KATHLEEN T. GRANT

email: kdennist@usc.edu web: kdennist.github.io

EDUCATION

University of Southern California Doctor of Philosophy, Earth Sciences

University of Colorado at Boulder Bachelor of Arts, Geological Sciences

Los Angeles, CA Expected May 2024 Boulder, CO May 2016

RESEARCH POSITIONS

JPL Visiting Student Researchers Program (2022-2023)

JPL Year Round Internship Program (2021)

PUBLICATIONS

Chadwick, K. D., Brodrick, P. G., **Grant, K.**, Goulden, T., Henderson, A., Falco, N., ... Maher, K. (2020). Integrating airborne remote sensing and field campaigns for ecology and Earth system science. *Methods in* Ecology and Evolution. https://doi.org/10.1111/2041-210X.13463

PUBLISHED DATASETS

Chadwick, K. D., **Grant, K.,** Henderson, A., Breckheimer, I., Williams, C. F., Falco, N., ... & McCormick, M. (2020). *Locations, metadata, and species cover from field sampling survey associated with NEON AOP survey, East River, CO 2018*. Environmental System Science Data Infrastructure for a Virtual Ecosystem; Watershed Function SFA.

Chadwick, K. D., **Grant, K.**, Henderson, A., Scott, A., McCormick, M., Pierce, S., ... & Maher, K. (2020). Leaf mass per area and leaf water content measurements from field survey in association with NEON AOP survey, East River, CO 2018. Environmental System Science Data Infrastructure for a Virtual Ecosystem; A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed.

Chadwick, K. D., **Grant, K.,** Bill, M., Henderson, A., Scott, A., & Maher, K. (2020). Site-level Foliar C, N, delta13C data from samples collected during field survey associated with NEON AOP survey, East River, CO 2018. Environmental System Science Data Infrastructure for a Virtual Ecosystem; A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed.

Chadwick, K. D., Brodrick, P. G., **Grant, K.,** Goulden, T., Henderson, A., Bill, M., ... Maher, K. (2020): NEON AOP foliar trait maps, maps of model uncertainty estimates, and conifer map, East River, CO 2018. A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. doi:10.15485/1618133

INVITED PRESENTATIONS

Grant, K. 2022. Quenching the Quartz Quandary Part: Quartz and Feldspar Edition. Eat Learn Grow Series, NASA Jet Propulsion Laboratory, Virtual.

Grant, K. 2022. Quenching the Quartz Quandary Part: Quartz and Feldspar Edition. 2022 EMIT Science Team Meeting, NASA Jet Propulsion Laboratory, Virtual.

Grant, K. 2022. Quenching the Quartz Quandary Part (1/X). Weekly EMIT Science Team Meeting, NASA Jet Propulsion Laboratory, Virtual.

Grant, K. 2021. NEON Hyperspectral Ground Campaign. ESS-DIVE Community Data Workshop, Lawrence Berkeley National Lab, Virtual.

SELECTED PRESENTATIONS

Lawrence, C.R., Williams, E.K., Chadwick, K.D., **Grant, K.,** Maher, K. 2021. Regional-Scale Soil Carbon mapping: A Case Study from the East River, Colorado, USA. *American Geophysical Union Fall Meeting, New Orleans, L.A.*

Grant, K., Chadwick, K.D., Brodrick, P.G., West, A.J., Lawrence, C., Maher, K. 2021. Remote Sensing Surface Mineralogy and Foliar Metal Content to Discern Contaminant Sources Across Heterogeneous Landscapes. *American Geophysical Union Fall Meeting, New Orleans, LA.*

Grant, K., Chadwick, K.D., Brodrick, P.G., West, A.J., Falco, N., Lawrence, C., Maher, K. 2021. Mapping contaminate distributions across heterogenous landscapes through remotely sensed metal bioaccumulation. *Goldschmidt2021*, *Virtual*.

Powell, T., Henry, H., Bagshaw, S., Chadwick, K.D., **Denniston, K.**, Henderson, A., & Kueppers, L. M. (2019). Characterizing variability in hydraulic traits in co-occurring western subalpine conifers to improve drought response predictions. *AGUFM*, 2019, B33F-2537. (formerly Kathleen Denniston)

WORK EXPERIENCE

Stanford University Stanford, CA

Life Sciences Research Professional – School of Earth, Energy, and Environmental Science

June 2018 to July 2019

I coordinated and completed a ground sampling campaign for foliar, litter, soil and microbial analysis that accompanied hyperspectral and LiDAR datasets collected from NEON overflights. These samples were collected over twelve areas within four watersheds of interest, for a total of 435 sampling sites. Among other responsibilities, I ran a variety of assays to determine foliar, litter, root and roil compositions. The assays over which I had responsibility includes:

- Total C, N, and 13C on an Elemental Analyzer and Picarro Isotope Analyzer
- Nitric acid digests for micronutrient determination on Inductively Coupled Optical Emission Spectrometry
- Nitric acid digests for micronutrient determination on Inductively Coupled Mass Spectrometry

The May Institute
Santa Cruz, CA
Instructor – The Bay School
August 2017 to May 2018

I served as a one-on-one instructor for children on the low-functioning end of the autistic spectrum. The Bay School employs the latest applied behavioral analysis treatments and research findings to produce measurable and lasting improvements in the lives of children with autism. My role included:

- Daily collection of quantitative data relating to the development of individual students
- Created curriculum for individual students

Carnegie Institution for Science

Stanford, CA

Laboratory Technician – Department of Global Ecology

October 2016 to August 2017

I was employed at the Department of Global Ecology, Carnegie Institution for Science, located on the Stanford University campus, where I served as a laboratory technician in the Asner Lab. During my time at the Carnegie Institution, I build upon my skillset from undergraduate work and ran a wide variety of assays to determining foliar chemical compositions. In addition, at the Carnegie Institution, I obtained training on overall laboratory safety and conduct, communicated and cooperated with colleagues, and provided some general administrative support. The assays over which I had responsibility includes:

- Total C, N, and 13C on an Elemental Analyzer and Picarro Isotope Analyzer
- Nitric acid digests for micronutrient determination on Inductively Coupled Optical Emission Spectrometry
- Nitric acid digests for micronutrient determination on Inductively Coupled Mass Spectrometry
- Phenol and tannin content
- Chlorophyll and carotenoid extractions
- Carbon Fractions
- Extractions of exchangeable cations
- Oxalate extractable phosphorus, iron and aluminum for determination with Inductively Coupled Optical Emission Spectrometry

ADDITIONAL INFORMATION

Applications: ArcGIS, qGIS, Python, RStudio, e-Cognition, Idrisi, PHREEQC, MATLAB, Adobe Creative Suite

Hardware: Elemental Analyzer and Picarro Isotope Analyzer, Inductively Coupled Plasma Mass Spectrometer, Inductively

Coupled Plasma Optical Emission Spectrometer, MARS Microwave Digestion System, Metrohm Ion

Chromatograph, HCl Evaporator, UV-Vis Spectrophotometer, 200/220 fiber analyzer

Certificates: USC Center for Excellence in Teaching (CET)

Organizations: Contributor – USC's Earth Sciences Diversity, Equity and Inclusion Task Force

Contributor - USC's Earth Sciences Graduate Student Association

Volunteer - The Homeless Garden Project

Volunteer - Santisimo Sacramento's Family to Family Program