Data Analysis and Transformation TP1: Fundamentals of Signals and Systems

José Ribeiro (2008112181, jbaia@student.dei.uc.pt) Pedro Magalhães (2009117002, pjrosa@student.dei.uc.pt)

 $March\ 7,\ 2012$

Contents

1	$\mathbf{E}\mathbf{x}\mathbf{e}$	rcise 1
	1.1	Exercise 1.1
		1.1.1 Simplification
		1.1.2 Trigonometric identities
		1.1.3 "Proof" of equality
	1.2	Exercise 1.2
	1.3	Exercise 1.3
	1.4	Exercise 1.4
		1.4.1 MATLAB's Symbolic Math Toolbox
		1.4.2 Trapezoidal Rule
		1.4.3 Simpson's Rule
	1.5	Exercise 1.5
2	Exe	rcise 2
-	2.1	Exercise 2.1
	2.2	Exercise 2.2
	2.3	Exercise 2.3
		2.3.1 Análise de linearidade do sistema $\mathbf{y_1}[\mathbf{n}]$
		$2.3.2$ Análise de linearidade do sistema $\mathbf{y_2}[\mathbf{n}]$
		2.3.3 Análise de linearidade do sistema $\mathbf{y_3}[\mathbf{n}]$
		$2.3.4$ Análise de linearidade do sistema $\mathbf{y_4}[\mathbf{n}]$
	2.4	Exercise 2.4
		$2.4.1$ Análise de invariância no tempo do sistema $\mathbf{y_1}[\mathbf{n}]$
		2.4.2 Análise de invariância no tempo do sistema $\mathbf{y}_{2}[\mathbf{n}]$
		2.4.3 Análise de invariância no tempo do sistema $\mathbf{y_3}[n]$
		2.4.4 Análise de invariância no tempo do sistema $\mathbf{y}_4[\mathbf{n}]$
	2.5	Exercise 2.5
	2.6	Exercise 2.6
	2.7	Exercise 2.7
3	Exe	rcise 3
	3.1	Exercise 3.1/3.2
	3.2	Exercise 3.3
	3.3	Exercise 3.4

1 Exercise 1

1.1 Exercise 1.1

Após a substituição das variáveis na expressão (assumindo G#=25), obtém-se a seguinte equação:

$$x_1(t) = 2\sin(2t)\cos(11t) + 5\cos^2(8t) \tag{1}$$

Utilizando as identidades trigonométricas referidas em *Trigonometric identities*, procede-se agora à obtenção da expressão equivalente à equação (1) segundo a forma

$$x_1(t) = \sum_{i} C_i \cos(\omega_i t + \theta_i)$$
 (2)

1.1.1 Simplification

$$x_1(t) = 2\sin(2t)\cos(11t) + 5\cos^2(8t)$$
 (3)

$$= \sin(2t+11t) + \sin(2t-11t) + 5\cos^2(8t) \tag{4}$$

$$= \sin(13t) + \sin(-9t) + 5\cos^2(8t) \tag{5}$$

$$= -\cos\left(13t + \frac{\pi}{2}\right) - \cos\left(-9t + \frac{\pi}{2}\right) + 5\cos^2(8t) \tag{6}$$

$$= \cos\left(13t + \frac{3\pi}{2}\right) + \cos\left(-9t + \frac{3\pi}{2}\right) + 5\cos^{2}(8t) \tag{7}$$

$$= \cos\left(13t + \frac{3\pi}{2}\right) + \cos\left(9t + \frac{\pi}{2}\right) + 5\cos^2(8t) \tag{8}$$

$$= \cos\left(13t + \frac{3\pi}{2}\right) + \cos\left(9t + \frac{\pi}{2}\right) + 5\left(\frac{1 + \cos(2*8t)}{2}\right) \tag{9}$$

$$= \cos\left(13t + \frac{3\pi}{2}\right) + \cos\left(9t + \frac{\pi}{2}\right) + \frac{5}{2}\cos(0) + \frac{5}{2}\cos(16t) \tag{10}$$

$$= \frac{5}{2}\cos(0) + \cos\left(9t + \frac{\pi}{2}\right) + \cos\left(13t + \frac{3\pi}{2}\right) + \frac{5}{2}\cos(16t) \tag{11}$$

