

THE SIMPLEST AND READIEST IN SOLUTION

By Commander RADLER DE AQUINO BRAZILIAN NAVY

SECOND STEREOTYPED EDITION ENLARGED AND IMPROVED

Ready Reckoner and Altitude Correction Table

Number of minutes a, b, or Δd .

<i>x</i> +	0.'2	0.4	0.'6	0.'8	1'or	2'	3'	4'	5'	6'	7'	8'	9'	10'	II'	12'	13'	14'	15'	sec x	<i>x</i>
0 10 14 16 18	.20 .20 .19 .19	.40 .39 .39 .38	.60 ·59 ·58 ·58	.80 .79 .78 .77	1.00 0.93 ·97 .96 ·95	2.0 2.0 1.9 1.9	3.0 3.0 2.9 2.9 2.9	4.0 3.9 3.9 3.8 3.8	5.0 4.9 4.9 4.8 4.8	6.0 5.9 5.8 5.8 5.7	7.0 6.9 6.8 6.7 6.7	8.0 7.9 7.8 7.7 7.6	9.0 8.9 8.7 8.7 8.6	10.0 9.8 9.7 9.6 9.5	11.0 10.8 10.7 10.6 10.5	12.0 11.8 11.6 11.5	13.0 12.8 12.6 12.5 12.4	14.0 13.8 13.6 13.5 13.3	15.0 14.8 14.6 14.4 14.3	1.00 1.02 1.03 1.04 1.05	180 170 166 164 162
20 22 24 26 28	.19 .18 .18	·38 ·37 ·37 ·36 ·35	.56 .56 .55 .54 .53	·75 ·74 ·73 ·72 ·71	0.94 .93 .91 .90 .88	1.9 1.8 1.8	2.8 2.7 2.7 2.6	3.8 3.7 3.7 3.6 3.5	4.7 4.6 4.6 4.5 4.4	5.6 5.5 5.4 5.3	6.6 6-5 6.4 6.3 6.2	7·5 7·4 7·3 7·2 7·1	8.5 8.3 8.2 8.1 7.9	9.4 9.3 9.1 9.0 8.8	10.3 10.2 10.0 9.9 9.7	11.3 11.1 11.0 10.8 10.6	12.2 12.1 11.9 11.7 11.5	13.2 13.0 12.8 12.6 12.4	14.1 13.9 13.7 13.5 13.2	1.06 1.08 1.09 1.11	150 158 156 154 152
30 31 32 33 34 35 36 37 38 39	.17 .17 .17 .17 .16 .16 .16	.35 .34 .34 .33 .33 .32 .32 .32 .32	.52 .51 .50 .50 .49 .49 .48 .47	.69 .68 .67 .66 .66 .65 .64 .63	0.87 .86 .85 .84 .83 0.82 .81 .80 .79	I.7 I.7 I.7 I.7 I.6 I.6 I.6 I.6	2.6 2.5 2.5 2.5 2.5 2.4 2.4 2.4 2.3	3.5 3.4 3.4 3.3 3.3 3.2 3.2 3.2	4·3 4·3 4·2 4·2 4·1 4·1 4·0 4·0 3·9 3·9	5.2 5.1 5.0 5.0 4.9 4.9 4.8 4.7	6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4	6.9 6.8 6.7 6.6 6.6 6.5 6.4 6.3	7.8 7.7 7.6 7.5 7.5 7.4 7.3 7.2 7.1 7.0	8.7 8.6 8.5 8.4 8.3 8.2 8.1 8 0 7.8	9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.5	10.4 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.3	11.3 11.1 11.0 10.9 10.8 10 6 10 5 10 4 10 2	12.1 12.0 11.9 11.7 11.6 11.5 11.3 11.2 11.0	13.0 12.9 12.7 12.6 12.4 12.3 12 1 12.0 11.8	I.15 I.17 I.18 I.19 I.21 I.22 I.24 I.25 I.27 I.29	150 149 148 147 146 145 144 143 142
40 41 42 43 44 45 46 47 48 49	.15 .15 .15 .14 .14 .14 .14	.31 .30 .30 .29 .29 .28 .28 .27 .27	.46 .45 .45 .44 .43 .42 .42 .41 .40	.61 .60 .59 .58 .57 .56 .55 .54	0.77 •75 •74 •73 •72 0.71 •69 •68 •67	I.5 I.5 I.5 I.4 I.4 I.4 I.4 I.3	2.3 2.2 2.2 2.2 2.1 2.1 2.0 2.0	3.1 3.0 3.0 2.9 2.9 2.8 2.8 2.7 2.7	3.8 3.7 3.7 3.6 3.5 3.4 3.3 3.3	4.6 4.5 4.5 4.4 4.3 4.2 4.2 4.1 4.0 3.9	5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6	6. I 6. o 5. 9 5. 9 5. 7 5. 6 5. 5 5. 4 5. 2	6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.1 6.0 5.9	7.7 7.5 7.4 7.3 7.2 7.1 6.9 6.8 6.7 6.6	8.4 8.3 8.2 8.0 7.9 7.8 7.6 7.5 7.4 7.2	9.2 9.1 8.9 8.8 8.6 8.5 8.3 8.2 8.0 7.9	9.8 9.7 9.5 9.4 9.2 9.0 8.9 8.7 8.5	10.7 10.6 10.4 10.2 10.1 9.9 9.7 9.5 9.4 9.2	11.5 11.3 11.1 11.0 10.8 10.6 10.4 10.2 10.0 9.8	1.31 1.33 1.35 1.37 1.39 1.41 1.44 1.47	140 139 138 137 136 135 134 133 132
50 51 52 53 54 55 55 57 59	.13 .13 .12 .12 .11 .11 .11	.26 .25 .25 .24 .24 .23 .22 .22 .21	·39 ·38 ·37 ·36 ·35 ·34 ·34 ·33 ·32 ·31	.51 .50 .49 .48 .47 .46 .45 .44 .42	0.64 .63 .62 .60 .59 0.57 .56 .54 .53	I.3 I.2 I.2 I.2 I.1 I.1 I.1	1.9 1.8 1.8 1.7 1.7 1.6 1.6	2.6 2.5 2.4 2.4 2.3 2.2 2.2 2.1 2.1	3.2 3.1 3.0 2.9 2.9 2.8 2.7 2.6 2.6	3.9 3.8 3.7 3.6 3.5 3.4 3.4 3.3 3.2 3.1	4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6	5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.2 4.1	5.8 5.7 5.5 5.4 5.3 5.2 5.0 4.9 4.8 4.6	6.4 6.3 6.2 6.0 5.9 5.7 5.6 5.4 5.3	7.1 6.9 6.8 6.6 6.5 6.3 6.2 6.0 5.8	7.7 7.6 7.4 7.2 7.1 6.9 6.7 6.5 6.4 6.2	8.4 8.2 8.0 7.8 7.6 7.5 7.3 7.1 6.9	9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4	9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 7.9	1.56 1.59 1.62 1.66 1.70 1.74 1.79 1.84 1.89	130 129 128 127 126 125 124 123 122 121
60 61 62 63 64 65 66 67 68 69	.10 .09 .09 .09 .08 .08 .08	.20 .19 .19 .18 .17 .16 .16	.30 .29 .28 .27 .26 .25 .24 .23 .22	.40 .39 .38 .36 .35 .34 .33 .31 .30	0.50 .48 .47 .45 .44 0.42 .41 .39 .37	1.0 1.0 0.9 0.9 0.8 0.8 0.8	I.5 I.4 I.4 I.3 I.3 I.2 I.2 I.1	2.0 1.9 1.8 1.8 1.7 1.6 1.6 1.5	2.5 2.4 2.3 2.3 2.2 2.1 2.0 2.0 1.9	3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.2	3.5 3.4 3.3 3.2 3.1 3.0 2.8 2.7 2.6 2.5	4.0 3.9 3.8 3.6 3.5 3.4 3.3 3.1 3.0 2.9	4.5 4.4 4.2 4.1 3.9 3.8 3.7 3.5 3.4 3.2	5.0 4.8 4.7 4.5 4.4 4.2 4.1 3.9 3.7 3.6	5.5 5.3 5.2 5.0 4.8 4.6 4.5 4.1 3.9	6.0 5.8 5.6 5.4 5.3 5.1 4.9 4.7 4.5 4.3	6.5 6.3 6.1 5.9 5.7 5.5 5.3 5.1 4.9 4.7	7.0 6.8 6.6 6.4 6.1 5.9 5.7 5.5 5.2 5.0	7.5 7.3 7.0 6.8 6.6 6.3 6.1 5.9 5.6	2.00 2.06 2.13 2.20 2.28 2.37 2.46 2.56 2.67 2.79	1120 119 118 117 116 115 114 113 112 111
70 71 72 73 74 75 76 77 78 79	.07 .07 .06 .06 .05 .05 .04 .04	.12 .11 .10 .10 .09		·22 ·21 ·19 ·18 ·17	0.34 .33 .31 .29 .28 0.26 .24 .22 .21	0.7 0.6 0.6 0.6 0.5 0.5 0.4 0.4	0.9	I.2 I.1 I.0 I.0 0.9 0.8	1.5 1.5 1.4 1.3 1.2	2. I 2. 0 1. 9 1. 8 1. 7 1. 6 1. 5 1. 3 1. 2	2.0	2.5 2.3 2.2 2.1 1.9 1.8 1.7	2.6 2.5 2.3 2.2 2.0 1.9	3.4 3.3 3.1 2.9 2.8 2.6 2.4 2.2 2.1	3.8 3.6 3.4 3.2 3.0 2.8 2.7 2.5 2.3 2.1	4. I 3. 9 3. 7 3. 5 3. 3 3. I 2. 9 2. 7 2. 5 2. 3	4.4 4.2 4.0 3.8 3.6 3.4 3.1 2.9 2.7 2.5	4.8 4.6 4.3 4.1 3.9 3.6 3.4 3.1 2.9 2.7	5.1 4.9 4.6 4.4 4.1 3.9 3.6 3.4 3.1 2.9	2.92 3.07 3.24 3.42 3.63 3.86 4.13 4.45 4.81 5.24	110 109 108 107 106 105 104 103 102 101
80 81 82 83 84 85 86 87 88 89	.03 .03 .02 .02 .02 .01 .01	.05 .04 .03 .03 .02 .01	.09 .08 .07 .06 .05 .04 .03 .02	.04	.02		0.1	0.5 0.4 0.3 0.3 0.2 0.1 0.1	0.6 0.5 0.4 0.3 0.3 0.2 0.1	0.6 0.5 0.4 0.3	0.9 0.7 0.6 0.5 0.4 0.2 0.1	1. I 1.0 0.8 0.7 0.6 0.4 0.3 0.1	1.1 0.9 0.8 0.6 0.5 0.3	1.7 1.6 1.4 1.2 1.0 0.9 0.7 0.5 0.3 0.2	1.9 1.7 1.5 1.3 1.1 1.0 0.8 0.6 0.4 0.2	2.1 1.9 1.7 1.5 1.3 1.0 0.8 0.6 0.4 0.2	2.3 2.0 1.8 1.6 1.4 1.1 0.9 0.7 0.5 0.2	2.4 2.2 1.9 1.7 1.5 1.2 1.0 0.7 0.5 0.2	2.6 2.3 2.1 1.8 1.6 1.3 1.0 0.8 0.5 0.3	57.3	99 98 97 96 95 94 93 92 91 90

Ready Reckoner and Altitude Correction Table

Number of minutes a, b, or Δd .

x +	cos x	16'	17'	18'	19'	20'	21'	22'	23'	24'	25'	26'	27'	28′	29'	30'	sec x	x
0 10 14 16 18	1.00 0.98 .97 .96 .95	16.0 15.8 15.5 15.4 15.2	17.0 16.7 16.5 16.3 16.2	18.0 17.7 17.5 17.3 17.1	19.0 18.7 18.4 18.3 18.1	20.0 19.7 19.4 19.2 19.0	21.0 20.7 20.4 20.2 20.0	22.0 21.7 21.3 21.1 20.9	23.0 22.7 22.3 22.1 21.9	24.0 23.6 23.3 23.1 22.8	24.0 23.8	26.0 25.6 25.2 25.0 24.7	27.0 26.6 26.2 26.0 25.7	28.0 27.6 27.2 26.9 26.6	29.0 28.6 28.1 27.9 27.6	30.0 29.5 29.1 28.8 28.5	I.00 I.02 I.03 I.04 I.05	180 170 166 164 162
20 22 24 26 28	0.94 .93 .91 .90 .88	15.0 14.8 14.6 14.4 14.1	16.0 15.8 15.5 15.3 15.0	15.9	17.1	18.8 18.5 18.3 18.0	19.7 19.5 19.2 18.9 18.5	20.7 20.4 20.1 19.8 19.4	21.6 21.3 21.0 20.7 20.3	22.6 22.3 21.9 21.6 21.2	22.8 22.5 22.1	24.4 24.1 23.8 23.4 23.0	25.4 25.0 24.7 24.3 23.8	26.3 26.0 25.6 25.2 24.7	27. 3 26. 9 26. 5 26. 1 25. 6	28.2 27.8 27.4 27.0 26.5	1.06 1.08 1.09 1.11 1.13	160 158 156 154 152
30 31 32 33 34 35 36 37 38 39	0.87 .86 .85 .84 .83 0.82 .81 .30 .79	13.9 13.7 13.6 13.4 13.3 13.1 12.9 12.8 12.6	14.7 14.6 14.4 14.3 14.1 13.9 13.8 13.6 13.4	14.7	16.5 16.3 16.1 15.9 15.8 15.6 15.4 15.2 15.0 14.8	17.3 17.1 17.0 16.8 16.6 16.4 16.2 16.0 15.8	18.2 18.0 17.8 17.6 17.4 17.2 17.0 16.8 16.5 16.3	19.1 18.9 18.7 18.5 18.2 18.0 17.8 17.6 17.3	19.9 19.7 19.5 19.3 19.1 18.8 18.6 18.4 18.1	20.4 20. I	21.7 21.4 21.2 21.0 20.7 20.5 20.2 20.0 19.7	22.5 22.3 22.0 21.8 21.6 21.3 21.0 20.8 20.5	23.4 23.1 22.9 22.6 22.4 22.1 21.8 21.6 21.3 21.0		25. I 24. 9 24. 6 24. 3 24. 0 23. 8 23. 5 23. 2 22. 9 22. 5	26.0 25.7 25.4 25.2 24.9 24.6 24.3 24.0 23.6	1.15 1.17 1.18 1.19 1.21 1.22 1.24 1.25 1.27	150 149 148 147 146 145 144 143 142 141
40 41 42 43 44 45 46 47 48 49	0.77 .75 .74 .73 .72 0.71 .69 .68 .67	12.3 12.1 11.9 11.7 11.5 11.3 11.1 10.9 10.7	13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4	13.4 13.2 12.9 12.7 12.5 12.3	13.4 13.2	15.3 15.1 14.9 14.6 14.4 14.1 13.9 13.6 13.4 13.1	16. 1 15.8 15.6 15.4 15.1 14.8 14.6 14.3 14.1	16.9 16.6 16.3 16.1 15.8 15.6 15.3 15.0 14.7	17.6 17.4 17.1 16.8 16.5 16.3 16.0 15.7 15.4	18.4 18.1 17.8 17.6 17.3 17.0 16.7 16.4 16.1	19.2 18.9 18.6 18.3 18.0 17.7 17.4 17.0 16.7	19.9 19.6 19.3 19.0 18.7 18.4 18.1 17.7 17.4	20.7 20.4 20.1 19.7 19.4 19.1 18.8 18.4 18.1	20.8 20.5 20.1 19.8 19.5	22.2 21.9 21.6 21.2 20.9 20.5 20.1 19.8 19.4	23.0 22.6 22.3 21.9 21.6 21.2 20.8 20.5 20.1	1.31 1.33 1.35 1.37 1.39 1.41 1.44 1.47 1.49 1.52	140 139 138 137 136 135 134 133 132 131
50 51 52 53 54 55 56 57 58 59	0.64 .63 .62 .60 .59 0.57 .56 .54 .53	10.3 10.1 9.9 9.6 9.4 9.2 8.9 8.7 8.5 8.2	10.9 10.7 10.5 10.2 10.0 9.8 9.5 9.3 9.0 8.8	11.6 11.3 11.1 10.8 10.6 10.3 10.1 9.8 9.5 9.3	12.0 11.7 11.4 11.2	12.9 12.6 12.3 12.0 11.8 11.5 11.2 10.9 10.6 10.3	13.5 13.2 12.9 12.6 12.3 12.0 11.7 11.4 11.1	14. I 13.8 13.5 13.2 12.9 12.6 12.3 12.0 11.7	14.8 14.5 14.2 13.8 13.5 13.2 12.9 12.5 12.2 11.8	15.4 15.1 14.8 14.4 14.1 13.8 13.4 13.1 12.7	16.1 15.7 15.4 15.0 14.7 14.3 14.0 13.6 13.2	16.7 16.4 16.0 15.6 15.3 14.9 14.5 14.2 13.8	16.2 15.9	18.0 17.6 17.2 16.9 16.5 16.1 15.7 15.2 14.8	17.5	19.3 18.9 18.5 18.1 17.6 17.2 16.8 16.3 15.9	1.56 1.59 1.62 1.66 1.70 1.74 1.79 1.84 1.89	130 129 128 127 126 125 124 123 122 121
60 61 62 63 64 65 66 67 68	0.42 .41 .39 .37	8.0 7.8 7.5 7.3 7.0 6.8 6.3 6.0 5.7	8.5 8.2 8.0 7.7 7.5 7.2 6.9 6.4 6.1	9.0 8.7 8.5 8.2 7.9 7.6 7.3 7.0 6.7 6.5	9.5 9.2 8.9 8.6 8.3 8.0 7.7 7.4 7.1 6.8	10.0 9.7 9.4 9.1 8.8 8.5 8.1 7.8 7.5 7.2	10.5 10.2 9.9 9.5 9.2 8.9 8.5 8.2 7.9	11.0 10.7 10.3 10.0 9.6 9.3 8.9 8.6 8.2 7.9	11.5 11.2 10.8 10.4 10.1 9.7 9.4 9.0 8.6 8.2	10.9 10.5 10.1 9.8 9.4 9.0	11.7 11.3 11.0 10.6 10.2 9.8 9.4	11.0 10.6 10.2 9.7	10.5	11.8 11.4 10.9 10.5	12.7 12.3 11.8 11.3 10.9	11.7	2.00 2.06 2.13 2.20 2.28 2.37 2.46 2.56 2.67 2.79	120 119 118 117 116 115 114 113 112
70 71 72 73 74 75 76 77	33 .31 .29 .28 0.26 .24 .22	3.3	5.3 5.0 4.7 4.4 4.1 3.8 3.5	5·3 5·0 4·7 4·4 4.0 3·7	5.6 5.2 4.9 4.6 4.3 4.0	4.5	5.8 5.4 5.1 4.7 4.4	6.8 6.4 6.1 5.7 5.3 4.9 4.6	6.3 6.0 5.6 5.2 4.8	7.8 7.4 7.0 6.6 6.2 5.8 5.4	8.1 7.7 7.3 6.9 6.5 6.0 5.6	8.5 8.0 7.6 7.2 6.7 6.3 5.8	8.8 8.3 7.9 7.4 7.0 6.5 6.1 5.6	8.7 8.2 7.7 7.2 6.8 6.3 5.8	9.4 9.0 8.5 8.0 7.5 7.0 6.5 6.0	9.8 9.3 8.8 8.3 7.8 7.3 6.7 6.2	3.24 3.42 3.63 3.86 4.13 4.45 4.81	110 109 108 107 106 105 104 103 102 101
80 81 82 83 83 84 85 86 86 86 86 86 86 86 86 86 86 86 86 86	0.17 .16 .14 .12 .10 0.09 .07 .05 .03	2.5 2.2 1.9 1.7 1.2 1.1 0.8 0.6	3 3.0 5 2.7 2 2.4 2 1.8 4 1.5 1 1.2 3 0.9 6 0.6 6 0.6	3.11 2.88 2.55 2.22 1.99 1.60 0.90 0.60 0.33	3·3 3.0 2.6 2·3 2.0 1.7 1.3 1.0 0.7 0.3	3·5 3·1 2·8 2·4 2·1 1·7 1·4 1·0 0·7 0·3	3.6 3.3 2.9 2.6 2.2 1.8 1.5 1.1	3.4 3.1 2.7 2.3 1.9 1.5 1.2 0.8	3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8	4.23 3.83 3.33 2.99 2.55 2.11 1.77 1.38 0.88	4·3 3·9 3·5 3.0 2.6 2.2 1.7 1.3 0.9 C.4	4.5 4.1 3.6 3.2 2.7 2.3 1.8 1.4 0.9 0.5	4.2 3.8 3.3 2.8 2.4 1.9 0.9 0.5	3.9 3.4 2.9 2.4 2.0 1.5 1.0	5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5	5.22 4.77 4.22 3.77 3.11 2.60 2.11 1.60 0.55	5.76 6.39 7.19 8.21 9.57 11.5 14.3 19.1 28.7 57.3	100 99 98 97 96 95 94 93 92 91

The "Newest" Navigation Altitude and Azimuth Tables, by Commander Radler de Aquino, Brazilian Navy, second edition, enlarged and improved, London, 1918. Published by J. D. Potter, 145 Minories, London, E. Price 12s. net.

A slightly improved method of finding the Altitude and Azimuth by means of my Tables has been developed recently whereby it is not necessary to *interpolate* and find the true values of b and t for the true value of declination d, as explained on pages xv, xxi, and xxv of my Tables. It is sufficient to find only in column a the values of b (generally a whole degree) and of t that correspond to an approximate value of d. This approximate value of d is always the tabular value nearest to the true value, provided t_A is near $t_{D.R.}$ b is combined in the usual way with L_A (also generally the whole degree nearest the dead-reckoning latitude) to find C, and h' and Z' are found corresponding to the a and a0. Now as a1 and a2 are for the tabular value of a3, we must correct them for the difference a2 between this tabular value and the true value of the declination. We know from page xvii that a change of altitude a2 and the angle of declination a3 is given by the formula: a4 and the angle a6 is the parallactic angle. If we call, in Fig. 2 on page xii, the angle a6.

The value of a is found on the same line with b, d, and t (a being practically the same for all three values of a). In the same way β is found on the same line opposite C, h, and C.

However, instead of finding C with L_A and b, it is in the great majority of cases better to find L_A from b and C, as explained below.

The working out of our typical example on page xix will show the great advantage of this improvement.

$$\frac{a = 52^{\circ} \text{ O'} \quad \text{G. A. T.} = 20^{\circ} \quad 50^{\circ} \quad 24^{\circ}}{L_{A.} = 37^{\circ} \quad \text{N}} \qquad d = 10^{\circ} \quad 27^{\circ} \quad \text{S}} \qquad \text{or } t_{G.} = 314^{\circ} \quad 51^{\prime} \quad \text{Pages 69 and 122, 2d. ed. 1912.}$$

$$\frac{b = 17^{\circ} \quad \dots \quad d' = 10^{\circ} \quad 22^{\prime} \quad \dots \quad t_{A.} = 53^{\circ} \quad 14^{\prime} \quad \text{E} \quad \dots \quad a = 76^{\circ} \cdot .5}{d - d' = + 5^{\prime}} \qquad G_{A.} = 8^{\circ} \quad 5^{\prime} \quad \text{W}$$

$$C = 54^{\circ} \quad \dots \quad h' = 21^{\circ} \quad 13^{\prime} \quad \dots \quad Z'_{A.} = \text{S} \quad 57^{\circ} \quad 42^{\prime} \quad \text{E} \quad \dots \quad \beta = 60^{\circ} \cdot .4$$

$$\Delta h = -3^{\prime} \cdot .7 \qquad \qquad M = 136^{\circ} \cdot .9$$

$$h_{A.} = 21^{\circ} \quad 9^{\prime} \cdot .3$$

$$h = 21 \quad .7$$

$$h - h_{A.} = -2^{\prime} \cdot .3$$

NOTE.—Numbers taken out of the Tables by Inspection are black-faced in order to distinguish them from data given or found.

In addition to the formulæ given on page xxviii for finding L_A , with b and C, we have added those for finding M with a and β .

$$d \text{ and } L_A \text{ same name } \begin{cases} t < 90^{\circ} & L_A < b : L_A = b - C \text{ and } M = a + \beta \\ L_A > b : L_A = b + C \text{ and } M = a - \beta \end{cases}$$

$$d \text{ and } L_A \text{ contrary names} \qquad : L_A = C + b \text{ and } M = \beta - a$$

$$d \text{ and } L_A \text{ contrary names} \qquad : L_A = C - b \text{ and } M = a + \beta$$

When $t > 90^{\circ}$ the sum $C + b > 90^{\circ}$ also, and we must subtract it from 180° to obtain L_{A} .

A simple inspection of these formulæ shows that no different rules are necessary with this new process. A knowledge of the approximate value of L_A is always known by dead-reckoning, and therefore, we can immediately find, in view of the fact that b and L_A are generally whole degrees, the value of C that combined with b will give us L_A . The tabular value h' nearest to the true altitude h shows us opposite it also the value of C.

The formulæ show also that when we *subtract* b and C to find L_A , we must add a and β to obtain M. When we *add* b and C to find L_A , we must *subtract* a and β from one another to obtain M.

The "Altitude correction" $\Delta h = 3'.7$ is given immediately by our Table² on the back, where we enter at the top with $\Delta d = 5'$, and with $M = 137^{\circ}$ on the right hand side. If M is less than 90°, enter the Table on the left hand side. The correction has the same sign as d - d' or Δd when M is less than 90° and the contrary sign to d - d' or Δd when M is greater than 90°.

In this way Altitude and Azimuth from the assumed position are found by means of simple mnemonical rules without interpolating.

- ' As Δd is generally only a few minutes of arc, Z' does not need in practice any correction. The formula on page xvii: $\Delta Z = \sin M \sec h \Delta d$ shows us that ΔZ is always smaller than $\sec h \Delta d$. Under $h = 60^{\circ}$, ΔZ is always smaller than $2\Delta d$.
- ² Also by our Plane Traverse Tables in LAT. column if we enter them with Δd as D and with M or $180^{\circ} M$ as Course.

THE "NEWEST" NAVIGATION ALTITUDE AND AZIMUTH TABLES

ATTENTION!

Would you ever think of going to the trouble of calculating the elements of the NAUTICAL ALMANAC, viz. declination, right ascension, equation of time, &c., by means of formulæ and logarithms, when His Majesty's NAUTICAL ALMANAC Office tabulates these data every year? Certainly not.

Would you ever think of working out your dead-reckoning by means of formulæ and logarithms when the Plane Traverse Tables facilitate the direct solution of all problems related thereto? Not at all!

Why then go to the trouble to solve the astronomical triangle of position by means of complicated formulæ and logarithms when we have tabulated its elements in our "Altitude and Azimuth Tables" (Spherical Traverse Tables) and have given the simplest and readiest methods for solving all problems related thereto?

HOWEVER,

If you do not like the method for finding the altitude using an assumed position, use then the new Altitude Tables at the end of this book, and methods explained on page xxxviii for the azimuth.

They are also the "simplest and readiest in solution."

THE "NEWEST" NAVIGATION

ALTITUDE

AND

AZIMUTH TABLES

FOR FACILITATING THE DETERMINATION OF LINES OF POSITION AND GEOGRAPHICAL POSITION AT SEA

THE SIMPLEST AND READIEST IN SOLUTION

Plane and Spherical Traverse Tables for Solving all Problems of Navigation

By COMMANDER RADLER DE AQUINO BRAZILIAN NAVY

SECOND STEREOTYPED EDITION

ENLARGED AND IMPROVED

Sights "may be practically worked out so as to give the ship's place as accurately as it can be deduced from the observations, with hardly any calculation.

"One of the advantages in the use of this method is that no logarithmic work is required."

SIR WILLIAM THOMSON (LORD KELVIN). "Tables for Facilitating Sumner's Method at Sea." London, 1876. pp. iv. and v.

"È facile persuadersi che, dopo avere acquistata un po' di pratica, le operazioni descritte possono esser fatte con grande speditezza: l'uso della Tavola è facile e le regole da applicare sono indiscutibilmente semplici."

DOTT. ALBERTO ALESSIO, R.I.N. "Sulla Teoria e la Pratica della Nuova Navigazione Astronomica." Rivista Marittima for March 1909, Appendice, p. 59.

1918

LONDON

PUBLISHED BY

J. D. POTTER

Admiralty Agent for Charts
145, MINORIES, E. 1.

PRIO DE JANEIRO
D. NORRIS

Sub-Agent for Charts
36, RUA DA ASSEMBLEA

PRICE 12/- NET.

VK 5-6. A 73 1918

All rights reserved

Astron. Dest,

Printed for the Author by
Spottiswoode, Ballantyne & Co. Ltd.
London, Colchester and Eton.

EXPRESSION OF OPINION

NAVY DEPARTMENT.

COPIA.

18111

WASHINGTON.

February 1, 1909.

SIR: Replying to your letter No. 17512, of the 21st ultimo, enclosing a copy of a letter from the Brazilian Ambassador, requesting an expression of the Department's opinion as to the scientific merit of the altitude and azimuth tables prepared by the Naval Attaché to his Embassy, of which you enclosed a copy and description, I have the honor to inform you that the Hydrographer of the U.S. Navy, to whom your letter and enclosures were referred, has submitted the following report, which is

quoted for your information:

"Existing tables give the distance and bearing, on the globe or the celestial sphere or any other sphere, of any place from every other place, and consequently the zenith distance and bearing, that any celestial body would have at any given time to an observer situated in any geographical position. So that, an observer in a geographical position as yet unknown, about to measure the altitude of a celestial body for position, may assume beforehand a geographical position in the region of his station and find from the tables the zenith distance and bearing which the celestial body would have if observed from the assumed position; and then, comparing the zenith distance, so taken from the tables, with the zenith distance shown by the measured altitude, may at once find the Sumner line by laying off from the assumed geographical position, in the direction of the bearing, an intercept equal to the difference of these zenith distances and drawing at right angles to the bearing through the point thus found. All cases of cœlo-navigation are thus brought under a single rule.

"Aquino's purpose is to abridge the extent of the existing tables by tabulating the solutions of the two right-angled spherical triangles, into which the astronomical triangle may always be divided, with values of the argument no nearer together than 30' in one case, and 1° in the other. To make this plan feasible, his purpose is to sacrifice the freedom of choice now existing with reference to the assumed geographical position, and, by short calculation, to find instead an auxiliary geographical position so placed that the proposed tables may be entered without interpolation between the tabular values of the arguments, which are, in fact, designedly spaced too far apart for successful interpolation. The advantage of having one simple rule for the solution of all cases is also somewhat disturbed by necessary variations from the singleness of the rule in order to adapt the proposed tables to varying combinations of data arising from different relative positions of the observer and the

observed celestial body.

"The plan of the proposed work, as outlined in the enclosed publications, is sound in principle and scientific in conception; and the tables will possess the merit of being compressed into a small book."

I have the honor to be, Sir,

Very respectfully,

TRUMAN H. NEWBERRY, Secretary.

THE HONORABLE
THE SECRETARY OF STATE.

Confere. E. L. CHERMONT. Conforme com o original no Archivo da Embaixada do Brazil em Washington. SYLVINO GURGEL DO AMARAL, Conselheiro de Embaixada.

NOTE.—This expression of opinion is made public by special permission of the Hon.

Secretary of the Navy. O.N.I. No. 9864 of 1909.

^{1 &}quot;A Navegação sem logarithmos." Imprensa Nacional, Rio de Janeiro, 1903, and "Altitude and Azimuth Tables for facilitating the Determination of Lines of Position and Geographical Position at Sea." Reprinted from the United States Naval Institute Proceedings for December, 1908.

BOOK NOTICES

Of the U.S. Naval Institute Proceedings, March, 1910

"ALTITUDE AND AZIMUTH TABLES," 1910. By Lieutenant Radler de Aquino, Brazilian Navy.

After a careful examination of this book and of the methods given for the solution of the astronomical triangle there can be no doubt of its practicability and of its claim, "The simplest and readiest in solution."

In the solution of the line of position for the sun, which is by far the most common of all sights, and employing all figures to get functions as closely as given in the Nautical Almanac, which in practice is not necessary, a comparison of the two methods is as follows:—

		Figures.	Book openings.	Time.
Common to both		. 177	8	9 ^m 30 ^s
Peculiar to each		∫ 101 Aquino	2	4 ^m 7 ^m 3Cs
Peculiar to each	•	. { 101 Aquino 138 St. Hilaire	2	4 ^m

Upon examination of the above table it can be immediately seen how much quicker in solution the Aquino is. In point of accuracy of results within the limits of 70 declination, and taking into consideration the errors of observation, there is no choice. There is less chance of making errors in working on account of the fact that only four functions have to be picked out accurately from the tables, whereas in the St. Hilaire eight have to be found. In comparing the two methods the part common to both is not considered.

In the case of the meridian altitudes the ordinary method of combining the zenith distance and declination is better than the method shown in this book, on account of it being necessary to remember one precept instead of four.

The method of finding latitude from a sight of Polaris presents no advantages over that given in the back of the Nautical Almanac for the current year, and has less advantage over that given in the Almanac of 1912.

The determination of the line of position without azimuths is to be commended and, if the altitude is to be determined by the tables of this book, is of great value.

The necessity of the rectification of lines of position occurs very rarely in practice, but when it does happen this method is an excellent one.

The identification of celestial bodies and the finding of the approximate altitude and azimuth before taking a sight are, under the present great interest in the use of stars for navigational purposes, of great value, and when the tables are once thoroughly understood, very easy to find.

Azimuths can be determined with ease and necessary accuracy by means of these tables

The use of these to find the Great Circle Course is not recommended. Lunar distances have been abandoned by navigators.

Taken as a whole, this book cannot be too highly recommended, and all navigators should possess a copy. It is to be hoped that the author will publish the larger book he is making out for his own use.

G. R. MARVELL,

INTRODUCTION

The determination of lines of position (from which geographical position—latitude and longitude—is deduced at sea), the identification of celestial bodies and the determination of distance and course in Great Circle Sailing are the three principal problems of Navigation depending upon the solution of a spherical triangle.

In each problem we have two sides and the included angle to find the third side and one of the other angles. This means that all the three problems can be solved in the same way, by the same formulæ,

by the same method, and by the same tables.

Most of the problems of celestial Navigation depend upon the solution of a right-angled spherical triangle, and as the three principal problems are solved by dividing the spherical triangle into two right-angled triangles, they *all* may be easily and readily solved *without logarithms* by aid of the appended tables, which, however, were especially arranged for facilitating the determination of lines of position and the identification of celestial bodies at sea.

The method used for determining lines of position is general, every sight is worked out the same way; no special classification needs to be made before trying to work it out. Whether the sight is a circummeridian, an ex-meridian, or a time-sight, it is always worked out the same way. At the same time, no signs or naming of auxiliary data comes in to confuse the navigator. The only calculations involved are two small multiplications (not always necessary), and the finding of C with C and C0, by the use of simple formulæ, without giving consideration to algebraic signs or arcs greater than 90°.

The tables will also enable the navigator in latitudes above 45° to

With the exception of the tables for rectifying lines of position, all the others are well known and need no explanation. In the tables for correcting altitudes, the corrections were calculated with data (mean refractions, mean dip of the horizon, parallax in altitude, &c.) tabulated in the *Connaissance des Temps*, published by the

Bureau des Longitudes, Paris.

¹ Besides these tables our volume contains tables for converting intervals of mean solar time into those of sidereal time (acceleration); for converting time into arc, and vice versa; for the total correction of altitudes of Stars and Planets, the Sun and the Moon; change of altitude per minute of arc of hour angle, change of azimuth per minute of arc of altitude; for controlling the coincidence of lines of position; azimuths of *Polaris*; change of altitude per minute of time, and for rectifying lines of position. Also Plane Traverse Tables, a Ready Reckoner, &c.

determine with great accuracy lines of position on Mercator's chart without azimuths.

Time-azimuths for compass correction and control are found without interpolation by the same method used for determining lines of position, which, of course, is a decided advantage.

Such questions as: Where are we? What star is that? &c., will receive a prompt and accurate reply when the problem is worked out by our methods and our tables.

Fortunately most of the problems do not require great approximation, and for this reason interpolations are practically unnecessary.

The omission of Lunar Distances from the Nautical Almanac, as "no longer of sufficient use to justify their retention," has forced upon navigators the necessity of knowing how to calculate them.

This problem is similar to the problem of determining distance in Great Circle Sailing, and we believe that from the sailor's point of view our method (and formulæ) will prove more satisfactory than the one given in the Nautical Almanac, because it does not involve the use of algebraic signs or arcs greater than 90°, always a cause of difficulty, confusion, and error.

Many valuable suggestions received from Dott. Giuseppe Pesci, of the Royal Italian Naval Academy, Livorno, Italy, have been embodied in this work, and it gives us great pleasure to acknowledge here our grateful thanks.

The author hopes that navigators will appreciate the great advantages these tables present. Indeed, we may safely say: They are "the simplest and readiest in solution."

On board the Brazilian battleship Minas Geraes, NEWCASTLE-UPON-TYNE, November 11, 1909.

INTRODUCTION TO SECOND EDITION

The addition of the complementary column c/C reducing to a minimum the work of combining L and b, of a Plane Traverse Table for distances up to 300 miles, of a Ready Reckoner, of the Sun's upper Limb Correction Table, of the Table giving the change of hour angle per minute of arc of altitude and a most careful and complete revision of the tables and text represent the improvements and further simplifications to be found in this new edition. A new set of Tables for calculating the Altitude have been added for use of those people who do not like to use the assumed position. They are also "the simplest and readiest in solution."

HYDROGRAPHIC OFFICE, RIO DE JANEIRO, November 11, 1911.

CIRCLES, CURVES, AND LINES OF POSITION

A line of position is just as valuable as the isolated knowledge of latitude or longitude, and represents the exact and only true interpretation of a sight.

When a navigator at a given instant of Greenwich (known by a chronometer regulated to mean or sidereal time) observes the altitude of a celestial body, he determines *ipso facto* on the celestial sphere a small circle passing through his zenith.¹

FIG. I.

This circle is determined by its centre and its radius. The centre of the circle is M, the centre of the celestial body at the moment of the observation, and is determined by the declination d or MM' (sometimes called Geographical Latitude) of the body, and by its

¹ This discovery was first made by Captain THOMAS H. SUMNER, an American shipmaster, in 1837, and was explained on page 42 of his work, "A New and Accurate Method of Finding a Ship's Position at Sea, by Projection on Mercator's Chart," Boston, 1843.

Vide also BARTHET, "Méthode graphique pour faire le point à la mer," published in the Annales maritimes et coloniales, Paris, 1847, for an account of Captain Sumner's discovery.

hour angle from Greenwich, QPM' (called its Geographical Longitude). The radius is the body's true zenith distance, MB (the complement of its true altitude). With these elements we could, if practical, draw the circle on a globe. This circle is known as the *circle of position*, because it contains the navigator's zenith corresponding to his position on the surface of the Earth.

The transformation affecting all spherical figures when we pass from the terrestrial globe to Mercator's chart also involves the circle of position, which is transformed into a curve of position, open or closed, according to the position of the poles in relation to the circle.

In order to know his position, it is not necessary for the navigator to draw the whole curve on the chart, and, in view of the difficulty of even drawing a small portion of it in the vicinity of the observer (always indicated by the D. R. position A), it is substituted by a straight line of position, BB', representing practically the necessary part of the curve.

This straight line of position, in order to secure the best results, ought to be always determined on the chart, or elsewhere, by the method invented thirty-five years ago by Admiral A. BLOND DE MARCQ SAINT-HILAIRE, French Navy.

"The great advantage of this method of obtaining a line of position," as Commander W. C. P. Muir, U.S. Navy, Head of the Department of Navigation of the U.S. Naval Academy, explicitly states in italics in his excellent treatise on "Navigation and Compass Deviations," second edition, 1908, p. 640, "lies in the fact, that since the formulæ make it available practically without limitations as to azimuth, altitude, or hour angle, it furnishes one method equally applicable to all conditions, whether these conditions would otherwise require the formulæ of a time-sight, a $\phi'' \phi'$ sight, or that of a body observed near the meridian."

It consists in determining a particular point B (known as the "computed point") of the circle of position—the intersection of AM, the vertical circle of the celestial body passing through the D. R. position A with the circle of position. These two circles intersect each other at right-angles, and therefore the straight line of position will be also perpendicular to the body's true bearing.

Thus the determination of the line of position, containing the observer's position, consists in constructing a straight line drawn through the computed point B at right-angles to the body's true bearing.

In order to determine the computed point B when the position by D. R. A is given, we lay off from this point, as shown in Fig. 1, a

² Published by the United States Naval Institute, Annapolis, Md., U.S.A., price

five dollars gold.

¹ Vide "Calcul du point observé," Revue maritime et coloniale, vol. xlvi., 1875, pages 341 and 714.

CIRCLES, CURVES, AND LINES OF POSITION

distance, AB, equal to the difference between the two zenith distances: the D. R. AM, and the *true* BM (or between the two altitudes: the *true* and the D. R. with opposite sign). The extremity of this length is the computed point B. This point is *always* nearer to the true position than the position by D. R., and represents the most probable position of the observer, when only one observation is available.

The difference between the two altitudes is called *altitude difference* or *intercept*.

The position by D. R. A, the altitude difference AB, and the body's azimuth PAM are the elements necessary and sufficient for determining a line of position at sea.

The position by D. R. is generally computed up to the time of observation, the true altitude is found by taking and correcting the observed altitude; the calculated altitude and azimuth (from which the true bearing is found) are easily and rapidly determined by our tables as explained hereafter.

In order, however, to do away with interpolations and corrections which otherwise would have had to be made before finding the altitude and azimuth, we take an assumed latitude and longitude instead of the latitude and longitude by D. R.¹ Referring to Fig. 4 on page xxvi, we consider A' (the assumed position) instead of A (the position by D. R.) for determining the line of position.

The advantages of using an assumed position instead of the position by D. R. have not been fully appreciated by the majority of navigators. No greater accuracy is gained by determining the line of position from A than from A', while the use of this position, as we will see further on, facilitates and reduces the computations very much, thus minimising the chances of error, &c.

Finally, the problem of determining a line of position at sea reduces itself to find how far (in miles) the line of position is from the ASSUMED position, and in what direction it lies.

^{1 &}quot;A Navegação sem Logarithmos" (Navigation without Logarithms). Imprensa Nacional. Rio de Janeiro, 1903. Published by order of the Minister of Marine. This work was preceded by an article by the author in the Revista Maritima Brazileira, Oct. 1902. "Taboas para achar alturas e azimuths, etc." The present tables represent an enlarged, improved, and very simplified edition of "A Navegação sem Logarithmos." Vide also "Resolução Nomographica do Triangulo de Posição" by DOTT. G. PESCI. Translated from the Italian into Portuguese by the author of these tables and reprinted from the Revista Maritima Brazileira, Nov. and Dec. 1907, and Feb. 1908, and DOTT. PESCI's recent "Studio critico": Sulle "Tables for facilitating Sumner's Method at Sea," di Lord Kelvin, in the Rivista Maritima for January 1909, page 43.

GENERAL PRINCIPLE AND EQUATIONS

In Fig. 2, P is the elevated pole and PMZ is the astronomical triangle of position projected on the plane of the horizon.

FIG. 2.

If we let fall a perpendicular from M on PZ, it will divide the triangle of position into two right-angled triangles. Let us call the perpendicular a and the two parts into which PZ is divided $90^{\circ}-b$ and $90^{\circ}-B$.

The perpendicular a is common to the two triangles and therefore to

$$\begin{cases} a \text{ and } 90^{\circ} - b \text{ in triangle } MPm \text{ correspond } 90^{\circ} - d \text{ and } t \\ a ,, 90^{\circ} - B ,, , MZm ,, 90^{\circ} - h ,, Z \end{cases}$$

and vice versa, or to

$$a \text{ and } \begin{cases} b \text{ correspond } d \text{ and } t, \\ B , h , Z \end{cases}$$

and vice versa.

¹ The principle upon which these tables are based is as old as Spherical Trigonometry itself, and naturally it was the only way of solving spherical triangles until, as DOTT. PESCI informs us, ALBATANI (880-928 A.D.) discovered the well-known relation (erroneously attributed to Euler) between the three sides and an angle of a spherical triangle

CONSTRUCTION OF THE TABLES

This correspondence is fundamental and must always be remembered.

By Napier's mnemonical rules we find the following equations binding together these elements:

(1)
$$\begin{cases} \sin d = \cos a \sin b \\ \sin h = \cos a \sin B \end{cases}$$
 (2)
$$\begin{cases} \cot t = \cot a \cos b \\ \cot Z = \cot a \cos B \end{cases}$$

and

(3)
$$\begin{cases} \sin a = \cos d \sin t \\ \sin a = \cos h \sin Z \end{cases}$$
 (4)
$$\begin{cases} \cot b = \cot d \cos t \\ \cot B = \cot h \cos Z \end{cases}$$

CONSTRUCTION OF THE TABLES

As a, b and B in groups of equations (1) and (2) can have values between 0° and 90°, we have tabulated the values of d and t corresponding to various values of a for every 30′ from 0° to 84° and for every 1° from 84° to 90° (88° 50′ being especially included on account of *Polaris*) and b for every 1° (and *ipso facto* the values of b and b corresponding to various values of b and b.

As groups of equations (3) and (4) are respectively similar to (1) and (2), we notice that we have also tabulated the values of a and b corresponding to various values of d and t (and *ipso facto* the values of a and b corresponding to various values of b and b0.

For this reason the tables have two entrances.

The upper one with a and b as arguments giving, by means of the upper equations of groups of equations (1) and (2), d and t (or with a and B as arguments giving, by means of the lower equations of groups (1) and (2), h and D).

The lower one with d and t as arguments giving, by means of the upper equations of groups of equations (3) and (4), a and b (or with b and b as arguments giving, by means of the lower equations of groups (3) and (4), a and b, but not considered for greater simplicity in dealing with the principal problem).

For convenience and greater simplicity a complementary column c/C to column b/B is given on each page where c stands for $90^{\circ}-b$ and C for $90^{\circ}-B$.

Therefore the tables can also be entered with a and c giving d and t, and also with a and C giving h and C.

Example I. Entering the tables on page 119 with $a=48^{\circ}$ o' and $b=59^{\circ}$ we find $d=35^{\circ}$ o' and $t=65^{\circ}$ 7'.

Example II. Entering the tables on page 63 with $a=6^{\circ}$ o' and $B=73^{\circ}$ or $C=17^{\circ}$, we find $h=72^{\circ}$ o' and $Z=19^{\circ}$ 46'.

Example III. Entering the tables on page 91 with $d=27^{\circ}$ o' and $t=60^{\circ}$ we find $a=50^{\circ}$ 30' and $b=45^{\circ}$ 32'.

In columns $\frac{60'}{\Delta}$ and $\frac{\Delta}{60'}$, Δ represents the difference between two

successive values and the factors $\frac{60'}{\Delta}$ and $\frac{\Delta}{60'}$ are given in order to facilitate interpolation.

All values designedly appear in our tables, and examples always reduced to the first quadrant with sign plus with further simplification in view.

CALLET'S 2 logarithms with seven decimal places were used in the calculations. In many cases VLACQ'S 3 ten decimal place logarithms were used.

EXAMINATION OF THE TABLES

A mere inspection of the tables shows at a glance how the elements vary in the astronomical triangle of position.

For a given value of a, d and t vary proportionately to b throughout the tables, except in a very few practical cases when the declination of the observed body d is higher than 70° . As long as the difference $\left(\frac{\Delta_2}{60'}\right)$ between two successive values of $\frac{\Delta}{60'}$ is equal to or smaller than 0.15, the maximum error in t due to second differences is equal to or smaller than t. Up to $d=60^{\circ}$ this maximum error is equal to or smaller than 0.5.

Careful examination, however, of these *Tables* has shown that the error of t when using simple interpolation for any declination has no practical effect upon the value of h determined by them.

² "Tables de logarithmes, suivies d'un recueil de Tables nautiques." Editeur Firmin-Didot et Cie, Paris, 1883.

³ "Trigonometria Artificialis sive Magnus Canon Triangulorum Logarithmicus," Gouda, 1633.

below magnitude 3.0. Of the 486 stars catalogued in the *Nautical Almanac* for 1910 only 24 have higher declinations than 77° 46′, and their magnitudes range between 4.3 and 8.4, being therefore unsuitable for navigation.

It is noticed that the influence of the second differences only begins to appear in a few cases above the extreme limit of declination (=60°) adopted by nearly all nautical tables, notwithstanding the existence of 36 stars (15 of which are of or above 3.0) above magnitude 4.1, with greater declinations than 60°.

¹ These tables were first described by the author in the *United States Naval Institute Proceedings* for December 1908, page 1299, and in the *Revista Maritima Brazileira* for March 1909, page 1577. A description of them by DOTT. A. ALESSIO, R.I.N., is also found in the *Rivista Maritima* for March 1909, Appendice, page 56.

The only relatively important star above 70° declination is β Ursæ Minoris with N 74° 31′ decreasing. Its magnitude is 2.2. Among the 316 stars above magnitude 4.1 (not including *Polaris*) catalogued in the *Nautical Almanac* for the year 1910, the highest declination is that of β Hydri, magnitude 2.9, with S 77° 46′ decreasing, and for this reason the differences $\frac{\Delta}{60'}$ only extend to this value of d. Of the 316 stars mentioned above there are only 6 with declinations higher than 70°, and 4 of them are below magnitude 3.0. Of the 486 stars catalogued in the *Nautical Almanac* for 1910

LINES OF POSITION

ALTITUDE AND AZIMUTH FOR LINES OF POSITION

The problem is: Given d, t and L, find h and Z.

DETERMINATION OF h AND Z.

Let us see now how altitude and azimuth can be easily and rapidly determined by these tables.

Entering the tables with d and t as arguments, we will find in

columns a and b approximate values of a and b.

Entering the tables again with a and b as arguments, we will find approximately the values of d and t given.¹ The true value of b is then determined for the *exact* value of d and a value of t is found corresponding to this b.

The values of h and Z will then be found in the same column a corresponding to B or to its complement C.

Example. $d=16^{\circ} 27'$, $t=61^{\circ} 10'$ and $L=23^{\circ} 39' \cdot 3$.

Entering the tables with $d=16^{\circ}$ 30' and $t=61^{\circ}$ we find $a=57^{\circ}$ 0' and $b=31^{\circ}$ 26'. Corresponding to $a=57^{\circ}$ 0' and $b=31^{\circ}$ we find $d=16^{\circ}$ 17' and $t=60^{\circ}$ 54'. The true value of b corresponding to $d=16^{\circ}$ 27' is 31° 20'.7 and the value of t corresponding to this value of b is 60° 59'.6.

If $B=35^{\circ}$ (or $C=55^{\circ}$) we will have $h=18^{\circ}$ 12' and $Z=61^{\circ}$ 59'.

DETERMINATION OF C.

We will now show how C is determined when L and b are known. When the perpendicular a falls between P and Z, as it does in Fig. 2 (d and L being of the same name and $t < 90^{\circ}$), we have

$$[90^{\circ} - B] + 90^{\circ} - b = 90^{\circ} - L$$

and therefore

$$C=b-L$$
: when $L < b$.

If the perpendicular fell between Z and Q (d and L being also of the same name and $t < 90^{\circ}$), we would have

$$[90^{\circ} - B] + 90^{\circ} - L = 90^{\circ} - b$$

and therefore

$$C=L-b$$
: when $L>b$.

¹ The value of a shows *immediately* on which two pages of the tables we have to work, and also in which of the three columns. The value of b shows on which of the two pages we have to begin, and also the line on which the approximate values of d and t are found. Although *not strictly necessary* this knowledge of the approximate value of b is convenient.

The value of a is also not strictly necessary as long as the values of d and t are found together in the same column a. After a little manipulation of the tables no difficulty will be experienced in finding them together in the same column a.

In case the perpendicular fell between P and N (which only happens when $t > 90^{\circ}$ and we enter the tables with $180^{\circ} - t$ instead of t), we would have

and therefore

$$[90^{\circ} - B] = 90^{\circ} - L + 90^{\circ} - b$$

 $C = 180^{\circ} - (L + b)$.

Finally, when the perpendicular falls between Q and S (d and L are then of contrary names), we have

$$[90^{\circ} - B] + 90^{\circ} - L = 90^{\circ} + b$$
$$C = L + b.$$

Thus when

d and L same name
$$\begin{cases} t < 90^{\circ} \begin{cases} L < b : C = b - L; \ Z < 90^{\circ} \\ L > b : C = L - b; \ Z > 90^{\circ} \end{cases} \\ t > 90^{\circ} \dots : C = L + b; \ Z < 90^{\circ} \end{cases}$$
d and L contrary names : $C = L + b; \ Z > 90^{\circ}$

By these formulæ C can be obtained from L and b with great simplicity and rapidity.

In the first two cases, the *smaller* of the two quantities L and b, is always subtracted from the *larger* of the two.

In the third and fourth cases L and b are always added together. When $t>90^{\circ}$ their sum is always greater than 90°, and it is subtracted from 180°. When d and L are of contrary names their sum is always smaller than 90°.

The quadrant in which the observed body is, is also shown for reference and by our method is always known a priori.

When d and L are of the same name and $t < 90^{\circ}$, Z is less or greater than 90° when L is less or greater than b.

When $t>90^{\circ}$, Z is always less than 90° ; finally when d and L are of contrary names Z is always greater than 90° .

When $Z < 90^{\circ}$ the value of Z given by the tables is reckoned from the *elevated* pole to East or West, and when $Z > 90^{\circ}$ from the *depressed* pole to East or West, since the tables only give values up to 90° .

VARIATIONS OF DATA.

A further inspection of the Tables shows that they are also available for determining at sight by inspection "what effect given variations of data will produce in quantities computed from them." 1

If we call Δh , ΔZ , Δd , Δt , and ΔL respectively the variations of altitude, azimuth, declination, hour angle and latitude the following formulæ will give us the errors Δh and ΔZ in the values of h and Z

CHANGES OF ALTITUDE AND AZIMUTH

computed, when d, t and L are affected by small errors Δd , Δt and ΔL respectively:—

$$\Delta h = \cos M \, \Delta d - \cos L \, \sin Z \, \Delta t + \cos Z \, \Delta L \tag{1}$$

and

$$\cos h \Delta Z = \sin M \Delta d + \cos M \cos d \Delta t - \sin h \sin Z \Delta L \qquad (2)$$

where M is the parallactic angle.

CHANGES OF ALTITUDE AND AZIMUTH.

If Δd and ΔL are *nil* we have by (1) $\Delta h = -\cos L \sin Z \Delta t$, or $\frac{\Delta h}{\Delta t} = -\cos L \sin Z$, which gives us the "Change of Altitude per Minute of Arc of Hour Angle" (Table on p. 170).

If Δt and ΔL are *nil* we have by (1) $\Delta h = \cos M \Delta d$, or $\frac{\Delta h}{\Delta d} = \cos M$, which gives us the "Change of Altitude per Minute of Arc of Declination."

If Δd and Δt are *nil* we have by (1) $\Delta h = \cos Z \Delta L$, or $\frac{\Delta h}{\Delta L} = \cos Z$, which gives us the "Change of Altitude per Minute of Arc of Latitude."

In the same way we would have by (2)

$$\Delta Z = \cos M \cos d \sec h \Delta t$$
, or $\frac{\Delta Z}{\Delta t} = \cos M \cos d \sec h$

$$\Delta Z = \tan h \sin Z \Delta L$$
 , $\frac{\Delta Z}{\Delta L} = \tan h \sin Z$

$$\Delta Z = \sin M \sec h \, \Delta d$$
 ,, $\frac{\Delta Z}{\Delta d} = \sin M \sec h$

The 1st expression of ΔZ is easily transformed into

$$\Delta Z = \sin L \Delta t - \tan h \cot Z \Delta h$$

as explained on page xxvii later on.

The value of ΔZ from the 2nd expression of ΔZ is given immediately by the Tables in column $\frac{\Delta}{60}$ alongside the value of Z.

Example. If $h=38^{\circ}$ and $Z=62^{\circ}$ we will find them approximately together in column $a=44^{\circ}$ on page 113, and therefore $\frac{\Delta Z}{\Delta L}=0'.70$ found in column $\frac{\Delta}{60'}$ alongside Z (=61° 56').

The 3rd expression of ΔZ has not any practical importance, as Δd is always smaller than o'.5.

xvii

¹ and ² CHAUVENET, "A Manual of Spherical and Practical Astronomy," Philadelphia, 1890. Vol. I. pp. 50, 51.

THE PARALLACTIC ANGLE M.

By interchanging L and d in the tables we can find immediately in column Z the parallactic angle M.

THE LONGITUDE FACTOR, OR PAGEL'S COEFFICIENT.

If Δh and Δd in (1) are *nil* we can find immediately the longitude factor or PAGEL'S coefficient the most important of all, as it shows at once the change of hour angle or longitude due to a change of 1' in the latitude.

We find from (1) when $\Delta h = \Delta d = 0$

$$\cos L \sin Z \Delta t = \cos Z \Delta L$$

or

$$\cos L \cdot \frac{\Delta t}{\Delta L} = \cot Z$$

In our Tables

$$\cos B \cot a = \cot Z$$

and, therefore, if we enter the Tables with L in the place of B and Z in column Z, the cotangent of α in which Z stands is equal to $\frac{\Delta t}{\Delta L}$, the longitude factor, or PAGEL'S coefficient.

The blackfaced numbers at the head of each four columns represent the cot α above which they are.

- I. Example. If $L=24^{\circ}$ and $Z=73^{\circ}$ o' we will find on page 148 $\frac{\Delta t}{\Delta L}=\cot a=\cot 71^{\circ}$ 30'=0'.335.
- II. Example. If $L=55^{\circ}$ and $Z=60^{\circ}$ 10' we will find on page 115 $\frac{\Delta t}{\Delta L} = \cot a = \cot 45^{\circ} = 1'.000$.
- III. Example. If $L = 50^{\circ}$ and $Z = 42^{\circ}$ 30' we will find on page 95 $\frac{\Delta t}{\Delta L} = \cot \alpha = \cot 30^{\circ} 30' = 1'.698.$

For the sake of simplicity we will call $\frac{\Delta t}{\Delta L}$: p.

LATITUDE FACTOR.

The latitude factor or the change of latitude due to a change of \mathbf{I}' in the hour angle or longitude is found immediately by noticing that $\frac{\Delta L}{\Delta t}$ is the reciprocal of $\frac{\Delta t}{\Delta L}$ or of cot a, that is, cot $(90^{\circ} - a)$ or tan a.

- I. Example. If $L=24^{\circ}$ and $Z=73^{\circ}$ o' we will find on page 81 $\frac{\Delta L}{\Delta L} = \tan \alpha = \cot 19^{\circ} 30' = 2'.824$.
- II. Example. If $L=55^{\circ}$ and $Z=60^{\circ}$ 10' we will find on page 115 $\frac{\Delta L}{\Delta t} = \tan \alpha = \cot 45^{\circ} \text{ o'} = \text{1'.000.}$
- III. Example. If $L = 50^{\circ}$ and $Z = 42^{\circ}$ 30' we will find on page 133 $\frac{\Delta L}{\Delta t} = \tan \alpha = \cot 59^{\circ} \text{ 30'} = 0'.589.$

I. TYPICAL EXAMPLE FOR ALL SIGHTS

(Whether circummeridian, ex-meridian or time sights.)

The following typical example is given in order to illustrate the way in which all sights ought to be treated:

SIGHT OF THE SUN.

On February 21, 1910, about 8^h A.M., in Lat. by D. R. 36° 56′ N., and Long. by D. R. 8° 5′ W., the observed altitude of the Sun's lower limb, bearing southward and eastward, was 20° 59′.2 at 21^h 6^m 11^s of the chronometer, 6^m 59^s slow of G. M. T. Height of eye 36 ft. Required the line of position.

$$C.=21^{h} \quad 6^{m} \quad 11^{s}$$

$$C.C. = + \quad 6 \quad 59$$

$$G. \quad M. \quad T. = 21^{h} \quad 13^{m} \quad 10^{s}$$

$$Eq. \quad of \quad T. = - \quad 13 \quad 46$$

$$a=52^{\circ} \quad o' \quad G. \quad A. \quad T. = 20^{h} \quad 59^{m} \quad 24^{s} \quad or \quad t_{G} = 3^{h} \quad o^{m} \quad 36^{s} \quad E = 45^{\circ} \quad 9'.0 \quad E$$

$$b=17^{\circ} \quad 8'.4 \qquad d=10^{\circ} \quad 27' \quad S$$

$$t_{A} = 53 \quad 15 \cdot 3 \quad E$$

$$L_{A} = 36 \quad 51 \cdot .6 \quad N$$

$$G_{A} = 8^{\circ} \quad 6'.3 \quad W$$

$$C=54^{\circ} \qquad h_{A} = 21 \quad 13 \cdot .0$$

$$h = h_{A} = - 6'.0$$

$$k_{A} = 21 \quad 13 \cdot .0$$

Note. This calculation could have been made in advance before taking the sight if it had been decided to observe the Sun at 21^h 6^m 11^s of the chronometer.

Working out this example with 5 decimal place logarithms we would find, with $d=10^{\circ}$ 27', $t_{A}=53^{\circ}$ 15'.3 and $L_{A}=36^{\circ}$ 51'.6:

$$b=17^{\circ}$$
 8'.0, $h_{A}=21^{\circ}$ 13'.1 and $Z_{A}=57^{\circ}$ 42'.4

by means of groups of equations: (2) for Z and (4) for b and h.

When due to unknown currents or any other reason we have not a reliable D. R. position, a can be determined by means of h and Z. Z is found by compass observation or by the method indicated on page xxxv. Enter the tables with h in the place

of d and Z in the place of t.

¹ As in practice an assumed latitude is used instead of the latitude by D. R., it is better, in order to avoid mistakes, not to consider the latitude by D. R. at all, only the longitude by D. R., except when only one observation is available and the ship's most probable position has to be found. The longitude by D. R., itself is only used to find the approximate value of a.

Group (3) constitutes the *check* group, because it contains d and t given, and h and Z required.

This development shows the time and trouble our tables save, besides doing away with the turning of pages, lessening the chances of error, and simultaneously checking, *per se*, part of the results. In these calculations advantage has been taken of our precepts, and therefore no algebraic signs or arcs greater than 90° appear.

EXPLANATION.

After the correction is applied to the chronometer time and the equation of time to the G. M. T. we fibd G. A. T. also called the "Sun's geographical longitude" $(\odot$'s t_G), because it is the Sun's hour angle from Greenwich. This G. A. T. is *immediately converted* into arc^1 and combined apart with the Longitude by D. R. or $G_{D.R.}$, giving the Sun's hour angle from D. R. or $t_{D.R.}$ in arc:

$$\bigcirc$$
's $t_G = 45^{\circ}$ 9' E
 $G_{D.R.} = 8$ 5 W
 \bigcirc 's $t_{D.R.} = 53^{\circ}$ 14' E

The declination of the Sun, found in the *Nautical Almanac* at the same time as the Eq. of T., is taken to the nearest minute of arc. (It is noticed that no seconds of arc are used in our method nor are they necessary, and the quantities expressed in arc need only be taken within *one-tenth of one minute* when greater accuracy is desired).

Entering the tables on page 69 with $d=10^{\circ}$ 30' and $t_{D.R.}=53^{\circ}$ 14' as arguments, we find in column $a:52^{\circ}$, which is an approximate value of a, and in column $b:17^{\circ}$, which is an approximate value of b.

Entering the tables again on page 122 with $a=52^{\circ}$ o' and $b=17^{\circ}$ as arguments, we find that the Sun's declination 10° 27' is comprised between 10° 22' and 10° 58' respectively corresponding to $b=17^{\circ}$ and

¹ This procedure, not usually followed in the text books, has the *triple* advantage of simplifying the determination of *t*, abolishing the argument in time in the tables and the necessity of dealing with data expressed in time and in arc after G. A. T. is converted.

PLOTTING THE LINE OF POSITION

Interpolating (here the interpolation is reduced to the multiplication of the factor $\frac{60'}{\Lambda}$ =1.67, by the difference between 10° 27' and 10° 22', that is 5'), we find that $b=17^{\circ}$ 8'.4 and t_{A} corresponding to this value of b is 53° 15'.3. The ready reckoner on pp. 50 to 53 will save the trouble of doing these multiplications.

In order to do away with any corrections, this t_{A_n} which differs from $t_{D.R.}$ one minute and three-tenths, is taken as the hour angle. Combining it with the \odot 's $t_{g}=45^{\circ}$ 9'.0 W., we find a longitude which

may be called assumed: $G_A = 8^{\circ} 6'.3 \text{ W}.$

In order to do away with any further interpolations, C is made a whole number of degrees by assuming a latitude, nearly the same as the Lat. by D. R., that will make it so. In our particular case it will be seen that $L_{4}=36^{\circ}$ 51'.6 combined with $b=17^{\circ}$ 8'.4, according to the precepts given, d and L contrary names: C=L+b; $Z>00^{\circ}$, will make C just 54°.

Therefore in the same column $a=52^{\circ}$ o' with $C=54^{\circ}$, we will find

 $h_A = 21^{\circ} 13'$ and $Z_A = 57^{\circ} 42'$.

CHECK.

The necessary calculations to find h_A and Z_A are so simple and few, and, therefore, the liability to error so small, that we do not think a check is necessary.

However, the correctness of the calculations might be tested without new data by proceeding backwards, as explained further on

for "identifying celestial bodies" (vide page xxxv). To $h_{A}=21^{\circ}$ 13' and $Z_{A}=57^{\circ}$ 42' corresponds $B=36^{\circ}$ in column $a=52^{\circ}$ o'. If $L_{A}=36^{\circ}$ 51'.6, c will be found by the precepts on page xxxvi. As $Z > 90^{\circ}$, $c = L_A + B = 72^{\circ}$ 51'.6 < 90°, b will be 17° 8'.4, and we will find by interpolation (here it is reduced to the division of 8'.4 by the factor $\frac{60'}{\Lambda} = 1.67$ giving 5') $d = 10^{\circ} 27'$ and $t_{A} = 53^{\circ} 15'.3$, "d and L contrary names" and " $t < 90^{\circ}$ ".

Of course, if d and t_A were not the same as used before, the calculations would be in error.

PLOTTING THE LINE OF POSITION.

Fig. 3, representing a section of a chart of the coast of Portugal, shows A the assumed position from which the line of position is determined. The altitude difference is AB = -6'.o. It is + when the true altitude h is greater than the assumed altitude h_A and—when the true altitude is smaller than the assumed altitude. It is always taken in the direction of the observed body: towards, when + and in the opposite direction: away from, when -.

LG is the line of position perpendicular to AB. The foot of

the perpendicular dropped from the position by D. R. on the line of position is the ship's most probable position and *must* be taken as the ship's position when only one observation is available.

FIG. 3.—Section of a chart of the coast of Portugal showing how line of position is plotted and ship's position AT NOON is found.

This line of position is just as valuable as the isolated knowledge of latitude or longitude, and represents the exact and only true interpretation of the sight.

II. TYPICAL EXAMPLE FOR ALL SIGHTS

The following typical example is also given in order to illustrate the way in which all sights ought to be treated:

SIGHT OF THE SUN.

On August 21, 1908, about 11h A.M., in Lat. by D. R. 16° 16′ S.,¹ and Long. by D. R. 38° 18′ W., the observed altitude of the Sun's lower limb, bearing northward and eastward, was 59° o' at 1h 19m 40s of the chronometer, 26m 59s slow of G. M. T. Height of eye 28 ft. Required the line of position and the ship's most probable position.

$$C. = 1^{h} 19^{m} 40^{s}$$

$$C. C. = + 26 59$$

$$G. M. T. = 1^{h} 46^{m} 39^{s}$$

$$Eq. of T. = -3 3$$

$$\frac{a = 12^{\circ} \text{ o'}}{b = 12^{\circ} 26'.5} \qquad \frac{d = 12^{\circ} 10' \text{ N}}{d = 12^{\circ} 10' \text{ N}} \text{ or } t_{G.} = 25^{\circ} 54' \text{ W}$$

$$\frac{t_{A.} = 12 17}{G_{A.} = 38^{\circ} 11'} \text{ E}$$

$$\frac{h_{o} = 59^{\circ} \text{ o'}}{Corr. = + 10}$$

$$\frac{h_{A.} = 58 49}{h - h_{A.} = + 21'} \qquad Z_{A.} = \text{N } 23^{\circ} 41' \text{ E}$$

Note. This calculation could have been made in advance before taking the sight if it had been decided to observe the Sun at 1^h 19^m 40^s of the chronometer.

Working out this example with 5 decimal place logarithms we would find, with $d=12^{\circ}$ 10', $t_A=12^{\circ}$ 17' and $L_A=16^{\circ}$ 33'.5:

$$b = 12^{\circ} 26'.6$$
, $h_{A} = 58^{\circ} 48'.8$ and $Z_{A} = 23^{\circ} 40'.8$

by means of groups of equations: (2) for Z and (4) for b and h.

When due to unknown currents or any other reason we have not a reliable D.R. position, a can be determined by means of h and Z. Z is found by compass observation or by the method indicated on page xxxv. Enter the tables with h in the place of d and Z in the place of f.

¹ As in practice an assumed latitude is used instead of the latitude by D. R., it is better, in order to avoid mistakes, not to consider the latitude by D. R. at all, only the longitude by D. R., except when only one observation is available and the ship's most probable position has to be found. The longitude by D. R., itself is only used to find the approximate value of α .

Group (3) constitutes the *check* group, because it contains d and t given, and h and Z required.

