Week 11: Knowledge Based RSs - Part II

CSX4207/ITX4207: Decision Support and Recommender Systems ITX4287: Selected Topic in Decision

Support and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

- To be familiar with a widely used knowledge-based recommendation algorithms
- To present and discuss the applications of collaborative filtering approaches

Outlines

- Conjoint Analysis
- Knowledge based recommendation algorithm
 - Critiquing
- Pros and Cons of Knowledge based RS
- Articles' Presentation and Discussion

Basic Conjoint Analysis

- A statistical technique that marketers usually apply to measure customer satisfaction on available products to determine desirable product's features and price
- Common steps:
 - 1. Marketers **prepare choices** of product **as a set of cards**
 - 2. User(s) ranks the cards wrt their preferences
 - 3. Based on the ranks in step 2, **calculate a utility function** (representing user's preference) and/or relative importance (of available features)

- To market a new golf ball with three important product *features*:
 - Average driving distance
 - Average ball life
 - Price
- Goal: What is the desirable features' value for a new golf ball?

- 1. Marketers **prepare choices** of product **as a set of cards**
 - The no. of choices = $3 \times 3 \times 3 = 27$. In this example will simplify the step.

Average Driving Distance	<u>Average Ball Life</u>	<u>Price</u>
275 yards	54 holes	\$1.25
250 yards	36 holes	\$1.50
225 vards	18 holes	\$1.75

2. User(s) ranks the choices (the cards) wrt their preferences

Figure 2a

Buyer 1		Average Ball Life				
	_	54 holes 36 holes 18 holes				
Average	275 yards	1	2	4		
Driving	250 yards	3	5	6		
Distance	225 yards	7	8	9		

Figure 4a

Buyer 1		Average Ball Life			
		54 holes 36 holes 18 ho			
	\$1.25	1	4	7	
Price	\$1.50	2	5	8	
	\$1.75	3	6	9	

3. Use user's ranks to generate the utility values of each attribute (could also be derived from a linear regress model)

From Figure 2a to Figure 3

Buyer 1		Average Ball Life						
		54 holes	36 holes	18 holes				
		50 /	25	0				
Average	275 yards	sum (1) ✓	(2)	(4)				
Driving	100	150	125	100				
Distance	250 yards	(3)	(5)	(6)				
	60	110	85	60				
	225 yards	(7)	(8)	(9)				
	0	50	25	0				

Find a set of values for Average Driving Distance and a second set for Average Ball Life for Buyer 1 so that when adding these values together for each ball, they reproduce Buyer 1's rank orders

Figure 5

Fron	n Figure 4a to	Figure 4b	***************************************	
Buyer 1		Av	verage Ball Lij	fe
•		54 holes	36 holes	18 holes
		50	25	0
	\$1.25	(1)	(4)	(7)
Price	20	70	45	20
	\$1.50	(2)	(5)	(8)
	5	55	30	5
	\$1.75	(3)	(6)	(9)

50

utility values

Apply the obtained utility values* to calculate utility values for the user.

Figure 5*

Average Driving Distance		Average Ball Life		<u>Price</u>	
275 yards	100	54 holes	50	\$1.25	20
250 yards	60	36 holes	25	\$1.50	5
225 yards	0	18 holes	0	\$1.75	0

Choice 1 Figure 7

	Choice 1	
<u>Buyer 1</u>	<u>Distance</u>	<u>Ball</u>
Distance	275	100
Life	18	0
Price	\$1.50	5
Total Utility		105

Choice 2

Long-Life	<u>Ball</u>
250	60
54	50
\$1.75	0
<	110

*: Could also be derived from a linear regression model

$$S = 9.08 - 4.75(AB1) - 2.17(AB2) - 4.44(AD1) - 2.5(AD2) - 2.78(P1) - 1.78(P2)$$

Buyer 1 prefers choice 2 more than choice 1.

