Approaching a Robustness Assessment for

Introduction

One benchmark of many analyses – distinguish from random chance

Introduction

Determine thresholds for analysis – possibly on a case-by-case basis – that reduce the chance that csQCA results are by random chance.

Advantages to QCA

Qualitative elements

complexity of cases

holistic analysis of cases

Advantages to QCA

Qualitative elements

complexity of cases

holistic analysis of cases

Quantitative elements

production of generalizations
replicable

Advantages to QCA

Assumptive alternative to mean-based approaches!!

Criticisms

Criticisms

Seawright (2004,2005)

Assumptions:

- 1) assumptions about correct form of the relationship
- 2) missing variables
- 3) inferring causation from association

Criticisms

Lieberson (2004)

Doubts the analysis can distinguish from random data

Researcher Choice

Hicks (1994)

Theory-building prior to analysis

Thorough model specification and resolving of conflicting cases

"consider results relatively provisional insofar as an inductive-statistical rearticulation of the formulation... is practical"

Researcher Choice

Skaaning (2011)

Robustness checks

Sensitivity of models comparing consistency thresholds, calibration, case frequency

Researcher Knowledge

In general, requires intimacy with the cases

Concrete choices:

Case selection

Perceptions of patterns

causal condition specification

Choice of parameters

Consistency, configurational n, etc

Researcher knowledge is thus an important factor in ensuring the viability of QCA.

Evaluation Work

Much of it has relied on observed data

or, simulated worlds with a correct model

What about observing the probability of a "random" configuration?

This Study

Reduce the probability of observing a pattern where this is none

Discuss possible ways to ensure skeptics that the configuration returned from a csQCA is not "random"

Junctures of Choice

Relevant cases.

Causal conditions.

Calibrations.

Consistency threshold.

N threshold for configurations.

Complex, parsimonious, and intermediate solutions

Direction of relationships

Random Worlds

Random data don't allow analysis of...

Inclusion of Relevant Cases

Selection of Causal Conditions

Calibrations

Direction of Relationships

Random Worlds

However, we CAN analyze...

Configurational N

Consistency score thresholds

Sample size

Parsimonious versus complex solutions

Data

csQCA with four causal conditions and one outcome

All are randomly assigned 0s or 1s (flip-a-coin)

Initial 1000 simulations: sample size 200, consistency threshold .7, configurational n 2, parsimonious solution

(altered later)

Consistency Thresholds

Probability of Specifying a Random Configuration with Varying Consistency Thresholds

Configuration N Threshold

Probability of Specifying a Random Configuration with Varying Configurational N

Parsimonious versus Complex

Sample Size

Part 2

Configural Analysis fsqca

Outcome: (not) predicting a spurious configuration

Causal conditions:

consistency threshold

n configurations

sample size

complex and parsimonious solutions

Researcher Choice Consistency threshold:

.95

Configurational n threshold:

5 (number of simulations ran)

Ran both parsimonious and complex solutions

Parismonious versus Complex

0.

0.0

TruthTable

	CTH	CNTH	COM	NTH	OUT	n	incl
1	0	0	0	0	0	216	0.515
2	0	0	0	1	0	3240	0.354
3	0	0	1	0	1	216	1
4	0	0	1	1	0	3240	0.893
5	0	1	0	0	0	270	0.866
6	0	1	0	1	0	4050	0.434
7	0	1	1	0	1	270	1
8	0	1	1	1	1	4050	1
9	1	0	0	0	0	180	0.709
10	1	0	0	1	0	2700	0.885
11	1	0	1	0	1	180	1
12	1	0	1	1	1	2700	0.995
13	1	1	0	0	0	225	0.945
14	1	1	0	1	0	3375	0.946
15	1	1	1	0	1	225	1
16	1	1	1	1	1	3375	1

S1: CNTH*COM + COM*nth + CTH*COM => out

Solution

Approaching Diagnostic Assessment

We can find configurations of thresholds that make it highly unlikely that random configurations are returned

"I am 95% confident this configuration is not due to random chance!"

Future Approaches

fsQCA sparsity

Conclusions

In these conditions, csQCA typically rejects random patterns at reasonable thresholds of analysis

(fsQCA is likely even more robust)

Conclusions

It is possible to distinguish any returned configuration with random chance configurations, specific to the data set analyzed.