Detailed Proof of the Proposition 1

Proposition 1: A solution to model (3), where $P_{l,t}^{\text{acdc}}$, $P_{l,t}^{\text{dcac}} > 0$, $\exists l, t$, is suboptimal if any one of the following conditions hold: 1) $o_{l,1}^2 < 1$ and $0 \le \rho_t^{\text{w}} < P_t^{\text{w}}$; 2) $o_{l,1}^2 > 1$ and $0 < \rho_t^{\text{w}} \le P_t^{\text{w}}$; 3) $o_{l,1}^2 = 1$.

Proof: This proposition can be proven based on the reduction to absurdity method. First, we assume $\exists l,t$, $P_{l,t}^{\text{acdc}}$, $P_{l,t}^{\text{deac}} > 0$. Let ℓ be the Lagrange function of model (3) in the manuscript. Then, applying the Karush–Kuhn–Tucker (KKT) conditions for (3) yields the following.

$$\partial \ell / \partial P_{l,t}^{\text{acdc}} = c_l - \underline{\lambda}_{l,t}^{\text{ad}} + \overline{\lambda}_{l,t}^{\text{ad}} - \lambda_t^{\text{ac}} + o_{l,1} \lambda_t^{\text{dc}} = 0$$
(4a)

$$\partial \ell / \partial P_{l,t}^{\text{dcac}} = c_l - \underline{\lambda}_{l,t}^{\text{da}} + \overline{\lambda}_{l,t}^{\text{da}} + o_{l,1} \lambda_t^{\text{ac}} - \lambda_t^{\text{dc}} = 0$$
(4b)

$$\partial \ell / \partial \rho_{t}^{w} = -\underline{\lambda}_{t}^{w} + \overline{\lambda}_{t}^{w} - \lambda_{t}^{ac} = 0$$

$$(4c)$$

The condition $P_{l,t}^{\text{acdc}}$, $P_{l,t}^{\text{dcac}} > 0$, $\exists l, t$ ensures that $\underline{\lambda}_{l,t}^{\text{ad}} = \underline{\lambda}_{l,t}^{\text{da}} = 0$ and $\overline{\lambda}_{l,t}^{\text{ad}}$, $\overline{\lambda}_{l,t}^{\text{da}} \geq 0$. Introducing these conditions into (4a) and (4b), and merging (4a) and (4b) by eliminating the variable λ_{t}^{dc} yields the following.

$$\mathcal{G} := (1 + o_{l,1})c_l + \overline{\lambda}_{l,t}^{\text{ad}} + o_{l,1}\overline{\lambda}_{l,t}^{\text{da}} + (o_{l,1}^2 - 1)\lambda_t^{\text{ac}} = 0$$
(4d)

Under **condition 1**), we obtain $\overline{\lambda}_{l}^{\text{w}} = 0$ and $\underline{\lambda}_{l}^{\text{w}} \geq 0$, which ensures that $\lambda_{l}^{\text{ac}} = -\underline{\lambda}_{l}^{\text{w}} \leq 0$ based on (4c). However, $(1 + o_{l,1})c_{l} + \overline{\lambda}_{l,t}^{\text{ad}} + o_{l,1}\overline{\lambda}_{l,t}^{\text{da}} > 0$. Therefore, these conditions produce a contradiction in (4d) because the value of \mathcal{S} is always positive.

Under **condition 2**), we obtain $\bar{\lambda}_{t}^{w} \geq 0$ and $\underline{\lambda}_{t}^{w} = 0$, which ensures that $\lambda_{t}^{ac} = \bar{\lambda}_{t}^{w} \geq 0$. Again, these conditions produce a contradiction in (4d) because the value of \mathcal{S} is always positive.

Under **condition 3)**, we obtain the relationship $\mathcal{S} > 0$ since $(1 + o_{l,1})c_l > 0$, $\overline{\lambda}_{l,t}^{\mathrm{ad}} \ge 0$ and $o_{l,1}\overline{\lambda}_{l,t}^{\mathrm{da}} \ge 0$, which is contrary to (4d).