

Механико-математический факультет

Алгебра, 1 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Студент: Молчанов Вячеслав

Группа: 108

Контакт: Мой телеграм для связи

Содержание

1 Система линейных уравнений

1.1 Матрица. Основные понятия

Определение. Матрица A размера $m \times n$ - это прямоугольная таблица с m строками и n столбцами:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} - элемент матрицы и индексы:

- \bullet i номер строками
- \bullet j номер столбца

 $M_{m \times n}(\mathbb{R})$ - Множество всех матриц размера $m \times n$ с элементами из \mathbb{R}

Матрица $m \times 1$ называется столбцом:

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$

Если $A=(a_{ij})$ - квадратная, $a_{ij}=0 \ \forall i\neq j$, то A называется диагональной.

$$A = \begin{pmatrix} a_{11} & & & & 0 \\ & a_{22} & & & \\ & & \ddots & & \\ 0 & & & a_{nn} \end{pmatrix}$$

Если A - диагональная и $a_{ii}=1,$ то A называется единичной.

$$A = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & & \\ & & \ddots & & \\ 0 & & & 1 \end{pmatrix}$$

Если A - квадратная, то

•
$$A = \begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix}$$
 главная диагональ

$$ullet$$
 $A = \begin{pmatrix} & & & a_{1n} \\ & & \ddots & \\ a_{n1} & & \end{pmatrix}$ побочная диагональ

Определение. Если A - размера $m \times n, \, a_{ij} = 0 \,\, \forall i,j, \, {
m To} \,\, A$ называется нулевой.

1.2 Система линейных (алгебраических) уравнений

$$(*) \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n. \end{cases}$$

где $a_{ij}, b \in \mathbb{R}, x_1, ..., x_n$ - неизвестные.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} \\ \vdots \\ b_n \end{pmatrix}$$

A - матрица коэффициентов, a_{ij} называется коэффициентом СЛУ.

B - столбец свободных членов, b_j - свободный член.

Определение. Расширенная матрица (A|B). Набор чисел $x_1^0,...,x_n^0 \in \mathbb{R}$ называется решением системы (*), если подстановка этих чисел вместо неизвестных в (*) дает тождество в каждом уравнении. $(x_i^0 \longleftrightarrow x)$

Решить систему - это найти все решения системы. Любое конкретное решение называется частным.

Определение. Если СЛУ имеет решение, то она называется совместной, иначе - несовместной.

Определение. Совместная система, имеющая одно решение, называется определенной, иначе - неопределенной (более одного решения).

1.3 Элементарные преобразования над СЛУ

Определение. Элементарные преобразования над СЛУ:

- 1. Прибавить к одному уравнению другое уравнение, умноженное на число $\lambda \in \mathbb{R};$
- 2. Поменять местами два уравнения;
- 3. Умножить уравнение на ненулевое число $\mu \in \mathbb{R}$.

Утверждение. Эти преобразования обратимы.

Определение. Две системы линейных уравнений называются эквивалентными, если их множества решений совпадают.

Утверждение. Если одна СЛУ получена из другой СЛУ с помощью конечного числа элементарных преобразований, то эти системы эквивалентны.

Доказательство.

 $\Longrightarrow AX = B$ - исходная система, $\tilde{A}X = \tilde{B}$ - преобразованная система. Пусть $z_1,...,z_n$ - некоторое решение AX = B. Будем рассматривать $\tilde{A}X = \tilde{B}$, в ней ЭП III типа умножают строку на μ , имеем:

$$a_{i1}x_1 + \dots + a_{in}x_n = b_i$$
 в $AX = B$
 $\mu a_{i1}x_1 + \dots + \mu a_{in}x_n = \mu b_i$ в $\tilde{A}X = \tilde{B}$

Выносим μ из второго уравнения:

$$\mu(a_{i1}x_1 + \dots + a_{in}x_n) = \mu b_i$$

Получаем, что $z_1,...,z_n$ - решение для $\tilde{A}X=\tilde{B}$. Для II типа ЭП очевидно. Теперь рассмотрим I тип, будем к i-ой строчке прибавлять j-ую с коэффициентом λ , получаем:

$$(a_{i1} + \lambda a_{j1})x_1 + \dots + (a_{in} + \lambda a_{jn})x_n =$$

$$= a_{i1}x_1 + \lambda a_{j1}x_1 + \dots + a_{in}x_n + \lambda a_{jn}x_n =$$

$$= a_{i1}x_1 + \dots + a_{in}x_n + \lambda(a_{j1}x_1 + \dots + a_{jn}x_n) = b_i + \lambda b_j$$

Таким образом, любое решение старой СЛУ - это и решение новой, то есть множество решений не уменьшилось. (со столбцами все то же самое)

В обратную сторону аналогично (для доказательства эквивалентности), используя обратимость элементарных преобразований.

Мораль в том, что мы можем работать с расширенной матрицей (A|B).

1.4 Элементарные преобразования над матрицами

Элементарные преобразования над строками:

$$A = egin{pmatrix} \overline{a_1} \\ \overline{a_2} \\ \vdots \\ \overline{a_n} \end{pmatrix}, \;$$
где $\overline{a_i} -$ строка

- $\ni\Pi1: \overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}$
- $\ni \Pi 2: \overline{a_i} \longleftrightarrow \overline{a_i}$
- $\ni \Pi 3: \overline{a_i} \to \mu \overline{a_i}, \ \mu \neq 0$

Определение. Лидер строки (ведущий элемент) - это 1-й ненулевой элемент слева.

Пример:
$$(0, 0, 3, 4, 5, 0, 0, 7)$$

Определение. Матрица A размера $m \times n$ называется ступенчатой, если:

- 1. Номера лидеров ненулевых строк строго возрастают с увеличением номера строки;
- 2. Все нулевые строки стоят внизу (в конце).

Теорема. Любую матрицу A размера $m \times n$ за конечное число элементарных преобразований над строками можно привести к ступенчатому виду.

Доказательство. Индукция по n:

Если A - нулевая, то A - ступенчатого вида. Если $A \neq 0$: найдем первый ненулевой столбец (начиная слева). Пусть j - номер первого ненулевого столбца

и $a_{ij} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 & & \\ \vdots & \vdots & & \\ & & a_{ij} & \\ \vdots & \vdots & & \\ 0 & 0 & & \end{pmatrix}$$

Меняем 1-ю и i-ю строку местами и получаем, что a_{ij} стал лидером первой строки. Считаем, что сразу $a_{1j} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 & a_{ij} & * \\ \vdots & \vdots & * & * \\ & & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots \end{pmatrix}$$

Вычитаем из каждой k-й строки, начиная со 2-ой, 1-ю строку, умноженную на число $\frac{a_{kj}}{a_{1j}}$. Получаем вид:

$$\tilde{A} = \begin{pmatrix} a_{ij} & * & \cdots & * \\ \hline 0 & * & \cdots & * \\ \vdots & * & \cdots & * \\ 0 & * & \cdots & * \end{pmatrix}$$

К правой части матрицы (без 1 столбца и 1 строки) применяем индукцию и приводим матрицу к ступенчатому виду.

Замечание. Этот метод называется методом Гаусса.

1.5 Решение СЛУ методом Гаусса

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Элементарные преобразования над $AX = B \iff$ элементарные преобразования над (A|B).

СЛУ AX = B ступенчатая $\Longrightarrow (A|B)$ имеет ступенчатый вид.

Утверждение. Решение СЛУ ступенчатого вида.

Пусть AX = B - ступенчатая

$$(A|B) = \begin{pmatrix} a_{11} & & & & b_{1} \\ & a_{22} & & & \vdots \\ & & \ddots & & \vdots \\ & & & a_{sn} & b_{s} \\ & & & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & b_{\widetilde{s}} \end{pmatrix}$$

 \widetilde{s} - ненулевые строки расширенной матрицы

s - число ненулевых строк

$$\widetilde{s} = \begin{bmatrix} s \\ s+1 \end{bmatrix}$$

1 случай: $\widetilde{s} \neq s$ ($\widetilde{s} = s + 1$)

Рассмотрим последнюю ненулевую строку:

$$\begin{pmatrix} a_{11} & & & & b_1 \\ & a_{22} & & & \vdots \\ & & \ddots & & \vdots \\ & & a_{sn} & b_s \\ 0 & \cdots & \cdots & 0 & b_{s+1} \end{pmatrix}$$

 $0x_1 + ... + 0x_n = b_{s+1} \Longrightarrow$ решений у этого уравнения нет \Longrightarrow СЛУ не имеет решения, т.е. несовместна.

Далее $\widetilde{s} = s$

Заметим, что $\widetilde{s} = s \le n$ (п-количество столбцов)

2случай: $\widetilde{s}=s=n$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ & \ddots & \vdots \\ a_{nn}x_n = b_n \end{cases}$$

Такая СЛУ называется строготреугольной.

Из n-го уравнения однозначно находится $x_n = \frac{b_n}{a_{nn}}$ Подставляем во все оставшиеся уравнения $x_n = \frac{b_n}{a_{nn}} \Longrightarrow$ исключаем x_n . Получаем строго треугольную систему с меньшим количеством неизвестных.

Далее из (n-1)-го уравнения находим x_{n-1} и т.д. \Longrightarrow СЛУ имеет единственное решение т.е. является определенной.

$$3$$
 случай: $\widetilde{s} \underbrace{<}_{\text{хотим}} n$

$$\begin{pmatrix} 0 & 0 & |\underline{a_{1k_1}} & * & \cdots & * & * \\ 0 & 0 & 0 & |\underline{a_{2k_2}} & * & \cdots & * & * \\ & & & \ddots & & & \vdots \end{pmatrix}$$

 $a_{1k_1},...,a_{sk_s}$ - лидеры;

 $x_{k_1},...,x_{k_s}$ - главные неизвестные (неизвестные, соответствующие лидерам) Оставшиеся неизвестные назовем свободными.

Перекинем в правую часть СЛУ слагаемые, соответствующие свободным неизвестным \Longrightarrow получаем относительно главных неизвестных строго треугольную СЛУ.

Как в случае 2, однозначно выражаются главные неизвестные через свободные \Longrightarrow с точностью до нумерации получаем:

$$\begin{cases} x_1 = c_{1,s+1}x_{s+1} + \dots + c_{1n}x_n + d_1 \\ \vdots \\ x_s = c_{s,s+1}x_{s+1} + \dots + c_{sn}x_n + d_s \end{cases}$$

Это выражение называется общим решением системы. Подставляя вместо свободных неизвестных конкретное число из \mathbb{R} , получаем значение для главных.

⇒ получаем все решения СЛУ

Если СЛУ имеет более одного решения - такая СЛУ называется неопределенной.

СЛУ
$$\widetilde{s} \neq s \qquad \qquad \widetilde{s} = s$$
 несовместна
$$\widetilde{s} = s = n \qquad \qquad \widetilde{s} = s \leq n$$
 определена не определена

Алгоритм. $AX = B \longmapsto (A|B) \sim (A_c|B_c) \longmapsto A_cX = B_c$

Определение. Матрица A имеет улучшенный ступенчатый вид, если выполнены следующие условия:

- 1. A ступенчатого вида
- 2. Все лидеры равны 1
- 3. В каждом столбце, где есть лидер $\neq 0$, все элементы равны 0

Утверждение. Любую матрицу A можно привести к улучшенному ступенчатому виду с помощью элементарных преобразований.

Рассмотрим последний лидер a_{sk_s} . Если $a_{sk_s} \neq 1$, то s-ю строку делим на a_{sk_s} и получаем, что $\widetilde{a_{sk_s}} = 1$.

Далее из всех строк вычитаем первую, умноженную на $a_{ik_s} \Longrightarrow \widetilde{a_{ik_s}} = 0$ и т.д.

Определение. СЛУ AX=B называется однородной, если B=0, т.е. все свободные члены нулевые.

Утверждение. Однородная система всегда совместна.

Доказательство. AX=0 всегда имеет решение $x_1=0,...,x_n=0$ (тривиальное решение)

Следствие. Однородная СЛУ, в которой число уравнений < числа неизвестных, имеет нетривиальное решение.

Доказательство. (в обозначениях из метода Гаусса)

Т.к. система совместна (т.к. B=0), то $s=\widetilde{s}$

С другой стороны $s = \overline{s} \le$ число исходных уравнений < n \Longrightarrow $s = \widetilde{s} < n \Longrightarrow$ СЛУ не определена \Longrightarrow \exists более одного решения \Longrightarrow \exists нетривиальное решение.

2 Векторные пространства

2.1 Аксиомы элементов векторного пространства

Мы рассматриваем векторные пространства над полем \mathbb{R} .

Определение. Векторным пространством над \mathbb{R} называют множество элементов V, на котором введены операции сложения и умножения на числа из \mathbb{R} :

1.
$$\forall x, y \in V \Longrightarrow x + y = z \in V$$

2.
$$\forall \lambda \in \mathbb{R}, \forall x \in V \Longrightarrow \lambda x = w \in V$$

Удовлетворяет следующим свойствам:

1.
$$x + y = y + x$$
 (коммутативность)

2.
$$(x + y) + z = x + (y + z)$$
 (ассоциативность)

- 3. $\exists \, 0 \in V : \forall x \in V : x + 0 = 0 + x = x$ (нейтральный элемент относительно сложения)
- 4. $\forall x \in V : \exists x' : x + x' = 0$ (противоположный элемент)
- 5. $\forall \lambda \in \mathbb{R}, \forall x,y \in V: \lambda(x+y) = \lambda x + \lambda y$ (дистрибутивность умножения относительно сложения)
- 6. $\forall \lambda, \mu \in \mathbb{R}, \forall x \in V : (\lambda + \mu)x = \lambda x + \mu x$ (дистрибутивность сложения относительно умножения)
- 7. $\forall \lambda, \mu \in \mathbb{R}, \forall x \in V : \lambda(\mu x) = (\lambda \mu)x$ (ассоциативность умножения)
- 8. $\forall x \in V : 1 \cdot x = x$ (нейтральный элемент относительно умножения)

Определение. Любой элемент векторного пространства называется вектором.

Примеры векторных пространств:

- 1. V^2 Геометрические векторы на плоскости.
- 2. V^3 Геометрические векторы в пространстве.
- 3. $\mathbb{R}^n = \{(a_1, ..., a_n) \mid a_i \in \mathbb{R}\}$ арифметические векторы.

"+":
$$(a_1,...,a_n)+(b_1,...,b_n)=(a_1+b_1,...,a_n+b_n)$$
"×": $(a_1,...,a_n)\times\lambda=(a_1\lambda,...,a_n\lambda)$

Упражнение. Проверьте, что \mathbb{R}^n (арифметическое пространство строк) с этими операциями является векторным пространством.

2.2 Следствия

1. Нулевой вектор единственный.

Доказательство. Пусть существуют два $\overline{0}_1, \overline{0}_2 \in V$, тогда:

$$\overline{0}_2 = \overline{0}_1 + \overline{0}_2 = \overline{0}_2 + \overline{0}_1 = \overline{0}_1$$

2. $\forall x \in V$ противоположный вектор единственный.

Доказательство. Пусть существуют два x_1, x_2 - различные элементы, являющиеся противоположными к вектору x, тогда:

$$\overline{0} + x_2 = (x_1 + x) + x_2 = x_1 + (x + x_2) = x_1 + \overline{0}$$

3. $\forall \lambda \in \mathbb{R} : \lambda \cdot \overline{0} = \overline{0}$.

Доказательство.

$$\lambda \cdot \overline{0} = \lambda \cdot (\overline{0} + \overline{0}) = \lambda \cdot \overline{0} + \lambda \cdot \overline{0}$$

Прибавим к обеим частям уравнения $\lambda\cdot\overline{0}=\lambda\cdot\overline{0}+\lambda\cdot\overline{0}$ противоположный к $\lambda\cdot\overline{0},$ тогда:

$$\lambda \cdot \overline{0} + (-\lambda \cdot \overline{0}) = \lambda \cdot \overline{0} + \lambda \cdot \overline{0} + (-\lambda \cdot \overline{0})$$
$$\overline{0} = \lambda \cdot \overline{0}$$

4. $\lambda \cdot (-x) = -\lambda \cdot x$

Замечание. x - y := x + (-y).

5.
$$\lambda \cdot (x - y) = \lambda x - \lambda y$$

$$6. \ 0 \cdot x = \overline{0}$$

7.
$$(-1) \cdot x = -x$$

8.
$$(\lambda - \mu) \cdot x = \lambda x - \mu x$$

2.3 Векторные подпространства

Определение. Подмножество $U\subseteq V$ называется векторным подпространством, если:

- 1. $x, y \in U \Longrightarrow x + y \in U$
- 2. $\forall \lambda \in \mathbb{R}, \forall x \in U \Longrightarrow \lambda \cdot x \in U$
- 3. $U \neq \emptyset$

Замечание. 3 условие заменить на условие: $0 \in U$

⇐ очевидно.

$$\Longrightarrow$$
 если $U \neq \varnothing$, то $\exists x \in U \Longrightarrow$ по $2.: (-1) \cdot x \in U \Longrightarrow -x \in U \Longrightarrow x + (-x) \in U \Longrightarrow 0 \in U$

Утверждение. Любое векторное подпространство векторного пространства V само является векторным пространством относительно операций векторного пространства V.

Доказательство. Надо проверить определение. 1 и 2 свойство из операций векторного пространства означают, что в U заданы операции сложения и умножения на вещественное число. Проверка аксиом векторного пространства: 1,2,5,6,7,8 - выполнены для всех векторов из V, а значит и для всех векторов из U.

3,4 доказательство как в замечании:

$$\forall x \in U, \ \exists (-x) = (-1) \cdot x \in U, \ \overline{0} \in U, \ \text{т.к.} \ U \neq \varnothing$$

Примеры.

1. V^3, U - множество всех векторов из $V^3,$ параллельных фиксированной плоскости.

2. $\mathbb{R}^n, U = \{(a_1,...,a_n) \mid a_{2i} = 0\}$ - векторное подпространство $\widetilde{U} = \{(a_1,...,a_n) \mid a_{2i} = 1\}$ - не векторное подпространство, т.к. множество не замкнуто относительно сложения и умножения.

3. В любом векторном пространстве V есть такие подпространства, состоящие только из нулевого вектора. Такие подпространства и само пространство V называются несобственными подпространствами V (остальные называются собственными).

2.4 Линейная зависимость системы векторов

V - векторное пространство над полем $\mathbb R$

Определение. Линейной комбинацией векторов $v_1, ..., v_n \in V$ с коэффициентами $\lambda_1, ..., \lambda_n \in \mathbb{R}$ называется выражение вида:

$$\lambda_1 x_1 + \cdots + \lambda_n x_n$$

Говорят, что вектора $w \in V$ линейно выражаются через $(v_1, ..., v_n)$, если $\exists \lambda_1, ..., \lambda_n \in \mathbb{R} : w = \lambda_1 x_1 + \cdots + \lambda_n x_n$

Определение. Линейная комбинация $\lambda_1 x_1 + \cdots + \lambda_n x_n$ называется тривиальной, если $\lambda_1 = 0, ..., \lambda_n = 0$. Иначе - нетривиальной.

Определение. Система векторов $v_1, ..., v_n$ называется линейно зависимой (ЛЗ), если \exists нетривиальная линейная комбинация равная 0, (т.е. $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ не все равные 0) такая, что $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$. Иначе система называется линейно независимой (ЛНЗ), т.е. из любого такого равенства $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$ $\Longrightarrow (\lambda_1, ..., \lambda_n) = 0$.

Примеры. V^2 : $v_1 = i + j, v_2 = 2i, v_3 = 3i$ - линейно зависимая система, т.к.

$$1 \cdot (i+j) + (-\frac{1}{2}) \cdot (2i) + (-\frac{1}{3}) \cdot (3i) = 0$$
$$1 \cdot v_1 + (-\frac{1}{2}) \cdot v_2 + (-\frac{1}{3}) \cdot v_3 = 0$$

Свойства.

- 1. Система из одного вектора V_1 ЛЗ $\Longleftrightarrow V_1=0$
- 2. Система из 2-х векторов v_1 и v_2 ЛЗ \iff они пропорциональные, т.е. $v_1 = \lambda v_2, \ v_2 = \mu v_1.$

Пример. \mathbb{R}^n

Система
$$\underbrace{(1,0,0,...,0)}_{e_1},\underbrace{(0,1,0,...,0)}_{e_2},...,\underbrace{(0,0,0,...,1)}_{e_n}$$
 линейно независимая $\lambda_1e_1+\cdots+\lambda_ne_n=(0,...,0)\overset{e_2}{\Longleftrightarrow}(\lambda_1,...,\lambda_n)\overset{e_n}{=}0\Longleftrightarrow$ ЛНЗ

Лемма 1. (Критерий линейной зависимости)

Система векторов $v_1,...,v_n \in V, \ n>1$ - линейно зависима \iff хотя бы один вектор линейно выражается через оставшиеся.

Доказательство.

- \Longrightarrow По определению ЛЗ $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ не все нулевые: $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$. Без ограничения общности можем считать, что $\lambda_1 \neq 0$, тогда $v_1 = \frac{1}{\lambda_1}(-\lambda_2 v_2 \cdots \lambda_n v_n)$

Замечание. В лемме 1 нельзя «хотя бы один» заменить на «любой»! Пусть $v_1 \neq 0, v_2 = 0$ и v_1, v_2 - ЛЗ, т.к. $0 \cdot v_1 + 1 \cdot v_2 = 0$

Лемма 2. Пусть $v_1, ..., v_n \in V$ - ЛНЗ, тогда $w \in V$ линейно выражается через $v_1, ..., v_n \iff (w, v_1, ..., v_n)$ - ЛЗ.

Доказательство.

- $\Longrightarrow \exists \mu_1,...,\mu_n \in \mathbb{R} : w = \mu_1 v_1 + \cdots + \mu_n v_n \Longrightarrow$ по критерию ЛЗ система $\{w,v_1,...,v_n\}$ ЛЗ.
- ш Пусть система ЛЗ $\exists \lambda_0,...,\lambda_n \in \mathbb{R}$ не все нули, так что $\lambda_0 w + \lambda_1 v_1 + \cdots + \lambda_n v_n = 0,$ тогда:
 - 1. $\lambda_0=0$, то $\lambda_1v_1+\cdots+\lambda_nv_n=0$ нетривиальная линейная комбинация
 - 2. $\lambda_0 \neq 0 \Longrightarrow w = (-\frac{\lambda_1}{\lambda_0})v_1 + \cdots + (-\frac{\lambda_n}{\lambda_0})v_n$

Лемма 3. Если $v_1, ..., v_k \in V$ - ЛНЗ и вектор $w \in V$ линейно выражается через $v_1, ..., v_k \iff$ это выражение единственное.

Доказательство.

= Пусть выражается единственно. Допустим, $v_1, ..., v_k$ - ЛЗ $\Longrightarrow \exists \{\lambda_1, ..., \lambda_k\}$ не все нулевые, т.ч. $\lambda_1 v_1 + \cdots + \lambda_k v_k = 0$ Тогда если $w = \mu_1 v_1 + \cdots + \mu_k v_k$, то $w + 0 = (\mu_1 + \lambda_1) v_1 + \cdots + (\mu_k + \lambda_k) v_k$ другое разложение, противоречие.

 \implies Пусть $v_1, ..., v_k$ - ЛНЗ. Допустим, что существует два разложения:

$$w = \mu_1 v_1 + \dots + \mu_k v_k$$

$$w = \widetilde{\mu_1} v_1 + \dots + \widetilde{\mu_k} v_k$$

$$\mu_1 v_1 + \dots + \mu_k v_k = \widetilde{\mu_1} v_1 + \dots + \widetilde{\mu_k} v_k$$

$$v_1 (\mu_1 - \widetilde{\mu_1}) + \dots + v_n (\mu_n - \widetilde{\mu_n}) = 0$$
 T.к. v_1, \dots, v_k - ЛНЗ $\Longrightarrow (\mu_i - \widetilde{\mu_i}) = 0 \implies \mu_i = \widetilde{\mu_i} \ \forall i = \overline{1, k}$

Лемма 4.

- 1. Если какая-то подсистема векторов ЛЗ, то вся система ЛЗ.
- 2. Если система векторов ЛНЗ, то любая подсистема ЛНЗ.

Доказательство.

- 1. Пусть подсистема $v_1, ..., v_k$ системы $v_1, ..., v_k, ..., v_m$ ЛЗ $\Longrightarrow \exists \lambda_1, ..., \lambda_k$ не все равные нулю, т.ч. $\lambda_1 v_1 + \cdots + \lambda_k v_k = 0$ Положим $\lambda_{k+1} = 0, ..., \lambda_m = 0$ Тогда $\lambda_1 v_1, ..., \lambda_k v_k, ..., \lambda_m v_m = 0$ нетривиальная ЛК $\Longrightarrow \{v_1, ..., v_k, v_{k+1}, ..., v_m\}$ ЛЗ.
- 2. Следует из 1.

Лемма 5. (ОЛЛЗ)

Пусть $v_1,...,v_k \in V$, $w_1,...,w_m \in V$, причем каждый w_i линейно выражается через $v_1,...,v_k$, тогда если m>k, то $\{w_1,...,w_m\}$ - ЛЗ.

Доказательство. Пусть

$$\begin{cases} w_1 = c_{11}v_1 + \dots + c_{1k}v_k, \\ w_2 = c_{21}v_1 + \dots + c_{2k}v_k, \\ \vdots \\ w_m = c_{m1}v_1 + \dots + c_{mk}v_k, \end{cases}$$
где $c_{ij} \in \mathbb{R}$

Докажем, что \exists нетривиальная ЛК $w_1,...,w_m=0$. Для произвольных $\lambda_1,...,\lambda_m$ рассмотрим выражение:

$$\lambda_1 w_1 + \dots + \lambda_m w_m = \\ = \lambda_1 (c_{11} v_1 + \dots + c_{1k} v_k) + \dots + \lambda_m (c_{m1} v_1 + \dots + c_{mk} v_k) = \\ = (\lambda_1 c_{11} + \dots + \lambda_m c_{m1}) v_1 + \dots + (\lambda_1 c_{1k} + \dots + \lambda_m c_{mk}) v_k$$

Рассмотрим СЛУ с неизвестными $\lambda_1, ..., \lambda_m$ из k уравнений:

$$\begin{cases} c_{11}\lambda_1 + \dots + c_{m1}\lambda_m = 0, \\ \vdots \\ c_{1k}\lambda_1 + \dots + c_{mk}\lambda_m = 0. \end{cases}$$

Т.к. m>k и это ОСЛУ, в которой число уравнений < числа неизвестных, то эта система имеет нетривиальное решение $\lambda_1,...,\lambda_m$

$$\Longrightarrow \lambda_1 w_1 + \cdots + \lambda_m w_m = 0$$
 - это нетривиальная ЛК

$$\Longrightarrow w_1,...,w_m$$
 - $\Pi 3$.

2.5 Линейная оболочка множества S

V - векторное пространство над $\mathbb{R},\,S$ - подмножество: $S\subseteq V,\,\,S
eq\varnothing$

Утверждение. Множество всех ЛК $\lambda_1 s_1 + \cdots + \lambda_k s_k$, $\lambda_i \in \mathbb{R}$, $s_i \in S$ образует векторное подпространство в пространстве V.

Определение. Такое векторное подпространство называется линейной оболочкой множества $S \subseteq V$.

Обозначается: $\langle S \rangle$.

Примеры.

