H18T1A2

Bezeichne $D:=\{(x,y)\in\mathbb{R}^2:y\geq -x^2\}$ den Definitionsbereich der Funktion $f:D\to\mathbb{R}$ mit $f(x,y):=x^2+y^2+2y$.

- a) Skizziere die Menge D.
- b) Zeige, dass die Funktion f ein globales Minimum besitzt.
- c) Bestimme das globale Minimum von f sowie alle Stellen in D, bei denen diese angenommen werden.

Zu a):

Es handelt sich um den Bereich oberhalb der an der x-Achse gespiegelten Normalparabel in \mathbb{R}^2 . (image to be added)

Zu b):

Wir formen um - es gilt für $(x, y) \in D$:

$$x^{2} + y^{2} + 2y = x^{2} + y^{2} + 2y + 1 - 1 = x^{2} + (y+1)^{2} - 1 \ge -1$$

Sei nun $K:=\{(x,y)\in\mathbb{R}^2\mid x^2+(y+1)^2<2\}$ die offene Kreisscheibe um den Punkt (0,-1) mit Radius 2.

Der Abschluss $\overline{D \cap K}$ ist beschränkt und damit kompakt. Weil die Menge $\overline{D \cap K}$ z.B. den Punkt (0,0) enthält, ist sie auch nicht leer.

Die stetige Funktion f nimmt damit auf dem Kompaktum $\overline{D \cap K}$ ein Minimum an, das wegen der folgenden Abschätzung für $(x,y) \in D \setminus K$ sogar global (also auf ganz D) ein Minimum von f ist:

$$\underbrace{x^2 + (y+1)^2}_{\geq 2, \text{ da } (x,y) \notin K} -1 \geq 2 - 1 = 1 > 0 = f(0,0) \geq \min_{(x,y) \in \overline{D \cap K}} f(x,y).$$

Zu c):

Sei nun $a=(x,y)\in D$ eine Stelle, an der f sein globales Minimum annimmt. Wir zeigen zunächst, dass a auf dem Rand von D liegt: Betrachten wir die Zuordnung $g:(x,y)\mapsto x^2+y^2+2y$ auf ganz \mathbb{R}^2 , so folgt für alle $(x,y)\in\mathbb{R}\setminus\{(0,-1)\}$:

$$\underbrace{x^2 + (y+1)^2}_{>0, \text{ da } (x,y) \neq (0,-1)} -1 > 0 - 1 = -1 = g(0,-1).$$

Damit ist (0,-1) die einzige globale Minimalstelle von $g:\mathbb{R}^2\to\mathbb{R}$.

Würde $f = g|_D$ sein globales Minimum nicht am Rand ∂D annehmen, so wäre a gleichzeitig auch Minimalstelle von g. Da andererseits die einzige Minimalstelle von g, (0, -1), nicht in D liegt, ist diese Möglichkeit ausgeschlossen.

Es folgt $a \in \partial D$, also $a = (x, -x^2)$. Wegen

$$f|_{\partial D}(x,y) = f(x,-x^2) = x^2 + (-x^2)^2 + 2(-x^2) = x^4 - x^2 =: h(x), \quad \forall x \in \mathbb{R}.$$

ist zu jeder Minimalstelle x von h auch $(x,-x^2)$ eine Minimalstelle von f und andersherum.

Die Minimalstellen von h sind gerade die Stellen, für die

$$0 = h'(x) = 4x^3 - 2x = 4x\left(x - \frac{1}{\sqrt{2}}\right)\left(x + \frac{1}{\sqrt{2}}\right) \Leftrightarrow x \in \left\{0, \pm \frac{1}{\sqrt{2}}\right\}$$

und außerdem $0 < h''(x) = 12x^2 - 2$ gilt. Daher sind $\pm \frac{1}{\sqrt{2}}$ die beiden (einzigen) Minimalstellen von h und entsprechend $\left(\pm \frac{1}{\sqrt{2}}, -\frac{1}{2}\right)$ die einzigen Minimalstellen von f. Für diese ist

$$f\left(\pm\frac{1}{\sqrt{2}}, -\frac{1}{2}\right) = \frac{1}{2} + \frac{1}{4} - 1 = -\frac{1}{4}.$$