1. Considere o problema de programação linear e o quadro simplex com a respectiva solução óptima abaixo apresentados. As variáveis de folga são s_1 e s_2 .

max

$$1x_1 + 3x_2$$
 x_1
 x_2
 s_1
 s_2

 suj.
 $1x_1 + 1x_2 \le 6$
 x_1
 1
 0
 $2/3$
 $-1/3$
 2
 $-1x_1 + 2x_2 \le 6$
 x_2
 0
 1
 $1/3$
 $1/3$
 4
 x_1 , $x_2 \ge 0$
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

- (a) Escreva o dual do problema original.
- (b) Obtenha a solução do problema dual a partir do quadro apresentado, e verifique que se trata de uma solução admissível do problema dual.
- (c) Calcule o valor da solução óptima dual.
- (d) Multiplique as restrições do primal pelo valor das variáveis duais da solução óptima, e some as duas restrições, para mostrar que o valor da função objectivo do primal nunca pode ser superior a 14.
- (e) Multiplique as restrições do dual pelo valor das variáveis primais da solução óptima, e some as duas restrições, para mostrar que o valor da função objectivo do dual nunca pode ser inferior a 14.
- (f) Interprete o significado da relação obtida nas duas últimas alíneas.

1. Considere o problema de programação linear e o quadro simplex com a respectiva solução óptima abaixo apresentados. As variáveis de folga são s_1 e s_2 .

max

$$1x_1 + 3x_2$$
 x_1
 x_2
 s_1
 s_2

 suj.
 $1x_1 + 1x_2 \le 6$
 x_1
 1
 0
 $2/3$
 $-1/3$
 2
 $-1x_1 + 2x_2 \le 6$
 x_2
 0
 1
 $1/3$
 $1/3$
 4
 x_1 , $x_2 \ge 0$
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

(a) Escreva o dual do problema original.

min
$$z^D = 6y_1 + 6y_2$$

suj. a $y_1 - y_2 \ge 1$
 $y_1 + 2y_2 \ge 3$
 $y_1, y_2 \ge 0$

				s_2	
x_1	1	0	2/3	-1/3	2
x_2	0	1	1/3	1/3	4
	0	0	5/3	2/3	14

min
$$z^D = 6y_1 + 6y_2$$

suj. a $y_1 - y_2 \ge 1$
 $y_1 + 2y_2 \ge 3$
 $y_1, y_2 \ge 0$

(b) Obtenha a solução do problema dual a partir do quadro apresentado, e verifique que se trata de uma solução admissível do problema dual.

								Sol. Dual*			
1	y1	-	1	y2	>=	1	y1*=	5/3			
1	y1	+	2	y2	>=	3	y2*=	2/3			
1	5/3	-	1	2/3	>=	1					
1	5/3	+	2	2/3	>=	3					

				s_2	
x_1	1	0	2/3	-1/3	2
x_2	0	1	1/3	1/3	4
	0	0	5/3	2/3	14

min
$$z^D = 6y_1 + 6y_2$$

suj. a $y_1 - y_2 \ge 1$
 $y_1 + 2y_2 \ge 3$
 $y_1, y_2 \ge 0$

(c) Calcule o valor da solução óptima dual.

								Sol. Dual*			
6	y1	+	6	y2	=	zD	y1*=	5/3			
							y2*=	5/3 2/3			
							z* =	14			
6	5/3	+	6	2/3	=	14					

(d) Multiplique as restrições do primal pelo valor das variáveis duais da solução óptima, e some as duas restrições, para mostrar que o valor da função objectivo do primal nunca pode ser superior a 14.

								Sol. Dual					
	1	x1	+	1	x2	<=	6	(5/3)					
	-1	x1	+	2	x2	<=	6	(2/3)					
	5/3	x1	+	5/3	x2	<=	10						
+	-2/3	x1	+	4/3	x2	<=	4						
	1	x1	+	3	x2	<=	14						
	Qualqu	uer pon	to de co	oordena	adas (x1	.,x2)T q	ue obe	deça às restriç	ões do	primal o	bedece	també	m
	à relaç	ão que	afirma	que o v	alor da	sua fun	ıção ob	jectivo do prin	mal <= 1	L 4 .			
	Esta re	lação (d	desigua	ldade v	álida) fo	oi obtida	a com c	perações algé	ébricas [,]	válidas.			