1.
$$\mathbb{R}^3$$
, $S = \{(1,0,0), (0,1,0)\}; \quad \langle S \rangle = \{(\lambda,\mu,0) \mid \lambda,\mu \in \mathbb{R}\}$

2.
$$V^3$$
, $S = \{i, j, i+j\}$

Определение. Если $V = \langle S \rangle$, то S называется порождающим множеством векторного пространства V. Говорят, что векторное пространство V порождается множеством S.

Определение. Если \exists конечное множество S, т.ч. $V = \langle S \rangle$, то V называется конечномерным (конечнопорожденным), иначе - бесконечномерным.

Пример.
$$\mathbb{R}^n = \langle (1,0,...,0),...,(0,...,0,1) \rangle$$

Лемма. (Переформулировка ОЛЛЗ) Пусть векторное пространство V пораждается k векторами. Тогда любые m>k векторов из V - ЛЗ.

2.6 Базис

V- конечномерное векторное пространство над $\mathbb R$

Определение 1. Система векторов $\{e_1, ..., e_n\} \subseteq V$ называется базисом векторного пространства V, если:

1.
$$\{e_1, ..., e_n\}$$
 - ЛНЗ

2.
$$V = \langle e_1, ..., e_n \rangle$$
, r.e. $\forall x \in V, \exists x_1, ..., x_n \in \mathbb{R} : x = x_1 e_1 + \cdots + x_n e_n$

Эти числа $x_1,...,x_n$ - называются координатами вектора x в базисе $\{e_1,...,e_n\}$

Определение 2. Система векторов $\{e_1, ..., e_n\} \subseteq V$ называется базисом векторного пространства V, если любой вектор $x \in V$ выражается через $\{e_1, ..., e_n\}$ единственным образом.

Утверждение. $(Oпр 1) \iff (Oпр 2)$

Доказательство. По лемме (??).

Дополнение: $\Longrightarrow \forall x \in V \; \exists x_1, \dots, x_n \in \mathbb{R} : x = x_1e_1 + \dots + x_ne_n$ - дано, где $\{e_1, \dots, e_n\}$ - ЛНЗ. Допустим, существует два различных разложения: $x = x_1e_1 + \dots + x_ne_n = x_1'e_1 + \dots + x_n'e_n$, тогда $(x_1 - x_1')e_1 + \dots + (x_n - x_n')e_n = 0$ - нетривиальная линейная комбинация $\Rightarrow \{e_1, \dots, e_n\}$ - ЛЗ - противоречие.

 \sqsubseteq Пусть существует единственное разложение для x и $\{e_1,\ldots,e_n\}$ - ЛЗ. Тогда $\exists \lambda_1,\ldots,\lambda_n$ (не все равны нулю): $\lambda_1e_1+\cdots+\lambda_ne_n=0$. Но при этом существует единственное разложение $x=x_1e_1+\cdots+x_ne_n$, тогда $x+0=(x_1+\lambda_1)e_1+\cdots+(x_n+\lambda_n)e_n$ - другое разложение - противоречие.

Теорема. Всякое конечномерное векторное пространство над \mathbb{R} обладает базисом. Более того, из любого конечного порождающего множества можно выбрать базис.

Доказательство. Пусть S - какое-то порождающее множество векторного пространства V.

Если S - ЛНЗ, то S - базис.

Если S - $\Pi 3$, то по критерию о $\Pi 3$ один из векторов s_1 множества S линейно выражается через остальные.

Тогда $S_1 = S \setminus \{s_1\}$ - конечное порождающее множество.

Т.к. S - конечное, то этот процесс прервется и мы получим ЛНЗ порождающую систему. \square

Теорема. В любом базисе конечномерного векторного пространства V над \mathbb{R} одно и то же число векторов.

Доказательство. Пусть есть два базиса $\{e_1,...,e_n\}$ и $\{f_1,...,f_m\}$ векторного пространства V и m>n. Тогда каждый вектор f_i выражается через $e_1,...,e_n$. По ОЛЛЗ: $\{f_1,...,f_m\}$ - ЛЗ $\Longrightarrow \{f_1,...,f_m\}$ - не базис \Longrightarrow противоречие. \square

Определение. Число векторов в базисе конечномерного векторного пространства V называется размерностью векторного пространства и обозначается: $\dim V$

Примеры.

- 1. $\dim V^2 = 2$
- 2. dim $\mathbb{R}^n = n$

Замечание. Если $V = \{0\}$, то dim V = 0 (базис систоит из \varnothing)

Утверждение. Пусть V- векторное пространство над \mathbb{R} , $\dim V = n, S \subseteq V$ Любые m > n векторов из S - ЛЗ. (по ОЛЛЗ)

 \implies в S \exists максимальная ЛНЗ подсистема (т.е. ничего нельзя добавить к этой подсистеме без нарушения ЛНЗ)

Лемма 6. Пусть V - n-мерное векторное пространство над \mathbb{R} , $S \subseteq V$. Тогда максимальная ЛНЗ система векторов из S образует базис в лин. оболочке $\langle S \rangle$

Доказательство. Пусть $\{s_1,...,s_k\}$ максимальная (по включению) ЛНЗ система в $S \Longrightarrow \forall s \in S \setminus \{s_1,...,s_k\} \Longrightarrow \{s,s_1,...,s_k\} - ЛЗ$. По Лемме $(\ref{eq:starteq}).\Longrightarrow s = \lambda_1 s_1 + \cdots + \lambda_k s_k$ Докажем, что $\{s_1,...,s_k\}$ - базис в $\langle S \rangle$.

- 1. ЛНЗ (очевидно)
- 2. $\forall x \in \langle S \rangle$: $x = x_1 s_1 + \dots + x_k s_k$

По определению линейной оболочки x линейно выражается через вектора из S. А каждый вектор из S линейно выражается через $\{s_1,...,s_k\}$.

Теорема. Пусть V - конечномерное векторное пространство над \mathbb{R} , тогда:

- 1. Любая максимальная ЛНЗ система векторов из V базис V;
- 2. Любую ЛНЗ систему векторов из V можно дополнить до базиса векторного пространства V.

Доказательство.

- 1. По лемме (??). $\langle S \rangle = V$
- 2. Пусть S ЛНЗ система векторов из V

Если $V = \langle S \rangle$, тогда S - базис.

Если $V \neq \langle S \rangle$, то $\exists s_1 \in V \setminus \langle S \rangle$

 $\Longrightarrow s_1$ линейно не выражается через $S \Longrightarrow (\Pi \text{о лемме ??.})$ $S_1 = S \cup \{s_1\}$ - ЛНЗ.

 \Longrightarrow Если $V=\langle S_1 \rangle$, то S_1 - базис, иначе $\exists s_2 \in V \setminus \langle S_1 \rangle$, и т.д.

Этот процесс прервется на конечном шаге, т.к. пространство V- конечное. (Если $\dim V \neq n$, то $\not \exists \ \ ЛН3$ системы с числом векторов > n)

Следствие. Пусть V - конечномерное векторное пространство над $\mathbb{R},$ тогда:

- 1. Любой ненулевой вектор можно дополнить до базиса;
- 2. Любые n ЛНЗ вектора в n-мерном пространстве V образуют базис.

3 Ранг

3.1 Ранг системы векторного пространства

Определение. Рангом системы векторов S, назовем $\dim \langle S \rangle$, т.е. число векторов в максимальной ЛНЗ системе из S.

A - матрица $m \times n$

$$A = \begin{pmatrix} \vdots \\ \vdots \\ \mathbb{R}^n \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbb{R}^m \end{pmatrix}$$

Определение. Рангом матрицы A называется ранг системы ее строк, т.е. максимальное число ЛНЗ строк матрицы.

3.2 Ранг матрицы

Определение. Ранг системы векторов $\{s_1, ..., s_n\}$ называется $\dim \langle s_1, ..., s_n \rangle$.

Определение. Рангом матрицы A размера $m \times n$ называется ранг системы её строк.

Определение. Две системы векторов $\{v_1,...,v_n\}$, $\{w_1,...,w_n\}$ называются эквивалентными, если каждый вектор v_i линейно выражается через $\{w_1,...,w_n\}$, а w_i через $\{v_1,...,v_n\}$.

Это условная эквивалентность: $\langle v_1, ..., v_n \rangle = \langle w_1, ..., w_n \rangle$

Утверждение. При элементарных преобразованиях над строками ранг матрицы A не изменяется.

Доказательство.

т.е. система строк A эквивалентна системе строк $\widetilde{A} \Longrightarrow rkA = rk\widetilde{A}$.

Утверждение. При элементарных преобразованиях над столбцами, ранг матрицы A не изменяется.

Предложение 1. Ранг матрицы A равен числу ненулевых строк матрицы ступенчатого вида, к которому можно привести матрицу A с помощью элементарных преобразований строк.

Доказательство. $A \stackrel{\ni\Pi \text{ строк}}{\longrightarrow} A_{\mathrm{ct}} \Longrightarrow rkA = rkA_{\mathrm{ct}}$

$$\mathsf{A}_{\mathsf{cT}} = \left(\begin{array}{c} a_{1i_1} & * \\ a_{2i_2} & \\ & & \end{array} \right)$$
 $a_{1i_1},...,a_{si_s}$ - лидеры строк в $A_{\mathsf{cT}} \Longrightarrow a_{1i_1} \neq 0,...,a_{si_s} \neq 0$

Очевидно, что $rkA_{\rm ct} \leq s$. Достаточно доказать, что ненулевые строки ЛНЗ. Рассмотрим ЛК:

$$\lambda_1(0,...,0,a_{1i_1},*,...,*) + \lambda_2(0,...,0,a_{2i_2},*,...,*) + \cdots + \lambda_s(0,...,0,a_{si_s},*,...,*) = (0,...,0)$$

$$(0,...,0,\lambda_{1}a_{1i_{1}},...,\lambda_{1}a_{1i_{2}}+\lambda_{2}a_{2i_{2}},...)=(0,...,0)\Longrightarrow\lambda_{1}\underbrace{a_{1i_{1}}}_{\text{лидер}}=0\Longrightarrow\lambda_{1}=0$$

$$\lambda_1 a_{i_2 1} + \lambda_2 \underbrace{a_{2i_2}}_{\text{типор}} = 0 \Longrightarrow \lambda_2 = 0$$
 и т.д.

Получаем, что $\lambda_1=0,...,\lambda_s=0\Longrightarrow$ это ЛК - ЛНЗ.

Предложение 2. Ранг системы столбцов не изменяется при элементарных преобразованиях над строками.

Доказательство.

$$A \stackrel{\ni \Pi \text{ строк}}{\longmapsto} \widetilde{A}$$
 Пусть $A = (a_{ij}) = (\underbrace{A_1, ..., A_n}_{\text{столбцы } A}), \ \widetilde{A} = (\widetilde{a_{ij}}) = (\underbrace{\widetilde{A_1}, ..., \widetilde{A_n}}_{\text{столбцы } \widetilde{A}}).$

Докажем, что если для некоторых чисел $\lambda_1,...,\lambda_n \in \mathbb{R}$ выполнено: $\lambda_1 A_1 + \cdots + \lambda_n A_n = 0$, то для этих же чисел $\lambda_1 \widetilde{A_1} + \cdots + \lambda_n \widetilde{A_n} = 0$ (Верно и обратное, т.к. ЭП обратимы, т.е. если для каких-то чисел $\lambda_i \in \mathbb{R} : \sum \lambda_i \widetilde{A_1} = 0$, то $\sum \lambda_i A_i = 0$).

Дано:
$$\lambda_1 A_1 + \dots + \lambda_n A_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow \begin{cases} \lambda_1 a_{11} + \lambda_2 a_{12} + \dots + \lambda_n a_{1n} = 0 \\ \vdots \\ \lambda_1 a_{m1} + \lambda_2 a_{m2} + \dots + \lambda_n a_{mn} = 0 \end{cases}$$

 $\lambda_1,...,\lambda_n$ — решение ОСЛУ AX=0. Т.к. при ЭП над уравнениями множество решений не меняется, поэтому $\lambda_1,...,\lambda_n$ - это решение ОСЛУ $\widetilde{A}X=0\Longrightarrow\lambda_1\widetilde{A}_1+\cdots+\lambda_n\widetilde{A}_n=0$

Отсюда получаем, что если $A_{i_1},...,A_{i_s}$ - максимальная ЛНЗ система столбцов в A, то $\widetilde{A_{i_1}},...,\widetilde{A_{i_s}}$ - максимальная ЛНЗ система столбцов в $\widetilde{A}\Longrightarrow rk\{\widetilde{A_1},...,\widetilde{A_n}\}=rk\{A_1,...,A_n\}.$

Определение. Пусть $A=(a_{ij})$ - матрица $m\times n$, тогда $B=(b_{ij})$ матрица $n\times m$ называется транспонированной к матрице A, если $b_{ij}=a_{ji}$, где $i=\overline{1,m}; j=\overline{1,n}$ Обозначаем $B=A^T$

Пример.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Следствие. Ранг системы строк матрицы A (=рангу матрицы A) не изменяется при элементарных преобразованиях над столбцами.

 \mathcal{A} оказательство. Предложение 2 применяем к A^T

Теорема 1. Ранг системы строк матрицы A совпадает с рангом системы столбцов матрицы A.

Доказательство. Было доказано, что ранг системы строк (столбцов) матрицы не изменяется при $\Theta\Pi$ над строками и над столбцами. Приведем матрицу A к ступенчатому виду с помощью $\Theta\Pi$ над строками. $A_{\rm ct}$ имеет вид:

$$\left(egin{array}{c|c} a_{1i_1} & * & \\ \hline a_{2i_2} & \\ \hline 0 & a_{si_s} \end{array}
ight)$$

$$a_{1i_1} \neq 0, ..., a_{si_s} \neq 0$$

Используем i_1 -столбец, вычитая этот столбец из оставшихся с подходящими коэффициентами, получаем:

$$\left(egin{array}{ccccc} a_{1i_1} & 0 & 0 & \cdots & 0 \ & a_{2i_2} & & * & \ & & \ddots & \ 0 & & & a_{si_s} \end{array}
ight)$$

Далее используем i_2 -столбец, обнуляем все элементы правее a_{i_22} . В итоге получаем:

$$\begin{pmatrix} a_{1i_1} & & 0 \\ & \ddots & \\ 0 & & a_{si_s} \end{pmatrix}$$

Очевидно, что у такой матрицы ранг системы строк = рангу системы столбцов.

4 Возвращаемся к системе линейных уравнений

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m. \end{cases} (AX = B)$$

Теорема. (Кронекера-Капелли)

- 1. (Критерий совместности СЛУ) СЛУ AX = B совместна $\iff rk(A|B) = rkA$
- 2. (Критерий определенности СЛУ) Совместная СЛУ AX = B - определена $\iff rk(A|B) = rkA = n$
- 3. (Критерий существования нетривиального решения у однородной СЛУ) ОСЛУ AX=0 имеет нетривиальное решение $\iff rkA < n$

Однородная СЛУ:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + \dots + a_{2n}x_n = 0, \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0. \end{cases} (AX = 0)$$

Утверждение. ОСЛУ всегда совместна, т.к. есть тривиальное решение.

Свойства.

1. Если
$$X^0=\begin{pmatrix}x_1^0\\\vdots\\x_n^0\end{pmatrix}$$
; $\widetilde{X}^0=\begin{pmatrix}\widetilde{x_1^0}\\\vdots\\\widetilde{x_n^0}\end{pmatrix}$ - решение ОСЛУ, тогда $X^0+\widetilde{X}^0=\begin{pmatrix}X_1^0+\widetilde{X_1^0}\\\vdots\\X_n^0+\widetilde{X_n^0}\end{pmatrix}$ - тоже решение.

2. Если
$$X^0=\begin{pmatrix}x_1^0\\\vdots\\x_n^0\end{pmatrix}$$
 - решение ОСЛУ $AX=0,$ то $\lambda X^0=\begin{pmatrix}\lambda x_1^0\\\vdots\\\lambda x_n^0\end{pmatrix}$ - решение.

Следствие. Множество всех решений ОСЛУ является векторным подпространством в \mathbb{R}^n . Будем говорить, что это пространство над ОСЛУ.

Замечание. Если \exists нетривиальное решение ОСЛУ над \mathbb{R} , то \exists бесконечно много решений.

Теорема 2. Пространство решений ОСЛУ AX = 0 имеет базис из n - r векторов, где n - число неизвестных, а r = rkA.

4.1 Фундаментальная система решений

Определение. Любой базис пространства решений ОСЛУ называется Фундаментальной Системой Решений ОСЛУ (ФСР).

Доказательство. (Теоремы 2.)

Решение СЛУ методом Гаусса: приводим её к ступенчатому виду (число ступенек r=rkA), главные неизвестные выражаем через свободные.

$$\begin{cases} x_1 = c_{1,1}x_{r+1} + \dots + c_{1,n-r}x_n \\ \vdots \\ x_r = c_{r,1}x_{r+1} + \dots + c_{r,n-r}x_n \end{cases}$$

Определим n-r частных решений, приравнивая одно из $x_1,...,x_n$ к 1, а остальные к 0.

$$F_{1} = \begin{pmatrix} c_{11} \\ \vdots \\ c_{r1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad F_{2} = \begin{pmatrix} c_{12} \\ \vdots \\ c_{r2} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, ..., \quad F_{n-r} = \begin{pmatrix} c_{1,n-r} \\ \vdots \\ c_{r,n-r} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Докажем, что $F_1,...,F_{n-r}$ - базис пространства решений ОСЛУ

1.
$$F_1, ..., F_{n-r}$$
 - ЛНЗ?

Рассмотрим ЛК
$$\lambda_1 F_1 + \dots + \lambda_{n-r} F_{n-r} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\Longrightarrow \frac{\begin{pmatrix} * \\ \vdots \\ * \\ \hline \lambda_1 \\ \vdots \\ \lambda_{n-r} \end{pmatrix}}{\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}} \Longrightarrow \lambda_1 = 0, ..., \lambda_{n-r} = 0$$

2. Надо доказать, что любое решение выражено через $F_1, ..., F_{n-r}$

$$X^{0} = \begin{pmatrix} * \\ \vdots \\ * \\ \hline \mu_{r+1} \\ \vdots \\ \mu_{n} \end{pmatrix} = \mu_{r+1} F_{1} + \dots + \mu_{n} F_{n-r}$$

Пример. Найти ФСР ОСЛУ

$$\begin{cases} x_1 + x_2 + 3x_3 + 5x_4 - x_5 = 0 \\ x_1 + 2x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 3 & 5 & -1 \\ 1 & 2 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 5 & -1 \\ 0 & 1 & -2 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 5 & 9 & -3 \\ 0 & 1 & -2 & -4 & 2 \end{pmatrix}$$

где x_1, x_2 - главные, x_3, x_4, x_5 - свободные

$$\begin{cases} x_1 = -5x_3 - 9x_4 + 3x_5 \\ x_2 = 2x_3 + 4x_4 - 2x_5 \end{cases} \quad x_3, x_4, x_5 \in \mathbb{R}$$
 - произвольные

$$F_1=egin{pmatrix} -5 \ 2 \ 1 \ 0 \ 0 \end{pmatrix}, \quad F_2=egin{pmatrix} -9 \ 4 \ 0 \ 1 \ 0 \end{pmatrix}, \quad F_3=egin{pmatrix} 3 \ -2 \ 0 \ 0 \ 1 \end{pmatrix}$$
 - три частных решения ОСЛУ

Проверим, что $\{F_1, F_2, F_3\}$ - базис пространства решений ОСЛУ

$$\begin{pmatrix}
* \\
* \\
\lambda_1 \\
\lambda_2 \\
\lambda_3
\end{pmatrix} = \lambda_1 F_1 + \lambda_2 F_2 + \lambda_3 F_3 = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} \implies \lambda_{1,2,3} = 0 \implies F_1, F_2, F_3 - \text{ЛН3}.$$

Проверим, что $\{F_1, F_2, F_3\}$ порождает пространство решений. Возьмем произвольные числа μ_3, μ_4, μ_5 и приравняем $x_3 = \mu_3, x_4 = \mu_4, x_5 = \mu_5$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5\mu_3 - 9\mu_4 + 3\mu_5 \\ 2\mu_3 + 4\mu_4 - 2\mu_5 \\ \mu_3 \\ \mu_4 \\ \mu_5 \end{pmatrix} = \mu_3 \begin{pmatrix} -5 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu_4 \begin{pmatrix} -9 \\ 4 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \mu_5 \begin{pmatrix} 3 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Такой базис называется нормальной ФСР.

4.2 Неоднородная СЛУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m. \end{cases} (AX = B)$$

Рассмотрим соответствующую (ассоциированную) к ней ОСЛУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + \dots + a_{2n}x_n = 0, \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0. \end{cases}$$
 (AX = 0)

Теорема. Пусть СЛУ AX=B - совместна. X_0 - произвольное частное решение. Тогда множество M всех решений неоднородной СЛУ: AX=B равно сумме частного решения X_0 и множеству $M_{\rm одн}$ всех решений соответствующей однородной СЛУ: AX=0

$$M = X_0 + M_{\text{одн}} = \{X_0 + Y | Y \in M_{\text{одн}}\}$$

Доказательство. $X_0 + M_{\text{одн}} \subseteq M$

Рассмотрим произвольное решение ОСЛУ. $Y \in M_{\text{одн}}$

Пусть
$$X_0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ Докажем, что $X_0 + Y = \begin{pmatrix} x_1^0 + y_1 \\ \vdots \\ x_n^0 + y_n \end{pmatrix}$ - решение СЛУ, т.е. $X_0 + Y \in M$
$$AX = B: \ a_{i1}x_1^0 + \dots + a_{in}x_n^0 = b_i$$

$$AX = 0: \ a_{i1}y_1 + \dots + a_{in}y_n = 0$$

где $i = \overline{1, m}$.

Проверим, что $X_0 + Y \in M$

$$a_{i1}(x_1^0 + y_1) + \dots + a_{in}(x_n^0 + y_n) = b_i$$

$$\underbrace{(a_{i1}x_1^0 + \dots + a_{in}x_n^0)}_{b_i \text{ (t.k. } X_0 \in M)} + \underbrace{(a_{i1}y_1 + \dots + a_{in}y_n)}_{0 \text{ (t.k. } Y \in M_{\text{одн}})} = b_i$$

Обратное утверждение: $M \subseteq X_0 + M_{\text{одн}}$

Рассмотрим произвольное решение $Z=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ неоднородной СЛУ.

Докажем, что
$$Z-X_0=\begin{pmatrix} z_1-x_1^0\\ \vdots\\ z_n-x_n^0 \end{pmatrix}$$
 - решение однородной СЛУ.

Проверяем

$$a_{i1}(z_1 - x_1^0) + \dots + a_{in}(z_n - x_n^0) = 0$$

$$\underbrace{(a_{i1}z_1 + \dots + a_{in}z_n)}_{b_i(\text{t.k. } Z \in M)} - \underbrace{(a_{i1}x_1^0 + \dots + a_{in}x_n^0)}_{b_i(\text{t.k. } X_0 \in M)} = 0$$

Замечание.

Общее решение ОСЛУ имеет вид:

$$X = \mu_1 F_1 + \dots + \mu_s F_s$$

где $F_1,...,F_s$ - ФСР ОСЛУ, s=n-rkA

Общее решение неоднородной СЛУ:

$$X = X_0 + \mu_1 F_1 + \dots + \mu_s F_s$$

 X_0 - частное решение неоднородной СЛУ

5 Операции над матрицами

 $Mat_{m\times n}(\mathbb{R})$ - множество всех матриц размера $m\times n$ с коэффициентами из \mathbb{R} $A,B\in Mat_{m\times n}(\mathbb{R}),\ A=(a_{ij}),\ B=(b_{ij})$

Операции над матрицами:

1. Сложение матриц

Суммой матриц A и B называется матрица $C=(c_{ij})$ размера $m\times n,$ у которой $c_{ij}=a_{ij}+b_{ij}.$ Обозначается: C=A+B

2. Умножение матриц на число $\lambda \in \mathbb{R}$

Произведением матрицы $A=(a_{ij})$ на λ называется матрица $C=(c_{ij})$ размера $m\times n$, у которой $c_{ij}=\lambda a_{ij}$. Обозначается: $C=\lambda A$

Утверждение. Множество $Mat_{m\times n}(\mathbb{R})$, относительно этих операций сложения и умножения на число, образует векторное пространство над \mathbb{R} .

Доказательство. $A, B \in Mat_{m \times n}(\mathbb{R}) \Longrightarrow A + B, \lambda A \in Mat_{m \times n}(\mathbb{R})$ Надо проверить 8 аксиом

1) коммутативность

$$C = A + B$$
 $c_{ij} = a_{ij} + b_{ij}$
 $\widetilde{C} = B + A$ $\widetilde{c_{ij}} = b_{ij} + a_{ij}$

т.к. сложение вещественных чисел из $\mathbb R$ - коммутативно, то $c_{ij}=\widetilde{c_{ij}}\Longrightarrow C=\widetilde{C}$

$$\implies A + B = B + A$$

Упражнение. Аналогично доказать 2), 5)-8)

- 3) $\exists \ 0 \in Mat_{m \times n}(\mathbb{R}) \ \forall A \in Mat_{m \times n}(\mathbb{R}) : 0+A=A$ В качестве 0 берем нулевую матрицу размера $m \times n$
- 4) $\forall A \in Mat_{m \times n}(\mathbb{R}) \exists B \in Mat_{m \times n}(\mathbb{R}) : A + B = 0$ В качестве B берем $b_{ij} = -a_{ij}$

Утверждение. dim $M_{m \times n} = m \cdot n$

Доказательство. Достаточно указать базис

$$\{E_{st}\}, s = \overline{1,m}, \ t = \overline{1,n}$$
 $E_{st} = (a_{ij}), \ a_{ij} = \begin{cases} 1, \ i = s, \ j = t \\ 0, \ \text{иначе} \end{cases}$

Упражнение. Проверить, что это базис.

Пример.
$$M_{2\times 3}(\mathbb{R}): E_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$
 $E_{21} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, E_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Определение. Матрица E_{st} называется матричной единицей. Базис из всех матричных единиц называется стандартным базисом в пространстве $Mat_{m\times n}(\mathbb{R}).$ $A=\sum a_{st}E_{st}$

3. Умножение матриц

$$A \in Mat_{m \times k}(\mathbb{R}), \ B \in Mat_{k \times n}(\mathbb{R})$$

Произведение матрицы A на матрицу B называется матрица C размера $m \times n,$ у которой $c_{ij} = \sum\limits_{s=1}^k a_{is}b_{sj}.$ Обозначаем C = AB.

Свойство. Произведение матриц не коммутативно.

Пример.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Longrightarrow AB \neq BA$$

Замечание.

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases} \iff \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Примеры.

1. Проекция

$$\varphi: V^3 \to V^2, \varphi: x_1i + x_2j + x_3k \to x_1i + x_2j$$

2. Поворот

 $\varphi: V^2 \to V^2$ Поворот на угол α вокруг точки O

6 Линейные отображения

6.1 Изоморфизм

V,W- векторные пространства над $\mathbb R$

Определение. Отображение $\varphi: V \to W$ называется изоморфизмом векторных пространств, если:

- 1. $\forall a, b \in V : \varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\forall \lambda \in \mathbb{R} \ \forall a \in V : \ \varphi(\lambda a) = \lambda \varphi(a)$
- $3. \ \varphi$ является биекцией.

При этом V, W называются изоморфными.

Обозначается: $V \cong W$

Утверждение. Любое векторное пространство над \mathbb{R} размерности n изоморфно \mathbb{R}^n .

