Laporan Tugas Kecil 3 Strategi Algoritma

Poin	Ya	Tidak
Program berhasil dikompilasi		
Program berhasil running		
Program dapat menerima input dan menuliskan output		
Luaran sudah benar untuk semua data uji		
Bonus dibuat		

Cara kerja program: *Branch and Bound* yang dibuat dalam menyelesaikan persoalan

Representasi Matriks

Matriks direpresentasikan dalam bentuk array satu dimensi. Contoh, matriks berikut

```
[[2, 3, 4, 16]
[1, 5, 8, 11]
[9, 6, 10, 12]
[13, 14, 7, 15]]
```

akan direpresentasikan sebagai array satu dimensi

```
[2, 3, 4, 16, 1, 5, 8, 11, 9, 6, 10, 12, 13, 14, 7, 15]
```

Hal ini ditujukan untuk mempermudah kalkulasi nanti saat melakukan perhitungan nilai kurang dan pergeseran petak kosong pada matriks.

Petak kosong dinyatakan sebagai petak bernilai 16.

Penentuan apakah puzzle bisa diselesaikan

Didefinisikan suatu fungsi Kurang(i) sebagai kunci untuk menentukan apakah suatu persoalan bisa diselesaikan atau tidak. i adalah suatu angka [1..16] yang berada pada matriks. Misalkan i disimpan dalam array pada indeks *index_i*. Kurang(i) menghitung banyaknya angka yang disimpan pada indeks *index_i* yang memenuhi kondisi bahwa angka tersebut lebih kecil dari i.

Selain fungsi Kurang(i), ada juga suatu nilai X yang dapat ditentukan dari posisi awal petak kosong matriks. Rujuk ke gambar di bawah ini:

Apabila petak kosong awalnya berada pada sel yang diarsir, nilai X = 1. Jika tidak, nilai X = 0.

Matriks hanya bisa diselesaikan jika nilai penjumlahan semua Kurang(i) dengan i = [1..16] ditambah dengan nilai X bernilai genap. Jika penjumlahan tersebut bernilai ganjil, artinya *puzzle* tidak bisa diselesaikan.

Garis besar algoritma Branch and Bound yang digunakan

Fungsi penaksir *lower bound* c $\hat{(i)}$ didefinisikan sebagai $\hat{c(i)} = \hat{f(i)} + \hat{g(i)}$. $\hat{f(i)}$ menyatakan kedalaman simpul yang sedang diperiksa dan $\hat{g(i)}$ menyatakan banyaknya petak (selain petak kosong) yang berada di posisi yang salah.

Sebagai contoh, akan dihitung $c^{(i)}$ dari simpul bernomor 10. Perhatikan bahwa simpul ini terletak di kedalaman 2 ($f^{(i)} = 2$) dan petak 12 berada pada posisi yang salah ($g^{(i)} = 1$). Sehingga, $c^{(i)}$ untuk simpul bernomor 10 bernilai 2 + 1 = 3.

Implementasi Branch and Bound dalam program

Semua simpul dinyatakan sebagai sebuah instantiasi dari kelas *Matrix*. Kelas *Matrix* ini memiliki beberapa atribut,

- arr yaitu representasi matriks dalam sebuah array 1 dimensi
- stepsBefore untuk mengetahui langkah-langkah yang digunakan dari akar untuk mencapai kondisi sekarang. Hal ini digunakan untuk mensimulasikan pembentukan pohon
- steps untuk menyimpan kedalaman sekarang (sekaligus nilai dari f^(i))
- locationMap yaitu sebuah map dengan <key, value> berbentuk <integer, integer>. Misal, locationMap[1] mengembalikan indeks letak petak 1 berada.
- kurangMap yaitu sebuah map dengan <key, value> berbentuk <integer, integer>. Misal, kurangMap[1] mengembalikan nilai Kurang(1)
- _g untuk menyimpan banyaknya petak selain petak kosong yang tidak berada pada tempat seharusnya (sekaligus nilai dari g^(i))

Pembentukan pohon menggunakan modifikasi BFS dengan menggunakan *priority queue*. Simpul dengan *cost* yang lebih kecil akan dimasukkan sebagai *head* dari *queue*. Apabila ada simpul dengan *cost* yang sama, simpul dengan kedalaman yang lebih dalam (nilai f^(i) lebih besar) dianggap sebagai simpul yang *cost*-nya lebih kecil.

