

# Physical Design of CMOS Integrated Circuits

Dae Hyun Kim

EECS
Washington State University

#### References

- John P. Uyemura, "Introduction to VLSI Circuits and Systems," 2002.
  - Chapter 5



#### Goal

Understand how to physically design (manually draw) CMOS integrated circuits (ICs)



### **Custom Design Flow**





#### **Schematic Editor**

Cadence Virtuoso





#### **Layout Editor**

Cadence Virtuoso





#### **Layout Design**

- Draw polygons (rectilinear objects) in each layer
  - Rectangles
  - Paths
- Layers (Real)
  - n-well
  - p-well
  - Active (n+ = ndiff)
  - Active (p+ = pdiff)
  - Poly
  - Contact
  - Metal (m1, m2, m3, ...)
  - Via (v12, v23, v34, ...)
- Layers (Virtual)
  - Cell boundary
  - Labels
  - Pins





VDD, VSS, A, Z





#### Inverter





Poly

#### FreePDK45:PolyRules

| Rule   | Value  | Description                             |
|--------|--------|-----------------------------------------|
| POLY.1 | 50 nm  | Minimum width of poly                   |
| POLY.2 | 140 nm | Minimum spacing of poly AND active      |
| POLY.3 | 55 nm  | Minimum poly extension beyond active    |
| POLY.4 | 70 nm  | Minimum enclosure of active around gate |
| POLY.5 | 50 nm  | Minimum spacing of field poly to active |
| POLY.6 | 75 nm  | Minimum Minimum spacing of field poly   |





#### Implant

#### FreePDK45:ImplantRules







#### Active

#### FreePDK45:ActiveRules

| Rule     | Value | Description                                        |
|----------|-------|----------------------------------------------------|
| ACTIVE.1 | 90 nm | Minimum width of active                            |
| ACTIVE.2 | 80 nm | Minimum spacing of active                          |
| ACTIVE.3 | 55 nm | Minimum enclosure/spacing of nwell/pwell to active |
| ACTIVE.4 | none  | saveDerived: active must be inside nwell or pwell  |





Contact





#### Metal 1

#### FreePDK45:Metal1Rules

| Rule     | Value   | Description                                                        |
|----------|---------|--------------------------------------------------------------------|
| METAL1.1 | 65 nm   | Minimum width of metal1                                            |
| METAL1.2 | 65 nm   | Minimum spacing of metal1                                          |
| METAL1.3 | 35 nm   | Minimum enclosure around contact on two opposite sides             |
| METAL1.4 | 35 nm   | Minimum enclosure around via1 on two opposite sides                |
| METAL1.5 | 90 nm   | Minimum spacing of metal wider than 90 nm and longer than 900 nm   |
| METAL1.6 | 270 nm  | Minimum spacing of metal wider than 270 nm and longer than 300 nm  |
| METAL1.7 | 500 nm  | Minimum spacing of metal wider than 500 nm and longer than 1.8um   |
| METAL1.8 | 900 nm  | Minimum spacing of metal wider than 900 nm and longer than 2.7 um  |
| METAL1.9 | 1500 nm | Minimum spacing of metal wider than 1500 nm and longer than 4.0 um |





Via12

#### FreePDK45:Via1Rules

| Rule   | Value | Description                             |
|--------|-------|-----------------------------------------|
| VIA1.1 | 65 nm | Minimum width of via1                   |
| VIA1.2 | 75 nm | Minimum spacing of via1                 |
| VIA1.3 | none  | saveDerived: via1 must be inside metal1 |
| VIA1.4 | none  | saveDerived: via1 must be inside metal2 |



INV\_X1, INV\_X2, INV\_X4, INV\_X8











• INV\_X8, INV\_X16, INV\_X32









NAND2\_X1, NOR2\_X1







BUF\_X1, BUF\_X2, BUF\_X4









AND2\_X1, AND3\_X1, AND4\_X1









XOR2\_X1, XNOR2\_X1







MUX2\_X1





FA\_X1 (Full adder)





• DFF\_X1 (D F/F)





