Q1 Answer:

Given that:

Dimension: d = 768

No. of attention heads: h = 8

Dimension of Feed Forward Layer: d_{ffl} = 3072

No. of layers = 8

Max no. of tokens in input = 512

Size of vocabulary = 40000

Parameters in Transformer Layers:

For 8 attention heads, q/k/v matrices to be of dimensions d_q , d_k , $d_v = d / h = 768 / 8 = 96$

Parameters for q/k/v matrices per attention head = $d \times d_q + d \times d_k + d \times d_v = 768 \times 96 \times 3 = 221,184$

Parameters for q/k/v matrices for 8 such heads = 221,184 × h = 221,184 × 8 = 1,769,472 (= $3 \times d^2$)

Parameters for self-attention output projection = d × d = 768 × 768 = 589,824 (= 1 × d²)

Parameters in Feed Forward = $(d \times d_{ffl}) + (d_{ffl} \times d) = (768 \times 3072) + (3072 \times 768) = 4,718,592 (= 8 \times d^2)$

Total parameters per layer = $1,769,472 + 589,824 + 4,718,592 = 7,077,888 (= 12 \times d^2)$

Total parameters for 8 such layers = $7,077,888 \times 8 = 56,623,104$

Parameters in Embedding Layers:

Parameters for token embeddings (token <--> vocab projection) = 768 × 40,000 = 30,720,000

Parameters for positional embeddings = $512 \times 768 = 393,216$

Total parameters for the model *ignoring positional embeddings* = 56,623,104 + 30,720,000

= 87,343,104 i.e. ~ **87.3 M**

Total parameters for the model including positional embeddings = 87,343,104 + 393,216

= 87,736,320 i.e. ~ **87.7 M**

Q2 Answer:

Given that:

Input_{flying} =
$$[0,1,1,1,1,0]$$
, Input_{arrows} = $[1,1,0,-1,-1,1]$

q_{flying} = [0, 1], q_{arrows} = [1,1] #Considering 1st & 2nd dimensions from Input Embeddings

 $k_{flying} = [1, 1], k_{arrows} = [0, -1], d_k = 2$ #Considering 3rd & 4th dimensions from Input Embeddings

v_{flying} = [1, 0], v_{arrows} = [-1, 1] #Considering 5th & 6th dimensions from Input Embeddings

Now:

Scaled dot product for
$$q_{flying}$$
 with $k_{flying} = (q_{flying} \cdot k_{flying}) / \sqrt{d_k} = [0, 1] \cdot [1, 1]^T / \sqrt{2} = 1/\sqrt{2} \approx 0.707$
Scaled dot product for q_{flying} with $k_{arrows} = (q_{flying} \cdot k_{arrows}) / \sqrt{d_k} = [0, 1] \cdot [0, -1]^T / \sqrt{2} = -1/\sqrt{2} \approx -0.707$
Attention weights vector $[\lambda_{flying1}, \lambda_{flying2}] = softmax([0.707, -0.707])$

$$= [e^{0.707} / (e^{0.707} + e^{-0.707}), e^{-0.707} / (e^{0.707} + e^{-0.707})]$$

$$= [0.804, 0.196]$$

Self-attention output for the word 'flying' corresponding to this attention head is:

$$\lambda_{flying1} \times V_{flying} + \lambda_{flying2} \times V_{arrows}$$
 = 0.804 × [1, 0] + 0.196 × [-1, 1]
 = [0.804, 0] + [-0.196, 0.196]
 = [0.804 - 0.196, 0 + 0.196]
 = [0.608, 0.196]

Q3 Answer:

For Topic classification task:

BERT-base hidden dimension size = 768

No. of classes = 5

Therefore, number of task specific parameters (ignoring bias terms) = 768 × 5 = 3840

Parameters including bias terms (1 per class) = 3840 + 5 = 3845

For Language identification task:

BERT-base hidden dimension size = 768

No. of classes = No. of possible languages (English and Hindi) = 2

Therefore, number of task specific parameters (ignoring bias terms) = 768 × 2 = 1536

Parameters including bias terms (1 per class) = 1536 + 2 = 1538