Metodi Numerici per il Calcolo

Esercitazione 5: Interpolazione Polinomiale

A.A.2022/23

Scaricare dalla pagina web del corso l'archivio matlab_mnc2223_5.zip e scompattarlo nella propria home directory. Verrà creata una cartella con lo stesso nome contenente alcuni semplici script e function Matlab/Octave. Si svolga la seguente esercitazione che ha come obiettivo quella di realizzare e sperimentare l'interpolazione polinomiale di dati e funzioni.

A. Interpolazione polinomiale di dati nella forma di Newton

Si completi lo script spolint_newt_dati.m per l'interpolazione polinomiale con base di Newton del set di dati dataset1.txt. Lo script faccia le seguenti cose:

- legga il file di dati;
- calcoli la matrice N per il sistema lineare $N\mathbf{c} = \mathbf{y}$;
- risolva il sistema lineare, cioè trovi i coefficienti **c** del polinomio interpolante nella base di Newton;
- faccia il grafico dei punti dati e del polinomio interpolante (valutazione su un insieme di punti dell'intervallo).

Sugg. si utilizzino le function newton.m, lsolve.m e newtval.m presenti nella cartella.

B. Interpolazione polinomiale di dati nella forma di Lagrange

Si completi lo script spolint_lagr_dati.m (simile al precedente), ma che utilizzi la base di Lagrange. Sugg. per valutare il polinomio interpolante nella base di Lagrange si utilizzi la function lagrval2.m presente nella cartella.

C. Interpolazione polinomiale di funzione

Si completi lo script spolint_lagr_fun.m per implementare l'interpolazione polinomiale di grado n di una funzione $f(x), x \in [a, b]$ a partire da $(x_i, f(x_i))_{i=0,...,n}$ utilizzando la base di Lagrange:

- 1 prevedere due differenti set di punti x_i di interpolazione (equispaziati e di Chebyshev; si veda la function chebyshev);
- 2 si rappresentino graficamente: la funzione test, i punti $(x_i, f(x_i))_{i=0,\dots,n}$ di interpolazione e la funzione polinomiale interpolante;

3 calcolare e stampare una stima del max. dell'errore di interpolazione in valore assoluto

$$\max_{x \in [a,b]} |f(x) - p(x)|$$

utilizzando i valori calcolati della funzione e dell'interpolante.

4 visionare il grafico dell'errore di interpolazione in scala logaritmica.

Si consideri la funzione test di Runge (function runge.m):

$$f(x) = 1/(1+x^2)$$
 $x \in [-5, 5].$

D. Sulla convergenza dell'interpolante polinomiale

Nella cartella sono presenti le seguenti funzioni test:

$$\begin{array}{lll} & \text{fun1.m} & f(x) = \sin(x) - \sin(2x) & x \in [-\pi, \pi] \\ & \text{fun2.m} & f(x) = \left\{ \begin{array}{ll} 0.5 & se & x \geq 0 \\ -0.5 & se & x < 0 \end{array} \right. & x \in [-2, 2] \\ & \text{fun3.m} & f(x) = e^x & x \in [-2, 1]. \end{array}$$

Si duplichi lo script dell'esercizio precedente (lo si chiami $polint_lagr_fun.m$) per sperimentare l'interpolazione di queste funzioni test all'aumentare del grado n e al variare della distribuzione di punti (equispaziati e punti di Chebyshev). Lo si modifichi per trasformarlo in una funzione con i seguenti parametri:

dove ifun sia l'indice di una funzione test, n il grado polinomiale, tipo la tipologia di punti. Per ogni funzione test eseguire il codice più volte con differenti valori del grado e tipo di distribuzione di punti; fare delle considerazioni sulla convergenza dell'interpolante alla funzione.

Suggerimenti:

- le deduzioni sulla convergenza si traggano dai grafici e dal max. dell'errore assoluto nell'intervallo di definizione;
- redigere una tabella per ogni funzione test, con gli errori max. di interpolazione ottenuti all'aumentare del grado n sia per punti equispaziati che di Chebyshev.
- rafforzare le proprie deduzioni provando alcune fra le seguenti ulteriori funzioni test:

$$\begin{array}{lll} & & & f(x) = |x| & x \in [-1,1] \\ & & & polfun1.m & p(x) = 1 + x/2 + x^2/6 + x^3/24 + x^4/120 & x \in [-1,3.5] \\ & & polfun4.m & p(x) = (x+5/4)(x+3/4)(x+1/4)(x-5/4)(x-3/4)(x-1/4) \\ & & x \in [-1.25,1.25] \\ & & fun5.m & f(x) = e^x/\cos(x) & x \in [-1,1] \\ & & polfun5.m & f(x) = |x| + 0.5x - x^2 & x \in [-1,1]. \end{array}$$

E. Condizionamento del problema di interpolazione polinomiale

Si consideri lo script scond_interp.m in cui viene calcolata una stima del numero di condizione del problema di interpolazione polinomiale data da:

$$C_{Int}(p(x)) = \sum_{i=0}^{n} |L_{i,n}(x)| \quad x \in [a, b]$$

e dalla costante di Lebesgue associata

$$\Lambda_n = \max_{x \in [a,b]} \{ C_{Int}(p(x)) \}.$$

Fra i problemi di interpolazione di funzione provati e per cui si è osservata la convergenza dell'interpolante (errore di interpolazione piccolo o nullo), vedere se alcuni presentavano Errore Inerente grande.

F. Sugli errori numerici di interpolazione polinomiale

Sulla base dello script spolint_lagr_fun.m si realizzi lo script spolint_compare.m che determini l'interpolante di una funzione test usando sia la forma di Lagrange che di Newton al fine di confrontare i risultati ottenuti con i due metodi. Si consideri come funzione test una funzione polinomiale così che l'errore analitico o di interpolazione risulti nullo (perché?). In questa situazione, eventuali errori finali saranno solo di tipo numerico ed imputabili al metodo (errore algoritmico) o ai dati e al problema (errore inerente). Visionare graficamente l'errore assoluto fra l'interpolante ottenuto con un metodo e la funzione test; confrontare gli errori ottenuti con la forma di Lagrange e con la forma di Newton.

G. Esercizio di verifica (su errore analitico, inerente e algoritmico) Realizzare uno script di nome serr_polint.m che interpoli la seguente funzione test:

$$f(x) = e^x/\cos(x)$$
 $x \in [-1, 1]$ fun5.m

nella forma di Lagrange sia su punti equispaziati che di Chebyshev e per gradi dispari n=1:2:70. Per ogni distribuzione di punti si preveda un grafico in scala logaritmica con i valori $\max_{x \in [a,b]} |f(x) - p(x)|$ per i differenti interpolanti. Si commentino i risultati ottenuti.

Successivamente si modifichi lo script affinché utilizzi gradi pari n=2:2:70 ed infine tutti i gradi n=1:70; si notano comportamenti particolari?

H. Esercizio di verifica (su interpolazione polinomiale di funzioni nella base di Bernstein)

Si realizzi uno script spolint_bern_fun.m simile a spolint_lagr_fun.m, ma che utilizzi la forma di Bernstein. Sugg. per definire la matrice del sistema lineare si usi la function bernst.m e per valutare il polinomio interpolante si utilizzi la function decast.m presenti nella cartella.