

SIM7020系列_低功耗模式 _应用文档

LPWA 模组

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路633号晨讯科技大楼B座6楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com

官网: www.simcom.com

名称:	SIM7020系列_低功耗模式_应用文档		
版本:	1.05		
日期:	2020.6.10		
状态:	发布		

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号晨讯科技大楼 B座 6楼

电话: 86-21-31575100

邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料,请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html 或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2020, 保留一切权利。

www.simcom.com 2 / 26

关于文档

版本历史

版本	日期	作者	备注
1.00	2018-04-12	李徙平	第一版
1.01	2018-06-08	毛泉骏	修改版面
1.02	2018-12-25	由秀营	添加 2.3 PSM 说明
1.03	2019-05-10	由秀营	更改 PSM 和 eDRX 说明以及示例
1.04	2020-03-10	来文洁	更改
1.05	2020-06-10	来文洁	ALL

适用范围

本文档适用于以下产品型号:

型号	类别	尺寸 (mm)	备注
SIM7020C	NB1	17.6*15.7	频段 1/3/5/8
SIM7020E	NB1	17.6*15.7	频段 1/3/5/8/20/28
SIM7030	NB1	16*18	频段 LTE FDD 1/3/5/8
SIM7060	NB1+GNSS	24*24	频段 LTE FDD 5/8
SIM7020G	NB2	17.6*15.7	频段 1/2/3/4/5/8/12/13/17/18/19/20/25/26/28/66/70/71/85
SIM7060G	NB2+GNSS	24*24	频段 1/2/3/4/5/8/12/13/17/18/19/20/25/26/28/66/70/71/85

www.simcom.com 3 / 26

目录

版	权声明	2
关 -	:于文档	3
	版本历史	3
	适用范围	3
目	录	4
1	介绍	6
	1.1 本文目的	
	1.2 参考文档	
	1.3 术语和缩写	
2	低功耗模式介绍	7
_	低切を 候式 / 1 	
	2. 2 关于 eDRX	
	2.3 三种模式的区别	
	PSM 简介	
3		
	3. 1 PSM 唤醒	
	3.3 特性	
	3.4 说明	
4		
	4.1 eDRX 介绍	
	4.1.1 eDRX 模式	
	4.1.2 PTW	
	4.1.3 eDRX 周期设置指令4.2 eDRX 相关 ATC	
5	Sleep 模式	16
6	低功耗模式应用实例	17
	6.1 网络承载设置	17
	6.1.1 PDN 自激活	17
	6.1.2 手动改变 APN 配置	18
	6.2 PSM 模式	
	6.2.1 开启/关闭 PSM 模式	
	6.2.2 PSM 和 UDP 测试用例	
	6.2.3 PSM 和 TCP 测试用例	
	6.2.4 AT+RETENTION=1 的 PSM 和 UDP 测试用例	
	6.2.5 AT+CNBIOTRAI mode 0&1 下的 PSM 和 UDP 测试	用例21

6.3	eDRX	模式	23
		打开 eDRX 模式	
	6.3.2	设置 eDRX 模式 cycle length 20.48s	24
	6.3.3	设置 eDRX 模式 cycle length 20.48s 和 PTW10.24s	24
	6.3.4	设置 eDRX 模式 cycle length 163.84s 进入深睡眠	24
	6.3.5	关闭 eDRX 模式	25
6.4	Sleep	模式	25
	6.4.1	方法一	25
	6.4.2	方法二	26

1.1 本文目的

基于 AT 指令手册扩展,本文主要介绍 PSM, eDRX 和 sleep 三种低功耗模式业务流程。

参考此应用文档, 开发者可以很快理解并快速开发相关业务。

1.2 参考文档

[1] SIM7020 Series_AT Command Manual

1.3 术语和缩写

www.simcom.com 6 / 26

■ 2 低功耗模式介绍

NB-IoT 支持三种省电模式: PSM (Power Saving Mode, 省电模式)、DRX (Discontinuous Reception, 不连续接收模式), eDRX (Extended DRX, 扩展不连续接收模式)。

NB 中采用了 PSM(power saving mode)和 eDRX(extended Discontinuous Reception)来节省功耗。在 PSM 模式下,终端无需接收 paing 以检测是否有下行服务,而 eDRX 模式相对于 DRX,具有更长的寻呼检 测周期,因此可能导致更长的时间延时,对于数据的实时性有影响。PSM 和 eDRX 是否使用取决于终端和网 络的能力及配置,在能力方面,终端不支持的能力网络必不会配置,而终端支持的能力在网络不同情况下, 配置亦可以不同。

