Лекция 12. Асимптоты функций. Общая схема исследования и построения графика функции

Определение 7. Пусть f определена на полуоси x > c. Прямая y = ax + b называется наклонной асимптотой при $x \to +\infty$, если $\lim_{x \to +\infty} (f(x) - ax - b) = 0$. (1)

Пусть f определена на полуоси x < c . Прямая y=ax+b называется наклонной асимптотой при $x \to \infty$, если $\lim_{x \to -\infty} (f(x) - ax - b) = 0$. (2)

Пример 1.

$$f(x) = \frac{x^2 - 2x + 3}{x + 1} = \frac{(x + 1)^2 - 4x - 4 + 6}{x + 1} = x + 1 - 4 + \frac{6}{x + 1}.$$

Из полученного равенства получаем: f(x)- (x-3) стремится к 0 npu $x \to +\infty$, следовательно, асимптотой функции в рассматриваемом предельном переходе является прямая y=x-3 (по определению 7).

В дальнейшем рассматривается лишь случай $+\infty$ (для $x \to -\infty$, аналогично).

Теорема 24. Пусть f(x) определена на $[c, +\infty)$. Для того, чтобы прямая y=ax+b была наклонной асимптотой функции f(x), необходимо и достаточно, чтобы существовали **конечные** пределы

$$1) \exists \lim_{x \to +\infty} \frac{f(x)}{x} = a \tag{3}$$

$$2) \exists \lim_{x \to +\infty} (f(x) - ax) = b \tag{4}$$

Доказательство

<u>Необходимость</u>. *Дано*: существует наклонная асимптота, т.е. выполняется (1). *Доказать* существование (3) и (4). Доказательство очевидно. Провести самостоятельно.

<u>Достаточность</u>. *Дано*: выполнение (3) и (4). *Доказать* (1). Для доказательста подставьте (3) и (4) в левую часть (1), получится 0, что и требовалось доказать.

Пример 2.

Наклонные асимптоты: $B + \infty$ линия y = -x+1, $B - \infty$ линия y = x+1. **Почему?**

Определение 8 (Вертикальная асимптота)

Функция f определена на $(a,a+\delta)$. Линия x=a называется вертикальной асимптотой, если $\lim_{x\to a+0} f(x) = \infty$, аналогично при $x\to a-0$ и при $x\to a$.

<u>Утверждение 1.</u> Для существования вертикальной асимптоты графика функции y=f(x) в точке а необходимо и достаточно, чтобы хотя бы один из пределов $\lim_{x\to a+0} f(x)$ или $\lim_{x\to a-0} f(x)$ был равен бесконечности, то есть

$$\lim_{x \to a} f(x) = +\infty \ \text{unu} \ \lim_{x \to a} f(x) = -\infty \ \text{unu} \ \lim_{x \to a} f(x) = \infty,$$

$$\lim_{x \to a+0} f(x) = +\infty \ \text{unu} \ \lim_{x \to a+0} f(x) = -\infty \ ,$$

$$\lim_{x\to a-0} f(x) = +\infty \ unu \ \lim_{x\to a-0} f(x) = -\infty.$$

На рисунке 2.13.11а) односторонние пределы функции положительны.

В случае 2.13.1 б) односторонние пределы функции отрицательны.

В случае 2.13.1в) односторонние пределы имеют разные знаки и $\lim_{x\to a} f(x) = \infty$.

Замечание 1. Из утверждения 1вытекает (как следствие): если x=a точка разрыва 2 рода f(x), то прямая x=a - вертикальная асимптота этой функции.

Определение 8.1 Прямая у=b называется горизонтальной асимптотой кривой y=f(x), если $\lim_{x\to +\infty} f(x) = b$.

рис.2.13.2.

Пример 3. y=x arctgx Найти асимптоты этой функции.

Особенность этой функции в том, что её график имеет разные наклонные асимптоты при $x \to +\infty$ $u \, x \to -\infty$.

y(0)=0; функция непрерывна на всей числовой прямой. Найдём асимптоту при $x \to +\infty$:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} arctgx = \frac{\pi}{2}$$

$$b = \lim_{x \to +\infty} (x \operatorname{arct} gx - \frac{\pi}{2} x) = [\infty - \infty] = \lim_{x \to +\infty} \frac{\operatorname{arct} gx - \pi/2}{1/x} [n.\pi.] = -1$$

Асимптота $y = \frac{\pi}{2}x - 1$ при x>0.

