CSCI 466: Networks

Link Layer: Addressing, LANs, ARP

Reese Pearsall Fall 2023

*All images are stolen from the internet

Announcements

Next week's quiz will be on Wednesday

No class Friday (Veterans Day)

PA2 Grades

Multiple Access Links

Shared medium = possibility for receivers to get two frame at the same time, AKA a **collision**

Multiple Access Links

Shared medium = possibility for receivers to get two frame at the same time, AKA a **collision**

"Give everyone a chance to speak."

"Don't speak until you are spoken to."

"Don't monopolize the conversation."

"Raise your hand if you have a question."

"Don't interrupt when someone is speaking."

"Don't fall asleep when someone is talking."

In English, we have some rules to prevent collisions from happening

In the link layer, we will discuss 3 multiple access protocols: **Channel Partitioning**, **Random Access**, and **Taking Turns**

Random Access

Collisions will occur, but we will try to recover from them

Slotted ALOHA: Divide up time into discrete L/R "slots"

If collisions occur, the colliding nodes will flip a coin to see who should retransmit

L = size of frame R = Bandwidth

L/R = Time needed to transmit one frame

"Taking turns" MAC protocols

polling:

- centralized controller "invites" other nodes to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)
- Bluetooth uses polling

Taking Turns

Token Passing

Nodes are connected in a circular manner, and pass a special frame (token) between each other Can only transmit messages if you have the token

LAN

Local Area Network (LAN)- A collection of devices in one physical location, typically that share a centralized internet connection

Local Area Network

(Within a LAN, we could have several Subnets)

MAC addresses

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
 - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
 - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

Why do we need MAC addresses?

We need a way to *physically identify* a device on a network

IP addresses change frequently, but a MAC address will always be the same

An IP address is used to locate a device, a MAC address is used to identify a device

IP Address = Street Address, MAC Address = Name of person living in House

We need both an IP address and a MAC address to transmit a message

We need Computer B's MAC address!

ARP

Protocol for mapping **IP Addresses** to **MAC addresses**Used *only* for hosts and router interfaces **on the same subnet**

First the machine checks its ARP table

IP Address	MAC Address	ΠL	ΠL	
222.222.222.221	88-B2-2F-54-1A-0F	13:45:00		
222.222.222.223	5C-66-AB-90-75-B1	13:52:00		

If the entry does not exist in the table, construct and send an ARP packet

Broadcasts the ARP packet to all interfaces on the LAN (255.255.255.255)

These tables are self-updated, and do not require manual entry*

ARP

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - destination MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

Home LAN

MONTANA STATE UNIVERSITY

Home LAN

Home LAN

Home LAN

Home LAN

Home LAN

Home LAN

12.56.78.34 Google.com

Home LAN

Home LAN

Finding your MAC Address

Ipconfig/all

Ethernet

- "dominant" wired LAN technology:
- single chip, multiple speeds (e.g., Broadcom BCM5761)
- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Ethernet

Ethernet Topology

bus: coaxial cable (outdated)

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

7 bytes with pattern 10101010 followed by one byte with pattern 10101011

used to synchronize receiver, sender clock rates

Ethernet frame structure (more)

addresses: 6 byte source, destination MAC addresses

if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol otherwise, adapter discards frame

type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)

CRC: cyclic redundancy check at receiver error detected: frame is dropped

type							
preamble	dest. address	source address		data (payload)	CRC		

Ethernet switch

Switches will store and forward ethernet frames

Hosts have dedicated, direct connection to switch

 Ethernet protocol used on each incoming link, but no collisions between links

 Switching: A-A' and B-B' can transmit simultaneously, without collisions

 Transparent: Hosts are not aware they are connected to a switch

Plug and play; self-learning

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine network-layer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

https://www.youtube.com/watch?v=1z0ULvg_pW8