2.1 关于 PSM

PSM 模式下,终端不去检测下行是否有寻呼数据。只要在 TAU 和上行需要发送数据时刻,才会退出 PSM 状态。T3412 为 TAU(Tracking Area Update)的时间,而 T3324 为在 IDLE 模式下进入 PSM 的定时器。 DRX 可以认为下行业务随时可达终端设备,在每个 DRX 周期(1.28s, 2.56s, 5.12s 或者 10.24s),终端 都会检测一次是否有下行业务到达,适用于对时延有高要求的业务。终端设备一般采取供电的方式,如路灯 业务。

- 由于 DRX 周期短(1.28s, 2.56s, 5.12s 或者 10.24s, 由运营商网络侧设置决定), 可认为下行业务随 时可达, 时延小。
- 适用于对时延有高要求的业务,但功耗相对较高,终端设备一般采用供电方式。

2.2 关于 eDRX

eDRX 比 DRX 拥有更长的寻呼周期,使得终端能够更好的节省功率,同时也会导致更长的下行数据延时 (如 drx 取值 1.28s\2.56s 等, 而 eDRX 取值可以为 20.48s, 甚至 2.9h), 所以适合用在时间紧迫性不是很高 的场景中。

2.3 三种模式的区别

DRX: 能够随时随地找到设备。

eDRX: 需要花几分钟至一两个小时才能找到设备。

PSM: 可能需要一两天才能找到设备。

www.simcom.com 8 / 26

3 PSM 简介

本章节主要介绍 SIM7020 系列模块的 PSM 应用特性。

PSM 在数据连接终止或周期性 TAU 完成后启动。数据连接终止后,终端首先进入 idle 模式,并进入不连续接收(DRX)状态,当定时器 T3324 超时后,终端进入 PSM 模式。

PSM 模式下,终端处于休眠状态,近似于关机,耗流 5 微安,可大幅度省电。在定时器 T3412 超时后,终端唤醒。此外也可通过按 power key 的方式唤醒终端。

图 1 PSM 模式

3.1 PSM 唤醒

- 1) T3412 定时器超时。
- 2) PWRKEY 拉低。
- 3) RTC_EINT 拉低

3.2 PSM 相关 ATC

AT 指令	功能描述
AT+CPSMS	PSM 设置

www.simcom.com 9 / 26

AT+CNBIOTRAI	NB-IOT 释放 Assistance 提示	
AT+RETENTION	保留 Socket 场景	

AT 命令的详细解释请参考"SIM7020 Series AT Command Manual".

3.3 特性

AT+CPSMS, 可以用来设置 PSM 的相关参数,其中参数 <Requested_Periodic-RAU> 和 <Requested_GPRS-READY-timer> 不需要配置。 <Requested_Periodic-TAU> 代表 T3412_ext, <Requested_Active-Timer>代表 T3324。参数值都是以八位二进制数表示,高三位为 unit,低五位为 value,换算方法如下。

<Requested Periodic-TAU>

Unit	基数	能够表示的最小秒数	能够表示的最大秒数	
0	10min	2400	18600	
1	1h	21600	111600	
2	10h	144000	1116000	
3	2sec	0	62	
4	30sec	90	930	
5	1min	960	1860	
6	320h	1152000	35712000	

表 1 AT+CPSMS 命令的参数<Requested_Periodic-TAU>

所以 01000111 表示的值就是 unit=2(010), value=7(00111), 时间就是 70h(10h * 7)。

<Requested_Active-Time>

Unit	基数	能够表示的最小秒数	能够表示的最大秒数
0	2sec	0	62
1	1min	120	1860
2	6min	2160	11160

表 2 AT+CPSMS 命令的参数<Requested_Active-Time>

3.4 说明

- 1、当模块通过 POWER-KEY、RTC_EINT 等方式退出 PSM 后,如果没有其他操作,模块会计时 5S 后再次进入 PSM。此过程可以被 AT 命令打断,每次敲入 AT 会从新计时 5S 时间,计时结束后若无其他不可进入 PSM 的状态(如 TCP 联网状态),则模块重新进入 PSM。
- 2、模块只有从 CPSMS 为 0 切换到 CPSMS 为 1 时会做网络请求,获取运营商下发的参数,当 CPSMS 的值已经为 1 时,再次配置 AT+CPSMS=1 将不会做网络请求的动作。
- 3、目前 T3324 和 T3412 实际起作用的值都是运营商下发的值,使用 AT+CPSMS 命令手动配置的 T3324 和 T3412 参数无法在实际功能中起效。

