# અવયવીકરણ

પ્રકરણ

14

#### 14.1 પ્રાસ્તાવિક

## 14.1.1 પ્રાકૃતિક સંખ્યાના અવયવો

ધોરણ 6 માં અવયવો વિશે ભણ્યા તે તમને યાદ હશે. ચાલો એક પ્રાકૃતિક સંખ્યા લઈએ.

ધારો કે 30, તેને પ્રાકૃતિક સંખ્યાના ગુણાકારના રૂપમાં લખો.

$$30 = 2 \times 15$$
  
=  $3 \times 10 = 5 \times 6$ 

તેથી 1, 2, 3, 5, 6, 10, 15 અને 30 એ 30ના અવયવો છે. આમાંથી 2, 3, 5 એ તેના અવિભાજ્ય અવયવો છે. (કેમ ?)

જે સંખ્યાને તેના અવિભાજ્ય અવયવોના ગુણાકાર સ્વરૂપે લખી શકાય, તેને તેનાં અવિભાજ્ય અવયવ રૂપ કહી શકાય.

દા. ત., 30નું અવિભાજ્ય અવયવ રૂપ  $2 \times 3 \times 5$  થાય.

70નું અવિભાજ્ય અવયવ રૂપ  $2 \times 5 \times 7$  છે,

90નું અવિભાજ્ય અવયવ રૂપ  $2 \times 3 \times 3 \times 5$  છે.

આ રીતે આપશે બૈજિક પદાવલિ(Algebraic Expressions)ને તેના અવયવોના ગુણાકારના રૂપમાં લખી શકીએ. જે આપશે આ પ્રકરણમાં શીખીશું.

#### 14.1.2 બૈજિક પદાવલિના અવયવો

આપણે ધોરણ 7માં જોયું કે બૈજિક પદાવિલમાં પદો એ અવયવોના ગુણાકારના રૂપમાં હોય છે. દા.ત., બૈજિક પદાવિલ 5xy + 3xમાં પદ 5xy એ અવયવો 5, x અને yથી બનેલ છે. i.e.,

$$5xy = 5 \times x \times y$$

અવલોકન કરો કે અવયવો 5, x અને y ને ફરીથી અવયવોના ગુણાકારના રૂપમાં દર્શાવી શકાશે નહિ.

આપણે કહી શકીએ કે 5, x અને y એ 5xyના અવિભાજય અવયવો છે. બૈજિક પદાવિલમાં આપણે અવિભાજયના બદલે અવિભાજિત શબ્દ વાપરીશું. આપણે કહી શકીએ કે  $5 \times x \times y$  એ 5xyનું અવિભાજિત અવયવ રૂપ છે. **નોંધ**:  $5 \times (xy)$  એ 5xyનું અવિભાજિત અવયવ રૂપ નથી, કારણ કે xyને x અને yના ગુણાકારના રૂપમાં દર્શાવી શકાય. અર્થાત્  $xy = x \times y$ 

30 = 1 × 30 પણ લખી શકાય. તેથી, 1 અને 30 પણ 30ના અવયવ છે. તમે નોંધ લેશો કે 1 એ કોઈ પણ સંખ્યાનો અવયવ છે. દા.ત., 101 = 101 × 1 જયારે આપણે કોઈ સંખ્યાને તેના અવયવના ગુણાકારના રૂપમાં લખીશું ત્યારે 1ને તેના અવયવ તરીકે નહિ લખીએ જ્યાં સુધી ખાસ જરૂરિયાત ન હોય.

આપણને ખબર છે કે, 30ને

નોંધ : 1 એ 5xyનો અવયવ છે, તેથી  $5xy = 1 \times 5 \times x \times y$  હકીકતમાં 1 એ બધા પદોનો અવયવ છે, છતાં પ્રાકૃતિક સંખ્યાઓની જેમ, જ્યારે ખાસ જરૂરિયાત હોય ત્યારે જ તેને કોઈ પણ પદના અવયવના રૂપમાં દર્શાવીશું.

અન્ય પદાવલિ વિચારો : 3x(x+2) જેને 3, x અને (x+2) અવયવોનાં ગુણાકારના રૂપમાં લખી શકાય.

$$3x(x+2) = 3 \times x \times (x+2)$$

અવયવો 3, x અને (x + 2) એ 3x(x + 2)ના અવિભાજિત અવયવો છે. આ રીતે પદાવલિ 10x(x + 2)(y + 3)ને તેના અવિભાજિત અવયવોના રૂપમાં આ રીતે દર્શાવી શકાય.

$$10x(x + 2)(y + 3) = 2 \times 5 \times x \times (x + 2) \times (y + 3)$$



## 14.2 અવયવીકરણ એટલે શું ?

જ્યારે આપણે બૈજિક પદાવિલનું અવયવીકરણ કરીએ ત્યારે તેને અવયવોના ગુણાકારના રૂપમાં લખીએ છીએ. આ અવયવો સંખ્યા, બૈજિક ચલ કે બૈજિક પદાવિલ હોઈ શકે.

પદાવલિઓ જેવી કે 3xy,  $5x^2y$ , 2x(y+2), 5(y+1)(x+2) અવયવનાં રૂપમાં જ છે. તેના અવયવો માત્ર તેને વાંચીને જ મેળવી શકાય છે, જે આપણે જાણીએ છીએ.

બીજી તરફ 2x + 4, 3x + 3y,  $x^2 + 5x$ ,  $x^2 + 5x + 6$  જેવી પદાવલિમાં તેમના અવયવો સીધા મળી શકે તેમ નથી. આ પદાવલિનું અવયવીકરણ કરવા માટે અર્થાત્ અવયવો મેળવવા માટે એક વ્યવસ્થિત પદ્ધતિની જરૂર છે. જે આપણે હવે શીખીશું.

#### 14.2.1 સામાન્ય અવયવોની રીત

આપણે એક સાદી પદાવલિ (2x + 4) લઈએ.
 દરેક પદને આપણે અવિભાજિત અવયવોના રૂપમાં લખીએ.

$$2x = 2 \times x 
4 = 2 \times 2 
2x + 4 = (2 \times x) + (2 \times 2)$$

અહીં, 2 એ બન્ને પદમાં સામાન્ય અવયવ છે.