Untuk menghemat kalkulasi, perhitungan $f^{\circ}(i)$ dan $g^{\circ}(i)$ didasarkan pada kondisi simpul sebelumnya, tidak diiterasi ulang 16 petaknya setiap membangkitkan simpul baru. $f^{\circ}(i)$ dari sebuah simpul selalu merupakan +1 dari simpul pembangkitnya. $g^{\circ}(i)$ dikalkulasi dengan cara melihat apakah simpul yang ditukar. Apabila simpul yang ditukar sebelumnya sudah berada di posisi yang benar, nilai $g^{\circ}(i)$ ditambah satu. Apabila simpul yang ditukar posisi setelah pertukaran menjadi ada di posisi yang benar, nilai $g^{\circ}(i)$ dikurangi satu. Jika kedua kondisi tersebut tidak dipenuhi, nilai $g^{\circ}(i)$ sama dengan simpul pembangkitnya.

Program akan memberhentikan pencarian ketika sudah ditemukan satu solusi. Program tidak mencari solusi-solusi lainnya dengan banyak langkah yang sama yang mungkin bisa didapatkan.

Screenshot input-output program

Main menu untuk memilih test case

Matrix preview setelah memilih salah satu test case

Statistik (nilai fungsi Kurang) dari test case yang dipilih

Solusi dari *puzzle* yang diberikan

... dan seterusnya sampai step 15

Tugas Kecil 3 IF2211 Strategi Algoritma Semester 2 2021/2022

Apabila puzzle tidak bisa diselesaikan

Kode program dalam Python

matrix.py

```
import numpy as np
class Matrix:
 def init (self, arr = [], stepsBefore = [], steps = 0, g = -1, loc
= -1):
   self.arr = arr
   self.stepsBefore = stepsBefore
   self.steps = steps
   self.locationMap = {}
   self.kurangMap = {}
   self.kurangSum = 0
   self.loc = loc
   if (self. g == -1):
     self.fillLocationMap()
 def id(self):
   return self.arr.tobytes()
besar) dianggap lebih kecil.
   return self.f() >= other.f() if self.c() == other.c() else self.c()
< other.c()
 def fillLocationMap(self):
```

```
self. g = 0
   for i in range(16):
     self.locationMap[self.arr[i]] = i
       self. g += 1
   self.loc = self.locationMap[16]
 def countAllKurang(self):
     Menghitung Kurang(i) untuk setiap i
     kurang = 0
     for j in range(1, i):
       if self.locationMap[j] > self.locationMap[i]:
         kurang += 1
     self.kurangSum += kurang
     self.kurangMap[i] = kurang
 def getXValue(self):
   pos = self.locationMap[16]
   if pos == 1 or pos == 3 or pos == 4 or pos == 6 or pos == 9 or pos
== 11 or pos == 12 or pos == 14:
 def getKurangPlusX(self):
     Mengembalikan nilai sum Kurang(i) + X
   return self.kurangSum + self.getXValue()
 def isGoalReachable(self):
```

```
return self.getKurangPlusX() % 2 == 0
def f(self):
  return self.steps
def g(self):
def c(self):
  return self.f() + self.g()
def isSolved(self):
 return self.g() == 0
def canMoveUp(self):
  pos = self.loc
  return not (pos >= 0 and pos <= 3)
def canMoveDown(self):
  pos = self.loc
  return not (pos >= 12 and pos <= 15)
def canMoveRight(self):
```

```
pos = self.loc
   return not (pos == 3 or pos == 7 or pos == 11 or pos == 15)
 def canMoveLeft(self):
   pos = self.loc
   return not (pos == 0 or pos == 4 or pos == 8 or pos == 12)
 def createMoveUp(self):
   newArr = np.copy(self.arr)
   pos = self.loc
   newG = self.g()
   if (newArr[pos - 4] - 1 == pos):
     newG -= 1
   elif (newArr[pos - 4] - 1 == pos - 4):
     newG += 1
   newArr[pos], newArr[pos - 4] = newArr[pos - 4], newArr[pos]
   pos -= 4
   return Matrix(newArr, self.stepsBefore + ["up"], self.steps + 1,
newG, pos)
 def createMoveDown(self):
   newArr = np.copy(self.arr)
   pos = self.loc
   newG = self.g()
   if (newArr[pos + 4] - 1 == pos):
     newG -= 1
```

```
elif (newArr[pos + 4] - 1 == pos + 4):
     newG += 1
   newArr[pos], newArr[pos + 4] = newArr[pos + 4], newArr[pos]
   pos += 4
   return Matrix(newArr, self.stepsBefore + ["down"], self.steps + 1,
newG, pos)
 def createMoveRight(self):
   newArr = np.copy(self.arr)
   pos = self.loc
   newG = self.g()
   if (newArr[pos + 1] - 1 == pos):
     newG -= 1
   elif (newArr[pos + 1] - 1 == pos + 1):
     newG += 1
   newArr[pos], newArr[pos + 1] = newArr[pos + 1], newArr[pos]
   pos += 1
   return Matrix(newArr, self.stepsBefore + ["right"], self.steps + 1,
newG, pos)
 def createMoveLeft(self):
   newArr = np.copy(self.arr)
   pos = self.loc
   newG = self.g()
     newG -= 1
```

```
elif (newArr[pos - 1] - 1 == pos - 1):
    newG += 1
# Swap newArr[pos] dengan newArr[pos - 1]
newArr[pos], newArr[pos - 1] = newArr[pos - 1], newArr[pos]
# Update pos
pos -= 1
return Matrix(newArr, self.stepsBefore + ["left"], self.steps + 1,
newG, pos)
```

