

32031 Feedback Quiz, 2022/23, Week 07: The check matrix and the dual code

Open-book. 10–15 minutes. Not for credit. To be marked in class.

Also at https://is.gd/math32031

Recall that "H is a check matrix for C" means the same as "H is a generator matrix for C^{\perp} ".

Question 1 \clubsuit Select all statements which are true for *all* linear codes *C*. If false, think of a counterexample:

- For all matrices H, if H is a check matrix for C, then $\underline{c}H^T = \underline{0}$ for all $\underline{c} \in C$
- \bigcap For all matrices H, if $\underline{c}H^T = \underline{0}$ for all $\underline{c} \in C$, then H is a check matrix for C
- For all matrices H, if H is a check matrix of C, then H is of the form $[-A^T|I_{n-k}]$ for some matrix A

Now consider the ternary linear code C generated by the matrix $G = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$.

Question 2 \clubsuit Find an example of a check matrix H for the code C:

$$H = \begin{bmatrix} \Box & \Box & \Box & \Box \\ \Box & \Box & \Box & \Box \end{bmatrix}$$
.

Bring H to standard form to obtain H':

$$H' = \begin{bmatrix} \Box & \Box & \Box & \Box \end{bmatrix}$$
.

Calculate the following matrix products:

$$GH^T = egin{bmatrix} linesquigart lines$$

Now select all the statements and explanations that you agree with.

- \bigcap The fact that $GH^T = 0$ tells us that C is self-orthogonal (and self-dual, because n = 2k)
- \bigcap The fact that $GG^T = 0$ tells us that C is self-orthogonal (and self-dual, because n = 2k)
- \bigcirc Since the check matrix H found above is not equal to G, the code C is not self-dual
- \bigcap H' is also a check marix for G, and H'=G which tells us that $C^{\perp}=C$

Also at https://is.gd/math32031