

MEC-E6007 Mechanical Testing of Materials

Sven Bossuyt March 11, 2024

Mechanical Properties

Hardness

Strength

Toughness

Hardness testing

micromechanics of contact friction hardness of materials elastic contact stress field contact non-linearity

micromechanics of contact

contact considered on length scale of roughness

- only peaks touch
- greater roughness results in smaller contact area
 - greater local stresses

micromechanics of contact

contact considered on length scale of roughness

- only peaks touch
- greater roughness results in smaller contact area
 - greater local stresses
- greater contact pressure results in larger contact area

characterization of surfaces

roughness

• at different length scales

protection

• coatings such as paint, enamel, galvanizing...

weathering

oxidation, hydratation, phase and element selectivity

dirt, lubrication

contact involving foreign material

thermomechanical history

• polishing, shot peening, case hardening

wear

abrasion

- deformation at surface resulting from contact with relative motion
 - as opposed to erosion resulting from a fluid stream (and particles in the stream)
- grooves, ploughing, and cut or broken pieces
- accelerated by loose or embedded hard particles
 - including debris from previous abrasion

adhesion

- exchange of material between contacting bodies
 - point weld due to high local stress, followed by fracture along different path

surface fatigue ("fretting")

local surface damage resulting from vibrations or small displacements

friction

Coulomb friction

- independent of macroscopic contact area
- dynamic friction coefficient smaller than static
 - dynamical instability due to "stick-slip" phenomenon

hardness

generally: "resistance to deformation under contact" "touchy-feely" concept

- material property indicating that when something hard touches something soft, the soft item will change shape, accommodating the shape of the hard item until the contact stresses are small
- often used as slightly vague substitute for strength and stiffness
 - simple, quick, reproducible measurement
 - non-destructive (except for small mark on the surface)

concretely quantifiable definition

- varies according to the nature of the material and deformation
 - wide variety of measurement methods whose results are not directly comparable
 - often detailed standards exist for specific application fields
- usually defined with units of force per area, or on a relative scale

scratch hardness

a hard material will scratch softer materials

- simple relative test for large differences in hardness
- "Moh scale" for minerals
- precise measurements rely on width or depth of scratch made using calibrated load and geometry
- residual stress which is compressive at surface increases scratch hardness

visual aspect wear

indentation hardness

permanent indentation using specific tip

- steel or tungsten carbide sphere
- diamond cone or pyramid

measure depth or width of indentation

high accuracy with depth increment after pre-load

different scales not directly comparable

- Rockwell B, Rockwell C, Brinell,
- Vickers, Knoop, Berkovich, cube corner
 - changing angle of Berkovich indenter to 142.3° gives same area function as Vickers
- Shore "Durometer" (for rubber)

"nano-indentation"

depth-sensing indentation

- force-displacement curve measured during indentation
 - more information than just hardness
- elastic unloading power law
 - change of contact area with indentation depth
 - depends on tip shape
- Oliver & Pharr papers

indentation modulus

 from contact stiffness (tangent at initial unloading)

$$I = \frac{E}{1 - \nu^2}$$

hardness

from maximum load

numerical simulation of contact

non-linearity

- sudden transition from traction-free to stress concentration
- requires special tricks for numerical convergence
- reformulating the problem differently can avoid complications
 - e.g., find load at known contact area instead of finding contact area

contact stiffness

- "softer" approximation of load-displacement curve
 - continuous function with continuous derivatives
 - force rises quickly (but not infinitely high) when bodies interpenetrate
 - small force already before bodies touch
- Lagrange multipliers
 - extra equations and degrees of freedom added to finite element model's stiffness matrix in finite element model, ensuring interpenetration is zero
 - multipliers are contact stresses

contact in finite element models

- define surfaces as contact pair
 - only perform calculations where contact is actually expected
 - set up data structures and functions for computational geometry
- "master-slave" concept
 - find distance from slave nodes to master surface
 - (and remember nearest master node)
 - introduce normal forces
 - at slave nodes that would otherwise penetrate master surface
 - use friction law for tangential forces
 - distribute opposite reaction forces to corresponding nodes in master

Hertzian contact

point contact never infinitely sharp

- continuous non-conformal surfaces
- surface area small relative to curvature and total size

analytical solution

- reduces to infinitely stiff indenter with radius of curvature ρ^* and planar halfspace with indentation stiffness I^*
- convolution of distributed load with solution for point load on elastic halfspace

$$\rho^* = \frac{1}{\frac{1}{\rho_1} + \frac{1}{\rho_2}}$$

$$I^* = \frac{1}{\frac{1}{I_1} + \frac{1}{I_2}} = \frac{1}{\frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}}$$