Заметим, что функция чётная: y(-x)=y(x). Отсюда следует, что её график симметричен относительно оси ОУ, и при $x \to -\infty$ он имеет наклонную асимптоту $y = -\frac{\pi}{2}x - 1$.

Рис.2.13.3

<u>Пример 4.</u> $y = x + \frac{1}{x-1}$. Найти асимптоты этой функции.

x=1- точка разрыва второго рода, следовательно, по замечанию 1 x=1- вертикальная асимптота. Убедимся в этом, используя определение 8.

Заметим, что при больших значениях переменной х второе слагаемое по абсолютной величине гораздо меньше, чем первое слагаемое, и функция «ведёт себя» как линейная функция у=х.

рис.2.13.4

$$\lim_{x \to 1} y(x) = \infty, \quad k = \lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \frac{x^2 - x + 1}{x^2 - x} = 1, \quad b = 0.$$

График этой функции имеет вертикальную асимптоту x=1 и наклонную асимптоту y=x.

Пример5.
$$y = \frac{x^2}{(x+3)^2}$$

х=-3- точка разрыва второго рода.

График этой функции имеет горизонтальную асимптоту y=1 и вертикальную асимптоту x=-3. Действительно,

$$\lim_{x \to -3} y(x) = \lim_{x \to -3} \frac{x^2}{(x+3)^2} = +\infty, \ \lim_{x \to \infty} \frac{x^2}{x^2 + 6x + 9} = 1.$$

Рис.2. 13.5

Замечание 2 Для нахождения наклонных асимптот параметрически заданных функций поступают похожим образом. Вначале разыскиваются значения параметра t_0 , для которых $\lim_{t \to t_0} x(t) = \infty$ и $\lim_{t \to t_0} y(t) = \infty$. Далее коэффициенты наклонной асимптоты находятся из соотношений

$$1) \lim_{t \to t_0} \frac{y(t)}{x(t)} = a$$

2)
$$\lim_{t \to t_0} (y(t) - a x(t)) = b$$
,

при условии, что указанные пределы существуют.

Для нахождения вертикальной асимптоты вида $x=x_0$ параметрически заданных функций находят t_0 такие, что $\lim_{t\to t_0} x(t)=x_0$, $\lim_{t\to t_0} y(t)=\infty$. Для горизонтальной асимптоты

$$\lim_{t \to t_0} y(t) = y_0, \lim_{t \to t_0} x(t) = \infty$$

Общая схема построения графиков

Алгоритм

1. Элементарное исследование

- 1) Область определения.
- 2)Симметрия (четность, нечетность). Периодичность, Т-период.
- 3) Пределы на границе области определения, точки разрыва, их тип.
- 4) Асимптоты.
- 5) Точки пересечения функции с координатными осями. Нули функции.
- 6) Эскиз графика.

2. Дифференциальное исследование функции

- 1) По первой производной.
- а) Интервалы монотонности, б)критические точки 1 рода, экстремумы (заполняется таблица, как показано ниже).

2)По второй производной.

- а) Интервалы выпуклости, б) критические точки 2 рода, точки перегиба
- 3) Уточнение эскиза графика

Замечание3. Отыскание глобальных максимумов и минимумов на отрезке производится среди точек трех типов:

- 1) стационарные точки
- 2) особые точки (где не существует производная)
- 3) граничные точки.

Пример 6.

$$y = \sqrt[3]{x^2(x-3)}$$
 (Краткое исследование)

Асимптоты $y/x \rightarrow 1$, $x \rightarrow \pm \infty$

$$y(x) - x = \frac{x^3 - 3x^2 - x^3}{\left(x^2(x - 3)\right)^{\frac{2}{3}} + \sqrt[3]{x^5(x - 3)} + x^2} = \frac{-3x^2}{x^2 \left(1 + \sqrt[3]{\left(1 - \frac{3}{x}\right) + \left(1 - \frac{3}{x}\right)^{\frac{2}{3}}}\right)} \rightarrow -1 \text{ при } x \rightarrow \pm \infty$$

