Artificial Intelligence and Machine Learning. 6CS012.

Lecture-5: Multi layer Neural Network.

Siman Giri.

A. Motivation for Multi Layer-Neural Network.

What are Multi-layer Neural Network?

Story So Far....

• MCP was first simple computational Model that emulates Human Neuron behavior.

• Perceptron were computationally better representations of Human Neuron.

 Linear Separability-Decision Boundry.

• Multi-Layer of Perceptron and Theory of Universal Approximations.

What are Multi-layer Neural Networks?

Single Perceptron

One-Hidden Layer

Two-Hidden Layer

1. Activation Functions.

1.1 What are Activation Functions?

- Activation Functions introduce **non-linearity** to the **output** of neurons.
- The activation function does the non-linear transformation to the input, making it capable to learn and perform more complex tasks.
- The activation function should be **differentiable** or the concept of updating weights (**Backpropagation**) fails, which is the core idea of deep learning.

- 1. Activation Functions.
- 1.1 What is Activation Functions?

1.2 Some Common Non Linear Activation Functions.

Sigmoid

• Mathematically;

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Squashes real numbers to range between [0,1].

Pros and Cons.

- the sigmoid non-linearity has recently fallen out of favor and it is rarely ever used.
 - Logistic sigmoid can cause a neural network to get "stuck" during training. This is because, if a strongly-negative input is provided to the logistic sigmoid, it outputs a value, which is very near to zero.
 - Because of this behavior, updating weights will be slow and they are less regularly updated. In simple terms, weights which are updated through backpropagation will be quite slow.

Where are We?

- Activation Functions.
- 1.1 What is Activation Functions? Sigmoid.

1.2 Some Common Non Linear Activation Functions.

Tanh(Hyperbolic Tangent Function)

• Mathematically;

$$\sigma(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

• Squashes real numbers to range between

Pros and Cons.

- Outperforms the sigmoid activation functions.
- Zero centered output.

Scaled version of sigmoid neuron.

$$tanh(x) = \frac{2}{1+e^{-2x}} - 1$$

Where are We?

- 1. Activation Functions.
- 1.1 What is Activation Functions? Sigmoid.

Tanh.

1.2 Some Common Non Linear Activation Functions.

ReLU

• It computes the function f(x)=max(0,x).

- Pros:
 - It was found to greatly accelerate the convergence of (stochastic) gradient descent compared to the sigmoid/tanh functions.
 - Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.
- Cons:
 - ReLU units can be fragile during training and can "die".
 - What if, the current weights put the ReLU on the left flat side while it optimally should be on the right side for this particular input?
 - The gradient is 0 and so the weight will not be updated, not even a tiny bit, so where is "learning" in this case?

Leaky ReLU

- Leaky ReLUs are one attempt to fix the "dying ReLU" problem.
- That is, the function computes: $f(x)=1(x<0)(\alpha x)+1(x>=0)(x)$
- where α is a small constant.

- 1. Activation Functions.
- 1.1 What is Activation Functions?
- 1.2 Some Common Activation Functions.

1.3 What activation should I use?

- Never Use Sigmoid.
- Try tanh, but expect it to work worse than ReLU.
- While using ReLU/Leaky ReLU, be sensible while picking the learning rates.
- If possible, monitor the dead neuron in a network.

2. Error/Loss Function.

2.1 Cross Entropy Loss.

• CEL measures the distance between two probability distributions.

$$H(P^*|P) = -\sum_{i} P^*(i) \log P(i)$$

- In information theory, information are quantified using the level of surprise any event can cause.
 - h(x) = -log(p(x))
 - Low Probability Event: High Information (surprising).
 - High Probability Event: Low Information (unsurprising).

2.1 Cross Entropy Loss.

2.2 Problem Setup-Classification.

3. Calculation of Gradient.

How do we Learn Weights?

3.1 Forward and Backward Propagations.

- The weights in Multi layer networks are learned with the combinations of forward and backward propagations.
- a network forward propagates activation to produce an output and it backward propagates error to determine weight changes

3.1 Feed Forward Calculations.

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

3.2 Back-Propagation.

- Backpropagation is a technique used by deep layer networks to find the error of the network.
- The error is calculated by comparing an expected output with a predicted output, this algorithm then propagated these errors backward to update weights and biases.

Backpropagation Intuition and Computational Graph.

