

Econométrie 2

Chapitre 4 : censure et sélection.

ENSAE 2021-2022

Michael Visser

CREST-ENSAE

Introduction

On s'intéresse maintenant à une variable continue mais imparfaitement observée :

- On observe $Y = \max(0, Y^*)$ où Y^* suit un modèle linéaire : modèle de censure ou tobit simple.
- lacktriangle On observe Y seulement lorsque D=1 : modèle de sélection.

Dans ces deux cas, l'estimateur des MCO n'est pas convergent en général.

Plan

Modèles de censure ou tobit simple

Modèles de sélection

Présentation

On considère le modèle suivant :

$$Y^* = X'\beta_0 + \sigma_0 \varepsilon, \quad \varepsilon | X \sim \mathcal{N}(0, 1),$$

où l'on observe seulement $Y = \max(0, Y^*) = Y^*\mathbb{1}\{Y^* > 0\}$.

- Ce type de situation peut survenir principalement pour deux raisons :
 - 1) Problème d'observation des données : on observe Y si Y^* est inférieur à un seuil s, et le seuil sinon. On observe donc $Y = \min(s, Y^*)$ et

$$-Y + s = -\min(s, Y^*) + s = \max(0, -Y^* + s)$$

= $\max(0, Y^{**})$ avec $Y^{**} = -Y^* + s$

Exemple : revenus, score à un test, demandes de réservation pour un train ou un avion etc.

- 2) Y =solution d'un programme de maximisation sur $[0; +\infty[$ qui peut admettre une solution en coin. Exemple : consommation d'un bien.
- N.B.: on parle encore de tobit de type I pour ces modèles.

Paramètres d'intérêt du modèle.

▶ Dans le cas de données censurées, nous sommes intéressés par l'effet marginal de X sur la "vraie" variable Y* :

$$\frac{\partial E(Y^*|X_k=x_k,X_{-k}=x_{-k})}{\partial x_k}=\beta_{0k}.$$

- ▶ Dans le cas de solutions en coin, la variable d'intérêt est Y et non Y^* et les paramètres d'intérêt sont plutôt $\partial E(Y|X)/\partial x_k$ et $\partial E(Y|X,Y>0)/\partial x_k$.
- On a

$$\frac{\partial E(Y|X=x)}{\partial x_k} = \Phi\left(\frac{x'\beta_0}{\sigma_0}\right)\beta_{0k} \tag{1}$$

et

$$\frac{\partial E(Y|X=x,Y>0)}{\partial x_k} = \beta_{0k} \left\{ 1 - \lambda \left(\frac{x'\beta_0}{\sigma_0} \right) \left[\frac{x'\beta_0}{\sigma_0} + \lambda \left(\frac{x'\beta_0}{\sigma_0} \right) \right] \right\}$$
 (2)

où la fonction $\lambda(u)=arphi(u)/\Phi(u)$ est appelée inverse du ratio de Mills.

Paramètres d'intérêt du modèle.

Preuve: On a

$$E(Y|X=x,Y>0) = x'\beta_0 + \sigma_0 E(\varepsilon|X=x,\varepsilon>-X'\beta_0/\sigma_0)$$

$$= x'\beta_0 + \sigma_0 E(\varepsilon|\varepsilon>-x'\beta_0/\sigma_0)$$

$$= x'\beta_0 + \sigma_0 \frac{\varphi(-x'\beta_0/\sigma_0)}{1-\Phi(-x'\beta_0/\sigma_0)}$$

$$= x'\beta_0 + \sigma_0 \frac{\varphi(x'\beta_0/\sigma_0)}{\Phi(x'\beta_0/\sigma_0)} = x'\beta_0 + \sigma_0 \lambda(x'\beta_0/\sigma_0)$$
(3)

(La 3ème égalité découle de la propriété suivante : si $Z \sim \mathcal{N}(0,1)$, alors $E(Z|Z>c) = \varphi(c)/(1-\Phi(c))$).

On peut montrer que $\lambda'(x) = -\lambda(x)[x + \lambda(x)]$, et on trouve (2).

Paramètres d'intérêt du modèle.

Par ailleurs, on a $\lambda'(x) \in (-1, 0)$. Par conséquent, l'effet marginal (2 est compris entre 0 et β_{0k} .