Асимптота y=x-1

$$y' = \frac{x-2}{x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}}, y'' = -\frac{2}{x^{\frac{4}{3}}(x-3)^{\frac{5}{3}}}$$

Критические точки 1 рода 0,2,3

t	(-∞,-1)	-1	(-1,1)	1	(1,∞)
Ż	+		+		-
х	-∞↑-3	-3	-3 ↑ 1	1	1 ↓ -∞
Диапазон х	(-∞,-3)		(-3,1)		(-∞,1)
dy/dx	-	0	+	3	+
y(x)	∞↓-2	-2	-2↑2	2	-∞↑2
d^2y/dx^2	+U		+U		

Puc. 2.14

Пример7. Исследовать функцию $y = \frac{x^3}{2(x+1)^2}$ и построить ее график.

Решение

1. Элементарное исследование

- 1). Функция определена на всей числовой прямой, кроме точки x=-1, в которой знаменатель дроби обращается в нуль, т. е. $D=(-\infty,-1)\cup(-1,+\infty)$; x=-1 точка разрыва.
- 2). Функция заведомо не обладает свойствами четности или нечетности, так как ее область определения не симметрична относительно начала координат (см. п.1.5). Поэтому исследование функции нужно выполнять на всей числовой прямой.
- 3). Найдем точки пересечения графика функции $y = \frac{x^3}{2(x+1)^2}$ с осями координат. При x=0 получим y=0, т. е. O(0;0). В этой точке график пересекает обе координатные оси.
- 4). Помечаем знаками + и интервалы, на которых функция принимает соответственно положительные и отрицательные значения (рис.2.17)

Puc. 2.15

5). В точке разрыва x=-1 существует вертикальная асимптота x=-1, так как $\lim_{x\to -1\pm 0} f(x) = \lim_{x\to -1\pm 0} \frac{x^3}{2(x+1)^2} = -\infty \, .$

Горизонтальной асимптоты график не имеет, поскольку

$$\lim_{x \to -\pm \infty} f(x) = \lim_{x \to -\pm \infty} \frac{x^3}{2(x+1)^2} = \lim_{x \to -\pm \infty} \frac{x^3}{2x^2} = \pm \infty$$

Выясним наличие наклонных асимптот:

$$k = \lim_{x \to -\pm \infty} \frac{f(x)}{x} = \lim_{x \to -\pm \infty} \frac{x^2}{2(x+1)^2} = \lim_{x \to -\pm \infty} \frac{x^2}{2x^2} = \frac{1}{2}$$

$$b = \lim_{x \to -\pm \infty} [f(x) - kx] = \lim_{x \to -\pm \infty} \left[\frac{x^3}{2(x+1)^2} - \frac{1}{2}x \right] = \lim_{x \to -\pm \infty} \frac{-2x^2 - x}{2(x+1)^2} = -1.$$

Пределы, определяющие k и b, совпадают при $x \to \pm \infty$, поэтому $y = \frac{1}{2}x - 1 -$ двусторонняя наклонная асимптота кривой.

6). Эскиз графика вместе с уточнениями изображен на рис.2.18.

2. Дифференциальное исследование

1) Имеем $y' = \frac{x^2(x+3)}{2(x+1)^3}$. Критические точки находим из условия y' = 0, откуда $x^2(x+3) = 0$, т.е. x = -3 и x = 0. Функция может переходить от возрастания к убыванию или наоборот в критических точках $x_1 = -3$; $x_2 = 0$ и в точке разрыва x = -1. Эти точки разбивают область определения на четыре интервала монотонности: $(-\infty, -3)$, (-3, -1), (-1,0), $(0,+\infty)$. На рис. 2.16 показаны знаки f'(x) в этих интервалах.

Согласно достаточному признаку экстремума, x=-3 — точка максимума; при x=0 экстремума нет. Соответствующие значения функции составляют f(-3)=-27/8, f(0)=0. Касательная в точке максимума горизонтальна, так как $k_{x=-3}=f'(-3)=0$.