Доказательство. Фиксируем базис $\{e_1,...,e_n\}$ - в V.

1. $\forall x \in V$ однозначно раскладывается по базису $x = \sum_{i=1}^{n} x_i e_i$. Зададим отображение $\varphi: V \to \mathbb{R}^n$ по правилу:

$$\varphi: x = x_1 e_1 + \dots + x_n e_n \to (x_1, \dots, x_n)$$

T.к. координаты вектора определены однозначно, то φ инъективно, сюрьективность очевидна $\Longrightarrow \varphi$ - биекция.

 $2. \ \forall x, y \in V$

$$x = \sum_{i=1}^{n} x_i e_i \quad y = \sum_{i=1}^{n} y_i e_i \quad x + y = \sum_{i=1}^{n} (x_i + y_i) e_i$$
$$\varphi(x + y) = (x_1 + y_1, ..., x_n + y_n) = (x_1, ..., x_n) + (y_1, ..., y_n) = \varphi(x) + \varphi(y)$$

3. $\forall \lambda \in \mathbb{R} \ \forall x \in V$

$$\varphi(\lambda x) = \varphi(\sum_{i=1}^{n} \lambda x_i e_i) = (\lambda x_1, ..., \lambda x_n) = \lambda(x_1, ..., x_n) = \lambda \varphi(x)$$

Примеры.

1. $V^2 \cong \mathbb{R}^2$ $V^3 \cong \mathbb{R}^3$

2. $M_{m \times n}(\mathbb{R}) \cong \mathbb{R}^{mn}$

Упражнение. $V \cong W \Longleftrightarrow \dim V = \dim W; \ V, W-$ конечномерные пространства над \mathbb{R} .

6.2 Линейные отображения и матрицы

Определение. Отображение $\varphi:V \to W$ называется линейным, если

- 1. $\forall a, b \in V : \varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\forall \lambda \in \mathbb{R}, \forall a \in V : \varphi(\lambda a) = \lambda \varphi(a)$

Утверждение. V, W- векторные пространства над \mathbb{R} .

Если $\{e_1,...,e_n\}$ - базис $V,(w_1,...,w_n)$ - набор векторов из W.

Тогда $\exists !$ линейное отображение $\varphi: V \to W$, которое $\varphi: e_i \to w_i \ \forall i = \overline{1, n}$.

Доказательство.

1. Пусть $\varphi: V \to W$ - линейное отображение такое, что $\varphi(e_i) = w_i \ \forall i = \overline{1,n}.$ Тогда образ вектора x определяется однозначно по формуле:

$$\varphi(x) = \varphi(x_1e_1 + \dots + x_ne_n) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n) = x_1w_1 + \dots + x_nw_n$$

⇒ линейное отображение определяется однозначно.

2. Докажем, что \exists линейное отображение, которое переводит e_i в w_i . Отображение зададим формулой:

$$\varphi : x = x_1 e_1 + \dots + x_n e_n \to x_1 w_1 + \dots + x_n w_n$$

$$\varphi(a+b) = \varphi((a_1+b_1)e_1 + \dots + (a_n+b_n)e_n) = (a_1+b_1)w_1 + \dots + (a_n+b_n)w_n$$

$$\varphi(a) + \varphi(b) = \varphi(a_1 e_1 + \dots + a_n e_n) + \varphi(b_1 e_1 + \dots + b_n e_n) =$$

$$= a_1 w_1 + \dots + a_n w_n + b_1 w_1 + \dots + b_n w_n = w_1(a_1+b_1) + \dots + w_n(a_n+b_n)$$

$$\Longrightarrow \varphi(a+b)=\varphi(a)+\varphi(b).$$
 Проверить, что $\varphi(\lambda a)=\lambda \varphi(a)$ - ДЗ. Дополнение:

$$\varphi(\lambda a) = \varphi(\lambda a_1 e_1 + \dots + \lambda a_n e_n) = \lambda a_1 w_1 + \dots + \lambda a_n w_n,$$
$$\lambda \varphi(a) = \lambda \varphi(a_1 e_1 + \dots + a_n e_n) = \lambda a_1 w_1 + \dots + \lambda a_n w_n$$
$$\Longrightarrow \varphi(\lambda a) = \lambda \varphi(a).$$

Пусть $\varphi:V\to W$ - линейное отображение, V- n-мерное, W - m-мерное пространство.

Фиксируем базис $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в $V; \mathcal{F} = \{f_1, ..., f_m\}$ - базис в W $\varphi(e_1) = w_1 = a_{11}f_1 + \dots + a_{m1}f_m$

Определение. Матрица
$$A$$
 размера $m \times n$, составленная из столбцов координат образов векторов e_i в базисе \mathcal{F}_i называется матрицей линейного отображения

образов векторов e_i в базисе \mathcal{F} , называется матрицей линейного отображения в базисах $\mathcal E$ и $\mathcal F$

 $\varphi(e_n) = w_n = a_{1n}f_1 + \dots + a_{mn}f_m$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$\underbrace{a_{m1}}_{\varphi(e_1)} & \underbrace{a_{mn}}_{\varphi(e_n)}$$

Утверждение. Пусть $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в V над \mathbb{R} ; $\mathcal{F} = \{f_1, ..., f_m\}$ базис в W над \mathbb{R} . Тогда:

- \bullet Каждому линейному отображению $\varphi:V o W$ однозначно соответствует матрица размера $m \times n$ этого линейного отображения в базисах \mathcal{E} и \mathcal{F} .
- Любой матрице A размера $m \times n$ однозначно соответствует линейное отображение $\varphi:V\to W$, для которого A - матрица этого линейного отображения в \mathcal{E}, \mathcal{F} .

6.3 Операции над линейными отображениями

Пусть V,W - векторные пространства над $\mathbb R$

1) Сложение линейных отображений.

$$arphi_1:V o W$$
 $arphi_2:V o W$ - два линейных отображения

Зададим отображение по правилу

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x) \quad \forall x \in V$$

Утверждение. Отображение $\varphi_1 + \varphi_2 : V \to W$ является линейным отображением.

Доказательство. $\forall a, b \in V$:

$$(\varphi_1+\varphi_2)(a+b)=\varphi_1(a+b)+\varphi_2(a+b)=$$

$$=\varphi_1(a)+\varphi_1(b)+\varphi_2(a)+\varphi_2(b)=(\varphi_1+\varphi_2)(a)+(\varphi_1+\varphi_2)(b)$$
 Аналогично для $(\varphi_1+\varphi_2)(\lambda a)=\lambda(\varphi_1+\varphi_2)(a)$

Фиксируем базисы $\mathcal{E} = \{e_1,...,e_n\}$ - в V и $\mathcal{F} = \{f_1,...,f_m\}$ - в W

 A_1 - матрица линейного отображения φ_1 относильно \mathcal{E} и \mathcal{F} .

 A_2 - матрица линейного отображения φ_2 относильно $\mathcal E$ и $\mathcal F.$

B - матрица линейного отображения $\varphi_1 + \varphi_2$ относильно $\mathcal E$ и $\mathcal F.$

Утверждение. $B = A_1 + A_2$

Доказательство. Размеры совпадают

$$\varphi_1(e_i) = a_{1i}f_1 + \dots + a_{mi}f_m$$

$$\varphi_2(e_i) = \widetilde{a_{1i}}f_1 + \dots + \widetilde{a_{mi}}f_m$$

$$(\varphi_1 + \varphi_2)(e_i) = b_{1i}f_1 + \dots + b_{mi}f_m$$

$$(\varphi_1 + \varphi_2)(e_i) = \varphi_1(e_i) + \varphi_2(e_i) = (a_{1i}f_1 + \dots + a_{mi}f_m) + (\widetilde{a_{1i}}f_1 + \dots + \widetilde{a_{mi}}f_m) =$$

$$= (a_{1i} + \widetilde{a_{1i}})f_1 + \dots + (a_{mi} + \widetilde{a_{mi}})f_m$$

Т.к. разложение по базису единственное, то

$$b_{1i} = a_{1i} + \widetilde{a_{1i}}, ..., b_{mi} = a_{mi} + \widetilde{a_{mi}} \Longrightarrow b_{ij} = a_{ij} + \widetilde{a_{ij}} \Longrightarrow B = A_1 + A_2$$

2) Умножение линейного отображения на число.

 $\varphi:V\to W$ - линейное отображение, $\mu\in\mathbb{R}$ - произвольное число.

Зададим отображение по правилу: $(\mu\varphi)(x) = \mu\varphi(x) \quad \forall x \in V$

Утверждение. Отображение $\mu \varphi : V \to W$ является линейным (Упражнение)

Доказательство. Аналогично.

Пусть $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в V и $\mathcal{F} = \{f_1, ..., f_n\}$ - базис в W.

A - матрица линейного отображения φ относильно $\mathcal E$ и $\mathcal F$.

B - матрица линейного отображения $\mu\varphi$ относильно $\mathcal E$ и $\mathcal F$.

Утверждение. $B = \mu A$

Доказательство. Видимо дз(

3) Композиция (произведение) линейных отображений. Пусть V, W, U - векторные пространства над $\mathbb R$

$$\varphi:V\to W \quad \psi:W\to U$$

Зададим отображение по правилу:

$$(\psi \circ \varphi)(x) = \psi(\varphi(x)) \ \forall x \in V$$

Утверждение. Отображение $\psi \circ \varphi : V \to U$ является линейным.

Доказательство. $\forall a, b \in V$

1.
$$(\psi \circ \varphi)(a+b) = \psi(\varphi(a+b)) = \psi(\varphi(a) + \varphi(b)) = \psi(\varphi(a)) + \psi(\varphi(b))$$

2. Аналогично для $(\psi \circ \varphi)(\lambda a) = \lambda(\psi \circ \varphi)(a)$

Фиксируем базис:
$$\mathcal{E}=\{e_1,...,e_n\}$$
 - базис в V $\mathcal{F}=\{f_1,...,f_m\}$ - базис в W $\mathcal{G}=\{g_1,...,g_k\}$ - базис в U

 $A\atop m\times n$ - матрица линейного отображения arphi относительно $\mathcal{E},\mathcal{F}.$

 $\overset{R}{B}$ - матрица линейного отображения ψ относительно $\mathcal{F},\mathcal{G}.$

 $C_{k\times n}$ - матрица линейного отображения $\psi\circ\varphi$ относительно $\mathcal{E},\mathcal{G}.$

Утверждение. $C = B \cdot A$

Доказательство.

$$\varphi(e_i) = \sum_{s=1}^m a_{si} f_s; \qquad \psi(f_s) = \sum_{t=1}^k b_{ts} g_t$$

По определению матрицы линейного отображения:

$$(\psi \circ \varphi)(e_i) = \sum_{l=1}^k c_{li} g_l \quad (*)$$

По определению композиции:

$$(\psi \circ \varphi)(e_i) = \psi(\varphi(e_i)) = \psi(\sum_{s=1}^m a_{si} f_s) = \sum_{s=1}^m a_{si} \psi(f_s) =$$

$$= \sum_{s=1}^m a_{si} (\sum_{t=1}^k b_{ts} g_t) = \sum_{t=1}^k (\sum_{s=1}^m b_{ts} a_{si}) g_t \quad (\star)$$

$$\Longrightarrow (\star) = (\star).$$

Т.к. координаты определены однозначно $\Rightarrow c_{it} = \sum_{s=1}^m b_{ts} a_{si} \Rightarrow C = B \cdot A$ \square

6.4 Свойства операций над матрицами

Предположим, что все размеры матриц согласованы.

- 1. $M_{m \times n}(\mathbb{R})$ векторное пространство над \mathbb{R}
- 2. Ассоциативность A(BC) = (AB)C

Доказательство. A, B, C $m \times k, k \times n, n \times l$

Пусть
$$D_{m \times l} = A(BC), \ \widetilde{D}_{m \times l} = (AB)C.$$

Надо проверить, что $\forall i, j : [D]_{ij} = [\widetilde{D}]_{ij}$.

$$[D]_{ij} = [A(BC)]_{ij} = \sum_{s=1}^{k} [A]_{is} \cdot [BC]_{sj} = \sum_{s=1}^{k} [A]_{is} (\sum_{t=1}^{n} [B]_{st} \cdot [C]_{tj}) =$$

$$= \sum_{s=1}^{k} \sum_{t=1}^{n} [A]_{is} ([B]_{st} \cdot [C]_{tj})$$

$$[\widetilde{D}]_{ij} = [(AB)C]_{ij} = \sum_{t=1}^{n} [AB]_{it} [C]_{tj} = \sum_{t=1}^{n} (\sum_{s=1}^{k} [A]_{is} \cdot [B]_{st}) [C]_{tj} =$$

$$= \sum_{t=1}^{n} \sum_{s=1}^{k} ([A]_{is} \cdot [B]_{st}) \cdot [C]_{tj}$$

По свойствам операций над \mathbb{R} результаты преобразований равны.

3.
$$A(B+C) = AB + AC$$

$$4. (B+C)A = BA + CA$$

5.
$$\lambda(AB) = (\lambda A)B = A(\lambda B); \forall \lambda \in \mathbb{R}$$

6.
$$\forall A \in M_{m \times m}(\mathbb{R}), \exists$$
 единичная матрица $E \in M_{m \times m}(\mathbb{R}) : EA = A$

7.
$$\forall A \in M_{m \times n}(\mathbb{R}) : 0 \cdot A = 0$$

8. Нет коммутативности: $AB \neq BA$ даже если размеры согласованы

Доказательство. Свойства 3. - 7. упражнение)

6.5 Свойства операции транспонирования

1.
$$(A^T)^T = A$$

$$2. (\lambda A)^T = \lambda A^T$$

3.
$$(A+B)^T = A^T + B^T$$

4.
$$(AB)^T = B^T A^T$$

 \mathcal{A} оказательство. 4. $\underset{m \times k}{A}, \underset{k \times n}{B} \Longrightarrow \underset{n \times k}{B^T}, \underset{k \times m}{A^T}$ (размеры совпадают) Проверим равенство $D = (AB)^T$ и $\widetilde{D} = B^TA^T$.

$$[D]_{ij} = [(AB)^T]_{ij} = [(AB)]_{ji} = \sum_{s=1}^k [A]_{js} [B]_{si}$$

$$[\widetilde{D}]_{ij} = B^T A^T = \sum_{s=1}^k [B^T]_{is} [A^T]_{sj} = \sum_{s=1}^k [A]_{js} [B]_{si}$$

6.6 О ранге и операциях над матрицами

Теорема.

1.
$$rkA^T = rkA$$

2.
$$rk(\lambda A) = \begin{cases} rkA, \text{ если } \lambda \neq 0 \\ 0, \text{ если } \lambda = 0 \end{cases}$$

3.
$$rk(A+B) \le rkA + rkB$$

4.
$$rk(AB) \le \min\{rkA, rkB\}$$

Доказательство.

- 1. Следует из того, что ранг системы строк равен рангу системы столбцов, и из определения ранга матрицы.
- 2. Очевидно.
- 3. Пусть $\overline{a_1},...,\overline{a_m}$ строки матрицы $A.\ \overline{b_1},...,\overline{b_m}$ строки матрицы $B.\ \overline{a_1}+\overline{b_1},...,\overline{a_m}+\overline{b_m}$ строки матрицы A+B.

$$rkA = \dim\langle \overline{a_1}, ..., \overline{a_m} \rangle, \ rkB = \dim\langle \overline{b_1}, ..., \overline{b_m} \rangle$$

$$rk(A+B) = \dim\langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle$$

Заметим, что
$$(\langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle) \subseteq (\langle \overline{a_1}, ..., \overline{a_m}, \overline{b_1}, ..., \overline{b_m} \rangle)$$

Лемма. Пусть V векторное пространсво над $\mathbb R$ $\dim V=n$ U - произвольное подпространство в V. Тогда $\dim U \leq n$ Более того, если $U \neq V$, то $\dim U < n$.

Доказательство. Пусть $\{e_1,...,e_m\}$ - базис $U\subseteq V$, т.е. $\dim U=m$ ЛНЗ систему $\{e_1,...,e_m\}$ можно дополнить до базиса в $V\Longrightarrow m\le n$ Если m=n, то $\{e_1,...,e_m\}$ - базис $V\Longrightarrow V=U$

Применяем лемму и получаем, что

$$\dim\langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle \le \dim\langle \overline{a_1}, ..., \overline{a_m}, \overline{b_1}, ..., \overline{b_m} \rangle$$

Т.к. объединение базисов линейной оболочки $\overline{a_1},...,\overline{a_m}$ и $\overline{b_1},...,\overline{b_m}$ является конечной порождающей системой линейной оболочки $\langle \overline{a_1},...,\overline{a_m},\overline{b_1},...,\overline{b_m} \rangle$, а из любой конечной порождающей системы можно выбрать базис, значит:

$$\dim \langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle \le \dim \langle \overline{a_1}, ..., \overline{a_m} \rangle + \dim \langle \overline{b_1}, ..., \overline{b_m} \rangle$$

$$\Longrightarrow rk(A+B) \le rkA + rkB$$

4. Докажем, что $rkAB \leq rkA$. Пусть C = AB, A, B

 $A_1,...,A_k$ - столбцы матрицы A

 $B_1, ..., B_n$ - столбцы матрицы B

 $C_1,...,C_n$ - столбцы матрицы C

$$C_1 = AB_1 = A_1b_{11} + \dots + A_kb_{k1}$$

$$C_2 = AB_2 = A_1b_{12} + \dots + A_kb_{k2}$$

:

$$C_n = AB_n = A_1b_{1n} + \dots + A_kb_{kn}$$

 $\implies \langle C_1, ..., C_n \rangle \subseteq \langle A_1, ..., A_k \rangle \implies \dim \langle C_1, ..., C_n \rangle \le \dim \langle A_1, ..., A_k \rangle \implies rkC \le rkA.$

Докажем, что $rkAB \leq rkB$.

$$rk(AB) = rk(AB)^T = rk(B^TA^T) \le rkB^T = rkB$$

7 Перестановки

Определение. Упорядоченная последовательность $(k_1, ..., k_n)$ чисел 1, 2, ..., n, расположенных в некотором порядке, называется перестановкой из n элементов.

Пример. (3,1,2) перестановка из 3-х элементов.

Определение. Перестановка (1, 2, ..., n) называется тривиальной.

Определение. Говорят, что пара элементов k_i и k_j образуют инверсию, если:

$$i < j \Longrightarrow k_i > k_j$$

Определение. Перестановка называется четной (нечетной), если число инверсий в ней четное (нечетное).

Знак переставки $\to \operatorname{sgn}(k_1,...,k_n) = (-1)^s$, где s - число инверсий в перестановке.

Определение. Перемена двух элементов в перестановке называется транспозицией этих элементов.

Утверждение. При транспозиции любых двух элементов четность меняется на противоположную.

Доказательство.

1. Транспозиция двух соседних элементов.

При этом изменится расположение только этих элементов относительно других \Longrightarrow количество инверсий изменился на $1 \Longrightarrow$ четность поменяется.

2. Общий случай:

$$(..., k_i, ..., k_j, ...) \rightarrow (..., k_j, ..., k_i, ...)$$

Пусть между k_i и k_j (s) элементов.

Перемену k_i и k_j произведем за 2s+1 транспозицию соседних элементов. Сначала k_i переставим последовательно с каждым из элементов, стоящих между k_i и k_j (это s транспозиций), потом k_i переставим с k_j , затем k_j поставим на i позицию (это еще s транспозиций).

T.к. транспозиция соседних элементов меняет четность, то за 2s+1 транспозицию четность изменится.

Следствие. Пусть n > 1. Тогда число четных перестановок из n элементов равно числу нечетных.

Утверждение. Число перестановок из n элементов равно n!

Доказательство.
$$(k_1,...,k_n)$$
 для k_1 вариантов - n Пусть выбрали $k_1 \Longrightarrow$ для k_2 вариантов - $n-1$ и т.д. Получаем всего вариантов: $n\cdot (n-1)\cdot ...\cdot 1=n!$

8 Определители n-го порядка

Определение. Определителем квадратной матрицы $\underset{n \times n}{A} = (a_{ij})$ порядка n называется число, которое вычисляется по формуле:

$$|A| = \det A = \sum_{(k_1,\dots,k_n)} \operatorname{sgn}(k_1,\dots,k_n) a_{1k_1} a_{2k_2} \dots a_{nk_n}$$

Где $\sum_{(k_1,...,k_n)}$ - сумма по всем перестановкам из n элементов. Эта формула называется формулой полного разложения или полного развертывания определителя.

Пример.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \operatorname{sgn}(1,2)a_{11}a_{22} + \operatorname{sgn}(2,1)a_{12}a_{21} = a_{11}a_{22} - a_{12}a_{21}$$

$$A_{n \times n} = \begin{pmatrix}
 & \overline{a_1} \\
 & \overline{a_2} \\
 & \vdots \\
 & \overline{a_n}
\end{pmatrix}$$

Пусть $\overline{a_1}, \overline{a_2}, \dots \overline{a_n}$ - строки матрицы A. Тогда определитель можно рассматривать как функцию от строк $\det A = \det (\overline{a_1}, \overline{a_2}, \dots \overline{a_n})$

Определение. Функция $f(v_1, ..., v_n)$, которая векторам $v_1, ..., v_n$ в вектроном простанстве V над \mathbb{R} ставит в соответствие число из \mathbb{R} , то есть:

$$f: V \times \cdots \times V \to \mathbb{R}$$

называется полилинейной, если она линейна по каждому аргументу, т.е. для каждого $i=\overline{1,n}$ выполнено:

1.
$$f(v_1, \ldots, v_i + \widetilde{v_i}, \ldots, v_n) = f(v_1, \ldots, v_i, \ldots, v_n) + f(v_1, \ldots, \widetilde{v_i}, \ldots, v_n),$$

 $\forall v_i, \widetilde{v_i} \in V.$

2.
$$f(v_1, \ldots, \lambda v_i, \ldots, v_n) = \lambda f(v_1, \ldots, v_i, \ldots, v_n), \ \forall \lambda \in \mathbb{R}, \ \forall v_i \in V.$$

Определение. Полилинейная функция $f: V \times \cdots \times V \to \mathbb{R}$ называется кососимметричной, если при перестановке любых двух аргументов значение функции умножается на (-1). Кососимметричная функция с двумя одинаковыми аргументами равна нулю.

Пример. Если
$$f$$
 - кососимметричная функция и $v_1 = v_2$, то $f(v_1, v_2, v_3, \dots, v_n) = -f(v_2, v_1, v_3, \dots, v_n) = a \Longrightarrow a = -a \Longrightarrow a = 0.$

8.1 Свойства определителей

Теорема 1. Определитель n-го порядка является кососимметричной полилинейной функцией от строк матрицы.

Доказательство.

$$A = \begin{pmatrix} \overline{a_1} \\ \overline{a_2} \\ \vdots \\ \overline{a_n} \end{pmatrix} = (a_{ij}), \ \overline{a_i} = (a_{i1}, \dots, a_{in})$$

$$\det A = \det (\overline{a_1}, \dots \overline{a_n}) = \sum_{(k_1, \dots k_n)} \operatorname{sgn}(k_1, \dots k_n) a_{1k_1} \dots a_{nk_n}$$

Докажем, что $\det A$ линеен по i-му аргументу.

$$\det A = \sum_{k=1}^{n} a_{ik} u_k$$

где u_k - число, не зависящее от элементов строки $\overline{a_i}$

1.
$$\det(\overline{a_1}, \dots, \overline{a_i} + \overline{a_i}', \dots, \overline{a_n}) = \sum_{k=1}^n (a_{ik} + a'_{ik}) u_k = \sum_{k=1}^n a_{ik} u_k + \sum_{k=1}^n a'_{ik} u_k = \det(\overline{a_1}, \dots, \overline{a_i}, \dots, \overline{a_n}) + \det(\overline{a_1}, \dots, \overline{a_i}', \dots, \overline{a_n})$$

2.
$$\det(\overline{a_1}, \dots, \lambda \overline{a_i}, \dots, \overline{a_n}) = \sum_{k=1}^n (\lambda a_{ik}) u_k = \lambda \sum_{k=1}^n a_{ik} u_k = \lambda \det(\overline{a_1}, \dots, \overline{a_i}, \dots, \overline{a_n})$$

Теперь докажем кососимметричность:

$$\det \left(\overline{a_{1}}, \dots, \overline{a_{j}}, \dots, \overline{a_{i}}, \dots, \overline{a_{n}}\right) =$$

$$= \sum_{(k_{1} \dots k_{i} \dots k_{j} \dots k_{n})} \operatorname{sgn}(k_{1}, \dots k_{n}) a_{1k_{1}} \dots a_{jk_{i}} \dots a_{ik_{j}} \dots a_{nk_{n}} =$$

$$= \sum_{(k_{1} \dots k_{i} \dots k_{j} \dots k_{n})} \operatorname{sgn}(k_{1}, \dots k_{n}) a_{1k_{1}} \dots a_{ik_{j}} \dots a_{jk_{i}} \dots a_{nk_{n}} =$$

$$= -\sum_{(k_{1} \dots k_{i} \dots k_{j} \dots k_{n})} \operatorname{sgn}(k_{1}, \dots k_{n}) a_{1k_{1}} \dots a_{ik_{i}} \dots a_{jk_{j}} \dots a_{nk_{n}} =$$

$$= -\det \left(\overline{a_{1}}, \dots, \overline{a_{i}}, \dots, \overline{a_{j}}, \dots, \overline{a_{n}}\right)$$

Теорема 2. Пусть $f(A) = f(\overline{a_1}, \dots, \overline{a_n})$ - функция от строк, $A \in M_n(\mathbb{R})$ такие, что:

- 1. f(E) = 1
- 2. f Полилинейная
- 3. f Кососимметричная

тогда $f(A) = \det A$.

Доказательство. $e_1=(1,0,...,0),...,e_n=(0,...,0,1)$ - строки единичной матрицы $E=\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} \Longrightarrow \{e_1,...,e_n\}$ - базис в векторном пространстве \mathbb{R}^n $\Longrightarrow \overline{a_i}=(a_{i1},...,a_{in})=a_{i1}e_1+\cdots+a_{in}e_n$ $\Longrightarrow f(A)=f(\overline{a_1},...,\overline{a_n})=f(\sum_{k_1=1}^n a_{1k_1}e_{k_1},...,\sum_{k_n=1}^n a_{nk_n}e_{k_n})=$ $=\sum_{k_1=1}^n ... \sum_{k_n=1}^n a_{1k_1}\cdot ... \cdot a_{nk_n}\cdot f(e_{k_1},...,e_{k_n})=$ $=\sum_{k_1=1}^n f(e_{k_1},...,e_{k_n})\cdot a_{1k_1}\cdot ... \cdot a_{nk_n}$

Осталось доказать, что $f(e_{k_1},...,e_{k_n}) = \operatorname{sgn}(k_1,...,k_n)$.

T.K.
$$f(E) = 1$$
, to $f(A) = f(e_1, e_2, ..., e_n) = sgn(1, 2, ..., n)(*)$

Меняя любые два аргумента местами, f меняет знак, т.к. f кососимметрична. С другой стороны, меняя два любые числа перестановки местами, знак перестановки sgn тоже меняет знак.

Любую перестановку можно получить из тривиальной за конечное число транспозиций.

Т.к. (*) верно, то, делая последовательно транспозицию в перестановке, и такую же перемену аргументов у функции f, получим $f(e_{k_1},...,e_{k_n}) = \operatorname{sgn}(k_1,...,k_n)$.

Следствие.

