

Screening Active Dispersion Effects from Unreplicated Order-of-Addition Experiments

單一重複添加次序試驗之分散效應篩選

報告同學:何善學

指導老師:蔡欣甫博士

國立臺灣大學 農藝學研究所生物統計組

July 14, 2023

Outline

- Background
- The proposed method
- Simulation studies
- Real data analysis
- Group-wise exchange algorithm
- Summary

A drug combination experiment

 Four drugs are added sequentially to the human lymphoma cell, and the cell inhibition rate was measured

h	t _h	Уh
1	1234	27.31
2	1342	37.30
3	1423	24.42
4	2143	23.30
5	2314	29.29
6	2431	26.01
7	3124	35.98
8	3241	39.48
9	3412	36.78
10	4132	33.16
11	4213	25.81
12	4321	31.17

- Absence of factors
- The conventional statistical method cannot be applied

Order-of-Addition Experiments

- To study the impact of responses with various addition orders of materials
- Components: materials of interest
- The hth treatment t_h : a permutation of m components
- The pairwise order factor

$$z_{h,ij} = \begin{cases} +1 & \text{if component } i \text{ is added before component } j \text{ in } \boldsymbol{t}_h; \\ -1 & \text{if component } i \text{ is added after component } j \text{ in } \boldsymbol{t}_h. \end{cases}$$

For example:

There are three components: 1, 2, and 3

\boldsymbol{t}_h	$z_{h,12}$	$z_{h,13}$	$z_{h,23}$
213	-1	+1	+1
132	+1	+1	-1

Motivation

- The addition order of components may have a significant impact on
 - ullet the response mean o Location effects
 - the response variance \rightarrow Dispersion effects
- Dispersion effects play a vital role in quality control
- It is crucial to identify the dispersion effects

The Proposed Method

- Screen active dispersion effect from unreplicated order-of-addition experiments
- With several important steps
 - 1 Remove the impact of active location effects
 - 2 Determine a requirement set
 - **3** Remove the impact of nuisance parameters
 - 4 Screen active dispersion effects

1. Removing the Impact of Active Location Effects

Assume the response of t_h

$$Y_h \sim N(\mu_h, \sigma_h^2)$$

Location effects model

$$\mu_h = \gamma_0 + \sum_{ij \in \mathcal{L}} \gamma_{ij} z_{h,ij}$$

- ullet collects the indices of all active location effects
- Assume that

$$\gamma_{ij} = 0$$
 for $ij \notin \mathcal{L}$

• Use stepwise regression to screen active location effects

2.Determining a Requirement Set \mathcal{D}

• Dispersion effects model

$$\sigma_h^2 = \delta_0 \prod_{ij \in \mathcal{D}} \delta_{ij}^{\frac{z_{h,ij}}{2}}$$

- ullet Collect potentially active dispersion effects in ${\cal D}$
- $m{\cdot}$ \mathcal{D} is determined based on prior knowledge or residual diagnosis tools
- Test H_0 : $\delta_{ii}=1$ for each $ij\in\mathcal{D}$
- ullet The design is split into s groups according to ${\mathcal D}$

$$\mathcal{I}_g = \{h \mid \boldsymbol{z}_h^* = \boldsymbol{w}_g\}$$

The 16-run order-of-addition design with $\mathcal{D} = \{12, 13, 14\}$

h	t _h	Z _{h,12}	$Z_{h,13}$	$Z_{h,14}$	Z _{h,23}	Z _{h,24}	Z _{h,34}
1	1234	+1	+1	+1	+1	+1	+1
2	1243	+1	+1	+1	+1	+1	-1
3	2134	-1	+1	+1	+1	+1	+1
4	2143	-1	+1	+1	+1	+1	-1
5	2314	-1	-1	+1	+1	+1	+1
6	2341	-1	-1	-1	+1	+1	+1
7	2413	-1	+1	-1	+1	+1	-1
8	2431	-1	-1	-1	+1	+1	-1
9	3124	+1	-1	+1	-1	+1	+1
10	3142	+1	-1	+1	-1	-1	+1
11	3214	-1	-1	+1	-1	+1	+1
12	3412	+1	-1	-1	-1	-1	+1
13	4123	+1	+1	-1	+1	-1	-1
14	4132	+1	+1	-1	-1	-1	-1
15	4213	-1	+1	-1	+1	-1	-1
16	4312	+1	-1	-1	-1	-1	-1