Pour calculer E(Y|X), on remarque que

$$E(Y|X = x) = P(Y > 0|X = x)E(Y|X = x, Y > 0)$$

$$= P(\varepsilon > -X'\beta_0/\sigma_0|X = x)E(Y|X = x, Y > 0)$$

$$= \Phi\left(\frac{x'\beta_0}{\sigma_0}\right)x'\beta_0 + \sigma_0\varphi\left(\frac{x'\beta_0}{\sigma_0}\right). \tag{4}$$

On a donc

$$\begin{split} \frac{\partial E(Y|X=x)}{\partial x_{k}} &= \varphi\left(\frac{x'\beta_{0}}{\sigma_{0}}\right) \frac{\beta_{0k}}{\sigma_{0}} x'\beta_{0} + \Phi\left(\frac{x'\beta_{0}}{\sigma_{0}}\right) \beta_{0k} \\ &- \sigma_{0} \frac{x'\beta_{0}}{\sigma_{0}} \varphi\left(\frac{x'\beta_{0}}{\sigma_{0}}\right) \times \frac{\beta_{0k}}{\sigma_{0}} \\ &= \Phi\left(\frac{x'\beta_{0}}{\sigma_{0}}\right) \beta_{0k} = P(Y > 0|X=x)\beta_{0k}, \end{split}$$

ce qui correspond à (1). Comme précédemment, l'effet marginal est compris entre 0 et β_{0k} . 4 中) 4 部) 4 差) 4 差) 差

Estimation du modèle

- La régression de Y sur X par la méthode des MCO ne conduit pas à un estimateur convergent de β_0 en général. En effet, l'équation (4) montre que l'espérance de Y conditionnellement à X=x est différente de $X'\beta_0$.
- Intuitivement, les MCO vont approcher l'effet marginal moyen de X sur Y, soit $P(Y > 0)\beta_0$. On s'attend alors à un biais d'atténuation vers 0 dans ce cas.
- La régression sur les données non-censurées seules ne conduit pas non plus à un estimateur convergent pour une raison analogue : l'espérance conditionnelle (3) diffère de $X'\beta_0$.
- Intuitivement, on va approcher dans ce cas l'effet marginal moyen de X sur Y sachant Y>0, soit β_0 $\{1+E\left[\lambda'\left(X'\beta_0/\sigma_0\right)\right]\}$. Là aussi on a un biais d'atténuation vers 0.

Estimation du modèle

- On utilise le maximum de vraisemblance pour estimer les paramètres β_0 et σ_0 .
- ightharpoonup Y a une distribution continue sur $]0, +\infty[$ mais une masse en 0.
- Notons $g(\cdot|x)$ la densité de Y conditionnellement à X=x. On a

$$g(0|x) = P(Y = 0|X = x) = 1 - \Phi\left(\frac{x'\beta_0}{\sigma_0}\right) = \Phi\left(\frac{-x'\beta_0}{\sigma_0}\right).$$

- Par ailleurs, $P(Y \le y | X = x) = P(Y^* \le y | X = x)$ pour tout y > 0. Donc $g(y|x) = g^*(y|x)$ pour tout y > 0, où $g^*(\cdot|x)$ est la densité de Y^* conditionnellement à X = x.
- ► Comme $Y^*|X = x \sim \mathcal{N}(x'\beta_0, \sigma_0^2)$, on a $g^*(y|x) = \frac{1}{\sigma_0} \varphi\left(\frac{y x'\beta_0}{\sigma_0}\right)$.
- La fonction de densité s'écrit alors

$$\begin{split} g(y|x) &= \mathbb{1}\{y=0\}g(0|x) + \mathbb{1}\{y>0\}g(y|x) \\ &= \mathbb{1}\{y=0\}\Phi\left(\frac{-x'\beta_0}{\sigma_0}\right) + \mathbb{1}\{y>0\}\frac{1}{\sigma_0}\varphi\left(\frac{y-x'\beta_0}{\sigma_0}\right). \end{split}$$

Estimation du modèle

La log-vraisemblance d'un échantillon i.i.d s'écrit donc :

$$\begin{split} \ell_n(\beta,\sigma) &= \sum_{i\mid Y_i=0} \ln \Phi\left(\frac{-X_i'\beta}{\sigma}\right) + \sum_{i\mid Y_i>0} \ln \varphi\left(\frac{Y_i-X_i'\beta}{\sigma}\right) - N_+ \ln \sigma \\ &= \sum_{i\mid Y_i=0} \ln \Phi\left(\frac{-X_i'\beta}{\sigma}\right) - \frac{1}{2} \sum_{i\mid Y_i>0} \left(\frac{Y_i-X_i'\beta}{\sigma}\right)^2 - N_+ \ln \sigma - N_+ \ln \sqrt{2\pi} \end{split}$$

où N_+ est le nombre d'observations non censurées.

