MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 2 Linear Algebra January 24, 2019

- 1. Let A be 4×3 matrix such that $\operatorname{rank}(A) = 3$. Then show that there exists a 3×4 matrix B such that $BA = I_3$.
- 2. Find all the solutions of the linear system with the augmented matrix $[A|\mathbf{b}]$ as given below:

$$\left[\begin{array}{ccc|cccc}
1 & 2 & 3 & 4 & 2 \\
5 & 6 & 7 & 8 & 5 \\
9 & 10 & 11 & 12 & 8
\end{array}\right]$$

- (a) Find $\mathbf{b'}$ such that $A\mathbf{x} = \mathbf{b'}$ does not have a solution.
- (b) By changing exactly one entry of A, find an A' such that $A'\mathbf{x} = \mathbf{b}$ will be consistent for all $\mathbf{b} \in \mathbb{R}^3$.
- 3. Let $A \in \mathcal{M}_5(\mathbb{R})$ be invertible with row sums 1. Show that the sum of all the elements of A^{-1} is 5.
- 4. True or False? Give justifications.
 - (a) If for all $A \in \mathcal{M}_n(R)$, AB = A then $B = I_n$.
 - (b) If A and B are square matrices of order n with $AB = I_n$ then A and B are invertible and $BA = I_n$.

Hint: If P is invertible then rank(P) = n. AB = I implies there exists an invertible P such that PAB = P, where PA is in rref.

- (c) If A is an $m \times n$ matrix with at least one nonzero row (at least one entry of this row is nonzero) then A is row equivalent to a matrix B, with all nonzero rows.
- (d) If all the columns of an $n \times m$ nonzero matrix (it has at least one nonzero entry) A are equal then rank(A) = 1.
- (e) If A is an $m \times n$ matrix with a zero column (all entries of the column is zero) then the rref of A will again have a zero column.
- (f) If P is any invertible matrix such that PA is defined then, Ax = b and PAx = Pb are equivalent.
- 5. Using Gauss Jordan elimination prove that

$$\left\{ \alpha \left[\begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right] : \alpha \in \mathbb{R} \right\} + \left\{ \alpha \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right] : \alpha \in \mathbb{R} \right\} + \left\{ \alpha \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right] : \alpha \in \mathbb{R} \right\} = \mathbb{R}^3.$$

- 6. If A is upper triangular and B is any matrix such that AB = I, then show that each diagonal entry of A is nonzero.
- 7. Show that $S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 = 2x_3 + x_2 \right\}$ is a subspace of \mathbb{R}^3 .
 - (a) Find $\{\mathbf{u}, \mathbf{v}\}$ such that $span\{\mathbf{u}, \mathbf{v}\} = S$.

- (b) Find a \mathbf{v}' such that $span\{\mathbf{u}, \mathbf{v}'\} = span\{\mathbf{v}, \mathbf{v}'\} = S$.
- (c) Find an \mathbf{u}' such that $span\{\mathbf{u}', \mathbf{v}'\}$ is not a subspace of S. Geometrically what will be the picture of S and $span\{\mathbf{u}', \mathbf{v}'\}$?
- 8. By using Gauss Jordan elimination find the inverse of the matrix

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 12 \end{array}\right].$$

9. Using LU factorization of the matrix A solve the system of linear equations with the augmented matrix $[A|\mathbf{b}]$ as given below:

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 10 \\
1 & 2 & 3 & 4 & 30 \\
1 & 4 & 8 & 15 & 93 \\
1 & 3 & 6 & 10 & 65
\end{bmatrix}.$$

10. Show that $S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 = 2x_3 - x_2, \ 2x_2 = x_3 \right\}$ is a subspace of \mathbb{R}^3 .

Find an **u** such that $span\{\mathbf{u}\} = S$. Find an **u**' such that $span\{\mathbf{u}, \mathbf{u}'\}$ gives a plane in \mathbb{R}^3 . Find a **v** such that $span\{\mathbf{v}\}$ is not a subspace of $span\{\mathbf{u}, \mathbf{u}'\}$. What will be the $span\{\mathbf{u}, \mathbf{u}', \mathbf{v}\}$?

**** End ****