26) Spatial Autoregressive (SAR), Spatial Error Model (SEM), Spatial Durbin Model (SDM)

Vitor Kamada

November 2018

Tables, Graphics, and Figures from:

- 1) LeSage (2008). **An Introduction to Spatial Econometrics**, in Revue d'économie industrielle
 - 2) LeSage and Pace (2009). **Introduction to Spatial Econometrics**: Chapters 1, 2, and 3

Moran Plot Map of County-Level Commuting Times

Regions East and West of the Central Business District (CBD)

	R1	R2	R3	R4 CBD	R5	R6	R7	
West	Highway				East			
	R1	R2	R3	R4 CBD	R5	R6	R7	

Travel Times to the CBD (in minutes), Population Densit, and Distance (in miles)

$$y = \begin{pmatrix} \text{Travel times} \\ 42 \\ 37 \\ 30 \\ 26 \\ 30 \\ 37 \\ 42 \end{pmatrix}$$

	/ Density	Distance
	10	30
	20	20
X =	30	10
$\Lambda =$	50	0
	30	10
	20	20
	10	30

ex-urban areas	R1
far suburbs	R2
near suburbs	R3
CBD	R4
near suburbs	R5
far suburbs	R6
ov urban aroas	D7

Spatial Independence vs Dependence

$$y_i = X_i eta + \epsilon_i$$
 $\epsilon_i \sim N(0, \sigma^2)$ $E(\epsilon_i \epsilon_j) = E(\epsilon_i) E(\epsilon_j) = 0$

$$y_{i} = \alpha_{i}y_{j} + X_{i}\beta + \epsilon_{i}$$

$$y_{j} = \alpha_{j}y_{i} + X_{j}\beta + \epsilon_{j}$$

$$\epsilon_{i} \sim N(0, \sigma^{2})$$

$$\epsilon_{i} \sim N(0, \sigma^{2})$$

Spatial Weight Matrix (W)

$$C = \begin{pmatrix} R1 & R2 & R3 & R4 & R5 & R6 & R7 \\ R1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ R2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ R3 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ R3 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ R5 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ R6 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ R7 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Spatial Lag Matrix

$$Wy = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{pmatrix} = \begin{pmatrix} y_2 \\ (y_1 + y_3)/2 \\ (y_2 + y_4)/2 \\ (y_3 + y_5)/2 \\ (y_4 + y_6)/2 \\ (y_5 + y_7)/2 \\ y_6 \end{pmatrix}$$

Second-Order Neighbors

$$W^{2} = \begin{pmatrix} 0.50 & 0 & 0.50 & 0 & 0 & 0 & 0 \\ 0 & 0.75 & 0 & 0.25 & 0 & 0 & 0 \\ 0.25 & 0 & 0.50 & 0 & 0.25 & 0 & 0 \\ 0 & 0.25 & 0 & 0.50 & 0 & 0.25 & 0 \\ 0 & 0 & 0.25 & 0 & 0.50 & 0 & 0.25 \\ 0 & 0 & 0 & 0.25 & 0 & 0.75 & 0 \\ 0 & 0 & 0 & 0.50 & 0 & 0.50 \end{pmatrix}$$

Spatial Spillovers from Changes in Region R2 Population Density

$$\tilde{X} = \begin{pmatrix} 10 & 30 \\ 20 & \textbf{40} \\ 30 & 10 \\ 50 & 0 \\ 30 & 10 \\ 20 & 20 \\ 10 & 30 \end{pmatrix} \quad \begin{array}{ccccccccc} & \text{Regions / Scenario} & \hat{y}^{(1)} & \hat{y}^{(2)} & \hat{y}^{(2)} - \hat{y}^{(1)} \\ R1 & & 42.01 & 44.58 & 2.57 \\ R2 & & 37.06 & 41.06 & 4.00 \\ R3 & & & 29.94 & 31.39 & 1.45 \\ R4 & & \text{CBD} & & 26.00 & 26.54 & 0.53 \\ R5 & & & 29.94 & 30.14 & 0.20 \\ R6 & & & 37.06 & 37.14 & 0.07 \\ R7 & & & 42.01 & 42.06 & 0.05 \\ \end{array}$$