$$\mathcal{D} = \{12, 13, 14\}$$
 $\mathbf{z}_{h}^{*} = \begin{bmatrix} z_{h,12} & z_{h,13} & z_{h,14} \end{bmatrix}^{\top}$

h	t _h	$z_{h,12}$	$z_{h,13}$	$z_{h,14}$	$Z_{h,23}$	$Z_{h,24}$	Z _{h,34}
1	1234	+1	+1	+1	+1	+1	+1
2	1243	+1	+1	+1	+1	+1	-1
3	2134	-1	+1	+1	+1	+1	+1
4	2143	-1	+1	+1	+1	+1	-1
5	2314	-1	-1	+1	+1	+1	+1
6	2341	-1	-1	-1	+1	+1	+1
7	2413	-1	+1	-1	+1	+1	-1
8	2431	-1	-1	-1	+1	+1	-1
9	3124	+1	-1	+1	-1	+1	+1
10	3142	+1	-1	+1	-1	-1	+1
11	3214	-1	-1	+1	-1	+1	+1
12	3412	+1	-1	-1	-1	-1	+1
13	4123	+1	+1	-1	+1	-1	-1
14	4132	+1	+1	-1	-1	-1	-1
15	4213	-1	+1	-1	+1	-1	-1
16	4312	+1	-1	-1	-1	-1	-1

w_1	-1	-1	-1
w_2	-1	-1	+1
W 3	-1	+1	-1
W 4	-1	+1	+1
w ₅	+1	-1	-1
w 6	+1	-1	+1
w 7	+1	+1	-1
w 8	+1	+1	+1

$$\boldsymbol{z}_6^* = \boldsymbol{z}_8^* = \boldsymbol{w}_1 = \left[\begin{array}{ccc} -1 & -1 & -1 \end{array} \right]^\top \rightarrow \mathcal{I}_1 = \{6,8\}$$

h	t _h	$z_{h,12}$	$z_{h,13}$	$z_{h,14}$	$z_{h,23}$	$z_{h,24}$	$z_{h,34}$
1	1234	+1	+1	+1	+1	+1	+1
2	1243	+1	+1	+1	+1	+1	-1
3	2134	-1	+1	+1	+1	+1	+1
4	2143	-1	+1	+1	+1	+1	-1
5	2314	-1	-1	+1	+1	+1	+1
6	2341	-1	-1	-1	+1	+1	+1
7	2413	-1	+1	-1	+1	+1	-1
8	2431	-1	-1	-1	+1	+1	-1
9	3124	+1	-1	+1	-1	+1	+1
10	3142	+1	-1	+1	-1	-1	+1
11	3214	-1	-1	+1	-1	+1	+1
12	3412	+1	-1	-1	-1	-1	+1
13	4123	+1	+1	-1	+1	-1	-1
14	4132	+1	+1	-1	-1	-1	-1
15	4213	-1	+1	-1	+1	-1	-1
16	4312	+1	-1	-1	-1	-1	-1

w_1	-1	-1	-1
w_2	-1	-1	+1
w_3	-1	+1	-1
w_4	-1	+1	+1
w_5	+1	-1	-1
w_6	+1	-1	+1
w_7	+1	+1	-1
w ₈	+1	+1	+1

