Analysis methods of heavy-tailed data

Natalia Markovich

Institute of Control Sciences
Russian Academy of Sciences, Moscow, Russia

June 27, 2022

Special References:

- Beirlant, J., Goegebeur, Y., Teugels, J. and Segers, J. (2004) Statistics of Extremes: Theory and Applications. Wiley, Chichester, West Sussex.
- Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Modeling Extremal Events. Springer, Berlin.
- Markovich, N.M. (2007) Nonparametric Analysis of Univariate Heavy-Tailed data: Research and Practice. Wiley, Chichester, West Sussex.
- Resnick, S.I. (2006) Heavy-Tail Phenomena. Probabilistic and Statistical Modeling. Springer, New York.
- Any basic course of probability theory and statistics.

Required Knowledge:

Mathematical analysis, probability theory and statistics.

The course contains

- Practical exercises
- Theoretical exercises
- Control questions

Modul 1

The Modul 1 contains the introduction

with necessary definitions, basic properties and examples of heavy-tailed data. The tail index indicates the shape of the tail and therefore it is the basic characteristic of heavy-tailed data. Methods of tail index estimation are presented.

Finally, several rough tools for the detection of heavy-tails, the number of finite moments and dependence are considered.

Modul 1: Lesson 1

Definitions and basic properties of heavy-tailed distributions

Definition of heavy-tailed distributions

Let $X_1, ..., X_n$ be a sample of independent, identically distributed (i.i.d.) r.v.s X_i governed by the distribution function (DF) $F(x) = \mathbb{P}\{X \le x\}$ with probability density function (PDF) f(x) = dF(x)/dx.

Definition

A DF F(x) (or the r.v. X) is called heavy-tailed if its tail $\overline{F}(x) = 1 - F(x) > 0$, $x \ge 0$ satisfies for all y > 0

$$\lim_{X\to\infty}\mathbb{P}\{X>x+y|X>x\}=\lim_{X\to\infty}\overline{F}(x+y)/\overline{F}(x)=1.$$

Examples of heavy- and light-tailed distributions

Heavy-tailed	Subexponential:
distributions:	Pareto, Lognormal, Weibull
	with shape parameter less than 1.
	With regularly varying
	tails: Pareto, Cauchy, Burr, Frechét,
	Zipf-Mandelbrot law.
	Super heavy-tailed: log-Cauchy
Light-tailed	exponential, gamma, Weibull
distributions	with shape parameter more than 1,
	normal, finite distributions.

Example of non-heavy tailed distribution: Exponential distribution $F(x) = 1 - e^{-\lambda x}$, $x \ge 0$ satisfies

$$\bar{F}(x+y)/\bar{F}(x) = e^{-\lambda(x+y)}/e^{-\lambda x} = e^{-\lambda y} \Rightarrow 1$$

as
$$x \to \infty$$
, $x \ge 0$, $y > 0$

Exercise 1:

Prove that normal distribution is not heavy-tailed.

Heavy-tailed distributions have been accepted as realistic models for various phenomena:

- WWW-session characteristics
 - sizes and durations of sub-sessions; sizes of responses
 - inter-response time intervals
- on/off-periods of packet traffic
- file sizes
- service-time in queueing model
- flood levels of rivers
- major insurance claims
- extreme levels of ozon concentrations
- high wind-speed values
- wave heights during a storm
- low and high temperatures

Basic definitions and results: Max-stable law

Let $X^n = \{X_1, \dots, X_n\}$ be a sample of i.i.d. r.v. distributed with the DF F(x) and $M_n = \max(X_1, X_2, \dots, X_n)$.

Gnedenko (1943): Extreme value theory assumes that for a suitable choice of normalizing constants $a_n > 0$, b_n real it holds

$$\mathbb{P}\{(M_n-b_n)/a_n\leq x\} = F^n(b_n+a_nx)\to_{n\to\infty} H_\gamma(x), x\in R,$$

and an Extreme Value DF $H_{\gamma}(x)$ is of the following type:

$$H_{\gamma}(x) = \left\{ egin{array}{ll} \exp(-x^{-1/\gamma}), & x>0, \gamma>0 & ext{`Fr\'echet'} & \Phi_{lpha}(x), \\ \exp(-(-x)^{-1/\gamma}), & x<0, \gamma<0 & ext{`Weibull'} & \Psi_{lpha}(x), \\ \exp(-e^{-x}), & \gamma=0, x\in R & ext{`Gumbel'} & \Lambda(x). \end{array}
ight.$$

Definition

The parameter γ is called the extreme value index (EVI) and defines the shape of the tail of the r.v. X.

The parameter $\alpha = 1/\gamma$ is called tail index.

Basic definitions and results: Max-stable law

The distribution $H_{\gamma}(x)$ can also be rewritten as

$$H_{\gamma}(x) \ = \ \left\{ \begin{array}{ll} \exp(-(1+\gamma x)^{-1/\gamma}), & 1+\gamma x>0, & \text{if } \gamma\neq 0 \\ \exp(-e^{-x}), & x\in R & \text{if } \gamma=0. \end{array} \right.$$

Transformation of max-stable random variables

If X > 0 has a 'Fréchet' Φ_{α} distribution

- $\log X^{\alpha}$ has a 'Gumbel' distribution Λ
- $-X^{-1}$ has a 'Weibull' distribution Ψ_{α}

Exercise 2:

Prove these transformations

Basic definitions and results: Min-stable law

Since $\min_{1 \le i \le n} X_i = -\max_{1 \le i \le n} (-X_i)$ the min-stable law is determined by

$$G_{\theta}^*(x) = \begin{cases} 1 - \exp(-(1 - \theta x)^{-1/\theta}, & 1 - \theta x > 0, \text{if} & \theta \neq 0 \\ 1 - \exp(-e^x), & x \in R & \text{if} & \theta = 0. \end{cases}$$

 θ is EVI for minima, measures the heaviness of the left-tail function F(x), as $x \to -\infty$.