- Pour rendre le programme de maximisation concave on effectue le changement de variables $b = \beta/\sigma$ et $s = 1/\sigma$.
- ► Il s'agit alors de maximiser :

$$\widetilde{\ell_n}(b,s) = \sum_{i|Y_i=0} \ln \Phi(-X_i'b) - \frac{1}{2} \sum_{i|Y_i>0} (sY_i - X_i'b)^2 + N_+ \ln s - N_+ \ln \sqrt{2\pi}.$$

▶ Comme d'habitude, l'estimateur du maximum de vraisemblance $(\widehat{\beta}, \widehat{\sigma})$ est asymptotiquement normal.

Modélisations alternatives

- Une limite du modèle tobit : un mécanisme unique détermine Y > 0 vs Y = 0 et la quantité Y sachant Y > 0.
- ▶ Dans certains cas il est plus judicieux de supposer qu'il existe deux mécanismes ("two-tiered" model) :

$$P(Y=0|X)=1-\Phi(X'\gamma_0)$$

In $Y|X,Y>0\sim\mathcal{N}(X'eta_0,\sigma_0^2)$

- Pour estimer γ_0 , il suffit d'effectuer un probit sur $W=\mathbb{1}\{Y>0\}$.
- On estime β_0 et σ_0 en régressant les ln Y_i sur les X_i sur l'échantillon des $Y_i > 0$.

Application

- Déterminants de la consommation de tabac aux Etats-Unis.
- ► Code Stata :

- On peut également spécifier une borne supérieure, par ul(valeur).
- Par ailleurs, on peut faire varier la censure d'un individu à l'autre avec la procédure cnreg (l'indicatrice de censure étant précisée via la commande censored()).

Application : résultats

Tobit regression

Number of obs = 115,165 LR chi2(11) = 5837.55 Prob > chi2 = 0.0000 Pseudo R2 = 0.0335

Log likelihood = -84086.208

cig_jours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	3435799	.0096744	-35.51	0.000	3625416	3246182
femme	-3.684466	.3131422	-11.77	0.000	-4.29822	-3.070712
black	-2.926718	.5809287	-5.04	0.000	-4.065329	-1.788107
hispanic	.8919963	.3195028	2.79	0.005	.2657757	1.518217
other_race	2.950636	.6149396	4.80	0.000	1.745364	4.155908
_Ieduca2_r_1	7.952429	.5520324	14.41	0.000	6.870454	9.034404
_Ieduca2_r_3	-3.21447	.4560256	-7.05	0.000	-4.108273	-2.320667
_Ieduca2_r_4	-4.797549	.4777661	-10.04	0.000	-5.733964	-3.861135
_Ieduca2_r_5	-18.95434	.4966429	-38.16	0.000	-19.92776	-17.98093
_Ieduca2_r_6	-25.26274	.6112839	-41.33	0.000	-26.46085	-24.06464
Tax	-1.248026	.1874222	-6.66	0.000	-1.615371	8806815
_cons	-10.8541	.8667528	-12.52	0.000	-12.55292	-9.15528
/sigma	31.09331	.2426334			30.61775	31.56886

Application : résultats

Variable	tobit	МСО	
age	-0.037	-0.034	
femme	-0.400	-0.656	
black	-0.318	-0.77	
hispanic	0.097	0.14	
other_race	0.321	0.218	
educa2_r_1	0.864	1.557	
educa2_r_3	-0.349	-0.502	
educa2_r_4	-0.521	-0.700	
educa2_r_5	-2.06	-2.006	
educa2 r 6	-2.745	-2.249	
Tax	-0.136	-0.165	