This development shows the time and trouble our tables save, besides doing away with the turning of pages, lessening the chances of error, and simultaneously checking, per se, part of the results. In these calculations advantage has been taken of our precepts, and therefore no algebraic signs or arcs greater than 90° appear.

EXPLANATION.

After the correction is applied to the chronometer time and the equation of time to the G. M. T. we find G. A. T. also called the "Sun's geographical longitude" (\odot 's t_G), because it is the Sun's hour angle from Greenwich. This G. A. T. is *immediately converted into arc*¹ and combined apart with the Long. by D. R., giving the Sun's hour angle from D. R. or $t_{D.R.}$ in arc:

$$\odot$$
's $t_G = 25^{\circ} 54'$ W
 $G_{D.R.} = 38 \text{ 18}$ W
 \odot 's $t_{D.R.} = 12^{\circ} 24'$ E

The declination of the Sun, found in the Nautical Almanac at the same time as the Eq. of T., is taken to the nearest minute of arc. (It is noticed that no seconds of arc are used in our method nor are they necessary, and the quantities expressed in arc need only be taken within one-tenth of one minute when greater accuracy is desired).

Entering the tables with $d=12^{\circ}$ o' and $t_{D.R.}=12^{\circ}$ 24' as arguments, we find in column $a:12^{\circ}$, which is an approximate value of a, and in column $b:12^{\circ}$, which is an approximate value of b.

Entering the tables again with $a=12^{\circ}$ o' and $b=12^{\circ}$ as arguments,

¹ This procedure, not usually followed in the text books, has the *triple* advantage of simplifying the determination of *t*, abolishing the argument in time in the tables and the necessity of dealing with data expressed in time and in arc after G. A. T. is converted.

² In this particular case by coincidence a is approximately the same as d.

PLOTTING THE LINE OF POSITION

we find that the Sun's declination 12° 10' is comprised between 11° 44' and 12° 43' respectively corresponding to $b=12^{\circ}$ and $b=13^{\circ}$. Interpolating (here the interpolation is reduced to the multiplication of the factor $\frac{60'}{\Delta}=1.02$, by the difference between 12° 10' and 11° 44', that is 26'), we find that $b=12^{\circ}$ 26'.5 and t_{A} , corresponding to this value of b is 12° 17' (exactly 12° 17'.3). The ready reckoner on pp. 50 to 53 will save the trouble of doing these multiplications.

In order to do away with any corrections, this t_A , which differs from $t_{D.R.}$ seven minutes, is taken as the hour angle. Combining it with the \odot 's $t_a=25^{\circ}$ 54' W., we find a longitude which may be called assumed: $G_A=38^{\circ}$ 11' W.

In order to do away with any further interpolations, C is made a whole number of degrees by assuming a latitude, nearly the same as the Lat. by D. R., that will make it so. In our particular case it will be seen that $L_A = 16^{\circ}$ 33'.5 combined with $b = 12^{\circ}$ 26'.5, according to the precepts given, d and L contrary names: C = L + b; $L > 90^{\circ}$, will make C just 29°.

Therefore in the same column $a=12^{\circ}$ o' with $C=29^{\circ}$, we will find $h_{A}=58^{\circ}$ 49' and $Z_{A}=23^{\circ}$ 41'.

CHECK.

The necessary calculations to find h_A and Z_A are so simple and few, and, therefore, the liability to error so small, that we do not think a check is necessary.

However, the correctness of the calculations might be tested without new data by proceeding backwards, as explained further on for "identifying celestial bodies" (vide page xxxv).

To $h_A=58^\circ$ 49' and $Z_A=23^\circ$ 41' corresponds $B=61^\circ$ in column $a=12^\circ$ o'. If $L_A=16^\circ$ 33'.5, c will be found by the precepts on page xxxvi. As $Z>90^\circ$, $c=L_A+B=77^\circ$ 33'.5<90°, and we will find by interpolation (here it is reduced to the division of 33'.5 by the factor $\frac{60'}{\Delta}=1.02$ giving 33') $d=12^\circ$ 10' and $t_A=12^\circ$ 17', "d and L contrary names" and " $t<90^\circ$ ".

Of course, if d and t_A were not the same as used before, the calculations would be in error.

PLOTTING THE LINE OF POSITION.

Fig. 4, representing a section of a chart of the coast of Brazil, shows A the position by D. R. and A' the assumed position from which the line of position is determined. The altitude difference is A'B' = +21'. It is + when the true altitude h is greater than the

Group (3) constitutes the *check* group, because it contains d and t given, and h and Z required.

This development shows the time and trouble our tables save, besides doing away with the turning of pages, lessening the chances of error, and simultaneously checking, per se, part of the results. In these calculations advantage has been taken of our precepts, and therefore no algebraic signs or arcs greater than 90° appear.

EXPLANATION.

After the correction is applied to the chronometer time and the equation of time to the G. M. T. we find G. A. T. also called the "Sun's geographical longitude" (\odot 's t_G), because it is the Sun's hour angle from Greenwich. This G. A. T. is *immediately converted into arc*¹ and combined apart with the Long. by D. R., giving the Sun's hour angle from D. R. or $t_{D,R}$ in arc:

$$\odot$$
's $t_{G.} = 25^{\circ} 54'$ W
 $G_{D.R.} = 38 18$ W
 \odot 's $t_{D.R.} = 12^{\circ} 24'$ E

The declination of the Sun, found in the Nautical Almanac at the same time as the Eq. of T., is taken to the nearest minute of arc. (It is noticed that no seconds of arc are used in our method nor are they necessary, and the quantities expressed in arc need only be taken within one-tenth of one minute when greater accuracy is desired).

Entering the tables with $d=12^{\circ}$ o' and $t_{D.R.}=12^{\circ}$ 24' as arguments, we find in column $a:12^{\circ}$, which is an approximate value of a, and in column $b:12^{\circ}$, which is an approximate value of b.

Entering the tables again with $a = 12^{\circ}$ o'2 and $b = 12^{\circ}$ as arguments,

¹ This procedure, not usually followed in the text books, has the *triple* advantage of simplifying the determination of t, abolishing the argument in time in the tables and the necessity of dealing with data expressed in time and in arc after G. A. T. is converted.

² In this particular case by coincidence a is approximately the same as d.

PLOTTING THE LINE OF POSITION

we find that the Sun's declination 12° 10' is comprised between 11° 44' and 12° 43' respectively corresponding to $b=12^{\circ}$ and $b=13^{\circ}$. Interpolating (here the interpolation is reduced to the multiplication of the factor $\frac{60'}{\Delta}=1.02$, by the difference between 12° 10' and 11° 44', that is 26'), we find that $b=12^{\circ}$ 26'.5 and t_{A} corresponding to this value of b is 12° 17' (exactly 12° 17'.3). The ready reckoner on pp. 50 to 53 will save the trouble of doing these multiplications.

In order to do away with any corrections, this t_{A_n} , which differs from $t_{D.R.}$ seven minutes, is taken as the hour angle. Combining it with the \odot 's $t_{G.}=25^{\circ}$ 54' W., we find a longitude which may be called assumed: $G_{A.}=38^{\circ}$ 11' W.

In order to do away with any further interpolations, C is made a whole number of degrees by assuming a latitude, nearly the same as the Lat. by D. R., that will make it so. In our particular case it will be seen that $L_A = 16^{\circ}$ 33'.5 combined with $b = 12^{\circ}$ 26'.5, according to the precepts given, d and L contrary names: C = L + b; $L > 90^{\circ}$, will make C just 29°.

Therefore in the same column $a=12^{\circ}$ o' with $C=29^{\circ}$, we will find $h_{A.}=58^{\circ}$ 49' and $Z_{A.}=23^{\circ}$ 41'.

CHECK.

The necessary calculations to find h_A and Z_A are so simple and few, and, therefore, the liability to error so small, that we do not think a check is necessary.

However, the correctness of the calculations might be tested without new data by proceeding backwards, as explained further on for "identifying celestial bodies" (vide page xxxv).

To $h_A=58^\circ$ 49' and $Z_A=23^\circ$ 41' corresponds $B=61^\circ$ in column $a=12^\circ$ o'. If $L_A=16^\circ$ 33'.5, c will be found by the precepts on page xxxvi. As $Z>90^\circ$, $c=L_A+B=77^\circ$ 33'.5<90°, and we will find by interpolation (here it is reduced to the division of 33'.5 by the factor $\frac{60'}{\Delta}=1.02$ giving 33') $d=12^\circ$ 10' and $t_A=12^\circ$ 17', "d and L contrary names" and " $t<90^\circ$ ".

Of course, if d and t_A were not the same as used before, the calculations would be in error.

PLOTTING THE LINE OF POSITION.

Fig. 4, representing a section of a chart of the coast of Brazil, shows A the position by D. R. and A' the assumed position from which the line of position is determined. The altitude difference is A'B' = +21'. It is + when the true altitude h is greater than the

assumed altitude $h_{A_{\bullet}}$ and — when the true altitude is *smaller* than the assumed altitude. It is always taken in the direction of the observed body: *towards*, when + and in the opposite direction: *away from*, when —.

B'B'' is the line of position perpendicular to A'B'. B the foot of

FIG. 4.—Section of a chart of the coast of Brazil showing how line of position is plotted and ship's most probable position found.

the perpendicular dropped from the position by D. R. on the line of position is the ship's most probable position and *must* be taken as the ship's position when only one observation is available.

This line of position is just as valuable as the isolated knowledge of

ALTITUDE AND AZIMUTH FROM D.R.

latitude or longitude, and represents the exact and only true interpretation of the sight.1

ALTITUDE AND AZIMUTH FROM D. R. POSITION.

When the observer wishes to find $h_{D.R.}$ and $Z_{D.R.}$ corresponding to the position by D. R., instead of taking an assumed position A' (or A'') (and this might be desirable when $t_{D.R.} - t_{A.}$ is large, when the altitude difference is greater than the established limits on page xxxii, or when 2, 3, and 4 lines of position have to be plotted simultaneously), it is necessary for him to find:

1st. The value of C with $L_{D.R.}$ and b according to the same precepts given on page xvi and by simple interpolation the corresponding values of h' and Z' (approximate values of $h_{D.R.}$ and $Z_{D.R.}$);

and Z' given by the tables due to the difference $t_{D.R.} - t_{A.} = \Delta t$.

These corrections are given by the following formulæ2:

$$\Delta h = \mp \cos L \sin Z' \Delta t$$
 or $\frac{\Delta h}{\Delta t} = \mp \cos L \sin Z'$
$$\Delta Z = \Delta_1 Z + \Delta_2 Z$$

where

and

and

$$\Delta_1 Z = \mp \sin L \, \Delta t$$
 or $\frac{\Delta_1 Z}{\Delta t} = \mp \sin L$
 $\Delta_2 Z = -\tan h' \cot Z' \, \Delta h$ or $\frac{\Delta_2 Z}{\Delta h} = -\tan h' \cot Z'$

Our tables on pages 170 and 172 give the absolute values of each one of these co-efficients $\frac{\Delta h}{\Delta t}$, $\frac{\Delta_1 Z}{\Delta t}$ and $\frac{\Delta_2 Z}{\Delta h}$ and at the top of page 170 the signs of the first two for each one of the four cases. $\frac{\Delta_2 Z}{\Delta h}$ is always negative provided Z' is smaller than 90° in absolute value, as our tables give it.

The correction ΔZ is generally negligible or unimportant unless Δz is large, but even in this case ΔZ can be small, depending as it does upon $\Delta_1 Z$ and $\Delta_2 Z$ with their signs + and -.

¹ Combinations of lines of position with terrestial bearings, with lines of soundings or with one or more lines of position are not discussed here, and will be found in any up-to-date text-book on Navigation or Nautical Astronomy.

² Vide DOTT. G. PESCI, Rivista Maritima for January 1909, page 62. In this article he shows how Δh can be simplified by dividing it by $\cos L$ and then $\frac{\Delta h}{\cos L} = \mp \sin Z' \Delta t$ represents Δh expressed in minutes of longitude. In order to find it then it is only necessary to multiply Δt by $\sin Z'$.

Taking our typical example it would be worked out as follows:

 $t_{D.R.} = 12^{\circ} 24' \text{ E}$

 $a = 12^{\circ}$ o'

$$\frac{d = 12 \quad 0}{b = 12^{\circ} 26' \cdot 5} \qquad d = 12^{\circ} 10' \text{ N} \qquad \frac{t_{D.R.} = 12^{\circ} 24' \text{ E}}{\Delta t = + 7'}$$

$$\frac{h_o = 59^{\circ} \quad 0'}{\Delta t = + 10}$$

$$\frac{h_o = 59^{\circ} \quad 0'}{h = 59^{\circ} 10'}$$

$$C = 28^{\circ} 42' \cdot 5 \qquad h' = 59^{\circ} 5' \cdot 1 \qquad Z' = 23^{\circ} 53' \qquad \frac{\Delta h}{\Delta t} = -0.39$$

$$\frac{h_D.R.}{h - h_{D.R.}} = \frac{12^{\circ} 26' \cdot 1}{10'}$$

$$\frac{\Delta h}{\Delta t} = -0.39$$

$$\frac{\Delta h$$

With 5 decimal place logarithms we would find $h_{D.R.} = 59^{\circ}$ 2'.4 and $Z_{D.R.} = 24^{\circ}$ 5'.

The altitude difference +7'.6 is exactly equal to the distance between A and B on the chart, and shows that "no greater accuracy is gained by determining the line of position from A than from A'."

The disposition of the arguments of the tables permits us to take, on the assumed meridian (38° 11' W.), any latitude comprised between 15° 33'.5 and 16° 33'.5 and the computed point will fall between B" and B' on the line of position.

If we took $L_A = 16^{\circ}$ o' the altitude difference would be small (=10' only), and the computed point would practically coincide with B.

If we took $L_{A}=16^{\circ}$ 10'.6 the altitude difference would be nil (0') and the line of position could be immediately drawn. This L_{A} is found by deducing the value of C that corresponds to $h_A = h$. This C combined with b by means of our fundamental precepts gives L_A :

$$d \text{ and } L_{A} \text{ same name} \begin{cases} t < 90^{\circ} & \{L_{A} < b : L_{A} = b - C; \ Z < 90^{\circ} \\ L_{A} > b : L_{A} = b + C; \ Z > 90^{\circ} \end{cases}$$

$$d \text{ and } L_{A} \text{ contrary names} \cdot \cdot \cdot : L_{A} = b + C; \ Z < 90^{\circ}$$

$$d \text{ and } L_{A} \text{ contrary names} \cdot \cdot \cdot : L_{A} = C - b; \ Z > 90^{\circ}$$

This shows the elasticity of our method whereby a better line of position (if necessary) can be plotted from a different assumed position without much additional calculation.

MERIDIAN SIGHTS.1

When a celestial body is on the meridian, its hour angle t is either o° or 180°, according to its position above or below the elevated pole. Its azimuth Z is then also oo or 180°. It is oo when the sight is taken with the observer's "face towards the elevated pole," and 180° when he has to turn his "back towards the elevated pole," to take the sight.

Introducing these values in groups of equations (3) and (1) we find that

$$a = 0^{\circ}$$
 o', $d = b$ and $h = B$.

Sights can generally be considered as meridian when $a < 0^{\circ}$ 15'. xxviii

PRECEPTS FOR MERIDIAN SIGHTS

This means that meridian sights could be worked out in column $a=0^{\circ}$ o' of our tables. It is better, however, to deduce directly from our general precepts, or from those giving L on page xxviii, special precepts giving *immediately* L with h and d.

These precepts will present the advantage, over the usual way of treating meridian sights, of doing away with the necessity of finding the meridian zenith distance, and giving it a confusing name or sign, such as now is in practice (N or + when facing South, and S or - when facing North). They show that even this simple time-honoured problem is capable of further simplification.

PRECEPTS FOR MERIDIAN SIGHTS.

$$Z=$$
 0° $\left\{\begin{array}{l} \text{Face towards} \\ \text{elevated pole} \end{array}\right. \left. \left\{\begin{array}{l} t=\text{ o}^{\circ} : L=(h+d)-90^{\circ}; d \text{ and } L \text{ same name.} \\ t=180^{\circ} : L=(90^{\circ}+h)-d; d \text{ and } L \end{array}\right. \right. ,$

$$Z=180^{\circ} \left\{\begin{array}{l} \text{Back towards} \\ \text{elevated pole} \end{array}\right. \left. \left\{\begin{array}{l} t=\text{ o}^{\circ} : L=(90^{\circ}+d)-h; d \text{ and } L \end{array}\right. , , ,$$

$$t=\text{ o}^{\circ} : L=90^{\circ}-(h+d); d \text{ and } L \text{ contr. names.} \right.$$

In Fig. 2 the 1st case corresponds to a body between P and Z.

1. Example. On August 27, 1908, in Lat. by D. R. 2° 40′ N., and Long. by D. R. 47° 22′ W., the observed meridian altitude of the sun's lower limb was 82° 21′. $Z = 0^{\circ}$ (face towards elevated pole and $t = 0^{\circ}$). Find the latitude.

OUR WAY.
 USUAL WAY.

$$h \odot = 82^{\circ} 21'$$
 $h \odot = 82^{\circ} 21'$

 Corr. = + 10.5
 Corr. = + 10.5

 $h \odot = 82^{\circ} 31'.5$
 $h \odot = 82^{\circ} 31'.5$
 $d \odot = 10 7.0 N$
 $z \odot = 7^{\circ} 28'.5 S$
 $L = 9)2^{\circ} 38'.5 N$
 $d \odot = 10 7.0 N$
 $L = 2^{\circ} 38'.5 N$

2. Example. On September 5, 1908, in Lat. by D. R. 35° N., and Long. by D. R. 70° 30′ W., the observed meridian altitude of the sun's lower limb was 61° 28′.1. $Z=180^{\circ}$ (back towards elevated pole). Find the latitude.

OUR WAY.

$$h \odot = 61^{\circ} 28'.\mathbf{1}$$
 $Corr. = + 10.2$
 $h \odot = 61^{\circ} 38'.3$
 $corr. = + 10.2$
 $corr. = + 10.2$

SIGHTS OF THE MOON, STARS, AND PLANETS.

Observations of the Moon, Stars, and Planets are worked out the same way as those of the Sun, excepting the way in which the $t_{D.R.}$ is determined. After correcting the chronometer and finding G. M. T. this interval of mean time is converted into an interval of sidereal time to which is added the Sidereal Time at Greenwich Mean Noon (or the R.A.M.S. at the same instant) in order to find G. S. T. This G. S. T. combined with the observed body's R. A. will give us the body's geographical longitude $(t_G.)$, or its hour angle from Greenwich. This t_G is converted *immediately* into arc and combined with the Long. by D. R., finally giving the body's $t_{D.R.}$

EXAMPLE.

C. =
$$9^h \ 39^m \ 43^s$$

C. C. = $-13 \ 16$
G. M. T. = $9^h \ 26^m \ 27^s$
Accel. = $+1 \ 33$
R. A. M. S. = $10 \ 17 \ 20$
G. S. T. = $19^h \ 45^m \ 20^s$
R. A. = $14 \ 11 \ 28$
 $t_G = 5^h \ 33^m \ 52^s$ or t_G . (in arc) = $83^\circ \ 28' \ W$
 $G_{D.R.} = 43 \ 42 \ W$
 $t_{D.R.} = 39^\circ \ 46' \ W$

SIGHTS OF a URSÆ MINORIS (Polaris).

Sights of *Polaris* are more easily and rapidly worked out, on account of its high declination: 88° 50' in 1910, and the consequent small value of a, always less than 1° 10'.

For this declination, the tables on pages 168 and 169 show that a and b vary very slowly for large variations of t, and it is then possible to determine immediately their exact values by inspection.

Turning to pages 54 and 55 of the tables, we notice that large variations of a do not sensibly affect the values of h for a given value of a. Whether a is 0° 0′, 0° 30′, or 1° 0′, we have practically always a0 up to a1 = 70°. Therefore it is not necessary to determine a2 exactly.

¹ The use of a sidereal chronometer on board ship would simplify matters and render more attractive observations of the Moon, Stars, and Planets. However, a mean time chronometer may be considered a sidereal chronometer as long as its daily rate is taken as $+3^{\text{m}}$ $56^{\text{s}}.56 \pm \text{daily}$ rate. If the *Nautical Almanac* gave the Sun's, the Moon's, and the Planets' declinations and right ascensions for oh G. S. T., only one process for finding t_G would need to be followed in all cases, and no mean time chronometers would be necessary.

LINES OF POSITION WITHOUT AZIMUTHS

As *Polaris* increases in declination (its Annual Variation is only 19"), the exact value of b can be obtained by simple interpolation between $d=88^{\circ}$ 50' and $d=89^{\circ}$ o'.

Example.¹ On March 6, 1910, in Longitude 37° W., at 10^h 11^m 35^s Greenwich Mean Time, suppose the true altitude of *Polaris* to be 46° 17'.5. Required the latitude (or the line of position).

G. M. T. = 10^h 11^m 35^s

Accel. = + 1 41

R. A. M. S. = 22 53 21

G. S. T. = 9^h 6^m 37^s

R. A. = 1 27 0

$$t_G = 7^h 39^m 37^s$$
 or t_G (in arc) = 114° 54′ W

 $G_{D,R} = 37 0 \text{ W}$
 $t_{D,R} = 77^\circ 54′ \text{ W}$

Entering the tables with $d=88^{\circ}$ 50', and $t_{D.R.}=77^{\circ}$ 54', we find immediately $a=1^{\circ}$ 9' and $b=89^{\circ}$ 45'. (As b corresponds to the exact value of d, it is not necessary to re-enter the tables with a and b as arguments, as explained on page xx). Entering the tables again with $a=1^{\circ}$ 0', we find corresponding to $h=46^{\circ}$ 17'.5: $B=46^{\circ}$ 18'.5 and $Z=1^{\circ}$ 27'. Combining this B with b by means of the precepts 2 for finding L at the bottom of page 168 ($t<90^{\circ}$), we have

$$L = 46^{\circ} \text{ 3'.5 N.}$$

With the latitude thus determined and the longitude by D. R., we find a position through which the line of position is drawn, as usual, perpendicular to the Star's true bearing.

As *Polaris'* azimuth is generally very small, the parallel of latitude will in the great majority of cases practically coincide with the line of position.

LINES OF POSITION DETERMINED WITHOUT AZIMUTHS.

If we assumed the latitude as 15° 33'.5, instead of 16° 33'.5, C would be 28°, $h_A = 59^\circ$ 44', and $Z_A = 24^\circ$ 22'. As the assumed longitude is the same, 38° 11' W., the assumed position would be A'' (vide Fig. 4), and the altitude difference -34'.

With the two assumed positions A' and A'' (60' apart on the same meridian) and the two altitude differences +21' and -34' the line of position can be found by drawing a line tangent to the two dotted circles drawn from A' and A'' respectively with 21' and 34' as radii.

This process appearing now for the first time gives a line of position independent of the observed body's azimuth, and its use

¹ Taken from the Nautical Almanac for 1910 for the sake of comparison.

² In the case of *Polaris* the four precepts for finding L with b and B are reduced to two, because L, in practice, is not *greater* than b, and d and L cannot be of contrary names.

facilitates the plotting of the line of position. It will prove very useful for plotting with great accuracy lines of position on Mercator's chart when the latitude is higher than 45°, especially when the body is near the prime vertical and the altitude difference large.

No error is committed in the plotting of the line when the altitude difference is $\leq 60'$ up to 75° latitude. With the ordinary process of plotting lines, as described on page xxv, a maximum error of 1° is introduced in the direction of the line of position when the azimuth is 90° with an

altitude difference = 60° when the latitude = 45° ,, ,, 48^{\prime} ,, ,, 50° ,, ,, 42^{\prime} ,, ,, 55° ,, ,, 36^{\prime} ,, ,, 60° ,, ,, 65°

A comparison of the two azimuths will control the coincidence of the straight line of position B'B'' and the curve of position (not represented on the chart), as it is evident the greater the difference between the two azimuths less will the two lines coincide.

However, this comparison need only be made when $t < 45^{\circ}$ and the observed body's declination is smaller than its altitude (d < h).\(^1\) When $t > 45^{\circ}$, and d < h, d > h, or d = h, the curve of position and the straight line of position on Mercator's chart coincide within 1' for a distance equal to or greater than 83' $(83'\sqrt{\cos L})$ in miles) on each side of the ship's most probable position. (Vide "Table for controlling the coincidence of lines of position," on page 173).

In our typical example the line of position B'B'' coincides with the corresponding curve of position within $\mathbf{1}$ mile for a distance of 59.5 miles on each side of the ship's most probable position B. B_1 and B_2 , 30 miles from B, are only 0.2 of a mile distant from the curve of position. B_3 and B_4 (not shown on the chart), 59.5 miles from B, are just $\mathbf{1}$ mile distant, and limit the *useful* part of the straight line of position.

RECTIFICATION OF LINES OF POSITION.

As the altitude of a celestial body increases, its zenith distance or the radius of the circle of position decreases, so it might happen that at a certain distance from the "computed point" the circle of position (or curve of position on Mercator's chart) and the straight line of position do not practically coincide.

The practical coincidence of the two lines takes place when the extreme points of the two lines are not further apart than I mile, as

¹ For details vide the author's: "Limites de coincidencia da recta Marcq Saint Hilaire com a curva de posição correspondente." (Reprinted from the Revista Maritima Brazileira, July 1906, page 41.)

RECTIFICATION OF LINES OF POSITION

in the case considered in Fig. 4. This limit can be increased or decreased according to the accuracy sought by the navigator, since it must not be forgotten that the circle of position is the line that contains the observer's position and that the straight line of position is only a practical substitute.

When only one line of position is determined it is generally not necessary to rectify it, that is to change its direction and position so that it will represent better the circle of position in the vicinity desired.

Fig. 5.

Let BF and B_1F in Fig. 5 be two lines of position, and F their intersection generally taken as the ship's position. Let us suppose that the body giving the line B_1F was low enough for us to be sure it is a practical substitute for the circle, meaning that F is less than $\mathbf{1}'$ from the circle of position. On the other hand, the body giving BF was very high (above 60°), and F is more than $\mathbf{1}'$ from the circle of position BB'. This means that F (the intersection of the two straight lines) is not a practical substitute for the intersection of the two circles of position (only one BB' being represented in the figure for demonstration).

It is then necessary to rectify BF. The tables 1 for rectifying lines

Abridged, by special permission of the author, from those accompanying a very remarkable article, entitled "Sulla Teoria e la Pratica della Nuova Navigazione Astronomica," by Dott. A. Alessio, Tenente di Vascello, Royal Italian Navy, published as a "supplement" to the *Rivista Marittima* for July-August 1908. *Vide* also Professor G. Pes' very interesting letter in the *Rivista Marittima* for March 1909, Appendice, page 14.

of position give the values of $FB' = \Delta h$ and Z_1 with the altitude h and the distance D = BF, and these are sufficient for determining the new line of position B'F' perpendicular to FB'. This new line intersects the line B_1F in F', which is taken as the ship's position.

Sometimes it may be necessary to rectify both lines, or to rectify one of them a second time, but this is very rare in practice.

This method recently devised by Lieut. Alessio saves the trouble of calculating a new altitude difference and azimuth for determining the line of position B'F' from F.

We have considered the angle Z_1 instead of the azimuth difference ΔZ given by Lieut. Alessio, because it saves drawing a perpendicular to BF.

When the altitude is lower than 60° generally it will not be necessary to rectify lines of position.

When the altitude is higher than 60° use a distance D in miles corresponding to which $\Delta h = 0'.5$, 1', 2' or more miles for the given altitude, according to the scale of the chart.

The tables show that the departure (Δh) between the circle and the straight line of position is $\leq 1'$ for

ALTITUDE AND AZIMUTH FOR SIGHTING

By determining the approximate altitudes and azimuths of several planets and bright stars, such as Venus and Jupiter, Sirius, Canopus, Vega, Capella, Rigel, Arcturus, Procyon, Achernar, &c., it is possible to take sights of them in broad daylight, provided their positions are far enough away from the Sun to be visible with the high power inverting telescope.

The previous knowledge of the approximate altitudes and azimuths of these and of many other celestial bodies will also enable the navigator during the twilight to take good sights of them in rapid succession with a daylight horizon, long before it would be possible to locate them with the naked eye alone.

Naturally the problem is the same as explained before on page xv,

¹ A brief account of the possibilities of daytime observations of stars and planets is given by Mr. C. E. MUMFORD (Union Castle Line), in his very interesting little pamphlet, "How to Identify Unknown Stars, &c." London, 1909, 6d.

IDENTIFICATION OF CELESTIAL BODIES

but as not so great accuracy is necessary the required altitudes and azimuths are found by inspection without interpolating.

The following precepts will show when the body is below the horizon, and therefore it cannot be seen at the time:

$$d$$
 and L same name $t>90^{\circ}$ $L+b<90^{\circ}$ d and L contrary names . . .
$$\begin{cases} t<90^{\circ} \dots L+b>90^{\circ} \\ t>90^{\circ} \end{cases}$$

If, for some reason, the bodies were not observed at the time for which the altitudes were calculated, the table giving the rate of "change of altitude per minute of time" on page 174 will enable the observer to find the altitude before or after a certain interval of time.

IDENTIFICATION OF CELESTIAL BODIES

The identification of celestial bodies, or star identification, is of prime importance nowadays, and is strictly indispensable when only one or a few stars are showing at a time. In this case it is impossible to identify the observed stars by alignments.

By rendering "the star observer independent of any previous knowledge of the name of the star he observes," and "by enabling him to identify it from the data used in his observation together with its approximate true bearing," our tables will permit, on account of the great number of arguments, the identification of any one of the 316 stars above magnitude 4.1 catalogued in the Nautical Almanac, without doubt or confusion, and practically without interpolation.²

Therefore, the greatest difficulty in the use of stars—the uncertainty or ignorance of the names of the stars observed—will be overcome.

A star is identified in the *Nautical Almanac* by means of its Right Ascension and Declination. The Right Ascension is found by combining the Greenwich Sidereal Time with the star's geographical longitude. This t_{G} is found by combining the star's hour angle with the longitude by D. R.

We have then to find the star's hour angle t and its declination d. They can be easily and readily obtained from our tables, if we know the star's true altitude and azimuth, or true bearing,³ the

¹ H. W. HARVEY, "What Star is it?" Tables for identifying unknown stars. London, 1909, page 3.

² a Ursæ Minoris (*Polaris*) is not included in this number, but is easily identified without computation. Below 70° latitude its greatest azimuth is 3°.4, and its altitude is always within 1° 10′ of the exact latitude of the observer.

³ When this azimuth or true bearing cannot be obtained by compass observation, determine by means of 3 or more altitudes taken in 3 or more minutes the rate of "change of altitude per minute of time," and our "change of altitude table" on page 174 will give approximately the azimuth with the rate of change, and the observer's latitude. Ex. Lat. 32° and rate of change 9'.o: Azimuth, 45°.

This method of finding the azimuth does not give good results when the body is near the prime vertical, as the table shows.

observer's latitude and longitude by D. R., and the Greenwich time of the observation.

Thus, the problem of identifying celestial bodies is the reverse of the problem of determining altitude and azimuth.

Given h, Z and L, find d and t.

DETERMINATION OF d AND t.

The lower equations of groups of equations (3) and (4) on page xiii are perfectly similar to the upper ones, and show, if we enter the tables with h and Z as arguments in place of d and t respectively, we will find in column a an approximate value of a, and in column b an approximate value of B.

Entering the tables again with a and B as arguments, we will find approximately the values of h and Z given. When greater accuracy is required a more exact value of B can be determined for the exact value of h.

The values of d and t will then be found in the same column a corresponding to b or its complement c.

Determination of $90^{\circ}-b$ or c.

The following precepts deduced from those for determining C facilitate the determination of c given L and B, and present the same advantages as the others. The name of the declination is readily shown.

$$Z < 90^{\circ}$$
 $\begin{cases} L < B \\ L > B \end{cases}$ \vdots $c = B - L \\ \vdots$ \vdots d and L same name $t < 90^{\circ}$ $t > 90^{\circ}$

$$Z>90^{\circ}$$
 $\begin{cases} L+B>90^{\circ}: c=180^{\circ}-(L+B); d, L, m, c < t<90^{\circ} \\ L+B<90^{\circ}: c=L+B, c, c; d, m < L < t<90^{\circ} \end{cases}$

When $Z < 90^{\circ}$, the *smaller* of the two quantities L and B is always subtracted from the *larger* of the two.

When $Z > 90^{\circ}$, L and B are always added together. If their sum is greater than 90°, it is subtracted from 180°.

The following example is one of many presenting themselves daily to navigators.

Example. On August 26, 1908, about 6h 30m P.M., in Lat. by D. R. xxxvi

TIME-AZIMUTHS FOR DEVIATION

o° 20′ N., and Long. by D. R. 44° 23′ W., the weather being cloudy, a bright star appeared and was observed through a break in the clouds in a S.W. direction, bearing true 17°.5 at 9^h 41^m 14^s of the Chronometer, 13^m 16^s fast of G. M. T. The true altitude at the same instant was 23° 48'. The Sidereal Time at Greenwich Mean Noon (R. A. M. S.), was 10^h 17^m 20^s . It was doubtful whether the star was a^2 or β Centauri, both being close to one another, and approximately of the same magnitude. What star was it?

Once known that the observed star was a^2 Centauri, we would work out the sight for position, and would find

$$L_A = 0^{\circ} \text{ 1o' N. and } G_A = 44^{\circ} 23' \text{ W.}$$

 $h_A = 23^{\circ} 58'$, $Z_A = 17^{\circ} 34' \text{ S.W.}$

with very little extra calculation.

TIME-AZIMUTHS FOR DEVIATION

These tables constitute *ideal time-azimuth tables*, as a little examination and comparison with other tables will show.

For the Sun and other celestial bodies with declinations less than 24° , time-azimuths can be easily and rapidly found without interpolation for every 30' (2 minutes of time) hour angles and every 1° of latitude. The hour angle interval increases slowly with the increasing declinations and decreases slowly for increasing values of a, while the latitude interval remains constant throughout.

¹ The determination of the R. A. by means of the G. S. T. and the t_{G_n} instead of determining it (as usually is done) by means of the R. A. M. (A. T. S. $+ \odot$'s R. A.) and the t_i might seem longer, but it must be remembered that stars are identified for position (not for pleasure), and G. S. T. and the t_{G_n} enter in this calculation, whereas the R. A. M. and the \odot 's R. A. are of no use at all afterwards, and give less accurate results.

Time-azimuths are found by the same method used for determining h and Z for lines of position, and as h is not necessary it is not taken into consideration. Unless great accuracy is required (which is not the case in practice) b can be immediately found by inspection without interpolating.

Example. August 26, 1908, A.M. Lat. by D. R. 0° 30' S., and Long. by D. R. 41° 40' W. The Sun's compass bearing was taken at 23^h 3^m 0^s Greenwich mean time. What was the Sun's true bearing or azimuth at the same instant?

G. M. T. =
$$23^h$$
 3^m 0^s Eq. of T. = -1 56 G. A. T. = 23^h 1^m 4^s $0's$ $t_G = 0.58$ 56 E $0's$ $t_G = 0.58$ 56 E $0's$ $t_G = 14^\circ$ $44'$ E $0's$ $t_G = 14^\circ$ $44'$ E $0's$ $t_G = 14^\circ$ 40 W $10's$ $t_{D.R.} = 10's$ $10's$ $10's$

TIME-ALTITUDE-AZIMUTHS

When d, t and h are given to find Z the tables give immediately its value.

Example. Same as above for time-azimuth. Given $d=10^{\circ}$ 29', $t=56^{\circ}$ 24', and $h=32^{\circ}$ 51', find Z.

Entering the tables with d and t as arguments, we will find in column $a: 55^{\circ}$ o', which is an approximate value of a, and in column $b: 18^{\circ}$, an approximate value of b. Entering the tables again with $a=55^{\circ}$ o' and $b=18^{\circ}$ as arguments, we will find approximately the values of d and t. In the same column $a=55^{\circ}$ o' corresponding to $h=32^{\circ}$ 51' we will find $Z=77^{\circ}$ 9'.

DISTANCE AND COURSE IN GREAT CIRCLE SAILING

The problem of finding distance and course in Great Circle Sailing may also be easily solved by our tables, because it is the same as determining altitude and azimuth. The distance corresponds to the zenith distance or complement of the altitude and the course to the azimuth. The only difference is that the distance between the two given points can be greater than 90°, whereas the zenith distance cannot be greater than 90°.

In Fig. 1 let A be the port of departure, M be the port of arrival and P the pole nearest to A. PQP'Q' the meridian of Greenwich and QA'M'Q' the Equator.

If L is the latitude of the port of departure A, L' the latitude of xxxviii

LUNAR DISTANCES

the port of arrival M and MPA or t the difference in longitude between the two ports, the following precepts enable us to determine the value of C given L and b and indicate also in the last two columns if the distance D and the course C_1 are smaller or greater than 90°. When <90° the values of D and C_1 given by the tables are the right ones. When >90° subtract the values found from 180°.

$$L' \text{ and } L \\ \text{same name} \begin{cases} t < 90^{\circ} \begin{cases} L < b \\ L > b \end{cases} \dots : C = b - L; D < 90^{\circ} \text{ and } C_{1} < 90^{\circ*} \\ L > b \end{cases} \dots : C = L - b; D < 90^{\circ} \text{ , } C_{1} > 90^{\circ*} \end{cases} \\ t > 90^{\circ} \begin{cases} L + b > 90^{\circ} : C = L + b; D < 90^{\circ} \text{ , } C_{1} < 90^{\circ*} \\ L + b < 90^{\circ} : C = L + b; D > 90^{\circ} \text{ , } C_{1} < 90^{\circ*} \end{cases} \\ L' \text{ and } L \\ \text{contrary names} \end{cases} \begin{cases} t < 90^{\circ} \begin{cases} L + b < 90^{\circ} : C = L + b; D < 90^{\circ} \text{ , } C_{1} < 90^{\circ*} \\ L + b > 90^{\circ} : C = L + b; D > 90^{\circ} \text{ , } C_{1} > 90^{\circ*} \end{cases} \\ t > 90^{\circ} \begin{cases} L > b \\ L < b \end{cases} \dots : C = L - b; D > 90^{\circ} \text{ , } C_{1} < 90^{\circ} \end{cases}$$

* These are the four cases corresponding to those for finding h and Z ($D < 90^{\circ}$). When L + b is greater than 90° it is subtracted from 180° .

In our tables L' takes the place of d, $90^{\circ}-D$ the place of h, and C_1 the place of Z.

We are of the opinion, however, that the Great Circle charts offer a more simple and practical solution of the problem, and the tables only ought to be used when they are not at hand.

LUNAR DISTANCES

We have already stated in the INTRODUCTION that the problem of calculating Lunar Distances is similar to the problem of determining Distance in Great Circle Sailing.

In Fig. 1 on page ix, let M be the Moon, A the other body observed, and P the pole nearest to A. MA will be the Lunar Distance. If QA'M'Q' is the celestial Equator and Q the first point of Aries or the true vernal equinox, QPA' or QA' will be the Right Ascension of A, QPM' or QM' the Right Ascension of the Moon and A'PM'=t equal to the difference between the two Right Ascensions. If we represent MM', the declination of the Moon by d_M and AA' the declination of the other body observed by d_A , the following formulæ and precepts will enable us to calculate the Lunar Distance MA=D without dealing with algebraic signs or arcs greater than 90°.

$$\tan b = \tan d_M \sec t$$

$$\cos D = \sin d_M \cos C \csc b$$

¹ Vide "The Development of Great Circle Sailing," by G. W. Littlehales, U.S. Hydrographic Office, Second Edition, Washington, 1899.

$$d_{M} \text{ and } d_{A} \text{ same name } \dots \begin{cases} t < 90^{\circ} \begin{cases} d_{A} < b & :: C = b - d_{A}; \ D < 90^{\circ} \\ d_{A} > b & :: C = d_{A} - b; \ D < 90^{\circ} \end{cases} \\ t > 90^{\circ} \begin{cases} d_{A} + b > 90^{\circ} : C = d_{A} + b; \ D < 90^{\circ} \\ d_{A} + b < 90^{\circ} : C = d_{A} + b; \ D > 90^{\circ} \end{cases} \\ d_{M} \text{ and } d_{A} \text{ contrary names} \end{cases} \begin{cases} t < 90^{\circ} \begin{cases} d_{A} + b < 90^{\circ} : C = d_{A} + b; \ D < 90^{\circ} \\ d_{A} + b > 90^{\circ} : C = d_{A} + b; \ D > 90^{\circ} \end{cases} \\ t > 90^{\circ} \begin{cases} d_{A} > b & ... : C = d_{A} - b; \ D > 90^{\circ} \\ d_{A} < b & ... : C = b - d_{A}; \ D > 90^{\circ} \end{cases} \end{cases}$$

For the sake of comparison we will work out the example explained on page 232 of the Nautical Almanac for 1910, Part I.

EXAMPLE I .- MOON AND SUN.

To find the true distance between the Moon and the Sun at noon, Greenwich Mean Time, on March 8, 1910.

From the Nautical Almanac, Part I.

RIGHT ASCENSION. DECLINATION.

Sun 23^h 12^m 20^s.0

Moon 20 41 3.4
diff.
$$2^h$$
 31^m 16^s.6 or 37° 49' 9" = t

log tan $d_M = 9.628846$
log sec $t = 0.102400$
log tan $b = 9.731246$
 $b = 28^\circ$ 18' 21"
$$d_A = 5 7 9$$
 $C = 23^\circ$ 11' 12"

DECLINATION.

$$5^\circ$$
 7' 9" S (d_A)

$$\frac{23 2 50 S}{37^\circ 49' 9" = t}$$

log sin $d_M = 9.592720$
log cos $C = 9.963423$
log cosec $b = 0.324059$
log cos $D = 9.880202$

$$D = 40^\circ$$
 37' 48"

Therefore, 40° 37′ 48″ is the *true distance* between the Moon and the Sun at noon on March 8, 1910.

ALL OTHER PROBLEMS SOLVED

All the other problems in Nautical Astronomy depending upon the solution of right-angled spherical triangles can be easily solved by these tables.

Some of these problems are: Amplitudes and horizon-azimuths, hour angle of a celestial body in the horizon (approximate time of sunset and sunrise, &c.), altitude and hour angle of a celestial body on the prime vertical, altitude and hour angle of a celestial body when position angle is 90°, &c.

ALL OTHER PROBLEMS SOLVED

	Problem	Formula	FORMULA
Fund	amental Formulæ	$\sin a = \cos d \sin t$	cot b=cot d cos t
	desgiven d and L $\left\{ \dots ,, d, t \right\}$	$\sin d = \cos L \sin (90^{\circ} - Z)$ $\sin Z = \cos d \sin t$	cot $(90^{\circ} - d) = -\cot L \cos t$ When d and L are of the same name, take $180^{\circ} - b$ for value of t .
n' in altitude is the I variation in azimuth and L same name).	Body on prime vertical: d <l< td=""><td>$\sin d = \cos (90^{\circ} - L) \sin h$</td><td>$\cot L = \cot d \cos t$</td></l<>	$\sin d = \cos (90^{\circ} - L) \sin h$	$\cot L = \cot d \cos t$
nen variation' in greatest and var the least (d and	1 14	•	11 1 1
When gree the	Body's position angle is 90° : $d > L$	$\sin L = \cos (90^\circ - d) \sin h$	$\cot d = \cot L \cos t$

A comparison of the formulæ for solving these problems with the fundamental formulæ will immediately show the navigator how to proceed. It is well to notice that, except the case in which horizon-azimuths are found by the formulæ

$$\sin Z = \cos d \sin t$$

the required quantity is always found in the tables from underneath in column t.

AMPLITUDES.

To find the amplitude of a celestial body in the true horizon enter the tables with L in the place of d. Run up column a with d opposite which will be found $90^{\circ}-Z$ in column t.

Amplitudes of the Sun for compass correction are generally the only ones observed and for a height of the eye= 10^{m} (33 ft.) the Sun's centre is on the true horizon when its lower limb is about 24' ($\frac{3}{4}$ of its diameter) above the horizon.

Example. $L=37^{\circ}$ N., and $d=22^{\circ}$ N. (rising), we will find $90^{\circ}-Z=28^{\circ}$ E.: N.

The amplitude always takes the name of the declination.

Sometimes it may be more convenient to observe the Sun just when its lower limb touches the horizon. A small correction given in the table below will then have to be applied to the amplitude found by the formula

$$\sin d = \cos L \sin (90^{\circ} - Z)$$
.

Dec.				Lati	tude.			
	o°	100	20°	30°	40°	50°	60°	65°
o°	0°.0	0°.1	0°.2	0°.2	o°.4	o°.5	o°.8	°.9
10	.0	. I	.2	•3	•4	.6	.8	1,0
20	.0	, I	.2	•3	•4	.6	1.0	1.6
24	.0	.1	.2	• 3	•4	•7	1.3	3.4

d and L same name add correction to $90^{\circ}-Z$ d and L contrary names . . subtract , from ,

This table will be practically good for heights of the eye varying from 6^m to 15^m (20 ft. to 49 ft.).

To find the hour angle of a body in the true horizon enter the tables with L in the place of d. Run up column b with $90^{\circ}-d$ opposite which will be found t in column t.

Example. $L=37^{\circ}$ N., and $d=22^{\circ}$ N. (rising), we will find $t=108^{\circ}$ E.

HORIZON-AZIMUTHS.

To find horizon-azimuths enter the tables with d and t (or $180^{\circ}-t$) as arguments. In column a we will find Z.

Example. $d=22^{\circ}$ N., and $t=108^{\circ}$ E. We will have $Z=62^{\circ}$ N.E. They always take the name of the declination.

BODY ON PRIME VERTICAL.

To find the altitude of a celestial body on the prime vertical entertables with $90^{\circ}-L$ in the place of d, and run up column a with d. In column t will be found h.

To find the hour angle of a celestial body on the prime vertical enter tables with d as argument, and run up column b with L. In column t will be found t. In column a will be found a volumn a volum

Example. $d=8^{\circ}$ N., and $L=39^{\circ}$ N. We will find $h=12^{\circ}$ 47', and $t=80^{\circ}$.

BODY'S POSITION ANGLE: 90°.

To find the altitude of a celestial body when its position angle is 90° enter tables with $90^{\circ}-d$ in the place of d, and run up column α with L. In column t will be found h.

To find the hour angle of a celestial body when its position angle is 90° enter tables with L in the place of d, and run up column b with d. In column t will be found t. In column a will be found 90° -h.

Example. $d=23^{\circ}$ S., and $L=12^{\circ}$ S. We will find $h=32^{\circ}$ 9', and $t=60^{\circ}$.

CONCLUSION AND APPENDIX

CONCLUSION

The author since 1908, during a trip from Rio de Janeiro to New York on the s.s. *Voltaire*—Lamport and Holt—has worked out many sights for lines of position taken under various circumstances by his modified tables and the improved methods as explained here, with the most satisfactory results.

Only two openings of the tables are necessary. The first is immediately indicated by the value of d, and the second by the value of a. No time is lost in turning pages. If indexed the desired pages will be found quicker.

The fact that the perpendicular a is common to the two right-angled triangles reduces the bulk of the tables to a minimum.

The use of an assumed position instead of the position by D. Regreatly simplifies the calculations involved in the determination of h and Z, as we have seen.

In the typical example presented no actual figures used have been suppressed. The tables give h with an approximation of one minute, and in the majority of cases with greater approximation. Z is always found with sufficient approximation for practical use.

The simplicity and readiness with which all the other problems are also solved show that: They are "the simplest and readiest in solution."

APPENDIX I

Navigators "ought to be spared the waste of time in making calculations, which can be 'better done once for all by a single computer on dry land."

LORD KELVIN. Letter to Lord Ellenborough, R.N., December 4, 1902. ["Stars and Sextants," Published by J. D. Potter, London, 1903.]

It is easier to turn pages than to interpolate.

In order to spare navigators "the waste of time in making calculations," and especially to reduce the chances of error to a *minimum*, the author proposes, as a simple and easy solution of the problem, an extension of his tables where d and t would be tabulated for every *minute of arc* (1') of a and every *thirty minutes of arc* (30') of b.

With such tables, occupying a little over 1000 pages in large 8vo, no interpolation would be necessary, and the only calculation

involved would be the determination of C with L and b by means of our simple precepts.

Thus the problem of determining lines of position at sea would be nearly as simple as the problem of determining latitude by a meridian sight.

Our typical example on page xxiii would be solved by such tables as follows:

$$\frac{a = 12^{\circ} 13' \quad \text{G. A. T.} = 1^{\text{h}} 43^{\text{m}} 36^{\text{s}}}{\bar{b} = 12^{\circ} 27'} \quad d = 12^{\circ} 10' \text{ N}$$

$$\frac{L_{A.} = 16 \quad 3 \text{ S}}{L_{A.} = 16 \quad 3 \text{ S}} \quad \frac{t_{A.} = 12 \quad 30 \quad \text{E}}{G_{A.} = 38^{\circ} 24' \text{ W}}$$

$$\frac{h_{o} = 59^{\circ} \text{ o'}}{\text{Corr.} = + \quad 10}$$

$$\frac{h = 59^{\circ} 10'}{h = 59^{\circ} 10'}$$

$$L_{A.} = 24^{\circ} 24' \text{ NE}$$

$$\frac{h - h_{A.} = - \quad 2'}{h - h_{A.} = - \quad 2'}$$

EXPLANATION.

Entering the tables with $d=12^{\circ}$ 10', and $t_A=12^{\circ}$ 30', as arguments, we would find *immediately* $a=12^{\circ}$ 13', and $b=12^{\circ}$ 27'.

(As b corresponds to the *exact* value of d, it is not necessary to reenter the tables with a and b as arguments, as explained on page xx.)

Entering the tables again with $a=12^{\circ}$ 13' and $C=28^{\circ}$ 30', as arguments, we would find *immediately* $h_{A}=59^{\circ}$ 12', and $Z_{A}=24^{\circ}$ 24'.

Although it is well known that "it is easier to turn pages than to interpolate," the question appears whether it would be worth while to extend the tables as mentioned above in order to do away with the two simple interpolations occurring in our method.

However, it would be convenient to extend the tabulation for every 10' of a, and for every 1° of b. The tables would then have 360 pages similar to those published now.

If these tables meet with success, the author will publish the above 360 page tables, which he is already preparing for his own use.²

¹ This method may be advantageously used with the present tables when the hour angle t is near 90°, especially when the declination is large. Hardly any calculation is then necessary to find h and Z.

Example. $d=30^{\circ}$ 15' S., $t=89^{\circ}$ 0', and $L=10^{\circ}$ 17' S. We would find $a=59^{\circ}$ 44', $b=88^{\circ}$ 17', $C=78^{\circ}$ 0', $h=6^{\circ}$ 1', and $Z=60^{\circ}$ 17'.

² The author has decided to reduce these 360 pages to 166 in view or the fact that the factors $\frac{60'}{\Delta}$ and $\frac{\Delta}{60'}$ are not necessary for every 10' of α . (January, 1912.)

APPENDIX II

The true spirit of the "Newest Navigation" requires the plotting of each line of position upon Mercator's chart or upon squared paper representing a Plane chart, and for this reason we have given Figs. 3 and 4 showing how these lines are plotted.¹

However, the classical Noon position deduced by combining the morning (or afternoon) sight with the meridian sight of the Sun continues and will continue to render good services to many navigators, and at the request of several friends, we have decided to add this Appendix showing how the Noon position can be easily and rapidly determined with our Tables by calculation alone.

This case also applies itself to the combination of a time sight with the meridian sight of any celestial body.

Example.—The same as on page xix. The distance run from 8 A.M. to Noon is represented by GT (Fig. 3): 5'.5 N. in latitude and 40'.1 W. in longitude.

The observed meridian altitude of the Sun was 42° 35'.6. BACK towards the elevated pole.

What was the ship's position at NOON?

¹ See also "The New Navigation: Presented in a Familiar Way for Captains and Officers of the Merchant Service." By F. C. Cross, Lieut. R.N.R. Glasgow: James Brown & Son. Price 2s. net.

EXPLANATION.

The first part of the calculation is developed as explained on

page xx.

The application of the first correction (Corr.=8'.9 W) to G_A gives us the longitude of the point G where the line of position GBL intersects the assumed parallel of latitude 36° 51'.6 N. This correction is found by multiplying the coefficient $\frac{\Delta t}{\Delta k}$ =1.48 by $k-k_A$ =6'.

This coefficient $\frac{\Delta t}{\Delta k}$ is taken from the Table 1 on page 171 giving the "Change of Hour Angle per Minute of Arc of Altitude" by extrapolation.

When $h-h_A$ is plus (+) the name of the correction is East or West according to the name of the azimuth.

When $h - h_A$ is minus (-) the name is contrary to the name of the azimuth, as in our case.

The longitude factor or PAGEL's coefficient is obtained from the Tables, as explained on page xvii.

Thus, entering the Tables on page 122 with $L=37^{\circ}$ in column b/B and with $Z=58^{\circ}$ in column Z we would find 0.79, which is the "change of hour angle or of longitude per minute of arc of latitude." The name of the longitude correction or PAGEL's correction, or simply the PAGEL, 4'.7 (the result of the multiplication of 0.79 by the difference 6'.0 between the two latitudes: the assumed brought up to NOON and the meridian latitude), is easily given by JOHNSON's well-known rule: "Under the sun's bearing at the time of the observation write the opposite bearing, and suppose the letters to be connected diagonally, then that connected with the name of the correction for latitude will be the name of the correction for the longitude." ²

Thus S E

and as the meridian latitude was 6'.0 to the SOUTH of the assumed latitude, the PAGEL 4'.7 is to W.

The third and last correction is g=40'. I W for the run in longitude from the time of observation to Noon.³

² "On Finding the Latitude and Longitude in Cloudy Weather, &c.," page 7;

32nd edition, London, 1909. Published by Mr. J. D. Potter. Price 5s.

¹ This Table is limited to azimuths comprised between 60° and 90°. For observations where the azimuth is smaller than 60° a simplification results, and it is better to follow the other method, slightly different, explained further on.

³ In practice it is not necessary to apply *separately* each one of the three corrections to the assumed longitude G_A . They can be combined and the result then applied to G_A . The total correction to be applied to G_A . W. would be 53'.7 W. (8'.9 W.+4'.7 W.+40'.1 W) giving us immediately G at NOON=9° o'.0 W.

APPENDIX II

Therefore N, in Fig. 3, represents the ship's position at NOON.

ANOTHER SIMPLIFIED METHOD.

When the azimuth of the observed body is smaller than 60° we can use with more advantage the process explained on page xxviii, it not being necessary to apply to G_A the correction due to $h-h_A$, reduced to o in this case.

Our example would be developed as follows:-

$$\frac{a^{8} - 52^{\circ} \quad o'}{b = 17^{\circ} \quad 8'.4} \frac{d = 10^{\circ} \quad 27' \quad S}{d = 10^{\circ} \quad 27' \quad S} \underbrace{\begin{array}{c} t_{A.} = 45^{\circ} \quad 9'.0 \quad E \\ h_{o} = 20^{\circ} \quad 59'.2 \\ Corr. = + \quad 7.8 \\ A_{o} = 10^{\circ} \quad 7'.0 \\ A_{o} = 10^{\circ} \quad 7'.0 \\ A_{o} = 10^{\circ} \quad 11'.3 \\ A_{o} = 10^{\circ} \quad 11' \quad 10^{\circ} \\ A_{o} = 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \\ A_{o} = 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \\ A_{o} = 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \quad 10^{\circ} \\ A_{o} = 10^{\circ} \quad 10^$$

After finding the values of a, b and t_A as explained before, the assumed longitude $G_A=8^\circ$ 6'.3 W. is determined. In order to determine the assumed latitude $L_A=37^\circ$ 2'.9, the latitude of L in Fig. 3, where $h=h_A$ and therefore $h-h_A=0$, we deduce the value of C corresponding to the true altitude $h=21^\circ$ 7'.0 and we find $C=54^\circ$ 11'.3. This value of C combined with $b=17^\circ$ 8'.4 gives us $L_A=37^\circ$ 2'.9.

The corrections for finding the true longitude at NOON are then found, as explained before on page xlvi. This process, evidently very simple, will always render good services when the azimuth is *smaller* than 60°, especially to those navigating the North Atlantic Ocean from Europe to the United States of America and *vice versa* in winter time.

When the azimuth is *larger* than 60° it is better to use the first process explained in this Appendix, because then to small changes of h correspond large changes of C, and the assumed latitude would sometimes differ very much from the true latitude, therefore making the longitude correction or the PAGEL too large and not very exact.

Although the author obtained in 1910 very good results going from England to the United States on board the Brazilian battleship *Minas Geraes* with azimuths as large as 77° and 78°.5, he would advise the method to be used with care beyond 60°.

For exercise, work out the same examples by both methods with $a=51^{\circ}$ 30' instead of $a=52^{\circ}$ 0'.

APPENDIX III

An interesting article recently published by Mr. H. B. GOODWIN in the *Nautical Magazine* for February 1912, page 176, describing "A New Form of Table for Calculating Altitude" from an *assumed position*, interpolation being reduced to the odd minutes of declination, has suggested to us this Appendix, where we will show how easily and rapidly the altitude *alone* from an *assumed position* can be found by inspection in our Tables, by simply "interchanging the latitude L and the declination d."

Only one simple interpolation is required for the odd minutes of declination, as in Mr. GOODWIN'S method.

This interchanging of L and d in our Tables geometrically corresponds to dropping the perpendicular a from Z upon the circle of declination MP (Fig. 2), instead of dropping it from the body M upon the meridian PZQ.

This perpendicular has the disadvantage of dividing the azimuth Z into two parts.

Special Tables for solving the triangle thus divided were published in Paris, in 1893, by Lieut. R. Delafon, French Navy, and are entitled "Méthode rapide pour déterminer les Droites et Courbes de Hauteur et faire le Point." 1

For the sake of comparison we will take and work out Mr. GOODWIN'S example on page 186 by means of our Tables.

April 22, 1911, at 4^h 12^m Greenwich Apparent Time, in latitude by account, 36° 41′ N., longitude 32° 47′ W., the Sun's altitude was observed, the declination being 11° 58′.2 N.

Find the position to be assumed, and calculate the zenith distance at that point for the time of observation.

If h_A is reduced to $L=37^{\circ}$ N. and $t=30^{\circ}$ (Mr. GOODWIN'S assumed position) we would find

$$h = 53^{\circ} \text{ 16'.1 or } z = 36^{\circ} 43'.9.$$

He found
$$h=53^{\circ} \text{ 15'.6 or } z=36^{\circ} 44'.4.$$

APPENDIX III

EXPLANATION.

Entering the Tables with $L=37^{\circ}$ in the place of $d=37^{\circ}$ and $t=30^{\circ}$ on page 102, we find in column a approximately $a=23^{\circ}$ 30'. Entering on page 84 in column $a=23^{\circ}$ 30', we find in column d/h, $L_A=36^{\circ}$ 59', and in column t/Z, $t_A=29^{\circ}$ 57'.

They correspond to $b=41^{\circ}$. Combining this b with the declina-

tion $d = 11^{\circ} 58'.2$ we find $C = 29^{\circ} 1'.8$.

Therefore entering the Tables on the next page 85 in column $a=23^{\circ}$ 30' we find corresponding to $C=29^{\circ}$ 1'.8: $h_{A}=53^{\circ}$ 18'.7. If necessary, the position angle would be found alongside this h_{A} in column t/Z, approximately equal to 41° 53'.

This is the "simplest and readiest" way of finding altitude alone

from an assumed position.

However, as the azimuth is always necessary (except when the method explained on page xxxi is used) to show the direction of the line of position or to facilitate the calculation of the corrections it is always preferable to use our method for determining simultaneously the altitude and the azimuth, as explained on pages xix et seq.

It is the "simplest and readiest in solution."

THE "NEWEST" NAVIGATION ALTITUDE AND AZIMUTH TABLES

a de la composition della comp

PLANE TRAVERSE TABLES

								P	lan	e 7	Гга	.ver	se	Та	ble	:							
Course.	D:	=1'	D=	=2'	D=	=3′	D=	=4'	D=	=5′	D=	=6′	D=	=7′	D=	-8′	D=	=9′	D =	10′	D =	11'	Course.
Cor	LAT	DEP	Lat	DEP	Lat	DEP	LAT	DEP	Lat	DEP	LAT	DEP	Lat	DEP	Lat	DEP	LAT	DEP	LAT	DEP	Lat	Dep	Co
0 1 2 3 4	, i.o i.o i.o i.o	0.0		, 0.0 0.0 0.1 0.1 0.1	3.0 3.0 3.0 3.0	0.0 0.1 0.1 0.2 0.2	4.0 4.0 4.0	0.1	5.0 5.0 5.0 5.0	0.0 0.1 0.2 0.3 0.3	6.0 6.0 6.0 6.0 6.0	0.2	7.0 7.0	0.4 0.5		0.1 0.3 0.4 0.6	9.0 9.0 9.0		10.0 10.0 10.0 10.0		11.0 11.0 11.0 11.0	0.4 0.6 0.8	90 89 88 87 86 85
56 78 9	I.0 I.0 I.0 I.0	0. I 0. I 0. I 0. I 0. 2	2.0 2.0 2.0 2.0	0.2	3.0 3.0 3.0 3.0	0.3 0.3 0.4 0.4 0.5	4.0 4.0 4.0 4.0	0.4 0.5 0.6 0.6	5.0 5.0 5.0 4.9	0.4 0.5 0.6 0.7 0.8	6.0 6.0 5.9 5.9	0.5 0.6 0.7 0.8 0.9	1	0.7 0.9 1.0 1.1	8.0 7.9 7.9 7.9	1.3	9.0 8.9 8.9 8.9	0.9 1.1 1.3 1.4	9.9 9.9 9.9	1.0 1.2 1.4 1.6	11.0 10.9 10.9 10.9	1.1 1.3 1.5 1.7	84 83 82 81
10 11 12 13 14	I.0 I.0 I.0 I.0	0.2 0.2 0.2 0.2 0.2	2.0 2.0 1.9 1.9	0.3 0.4 0.4 0.4 0.5	3.0 2.9 2.9 2.9 2.9	0.5 0.6 0.6 0.7 0.7	3.9 3.9 3.9 3.9	0.8	4.9 4.9 4.9 4.9	I.O I.I I.2	5.9 5.9 5.8 5.8	1.0 1.1 1.2 1.3	6.8 6.8	1.7	7.8 7.8 7.8	1.8	8.8 8.8 8.8	1.6 1.7 1.9 2.0 2.2	9.8 9.8 9.8 9.7 9.7	2.4	10.8 10.8 10.8 10.7	2.5	80 79 78 77 76
15 16 17 18 19	1.0 1.0 1.0 0.9	0.3 0.3 0.3 0.3 0.3	1.9	o.5 o.6 o.6 o.6	2.9 2.9 2.9	0.8 0.9 0.9	3.8 3.8 3.8		4.8 4.8 4.8 4.8 4.7	1.3 1.4 1.5 1.5	5.8 5.7 5.7 5.7	1.6 1.7 1.8 1.9 2.0	6.6	1.8 1.9 2.0 2.2 2.3	7·7 7·7 7·7 7·6 7·6	2.6	8.7 8.6 8.6 8.5	2.3 2.5 2.6 2.8 2.9	9.7 9.6 9.6 9.5 9.5	3.1	10.6 10.5 10.5 10.5	3.2 3.4 3.6	75 74 73 72 71
20 21 22 23 24	0.9 0.9 0.9 0.9	0.3 0.4 0.4 0.4 0.4	1.9 1.9 1.9 1.8 1.8	0.7	2.8	I.O I.I I.I I.2 I.2	3·7 3·7 3·7	1.6	4.7 4.6 4.6 4.6 4.6	2.0	5.6 5.6	2.1 2.2 2.2 2.3 2.4	6.5 6.5 6.4 6.4		7·5 7·5 7·4 7·4 7·3	2.9 3.0	8.3 8.3	3. I 3. 2 3. 4 3. 5 3. 7	9.4 9.3 9.3 9.2 9.1	3.4 3.6 3.7 3.9 4.1	10.3	3.9 4.1 4.3	70 69 68 67 66
25 26 27 28 29	0.9 0.9 0.9 0.9	0.4 0.4 0.5 0.5 0.5	1.8 1.8 1.8 1.7	o.8 o.9 o.9 o.9	2.7 2.7 2.6	1.3 1.3 1.4 1.4 1.5	3.6 3.5	1.8	4·5 4·5 4·5 4·4 4·4	2.3	5.3	2.7	6.3 6.2 6.2 6.1	3.3	7.1	3.8		3.8 3.9 4.1 4.2 4.4	9.1 9.0 8.9 8.8 8.7	4.5	9.9 9.8 9.7 9.6	4.8 5.0 5.2	65 64 63 62 61
30 31 32 33 34	o.9 o.9 o.8 o.8 o.8	0.5 0.5 0.5 0.5 0.6	1.7 1.7 1.7 1.7		2.6 2.5 2.5	1.5 1.6 1.6 1.6	3·4 3·4	2.1	4·3 4·2 4·2	2.6	5.1 5.0	3.1 3.2 3.3	5·9 5·9	3.7	6.8 6.7	4. I 4.2	7.6 7.5	4.5 4.6 4.8 4.9 5.0		5·3 5·4	9·5 9·4 9·3 9·2 9·1	5.7 5.8 6.0	60 59 58 57 56
35 36 37 38 39	o.8 o.8 o.8 o.8	o.6 o.6 o.6 o.6 o.6	1.6 1.6 1.6 1.6	1.1 1.2 1.2 1.2 1.3	2.5 2.4 2.4 2.4 2.3	1.7 1.8 1.8 1.8	3.2 3.2 3.1	2.5 2.5	4.0 4.0 3.9 3.9	2.9 3.0 3.1 3.1		3.5 3.6 3.7 3.8	5.4	4.1 4.2 4.3 4.4	6.3 6.2	4.7 4.8 4.9 5.0	7·3 7·2 7·1 7·0	5.2 5.3 5.4 5.5 5.7	8.2 8.1 8.0 7.9 7.8	5.9 6.0 6.2 6.3	8.9 8.8 8.7 8.5	6.6 6.8 6.9	55 54 53 52 51
40 41 42 43 44	0.8 0.7 0.7	0.6 0.7 0.7 0.7 0.7	I.5 I.5 I.5	1.3 1.3 1.4	2.3 2.2 2.2	2.0 2.0 2.0 2.1	3.0 3.0 2.9 2.9	2.6 2.7 2.7 2.8	3.8 3.8 3.7 3.7 3.6	3·3 3·3 3·4 3·5	4.5 4.5 4.4 4.3	3.9 4.0 4.1 4.2	5·3 5·2 5·1 5·0	4.6 4.7 4.8	6.0 5.9	5.2 5.4 5.5	6.8 6.7 6.6 6.5	5.9 6.0 6.1 6.3	7·5 7·4 7·3 7·2	6.6 6.7 6.8 6.9	8.3 8.2 8.0 7.9	7.1 7.2 7.4 7.5 7.6	49 48 47 46
45	0.7	_	_	1.4	2. I	-	=	=	3.5	_	-	=	_		5·7	-		_	7.1	=	<u> </u>	7.8	45
Course.	_	$D = \mathbf{1'} D = \mathbf{2'} D = \mathbf{3'}$						=4'	-	=5'	-	=6'	-	LAT =7'		=8'	\vdash	LAT = 9'	DEP D=	LAT	DEP	<u></u>	Course.

