Report

Description of the implementation

This implementation uses a deep Q network (DQN) as a surrogate for a conventional Q table to train an agent to perform the required task, collection of yellow bananas from the Banana environment which is part of the UnityEnvironments tool set. It is based on a previous exercise (Lunar Lander) with some minor changes to accommodate the new state model.

Approach

The model was run over 2000 episodes with a maximum of 1000 intervals within each episode. The behavior policy during training was e-greedy with epsilon annealed linearly from 1.0 to 0.01 with decay 0.995. Gamma was set to 0.99

The DQN consisted of an input layer of 37 states, fully connected to a first hidden layer (fc1) of 64 units then a second layer again of 64 units. The output layer consisted of 4 units corresponding to the action space. The first two layers used a ReLU activation and the final layer fc3 left as logits. The loss function for gradient descent was the Mean Squared Error (MSE).

Learning was carried out every 4 iterations using randomly sampled experiences stored in e Replaybuffer. Model parameters were updated using algorithm:

Theta_target = Tau * Theta_local + (1 - tau) * Theta_target, where theta is the set of model weights

Plot of rewards

The reward plot is shown in the Jupyter notebook for this project.

Ideas for future work

The model was very much a first iteration using essentially the same hyper-parameters as the previous LunarLander exercise, so clearly there are opportunities to change the key hyperparameters (Epsilon, epsilon decay, gamma and learning update step) to achieve better/faster results.

Further development would include a different neural network configuration and potentially a different optimiser.