વિભાજનના નિયમના આધારે અવલોકન કરતાં.

$$2 \times (x + 2) = (2 \times x) + (2 \times 2)$$

તેથી આપણે લખી શકીએ કે,

$$2x + 4 = 2 \times (x + 2) = 2(x + 2)$$

આમ, પદાવિલ 2x + 4 એ 2(x + 2) જેવી જ છે. તેના અવયવો 2 અને (x + 2) તરીકે વાંચી શકાય જે તેના અવિભાજિત અવયવો છે.

ધારો કે 5xy + 10xના અવયવ મેળવવા છે.

તો, 5xy અને 10xને તેના અવિભાજિત અવયવોના રૂપમાં નીચે મુજબ લખી શકાય :

$$5xy = 5 \times x \times y$$
$$10x = 2 \times 5 \times x$$

અહીં, 5 અને x એ બન્ને પદમાં સામાન્ય અવયવો છે.

હવે, 
$$5xy + 10x$$
$$= (5 \times x \times y) + (2 \times 5 \times x)$$
$$= (5x \times y) + (5x \times 2)$$

આપણે બન્ને પદને વિભાજનના નિયમનો ઉપયોગ કરીને જોડીએ,

$$(5x \times y) + (5x \times 2) = 5x \times (y + 2)$$

તેથી, 5xy + 10x = 5x(y + 2) જે પદાવલિનું ઇચ્છિત અવયવ સ્વરૂપ છે.

તમે નોંધ્યું કે પદાવલિના

અવયવ રૂપમાં માત્ર એક જ પદ છે

#### પ્રયત્ન કરો

અવયવો શોધો : (i) 12x + 36 (ii) 22y - 33z (iii) 14pq + 35pqr

## 14.2.2 પદોની પુનઃગોઠવણી દ્વારા અવયવીકરણ

પદાવલિ 2xy + 2y + 3x + 3ને જુઓ. તમે જોશો કે પ્રથમ બે પદોમાં 2 અને y અને છેલ્લાં બે પદોમાં 3 સામાન્ય અવયવ છે. પણ બધાં પદોમાં સામાન્ય અવયવ એક પણ નથી.

 $= 2x^2(7x^2 - 9x + 5)$ 

(2xy + 2y)ને અવયવોના રૂપમાં લખીએ

$$(2xy + 2y) + 3a 4 a 1 + 1 3 u + 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1 4 u 1$$

હવે, પદાવલિ 2xy + 2y + 3x + 3 તેના અવયવોના ગુણાકારના રૂપમાં છે. તેના અવયવો (x + 1) અને (2y + 3) છે. જે અવિભાજિત અવયવો છે.

## પદોની પુનઃગોઠવણી એટલે શું ?

ધારો કે, આપણે હમણાં અભ્યાસમાં લીધેલ પદાવલિ જો 2xy + 3 + 2y + 3x સ્વરૂપે આપવામાં આવે તો, તેનું અવયવીકરણ સરળ બનતું નથી. જેથી, આ પદાવલિના અવયવ મેળવવા આપેલાં પદોનાં સ્થાનમાં ફેરફાર કરી તેને 2xy + 2y + 3x + 3 સ્વરૂપે લેતાં (2xy + 2y) અને (3x + 3) એવાં બે જૂથ મળે, જેનાથી અવયવીકરણ સરળ બને. આ પ્રક્રિયાને પદોની પુનઃગોઠવણી કહે છે.

પદોની પુનઃગોઠવણી એકથી વધારે રીતે થઈ શકે. ધારો કે, આપણે પદાવલિને 2xy + 3x + 2y + 3ક્રમમાં ગોઠવીએ તો,

$$2xy + 3x + 2y + 3 = 2 \times x \times y + 3 \times x + 2 \times y + 3$$
$$= x \times (2y + 3) + 1 \times (2y + 3)$$
$$= (2y + 3)(x + 1)$$

અહીં, અવયવો સમાન જ મળે છે. પરંતુ માત્ર અલગ ક્રમમાં દેખાય છે.

ઉદાહરણ 3:6xy-4y+6-9x નું અવયવીકરણ કરો.

ઉકેલ :

**સોપાન 1** બધાં પદોમાં કોઈ સામાન્ય અવયવ છે ? તે ચકાસો. અહીં એક પણ નથી.

**સોપાન 2** ગોઠવણી વિશે વિચારો. જુઓ પ્રથમ બે પદોમાં 2y સામાન્ય અવયવ છે.

$$6xy - 4y = 2y(3x - 2) (a)$$

છેલ્લાં બે પદોનું શું ? તમે તેનો  $\pm 4 -9x + 6$  કરો તો અવયવ (3x - 2) મળશે.

$$-9x + 6 = -3(3x) + 3(2)$$
  
= -3(3x - 2) (b)

**સોપાન 3** (a) અને (b)ને સાથે લેતાં

$$6xy - 4y + 6 - 9x = 6xy - 4y - 9x + 6$$
$$= 2y(3x - 2) - 3(3x - 2)$$
$$= (3x - 2)(2y - 3)$$

(3x - 2) અને (2y - 3) એ (6xy - 4y + 6 - 9x)ના અવયવો છે.



## સ્વાધ્યાય 14.1

- 1. આપેલાં પદોમાં સામાન્ય અવયવ મેળવો.
  - (i) 12x, 36
- (ii) 2y, 22xy
- (iii) 14pq,  $28p^2q^2$

- (iv) 2x,  $3x^2$ , 4
- (v) 6abc,  $24ab^2$ ,  $12a^2b$  (vi)  $16x^3$ ,  $-4x^2$ , 32x
- (vii) 10pq, 20qr, 30rp
- (viii)  $3x^2y^3$ ,  $10x^3y^2$ ,  $6x^2y^2z$
- 2. આપેલી પદાવલિઓના અવયવ મેળવો.
  - (i) 7x 42
- (ii) 6p 12q
- (iii)  $7a^2 + 14a$

- (iv)  $-16z + 20z^3$
- (v)  $20l^2m + 30alm$  (vi)  $5x^2y 15xy^2$
- (vii)  $10a^2 15b^2 + 20c^2$  (viii)  $-4a^2 + 4ab 4ca$  (ix)  $x^2yz + xy^2z + xyz^2$

- (x)  $ax^2y + bxy^2 + cxyz$
- 3. અવયવ મેળવો.
  - (i)  $x^2 + xy + 8x + 8y$  (ii) 15xy 6x + 5y 2 (iii) ax + bx ay by
  - (iv) 15pq + 15 + 9q + 25p
  - (v) z 7 + 7xy xyz