### **Transistor Folding (A Layout Technique)**

• INV\_X16





#### **Layout Generation**

- Draw a layout.
  - Output: GDSII format
- Design rule check (DRC)
- Prepare a schematic (netlist).
  - A text file
- Layout vs. Schematic (LVS)
  - Layout → netlist 1
  - Schematic → netlist 2
  - LVS checks whether netlist 1 is equal to netlist 2.
- Parasitic RC extraction
  - Output: A SPICE netlist with parasitic RC
- Timing/power simulation and characterization



#### **Channel Length and Width**

- $L_{eff} = L \Delta L$ 
  - $L_{eff}$ : effective channel length
  - L: drawn channel length
- $W_{eff} = W \Delta W$







#### **Terminologies**

- Twin-tub technology
  - Two separate wells are created.
    - n-well for pFETs
    - p-well for nFETs
- Latch-up





#### Digital VLSI Design

- Placement
  - Places transistors in a layout.
- Routing
  - Power/Ground
    - Connect all the  $V_{DD}$  lines to  $V_{DD}$ .
    - Connect all the  $V_{SS}$  lines to  $V_{SS}$ .
    - Reduce IR drop.
  - Clock
    - Connect all the clock sinks to a main clock source pin.
    - Achieve zero skew.
  - Signal



Power/Ground routing





Metal 1 Metal 2





#### Standard cells

- have a fixed height.
- have different widths.
- have ports (input/output pins) generally in the Metal 1 layer.
- have some obstacles in the Metal 1 layer (for internal routing).

#### Routing

- uses only metal and via layers (doesn't use any other layers).
- routes the standard cell ports and primary I/O ports based on a given netlist.



BUF\_X1







Layout



#### **Automatic Placement**





## **Automatic Routing**





Theory

$$- I \approx \mu \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \cdot (V_G - V_T) \cdot V_{DS}$$
$$- R = \frac{1}{\beta \cdot (V_G - V_T)} \propto \frac{L}{W}$$

- Motivation 1
  - pFETs and nFETs have different mobility values.
    - $\mu_n > \mu_p$
  - Thus, if an nFET and a pFET networks have the same transistor sizes, their delay values are different.
- Motivation 2
  - Minimum-size FETs might not provide enough drive strength.
- Goal
  - Achieve perfectly-balanced delay values (from Motivation 1).
  - Satisfy delay constraints (from Motivation 2).
- Mobility ratio

$$- \mu_n = r \cdot \mu_p \ (r > 1)$$

$$-R_p = r \cdot R_n$$



- Theory
  - $I \approx \mu \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \cdot (V_G V_T) \cdot V_{DS}$
  - $R = \frac{1}{\beta \cdot (V_G V_T)} \propto \frac{L}{W}$
  - The drive strength (current) is
    - proportional to W
    - inversely proportional to L
  - The input capacitance is proportional to L and W.
  - If L increases
    - The input capacitance goes up.
    - The drive strength goes down (or the output resistance goes up).
    - The cell area goes up.
    - Thus, do not increase L (i.e., use the minimum channel length).
  - If W increases
    - The input capacitance goes up.
    - The drive strength goes up (or the output resistance goes down).
    - The cell area goes up.
    - If the input capacitance overhead is small, upsizing FETs reduces the delay of the downstream net.



- Theory
  - The FET width cannot be reduced infinitely (design rules).
  - Suppose the minimum transistor length and width are  $L_0$  and  $W_0$ , respectively.
  - Then,
    - Minimum-size nFET =  $\left(\frac{W_0}{L_0}\right)_n$ : This is a 1X nFET.
      - Resistance:  $R_n$
    - Minimum-size pFET =  $\left(\frac{W_0}{L_0}\right)_p$ : This is a 1X pFET.
      - Resistance: R<sub>p</sub>
- Transistor upsizing
  - If the size of an nFET is  $\left(\frac{k \cdot W_0}{L_0}\right)_n$ , it is a kX nFET.
    - Resistance:  $\frac{R_n}{k}$
  - If the size of a pFET is  $\left(\frac{k \cdot W_0}{L_0}\right)_p$ , it is a kX pFET.
    - Resistance:  $\frac{R_p}{k}$



#### **FET Sizing (Matching)**

Example: Inverter

$$- \mu_n = 2 \cdot \mu_p$$
 (i.e.,  $R_p = 2R_n$ )







#### **FET Sizing (Delay Reduction)**

Example: Inverter

$$- \mu_n = 2 \cdot \mu_p$$
 (i.e.,  $R_p = 2R_n$ )







NAND2\_X1, NOR2\_X1



FETs are sized for the worst-case signal path.



