Lab 6

Miles Lucas

November 2, 2017

1 IRAS Sources around KR 140

Output table from ds9 searching around $2^h20^m12.589^s$ $61^{\circ}6'3.255''$ within a 15' rectangle filtered for IRAS sources.

RA (deg)	DEC (deg)	Main ID
02 15 39.7	$+60\ 45\ 58$	02156 + 6045
$02\ 15\ 42.8$	$+60\ 53\ 28$	02157 + 6053
$02\ 16\ 05.1$	$+60\ 57\ 38$	02160 + 6057
$02\ 16\ 33.0$	$+60\ 53\ 29$	02165 + 6053
$02\ 16\ 50.7$	$+60\ 52\ 12$	02168 + 6052
$02\ 17\ 08.7$	$+60\ 58\ 18$	02171 + 6058
$02\ 17\ 26.0$	$+60\ 52\ 17$	02174 + 6052

The IDs of these sources were then used in a VizieR query of the IRAS catalogue of Point Sources, Version 2.0 (IPAC 1986).

```
--- output format : csv

SELECT "II/125/main".IRAS,

"II/125/main" .BA1950,

"II/125/main" .DE1950,

"II/125/main" .Fnu_12,

"II/125/main" .Fnu_12 ,

"II/125/main" .Fnu_25 ,

"II/125/main" .e_Fnu_25 ,

"II/125/main" .Fnu_60 ,

"II/125/main" .Fnu_60 ,

"II/125/main" .e_Fnu_60 ,

"II/125/main" .e_Fnu_100 ,

"II/125/main" .e_Fnu_100

FROM "II/125/main" .IRAS LIKE '02156+6045' OR

"II/125/main" .IRAS LIKE '02157+6053' OR

"II/125/main" .IRAS LIKE '02165+6057' OR

"II/125/main" .IRAS LIKE '02168+6052' OR

"II/125/main" .IRAS LIKE '02168+6052' OR

"II/125/main" .IRAS LIKE '02171+6058' OR

"II/125/main" .IRAS LIKE '02171+6058' OR

"II/125/main" .IRAS LIKE '02171+6058' OR
```

From this query the following table was created. Note the errors are whole number percentage errors (ie 25 means 25% error on the given measurement)

IRAS	$F_{\nu,12}$	$\epsilon_{F_{ u,12}}$	$F_{\nu,25}$	$\epsilon_{F_{ u,25}}$	$F_{\nu,60}$	$\epsilon_{F_{ u,60}}$	$F_{\nu,100}$	$\epsilon_{F_{ u,100}}$
"02174+6052"	0.8799	6	2.363	6	32.01	0	127.9	0
"02156 + 6045"	0.2729	0	0.3631	13	3.601	18	44.14	0
"02157 + 6053"	0.8217	16	1.309	13	21.8	16	215.1	0
"02168 + 6052"	2.157	24	2.179	22	32.01	0	127.9	14
"02165 + 6053"	0.3451	25	1.719	15	1.85	0	215.1	0
"02171 + 6058"	0.3587	15	1.84	6	11.61	10	63.52	17
"02160+6057"	2.403	16	2.99	20	47.37	20	215.1	16

From these values I created a color plot, where

$$x = \log_{10} \frac{F_{\nu,60}}{F_{\nu,100}} \tag{1}$$

$$\sigma_x = \frac{1}{100 \ln 10} \sqrt{\epsilon_{F_{\nu,60}}^2 + \epsilon_{F_{\nu,100}}^2} \tag{2}$$

$$y = \log_{10} \frac{F_{\nu,25}}{F_{\nu,12}} \tag{3}$$

$$\sigma_y = \frac{1}{100 \ln 10} \sqrt{\epsilon_{F_{\nu,25}}^2 + \epsilon_{F_{\nu,12}}^2} \tag{4}$$

I also made a spectrum plot shown in . Using this, I integrated to find the total infrared flux to be 239 jy. Using this and an assumed distance of 2.3 kpc I can estimate the integrated flux over the whole star and find its luminosity using Equation 5. The luminosity I have estimated is $7.50\times10^{18}\,\mathrm{W}$ or $1.95\times10^{-8}\,\mathrm{L}_\odot$

$$L = 4\pi D^2 F \tag{5}$$

2 KR 140 in the submm

In the submm photo there is a clump around i = +133.436, b = -0.022 that does not correspond with any of the IRAS sources

3 A 2MASS View of an IRAS Source

From the 2MASS image server, I found a list of point sources within 1' of i = +133.16, b = 0.040 shown in section 3. Using intrinsic values from section 3, I plotted the color ratios shown in section 3.

