Will climate change cause temperature stress?

Curtis A. Provencher 2016-March-29

Contents

Rationale	2
Experimental protocol	2
loading libraries	2
Loading in the data and accompanying metadata	2
Quality control of expression values	3
Visualizing the properties of the dataset	3
Checking internal control	5
Statistics	11
Hsp70 regression models	11
Hsp83 regression models	12
Hsp40 regression models	14
Plotting gxp values	16
hsp83 plot	16
hsp70 plot	17
hsp40 plot	18

Rationale

Anthropogenic warming is likely to drive shifts in phenology, distribution, and performance of species in Eastern deciduous forests. Predicting these ecological cascades will depend on understanding how a primary seed disperser, the keystone ant genus Aphaenogaster, responds to warming. Temperatures surpassing a species' lethal thermal limit will clearly be detrimental, but unfavorably high temperatures may impose stress substantially before that limit is reached; characterizing such sublethal responses will be vital for predicting Aphaenogaster's future performance. Here we test for a physiological stress response in Aphaenogaster workers from a northern and southern deciduous forest under simulated climate warming.

Experimental protocol

loading libraries

```
library(plyr)
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:plyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(tidyr)
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
```

Loading in the data and accompanying metadata

```
# Date initiated- 4/11/2016

# Date Modified- 4/11/2016

#Affiliations- University of Vermont, University of North Carolina, Harvard Forest, Duke Forest, Univer

#Name and contact info: Curtis Provencher, cprovenc@uvm.edu, cprovenc@gmail.com. Andrew Nguyen, adnguy

#Study name: The effects of experimental warming on forest ants

#Financial support: National Science Foundation, Division of Environmental Biology (1136644)

#Methods of data collection: Experimental warming chamebrs set up at a northern (Harvard Forest, MA) an

#Experimental units for each variable: Collection Date(YearMonthDay), Site (HF- Harvard Forest, DF- Duk

#Data layout and structure:

warm<-read.csv(".../Data//20160411_FinalExperimentalWarmingDataset.csv",skip=10)
```

Quality control of expression values

```
#Quality control
#ranges of gene expression
apply(warm[,14:19],2,range,na.rm=TRUE)
##
     CT_18s CT_40 CT_70 CT_83 CT_actin CT_gapdh
## [1,] 4.972 24.636 19.571 20.215
                          20.531
                                 20.111
## [2,] 29.813 37.441 32.777 38.100
                          34.249
                                 34.721
#filter out very lowly expressed genes
\#warm.hsp70 < -subset(warm, warm$CT_70 < 34); dim(warm.hsp70)
warm.long<-gather(warm,Genes,GXP,CT_18s:CT_83) ### converting to long format
qc.samples<-subset(warm.long,warm.long$GXP>34) ###identifying the ones that have too low expression
n.exclude<-qc.samples$n
dim(warm[-n.exclude,]) #ecluding values that are too low in expression
## [1] 236 24
warm<-warm[-n.exclude,]</pre>
```

Visualizing the properties of the dataset

```
: Factor w/ 6 levels "","A","B","C",..: 4 3 3 4 2 3 2 4 5 2 ...
## $ Window
## $ BaitTemp1
                             : num 24.2 25.2 23 23.8 22.4 23 23 22.8 24 23.8 ...
## $ BaitTemp2
                             : num 24.2 25.2 23.2 23.8 23.6 23 22.8 22.8 24.2 23.8 ...
                             : num 24.4 25.2 23.2 23.6 23.6 23.6 23 22.8 23.8 24.2 ...
## $ BaitTemp3
## $ BaitTemp4
                             : num 24.4 25 23.4 23.6 23.6 23.2 23.8 22.4 23.8 23.8 ...
## $ RNA.conc.
                             : Factor w/ 148 levels "","<2","10","10.40",..: 124 15 86 145 130 21 128
## $ Isolation.Date
                            : int 20150811 20150731 20150814 20150813 20150813 20150730 20150814 20
## $ CT_18s
                             : num NA 18.5 13.1 NA NA ...
                             : num 28.5 32.1 32.1 NA 31.6 ...
## $ CT_40
## $ CT_70
                             : num 25.8 26.1 28.4 NA 26.9 ...
                             : num 27.4 31.3 31.1 NA 32.7 ...
## $ CT_83
                             : num 24.4 27.8 33.6 32.7 29.3 ...
## $ CT_actin
                             : num 23.5 28.8 30.8 NA 29.2 ...
## $ CT_gapdh
## $ RIN_Value
                             : num 2.1 3.7 2.8 2.4 7 2.6 2.1 2.4 2.9 1 ...
## $ CDNA
                              : num 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ...
## $ dilution.factor
                              : Factor w/ 13 levels "#DIV/0!","10",...: 2 2 2 2 2 2 2 2 2 2 ...
## $ vol.cDNA.for.dilution
                              : Factor w/ 13 levels "#DIV/0!","10.86956522",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ vol.of.water.for.dilution: Factor w/ 13 levels "#DIV/0!","37.5",..: 13 13 13 13 13 13 13 13 13 13 13
#calculating # of samples per site per chamber
```