1.1.2 Trigonometric identities

A simplicação faz uso das seguintes igualdades¹:

$$sin(\theta)cos(\varphi) = \frac{cos(\theta - \varphi) + cos(\theta + \varphi)}{2}$$
 (3 to 4)

$$cos(\theta + \frac{\pi}{2}) = -sin(\theta)$$
 (5 to 6)

$$\cos(\theta + \pi) = -\cos(\theta) \tag{6 to 7}$$

¹Entre parênteses encontram-se os números dos passos entre os quais foram utilizadas.

$$\cos(-\theta) = \cos(\theta) \tag{7 to 8}$$

$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \tag{8 to 9}$$

1.1.3 "Proof" of equality

De forma a verificar que nenhum erro havia sido cometido durante a transformação da equação do sinal, um gráfico com a representação segundo as duas fórmulas foi gerado. A fórmula original encontra-se representada a azul; a tracejado vermelho encontra-se sobreposta a representação segundo um somatório de co-senos, segundo a fórmula obtida em Simplification.

Figure 1: Original signal expression overlapped by the cosine sum signal expression, with $t \in [-\pi, \pi]$.

Como é possível observar na figura 1, a sobreposição das representações é perfeita.

1.2 Exercise 1.2

Fazendo uma simples substituição de t por $n\,T_s$ na expressão obtida na alínea anterior obtém-se:

$$x_1[n] = x_1(t)|_{t=n T_s} = \frac{5}{2}\cos(0) + \cos\left(9 n T_s + \frac{\pi}{2}\right) + \cos\left(13 n T_s + \frac{3\pi}{2}\right) + \frac{5}{2}\cos(16 n T_s)$$
 (12)

1.3 Exercise 1.3

O gráfico seguinte representa o sinal $x_11(t)$ (a azul), para $t \in [-\pi, \pi]$ (com 500 elementos), sobreposto com o sinal $x_11[n]$ (a vermelho) no mesmo intervalo, com um período de amostragem $T_s = 0.1s$.

Figure 2: $x_11(t)$ (blue), for $t \in [-\pi, \pi]$ (using 500 samples); $x_11[n]$ (red) in the same interval, using $T_s = 0.1s$.

Como é possível observar na figura 2, algumas amostras obtidas em $x_11[n]$ apresentam um ligeiro desvio quando comparadas com o traçado do sinal $x_11[n]$. Após alguma análise (incluíndo a soma das diferenças), concluímos que esse desvio se deve exclusivamente à perda de precisão decimal durante a criação do array de espaçamento linear utilizado para o cálculo de $x_1(t)$.

1.4 Exercise 1.4

A energia de um sinal de tempo contínuo é dada, em J (joules), pelo integral do quadrado do seu módulo, isto é:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
 (13)

1.4.1 MATLAB's Symbolic Math Toolbox

Utilizando as funções de cálculo matemático simbólico do MATLAB, foi possível obter o valor exacto da energia; neste caso, o valor é de $\frac{83\pi}{4}J\approx 65.1880J$.

1.4.2 Trapezoidal Rule

A Regra do Trapézio é uma técnica de integração numérica que aproxima um integral calculando a soma da área dos trapézios formados por pontos da função. A aproximação do integral segundo esta regra considerando N intervalos igualmente espaçados é:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2N} (f(x_1) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_N) + f(x_{N+1}))$$
 (14)

Como no enunciado nos é pedida uma aproximação com erro inferior a 0.001, devemos calcular o número de intervalos de forma a garantir essa condição. Existe um número ξ entre a e b em que o erro obtido é dado pela fórmula².

$$error = -\frac{(b-a)^3}{12N^2} f''(\xi)$$
 (15)

Como é evidente pela fórmula, o erro em módulo³ evolui proporcionalmente a f''. Como tal, é possível concluir que, para que seja possível calcular N de forma a garantir que error seja o erro máximo, será necessário calcular o valor de ξ para o qual f'' assume o seu valor máximo. Doravante (por motivos de simplificação), iremos assumir que:

$$M \ge f''(\xi) \tag{16}$$

Depois de encontrado M, e colocando a fórmula em ordem a N, obtém-se que:

$$N = \left\lceil \sqrt{\left| \frac{(b-a)^3}{12 \, max_error} \, M \right|} \,\right\rceil \tag{17}$$

O cálculo da energia do sinal $x_1(t)$ efectuado com a Regra do Trapézio obteve como resultado o valor de 65.1880J, utilizando um step de 0.000499s (correspondente a N=12589). O cálculo demorou, em média 4 , 0.105080s. Por comparação com o integral calculado por cálculo simbólico, o menor N para o qual se obtém um erro inferior a 0.001 é 5.

