Lead case study using Decision Trees

Step1: Reading and Understanding the data

```
In [1]:
```

```
#Supressing the warnings
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
#Importing the Numpy and Pandas
import numpy as np
import pandas as pd
```

In [3]:

```
#Importing the data and see the head of our dataset
lead=pd.read_csv('E:\Leads.csv')
lead.head()
```

Out[3]:

_	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted TotalVis	sits	Total Time Spent on Website	Page Views Per Visit	Get updates on DM Content	Lead Profile	City A
o	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	0.0	No	Select	Select
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	2.5	No	Select	Select
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	2.0	No	Potential Lead	Mumbai
;	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0	No	Select I	Mumbai
4	3256f628- e534-4826- 9063- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	No	Select I	Mumbai

5 rows × 37 columns

```
In [4]:
```

```
#Let's check the dimensions of our dataframe lead.shape
```

Out[4]:

(9240, 37)

In [5]:

```
\# Let's\ look\ at\ the\ sttistical\ aspects\ of\ our\ dataframe\ lead.describe()
```

Out[5]:

	Lead Number	Converted	TotalVisits	Website	Page Views Per Visit	Asymmetrique Activity Score	Asymmetrique Profile Score
count	9240.000000	9240.000000	9103.000000	9240.000000	9103.000000	5022.000000	5022.000000
mean	617188.435606	0.385390	3.445238	487.698268	2.362820	14.306252	16.344883
std	23405.995698	0.486714	4.854853	548.021466	2.161418	1.386694	1.811395
min	579533.000000	0.000000	0.000000	0.000000	0.000000	7.000000	11.000000
25%	596484.500000	0.000000	1.000000	12.000000	1.000000	14.000000	15.000000
50%	615479.000000	0.000000	3.000000	248.000000	2.000000	14.000000	16.000000
75%	637387.250000	1.000000	5.000000	936.000000	3.000000	15.000000	18.000000
max	660737.000000	1.000000	251.000000	2272.000000	55.000000	18.000000	20.000000

In [6]:

#Let's see the type of each column
lead.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9240 entries, 0 to 9239
Data columns (total 37 columns):
                                                 9240 non-null object
Prospect ID
Lead Number
                                                  9240 non-null int64
Lead Origin
                                                  9240 non-null object
                                                 9204 non-null object
Lead Source
                                                 9240 non-null object
Do Not Email
Do Not Call
                                                 9240 non-null object
                                                 9240 non-null int64
Converted
TotalVisits
                                                  9103 non-null float64
Total Time Spent on Website
                                                 9240 non-null int64
Page Views Per Visit
                                                 9103 non-null float64
Last Activity
                                                 9137 non-null object
Country
                                                 6779 non-null object
Specialization
                                                  7802 non-null object
How did you hear about X Education
                                                 7033 non-null object
What is your current occupation
                                                 6550 non-null object
What matters most to you in choosing acourse
                                               6531 non-null object
Search
                                                 9240 non-null object
                                                 9240 non-null object
Magazine
Newspaper Article
                                                  9240 non-null object
X Education Forums
                                                  9240 non-null object
                                                 9240 non-null object
Newspaper
Digital Advertisement
                                                 9240 non-null object
Through Recommendations
                                                 9240 non-null object
Receive More Updates About Our Courses
                                                 9240 non-null object
Tags
                                                 5887 non-null object
Lead Quality
                                                 4473 non-null object
Update me on Supply Chain Content
                                                 9240 non-null object
Get updates on DM Content
                                                 9240 non-null object
                                                 6531 non-null object
Lead Profile
                                                  7820 non-null object
City
Asymmetrique Activity Index
                                                 5022 non-null object
Asymmetrique Profile Index
                                                 5022 non-null object
Asymmetrique Activity Score
                                                 5022 non-null float64
                                                 5022 non-null float64
Asymmetrique Profile Score
                                                 9240 non-null object
9240 non-null object
I agree to pay the amount through cheque
A free copy of Mastering The Interview
Last Notable Activity
                                                 9240 non-null object
dtypes: float64(4), int64(3), object(30)
memory usage: 2.6+ MB
```

In [7]:

To check the sum of missing values lead.isnull().sum()

D	0
Prospect ID Lead Number	0
	•
Lead Origin	0
Lead Source	36
Do Not Email	0
Do Not Call	0
Converted	0
TotalVisits	137
Total Time Spent on Website	0
Page Views Per Visit	137
Last Activity	103
Country	2461
Specialization	1438
How did you hear about X Education	2207
What is your current occupation	2690
What matters most to you in choosing acourse	2709
Search	0
Magazine	0
Newspaper Article	0
X Education Forums	0
Newspaper	0
Digital Advertisement	0
Through Recommendations	0
Receive More Updates About Our Courses	0
Tags	3353
Lead Quality	4767
Update me on Supply Chain Content	0
Get updates on DM Content	0
Lead Profile	2709
City	1420
Asymmetrique Activity Index	4218
Asymmetrique Profile Index	4218
Asymmetrique Activity Score	4218
Asymmetrique Profile Score	4218
I agree to pay the amount through cheque	0
A free copy of Mastering The Interview	0
Last Notable Activity	0
dtype: int64	U
acype. Interi	

Step2:Data Cleaning

In [8]:

```
# Convert Select to nan
lead=lead.replace('Select', np.nan)
```

In [9]:

```
#Adding up the missing values (Column wise)
lead.isnull().sum()
```

Out[9]:

Prospect ID	0
Lead Number	0
Lead Origin	0
Lead Source	36
Do Not Email	0
Do Not Call	0
Converted	0
TotalVisits	137
Total Time Spent on Website	0
Page Views Per Visit	137
Last Activity	103
Country	2461
Specialization	3380
How did you hear about X Education	7250
What is your current occupation	2690
What matters most to you in choosing a course	2709
Search	0
Magazine	0
Newspaper Article	0
X Education Forums	0

```
0
Newspaper
Digital Advertisement
                                                    0
Through Recommendations
                                                    0
Receive More Updates About Our Courses
                                                    0
Tags
                                                 3353
Lead Quality
                                                 4767
Update me on Supply Chain Content
                                                   0
Get updates on DM Content
                                                    0
Lead Profile
                                                 6855
City
                                                 3669
Asymmetrique Activity Index
                                                 4218
Asymmetrique Profile Index
                                                 4218
Asymmetrique Activity Score
                                                 4218
Asymmetrique Profile Score
                                                 4218
I agree to pay the amount through cheque
                                                   0
A free copy of Mastering The Interview
Last Notable Activity
                                                    0
dtype: int64
```

In [10]:

```
#Checking the percentage of missing values
round(100*(lead.isnull().sum()/len(lead.index)),2)
```

Out[10]:

```
Prospect ID
                                                  0.00
Lead Number
                                                  0.00
                                                  0.00
Lead Origin
Lead Source
                                                  0.39
Do Not Email
                                                  0.00
Do Not Call
                                                  0.00
Converted
                                                  0.00
TotalVisits
                                                  1.48
Total Time Spent on Website
                                                  0.00
Page Views Per Visit
                                                  1.48
Last Activity
                                                  1.11
Country
                                                 26.63
Specialization
                                                 36.58
How did you hear about X Education
                                                 78.46
What is your current occupation
                                                 29.11
What matters most to you in choosing a course
                                                 29.32
                                                  0.00
Search
                                                  0.00
Magazine
Newspaper Article
                                                  0.00
                                                  0 00
X Education Forums
Newspaper
                                                  0.00
Digital Advertisement
                                                  0.00
                                                  0.00
Through Recommendations
Receive More Updates About Our Courses
                                                  0.00
Tags
                                                 36.29
Lead Quality
                                                 51.59
Update me on Supply Chain Content
                                                  0.00
Get updates on DM Content
                                                  0.00
Lead Profile
                                                 74.19
City
                                                 39.71
Asymmetrique Activity Index
                                                 45.65
Asymmetrique Profile Index
                                                 45.65
Asymmetrique Activity Score
                                                 45.65
Asymmetrique Profile Score
                                                 45.65
I agree to pay the amount through cheque
                                                 0.00
A free copy of Mastering The Interview
                                                  0.00
Last Notable Activity
                                                  0.00
dtype: float64
```

In [111:

```
#Dropping the column which has 70% greater than the nan values i.e. Lead Profile lead=lead.drop('Lead Profile',1)
```

In [12]:

```
lead=lead.drop('How did you hear about X Education',1)
```

```
import matplotlib.pyplot asplt
import seaborn as sns
In [14]:
lead['Country'].describe()
Out[14]:
count
            6779
unique
               38
            India
top
freq
            6492
Name: Country, dtype: object
In [15]:
plt.figure(figsize=(20,10))
sns.countplot(lead['Country'])
plt.xticks(rotation=90)
Out[15]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
         34, 35, 36, 37]), <a list of 38 Text xticklabel objects>)
  6000
  5000
  4000
  3000
  2000
  1000
                 United Arab Emirates
                                                          Country
In [16]:
lead['Country']=lead['Country'].replace(np.nan,'India')
In [17]:
lead['Specialization'].describe()
Out[17]:
count
                             5860
                               18
unique
```

In [13]:

```
top Finance Management freq 976
Name: Specialization, dtype: object
```

In [18]:

```
plt.figure(figsize=(20,15))
sns.countplot(lead['Specialization'])
plt.xticks(rotation=90)
```

Out[18]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]), <a list of 18 Text xticklabel objects>)

In [19]:

```
lead['Specialization'] = lead['Specialization'].replace(np.nan,'Others')
```

In [20]:

```
lead['What is your current occupation'].describe()
```

Out[20]:

count 6550 unique 6 top Unemployed freq 5600

Name: What is your current occupation, dtype: object

In [21]:

```
plt.figure(figsize=(20,15))
sns.countplot(lead['What is your current occupation'])
plt.xticks(rotation=90)
```

Out[21]:

(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)

In [22]:

lead['What is your current occupation']=lead['What is your current occupation'].replace(np.nan,'Un
employed')

In [23]:

```
sns.countplot(lead['What matters most to you in choosing a course'])
plt.xticks(rotation=90)
Out[24]:
(array([0, 1, 2]), <a list of 3 Text xticklabel objects>)
  6000
  5000
  4000
  1000
                                              What matters most to you in choosing a course
In [25]:
lead['What matters most to you in choosing a course'] = lead['What matters most to you in choosing a
course'].replace(np.nan,'Better Career Prospects')
In [26]:
lead['Tags'].describe()
Out[26]:
count
                                              5887
                                                26
unique
           Will revert after reading the email
top
freq
Name: Tags, dtype: object
In [27]:
plt.figure(figsize=(20,10))
sns.countplot(lead['Tags'])
plt.xticks(rotation=90)
Out[27]:
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,  17, 18, 19, 20, 21, 22, 23, 24, 25]),
 <a list of 26 Text xticklabel objects>)
  2000
```

1750

In [28]:

```
lead['Tags']=lead['Tags'].replace(np.nan,'Will revert after reading the email')
```

In [29]:

```
lead['Lead Quality'].describe()
```

Out[29]:

count 4473 unique 5 top Might be freq 1560

Name: Lead Quality, dtype: object

In [30]:

```
plt.figure(figsize=(10,7))
sns.countplot(lead['Lead Quality'])
plt.xticks(rotation=90)
```

Out[30]:

```
(array([0, 1, 2, 3, 4]), <a list of 5 Text xticklabel objects>)
```


In [31]:

```
lead['Lead Quality']=lead['Lead Quality'].replace(np.nan,'Not Sure')
```

In [32]:

```
lead['City'].describe()
Out[32]:
```

count 5571 unique 6 top Mumbai freq 3222

Name: City, dtype: object

In [33]:

```
plt.figure(figsize=(10,5))
sns.countplot(lead['City'])
plt.xticks(rotation=90)
```

Out[33]:

```
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)
```


In [34]:

```
lead['City'] = lead['City'] .replace(np.nan, 'Mumbai')
```

In [35]:

```
round(100*(lead.isnull().sum()/len(lead.index)),2)
```

Out[35]:

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	0.00
Specialization	0.00
What is your current occupation	0.00
What matters most to you in choosing acourse	0.00
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	0.00
Lead Quality	0.00
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	0.00
Asymmetrique Activity Index	45.65
Asymmetrique Profile Index	45.65
Asymmetrique Activity Score	45.65
Asymmetrique Profile Score	45.65
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

In [36]:

lead['Asymmetrique Activity Index'].describe()

Out[36]:

count 5022 unique 3 top 02.Medium freq 3839

Name: Asymmetrique Activity Index, dtype: object

In [37]:

```
plt1=sns.countplot(lead['Asymmetrique Activity Index'])
```


In [38]:

```
lead['Asymmetrique Profile Index'].describe()
```

Out[38]:

count 5022 unique 3 top 02.Medium freq 2788

Name: Asymmetrique Profile Index, dtype: object

In [39]:

```
plt2=sns.countplot(lead['Asymmetrique Profile Index'])
```


In [40]:

```
lead['Asymmetrique Activity Score'].describe()
```

Out[40]:

 count
 5022.000000

 mean
 14.306252

 std
 1.386694

 min
 7.000000

 25%
 14.00000

 50%
 14.00000

 75%
 15.00000

 max
 18.000000

Name: Asymmetrique Activity Score, dtype: float64

In [41]:

```
sns.boxplot(lead['Asymmetrique Activity Score'])
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c32a5b4a8>


```
8 10 12 14 16 18
Asymmetrique Activity Score
```