1. Если в квадратной матрице A одна из строк равна линейной комбинации остальных, то det A = 0

2. Если к строке квадратной матрицы A применить $\Im\Pi 1$ (т.е. к строке прибавить другую, умноженную на число), то определитель не изменится.

Доказательство.

2)
$$det(\overline{a_1},...,\overline{a_i} + \lambda \overline{a_j},...,\overline{a_n}) =$$

$$= det(\overline{a_1},...,\overline{a_i},...,\overline{a_j},...,\overline{a_n}) + \lambda det(\overline{a_1},...,\overline{a_j},...,\overline{a_j},...,\overline{a_n}) =$$

$$= det(\overline{a_1},...,\overline{a_i},...,\overline{a_j},...,\overline{a_n})$$

Определение. Квадратная матрица $A=(a_{ij})$ называется верхнетреугольной (нижнетреугольной) матрицей, если $a_{ij}=0$ при i>j.

Пример.
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Можно проследить, как влияют ЭП на определитель:

• ЭП1: $\overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}$ det не изменится.

• ЭП2: $\overline{a_i} \leftrightarrow \overline{a_j}$ det умножается на -1.

• $\ni \Pi 3: \overline{a_i} \to \mu \overline{a_i}, \mu \neq 0$ det умножится на μ .

Утверждение. Определитель верхнетреугольной матрицы равен произведению диагональных элементов.

Доказательство.
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ & & \ddots & \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Рассмотрим любую не тождественную перестановку $(k_1, ..., k_n)$, где $k_i \neq i$. Тогда найдется такой множитель (i > j) $a_{ij} = 0 \Longrightarrow$ это слагаемое обнулится. \Longrightarrow Во всей сумме останется только тождественная перестановка.

Теорема 3. Определитель при транспонировании не изменяется: $det A = det A^T$

Доказательство. Пусть
$$B = A^T$$
, $A = (a_{ij})$, $B = (b_{ij})$
$$det A = \sum_{(l_1,...,l_n)} \operatorname{sgn}(l_1,...,l_n) a_{1l_1},..., a_{nl_n}$$

$$det A^T = det B = \sum_{(k_1,...,k_n)} \operatorname{sgn}(k_1,...,k_n) b_{1k_1},...,b_{nk_n} =$$

$$= \sum_{(k_1,...,k_n)} \operatorname{sgn}(k_1,...,k_n) a_{k_11},...,a_{k_nn} =$$

$$= \sum_{(k_1,...,k_n)} \operatorname{sgn}(k_1,...,k_n) \operatorname{sgn}(1,2,...,n) a_{k_11},...,a_{k_nn} = (*)$$

Переставим a_{ij} , переупорядочив номера строк, т.е. первые индексы по возрастанию последовательно, меняя два множителя местами:

$$a_{k_11},...,\underbrace{a_{k_ii},...,a_{k_jj}}_{\text{меняем}},...,a_{k_nn}$$

При этой перемене двух множителей местами меняются местами и первые индексы, и вторые. При этом:

$$\operatorname{sgn}(k_{1},...,k_{i},...,k_{j},...,k_{n}) \cdot \operatorname{sgn}(1,...,i,...,j,...,n) =$$

$$= (-1)^{2} \operatorname{sgn}(k_{1},...,k_{j},...,k_{i},...,k_{n}) \cdot \operatorname{sgn}(1,...,j,...,i,...,n)$$

$$(*) = \sum_{(l_{1},...,l_{n})} \operatorname{sgn}(1,2,...,n) \operatorname{sgn}(l_{1},...,l_{n}) a_{1l_{1}},...,a_{nl_{n}} = \det A$$

Следствие. Определитель матрицы есть кососимметричная и полилинейная функция столбцов матрицы.

Все свойства определителя, которые верны для строк матрицы, верны и для столбцов.

8.2 Элементарные матрицы

Определение. Матрица T , полученная из единичной матрицы E, с помощью одного элементарного преобразования над строками или столбцами, называется элементарной матрицей.

$$\ni$$
Π1: $\overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}$, $i \neq j$

 $\Im \Pi 2: \overline{a_i} \leftrightarrow \overline{a_j}, \quad i \neq j$

ЭП3: $\overline{a_i} \leftrightarrow \mu \overline{a_i}, \quad \mu \neq 0$

Лемма 1.

1.1 Любые ЭП над строками матрицы A равносильны умножению матрицы A слева на элементарную матрицу, т.е.

 $A\leadsto\widetilde{A}\Longleftrightarrow\widetilde{A}=T\cdot A$, где T - элементарная матрица, такая что $E\leadsto T$

1.2 Любые ЭП над столбцами матрицы A равносильны умножению матрицы A справа на элементарную матрицу.

Доказательство. Непосредственная проверка

Лемма 2. Пусть A - квадратная матрица порядка n, тогда:

- 1. Если $det A \neq 0$, то с помощью $\Im\Pi$ над строками A можно привести к E.
- 2. Если det A=0, то с помощью ЭП над строками в A можно получить нулевую строку

Доказательство. Методом Гаусса любую матрицу можно привести к ступенчатому виду. Ступенчатый вид для квадратной матрицы является верхнетреугольной, т.е.:

$$A \leadsto \widetilde{A} = \begin{pmatrix} \widetilde{a_{11}} & * \\ & \ddots & \\ 0 & \widetilde{a_{nn}} \end{pmatrix}$$

 $\Longrightarrow det A=\xi\cdot det \widetilde{A},$ где $\xi\neq 0,\ det \widetilde{A}=\widetilde{a_{11}}\cdot\ldots\cdot \widetilde{a_{nn}}$ Итак,

$$det A = 0 \iff det \widetilde{A} = 0 \iff \widetilde{a_{11}} \cdot \dots \cdot \widetilde{a_{nn}} = 0$$

1. Если $det A \neq 0$, то $a_{11} \neq 0,...,a_{nn} \neq 0$ - лидеры матрицы A $\Longrightarrow \widetilde{A}$ приводится к улучшенному ступенчатому виду обратным ходом Гаусса и этот улучшенный ступенчатый вид совпадает с E

2. Если det A=0, то $a_{11}\cdot ...\cdot a_{nn}=0\Longrightarrow \exists k:a_{kk}=0$. По определению ступенчатого вида $\forall i>k:\widetilde{a_{ii}}=0\Longrightarrow \widetilde{a_{nn}}=0\Longrightarrow$ последняя строка в \widetilde{A} нулевая.

Теорема 4. Пусть A, B - квадратные матрицы порядка n, тогда:

$$detAB = detA \cdot detB$$

Доказательство. Из ассоциативности умножения T(AB) = (TA)B, где T элементарная матрица, получаем, что элементраное преобразование над строками матрицы A соответствует элементарному преобразованию строк матрицы AB.

1 случай. det A=0 (по лемме $(\ref{eq:constraint})$, пункт $2)\Longrightarrow A\leadsto \widetilde{A}($ с нулевой строкой) $\Longrightarrow \widetilde{A}=\cdot (T_1\cdot\ldots\cdot T_k)\cdot A,$ где T_i - матрицы элементарных преобразований. $\Longrightarrow (T_1\cdot\ldots\cdot T_k)(AB)=((T_1\cdot\ldots\cdot T_k)A)B=\widetilde{A}B\Longrightarrow det AB=0,$ т.к. $AB\leadsto \widetilde{A}B$

2 случай. $det A \neq 0$ (по лемме (??), пункт 1) $\Longrightarrow A \leadsto E \Longrightarrow E = (T_1 \cdot \ldots \cdot T_k)A$, где T_i - матрицы элементарных преобразований.

$$(T_1 \cdot \dots \cdot T_k)(AB) = ((T_1 \cdot \dots \cdot T_k)A)B = EB = B$$

 $\Longrightarrow detAB = c \cdot det((T_1 \cdot \dots \cdot T_k)AB) = c \cdot detB$

Рассмотрим отношение:

$$\frac{detAB}{detA} = (*)$$

Произведем над матрицей A ЭП, которые приведут матрицу $A \leadsto E$, одновременно производим такие же ЭП над AB.

$$(*) = \frac{detEB}{detE} = detB$$

Теорема 5. (Об определителе с углом нулей)

Пусть A - квадратная матрица порядка k

B - квадратная матрица порядка m

C - матрица размера $k \times m$.

Тогда:

$$det \left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array} \right) (*) = det A \cdot det B$$

Доказательство.

1 случай. det B = 0

(По лемме (??), пункт 2) $B \leadsto \widetilde{B}$ Производя точно такие же ЭП над последними m строками матрицы (*) , получаем нулевую строку

$$\Longrightarrow \det \left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array} \right) = \det A \cdot \det B = 0$$

2 случай. det A = 0 Аналогично как в 1 случае, только $\Im\Pi$ над столбцами.

3 случай. $det A \neq 0, det B \neq 0$

Рассмотрим отношение:

$$\frac{\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}}{\det A \cdot \det B}$$

(По лемме (??), пункт 1) $A \leadsto E, B \leadsto E$

Преобразуем матрицу A с помощью ЭП над столбцами, которые приводят $A \leadsto E$, преобразуем B с помощью ЭП над строками, которые приводят $B \leadsto E$. Одновременно преобразуем матрицу (*) с помощью таких же ЭП над строками и столбцами, отношение при этом не изменится. Тогда:

$$\frac{\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}}{\det A \cdot \det B} = \frac{\det \begin{pmatrix} E & C \\ 0 & E \end{pmatrix}}{\det E \cdot \det E} = 1$$

8.3 Разложение определителя по строке

A - матрица размера $m \times n$.

 $i_1, ..., i_k$ - номера некоторого разложения строк в A.

 $j_1, ..., j_t$ - номера некоторого разложения столбцов в A.

Определение. Матрица, состоящая из элементов матрицы A, стоящих на пересечении строк с номерами $i_1,...,i_k$ и столбцов с номерами $j_1,...,j_t$, называется подматрицей матрицы A

Обозначение:
$$A_{j_1}^{i_1} \cdots i_k$$
 j_t

Определение. Минором k—ого порядка матрицы A называется определитель квадратной подматрицы порядка k.

Пример.

$$\begin{array}{c|c}
 & 1 & 2 & 3 & 4 \\
\hline
 & 5 & 6 & 7 & 8 \\
\hline
 & 7 & 8 & 7
\end{array}$$

$$\longrightarrow \text{Минор} = \begin{vmatrix} 6 & 8 \\ 7 & 7 \end{vmatrix}$$

Пусть A - квадратная матрица порядка n

Определение. Минор порядка (n-1) квадратной матрицы A, порядка n, полученный вычеркиванием i—ой строки и j—ого столбца, называется дополнительным минором к элементу a_{ij} .

Обозначается: M_{ij}

Пример.

$$\begin{array}{c|c}
\hline
\begin{pmatrix}
1 & 2 & 3 \\
\hline
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\Longrightarrow M_{12} = \begin{vmatrix}
2 & 3 \\
8 & 9
\end{vmatrix} = -6$$

Определение. Алгебраческое дополнение к элементу a_{ij} - это число:

$$A_{ij} = (-1)^{i+j} \cdot M_{ij}$$

Пример. (к прошлому примеру) $A_{21} = (-1)^{2+1}(-6) = 6$

Лемма. Матрица \overline{A} , полученная из A заменой i-ой строки на $(0,...,0,a_{ij},0,...,0)$:

$$det\overline{A} = det \begin{pmatrix} \vdots \\ 0 & \cdots & a_{ij} & \cdots & 0 \\ \vdots & & \vdots \end{pmatrix} = a_{ij} \cdot A_{ij}$$

Доказательство.

$$\begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ \vdots & & & \vdots \\ 0 & \dots & a_{ij} & \dots & 0 \\ \vdots & & & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot (-1)^{j-1} \cdot \frac{\begin{vmatrix} a_{ij} & 0 \\ * & B \end{vmatrix}}{\begin{vmatrix} * & B \end{vmatrix}} =$$

$$= (-1)^{i+j} \cdot a_{ij} \cdot detB = (-1)^{i+j} \cdot a_{ij} \cdot M_{ij} = a_{ij} \cdot A_{ij}$$

где B - подматрица A, из которой вычеркнули i-ую строку и j-ый столбец. $\ \square$

Теорема 6.

1. $det A = \sum_{j=1}^{n} a_{ij} A_{ij}$ - формула разложения по i-ой строке.

2. $det A = \sum_{i=1}^{n} a_{ij} A_{ij}$ - формула разложения по j-ому столбцу.

Доказательство.

8.4 Определитель Вандермонда

Определение. $V(x_1,...,x_n)$ - определитель Вандермонда.

$$V(x_1, ..., x_n) = \begin{vmatrix} 1 & 1 & 1 & ... & 1 \\ x_1 & x_2 & x_3 & ... & x_n \\ x_1^2 & x_2^2 & x_3^2 & ... & x_n^2 \\ \vdots & \vdots & \vdots & ... & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & ... & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

Вычисление индукции по n

База:
$$n = 2: \begin{vmatrix} 1 & 1 \\ x_1 & x_2 \end{vmatrix} = x_2 - x_1$$

Пусть верно для (n-1), тогда вычислим для n:

$$V(x_{1},...,x_{n}) \stackrel{(1)}{=} \\ \stackrel{(1)}{=} \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & x_{2}-x_{1} & x_{3}-x_{1} & \dots & x_{n}-x_{1} \\ 0 & x_{2}^{2}-x_{1}x_{2} & x_{3}^{2}-x_{1}x_{3} & \dots & x_{n}^{2}-x_{1}x_{n} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & x_{2}^{n-1}-x_{1}x_{2}^{n-2} & x_{3}^{n-1}-x_{1}x_{3}^{n-2} & \dots & x_{n}^{n-1}-x_{1}x_{n}^{n-2} \end{vmatrix} \stackrel{(2)}{=} \\ \stackrel{(2)}{=} \begin{vmatrix} x_{2}-x_{1} & x_{3}-x_{1} & \dots & x_{n}-x_{1} \\ x_{2}^{2}-x_{1}x_{2} & x_{3}^{2}-x_{1}x_{3} & \dots & x_{n}^{2}-x_{1}x_{n} \\ \vdots & \vdots & \dots & \vdots \\ x_{2}^{n-1}-x_{1}x_{2}^{n-2} & x_{3}^{n-1}-x_{1}x_{3}^{n-2} & \dots & x_{n}^{n-1}-x_{1}x_{n}^{n-2} \end{vmatrix} \stackrel{(3)}{=} \\ \stackrel{(3)}{=} \begin{vmatrix} x_{2}-x_{1} & x_{3}-x_{1} & \dots & x_{n}-x_{1} \\ x_{2}(x_{2}-x_{1}) & x_{3}(x_{3}-x_{1}) & \dots & x_{n}(x_{n}-x_{1}) \\ \vdots & \vdots & \dots & \vdots \\ x_{2}^{n-2}(x_{2}-x_{1}) & x_{3}^{n-2}(x_{3}-x_{1}) & \dots & x_{n}^{n-2}(x_{n}-x_{1}) \end{vmatrix} = \\ \begin{pmatrix} x_{1} & x_{1} & x_{2} & x_{2} & x_{1} & x_{2} & x$$

$$= \prod_{j=2}^{n} (x_j - x_1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_2 & x_3 & \dots & x_n \\ \vdots & \vdots & \dots & \vdots \\ x_2^{n-2} & x_3^{n-2} & \dots & x_n^{n-2} \end{vmatrix} = \prod_{j=2}^{n} (x_j - x_1) \prod_{2 \le i \le j \le n} (x_j - x_i) = \prod_{1 \le i \le j \le n} (x_j - x_i)$$

- (1) Из каждой строки, начиная с последней, вычитаем предыдущую, умноженную на x_1
- (2) По теореме об определителе с углом нулей
- (3) Выносим $(x_j x_1)$

Следствие. (О фальшивом разложении определителя) Пусть $A = (a_{ij})$ - квадратная матрица порядка n, тогда:

$$\sum_{j=1}^n a_{ij} A_{kj} = 0 \text{ (при } i \neq k)(*)$$

$$\sum_{i=1}^{n} a_{ij} A_{ik} = 0 \text{ (при } j \neq k)$$

(*) - Т.е. алгебраическое дополнение берем из другой строки

Доказательство. Для сторок (для столбцов аналогично)

$$A = \begin{pmatrix} & \overline{a_1} \\ & \overline{a_2} \\ & \vdots \\ & \overline{a_n} \end{pmatrix}$$

Рассмотрим матрицу B, где вместо k-ой строки стоит i-ая.

С другой стороны, разложим detB по k-ой строке:

$$B = (b_{ij}), \ det B = \sum_{j=1}^{n} b_{kj} B_{kj} = \sum_{j=1}^{n} a_{ij} A_{kj}$$

8.5 О ранге

Определение. Квадратная матрица A порядка n называется невырожденной, если rkA = n (т.е. её строки ЛНЗ, как и все столбцы)

Теорема 7. Квадратная матрица A является невырожденной $\Longleftrightarrow det A \neq 0$

Доказательство. Пусть $A=(a_{ij})$ - квадратная матрица порядка n Надо доказать, что $rkA=n\Longleftrightarrow det A\neq 0$

 $\Longrightarrow rk=n$. Допустим, что $det A=0\Longrightarrow$ (по лемме $(\ref{eq:condition})$, пункт 2) $A\sim\widetilde{A}$, где \widetilde{A} - матрица с нулевой строкой $\Longrightarrow rkA=rk\widetilde{A}< n$. Противоречие $\Longrightarrow det A\neq 0$

Следствие.

- Все строки квадратной матрицы A ЛНЗ $\Longleftrightarrow det A \neq 0$
- ullet Все столбцы квадратной матрицы A ЛНЗ $\Longleftrightarrow det A \neq 0$

Теорема. (О ранге матрицы)

Ранг матрицы A совпадает с максимальным порядком отличного от нуля минора.

Доказательство. Пусть rkA = r

• Докажем, что все миноры порядка s, где s>r равны нулю. Рассмотрим произвольный минор M порядка s:

$$M = \det A_{j_1 \cdots j_s}^{i_1 \cdots i_s}$$

т.к. s>r, то строки матрицы A с номерами $i_1,...,i_s$ ЛЗ \Longrightarrow строки, образующие минор, ЛЗ $\Longrightarrow M=0$

• Докажем, что \exists хотя бы один ненулевой минор \widetilde{M} порядка r. Т.к. rkA=r, то \exists r ЛНЗ строк \Longrightarrow rkB=r (где B - матрица с r ЛНЗ строк и все столбцы) \Longrightarrow в B \exists r ЛНЗ столбцов. Сформируем матрицу C из этих столбцов \Longrightarrow $detC \neq 0$ det C - это и есть искомый минор \widetilde{M}

Определение. Пусть $M = \det A \stackrel{i_1}{j_1} \cdots \stackrel{i_s}{j_s}$ - минор порядка s $i \notin \{i_1,...,i_s\}, \ j \notin \{j_1,...,j_s\}$

$$\widetilde{M}=\det\,A\,rac{i_1}{j_1}\,\,\cdots\,\,\,i_s\,i\over j_s\,\,j}$$
 - минор порядка $s+1$

 \widetilde{M} - окаймляющий минор минора M.

Пример.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 1 & 3 & 5 \\ 1 & -1 & 0 & 7 \end{pmatrix}$$

$$M = \det A \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ 1 & 5 \end{vmatrix} = 6$$

$$\widetilde{M} = \det A \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 4 \\ 6 & 7 & 8 \\ 1 & 3 & 5 \end{vmatrix} = 0$$

Метод окаймляющих миноров:

Утверждение. Пусть $A=(a_{ij})$ - матрица размера $m\times n,\ \exists$ минор M порядка r, отличный от нуля, и все миноры, окаймляющие его, равны нулю. Тогда rkA=r.

 \mathcal{A} оказательство. Пусть $M=\det A \stackrel{i_1}{j_1} \cdots \stackrel{i_r}{j_r}$. Т.к. $M \neq 0$, то строки матрицы

A с номерами $i_1,...,i_r$ ЛНЗ $\Longrightarrow rkA \ge r$

Предположим, что $rkA \ge r+1$. Рассмотрим строки $\overline{a_{i_1}},...,\overline{a_{i_r}}$, которые формируют минор M. Они ЛНЗ.

Т.к. $rkA \ge r+1$, то $\exists i \notin \{i_1,...,i_r\} : \overline{a_i}$ не выражается линейно через $\overline{a_{i_1}},...,\overline{a_{i_r}} \Longrightarrow \overline{a_{i_1}},...,\overline{a_{i_r}},\overline{a_i}$ - ЛНЗ.

Образуем из этих строк матрицу $B \Longrightarrow rkB = r+1 \Longrightarrow \exists r+1$ ЛНЗ столбец. Столбцы с номерами $j_1,...,j_r$ ЛНЗ, т.к. $M \neq 0$

Т.к. rkB = r+1, то $\exists j \notin \{j_1,...,j_r\}$: столбец с номером j не выражается через столбцы с номерами $j_1,...,j_r$

Расмотрим подматрицу C матрицы B, составленную из столбцов с номерами $j_1,...,j_r,j\Longrightarrow C-$ квадратная матрица порядка r+1 из ЛНЗ столбцов $\Longrightarrow det\ C\neq 0$

 \Longrightarrow т.к. $det\ C$ является окаймляющим минором минора M, получаем противоречие условию $\Longrightarrow rkA=r$.

8.6 Правила Крамера СЛУ

$$\begin{cases} a_{11}x_1+\cdots+a_{1n}x_n=b_1\\ \vdots & \text{Матричная форма } AX=B\\ a_{m1}x_1+\cdots+a_{mn}x_n=b_n \end{cases}$$

 $\mathrm{C}\Pi\mathrm{Y}$ называется квадратной, если m=n

Пусть СЛУ AX = B - квадратная.

Обозначение: $\Delta = detA = det(A_1, ..., A_n)$

$$\Delta_i = det(A_1, ..., B_i, ...A_n)$$

Теорема. Пусть AX = B - квадратная СЛУ с невырожденной A Тогда СЛУ имеет единственное решение и это решение можно найти по формуле:

$$x_1 = \frac{\Delta_1}{\Delta}, ..., x_n = \frac{\Delta_n}{\Delta}$$

Доказательство. Т.к. A - невырожденная, то $det A \neq 0 \Longrightarrow A \leadsto E$ Будем решать СЛУ методом Гаусса:

$$(A|B) = (E|\widetilde{B}) \Longrightarrow \begin{cases} x_1 = \widetilde{b_1} \\ \vdots \\ x_n = \widetilde{b_n} \end{cases}$$

$$\frac{\Delta_i}{\Delta} = \frac{\det(A_1, ..., B, ..., A_n)}{\det(A_1, ..., A_i, ..., A_n)} = \frac{\det(E_1, ..., \widetilde{B}, ..., E_n)}{\det(E_1, ..., E_i, ..., E_n)} = \frac{\widetilde{b_i}}{1} = \widetilde{b_i}$$

8.7 Обратная матрица

Пусть A - квадратная матрица порядка n

Определение. Матрица B - называется обратной матрицей к A, если:

$$\begin{cases} A \cdot B = E \\ B \cdot A = E \end{cases}$$

Обозначается A^{-1}

Утверждение. Если квадратная матрица A имеет обратную матрицу, то она одна.

 $\ensuremath{\mathcal{A}\!\mathit{okaзательство}}$. Пусть \exists две обратной матрицы B_1, B_2 , тогда:

$$B_1(AB_2) = (B_1A)B_2$$
$$B_1E = EB_2$$
$$B_1 = B_2$$

Свойства.

1. Если матрица A имеет обратную, то A^{-1} тоже имеет обратную, причем $(A^{-1})^{-1} = A$

- 2. Если матрица A имеет обратную, $\lambda \neq 0$, то λA , тоже имеет обратную, причем $(\lambda A)^{-1} = \lambda^{-1} A^{-1}$
- 3. Если матрица A имеет обратную, то A^T тоже имеет обратную, причем $(A^T)^{-1} = (A^{-1})^T$
- 4. Если матрицы A, B квадратные порядка n и каждая имеет обратную, то AB тоже имеет обратную, причем $(AB)^{-1} = B^{-1}A^{-1}$

Докажем, что $B^{-1}A^{-1}$ удовлетворяет определению обратной матрицы для AB

$$(A \cdot B)(B^{-1} \cdot A^{-1}) = A(BB^{-1})A^{-1} = AEA^{-1} = AA^{-1} = E$$
$$(B^{-1} \cdot A^{-1})(A \cdot B) = B^{-1}(A^{-1}A)B = B^{-1}EB = B^{-1}B = E$$
$$\Longrightarrow (A \cdot B)(B^{-1} \cdot A^{-1}) = (B^{-1} \cdot A^{-1})(A \cdot B) = E$$

Замечание. A, B, имеют обратные $\not\Rightarrow A + B$, имеет обратную.

Пример. A и -A

Утверждение. Любая элементарная матрица T имеет обратную, причем она соответствует обратному преобразованию.

Доказательство. Непосредственная проверка.

Теорема. (Критерий существования обратной матрицы) Квадратная матрица A имеет обратную \iff она невырожденная. \mathcal{A} оказательство. Пусть A - квадратная, порядка n Надо доказать, что $\exists A^{-1} \Longleftrightarrow rkA = n \Longleftrightarrow detA \neq 0$

 \implies Пусть $\exists \ A^{-1}$. По определению $AA^{-1}=E$ Вычислим определитель обеих частей равенства:

$$det A \cdot det A^{-1} = det(AA^{-1}) = det E = 1 \Longrightarrow det A \neq 0$$

 $\stackrel{\longleftarrow}{\longleftarrow}$ Пусть A - невырожденная, $det A \neq 0 \Longrightarrow A \leadsto E \Longrightarrow \exists$ набор элементарных матриц

$$T_1, ..., T_k : (T_1 \cdot ... \cdot T_k)A = E \quad (*)$$

По утверждению $\forall i = \overline{1,k} \ T_i$ имеет обратную.

По свойству $(??): T_1 \cdot ... \cdot T_k$ имеет обратную.

Умножим (*) на обратную к $(T_1 \cdot ... \cdot T_k) : (T_1 \cdot ... \cdot T_k)^{-1} \cdot (T_1 \cdot ... \cdot T_k) \cdot A = (T_1 \cdot ... \cdot T_k)^{-1}E \Longrightarrow A = (T_1 \cdot ... \cdot T_k)^{-1}$

По свойству (??)
$$\exists ((T_1 \cdot ... \cdot T_k)^{-1})^{-1} = (T_1 \cdot ... \cdot T_k) \Rightarrow \exists A^{-1} = (T_1 \cdot ... \cdot T_k)$$

Из доказательства имеем:

1.
$$A^{-1} = T_1 \cdot ... \cdot T_k = (T_1 \cdot ... \cdot T_k)E$$

$$2. (T_1 \cdot \ldots \cdot T_k)A = E$$

Т.е. A^{-1} получена из E с помощью ЭП над строками, которые приводят A к E. Чтобы производить такие же ЭП над строками матрицы E, как над строками A, преобразования делают над расширенной матрицей:

$$(A|E) \rightsquigarrow ((T_1 \cdot \ldots \cdot T_k)A(T_1 \cdot \ldots \cdot T_k)E) = (E|A^{-1})$$

Это метод нахождения обратной матрицы.

