

Lecture 13 – RLC circuit 3

Dr. Aftab M. Hussain,

Associate Professor, PATRIOT Lab, CVEST

- We use the concept of superposition
- Because we know the source-free, or "natural" response of a circuit, we can inactivate the sources and find that response for the initial conditions
- Then, we can obtain the response because of the addition of the sources
- Arithmetic addition of these responses provides the complete solution

- Initial values of the circuit at $t = 0^-$:
- It is assumed that the circuit is in this state for a long time
- Any oscillatory response is long gone
- Thus,

	$v(0^-)$	$i(0^-)$
Resistance	-150	-5
Inductance	0	5
Capacitance	150	0

- As soon as the unit voltage comes in, the currents (and voltages) change
- However, the current in the inductor and the voltage across the capacitor do not change
- Thus,

	$v(0^+)$	$i(0^+)$
Resistance	-30	-1
Inductance	120	5
Capacitance	150	4

 To get the initial conditions, we also need to know the derivatives of the currents and voltages across the elements

$$\frac{di_L}{dt}\Big|_{t=0^+} = \frac{v_L(0^+)}{L} = \frac{120}{3} = 40$$

$$\frac{dv_C}{dt}\Big|_{t=0^+} = \frac{i_C(0^+)}{C} = \frac{4}{1/27} = 108$$

	$\left. \frac{dv}{dt} \right _{t=0^+}$	$\left \frac{di}{dt} \right _{t=0^+}$
Resistance	-1200	-40
Inductance	-1092	40
Capacitance	108	-40

ecture 13

- With all these initial conditions, we can find any response
- For example, lets calculate $v_{\mathcal{C}}(t)$
- With the sources inactive, it is a series RLC circuit

$$\alpha=5$$
 and $\omega_0=3$

- Thus, it is an overdamped circuit with $s_1 = -1$ and $s_2 = -9$
- Thus, the natural response is:

$$f_n = A_1 e^{-t} + A_2 e^{-9t}$$

- For the forced response, we look at the circuit as $t \to \infty$
- We have: $v_C(\infty) = -v_R(\infty) = 150$
- Thus,

$$f_f = 150$$

Hence, the total response is:

$$v_C = f_n + f_f$$

$$v_C = 150 + A_1 e^{-t} + A_2 e^{-9t}$$

- We have, $v_C(0^+) = 150$
- Thus, $A_1 + A_2 = 0$

$$\frac{\frac{dv_C}{dt}}{\left.\frac{dv_C}{dt}\right|_{t=0^+}} = -A_1 e^{-t} - 9A_2 e^{-9t}$$

Thus,

$$A_1 = 13.5$$
 and $A_2 = -13.5$

• The complete response for the capacitor voltage is:

$$v_C = 150 + 13.5(e^{-t} - e^{-9t})$$

Complex frequency

- In the study of a circuit analysis, we are often presented with a circuit with a given input, and we are interested in the output response
- We realize that we can represent the voltages using single standard function of the form:

$$v(t) = \sum K e^{st}$$

 Here, we define a term "complex frequency", s, as having the form:

$$s = \sigma + j\omega$$

• Using this, we realize that we can obtain any arbitrary voltage function

Complex frequency

- For DC: s = 0
- For Exponential: $\omega = 0$
- For Sinusoidal: $v(t) = V_m \cos(\omega t + \theta)$ $v(t) = \frac{1}{2} V_m \left[e^{j(\omega t + \theta)} + e^{-j(\omega t + \theta)} \right]$ $v(t) = \left(\frac{1}{2} V_m e^{j\theta} \right) e^{j\omega t} + \left(\frac{1}{2} V_m e^{-j\theta} \right) e^{-j\omega t}$
- Thus, we have, $s_1=j\omega$, $s_2=-j\omega$ (complex conjugates), and $K_1=\frac{1}{2}V_me^{j\theta}$, $K_2=\frac{1}{2}V_me^{-j\theta}$ (complex conjugates)
- Exponentially damped: $v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$ $v(t) = \left(\frac{1}{2}V_m e^{j\theta}\right) e^{(\sigma + j\omega)t} + \left(\frac{1}{2}V_m e^{-j\theta}\right) e^{(\sigma j\omega)t}$
- Thus, we have, $s_1 = \sigma + j\omega$, $s_2 = \sigma j\omega$ (complex conjugates)

Frequency domain

- To go from a given input voltage function to the output, we need to solve the integrodifferential equations for the circuit, which is a tedious task even for a simple RLC circuit
- Any more complexity, and things will get out of hand
- Hence, we look at one of the most popular techniques to simplify our circuit analysis – The Laplace Transform
- Introduced by Pierre Simon Laplace, in 1785, to solve some of the problems being studied by the likes of Euler and Lagrange

The Laplace transform

• We transform the voltage function into its frequency domain form using the Laplace transform

$$F(s) = \int_{-\infty}^{\infty} e^{-st} f(t) dt$$

- For circuit analysis, we typically use the one-sided Laplace (assuming the circuit was "switched on" at t=0)
- Thus,

$$F(s) = \int_{0^{-}}^{\infty} e^{-st} f(t) dt$$

 Also, Laplace transform follows linearity, ie, the transform of the sum of two time-domain functions is the sum of their transforms

$$\mathcal{L}(af_{1}(t) + bf_{2}(t))$$

$$= a \int_{0^{-}}^{\infty} e^{-st} f_{1}(t) dt + b \int_{0^{-}}^{\infty} e^{-st} f_{2}(t) dt$$

$$= aF_{1}(s) + bF_{2}(s)$$

Also applies to the inverse Laplace:

$$\mathcal{L}^{-1}(aF_1(s) + bF_2(s)) = \mathcal{L}^{-1}(aF_1(s)) + \mathcal{L}^{-1}(bF_2(s))$$

$$= af_1(t) + bf_2(t)$$

