CLAIMS

What is claimed is:

1 1. A method for controlling a power state of a subsystem, comprising:
receiving from the subsystem a message; and

setting the power state of the subsystem based on the message.

- 1 2. The method according to claim 1, wherein the message is selected from the group
- 2 consisting of a full wakeup, a limited wakeup, a resume previous state, and a status
- 3 request.
- 1 3. The method according to claim 1, wherein setting the power state of the subsystem
- 2 based on the message further comprises acknowledging a received subsystem message.
- 1 4. The method according to claim 1, wherein receiving from the subsystem a message is
- 2 performed without involvement of a main operating system.
- 5. The method according to claim f, wherein setting the power state of the subsystem
- 2 based on the message is performed without involvement of a main operating system.

- 2 receiving from a controller a message; and
- 3 performing an operation based on the message.

4 7 63

- 7. The method according to claim 6, wherein the message is selected from the group
- 2 consisting of shutdown, synchronize, status request, and reset.
- 1 8. The method according to claim 6, wherein performing an operation based on the
- 2 message further comprises acknowledging a received controller message.
- 9. The method according to claim 6, wherein receiving from a controller a message is
- 2 performed without involvement of a main operating system.
- 1 10. The method according to claim 6, wherein performing an operation based on the
- 2 message is performed without involvement of a main operating system.
- 1 11. The method according to claim 6, wherein performing an operation based on the
- 2 message is substantially performed by the subsystem.

	1	12. A machine-readable medium having stored thereon instructions, which when
	2^2	executed by a processor, causes said processor to perform the following:
	3	receive input signals;
	4	communicate with a subsystem;
	5	determine a desired power state for the subsystem based upon received input
	6	signals and communications with the subsystem; and
	7	communicate to the subsystem the desired power state.
	1	13. The machine-readable medium according to claim 12, wherein receive input signals
	2	comprises receiving a user initiated signal, or receiving a signal indicative of remaining
	3	battery capacity, or a combination of receiving a user initiated signal and receiving a
	4	signal indicative of remaining battery capacity.
	1	14. The machine-readable medium according to claim 12, wherein communicate with a
	2	subsystem further comprises the subsystem to acknowledge a communication.
		1

003486.P006

1	15. A system, comprising:
_ 2	an power state controller having an input port, and output port, and a
3	communications channel;
4	a user input coupled to the power state controller input port;
5	an energy monitor signal coupled to the power state controller input port; and
6	a subsystem coupled to the power state controller output port and the power state
7	controller communications channel.
1	16. The system of claim 15, wherein the user input is a switch to turn the system on and
2	off.
1	17. The system of claim 15, wherein the energy monitor signal is indicative of a
2	remaining battery capacity.
1	18. An apparatus for controlling subsystem power, comprising:
2	means for receiving input signals;
3	means for communicating with a subsystem;
4	means for determining a desired power state for the subsystem based upon the
5	received input signals and communications with the subsystem; and
6	means for communicating to the subsystem the desired power state.

003486.P006

l	19.	The apparatus of	f claim 18,	wherein n	neans for re	ceiving in	put signals cor	nprises

- 2 means for receiving a user initiated signal, or means for receiving a signal indicative of
- 3 remaining battery capacity, or a combination of means for receiving a user initiated signal
- 4 and means for receiving a signal indicative of remaining battery capacity.
- 1 20. The apparatus of claim 18, wherein means for communicating with a subsystem
- 2 further comprises means for the subsystem to/acknowledge a communication
- 1 21. A computer based system, comprising
- 2 an energy source;
- a monitoring device coupled to the energy source and providing a signal indicative
- 4 of remaining energy capacity;
- a power state controller coupled to the signal indicative of remaining energy
- 6 capacity;
- 7 a subsystem coupled to the power state controller; and
- a communications link coupling the power state controller to the subsystem.
- 1 22. The computer based system according to claim 21, wherein the communications link
- 2 coupling the power state controller to the subsystem comprises a link having lower
- 3 bandwidth than a main system bus in the computer based system.

- 23. The computer based system according to claim 21, wherein the communications link
- is operable without the use of a main operating system.