Теорема. (о явном выражении элементов обратной матрицы)

Пусть $A = (a_{ij})$ - квадратная невырожденная матрица порядка n, тогда \exists обратная матрица к A и её элементы могут найдены по формуле:

$$b_{ij} = \frac{1}{\det A} \cdot A_{ji}$$

где $A^{-1} = (b_{ij}), \ A_{ji}$ - алгебраическое дополнение.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}; \quad A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & \cdots & A_{n1} \\ \vdots & & \vdots \\ A_{1n} & \cdots & A_{nn} \end{pmatrix}$$

Доказательство. Т.к. A - невырожденная, то $\exists A^{-1}$ по предыдущей теореме. Обратная матрица к A (назовем её X) удовлетворяет уравнению: AX = E Пусть $X = (X_1, ..., X_n), \ E = (E_1, ..., E_n),$ где X_i, E_i - стобцы соответствующих матриц, тогда AX = E эквивалентно системе:

$$\begin{cases} AX_1 = E_1 \\ AX_2 = E_2 \\ \vdots \\ AX_n = E_n \end{cases}$$

 $\forall k=\overline{1,n}$ расмотрим соответствующую СЛУ: $AX_k=E_k$. Она квадратная с невырожденной матрицей коэффициентов \Longrightarrow Решение единственное и может быть найдено по формулам Крамера:

$$X_k = \begin{pmatrix} X_{1,k} \\ \vdots \\ X_{n,k} \end{pmatrix}$$
, где $\forall i = \overline{1,n}; \ X_{i,k} = \frac{\Delta_i}{\Delta} = \frac{\Delta_i}{\det A}$

$$\Delta_i = det(A_1, ..., E_k, ..., A_n) = A_{ki} \Longrightarrow X_{i,k} = \frac{A_{ki}}{detA}$$

9 Алгебраические структуры

A, B - множества.

Декартово произведение: $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Определение. Бинарной операцией на множестве A называется отображение:

$$\rho: A \times A \to A$$

Обозначается:

- 1. $\rho(a_1, a_2) = a_3$
- 2. $a_1 \rho a_2 = a_3$
- 3. $a_1 * a_2 = a_3$
- 4. (A, *)— на A задана бинарная операция *

Определение. (A, *) - говорят, что на A определена алгебраическая структура. (A, *) называется алгебраической системой.

Определение. Бинарная операция (*) на A называется коммутативной, если $\forall a,b\in A: a*b=b*a$

Определение. Бинарная операция (*) на A называется ассоциативной, если $\forall a,b,c\in A: a*(b*c)=(a*b)*c$

Примеры.

- 1. $(\mathbb{Z}, +)$ ассоциативна и коммутативна.
- 2. $(\mathbb{Z}, -)$ НЕ ассоциативна и НЕ коммутативна.
- 3. $(M_{m \times n}, +)$ ассоциативна и коммутативна.
- 4. $(M_{m \times n}, \cdot)$ ассоциативна и НЕ коммутативна.

Определение. Элемент $e \in A$ называется нейтральным элементом относительно бинарной операции (*), если $\forall a \in A : a*e = e*a = a$

Примеры.

- 1. $(\mathbb{Z}, +)$: e = 0
- 2. (\mathbb{Z},\cdot) : e=1

3.
$$(\mathbb{Z}, -)$$
: $\not\exists e$

4.
$$(\mathbb{N}, +)$$
: $\not\exists e$

Утверждение. Если нейтральный элемент существует, то он единственный.

Доказательство. (От противного) Допустим, что $\exists e_1, e_2 \in A$ - нейтральные

$$e_1 \neq e_2 \Longrightarrow \underbrace{e_1}_{\text{нейтральный}} *e_2 = e_2; \quad e_1 * \underbrace{e_2}_{\text{нейтральный}} = e_1 \Longrightarrow e_1 = e_2$$

Определение. Группоид - это множество A, на котором введена бинарная операция (*).

Обозначение: (A, *)

Определение. Полугруппа - группоид с ассоциативной бинарной операцией.

Определение. Моноид - полугруппа, в которой \exists нейтральный элемент. Обозначение: (A,*,e)

Утверждение. Если элемент a моноида A имеет обратный, то этот обратный единственный.

Доказательство. Допустим $\exists b_1, b_2$ - обратные к a элементы: $b_1 \neq b_2$ В силу ассоциативности:

$$b_1 * (a * b_2) = (b_1 * a) * b_2$$

 $b_1 * e = e * b_2$
 $b_1 = b_2$

Примеры.

1. $(M_{n\times m}(\mathbb{R}),\cdot,E)$ моноид, $\exists A^{-1} \Longleftrightarrow det A \neq 0$

 $2. \ (\mathbb{Z}, \cdot, 1)$ моноид, 1 и -1 обратимы

3. ($\mathbb{R}, \cdot, 1$) моноид, $\forall a \neq 0 : \exists \ a^{-1}$

Свойства.

1) Если элемент a имеет обратный b , то элемент b имеет обратный и этот обратный равен a

2) Если a_1 имеет обратный b_1 , a_2 имеет обратный b_2 , то: $(a_1*a_2)^{-1}=b_2*b_1$

Определение. Группа - моноид, в котором каждый элемент имеет обратный.

Определение. Группоид (полугруппа, моноид, группа) называется коммутативным, если бинарная операция коммутативна.

Определение. Абелева группа - коммутативная группа.

Примеры.

- 1. $(\mathbb{Z}, +, 0)$ группа (абелева)
- 2. $(\mathbb{Z}, \cdot, 1)$ НЕ группа (коммутативный моноид)
- 3. $(\mathbb{R},\cdot,1)$ НЕ группа
- 4. $(\mathbb{R}/\{0\},\cdot,1)$ группа (абелева)
- 5. $(M_{m \times n}(\mathbb{R}), \cdot, E)$ НЕ группа
- 6. (GL_n, \cdot, E) группа $(GL_n$ множество невырожденных матриц порядка n с коэф. из $\mathbb{R})$

Определение. Множество A, на котором задана бинарная операция (*), называется группой, если:

- 1. $\forall a, b, c \in A : a * (b * c) = (a * b) * c (ассоциантвность)$
- 3. $\forall a \in A \exists b \in A : a * b = b * a = e$ (обратный элемент)

Терминология		
	Аддитивность	Мультипликативность
*	+, сложение	• , умножение
e	0, нулевой элемент	e,единичный элемент
обратный к a	-a, противоположный	a^{-1} , обратный

9.1 Изоморфизм группы

Пусть $(G_1, *, e_1), (G_2, \circ, e_2)$ - группы

Определение. Группы G_1, G_2 называются изоморфными, если \exists отображение $\varphi: G_1 \to G_2:$

1. φ — биекция

2.
$$\forall a, b \in G_1 : \varphi(a * b) = \varphi(a) \circ \varphi(b)$$

Обозначение: $G_1 \cong G_2$

При этом отображение называется изоморфизмом групп.

Пример.
$$(\mathbb{R}, +, 0), (\mathbb{R}^+, \cdot, 1)$$

 $\varphi: \mathbb{R} \to \mathbb{R}^+$

$$\begin{cases} \varphi(x) = e^x - \text{биекция} \\ \varphi(a+b) = e^{a+b} = e^a \cdot e^b = \varphi(a) \cdot \varphi(b) \end{cases} \implies \mathbb{R} \cong \mathbb{R}^+$$

Свойства.

1.
$$\varphi(e_1) = e_2$$

2.
$$\varphi(a^{-1}) = \varphi(a)^{-1}$$

Доказательство.

1) $\forall a \in G_1$:

$$a * e_1 = a$$
$$\varphi(a * e_1) = \varphi(a)$$
$$\varphi(a) \circ \varphi(e_1) = \varphi(a)$$

Т.к. G_2 - группа, то $\exists \ \varphi(a)^{-1}$. Умножение на $\varphi(a)^{-1}$ слева:

$$\varphi(a)^{-1} \circ (\varphi(a) \circ \varphi(e_1)) = \varphi(a)^{-1} \circ \varphi(a) = e_2$$

2)

$$a^{-1} * a = e_1$$

$$\varphi(a^{-1} * a) = \varphi(e_1) = e_2$$

$$\varphi(a^{-1}) \circ \varphi(a) = e_2$$

 \Longrightarrow обратный к $\varphi(a)$ является $\varphi(a)^{-1}$

Аналогично $\varphi(a) \circ \varphi(a^{-1}) = e_2$

9.2 Группа подстановок

Определение. Подстановкой степени n называется биективное отображение σ множества $\{1,...,n\}$ в себя.

$$\{1,...,n\} \rightarrow \{1,...,n\}$$
 — биекция

Подстановку можно написать в виде таблицы:

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_n \\ j_1 & j_2 & \cdots & j_n \end{pmatrix}$$

В верхней строке расположены числа от 1 до n в некотором порядке. В нижней строке расположены их образы, т.е. $j_k = \sigma(i_k)$

Пример. n = 3:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Если поменять столбцы местами, отображение не изменится.

Если в верхней строке числа упорядочить по возрастанию, то такая запись будет называться стандартной.

Определение. Подстановка id степени n называется тождественной, если:

$$\forall k \in \{1, ..., n\} : \mathrm{id}(k) = k$$

т.е.

$$id = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

Обозначение: $\Omega = \{1,...,n\}$ (множество, являющееся отрезком натурального ряда)

Определение. Произведение подстановок π и τ степени n - это их композиция $\pi \circ \tau$, т.е.

$$(\pi \circ \tau)(k) = \pi(\tau(k))$$

Утверждение. (1) Произведение подстановок степени n - снова подстановка длины n.

Утверждение. (2) Множество S_n всех подстановок степени n, относительно этого произведения (композиции), является группой.

Доказательство. По утверждению (1) произведение - это бинарное отношение:

- 1) ассоциативность верна.
- 2) id нейтральный элемент.
- 3) $\forall \sigma \in S_n \; \exists \; \sigma^{-1} \in S_n, \; \text{т.к.} \; \sigma : \Omega \overset{\text{биекция}}{\longrightarrow} \Omega$

Определение. Группа S_n называется симметрической группой степени n (группой всех подстановок степени n).

Утверждение. $|S_n| = n!$

Утверждение. Группа S_n - НЕ коммутативна.

Пример.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\neq$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Определение. Циклом длины k называется подстановка, в которой $\forall i \in \{1,...,n\} \setminus \{i_1,...,i_k\}$, где $\sigma(i)=i$, при этом:

$$\sigma(i_1) = i_2, \sigma(i_2) = i_3, .., \sigma(i_k) = i_1$$

Обозначение: $(i_1, ..., i_k)$

Представление в виде графа:

Пример.
$$n = 6$$
, $\sigma = (1, 3, 2)$ 1 2 2 0 0 0

Замечание. Заметим, что $(i_1,i_2,...,i_k)=(i_k,i_1,...,i_{k-1})=(i_2,i_3,..,i_1)=...$

Определение. Циклы $(i_1,...,i_k)$ и $(j_1,...,j_k)$ называются независимыми, если:

$$\{i_1,...,i_k\} \cap \{j_1,...,j_k\} = \emptyset$$

Пример. (1,2,3), (4,5)

Утверждение. Независимые циклы коммутируют.

Пример.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix}$$

Теорема 1. Любая подстановка $\sigma \in S_n$, $\sigma \neq$ id раскладывается в произведение <u>независимых</u> циклов длины ≥ 2 , причем это разложение единственно с точностью до перестановки множителей.

Доказательство.

 \exists : Рассмотрим степени подстановки σ .

По определению: $\sigma^0 = id$;

$$\sigma^m:=\sigma\cdot\ldots\cdot\sigma,\,\text{при}\,\,m>0;$$

$$\sigma^m:=\sigma^{-1}\cdot\ldots\cdot\sigma^{-1},\,\text{при}\,\,m<0$$

Отметим, что:

- 1. Степень подстановки σ^m это подстановка $\forall m \in \mathbb{Z}$
- 2. $\sigma^{m_1} \cdot \sigma^{m_2} = \sigma^{m_1 + m_2}$
- 3. $(\sigma^{m_1})^{m_2} = \sigma^{m_1 \cdot m_2}$

Рассмотрим произвольный $i \in \{1, ..., n\}$

Определение. Множество $\mathrm{Orb}(i) = \{\sigma^m(i) \mid m \in \mathbb{Z}\}$ называется орбитой числа i.

Orb
$$(i) \subseteq \{1, ..., n\} \Longrightarrow \exists m_1, m_2 \in \mathbb{Z} : \sigma^{m_1}(i) = \sigma^{m_2}(i) = j$$

Допустим, что $m_1 > m_2$, тогда $\sigma^{m_1 - m_2}(i) = \sigma^{-m_2}(\sigma^{m_1}(i)) = \sigma^{-m_2}(j) = i$
 $\Longrightarrow (\text{т.к. } m_1 - m_2 \in \mathbb{N}) \; \exists \; \text{ такое наименьшее } k \in \mathbb{N} \; : \; \sigma^k(i) = i$

Orb(i) =
$$\{i, \sigma(i), ..., \sigma^{k-1}(i)\}$$

Свойства.

1. Различные орбиты не пересекаются.

Доказательство. Пусть
$$l \in \operatorname{Orb}(i) \cap \operatorname{Orb}(j) \Longrightarrow \exists m_1, m_2 \in \mathbb{N}^0$$
: $\sigma^{m_1}(i) = l = \sigma^{m_2}(j) \Longrightarrow \sigma^{m_1 - m_2}(i) = \sigma^{-m_2}(\sigma^{m_1}(i)) = \sigma^{-m_2}(l) = j \Longrightarrow \forall p \in \mathbb{Z} : \sigma^p(j) = \sigma^p(\sigma^{m_1 - m_2}(i)) = \sigma^{m_1 - m_2 + p}(i) \Longrightarrow \operatorname{Orb}(j) \subseteq \operatorname{Orb}(i)$ Аналогично $\operatorname{Orb}(i) \subseteq \operatorname{Orb}(j) \Longrightarrow \operatorname{Orb}(i) = \operatorname{Orb}(j)$

2.
$$\{1,...,n\} = \mathrm{Orb}(i_1) \cup ... \cup \mathrm{Orb}(i_s)$$

Доказательство. Т.к. $\forall i \in \{1,...,n\} : i \in \mathrm{Orb}(i)$

Продолжаем доказательство теоремы. Рассмотрим разложение $\{1,...,n\}$ как объединение Orb, где k_i - количество элементов в Orb:

$$\{1, ..., n\} = \operatorname{Orb}(i_1) \sqcup ... \sqcup \operatorname{Orb}(i_t) \sqcup \operatorname{Orb}(i_{t+1}) \sqcup ... \sqcup \operatorname{Orb}(i_s)$$

Если $\sigma \neq \mathrm{id}$, то $k_1 > 1, ..., k_t > 1, k_{t+1} = 1, ..., k_s = 1 \Longrightarrow$ $\sigma = (i_1 \ \sigma(i_1) \ ... \ \sigma^{k_1-1}(i_1)) \ ... \ (i_t \ \sigma(i_t) \ ... \ \sigma^{k_t-1}(i_t)). \ \exists \$ доказано.

!: (От противного) Допустим,

$$\sigma = \pi_1 \cdot \dots \cdot \pi_{\nu}$$
$$\sigma = \tau_1 \cdot \dots \cdot \tau_{\nu}$$

Различные разложения на независимые циклы длины ≥ 2 Т.к. $\sigma \neq id$, то $\exists \ j: \sigma(j) \neq j \Longrightarrow$ с точностью до нумерации:

$$\pi_1(j) \neq j, \ \tau_1(j) \neq j$$

$$\sigma(j) = \pi_1(j) \Longrightarrow \forall m \in \mathbb{N}^0 : \quad \begin{array}{c} \sigma^m(j) = \pi_1^m(j) \\ \sigma(j) = \tau_1(j) \end{array}$$

Т.к. цикл полностью определяется степенями σ , то $\pi_1 = \tau_1 \Longrightarrow \pi_2...\pi_{\nu} = \tau_2...\tau_{\mu}$. Далее индукция по ν и $\mu \Longrightarrow \Pi$ ротиворечие \Longrightarrow Разложение σ единственно.

Определение. Цикл длины 2 называется транспозицией.

Теорема. Любая подстановка $\sigma \in S_n$ раскладывается в произведение транспозиций.

Доказательство. Если $\sigma=\mathrm{id}$, то $\sigma=(12)(12)$

Если $\sigma \neq \mathrm{id},$ то по Теореме (??) σ раскладывается в произведение независимых циклов длины ≥ 2

Поэтому достаточно разложить на транспозиции каждый такой цикл.

$$k > 1$$
 $(1, 2, ..., k) = (1, k)(1, k - 1)...(1, 3)(1, 2)$

9.3 Четность подстановки

$$\sigma \in S_n; \quad \sigma = \begin{pmatrix} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{pmatrix}$$

Определение. Знаком подстановки σ называется функция:

$$\operatorname{sgn}(\sigma) := \operatorname{sgn}(i_1, ..., i_n) \cdot \operatorname{sgn}(j_1, ..., j_n)$$

Утверждение. Знак подстановки не зависит от способа записи подстановки в виде таблицы.

Доказательство. Если $\begin{pmatrix} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{pmatrix}$ и $\begin{pmatrix} m_1 & \cdots & m_n \\ k_1 & \cdots & k_n \end{pmatrix}$ - две записи одной и той же подстановки σ , то от $\begin{pmatrix} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{pmatrix}$ к $\begin{pmatrix} m_1 & \cdots & m_n \\ k_1 & \cdots & k_n \end{pmatrix}$ можно перейти за конечное число перемен столбцов местами. Каждая перемена столбцов местами производит транспозицию в верхней и в нижней строке \Longrightarrow знак меняется и там, и там \Longrightarrow знак произведения не изменяется.

В стандартной записи
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \Longrightarrow \operatorname{sgn}(\sigma) = \operatorname{sgn}(i_1, i_2, ..., i_n)$$

Определение. Подстановка σ называется четной (нечетной), если:

$$\operatorname{sgn}(\sigma) = 1 \ (\operatorname{sgn}(\sigma) = -1)$$

Свойства.

1. $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$

Доказательство.
$$\sigma = \begin{pmatrix} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{pmatrix} \Longrightarrow \sigma^{-1} = \begin{pmatrix} j_1 & \cdots & j_n \\ i_1 & \cdots & i_n \end{pmatrix}$$

2. $\operatorname{sgn}(\sigma \cdot \tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau) \ (\sigma, \tau \in S_n)$

Доказательство.

$$\sigma = \begin{pmatrix} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{pmatrix}, \tau = \begin{pmatrix} k_1 & \cdots & k_n \\ i_1 & \cdots & i_n \end{pmatrix}$$

$$\implies \sigma \cdot \tau = \begin{pmatrix} k_1 & \cdots & k_n \\ j_1 & \cdots & j_n \end{pmatrix} \implies \operatorname{sgn}(\sigma \cdot \tau) = \operatorname{sgn}(k_1, \dots, k_n) \cdot \operatorname{sgn}(j_1, \dots, j_n) = \operatorname{sgn}(k_1, \dots, k_n) \cdot \operatorname{sgn}(i_1, \dots, i_n) \cdot \operatorname{sgn}(i_1, \dots, i_n) \cdot \operatorname{sgn}(j_1, \dots, j_n) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau) \quad \Box$$

Утверждение.

1. если au - транспозиция, то $\mathrm{sgn}(au) = -1$

2. если σ - цикл длины k, то $\mathrm{sgn}(\sigma) = (-1)^{k-1}$

3. если $\sigma = \tau_1 \cdot ... \cdot \tau_l$, где τ_i - транспозиции, то $\mathrm{sgn}(\sigma) = (-1)^l$

Доказательство.

1) $\tau = \begin{pmatrix} 1 & \cdots & i & \cdots & j & \cdots & n \\ 1 & \cdots & j & \cdots & i & \cdots & n \end{pmatrix}$ $\Longrightarrow \operatorname{sgn}(\tau) = \operatorname{sgn}(1, \dots, j, \dots, i, \dots, n) = -\operatorname{sgn}(1, \dots, i, \dots, j, \dots, n) = -1$

3) следует из Свойства (??) и Утверждения (??):

$$\operatorname{sgn}(\sigma) = \operatorname{sgn}(\tau_1) \cdot \operatorname{sgn}(\tau_2) \cdot \dots \cdot \operatorname{sgn}(\tau_l) = \underbrace{(-1) \cdot (-1) \cdot \dots \cdot (-1)}_{l} = (-1)^l$$

2)
$$\sigma = (i_1, ..., i_k) = (i_1, i_k)(i_1, i_{k-1})...(i_1, i_2) = (\text{по Утверждения } (\ref{eq:continuous})) = (-1)^{k-1}$$

Пример.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} = (-1)^2 \cdot \text{ (нечет)} =$$

$$= (\text{чет}) \cdot (\text{нечет}) = (\text{нечет})$$

9.4 Подгруппа

(A,*) - множество с бинарной операцией. $B\subseteq A$

Определение. Говорят, что B замкнуто относительно бинарной операции *, если:

$$\forall b_1, b_2 \in B: b_1 * b_2 \in B$$

В этом случае B превращается в алгебраическую структуру.

Пример. \mathbb{N} (коммутативная полугруппа) $\subset \mathbb{Z}$ (с + абелева группа)

Определение. Множество H называется подгруппой группы G, если:

1. $\forall h_1, h_2 \in H \Longrightarrow h_1 \cdot h_2 \in H$

 $2. e \in H$

3.
$$\forall h \in H \Longrightarrow h^{-1} \in H$$

Обозначается: $H \leq G$

Утверждение. Любая подгруппа группы G сама является группой, относительно той же операции.

Замечание. В определении подгруппы (2.) \longleftrightarrow " $H \neq \varnothing$ "

Примеры.

1) $\mathbb{N} \leq \mathbb{Z}$

 $2) \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R}$

3) $m\mathbb{Z} \leq \mathbb{Z}, m \in \mathbb{N}$

4) A_n - все четные подстановки $A_n \leq S_n$. (для нечетных неверно)

9.5 Кольца и поля

Определение. Множество K, на котором введены 2 бинарные операции: " + " - сложение, " \cdot " - умножение, называется кольцом, если выполнены следующие аксиомы:

1. (K, +) - абелева группа

2. $\forall a, b, c \in K : a(b+c) = ab + ac$ и (a+b)c = ac + bc

Обозначается: $(K,+,\cdot)$

Примеры.

1. $(\mathbb{Z}, +, \cdot)$

2.
$$(M_n(\mathbb{R}), +, \cdot)$$

Определение. Кольцо называется ассоциативным, если умножение ассоциативно.

Определение. Кольцо называется коммутативным, если умножение коммутативно.

Определение. Кольцо называется кольцом с единицей, если существует нейтральный элемент по умножению:

$$\exists \ e \in K: \ \forall a \in K: \ e \cdot a = a \cdot e = a$$

Утверждение. Если в K есть единица, то она единственная.

Примеры.

- 1. $(\mathbb{Z}, +, \cdot)$ коммутативное, ассоциативное кольцо с 1
- 2. $(M_n(\mathbb{R}), +, \cdot)$ НЕ коммутативное, ассоциативное кольцо с 1
- 3. $(V^3, +, \times)$, $(\times$ векторное произведение) НЕ коммутативное, НЕ ассоциативное кольцо без 1
- 4. $(2\mathbb{Z}, +, \cdot)$ коммутативное, ассоциативное кольцо без 1

Следствия. (простейшие)

- 1. 0 единственный
 - $\bullet \ \forall a \in K$ противоположный единственный
 - $\forall a, b \in K \; \exists ! \; x \in K : \; a + x = b \Longrightarrow x = b + (-a); \; (x \; !, \text{ т.к. } (-a) \; !)$ Обозначается: x = b - a
- 2. $\forall a \in K : a \cdot 0 = 0 \cdot a = 0$
- 3. $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$
- 4. $\forall a, b, c \in K : a(b-c) = ab ac, (b-c)a = ba ca$
- 5. Если K кольцо с 1, то a(-e) = (-e)a = -a

Замечание. Пусть K - кольцо с единицей (e), тогда если $e=0\Longrightarrow K=\{0\}$

Доказательство.
$$\forall a \in K: \ 0 = 0 \cdot a = e \cdot a \Longrightarrow a = 0$$

Пусть K - кольцо с единицей

Определение. Элемент $a \in K$ называется обратимым, если:

$$\exists \ b \in K : ab = ba = 1$$

При этом элемент b должен быть обратным к a

Утверждение. Пусть K - ассоциативное кольцо с 1, тогда если элемент $a \in K$ имеет обратный, то он единственный.

Примеры.

- 1. $(\mathbb{Z}, +, \cdot)$: 1, -1 обратимые, других нет.
- 2. ($\mathbb{R}, +, \cdot$): $\forall a \in \mathbb{R}, \ a \neq 0$ обратим. Обозначается: K - ассоциативное кольцо с 1

 K^* - множество элементов кольца K, имеющих обратный.

Утверждение. K^* - группа относительно умножения.

Пример.
$$\mathbb{Z}^* = \{1, -1\}$$

Определение. Поле K - коммутативное, ассоциативное кольцо с $1 \neq 0$, в котором любой ненулевой элемент обратим.

Замечание. $0 = e \Longleftrightarrow K = \{0\}$ - не поле.

Примеры.

- 1. $(\mathbb{R}, +, \cdot)$ поле
- 2. $(\mathbb{Q}, +, \cdot)$ поле
- 3. $(\mathbb{Z}, +, \cdot)$ НЕ поле

Пример. \mathbb{Z}_n - коммутативное, ассоциативное кольцо с 1

Утверждение. $k \in \mathbb{Z}_n$ - обратим \iff (k,n)=1

Теорема. \mathbb{Z}_n - поле $\iff n-$ простое

Доказательство.

 \Longrightarrow Пусть \mathbb{Z}_n - поле, тогда $\forall k \in \mathbb{Z}_n$ имеет обратный m: km=1. Предположим, что n - не простое, тогда n=st, где 1 < s, t < n $\Longrightarrow s, t \neq 0$, но st=n=0 (в \mathbb{Z}_n) $\Longrightarrow s$ и t - делители нуля - противоречие (в поле нет делителей нуля, это доказывается чуть ниже).

$$\stackrel{\longleftarrow}{\longleftarrow} n$$
 - простое, то $\forall k \neq 0 \in \mathbb{Z}_n : n \neq k \Longrightarrow (n,k) = 1$ $\Longrightarrow k$ - обратим (остальные аксиомы поля проверяются непостредственно).

Определение. Говорят, что кольцо K не имеет делителей нуля, если из равенства $a \cdot b = 0 \Longrightarrow a = 0$ или b = 0.

Если же для ненулевого элемента $a \in K$ найдется ненулевой элемент $b \in K$: $a \cdot b = 0$, то a, b называются делителями нуля.

Примеры.

- $1. \mathbb{Z}$: без делителя нуля
- $2. \mathbb{Z}_6: 2\cdot 3=0 \Longrightarrow$ есть делители нуля.

3.
$$M_2(\mathbb{R})$$
: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Утверждение. Если в кольце K нет делителя нуля, то возможно сокращение, если $a\cdot c=b\cdot c$, и $c\neq 0$, то a=b

Доказательство.
$$a\cdot c=b\cdot c\Longrightarrow a\cdot c-b\cdot c=0\Longrightarrow (a-b)\cdot c=0$$
 т.к. нет делителя нуля \Longrightarrow либо $c=0$, либо $a-b=0$, но $c\neq 0\Longrightarrow a=b$

Утверждение. В поле нет делителя нуля.