Hertzian contact: coordinates

Hertzian contact: problem statement

• eigenfunction for distributed load p(x,y) over surface area S_p such that displacements (u,v,w) of elastic deformation coincide with geometric compatibility relation for contact

$$\Delta Z = Z_0 - \delta + w_1 - w_2 \ge 0 \qquad (x, y) \begin{cases} \in S_p \to & \Delta Z = 0 \\ \notin S_p \to & \Delta Z \ge 0 \end{cases}, \quad p \ge 0$$

• solution proposed by H. Hertz by analogy with potential in electrostatic problem with ellipsoidal boundary condition

Hertzian contact: problem statement

- solution method using Green's functions
 - linear response to distributed load is convolution of distributed load with response to point load
 - Boussinesq solution for displacements in linear elastic half-space with Young modulus E and Poisson coefficient v, for point load p at origin

$$\begin{cases} \tilde{u}(p,x,y,z) &= p\frac{1+\nu}{2\pi E} \begin{pmatrix} \frac{xz}{r^3} - (1-2\nu)\frac{x}{r(r+z)} \\ \tilde{v}(p,x,y,z) &= p\frac{1+\nu}{2\pi E} \begin{pmatrix} \frac{yz}{r^3} - (1-2\nu)\frac{y}{r(r+z)} \\ \end{pmatrix} & \begin{pmatrix} u \\ v \\ w \end{pmatrix} \bigg|_{(x,y,z)} = \int_{S_p} \begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} \bigg|_{(x-\tilde{x},y-\tilde{y},z)} p(\tilde{x},\tilde{y}) \, \mathrm{d}\tilde{x} \, \mathrm{d}\tilde{y} \\ \tilde{w}(p,x,y,z) &= p\frac{1+\nu}{2\pi E} \begin{pmatrix} \frac{z^2}{r^3} + 2(1-\nu)\frac{1}{r} \end{pmatrix} \end{cases}$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

Hertzian contact: displacement field

$$\text{auxiliary function} \quad \tilde{Q}_1 = -\frac{1}{G_1} \big(z Q(x,y,z) \big) + \frac{1-2\nu_1}{G_1} \left(\int_z^\infty Q(x,y,\tilde{z}) \, \mathrm{d}\tilde{z} \right) \qquad \nabla^2 Q = 0 \\ \nabla^2 \tilde{Q}_1 = -\frac{2}{G_1} \frac{\partial Q}{\partial z}$$

displacements

$$\begin{split} u_1 &= \frac{\partial \tilde{Q}_1}{\partial x} = -\frac{1}{G_1} \left(z \frac{\partial Q}{\partial x} \right) + \frac{1 - 2\nu_1}{G_1} \left(\int_z^\infty \frac{\partial Q(x, y, \tilde{z})}{\partial x} \, \mathrm{d}\tilde{z} \right) \\ v_1 &= \frac{\partial \tilde{Q}_1}{\partial y} = -\frac{1}{G_1} \left(z \frac{\partial Q}{\partial y} \right) + \frac{1 - 2\nu_1}{G_1} \left(\int_z^\infty \frac{\partial Q(x, y, \tilde{z})}{\partial y} \, \mathrm{d}\tilde{z} \right) \\ w_1 &= \frac{\partial \tilde{Q}_1}{\partial z} + \frac{4(1 - \nu_1)}{G_1} Q = -\frac{1}{G_1} \left(Q + z \frac{\partial Q}{\partial z} \right) + \frac{1 - 2\nu_1}{G_1} \left(-Q \right) + \frac{4(1 - \nu_1)}{G_1} Q = -\frac{1}{G_1} \left(z \frac{\partial Q}{\partial z} \right) + \frac{2(1 - \nu_1)}{G_1} Q \end{split}$$

Hertzian contact: stresses

$$\sigma_{xx} = -2G_1 \frac{\partial^2 \tilde{Q}_1}{\partial x^2} - 4\nu_1 \frac{\partial Q}{\partial z}$$

$$\sigma_{xy} = -2G_1 \frac{\partial^2 Q_1}{\partial x \partial y}$$

$$\sigma_{yy} = -2G_1 \frac{\partial^2 \tilde{Q}_1}{\partial u^2} - 4\nu_1 \frac{\partial Q}{\partial z}$$

substitute elliptic integral for auxiliary function Q to get classic result for Hertzian contact

$$Q = \frac{3P}{16\pi} \int_{\lambda_0}^{\infty} \left(1 - \left(\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} + \frac{z^2}{\lambda} \right) \right) \frac{\mathrm{d}\lambda}{\sqrt{(a^2 + \lambda)(b^2 + \lambda)\lambda}}$$