In [42]:

```
lead['Asymmetrique Profile Score'].describe()
```

Out[42]:

count	5022.000000
mean	16.344883
std	1.811395
min	11.000000
25%	15.000000
50%	16.000000
75%	18.000000
max	20.000000

Name: Asymmetrique Profile Score, dtype: float64

In [43]:

```
sns.boxplot(lead['Asymmetrique Activity Score'])
```

Out[43]:

<matplotlib.axes. subplots.AxesSubplot at 0x29c32aa1d30>

In [44]:

lead=lead.drop(['Asymmetrique Activity Index','Asymmetrique Profile Index','Asymmetrique Activity
Score','Asymmetrique Profile Score'],1)

In [45]:

```
round(100*(lead.isnull().sum()/len(lead.index)),2)
```

Out[45]:

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	0.00
Specialization	0.00
What is your current occupation	0.00
What matters most to you in choosing a course	0.00
Search	0.00

```
0.00
Magazine
                                                 0.00
Newspaper Article
X Education Forums
                                                 0.00
                                                0.00
Newspaper
                                                0.00
Digital Advertisement
Through Recommendations
                                                0.00
                                                0.00
Receive More Updates About Our Courses
                                                0.00
Tags
Lead Quality
                                                0.00
Update me on Supply Chain Content
                                                0.00
Get updates on DM Content
                                                0.00
                                                0.00
City
                                                0.00
I agree to pay the amount through cheque
                                               0.00
A free copy of Mastering The Interview
Last Notable Activity
                                                0.00
dtype: float64
```

In [46]:

lead.dropna(inplace=True)

In [47]:

```
round(100*(lead.isnull().sum()/len(lead.index)),2)
```

Out[47]:

```
Prospect ID
                                                 0.0
                                                 0.0
Lead Number
                                                 0.0
Lead Origin
Lead Source
                                                 0.0
Do Not Email
                                                 0.0
Do Not Call
                                                 0.0
Converted
                                                 0.0
TotalVisits
                                                 0.0
Total Time Spent on Website
                                                 0.0
Page Views Per Visit
                                                 0.0
Last Activity
                                                 0.0
Country
                                                 0.0
                                                 0.0
Specialization
What is your current occupation
                                                0.0
What matters most to you in choosing a course
                                                0.0
                                                 0.0
Search
Magazine
Newspaper Article
                                                 0.0
                                                 0.0
X Education Forums
                                                 0.0
Newspaper
Digital Advertisement
                                                 0.0
Through Recommendations
                                                 0.0
Receive More Updates About Our Courses
                                                 0.0
                                                 0.0
Tags
Lead Quality
                                                 0.0
Update me on Supply Chain Content
                                                 0.0
Get updates on DM Content
                                                 0.0
City
I agree to pay the amount through cheque
                                                0.0
A free copy of Mastering The Interview
                                                0.0
Last Notable Activity
                                                 0.0
dtype: float64
```

In [48]:

lead.shape

Out[48]:

(9074, 31)

Step3: Analyzing the Data

In [49]:

```
Converted=(sum(lead['Converted'])/len(lead['Converted'].index))*100
Converted
```

Out[49]:

37.85541106458012

In [50]:

```
sns.countplot(x='Lead Origin', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[50]:

(array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)

In [51]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Lead Source', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[51]:

```
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]), <a list of 21 Text xticklabel objects>)
```


In [52]:

In [53]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Lead Source', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[53]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), <a list of 10 Text xticklabel objects>)

In [54]:

Out[54]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c32b63be0>

In [55]:

```
sns.countplot(x='Do Not Call', hue='Converted', data=lead)
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c32d48be0>

In [56]:

```
lead['TotalVisits'].describe(percentiles=(.05,.10,.25,.50,.75,.90,.95,.99))
```

Out[56]:

count	9074.000000
mean	3.456028
std	4.858802
min	0.00000
5%	0.00000
10%	0.00000
25%	1.000000
50%	3.000000
75%	5.000000
90%	7.000000
95%	10.000000
99%	17.000000
max	251.000000

Name: TotalVisits, dtype: float64

In [57]:

```
sns.boxplot(lead['TotalVisits'])
```

Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c32d927f0>

In [58]:

```
percentiles=lead['TotalVisits'].quantile([0.05,0.95]).values
lead['TotalVisits'][lead['TotalVisits']<=percentiles[0]]=percentiles[0]
lead['TotalVisits'][lead['TotalVisits']>=percentiles[1]]=percentiles[1]
```

In [59]:

```
sns.boxplot(lead['TotalVisits'])
```

Out[59]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c32def518>

In [60]:

```
sns.boxplot(y='TotalVisits',x='Converted',data=lead)
```

Out[60]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c32b150b8>


```
0 1
```

In [61]:

```
lead['Total Time Spent on Website'].describe()
```

Out[61]:

```
9074.000000
count
          482.887481
mean
          545.256560
std
            0.000000
min
           11.000000
25%
          246.000000
50%
75%
          922.750000
         2272.000000
max
```

Name: Total Time Spent on Website, dtype: float64

In [62]:

```
sns.boxplot(lead['Total Time Spent on Website'])
```

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c33f0b470>

In [63]:

```
sns.boxplot(y='Total Time Spent on Website',x='Converted',data=lead)
```

Out[63]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c33f677f0>

In [64]:

Out[64]:

```
        count
        9074.000000

        mean
        2.370151

        std
        2.160871

        min
        0.000000

        25%
        1.000000

        50%
        2.000000

        75%
        3.200000

        max
        55.000000
```

Name: Page Views Per Visit, dtype: float64

In [65]:

```
sns.boxplot(lead['Page Views Per Visit'])
```

Out[65]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c33fc0470>

In [66]:

```
percentiles=lead['Page Views Per Visit'].quantile([0.05,0.95]).values
lead['Page Views Per Visit'][lead['Page Views Per Visit']<=percentiles[0]]=percentiles[0]
lead['Page Views Per Visit'][lead['Page Views Per Visit']>=percentiles[1]]=percentiles[1]
```

In [67]:

```
sns.boxplot(lead['Page Views Per Visit'])
```

Out[67]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c340302b0>

In [68]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Last Activity', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[68]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]), <a list of 17 Text xticklabel objects>)

In [69]:

lead['Last Activity']=lead['Last Activity'].replace(['Had a Phone Conversation','View in browser 1
ink Clicked','Visited Booth in Tradeshow','Approached upfront','Resubscribed to emails','Email
Received','Email Marked Spam'],'Other Activity')

In [70]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Last Activity', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[70]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text xticklabel objects>)

In [71]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Last Activity', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[71]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text xticklabel objects>)


```
Fage Visited on Wind Converted to Converted
```

In [72]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Country', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[72]:

In [73]:

```
lead['Country']=lead['Country'].replace(['Russia','Kuwait','Oman','Bahrain','Ghana','Belgium','Fra
nce','Sri Lanka','China','Canada','Netherlands','Sweden','Nigeria','Hong
Kong','Germany','Asia/Pacific Region','Uganda','Kenya','Italy','South Africa','Tanzania','unknown'
,'Malaysia','Liberia','Switzerland','Denmark','Philippines','Bangladesh','Vietnam','Indonesia'],'O
ther countries')
```

In [74]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Country', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[74]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8]), <a list of 9 Text xticklabelobjects>)

In [75]:

```
lead['Specialization'].describe()
```

Out[75]:

count 9074 unique 19 top Others freq 3282

Name: Specialization, dtype: object

In [76]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Specialization', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[76]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]), <a list of 19 Text xticklabel objects>)
```


In [77]:

lead['Specialization'] = lead['Specialization'].replace('Others','Other Specialization')

In [78]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Specialization', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[78]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]), <a list of 19 Text xticklabel objects>)

In [79]:

```
lead['What is your current occupation'].describe()
```

Out[79]:

count 9074 unique 6 top Unemployed freq 8159

Name: What is your current occupation, dtype: object

In [80]:

```
sns.countplot(x='What is your current occupation', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[80]:

```
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)
```


In [81]:

```
lead['What is your current occupation'] = lead['What is your current occupation'].replace('Other','O
ther Occupation')
```

In [82]:

```
sns.countplot(x='What is your current occupation', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[82]:

In [83]:

```
lead['What matters most to you in choosing a course'].describe()
```

Out[83]:

count 9074
unique 3
top Better Career Prospects
freq 9072

Name: What matters most to you in choosing a course, dtype: object

In [84]:

```
sns.countplot (x='What matters most to you in choosing a course', hue='Converted', data=lead) \\ plt.xticks (rotation=90)
```

Out[84]:

(array([0, 1, 2]), <a list of 3 Text xticklabel objects>)

In [85]:

```
lead['Search'].describe()
```

```
Out[85]:
          9074
count
           2
unique
           No
top
          9060
freq
Name: Search, dtype: object
In [86]:
sns.countplot(x='Search', hue='Converted', data=lead)
plt.xticks(rotation=90)
Out[86]:
(array([0, 1]), <a list of 2 Text xticklabel objects>)
                                        Converted
                                         0
  5000
                                           1
  4000
  3000
  2000
  1000
     0
                ŝ
                                    Yes
                         Search
In [87]:
lead['Magazine'].describe()
Out[87]:
count
          9074
unique
top
            No
          9074
freq
Name: Magazine, dtype: object
In [88]:
lead['Newspaper Article'].describe()
Out[88]:
count
          9074
unique
           No
top
          9072
freq
Name: Newspaper Article, dtype: object
In [89]:
sns.countplot(x='Newspaper Article',hue='Converted',data=lead)
Out[89]:
<matplotlib.axes._subplots.AxesSubplot at 0x29c36432550>
                                        Converted
                                         0
  5000
```


In [90]:

```
lead['X Education Forums'].describe()
```

Out[90]:

count 9074 unique 2 top No freq 9073

Name: X Education Forums, dtype: object

In [91]:

```
sns.countplot(x='X Education Forums', hue='Converted', data=lead)
```

Out[91]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c3647b550>

In [92]:

```
lead['Newspaper'].describe()
```

Out[92]:

count 9074 unique 2 top No freq 9073

Name: Newspaper, dtype: object

In [93]:

```
sns.countplot(x='Newspaper',hue='Converted',data=lead)
```

Out[93]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c364d6c50>

In [94]:

```
lead['Digital Advertisement'].describe()
```

Out[94]:

count 9074 unique 2 top No freq 9070

Name: Digital Advertisement, dtype: object

In [95]:

```
sns.countplot(x='Digital Advertisement', hue='Converted', data=lead)
```

Out[95]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c36cc30f0>

In [96]:

```
lead['Through Recommendations'].describe()
```

Out[96]:

count 9074 unique 2 top No freq 9067

Name: Through Recommendations, dtype: object

In [97]:

```
sns.countplot(x='Through Recommendations',hue='Converted',data=lead)
```

Out[97]:

<matplotlib.axes._subplots.AxesSubplot at 0x29c36d168d0>


```
In [98]:
lead['Receive More Updates About Our Courses'].describe()
Out[98]:
          9074
count
            1
unique
            No
top
          9074
freq
Name: Receive More Updates About Our Courses, dtype: object
In [99]:
lead['Tags'].describe()
Out[99]:
                                            9074
count
unique
                                              26
         Will revert after reading the email
top
freq
Name: Tags, dtype: object
In [100]:
plt.figure(figsize=(15,10))
sns.countplot(x='Tags', hue='Converted', data=lead)
plt.xticks(rotation=90)
Out[100]:
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,  17, 18, 19, 20, 21, 22, 23, 24, 25]),
 <a list of 26 Text xticklabel objects>)
```


In [101]:

lead['Tags']=lead['Tags'].replace(['In confusion whether part time or DLP','in touch with
EINS','Diploma holder (Not Eligible)','Graduation in progress','number not provided','opp hangup',
'Still Thinking','Lost to Others','Shall take in the next coming month','Lateral
student','Interested in Next batch','Recognition issue (DEC approval)','Want to take admission but
has financial problems','University not recognized'],'Other Tags')

In [102]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Tags',hue='Converted',data=lead)
plt.xticks(rotation=90)
```

Out[102]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), <a list of 13 Text xticklabel objects>)

In [103]:

```
lead['Lead Quality'].describe()
```

Out[103]:

count 9074 unique 5 top Not Sure freq 5806

Name: Lead Quality, dtype: object

In [104]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Lead Quality', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[104]:

(array([0, 1, 2, 3, 4]), <a list of 5 Text xticklabel objects>)


```
lead['Update me on Supply Chain Content'].describe()
Out[105]:
         9074
count
         . 1
unique
           No
top
        9074
freq
Name: Update me on Supply Chain Content, dtype: object
In [106]:
lead['Get updates on DM Content'].describe()
Out[106]:
         9074
count
unique
top
           No
        9074
freq
Name: Get updates on DM Content, dtype: object
In [107]:
lead['City'].describe()
Out[107]:
count
           9074
unique
            6
        Mumbai
top
          6752
freq
Name: City, dtype: object
In [108]:
plt.figure(figsize=(15,10))
sns.countplot(x='City', hue='Converted', data=lead)
plt.xticks(rotation=90)
Out[108]:
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)
                                                                                           Converted
  4000
  3000
  2000
  1000
```


Out[109]:

9074 count 1 unique No top 9074 freq

Name: I agree to pay the amount through cheque, dtype: object

In [110]:

```
lead['A free copy of Mastering The Interview'].describe()
```

Out[110]:

9074 count unique top No 6186 freq

Name: A free copy of Mastering The Interview, dtype: object

In [111]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='A free copy of Mastering The Interview', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[111]:

(array([0, 1]), <a list of 2 Text xticklabel objects>)

In [112]:

```
lead['Last Notable Activity'].describe()
```

Out[112]:

count 9074 unique 16 top Modified freq 3267

Name: Last Notable Activity, dtype: object

In [113]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Last Notable Activity', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[113]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), <a list of 16 Text xticklabel objects>)

In [114]:

lead['Last Notable Activity']=lead['Last Notable Activity'].replace(['Approached

```
upfront', 'Resubscribed to emails', 'View in browser link Clicked', 'Form Submitted on Website', 'Email Received', 'Email Marked Spam'], 'Other Activity')
```

In [115]:

```
plt.figure(figsize=(15,10))
sns.countplot(x='Last Notable Activity', hue='Converted', data=lead)
plt.xticks(rotation=90)
```

Out[115]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text xticklabel objects>)

In [116]:

lead=lead.drop(['Lead Number','What matters most to you in choosing a course','Search','Magazine',
'Newspaper Article','X Education Forums','Newspaper','Digital Advertisement','Through
Recommendations','Receive More Updates About Our Courses','Update me on Supply Chain Content','Get
updates on DM Content','Country','I agree to pay the amount through cheque','A free copy of Master
ing The Interview'],1)

In [117]:

```
lead.shape

Out[117]:
(9074, 16)
```

In [118]:

lead.head()

Out[118]:

	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted TotalVisit	ts	Total Time Spent on Website	Page Views Per Visit	Last Activity	Specialization	What is your current occupation	
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	API	Olark Chat	No	No	0	0.0	0	0.0	Page Visited on Website	Other Specialization	Unemployed	ln
1	2a272436- 5132-4136- 86fa- dcc88c88f482	API	Organic Search	No	No	0 5	5.0	674	2.5	Email Opened	Other Specialization	Unemployed	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	Landing Page Submission	Direct Traffic	No	No	1 2	2.0	1532	2.0	Email Opened	Business Administration	Student	W
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0 l	Jnreachable	Media and Advertising	Unemployed	
4	3256f628- e534-4826- 9d63- 4a8b88782852	Landing Page Submission	Google	No	No	1 2	2.0	1428	1.0	Converted to Lead	Other Specialization	Unemployed	W
													F

Step4:Split the data into test and train data

In [119]:

from sklearn.model_selection import train_test_split

In [120]:

X=lead.drop(['Prospect ID','Converted'],axis=1)

In [121]:

X.head()

Out[121]:

	Lead Origin	Lead Source	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Specialization	What is your current occupation	Tags	Lead City Quality
0	API	Olark Chat	No	No	0.0	0	0.0	Page Visited on Website	Other Specialization	Unemployed	Interested in other courses	Low in Relevance Mumba
1	API	Organic Search	No	No	5.0	674	2.5	Email Opened	Other Specialization	Unemployed	Ringing	Not Sure Mumba
2	Landing Page Submission	Direct Traffic	No	No	2.0	1532	2.0	Email Opened <i>i</i>	Business Administration	Student	Will revert after reading the email	Might be Mumba
3	Landing Page Submission	Direct Traffic	No	No	1.0	305	1.0	Unreachable	Media and Advertising	Unemployed	Ringing	Not Sure Mumba
4	Landing Page Submission	Google	No	No	2.0	1428	1.0	Converted to Lead	Other Specialization	Unemployed	Will revert after reaging the email	Might be Mumba
												F

In [122]:

```
y=lead['Converted']
In [123]:
y.head()
Out[123]:
0
       Ω
       0
1
       1
3
       0
4
       1
Name: Converted, dtype: int64
In [124]:
 \textbf{X\_train}, \textbf{X\_test}, \textbf{y\_train}, \textbf{y\_test=train\_test\_split} (\textbf{X}, \textbf{y}, \textbf{train\_size=0.7}, \textbf{test\_size=0.3}, \textbf{random\_state=100}) 
In [125]:
X train.head()
Out[125]:
                                                           Total
                                                                                                         What is
                                                                   Page
                                Do
                                      Do
                                                          Time
                                                                           Last Specialization Activity
                                                                                                                              Lead
             Lead
                       Lead
                                                                   Views
                                                                                                            your
                                Not
                                     Not
                                           TotalVisits
                                                          Spent
                                                                                                                                             City
                                                                                                                     Tags
                                                                                                                            Quality
                                                                     Per
             Origin Source
                                                                                                          current
                              Email
                                     Call
                                                             on
                                                                    Visit
                                                                                                      occupation
                                                        Website
                                                                                                                       Will
                                                                                                                     revert
           Landing
                      Direct
                                                                             Email
                                                                                           Finance
                                                                                                                      after
                                                                                                                                Not
 3009
             Page
                                 No
                                       No
                                                   2.0
                                                             397
                                                                     2.0
                                                                                                     Unemployed
                                                                                                                                         Mumbai
                                                                           Opened
                                                                                                                    reading
                                                                                                                               Sure
                      Traffic
                                                                                       Management
        Submission
                                                                                                                      the
                                                                                                                     email
                                                                                                                      Will
                                                                                                                     revert
           Landing
                                                                             Email
                      Direct
                                                                                             Other
                                                                                                         Working
                                                                                                                     after
                                                                                                                                Not
                                Yes
                                       No
                                                   2.0
                                                             190
                                                                     2.0
 1012
             Page
                                                                                                                                          Mumbai
                                                                                                                   reading
                      Traffic
                                                                                      Specialization
                                                                                                    Professional
                                                                                                                               Sure
                                                                           Bounced
        Submission
                                                                                                                      the
                                                                                                                     email
                       Olark
                                                                              SMS
                                                                                             Other
                                                                                                                                Not
 9226
               API
                                                   0.0
                                                                     0.0
                                                                                                     Unemployed Ringing
                                                                                                                                         Mumbai
                       Chat
                                                                              Sent
                                                                                      Specialization
                                                                                                                               Sure
                                                                                                                     revert
           Landing
                                                                              SMS
                                                                                          Marketing
                                                                                                                     after
                      Direct
                                                                                                                                Not
                                 No
                                       No
                                                   2.0
                                                           1380
                                                                     2.0
 4750
              Page
                                                                                                     Unemployed
                                                                                                                                      Other Cities
                      Traffic
                                                                                       Management
                                                                                                                   reading
                                                                                                                               Sure
                                                                              Sent
        Submission
                                                                                                                      the
                                                                                                                     email
                                                                                                                                Not Other Cities
           Landing
                                                                                                                    Lost to
                      Direct
                                                                              SMS
                                                                                           Finance Unemployed
 7987
             Page
                                 No
                                      No
                                                   5.0
                                                           1584
                                                                     2.5
                                                                                                                              Sure Maharashtra
                                                                                                                     EINS
                      Traffic
                                                                              Sent
                                                                                       Management
        Submission
                                                                                                                                               F
In [126]:
X.head()
```