 \mathcal{A} оказательство. Предположим, что: $\begin{cases} a\cdot b=0\\ a\neq 0 \end{cases}$ т.к. $a\neq 0$, в поле $\exists \ a^{-1}$ $b\neq 0$

Умножим $a \cdot b = 0$ на a^{-1}

$$\begin{cases} a^{-1}(a \cdot b) = a^{-1} \cdot 0 = 0 \\ a^{-1}(a \cdot b) = (a^{-1} \cdot a)b = 1 \cdot b = b \end{cases} \implies b = 0$$

Утверждение. Пусть K - коммутативное, ассоциативное кольцо с 1, тогда:

$$x$$
 — обратим $\Longleftrightarrow x$ — не делитель нуля

Доказательство. Упражнение

9.6 Изоморфные кольца и поля

Определение. Кольца K и \widetilde{K} называются изоморфными, если: $\exists \ \varphi: \ K \to \widetilde{K}:$

- $1. \ \varphi$ биекция
- 2. $\forall a, b \in K : \varphi(a+b) = \varphi(a) + \varphi(b)$

3.
$$\forall a, b \in K : \varphi(ab) = \varphi(a) \cdot \varphi(b)$$

Обозначается: $K\cong \widetilde{K}, \ \varphi$ — изоморфизм колец

Следствия.

1.
$$\varphi(0) = \widetilde{0}$$

$$2. \ \varphi(-a) = -\varphi(a)$$

3. Если K - ассоциативное кольцо с 1, то $\varphi(e)=e,$ а если $a\in K$ обратим, то $\varphi(a^{-1})=\varphi(a)^{-1}$

Определение. Поля P и \widetilde{P} изоморфны, если они изоморфны как кольца.

Определение. Подмножество L кольца K называется подкольцом, если:

- 1. L подгруппа аддитивной группы кольца K, т.е.
 - $\bullet \ \forall a, b \subset L : \ a+b \in L$
 - $0 \in L$
 - $\forall a \in L : (-a) \in L$
- 2. $\forall a, b \in L : a \cdot b \in L$

Утверждение. Любое подкольцо кольца K само является кольцом относительно тех же операций.

Определение. Подмножество L поля K называется подполем, если:

- 1. L подкольцо кольца K
- $2. \ e \in L$
- 3. $\forall a \in L, \ a \neq 0 \Longrightarrow a^{-1} \in L$

Утверждение. Любое подмножество поля K само является полем относильно тех же операций.

Примеры.

- 1. $\mathbb{Q} \subseteq \mathbb{R}$ подполе
- 2. $\mathbb{Z} \subseteq \mathbb{R}$ подкольцо
- $3. \ 2\mathbb{Z} \subseteq \mathbb{Z}$ подкольцо

Упражнение. В \mathbb{Q} нет подполей, отличных от самого \mathbb{Q} .

9.7 Характеристика поля

Определение. Говорят, что поле P имеет характеристику n, если n - наименьшее натуральное число, такое, что $\underbrace{1+1+\ldots+1}_{n}=0$.

Если такого числа нет, то говорят, что поле имеет характеристику 0. Обозначается: $\mathrm{char} P = n$

Примеры.

- 1. $\operatorname{char}\mathbb{Z}_3 = 3 \ (1+1+1=0)$
- 2. $\operatorname{char}\mathbb{R} = 0$

Замечание. Если $n \neq 0$, $\operatorname{char} P = n$, то $\forall a \in P$:

$$\underbrace{a + a + \dots + a}_{n} = \underbrace{a \cdot 1 + a \cdot 1 + \dots + a \cdot 1}_{n} = a \cdot (\underbrace{1 + 1 + \dots + 1}_{n}) = a \cdot 0 = 0$$

Утверждение. Если P - поле характеристики $n, n \neq 0$, то n- простое.

Доказательство. Докажем, $n = m \cdot k$, 1 < m, k < n:

$$\underbrace{1+1+...+1}_{n} = \underbrace{(1+1+...+1)}_{m} \underbrace{(1+1+...+1)}_{k} \Longrightarrow m \cdot k = 0$$

В поле нет делителей нуля
$$\Longrightarrow \underbrace{1+1+\ldots+1}_m = 0$$
. Противоречие. \square

Замечание. Теория решения СЛУ (метод Гаусса, правила Крамера, ...), теория определителей, утверждения о векторных пространствах (в частности, о матрицах), которые мы рассматривали раннее, переносятся с \mathbb{R} на произвольные поля.

Исключение - поле характеристики 2: в определении кососимметричной и полилинейной функции надо требовать, чтобы при 2 совпадающих аргументах f(...,v,...,v,...) = 0. Отсюда получаем, что f(...,v,...,w,...) = -f(...,w,...,v,...) (при char P=2 получаем: 1=-1)

9.8 Поле комплексных чисел

Определение. Поле комплексных чисел $\mathbb C$ - это поле, в котором выполнены следующие условия:

1. Поле \mathbb{R} содержится в \mathbb{C} в качестве подполя.

- 2. В \mathbb{C} \exists элемент $i: i^2 = -1$
- 3. \mathbb{C} наименьшее поле, удовлетворяющее условиям 1. и 2.

T.e.
$$\forall F \subseteq \mathbb{C} : \mathbb{R} \subseteq F, i \in F \Longrightarrow F = \mathbb{C}$$

Теорема. Поле $\mathbb C$ комплексных чисел существует, причем оно единсвенно с точностью до изоморфизма, оставляющего все вещественные числа на месте. Кроме того, $\forall z \in \mathbb C$ представляется единсвенным образом в виде: z = a + bi, где $a, b \in \mathbb R$.

Доказательство.

1.) Предположим, что поле комплексных чисел $\mathbb C$ существует, и докажем его единственность.

Для этого исследуем $\mathbb C$

Рассмотрим в \mathbb{C} подмножество F:

$$F = \{a + bi \mid a, b \in \mathbb{R}\} \subseteq \mathbb{C}$$

Докажем, что F - подполе:

1)
$$(a+bi) + (\widetilde{a} + \widetilde{b}i) = (a+\widetilde{a}) + (b+\widetilde{b})i \in F$$

$$2) \ 0 = 0 + 0i \in F$$

3)
$$-(a+bi) = (-a) + (-b)i \in F$$

4)
$$(a+bi)(\widetilde{a}+\widetilde{b}i) = (a\widetilde{a}-b\widetilde{b}) + (a\widetilde{b}+\widetilde{a}b)i \in F$$

5)
$$e = 1 + 0i \in F$$

6)
$$\forall (a+bi) \in F \exists (a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = (\frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i) \in F$$

 $\Longrightarrow F$ - подполе поля $\mathbb C$

$$\mathbb{R} \subseteq F$$
, т.к. $\forall a \in \mathbb{R} \ \exists \ (a+0 \cdot i) \in F$ и $\exists \ i = (0+1 \cdot i) \in F$

По третьей аксиоме из определения поле \mathbb{C} : $F=\mathbb{C}$

Мы доказали, что если поле комплексных чисел существует, то любой элемент в нем представляется в виде z=a+bi, где $a,b\in\mathbb{R}$.

Проверим, что это представление единственное.

От противного:

$$a + bi = \widetilde{a} + \widetilde{b}i, \quad a, \widetilde{a}, b, \widetilde{b} \in \mathbb{R}$$
$$(a - \widetilde{a}) = (\widetilde{b} - b)i$$
$$(a - \widetilde{a})^2 = -1 \cdot (\widetilde{b} - b)^2 \Longrightarrow$$

$$\Longrightarrow \begin{cases} (a-\widetilde{a})^2 \ge 0 \\ -(\widetilde{b}-b)^2 \le 0 \end{cases} \Longrightarrow \begin{cases} (a-\widetilde{a})^2 = 0 \\ (\widetilde{b}-b)^2 = 0 \end{cases} \Longrightarrow \begin{cases} a = \widetilde{a} \\ b = \widetilde{b} \end{cases}$$

Предположим, что \exists еще одно поле комплексных чисел \mathbb{C} .

Т.к. рассуждения выше верны и для $\widetilde{\mathbb{C}}$, то $\forall \widetilde{z} \in \widetilde{\mathbb{C}}$ представляетя единственным образом в виде:

$$\widetilde{z} = a + b\widetilde{i}$$
, где $a, b \in \mathbb{R}$, $(\widetilde{i})^2 = -1$

Рассмотрим отображение:

$$\varphi: \mathbb{C} \to \widetilde{\mathbb{C}}$$
$$\varphi: a + bi \to a + b\widetilde{i}$$

Это отображение - изоморфизм полей, сохраняющий вещественные числа на месте.

2.) Докажем существование поля помплексных чисел.

Построим поле, удовлетворяющее определению:

$$\Gamma = \{(a, b) \mid a, b \in \mathbb{R}\}\$$

Введем операции:

$$\circ (a,b) + (\widetilde{a},\widetilde{b}) = (a + \widetilde{a}, b + \widetilde{b})$$

$$\circ (a,b) \cdot (\widetilde{a},\widetilde{b}) = (a\widetilde{a} - b\widetilde{b}, \ a\widetilde{b} + \widetilde{a}b)$$

- 1. Относильно (+) и (\cdot) выполнены коммутативность, ассоциативность, дистрибутивность (непосредственная проверка).
- 2. (0,0) ноль
- $3. \ (-a,-b)$ противоположный к (a,b)
- 4. (1,0) единица
- 5. $\forall (a,b) \neq (0,0) \; \exists \; \text{обратный} \; : (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$

 $\Longrightarrow \Gamma$ - поле.

Рассмотрим подмножество $L \subseteq \Gamma$:

$$\mathsf{L} = \{(a,0) \mid a \in \mathbb{R}\}\$$

Такое поле изоморфно \mathbb{R} :

$$\begin{cases} \varphi: \mathbb{R} \to L : \ a \to (a,0) - \text{биекция} \\ \varphi(a_1 + a_2) = (a_1 + a_2, 0) = (a_1, 0) + (a_2, 0) = \varphi(a_1) + \varphi(a_2) \\ \varphi(a_1 \cdot a_2) = (a_1 \cdot a_2, 0) = (a_1, 0) \cdot (a_2, 0) = \varphi(a_1) \cdot \varphi(a_2) \end{cases}$$

$$\circ -1 \longleftrightarrow (-1,0) = (0,1)(0,1)$$

$$\circ i = (0,1) \in \Gamma$$

$$\circ \forall (a,b) \in \Gamma : (a,0)(1,0) + (b,0)(0,1) = (a,b), \text{ T.e. } \forall z \in \Gamma :$$

$$z = a \cdot 1 + b \cdot i$$

$$\Longrightarrow \forall \ \Gamma \subseteq F: \ \begin{cases} \mathbb{R} \subseteq F \\ i \in F \end{cases} \implies \Gamma = F$$

Замечание. Запись z=a+bi называется алгебраической записью комплексного числа.

- ullet Re(z)=x вещественная часть комплексного числа.
- \bullet Im(z) = y мнимая часть комплексного числа.
- \bullet i мнимая единица.

На декартовой плоскоси:

$$z=x+iy\longleftrightarrow$$
 точка $M(x,y)\longleftrightarrow$ вектор \overrightarrow{OM}

Определение. Число $\overline{z}=x-iy$ называется комплексно-сопряженным к z=x+iy.

Утверждение. Отображеие $z \to \overline{z}$ является изоморфизмом поля $\mathbb C$ в себя: $\varphi: \mathbb C \to \mathbb C$ (т.е. является автоморфизмом).

Доказательство.

1) биекция очевидна

2)
$$\overline{z_1 + z_2} = (x_1 + x_2) - (y_1 + y_2)i = \overline{z_1} + \overline{z_2}$$

3)
$$\overline{z_1 z_2} = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i = \overline{z_1} \cdot \overline{z_2}$$

Свойства.

1.
$$\overline{\overline{z}} = z$$

$$2. \ z \cdot \overline{z} = x^2 + y^2 \in \mathbb{R}$$

3.
$$z + \overline{z} = 2x \in \mathbb{R}$$

4.
$$\forall z = x + iy, \ z \neq 0, \ \exists \ z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{x - iy}{x^2 + y^2}$$

Определение. Тригонометрическая форма (полярная система координат на плоскости)

Точка $M(x,y)\longleftrightarrow (\rho,\varphi)$

• φ называется аргументом комплексного числа z, определяется с точностью до $2\pi k,\ k\in\mathbb{Z}.$

$$Arg(z) = \varphi + 2\pi k, k \in \mathbb{Z}$$

 $0 \le Arg(z) \le 2\pi$ — главный аргумент

$$Arg(z) = \begin{cases} arctg(\frac{y}{x}), & x > 0\\ arctg(\frac{y}{x} + \pi), & x < 0 \end{cases}$$

Если z=0, то аргумент не определяется (либо угол любой, либо |z|=0)

$$z_1 = z_2 \Longleftrightarrow \begin{cases} |z_1| = |z_2| \\ \varphi_1 = \varphi_2 + 2\pi k, \ k \in \mathbb{Z} \end{cases}$$

Утверждение. (Формула Муавра)

Пусть $z_1 = \rho_1(\cos(\varphi_1) + i\sin(\varphi_1)), \quad z_2 = \rho_2(\cos(\varphi_2) + i\sin(\varphi_2))$ Тогда:

1.
$$z_1 \cdot z_2 = (\rho_1 \cdot \rho_2)(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

2. если
$$z_2 \neq 0$$
, то $\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$

Доказательство.

1.
$$z_1 \cdot z_2 = \rho_1(\cos(\varphi_1) + i\sin(\varphi_1)) \cdot \rho_2(\cos(\varphi_2) + i\sin(\varphi_2)) =$$

$$= (\rho_1 \cdot \rho_2)(\cos(\varphi_1)\cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2) +$$

$$+ \cos(\varphi_1)\sin(\varphi_2)i + \cos(\varphi_2)\sin(\varphi_1)i) =$$

$$= (\rho_1 \cdot \rho_2)(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

2. Аналогично

Определение. Число $w\in\mathbb{C}$ называется корнем n-ой степени из $z\in\mathbb{C},$ где $n\in\mathbb{N},$ если $w^n=z.$

Утверждение. Пусть $z = \rho(\cos(\varphi) + i\sin(\varphi)), \ z \neq 0, \ n \in \mathbb{N}$ Тогда \exists ровно n корней n-ой степени из $z \in \mathbb{C}$: $w_0, w_1, ..., w_{n-1}$, причем:

$$w_l = \sqrt[n]{\rho} \cdot \left(\cos\left(\frac{\varphi + 2\pi l}{n}\right) + i\sin\left(\frac{\varphi + 2\pi l}{n}\right)\right)$$

 $w_0, w_1, ..., w_{n-1}$ - лежат в верщинах правильного n - угольника, вписанного в окружность.

Доказательство. Рассмотрим $w = r(\cos(\psi) + i\sin(\psi))$

$$z = \rho(\cos(\varphi) + i\sin(\varphi)) = r^n(\cos(n\psi) + i\sin(n\psi)) = w^n$$

$$\Longrightarrow \begin{cases} r^n = \rho \\ n\varphi = \varphi + 2\pi k, k \in \mathbb{Z} \end{cases} \implies w = \sqrt[n]{\rho} \cdot (\cos(\frac{\varphi + 2\pi k}{n}) + i\sin(\frac{\varphi + 2\pi k}{n})), \ k \in \mathbb{Z} \end{cases}$$
при $k = \{0, 1, ..., k-1\}$ - w принимает все различные значения.

Пример. $z = 1, n = 3, \sqrt[3]{1}$

10 Алгебра над полем

Пусть F - поле

Определение. Алгеброй над полем F называется множество A с операциями сложения, умножения и умножения на элементы поля, удовлетворяющие следующим аксиомам:

- 1. $(A, +, \cdot)$ кольцо
- 2. $(A,+,\lambda\cdot)$ векторное пространство над полем F
- 3. $\forall a, b \in A, \lambda \in F : \lambda(a \cdot b) = (\lambda a)b = a(\lambda b)$

Обозначается: $(A, +, \cdot, \lambda \cdot), \quad \lambda \in F$

Определение. Алгебра над полем называется коммутативной (ассоциативной, с единицей и т.д.), если алгебра, как кольцо, имеет соответствующее свойство.

Определение. Размерность алгебры - размерность алгебры, как векторного пространства над полем.

Примеры.

- 1. $M_n(F)$ алгебра матриц с коэффициентами из F (это НЕ коммутативная, ассоциативная с единицей алгебра над F)
- 2. $(V^3, +, \times, \lambda \cdot)$ векторное произведение (НЕ коммутативна, НЕ ассоциативная без единицы алгебра над \mathbb{R} , размерности 3)
- 3. L подполе поля $F \Longrightarrow F$ можно рассматривать, как алгебру над L Пример. \mathbb{C} алгебра над \mathbb{R} размерности 2 (Базис: $\{1,i\}$)

Пусть A - алгебра над полем $F, \ \{e_1,...,e_n\}$ - базис алгебры A, как векторного пространства, тогда

$$\forall a, b \in A : a = \sum_{j=1}^{n} a_j e_j, \ b = \sum_{j=1}^{n} b_j e_j$$

$$\Longrightarrow a \cdot b = (\sum_{j=1}^{n} a_j e_j)(\sum_{k=1}^{n} b_k e_k) = \sum_{j,k=1}^{n} a_j b_k (e_j e_k)$$

Для умножения произвольных элементов достаточно знать таблицу умножения базисных элементов $(e_j \cdot e_k)$

Утверждение. Для проверки коммутативности (·) в алгебре (ассоциативности и т.д.) достаточно проверить на базисных векторах.

Доказательство. Очевидно

Примеры.

1. $\mathbb C$ - алгебра над $\mathbb R$ с базисом $\{1,i\}$

2. $(V^3, +, \times, \lambda \cdot); V^3$ с базисом $\{i, j, k\}$

X	i	j	k
i	0	k	j
j	-k	0	i
k	-j	-i	0

3.
$$M_n(F)$$

Замечание. Пусть V - векторное пространство над полем F. Хотим превратить V в алгебру над полем F.

Пусть e_{jk} - произвольные векторы из $V,\ j,k=\overline{1,n}$

Положим $e_j \cdot e_k = e_{jk} \Longrightarrow$

$$\forall a, b \in V : \ a \cdot b = \sum_{j,k=1}^{n} a_j b_k e_{jk}$$

Это произведение превращает V в алгебру над полем F.

Пример. Алгебра кватернионов Ш

 $\mathbb H$ - 4-х - мерное векторное пространство над $\mathbb R$ с базисом $\{1,i,j,k\}$ и таблицей умножения:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	i	-1

 \implies ассоциативная, HE коммутативная алгебра, в которой каждый не нулевой элемент обратим (тело).

Определение. Подмножество B алгебры A назвается подалгеброй A, если B - подпространство A, как кольца, и подпространства A, как пространства.

Утверждение. Любая подалгебра сама является алгеброй относильно тех же операций и тем же полем.

Определение. Алгебры A и \widetilde{A} над одним и тем же полем называются изоморфными, если они изоморфны как кольца и векторные пространства.

10.1 Алгебра многочленов над полем

F - поле

Определение. Бесконечная последовательность $(a_0, a_1, a_2, ...)$, где $a_i \in \mathbb{R}$, называется финитной, если только конечное число a_i отлично от нуля.

$$F^{\infty} = \{(a_0, a_1, a_2, ...) \mid a_i \in F\}$$

Утверждение. Множество F^{∞} относительно операции сложения:

$$(a_0, a_1, a_2, ...) + (b_0, b_1, b_2, ...) = (a_0 + b_0, a_1 + b_1, a_2 + b_2, ...)$$

и умножения на элементы $\lambda \in F$:

$$(a_0, a_1, a_2, \dots) \cdot \lambda = (\lambda a_0, \lambda a_1, \lambda a_2, \dots)$$

 F^{∞} - бесконечномерное векторное пространство.

Утверждение. F^{∞} - счетномерно с базисом:

$$(e_0, e_1, e_2, ...) = ((1, 0, 0, ...), (0, 1, 0, ...), (0, 0, 1, ...), ...)$$

Зададим умножение $e_k \cdot e_l = e_{k+l} \Longrightarrow F^\infty$ превращается в алгебру над полем F

Замечание. Так как $e_k \cdot e_l = e_{k+l}$ и в \mathbb{Z} сложение коммутативно и ассоциативно, то F^∞ - ассоциативная, коммутативная алгебра над F с единицей: $e_0 = (1,0,0,...)$

Определение. Такая алгебра называется алгеброй многочленов над полем F. Обозначается: F[x]

Получаем привычный вид многочлена: $\forall a \in F : a \cdot e_0$ отожествим с элементом a, а вектор e_1 обозначим через x:

$$e_k = \underbrace{e_1 \cdot e_1 \cdot \dots \cdot e_1}_{k} = x^k$$

Рассмотрим произвольный $(a_0, a_1, a_2, ...) \in F^{\infty}$. Так как она финитная, то:

$$(a_0, a_1, ..., a_n, 0, 0, ...) = a_0e_0 + a_1e_1 + ... + a_ne_n = a_0 + a_1x + ... + a_nx^n$$

 a_i называется коэффициентом многочлена.

Определение. Если $f = a_0 + a_1 x + ... + a_n x^n$, где $a_n \neq 0$, $a_k = 0$, $\forall k > n$, то a_n называется старшим членом, а число $\deg f = n$ называется степенью многочлена.

Замечание. $\deg 0 = -\infty$ (или неопределена) $f \neq 0, \ \deg f \in \mathbb{N} \cup \{0\}$

Свойства.

- 1. $\deg(f+g) \le \max\{\deg f, \deg g\}$
- 2. $\deg(fg) = \deg f + \deg g$

Доказательство.

- 1. Упражнение
- 2.

$$f = a_0 + a_1 x + \dots + a_n x^n$$
, a_n , $\deg f = n$
 $g = b_0 + b_1 x + \dots + b_m x^m$, b_m , $\deg f = m$
 $fg = a_0 b_0 + \dots + a_n b_m x^{n+m}$

 $a_n,b_m \neq 0$, т.к. в поле нет делителей нуля $\Longrightarrow a_n b_m$ - старший член

$$\implies \deg fg = \deg f + \deg g$$

Следствие.

- 1. в F[x] нет делителей нуля.
- 2. Обратные в F[x] это многочлены нулевой степени и только они, т.е. это все ненулевые константы.

10.1.1 Деление с остатком

Теорема. Пусть F - поле, $f,g \in F[x], g \neq 0$. Тогда $\exists ! q,r : f = g \cdot q + r,$ причем либо r = 0, либо $\deg r < \deg g$

Доказательство. Пусть $f, g \neq 0$

$$f = a_0 + a_1 x + \dots + a_n x^n, \ a_n \neq 0, \ \deg f = n$$

$$g = b_0 + b_1 x + \dots + b_m x^m, \ b_m \neq 0, \ \deg f = m$$

Докажем существование:

1.
$$n < m \Longrightarrow f = 0 \cdot g + f \ (q = 0, f = r)$$

2.
$$n \ge m \Longrightarrow f_1 = f - \frac{a_n}{b_m} \cdot g \cdot x^{n-m}$$

Если $\deg f_1 < \deg g \Longrightarrow r = f_1, \ q = \frac{a_n}{b_m} \cdot x^{n-m}$

Иначе продолжаем процесс с f_1 (заметим, что $\deg f_1 < \deg f$): находим f_2 и т.д. Процесс закончится на конечном шаге.

Докажем единственность:

Допустим, $f = g \cdot q_1 + r_1$ и $f = g \cdot q_2 + r_2$

$$\implies r_1 - r_2 = g(q_2 - q_1) \implies \deg(r_1 - r_2) = \deg g + \deg(q_2 - q_1)$$
$$\deg(r_1 - r_2) > \deg g.$$

С другой стороны,

$$\deg(r_1 - r_2) < \max\{\deg r_1, \deg r_2\} < \deg g$$

- получаем противоречие.

10.1.2 Многочлены как функции

$$F$$
 - поле, $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$

Определение. Значение многочлена f в точке c называется число, равное:

$$f(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0$$

Таким образом, множество f задает отображение $F \to F$

$$c \to f(c) \Longrightarrow f$$
 задает функцию

Замечание. Разные многочлены могут задавать одну функцию.

Пример. $F = \mathbb{Z}_2, \ f_1 = x^2, \ f_2 = x$ - разные многочлены, но они задают одну и ту же функцию:

$$f_1(0) = 0, \ f_1(1) = 1, \ f_2(0) = 0, \ f_2(1) = 1$$

Теорема. Пусть F - бесконечное поле. Тогда разные многочлены задают разные функции.

Доказательство. Допустим, $f, g \in F[x], f \neq g, \forall c \in F, f(c) = g(c)$ Введем $h = f - g \in F[x], h \neq 0, \forall c \in F, h(c) = 0$ $h = a_n x^n + ... + a_0$ - среди a_i есть ненулевые.

Т.к. поле F - бесконечное, то $\exists c_0, c_1, ..., c_n \in F$ - различные числа, такие что:

$$\begin{cases} h(c_0) = 0 \\ h(c_1) = 0 \\ \vdots \\ h(c_n) = 0 \end{cases} \implies \begin{cases} a_0 + a_1 c_0 + \dots + a_{n-1} c_0^{n-1} + a_n c_0^n = 0 \\ a_0 + a_1 c_1 + \dots + a_{n-1} c_1^{n-1} + a_n c_1^n = 0 \\ \vdots \\ a_0 + a_1 c_n + \dots + a_{n-1} c_n^{n-1} + a_n c_n^n = 0 \end{cases}$$

- квадратная однородная СЛУ относительно неизвестных $a_0, a_1, ..., a_n$ с матрицей коэффициентов A :

$$A = egin{pmatrix} 1 & c_0 & \cdots & c_0^n \\ 1 & c_1 & \cdots & c_1^n \\ \vdots & \vdots & & \vdots \\ 1 & c_n & \cdots & c_n^n \end{pmatrix}, \quad \det A = \underbrace{V(c_0, c_1, ..., c_n)}_{ ext{Oпр. Вандермонда}}
eq 0$$

 \implies по правилу Крамера СЛУ имеет единственное решение и оно тривиальное $\implies \forall i \in \{0,1,...,n\}: a_i = 0 \implies h = 0$ - противоречие.

Теорема. (Безу) Пусть F - поле, $f \in F[x], c \in F$.

Тогда остаток при делении f на (x-c) равен значению многочлена в точке c.

Доказательство. Пусть f(x) = (x - c)g(x) + r(x) (*)

$$\deg r(x) < \deg(x - c) = 1 \Longrightarrow r(x) = const$$

 \Longrightarrow Либо r(x)=0, либо $r(x)=r\in F$

Подставим в (*) x = c:

$$f(c) = (c - c) \cdot q(c) + r(c) = r$$

10.1.3 Корни многочленов

Определение. Элемент $c \in F$ - корень многочлена $f \in F[x]$, если f(c) = 0. Из теоремы Безу получаем утверждение:

Утверждение. $c \in F$ - корень многочлена $f \in F[x] \iff (x-c) \mid f$.

Определение. Если c - корень многочлена f и $(x-c)^2 \nmid f$, то корень c - называется простым, иначе - кратным.

Определение. Если c - корень и $(x-c)^k \mid f, \ (x-c)^{k+1} \nmid f, \ \text{то } c$ - корень кратности $k \ (k \in \mathbb{N}).$

Утверждение. c - корень многочлена f кратности $k \Longleftrightarrow \begin{cases} f = (x-c)^k \cdot g \\ g(c) \neq 0 \end{cases}$

Следствие. Пусть $f \in F[x], \ f \neq 0, \ \deg f = n, \ k$ - число всех корней многочлена f с учетом кратности.

Тогда $k \leq n$, причем если $k = n \Longleftrightarrow f$ раскладывается на линейные многочлены.

