Аннотация

Лекции по математическому анализу 2 семестра потока бакалавров ВМК МГУ. Лектор — Фоменко Татьяна Николаевна.

Составитель — Андрей Тихонов (tiacorpo@gmail.com).

Оглавление

1	Определенный интеграл	2
	1.1 Основные понятия	2
	1.2 2 критерия интегрируемости функции по Риману	4

Глава 1

Определенный интеграл

1.1 Основные понятия

Определение. Разбиением отрезка [a;b] называется набор $\{x_k\} = \{x_0, x_1, \dots, x_n\}$, где $x_0 = a, x_n = b, x_0 < x_1 < \dots < x_n.$

Определение. Диаметром, или мелкостью разбиения $\{x_k\}$ называется число $d=d(\{x_k\})=\max_{1\leq k\leq n}\{\Delta x_k\},$ $\Delta x_k=x_k-x_{k-1}.$

Определение. Размеченным разбиением называется разбиение, в котором зафиксированы точки $\{\xi_k\}$, $2de\ \xi_k\in[x_{k-1},x_k]$.

Определение. Разбиение $\{y_m\}$ называется **измельчением разбиения** $\{x_k\}$, если $\{x_k\} \subset \{y_m\}$.

Определение. Разбиение $\{z_i\}$ называется объединением разбиений $\{x_k\}$ и $\{y_m\}$, если $\{z_i\} = \{x_k\} \cup \{y_m\}$.

Определение. Пусть на [a;b] задана f(x). Интегральной суммой для f(x) на отрезке [a;b], составленной по размеченному разбиению $(\{x_k\},\{\xi_k\})$ называется выражение вида

$$\sigma_f = \sigma_f(\{x_k\}, \{\xi_k\}) := \sum_{k=1}^n f(\xi_k) \Delta x_k$$

Определение. Число A наывается **пределом интегральных сумм** f(x) **на** [a;b] **при** $d\mapsto 0$, где d - мелкость разбиений, если \forall $\epsilon>0$ \exists $\delta=\delta(\epsilon)>0$, что для любого размеченного разбиения $(\{x_k\},\{\xi_k\})$, мелкость которого $d<\delta$, выполнено неравенство: $|\sigma_f(\{x_k\},\{\xi_k\})-A|<\epsilon$.

$$A = \lim_{d \to 0} \sigma_f(\{x_k\}, \{\xi_k\})$$

Определение. Определенным интегралом f(x) на отрезке [a;b] называется предел интегральных сумм этой функции на этом отрезке при $d\mapsto 0$.

$$\int_{a}^{b} f(x)dx := \lim_{d \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Теорема 1. Если y f(x) существует предел интегральных сумм, то этот предел – единственный.

Доказательство. Предположим противное. Пусть существует 2 предела: $A_1 < A_2, \ A_2 - A_1 = \alpha > 0$. По определению предела, для $\forall \ \epsilon = \frac{\alpha}{3} \ \exists \ \delta_1, \delta_2, \ \text{что}$:

1. для
$$\forall (\{x_k\}, \{\xi_k\}), d < \delta_1 : |\sigma_f(\{x_k\}, \{\xi_k\}) - A_1| < \epsilon$$

2. для $\forall (\{x_k\}, \{\xi_k\}), d < \delta_2 : |\sigma_f(\{x_k\}, \{\xi_k\}) - A_2| < \epsilon$

Тогда для любого размеченного разбиения $(\{x_k\}, \{\xi_k\})$, у которого $d \leq min(\delta_1, \delta_2)$, будет выполнено и 1), и 2) $\Rightarrow \sigma_f(\{x_k\}, \{\xi_k\})$ попадает одновременно в 2 непересекающихся интервала. Противоречие.

Теорема 2. Если существует $\int_{a}^{b} f(x)dx$, то обязательно f(x) ограничена на [a;b].

Доказательство. Предположим противное. Пусть f(x) неограничена на [a;b]. Тогда для любого разбиения [a,b] $\{x_k\}$ f(x) будет неограничена на хотя бы одном отрезке $[x_{k_0-1},x_{k_0}]$ этого разбиения. Выберем последовательность разбиений $\{x_k^m\}$ с мелкостью $d_m = d_m(\{x_k^m\}) < \frac{1}{m}$. В каждом из этих разбиений выберем отрезок

