LECTURE 1 (MAY 13)

Fields, Induction, Binomial Theorem: $TEXTBOOK\ pg\ 2$ - $approx\ 16\ (up\ to\ 1.2\)$

Author

Tom Jeong

Contents

1	Natural Numbers and Real Numbers	3
	1.1 Addition and Multiplication as a function on \mathbb{R}	3
2	Fields	3
	2.1 Additive Identity	4
	2.2 Multiplicative Identity	4
	2.3 Additive Inverse	4
	2.4 Multiplicative Inverse	4
3	Proof: $(-1)^2 = 1$	4
4	Ordered Real Numbers	4
5	Prove the Binomial Expansion Formula	5
	5.1 Proof of the Binomial Theorem by Induction	6
6	Last Property of $\mathbb R$	7

1 Natural Numbers and Real Numbers

Natural numbers are a set of positive integers:

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

Real numbers are a set of all rational and irrational numbers:

$$\mathbb{R}=\mathbb{Q}\cup\mathbb{I}$$

1.1 Addition and Multiplication as a function on \mathbb{R}

- 1. Addition: $+: \mathbb{R}^2 \to \mathbb{R}$
- 2. Multiplication: $\cdot : \mathbb{R}^2 \to \mathbb{R}$

2 Fields

Axiom 2.1 (Field Axiom). A field is a set of numbers \mathbb{F} with two operations: addition and multiplication. A field must satisfy the following properties:

- 1. Closure property under addition and multiplication: $a+b\in\mathbb{F}$ and $a\cdot b\in\mathbb{F}$
- 2. Associative: (a+b)+c=a+(b+c) and $(a \cdot b) \cdot c=a \cdot (b \cdot c)$
- 3. Commutative: a + b = b + a and $a \cdot b = b \cdot a$
- 4. Distributive: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 5. Unique Additive Identity: There exists a unique element $0 \in \mathbb{F}$ such that $\forall x \in \mathbb{F}$, 0 + x = x.
- 6. Unique Multiplicative Identity: There exists a unique element $1 \in \mathbb{F}$ such that $\forall x \in \mathbb{F}, 1 \cdot x = x$.
- 7. Additive Inverse: For every $x \in \mathbb{F}$, there exists a unique element $-x \in \mathbb{F}$ such that x + (-x) = 0.
- 8. Multiplicative Inverse: For every $x \in \mathbb{F}, x \neq 0$, there exists a unique element $x^{-1} \in \mathbb{F}$ such that $x \cdot x^{-1} = 1$.

A field is a set of numbers with two operations: addition and multiplication. A field must satisfy the following properties:

3

- 1. Associative: (a+b)+c=a+(b+c) and $(a \cdot b) \cdot c=a \cdot (b \cdot c)$
- 2. Commutative: a + b = b + a and $a \cdot b = b \cdot a$
- 3. Distributive: $a \cdot (b+c) = a \cdot b + a \cdot c$

We can see that \mathbb{R} is a field since it satisfies all three properties.

2.1 Additive Identity

There exists a unique element $0 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}, 0 + x = x$.

2.2 Multiplicative Identity

There exists a unique element $1 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}, 1 \cdot x = x$.

2.3 Additive Inverse

For every $x \in \mathbb{R}$, there exists a unique element $-x \in \mathbb{R}$ such that x + (-x) = 0.

2.4 Multiplicative Inverse

For every $x \in \mathbb{R}$, there exists a unique element $x^{-1} \in \mathbb{R}$ such that $x \cdot x^{-1} = 1$. Using these additional properties, we can prove that $(-1)^2 = 1$.

3 **Proof:** $(-1)^2 = 1$

Proof 3.1. Let 1_L be the multiplicative identity and -1 be the additive inverse of the multiplicative identity. We want to show that $\forall x \in \mathbb{R} : (-1) \cdot (-1)x = x$. Then by the uniqueness of the multiplicative identity, $(-1)^2$ must be the multiplicative identity. We will show:

$$(-1)^{2}x = x$$

$$(-1) + (1) = 0$$

$$((-1) + 1) \cdot x = 0 \cdot x$$

$$(-1) \cdot x + 1 \cdot x = 0$$

$$(-1) \cdot x + x = 0$$

$$(-1)^{2} \cdot x - x = 0$$

$$(-1)^{2} \cdot x - x + x = 0 + x$$

$$(-1)^{2} \cdot x = x$$

Thus we have shown that $(-1)^2$ is the multiplicative identity and thus by the uniqueness of the multiplicative identity, $(-1)^2$ must be 1.

