Term-Indexing

Alexander Maringele

January 27th, 2016

References

Outline

- Motivation
- 2 Term Structure
- 3 Path Indexing
- 4 Discrimination Trees
- 5 Substitution Trees
- 6 Experiment

Notation

Clausal form

$$\{ P(f(x)) \lor f(x) \not\approx a, g(x,y) \approx a \lor \neg Q(x,y), C_3 \}$$

Alexander Maringele Term-Indexing January 27th, 2016

Notation

Clausal form

$$\{ \ \mathsf{P}(\mathsf{f}(x)) \lor \mathsf{f}(x) \not\approx \mathsf{a}, \ \mathsf{g}(x,y) \approx \mathsf{a} \lor \neg \mathsf{Q}(x,y), \ \mathcal{C}_3 \ \} \\ \equiv \\ \forall x \left(\mathsf{P}(\mathsf{f}(x)) \lor \mathsf{f}(x) \not\approx \mathsf{a} \right) \\ \land \\ \forall xy \left(\mathsf{g}(x,y) \approx \mathsf{a} \lor \neg \mathsf{Q}(x,y) \right) \\ \land \\ \forall \mathcal{V}\mathsf{ar}(\mathcal{C}_3) \left(\mathcal{C}_3 \right)$$

A sound and refutation complete calculus.

Alexander Maringele Term-Indexing January 27th, 2016

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

Alexander Maringele Term-Indexing January 27th, 2016

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C})\sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D}) \sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C}) \sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

and the empty clause will be derived eventually.

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C})\sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

and the empty clause will be derived eventually.

Observation

Usually the set grows too fast to obtain a result.

A sound, refutation complete, and

Alexander Maringele Term-Indexing January 27th, 2016

A sound, refutation complete, and effective calculus.

A sound, refutation complete, and effective calculus.

1 Reduce search space

A sound, refutation complete, and effective calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...

A sound, refutation complete, and effective calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals

A sound, refutation complete, and effective calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals
- 2 *Reduce* redundancy

Alexander Maringele Term-Indexing January 27th, 2016

A sound, refutation complete, and *effective* calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals
- 2 *Reduce* redundancy
 - e.g. discard clauses that are subsumed by other clauses

Alexander Maringele Term-Indexing January 27th, 2016

A sound, refutation complete, and effective calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals
- 2 Reduce redundancy
 - e.g. discard clauses that are subsumed by other clauses
 - ... depending on the calculus

Alexander Maringele Term-Indexing January 27th, 2016

A sound, refutation complete, and *effective* calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, . . .
 - ... with selection functions for clauses and literals
- 2 Reduce redundancy
 - e.g. discard clauses that are subsumed by other clauses
 - ...depending on the calculus

Example (forward subsumption)

 t_1 subsumes t_3

$$\frac{\mathsf{P}(x,y) \quad \neg \mathsf{P}(\mathsf{a},z)}{\Box} \ \{x \mapsto \mathsf{a}, y \mapsto z\}$$

Resolution

$$S \perp = \{ \mathsf{P}(\perp, \perp), \neg \mathsf{P}(\mathsf{a}, \perp), \mathsf{P}(\mathsf{a}, \perp) \}$$

InstGen / SMT

A sound, refutation complete, and effective calculus.

Alexander Maringele Term-Indexing January 27th, 2016

A sound, refutation complete, and effective calculus.

3 Quickly find

Term-Indexing Alexander Maringele January 27th, 2016

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants

variant removal

Term-Indexing January 27th, 2016 Alexander Maringele 8 / 18

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances

variant removal backward subsumption

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations

variant removal backward subsumption forward subsumption

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

variant removal backward subsumption forward subsumption resolution, demodulation

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

Observation

Deduction rate drops quickly with sequential search.

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

Observation

Deduction rate drops quickly with sequential search.

Term Indexing

Data structures and algorithms for fast retrieval of matching terms.