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation Requirements

- Backprop Requires following three things:
 - 1. Dataset: in the pairs of input-output i.e. (x_i, y_i) .
 - 2. A feed-forward neural network;

3. An Error Function, E which defines the error between the desired output and

calculated output.

Backpropagation Algorithm.

Algorithm 2 Backpropagation algorithm for feedforward networks.

Require: a set of training examples D, learning rate α .

- 1. Create a feed-forward network with n_{in} inputs, n_h hidden units, and n_o output units.
- 2. Initialize all network weights to *small* random numbers.
- 3. Repeat until the termination condition is met:

For each training example $(\mathbf{x}, \mathbf{t}) \in D$ do:

Propagate the input \mathbf{x} forward through the network, i.e.:

1. Input x to the network and compute the output a_k of units in the output layer.

Backpropagate the errors through the network:

1. For each network output unit k, calculate its error term δ_k :

$$\delta_k \leftarrow -a_k(1 - a_k)(t_k - a_k) \tag{3}$$

2. For each hidden unit h, calculate its error term δ_h :

$$\delta_h \leftarrow a_h (1 - a_h) \sum_k \delta_k w_{kh} \tag{4}$$

3. Update each network weight w_{ji}

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

where

$$\Delta w_{ji} = -\alpha \delta_j x_{ji}$$

Notations:

The subscript k denotes the output layer.
The subscript j denotes

The subscript i denotes the input layer

the hidden layer.

In Tutorial.

• Pen paper calculation on Forward and Backward Propagation.

4. Optimization in Deep Learning.

4.1 Optimization.

- Optimization and machine learning have related, but somewhat different goals
 - Goal in optimization: minimize an objective function
 - For a set of training examples, reduce the training error
 - Goal in ML: find a suitable model, to predict on data examples
 - For a set of testing examples, reduce the generalization error
- For a given empirical function g (dashed purple curve), optimization algorithms attempt to find the point of minimum empirical risk
- The expected function f (blue curve) is obtained given a limited amount of training data examples
- ML algorithms attempt to find the point of minimum expected risk, based on minimizing the error on a set of testing examples
 - Which may be at a different location than the minimum of the training examples
 - o And which may not be minimal in a formal sense

4.2 Stationary points.

- Stationary points (or critical points) of a differentiable function f(x) of one variable are the points where the derivative of the function is zero, i.e., f'(x) = 0
- The stationary points can be:
 - *Minimum*, a point where the derivative changes from negative to positive
 - *Maximum*, a point where the derivative changes from positive to negative
 - *Saddle point*, derivative is either positive or negative on both sides of the point
- The minimum and maximum points are collectively known as extremum points
- The nature of stationary points can be determined based on the second derivative of f(x) at the point
 - If f''(x) > 0, the point is a minimum
 - If f''(x) < 0, the point is a maximum
 - If f''(x) = 0, inconclusive, the point can be a saddle point, but it may not
- The same concept also applies to gradients of multivariate functions

4.3 Local Minima.

- Among the challenges in optimization of model's parameters in ML involve local minima, saddle points, vanishing gradients
- For an objective function f(x), if the value at a point x is the minimum of the objective function over the entire domain of x, then it is the *global minimum*
- If the value of f(x) at x is smaller than the values of the objective function at any other points in the vicinity of x, then it is the *local minimum*
 - The objective functions in ML usually have many local minima
 - When the solution of the optimization algorithm is near the local minimum, the gradient of the loss function approaches or becomes zero (vanishing gradients)
 - Therefore, the obtained solution in the final iteration can be a local minimum, rather than the global minimum

4.4 Saddle Points.

- The gradient of a function f(x) at a saddle point is 0, but the point is not a minimum or maximum point
 - The optimization algorithms may stall at saddle points, without reaching a minima
- Note also that the point of a function at which the sign of the curvature changes is called an inflection point
 - An inflection point (f''(x) = 0) can also be a saddle point, but it does not have to be
- For the 2D function (right figure), the saddle point is at (0,0)
 - The point looks like a saddle, and gives the minimum with respect to x, and the maximum with respect to y

5. Optimization via Gradient Descent.

5.1 Pseudo-code Gradient Descent.

- Choose a starting point.(Initialization)
- Calculate the gradient at this point.
- Make a scaled step in the opposite direction to the gradient.
- Repeat until stopping criteria is met, which can be:
 - Maximum number of iterations reached.
 - Step size is smaller than tolerance.
- Input Parameters:
 - Starting point: 0 or random initialization.
 - Gradient function: Cost function to be minimized.
 - Learning Rate: scaling factor for step sizes.
 - Max. Iterations: number of iterations the algorithm must run.