Basic results: Pickands's theorem

The limit distribution of the excess distribution of the i.i.d. X_i 's is necessarily of the Generalized Pareto form

$$\lim_{u\uparrow x_F, u+x < x_F} \mathbb{P}\left(X_1 - u > x | X_1 > u\right) = \Psi_{\sigma,\gamma}(x), \qquad x \in R,$$

where

$$x_F = \sup\{x \in R : F(x) < 1\}$$

is the right endpoint of the distribution F and the shape parameter $\gamma \in R$.

Therefore, the Generalized Pareto distribution (GPD) with DF

$$\Psi_{\sigma,\gamma}(\mathbf{x}) = \begin{cases} 1 - (1 + \gamma \mathbf{x}/\sigma)^{-1/\gamma}, & \gamma \neq 0, \\ 1 - \exp(-\mathbf{x}/\sigma), & \gamma = 0, \end{cases}$$

where $\sigma \geq 0$, $x \geq 0$ for $\gamma \geq 0$; $0 \leq x \leq -\sigma/\gamma$ for $\gamma < 0$, is often used as a model of the tail of the distribution.

N.M. Markovich

Classification of distribution tails

• $H_{\gamma}(x)$, $\gamma < 0 \hookrightarrow$ short tails with finite right endpoint (Beta, Uniform)

② $H_{\gamma}(x)$, $\gamma = 0 \hookrightarrow$ exponentially decaying tails, light-tailed (Normal, Gamma) or moderate heavy-tailed (Lognormal)

$$\overline{F}(x) \sim \exp(-x), \qquad x \to +\infty$$

H_γ(x), γ > 0 → polynomially decaying tails, heavy-tailed with infinite right endpoint (Pareto, Cauchy, Student, Fréchet)

$$\overline{F}(x) \sim x^{-1/\gamma} = x^{-\alpha}, \quad x \to +\infty$$

Modul 1: Lesson 2

Classes of heavy-tailed distributions

The classes of heavy-tailed distributions

distributions with regularly varying tails (RVT)

$$\overline{(X \in \mathcal{R}_{-1/\gamma} \text{ or } X \in \mathcal{RV}_{-\alpha})}$$

$$\mathbb{P}\{X>x\}=x^{-1/\gamma}\ell(x), \forall x>0, \gamma>0,$$

where $\ell(x)$ is a slowly varying function, i.e.

$$\lim_{x\to\infty}\ell(tx)/\ell(x)=1, \qquad \forall t>0.$$

Examples:

Pareto, Burr, Fréchet distributions belong to RVT.

Examples of $\ell(x)$ give c > 0, $c \ln x$, $c \ln(\ln x)$, min(x, i) for $i \ge 1$ and all functions converging to positive constants.

Exercise 3:

Prove that $\ell(x) = \ln(\ln x)$ is slowly varying

Examples of not regularly varying functions

The following functions are not regularly varying

$$2 + \sin x$$
, $e^{[\ln(1+x)]}$

By inequality

$$\mathbf{x}^{-\alpha}\ell_1(\mathbf{x}) \leq f(\mathbf{x}) \leq \mathbf{x}^{-\alpha}\ell_2(\mathbf{x})$$

it does not follow that f(x) is regularly varying function.

Example:
$$\ell_1(x) = 1$$
, $\ell_2(x) = 3$, $f(x) = x^{-\alpha}(2 + \sin x)$.

The classes of heavy-tailed distributions

• subexponential distributions (S) $(X \in S)$ Let $X, X_1, ..., X_n$ be i.i.d. non-negative RV r.v.s.

$$\mathbb{P}\{S_n>x\}\sim n\mathbb{P}\{X>x\}\sim \mathbb{P}\{M_n>x\}$$
 as $x\to\infty,$ where $S_n=X_1+...+X_n,\ n\geq 2,\ M_n=\max_{i=1,...,n}\{X_i\}.$

Example:

Weibull with shape parameter τ less than 1 belongs to S:

$$\overline{F}(x) = e^{-cx^{\tau}},$$

where c > 0, $0 < \tau < 1$.

Intuitively, subexponentiality means

that the only way the sum of i.i.d. r.v.s $X_1, ..., X_n$ can be large is by one of the summands getting large (in contrast, in the light-tailed case all summands are large if the sum is so).

Classes of Heavy-Tailed Distributions

Classes of heavy-tailed distributions:

subexponential (S), regularly varying (RV) and superheavy-tailed (SH)

Existence of distribution moments

- $\overline{F} \in RV_{-\alpha}$: heavy-tailed distributions have only finite moments of order $< \alpha, \alpha > 0$, $\lim_{t \to \infty} \overline{F}(tx)/\overline{F}(t) = x^{-\alpha}$ for any x > 0
- $\overline{F} \in RV_0$: super-heavy-tailed distributions have no finite moments of any order, $\alpha = 0$, $\lim_{t \to \infty} \overline{F}(tx)/\overline{F}(t) = 1$ for any x > 0, slowly varying tail

Examples of super-heavy tailed distributions

$$\overline{F}(x) = 1 - F(x) = x^{-1/\sqrt{\log x}}, \qquad x > 1$$
 (1)

$$\overline{F}(x) = (\log x)^{-\beta}, \qquad x \ge e, \ \beta > 0$$
 (2)

Cauchy distribution:

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x - x_0}{\gamma}\right) + \frac{1}{2}, \ x_0 \in R, \ \gamma > 0.$$

Exercise 4:

Prove that (1) and (2) are super-heavy-tailed, i.e. $\lim_{t\to\infty} \overline{F}(tx)/\overline{F}(t) = 1$ for any x > 0 is fulfilled.