$$\sigma_{xy} = -2G_1 \frac{\partial^2 \tilde{Q}_1}{\partial x \partial y} \qquad \sigma_{xz} = \frac{\partial^2 \tilde{Q}_1}{\partial x \partial z} - 4(1 - \nu_1) \frac{\partial Q}{\partial x}$$
$$= 2z \frac{\partial^2 Q}{\partial x \partial z}$$

$$\sigma_{yy} = -2G_1 \frac{\partial^2 \tilde{Q}_1}{\partial y^2} - 4\nu_1 \frac{\partial Q}{\partial z}$$
 $\sigma_{yz} = \frac{\partial^2 \tilde{Q}_1}{\partial y \partial z} - 4(1 - \nu_1) \frac{\partial Q}{\partial y}$

$$= 2z \frac{\partial^2 Q}{\partial y \partial z}$$

$$\sigma_{zz} = -2G_1 \frac{\partial^2 \tilde{Q}_1}{\partial z^2} - 4(2 - \nu_1) \frac{\partial Q}{\partial z}$$
$$= 2z \frac{\partial^2 Q}{\partial z^2} - 2\frac{\partial Q}{\partial z}$$

$$\frac{x^2}{a^2 + \lambda_0} + \frac{y^2}{b^2 + \lambda_0} + \frac{z^2}{\lambda_0} = 1$$

Hertzian contact: contact area

elliptical contact surface

$$S_p = \left\{ (x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$$

- same principal axes as original separation distance *Z*₀
- ellipticity differs from that of Z_0 , but is independent of δ
 - ellipticity parameter $\kappa=\frac{a}{b}$ depends only on the shape of the equivalent tip
 - through the relative curvatures of contact

$$A = \frac{1}{2\rho_x^{\star}} \qquad B = \frac{1}{2\rho_y^{\star}}$$

- combined as $R=2(A+B)=\left(\frac{1}{\rho_x^\star}+\frac{1}{\rho_y^\star}\right)$

$$\cos \Omega = -\frac{A - B}{A + B} = \frac{\left(\rho_x^{\star} - \rho_y^{\star}\right)}{\left(\rho_y^{\star} + \rho_x^{\star}\right)}$$

- in an implicit transcendental equation

$$cos\Omega = rac{\left(\kappa^2 + 1
ight)\mathcal{E}(\kappa) - 2\mathcal{F}(\kappa)}{\left(\kappa^2 - 1
ight)\mathcal{E}(\kappa)}$$

- involving elliptic integrals

$$\mathcal{E}(\kappa) = \int_0^{\pi/2} \sqrt{1 - \left(1 - \frac{1}{\kappa^2}\right) \sin^2 \varphi} \, \mathrm{d}\varphi$$

$$\mathcal{F}(\kappa) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - \left(1 - \frac{1}{\kappa^2}\right)\sin^2\varphi}} \,\mathrm{d}\varphi$$

- so that finally

$$a = \sqrt[3]{\frac{2}{\pi}\kappa^2 \mathcal{E}(\kappa) \frac{3P}{RI^*}}$$

$$b = a/\kappa$$
 $\delta = \frac{1}{\pi} \mathcal{F}(\kappa) \frac{3P}{2aI^{\star}}$

Hertzian contact: remarks

elliptic integrals simplify in limiting cases

- sphere on sphere $\kappa = 1$ $\mathcal{E}(\kappa) = \mathcal{F}(\kappa) = \frac{\pi}{2}$
- cylinder on cylinder $\kappa = 0$ $\mathcal{E}(\kappa), \mathcal{F}(\kappa) \to 0$ $()^{\frac{1}{3}} \to ()^{\frac{1}{2}}$

beware of curvature definitions

- negative curvature for concave surfaces
 - e.g., contact between ball bearing and races
- radius of curvature ρ has units of distance
- curvature R has units of 1/distance

non-linear relation between force and displacement

• (after elimination of contact diameter a)

$$P = \frac{8}{3} \left(\frac{2}{\pi} \mathcal{F}(\kappa) \right)^{-\frac{3}{2}} \left(\frac{2}{\pi} \kappa^2 \mathcal{E}(\kappa) \right)^{\frac{1}{2}} I^* R^{-\frac{1}{2}} \delta^{\frac{3}{2}}$$

Hertzian contact: stress field

maximal

- compressive stress at initial point of contact
- tensile stress at edge of contact area
- shear stress below surface
 - depth depends on geometric aspect ratio κ and Poisson coefficient ν

Fig. 19.

