Университет ИТМО

Факультет программной инженерии и компьютерной техники Образовательная программа системное и прикладное программное обеспечение

Лабораторная работа №2 По дисциплине "Информатика" Вариант 465826 = 52

Выполнил студент группы Р3109 Евграфов Артём Андреевич Проверил: Рыбаков Степан Дмитриевич

Содержание

e 1 - Nº3 e 2 - Nº6 e 3 - Nº1 e 4 - Nº2	89 . .01																									
e 3 - №1	.01																									
e 4 - №2	1																									
	άΙ.																									
e 5 - № 5	52 .																									
e 6 - № 1	120																									
e 7																										
[re 6 - №1 re 7	ne 6 - №1120 ne 7	re 6 - №1120 re 7	te 6 - №1120 te 7	te 6 - №1120 te 7	te 6 - №1120	re 5 - №52																			

1. Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. <u>Умножить полученное число на 4</u>. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

2. Основные этапы вычисления

2.1. Задание 1 - №37

r_1	r_2	i_1	r_3	i_2	i_3	i_4
0	0	0	0	1	1	0

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$ $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

	1	2	3	4	5	6	7	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	-	s_2
4	-	-	-	X	X	X	X	s_3

 $s = (s_1, s_2, s_3) = 100 \Rightarrow$ ошибка в символе i_1 Правильное сообщение: 1110.

2.2. Задание 2 - №69

r_1	r_2	i_1	r_3	i_2	i_3	i_4
1	1	1	0	1	0	0

 $s_1=r_1\oplus i_1\oplus i_2\oplus i_4=1\oplus 1\oplus 1\oplus 0=1$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	-	s_2
4	-	-	-	X	Χ	Χ	X	s_3

 $s = (s_1, s_2, s_3) = 101 \Rightarrow$ ошибка в символе i_2 Правильное сообщение: 1000.

2.3. Задание 3 - №101

r_1	r_2	i_1	r_3	i_2	i_3	i_4
0	0	1	1	1	1	1

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$

	1	2	3	4	5	6	7	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X	-	Χ	-	X	-	X	s_1
2	-	X	X	-	-	X	-	s_2
4	-	-	-	X	X	X	X	s_3

 $s=(s_1,s_2,s_3)=110\Rightarrow$ ошибка в символе i_1 Правильное сообщение: 0111.

2.4. Задание 4 - №21

r_1	r_2	i_1	r_3	i_2	i_3	i_4
0	1	1	1	0	0	1

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

	1	2	3	4	5	6	7	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	-	s_2
4	-	-	-	X	X	X	X	s_3

 $s=(s_1,s_2,s_3)=010\Rightarrow$ ошибка в символе r_2 Правильное сообщение: 1001.

2.5. Задание 5 - №52

														i_{11}
0	1	0	0	0	1	1	0	1	0	0	0	0	1	1

 $s_{1} = r_{1} \oplus i_{1} \oplus i_{2} \oplus i_{4} \oplus i_{5} \oplus i_{7} \oplus i_{9} \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$ $s_{2} = r_{2} \oplus i_{1} \oplus i_{3} \oplus i_{4} \oplus i_{6} \oplus i_{7} \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$ $s_{3} = r_{3} \oplus i_{2} \oplus i_{3} \oplus i_{4} \oplus i_{8} \oplus i_{9} \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$ $s_{4} = r_{4} \oplus i_{5} \oplus i_{6} \oplus i_{7} \oplus i_{8} \oplus i_{9} \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2^x	r_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i_9	i_{10}	i_{11}	S
1	X	-	X	-	X	-	X	-	X	-	X	-	X	-	X	s_1
2	-	X	X	-	-	X	X	-	-	X	X	-	-	X	X	s_2
4	-	-	-	X	X	X	X	-	-	-	-	X	X	X	X	s_3
8	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	s_4

 $s = (s_1, s_2, s_3, s_4) = 1101 \Rightarrow$ ошибка в символе i_7 Правильное сообщение: 00111010011.

2.6. Задание 6 - №1120

 $(37+69+101+21+52)\cdot 4=1120$ - число информационных разрядов (битов) в принимаемом сообщении. Вычислим минимальное число г контрольных разрядов по формуле $2^r \geq r+i+1$, где i - число информационных битов.

 $2^r \ge r + 1121$. Заметим, что минимальное r, удовлетворяющее условию - **11**. Вычислим коэффициент избыточности k:

 $k = \frac{r}{r+i} = \frac{11}{11+1120} = \frac{11}{1131} \approx 0.00972590627.$

2.7. Задание 7

```
1 import java.util.Scanner;
  public class Hamming {
4
       private final byte[] chars = new byte[7];
       private final String[] symbols = {"r1", "r2", "i1",
5
6
       "r3", "i2", "i3", "i4"};
 7
      private final byte s1;
8
      private final byte s2;
9
      private final byte s3;
10
      private final String index;
11
       private final int SysIndex;
12
13
      Hamming(String nums) {
14
           for (int i = 0; i <= 6; i++) {</pre>
               chars[i] = (byte) (nums.charAt(i) - '0');
15
16
           s1 = (byte) (chars[0] ^ chars[2] ^ chars[4] ^ chars[6]);
17
           s2 = (byte) (chars[1] ^ chars[2] ^ chars[5] ^ chars[6]);
18
           s3 = (byte) (chars[3] ^ chars[4] ^ chars[5] ^ chars[6]);
19
20
           index = Byte.toString(s1) + s2 + s3;
21
           SysIndex = (index.charAt(0) - '0') +
22
           (index.charAt(1) - '0') * 2 + (index.charAt(2) - '0') * 4;
23
      }
24
25
      void PrintIndex() {
           if (SysIndex == 0) {
26
27
               System.out.println("No errors");
```

```
28
           } else {
29
               System.out.println("Wrong bit is " + symbols[SysIndex - 1]);
30
      }
31
32
      void PrintCorrectly() {
33
34
           if (SysIndex == 0) {
               System.out.println("The message is correct");
35
36
           } else {
37
               chars[SysIndex - 1] = (byte) (1 - chars[SysIndex - 1]);
               System.out.println("Correct message is: "
38
39
               chars[2] + chars[4] + chars[5] + chars[6]);
           }
40
      }
41
42
43
      public static void main(String[] args) {
44
           Scanner console = new Scanner(System.in);
45
           String name = console.nextLine();
46
           Hamming m = new Hamming(name);
47
           m.PrintCorrectly();
48
           m.PrintIndex();
49
      }
50|}
```

Листинг 1: Исходный код программы

3. Вывод

В процессе выполнения лабораторной работы я разобрался в работе кода Хэмминга, улучшил навыки программирования на новом для меня язык Java, научился создавать таблицы на языке вёрстки LATeX.

4. Список использованных источников

1. AGalilov (название YouTube канала), Код Хэмминга. Самоконтролирующийся и самокорректирующийся код. – URL: https://youtu.be/QsBYshN5idw?si=iddXwSZEYuyY0KgW.
2. П.В. Балакшин, В.В. Соснин, И.В. Калинин, Т.А. Малышева, С.В. Раков, Н.Г. Рущенко, А.М. Дергачев Информатика: лабораторные работы и тесты [Электронный ресурс]. - URL: https://t.me/balakshin students.