1.课程安排简介 2.课程内容概览

线性代数课程介绍

1课程安排简介

教学安排:

课程:线性代数(10421324)

上课时间地点:

星期一第3大节,三教2102

星期三第1大节,三教2102

任课教师: 王浩然

邮箱: <u>haoranwang@mail.tsinghua.edu.cn</u>

办公室: 近春园西楼257

答疑: 周五15:30-16:30, 近春园西楼257

近春园西楼

教材:梁鑫,田垠,杨一龙编著,《线性代数入门》,清华大学出版社

参考书: Gilbert Strang, Introduction to Linear Algebra, 5th edition. 清华大学出版社影印出版

清华大学电子教参平台有免费电子版。

我准备的教材是:

提交

课程成绩评定:

平时成绩(20%)+期中考试(20%)+期末考试(60%)

平时成绩 = 作业+出勤

作业: 13次左右,每周发布在网络学堂。作业**提交电子版**,要求书写工整拍照清晰。交作业时间每周一。

截止日期前拍照上传网络学堂提交,独立完成,严禁抄袭。**不用抄 写题目,写清题号**。

期中考试:第九周周六(11月12日)上午,时间地点另行通知

常规习题课(务必参加):

从第四周开始,每周一次

分班教学,由助教老师负责

习题课题目提前发布在网络学堂。请提前准备熟悉题目。

习题课大多数题目的难度属于考试难度的中高档题目,少数

题目难度高于考试难度。习题课材料大部分题目有详细解答。

我可以参加的习题课时间有

- A 周四第6节
- B 周五第6节
- 同六第6节
- □ 周日第4节
- 周日第6节

提交

课程配套资源:

样题:考试前发给大家

常规习题课之外, 计划开设**基础习题课**和专题讲座

课业辅导: 主讲教师答疑, 助教老师习题课后答疑, 学业发

展中心组织的答疑坊

班级课程群: 请大家关联企业微信, 关联后自动入群

网络学堂: 请添加邮箱信息, 并常查看邮箱

坏消息

咱们的课程(线性代数):一个好消息,一个坏消息

代数:理论性强,抽象性强。

与中学数学风格区别较大,需要花大量时间适应。

线性:只有一次项。没有二次项或更高次的项。

二阶导数为0!

好消息

线性代数课程简介

线性代数是后续工科课程的基础,在土木、水利等学科中发挥重要作用。近年来随着计算机的发展,是深度学习、网络搜索、人工智能等高科技领域的数学基础之一。

春季学期多元微积分也会用到。

Gilbert Strang: Linear Algebra and Learning from Data

Deep L	earning and Neural Nets	iii
Preface and Acknowledgments		vi
Part I: Highlights of Linear Algebra		1
I.1	Multiplication Ax Using Columns of A	2
I.2	Matrix-Matrix Multiplication AB	9
1.3	The Four Fundamental Subspaces	14
I.4	Elimination and $A = LU$	21
1.5	Orthogonal Matrices and Subspaces	29
I.6	Eigenvalues and Eigenvectors	36
1.7	Symmetric Positive Definite Matrices	44
1.8	Singular Values and Singular Vectors in the SVD	56
1.9	Principal Components and the Best Low Rank Matrix	71
I.10	Rayleigh Quotients and Generalized Eigenvalues	81
I.11	Norms of Vectors and Functions and Matrices	88
I.12	Factoring Matrices and Tensors : Positive and Sparse	97
Part II: Computations with Large Matrices		113
П.1	Numerical Linear Algebra	115
II.2	Least Squares: Four Ways	124
П.3	Three Bases for the Column Space	138
II.4	Randomized Linear Algebra	146

如何学好线性代数:

- 1. 定义、概念掌握清楚。感到不清楚时应立即解决
- 2. 多思考、整理课堂内容。独立完成作业
- 3. 多思考定理、公式的来源和推导
- 4. 多思考作业题目和习题课题目,避免盲目做题,做题要建立在概念清楚的基础上
- 5. 多与同学、助教、老师交流讨论

Robert Heinlein: When one teaches two learn.

我对同学们的要求:

- 1. 作业可与同学讨论,但要独立完成作业
- 2. 逐步提高逻辑推理能力,将思维过程表达清楚
- 3. 课后"每天两小时"
- 4. 明年不要在线性代数课见到大家
- 5. 解答中不使用"显然"

例:

命题 7.3.15 给定数域 $\mathbb F$ 上的线性空间 $\mathcal U,\mathcal V,\mathcal W$,以及 $\mathcal U$ 到 $\mathcal V$ 的同构映射 f, $\mathcal V$ 到 $\mathcal W$ 的同构映射 g,则

- 1. $g \circ f \in \mathcal{U}$ 到 \mathcal{W} 的同构映射;
- $2. f^{-1}$ 是 \mathcal{V} 到 \mathcal{U} 的同构映射.

