Az $M := M(t, k^-, k^+)$ gépi számhalmazra vonatkozó állítások közül melyik igaz?

- (A) M tartalmazza a 0-t.
- (B) Bármely két szomszédos elem távolsága azonos.
- (C) M elemei ε_0 -ra szimmetrikusan helyezkdenek el.
- (D) M páros számú elemet tartalmaz.

Az alapműveletek hibakorlátaira vonatkozó ismereteink szerint mely állítás hamis?

- (A) Két egymáshoz közeli szám összegének képzése nem növeli nagy mértékben az eredmény relatív hibakorlátját.
- (B) Két egymáshoz közeli szám összegének képzése nem növeli nagy mértékben az eredmény abszolút hibakorlátját.
- (C) Két egymáshoz közeli szám különbségének képzése nem növeli nagy mértékben az eredmény relatív hibakorlátját.
- (D) Két egymáshoz közeli szám különbségének képzése nem növeli nagy mértékben az eredmény abszolút hibakorlátját.

Az Ax = b lineáris egyenletrendszer megoldását Gauss-elimináció segítségével szeretnénk kiszámítani. Az alábbi állítások közül melyik igaz?

- (A) Ha det(A) = 0, akkor a Gauss-elimináció nem hajtható végre sor- és oszlopcsere nélkül.
- (B) Ha det(A) = 0, akkor a lineáris egyenletrendszernek biztosan nincs megoldása.
- (C) Ha $det(A) \neq 0$, akkor a Gauss-elimináció lehet, hogy nem végrehajtható sor- és oszlopcsere nélkül.
- (D) Ha $det(A) \neq 0$, akkor a lineáris egyenletrendszernek lehet, hogy két megoldása van.

Melyik mátrixnorma nem indukált az alábbiak közül?

- (A) $\|\cdot\|_1$
- (B) $\|\cdot\|_2$
- (C) Minden mátrixnorma indukált.
- (D) $\|\cdot\|_F$

Tekintsünk egy 23 pontra épülő interpolációs feladatot! Hány darab harmadrendű osztott differencia tartozik az adott osztópont rendszerhez?

- (A) 20
- (B) 21
- (C) 19
- **(D)** 0

Legyenek $x_0=-1, x_1=1, x_2=4$ az interpoláció alappontjai valamint $L_2(x)$ a pontokra illeszkedő interpolációs polinom. Bővítsük az alappontok rendszerét egy új $x_3=5$ osztóponttal. Mi lesz a harmadfokú interpolációja a függvénynek az $x_0=-1, x_1=1, x_2=4, x_3=5$ alappontokra támaszkodva, ha ismerjük $f[-1,1,4,5]=\frac{2}{3}$ osztott differencia értékét?

(A)
$$L_2(x) + \frac{2}{3}(x+1)(x-1)(x-4)(x-5)$$

(B)
$$L_2(x) - x(x+1)(x-4)$$

(C)
$$L_2(x) + \frac{2}{3}(x+1)(x-1)(x-4)$$

(D)
$$L_2(x) - \frac{2}{3}(x+1)(x-1)(x-4)$$

Mely feltétel nem szükséges a Newton módszer lokális konvergenciájához?

(A)
$$f \in C^2[a, b]$$

(B)
$$\exists m > 0 : \forall x \in (a, b) : |f'(x)| < m$$

(C)
$$\exists M > 0 : \forall x \in (a, b) : |f''(x)| < M$$

(D) Mindháromra szükség van

Az alábbiak közül melyik intervallumon van fixpontja az $f(x) := x^3 - 3x$ függvénynek?

- (A) [2.5; 3].
- (B) [-1; -0.5].

(C) [4; 5].
$$(D)$$
 [0:2]. (E)

Melyik állítás igaz az n-fokú polinomokra tanult Horner algoritmusra?

- (A) Műveletigénye a fokszámmal négyzetes arányban nő.
- (B) Tetszőleges folytonos függvény gyökeinek meghatározására alkalmazható.
- (C) Szélsőérték meghatározására is közvetlenül alkalmazható.
- (D) Polinom deriváltjainak kiszámítására is alkalmazható.

Tekintsük a következő kvadratúraformulát.

$$\int_{-3}^{2} f(x) \ dx \approx 5 \cdot \left(A \cdot f(-3) + \frac{25}{36} f(0) + \frac{1}{12} \cdot f(2) \right)$$

Hogyan válasszuk meg az A együttható értékét, hogy interpolációs kvadratúraformulát kapjunk?