Hertzian contact: formulas

 $a = \sqrt[3]{\frac{3}{4}} \frac{\rho^* \overline{P}}{I^*}$

 $P = \frac{4}{3} I^* \rho^{*\frac{1}{2}} \delta^{\frac{3}{2}}$

 $\sigma_{\text{max}} = \frac{1}{2}(1 - 2\nu)p_0$

 $\tau_{\rm max} \approx 0.31 p_0$

 $z_{\tau_{\rm max}} \approx 0.48a$

 $\nu = 0.3$

cylinder

 $a = \sqrt{\frac{4}{\pi}} \frac{\rho^* P / \ell}{I^*}$

 $\delta = rac{2}{\pi} P / \ell \left(rac{\ln{(4
ho_1/a)} - rac{1}{2}}{I_1} + rac{\ln{(4
ho_2/a)} - rac{1}{2}}{I_2}
ight)$

 $P/\ell = \frac{\pi}{2} \left(\frac{\ln(4\rho_1/a) - \frac{1}{2}}{I_1} + \frac{\ln(4\rho_2/a) - \frac{1}{2}}{I_2} \right)^{-1} \delta$

 $\sigma_{\rm max} = 0$

 $\tau_{\rm max} \approx 0.3 p_0$

 $z_{\tau_{\rm max}} \approx 0.79a$

cnhoro

indentation modulus

effective radius (mm)

contact radius (mm)

interpenetration (mm)

force-displacement (kN)

max.tensile stress (Mpa)

max shear stress (Mpa)

max. compressive stress (Mpa)

dimensional analysis

Hertzian contact

- shape at contact point is parabolic: $\delta \propto a^2$
- Saint Venant's principle:

$$\langle \epsilon_{zz} \rangle \propto \delta /_a \propto a \propto \sqrt{\delta}$$

- strain is localized to region proportionate to contact area
- total force $P \propto S_P \langle \epsilon_{zz} \rangle$
 - sphere/ellipse: $S_P \propto a^2 \Rightarrow P \propto a^3 \propto \delta^{3/2}$
 - cylinder: $S_P \propto a \ l \Rightarrow {}^P/_l \propto a^2 \propto \delta$

Conical indenter

shape at contact point is linear:

$$\delta \propto a$$

• Saint Venant's principle:

$$\langle \epsilon_{zz} \rangle \propto \delta/a \propto constant$$

- strain is localized to region proportionate to contact area
- total force $P \propto S_P \langle \epsilon_{zz} \rangle$
 - cone/pyramid: $S_P \propto a^2 \Rightarrow P \propto a^2 \propto \delta^2$
 - sharp edge: $S_P \propto a \ l \Rightarrow {}^P/_l \propto a \propto \delta$

hardness test procedure

remove roughness and surface deformation

unless the residual stresses and surface hardening are what you want to measure

apply small pre-load

to improve reproducibility

increase load to predefined level

- high enough to make a measurable indentation
- low enough to avoid damage

remove load and observe indentation

calculate hardness using appropriate formula

wear

abrasion

- deformation at surface resulting from contact with relative motion
 - as opposed to erosion resulting from a fluid stream (and particles in the stream)
- grooves, ploughing, and cut or broken pieces
- accelerated by loose or embedded hard particles
 - including debris from previous abrasion

adhesion

- exchange of material between contacting bodies
 - point weld due to high local stress, followed by fracture along different path

surface fatigue ("fretting")

local surface damage resulting from vibrations or small displacements

grinding and polishing

to remove roughness and surface deformation

abrasive "grit"

- powder size measured by density of wires in a sieve
 - traditionally expressed per inch
 - for high grit numbers the thickness of the wires is significant
- attached to some flat, rigid surface

scratches: grooves and ploughing

- width and depth proportional to particle size
- subsurface deformation about three times larger

sequence of progressively finer grit

each step needs to remove scratches from previous step

grinding and polishing

to remove roughness and surface deformation

chemical and electrochemical polishing

- controlled corrosive reactions
 - different chemistry for different materials
- chemical kinetics such that reaction rate is higher at protrusions
- may be combined with mechanical means to ensure flatness

ion milling and plasma etching

- expose surfaces to atoms with high kinetic energy
- extremely high temperature but low heat capacity

cross sectioning

to (destructively) expose the inside of a specimen

embedding or surface plating to protect fragile specimens variety of cutting methods

- machining: sawing or milling
- abrasive cutting wheels
- water jet
- plasma torch
- spark erosion / electric discharge machining
- focused ion beam
- •

hardness testing summary

- combination of plastic and elastic deformation under indenter
- hardness determined from load and size of indentation
 - "microhardness" uses smaller load resulting in smaller indentation, making it suitable for measuring local variations
- contact area function needed to calculate pressure
 - implicit and approximate in simplified formulas for hardness value

