CS201

Mathematics For Computer Science Indian Institute of Technology, Kanpur

Due by: Sept 27, 2020

Assignment

1

Instructions.

- Solutions should be mandatorily LaTeXed using the template shared and submitted through GradeScope before time. Mention Group Numbers and member names in solutions (refer template instructions).
- Clearly express solutions avoiding unnecessary details. Everything discussed in class is not required to be proved again. And anything non-trivial must be proved.
- Write the solutions on your own. Acknowledge the source wherever required.
 Keep in my mind department's Anti-Cheating Policy.
- 1. Let $S = \{(a, b, c) | a, b, c \in \mathbb{Z}\}$ be the set of all triplets of integers. Show that $|S| = \aleph_0$.
- 2. For any $a,b,c,d \notin \{-\infty,\infty\}$, show that |[a,b]|=|[c,d]| where [x,y] is the set of all real numbers between x and y.
- 3. Show that $|[0,1]|=\aleph_1$ where [0,1] is the set of all real numbers between 0 and 1.
- 4. Show that $|\{0,1\}^*| = \aleph_1$ where $\{0,1\}^*$ is the set of all binary strings of infinite length.
- 5. Suppose R is a partial order on A and S be a partial order on B. Let L be a binary relation on $A \times B$ defined as (a,b)L(a',b') iff
 - $a \neq a'$ and aRa'
 - a = a' and bSb'.

Show that *L* is also a partial order on $A \times B$. Is it a total order?

- 6. Let R be a binary relation on \mathbb{N} defined as aRb if $b=2^ka$ where k is a non-negative integer. Show that R is a partial order on \mathbb{N} .
- 7. Let n be a positive integer. Consider the relation \equiv_n on \mathbb{Z} such that $a \equiv_n b \iff a = b \mod n$. Show that \equiv_n is an equivalence relation on \mathbb{Z} . What are the equivalence classes?
- 8. Consider the relation S on \mathbb{N} such that $aSb \iff ab$ is a perfect square. Show that S is an equivalence relation on \mathbb{N} . What are the equivalence classes?
- 9. There was an ambiguity in the definition of a well-ordering in the lectures. It is clarified here.

A well-ordering R on set A is a partial order such that for every subset $B \subseteq A$, B has an element m such that mRb for every $b \in B$.

In lecture 6, a partial order is shown to be a well-ordering twice: once during proof of the implication that Axiom of Choice implies Zorn's Lemma, and next during proof of the implication that Zorn's Lemma implies Well-Ordering Principle. Redo both these proofs in light of the above clarification.