

Density estimation

Training set:
$$3 \times (1)$$
, $x \times (m)$ of $x \times (m)$

With its corresponding $3 \times (n)$, $6^2 \cdot 1$, $x \times (m)$

[p(x) = $\frac{1}{12}$ p(xi, mi, 6^2) = $\frac{1}{12}$ e $\frac{1}{200}$ $\frac{1}{200}$

Anomaly detection algorithm:

1. Choose features that may be anomalous

2. Fit parameters u and o

3. Given new x, compute p(x) < $\frac{E}{2000}$ Anomalous

Example:

Training set: 6000

[1000 good / Cross validation: 2000 10

20 anomalous Test set: 2000 10

How to evaluate model?

Accuracy: NO, very skewed

F1 score: YES

Choose $\frac{E}{2000}$: with cross validation, iteratively maximize Fi.

Anomaly detection 1 1 1 framewood in the property of anomalous

Supervised learning 1 1 1 framewood in the property of anomalous

Multivariate Gaussian distribution: used when we	
need more complex functions than just (6).	
need more complex functions than just 6). Being able then to create ellipses with 5!	
and moving them with p, theR, ZER	
1. Fit model $p(x)$ $L_{j} \mu = \frac{1}{m} \sum_{i=1}^{m} \chi^{(i)}$ $L_{j} \sum_{i=1}^{m} (\chi^{(i)} - \mu) (\chi^{(i)} - \mu)^{T}$	
2. Given new x, compute:	
2. (Tiven new x , compares $p(x) = e^{\left(-\frac{1}{2}(x-n)^{T}\sum_{i=1}^{r-1}(x-n)\right)}$	
$(2\pi)^{\frac{1}{2}} \Sigma ^{\frac{1}{2}}$	
p(x) < E : Anomaly	
Original model	Multivariate model
	- Automatically captures corrs.
-Manually create features - Cheaper	- Automatically captures corrs. - Expensive
-OK if training Size small (m small)	-Number samples > number features (if net, \$\frac{1}{2}\)

ı