ANALYTICS FOR HOSPITAL HEALTH CARE DATA

SUBMITTED BY

ANUSUYA V	113219031013
DHIVYA R	113219031039
MADHUMITHA R	113219031079
MELPHIN MADONNA A	113219031088
SHRINIDHI GOKULAKRISHNAN	113219031138

BACHELOR OF ENGINEERING IN COMPUTER SCIENCE AND ENGINEERING

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	To accurately predict the Length of Stay for each
solved)	solved)	patient on case-by-case basis so that the Hospitals
		can use this information for optimal resource
		allocation and better functioning. The length of
		stay is divided into 11 different classes ranging
		from 0-10 days to more than 100 days.
2.	Idea / Solution description	The goal is to predict the length of stay using
		predictive analytic tools such as neural network
		and decision trees that makes predictions using
		historical data combined with statistical
		modelling. We are collecting and interpreting
		data from multiple sources like cost reports,
		electronic health record (EHR), etc. and then
		building models and analysing data to uncover
		the trends and patterns using data visualization
		techniques.
3.	Novelty / Uniqueness	Healthcare data tends to reside in multiple places.
		Aggregating this data into a single, central
		system, makes our solution unique moreover the
		use of specific algorithms help us achieve more
		accuracy.
4.	Social Impact / Customer	Data Analytics offers predictive solutions that are
	Satisfaction	able to anticipate visits and admission rates.
		These solutions reduce labour costs and improve
		customer service, as well as reducing wait times
		and providing better quality care. The symptoms
		of diseases can be detected at a very early stage
		using data mining techniques, so that number of
		days for recovery can be predicted easily. It helps
		to boost productivity in diagnosis and treatment.
5.	Business Model (Revenue Model)	The length of stay (LOS) of a patient and the
		available resources go hand in hand. By

		understanding the average LOS, we would
		definitely be able to plan better and provide
		immediate help with both resources and medical
		support. Our model helps with understanding the
		pattern behind the disease, the LOS and the
		resource utilised. Also, as the more number of
		predictions we make the better the accuracy gets.
		This way hospitals are able to accommodate well
		without spending too much or too little money on
		resources.
6.	6. Scalability of the Solution	Hospital's data grows day by day and with more
		data we would be able to provide more accuracy.
	Data Mining and prediction techniques are used	
	here for tracking the availability of resources for	
	handling emergencies. This is why scalability is	
		seen as an advantage over here.