INFS 519 – Fall 2015 Program Design and Data Structures Lecture 8

Instructor: James Pope

As Lectured by: Arda Gumusalan

Email: jpope8@gmu.edu

Today

- Questions from last class?
 - Binary Search Trees
 - Self Balancing Trees
 - AVL Rotations
- Schedule
 - 2-3 Trees
 - Red-Black Trees
 - B Trees

Binary Search Tree

- A type of _____
- Relationship maintained between...
- Rules
 - _
 - _
 - _
 - _

Binary Search Tree

- A type of binary tree!
- Relationship maintained between...
 - parent and both children
- Rules
 - parent > elements in left sub tree
 - parent < elements in right sub tree
 - both children are binary search trees
 - no duplicates (how do we handle this?)
- http://people.ksp.sk/~kuko/bak/

Binary Search Tree: Big-O

- So... binary search trees
 - What is the height?
 - What is worst/best/average of:
 - finding an element
 - inserting an element
 - deleting an element
 - What if we want to delete the root?
 - Recall:
 - Predecessor: the largest value that is smaller than X.
 - Successor: the smallest values that is greater than X.

How do we improve performance?

- What is the thing we need?
 - What causes the gap between worst case and average case?

How do we get it?

How do we improve performance?

- What do we need? Balance!
 - preferably self-balancing! (balance as you add/remove/search the tree)
- How? Rotate!

Are These AVL Trees?

Answers

How do we fix this?

That's better!

(a) Before rotation

(b) After rotation

How do we fix this?

Will single rotation fix the following cases?

- An insertion in the right subtree of the left child of
- An insertion in the left subtree of the right child of X

Single Rotation Won't Fix!

Double Rotation

- A rotation between X's child and grandchild.
- A rotation between X and its new child.

Double Rotation-First Rotation

A rotation between X's child and grandchild.

Double Rotation-Second Rotation

A rotation between X and its new child.

Questions?

2-3 Trees

- Invented by John Hopcroft
- In general, nodes are described by the number of children (i.e. number of links)
 - a 2-node has 2 children
 - a 3-node has 3 children
- Every node of BST is a 2-node
 - two links and one key

2-3 Tree Properties

- Every node of 2-3 tree is a 2 or 3 node
 - every node has between 1 and 2 keys
 - values are stored in sorted order
 - between 2 and 3 children
 - including null links (leaves only)
- 2-3 Trees are perfectly balanced all null links (those of the leaves) are equal distance to the root

2-3 Trees: Order Property

- 2-node
 - 1 value (a), 2 subtrees (p, q)
 - -p < a < q

- 3-node
 - 2 values (a, b), 3 subtrees (p, q, r)
 - -p < a < q < b < r

images: http://en.wikipedia.org/wiki/2%E2%80%933_tree

2-3 Tree Insert (Put) at Root

Sedgewick/Wayne 3.3

- Case1: Insert into a 2-node (no parent)
 - Simply add key to make it a 3-node

 Big clue: if your search ends at a 2-node, you always make it 3-node.

2-3 Tree Insert (Put) at Root

- Case2: Insert into a 3-node (no parent)
 - _ Temporarily add the key (in order) to make a 4-node
 - _ Take middle value, create the higher key node
 - Create two new nodes, one with the left key and one with the right key
 - Point the left child of the higher node to left key node and right child to right key node

2-3 Tree Insert (Put) with Parent

- Case3 Insert into a 3-node with 2-node parent
 - Similar to Case2, push middle key to parent

2-3 Tree Insert (Put) with Parent

- Case4 Insert into a 3-node with 3-node parent
 - Temporarily create 4-node, split as in Case2
 - Push middle up to parent, parent now 4-node
 - Push middle of parent up, split (harder)
 - Repeat (recursion to root if necessary)

2-3 Trees: Case 4

Sedgewick/Wayne 3.3

• Case4:

2-3 Tree Proposition

- Proposition: Insert and search operations into a 2-3 tree with N keys is guaranteed to visit at most log(N) nodes.
- Proof: Consider two extremes for N keys (other scenarios fall between), when all nodes are 2-nodes and when all nodes are 3-nodes. Height of a 2-3 tree is between:
 - Lower bound (3-nodes): floor(log₃(N))
 - Upper bound (2-nodes): floor(log₂(N))

Demo

Gnarley trees.