Exercise 5:

Find other examples of super-heavy tailed distributions.

Property of super-heavy tailed distributions

Super-heavy tailed distribution does not need to belong to

the domain of attraction of any extreme value distribution $H_{\gamma}(x)$.

Let us consider this on example (1).

Since for any c>0 we have $x^{-c}/(1-F(x))\to 0$ as $x\to\infty$, there are no normalizing sequences a_n and b_n such that

$$\mathbb{P}\{\max_{1\leq j\leq n}X_j\leq a_nx+b_n\}=F^n(a_nx+b_n)\to_{n\to\infty}H_\gamma(x),\qquad x\in R.$$

Gnedenko's theorem

is not fulfilled for super-heavy tailed distributions.

Transformations Between Classes of Distributions

Exercise 6:

If *X* is Weibull distributed with shape parameter $\tau \geq 1$. Will $Y = \exp X$ be heavy- or super-heavy-tailed distributed?

Basic properties of heavy-tailed distributions

Heavy-tailed	Not all moments of the distribution exist
distributions	or no one moment exists; Tail index $\alpha \geq 0$
	The distribution function $F(x) < 1$ for any x ;
	Infinite end-point $x_F = \sup\{x \in R : F(x) < 1\};$
	Hazard rate $h(x) = f(x)/\overline{F(x)}$ tends to 0 as $x \to \infty$
	$\overline{F(x)} \gg f(x) \gg f'(x) \gg,$
	where $\overline{F(x)} = 1 - F(x)$ is the tail function,
	f(x) = F'(x) is the probability density function
Light-tailed	All moments of the distribution exist;
distributions	Tail index $\alpha < 0$
	The distribution function $F(x) \le 1$ for any x ;
	For Weibull class end-point x_F is finite;
	For Gumbel class x_F is (in)finite
	Hazard rate $h(x)$ tends to ∞ as $x \to \infty$ or is constar
	$\overline{F(x)}$, $f(x)$, $f'(x)$, have the same magnitude.
	←□ → ←□ → ←□ → ←□ → □ → へ□ → ←□ → ←□ → ←

Basic properties of regularly varying distributions:

Lemma

Let $X \in \mathcal{R}_{-\alpha}$. Then,

- (i) $X \in S$.
- (ii) $\mathbb{E}\{X^{\beta}\}<\infty$ if $\beta<\alpha$, $\mathbb{E}\{X^{\beta}\}=\infty$ if $\beta\geq\alpha$.
- (iii) If $\alpha > 1$, then $X^r \in \mathcal{R}_{1-\alpha}$ and

$$\mathbb{P}\{X' > x\} \sim \ell(x)x^{1-\alpha}/((\alpha-1)\mathbb{E}\{X\})$$
 as $x \to \infty$.

- (iv) If Y is non-negative and independent of X such that $\mathbb{P}\{Y > x\} = \ell_2(x)x^{-\alpha_2}$, then $X + Y \in \mathcal{R}_{-\min(\alpha,\alpha_2)}$ and $\mathbb{P}\{X + Y > x\} \sim \mathbb{P}\{X > x\} + \mathbb{P}\{Y > x\}$ as $x \to \infty$.
- (v) If Y is non-negative and independent of X such that $\mathbb{E}\{Y^{\alpha+\varepsilon}\}<\infty$ for some $\varepsilon>0$ then $XY\in\mathcal{R}_{-\alpha}$ and

$$\mathbb{P}\{XY > x\} \sim \mathbb{E}\{Y^{\alpha}\}\mathbb{P}\{X > x\}$$

Important property for the rough detection of heavy tails and the number of finite moments:

Let $X \in \mathcal{R}_{-\alpha}$.

Then
$$\mathbb{E}\{X^{\beta}\}<\infty$$
, if $\beta<1/\gamma$; $\mathbb{E}\{X^{\beta}\}=\infty$, if $\beta>1/\gamma$.

Examples:

- If $\alpha=2$, $\gamma=0.5$, then $\mathbb{E} X_1<\infty$ (the first moment is finite), $\mathbb{E} X_1^2=\infty$ (the second moment is infinite, i.e. it does not exist).
- If $\alpha=0.5$, $\gamma=2$, then $\mathbb{E}X_1=\infty$, $\mathbb{E}X_1^2=\infty$... (all moments are infinite, i.e. they do not exist).

Modul 1: Lesson 3

Tail index estimation.

Estimators of tail index

$$X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)}$$

are order statistics of the sample $X^n = \{X_1, X_2, ..., X_n\}$

For $\gamma > 0$:

Hill's estimator

$$\hat{\gamma}^{H}(n,k) = \frac{1}{k} \sum_{i=1}^{k} \ln X_{(n-i+1)} - \ln X_{(n-k)}$$

Ratio estimator Goldie, Smith, (1987)

$$a_n = a_n(x_n) = \sum_{i=1}^n \ln(X_i/x_n) I\{X_i > x_n\} / \sum_{i=1}^n I\{X_i > x_n\},$$

 x_n is am arbitrary threshold level, e.g., $x_n = X_{(n-k)}$

Bias reduced modification of the Hill's estimator

The Hill's estimator is biased, i.e. $E\hat{\gamma}^H(n,k) - \gamma \neq 0$. A bias reduced modification is **the generalized Jackknife estimator**

$$\widehat{\gamma}_{k}^{GJ} = 2\widehat{\gamma}_{k}^{V} - \widehat{\gamma}^{H}(n, k),$$

where $\widehat{\gamma}^H(n,k)$ is the Hill's estimator of the extreme value index $\gamma=1/\alpha$,

$$\widehat{\gamma}_{k}^{V} = \frac{M_{n,k}}{2\widehat{\gamma}^{H}(n,k)}, \ M_{n,k} = \frac{1}{k} \sum_{i=1}^{k} Y_{(i,k)}^{2}, \ Y_{(i,k)} = \log(\frac{X_{(n-i+1)}}{X_{(n-k)}}).$$

is proposed in Gomes et al. (2000)^a

N.M. Markovich

^aGomes, I., Martins, J., Neves, M. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events - The Jackknife Methodology. Extremes (2000) 3, 207-229