RA	DEC	2MASS	J	ϵ_J	Н	ϵ_H	K	ϵ_K
35.235414	61.062099	02205649+6103435	15.08	0.062	14.068	0.084	13.709	0.059
35.226056	61.055042	02205425 + 6103181	16.144	0.082	15.66	0.137	15.213	0.137
35.214326	61.057152	02205143 + 6103257	16.782	0.17	15.699	0.132	15.6	0.188
35.213739	61.054695	02205129 + 6103169	16.626	0.131	15.532	0.115	15.488	0.17
35.2113	61.057529	$02205071\!+\!6103271$	16.429	0.118	15.743	0.152	15.233	0.136
35.201293	61.071232	02204831 + 6104164	17.504		15.953	0.161	15.166	0.14
35.199207	61.069725	02204780 + 6104110	16.347	0.115	15.669	0.137	15.023	
35.231054	61.064381	02205545 + 6103517	16.801	0.151	16.055	0.193	15.355	0.174
35.22621	61.071335	02205429 + 6104168	15.744	0.06	14.748	0.064	14.127	0.056

Sp.	V-K	J-K	H-K	K-L	K-M
06-8	-0.93	-0.21	-0.05	-0.04	
о9	-0.89	-0.19	-0.05	-0.03	
09.5	-0.87	-0.18	-0.05	-0.03	
b0	-0.85	-0.17	-0.05	-0.03	
b0.5	-0.79	-0.15	-0.04	-0.02	
b1	-0.76	-0.14	-0.14	-0.02	
b2	-0.67	-0.13	-0.04	-0.02	-0.08
b3	-0.57	-0.11	-0.03	-0.02	-0.07
b4	-0.5	-0.1	-0.03	-0.02	-0.06
b5	-0.43	-0.08	-0.02	-0.01	-0.05
b6	-0.37	-0.07	-0.02	-0.01	-0.04
b7	-0.3	-0.05	-0.02	-0.01	-0.03
b8	-0.25	-0.04	-0.01	-0.01	-0.02
b9	-0.14	-0.02	-0.01	0	-0.01
a0	0	0.01	0	0	0
a1	0.06	0.02	0	0	0
a2	0.13	0.04	0.01	0	0
a3	0.2	0.05	0.01	0.01	0
a4	0.28	0.07	0.02	0.01	-0.01
a5	0.35	0.09	0.02	0.01	-0.01
a6	0.4	0.1	0.02	0.01	-0.01
a7	0.45	0.12	0.02	0.01	-0.01
a8	0.56	0.14	0.03	0.02	-0.02
a9	0.68	0.17	0.04	0.02	-0.02
f0	0.79	0.2	0.04	0.02	-0.02
f2	0.93	0.24	0.05	0.03	-0.03
f5	1.01	0.26	0.06	0.03	-0.03
f8	1.12	0.29	0.06	0.03	-0.03
g0	1.22	0.31	0.07	0.04	-0.03
g3	1.49	0.37	0.08	0.04	-0.04
g8	1.6	0.41	0.09	0.05	-0.04
k0	1.75	0.47	0.1	0.05	-0.04
k1	2	0.54	0.11	0.05	-0.04
k2	2.25	0.62	0.13	0.06	
k3	2.5	0.67	0.14	0.07	
k4	2.75	0.72	0.15	0.08	
k5	3	0.77	0.16	0.1	
m0	3.25	0.83	0.18	0.13	
m1	3.5	0.86	0.19	0.15	
m2	3.75	0.89	0.21	0.15	
m3	4	0.92	0.26	0.16	
m4	4.25	0.9	0.28	0.16	
m5	4.5	0.9	0.29	0.18	
m6	4.75	0.88	0.3		
m7	5	0.89	0.31		
m8	5.25	0.9	0.33		
	5.5	0.92	0.34		
	5.75	0.95	0.36		
	6	0.98	0.37		
	6.25	1.01	0.38		
	6.5	1.05	0.4		
	6.75	1.09	0.41		
	7	1.11	0.42		
	7.25	1.14	0.43		

4 Identifying YSOs using 2MASS Data