 \mathcal{A} оказательство. Если c_1 - корень, то $f=(x-c_1)g_1$ Если c_2 - корень, то $f=(x-c_1)(x-c_2)g_2$ и т.д.

$$\implies f = (x - c_1)(x - c_2)...(x - c_k)g$$

где g не имеет корней. То есть $c_1,...,c_k$ - корни многочлена f, при этом среди них могут быть одинаковые.

$$\Longrightarrow f = (x - \widetilde{c_1})^{k_1} (x - \widetilde{c_2})^{k_2} ... (x - \widetilde{c_s})^{k_s} g$$

где $\widetilde{c}_1,...,\widetilde{c}_s$ - все различные корни.

Т.к.

$$f = (x - \widetilde{c}_l)^{k_l} h$$

где $h(\widetilde{c_l}) \neq 0 \Longrightarrow \widetilde{c_l}$ - корень кратности k_l

$$\implies$$
 deg $f = k_1 + ... + k_s +$ deg $g \implies k = k_1 + ... + k_s \le n$

При этом:

$$k = n \iff \deg g = 0 \iff f = \prod_{l=1}^{s} (x - \widetilde{c}_l)^{k_l}$$

Определение. Формальной производной многочлена

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

называется многочлен:

$$f' = a_n n x^{n-1} + a_{n-1}(n-1)x^{n-2} + \dots + a_1$$

Утверждение.

1.
$$(f+g)' = f' + g'$$

2.
$$(\alpha f)' = \alpha f'$$

3.
$$(fg)' = f'g + fg'$$

Утверждение. Пусть $\mathrm{char} F = 0, \ c \in F, \ f \in F[x], \ \text{тогда}$:

$$f(x) = f(c) + \frac{f'(c)}{1!}(x - c) + \frac{f^{(2)}(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Доказательство. $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$.

Подставим x = y + c:

$$f = b_n y^n + b_{n-1} y^{n-1} + \dots + b_0$$

Подставим y = x - c:

$$f = b_n(x - c)^n + b_{n-1}(x - c)^{n-1} + \dots + b_0$$

$$\Longrightarrow f^{(k)}(c) = k! \cdot b_k$$

Следствие. Пусть $\mathrm{char} F = 0, \ f \in F[x], \ c \in F$

Тогда
$$c$$
 - корень многочлена f кратности $k \Longleftrightarrow \begin{cases} f(c) = 0 \\ f'(c) = 0 \\ \vdots \\ f^{(k-1)}(c) = 0 \\ f^{(k)}(c) \neq 0 \end{cases}$

10.2 Основная теорема алгебры

Teopema. Любой многочлен над полем комплексных чисел положительной степени имеет хотя бы один корень.

Утверждение.

Свойства. $\forall z_1, z_2 \in \mathbb{C}$

1.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (*)

2.
$$||z_1| - |z_2|| \le |z_1 - z_2|$$
 (*)

Доказательство. Из свойств векторов (z=x+iy - вектор, $\sqrt{x^2+y^2}$ - длина вектора)

Определение. Последовательность $\{z_k\}_{k=1}^\infty\subseteq\mathbb{C}$ называется сходящейся к $z_0\in\mathbb{C}$, если $|z_k-z_0|\to 0,\ k\to\infty$ Обозначается: $z_k\to z_0$ при $k\to\infty$

Лемма 1. Пусть $z_k = x_k + iy_k, \ z_0 = x_0 + iy_0,$ тогда:

$$z_k \to z_0 \Longleftrightarrow \begin{cases} x_k \to x_0 \\ y_k \to y_0 \end{cases}$$

Доказательство.

$$|z_k - z_0| = |(x_k - x_0) + (y_k - y_0)i| = \sqrt{(x_k - x_0)^2 + (y_k - y_0)^2}$$

Лемма 2. Если $z_k \to z_0$, то $|z_k| \to |z_0|$

Доказательство.

$$z_k \to z_0 \Longrightarrow |z_k - z_0| \to 0 \Longrightarrow ||z_k| - |z_0|| \to 0 \Longrightarrow |z_k| \to |z_0|$$

Лемма 3. Если $z_k \to z_0, \ w_k \to w_0, \ \text{то}$:

1.
$$z_k + w_k \to z_0 + w_0$$

2.
$$z_k \cdot w_k \to z_0 \cdot w_o$$

Доказательство.

1.
$$|z_k + w_k - z_0 - w_0| \le |z_k - z_0| + |w_k - w_0| \to 0$$

2.

$$|z_k w_k - z_0 w_0| = |z_k w_k - z_k w_0 + z_k w_0 - z_0 w_0| =$$

$$= |z_k (w_k - w_0) + w_0 (z_k - z_0)| \le |z_k (w_k - w_0)| + |w_0 (z_k - z_0)| =$$

$$= |z_k| |(w_k - w_0)| + |w_0| |(z_k - z_0)| \to 0$$

Следствие. Если $f \in \mathbb{C}[z]$, $\deg f > 0$, $z_0 \in \mathbb{C}$, $z_k \to z_0$, тогда:

$$f(z_k) \to f(z_0)$$

Лемма 4. (О возрастании модуля |f(z)|)

Пусть $f \in \mathbb{C}[z]$, $\deg f > 0$, тогда если $|z_k| \to \infty$, то:

$$|f(z_k)| \to \infty$$

Доказательство. $f(z) = a_n z^n + ... + a_1 z + a_0 \in \mathbb{C}[z] \neq 0$

$$\begin{split} |f(z_k)| &= |a_n z_k^n + a_{n-1} z_k^{n-1} \dots + a_1 z_k + a_0| = \\ &= |z_k^n \cdot (a_n + \frac{a_{n-1}}{z_k} + \dots + \frac{a_1}{z_k^{n-1}} + \frac{a_0}{z_k^n})| = \\ &= |z_k^n| \cdot \left| (a_n - (-\frac{a_{n-1}}{z_k} - \dots - \frac{a_1}{z_k^{n-1}} - \frac{a_0}{z_k^n})) \right| \underset{(*)}{\geq} \\ &\geq |z_k|^n \cdot \left| |a_n| - \frac{|a_{n-1}|}{|z_k|} - \dots - \frac{|a_1|}{|z_k|^{n-1}} - \frac{|a_0|}{|z_k|^n} \right| \to \infty \end{split}$$

Лемма 5. (Лемма Даламбера)

Пусть $f \in \mathbb{C}[z]$, $\deg f > 0$, $f(z_0) \neq 0$, тогда $\exists z \in \mathbb{C}$ сколько угодно близкое к z_0 такое, что:

$$|f(z)| < |f(z_0)|$$

Доказательство. Разложим f по степеням $(z-z_0)$:

$$f(z) = f(z_0) + b_s(z - z_0)^s + \dots + b_n(z - z_0)^n$$
, где $b_s \neq 0$

Так как $f(z_0) \neq 0$, то можно поделить на него:

$$\frac{f(z)}{f(z_0)} = 1 + c_s(z - z_0)^s + \dots + c_n(z - z_0)^n, \ c_i = \frac{b_i}{f(z_0)} \neq 0$$

Найдем $z_1 \in \mathbb{C}: \ c_s z_1^s = -1$

Рассмотрим $z = z_0 + tz_1$, где $t \in (0,1)$

Подставим:

$$\frac{f(z)}{f(z_0)} = 1 - t^s + t^{s+1}g(t)$$
, где $g(t) \in \mathbb{C}$, $\deg g \le n - (s+1)$

$$|g(t)| = |\alpha_0 + \alpha_1 t + \dots + \alpha_{n-(s+1)} t^{n-(s+1)}|$$

Обозначим $C = \max\{|\alpha_i|\}$, тогда $|g(t)| \leq C(n-s)$

$$\left| \frac{f(z)}{f(z_0)} \right| = |1 - t^s + t^{s+1}g(t)| \le |1 - t^s| + t^{s+1}|g(t)| \le$$

$$\le 1 - t^s + t^{s+1}C(n-s) = 1 - t^s(1 - tC(n-s)) \underbrace{\smile}_{\text{XOTHM}} 1$$

$$1 - tC(n - c) > 0 \Longleftrightarrow t < \frac{1}{C(n - s)}$$

Выбираем такое $t \in (0,1)$ и получаем:

$$1 - t^{s}(1 - tC(n - s)) < 1$$

Если C = 0, то верно и очевидно.

Теорема. (Основная теорема алгебры)

$$\forall f \in \mathbb{C}[z], \ \deg f > 0 \Longrightarrow \exists \ z_0 \in \mathbb{C}: \ f(z_0) = 0$$

Доказательство. Рассмотрим $M = \inf_{z} |f(z)|$

1 *шаг*. Хотим доказать, что inf достигается, т.е. $\exists z_0 \in \mathbb{C} : |f(z_0)| = M$ По определению inf \exists последовательность $\{z_k\} : |f(z_k)| \to M$

1 случай. $\{z_k\}$ - не ограничена, т.е. $\exists \{z_{k_i}\} \subseteq \{z_k\}: |z_{k_i}| \to \infty$. По лемме (4): $|f(z_{k_i})| \to \infty$ - противоречие.

2 случай. $\{z_k\}$ - ограничена $\Longrightarrow \exists \ C>0: \ |z_k| < C \Longrightarrow$

$$z_k = x_k + iy_k < C \Longrightarrow \begin{cases} |x_k| < |z_k| < C \\ |y_k| < |z_k| < C \end{cases}$$

Так как $\{x_k\}, \{y_k\}$ - ограничены, то по теореме Больцано-Вейерштрасса:

$$\exists \{x_{k_i}\} \subseteq \{x_k\} : \{x_{k_i}\} \to x_0$$

$$\exists \{y_{k_{i_{1}}}\} \subseteq \{y_{k_{i}}\}: \{y_{k_{i_{1}}}\} \to y_{0}$$

Значит по Лемме (1):

$$\{z_{k_{i_1}}\} \to x_0 + y_0 i = z_0 \Longrightarrow |f(\{z_{k_{i_1}}\})| \to |f(z_0)| = M$$

2 *шаг.* Допустим, что $M > 0 \Longrightarrow$ по Лемме Даламбера:

$$\exists \ \widetilde{z} \in \mathbb{C}: \ |f(\widetilde{z})| < M = f(z_0)$$
 — противоречие, т.к. M это inf $\Longrightarrow M = 0 \Longrightarrow f(z_0) = 0$

Следствие 1. Любой многочлен над $\mathbb C$ положительной степени раскладывается на линейные множители.

Следствие 2. Любой многочлен над $\mathbb C$ степени n имеет n корней с учетом кратности.

Теорема. (О мнимых корнях многочлена с вещественными коэффициентами)

Пусть $f \in \mathbb{R}[x]$, c - корень, $c \in \mathbb{C} \setminus \mathbb{R}$ и пусть этот корень имеет кратность k, тогда \overline{c} - тоже корень многочлена f кратности k.

Доказательство. $f(x) = a_n x^n + ... + a_1 x + a_0, \ a_i \in \mathbb{R}, \ c$ - корень $\Longrightarrow f(c) = 0$

$$f(\overline{c}) = a_n \overline{c}^n + \dots + a_1 \overline{c} + a_0 = \overline{a_n c^n + \dots + a_1 c + a_0} = \overline{f(c)} = \overline{0} = 0$$

Кратность одинаковая, т.к.
$$f^{(s)}(c) = 0 \Longleftrightarrow f^{(s)}(\overline{c}) = 0$$

Теорема. Любой многочлен над \mathbb{R} положительной степени раскладывается на линейные множители и квадратные множители с отрицательным дискриминантом.

 \mathcal{A} оказательство. $f \in \mathbb{R}[x] \subseteq \mathbb{C}[x] \Longrightarrow$ (по следствию 1 и ОТА) $\alpha_1,...,\alpha_s \in \mathbb{R}$ - все корни кратности $k_1,...,k_s$ $c_1,...,c_t \in \mathbb{C} \setminus \mathbb{R}$ - мнимые корни кратности $m_1,...,m_t$ $\overline{c_1},...,\overline{c_t}$ - тоже мнимые корни, той же кратности $(c_1 \to \overline{c_1})$ $\Longrightarrow \alpha_1,...,\alpha_s,c_1,...,c_t,\overline{c_1},...,\overline{c_t}$ - все корни многочлена

$$f(x) = a_n \prod_{j=1}^{s} (x - \alpha_j)^{k_j} \cdot \prod_{\nu=1}^{t} (x - c_{\nu})^{m_{\nu}} (x - \overline{c_{\nu}})^{m_{\nu}} = (*)$$

Если $c = a + bi \in \mathbb{C} \setminus \mathbb{R}$, то:

$$(x - c)(x - \overline{c}) = x^2 - (c + \overline{c})x + c\overline{c}$$
$$c + \overline{c} = 2a, \quad c\overline{c} = a^2 + b^2$$

⇒ уравнение с отрицательным дискриминантом

$$(*) = a_n \prod_j (x - \alpha_j)_j^k \cdot \prod_{\nu} (\underbrace{x^2 + \beta_{\nu} x + \gamma_{\nu}}_{D < 0})^{m_{\nu}}$$

Пример. $x^4 + 1 = 0$, $x^4 = -1$, $w_k = \cos(\frac{\pi + 2\pi k}{4}) + i\sin(\frac{\pi + 2\pi k}{4})$ $x^4 + 1 = (x - w_0)(x - \overline{w_0})(x - w_1)(x - \overline{w_1}) =$ $= (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$

10.3 Неприводимые многочлены

F - поле

Определение. Многочлен $f \in F[x]$, $\deg f > 0$ называется неприводимым над полем F, если f нельзя разложить в произведение многочленов gh, где $gh \in F[x]$, $\deg g < \deg f$, $\deg h < \deg f$.

Утверждение. Любой многочлен 1-ой степени является неприводимым над F.

Пример. $x^2+1\in\mathbb{C}[x]$ - приводимый

$$x^2 + 1 = (x+i)(x-i)$$

 $x^2+1\in\mathbb{R}[x]$ - неприводимый

Утверждение. (1) Неприводимые многочлены над \mathbb{C} - это линейные многочлены и только они.

Утверждение. (2) Неприводимые многочлены над \mathbb{R} - это все линейные многочлены и все квадратные многочлены с отрицательным дискриминантом и только такие.

Замечание. Над любым полем \exists бесконечное число непропорциональных неприводимых многочленов.

10.4 Многочлены от нескольких переменных

F - поле, $n \in \mathbb{N}$ - фиксированная.

Рассмотрим бесконечномерную алгебру над полем F с базисом $\{e_{k_1},...,e_{k_n}\mid k_i\in\mathbb{N}\cup\{0\}\}$ и умножением:

$$e_{k_1}, ..., e_{k_n} \cdot e_{m_1}, ..., e_{m_n} = e_{k_1+m_1}, ..., e_{k_n+m_n} (*)$$

Такая алгебра называется алгеброй множеств от n переменных над полем F. Обозначается: $F[x_1,...,x_n]$

Из правила (*) \Longrightarrow что алгебра коммутативна, ассоциативна, с единицей: $e_{0,\dots,0}$ Отождествляем: $\alpha \in F \longleftrightarrow \alpha \cdot e_{0,\dots,0}$

$$\begin{cases} e_{1,0,\dots,0} = x_1 \\ e_{0,1,\dots,0} = x_2 \\ \vdots \\ e_{0,0,\dots,1} = x_n \end{cases} \Longrightarrow (\text{M3 *}) \quad e_{k_1,\dots,k_n} = x_1^{k_1} \cdot \dots \cdot x_n^{k_n} \Longrightarrow$$

 \Longrightarrow произвольный элемент из алгебры (по определению базиса) раскладывается, как

$$f = \sum \alpha_{k_1, \dots, k_n} \cdot e_{k_1, \dots, k_n} = \sum \alpha_{k_1, \dots, k_n} \cdot x_1^{k_1} \cdot \dots \cdot x_n^{k_n}$$
$$f := f(x_1, \dots, x_n)$$

- многочлен над полем F.

Пример.

$$f = x_1^5 x_2^7 x_3 - 5x_2^4 x_3 x_4 + 6x_2 x_3 + 7$$

Любой многочлен $f \in F[x_1,...,x_n]$ можно предствить в виде:

$$(**) f = \sum_{k=0}^{s} f_k(x_2, ..., x_n) x_1^k \Longrightarrow$$

 \Longrightarrow кольцо $F[x_1,...,x_n]$ можно рассматривать, как кольцо многочленов от x_1 с коэффициентами из кольца $F[x_2,...,x_n]$.

Как и для n=1, многочлен $f\in F[x_1,...,x_n]$ задает функцию из $F^n=F\times...\times F$.

Теорема. Если поле F - бесконечно, то разные многочлены из $F[x_1,...,x_n]$ задает разные функции.

Доказательство. Идея: индукция по n. База: n=1 - было доказано. $n-1\to n$. Нужно рассмотреть разложение многочленов в виде (**) Доказательство д/з (

10.5 Лексикографический порядок на одночленах

$$\alpha x_1^{k_1} \cdot \ldots \cdot x_n^{k_n}$$
 - одночлен, $\alpha \in F$.

Определение. Порядок $\alpha x_1^{k_1} \cdot ... \cdot x_n^{k_n} \succ \beta x_1^{m_1} \cdot ... \cdot x_n^{m_n} \ (\alpha, \beta \neq 0)$, называется лексикографическим, если:

$$\exists s = \overline{0, n-1} : k_1 = m_1, ..., k_s = m_s, k_{s+1} > m_{s+1}$$

Пример.

$$3x_1^{30}x_2^7 \succ 5x_1^{10}x_2^{150}$$

Свойства.

Если $u, v, w, u_1, u_2, v_1, v_2$ - ненулевые одночлены, то:

- 1. $u \succ v, \ v \succ w \Longrightarrow u \succ w$ транзитивность
- 2. $u \succ v \Longrightarrow uw \succ vw$
- 3. $u_1 \succ v_1, \ u_2 \succ v_2 \Longrightarrow u_1 u_2 \succ v_1 v_2$

Утверждение. Любой многочлен $f \in F[x_1, ..., x_n]$ однозначно раскладывается в сумму различных одночленов.

Определение. Среди этих одночленов \exists одночлен, который старше остальных. Он называется сташим и обозначается: LT(f)

Пример.

$$f = x_1^2 x_2 + 7x_1^3 x_2 x_3 - 9x_1 x_2^5 x_6, \quad LT(f) = 7x_1^3 x_2 x_3$$

Лемма. (О старшем члене произведения)

Пусть $f, g \in F[x_1, ..., x_n], f, g \neq 0$, тогда:

$$LT(fg) = LT(f) \cdot LT(g)$$

Доказательство.

$$f = u_0 + ... + u_s,$$
 где u_i, v_i – одночлены $g = v_0 + ... + v_t,$

$$LT(f) = u_s, \ LT(g) = v_t$$

$$fg = \sum u_i v_i; \quad u_s v_t \succ u_i v_j, \;$$
при $i+j < s+t \Longrightarrow LT(fg) = u_s v_t$

(Здесь учитывается, что F - поле, а в поле нет делителей нуля)

Следствие. В $F[x_1,...,x_n]$ нет делителей нуля.

Определение. Степень одночлена $\alpha x_1^{k_1} \cdot ... \cdot x_n^{k_n}, \ \alpha \neq 0$ - это сумма: $k_1 + ... + k_n$

Определение. Степень многочлена $f \in F[x_1, ..., x_n]$ - это максимум степеней его одночленов.

Обозначается: $\deg f$

По определению считаем, что $\deg 0 = -\infty$

Определение. Многочлен $f \in [x_1, ..., x_n]$ называется однородным, если все его одночлены имеют одну и ту же степень.

Утверждение. Любой многочлен $f \in F[x_1,...,x_n]$ однозначно раскладывается в виде $f = f_0 + ... + f_s$, где f_i - однородный многочлен степени i.

Пример.

$$f = \underbrace{x_1^3 x_2 + 2x_1^2 x_2^2 + 5x_1 x_2 x_3^2}_{f_4} + \underbrace{7x_1^2 x_3 - 8x_1 x_2 x_3}_{f_3} + \underbrace{9x_1 x_2}_{f_2}$$
$$\deg f = 4$$

 f_i - называются однородными компонентами.

Свойства.

1.
$$\deg(f+g) \le \max\{\deg f, \deg g\}$$

$$2. \deg(fg) = \deg f + \deg g$$

Доказательство.

2.

$$f=f_0+\ldots+f_s$$
 $eq 0$ — различные однородные компоненты $g=g_0+\ldots+g_t$ $\deg f=\deg f_s,\ \deg g=\deg g_t$ $fg=\sum f_ig_i,\ \deg(f_sg_t)>\deg(f_ig_i),\ \text{где }s+t>i+j\Longrightarrow$ $\Longrightarrow \deg(fg)=\deg(f_sg_t)=s+t$

10.6 Симметрические многочлены

Определение. Многочлен $f \in F[x_1, ..., x_n]$ назвается симметрическим, если:

$$\forall \sigma \in S_n : f(x_1, ..., x_n) = f(x_{\sigma(1)}, ..., x_{\sigma(n)})$$

Пример.

$$f(x_1, x_2) = 2x_1^3 x_2 + 2x_1 x_2^3 - 7x_1 x_2^2 - 7x_1^2 x_2$$

Утверждение. Если f - симметрический и f раскладывается на однородные компоненты, то f_i - симметрический $\forall i$:

$$f = f_0 + ... + f_s$$
, где f_i — однородные

Утверждение. Множество всех симметрических многочленов от n переменных над F образует подалгебру в алгебре $F[x_1,...,x_n]$.

Доказательство. f,g - симметрические $\Longrightarrow f+g,\ fg,\ \alpha f$ - симметрические. (непосредственная проверка)

10.6.1 Элементарные симметрические многочлены от n переменных Определение.

$$\sigma_1 = \sigma_1(x_1, ..., x_n) = \sum_{i=1}^n x_i$$

$$\sigma_2 = \sigma_2(x_1, ..., x_n) = \sum_{1 \le i_1 \le i_2 \le n}^n x_{i_1} x_{i_2}$$

$$\sigma_k = \sigma_k(x_1, ..., x_n) = \sum_{1 \le i_1 < i_2 < ... < i_k \le n}^n x_{i_1} x_{i_2} \cdot ... \cdot x_{i_k}$$

$$\vdots$$

$$\sigma_n = \sigma_n(x_1, ..., x_n) = x_1 x_2 \cdot ... \cdot x_n$$

Теорема 2. (Основная теорема о симметрических многочленах)

Любой симметрический многочлен $f \in F[x_1, ..., x_n]$ однозначно раскладывается в виде многочлена от элементарных симметрических:

$$\exists ! \ g \in F[y_1, ..., y_n] : g(\sigma_1, ..., \sigma_n) = f$$

Пример.

$$f(x_1, x_2) = x_1^2 + x_2^2 = x_1^2 + x_2^2 + 2x_1x_2 - x_1x_2 = (x_1 + x_2)^2 - 2x_1x_2 = \sigma_1^2 - 2\sigma_2$$
$$g(y_1, y_2) = y_1^2 - 2y_2$$

Определение. Одночлен $\alpha x_1^{k_1} \cdot ... \cdot x_n^{k_n}$ называется монотонным, если:

$$k_1 \ge k_2 \ge \dots \ge k_n$$

Пример.
$$f(x_1, x_2, x_3) = x_1^5 x_2^3 x_3$$
 - монотонный $g(x_1, x_2, x_3) = x_1^6 x_2^7 x_3$ - не монотонный.

Лемма 1. (О старшем члене симметрического многочлена)

Если $f \in F[x_1,...,x_n]$ - симметрический, то LT(f) - монотонный.

Доказательство. (От противного)

Пусть $LT(f) = \alpha x_1^{k_1} \cdot \ldots \cdot x_n^{k_n}$ - не монотонный $\Longrightarrow \exists \ i = \overline{1, n-1}: \ k_i < k_{i+1}$ Т.к. f - симметрический, то $\sigma \in S_n: \ \sigma = (i, i+1)$ - транспозиция \Longrightarrow среди одночленов многочлена f должен $\exists \ u = x_1^{k_1} \cdot \ldots \cdot x_i^{k_{i+1}} x_{i+1}^{k_i} \cdot \ldots \cdot x_n^{k_n}$ Но $u \succ LT(f)$ - противоречие определению LT

Лемма 2. Пусть f - симметрический. $LT(f) = \alpha x_1^{k_1} \cdot ... \cdot x_n^{k_n}$, тогда:

$$\exists e_1, ..., e_n \ge 0 : LT(\alpha \sigma_1^{e_1}, ..., \sigma_n^{e_n}) = \alpha x_1^{k_1} \cdot ... \cdot x_n^{k_n}$$

Доказательство.

$$LT(\alpha\sigma_{1}^{e_{1}},...,\sigma_{n}^{e_{n}}) = \alpha LT(\sigma_{1}^{e_{1}})LT(\sigma_{2}^{e_{2}}) \cdot ... \cdot LT(\sigma_{n}^{e_{n}}) =$$

$$= \alpha x_{1}^{e_{1}}(x_{1}x_{2})^{e_{2}} \cdot ... \cdot (x_{1} \cdot ... \cdot x_{k})^{e_{k}} \cdot ... \cdot (x_{1}x_{2} \cdot ... \cdot x_{n})^{e_{n}} =$$

$$= \alpha x_{1}^{e_{1}+...+e_{n}} x_{2}^{e_{2}+...+e_{n}} \cdot ... \cdot x_{n}^{e_{n}} = \alpha x_{1}^{k_{1}} \cdot ... \cdot x_{n}^{k_{n}} \Longrightarrow$$

$$\Longrightarrow \text{CMY:} \begin{cases} e_1 + e_2 + \dots + e_{n-1} + e_n = k_1 \\ e_2 + \dots + e_{n-1} + e_n = k_2 \\ & \ddots \end{cases} \iff \begin{cases} e_1 = k_1 - k_2 \\ e_2 = k_2 - k_3 \\ \vdots \\ e_{n-1} + e_n = k_{n-1} \\ e_n = k_n \end{cases}$$

Т.к. f - симметрический, то $k_1 \geq k_2 \geq ... \geq k_n$ по Лемме $(1) \Longrightarrow \forall i: e_i \geq 0$ \square

Доказательство. (Основной теоремы о симметрических многочленах)

 \exists : Если f=0, то g=0Если $f\neq 0$, то $LT(f)=\alpha x_1^{k_1}\cdot\ldots\cdot x_n^{k_n}$ По Лемме (2):

$$\exists e_1, ..., e_n \ge 0 : LT(\alpha \sigma_1^{e_1}, ..., \sigma_n^{e_n}) = \alpha x_1^{k_1} \cdot ... \cdot x_n^{k_n}$$
$$f_1 = f - \alpha \sigma_1^{e_1}, ..., \sigma_n^{e_n}$$

$$f_1 = 0: f = \alpha \sigma_1^{e_1}, ..., \sigma_n^{e_n} \Longrightarrow g = \alpha y_1^{e_1}, ..., y_n^{e_n}$$

 $f_1 \neq 0 : LT(f) \succ LT(f_1), \ f_1$ - симметрический.

Повторяем процесс для $f_1 \Longrightarrow f_1, f_2, f_3, \dots$ - симметрические и $LT(f) \succ LT(f_1) \succ LT(f_2) \succ LT(f_3) \succ \dots$

T.к. каждый $LT(f_i)$ - монотонный, то этот процесс прервется на конечном шаге.