						Pla	ne î	Γrav	erse	е Та	able						
Course.	D=	12'	D =	13′	D =	:14'	D=	15'	D =	16′	D=	=17′	D=	=18′	D =	19'	Course.
ပိ	LAT. I	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
°0 1 2 3 4	12.0 0 12.0 0	0.0 0.2 0.4 0.6 0.8	13.0 13.0 13.0 13.0	0.0 0.2 0.5 0.7 0.9	, 14.0 14.0 14.0 14.0	0.0 0.2 0.5 0.7 1.0	15.0 15.0 15.0 15.0	0.3 0.5 0.8	16.0 16.0 16.0 16.0 16.0	0.0 0.3 0.6 0.8	17.0 17.0	0.0 0.3 0.6 0.9	18.0 18.0	0.0 0.3 0.6 0.9	19.0	0.0 0.3 0.7 1.0	90 89 88 87 86
5 6 7 8 9	11.9	1.0 1.3 1.5 1.7	13.0 12.9 12.9 12.9	1.1 1.4 1.6 1.8 2.0	13.9 13.9 13.9 13.9	I.2 I.5 I.7 I.9 2.2	14.9 14.9 14.9 14.8	1.6 1.8 2.1 2.3	15.9 15.9 15.8 15.8	1.9 2.2 2.5	16.9 16.9 16.8 16.8	1.5 1.8 2.1 2.4 2.7	17.9 17.8 17.8	1.6 1.9 2.2 2.5 2.8	18.9 18.8 18.8	1.7 2.0 2.3 2.6 3.0	85 84 83 82 81
10 11 12 13 14	11.8 2 11.7 2 11.7 2 11.6 2	2.1 2.3 2.5 2.7 2.9	12.8 12.8 12.7 12.7 12.6	2.3 2.5 2.7 2.9 3.1	13.8 13.7 13.7 13.6 13.6	2.4 2.7 2.9 3.1 3.4	14.8 14.7 14.7 14.6 14.6	3.1 3.4 3.6	15.8 15.7 15.7 15.6 15.5	3.9	16.7	3.0 3.2 3.5 3.8 4.1	17.7 17.6 17.5 17.5	3.1 3.4 3.7 4.0 4.4	18.7	3.3 3.6 4.0 4.3 4.6	80 79 78 77 76
15 16 17 18 19	11.5 11.5 11.4 11.3	3.1 3.3 3.5 3.7 3.9	12.6 12.5 12.4 12.4 12.3	3.4 3.6 3.8 4.0 4.2	13.5 13.5 13.4 13.3 13.2	3.6 3.9 4.1 4.3 4.6	14.5 14.4 14.3 14.3 14.2	4.1 4.4 4.6 4.9	15.4 15.3 15.2 15.1	4·7 4·9 5·2	16.3 16.3 16.2 16.1	4.4 4.7 5.0 5.3 5.5 5.8		4.7 5.0 5.3 5.6 5.9 6.2	18.3 18.2 18.1 18.0	4.9 5.2 5.6 5.9 6.2	75 74 73 72 71
21 22 23 24	II.2 4 II.1 4 II.0 4	4.1 4.3 4.5 4.7 4.9	12.1 12.1 12.0 11.9	4.4 4.7 4.9 5.1 5.3	13.2 13.1 13.0 12.9 12.8	5.0 5.2 5.5 5.7	14.0 13.9 13.8 13.7	5.4 5.6 5.9 6.1		5.7 6.0 6.3 6.5	15.9 15.8 15.6 15.5	6.1 6.4 6.6 6.9	16.8 16.7 16.6 16.4	6.5 6.7 7.0 7.3	17.7 17.6 17.5 17.4	6.5 6.8 7.1 7.4 7.7	70 69 68 67 66
25 26 27 28 29	10.8 10.7 10.6 10.5	5.1 5.3 5.4 5.6 5.8	11.8 11.7 11.6 11.5 11.4	5.5 5.7 5.9 6.1 6.3	12.7 12.6 12.5 12.4 12.2	5.9 6.1 6.4 6.6 6.8	13.5 13.4 13.2 13.1	6.8 7.0 7.3	14.4 14.3 14.1 14.0	7·5 7·8	15.3 15.1 15.0 14.9	7.2 7.5 7.7 8.0 8.2	16.2 16.0 15.9 15.7	7.9 8.2 8.5 8.7		8.3 8.6 8.9 9.2	65 64 63 62 61
30 31 32 33 34	10.3 10.2 10.1 9.9	6.0 6.2 6.4 6.5 6.7	11.3 11.1 11.0 10.9 10.8	6.5 6.7 6.9 7.1 7.3	12.1 12.0 11.9 11.7 11.6	7.0 7.2 7.4 7.6 7.8	13.0 12.9 12.7 12.6 12.4	7·7 7·9 8.2 8.4	13.9 13.7 13.6 13.4 13.3	8.2 8.5 8.7 8.9		9.0 9.3 9.5	14.9	9.5 9.8 10.1	16.3 16.1 15.9 15.8	9.5 9.8 10.1 10.3 10.6	59 58 57 56
35 36 37 38 39	9.7 9.6 9.5 9.3	6.9 7.1 7.2 7.4 7.6	10.6 10.5 10.4 10.2 10.1	7.5 7.6 7.8 8.0 8.2	11.5 11.3 11.2 11.0 10.9	8.0 8.2 8.4 8.6 8.8	12.3 12.1 12.0 11.8 11.7	8.8 9.0 9.2 9.4	12.6 12.4	9.4 9.6 9.9 10.1	13.6 13.4 13.2	10.5	14.6 14.4 14.2 14.0	10.6		10.9 11.2 11.4 11.7 12.0	55 54 53 52 51
40 41 42 43 44	9.1 8.9 8.8 8.6	8.2	9.8 9.7 9.5 9.4	8.5 8.7 8.9	10.6 10.4 10.2 10.1	9.2 9.4 9.5 9.7	11.1	9.8 10.0 10.2 10.4	12.1 11.9 11.7 11.5	10.5 10.7 10.9 11.1	12.8 12.6 12.4 12.2	11.4 11.6 11.8	13.6 13.4 13.2 12.9	11.8 12.0 12.3 12.5	14.6 14.3 14.1 13.9 13.7	12.7 13.0 13.2	47 46
45	DEP. I	_	<u> </u>	_		9.9 									13.4 === DEP.		45
Course.	D = 1	_	Der.	_	_	14'		15'		16'	DEP.		DEP.		DEP.		Course.

						Pla	ne 7	Γrav	erse	Та	able						
Course.	D =	20′	D=	21'	D =	22'	D =	23'	D =	24′	D =	25′	D =	26′	D =	27′	Course.
Col	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Cor
°0 1 2 3 4	20.0 20.0 20.0 20.0 20.0	0.3 0.7 1.0 1.4	21.0 21.0 21.0 21.0 20.9	0.4 0.7 1.1	, 22.0 22.0 22.0 22.0 21.9	0.4	23.0 23.0 23.0 23.0 23.0	0.4 0.8 1.2	24.0 24.0 24.0 24.0 23.9	0.4 0.8 1.3	25.0 25.0 25.0 25.0 25.0 24.9	0.4 0.9 1.3	26.0 26.0 26.0 26.0 25.9	0.5 0.9 1.4	27.0 27.0 27.0 27.0 27.0 26.9	, 0.0 0.5 0.9 1.4 1.9	90 89 88 87 86
5 6 7 8 9	19.9 19.9 19.8 19.8	2.1 2.4 2.8 3.1	20.9 20.9 20.8 20.8 20.7	2.2 2.6 2.9 3·3	21.9 21.9 21.8 21.8 21.7	2.3 2.7 3.1 3.4	22.9 22.8 22.8 22.7	2.4 2.8 3.2 3.6	23.9 23.9 23.8 23.8 23.7 23.6	2.5 2.9 3.3 3.8	24.9 24.8 24.8 24.7 24.6	2.6 3.0 3.5 3.9	25.9 25.9 25.8 25.7 25.7 25.6	2.7 3.2 3.6 4.1	26.9 26.8 26.7 26.7 26.7	2.4 2.8 3.3 3.8 4.2	85 84 83 82 81
11 12 13 14	19.6 19.6 19.5 19.4	3.8 4.2 4.5 4.8	20.6 20.5 20.5 20.4 20.3	4.0 4.4 4.7 5.1	21.6 21.5 21.4 21.3	4.2 4.6 4.9 5.3	22.6 22.5 22.4 22.3	1.4 4.8 5.2 5.6 6.0	23.6 23.5 23.4 23.3 23.2	4.6 5.0 5.4 5.8 6.2	24.5 24.5 24.4 24.3 24.1	4.8 5.2 5.6 6.0	25.5 25.4 25.3 25.2 25.1	5.0 5.4 5.8 6.3 6.7	26.5 26.4 26.3 26.2 26.1	5.2 5.6 6.1 6.5	79 78 77 76 75
16 17 18 19	19.2 19.1 19.0 18.9	5.5 5.8 6.2 6.5 6.8	20.2 20.1 20.0 19.9	5.8 6.1 6.5 6.8	21.1 21.0 20.9 20.8	6.1 6.4 6.8 7.2 7.5	22.1 22.0 21.9 21.7 21.6	6.7 7.1 7.5 7.9	23.1 23.0 22.8 22.7 22.6	7.0 7.4 7.8 8.2	24.0 23.9 23.8 23.6 23.5	7·3 7·7 8.1 8.6	25.0 24.9 24.7 24.6	7.6 8.0 8.5 8.9	26.0 25.8 25.7 25.5 25.4	7·4 7·9 8.3 8.8 9.2	74 73 72 71 70
21 22 23 24 25	18.7 18.5 18.4 18.3	7·5 7·8 8.1	19.6 19.5 19.3 19.2	8.2 8.5	20.5 20.4 20.3 20.1	8.2 8.6 8.9	21.5 21.3 21.2 21.0	8.6 9.0 9.4	22.4 22.3 22.1 21.9	9.0 9.4 9.8	1	9.4 9.8 10.2	23.8	9.7 10.2 10.6	25.2 25.0 24.9 24.7 24.5	10.1	
26 27 28 29	18.0 17.8 17.7 17.5	8.8 9.1 9.4 9.7	18.9 18.7 18.5 18.4	9.2 9.5 9.9 10.2	19.8 19.6 19.4 19.2	9.6 10.0 10.3 10.7	20.7 20.5 20.3 20.1	10.1 10.4 10.8 11.2	21.6 21.4 21.2 21.0	10.5 10.9 11.3 11.6	22.5 22.3 22.1 21.9	11.0	23.4 23.2 23.0 22.7	11.4 11.8 12.2 12.6	24.3 24.1 23.8 23.6	11.8 12.3 12.7 13.1	64 63 62 61
30 31 32 33 34	17.3 17.1 17.0 16.8 16.6	10.3 10.6 10.9 11.2	17.8 17.6 17.4	10.8	18.9 18.7 18.5 18.2	11.3 11.7 12.0 12.3	19.7 19.5 19.3 19.1	11.8 12.2 12.5 12.9	20.6 20.4 20.1 19.9	12.4 12.7 13.1 13.4	21.4 21.2 21.0 20.7	12.9 13.2 13.6 14.0	22.3 22.0 21.8 21.6	13.4 13.8 14.2 14.5	23.1 22.9 22.6 22.4	14.7	59 58 57 56
35 36 37 38 39	15.8 15.5	11.8 12.0 12.3 12.6		12.3 12.6 12.9 13.2	17.8 17.6 17.3 17.1	12.9 13.2 13.5 13.8	18.6 18.4 18.1 17.9	13.5 13.8 14.2 14.5	19.4 19.2 18.9 18.7	14.1 14.4 14.8 15.1	20.2 20.0 19.7 19.4	14.7 15.0 15.4 15.7	21.0 20.8 20.5 20.2	15.3 15.6 16.0 16.4	21.8 21.6 21.3 21.0	16.2 16.6 17.0	54 53 52 51
42 43 44	14.6 14.4	13.4 13.6 13.9	15.6 15.4 15.1	13.5 13.8 14.1 14.3 14.6	16.3 16.1 15.8	14.7	17.1 16.8 16.5	15.4	17.8 17.6 17.3	16.4	18.3	17.0	19.3	17.4	19.7	18.4	40
45	-				-		DEP.	_		-	-		<u> </u>	-	_		
Course.	D_{EP} , LAT. D_{EP} , LAT. D_{EP}					= 22'	_	=23'		=24'		=25′	\vdash	= 26′		=27′	Course.

						Pla	ne '	Tra	vers	e T	able					*	
Course.	D =	=28 ′	D=	29′	D =	30′	D=	=31 ′	D=	=32 ′	D=	=33′	D=	=34′	D=	=35′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ										
°0 1 2 3 4	28.0 28.0 28.0 28.0 28.0	0.5 1.0 1.5	29.0 29.0 29.0 29.0 29.0	0.5 1.0 1.5	30.0 30.0 30.0 30.0 29.9	0.5	31.0 31.0 31.0 31.0 30.9	0.5 1.1 1.6	32.0 32.0 32.0 32.0 31.9	0.6 1.1 1.7	33.0 33.0 33.0 33.0 32.9	0.6		0.6 1.2 1.8	0.0	0.0 0.6 1.2 1.8	90 89 88 87 86
5 6 7 8 9	27.9 27.8 27.8 27.7 27.7	2.9 3.4 3.9	28.9 28.8 28.8 28.7 28.6	3.0 3.5 4.0	29.9 29.8 29.8 29.7 29.6	3. I 3. 7	30.7	3.2 3.8 4.3	31.9 31.8 31.8 31.7 31.6	3·3 3·9 4·5	32.9 32.8 32.8 32.7 32.6	2.9 3.4 4.0 4.6 5.2	33.9 33.8 33.7 33.7 33.6	3.6	34·7 34·7	3.1 3.7 4.3 4.9 5.5	85 84 83 82 81
10 11 12 13 14	27.6 27.5 27.4 27.3 27.2	4.9 5.3 5.8 6.3	28.6 28.5 28.4 28.3 28.1	5.0 5.5 6.0 6.5	29.5 29.4 29.3 29.2 29.1	5·7 6.2	30.3 30.2	5.9 6.4	31.5 31.4 31.3 31.2 31.0	6.1 6.7	32.5 32.4 32.3 32.2 32.0	5.7 6.3 6.9 7.4 8.0		6.5 7.1 7.6	34·5 34·4 34·2 34·1 34·0	6.1 6.7 7.3 7.9 8.5	80 79 78 77 76
15 16 17 18 19	27.0 26.9 26.8 26.6 26.5	7·7 8.2 8.7	28.0 27.9 27.7 27.6 27.4	8.0 8.5 9.0	29.0 28.8 28.7 28.5 28.4	8.3 8.8 9.3	29.9 29.8 29.6 29.5 29.3	8.5 9.1	30.9 30.8 30.6 30.4 30.3	9.4 9.9	31.9 31.7 31.6 31.4 31.2	9.6	32.3		33.8 33.6 33.5 33.3 33.1	9.6	75 74 73 72 71
20 21 22 23 24	26.0 25.8	10.0	27.1 26.9 26.7	10.4	28.0 27.8 27.6	10.8	28.9 28.7 28.5	11.1 11.6 12.1	29.9 29.7 29.5	11.5 12.0 12.5		11.8 12.4 12.9	31.7 31.5 31.3	12.2 12.7 13.3	32.9 32.7 32.5 32.2 32.0	12.5 13.1 13.7	69 68
25 26 27 28 29	25.2	12.3 12.7 13.1	26.1 25.8 25.6	12.7 13.2 13.6	27.0 26.7 26.5	13.2 13.6 14.1	27.9 27.6 27.4	13.6 14.1 14.6	28.8 28.5 28.3	14.0 14.5 15.0	29.7 29.4	14.5 15.0 15.5	30.6 30.3 30.0	14.9	31.2 30.9	15.3	65 64 63 62 61
30 31 32 33 34	23.7 23.5	14.4 14.8 15.2	24.9 24.6 24.3	14.9 15.4 15.8	25.7 25.4 25.2	15.5 15.9 16.3	26.6 26.3 26.0	16.4	27.4 27.1 26.8	16.5 17.0 17.4	28.6 28.3 28.0 27.7 27.4	17.0 17.5 18.0	29.1 28.8 28.5	18.0	30.3 30.0 29.7 29.4 29.0	18.5	60 59 58 57 56
35 36 37 38 39	22.7 22.4 22.1 21.8	16.5 16.9 17.2 17.6	23.5 23.2 22.9 22.5	17.0 17.5 17.9 18.3	24.3 24.0 23.6 23.3	17.6 18.1 18.5 18.9	25.1 24.8 24.4 24.1	18.2 18.7 19.1 19.5	25.9 25.6 25.2 24.9	18.8 19.3 19.7 20.1	26.7 26.4 26.0 25.6	19.4 19.9 20.3 20.8	27.5 27.2 26.8 26.4	20.0 20.5 20.9 21.4	1	20.6 21.1 21.5 22.0	55 54 53 52 51
40 41 42 43 44	20.5 20.1	18.4 18.7 19.1 19.5	21.6 21.2 20.9	19.0 19.4 19.8 20.1	22.6 22.3 21.9 21.6	19.7 20.1 20.5 20.8	23.4 23.0 22.7 22.3	20.3 20.7 21.1 21.5	24.2 23.8 23.4 23.0	21.4 21.8 22.2	24.9 24.5 24.1 23.7	21.6 22.1 22.5 22.9	25.7 25.3 24.9 24.5	22.3 22.8 23.2 23.6	26.4 26.0 25.6 25.2	23.0	50 49 48 47 46
45	_							_					24.0			24.7	45
Course.	DEP.	LAT. 28'	DEP.		DEP.		DEP.	31'	DEP.	-	DEP.	33'	DEP.		DEP.	35'	Course.

						Pla	ne 7	Γrav	erse	e Ta	able						
Course.	D=	-36′	D=	-37'	D =	38′	D =	=39′	D=	40′	D=	-41′	D =	42'	D=	43'	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	S
°0 1 2 3 4	36.0 36.0 36.0 36.0 35.9	0.6	36.9	0.0 0.6 1.3 1.9 2.6	38.0 38.0 38.0 37.9 37.9	0.7 1.3 2.0 2.7	39.0 39.0 39.0 38.9 38.9	0.7 1.4	40.0 40.0 40.0 39.9 39.9	0.7 1.4 2.1	41.0 41.0 41.0 40.9 40.9	0.7 1.4 2.1 2.9	42.0 42.0 42.0 41.9 41.9	0.7 1.5 2.2	43.0 43.0 43.0 42.9 42.9	0.0 0.8 1.5 2.3 3.0	90 89 88 87 86
56 78 9	35.9 35.8 35.7 35.6 35.6		36.9 36.8 36.7 36.6 36.5	4·5 5.1 5.8	37.9 37.8 37.7 37.6 37.5	4.6 5.3	38.9 38.8 38.7 38.6 38.5	4.8 5.4	39.8 39.7 39.6 39.5	4.2 4.9 5.6	40.8 40.8 40.7 40.6 40.5	5.0 5.7	41.8 41.7 41.6 41.5	4.4 5.1 5.8	42.8 42.8 42.7 42.6 42.5	3.7 4.5 5.2 6.0 6.7	85 84 83 82 81
10 11 12 13 14	35.5 35.3 35.2 35.1 34.9	7.5	36.3	6.4 7.1 7.7 8.3 9.0	37.2 37.0 36.9	7·3 7·9 8·5 9·2	38.4 38.3 38.1 38.0 37.8	6.8 7.4 8.1 8.8 9.4	39.0 38.8	7.6 8.3 9.0 9.7		7.8 8.5 9.2 9.9		8.0 8.7 9.4 10.2		7.5 8.2 8.9 9.7 10.4	80 79 78 77 76
15 16 17 18 19	34.8 34.6 34.4 34.2 34.0	9.3 9.9 10.5 11.1	35.6 35.4		36.7 36.5 36.3 36.1 35.9	10.5	37·3 37·1		38.5 38.3 38.0	11.7		12.0	40.4 40.2 39.9	11.6	41.3 41.1 40.9		75 74 73 72 71
20 21 22 23 24	33.8 33.6 33.4 33.1 32.9	13.5	34.5	13.9	35.7 35.5 35.2 35.0 34.7	13.6 14.2 14.8 15.5	35.6	14.6 15.2 15.9	37·3 37·1 36.8 36.5	14.3 15.0 15.6 16.3	38.0 37.7 37.5	15.4 16.0 16.7	39.2 38.9 38.7 38.4	15.7 16.4 17.1	40.1 39.9 39.6 39.3	16.1 16.8 17.5	
25 26 27 28 29	32.6 32.4 32.1 31.8 31.5	15.2 15.8 16.3 16.9	33.5 33.3 33.0 32.7 32.4	15.6 16.2 16.8 17.4 17.9	33.9	16.1 16.7 17.3 17.8 18.4		17.1	36.0 35.6 35.3	17.5 18.2 18.8	36.9 36.5	18.6 19.2	37·7 37·4 37·1	18.4 19.1 19.7	39.0 38.6 38.3 38.0 37.6	18.8 19.5 20.2	65 64 63 62 61
30 31 32 33 34	31.2 30.9 30.5 30.2 29.8	18.5	31.7 31.4 31.0	19.1	32.2	19.6 20.1 20.7	33.8 33.4 33.1 32.7 32.3	20.7	34.6 34.3 33.9 33.5 33.2	20.6	35.5 35.1 34.8 34.4 34.0	21.1 21.7 22.3	36.4 36.0 35.6 35.2 34.8	21.6 22.3 22.9	37.2 36.9 36.5 36.1 35.6	22.8	60 59 58 57 56
35 36 37 38 39	29.5 29.1 28.8 28.4 28.0	21.2 21.7 22.2 22.7	29.9 29.5 29.2 28.8	21.7 22.3 22.8 23.3	30.7 30.3 29.9 29.5	22.3 22.9 23.4 23.9	31.6 31.1 30.7 30.3	22.9 23.5 24.0 24.5	31.9 31.5 31.1	23.5 24.1 24.6 25.2	33.2 32.7 32.3 31.9	24.1 24.7 25.2 25.8	34.0 33.5 33.1 32.6	24.7 25.3 25.9 26.4	35·2 34·8 34·3 33·9 33·4	25.3 25.9 26.5 27.1	55 54 53 52 51
41 42 43 44	27.6 27.2 26.8 26.3 25.9	23.6 24.1 24.6 25.0	27.9 27.5 27.1 26.6	24.3 24.8 25.2 25.7	28.7 28.2 27.8 27.3	24.9 25.4 25.9 26.4	29.4 29.0 28.5 28.1	25.6 26.1 26.6 27.1	30.2 29.7 29.3 28.8	26.2 26.8 27.3 27.8	30.9 30.5 30.0 29.5	26.9 27.4 28.0 28.5	31.7 31.2 30.7 30.2	27.6 28.1 28.6 29.2	32.5 32.0 31.4 30.9	28.2 28.8 29.3 29.9	48 47 46
45	25.5	25.5	_	26.2			27.6					29.0			30.4 DER	30.4 LAT.	45
Course.	-	= 36'	_	=37'	-	= 38'		= 39'	DEP.	=40'	-	LAT. =41'		=42'		=43'	Course.

					Pla	ne '	Trav	rers	e Ta	able						
Course.	D=44'	D = 0	45′	D =	₌46′	D=	=47 ′	D=	=48 ′	D=	=49′	D =	50′	D=	=51 ′	Course.
රී	LAT. DEP	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3 4	44.0 0.8 44.0 1.9 43.9 2.3 43.9 3.1	45.0 45.0 45.0 45.0 44.9 44.9	0,8 1.6 2.4	46.0 46.0 46.0 45.9 45.9	0.8 1.6 2.4 3.2	47.0 47.0 47.0 46.9 46.9	0.8 1.6 2.5	48.0 48.0 48.0 47.9 47.9	0.8 1.7 2.5 3.3	49.0 49.0 49.0 48.9 48.9	0.9	50.0 50.0 50.0 49.9 49.9	0.9	51.0 51.0 51.0 50.9 50.9	0.0 0.9 1.8 2.7 3.6	90 89 88 87 86
56 78 9	43.7 43.6 6.1 43.5 6.9	44.8 44.7 44.6 44.4	5·5 6·3 7·°	45.8 45.7 45.7 45.6 45.4	4.8 5.6 6.4 7.2	46.8 46.7 46.6 46.5 46.4	4·9 5·7 6.5 7·4	47.8 47.7 47.6 47.5 47.4	5.0 5.8 6.7 7.5	48.8 48.7 48.6 48.5 48.4	6.0 6.8 7·7	49.8 49.7 49.6 49.5 49.4	5.2 6.1 7.0 7.8	50.8 50.7 50.6 50.5 50.4	4.4 5.3 6.2 7.1 8.0	85 84 83 82 81
10 11 12 13 14	43.2 8.4 43.0 9.1 42.9 9.9 42.7 10.6	43.8	9·4 10.1 10.9	45.3 45.2 45.0 44.8 44.6	8.8 9.6 10.3 11.1	46.3 46.1 46.0 45.8 45.6	9.0 9.8 10.6 11.4	46.8 46.6	9.2 10.0 10.8 11.6	47·7 47·5	9.3 10.2 11.0	48.7 48.5	9.5 10.4 11.2 12.1		11.5	80 79 78 77 76
15 16 17 18 19	42.3 12.1 42.1 12.0 41.8 13.6 41.6 14.3	43.3 43.0 42.8 42.5	12.4 13.2 13.9 14.7	44.0 43.7 43.5	14.2	45.2 44.9 44.7 44.4	13.0 13.7 14.5 15.3	45·7 45·4	13.2 14.0 14.8 15.6	47.1 46.9 46.6 46.3	14.3 15.1 16.0	48.1 47.8 47.6 47.3	13.8 14.6 15.5 16.3	49.0 48.8 48.5 48.2	14.9 15.8 16.6	74 73 72 71
20 21 22 23 24	41.1 15.8 40.8 16.9 40.5 17.2 40.2 17.9	42.0 41.7 41.4 41.1	16.1 16.9 17.6 18.3	42.9 42.7 42.3 42.0	15.7 16.5 17.2 18.0	43.9 43.6 43.3 42.9	16.8 17.6 18.4 19.1	44.8 44.5 44.2 43.9	17.2 18.0 18.8 19.5	45.7 45.4 45.1 44.8	17.6 18.4 19.1 19.9	46.7 46.4 46.0 45.7	17.9 18.7 19.5 20.3	47.9 47.6 47.3 46.9 46.6	18.3 19.1 19.9 20.7	70 69 68 67 66
25 26 27 28 29	39.5 19.5 39.2 20.6 38.8 20.7 38.5 21.5	40.4 40.1 39.7 39.4	19.7 20.4 21.1 21.8	41.7 41.3 41.0 40.6 40.2	20.2 20.9 21.6 22.3	41.9 41.5 41.1	20.6 21.3 22.1 22.8	43.1 42.8 42.4 42.0	21.0 21.8 22.5 23.3	44.0 43.7 43.3 42.9	21.5	44.9 44.6 44.1	21.9 22.7 23.5	46.2 45.8 45.4 45.0 44.6	22.4	65 64 63 62 61
30 31 32 33 34	37.7 22.7 37.3 23.3 36.9 24.6 36.5 24.6	38.6 38.2 37.7 37.3	23.8 24.5 25.2	39.8 39.4 39.0 38.6 38.1	24.4 25.1 25.7	40.3 39.9 39.4 39.0	24.2 24.9 25.6 26.3	40.7 40.3 39.8	24.7 25.4 26.1 26.8	42.0 41.6 41.1 40.6	25.2 26.0 26.7 27.4	42.4 41.9 41.5	25.8 26.5 27.2 28.0	43·3 42.8 42·3	25.5 26.3 27.0 27.8 28.5	59 58 57 56
35 36 37 38 39	35.6 25.9 35.1 26.9 34.7 27.1 34.2 27.7	36.4 35.9 35.5 35.0	28.3	35.7	26.4 27.0 27.7 28.3 28.9	38.0 37.5 37.0 36.5	27.6 28.3 28.9 29.6	38.8 38.3 37.8 37.3	28.2 28.9 29.6 30.2	39.6 39.1 38.6 38.1	28.8 29.5 30.2 30.8	40.5 39.9 39.4 38.9	29.4 30.1 30.8 31.5		30.0 30.7 31.4 32.1	53 52 51
42 43 44	32.2 30.0 31.7 30.0	34.0 33.4 32.9 32.4	29.5 30.1 30.7	34.7 34.2 33.6 33.1	30.2 30.8 31.4 32.0	35·5 34·9 34·4 33.8	30.8 31.4 32.1 32.6	36.2 35.7 35.1 34.5	31.5 32.1 32.7 33.3	37.0 36.4 35.8 35.2	32.1 32.8 33.4 34.0	37.7 37.2 36.6 36.0	32.8 33.5 34.1 34.7	38.5 37.9 37.3 36.7	33.5 34.1 34.8 35.4	49 48 47 46
45	31.1 31.1 DEP. LAT		_	32.5 DEP.	132.5 LAT.	33.2	33.2 LAT.		33.9	34.6	34.6 ————————————————————————————————————			36.1 ————————————————————————————————————	36.1	45
Course.	D = 44'			_	46′		=47'	D =			49'	D =	-	D = D		Course

						Pla	ne î	Γrav	erse	e Ta	able						
Course.	D=	=52′	D =	⁼53′	D =	54′	D =	=55 ′	D =	56′	D =	· 57′	D =	=58′	D =	59′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	52.0 52.0 52.0 51.9 51.9		50	0.0 0.9 1.8 2.8 3.7	54.0 54.0 54.0 53.9 53.9		55.0 55.0 55.0 54.9 54.9	1.0 1.9 2.9	56.0 56.0 56.0 55.9 55.9	, 0.0 1.0 2.0 2.9 3.9	57.0 57.0 56.9 56.9	1.0 2.0 3.0	58.0 58.0 58.0 57.9 57.9	1.0 2.0 3.0 4.0	59.0 59.0 59.0 58.9 58.9	, 0.0 1.0 2.1 3.1 4.1	90 89 88 87 86
56 78 9	51.8 51.7 51.6 51.5 51.4	8.1	52.7 52.6 52.5 52.3	4.6 5.5 6.5 7.4 8.3	53.8 53.7 53.6 53.5 53.3	8.4	54.8 54.7 54.6 54.5 54.3	5·7 6.7 7·7 8.6	55.8 55.7 55.6 55.5 55.3	8.8	56.7 56.6 56.4 56.3	6.0 6.9 7.9 8.9	57.8 57.7 57.6 57.4 57.3	6.1 7.1 8.1 9.1		5.1 6.2 7.2 8.2 9.2	85 84 83 82 81
10 11 12 13 14	51.2 51.0 50.9 50.7 50.5	9.9 10.8 11.7	52.2 52.0 51.8 51.6 51.4	9.2 10.1 11.0 11.9 12.8	53.2 53.0 52.8 52.6 52.4	9.4 10.3 11.2 12.1 13.1	54.2 54.0 53.8 53.6 53.4	10.5		11.6	56.0 55.8 55.5 55.3	10.9 11.9 12.8 13.8	57.1 56.9 56.7 56.5 56.3	11.1 12.1 13.0 14.0		12.3 13.3 14.3	80 79 78 77 76
16 17 18 19	50.0 49.7 49.5 49.2	14.3 15.2 16.1 16.9	50.9 50.7 50.4 50.1	14.6	51.9 51.6 51.4 51.1	14.9	52.9 52.6 52.3 52.0	15.2 16.1 17.0 17.9	53.8 53.6 53.3 52.9 52.6	15.4 16.4 17.3 18.2	54.8 54.5	15.7 16.7 17.6 18.6	55.8 55.5 55.2 54.8	16.0 17.0 17.9 18.9	56.7 56.4 56.1 55.8	16.3 17.2 18.2 19.2	73 74 73 72 71
21 22 23 24 25	48.5 48.2 47.9 47.5	18.6 19.5 20.3 21.2	49.5 49.1 48.8 48.4 48.0	19.0 19.9 20.7 21.6	50.4	19.4 20.2 21.1 22.0	51.3 51.0 50.6 50.2	19.7 20.6 21.5 22.4	52.3 51.9 51.5 51.2 50.8	20.1 21.0 21.9 22.8	53.2 52.8 52.5 52.1	20.4 21.4 22.3 23.2	54.1 53.8 53.4 53.0	20.8 21.7 22.7 23.6	55. I 54.7 54.3 53.9	21.1 22.1 23.1 24.0	69 68
26 27 28 29	46.7 46.3 45.9 45.5	22.8	47.6 47.2 46.8 46.4	23.2 24.1 24.9 25.7	48.5 48.1 47.7 47.2	23.7 24.5 25.4 26.2	49.4 49.0 48.6 48.1	24.1 25.0 25.8 26.7	50.3 49.9 49.4 49.0	24.5 25.4 26.3 27.1	51.2 50.8 50.3 49.9	25.0 25.9 26.8 27.6	52.1 51.7 51.2 50.7	25.4 26.3 27.2 28.1	53.0 52.6 52.1 51.6	25.9 26.8	64 63 62 61
30 31 32 33 34	45.0 44.6 44.1 43.6 43.1	26.8 27.6 28.3 29.1	45.4 44.9 44.4 43.9	28.1 28.9 29.6	46.3 45.8 45.3 44.8	27.8 28.6 29.4 30.2	46.6 46.1 45.6	28.3 29.1 30.0 30.8	47.5 47.0 46.4	28.8 29.7 30.5 31.3	48.9 48.3 47.8 47.3	29.4 30.2 31.0 31.9	49.7 49.2 48.6 48.1	29.9 30.7 31.6 32.4	51.1 50.6 50.0 49.5 48.9	30.4 31.3 32.1 33.0	59 58 57 56
35 36 37 38 39	42.6 42.1 41.5 41.0 40.4	32.0 32.7	43.4 42.9 42.3 41.8 41.2	31.2 31.9 32.6 33.4	43.1 42.6 42.0	31.7 32.5 33.2 34.0	44.5 43.9 43.3 42.7	33.1 33.9 34.6	45·3 44·7 44·1 43·5	32.9 33.7 34.5 35.2	46.7 46.1 45.5 44.9 44.3	33.5 34.3 35.1 35.9	47.5 46.9 46.3 45.7 45.1	34.1 34.9 35.7 36.5		35.5 36.3 37.1	55 54 53 52 51
40 41 42 43 44	39.2 38.6 38.0	34.1 34.8 35.5 36.1	40.0 39.4 38.8 38.1	34.8 35.5 36.1 36.8	40.8 40.1 39.5 38.8	35.4 36.1 36.8 37.5	41.5 40.9 40.2 39.6	36.1 36.8 37.5 38.2	42.3 41.6 41.0 40.3	36.7 37.5 38.2 38.9	43.7 43.0 42.4 41.7 41.0	37.4 38.1 38.9 39.6	43.8 43.1 42.4 41.7	38.1 38.8 39.6 40.3	44.5 43.8 43.1 42.4	38.7 39.5 40.2	48 47 46
45			37.5	_							40.3		41.0		41.7 Dep		45
Course.	-	EAT.	_	E 53'	DEP.	E 54'	_	55'		EAT.	DEP.	_	_	=58'	DEP.		Course.

						Pla	ne	Tra	vers	e T	able						
Course.	D=	=60′	D=	=61 <i>′</i>	D=	=62′	D=	=63′	D=	=64′	D=	=65′	D =	=66′	D=	=67 ′	Course.
රි	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Lat.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3 4	60.0 60.0 60.0 59.9 59.9	0.0 1.0 2.1 3.1 4.2	61.0 61.0 61.0 60.9 60.9		62.0 62.0 62.0 61.9 61.8			1. I 2. 2	64.0 63.9	1.1 2.2 3.3	65.0 65.0 65.0 64.9 64.8	0.0 1.1 2.3 3.4 4.5	66.0 66.0 65.9	1.2 2.3 3.5	67.0 67.0 67.0 66.9 66.8	0.0 1.2 2.3 3.5 4.7	90 89 88 87 86
56 78 9	59.8 59.7 59.6 59.4 59.3	5.2 6.3 7.3 8.4 9.4	60.7 60.5 60.4 60.2	5·3 6.4 7·4 8.5 9·5	61.4	6.5 7.6 8.6 9.7	62.2	7.7 8.8 9.9	63.6 63.5 63.4 63.2	6.7 7.8 8.9 10.0	64.8 64.6 64.5 64.4 64.2	9.0	65.6 65.5 65.4 65.2	9.2	66.6 66.5 66.3 66.2	_	82 81
10 11 12 13 14	59.1 58.9 58.7 58.5 58.2	12.5 13.5 14.5	59.7 59.4 59.2	12.7 13.7 14.8	60.9 60.6 60.4 60.2	12.9 13.9 15.0	61.8 61.6 61.4 61.1	12.0 13.1 14.2 15.2	63.0 62.8 62.6 62.4 62.1	12.2 13.3 14.4 15.5	63.8 63.6 63.3 63.1	12.4 13.5 14.6 15.7	64.8 64.6 64.3 64.0	12.6 13.7 14.8 16.0	65.3 65.0	11.6 12.8 13.9 15.1 16.2	80 79 78 77 76
15 16 17 18 19	57·7 57·4 57·1 56·7	7.7 16.5 58.6 16. 7.4 17.5 58.3 17. 7.1 18.5 58.0 18. 6.7 19.5 57.7 19. 6.4 20.5 57.3 20. 6.0 21.5 56.9 21. 6.6 22.5 56.6 22.		16.8 17.8 18.9 19.9	59.6 59.3 59.0 58.6	17.1 18.1 19.2 20.2	60.6 60.2 59.9 59.6	17.4 18.4 19.5 20.5		17.6 18.7 19.8 20.8	62.5 62.2 61.8 61.5	17.9 19.0 20.1 21.2	63.4 63.1 62.8 62.4	18.2 19.3 20.4 21.5	64.4 64.1 63.7 63.3	17.3 18.5 19.6 20.7 21.8	75 74 73 72 71
20 21 22 23 24	56.4 56.0 55.6 55.2 54.8	21.5 22.5 23.4 24.4	56.9 56.6 56.2 55.7	22.9 23.8 24.8	57·9 57·5 57·1 56.6	24.2 25.2	58.8 58.4 58.0 57.6	22.6 23.6 24.6 25.6	59.7 59.3 58.9 58.5	22.9 24.0 25.0 26.0	59.8 59.4	23.3 24.3 25.4 26.4	61.6 61.2 60.8 60.3	23.7 24.7 25.8 26.8	62.5 62.1 61.7 61.2	22.9 24.0 25.1 26.2 27.3	70 69 68 67 66
25 26 27 28 29	54.4 53.9 53.5 53.0 52.5	26.3 27.2 28.2 29.1	54·4 53·9 53·4	29.6	55.7 55.2 54.7 54.2	26.2 27.2 28.1 29.1 30.1	56.6 56.1 55.6 55.1	29.6 30.5	57.5 57.0 56.5 56.0	28.1 29.1 30.0 31.0	57·4 56.9	28.5 29.5 30.5 31.5	59·3 58.8 58·3 57·7	28.9 30.0 31.0 32.0	59.7 59.2 58.6	28.3 29.4 30.4 31.5 32.5	65 64 63 62 61
30 31 32 33 34	52.0 51.4 50.9 50.3 49.7	33.6	52.3 51.7 51.2 50.6	34.1	53. I 52. 6 52. 0 51. 4	31.9 32.9 33.8 34.7	54.0 53.4 52.8 52.2	32.4 33.4 34.3 35.2	54·9 54·3 53·7 53·1	33.9 34.9 35.8	56.3 55.7 55.1 54.5 53.9	33·5 34·4 35·4 36·3	56.6 56.0 55.4 54.7	34.0 35.0 35.9 36.9	56.2 55.5	33.5 34.5 35.5 36.5 37.5	59 58 57 56
35 36 37 38 39	49.1 48.5 47.9 47.3 46.6	35·3 36.1 36.9 37.8	49.4 48.7 48.1 47.4	36.7 37.6 38.4	50.2 49.5 48.9 48.2	37·3 38.2 39.0	51.0 50.3 49.6 49.0	37.9 38.8 39.6	51.8 51.1 50.4 49.7	38.5 39.4 40.3		39. I 40.0 40.9	53.4 52.7 52.0 51.3	38.8 39.7 40.6 41.5	53.5 52.8 52.1	38.4 39.4 40.3 41.2 42.2	55 54 53 52 51
40 41 42 43 44 45	45·3 44·6 43·9 43·2	39·4 40.1 40.9	45.3 44.6 43.9	40.0 40.8 41.6	46.8 46.1 45.3 44.6	40.7 41.5 42.3 43.1	47.5 46.8 46.1 45.3	41.3 42.2 43.0 43.8	49.0 48.3 47.6 46.8 46.0	42.0 42.8 43.6 44.5	49. I 48. 3 47. 5 46. 8	42.6 43.5 44.3 45.2	49.8 49.0 48.3 47.5	43·3 44·2 45·0 45.8	50.6 49.8 49.0 48.2	44.0 44.8 45.7 46.5	50 49 48 47 46
-		_					DEP.		DEP.		DEP.					LAT.	45
Course.		Dep. LAT. Dep. LAT D=60' D=61'				62′	D =		D =	_	D =	-	D =		D =	_	Course.

						Pla	ne ′	Trav	vers	e Ta	able						
Course.	D=	=68 <i>′</i>	D=	=6ġ′	D =	=70′	D=	71′	D=	72′	D =	73′	D =	74′	D =	75′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	68.0 68.0 68.0 67.9 67.8	0.0 1.2 2.4 3.6 4.7	69.0 69.0 69.0 68.9 68.8	1.2 2.4 3.6 4.8	70.0 70.0 70.0 69.9 69.8	1.2 2.4 3.7 4.9	70.9 70.8	1.2 2.5 3.7 5.0	71.8	1.3 2.5 3.8	73.0 73.0 73.0 73.0 72.9 72.8	1.3 2.5 3.8 5.1	74.0 74.0 74.0 74.0 73.9 73.8	1.3 2.6 3.9	75.0 75.0 75.0 74.9 74.8	0.0 1.3 2.6 3.9 5.2	90 89 88 87 86
5 6 7 8 9	67.7 67.6 67.5 67.3 67.2	8.3 9.5 10.6	68.6 68.5 68.3 68.2	7.2 8.4 9.6 10.8		8.5 9.7 11.0	70.6 70.5 70.3 70.1	8.7 9.9 11.1	71.6 71.5 71.3 71.1	7.5 8.8 10.0 11.3	72.7 72.6 72.5 72.3 72.1	7.6 8.9 10.2 11.4	73.1	7·7 9.0 10.3 11.6	74.7 74.6 74.4 74.3 74.1	6.5 7.8 9.1 10.4 11.7	85 84 83 82 81
11 12 13 14	66.8 66.5 66.3 66.0	6.5 14.1 67.5 14.6 15.3 67.2 15.6 16.5 67.0 16.5 67.0 16.5 66.6 17.6 66.3 19.5 19.9 66.0 20.		13.2 14.3 15.5 16.7	68.7 68.5 68.2 67.9	13.4 14.6 15.7 16.9	69.7 69.4 69.2 68.9	13.5 14.8 16.0 17.2	70.7 70.4 70.2 69.9	13.7 15.0 16.2 17.4	71.7 71.4 71.1 70.8	13.9 15.2 16.4 17.7	72.6 72.4 72.1 71.8	14.1 15.4 16.6 17.9	73.6 73.4 73.1 72.8	14.3 15.6 16.9 18.1	79 78 77 76
15 16 17 18	64.7	18.7 19.9 21.0 22.1	66.3 66.0 65.6 65.2	19.0 20.2 21.3 22.5	67.3 66.9 66.6 66.2	19.3 20.5 21.6 22.8	68.2 67.9 67.5 67.1	19.6 20.8 21.9 23.1	69.2 68.9 68.5 68.1	19.8 21.1 22.2 23.4	70.2 69.8 69.4 69.0	20.1 21.3 22.6 23.8	71.1 70.8 70.4 70.0	20.4 21.6 22.9 24.1	72. I 71.7 71.3 70.9	23.2	75 74 73 72 71
20 21 22 23 24	63.9 63.5 63.0 62.6 62.1	24.4 25.5 26.6 27.7	64.4 64.0 63.5 63.0	25.8 27.0 28.1	65.4 64.9 64.4 63.9	25.1 26.2 27.4 28.5	66.3 65.8 65.4 64.9	26.6 27.7 28.9	67.2 66.8 66.3 65.8	25.8 27.0 28.1 29.3	68.2 67.7 67.2 66.7	26.2 27.3 28.5 29.7	69. 1 68. 6 68. 1 67. 6	26.5 27.7 28.9 30.1		28. I 29. 3 30. 5	70 69 68 67 66
25 26 27 28 29	61.6 61.1 60.6 60.0 59.5	29.8 30.9	62.0 61.5 60.9	30.2 31.3 32.4 33.5	62.9 62.4 61.8 61.2	30.7 31.8 32.9 33.9	63.8 63.3 62.7 62.1	31.1 32.2 33.3 34.4	64.7 64.2 63.6 63.0	31.6 32.7 33.8 34.9	65.6 65.0 64.5 63.8	32.0 33.1 34.3 35.4	66. 5 65. 9 65. 3 64. 7	32.4 33.6 34.7 35.9	66.2 65.6	32.9 34.0 35.2 36.4	65 64 63 62 61
30 31 32 33 34	57.7	36.0 37.0	59. I 58. 5	35.5 36.6 37.6 38.6	59.4 58.7 58.0	36.1 37.1 38.1 39.1	60.9 60.2 59.5 58.9	36.6 37.6 38.7 39.7	61.7 61.1 60.4 59.7	37.1 38.2 39.2 40.3	62.6 61.9 61.2 60.5	37.6 38.7 39.8 40.8	63.4 62.8 62.1 61.3	38.1 39.2 40.3 41.4		38.6 39.7 40.8 41.9	60 59 58 57 56
35 36 37 38 39	54·3 53.6 52.8	40.0 40.9 41.9 42.8	55.8 55.1 54.4 53.6	40.6 41.5 42.5 43.4	56.6 55.9 55.2 54.4	41. I 42. I 43. I 44. I	57.4 56.7 55.9 55.2	41.7 42.7 43.7 44.7	58.2 57.5 56.7 56.0	42.3 43.3 44.3 45.3	59. I 58. 3 57. 5 56. 7	42.9 43.9 44.9 45.9	59.9 59.1 58.3 57.5	43.5 44.5 45.6 46.6	61.4 60.7 59.9 59.1 58.3	44.1 45.1 46.2 47.2	52 51
41 42 43 44	51.3 50.5 49.7 48.9	44.6 45.5 46.4 47.2	52.1 51.3 50.5 49.6	45.3 46.2 47.1 47.9	52.8 52.0 51.2 50.4	45.9 46.8 47.7 48.6	53.6 52.8 51.9 51.1	46.6 47.5 48.4 49.3	54·3 53·5 52·7 51.8	47.2 48.2 49.1 50.0	55.1 54.2 53.4 52.5	47.9 48.8 49.8 50.7	55.8 55.0 54.1 53.2	48.5 49.5 50.5 51.4	57.5 56.6 55.7 54.9 54.0	50.2 51.1	50 49 48 47 46 45
45		48.1									DEP.			LAT.	DEP.	_	
Course	-	EAT.	_	EAT.		TAT.	_	71'	-	72'		73′		=74'	D =		Course.

						Pla	ne '	Trav	vers	e Ta	able						
Course.	D=	=76′	D =	77′	D=	=78′	D=	=79′	D=	=8o′	D=	-81 ′	D =	=82′	D=	=83 ′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	76.0 76.0 76.0 75.9 75.8	1.3 2.7	77.0 76.9	1.3 2.7 4.0 5.4	78.0 78.0 78.0 78.0 77.9 77.8	2.7	79.0 79.0 79.0 78.9 78.8	0.0 1.4 2.8 4.1 5.5		1.4 2.8 4.2 5.6	81.0 81.0 81.0 80.9 80.8	1.4 2.8 4.2 5.7	82.0 82.0 82.0 81.9 81.8	1.4 2.9 4.3 5.7	82.9 82.9 82.8	0.0 1.4 2.9 4.3 5.8	°0 89 88 87 86
5 6 7 8 9	75.7 75.6 75.4 75.3 75.1	7·9 9·3 10.6 11.9	76.7 76.6 76.4 76.3 76.1	9·4 10.7 12.0	77.6 77.4 77.2 77.0	9.5 10.9 12.2	78.6 78.4 78.2 78.0	8.3 9.6 11.0 12.4		8.4 9.7 11.1 12.5	80.0	8.5 9.9 11.3 12.7	81.0	8.6 10.0 11.4 12.8	82.7 82.5 82.4 82.2 82.0	7.2 8.7 10.1 11.6 13.0	85 84 83 82 81
10 11 12 13 14	74.8 74.6 74.3 74.1 73.7	14.5 15.8 17.1 18.4	75.3 75.0 74.7	14.7 16.0 17.3 18.6	76.6 76.3 76.0 75.7	16.2 17.5 18.9	77.5 77.3 77.0 76.7	15.1 16.4 17.8 19.1	78.5 78.3 77.9 77.6	15.3 16.6 18.0 19.4	79·5 79·2 78·9 78·6	16.8 18.2 19.6	80.5 80.2 79.9 79.6	15.6 17.0 18.4 19.8	81.7 81.5 81.2 80.9 80.5	20.1	80 79 78 77 76
15 16 17 18 19	72.3 71.9	20.9 22.2 23.5 24.7	73.2 72.8	21.2 22.5 23.8 25.1	75.0 74.6 74.2 73.8	21.5 22.8 24.1 25.4	75.9 75.5 75.1 74.7	25.7	76.9 76.5 76.1 75.6	23.4 24.7 26.0	77.9 77.5 77.0 76.6	23.7 25.0 26.4	78.8 78.4 78.0 77.5	22.6 24.0 25.3 26.7	79.4 78.9 78.5	21.5 22.9 24.3 25.6 27.0	75 74 73 72 71
20 21 22 23 24	71.0 70.5 70.0 69.4	26.0 27.2 28.5 29.7 30.9	71.9 71.4 70.9 70.3	27.6 28.8 30.1 31.3	72.8 72.3 71.8 71.3	28.0 29.2 30.5 31.7	73.2 72.7 72.2	28.3 29.6 30.9 32.1		28.7 30.0 31.3 32.5	75.6 75.1 74.6 74.0	30.3 31.6 32.9	76.6 76.0 75.5 74.9	29.4 30.7 32.0 33.4		28.4 29.7 31.1 32.4 33.8	70 69 68 67 66
25 26 27 28 29	68.9 68.3 67.7 67.1 66.5	33·3 34·5 35·7 36.8	69.2 68.6 68.0 67.3	35.0 36.1 37.3	70.1 69.5 68.9 68.2	34.2 35.4 36.6 37.8	71.0 70.4 69.8 69.1	34.6 35.9 37.1 38.3	72.5 71.9 71.3 70.6 70.0	35.1 36.3 37.6 38.8	72.8 72.2 71.5 70.8	36.8 38.0 39.3	73.1 73.1 72.4 71.7	35.9 37.2 38.5 39.8	74.0 73.3	35.1 36.4 37.7 39.0 40.2	65 64 63 62 61
30 31 32 33 34	65.1 64.5 63.7 63.0	40.3 41.4 42.5	66.0 65.3 64.6 63.8	40.8 41.9 43.1	66.1 65.4 64.7	40.2 41.3 42.5 43.6	67.0 66.3 65.5	40.7 41.9 43.0 44.2	69.3 68.6 67.8 67.1 66.3	41.2 42.4 43.6 44.7	69.4 68.7 67.9 67.2	42.9 44.1 45.3	70.3 69.5 68.8 68.0	42.2 43.5 44.7 45.9	68.8	41.5 42.7 44.0 45.2 46.4	60 59 58 57 56
35 36 37 38 39	61.5 60.7 59.9 59.1	44.7 45.7 46.8 47.8	62.3 61.5 60.7 59.8	45·3 46.3 47·4 48.5	63.1 62.3 61.5 60.6	45.8 46.9 48.0 49.1	63.9 63.1 62.3 61.4	46.4 47.5 48.6 49.7	64.7 63.9 63.0 62.2	47.0 48.1 49.3 50.3	65.5 64.7 63.8 62.9	47.6 48.7 49.9 51.0	66.3 65.5 64.6 63.7	48.2 49.3 50.5 51.6	68.0 67.1 66.3 65.4 64.5	48.8 50.0 51.1 52.2	55 54 53 52 51
41 42 43 44	57·4 56·5 55·6 54·7	49.9 50.9 51.8 52.8	58.1 57.2 56.3 55.4	50.5 51.5 52.5 53.5	58.9 58.0 57.0 56.1	51.2 52.2 53.2 54.2	59.6 58.7 57.8 56.8	51.8 52.9 53.9 54.9	59.5 58.5 57.5	52.5 53.5 54.6 55.6	61.1 60.2 59.2 58.3	53.1 54.2 55.2 56.3	61.9 60.9 60.0 59.0	53.8 54.9 55.9 57.0	63.6 62.6 61.7 60.7 59.7	54·5 55·5 56.6 57·7	49 48 47 46
45	53.7			54.4	_				56.6	56.6	57.3		58.0			58.7	45
Course.	DEP.	EAT.	DEP.	TAT.		TAT.	_	TAT.		EAT.	_	81'	DEP.	_	$D_{\text{EP.}}$		Course.

						Pla	ne î	Trav	rers	e Ta	able		-				
Course.	D =	=84 ′	D =	85'	D =	86′	D =	87′	D=	-88 ′	D =	89′	D =	90'	D =	91'	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP,	La~.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	84.0 84.0 83.9 83.9 83.8	1.5 2.9	85.0 85.0 84.9 84.9 84.8	3.0 4.4	86.0 86.0 85.9 85.9 85.8	1.5	87.0 87.0 86.9 86.9 86.8	1.5 3.0 4.6	88.0 88.0 87.9 87.9 87.8	0.0 1.5 3.1 4.6 6.1	89.0 88.9 88.9	4.7		0.0 1.6 3.1 4.7 6.3	91.0 90.9 90.9	0.0 1.6 3.2 4.8 6.3	90 89 88 87 86
5 6 7 8 9	83.7 83.5 83.4 83.2 83.0	11.7	84.7 84.5 84.4 84.2 84.0	11.8	85.5 85.4 85.2 84.9	12.0	86.2 85.9	9.1 10.6 12.1 13.6	87.7 87.5 87.3 87.1 86.9	12.2	88.5 88.3 88.1 87.9	9.3 10.8 12.4 13.9	89.7 89.5 89.3 89.1 88.9	7.8 9.4 11.0 12.5 14.1	90.5 90.3 90.1 89.9	12.7	85 84 83 82 81
10 11 12 13 14	82.2 17.5 83.1 17 81.8 18.9 82.8 19 81.5 20.3 82.5 20 81.1 21.7 82.1 22 80.7 23.2 81.7 23 80.3 24.6 81.3 24 79.9 26.0 80.8 26				84.1 83.8 83.4	17.9 19.3 20.8	85.4 85.1 84.8 84.4	16.6 18.1 19.6 21.0	85.4	18.3 19.8 21.3	87.4 87.1 86.7 86.4	17.0 18.5 20.0 21.5	88.6 88.3 88.0 87.7 87.3	17.2 18.7 20.2 21.8	88.3	15.8 17.4 18.9 20.5 22.0	80 79 78 77 76
15 16 17 18 19	80.7 80.3 79.9 79.4	23.2 24.6 26.0 27.3	81.7 81.3 80.8 80.4	23.4 24.9 26.3 27.7	82.2 81.8 81.3	23.7 25.1 26.6 28.0	83.6 83.2 82.7 82.3	24.0 25.4 26.9 28.3		24.3 25.7 27.2 28.7	85.6 85.1 84.6 84.2	24.5 26.0 27.5 29.0	86.9 86.5 86.1 85.6 85.1	26.3 27.8 29.3	87.5 87.0 86.5 86.0	23.6 25.1 26.6 28.1 29.6	75 74 73 72 71
20 21 22 23 24	78.9 78.4 77.9 77.3 76.7	28.7 30.1 31.5 32.8 34.2	78.8 78.2	29.1 30.5 31.8 33.2 34.6	79.7	32.2 33.6 35.0	80.1 79·5	32.6 34.0 35.4	82.2 81.6 81.0 80.4	31.5 33.0 34.4 35.8	83.6 83.1 82.5 81.9 81.3	33·3 34.8 36.2	84.0 83.4 82.8 82.2	33.7 35.2 36.6	85.0 84.4 83.8 83.1	31.1 32.6 34.1 35.6 37.0	70 69 68 67 66
25 26 27 28 29	76.1 75.5 74.8 74.2 73.5	36.8 38.1 39.4 40.7	76.4 75.7 75.1 74.3	35.9 37.3 38.6 39.9 41.2	77.9 77.3 76.6 75.9 75.2	36.3 37.7 39.0 40.4 41.7	78.2 77.5 76.8	38.1 39.5 40.8 42.2	79.8 79.1 78.4 77.7 77.0	38.6 40.0 41.3 42.7	80.7 80.0 79.3 78.6 77.8	39.0 40.4 41.8 43.1	79·5 7 8·7	39.5 40.9 42.3 43.6	80.3 79.6	38.5 39.9 41.3 42.7 44.1	65 64 63 62 61
30 31 32 33 34	72.7 72.0 71.2 70.4 69.6	44·5 45·7 47·0	7.2.9 72.1 71.3 70.5	45.0 46.3 47.5	72.1	43.0 44.3 45.6 46.8 48.1	74.6 73.8	44.8 46.1 47.4	75.4	46.6	76.3 75.5 74.6	44.5 45.8 47.2 48.5 49.8	77.1 76.3 75.5	46.4 47.7 49.0 50.3	77·2 76·3 75·4	45.5 46.9 48.2 49.6 50.9	59 58 57 56
35 36 37 38 39	68.8 68.0 67.1 66.2 65.3	50.6 51.7 52.9	68.8 67.9 67.0 66.1	51.2 52.3 53.5	68.7 67.8 66.8	50.5 51.8 52.9 54.1	69.5 68.6 67.6	51.1 52.4 53.6 54.8	70.3 69.3 68.4	51.7 53.0 54.2 55.4	71.1 70.1 69.2	53.6 54.8 56.0	72.8 71.9 70.9 69.9	52.9 54.2 55.4 56.6	′ ′	52.2 53.5 54.8 56.0 57.3	55 54 53 52 51
40 41 42 43 44	63.4 62.4 61.4 60.4	55.1 56.2 57.3 58.4	64.2 63.2 62.2 61.1	55.8 56.9 58.0 59.0	64.9 63.9 62.9 61.9	56.4 57.5 58.7 59.7	65.7 64.7 63.6 62.6	57.1 58.2 59.3 60.4	65.4 64.4 63.3	57.7 58.9 60.0 61.1	67.2 66.1 65.1 64.0	58.4 59.6 60.7 61.8	66.9 65.8 64.7	59.0 60.2 61.4 62.5	66.6 65.5	59.7 60.9 62.1 63.2	50 49 48 47 46
45					_									-	-		45
Course.		59.4 59.4 60.1 60.1 DEP. LAT. DEP. LAT. D=84' D=85'			DEP.			EAT.		E88'	DEP. $ $	EAT.	DEP.	PO'	DEP.	_	Course.

						Pla	ne	Tra	vers	е Т	able						
Course.	D=g)2'	D=	93′	D=	94′	D =	95′	D =	96′	D=	97′	D =	=98 ′	D =	99′	Course.
<u>క</u>	LAT. I	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3 4	92.0 91.9 91.9	1.6 3.2	93.0 93.0 92.9 92.9 92.8	3.2	94.0 94.0 93.9 93.9 93.8	1.6 3.3 4.9	95.0 95.0 94.9 94.9 94.8	3·3 5.0	96.0 96.0 95.9 95.9 95.8	5.0 6.7	96.9 96.8	1.7		1.7 3.4	98.9 98.9 98.8	0.0 1.7 3.5 5.2 6.9	90 89 88 87 86
5 6 7 8 9	91.5 91.3 91.1	1.2 2.8 4·4	92.6 92.5 92.3 92.1 91.9	9.7 11.3 12.9 14.5	93·3 93·1 92.8	11.5 13.1 14.7	94·5 94·3 94·1 93.8	9.9 11.6 13.2	95·3 95·1 94.8	10.0 11.7 13.4 15.0	96.3 96 I	11.8 13.5 15.2	97·5 97·3 97·0 96.8	10.2 11.9 13.6 15.3	98.5 98.3 98.0	12.1 13.8 15.5	85 84 83 82 81
11 12 13 14	90.3 I 90.0 I 89.6 2	7.6 9.1 0.7 2.3	91.3 91.0 90.6 90.2	17.7 19.3 20.9 22.5	92.3 91.9 91.6 91.2	17.9	93·3 92·9 92·6 92·2	18.1 19.8 21.4 23.0	94.2 93.9 93.5 93.1	18.3 20.0 21.6 23.2	95.2 94.9	18.5 20.2 21.8 23.5	96.2 95.9 95.5	18.7 20.4 22.0 23.7	97.2 96.8 96.5 96.1	18.9 20.6 22.3	79 78 77 76 75
16 17 18 19	88.4 2 88.0 2 87.5 2 87.0 3	5.4 6.9 8.4 0.0	89.4 88.9 88.4 87.9	25.6	90.4 89.9 89.4 88.9	25.9 27.5 29.0 30.6	91.3 90.8 90.4 89.8	26.2 27.8 29.4 30.9	92.3 91.8 91.3 90.8	26.5 28.1 29.7 31.3	93.2 92.8 92.3 91.7	26.7 28.4 30.0 31.6	94.2 93.7 93.2	27.0 28.7 30.3 31.9	95.2 94.7 94.2 93.6	27.3 28.9 30.6 32.2	73 74 73 72 71
21 22 23 24	85.9 3 85.3 3 84.7 3 84.0 3	3.0 4.5 5.9 7.4	86.8 86.2 85.6 85.0	33·3 34.8 36.3 37.8	87.8 87.2 86.5 85.9	33.7 35.2 36.7 38.2	88.7 88.1 87.4 86.8	34.0 35.6 37.1 38.6	89.6 89.0 88.4 87.7	34·4 36.0 37·5 39·0	90.6 89.9 89.3 88.6	34.8 36.3 37.9 39.5	91.5 90.9 90.2 89.5	35.1 36.7 38.3 39.9	92.4 91.8 91.1 90.4 89.7	35·5 37·1 38·7	69 68 67 66 65
25 26 27 28 29	82.7 4 82.0 4 81.2 4 80.5 4	.0.3 .1.8 .3.2 .4.6	83.6 82.9 82.1 81.3	40.8 42.2 43.7 45.1	84.5 83.8 83.0 82.2	41.2 42.7 44.1 45.6	85.4 84.6 83.9 83.1	41.6 43.1 44.6 46.1	86.3 85.5 84.8 84.0	42.1 43.6 45.1 46.5	87.2 86.4 85.6 84.8	42.5 44.0 45.5 47.0	88.1 87.3 86.5 85.7	43.0 44.5 46.0 47.5	89.0 88.2 87.4 86.6	43.4 44.9 46.5 48.0	64 63 62 61
30 31 32 33 34	78.9 4 78.0 4 77.2 5 76.3 5	7·4 8.8 0.1	79.7 78.9 78.0 77.1	47.9 49.3 50.7 52.0	80.6 79.7 78.8 77.9	48.4 49.8 51.2 52.6	81.4 80.6 79.7 78.8	48.9 50.3 51.7 53.1	82.3 81.4 80.5 79.6	49·4 50·9 52·3 53·7	82.3 81.4 80.4	50.0 51.4 52.8 54.2	84.0 83.1 82.2 81.2	50.5 51.9 53.4 54.8	82.1	52.5 53.9 55.4	60 59 58 57 56
35 36 37 38 39	74.4 5 73.5 5 72.5 5 71.5 5	5·4 6.6 7·9	75.2 74.3 73.3 72.3	56.0 57.3 58.5	76.0 75.1 74.1 73.1	55.3 56.6 57.9 59.2	76.9 75.9 74.9 73.8	55.8 57.2 58.5 59.8	77·7 76·7 75·6 74·6	56.4 57.8 59.1 60.4	78.5 77.5 76.4 75.4	57.0 58.4 59.7 61.0	79·3 78·3 77·2 76·2	57.6 59.0 60.3 61.7	81.1 80.1 79.1 78.0 76.9	58.2 59.6 61.0 62.3	55 54 53 52 51
42 43 44	70.5 69.4 68.4 67.3 66.2 66.2	0.4 1.6 2.7 3.9	70.2 69.1 68.0 66.9	61.0 62.2 63.4 64.6	70.9 69.9 68.7 67.6	61.7 62.9 64.1 65.3	71.7 70.6 69.5 68.3	62.3 63.6 64.8 66.0	72.5 71.3 70.2 69.1	63.0 64.2 65.5 66.7	73.2 72.1 70.9	63.6 64.9 66.2 67.4	74.° 72.8 71.7 7°.5	64.3 65.6 66.8 68.1	74.7 73.6 72.4 71.2	64.9 66.2 67.5 68.8	49 48 47 46
45	-					-									70.0		45
Course.		65.1 65.1 65.8 65.8 DEP. LAT. DEP. LAT. D=92' D=93'				94′		LAT. ■95′	D=		DEP.		D =		DEP.	-	Course.