Position Strings

Definition

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \bigg\{$$

Position Strings

Definition

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \left\{ \left\{ \left\langle \epsilon, x \right\rangle \right\} \right.$$

if
$$t = x \in \mathcal{V}$$

Definition

$$\mathcal{P}\mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P}\mathsf{os}^\Sigma(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Alexander Maringele

9 / 18

Definition

$$\mathcal{P} os^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P} os^{\Sigma}(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\mathcal{P}os^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{$$

Alexander Maringele

Definition

$$\mathcal{P} \mathsf{os}^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P} \mathsf{os}^{\Sigma}(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\langle \epsilon, \mathsf{h} \rangle$$
 $\mathcal{P}\mathsf{os}^\Sigma(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon, \mathsf{h} \rangle, \}$

Alexander Maringele

Definition

$$\mathcal{P}os^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P}os^{\Sigma}(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\langle \epsilon, \mathbf{h} \rangle \qquad \qquad \mathcal{P}os^{\Sigma}(\mathbf{h}(\mathbf{f}(\mathbf{a}, \mathbf{y}))) = \{ \langle \epsilon, \mathbf{h} \rangle, \langle 1, \mathbf{f} \rangle, \qquad \qquad \}$$

 $\langle 1, \mathsf{f} \rangle$

Definition

$$\mathcal{P} \mathsf{os}^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P} \mathsf{os}^{\Sigma}(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\langle \epsilon, \mathsf{h} \rangle \qquad \qquad \mathcal{P} \mathsf{os}^{\Sigma} (\mathsf{h} (\mathsf{f} (\mathsf{a}, \mathsf{y}))) = \{ \langle \epsilon, \mathsf{h} \rangle, \langle 1, \mathsf{f} \rangle, \langle 11, \mathsf{a} \rangle, \qquad \}$$

 $\langle 1, \mathsf{f} \rangle$

 $\langle 11, \mathsf{a} \rangle$

Definition

$$\mathcal{P} \mathsf{os}^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P} \mathsf{os}^{\Sigma}(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\langle \epsilon, \mathsf{h} \rangle \qquad \qquad \mathcal{P} \mathsf{os}^{\Sigma} (\mathsf{h} (\mathsf{f} (\mathsf{a}, \mathsf{y}))) = \{ \langle \epsilon, \mathsf{h} \rangle, \langle 1, \mathsf{f} \rangle, \langle 11, \mathsf{a} \rangle, \langle 12, y \rangle \}$$

$$\langle 1, \mathsf{f} \rangle$$

$$\langle 11, \mathsf{a} \rangle \qquad \langle 12, y \rangle$$

Definition

$$\mathcal{P} \mathsf{os}^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P} \mathsf{os}^{\Sigma}(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\begin{array}{ccc} \langle \epsilon, \mathbf{h} \rangle & \mathcal{P} \mathrm{os}^{\Sigma} (\mathbf{h} (\mathbf{f} (\mathbf{a}, \mathbf{y}))) = \{ \langle \epsilon, \mathbf{h} \rangle, \langle 1, \mathbf{f} \rangle, \langle 11, \mathbf{a} \rangle, \langle 12, y \rangle \} \\ & & \langle 1, \mathbf{f} \rangle & \\ & \langle 1, \mathbf{f} \rangle & \langle \epsilon, \mathbf{h} \rangle \langle 1, \mathbf{f} \rangle \langle 12, y \rangle & \text{path from root to leaf} \\ & \langle 11, \mathbf{a} \rangle & \langle 12, y \rangle & \end{array}$$

Definition

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid \langle p, s \rangle \in \mathcal{P} \mathsf{os}^\Sigma(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

Alexander Maringele Term-Indexing January 27th, 2016 10 / 18

• if variable names are ignored

$$\mathsf{f}(y,z) \Rightarrow \langle \epsilon,\mathsf{f} \rangle \langle 1,* \rangle \langle 2,* \rangle$$

Alexander Maringele Term-Indexing January 27th, 2016 10 / 18

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

Variants of terms generate the same position strings

- if variable names are ignored
- or normalized

$$\mathsf{f}(y,z) \Rightarrow \langle \epsilon,\mathsf{f} \rangle \langle 1,* \rangle \langle 2,* \rangle$$

$$\begin{array}{l} \mathsf{f}(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle \\ \mathsf{f}(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle \end{array}$$

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$\begin{array}{l} \mathsf{f}(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle \\ \mathsf{f}(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle \end{array}$$

In the first case even non-variants of terms generate the same strings.