- Given $\mathcal{D} = \{12, 13, 14\}$
- The design is split into 8 groups
 - $\mathcal{I}_1 = \{6, 8\}$
 - $\mathcal{I}_2 = \{5, 11\}$
 - $\mathcal{I}_3 = \{7, 15\}$
 - $\mathcal{I}_4 = \{3,4\}$
 - $\mathcal{I}_5 = \{12, 16\}$
 - $\mathcal{I}_6 = \{9, 10\}$
 - $\mathcal{I}_7 = \{13, 14\}$
 - $\mathcal{I}_8 = \{1, 2\}$
- Responses within \mathcal{I}_g have the same variance
- $\bullet \ \mathcal{I}_1 \longrightarrow \textit{SSE}_1, \mathcal{I}_2 \longrightarrow \textit{SSE}_2, \dots, \mathcal{I}_s \longrightarrow \textit{SSE}_s$

3. Removing the Impact of Nuisance Parameters

- When testing H_0 : $\delta_{st}=1$
- The remaining dispersion effects indexed by $\mathcal{D}\setminus\{st\}$ are nuisance parameters
- The concept of quasi-foldover pairs (a, b) is defined to remove the impact of nuisance parameters

Definition 1

$$\mathcal{P}_{st} = \{(a,b) \mid w_{a,st} = w_{b,st} = +1 \text{ and } w_{a,ij} + w_{b,ij} = 0$$
for each $ij \in \mathcal{D} \setminus \{st\}\}$

$$\mathcal{N}_{st} = \{(a,b) \mid w_{a,st} = w_{b,st} = -1 \text{ and } w_{a,ij} + w_{b,ij} = 0 \}$$

for each $ij \in \mathcal{D} \setminus \{st\}$

Given a requirement set $\mathcal{D} = \{12, 13, 14\}$, there are eight (+1, -1)-vectors

$$egin{aligned} m{w}_1^{ op} &= egin{bmatrix} -1 & -1 & -1 \end{bmatrix}, & m{w}_2^{ op} &= egin{bmatrix} -1 & -1 & +1 \end{bmatrix}, \\ m{w}_3^{ op} &= egin{bmatrix} -1 & +1 & -1 \end{bmatrix}, & m{w}_4^{ op} &= egin{bmatrix} -1 & +1 & +1 \end{bmatrix}, \\ m{w}_5^{ op} &= egin{bmatrix} +1 & -1 & -1 \end{bmatrix}, & m{w}_6^{ op} &= egin{bmatrix} +1 & -1 & +1 \end{bmatrix}, \\ m{w}_7^{ op} &= egin{bmatrix} +1 & +1 & -1 \end{bmatrix}, & m{w}_8^{ op} &= egin{bmatrix} +1 & +1 & +1 \end{bmatrix}. \end{aligned}$$

• $\mathcal{P}_{12} = \{(5,8),(6,7)\},\$

Given a requirement set $\mathcal{D}=\{12,13,14\}$, there are eight (+1,-1)-vectors.

• $\mathcal{P}_{12} = \{(5,8),(6,7)\}, \ \mathcal{N}_{12} = \{(1,4),(2,3)\}$

Given a requirement set $\mathcal{D}=\{12,13,14\}$, there are eight (+1,-1)-vectors.

- $\mathcal{P}_{12} = \{(5,8),(6,7)\}, \ \mathcal{N}_{12} = \{(1,4),(2,3)\}$
- $\mathcal{P}_{13} = \{(3,8),(4,7)\}, \ \mathcal{N}_{13} = \{(1,6),(2,5)\}$
- $\mathcal{P}_{14} = \{(2,8),(4,6)\}, \ \mathcal{N}_{14} = \{(1,7),(3,5)\}$

Fiducial Generalized Pivotal Quantity (FGPQ)

- Let Y denote a random sample from a distribution that depends on a parameter vector ξ
- Let y denote a realization of Y
- Suppose that $\theta = f(\xi)$ is to be tested

Definition 2

A random quantity $R_{\theta} = R(\mathbf{Y}, \mathbf{y}, \boldsymbol{\xi})$ is called a fiducial generalized pivotal quantity (FGPQ) if

- (A) The probability distribution of R_{θ} is free of all unknown parameters
- (B) $R(\mathbf{y}, \mathbf{y}, \boldsymbol{\xi}) = \theta$ for every allowable \mathbf{y}
- A fiducial test variable T_{θ} can be defined as $T_{\theta} = R_{\theta} \theta$ or $T_{\theta} = R_{\theta}/\theta$