#### 14.2.3 નિત્યસમનો ઉપયોગ કરીને અવયવીકરણ

આપણે જાણીએ છીએ કે, 
$$(a+b)^2 = a^2 + 2ab + b^2$$
 (I)

$$(a-b)^2 = a^2 - 2ab + b^2 (II)$$

$$(a + b)(a - b) = a^2 - b^2$$
 (III)

નીચેનાં ઉદાહરણો દ્વારા આપણે આ નિત્યસમનો ઉપયોગ અવયવીકરણમાં કેવી રીતે થાય એ શીખીશું. આપણે પદાવલિઓનું અવલોકન કરીશું. જો કોઈ પદાવલિનું રૂપ (પ્રકાર) કોઈ પણ નિત્યસમની જમણી બાજુ જેવું હોય તો તે પદાવલિના ડાબી બાજુનાં પદો એ તેનું યોગ્ય અવયવીકરણ આપશે.

ઉદાહરણ  $4: x^2 + 8x + 16$ ના અવયવ મેળવો.

ઉંકેલ : પદાવલિનું અવલોકન કરો. અહીં ત્રણ પદો છે. તેથી તે નિત્યસમ (III) જેવું નથી. તેનું પ્રથમ અને છેલ્લું પદ પૂર્ણવર્ગ છે અને વચ્ચેના પદ પહેલા '+'ની નિશાની છે. તેથી તે  $a^2+2ab+b^2$ વાળું રૂપ છે. જ્યાં a=x અને b=4

જેથી, 
$$a^2 + 2ab + b^2 = (x)^2 + 2(x)(4) + (4)^2$$
$$= x^2 + 8x + 16$$
 હવે, 
$$a^2 + 2ab + b^2 = (a + b)^2$$
 સાથે સરખાવતાં,

$$x^2 + 8x + 16 = (x + 4)^2$$
 (જરૂરી અવયવીકરણ)

ઉદાહરણ  $5:4y^2-12y+9$ ના અવયવ મેળવો.

ઉકેલ : અવલોકન કરો,  $4y^2 = (2y)^2$ ,  $9 = 3^2$ ,  $12y = 2 \times 3 \times 2y$ 

તેથી,  $4y^2 - 12y + 9 = (2y)^2 - 2 \times (3) \times (2y) + (3)^2$ 

 $=(2v-3)^2$  (%3રી અવયવીકરણ)

અહીં અવલોકન કરી શકીએ કે, આપેલ પદાવલિનું સ્વરૂપ :  $a^2 - 2ab + b^2$  પ્રકારનું છે. જ્યાં a = 2y અને b = 3 અને 2ab = 2(2y)(3) = 12y

ઉદાહરણ  $6:49p^2-36$ ના અવયવ મેળવો.

ઉકેલ : અહીં બે પદો છે, બંને પૂર્ણવર્ગ છે અને બીજું પદ ઋણ છે.

પદાવિલનું રૂપ  $(a^2 - b^2)$  જેવું છે. અહીં નિત્યસમ III નો ઉપયોગ કરીશું.

$$49p^2 - 36 = (7p)^2 - (6)^2$$
  
=  $(7p - 6)(7p + 6)$  (જરૂરી અવયવીકરણ)

ઉદાહરણ  $7: a^2 - 2ab + b^2 - c^2$ ના અવયવ મેળવો.

6કેલ : આપેલ પદાવિલના પ્રથમ ત્રણ પદોનું રૂપ  $(a-b)^2$  જેવું છે અને ચોથું પદ પૂર્ણવર્ગ છે. એટલે આપેલ પદાવિલને બે વર્ગોના તફાવતના રૂપમાં લખી શકાય.

તેથી, 
$$a^2 - 2ab + b^2 - c^2 = (a - b)^2 - c^2 \text{ (નિત્યસમ II)}$$
$$= [(a - b) - c] [(a - b) + c] \text{ (નિત્યસમ III)}$$
$$= (a - b - c) (a - b + c) \text{ (જરૂરી અવયવીકરણ)}$$

અહીં, નોંધો કે જરૂરી અવયવીકરણ માટે આપણે બે નિત્યસમ એક પછી એક લાગુ પાડ્યા છે.

ઉદાહરણ  $8: m^4 - 256$ ના અવયવ મેળવો.

ઉકેલ :  $m^4 = (m^2)^2$  અને  $256 = (16)^2$ 

તેથી, આપેલ પદાવલિ નિત્યસમ (III) જેવી છે.

$$m^4 - 256 = (m^2)^2 - (16)^2$$
  
=  $(m^2 - 16)(m^2 + 16)$  (નિત્યસમ (III) પરથી)

હવે  $(m^2 + 16)$ નું આગળ અવયવીકરણ ન થઈ શકે પણ  $(m^2 - 16)$ નું નિત્યસમ (III) દ્વારા આગળ અવયવીકરણ થઈ શકે.

$$m^{2}-16 = m^{2}-4^{2}$$

$$= (m-4)(m+4)$$

$$del m^{2}-256 = (m-4)(m+4)(m^{2}+16)$$

#### 14.2.4 (x + a) (x + b) પ્રકારના અવયવો

હવે આપણે એક ચલવાળી પદાવલિઓનું અવયવીકરણ શીખીએ. જેવી કે,  $x^2 + 5x + 6$ ,  $y^2 - 7y + 12$ ,  $z^2 - 4z - 12$ ,  $3m^2 + 9m + 6$  વિગેરે....અવલોકન કરો કે આ પદાવલિઓ  $(a + b)^2$  કે  $(a - b)^2$  જેવી નથી. તે પૂર્ણવર્ગ પણ નથી. દા.ત.,  $x^2 + 5x + 6$ માં 6 એ પૂર્ણવર્ગ નથી.

આ પદાવલિઓ  $(a^2 - b^2)$  જેવી પણ નથી. તે  $x^2 + (a + b)x + ab$  જેવી લાગે છે. તેથી આપણે નિત્યસમ (IV) જે આગળના પ્રકરણમાં ભણ્યા તેનો ઉપયોગ કરીને આવી પદાવલિઓનું અવયવીકરણ કરીએ.

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$
 (IV)

તેના માટે આપણે xના સહગુણક અને અચળ પદનું અવલોકન કરીએ.

હવે નીચેના ઉદાહરણ દ્વારા જોઈએ કે એ કેવી રીતે થશે ?

