# Lo strato di Trasporto Introduzione

Corso di Reti di Calcolatori AA. 2023-2024

Federica Paganelli

#### Obiettivo

- Realizza una comunicazione logica fra processi residenti in host system diversi
  - Logico: i processi si comportano come se gli host fossero direttamente collegati, non si preoccupano dei dettagli dell'infrastruttura fisica usata per la comunicazione
- Offre servizi allo strato di applicazione
  - Un'applicazione interagisce con i protocolli di trasporto per trasmettere o ricevere dati. L'applicazione sceglie lo stile di trasporto: i) sequenza di messaggi singoli o ii) una sequenza continua di byte. Il programma applicativo passa i dati nella forma richiesta al livello di trasporto per la consegna
- Utilizza i servizi dello strato di rete.
  - Il livello di rete si occupa della comunicazione tra host
  - Il protocollo di rete consegna il datagramma all'host destinatario (non al processo)

## Servizi di Trasporto

- Forniscono la comunicazione logica tra processi applicativi di host differenti
- I protocolli di trasporto vengono eseguiti nei sistemi terminali



## Lo strato di Trasporto

- Servizio privo di connessione
  - In un servizio privo di connessione il processo mittente consegna i messaggi al livello di trasporto uno per uno
  - Il livello di trasporto tratta ogni messaggio come entità singola senza mantenere alcuna relazione fra di essi
    - I messaggi possono non essere consegnati o non arrivare in ordine
- Servizio orientato alla connessione
  - In un servizio orientato alla connessione client e server stabiliscono una connessione (logica)

## Lo strato di Trasporto

- Il Protocollo TCP [RFC 793]
  - Gestione della connessione
  - Consegna affidabile (priva di errori, completezza e ordine)
  - Flow Control
  - Controllo di congestione
- Il Protocollo UDP [RFC 768]
  - Senza connessione
  - Non affidabile, consegne senza ordine
  - Estensione "senza fronzoli" del servizio di consegna "host to host" di IP
- Servizi offerti:
  - Multiplexing/demultiplexing
  - Controllo degli errori (header + dati)

### Azioni del livello di Trasporto



#### Mittente:

- Riceve un messaggio dal livello applicazione
- Determina i valori dell'header del segmento
- Crea il segmento
- Passa il segmento a IP



### Azioni del livello di Trasporto



#### Destinatario:

- Riceve il segmento da IP
- Controlla i valori dell'header
- Estrae il messaggio del livello applicazione
- Smista il messagio all'applicazione attraverso la socket



# Concetto di "Multiplexing/Demultiplexing"

- Demultiplexing
- Lo strato Trasporto provvede allo "smistamento" dei pacchetti fra la rete e le applicazioni (processi)

Esempio: utente che: scarica pagine Web & trasferisce file con FTP & ha 1 sessione Telnet aperta

ha 3 processi applicazione che utilizzano TCP

• quando il livello trasporto riceve dati (da sotto) deve "dirigerli" a

uno di questi processi



Rete

# Concetto di "Multiplexing/Demultiplexing"

- Multiplexing
- Lo strato trasporto provvede all'"accorpamento" dei flussi dati dai processi verso la rete
- "Imbusta" i dati ricevuti (dall'alto) con un preambolo
- Le operazioni di multiplexing e demultiplexing si basano sui socket address dei processi.
  - Il socket address è identificato dalla combinazione indirizzo IP e numero di porta

### Multiplexing/demultiplexing



### Come funzione il demultiplexing

- L'host riceve il datagramma IP
  - ogni datagramma ha indirizzo IP sorgente e indirizzo IP destinatario
  - Ogni datagramma trasporta un segmento di livello trasporto
  - Ogni segmento contiene nell'header un numero di porta sorgente e un numero di porta destinazione



TCP/UDP segment format

## Concetto di porta

- Ogni comunicazione di trasporto (TCP o UDP) è identificata in maniera univoca grazie alle coppie numero IP/porta degli host.
  - La "porta" è un numero (unsigned int 16 bit [0-65535]) che viene assegnato a un processo, o più precisamente a un punto di demultiplexing dei protocolli TCP o UDP.
  - L'indirizzo IP è un indirizzo di 32 bit presente nello stack TCP/IP
- Range di porte e utilizzi in RFC 6335
  - System Ports (Well Known Ports): da 0 a 1023, assegnate da IANA, identificano processi server
  - User Ports (o Registered Ports): da 1024 a 49151, assegnate da IANA
  - Dynamic Ports (Private o Ephemeral Ports), non assegnate da IANA
- Il sistema operativo assegna dinamicamente le porte ai processi che ne fanno richiesta

## Esempi di Well Known Ports

http://www.iana.org/assignments/port-numbers

| SERVICE NAME | PORT/PROTOC | COL DESCRIPTION                     |
|--------------|-------------|-------------------------------------|
| ftp-data     | 20/tcp      | File Transfer [Default Data]        |
| ftp          | 21/tcp      | File Transfer [Control]             |
| ssh          | 22/tcp      | SSH Remote Login Protocol           |
| telnet       | 23/tcp      | Telnet                              |
| smtp         | 25/tcp      | Simple Mail Transfer                |
| domain       | 53/tcp      | Domain Name Server                  |
| www-http     | 80/tcp      | World Wide Web HTTP                 |
| pop3         | 110/tcp     | Post Office Protocol - Version 3    |
| nntp         | 119/tcp     | Network News Transfer Protocol      |
| imap3        | 220/tcp     | Interactive Mail Access Protocol v3 |
| mysql        | 3306/tcp    | MySQL server                        |
| tftp         | 69/udp      | Trivial File Transfer Protocol      |
| Domain       | 53/udp      | Domain Name Server                  |
| RIP          | 520/udp     | Routing Information Protocol        |
| snmp         | 161/udp     | Simple Network Manag. Prot.         |

# Demultiplexing senza connessione - UDP

- es. creazione automatica di socket DatagramSocket mySocket = new DatagramSocket()
- Socket UDP identificata dalla coppia (IP, porta)

- Lo strato di trasporto dell'host ricevente consegna il segmento UDP alla socket identificata da IP e porta destinazione
- I datagrammi con IP e/o
   porta mittente differenti ma
   stessi IP e porta destinatari
   vengono consegnati alla
   stessa socket

#### Connectionless demultiplexing: esempio



# Demultiplexing orientato alla connessione

- La socket TCP connessa è identificata da 4 parametri:
  - Indirizzo IP di origine
  - Numero di porta di origine
  - Indirizzo IP di destinazione
  - Numero di porta di destinazione

- L'host ricevente usa i 4
  parametri per inviare il
  segmento alla socket
  appropriata
- Un host server può supportare più socket contemporanee
- Es. server Web: socket differenti per ogni client

#### Connection-oriented demultiplexing: esempio



Tre segmenti con stessa destinazione IP address: B, dest port: 80 sono inviate a socket *distinte* 

### Interfaccia tra i livelli dello stack



# Demultiplexing senza connessione – UDP (2)



# Concetto di "Multiplexing/Demultiplexing"

#### <u>Demultiplexing</u> nell'host ricevente:

consegnare i segmenti ricevuti alla socket appropriata

# Multiplexing nell'host mittente:

raccogliere i dati da varie socket, incapsularli con l'intestazione (utilizzati poi per il demultiplexing)

Copyright 1996-2005 J.F Kurose and K.W. Ross