《线性代数入门》梁鑫、田垠、杨一龙编著

2 教学内容与课程概览

教材目录

- > 第零章 预备知识
- > 第一章 线性映射和矩阵
- > 第二章 子空间和维数
- > 第三章 内积和正交性

- > 第四章 行列式
- > 第五章 特征值和特征向量
- > 第六章 实对称矩阵

期中

> 第七章 线性空间和线性映射

》第八章 内积空间

教材目录

基础

重点

- › 第零章 预备知识
- > 第一章 线性映射和矩阵
- > 第二章 子空间和维数
- > 第三章 内积和正交性

- > 第四章 行列式
- > 第五章 特征值和特征向量
- › 第六章 实对称矩阵
- > 第七章 线性空间和线性映射

目标:

完全解决线性方程组问题 引入线性映射,矩阵的概念、熟悉矩阵运算

目标:

深入研究各种矩阵的性质

课程主线

什么是线性方程组问题?

古巴比伦人 (~2000B.C.) 2元1次方程组问题:

$$\begin{cases} x - 2y = 1\\ 3x + 2y = 11 \end{cases}$$

未知元个数等于方程个数

线性方程组问题

九章算术(东汉) 3元1次方程组

《九章算术》算筹图

今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中 禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉 各几何?

线性方程组问题

$$\begin{cases} 3x + 2y + z = 39 \\ 2x + 3y + z = 34 \\ x + 2y + 3z = 26 \end{cases}$$

26

方程组问题解构

前半部分课程(教材前3章)

课程主线

高斯消元 高斯-若尔当消元

线性方程组

完全解系 解空间 向量的运算 向量的线性组合

前9周

矩阵的运算 矩阵的四个子空间 维数,矩阵的秩

矩阵的 维数,起阵的状 LU分解 **线性映射与矩阵** QR分解 正态性

正交性 投影,施密特正交化 最小二乘法 行列式 特征值与特征向量 矩阵的对角化

矩阵的性质

对称矩阵与正定性 奇异值分解 广义逆

后6周

第O章: 预备知识

平面、空间解析几何回顾与补充

- 1.平面上的向量
- 2. 高维空间中的向量
- 3.三维空间中的直线平面,向量的叉积

1. 平面上的向量

- 1.1 什么是向量
- 1.2 向量的基本运算
- 1.3 向量的内积、长度与夹角
- 1.4 向量的线性组合 (★)

1.1 什么是向量

- (a) 物理向量 (physical vectors)
- (b) 几何向量 (geometric vectors)
- (c) 代数向量 (algebraic vectors)

(a) 物理向量:

(b) 几何向量:

设(O, x, y)为平面直角坐标系, $A = (a_1, a_2), B = (b_1, b_2)$ 为平面上两点,由A到B的有向线段 \overrightarrow{AB} 为一个几何向量。

相等的几何向量:

平面上的两个几何向量相等如果它们具有相同的长度和方向。

$$\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$$

在所有与 $v = \overrightarrow{AB}$ 相等的几何向量中存在唯一一个从原点O出发的几何向量 $\overrightarrow{OP} = v$, \overrightarrow{OP} 称为 v 的**位置向量**。

$$(p_1, p_2) = (b_1 - a_1, b_2 - a_2)$$

物理向量 v.s. 几何向量

(c) 代数向量:

一个二元数组
$$v=\begin{bmatrix}v_1\\v_2\end{bmatrix}$$
, $v_1,v_2\in\mathbb{R}$ 称为(平面上的)一个代

数向量。例如, $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 称为零向量。

记R2为(平面上)所有代数向量的全体,称为2维**向量空间**。

$$\mathbb{R}^2 = \left\{ \boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \middle| v_1, v_2 \in \mathbb{R} \right\}$$

几何向量 v.s. 代数向量: 几何向量 → 代数向量

由几何向量 \overrightarrow{AB} 出发,得到位置向量 \overrightarrow{OP} , \overrightarrow{OP} 终点的坐标给出

代数向量
$$\boldsymbol{v} = \begin{bmatrix} b_1 - a_1 \\ b_2 - a_2 \end{bmatrix}$$

几何向量 v.s. 代数向量: 代数向量 → 几何向量

给定一个代数向量
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
, $A = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ 为平面上任意一点,令

$$B = \begin{bmatrix} a_1 + v_1 \\ a_2 + v_2 \end{bmatrix}$$
, 由此得到从A出发的几何向量 \overrightarrow{AB} .

在我们这门课中,哪个向量最重要?