!: (Докажем от противного)

Допустим у нас \exists 2 различных многочлена: $g,\widetilde{g}\in F[y_1,...,y_n]:\ g\neq\widetilde{g}$

$$g(\sigma_1, ..., \sigma_n) = \widetilde{g}(\sigma_1, ..., \sigma_n)$$

Рассмотрим $h = g - \tilde{g}, h \neq 0, h(\sigma_1, ..., \sigma_n) = 0$

$$h(y_1, ..., y_n) = \sum \beta_{e_1, ..., e_n} \cdot y_1^{e_1} \cdot ... \cdot y_n^{e_n}$$

По лемме (2):

$$(e_1, ..., e_n) \neq (\widetilde{e}_1, ..., \widetilde{e}_n) \implies LT(\sigma_1^{e_1}, ..., \sigma_n^{e_n}) \neq LT(\sigma_1^{\widetilde{e}_1}, ..., \sigma_n^{\widetilde{e}_n})$$
$$h(\sigma_1, ..., \sigma_n) = \sum \beta_{e_1, ..., e_n} \cdot \sigma_1^{e_1} \cdot ... \cdot \sigma_n^{e_n} \ (**)$$

Среди всех $LT(\sigma_1^{e_1},...,\sigma_n^{e_n})$ есть тот, который старше остальных. В (**) при приведении подобных этот старший член не сможет сократиться $\Longrightarrow h(\sigma_1^{e_1},...,\sigma_n^{e_n}) \neq 0$ - противоречие.

10.7 Формулы Виета

$$F$$
 - поле, $f \in F[x]$, $\deg f = n > 0$

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

Пусть $c_1,...,c_n \in F$ - все корни многочлена f с учетом кратности, тогда:

$$f(x) = a_0(x - c_1)(x - c_2)...(x - c_n) =$$

$$= a_0x^n - a_0(c_1 + ... + c_n)x^{n-1} + a_0(\sum_{i < j} c_i c_j)x^{n-2} -$$

$$- a_0(\sum_{i < j < k} c_i c_j c_k)x^{n-3} + ... + (-1)^n c_1...c_n$$

$$a_k = (-1)^k a_0 \sigma_k(c_1, ..., c_k), \ k = \overline{1, n}$$

$$\Longrightarrow \sigma_k(c_1, ..., c_k) = (-1)^k \frac{a_k}{a_0} - \mathbf{\Phi}\mathbf{o}\mathbf{p}\mathbf{m}\mathbf{y}\mathbf{n}\mathbf{h} \mathbf{B}\mathbf{u}\mathbf{e}\mathbf{T}\mathbf{a}$$

11 Теория делимости в Евклидовых кольцах

Определение. Коммутативное, ассоциативное кольцо с единицей, в котором нет делителя нуля, называется целостным.

Примеры.

- $1. \mathbb{Z}$
- 2. F[x], где F поле
- 3. K[x], где K целостное кольцо

Определение. Пусть K - целостное кольцо, тогда говорят, что b делит a, где $a,b\in K$, если $\exists \ c\in K:\ a=bc.$

Обозначается: b|a

Определение. Элементы a и b называются ассоциированными, если a|b и b|a. Обозначается: $a \sim b$

Утверждение. $a \sim b \Longleftrightarrow a = bc$, где c обратим в K, a и b не нулевые.

Доказательство.

$$\Longrightarrow : \begin{cases} a|b \\ b|a \end{cases} \implies \begin{cases} b = ac_1 \\ a = bc_2 \end{cases} \implies a = ac_1c_2 \implies c_1c_2 = 1 \implies c_2 \text{ обратим.}$$

 $\stackrel{}{ \Longleftrightarrow}$: $a=bc \Longrightarrow b|a,\;$ с другой стороны, $b=ac^{-1}\Longrightarrow a|b\Longrightarrow a\sim b$

Примеры.

1. \mathbb{Z} : $a \sim b \iff a = \pm b$

2. F[x], где F - поле: $f \sim g \Longleftrightarrow f = cg$, где $c \in F \setminus \{0\}$

Определение. Целостное кольцо K, которое не является полем, называется евклидовым, если введена функция:

$$N: K \setminus \{0\} \to \mathbb{N} \cup \{0\}$$

такая, что:

1. $N(ab) \ge N(b) \ (\forall a, b \in K \setminus \{0\})$

2. $\forall a,b \in K, \ b \neq 0 \ \exists \ q,r \in K: \ a = bq + r,$ где r = 0 или N(r) < N(b) (т.е. возможно деление с остатком)

При этом N называют нормой.

Примеры.

1.
$$\mathbb{Z}$$
: $N(a) = |a|$

2.
$$F[x]$$
, где F - поле: $N(f) = \deg f$

Упражнение. $z[i] = \{a+bi \mid a,b \in \mathbb{Z}\}, \ N(a+bi) = a^2+b^2 \Longrightarrow z[i]$ с такой нормой - евклидово кольцо.

Утверждение. $N(ab) = N(a) \Longleftrightarrow b$ обратим

Доказательство.

1) Пусть b обратим

$$N(ab) \ge N(a)$$
 и $N(a) = N((ab)b^{-1}) \ge N(ab) \Longrightarrow N(ab) = N(a)$

2) Пусть b необратим

Поделим a на ab с остатком:

$$a = abq + r$$

Если r=0, то $a=abq\Longrightarrow bq=1\Longrightarrow b$ обратим - противоречие.

Иначе N(r) < N(ab)

С другой сторон:

$$r=a-abq=a(1-bq)\Longrightarrow N(r)=N(a(1-bq))\geq N(a)\Longrightarrow N(r)\geq N(a)$$

$$\begin{cases} N(r)< N(ab) \\ N(r)\geq N(a) \end{cases} \Longrightarrow N(ab)>N(a)-\ \text{противоречие} \end{cases}$$

Определение. Наибольшим общим делителем элементов $a,b \in K$ называется элемент $d \in K$ такой, что:

1) d|a, d|b

2) Если $d_1|a$ и $d_1|b$, то $d_1|d$

Обозначается: HOД(a,b)

104

Замечание.

1. HOД(a, 0) = a

2. НОД может не существовать

Лемма. Если \exists НОД(a,b), то он определяется однозначно с точностью до ассоциированности.

Доказательство. d_1, d_2 - это НОД(a, b), по свойству 2):

$$d_1|d_2, d_2|d_1 \Longrightarrow d_1 = d_2$$

Теорема. Пусть K - евклидово кольцо. Тогда $\forall a,b \in K \exists HOД(a,b) = d,$ причем HOД(a,b) = au + bv для некоторых $u,v \in K$.

Доказательство.

1.
$$b = 0$$
: HOД $(a, b) = a = a \cdot 1 + b \cdot v$

2.
$$b|a$$
: $HOД(a,b) = b = a \cdot 0 + b \cdot 1$

3. $b \neq 0$, $b \nmid a$: Делим:

0)
$$a = bq_1 + r_1$$
, где $N(r_1) < N(b)$

1)
$$b = r_1 q_2 + r_2$$
, где $N(r_2) < N(r_1)$

2)
$$r_1 = r_2 q_3 + r_3$$
, где $N(r_3) < N(r_2)$

:

k)
$$r_{k-1} = r_k q_{k+1} + r_{k+1}$$
, где $N(r_{k+1}) < N(r_k)$

$$k+1) r_k = r_{k+1}q_{k+2}$$

Докажем, что $r_{k+1} = \mathrm{HOД}(a,b)$:

$$r_{k+1}|a, r_{k+1}|b|$$
?

из k+1)
$$r_{k+1}|r_k$$

из k)
$$r_{k+1}|r_{k-1}$$

:

из 2)
$$r_{k+1}|r_1$$

из 1)
$$r_{k+1}|b$$

из 0)
$$r_{k+1}|a$$

Что бы доказать 2-е условие, докажем, что $r_{k+1}=au+bv$ Сверху вниз $\ \forall s:\ r_s=au_s+bv_s$

0)
$$r_1 = a - bq_1 = au_1 + bv_1 \Longrightarrow u_1 = 1, \ v_1 = -q_1$$

1)
$$r_2 = b - r_1 q_2 = b - (a - bq_1)q_2 = au_2 + bv_2$$

:

Далее по индукции. Получаем:

$$r_s = r_{s-2} - r_{s-1}q_s = (au_{s-2} + bv_{s-2}) - (au_{s-1} + bv_{s-1})q_s = au_s + bv_s$$

Так как $r_{k+1}=au+bv$, то если $d_0|a,\ d_0|b\Longrightarrow d_0|(au+bv)\Longrightarrow d_0|r_{k+1}$ \Longrightarrow НОД $(a,b)=r_{k+1}$

Определение. Процедура находа HOД(a,b) в доказательстве теоремы называется алгоритмом Евклида.

Пусть K - евклидово кольцо

Определение. Элементы K называются взаимопростыми, если $\mathrm{HOД}(a,b)=1$

Следствие. Пусть K - евклидово кольцо, $a,b \in K$ - взаимопростые, тогда:

$$\exists \ u,v \in K: \ au+bv=1$$

11.1 Разложение на простые элементы

Пусть K - евклидово кольцо

Пример. $\forall a \in K : a = (ac)c^{-1}$, где c - обратим.

Определение. Элемент $p \in K$ называется простым, если он:

- 1) $p \neq 0$
- 2) p не является обратимым
- 3) Равенство p=ab, где $a,b\in K$ возможно только при a обратим или b обратим

Примеры.

- 1. В \mathbb{Z} простые элементы это $\pm p$, где p простое число
- 2. В F[x], где F поле, простые элементы это неприводимые многочлены

Замечание. Простые элементы - это ненулевые, необратимые элементы, которые имеют в точности два неассоциированных друг с другом элемента.

Лемма 1. (Важная Лемма)

Пусть K - евклидово кольцо, $p \in K$ - простой элемент, тогда:

$$p|ab$$
, НОД $(a,p)=1 \implies p|b$

Доказательство. $HOД(a,p)=1 \Longrightarrow \exists u,v \in K:$

$$au + pv = 1 \mid \cdot b \implies \underline{bau} + \underline{bpv} = b \implies p \mid b$$

 $\vdots p \qquad \vdots p$

Следствие. Пусть K - евклидово кольцо, $p \in K$ - простой элемент. Если $a_i \in K$: $p|(a_1 \cdot \ldots \cdot a_s)$, тогда:

$$\exists i = \overline{1,s} : p|a_i$$

Доказательство. Индукция по s. База s=2: $p|(a_1 \cdot a_2)$

Если $p \nmid a$, то $HOД(a_1,p) = 1 \Longrightarrow p|a_2$ (по важной Лемме)

Переход: $p|a_1 \cdot (a_2 \cdot \ldots \cdot a_n)$

Если
$$p \nmid a_1$$
, то $HOД(a_1,p) = 1$ $\Longrightarrow_{\text{по Лемме}} p | (a_2 \cdot \ldots \cdot a_n) \underset{\text{по Инд.}}{\Longrightarrow} \exists \ i = \overline{2,n} : \ p | a_i$

Теорема. Пусть K - евклидово кольцо, $a \neq 0 \in K$ - произвольный, необратимый элемент. Тогда a можно разложить:

$$a = p_1^{k_1} \cdot \ldots \cdot p_n^{k_s}$$

Причем это разложение единственное с точностью до домножения на обратимый и перестановки множителей.

Доказательство.

∃: От противного:

Среди всех ненулевых и необратимых элементов кольца K найдем такие, которые не допускают такое разложения, возьмем наименьший по норме - обозначим его a.

1 случай: a - простой элемент $\Longrightarrow a$ - это и есть разложение на простые

2случай: a - не простой $\Longrightarrow \exists \ b,c \in K$ - ненулевые, обратимые: a=bc

$$N(a) > N(b)$$
 и $N(a) > N(c)$

 \Longrightarrow т.к. a - наименьший по норме, который не допускает это разложение на простые, то

$$b = p_1 \cdot \ldots \cdot p_t, \quad c = q_1 \cdot \ldots \cdot q_s$$

Где $p_i,\ q_i$ - простые числа $\Longrightarrow a = p_1 \cdot ... \cdot p_t \cdot q_1 \cdot ... \cdot q_s$ - противоречие

!: От противного:

 $a=p_1\cdot\ldots\cdot p_s=q_1\cdot\ldots\cdot q_s$, где p_i,a_i - простые числа. Индукция по s:

$$\implies p_1|(q_1\cdot\ldots\cdot q_s)$$

 \implies т.к. p_1 - простое, то следовательно:

$$\exists i = \overline{1,t} : p_1|q_i \Longrightarrow p_1 \sim q_i$$

Можем считать, что $i=1,\ q_1=c_1p_1,\ c_1$ - обратим

Сокращаем на $p_1: p_2 \cdot \ldots \cdot p_s = cq_2 \cdot \ldots \cdot q_m$

Далее индукция по $s: \implies s = t, \ p_i \sim q_i$ (при подходящей перестановке)

Следствие 1. Основная теорема арифметики.

Следствие 2. Пусть F - поле, $f \in F[x], \deg f \ge 1$

Тогда f раскладывается на простые неприводимые многочлены над F и это разложение единствено с точностью до перестановки множителей и умножения на ненулевые константы из F.

Следствие 3. Пусть K - евклидово кольцо, $a \in K$, $a = p_1^{k_1} \cdot ... \cdot p_s^{k_s}$, где p_i - простые элементы K и $p_i \not\sim p_j$ при $i \neq j$

Пусть $d \in K, \ d|a.$ Тогда $d = cp_1^{l_1} \cdot \ldots \cdot p_s^{l_s},$ где $0 \leq l_i \leq k_i, \ c$ - обратимый элемент в K

Доказательство. Т.к. d|a, то a=db. По теореме разложим d и b на простые (если они необратимы, иначе очев) и сравниваем в a=db правую и левую часть. В силу единсвенности разложения на простые получаем следствие.

11.2 Поле отношений целостного кольца

K - целостное кольцо

Рассмотрим множество пар:

$$M = \{(a, b) \mid a, b \in K, b \neq 0\}$$

Введем отношение эквиватентности:

$$(a,b) \sim (c,d) \iff ad = bc$$

Утверждение.

$$\forall c \in K, \ c \neq 0 \Longrightarrow (a, b) \sim (ac, bc)$$

Класс эквивалентности пары (a, b) - это:

$$\{(c,d) \in M \mid (c,d) \sim (a,b)\}$$

Класс называется дробью и обозначается: $\frac{a}{b}$

Множество всех таких классов эквивалентности обозначается: $\mathbb{Q}(K)$ Операции на $\mathbb{Q}(K)$:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_1}, \quad \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1b_1}{a_1b_1}$$

Утверждение. Операции корректны, т.е. не зависят от предствитлей.

Доказательство.

(+):

$$\frac{a_1}{b_1} = \frac{\widetilde{a_1}}{\widetilde{b_1}}; \ \frac{a_2}{b_2} = \frac{\widetilde{a_2}}{\widetilde{b_2}} \Longrightarrow \frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{\widetilde{a_1}}{\widetilde{b_1}} + \frac{\widetilde{a_2}}{\widetilde{b_2}}$$

Дано: $a_1\widetilde{b_1} = \widetilde{a_1}b_1, \ a_2\widetilde{b_2} = \widetilde{a_2}b_2$

$$\frac{a_1b_2 + a_2b_1}{b_1b_2} \stackrel{?}{=} \frac{\widetilde{a_1}\widetilde{b_2} + \widetilde{a_2}\widetilde{b_1}}{\widetilde{b_1}\widetilde{b_2}}$$

$$(a_1b_2+a_2b_1)\widetilde{b_1}\widetilde{b_2}\stackrel{?}{=}(\widetilde{a_1}\widetilde{b_2}+\widetilde{a_2}\widetilde{b_1})b_1b_2$$
 $a_1b_2\widetilde{b_1}\widetilde{b_2}+a_2b_1\widetilde{b_1}\widetilde{b_2}=\widetilde{a_1}\widetilde{b_2}b_1b_2+\widetilde{a_2}\widetilde{b_1}b_1b_2$ - это верно

 (\cdot) : Д/з

Утверждение. Q(K) относительно операций (+) и (\cdot) - это поле.

 \mathcal{A} оказательство. При сложении можем считать, что знаменатель больше, т.е.: $\frac{a_1}{b} + \frac{a_2}{b} = \frac{a_1 + a_2}{b} \Longrightarrow$ коммутативное по сложению, ассоциативное по сложению, $\frac{0}{1}$ - нулевой элемент, $\forall \frac{a}{b} \; \exists \; -\frac{a}{b} = \frac{-a}{b}$

⇒ это абелева группа по сложению

Непосредственно проверяется дистрибутивность, коммутативность и ассоциативность умножения, $\frac{1}{1}$ - единица (нейтральный по умножению),

$$orall ^a_{\ b}\in Q(K), rac ab =0\Longrightarrow a
eq 0,\ \exists ^b_{\ a}\in Q(K)$$
 - обратный к $rac ab =0$ - поле. \square

Определение. Такое поле называется полем отношений целостного кольца K (полем частных, полем дробей).

Рассмотрим множество:

$$\left\{\begin{array}{l} \frac{a}{1} \mid a \in K \right\} \ \mathrm{B} \ Q(K)$$

Оно образует подкольцо в Q(K), которое изоморфно кольцу K:

$$\frac{a}{1}$$
 — отождествлен с $a \in K$

Пример. $Q(\mathbb{Z}) = \mathbb{Q}$

Определение. Пусть K - евклидово кольцо

$$a,b\in K,\ b\neq 0,\ a=a_1d,\ b=b_1d,$$
 где $d=\mathrm{HOД}(a,b)\Longrightarrow$ $\dfrac{a}{b}=\dfrac{a_1}{b_1},\ \mathrm{где}\ \mathrm{HOД}(a_1,b_1)=1$

Такие дроби называются несократимыми.

Утверждение. Пусть K - евклидово кольцо, тогда несократимая дробь $\frac{a}{b} \in Q(K)$ определена однозначно с точностью до умножения числителя и знаменателя на обратимый элемент, т.е.:

$$\dfrac{a}{b} = \underbrace{\dfrac{ca}{cb}}_{\text{несокр}},$$
 где c - обратимый элемент кольца K

Доказательство.

$$\frac{a}{b} = \frac{\widetilde{a}}{\widetilde{b}} \Longrightarrow \begin{cases} a\widetilde{b} = b\widetilde{a} \\ \text{НОД}(a,b) = 1 \\ \text{НОД}(\widetilde{a},\widetilde{b}) = 1 \end{cases} \Longrightarrow \begin{cases} a \mid b\widetilde{a} \\ \text{НОД}(a,b) = 1 \end{cases} \underset{\text{По важной лемме}}{\Longrightarrow} a \mid \widetilde{a}$$

аналогично $\widetilde{a}\mid a\Longrightarrow a\sim \widetilde{a},$ т.е. $\widetilde{a}=ca,\,c$ - обратим

$$\begin{cases} a\widetilde{b} = b\widetilde{a} \\ \widetilde{a} = ca \end{cases} \implies a\widetilde{b} = cab \Longrightarrow \widetilde{b} = cb$$

11.3 Поле рациональных дробей

$$F$$
 - поле, $K = F[x]$

Определение. Поле отношения кольца K = F[x] называется полем рациональных дробей.

Обозначается: F(x)

Элементы этого поля: $\frac{f(x)}{g(x)}$, где $f,g\in F[x],\ g\neq 0$ называются рациональными дробями.

Определение. Дробь $\frac{f}{g} \in F(x)$ называется правильной, если $\deg f < \deg g$. Это определение не зависит от представителей.

Утверждение 1. Сумма и произведение правильных дробей - правильная дробь.

Утверждение 2. Произвольная рациональная дробь $\frac{f}{g} \in F(x)$ единственным образом представима в виде суммы многочлена и правильной дроби.

Доказательство.

 \exists : Поделим f на g с остатком: f = qg + r, где $\left[\begin{array}{c} r = 0 \\ \deg r < \deg g \end{array} \right]$, тогда:

$$\frac{f}{g} = q + \frac{r}{g}$$

 $\underline{!}$: Пусть $\frac{f}{g}=q+rac{r}{g}=\widetilde{q}+rac{\widetilde{r}}{\widetilde{g}},$ тогда:

$$q - \widetilde{q} = \frac{\widetilde{r}}{\widetilde{g}} - \frac{r}{g} \implies q = \widetilde{q}, \ \frac{\widetilde{r}}{\widetilde{g}} = \frac{r}{g}$$

Утверждение 3. Любая правильная дробь $\frac{f}{g} \in F(x)$ раскладывается в сумму правильных дробей со знаменателями: $g_1, g_2, ..., g_s$, где $g = g_1 \cdot g_2 \cdot ... \cdot g_s$ и $HOД(g_i, g_j) = 1$, при $i \neq j$:

$$\frac{f}{g} = \underbrace{\frac{r_1}{g_1} + \dots + \frac{r_s}{g_s}}_{\text{правильные}}$$

Доказательство. Индукция по s:

 $s=2, \ g=g_1g_2, \ \ \mathrm{HOД}(g_1,g_2)=1\Longrightarrow \exists \ u,v\in F[x]: \ ug_1+vg_2=1,$ тогда:

$$\frac{f}{g} = \frac{f \cdot 1}{g_1 g_2} = \frac{f(ug_1 + vg_2)}{g_1 g_2} = \frac{fu}{g_2} + \frac{fv}{g_1} = q_1 + \frac{r_1}{g_1} + q_2 + \frac{r_2}{g_2}$$

По утверждению (1): q_1+q_2 - правильная дробь. многочлен, который является правильной дробью - нулевой многочлен $\Longrightarrow q_1+q_2=0\Longrightarrow$

$$\frac{f}{g} = \frac{r_1}{g_1} + \frac{r_2}{g_2}$$

$$1: s-1 \rightarrow s: \frac{f}{g} = \frac{r_1}{f} + \frac{r_2}{g_2} = \frac{r_1}{f} + \frac{r_2}{f} + \dots + \frac{r_s}{g_s}$$

Переход:
$$s-1 \rightarrow s: \frac{f}{g_1(g_2 \cdot ... \cdot g_s)} = \frac{r_1}{g_1} + \frac{r_2}{g_2 \cdot ... \cdot g_s} = \frac{r_1}{g_1} + \frac{r_2}{g_2} + ... + \frac{r_s}{g_s}$$
 По предп. индукции

Определение. Рациональная дробь $\frac{f}{g} \in F(x)$ называется простейшей, если:

- 1) $\frac{f}{g} \neq 0$
- 2) $g=p^s$, где p неприводимый множитель над $F,\ s\in\mathbb{N}$
- 3) $\deg f < \deg p$

Примеры.

- 1. \forall поля F: $\frac{\alpha}{(x-c)^k}$, где $\alpha,c\in F,\ \alpha\neq 0,\ k\in\mathbb{N}$ является простейшей всегда.
- 2. Если $F = \mathbb{C}$, то простейщий другого вида нет.
- 3. $F = \mathbb{R} : \frac{\alpha}{(x-c)^k}, \frac{\beta x + \gamma}{(x^2 + ax + b)^k},$ где $\alpha, \beta, \gamma, a, b, c \in \mathbb{R}, \ \alpha, \beta \neq 0, \ \beta^2 + \gamma^2 \neq 0, \ k \in \mathbb{N}$ и у $(x^2 + ax + b)$ отрицательный дискриминан.

Теорема. Любая правильная дробь $\frac{f}{g} \in F(x)$ раскладывается в сумму простейних.

Более того, если $g=p_1^{s_1}\cdot\ldots\cdot p_k^{s_k}$, где p_i - неприводимый над F и $\forall i\neq j:\ p_i\not\sim p_j,$ тогда $\frac{f}{g}$ раскладывается в сумму простейших со знаменателями:

$$p_1, p_1^2, \ldots, p_1^{s_1}, \ldots, p_k^1, p_k^2, \ldots, p_k^{s_k}$$

и это разложение единственно.

Доказательство.

 \exists : $g=p_1^{s_1}\cdot\ldots\cdot p_k^{s_k}$. По утверждению (3) $\frac{f}{g}=\frac{r_1}{p_1^{s_1}}+\ldots+\frac{r_k}{p_k^{s_k}}$ Достаточно рассмотреть правильную дробь вида $\frac{r}{p^s}$. Индукция по s:

Поделим r на p с остатком:

$$r = pg + \widetilde{r}$$
, где $\left[\begin{array}{l} \widetilde{r} = 0 \\ \deg \widetilde{r} < \deg p \end{array} \right]$

$$\Longrightarrow \frac{r}{p^s} = \frac{pq + \widetilde{r}}{p^s} = \frac{q}{p^{s-1}} + \frac{\widetilde{r}}{p^s}$$

где $\frac{\widetilde{r}}{p^s}$ - либо 0, либо простейшая.

Повторяем процесс для $\frac{q}{p^{s-1}}$

<u>!</u> : (От противного)

$$\frac{f}{g} = \sum_{i=1}^{s} \left(\frac{r_{i_1}}{p_i} + \frac{r_{i_2}}{p_i^2} + \dots + \frac{r_{i_s}}{p_i^{s_i}}\right) = \sum_{i=1}^{s} \left(\frac{\widetilde{r}_{i_1}}{p_i} + \frac{\widetilde{r}_{i_2}}{p_i^2} + \dots + \frac{\widetilde{r}_{i_s}}{p_i^{s_i}}\right)$$

$$\Longrightarrow \sum_{i=1}^{s} \left(\frac{\widetilde{\widetilde{r}}_{i_1}}{p_i} + \frac{\widetilde{\widetilde{r}}_{i_2}}{p_i^2} + \dots + \frac{\widetilde{\widetilde{r}}_{i_s}}{p_i^{s_i}}\right) = 0, \quad \text{где } \widetilde{\widetilde{r}}_{i_j} = r_{i_j} - \widetilde{r}_{i_j}$$

Допустим, что $\exists \ \widetilde{\widetilde{r}}_{i_i} \neq 0$

Рассмотрим $\widetilde{\widetilde{r}}_{i_t}$, где t - максимальный с таким условием (самый правый) и без ограничение общности считаем, что i=1.

Приводим к общему знаменателю и приравниваем числители:

$$\widetilde{\widetilde{r}}_{1_t} p_2^{s_2} \cdot \dots \cdot p_k^{s_k} + p_1 h(x) = 0$$

h(x) - собрали все кратные p_1 в числителе

$$p_1 \nsim p_i \ (i \neq 1) \Longrightarrow p_1 \mid \widetilde{\widetilde{r}}_{1_t} \Longrightarrow \widetilde{\widetilde{r}}_{1_t} = 0$$

т.к. иначе $\deg \widetilde{\widetilde{r}}_{1_t} \geq \deg p_1$, что противоречит определению простейших.

Теорема. (Декарта)

Пусть $f(x) \in \mathbb{R}[x]$, deg $f \ge 1$

 $f(x) = a_n x^n + ... + a_1 x + a_0$, где $a_i \in \mathbb{R}$.

L(f) - число перемен знака в последовательности $a_n, a_{n-1}, ..., a_1, a_0$

N(f) - число положительных вещественных корней многочлена f

Тогда число $N(f) \leq L(f)$. При этом $N(f) = L(f) \iff$ нет мнимых корней.

Заключение

В заключение выражаю благодарность главным редакторам конспекта: Егору Соколову (108 группа), Кириллу Яковлеву (108 группа), Ярославу Светлакову (108 группа), Егору Цыбулину (108 группа), а также Марии Свириной (111 группа) за рукописные конспекты.

Автор успешно сдал экзамен досрочно, но остается на связи, если будут очепятки пишите, поправим.

Всем удачной сессии ♡