solver.py

```
from queue import PriorityQueue
import numpy as np
import timeit
from matrix import Matrix
import eel
if name == ' main ':
 pq = None
 visitedMap = None
 nodeCount = None
 sol = None
 matrices = None
 @eel.expose
 def reinitialize():
   global pq
   global visitedMap
   global nodeCount
```

```
global matrices
  global currentStep
  pq = None
  visitedMap = None
  sol = None
  nodeCount = None
  currentStep = None
  eel.go to("home.html")
def startSolver():
 eel.init("web")
  eel.start("home.html", size = (640, 640))
@eel.expose
def pyOpenTC(tc):
  f = open(f'./test/tc{tc}.txt')
 mat = []
  mat += map(int, f.readline().strip().split())
 matrix = Matrix(np.array(mat))
 f.close()
 eel.go to("matrix.html")
@eel.expose
def updateMatrixPreviewGrid():
   Memperbarui matrix pada matrix.html
```

```
global matrix
  eel.updateGrid(matrix.arr.tolist())
@eel.expose
def showMatrixStats():
  eel.go to("kurang.html")
@eel.expose
def updateKurang():
   Memperbarui kurang.html
 global matrix
 matrix.countAllKurang()
  eel.updateKurangLabels(matrix.kurangMap, matrix.getKurangPlusX())
@eel.expose
def solveMatrix():
  global matrix
  if (not matrix.isGoalReachable()):
   eel.showErrorMessage()
    reinitialize()
    eel.go to("solved.html")
@eel.expose
def solveGrid():
```

```
global visitedMap
global nodeCount
global matrices
global currentStep
pq = PriorityQueue()
visitedMap = {}
pq.put((matrix.c(), matrix))
visitedMap[matrix.id()] = True
nodeCount = 1
sol = []
matrices = []
start = timeit.default timer()
while not pq.empty():
 head = pq.get()[1]
 if head.isSolved():
   sol = head.stepsBefore
    if head.canMoveUp():
     newMatrix = head.createMoveUp()
     if s not in visitedMap:
       visitedMap[s] = True
       pq.put((newMatrix.c(), newMatrix))
        nodeCount += 1
    if head.canMoveRight():
      newMatrix = head.createMoveRight()
      s = newMatrix.id()
      if s not in visitedMap:
       visitedMap[s] = True
        pq.put((newMatrix.c(), newMatrix))
       nodeCount += 1
    if head.canMoveDown():
      newMatrix = head.createMoveDown()
      s = newMatrix.id()
```

```
if s not in visitedMap:
           visitedMap[s] = True
           pq.put((newMatrix.c(), newMatrix))
           nodeCount += 1
       if head.canMoveLeft():
         newMatrix = head.createMoveLeft()
         s = newMatrix.id()
         if s not in visitedMap:
           visitedMap[s] = True
           pq.put((newMatrix.c(), newMatrix))
           nodeCount += 1
   time = timeit.default timer() - start
   matrices.append(matrix)
   for i in range(len(sol)):
     if sol[i] == 'up':
       matrix = matrix.createMoveUp()
       matrix = matrix.createMoveRight()
     elif sol[i] == 'left':
       matrix = matrix.createMoveLeft()
     matrices.append(matrix)
   currentStep = 0
   eel.setUpGrid(matrices[0].arr.tolist(), currentStep, len(matrices) -
1, time, nodeCount)
 @eel.expose
 def prevPage():
   global currentStep
   if (currentStep > 0):
     currentStep -= 1
```

```
eel.updateGrid(matrices[currentStep].arr.tolist(), currentStep,
len(matrices) - 1)

@eel.expose
def nextPage():
    '''
    Menunjukkan step berikutnya pada solved.html
    '''
    global matrices
    global currentStep
    if (currentStep < len(matrices) - 1):
        currentStep += 1
        eel.updateGrid(matrices[currentStep].arr.tolist(), currentStep,
len(matrices) - 1)

startSolver()</pre>
```