Estimators of tail index

For $\gamma \in R$:

• "Moment estimator", Dekkers, Einmahl, de Haan, (1989):

$$\hat{\gamma}^{M}(n,k) = \hat{\gamma}^{H}(n,k) + 1 - 0.5 \left(1 - (\hat{\gamma}^{H}(n,k))^{2}/S_{n,k}\right)^{-1},$$

$$S_{n,k} = (1/k) \sum_{i=1}^{k} \left(\ln X_{(n-i+1)} - \ln X_{(n-k)} \right)^2$$

• "UH estimator", Berlinet, (1998)

$$\hat{\gamma}^{UH}(n,k) = (1/k) \sum_{i=1}^{k} \ln UH_i - \ln UH_{k+1}, UH_i = X_{(n-i)} \hat{\gamma}^{H}(n,i)$$

Pickands's estimator

$$\widehat{\gamma}^P(n,k) = \frac{1}{\ln 2} \ln \frac{X_{(n-k+1)} - X_{(n-2k+1)}}{X_{(n-2k+1)} - X_{(n-4k+1)}}, \ k \le n/4$$

Group estimator, Davydov, Paulauskas, Račkauskas, (2000):

The sample X^n is divided into I groups $V_1, ..., V_I$, each group containing m r.v.s, i.e. $n = I \cdot m$.

Estimator of the function of the tail index:

$$z_{l} = (1/l) \sum_{i=1}^{l} k_{li} = \frac{\hat{\alpha}}{\hat{\alpha} + 1} = \frac{1}{1 + \hat{\gamma}},$$

where

$$k_{li} = M_{li}^{(2)}/M_{li}^{(1)}, \qquad M_{li}^{(1)} = \max\{X_j : X_j \in V_i\}$$

and $M_{li}^{(2)}$ is the second largest element in the same group V_i .

Group estimator, Davydov, Paulauskas, Račkauskas, (2000). Theoretical background.

For distributions with regularly varying tails

$$1 - F(x) = x^{-\alpha} \ell(x),$$

and $I = m = \lceil \sqrt{n} \rceil$, it is proved

$$z_I \rightarrow^{a.s.} \frac{\alpha}{\alpha+1} = \frac{1}{1+\gamma}.$$

For distributions

$$1 - F(x) = C_1 x^{-\alpha} + C_2 x^{-\beta} + o(x^{-\beta}),$$

with $\beta = 2\alpha$ it holds

$$I(I^{-1}\sum_{i=1}^{I}k_{l,i}-\alpha(1+\alpha)^{-1})\left(\sum_{i=1}^{I}k_{l,i}^{2}-I^{-1}\left(\sum_{i=1}^{I}k_{l,i}\right)^{2}\right)^{-1/2}\rightarrow^{d}N(0,1)$$

Confidence interval of group estimate

Exercise 7:

Using (3) obtain the confidence interval of α .

Recursiveness of the estimate z_l . On-line estimation.

Having the next group of observations V_{l+1} it follows

$$\gamma_{l+1} = \left(\frac{1}{l+1} \sum_{i=1}^{l+1} k_{l+1,i}\right)^{-1} - 1$$
$$= \left(\frac{l}{l+1} \cdot \frac{1}{1+\gamma_l} + \frac{k_{l+1,l+1}}{l+1}\right)^{-1} - 1$$

After getting i additional groups with m elements each $V_{l+1},...,V_{l+i}$

$$\gamma_{l+i} = (l+i) \left(\frac{l}{1+\gamma_l} + k_{l+1,l+1} + \dots + k_{l+i,l+i} \right)^{-1} - 1, \quad (4)$$

i.e.

 γ_{l+i} is obtained using γ_l by O(1) calculations.

Recursiveness of the estimate z_l . On-line estimation.

Since

$$z_{l+i} = 1/(1+\gamma_{l+i})$$

it holds from (4) that

$$z_{l+i} = \left(lz_l + \sum_{j=1}^{i} k_{l+j,l+j} \right) / (l+i),$$

The bias of z_{l+i} is the same as for z_l assuming the process is weak-sense stationary ($Ek_{ij} = const$, $\forall i, j$), but the variance is less if $\{k_{li}\}$ are uncorrelated

$$bias(z_{l+i}) = bias(z_l), \quad var(z_{l+i}) = var(z_l)I/(I+i), \quad (5)$$
$$var(z_{l+i}) < var(z_l) \quad \text{for} \quad \forall i > 0$$

Exercise 8:

Prove (5).

What estimator of the tail index is the best?

It is difficult to compare the estimators of γ .

One can only look at the asymptotic variances and biases of estimates for known distributions.

Example

For Pareto tail the moment estimator is unbiased for any γ , but the variance of this estimate is larger than the variance of the Hill's estimate. Besides, it is known that

$$\sqrt{k}\left(\hat{\gamma}^{M}(n,k)-\gamma\right)\rightarrow^{d}$$

$$\left\{ \begin{array}{l} N(0,1+\gamma^2), & \gamma \geq 0, \\ N(0,(1-\gamma)^2(1-2\gamma)\left(4-8\frac{1-2\gamma}{1-3\gamma}+\frac{(5-11\gamma)(1-2\gamma)}{(1-3\gamma)(1-4\gamma)}\right)), & \gamma < 0. \end{array} \right.$$

What estimator of the tail index is the best?

