Таблицы сопряженности

Грауэр Л.В.

Таблицы сопряженности

$$(O_1,\ldots,O_n)$$

Качественные признаки:

 $A: A_1, A_2, ..., A_r$

 $B:B_1,B_2,...,B_s$

	B_1	B_2	 B_s	
A_1	n ₁₁	n ₁₂	 n_{1s}	m_1
A_2	n ₂₁	n ₂₂	 n _{2s}	m_2
A_r	n_{r1}	n_{r2}	 n _{rs}	m_r
	n_1	n_2	 ns	n

Независимость признаков

$$p_i = P(A_i), i = 1, ..., r$$

 $q_j = P(B_j), j = 1, ..., s$

A и B называются *независимыми*, если при любых i и j :

$$p_{ij}=P(A_i\cap B_j)=p_iq_j.$$

$$H_0$$
: $P(A_i \cap B_j) = p_i q_j$ для любых i, j . H_1 : $\exists (i, j) : P(A_i \cap B_j) \neq p_i q_j$.

Статистика критерия

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(n_{ij} - np_{i}q_{j})^{2}}{np_{i}q_{j}}$$

$$L = rac{n!}{\prod\limits_{\substack{i=1,r \ j=1,s}} n_{ij}!} \prod\limits_{\substack{i=1,r \ j=1,s}} (p_i q_j)^{n_{ij}} \qquad \sum_{i=1}^r p_i = 1$$
 и $\sum_{j=1}^s q_j = 1$

$$\hat{p}_i = \frac{m_i}{n}, \ i = 1, \dots, r, \quad \hat{q}_j = \frac{n_j}{n}, \ j = 1, \dots, s$$

Критическая область

Если H_0 верна,

$$\chi^{2}(X_{[n]}) = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(n_{ij} - \frac{m_{i}n_{j}}{n})^{2}}{\frac{m_{i}n_{j}}{n}} \xrightarrow{d} \zeta \sim \chi^{2}((s-1)(r-1)).$$

$$\alpha \in (0,1)$$
 , $V_k = \{\chi^2(X_{[n]}) > \chi^2_{1-\alpha}((r-1)(s-1))\}$

В случае таблицы 2х2 используется поправка Йейтса:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{\left(|n_{ij} - \frac{m_i n_j}{n}| - 0.5\right)^2}{\frac{m_i n_j}{n}}.$$

Таблицы сопряженности 2х2

$$(O_1,\ldots,O_n)$$

 $A: A_1, A_2, B: B_1, B_2$

	B_1	B_2	сумма
A_1	n ₁₁	n ₁₂	m_1
A_2	n ₂₁	n ₂₂	m_2
сумма	n_1	n_2	n

Зависимы ли признаки А и В?

Точный критерий Фишера

 T_i при зафикисированных значениях m_1 , m_2 , n_1 , n_2 :

	B_1	B_2	сумма
A_1	n_{11}^i	n_{12}^i	m_1
A_2	n_{21}^i	n_{22}^i	m_2
сумма	n_1	<i>n</i> ₂	n

Вероятность получить T_i

$$P_i =$$

Статистика критерия Фишера

Статистика двустороннего критерия

$$P = \sum_{T_i: P_i \le P_0, i \ne 0} P_i + P_0.$$

$$P < \alpha$$

Пример

№ улыбки	1	2	3	4	5	6	7	8	9	10
exp1	1	1	0	1	1	0	0	1	1	0
exp2	1	1	1	0	0	0	1	1	1	0

	1	0	сумма
exp1	6	4	10
exp 2	6	4	10
сумма	12	8	20

exp1 / exp2	0	1	сумма
0	2	2	4
1	2	4	6
сумма	4	6	10

exp1 / exp2	0	1	сумма
0	0	4	4
1	4	2	6
сумма	4	6	10

exp1 / exp2	0	1	сумма
0	1	3	4
1	3	3	6
сумма	4	6	10

exp1 / exp2	0	1	сумма
0	3	1	4
1	1	5	6
сумма	4	6	10

exp1 / exp2	0	1	сумма
0	4	0	4
1	0	6	6
сумма	4	6	10

$$P = 1$$