~ Curve Fitting ~

Least Squares Regression

Chapter 17

Curve Fitting

- Fit the best curve to a discrete data set and obtain estimates for other data points
- Two general approaches:
 - Data exhibit a significant degree of scatter
 Find a single curve that represents the general trend of the data.
 - Data is very precise. Pass a curve(s) exactly through each of the points.
- Two common applications in engineering:

Trend analysis. Predicting values of dependent variable: *extrapolation* beyond data points or *interpolation* between data points.

Hypothesis testing. Comparing existing mathematical model with measured data.

Simple Statistics

In sciences, if several measurements are made of a particular quantity, additional insight can be gained by summarizing the data in one or more well chosen statistics:

Arithmetic mean - The sum of the individual data points (y_i) divided by the number of points. $\sqrt[n]{y_i}$

Standard deviation – a common measure of spread for a sample

$$S_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}}$$
 or variance $S_y^2 = \frac{\sum (y_i - \bar{y})^2}{n-1}$

Coefficient of variation –
$$c.v. = \frac{S_y}{\overline{y}} 100\%$$

quantifies the spread of data (similar to relative error)

Linear Regression

• Fitting a **straight line** to a set of paired observations:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

 y_i : measured value

e: error

$$y_i = a_0 + a_1 x_i + e$$

$$e = y_i - a_0 - a_1 x_i$$

 a_1 : slope

 a_0 : intercept

Choosing Criteria For a "Best Fit"

• Minimize the sum of the residual errors for all available data?

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_o - a_1 x_i)$$
 Inadequate! (see $\rightarrow \rightarrow \rightarrow$)

Inadequate!

• Sum of the absolute values?

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$
 Inadequate! (see $\rightarrow \rightarrow \rightarrow$)

 How about minimizing the distance that an individual point falls from the line? This does not work either! see $\rightarrow \rightarrow \rightarrow$

• Best strategy is to *minimize* the sum of the squares of the residuals between the *measured*-y and the y *calculated* with the linear model:

$$S_r = \sum_{i=1}^n e_i^2$$

$$= \sum_{i=1}^n (y_{i,measured} - y_{i,model})^2$$

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

- Yields a unique line for a given set of data
- Need to compute a_0 and a_1 such that S_r is minimized!

Least-Squares Fit of a Straight Line

Minimize error:
$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

$$\frac{\partial S_r}{\partial a_o} = -2\sum (y_i - a_o - a_1 x_i) = 0 \qquad \Rightarrow \qquad \sum y_i - \sum a_0 - \sum a_1 x_i = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum \left[(y_i - a_o - a_1 x_i) x_i \right] = 0 \qquad \Rightarrow \qquad \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2 = 0$$

Since
$$\sum a_0 = na_0$$

(1)
$$na_0 + (\sum x_i)a_1 = \sum y_i$$

(2) $(\sum x_i)a_0 + (\sum x_i^2)a_1 = \sum y_ix_i$
Normal equations which can be solved simultaneously

Least-Squares Fit of a Straight Line

Minimize error:
$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Normal equations which can be solved simultaneously

$$na_0 + \left(\sum x_i\right)a_1 = \sum y_i$$
$$\left(\sum x_i\right)a_0 + \left(\sum x_i^2\right)a_1 = \sum y_i x_i$$

$$\begin{bmatrix} \mathbf{n} & \sum_{i} x_i \\ \sum_{i} x_i & \sum_{i} x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i} y_i \\ \sum_{i} y_i x_i \end{bmatrix}$$

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

using (1), a_0 can be expressed as $a_0 = \overline{y} - a_1 \overline{x}$

Mean values

"Goodness" of our fit

The spread of data

- (a) around the mean
- (b) around the best-fit line

Notice the improvement in the error due to linear regression

- S_r = Sum of the squares of residuals around the regression line
- $S_t = \text{total sum of the squares around the mean}$
- $(S_t S_r)$ quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value.

r : correlation coefficient

$$r^2 = \frac{S_t - S_r}{S_t}$$

$$S_t = \sum (y_i - \overline{y})^2$$

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$

$$S_{t} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

$$S_{r} = \sum_{i=1}^{n} (y_{i} - a_{0} - a_{1}x_{i})^{2}$$

- For a perfect fit $S_r=0$ and $r=r^2=1$ signifies that the line explains 100 percent of the variability of the data.
- For $r = r^2 = 0$ \rightarrow $S_r = S_t$ \rightarrow the fit represents no improvement

Linearization of Nonlinear Relationships

- (a) Data that is ill-suited for linear least-squares regression
- (b) Indication that a parabola may be more suitable

Linearization of Nonlinear Relationships

Intercept = $\log a_2$

Saturation growth-rate Eq.

log x

Data to be fit to the power equation:

$$y = \alpha_2 x^{\beta_2}$$

$$\Rightarrow \log y = \beta_2 \log x + \log \alpha_2$$

X	у	log x	log y
1	0.5	0	-0.301
2	1.7	0.301	0.226
3	3.4	0.477	0.531
4	5.7	0.602	0.756
5	8.4	0.699	0.924

Linear Regression yields the result:

$$\log y = 1.75 \log x - 0.300$$

After (log y)–(log x) plot is obtained Find α_2 and β_2 using:

