CPU Scheduling

We have used the term 'scheduling' informally several times. Let us now formally understand what it means and how it is done.

What is CPU scheduling?

- When system has multi-programming
 - Several jobs may be ready for execution
 - Ready jobs compete for CPU use

- Need to decide which job to run
 - ◆ Part of OS that performs scheduling → scheduler
 - ◆ Algorithm used to make decision → scheduling algorithm

Our focus will be on policies for scheduling

What kind of policy should be used?

- Depends on system or environment
 - Batch system
 - Set of jobs submitted to system
 - Can optimize policy for overall system performance
 - Interactive system
 - Users directly waiting for results of jobs or commands
 - Policies must optimize user-perceived performance
 - Real-time system
 - Jobs have deadlines by which they must complete
 - Policies must ensure predictability

- General objectives (for all types of systems)
 - Fairness
 - I.e., make sure each job gets fair share of CPU
 - ◆ Efficiency & balance
 - Try to keep system busy as much as possible
 - Policy enforcement
 - Ensure that all chosen policies appropriately carried out

- Batch systems
 - Throughput
 - ◆ Maximize # of jobs executed in given time interval (e.g., one hour)
 - Turnaround time
 - Minimize time between submission & completion of jobs
 - CPU utilization
 - Keep CPU utilized at all times

- Interactive systems
 - Response time
 - ◆ Minimize time b/w issue & completion of interactive jobs
 - Proportionality
 - Users
 - Accept that *long* jobs may have *long* response times
 - Expect short jobs to have short response times
 - Maintain this perception

- Real-time systems
 - Predictability
 - Deadline
 - Ensure that job deadlines are met
 - Deadline miss could
 - Be catastrophic (hard-real-time system)
 - Degrade Quality of Service or result in data loss (soft-real-time system)
 - Priorities
 - Priorities need to be considered in scheduling decisions

When should scheduling be done?

- Depends on type of environment
- In general, scheduling can be done when
 - New process is created
 - Process terminates
 - Process gets blocked
 - Waiting for I/O
 - Waiting for lock on shared resource
 - Interrupt occurs
 - I/O completion
 - Timer expiration

Types of scheduling

- Preemptive scheduling
 - Executing job can be interrupted & other job scheduled

- Non-preemptive scheduling
 - Once job is chosen for execution, it continues until it completes, blocks or voluntarily yields CPU

Job characteristics

- Compute boundedness
 - Long bursts of CPU execution before blocking for I/O

- ♦ I/O boundedness
 - Short bursts of CPU execution before blocking for I/O

