Modelagem Computacional [Simulação de Sistemas Complexos]

Prof. Marcos G. Quiles

Aula de hoje

- Representação de grafos (estrutura de dados)
- Formação da rede
 - Redes Regulares
 - Redes Aleatórias
 - Redes Livre de Escala

Estrutura de Dados

- Como representar um grafo no computador?
- Duas formas fundamentais (mais comuns)
 - Matriz de Adjacência
 - Lista de Adjacência
- Qual a melhor?
 - Resposta: depende do uso (algoritmo)

Matriz de Adjacência

- Representação utilizando matrizes
 - Vértices: representados pelos índices das linhas e colunas da matriz
 - Aresta: elementos da matriz

- Matriz de Adjacência (A):
 - Matriz n x n, sendo n o número de vértices
 - $a_{ij} = 1 \quad \text{se existe aresta entre } i \in j$
 - $a_{ij} = 0$ se não existe aresta entre os vértices i e j

Matriz de Adjacência

- Ex. grafo não ponderado e não direcionado: matriz simétrica com valores binários
- Podemos associar uma matriz de pesos W ao grafo, permitindo que valores sejam associados as arestas

Lista de Adjacência

- Representação utilizando Listas
 - Vértices são associados a um vetor de ponteiros
 - Aresta: são representadas por listas ligadas a esses ponteiros

Estrutura (modelos)

- Redes regulares (latices)
- Redes Aleatórias (Modelo Erdös-Rényi)
- Redes Livre de Escala (Modelo Barabási–Albert)

Medidas:

- Número de vértices (neurônios) / arestas (conexões)
- Graus, grau médio, distribuição do grau
- Distâncias, clusterização, betweenness

Redes Regulares

Redes Aleatórias (Erdös-Rényi)

- Duas formas:
 - G(n,m) m arestas são inseridas aleatoriamente com probabilidade uniforme entres os possíveis pares de vértices de G
 - G(n,p) cada aresta possível em G é criada com probabilidade p
- A distribuição do grau segue uma distribuição Binomial
- Obs. Utilizaremos a forma I (UM)

Redes Livre de Escala (Barabási-Albert)

- Geração de redes com grau seguindo uma distribuição de lei de potência
- Mecanismo de conexão preferencial (the rich get richer)
- Algoritmo:
 - I. Iniciar a rede com n₀ vértices inicias conectados
 - Novos vértices são inseridos a rede e conectados a n outros vértices v (com n \leq n₀) com probabilidade proporcional ao grau de dos vértices v existentes

$$p_i = \frac{k_i}{\sum_{i} k_j}$$

Redes Livre de Escala (Barabási-Albert)