ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Senyals i Sistemes I

Exàmen Final - 21 de Juny de 2002

Duració: 3 hores

No es permet l'ús de calculadores, llibres i/o apunts. Les respostes als diferents exercicis s'han d'entregar en fulls separats

Problema 1

Į

L'esquema de la Fig. I està format pels següents sistemes:

- 1) sistema escalador $z_1(t)=x(at)$ que permet seleccionar un valor del paràmetre a pertanyent al marge $0.5 \le a \le 1$
- 2) sistema rectificador $z_2(t)=|z_1(t)|-C$ amb $C \ge 0$
- 3) sistema lineal, invariant i estable amb resposta impulsional h(t)

- a) Obtingui la relació entrada sortida y(t)=T[x(t)].
- b) Analitzi justificadament les propietats de linealitat, invariància, causalitat i estabilitat del sistema rectificador $z_2(t) = T[z_1(t)]$. Aquest esquema es vol utilitzar com a compresor de senyals sinusoidals quan h(t) es correspon amb un filtre passa-baixes.
- c) Considerant com a senyal d'entrada $x(t) = \cos(2\pi f_0 t)$, es demana:
 - c.1) Calculi i dibuixi acuradament Z1(f) i Z2(f).
 - c.2) Defineixi la resposta impulsional h(t) del filtre ideal passa-baixes i el valor de C que permet obtenir a la sortida y(t)=A.cos(2πf₁t). Quant val f₁?
 - c.3) Quin marge de valors de f1 es poden aconseguir a la sortida?
 - c.4) Calculi l'autocorrelació $R_{z_1}(\tau)$.
- d) Si es considera $x(t)=\cos(2\pi f_0 t)$ i $h(t)=k\prod(2af_0 t-0.5)\cos(4\pi af_0 t-\pi)$, es demana:
 - d.1) (a) Calculi y(t).
 - (b) Quin efecte té ara el valor de C sobre l'expressió de y(t)?
 - (c) Per k=4af₀A, expressi y(t) en funció de la sortida de l'apartat anterior y_c(t)=A.cos(2πf₁t).
 - (d) En relació al filtre ideal avaluat anteriorment, quin avantatge suposa l'ús d'aquest filtre?
 - d.2) Per a=0.5 i k=2 f_0 , expressi y(t) en funció de l'entrada x(t). Expressi <u>justificadament</u> la correlació creuada $R_{yx}(\tau)$ i l'autocorrelació $R_{y}(\tau)$ en funció de $R_{x}(\tau)$.

Problema 2

L'esquema de la Fig. 2.a representa un modulador en banda lateral inferior que adapta el senyal x(t) per poder ser transmès. Suposi que l'ampla de banda del senyal verifica $B_x < \frac{f_0}{2}$ i que $H_1(f) = \prod \left(\frac{f}{2f_0}\right)$.

- a) Descrigui el funcionament del sistema modulador. Per això dibuixi justificadament el senyal Y(f).
- Proposi un sistema similar a l'anterior (fent ús d'oscil.ladors, multiplicadors i filtres) que permeti demodular el senyal, o sigui, recuperar el senyal x(t) a partir de y(t).

- c) Suposi que el senyal y(t) s'aplica a l'entrada de l'esquema de la Fig. 2.b on $H_2(f) = 2\prod \left(\frac{f}{2B_x}\right)$, dibuixi V(f) i Z(f). Quina funció fa aquest esquema?
- d) Sigui un senyal y(t), que verifica $Y(f) \neq 0$ per $\frac{f_0}{2} < |f| < f_0$, i es mostreja a F_s mostres/segon per tal d'obtenir un senyal v(t).
 - d.1) A quina mínima F_s es pot mostrejar y(t) per tal de verificar el Teorema de Mostratge?
 - d.2) Si es mostreja y(t) a la freqüència F_s=f₀, és possible recuperar y(t) a partir de v(t)? En cas afirmatiu, proposi un possible esquema per recuperar y(t).

Problema 3

A la Fig.3 es mostren parcialment les funcions d'atenuació obtingudes amb les aproximacions de Butterworth, Chebychev, invers de Chebychev i el·líptic. Són els filtres d'ordre mínim que verifiquen unes determinades especificacions. Es dóna el cas de que l'ordre requerit dels filtres és el mateix per a totes les aproximacions.

Contesti justificadament les següents preguntes (no s'avaluaran les respostes correctes no justificades):

- a) A quina aproximació es correspon cada corba (1), (2), (3), (4)?
- b) Quin és l'ordre dels filtres?
- c) Sota quines especificacions creu que s'han dissenyat els filtres?
- d) Quina de les aproximacions tindrà un millor comportament de fase?
- e) Quin és el nombre i la posició aproximada dels zeros d'atenuació i de transmissió de cada aproximació?
- f) Quant val aproximadament cadascuna de les corbes de la figura per f=1000, f=2000 i f→ ∞?
- g) On són els zeros de la funció de transferència H(s) per cadascuna de les aproximacions?
- h) A partir del filtre invers de Chebychev i mitjançant transformació de freqüència, es vol obtenir un filtre pas banda amb una banda de pas de 1000 a 1100 Hz. Doni l'expressió de la transformació de freqüència. Dibuixi acuradament l'atenuació i el mòdul de la resposta freqüencial del pas banda. Quan valdria l'ampla de banda del filtre si el mesuréssim entre dos zeros de transmissió?
- i) A partir del filtre de Butterworth i mitjançant transformació de freqüències, es vol obtenir un filtre pas alt amb una freqüència de tall a 3 dB de 1000 Hz. Doni l'expressió de la transformació de freqüència. Doni l'expressió del mòdul de la resposta freqüencial i de la funció de transferència del filtre pas alt.