

Machine Learning Prediction of Stellar Properties from Light Curves

Yihong Song
Physics & Astronomy (PHYS)

Research Question

Stellar Properties

Image: https://bit.ly/3Gjh77Z

- Surface Gravity (Log G)
- Surface Temperature (Teff)
- Metallicity

205,512Total Stars

191,449
Labeled by Spectroscopy

Current Methods in Measuring Stellar Properties

Method	Log G	Teff	Metallicity
. Spectroscopy	Limited by Data Quality		
StarZam (light curve)	Data Efficient, Robust to Noise		

14,063

Spectroscopy Unavailable

Can we extract stellar properties directly from light curves?

Methodology

Kepler Light Curve

StarZam ML Algorithm

- Fourier Transformation
- Deep Neural Network

StarZam

Star Properties

Song Title

KIC Red Giants	Dataset ₊
-----------------------	----------------------

Туре	Samples (#)
Training	171,599
Testing	42,900
Total	214,499 +

Music Waveform

Image: https://bit.ly/3nz9hka

Shazam ML Algorithm

(Wang, 2003)

Image: https://bit.ly/3FxMz1X

Model loss

70000

train
test

40000

20000

0 20 40 60 80 100 120 140

Results

Surface Gravity

Effective Temperature

Metallicity

Model Accuracy

Log G	Teff	Metallicity
99.7%	76.9%	92.7%

Implications & Future Work

01

Novel Method

Extract stellar properties directly from light curves

Future Work

- Improving model accuracy
- Fine tuning hyperparameters

02

Efficient and Robust

Reduces observation time by 10x, high noise acceptance

03

Future Photometry Missions

Validation for Kepler & future photometry missions (TESS)

References

- Armstrong, D. J., Gamper, J., & Damoulas, T. (2020). Exoplanet validation with machine learning: 50 new validated Kepler planets. Monthly Notices of the Royal Astronomical Society, 504(4), 5327–5344. https://doi.org/10.1093/mnras/staa2498
- Hendriks, L., & Aerts, C. (2019). Deep Learning Applied to the Asteroseismic Modeling of Stars with Coherent Oscillation Modes. Publications of the Astronomical Society of the Pacific, 131(1004), 108001. https://doi.org/10.1088/1538-3873/aaeeec
- Hinners, T. A., Tat, K., & Thorp, R. (2018). Machine Learning Techniques for Stellar Light Curve Classification. The Astronomical Journal, 156(1), 7. https://doi.org/10.3847/1538-3881/aac16d
- Hon, M., Stello, D., & Yu, J. (2017). Deep learning classification in asteroseismology. Monthly Notices of the Royal Astronomical Society, 469(4), 4578–4583. https://doi.org/10.1093/mnras/stx1174
- Mathur, S., Huber, D., Batalha, N. M., Ciardi, D. R., Bastien, F. A., Bieryla, A., Buchhave, L. A., Cochran, W. D., Endl, M., Esquerdo, G. A., Furlan, E., Howard, A., Howell, S. B., Isaacson, H., Latham, D. W., MacQueen, P. J., & Silva, D. R. (2017). Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run. The Astrophysical Journal Supplement Series, 229(2), 30. https://doi.org/10.3847/1538-4365/229/2/30
- Thompson, S. E., Coughlin, J. L., Hoffman, K., Mullally, F., Christiansen, J. L., Burke, C. J., Bryson, S., Batalha, N., Haas, M. R., Catanzarite, J., Rowe, J. F., Barentsen, G., Caldwell, D. A., Clarke, B. D., Jenkins, J. M., Li, J., Latham, D. W., Lissauer, J. J., Mathur, S., . . . Borucki, W. J. (2018). Planetary Candidates Observed by Kepler . VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25. The Astrophysical Journal Supplement Series, 235(2), 38. https://doi.org/10.3847/1538-4365/aab4f9
- Wang, A. (2003). An Industrial Strength Audio Search Algorithm. ISMIR 2003, 4th International Conference on Music Information Retrieval.

Thank You. Questions?