4 eDRX 简介

本章节主要介绍 SIM7020 系列模块的 eDRX 应用特性。

4.1 eDRX 介绍

4.1.1 eDRX 模式

eDRX 模式作为 Rel-13 中新增的功能,主要目的是支持更长周期的寻呼监听,从而达到省电的目的。传统的 2.56 秒寻呼间隔对 UE 的电量消耗较大,而下行数据发送频率小时,通过核心网和用户终端的协商配合,用户终端跳过大部分的寻呼监听,从而达到省电的目的。

eDRX 模式的节电效果比 PSM 模式要差一些,但是相对于 PSM 模式,大幅度提升了下行通信链路的可到达性。

eDRX 周期如图 3 所示,用户可通过查阅相关 AT 指令(AT+CEDRXS)进行 eDRX 周期设置。

4.1.2 PTW

在每个 eDRX 周期内,有一个寻呼时间窗口 (Paging Time Window, PTW),UE 只能在 PTW 内按 DRX 周期监听寻呼信道,以便接收下行业务,PTW 外的时间处于睡眠态,不监听寻呼信道,不能接收下行业务。 PTW 周期如图 3 所示,用户可通过查阅相关 AT 指令(AT*MEDRXCFG)进行 PTW 周期设置。

www.simcom.com 12 / 26

图 3 eDRX 示意图

NOTE

● 用户终端和核心网通过附着和 TAU 过程来协商 eDRX 的长度。

4.1.3 eDRX 周期设置指令

寻呼时间窗口(PTW), 八位位组 3(位 8 到 5)包含了 PTW 值。 PTW 值可以应用于 NB-S1 模式,如下所述。

NB-S1 模式

该字段包含 NB-S1 模式的 PTW 值(以秒为单位).PWW 值按 3GPP TS 23.682 [133a]中的规定使用.Bit 和 PTW 值的对应关系如表 4 所列。

Bit

8	7	6	5	Paging Time Window Length
0	0	0	0	2,56 seconds
0	0	0	1	5,12 seconds
0	0	1	0	7,68 seconds
0	0	1	1	10,24 seconds
0	1	0	0	12,8 seconds
0	1	0	1	15,36 seconds
0	1	1	0	17,92 seconds
0	1	1	1	20,48 seconds
1	0	0	0	23,04 seconds

1	0	0	1	25,6 seconds
1	0	1	0	28,16 seconds
1	0	1	1	30,72 seconds
1	1	0	0	33,28 seconds
1	1	0	1	35,84 seconds
1	1	1	0	38,4 seconds
1	1	1	1	40,96 seconds

表3 PTW 值

eDRX 值,八位位组 3(位 4 到 1)包含了 eDRX 值。该值如表 6 中所列,应用于 A / Gb 模式,lu 模式 或 S1 模式。

S1 模式

该字段包含 S1 模式的 eDRX 值。 参考 3GPP TS 36.304 [121]中定义, eDRX 的值可以对应 E-UTRAN eDRX 周期长度持续时间值的 eDRX 周期参数'TeDRX', 如表 5 所示。

Bit

4	3	2	1	eDRX cycle length duration
0	0	0	0	5.12 seconds
0	0	0	1	10.24 seconds
0	0	1	0	20.48 seconds
0	0	1	1	40.96 seconds
0	1	0	0	61.44 seconds
0	1	0	1	81.92 seconds
0	1	1	0	102.4 seconds
0	1	1	1	122.88 seconds
1	0	0	0	143.36 seconds
1	0	0	1	163.84 seconds
1	0	1	0	327.68 seconds
1	0	1	1	655.36 seconds
1	1	0	0	1310.72 seconds
1	1	0	1	2621.44 seconds
1	1	1	0	5242.88 seconds
1	1	1	1	10485.76 seconds

表 4 eDRX 周期

协议中未列出的其他值将默认是0000。

4.2 eDRX 相关 ATC

AT 指令	功能描述
AT+CEDRXS	eDRX 设置
AT+CEDRXRDP	eDRX 获取动态参数
AT*MEDRXCFG	eDRX 配置

www.simcom.com 15 / 26

5 Sleep 模式

本章节主要介绍 SIM7020 系列模块的 sleep 模式应用特性。

在休眠模式下,模块的电流消耗会降到最低,但模块仍能接收寻呼信息和 SMS。在 DRX 为 2.56s 的情况下耗流为 0.46mA。

6 低功耗模式应用实例

6.1 网络承载设置

模块开机会自动激活 PDN 并获取 PS 业务地址。前提是数据卡和天线正常。

6.1.1 PDN 自激活

//PDN 自动激活示例.