Figure 1.4. Asymptotic

variances of $\sqrt{k}(\hat{\gamma} - \gamma)$ for the Hill's, moment, *UH*, Pickands' and the POT ML estimators: *VarHill* (solid line), *VarM* (solid line marked by +), *VarUH* (solid line marked by \circ), *VarP* (- \cdot - \cdot -) and *VarMLP* (\cdot · · · ·).

Modul 1: Lesson 4

Methods for the selection of the number of the largest order statistics in Hill estimator.

The visual selection of the number of the largest order statistics in Hill estimator

- A Hill plot $\{(k, \hat{\gamma}^H(n, k)), 1 \le k \le n-1\}$): the estimate of $\hat{\gamma}^H(n,k)$ is chosen from an interval in which this function demonstrate stability.
- Plot of the mean excess function

First of the mean excess function
$$\{(u, e(u)) : X_{(1)} < u < X_{(n)}\}$$
, where $e(u) = \mathbb{E}(X - u | X > u), \qquad 0 \le u < x_F \le \infty,$ $e_n(u) = \sum_{i=1}^n (X_i - u) \mathbf{1}\{X_i > u\} / \sum_{i=1}^n \mathbf{1}\{X_i > u\}$

is the **sample mean excess function** over the threshold *u*. If this plot follows a reasonably straight line above a certain value of u, then this indicates that excesses over u follow $e^{P}(u) = (1 + \gamma u)/(1 - \gamma)$ of generalized Pareto distribution with positive shape parameter. The number of the nearest order statistics to u is used as the estimate of k.

Mean excess function of Pareto distribution

Exercise 9:

Prove $e^P(u)$.

The sensitivity of the Hill estimate to k.

The Hill's estimate against k for 15 samples of Weibull (left), Pareto (middle) and Frechét (right) distributions, all with shape parameter $\alpha = 1/\gamma = 0.5$. Sample size is n = 1000.

Plot of the mean excess function.

Left: Weibull distribution. Right: Pareto distribution. The shape parameter is 0.5, sample size 1000.

Bootstrap method for automatic selection of *k*.

• Minimizing of the empirical bootstrap estimate of the mean squared error of γ :

$$extit{MSE}(\hat{\gamma}_{\pmb{k}}) = extit{bias}^2 + extit{variance} = \mathbb{E}\left(\hat{\gamma}_{\pmb{k}} - \gamma\right)^2
ightarrow ext{min}_{\pmb{k}}$$
 .

bias =
$$\mathbb{E}\hat{\gamma}_k - \gamma$$
, variance = $\mathbb{E}(\hat{\gamma}_k - \mathbb{E}\hat{\gamma}_k)^2$

Since γ is unknown we have to substitute *MSE* by its bootstrap estimate.

We have to select such k that

real MSE and its bootstrap analog will be close

Exercise 10:

Prove $MSE(\hat{\gamma}) = bias^2 + variance$.

Bootstrap method for *k* selection.

- The bootstrap estimate is obtained by drawing B samples with replacement from the original data set X^n .
- Smaller re-samples $\{X_1^*,...,X_{n_1}^*\}$ of the size

$$n_1 = n^{\beta}, \qquad 0 < \beta < 1,$$
 are used.

 The corresponding smaller k₁ and an optimal k are related by:

$$k = k_1 (n/n_1)^{\alpha}, \qquad 0 < \alpha < 1,$$

where $\beta=1/2$ and $\alpha=2/3$ for $\overline{F}(x)=C_0x^{-1/\gamma}+C_1x^{-2/\gamma}+o(x^{-2/\gamma})$ and the Hill's estimator, **P.Hall**, **(1990)**.

Such *k* provides the minimum of $MSE(\hat{\gamma})$.

Empirical bootstrap estimate of the $MSE(\hat{\gamma})$ is

$$MSE^*(n_1, k_1) = (\hat{b}^*(n_1, k_1))^2 + \widehat{var}^*(n_1, k_1) \to \min_{k_1},$$

where

$$\hat{b}^*(n_1, k_1) = \frac{1}{B} \sum_{b=1}^B \hat{\gamma}_b^*(n_1, k_1) - \hat{\gamma}(n, k),$$

$$\widehat{var}^*(n_1, k_1) = \frac{1}{B-1} \sum_{b_1=1}^{B} \left(\hat{\gamma}_{b_1}^*(n_1, k_1) - \frac{1}{B} \sum_{b_2=1}^{B} \hat{\gamma}_{b_2}^*(n_1, k_1) \right)^2$$

are the empirical bootstrap estimates of the bias and the variance,

 $\hat{\gamma}_b^*$ is the Hill's estimate constructed by some re-sample of the size n_1 with the parameter k_1 .

Double bootstrap method for *k* selection

Danielsson, de Haan, Peng and de Vries, (1997)

requires less parameters than bootstrap method, Hall, (1990): n_1 and B are required, α is not required.

Auxiliary statistic:

$$z_{n,k} = M_{n,k} - 2(\hat{\gamma}^H(n,k))^2,$$

where

$$M_{n,k} = \frac{1}{k} \sum_{j=1}^{k} (\log X_{(n-j+1)} - \log X_{(n-k)})^2$$

Double bootstrap method for k selection

$M_{n,k}/2\hat{\gamma}^H(n,k)$ and $\hat{\gamma}^H(n,k)$ are consistent estimates for γ ,

$$\implies$$
 $z_{n,k} \to 0$ as $n \to \infty$, since

$$\frac{z_{n,k}}{2\hat{\gamma}^H(n,k)} = \frac{M_{n,k}}{2\hat{\gamma}^H(n,k)} - \hat{\gamma}^H(n,k) \to \gamma - \gamma = 0$$

$$\implies$$
 $AMSE(z_{n,k}) = \mathbb{E}(z_{n,k})^2 \rightarrow \min_k$

The value \hat{k}_{n}^{opt} of k, which minimizes $AMSE(z_{n,k})^{1}$, has the same order in n as k_n^{opt} that minimizes $AMSE(\hat{\gamma}_{n_k}^H)$.