Fiducial Generalized Pivotal Quantity (FGPQ)

• Let $R_{\delta_{st}}$ denote a random quantity given by

$$R_{\delta_{st}} = \frac{\prod_{(a,b) \in \mathcal{P}_{st}} \left(\frac{sse_a}{V_a} \frac{sse_b}{V_b}\right)^{\frac{1}{2p_{st}}}}{\prod_{(a,b) \in \mathcal{N}_{st}} \left(\frac{sse_a}{V_a} \frac{sse_b}{V_b}\right)^{\frac{1}{2n_{st}}}},$$

- The distribution of $R_{\delta_{ct}}$ is free of all unknown parameters
- Since (a, b) is the quasi-foldover pair,

$$R_{\delta_{st}} = \delta_{st}$$

• $R_{\delta_{st}}$ is an FGPQ for δ_{st}

4. Identifying Active Dispersion Effects

- Test $H_0: \delta_{st} = 1$ versus $H_1: \delta_{st} \neq 1$
- Fiducial test variable

$$T_{\delta_{st}} = \frac{R_{\delta_{st}}}{\delta_{st}}$$

- The distribution of $T_{\delta_{st}}$ has no explicit form
- The Monte-Carlo method are used to calculate the *p*-value
- If p-value < 0.05, the addition order of components s and t may have a significant impact on the response variance

Simulation Studies

- m = 6
- $\mathcal{D} = \{12, 13, 14, 15\} \rightarrow 16 \text{ groups}$
- Three template designs with 48, 64, and 80 runs
- Scenarios

	Active		df _g		
Scenario	Location effects	Dispersion effects	n = 48	n = 64	n = 80
1	{12}	{12}	2	3	4
2	{12}	{12, 13}	2	3	4
3	{12}	$\{12, 13, 14\}$	2	3	4
4	{56}	{12}	1	2	3
5	{56}	{12, 13}	1	2	3
6	{56}	$\{12, 13, 14\}$	1	2	3
7	$\{12, 56\}$	{12}	1	2	3
8	$\{12, 56\}$	{12, 13}	1	2	3
9	$\{12, 56\}$	$\{12, 13, 14\}$	1	2	3

• Simulation results are presented in Tables 3.2, 3.3, and 3.4

• The 64-run template design

			Dispersion	on effect		Ave	Average		
Scenario	δ	δ_{12}	δ_{13}	δ_{14}	δ_{15}	Size	Power		
	2	0.296	0.050	0.050	0.051	0.050	0.296		
1	4	0.823	0.050	0.054	0.048	0.051	0.823		
1	6	0.959	0.054	0.048	0.048	0.050	0.959		
	8	0.987	0.050	0.048	0.048	0.049	0.987		
	2	0.301	0.303	0.046	0.052	0.049	0.302		
2	4	0.820	0.818	0.047	0.047	0.047	0.819		
2	6	0.960	0.960	0.050	0.050	0.050	0.960		
	8	0.991	0.988	0.046	0.052	0.049	0.990		
	2	0.288	0.294	0.293	0.053	0.053	0.292		
3	4	0.817	0.820	0.825	0.051	0.051	0.821		
3	6	0.955	0.959	0.960	0.054	0.054	0.958		
	8	0.989	0.990	0.990	0.047	0.047	0.990		

• The proposed method can control the empirical sizes close to the nominal level 0.05

• The 64-run template design

			Dispersion	Ave	Average		
Scenario	δ	δ_{12}	δ_{13}	δ_{14}	δ_{15}	Size	Power
	2	0.296	0.050	0.050	0.051	0.050	0.296
1	4	0.823	0.050	0.054	0.048	0.051	0.823
1	6	0.959	0.054	0.048	0.048	0.050	0.959
	8	0.987	0.050	0.048	0.048	0.049	0.987
	2	0.301	0.303	0.046	0.052	0.049	0.302
2	4	0.820	0.818	0.047	0.047	0.047	0.819
۷	6	0.960	0.960	0.050	0.050	0.050	0.960
	8	0.991	0.988	0.046	0.052	0.049	0.990
	2	0.288	0.294	0.293	0.053	0.053	0.292
2	4	0.817	0.820	0.825	0.051	0.051	0.821
3	6	0.955	0.959	0.960	0.054	0.054	0.958
	8	0.989	0.990	0.990	0.047	0.047	0.990