Non-spatial Predictions for Changes in Region R2 Population Density

$$\tilde{X} = \begin{pmatrix} 10 & 30 \\ 20 & \textbf{40} \\ 30 & 10 \\ 50 & 0 \\ 30 & 10 \\ 20 & 20 \\ 10 & 30 \end{pmatrix} \quad \begin{array}{cccccc} \text{Regions / Scenario} & \hat{y}^{(1)} & \hat{y}^{(2)} & \hat{y}^{(2)} - \hat{y}^{(1)} \\ R1 : & 42.98 & 42.98 & 0.00 \\ R2 : & 36.00 & 47.03 & 11.02 \\ R3 : & 29.02 & 29.02 & 0.00 \\ R4 : \text{CBD} & 27.56 & 27.56 & 0.00 \\ R5 : & 29.02 & 29.02 & 0.00 \\ R6 : & 36.00 & 36.00 & 0.00 \\ R7 : & 42.98 & 42.98 & 0.00 \\ \end{array}$$

Spatial Autoregressive (SAR) Model

$$y = \rho Wy + X\beta + \epsilon$$

$$y = (I_n - \rho W)^{-1}X\beta + (I_n - \rho W)^{-1}\epsilon$$

$$\epsilon \sim N(0, \sigma^2 I_n)$$

$$-1 < \rho < 1$$

$$\hat{\beta}_{sar} = (X'X)^{-1}X'(I_n - \hat{\rho}W)y$$

Vitor Kamada ECO 7110 Econometrics II November 2018 12 / 24

Simultaneous Feedback

$$(I_{n} - \rho W)^{-1} = I_{n} + \rho W + \rho^{2} W^{2} + ...$$

$$y = (I_{n} - \rho W)^{-1} X \beta + (I_{n} - \rho W)^{-1} \epsilon$$

$$y = X \beta + \rho W X \beta + \rho^{2} W^{2} X \beta + ... \epsilon + \rho W \epsilon + \rho^{2} W^{2} \epsilon + ...$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

13 / 24

Steady-State Equilibrium Intrepretation

$$y_t = \rho W y_{t-1} + X \beta + \epsilon_t$$

$$y_{t-1} = \rho W y_{t-2} + X \beta + \epsilon_{t-1}$$

$$y_t = (I_n + \rho W + ... + \rho^q W^q) X \beta + \rho^q W^q y_{t-q} + u$$

$$u = \epsilon_t + \rho W \epsilon_{t-1} + \dots + \rho^{q-1} W^{q-1} \epsilon_{t-(q-1)}$$

$$\lim_{q\to\infty} E(y_t) = (I - \rho W)^{-1} X \beta$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Spatial Error Model (SEM)

$$y = X\beta + u$$
 $u = \rho Wu + \epsilon$
 $u(I_n - \rho W) = \epsilon$
 $y_{sem} = X\beta + (I_n - \rho W)^{-1}\epsilon$
 $\frac{\partial y_i}{\partial x_{ir}} = \beta_r \text{ and } \frac{\partial y_i}{\partial x_{jr}} = 0$

$$y_{sar} = (I_n - \rho W)^{-1} X \beta + (I_n - \rho W)^{-1} \epsilon$$

Vitor Kamada ECO 7110 Econometrics II November 2018

15 / 24

Bayesian Derivation of Spatial Durbin Model (SDM)

$$y_{sdm} = \pi_{sar}y_{sar} + \pi_{sem}y_{sem}$$
 $y_{sdm} = R^{-1}X(\pi_{sar}\beta) + X(\pi_{sem}\beta) + (\pi_{sar} + \pi_{sem})R^{-1}\epsilon$
 $Ry_{sdm} = X(\pi_{sar}\beta) + RX(\pi_{sem}\beta) + \epsilon$
 $Ry_{sdm} = X\beta + WX(-\rho\pi_{sem}\beta) + \epsilon$
 $Ry_{sdm} = X\beta_1 + WX\beta_2 + \epsilon$

$$y_{sdm} = (I_n - \rho W)^{-1} X \beta_1 + (I_n - \rho W)^{-1} W X \beta_2 + (I_n - \rho W)^{-1} \epsilon$$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ○

