

A Quantitative Evaluation of Contemporary GPU Simulation Methodology

Akshay Jain, Mahmoud Khairy, Timothy G. Rogers

Purdue University, Department of Electrical and Computer Engineering

akshayj@alumni.purdue.edu, abdallm@purdue.edu, timrogers@purdue.edu

SIGMETRICS 2018

Accelerator Architecture Lab at Purdue

Introduction

- We quantify error in the popular GPU architecture simulator, GPGPU-Sim (1100+ citations).
- We demonstrate that the simulator's accuracy is highly dependent on the workload type.

Workload Characteristics

Туре	IPC	L1 Miss	L2 Miss	Mem Util
cache-sensitive	Low	High	Mod	Low
memory-sensitive	Mod	High	High	High
compute-intensive	High	Mod	Mod	Mod
compute-balanced	Mod	Mod	Mod	Mod

- Simulator supports 2 ISA representations of each app: a modern virtual ISA (vISA) and the machine ISA (mISA) for the decade old GT200 architecture.
- vISA has infinite registers, is generally less optimized and more abstract.
- vISA is called PTX and the GT200 mISA is PTXPlus
 Code demonstrating difference between parameter loads, and higher code density of PTXPlus. Code segment taken from invert_mapping in kmeans [20]

Case Study

 Performance predictions for an architectural study can vary depending on the ISA used.

- mISA models the memory traffic due to register spilling (as it is register allocated).
- We see performance improvement for HOT and BS only with the mISA.

- Over estimation and high error due to inaccurate caching model.
- Cache system modeling needs to be improved.

- High Correlation, low error.
- DRAM reads for these apps have high correlation with low error.
- Improving DRAM modeling can decrease the error further.

- High correlation and low error with mISA.
- mISA (even if old) is better than vISA.
- mISA has high correlation wrt dynamic inst breakdown.
- Supporting new mISA can improve correlation further.

Compute Balanced

- Better results with vISA in certain apps.
- vISA is able to hide the deficiencies of the old mISA.
- Z5 kernel in SRAD1 uses one instruction in vISA for integer division, which gets expanded into 33 instructions in the old mISA