GUI menggunakan HTML/CSS/JavaScript

Komunikasi antara Python dan HTML/CSS/JavaScript menggunakan *library* Eel yang dapat diakses di <u>ChrisKnott/Eel: A little Python library for making simple Electron-like HTML/JS GUI apps (github.com)</u>.

style.css

```
margin: 0;
 padding: 0;
 font-family: 'Inter', sans-serif;
@import
url('https://fonts.googleapis.com/css2?family=Inter&display=swap');
body {
 background-color: #28293d;
.big-flex {
 padding: 20px 80px 40px 80px;
 display: flex;
 align-items: center;
 flex-direction: column;
 gap: 30px;
.flex-row {
 width: 100%;
 display: flex;
 justify-content: space-between;
 width: 80px;
 height: 80px;
```

```
display: flex;
 justify-content: center;
 align-items: center;
 background-color: #3e405b;
 border-radius: 12px;
 box-shadow: 0px 12px 16px rgba(0, 0, 0.3);
 display: flex;
 flex-direction: row;
 justify-content: space-between;
 color: #ffffff;
 width: 100%;
 display: flex;
 align-items: center;
 gap: 15px;
 background: linear-gradient(180deg, #5561FF 0%, #3643FC 100%, #3643FC
100%);
 color: #ffffff;
 outline: none;
 border: none;
 padding: 12px 32px;
 border-radius: 12px;
 font-size: 14px;
 transition: 0.3s all linear;
 box-shadow: 0px 12px 16px rgba(0, 0, 0, 0.3);
 background: rgba(255, 255, 255, 0.1);
```

```
color: #ffffff;
 border: none;
 padding: 12px 32px;
 border-radius: 12px;
 font-size: 14px;
 box-shadow: 0px 12px 16px rgba(0, 0, 0, 0.3);
.button-row button:hover {
transform: scale(1.05);
opacity: 0.9;
 padding-top: 60px;
text-align: center;
 padding-top: 30px;
display: flex;
flex-direction: column;
align-items: center;
 gap: 30px;
.btn-container-smaller-padding {
padding-top: 15px;
display: flex;
flex-direction: column;
 align-items: center;
 gap: 20px;
```

```
.prim-btn {
 padding: 12px 32px;
 background: linear-gradient(180deg, #5561FF 0%, #3643FC 100%, #3643FC
100%);
 box-shadow: 0px 12px 16px rgba(0, 0, 0, 0.3);
 border-radius: 12px;
 border: none;
 transition: all 0.3s linear;
.prim-btn:hover {
 opacity: 0.9;
 transform: scale(1.05);
 padding-top: 30px;
 text-align: center;
 display: flex;
 align-items: center;
 flex-direction: column;
 gap: 10px;
 font-size: 14px;
.calculating-container {
 padding-top: 30px;
 font-size: 14px;
 text-align: center;
```

home.html

```
!DOCTYPE html>
<html lang="en">
<meta charset="UTF-8">
<link rel="stylesheet" href="style.css">
 <script src="eel.js"></script>
   function openTC(tc) {
    eel.pyOpenTC(tc)
   eel.expose(go to)
   function go to(url) {
     window.location.replace(url)
<div class="text-container">
  <h1>15 Puzzle Solver</h1>
  Please select a testcase!
 <div class="btn-container">
  <button class="prim-btn" onclick="openTC(1)">./test/tc1.txt</button>
  <button class="prim-btn" onclick="openTC(2)">./test/tc2.txt</button>
  <button class="prim-btn" onclick="openTC(3)">./test/tc3.txt</button>
  <button class="prim-btn" onclick="openTC(4)">./test/tc4.txt</button>
  <button class="prim-btn" onclick="openTC(5)">./test/tc5.txt</button>
```

