Stat 602 Homework 3

Kiegan Rice and Nate Garton

Due ??

Problem 9

kiegan will do this problem

Problem 10

Shown below is the matrix of the proportion of predictions that agree between any two methods. The row and column labeled "actual" corresponds to the true data label.

```
wine <- read.csv(file = "data/winequality-white.csv", sep = ";", check.names = TRUE)
y \leftarrow -1*(wine quality <= 7) + 1*(wine quality > 7)
wine$y <- as.factor(y)</pre>
train_wine <- wine[,-(ncol(wine) - 1)]</pre>
# fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 5, search = "grid")
# set.seed(1308)
mods <- c("knn", "nnet", "rpart", "rf", "xgbTree", "C5.0", "glmnet", "stepLDA", "svmLinear", "svmPoly", "</pre>
# preds <- list()</pre>
# fitmod <- list()</pre>
# for(i in 1:length(mods))
    fitmod[[i]] \leftarrow caret::train(y \sim ., data = train_wine, trControl = fitControl, method = mods[i])
# names(fitmod) <- mods</pre>
# saveRDS(fitmod, file = "hw3_10_models.rda")
fitmod <- readRDS(file = "hw3 10 models.rda")</pre>
preds <- extractPrediction(models = fitmod)</pre>
pred_y <- data.frame("obs" = train_wine$y, "pred" = train_wine$y, "model" = "actual", "dataType" = "Tra</pre>
preds <- rbind(preds, pred_y)</pre>
pred_mat <- matrix(nrow = length(mods) + 1, ncol = length(mods) + 1)</pre>
mods[12] <- "actual"
for(i in 1:nrow(pred_mat))
  for(j in 1:nrow(pred_mat))
    pred_mat[i,j] <- mean(preds[preds$model == mods[i],]$pred == preds[preds$model == mods[j],]$pred)</pre>
}
colnames(pred mat) <- mods</pre>
rownames(pred_mat) <- mods</pre>
knitr::kable(round(pred_mat[,-ncol(pred_mat)], digits = 3))
```

	knn	nnet	rpart	rf	xgbTree	C5.0	glmnet	stepLDA	svmLinear	svmPoly	svmRadial
knn	1.000	0.991	0.991	0.967	0.968	0.986	0.991	0.991	0.991	0.991	0.991
nnet	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
rpart	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
$ {rf}$	0.967	0.963	0.963	1.000	0.998	0.976	0.963	0.963	0.963	0.963	0.963
xgbTree	0.968	0.965	0.965	0.998	1.000	0.978	0.965	0.965	0.965	0.965	0.965
C5.0	0.986	0.987	0.987	0.976	0.978	1.000	0.987	0.987	0.987	0.987	0.987
$_{ m glmnet}$	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
stepLDA	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
$\operatorname{symLinear}$	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
svmPoly	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
svmRadial	0.991	1.000	1.000	0.963	0.965	0.987	1.000	1.000	1.000	1.000	1.000
actual	0.967	0.963	0.963	1.000	0.998	0.976	0.963	0.963	0.963	0.963	0.963

Problem 11

kiegan will do this problem

Problem 12

nate will do this problem