• The empirical power increases when the effect size increases

• The 64-run template design

			Dispersion	on effect		Ave	Average		
Scenario	δ	δ_{12}	δ_{13}	δ_{14}	δ_{15}	Size	Power		
	2	0.296	0.050	0.050	0.051	0.050	0.296		
1	4	0.823	0.050	0.054	0.048	0.051	0.823		
1	6	0.959	0.054	0.048	0.048	0.050	0.959		
	8	0.987	0.050	0.048	0.048	0.049	0.987		
	2	0.301	0.303	0.046	0.052	0.049	0.302		
2	4	0.820	0.818	0.047	0.047	0.047	0.819		
2	6	0.960	0.960	0.050	0.050	0.050	0.960		
	8	0.991	0.988	0.046	0.052	0.049	0.990		
	2	0.288	0.294	0.293	0.053	0.053	0.292		
3	4	0.817	0.820	0.825	0.051	0.051	0.821		
3	6	0.955	0.959	0.960	0.054	0.054	0.958		
	8	0.989	0.990	0.990	0.047	0.047	0.990		

• The empirical powers are very close when there are several active dispersion effects

				Dispersio	Average			
Scenario	Run size	δ	δ_{12}	δ_{13}	δ_{14}	δ_{15}	Size	Power
		2	0.187	0.187	0.047	0.054	0.050	0.187
	40	4	0.577	0.580	0.049	0.051	0.050	0.579
	48	6	0.804	0.800	0.053	0.050	0.052	0.802
		8	0.898	0.901	0.049	0.051	0.050	0.900
		2	0.301	0.303	0.046	0.052	0.049	0.302
2	64	4	0.820	0.818	0.047	0.047	0.047	0.819
	04	6	0.960	0.960	0.050	0.050	0.050	0.960
		8	0.991	0.988	0.046	0.052	0.049	0.990
		2	0.400	0.398	0.052	0.050	0.051	0.399
	00	4	0.932	0.932	0.050	0.050	0.050	0.932
	80	6	0.994	0.994	0.049	0.052	0.050	0.994
		8	0.999	0.999	0.050	0.050	0.050	0.999

- The empirical power increases when the run size or the residual degrees of freedom are larger
- The proposed method appears to be feasible

- Wang et al. (2020) conducted a 24-run four-drug combination experiment
- Whether or not different orders of four chemotherapeutics have a significant impact on human lymphoma cell growth
- The cell inhibition rate was measured

h	t_h	Уh	h	t _h	Уh
1	1234	27.31	13	1243	15.40
2	1342	37.30	14	1324	34.05
3	1423	24.42	15	1432	32.74
4	2143	23.30	16	2134	31.04
5	2314	29.29	17	2341	31.56
6	2431	26.01	18	2413	15.78
7	3124	35.98	19	3142	37.22
8	3241	39.48	20	3214	36.28
9	3412	36.78	21	3421	38.42
10	4132	33.16	22	4123	25.77
11	4213	25.81	23	4231	30.90
12	4321	31.17	24	4312	30.62

A standard stepwise regression is used to identify active location effects

$$\mathcal{L} = \{12, 23, 24, 34\}$$

Location effects model

$$\hat{y}_h = 30 - 1.358z_{h,12} - 3.301z_{h,23} - 2.236z_{h,24} + 3.796z_{h,34} + 1.224z_{h,24}z_{h,34}.$$

• With adjusted R-squared:0.859

- To find potential dispersion effects
- Residual variance ratios

$$r_{ij} = \frac{\max[var(\mathbf{e}_{ij+}), var(\mathbf{e}_{ij-})]}{\min[var(\mathbf{e}_{ij+}), var(\mathbf{e}_{ij-})]}$$

where e_{ij+} and e_{ij-} denote the residual vectors corresponding to $z_{h,ij} = +1$ and $z_{h,ij} = -1$, respectively.