Out[126]:

	Lead Origin	Lead Source	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Specialization	What is your current occupation	Tags	Lead Quality	City
0	API	Olark Chat	No	No	0.0	0	0.0	Page Visited on Website	Other Specialization	Unemployed	Interested in other courses	Low in Relevance Mum	nba
1	API	Organic Search	No	No	5.0	674	2.5	Email Opened	Other Specialization	Unemployed	Ringing	Not Sure Mum	ıba
	Landing										Will revert		

2	Page Submission	Direct Traffic	No	No	2.0	1533	2.0 Page	Email Opened	Business Administration	Student What is	reading	Might be Mun	nba
	Lead Origin Landing	Lead Source	Do Not Email	Do Not Call	TotalVisits	Time Spent on	Views Per	Last Activity	Specialization Media and	your current	the email Tags	Lead Quality	City
3	Page Submission	Direct Traffic	No	No	1.0	Web Sit 6	Visit 1.0	Unreachable	Advertising	occupation Unemployed	Ringing	Not Sure Mun	nba_
4	Landing Page (Submission	Google	No	No	2.0	1428	1.0	Converted to Lead	Other Specialization	Unemployed	Will revert after reading the email	Might be Mun	nba
													F

In [127]:

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9074 entries, 0 to 9239
Data columns (total 16 columns):
Prospect ID
                                   9074 non-null object
                                   9074 non-null object
Lead Origin
Lead Source
                                   9074 non-null object
Do Not Email
                                   9074 non-null object
Do Not Call
                                   9074 non-null object
Converted
                                   9074 non-null int64
TotalVisits
                                   9074 non-null float64
Total Time Spent on Website
                                  9074 non-null int64
Page Views Per Visit
                                   9074 non-null float64
Last Activity
                                  9074 non-null object
                                  9074 non-null object
Specialization
What is your current occupation 9074 non-null object
                                   9074 non-null object
Tags
Lead Quality
                                   9074 non-null object
                                   9074 non-null object
City
Last Notable Activity
                                  9074 non-null object
dtypes: float64(2), int64(2), object(12)
memory usage: 1.5+ MB
```

In [128]:

lead.shape

Out[128]:

(9074, 16)

Step5: Data Preparation

In [129]:

```
from sklearn import preprocessing

# encode categorical variables using Label Encoder

# select all categorical variables
lead_categorical=lead.select_dtypes(include=['object'])
lead_categorical.head()
```

Out[129]:

_	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Last Activity	Specialization	What is your current occupation	Tags	Lead Quality	City	Last Notable Activity
o	7927b2df-8bba- 4d29-b9a2- b6e0beafe620	API	Olark Chat	No	No	Page Visited on Website	Other Specialization	Unemployed	Interested in other courses	Low in Relevance	Mumbai M	lodified
1	2a272436- 5132-4136- 86fa- dcc88c88f482	API	Organic Search	No	No	Email Opened	Other Specialization	Unemployed	Ringing	Not Sure	Mumbai	Email Opened
	8cc8c611-								Will revert			

2	a219-4f35- prospect 10 fdfd2656bd8a	Landing Page Submission Origin	Direct Tlastic Source	Not l Email	Not Call	Email Operast Activity	Business Administration Specialization	What is Student your current occupation	after reading the email	Might be Mum Quality	bai City	Email Operable Notable Activity
3	0cc2df48-7cf4- 4e39-9de9-	Landing Page	Direct Traffic	No	No L	Inreachable	Media and Advertising	Unemployed	Ringing	Not Sure Mum	ıbai M	lodified
	19797f9b38cc	Submission	Hanic				Advertising					
4	3256f628-e534- 4826-9d63- 4a8b88782852	Landing Page Submission	Google	No	No	Converted to Lead	Other Specialization	Unemployed	Will revert after reading the email	Might be Mum	nbai M	lodified

In [130]:

appky label encoder to lead_categorical
le=preprocessing.LabelEncoder()

lead_categorical=lead_categorical.apply(le.fit_transform)
lead_categorical.head()

Out[130]:

	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Last Activity	Spec ialization	What is your current occupation		Lead uality	City	Last Notable Activity
0	4332	0	4	0	0	7	13	4	4	1	0	4
1	1527	0	5	0	0	3	13	4	8	3	0	2
2	5034	1	1	0	0	3	1	3	9	2	0	2
3	462	1	1	0	0	9	11	4	8	3	0	4
4	1842	1	3	0	0	0	13	4	9	2	0	4

In [131]:

concat lead categorical with original lead

lead = lead.drop(lead_categorical.columns, axis=1)

lead = pd.concat([lead, lead_categorical], axis=1)
lead.head()

Out[131]:

c	Converted Total	IVisits	Total Time Spent on Website	Page Views Per Visit	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Last Special Activity	alization	What is your current occupation	Tags	Lead Quality
0	0	0.0	0	0.0	4332	0	4	0	0	7	13	4	4	1
1	0	5.0	674	2.5	1527	0	5	0	0	3	13	4	8	3
2	1	2.0	1532	2.0	5034	1	1	0	0	3	1	3	9	2
3	0	1.0	305	1.0	462	1	1	0	0	9	11	4	8	3
4	1	2.0	1428	1.0	1842	1	3	0	0	0	13	4	9	2
														F

In [132]:

lead.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9074 entries, 0 to 9239

Data columns (total 16 columns):

Converted 9074 non-null int64
TotalVisits 9074 non-null float64
Total Time Spent on Website 9074 non-null int64
Page Views Per Visit 9074 non-null float64
Prospect ID 9074 non-null int32
Lead Origin 9074 non-null int32
Lead Source 9074 non-null int32
Do Not Email 9074 non-null int32

```
Do Not Call
                                   9074 non-null int32
Last Activity
                                   9074 non-null int32
Specialization
                                   9074 non-null int32
What is your current occupation 9074 non-null int32
                                   9074 non-null int32
                                   9074 non-null int32
Lead Quality
                                   9074 non-null int32
City
Last Notable Activity
                                   9074 non-null int32
dtypes: float64(2), int32(12), int64(2)
memory usage: 1.1 MB
In [135]:
lead['Converted'] = lead['Converted'].astype('category')
```

Step6: model building and evaluation

```
In [136]:
```

```
# Importing train-test-split
from sklearn.model_selection import train_test_split
```

```
In [138]:
```

```
# Putting feature variable to X
X = lead.drop('Converted',axis=1)
# Putting response variable to y
y = lead['Converted']
```

In [139]:

Out[139]:

	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Last Speci Activity	alization	What is your current occupation	Tags	Lead C Quality	ity Not Act
3534	3.0	129	3.0	2985	1	5	0	0	3	12	4	11	3	0
2358	2.0	240	2.0	3059	1	3	0	0	8	4	5	9	2	0
1830	3.0	226	1.5	6074	0	4	0	0	3	7	4	8	3	0
1647	2.0	1184	2.0	1821	1	6	0	0	3	10	4	9	1	4
6254	2.0	31	2.0	8917	0	3	0	0	5	13	4	4	3	0
														F

In [140]:

```
# Importing decision tree classifier from sklearn library
from sklearn.tree import DecisionTreeClassifier

# Fitting the decision tree with default hyperparameters, apart from
# max_depth which is 5 so that we can plot and read the tree.
dt_default = DecisionTreeClassifier(max_depth=5)
dt_default.fit(X_train, y_train)
```

Out[140]:

```
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
```

In [141]:

```
# Let's check the evaluation metrics of our default model

# Importing classification report and confusion matrix from sklearn metrics
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

# Making predictions
y_pred_default = dt_default.predict(X_test)

# Printing classification report
print(classification_report(y_test, y_pred_default))
```

		precision	recall	f1-score	support
	0	0.88	0.95	0.92	1699
	1	0.91	0.79	0.85	1024
micro	avg	0.89	0.89	0.89	2723
macro	avg	0.90	0.87	0.88	2723
weighted	avg	0.89	0.89	0.89	2723

In [142]:

```
# Printing confusion matrix and accuracy
print(confusion_matrix(y_test,y_pred_default))
print(accuracy_score(y_test,y_pred_default))

[[1619 80]
```

[[1619 80] [214 810]] 0.8920308483290489

Step7: Plotting the Decision Tree

In [143]:

```
from IPython.display import Image
from sklearn.externals.six import StringIO
from sklearn.tree import export_graphviz
import pydotplus, graphviz
# Putting features
features = list(lead.columns[1:])
features
Out[143]:
['TotalVisits',
 'Total Time Spent on Website',
 'Page Views Per Visit',
 'Prospect ID',
 'Lead Origin',
 'Lead Source',
 'Do Not Email',
 'Do Not Call',
 'Last Activity',
 'Specialization',
 'What is your current occupation',
 'Tags',
 'Lead Quality',
 'City',
 'Last Notable Activity']
In [144]:
```

Out[144]:

Step8: Hyperparameter Tuning

In [145]:

```
#The default tree is quite complex, and we need to simplify it by tuning the hyperparameters.
#criterion
#splitter
#max_features
#max_depth
#min_samples_split
#min_sapmles_leaf
#max_leaf_nodes
#min_impurity_split
```

Tuning max_deapth

```
In [146]:
```

```
# GridSearchCV to find optimal max depth
from sklearn.model_selection import KFold
from sklearn.model selection import GridSearchCV
\# specify number of folds for k-fold CV
n_folds = 5
# parameters to build the model on
parameters = {'max_depth': range(1, 40)}
# instantiate the model
dtree = DecisionTreeClassifier(criterion = "gini",
                               random state = 100)
# fit tree on training data
tree = GridSearchCV(dtree, parameters,
                    cv=n folds,
                  scoring="accuracy")
tree.fit(X train, y train)
Out[146]:
```

In [148]:

```
scores=tree.cv_results_
pd.DataFrame(scores).head()
```

Out[148]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_max_depth	params sp	olit0_test_score split1_t	test_score
0	0.008744	0.000608	0.001598	0.001957	₁ {'max	x_depth ': 1}	0.826121	0.800787
1	0.011261	0.002148	0.002644	0.002199	2 ^{{'max}	x_depth ': 2}	0.825334	0.811024
2	0.013794	0.002558	0.002024	0.001787	₃ {'max	x_depth ': {}	0.885130	0.884252
3	0.015114	0.002902	0.003373	0.006746	₄ {'max	x_depth ^{':} ₂ }	0.888277	0.883465
4	0.021309	0.005463	0.00000	0.000000	5 {'max	x_depth ':	0.892998	0 903937

5 rows x 21 columns

In [149]:

#now lets visualize how tarin and test score changes with max_depth

F

In [150]:

Tuning min_samples_leaf

In [151]:

```
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

# specify number of folds for k-foldCV
n_folds = 5
```

```
# parameters to build the model on
parameters = {'min samples leaf': range(5, 200, 20)}
# instantiate the model
dtree = DecisionTreeClassifier(criterion = "gini",
                                 random_state = 100)
# fit tree on training data
tree = GridSearchCV(dtree, parameters,
                     cv=n folds,
                    scoring="accuracy")
tree.fit(X_train, y_train)
Out[151]:
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
             max features=None, max leaf nodes=None,
             min_impurity_decrease=0.0, min_impurity_split=None,
             min_samples_leaf=1, min_samples_split=2,
             min weight fraction leaf=0.0, presort=False, random state=100,
             splitter='best'),
       fit_params=None, iid='warn', n_jobs=None,
       param grid={'min samples leaf': range(5, 200, 20)},
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
        scoring='accuracy', verbose=0)
In [152]:
# scores of GridSearch CV
scores = tree.cv_results
pd.DataFrame(scores).head()
Out[152]:
   mean_fit_time
              std_fit_time mean_score_time
                                         std_score_time param_min_samples_leaf
                                                                                   params split0_test_score split1
                                                                        5 {'min_samples_leaf':
       0.034250
                                                                                                 0.901652
                  0.003295
                                 0.002566
                                              0.002542
                                                                       25 {'min_samples_leaf':
                                                                                                 0.905586
       0.034372
 1
                  0.009674
                                 0.006375
                                              0.007411
                                                                       45 {'min_samples_leaf':
       0.025424
                  0.007160
                                 0.009374
                                              0.007654
                                                                                                 0.896145
                                                                       65 {'min_samples_leaf':
       0.028206
                                                                                                 0.881196
 3
                  0.008745
                                 0.003123
                                              0.006247
                                                                       85 ('min_samples_leaf':
                                                                                                 0.874902
       0.019212
                  0.006076
                                 0.009621
                                              0.007869
5 rows x 21 columns
In [153]:
# plotting accuracies with min samples leaf
plt.figure()
plt.plot(scores["param_min_samples_leaf"],
          scores["mean_train_score"],
          label="training accuracy")
plt.plot(scores["param min samples leaf"],
          scores["mean_test_score"],
          label="test accuracy")
plt.xlabel("min samples leaf")
plt.ylabel("Accuracy")
plt.legend()
plt.show()
```

training accuracy

test accuracy

0.94

0.92

Tuning min_samples_split

```
In [154]:
```

```
# GridSearchCV to find optimal min_samples_split
from sklearn.model_selection import KFold
from sklearn.model selection import GridSearchCV
\# specify number of folds for k-fold CV
n folds = 5
# parameters to build the model on
parameters = { 'min_samples_split': range(5, 200, 20) }
# instantiate the model
dtree = DecisionTreeClassifier(criterion = "gini",
                               random state = 100)
# fit tree on training data
tree = GridSearchCV(dtree, parameters,
                   cv=n_folds,
                  scoring="accuracy")
tree.fit(X train, y train)
Out[154]:
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
            max features=None, max leaf nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, presort=False, random state=100,
            splitter='best'),
       fit params=None, iid='warn', n jobs=None,
       param_grid={'min_samples_split': range(5, 200, 20)},
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring='accuracy', verbose=0)
```

In [155]:

```
# scores of GridSearch CV
scores = tree.cv_results_
pd.DataFrame(scores).head()
```

Out[155]:

0 0.037003 0.004879 0.002812 0.001522 5 {min_samples_split': 5} 0.892998 1 0.042120 0.007504 0.000479 0.000959 25 {min_samples_split': 25} 0.910307 2 0.034365 0.006248 0.000000 0.000000 45 {min_samples_split': 45} 0.913454 3 0.035995 0.005619 0.000198 0.000396 65 {min_samples_split': 65} 0.906373 4 0.038323 0.007054 0.000000 0.000000 85 {min_samples_split': 85} 0.910307		mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_min_samples_split	params sp	lit0_test_score split1
25} 2 0.034365 0.006248 0.000000 0.000000 45 {min_samples_split': 45} 3 0.035995 0.005619 0.000198 0.000396 65 {min_samples_split': 65} 4 0.038323 0.007054 0.000000 0.000000 85 {min_samples_split': 0.910307}	0	0.037003	0.004879	0.002812	0.001522	Ę	{'min_samples_split': 5}	0.892998
3 0.035995 0.005619 0.000198 0.000396 65 {'min_samples_split': 0.906373 65} 4 0.038323 0.007054 0.000000 0.000000 85 {'min_samples_split': 0.910307	1	0.042120	0.007504	0.000479	0.000959	25	{'min_samples_split': 25}	0.910307
4 0.038323 0.007054 0.000000 0.000000 85 {'min_samples_split': 0.910307	2	0.034365	0.006248	0.000000	0.000000	45	{'min_samples_split': 45}	0.913454
4 0.038323 0.007054 0.000000 0.000000 85 \{\text{'min_samples_split':} \ 85\}	3	0.035995	0.005619	0.000198	0.000396	65	{'min_samples_split': 65}	0.906373
	4	0.038323	0.007054	0.000000	0.000000	85	{'min_samples_split': 85}	0.910307

In [156]:

Step9:Grid search to find optimal Hyperparameters

```
In [157]:
```

Fitting 5 folds for each of 16 candidates, totalling 80 fits

In [158]:

```
# cv results
cv_results = pd.DataFrame(grid_search.cv_results_)
cv_results
```

Out[158]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_criterion	param_max_depth	param_min_samples_leaf	paran
0	0.022641	0.001993	0.002417	0.002282	entropy	5	50	
1	0.023984	0.001949	0.003856	0.002312	entropy	5	50	
2	0.015973	0.000563	0.007790	0.007316	entropy	5	100	
3	0.031233	0.000020	0.000000	0.000000	entropy	5	100	
4	0.032712	0.007801	0.004202	0.006507	entropy	10	50	
5	0.038530	0.008480	0.003125	0.006249	entropy	10	50	
6	0.034590	0.003071	0.000369	0.000739	entropy	10	100	
7	0.027876	0.006559	0.003925	0.006048	entropy	10	100	
8	0.023289	0.004937	0.000204	0.000409	gini	5	50	
9	0.018750	0.006248	0.003118	0.006235	gini	5	50	
10	0.025696	0.006065	0.000000	0.000000	gini	5	100	
11	0.016314	0.000901	0.003122	0.006244	gini	5	100	
12	0.025053	0.005502	0.004247	0.005555	gini	10	50	
13	0.026555	0.003824	0.004078	0.002085	gini	10	50	

me	ean_fit_time	std_fit_time	mean_score_time	std_score_time	param_criterion	param_max_depth	param_min_samples_leaf	para
14	0.024874	0.002681	0.001630	0.001236	gini	10	100	
5	0.023378	0.001043	0.000200	0.000399	gini	10	100	
rows	s × 24 colun	nns						
	59]:							
		optimal.	accuracy score	and hyperp	arameters			
cint	("best ac	curacy",	grid_search.be					
est a	accuracy	0.8784443	394740986					
cis			class_weight=N s=None, max le			x_depth=10,		
	mi	n_impurity	decrease=0.0	, min_impuri	ity_split=Nor	ne,		
			leaf=50, min fraction_leaf=			om_state=None,		
		litter='be				_		
		المحمط طلانس الم		a al fra ma anni al a a	.a.a.b			
unnir	ng the mode	ei with best	parameter obtain	ea from gria se	earcn			
n [16	60]:							
mod	lel with c	optimal hy	perparameters					
lf_g	ini = Dec	isionTree	Classifier(cri ran	.terion = "g. dom state =				
				_depth=10,	100,			
				_samples_lea				
lf_g	ini.fit(X	_train, y		_samples_spli	LC=30)			
ut[1								
ecis			class_weight=N s=None, max le			max_depth=10,		
			decrease=0.0			ie,		
			leaf=50, min_					
		n_weight_i litter='be	fraction_leaf= est')	0.0, presort	=False, rando	om_state=100,		
	-							
n [1	61]:							
acc	uracy sco	ore						
	-	(X_test,y	_test)					
ut[1	611:							
	2567021667	1270						
.00/2	2307021007	213						
n [16	621.							
ot_d	tting the ata = Str t_graphvi	ingIO()	i, out_file=do	t_data,feat	ure_names=fea	atures,filled=	True, rounded=True)	
		us.graph_teate_png(from_dot_data())	dot_data.get	tvalue())			
ut[1	62]:							
				garden garden aman (find	Hej.			
	Dec. 13		Mark 1995 The State of State			The first land are found to 17 to 18	a landa da an	
-	after part of	-	AND AND ADDRESS OF THE PARTY OF			man (I to a to a	one part and	

```
THE MAN STATE OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Total Market Mar
```

You can see that this tree is too complex to understand. Let's try reducing the max_depth and see how the tree looks.

In [163]:

0.8615497612926919

In [164]:

```
# plotting tree with max_depth=3
dot_data = StringIO()
export_graphviz(clf_gini, out_file=dot_data, feature_names=features, filled=True, rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
```

Out[164]:

In [165]:

```
# classification metrics
from sklearn.metrics import classification_report,confusion_matrix
y_pred = clf_gini.predict(X_test)
print(classification_report(y_test, y_pred))
```

		precision	recall	f1-score	support
	0	0.84	0.95	0.90	1699
	1	0.90	0.71	0.79	1024
micro	avg	0.86	0.86	0.86	2723
macro	avg	0.87	0.83	0.84	2723
weighted	avg	0.87	0.86	0.86	2723

```
In [166]:
# confusion matrix
print(confusion_matrix(y_test, y_pred))

[[1620     79]
     [ 298     726]]

In [ ]:
```