- (A) $A = \frac{2}{3}$.
- (B) A = 0.
- (C) $A = \frac{2}{9}$.
- (D) $A = \frac{9}{2}$.

Az alábbiak közül melyik tanult tétel garantálja a legmagasabb rendű konvergenciát?

- (A) Húrmódszer konvergenciatétele
- (B) Banach-féle fixponttétel
- (C) Newton módszer monoton konvergenciája
- (D) Mindegyik csak 1-rendű konvergenciát garantál

Legyen az $f(x) = x^n$ függvény x_0, x_1, \ldots, x_n , $(n \ge 10)$ különböző alappontokra illesztett interpolációs polinomja $L_n(x)$! Az alábbiak közül melyik a helyes formula az interpoláció hibájára?

(A)
$$f(x) - L_n(x) = \frac{1}{(n+1)!} \cdot \omega_n(x)$$

(B)
$$f(x) - L_n(x) = 0$$

(C)
$$f(x) - L_n(x) = \omega_n(x)$$

(D)
$$f(x) - E_n(x) = \frac{x}{(n+1)!} \cdot \omega_n(x)$$

Legyen $t \in \mathbb{N}^+$, t > 4 és tekintsük az M(t, t, t) gépi számhalmazt! Milyen hosszú lesz tetszőleges 3 egymást követő pozitív gépi szám által kifeszített intervallum?

- (A) 1
- **(B)** 3
- TS) t
- (D) Az egymást követő M-beli pozitív gépi számok távolsága nem állandó, ezért nem lehet megmondani.

Az alábbiak közül melyik φ függvény kontrakció a megadott intervallumon?

(A)
$$\varphi(x) = \sqrt{x+1}, x \in [1, 2]$$

(B)
$$\varphi(x) = \frac{x+1}{3}, x \in [1,2]$$

- (C) Mindkettő kontrakció
- (D) Egyik sem kontrakció

Az alábbi, P értékeire vonatkozó Horner-algoritmusból adódó táblázat alapján mi lesz $(Q(3) + \frac{1}{2}) \cdot P''(1)$ értéke, ahol $P(x) = Q(x) \cdot (x-1)$?

a_i	1	-9	23	-15
ξi	1	1	-8	15
$a_i^{(1)}$	1	-8	15	0
ξ_i	1	1	-7	
$a_{i}^{(2)}$	1	-7	8	
ξ_i	1	1		
$a_i^{(3)}$	1	-6		

- (A) -6
- **(B)** 6
- **(C)** -3
- (D) 3

Az alábbi számok közül melyiket NEM tartalmazza az M(6, -1, 5) gépi számhalmaz?

- (A) [01101 | 0]
- (B) [01101|-1]
- (C) [10101|-2]
- (D) Egyiket sem.

Ha az e szám értékét a 3-al közelítjük, melyik a jó abszolút hibakorlát az alábbiak közül?

- (A) $\Delta_3 = 0.15$.
- (B) $\Delta_3 = 0.3$.
- (C) $\Delta_3 = 0.05$.
- (D) Egvik sem.

Tekintsük az Ax = b lineáris egyenletrendszert. Mikor érdemes használni az LU felbontást?

- (A) Ha ki akarjuk számolni A sajátértékeit.
- (B) A főelemkiválasztásos GE hatékony kiszámításához.
- (C) Ha több különböző jobb oldali b vektorra akarjuk kiszámolni az egyenletrendszer megoldását.
- (D) Igazából semmire nem jó, csak a vizsgára kell...

Melyik ábra szerinti távolságok négyzetösszegét minimalizálja az előadáson tanult legkisebb négyezetes egyenesillesztés?

- (A) A bal oldali ábrán lévő távolságokat.
- (B) A jobb oldali ábrán lévő távolságokat.
- (C) Mindkettőt.
- (D) Egyiket sem.

Az alábbi, P értékeire vonatkozó Horner-algoritmusból adódó táblázat alapján mi lesz P'(1) + P''(1) értéke?

a¡		1	-9	23	-15	
ξ_i		1	1	-8	15	_
$a_i^{(1)}$)	1	-8	15	0	-
ξ_i		1	1	-7		-
$a_i^{(2)}$)	1	-7	8		P'
ξ_i		1	1			_
$a_i^{(3)}$)	1	-6		P	r <i>l</i>)

- **(A)** 2
- **(B)** -2
- **(C)** 0
- (D) -4

Tekintsük az (x_i, y_i) , i = 0, ..., n alappontokra illeszkedő interpolációs polinom Lagrange-alakját $L_n(x)$ és a Newton-alakját $N_n(x)$. Melyik állítás igaz az alábbiak közül?