Variants of terms generate the same position strings

if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

• and pre-order traversal strings $\langle \epsilon, h \rangle \langle 1, f \rangle \langle 11, * \rangle \langle 12, * \rangle$

h.f.a.*

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

• and pre-order traversal strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 11, * \rangle \langle 12, * \rangle$ when the arities of function symbols are fixed.

h.f.a.*

Alexander Maringele

$$\begin{split} ^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ t_1 &\Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*,\mathsf{h}.1.\mathsf{f}.2.*\} \\ t_2 &\Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*,\mathsf{h}.1.\mathsf{f}.2.\mathsf{a}\} \\ t_3 &\Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.\mathsf{a},\mathsf{h}.1.\mathsf{f}.2\mathsf{a}\} \end{split}$$

Build

h

$$\begin{split} t_1 & \mapsto \mathsf{h}(\mathsf{f}(x,y)), {}^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & t_1 \Rightarrow \mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.* \} \\ & t_2 \Rightarrow \mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{a} \} \\ & t_3 \Rightarrow \mathsf{h}.1.\mathsf{f}.1.\mathsf{a}, \mathsf{h}.1.\mathsf{f}.2\mathsf{a} \} \end{split}$$

Build

Path Indexing

$$\begin{split} t_{1} & \vdash \mathsf{h}(\mathsf{f}(x,y)), t_{2} \vdash \mathsf{h}(\mathsf{f}(x,\mathsf{a})), t_{3} \vdash \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & t_{1} \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.*\} \\ & t_{2} \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{a}\} \\ & t_{3} \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.\mathsf{a}, \mathsf{h}.1.\mathsf{f}.2\mathsf{a}\} \end{split}$$

$$\begin{split} t_1 & \mapsto \mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & t_1 \Rightarrow \mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.* \} \\ & t_2 \Rightarrow \mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{a} \} \\ & t_3 \Rightarrow \mathsf{h}.1.\mathsf{f}.1.\mathsf{a}, \mathsf{h}.1.\mathsf{f}.2\mathsf{a} \} \end{split}$$

$$\begin{split} t_1 & \colon \mathsf{h}(\mathsf{f}(x,y)),^{t_2 \colon} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3 \colon} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & t_1 \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.*\} \\ & t_2 \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{a}\} \\ & t_3 \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.\mathsf{a}, \mathsf{h}.1.\mathsf{f}.2\mathsf{a}\} \end{split}$$

Retrieve

$${}^{t_1:}\mathsf{h}(\mathsf{f}(x,y)), {}^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))$$

$$\mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\}$$

$$u: h(f(z, b)) \mapsto$$

Retrieve (h, 1.f.1.*) t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,a)), {}^{t_3}$:h(f(a,a)) $h(f(z,b))) \Rightarrow \{h.1.f.1.*, h.1.f.2.b\}$ $u: h(f(z,b)) \mapsto$

(h, 1.f.1.*) t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,a)), {}^{t_3}$:h(f(a,a))(1, f.1.*) $h(f(z,b))) \Rightarrow \{h.1.f.1.*, h.1.f.2.b\}$ $u: h(f(z,b)) \mapsto$

(h, 1.f.1.*) t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,a)), {}^{t_3}$:h(f(a,a))(1, f.1.*) $h(f(z,b))) \Rightarrow \{h.1.f.1.*, h.1.f.2.b\}$ (f, 1.*) $u: h(f(z,b)) \mapsto$

Retrieve

$$\begin{array}{c} {}^{t_1} \mathsf{h}(\mathsf{f}(x,y)), {}^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ \qquad \qquad \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ \qquad u : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \\ & \qquad \qquad (\mathsf{f},1.*) \\ \qquad (\mathsf{f}$$

$$\begin{array}{c} ^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ \qquad \qquad \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*,\mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ \qquad u:\mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,\quad\} \\ \qquad & (\mathsf{f},1.*) \\ \qquad$$

Retrieve

$$\begin{array}{c} {}^{t_1} \dot{\mathsf{h}}(\mathsf{f}(x,y)), {}^{t_2} \dot{\mathsf{h}}(\mathsf{f}(x,\mathsf{a})), {}^{t_3} \dot{\mathsf{h}}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ & u : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \\ & (\mathsf{f},1.*) \\ & (\mathsf{$$

$\begin{array}{c} {}^{t_1} \mathsf{h}(\mathsf{f}(x,y)), {}^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ \qquad \qquad \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ \qquad u : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \\ \qquad & (1,\mathsf{f}.1.*) \\ \qquad (f,1.*) \\$