Applying Conjoint Analysis in RS - 1/3

Example 1: Music Recommender System using Conjoint Analysis

Applying Conjoint Analysis in RS - ½

Example 2: analyze ranks of variables that affects user's decision

- Given
 - Ranges of **price**: price₁[100-159], price₂[160-199], price₃[200-300]
 - ⁿ Ranges of **mpix**: $mpix_1[5.0-8.0]$, $mpix_2[8.1-11.0]$
- Then, a target user **ranks** of all possible combination of price's and mpix's choices

	price ₁ [100-159]	price ₂ [160-199]	price ₃ [200-300]
mpix ₁ [5.0-8.0]	4	5	6
mpix ₂ [8.1-11.0]	2	1	3

Applying Conjoint Analysis in RS - 2/2

Table1	price ₁ [100-159]	price ₂ [160-199]	price ₃ [200-300]	avg_rank(mpix _x)
mpix ₁ [5.0-8.0]	4	5	6	5
mpix ₂ [8.1-11.0]	2	1	3	2
avg_rank(price _x)	3	3	4.5	3.5
Table2			d = av	g(ranking) –

The **relative importance** of each attribute is calculated by considering *how much difference* each attribute could make in the total utility of a product (the **range** in the **attribute's utility values**.)

avg rank(attr_v) avg(ranking) – avg_ranking(mpix₁) -1.5 (3.5 - 5)avg(ranking) – avg_ranking (mpix₂) 1.5 (3.5 - 2)avg(ranking) – avg_ranking (price₁) 0.5 (3.5 - 3)avg(ranking) – avg ranking (price₂) 0.5 (3.5 - 3)avg(ranking) – avg_ranking (price₃) -1.0 (3.5 - 4.5)

 $avg(mpix_x) span$ $= |max_d_{mpix} - min_d_{mpix}|$ = |1.5 - (-1.5)| = 3

 $avg(price_x) span$ $= |max_d_{price} - min_d_{price}|$ = |0.5 - (-1.0)| = 1.5

Conclusion: Mpix changes <u>has a</u>
<u>higher effect</u> on the overall utility (for this customer) than <u>price</u> changes.

Revising Knowledge-based Recommendation Main Idea

- To match user requirements with item's features.
- To use *user interaction* to refine recommendations.
- To predict which items the current user will most probably like.

How to Generate Recommendation Using Knowledge Based Filtering Approach

Knowledge based: "Tell me what fits based on my needs."

Outlines

- Conjoint Analysis
- Knowledge-based recommendation algorithm
 - Critiquing
- Pros and Cons of Knowledge based RS
- Articles' Presentation and Discussion

Basic Types of Knowledge-based Recommender Systems

- Constraint-based
- Case-based

Interacting with Case-based Recommenders

- Motivation: a pure query-based approach requires
 - Respecifying user's requirements until a target item has been identified
 - A substantial domain knowledge to perform well

- Alternatives: browsing-based approaches to item retrieval
 - By navigating in the item space with the goal to find useful alternatives (initially unknown)
 - E.g., Critequing

Critiquing

- Idea: users specify their *changes* requests in the form of goals (critiques) for the currently unsatisfied items recommended.
 - E.g. of critiques (in the level of technical properties)
 - cheaper (on price feature)
 - more mpix (on mpix feature)
 - E.g. of critiques (in the level of abstract dimensions)
 - The apartment should be *more modern-looking*.
 - The hotel location should be *nearer to the sea*.

entry/recommended item price more expensive less mpix more mpix cheaper

most similar item

Benefit and Major Goals of Critiquing based Recommender Systems

• Benefit: Allow users to *easily articulate* preferences instead of *specifying concrete* values for item properties.

Major Goals:

- Saving item selection time
- Obtaining the same recommendation quality as standard query-based approaches

Item Recommendation

- Apply the algorithm SIMPLECRITIQUING (slide 21)
 to obtain entry item (recommended items)
- **Idea:** Iterate the two tasks until Critique is null.
 - ITEMRECOMMENDED()
 - Select an item r to be presented to the user
 - First round: entry item r = the *most similar* item between
 the user's query q and the candidate items
 - Next rounds: recommended item r = the *most similar* item between *currently recommended item* and the candidate items
 - USERREVIEW()
 - Review the recommended (entry) item and either
 accept it or selects another critique (modify q).

