- (i) $(2,1,0), (1,0,1), (-2,-3,4) \in \mathbb{R}^3$
- (ii) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in M_{2,2}(\mathbb{R})$
- (iii) $1 + x^2, x + x^3, x^2 + x^3 \in \mathbb{R}_3[x]$

Tipp: Sie dürfen die Tatsache benutzen, dass ein Polynom genau dann das Nullpolynom ist, wenn alle Koeffizienten verschwinden.

(i)
$$(2,1,0)$$
, $(1,0,1)$, $(-2,-3,4)$

Für alle 1,12,13 & IR gilt:

$$(=) \quad 1_1 \cdot \binom{2}{0} + 1_2 \cdot \binom{1}{0} + 1_3 \cdot \binom{-2}{-3} = 0$$

$$\begin{cases} 21_1 + 1_2 - 21_3 = 0 \\ 1_1 - 31_3 = 0 \\ 1_2 + 41_3 = 0 \end{cases} = 0$$

$$\begin{cases} 2_1 & -32_3 = 0 \\ 2_2 + 42_3 = 0 \\ 2_2 + 42_3 = 0 \end{cases}$$

(=)
$$1_1 = -41_3$$
, $1_1 = 31_3$, $1_3 \in \mathbb{R}$.

Das Sleichungssystem hat unendlich viele Lösungen

(ii)
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Für alle 1, 1, 1, 1, 1, 14 & IR gilt:

$$(=) 1_{1} \cdot {\binom{0}{0}} + 1_{2} \cdot {\binom{0}{0}} + 1_{3} \cdot {\binom{0}{1}} + 1_{4} \cdot {\binom{1}{1}} = 0$$

$$(=) \quad \left(\begin{array}{ccc} 24 & 23 + 24 \\ 22 + 23 + 24 & 21 + 22 + 23 + 24 \end{array}\right) = \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}\right)$$

Aufgabe Überprüfen Sie, ob die folgenden Mengen jeweils eine Basis des entsprechenden Vektorraums sind.

(i)
$$\{e_1, e_2, e_3, e_5\}$$
 in \mathbb{R}^5

(ii)
$$\{e_1 + e_3, e_2 + e_3, e_1 + e_2\}$$
 in \mathbb{R}^3

(iii)
$$\{1+x+x^2, x+x^2+x^3, 1+x+x^3, 1+x^2+x^3\}$$
 in $\mathbb{R}_3[x]$

(iv)
$$\{1+x^2, x+x^2, 1+x, 3-x^2\}$$
 in $\mathbb{R}_3[x]$

(ii)
$$\{e_1 + e_3, e_2 + e_3, e_1 + e_2\}$$

Für alle 1,12,13 & IR gilt:

(=)
$$1_1 + 1_3 = 0$$
, $1_2 + 1_3 = 0$, $1_1 + 1_2 = 0$

ist linear

$$\begin{cases}
3_1 + 3_3 = 0 & \cdot (-1) \\
3_2 + 3_3 = 0 \\
3_1 + 3_2 = 0
\end{cases}$$

$$\begin{cases}
 \lambda_1 + \lambda_3 = 0 \\
 \lambda_1 + \lambda_3 = 0 \\
 -2\lambda_3 = 0
\end{cases}$$

$$=$$
) $1_3 = 0$, $1_2 = -1_3 = 0$, $1_1 = -1_3 = 0$

Es ist
$$|\{v_1, v_2, v_3\}| = 3 = dim \mathbb{R}^3$$

(iii)
$$\left\{ \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{$$

(.)		2	. 7		2	2]													
(iv)	=:0	ر , ×	+ x ,	1+ x	, <u>5</u> - =:	x- ک													
	Für a	alle :	1, 12	,13,2	i e IR	gilt:													
	1 ₂ · v	7 + 1 ₂	. Uz +	Az. 02	+ 14	· Մ仏	ŧ	x ³											
			=:			<u> </u>													
	da	grad	(P) <	2															
	=)	x³ ∉	< ر _ا	,02,0	73 , U4	>													
	=) 1	{ v ₁ , v ₂	, υ ₃ ,	ر کی	ist K	ein Ei	1764	seno	len s	syst	em 1	Vou	\mathbb{R}_3	۲×٦)				
	=)	{ _{Մ^1} , _{Մ2}	, ሆვ ,	ر کی	ist 1	reine	Ba:	sis (Joh	IR ₃	[×.َ)							

