

DMA: Ordensrelationer

Søren Eilers

Institut for Matematiske Fag

Oversigt

Ordensrelationer

Relationen \leq på f.eks. \mathbb{Z} eller \mathbb{R} er

- Refleksiv: a ≤ a.
- Transitiv: hvis $a \le b$ og $b \le c$, så er $a \le c$.
- Antisymmetrisk: hvis $a \le b$ og $b \le a$, så er a = b.

Generalisering:

En relation *R* på *A* kaldes en (partiel) ordensrelation, hvis den er refleksiv, antisymmetrisk og transitiv.

Sammen kaldes (A, R) en (partielt) ordnet mængde

Notation:

Ofte bruges \leq eller \geq som symbol for ordensrelationer.

Eng.: partial order, partially ordered set (poset).

Eksempler

Eksempel 6.1.1: Lad S være en mængde, og lad $A = P(S) = \{B \mid B \subseteq S\}$. Mængdeinklusion, \subseteq , er en ordensrelation på A.

Eksempel 6.1.3: Lad $A = \mathbb{Z}^+$. Relationen | (går op i) er en ordensrelation.

Eksempel 6.1.5: Relationen < på \mathbb{Z} er ikke en ordensrelation (den er ikke refleksiv).

Hvorfor?

En ordensrelation på en mængde gør det muligt at

- Sammenligne elementer (hvad er 'størst'?)
- Ordne elementer, dvs. sortere elementer.

Bruges til at strukturere data af mere komplekse typer.

Den duale ordensrelation

Sætning

Hvis R er en ordensrelation på A, så er R^{-1} også en ordensrelation på A.

Det kaldes den duale ordensrelation.

Bevis.

Tayle!

Notation: Når \leq bruges som symbol for en ordensrelation, så bruges \geq som symbol for den duale.

Sammenlignelighed, totalitet

For alle $a, b \in \mathbb{Z}$ gælder $a \le b$ eller $b \le a$. Dermed kan \le bruges til at sammenligne alle tal.

Lad \leq være en ordensrelation på en mængde A. $a,b \in A$ kaldes sammenlignelige, hvis $a \leq b$ eller $b \leq a$.

En ordensrelation \leq på A kaldes total (eller lineær), hvis der for alle $a, b \in A$ gælder $a \leq b$ eller $b \leq a$.

Relationen \leq på \mathbb{Z} er total. Relationen \subseteq på P(S) er ikke total.

Relationen | (går op i) på \mathbb{Z}^+ er ikke total.

Produktmængder

Sætning

Hvis (A, \leq) og (B, \leq) er ordnede mængder, og \leq er defineret på $A \times B$ ved

$$(a,b) \leqslant (a',b') \Leftrightarrow a \leqslant a' \text{ og } b \leqslant b',$$

så er $(A \times B, \leq)$ en ordnet mængde.

Bevis.

Tayle!

Selv hvis (A, \leq) og (B, \leq) er totalt ordnede, er denne ordning på $A \times B$ ikke total.

Hassediagrammer

Lad (A, \leq) være en ordnet mængde.

Vi søger en kompakt repræsentation af ordensrelationen.

- 1 Tegn den orienterede graf for relationen.
- Slet alle løkker (refleksivitet)
- 3 Slet kanten fra $a \rightarrow c$ når der er kanter $a \rightarrow b$ og $b \rightarrow c$ (transitivitet).
- Orej grafen, så alle pile peger opad og erstat pilene med ikke-orienterede kanter.

Resultatet er et Hassediagram.

Eksempel på tavlen.

Oversigt

Maksimale og minimale elementer

Lad (A, \leq) være en ordnet mængde.

Et element $a \in A$ kaldes

- maksimalt, hvis der ikke findes $c \in A$, så a < c.
- minimalt, hvis der ikke findes c∈ A, så c < a.

Sætning

Lad (A, \leq) være en endelig (ikke-tom) ordnet mængde, så har A mindst et maksimalt element.

Bevis.

Tayle!

Eksempel: (\mathbb{Z}, \leq) har ikke noget maksimalt element.

Sætning

Lad (A, ≤) være en endelig (ikke-tom) ordnet mængde, så Dias 11/1 - DMA: Ordens elamber As mindst et minimalt element.

Største og mindste elementer

Lad (A, \leq) være en ordnet mængde.

Et element $a \in A$ kaldes

- et største element, hvis $a \ge c$ for alle $c \in A$.
- et mindste element, hvis $a \le c$ for alle $c \in A$.

Bemærk, et største element er altid maksimalt, men et maksimalt element er ikke altid et største element.

Sætning

En ordnet mængde (A, \leq) har højst et største element.

Bevis.

Tavle!

Sætning

En ordnet mængde (A, \leq) har højst et mindste element.

Øvre og nedre grænser

Lad (A, \leq) være en ordnet mængde.

Lad $B \subseteq A$. Et element $a \in A$ kaldes en

- øvre grænse, hvis $a \ge b$ for alle $b \in B$.
- nedre grænse, hvis $a \le b$ for alle $b \in B$.

Eksempel: Tavle.

Et element $a \in A$ kaldes en

- mindste øvre grænse, hvis a er en øvre grænse og a ≤ a' når a' er en øvre grænse for B.
- største nedre grænse, hvis a er en nedre grænse og a ≥ a' når a' er en nedre grænse for B.

Entydighed

Lad (A, \leq) være en ordnet mængde og lad $B \subseteq A$.

Sætning

B har højst en mindste øvre grænse og højst en største nedre grænse.

Bevis.

Som beviset for at det største element er entydigt.

Notation:

Mindste øvre grænse: supremum eller LUB (least upper bound)

Største nedre grænse: infirmum eller GLB (greatest lower bound)

