ENSM-SE Master MISPA

Tutorial: Active contours

Note

This tutorials aims at introducing the active contours (a.k.a. snakes) method as originally presented in [1].

1 Definition

A snake is a parametric curve v(s) with $s \in [0; 1[$. The energy functional is represented by:

$$E_{snake} = \int_0^1 E_{int}(v(s)) ds + \int_0^1 E_{ext}(v(s)) ds.$$

The internal energy is detailed in Eq.1. The first order derivation constrains the length of the curve, the second order derivation constrains the curvature. The parameters α and β a priori depend on s, but for simplicity, constant values will be taken.

$$E_{\text{int}}(v(s)) = \frac{1}{2} \left(\underbrace{\alpha(s)|v'(s)|^2}_{length} + \underbrace{\beta(s)|v''(s)|^2}_{curvature} \right)$$
(1)

The snake will be attracted by some edges points from the external energy (the image to be segmented). The, the energy functional will be in a local minimum: it is shown that the Euler-Lagrange equation is satisfied:

$$-\alpha v^{(2)} + \beta v^{(4)} + \nabla E_{\text{ext}} = 0$$

with $v^{(2)}$ and $v^{(4)}$ denoting the 2nd and 4th order derivatives. To solve this equation, the gradient descent method is employed: the snake is now transformed into a function of the position s and the time t, with $F_{\rm ext} = -\nabla E_{\rm ext}$

$$\frac{\partial s}{\partial t} = \alpha v^{(2)} - \beta v^{(4)} + F_{\text{ext}}$$

2 Numerical resolution

The spatial derivatives are approximated with the finite difference method, and the snake is now composed of n points, $i \in [1; n]$:

ENSM-SE Master MISPA

Figure 1: Illustration of the active contours segmentation method. Two energies are at stake: internal energies depend only on the snake shape and control points, external energies are related to the image properties.

$$x^{(2)} = x_{i-1} - 2x_i + x_{i+1}$$

 $x^{(4)} = x_{i-2} - 4x_{i-1} + 6x_i - 4x_{i+1} + x_{i+2}$

The gradient descent method can be written as, with γ being the time step and controls the convergence speed:

$$\frac{x_t - x_{t-1}}{\gamma} = A \cdot x_t + f_x(x_{t-1}, y_{t-1})$$

$$\frac{y_t - y_{t-1}}{\gamma} = A \cdot y_t + f_y(x_{t-1}, y_{t-1})$$

with

$$A = \begin{bmatrix} -2\alpha - 6\beta & \alpha + 4\beta & -\beta & 0 & \cdots & 0 & -\beta & \alpha + 4\beta \\ \alpha + 4\beta & -2\alpha - 6\beta & \alpha + 4\beta & -\beta & 0 & \cdots & 0 & -\beta \\ -\beta & \alpha + 4\beta & -2\alpha - 6\beta & \alpha + 4\beta & -\beta & 0 & \cdots & 0 \\ 0 & -\beta & \alpha + 4\beta & -2\alpha - 6\beta & \alpha + 4\beta & -\beta & 0 & \cdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & -\beta & \alpha + 4\beta & -2\alpha - 6\beta & \alpha + 4\beta & -\beta & 0 \\ 0 & \cdots & 0 & -\beta & \alpha + 4\beta & -2\alpha - 6\beta & \alpha + 4\beta & -\beta \\ -\beta & 0 & \cdots & 0 & -\beta & \alpha + 4\beta & -2\alpha - 6\beta & \alpha + 4\beta \\ \alpha + 4\beta & -\beta & 0 & \cdots & 0 & -\beta & \alpha + 4\beta & -2\alpha - 6\beta \end{bmatrix}$$

The forces f_x and f_y are the components of $F_{\rm ext}$. For example for an image I, if * denotes the convolution and G_{σ} a gaussian kernel of standard deviation σ :

$$F_{\text{ext}} = -\nabla(\|\nabla(G_{\sigma} * I)\|)$$

ENSM-SE Master MISPA

?

• Generate a binary image (of size $n \times n$ pixels, with values 0 and 1) containing a disk (of a radius R).

- Generate the initial contour as an ellipse, with the same center as the disk.
- Generate the pentadiagonal matrix A. The different parameters can be $\alpha = 10^{-5}$ and $\beta = 0.05$.
- Program the iterations and visualize the results. For example, $\gamma=200$ and 1000 iterations may give an idea of the parameters to use.

References

[1] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. *International journal of computer vision*, 1(4):321–331, 1988.