- A 物理向量
- B 几何向量
- () 代数向量

提交

1.2 向量的基本运算

- (1) 加法运算和数乘运算
- (2) 向量空间 R² 的8条重要性质

未来推广到抽象线性空间

物理向量的加法

由物理向量与几何向量、代数向量的对应,得到几何向量和代数向量的加法

代数向量的加法

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
, $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, 定义 $\boldsymbol{v} + \boldsymbol{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$

物理向量的数乘

代数向量的数乘

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
, $c \in \mathbb{R}$, 定义 $cv = \begin{bmatrix} cv_1 \\ cv_2 \end{bmatrix}$

 $\mathcal{\Pi}$

问题:设非零向量 $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2$,从几何上看集合

 $\{cv|c\in\mathbb{R}\}$ 是什么?

问题: (代数) 向量的减法怎么定义?

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \quad \boldsymbol{\Xi} \boldsymbol{\mathcal{Y}}$$

$$\boldsymbol{v} - \boldsymbol{w} = \boldsymbol{v} + (-1)\boldsymbol{w} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + (-1)\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$= \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} -w_1 \\ -w_2 \end{bmatrix} = \begin{bmatrix} v_1 - w_1 \\ v_2 - w_2 \end{bmatrix}$$

(代数) 向量加法、数乘运算总结:

ℝ²中的向量的运算满足如下**8条**容易验证的重要性质:

(1) 加法结合律:
$$(u + v) + w = u + (v + w)$$

(2) 加法交换律:
$$v + w = w + v$$

(3) 零向量: 存在向量
$$0$$
满足 $0 + v = v + 0 = v$

(4) 负向量: 对任意向量
$$v$$
有向量 $-v = (-1)v$ 满足 $v + (-v) = 0$

(5) 单位数:
$$1 \in \mathbb{R}, 1v = v$$

(6) 数乘结合律:
$$(c_1c_2)v = c_1(c_2v), c_1, c_2 \in \mathbb{R}$$

(7) 数乘对数的分配律:
$$(c_1 + c_2)v = c_1v + c_2v$$
, $c_1, c_2 \in \mathbb{R}$

(8) 数乘对向量的分配律:
$$c(v_1 + v_2) = cv_1 + cv_2$$

这8条也是定义抽象线

性空间使用的8条性质

1.3 向量的内积、长度与夹角

- (1) 向量的内积
- (2) 向量的长度
- (3) 向量的夹角

这是**欧式空间**具有的性质,一般的抽象线性空间不具备

(a) 向量的内积

定义
$$\mathbb{R}^2$$
 中两向量 $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ 的**内积**(或**点积**)

$$\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 \in \mathbb{R}$$

内积满足如下性质:

(1) 对称性: $v \cdot w = w \cdot v$

这4条也是定义抽象内

积空间使用的4条性质

(2) 分配律:
$$v \cdot (w_1 + w_2) = v \cdot w_1 + v \cdot w_2$$

(3) 数乘交换:
$$v \cdot (cw) = cv \cdot w$$
, $c \in \mathbb{R}$

(4) 正定性:
$$\mathbf{v} \cdot \mathbf{v} \geq 0$$
 且 $\mathbf{v} \cdot \mathbf{v} = 0$ 当且仅当 $\mathbf{v} = \mathbf{0}$

(b) 向量的长度:

由勾股定理,向量
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2$$
的长度为 $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$

长度为1的向量称为单位向量。

(c) 向量的夹角:

根据余弦定理,

$$\|v - w\|^2 = \|v\|^2 + \|w\|^2 - 2\|v\|\|w\|\cos(\theta)$$

于是,

$$(\boldsymbol{v} - \boldsymbol{w}) \cdot (\boldsymbol{v} - \boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{v} + \boldsymbol{w} \cdot \boldsymbol{w} - 2\|\boldsymbol{v}\| \|\boldsymbol{w}\| \cos(\theta)$$

展开左侧项,消去两侧相同项得到

$$2\boldsymbol{v}\cdot\boldsymbol{w}=2\|\boldsymbol{v}\|\|\boldsymbol{w}\|\cos(\theta)$$

于是
$$\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}$$

v, w的夹角 θ 满足 $0 \le \theta \le \pi$ 且

两向量正交:

由于
$$\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}$$

如果v,w非零向量,则 $\theta = \frac{\pi}{2}$ 当且仅当 $v \cdot w = 0$.

$$\mathbb{R}^2$$
 中两向量 $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, 如果 $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ 则称它们

正交,记为 $v \perp w$ 。特别地,零向量0与 \mathbb{R}^2 中所有向量正交。

例:

$$oldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $oldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 为单位向量且相互正交