SimpleCritiquing(q, CI)

```
Input: Initial user query q; Candidate items CI
procedure SimpleCriquing(q, CI)
 repeat
  r \leftarrow ItemRecommend(q, CI);
  q \leftarrow UserReview(r, CI);
 until empty(q)
end procedure
procedure ItemRecommend(q, CI)
 CI \leftarrow \{ci \in CI: satisfies(ci, q)\};
 r \leftarrow mostsimilar(CI, q);
 return r;
end procedure
procedure UserReview(r, CI)
 q \leftarrow critique(r);
 CI \leftarrow CI - r;
 return q;
end procedure
```

Unit Critiques vs Compound Critiques

- Unit critiques allows the definition of change requests that are related to a single item property.
- Compound critiques allows the definition of change requests that are related to multiple item properties.
 - E.g., cheaper and more mpix

An Advantage and a Disadvantage of Compound Critiques

- Advantage: provide a faster progression through the item space.
- Disadvantage: must formulate critiques statistically.
 - All critique alternatives are available beforehand.
 - E.g.,

User requirements	(Static) critiques
fastest CPU available on	faster CPU and more
the market and maximum	storage capacity
available storage capacity	(more efficient)

Dynamic Critiquing

Exploits patterns.

Pattern = *Generic descriptions* of differences between the recommended (entry) item and the candidate items

- Use the patterns in deriving compound critiques on the fly (in each critiquing cycle).
 - Use the concept of association rule mining in calculating dynamic critiques
- Apply the algorithm DYNAMICCRITIQUING (slide 26) to obtain entry item (recommended items).

Item Recommendation (DYNAMICCRITIQUING())

- □ ITEMRECOMMEND()
 - Select an item r to be presented to the user
- □ CompoundCritiques()
 - □ Based on r, identify critique patterns (Critique Patterns())
 - □ Calculate and select compound critiques cc_i ∈ CC (Apriori() and SelectCritiques())
- USERREVIEW()
 - Display the identified compound critiques in CC to the user.
 - The critiquing will stop if the user does not select any critique.

DynamicCritiquing(q, CI)

```
Input: Initial user query q; Candidate items CI;
            number of compound critiques per cycle k;
            minimum support for identified association rules \sigma_{min}
procedure DynamicCriquing(q, CI, k, \sigma_{min})
 repeat
  r \leftarrow ItemRecommend(q, CI);
  CC \leftarrow CompoundCritiques(r, CI, k, \sigma_{min});
  q \leftarrow UserReview(r, CI, CC);
 until empty(q)
end procedure
procedure ItemRecommend(q, CI)
 CI \leftarrow \{ci \in CI: satisfies(ci, q)\};
 r \leftarrow mostsimilar(CI, q);
 return r;
end procedure
procedure UserReview(r, CI, CC)
 q \leftarrow critique(r, CC);
 CI \leftarrow CI - r;
 return q;
end procedure
```

```
procedure CompoundCritiques(r, CI, k, \sigma_{min})
CP ← CritiquePatterns(r, CI); //slide 27
CC ← Apriori(CP, \sigma_{min}); //slide 28
SC ← SelectCritiques(CC, k); //slide 29
return SC;
end procedure
```

Identification of Critique Patterns

• Critiques patterns are a *generic representation of the differences* between the currently recommended item (entry item) and the candidate items.

