Bipolartransistor, NPN und PNP – Typ, Aufbau und Schaltzeichen

NPN, Betrieb an positivem Potential:

PNP, Betrieb an negativem Potential:

- U_{CE} = Kollektor-Emitter-Spannung
- U_{BE} = Basis-Emitter-Spannung (Schwellwert)
- I_C = Kollektorstrom
- I_B = Basisstrom

Es gilt: $U_{CE} = U_{CB} + U_{BE}$ und $I_{E} = I_{C} + I_{B}$.

Die Stromrichtung folgt dem I_C und I_E im Transistor...

Bipolartransistortypen: Betrieb an einer Spannungsquelle

0,7 V und entsprechendem Basisstrom....

Anwendung:

TR - Kombination z.B. für Hochsetz- und Tiefsetzsteller oder H – Brücke zur Stromrichtungsumkehr in einem Verbraucher.

Bipolartransistor: Schaltungsvarianten

Das Bezugspotential der Eingangs- und Ausgangsspannung am Transistor ist namensgebend... Die Schaltungen haben unterschiedliche Eigenschaften hinsichtlich R, U und I...

Bipolartransistor: Schaltungsvarianten und Eigenschaften

Schaltung	Emitterschaltung	Basisschaltung	Kollektorschaltung
Eingangswiderstand r _e	100 Ω 10 kΩ	10 Ω 100 Ω	10 kΩ 100 kΩ
Ausgangswiderstand r _a	1 kΩ 10 kΩ	10 kΩ 100 kΩ	10 Ω 100 Ω
Spannungsverstärkung V _u	20 100 fach	100 1000 fach	<=1
Gleichstromverstärkung B	10 50 fach	<=1	10 4000 fach
Phasendrehung	180° (Invertierung)	0°	0°
Temperaturabhängigkeit	groß	klein	klein
Leistungsverstärkung V _p	sehr groß	mittel	klein
Grenzfrequenz f _g	niedrig	hoch	niedrig
Anwendungen	NF- und HF-Verstärker Leistungsverstärker Schalter	HF-Verstärker	Anpassungsstufen Impedanzwandler

Gleichstromverstärkung:
$$B=\frac{I_C}{I_B}$$
 Leistungsverstärkung: $V_P=\frac{P_a}{P_e}$ Gleichspannungsverstärkung: $V_U=\frac{U_a}{U_e}$ Grenzfrequenz f $_{\rm g}$: Bis zu dieser störungsfrei

Gleichspannungsverstärkung:
$$V_U = \frac{U_a}{U_e}$$
 Grenzfrequenz f $_{\rm g}$: Bis zu dieser Frequenz können Signale störungsfrei übertragen werden. Darüber werden sie abgedämpft und verzerrt.

Die meisten Anwendungsfälle nutzen die Emitterschaltung... → Wird detaillierter betrachtet...

Bipolartransistor: Emitterschaltung mit Temperaturkompensation

Problem: Der Kollektorstrom nimmt mit steigender Temperatur zu. Das verschiebt den zuvor eingestellten Arbeitspunkt für die Verstärkung eines Signals.

unerwünscht, da Signalverzerrungen...

Temperaturkompensation bedeutet Kollektorstromstabilisierung durch Basisstromanpassung:

Diode oder NTC:

Stabilisierung durch:

Diode oder NTC werden auch wärmer und leitfähiger, mehr Strom fließt.

→I_B nimmt ab und der TR drosselt ein. Muss: Diode und TR am selben Kühlkörper mit identischer U_{Diff} →TR – Eigenerwärmung erfassen. Mittelmäßig... Spannungsgegenkopplung:

Stabilisierung durch:

Rückkopplung der schwankenden U_{CE} über den Spannungsteiler R1_R2. Sinkt U_{CE} bei höherer Temperatur so sinkt auch U_{RE} und damit I_{R} .

- →TR drosselt ein.
- $\rightarrow \vartheta$ sinkt, I_R nimmt zu...

Besser...aber, indirekt: Last-Rückwirkung

Stromgegenkopplung:

Stabilisierung durch:

 R_E im Strompfad. Bei steigender Temperatur wächst $I_C \rightarrow$ Erhöhter Spannungsfall $U_{RE} \rightarrow$ Damit Absenken von U_{BE} und Reduktion von I_B .