Site	as.factor(Cham)	num
$\overline{\mathrm{DF}}$	1	9
DF	2	12
DF	3	12
DF	4	11
DF	5	11
DF	6	12
DF	7	7
DF	8	9
DF	9	11
DF	10	9
DF	11	12
DF	12	9
DF	13	11
DF	14	9
DF	15	8
$_{\mathrm{HF}}$	1	7
$_{\mathrm{HF}}$	2	8
$_{\mathrm{HF}}$	3	7
HF	4	5
HF	5	8
$_{\mathrm{HF}}$	6	8
$_{\mathrm{HF}}$	7	5
$_{\mathrm{HF}}$	8	7
$_{\mathrm{HF}}$	9	7
$_{\mathrm{HF}}$	10	7
$_{\mathrm{HF}}$	11	7
HF	12	8

knitr::kable(ddply(warm,.(Site,as.factor(Cham)),summarize,num=length(n)))

```
knitr::kable(ddply(warm,.(Site),summarize,num=length(n)))
                                        Site
                                              num
                                        DF
                                               152
                                        HF
                                                84
###caulcating the bait temperatures!
warm$baittemp.ave<-apply(warm[,8:11],1,mean,na.rm=TRUE)</pre>
#knitr::kable(ddply(warm,.(Site),summarize,range(na.exclude(baittemp.ave))))
range(subset(warm,warm$Site=="DF")$baittemp.ave) # range of temperatures for duke forest
## [1] 22.30667 32.90000
range(subset(warm, warm$Site="HF")$baittemp.ave) # range of temperatures for Harvard forest
## [1] 23.60 32.95
dim(warm) # looking at the dimensions...rows,columns
## [1] 236 25
# number of samples for hsp70
length(na.exclude(warm$CT_70))
## [1] 145
# number of samples for hsp83
length(na.exclude(warm$CT_83))
## [1] 143
# number of samples for hsp40
length(na.exclude(warm$CT_40))
## [1] 139
```

Checking internal control

#number of samples per site!

```
#standard deviation in CT value for each gene
apply(warm[,14:19],2,sd,na.rm=TRUE)

## CT_18s CT_40 CT_70 CT_83 CT_actin CT_gapdh
## 4.954508 2.438098 2.894001 4.192936 3.138800 3.281183
```

```
##Evaluating 18s rRNA
hkg.mod1<-lm(warm$CT_18s~baittemp.ave*Site, data=warm)
summary(hkg.mod1)
##
## Call:
## lm(formula = warm$CT_18s ~ baittemp.ave * Site, data = warm)
## Residuals:
##
   Min
           1Q Median
                        3Q
## -5.846 -3.062 -1.633 1.599 15.836
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   13.753124 4.854329 2.833 0.00542 **
## baittemp.ave
                    0.009657 0.177475 0.054 0.95670
                     9.798028 11.108810 0.882 0.37957
## SiteHF
## baittemp.ave:SiteHF -0.473518   0.403161 -1.175   0.24255
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.738 on 118 degrees of freedom
   (114 observations deleted due to missingness)
## Multiple R-squared: 0.1082, Adjusted R-squared: 0.08556
## F-statistic: 4.774 on 3 and 118 DF, p-value: 0.003547
DF<-subset(warm, warm$Site=="DF")</pre>
HF<-subset(warm,warm$Site=="HF")</pre>
```

plot(DF\$baittemp.ave,DF\$CT_18s)

