Herbst 15 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Betrachten Sie das Anfangswertproblem

$$y' = y^2, \quad y(0) = 1.$$
 (3)

a) Wir betrachten die Picard-Iteration mit der Startfunktion $y_0(x) = 1$. Zeigen Sie durch vollständige Induktion, dass die n-te Iterierte die Gestalt

$$y_n(x) = 1 + x + \ldots + x^n + x^{n+1}r_n(x)$$

besitzt, wobei r_n ein Polynom ist. Finden Sie damit eine Potenzreihe, die (3) löst.

- b) In welchem Intervall $I \subset \mathbb{R}$ konvergiert diese Reihe?
- c) Bestimmen Sie die maximale Lösung des Anfangswertproblems (3). Auf welchem Intervall ist sie definiert?

Lösungsvorschlag:

a) Für $n \in \mathbb{N}_0$ ist per Definitionem $y_{n+1}(x) = 1 + \int_0^x y_n(s)^2 \, \mathrm{d}s$ definiert. Zunächst gilt $y_n(0) = 1$ für alle $n \in \mathbb{N}_0$, da dann die Integralgrenzen identisch sind. Wir zeigen induktiv, dass y_n ein Polynom ist: Für n = 0 ist das klar. Sei für $n \in \mathbb{N}_0$ die Iterierte y_n ein Polynom, dann ist $y_{n+1}(x) = 1 + \int_0^x y_n(x)^2 \, \mathrm{d}s$. Als Produkt von Polynomen ist $y_n(s)^2$ auch ein Polynom, besitzt also die Darstellung $y_n(s)^2 = \sum_{k=0}^m a_k s^k$. Dies

liefert $y_{n+1}(x) = 1 + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}$, was ein Polynom ist. Damit ist gezeigt, dass jede Iterierte ein Polynom ist.

Ist $p(x) = \sum_{k=0}^{n} a_k x^k$ ein Polynom, so gilt $k! a_k = p^{(k)}(0)$, wir können also die ersten Koeffizienten durch Differentiation bestimmen. Wir zeigen durch Induktion über $n \in \mathbb{N}_0$, dass für alle $0 \le k \le n$ die Formel $y_n(x)^{(k)}(0) = k!$ gilt, dann folgt nämlich jeweils $y_n(x) = 1 + x + \ldots + x^n + a_{n+1}x^{n+1} + \ldots + a_mx^m$ mit $m \ge n + 1$ und daraus dann $y_n(x) = 1 + x + \ldots + x^n + x^{n+1}(a_{n+1} + \ldots + a_mx^{m-n-1})$, wobei der letzte Teil natürlich ein Polynom ist.

Für n=0 ist nur k=0 zu prüfen, wir haben aber schon für alle $n\in\mathbb{N}_0$ die Gleichung $y_n^{(0)}(0)=y_n(0)=1=0$! festgehalten. Die Aussage gelte nun für eine Iterierte y_n mit $n\in\mathbb{N}_0$. Dann ist $y_{n+1}(x)$ nach dem HDI differenzierbar mit Ableitung $y_{n+1}'(x)=y_n(x)^2$. Für $1\leq k\leq n+1$ gilt nun $y_{n+1}^{(k)}(0)=(y_n^2)^{(k-1)}(0)$, was wir mit

der Leibnizformel berechnen können. Es ist

$$y_{n+1}(x)^{(k)}(0) = (y_n(x)^2)^{(k-1)}(0) = \sum_{j=0}^{k-1} {k-1 \choose j} y_n^{(j)}(0) y_n^{(k-j-1)}(0)$$
$$= \sum_{j=0}^{k-1} \frac{(k-1)!}{j!(k-j-1)!} j!(k-j-1)!$$
$$= \sum_{j=0}^{k-1} (k-1)! = k(k-1)! = k!.$$

Damit ist die Darstellung der Picard-Iterierten gezeigt. Als Potenzreihe ergibt sich die geometrische Reihe $y(x) = \sum_{j=0}^{\infty} x^j$. Man kann mittels Cauchyprodukt und gliedweiser Differentiation nachweisen, dass diese eine Lösung darstellt, man sieht dies allerdings auch aus $y(x) = \frac{1}{1-x}$ für alle x im Konvergenzgebiet.

Es ist
$$y'(x) = \sum_{k=0}^{\infty} (k+1)x^k$$
, $y(0) = 1$ und $y(x)^2 = \sum_{k=0}^{\infty} \sum_{j=0}^{k} x^k = \sum_{k=0}^{\infty} (k+1)x^k$, also löst y das Problem (3) auf dem Konvergenzintervall. Man beachte, dass Potenzreihen im Inneren des Konvergenzkreises absolut konvergieren, was die gliedweise Differentiation und die Cauchyproduktbildung rechtfertigt und, dass die Reihe für $|x| < 1$ absolut konvergiert und für $|x| \ge 1$ divergiert.

- b) Diese Reihe konvergiert bekanntlich auf (-1,1).
- c) Die Funktion lässt sich auf $(-\infty, 1)$ fortsetzen und stellt hierauf immer noch eine Lösung dar. Eine Fortsetzung über die 1 ist unmöglich, weil $\lim_{x\to 1-}y(x)=\infty$ ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$