Aufgabe:

Untersuchen Sie die folgenden Mengen auf lineare Unabhängigkeit:

(a)
$$M = \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

(e)
$$M = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

(c)
$$M = \{ x^3 - 7x + 3, x^3 - 2x^2 + 7x - 1, x^3 - 1, x^3 - 7x + 5 \} \subseteq \mathbb{R}_{\leq 3}(x)$$

(d)
$$M = \{ \sin(x), \cos(x), \sin(2x) \} \subseteq Abb(IR, IR)$$

Löshug:

(a)
$$M = \left\{ \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -3 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

Für alle 1,12,13 EIR gilt:

$$\begin{cases}
3_1 + 23_2 &= 0 & (-1)_{2} + 2 \\
3_1 - 3_2 + 3_3 &= 0 \\
-23_1 - 3_2 - 3_3 &= 0
\end{cases}$$

$$\begin{cases}
3_1 + 23_2 = 0 \\
-33_2 + 33_3 = 0 \\
3_2 - 3_3 = 0
\end{cases}$$

Alternatio:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 3 \\ -2 & -3 & -1 \end{pmatrix} \xrightarrow{\prod + (-1) \cdot I} \begin{pmatrix} 1 & 2 & 0 \\ 0 & -3 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$

```
=> dim Keru(A) = 3 - rang(A) = 3 - 7 = 1 = 0
                                            Kern(A) + {O} => Mist linear allängis.
                      ( Ist A & Kmxn, so gilt: dim Kern(A) = n - rang(A))
  All semein:

Seien w_1 = \begin{pmatrix} w_{11} \\ \vdots \\ w_{m_1} \end{pmatrix}, \quad w_2 = \begin{pmatrix} w_{12} \\ \vdots \\ w_{m_2} \end{pmatrix}, \dots, \quad w_n = \begin{pmatrix} w_{1n} \\ w_{2n} \\ w_{mn} \end{pmatrix} \in K^m
        Für alle 17,..., 2n & K zilt:
         A_1 \cdot c_1 + \ldots + A_n \cdot c_n = 0 (1)
                                                 (=) \begin{cases} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} + \begin{cases} 1 & 1 \\ 1 
                                     11. vn + 12. v2 + ... + 10. vm = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                             V12 ··· V10
          (=) A \cdot \begin{pmatrix} \frac{1}{12} \\ \frac{1}{2} \end{pmatrix} = 0 \qquad (2) \qquad \omega_0 \cdot \epsilon_i \quad A = \begin{pmatrix} \omega_{21} \\ \frac{1}{2} \end{pmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                               Um7
  Es ist aquivalent:
                                      { v1,..., vn } ist linear nuabhängig
 (ii)
                            Die Sleichung (1) hat nur die triviale Lösung 2n = 0, ..., 2n = 0
                            Das lineare Sleichungssystem (2) hat nur die triviale Lösung \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
(iii)
(iv) \operatorname{Kern}(A) = \{0\} ( \operatorname{Kern}(A) = \{x \in K^n \mid A \cdot x = 0\})
```

(d)
$$M = \{sin(x), cos(s), sin(2x)\} \in ARB(IR, IR)$$

= $\{sin(x), cos(s), sin(2x)\} \in ARB(IR, IR)$

The alle $A_{s}, A_{2s}, A_{3s} \in IR$ sill:

 $A_{s}, I + A_{1}, I + A_{2s}, IR = 0$

(a) $A_{s}, I(x) + A_{2s}, I(x) + A_{3s}, IR(x) = 0$
 $A_{s}, I(x) + A_{2s}, I(x) + A_{3s}, IR(x) = 0$

Setac $x := 0 \Rightarrow sin(x) = 0$, $cos(x) = 1$, $sin(2x) = 0$
 $Setac := \frac{\pi}{2} \Rightarrow sin(x) = 1$, $cos(x) = 0$, $sin(2x) = 0$

Setac $x := \frac{\pi}{4} \Rightarrow sin(2x) = sin(\frac{\pi}{4}) = 1$
 $A_{s} = 0$

Setac $x := \frac{\pi}{4} \Rightarrow sin(2x) = sin(\frac{\pi}{4}) = 1$
 $A_{s} = 0$
 $A_{$

Linear unabhängig

Entscheiden Sie, welche der folgenden Familien im jeweiligen Vektorraum linear unabhängig sind.