¹AMSE is an asymptotic mean squared error

Double bootstrap procedure is

- Draw B bootstrap sub-samples of the size $n_1 \in (\sqrt{n}, n)$ (e.g., $n_1 \sim n^{3/4}$) from the original sample and determine the value $\hat{k}_{n_1}^{\star}$ that minimizes MSE of $z_{n_1,k}$.
- Repeat this for B sub-samples of the size $n_2 = [n_1^2/n]$ ([x] is the integer part of the number) and determine the value $\hat{k}_{n_2}^{\star}$ that minimizes MSE of $z_{n_2,k}$.
- Calculate \hat{k}_n^{opt} from the formula

$$\hat{k}_{n}^{opt} = \left[\frac{(\hat{k}_{n_{1}}^{\star})^{2}}{\hat{k}_{n_{2}}^{\star}} \left(1 - \frac{1}{\hat{\rho}_{1}}\right)^{\frac{2}{2\hat{\rho}_{1} - 1}}\right], \qquad \hat{\rho}_{1} = \frac{\log \hat{k}_{n_{1}}^{\star}}{2\log(\hat{k}_{n_{1}}^{\star}/n_{1})},$$

and estimate γ by the Hill's estimate with \hat{k}_n^{opt} .

The method is robust with respect to the choice of n_1 , Gomes, Oliveira, (2000).

Sequential procedure for *k* selection

is based on the theoretical result:

$$\sqrt{i}(\hat{\gamma}^H(n,i)-\gamma)\sim (\log\log n)^{1/2}, \qquad 2\leq i\leq k$$

in probability, Drees & Kaufmann, (1998).a

$$af(n) \sim g(n)$$
 denotes $\mathbb{P}\{\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1\} = 1$

Sequential procedure for k selection. Algorithm.

- An initial estimate $\hat{\gamma_0} = \hat{\gamma}^H(n, 2\sqrt{n})$ for the parameter γ is obtained by the Hill's estimate.
- For $r_n = 2.5 \hat{\gamma}_0 n^{0.25}$ we compute

$$\hat{k}(r_n) = \min\{k \in 2, \dots, n-1 | \max_{2 \leq i \leq k} \sqrt{i} (\hat{\gamma}^H(n,i) - \hat{\gamma}^H(n,k)) > r_n\}.$$

If r_n is too large and $\max_{2 \le i \le k} \sqrt{i} (\hat{\gamma}^H(n, i) - \hat{\gamma}^H(n, k)) > r_n$ is not satisfied it is recommended repeatedly replace r_n by $0.9r_n$ until $\hat{k}(r_n)$ is well defined.

- Similarly, $\hat{k}(r_n^{\varepsilon})$ for $\varepsilon = 0.7$ is computed.
- Optimal k

$$\hat{k}^{opt} = rac{1}{3} \left(rac{\hat{k}(r_n^{arepsilon})}{(\hat{k}(r_n))^{arepsilon}}
ight)^{1/(1-arepsilon)} (2\hat{\gamma}_0)^{1/3}$$

is calculated and γ is estimated by $\hat{\gamma}^{H}(n, \hat{k}^{opt})$.

The method is sensitive to the choice of r_n .

Eye-Ball method

By Eye-Ball method the first stability interval is found using a moving window. The number of the largest order statistics is

$$\mathbf{\textit{k}}_{\text{eye}}^* = \min\{\mathbf{\textit{k}} \in \mathbf{2}, ..., \mathbf{\textit{n}}^+ - \omega | \mathbf{\textit{h}} < \frac{1}{\omega} \sum_{i=1}^{\omega} \mathbf{1}\{\hat{\alpha}_{\textit{n},\textit{k}+\textit{i}} < \hat{\alpha}_{\textit{n},\textit{k}} \pm \varepsilon\}\}.$$

 ω is the size of moving window, e.g. 1% of the full sample. n^+ is the number of positive observations in the data. Not less than h% of the estimates should be within the bounds $\hat{\alpha}_{n,k} \pm \varepsilon$ ($\hat{\alpha}_{n,k} = 1/\hat{\gamma}^H(n,k)$). One can take h = 90% and $\varepsilon = 0.3$.

The Eye-Ball principle can be applied to other estimators of the tail index not only the Hill's one.²

²Danielsson, J., Ergun, L.M., de Haan, L., De Vries, C. Tail Index Estimation: Quantile Driven Threshold Selection. SSRN Electronic Journal (2016)

Plot method for *m* selection in the group estimator.

The plot $\{(m, 1/z_m - 1)\}$ for Pareto distribution with $\gamma = 1$, the true γ is shown by dotted line. Sample sizes are $n = \{150, 500, 1000\}$.

Plot method for *m* selection in the group estimator.

Plot:
$$\{(m, z_m), m_0 < m < M_0\}, m_0 > 2, M_0 < n/2$$

 $m = n/I, z_m = (m/n) \sum_{i=1}^{[n/m]} k_{(n/m)_i}$

From consistency result $z_l \rightarrow^{a.s.} \frac{1}{1+x}$ it follows that

there must be an interval $[m_-, m_+]$

such that
$$z_m \approx \alpha/(1+\alpha) = (1+\gamma)^{-1}$$
 for all $m \in [m_-, m_+]$.

We suggest choosing the average value

$$\overline{z} = mean\{1/z_m - 1 : m \in [m_-, m_+]\}$$

and $m^* \in [m_-, m_+]$ as a point such that $z_{m^*} = \overline{z}$.

Bootstrap method for *m* automatical selection.