ઉદાહરણ  $9: x^2 + 5x + 6$ ના અવયવ મેળવો.

ઉંકેલ : આપણે નિત્યસમ (IV)ની જમણી બાજુને  $x^2 + 5x + 6$  સાથે સરખાવીએ તો આપણને ab = 6 અને a + b = 5 મળે.

આ પરથી આપણે a અને b મેળવવા પડે, જેથી અવયવો (x+a) અને (x+b) થાય.

જો ab = 6 હોય તો a અને b એ b અવયવ છે.

ચાલો, a=6, b=1 લઈ પ્રયત્ત કરીએ. આ કિંમતો માટે a+b=7 મળે, 5 નહીં. તેથી આ પસંદગી યોગ્ય નથી. હવે a=2 અને b=3 ચકાસીએ. અહીં a+b=5 થાય છે. આમ, આપેલ પદાવલિનું અવયવીકરણવાળું રૂપ (x+2)(x+3) થાય.

વ્યાપક રીતે  $x^2 + px + q$  પ્રકારની બૈજિક પદાવિલનું અવયવીકરણ કરવા માટે આપણે qના બે અવયવો a અને b શોધવા પડે જેથી

ઉદાહરણ  $10: y^2 - 7y + 12$ ના અવયવ મેળવો.

ઉંકેલ : આપણે જાણીએ છીએ કે, 
$$12 = 3 \times 4$$
 અને  $3 + 4 = 7$   
તેથી 
$$y^2 - 7y + 12 = y^2 - 3y - 4y + 12$$
$$= y(y - 3) - 4(y - 3) = (y - 3)(y - 4)$$

અહીં નોંધો કે આ વખતે આપણે a અને b શોધવા માટે આપેલ પદાવલિને નિત્યસમ (IV) સાથે સરખાવી નથી. થોડા પ્રયત્નો બાદ આપેલ પદાવલિનું અવયવીકરણ કરવા માટે તમારે પણ તેને નિત્યસમ સાથે સરખાવવાની જરૂર રહેશે નહિ. તમે સીધા જ આગળ વધી શકશો.

ઉદાહરણ  $11: z^2 - 4z - 12$ ના અવયવ મેળવો.

ઉકેલ : અહીં ab = -12 તેનો મતલબ a અને bમાંથી કોઈ પણ એક ઋણ છે.

a + b = -4 છે તેથી જે સંખ્યા મોટી છે તે ઋણ છે. આપણે a = -4 અને b = 3 લઈને ચકાસીએ પણ આ શક્ય બનશે નહીં. કારણ કે, અહીં a + b = -1 થાય છે.

હવે, a = -6, b = 2 લઈને ચકાસીએ, અહીં a + b = -4 થાય છે.

તેથી, 
$$z^2 - 4z - 12 = z^2 - 6z + 2z - 12$$
$$= z(z - 6) + 2(z - 6)$$
$$= (z - 6)(z + 2)$$

ઉદાહરણ  $12:3m^2+9m+6$ ના અવયવ મેળવો.

ઉકેલ : આપણે નોંધીએ કે ત્રણેય પદોમાં 3 એ સામાન્ય અવયવ છે.

તેથી, 
$$3m^2 + 9m + 6 = 3(m^2 + 3m + 2)$$
 હવે, 
$$m^2 + 3m + 2 = m^2 + m + 2m + 2 \qquad (\because 2 = 1 \times 2)$$
$$= m(m+1) + 2(m+1)$$

 $3m^2 + 9m + 6 = 3(m+1)(m+2)$ આમ,

## સ્વાધ્યાય 14.2

- 1. નીચેની પદાવલિઓના અવયવ મેળવો.
  - $a^2 + 8a + 16$ (i)

= (m + 1)(m + 2)

- (ii)  $p^2 10p + 25$  (iii)  $25m^2 + 30m + 9$
- (iv)  $49y^2 + 84yz + 36z^2$

(v)  $4x^2 - 8x + 4$ 

- (vi)  $121b^2 88bc + 16c^2$
- (vii)  $(l + m)^2 4lm$  $(સૂચન : (l + m)^2 નું વિસ્તરણ કરો.)$
- (viii)  $a^4 + 2a^2b^2 + b^4$
- 2. અવયવ મેળવો.
  - (i)  $4p^2 9q^2$
- (ii)  $63a^2 112b^2$  (iii)  $49x^2 36$

- (iv)  $16x^5 144x^3$
- (v)  $(l+m)^2 (l-m)^2$
- (vi)  $9x^2v^2 16$
- (vii)  $(x^2 2xy + y^2) z^2$
- (viii)  $25a^2 4b^2 + 28bc 49c^2$
- 3. પદાવલિના અવયવ મેળવો.
  - (i)  $ax^2 + bx$
- (ii)  $7p^2 + 21q^2$
- (iii)  $2x^3 + 2xy^2 + 2xz^2$
- (iv)  $am^2 + bm^2 + bn^2 + an^2$  (v) (lm + l) + m + 1
- (vi) y(y+z) + 9(y+z)
- (vii)  $5y^2 20y 8z + 2yz$
- (viii) 10ab + 4a + 5b + 2
- (ix) 6xy 4y + 6 9x



4. અવયવ મેળવો.

(i) 
$$a^4 - b^4$$
 (ii)  $p^4 - 81$  (iii)  $x^4 - (y + z)^4$  (iv)  $x^4 - (x - z)^4$  (v)  $a^4 - 2a^2b^2 + b^4$ 

5. નીચેની પદાવલિના અવયવ મેળવો.

(i) 
$$p^2 + 6p + 8$$
 (ii)  $q^2 - 10q + 21$  (iii)  $p^2 + 6p - 16$ 



#### 14.3 બૈજિક પદાવલિઓનો ભાગાકાર

આપણે બૈજિક પદાવલિઓનો સરવાળો અને બાદબાકી કરતા શીખ્યા. આપણને બે પદાવલિઓનો ગુણાકાર કરતાં પણ આવડે છે. પણ આપણે એક બૈજિક પદાવલિનો બીજી પદાવલિ વડે ભાગાકાર કરવા તરફ ધ્યાન આપ્યું નથી. તે આપણે અહીં શીખીશું.