Table 1 – Comparaison des effets marginaux estimés par tobit et MCO

Application : résultats

Questions:

- Pourquoi ne pas inclure le prix des cigarettes dans le modèle? Réponse : Le prix des cigarettes est le prix d'équilibre (où la demande est égale à l'offre), et dépend donc des déterminants observés et inobservés de la demande et de l'offre. Le terme d'erreur ϵ capte ces déterminants inobservés. Le prix est alors potentiellement une variable endogène.
- A quelle condition peut-on interpréter le coefficient de Tax comme l'effet causal des taxes sur la consommation de cigarettes? Réponse : Si le modèle défini à la page 4 est bien spécifié et si le terme d'erreur suit bien une loi $\mathcal{N}(0,1)$.

Plan

Modèles de censure ou tobit simple

Modèles de sélection

Introduction

- On s'intéresse ici à des situations où l'on n'observe Y que lorsque D=1 (D=0 sinon).
- ► On considère le modèle suivant :

$$Y^* = X'\beta_0 + \varepsilon,$$

(contrairement au modèle de censure, la distribution de ε n'est pas spécifiée) et on observe $Y = DY^*$.

- Exemples :
 - non-réponse partielle dans une enquête;
 - auto-sélection : on n'observe le salaire des individus que s'ils ont décidé de se porter sur le marché du travail.
- N.B.: il existe également des situations où on n'observe (Y, X) que lorsque D=1: non-réponse totale, modèle de troncature. Les méthodes d'estimation, différentes, ne sont pas abordées ici.

Sélection exogène

- ▶ Ce cas correspond à la situation où $Y^* \perp \!\!\!\perp D|X$.
- ▶ En d'autres termes, D et ε sont indépendants conditionnellement à X. Exemple :

$$D=\mathbb{1}\{X'\gamma_0+\eta\geq 0\},\quad \text{avec }\eta\perp\!\!\!\perp(X,Y^*).$$

- ▶ Dans ce cas, on peut ignorer le problème de sélection car la loi de $Y^*|X, D=1$ est identique à celle de $Y^*|X$.
- ▶ Si par ailleurs $E(\varepsilon|X) = 0$, alors :

$$E(Y^*|X, D=1) = E(Y^*|X) = X'\beta_0.$$

▶ Donc l'estimateur des MCO sur le sous-échantillon $\{i \mid D_i = 1\}$ converge vers β_0 .

Modèle de sélection généralisée : présentation

- On ne suppose plus maintenant que $Y^* \perp \!\!\! \perp D|X$. Mais on dispose d'un instrument corrélé à D et qui n'affecte pas directement Y^* .
- Noter l'analogie avec l'approche instrumentale dans le modèle linéaire avec variables endogènes.
- Cas du modèle linéaire (Tobit généralisé ou Tobit II) :

$$Y^* = X'\beta_0 + \varepsilon$$

$$D = 1\{Z'\gamma_0 + \eta \ge 0\}$$

où Z contient au moins une composante qui est exclue de X.

- ▶ N.B. : ε et η sont a priori corrélés (sélection endogène)
- \Rightarrow l'estimateur des MCO de Y sur X sur $\{i \mid D_i = 1\}$ n'est pas convergent en général.

Modèle de sélection généralisée : exemple

- Exemple canonique : modèle d'offre de travail (Gronau, 1974). On s'intéresse à l'effet de caractéristiques X sur le salaire horaire offert W.
- ▶ Mais on n'observe W que si l'individu a décidé d'être actif. Si l'on considère un choix d'activité hebdomadaire, l'individu résout :

$$\max_h \ u(Wh+A,h) \quad \text{s. c. } 0 \leq h \leq 168,$$

où u est l'utilité de l'individu (de dérivées partielles $u_1>0$ et $u_2<0$), h le nombre d'heures travaillés et A correspond aux revenus non salariaux.

