School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 1, 2017)

Workshop exercises: Week 10

1. A **confusion matrix** is an indication of the performance of a classifier over a set of test data, by counting the various output instances:

		Actual			
		a	b	c	d
Classified	a	10	2	3	1
	b	2	5	3	1
	c	1	3	7	1
	d	3	0	3	5

- (a) Calculate the classification **accuracy** of the system.
- (b) Calculate the **precision**, **recall**, **F-score** (where $\beta = 1$), **sensitivity**, and **specificity** for class d. (Why can't we do this for the whole system? How can we consider the whole system?)
- 2. How is **holdout** evaluation (like in the Project 2 data) different to **cross-validation** evaluation?
- 3. For the following dataset:

ID	Outl	Temp	Humi	Wind	PLAY			
Training Instances								
Α	s	h	h	F	N			
В	s	h	h	T	N			
C	0	h	h	F	Y			
D	r	m	h	F	Y			
E	r	С	n	F	Y			
F	r	С	n	T	N			
Test Instances								
G	0	С	n	T	?			
H	s	m	h	F	?			

Classify the test instances using a Decision Tree:

- (a) Using the Gini Index as a splitting criterion
- (b) Using the Information Gain as a splitting criterion