- →TR drosselt ein.
- $\rightarrow \vartheta$ sinkt, I_B nimmt zu...

Am besten...direkt, ohne Last-RW.

NPN – Bipolartransistor, Kennlinienfeld in Emitterschaltung:

Bipolartransistor:

- I_C variiert ein wenig mit U_{CF} trotz konstantem I_R.
- TR als Schalter, Ziel: U_{CB}=0, geringste P_{Verlust}...
- P_{Verlust}>= P_{tot} →Zerstörung
- U_{CE} wirkt auf U_{BE} zurück: Sp-RückWKenlinie...für hohe Präzision berücksichtigen...

Das Ausgangskennlinienfeld ist das wichtigste, damit den Arbeitspunkt AP eines Verstärkers bestimmen...

Der NPN – Bipolartransistor als Schalter

Arbeitspunkt eines Schalters (Leistungselektronik):

- Der Transistor wird voll durchgesteuert: I_{BMax} und U_{CB} =0 mit I_{CMax} . Nur der TR-Innenwiderstand erzeugt noch einen Spannungsfall am TR.
- Die Versorgungsspannung $U_{\rm B}$ wird vollständig auf $R_{\rm C}$ als Verbraucher (Last) geschaltet.
- Keine Kennlinien, nur Grenzdaten: I_B, I_C, R_{iTR}, P_{tot} nötig...
- Es wird ein Pulsmuster zur Anpassung des Spannungseffektivwertes an der Last erzeugt.
- Die Nutzlast (R_C) liegt in Reihe zum TR.

Ein/Aus → Pulsweitenmodulation: Erzeugung eines Sinusstromes im induktiven Verbraucher:

Der NPN – Bipolartransistor als Verstärker

Arbeitspunkt (AP) eines Verstärkers:

- Der Transistor wird zum gesteuerten Widerstand...
- Verhältnis: Eingangs- zu Ausgangsspannung wird eingestellt.
- Die Gleichstromverstärkung wird festgelegt.
- Signale werden verzerrungsfrei übertragen und dabei verstärkt. → Kennlinien unbedingt nötig.
- Am Ausgang, parallel zum TR, liegt die Nutzlast: Ein Lautsprecher oder eine Antenne...R_a
- R_C dient der Arbeitspunkteinstellung und ist nicht die Last.

Ziel:

Verzerrungsfreies

Signal: $U_e \rightarrow U_a$.

Gefahr:

AP übersteuern oder verschieben:

Abhacken und

verzerren...

NPN - Bipolartransistor: Arbeitspunktbestimmung 1

U_{Diff} ~ 0,7 V bei Silizium-TR oder aus dem Kennlinienfeld...

Variante 1:

Im gewählten AP:

 $R_{iTR} = U_{CE}/I_{C} = 4 \text{ V}/16 \text{ mA} = 250 \text{ Ohm}$ Dafür einzustellen sind $I_R = 75 \mu A$

$$\rightarrow$$
 R_V=(U_{Bat}-U_{BF})/I_B= (12 V- 0,7 V)/75 µA = 150,66 kOhm

$$\rightarrow$$
 R_C=(U_{Bat}-U_{CE})/I_C= (12 V-4 V)/16 mA = 500 Ohm

Bild 2-22: Ausgangskennlinienfeld eines Bipolartransistors

Variante 2, Graphisch mit den Ausgangskennlinien:

Vorgabe R_c, der TR existiert nicht:

 $I_C = U_{Bat}/R_C = 12V/500 \text{ Ohm} = 24 \text{ mA}$

Einzeichnen von $U_{CBat} = 12V$ \rightarrow AP des TR mit diesem R_C

Fertig ohne Korrektur...

NPN - Bipolartransistor: Arbeitspunktbestimmung 2, Korrektur der Eingangsbeschaltung

1) AP festlegen...neues Beispiel...

- 2) Bestimmung des exakten Wertes für I_B = 30 μ A aus dem Spannungsrückwirkungskennlinienfeld.
- 3) Berechnung des exakten Wertes für R_V oder beim Spannungsteiler von R_1 und R_2 mit U_{BF} .

Feldeffekttransistor

Zusatzinfo falls noch Zeit übrig...