(e) Multiplique as restrições do dual pelo valor das variáveis primais da solução óptima, e some as duas restrições, para mostrar que o valor da função objectivo do dual nunca pode ser inferior a 14.

								Sol. Primal
	1	y1	-	1	y2	>=	1	(2)
	1	y1	+	2	y2	>=	3	(4)
	2	y1	-	2	y2	>=	2	
+	4	у1	+	8	y2	>=	12	
	6	y1	+	6	y2	>=	14	
	Qualqu	uer pon	to de c	oordena	adas (y1	L,y2)T q	ue obe	deça às restrições do dual obedece também
	à relaç	ão que	afirma	que o v	alor da	sua fun	ıção ob	jectivo do dual >= 14.
	Esta re	elação (d	desigua	ldade v	álida) fo	oi obtida	a com o	operações algébricas válidas.

max
$$z^P = 1x_1 + 3x_2$$
 min $z^D = 6y_1 + 6y_2$
suj. a $1x_1 + 1x_2 \le 6$ suj. a $y_1 - y_2 \ge 1$
 $-1x_1 + 2x_2 \le 6$ $y_1 + 2y_2 \ge 3$
 $x_1, x_2 \ge 0$ $y_1, y_2 \ge 0$

(f) Interprete o significado da relação obtida nas duas últimas alíneas.

$$1 x1 + 3 x2 \le 14 \le 6 y1 + 6 y2$$
,

para todos os x admissíveis para o problema primal e para todos os y admissíveis para o problema dual.

Este é o teorema da Dualidade Fraca.

3. Considere o seguinte problema de programação linear:

max
$$4x_1 + x_2$$

suj. $x_1 - 2x_2 \le 6$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

- a) Escreva o modelo dual do problema acima apresentado.
- b) Seleccione dois pontos admissíveis, um do domínio primal e outro do dual, com valores de função objectivo diferentes, e mostre que obedecem ao Teorema da Dualidade Fraca.
- c) Considere os pontos do espaço primal $(x_1, x_2)^{\top} = (14, 4)^{\top}$ e do espaço dual $(y_1, y_2)^{\top} = (4, 9)^{\top}$. Será que eles são soluções óptimas do problema primal e do problema dual, respectivamente? Justifique.
- d) Considere o ponto óptimo primal $(x_1, x_2)^{\mathsf{T}} = (14, 4)$ e o ponto óptimo dual $(y_1, y_2)^{\mathsf{T}} = (4, 9)$. Mostre que se verifica o Teorema da Folga Complementar.

3. Considere o seguinte problema de programação linear:

max
$$4x_1 + x_2$$

suj. $x_1 - 2x_2 \le 6$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

a) Escreva o modelo dual do problema acima apresentado.

min
$$z^D = 6y_1 + 4y_2$$

suj. a $y_1 \ge 4$
 $-2y_1 + y_2 \ge 1$
 $y_1, y_2 \ge 0$

max
$$z^P = 4x_1 + x_2$$
 min $z^D = 6y_1 + 4y_2$
suj. a $x_1 - 2x_2 \le 6$ suj. a $y_1 \ge 4$
 $x_2 \le 4$ $-2y_1 + y_2 \ge 1$
 $x_1, x_2 \ge 0$ $y_1, y_2 \ge 0$

b) Seleccione dois pontos admissíveis, um do domínio primal e outro do dual, com valores de função objectivo diferentes, e mostre que obedecem ao Teorema da Dualidade Fraca.

	Solução primal		solução dual	
x1^ =	0	y1^ =	4	
x2^ =	0	y2^ =	10	
zP^ =	0	zD^ =	64	
	O valor da solução primal admissível	é <= o va	alor da solução dual admissível.	
	Os dois pontos ilustram o teorema da	dualida	de fraca.	

max
$$z^P = 4x_1 + x_2$$
 min $z^D = 6y_1 + 4y_2$
suj. a $x_1 - 2x_2 \le 6$ suj. a $y_1 \ge 4$
 $x_2 \le 4$ $-2y_1 + y_2 \ge 1$
 $x_1, x_2 \ge 0$ $y_1, y_2 \ge 0$

c) Considere os pontos do espaço primal $(x_1, x_2)^{\top} = (14, 4)^{\top}$ e do espaço dual $(y_1, y_2)^{\top} = (4, 9)^{\top}$. Será que eles são soluções óptimas do problema primal e do problema dual, respectivamente? Justifique.