						Pla	ane '	Trav	erse	Tat	ole					
Jonnes	urse.	D =	100′	D =	101'	D =	102'	D =	103'	D =	104'	D=	105'	D=	106′	Course.
2	5	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
	00	100.0	0.0	101.0	0.0	102.0		103.0	0.0	104.0	0.0	105.0	0.0	106.0	0.0	90
	I 2	99.9	1.7 3.5	101.0	1.8 3.5	102.0	1.8 3.6	103.0	1.8 3.6	104.0	1.8 3.6	105.0	1.8 3.7	105.9	1.8 3.7	89 88
	3 4	99.9 99.8		100.9	5·3 7·0	101.9	5·3 7·1			103.9	5·4 7·3	104.9	5·5 7·3	105.9	5·5 7·4	87 86
	5	99.6		100.6		101.6	8.9			103.6	9.1	104.6	9.2	105.6	9.2	85
	7 8	99.5	12.2	100.4	12.3	101.4		102.2	12.6	103.4	10.9	104.4	12.8	105.4	11.1	84 83
	9	99.0	13.9 15.6	99.8		101.0		102.0		103.0	14.5	104.0		105.0	14.8 16.6	82 81
	10	98.5	17.4	99.5	17.5	100.5	17.7	101.4	17.9	102.4	18.1	103.4	18.2	104.4	18.4	80
I	2	97.8	20.8	98.8	21.0	99.8	21.2	100.7	21.4	101.7	21.6	102.7	21.8	103.7	22.0	79 78
	[3 [4	97.4 97.0	22.5	98.4 98.0	22.7	99.4 99.0	22.9 24.7	99.9	23.2	100.9	23.4	102.3	23.6	103.3	23.8 25.6	77 76
1	15	96.6 96.1	25.9 27.6	97.6 97.1	26.1 27.8	98.5 98.0	26.4 28.1	99.5	26.7 28.4	100.5	26.9 28.7	101.4		102.4	27.4 29.2	75 74
I	7 8	95.6	29.2	96.6	29.5	-	29.8 31.5	98.5 98.0	30.1	99.5 98.9	30.4 32.1	100.4		101.4	31.0	73 72
	19	95.1 94.6	32.6	95.5	32.9	96.4	33.2	97.4	33.5	98.3	33.9	99.9		100.0	34.5	71
	20	94.0 93.4	34·2 35.8	94·9 94·3	34·5 36.2	95.8 95.2	34·9 36.6	96.8 96.2	35.2 36.9	97·7 97·1	35.6 37·3	98.7 98.0	35·9 37.6		36.3 38.0	70 69
2	22	92.7	37·5 39·1	93.6 93.0	37.8 39.5	94.6 93.9	38.2	95·5 94.8	38.6	96.4 95.7	39.0	97·4 96.7	39.3	98.3	39·7 41·4	68 67
	24	91.4	40.7	92.3	41.1	93.2	41.5	94.1	41.9	95.0	42.3	95.9	42.7	96.8	43.1	66
2 2	25 26	90.6 89.9	42.3 43.8	91.5 90.8	42.7 44.3	92.4	43.1 44.7	93·3 92.6	43.5	94·3 93·5	44.0	95.2 94.4	44.4		44.8 46.5	65 64
	27 28	89.1 88.3	45·4 46.9	90.0	45·9 47·4	90.9	46.3	91.8	46.8	92.7 91.8	47.2 48.8	93.6	47·7 49·3	94·4 93.6	48.1 49.8	63
	29	87.5	48.5	88.3	49.0	89.2	49.5	90.1	49.9	91.0	50.4	91.8	50.9	92.7	51.4	61
	30 31	86.6 85.7	50.0	87.5 86.6	50.5	88.3 87.4	51.0 52.5	89.2 88.3	51.5	90.1	52.0 53.6	90.9	52.5 54.1	90.9	53.0 54.6	60 59
	32	84.8	53.0 54.5	85.7 84.7	53.5 55.0	86.5 85.5	54.1 55.6	87.3 86.4	54.6 56.1	88.2 87.2	55. I 56.6	89.0	55.6 57.2	89.9 88.9	56.2 57.7	57
3	34	82.9	55.9	83.7	56.5	84.6	57.0	85.4	57.6	86.2	58.2	87.0	58.7	87.9	59.3	56
1 3	35 36	81.9 80.9	57·4 58.8	82.7 81.7	57·9 59·4	83.6	58.5 60.0	84.4	59.1 60.5	85.2 84.1	59·7 61.1	86.0	60.2	85.8	60.8	55 54
3	37 38	79.9 78.8	60.2	80.7 79.6	60.8	81.5	61.4	82.3 81.2	62.0	83.1 82.0	62.6	83.9 82.7	63.2 64.6		63.8 65.3	53 52
3	39	77-7	62.9	78.5	63.6	79-3	64.2	80.0	64.8	80.8	65.4	81.6	66.1		66.7	51
	10 11	76.6 75.5	64.3 65.6	77.4 76.2		77.0	65.6 66.9			78.5	66.8 68.2	79.2	,	80.0	69.5	49
1 4	13	74·3 73·1	66.9 68.2		67.6 68.9		68.3 69.6	76.5	68.9 70.2	77·3 76.1	69.6 70.9		70.3 71.6		70.9	47
4	14	71.9	69.5	72.7	70.2	73.4	70.9	74.1	71.5	74.8	72.2	75.5	72.9		73.6	46
=	15	70-7	70.7	71.4	71.4	72.1	72.1	72.8	72.8	73.5	73.5	74.2	74.2		75.0	45
	Course.	DEP.	EP. LAT. DEP. LAT.		LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	Course.
(5	D =	D = 100' $D = 101'$			D =	102'	D =	103'	D =	104'	D =	105'	D=	106′	ပိ

						Pla	ane	Trav	erse	Tal	ole					
	Course.	D =	107′	D =	108′	D =	109′	D =	110'	D =	111'	D =	112'	D =	113'	Course.
	S	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Col								
	0	107.0	0.0	108.0		109.0		110.0	0.0			112.0		113.0	0.0	90 89
l	2	106.9	3·7 5.6	107.9		109.0		10.0		111.0	3.9	111.9 111.8	3.9	112.9 112.8	3.9 5.9	88 87
	4	106.7		107.7	7·5	108.7	7.6	109.7	7·7 9.6	110.7	7.7	111.7 111.6	1	112.7	7·9 9.8	86 85
	5 6 7 8	106.4	11.2	107.4	11.3	108.4	11.4	109.4	11.5	110.4		111.4		112.4 112.2	11.8	84 83
-	9	106.0		106.9		107.9		108.9		109.9	15.4	110.6		111.9	15.7 17.7	82 81
-	10	105.4	20.4	106.4	20.6	107.3	20.8	108.3	21.0	109.3	19.3	110.3	21.4	111.3	19.6	80 79
	12 13 14	104.7 104.3 103.8	24.1	105.6 105.2 104.8	22.5 24.3 26.1	106.6 106.2 105.8	24.5	107.6		108.6 108.2 107.7	23.1 25.0 26.9	109.6	25.2	110.5 110.1 109.6	23.5 25.4 27.3	78 77 76
	15 16	103.4	27.7	104.3	28.0	105.3	28.2	106.3	28.5	107.2	28.7	108.2	29.2	109.1	29.2	75 74
	17 18	102.3	31.3 33.1	103.3	31.6 33.4	104.2	31.9	105.2 104.6	32.2 34.0	106.1	32.5 34.3	107.1	32.7 34.6	108.1	33.0 34.9	73 72
	19 20	101.2		102.1	35.2 36.9	103.1		104.0		105.0		105.9		106.8	36.8 38.6	7 ^I 70
	21 22 23	99.9	40.1	100.8	38.7 40.5		40.8	102.7 102.0 101.3	39·4 41.2	102.9	41.6	104.6	40.1 42.0	104.8	40.5	69 68 67
	24	98.5 97.7	41.8	99·4 98·7	43.9	99.6	44-3	100.5	43.0	101.4	45.1	102.3		103.2	44.2	66
	25 26 27	97.0 96.2 95.3	45.2 46.9 48.6	97.9 97.1 96.2	45.6 47.3 49.0	98.8 98.0 97.1	46.1 47.8 49.5	99.7 98.9 98.0	46.5 48.2 49.9	99.8 98.9	48.7 50.4	101.5 100.7 99.8	47·3 49·1 50·8	102.4	47.8 49.5 51.3	65 64 63
	28 29	94·5 93.6	50.2 51.9	95·4 94·5	50.7 52.4	96.2 95·3	51.2	97.1 96.2	51.6 53.3	98.0 97.1	52.1 53.8	98.9 98.0	52.6 54·3	99.8 98.8	53.1 54.8	62 61
	30 31	92.7 91.7	53·5 55·1	93·5 92.6	54.0 55.6	94·4 93·4	54·5 56.1	95·3 94·3	55.0 56.7	96.1 95.1	55·5 57·2	9 7. 0 96.0	56.0 57.7	97·9 96.9	56.5 58.2	60 59
	32 33 34	90.7 89.7 88.7	56.7 58.3 59.8	91.6 90.6 89.5	57.2 58.8 60.4	92.4 91.4 90.4	57.8 59.4 61.0	93·3 92·3 91·2	58.3 59.9 61.5	94.1 93.1 92.0	58.8 60.5 62.1	95.0 93.9 92.9	59.4 61.0 62.6	95.8 94.8 93.7	59.9 61.5 63.2	58 57 56
	35 36	87.6 86.6	61.4	88.5	61.9		62.5 64.1	1	63.1 64.7	90.9	63.7 65.2	91.7	64.2 65.8	92.6	64.8 66.4	55 54
	37 38	85.5 84.3	64.4 65.9	86.3 85.1	65.0	87.1 85.9	65.6 67.1	87.8 86.7	66.2 67.7	88.6 87.5	66.8	89.4 88.3	67.4 69.0	90.2 89.0	68.0 69.6	53 52
100	39 40	83.2		83.9	68.0	84.7 83.5	68.6	84.3	69.2 70.7	86.3 85.0	69.9	87.0 85.8	7°-5	87.8 86.6	71.1 72.6	51 50
The same of the same	41 42 43	80.8 79.5 78.3		81.5	70.9 72.3	82.3 81.0	71.5 72.9	83.0 81.7	72.2 73.6	83.8	72.8	84.5 83.2	73-5	85.3	74.1 75.6	49 48
-	44	77.0	74.3	77.7	75.0	78.4	75.7	79.1	75.0 76.4	79.8	77-1	80.6	77.8	81.3	78.5	46
	45	75.7	75.7						77.8	78.5		79-2	79.2	79.9 Dep.		45
	Course.		Dep. LAT. Dep. LAT.			DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.		LAT.	Course.
	ŭ	D = 107' $D = 108'$		<i>D</i> =	109′	D=	110′	D=	111'	D=	112'	D=	113′	ŭ		

					Pl	ane	Trav	erse	Tal	ole					
Course.	D =	114'	D =	115'	D =	116′	D =	117′	D =	118′	D =	119'	D =	120′	Course.
ပိ	LAT.	DEP.	Co												
0 1 2 3 4	114.0 114.0 113.9 113.8	2.0 4.0 6.0	115.0 115.0 114.9 114.8	2.0 4.0 6.0	116.0 116.0 115.9 115.8 115.7	2.0 4.0 6.1	117.0 117.0 116.9 116.8	2.0 4.1 6.1	118.0 118.0 117.9 117.8	2.1 4.1 6.2	119.0 119.0 118.9 118.8 118.7	2.1 4.2 6.2	120.0 120.0 119.9 119.8 119.7	0.0 2.1 4.2 6.3 8.4	° 90 89 88 87 86
5 6 7 8 9	113.6 113.4 113.2 112.9 112.6	11.9 13.9 15.9 17.8	114.6 114.4 114.1 113.9 113.6	12.0 14.0 16.0 18.0	115.1 114.9 114.6	12.1 14.1 16.1 18.1	116.6 116.4 116.1 115.9 115.6	12.2 14.3 16.3 18.3	117.1 116.9 116.5	12.3 14.4 16.4 18.5	118.5 118.3 118.1 117.8 117.5	16.6 18.6	119.3 119.1 118.8 118.5	10.5 12.5 14.6 16.7 18.8	82 81
10 11 12 13 14	112.3 111.9 111.5 111.1 110.6	21.8 23.7 25.6 27.6	113.3 112.9 112.5 112.1 111.6	23.9 25.9 27.8	114.2 113.9 113.5 113.0 112.6	22.I 24.I 26.I 28.I	115.2 114.9 114.4 114.0 113.5	24.3 26.3 28.3	115.8 115.4 115.0 114.5	22.5 24.5 26.5 28.5	117.2 116.8 116.4 116.0	26.8 28.8	117.4 116.9 116.4	20.8 22.9 24.9 27.0 29.0	80 79 78 77 76
15 16 17 18 19	110.1 109.6 109.0 108.4 107.8	31.4 33.3 35.2 37.1	111.1 110.5 110.0 109.4 108.7	29.8 31.7 33.6 35.5 37.4	112.0 111.5 110.9 110.3 109.7	32.0 33.9 35.8	113.0 112.5 111.9 111.3 110.6	32.2 34.2 36.2 38.1	114.0 113.4 112.8 112.2 111.6	32.5 34.5 36.5 38.4	114.9 114.4 113.8 113.2 112.5	34.8 36.8 38.7	115.4 114.8 114.1 113.5	31.1 33.1 35.1 37.1 39.1	75 74 73 72 71
20 21 22 23 24	107.1 106.4 105.7 104.9	40.9 42.7 44.5	108.1 107.4 106.6 105.9 105.1	39·3 41·2 43·1 44·9 46.8	109.0 108.3 107.6 106.8 106.0	41.6 43.5 45.3	109.9 109.2 108.5 107.7 106.9	41.9 43.8	110.9 110.2 109.4 108.6 107.8	44.2 46.1	111.8 111.1 110.3 109.5 108.7	44.6 46.5 48.4	112.8 112.0 111.3 110.5 109.6	41.0 43.0 45.0 46.9 48.8	69 68 67 66
25 26 27 28 29	103.3 102.5 101.6 100.7 99.7	50.0 51.8	104.2 103.4 102.5 101.5	48.6 50.4 52.2 54.0 55.8	105.1 104.3 103.4 102.4 101.5	50.9 52.7 54.5 56.2	106.0 105.2 104.2 103.3 102.3	51.3 53.1 54.9	106.9 106.1 105.1 104.2 103.2	51.7 53.6 55.4	106.0 105.1 104.1	52.2 54.0 55.9 57:7		50.7 52.6 54.5 56.3 58.2	65 64 63 62 61
30 31 32 33 34	98.7 97.7 96.7 95.6 94.5	57.0 58.7 60.4 62.1 63.7	99.6 98.6 97.5 96.4 95.3	57·5 59·2 60·9 62·6 64·3	99.4 98.4 97.3 96.2	58.0 59.7 61.5 63.2 64.9	99.2 98.1	60.3	102.2 101.1 100.1 99.0 97.8	59.0 60.8 62.5 64.3 66.0	102.0 100.9 99.8	61.3 63.1 64.8 66.5	103.9 102.9 101.8 100.6 99.5	60.0 61.8 63.6 65.4 67.1	59 58 57 56
35 36 37 38 39	93.4 92.2 91.0 89.8 88.6	65.4 67.0 68.6 70.2 71.7	94.2 93.0 91.8 90.6 89.4	66.0 67.6 69.2 70.8 72.4	95.0 93.8 92.6 91.4 90.1	66.5 68.2 69.8 71.4 73.0	94·7 93·4 92·2 90·9	67.1 68.8 70.4 72.0 73.6		67.7 69.4 71.0 72.6 74.2		68.3 69.9 71.6 73.3 74.9	95.8 94.6 93·3	68.8 7°.5 72.2 73.9 75.5	51
40 41 42 43 44	87.3 86.0 84.7 83.4 82.0	73·3 74.8 76·3 77·7 79·2	86.8 85.5 84.1 82.7	77.0 78.4 79.9	87.5 86.2 84.8 83.4	77.6 79.1 80.6	88.3 86.9 85.6 84.2	78.3 79.8 81.3	89.1 87.7 86.3 84.9	79.0 80.5 82.0	89.8 88.4 87.0 85.6	78.1 79.6 81.2 82.7	90.6 89.2 87.8 86.3	80.3 81.8 83.4	49 48 47 46
45	80.6	80.6	81.3	81.3	82.0	82.0	82.7	82.7	83.4	83.4	84.1	84.1	84.9	84.9	45
Course.	DEP.	LAT.	Course.												
Col	D =	D=114' D=115'		115'	D=	116'	D =	117'	D =	118'	D =	119'	D =	120′	ပိ

Plane	Traverse	Table
-------	----------	-------

Course.	D =	121′	D =	122'	D =	123′	D =	124′	D =	125′	D =	126′	D =	127'	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
°	121.0	0.0	122.0		123.0	0.0	124.0	0.0	125.0	0.0	126.0	0.0	127.0	0.0	90 89
I 2	121.0	2.I 4.2	122.0		123.0	2.I 4.3	124.0	2.2 4.3		2.2 4.4	126.0	2.2 4.4	127.0	2.2 4.4	89 88
3 4	120.8	6.3 8.4	121.8	6.4	122.8	6.4 8.6	123.8	6.5 8.6	124.8	6.5 8.7	125.8	6.6 8.8	126.8	6.6 8.9	87 86
	120.5	10.5	121.5		122.5	10.7			124.5	· 1	125.5	11.0	, '	11.1	85
5 6	120.3	12.6	121.3	12.8	122.3	12.9	123.3	13.0	124.3	13.1	125.3	13.2	126.3	13.3	84
7 8	119.8	16.8	121.1	17.0	122.1 121.8		123.1 122.8	17.3	124.1		125.1	15.4		15.5	83 82
9	119.5		120.5		121.5		122.5		123.5	19.6	124.4	19.7		19.9	87
10	119.2		120.1		121.1	21.4	122.1	21.5	123.I 122.7	21.7	124.1	21.9		22.I 24.2	70
12	118.4	25.2	119.3	25.4	120.3	25.6	121.3	25.8	122.3	26.0	123.2	26.2	124.2	26.4	79 78
13	117.9		118.9 118.4		119.8		120.8		121.8	28.1 30.2		30.5	123.7 123.2	28.6 30.7	77 76
15	116.9		117.8		118.8	31.8	119.8		120.7		121.7		122.7	32.9	75
16 17	116.3	33·4 35·4	117.3		118.2	33.9	119.2 118.6		120.2 119.5	34·5 36.5	121.1	34·7 36.8	122.1	35.0 37.1	74
18	115.1	37.4	116.0	37.7	117.0	38.0	117.9	38.3	118.9	38.6	119.8	38.9	120.8	39.2	73 72
19	114.4		115.4		116.3		117.2		118.2		119.1		120.1	41.3	71
20 2I	113.7	41.4 43.4	114.6	43.7	115.6	42.I 44.I	115.8		117.5 116.7	42.8 44.8	117.6		118.6	43·4 45·5	70 69
22 23	112.2		113.1 112.3	45.7	114.0 113.2		115.0		115.9	46.8 48.8	116.8		117.8	47.6 49.6	68
24	110.5		111.5		112.4		113.3		114.2		115.1		116.0	51.7	67 66
25 26	109.7	51.1	110.6		111.5		112.4		113.3	52.8	114.2		115.1	53.7	65
27	107.8	54.9	109.7	55.4	10.6	55.8	111.5	56.3	112.3		I13.2 I12.3		114.I 113.2	55·7 57·7	64 63
28 29	106.8		107.7	57·3	108.6	57.7	109.5		10.4	58.7 60.6	111.3	59 .2 61.1	I 12.1	59.6 61.6	62 61
30	104.8		105.7		106.5		107.4		108.3	62.5	109.1		111.0	63.5	60
31	103.7	62.3	104.6	62.8	105.4	63.3	106.3	63.9	107.1	64.4	108.0	64.9	108.9	65.4	
32 33	102.6		103.5		104.3		105.2		106.0 104.8	68.1	106.9		107.7	67.3 69.2	59 58 57 56
34	100.3	67.7	101.1	68.2	102.0		102.8		103.6	69.9	104.5	70.5	105.3	71.0	56
35	99.1 97.9	69.4	99.9 98.7	70.0 71.7	100.8	7°.5 72.3		71.I 72.9	102.4	71.7	103.2	72·3 74·1	104.0	72.8	55
36 37 38	96.6	72.8	97.4	73.4	99·5 98·2	74.0	99.0	74.6	99.8	73·5 75·2	100.6	75.8	101.4	74.6 76.4	54
38	95·3 94.0	74·5 76.1	96.1 94.8	75.1 76.8	96.9 95.6	75·7 77·4	97 ·7 96 · 4	76.3	98.5 97.1	77.0 78.7	99·3 97·9	77.6 79.3		78.2 79.9	54 53 52 51
40	92.7	77.8	93.5	78.4	94.2	79.1	95.0	79.7	95.8	80.3	96.5	81.0	97.3	81.6	50
41	91.3	79·4 81.0	92.1	80.0 81.6	92.8	80.7	93.6	81.4	94.3	82.0	95.1	82.7	95.8	83.3	49 48
42	89.9 88.5	82.5	90.7 89.2	83.2	90.0	82.3 83.9	92.1	83.0 84.6	92.9	83.6 85.2	93.6	84.3 85.9	94.4	85.0 86.6	47
44	87.0	84.1	87.8	84.7	88.5	85.4	89.2	86.1	89.9	86.8	90.6	87.5	91.4	88.2	46
45	85.6	85.6	86.3	86.3	87.0	87.0	87.7	87.7	88.4	88.4	89.1	89.1	89.8	89.8	45
se.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	se.
Course.	D =	121'	D =	122'	D =	123′	D =	124′	D =	125′	D =	126′	D =	127′	Course.
		D=121 D=122													

17

					Pla	ane	Trav	erse	Tal	ole					
Course.	D =	128′	D=	129′	D =	130′	D =	131'	D =	132′	D =	133'	D = 1	134'	Course.
Col	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	S
0 1 2 3 4	128.0 128.0 127.9 127.8 127.7	2.2 4.5 6.7	129.0 129.0 128.9 128.8 128.7	2.3 4.5 6.8	130.0 130.0 129.9 129.8 129.7	2.3 4.5 6.8	131.0 131.0 130.9 130.8 130.7	2.3 4.6 6.9	132.0 132.0 131.9 131.8 131.7	2.3 4.6 6.9	133.0 133.0 132.9 132.8 132.7	2.3 4.6 7.0	134.0 134.0 133.9 133.8 133.7	0.0 2.3 4.7 7.0 9.3	90 89 88 87 86
5 6 7 8 9	127.5 127.3 127.0 126.8 126.4	13.4 15.6 17.8 20.0	128.5 128.3 128.0 127.7 127.4	13.5 15.7 18.0 20.2	129.5 129.3 129.0 128.7 128.4	13.6 15.8 18.1 20.3	130.5 130.3 130.0 129.7 129.4	13.7 16.0 18.2 20.5	131.5 131.3 131.0 130.7 130.4	16.1 18.4 20.6	132.3 132.0 131.7 131.4	13.9 16.2 18.5 20.8	133.5 133.3 133.0 132.7 132.4	11.7 14.0 16.3 18.6 21.0	85 84 83 82 81
10 11 12 13 14	125.6 24.4 126.6 2. 125.2 26.6 126.2 2. 124.7 28.8 125.7 2. 124.2 31.0 125.2 3. 123.6 33.1 124.6 3. 123.0 35.3 124.0 3. 122.4 37.4 123.4 3.			24.6 26.8 29.0 31.2	128.0 127.6 127.2 126.7 126.1	24.8 27.0 29.2 31.4	129.0 128.6 128.1 127.6 127.1	25.0 27.2 29.5 31.7		25.2 27.4 29.7 31.9	131.0 130.6 130.1 129.6 129.0	25.4 27.7 29.9 32.2	132.0 131.5 131.1 130.6 130.0	23.3 25.6 27.9 30.1 32.4	80 79 78 77 76
15 16 17 18 19	123.0 122.4 121.7 121.0	35·3 37·4 39.6 41·7	124.0 123.4 122.7 122.0	37·7 39·9 42.0	125.6 125.0 124.3 123.6 122.9	35.8 38.0 40.2 42.3	126.5 125.9 125.3 124.6 123.9	36.1 38.3 40.5 42.6	127.5 126.9 126.2 125.5 124.8	36.4 38.6 40.8 43.0	128.5 127.8 127.2 126.5 125.8	36.7 38.9 41.1 43.3	129.4 128.8 128.1 127.4 126.7	34·7 36·9 39·2 41·4 43·6 45.8	75 74 73 72 71
20 21 22 23 24	120.3 119.5 118.7 117.8 116.9	45.9 47.9 50.0 52.1	121.2 120.4 119.6 118.7 117.8	46.2 48.3 50.4 52.5	122.2 121.4 120.5 119.7 118.8	46.6 48.7 50.8 52.9	123.1 122.3 121.5 120.6 119.7	46.9 49.1 51.2 53.3	124.0 123.2 122.4 121.5 120.6	47·3 49·4 51.6 53·7	121.5	47·7 49.8 52.0 54·1	125.1 124.2 123.3 122.4	48.0 50.2 52.4 54.5	67 66
25 26 27 28 29	116.0 115.0 114.0 113.0	56.1 58.1 60.1 62.1	116.9 115.9 114.9 113.9 112.8	56.5 58.6 60.6 62.5	117.8 116.8 115.8 114.8 113.7	57.0 59.0 61.0 63.0	118.7 117.7 116.7 115.7 114.6	57·4 59·5 61.5 63·5	119.6 118.6 117.6 116.5	57.9 59.9 62.0 64.0	118.5 117.4 116.3	58.3 60.4 62.4 64.5	121.4 120.4 119.4 118.3	56.6 58.7 60.8 62.9 65.0	63 62 61
30 31 32 33 34	110.9 109.7 108.6 107.3 106.1	65.9 67.8 69.7	111.7 110.6 109.4 108.2 106.9	66.4 68.4 70.3 72.1	112.6 111.4 110.2 109.0 107.8	67.0 68.9 70.8 72.7		67.5 69.4 71.3 73.3	114.3 113.1 111.9 110.7 109.4	68.0 69.9 . 71.9 73.8	115.2 114.0 112.8 111.5	68.5 7°.5 72.4 74.4	116.0 114.9 113.6 112.4 111.1	69.0 71.0 73.0 74.9	59 58 57 56
35 36 37 38 39	104.9 103.6 102.2 100.9 99.5	75.2 77.0 78.8 80.6	105.7 104.4 103.0 101.7 100.3	75.8 77.6 79.4 81.2	106.5 105.2 103.8 102.4 101.0	76.4 78.2 80.0 81.8	104.6 103.2 101.8	77.0 78.8 80.7 82.4		77.6 79.4 81.3 83.1	108.9 107.6 106.2 104.8	78.2 80.0 81.9 83.7	109.8 108.4 107.0 105.6 104.1	78.8 80.6 82.5 84.3	52 51
40 41 42 43 44	95.1 93.6 92.1	84.0 85.6 87.3 88.9	97·4 95·9 94·3 92.8	84.6 86.3 88.0 89.6	95.1 93.5	85.3 87.0 88.7 90.3	97·4 95.8 94·2	85.9 87.7 89.3 91.0	98.1 96.5 95.0	86.6 88.3 90.0 91.7	98.8 97·3 95·7	87.3 89.0 90.7 92.4	99.0 98.0 96.4	87.9 89.7 91.4 93.1	49 48 47
45	90.5			-		-		-	93·3 DEP.	-	DEP.		DEP.		_
Course.	DEP.	LAT. = 128'		LAT.	DEP.	130'	-	131'	_	132′		=133′	-	=134′	Course.

					Pl	ane	Trav	erse	Tal	ole					
Course.	D =	135'	D =	136′	D =	137'	D =	138′	D =	139'	D=	140′	D=	141′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	Dep.	ပိ
0 1 2 3 4	135.0 135.0 134.9 134.8 134.7	0.0 2.4 4.7 7.1 9.4	136.0 135.9 135.8	2.4 4.7 7.1	137.0 137.0 136.9 136.8 136.7	2.4 4.8 7.2	138.0 138.0 137.9 137.8 137.7	2.4 4.8 7.2	139.0 139.0 138.9 138.8 138.7	2.4 4.9 7.3	140.0 140.0 139.9 139.8 139.7	2.4 4.9 7.3	141.0 141.0 140.9 140.8 140.7	7.4 9.8	90 89 88 87 86
5 6 7 8 9	134.5 134.3 134.0 133.7 133.3	11.8 14.1 16.5 18.8 21.1	135.3	14.2 16.6 18.9	136.5 136.2 136.0 135.7 135.3	14.3 16.7 19.1	137.5 137.2 137.0 136.7 136.3	14.4 16.8 19.2	138.5 138.2 138.0 137.7 137.3	14.5 16.9 19.3	139.5 139.2 139.0 138.6 138.3	14.6 17.1 19.5	140.5 140.2 139.9 139.6 139.3	12.3 14.7 17.2 19.6 22.1	85 84 83 82 81
10 11 12 13 14	132.9 132.5 132.0 131.5 131.0	30.4		26.0 28.3 30.6	134.9 134.5 134.0 133.5 132.9	28.5 30.8	135.9 135.5 135.0 134.5 133.9	26.3 28.7 31.0	136.9 136.4 136.0 135.4 134.9	26.5 28.9 31.3	137.9 137.4 136.9 136.4 135.8	26.7 29.1 31.5	138.9 138.4 137.9 137.4 136.8	24.5 26.9 29.3 31.7 34.1	80 79 78 77 76
15 16 17 18	130.4 129.8 129.1 128.4 127.6	37.2 39.5 41.7	131.4 130.7 130.1 129.3 128.6	37·5 39.8 42.0	132.3 131.7 131.0 130.3 129.5	35.5 37.8 40.1 42.3 44.6	133.3 132.7 132.0 131.2 130.5	38.0 40.3 42.6	134.3 133.6 132.9 132.2 131.4	38.3 40.6 43.0	135.2 134.6 133.9 133.1 132.4	38.6 40.9 43.3	136.2 135.5 134.8 134.1 133.3	36.5 38.9 41.2 43.6 45.9	75 74 73 72 71
20 21 22 23 24	126.9 126.0 125.2 124.3 123.3	48.4 50.6	127.8 127.0 126.1 125.2 124.2	48.7 50.9 53.1	128.7 127.9 127.0 126.1 125.2	46.9 49.1 51.3 53.5 55.7	129.7 128.8 128.0 127.0 126.1	49·5 51·7 53·9	130.6 129.8 128.9 128.0		131.6 130.7 129.8 128.9 127.9	50.2 52.4 54.7	132.5 131.6 130.7 129.8 128.8	48.2 50.5 52.8 55.1 57.3	70 69 68 67 66
25 26 27 28 29	122.4 121.3 120.3 119.2 118.1	61.3 63.4	123.3 122.2 121.2 120.1 118.9	59.6 61.7 63.8	124.2 123.1 122.1 121.0 119.8	62.2	125.1 124.0 123.0 121.8 120.7	62.7 64.8	126.0 124.9 123.8 122.7 121.6	63.1 65.3	126.9 125.8 124.7 123.6 122.4	61.4 63.6 65.7	127.8 126.7 125.6 124.5 123.3	59.6 61.8 64.0 66.2 68.4	65 64 63 62 61
30 31 32 33 34	116.9 115.7 114.5 113.2 111.9	67.5 69.5 71.5 73.5 75.5	116.6 115.3 114.1	70.0 72.1 74.1	118.6 117.4 116.2 114.9 113.6	70.6 72.6 74.6	119.5 118.3 117.0 115.7 114.4	71.1 73.1 75.2		71.6 73.7	121.2 120.0 118.7 117.4 116.1	72.1 74.2 76.2	122.1 120.9 119.6 118.3 116.9	7°.5 72.6 74.7 76.8 78.8	60 59 58 57 56
35 36 37 38 39	110.6 109.2 107.8 106.4 104.9	83.I 85.0	110.0 108.6 107.2 105.7	79.9 81.8 83.7	112.2 110.8 109.4 108.0 106.5	80.5 82.4 84.3 86.2	113.0 111.6 110.2 108.7 107.2	81.1 83.1 85.0 86.8	113.9 112.5 111.0 109.5 108.0	81.7 83.7 85.6	114.7 113.3 111.8 110.3 108.8	82.3 84.3 86.2	115.5 114.1 112.6 211.1 109.6	80.9 82.9 84.9 86.8 88.7	55 54 53 52 51
40 41 42 43 44	103.4 101.9 100.3 98.7 97.1	88.6 90.3 92.1 93.8	99·5 97·8	89.2 91.0 92.8 94.5	104.9 103.4 101.8 100.2 98.5	89.9 91.7 93.4 95.2	105.7 104.1 102.6 100.9 99.3	90.5 92.3 94.1 95.9	100.0	91.2 93.0 94.8 96.6	107.2 105.7 104.0 102.4 100.7	91.8 93.7 95.5 97.3	108.0 106.4 104.8 103.1 101.4		50 49 48 47 46
45	95.5	95.5	96.2	96.2	96.9	96.9	97.6		98.3	98.3	-	99.0	99.7	99.7	45
Course.	D_{EP} .	135'	Dep.	136'	Dep.	LAT.	Dep.	138'	D_{EP} .	139'	DEP.	140'	D_{EP}	LAT.	Course.

					Pl	ane	Trav	erse	Tal	ole					
Course.	D=	142'	D =	143'	D =	144'	D =	145'	D=	146′	D =	147'	D=	148'	rse.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Course
0 1 2 3 4	142.0 142.0 141.9 141.8	0.0 2.5 5.0 7.4 9.9	143.0 142.9 142.8	5.0 7.5	144.0 144.0 143.9 143.8 143.6	5.0 7.5	145.0 144.9	7.6 10.1	146.0 145.9 145.8	7.6 10.2	147.0 147.0 146.9 146.8 146.6	7.7	148.0 147.9	7.7 10.3	90 89 88 87 86
56 78 9	141.5 141.2 140.9 140.6 140.3	19.8		14.9 17.4 19.9	143.5 143.2 142.9 142.6 142.2	15.1	143.9 143.6	17.7	145.2	12.7 15.3 17.8 20.3 22.8	146.4 146.2 145.9 145.6 145.2	17.9	147.4 147.2 146.9 146.6 146.2	12.9 15.5 18.0 20.6 23.2	85 84 83 82 81
10 11 12 13 14	139.8 139.4 138.9 138.4 137.8	27.1 29.5 31.9 34.4	140.8 140.4 139.9 139.3 138.8	27.3 29.7 32.2	141.8 141.4 140.9 140.3 139.7	27·5 29·9	142.8 142.3 141.8 141.3 140.7	27.7 30.1		3°.4 32.8 35·3	144.8 144.3 143.8 143.2 142.6	28.0 30.6 33.1 35.6	145.8 145.3 144.8 144.2 143.6	25.7 28.2 30.8 33.3 35.8	80 79 78 77 76
15 16 17 18 19	137.2 136.5 135.8 135.1 134.3	39.1 41.5 43.9 46.2	138.1 137.5 136.8 136.0 135.2	39.4 41.8 44.2 46.6	139.1 138.4 137.7 137.0 136.2	37·3 39·7 42·1 44·5 46·9	137.9 137.1	42.4 44.8 47.2	138.9 138.0	40.2 42.7 45.1 47.5	142.0 141.3 140.6 139.8 139.0	40.5 43.0 45.4	143.0 142.3 141.5 140.8 139.9	38.3 40.8 43.3 45.7 48.2	75 74 73 72 71
20 21 22 23 24	133.4 132.6 131.7 130.7 129.7	50.9 53.2 55.5	134.4 133.5 132.6 131.6 130.6	51.2 53.6 55.9	135.3 134.4 133.5 132.6 131.6	53·9 56.3	136.3 135.4 134.4 133.5 132.5	52.0 54.3 56.7	137.2 136.3 135.4 134.4 133.4	52·3 54·7 57·0	138.1 137.2 136.3 135.3 134.3	52.7 55.1 57.4	139.1 138.2 137.2 136.2 135.2	50.6 53.0 55.4 57.8 60.2	70 69 68 67 66
25 26 27 28 29	128.7 127.6 126.5 125.4 124.2	62.2 64.5 66.7	129.6 128.5 127.4 126.3 125.1	62.7 64.9 67.1	130.5 129.4 128.3 127.1 125.9	65.4 67.6	130.3	68. 1		64.0 66.3 68.5	133.2 132.1 131.0 129.8 128.6	66.7 69.0	134.1 133.0 131.9 130.7 129.4	62.5 64.9 67.2 69.5 71.8	65 64 63 62 61
30 31 32 33 34	123.0 121.7 120.4 119.1 117.7	73.1 75.2 77.3	123.8 122.6 121.3 119.9 118.6	73·7 75·8 77·9	124.7 123.4 122.1 120.8 119.4	72.0 74.2 76.3 78.4 80.5	124.3 123.0 121.6 120.2	74.7 76.8 79.0 81.1	125.1 123.8 122.4 121.0	75.2 77.4 79.5	127.3 126.0 124.7 123.3 121.9	73·5 75·7 77·9 80.1 82.2	126.9 125.5	74.0 76.2 78.4 80.6 82.8	60 59 58 57 56
35 36 37 38 39	116.3 114.9 113.4 111.9 110.4	85.5 87.4 89.4	115.7 114.2 112.7 111.1	84.1 86.1 88.0 90.0	118.0 116.5 115.0 113.5 111.9	84.6 86.7 88.7 90.6	115.8 114.3 112.7	85.2 87.3 89.3 91.3	113.5	87.9 89.9 91.9	120.4 118.9 117.4 115.8 114.2	86.4 88.5 90.5 92.5	121.2 119.7 118.2 116.6 115.0	84.9 87.0 89.1 91.1 93.1	55 54 53 52 51
40 41 42 43 44	108.8 107.2 105.5 103.9 102.1	93.2 95.0 96.8	109.5 107.9 106.3 104.6 102.9	93.8 95.7 97.5 99.3		94.5 96.4 98.2 100.0	107.8 106.0 104.3	95.1 97.0 98.9 100.7		95.8 97.7 99.6 101.4	107.5	96.4 98.4 100.3 102.1	110.0 108.2 106.5	99.0 100.9 102.8	50 49 48 47 46
45	100.4	-		101.1			_								45
Course.	D_{EP}	LAT.	D _{EP} .	I43'		I44'	D_{EP} .	145'	D_{EP} .	146'	D=	IAT.	DEP.	148'	Course.

					Pl	ane	Trav	rerse	Tal	ble					
Course.	D=	149′	D=	150′	D=	151'	D=	152′	D=	153′	D=	154′	D=	155′	Course.
Con	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3 4	149.0 149.0 148.9 148.8 148.6	2.6 5.2 7.8	150.0 150.0 149.9 149.8 149.6	2.6 5.2	151.0 151.0 150.9 150.8 150.6	2.6 5·3 7·9	152.0 152.0 151.9 151.8 151.6	0.0 2.7 5.3 8.0 10.6	153.0 153.0 152.9 152.8 152.6	2.7 5.3	154.0 154.0 153.9 153.8 153.6	2.7 5.4 8.1	155.0 155.0 154.9 154.8 154.6	0.0 2.7 5.4 8.1 10.8	90 89 88 87 86
56 78 9	148.4 148.2 147.9 147.5 147.2	15.6 18.2 20.7 23.3	149.4 149.2 148.9 148.5 148.2	13.1 15.7 18.3 20.9 23.5	150.4 150.2 149.9 149.5 149.1	15.8 18.4 21.0 23.6	151.4 151.2 150.9 150.5 150.1	13.2 15.9 18.5 21.2 23.8	152.4 152.2 151.9 151.5 151.1	13.3 16.0 18.6 21.3 23.9	153.4 153.2 152.9 152.5 152.1	16.1 18.8 21.4 24.1	154.4 154.2 153.8 153.5 153.1	13.5 16.2 18.9 21.6 24.2	85 84 83 82 81
10 11 12 13 14	146.7 146.3 145.7 145.2 144.6	28.4 31.0 33.5 36.0	147.7 147.2 146.7 146.2 145.5	26.0 28.6 31.2 33.7 36.3	148.2 147.7 147.1 146.5	28.8 31.4 34.0 36.5	149.7 149.2 148.7 148.1 147.5	26.4 29.0 31.6 34.2 36.8	150.7 150.2 149.7 149.1 148.5	29.2 31.8 34.4 37.0	151.7 151.2 150.6 150.1 149.4 148.8	29.4 32.0	152.6 152.2 151.6 151.0 150.4	29.6 32.2 34.9 37.5	79 78 77 76
15 16 17 18 19	143.9 143.2 142.5 141.7 140.9	41.1 43.6 46.0 48.5	144.2 143.4 142.7 141.8	41.3 43.9 46.4 48.8	145.2 144.4 143.6 142.8	41.6 44.1 46.7 49.2	146.1 145.4 144.6 143.7	39·3 41·9 44·4 47·0 49·5	147.1 146.3 145.5 144.7	42.2 44.7 47.3 49.8	148.0 147.3 146.5 145.6	42.4 45.0 47.6 50.1	149.0 148.2 147.4 146.6	42.7 45.3 47.9 50.5	75 74 73 72 71
20 21 22 23 24	140.0 139.1 138.2 137.2 136.1	53.4 55.8 58.2 60.6	141.0 140.0 139.1 138.1 137.0	56.2 58.6 61.0	141.9 141.0 140.0 139.0 137.9	54.1 56.6 59.0 61.4	141.9 140.9 139.9 138.9	52.0 54.5 56.9 59.4 61.8	141.9 140.8 139.8	52.3 54.8 57.3 59.8 62.2	144.7 143.8 142.8 141.8 140.7	57.7 60.2 62.6	144.7 143.7 142.7 141.6	53.0 55.5 58.1 60.6 63.0	70 69 68 67 66
25 26 27 28 29	135.0 133.9 132.8 131.6 130.3	65.3 67.6 70.0 72.2	135.9 134.8 133.7 132.4 131.2	65.8 68.1 70.4 72.7	136.9 135.7 134.5 133.3 132.1	66.2 68.6 70.9 73.2	137.8 136.6 135.4 134.2 132.9	64.2 66.6 69.0 71.4 73.7	138.7 137.5 136.3 135.1 133.8	64.7 67.1 69.5 71.8 74.2	139.6 138.4 137.2 136.0 134.7	67.5 69.9 72.3 74.7	140.5 139.3 138.1 136.9 135.6	65.5 67.9 70.4 72.8 75.1	65 64 63 62 61
30 31 32 33 34	129.0 127.7 126.4 125.0 123.5	79.0 81.2 83.3	128.6 127.2 125.8 124.4	77·3 79·5 81·7 83·9	130.8 129.4 128.1 126.6 125.2	77.8 80.0 82.2 84.4	126.0	76.0 78.3 80.5 82.8 85.0	129.8 128.3 126.8	76.5 78.8 81.1 83.3 85.6	133.4 132.0 130.6 129.2 127.7	81.6 83.9 86.1	132.9 131.4 130.0 128.5	77.5 79.8 82.1 84.4 86.7	59 58 57 56
35 36 37 38 39	122.1 120.5 119.0 117.4 115.8	87.6 89.7 91.7 93.8	122.9 121.4 119.8 118.2 116.6	88.2 90.3 92.3 94.4	123.7 122.2 120.6 119.0 117.3	90.9 93.0 95.0	123.0 121.4 119.8 118.1	89.3 91.5 93.6 95.7	122.2 120.6 118.9	96.3	126.1 124.6 123.0 121.4 119.7	90.5 92.7 94.8 96.9	127.0 125.4 123.8 \$22.1 120.5	88.9 91.1 93.3 95.4 97.5	55 54 53 52 51
42 43 44	107.2	97.8 99. 7 101.6 103.5	114.9 113.2 111.5 109.7 107.9	98.4 100.4 102.3 104.2	112.2 110.4 108.6	99.1 101.0 103.0 104.9	111.2	99.7 101.7 103.7 105.6	113.7 111.9 110.1	100.4 102.4 104.3 106.3	114.4 112.6 110.8	101.0 103.0 105.0 107.0	115.2 113.4 111.5	101.7 103.7 105.7 107.7	48 47 46
45	105.4		106.1	-			107.5			108.2		_	109.6		45
Course.	DEP.	149'	DEP.	150'		151'	DEP.	152'	DEP.	153'	DEP.	154'	DEP.	155'	Course.

					Pla	ane '	Trav	erse	Tat	ole					
Course.	D=	156′	D=	157′	D=	158′	D =	159′	D=	160′	D=	161′	D=	162'	Course.
Con	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Cot
° 0 1 2 3 4	156.0 156.0 155.9 155.8 155.6	2.7 5.4 8.2	157.0 157.0 156.9 156.8 156.6	2.7 5.5 8.2	158.0 158.0 157.9 157.8 157.6	2.8 5.5 8.3	159.0 159.0 158.9 158.8 158.6	, 0.0 2.8 5.5 8.3 11.1	160.0 160.0 159.9 159.8 159.6	0.0 2.8 5.6 8.4 11.2	161.0 161.0 160.9 160.8 160.6	2.8		0.0 2.8 5.7 8.5 11.3	90 89 88 87 86
5 6 7 8 9	155.4 155.1 154.8 154.5 154.1	16.3 19.0 21.7 24.4	156.4 156.1 155.8 155.5 155.1	19.1 21.9 24.6	157.4 157.1 156.8 156.5 156.1	16.5 19.3 22.0 24.7	158.4 158.1 157.8 157.5 157.0	13.9 16.6 19.4 22.1 24.9	159.4 159.1 158.8 158.4 158.0	13.9 16.7 19.5 22.3 25.0	160.4 160.1 159.8 159.4 159.0	16.8 19.6 22.4 25.2	160.0	14.1 16.9 19.7 22.5 25.3	85 84 83 82 81
10 11 12 13 14	153.6 153.1 152.6 152.0 151.4	29.8 32.4 35.1	154.6 154.1 153.6 153.0 152.3	30.0 32.6 35.3 38.0	155.6 155.1 154.5 154.0 153.3	27.4 30.1 32.9 35.5 38.2	156.1 155.5 154.9 154.3	27.6 30.3 33.1 35.8 38.5	157.6 157.1 156.5 155.9 155.2	27.8 30.5 33.3 36.0 38.7	158.6 158.0 157.5 156.9 156.2	3°.7 33.5 36.2 38.9	159.5 159.0 158.5 157.8 157.2	28.1 30.9 33.7 36.4 39.2	80 79 78 77 76 75
15 16 17 18 19	150.7 150.0 149.2 148.4 147.5	43.0 45.6 48.2 50.8	150.9 150.1 149.3 148.4	43·3 45·9 48·5 51·1	151.9 151.1 150.3 149.4	43.6 46.2 48.8 51.4	152.8 152.1 151.2	43.8 46.5 49.1 51.8	153.8 153.0 152.2 151.3	44.1 46.8 49.4 52.1	154.8 154.0 153.1 152.2	44.4 47.1 49.8 52.4	150.5 155.7 154.9 154.1 153.2	41.9 44.7 47.4 50.1 52.7	73 74 73 72 71
21 22 23 24	145.6 144.6 143.6 142.5	55.9 58.4 61.0 63.5	146.6 145.6 144.5 143.4	56.3 58.8 61.3 63.9	147.5 146.5 145.4 144.3	56.6	148.4 147.4 146.4 145.3	57.0 59.6 62.1 64.7	149.4 148.3	57·3 59·9 62.5 65.1	150.3 149.3 148.2 147.1	57.7 60.3 62.9 65.5	151.2 150.2 149.1 148.0	58.1 60.7 63.3 65.9	69 68 67 66 65
25 26 27 28 29	141.4 140.2 139.0 137.7 136.4	68.4 70.8 73.2 75.6	142.3 141.1 139.9 138.6 137.3	68.8 71.3 73.7 76.1	142.0 140.8 139.5 138.2	69.3 71.7 74.2 76.6	142.9 141.7 140.4 139.1	69.7 72.2 74.6 77.1	143.8 142.6 141.3 139.9	70.1 72.6 75.1 77.6	144.7 143.5 142.2 140.8	70.6 73.1 75.6 78.1	145.6 144.3 143.0 141.7	71.0 73.5 76.1 78.5	64 63 62 61
30 31 32 33 34	135.1 133.7 132.3 130.8 129.3	80.3 82.7 85.0 87.2	136.0 134.6 133.1 131.7 130.2	80.9 83.2 85.5 87.8	131.0	86.1 88.4	136.3 134.8 133.3 131.8	84.3 86.6 88.9	132.6	82.4 84.8 87.1 89.5	139.4 138.0 136.5 135.0 133.5	82.9 85.3 87.7 90.0	140.3 138.9 137.4 135.9 134.3	85.8 88.2 90.6	60 59 58 57 56
35 36 37 38 39	127.8 126.2 124.6 122.9 121.2	91.7 93.9 96.0 98.2	128.6 127.0 125.4 123.7 122.0	92.3 94.5 96.7 98.8	129.4 127.8 126.2 124.5 122.8	90.6 92.9 95.1 97.3 99.4	128.6 127.0 125.3 123.6	93.5 95.7 97.9 100.1	129.4 127.8 126.1 124.3	94.0 96.3 98.5		94.6 96.9 99.1		95.2 97.5 99.7 101.9	54 53 52 51
40 41 42 43 44	117.7 115.9 114.1 112.2	102.3 104.4 106.4 108.4	118.5 116.7 114.8 112.9	103.0 105.1 107.1 109.1	121.0 119.2 117.4 115.6 113.7	103. 7 105.7 107.8 109.8	120.0 118.2 116.3 114.4	104.3 106.4 108.4 110.5	120.8 118.9 117.0 115.1	105.0 107.1 109.1 111.1	121.5 119.6 117.7 115.8	105.6	122.3 120.4 118.5 116.5	108.4 110.5 112.5	49 48 47 46
45	-		-	-	111.7			112.4	-	113.1	-			114.6	
Course.	DET.	LAT.	_	LAT.	DEP.	LAT.	D_{EP}	159'	DEP.	LAT. = 160'	D_{EP}	LAT.	-	LAT.	Course.

					Pl	ane	Trav	erse	Tal	ole					
rse.	D=	163′	D=	164′	D=	165′	D=	166′	D=	167′	D=	168′	D=	169′	Course.
Course.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	163.0 163.0 162.9 162.8 162.6	2.8 5·7 8.5	164.0 164.0 163.9 163.8 163.6	2.9 5.7 8.6	165.0 165.0 164.9 164.8 164.6	5.8 8.6	166.0 165.9 165.8	0.0 2.9 5.8 8.7 11.6	167.0 167.0 166.9 166.8 166.6	2.9 5.8 8.7	168.0 168.0 167.9 167.8 167.6	2.9 5.9 8.8	169.0 169.0 168.9 168.8 168.6	0.0 2.9 5.9 8.8 11.8	90 89 88 87 86
5 6 7 8 9	162.4 162.1 161.8 161.4 161.0	17.0 19.9 22.7 25.5	163.4 163.1 162.8 162.4 162.0	17.1 20.0 22.8 25.7	164.4 164.1 163.8 163.4 163.0	23.0 25.8	164.8 164.4 164.0	14.5 17.4 20.2 23.1 26.0	166.4 166.1 165.8 165.4 164.9	17.5 20.4 23.2 26.1	167.4 167.1 166.7 166.4 165.9	17.6 20.5 23.4 26.3	168.4 168.1 167.7 167.4 166.9	14.7 17.7 20.6 23.5 26.4	85 84 83 82 81
10 11 12 13 14	160.5 160.0 159.4 158.8 158.2	31.1 33.9 36.7 39.4		31.3 34.1 36.9 39.7	162.5 162.0 161.4 160.8 160.1	28.7 31.5 34.3 37.1 39.9	163.0 162.4 161.7 161.1	28.8 31.7 34.5 37.3 40.2	164.5 163.9 163.4 162.7 162.0	31.9 34.7 37.6 40.4	165.4 164.9 164.3 163.7 163.0	34.9 37.8 40.6	166.4 165.9 165.3 164.7 164.0	29.3 32.2 35.1 38.0 40.9	80 79 78 77 76
15 16 17 18 19	156.7 155.9 155.0 154.1	47·7 50·4 53·1	157.6 156.8 156.0 155.1	45·2 47·9 50·7 53·4	158.6 157.8 156.9 156.0	45.5 48.2 51.0 53.7	159.6 158.7 157.9 157.0	43.0 45.8 48.5 51.3 54.0	160.5 159.7 158.8 157.9	46.0 48.8 51.6 54.4	161.5 160.7 159.8 158.8	46.3 49.1 51.9 54.7	162.5 161.6 160.7 159.8	43.7 46.6 49.4 52.2 55.0	75 74 73 72 71
20 21 22 23 24	153.2 152.2 151.1 150.0 148.9	58.4 61.1 63.7 66.3	154.1 153.1 152.1 151.0 149.8	58.8 61.4 64.1 66.7	155.0 154.0 153.0 151.9 150.7	56.4 59.1 61.8 64.5 67.1	155.0 153.9 152.8 151.6	56.8 59.5 62.2 64.9 67.5	152.6	59.8 62.6 65.3 67.9	157.9 156.8 155.8 154.6 153.5	60.2 62.9 65.6 68.3	158.8 157.8 156.7 155.6 154.4	57.8 60.6 63.3 66.0 68.7	70 69 68 67 66
25 26 27 28 29	147.7 146.5 145.2 143.9 142.6	71.5 74.0 76.5 79.0	148.6 147.4 146.1 144.8 143.4	71.9 74.5 77.0 79.5	149.5 148.3 147.0 145.7 144.3	69.7 72.3 74.9 77.5 80.0	149.2 147.9 146.6 145.2	77·9 80.5	148.8 147.5 146.1	73.2 75.8 78.4 81.0	149.7 148.3 146.9	73.6 76.3 78.9 81.4	153.2 151.9 150.6 149.2 147.8	71.4 74.1 76.7 79.3 81.9	65 64 63 62 61
30 31 32 33 34	141.2 139.7 138.2 136.7 135.1	84.0 86.4 88.8	142.0 140.6 139.1 137.5 136.0	84.5 86.9 89.3 91.7	142.9 141.4 139.9 138.4 136.8	92.3	142.3 140.8 139.2 137.6	85.5 88.0 90.4 92.8	144.6 143.1 141.6 140.1 138.4	86.0 88.5 91.0 93.4	145.5 144.0 142.5 140.9 139.3	86.5 89.0 91.5 93.9	146.4 144.9 143.3 141.7 140.1	84.5 87.0 89.6 92.0 94.5	59 58 57 56
35 36 37 38 39	126.7	95.8 98.1 100.4 102.6	134.3 132.7 131.0 129.2 127.5	96.4 98.7 101.0 103.2	128.2	97.0 99.3 101.6 103.8	134.3 132.6 130.8 129.0	97.6 99.9 102.2 104.5	129.8	98.2 100.5 102.8 105.1	137.6 135.9 134.2 132.4 130.6	98.7 101.1 103.4 105.7	133.2	104.0	51
42 43 44	123.0 121.1 119.2 117.3	106.9	123.8 121.9 119.9 118.0	107.6 109.7 111.8 113.9	124.5 122.6 120.7 118.7	108.2 110.4 112.5 114.6	125.3 123.4 121.4 119.4	108.9 111.1 113.2 115.3	126.0 124.1 122.1 120.1	109.6 111.7 113.9 116.0	126.8 124.8 122.9 120.8	110.2 112.4 114.6 116.7	127.5 125.6 123.6 121.6		49 48 47 46
45	115.3	=	116.0					117.4		-	-			119.5	45
Course.	DEP.	163'	DEP.	LAT.	-	LAT.	DEP.	166'	DEP.	167'	$D_{\rm EP}$.	168'	DEP.	169'	Course.

					Pl	ane	Trav	erse	Tab	ole					
Course.	D=	170′	D=	171′	D=	172′	D=	173′	D=	174′	D=	175′	D=	176′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0	170.0	0.0	171.0	0.0	172.0	0.0	173.0	0.0	174.0	0.0	175.0	0,0	176.0	0.0	° 90
I 2	170.0	3.0	171.0	3.0	172.0	3.0 6.0	173.0	3.0 6.0	174.0	3.0	175.0	3.1	176.0	3.I 6.1	89 88
3	169.8	8.9	170.8	8.9	171.8	9.0	172.8	9.1	173.8	9.1	174.8	9.2	175.8	9.2	87
4	169.4	14.8	170.6		171.6	12.0	172.6	12.1	173.6	12.1	174.6	15.3	175.6	12.3	86 85
5	169.1	17.8	170.1	17.9	171.1	18.0	172.1	18.1	173.0	18.2	174.0	18.3	175.0	18.4	84
7 8	168.7	23.7	169.7	23.8	170.7	23.9	171.7	21.1	172.7		173.7		174.7 174.3	21.4	83 82
9	167.9		168.9	26.8	169.9	26.9	170.9	27.1	171.9	27.2	172.8		173.8	27.5	81
10	167.4	29.5 32.4	167.9	32.6	169.4	29.9 32.8	170.4	30.0	171.4	33.2	172.3 171.8	33.4		30.6 33.6	80 79 78
12	166.3 165.6	35·3 38·2	167.3 166.6	35.6 38.5	168.2 167.6	35.8 38.7	169.2 168.6	36.0 38.9	170.2		171.2		172.2	36.6 39.6	78 77
14	165.0		165.9	41.4	166.9	41.6	167.9	41.9	168.8	42.1	169.8	42.3	170.8	42.6	77 76
15	164.2		165.2	44·3 47·1		44·5 47·4	166.3	44.8 47.7	168.1		169.0	45.3 48.2	170.0	45.6	75 74
17	162.6 161.7		163.5 162.6	50.0	164.5	50.3 53.2	165.4 164.5	50.6 53.5	166.4	50.9	167.4 166.4	51.2	168.3 167.4	51.5	73 72
19	160.7		161.7		162.6	56.0	163.6	56.3	164.5		165.5	57.0		57.3	71
20 2I	159.7		160.7 159.6		161.6 160.6	58.8 61.6	162.6 161.5	59.2 62.0	163.5 162.4		164.4		165.4 164.3	60.2 63.1	70 69
22	157.6	63.7	158.5	64.1	159.5	64.4	160.4	64.8	161.3	65.2	162.3	65.6	163.2	65.9 68.8	68
23 24	156.5		157.4 156.2		158.3 157.1	70.0	159.2 158.0	67.6	160.2 159.0		161.1 159.9	68.4 71.2	162.0 160.8	71.6	67 66
25 26	154.1		155.0		155.9	72.7	156.8	73.1	157.7		158.6		159.5	74-4	65
27	152.8	77.2	153.7 152.4	77.6	154.6	75.4 78.1		75.8 78.5	156.4	79.0	157.3 155.9		156.8	77.2	64 63
28 29	150.1		151.0 149.6		151.9	80.7 83.4	152.7 151.3	81.2	153.6		154.5	82.2	155.4	82.6 85.3	62 61
30	147.2	85.0	148.1		149.0	86.0	149.8	86.5	150.7	87.0		87.5		88.0	60
3 ¹ 3 ²	145.7 144.2		146.6		147.4	88.6		89.1	149.1		150.0		150.9	90.6	59 58
33 34	142.6	-	143.4 141.8		144.3	93.7 96.2	145.1 143.4	94.2	145.9 144.3		146.8 145.1	95·3 97·9		95.9 98.4	57 56
	139.3		140.1		140.9		141.7	99.2			143.4			100.9	55
35 36 37	137.5		138.3 136.6		139.2		140.0	101.7	140.8		141.6		142.4 140.6		54 53
38	134.0	104.7	I34.7	105.3	135.5	105.9	136.3	106.5	137.1	107.1	137.9	107.7	138.7	108.4	52
39			132.9			108.2			135.2		136.0		136.8		51 50
	128.3	111.5	129.1	112.2	129.8	112.8	130.6	113.5	131.3	114.2	132.1	114.8	132.8	115.5	49
42	124.3	115.9	127.1 125.1	116.6	125.8	117.3	126.5	118.0		118.7	128.0	119.3	128.7	120.0	48 47 46
44	122.3	118.1	123.0	118.8	123.7	119.5	124.4	120.2	125.2	120.9			126.6		
45	120.2	120.2	120.9	120.9	121.0	121.6	122.3	122.3	123.0	123.0	123.7	123.7	124.5	124-5	45
Course.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	Course.
Cou	D=	DEP. LAT. DEP. LAT. DEP. LAT. DEP. LAT.			D =	172'	D =	173′	D=	174′	D=	175′	D=	176′	Cor

	`				Pl	ane	Trav	rerse	Tal	ble					
Course.	D=	177′	D=	178′	D=	179′	D=	180′	D=	181'	D=	182′	D=	183′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	177.0 177.0 176.9 176.8 176.6	0.0 3.1 6.2 9.3 12.3	178.0 178.0 177.9 177.8 177.6	0.0 3.1 6.2 9.3 12.4	179.0 179.0 178.9 178.8 178.6	0.0 3.1 6.2 9.4 12.5	180.0 180.0 179.9 179.8 179.6	0.0 3.1 6.3 9.4 12.6	181.0 181.0 180.9 180.8 180.6	3.2 6.3 9.5	182.0 182.0 181.9 181.8 181.6	3.2 6.4 9.5	183.0 183.0 182.9 182.7 182.6	, 0.0 3.2 6.4 9.6 12.8	90 89 88 87 86
56 78 9	176.3 176.0 175.7 175.3 174.8	15.4 18.5 21.6 24.6 27.7	177.3 177.0 176.7 176.3 175.8		178.3 178.0 177.7 177.3 176.8	15.6 18.7 21.8 24.9 28.0	179.3 179.0 178.7 178.2 177.8	15.7 18.8 21.9 25.1 28.2		18.9 22.1	181.3 181.0 180.6 180.2 179.8	19.0 22.2 25.3	182.3 182.0 181.6 181.2 180.7	15.9 19.1 22.3 25.5 28.6	85 84 83 82 81
10 11 12 13 14	174.3 173.7 173.1 172.5 171.7	39.8 42.8	175.3 174.7 174.1 173.4 172.7	34.0 37.0 40.0 43.1	176.3 175.7 175.1 174.4 173.7	31.1 34.2 37.2 40.3 43.3	176.1 175.4 174.7	31.3 34.3 37.4 40.5 43.5	177.7 177.0 176.4 175.6	4°.7 43.8	176.6	34.7 37.8 40.9 44.0	180.2 179.6 179.0 178.3 177.6	31.8 34.9 38.0 41.2 44.3	80 79 78 77 76
15 16 17 18 19	171.0 170.1 169.3 168.3 167.4	48.8 51.7 54.7 57.6	171.9 171.1 170.2 169.3 168.3	49.1 52.0 55.0 58.0	172.9 172.1 171.2 170.2 169.2	46.3 49.3 52.3 55.3 58.3	173.0 172.1 171.2 170.2	52.6 55.6 58.6	174.0 173.1 172.1 171.1	49.9 52.9 55.9 58.9	172.1	50.2 53.2 56.2 59.3	176.8 175.9 175.0 174.0 173.0	47.4 50.4 53.5 56.6 59.6	75 74 73 72 71
20 21 22 23 24	166.3 165.2 164.1 162.9 161.7	63.4 66.3 69.2 72.0	167.3 166.2 165.0 163.8 162.6	63.8 66.7 69.6 72.4	168.2 167.1 166.0 164.8 163.5	61.2 64.1 67.1 69.9 72.8	165.7 164.4	70.3 73.2	167.8 166.6 165.4	64.9 67.8 70.7 73.6	169.9 168.7 167.5 166.3	65.2 68.2 71.1 74.0	172.0 170.8 169.7 168.5 167.2	65.6 68.6 71.5 74.4	70 69 68 67 66
25 26 27 28 29	160.4 159.1 157.7 156.3 154.8	80.4 83.1 85.8	160.0 158.6 157.2 155.7	78.0 80.8 83.6 86.3	162.2 160.9 159.5 158.0 156.6	75.6 78.5 81.3 84.0 86.8	160.4 158.9 157.4	81.7 84.5 87.3	162.7 161.3 159.8 158.3	79.3 82.2 85.0 87.8	160.7 159.2	79.8 82.6 85.4 88.2	165.9 164.5 163.1 161.6 160.1	77·3 80.2 83·1 85·9 88·7	65 64 63 62 61
30 31 32 33 34	153.3 151.7 150.1 148.4 146.7	91.2 93.8 96.4 99.0	154.2 152.6 151.0 149.3 147.6	91.7 94.3 96.9 99.5	155.0 153.4 151.8 150.1 148.4	100.1	152.6 151.0 149.2	92.7 95.4 98.0	153.5 151.8 150.1	93.2 95.9 98.6 101.2	157.6 156.0 154.3 152.6 150.9	93.7 96.4 99.1 101.8	158.5 156.9 155.2 153.5 151.7	91.5 94.3 97.0 99.7 102.3	59 58 57 56
35 36 37 38 39	139.5	104.0 106.5 109.0	145.8 144.0 142.2 140.3 138.3	104.6 107.1 109.6 112.0	144.8 143.0 141.1 139.1	105.2 107.7 110.2 112.6	145.6 143.8 141.8 139.9	105.8 108.3 110.8 113.3	146.4 144.6 142.6 140.7	106.4 108.9 111.4 113.9	143.4 141.4	107.0 109.5 112.1 114.5	148.1 146.2 144.2 142.2	112.7	55 54 53 52 51
40 41 42 43 44	133.6 131.5 129.4 127.3	116.1 118.4 120.7 123.0	134.3 132.3 130.2 128.0	116.8 119.1 121.4 123.6	135.1 133.0 130.9 128.8	117.4 119.8 122.1 124.3	135.8 133.8 131.6 129.5	118.1 120.4 122.8 125.0	138.7 136.6 134.5 132.4 130.2	118.7 121.1 123.4 125.7	137.4 135.3 133.1 130.9	119.4 121.8 124.1 126.4	138.1 136.0 133.8 131.6	120.1 122.5 124.8 127.1	48 47 46
45	DEP.	LAT.		LAT.	DEP.		DEP.	LAT.		LAT.	DEP.	LAT.	DEP.	LAT.	45 ——
Course.		177′	-	178′		179′	-	180′	_	181'	_	182′		183′	Course.

Plane Traverse Table D = 187'Course. Course D = 184'D = 185'D = 186'D = 188'D = 180'D = 190'LAT. DEP. LAT. DEP. LAT. DEP. LAT. DEB LAT. DEP. DEP. LAT. DEP. T.AT 0 185.0 186.0 187.0 188.0 184.0 0.0 0.0 0.0 0.0 0.0 189.0 0.0 190.0 0.0 90 89 88 3.2 185.0 184.0 186.0 187.0 188.0 3.3 190.0 6.6 189.9 3.2 3·3 6.6 1 3.2 3.3 3.3 189.0 183.9 185.9 6.5 187.9 188.9 6.4 184.9 6.5 6.5 186.9 6.6 2 183.7 9.6 184.7 185.7 186.7 188.7 9.9 189.7 3 9.7 9.7 187.7 9.8 9.9 87 183.6 185.5 12.8 184.5 186.5 13.2 189.5 12.9 13.0 13.0 187.5 13.1 188.5 13.3 86 4 183.3 185.3 85 16.0 184.3 16.2 186.3 16.3 16.5 189.3 16.6 16.1 187.3 16.4 188.3 5 183.0 187.0 19.3 185.0 19.7 188.0 19.2 184.0 19.4 186.0 19.5 19.8 189.0 19.9 84 83 22.9 187.6 26.2 187.2 78 182.6 22.4 183.6 25.6 183.2 184.6 184.2 185.6 186.6 23.0 188.6 22.5 22.7 23.2 185.2 182.2 26.0 186.2 26.3 188.2 25.7 25.9 26.4 82 28.9 183.7 184.7 181.7 28.8 182.7 29.6 187.7 185.7 29.4 186.7 29.7 9 29.I 29.3 81 185.1 181.2 32.0 182.2 32.1 183.2 184.2 32.6 186.1 32.8 187.1 10 32.3 32.5 33.0 80 180.6 35.1 181.6 35.3 182.6 184.5 36.3 35·5 38·7 183.6 36.1 186.5 ΙI 35.7 35.9 185.5 79 38.3 181.0 182.9 183.9 39.3 185.8 180.0 38.5 181.9 38.9 39.1 184.9 39.5 78 12 41.6 181.2 41.8 42.1 183.2 179.3 41.4 180.3 182.2 42.3 184.2 42.5 185.1 42.7 77 76 13 44.8 180.5 45.7 184.4 181.4 182.4 45.5 183.4 46.0 14 178.5 44.5 179.5 45.0 45.2 48.7 182.6 51.8 181.7 47.6 178.7 179.7 178.8 48.1 180.6 48.4 181.6 48.9 183.5 49.2 15 47.9 75 177.8 51.5 180.7 16 176.9 50.7 51.0 51.3 179.8 52.I 182.6 52.4 74 55.3 181.7 58.4 180.7 178.8 53.8 176.9 54.1 177.9 54·7 57.8 179.8 55.0 180.7 55.6 73 72 17 18 176.0 54.4 57.2 176.9 178.8 58.1 179.7 58.7 56.9 175.9 177.8 175.0 57-5 60.2 175.9 60.6 176.8 19 59.9 174.9 60.9 177.8 61.2 178.7 61.5 179.6 61.9 174.0 71 20 172.9 62.9 173.8 63.3 174.8 63.6 175.7 64.0 176.7 64.3 177.6 64.6 178.5 65.0 70 69 68.ı 171.8 65.9 172.7 66.3 173.6 66.7 174.6 67.0 175.5 67.4 176.4 67.7 177.4 21 69.7 70.8 170.6 68.9 171.5 69.3 172.5 70.1 70.4 175.2 176.2 71.2 173.4 174.3 22 169.4 71.9 170.3 72.7 73.8 74.2 67 23 72.3 171.2 172.1 73.1 173.1 73.5 174.0 174.9 75.2 169.9 168.1 74.8 169.0 170.8 66 24 75.7 76.1 171.7 76.5 172.7 76.9 173.6 77.3 77.8 167.7 80.7 166.3 78.6 81.5 79.9 172.2 82.9 170.8 85.8 169.3 80.3 166.8 78.2 168.6 65 25 169.5 79.0 170.4 79.5 171.3 82.4 169.9 83.3 81.1 167.2 82.0 169.0 168.1 26 165.4 64 163.9 167.5 86.3 63 83.5 164.8 84.0 165.7 84.4 84.9 166.6 85.4 168.4 27 88.7 167.8 28 162.5 86.4 163.3 86.9 164.2 87.3 165.1 87.8 166.0 88.3 166.9 89.2 62 164.4 160.9 89.2 161.8 89.7 162.7 163.6 91.1 165.3 91.6 166.2 92.1 20 90.2 90.7 61 92.0 160.2 92.5 161.1 162.8 161.9 94.0 163.7 94.5 164.5 60 95.0 30 159.3 93.0 93.5 157.7 94.8 158.6 95.3 159.4 156.0 97.5 156.9 98.0 157.7 154.3 100.2 155.2 100.8 156.0 96.8 **162.0** 99.6 **160.3** 95.8 160.3 97.3 162.9 96.3 161.1 97.9 31 59 58 98.6 161.1 32 158.6 100.2 100.7 99.1 159.4 156.8 102.4 158.5 101.8 102.9 159.3 103.5 101.3 157.7 57 33 105.1 156.7 56 152.5 102.9 153.4 103.5 154.2 104.0 155.0 104.6 155.9 105.7 157.5 106.2 34 108.4 155.6 106.7 154.0 107.8 154.8 105.5 151.5 106.1 152.4 55 150.7 153.2 107.3 35 36 108.7 150.5 111.7 109.3 110.5 152.9 111.1 153.7 148.9 108.2 149.7 151.3 109.9 152.1 54 53 113.1 150.9 113.7 151.7 115.7 148.9 116.4 149.7 114.3 146.9 110.7 147.7 111.3 148.5 37 111.9 149.3 112.5 150.1 148.1 145.0 113.3 145.8 113.9 146.6 114.5 147.4 115.1 117.0 52 38 119.6 143.0 115.8 143.8 146.1 118.3 146.9 118.9 147.7 39 116.4 144.5 117.1 145.3 117.7 51 120.8 122.1 118.9 142.5 119.6 120.2 144.0 144.8 121.5 145.5 50 141.0 118.3 141.7 143.3 40 121.4 140.4 123.8 138.2 142.6 124.0 143.4 124.7 49 48 41 122.7 138.9 120.7 139.6 122.0 141.1 141.9 123.3 139.7 125.8 140.5 126.5 141.2 127.1 136.7 123.1 137.5 124.5 139.0 125.1 42 137.5 128.2 138.2 128.9 139.0 129.6 136.8 127.5 134.6 125.5 132.4 127.8 126.2 136.0 126.9 47 135.3 43 128.5 133.8 132.0 129.9 135.2 130.6 136.0 131.3 136.7 133.1 129.2 134.5 46 44 130.8 130.8 133.6 133.6 134.4 134.4 45 130.1 130.1 131.5 131.5 132.2 132.2 132.9 132.9 45 DEP. Course. DEP. DEP. LAT. DEP. LAT. DEP. LAT. DEP. LAT. DEP. LAT. LAT. Course. LAT. D = 184'D = 185'D = 186'D = 187'D = 188'D = 180'D = 190'

					Pl	ane	Trav	erse	Tal	ole					
Course.	D=	191′	D=	192'	D=	193′	D=	194′	D=	195′	D=	196′	D=	197′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	191.0 191.0 190.9 190.7 190.5	3·3 6·7	192.0 192.0 191.9 191.7	3.4 6.7 10.0	193.0 193.0 192.9 192.7 192.5	6.7 10.1 13.5	194.0 194.0 193.9 193.7 193.5	0.0 3.4 6.8 10.2 13.5	195.0 195.0 194.9 194.7 194.5	0.0 3.4 6.8 10.2 13.6	196.0 196.0 195.9 195.7 195.5	3.4 6.8 10.3	197.0 197.0 196.9 196.7 196.5	6.9 10.3 13.7	90 89 88 87 86
5 6 7 8 9	190.3 190.0 189.6 189.1 188.6	23.3 26.6 29.9	190.9 190.6 190.1 189.6	23.4 26.7 30.0	192.3 191.9 191.6 191.1 190.6	23.5 26.9 30.2	192.1 191.6	16.9 20.3 23.6 27.0 30.3	194.3 193.9 193.5 193.1 192.6	27.1 3°·5	195.3 194.9 194.5 194.1 193.6	17.1 20.5 23.9 27.3 30.7	196.3 195.9 195.5 195.1 194.6	17.2 20.6 24.0 27.4 30.8	85 84 83 82 81
10 11 12 13 14	188.1 187.5 186.8 186.1 185.3	36.4 39.7 43.0 46.2	189.1 188.5 187.8 187.1 186.3	39.9 43.2 46.4	190.1 189.5 188.8 188.1 187.3	33.5 36.8 40.1 43.4 46.7	189.0 188.2	33.7 37.0 40.3 43.6 46.9	190.7	37.2 40.5 43.9 47.2	193.0 192.4 191.7 191.0 190.2	34.0 37.4 40.8 44.1 47.4	194.0 193.4 192.7 192.0 191.1	34.2 37.6 41.0 44.3 47.7	80 79 78 77 76
15 16 17 18 19	183.6 182.7 181.7 180.6	52.6 55.8 59.0 62.2	184.6 183.6 182.6 181.5	52.9 56.1 59.3 62.5	185.5 184.6 183.6 182.5	53.2 56.4	186.5 185.5 184.5 183.4	53.5 56.7 59.9 63.2	187.4 186.5 185.5 184.4	53.7 57.0 60.3 63.5		50.7 54.0 57.3 60.6 63.8	189.4 188.4 187.4 186.3	54.3 57.6 60.9 64.1	75 74 73 72 71 70
21 22 23 24	178.3 177.1 175.8 174.5	68.4 71.5 74.6 77.7	179.2 178.0 176.7 175.4	68.8 71.9 75.0 78.1	180.2 178.9 177.7 176.3	69.2 72.3 75.4 78.5	181.1 179.9 178.6 177.2	69.5 72.7 75.8 78.9 82.0	182.0 180.8 179.5 178.1	69.9 73.0 76.2 79.3	183.0 181.7 180.4 179.1	70.2 73.4 76.6 79.7 82.8	183.9 182.7 181.3 180.0	70.6 73.8 77.0 80.1	69 68 67 66
25 26 27 28 29	173.1 171.7 170.2 168.6 167.1	83.7 86.7 89.7 92.6	172.6 171.1 169.5 167.9	84.2 87.2 90.1 93.1	173.5 172.0 170.4 168.8	84.6 87.6 90.6 93.6	174.4 172.9 171.3 169.7	85.0 88.1 91.1 94.1	175.3 173.7 172.2 170.6	85.5 88.5 91.5 94.5	176.2 174.6 173.1 171.4	85.9 89.0 92.0 95.0	177.1 175.5 173.9 172.3	86.4 89.4 92.5 95.5	64 63 62 61
30 31 32 33 34	160.2 158.3	98.4. 101.2 104.0 106.8	166.3 164.6 162.8 161.0 159.2	98.9 101.7 104.6 107.4	161.9 160.0	102.3	164.5 162.7 160.8	102.8 105.7 108.5	165.4 163.5 161.7	100.4 103.3 106.2 109.0	164.4 162.5	103.9	165.2 163.3	104.4	58 57 56
35 36 37 38 39	154.4 152.5 150.5 148.4	112.3 114.9 117.6 120.2	157.3 155.3 153.3 151.3 149.2	112.9 115.5 118.2 120.8	156.1 154.1 152.1 150.0	113.4 116.2 118.8 121.5	156.9 154.9 152.9 150.8	114.0 116.8 119.4 122.1	153.7	114.6 117.4 120.1 122.7	158.6 156.5 154.5 152.3	112.4 115.2 118.0 120.7 123.3	159.4 157.3 155.2 153.1	115.8 118.6 121.3 124.0	54 53 52 51
40 41 42 43 44 45	144.1 141.9 139.7 137.4	125.3 127.8 130.3 132.7	147.1 144.9 142.7 140.4 138.1	126.0 128.5 130.9 133.4	145.7 143.4 141.2 138.8	126.6 129. 1 131.6	146.4 144.2 141.9 139.6	127.3	147.2 144.9 142.6 140.3	127.9 130.5 133.0 135.5	147.9 145.7 143.3 141.0	128.6	148.7 146.4 144.1 141.7	129.2 131.8 134.4 136.8	49 48 47
	DEP.		DEP.		DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	
Course.		191′	D=	192'		193′	-	194'	D=	195′	D=	196′		197′	Course.