 $[x_{k_0-1}^m,x_{k_0}^m], \ \text{где } f(x) \ \text{ не ограничена. Теперь подберем разметку так, чтобы интегральные суммы } \sigma_f(\{x_k\},\{\xi_k\})$ были больше m. Выберем ξ_k на всех отрезках $[x_{k-1}^m,x_k^m], \ \text{кроме} \ [x_{k_0-1}^m,x_{k_0}^m], \ \text{произвольным образом. A на}$ $[x_{k_0-1},x_{k_0}]$ выберем ξ_k так, чтобы $|f(\xi_{k_0})| > \frac{m+|\sum\limits_{k\neq k_0}f(\xi_k)\Delta x_k)|}{\Delta x_{k_0}^m}$. Тогда вспомним неравенство: $|a+b| \geq |a| - |b|$ $(|a|=|(a+b)-b|\leq |a+b|+|b|\Rightarrow |a|-|b|\leq |a+b|, \ \text{ЧТД}).$ $|\sigma_f(\{x_k\},\{\xi_k\})|=|f(\xi_k^m)x_{k_0}^m+\sum\limits_{k\neq k_0}f(\xi_k^m)\Delta x_k^m|\geq |f(\xi_k^m)x_{k_0}^m|-|\sum\limits_{k\neq k_0}f(\xi_k^m)\Delta x_k^m|>m\Rightarrow \sigma_f>m\Rightarrow \text{при } m\mapsto\infty$

получим противоречие.

Определение. Пусть f(x) ограничена на [a;b], и задано размеченное разбиение $(\{x_k\}, \{\xi_k\}) \Rightarrow f(x)$ ограничена на каждом отреже $[x_{k-1}, x_k] \Rightarrow$ существует $\sup_{x \in [x_{k-1}, x_k]} \{f(x)\} = M_k$, $\inf_{x \in [x_{k-1}, x_k]} \{f(x)\} = m_k$. Верхней (ниженей) интегральной суммой (суммой Дарбу) f(x) по разбиению $\{x_k\}$ на [a;b] называется выражение:

$$\overline{s} := \sum_{k=1}^{n} M_k \Delta x_k$$
$$\underline{s} := \sum_{k=1}^{n} m_k \Delta x_k$$

Теорема 3. 6 свойств сумм Дарбу.

- 1. $\forall (\{x_k\}, \{\xi_k\}) s \leq \sigma_f(\{x_k\}, \{\xi_k\}) \leq \overline{s}$
- 2. $\forall \epsilon > 0 \exists$ разметка $\{\xi_k\}$ данного разбиения $\{x_k\}$, что $\sigma_f(\{x_k\}, \{\xi_k\}) \underline{s} < \epsilon, \overline{s} \sigma_f(\{x_k\}, \{\xi_k\}) < \epsilon$
- 3. При ризмельчении разбиения \underline{s} не может уменьшиться, \overline{s} увеличиться.
- 4. При добавлении к разбиению $\{x_k\}$ д новых точек \overline{s} может уменьшиться не более чем на (M-m)qd, dмелкость $\{x_k\}$. Аналогично для \underline{s} .
- 5. Пусть $\{x_k\}$, $\{y_j\}$ 2 разбиения [a;b]. \overline{s} , \underline{s} и \overline{s}' , \underline{s}' их суммы Дарбу. Тогда $\underline{s} \leq \overline{s}'$, $\overline{s} \geq \underline{s}'$.
- 6. В силу $5)_{\underline{\underline{i}}}$ $\exists \ sup\{\underline{\underline{s}}\} = \underline{I}$ нижний интеграл Дарбу, $\exists \ inf\{\overline{s}\} = \overline{I}$ верхний интеграл Дарбу, причем $\underline{s} \leq \underline{I} \ \leq \ \overline{I} \leq \overline{s}.$

Доказательство. 1. Для любого разбиения $\{x_k\}$ и любой разметки $\{\xi_k\}$ $m_k \le f(\xi_k) \le M_k \Rightarrow \underline{s} = \sum_{k=1}^n m_k \Delta x_k \le f(\xi_k)$ $\sum_{k=1}^{n} f(\xi_k) \Delta x_k = \sigma_f(\{x_k\}, \{\xi_k\}) \le \sum_{k=1}^{n} M_k \Delta x_k = \overline{s}$

- 2. По определению sup, $\forall \epsilon > 0$ на каждом $[x_{k-1}, x_k] \exists \xi_k$, что $M_k f(\xi_k) < \frac{\epsilon}{b-a}, \ 1 \le k \le n \Rightarrow \overline{s} \sum_{k=1}^n f(\xi_k) \Delta x_k = 0$ $\sum_{k=1}^{n} (M_k - f(\xi_k)) \Delta x_k < \frac{\epsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \epsilon$. Аналогично для \underline{s} .
- 3. Достаточно доказать, что \bar{s} не увеличивается, а \underline{s} не уменьшается, при добавлении к разбиению $\{x_k\}$ 1 новой точки.

