多元函数 Multivariable Functions

本部分主要内容包括 - 高维度量空间、点集拓扑 - 多元函数、向量值函数的定义 - 极限和连续性 - 微分和偏导数

高维度量空间

Refs: - 《高等微积分教程 (下)》1.1 - 卓里奇《数学分析 (第一卷)》7.1,8.1

n 维 Euclid 空间的定义

对于一个集合 X,如果对于其中的任意两个元素 x_1 和 x_2 ,我们都能定义这两个元素之间的**距离**(distance)或**度量**(metric) $d(x_1,x_2)$,且这个距离具有如下性质: - **正定性**: 对任意两个元素,总有 $d(x_1,x_2)\geqslant 0$; 且 $d(x_1,x_2)=0$ 当 且仅当 $x_1=x_2$. - 对称性: 对任意两个元素,总有 $d(x_1,x_2)=d(x_2,x_1)$. - 三角不等式: 对任意三个元素,总有 $d(x_1,x_2)+d(x_2,x_3)\geqslant d(x_1,x_3)$.

则称 $\langle X, d \rangle$ 构成了一个度量空间 (metric space).

在线性代数中我们已经引入了 n 维实线性空间 $\langle \mathbb{R}^n, +, \cdot \rangle$, \mathbb{R}^n 中的元素可以表示为 $X = (x_1, \cdots, x_n)^T$,可以称 X 为一个点或者向量。

关于 $\langle \mathbb{R}^n, +, \cdot \rangle$ 空间的更详尽介绍可以参考线性代数部分的笔记。由于在微积分部分的笔记中我们不过多强调矩阵运算,所以后面将省略转置上标。

定义向量 X 的 p-范数 (norm) 为

$$||X||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

常用的范数包括 1-范数 $\|X\|_1=\sum_i|x_i|$,2-范数 $\|X\|_2=\sum_i|x_i|^2$ 和无穷范数 $\|X\|_\infty=\max_i|x_i|$. 我们使用 2-范数,又称为 **Euclid 距离**,来作为上述线性空间中的度量,并省略下标 2. 因此, $\langle\,\mathbb{R}^n,+,\cdot\,\rangle$ 中两个点 X 和 Y 的距离定义为

$$d(X,Y) := ||X - Y||$$

可以验证这一定义满足上面提到的三个条件,至此,我们已经完成了 n 维 Euclid 度量空间的定义 $\langle \mathbb{R}^n, +, \cdot, d \rangle$.

空间上的点集拓扑

对于点 X_0 和实数 $\delta > 0$,定义点 X_0 的 δ -邻域和去心 δ -邻域为

$$B(X_0, \delta) := \{X : \|X - X_0\| < \delta\}$$

$$B^{\circ}(X_0, \delta) := \{X : 0 < \|X - X_0\| < \delta\} = B(X_0, \delta) \setminus \{X_0\}$$

基于这一定义,我们可以对空间中点和集合的性质进行一些分类。考虑 \mathbb{R}^n 中的集合 E。则对于 \mathbb{R}^n 中的点 X_0 ,定义

- X_0 是 E 的内点,如果存在 $\delta > 0$,满足 $B(X_0, \delta) \subset E$.
- X_0 是 E 的外点,如果存在 $\delta > 0$,满足 $B(X_0, \delta) \subset E^c$.

• X_0 是 E 的**边界点**,如果它既不是 E 的内点,也不是 E 的外点. 也可以这样定义: 对于 $\forall \delta > 0$, $B(X_0, \delta) \cap E \neq \emptyset$ 且 $B(X_0, \delta) \cap E^c \neq \emptyset$.

从定义中可以看出:给定点 X_0 和集合 E,二者之间的关系必然居于上述三种情况之一。集合的内点一定属于该集合,外点一定不属于该集合,边界点不一定属于或不属于该集合。

基于对内点的定义,可以定义集合的开闭性:

- E 是**开集**,如果 E 中所有点都是它的内点.
- *E* 是**闭集**,如果 *E*^c 是开集.

上述定义并不是二分的,一个集合可以既不是开集也不是闭集。类比于一维情形下的半开半闭区间,在高维空间中半开半闭的情形会更加复杂。

同时,也可以定义集合的内部、外部和边界:

- E 的所有内点构成 E 的**内部**,记为 int E 或 \mathring{E} .
- E 的所有外点构成 E 的**外部**,记为 ext E.
- E 的所有边界构成 E 的边界,记为 ∂E .

基于对内部和边界的定义,可以定义一个集合的**闭包**. 一个集合 E 的闭包记为 $ext{cl} E$ 或 E ,有如下几种等价的定义方式:

- $\bar{E} := E \cup \partial E$.
- \bar{E} 是集合 E 和它所有极限点构成的集合.

其中, 极限点也称为聚点, 同样也有几种不同但等价的定义方式:

- X_0 是集合 E 的聚点,如果 X_0 的任意邻域 $N(X_0)$ 都包含了 E 中无穷多个点.
- X_0 是集合 E 的聚点,如果 X_0 的任意邻域 $N(X_0)$ 都包含了 E 中至少一个相异于 X_0 的点.
- X_0 是集合 E 的聚点,如果 E 中存在一个各项互异的数列 $\{X_i\}_{i=1}^\infty$ 收敛到 X_0 .
 - 点 X 的邻域 (neighbor) 指的是包含 X 的开集, 可以记为 N(X).
 - 一个集合的聚点可能是集合的内点, 也可能是集合的边界点, 但绝无可能是集合的外点。

下面介绍**紧集**. 有界闭集称为紧集. 称一个集合 E **有界**,如果存在 $0 < M < \infty$,使得 $\forall X \in E$,都有 $\|X\| \leqslant M$. 同一维情形下的闭区间,有界闭集具有有限覆盖性质,即对于紧集 E 的任何一个开覆盖 $\{G_{\alpha}\}_{\alpha \in \Gamma}$, $E \subset \bigcup_{\alpha \in \Gamma} G_{\alpha}$,总能在其

中找到其中有限个集合覆盖 E,即 $E \subset \bigcup_{i=1}^{N} G_{\alpha_i}$.

最后介绍集合的连通性。如果一个集合中任意两点均可用一条**折线段**连接,则称该集合为连通集,否则为不连通。连通开 集称为**开区域**,开区域的闭包称为**闭区域**。

要注意此处闭区域的定义。闭区域不等于连通的闭集。要判定一个集合是否为闭区域,需要先检验其内部是否为开区域。一个反例是"8"字型集合,即两个闭集之间只有唯一的公共点。该集合的内部不包含该公共点,是不连通的。

n 维 Euclid 空间的完备性