Задача А. Нормализация лямбда-выражения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 1024 мегабайта

обозначение (номер) формула

cocona remire (memep)	q oping view
δ_0	$(\lambda x.x \ x \ x \ x) \ ((\lambda x.x) \ (\lambda x.x))$
δ_1	$\overline{\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)}$
δ_2	$(\lambda x.x) (\lambda x.x) (\lambda x.x) (\lambda x.x)$
δ_3	$\overline{(\lambda x.x)} \ (\lambda x.x) \ (\lambda x.x)$
δ_4	$\overline{(\lambda x.x) \; (\lambda x.x)}$
δ_5	$\overline{(\lambda x.x)}$

Если при этом k=2, то на печать должны быть выведены формулы δ_0 , δ_2 , δ_4 , δ_5 .

Гарантируется, что суммарная длина всех выражений, которые будут получены в результате s бета-редукций, не превышает 100 миллионов лексем.

Для точного определения условий задачи, давайте напомним два важных определения— нормальный порядок редукций и мемоизацию.

- 1. Рассмотрим лямбда-выражение, расставим все необязательные скобки в нём. Назовём нормальным порядком редукции такой порядок, при котором всегда редуцируется самый левый редекс: то есть редекс, первый символ которого находится левее всего в выражении.
- 2. Чтобы определить мемоизацию, определим некоторое расширенное лямбда-исчисление. Помимо обычных выражений будем рассматривать отложенные подстановки: это переменные с указанием заменяемого выражения в угловых скобках $x_{\langle A \rangle}$.

При этом подстановка A[x := B] раскрывается так:

$$A[x := B] = \begin{cases} t_{\langle B \rangle}, & A = x \\ y, & A = y, y \neq x \\ \lambda x.P, & A = \lambda x.P \\ \lambda y.(P[x := B]), & A = \lambda y.P, y \neq x \\ (P[x := B]) (Q[x := B]), & A = P Q \end{cases}$$

Здесь t — некоторая новая отложенная переменная, ранее в выражении не встречавшаяся.

Естественным образом мы можем определить <u>плоское</u> лямбда-выражение для данного выражения, рассматривая каждую переменную вида $x_{\langle P \rangle}$ как P.

Тогда шаг редукции с мемоизацией устроен так:

- Выберем редекс ($\lambda x.A$) B например, найдём самый левый редекс в плоском лямбдавыражении, соответствующем данному.
- Если $(\lambda x.A)$ содержит вхождение отложенной подстановки $y_{\langle P \rangle}$, в которую входит заменяемая переменная x, перед редукцией заменим данное вхождение $y_{\langle P \rangle}$ на P. Обратите внимание, случай $\lambda x.A = y_{\langle P \rangle}$ также надо учитывать.
- Все остальные отложенные подстановки в редексе оставим без изменений рассматриваем, как переменные. Производим редукцию.

• Если редекс целиком находится внутри какой-то отложенной подстановки — редукцию производим во всех отложенных подстановках по той же переменной.

Формат входных данных

В первой строке приведены числа m и k через пробел. Во второй строке дано лямбда-выражение δ_0 в грамматике из предыдущего задания.

Формат выходных данных

Выведите формулы $\delta_0,\,\delta_k,\,\delta_{k\cdot 2},\,...,\,\delta_{k\cdot (n-1)},\,\delta_s,$ по формуле на новой строке.

Примеры

стандартный ввод	стандартный вывод	
10 1	((\x.x) z)	
(\x.x) z	z	
100 1	((\x.y) z)	
(\x.y) z	У	
100 1	((\a.(\a.b)) c)	
(\a.\a.b) c	(\v0.b)	
100 1	((\a.(\x.a)) (x y))	
(\a.\x.a) (x y)	(\v0.(x y))	

Задача В. Проверка вывода типа в системе Хиндли-Миллнера

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На вход подается доказательство в следующей грамматике:

<Доказательство> ::= <Cтрока>*

<Строка> ::= <Отступ> <Контекст> <Выражение с типом> <Правило>

<0rcTyn> ::= ('*', ', ', ', ')*

<Kohtekct> ::= eps

| <Переменная> : <Тип> [, <Контекст>]

<Bыражение с типом> ::= <Bыражение> : <Tип>

<тип> ::= (<тип>)

| <Монотип>

| forall <Переменная> . <Тип>

<Монотип> ::= <Переменная>

| (<Монотип>)

| (<Монотип>) -> <Монотип> | <Переменная> -> <Монотип>

<Выражение> ::= [<Применение>] \ <Переменная> . <Выражение>

| let <Переменная> = <Выражение> in <Выражение>

| <Применение>

<Применение> ::= <Aтом>

| <Применение> <Атом>

<Атом> ::= (<Выражение>)

| <Переменная>

<Переменная> ::= [a-z] [a-z0-9']*

<Правило> ::= "[rule #" <Номер правила> "]"

< Номер правила> ::= [1-6]

В доказательстве могут быть использованы следующие правила:

TT 2021 ИТМО, Осень 2021

Правило	Зависимости	Вывод	Дополнительные условия
1		$\Gamma \vdash x : \sigma$	$x:\sigma\in\Gamma,x$ — переменная
2	$\Gamma \vdash e_0 : \tau \to \tau' \Gamma \vdash e_1 : \tau$	$\Gamma \vdash e_0 e_1 : \tau'$	au, au' — монотипы
3	$\Gamma, x : \tau \vdash e : \tau'$	$\Gamma \vdash \lambda x.e : \tau \to \tau'$	au, au' — монотипы, x — переменная
4	$\Gamma \vdash e_0 : \sigma \Gamma, x : \sigma \vdash e_1 : \tau$	$\Gamma \vdash \text{ let } x = e_0 \text{ in } e_1 : \tau$	au — монотип, x — переменная
5	$\Gamma \vdash e : \sigma'$	$\Gamma \vdash e : \sigma$	$\sigma' \sqsubseteq \sigma$
6	$\Gamma \vdash e : \sigma$	$\Gamma \vdash e : \forall \alpha. \sigma$	$\alpha \notin \text{free } (\Gamma), \alpha$ — типовая переменная

Назовём детьми строки доказательства, строки с отступом на 1 больше, идущие после неё и до первой строки после неё с отступом меньше или равным её отступу. Доказательство корректно, если для каждой из строк в доказательстве верно, что выражение в этой строке выводится по правилу, указанному в этой строке, из выражений в её детях, при чём дети должны идти в доказательстве в том же порядке, что указаны в таблице зависимостей, и после неё идёт строка с отступом не более чем её отступ плюс 1, либо конец доказательства.

Определите, корректное ли это доказательство.

Формат входных данных

Во входных даных даны несколько строк, являющихся доказательством в указанной грамматике. Отступы всегда выглядят как * и три пробела, но между любыми другими токенами могут быть пробельные символы.

Гарантируется, что в каждом контексте все переменные, для которых заданы типы, различны. Гарантируется, что ключевые слова let, in, forall не будут склеены с названиями переменных

Гарантируется, что ключевые слова let, in, forall не будут склеены с названиями переменных и другими ключевыми словами.

Названия переменных не могут начинаться на ключевые слова let, in, forall.

Суммарная длина входных данных не превосходит 10^5 байт.

Формат выходных данных

Выведите Correct, если доказательство корректно, и Incorrect иначе.

Примеры

стандартный ввод	стандартный вы
x : a - x : (forall b. a) [rule #6]	Correct
* x : a - x : a [rule #1]	
- ((\x. x) (\y. y)) : (t2 -> t3) [rule #2]	Incorrect
* - (\x. x) : ((t2-> t2)-> (t2 -> t2)) [rule #3]	
* * x : (t2 -> t2) - x : (t2 -> t2) [rule #1]	
* - (\y. y) : (t2 -> t2) [rule #3]	
* * y : t2 - y : t2 [rule #1]	
x : t1 - x : t1 [rule #1]	Correct