

Sustainable Energy system for Achieving Novel Carbon neutral Energy communities (SUSTENANCE)

Session: Emerging Technologies for Utilities

Presented by: Zakir Rather, IIT Bombay, India

Email: <u>zakir.rather@iitb.ac.in</u>

The project aims to develop concepts enabling a"green" transition to sustainable "energy islands"

- 21 PARTNERS from 3 EU countries & India,
- Demos in Denmark, The Netherlands, Poland & India

Goals

- Decarbonisation of local energy systems via optimal integration of locally available renewables (smart control, balancing of grids, storage solutions, and application of active load control)
- Integration of energy systems for local communities (considering electricity, heat, water, waste & transport infrastructure),
- Technical benchmarking and solutions matched with business models tailored to the different challenges identified in each country
- Evaluation of the demonstration sites for replicability across India, Europe & worldwide,
- Emphasis on user involvement, including the identification of the conditions and socio-economic characteristics behind the willingness to participate,
- Enhancement of the environmental, social and economic conditions of local communities

Consortium Partners

Aalborg University	Denmark
Skanderborg Kommune	Denmark
Aura Energi	Denmark
Neogrid	Denmark
Bjerregaard Consultants	Denmark
University of Twente	Netherlands
Saxion University of Applied Science	Netherlands
The Institute of Fluid-Flow Machinery of the	Poland
Polish Academy of Sciences	
Energa-Operator SA	Poland
Stay-ON Energy Management	Poland
KEZO Foundation at Polish Academy of Science	Poland
Research Centre	
Własnościowa Spóldzielnia Mieszkaniowa im.	Poland
Adama Mickiewicza w Sopocie	
<u>-</u>	

Indian partners

Indian Institute of Technology, Bombay	India
Indian Institute of Science, Bangalore	India
Indian Institute of Technology, Kharagpur	India
Indian Institute of Technology, Delhi	India
National Institute of Technology, Tiruchirappalli	India
National Institute of Technology, Silchar	India
Visvesvaraya National Institute of Technology, Nagpur	India
Motilal Nehru National Institute of Technology, Allahabad	India
Gram Oorja, Mumbai	India

Focus areas-Energy verticals

Electricity & Storage

Transport

Irrigation

Pumping + Loads

Clean Cooking

System Integration

Indian demonstrators

Focus on how three demonstrations aim et o establish carbon neutral communities and become role models

- Local clean energy system with reliable electricity supply for a remote villages
- Sustainable clean energy system for rural village with weak grid access
- Intelligent electric vehicle charging system and electrically smart building system for urban application

Indian Demonstration Site – I: (Barubeda village, Jharkhand)

- Aims to deliver a sustainable clean local energy system with reliable electricity supply for the remote tribal village which can be replicated in other similar locations/communities.
- Target energy vector: Electricity, Water, Clean transport, Clean cooking, Heating and Cooling, Energy storage

Geographical Focus Area			
Village	Barubeda		
Gram Panchayat	Sarle		
District	Ranchi		
Nearest main	Around 3 kms away		
road	from the village		
Local transport	No local transport		
	option		
No. of houses	57		

Firewood/ cow dung based cooking

SUSTENANCE

Electricity Vector Development

Technology Development Activities

Multi-Utility Heat Pumps for Rural Applications,

E-Rickshaw

Tool for Designing of SPVPWPS

Indian Demonstration Site – II: (Borakhai village, Assam)

- Aims to deliver a sustainable clean local energy system for the remote rural village with weak grid connection, which can be replicated in other similar locations/ communities.
- Target energy vector: Electricity, Water, clean transport, energy storage

Broad Geographical Area			
Village	Borakhai		
	Village		
Block / Taluka	Barjalenga		
District	Cachar		
No. of Families (approx.)	2,857		

Focus Area			
Village	Borakhai Grant village		
Block /	Barjalenga		
Taluka			
District	Cachar		
No of Houses	40		

Borakhai Site

Technology Development Activities

Clean Domestic Water Supply System

Cluster Based Multiport Converter

Power Rating: 7.5kVA No. of. Ports: 4 Ports Core Type: PM Core Frequency: 50kHz

Ports of Multi Port Converter

Indian Demonstration Site – III: (IIT Bombay campus, Maharashtra)

SHUNYA Building, IIT Campus

Broad Geographical Area

Smart EV charging infrastructure

Net Zero Electricity consumption

SYSTEMANCE

SCIENCE & LECHNOLOGI
Ministry of Science and Technology
Government of India

All values in kWh	Min	Average	Max	Total
Loads	24.5	34.2	44.5	12484
Generation	0.8	37.4	52.3	13635
Feed-in To Grid	0	10.2	26.6	3724
Consumption from grid	0	9.5	33.0	3464

Technology Development Activities

16

EV Charger

Smart Transformer

MPC

Danish Demonstrator

- Voerladegaard in Skanderborg will show the way from heating with natural gas to a CO2 neutral village:
 - o Implement a community-based smart integration of renewable based electricity and heating systems using heat pumps and share any excess power to the local distribution grid using smart control.
 - Implement demand side response from electric vehicle charging from solar PV.
 - Optimised use of battery energy in the neighbourhood facilitates for increased share of renewable electricity and postponement of grid expansion and its subsequent investments.
- In spring of 2022 a town-hall meeting was held in Voerladegaard, and more than 50 families attended.
- 43 families showed interest
- 27 families were visited
- 20 families were selected

Dutch Demonstrator

- Rethinking the ways we integrate renewable energy into out daily lives in the Netherlands
- Investigate the desired level of autarky given the use-cases, constraints and business case (striving towards 100% renewables)
- Investigate possible setups for a balanced energy supply system
- Investigate different universal operation modii to ensure reliable supply under (challenging) energy scenarios (e.g. scarcity, disconnection)
- Algorithms that adapt the Quality of Service according to the active energy modus
- Implement IoT platform and test its technical and social performance in the demonstrator sites

Polish Demonstrator

- The Mickiewicza Housing Association in Sopot City takes its first steps towards a sustainable energy system and the creation of a local energy community
- Aim to eliminate the use of natural gas from the energy system and replace it with electricity from renewable sources for domestic hot water (DHW) preparation.
- Aim to set up an integrated energy management system combining electricity, heat and transportation, along with energy storages at the pilot site.
- The community is planned to be actively involved in the development of the concept from the beginning and to co-decide on planned investments, as well as active in the education and awareness programs on the benefits of local energy island.

Thank You

More info:

www.h2020sustenance.eu in @SUSTENANCE H2020

project