► Si I'on note s(h) = u(Wh + A, h), on a

$$s'(h) = Wu_1(Wh + A, h) + u_2(Wh + A, h).$$

Modèle de sélection généralisée : exemple

Si $s'(0) \le 0$, alors l'individu choisit 0 heures d'activité. Il travaillera donc si et seulement si

$$W \ge -\frac{u_2(A,0)}{u_1(A,0)} = W^r.$$

- ► W^r est appelé le salaire de réserve.
- ▶ On n'observe W que si $W \ge W^r$. Si l'on suppose que

$$\ln W = X'\beta_0 + \varepsilon
\ln W' = \widetilde{X}'\beta_1 + \nu$$

où X a au moins une composante exclue de X, alors :

$$\begin{array}{rcl} \ln W & = & X'\beta_0 + \varepsilon \\ D & = & \mathbb{1}\{\ln W - \ln W' \geq 0\} \equiv \mathbb{1}\{Z'\gamma_0 + \eta \geq 0\} \end{array}$$

avec D l'indicatrice d'activité, Z la réunion de X et \widetilde{X} et $\eta = \varepsilon - \nu$.

En général, ε et η seront corrélés.

Modèle de sélection généralisée : identification

Supposons que :

$$\begin{cases}
Y^* = X'\beta_0 + \varepsilon \\
D = \mathbb{1}\{Z'\gamma_0 + \eta \ge 0\}
\end{cases}$$
(5)

avec :

- 1. (ε, η) indépendants de (X, Z);
- 2. $\eta \sim \mathcal{N}(0,1)$.
- 3. $E(\varepsilon|\eta) = \delta_0 \eta$.
- Les hypothèses 2 et 3 sont satisfaites lorsque (ε, η) est gaussien mais sont plus faibles en général.
- On a alors:

$$E(Y^*|X,Z,\eta) = X'\beta_0 + E(\varepsilon|X,Z,\eta)$$

$$= X'\beta_0 + E(\varepsilon|\eta)$$

$$= X'\beta_0 + \delta_0 \eta.$$

Modèle de sélection généralisée : identification

▶ Par conséquent (toujours avec $Y = DY^*$),

$$\begin{split} E(Y|X,Z,D=1) &= & E\left[E(Y^*|X,Z,D=1,\eta)|X,Z,D=1\right] \\ &= & E\left[E(Y^*|X,Z,\eta)|X,Z,\eta \geq -Z'\gamma_0\right] \\ &= & E\left[X'\beta_0 + \delta_0 \; \eta|X,Z,\eta \geq -Z'\gamma_0\right] \\ &= & X'\beta_0 + \delta_0 \; \lambda(Z'\gamma_0), \end{split}$$

- Par ailleurs, γ_0 est identifié puisque la deuxième équation de (5) est un probit.
- ▶ Donc β_0 et δ_0 sont identifiés par la régression de Y sur $(X, \lambda(Z'\gamma_0))$ (conditionnellement à D=1).
- N.B.: stricto sensu, on peut identifier β_0 et δ_0 même si X=Z. Dans ce cas l'identification repose sur la non-linéarité de la fonction $\lambda(X'\gamma_0)$ en X.

Modèle de sélection généralisée : estimation

- ► La méthode d'estimation suit la même démarche (méthode d'Heckman en deux étapes ou "Heckit", en référence à Heckman, 1976) :
 - 1. Estimer le probit de D_i sur $Z_i \Rightarrow \widehat{\gamma}$.
 - 2. Régresser Y_i sur X_i et $\lambda(Z_i'\widehat{\gamma})$ sur les $\{i|D_i=1\}\Rightarrow \widehat{\beta}$ et $\widehat{\delta}$.
- Cette procédure conduit à des estimateurs convergents et asymptotiquement normaux.
- N.B. : l'erreur commise sur γ_0 en première étape a un impact sur la variance asymptotique de $\widehat{\beta}$ et $\widehat{\delta}$ (sauf lorsque $\delta_0 = 0$).
- Il est également possible d'estimer le modèle par maximum de vraisemblance en supposant (ε, η) gaussien.
- Mais cet estimateur a l'inconvénient de reposer sur des hypothèses plus fortes que le Heckit.

- Exemple : équation de salaire horaire des femmes en couple (ici à partir de l'enquête emploi 2012).
- Relation d'exclusion : le nombre d'enfants de moins de 6 ans est supposé joué sur la probabilité d'être active mais pas sur le salaire horaire.
- On peut estimer le modèle en utilisant l'option heckman.