plot(HF\$baittemp.ave,HF\$CT_18s)


```
##
## Call:
## lm(formula = warm$CT_actin ~ baittemp.ave * Site, data = warm)
##
## Residuals:
##
                1Q Median
                                3Q
       Min
                                        Max
  -5.9006 -2.3302 -0.5119 2.0468 7.8920
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        32.1352
                                     2.9093
                                            11.046
                                                      <2e-16 ***
                        -0.1931
                                     0.1075
                                             -1.796
                                                      0.0746 .
## baittemp.ave
                         9.2652
                                     7.2837
                                                      0.2055
## SiteHF
                                              1.272
## baittemp.ave:SiteHF
                        -0.3284
                                     0.2634
                                             -1.247
                                                      0.2146
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.086 on 141 degrees of freedom
     (91 observations deleted due to missingness)
## Multiple R-squared: 0.05324,
                                    Adjusted R-squared: 0.03309
## F-statistic: 2.643 on 3 and 141 DF, p-value: 0.05168
DF<-subset(warm, warm$Site=="DF")</pre>
HF<-subset(warm, warm$Site=="HF")</pre>
plot(DF$baittemp.ave,DF$CT_actin)
```


plot(HF\$baittemp.ave,HF\$CT_actin)


```
##
## Call:
## lm(formula = warm$CT_gapdh ~ baittemp.ave * Site, data = warm)
##
## Residuals:
##
                1Q Median
                                3Q
                                      Max
  -5.1416 -2.4008 -0.3861 2.1106 7.5131
##
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        35.1825
                                   3.1254
                                          11.257
                                                   < 2e-16 ***
## baittemp.ave
                        -0.3197
                                    0.1153
                                           -2.772
                                                   0.00634 **
## SiteHF
                        -2.5853
                                   7.5508
                                           -0.342
                                                   0.73258
                         0.1348
                                    0.2733
                                            0.493
                                                   0.62252
## baittemp.ave:SiteHF
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.193 on 137 degrees of freedom
     (95 observations deleted due to missingness)
## Multiple R-squared: 0.07328,
                                   Adjusted R-squared: 0.05299
## F-statistic: 3.611 on 3 and 137 DF, p-value: 0.01501
```

```
DF<-subset(warm, warm$Site=="DF")
HF<-subset(warm, warm$Site=="HF")
plot(DF$baittemp.ave, DF$CT_gapdh)</pre>
```


plot(HF\$baittemp.ave,HF\$CT_gapdh)

Statistics

CT values themselves as measures of gene expression. The internal control was 18s rRNA

Hsp70 regression models

```
#qetting rid of 49
#warm<-warm[-49,]</pre>
#hsp70 regression model
hsp70.mod<-lm(CT_70~baittemp.ave*Site+RIN_Value+CT_18s,data=warm)
#summary(hsp70.mod)
summary(stepAIC(hsp70.mod,direction="backward"))
## Start: AIC=147.56
## CT_70 ~ baittemp.ave * Site + RIN_Value + CT_18s
##
##
                    Df Sum of Sq
                                 RSS
                                         AIC
## <none>
                                371.78 147.56
## - baittemp.ave:Site 1
                          7.36 379.14 147.90
                         7.50 379.28 147.94
## - RIN Value 1
## - CT 18s
                   1
                         357.67 729.45 225.77
##
## Call:
## lm(formula = CT_70 ~ baittemp.ave * Site + RIN_Value + CT_18s,
      data = warm)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
## -6.6628 -1.2744 -0.0145 1.2281 4.0905
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    28.91039 1.94916 14.832 < 2e-16 ***
                    -0.30529
                              0.07346 -4.156 6.33e-05 ***
## baittemp.ave
## SiteHF
                    6.91249 4.38313 1.577
                                                0.118
## RIN_Value
                    -0.14884
                               0.09859 - 1.510
                                                0.134
## CT_18s
                     0.38818
                               0.03723 10.426 < 2e-16 ***
## baittemp.ave:SiteHF -0.23870
                              0.15961 - 1.496
                                                0.138
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 113 degrees of freedom
    (117 observations deleted due to missingness)
## Multiple R-squared: 0.6345, Adjusted R-squared: 0.6183
## F-statistic: 39.23 on 5 and 113 DF, p-value: < 2.2e-16
```

```
#visualizing hsp70 regression model
par(mfrow=c(2,2))
plot(stepAIC(hsp70.mod,direction="backward"))
## Start: AIC=147.56
## CT_70 ~ baittemp.ave * Site + RIN_Value + CT_18s
##
                           Df Sum of Sq
##
                                               RSS
                                                        AIC
## <none>
                                           371.78 147.56
## - baittemp.ave:Site 1
                                     7.36 379.14 147.90
## - RIN_Value
                                     7.50 379.28 147.94
                             1
## - CT 18s
                             1
                                   357.67 729.45 225.77
                                                      Standardized residuals
                  Residuals vs Fitted
                                                                            Normal Q-Q
                                                                                             900
Residuals
                                                            \alpha
      7
                                                            T
                                                                     Occupant
                                            0
                                           490
      φ
                                                             4
                                                                                                2
          20
                                           32
                                                                      -2
                                                                                   0
                22
                     24
                          26
                                28
                                     30
                       Fitted values
                                                                         Theoretical Quantiles
Standardized residuals
                                                      Standardized residuals
                    Scale-Location
                                                                      Residuals vs Leverage
      2.0
                                           4<del>9</del>0
                                            0
      0.1
                                                                          Cook's distanี่ce
      0.0
                                              0
                          26
          20
                22
                     24
                                28
                                     30
                                           32
                                                                0.00
                                                                          0.05
                                                                                   0.10
                                                                                            0.15
                       Fitted values
                                                                               Leverage
par(mfrow=c(1,1))
```