					Pla	ane '	Trav	erse	Tab	ole					
Course.	D=	198′	D =	199′	D=	200′	D=	201'	D=	202'	D=	203′	D=	204′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3	198.0 198.0 197.9	3·5 6.9	199.0 199.0 198.9 198.7	3·5 6.9	200.0 200.0 199.9	0.0 3.5 7.0 10.5	200.9	0.0 3.5 7.0 10.5	202.0 202.0 201.9 201.7	3·5 7·0	203.0 203.0 202.9 202.7	3·5 7·1	204.0 204.0 203.9 203.7	0.0 3.6 7.1 10.7	90 89 88 87
5 6	197.5	17.3	198.5	17.3	199.5	17.4		17.5	201.5	17.6	202.5	17.7	203.5	14.2	86
6 7 8 9	196.9 196.5 196.1 195.6	20.7 24.1 27.6 31.0	197.9 197.5 197.1 196.5	20.8 24.3 27.7 31.1	198.9 198.5 198.1 197.5	20.9 24.4 27.8 31.3	199.9 199.5 199.0 198.5	21.0 24.5 28.0 31.4	200.9 200.5 200.0 199.5	28.1	201.9 201.5 201.0 200.5	28.3	202.9 202.5 202.0 201.5	21.3 24.9 28.4 31.9	84 83 82 81
10 11 12 13 14	195.0 194.4 193.7 192.9 192.1	34·4 37·8 41·2 44·5 47·9	196.0 195.3 194.7 193.9		197.0 196.3 195.6 194.9 194.1	34.7 38.2 41.6 45.0 48.4	196.6 195.8	34.9 38.4 41.8 45.2 48.6	198.9 198.3 197.6 196.8 196.0	42.0 45.4	199.9 199.3 198.6 197.8 197.0	38.7 42.2 45.7	200.9 200.3 199.5 198.8	35·4 38·9 42·4 45·9 49·4	80 79 78 77 76
15 16 17 18	191.3 190.3 189.3 188.3 187.2	54.6 57.9	192.2 191.3 190.3 189.3 188.2	58.2 61.5	193.2 192.3 191.3 190.2 189.1	51.8 55.1 58.5 61.8 65.1	193.2 192.2 191.2	52.0 55.4 58.8 62.1 65.4	194.2 193.2	55.7 59.1 62.4		56.0 59.4 62.7	197.0 196.1 195.1 194.0 192.9	52.8 56.2 59.6 63.0 66.4	75 74 73 72 71
20 21 22 23 24	186.1 184.8 183.6 182.3 180.9	67.7 71.0 74.2 77.4 80.5	187.0 185.8 184.5 183.2 181.8	74.5	186.7 185.4 184.1	68.4 71.7 74.9 78.1 81.3	187.6 186.4	68.7 72.0 75.3 78.5 81.8	189.8 188.6 187.3 185.9 184.5	72.4 75.7 78.9	190.8 189.5 188.2 186.9 185.4	72.7 76.0 79.3	191.7 190.5 189.1 187.8 186.4	69.8 73.1 76.4 79.7 83.0	70 69 68 67 66
25 26 27 28 29	179.4 178.0 176.4 174.8 173.2	93.0	180.4 178.9 177.3 175.7 174.0	84.1 87.2 90.3 93.4 96.5	179.8 178.2 176.6	84.5 87.7 90.8 93.9 97.0	177.5	84.9 88.1 91.3 94.4 97.4	183.1 181.6 180.0 178.4 176.7	88.6 91.7 94.8	184.0 182.5 180.9 179.2 177.5	89.0 92.2 95.3		86.2 89.4 92.6 95.8 98.9	62
30 31 32 33 34	171.5 169.7 167.9 166.1 164.1	99.0 102.0 104.9 107.8	168.8 166.9	102.5	169.6 167.7	103.0	172 3 170.5 168.6	103.5	173.1 171.3 169.4	104.0	172.2	104.6 107.6 110.6	176.7 174.9 173.0 171.1 169.1	108.1	59 58 57
35 36 37 38 39	162.2 160.2 158.1 156.0 153.9	116.4	161.0	117.0	159.7	117.6 120.4 123.1	162.6 160.5 158.4	121.0	163.4 161.3 159.2	118.7 121.6 124.4	164.2 162.1 160.0	119.3 122.2 125.0	167.1 165.0 162.9 160.8 158.5	119.9 122.8 125.6	54 53
40 41 42 43 44	149.4 147.1 144.8	129.9 132.5 135.0	150.2 147.9 145.5	130.6 133.2 135.7	150.9 148.6 146.3	131.2 133.8 136.4	151.7 149.4 147.0	131.9 134.5 137.1	154.7 152.5 150.1 147.7 145.3	132.5 135.2 137.8	153.2 150.9 148.5	133.2 135.8 138.4	154.0 151.6 149.2	133.8 136.5 139.1	49 48 47
45	140.0	140.0	140.7	140.7	141.4	141.4	142.1	142.1	142.8	142.8	143.5	143.5	144.2	144.2	45
Course.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	Course.
Cou	D=	198′	D=	199′	D =	200′	D=	201′	D=	202′	D=	203′	D=	204′	ပိ

					Pl	ane	Tra	verse	та Та	ble					
Course.	D=	205′	D=	206′	D=	207′	D=	208′	D=	209′	D=	210′	D=	211′	Course.
Co	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3	205.0 205.0 204.9 204.7 204.5	3.6 7.2 10.7	206.0 206.0 205.9 205.7 205.5	3.6 7.2 10.8	207.0 207.0 206.9 206.7 206.5	3.6 7.2 10.8	207.9 207.7	3.6 7·3 10.9	209.0 209.0 208.9 208.7 208.5	3.6 7·3 10.9	210.0 210.0 209.9 209.7 209.5	3.7 7.3 11.0	210.7	0.0 3.7 7.4 11.0	90 89 88 87
4 56 7 8 9	204.2 203.9 203.5 203.0 202.5	17.9 21.4 25.0 28.5	205.2 204.9 204.5 204.0 203.5	18.0 21.5 25.1 28.7	206.2 205.9 205.5 205.0 204.5	18.0 21.6 25.2 28.8	207.5 207.2 206.9 206.4 206.0 205.4	18.1 21.7 25.3 28.9	208.2 207.9 207.4 207.0 206.4	18.2 21.8 25.5 29.1	209.2 208.8 208.4 208.0 207.4	18.3 22.0 25.6	210.2 209.8 209.4 208.9	14.7 18.4 22.1 25.7 29.4 33.0	86 85 84 83 82 81
10 11 12 13 14	201.9 201.2 200.5 199.7 198.9	39.1 42.6 46.1	202.9 202.2 201.5 200.7 199.9	39·3 42.8 46.3	203.9 203.2 202.5 201.7 200.9	39·5 43·0 46.6	204.8 204.2 203.5 202.7 201.8	43.2 46.8	205.8 205.2 204.4 203.6 202.8	43.5 47.0	206.8 206.1 205.4 204.6 203.8		207.8 207.1 206.4 205.6 204.7	36.6 40.3 43.9 47.5 51.0	80 79 78 77 76
15 16 17 18 19	198.0 197.1 196.0 195.0 193.8	56.5 59.9 63.3 66.7	199.0 198.0 197.0 195.9 194.8	60.2 63.7 67.1	199.9 199.0 198.0 196.9 195.7	57.1 60.5 64.0 67.4	200.9 199.9 198.9 197.8 196.7	57·3 60.8 64.3 67·7	199.9 198.8 197.6	57.6 61.1 64.6 68.0	199.7 198.6	68.4	201.8 200.7 199.5	54.6 58.2 61.7 65.2 68.7	75 74 73 72 71
20 21 22 23 24	192.6 191.4 190.1 188.7 187.3	73.5 76.8 80.1 83.4	193.6 192.3 191.0 189.6 188.2	80.5 83.8	194.5 193.3 191.9 190.5 189.1	74.2 77.5 80.9 84.2	195.5 194.2 192.9 191.5	74·5 77·9 81.3 84.6	1 1	74.9 78.3 81.7 85.0	197.3 196.1 194.7 193.3 191.8	85.4	198.3 197.0 195.6 194.2 192.8	72.2 75.6 79.0 82.4 85.8	70 69 68 67 66
25 26 27 28 29	185.8 184.3 182.7 181.0	89.9 93.1 96.2 99.4	186.7 185.2 183.5 181.9 180.2	93·5 96·7 99·9		90.7 94.0 97.2 100.4	1	91.2 94.4 97.7 100.8		91.6 94.9 98.1 101.3	183.7	98.6	191.2 189.6 188.0 186.3 184.5	89.2 92.5 95.8 99.1 102.3	65 64 63 62 61
30 31 32 33 34	175.7 173.8 171.9 170.0	105.6 108.6 111.7 114.6	170.8	106.1 109.2 112.2 115.2	177.4 175.5 173.6 171.6	106.6 109.7 112.7 115.8	178.3 176.4 174.4 172.4	104.0 107.1 110.2 113.3 116.3	179.1 177.2 175.3 173.3	107.6 110.8 113.8 116.9	180.0 178.1 176.1 174.1	111.3 114.4 117.4	180.9 178.9 177.0 174.9	108.7 111.8 114.9	60 59 58 57 56
35 36 37 38 39	165.8 163.7 161.5 159.3	120.5 123.4 126.2 129.0	166.7 164.5 162.3 160.1	121.1 124.0 126.8 129.6	167.5 165.3 163.1 160.9	121.7 124.6 127.4 130.3	168.3 166.1 163.9 161.6	119.3 122.3 125.2 128.1 130.9	169.1 166.9 164.7 162.4	122.8 125.8 128.7 131.5	169.9 167.7 165.5 163.2	123.4 126.4 129.3 132.2	170.7 168.5 166.3 164.0	129.9	52 51
40 41 42 43 44 45	149.9	134.5 137.2 139.8 142.4	155.5 153.1 150.7 148.2	135.1 137.8 140.5 143.1	156.2 153.8 151.4 148.9	135.8 138.5 141.2 143.8	157.0 154.6 152.1 149.6	133.7 136.5 139.2 141.9 144.5	157.7 155.3 152.9 150.3	137.1 139.8 142.5 145.2	158.5 156.1 153.6 151.1	137.8 140.5 143.2 145.9	159.2 156.8 154.3 151.8	138.4 141.2 143.9 146.6	49 48 47 46
	DEP.	LAT.	DEP.	LAT.	DEP.		DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	 Lат.	45
Course.	D=			206′	D=			208′	D=		D=		D=	-	Course.

					Pl	ane	Trav	verse	Tai	ble					
Course.	D=	212′	D=	213′	D=	214′	D=	215′	D=	216′	D=	217′	D=	218′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0	212.0		213.0		214.0		215.0		216.0		217.0		218.0	0.0	9°
1 2 3	211.9 211.7		213.0 212.9 212.7	7.4	214.0 213.9 213.7	7.5	215.0	1 , -	215.9	7.5	217.0		217.9	7.6	
4	211.5	14.8	212.5	14.9	213.5	14.9	214.7 214.5		215.7 215.5		216.7 216.5		217.7 217.5	11.4	87 86
5 6	211.2	22.2	212.2 211.8	22.3	213.2 212.8	22.4	214.2 213.8	22.5	215.2 214.8	22.6	216.2 215.8	22.7	217.2 216.8	22.8	85 84
7 8	209.9	29.5	211.4	29.6	212.4	29.8	213.4	29.9	214.4 213.9	30.1	215.4 214.9	30.2	216.4 215.9		83 82
10	209.4		209.8		211.4		212.4	1	213.3	1	214.3		215.3	34.1	80 81
11	208.1	44.1	209.1 208.3	40.6	210.1	40.8	211.0 210.3	41.0	212.0	41.2	213.0	41.4 45.1	214.0 213.2	41.6	79 78
13 14	206.6		207.5 206.7		208.5 207.6		209.5 208.6		210.5 209.6		211.4 210.6		212.4 211.5	49.0 52.7	77 76
15 16	204.8 203.8		205.7 204.7	58.7	206.7		207.7 206.7		208.6 207.6	55·9 59·5	209.6 208.6	56.2 59.8	210.6 209.6	56.4 60.1	75 74
17 18	202.7 201.6	65.5	203.7 202.6	65.8	204.6 203.5	66.1	205.6 204.5	66.4	206.6 205.4	63.2	207.5 206.4	63.4 67.1	208.5	63.7 67.4	73 72
19	199.2		201.4	1	202.3	69.7	203.3	'	204.2	, ,	203.9		206.1	71.0	71
2I 22	197.9	76.0 79.4	198.9	76.3	199.8	76.7	200.7	77.0	201.7	77.4	202.6	77.8	203.5	78.1 81.7	70 69 68
23 24	195.1	82.8	196.1 194.6	83.2	197.0		197.9 196.4	84.0	198.8 197.3	84.4	199.7 198.2		200.7 199.2	85.2 88.7	67 66
25 26	192.1		193.0	90.0 93.4	193.9		194.9		195.8		196.7		197.6 195.9	92.1 95.6	65 64
27 28	188.9	96.2	189.8	96.7	190.7	97.2	191.6	97.6	192.5	98.1	193.3	98.5	194.2	99.0	63
29	185.4 183.6		186.3 184.5	103.3		103.7			188.9		189.8	105.2	190.7	105.7	61
30 31 32	181.7	109.2	182.6 180.6	109.7	185.3 183.4	110.2	184.3	110.7	187.1 185.1	111.2	187.9 186.0 184.0	111.8	186.9	112.3	59 58
33 34	177.8	115.5	178.6 176.6	116.0	179.5	116.6	180.3	117.1	181.2	117.6	182.0	118.2	182.8	118.7	57 56
35 36	173.7	121.6	174.5	122.2	175.3	122.7	176.1	123.3	176.9						55
37 38	169.3	127.6	172.3 170.1 167.8	128.2	170.9	128.8	171.7	129.4	172.5	130.0	173.3	130.6	174.1	131.2	54 53 52
39	164.8	133.4	165.5	134.0	166.3	134.7	167.1	135.3	167.9	135.9	168.6	136.6	169.4	137.2	51
	162.4 160.0	139.1	160.8	139.7	161.5	140.4	162.3	141.1	163.0	141.7	163.8	142.4	164.5	143.0	49
42 43 44	155.0	144.6	158.3 155.8 153.2	145.3	156.5	145.9	157.2	146.6	158.0	147.3	158.7	148.0	159.4	148.7	48 47 46
45			150.6												45
se.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	ee.
Course.	D=2	212'	D=2	213′	D=	214′	D=	215′	D=	216′	D=	217′	D=	218′	Course.

					Pl	ane	Trav	verse	Та	ble					
Course.	D=	219′	D=	220′	D=	221′	D=	222′	D=	223′	D=	224′	D=	225′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Co
0	219.0	o.o 3.8	220.0 220.0	o.o 3.8	221.0	1	222.0		223.0 223.0		224.0 224.0		225.0 225.0	0.0	90 90
2	218.9		219.9	7.7	221.0 220.9 220.7	3.9 7.7 11.6		3.9 7.7 11.6	222.9	3.9 7.8 11.7	223.9 223.7	3.9 7.8 11.7	224.9	3.9 7.9 11.8	89 88 87
4	218.5	15.3	219.5		220.5		221.5		222.5		223.5 223.1	_	224.5 224.1	15.7	86 85
100	217.8	22.9	218.8 218.4	23.0	219.8 219.4	23.I 26.9	220.8 220.3	23.2	221.8	23.3	222.8	23.4 27.3	223.8 223.3	23.5 27.4	84 83
9	216.3	34.3	217.9	34.4	218.8	34.6	219.8	34.7		34.9	221.8	35.0	222.8	31.3	82 81
11	215.0	41.8	216.7 216.0 215.2	42.0	217.6 216.9 216.2	42.2	218.6 217.9 217.1	42.4	219.6 218.9 218.1		220.6 219.9 219.1	42.7	221.6 220.9 220.1	39.1 42.9 46.8	80 79 78
13	213.4	49.3	214.4	49.5	215.3 214.4	49.7	216.3 215.4	49.9	217.3 216.4	50.2	218.3	50.4	219.2 218.3	50.6 54.4	77 76
15	210.5	60.4	212.5	60.6	213.5 212.4	60.9	214.4	61.2	215.4 214.4		215.3	61.7	217.3 216.3	58.2 62.0	75 74
17	208.3	67.7	210.4 209.2 208.0	68.0	211.3 210.2 209.0	68.3	212.3 211.1 209.9	68.6	213.3 212.1 210.9	68.9	214.2 213.0 211.8	69.2	215.2 214.0 212.7	65.8 69.5 73.3	73 72 71
20	205.8		206.7		207.7		208.6	75.9	209.6 208.2	76.3 79.9	210.5	76.6	211.4	77.0 80.6	70 69
22 23	203.1	82.0 85.6	204.0	82.4 86.0	204.9	82.8 86.4	205.8 204.4	83.2 86.7	206.8	83.5 87.1	207.7 206.2	83.9 87.5	208.6	84.3 87.9	68 67
25	198.5	92.6	199.4	93.0	200.3	93.4	201.2	93.8		94.2	203.0	94.7	203.9	95.1	66
27 27 28	195.1	99.4	197.7 196.0 194.2	99.9	198.6 196.9	100.3	199.5 197.8 196.0	100.8	200.4 198.7 196.9	101.2	199.6 197.8	101.7		98.6 102.1 105.6	64 63 62
29 30		- 3	192.4		193.3	107.1	194.2		195.0		195.9	108.6		109.1	61 60
31 32	187.7	116.1	186.6	116.6	187.4	113.8	188.3	117.6	191.1 189.1 187.0	118.2	190.0	118.7	190.8	115.9 119.2 122.5	59 58
33 34	181.6	122.5	182.4	123.0	183.2		184.0	124.1	184.9	124.7	185.7	125.3	186.5	125.8	57 56
35 36 37	177.2	128.7		129.3	178.8	129.9	179.6	130.5	180.4	131.1	181.2	131.7	182.0	129.1 132.3 135.4	55 54 53
38	172.6	137.8	173.4	138.5	171.7		172.5	139.7	173.3	140.3	174.1	137.9	174.9	138.5	52 51
40	165.3	143.7	166.0	144.3	166.8	142.1 145.0 147.9	167.5	145.6	168.3	146.3	169.1	147.0	169.8	144.6	50 49
42 43 44	160.2	149.4	160.9	150.0	161.6	150.7	162.4	151.4	163.1	152.1	163.8	152.8	164.6	153.4	48 47 46
45	154.9	154.9	155.6	155.6	156.3	156.3	157.0	157.0	157.7	157.7	158.4	158.4	159.1	159.1	45
Course.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	Course.
ပိ	D=	219′				221′	D=	222′	D=	223′	D=	224′	D=	225′	Cou

					Pl	ane	Trav	rerse	Tal	ole					
Course.	D=	226′	D=	227′	D=	228′	D=	229′	D=	230′	D=	231′	D=	232'	Course.
Col	LAT.	DEP.	Col												
° 0 1 2 3 4	226.0 226.0 225.9 225.7 225.4	3·9 7·9 11.8	227.0 227.0 226.9 226.7 226.4	7.9 11.9	228.0 228.0 227.9 227.7 227.4	4.0 8.0 11.9	229.0 229.0 228.9 228.7 228.4	4.0 8.0 12.0	230.0 230.0 229.9 229.7 229.4	4.0 8.0 12.0	231.0 231.0 230.9 230.7 230.4	4.0 8.1 12.1	232.0 232.0 231.9 231.7 231.4	,0.0 4.0 8.1 12.1 16.2	90 89 88 87 86
5 6 7 8 9	225.1 224.8 224.3 223.8 223.2	23.6 27.5 31.5	226.1 225.8 225.3 224.8 224.2	23.7 27.7 31.6	227.1 226.8 226.3 225.8 225.2	23.8 27.8 31.7	228.1 227.7 227.3 226.8 226.2	23.9 27.9 31.9 35.8	229.1 228.7 228.3 227.8 227.2	24.0 28.0 32.0	230.I 229.7 229.3 228.8 228.2	24.I 28.I 32.I	231.1 230.7 230.3 229.7 229.1	20.2 24.3 28.3 32.3 36.3	85 84 83 82 81
10 11 12 13 14	222.6 221.8 221.1 220.2 219.3	43.1 47.0 50.8	223.6 222.8 222.0 221.2 220.3	43·3 47·2 51.1	224.5 223.8 223.0 222.2 221.2	43·5 47·4 51·3	225.5 224.8 224.0 223.1 222.2	43·7 47.6	226.5 225.8 225.0 224.1 223.2	43.9 47.8 51.7	227.5 226.8 226.0 225.1 224.1	44.1 48.0 52.0	228.5 227.7 226.9 226.1 225.1	40.3 44.3 48.2 52.2 56.1	80 79 78 77 76
15 16 17 18 19	218.3 217.2 216.1 214.9 213.7	62.3 66.1 69.8	219.3 218.2 217.1 215.9 214.6	62.6 66.4 70.1	220.2 219.2 218.0 216.8 215.6	62.8 66.7 70.5	221.2 220.1 219.0 217.8 216.5	63.1 67.0 70.8	222.2 221.1 220.0 218.7 217.5	63.4 67.2 71.1	223.1 222.1 220.9 219.7 218.4	63.7 67.5	224.1 223.0 221.9 220.6 219.4	60.0 63.9 67.8 71.7 75.5	75 74 73 72 71
20 21 22 23 24	212.4 211.0 209.5 208.0 206.5	81.0 84.7 88.3	213.3 211.9 210.5 209.0 207.4	81.3 85.0 88.7	214.2 212.9 211.4 209.9 208.3	81.7 85.4 89.1	215.2 213.8 212.3 210.8 209.2	82.1 85.8	213.3	82.4 86.2 89.9	217.1 215.7 214.2 212.6 211.0	82.8 86.5 90.3	218.0 216.6 215.1 213.6 211.9	79·3 83.1 86.9 90.6 94·4	70 69 68 67 66
25 26 27 28 29	204.8 203.1 201.4 199.5 197.7	99.1 102.6 106.1	205.7 204.0 202.3 200.4 198.5	99.5 103.1 106.6 110.1	201.3 199.4	103.5	205.8 204.0 202.2 200.3	100.4 104.0 107.5 111.0	203.1	100.8 104.4 108.0 111.5	205.8 204.0 202.0	101.3 104.9 108.4 112.0	206.7 204.8 202.9	105.3 108.9 112.5	65 64 63 62 61
30 31 32 33 34	195.7 193.7 191.7 189.5 187.4	116.4 119.8 123.1 126.4		116.9 120.3 123.6 126.9	195.4 193.4 191.2 189.0	117.4 120.8 124.2 127.5	196.3 194.2 192.1 189.8	117.9 121.4 124.7 128.1	197.1 195.1 192.9 190.7	118.5 121.9 125.3 128.6	198.0 195.9 193.7 191.5	119.0 122.4 125.8 129.2	198.9 196.7 194.6 192.3	129.7	58 57 56
35 36 37 38 39	180.5 178.1 175.6	132.8 136.0 139.1 142.2	185.9 183.6 181.3 178.9 176.4	133.4 136.6 139.8 142.9	184.5 182.1 179.7 177.2	134.0 137.2 140.4 143.5	185.3 182.9 180.5 178.0	134.6 137.8 141.0 144.1	186.1 183.7 181.2 178.7	135.2 138.4 141.6 144.7	186.9 184.5 182.0	135.8 139.0 142.2 145.4	187.7 185.3 182.8 180.3	136.4 139.6 142.8 146.0	54 53 52 51
41 42 43 44	168.0 165.3 162.6	148.3 151.2 154.1 157.0	171.3 168.7 166.0 163.3	148.9 151.9 154.8 157.7	172.1 169.4 166.7	149.6 152.6 155.5 158.4	172.8 170.2 167.5 164.7	150.2 153.2 156.2 159.1	173.6 170.9 168.2 165.4	150.9 153.9 156.9 159.8	174.3 171.7 168.9 166.2	151.5 154.6 157.5 160.5	175.1 172.4 169.7 166.9	152.2 155.2 158.2 161.2	50 49 48 47 46 45
45	==	159.8	_		DEP,	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	
Course.	DEP.					228′	_	229′	_	230′	-	231'		232'	Course.

					P	lane	Tra	verse	e Ta	ble					
Course.	D=	233′	D=	234′	D=	235′	D=	236′	D=	237′	D=	238′	D=	239′	Course.
Cor	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0	233.0	0.0	234.0	0.0	235.0	0.0	236.0	0.0	237.0	0.0	238.0	0.0	239.0	0.0	9°
I 2	233.0 232.9	4.I 8.I	234.0 233.9	4.1	235.0 234.9	4.I 8.2	236.0 235.9	8.2	237.0 236.9	8.3	238.0 237.9	8.3	239.0 238.9	4.2 8.3	89 88
3 4	232.7 232.4		233.7 233.4		234.7 234.4		235·7 235·4		236.7 236.4		237·7 237·4		238.7 238.4	12.5	87 86
5 6	232.I 231.7		233.I 232.7		234.I 233.7	20.5	235.I 234.7	20.6			237.1 236.7		238.1 237.7	20.8	85 84
7 8	231.3	28.4	232.3	28.5	233.2 232.7	28.6	234.2 233.7		235.2	28.9	236.2 235.7	29.0	237.2 236.7	29.1	
9	230.1	36.4	231.1	36.6	232.1	36.8	233.1	36.9	234.1	37.1	235.1	37.2	236.1	37-4	81
10	229.5 228.7	44.5	230.4	44.6	231.4	44.8	232.4	45.0	233.4	45.2	234.4 233.6	45.4	235.4	41.5 45.6	80 79
12	227.9	52.4	228.9	52.6	229.9	52.9	230.8	53.1	231.8	53.3	232.8	53.5	233.8	49·7 53.8	78 77
14	225.1		227.0		228.0		229.0		230.0		230.9		231.9	57.8 61.9	76 75
16 17	224.0	64.2	224.9 223.8		225.9 224.7		226.9 225.7		227.8 226.6		228.8 227.6	65.6	229.7 228.6	65.9 69.9	74 73
18	221.6 220.3		222.5		223.5 222.2		224.4 223.1		225.4 224.1		226.4 225.0		227.3 226.0	73.9 77.8	72 71
20 2I	218.9		219.9		220.8		221.8		222.7		223.6		224.6 223.1	81.7 85.6	70
22	216.0	87.3	217.0	87.7	217.9	88.0	218.8	88.4	219.7	88.8	220.7	89.2	221.6	89.5 93.4	69 68
23 24	212.9		213.8		214.7		217.2	96.0	216.5	96.4	217.4	96.8	218.3	97.2	67 66
25 26	211.2 209.4	102.1	212.I 210.3	102.6		103.0		103.5	213.0	103.9	213.9	104.3	214.8	101.0	65 64
27 28	205.7	109.4	206.6	109.9	207.5	106.7	208.4	110.8	209.3	111.3	210.1	111.7	211.0	112.2	63 62
29			204.7			113.9						115.4			61 60
30 31	199.7	120.0	200.6	120.5	201.4	121.0	202.3	121.5	203.1	122.1	204.0	122.6	204.9	123.1	59 58
32 33 34	195.4	126.9	196.2	127.4	197.1	128.0	197.9	128.5	198.8	129.1	199.6	129.6	200.4	130.2	5° 57 56
35 36	190.9	133.6	191.7	134.2	192.5	134.8	193.3	135.4	194.1	135.9	195.0	136.5	195.8	137.1	55
36 37 38	186.1	140.2	186.9	140.8	187.7	138.1	188.5	142.0	189.3	142.6	190.1	143.2	190.9	143.8	54 53
38	181.1	143.4	181.9	144.1	185.2	144.7 147.9	183.4	145.3	184.2	145.9	185.0	149.8	185.7	147.1	52 51
40 41	175.8	152.9	176.6	153.5	177.4	151.1 154.2	178.1	154.8	178.9	155.5	179.6	156.1	180.4	156.8	50 49
42 43	173.2	155.9	173.9	156.6	174.6	157.2	175.4	157.9 161.0	176.1	158.6 161.6	176.9	159.3	177.6	159.9	48
44	167.6	161.9	168.3	162.6	169.0	163.2	169.8	163.9	170.5	164.6	171.2	165.3	171.9	166.0	46
45															45
Course.		LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	_	DEP.	LAT.	DEP.	LAT.	Course.
ပိ	D=	233′	D=	234′	D=	235′	D=2	236′	D=2	237′	D=	238′	D=	239′	ŭ

33

					Pl	ane	Trav	verse	Та	ble					
Course.	D=	240′	D=	241′	D=	242'	D=	243′	D=	244′	D=	245′	D=	246′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	So
0 I	240.0	4.2	241.0 241.0 240.0	4.2	242.0 242.0 241.9	4.2	243.0 243.0 242.9	4.2	244.0 244.0	4.3	245.0 245.0	4.3	246.0 246.0 245.9	, 0.0 4.3 8.6	90 89 88
3 4	239.9 239.7 239.4	12.6 16.7	240.7 240.4	12.6	241.7 241.4	12.7	242.7 242.4	12.7	243.9 243.7 243.4	12.8	244.4	12.8	245.7 245.4	12.9	87 86
56 78 9	239.1 238.7 238.2 237.7 237.0	25.1 29.2 33.4	240.1 239.7 239.2 238.7 238.0	25.2 29.4 33.5	241.1 240.7 240.2 239.6 239.0	29.5 33.7	242.1 241.7 241.2 240.6 240.0	25.4 29.6 33.8	243.1 242.7 242.2 241.6 241.0	29.7 34.0	244.I 243.7 243.2 242.6 242.0	25.6 29.9 34.1	245.1 244.7 244.2 243.6 243.0	21.4 25.7 30.0 34.2 38.5	85 84 83 82 81
10 11 12 13	236.4 235.6 234.8 233.8	41.7 45.8 49.9 54.0	237·3 236.6 235·7 234.8	41.8 46.0 50.1 54.2	238.3 237.6 236.7 235.8	42.0 46.2 50.3 54.4	239.3 238.5 237.7 236.8	42.2 46.4 50.5 54.7	240.3 239.5 238.7 237.7	42.4 46.6 50.7 54.9	241.3 240.5 239.6 238.7	42.5 46.7 50.9 55.1	242.3 241.5 240.6 239.7	42.7 46.9 51.1 55.3	80 79 78 77 76
14 15 16 17 18 19	232.9 231.8 230.7 229.5 228.3 226.9	62.1 66.2 70.2 74.2	233.8 232.8 231.7 230.5 229.2 227.9	62.4 66.4 70.5	234.8 233.8 232.6 231.4 230.2 228.8	62.6 66.7 70.8 74.8	235.8 234.7 233.6 232.4 231.1 229.8	62.9 67.0 71.0 75.1	236.8 235.7 234.5 233.3 232.1 230.7	63.2 67.3 71.3 75.4	237.7 236.7 235.5 234.3 233.0 231.7	63.4 67.5 71.6 75.7	238.7 237.6 236.5 235.3 234.0 232.6	59.5 63.7 67.8 71.9 76.0 80.1	75 74 73 72 71
20 21 22 23 24	225.5 224.1 222.5 220.9 219.3	82.1 86.0 89.9 93.8	226.5 225.0 223.5 221.8 220.2	82.4 86.4 90.3 94.2	227.4 225.9 224.4 222.8 221.1	82.8 86.7 90.7 94.6	228.3 226.9 225.3 223.7 222.0	83.1 87.1 91.0 94.9	229.3 227.8 226.2 224.6 222.9	83.5 87.4 91.4 95.3	230.2 228.7 227.2 225.5 223.8	83.8 87.8 91.8 95.7	231.2 229.7 228.1 226.4 224.7	84.1 88.2 92.2 96.1	70 69 68 67 66
25 26 27 28 29	215.7 213.8	105.2 109.0 112.7	216.6 214.7	105.6 109.4 113.1	217.5 215.6 213.7	106.1	218.4 216.5 214.6	106.5 110.3 114.1	219.3	107.0 110.8 114.6	222.0 220.2 218.3 216.3 214.3	107.4 111.2 115.0		107.8	65 64 63 62 61
30 31 32 33 34	205.7 203.5 201.3	130.7	206.6 204.4 202.1	124.1 127.7 131.3	207.4 205.2 203.0	124.6 128.2 131.8	208.3 206.1 203.8	125.2 128.8 132.3	209.1 206.9 204.6	125.7 129.3 132.9	212.2 210.0 207.8 205.5 203.1	126.2 129.8 133.4	210.9 208.6 206.3	126.7 130.4 134.0	59 58
35 36 37 38 39	194.2 191.7 189.1	141.1 144.4 147.8	195.0 192.5 189.9	141.7 145.0 148.4	195.8 193.3 190.7	142.2 145.6 149.0	196.6 194.1 191.5	142.8 146.2 149.6	197.4 194.9 192.3	143.4 146.8 150.2	200.7 198.2 195.7 193.1 190.4	144.0 147.4 150.8	199.0 196.5 193.9	144.6 148.c 151.5	55 54 53 52 51
40 41 42 43 44	181.1 178.4 175.5	157.5 160.6	181.9 179.1 176.3	158.1	182.6 179.8 177.0	158.8 161.9 165.0 168.1	183.4 180.6 177.7 174.8	159.4 162.6 165.7 168.8	184.1 181.3 178.5 175.5	160.1 163.3 166.4 169.5	182.1 179.2 176.2	160.7 163.9 167.1 170.2	185.7 182.8 179.9 177.0	161.4 164.6 167.8 170.9	49 48 47 46
45	169.7	169.7	170.4		171.1		171.8			172.5			173.9	173.9	45
Course.	DEP.	LAT. 240'	DEP.	LAT. 241'	DEP.	242'	DEP.		DEP.	LAT. 244'	DEP.	LAT. 245'	DEP.	246'	Course.

					P	lane	Tra	verse	е Та	ble					
Course.	D=	247′	D=	248′	D=	249′	D=	250′	D=	251′	D=	252′	D=	253′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3 4	247.0 247.0 246.8 246.7 246.4	4.3 8.6 12.9		4·3 8·7 13·0 17·3	249.0 249.0 248.8 248.7 248.4	0.0 4.3 8.7 13.0 17.4	250.0 249.8 249.7	4·4 8.7	251.0 251.0 250.8 250.7 250.4	4.4 8.8 13.1	252.0 252.0 251.8 251.7 251.4	4.4 8.8 13.2	253.0 253.0 252.8 252.7 252.4	4.4 8.8	90 89 88 87 86
56 78 9	246.1 245.6 245.2 244.6 244.0	25.8 30.1 34.4 38.6	247.1 246.6 246.2 245.6 244.9	25.9 30.2 34.5 38.8	248.1 247.6 247.1 246.6 245.9	21.7 26.0 30.3 34.7 39.0	248.6 248.1 247.6 246.9	30.5 34.8 39.1	249.6 249.1 248.6 247.9	26.2 30.6 34.9 39.3	251.0 250.6 250.1 249.5 248.9	26.3 30.7 35.1 39.4	252.0 251.6 251.1 250.5 249.9	22.1 26.4 30.8 35.2 39.6	85 84 83 82 81
10 11 12 13 14	243.2 242.5 241.6 240.7 239.7	47.1 51.4 55.6 59.8	244.2 243.4 242.6 241.6 240.6	51.6 55.8 60.0	244.4 243.6 242.6 241.6	60.2	243.6 242.6	56.2 60.5	246.4 245.5 244.6 243.5	52.2 56.5 60.7	248.2 247.4 246.5 245.5 244.5	48.1 52.4 56.7 61.0	248.4 247.5 246.5 245.5	43.9 48.3 52.6 56.9 61.2	80 79 78 77 76
15 16 17 18 19	238.6 237.4 236.2 234.9 233.5	68.1 72.2 76.3 80.4	239.5 238.4 237.2 235.9 234.5	68.4 72.5 76.6 80.7	240.5 239.4 238.1 236.8 235.4	76.9 81.1	239.1 237.8 236.4	77·3 81.4	240.0 238.7 237.3	69.2 73.4 77.6 81.7	243.4 242.2 241.0 239.7 238.3	69.5 73.7 77.9 82.0	244.4 243.2 241.9 240.6 239.2	65.5 69.7 74.0 78.2 82.4	75 74 73 72 71
20 21 22 23 24		88.5 92.5 96.5 100.5		88.9 92.9 96.9 100.9		101.3		89.6 93.7 97.7 101.7		94.0 98.1 102.1	230.2	90.3 94.4 98.5 102.5		86.5 90.7 94.8 98.9 102.9	70 69 68 67 66
25 26 27 28 29	222.0 220.1 218.1 216.0	112.1 116.0 119.7	222.9 221.0 219.0 216.9	108.7 112.6 116.4 120.2	223.8 221.9 219.9 217.8	109.2 113.0 116.9 120.7	224.7 222.8	109.6	225.6 223.6	106.1 110.0 114.0 117.8 121.7	226.5 224.5	110.5 114.4 118.3	227.4 225.4 223.4	106.9 110.9 114.9 118.8 122.7	-0 1
30 31 32 33 34	211.7 209.5 207.2 204.8	134.5	212.6 210.3 208.0 205.6	127.7 131.4 135.1 138.7	213.4 211.2 208.8 206.4	128.2 131.9 135.6 139.2	214.3 212.0 209.7 207.3	128.8 132.5 136.2 139.8	215.1 212.9 210.5 208.1		216.0 213.7 211.3 208.9	129.8 133.5 137.2 140.9	216.9 214.6 212.2 209.7	130.3 134.1 137.8 141.5	6 58 57 56
35 36 37 38 39	197.3 194.6 192.0	145.2 148.6 152.1 155.4	200.6 198.1 195.4 192.7	149.3 152.7 156.1	201.4 198.9 196.2 193.5	146.4 149.9 153.3 156.7	202.3 199.7 197.0 194.3	146.9 150.5 153.9 157.3	203.1 200.5 197.8 195.1	151.1 154.5 158.0	203.9 201.3 198.6 195.8	148.1 151.7 155.1 158.6	204.7 202.1 199.4 196.6	148.7 152.3 155.8 159.2	55 54 53 52 51
40 41 42 43 44 45	186.4 183.6 180.6 177.7	162.0 165.3 168.5	187.2 184.3 181.4 178.4	162.7 165.9 169.1 172.3	187.9 185.0 182.1 179.1	160.1 163.4 166.6 169.8 173.0	188.7 185.8 182.8 179.8	164.0 167.3 170.5 173.7	189.4 186.5 183.6 180.6	164.7 168.0 171.2	190.2 187.3 184.3 181.3	165.3 168.6 171.9 175.1	190.9 188.0 185.0 182.0	166.0 169.3 172.5 175.7	48 47 46
	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	45
Course.	D=		D=		_	249′	D=		D=		D=		D=		Course.

						Pla	ane '	Trav	erse	Tal	ole					
Course.	1	D=2	54′	D=	255′	D=2	256′	D=	257′	D=2	258′	D=	259′	D=	260′	Course.
S	1	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
2 3	2 2 2 2	54.0 54.0 53.8 53.7 53.4	4.4 8.9 13.3	255.0 255.0 254.8 254.7 254.4	4.5 8.9 13.3	256.0 256.0 255.8 255.6 255.4	4.5 8.9 13.4	257.0 257.0 256.8 256.6 256.4	4.5 9.0 13.5	258.0 258.0 257.8 257.6 257.4	4·5 9.0 13.5	259.0 259.0 258.8 258.6 258.4	4.5 9.0 13.6	260.0 260.0 259.8 259.6 259.4	0.0 4.5 9.1 13.6 18.1	90 89 88 87 86
200	2 2 2 2 2 2 2	53.0 52.6 52.1 51.5 50.9	22.1 26.6 31.0 35.3	254.0 253.6 253.1 252.5 251.9	22.2 26.7 31.1 35.5	255.0 254.6 254.1 253.5 252.8	22.3 26.8 31.2 35.6	256.0 255.6 255.1 254.5 253.8	22.4 26.9 31.3 35.8	257.0 256.6 256.1 255.5 254.8	27.0 31.4 35.9	258.0 257.6 257.1 256.5 255.8	27.1 31.6 36.0	259.0 258.6 258.1 257.5 256.8	22.7 27.2 31.7 36.2 40.7	85 84 83 82 81
10 12 13 14	2 2 2 2 3 2	49·3 48·4 47·5 46·5	48.5 52.8 57.1	251.1 250.3 249.4 248.5 247.4	48.7 53.0	252.1 251.3 250.4 249.4 248.4	53.2	252.3 251.4 250.4	49.0 53.4	254.1 253.3 252.4 251.4 250.3	49.2 53.6 58.0	255.1 254.2 253.3 252.4 251.3	49·4 53.8 58·3	256.1 255.2 254.3 253.3 252.3	45.1 49.6 54.1 58.5 62.9	80 79 78 77 76
10	6 2 7 2 8 2	45·3 44·2 42·9 41·6	70.0 74.3 78.5	246.3 245.1 243.9 242.5 241.1	78.8	247.3 246.1 244.8 243.5 242.1	66.3 70.6 74.8 79.1 83.3		75.1 79.4	249.2 248.0 246.7 245.4 243.9	75·4 79·7 84.0	244.9	71.4 75.7 80.0 84.3	251.1 249.9 248.6 247.3 245.8	67.3 71.7 76.0 80.3 84.6	75 74 73 72 71
2: 2: 2: 2:	1 2 2 2 3 2	238.7 237.1 235.5 233.8 232.0	91.0 95.2 99.2	239.6 238.1 236.4 234.7 233.0	91.4 95.5 99.6	240.6 239.0 237.4 235.6 233.9	91.7 95.9 100.0	241.5 239.9 238.3 236.6 234.8	92.1 96.3 100.4	242.4 240.9 239.2 237.5 235.7	92.5 96.6 100.8	243.4 241.8 240.1 238.4 236.6	92.8 97.0 101.2 105.3	244.3 242.7 241.1 239.3 237.5	105.8	70 69 68 67 66
2 2 2 2 2	6 2 7 2 8 2	230.2 228.3 226.3 224.3 222.2	111.3 115.3 119.2	227.2 225.2	111.8 115.8 119.7	232.0 230.1 228.1 226.0 223.9	112.2 116.2 120.2	231.0 229.0 226.9	112.7 116.7 120.7	229.9	113.1 117.1 121.1	234.7 232.8 230.8 228.7 226.5	113.5 117.6 121.6	233.7 231.7 229.6	109.9 114.0 118.0 122.1 126.1	65 64 63 62 61
3 3 3 3 3	1 2 2 2 3 2	217.7	130.8 134.6 138.3	218.6 216.3 213.9	131.3 135.1 138.9	221.7 219.4 217.1 214.7 212.2	131.8 135.7 139.4	220.3 217.9 215.5	132.4 136.2 140.0	221.I 218.8	132.9 136.7 140.5 144.3	219.6 217.2 214.7	133.4 137.2 141.1 144.8	222.9 220.5 218.1 215.5	130.0 133.9 137.8 141.6 145.4	56
3 3 3 3 3	6 2 7 2 8 2 9 1	205.5 202.9 200.2 197.4	149.3 152.9 156.4 159.8	206.3 203.7 200.9 198.2	149.9 153.5 157.0 160.5		150.5 154.1 157.6 161.1	207.9 205.2 202.5 199.7	151.1 154.7 158.2 161.7	200.5	151.6 155.3 158.8 162.4	209.5 206.8 204.1 201.3	152.2 155.9 159.5 163.0	210.3 207.6 204.9 202.1	149.1 152.8 156.5 160.1 163.6	53 52 51
4 4 4	1 2 1 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	191.7 188.8 185.8 182.7	166.6 170.0 173.2 176.4	192.5 189.5 186.5 183.4	167.3 170.6 173.9 177.1	193.2 190.2 187.2 184.2	168.0 171.3 174.6 177.8	194.0 191.0 188.0 184.9	172.0 175.3 178.5	194.7 191.7 188.7 185.6	172.6 176.0 179.2	195.5 192.5 189.4 186.3	173.3 176.6 179.9	190.2 193.2 190.2 187.0		49 48 47 46
	=			180.3				181.7				-	183.1			45
	Course.		LAT.	DEP.		DEP.	LAT.	DEP.	257'	DEP.	LAT.	DEP.	259'	DEP.	260'	Course.
1	ا د	D=	254′	D	255′		250		4 5/		250		239			0

	6				Pla	ine '	Trav	erse	Tab	ole					
Course.	D=	261′	D=	262'	D=	263′	D=	264′	D=	265′	D=	266′	D=	267′	Course.
ပီ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	
0 1 2	261.0 261.0 260.8	4.6 9.1	262.0 262.0 261.8		263.0 263.0 262.8	4.6 9.2	264.0 264.0 263.8	4.6 9.2	265.0 265.0 264.8	4.6 9.2	266.0 266.0 265.8	4.6 9.3	267.0 267.0 266.8	0.0 4.7 9.3	90 89 88
3 4	260.6 260.4 260.0	18.2	261.6 261.4	13.7	262.6 262.4 262.0	18.3	263.6 263.4	18.4	264.6 264.4	18.5	265.6 265.4	18.6	266.6 266.3	18.6	87 86
5 6 7 8 9	259.6 259.1 258.5 257.8	27.3 31.8 36.3	261.0 260.6 260.0 259.5 258.8	22.8 27.4 31.9 36.5 41.0	261.6 261.0	27.5 32.1 36.6	263.0 262.6 262.0 261.4 260.7	27.6 32.2 36.7	264.0 263.5 263.0 262.4 261.7	27.7 32.3 36.9	265.0 264.5 264.0 263.4 262.7	27.8 32.4 37.0	266.0 265.5 265.0 264.4 263.7	23.3 27.9 32.5 37.2 41.8	85 84 83 82 81
10 11 12 13 14	257.0 256.2 255.3 254.3 253.2	49.8 54.3 58.7	258.0 257.2 256.3 255.3 254.2	50.0 54.5 58.9	259.0 258.2 257.3 256.3 255.2	50.2 54.7 59.2	260.0 259.1 258.2 257.2 256.2	50.4 54.9 59.4	261.0 260.1 259.2 258.2 257.1	50.6 55.1 59.6	262.0 261.1 260.2 259.2 258.1	50.8 55.3 59.8	262.9 262.1 261.2 260.2 259.1	46.4 50.9 55.5 60.1 64.6	80 79 78 77 76
15 16 17 18	252.1 250.9 249.6 248.2 246.8	71.9 76.3 80.7	253.1 251.9 250.6 249.2 247.7	76.6 81.0	254.0 252.8 251.5 250.1 248.7	72.5 76.9 81.3	255.0 253.8 252.5 251.1 249.6	72.8 77.2 81.6	256.0 254.7 253.4 252.0 250.6	73.0 77.5 81.9	256.9 255.7 254.4 253.0 251.5	73·3 77·8 82.2	257.9 256.7 255.3 253.9 252.5	73.6	75 74 73 72 71
20 21 22 23 24	245.3 243.7 242.0 240.3 238.4	93.5 97.8 102.0	246.2 244.6 242.9 241.2 239.3	93.9 98.1 102.4	247.I 245.5 243.8 242.I 240.3	94·3 98·5 102.8	248.1 246.5 244.8 243.0 241.2	94.6 98.9 103.2	249.0 247.4 245.7 243.9 242.1	90.6 95.0 99.3 103.5	250.0 248.3 246.6 244.9 243.0	91.0 95.3 99.6 103.9	250.9 249.3 247.6	95.7 100.0	70 69 68 67 66
25 26 27 28 29	232.6 230.4	114.4 118.5 122.5	233.4 231.3	110.7 114.9 118.9 123.0 127.0	236.4 234.3 232.2	119.4	237.3 235.2 233.1	115.7 119.9 123.9	240.2 238.2 236.1 234.0 231.8	116.2 120.3 124.4	237.0	116.6 120.8 124.9	237.9 235.7	112.8 117.0 121.2 125.3 129.4	65 64 63 62 61
30 31 32 33 34	223.7 221.3 218.9	134.4	224.6 222.2 219.7	134.9 138.8 142.7	225.4 223.0 220.6	135.5 139.4 143.2	226.3 223.9 221.4	132.0 136.0 139.9 143.8	229.5 227.1 224.7 222.2 219.7	132.5 136.5 140.4 144.3	230.4 228.0 225.6 223.1	133.0 137.0 141.0	231.2 228.9 226.4 223.9	137.5 141.5 145.4	60 59 58 57 56
35 36 37 38 39	211.2 208.4 205.7	153.4 157.1	212.0 209.2 206.5	154.0 157.7 161.3	212.8 210.0 207.2	154.6	213.6 210.8 208.0	155.2 158.9 162.5	217.1 214.4 211.6 208.8 205.9	155.8 159.5 163.2	215.2 212.4 209.6	156.4 160.1 163.8	216.0 213.2 210.4	156.9 160.7	55 54 53 52 51
40 41 42 43 44	197.0 194.0 190.9 187.7	171.2 174.6 178.0 181.3	197.7 194.7 191.6 188.5	175.3 178.7 182.0	198.5 195.4 192.3 189.2	172.5 176.0 179.4 182.7	199.2 196.2 193.1 189.9	173.2 176.7 180.0 183.4	196.9 193.8 190.6	173.9 177.3 180.7 184.1	200.8 197.7 194.5 191.3	174.5 178.0 181.4 184.8	201.5 198.4 195.3	175.2 178.7 182.1	50 49 48 47 46
45	184.6	184.6	185.3	185.3	186.0	186.0	186.7	186.7	187.4	187.4	188.1	188.1	188.8	188.8	45
Course.	DEP.	LAT. 261'	DEP.	Lат. 262'	DEP.	Lat. 263'	DEP.	LAT. 264'	DEP.	Lat. 265'	DEP.	LAT. 266'	DEP.	LAT. 267'	Course.

					Pl	ane	Trav	erse	Tal	ole				-	
Course.	D=	268′	D=	269'	D=	270′	D=	271′	D=	272′	D=	273′	D=	274′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	
0	268.0 268.0		269.0		270.0		271.0		272.0	0.0	273.0	0.0	274.0	0.0	90
1 2 3	267.8 267.6	9.4	269.0 268.8 268.6	9.4	270.0 269.8 269.6		271.0 270.8 270.6	9.5	272.0 271.8 271.6	9.5	273.0 272.8 272.6	4.8 9.5 14.3	274.0 273.8 273.6	4.8 9.6 14.3	89 88 87
4	267.3 267.0	18.7	268.3 268.0		269.3 269.0	18.8	270.3 270.0	18.9	271.3 271.0	19.0	272.3 272.0	19.0	273.3 273.0	19.1	86
5 6 7 8	266.5 266.0	28.0	267.5 267.0	28.1	268.5 268.0	28.2	269.5 269.0	28.3	270.5 270.0	28.4	271.5 271.0	28.5		23.9 28.6 33.4	85 84 83
8 9	265.4 264.7	37·3 41·9	266.4 265.7	37·4 42.1	267.4 266.7		268.4 267.7	37· 7 42·4	269.4 268.7		270.3 269.6	38.0 42.7		38.1 42.9	82 81
10	263.9 263.1	51.1	264.9 264.1	51.3	265.9 265.0	51.5	266.9 266.0	51.7	267.9 267.0	51.9	268.9 268.0	52.1	269.0	47.6 52.3	80 79 78
12 13 14	262.1 261.1 260.0	60.3	263.1 262.1 261.0	60.5	264.1 263.1 262.0	60.7	265.1 264.1 263.0	61.0	266.1 265.0 263.9	61.2	267.0 266.0 264.9	56.8 61.4 66.0			78 77 76
15 16	258.9 257.6	69.4	259.8 258.6	69.6	260.8 259.5	69.9	261.8 260.5	70.1	262.7 261.5	70.4	263.7 262.4	70.7 75.2	3 /	70.9	75
17 18	256.3 254.9	78.4	257.2 255.8	78.6	258.2 256.8	78.9	259.2 257.7	79.2	260.1 258.7	79.5	261.1 259.6	79.8 84.4	262.0	75.5 80.1 84.7	74 73 72
19 20	253.4 251.8		254.3 252.8		255·3 253·7	87.9 92.3	256.2 254.7		257.2 255.6		258.1 256.5	88.9 93.4		93.7	71 70
2I 22	250.2 248.5	96.0 100.4	251 .1 249.4	96.4 100.8	252. I 250.3	96.8 101.1	253.0 251.3	97.1	253.9 252.2	97·5 101.9	254.9 253.1	97.8	255.8 254.0	98.2 102.6	69 68
23 24	246.7 244.8		247.6 245.7		248.5 246.7	109.8	247.6	110.2	25°.4 248.5	110.6	2 49 4	111.0	250.3	107.1	67 66
25 26 27	240.9	117.5	243.8 241.8	117.9		118.4	243.6	118.8	246.5 244.5	119.2	245.4	119.7	246.3	115.8	65 64
28 29		125.8	239.7 237.5 235.3	126.3	238.4 236.1	126.8	239.3	127.2	242.4 240.2 237.9	127.7	241.0	128.2		124.4 128.6 132.8	63 62 61
30 31	232.1	134.0	233.0	134.5	233.8									137.0	60 50
32 33	227.3 224.8	142.0 146.0	228.1 225.6	142.5 146.5	229.0 226.4	143.1 147.1	229.8 227.3	143.6 147.6	230.7 228.1	144. 1 148. 1	231.5 229.0	144.7	232.4 229.8	145.2	59 58 57 56
34 35	219.5	153.7	220.4	154.3	223.8	154.9	222.0	155.4	222.8	156.0	223.6	156.6	224.4	153.2	55
35 36 37 38	216.8 214.0	157.5	217.6	158.1	218.4 215.6 212.8	162.5	216.4	163.1	217.2	163.7	218.0	164.3	218.8	161.1 164.9 168.7	54 53 52
39	208.3	168.7	209.1	169.3	209.8	169.9	210.6	170.5	211.4	171.2	212.2	171.8	212.9	172.4	51
40 41 42	205.3 202.3 199.2	175.8	203.0	176.5	206.8 203.8 200.6	177.1	204.5	177.8	205.3	178.4	206.0	179.1	206.8	179.8	50 49 48
43 44	196.0	182.8	196.7	183.5		184.1	198.2	184.8	198.9 195.7	185.5	199.7	186.2	200.4		47 46
45	189.5	189.5	190.2	190.2	190.9	190.9	191.6	191.6	192.3	192.3	193.0	193.0	193.7	193.7	45
Course.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	Course.
Cor	D=	268′	D=	269′	D=	270′	D=	271′	D=	272′	D=	273′	D=	274'	Cor

					Pl	ane	Trav	rerse	Tal	ble					
Course.	D=	275′	D=2	276′	D=	277′	D=	278′	D=	279′	D=	280′	D=	281′	Course.
	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	
0 1 2 3 4	275.0 275.0 274.8 274.6 274.3	0.0 4.8 9.6 14.4 19.2	276.0 275.8	4.8 9.6 14.4	277.0 277.0 276.8 276.6 276.3	4.8 9.7 14.5	278.0 278.0 277.8 277.6 277.3	4.9 9.7 14.5	279.0 279.0 278.8 278.6 278.3	4.9 9.7 14.6	280.0 280.0 279.8 279.6 279.3	0.0 4.9 9.8 14.7 19.5	281.0 281.0 280.8 280.6 280.3	9.8 14.7 19.6	90 89 88 87 86
56 78 9	274.0 273.5 273.0 272.3 271.6	24.0 28.7 33.5 38.3 43.0	274.5 273.9 273.3 272.6	28.8 33.6 38.4 43.2	275.9 275.5 274.9 274.3 273.6	29.0 33.8 38.6 43.3	276.9 276.5 275.9 275.3 274.6	29.1 33.9 38.7 43.5	277.9 277.5 276.9 276.3 275.6	29.2 34.0 38.8 43.6	278.9 278.5 277.9 277.3 276.6	24.4 29.3 34.1 39.0 43.8	277.5	24.5 29.4 34.2 39.1 44.0	85 84 83 82 81
10 11 12 13 14	270.8 269.9 269.0 268.0 266.8	57.2 61.9 66.5	271.8 270.9 270.0 268.9 267.8	52.7 57.4 62.1 66.8	272.8 271.9 270.9 269.9 268.8	52.9 57.6 62.3 67.0	273.8 272.9 271.9 270.9 269.7	57.8 62.5 6 7. 3	273.9 272.9 271.8 270.7	53.2 58.0 62.8 67.5	275.7 274.9 273.9 272.8 271.7	63.0	274.9 273.8 272.7	48.8 53.6 58.4 63.2 68.0	80 79 78 77 76
15 16 17 18 19	265.6 264.3 263.0 261.5 260.0	80.4 85.0 89.5	266.6 265.3 263.9 262.5 261.0	76.1 80.7 85.3 89.9	267.6 266.3 264.9 263.4 261.9	76.4 81.0 85.6 90.2	268.5 267.2 265.9 264.4 262.9	76.6 81.3 85.9 90.5	269.5 268.2 266.8 265.3 263.8	76.9 81.6 86.2 90.8	270.5 269.2 267.8 266.3 264.7	86.5 91.2	267.2 265.7	72.7 77.5 82.2 86.8 91.5	75 74 73 72 71
20 21 22 23 24	258.4 256.7 255.0 253.1 251.2	103.0	259.4 257.7 255.9 254.1 252.1	98.9 103.4 107.8	255.0	99.3 103.8 108.2		99.6 104.1 108.6	258.7 256.8	100.0	263.1 261.4 259.6 257.7 255.8	100.3 104.9 109.4	260.5	109.8	70 69 68 67 66
25 26 27 28 29	245.0 242.8	120.6	250.1 248.1 245.9 243.7 241.4	121.0	249.0 246.8 244.6	121.4 125.8 130.0	249.9 24 7. 7 245.5	121.9 126.2 130.5	250.8 248.6 246.3	122.3 126.7 131.0	251.7	122.7 127.1 131.5	250.4 248.1	123.2	.~
30 31 32 33 34	235.7 233.2 230.6 228.0	141.6 145.7 149.8	234.1	142.2 146.3 150.3	237.4 234.9 232.3	142.7 146.8 150.9	238.3 235.8 233.2 230.5	143.2 147.3 151.4 155.5	239.1 236.6 234.0 231.3	143.7 147.8 152.0 156.0	237.5 234.8 232.1	144.2 148.4 152.5 156.6	240.9 238.3 235.7	140.5 144.7 148.9 153.0 157.1	59 58
35 36 37 38 39	216.7 213.7	165.5 169.3 173.1		162.2 166.1 169.9 173.7	221.2 218.3 215.3	162.8 166.7 170.5 174.3	224.9 222.0 219.1 216.0	163.4 167.3 171.2 175.0	225.7 222.8 219.9 216.8	164.0 167.9 171.8 175.6	223.6 220.6 217.6	164.6 168.5 172.4 176.2	224.4 221.4 218.4	165.2 169.1 173.0 176.8	54 53 52 51
42 43 44	207.5 204.4 201.1 197.8	180.4 184.0 187.5 191.0	205.1 201.9 198.5	181.1 184.7 188.2 191.7	209. 1 205.9 202.6 199.3	181.7 185.3 188.9 192.4	209.8 206.6 203.3	182.4 186.0 189.6 193.1	210.6 207.3 204.0 200.7	183.0 186.7 190.3 193.8	211.3 208.1 204.8 201.4	183.7 187.4 191.0 194.5	212.1 208.8 205.5 202.1	184.4 188.0 191.6 195.2	48 47 46
45	194.5 Dep.	194.5 LAT.	DEP.	195.2 LAT.	195.9 Dep.	195.9 LAT.	DEP.	LAT.	DEP.	197.3	198.0 Dep.	LAT.	DEP.	198.7 LAT.	45 ===
Course.		275′		276′		277′		278′		279′		280′		281'	Course.

					P	ane	Tra	verse	e Ta	ble					
Course.	D=	282′	D=	283′	D=	284′	D=	285′	D=	286′	D=	287′	D=	288′	Course.
රී	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
° 0 1 2 3 4	282.0 282.0 281.8 281.6 281.3	0.0 4.9 9.8 14.8 19.7	283.0 283.0 282.8 282.6 282.3	4.9 9.9 14.8 19.7	284.0 284.0 283.8 283.6 283.3	5.0 9.9 14.9	285.0 285.0 284.8 284.6 284.3	5.0 9.9 14.9	286.0 286.0 285.8 285.6 285.3	5.0 10.0 15.0	287.0 287.0 286.8 286.6 286.3	5.0 10.0 15.0	288.0 288.0 287.8 287.6 287.3	0.0 5.0 10.1 15.1 20.1	° 90 89 88 87 86
56 78 9	280.9 280.5 279.9 279.3 278.5	24.6 29.5 34.4 39.2 44.1	281.9 281.4 280.9 280.2 279.5	29.6 34.5 39.4 44.3	282.9 282.4 281.9 281.2 280.5	29.7 34.6 39.5 44.4	283.9 283.4 282.9 282.2 281.5	29.8 34.7 39.7 44.6	284.9 284.4 283.9 283.2 282.5	29.9 34.9 39.8 44.7	285.9 285.4 284.9 284.2 283.5	30.0 35.0 39.9 44.9	286.9 286.4 285.9 285.2 284.5	25.1 30.1 35.1 40.1 45.1	85 84 83 82 81
10 11 12 13 14	277.7 276.8 275.8 274.8 273.6	63.4 68.2	278.7 277.8 276.8 275.7 274.6	54.0 58.8 63.7 68.5	279.7 278.8 277.8 276.7 275.6	59.0 63.9 68.7	280.7 279.8 278.8 277.7 276.5	59·3 64.1 68.9	281.7 280.7 279.8 278.7 277.5	54.6 59.5 64.3 69.2	282.6 281.7 280.7 279.6 278.5	59.7 64.6 69.4	282.7 281.7 280.6	50.0 55.0 59.9 64.8 69.7	80 79 78 77 76
16 17 18 19	272.4 271.1 269.7 268.2 266.6	77.7 82.4 87.1 91.8	273.4 272.0 270.6 269.1 267.6	78.0 82.7 87.5 92.1	274.3 273.0 271.6 270.1 268.5	78.3 83.0 87.8 92.5	274.0 272.5 271.1 269.5	78.6 83.3 88.1 92.8	270.3 274.9 273.5 272.0 270.4 268.8	78.8 83.6 88.4 93.1	277.2 275.9 274.5 273.0 271.4 269.7	79.1 83.9 88.7 93.4	276.8 275.4 273.9 272.3	74·5 79·4 84·2 89.0 93·8	75 74 73 72 71
2I 22 23 24	261.5 259.6 257.6	101.1 105.6 110.2 114.7	264.2 262.4 260.5 258.5	101.4 106.0 110.6 115.1	265.1 263.3 261.4 259.4	101.8 106.4 111.0 115.5	266.1 264.2 262.3 260.4	102.1 106 8 111.4 115.9	267.0 265.2 263.3 261.3	102.5 107.1 111.7 116.3	267.9 266.1 264.2 262.2	102.9 107.5 112.1 116.7	268.9 267.0 265.1 263.1	103.2 107.9 112.5 117.1	70 69 68 67 66
25 26 27 28 29	253.5 251.3 249.0	123.6	256.5 254.4 252.2 249.9 247.5	124.1 128.5 132.9 137.2	255.3 253.0 250.8 248.4	124.5 128.9 133.3 137.7	256.2 253.9 251.6 249.3	124.9 129.4 133.8 138.2	257.1 254.8 252.5 250.1	125.4 129.8 134.3 138.7	258.0 255.7 253.4 251.0	125.8 130.3 134.7 139.1	258.9 256.6 254.3 251.9	126.3	65 64 63 62 61
30 31 32 33 34	236.5 233.8	145.2 149.4 153.6 157.7	242.6 240.0 237.3 234.6	145.8 150.0 154.1 158.3	243.4 240.8 238.2 235.4	150.5 154.7 158.8	244.3 241.7 239.0 236.3	146.8 151.0 155.2 159.4	245.1 242.5 239.9 237.1	147.3 151.6 155.8 159.9	246.0 243.4 240.7 237.9	147.8 152.1 156.3 160.5	246.9 244.2 241.5 238.8	152.6 156.9 161.0	60 59 58 57 56
35 36 37 38 39	228.1 225.2 222.2 219.2	169. 7 173.6 177.5	229.0 226.0 223.0 219.9	166.3 170.3 174.2 178.1	229.8 226.8 223.8 220.7	166.9 170.9 174.8 178.7	230.6 227.6 224.6 221.5	167.5 171.5 175.5 179.4	231.4 228.4 225.4 222.3	168.1 172.1 176.1 180.0	232.2 229.2 226.2 223.0	168.7 172.7 176.7 180.6	235.9 233.0 230.0 226.9 223.8	169.3 173.3 177.3 181.2	55 54 53 52 51
40 41 42 43 44 45	212.8 209.6 206.2	185.0 188.7 192.3 195.9	210.3	185.7 189.4 193.0 196.6	214.3	186.3 190.0 193.7 197.3	215.1 211.8 208.4	187.0 190. 7 194. 4 198.0	215.8 212.5 209.2 205.7	187.6 191.4 195.1 198.7	216.6	188.3 192.0 195.7	217.4 214.0 210.6 207.2	188.9 192.7 196.4 200.1	50 49 48 47 46 45
-		LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	
Course.	D=		D=			284′	D=	285′	D=	286′	D=	287′	D=	288′	Course.