Red-Black Tree (RBT) Motivation

- Story so far
 - BST cannot guarantee performance for symbol table operations, specifically put, get, delete
 - AVL is balanced and relatively easy with casual implementation, but not as efficient as a 2-3 tree
 - 2-3 tree is (perfectly) balanced and can guarantee performance, more efficient
- So problem solved?
 - Recall one other desirable attribute for an algorithm, it should be easy to implement

Red-Black Tree (RBT) Intuition

- BST easy to implement, 2-3 tree is balanced
 - Can we combine to get best of both?
 - "Yes", store 2-3 tree in a BST structure
- Keep 1-to-1 correspondence between the implemented BST and the logically represented 2-3 tree
 - Put operation involves several different cases
 - Remove/delete also maintain invariant
- Debatable whether RBT is easy, though it is easier than
 2-3 tree and performs well

Red-Black Tree as a 2-3-4 Tree

Weiss 19.5

- 2-3-4 trees are also balanced
- Weiss presents RBT using 2-3-4 approach
- Invariants using 2-3-4 approach
 - 1) Every node colored either red or black
 - 2) Root is black
 - 3) If node is red, its children must be black
 - 4) Every path from a node to a null link must contain the same number of black nodes
- Involves several rotation cases

Red-Black Tree as a 2-3 Tree

Sedgewick 3.3

- Sedgewick presents RBT using 2-3 approach
- Invariants using 2-3 approach
 - 1) Red links lean left ("left leaning RBT")
 - 2) Root is black
 - 3) No node has two red links connected to it
 - 4) Tree has perfect black balance: every path from the root to a null link has the same number of black links
- Also involves several rotation cases. We will use this approach for RBT.

Red-Black as 2-3 Tree and BST

Sedgewick/Wayne 3.3

1-1 correspondence between red-black BSTs and 2-3 trees

RBT: Maintaining Search Order and Perfect Black Balance

- Insert nodes at bottom with red link
- Left rotations and right rotation operations
- Flip color operation
 - Flip children (i.e. red to black)
 - Flip parent from black to red

RBT: Insert into 2-node

Insert into a single 2-node → root

Left insert

Right insert

RBT: Insert into 2-node

Insert into 2-node at bottom.

Left insert does not require a rotation.

RBT: Insert into a single 3-node

RBT: Root Color

- Root should always be black. If red, means it is part of 3 node (i.e. not the root).
- Color flips can change the root's color to be red. In this exceptional case, the root should be changed to black.
 - When the root is changed from red to black, it means that the black height has increased by one

RBT: Insert into 3-node at bottom

RBT: Passing Red Link Up Tree

- Rotation transformations are local but may result in a red link being passed up to its parent
- Can treat recursively
 - Think of it as adding a new node/red link.
- Repeat until parent is a 2 node or the root

Left Leaning RBT: Summary

- Can maintain RBT as 2-3/BST recursively by the following rules:
 - 1) If right child is red and left child is black, then rotate left
 - 2) If left child is red and its left child is red, then rotate right
 - 3) If both left and right child are red, flip colors
- RBT a 2-3 Tree and BST. The get operation is same as BST.
 - One of the main reasons for all this trouble...

Symbol Table Summary

Generally use hash table unless guaranteed performance or need ordered operations

Implementation	Worse-Case		Average-Case		Order	remarks
	Search	Insert	Search	Insert	Ops	
		.	N 1	.		
Unordered List	N	N	N	N	No	
Ordered Array	lg N	N	lg N	N	Yes	
BST	N	N	lg N	lg N	Yes	Easy
AVL	lg N	lg N	lg N	lg N	Yes	Easy
Red-Black	lg N	lg N	lg N	lg N	Yes	Often Used
HT Chaining	N	N	N/M	N/M	No	Often Used
HT Probing	N	N	1	1	No	

^{*} Depending on variant, will assume O(lg(N)) ~ O(1)

Questions?

Huge Data Sets

- Up to now entire data structure fits in memory
 - If it's too big it won't fit into memory...
 - ... so use a tree to break it up, store on disk
- Now, we have to perform in-memory instructions intermixed with disk accesses
 - Can ~25 million instructions in one second
 - Can ~ 6 disk accesses in one second
 - Creates a big bottleneck.
- Given 1 million records, assuming disk access required, balanced BST
 - Requires 20 accesses, about 3.5 seconds

Partition Keys / Values

- Only need to keep keys (or subset of keys) in memory
- Data stored on disk and accessed when needed
 - Accessing disk performs best when reading/writing disk blocks (sometimes referred to as pages) at a time.