• Minimizing of the empirical bootstrap estimate of the mean squared error of $(1 + \gamma_I)^{-1}$, I = n/m:

$$MSE(\gamma_I) = \mathbb{E}\left(\frac{1}{I}\sum_{i=1}^I k_{I_i} - \frac{1}{1+\gamma}\right)^2 \to \min_{m}.$$

- The bootstrap estimate is obtained by drawing B samples with replacement from the original data set X^n .
- Smaller re-samples $\{X_1^*,...,X_{n_1}^*\}$ of the size $n_1=n^d, \qquad 0 < d < 1,$ are used.
- The re-sample is divided into I_1 subgroups.
- The size of subgroups m_1 and m are related by: $m = m_1(n/n_1)^c$, 0 < c < 1, where m_1 is the size of subgroups in re-samples.

Empirical bootstrap estimate of the MSE

$$MSE^*(I_1, m_1) = (\hat{b}^*(I_1, m_1))^2 + \widehat{var}^*(I_1, m_1) \to \min_{m_1},$$

where

$$\hat{b}^*(I_1, m_1) = \frac{1}{B} \sum_{b=1}^B z_{I_1}^b - z_{I_1}$$

$$\widehat{var}^*(l_1, m_1) = \frac{1}{B-1} \sum_{b_1=1}^{B} \left(z_{l_1}^{b_1} - \frac{1}{B} \sum_{b_2=1}^{B} z_{l_1}^{b_2} \right)^2$$

are the empirical bootstrap estimates of the bias and the variance,

 $z_{l_1}^b = \frac{1}{l_1} \sum_{i=1}^{l_1} k_{l_{1i}}$ is the group estimator constructed by some re-sample.

How to select c and d?

Simulation study: the selection of *c* and *d*.

Asymptotic theory (P.Hall, (1990)) recommends

$$d = 1/2$$
 and $c = 2/3$

for the bootstrap estimation of the parameter k of the Hill's estimate of γ .

• We check $c = \{0.05, 0.1(0.1); 0.5\}$ for a fixed d = 0.5. Samples of the Pareto, Fréchet and Weibull distributions with known γ were generated.

Relative bias and the square root of the mean squared error:

$$Bias\gamma = \frac{1}{\gamma} \left(\frac{1}{N_R} \sum_{i=1}^{N_R} \hat{\gamma}_i - \gamma \right),$$

$$RMSE\gamma = \frac{1}{\gamma} \sqrt{\frac{1}{N_R} \sum_{i=1}^{N_R} (\hat{\gamma}_i - \gamma)^2}$$

Conclusions:

- the best values of c for the fixed d = 0.5 are $c = \{0.3 \div 0.5\}$;
- the bias of the group estimator is larger for Weibull distribution.

Further research:

• proof of theoretically best values of *c* and *d* for the group estimator using the bootstrap.

Modul 1: Lesson 5

Derivation and theoretical properties of the Hill's estimator

Derivation of the Hill's estimator, Hill (1975)

Assume:

$$\overline{F}(x) = \mathbb{P}\{X > x\} = x^{-\alpha}, \qquad x \ge 1$$

Then the r.v. $Y = \ln X$ has the tail function

$$\mathbb{P}\{\,\mathsf{Y}>\mathsf{y}\}=\mathbb{P}\{\mathsf{ln}\,\mathsf{X}>\mathsf{y}\}=\mathbb{P}\{\mathsf{X}>\mathsf{e}^{\mathsf{y}}\}=\mathsf{e}^{-\alpha\mathsf{y}},\qquad \mathsf{y}\geq \mathsf{0},$$

i.e. Y is exponentially distributed with DF $G(y) = 1 - e^{-\alpha y}$ and PDF $g(y) = \alpha e^{-\alpha y}$

Maximum likelihood estimator:

$$\ln \mathcal{L}(\alpha | X_1, ..., X_n) = \sum_{i=1}^n \ln g(Y_i | \alpha) = \sum_{i=1}^n (\ln \alpha - \alpha Y_i)$$
$$= \sum_{i=1}^n (\ln \alpha - \alpha \ln X_i)$$

Derivation of the Hill's estimator. Continuation.

Maximum likelihood estimator:

$$\ln' \mathcal{L}(\alpha|X_1,...,X_n) = \sum_{i=1}^n (1/\alpha - \ln X_i) = 0$$

$$\frac{n}{\alpha} = \sum_{i=1}^{n} \ln X_i \qquad \Rightarrow \qquad \widehat{\alpha} = \left(\frac{1}{n} \sum_{i=1}^{n} \ln X_{(i)}\right)^{-1}$$

 $X_{(1)} \leq ... \leq X_{(n)}$

A trivial generalization concerns

$$\overline{F}(x) = Cx^{-\alpha}, \quad x \ge u > 0,$$

with u known. If $C = u^{\alpha}$ then $\overline{G}(y) = u^{\alpha} e^{-\alpha y}$, $g(y) = \alpha u^{\alpha} e^{-\alpha y}$

Derivation of the Hill estimator. Continuation.

Maximum likelihood estimator:

$$\ln \mathcal{L}(\alpha|X_1,...,X_n) = \sum_{i=1}^n (\ln \alpha + \alpha \ln u - \alpha \ln X_i)$$

$$\ln' \mathcal{L}(\alpha|X_1,...,X_n) = \sum_{i=1}^n (1/\alpha + \ln u - \ln X_i) = 0$$

$$1/\alpha = 1/n \sum_{i=1}^{n} \ln X_{(i)} - \ln u$$

Taking $u = X_{(n-k)}$ and since $x \ge u$ we obtain the Hill's estimator

$$\hat{\gamma}^{H}(n,k) = \frac{1}{k} \sum_{i=1}^{k} \ln X_{(n-i+1)} - \ln X_{(n-k)}$$

200

Theoretical properties of the Hill's estimator

Mason (1982): Hill's estimator is weakly consistent if

$$k \to \infty$$
, $k/n \to 0$ as $n \to \infty$

Häusler & Teugels (1985): Hill's estimator is asymptotically normal with mean γ and variance γ^2/k ,

$$\sqrt{k}\left(\widehat{\gamma}^H(n,k) - \gamma\right) \rightarrow^d N(0,\gamma^2)$$

Modul 1: Lesson 6

More details about bootstrap

Bootstrap estimation for the tail index

Estimation of the number of largest order statistics

Let $X_*^{n_1} = \{X_1^*, ..., X_{n_1}^*\}$ be bootstrap re-sample.