r ₁₂	r ₁₃	r ₁₄	r ₂₃	r ₂₄	r ₃₄
5.729	1.238	3.902	3.542	2.490	7.443

- $\mathcal{D} = \{12, 34\}$
- The observed data are divided into four groups

- $\bullet \ \mathcal{I}_1 \longrightarrow \textit{SSE}_1, \mathcal{I}_2 \longrightarrow \textit{SSE}_2, \dots, \mathcal{I}_4 \longrightarrow \textit{SSE}_4$
- ullet Calculate the fiducial test variable $T_{\delta_{12}}$ and $T_{\delta_{34}}$
- The *p*-value for H_0 : $\delta_{12} = 1$ is 0.037
- The *p*-value for H_0 : $\delta_{34} = 1$ is 0.122
- The addition order of components 1 and 2 may have a significant impact on the variance of the cell inhibition rate

• Generate designs with a small run size is practical

$$R_{\delta_{st}} = \frac{\prod_{(a,b) \in \mathcal{P}_{st}} \left(\frac{sse_a}{V_a} \frac{sse_b}{V_b}\right)^{\frac{1}{2\rho_{st}}}}{\prod_{(a,b) \in \mathcal{N}_{st}} \left(\frac{sse_a}{V_a} \frac{sse_b}{V_b}\right)^{\frac{1}{2n_{st}}}}$$

• The procedure is testable if $\mathcal{P}_{st} \neq \phi$ and $\mathcal{N}_{st} \neq \phi$

Corollary 1

Given a requirement set \mathcal{D} , an order-of-addition design is eligible if $\mathcal{I}_g \neq \phi$ for each $g=1,2,\ldots,s$.

- Generate highly D-efficient eligible designs
- Inputs: m, n, and \mathcal{D}

1. Generate the full design

- Generate highly D-efficient eligible designs
- Inputs: m, n, and \mathcal{D}

2. The full design is split into s groups according to \mathcal{D}

- Generate highly D-efficient eligible designs
- Inputs: m, n, and \mathcal{D}

3. Sample r = n/s indices from \mathcal{J}_g

- Generate highly D-efficient eligible designs
- Inputs: m, n, and \mathcal{D}

4. Combine $\mathcal{K}_1,\mathcal{K}_2,\dots,\mathcal{K}_s$ as the initial design and calculate the D-efficiency

Group-wise Exchange Algorithm - Exhaustive

- The design is improved by considering all possible exchanges
- If the new proposal is more D-efficient, the current proposal is then replaced by the new proposal
- \mathcal{R}_g is updated
- The procedure will be terminated if the current design cannot be improved

Group-wise Exchange Algorithm - Random

- When m gets large, it can become very time-consuming
- Adopt the random procedure
- Only consider $\pi \times |\mathcal{R}_g|$ elements, where $0 < \pi < 1$
- For example, $\pi = 0.5$

Performance of Group-wise Exchange Algorithm

 The relative D-efficiency of resulting designs with the computation time (s)

		Exhaustive			
	$\pi = 0.2$	$\pi = 0.4$	$\pi = 0.6$	$\pi = 0.8$	$\pi = 1.0$
m = 7	0.532	0.541	0.545	0.547	0.548
	(1.062)	(1.797)	(2.407)	(2.892)	(3.327)
9	0.218	0.232	0.237	0.239	0.241
	(128.588)	(233.413)	(306.819)	(375.421)	(411.345)

- Similar D-efficiencies with different π
- The computation times are very different
- When the design parameter *m* is large, the random search procedure is recommended for practical use

Summary

- The two-stage method is proposed
 - 1 Identify active location effects
 - 2 Identify active dispersion effects from the requirement set
- Based on simulation studies, the proposed method can maintain the empirical type I error rates
- A drug combination experiment is illustrated
- The group-wise exchange algorithm for constructing eligible designs

Thanks for your attention!