# Training Word Representations



Axel Sirota

Al and Cloud Consultant

@AxelSirota



#### Reviews Dataset



I had a fabulous time ------

----- 5 stars

#### A Model Is Just a Function

```
loved \longrightarrow [0,1]

the \longrightarrow [0,0]

ice \longrightarrow [-1,-1]

cream \longrightarrow [-0.5, 0]
```

#### A Model Is Just a Function



This is known as an embedding

#### Representing Word Clusters



# First Embedding: One Hot Encoding

#### Representing a Sentence



1. Construct vocabulary and assign different columns for presence

I loved the ice cream and loved the food

Vocabulary = {I, loved, the, ice, cream, and, food}

#### Representing a Sentence



1. Construct vocabulary and assign different columns for presence

I loved the ice cream and loved the food



2. Count

|   | loved | the | ice | cream | and | food |
|---|-------|-----|-----|-------|-----|------|
| 1 | 0     | 0   | 0   | 0     | 0   | 0    |
| 0 | 2     | 0   | 0   | 0     | 0   | 0    |
| 0 | 0     | 2   | 0   | 0     | 0   | 0    |
| 0 | 0     | 0   | 1   | 0     | 0   | 0    |
| 0 | 0     | 0   | 0   | 1     | 0   | 0    |
| 0 | 0     | 0   | 0   | 0     | 1   | 0    |
| 0 | 0     | 0   | 0   | 0     | 0   | 1    |

#### Representing a Sentence



1. Construct vocabulary and assign different columns for presence

I loved the ice cream and loved the food



2. Count

[1,2,3] 3. Collapse into a vector

#### Demo

Represent the Yelp reviews dataset with One Hot Encoding

## Demo

Predict Sentiment with OHE on Yelp dataset

# Training Embeddings with Networks: CBOW and Skip-gram

#### NLP Exploded Quite Recently



Foundational paper: Efficient Estimation of Word Representations in Vector Space



We can learn embeddings with less than 500 dimensions (way less than OHE or other linguistic approaches)



Big development of embeddings: GloVe, FastText, Bort, Bert, GPT, etc...

#### Self-Construct a Supervised Learning Problem

Construct supervised learning problem

Train neural network

**Extract first layer** 

#### Word2Vec Architectures

Continuous Bag of Words (CBOW)

Skip Gram



**CBOW** problem



Define window size

**CBOW** problem



Slide the window and take as input the remaining 4 words



Define window size

**CBOW** problem



Slide the window and take as input the remaining 4 words

[1, 2, 3]

3. Network predicts the middle word

#### I love ice cream so much I could eat it all day

| Input                         | Target  |
|-------------------------------|---------|
| ["I", "love", "cream", "so"]  | "ice"   |
| ["love", "ice", "so" ,"much"] | "cream" |
| ["ice", "cream", "much", "I"] | "so"    |

#### I love ice cream so much I could eat it all day

| Input                 | Target |
|-----------------------|--------|
| [2427,12, 546,853]    | 987    |
| [12, 987, 853,431]    | 546    |
| [987, 546, 431, 2427] | 853    |



<sup>\*</sup> Embedding layer is the same for all context words.

Source: Efficient Estimation of Word Representations in Vector Space

# Demo

Train a CBOW model

#### Demo

Reanalyse sentiment with an existent embedding

#### Takeaways



An embedding is a mapping representation from text tokens into a numerical form



One hot encoding is the simplest embedding but it doesn't collate the information about word closeness



We can build word embeddings with deep learning



One can input OHE representation and learn the embedding layer into any task or one can use a pre-trained layer

#### Keys



Practice creating a Skip gram embedding



Try to ensure you understand at every step the different dimensions of the tensors and why they make sense



Practice creating a sentiment analyser out of the 300 dimensional glove vectors

#### Up Next:

Fine Tuning Word Representations