Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №2 з дисципліни «Економіка ІТ-індустрії та підприємництво»

"МЕТРИКИ РОЗМІРУ. МЕТРИКА LINES OF CODE"

Виконав(ла)	—————————————————————————————————————
	(шифр, прізвище, ім'я, по батькові)
Перевірив	Родіонов П. Ю.
	(прізвище, ім'я, по батькові)

Мета роботи: Ознайомитися з загальними поняттями щодо вимірювань та метрикою розміру Lines of Code. Напрацювати вміння застосування засобів вимірювання метрики. Отримати загальні вміння щодо застосування метрики в економіці програмного забезпечення.

ЗАВДАННЯ

- 1. Застосовуючи вимірювачі у відповідних середовищах програмування (Visual Studio, Code Counter for Java, CodeCounter, та інші), на прикладі власних програмних текстів виконати вимірювання розміру.
- 2. Здійснити відповідні економічні розрахунки.
- 3. Дослідити рівні мов програмування С# та Java.
- 4. Захистити виконану роботу.

ВИКОНАННЯ

1. Вимірювання розміру проекту

Вимірювання розміру я виконувала для проекту своєї минулої курсової роботи, який містить 2 модулі: реалізацію послідовного та паралельного алгоритмів сортування вибором (selection sort) мовою Java. Я розробляла цей проект в середовищі IntelliJ IDEA і для вимірювання використала плагін Statistic. Результати вимірювання наведено на рисунку 1.

Рисунок 1 — Результати вимірювання розміру проекту Як бачимо, проект містить 10 Java-файлів та 291 рядок коду. З результатів вимірювання можна зробити висновок, що тип проекту — "Органічний".

2. Економічні розрахунки

Для виконання економічних розрахунків використаємо коефіцієнти з таблиці 1.

Таблиця 1 — Типи проектів

Тип проєкту	ab	bb	cb	db
Органічний	2.4	1.05	2.5	0.38
Напіврозділений	3.0	1.12	2.5	0.35
Вбудований	3.6	1.20	2.5	0.32

Зусилля:

Effort = ab * size^{bb} = $2.4 * 0.291^{1.05} = 0,657$ людина/місяць

Вартість:

Cost = Effort * salary = 0.657 * 24000 = 15768 грн.

Час на розробку:

Schedule = cb * Effort^{db} = $2.5 * 0.657^{0.38} = 2.13$ місяці

У реальності розробляла проект протягом 2 тижнів лише я. Розбіжності між теоретичними розрахунками та реальністю при оцінці проекту на Java з використанням метрики "lines of code" (LOC) можуть виникати через кілька причин, наприклад через використання фреймворків, які приховують частину логіки за допомогою конфігурацій, що зменшує кількість вручну написаного коду.

3. Дослідження рівнів мов програмування С# та Java

Щоб дослідити рівні мов програмування С# та Java, я створила два класи, які реалізовують алгоритм сортування "бульбашкою" та використала сайт https://godbolt.org/.

Рисунок 2 — Перетворення Јаva-коду в байт-код

```
EXPLORER Add... T More Templates
                                                                                                            Look after yourself, and, if you can, someone else too ×
                                                                                                                                                                                                                        Share ▼ Policies 🔼 ▼ Other ▼
                                                                                                                            □ NET CoreCLR 8.0 (Editor #1) / ×
                                                                                                NET C#
                                                                                                                                   .NET CoreCLR 8.0
        using System;
class BubbleSort
                                                                                                                                  SHORT <u>G_M18509_IG09</u>
                                                                                                                                                                ebx, r11d
r15d, dword ptr [rdi+4*rbx+0x10]
              static void Main()
                                                                                                                                                               risd, dword ptr [rd1+4*rbx+0x10]
riad, risd
SHORT <u>6_M18509_IG06</u>
r8d, r8d
dword ptr [rd1+4*r8+0x10], r15d
dword ptr [rd1+4*rbx+0x10], r10d
;; offset=0x0058
                  int[] arr = { 5, 1, 4, 2, 8 };
BubbleSortArray(arr);
Console.WriteLine("Sorted array: " + string.Join(", ", arr));
              static void BubbleSortArray(int[] arr)
                                                                                                                                                                r8d, r11d
                                                                                                                                                                r9d, r8d
SHORT <u>G M18509 IG04</u>
                   int n = arr.Length;
for (int i = 0; i < n - 1; i++)</pre>
                                                                                                                                    75
76
77
78
79
80
81
82
83
84
                                                                                                                                                                ;; offset=0x0066
                        for (int j = 0; j < n - i - 1; j++)
                                                                                                                                                               edx
edx, esi
SHORT <u>G_M18509_IG03</u>
;; offset=0x0066
                             if (arr[j] > arr[j + 1])
                                  // Swap arr[j] and arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
                                                                                                                                                               ;; offset=0x006B
                                                                                                                                                                                                                                                             (
```

Рисунок 3 — Перетворення С#-коду в код асемблера

На рисунках 2 і 3 показані результати вимірювань. Далі обчислимо відношення кількості рядків асемблера до кількості рядків коду на С# та Java:

Для Java: 95/23 = 4,13

Для C#: 87/29 = 3

Як бачимо, обчислені значення не значні, проте в більших проектах відношення може бути набагато більшим.

ВИСНОВОК

Під час виконання практичної роботи я ознайомилася з загальними поняттями щодо вимірювань та метрикою розміру Lines of Code. Використовуючи плагін

Statistic в середовищі IntelliJ IDEA, я виконала вимірювання розміру та виконала економічні розрахунки для власного проєкту, розробленого на МП Java. Результати розрахунків порівняла з реальністю та дослідила рівні мов C# та Java, обчисливши відношення згенерованого асемблерного коду та байт-коду до звичайного коду. Виконавши дослідження я виявила, що метрика Lines of Code може не враховувати рівень мови програмування, стиль програмування, якість коду. Тому вона не ϵ надійним індикатором продуктивності, якості або складності програмного забезпечення.