(A)
$$\exists x \in \mathbb{R} : L_n(x) \neq N_n(x)$$

(B)
$$\forall x \in \mathbb{R} : L_n(x) = N_n(x)$$

(C)
$$\forall x \in \mathbb{R} : L_n(x) = N_n(x) + N_{n-1}(x)$$

(D) Mindegyik igaz.

Tekintsük az (x_i, y_i) , i = 0, ..., n alappontokra illeszkedő interpolációs polinom Lagrange-alakját $L_n(x)$ és a Newton-alakját $N_n(x)$. Melyik állítás igaz az alábbiak közül?

- (A) $\exists x \in \mathbb{R} : L_n(x) \neq N_n(x)$
- (B) $\forall x \in \mathbb{R} : L_n(x) = N_n(x)$
- (C) $\forall x \in \mathbb{R} : L_n(x) = N_n(x) + N_{n-1}(x)$
- (D) Mindegyik igaz.

Legyenek a φ_i : $[a;b] \to [a;b]$ (i=1,2) függvények kontrakciók az [a;b] intervallumon a $q_1=1/4$ és a $q_2=1/2$ kontrakciós együtthatókkal. Melyik φ fügvénnyel definiált fixpont-iteráció lesz a gyorsabb?

- (A) φ_1 kétszer gyorsabb, mint φ_2
- (B) φ_2 kétszer gyorsabb, mint φ_1
- (C) Mindkettő ugyanolyan gyors.
- (D) Egyik sem gyors.

Legyenek az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix sajátértékei: $\lambda_1, \lambda_2, \ldots, \lambda_n$. Ha tudjuk, hogy minden $i = 1, \ldots, n$ esetén $\lambda_i > 0$, akkor mit lehet mondani A egy tetszőleges Schur-komplementerének $[A|A_{11}]$ sajátértékeiről?

- (A) $[A|A_{11}]$ -nak csak negatív sajátértékei vannak.
- (B) $[A|A_{11}]$ -nak csak pozitív sajátértékei vannak.
- (C) $[A|A_{11}]$ -nak pozitív és negatív sajátértékei is vannak.
- (D) $[A|A_{11}]$ -nak lesz nulla sajátértéke.

Az $\int_{-1}^{1} x^3 - x + 1 \, dx$ integrál értékét Simpson-formulával közelítjük. Mekkora az eredmény hibája?

- (A) 0
- (B) $\frac{1}{4}$
- (C) $\frac{1}{2}$
- (D) 1

$$A = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array} \right]$$

A fenti mátrixxal felírt Ax = b lineáris egyenletrendszert melyik tanult módszerrel oldhatjuk meg a legkevesebb művelettel?

- (A) Gauss-eliminációval.
- (B) LU felbontással.
- (C) Progonka módszerrel.
- (D) Minegyik ugyanannyi műveletet igényel.

A monoton konvergencia tétel a fenti $f \in C^2[0;2]$ függvényre garantálja-e az x_0 -ból indított Newton-módszer konvergenciáját?

- (A) A tétel alapján nem lehet eldönteni.
- (B) Konvergens.
- (C) Nem konvergens.
- (D) Egyik sem.

Melyik összefüggés nem helyes az $S_m(f)$ (m páros) összetett Simpson formulára vonatkozóan?

(A)

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 \sum_{k=1}^{m-1} f(x_k) + f(x_m) - 2 \sum_{k=1}^{\frac{m}{2}} f(x_{2k}) \right)$$

(B)

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 \sum_{k=1}^{\frac{m}{2}} f(x_{2k-1}) + f(x_m) + 2 \sum_{k=1}^{\frac{m}{2}-1} f(x_{2k}) \right)$$

(C)
$$S_m(f) = \frac{4 \cdot T_{2m}(f) + T_m(f)}{3}$$

Műveletigények:

Gaus-elimináció.

$$\frac{2}{3}n^3 + \mathcal{O}(n^2).$$

Visszahelyettesítés (LER).

$$n^2 + \mathcal{O}(n)$$
.

LU-felbontás:

$$=\frac{2}{3}n^3+\mathcal{O}(n^2).$$

Roviditett GE (progonka modszer):

$$8n + \mathcal{O}(1)$$
.