• 
$$f = \overline{a + b \cdot c}$$
 (1X)





- NAND2\_X1
  - pFETs: Each should be 2X.
  - nFETs
    - If a is upsized to  $x_1X$  and b is upsized to  $x_2X$  ( $x_1, x_2 > 1$ )
      - Resistance of  $a: \frac{R_n}{x_1}$
      - Resistance of *b*:  $\frac{R_n}{x_2}$
    - The total resistance should be  $R_n$ .

$$-\frac{R_n}{x_1} + \frac{R_n}{x_2} = R_n \implies \frac{1}{x_1} + \frac{1}{x_2} = 1$$

- For instance,  $(x_1, x_2) = (2,2), (3, \frac{3}{2}), (4, \frac{4}{3}), ...$
- We want to minimize the total area.
  - Min.  $x_1 + x_2$





#### Problem

- Minimize  $f(x_1, x_2) = x_1 + x_2$  under the following constraints.
  - $x_1, x_2 > 1$
  - $\frac{1}{x_1} + \frac{1}{x_2} = 1$
- Solve
  - $\frac{1}{x_1} + \frac{1}{x_2} = 1 \implies x_2 = \frac{x_1}{x_1 1}$
  - $f(x_1, x_2) = x_1 + x_2 = x_1 + \frac{x_1}{x_1 1} = f(x_1) = \frac{x_1^2}{x_1 1}$
  - $f'(x_1) = \frac{2x_1(x_1-1)-x_1^2}{(x_1-1)^2} = \frac{x_1^2-2x_1}{(x_1-1)^2}$
  - Thus, f is minimized when  $x_1 = 2$ . In this case,  $x_2$  is also 2.



- NAND\_Xn (n-input NAND gate)
  - pFETs: Each should be 2X.
  - nFETs
    - If  $a_i$  is upsized to  $x_i X$  ( $x_i > 1$ )
      - Resistance of  $a_i$ :  $\frac{R_n}{x_i}$
    - The total resistance should be  $R_n$ .

$$- \sum_{i=1}^{n} \frac{R_n}{x_i} = R_n \implies \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = 1$$

- · We want to minimize the total area.
  - Min.  $\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$





#### Problem

- Minimize  $f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n$  under the following constraints.
  - $x_i > 1$
  - $\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = 1$
- Solve
  - Let  $\frac{1}{x_i} = y_i$ . Then, the problem becomes as follows:
    - Minimize  $f(y_1, ..., y_n) = \frac{1}{y_1} + ... + \frac{1}{y_n}$
    - $y_i < 1$
    - $-y_1 + \cdots y_n = 1$
  - $y_n = 1 (y_1 + \dots + y_{n-1})$
  - $f(y_1, ..., y_n) = \frac{1}{y_1} + ... + \frac{1}{y_n} = f(y_1, ..., y_{n-1}) = \frac{1}{y_1} + ... + \frac{1}{y_{n-1}} + \frac{1}{1 (y_1 + ... + y_{n-1})}$
  - Solve  $\frac{\partial f}{\partial y_1} = 0, \dots, \frac{\partial f}{\partial y_{n-1}} = 0.$
  - $\frac{\partial f}{\partial y_i} = -\frac{1}{y_i^2} + \frac{1}{(1 (y_1 + \dots + y_{n-1}))^2} = 0$ 
    - $y_i = 1 (y_1 + \dots + y_{n-1}) \Rightarrow y_i = y_n$
  - Thus, f is minimized when  $y_1 = y_2 = \cdots = y_n$ , i.e.,  $x_1 = x_2 = \cdots = x_n$ .
  - As a result,  $x_1 = x_2 = \cdots = x_n = n$ .

