COMS 4030A and COMS 7047A Adaptive Computation and Machine Learning

TEST 19 April 2023

Time: One Hour

Question 1. (6 marks)

- (a) (2 marks) Let $y = \sigma(z) = \frac{1}{1+e^{-z}}$. Show that $\frac{dy}{dz} = y(1-y)$.
- (b) (4 marks) Consider a neural network that uses the σ activation function at every output node. Suppose the sum-of-squares loss function is used for training the network with backpropagation. For each node n, we have $y_n = \sigma(z_n)$, where we use y_n as variable for the activation value of n and z_n as variable for the sum of inputs plus bias at n.

Derive the formula for δ_n in the case that n is an output node.

Recall that $\delta_n = \frac{\partial L}{\partial z_n}|_{\boldsymbol{x}t\boldsymbol{W}}$, where \boldsymbol{x} , \boldsymbol{t} and \boldsymbol{W} are the current values of the inputs, target and weights, and $L = \frac{1}{2} \sum_{\ell} (y_{\ell} - t_{\ell})^2$ with ℓ ranging over all output nodes.

Question 2. (4 marks)

Let n be a node in a hidden layer in a neural network. Let y_n be the variable for the activation value of n and z_n the variable for the sum of inputs plus bias at n.

- (a) (2 marks) Give the formula for computing δ_n from the δ 's in the next layer.
- (b) (2 marks) Simplify your answer to (a) in the case that n uses a relu activation function.

Question 3. (6 marks)

Explain what the cross-entropy loss function is and how it is used in training neural networks.

Question 4. (4 marks)

(a) (2 marks) For a binary classification problem with classes 1 and 0 denoting positive and negative, respectively, complete the following confusion matrix by filling in TP, FP, TN and FN.

prediction

$$\begin{array}{c|c} & 1 & 0 \\ \hline 1 & & \\ \hline 0 & & \end{array}$$

(b) (2 marks) Give the definitions of (i) accuracy, (ii) precision, (iii) sensitivity and (iv) F1 score.

Question 5. (6 marks)

Use the entropy method to create a decision tree with the dataset S given below. Show all your calculations and draw the final decision tree.

	F_1	F_2	target
S:	a	0	Y
	c	1	N
	c	1	Y
	b	0	N
	a	0	Y
	b	1	N
	b	1	Y
	c	0	Y
	c	1	N
	a	1	N
	c	0	Y
	b	0	N

Question 6. (4 marks)

- (a) (2 marks) Explain the rationale behind the naïve Bayes classifier.
- (b) (2 marks) Use the naïve Bayes classifier on the following dataset to classify input (f, A, 0). Show your working.

x_1	x_2	x_3	target
t	B	0	N
t	A	0	Y
t	C	1	Y
\int	A	1	N
\int	C	0	Y
t	A	1	Y
f	В	0	N
f	C	1	N
f	B	1	N

Total marks: