Question de cours :

Démonstration du « principe des dominos » (sommes télescopiques) et de la formule de factorisation de $a^n - b^n$ par a - b (pour $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{K}$, avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Question de cours :

Démonstration de la formule du pion et de la formule de Pascal.

Question de cours:

Démonstration de la formule du binôme de Newton.

Question de cours :

Mise sous forme canonique et étude du signe d'un trinôme à coefficients réels.

Question de cours:

Démonstration des inégalités triangulaires.

Exercice:

Pour $n \in \mathbb{N}^*$, simplifier $S_n = \sum_{k=1}^n (-1)^k . k$

Exercice:

Pour $n \in \mathbb{N}^*$, simplifier $S_n = \sum_{k=1}^n \frac{k}{(k+1)!}$

Exercice:

Pour $n \in \mathbb{N}^*$, simplifier $S_n = \sum_{1 \le i < j \le n} (i+j)$

Exercice:

Pour
$$n,p\in\mathbb{N},p\leq n$$
 , simplifier $A_{n,p}=\sum_{k=p}^n {k\choose p}$

Exercice:

Pour
$$n \in \mathbb{N}$$
, simplifier $S_n = \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k}$

Exercice:

Pour
$$n \in \mathbb{N}$$
, simplifier $A_n = \sum_{k=0}^n k \cdot \binom{n}{k}$ et $B_n = \sum_{k=0}^n k^2 \cdot \binom{n}{k}$