5.2 Gradient Descent: An Illustration

5.3 Learning Rate and Convergence.

• High Learning Rate does not Guarantees speedy Convergence.

5.4 Starting point and Convergence.

• Convergence speed also depends on our starting point.

5.5 Gradient descent in practice: Learning rate

- Automatic convergence test
- α too small: slow convergence
- α too large: may not converge
- To choose α , try 0.001, ..., 0.01, ..., 0.1, ...,

6. Variants of Gradient Decent.

6.1 Gradient descent variants.

- Based on how much data we use to compute the gradient of the objective function, there are three main variants of gradient descent:
 - Batch Gradient Descent.
 - Stochastic Gradient Descent.
 - Mini-Batch Gradient Descent.
- More data may mean more accuracy of the parameter update, but it also means more time needed to reach convergence, thus the **trade off** is necessity.

6.2 Batch Gradient Descents.

- Also known as vanilla gradient descent, computes the gradient of the cost function w.r.t to the parameters θ for the entire training set:
 - Update rule:
 - $\theta = \theta \alpha \nabla_{\theta} J(\theta)$.
- It can be very slow and is intractable for datasets that do not fit the memory.

6.3 Stochastic Gradient Descent.

- In contrast SGD performs a parameter update for each training example i.e. x^i and label y^i .
 - Update Rule:
 - $\theta = \theta \alpha \nabla_{\theta} J(\theta; x^i; y^i)$.
- It is usually much faster compared to BGD, and also can be used to learn online.
- SGD performs frequent updates with a high variance that cause the objective function to fluctuate heavily as in image:
- It can enable it to jump to new and potential better local minima.
- It can also ultimately complicates the convergence to the exact minimum.

6.4 Mini Batch Gradient Descent.

- It is the mixture of BGD and SGD i.e. it updates the parameter for every mini batch of n training examples:
 - Update Rule:
 - $\theta = \theta \alpha \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$.
- Merits:
 - Reduces the variance of the parameter updates, which can lead to more stable convergence;
 - Efficient computation for large models.
- Common mini-batch size range between 50 and 256.

6.5 Challenges

- Same learning rate applies to all parameter updates.
- Getting trapped into suboptimal local minima or saddle points.
- Choosing a Proper Learning Rate.
 - Annealing:
 - Learning rate schedules or reducing the learning rate according to a pre-defined schedule or it becomes smaller then a pre-set threshold.
 - Schedules and threshold values have to be pre-defined, thus may not be able to adapt to a dataset's characteristics.

6.6 Basic Mini-Batch Gradient Descent.

- Guess an initial learning rate.
 - If the error keeps getting worse or oscillates wildly, reduce the learning rate.
 - If the error is falling fairly consistently but slowly, increase the learning rate.
- Write a simple program to automate this way of adjusting the learning rate.
- Towards the end of mini-batch learning it nearly always helps to turn down the learning rate.
 - This removes fluctuations in the final weights caused by the variations between minibatches.
- Turn down the learning rate when the error stops decreasing.
 - Use the error on a separate validation set

6.7 Turning Down the learning rate.

- Turning down the learning rate reduces the random fluctuations in the error due to the different gradients on different mini-batches.
 - So we get a quick win.
 - But then we get slower learning.
- Don't turn down the learning rate too soon!

Today's Lesson...

- Activations Function.
- Error Function in Classification with Neural Network.
- Learn the weights:
- Forward Pass.
- Backward Pass.
- Optimization-Gradient Descent and its Variants.

Next Up!!!!

- You are given a training set with 1M labeled points. When you train a shallow neural net with one fully-connected feed-forward hidden layer on this data you obtain 86% accuracy on test data. When you train a deeper neural net as in which consist of a convolutional layer, pooling layer, and three fully-connected feed-forward layers on the same data you obtain 91% accuracy on the same test set.
- What is the source of this improvement?

At the end.....

• Questions?

- Reminder!!!!
 - Assignment-I is out.
 - Date to submit-26 March.