આપણે યાદ કરીએ કે ભાગાકાર એ ગુણાકારની વ્યસ્ત ક્રિયા છે.  $7 \times 8 = 56$  તેથી  $56 \div 8 = 7$  અથવા  $56 \div 7 = 8$ 

આ જ રીતે આપણે બૈજિક પદાવલિઓનો ભાગાકાર કરીશું.

(i) 
$$2x \times 3x^{2} = 6x^{3}$$
તેથી 
$$6x^{3} \div 2x = 3x^{2}$$
અને 
$$6x^{3} \div 3x^{2} = 2x$$
(ii) 
$$5x(x+4) = 5x^{2} + 20x$$
તેથી 
$$(5x^{2} + 20x) \div 5x = x+4$$
અને 
$$(5x^{2} + 20x) \div (x+4) = 5x$$

હવે આપણે સમજીશું કે એક પદાવિલનો ભાગાકાર બીજી પદાવિલ દ્વારા કેવી રીતે થાય. આપણે એકપદીનો ભાગાકાર એકપદી દ્વારા કેવી રીતે કરી શકાય ત્યાંથી શરૂઆત કરીશું.

#### 14.3.1 એકપદી વડે બીજી એકપદીનો ભાગાકાર

ધારો કે,  $6x^3 \div 2x$ 

આપણે 2x અને  $6x^3$ નું અવિભાજિત અવયવરૂપ લખીએ.

$$2x = 2 \times x$$

$$6x^3 = 2 \times 3 \times x \times x \times x$$

હવે 2xને અલગ પાડવા માટે આપણે  $6x^3$ ના અવયવોનું જૂથ બનાવીએ.

$$6x^{3} = 2 \times x \times (3 \times x \times x)$$
$$= (2x) \times (3x^{2})$$
$$= 2x = 3x^{2}$$

તેથી

$$6x^3 \div 2x = 3x^2$$

ટૂંકી રીત : સામાન્ય અવયવોને દૂર કરવા એ બે સંખ્યાનો ભાગાકાર દર્શાવતી રીત છે.

77 ÷ 7 = 
$$\frac{77}{7} = \frac{7 \times 11}{7} = 11$$
  
આ રીતે, 
$$6x^3 ÷ 2x = \frac{6x^3}{2x}$$
$$= \frac{2 \times 3 \times x \times x \times x}{2 \times x}$$
$$= 3 \times x \times x$$
$$= 3x^2$$

ઉદાહરણ 13 : નીચેના ભાગાકાર કરો.

(i) 
$$-20x^4 \div 10x^2$$
 (ii)  $7x^2y^2z^2 \div 14xyz$ 

ઉકેલ :

(i) 
$$-20x^4 = -2 \times 2 \times 5 \times x \times x \times x \times x$$

$$10x^2 = 2 \times 5 \times x \times x$$

તેથી, 
$$(-20x^4) \div 10x^2 = \frac{-2 \times 2 \times 5 \times x \times x \times x \times x}{2 \times 5 \times x \times x}$$
$$= -2 \times x \times x = -2x^2$$

(ii) 
$$7x^2y^2z^2 \div 14xyz$$
 
$$= \frac{7 \times x \times x \times y \times y \times z \times z}{2 \times 7 \times x \times y \times z}$$
$$= \frac{x \times y \times z}{2} = \frac{1}{2}xyz$$

## પ્રયત્ન કરો

## ભાગાકાર કરો.

(i)  $6yz^2$  દ્વારા  $24xy^2z^3$ 

(ii)  $7a^2b^2c^3$  દ્વારા  $63a^2b^4c^6$ 

## 14.3.2 એકપદી વડે બહુપદીનો ભાગાકાર

ધારો કે ત્રિપદી  $4y^3 + 5y^2 + 6y$ નો ભાગાકાર એકપદી 2y દ્વારા કરીએ.

$$4y^3 + 5y^2 + 6y = (2 \times 2 \times y \times y \times y) + (5 \times y \times y) + (2 \times 3 \times y)$$

(અહીં આપણે બહુપદીના દરેક પદને તેના અવયવોના રૂપમાં દર્શાવ્યું છે.) આપણે જોયું કે,  $2 \times y$  એ બધામાં સામાન્ય પદ છે. તેથી દરેક પદમાંથી  $2 \times y$ ને અલગ કરતાં

$$4y^3 + 5y^2 + 6y = 2 \times y \times (2 \times y \times y) + 2 \times y \times \left(\frac{5}{2} \times y\right) + 2 \times y \times 3$$
$$= 2y(2y^2) + 2y\left(\frac{5}{2} \times y\right) + 2y(3)$$
$$= 2y\left(2y^2 + \frac{5}{2}y + 3\right) \text{ (સામાન્ય અવયવ 2y અલગથી દર્શાવેલ છે.)}$$

તેથી, 
$$(4y^3 + 5y^2 + 6y) \div 2y$$

$$= \frac{4y^3 + 5y^2 + 6y}{2y} = \frac{2y(2y^2 + \frac{5}{2}y + 3)}{2y}$$

$$= 2y^2 + \frac{5}{2}y + 3$$

બીજી રીત: આપણે બહુપદીના દરેક પદને એકપદી દ્વારા ભાગી શકીએ.

$$(4y^{3} + 5y^{2} + 6y) \div 2y = \frac{4y^{3} + 5y^{2} + 6y}{2y}$$

$$= \frac{4y^{3}}{2y} + \frac{5y^{2}}{2y} + \frac{6y}{2y}$$

$$= 2y^{2} + \frac{5}{2}y + 3$$

અહીં ઓપણે અંશની બહુપદીના દરેક પદને છેદમાં આવેલી એકપદી દ્વારા ભાગીએ છીએ...

ઉદાહરણ  $14 : 24(x^2yz + xy^2z + xyz^2)$ ને 8xyz વડે બંને રીતથી ભાગો.

$$344 : 24(x^2yz + xy^2z + xyz^2)$$

$$=2\times2\times2\times3\times[(x\times x\times y\times z)+(x\times y\times y\times z)+(x\times y\times z\times z)]$$

$$=2\times2\times2\times3\times x\times y\times z(x+y+z)$$
 (સામાન્ય અવયવ લેતાં;)

$$= 8 \times 3 \times xyz \times (x + y + z)$$

તેથી, 
$$24(x^2yz + xy^2z + xyz^2) \div 8xyz$$

$$= \frac{8 \times 3 \times xyz \times (x + y + z)}{8 \times xyz} = 3 \times (x + y + z) = 3(x + y + z)$$



બીજી રીત, 
$$24(x^2yz + xy^2z + xyz^2) \div 8xyz = \frac{24x^2yz}{8xyz} + \frac{24xy^2z}{8xyz} + \frac{24xyz^2}{8xyz}$$
$$= 3x + 3y + 3z = 3(x + y + z)$$

## 14.4 બૈજિક પદાવલિના ભાગાકાર (બહુપદી ÷ બહુપદી)

• ધારો કે  $(7x^2 + 14x) \div (x + 2)$ 

આપણે  $(7x^2 + 14x)$  ના અવયવો મેળવીશું.