Retrieve

$$\begin{split} {}^{t_1:}\!\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\!\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\!\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ \\ \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) & \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*,\mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \end{split}$$

$$u:\mathsf{h}(\mathsf{f}(\pmb{z},\mathsf{b}))\mapsto\{t_1,t_2,t_3\}$$

$\begin{array}{c} ^{t_1} \mathsf{h}(\mathsf{f}(x,y)),^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*,\mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ & u : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \\ & (1,t_1) \\ & (1,t_2) \\ & (1,t_3) \\ & (1,t_2) \\ & (1,t_3) \\ & (1,t_3) \\ & (1,t_4) \\ & (1,t_2) \\ & (1,t_3) \\ & (1,t_4) \\ & (1,$

$^{t_1:} h(f(x,y)), ^{t_2:} h(f(x,a)), ^{t_3:} h(f(a,a))$ $h(f(z,b))) \Rightarrow \{h.1.f.1.*, h.1.f.2.b\}$

$$u: h(f(z,b)) \mapsto \{t_1, t_2, t_3\}$$

$$\begin{split} {}^{t_1:}\mathbf{h}(\mathbf{f}(x,y)), {}^{t_2:}\mathbf{h}(\mathbf{f}(x,\mathbf{a})), {}^{t_3:}\mathbf{h}(\mathbf{f}(\mathbf{a},\mathbf{a})) \\ \\ \mathbf{h}(\mathbf{f}(z,\mathbf{b}))) \Rightarrow \{\mathbf{h}.1.\mathbf{f}.1.*, \mathbf{h}.1.\mathbf{f}.2.\mathbf{b}\} \end{split}$$

$$u:\mathsf{h}(\mathsf{f}(z,\mathsf{b}))\mapsto\{t_1,t_2,t_3\}\cap\{t_1\}$$

$(\mathsf{h}, 1.\mathsf{f}.1.*)$ (h, 1.f.2.b) t_1 $h(f(x,y)), {}^{t_2}$ $h(f(x,a)), {}^{t_3}$ h(f(a,a))(1, f.2.b)(1, f.1.*) $h(f(z,b))) \Rightarrow \{h.1.f.1.*, h.1.f.2.b\}$ (f, 1.*)(f, 2.b) $u: h(f(z,b)) \mapsto \{t_1, t_2, t_3\} \cap \{t_1\}$ $i: h(f(z,b)) \mapsto \{t_1, t_2, t_3\} \cap \{\}$ (1, *)(2, b) (b, ϵ)

Retrieve

$$\begin{split} & ^{t_1 \cdot}\mathsf{h}(\mathsf{f}(x,y)), ^{t_2 \cdot}\mathsf{h}(\mathsf{f}(x,\mathsf{a})), ^{t_3 \cdot}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ & u : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & i : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \\ & g : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \end{split}$$

$$\begin{split} & {}^{t_1:}\!\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\!\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\!\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*,\mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ & u:\mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & i:\mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \\ & g:\mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v:\mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{\} \end{split}$$

$$(h, 1.f. 1.*) \qquad (h, 1.f. 2.b)$$

$$(1, f. 1.*) \qquad (1, f. 2.b)$$

$$(f, 1.*) \qquad (f, 2.b)$$

$$(1, *) \qquad (f, 2.b)$$

$$(1, *) \qquad (2, b)$$

$$(*, \epsilon) \qquad (b, \epsilon)$$

$$(*, \epsilon) \qquad (b, \epsilon)$$

$$(*, \epsilon) \qquad (*, \epsilon) \qquad (*, \epsilon)$$

Retrieve

$$\begin{array}{c} {}^{t_1} \mathsf{h}(\mathsf{f}(x,y)), {}^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(z,\mathsf{b}))) \Rightarrow \{\mathsf{h}.1.\mathsf{f}.1.*, \mathsf{h}.1.\mathsf{f}.2.\mathsf{b}\} \\ & u : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & i : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v : \mathsf{h}(\mathsf{f}(z,z)) \mapsto \{t_1,$$

Unit Superposition Inference Rules

$$\frac{s \approx t \quad L[s']}{(L[t]) \cdot \sigma} \quad \underset{\text{paramodulation}}{\text{unit}}$$

where $\sigma = \text{mgu}(s, s'), s' \notin \mathcal{V}, t\sigma \not\succeq s\sigma$

$$\frac{s \approx t \quad u[s'] \not\approx v}{(u[t] \not\approx v) \cdot \sigma} \text{ } \underset{\text{superposition}}{\text{unit}} \quad \frac{s \approx t \quad u[s'] \approx v}{(u[t] \approx v) \cdot \sigma}$$

where $\sigma = \text{mgu}(s, s'), s' \notin \mathcal{V}, t\sigma \not\succeq s\sigma, v\sigma \not\succeq u[s']\sigma$

where s and t (A and B respectively) are unifiable

Build

Discrimination Trees

Insert

```
{}^{t_1} \cdot h(f(x,y)), {}^{t_2} \cdot h(f(x,h(a))), {}^{t_3} \cdot h(f(h(a),a))
                               t_1 \Rightarrow \text{h.f.}*.*
                               t_2 \Rightarrow \text{h.f.*.h.a}
                               t_3 \Rightarrow h.f.h.a.a
```

