

planetmath.org

Math for the people, by the people.

internal point

Canonical name InternalPoint

Date of creation 2013-03-22 14:25:04 Last modified on 2013-03-22 14:25:04

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 5

Author jirka (4157) Entry type Definition Classification msc 52A99 **Definition.** Let X be a vector space and $S \subset X$. Then $x \in S$ is called an *internal point* of S if and only if the intersection of each line in X through x and S contains a small interval around x.

That is x is an internal point of S if whenever $y \in X$ there exists an $\epsilon > 0$ such that $x + ty \in S$ for all $t < \epsilon$.

If X is a topological vector space and x is in the interior of S, then it is an internal point, but the converse is not true in general. However if $S \subset \mathbb{R}^n$ is a convex set then all internal points are interior points and vice versa.

References

[1] H. L. Royden. . Prentice-Hall, Englewood Cliffs, New Jersey, 1988