6 GHz Intel Core i5
 - → RAM: 1600 MHz, 8 GB

Configurations

Tested for all approaches:

- Minimum Improvement Per Round: [0.001, 0.01]
- Number Of Rounds: [10, 30, 60,80]
- Number Of Repetitions Per Round: [1,2,3]

Extented Configurations for SPL Conqueror:

- Negative featurewise
- featurewise
- pairwise
- random (only tested on Mac Book Air)

Configurations

Extented Configurations for SPL Conqueror Active Learning:

- **explorer-random** batchSize: [5,15,30] sleepCyles: [1,5,10]
- explorer-max-distance batchSize:[5,15,30] sleepCycles:[1,5,10]
- explorer-max-error internalRoundsPerCycle:[1,5,15]
 batchSizeExploit:[5,15] batchSizeExplore:[5,15] sleepCycles:[1]
 sleepRoundsExplore:[5,10]
- explorer-combi batchSize:[5,15,30] sleepCycles:[1,5,10]
- explorer-omni

For one data set tested configurations:

- CART: 24
- SARKAR: 24
- SPL Conqueror (random excluded): 64
- SPL Conqueror Active Learning: 432

Analysis results: Apache Data

For each approach:

- For each execution one fault rate graph is generated
- For all executions one fault rate graph is generated
- \bullet For all top/flop fault rates one summarizing graph is generated

 $\textbf{Figure 1:} \ \ \text{Iteration 24, first of 2 repetitions, minIPR: 0.01, numberOfRounds:80 (info: logAIL_CART.R)}$

 $\begin{tabular}{ll} \textbf{Figure 2:} & \textbf{Iteration 24, second of 2 repetitions, minIPR: 0.01, numberOfRounds:} 80 (info: logAII_CART.R) \end{tabular}$

 $\textbf{Figure 3:} \ \ \text{Iteration 24, third of 2 repetitions, minIPR: 0.01, numberOfRounds:} \\ 80 \ \ \text{(info: logAIL_CART.R)}$

Figure 4: Iteration 24, mean of all 3 executions

 $\begin{tabular}{ll} \textbf{Figure 5:} & Iteration 22, first of 2 repetitions, minIPR: 0.01, numberOfRounds: 30 (info: logAIL_SARKAR.R) \end{tabular}$

 $\begin{tabular}{ll} \textbf{Figure 6:} & Iteration 22, second of 2 repetitions, minIPR: 0.01, numberOfRounds: 30 (info: logAIL_SARKAR.R) \end{tabular}$

 $\label{prop:prop:prop:state} \textbf{Figure 7: Iteration } 22, third of 2 repetitions, minIPR: 0.01, numberOfRounds: 30 (info: logAIL-SARKAR.R)$

Figure 8: Iteration 22, mean of all 3 executions

 $\textbf{Figure 9:} \ \ lteration \ 25, \ minIPR: \ 0.001, \ numberOfRounds: 10, \ featureWise+pairWise \ (info: logAll_SPLC.R)$

 $\label{eq:figure 10: logAll_SPLC.R} \textbf{Figure 10:} \ \ \textbf{Iteration 27, minIPR: 0.001, numberOfRounds:60, featureWise+pairWise (info: logAll_SPLC.R)}$

 $\label{eq:figure 11: learned} \textbf{Figure 11: } Iteration 153, minIPR: 0.001, numberOfRounds: 10, explorer-combi (info: logAll_SPLCext.R)$

 $\label{eq:figure 12: learning problem} \textbf{Figure 12: } Iteration 146, minIPR: 0.001, numberOfRounds: 30, explorer-max-error (info: logAll_SPLCext.R)$

 $\begin{tabular}{ll} Figure~13:~lteration~164,~minIPR:~0.001,~numberOfRounds:80,~explorer-random~(info:logAIL.SPLCext.R) \end{tabular}$

Figure 14: All iterations

Figure 15: All iterations

Figure 16: All iterations

Figure 17: All iterations

General Information

In all Top/Flop results:

• If the same value (e.g. fault rate) is included in the data, it is only shown once in the plot

Graphs

For each approach:

- All execution times compared in two box plots
- Top/Flop execution times in two box plots
- All fault rates of all approaches compared in one boxplot
- Fault rates of Top/Flop execution times compared in two box plots
- Fault rates of Top/Flop fault rates compared in one box plot

Figure 18: All iterations

Figure 19: All iterations

Figure 20: Top 10 execution times

Figure 21: Top 10 execution times

Figure 22: Flop 10 execution times

Figure 23: Flop 10 execution times

Figure 24: All iterations

Figure 25: SPLC Conqueror; All iterations

Figure 26: SPLC Conqueror Active Learning; All iterations

Figure 27: Fault rates of Top 10 execution times

Figure 28: Fault rates of Top 10 execution times

Figure 29: Fault rates of Top 10 fault rates

Figure 30: Fault rates of Flop 10 execution times

 $\textbf{Figure 31:} \ \ \mathsf{Fault \ rates \ of \ Flop \ 10 \ execution \ times$

Figure 32: Fault rates of Flop 10 fault rates

For each approach:

- Frequency of all SPL Conqueror configurations in Top/Flop Faultrates in one bar chart
- Frequency of all SPL Conqueror mixed configurations in Top/Flop Faultrates in one bar chart
- Frequency of all SPL Conqueror Active Learning approaches in Top/Flop Faultrates in one bar chart

Figure 33: SPL Conqueror

Figure 34: SPL Conqueror

Figure 35: SPL Conqueror

Figure 36: SPL Conqueror

Figure 37: SPL Conqueror Active Learning

Figure 38: SPL Conqueror Active Learning

Mac Book Air SPL Conqueror Data

Since the random function of SPL Conqueror didn't work on the main analysis Windows machine (ASUS GeForce GTX), some plots were generated for the data generated on a OSX system (Mac Book Air).

1040 configurations were tested.

Mac data: Graphs

Mac data: Graphs

Mac data: Bar chart

Figure 41: SPL Conqueror

Mac data: Bar chart

Figure 42: SPL Conqueror

Analysis results: Apache and

H264 data

Statistics

Apache_data				
faultRate	CART	SARKAR	SPLC	SPLC AL
mean median standard dev variance	11.051 7.926 6.791 46.118			5.467 11.356
H264_data				
faultRate	CART	SARKAR	SPLC	SPLC AL
median	9.955 7.804 4.759 22.645	8.622 7.262 3.57 12.745	0.344	6.175

Figure 43: Overview; Fault rates

Statistics

Apache_data				
executionTime	CART	SARKAR	SPLC	SPLC AL
	1.529 1.375 0.403 0.162	1.375 0.395	2,305	98.025
H264_data	CART	SABIAB	SPLC	SPLC AL
executioniiile	CART	SARRAR	3500	SELC AL
	1.66 1.485 0.538 0.29	1.469	14.844	72,252

Figure 44: Overview; Execution times

Conclusion

Conclusion

CART and SARKAR

- Don't converge fast towards a very small fault rate
- But reach quite good fault rates with high number of rounds
- Very fast execution times

SPL Conqueror

- Converges fast towards a very small fault rate
- Good execution times with a few outliers
- Reaches best results with combinations of featurewise, negativewise, pairwise and random sampling

SPL Conqueror

- Converges quite fast towards a very small fault rate
- Good execution times with a some outliers
- All explorer approaches reach quite the same results, only explorer max distance is a bit worse

Thanks for your attention.

References

https://www.github.com/yoola/Cross_ML