Insert

 ${}^{t_1} \cdot h(f(x,y)), {}^{t_2} \cdot h(f(x,h(a))), {}^{t_3} \cdot h(f(h(a),a))$

 $t_1 \Rightarrow \text{h.f.}*.*$

 $t_2 \Rightarrow \text{h.f.*.h.a}$

 $t_3 \Rightarrow h.f.h.a.a$

Insert

$$^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$

$$t_1\Rightarrow \mathsf{h.f.}*.*$$

 $t_2 \Rightarrow \text{h.f.*.h.a}$

 $t_3 \Rightarrow h.f.h.a.a$

Insert

$$^{t_1:}$$
h(f(x,y)), $^{t_2:}$ h(f($x,$ h(a))), $^{t_3:}$ h(f(h(a), a))
 $t_1 \Rightarrow \text{h.f.*.*}$
 $t_2 \Rightarrow \text{h.f.*.h.a}$
 $t_3 \Rightarrow \text{h.f.h.a.a}$

Insert

$$^{t_1:}$$
h $(f(x,y)),^{t_2:}$ h $(f(x,h(a))),^{t_3:}$ h $(f(h(a),a))$
 $t_1\Rightarrow \text{h.f.}*.*$
 $t_2\Rightarrow \text{h.f.}*.\text{h.a}$
 $t_3\Rightarrow \text{h.f.}\text{h.a.a}$

Insert

$$t_1$$
: $\mathsf{h}(\mathsf{f}(x,y)), t_2$: $\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), t_3$: $\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$

$$t_1 \Rightarrow \mathsf{h.f.} *. *. *. t_2 \Rightarrow \mathsf{h.f.} *. \mathsf{h.a}$$

$$t_3 \Rightarrow \mathsf{h.f.} *. \mathsf{h.a.a}$$

Build

Discrimination Trees

Insert

$$^{t_1:}$$
h(f(x,y)), $^{t_2:}$ h(f($x,$ h(a))), $^{t_3:}$ h(f(h(a), a)) $t_1 \Rightarrow$ h.f.*.* $t_2 \Rightarrow$ h.f.*.h.a $t_3 \Rightarrow$ h.f.h.a.a

Insert

 t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,h(a))), {}^{t_3}$:h(f(h(a),a)) $t_1 \Rightarrow \text{h.f.}*.*$ $t_2 \Rightarrow \text{h.f.*.h.a}$ $t_3 \Rightarrow h.f.h.a.a$

Insert ${}^{t_1} \cdot h(f(x,y)), {}^{t_2} \cdot h(f(x,h(a))), {}^{t_3} \cdot h(f(h(a),a))$ $t_1 \Rightarrow \text{h.f.}*.*$ $t_2 \Rightarrow \text{h.f.*.h.a}$ $t_3 \Rightarrow h.f.h.a.a$

Build

Insert ${}^{t_1} \cdot h(f(x,y)), {}^{t_2} \cdot h(f(x,h(a))), {}^{t_3} \cdot h(f(h(a),a))$ $t_1 \Rightarrow \text{h.f.}*.*$ $t_2 \Rightarrow \text{h.f.*.h.a}$ $t_3 \Rightarrow h.f.h.a.a$

Discrimination Trees

Insert ${}^{t_1} \cdot h(f(x,y)), {}^{t_2} \cdot h(f(x,h(a))), {}^{t_3} \cdot h(f(h(a),a))$ $t_1 \Rightarrow \text{h.f.}*.*$ $t_2 \Rightarrow \text{h.f.*.h.a}$ $t_3 \Rightarrow h.f.h.a.a$