AT+CPIN? //检查 SIM 卡状态

+CPIN: READY

OK

AT+CSQ //检查 RF 信号强度

+CSQ: 27,99

OK

AT+CGATT? //检查是否成功注册 PS 服务. 1 表示已经注册成功。

+CGATT: 1

OK

AT+CGACT? // PDN 激活成功

+CGACT:1,1

OK

AT+COPS? //查询网络信息,运营商及网络制式

+COPS:0,0,"CHN-UNICOM",9

9 即 NB-IOT 网络

OK

AT+CGCONTRDP //查询网络下发 APN 和分配的 IP 地址。

+CGCONTRDP:

1,5,"shnbiot","10.250.0.213.255.255.255.0"

OK

www.simcom.com 17 / 26

6.1.2 手动改变 APN 配置

//手动改变 APN 配置示例.

AT+CFUN=0 //关闭 RF

+CPIN: NOT READY

OK

AT*MCGDEFCONT="IP","3GNET" //配置 APN

OK

AT+CFUN=1 //打开 RF

OK

+CPIN:READY

AT+CGATT? // 查询 PS 业务附着

+CGATT: 1

OK

AT+CGCONTRDP // 岩 PS 附着成功,一般会得到网络分配的 IP 地址

+CGCONTRDP:

1,5,"3GNET","10.250.0.253.255.255.255.0"

OK

6.2 PSM 模式

6.2.1 开启/关闭 PSM 模式

//开启/关闭 PSM 模式示例

AT+CPSMSTATUS=1 //开启 PSM 事件上报

OK

AT+IPR=115200 //固定波特率

OK

AT+CEREG=4

OK

AT+C EREG?

+CEREG:

4,1,"5B57","01A50B1A",9,"00",,,"11100000","1110000

0"

OK

AT+CPSMS=1,,,"010111111","00000001"

OK

+CEREG:

1,"5B57","01A50B1A",9,"00",,,"11100000","11100000

..

//开启 PSM 模式, 并且设置 T3412_ext 和

T3324

+CEREG:

1,"5B57","01A50B1A",9,"00",,,"00000001","11100000

+CPSMSTATUS: "ENTER PSM"

AT+CEREG?

+CEREG:

4,1,"5B57","01A50B1A",9,"00",,,"00000001","111000

00" //查询网络配置的定时器

OK

AT+CEREG=0

OK //禁用网络注册 URC

AT+CPSMS=0

OK //关闭 PSM

6.2.2 PSM 和 UDP 测试用例

//PSM 和 UDP 测试示例

AT+CPSMSTATUS=1 //开启 PSM 事件上报

OK

OK

AT+IPR=115200 //固定波特率

AT+CPSMS=1,,,"01011111","00000001"

OK //开启 PSM 模式,并且设置 T3412_ext 和

T3324

+CPSMSTATUS: "ENTER PSM"

+CPIN: READY //拉低 PWRKEY 从 PSM 唤醒。

+CPSMSTATUS: "EXIT PSM" //PSM 模式退出时上报 URC。

AT+CSOC=1,2,1

+CSOC: 0 //建立 UDP 连接

OK

AT+CSOCON=0,8309,"117.131.85.139"

OK

AT+CSOSEND=0,0,"Hello Light" //发送数据到 UDP 服务器

OK //从 UDP 服务器接收数据

+CSONMI: 0,28,68656C6C6F2053494D3730323045

//如果数据传输完毕,模式将自动进入 PSM

+CPSMSTATUS: "ENTER PSM" 模式

6.2.3 PSM 和 TCP 测试用例

//PSM 和 TCP 测试示例

AT+CPSMSTATUS=1 //开启 PSM 事件上报

OK

AT+IPR=115200 //比特率固定为 115200

OK

AT+CPSMS=1,,,"010111111","00000001"

OK //开启 PSM 模式,并且设置 T3412_ext 和

T3324

+CPSMSTATUS: "ENTER PSM"

+CPIN: READY //拉低 PWRKEY 从 PSM 唤醒。

+CPSMSTATUS: "EXIT PSM" //PSM 模式退出时上报 URC。

AT+CSOC=1,1,1

+CSOC: 0 //建立 TCP 连接

OK

AT+CSOCON=0,8409,"117.131.85.139"

