UCS405 (Discrete Mathematical Structures)

Solutions

Tutorial Sheet-4 (Functions)

1. A-

Steps 1 through 3	Step 4	Hash Value
Smith $\rightarrow 19 \cdot 2 + 13 \cdot 2^2 + 9 \cdot 2^3 + 20 \cdot 2^4 + 8 \cdot 2^5 = 738$	11.63 + 45	→ 45
Jones $\rightarrow 10 \cdot 2 + 15 \cdot 2^2 + 14 \cdot 2^3 + 5 \cdot 2^4 + 19 \cdot 2^5 = 880$	$13 \cdot 63 + 61$	→ 61
Brown $\rightarrow 2 \cdot 2 + 18 \cdot 2^2 + 15 \cdot 2^3 + 23 \cdot 2^4 + 14 \cdot 2^5 = 1012$	$16 \cdot 63 + 4$	\rightarrow 4
Zento $\rightarrow 26 \cdot 2 + 5 \cdot 2^2 + 14 \cdot 2^3 + 20 \cdot 2^4 + 15 \cdot 2^5 = 984$	$15 \cdot 63 + 39$	→ 39
Ruster $\rightarrow 18 \cdot 2 + 21 \cdot 2^2 + 19 \cdot 2^3 + 20 \cdot 2^4 + 5 \cdot 2^5 + 18 \cdot 2^6 = 1904 =$	30.63 + 14	→ 14

2. A-

Let
$$c=20$$
 and $n_0=1$.
Must show that $0 \le f(n)$ and $f(n) \le cg(n)$.
 $0 \le 15n^3 + n^2 + 4$ for all $n \ge n_0 = 1$.
 $f(n) = 15n^3 + n^2 + 4 \le 15n^4 + n^4 + 4n^4$
 $15n^4 + n^4 + 4n^4 = 20n^4 = 20g(n) = cg(n)$

$$T(n) = 15n^3 + n^2 + 4$$

$$T(n) = O(n^3).$$

$$T(n) = O(n^4).$$

O(n) is an upper bound

"=" is not really equality. It's used as "set inclusion" ∈ here.

Don't use
$$O(n) = T(n)$$

3. A-

Let
$$c=15$$
 and $n_0=1$.
Must show that $0 \le cg(n)$ and $cg(n) \le f(n)$.
 $0 \le 15n^3$ for all $n \ge n_0=1$.
 $cg(n)=15n^2 \le 15n^3 \le 15n^3+n^2+4=f(n)$

$$T(n) = 15n^3 + n^2 + 4$$

$$T(n) = \Omega(n^3).$$

$$T(n) = \Omega(n^2).$$

 $\Omega(n)$ is a lower bound

4. A-

When $n \geq 1$,

$$n^2 + 5n + 7 \le n^2 + 5n^2 + 7n^2 \le 13n^2$$

When $n \geq 0$,

$$n^2 \le n^2 + 5n + 7$$

Thus, when $n \geq 1$

$$1n^2 \le n^2 + 5n + 7 \le 13n^2$$

Thus, we have shown that $n^2 + 5n + 7 = \Theta(n^2)$ (by definition of Big- Θ , with $n_0 = 1$, $c_1 = 1$, and $c_2 = 13$.)

5. A-

b)one of the solutions is to try to occupy the next (consecutive available spot)

6.
$$n^3 + \log(n^2 + 1) = O(n^3)n! + 2^n = O(n!)$$

Therefore, $(n! + 2^n)(n^3 + \log(n^2 + 1)) = O(n^3 \cdot n!)$