B Tree Motivation

- Problem of data too big for memory was solved by breaking data into tree and storing much of the data on disk.
 - Created new problem. Now have to access disk
 - Asymptotically nothing has changed but the constants, even for lg(N) operations is objectionable
- How can we reduce the constant (said another way, how can we reduce the height of the tree)?

B Tree Motivation

- Organize data within the tree to correspond to pages on disk.
 - One tree node represents one disk page.
 - Read one disk page at a time.
 - Maximum degree chosen depends on disk characteristics and problem description.

- If we read 1000 keys, but look at 10, is that good?
 - Yes, the biggest latency is before we get the first bit, consecutive reads are relatively faster.
 - We end up making only 1/10 as many disk reads.

B Tree versus B+ Trees

- B Trees
 - internal nodes store keys and values
 - Think of it as 2-3-....-many nodes
- B+ same as B Trees, except
 - internal nodes do not store values
 - only store keys, i.e. stores index like book
 - sibling leaves may have a pointer to link them in order
- Weiss 19.8 presents "B Tree" but is technically a B+ Tree. Will use term "B Tree" to refer to "B+ Tree" and only distinguish if necessary.

B Trees

- Commonly taught, commonly used, easy to implement
- Basic idea:
 - Tree + List = B-Tree
 - We want a really big list...
 - but if it's too big it won't fit into memory...
 - ... so use a tree to break it up
- When to fix balance?
 - inserting/deleting

2 for 1: It's a list! In a tree!

Learning B Trees

- 2-3 Trees
 - Restricted, simpler version of B Trees
- B Trees
 - General form of 2-3 trees
- B+ Trees
 - Same idea, different internal nodes

B Tree Parameters

- Usually referred to by the M value
 - so an order 5 B-tree, has M=5
- Additional Note: a 2-3 tree is a B Tree with:
 - M = 3
 - L = 2 → number of data items

B Tree Properties

- B tree of order M is an M-ary tree, invariants:
 - 1) Data Items are stored as leaves
 - 2) Non-leaf node store M-1 keys to guide search
 - 3) Root is leaf or between 2 and M children
 - 4) Non-leaf nodes (other than root) have between ceil(M/2) and M children
 - 5) All leaves are at same depth and have ceil(L/2) and L data items
- Note: Invariants keep tree from becoming degenerate

B Tree Properties

- A tree of order 5
- All nonleaf nodes have between 3 and 5 children
 - Which also means between 2 and 4 keys
- Each leaf node has between 3 and 5 data items
 - ceil(L/2) <= # of data items <= L</p>

B Tree Example Calculations 1/2

Weiss, Page 758

- Choose the maximum M and L that allow internal and external nodes to fit in one disk block. Example, store 500,000,000 records:
 - Assume block size is 4096 bytes, each key uses 8 bytes, each branch uses 4 bytes, each data record uses 32 bytes.

B Tree Example Calculations 1/2

Weiss, Page 758

- Block size=4096 bytes, Key=8 bytes, Brach=4 bytes, Data record=32 bytes
- M=?
 - M is for non-leaf nodes
 - M-1 keys → 8(M-1)
 - M branches → 4M
 - Adds up to 12M-8 bytes

$$-12M-8=4096 \rightarrow M=342$$

- L is for leaf nodes
 - Will store only data records.

$$-4096/32 \rightarrow L=128$$

B Tree Example Calculations 2/2

Weiss, Page 758

- Internal nodes branch at least ceil(342/2)=172
- $Log_{172}(500 \text{ million}) = 3.89, \text{ max tree height 4}$
- At most 500 million / 64 = 7,812,500 leaves
- In general:
 - Worse case number of accesses ~ log_{M2}(N)
 - At most leaves is = N / ceil(L / 2)

Profound Implication

https://en.wikipedia.org/wiki/Observable_universe

- The number of atoms on the observable universe
 - Approximately 10⁸⁰ (roughly 2²⁶⁶)
- B Tree with M=2048 nodes
 - Max height ~ $\log_{1024}(N) = \log_{1024}(2^{266})$ $\log_{2}(2^{266}) / \log_{2}(1024) \sim 26.6$
- Assuming you had the disk storage, did you anticipate that in two dozen steps you could search for any atom in the universe?

B Tree vs other Balanced Trees

- B Tree reduces height of tree and therefore potentially number of disk accesses
- However, if all data can fit in-memory, then other balanced trees (e.g. RBT) should be used
 - Generally constants to traverse/insert into a RBT are better than B Tree

Questions?

PA8

Extend your binary search tree into a balanced AVL tree

Free Question Time!