² Fórmula do erro da aproximação do integral pela Regra do Trapézio deduzida por Atkinson em *An Introduction to Numerical Analysis*, 1989, John Wiley & Sons, ISBN 978-0-471-50023-0.

 $^{^3}$ O valor de error assume valor positivo ou negativo consoante o integral seja sub ou sobrestimado, respectivamente.

⁴ Média de 30 iterações.

1.4.3 Simpson's Rule

A Regra de Simpson é outra técnica de integração numérica que aproxima um integral calculando a soma da área das parábolas. A aproximação do integral segundo esta regra, considerando N intervalos igualmente espaçados (onde $N \in 2\mathbb{Z}$) é:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{3N} [f(x_1) + 4f(x_2) + 2f(x_3) + 4f(x_4) + \dots + 2f(x_{N-2}) + 4f(x_{N-1}) + f(x_n)]$$
 (18)

Como no enunciado nos é pedida uma aproximação com erro inferior a 0.001, devemos calcular o número de intervalos de forma a garantir essa condição. Existe um número ξ entre a e b em que o erro obtido é dado pela fórmula:

$$error = \frac{(b-a)^5}{180 N} f^{(IV)}(\xi)$$
 (19)

Como é evidente pela fórmula, o erro evolui proporcionalmente a f^{IV} . Como tal, é possível concluir que, para que seja possível calcular N de forma a garantir que error seja o erro máximo, será necessário calcular o valor de ξ para o qual f^{IV} assume o seu valor máximo. Iremos assumir que:

$$M \ge f^{(IV)} \tag{20}$$

Depois de obter o M, podemos colocar a fórmula em ordem N, obtém-se⁵:

$$N = \left\lceil \sqrt[4]{\left| \frac{(b-a)^5}{180 \, max_error} \, M \right|} \right\rceil \tag{21}$$

O cálculo da energia do sinal $x_1(t)$ efectuado com a Regra de Simpson obteve como resultado o valor de 65.1880J, utilizando um step de 0.008118s (correspondente a N=776). O cálculo demorou, em média 6 , 0.116167s. Por comparação com o integral calculado por cálculo simbólico, o menor N para o qual se obtém um erro inferior a 0.001 é 10.

1.5 Exercise 1.5

O cálculo da energia de um sinal discreto é dado pela fórmula:

$$E = \sum_{n = -\infty}^{\infty} |x[n]|^2 \tag{22}$$

Como tal, para calcular a energia de um sinal x[n] para n correspondente ao intervalo [a,b], basta calcular o somatório de todos os valores do sinal no intervalo $n \in \left[sgn\left(\frac{a}{T_s}\right) \left\lfloor \left|\frac{a}{T_s}\right|\right\rfloor, sgn\left(\frac{b}{T_s}\right) \left\lfloor \left|\frac{b}{T_s}\right|\right\rfloor\right]^7$, onde T_s é o período de amostragem.

Após a substituição no cálculo do intervalo, obtém-se que n pertence ao intervalo [-31,31]. O valor da energia de $x_1[n]$ obtido para $n \in [-31,31]$ é de aproximadamente 656.6213J.

⁵ Deverá somar-se 1 a N caso N seja ímpar, de forma a garantir que $N \in 2\mathbb{Z}$.

 $^{^6\,\}mathrm{M\'e}$ dia de 30 iterações.

⁷Esta fórmula garante que os valores do intervalo (que é $\subset \mathbb{Z}$), quando multiplicados por T_s , correspondem a valores contidos no intervalo original.

2 Exercise 2

2.1 Exercise 2.1

O sinal de tempo discreto utilizado foi o seguinte:

$$x[n] = 1.5\cos[0.025\pi n](u[n+40] - u[n-40])$$
(23)

Após a substituição das variáveis nas expressões (usando G#=25) obtêm-se as seguintes equações:

$$y_1[n] = 0.4 x[n-1] + 0.6 x[n-3] - 0.2 x[n-4]$$
 (24)

$$y_2[n] = 1.2x[2n-4] (25)$$

$$y_3[n] = x[n-2]x[n-3] (26)$$

$$y_4[n] = (n-2)x[n-3] (27)$$

Apresentam-se as representações dos mesmos sinais para o intervalo $-50 \le n \le 50$:

Figure 3: Top-down: x[n], $y_1[n]$, $y_2[n]$, $y_3[n]$ and $y_4[n]$ plots, for $-50 \le n \le 50$.