Bootstrap estimator of the bias $\mathbb{E}\widehat{\gamma}^H - \gamma$:

$$b^*(n_1, k_1) = \mathbb{E}\{\widehat{\gamma}^{*H}(n_1, k_1)|X^n\} - \widehat{\gamma}^{H}(n, k)$$

Bootstrap estimator of the variance $var = \mathbb{E} \left(\widehat{\gamma}^H(n,k) - \mathbb{E} \widehat{\gamma}^H(n,k) \right)^2$:

$$var^*(n_1, k_1) = \mathbb{E}\{\left(\widehat{\gamma}^{*H}(n_1, k_1) - \mathbb{E}\{\widehat{\gamma}^{*H}(n_1, k_1)|X^n\}\right)^2 |X^n\}$$

 X^n is fixed and the expectation is calculated among all theoretically possible re-samples $X_*^{n_1}$.

Bootstrap mean is not expectation in the usual sense since bootstrap "expectation" is random variable.

Types of Bootstrap

Classical bootstrap:

re-samples are of the same size as an original sample It leads to underestimating of the bias

Non-classical bootstrap:

re-samples are of the smaller size than an original sample $n_1 < n$ It helps to avoid the bootstrap bias = 0 regardless the true bias $\neq 0$. This is typical for linear estimates: linear regressions, kernel estimates of the density.

Linear Estimates and Bootstrap

Examples of linear estimates

Kernel density estimator $1/(nh)\sum_{i=1}^{n}K((x-X_i)/h)$, linear regression

Let $\widehat{\theta} = \sum_{i=1}^n \varphi(X_i)$ be linear function built by sample $X_1, ..., X_n$. Let $\theta^* = \sum_{i=1}^n \varphi(X_i^*)$ be the same function built by re-sample $X_1^*, ..., X_n^*$. Then

$$\mathbb{E}(\theta^*|X^n) = n\mathbb{E}\{\varphi(X_i^*)|X^n\} = n\sum_{i=1}^n \frac{1}{n}\varphi(X_i) = \widehat{\theta},$$

since X_i^* may be selected by n ways from X^n .

 \Rightarrow bootstrap bias $\mathbb{E}(\theta^*|X^n) - \widehat{\theta} = 0$, but the true bias $\mathbb{E}\widehat{\theta} - \theta \neq 0$

Next problem of classical bootstrap

Bickel and Sakov (2002): that the statistic

$$a_n(F_n) (\max(X_1^*,...,X_n^*) - b_n(F_n))$$

 $(a_n, b_n \text{ are the same normalized constants as in Gnedenko})$ (1943) theorem) does not converge to $H_{\gamma}(x)$ for bootstrap with re-samples of the size n.

If the re-samples of smaller size $n_1 < n$ are used, $n_1 \to \infty$, $n_1/n \to 0$ and von Mises's condition

$$x \frac{f(x)}{1 - F(x)} \rightarrow_{x \to \infty} \frac{1}{\gamma}$$

is satisfied (f(x) is probability density function), then

$$a_{n_1}(F_n) \left(\max(X_1^*,...,X_{n_1}^*) - b_{n_1}(F_n) \right) \to H_{\gamma}(x).$$

Confidence intervals of bootstrap estimates

Assumptions

the bootstrap estimates $\gamma_1^*, ..., \gamma_R^*$ are normal distributed with the mean *Mean* γ and standard deviation *StDev* γ , constructed by B bootstrap estimates,

B is the number of bootstrap re-samples.

Smirnov and Dunin-Barkovsky (1965): Tolerant bounds of confidence intervals

$$(u_1, u_2) = (Mean\gamma - \rho \cdot StDev\gamma; Mean\gamma + \rho \cdot StDev\gamma)$$

The interval is constructed in such a way that the (1 - p)th part of the distribution falls into this interval with the probability P:

$$\rho = \rho_{\infty} \left(1 + \frac{t_p}{\sqrt{2B}} + \frac{5t_p^2 + 10}{12B} \right).$$

Confidence intervals of bootstrap estimates. Cont.

ρ_{∞} is defined by the equation

$$rac{1}{\sqrt{2\pi}}\int_{-
ho_{\infty}}^{
ho_{\infty}} \mathrm{e}^{-t^2/2} dt = 2\Phi_0(
ho_{\infty}) = 1-
ho,$$

where $\Phi_0(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{-t^2/2} dt$ is Laplace's function.

Normal distribution function $N(z; 0, 1) = 0.5 + \Phi_0(z)$ for z > 0, $\Phi_0(-z) = -\Phi_0(z)$, $\Phi_0(0) = 0$, $\Phi_0(-\infty) = -0.5$, $\Phi_0(\infty) = 0.5$

t_p is calculated by the equation

$$\frac{1}{\sqrt{2\pi}}\int_{t_0}^{\infty} e^{-t^2/2} dt = 0.5 - \Phi_0(t_p) = 1 - P.$$

Confidence intervals of bootstrap estimates. Cont.

Example

For P=0.99 we have $\Phi_0(t_p)=P-0.5=0.49$ $t_p=2.33$ is found from the table of Laplace's function. $\rho_\infty \in \{2.245, 1.97, 1.645\}$ for $p \in \{0.025, 0.05, 0.1\}$, respectively.