Hsp83 regression models

Start: AIC=219.21

```
## CT_83 ~ baittemp.ave * Site + RIN_Value + CT_18s
##
##
                      Df Sum of Sq
                                       RSS
## <none>
                                    683.14 219.21
## - baittemp.ave:Site 1
                             29.63 712.77 222.22
## - RIN Value
                             38.30 721.44 223.65
                       1
## - CT 18s
                            600.75 1283.90 291.66
##
## Call:
## lm(formula = CT_83 ~ baittemp.ave * Site + RIN_Value + CT_18s,
##
      data = warm)
##
## Residuals:
      Min
               1Q Median
## -8.8355 -1.4441 0.1035 1.5643 5.1405
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                                 2.67492 13.201 < 2e-16 ***
## (Intercept)
                      35.31227
## baittemp.ave
                      -0.49986
                                  0.10039 -4.979 2.34e-06 ***
## SiteHF
                      15.23281
                                  5.96336
                                           2.554
                                                   0.0120 *
## RIN_Value
                      -0.33674
                                  0.13439 -2.506
                                                    0.0137 *
## CT_18s
                                  0.04993
                                           9.924 < 2e-16 ***
                       0.49552
## baittemp.ave:SiteHF -0.47885
                                  0.21727 -2.204
                                                   0.0296 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.47 on 112 degrees of freedom
    (118 observations deleted due to missingness)
## Multiple R-squared: 0.6653, Adjusted R-squared: 0.6504
## F-statistic: 44.53 on 5 and 112 DF, p-value: < 2.2e-16
#visualize hsp83 model
par(mfrow=c(2,2))
plot(stepAIC(hsp83.mod,direction="backward"))
## Start: AIC=219.21
## CT_83 ~ baittemp.ave * Site + RIN_Value + CT_18s
##
                      Df Sum of Sq
                                       RSS
                                              AIC
## <none>
                                    683.14 219.21
                             29.63 712.77 222.22
## - baittemp.ave:Site 1
## - RIN_Value
                       1
                             38.30 721.44 223.65
## - CT_18s
                            600.75 1283.90 291.66
                       1
```