2.2 Exercise 2.2

Na imagem seguinte apresentam-se as entradas x[n] e x[n] com ruído uniforme no intervalo] — 0.2, 0.2[(em cima, a azul e vermelho, respectivamente) e a resposta do sistema $y_1[n]$ a essas mesmas entradas (em baixo, a azul a resposta à entrada x[n], a vermelho a resposta à entrada de x[n] com ruído).

Figure 4: Above: x[n] (blue) and x[n] with uniform noise on the [-0.2, 0.2]; below: $y_1[n]$ response to $x_1[n]$ (blue) and $y_1[n]$ response to $x_1[n]$ with noise (red).

2.3 Exercise 2.3

Para que um sistema seja linear, este deve verificar duas propriedades: **aditividade** e **homogeneidade**.

Para que um sistema verifique a propriedade de **aditividade**, é necessário que se verifique a seguinte igualdade:

$$\begin{cases} T\{x_1[n]\} = & y_1[n] \\ T\{x_2[n]\} = & y_2[n] \end{cases} \xrightarrow{\text{aditividade}} T\{x_1[n] + x_2[n]\} = y_1[n] + y_2[n]$$

Para que um sistema verifique a propriedade de homogeneidade, é necessário que se verifique

$$T\{x[n]\} = y[n] \xrightarrow[\text{homogeneidade}]{} T\{a\,x[n]\} = a\,y[n]$$

em que a é uma constante arbitrária.

Em seguida analisa-se a linearidade dos sistemas $y_1[n]$, $y_2[n]$, $y_3[n]$ e $y_4[n]$.

2.3.1 Análise de linearidade do sistema $y_1[n]$

Aditividade

$$T\{x_1[n]\} = 0.4 x_1[n-1] + 0.6 x_1[n-3] - 0.2 x_1[n-4]$$
(28)

$$T\{x_2[n]\} = 0.4 x_2[n-1] + 0.6 x_2[n-3] - 0.2 x_2[n-4]$$
(29)

$$T\{x_{1}[n] + x_{2}[n]\} = 0.4 (x_{1}[n-1] + x_{2}[n-1]) + 0.6 (x_{1}[n-3] + x_{2}[n-3])$$

$$-0.2 (x_{1}[n-4] + x_{2}[n-4])$$

$$= 0.4 x_{1}[n-1] + 0.4 x_{2}[n-1] + 0.6 x_{1}[n-3] + 0.6 x_{2}[n-3]$$

$$-0.2 x_{1}[n-4] - 0.2 x_{2}[n-4]$$

$$(31)$$

$$T\{x_1[n]\} + T\{x_2[n]\} = 0.4 x_1[n-1] + 0.6 x_1[n-3] - 0.2 x_1[n-4] + 0.4 x_2[n-1] + 0.6 x_2[n-3] - 0.2 x_2[n-4]$$
(32)

Dado que $T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}$, este sistema **verifica** a propriedade de **aditividade**.

Homogeneidade

$$T\{a x[n]\} = 0.4 a x[n-1] + 0.6 a x[n-3] - 0.2 a x[n-4]$$

$$= a (0.4 x[n-1] + 0.6 x[n-3] - 0.2 x[n-4])$$
(33)

Dado que $T\{ax[n]\}=aT\{x[n]\}$, este sistema **verifica** a propriedade de **homogeneidade**. Como verifica as duas condições, este sistema é **linear**.

2.3.2 Análise de linearidade do sistema y₂[n]

Aditividade

$$T\{x_1[n]\} = 1.2 x_1[2n-4] \tag{35}$$

$$T\{x_2[n]\} = 1.2x_2[2n-4] \tag{36}$$

$$T\{x_1[n] + x_2[n]\} = 1.2(x_1[2n-4] + x_2[2n-4])$$
(37)

$$= 1.2 x_1 [2n-4] + 1.2 x_2 [2n-4]$$
 (38)

$$T\{x_1[n]\} + T\{x_2[n]\} = 1.2 x_1[2n-4] + 1.2 x_2[2n-4]$$
 (39)

Dado que $T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}$, este sistema **verifica** a propriedade de **aditividade**.

Homogeneidade

$$T\{a x[n]\} = 1.2 a x[2n-4]$$
 (40)

$$= a(1.2x[2n-4]) (41)$$

Dado que $T\{a x[n]\} = a T\{x[n]\}$, este sistema **verifica** a propriedade de **homogeneidade**. Como verifica as duas condições, este sistema é **linear**.