kurang.html

```
<!DOCTYPE html>
<html lang="en">
```

```
head>
 <meta charset="UTF-8">
 <title>Puzzle Statistics</title>
 <link rel="stylesheet" href="style.css">
   eel.expose(updateKurangLabels)
   function updateKurangLabels(kurangMap, kurangPlusX) {
      document.querySelector(`.kurang-${i}`).textContent =
Kurang(\$\{i\}) = \$\{kurangMap[i]\}
     document.querySelector(".sum").textContent = `SUM(Kurang(i)) + X =
${kurangPlusX}`
   eel.expose(go to)
   function go to(url) {
     window.location.replace(url)
   eel.expose(showErrorMessage)
   function showErrorMessage() {
menu...")
   eel.updateKurang();
 <div class="stats-container">
   <h1>Puzzle statistics</h1>
   Kurang(1) = 
   Kurang(2) = 
   Kurang(3) = 
   Kurang(4) = 
   Kurang(5) =
```

matrix.html

```
eel.expose(go to)
  function go to(url) {
   window.location.replace(url)
  eel.updateMatrixPreviewGrid();
<div class="big-flex">
 <div class="flex-row">
   <div class="box" id="0"></div>
   <div class="box" id="1"></div>
   <div class="box" id="2"></div>
   <div class="box" id="3"></div>
   <div class="box" id="4"></div>
    <div class="box" id="7"></div>
  <div class="flex-row">
   <div class="box" id="8"></div>
   <div class="box" id="9"></div>
   <div class="box" id="10"></div>
   <div class="box" id="11"></div>
 <div class="flex-row">
   <div class="box" id="12"></div>
   <div class="box" id="13"></div>
   <div class="box" id="14"></div>
```

solved.html

```
<!DOCTYPE html>
<html lang="en">
 <meta charset="UTF-8">
 <title>Solved Puzzle</title>
 <link rel="stylesheet" href="style.css">
 <script src="eel.js"></script>
   eel.expose(setUpGrid)
   function setUpGrid(matrix, step, steps, time, nodeCount) {
     document.querySelector(".calc").textContent = `Searching took
${time.toFixed(5)} seconds | Generated ${nodeCount} nodes`
     for (let i = 0; i < 16; i ++) {
       if (matrix[i] == 16) {
         document.getElementById(`${i}`).textContent = "";
         document.getElementById(`${i}`).textContent = matrix[i];
     document.querySelector(".step").textContent = `Step
${step}/${steps}`;
   eel.expose(updateGrid)
   function updateGrid(matrix, step, steps) {
       if (matrix[i] == 16) {
         document.getElementById(`${i}`).textContent = "";
         document.getElementById(`${i}`).textContent = matrix[i];
```

```
document.querySelector(".step").textContent = `Step
${step}/${steps}`;
   eel.expose(go to)
   function go to(url) {
     window.location.replace(url)
   function returnToMainMenu() {
     window.alert("Returning to main menu...")
     eel.reinitialize()
   eel.solveGrid();
   Calculation in progress...
 <div class="big-flex">
   <div class="flex-row">
     <div class="box" id="0"></div>
     <div class="box" id="1"></div>
     <div class="box" id="2"></div>
     <div class="box" id="3"></div>
   <div class="flex-row">
     <div class="box" id="4"></div>
     <div class="box" id="5"></div>
     <div class="box" id="6"></div>
   <div class="flex-row">
     <div class="box" id="8"></div>
```

Contoh instantiasi 5 buah persoalan 15-puzzle

Persoalan yang dapat diselesaikan

tc1.txt

```
2 3 4 16
1 5 8 11
9 6 10 12
13 14 7 15
```

tc2.txt

```
1 2 3 4
5 7 10 8
11 9 6 16
13 14 15 12
```

tc3.txt

```
1 2 3 4
5 6 11 15
9 14 13 10
16 7 8 12
```

Persoalan yang tidak dapat diselesaikan

tc4.txt

```
2 3 4 16
1 5 11 8
9 6 10 12
13 14 7 15
```

tc5.txt

```
1 3 15 4
10 2 16 11
5 14 8 6
9 7 13 12
```

Alamat GitHub kode program

acomarcho/Tucil3_13520119: 15 puzzle solver made in Python, made by applying branch and bound algorithm. (github.com)