		7 4000.00			Pl	ane	Tra	verse	Ta	ble					
Course.	D=	289′	D=	290′	D=	291′	D=	292′	D=	293′	D=	294'	D=	295′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	ပိ
0 1 2 3 4	289.0 289.0 288.8 288.6 288.3	0.0 5.0 10.1 15.1 20.2	290.0 290.0 289.8 289.6 289.3	5.1 10.1 15.2	291.0 291.0 290.8 290.6 290.3	5.1 10.2 15.2	292.0 292.0 291.8 291.6 291.3	5.1 10.2	293.0 293.0 292.8 292.6 292.3	5.1 10.2 15.3	294.0 294.0 293.8 293.6 293.3	0.0 5.1 10.3 15.4 20.5	295.0 295.0 294.8 294.6 294.3	0.0 5.1 10.3 15.4 20.6	°90 89 88 87 86
56 78 9	287.9 287.4 286.8 286.2 285.4	25.2 30.2 35.2 40.2 45.2	287.8 287.2 286.4	30-3 35-3 40-4 45-4	289.9 289.4 288.8 288.2 287.4	30.4 35.5 40.5 45.5	290.9 290.4 289.8 289.2 288.4	30.5 35.6 40.6 45.7	291.9 291.4 290.8 290.1 289.4	30.6 35.7 40.8 45.8	292.9 292.4 291.8 291.1 290.4	25.6 30.7 35.8 40.9 46.0	291.4	25.7 30.8 36.0 41.1 46.1	85 84 83 82 81
10 11 12 13 14	284.6 283.7 282.7 281.6 280.4	50.2 55.1 60.1 65.0 69.9	284.7	55·3 60.3 65.2 70.2	286.6 285.7 284.6 283.5 282.4 281.1	55.5 60.5 65.5 70.4	287.6 286.6 285.6 284.5 283.3 282.1	55.7 60.7 65.7 70.6	288.5 287.6 286.6 285.5 284.3	55.9 60.9 65.9 70.9	289.5 288.6 287.6 286.5 285.3	66.1 71.1	289.6 288.6 287.4 286.2	51.2 56.3 61.3 66.4 71.4	80 79 78 77 76
15 16 17 18 19	279.2 277.8 276.4 274.9 273.3 271.6	79.7 84.5 89.3 94.1	278.8 277.3 275.8 274.2	94.4	279. 7 278.3 276.8 275.1	80.2 85.1 89.9 94.7	280.7 279.2 277.7 276.1	80.5 85.4 90.2 95.1	283.0 281.6 280.2 278.7 277.0	80.8 85.7 90.5 95.4	278.0	86.0 90.9 95.7	283.6 282.1 280.6 278.9	1	75 74 73 72 71
2I 22 23 24	269.8 268.0 26 6.0 264.0	103.6 108.3 112.9	270.7 268.9 266.9 264.9	103.9 108.6 113.3 118.0	271.7 269.8 267.9 265.8	104.3 109.0 113.7 118.4	270.7 268.8 266.8	104.6 109.4 114.1 118.8	273.5 271. 7 269.7 267.7	109.8	274.5 272.6 270.6 268.6	105.4 110. 1 114.9 119.6	275.4 273.5 271.5 269.5	115.3 115.0	70 69 68 67 66
25 26 27 28 29	259.8 257.5 255.2 252.8	126. 7 131. 2 135. 7 140. 1	262.8 260.7 258.4 256.1 253.6	127.1 131. 7 136.1 140.6	251.5 259.3 256.9 254.5	127.6 132.1 136.6 141.1	262.4 260.2 257.8 255.4	128.0 132.6 137.1 141.6	263.3 261.1 258.7 256.3	128.4 133.0 137.6 142.0	264.2 262.0 259.6 257.1	133.5 138.0 142.5	265.1 262.8 260.5 258.0	129.3 133.9 138.5 143.0	65 64 63 62 61
30 31 32 33 34	247.7 245.1 242.4 239.6	157.4 161.6	248.6 245.9 243.2 240.4	149.4 153.7 157.9 162.2	249.4 246.8 244.1 241.2	149.9 154.2 158.5 162.7	250.3 247.6 244.9 242.1	150.4 154. 7 159.0 163. 3	251.2 248.5 245.7 242.9	150.9 155.3 159.6 163.8	252.0 249.3 246.6 243.7	160. 1 164.4	252.9 250.2 247.4 244.6	151.0	60 59 58 57 56
35 36 37 38 39	233.8 230.8 227.7 224.6	169.9 173.9 177.9 181.9	237.6 234.6 231.6 228.5 225.4	170.5 174.5 178.5 182.5	235.4 232.4 229.3 226.1	171.0 175.1 179.2 183.1	236.2 233.2 230.1 226.9	171.6 175.7 179.8 183.8	237.0 234.0 230.9 227.7	172.2 176.3 180.4 184.4	237.9 234.8 231.7 228.5	172.8 176.9 181.0 185.0	238.7 235.6 232.5 229.3	169.2 173.4 177.5 181.6 185.6	55 54 53 52 51
40 41 42 43 44	218.1 214.8 211.4 207.9	189.6 193.4 197.1 200.8	222.2 218.9 215.5 212.1 208.6 205.1	190.3 194.0 197.8 201.5	219.6 216.3 212.8 209.3	190.9 194.7 198.5 202.1	220.4 217.0 213.6 210.0	191.6 195.4 199.1 202.8	221.1 217.7 214.3 210.8	192.2 196.1 199.8 203.5	221.9 218.5 215.0 211.5	192.9 196.7 200.5 204.2	222.6 219.2 215.7 212.2	193.5 197.4 201.2 204.9	
45 		LAT.			DEP.			LAT.	DEP.	207.2 LAT.		207.9 LAT.	DEP.	208.0 LAT.	45
Course.		289'	D=			291'	D=			293′		294'		295'	Course.

					P	lane	Tra	verse	Та	ble					
Course.	D=	296′	D=	297′	D=	298′	D=	299′	D=	300′	D=	400′	D=	500′	Course.
ပိ	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	LAT.	DEP.	Col
0 1 2 3 4	296.0 296.0 295.8 295.6 295.3	5.2 10.3 15.5	297.0 297.0 296.8 296.6 296.3	5.2 10.4 15.5	298.0 298.0 297.8 297.6 297.3	5.2 10.4 15.6	299.0 299.0 298.8 298.6 298.3	5.2 10.4 15.6	300.0 300.0 299.8 299.6 299.3	5.2 10.5 15.7	400.0 399.9 399.8 399.4 399.0	7.0 13.9 20.9	500.0 499.9 499.7 499.3 498.8		90 89 88 87 86
56 78 9	294.9 294.4 293.8 293.1 292.4	25.8 30.9 36.1 41.2	295.9 295.4 294.8 294.1 293.3	25.9 31.0 36.2 41.3	296.9 296.4 295.8 295.1 294.3	26.0 31.1 36.3 41.5	297.9	26.1 31.3 36.4 41.6	298.9 298.4 297.8 297.1 296.3	26.1 31.4 36.6 41.8	398.5 397.8 397.0 396.1 395.1	34.9 41.8 48.7 55.7	498.1 497.3 496.3 495.1 493.8	43.6 52.3 61.0 69.6 78.2	85 84 83 82 81
10 11 12 13 14	291.5 290.6 289.5 288.4 287.2	56.5 61.5 66.6	292.5 291.5 290.5 289.4 288.2	56.7 61.7 66.8 71.9	293.5 292.5 291.5 290.4 289.1	56.9 62.0 67.0	294.5 293.5 292.5 291.3 290.1	57.1 62.2 67.3 72.3	295.4 294.5 293.4 292.3 291.1	57.2 62.4 67.5	393.9 392.6 391.3 389.8 388.1	76.3 83.1 90.0	492.4 490.8 489.1 487.2 485.1	112.4	80 79 78 77 76
15 16 17 18 19	285.9 284.5 283.1 281.5 279.9	81.6 86.5 91.5 96.4	286.9 285.5 284.0 282.5 280.8	81.9 86.8 91.8 96.7	287.8 286.5 285.0 283.4 281.8	82.1 87.1 92.1 97.0	288.8 287.4 285.9 284.4 282.7	82.4 87.4 92.4 97.3	289.8 288.4 286.9 285.3 283.7	82.7 87.7 92.7 97.7	384.5 382.5 380.4 378.2	103.5 110.2 117.0 123.6 130.2	480.6 478.1 475.5 472.8	1 37.8 1 4 6.2 1 5 4.5 1 6 2.8	75 74 73 72 71
20 21 22 23 24	278.1 276.3 274.4 272.5 270.4	106.1 110.9 115.7 120.4	277·3 275·4 273·4 271·3	106.4 111.3 116.0 120.8	278.2 276.3 274.3 272.2	106.8 111.6 116.4 121.2	279.1 277.2 275.2 273.2	107.2 112.0 116.8 121.6	280.1 278.2 276.2 274.1	102.6 107.5 112.4 117.2 122.0	373·4 370·9 368·2 365·4	143.4 149.8 156.3 162.7	466.8 463.8 460.2 456.8	179.2 187.3 195.4 203.4	70 69 68 67 66
25 26 27 28 29		129.8 134.4 139.0 143.5	266.9 264.6 262.2 259.8	130.2 134.8 139.4 144.0	267.8 265.5 263.1 260.6	130.6 135.3 139.9 144.5	268.7 266.4 264.0 261.5	131.1 135.7 140.4 145.0	269.6 267.3 264.9 262.4	126.8 131.5 136.2 140.8 145.4	359.5 356.4 353.1 349.8	175.4 181.6 187.8 193.9	449·4 445·5 441·5 437·3	219.2 227.0 234.7 242.4	63 62 61
30 31 32 33 34	253.7 251.0	152.5 156.9 161.2	254.6 251.9 249.1	153.0 157.4 161.8 166.1	255.4 252.7 249.9 247.1	153.5 157.9 162.3 166.6	256.3 253.6 250.8 247.9	154.0 158.4 162.8 167.2	257. 1 254.4 251.6 248.7	150.0 154. 5 159.0 163.4 167.8	342.9 339.2 335.5 331.6	206.0 211.9 217.8 223.7	428.6 424.0 419.3 414.5	257.5 265.0 272.3 279.6	60 59 58 57 56
35 36 37 38 39	239.5 236.4 233.3 230.0	178.1 182.2 186.3	240.3 237.2 234.0 230.8	174.6 178.7 182.9 186.9	24 1.1 238.0 234.8 231.6	175.2 179.3 183.5 187.5	241.9 238.8 235.6 232.4	175.7 179.9 184.1 188.2	242.7 239.6 236.4 233.1	172.1 176.3 180.5 184.7 188.8	323.6 319.4 315.2 310.9	235.1 240.7 246.3 251.7	404.5 399.3 394.0 388.6	293.9 300.9 307.8 314.7	55 54 53 52 51
42 43 44	223.4 220.0 216.5 212.9	194.2 198.1 201.9 205.6	224.1 220.7 217.2 213.6	194.8 198.7 202.6 206.3	224.9 221.5 217.9 214.4	195.5 199.4 203.2 207.0	225.7 222.2 218.7 215.1	196.2 200.1 203.9 207. 7	226.4 222.9 219.4 215.8	200.7 204.6 208.4	301.9 297.3 292.6 287.7	262.4 267.7 272.8 277.9	377·3 371·6 365·7 359·7	328.0 334.6 341.0 347.3	49 48 47 46
45										212.1					45
Course.	DEP.		DEP.	LAT. 297'	DEP.	298′	DEP.	299'	DEP.	300′	DEP.		DEP.	_	Course.

•	•	
7		

Total correction of the observed altitude of a Star or Planet.

· Star's	[C	H Correct		of th									:.]	Star's
Altitude	3 ^m	4 ^m	5 ^m	6 ^m	7 ^m	8 ^m	9 ^m	10^{m}	IIm	12 ^m	13 ^m	I4 ^m	15 ^m	Altitude
	10′	13'	16′	20'	23'	26′	30′	33′	36′	39'	43'	46′	49'	
8° 0' 10 20 30 40 50	9.8 9.6 9.5 9.4 9.3 9.2	10.3 10.1 10.0 9.9 9.8 9.7	10.7 10.5 10.4 10.3 10.2	11.1 10.9 10.8 10.7 10.6	/ 11.5 11.3 11.2 11.1 11.0	11.8 11.6 11.5 11.4 11.3	12.1 11.9 11.8 11.7 11.6	12.4 12.2 12.1 12.0 11.9 11.8	12.7 12.5 12.4 12.3 12.2 12.1	13.0 12.8 12.7 12.6 12.5 12.4	13.3 13.1 13.0 12.9 12.8 12.7	13.6 13.4 13.3 13.2. 13.1 13.0	13.8 13.6 13.5 13.4 13.3 13.2	8° 0 10 20 30 40 50
9 0 20 40 10 0 20	9.1 8.9 8.7 8.5 8.4	9.6 9.4 9.2 9.0 8.9	9.8 9.6 9.4 9.3	10.4 10.2 10.0 9.8 9.7	10.8 10.6 10.4 10.2 10.1	11.1 10.9 10.7 10.5 10.4	11.4 11.2 11.0 10.8 10.7	11.7 11.5 11.3 11.1	12.0 11.8 11.6 11.4 11.3	12.3 12.1 11.9 11.7 11.6	12.6 12.4 12.2 12.0 11.9	12.9 12.7 12.5 12.3 12.2	13.1 12.9 12.7 12.5 12.4	9 0 20 40 10 0 20
40 11 0 30 12 0 30	8.2 8.0 7.8 7.7 7.5	8.7 8.5 8.3 8.2 8.0	9.1 8.9 8.7 8.6 8.4	9.5 9.3 9.1 9.0 8.8	9.9 9.7 9.5 9.4 9.2	10.2 10.0 9.8 9.7 9.5	10.5 10.3 10.1 10.0 9.8	10.8 10.6 10.4 10.3 10.1	11.1 10.9 10.7 10.6 10.4	11.4 11.2 11.0 10.9 10.7	11.7 11.5 11.3 11.2	11.8 11.6 11.5 11.3	12.2. 12.0 11.8 11.7 11.5	40 11 0 30 12 0 30
13 0 30 14 0 30 15 0	7·3 7·2 7·0 6.9 6.8	7.8 7.7 7.5 7.4 7.3	8.2 8.1 7.9 7.8 7.7	8.6 8.5 8.3 8.2 8.1	9.0 8.9 8.7 8.6 8.5	9.3 9.2 9.0 8.9 8.8	9.6 9.5 9.3 9.2 9.1	9.9 9.8 9.6 9.5 9.4	10.2 10.1 9.9 9.8 9.7	10.5 10.4 10.2 10.1 10.0	10.8 10.7 10.5 10.4 10.3	11.1 11.0 10.8 10.7 10.6	11.3 11.2. 11.0 10.9 10.8	13 0 30 14 0 30 15 0
30 16 0 17 0 18 0 19 0	6.7 6.5 6.3 6.1 6.0	7.2 7.0 6.8 6.6 6.5	7.6 7.4 7.2 7.0 6.9	8.0 7.8 7.6 7.4 7.3	8.4 8.2 8.0 7.8 7.7	8.7 8.5 8.3 8.1 8.0	9.0 8.8 8.6 8.4 8.3	9·3 9·1 8·9 8·7 8.6	9.6 9.4 9.2 9.0 8.9	9·9 9·7 9·5 9·3 9·2	10.2 10.0 9.8 9.6 9.5	10.5 10.3 10.1 9-9 9.8	10.7 10.5 10.3 10.1	30 16 0 17 0 18 0 19 0
20 0 22 0 24 0 26 0 28 0	5.8 5.6 5.4 5.2 5.0	6.3 6.1 5.9 5.7 5.5	6.7 6.5 6.3 6.1 5.9	7.1 6.9 6.7 6.5 6.3	7·5 7·3 7·1 6.9 6.7	7.8 7.6 7.4 7.2 7.0	8.1 7.9 7.7 7.5 7.3	8.4 8.2 8.0 7.8 7.6	8.7 8.5 8.3 8.1 7.9	9.0 8.8 8.6 8.4 8.2	9·3 9·1 8·9 8·7 8·5	9.6 9.4 9.2 9.0 8.8	9.8 9.6 9.4 9.2 9.0	20 0 22 0 24 0 26 0 28 0
30 0 32 0 34 0 36 0 38 0	4.9 4.7 4.6 4.5 4.4	5.4 5.2 5.1 5.0 4.9	5.8 5.6 5.5 5.4 5.3	6.2 6.0 5.9 5.8 -5.7	6.6 6.4 6.3 6.2 6.1	6.9 6.7 6.6 6.5 6.4	7.2 7.0 6.9 6.8 6.7	7·5 7·3 7·2 7·1 7·0	7.8 7.6 7.5 7.4 7.3	8.1 7.9 7.8 7.7 7.6	8.4 8.2 8.1 8.0 7.9	8.7 8.5 8.4 8.3 8.2	8.9 8.7 8.6 8.5 8.4	30 0 32 0 34 0 36 0 38 0
40 0 45 0 50 0 55 0 60 0	4.3 4.2 4.0 3.9 3.7	4.8 4.7 4.5 4.4 4.2	5.2 5.1 4.9 4.8 4.6	5.6 5.5 5.3 5.2 5.0	6.0 5.9 5.7 5.6 5.4	6.3 6.2 6.0 5.9 5.7	6.6 6.5 6.3 6.2 6.0	6.9 6.8 6.6 6.5 6.3	7.2 7.1 6.9 6.8 6.6	7.5 7.4 7.2 7.1 6.9	7.8 7.7 7.5 7.4 7.2	8.1 8.0 7.8 7.7 7.5	8.3 8.2 8.0 7.9 7.7	40 0 45 0 50 0 55 0 60 0
65 0 70 0 75 0 80 0 85 0	3.6 3.5 3.4 3.4 3.3	4.1 4.0 3.9 3.9 3.8	4.5 4.4 4.3 4.3 4.2	4.9 4.8 4.7 4.7 4.6	5.3 5.2 5.1 5.1 5.0	5.6 5.5 5.4 5.4 5.3	5.9 5.8 5.7 5.7 5.6	6.2 6.1 6.0 6.0 5.9	6.5 6.4 6.3 6.3 6.2	6.8 6.7 6.6 6.6 6.5	7.1 7.0 6.9 6.9 6.8	7.4 7.3 7.2 7.2 7.1	7.6 7.5 7.4 7.4 7.3	65 o 70 o 75 o 80 o 85 o
90 0 Dip of Sea	3.2	3.7	4.1	4.5	4.9	5.2	5-5	5.8	6.1	6.4	6.7	7.0		{ 90 0 Horizon.

Correction	unet's itude			Pla		itude	Additional Correction to be added to						
for parallax to be	Pla	6′′	9"	12"	15"	18"	21"	24''	27′′	30′′	33''	Pla	Correction given for 15 ^m
subtracted from Star's Correction	10° 30 50 70 90	o'.I o.I o.0 o.0	1.°0 1.0 1.0 1.0	o'.2 o.2 o.I o.I	o'.2 o.2 o.2 o.1 o.0	o'.3 o.3 o.2 o.1	o'.3 o.3 o.2 o.1 o.0	o'.4 o.3 o.2 o.1	o'.4 o.4 o.3 o.2 o.0	o'.5 o.4 o.3 o.2 o.0	o'.5 o.5 o.4 o.2	10° 30 50 70 90	16 ^m or 52 /.2 17 ,, 56 .4 18 ,, 59 .6 19 ,, 62 .8 20 ,, 66 1.0

Mean Time		Conversion of Intervals of Mean Solar Time into Equivalent Intervals of Sidereal Time. [Correction to be added to the Interval of Mean Time.]																Mean Time																																																			
2	OI	n	4	ni	8	3m	r	12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		12 ^m		6m	2	o m	2	4 ^m	2	8m	3	2m	3	6m	40	om	4	4 ^m	4	8m	5	2m	5	6 m	M
h 0 1 2 3	0 2	s 0 10 20	0	s 1 11 20 30	m 0 0 0	s 1 11 21 31	m 0 0 0	s 2 12 22 32	m 0 0 0	s 3 12 22 32	m 0 0 0	s 3 13 23 33	0	s 4 14 24 34	m. 0 0 0	5 14 24 34		s 5 15 25 35	m 0 0 0 0	s 6 16 26 36	0	s 7 16 26 36		s 7 17 27 37	m 0 0 0 0	s 8 18 28 37	m 0 0 0 0	s 9 18 28 38	0	s 9 19 29	h 0 1 2																																						
4 5 6 7	0 4 0 5 I	39 19 39 9	O I I		o I I	41 51 0	0 1	41 51 1	I I	42 52 2 12	O I I	43 53 2 12	O I I	43 53 3 13	O I I	44 54 4 14	0 1	45 55 4 14	O I I	45 55 5	I	46 56 6 16	O I I	47 57 6 16		47 57 7 17	0 1	48 58 8 18	0 1 1	49 58 8 18	4 5 6 7																																						
8 9 10 11	1 3 1 4	9	I I	29 39 49	I I	30 40 50	I I	31 41 50		21 31 41 51	I	32 42 52	I	23 33 43 52	I I I I	23 33 43 53	I I I I	24 34 44 54	I I	25 35 45 54	I	25 35 45 55	I I I I	26 36 46 56		27 37 46 56	I I I I	27 37 47 57	1	28 38 48 58	8 9 10 11																																						
13 14 15	2 2 I 2 2	8	2 2 2	9 19 29	2 2 2	9 19 29	2 2	10 20 30	2 2 2	11 21 30	2 2	11 21 31	2 2	12 22 32 42	2 2 2	13 23 32 42	2 2 2	13 23 33	2	14 24 34 44	2 2 2	15 25 34 44	2 2 2	15	2	16 26 36	2 2 2	17 27 36 46	2 2	17 27 37	13 14 15																																						
17 18 19	2 4 2 5	8 7 7	2 3			49 59 9		50 59 9	2 3 3	50 0 10	3	51 1 11		52 I II	3	52 2 12		53 3 13	3	53 3 13	3 3	54 4 14	3 3	55 5 15 24	3	55 5 15	3 3	56 6 16	3	57 7 16	17 18 19																																						
21 22 23	3 2 3 3 3 4	7 7 7	3 3 3 3 3	28 38 47	3 3 3	28 38 48	3 3	29 39 49	3 3 3	30 39 49	3 3 3	30 40 50	3 3	31 41 51	3 3	32 41 51	3 3 3	32 42 52	3 3 3	33 43 53	3 3	34 43 53	3 3	34 44 54	3 3 3	35 45 55	3 3 3	36 45 55	3 3 3	36 46 56	21 22 23																																						
	This	tal	ble	giv	es	the	A	ccele	era	tion	<i>z</i> 0	$f \left\{ $	he	R.A	l o	n M	Iea . (S	n S side:	ola rea	r T	im	e. e at	G	reer	ıwi	ch l	Me	an i	No	on)																																							

Conversion of Time into Arc and vice-versa																	
	o h	rh	2h	3 ^h	4 ^h	5 ^h	6h	7 ^h	8 ^h	9 ^h	10h	IIh		om	Im	2 ^m	3 ^m
m 0 4 8	0 0 I 2	° 15 16	30 31 32	45 46 47	60 61 62	75 76 77	90 91 92	105 106 107	0 120 121 122	135 136 137	150 151 152	165 166 167	s 0 4 8	, o I 2	15 16 17	30 31 32	45 46 47
12 16 20	3 4 5	18 19 20	33 34 35	48 49 50	63 64 65	78 79 80	93 94 95	109	123 124 125	138 139 140	153 154 155	168 169 170	12 16 20	3 4 5	18 19 20	33 34 35	48 49 50
24 28 32	6 7 8	2I 22 23	36 37 38	51 52 53	66 6 7 68	81 82 83	96 97 98	111 112 113	126 127 128	141 142 143	156 157 158	171 172 173	24 28 32	6 7 8	21 22 23	36 37 38	51 52 53
36 40 44	9 10	24 25 26	39 40 41	54 55 56	69 70 71	84 85 86	99 100	114 115 116	129 130 131	144 145 146	159 160 161	174 175 176	36 40 44	9 10	24 25 26	39 40 41	54 55 56
48 52 56	12 13 14	27 28 29	42 43 44	57 58 59	72 73 74	87 88 89	102 103 104	117	132 133 134	147 148 149	162 163 164	177 178 179	48 52 56	13	27 28 29	42 43 44	57 58 59

Sidereal Time	F		E	version of quivalent orrection to b	Inte	rvals of	Mean S	Solar Ti	ne.		Sidereal Time				
Sid	o m	4 ^m	8 ^m	12 ^m 16 ^m	20 ^m	24 ^m 28 ^m	32 ^m 36 ^m	40 ^m 44 ^m	48 ^m 52	^m 56 ^m	Sid				
h 0 1 2	0 0 0 0 1 0 1 0 1 0 2 0 3 0 3 0 4 0 5 0 5 0 6 0 7 0 7 0 8 0 9 0 9 0 1 0 10 0 10 0 11 0 12 0 12 0														
4 5 6 7	1 0 10 0 10 0 11 0 12 0 12 0 13 0 14 0 14 0 15 0 16 0 16 0 17 0 18 0 18 0 19 1 2 0 20 0 20 0 21 0 22 0 23 0 24 0 24 0 25 0 26 0 26 0 27 0 28 0 28 0 29 2 3 0 29 0 30 0 31 0 31 0 32 0 33 0 33 0 34 0 35 0 35 0 36 0 37 0 37 0 38 0 39 3 4 0 39 0 40 0 41 0 41 0 42 0 43 0 43 0 44 0 45 0 45 0 45 0 46 0 47 0 47 0 48 0 48 4 5 0 49 0 50 0 50 0 51 0 52 0 52 0 53 0 54 0 54 0 55 0 56 0 56 0 57 0 58 0 58 5 6 0 59 1 0 1 0 1 1 1 2 1 2 1 3 1 4 1 4 1 5 1 6 1 6 1 7 1 7 1 8 6														
9 10 11	1 19 1 28 1 38 1 48	1 19 1 29 1 39 1 49	1 20 1 30 1 40 1 49	1 40 1 41	I 32 I I 42 I	I 23 I 23 I 33 I 42 I 43 I 52 I 53	I 24 I 25 I 34 I 34 I 44 I 44 I 53 I 54	1 25 1 26 1 35 1 36 1 45 1 46 1 55 1 55	1 36 1 1 1 46 1 4	27 I 28 37 I 38 47 I 47 57 I 57	9 10 11				
12 13 14 15	1 58 2 8 2 18 2 27	1 59 2 8 2 18 2 28	1 59 2 9 2 19 2 29	2 10 2 10 2 20 2 20	2 II 2 2 2I 2	2 2 2 3 2 12 2 12 2 22 2 22 2 31 2 32	2 3 2 4 2 13 2 14 2 23 2 24 2 33 2 33	2 5 2 5 2 14 2 15 2 24 2 25 2 34 2 35	2 25 2	6 2 7 16 2 17 26 2 27 36 2 37	12 13 14 15				
16 17 18 19	2 37 2 47 2 57 3 7	2 38 2 48 2 58 3 7	2 39 2 48 2 58 3 8	2 39 2 40 2 49 2 50 2 59 3 0 3 9 3 9	2 50 2	2 41 2 42 2 51 2 52 3 1 3 2 3 11 3 11	2 43 2 43 2 52 2 53 3 2 3 3 3 12 3 13	2 44 2 44 2 54 2 54 3 3 3 4 3 13 3 14	2 55 2 3	46 2 46 56 2 56 5 3 6 15 3 16	16 17 18 19				
20 21 22 23	3 17 3 26 3 36 3 46	3 17 3 27 3 37 3 47	3 18 3 28 3 38 3 47	3 19 3 19 3 28 3 29 3 38 3 39 3 48 3 49	3 30 3 3 40 3	3 21 3 21 3 30 3 31 3 40 3 41 3 50 3 51	3 22 3 22 3 32 3 32 3 41 3 42 3 51 3 52	3 23 3 24 3 33 3 34 3 43 3 43 3 53 3 53	3 34 3 3 44 3	25 3 26 35 3 36 45 3 45 55 3 55	20 21 22 23				
			This	table gives	the Reta	ardation of	Mean Solar	on Sidereal	Γime.						

			Cor	vers	sion	of 7	$\Gamma im \epsilon$	e int	o A	rc a	nd v	vice-	ver	sa.			
	12h	13 ^h	14 ^h	15 ^h	16 ^h	17 ^h	18h	19 ^h	20 ^h	21 ^h	22 ^h	23 ^h		o ^m	1 ^m	2 ^m	3 ^m
m 0 4 8 12 16 20 24 28 32 36	m																
40 44	190	204 205 206	219 220 221	234 235 236	249 250 251	264 265 266	279 280 281	294 295 296	310	324 325 326	339 340 341	354 355 356	36 40 44	9 10 11	24 25 26	39 40 41	54 55 56
48 52 56	192 193 194	207 208 209	222 223 224	237 238 239	252 253 254	267 268 269	282 283 284	297 298 299	312 313 314	327 328 329	342 343 344	357 358 359	48 52 56	12 13 14	27 28 29	42 43 44	57 58 59

O Tota	al co	orrec	tion	of t	he o	bser	ved	altitı	ıde o	of the	Su	n's l	lowe	r limb.
Sun's										res an Sun's le				6. 1
Altitude	3 ^m	4 ^m	5 ^m	6m	7 ^m	8m	9 ^m	10 ^m	II ^m	-		14 ^m	15 ^m	Sun's
7 Intitude	10'	13'	16'	20'	23'	26'	30'	33'	36′		43'	46'	49'	Altitude
8° 0' 10 20 30 40 50	6.4 6.5 6.6 6.7 6.9 7.0	5.9 6.0 6.1 6.2 6.4 6.5	5.5 5.6 5.7 5.8 6.0 6.1	5.1 5.2 5.3 5.4 5.6 5.7	4.7 4.8 4.9 5.0 5.2 5.3		4.1 4.2 4.3 4.4 4.6 4.7	3.8 3.9 4.0 4.1 4.3 4.4	3.5 3.6 3.7 3.8 4.0 4.1	3.2 3.3 3.4 3.5 3.7 3.8	2.9 3.0 3.1 3.2 3.4 3.5	2.6 2.7 2.8 2.9 3.1 3.2	2.4 2.5 2.6 2.7 2.9 3.0	8° 0' 10 20 30 40 50
9 0 20 40 10 0 20	7·1 7·3 7·5 7·6 7·8	6.6 6.8 7.0 7.1 7.3	6.2 6.4 6.6 6.7 6.9	5.8 6.0 6.2 6.3 6.5	5.4 5.6 5.8 5.9 6.1	5.1 5.3 5.5 5.6 5.8	4.8 5.0 5.2 5.3 5.5	4.5 4.7 4.9 5.0 5.2	4.2 4.4 4.6 4.7 4.9	3.9 4.1 4.3 4.4 4.6	3.6 3.8 4.0 4.1 4.3	3·3 3·5 3·7 3.8 4·0	3.1 3.3 3.5 3.6 3.8	9 0 20 40 10 0 20
40 11 0 30 12 0 30	8.0 8.1 8.3 8.5 8.7	7.5 7.6 7.8 8.0 8.2	7.1 7.2 7.4 7.6 7.8	6.7 6.8 7.0 7.2 7.4	6.3 6.4 6.6 6.8 7.0	6.0 6.1 6.3 6.5 6.7	5.7 5.8 6.0 6.2 6.4	5.4 5.5 5.7 5.9 6.1	5.1 5.2 5.4 5.6 5.8	4.8 4.9 5.1 5.3 5.5	4.5 4.6 4.8 5.0 5.2	4.2 4.3 4.5 4.7 4.9	4.0 4.1 4.3 4.5 4.7	40 11 0 30 12 0 30
13 0 30 14 0 30 15 0	8.8 9.0 9.1 9.2 9.3	8.3 8.5 8.6 8.7 8.8	7.9 8.1 8.2 8.3 8.4	7.5 7.7 7.8 7.9 8.0	7·1 7·3 7·4 7·5 7·6	6.8 7.0 7.1 7.2 7.3	6.5 6.7 6.8 6.9 7.0	6.2 6.4 6.5 6.6 6.7	5.9 6.1 6.2 6.3 6.4	5.6 5.8 5.9 6.0 6.1	5·3 5·5 5.6 5·7 5.8	5.0 5.2 5.3 5.4 5.5	4.8 5.0 5.1 5.2 5.3	13 0 30 14 0 30 15 0
19 0	9.4 9.6 9.8 10.0	8.9 9.1 9.3 9.5 9.7	8.5 8.7 8.9 9.1 9.3	8.1 8.3 8.5 8.7 8.9	7·7 7·9 8.1 8.3 8.5	7.4 7.6 7.8 8.0 8.2	7.1 7.3 7.5 7.7 7.9	6.8 7.0 7.2 7.4 7.6	6.5 6.7 6.9 7.1 7.3	6.2 6.4 6.6 6.8 7.0	5.9 6.1 6.3 6.5 6.7	5.6 5.8 6.0 6.2 6.4	5.4 5.6 5.8 6.0 6.2	30 16 0 17 0 18 0 19 0
22 0 24 0 26 0	10.3 10.6 10.8 10.9	9.8 10.1 10.3 10.4 10.6	9.4 9.7 9.9 10.0	9.0 9.3 9.5 9.6 9.8	8.6 8.9 9.1 9.2 9.4	8.3 8.6 8.8 8.9 9.1	8.0 8.3 8.5 8.6 8.8	7.7 8.0 8.2 8.3 8.5	7·4 7·7 7·9 8.0 8.2	7.1 7.4 7.6 7.7 7.9	6.8 7.1 7.3 7.4 7.6	6.5 6.8 7.0 7.1 7.3	6.3 6.6 6.8 6.9 7.1	20 0 22 0 24 0 26 0 28 0
32 0 34 0 36 0	11.3 11.4 11.5 11.6	10.8 10.9 11.0 11.1 11.2	10.4 10.5 10.6 10.7 10.8	10.0 10.1 10.2 10.3 10.4	9.6 9.7 9.8 9.9	9·3 9·4 9·5 9.6 9·7	9.0 9.1 9.2 9.3 9.4	8.7 8.8 8.9 9.0 9.1	8.4 8.5 8.6 8.7 8.8	8. I 8. 2 8. 3 8. 4 8. 5	7.8 7.9 8.0 8.1 8.2	7.5 7.6 7.7 7.8 7.9	7·3 7·4 7·5 7·6 7·7	30 0 32 0 34 0 36 0 38 0
45 0 50 0 55 0	11.8 11.9 12.1 12.2 12.3	11.3 11.4 11.6 11.7 11.8	10.9 11.0 11.2 11.3 11.4	10.5 10.6 10.8 10.9	10.1 10.2 10.4 10.5 10.6	9.8 9.9 10.1 10.2 10.3	9.5 9.6 9.8 9.9	9.2 9.3 9.5 9.6 9.7	8.9 9.0 9.2 9.3 9.4	8.6 8.7 8.9 9.0 9.1	8.3 8.4 8.6 8.7 8.8	8.0 8.1 8.3 8.4 8.5	7.8 7.9 8.1 8.2 8.3	40 0 45 0 50 0 55 0 60 0
70 0 75 0 80 0	12.4 12.5 12.6 12.7 12.7	II.9 I2.0 I2.I I2.2 I2.2	11.5 11.6 11.7 11.8 11.8	11.1 11.2 11.3 11.4 11.4	10.7 10.8 10.9 11.0	10.6	10.1 10.2 10.3 10.4 10.4	9.8 9.9 10.0 10.1	9.5 9.6 9.7 9.8 9.8	9.2 9.3 9.4 9.5 9.5	8.9 9.0 9.1 9.2 9.2	8.6 8.7 8.8 8.9 8.9	8.4 8.5 8.6 8.7 8.7	65 o 70 o 75 o 80 o 85 o
90 0 Distance of	3.6	12.3	4.7	11.5	11.1 5.6	6.0	10.5	10.2	9.9 7.0	9.6 7·3	9.3	9.0 7.9	8.8	90 0 Sea Horizon
Addition Correcti for Varia of Sun Semidiam	nal ion ition	Jan + 0'	. 1 Feb	о. т М	Ī	April 1			July 1	Aug. 1	i	ı Oc	==	o'.1 Dec. 1
Addition		16	m 17	7 ^m I	8 ^m	19 ^m	20 ^m	21 ^m	22 ^m	23 ^m	24 ⁿ			6m 27m
Correction be subtracte Correct	d from	n 52	5	6′ !	59'	62'	66′	62'	72'	76′	79′	-		85′ 89′
given for I		-0'	.2 - 0	0'.4 -	0′.6	-0'.8	- 1'.0	- 1'.2	- 1'.4	- 1'.6	- I'.	8 - 1	./9 -	2'.0 - 2'.1

⊙ Tot	al co	orrec	tion	of th	ie o	bserv	red a	eltitu	de o	f the	Su	n's ı	ıppe	r limb.
Sun's	[Co		0			abov							nb.]	Sun's
Altitude	3 ^m	4 ^m	5 ^m	6 ^m	7 ^m	8 ^m	9 ^m	10 ^m	IIm	12 ^m	13 ^m	14 ^m	15 ^m	Altitude
	10′	13'	16'	20′	23′	26′	30′	33′	36′	39′	43′	46′	49'	
8° 0' 10 20 30 40 50	25.6 25.5 25.4 25.3 25.1 25.0	26.1 26.0 25.9 25.8 25.6 25.5	26.5 26.4 26.3 26.2 26.0 25.9	26.9 26.8 26.7 26.6 26.4 26.3	27.3 27.2 27.1 27.0 26.8 26.7	27.6 27.5 27.4 27.3 27.1 27.0	27.9 27.8 27.7 27.6 27.4 27.3	28.2 28.1 28.0 27.9 27.7 27.6	28.5 28.4 28.3 28.2 28.0 27.9	28.8 28.7 28.6 28.5 28.3 28.2	29.1 29.0 28.9 28.8 28.6 28.5	29.4 29.3 29.2 29.1 28.9 28.8	29.6 29.5 29.4 29.3 29.1 29.0	8° 0′ 10 20 30 40 50
9 0 20 40 10 0 20	24.9 24.7 24.5 24.4 24.2	25.4 25.2 25.0 24.9 24.7	25.8 25.6 25.4 25.3 25.1	26.2 26.0 25.8 25.7 25.5	26.6 26.4 26.2 26.1 25.9	26.9 26.7 26.5 26.4 26.2	27.2 27.0 26.8 26.7 26.5	27.5 27.3 27.1 27.0 26.8	27.8 27.6 27.4 27.3 27.1	28.I 27.9 27.7 27.6 27.4	28.4 28.2 28.0 27.9 27.7	28.7 28.5 28.3 28.2 28.0	28.9 28.7 28.5 28.4 28.2	9 0 20 40 10 0 20
40 11 0 30 12 0 30	24.0 23.9 23.7 23.5 23.3	24.5 24.4 24.2 24.0 23.8	24.9 24.8 24.6 24.4 24.2	25.3 25.2 25.0 24.8 24.6	25.7 25.6 25.4 25.2 25.0	26.0 25.9 25.7 25.5 25.3	26.3 26.2 26.0 25.8 25.6	26.6 26.5 26.3 26.1 25.9	26.9 26.8 26.6 26.4 26.2	27.2 27.1 26.9 26.7 26.5	27.5 27.4 27.2 27.0 26.8	27.8 27.7 27.5 27.3 27.1	28.0 27.9 27.7 27.5 27.3	40 11 0 30 12 0 30
13 0 30 14 0 30 15 0	23.2 23.0 22.9 22.8 22.7	23.7 23.5 23.4 23.3 23.2	24.1 23.9 23.8 23.7 23.6	24.5 24.3 24.2 24.1 24.0	24.9 24.7 24.6 24.5 24.4	25.2 25.0 24.9 24.8 24.7	25.5 25.3 25.2 25.1 25.0	25.8 25.6 25.5 25.4 25.3	26.1 25.9 25.8 25.7 25.6	26.4 26.2 26.1 26.0 25.9	26.7 26.5 26.4 26.3 26.2	27.0 26.8 26.7 26.6 26.5	27.2 27.0 26.9 26.8 26.7	13 0 30 14 0 30 15 0
30 16 0 17 0 18 0 19 0	22.6 22.4 22.2 22.0 21.8	23.1 22.9 22.7 22.5 22.3	23.5 23.3 23.1 22.9 22.7	23.9 23.7 23.5 23.3 23.1	24.3 24.1 23.9 23.7 23.5	24.6 24.4 24.2 24.0 23.8	24.9 24.7 24.5 24.3 24.1	25.2 25.0 24.8 24.6 24.4	25.5 25.3 25.1 24.9 24.7	25.8 25.6 25.4 25.2 25.0	26.1 25.9 25.7 25.5 25.3	26.4 26.2 26.0 25.8 25.6	26.6 26.4 26.2 26.0 25.8	30 16 0 17 0 18 0 19 0
20 0 22 0 24 0 26 0 28 0	21.7 21.5 21.3 21.1 20.9	22.2 22.0 21.8 21.6 21.4	22.6 22.4 22.2 22.0 21.8	23.0 22.8 22.6 22.4 22.2	23.4 23.2 23.0 22.8 22.6	23.7 23.5 23.3 23.1 22.9	24.0 23.8 23.6 23.4 23.2	24.3 24.1 23.9 23.7 23.5	24.6 24.4 24.2 24.0 23.8	24.9 24.7 24.5 24.3 24.1	25.2 25.0 24.8 24.6 24.4	25.5 25.3 25.1 24.9 24.7	25.7 25.5 25.3 25.1 24.9	20 0 22 0 24 0 26 0 28 0
30 0 32 0 34 0 36 0 38 0	20.7 20.6 20.5 20.4 20.3	21.2 21.1 21.0 20.9 20.8	21.6 21.5 21.4 21.3 21.2	22.0 21.9 21.8 21.7 21.6	22.4 22.3 22.2 22.1 22.0	22.7 22.6 22.5 22.4 22.3	23.0 22.9 22.8 22.7 22.6	23.3 23.2 23.1 23.0 22.9	23.6 23.5 23.4 23.3 23.2	23.9 23.8 23.7 23.6 23.5	24.2 24.1 24.0 23.9 23.8	24.5 24.4 24.3 24.2 24.1	24.7 24.6 24.5 24.4 24.3	30 0 32 0 34 0 36 0 38 0
40 0 45 0 50 0 55 0 60 0	20.2 20.1 19.9 19.8 19.7	20.7 20.6 20.4 20.3 20.2	21.1 21.0 20.8 20.7 20.6	21.5 21.4 21.2 21.1 21.0	21.9 21.8 21.6 21.5 21.4	22.2 22.1 21.9 21.8 21.7	22.5 22.4 22.2 22.1 22.0	22.8 22.7 22.5 22.4 22.3	23.I 23.0 22.8 22.7 22.6	23.4 23.3 23.1 23.0 22.9	23.7 23.6 23.4 23.3 23.2	24.0 23.9 23.7 23.6 23.5	24.2 24.1 23.9 23.8 23.7	40 0 45 0 50 0 55 0 60 0
65 0 70 0 75 0 80 0 85 0	19.6 19.5 19.4 19.3	20.1 20.0 19.9 19.8 19.8	20.5 20.4 20.3 20.2 20.2	20.9 20.8 20.7 20.6 20.6	21.3 21.2 21.1 21.0 21.0	3	21.9 21.8 21.7 21.6 21.6	22.2 22.1 22.0 21.9 21.9	22.5 22.4 22.3 22.2 22.2	22.8 22.7 22.6 22.5 22.5	23.I 23.0 22.9 22.8 22.8	23.4 23.3 23.2 23.1 23.1	23.6 23.5 23.4 23.3 23.3	65 0 70 0 75 0 80 0 85 0
90 0 Distance of	19.2 3.6	19.7 4.2	20.1 4·7	20.5 5.2	20.9 5.6	6.0	6.3	21.8 6.7	7.0	7:3	^{22.} 7 7.6	7.9	23.2 8.1	90 0 Sea Horizon
Additi Correct for Varion of Su Semidia	tion iation in's	Jan	_		o'.2	April 1		June 1 +0'.2	July 1	Aug. +0'.	Sept 2 +0	-	et. 1 N	ov. I Dec. I
Additi Correct		16			8 ^m	19 ^m	20 ^m	2I ^m	22 ^m	23 ^m				26 ^m 27 ^m
be add Correct given fo	ed to	+0			59' o'.6	62' + o'.8	66′ + 1′.0	69' + 1'.2	72' + 1'.4	76' + 1'.	=			85' 89' 2'.0 +2'.1

Total correction of the observed altitude of the Moon's lower limb.

itude.		[Cor					oove t								tude.	
Moon's Altitude.			Ho	rizont	al Se	midia	amete	r fron	ı Naı	ıtical	Alma	inac.			Moon's Altitude.	
Moor		4′				5′					1	6′			Moon	
	40′′	50"	0"	10"	20"	30"	40"	50"	0"	10"	20"	30"	40"	50"		
8° 9	57.0 57.6	57.8 58.3	58.6 59.1	59.3 59.8	60.1 60.6	60.9 61.4	61.7 62.2	62.4 62.9	63.2 63.7	64.0 64.5	64.7 65.3	65.5 66.1	66.3 66.8	67.1 67.6	8° 9	
10 11 12 13	58.c 58.3 58.5 58.6	58.8 59.0 59.3 59.4	59.5 59.8 60.0 60.1	60.3 60.6 60.8 60.9	61.0 61.3 61.5 61.6	61.8 62.1 62.3 62.4	62.6 62.9 63.1 63.2	63.3 63.6 63.8 63.9	64.1 64.3 64.6 64.7	64.9 65.2 65.4 65.5	65.6 65.9 66.1 66.2	66.4 66.7 66.9 67.0	67.2 67.5 67.7 67.8	68.0 68.2 68.4 68.5	10 11 12 13	
14 15 16 17	58.7 58.7 58.7 58.6	59·5 59·5 59·5 59·4	60.2 60.2 60.1	61.0 61.0 61.0 60.9	61.7 61.7 61.7 61.6	62.5 62.5 62.5 62.4	63.3 63.2 63.1	64.0 64.0 63.9	64.8 64.8 64.7 64.6	65.6 65.5 65.5 65.4	66.3 66.2 66.1	67.0 67.1 67.0 66.9	67.8 67.8 67.7 67.6	68.6 68.6 68.5 68.4	14 15 16 17	
18 19 20	58.5 59.3 60.0 60.8 61.5 62.3 63.0 63.8 64.5 65.3 66.0 66.8 67.5 68.2 58.4 59.1 59.9 60.6 61.3 62.1 62.9 63.6 64.4 65.1 65.8 66.6 67.3 68.1 58.2 59.0 59.7 60.5 61.2 61.9 62.7 63.4 64.2 64.9 65.6 66.4 67.1 67.9 58.0 58.8 59.5 60.3 61.0 61.7 62.5 63.2 63.9 64.7 65.4 66.1 66.9 67.6 57.8 58.6 59.3 60.0 60.7 61.5 62.2 63.0 63.7 64.4 65.1 65.9 66.6 67.4															
21 22 23 24	58.0 \$8.8 \$59.5 \$60.3 \$61.0 \$61.7 \$62.5 \$63.2 \$63.9 \$64.7 \$65.4 \$61.1 \$60.9 \$67.6 \$7.8 \$8.6 \$59.3 \$60.0 \$60.7 \$61.5 \$62.2 \$63.0 \$63.7 \$64.4 \$65.1 \$65.9 \$66.6 \$67.4 \$7.6 \$8.3 \$59.0 \$59.7 \$60.5 \$61.2 \$61.9 \$62.7 \$63.4 \$64.1 \$64.8 \$65.6 \$66.3 \$67.0 \$7.7 \$8.7 \$59.5 \$60.2 \$60.9 \$61.6 \$62.4 \$63.1 \$63.8 \$64.5 \$65.3 \$66.0 \$66.7 \$7.0 \$7.7 \$8.4 \$59.2 \$59.9 \$60.6 \$61.3 \$62.0 \$62.8 \$63.5 \$64.2 \$64.9 \$65.7 \$66.4 \$6.7 \$7.4 \$58.1 \$58.9 \$59.6 \$60.3 \$61.0 \$61.7 \$62.4 \$63.2 \$63.9 \$64.6 \$65.3 \$66.0															
25 26 27 28 29		$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
30 31 32 33 34	55.2 54.8 54.4 54.0 53.5	55.5 55.1 54.6 54.2	56.6 56.2 55.8 55.3 54.8	57·3 56.9 56.5 56.0 55·5	58.0 57.6 57.1 56.7 56.2	58.7 58.3 57.8 57.4 56.9	59.4 59.0 58.5 58.0 57.5	60.1 59.6 59.2 58.7 58.2	60.8 6c.3 59.9 59.4 58.9	61.5 61.0 60.6 60.1 59.6	62.2 61.7 61.3 60.7 60.2	62.9 62.4 61.9 61.4 60.9	63.6 63.1 62.6 62.1 61.6	64.3 63.8 63.3 62.8 62.2	30 31 32 33 34	
35 36 37 38 39	53.0 52.5 52.0 51.5 51.0	53.7 53.2 52.6 52.1 51.6	54.4 53.9 53.3 52.8 52.2	55.0 54.5 54.0 53.4 52.9	55.7 55.1 54.6 54.1 53.5	56.4 55.8 55.3 54.7 54.2	57.0 56.5 55.9 55.4 54.8	57.7 57.2 56.6 56.0 55.4	58.4 57.8 57.3 56.7 56.1	59.0 58.5 57.9 57.3 56.7	59.7 59.1 58.6 58.0 57.4	60.4 59.8 59.2 58.6 58.0	61.0 60.5 59.9 59.3 58.7	61.7 61.1 60.5 59.9 59.3	35 36 37 38 39	
40 41 42 43 44	50.4 49.8 49.2 48.6 48.0	51.0 50.4 49.9 49.3 48.7	51.7 51.1 50.5 49.9 49.3	52.3 51.7 51.1 50.5 49.9	52.9 52.3 51.7 51.1 50.4	53.6 53.0 52.4 51.7 51.1	54.2 53.6 53.0 52.3 51.7	54.8 54.2 53.6 52.9 52.3	55.5 54.8 54.2 53.5 52.9	56.1 55.5 54.8 54.2 53.5	56.8 56.1 55.4 54.8 54.1	57.4 56.7 56.1 55.4 54.7	58.0 57.4 56.7 56.0 55.3	58.7 58.0 57.3 56.6 55.9	40 41 42 43 44	
45 46 47 48	47.4 46.8 46.1 45.5	48.0 47.4 46.7 46.1	48.6 48.0 47.3 46.6	49.2 48.6 47.9 47.2	49.8 49.1 48.5 47.8		51.0 50.3 49.6 48.9				53.4 52.7 52.0 51.2	54.0 53.3 52.6 51.8	54.6 53.9 53.1 52.4	55.2 54.5 53.7 53.0	45 46 47 48	
49	44.8		45-9	46.5	47.1	<u> </u>	48.2		49-3		50.5	51.1		52.2	1	
Height of eye		-	5 ^m	7 ^m	8m 26'			6' 39			15 ^m	16 th	56'		62' 66'	
Addition			+0.4	-0.4	-0.7		_	r.6 - 1		-	,	- 2.9			3.5 -3.7	
	Obs	ervat	ion.	For	subi	ract t	he Mo	on's I	Diame	ter fra	m val	ues g	iven f	or <u>(</u> .		

a	Total	correction	of	the	obs	erved	altitude	of	the	Moon's
				10	wer	limb.				

tude.			Heig ection													1	tude.
Moon's Altitude.			Hor	izont	al Se	midi	amet	er fr	om	Naut	lical .	Almai	nac.				Moon's Altitude.
Moon	14		-11			5′	1/		-"	o" l	10"	20"		1 40"	50′		Mooi
	40″	50"	o''	10"	20"	30"		= =	0"				30"	40"	50		
49°	44.8	45.4	45.9	46.5	47.1	47.6		١.	- 1	49.3	49.9	50.5	51.1	51.6	1		49°
50 51 52 53 54	44. I 43.4 42.7 42.0 41.3	44.7 44.0 43.3 42.5 41.8	45·3 44·5 43.8 43·1 42·3	45.8 45.1 44.3 43.6 42.8	46.4 45.6 44.9 44.1 43.4	46.9 46.2 45.5 44.7 43.9	46.	7 42	6. ₅	48.6 47.8 47.1 46.3 45.5	49.2 48.4 47.6 46.8 46.0	49.7 48.9 48.1 47.3 46.5	50.3 49.5 48.7 47.9 47.1	50.9 50.0 49.2 48.4 47.6	50.6 49.8 48.6	8	50 51 52 53 54
55 56 57 58 59	40.5 39.8 39.0 38.3 37.5	41.0 40.3 39.5 38.8 38.0	41.6 40.8 40.0 39.2 38.4	42.1 41.3 40.5 39.7 38.9	42.6 41.8 41.0 40.2 39.4	43.1 42.3 41.5 40.7 39.9	42.0	3 43 5 43 2 43	3·3 2·5	44.7 43.9 43.0 42.2 41.3	45.2 44.4 43.5 42.7 41.8	45.7 44.9 44.0 43.2 42.3	46.2 45.4 44.5 43.7 42.8	46.7 45.9 45.0 44.2 43.3	46.45.	5	55 56 57 58 59
60 61 62 63 64	36.7 37.2 37.6 38.1 38.6 39.1 39.5 40.0 40.5 41.0 41.4 41.9 42.4 42.8 35.9 36.4 36.8 37.3 37.8 38.2 38.7 39.1 39.6 40.1 40.5 41.0 41.5 41.9 35.1 35.6 36.0 36.5 36.9 37.4 37.8 38.3 38.7 39.2 39.6 40.1 40.6 41.0 34.3 34.7 35.2 35.6 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.2 39.6 40.1 40.6 41.0 33.5 33.9 34.3 34.8 35.2 35.7 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.2 39.6 40.1 33.5 33.9 34.3 34.8 35.2 35.7 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.2 39.6 40.1 33.5 33.9 34.3 34.8 35.2 35.7 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.1 32.7 33.1 33.5 33.9 34.4 34.8 35.2 35.7 36.1 36.5 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.1															3	60 61 62 63 64
65 66 67 68 69	32.7 31.8 31.0 30.2 29.3	35.1 35.6 36.0 36.5 36.9 37.4 37.8 38.3 38.7 39.2 39.6 40.1 40.6 41.0 34.3 34.7 35.2 35.6 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.2 39.6 40.1 33.5 33.9 34.3 34.8 35.2 35.7 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.1 32.7 33.1 33.5 33.9 34.4 34.8 35.2 35.6 36.1 36.5 37.0 37.4 37.8 38.3 38.7 39.1 32.7 33.1 33.5 33.9 34.4 34.8 35.2 35.6 36.1 36.5 36.9 37.3 37.8 38.2 31.8 32.2 32.6 33.1 33.5 33.9 34.3 34.7 35.1 35.6 36.0 36.4 36.8 37.2 31.0 31.4 31.8 32.2 32.6 33.0 33.4 33.8 34.2 34.6 35.0 35.5 35.9 36.3 30.2 30.2 30.5 30.9 31.3 31.7 32.1 32.5 32.9 33.3 33.7 34.1 34.5 34.9 35.3															65 66 67 68 69
70 71 72 73 74	28.4 27.5 26.7 25.8 24.9	28.8 27.9 27.0 26.1 25.3	29.2 28.3 27.4 26.5 25.6	29.6 28.6 27.7 26.8 25.9	29.9 29.0 28.1 27.2 26.3	30.3 29.4 28.5 27.5 26.6	29. 28. 27.	7 30	1.0 0.1 9.2 8.2 7.3	31.4 30.5 29.5 28.6 27.6	31.8 30.9 29.9 28.9 27.9	32.2 31.2 30.2 29.3 28.3	32.6 31.6 30.6 29.6 28.6	32.9 31.9 30.9 29.9 28.9	32. 31. 30.	3 3 3	70 71 72 73 74
75 76 77 78 79	24.0 23.1 22.3 21.4 20.4	24.4 23.5 22.6 21.7 20.7	24.7 23.8 22.9 21.9 21.0	25.0 24.1 23.2 22.2 21.3	25.3 24.4 23.5 22.5 21.6	25.7 24.7 23.8 22.8 21.9	25. 24. 23.	0 2 I 2 I 2	6.3 5.3 4.4 3.4 2.4	26.6 25.7 24.7 23.7 22.7	27.0 26.0 25.0 24.0 23.0	27.3 26.3 25.3 24.3 23.3	27.6 26.6 25.6 24.6 23.6	27.9 26.9 25.9 24.9 23.9	27. 26. 25.	2 2 2	75 76 77 78 79
80 81 82 83 84	19.5 18.6 17.7 16.8 15.9	19.8 18.9 18.0 17.0 16.1	20.1 19.2 18.2 17.3 16.4	20.4 19.4 18.5 17.5 16.6	20.6 19.7 18.7 17.8 16.8	20.0 20.0 19.0 18.0	20.	2 2 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	1.5 0.5 9.5 8.5	21.7 20.7 19.8 18.8 17.8	22.0 21.0 20.0 19.0 18.0	22.3 21.3 20.3 19.2 18.2	22.6 21.5 20.5 19.5 18.5	22.8 21.8 20.8 19.7 18.7	22.	0	80 81 82 83 84
85 86 87 88 89	15.0 14.1 13.1 12.2 11.3	15.2 14.3 13.3 12.4 11.5	15.4 14.5 13.5 12.6 11.7	15.6 14.7 13.7 12.8 11.8	15.9 14.9 13.9 13.0		15. 14. 13.	3 I 3 I 4 I	- 1	16.8 15.8 14.7 13.7 12.7		-	17.4 16.4 15.3 14.3 13.3	17.6 16.6 15.5 14.5	16. 15. 14. 13.	7 7 6	85 86 87 88 89
Height	10.4 3 ^m		10.7	10.9	8m	9 ^m	IOm	4 I		_	11.9		12.2	12.4	12.	6 19 ^m	90 20 ^m
of eye	10	13'	16'	23′	26′	30′	33′	36′	39	43	46'	49'	52	56′	59′	62'	66′
Addition	al + i.	3 +0.8	+44	-0.4	- ó· 7	- i.o	- i.3	- i.6	- i.	9 - 2.	2 - 2.5	- 2.7	- 2.9	- ź. r	- 3.3	- 3.5	-3.7
	Ot	serva	tion.	For	(su	btrac	the	Moo	n's l	Diam	eter fi	rom va	alues	given	for (<u>[</u>	

49

60'					Nu	mbe	er of	M	inut	es o	f b					Δ
Δ	I'	2'	3'	4'	5′	6′	7′	8′	9′	10'	II'	12'	13'	14'	15'	60′
1.00 1.02 1.03 1.05 1.07	1.0 1.0 1.0 1.0	2.0 2.0 2.0 1.9	3.0 3.0 2.9 2.9 2.8	4.0 4.0 3.9 3.8 3.8	5.0 5.0 4.9 4.8 4.7	6.0 5.9 5.8 5.7 5.6	7.0 6.9 6.8 6.7 6.6	8.0 7.9 7.7 7.6 7.4	9.0 8.9 8.7 8.6 8.4	9.8 9.7 9.5 9.3	11.0 10.8 10.6 10.5	11.8 11.6 11.4	13.0 12.8 12.6 12.3 12.1	14.0 13.8 13.5 13.3 13.1	15.0 14.7 14.5 14.2	1.00 0.98 •97 •95 •93
1.09 1.11 1.13 1.15 1.18	0.9 .9 .9	1.9 1.8 1.8 1.7	2.8 2.7 2.7 2.6 2.6	3.7 3.6 3.6 3.5 3.4	4.6 4.5 4.5 4.4 4.3	5·5 5·4 5·3 5·2 5·1	6.5 6.3 6.2 6.1 6.0	7·3 7·2 7·1 6.9 6.8	8.3 8.1 8.0 7.8 7.7	9.2 9.0 8.8 8.7 8.5	9.9 9.7 9.5 9.4	10.8 10.6 10.4	11.9 11.7 11.5 11.2 11.0	12.6 12.4 12.1	13.7 13.5 13.2 13.0	0.92 .90 .88 .87 .85
1.20 1.22 1.25 1.28 1.30	0.8 .8 .8 .8	1.7 1.6 1.6 1.6	2.5 2.5 2.4 2.4 2.3	3·4 3·3 3·2 3·2 3.1	4.2 4.1 4.0 4.0 3.9	5.0 4.9 4.8 4.7 4.6	5·9 5·7 5.6 5·5 5·4	6.7 6.5 6.4 6.3 6.1	7·5 7·4 7·2 7·1 6.9	8.3 8.2 8.0 7.8 7.7	9.2 9.0 8.8 8.6 8.4	9.8	10.4	11.2	12.5 12.2 12.0 11.7 11.5	0.83 .82 .80 .78 .77
1.33 1.36 1.40 1.43 1.46	0.8 ·7 ·7 ·7 ·7	1.5 1.5 1.4 1.4	2.3 2.2 2.2 2.1 2.1	3.0 3.0 2.9 2.8 2.8	3.8 3.7 3.6 3.5 3.5	4·5 4·4 4·3 4·2 4·1	5.3 5.2 5.0 4.9 4.8	6.0 5.9 5.7 5.6 5.5	6.8 6.6 6.5 6.3 6.2	7·5 7·3 7·2 7·0 6.8	8.3 8.1 7.9 7.7 7.5	9.0 8.8 8.6 8.4 8.2	9.1 8.9	9.8	11.2 11.0 10.7 10.5 10.2	0.75 •73 •72 •70 •68
1.50 1.54 1.58 1.62 1.67	0.7 .7 .6 .6	1.3 1.3 1.2 1.2	2.0 2.0 1.9 1.9	2.7 2.6 2.6 2.5 2.4	3.4 3.3 3.2 3.1 3.0	4.0 3.9 3.8 3.7 3.6	4.7 4.6 4.5 4.3 4.2	5·3 5·2 5·1 4·9 4.8	6.0 5.9 5.7 5.6 5.4	6.7 6.5 6.3 6.2 6.0	7·3 7·2 7·0 6.8 6.6	8.0 7.8 7.6 7.4 7.2	8.7 8.4 8.2 8.0 7.8	8.9 8.6 8.4	9.7 9.5 9.2 9.0	0.67 .65 .63 .62 .60
1.71 1.76 1.82 1.88 1.94	0.6 .6 .6 .5	I.2 I.I I.I I.I	1.8 1.7 1.7 1.6 1.6	2.4 2.3 2.2 2.2 2.1	2.9 2.9 2.8 2.7 2.6	3·5 3·4 3·3 3·2 3.1	4.1 4.0 3.9 3.8 3.6	4·7 4·5 4·4 4·3 4·1	5·3 5.1 5.0 4.8 4·7	5.8 5.7 5.5 5.3 5.2	6.4 6.2 6.1 5.9 5.7	7.0 6.8 6.6 6.4 6.2	7.6 7.4 7.1 6.9 6.7	8.2 7.9 7.7 7.5 7.2	8.7 8.5 8.2 8.0 7.7	0.58 ·57 ·55 •53 •52
2.00 2.07 2.14 2.22 2.31	0.5 .5 .5 .5	1.0 1.0 0.9 .9	1.5 1.4 1.4 1.3	1.9 1.9 1.8	2.5 2.4 2.4 2.3 2.2	3.0 2.9 2.8 2.7 2.6	3·5 3·4 3·3 3·2 3·1	4.0 3.9 3.7 3.6 3.5	4·5 4·4 4·2 4·1 3·9	5.0 4.8 4.7 4.5 4.3	5.5 5.3 5.1 5.0 4.8	6.0 5.8 5.6 5.4 5.2	6.3	7.0 6.8 6.5 6.3 6.1	7.5 7.2 7.0 6.7 6.5	0.50 .48 .47 .45 .43
2.40 2.50 2.61 2.73 2.86	0.4 •4 •4 •4 •4	0.8 .8 .8 .7 .7	1.3 1.2 1.2 1.1	1.7 1.6 1.5 1.5	2.I 2.0 I.9 I.9	2.5 2.4 2.3 2.2 2.1	2.9 2.8 2.7 2.6 2.5	3·3 3·2 3·1 2·9 2.8	3.8 3.6 3.5 3.3 3.2	4.2 4.0 3.8 3.7 3.5	4.6 4.4 4.2 4.0 3.9	5.0 4.8 4.6 4.4 4.2	5.4 5.2 5.0 4.8 4.5	5.8 5.6 5.4 5.1 4.9	6.2 6.0 5.7 5.5 5.2	0.42 .40 .38 .37 .35
3.00 3.16 3.33 3.53 3.75	0.3 .3 .3 .3	°·7 .6 .6 .6 .5	1.0 1.0 0.9 .9	1.3 1.2 1.1 1.1	1.7 1.6 1.5 1.4	2.0 1.9 1.8 1.7 1.6	2.3 2.2 2.1 2.0 1.9	2.7 2.5 2.4 2.3 2.1	3.0 2.9 2.7 2.6 2.4	3.3 3.2 3.0 2.8 2.7	3.7 3.5 3.3 3.1 2.9	4.0 3.8 3.6 3.4 3.2		4.7 4.4 4.2 4.0 3.7	5.0 4.7 4.5 4.2 4.0	0.33 .32 .30 .28 .27
4.00 4.29 4.62 5.00 5.45	0.3	0.5 .5 .4 .4 .4	0.8 •7 •7 •6 •6	1.0 0.9 .9 .8 ·7	1.3 1.2 1.1 1.0 0.9	1.5 1.4 1.3 1.2	1.8 1.6 1.5 1.4 1.3	2.0 1.9 1.7 1.6 1.5	2.3 2.1 2.0 1.8 1.7	2.5 2.3 2.2 2.0 1.8	2.8 2.6 2.4 2.2 2.0	3.0 2.8 2.6 2.4 2.2	3.2 3.0 2.8 2.6 2.4	3.5 3.3 3.0 2.8 2.6	3.7 3.5 3.2 3.0 2.7	0.25 .23 .22 .20 .18
6.00 6.67 7.50 8.57 10.0	0.2 .2 .1 .1	0.3 .3 .3 .2	0.5 •5 •4 •4 •3	°·7 .6 ·5 ·5 ·4	0.8 .8 .7 .6 .5	1.0 0.9 .8 .7 .6	1.2 1.1 0.9 .8 ·7	1.3 1.2 1.1 0.9	1.5 1.4 1.2 1.1	1.7 1.5 1.3 1.2	1.8 1.7 1.5 1.3	2.0 1.8 1.6 1.4	2.2 2.0 1.7 1.5 1.3	2.3 2.1 1.9 1.6 1.4	2.5 2.2 2.0 1.7 1.5	0.17 .15 .13 .12
12.0 15.0 20.0 30.0 60.0	0.1 .I .0 .0	0.2 .I .I .I	0.3 .2 .2 .1	0.3 .3 .2 .1	0.4 ·3 ·3 ·2 ·1	0.5 .4 .3 .2 .1	0.6 ·5 ·4 ·2 ·1	0.7 .5 .4 .3 .1	0.8 .6 .5 .3 .2	0.8 •7 •5 •3 •2	0.9 .7 .6 .4 .2	0.8 .6 .4 .2	1.1 0.9 .6 .4 .2	1.2 0.9 ·7 ·5 .2	1.2 1.0 0.7 .5	0.08 .07 .05 .03 .02

<u>6ο′</u> Δ					Nu	mbe	er o	f M	inut	es o	of b					Δ
Δ	16′	17′	18′	19'	20′	21'	22′	23′	24'	25′	26′	27'	28′	29′	30′	60′
1.00 1.02 1.03 1.05 1.07	16.0 15.7 15.5 15.2 14.9	16.7 16.5	17.4 17.1	18.7 18.4 18.1	19.7	20.7 20.3 20.0	21.6	22.6 22.2 21.9	23.2	24.6	25.6 25.1 24.7	26.6 26.1	27. I 26. 6		29.0 28.5	1.00 0.98 •97 •95 •93
1.09 1.11 1.13 1.15 1.18	13.9	15.3 15.0 14.8 14.5	16.2 15.9 15.6 15.3	16.5 16.2	18.0 17.7 17.3	18.9 18.6 18.2 17.9	19.8 19.4 19.1 18.7	20.7 20.3 19.9 19.6	20.4	22.5 22.1 21.7 21.3	23.4 23.0 22.5 22.1	23.9 23.4 23.0	25.2 24.7 24.3	26. I 25. 6 25. I	27.0 26.5 26.0	0.92 .90 .88 .87 .85
1.20 1.22 1.25 1.28 1.30	12.8 12.5 12.3	13.9 13.6 13.3 13.0	14.4 14.1 13.8	15.5 15.2 14.9 14.6	16.0 15.7 15.3	17.2 16.8 16.5 16.1	17.6 17.2 16.9	18.8 18.4 18.0 17.6	19 6 19.2 18.8 18.4	20.4 20.0 19.6 19.2	20.8 20.4 19.9	22. I 21. 6 21. 2 20. 7	22.9 22.4 21.9 21.5	22.7	24.5 24.0 23.5 23.0	0.83 .82 .80 .78 .77
1.33 1.36 1.40 1.43 1.46	11.7 11.5 11.2	12.8 12.5 12.2 11.9 11.6	13.2 12.9 12.6 12.3	13.9 13.6 13.3 13.0	13.7	15.1 14.7 14.4	16.1 15.8 15.4 15.0	16.5 16.1 15.7	17.2 16.8 16.4	18.3 17.9 17.5 17.1	18.6 18.2 17.8	19.8 19.4 18.9 18.5	20.5 20.1 19.6 19.1	20.8 20.3 19.8	22.0 21.5 21.0 20.5	.73 .72 .70 .68
1.50 1.54 1.58 1.62 1.67	10.7 10.4 10.1 9.9 9.6	11.1	11.7	12.0		13.7 13.3 13.0	14.3 13.9 13.6 13.2	15.0 14.6 14.2	14.4	16.3 15.8 15.4 15.0	16.9 16.5 16.0	17.6 17.1 16.7 16.2	18.2 17.7 17.3	19.3 18.9 18.4 17.9 17.4	19.5 19.0 18.5	.65 .63 .62 .60
1.71 1.76 1.82 1.88 1.94	9.3 9.1 8.8 8.5 8.3	9.9 9.6 9.4 9.1 8.8	10.5 10.2 9.9 9.6 9.3	11.1 10.8 10.5 10.1 9.8	11.7 11.3 11.0 10.7 10.3	12.3 11.9 11.6 11.2 10.9	11.7		13.6 13.2 12.8	13.8	14.3	15.8 15.3 14.9 14.4 14.0	15.9 15.4 14.9	16.0	17.0 16.5 16.0	0.58 •57 •55 •53 •52
2.00 2.07 2.14 2.22 2.31	8.0 7.7 7.5 7.2 6.9	8.5 8.2 7.9 7.7 7.4	9.0 8.7 8.4 8.1 7.8	9.5 9.2 8.9 8.6 8.2	9.7 9.3 9.0 8.7	10.5 10.2 9.8 9.5 9.1	11.0 10.6 10.3 9.9 9.5	11.5 11.1 10.7 10.4 10.0	11.6	12.5 12.1 11.7 11.3 10.8		13.5 13.1 12.6 12.2 11.7	13.5 13.1 12.6		14.5 14.0 13.5	0.50 .48 .47 .45 .43
2.40 2.50 2.61 2.73 2.86	6.7 6.4 6.1 5.9 5.6	7.1 6.8 6.5 6.2 6.0	7.5 7.2 6.9 6.6 6.3	7.9 7.6 7.3 7.0 6.7	8.3 8.0 7.7 7.3 7.0	8.8 8.4 8.1 7.7 7.4	9.2 8.8 8.4 8.1 7.7	9.6 9.2 8.8 8.4 8.1	9.6	10.0	10.8 10.4 10.0 9.5 9.1	10.8	11.2 10.7 10.3	12.1 11.6 11.1 10.6 10.2	11.5	0.42 .40 .38 .37 .35
3.00 3.16 3.33 3.53 3.75	5·3 5·1 4.8 4·5 4·3	5.7 5.4 5.1 4.8 4.6	6.0 5.7 5.4 5.1 4.8	6.3 6.0 5.7 5.4 5.1	6.7 6.3 6.0 5.7 5.3	7.0 6.7 6.3 6.0 5.6	7·3 7·0 6.6 6.2 5·9	1	6.8		8.7 8.2 7.8 7.4 6.9	9.0 8.6 8.1 7.7 7.2	7.9	9·7 9·2 8·7 8·2 7·7	9.5 9.0 8.5 8.0	0.33 .32 .30 .28 .27
4.00 4.29 4.62 5.00 5.45	4.0 3.7 3.5 3.2 2.9	4·3 4·0 3·7 3·4 3.1	4.5 4.2 3.9 3.6 3.3	4.8 4.4 4.1 3.8 3.5	5.0 4.7 4.3 4.0 3.7	5·3 4·9 4·6 4·2 3·9	5.5 5.1 4.8 4.4 4.0	5.8 5.4 5.0 4.6 4.2	6.0 5.6 5.2 4.8 4.4	6.3 5.8 5.4 5.0 4.6	6.5 6.1 5.6 5.2 4.8	6.8 6.3 5.9 5.4 5.0	7.0 6.5 6.1 5.6 5.1	7·3 6.8 6.3 5.8 5·3	7.5 7.0 6.5 6.0 5.5	0.25 .23 .22 .20 .18
6.00 6.67 7.50 8.57 10.0	2.7 2.4 2.1 1.9 1.6	2.8 2.6 2.3 2.0	3.0 2.7 2.4 2.1 1.8	3.2 2.9 2.5 2.2 1.9	3.3 3.0 2.7 2.3 2.0	3.5 3.2 2.8 2.5 2.1	3.7 3.3 2.9 2.6 2.2	3.8 3.5 3.1 2.7 2.3	4.0 3.6 3.2 2.8 2.4	4.2 3.8 3.3 2.9 2.5	4·3 3·9 3·5 3.0 2.6	4.5 4.1 3.6 3.2 2.7	4·7 4·2 3·7 3·3 2.8	4.8 4.4 3.9 3.4 2.9	5.0 4.5 4.0 3.5 3.0	0.17 .15 .13 .12 .10
12.0 15.0 20.0 30.0 60.0	1.3 1.1 0.8 ·5 ·3	1.4 1.1 0.9 .6	1.5 1.2 0.9 .6	1.6 1.3 1.0 0.6 •3	1.7 1.3 1.0 0.7	1.8 1.4 1.1 0.7 .4	1.8 1.5 1.1 0.7 •4	1.9 1.5 1.2 0.8	2.0 1.6 1.2 0.8	2.1 1.7 1.3 0.8 •4	2.2 1.7 1.3 0.9 .4	2.3 1.8 1.4 0.9	2.3 1.9 1.4 0.9	2.4 1.9 1.5 1.0 0.5	2.5 2.0 1.5 1.0 0.5	0.08 .07 .05 .03 .02

