Last Time: X LCH. Every Randon intogral Pon C(X) is Sider for a ! Randon meas. M

Lema: X LCH and in Radon on (X, Bx).

Defre 9(4):= Ifdu on Cc(x). TFAE:

O 4 extends dsly to C(X)

@ 9 bdd wrt 11.11_0

3 m(X) is finite

of @⇔® follows from

M(X) = Sup { Sfdu | fec(x), off[].

Cordlary: Positive Imear fils $\varphi \in C_0(X)^X$ are of the form $\varphi = \int d\mathbf{n}$ where μ is a finite Radon means \iff finite reg Barel.

Por suppose $\varphi \in C_o(X, |R)^*$. Then $\exists positive \ \varphi_{\pm} \in C_o(X, |R)^*$ s.t. $\varphi = \psi_+ - \psi_-$

If for $f \in C_0(x, c_0, \infty)$, define $f(f) = \sup_{x \in \mathbb{N}} \{f(g) \mid 0 \le g \le f\}$. Since $|f(g)| \le ||f|| ||f||_{\infty} \le |f|| ||f||_{\infty} + 0 \le g \le f$ and since f(o) = 0, $0 \le f(f) \le ||f||_{\infty}$. Observe

Page

②
$$\forall f, f_2 \in C_0(X, (0, \infty)), \quad \varphi_+(f_1 + f_2) = \varphi_+(f_1) + \varphi_+(f_2).$$

Pf where $0 \le g_i \le f_i, \quad 0 \le g_1 + g_2 \le f_t + f_2.$

So $\varphi_+(f_1 + f_2) > \varphi_+(f_1) + \varphi_+(f_2).$

but if
$$0 \le g \le f_1 + f_2$$
, set $g_1 = g \land f_1 \ \text{a} \ g_2 = g - g_1$.
Then $0 \le g_1 \le f_1 \ \text{a} \ \text{a} \ \text{b} \ \mathcal{G}_{f_1}(f_1 + f_2) \le \mathcal{G}_{f_1}(f_1) + \mathcal{G}_{f_2}(f_2)$.

for
$$f \in C_{\bullet}(X,\mathbb{R})$$
, define $f(f) = f(f_{+}) - f(f_{-})$.

If
$$f = g - h$$
 where $g, h \ge 0$ then $g + f_- = f_+ + h$,
$$= f_+ - f_-$$

Thus implies 9, is linear on Co(x, R).

Finally,
$$|\mathcal{Y}_{+}(f)| \leq \max \left\{ \mathcal{Y}_{+}(f_{+}), \mathcal{Y}_{+}(f_{-}) \right\} \leq \|\mathcal{Y}\| \cdot \|f\|_{\infty}$$
.

It's also positive:
$$(f_{-}(f) = \varphi(f) - \sup \{\varphi(g) \mid 0 \le g \le f\}$$

 $f_{>0} = \inf \{\varphi(f_{-g}) \mid 0 \le g \le f\} \ge 0.$

Corollary: If
$$Q \in C_0(X, \mathbb{R})^*$$
 I finite Radon measures M_1, M_2 on X s.t. $Q(f) = \int f d\mu_1 - \int f d\mu_2$

Page 2

H<u>W cor</u>: for φ∈C_o(x)*, ∃ finite Radon measures

$$\mu_0, \mu_1, \mu_2, \mu_3, \quad \text{sil.} \quad \forall f \in C_0(X),$$

$$\varphi(f) = \sum_{k=1}^3 i^k \int f d\mu_k = \int f d\left(\sum_{k=1}^3 i^k \mu_k\right)$$

Signed Measures: (X, m) mble space.

A function $v: M \longrightarrow \mathbb{R} = [-\infty, \infty]$ is called a signed measure if

- · V takes at most one value in \$±003. [if V only takes finite values, call V finite].
- $\circ V(\emptyset) = 6$
- \forall disjoint seq (En) \in M, $\mathcal{V}(\coprod E_n) = \sum \mathcal{V}(E_n)$, where \forall the sum converges absolutely if $|\mathcal{V}(\coprod E_n)| < \infty$. \forall otherwise, $\sum \mathcal{V}(E_n)$ diverges.

Examples:

- (1) If μ_1 , μ_2 are measures on (X, M) w, at least one finite, $V = \mu_1 \mu_2$ is a signed meas.
- ② Suppose μ is a measure on (X, M) and $f: X \to \mathbb{R}$ is mble

S.L. at least one of $\iint_E d\mu < \infty$. \leftarrow "extended Thun $V(E) := \iint_E d\mu$ is a s.m. $\mu \in \mathcal{C}$

Suppose ν is a signed measure on (X, M). call $E \in M$ either

Positive $V(F) \ge 0$ Negative of $V(F) \le 0$ Null V(F) = 0

Observe NEM is null @ N both pos & neg.

Facts: (1) E pos + V(F) ≥0.

- ② E pos, Fc => F pos.
- @ En pos \Rightarrow UEn pos.

 Pf: disjointify UEn = $\prod F_n$ if GCUEn = $\prod F_n$, $V(G) = V(\prod GnF_n) = \sum V(GnF_n) \ge 0$.
- 3 observe: o-aditivity hobs for (En) disjoint union of positive sets (or regative).
- \Im if $6 < \nu(E) < \infty$, \exists positive FGE s.b. $\nu(F) > 0$.

 If E positive, \exists one! E lise let $n_i \in N$ be minimal $s_i t$. \exists E_i c E and $\nu(E_i) < \frac{1}{n_i}$.

If Et, positive, done. Otherwise, Ut nEN be minuted st. Itz CEIE, aw V(E2) < -1/n2.

Herate to get either $E \setminus \frac{K}{12}E$; pos for some K, or (E_i) disjoint $W \setminus V(E_i) \setminus \frac{1}{n_i} \quad \forall i$.

Since Y(E) < D, D|V(Ei) | < D.

So $\sum \frac{1}{n_i}$ converges, so $n_i \longrightarrow \infty$ as $i \longrightarrow \infty$.

Since NCED > 0 & D(Ei) < 0 ti, D(F= E(UEi) > 0.

Claim: F is positive.

Let GCF be mble. Then $V(G) \ge \frac{-1}{n_i} \forall i$. So $V(G) \ge 0$.

Thm (takn Decomposition). Let v be a signed measure on (X, m).

I positive set P s.1. P° is negative.

If QEM is another pos set w/ Q' negative, then
PDQ and P'DQ' are v-mull.

X = P # P° "Hahn Decomposition" unique up to v-mill sets.

Pf of uniqueness: Suppose P, Q = M pos sit Pc, Q' neg.
Then PDQ = [P\Q] II[Q\P]

Page 5

