National University of Sciences & Technology School of Electrical Engineering and Computer Science Department of Basic Sciences

MATH-101: Calculus and Analytical Geometry (3+0): BEE2k20-ABC Fall 2020

Assignment 2					
CLO: 1 (Understand the concept of limit, continuity and derivative with its application to find extrema)					
Maximum Marks: 40	Instructor: Dr. Naila Amir				
Announcement Date: 23 rd November 2020	Due Date: 1 st December 2020				

Instructions:

- Understanding the question is part of the assignment and copying is not allowed.
- Express your answer in the most simplified form. Direct calculations using calculator are not allowed, you need to show the detail of your work to get the maximum marks.
- This is an individual assignment.
- Assignment must be handwritten and properly scanned in a single pdf file. These two pages must be part of every assignment.
- Assignment must be properly tagged and is required to be submitted on MS teams.
- Assignment is not acceptable after deadline.

Tasks: Attempt all questions.

Students Name	CMS Id.	Section
Muhammad Umer	345834	12C

Total Marks	Marks Obtained	Weight in 10
40 Marks		

Q - 1: [15 marks]

For the function $f(x) = \frac{2x^3 + x^2 - 8x - 4}{x^2 - 3x + 2}$

- a) Determine the following:
 - 1. Domain of f(x).
 - 2. x & y —intercepts (if any).
 - 3. Vertical/horizontal/oblique asymptotes (if any).
 - 4. Holes (if any).
- **b)** By using the information in part (a), graph the given function.

Q - 2: [10 marks]

Evaluate the following limits:

a)
$$\lim_{y \to x} \frac{y^{2/3} - x^{2/3}}{y - x}$$
.

b)
$$\lim_{x\to\pi} \frac{\tan(\sin x)}{\sin x}$$
.

c)
$$\lim_{x \to 0} f(x)$$
, where $f(x) = \begin{cases} (1+x)^{1/x}; & x \neq 0 \\ 1; & x = 0 \end{cases}$

d)
$$\lim_{x \to -1} x^3 \left[\frac{1}{x} \right]$$
. (Floor Function)

Q - 3: [15 marks]

Let
$$f(x) = x^2$$
 and $g(x) = \begin{cases} -4, & x \le 0 \\ |x - 4|, & x > 0 \end{cases}$

- a) Determine $f \circ g$ and $g \circ f$.
- **b)** Graph the functions $f \circ g$ and $g \circ f$.
- c) Determine whether $f \circ g$ and $g \circ f$ are continuous at x = 0. If not continuous then what type of discontinuity exists at this point?

Q,
$$f(n) = \frac{2n^3 + n^2 - 8n - 4}{n^2 - 3n + 2}$$

0)

$$f(n) = n^{2}(2n+1) - 4(2n+1)$$

$$(n-2)(n-1)$$

$$= \frac{(2n+1)(n^2-4)}{(n-2)(n-1)} = \frac{(2n+1)(n-2)(n+2)}{(n-2)(n-1)}$$

Domain of
$$f(n) = 112 - (1, 2)$$

= $(-\infty, 1) \cup (1, 2) \cup (2, \infty)$

2 2 & y intercepts

=)
$$(2n+1)(n+2) = 0$$
 $(n-1)$

$$(2n+1)(n+2)=0$$

11-intercepts are -2 8-1/2

For y intercept; n=0

$$(-1)$$

y-intercepts are -2

3 Asymptote.

Vertical Asymptotes:

· Denominator = 0

21 = 1 Vertical Asymptote

· Horizontal Asymptote: Since the power of numerator

Since the power of numerator is greater than denominator, there is no horizontal asymptote.

· Oblique Asymptote:

Using long division

$$\frac{2n + 7}{2n^{2} - 3n + 2} \int \frac{2n^{3} + n^{2} - 8n - 4}{2n^{3} + 6n^{2} - 4n + 0}$$

$$\frac{7n^{2} - 12n - 4}{4n^{2} + 2n + 14}$$

• We get,
$$9n-18$$

 $n^2-3n+2+(2n+7)$

Actional expression approaches 0 as n -> 0.

y=2n+7 Oblique Asymptote

4 Holes:

Setting common factor (n-2) equal to zero then solving for y.

$$y = \frac{(2n+1)(n+2)}{(n-1)} \Rightarrow \frac{(2(2)+1)(2+2)}{(2-1)}$$

The hole is at (2,20)

b) Graph:

$$y = 2n^3 + n^2 - 8n - 4$$
 $n^2 - 3n + 2$

Asymptotes.

Sin(y). I as(y)

Limy-so
$$\frac{1}{y}$$
. Limy-so $\frac{1}{\cos y}$

(1). Limy-so $\frac{1}{\cos y}$

(1). $\frac{1}{\cos y}$

(2) Limy-so $\frac{1}{\sin y}$; $\frac{1}{\sin y}$

(3) Let $\frac{1}{\sin y}$

Let $\frac{1}{\sin y}$
 $\frac{1}{\sin y}$

Alternatively, without L'Hopital's Rule

Using Binomial Empansion

$$(1 + (\frac{1}{n})n + (\frac{1/n)(1/n-1)}{2!}n^2 + \dots)$$

$$(1+1+\frac{1}{2!}(1/x)(1/n-1)n^{2}+...)$$

$$1+1+\frac{1}{2!}$$
 $\frac{1}{2}(1-2)$ 2 /...

Applying limits

$$y = \lim_{n \to 0} (1 + 1 + \frac{1}{2!} (1 - n) \dots)$$

$$= \frac{1+1}{2!} + \dots$$

As,

$$e^{n} = 1 + \frac{n}{1!} + \frac{n^{2}}{2!} + \frac{n^{3}}{3!} + \cdots$$

Hence,

d) しいつルーノーノル3 [加]

Approaching from right

 $\frac{(-1)^{3}(1/-1.001)}{(-1)^{3}(-1)}$

 Q_3 $f(n)=n^2$, g(n)=[-4] $n \le 0$

(a) $f \circ g(n) = f(g(n)) = \begin{cases} 16 & n \leq 0 \\ (1n - 41)^2 & n \geq 0 \end{cases}$ $g \circ f(n) = g(f(n)) = \begin{cases} -4 & n = 0 \\ 1n^2 - 41 & n \geq 0 \end{cases}$

© Continuity at n = 0

For fog(n):-

Lin 20-9(21) = -4 & Lin 20-10+ 9(21) = 4

Hence, two sided limit does not enist.

g(n) is not continuous at n=0.

fog(n) is not continuous at n=0

For gof(n):

Lin 200- f(20) = 0 & Lin 200+ f(20) = 0

flui is continuous at n=0

Now, Linn-10 [9(f(0))]

Limnor glu) = -4 & limnor gln) = 4

Hence, glf(n)) is discontinuous at n = 0

n	-3	-2	-1	٥	t	2	3
16	16	16	16	16			
(122-41)2					9	4	1

$$90f(n) = \begin{cases} -4 & n = 0 \\ 1n^2 - 41 & n > 0 \end{cases}$$

 $\frac{24}{12^{2}-41} - \frac{3}{2} - \frac{2}{1} - \frac{1}{2} - \frac{1}{$