60'					Nu	mbe	er o	f M	inut	es c	of b					Δ
Δ	31'	32'	33'	34'	35′	36′	37′	38′	39'	40′	41'	42'	43'	44'	45'	60'
1.00 1.02 1.03 1.05 1.07	31.0 30.5 30.0 29.5 28.9		32.5	34.0 33.4 32.9 32.3 31.7	33.8	35·4 34.8	36.4 35.8	37·4 36.7	38.4 37.7 37.1	40.0 39.3 38.7 38.0 37.3	40.3 39.6 39.0	41.3 40.6 39.9	41.6	43.3 42.5 41.8		1.00 0.98 •97 •95 •93
1.09 1.11 1.13 1.15 1.18	28.4 27.9 27.4 26.9 26.4	28.8 28.3 27.7	30.3 29.7 29.2 28.6 28.1	30.6		32.4 31.8	32.1	34.2 33.6 32.9	35.1 34.5 33.8	36.7 36.0 35.3 34.7 34.0	36.2 35.5	37.1 36.4	38.7 38.0	38.9 38.1	40.5 39.8	0.92 .90 .88 .87 .85
1.20 1.22 1.25 1.28 1.30	25.8 25.3 24.8 24.3 23.8	26.7 26.1 25.6 25.1 24.5	27.5 27.0 26.4 25.9 25.3		29.2 28.6 28.0 27.4 26.8	28.8 28.2		31.0 30.4 29.8	31.9 31.2 30.6	33·3 32·7 32·0 31·3 30·7	33·5 32.8	34·3 33.6 32.9	35.8 35.1 34.4 33.7 33.0	35.9 35.2 34.5	36.0 35.3	0.83 .82 .80 .78 •77
1.33 1.36 1.40 1.43 1.46	23.3 22.8 22.3 21.8 21.3	24.0 23.5 22.9 22.4 21.9	24.8 24.2 23.7 23.1 22.6	25.5 24.9 24.4 23.8 23.2	26.3 25.7 25.1 24.5 23.9	25.8 25.2	27.1 26.5	27.9 27.2	28.6 28.0 27.3	30.0 29.3 28.7 28.0 27.3	30.1 29.4	30.1	31.5 30.8 30.1	31.5	32.3	0.75 .73 .72 .70 .68
1.50 1.54 1.58 1.62 1.67	20.7 20.2 19.6 19.1 18.6	21.3 20.8 20.3 19.7 19.2	22.0 21.5 20.9 20.4 19.8	22.1	23.3 22.8 22.2 21.6 21.0	22.8	24. I	24.I 23.4	25.4 24.7 24.1	26.7 26.0 25.3 24.7 24.0		27.3 26.6 25.9	27.2 26.5	28.6 27.9		0.67 .65 .63 .62 60
1.71 1.76 1.82 1.88 1.94	18.1 17.6 17.1 16.5 16.0	18.7 18.1 17.6 17.1 16.5	19.3 18.7 18.2 17.6 17.1	19.8 19.3 18.7 18.1 17.6	20.4 19.8 19.3 18.7 18.1	20.4 19.8 19.2	21.0 20.4	21.5 20.9 20.3	22.1 21.5 20.8	23.3 22.7 22.0 21.3 20.7	22.6	23.8 23.1 22.4	25. I 24.4 23.7 22.9 22.2	24.9 24.2 23.5	24.8	0.58 •57 •55 •53 •52
2.00 2.07 2.14 2.22 2.31	15.5 15.0 14.5 14.0 13.4	16.0 15.5 14.9 14.4 13.9	16.5 16.0 15.4 14.9 14.3	17.0 16.4 15.9 15.3 14.7	17.5 16.9 16.3 15.8 15.2	17.4 16.8 16.2	17.9	18.4 17.7 17.1	18.9 18.2 17.6	20.0 19.3 18.7 18.0 17.3	19.8	20.3 19.6 18.9	21.5 20.8 20.1 19.4 18.6	21.3 20.5 19.8		0.50 •48 •47 •45 •43
2.40 2.50 2.61 2.73 2.86	12.9 12.4 11.9 11.4 10.9	13.3 12.8 12.3 11.7 11.2	13.8 13.2 12.7 12.1 11.6	13.0	14.6 14.0 13.4 12.8 12.3	14.4 13.8 13.2	14.2 13.6	15.2 14.6 13.9	14.3	16.7 16.0 15.3 14.7 14.0	15.7	16.1 15.4	17.9 17.2 16.5 15.8 15.1	16.9 16.1		0.42 •40 •38 •37 •35
3.00 3.16 3.33 3.53 3.75	9.8 9.8 9.3 8.8 8.3	10.7 10.1 9.6 9.1 8.5	11.0 10.5 9.9 9.4 8.8	10.8	11.7 11.1 10.5 9.9 9.3	11.4	11.7	12.0	12.4 11.7 11.1	13.3 12.7 12.0 11.3 10.7	13.0 12.3 11.6	13.3 12.6 11.9	12.2	13.9 13.2 12.5	13.5	0.33 .32 .30 .28 .27
4.00 4.29 4.62 5.00 5.45	7.8 7.2 6.7 6.2 5.7	8.0 7.5 6.9 6.4 5.9	8.3 7.7 7.2 6.6 6.1	8.5 7.9 7.4 6.8 6.2	8.8 8.2 7.6 7.0 6.4	9.0 8.4 7.8 7.2 6.6	9.3 8.6 8.0 7.4 6.8	9.5 8.9 8.2 7.6 7.0	9.8 9.1 8.5 7.8 7.2	9·3 8·7 8·0 7·3	9.6 8.9 8.2 7.5	9.8 9.1 8.4 7.7	10.8 10.0 9.3 8.6 7.9	11.0 10.3 9.5 8.8 8.1	11.3 10.5 9.8 9.0 8.3	0.25 .23 .22 .20 .18
6.00 6.67 7.50 8.57 10.0	5.2 4.7 4.1 3.6 3.1	5.3 4.8 4.3 3.7 3.2	5.5 5.0 4.4 3.9 3.3	5.7 5.1 4.5 4.0 3.4	5.8 5.3 4.7 4.1 3.5	6.0 5.4 4.8 4.2 3.6	6.2 5.6 4.9 4.3 3.7	6.3 5.7 5.1 4.4 3.8	6.5 5.9 5.2 4.6 3.9	6.7 6.0 5.3 4.7 4.0	6.8 6.2 5.5 4.8 4.1	7.0 6.3 5.6 4.9 4.2	7.2 6.5 5.7 5.0 4.3	7·3 6.6 5·9 5.1 4·4	7.5 6.8 6.0 5.3 4.5	0.17 .15 .13 .12
12.0 15.0 20.0 30.0 60.0	2.6 2.1 1.6 1.0 0.5	2.7 2.1 1.6 1.1 0.5	2.8 2.2 1.7 1.1 0.6	2.8 2.3 1.7 1.1 0.6	2.9 2.3 1.8 1.2 0.6	3.0 2.4 1.8 1.2 0.6	3.1 2.5 1.9 1.2 0.6	3.2 2.5 1.9 1.3 0.6	3·3 2.6 2.0 1.3	3·3 2·7 2·0 1·3 0·7	3·4 2·7 2·1 1·4 0·7	3·5 2.8 2.1 1.4 0.7	3.6 2.9 2.2 1.4 0.7	3.7 2.9 2.2 1.5 0.7	3.8 3.0 2.3 1.5 0.8	0.08 .07 .05 .03 .02

60'			-		Nu	mbe	er of	M	inut	es o	of b					Δ
Δ	46′	47'	48'	49′	50′	51 ′	52'	53′	54'	55′	56′	57'	58′	59′	60'	60′
1.00 1.02 1.03 1.05 1.07	45.2 44.5 43.7	47.0 46.2 45.4 44.7 43.9	47.2 46.4 45.6	48.2 47.4 46.6	49.2 48.3 47.5	50.2 49.3 48.5	51.1 50.3 49.4	52.1 51.2 50.4	53.1 52.2 51.2	54°1 53.2 54.3	55. I 54. I 53. 2	56.0 55.1 54.1	57.0 56.1	58.0 57.0 56.1	60.0 59.0 58.0 57.0 56.0	1.00 0.98 .97 .95 .93
1.09 1.11 1.13 1.15 1.18	41.4 40.6 39.9 39.1	42-3 41-5 40-7 40-0	43.2 42.4 41.6 40.8	44.1 43.3 42.5 41.7	45.6 44.2 43.3 42.5	45.9 45.1 44.2 43.4	45.9 45.1 44.2	47.7 46.8 45.9 45.1	48.6 47.7 46.8 45.9	47·7 46.8	50.4 49.5 48.5 47.6	51.3 50.3 49.4 48.4	52.2 51.2 50.3 49.3	52.1 51.1 50.2	53.0 52.0 51.0	.90 .88 .87 .85
1.20 1.22 1.25 1.28 1.30	37.6 36.8 36.0 35.3		39.2 38.4 37.6 36.8	39.2 38.4 37.6	40.8 40.0 39.2 38.3	41.7 40.8 40.0 39.1	42.5 41.6 40.7 39.9	43·3 42·4 41·5 40.6	44. I 43.2 42. 3 41. 4	44.9 44.0 43.1 42.2	45.7 44.8 43.9 42.9	46.5 45.6 44.6 43.7	47·4 46·4 45·4 44·5	48.2 47.2 46.2 45.2	49.0 48.0 47.0 46.0	.80 .78 .77
1.33 1.36 1.40 1.43 1.46	34.5 33.7 33.0 32.2 31.4	33.7 32.9 32.1	35.2 34.4 33.6 32.8	35.9 35.1 34.3 33.5	36.7 35.8 35.0 34.2	37·4 36.6 35·7 34·9	38.1 37.3 36.4 35.5	38.9 38.0 37.1 36.2	39.6 38.7 37.8 36.9	39·4 38·5 37·6	41.1 40.1 39.2 38.3	41.8 40.8 39.9 38.9	42.5 41.6 40.6 39.6	41.3	44.0 43.0 42.0 41.0	0.75 •73 •72 •70 •68
1.50 1.54 1.58 1.62 1.67	30.7 29.9 29.1 28.4 27.6	31.3 30.6 29.8 29.0 28.2	31.2 30.4 29.6 28.8	31.9 31.0 30.2 29.4	32.5 31.7 30.8 30.0	33.2 32.3 31.5 30.6	33.8 32.9 32.1 31.2	34·5 33.6 32·7 31.8	35.1 34.2 33.3 32.4	36.7 35.8 34.8 33.9 33.0	36.4 35.5 34.5 33.6	37.0 36.1 35.1 34.2	36.7 35.8 34.8	38.4 37.4 36.4 35.4		.63 .62 .60
1.71 1.76 1.82 1.88 1.94	26. I 25. 3 24. 5 23. 8	25.9 25.1 24.3	27.2 26.4 25.6 24.8	27.8 27.0 26.1 25.3	28.3 27.5 26.7 25.8	28.9 28.1 27.2 26.4	29.5 28.6 27.7 26.9	30.0 29.2 28.3 27.4	30.6 29.7 28.8 27.9	29.3 28.4	31.7 30.8 29.9 28.9	32.3 31.3 30.4 29.4	30.9 30.0	33.4 32.5 31.5 30.5	33.0 32.0 31.0	0.58 •57 •55 •53 •52
2.00 2.07 2.14 2.22 2.31	22.2 21.5 20.7 19.9	22.7 21.9 21.2 20.4	23.2 22.4 21.6 20.8	23.7 22.9 22.1 21.2	24.2 23.3 22.5 21.7	24.7 23.8 23.0 22.1	25. I 24. 3 23. 4 22. 5	25.6 24.7 23.9 23.0	26.1 25.2 24.3 23.4	23.8	27.1 26.1 25.2 24.3	27.5 26.6 25.6 24.7	27.1 26.1 25.1	28.5 27.5 26.6 25.6	29.0 28.0 27.0 26.0	0.50 .48 .47 .45 .43
2.40 2.50 2.61 2.73 2.86	16.9 16.1	18.8 18.0 17.2 16.5	17.6 16.8	19.6 18.8 18.0 17.2	19.2 18.3 17.5	19.6 18.7 17.9	20.8 19.9 19.1 18.2	21.2 20.3 19.4 18.6	21.6 20.7 19.8 18.9	22.9 22.0 21.1 20.2 19.3	22.4 21.5 20.5 19.6	22.8 21.8 20.9 19.9	23.2 22.2 21.3 20.3	23.6 22.6 21.6 20.7	24.0 23.0 22.0 21.0	0.42 .40 .38 .37 .35
3.00 3.16 3.33 3.53 3.75	15.3 14.6 13.8 13.0 12.3	14.9 14.1 13.3 12.5	13.6	15.5 14.7 13.9 13.1	15.8 15.0 14.2 13.3	16.2 15.3 14.5 13.6	15.6 14.7 13.9	16.8 15.9 15.0 14.1	17.1 16.2 15.3 14.4	14.7	17.7 16.8 15.9 14.9	18.0 17.1 16.1 15.2	18.4 17.4 16.4 15.5	18.7 17.7 16.7 15.7	19.0 18.0 17.0 16.0	0.33 .32 .30 .28 .27
4.00 4.29 4.62 5.00 5.45	9.2 8.4	9.4 8.6	9.6 8.8	11.4 10.6 9.8 9.0	11.7 10.8 10.0 9.2	11.1	12.1 11.3 10.4 9.5	12.4 11.5 10.6 9.7	11.7 10.8 9.9	11.0	13.1 12.1 11.2 10.3	13.3 12.3 11.4 10.4	12.6 11.6 10.6	13.8 12.8 11.8 10.8	12.0	0.25 .23 .22 .20 .18
6.00 6.67 7.50 8.57 10.0	7.7 6.9 6.1 5.4 4.6	7.8 7.1 6.3 5.5 4.7	8.0 7.2 6.4 5.6 4.8	8.2 7.4 6.5 5.7 4.9	8.3 7.5 6.7 5.8 5.0	8 5 7·7 6.8 6.0 5.1	8.7 7.8 6.9 6.1 5.2	8.8 8.0 7.1 6.2 5.3	9.0 8.1 7.2 6.3 5.4	9.2 8.3 7.3 6.4 5.5	9.3 8.4 7.5 6.5 5.6	9.5 8.5 7.6 6.6 5.7	9.7 8.7 7.7 6.8 5.8	9.8 8.9 7.9 6.9 5.9	9.0 8.0 7.0 6.0	0.17 .15 .13 .12
12.0 15.0 20.0 30.0 60.0	3.8 3.1 2.3 1.5 0.8	3.9 3.1 2.4 1.6 0.8	4.0 3.2 2.4 1.6 0.8	4.1 3.3 2.5 1.6 0.8	4.2 3.3 2.5 1.7 0.8	4·3 3·4 2.6 1.7 0.9	4·3 3·5 2.6 1.7 0.9	4·4 3·5 2·7 1.8 0.9	4.5 3.6 2.7 1.8 0.9	4.6 3.7 2.8 1.8 0.9	4·7 3·7 2.8 1.9 0.9	4.7 3.8 2.8 1.9	4.8 3.9 2.9 1.9	4.9 3.9 3.0 2.0 1.0	5.0 4.0 3.0 2.0 1.0	0.08 .07 .05 .03

1			<i>a</i> =	0° 0′			a = 0	° 30′				a =	1° 0′		\ c	\ a
B	h	d	$\frac{60'}{\Delta}$	Z^{t}	h	d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	Δ 60'	$c \setminus$	β
0 1 2 3 4	0 0 1 2 3 4	0 0 0	I	0 0 0 0 0 0 0	0 I 2 3 4	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0 30 30 30 30 30	.00	1 2 3 4	0000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	i 0 0 0	.00	89 88 87 86	90.0 90.0 90.0 90.0 90.0
5 6 7 8 9	5 6 7 8 9	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0 0 0	5 6 7 8 9	0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	30 30 30 30 30	.00	5 6 7 8 9	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 0 0	0.00 .00 .02 .00	85 84 83 82 81	90.0 89.9 89.9 89.9
10 11 12 13 14	10 11 12 13 14	0 0 0	1 1 1 1	0 0 0	10 11 12 13 14	0 0 0 0	1 1 1	31 31 31 31 31	.00	10 11 12 13 14	00000	I I I I	I I 1 2 2	.00	80 79 78 77 76	89.9 89.9 89.9 89.9
15 16 17 18 19	15 16 17 18	00000	I I I	0 0 0 0	15 16 17 18	00000	1 1 1	31 31 31 32 32	0.00 .00 .02 .00	15 16 17 18 19	0 0 0 0	I I I	2 2 3 3 3	.00	75 74 73 72 71	89.9 89.9 89.8 89.8 89.8
20 21 22 23 24	20 21 22 23 24	00000	1 1 1	0 0 0 0	20 21 22 23 24	0 0 0 0	I I I I	32 32 32 33 33	0.00 .00 .02 .00	20 21 22 23 24	0 0 0 0	I I I I	4 4 5 5 6	0.00 .02 .00 .02	70 69 68 67 66	89.8 89.8 89.8 89.8
25 26 27 28 29	25 26 27 28 29	0 0 0 0	1 1 1	0 0 0 0	25 26 27 28 29	0 0 0 0	I I I I	33 33 34 34 34	0.00 .02 .00 .00	25 26 27 28 29	0 0 0 0	I I I I	6 7 7 8 9	0.02 .00 .02 .02	65 64 63 62 61	89.8 89.8 89.7 89.7 89.7
30 31 32 33 34	30 31 32 33 34	0 0 0 0	1 1 1	0 0 0 0	30 31 32 33 34	0 0 0 0	I I I I	35 35 35 36 36	0.00 .00 .02 .00	30 31 32 33 34	00000	I I I I	9 10 11 12 12	0.02 .02 .02 .00	60 59 58 57 56	89.7 89.7 89.7 89.7 89.7
35 36 37 38 39	35 36 37 38 39	0 0 0 0	I I I I	0 0 0 0	35 36 37 38 39	0 0 0 0	I I I I	37 37 38 38 39	0.00 .02 .00 .02	35 36 37 38 39	0 0 0 0	I I I I	13 14 15 16	0.02 .02 .02 .02	55 54 53 52 51	89.7 89.6 89.6 89.6 89.6
40 41 42 43 44	40 41 42 43 44	0 0 0 0	I I I	0 0 0 0	40 41 42 43 44	0 0 0 0	I I I I	39 40 40 41 42	0.02 .00 .02 .02		0 0 0 0 59	I I I I.02	18 19 21 22 23	0.02 .03 .02 .02	50 49 48 47 46	89.6 89.6 89.5 89.5
45	45	0		0	45	0		42		44	59		25		45	89.5
	a		<u>6ο'</u> Δ	b	a		<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	a		6ο' Δ	b	<u>Δ</u> 60'		a
t			d = 0)° 0′		($l = 0^{\circ}$	30′				d = 1	° 0′			

\ b			a = 0)° 0′				a = 0	° 3	D'				a = 1	1° 0	,		\ c	\ a
$B \setminus$	h	d	$\frac{60'}{\Delta}$	Z		h	d	<u>60'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{\epsilon_0}$	$C \setminus$	B
45 46 47 48 49	45 46 47 48 49	00000	I I I I	0 0		o 45 46 47 48 49	00000	I I I I	00	42 43 44 45 46	0.02 .02 .02 .02	° 44 45 46 47 48	59 59 59 59 59	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I	25 26 28 30 31	0.02	45 44 43 42 41	89.5 89.5 89.5 89.4 89.4
50 51 52 53 54	50 51 52 53 54	0000	I I I I	0		50 51 52 53 54	0 0 0 0	1 1 1 1		47 48 49 50 51	0.02 .02 .02 .02	49 50 51 52 53	59 59 59 59	1 1 1		33 35 37 40 42	0.03 .03 .05 .03	40 39 38 37 36	89.4 89.4 89.3 89.3
55 56 57 58 59	55 56 57 58 59	00000	I I I I	0		55 56 57 58 59	00000	I I I I		52 54 55 57 58	0.03 .02 .03 .02	54 55 56 57 58	59 59 59 59	I I I I		45 47 50 53 56	0.03 .05 .05 .05	35 34 33 32 31	89.3 89.3 89.2 89.2 89.2
60 61 62 63 64	60 61 62 63 64	0 0 0 0	I I I I			60 61 62 63 64	00000	1 1 1	I	0 2 4 6 8	0.03 .03 .03 .03	59 60 61 62 63	59 59 59 59	I I I	2	0 4 8 12 17	0.07 .07 .07 .08	30 29 28 27 26	89.1 89.1 89.0 89.0
65 66 67 68 69	65 66 67 68 69	00000	O I O O O O O O O O O O O O O O O O O O			65 66 67 68 69	0 0 0 0	1 1 1 1		11 14 17 20 24	0.05 .05 .05 .07	64 65 66 67 68	59 59 59 59	I I I		22 27 33 40 47	0.08 .10 .12 .12	25 24 23 22 21	88.9 88.9 88.8 88.8 88.7
70 71 72 73 74	70 71 72 73 74	0 0 0 0	I I I	(70 71 72 73 74	0 0 0 0	1 1 1		28 32 37 43 49	0.07 .08 .10 .10	69 70 71 72 73	59 58 58 58	I.02 I I I I	3	55 4 14 25 37	0.15 .17 .18 .20	20 19 18 17 16	88.6 88.5 88.5 88.4 88.3
75 76 77 78 79	75 76 77 78 79	0 0 0 0		(75 76 77 78	59 59 59 59	I.02 I I I	2	56 4 13 24 37	0.13 .15 .18	74 75 76 77 78	58 58 58 57	I I I I.02 I	4 5	51 8 26 48 14	0.28 .30 .37 .43	15 14 13 12 11	88.1 88.0 87.8 87.6 87.4
80 81 82 83 84	80 81 82 83 84	O I O O O O O O O O O O O O O O O O O O				79 80 81 82 83	59 59 59 59	1 1	3 4	53 12 35 6 46		79 80 81 82 83	57 57 56 56 55	I I.02 I I.02 I.02	6 7 8 9	44 22 9 9 29		10 9 8 7 6	87.2 86.8 86.4 85.9 85.3
85 86 87 88 89	85 86 87 88 89	O I O O O O O O O O O O O O O O O O O O					59 58 58 56 53	1.02 1 1.03 1.05 1.62		43 8 28 2 34		88	35	1.02 1.05 1.07 1.22 2.40	11 14 18 26 45	20 3 27 34 0		5 4 3 2 1	84.3 82.9 80.5 76.0 63.4
90	90 === a		60'	b		-	30	60'	<u> </u>	o b	Δ	-	a a	60'		0 	Δ	0	0.0 a
t			Δ	0° 0′		-		d = 0			60'	_		$\frac{60'}{\Delta}$ $d = 1$			60'		•

1	ь			a = 1	° 30′				a = 1	2° 0′	,				a=2	° 30	,		c	a
B	\	h	d	6ο' Δ	Z	$\frac{\Delta}{60'}$	h	d	60' Δ	Z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	C	β
	0 0 1 2 3	0 0 1 2 3 4	00000	I I I I I	i 30 30 30 30 30	0.00	0 0 1 2 3 4	000000000000000000000000000000000000000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2	00000	0.00	0 0 1 2 3 4	0000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		30 30 30 30 30	0.00	90 89 88 87 86	90.0 90.0 89.9 89.9 89.9
	56 78 9	5 6 7 8 9	0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	30 30 31 31 31	.00	5 6 7 8 9	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		O I I I	.00	5 6 7 8	0 0 0 0 59	I I I I.02		31 31 31 31 32	0.00	85 84 83 82 81	89.8 89.8 89.8 89.7 89.7
10 12 12 12	2	10 11 12 13 14	0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	31 32 32 32 33	.00	10 11 12 13	0 0 0 0 59	I I I I.02		2 2 3 4	0.00 .02 .00 .02	9 10 11 12 13	59 59 59 59	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		32 33 33 34 35	0.02 .00 .02 .02	80 79 78 77 76	89.6 89.6 89.6 89.5 89.5
1; 16 17 18	7	15 16 17 18	0 0 0 0	1 1 1 1	33 34 34 35 35	0.02 .00 .02 .00 .02	14 15 16 17 18	59 59 59 59	I I I I		4 5 6 7	0.02 .00 .02 .02	14 15 16 17 18	59 59 59 59	1 1 1		35 36 37 38 39	0.02 .02 .02 .02	75 74 73 72 71	89.5 89.4 89.4 89.4 89.3
20 21 22 23 24	2	20 21 22 23	o o 59 59	I I I.02 I I	36 36 37 38 39	0.00	19 20 21 22 23	59 59 59 59	I I I I	l .	9 10 11	.00	19 20 21 22 23	59 59 59 59	I I I I I.02	4	10 11 12 13 14	0.02 .02 .02 .02	70 69 68 67 66	89.3 89.2 89.2 89.2 89.1
25 26 27 28 29	6 7 8	24 25 26 27 28	59 59 59 59	I I I I	39 40 41 42 43	0.02 .02 .02 .02	24 25 26 27 28	59 59 59 59	1 1 1		12 13 15 16	0.02 .03 .02 .02	24 25 26 27 28	58 58 58 58 58	I I I I	2	15 17 18 50 51	0.03 .02 .03 .02	65 64 63 62 61	89.1 89.0 89.0 88.9 88.9
30 31 32 33 34	2	29 30 31 32 33	59 59 59 59	1 1 1	44 45 46 47 49	0.02 .02 .02 .03	29 30 31 32 33	59 59 59 59	1 1 1 1		19 20 21 23 25	0.02 .02 .03 .03	29 30 31 32 33	58 58 58 58 58	I I I I		53 57 59 1	0.03 .03 .03 .03	60 59 58 57 56	88.8 88.8 88.8 88.7 88.7
35 36 37 38 39	7	34 35 36 37 38	59 59 59 59 59	1 1 1 1	50 51 53 54 56	0.02 .03 .02 .03	34 35 36 37 38	59 58 58 58	I.02 I I I I		26 28 30 32 34	0.03 .03 .03 .03	34 35 36 37 38	58 58 58 57 57	I I I.02 I I	1	3 5 8 10 13	0.03 .05 .03 .05	55 54 53 52 51	88.6 88.5 88.5 88.4 88.4
40 41 42 43 44	2 3	39 40 41 42 43		I I I I	57 59 2 I 3	0.03 .03 .03 .03	39 40 41	58 58 58	1 .1 .1		37 39 41 44 47		39 40 41 42		I I I	1 2	16 19 22 25 28	0.05 .05 .05 .05	50 49 48 47 46	88.3 88.3 88.2 ,88.1
45	- 1	44	- 1		7		44				50		44	- 1		3	32		45	88.0
		а		<u>6ο'</u> Δ	b	$\frac{\Delta}{\epsilon o'}$	a	ı	<u>60'</u> Δ	b		$\frac{\Delta}{60'}$	0	ı	<u>60'</u> Δ	b		Δ 60'		a
t		_	,	d=1	° 30′				d = 2	2° 0′	,				d = 2	° 30′				

\ b		a = 1	° 30′			•	a = 2	2° 0)′			(a = 2	° 30)′		C	a
$B \setminus$	h	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	*	<u>Δ</u> 6ο'	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$c \setminus$	β
9 45 46 47 48 49	44 59 45 59 46 59 47 59 48 59	I I I I	2 2 12 12 12	.03	44 45 46 47 48	58 58 58 58 58	1 1 1 1	3	50 53 56 59 3	0.05 .05 .05 .07	44 45 46 47 48	57 57 56 56 56	I I.02 I I I	3	32 36 40 44 48	0.07 .07 .07 .07 .08	° 45 44 43 42 41	88.0 87.9 87.9 87.8 87.7
50 51 52 53 54	49 59 50 59 51 58 52 58 53 58	I I.02 I I I	20 20 20 20 3	.05	49 50 51 52 53	58 57 57 57 57	I.02 I I I I		7 11 15 19 24	0.07 .07 .07 .08 .08	49 50 51 52 53	56 56 56 56	I I I I I.02	4	53 58 3 9	80.0 80. 01. 01.	40 39 38 37 36	87.6 87.5 87.4 87.3 87.2
55 56 57 58 59	54 58 55 58 56 58 57 58 58 58	I I I	32 4 4 50 5	.07	54 55 56 57 58	57 57 57 57 57	I I I I.02		29 34 40 46 53	0.08 .10 .10 .12	54 55 56 57 58	55 55 55 55	I I I I I,02		21 28 35 43 51	.12 .13 .13	35 34 33 32 31	87.1 87.0 86.9 86.8 86.7
60 61 62 63 64	59 58 60 58 61 58 62 58 63 58	I I I I,02	3 (.10 .10 .12	59 60 61 62 63	56 56 56 56 56	I I I I	4	7 15 24 33	0.12 .13 .15 .15	59 60 61 62 63	54 54 54 54 53	I I I I.02 I	5	9 19 30 41	0.15 .17 .18 .18	30 29 28 27 26	86.5 86.4 86.2 86.1 85.9
65 66 67 68 69	64 57 65 57 66 57 67 57 68 57	I I I I	3. 4 50 4	.15	64 65 66 67 68	56 55 55 55 55	I.02 I I I I.02	5	43 54 6 19 34	0.18 .20 .22 .25 .27	64 65 66 67 68	53 52 52 52 52	I I.02 I I I.02	6	54 23 39 57	0.23 .25 .27 .30 .32	25 24 23 22 21	85.7 85.5 85.3 85.1 84.8
70 71 72 73 74	69 57 70 57 71 56 72 56 73 56	I I.02 I I I	5 20	.25	69 70 71 72 73	54 54 54 53 53	I I.02 I I.02	6	50 7 27 49 13	0.28 ·33 ·37 ·40 ·47	69 70 71 72 73	51 50 49 49	I I.02 I.02 I I.02	7 8 9	16 38 30 0	0.37 .42 .45 .50 .58	20 19 18 17 16	84.5 84.2 83.9 83.5 83.1
75 76 77 78 79	74 56 75 55 76 55 77 54 78 54	I.02 I I.02 I I.02	6 I 39 7 I 49	·47 ·53 ·63	74 75 76 77 78	52 52 51 50 49	I I.02 I.02 I.02 I.02	8 9 10	41 13 50 32 22	0.53 .62 .70 .83	74 75 76 77 78	48 47 46 45 43	1.02 1.02 1.02 1.03 1.02	10 11 12	35 14 59 52 53	0.65 •75 .88 1.02 1.23	15 14 13 12	82.6 82.0 81.4 80.7 79.8
80 81 82 83 84	79 53 80 53 81 52 82 51 83 49	I I.02 I.02 I.03 I.03	8 3 9 30 10 30 12		79 80 81 82 83	48 47 45 43 41	1.02 1.03 1.03 1.03 1.07	11 12 14 15 18	22 35 5 59 28	,	79 80 81 82 83	42 40 37 34 30	1.03 1.05 1.05 1.07 1.09	14 15 17 19 22	7 36 25 43 40	·	9 8 7 6	78.8 77.6 76.1 74.1 71.6
85 86 87 88 89 90	84 47 85 44 86 39 87 30 88 12	1.05 1.09 1.18 1.43 3.33	16 4. 20 3 26 3 36 5. 56 19	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		37 32 24 10 46	1.09 1.15 1.30 1.67 4.29		50 36 43 1 27		84 85 86 87	25 17 6 48 18	1.15 1.22 1.43 2.00 5.00	26 32 39 51 68	13		5 4 3 2 1	68.3 63.5 56.3 45.0 26.6
	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	-	a	60' A	11	b	$\frac{\Delta}{60'}$	-	z	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{\epsilon o'}$	==	<u>а</u>
t		1	° 30′	1 30			d=2	2° 0	,	1 00			d=2	° 30	0′			

\ b		a = 1	3° 0′		Ī	_	a=3	° 30	0′				a = 4	ا° 0	,		\ c	a
$ _{B}$	h d	<u>εο'</u> Δ	Z	<u>Δ</u> 6ο'	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	ŧ	$\frac{\Delta}{60'}$	C	β
0 0 1 2 3 4	0 0 1 0 2 0 3 0 4 0	I I I I I I I I I I I I I I I I I I I	3 0 0 0 0 0	0.00	° 0 1 2 3 4	100000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3		0.00	° 0 I 2 3	0000	I I I I.02 I	° 4	0000	0.00 .00 .00 .02	90 89 88 87 86	90.0 89.9 89.9 89.8 89.8
5 6 7 8 9	5 0 6 0 59 7 59 8 59	I I.02 I I	I I I 2 2	0.00 .00 .02 .00	5 6 7 8	59 59 59 59	I I I I		31 32 32 32 33	0.00 .02 .00 .02	4 5 6 7 8	59 59 59 59 59	I I I J		I 2 2 3	0.00 .02 .00 .02	85 84 83 82 81	89.7 89.6 89.6 89.5 89.4
10 11 12 13 14	9 59 10 59 11 59 12 59 13 59	1 1 1 1	3 3 4 5 5	.02	9 10 11 12 13	59 59 59 59 58	1 1 1 1.02		33 34 35 36 36	0.02 .02 .02 .00	9 10 11 12 13	59 58 58 58 58	I.02 I I I I		4 4 5 6 7	0.00 .02 .02 .02	80 79 78 77 76	89.4 89.3 89.3 89.2 89.1
15 16 17 18 19	14 59 15 59 16 59 17 58 18 58	1 1.02 1 1	6 7 8 9	0.02 .02 .02 .02	14 15 16 17 18	58 58 58 58 58	1 1 1 1		37 38 39 41 42	0.02 .02 .03 .02	14 15 16 17 18	58 58 57 57 57	I I.02 I I I		8 10 11 12 14	0.03 .02 .02 .03 .02	75 74 73 72 71	89.1 89.0 88.9 88.9 88.8
20 21 22 23 24	19 58 20 58 21 58 22 58 23 58	III	11 13 14 15	19 20 21 22 23	58 58 57 57 57	1 1.02 1 1		43 45 46 48 50	0.03 .02 .03 .03	19 20 21 22 23	57 57 57 56 56	I I I.02 I I		15 17 19 21 23	0.03 .03 .03 .03	70 69 68 67 66	88.7 88.7 88.6 88.5 88.4	
25 26 27 28 29	24 58 25 58 26 58 27 57 28 57	I I I.02 I I	18 20 22 24 26	0.03 .03 .03 .03	24 25 26 27 28	57 57 57 57 56	I I I I.02 I	4	52 54 56 58 0	0.03 .03 .03 .03	24 25 26 27 28	56 56 56 55	I I I I.02 I		25 27 29 32 34	0.03 .03 .05 .03	65 64 63 62 61	88.4 88.3 88.2 88.1 88.1
30 31 32 33 34	29 57 30 57 31 57 32 57 33 57	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	28 30 32 34 37	0.03 .03 .03 .05	29 30 31 32 33	56 56 56 56 56	1 1 1 1		2 5 8 10 13	0.05 .05 .03 .05	29 30 31 32 33	55 55 55 54	I I I I.02		37 40 43 46 49	0.05 .05 .05 .05	59 58 57 56	88.0 87.9 87.8 87.7 87.6
35 36 37 38 39	34 57 35 57 36 56 37 56 38 56	32 57 I 34 .c 33 57 I 37 .c 34 57 I 40 o.c 55 57 I.o2 42 .c 56 I 45 .c					I.02 I I I I		16 19 23 26 30	0.05 .07 .05 .07	34 35 36 37 38	54 54 54 53 53	1 1 1,02 1	5	53 56 0 4 8	0.05 .07 .07 .07	55 54 53 52 51	87.6 87.5 87.4 87.3 '87.2
40 41 42 43 44	39 56 40 56 41 56 42 56 43 55	I I I I.02 I	55 58 4 2 6	0.05 .07 .07 .07	37 38 39 40 41 42 43		1.02 1 1 1 1		34 38 42 47 52	0.07 .07 .08 .08		52	I I.02 I I		13 18 23 28 33	0.08	46	87.1 87.0 86.9 86.7 86.6
45	44 55	60'	14	Ι	44		601		57	Δ		52	60'	,	39	Δ	45	86.5
t	a	Δ	b	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$		b	<u>Δ</u> 60'	0	ı	Δ	1		60′		a
		d = 3	3° 0′				d = 3	° 30)′				d = 4	f _o O	'			

\ b		a = 3	3° C)′				a = 3	3° 3	0′				a = c	4° ()′		\ v	•
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	44 55 45 55 46 55 47 55 48 55	I I I I I.02	4	14 19 24 29 34	0.08	0 44 45 46 47 48	54 53 53 53 53	I.02 I I I I.02	6 4 5	57 2 7 13	0.08 .08 .10 .10	0 44 45 46 47 48	52 51 51 51 50	I.02 I I I.02	6	39 45 51 58 5	0.10 .10 .12 .12	° 45 44 43 42 41	86.5 86.4 86.3 86.1 86.0
50 51 52 53 54	49 54 50 54 51 54 52 54 53 54	I I I I I.02	5	40 46 52 59 6	0, IO .10 .12 .12	49 50 51 52 53	52 52 52 51 51	I I I.02 I I		26 33 40 48 56	0.12 .12 .13 .13	49 50 51 52 53	50 50 49 49	I I.02 I I I.02		13 21 29 38 47	0.13 .13 .15 .15	40 39 38 37 36	85.8 85.7 85.5 85.4 85.2
55 56 57 58 59	54 53 55 53 56 53 57 52 58 52	I I I.02 I I		13 21 30 39 49	0.13 .15 .15 .17	54 55 56 57 58	51 50 50 50 49	I.02 I I I.02 I	6	5 14 24 35 46	0.15 .17 .18 .18	54 55 56 57 58	48 48 47 47 46	I I.02 I I.02 I	7	57 8 19 31 44	0.18 .18 .20 .22 .23	35 34 33 32 31	85.0 84.8 84.6 84.4 84.2
60 61 62 63 64	59 52 60 52 61 51 62 51 63 50	I I.02 I 1.02 I	6	59 10 22 35 49	0.18 .20 .22 .23 .25	59 60 61 62 63	49 48 48 47 47	I.02 I I.02 I I.02	7	58 11 25 40 56	0.22 .23 .25 .27 .30	59 60 61 62 63	46 45 44 44 43	I.02 I.02 I I.02 I.02	8	58 13 28 45 4	0.25 .25 .28 .32 .33	30 29 28 27 26	84.0 83.7 83.5 83.2 82.9
65 66 67 68 69	64 50 65 49 66 49 67 48 68 48	1.02 I 1.02 I I.02	7 8	4 20 38 58 19	0.27 .30 .33 .35	64 65 66 67 68	46 46 45 44 43	I I.02 I.02 I.02 I.02	9	14 33 54 16 41	0.32 ·35 ·37 ·42 ·45	64 65 66 67 68	42 41 40 39 38	I.02 I.02 I.02 I.02 I.02	10	24 45 9 34 2	0.35 .40 .42 .47 .52	25 24 23 22 21	82.5 82.3 81.8 81.4 81.0
70 71 72 73 74	69 47 70 46 71 46 72 45 73 44	1.02 1 1.02 1.02 1.02	9	43 9 38 10 46	0.43 .48 .53 .60 .68	69 70 71 72 73	42 41 40 39 38	I.02 I.02 I.02 I.02 I.03	10 11 12	8 38 12 49 31	0.50 .57 .62 .70 .78	69 70 71 72 73	37 36 35 33 31	I.02 I.02 I.03 I.03 I.03	13	33 7 45 27 14	0.57 .63 .70 .78 .88	20 19 18 17 16	80.5 79.9 79.4 78.7 78.0
75 76 77 78 79	74 43 75 41 76 40 77 38 78 36	1.03 1.02 1.03 1.03	11 12 13 14 15	27 13 7 9 22	0.77 .90 I.03 I.22 I.43	74 75 76 77 78	36 35 33 30 28	I.02 I.03 I.05 I.03 I.05	13 14 15 16	18 11 13 24 46	0.88 1.03 1.18 1.37 1.63	74 75 76 77 78	29 27 25 22 18	1.03 1.03 1.05 1.07	15 16 17 18 20	7 16 35 8	1.00 1.15 1.32 1.55 1.80	15 14 13 12 11	77.2 76.2 75.2 74.0 72.6
80 81 82 83 84	79 34 80 31 81 28 82 23 83 18	1.05 1.05 1.09 1.09	16 18 20 23 26	48 31 38 16 38		79 80 81 82 83	25 21 16 11 3	1.07 1.09 1.09 1.15 1.18	19 21 23 26 30	24 21 43 39 20		79 80 81 82	14 9 4 57 48	1.09 1.09 1.13 1.18 1.25	21 24 26 29 33	56 5 41 51 47		10 9 8 7 6	70.9 68.9 66.5 63.6 59.9
85 86 87 88 89	84 10 85 0 45 86 24 50			55 2 20 35		84 85 86	54 41 23 58 22	1.28 1.43 1.71 2.50 7.50		4 15 27 17 4		83 84 85	36 21 0 32 53	1.33 1.54 1.88 2.86 8.57	38 45 53 63 75	44 4 11 29 59		5 4 3 2 1	55.1 48.9 40.6 29.8 10.0
90	87 0		90	0			30		90	0		86	0		90	0		0	0.0
t.	а	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $					ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	(ı	<u>6ο′</u> Δ		b	<u>∆</u> 60′		a
,					d=3	° 30	0′				d =	4° ()′						

								_			_						-	a .
	b	a = 4	4° 30′				a = 3	5° ()′				a = 5	5° 3	0′		$\setminus c$	\ a
B	h	$\frac{1}{\Delta} \frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	$C \setminus$	β
22 3	O I 2 2 5	1 0 1 0 1.02 9 1	4 30 30 30 30 31	.00	0 I 2		I I I.02 I I	5	0 0 0	0.00	0 I 2 3		I I.02 I I	5	30 30 30 30 31	.00	90 89 88 87 86	90.0 89.9 89.8 89.7 89.7
78	6 5 7 5 8 5	1 1 1 1.02 1	31 31 32 33 33	0.00 .02 .02 .00	4 5 6 7 8	59 58 58 58	I I.02 I I I		1 2 2 3 4	0.02 .00 .02 .02	4 5 6 7 8	59 58 58 58	I.02 I I I I.02		31 32 32 33 34	0.02 .00 .02 .02	85 84 83 82 81	89.6 89.5 89.4 89.3 89.2
10 11 12 13 14	10 5 11 5 12 5	8 I 8 I 8 I.02	34 35 36 37 38	.02	9 10 11 12 13	58 57 57 57 57	I.02 I I I I.02		5 6 7 8 9	0.02 .02 .02 .02	9 10 11 12 13	57 57 57 56 56	I I I.02 I		35 36 37 39 40	0.02 .02 .03 .02 .03	80 79 78 77 76	89.1 89.0 88.9 88.8 88.8
15 16 17 18 19	15 5 16 5 17 5	7 I 7 I 7 I.02	39 41 42 44 45	0.03 .02 .03 .02	14 15 16 17 18	56 56 56 56 55	I I I I.02		10 12 14 15	0.03 .03 .02 .03	14 15 16 17 18	56 55 55 55 55	I.02 I I I I.02		42 43 45 47 49	0.02 .03 .03 .03	75 74 73 72 71	88.7 88.6 88.5 88.4 88.3
20 21 22 23 24	19 50 20 50 21 50 22 50 23 5	I I I I I I I I I I I I I I I I I I I	47 49 51 53 55	0.03 .03 .03 .03	19 20 21 22 23	55 55 55 54 54	1 1 1.02 1 1		19 21 23 26 28	0.03 .03 .05 .03	19 20 21 22 23	54 54 54 53 53	I I I.02 I I	6	51 53 56 58 1	0.03 .05 .03 .05	70 69 68 67 66	88.2 88.1 88.0 87.9 87.8
25 26 27 28 29	24 5! 25 5! 26 5! 27 52 28 52	I I.02 I	58 5 0 3 6 9	0.03 .05 .05 .05	24 25 26 27 28	54 54 53 53 53	I I.02 I I I.02		31 34 37 40 43	0.05 .05 .05 .05	24 25 26 27 28	53 52 52 52 51	I.02 I I I.02 I		4 7 10 13 17	0.05 .05 .05 .07	65 64 63 62 61	87.7 87.6 87.5 87.3 87.2
30 31 32 33 34	29 54 30 54 31 53 32 53 33 53	I 1.02	12 15 18 22 25	0.05 .05 .07 .05	29 30 31 32 33	52 52 52 52 51	I I I I.02 I	6	46 50 53 57	0.07 .05 .07 .07	29 30 31 32 33	51 50 50 50 49	I.02 I I I.02 I		21 25 29 33 37	0.07 .07 .07 .07	59 58 57 56	87.1 87.0 86.9 86.8 86.6
35 36 37 38 39	34 53 35 52 36 52 37 52 38 51	I I I.02	29 33 38 42 47	0.07 .08 .07 .08	34 35 36 37 38	51 50 50 49	I I.02 I I.02 I		6 10 15 20 25	0.07 .08 .08 .08	34 35 36 37 38	49 49 48 48 47	I I.02 I I.02 I	7	42 47 52 58 4	80.0 80. 01. 01.	55 54 53 52 51	86.5 86.4 86.2 86.1 86.0
40 41 42 43 44	39 51 40 51 41 50 42 50 43 50	I.02 I I	52 57 6 3 9	0.08 .10 .10 .10	39 40 41 42 43	49 49 48 48 47	I I.02 I I.02 I		31 37 43 49 56	0.IO .IO .IO .I2	39 40 41 42 43	47 46 46 45 45	I.02 I I.02 I I.02		10 16 23 30 37	0.10 .12 .12 .12	50 49 48 47 46	85.8 85.7 85.5 85.4 85.2
45	44 49		21		44	47		7	3		44	44			45		45	85.0
4	а	$\frac{60'}{\Delta}$	b	<u>Δ</u> 60'	a		$\frac{\epsilon_{\mathbf{O'}}}{\Delta}$	l	b	<u>Δ</u> 6ο'	a		<u>6ο'</u> Δ	t		$\frac{\Delta}{60'}$		а
t		d = 4	° 30′				d = 5	° 0′	,			a	l=5	30)′			

10.39

11.43

N.																		1\	1
\ b		a = 4	° 3	0′	-			a = 8	5° 0) ′				a = 5	° 3	0′		$\setminus c$	a
$B \setminus$	h	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	$\frac{d}{}$	6ο' Δ	z	t	<u>Δ</u> 6ο'	$C \setminus$	β
° 45 46 47 48 49	0 / 44 49 45 49 46 49 47 48 48 48	I I I.02 I I.02	6	21 28 35 42 50	0.12 .12 .12 .13	° 44 45 46 47 48	47 46 46 45 45	I.02 I I.02 I I.02	7	3 11 19 27 36	0.13 .13 .13 .15	0 44 45 46 47 48	44 44 43 42 42	I I.02 I.02 I I.02	8	45 53 2 11 21	0.13 .15 .15 .17	° 45 44 43 42 41	85.0 84.8 84.7 84.5 84.3
50 51 52 53 54	49 47 50 47 51 46 52 46 53 45	I I.02 I I.02 I	7	59 8 17 27 38	0.15 .15 .17 .18	49 50 51 52 53	44 44 43 43 42	I I.02 I I.02 I.02	8	45 55 5 16 28	0.17 .17 .18 .20	49 50 51 52 53	41 40 39 38	I I.02 I.02 I.02 I	9	31 42 53 5 18	0.18 .18 .20 .22 .23	40 39 38 37 36	84.1 83.9 83.6 83.4 83.2
55 56 57 58 59	54 45 55 44 56 44 57 43 58 42	I.02 I I.02 I.02 I	8	49 I I 3 27 42	0.20 .20 .23 .25	54 55 56 57 58	41 40 39 38	I I.02 I.02 I.02 I.02	9	40 53 7 22 38	0.22 .23 .25 .27 .30	54 55 56 57 58	38 37 36 35 34	I.02 I.02 I.02 I.02 I.02	10	32 46 2 18 35	0.23 .27 .27 .28 .32	35 34 33 32 31	82.9 82.6 82.4 82.1 81.7
60 61 62 63 64	59 42 60 41 61 40 62 39 63 38	I.02 I.02 I.02 I.02 I.02	9	57 13 31 50 11	0.27 .30 .32 .35 .37	59 60 61 62 63	37 36 35 34 33	I.02 I.02 I.02 I.02 I.02	10	56 14 33 54 17	0.30 .32 .35 .38 .42	59 60 61 62 63	33 32 30 29 28	I.02 I.03 I.02 I.02 I.03	11	54 14 35 58 23	0.33 ·35 ·38 ·42 ·45	30 29 28 27 26	81.4 81.1 80.7 80.3 79.9
65 66 67 68 69	64 37 65 36 66 35 67 34 68 33	1.02 1.02 1.02 1.02 1.03	11	33 57 23 52 23	0.40 •43 •48 •52 •57	64 65 66 67 68	32 31 29 28 26	I.02 I.03 I.02 I.03 I.02	12	42 8 37 9 43	0.43 .48 .53 .57 .63	64 65 66 67 68	26 25 23 21 19	I.02 I.03 I.03 I.03 I.03	13 14 15	50 19 51 25 2	0.48 •53 •57 .62 .68	25 24 23 22 21	79.4 78.9 78.4 77.8 77.2
70 71 72 73 74	69 31 70 30 71 28 72 26 73 24	1.02 1.03 1.03 1.03 1.05	13 14 15	57 35 17 4 56	0.63 .70 .78 .87 .98	69 70 71 72 73	25 23 20 18 15	1.03 1.05 1.03 1.05 1.05	14 15 16 17	21 48 40 37	0.68 •77 .87 •95	69 70 71 72 73	17 15 12 9	1.03 1.05 1.05 1.05	16 17 18	43 28 18 14 15	0.75 .83 .93 1.02 1.15	20 19 18 17 16	76.5 75.8 75.0 74.1 73.1
75 76 77 78 79	74 21 75 18 76 15 77 12 78 8	1.05 1.05 1.05 1.07 1.09	16 18 19 20 22	55 1 17 44 25	1.10 1.27 1.45 1.68 1.97	74 75 76 77	9 5 1 56	1.05 1.07 1.07 1.09 1.11	18 19 21 22 24	41 53 15 49 38	1.20 1.37 1.57 1.82 2.10	74 75 76 77	3 59 54 49 43	1.07 1.09 1.09 1.11 1.13	20 21 23 24 26	24 42 10 51 47	1.30 1.47 1.68 1.93 2.23	15 14 13 12 11	72.0 70.7 69.3 67.7 65.9
80 81 82 83 84	79 3 57 80 50 81 41 82 30	1.11 1.13 1.18 1.22 1.28	24 26 29 32 36	23 42 29 51 59		78 79 80 81 82	50 43 34 24 12	1.13 1.18 1.20 1.25 1.36	26 29 32 35 39	44 13 9 40 56		78 79 80 81	36 28 18 6 52	1.15 1.20 1.25 1.30 1.43	29 31 34 38 42	37 41 19 39	2.60	10 9 8 7 6	63.7 61.2 58.2 54.6 50.3
85 86 87 88 89	83 17 59 84 36 85 5 23		42 48 56 66 77	5 27 23 5 30		83 84	56 36 10 37 54	1.50 1.76 2.22 3.53 10.0	45 51 59 68 78	7 26 7 15 43		82 83 84	34 12 44 9 25	1.58 1.88 2.40 3.75 12.0	47 54 61 70 79	51 28 5 44		5 4 3 2 1	45.1 38.7 31.0 21.8 11.3
90	30		90	0		85	0		90	0			30		90	0		0	0.0
4	а	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	1	b	<u>Δ</u> 60'	a	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t		d=4° 30′						d =	5° ()′				d = 5	° 3	0′			

8		a = 0	6° 0′				$a = \epsilon$	3° 3	0′				a = '	7° 0	,		\ c	\ a
B	h	<u>6ο'</u> Δ	Z t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	1	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	0 0 1 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.02 1 1 1 1.02	6 0	.00	0 I 2 3	0 59 59 58	I I.02 I I.02 I	6	30 30 30 31 31	.00	2 3	0 59 59 58	I I.02 I I.02 I	7	0 0 0 1 1	0.00	90 89 88 87 86	90.0 89.9 89.8 89.7 89.5
5 6 7 8 9	4 58 5 58 6 58 7 57 8 57	I I.02	1 2 3 4 5	0.02 .02 .02 .02	4 5 6 7 8	58 58 57 57 57	I I.02 I I I.02		31 32 33 34 35	0.02 .02 .02 .02	4 5 6 7 8	58 57 57 56 56	I.02 I I.02 I I.02		2 2 3 4 5	0.00 .02 .02 .02	85 84 83 82 81	89.4 89.3 89.2 89.1 89.0
10 11 12 13 14	9 57 10 56 11 56 12 56 13 55	I I I,02	6 7 8 9	0.02 .02 .02 .03	9 10 11 12 13	56 56 55 55 54	I I.02 I I.02 I		36 37 39 40 42	0.02 .03 .02 .03	9 10 11 12 13	55 55 54 54	I I.02 I I.02		6 8 9 11 13	0.03 .02 .03 .03	80 79 78 77 76	88.9 88.7 88.6 88.5 88.4
15 16 17 18 19	14 55 15 55 16 54 17 54 18 54	I.02 I I	13 14 16 18 21	0.02 .03 .03 .05	14 15 16 17 18	54 54 53 53 52	I I.02 I I.02 I		44 46 48 50 52	0.03 .03 .03 .03	14 15 16 17 18	53 53 52 52 51	I I.02 I I.02 I		15 17 19 21 24	0.03 .03 .03 .05	75 74 73 72 71	88.3 88.1 88.0 87.9 87.8
20. 21 22 23 24	19 53 20 53 21 52 22 52 23 52	I.02	23 25 28 31 34	0.03 .05 .05 .05	19 20 21 22 23	52 52 51 51 50	I I.02 I I.02 I	7	55 57 0 3 6	0.03 .05 .05 .05	19 20 21 22 23	51 50 50 49 49	I.02 I I.02 I I.02		27 30 33 36 39	0.05 .05 .05 .05	70 69 68 67 66	87.6 87.5 87.4 87.2 87.1
25 26 27 28 29	24 51 25 51 26 50 27 50 28 50	I.02 I	37 40 44 47 51	0.05 .07 .05 .07	24 25 26 27 28	50 49 49 48 48	I.02 I I.02 I I.02		10 13 17 21 25	0.05 .07 .07 .07	24 25 26 27 28	48 48 47 46 46	I I.02 I.02 I I.02		43 47 51 55 59	0.07 .07 .07 .07	65 64 63 62 61	87.0 86.8 86.7 86.6 86.4
30 31 32 33 34	29 49 30 49 31 48 32 48 33 47	I.02	55 59 7 4 9	0.07 .08 .08 .08	29 30 31 32 33	47 47 46 46 45	I I.02 I I.02 I		30 34 39 44 49	0.07 .08 .08 .08	29 30 31 32 33	45 45 44 43 43	I I.02 I.02 I I.02	8	4 9 14 20 26	80.0 80. 01. 01.	60 59 58 57 56	86.3 86.1 86.0 85.8 85.6
35 36 37 38 39	34 47 35 46 36 46 37 45 38 45	I.02	19 24 30 36 42	0.08 .10 .10 .10	34 35 36 37 38	45 44 43 43 42	I.02 I.02 I I.02 I.02	8	55 1 7 14 21	0.10 .10 .12 .12	34 35 36 37 38	42 41 41 40 39	I.02 I I.02 I.02 I		32 38 45 52 59	0.10 .12 .12 .12	55 54 53 52 51	85.5 85.3 85.1 84.9 84.8
40 41 42 43 44	39 44 40 44 41 43 42 42 43 42	I.02 I.02	49 56 8 3 11 19	0.12 .12 .13 .13	39 40 41 42 43	41 40 39 39	I I.02 I.02 I I.02	9	28 35 43 51 0			39 38 37 36 35	I.02 I.02 I.02 I.02 I.02	9	6 14 23 32 41	0.13 .15 .15 .15	50 49 48 47 46	84.6 84.4 84.2 84.0 83.8
45	44 41	1	27		44	38			9		44	34			51		45	83.5
$ _t$	а	$\frac{60'}{\Delta}$	b	<u>∆</u> 60′	а	ı	$\frac{60'}{\Delta}$	l	6	$\frac{\Delta}{60'}$		a	<u>6ο′</u> Δ	b		$\frac{\Delta}{60'}$		a
		d = 6	3° 0′				d = 6	° 30)′				d = 7	7° 0′	,			

8			a = 0	3° 0)′				a = 6	s° 30)′				<i>a</i> =	7° ()*		\ c	a
$B \setminus$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	$c \setminus$	β
45 46 47 48 49	44 45 46 47 48	41 41 40 39 38	I I.02 I.02 I.02 I	8	27 36 46 56	0.15 .17 .17 .17	44 45 46 47 48	38 37 36 36 35	I.02 I.02 I I.02 I.02	9	9 19 29 40 51	0.17 .17 .18 .18	44 45 46 47 48	34 34 33 32 31	I I.02 I.02 I.02 I.02	9	51 1 12 24 36	0.17 .18 .20 .20	45 44 43 42 41	83.5 83.3 83.1 82.8 82.6
50 51 52 53 54	49 50 51 52 53	38 37 36 35 34	I.02 I.02 I.02 I.02 I.02	10	17 29 41 54 8	0.20 .20 .22 .23 .25	49 50 51 52 53	34 33 32 31 30	I.02 I.02 I.02 I.02 I.02	10	3 16 29 43 58	0.22 .22 .23 .25 .27	49 50 51 52 53	30 29 27 26 25	1.02 1.03 1.02 1.02 1.02	11	49 2 17 32 48	0.22 .25 .25 .27 .28	40 39 38 37 36	82.3 82.0 81.8 81.5 81.1
55 56 57 58 59	54 55 56 57 58	33 32 31 30 29	I.02 I.02 I.02 I.02 I.02	11	23 39 55 13 32	0.27 .27 .30 .32 .33	54 55 56 57 58	29 27 26 25 24	1.03 1.02 1.02 1.02 1.03	11	14 31 49 8 28	0.28 .30 .32 .33 .37	54 55 56 57 58	24 22 21 19 18	I.03 I.02 I.03 I.02 I.03	13	5 23 42 3 25	0.30 .32 .35 .37 .38	35 34 33 32 31	80.8 80.5 80.1 79.7 79.3
60 61 62 63 64	59 60 61 62 63	28 26 25 23 22	I.03 I.02 I.03 I.02 I.03	12	52 14 37 2 29	0.37 .38 .42 .45 .48	59 60 61 62 63	22 21 19 17 15	1.02 1.03 1.03 1.03 1.03	13	50 13 38 5 34	0.38 .42 .45 .48 .52	59 60 61 62 63	16 14 12 10 8	I.03 I.03 I.03 I.03	14	48 13 39 8 39	0.42 •43 •48 •52 •55	30 29 28 27 26	78.9 78.5 78.0 77.5 76.9
65 66 67 68 69	64 65 66 67 68	20 18 16 14	1.03 1.03 1.03 1.03 1.05	14 15 16	58 29 3 40 21	0.52 •57 .62 .68 •73	64 65 66 67 68	13 11 9 6 4	1.03 1.03 1.05 1.03 1.05	15 16 17	5 39 15 55 38	0.57 .60 .67 .72 .78	64 65 66	6 4 58 55	1.03 1.05 1.05 1.05	16 17 18	12 48 27 9 55	0.60 .65 .70 .77 .83	25 24 23 22 21	76.4 75.7 75.1 74.3 73.6
70 71 72 73 74	69 70 71 72	9 6 3 0 56	1.05 1.05 1.05 1.07	17 18 19 20	5 54 47 46 52	0.82 .88 .98 1.10	69 70 71 72	58 54 50 46	1.05 1.07 1.07 1.07 1.09	18 19 20 21 22	25 17 14 17 27	0.87 .95 1.05 1.17 1.30	68 69 70 71 72	52 48 44 39 34	1.07 1.07 1.09 1.09	19 20 21 22 24	45 40 40 47 1	0.92 1.00 1.12 1.23 1.37	20 19 18 17 16	72.7 71.8 70.8 69.7 68.5
75 76 77 78 79	73 74 75 76 77	52 47 42 36 29	1.09 1.09 1.11 1.13 1.15	22 23 25 26 28	6 29 3 49 51	1.38 1.57 1.77 2.03 2.33	73 74 75 76 77	41 36 30 23 15	1.09 1.11 1.13 1.15 1.18	23 25 26 28 30	45 13 52 43 50	1.47 1.65 1.85 2.12 2.43	73 74 75 76	29 23 16 8 59	1.11 1.13 1.15 1.18 1.20	25 26 28 30 32	23 55 38 34 46	1.53 1.72 1.93 2.20 2.50	15 14 13 12 11	67.1 65.6 63.9 62.0 59.8
80 81 82 83 84	78 79 80 81	21 12 1 47 31	1.18 1.22 1.30 1.36 1.46	31 33 37 40 45	54 4 47 9	2.72	78 79 80 81	6 55 42 28 10	1.22 1.28 1.30 1.43 1.58	33 36 39 43 47	16 4 18 4 28	2.80	77 78 79 80	49 37 23 7 47	1.25 1.30 1.36 1.50 1.62	35 38 41 45 49	16 8 25 13 36	2.87	10 9 8 7 6	57·3 54·4 51.1 47·3 42·9
85 86 87 88 89	82 83	12 48 18 41 55	1.67 2.00 2.61 4.29 12.0		20 26 32 38 34		82 83	48 22 51 12 25	1 4		35 31 20 58 17		81 82	24 57 23 43 56	1.82 2.31 3.00 4.62 15.0	54 60 66 74 81	38 24 55 8 55		5 4 3 2 1	37·7 31·7 24.8 17·1 8.8
90	84	0		90	0		-	30		90	0		83	0		90			0	0.0
$ _t$		a	<u>δο'</u> Δ		b	$\frac{\Delta}{60'}$		a	60' <u>∆</u>		b	$\frac{\Delta}{60'}$	L	a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
			<i>d</i> =	6° C)′				d = 6	3° 3	0′				d =	7° ()′		j.	