	id	price	mpix	opt-	LCD-size	movies	
				ZOOM			
entry item (EI)	ei ₈	278	9.1	9x	3.0	yes	compare
candidate item (CI)	$\begin{array}{c} \text{ci}_1 \\ \text{ci}_2 \\ \text{ci}_3 \\ \text{ci}_4 \\ \text{ci}_5 \\ \text{ci}_6 \\ \text{ci}_7 \end{array}$	148 182 189 196 151 199 259	8.0 8.0 8.0 10.0 7.1 9.0 10.0	4x 5x 10x 12x 3x 3x 10x	2.5 2.7 2.5 2.7 3.0 3.0 3.0	no yes yes yes yes yes yes yes yes	to
critique patterns (CP)	$\begin{array}{c} { m cp_1} \\ { m cp_2} \\ { m cp_3} \\ { m cp_4} \\ { m cp_5} \\ { m cp_6} \\ { m cp_7} \end{array}$	< < < < < < < < < < < < < < < < < < <	< < < < < < < < < < < < < < < < < > < < < < > < < < > < < < > < < < < < < > < < < < < < < < < < < < < < < < < < < <	<	<	≠ = = = = = =	generate

Mining Compound Critiques from Critique Patterns

Identify compound critiques that
 frequently co-occur in the set of critique
 patterns (CP) wrt. Confidence level.

	id	mpix	opt- zoom
critique patterns (CP)	$ \begin{array}{c} \operatorname{cp}_1 \\ \operatorname{cp}_2 \\ \operatorname{cp}_3 \\ \operatorname{cp}_4 \\ \operatorname{cp}_5 \\ \operatorname{cp}_6 \\ \operatorname{cp}_7 \\ \end{array} $	<	<

Apply Apriori algorithm

Output: A set of association rules: $p \rightarrow q$

	id	price	mpix	opt- zoom	LCD-size	movies
entry item (EI)	ei ₈	278	9.1	9x	3.0	yes

Examples of association rules (AR) output	compound critiques (CC)	SUPP	CONF
$ar_1: >_{mpix} \rightarrow >_{zoom}$	cc_1 : $>_{\operatorname{mpix}(9.1)}$, $>_{\operatorname{zoom}(9x)}$	2/7 = 28.6	2/2 = 100.0
$ar_2: >_{zoom} \rightarrow <_{price}$	cc_2 : $>_{\operatorname{zoom}(9x)}$, $<_{\operatorname{price}(278)}$	3/7 = 42.9	3/3 = 100.0
ar_3 : = _{movies} \rightarrow < _{price}	cc_3 : = _{movies(yes)} , < _{price(278)}	6/7 = 85.7	6/6 = 100.0

Ranking Compound Critiques

- Rank compound critiques according to the *support values* of association rules.
 - ¹ E.g., Rank of CC: $\{cc_1, cc_2, cc_3\} = cc_3, cc_2, cc_1$

association rules (AR)	compound critiques (CC)	SUPP	CONF
$ar_1: >_{mpix} \rightarrow >_{zoom}$	$\operatorname{cc}_1: >_{\operatorname{mpix}(9.1)}, >_{\operatorname{zoom}(9x)}$	28.6	100.0
$\operatorname{ar}_2: >_{\operatorname{zoom}} \rightarrow <_{\operatorname{price}}$	cc_2 : $>_{zoom(9x)}$, $<_{price(278)}$	42.9	100.0
ar_3 : $=_{movies} \rightarrow <_{price}$	cc_3 : = $_{\text{movies(yes)}}$, < $_{\text{price(278)}}$	85.7	100.0

Outlines

- Conjoint Analysis
- Knowledge-based recommendation algorithm
 - Critiquing
- Pros and Cons of Knowledge based RS
- Articles' Presentation and Discussion

Pros and Cons of Knowledge based RS

Pros

- Address a cold start problem.
 - Capable of suggesting items to new users.
 - Capable of suggesting new items to users.
- Quick access and easy to manipulate data.
- Capable of refining suggestion.

Cons

 Require details of items to construct item profile.

Outlines

- Conjoint Analysis
- Knowledge-based recommendation algorithm
 - Critiquing
- Advanced item recommendation
- Critique Diversity
- Pros and Cons of Knowledge based RS
- Articles' Presentation and Discussion