Nondimensionalization 1

Initial value problem 1.1

$$\frac{dC}{d\tau} = \frac{k_1}{k_2 + Z^2} + \frac{k_3}{k_4 + K^2} - d_1C \tag{1}$$

$$\frac{dC}{d\tau} = \frac{k_1}{k_2 + Z^2} + \frac{k_3}{k_4 + K^2} - d_1C \qquad (1)$$

$$\frac{dZ}{d\tau} = \frac{ak_5K^2}{k_6 + K^2} - d_2Z \qquad (2)$$

$$\frac{dK}{d\tau} = \frac{rk_7}{k_8 + C^2} - d_3K \tag{3}$$

Initial conditions

$$C(0) = 1, \quad Z(0) = 0, \quad K(0) = 0$$
 (4)

1.2 Units of dimensional parameters

C,K and Z are concentrations with units L^{-3} and therefore all the LHS terms e.g., $\frac{dC}{d\tau}$ have units $L^{-3}T^{-1}$

- d_1, d_2, d_3 have units T^{-1}
- k_2, k_4, k_6, k_8 have units of L^{-6}
- k_1, k_3 have units $L^{-9}T^{-1}$
- k_7 has units $L^{-9}T^{-1}$ if r is dimensionless
- k_5 has units $L^{-3}T^{-1}$ if a is dimensionless

Nondimensional variables

The nondimensional variables are ...

$$y_1 = \frac{k_2 d_1}{k_1} C$$
 $y_2 = \frac{k_6 d_1}{k_4 k_5} Z$ $y_3 = \frac{1}{\sqrt{k_4}} K$ (5)

- $\frac{k_2d_1}{k_1}$ has units L^3 therefore y_1 is dimensionless
- $\frac{k_6d_1}{k_4k_5}$ has units L^3 therefore y_2 is dimensionless
- $\frac{1}{\sqrt{k_4}}$ has units L^3 therefore y_3 is dimensionless

1.4 Nondimensional groups (parameters)

The nondimensional groups (parameters) are ...

$$p_{1} = \frac{k_{4}^{2}k_{5}^{2}}{k_{2}k_{6}^{2}d_{1}^{2}} \qquad p_{2} = \frac{k_{2}k_{3}}{k_{1}k_{4}}$$

$$p_{3} = \frac{k_{4}}{k_{6}} \qquad p_{4} = \frac{d_{2}}{d_{1}}$$

$$p_{5} = \frac{k_{2}^{2}k_{7}d_{1}}{k_{1}^{2}\sqrt{k_{4}}} \qquad p_{6} = \frac{k_{2}^{2}k_{8}d_{1}^{2}}{k_{1}^{2}}$$

$$p_{7} = \frac{d_{3}}{d_{1}}$$

$$(6)$$

Parameters p_3 , p_4 and p_7 are trivially dimensionless since they are ratios of dimensional parameter with equal units. The remaining parameters are not so obviously dimensionless.

- p_1 has units $\frac{L^{-12} \cdot L^{-6}T^{-2}}{L^{-6} \cdot L^{-12} \cdot T^{-2}}$
- p_2 has units $\frac{L^{-6} \cdot L^{-9} T^{-1}}{L^{-9} T^{-1} \cdot L^{-6}}$
- p_5 has units $\frac{L^{-12} \cdot L^{-9} T^{-1} \cdot T^{-1}}{L^{-18} T^{-2} \cdot L^{-3}}$

1.5 Nondimensionalizing governing equations

The terms to multiply through by are most easily determined from the decay term. The time scale is $\frac{1}{d_1}$.

1.5.1 Equation (1)

Multiply (1) by $\frac{k_2}{k_1}$

$$LHS = \frac{1}{d_1} \frac{k_2 d_1}{k_1} \frac{dC}{d\tau} = \frac{1}{d_1} \frac{dy_1}{d\tau} = \frac{dy_1}{dt}$$

$$RHS(1) = \frac{1}{1 + Z^2/k_2} = \frac{1}{1 + (k_4 k_5 y_2/k_6 d_1)^2/k_2} = \frac{1}{1 + p_1 y_2^2}$$

$$RHS(2) = \frac{k_2 k_3}{k_1 k_4} \left(\frac{1}{1 + k_4 y_3^2/k_4}\right) = \frac{p_2}{1 + y_3^2}$$

$$RHS(3) = \frac{k_2 d_1}{k_1} C = y_1$$

$$(7)$$

1.5.2 Equation (2)

Multiply (2) by $\frac{k_6}{k_4k_5}$

LHS =
$$\frac{1}{d_1} \frac{k_6 d_1}{k_4 k_5} \frac{dZ}{d\tau} = \frac{1}{d_1} \frac{dy_2}{d\tau} = \frac{dy_2}{dt}$$

RHS(1) = $\frac{k_6}{k_4} \left(\frac{K^2}{k_6 (1 + K^2/k_6)} \right) = \frac{K^2/k_4}{(1 + (k_4/k_6)(K^2/k_4))} = \frac{y_3^2}{1 + p_3 y_3^2}$
RHS(2) = $\frac{d_2}{d_1} \left(\frac{k_6 d_1}{k_4 k_5} \right) Z = p_4 y_2$ (8)

1.5.3 Equation (3)

Multiply (3) multiply by $\frac{1}{d_1\sqrt{k_4}}$

$$LHS = \frac{1}{d_1 \sqrt{k_4}} \frac{dK}{d\tau} = \frac{1}{d_1} \frac{dy_3}{d\tau} = \frac{dy_3}{dt}$$

$$RHS(1) = \left(\frac{k_2^2 k_7 d_1}{d_1^2 \sqrt{k_4}}\right) \left(\frac{k_1^2}{k_2^2 d_1^2} \frac{1}{k_8 + C^2}\right) = p_5 \left(\frac{1}{k_2^2 d_1^2 / k_1^2 (k_8 + C^2)}\right) = \frac{p_5}{p_6 + y_1^2}$$

$$RHS(2) = \left(\frac{d_3}{d_1 \sqrt{k_4}}\right) K = \frac{d_3}{d_1} y_3 = p_7 y_2$$

$$(9)$$