§7 正定二次型

(本节只涉及实二次型)

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

椭圆抛物面的图形如下:

$$(\frac{x^2}{2p} + \frac{y^2}{2q}$$
是正定二次型)

$$\left(\frac{x^2}{2n} + \frac{y^2}{2a}\right)$$
是

负定二次型)

$$-\frac{x^2}{2p} + \frac{y^2}{2q} = z, p > 0, q > 0$$
 双曲抛物面 (马鞍面)

标准化

(马鞍面)

$$-\frac{x^2}{2p} + \frac{y^2}{2q}$$

不定二次型

方程z = xy表示什 么曲面?

۲

一、正(负)定二次型的概念

定义10:设有实二次型 $f(x) = x^T A x$,如果对任何 $x \neq 0$,都有f(x) > 0(显然 f(0) = 0),则称 f为正定 二次型,并称对称矩阵矩A是正定的;

如果对任何 $x \neq 0$ 都有f(x) < 0,则称f为负顶 定二次型,并称对称矩阵A是定负的.

例如 $f(x,y,z) = x^2 + 4y^2 + 16z^2$ 为正定二次型 $f(x_1,x_2) = -x_1^2 - 3x_2^2$ 为负定二次型 $f(x_1,x_2,x_3) = x_1^2 + 3x_2^2$ 不是正定二次型

n元实二次型的其他分类

1. 定义

设n元二次型 $f(x_1, x_2, ..., x_n) = x^T A x, A^T = A$, 若对任意一组不全为零的实数 $c_1, c_2, ..., c_n$, 都有

- ① $f(c_1,c_2,...,c_n) < 0$, 则 f 称为负定二次型.
- ② $f(c_1,c_2,...,c_n) \ge 0$, 则 f 称为半正定二次型.
- ③ $f(c_1,c_2,...,c_n) \leq 0$, 则f 称为半负定二次型.
- ④ f 既不是半正定,也不是半负定,则 f 称为 不定二次型.

注意:

相应于二次型,n阶实对称矩阵类似定义为:

- ①正定矩阵 (正定二次型)
- ②负定矩阵 (负定二次型)
- ③半正定矩阵 (半正定二次型)
- ④半负定矩阵 (半负定二次型)
- ⑤不定矩阵 (不定二次型)

м

二、惯性定理

定理9(惯性定理) 设有实二次型 $f = x^T A x$,它的秩为r,有两个实的可逆变换

$$x = Cy \qquad \qquad \qquad \qquad \qquad \qquad x = Pz$$
使
$$f = k_1 y_1^2 + k_2 y_2^2 + \dots + k_r y_r^2 \qquad (k_i \neq 0),$$
及
$$f = \lambda_1 z_1^2 + \lambda_2 z_2^2 + \dots + \lambda_r z_r^2 \qquad (\lambda_i \neq 0),$$

则 k_1, k_2, \dots, k_r 中正数的个数与 $\lambda_1, \lambda_2, \dots, \lambda_r$ 中正数的个数相等.

定义:二次型的标准形中正系数的个数称为二次型的正惯性指数,负系数的个数称为负惯性指数。

三、正(负)定二次型的判别

定理10: n元实二次型 $f = x^T A x$ 为正定的充分必要条件是: 它的标准形的n个系数全为正,即它的规范形的n个系数全为1,亦即它的正惯性指数等于n.

证明 设可逆变换x = Cy使

$$f(x) = f(Cy) = \sum_{i=1}^{n} k_i y_i^2.$$

充分性: 设 $k_i > 0$ ($i = 1, \dots, n$). 任给 $x \neq 0$,

则 $y = C^{-1}x \neq 0$, (若y = 0, $\Rightarrow x = Cy = 0$, 矛盾)

故
$$f(x) = \sum_{i=1}^{n} k_i y_i^2 > 0$$
, $\Rightarrow f = x^T A x$ 是正定二次型

定理10: n元实二次型 $f = x^T A x$ 为正定的充分必要条件是: 它的标准形的n个系数全为正,即它的规范形的n个系数全为1,亦即它的正惯性指数等于n.