OK

AT+CSOSEND=0,0,"Hello Light" //发送数据到 TCP 服务器

OK

+CSONMI: 0,28,68656C6C6F2053494D3730323045 //从 TCP 服务器接收数据

AT+CSOCL=0

OK //TCP 连接时必须关闭 socket, 否则模块不

能进入 PSM 模式。

+CPSMSTATUS: "ENTER PSM"

www.simcom.com 20 / 26

6.2.4 AT+RETENTION=1 的 PSM 和 UDP 测试用例

//AT+RETENTION=1 的 PSM 和 UDP 测试示例

AT+CPSMSTATUS=1

OK //开启 PSM 事件上报

AT+IPR=115200 //固定波特率

OK //开启 PSM 模式,并且设置 T3412_ext 和

T3324

+CPSMSTATUS: "ENTER PSM"

+CPIN: READY

//拉低 PWRKEY 从 PSM 唤醒。

+CPSMSTATUS: "EXIT PSM" PSM 模式退出时上报 URC。

AT+RETENTION=1

OK //退出 PSM 模式时恢复场景 (默认值是 0)

AT+CSOC=1.2.1

+CSOC: 0 //建立 UDP 连接

OK

AT+CSOCON=0,8309,"117.131.85.139"

OK

AT+CSOSEND=0,0,"Hello Light" //发送数据到 UDP 服务器

OK //从 UDP 服务器接收数据

+CSONMI: 0,28,68656C6C6F2053494D3730323045

+CPSMSTATUS: "ENTER PSM" //如果数据传输完毕,模式将自动进入 PSM

模式

+CPIN: READY

//拉低 PWRKEY 从 PSM 唤醒。

+CPSMSTATUS: "EXIT PSM" PSM 模式退出时上报 URC。

AT+CSOSEND=0,0,"Hello Light"

//生学粉提到前面的 LIDD 服务界

OK //发送数据到前面的 UDP 服务器

+CPSMSTATUS: "ENTER PSM" //如果数据传输完毕,模式将自动进入 PSM

模式

6.2.5 AT+CNBIOTRAI mode 0&1 下的 PSM 和 UDP 测试用例

//AT+CNBIOTRAI mode 0&1 下 PSM 和 UDP 测试示例

www.simcom.com 21 / 26

AT+CPSMSTATUS=1

OK

AT+IPR=115200

OK

AT+CPSMS=1,,,"010111111","00000001"

//开启 PSM 模式, 并且设置 T3412_ext 和 OK

T3324

//开启 PSM 事件上报

//固定波特率

+CPSMSTATUS: "ENTER PSM"

+CPIN: READY

//拉低 PWRKEY 从 PSM 唤醒。 PSM 模式退出时上报 URC。

+CPSMSTATUS: "EXIT PSM"

AT+CNBIOTRAI? +CNBIOTRAI: 0

OK

AT+CSOC=1,2,1

+CSOC: 0

//建立 UDP 连接

Enable Release Assistance Indication

OK

AT+CSOCON=0,8309,"117.131.85.139"

OK

2019-04-17 15:44:31

AT+CSOSEND=0,0,"Hello Light" //如果数据传输完毕,模式将自动进入 PSM

OK

It takes about 20s with T3324=2s setting

2019-04-17 15:44:51 to enter into the PSM mode

+CPSMSTATUS: "ENTER PSM"

+CPIN: READY //拉低 PWRKEY 从 PSM 唤醒。

+CPSMSTATUS: "EXIT PSM" //PSM 模式退出时上报 URC。

AT+CNBIOTRAI=1

AT+CSOC=1,2,1

+CSOC: 0 //建立 UDP 连接

OK

OK

AT+CSOCON=0,8309,"117.131.85.139"

OK

2019-04-17 15:56:37

//如果数据传输完毕,模式将自动进入 PSM AT+CSOSEND=0,0,"Hello Light"

OK 模式。

It takes ONLY about 4s with T3324=2s 2019-04-17 15:56:41 setting to enter into the PSM mode

+CPSMSTATUS: "ENTER PSM"

//拉低 PWRKEY 从 PSM 唤醒。 +CPIN: READY

+CPSMSTATUS: "EXIT PSM" //PSM 模式退出时上报 URC。

2019-04-17 16:00:15 AT+CNBIOTRAI?