2.3.3 Análise de linearidade do sistema y₃[n]

Aditividade

$$T\{x_1[n]\} = x_1[n-2]x_1[n-3] \tag{42}$$

$$T\{x_2[n]\} = x_2[n-2]x_2[n-3] \tag{43}$$

$$T\{x_1[n] + x_2[n]\} = (x_1[n-2] + x_2[n-2])(x_1[n-3] + x_2[n-3])$$
(44)

$$= x_1[n-2]x_1[n-3] + x_1[n-2]x_2[n-3] +$$

$$x_2[n-2]x_1[n-3] + x_2[n-2]x_2[n-3]$$
(45)

$$T\{x_1[n]\} + T\{x_2[n]\} = x_1[n-2]x_1[n-3] + x_2[n-2]x_2[n-3]$$
(46)

Dado que $T\{x_1[n] + x_2[n]\} \neq T\{x_1[n]\} + T\{x_2[n]\}$, este sistema **não verifica** a propriedade de **aditividade**; consequentemente, este sistema **não é linear**.

Procede-se ainda assim à análise da homogeneidade.

Homogeneidade

$$T\{a x[n]\} = a x[n-2] a x[n-3]$$
 (47)

$$= a^{2}(x[n-2] a x[n-3])$$
(48)

Dado que $T\{ax[n]\} \neq aT\{x[n]\}$, este sistema também **não verifica** a propriedade de **homogeneidade**.

2.3.4 Análise de linearidade do sistema y₄[n]

Aditividade

$$T\{x_1[n]\} = (n-2)x_1[n-3] \tag{49}$$

$$T\{x_2[n]\} = (n-2)x_2[n-3]$$
(50)

$$T\{x_1[n] + x_2[n]\} = (n-2)(x_1[n-3] + x_2[n-3])$$
(51)

$$= n x_1[n-3] + n x_2[n-3] - 2 x_1[n-3] - 2 x_2[n-3]$$
 (52)

$$T\{x_1[n]\} + T\{x_2[n]\} = (n-2)x_1[n-3] + (n-2)x_2[n-3]$$
(53)

$$= n x_1[n-3] - 2 x_1[n-3] + n x_2[n-3] - 2 x_2[n-3]$$
 (54)

Dado que $T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}$, este sistema **verifica** a propriedade de **aditividade**.

Homogeneidade

$$T\{ax[n]\} = (n-2)ax_1[n-3]$$
(55)

$$= a((n-2)x_1[n-3]) (56)$$

Dado que $T\{a x[n]\} = a T\{x[n]\}$, este sistema **verifica** a propriedade de **homogeneidade**. Como verifica as duas condições, este sistema é linear.

2.4Exercise 2.4

Para que um sistema seja invariante no tempo, é necessário que este verifique a seguinte propriedade:

$$T\{x[n]\} = y[n] \xrightarrow{\text{invariancia no tempo}} T\{x[n-n_0]\} = y[n-n_0]$$

Segue-se a análise da invariância no tempo dos 4 sinais.

Análise de invariância no tempo do sistema y₁[n]

$$T\{x[n-n_0]\} = 0.4 x[n-n_0-1] + 0.6 x[n-n_0-3] - 0.2 x[n-n_0-4]$$

$$y[n-n_0] = 0.4 x[n-n_0-1] + 0.6 x[n-n_0-3] - 0.2 x[n-n_0-4]$$
(57)

$$y[n - n_0] = 0.4x[n - n_0 - 1] + 0.6x[n - n_0 - 3] - 0.2x[n - n_0 - 4]$$
(58)

Dado que $T\{x[n-n_0]\}=y[n-n_0]$, pode-se concluir que o sistema **é invariante no tempo**. Dada a sua linearidade (verificada em $Análise\ de\ linearidade\ do\ sistema\ \mathbf{y_1[n]}),$ é possível concluir que este é um sistema SLIT.

Análise de invariância no tempo do sistema y₂[n]

$$T\{x[n-n_0]\} = 1.2x[2n-n_0-4]$$
(59)

$$y[n - n_0] = 1.2x[2(n - n_0) - 4]$$
(60)

$$= 1.2 x[2 n - 2 n_0 - 4] (61)$$

Dado que $T\{x[n-n_0]\} \neq y[n-n_0]$, pode-se concluir que o sistema **não é invariante no tempo**.

