Real Analysis Exams

Exam №4

Instructor: Dr. Eric Westlund

David Oniani

Luther College

oniada01@luther.edu

January 24, 2021

- 1. (a) Placeholder.
 - (b) Placeholder.
 - (c) Placeholder.
- 2. Let $\epsilon > 0$ be given, x_0 be fixed, and let $\delta = \min\left(1, \frac{\epsilon}{5(1+2|x_0|)}\right)$. Then for $|x x_0| < \delta$ we have:

$$|f(x) - f(x_0)| = |5x^2 + 3 - 5x_0^2 - 3|$$

$$= |5(x^2 - x_0^2)|$$

$$= 5|x - x_0||x - x_0 + 2x_0|$$

$$< 5\delta(|x - x_0| + |2x_0|)$$

$$< 5\delta(\delta + 2|x_0|)$$

$$\leq 5\frac{\epsilon}{5(1 + 2|x_0|)}(\delta + 2|x_0|)$$

$$\leq \frac{\epsilon}{1 + 2|x_0|}(1 + 2|x_0|)$$

$$= \epsilon \qquad (Thus, |f(x) - f(x_0)| < \epsilon)$$

Hence, $f(x) = 5x^2 + 3$ is continuous at each point $x_0 \in \mathbb{R}$.

- 3. (a) Placeholder.
 - (b) Placeholder.
 - (c) Placeholder.
- 4. Placeholder.
- 5. Placeholder.
- 6. Placeholder.
- 7. Since f is continuous on [a, b], it follows that f achieves both the absolute maximum M and the absolute minimum m in [a, b]. Suppose, without a loss of generality, that these points are c_1 and c_2 with $c_1 < c_2$. We then have:

$$m(b-a) \le \int_a^b f \le M(b-a) \tag{1}$$

$$m \le \frac{1}{b-a} \int_{a}^{b} f \le M \tag{2}$$

Now, it follows by **Intermediate Value Theorem** that $\exists c \in (c_1, c_2) \subset [a, b]$ s.t. $f(c) = \frac{1}{b-a} \int_a^b f$.

8. Suppose, for the sake of contradiction, that f has Generalized Riemann integrals Q_1 and Q_2 with $Q_1 \neq Q_2$ and let $\epsilon > 0$ be given. Then, it follows that $\exists \delta_1(x)$ s.t. $\forall \delta_1(x)$ -fine tagged partitions, $|R(f,P) - Q_1| < \frac{\epsilon}{2}$. Similarly, $\exists \delta_2(x)$ s.t. $\forall \delta_2(x)$ -fine tagged partitions, $|R(f,P) - Q_2| < \frac{\epsilon}{2}$. Now, let $\delta(x) = \min(\delta_1(x), \delta_2(x))$. It follows by **Theorem 8.1.5** that there exists a tagged partition $(P, \{c_k\})$ s.t. it is both $\delta_1(x)$ -fine and $\delta_2(x)$ -fine. We have:

$$|Q_1 - Q_2| \le |Q_1 - R(f, P)| + |R(f, P) - Q_2| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence, we got that $Q_1 = Q_2$ and we face a contradiction since we have assumed that $Q_1 \neq Q_2$. Finally, we conclude that if f has a generalized Riemann integral on [a, b], then the value of the integral $\int_a^b f$ is unique.

- 9. (a) Placeholder.
 - (b) Placeholder.
 - (c) Placeholder.
 - (d) Placeholder.
 - (e) Placeholder.
 - (f) Placeholder.