Пусть новая точка η добавлена между x_{k_0-1} и x_{k_0} . Расмотрим суммы Дарбу.

$$\overline{s} = M_{k_0} \Delta x_{k_0} + \sum_{k \neq k_0} M_k \Delta x_k$$

$$\overline{s}' = M_{k_0}^1(\eta - x_{k_0-1}) + M_{k_0}^2(x_{k_0} - \eta) + \sum_{k \neq k_0} M_k \Delta x_k$$

Сравним эти два выражения. Заметим, что $M_{k_0}\Delta x_{k_0}=M_{k_0}(\eta-x_{k_0-1})+M_{k_0}(x_{k_0}-\eta)$. Причём очевидно, что $M_{k_0}\geq \sup_{x\in[x_{k_0-1};\eta]}\{f(x)\}=M_{k_0}^1$ и $M_{k_0}\geq \sup_{x\in[\eta;x_{k_0}]}\{f(x)\}=M_{k_0}^2\Rightarrow \overline{s}\geq \overline{s}'$. Аналогично для \underline{s} .

4. Докажем, что при добавлении 1 новой точки к разбиению $\{x_k\}$ \overline{s} может уменьшиться не более, чем на (M-n)d, где $M=\sup_{x\in[a;b]}\{f(x)\},\ m=\inf_{x\in[a;b]}\{f(x)\},\ d$ – мелкость разбиения $\{x_k\}$.

Аналогично доказательству 3), пусть добавлена новая точка η между x_{k_0-1} и x_{k_0} . Рассмотрим разность $\overline{s} - \overline{s}'$:

$$\overline{s} - \overline{s}' = M_{k_0} \Delta x_{k_0} - (M_{k_0}^1(\eta - x_{k_0 - 1}) + M_{k_0}^2(x_{k_0} - \eta)) = (M_{k_0} - M_{k_0}^1)(\eta - x_{k_0 - 1}) + (M_{k_0} - M_{k_0}^2)(x_{k_0} - \eta) \le (M - m)((\eta - x_{k_0 - 1}) + (x_{k_0} - \eta)) = (M - m)\Delta x_{k_0} \le (M - m)d$$

5. Пусть даны 2 любых разбиения: $\{x_k\},\ \{y_j\};\ \{z_m\}=\{x_k\}\cup\{y_j\}.$ Пусть $\overline{s},\underline{s}$ – суммы Дарбу для $\{x_k\},\ \overline{s}',\underline{s}'$ – для $\{y_j\},\ \overline{s}'',\underline{s}''$ – для $\{z_m\}.$

$$\underline{s} \le \underline{s}'' \le \overline{s}'' \le \overline{s}', \ \underline{s}' \le \underline{s}'' \le \overline{s}'' \le \overline{s}.$$

6. Докажем, что $\underline{s} \leq \underline{I} \leq \overline{I} \leq \overline{s}$.

Предположим противное. $\overline{I} < \underline{I}, \ \underline{I} - \overline{I} = \alpha > 0$. По определению $sup, \ inf$ для $\frac{\alpha}{3} \exists \underline{s}, \ \text{что} \ \underline{I} - \frac{\alpha}{3} < \underline{s} \leq \underline{I}; \ \exists \overline{s}, \ \text{что} \ \overline{I} \leq \overline{s} < \overline{I} + \frac{\alpha}{3} \Rightarrow \overline{s} < \overline{I} + \frac{\alpha}{3} < \underline{I} - \frac{\alpha}{3} < \underline{s} \Rightarrow$ противоречие.

Определение. f(x) называется **интегрируемой по Риману на** [a;b], если $\exists \int_a^b f(x)dx$. Также используется запись $f \in R[a;b]$.

1.2 2 критерия интегрируемости функции по Риману.

Теорема 4. Критерий интегрируемости в терминах сумм Дарбу. Для того, чтобы f(x), ограниченная на [a;b], была интегрируема по Риману, необходимо и достаточно, чтобы $\forall \ \epsilon > 0 \ \exists \ \{x_k\}$, что $\overline{s}_f - \underline{s}_f < \epsilon$.

Доказательство. Необходимость.

Пусть
$$\exists I = \int_{a}^{b} f(x)dx = \lim_{d \to 0} \square$$