第3章将深入讨论正交性。

1.4 向量的线性组合

- (a) 向量组的线性组合的定义
- (b) 线性相关与线性无关 (★)

注意代数定义与对应的几何解释

(a) 向量的线性组合:

例:

$$oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \end{bmatrix} = egin{bmatrix} v_1 \ 0 \end{bmatrix} + egin{bmatrix} 0 \ v_2 \end{bmatrix}$$
 $= v_1 \begin{bmatrix} 1 \ 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 \ 1 \end{bmatrix} = v_1 oldsymbol{e}_1 + v_2 oldsymbol{e}_2$
称 $oldsymbol{v}$ 为 $oldsymbol{e}_1$, $oldsymbol{e}_2$ 的线性组合

给定 \mathbb{R}^2 中两向量 $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, 形如 $c\boldsymbol{v} + d\boldsymbol{w}$, c, $d \in \mathbb{R}$ 的

向量称为v, w的一个**线性组合**。

记 $Span(v, w) = \{cv + dw | c, d \in \mathbb{R}\}$ 为v, w的所有线性组合构成的集合。

类似地定义任意有限多个向量的线性组合:

给定 \mathbb{R}^2 中k个向量 $v_1, v_2, ..., v_k$,形如 $c_1v_1 + ... + c_kv_k$, $c_1, ..., c_k \in \mathbb{R}$ 的向量称为 $v_1, v_2, ..., v_k$ 的一个线性组合。

记 $Span(v_1,...,v_k) = \{c_1v_1 + \cdots + c_kv_k | c_1,...,c_k \in \mathbb{R}\}$ 为 $v_1,v_2,...,v_k$ 所有线性组合构成的集合。

例:

$$(1) \ \mathbf{0} = 0 \mathbf{v}_1 + \dots + 0 \mathbf{v}_k,$$

因此, 零向量是任意有限向量组的线性组合。

代数

(2) v为一非零向量,求 $Span(v) = \{cv \mid c \in \mathbb{R}\}$? _{几何}

(3)

问题:两个向量何时张成整个平面?

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ v_2 \end{bmatrix}$$

$$= v_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2$$

v为 e_1 , e_2 的线性组合。

因此,平面上任一向量都是 e_1 , e_2 的线性组合。

$$Span(\boldsymbol{e}_1, \boldsymbol{e}_2) = \mathbb{R}^2$$

代数

$$\mathbb{R}^2$$
 中两非零向量 $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$,

如果v,w共线,即w = cv,c为某个实数,则 $Span(v,w) = \{cv \mid c \in \mathbb{R}\}$

如果v, w不共线,则 $Span(v, w) = \mathbb{R}^2$ u

存在 $c,d \in \mathbb{R}$ 使得u = cv + dw

(b) 线性相关与线性无关 (★):

设 $v, w \in \mathbb{R}^2$ 。如果有不全为零的两个数 $c, d \in \mathbb{R}$ 使得

$$c\mathbf{v} + d\mathbf{w} = \mathbf{0} ,$$

则称v, w线性相关。否则,称v, w线性无关。

因此, v, w线性无关可以表述为

$$c\mathbf{v} + d\mathbf{w} = \mathbf{0} \Rightarrow c = d = 0$$

线性相关与线性无关的几何意义:

设v, w线性相关,则有不全为零的两个数c, $d \in \mathbb{R}$ 使得

$$c\mathbf{v} + d\mathbf{w} = \mathbf{0}$$
.

不妨设 $c \neq 0$,

$$c\mathbf{v} = -d\mathbf{w}$$

$$v = -\frac{d}{c}w.$$

v, w共线

命题:

代数

几何

(1) v, w线性相关当且仅当v, w共线。

(2) v, w线性无关当且仅当v, w不共线。

判断两向量
$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $w = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 线性相关或线性无关。

- A 线性相关
- B 线性无关

有限个向量的线性相关与线性无关:

$$c_1 \boldsymbol{v}_1 + \dots + c_k \boldsymbol{v}_k = \boldsymbol{0} ,$$

则称这k个向量**线性相关**。否则, 称它们**线性无关。**

已知 $v_1, v_2, v_3, v_4 \in \mathbb{R}^2$ 线性相关,则 v_1, v_2, v_3, v_4 中

- A 两两共线
- B 只有两个向量共线
- 存在两个向量共线
- □ 以上都不正确

提交

例:

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathbb{R}^2$$
线性无关,且 $Span(e_1, e_2) = \mathbb{R}^2$ 。

我们称 e_1 , e_2 构成 \mathbb{R}^2 的一组基。

由于 e_1 , e_2 为单位向量且相互正交,称它们构成 \mathbb{R}^2 的一组标准

正交基