

Devoir commun n°2

(Calculatrice autorisée)

Cette évaluation est composée de 3 exercices indépendants.

Exercice 1

Soit la suite numérique (u_n) définie sur \mathbb{N} par $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1 \end{cases}$

- 1. a. Calculer u_1, u_2, u_3 et u_4 . On pourra en donner des valeurs approchées à 10^{-2} près.
 - b. Formuler une conjecture sur le sens de variation de cette suite.
- **2**. **a.** Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n \leq n+3$.
 - **b.** Démontrer que pour tout entier naturel n, on a : $u_{n+1} u_n = \frac{1}{3}(n+3-u_n)$.
 - c. En déduire une validation de la conjecture précédente.
- **3**. On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n n$.
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - **b.** En déduire que pour tout entier naturel n, on a $u_n = 2\left(\frac{2}{3}\right)^n + n$.
 - c. Déterminer la limite de la suite (u_n) .

Exercice 2

L'espace est muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère A(2,3,5), B(-1,-4,-3), C(1,6,2), D(-2,3,1), E(-1,0,4) ainsi que le vecteur $\overrightarrow{u}(1,-7,-4)$.

- 1. Les points A, B et C sont-ils alignés?
- **2**. Les droites (AE) et (CD) sont-elles parallèles?
- **3**. Les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont-ils coplanaires?
- 4. En déduire qu'il existe trois nombres réels uniques x, y et z tels que :

$$\overrightarrow{y} = x\overrightarrow{AB} + y\overrightarrow{AC} + z\overrightarrow{AD}$$

5. Vérifier que $\overrightarrow{u} = \overrightarrow{AB} - \overrightarrow{AD}$. En déduire les valeurs des nombres x, y et z de la question précédente. Comment appelle-t-on ces nombres?

Exercice 3

Le plan est ramené à un repère orthogonal.

On a représenté ci-dessous la courbe d'une fonction f définie et deux fois dérivable sur \mathbb{R} , ainsi que celle de sa dérivée f' et de sa dérivée seconde f''.

- 1. Déterminer, en justifiant votre choix, quelle courbe correspond à quelle fonction.
- 2. Déterminer, avec la précision permise par le graphique, le coefficient directeur de la tangente à la courbe C_2 au point d'abscisse 4.
- 3. Comment appelle-t-on le point de la courbe C_2 situé au point d'abscisse 4?

Soit un réel k strictement positif.

On considère la fonction dérivable g définie pour tout $x \in \mathbb{R}$ par :

$$g(x) = \frac{4}{1 + e^{-kx}}.$$

- 4. Déterminer les limites de g en $+\infty$ et en $-\infty$.
- $\mathbf{5}$. En déduire les équations de deux asymptotes à la courbe représentative de g.
- **6**. Montrer que pour tout $x \in \mathbb{R}$, on a $g'(x) = 4k \frac{e^{-kx}}{(1 + e^{-kx})^2}$. En déduire la valeur de g'(0).