શું અહીં, અંશમાં રહેલ દરેક પદને, છેદમાં રહેલ દ્વિપદી વડે ભાગવાથી સરળતા રહેશે ?

$$7x^{2} + 14x = (7 \times x \times x) + (2 \times 7 \times x)$$
  
=  $7 \times x \times (x + 2)$   
=  $7x(x + 2)$ 

હવે 
$$(7x^2 + 14x) \div (x + 2) = \frac{7x^2 + 14x}{x + 2}$$
$$= \frac{7x(x + 2)}{(x + 2)} = 7x$$

[અવયવ (x + 2)નો છેદ ઉડાડતાં]

ઉદાહરણ 15 :  $44(x^4 - 5x^3 - 24x^2)$ ને 11x(x - 8) વડે ભાગો.

ઉકેલ :  $44(x^4 - 5x^3 - 24x^2)$ ના અવયવ મેળવતાં;

$$44(x^{4} - 5x^{3} - 24x^{2}) = 2 \times 2 \times 11 \times x^{2}(x^{2} - 5x - 24)$$

$$= 2 \times 2 \times 11 \times x^{2}(x^{2} - 8x + 3x - 24)$$

$$= 2 \times 2 \times 11 \times x^{2}[x(x - 8) + 3(x - 8)]$$

$$= 2 \times 2 \times 11 \times x^{2}(x + 3)(x - 8)$$

તેથી,  $44(x^4 - 5x^3 - 24x^2) \div 11x(x - 8)$ 

$$= \frac{2 \times 2 \times 11 \times x \times x \times (x+3) \times (x-8)}{11 \times x \times (x-8)}$$

$$= 2 \times 2 \times x(x + 3) = 4x(x + 3)$$

ઉદાહરણ 16 :  $z(5z^2 - 80)$ ને 5z(z + 4) વડે ભાગો.

ઉકેલ : ભાજપ = 
$$z(5z^2 - 80)$$
  
=  $z[(5 \times z^2) - (5 \times 16)]$   
=  $z \times 5 \times (z^2 - 16)$   
=  $5z \times (z + 4)(z - 4)$ 

 $[\because a^2 - b^2 = (a + b)(a - b)$ િનત્યસમનો ઉપયોગ કરતાં]

આમ, 
$$z(5z^2 - 80) \div 5z(z + 4) = \frac{5z \times (z+4)(z-4)}{5z(z+4)} = (z-4)$$

અંશ અને છેદ બંનેમાં રહેલ સામાન્ય અવયવો : 11, x અને (x – 8)નો છેદ ઉડાડતા

## સ્વાધ્યાય 14.3

- 1. ભાગફળ શોધો.
  - $28x^4 \div 56x$
- (ii)
- $-36y^3 \div 9y^2$  (iii)  $66pq^2r^3 \div 11qr^2$
- (iv)  $34x^3y^3z^3 \div 51xy^2z^3$

- (v)  $12a^8b^8 \div (-6a^6b^4)$
- 2. આપેલ બહુપદીને એકપદી વડે ભાગો.
  - $(5x^2 6x) \div 3x$ (i)

- (ii)  $(3v^8 4v^6 + 5v^4) \div v^4$
- (iii)  $8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) \div 4x^2y^2z^2$  (iv)  $(x^3 + 2x^2 + 3x) \div 2x$
- (v)  $(p^3q^6 p^6q^3) \div p^3q^3$
- 3. નીચેનો ભાગાકાર કરો.
  - (i)  $(10x 25) \div 5$

- (ii)  $(10x 25) \div (2x 5)$
- (iii)  $10y(6y + 21) \div 5(2y + 7)$
- (iv)  $9x^2y^2(3z 24) \div 27xy(z 8)$
- (v)  $96abc(3a 12)(5b 30) \div 144(a 4)(b 6)$
- 4. સુચવ્યા મુજબ ભાગાકાર કરો.
  - (i)  $5(2x + 1)(3x + 5) \div (2x + 1)$
- (ii)  $26xy(x+5)(y-4) \div 13x(y-4)$
- (iii)  $52pqr(p+q)(q+r)(r+p) \div 104pq(q+r)(r+p)$
- (iv)  $20(y + 4)(y^2 + 5y + 3) \div 5(y + 4)$  (v)  $x(x + 1)(x + 2)(x + 3) \div x(x + 1)$
- 5. આપેલી પદાવલિના અવયવ મેળવો અને સુચવ્યા મુજબ ભાગાકાર કરો.
  - (i)  $(y^2 + 7y + 10) \div (y + 5)$
- (ii)  $(m^2 14m 32) \div (m + 2)$
- (iii)  $(5p^2 25p + 20) \div (p 1)$
- (iv)  $4yz(z^2 + 6z 16) \div 2y(z + 8)$
- (v)  $5pq(p^2 q^2) \div 2p(p + q)$
- (vi)  $12xy(9x^2 16y^2) \div 4xy(3x + 4y)$
- (vii)  $39y^3(50y^2 98) \div 26y^2(5y + 7)$

## 14.5 શું તમે ભુલ શોધી શકશો ?

પ્રવૃત્તિ 1 સમીકરણનો ઉકેલ શોધવામાં સરિતા નીચે મુજબ ગણતરી કરે છે.

$$3x + x + 5x = 72$$

તેથી,

$$8x = 72$$

અને તેથી.

$$x = \frac{72}{8} = 9$$

અહીં તે ગણતરીમાં કયાં ભૂલ કરે છે તે શોધો અને સાચો ઉકેલ મેળવો.

પ્રવૃત્તિ 2 અપ્પુ નીચે મુજબ ગણતરી કરે છે.

$$x = -3$$
  $+u$ 2,  $5x = 5 - 3 = 2$ 

શું તેની ગણતરી બરાબર છે ? જો ના, તો સુધારો.