Hsp40 regression models

```
#hsp40 regression model
warm.40<-subset(warm, warm$CT_40!="NA" & RIN_Value !="NA")</pre>
hsp40.mod<-lm(CT_40~baittemp.ave*Site+RIN_Value+CT_18s,data=warm.40)
#summary(hsp40.mod)
summary(stepAIC(hsp40.mod,direction="both"))
## Start: AIC=65.36
## CT_40 ~ baittemp.ave * Site + RIN_Value + CT_18s
##
##
                   Df Sum of Sq
                                 RSS
                                        AIC
## - RIN_Value
                         2.222 183.42
                                     64.738
## <none>
                               181.20
                                     65.360
  - baittemp.ave:Site
                    1
                         4.439 185.64
                                     66.095
  - CT_18s
                        217.721 398.92 152.536
##
## Step: AIC=64.74
## CT_40 ~ baittemp.ave + Site + CT_18s + baittemp.ave:Site
##
##
                   Df Sum of Sq
                                        AIC
                                 RSS
```

```
## <none>
                                   183.42 64.738
## + RIN_Value
                             2.222 181.20 65.360
                       1
## - baittemp.ave:Site 1
                            6.019 189.44 66.387
## - CT_18s
                         226.093 409.52 153.497
                       1
##
## Call:
## lm(formula = CT_40 ~ baittemp.ave + Site + CT_18s + baittemp.ave:Site,
      data = warm.40)
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -5.8451 -0.7741 -0.1007 0.7691 3.2615
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                      32.66148 1.51298 21.588 < 2e-16 ***
## (Intercept)
## baittemp.ave
                      -0.29131
                                  0.05303 -5.493 2.65e-07 ***
## SiteHF
                       6.49343
                                  3.11716
                                          2.083
                                                  0.0396 *
## CT_18s
                       0.36560
                                  0.03169 11.538 < 2e-16 ***
## baittemp.ave:SiteHF -0.21378
                                  0.11356 -1.883
                                                   0.0624 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.303 on 108 degrees of freedom
    (25 observations deleted due to missingness)
## Multiple R-squared: 0.6659, Adjusted R-squared: 0.6535
## F-statistic: 53.82 on 4 and 108 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(stepAIC(hsp40.mod,direction="backward"))
## Start: AIC=65.36
## CT_40 ~ baittemp.ave * Site + RIN_Value + CT_18s
##
                      Df Sum of Sq
##
                                      RSS
                                              AIC
## - RIN_Value
                             2.222 183.42 64.738
                       1
## <none>
                                   181.20 65.360
## - baittemp.ave:Site 1
                            4.439 185.64 66.095
## - CT_18s
                       1
                           217.721 398.92 152.536
##
## Step: AIC=64.74
## CT_40 ~ baittemp.ave + Site + CT_18s + baittemp.ave:Site
##
##
                      Df Sum of Sq
                                      RSS
                                              AIC
                                   183.42 64.738
## <none>
## - baittemp.ave:Site 1
                             6.019 189.44 66.387
## - CT_18s
                       1
                         226.093 409.52 153.497
```


Plotting gxp values

```
#the overall theme for ggplot
T<-theme_bw()+theme(text=element_text(size=30),axis.text=element_text(size=30), panel.grid.major=element_</pre>
```

hsp83 plot

```
ggplot(warm,aes(x=baittemp.ave,y=(1000/CT_83),colour=factor(Site)))+geom_point(size=3)+T+geom_smooth(me
## Warning: Removed 93 rows containing non-finite values (stat_smooth).
## Warning: Removed 93 rows containing missing values (geom_point).
```


hsp70 plot

ggplot(warm,aes(x=baittemp.ave,y=(1000/CT_70)))+geom_point(size=3)+T+geom_smooth(method="lm",se=FALSE,s

- ## Warning: Removed 92 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 92 rows containing missing values (geom_point).

hsp40 plot

ggplot(warm.40,aes(x=baittemp.ave,y=(1000/CT_40),colour=factor(Site)))+geom_point(size=3)+T+geom_smooth

ggplot(warm.40,aes(x=Site,y=(1000/CT_40)))+geom_boxplot()+T # gxp by by site

sessionInfo()

```
## R version 3.2.3 (2015-12-10)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.11.1 (El Capitan)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                  base
## other attached packages:
## [1] MASS_7.3-45
                   tidyr_0.4.1 ggplot2_2.0.0 dplyr_0.4.3 plyr_1.8.3
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.3
                        knitr_1.10.5
                                                          munsell_0.4.2
                                         magrittr_1.5
## [5] colorspace_1.2-6 R6_2.1.2
                                         stringr_1.0.0
                                                          highr_0.5
## [9] tools_3.2.3
                        parallel_3.2.3
                                         grid_3.2.3
                                                          gtable_0.1.2
## [13] DBI_0.3.1
                        htmltools_0.2.6 yaml_2.1.13
                                                          lazyeval_0.1.10
## [17] assertthat_0.1 digest_0.6.8
                                         formatR 1.2
                                                          evaluate 0.7.2
## [21] rmarkdown_0.7
                        labeling_0.3
                                         stringi_1.0-1
                                                          scales_0.3.0
```