Definitions and Useful Formulas:

- 1. Local/Absolute Maximum and Minimum(14.7.1)
 - (a) A function of two variables has a <u>local maximum</u> at (a,b) if $f(x,y) \leq f(a,b)$ when (x,y) is near (a,b). The number f(a,b) is called a <u>local maximum value</u>.
 - (b) A function of two variables has a <u>local maximum</u> at (a,b) if $f(x,y) \ge f(a,b)$ when (x,y) is near (a,b). The number f(a,b) is called a <u>local maximum value</u>.
 - (c) A function of two variables has a **absolute maximum** at (a,b) if $f(x,y) \leq f(a,b)$ for all (x,y) in the domain of f.
 - (d) A function of two variables has a <u>absolute minimum</u> at (a,b) if $f(x,y) \ge f(a,b)$ for all (x,y) in the domain of f.
- 2. A point (a,b) is called a <u>critical point</u> (14.7.1) of f if $f_x(a,b) = 0$ and $f_y(a,b) = 0$, or if one of these partial derivatives does not exist.
- 3. Second Derivatives Test

Suppose the second partial derivatives of f are continuous on a disk with center (a,b), and suppose that $f_x(a,b) = 0$ and $f_y(a,b) = 0$ [that is, (a,b) is a critical point of f]. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a,b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a,b) is a local maximum.
- (c) If D<0 , then f(a,b) is not a local maximum or minimum. The point (a,b) is called a saddle point of f.
- (d) If D = 0, the test gives no information.
- (e) In fact, D is the determinant $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$
- 4. A boundary point of D is a point (a,b) such that every disk with center (a,b) contains points in D and also points not in D.
- 5. A <u>closed set</u> in \mathbb{R}^2 is one that contains all its boundary points.
- 6. A **bounded set** in \mathbb{R}^2 is one that is contained within some disk.
- 7. Extreme Value Theorem for Functions of Two Variables

If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

8. <u>Lagrange Multiplier</u>: To find the maximum and minimum values of f(x,y,z) subject to the constraint g(x,y,z)=k, with $\nabla g \neq 0$, we have $\nabla f(x_0,y_0,z_0)=\lambda \nabla g(x_0,y_0,z_0)$, where (x_0,y_0,z_0) is a possible optimal solution.