	Solução primal		solução dual	
x1^ =	14	y1^ =	4	
x2^ =	4	y2^ =	9	
zP^ =	4 (14) + 1 (4) = 56 + 4 = 60	zD^ =	6 (4) + 4 (9) = 24 + 36 = 60	
	O valor da solução dual (igual a 60) serve pa	ra comp	rovar que a solução primal é óptima.	
	O valor da solução primal (igual a 60) serve p	oara com	nprovar que a solução dual é óptima.	
	As duas soluções são óptimas para os respe	ctivos no	rohlemas	
	As duas soluções são optimas para os respe	ctivos pi	Obiemas.	

$$\max z^P = 4x_1 + x_2$$
 $\min z^D = 6y_1 + 4y_2$
suj. a $x_1 - 2x_2 \le 6$ suj. a $y_1 \ge 4$
 $x_2 \le 4$ $-2y_1 + y_2 \ge 1$
 $x_1, x_2 \ge 0$ $y_1, y_2 \ge 0$

d) Considere o ponto óptimo primal $(x_1, x_2)^{\mathsf{T}} = (14, 4)$ e o ponto óptimo dual $(y_1, y_2)^{\mathsf{T}} = (4, 9)$. Mostre que se verifica o Teorema da Folga Complementar.

	Sol. Primal *			Sol. Dual *	folga complementar	
x1* =	14		u1* =	0	14 x 0 = 0	
x2* =	4		u2* =	0	$4 \times 0 = 0$	
s1* =	0		y1* =	4	0 x 4 = 0	
s2* =	0		y2* =	9	$0 \times 9 = 0$	
	mos calcular os valo 2 x2 + s1 = 6	ores de s1 e s2:		nos calcular os valores de - u1 = 4	e u1 e u2:	
	x2 + s2 =4		•	y2 - u2 = 1		
	A solução óp	otima obedece ao teorema da	folga co	mplementar.		

Ex. 8.4 Considere o seguinte problema de programação linear:

min
$$2x_1 + 3x_2 + 5x_3$$

suj. $x_1 + x_2 + x_3 \ge 4$
 $2x_1 - 1x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

Resolver pelo método simplex dual.

min
$$2x_1 + 3x_2 + 5x_3$$

suj. $x_1 + x_2 + x_3 \ge 4$
 $2x_1 - 1x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

Restrições de maior ou igual (≥).

Não é possível acrescentar folgas com coef. +1, dando origem a um quadro simplex com uma matriz identidade.

Isso só acontece se as restrições forem de \leq .

Como se transformam inequações de \geq em inequações de \leq ??

Multiplicando toda a inequação por (-1), trocando todos os sinais.

Assim, o modelo fica:

$$\min 2x_1 + 3x_2 + 5x_3$$

$$suj. -x_1 - x_2 - x_3 \le -4$$

$$-2x_1 + x_2 - x_3 \le -2$$

$$x_1, x_2, x_3 \ge 0$$

Restrições de menor ou igual (≤). Já é possível acrescentar folgas com coef. +1, dando origem a um quadro simplex com uma matriz identidade.

Transformando o problema num problema de maximização.

$$\min 2x_1 + 3x_2 + 5x_3 = -\max -2x_1 - 3x_2 - 5x_3$$

Ex. 8.4

	x_1	x_2	x_3	s_1	S_2	
$\overline{S_1}$	-1	-1	-1	1	0	$\overline{ -4 }$
	-2	1	- 1			-2
	+2	+3	+5	0	0	0

Pode aplicar-se o SIMPLEX DUAL → quando

- há valores negativos na coluna dos termos independentes (matriz b) e
- os valores da linha da f. obj. cumprem condições de optimalidade.
- OK

Ex. 8.4

2º) Escolher o menor quociente em valor absoluto

Agora é igual ao SIMPLEX PRIMAL $\rightarrow x_1$ entra na base, s_1 sai da base Temos de colocar a coluna do x_1 como coluna da matriz identidade:

	x_1	x_2	x_3	S_1	S_2	
$\overline{x_1}$	1	1	1	- 1	0	4
S_2	0	3		- 2	1	6
	0	+1	+3	+2	0	-8

Como não há valores negativos na última coluna, nem na última linha, estamos perante a solução ótima.

Solução:
$$Z^*=8$$
, $x_1=4$, $x_2=x_3=0$