Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

MULTIPLE-PROCESSOR SCHEDULING CONCEPT

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
 - Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – Only one processor accesses the system data structures, reducing the need for data sharing.

 Symmetric multiprocessing – Each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes.

Processor Affinity

 Process has affinity for processor on which it is currently running (e.g., to avoid repopulating caches)

 Soft affinity- When an operating system has a policy of attempting to keep a process running on the same processor—but not guaranteeing that it will do so.

 Hard affinity- Allowing a process to specify a subset of processors on which it may run.

Load Balancing

 Push migration - A specific task periodically checks the load on each processor and, if it finds an imbalance, evenly distributes the load by moving (or pushing) processes from overloaded to idle or less-busy processors.

Pull migration - Pull migration occurs when an idle processor pulls a
waiting task from a busy processor.

NUMA and CPU Scheduling 1/2

- NUMA -Non-uniform memory access
- CPU Scheduling -Architecture can affect processor affinity

NUMA and CPU Scheduling_{2/2}

- NUMA, in which a CPU has faster access to some parts of main memory than to other parts.
 - Typically, this occurs in systems containing combined CPU and memory boards.
 - The CPUs on a board can access the memory on that board faster than they can access memory on other boards in the system.

 If the operating system's CPU scheduler and memory-placement algorithms work together, then a process that is having affinity to a particular CPU can be allocated to the same CPU.

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