પ્રવૃત્તિ 3 નમ્રતા અને સલમા બૈજિક પદાવલિમાં નીચે મુજબ ગણતરી કરે છે

નમ્રતા

સલમા

(a) 
$$3(x-4) = 3x - 4$$
  $3(x-4) = 3x - 12$ 

મોટેભાગે, પદના સહગુણક તરીકે '1'ને આપણે દર્શાવતા નથી. પણ, સજાતીય પદોના સરવાળા કરીએ ત્યારે '1' ધ્યાને લેવો પડે છે.

> જ્યારે ચલની ૠણ (–) કિંમત લેવામાં આવે ત્યારે કૌંસનો ઉપયોગ કરવાનું યાદ 🗸 રાખો.

જ્યારે કૌંસની અંદર રહેલ પદાવલિને, કૌંસની બહાર આવેલ અચલ (કે ચલ) વડે ગુણવામાં આવે, ત્યારે પદાવલિનાં• દરેક પદને અચલ (કે ચલ) વડે

ગુણુવાનું હોય છે.

(b) 
$$(2x)^2 = 2x^2$$

$$(2x)^2 = 4x^2$$

(c) 
$$(2a-3)(a+2)$$

$$(2a-3)(a+2)$$

$$= 2a^2 - 6$$

$$= 2a^2 + a - 6$$

યાદ રાખો કે, જ્યારે તમે ⊾એકપદીનો વર્ગ કરો છો, ત્યારે તેના સહગુણક તથા દરેક અવયવનો વર્ગ કરવો પડે.

(d) 
$$(x + 8)^2 = x^2 + 64$$

$$(x + 8)^2 = x^2 + 16x + 64$$

(e) 
$$(x-5)^2 = x^2 - 25$$

$$(x-5)^2 = x^2 - 10x + 25$$

શું નમ્રતા અને સલમા દ્વારા કરાયેલ ગણતરી સાચી છે ? તમારા જવાબ માટે કારણ આપો.

જ્યારે કોઈ રીત અપનાવો > ત્યારે પ્રથમ નક્કી કરો કે આ રીત ખરેખર લાગુ પડી

**પ્રવૃત્તિ 4** જૉસેફ એક ભાગાકાર નીચે મુજબ કરે છે :  $\frac{a+5}{5} = a+1$  તેનો મિત્ર શિરીષ આ જ ભાગાકાર

અંશમાં આવેલ બહુપદીને છેદમાં રહેલ એકપદી દ્વારા ભાગવામાં આવે ત્યારે આપણે અંશમાં આવેલ બહુપદીના દરેક પદ સાથે એકપદીનો ભાગાકાર કરવો પડે છે !

નીચે મુજબ કરે છે :  $\frac{a+5}{5} = a$  તેનો બીજો મિત્ર સુમન નીચે મુજબ ગણતરી કરે છે.  $\frac{a+5}{5} = \frac{a}{5} + 1$  કોણે ભાગાકાર સાચો કર્યો છે ? કોણે ભૂલ કરી છે ? શા માટે ?

#### ગણિત ગમ્મત!

અતુલ હંમેશા જુદી રીતે વિચાર કરતો વિદ્યાર્થી છે. તે તેના શિક્ષકને પૂછે છે કે, 'જો તમે સમજાવ્યું એ જ સાચું હોય તો પછી મને નીચેની ગણતરી માટે સાચો જવાબ કેમ મળ્યો ?'

 $\frac{64}{16} = \frac{64}{16} = \frac{4}{1}$  શિક્ષક: 'તારો ઉત્તર સાચો છે, પરંતુ જો તું  $\frac{64}{16}$ માં 6નો છેદ ઉડાડી

અને  $\frac{4}{1}$  મેળવે તો તે બરાબર ગણતરી નથી. ખરેખર તો, 16 એ 64નો અવયવ છે. 6

એ 64 કે 16 બેમાંથી એકનો પણ અવયવ નથી. તેથી,  $\frac{64}{16} = \frac{16 \times 4}{16 \times 1} = \frac{4}{1}$  થાય.

ઉપરાંત,  $\frac{664}{166} = \frac{4}{1}$ ,  $\frac{6664}{1666} = \frac{4}{1}$  અને એ જ રીતે આગળ...'

શું ખરેખર આ રસપ્રદ નથી ? શું તમે અતુલને  $\frac{64}{16}$  જેવાં બીજાં ઉદાહરણ શોધવામાં મદદ કરશો ?

#### સ્વાધ્યાય 14.4

નીચેનાં ગાણિતિક વિધાનોમાંથી ભૂલ શોધો અને તેને સુધારો.

1. 
$$4(x - 5) = 4x - 5$$

**1.** 
$$4(x-5) = 4x-5$$
 **2.**  $x(3x+2) = 3x^2+2$  **3.**  $2x+3y=5xy$ 

3. 
$$2x + 3y = 5xy$$

4. 
$$x + 2x + 3x = 5x$$

**4.** 
$$x + 2x + 3x = 5x$$
 **5.**  $5y + 2y + y - 7y = 0$  **6.**  $3x + 2x = 5x^2$ 

**6.** 
$$3x + 2x = 5x^2$$

7. 
$$(2x)^2 + 4(2x) + 7 = 2x^2 + 8x + 7$$

**8.** 
$$(2x)^2 + 5x = 4x + 5x = 9x$$

9. 
$$(3x + 2)^2 = 3x + 6x + 4$$

**10.** x = -3 લઈએ તો,

(a) 
$$x^2 + 5x + 4$$
 એટલે  $(-3)^2 + 5(-3) + 4 = 9 + 2 + 4 = 15$ 

(b) 
$$x^2 - 5x + 4$$
 એટલે  $(-3)^2 - 5(-3) + 4 = 9 - 15 + 4 = -2$ 

(c) 
$$x^2 + 5x$$
 એટલે  $(-3)^2 + 5(-3) = -9 - 15 = -24$ 

11. 
$$(y-3)^2 = y^2 - 9$$

12. 
$$(z + 5)^2 = z^2 + 25$$

**13.** 
$$(2a+3b)(a-b) = 2a^2 - 3b^2$$
 **14.**  $(a+4)(a+2) = a^2 + 8$ 

14. 
$$(a+4)(a+2) = a^2 + 8$$

**15.** 
$$(a-4)(a-2) = a^2 - 8$$
 **16.**  $\frac{3x^2}{3x^2} = 0$ 

**16.** 
$$\frac{3x^2}{3x^2} = 0$$

17. 
$$\frac{3x^2+1}{3x^2} = 1 + 1 = 2$$
 18.  $\frac{3x}{3x+2} = \frac{1}{2}$  19.  $\frac{3}{4x+3} = \frac{1}{4x}$ 

