0.2. 0050/51193

BASF Aktiengesellschaft

08 February 2001 NAE19991202US IB/AR/els

We claim:

- A dividing walk column divided in the middle region into a feed section and an offtake section by a dividing wall and having as segments
 - a) an upper column region,
 - b) an enrichment section of the feed section,
 - c) a stripping section of the feed section,
 - d) an upper part of the offtake section,
 - e) a lower part of the offtake section,
 - f) an intermediate region of the feed section,
 - g) an intermediate region of the offtake section and
 - h) a lower column region,

where the dividing wall is located vertically between the segments b) and d and between the segments c) and e), the segments b), d), c) and e) have separation-active internals and the cross-sectional area A_b of the segment b)) is at least 10% smaller than the cross-sectional area A_c of the segment c) is at least 10% greater than the cross-sectional area A_c of the segment c) is at least 10% greater than the cross-sectional area A_c of segment e).

09782305.021401

- 2. A dividing wall column as claimed in claim 1, wherein the cross-sectional area A_b of the segment b) is at least 40%, preferably at least 60%, smaller than the cross-sectional area A_d of segment d).
- 3. A dividing wall column as claimed in claim 1, wherein the cross-sectional area $A_{\rm c}$ of the segment c) is at least 40%, preferably at least 60%, greater than the cross-sectional area of segment e).
- 4. A dividing wall column as claimed in claim 1, wherein the dividing wall is arranged obliquely between the segments f) and g) and forms an angle of from 25 to 75°, preferably from 55 to 65°, to the horizontal.
- 5. A dividing wall column as claimed in claim 1, wherein the operating pressure P is in the range from 0.0005 to 10 bar and the calculated ratios of the cross-sectional areas A'_b/A'_d and A'_c/A'_e are given by the following relationships

$$\frac{\mathbf{A'}_{\mathbf{b}}}{\mathbf{A'}_{\mathbf{d}}} = \left(\frac{\mathbf{m}_{\mathbf{s,b}}}{\mathbf{m}_{\mathbf{s,d}}}\right) \times \left(\frac{\mathbf{m}_{\mathbf{i,b}}}{\mathbf{m}_{\mathbf{i,d}}}\right)^{\mathbf{C}}$$

$$\frac{\mathbf{A'_c}}{\mathbf{A'_e}} = \left(\frac{\mathbf{m_{s,c}}}{\mathbf{m_{s,e}}}\right) \times \left(\frac{\mathbf{m_{i,c}}}{\mathbf{m_{i,e}}}\right)^{C}$$

where A_{b}^{\prime} , A_{d}^{\prime} , A_{c}^{\prime} , A_{e}^{\prime} are the cross-sectional areas of the segments b,d,c,e provided for the calculation; $m_{s,b}$, $m_{s,d}$, $m_{s,c}$, $m_{s,e}$ are the volume flows of gas through the segments b,d,c,e, measured in m^{3}/h ; $m_{i,b}$, $m_{i,d}$, $m_{i,c}$, $m_{i,e}$ are the volume flows of liquid through the segments b,d,c,e, measured in m^{3}/h , and the exponent C is obtained as operating-pressure-dependent variable from the empirically determined function shown in Fig. 3, and the calculated ratios $A_{b}^{\prime}/A_{d}^{\prime}$ and $A_{c}^{\prime}/A_{e}^{\prime}$ deviate from the corresponding, actual ratios A_{b}^{\prime}/A_{d} and A_{c}^{\prime}/A_{e} by not more than 30%, preferably not more than 20%.

- 6. A dividing wall column as claimed in claim 1, wherein the operating pressure is from 0.0005 to 0.02 bar and liquid distributors in which the liquid predistribution occurs by the bank-up principle and the downstream fine liquid distribution occurs by the capillary principle are used.
- A dividing wall column as claimed in claim 1, wherein ordered packing having a cross-channel structure is used as separation-active internals.
- 8. A dividing wall column as claimed in claim 1, wherein ordered packing having a cross-channel structure is used as separation-active internals and the uppermost layer of packing below the liquid distributor is aligned so that the individual layers are aligned parallel to the dividing wall.

9. A process for isolating pure ethylhexyl p-methoxycinnamate by distillation using a dividing wall column as claimed in any of claims 1 to 8, wherein the feed mixture introduced comprises from 70 to 95%, preferably from 75 to 90%, of ethylhexyl p-methoxycinnamate as intermediate-boiling desired product.