Slope =
$$\beta_2$$
 intercept = $\log \alpha_2$

$$\beta_2 = 1.75 \quad \log \alpha_2 = -0.3 \implies \alpha_2 = 0.5$$

$$y = 0.5 x^{1.75}$$

See Exercises.xls

Polynomial Regression

- Some engineering data is poorly represented by a straight line. A curve (polynomial) may be better suited to fit the data. The least squares method can be extended to fit the data to higher order polynomials.
- As an example let us consider a second order polynomial to fit the data points:

$$y = a_0 + a_1 x + a_2 x^2$$

Minimize error:
$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

$$\frac{\partial S_r}{\partial a_o} = -2\sum (y_i - a_o - a_1 x_i - a_2 x_i^2) = 0$$

$$na_0 + (\sum x_i)a_1 + (\sum x_i^2)a_2 = \sum y_i$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum x_i (y_i - a_o - a_1 x_i - a_2 x_i^2) = 0$$

$$(\sum x_i)a_0 + (\sum x_i^2)a_1 + (\sum x_i^3)a_2 = \sum x_i y_i$$

$$\frac{\partial S_r}{\partial a} = -2\sum x_i^2 (y_i - a_o - a_1 x_i - a_2 x_i^2) = 0$$

$$(\sum x_i^2)a_0 + (\sum x_i^3)a_1 + (\sum x_i^3)a_2 = \sum x_i y_i$$

$$na_0 + (\sum x_i)a_1 + (\sum x_i^2)a_2 = \sum y_i$$

$$(\sum x_i)a_0 + (\sum x_i^2)a_1 + (\sum x_i^3)a_2 = \sum x_i y_i$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum_i x_i^2 (y_i - a_o - a_1 x_i - a_2 x_i^2) = 0 \quad (\sum_i x_i^2) a_0 + (\sum_i x_i^3) a_1 + (\sum_i x_i^4) a_2 = \sum_i x_i^2 y_i$$

Polynomial Regression

 To fit the data to an mth order polynomial, we need to solve the following system of linear equations ((m+1) equations with (m+1) unknowns)

$$\begin{bmatrix} n & \sum x_i & \dots & \sum x_i^m \\ \sum x_i & \sum x_i^2 & \dots & \sum x_i^{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_i^m & \sum x_i^{m+1} & \dots & \sum x_i^{m+m} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \\ \vdots \\ \sum x_i^m y_i \end{bmatrix}$$

Matrix Form

Multiple Linear Regression

• A useful extension of linear regression is the case where *y* is a linear function of two or more independent variables. For example:

$$y = a_0 + a_1 x_1 + a_2 x_2$$

 For this 2-dimensional case, the regression line becomes a plane as shown in the figure below.

Multiple Linear Regression

Example (2-vars): Minimize error: $S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})^2$

$$\frac{\partial S_r}{\partial a_o} = -2\sum (y_i - a_o - a_1 x_{1i} - a_2 x_{2i}) = 0$$

$$na_0 + (\sum x_{1i})a_1 + (\sum x_{2i})a_2 = \sum y_i$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum x_{1i}(y_i - a_o - a_1 x_{1i} - a_2 x_{2i}) = 0$$

$$(\sum x_{1i})a_0 + (\sum x_{1i}^2)a_1 + (\sum x_{1i} x_{2i})a_2 = \sum x_{1i} y_i$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum x_{2i}(y_i - a_o - a_1 x_{1i} - a_2 x_{2i}) = 0$$

$$(\sum x_{2i})a_0 + (\sum x_{1i} x_{2i})a_1 + (\sum x_{2i}^2)a_2 = \sum x_{2i} y_i$$

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^{2} & \sum x_{1i}x_{2i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^{2} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{1i}y_{i} \\ \sum x_{2i}y_{i} \end{bmatrix}$$

Which method would you use to solve this Linear System of Equations?

Multiple Linear Regression
$$\begin{bmatrix}
 n & \sum x_{1i} & \sum x_{2i} \\
 \sum x_{1i} & \sum x_{1i} & \sum x_{1i} x_{2i}
\end{bmatrix} \begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2
\end{bmatrix} = \begin{bmatrix}
 \sum y_i \\
 \sum x_{1i} y_i \\
 \sum x_{2i} y_i
\end{bmatrix}$$
Example 17.6

Example 17.6

The following data is calculated from the equation $y = 5 + 4x_1 - 3x_2$

x ₁	X ₂	у
0	0	5
2	1	10
2.5	2	9
1	3	0
4	6	3
7	2	27

Use multiple linear regression to fit this data.

Solution:

$$\begin{bmatrix} 6 & 16.5 & 14 \\ 16.5 & 76.25 & 48 \\ 14 & 48 & 54 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 54 \\ 243.5 \\ 100 \end{bmatrix}$$
 this system can be solved using Gauss Elimination. The result is: $a_0 = 5$ $a_1 = 4$ and $a_2 = -3$ $y = 5 + 4x_1 - 3x_2$

The result is:
$$a_0=5$$
 $a_1=4$ and $a_2=-3$ $y = 5 + 4x_1 - 3x_2$