

Departamento de Eletrónica e Telecomunicações e Informática

Curso 8309- Mestrado Integrado em Engenharia e Telecomunicações

Disciplina 41987 – Introdução à Engenharia Eletrotécnica

Ano Letivo 2021/2022

Relatório

Leis Fundamentais do Circuito Elétrico

Autor: 109446 Samuel Santos

Autor: 108328 Sofia Fernandes

Turma: TP4

Data: 27/10/2021

Docente: Manuel Dinis

Resumo: Neste trabalho iremos, através da associação de resistências em série e em paralelo, assim como da utilização de diversos aparelhos de medição, verificar experimentalmente as leis fundamentais do circuito elétrico, nomeadamente a Lei de Ohm e as Leis de Kirchhoff das Correntes e de Tensão.

Na realização do trabalho, e com vista a assegurar o correto e seguro desenvolvimento do mesmo, começou-se por calcular a gama de valores de resistências para os quais estaríamos habilitados a trabalhar, face o equipamento disponível no laboratório (tendo em conta a utilização de tensões máximas de 10 Volts e tendo ao dispor apenas resistências cuja capacidade de dissipação de potência máxima seria inferior a 0.25W). Este cálculo foi então feito aplicando a seguinte fórmula: $P = (V^2)/R \Leftrightarrow R = V^2 * P$

; tendo sido obtido o valor de 400 Ohm. Ou seja, nesta atividade foi nos apenas recomendado utilizar resistências de valor superior ao valor obtido (400 Ohm).

1. Associação de resistências – determinação da resistência equivalente

a) Associação série e paralelo.

Utilizando um potenciómetro cuja resistência foi definida como R2:

Os valores foram medidos com o ohmímetro regulado para uma escala de 2 kOhm. Tendo sido utilizadas resistências de 1 kOhm cada, dispostas conforme as figuras no enunciado.

- O valor estimado na associação em série foi obtido realizando-se a soma dos valores das duas resistências de 1 kOhm cada, associadas em série, obtendo-se uma resistência equivalente de 2 kOhm.
- Valor estimado na associação mista foi obtido somando-se R3, associada em série com o conjunto de resistências associadas em paralelo (cujo valor de resistência equivalente foi obtido através da expressão matemática: ((R1*R2)/R1+R2). Ou seja Req= R3 + ((R1*R2)/R1+R2).
- Os valores obtidos têm uma incerteza de medição de \pm 0.5 Ohm. Desvios maiores que estes poderão estar relacionados com oscilações dos aparelhos nos instantes de medição.

	Associação série	Associação mista
Valor estimado	2.000 kOhm	1.500
Valor medido no ohmímetro	1.961 kOhm	1.475

b) Associação mista de resistência variável (potenciómetro)

Na medição do valor mínimo da resistência utilizando um potenciómetro regulou-se a escala do ohmímetro para 2kOhm e na medição do valor máximo para 20 kOhm.

Tendo-se R1=1kOhm; R2=2.2 kOhm; R3= 3.3kOhm:

- valor máximo estimado para a resistência equivalente obteve-se através da expressão: R1 + ((R2*R3)/R2+R3) (o valor máximo da resistência é o valor da própria resistência)

- valor mínimo estimado para a resistência foi obtido tendo em conta a expressão acima demonstrada e, tendo em conta que neste caso R2=0, temos que Req= R1= 1 kOhm.

As medições efetuadas para determinar experimentalmente estes mesmos valores foram realizadas através da manipulação de um potenciómetro (com o auxílio de uma chave de fendas), aplicando ao sistema toda (valor máximo), ou nenhuma (valor mínimo) resistência que o potenciómetro conseguia fornecer.

	Mínimo	Máximo
Valor estimado	1 kOhm	2.32 kOhm
Valor medido no ohmímetro	0.98 kOhm	2.31 kOhm

2. Verificação da lei de Ohm

a) A Lei de Ohm afirma que a tensão nos terminais de uma resistência e a corrente elétrica que a atravessa são diretamente proporcionais, constituindo R (o valor da resistência) essa mesma constante de proporcionalidade.

