A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 3EB

Bookmark

Show all steps:

ON

Problem

List the eight elements of $G = Gal(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) : \mathbb{Q})$ and write its table.

Step-by-step solution

Step 1 of 2

The objective is to list the eight elements of $G = Gal(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}); \mathbb{Q})$ and write its table.

Comment

Step 2 of 2

The root field $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ is of degree 8 over \mathbb{Q} .

Therefore *there are eight automorphism of $\mathbb{Q}\left(\sqrt{2},\sqrt{3},\sqrt{5}\right)$ which fix \mathbb{Q} *since the number of automorphism is equal to the degree of $\mathbb{Q}\left(\sqrt{2},\sqrt{3},\sqrt{5}\right)$ over \mathbb{Q} .

Since an automorphism is determined by its effect on $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{5}$, there are eight possibilities , namely ,

$$\sigma_2: \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \end{cases} \quad \sigma_3: \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases} \quad \sigma_5: \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \end{cases} \\ \sqrt{5} \mapsto \sqrt{5} \end{cases}$$

$$\sigma_2\sigma_3: \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \\ \sqrt{5} \mapsto \sqrt{5} \end{cases} \quad \sigma_2\sigma_5: \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \\ \sqrt{5} \mapsto -\sqrt{5} \end{cases} \quad \sigma_3\sigma_5: \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \\ \sqrt{5} \mapsto -\sqrt{5} \end{cases}$$

$$\sigma_2 \sigma_3 \sigma_5 : \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases} \quad id : \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \end{cases} \\ \sqrt{5} \mapsto -\sqrt{5} \end{cases}$$

Thus , the Galois group of $\,\mathbb{Q}\!\left(\sqrt{2},\sqrt{3},\sqrt{5}\right)$ over $\,\mathbb{Q}\,$ is

$$Gal\left(\mathbb{Q}\left(\sqrt{2},\sqrt{3},\sqrt{5}\right):\mathbb{Q}\right)=\left\{id,\ \sigma_2,\ \sigma_3,\ \sigma_5,\ \sigma_2\sigma_3,\ \sigma_2\sigma_5,\ \sigma_3\sigma_5,\ \sigma_2\sigma_3\sigma_5\right\}.$$

The operation is composition • giving the table.

٥	id	σ_2	σ_3	σ_5	$\sigma_2\sigma_3$	$\sigma_2\sigma_5$	$\sigma_3\sigma_5$	$\sigma_2 \sigma_3 \sigma_5$
id	id	σ_2	σ_3	σ_5	$\sigma_2\sigma_3$	$\sigma_2\sigma_5$	$\sigma_3\sigma_5$	$\sigma_2\sigma_3\sigma_5$
σ_2	σ_2	id	$\sigma_2\sigma_3$	$\sigma_2\sigma_5$	σ_3	σ_5	$\sigma_2 \sigma_3 \sigma_5$	$\sigma_3\sigma_5$
σ_3	σ_3	$\sigma_2\sigma_3$	id	$\sigma_3\sigma_5$	σ_2	$\sigma_2 \sigma_3 \sigma_5$	σ_5	$\sigma_2 \sigma_5$
$\sigma_{\scriptscriptstyle 5}$	σ_5	$\sigma_2\sigma_5$	$\sigma_3\sigma_5$	id	$\sigma_2 \sigma_3 \sigma_5$	σ_2	σ_3	$\sigma_2\sigma_3$
$\sigma_2\sigma_3$	$\sigma_2\sigma_3$	σ_2	σ_3	$\sigma_2 \sigma_3 \sigma_5$	id	$\sigma_2\sigma_5$	$\sigma_3\sigma_5$	σ_5
$\sigma_2 \sigma_5$	$\sigma_2\sigma_5$	σ_2	σ_3	σ_5	$\sigma_2\sigma_3$	id	$\sigma_3\sigma_5$	$\sigma_2\sigma_3\sigma_5$
$\sigma_3\sigma_5$	$\sigma_3\sigma_5$	σ_2	σ_3	σ_5	$\sigma_2\sigma_3$	$\sigma_2 \sigma_5$	id	$\sigma_2\sigma_3\sigma_5$
$\sigma_2 \sigma_3 \sigma_5$	$\sigma_2 \sigma_3 \sigma_5$	σ_2	σ_3	σ_5	$\sigma_2\sigma_3$	$\sigma_2\sigma_5$	$\sigma_3\sigma_5$	id

Comment