Análise de invariância no tempo do sistema y₃[n]

$$T\{x[n-n_0]\} = x[n-n_0-2]x[n-n_0-3]$$

$$y[n-n_0] = x[n-n_0-2]x[n-n_0-3]$$
(62)

$$y[n - n_0] = x[n - n_0 - 2]x[n - n_0 - 3]$$
(63)

Dado que $T\{x[n-n_0]\}=y[n-n_0]$, pode-se concluir que o sistema **é invariante no tempo**.

2.4.4 Análise de invariância no tempo do sistema $y_4[n]$

$$T\{x[n-n_0]\} = (n-2)x[n-n_0-3]$$
(64)

$$y[n - n_0] = (n - n_0 - 2)x[n - n_0 - 3]$$
(65)

Dado que $T\{x[n-n_0]\} \neq y[n-n_0]$, pode-se concluir que o sistema não é invariante no tempo.

2.5 Exercise 2.5

A expressão da resposta de impulso de um sistema é obtida através da substituição da sua entrada pela função de delta de Kronecker, i.e.:

$$h[n] = y[n]|_{x[n] = \delta[n]}$$

Assim, a expressão da resposta de impulso do sistema $y_1[n]$ é:

$$h_1[n] = 0.4 \,\delta[n-1] + 0.6 \,\delta[n-3] - 0.2 \,\delta[n-4]$$

A sua representação gráfica:

Figure 5: $y_1[n]$ system's impulse response.

2.6 Exercise 2.6

A função de transferência do sistema $y_1[n]$, $G_1(z)$, assumindo condições iniciais nulas, é equivalente à transformada de \mathcal{Z} da resposta ao impulso do sistema, $H_1(z)$ (resposta essa calculada em *Exercise* 2.5). Isto é:

$$G(z) = H(z)|_{condições\ iniciais\ nulas}$$
 (66)

$$= \mathcal{Z}\{h[n]\} \tag{67}$$

Para o sistema $y_1[n]$, obtém-se:

$$G_1(z) = H_1(z)|_{condiç\tilde{o}es\ iniciais\ nulas}$$
 (68)

$$= \mathcal{Z}\{h_1[n]\} \tag{69}$$

$$= 2\{n_1[n]\}$$

$$= 0.4 z^{-1} + 0.6 z^{-3} - 0.2 z^{-4}$$

$$(70)$$

2.7 Exercise 2.7

Após a substituição da função de transferência de $y_1[n]$ na expressão

$$M(z) = \frac{k G_1(z)}{1 + k G_1(z)}$$

segue que

$$M(z) = \frac{k(0.4z^{-1} + 0.6z^{-3} - 0.2z^{-4})}{1 + k(0.4z^{-1} + 0.6z^{-3} - 0.2z^{-4})} * \frac{z^4}{z^4}$$
(71)

$$= \frac{z^4 k \left(0.4 z^{-1} + 0.6 z^{-3} - 0.2 z^{-4}\right)}{z^4 + 0.4 k z^3 + 0.6 k z^1 - 0.2 k}$$
(72)

Através da função roots do MATLAB concluiu-se que $k \in [-0.909, 0.667]$.

3 Exercise 3

Considera-se o sinal

$$x(t) = \sin(2\pi f_0 t)$$

3.1 Exercise 3.1/3.2

A frequência de amostragem utilizada foi de 44100Hz, por estar adequada à captação das frequências máximas audíveis pelo ouvido humano.

3.2 Exercise 3.3

Calculou-se um valor médio para a amplitude de resposta do sistema para as frequências testadas. Dividiu-se o período em 5 intervalos iguais e, para cada um destes, foi calculado $\frac{max(|values|) - min(|values|)}{2}$. Após isto, considerou-se o valor da amplitude do sinal a média destes 5 valores.

Apresenta-se em seguida o gráfico de amplitude de resposta para cada uma dessas frequências.

Figure 6: x(t) signal's amplitude by frequency.

3.3 Exercise 3.4

Pelo gráfico é possível concluir que o sistema formado pelo microfone interno e pelas colunas se encontra adequado à gama de frequências [500Hz,2500Hz]. O gráfico demonstra algumas depressões em determinadas frequências nesse intervalo. Isso pode dever-se a dois motivos: a incapacidade de reprodução das colunas dessas frequências e/ou a incapacidade de captação do microfone nesses valores. Os valores a partir de 6000Hz têm amplitude praticamente nula, exceptuando uma ligeira subida na gama final de frequências, possivelmente fruto de barulho externo durante a captação do sinal.