		Wal		of Engineerin		li				
			AY	2022-23						
			Course	Information						
Progra	amme		B.Tech. (Comput	er Science and engi	neering)					
Class,	Semester		Final Year B. Tech., Sem VII							
Course Code			5CS451							
Cours	e Name		Elective 5 Lab-High Performance Computing Lab							
Desire	d Requisi	tes:	Data structures, B	Basic Programming	knowledge	e				
			· · · · · · · · · · · · · · · · · · ·							
	Teaching	Scheme	Examination Scheme (Marks)							
Practi	cal	2 Hrs/ week	LA1	LA2	Lab E	SE	Total			
Interaction		-	30	30	40		100			
			Credits: 1							
			Cours	e Objectives						
1	To prov	ide basics of pa	rallel architecture	es						
2	To prov	ide basics of pa	rallel algorithm o	lesign and analysi	S					
3	To prov	ide basics of pa	rallel programmi	ng platforms						
4										
			` /	with Bloom's Taxo	onomy Le	vel				
At the	end of the	course, the stud	ents will be able to	,						
CO		Cour		Bloom's Taxonomy	Bloom's Taxonomy					
		Cour		Level	Description					
CO1	Comparison of different parallel architectures and performance evaluation Understa									
CO2	To measure performance of model using different metrics						Apply			
CO3	To design a parallelization strategy for computing patterns on different hardware and using different parallel computing languages.						Create			

List of Experiments / Lab Activities/Topics

List of Topics(Applicable for Interaction mode):

List of Lab Activities:

- A. Implementation of following tasks using OpenMP.
 - 1. Implementation of sum of two lower triangular matrices.
 - 2. Implementation of Matrix-Matrix Multiplication.
 - 3. Implementation of dot product
 - 4. Implementation of Prefix sum
- B. Implementation of following tasks using MPI.
 - 5. Implementation of Matrix-Vector Multiplication.
 - 6. Implementation of Matrix-Matrix Multiplication.
 - 7. Implementation of 2D Convolution
 - 8. Implementation of dot product
 - 9. Implementation of Prefix sum
- C. Implementation of following tasks using CUDA.
 - 10. Implementation of Matrix-matrix Multiplication using global memory.
 - 11. Implementation of Matrix-Matrix Multiplication using shared memory.
 - 12. Implementation of Histogram
 - 13. Implementation of Odd even sort
 - 14. Implementation of Prefix sum
 - 15. Implement 2D Convolution using shared memory
- D. Performance evaluation of following computations using open source libraries or OpenACC compare to sequential and explicit parallel implementation
 - 16. Implementation of Matrix-Matrix multiplication using OpenACC MKL, and cuBLAS. Compare their performance with OpenMP based implementation from assignment no.2, 10 and 11.

Textbooks						
1	Zbigniew J. Czech, Introduction to Parallel Computing, Cambridge University Press, 2016.					
2	Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing (Vol.					
	110). Redwood City, CA: Benjamin/Cummings.					
3	Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel					
	programming in OpenMP. Morgan kaufmann.					
4	Cheng, J., Grossman, M., & McKercher, T. (2014). Professional CUDA c programming. John					
_ +	Wiley & Sons.					
	References					
1	Michael Quinn, Parallel Computing: Theory and Practice, McGrawHill Publishers, July 2017.					
2	Arch Robison, James Reinders, and Michael Macoul, Structured Parallel Programming: Patterns					
2	for Efficient Computation, Morgan Kaufman, Elsevier, 2012.					
	Useful Links					
1						

CO-PO Mapping														
	Programme Outcomes (PO)									PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				1	1								1	1
CO2				2	2								2	1
CO3				2	2								2	1

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks		
	Lab activities,		During Week 1 to Week 8			
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30		
	journal		Week 8			
	Lab activities,		During Week 9 to Week 16			
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30		
	journal		Week 16			
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19			
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40		
	performance	applicable	Week 19			

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.