4 Ordered Real Numbers

Definition 4.1.

$$\langle \mathbb{R}^2 \longrightarrow \{ \mathit{True}, \mathit{False} \}$$
 (or using binary) $\{0,1\}$

The set of real numbers \mathbb{R} is ordered by a relation $\langle : \mathbb{R}^2 \to \{0,1\}$ with the following properties:

- 1. Trichotomy: $\forall x, y \in \mathbb{R} : (x < y) \lor (x = y) \lor (y < x)$
- 2. Transitivity: $\forall x, y, z \in \mathbb{R} : (x < y) \land (y < z) \rightarrow (x < z)$
- 3. Additivity: $\forall x, y, z \in \mathbb{R} : (x < y) \to (x + z < y + z)$
- 4. Multiplicative: $\forall x, y, z \in \mathbb{R} : (x < y) \land (0 < z) \rightarrow (x \cdot z < y \cdot z)$ and $(x < y) \land (z < 0) \rightarrow (y \cdot z < x \cdot z)$

5 Prove the Binomial Expansion Formula

The binomial expansion formula states that

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i$$

Axiom 5.1. Given any non-empty subset $E \subseteq \mathbb{N}$, there is a least element $\alpha \in E$ such that $\alpha \leq x \ \forall x \in E$.

Theorem 5.2 (Theorem of Induction). Consider a statement dependent on \mathbb{N} :

$$S: \mathbb{N} \longrightarrow \{0,1\}$$

If:

- 1. S(1) = 1
- 2. $\forall n \in \mathbb{N} : S(n) \to S(n+1)$
- 3. then $\forall n \in \mathbb{N} : S(n)$

Proof 5.3. Consider $E = \{n \in \mathbb{N} : S(n) = 0\}$. Suppose $E \neq \emptyset$. Then by the axiom of \mathbb{N} , there is a least element $\alpha \in E$. $\alpha \neq 1$ because S(1) = 1. Consider $\alpha - 1$. $S(\alpha - 1)$ must be true because α is the least element of E. Because $S(\alpha - 1) \to S(\alpha)$ and $S(\alpha) = 0$. Thus our supposition is wrong. Therefore $E = \emptyset$ and $\forall n \in \mathbb{N} : S(n)$. Q.E.D

Lemma 5.4 (Binomial Theorem).

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

N ow we can prove the binomial expansion formula using induction.

5.1 Proof of the Binomial Theorem by Induction

Proof 5.5. We will prove the binomial theorem using mathematical induction.

Base Case: For n = 0, the binomial theorem states that $(a + b)^0 = 1$. This is true since any number raised to the power of 0 is equal to 1.

Inductive Hypothesis: Assume that the binomial theorem holds for some positive integer k, i.e., $(a+b)^k = \sum_{i=0}^k {k \choose i} a^{k-i} b^i$.

Inductive Step: We need to show that the binomial theorem holds for k+1, i.e., $(a+b)^{k+1} = \sum_{i=0}^{k+1} \binom{k+1}{i} a^{k+1-i} b^i$.

Expanding $(a+b)^{k+1}$ using the distributive property, we get:

$$(a+b)^{k+1} = (a+b)(a+b)^k$$

Using the inductive hypothesis, we can rewrite this as:

$$(a+b)^{k+1} = (a+b) \left(\sum_{i=0}^{k} {k \choose i} a^{k-i} b^i \right)$$

Expanding the product, we have:

$$(a+b)^{k+1} = \sum_{i=0}^{k} {k \choose i} a^{k+1-i} b^i + \sum_{i=0}^{k} {k \choose i} a^{k-i} b^{i+1}$$

Now, let's focus on the terms in the second sum. We can rewrite them as:

$$\sum_{i=0}^{k} {k \choose i} a^{k-i} b^{i+1} = \sum_{i=1}^{k+1} {k \choose i-1} a^{k+1-i} b^{i}$$

Combining the two sums, we get:

$$(a+b)^{k+1} = \sum_{i=0}^{k+1} \left(\binom{k}{i} + \binom{k}{i-1} \right) a^{k+1-i} b^i$$

Using the lemma $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$, we can simplify the expression further:

$$(a+b)^{k+1} = \sum_{i=0}^{k+1} {k+1 \choose i} a^{k+1-i} b^i$$

This completes the inductive step.

By the principle of mathematical induction, the binomial theorem holds for all positive integers n.

Therefore, the binomial expansion formula

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i$$

is proven.

6 Last Property of \mathbb{R}

Given any bounded non-empty subset $E\subseteq\mathbb{R},$ there exists a supremum (the least upper bound). (continued next lecture)