Spatial Durbin Error Model (SDEM)

$$egin{aligned} y_{sdem} &= Xeta + WX\gamma + \iota_nlpha + u \ & u = (I_n -
ho W)^{-1}\epsilon \ & \ y_{sdem} &= Xeta + WX\gamma + \iota_nlpha + (I_n -
ho W)^{-1}\epsilon \end{aligned}$$

$$y_{sdm} = (I_n - \rho W)^{-1} X \beta_1 + (I_n - \rho W)^{-1} W X \beta_2 + (I_n - \rho W)^{-1} \epsilon$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

17 / 24

Vitor Kamada ECO 7110 Econometrics II November 2018

Logged Commuting to Work (in minutes) for 3,110 US Counties in 2000

W: ten nearest neighboring counties

18 / 24

Bayesian Model Comparison

# nearest neighbors	Model Probabilities	log-marginal likelihood	difference in log-marginals
6	0.0000	1200.9201	36.8444
7	0.0000	1214.5424	23.2220
8	0.0000	1227.1382	10.6262
9	0.1142	1235.9867	1.7778
10	0.6864	1237.7645	0.0000
11	0.0890	1235.7055	2.0590
12	0.1063	1235.8700	1.8945
13	0.0041	1232.5908	5.1737
14	0.0000	1227.4054	10.3591

OLS vs Spatial Durbin Model

	SDM model		Least-squares	
	coefficient	<i>t</i> –statistic	coefficient	<i>t</i> –statistic
Intercept	0.9990	10.89	3.912	63.90
Population Density	-0.0005	-0.09	0.1080	24.11
In-migration	0.1246	11.87	0.2334	19.31
Out-migration	-0.1649	-15.15	-0.2959	-24.20
W · Population Density	0.0337	4.16	na	na
W · In-migration	-0.0096	-0.50	na	na
W · Out-migration	0.0572	2.92	na	na
ρ	0.6837	36.27	na	na
σ^2	0.0230		0.0431	
R-squared	0.4903		0.3530	

20 / 24

Effects of Changes in the Regressors on Commuting

	Mean	t-statistic	<i>t</i> –probability
Direct effects			
Population density	0.0031	0.4923	0.6225
In-migration	0.1331	12.6698	0.0000
Out-migration	-0.1711	-15.7163	0.0000
Indirect effects			
Population density	0.1021	6.0220	0.0000
In-migration	0.2319	4.1527	0.0000
Out-migration	-0.1708	-2.9921	0.0028
Total effects			
In-migration	0.1052	6.5284	0.0000
Out-migration	0.3650	6.3123	0.0000
Total effects	-0.3420	-5.7814	0.0000

Solow Residuals, 2001 US States

$$ln(Q) = \beta ln(K) + [1 - \beta] ln(L) + \epsilon$$

Garofalo and Yamarik (2002)

LeSage, Fischer and Scherngell (2007)

$$y = \alpha_0 \iota_n + \rho Wy + \alpha_1 a + \alpha_2 Wa + \epsilon$$

- y: Total Factor Productivity [Ln(SolowResidual)]
- a: Regional stock of knowledge [Ln(Patents)]
- 198 European Union regions from the 15 pre-2004 EU member states

4 D > 4 D > 4 E > 4 E > E 990

SEM and **SDM** model estimates

$$y = \alpha_0 \iota_n + \rho Wy + \alpha_1 a + \alpha_2 Wa + \epsilon$$

Parameters	SEM model estimates		SDM model estimates	
	Coefficient	$t ext{-statistic}$	Coefficient	t-statistic
α_0	2.5068	17.28	0.5684	3.10
α_1	0.1238	6.02	0.1112	5.33
α_2			-0.0160	-0.48
ho	0.6450	8.97	0.6469	9.11

	Mean effects	Std deviation	<i>t</i> -statistic
direct effect	0.1201	0.0243	4.95
indirect effect	0.1718	0.0806	2.13
total effect	0.2919	0.1117	2.61

Vitor Kamada ECO 7110 Econometrics II November 2018 24 / 24