Build

Discrimination Trees

Discrimination Trees

Insert t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,h(a))), {}^{t_3}$: h(f(h(a),a)) $t_1 \Rightarrow \mathsf{h.f.}*.*$ $t_2 \Rightarrow \text{h.f.*.h.a}$ $t_3 \Rightarrow h.f.h.a.a$

$$\begin{split} ^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ & u:\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{ \qquad \} \end{split}$$

$$\begin{split} ^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ & u:\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{ \qquad \} \end{split}$$

$$\begin{split} ^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ & u:\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1, \quad \} \end{split}$$

$$\begin{array}{c}^{t_1} \dot{\mathsf{h}}(\mathsf{f}(x,y)),^{t_2} \dot{\mathsf{h}}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3} \dot{\mathsf{h}}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\\\ \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\\\ u : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1, \quad \} \end{array}$$

$$egin{aligned} ^{t_1:} &\mathsf{h}(\mathsf{f}(x,y)),^{t_2:} &\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:} &\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ &\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ &u: &\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\} \end{aligned}$$

$$^{t_1:} \mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$
 $\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a}$ $u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\}$ $i: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\}$

$$\begin{array}{c} {}^{t_1} \mathsf{h}(\mathsf{f}(x,y)), {}^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ \\ \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h}.\mathsf{f}.*.\mathsf{a} \\ \\ u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\} \\ \\ i: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\} \\ \\ g: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1\} \end{array}$$

$$\begin{array}{c} {}^{t_1} \dot{\mathsf{h}}(\mathsf{f}(x,y)), {}^{t_2} \dot{\mathsf{h}}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3} \dot{\mathsf{h}}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ \\ \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ \\ u : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\} \\ \\ i : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\} \\ \\ g : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1\} \\ \\ v : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{\ \} \end{array}$$

Subterms

Alexander Maringele

Subterms

 ${}^{t_1}\dot{h}(f(x,y)), {}^{t_2}\dot{h}(f(x,h(a))), {}^{t_3}\dot{h}(f(h(a),a))$

Subterms

Build

```
{}^{t_1}:h(f(x,y)), {}^{t_2}:h(f(x,h(a))), {}^{t_3}:h(f(h(a),a)), {}^{t_4}:h(f(a,a)))
```

Alexander Maringele Term-Indexing January 27th, 2016

18 / 18

Build

$$\begin{array}{c}^{t_1:} \mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})),^{t_4:} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))) \\ \downarrow \\ *_0 \mapsto \mathsf{h}(*_1) \end{array}$$

Alexander Maringele Term-Indexing January 27th, 2016 18 / 18

Build

Substitution Trees

Build

$$\begin{array}{c}^{t_1:} \mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})),^{t_4:} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))) \\ \downarrow \\ *_0 \mapsto \mathsf{h}(*_1) \\ \downarrow \\ *_1 \mapsto \mathsf{f}(*_2,*_3) \end{array}$$

Build

Substitution Trees

Build t_1 $h(f(x,y)), {}^{t_2}$ $h(f(x,h(a))), {}^{t_3}$ $h(f(h(a),a)), {}^{t_4}$ h(f(a,a))) $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto f(*_2, *_3)$

Build

Substitution Trees

Build t_1 $h(f(x,y)), {}^{t_2}$ $h(f(x,h(a))), {}^{t_3}$ $h(f(h(a),a)), {}^{t_4}$ h(f(a,a))) $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto f(*_2, *_3)$ $*_3 \mapsto y$

Build t_1 i $h(f(x,y)), ^{t_2}$ i $h(f(x,h(a))), ^{t_3}$ i $h(f(h(a),a)), ^{t_4}$ ih(f(a,a))) $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto f(*_2, *_3)$ $*_3 \mapsto y \qquad *_3 \mapsto \mathsf{h}(\mathsf{a})$

Build t_1 $h(f(x,y)), ^{t_2}$ $h(f(x,h(a))), ^{t_3}$ $h(f(h(a),a)), ^{t_4}$ h(f(a,a))) $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto \mathsf{f}(*_2, *_3)$ $*_3 \mapsto y \qquad *_3 \mapsto \mathsf{h}(\mathsf{a})$ $t_1 \qquad t_2$