+CNBIOTRAI: 0 //PSM 周期测试之后,恢复默认值 0

OK

2019-04-17 16:00:20 //5 秒的定时器后, 模块将自动进入 PSM 模

+CPSMSTATUS: "ENTER PSM" 式

6.3 eDRX 模式

6.3.1 打开 eDRX 模式

//打开 edrx 模式示例

AT+COPS?

+COPS: 0,2,"46000",9 //查询网络信息,运营商及网络制式

OK //9 即 NB-IOT 网络

AT+CEDRXS=?

+CEDRXS: (0-3),(5),("0000"-"1111") //查询 eDRX 参数范围

OK

AT+CEDRXS?

+CEDRXS: 5,"0000" //查询 eDRX 目前状态

OK

AT+CEDRXS=1 //打开 eDRX 功能. 这个配置在模块重启

OK 后保存。

AT+CEDRXRDP 如果 eDRX 支持,

+CEDRXRDP: 5,"0010","0010","0011" 第一个"0010" 请求的 cycle length

第二个"0010" 网络下发的 Cycle length

第三个"0011" 网络下发的 PTW

+CEDRXRDP: 0 //如果 eDRX 不支持, 返回 0.

OK

OK

NOTE

AT+CEDRXRDP

www.simcom.com 23 / 26

- 打开 eDRX 后,需要进入 sleep mode, 要关闭 eDRX,需要先退出 sleep mode.这样才能达到真正 省电目的。
- 打开 eDRX 后,不进入 sleep mode, 这是待机状态下进入 eDRX。

6.3.2 设置 eDRX 模式 cycle length 20.48s

//设置 edrx 模式 cycle length 20.48s 示例

AT+CEDRXS?

+CEDRXS: 5,"0000" //查询 eDRX 目前状态

OK

AT+CEDRXS=1,5, "0010" //设置 eDRX 的 cycle length 为"0010",即

OK 20.48 s.

AT+CEDRXRDP

#CEDRXRDP: 5,"0010","0010","0001" 第一个"0010" 请求的 cycle length

第二个"0010" 网络下发的 Cycle length

OK 第三个"0001" PTW

6.3.3 设置 eDRX 模式 cycle length 20.48s 和 PTW10.24s

//设置 edrx 模式 cycle length 20.48s 和 PTW10.24S 示例

AT+CEDRXS?

+CEDRXS: 5,"0000" //查询 eDRX 目前状态

OK

AT*MEDRXCFG=1,5,"0010","0011" //设置 eDRX cycle length 为"0010"(20.48

OK s). PTW 为"0011"(10.24s).

AT+CEDRXRDP

#CEDRXRDP: 5,"0010","0010","0011" 第一个"0010" 请求的 cycle length

第二个"0010" 网络下发的 Cycle length

OK 第三个"0011" 网络下发的 PTW

6.3.4 设置 eDRX 模式 cycle length 163.84s 进入深睡眠

//设置 edrx 模式 cycle length 163.84s 进入深睡眠示例

www.simcom.com 24 / 26

AT+CEDRXS?

+CEDRXS: 5,"0000"

//查询 eDRX 目前状态

OK

AT+CEDRXS=1,5, "1001"

OK 163.84 s.

AT+CEDRXRDP

+CEDRXRDP: 5,"1001","1001","0001"

第一个"1001" 请求的 cycle length 第二个"1001" 网络下发的 Cycle length

//设置 eDRX cycle length 为"1001",即

第三个"0001" 网络下发的 PTW

OK

NOTE

如果 cycle length 大于等于 163.84 s,模块会进入 deep sleep,此时唤醒需要如下条件:。

- cycle length 定时器时间到
- 拉低 PWRKEY (Typ. 800ms)
- 拉低 RTC_EINT

6.3.5 关闭 eDRX 模式

//关闭 edrx 模式示例

AT+CEDRXS=0

OK

//关闭 eDRX 功能

AT+CEDRXRDP +CEDRXRDP: 0

ок

6.4 Sleep 模式

6.4.1 方法一

//sleep 模式示例

www.simcom.com 25 / 26

AT+CSCLK=1	//进入慢时钟模式,然后拉高 DTR,模块就
ок	会进入休眠模式
	//拉低 DTR,模块会退出休眠模式

6.4.2 方法二

//sleep 模式示例

AT+CSCLK=2

OK

//自动进入慢时钟模式,当没有外部设备与模块交互时,模块会自动进入休眠模式

//发两次 AT 给模块即可唤醒模块

www.simcom.com 26 / 26