1) Имеем $y'' = 3x/(x+1)^4$, поэтому все возможные точки перегиба находим из уравнения $3x/(x+1)^4 = 0$, т. е. x = 0. Направление выпуклости кривой может изменяться в точках перегиба и в точках разрыва функции. Точка разрыва x = -1 и возможная точка перегиба x = 0 разбивают всю область определения на три интервала $(-\infty; -1)$, (-1; 0), $(0; +\infty)$, внутри которых направление выпуклости не меняется. Знаки y'' в этих интервалах показаны на рис. 2.17

В интервалах $(-\infty; -1)$, (-1; 0) кривая выпукла вверх. В точке x=0 кривая меняет выпуклость вверх на выпуклость вниз; так как f(0)=0, то O(0; 0) — точка перегиба графика. Угловой коэффициент касательной в этой точке $k_{x=0}=f'(0)=0$, поэтому касательная в точке перегиба горизонтальна и совпадает с осью Ox.

3. Уточнение эскиза графика

Помечаем на чертеже точку пересечения с осями координат, она же точка перегиба, точку экстремума. Строим асимптоту, а затем уточненный график исследуемой функции (рис.2.18).

Puc. 2.18

Пример 8.
$$y = -\sqrt[4]{|x^2 - 1|^3}$$

Особенности этого графика - чётность и «угловые» критические точки.

1.Элементарное исследование

- 1)Область определения функции вся числовая ось $(-\infty, +\infty)$; множество значений: $(-\infty, 0]$.
- 2)Функция чётная. Поэтому возможно исследовать функцию, например, на правой полуоси и симметрично график отобразить относительно оу.
 - 3) $\lim_{x\to\infty} f(x) = -\infty$. Точек разрыва нет.
 - 4) Асимптот нет. (Проверьте!)
 - 5) Корни: x=-1, x=+1.
 - 6) Эскиз графика: уточненный график изображен на рис.4.

2. Дифференциальное исследование.

1)По первой производной

Раскроем знак модуля:

$$y(x) = \begin{cases} -\sqrt[4]{(x^2 - 1)^3}, & |x| > 1 \\ -\sqrt[4]{(1 - x^2)^3}, & |x| < 1 \end{cases};$$
 тогда производная равна $y'(x) = \frac{-3|x|}{2\sqrt[4]{|x^2 - 1|}}$

Критические точки 1 рода функции: x=1, x=-1, x=0. Исследуйте промежутки знаков постоянства производной по таблице, аналогичной примеру 7.

Делаем вывод: все три критические точки функции являются точками экстремума. Точки +1, -1- критические точки 1 рода с вертикальной касательной; точка х=0- точка минимума с горизонтальной касательной.

Рис.2.19

2)Вторая производная функции имеет вид: $y'' = -\frac{3}{4} \frac{(x^2-2)}{(x^2-1)^{5/4}}$;

Точки перегиба: $x_{1,2} = \pm \sqrt{2}$. (проверьте!) Составьте таблицу для второй производной самостоятельно, аналогично примеру 7

3.Уточненный график приведен на рис.2/19.

Определение 8.2. (Глобального экстремума функции на отрезке)

Глобальный максимум (минимум) - это наибольшее М (наименьшее m) значение функции среди всех локальных максимумов, минимумов и ее значений на концах отрезка. М и m –глобальный экстремум функции на отрезке. По теореме Вейерштрасса он всегда существует для функций, непрерывных на этом отрезке.

Следовательно, отыскание глобальных максимумов и минимумов на отрезке производится среди значений функции в точках двух типов:

1)критические точки 1 рода,

2)граничные точки отрезка.

Пример 9. Найти наибольшее значение функции на отрезке

$$y = \sqrt[3]{2(x+1)^2(5-x)} - 2$$
, [-3, 3].

Решение.

Убедитесь, что функция непрерывная на заданном отрезке и дифференцируема внутри. 1)Найдите первую производную, по ней критические точки 1 рода этой функции. Это точки x=-1, 5; (проверьте!). Точка x=3, в которой производная равна 0, совпадает с правым концом отрезка, в ней только левосторонняя производная (точка не является стационарной) Вычислим значения функции в точках -1 и 5: f(-1)=f(5)=-2 2)Значения функции на конах отрезка (в граничных точках) равны: f(-3)=f(3)=2

Из сравнения значений функции, полученных в 1) и 2), берм максимальное значение. Ответ: 2.