必要性: 设可逆变换x = Cy使 $f(x) = f(Cy) = \sum_{i=1}^{n} k_i y_i^2.$

反证法: 若 $\exists k_s \leq 0$, 特别地取 $y = e_s$ (单位坐标向量) 时, $f(Ce_s) = k_s \leq 0$. 显然 $Ce_s \neq 0$, 否者产生矛盾 这与 f 为正定相矛盾, $\Rightarrow k_i > 0$ $(i = 1, \dots, n)$.

推论:对称矩阵A为正定的充分必要条件是:A的特征值全为正.

顺序主子式

设矩阵 $A = (a_{ij}) \in \mathbb{R}^{n \times n}$

1)
$$k$$
阶方阵 $A_k = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix} \in \mathbb{R}^{k \times k}$

称为A的第k 阶顺序主子矩阵;

2)
$$k$$
 阶子式 $P_k = \det A_k = |A_k| = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix}$

称为A的第k 阶顺序主子式.

定理11: 对称矩阵A为正定的充分必要条件是:A

的各阶顺序主子式均为正,即
$$a_{11} > 0$$
, $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0$,…, $\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} > 0$;

对称矩阵 A 为负定的充分必要条件是:奇数阶主 子式为负, 而偶数阶主子式为正, 即

$$\begin{pmatrix} -1 \end{pmatrix}^r \begin{vmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} \end{vmatrix} > 0, \quad (r = 1, 2, \dots, n).$$

这个定理称为霍尔维茨定理.

判别二次型

$$f(x_1, x_2, x_3) = 5x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 - 8x_1x_3 - 4x_2x_3$$

是否正定.

它的顺序主子式
$$\begin{vmatrix}
5 & 2 \\
2 & 1
\end{vmatrix} = 1 > 0, \quad
\begin{vmatrix}
5 & 2 & -4 \\
2 & 1 & -2 \\
-4 & -2 & 5
\end{vmatrix} = 1 > 0,$$

故上述二次型是正定的.

例2 判别二次型

$$f(x_1,x_2,x_3) = 2x_1^2 + 4x_2^2 + 5x_3^2 - 4x_1x_3$$

是否正定.

解 用特征值判别法.

二次型的矩阵为
$$A = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{pmatrix}$$

$$\diamondsuit |\lambda E - A| = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 4, \lambda_3 = 6$$

即知A是正定矩阵,故此二次型为正定二次型.

例3 判别二次型

$$f = -5x^2 - 6y^2 - 4z^2 + 4xy + 4xz$$

的正定性.
$$f$$
 的矩阵为 $A = \begin{pmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{pmatrix}$,

$$a_{11} = -5 < 0,$$
 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} -5 & 2 \\ 2 & -6 \end{vmatrix} = 26 > 0,$

|A| = -80 < 0, 根据定理13知f为负定.

四、小结

- 1. 正定二次型的概念,正定二次型与正定矩阵的区别与联系.
 - 2. 正定二次型(正定矩阵)的判别方法:
 - (1) 定义法;
 - (2) 顺序主子式判别法:
 - (3) 特征值判别法.
- 3. 根据正定二次型的判别方法,可以得到 **负定二次型(负定矩阵)**相应的判别方法,请学 生自己探讨.

•

思考题

设A,B分别为m阶,n阶正定矩阵,试判定分块

矩阵
$$C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$
是否为正定矩阵.

思考题解答

\mathbf{R} C是正定的.

因为,设 $z^T = (x^T, y^T)$ 为m + n维向量,其中x, y分别是m维和n维列向量,若 $z \neq 0$,则x, y不同时为零向量,于是

$$z^{T}Cz = (x^{T}, y^{T}) \begin{pmatrix} A & \mathbf{0} \\ \mathbf{0} & B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= x^T A x + y^T B y > 0,$$

且C是实对称阵,故C为正定矩阵.