18. 
$$\frac{3x}{3x+2} = \frac{1}{2}$$

19. 
$$\frac{3}{4x+3} = \frac{1}{4x}$$

**20.** 
$$\frac{4x+5}{4x} = 5$$

**21.** 
$$\frac{7x+5}{5} = 7x$$

# આપણે શું ચર્ચા કરી ?

- 1. જ્યારે આપશે પદાવલિના અવયવ પાડીએ છીએ ત્યારે આપશે પદાવલિને અવયવોના ગુણાકાર સ્વરૂપે લખીએ છીએ. આ અવયવો સંખ્યા, બૈજિક ચલ કે બૈજિક પદાવલિ હોઈ શકે.
- 2. અવિભાજિત અવયવ એ એવો અવયવ છે જેને ફરીથી અવયવોના ગુણાકાર સ્વરૂપે લખી શકાતો નથી.
- 3. પદાવલિના અવયવ પાડવાની પદ્ધતિસરની રીત એ સામાન્ય અવયવની રીત છે. તેમાં ત્રણ તબક્કા છે : (i) પદાવલિના દરેક પદને અવિભાજ્ય અવયવના સ્વરૂપે દર્શાવો. (ii) સામાન્ય અવયવોને જુદા તારવો અને (iii) વિભાજનના નિયમની મદદથી દરેક પદના બાકી વધેલ અવયવોને ભેગા કરો.
- 4. કોઈ વખત આપેલી પદાવલિનાં બધાં પદોમાં કોઈપણ અવયવ સામાન્ય હોતો નથી. આવા વખતે આપેલ પદોના એવાં જૂથ બનાવો કે જેથી દરેક જૂથમાં કોઈને કોઈ અવયવ સામાન્ય હોય જ્યારે આપણે આવું કરીએ છીએ ત્યારે દરેક જૂથમાં કોઈ એક સામાન્ય અવયવ મળી આવે છે અને ત્યાર બાદ આપણે પદાવલિના અવયવ મેળવવાની દિશામાં જઈ શકીએ છીએ. આ પદોની પુનઃગોઠવણીની રીત છે.
- 5. પદોની પુનઃગોઠવણી બાદ અવયવીકરણમાં આપણે યાદ રાખીશું કે આપેલ પદાવલિના પદોનાં માત્ર સ્થાન બદલવાથી કે ગમે તે રીતે પદોની ગોઠવણી કરવાથી (અર્થાત્, માત્ર પદોનો ક્રમ બદલવાથી) આપણને પદાવલિના અવયવ મળી શકતા નથી. આપણે પદાવલિના પદોનું અવલોકન કરવું જોઈએ અને ભૂલ અને પ્રયત્ન દ્વારા ઇચ્છિત ગોઠવણી કરવી જોઈએ.
- **6.** અનેક પદાવલિઓને (તેના અવયવ મેળવવા માટે) આપણે  $a^2 + 2ab + b^2$ ,  $a^2 2ab + b^2$ ,  $a^2$  $-b^2$  અને  $x^2 + (a+b)x + ab$  સ્વરૂપે ગોઠવી શકીએ છીએ. આવી પદાવલિઓના અવયવ નિત્યસમ I, II, III અને IVની મદદથી (જે પ્રકરણ-9માં આપેલ છે.) સરળતાથી મેળવી શકાય છે.

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

$$a^{2} - 2ab + b^{2} = (a - b)^{2}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$x^{2} + (a + b)x + ab = (x + a)(x + b)$$

7. જે પદાવિલના અવયવ (x + a)(x + b) પ્રકારે મળતા હોય, તેમાં એ ખાસ ધ્યાનમાં લેવું જોઈએ કે પદાવલિના અંતિમ પદ(ab)ના એવા અવયવ શોધો કે જેથી તેનો સરવાળો (કે બાદબાકી) કરવાથી મળતી સંખ્યા *x*નો સહગુણક બને.

(**નોંધ**: અહીં મળતા અવયવોની નિશાનીમાં પણ કાળજી રાખવી જોઈએ.)

8. સંખ્યાના ભાગાકારની ક્રિયા એ ખરેખર ગુણાકારની વ્યસ્ત ક્રિયા છે. આ જ વિચાર (Idea) બૈજિક પદાવલિના ભાગાકાર માટે પણ ઉપયોગી છે.

- 9. બહુપદીનો એકપદી વડે ભાગાકાર કરવાના કિસ્સામાં આપણે બહુપદીના દરેક પદનો એકપદી સાથે ભાગાકાર કરીએ છીએ અથવા સામાન્ય અવયવ કાઢવાની રીતનો ઉપયોગ કરીએ છીએ.
- 10. બહુપદીનો બહુપદી વડે ભાગાકાર કરવાના કિસ્સામાં, ભાજ્ય પદાવલિ(Dividend Polynomial)ના દરેક પદનો ભાજક પદાવલિ(Divisor Polynomial)ના દરેક પદ સાથે ભાગાકાર કરીએ એ રીત બરાબર નથી.

તેના બદલે બંને પદાવિલનાં અવયવ પાડીને ત્યાર બાદ બંનેનો સામાન્ય અવયવ રદ (Cancel) કરવો જોઈએ.

11. અગાઉના પ્રકરણમાં શીખી ગયા તે મુજબ, બૈજિક પદાવલિનો ભાગાકાર એટલે,

ભાજ્ય પદાવલિ = ભાજક પદાવલિ × ભાગફળ

વ્યાપક સ્વરૂપે,

ભાજય = (ભાજક  $\times$  ભાગ $\phi$ 0) + શેષ

આ પ્રકરણમાં આપણે એવી જ પદાવલિના ભાગાકારની ચર્ચા કરેલ છે જેમાં શેષ શૂન્ય હોય.

12. બૈજિક પદાવલિના કોયડાઓ ઉકેલતી વખતે વિદ્યાર્થીઓ ઘણી સામાન્ય ભૂલો કરતાં હોય છે. તેને તમારે આવી ભૂલો કરતાં ટાળવા જોઈએ.