Foi precisamente através da Lei de Ohm e da sua fórmula matemática (R=V/I) que se calcularam os valores estimados de corrente para cada valor de tensão.

Após ter sido realizada a experiência, verificou-se que os resultados estavam de acordo com o esperado, sendo possível afirmar a veracidade da Lei de Ohm.

Tensão fornecida	2 V	4 V	6 V	8 V
Valor experimental de corrente elétrica	0.9 mA	1.8 mA	2.7 mA	3.6 mA
Valor estimado de corrente elétrica	0.9 mA	1.8 mA	2.7 mA	3.6 mA

b)Foi calculado o valor da corrente total que seria fornecida ao circuito através da aplicação da Lei de Ohm (R=V/I, logo I=V/R). Ora, tendo sido gerados 10 Volts pela fonte de alimentação e tendo sido usadas resistências de 1kOhm, foi possível retirar-se as seguintes conclusões:

No circuito existem duas resistências em série que estão em paralelo com uma terceira. Obtemos uma resistência equivalente de 2kOhm ao somar as duas resistências em série. Aplicando a regra

da associação em paralelo, podemos então afirmar que a tensão da primeira é igual à tensão da segunda e igual, também, à tensão fornecida a esta parte do circuito que se encontra em paralelo. Deste modo, a partir daqui assumimos estas três resistências como se fossem apenas uma (resistência equivalente – V_4,5,6). Aplicando agora a lei de Kirchhoff das tensões, concluímos que a soma da tensão de todas as resistências é igual à tensão fornecida pelo gerador (10V). Sabemos ainda, que a tensão é igual em todas as resistências (V_1=V_2=V_3=V_4,5,6). Logo: 10 = 4*V_1 \Leftrightarrow V 1 = 2.75 (Volts).

Para obter a corrente de Rx utilizámos a expressão:

$$I = V/R \iff I = 2.75*10^{-3} \iff I = 2.75 \text{ mA}.$$

Agora, tendo por base os valores que foram obtidos experimentalmente, medindo-se diretamente com o voltímetro o valor da tensão nos terminais de Rx (V = 2.74V), foi possível calcular-se o valor da corrente elétrica em Rx, aplicando-se, mais uma vez a Lei de Ohm (R=V/I). Obteve-se assim o valor experimental de 2.74mA, valor este muito próximo do esperado.

c) O valor de corrente elétrica que passa em Rx medido foi de 6.00 mA. Este é um valor difícil de prever, sendo que num curto-circuito o valor da corrente elétrica pode assumir uma variedade de valores.

3. Verificação da lei de Kirchhoff das tensões

b) Regulou-se a escala do ohmímetro para 20kOhm (à exceção da medição efetuada para a resistência de 1kOhm, na qual se regulou a escala do ohmímetro para 2kOhm) e forneceu-se ao circuito uma tensão de **7.50V** gerada pela fonte de alimentação, tendo sido obtidos os seguintes valores de tensão para as diferentes resistências:

1 kOhm	(1.15 ± 0.005) V
2.2 kOhm	(2.56 ± 0.005) V
3.3 kOhm	(3.84± 0.005) V
Resistência equivalente	(7.57± 0.005) V

c) O valor obtido foi de 0.02V, valor este muito próximo de 0V (o desvio associado deve-se a erros experimentais inevitáveis), o que acaba por confirmar a Lei de Kirchhoff das tensões.

4. Verificação da lei de Kirchhoff das correntes

b) Regulou-se a escala do amperímetro para 20mA (à exceção da medição efetuada para a resistência de 1kOhm, na qual se regulou a escala do ohmímetro para 2mA) e forneceu-se ao circuito uma tensão de 7.50V gerada pela fonte de alimentação.

1 kOhm	(7.5 ± 0.05)mA
2.2 kOhm	(3.4 ± 0.05) mA
3.3 kOhm	(2.2 ± 0.05) mA

A corrente total fornecida pela fonte I foi de (13.0 ± 0.05) mA.

c) O valor obtido pela soma dos valores foi de -0.1mA, valor este muito próximo de 0 (o desvio associado deve-se a erros experimentais inevitáveis), o que confirma a Lei de Kirchhoff das correntes.

