Theoretische Physik IV: Quantenmechanik (PTP4)

Universität Heidelberg Sommersemester 2021

Übungsblatt 11

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Carsten Littek

Besprechung in den virtuellen Übungsgruppen in der Woche 28. Juni - 02. Juli 2021 Bitte geben Sie maximal 2 Aufgaben per Übungsgruppensystem zur Korrektur an Ihre Tutorin / Ihren Tutor! Nutzen Sie dazu den Link https://uebungen.physik.uni-heidelberg.de/h/1291

1. Verständnisfragen

- a) Fassen Sie die wesentliche Idee der Störungstheorie zusammen, insbesondere auch im Hinblick auf die verschiedenen Bilder der Quantenmechanik.
- b) Überlegen Sie sich selbst Situationen, in denen Störungstheorie angebracht sein könnte. Wie können Sie abschätzen, ob Störungstheorie sinnvoll ist?
- c) Welche wichtigen Annahmen gehen in die zeitabhängige Störungstheorie und in Fermis goldene Regel ein?

2. Eichinvarianz

Wie Sie in der Vorlesung gesehen haben, ist der Hamilton-Operator für ein Teilchen der Masse *m* und der Ladung *q* im elektromagnetischen Feld gegeben durch

$$\hat{H} = \frac{1}{2m} \left[\hat{p} - \frac{q}{c} \vec{A}(\hat{x}) \right]^2 + q \Phi(\hat{x}),$$

wobei \vec{A} und Φ die Potentiale für die Felder \vec{E} und \vec{B} sind.

Zeigen Sie, dass die zeitabhängige Schrödinger-Gleichung ihre Form behält, wenn man eine Eichtransformation der Potentiale,

$$\vec{A} \rightarrow \vec{A'} = \vec{A} - \vec{\nabla}\Lambda,$$

 $\Phi \rightarrow \Phi' = \Phi + \frac{1}{c} \frac{\partial \Lambda}{\partial t}$

mit einer beliebigen Funktion $\Lambda(\vec{x}, t)$ und gleichzeitig eine lokale Phasentransformation der Ortswellenfunktion

$$\psi(\vec{x},t) \rightarrow \psi'(\vec{x},t) = \exp\left[-\frac{iq}{\hbar c}\Lambda(\vec{x},t)\right]\psi(\vec{x},t)$$

durchführt.

3. Zeitunabhängiges Magnetfeld

In dieser Aufgabe wollen wir uns mit einer Punktladung in einem homogenen und stationären Magnetfeld $\vec{B} = B\vec{e}$ beschäftigen, wobei \vec{e} ein Einheitsvektor ist.

a) Zeigen Sie, dass in diesem Fall die Komponenten des kinetischen Impulses

$$\hat{\pi} = \hat{p} - \frac{q}{c} \vec{A}(\hat{x})$$

nicht kommutieren.

- b) Betrachten Sie das System im Heisenberg-Bild. Wie lauten die Bewegungsgleichungen für den Orts- und Impulsoperator?
- c) Lösen Sie die in b) hergeleiteten Bewegungsgleichungen und interpretieren Sie ihr Ergebnis.

4. Zeitabhängiges Magnetfeld

Die Bewegung eines Elektrons mit Spin $\frac{1}{2}$ in einem zeitabhängigen Magnetfeld $\vec{B}(t)$ wird durch den Hamilton-Operator

$$\hat{H} = \frac{g}{2} \mu_{\rm B} \hat{\vec{\sigma}} \cdot \vec{B}(t)$$

beschrieben, wobei $g \approx 2$ der Landé-Faktor ist, $\mu_B = e\hbar/(2m_ec)$ das Bohr'sche Magneton und $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)^T$ der Vektor der Pauli-Matrizen.

- a) Berechnen Sie für den Fall eines statischen und räumlich konstanten Magnetfeldes $\vec{B}_0 = B_0 \vec{e}_z$ die Energie-Eigenwerte E_α und E_β und die zugehörigen Eigenzustände $|\alpha\rangle$ und $|\beta\rangle$. Wie sieht die allgemeine Lösung der zeitabhängigen Schrödinger-Gleichung für dieses System aus?
- b) Nun werde zusätzlich zu \vec{B}_0 ein weiteres Magnetfeld $\vec{B}_1(t) = B_1 \left[\cos (\omega t) \vec{e}_x + \sin (\omega t) \vec{e}_y \right]$ angelegt. Eine allgemeine Lösung der zeitabhängigen Schrödinger-Gleichung kann wieder aus einer Überlagerung der Zustände $|\alpha\rangle$ und $|\beta\rangle$ gewonnen werden. Wie sehen die Bewegungsgleichungen der Koeffizienten aus?
 - *Hinweis:* Verwenden Sie das Ergebnis aus a) und variieren Sie die Konstanten. Spalten Sie außerdem den obigen Hamilton-Operator in zwei Teile auf, $\hat{H} \equiv \hat{H}_0 + \hat{H}_1$, wobei \hat{H}_0 von \vec{B}_0 herrührt und \hat{H}_1 von \vec{B}_1 .
- c) Das System befinde sich zum Zeitpunkt t=0 im Zustand $|\alpha\rangle$. Außerdem sei ω so gewählt, dass das System in Resonanz ist, d.h. $\omega=g\mu_{\rm B}B_0/\hbar$. Lösen Sie für diesen Fall die Bewegungsgleichungen der Koeffizienten. Zu welchen Zeiten befindet sich das System dann mit Sicherheit im Zustand $|\beta\rangle$?