## Assignment-6

Student ID: 700741495 Network ID: CX14950.

Mame: JONNALAGADDA CHAKRADHAR.

QI) Find out clustering representations, Dandrogram using single, complete and Avenage link proximity function in Hierarchial clustering techniques

|                | x-coordinate | 4-coordinate. |
|----------------|--------------|---------------|
| point          |              | A             |
| P,             | 0.4005       | 0.5306        |
| P2             | 0.2148       | 0.3854        |
| P3             | 0.3457       | 0.3156        |
| P4             | 0.2652       | 0-1875        |
| Ps             | 0.0789       | 0.4139        |
| P <sub>6</sub> | 0.4548       | 0.3022        |

|          |        |        | -      | 1      |        |         |
|----------|--------|--------|--------|--------|--------|---------|
| 1        | P,     | P2     | P3     | P4     | , PS   | P6      |
| P,       | 0.0000 | 0.2357 | 2218   | 0-3688 | 0-3421 | 0.2347  |
|          | 0-2357 |        | 0.1483 | 0-2042 | 0-1388 | 0.2540  |
| P2       |        |        | 0.0000 | . 573  | 0.2843 | 0.1100  |
| P3       | 0.2218 |        |        |        | 0.2932 | 0. 2216 |
| P4       | 0.3688 | 0.2042 | 0.1213 | 0.0000 | 0.29   |         |
|          | 0.3421 | 0.1388 | 0.2843 | 1      | 0.0000 | 0.392   |
| _        | 1      |        | 0.1100 | 8.2216 | 0.3921 | 0.0000  |
| Ps<br>P6 | 0.2347 | 0.2540 | 0.1100 | 02216  | 0.3921 | 0.0000  |

By single link: In this, the proximity of two clusters is minimum of the distance blue any two points in 2 diff clusters.

The single link technique is good for non elliptical shapes, but sensitive to noise & outliers

-> From table 1 we can observe the distance the between Possit

The height at which two clusters are meaged our be represented as distance between two clusters.

Distance between elusters {3,6} & {2,5} is given by.

dist({3,6}, {2,5})=min(dist(3,2), dist(6,2), dist(3,5), dist(3,5))

s) min (0.15, 0.25, 0.28, 0.39)

E) 0.15



Complete link: The proximity of two clusters is defined as i'the maximum of the distance between any two points in two different clusters.

-> This is less susceptible to noise & outliers, but it can break large clusters and its favours globulaur shapes.

Here points 3 and 6 are merged first.

{3,6} is merged with {4} instead of {2,5} or {13 tusis

because dist ({3,6}, {4}) = max (dist (3,4), dist (6,4))

= max (0.15, 0.22)

= 0.22.

-diste (8,6), {2,5}) = max (0.15,0.25,0.28,0.39) =0.39. dist({3,6}, {1})=max(dist(3,1), dist(6,1))
=max(0:22,0:23)
=0:23



Complete link clustering



complete link dondrogram

Averagelink: The average group approach is applied to the points.

dist ({316,4}, {13}) = (0.22+0.37+0.23) / (3×1)

dist (92,5], [1]) = (0.24+0.34) ((2x1)

dist[(3,6,4),(2,9)-(0.15+0.28+0.25+0.39+0.20+0.29)/(3x))

Hone, because dist (13,6,4), {2,5}) is smaller than dist (13,6,4),

and idist ( {215} , {1}) clusters {3,6,4} and {415} are merged at the fourth stage.



Average link clustering.



Average link dendogram