Build t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,h(a))), {}^{t_3}$: $h(f(h(a),a)), {}^{t_4}$:h(f(a,a))) $*_0 \mapsto h(*_1)$ $*_1 \mapsto f(*_2, *_3)$

checking 1000 new literals sequential path speed afterwards (ℓ_1,ℓ_2) $A, \neg B$ search index up

checking	1000 new lite	sequential	path	speed	
afterwards	(ℓ_1,ℓ_2)	$A, \neg B$	search	index	up
1 000	500 000	761	726ms	70ms	10

checking afterwards	1000 new liter (ℓ_1, ℓ_2)		sequential search	path index	speed up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29

checking	1000 new liter	sequential	path	speed	
afterwards	(ℓ_1,ℓ_2)	$A, \neg B$	search	index	up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

checking afterwards	1000 new liter (ℓ_1,ℓ_2)	rals $A, \neg B$	sequential search	path index	speed up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53
8 000	7 500 000	433	9s	125ms	72

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

checking afterwards	1000 new lite (ℓ_1,ℓ_2)	rals $A, \neg B$	sequential search	path index	speed up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53
8 000	7 500 000	433	9s	125ms	72
16 000	15 500 000	742	21s	221ms	95

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

	1000 new lite	sequential	path	speed	
afterwards	(ℓ_1,ℓ_2)	$A, \neg B$	search	index	up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53
8 000	7 500 000	433	9s	125ms	72
16 000	15 500 000	742	21s	221ms	95
32 000	31 500 000	592	40s	489ms	81

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

	1000 new lite	sequențial	path	speed	
afterwards	(ℓ_1,ℓ_2)	$A, \neg B$	search	index	up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53
8 000	7 500 000	433	9s	125ms	72
16 000	15 500 000	742	21s	221ms	95
32 000	31 500 000	592	40s	489ms	81
64 000	63 500 000	1 167	80s	697ms	114

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

	sequential	path	speed	
(ℓ_1,ℓ_2)	$A, \neg B$	search	ındex	up
500 000	761	726ms	70ms	10
1 500 000	812	2s	69ms	29
3 500 000	723	4s	75ms	53
7 500 000	433	9s	125ms	72
15 500 000	742	21s	221ms	95
31 500 000	592	40s	489ms	81
63 500 000	1 167	80s	697ms	114
127 500 000	1 479	160s	13s	12
	$\begin{array}{c} (\ell_1,\ell_2) \\ 500\ 000 \\ 1\ 500\ 000 \\ 3\ 500\ 000 \\ 7\ 500\ 000 \\ 15\ 500\ 000 \\ 31\ 500\ 000 \\ 63\ 500\ 000 \end{array}$	500 000 761 1 500 000 812 3 500 000 723 7 500 000 433 15 500 000 742 31 500 000 592 63 500 000 1 167	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

checking	g 1000 new lite	sequential	path	speed	
afterwards	(ℓ_1,ℓ_2)	$A, \neg B$	search	index	up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53
8 000	7 500 000	433	9s	125ms	72
16 000	15 500 000	742	21s	221ms	95
32 000	31 500 000	592	40s	489ms	81
64 000	63 500 000	1 167	80s	697ms	114
128 000	127 500 000	1 479	160s	13s	12
256 000	255 500 000	1 097	320s	440s	<1

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

cheo afterwar	cking 100 ds (<i>l</i>	0 nev			$\neg B$	uential earch		ath dex	speed up
1 00	00	500	000		761	726ms	7	0ms	10
2 00	00 1	500	000		812	2s	6	9ms	29
4 00	00 3	500	000		723	4s	7	5ms	53
8 00	00 7	500	000		433	9s	12	5ms	72
16 00	00 15	500	000		742	21s	22	1ms	95
32 00	00 31	500	000		592	40s	48	9ms	81
64 00	00 63	500	000	1	167	80s	69	7ms	114
128 00	00 127	500	000	1	479	160s		13s	12
256 00	00 255	500	000	1	097	320s	4	440s	<1
512 00	00 511	500	000	1	440	640s	3	348s	<2

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

	ng 1000 new lite	rals	sequential	path	speed
afterwards	(ℓ_1,ℓ_2)	$A, \neg B$	search	index	up
1 000	500 000	761	726ms	70ms	10
2 000	1 500 000	812	2s	69ms	29
4 000	3 500 000	723	4s	75ms	53
8 000	7 500 000	433	9s	125ms	72
16 000	15 500 000	742	21s	221ms	95
32 000	31 500 000	592	40s	489ms	81
64 000	63 500 000	1 167	80s	697ms	114
128 000	127 500 000	1 479	160s	13s	12
256 000	255 500 000	1 097	320s	440s	<1
512 000	511 500 000	1 440	640s	348s	<2
1 024 000	1023 500 000	1 534	1280s	330s	<4