Code Stata:

```
use "W:\Cours\Econométrie 2\Données\eec indiv.dta", clear
destring age fordat, replace
* On garde les femmes en couple entre 18 et 64 ans
keep if age>=18 & age<=64 & sexe=="2" & inlist(TYPMEN5, "3", "4", "5")
* log(salaire horaire)
gen logsal hor = log(salred*52/(12*nbhp))
* Indicatrice d'observation du salaire(=salarié et répondant)
gen indic obs = (logsal hor != .)
* Expérience potentielle et exp. pot. au carré
gen exp = 2012 - fordat
gen exp2 = exp^2
char ddipl[omit] 7
xi: heckman logsal hor i.ddipl exp exp2, select(indic obs = NBENF6 exp ///
            exp2 i.ddipl) twostep
```

i.ddipl __Iddipl_1-6 (_Iddipl_6 for ddipl==7 omitted)

Heckman selection model -- two-step estimates Number of obs = 106878 (regression model with sample selection) Censored obs = 89296 Uncensored obs = 17582

Wald chi2(7) = 5490.36 Prob > chi2 = 0.0000

	Coef.	Std. Err.	z P> z		[95% Conf. Interval]	
logsal_hor						
_Iddipl_1	.6924857	.0116691	59.34	0.000	.6696146	.7153568
_Iddipl_2	.5026082	.0139363	36.06	0.000	.4752936	.5299229
_Iddipl_3	.305763	.0122888	24.88	0.000	.2816773	.3298487
_Iddipl_4	.149917	.0117749	12.73	0.000	.1268387	.1729953
_Iddipl_5	.1580453	.013888	11.38	0.000	.1308254	.1852653
exp	.0276042	.0014949	18.47	0.000	.0246742	.0305342
exp2	0004318	.0000382	-11.31	0.000	0005067	000357
_cons	4.276439	.0857463	49.87	0.000	4.108379	4.444499
indic obs						
NBENF6	1443794	.0091964	-15.70	0.000	162404	1263548
exp	.0281243	.001419	19.82	0.000	.0253431	.0309055
exp2	0008314	.0000293	-28.37	0.000	0008888	000774
Iddipl 1	.0607705	.0175224	3.47	0.001	.0264273	.0951138
Iddipl 2	.2154777	.0171016	12.60	0.000	.1819592	.2489962
Iddipl 3	.1455301	.0163727	8.89	0.000	.1134402	.1776201
Iddipl 4	.1406145	.0155556	9.04	0.000	.1101261	.1711029
Iddipl 5	.1193359	.0203689	5.86	0.000	.0794137	.1592581
_cons	-1.111414	.0205948	-53.97	0.000	-1.151779	-1.071049
mills						
lambda	.2169139	.0503266	4.31	0.000	.1182756	.3155523
rho	0.53462					
sigma	.40573343					

Questions:

- ▶ Quel est l'effet marginal de l'expérience potentielle sur le salaire potentiel? Réponse : La dérivée du log(salaire horaire) par rapport à l'expérience vaut 0.027-0.0004 * 2 *exp=0.027-0.0008 * exp. Lorsque exp=10, alors une année d'expérience supplémentaire augmente le salaire horaire de 1.9% (0.027-0.008).
- A quoi correspondent lambda, rho et sigma? Réponse : lambda= $\delta_0 \equiv \frac{Cov(\epsilon,\eta)}{V(\eta)} = Cov(\epsilon,\eta)$; sigma= $\sqrt{V(\epsilon)}$; rho= $\frac{Cov(\epsilon,\eta)}{\sqrt{V(\epsilon)V(\eta)}} = \frac{\delta_0}{\sqrt{V(\epsilon)}}$.
- La sélection est-elle significativement endogène ici? Dans quel sens joue-t-elle? Réponse : Oui car on rejette l'hypothèse nulle que $\delta_0=0$. Comme $\hat{\delta}=0.217$ (signe positif), le salaire horaire potentiel des femmes non-actives est inférieur à celui des femmes actives.
- L'instrument a-t-il un effet significatif? Réponse : Oui, la variable NBENF6 est statistiquement significative.

L'essentiel

- ► Modèle tobit I / tobit simple :
 - Cas d'applications;
 - Paramètres d'intérêt;
 - Vraisemblance.
- Modèle de sélection généralisée (tobit II) :
 - Cas d'applications;
 - Hypothèses et relation d'exclusion;
 - Méthode d'estimation en deux étapes.