- (a) ((1,2,3),(5,4,3),(6,6,6)) in \mathbb{R}^3 als \mathbb{R} -Vektorraum
- (b) ((1,i),(i,-1)) im \mathbb{R} -Vektorraum \mathbb{C}^2
- (c) ((1, i), (i, -1)) im \mathbb{C} -Vektorraum \mathbb{C}^2
- (d) $(1, 1+t, 1+t+t^2)$ im $\mathbb{Z}/2\mathbb{Z}$ -Vektorraum $\mathbb{Z}/2\mathbb{Z}[t]$
- (e) ((1,2,3),(5,4,3),(6,6,7)) in \mathbb{R}^3 als \mathbb{Q} -Vektorraum

(a)
$$((\underbrace{1,2,3}),(\underbrace{5,4,3}),(\underbrace{6,6,6}))$$
 in \mathbb{R}^3 als \mathbb{R} -Vektorraum

Far alle 2, 12, 13 e 18 gilt

$$(=) \quad \mathcal{A}_{2} \cdot \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + \mathcal{A}_{2} \cdot \begin{pmatrix} \frac{5}{4} \\ \frac{1}{4} \end{pmatrix} + \mathcal{A}_{3} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} = 0$$

(=)
$$\begin{cases} 31 + 51 + 61 = 0 \\ 21 + 61 + 61 = 0 \\ 31 + 31 + 61 = 0 \end{cases} + (-2) + (-3)$$

$$\begin{cases}
 A_1 + 5 A_2 + 6 A_3 = 0 \\
 -6 A_2 - 6 A_3 = 0 \cdot (-2) \\
 -12 A_2 - 12 A_3 = 0
\end{cases}$$

=> v1, v2, v3 sind (.a.

(b)
$$((1,i),(i,-1))$$
 im \mathbb{R} -Vektorraum \mathbb{C}^2

Für alle An, An en gilt

$$(=)$$
 $(2_1 - 2_2) + (2_1 + 2_2) = 0$

$$(=)$$
 $1_1 = 1_2 \land 21_2 = 0$

(c)
$$((1, i), (i, -1))$$
 im \mathbb{C} -Vektorraum \mathbb{C}^2

=)
$$3_{1} \cdot (1+i) + 3_{2} \cdot (i-1) = -i \cdot (1+i) + (i-1) = -i+1+i-1=0$$

(d)
$$(1, 1+t, 1+t+t^2)$$
 im $\mathbb{Z}/2\mathbb{Z}$ -Vektorraum $\mathbb{Z}/2\mathbb{Z}[t]$

Für alle 1,12,13 € 71/27:

$$A_1 \cdot 1 + A_2 \cdot (1+1) + A_3 \cdot (1+1+1^2) = 0$$

(=)
$$1_3 \cdot 1^2 + (1_2 + 1_3) \cdot 1 + (2_1 + 2_1 + 2_3) = 0$$

$$(=) \quad 1_3 = 0 \quad , \quad 1_2 + 1_3 = 0 \quad , \quad 1_1 + 1_2 + 1_3 = 0$$

(=)
$$A_3 = 0$$
, $A_2 = -A_3 = 0$, $A_1 = -A_2 - A_3 = 0$

(e)
$$((\underbrace{1,2,3)},(\underbrace{5,4,3}),(\underbrace{6,6,7}))$$
 in \mathbb{R}^3 als \mathbb{Q} -Vektorraum

Für alle A, A, A, A & Q silt

(=)
$$A_1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + A_2 \cdot \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix} + A_3 \cdot \begin{pmatrix} 6 \\ 4 \\ 5 \end{pmatrix} = 0$$

$$\begin{cases} 2n + 52n + 623 = 0 \\ -62n - 623 = 0 \cdot (-2) \\ -122n - 1123 = 0 \end{cases} \cdot (-\frac{2}{6})$$

$$\begin{cases} 21 + 52 + 62 = 0 \\ 12 + 23 = 0 \\ 23 = 0 \end{cases}$$

(=)
$$\lambda_3 = 0$$
, $\lambda_2 = -\lambda_3 = 0$, $\lambda_1 = -5\lambda_2 - 6\lambda_3 = 0$