6

17 **Machine Learning 101**

Basics of Logistic Regression

classification. Also note that Machine Learning 101 focuses on Supervised Learning. Therefore

First I would like clarify that the Logistic Regression model is a model for

we always would be discussing Classification and Regression. Machine Learning 102 on the other hand, focuses on Unsupervised Learning (Clustering, Density Estimation and Dimensionality Reduction).

Logistic regression is a model used when the dependent variable follows a

What is Logistic Regression?

binomial distribution. Simply put, when the variable y, is binary. And although we would discuss details of probability distribution later, but just know

that a distribution is what you get when you plot he probabilities of a random variable against the values of the random variable. So instead of saying

y = f(x)

we say:

p(x) = f(x)

 $p(X) = \beta_0 + \beta_1 X$

In case of logistic regression, we use the logistic function, given as:

$$P(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

 $P(X) = \frac{e^Y}{1 + e^Y}$

Don't worry about how it this function looks. Its quite simple. It's the same as:

$$1+e^{\gamma}$$

 $Y = \beta_0 + \beta_1 X$

The logistic function is good for modelling binary response because, the output of

where

this function would always be between 0 and 1 for all values of X.

This is a very important concept you should know. We derive the odds ratio by modifying the logistic function. If we do that, we would

infinity(∞)

have the function below:

Odds Ratio

 $\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_0 X}$

So the quantity
$$p(X)/[1-p(X)]$$
 is called the odds. It can take values from 0 to infinity(∞)

Value of odds close to 0 indicates very low probability while values close to ∞ indicate very high probability.

Odds are sometimes used instead of probability in certain fields. For instance in

games. We can ask: what are the odds of winning this game? If the probability of

winning is let's say 0.9, then the odds of winning would be 9 - that is 9/(1-9). Let's go a little further.

If we take the log of both sides of the odds equation, we would have the equation below:

 $\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_0 X$

Unit Change in X

We want to understand the behavior of the logistic regression model. In Logistic

regression, increasing value of X by on unit would change the odds by β_1 or

However, since the relationship between p(X) and X is not linear, β_1 does not produce a corresponding change in p(X) associated with a unit increase in X. The

If β_1 is positive, then increase in X will yield increase in p(X) but if β_1 is negative,

then increase in X would result in decrease in p(X). This is irrespective of the value

amount that p(X) changes therefore depends on the current value of X.

RELATED POSTS Machine Learning 10 Machine Learning 10 Machine Learning 10

inear Regression

PREVIOUS ARTICLE

Pro

of X.

1ultiple

similarly it multiplies the odds by e^{β_1} .

Lecture 17 – Multiple Linear Regression April 25, 2019

Misclassification Rate in Bayes' Classifier April 20, 2019

Machine Learning 101 –

linimizing

lisclassification in

ayes' Classifier

Minimizing

Machine Learning 101 – Minimizing Lecture 17 – Multiple Linear Regression Misclassification Rate in Bayes' Classifier

April 18, 2019

NEXT ARTICLE

-Nearest Neighbors

Machine Learning 101 – K-

Nearest Neighbors

lassifier

Classifier

2 Comments on "Machine Learning 101 – Basics of Logistic Regression"

> Pingback: Lecture 17 - Multiple Linear Regression — The Tech Pro Pingback: Machine Learning Questions and Answers (Questions 21 to 30) — The Tech

Leave a Reply Your email address will not be published. Required fields are marked *

COMMENT

EMAIL *

POST COMMENT

NAME *

WEBSITE

. ∃ Buy me a coffee

International Computer Programmers Public group · 1,876 members Join Group

Learning Concepts

International Computer Programmers (ICP) is a

group of Computer Programming Professionals

and Enthusiasts that share a common goal of

improving one's ...

KINDSONTHEGENIUS

20 Machine

Hyperplane | PCA | RNN | SVM | NN | CNN | SVD | Perceptron 20 Cool Machine Learning and **Data Science Concepts (Simple Definitions**) Hello everyone, as you know, I'm Kindson The

Genius. I would like to share with you these 20 cool

Machine Learning and Data Science Concept as well

as a brief explanation of each. I assume you are

Learning Machine Learning and I would like to

encourage you to continue learning and don't give up, even if it appears a bit tough initially. Read this on kindsonthegenius.blogspot.com > powered by embedly

How to Build a Simple

Calculator in Java

1 2 3 +

0 +/- CE =

4 5 6 7 8 9

How to Build a Simple Calculator in Java Using

Netbeans - Step by Step with Screenshots

Duration: a. 35 mins

Java

blogspot.com

EASY PYTHON TUTORIALS

Intermediate

Shop now

Duration: 35 mins

How to Connect Python to Excel - Read and Write

blogspot.com amazon