\	-														_			1
$\setminus b$		a = 7	° 30′				a = 3	8° ()′				a = 8	3° 3	0′		c	\ a
$B \setminus$	h d	6ο ′ Δ	Z	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	*	<u>Δ</u> 6ο'	h	d	$\frac{60'}{\Delta}$	Z	t	<u>∆</u> 60′	$C \setminus$	β
0 I 2 3 4	0 0 59 1 59 2 58 3 58	I.02 I I.02 I I.02	7 30 30 30 31 31	0.00	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	59 59 58 58	I.02 I I.02 I I.02	8	0 0 0 I I	0.00 .00 .02 .00	0 1 2 3		I.02 I I.02 I.02	8	30 30 30 31 31	0.00 .00 .02 .00	90 89 88 87 86	90.0 89.9 89.7 89.6 89.4
5 6 7 8 9	4 57 5 57 6 56 7 56 8 55	I I.02 I I.02 I	32 32 33 34 35	0.00 .02 .02 .02	4 5 6 7 8	57 56 56 55	I.02 I I.02 I I.02		3 4 5 6	0.02 .02 .02 .02 .02	4 5 6 7 8	57 56 55 55 54	I.02 I.02 I I.02 I.02		32 33 34 35 36	0.02 .02 .02 .02	85 84 83 82 81	89.3 89.2 89.0 88.9 88.7
10 11 12 13 14	9 55 10 54 11 54 12 53 13 53	I.02 I I.02 I I.02	37 38 40 42 44	0.02 .03 .03 .03	9 10 11 12 13	54 53 53 52 52	I.02 I I.02 I I.02		7 9 11 13 15	0.03 .03 .03 .03	9 10 11 12 13	53 53 52 51 51	I I.02 I.02 I I.02		38 39 41 43 45	0.02 .03 .03 .03	80 79 78 77 76	88.6 88.5 88.3 88.2 88.0
15 16 17 18 19	14 52 15 52 16 51 17 50 18 50	I I.02 I.02 I I.02	46 48 50 53 56	0.03 .03 .05 .05	14 15 16 17 18	51 50 50 49 48	I.02 I I.02 I.02		17 19 22 24 27	0.03 .05 .03 .05	14 15 16 17 18	50 49 48 48 47	I.02 I.02 I I.02 I.02		48 50 53 56 59	0.03 .05 .05 .05	75 74 73 72 71	87.9 87.7 87.6 87.4 87.3
20 21 22 23 24	19 49 20 49 21 48 22 48 23 47	I I.02 I I.02 I.02	8 2 5 8 12	0.05 .05 .05 .07	19 20 21 22 23	48 47 46 46 45	I.02 I.02 I I.02 I.02		30 34 37 41 45	0.07 .05 .07 .07	19 20 21 22 23	46 46 45 44 43	I I.02 I.02 I.02 I.02	9	2 6 9 13	0.07 .05 .07 .07	70 69 68 67 66	87.1 86.9 86.8 86.6 86.5
25 26 27 28 29	24 46 25 46 26 45 27 44 28 44	I I.02 I.02 I I.02	16 20 24 29 34	0.07 .07 .08 .08	24 25 26 27 28	44 44 43 42 41	1 1.02 1.02 1.02	9	49 53 58 3	0.07 .08 .08 .08	24 25 26 27 28	42 42 41 40 39	I I.02 I.02 I.02 I.02		22 26 31 36 42	0.07 .08 .08 .10	65 64 63 62 61	86.3 86.1 85.9 85.8 85.6
30 31 32 33 34	29 43 30 42 31 42 32 41 33 40	1.02 1 1.02 1.02 1.02	39 44 49 55 9 1	0.08 .08 .10 .10	29 30 31 32 33	41 40 39 38 37	I.02 I.02 I.02 I.02		13 19 25 31 37	0.10 .10 .10 .10	29 30 31 32 33	38 37 36 36 35	I.02 I.02 I I.02 I.02	10	48 54 0 6 13	0.10 .10 .10 .12	59 58 57 56	85.4 85.2 85.0 84.8 84.6
35 36 37 38 39	34 39 35 39 36 38 37 37 38 36	1 1.02 1.02 1.02 1.02	8 15 22 29 37	0.12 .12 .12 .13	34 35 36 37 38	37 36 35 34 33	I.02 I.02 I.02 I.02 I.02	10	44 51 59 7 15	0.12 .13 .13 .13	34 35 36 37 38	34 33 32 31 30	1.02 1.02 1.02 1.02 1.03		20 28 36 44 53	0.13 .13 .13 .15	55 54 53 52 51	84.4 84.2 84.0 83.8 83.5
40 41 42 43 44	39 35 40 35 41 34 42 33 43 32	I I.02 I.02 I.02 I.02	45 54 10 3 12 22	0.15 .15 .15 .17	39 40 41 42 43	32 31 30 29 28	I.02 I.02 I.02 I.02 I.02	11	24 33 43 53 3	0.15 .17 .17 .17	39 40 41 42 43	28 27 26 25 24	1.02 1.02 1.02 1.02 1.03	11	2 12 22 33 44	0.17 .17 .18 .18	50 49 48 47 46	83.3 83.1 82.9 82.6 82.3
45	44 31		33		44	27			14		44	22			56		45	82.1
	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	C	ı	$\frac{60'}{\Delta}$	1	,	$\frac{\Delta}{60'}$		a
t			° 30′				d = 8	3° 0)′				d=8	° 30) [']			

\ b			a = 7	° 3()′				a = 8	3° 0	,				a = 8	° 30)′		\ c	\ a
B	h	d	<u>6ο′</u> Δ	Z	1	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	Z	t	<u>Δ</u> 6ο'	h	d	$\frac{60'}{\Delta}$	Z	*	<u>Δ</u> 6ο'	$c \setminus$	β
9 45 46 47 48 49	0 44 45 46 47 48	31 30 29 28 26	I.02 I.02 I.02 I.03 I.02	10	33 44 56 8 21	0.18 .20 .20 .22 .23	0 44 45 46 47 48	27 26 24 23 22	1.02 1.03 1.02 1.02 1.03	12	14 26 39 52 6	0.20 .22 .22 .23 .23	0 44 45 46 47 48	22 21 20 18 17	I.02 I.02 I.03 I.02 I.03	1 I 1 2	56 9 22 36 50	0.22 .22 .23 .23 .25	° 45 44 43 42 41	82.1 81.8 81.5 81.2 80.9
50 51 52 53 54	49 50 51 52 53	25 24 23 21 20	1.02 1.02 1.03 1.02 1.03	12	35 49 4 20 37	0.23 .25 .27 .28	49 50 51 52 53	20 19 18 16 14	1.02 1.02 1.03 1.03 1.02	13	20 35 52 9 27	0.25 .28 .28 .30 .32	49 50 51 52 53	15 14 12 10 9	1.02 1.03 1.03 1.02 1.03	13	5 22 39 57 16	0.28 .28 .30 .32 .33	40 39 38 37 36	80.6 80.2 79.9 79.5 79.2
55 56 57 58 59	54 55 56 57 58	18 17 15 13	1.02 1.03 1.03 1.02 1.03	13	56 15 35 57 20	0.32 •33 •37 •38 •42	54 55 56 57 58	13 11 9 7 5	1.03 1.03 1.03 1.03 1.03	14	46 6 28 51 16	0.33 .37 .38 .42 .43	54 55 56 57	7 5 3 0 58	1.03 1.03 1.05 1.03	15	36 58 21 45	0.37 .38 .40 .43 .47	35 34 33 32 31	78.8 78.3 77.9 77.4 77.0
60 61 62 63 64	59 60 61 62 63	10 8 5 3	1.03 1.05 1.03 1.03 1.05	15	45 12 40 10 43	0.45 .47 .50 .55 .58	59 60 61 62	3 58 56 53	1.03 1.05 1.03 1.05 1.05	16	42 10 40 12 47	0.47 .50 .53 .58 .62	58 59 60 61 62	56 53 50 47 44	1.05 1.05 1.05 1.05	17	39 8 39 13 50	0.48 •52 •57 •62 •65	30 29 28 27 26	76.4 75.9 75.3 74.7 74.1
65 66 67 68 69	64 65 66 67	58 55 52 49 46	1.05 1.05 1.05 1.05 1.07	17 18 19 20	18 56 37 22 10	0.63 .68 .75 .80	63 64 65 66 67	50 47 43 39 35	1.05 1.07 1.07 1.07 1.07	18 19 20 21	24 4 47 34 25	0.67 •72 •78 •85 •92	63 64 65 66 67	41 37 33 29 25	1.07 1.07 1.07 1.07 1.09	19 20 21 22	29 11 56 45 38	0.70 .75 .82 .88 .97	25 24 23 22 21	73.4 72.6 71.8 71.0 70.1
70 71 72 73 74	68 69 70 71 72	42 38 33 28 22	1.07 1.09 1.09 1.11	21 22 23 24 25	3 1 5 15 32	0.97 1.07 1.17 1.28 1.43	68 69 70 71 72	31 26 21 16	1.09 1.09 1.09 1.11 1.13	22 23 24 25 27	20 21 27 40 1	1.02 1.10 1.22 1.35 1.48	68 69 70 71	20 15 9 3 56	1.09 1.11 1.11 1.13 1.15	23 24 25 27 28	36 39 48 4 28	1.05 1.15 1.27 1.40 1.53	20 19 18 17 16	69.1 68.0 66.8 65.5 64.1
75 76 77 78 79	73 74 75 76	16 9 1 53 43	1.13 1.15 1.15 1.20 1.25	26 28 30 32 34	58 33 20 20 36	1.58 1.78 2.00 2.27 2.57	73 74 75 76	3 55 46 37 26	1.15 1.18 1.18 1.22 1.28	28 30 32 34 36	30 9 0 4 23	1.65 1.85 2.07 2.32 2.60	72 73 74 75 76	48 40 30 20 8	1.15 1.20 1.20 1.25 1.30	30 31 33 35 38	0 42 36 43 4	1.70 1.90 2.12 2.35 2.65	15 14 13 12	62.6 60.8 58.9 56.8 54.4
80 81 82 83 84	77 78 79 80	31 18 3 45 24	1.28 1.33 1.43 1.54 1.67	37 40 43 47 51	10 5 25 13 33	2.92 3·33	77 78 79 80	13 59 42 23 1	1.30 1.40 1.46 1.58 1.76	38. 41 45 49 53	59 56 17 4 22	2.95 3·35	77 78 79	54 39 21 0 37	1.33 1.43 1.54 1.62 1.88	40 43 47 50 55	43 41 2 48 2	2.97 3.35 3.77	10 9 8 7 6	51.7 48.7 45.3 41.4 37.1
85 86 87 88 89	81 82	0 30 56 14 26	2.00 2.31 3.33 5.00 15.0	56 62 68 75 82	30 5 19 9 27		81	35 4 28 45 56	2.07 2.50 3.53 5.45 15.0	58 63 69 76 82	12 36 35 3 55		80 81	9 37 59 16 27	2.14 2.73 3.53 5.45 20.0		45 59 42 51 20		5 4 3 2 1	32.2 26.7 20.6 14.1 7.1
90		30	6-1	90	0		82	0		90	0			30		90	0		0	0.0
$ _t$	0		<u>δο'</u> Δ		b	$\frac{\Delta}{60'}$	0	ι	<u>6ο′</u> Δ		b	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$		<i>b</i>	$\frac{\Delta}{60'}$		a
			d = 7	° 30)′				d = 3	8° 0	'	1			d = 8	° 30	0′			

65

E

8			a = 9	9° 0	,				a = 9	° 30)′				a = 1	0° 0	r		c	a
$B \setminus$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	\overline{z}	t	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	c	β
0 I 2 3 4	0 0 1 2 3	59 59 58 57	I.02 I I.02 I.02 I.02	9	0 0 0 I I	0.00 .00 .02 .00	0 0 1 2 3	59 58 57 57	I.02 I.02 I.02 I	°9	30 30 30 31 31	0.00 .00 .02 .00	0 I 2 3	59 58 57 56	I.02 I.02 I.02 I.02 I.02	10	0 0 0 1 1	.00	90 89 88 87 86	90.0 89.8 89.7 89.5 89.3
5 6 78 9	4 5 6 7 8	56 56 55 54 53	I I.02 I.02 I.02	5 1	2 3 4 5 7	.02	4 5 6 7 8	56 55 54 53 53	I.02 I.02 I.02 I		32 33 34 35 37	.02 .02 .02 .03	4 5 6 7 8	55 54 53 52	I I.02 I.02 I.02 I.02		2 3 4 6 7	.02 .03 .02 .03	85 84 83 82 81	89.2 89.0 88.8 88.7 88.5
10 11 12 13 14	9 10 11 12 13	53 52 51 50 49	1.02 1.02 1.02 1.02		8 10 12 14 16	0.03 .03 .03 .03	9 10 11 12 13	52 51 50 49 48	I.02 I.02 I.02 I.02 I.02		39 41 43 45 47	0.03 .03 .03 .03	9 10 11 12 13	51 50 49 48 47	I.02 I.02 I.02 I.02 I.02		9 11 13 15	0.03 .03 .03 .05	80 79 78 77 76	88.3 88.1 88.0 87.8 87.6
15 16 17 18 19	14 15 16 17 18	49 48 47 46 45	I.02 I.02 I.02 I.02		19 21 24 27 30	0.03 .05 .05 .05	14 15 16 17 18	47 46 46 45 44	I.02 I I.02 I.02 I.02	10	50 53 56 59 2	0.05 .05 .05 .05	14 15 16 17 18	46 45 44 43 42	1.02 1.02 1.02 1.02 1.02		21 24 27 30 34	0.05 .05 .05 .07	75 74 73 72 71	87.5 87.3 87.1 86.9 86.7
20 21 22 23 24	19 20 21 22 23	45 I 30 0 0 45 I.02 34 0.0 0 44 I.02 38 0 43 I.02 42 0 44 I.02 50 0 41 I.02 55 0.0 30 I.02 IO 0				0.07 .07 .07 .07 .08	19 20 21 22 23	43 42 41 40 39	I.02 I.02 I.02 I.02 I.02		6 10 14 18 23	0.07 .07 .07 .08	19 20 21 22 23	41 40 39 38 37	I.02 I.02 I.02 I.02 I.02		38 42 46 51 56	0.07 .07 .08 .08	70 69 68 67 66	86.6 86.4 86.2 86.0 85.8
25 26 27 28 29	24 25 26 27 28	0 44 1.02 38 1 43 1.02 42 2 42 1.02 46 3 41 1.02 50 5 39 1.02 10 0 7 38 1.02 10 3 37 1.02 10				0.08	24 25 26 27 28	38 37 36 35 34	1.02 1.02 1.02 1.02 1.02		28 33 38 44 50	0.08	24 25 26 27 28	36 35 33 32 31	1.02 1.03 1.02 1.02 1.02	II	1 6 12 18 24	0.08 .10 .10 .10	65 64 63 62 61	85.6 85.4 85.2 85.0 84.8
30 31 32 33 34	29 30 31 32 33	36 35 34 33 32	1.02 1.02 1.02 1.02 1.03		22 28 35 42 49	0.10 .12 .12 .12	29 30 31 32 33	33 32 31 29 28	1.02 1.02 1.03 1.02 1.02	11	56 3 10 17 25	0.12 .12 .12 .13	29 30 31 32 33	30 29 27 26 25	1.02 1.03 1.02 1.02 1.02	12	31 38 45 52 0	0.12 .12 .12 .13	59 58 57 56	84.6 84.3 84.1 83.9 83.6
35 36 37 38 39	34 35 36 37 38	31 34 1.02 35 .1 32 33 1.03 42 .1 33 32 1.03 49 .1 34 30 1.02 57 0.1 35 29 1.02 11 5 .1 36 28 1.02 13 .1					34 35 36 37 38	27 26 25 23 22	1.02 1.02 1.03 1.02 1.02	12	33 41 50 59	0.13 .15 .15 .17	34 35 36 37 38	24 22 21 19 18	1.03 1.02 1.03 1.02 1.03		9 18 27 37 47	0.15 .15 .17 .17	55 54 53 52 51	83.4 83.2 82.9 82.7 82.4
40 41 42 43 44		25 23 22 21 19		12	0.17 .18 .18 .20	39 40 41 42 43	21 19 18 16	1.03 1.02 1.03 1.02 1.03	13	19 30 41 53	0.18 .18 .20 .22	42		1.02 1.03 1.02 1.03 1.03	13	58 9 21 33 46	0.18 .20 .20 .22 .23	50 49 48 47 46	82.1 81.8 81.5 81.3 80.9	
45	44	18	i		38		44	13			19		44	8		14	0		45	80.6
t		a	6 <u>ο'</u> Δ		b	$\frac{\Delta}{60'}$		a	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
			d =	9° C)′				d = 9)° 3	0′				d = 3	10°	0′			

6		a =	9° 0′	:			a = 9	° 3()′				a=1	0° (0′		c	a
B	h	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h	d	60' ▲	Z	t	$\frac{\Delta}{60'}$	h	$\frac{d}{}$	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	C	β
45 46 47 48 49	0 44 18 45 16 46 15 47 13 48 12		12 38 51 13 5 19 34	0.22 .23 .23 .25 .28	44 45 46 47 48	13 12 10 8 6	I.02 I.03 I.03 I.03 I.03	13	19 33 47 2 18	0.23 .23 .25 .27 .28	44 45 46 47 48	8 6 4 2 0	I.03 I.03 I.03 I.03 I.03	14	0 15 30 46 3	0.25 .25 .27 .28	° 45 44 43 42 41	80.6 80.3 80.0 79.6 79.3
50 51 52 53 54	49 10 50 8 51 6 52 4 53 2	1.03	51 14 8 26 45 15 5	0.28 .30 .32 .33 .35	49 50 51 52	4 0 58 56	1.03 1.03 1.03 1.03	15	35 53 12 32 53	•.30 •32 •33 •35 •38	49 50 51 52	58 56 54 52 49	1.03 1.03 1.03 1.05 1.03	16	20 39 59 20 42	·32 ·33 ·35 ·37 ·38	40 39 38 37 36	78.9 78.5 78.1 77.6 77.2
55 56 57 58 59	54 0 58 55 56 56 53 57 51	1.03 1.03 1.05 1.03 1.05	26 49 16 13 39 17 6	0.38 .40 .43 .45 .48	53 54 55 56 57	54 51 49 46 43	1.05 1.03 1.05 1.05	16 17 18	16 40 5 32 0	•42 •45 •47 •50	53 54 55 56 57	47 44 41 38 35	1.05 1.05 1.05 1.05	17	5 30 56 24 54	0.42 •43 •47 •50 •53	35 34 33 32 31	76.7 76.2 75.7 75.2 74.6
60 61 62 63 64	58 48 59 45 60 42 61 39 62 36	1.05 1.05 1.05 1.05 1.07	18 6 39 19 14 52	• 55 • 58 • 63 • 68	58 59 60 61 62	40 37 33 30 26	1.05 1.07 1.05 1.07	19	30 37 14 54	0.55 •57 •62 •67 •70	58 59 60 61 62	32 28 24 20 16	1.07 1.07 1.07 1.07	19 20 21	26 59 35 14 55	0.55 .60 .65 .68	30 29 28 27 26	74.0 73.4 72.8 72.1 71.3
65 66 67 68 69	63 32 64 28 65 24 66 19 67 14	1.07 1.07 1.09 1.09	20 33 21 17 22 4 55 23 51	0.73 .78 .85 .93	63 64 6 5 66 67	22 18 13 8 2	1.07 1.09 1.09 1.11	21 22 23 24 25	36 22 11 4 2	0.77 .82 .88 .97 I.03	63 64 65 66	7 2 56 50	1.09 1.09 1.11 1.11	22 23 24 25 26	39 26 17 12	0.78 .85 .92 1.00	25 24 23 22 21	70.5 69.8 68.8 67.8 66.7
70 71 72 73 74	68 9 69 3 57 70 50 71 42		24 51 25 56 27 8 28 27 29 53	1.08 1.20 1.32 1.43 1.58	68 69 70 71	56 50 43 36 27	1.11 1.13 1.13 1.18 1.18	26 27 28 29 31	4 12 26 47 16	1.13 1.23 1.35 1.48 1.62	67 68 69 70 71	44 37 29 21 12	I.13 I.15 I.15 I.18 I.20	27 28 29 31 32	16 26 43 6 36	1.17 1.28 1.38 1.50 1.67	20 19 18 17 16	65.6 64.4 63.1 61.6 60.1
75 76 77 78 79	72 34 73 24 74 14 75 2 49	1.20 1.25 1.28	31 28 33 13 35 9 37 18 39 42	1.75 1.93 2.15 2.40 2.67	72 73 74 75	18 8 57 44 30	1.20 1.22 1.28 1.30 1.36	32 34 36 38 41	53 40 39 50 15	1.78 1.98 2.18 2.42 2.68	72 73 74 75	2 51 39 26 11	1.22 1.25 1.28 1.33 1.40	34 36 38 40 42	16 5 5 18 44	1.82 2.00 2.22 2.43 2.70	15 14 13 12 11	58.4 56.5 54.4 52.2 49.7
80 81 82 83 84	76 35 77 18 59 78 37 79 12	1.58	42 22 45 21 48 42 52 25 56 35	2.98 3.35 3.72	76 77 78	14 57 36 13 47	1.40 1.54 1.62 1.76 2.00	43 46 50 53 58	56 56 15 56	3.00 3.32 3.68 4.08	76 77 78	54 35 13 49 21	1.46 1.58 1.67 1.88 2.07	45 48 51 55 59	26 25 43 21 20	2.98 3.30 3.63 3.98	10 9 8 7 6	46.9 43.8 40.4 36.6 32.5
85 86 87 88 89	80 9 31 47 57	2.73 3.75 6.00	61 11 66 14 71 43 77 34 83 43		79 80	17 42 3 18 27	2.40 2.86 4.00 6.67 20.0	62 67 72 78 84	29 22 38 13	-	79	50 14 34 48 57	2.50 3.00 4.29 6.67 20.0	63 68 73 78 84	42 25 28 48 21		5 4 3 2 1	27.9 23.0 17.6 11.9 6.0
90	81 0	60'	90 O	Δ	-	30	60'	90		Δ		0	60'	-	, o	Δ	0	0.0
t	a	Δ	9° 0′	60'	-	ı	$\frac{\Delta}{d=9}$		b 	60'	_	<i>1</i>	d=1		b — O'	$\frac{\Delta}{60'}$		a

\ b		a = 1	0° 30	,			a = 1	1° (0′			(a=1	1° 3	0′			\ a
$B \setminus$	h	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 60'	C	β
0 I 2 3 4	0 0 59 1 58 2 57 3 56	1.02 1.02 1.02 1.02 1.02	10 30 30 30 31 33	0 .00	0 I 2 3	59 58 57 56	I.02 I.02 I.02 I.02 I.03	II	0 0 0 1 2	0.00 .00 .02 .02	0 1 2 3	59 58 56 55	1.02 1.02 1.03 1.02 1.02	II	30 30 30 31 32	0.00 .00 .02 .02	90 89 88 87 86	90.0 89.8 89.6 89.4 89.2
5 6 78 9	4 55 5 54 6 53 7 52 8 51	I.02 I.02 I.02 I.02 I.02	3: 3: 3: 3:	3 .03	4 5 6 7 8	54 53 52 51 50	I.02 I.02 I.02 I.02 I.02		3 4 5 6 8	0.02 .02 .02 .03	4 5 6 7 8	54 53 52 50 49	I.02 I.02 I.03 I.02 I.02		33 34 35 37 38	.02 .03 .02 .03	85 84 83 82 81	89.0 88.9 88.7 88.5 88.3
10 11 12 13 14	9 50 10 49 11 48 12 47 13 46	I,02 I,02 I,02 I,02 I,02	4: 4: 4: 4:	2 .03 1 .03 5 .05	9 10 11 12 13	49 48 47 45 44	I.02 I.02 I.03 I.02 I.02		10 12 14 17 20	0.03 .03 .05 .05	9 10 11 12 13	48 47 45 44 43	1.02 1.03 1.02 1.02 1.02		40 42 45 48 51	0.03 .05 .05 .05	80 79 78 77 76	88.1 87.9 87.7 87.5 87.3
15 16 17 18	14 45 15 44 16 42 17 41 18 40	I.02 I.03 I.02 I.02 I.02		.05	14 15 16 17 18	43 42 41 39 38	I.02 I.02 I.03 I.02 I.02		23 26 29 33 37	0.05 .05 .07 .07	14 15 16 17 18	42 40 39 38 36	1.03 1.02 1.02 1.03 1.02	12	54 57 1 5 9	0.05 .07 .07 .07	75 74 73 72 71	87.1 86.9 86.7 86.5 86.2
20 21 22 23 24	19 39 20 38 21 37 22 36 23 34	I.02 I.02 I.02 I.03 I.02	10 12 13 22 23	.08	19 20 21 22 23	37 36 35 33 32	1.02 1.02 1.03 1.02 1.02	12	41 46 51 56 1	0.08 .08 .08 .08	19 20 21 22 23	35 34 32 31 29	1.02 1.03 1.02 1.03 1.02		13 18 23 28 33	0.08 .08 .08 .08	70 69 68 67 66	86.0 85.8 85.6 85.4 85.1
25 26 27 28 29	24 33 25 32 26 31 27 29 28 28	I.02 I.02 I.03 I.02 I.02	3: 3: 4: 5:	.10	24 25 26 27 28	31 29 28 27 25	1.03 1.02 1.02 1.03 1.02		6 12 18 25 32	0.10 .10 .12 .12	24 25 26 27 28	28 26 25 23 22	1.03 1.02 1.03 1.02 1.03	13	39 45 52 59 6	0.10 .12 .12 .12	65 64 63 62 61	84.9 84.7 84.5 84.2 84.0
30 31 32 33 34	29 27 30 26 31 24 32 23 33 21	I.02 I.03 I.02 I.03 I.02	12 20 21 31	3 .13	29 30 31 32 33	24 22 21 19 18	1.03 1.02 1.03 1.02 1.03	13	39 47 55 3	0.13 .13 .13 .15	29 30 31 32 33	20 19 17 15	1.02 1.03 1.03 1.02 1.03		13 21 29 38 47	0.13 .13 .15 .15	60 59 58 57 56	83.7 83.5 83.2 82.9 82.7
35 36 37 38 39	34 20 35 18 36 17 37 15 38 14	I.03 I.02 I.03 I.02 I.03	13	1 .17 1 .17 1 .18	34 35 36 37 38	16 14 13 11	1.03 1.02 1.03 1.03	14	21 31 41 51	0.17 .17 .17 .18	34 35 36 37 38	12 10 8 6 4	1.03 1.03 1.03 1.03	14	57 7 18 29 40	0.17 .18 .18 .18	55 54 53 52 51	82.4 82.1 81.8 81.5 81.2
40 41 42 43 44	39 12 40 10 41 9 42 7 43 5	1.03 1.02 1.03 1.03	39 14 14 1 2	3 .20	39 40 41 42	7 5 3 1 59	I.03 I.03 I.03 I.03	15	14 27 40 53 7	0.22 .22 .22 .23	39 40 41 42	2 0 58 56 54	1.03 1.03 1.03 1.03	15	52 5 19 33 48	0.22 .23 .23 .25 .25	50 49 48 47 46	80.9 80.6 80.3 79.9 79.6
45	44 3		4	1	43	57			22		43	52		16	3		45	79.2
	а	<u>60'</u> Δ	b	$\frac{\Delta}{60'}$	a	ı	<u>6ο′</u> Δ	1	b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$	b)	$\frac{\Delta}{60'}$		a
t	C		0° 30′				d = 1	1° (0′	1		á	l = 11	l° 3	0′			

69

6		a = 2	12° 0′			C	ı = 12	2° 3	0′	,			a = 1	13° C	ľ		\ c	a
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	<u>Δ</u> 6ο'	h	$\frac{d}{}$	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 6ο'	C	β
0 I 2 3 4	0 0 59 1 57 2 56 3 55	1.02 1.03 1.02 1.02 1.03	0 / 12 0 0 0 1 2	0.00	O I 2 3	59 57 56 54	I.02 I.03 I.02 I.03 I.02	12	30 30 30 31 32	0.00	0 I 2 3		I.03 I.02 I.03 I.02 I.03	13	0 0 0 0 1 2	0.00 .00 .02 .02	90 89 88 87 86	90.0 89.8 89.6 89.4 89.1
5 6 78 9	4 53 5 52 6 51 7 49 8 48	1.02 1.02 1.03 1.02 1.02	3 4 5 7 9	0.02 .02 .03 .03	4 5 6 7 8	53 51 50 49 47	I.03 I.02 I.02 I.03 I.02		33 34 35 37 39	0.02 .02 .03 .03	4 5 6 7 8	52 51 49 48 46	1.02 1.03 1.02 1.03 1.03		3 4 6 8 10	.03 .03 .03 .03	85 84 83 82 81	88.9 88.7 88.5 88.3 88.0
10 11 12 13 14	9 47 10 45 11 44 12 43 13 41	1.03 1.02 1.02 1.03 1.02	11 13 16 19 22	0.03 .05 .05 .05	10	46 44 43 41 40	1.03 1.02 1.03 1.02 1.03		41 43 46 49 52	0.03 .05 .05 .05	9 10 11 12 13	44 43 41 40 38	I.02 I.03 I.02 I.03 I.03		12 14 17 20 23	0.03 .05 .05 .05	80 79 78 77 76	87.8 87.6 87.4 87.1 86.9
15 16 17 18 19	14 40 15 38 16 37 17 36 18 34	1.03 1.02 1.02 1.03 1.02	25 28 32 36 40	•••5 ••7 ••7 ••8	14 15 16 17 18	38 37 35 34 32	1.02 1.03 1.02 1.03 1.03	13	56 59 3 7 12	0.05 .07 .07 .08	14 15 16 17 18	36 35 33 31 30	I.02 I.03 I.03 I.02 I.03		26 30 34 39 43	.07 .08 .08	75 74 73 72 71	86.7 86.4 86.2 86.0 85.7
20 21 22 23 24	19 33 20 31 21 30 22 28 23 27	1.03 1.02 1.03 1.02 1.03	45 50 55 13 0 6	0.08	19 20 21 22 23	30 29 27 25 24	1.02 1.03 1.03 1.02 1.03		17 22 27 33 39	0.08 .08 .10 .10	19 20 21 22 23	28 26 24 23 21	1.03 1.03 1.02 1.03 1.03	14	48 53 59 11	0.08	70 69 68 67 66	85.5 85.3 85.0 84.8 84.5
25 26 27 28 29	24 25 25 23 26 22 27 20 28 18	1.03 1.02 1.03 1.03 1.02	12 18 25 32 40	0.10 .12 .12 .13	24 25 26 27 28	22 20 19 17	1.03 1.02 1.03 1.03	14	45 51 58 6 14	0.10 .12 .13 .13	24 25 26 27 28	19 17 15 13	1.03 1.03 1.03 1.03	-	17 24 31 39 47	0.12 .12 .13 .13	65 64 63 62 61	84.2 84.0 83.7 83.4 83.2
30 31 32 33 34	29 17 30 15 31 13 32 11 33 10	1.03 1.03 1.03 1.02 1.03	48 56 14 4 13 23	0.13 .13 .15 .17	29 30 31 32 33	.13 11 9 7 5	1.03 1.03 1.03 1.03		22 30 39 48 58	0.13 .15 .15 .17	29 30 31 32 33	9 7 5 3 1	1.03 1.03 1.03 1.03	15	56 14 24 34	0.15 .15 .17 .17	60 59 58 57 56	82.9 82.6 82.3 82.0 81.7
35 36 37 38 39	34 8 35 6 36 4 37 2 38 0	1.03 1.03 1.03 1.03 1.05	33 43 54 15 6 18	0.17 .18 .20 .20	34 35 36 37	3 59 57 55	1.03 1.03 1.03 1.03	15	9 20 31 43 55	0.18 .18 .20 .20	34 35 36 37	59 56 54 52 49	1.05 1.03 1.03 1.05	16	44 55 7 20 33	0.18 .20 .22 .22 .22	55° 54 53 52° 51	81.4 81.1 80.7 80.4 80.1
40 41 42 43 44,	57 39 55 40 53 41 51 42 48	1.03 1.03 1.03 1.05 1.05	31 44 58 16 12 28	0.22 .23 .23 .27 .27	4I	52 50 47 45 42	1.03 1.05 1.03 1.05	16	8 22 37 52 8	0.23 .25 .25 .27 .28		47 44 41 39 36	1.05 1.05 1.03 1.05	17	46 0 15 31 48	0.23 .25 .27 .28 .28	50 49 48 47 46	79.7 79.3 79.0 78.6 78.2
45	43046	,	44		43	39			25		43	33		18	5.		45	77.8
$egin{bmatrix} z_{t} \\ t \end{bmatrix}$	a	60' Δ	√ <i>b</i>	<u>Δ</u> 6ο'	а	,	$\frac{60'}{\Delta}$	0.	b	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$	b		<u>Δ</u> 60'	.)	a
		d=1	2° 0′ -	11		O	l = 12	2° 3	0′				d = 1	3° 0	-			

-	_						_						_							ī
b			a = 1	12°	0′			C	a=12	2° 3	0′				a = 1	.3° (0′		$\setminus c$	a
B	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
45 46 47 48 49	43 44 45 46 47	46 43 40 38 35	1.05 1.05 1.03 1.05 1.05	16	44 1 19 37 57	0.28 .30 .30 .33 .35	43 44 45 46 47	39 37 34 31 28	1.03 1.05 1.05 1.05	17	25 42 0 20 40	0.28 .30 .33 .33	43 44 45 46 47	33 30 27 24 20	1.05 1.05 1.05 1.07 1.05	18	5 23 42 2 23	0.30 .32 .33 .35 .37	° 45 44 43 42 41	77.8 77.4 76.9 76.5 76.0
50 51 52 53 54	48 49 50 51 52	22	1.05 1.05 1.07 1.05 1.07	19	18 40 3 27 53	0.37 .38 .40 .43 .45	48 49 50 51 52	24 21 18 14 10	1.05 1.05 1.07 1.07	20	2 24 48 13 40	0.37 ·.40 ·42 ·45 ·47	48 49 50 51 52	17 13 9 5	I.07 I.07 I.07 I.07 I.07	20 21	45 9 33 59 27	•.40 •43 •47 •48	40 39 38 37 36	75.5 75.0 74.5 74.0 73.4
55 56 57 58 59	53 54 55 56	15 11 7 3 59	1.07 1.07 1.07 1.07 1.09	20 21 22	20 49 19 51 26	•.48 •50 •53 •58 •60	53 54 55 56	6 2 58 53 48	1.07 1.07 1.09 1.09	2I 22 23	8 38 9 42 17	•.50 •52 •55 •58 •63	53 54 55 56	57 53 48 43 38	1.07 1.09 1.09 1.09	22 23 24	56 26 58 33 9	•.50 •53 •58 •60 •63	35 34 33 32 31	72.8 72.2 71.6 70.9 70.2
60 61 62 63 64	57 58 59 60 61		1.09	23 24 25	2 41 22 5 52	0.65 .68 .72 .78 .83	57 58 59 60 61	43 38 33 27 21	1.09 1.09 1.11 1.11 1.13	24 25 26	55 35 17 2 50	0.67 •70 •75 •80 •85	57 58 59 60 61	33 27 21 15	I.II I.II I.II I.I3 I.I3	25 26 27	47 28 11 57 46	•.68 • 7 2 •77 .82 .88	30 29 28 27 26	69.5 6 .7 67.9 67.0 66.1
65 66 67 68 69	62 63 64 65	26 20 13 5 57	1.11 1.13 1.15 1.15 1.15	26 27 28 29 30	42 36 33 34 40	0.90 •95 1.02 1.10 1.20	62 63 64 65	14 7 59 51 42	1.13 1.15 1.15 1.18 1.18	27 28 29 30 31	41 36 34 37 45	0.92 .97 I.05 I.13 I.20	62 63 64 65	53 45 37 28	I.15 I.15 I.15 I.18 I.20	28 29 30 31 32	39 35 35 39 47	0.93 1.00 1.07 1.13 1.23	25 24 23 22 21	65.1 64.1 63.0 61.8 60.6
70 71 72 73 74	66 67 68 69 70	39 29 18	1.18 1.20 1.22 1.25 1.28	31 33 34 36 37	52 8 31 1 38	1.27 1.38 1.50 1.62 1.77	66 67 68 69	33 23 12 0 48	1.20 1.22 1.25 1.25 1.30	32 34 35 37 38	57 15 39 10 49	1.30 1.40 1.52 1.65 1.77	66 67 68 69	18 7 55 43 30	I.22 I.25 I.25 I.28 I.33	34 35 36 38 39	1 20 46 18 57	1.32 1.43 1.53 1.65 1.78	20 19 18 17 16	59·3 57·8 56·3 54·7 53·0
75 76 77 78 79	71 72 73		1.33 1.33 1.40 1.46 1.54	39 41 43 45 48	24 18 23 38 5	1.90 2.08 2.25 2.45 2.67	70 71 72 73	34 19 2 44 24	1.33 1.40 1.43 1.50 1.58	40 42 44 46 49	35 30 35 50 17	1.92 2.08 2.25 2.45 2.65	70 71 72 73	15 59 42 23	1.36 1.40 1.46 1.54 1.62	41 43 45 48 50	44 40 45 0 26	1.93 2.08 2.25 2.43 2.62	15 14 13 12 11	51.1 49.0 46.8 44.5 41.9
80 81 82 83 84	74 75 76	2 37	1.67 1.71 1.94 2.14 2.40	50 53 56 60 63	45 39 47 10 49	2.90 3.13 3.38 3.65 3.88	74 75 76	2 38 12 42 9	1.67 1.76 2.00 2.22 2.50	51 54 57 61 64	56 48 53 12 45	2.87 3.08 3.32 3.55 3.78	74 75	39 14 46 16 42	1.71 1.88 2.00 2.31 2.61	53 55 58 62 65	3 53 55 10 38	2.83 3.03 3.25 3.47 3.68	10 9 8 7 6	39.2 36.2 33.0 29.6 25.9
85 86 87 88 89		1 22 38 50 58	2.86 3.75 5.00 7.50 30.0		42 50 10 41 18	4.13 4.33 4.52 4.62	77	33 53 9 21 28	3.00 3.75 5.00 8.57 30.0	68 72 76 81 85	32 32 43 30	4.45	76	5 25 40 51 58	3.00 4.00 5.45 8.57 30.0		19 11 14 24 41	3.87 4.05 4.17 4.28 4.32	5 4 3 2 1	22.0 17.9 13.6 9.2 4.6
90	78	0		90	0			30	1	90	0		77	0		90	0		0	0.0
		$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $				$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	(ı	<u>60'</u> Δ		b	<u>Δ</u> 6ο'		a
t			d = 1	2° ()′	1	_	(d=1	2° 3	30′				d = 1	3° (0′	1		

b		a=1	3° 3 0′			a	= 1	4° (0′			(<i>i</i> = 1	4° 3	30′		\ c	a
B	h	<u>6ο′</u> Δ	Z^{t}	Δ 60'	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	58 1 57 2 55 3 53	1.02	13 30 30 30 31 32	.00	2	58 56 55	1.03 1.03 1.02 1.03	14		0.00 .00 .02 .02	0 0 1 2 3	58 56 54 52	1.03 1.03 1.03 1.03	14		0.00 .02 .00 .02	90 89 88 87 86	90.0 89.8 89.5 89.3 89.0
5 6 7 8 9	4 52 5 50 6 48 7 47 8 45		33 34 36 38 40	0.02 .03 .03 .03	5 4 6 4 7 4	49 1 47 1 46 1	1.03 1.03 1.02 1.03		3 4 6 8 10	0.02 .03 .03 .03	4 5 6 7 8	50 48 47 45 43	I.03 I.02 I.03 I.03 I.03		33 35 36 38 40	0.03 .02 .03 .03	85 84 83 82 81	88.8 88.5 88.3 88.1 87.8
10 11 12 13 14	9 43 10 42 11 40 12 38 13 36	I.02 I.03 I.03 I.03 I.02	42 45 48 51 54	•.05 •05 •05 •05	IO 2 II 3 I2	40 1 38 1 36 1	1.03 1.03 1.03 1.02		12 15 18 21 25	0.05 .05 .05 .07	9 10 11 12 13	41 39 37 35 33	1.03 1.03 1.03 1.03 1.03		43 46 49 52 55	•.05 •05 •05 •05	80 79 78 77 76	87.6 87.3 87.1 86.8 86.5
15 16 17 18 19	14 35 15 33 16 31 17 29 18 27	1.03 1.03 1.03 1.03 1.03	58 14 2 6 10	•.07 •07 •07 •08 •08	15 3 16 2	31 1 29 1 27 1	1.03 1.03 1.03 1.03		28 32 37 41 46	0.07 .08 .07 .08	14 15 16 17 18	31 29 27 24 22	I.03 I.03 I.05 I.03 I.03	15	59 3 8 13 18	.08 .08 .08	75 74 73 72 71	86.3 86.0 85.8 85.5 85.2
20 21 22 23 24	19 25 20 24 21 22 22 20 23 18	I.02 I.03 I.03 I.03 I.03	20 25 31 37 43	0.08 .10 .10 .10	20 2 21 1 22 1	21 I 19 I 17 I	1.03 1.03 1.03 1.03	15	52 57 3 9 16	0.08 .10 .10 .12	19 20 21 22 23	20 18 16 14	I.03 I.03 I.03 I.05 I.05		23 29 35 42 48	0.10 .10 .12 .10	70 69 68 67 66	85.0 84.7 84.4 84.1 83.9
25 26 27 28 29	24 16 25 14 26 12 27 10 28 8	1.03 1.03 1.03 1.03 1.05	50 57 15 5 13 21	0.12 .13 .13 .13		8 1	1.05 1.03 1.03 1.03		23 30 38 46 55	0.12 .13 .13 .15	24 25 26 27 28	9 7 4 2 0	1.03 1.05 1.03 1.03	16	55 3 11 19 28	0.13 .13 .13 .15	65 64 63 62 61	83.6 83.3 83.0 82.7 82.4
30 31 32 33 34	29 5 30 3 31 1 59 32 56	1.03 1.03 1.03 1.05 1.03	30 39 48 58 16 9	0.15 .15 .17 .18	30 5 31 5	59 I 57 I 54 I	1.03	16	4 13 23 33 44	0.15 .17 .17 .18	29 30 31 32	57 55 52 49 47	1.03 1.05 1.05 1.03 1.05	17	37 47 57 8	0.17 .17 .18 .18	59 58 57 56	82.0 81.7 81.4 81.1 80.7
35 36 37 38 39	33 54 34 51 35 49 36 46 37 44	1.05 1.03 1.05 1.03 1.05	20 32 44 57 17 10	0.20 .20 .22 .22	34 4 35 4 36 4	16 I 14 I 11 I	1.05	17	56 8 20 33 47	0.20 .20 .22 .23	33 34 35 36 37	44 41 38 35 32	1.05 1.05 1.05 1.05	18	31 44 57 10 24	0.22 .22 .22 .23 .25	55 54 53 52 51	80.4 80.0 79.7 79.3 78.9
40 41 42 43 44	38 41 39 38 40 35 41 32 42 29		24 39 54 18 10 27		39 3	32 I 29 I 26 I		18	2 17 33 50 7	0.25 .27 .28 .28	38 39 40 41 42	29 26 23 19 16	1.05 1.05 1.07 1.05 1.07	19	39 55 11 28 46	0.27 .27 .28 .30 .32	50 49 48 47 46	78.5 78.1 77.7 77.3 76.9
45	43 26		45		43 I	19			25		43	12	1	20	5		45	76.4
+	а	<u>6ο'</u> Δ	b	<u>Δ</u> 60'	a		δο' Δ	l	5	<u>Δ</u> 60'	a.		<u>6ο′</u> Δ	l	6	$\frac{\Delta}{60'}$		a
t		d = 13	3° 30′			d	= 14	۱° C)′			0	l=1	4° 3	30′			

4.011

8		a=13	3° 3	0′				a = 1	4° (0′			C	ı = 14	4° 3	0′		\ c	a
B	h d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	60' Δ	Z	*	Δ 60'	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	43 26 44 23 45 20 46 16 47 13	1.05 1.05 1.07 1.05 1.07	18 19 20	45 4 24 44 6	0.32 •33 •33 •37 •38	43 44 45 46 47	19 16 12 8 4	1.05 1.07 1.07 1.07	19	25 45 5 26 48	0.33 .33 .35 .37	43 44 45 46	8 4 0 56	1.07 1.07 1.07 1.07	20	5 25 46 8 31	0.33 .35 .37 .38	° 45 44 43 42 41	76.4 75.9 75.5 75.0 74.4
50 51 52 53 54	48 9 49 5 50 1 57 51 53	1.07 1.07 1.07 1.07 1.09	2I 22	29 53 18 45 13	•42 •45 •47 •50	48 49 50 51	56 52 48 43	1.07 1.07 1.07 1.09 1.09	2I 22	37 30 59	•43 •45 •48 •52	47 48 49 50 51	52 48 43 38 33	1.07 1.09 1.09 1.09 1.09	22	55 20 47 15 45	•45 •47 •50 •52	40 39 38 37 36	73.9 73.4 72.8 72.2 71.6
55 56 57 58 59	52 48 53 43 54 38 55 33 56 28	1.09 1.09 1.09 1.11	23 24 25	43 14 47 22 0	•55 •58 •63	52 53 54 55 56	38 33 28 22 16	1.09 1.11 1.11 1.11	23 24 25	30 2 36 12 50	•.53 •57 •60 •63 •67	52 53 54 55 56	28 23 17 11 5	1.09	24 25 26	16 49 24 1 40	0.55 .58 .62 .65	35 34 33 32 31	70.9 70.3 69.6 68.8 68.1
60 61 62 63 64	57 22 58 16 59 9 60 2 55	I.II I.I3 I.I3 I.I3 I.I3	26 27 28	39 21 5 52 42	•.7° •73 •78 •83 •9°	57 58 59 60	10 4 57 50 42	1.11 1.13 1.13 1.15 1.15	26 27 28 29	30 13 59 47 38	•.72 •77 .80 .85	57 58 59 60	59 52 45 37 29	1.13 1.13 1.15 1.15	27 28 29 30	21 5 51 40 32	•.73 •77 .82 .87 •93	30 29 28 27 26	67.3 66.4 65.5 64.6 63.6
65 66 67 68 69	61 48 62 40 63 31 64 22 65 12	1.15 1.18 1.18 1.20 1.20	29 30 31 32 33	36 33 34 39 49	0.95 1.02 1.08 1.17 1.25	61 62 63 64	34 25 16 7 56	1.18 1.18 1.18 1.22 1.22	30 31 32 33 34	32 31 33 39 50	0.98 1.03 1.10 1.18 1.25	61 62 63	20 II I 51 40	1.18 1.20 1.20 1.22 1.25	31 32 33 34 35	28 27 30 37 49	0.98 1.05 1.12 1.20 1.28	25 24 23 22 21	62.6 61.5 60.3 59.1 57.8
70 71 72 73 74	66 2 50 67 38 68 25 69 11	1.25 1.25 1.28 1.30 1.36	35 36 37 39 41	4 24 51 24 3	1.33 1.45 1.55 1.65 1.80	65 66 67 68	45 33 20 7 52	1.25 1.28 1.28 1.33 1.36	36 37 38 40 42	5 27 54 27 8	1.37 1.45 1.55 1.68 1.80	65 66 67 68	28 16 2 48 32	1.25 1.30 1.30 1.36 1.40	37 38 39 41 43	6 28 56 30 11	1.37 1.47 1.57 1.68 1.80	20 19 18 17 16	56.4 54.9 53.3 51.6 49.8
75 76 77 78 79	55 70 39 71 21 72 1 39	1.36 1.43 1.50 1.58 1.67	42 44 46 49 51	51 47 52 6 31	1.93 2.08 2.23 2.42 2.60	69 70 71 72	36 18 59 38 16	1.43 1.46 1.54 1.58 1.71	43 45 47 50 52	56 52 57 11 35	1.93 2.08 2.23 2.40 2.57	69 70 71	15 57 37 16 52	1.43 1.50 1.54 1.67 1.71	44 46 48 51 53	59 55 59 12 35	1.93 2.07 2.22 2.38 2.53	15 14 13 12	47.9 45.9 43.7 41.3 38.8
80 81 82 83 84	73 15 49 74 21 49 75 15	1.76 1.88 2.14 2.31 2.73	54 56 59 63 66	7 55 54 5 28	2.80 2.98 3.18 3.38 3.58	73 74	51 24 55 23 48	1.82 1.94 2.14 2.40 2.86	55 57 60 63 67	9 54 50 57 15	2.75 2.93 3.12 3.30 3.48	72 73 74	27 59 29 56 20	1.88 2.00 2.22 2.50 2.86	56 58 61 64 67	7 50 43 46 59	2.72 2.88 3.05 3.22 3.38	10 9 8 7 6	36.1 33.2 30.2 26.9 23.5
85 86 87 88 89	37 56 76 11 21 28				3.75 3.90 4.03 4.12 4.15	75	9 27 41 52 58	3·33 4·29 5·45 10.0 30.0		44 22 9 2 0	3.63 3.78 3.88 3.97 4.00	75	41 58 12 22 28	3.53 4.29 6.00 10.0 30.0		22 54 34 19	3.53 3.67 3.75 3.82 3.87	5 4 3 2 1	19.9 16.1 12.2 8.2 4.1
90	30		90	0		76 —	0		90	0			30		90	0		0	0.0
t	а	60' <u>∆</u>	1	5	$\frac{\Delta}{60'}$	a	ı	<u>60'</u> Δ		ь	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	l	b	$\frac{\Delta}{60'}$		a
	d	l = 13	3° 3	0′				d = 1	4° ()′			d	l = 14	1° 3	0′			

В		a = 1	5° 0′			a=1	5° 3	30′			a = 1	16° 0′		\	\ a
B	h d	<u>6ο′</u> Δ	Z	$\frac{\Delta}{60'}$	h	$\frac{60'}{\Delta}$	Z	*	<u>Δ</u> 60'	A	$\frac{1}{\Delta} \frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	$C\setminus$	β
o o i 2 3 4	0 0 58 1 56 2 54 3 52	1.03 1.03 1.03 1.03	0 / 15 0 0 1 1 2	0.00	58 1 56 2 53 3 51	1.03	15	30 30 31 31 32	0.00	5 I 5 2 5 3 5	5 1.03	16 0 0 1 1 2	0.00	90 89 88 87 86	90.0 89.7 89.5 89.2 88.9
5 6 7 8 9	4 50 5 48 6 46 7 44 8 41	I.03 I.03 I.03 I.05 I.05	3 5 7 9	0.03 .03 .03 .03	4 49 5 47 6 45 7 42 8 40	1.03 1.03 1.05 1.03 1.03		33 35 37 39 41	•••3 ••3 ••3 ••5	4 4 5 4 6 4 7 4 8 3	6 1.03 4 1.05 1 1.03	3 5 7 9	•.03 •03 •03 •03 •05	85 84 83 82 81	88.7 88.4 88.1 87.8 87.6
10 11 12 13 14	9 39 10 37 11 35 12 33 13 31	1.03 1.03 1.03 1.03	13 16 19 22 26	•••5 ••5 ••7	9 38 10 36 11 33 12 31 13 29	I.03 I.05 I.03 I.03		44 47 50 53 57	0.05 .05 .05 .07	9 3 10 3 11 3 12 2 13 2	1.03 2 1.05 9 1.03	14 17 20 24 28	0.05 .05 .07 .07	80 79 78 77 76	87.3 87.0 86.7 86.5 86.2
15 16 17 18 19	14 29 15 26 16 24 17 22 18 20	1.05 1.03 1.03 1.03	30 35 39 44 49	0.08 .07 .08 .08	14 27 15 24 16 22 17 20 18 17	1.05 1.03 1.03 1.05 1.03	16	1 5 10 15 21	0.07 .08 .08 .10	14 2 15 2 16 1 17 1 18 1	2 1.05 9 1.03 7 1.05	32 37 42 47 52	0.08 .08 .08	75 74 73 72 71	85.9 85.6 85.3 85.0 84.7
20 21 22 23 24	19 17 20 15 21 13 22 10 23 8	1.03 1.03 1.05 1.03	16 I 7 14 21	0.10 .10 .12 .12	19 15 20 12 21 10 22 7 23 5	1.05 1.03 1.05 1.03 1.05		27 33 39 46 53	0.10 .10 .12 .12	2I 22	2 1.05 1.05 1.03 1.05 1.05	58 17 4 11 18 26	0.10 .12 .12 .13	70 69 68 67 66	84.4 84.1 83.8 83.5 83.2
25 26 27 28 29	24 6 25 3 26 I 58 27 55	1.05 1.03 1.05 1.05	28 36 44 53 17 2	0.13 .13 .15 .15	24 2 59 25 57 26 54 27 51	1.05 1.03 1.05 1.05	17	9 17 26 35	0.13 .13 .15 .15	24 5 25 5 26 5 27 4	5 1.05 2 1.03 1.05	34 42 50 59 18 9	0.13 .13 .15 .17	65 64 63 62 61	82.9 82.6 82.2 81.9 81.6
30 31 32 33 34	28 53 29 50 30 47 31 44 32 42	1.05 1.05 1.05 1.03 1.05	12 22 32 43 55	0.17 .17 .18 .20	28 48 29 45 30 42 31 39 32 36	1.05 1.05 1.05 1.05	18	45 56 7 18 30	0.18 .18 .18 .20	28 4 29 4 30 3 31 3 32 3	1 1.07 7 1.05 4 1.05	19 30 41 53 19 5	0.18 .18 .20 .20	60 59 58 57 56	81.2 80.9 80.5 80.2 79.8
35 36 37 38 39	33 39 34 36 35 33 36 29 37 26	1.05 1.05 1.07 1.05 1.05	18 7 20 33 47 19 1	0.22 .22 .23 .23	33 33 34 30 35 27 36 23 37 20	1.07	19	42 55 9 23 38	0.22 .23 .23 .25 .27	33 2 34 2 35 2 36 I 37 I	4 1.05 1 1.07 7 1.07	18 31 45 20 0	0.22 .23 .25 .25 .27	55 54 53 52 51	79.4 79.0 78.6 78.2 77.8
40 41 42 43 44	38 23 39 19 40 16 41 12 42 9	1.07 1.05 1.07 1.05 1.07	17 33 50 20 7 26	0.27 .28 .28 .32 .32	38 16 39 13 40 9 41 5 42 1	1.07	20 2I	54 11 28 46 5	0.28 .28 .30 .32 .33	40	6 1.07 2 1.07 8 1.07	31 48 21 6 25 44	0.28 .30 .32 .32 .33	50 49 48 47 46	77·4 76.9 76.5 76.0 75·5
45	43 5		45		57			25		42 4	9	22 4		45	75.0
	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	а	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$	а	<u>60'</u> Δ	b	$\frac{\Delta}{60'}$		a
$\parallel t$		d = 1	5° 0′			d = 1	5° 3	30′			d = 1	16° 0′			

\. b	0.1	a = 1	5° 0′	1 5 1		(a=1	5° 3	30%	d,		1	a = 1	6° (0′		c	a
B	h d	$\frac{60'}{\Delta}$	Z	<u>Δ</u> 60'	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{6o'}{\Delta}$	Z	t	<u>Δ</u> 6ο'	C	$\beta \backslash$.
45 46 47 48 49	43 5 44 I 57 45 53 46 48	1.07 1.07 1.07 1.09 1.07	20 45 21 6 27 49 22 13	.35 .38 .40	42 43 44 45 46	57 53 49 44 39	1.07 1.07 1.09 1.09	2I 22	25 46 8 31 55	0.35 .37 .38 .40 .42	42 43 44 45 46	49 45 40 35 30	1.07 1.09 1.09 1.09	22	4 26 48 12 37	0•37 •37 •40 •42 •43	° 45 44 43 42 41	75.0 74.5 74.0 73.5 72.9
50 51 52 53 54	47 44 48 39 49 34 50 29 51 24		38 23 4 31 24 0	.45 .48	47 48 49 50 51	34 29 24 19	1.09 1.09 1.09 1.11	23 24 25	20 47 15 44 15	0.45 .47 .48 .52 .55	47 48 49 50 51	25 20 15 9 3	1.09 1.09 1.11 1.11	24 25 26	30 59 29	0.45 .48 .50 .52 .57	39 38 37 36	72.3 71.7 71.1 70.5 69.8
55 56 57 58 59	52 18 53 12 54 6 55 C	1.11 1.11 1.13 1.13	25 2 36 26 12 49 27 29	62 .67	52 53 54 55	7 55 48 41	I.II I.II I.I3 I.I3 I.I3	26 27 28	48 23 59 37 18	0.58 .60 .63 .68	52 53 54 55	57 50 43 36 29	1.13 1.13 1.13 1.13 1.15	27 28 29	34 9 46 25 6	0.58 .62 .65 .68 .73	35 34 33 32 31	69.1 68.4 67.6 66.8 66.0
60 61 62 63 64	56 46 57 39 58 31 59 23 60 15	I.15 I.15 I.15	28 11 56 29 43 30 33 31 26	.78 .83 .88	56 57 58 59 60	34 26 18 10	1.15 1.15 1.15 1.18 1.20	30 31 32	1 46 34 25 19	0.75 .80 .85 .90	56 57 58 59	21 13 4 55 46	1.15 1.18 1.18 1.18 1.20	30 31 32 33	50 36 25 17	0.77 .82 .87 .90 .97	30 29 28 27 26	65.2 64.3 63.3 62.3 61.3
65 66 67 68 69	61 6 56 62 46 63 35 64 23	I.20 I.20 I.22 I.25 I.25	32 23 33 23 34 27 35 35 36 47	1.07 1.13 1.20	61 62 63 64	51 41 30 19	1.20 1.22 1.22 1.25 1.28	33 34 35 36 37	16 17 22 31 44	1.02 1.08 1.15 1.22 1.30	60 61 62 63	36 25 14 2 49	I.22 I.22 I.25 I.28 I.28	34 35 36 37 38	9 11 17 26 40	1.03 1.10 1.15 1.23 1.30	25 24 23 22 21	60.2 59.0 57.8 56.5 55.2
70 71 72 73 74	65 11 58 66 44 67 29 68 12		38 2 39 27 40 50 42 30 44 11	1.48 1.57 1.68	65 66 67	54 40 25 9 52	1.30 1.33 1.36 1.40 1.43	39 40 41 43 45	2 25 54 29 11	1.38 1.48 1.58 1.70 1.80	64 65 66	36 21 6 49 31	1.33 1.33 1.40 1.43 1.46	39 41 42 44 46	58 22 52 27 8	1.40 1.50 1.58 1.68 1.80	20 19 18 17 16	53·7 52·2 50·6 48·8 47·0
75 76 77 78 79	55 69 36 70 15 53 71 28	1.46 1.54 1.58 1.71 1.76	45 -59 47 5 49 59 52 13 54 3	2.07 2.22 2.35	68 69 70 71	34 14 52 29 4	1.50 1.58 1.62 1.71 1.82	46 48 50 53 55	59 54 57 8 28	1.92 2.05 2.18 2.33 2.48	68 69 70	12 52 30 6 40	1.50 1.58 1.67 1.76 1.88	47 49 51 54 56	56 51 53 3 21	1.92 2.03 2.17 2.30 2.45	15 14 13 12 11	45.1 43.0 40.8 38.5 36.0
80 81 82 83 84	72 2 34 73 3 29 52	2.31	57 59 4 62 3 65 3 68 4	2.83 2.98 2.3.15	72 73	37 8 3 6 2	1.94 2.14 2.31 2.73 3.00	57 60 63 66 69	57 34 21 17 21	2.62 2.78 2.93 3.07 3.20	71 72	12 42 9 34 56	2.00 2.22 2.40 2.73 3.16	58 61 64 66 69	48 23 7 59 59	2.58 2.73 2.87 3.00 3.12	10 9 8 7 6	33·4 30·7 27·7 24·7 21·5
85 86 87 88 89	74 12 29 43 52 58	4.29 6.67	71 59 75 2 78 57 82 3 86 16	3.53 3.63	74	44 0 13 22 28	3.75 4.62 6.67 10.0 30.0			3.33 3.43 3.52 3.57 3.60	73	15 31 44 53 58	3.75 4.62, 6.67 12.0 30.0	73 76 79 83 86	6 20 39 4 31	3.23 3.32 3.42 3.45 3.48	5 4 3 2 1	18.1 14.7 11.1 7.4 3.7
90	75 C		90 0			30		90	0		74 —	0	1	90	0	1	0	0.0
t	a	$\frac{60'}{\Delta}$	√ b .	Δ 60'	3.0	ı	$\frac{60'}{\Delta}$	4.7	<i>b</i>	<u>Δ</u> 60'	0	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	ξ.	a
		d = 1	15° 0′	٠,		C	l=1	5°.3	0′	- ·		ļ	d = 1	6° (0′	-		

8	a	ı = 16	5° 30′			a=1	7° C)′			a	ı = 17	7° 30)′		c	a
B	$h \stackrel{d}{\downarrow}$	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h d	<u>6ο'</u> Δ	\overline{z}	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	3
0 0 1 2 3 4	0 0 58 1 55 2 53 3 50	1.03 1.05 1.03 1.05 1.03	16 30 30 31 31 32	0.00	0 0 57 1 55 2 52 3 49	1.05 1.03 1.05 1.05 1.03	17	0 0 1 1 2	0.00 .02 .00 .02	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	57 54 52 49	1.05 1.05 1.03 1.05	17	30 30 31 31 32	0.00 .02 .00 .02	90 89 88 87 86	90.0 89.7 89.4 89.1 88.8
5 6 78 9	4 48 5 45 6 43 7 40 8 38	1.05 1.03 1.05 1.03 1.05	34 35 37 39 42	0.02 .03 .03 .05	4 47 5 44 6 42 7 39 8 36	1.05 1.03 1.05 1.05 1.03		4 5 7 9	•••• ••• ••• ••• •••	4 5 6 7 8	46 43 40 38 35	1.05 1.05 1.03 1.05 1.05		34 35 37 40 42	0.02 .03 .05 .03	85 84 83 82 81	88.5 88.2 87.9 87.6 87.3
10 11 12 13 14	9 35 10 33 11 30 12 27 13 25	1.03 1.05 1.05 1.03 1.05	45 48 51 55 59	•.05 •05 •07 •07	9 34 10 31 11 28 12 25 13 23	1.05 1.05 1.05 1.03 1.05		15 18 21 25 29	•.05 •07 •07 •08	9 10 11 12 13	32 29 26 23 20	1.05 1.05 1.05 1.05 1.05	18	45 48 52 56 0	0.05 .07 .07 .07	80 79 78 77 76	87.0 86.7 86.4 86.1 85.8
15 16 17 18 19	14 22 15 19 16 17 17 14 18 11	1.05 1.03 1.05 1.05 1.03	17 3 8 13 18	0.08	14 20 15 17 16 14 17 11 18 8	1.05 1.05 1.05 1.05 1.05		34 39 44 49 55	0.08 .08 .08	14 15 16 17 18	17 14 11 8 5	1.05 1.05 1.05 1.05 1.05		5 10 15 21 27	0.08	75 74 73 72 71	85.5 85.2 84.9 84.6 84.3
20 21 22 23 24	19 9 20 6 21 3 22 0 57	1.05 1.05 1.05 1.05	30 36 43 50 58	.I2 .I2	19 5 20 2 59 21 56 22 53	1.05 1.05 1.05 1.05	18	8 15 22 30	0.12 .12 .12 .13	19 20 21 22	2 59 56 53 49	1.05 1.05 1.05 1.07 1.05	19	33 40 47 54 2	0.12 .12 .12 .13	70 69 68 67 66	83.9 83.6 83.3 82.9 82.6
25 26 27 28 29	23 54 24 51 25 48 26 45 27 42	1.05 1.05 1.05 1.05	18 6 14 23 33 43	.15	23 50 24 47 25 44 26 41 27 37	1.05 1.05 1.05 1.07 1.05	19	38 47 56 6	0.15 .15 .17 .17	23 24 25 26 27	46 43 39 36 32	1.05 1.07 1.05 1.07 1.05		11 20 29 39 49	0.15 .15 .17 .17	65 64 63 62 61	82.2 81.9 81.5 81.2 80.8
30 31 32 33 34	28 39 29 36 30 32 31 29 32 25	1.05 1.07 1.05 1.07 1.05	53 19 4 15 27 40	.18	28 34 29 30 30 27 31 23 32 20	1.07 1.05 1.07 1.05 1.07	20	27 38 50 2 15	0.18 .20 .20 .22	28 29 30 31 32	29 25 21 18 14	1.07 1.07 1.05 1.07	20	0 12 24 36 49	0.20 .20 .20 .22 .23	59 58 57 56	80.4 80.0 79.6 79.2 78.8
35 36 37 38 39	33 22 34 18 35 15 36 11 37 7	1.07 1.05 1.07 1.07	53 20 7 21 36 52	.23	33 16 34 12 35 8 36 4 37 0	1.07 1.07 1.07 1.07	21	28 42 57 12 28	0.23 .25 .25 .27 .28	33 34 35 36	10 6 2 58 53	1.07 1.07 1.07 1.09 1.07	2I 22	3 18 33 49 5	0.25 .25 .27 .27	55 54 53 52 51	78.4 78.0 77.6 77.1 76.7
40 41 42 43 44	38 3 59 39 55 40 50 41 46	1.07 1.07 1.09 1.07 1.09	2I 9 26 44 22 3 23	.30	56 38 52 39 47 40 42 41 38	1.09		22 41	0.30 .32 .32 .35	40	49 44 39 34 29	1.09 1.09 1.09 1.09		22 40 59 19 40		49 48 47	76.2 75.7 75.2 74.7 74.2
45	42 41		44	-	42 33			23		42	24		24	2		45	73.7
4	a	6ο' Δ	b	$\frac{\Delta}{60'}$	a	$\frac{6o'}{\Delta}$		b	$\frac{\Delta}{60'}$	(a	6ο' Δ		b	$\frac{\Delta}{60'}$		а
t		d=1	6° 30′	1		d = 1	7° (0′				d = 1	7° 3	80′			

b		C	z = 16	3° 3	0′				a = 1	7° ()′			(<i>i</i> = 17	7° 3	0′		C	a
$B \setminus$	h	d	<u>6ο'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	*	$\frac{\Delta}{60'}$	$C \setminus$	β
° 45 46 47 48 49	42 43 44 45 46	41 36 31 26 21	1.09 1.09 1.09 1.09	22 23 24	44 6 29 53 18	0.37 .38 .40 .42 .43	42 43 44 45 46	33 28 23 18	1.09 1.09 1.09 1.11	23	23 45 9 33 5 9	0.37 .40 .40 .43 .45	42 43 44 45 46	24 19 14 8 2	1.09 1.09 1.11 1.11	24	2 25 49 14 40	0.38 .40 .42 .43 .47	45 44 43 42 41	73.7 73.2 72.6 72.0 71.4
50 51 52 53 54	47 48 49 50	16 10 4 58 52	1.11	25 26	44 12 42 12 45	•.47 •5° •5° •55 •57	47 48 49 50	6 0 54 48 41	1.11 1.11 1.11 1.13 1.13	25 26 27	26 55 25 56 29	•.48 •5° •52 •55 •58	47 48 49 50	56 50 44 37 30	I.II I.II I.I3 I.I3 I.I3	26 27 28	8 37 7 39 13	•.48 •5° •53 •57 •58	40 39 38 37 36	70.8 70.1 69.5 68.8 68.1
55 56 57 58 59	51 52 53 54 55	46 39 32 24 16	1.13 1.13 1.15 1.15	27 28 29	19 55 32 12 54	0.60 .62 .67 .70 .75	51 52 53 54 55	34 27 20 12 4	1.13 1.13 1.15 1.15 1.18	28 29 30	4 40 18 59 42	0.60 .63 .68 .72 .75	51 52 53 54	23 15 7 59 50	1.15 1.15 1.15 1.18 1.18	29 30 31	48 25 4 45 28	0.62 .65 .68 .72 .77	35 34 33 32 31	67.3 66.6 65.8 64.9 64.1
60 61 62 63 64	56 57 58 59	8 0 51 41 31	1.15 1.18 1.20 1.20 1.22	30 31 32 33 34	39 26 15 7 3	0.78 .82 .87 .93 .98	56 57 58 59	55 46 36 26 16	I.18 I.20 I.20 I.20 I.22	31 32 33 34	27 14 4 57 53	0.78 .83 .88 .93 1.00	55 56 57 58 59	4I 32 22 II O	1.18 1.20 1.22 1.22 1.25	32 33 34 35	14 2 53 47 44	•.80 •.85 •90 •95	30 29 28 27 26	63.1 62.2 61.2 60.2 59.1
65 66 67 68 69	60 61 62 63	20 9 57 45 32	1.22 1.25 1.25 1.28 1.33	35 36 37 38 39	2 4 10 20 35	1.03 1.10 1.17 1.25 1.32	60 61 62 63	5 53 41 28 14	1.25 1.25 1.28 1.30 1.33	35 36 38 39 40	53 56 3 13 28	1.05 1.12 1.17 1.25 1.33	60 61 62	48 36 23 10 55	1.25 1.28 1.28 1.33 1.33	36 37 38 40 41	44 47 54 5 20	1.05 1.12 1.18 1.25 1.33	25 24 23 22 21	57.9 56.7 55.4 54.1 52.7
70 71 72 73 74	64 65 66 67	17 2 46 29 10	1.33 1.36 1.40 1.46 1.50	40 42 43 45 47	54 18 47 22 3	1.40 1.48 1.58 1.68 1.80	64 65 66	59 43 26 8 49	1.36 1.40 1.43 1.46 1.50	41 43 44 46 47	48 12 42 17 58	1.40 1.50 1.58 1.68 1.78	63 64 65 66	40 23 6 47 27	1.40 1.40 1.46 1.50 1.54	42 44 45 47 48	40 5 35 10 50	1.42 1.50 1.58 1.67 1.78	20 19 18 17 16	51.2 49.7 48.0 46.3 44.4
75 76 77 78 79	68 69 70	50 29 6 42 15	1.54 1.62 1.67 1.82 1.88	48 50 52 54 57	51 46 47 56 13	1.92 2.02 2.15 2.28 2.40	67 68 69	29 7 43 18 50	1.58 1.67 1.71 1.88 1.94	49 51 53 55 58	45 39 39 47 2	1.90 2.00 2.13 2.25 2.37	67 68 69	6 43 19 53 25	1.62 1.67 1.76 1.88 2.00	50 52 54 56 58	37 30 30 36 49	1.88 2.00 2.10 2.22 2.35	15 14 13 12	42.5 40.5 38.3 36.0 33.6
80 81 82 83 84	71 72	47 16 43 7 28	2.07 2.22 2.50 2.86 3.16	59 62 64 67 70	37 10 50 38 34	2.55 2.67 2.80 2.93 3.03	70 71 72	21 50 16 39 0	2.07 2.31 2.61 2.86 3.33	60 62 65 68 71	24 54 31 16 7	2.50 2.62 2.75 2.85 2.97	70 71	55 23 49 12 32	2.14 2.31 2.61 3.00 3.53	61 63 66 68 71	10 37 11 52 40	2.45 2.57 2.68 2.80 2.88	9 8 7 6	31.1 28.4 25.7 22.8 19.8
85 86 87 88 89	73	47 2 14 23 28	7 4.00 73 36 3.15 2 5.00 76 45 3.23 4 6.67 79 59 3.30 3 12.0 83 17 3.35 8 30.0 86 38 3.37		3.23 3.30 3.35		18 33 45 53 58	4.00 5.00 7.50 12.0 30.0	74 77 80 83 86	5 9 17 29 44	3.07 3.13 3.20 3.25 3.27	72	49 4 15 23 28	4.00 5.45 7.50 12.0 30.0	74 77 80 83 86	33 32 35 41 50	2.98 3.05 3.10 3.15 3.17	5 4 3 2 1	16.7 13.5 10.2 6.8 3.4	
90		30		90	0		73	0		90	0			30		90	0		0	0.0
,	0	$b \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60'} \right $					0	ı	<u>6ο'</u> Δ	1	b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	i	b	<u>Δ</u> 6ο'		a
t			d=10	6° 3	0′				d = 1	7° ()′			à	l = 17	7° 3	0′			

0	\ b			a = 1	8° (0′		- *	a	ı = 18	3° 3	0′				a=1	9° ()′ ·		\ c	a
	B	h	d	$\frac{60'}{\Delta}$	z	t	<u>Δ</u> 66'	h	d	<u>6ο'</u> Δ	z	*	Δ 60'	h	d	$\frac{60'}{\Delta}$	Z	*	* <u>Δ</u> 6ο'	$C \setminus$	β
	0 1 2 3 4	I 5	7 4 1 8	1.05 1.05 1.05 1.05	.18	0 0 1 1 2	.00	0 I 2 3	57 54 51 48	1.05 1.05 1.05 1.05	18	30 30 31 32 33	0.00 .02 .02 .02	0 I 2 3	57 54 50 47	1.05 1.05 1.07 1.05 1.05	19	0 0 1 2 3	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.7 89.4 89.0 88.7
	5 6 7 8 9	5 4 6 3 7 3	5 2 9 6 3	1.05 1.05 1.05 1.05		4 6 8 10 13	0.03 .03 .03 .05	4 5 6 7 8	45 41 38 35 32	1.07 1.05 1.05 1.05		34 36 38 40 43	0.03 .03 .03 .05	4 5 6 7 8	44 40 37 34 30	1.07 1.05 1.05 1.07		6 8 10 13	0.03 .03 .03 .05	85 84 83 82 81	88.4 88.1 87.8 87.4 87.1
	10 11 12 13 14	IO 2 II 2 I2 2	7 4 1 8	1.05 1.05 1.05 1.05		16 19 23 27 31	0.05 .07 .07 .07	9 10 11 12 13	29 26 22 19 16	1.05 1.07 1.05 1.05 1.07	19	46 49 53 57	0.05 .07 .07 .07	9 10 11 12 13	27 24 20 17 13	1.05 1.07 1.05 1.07 1.05		16 20 24 28 32	0.07 .07 .07 .07	80 79 78 77 76	86.8 86.5 86.1 85.8 85.5
	15 10 17 18 19	15 I 16	5 2 9 6 2	1.05 1.05 1.05 1.07 1.05		36 41 46 52 58	0.08	14 15 16 17	9 6 2 59	1.05 1.05 1.07 1.05 1.05		6 11 17 23 29	0.08 .10 .10 .10	14 15 16	10 6 3 59 56	1.07 1.05 1.07 1.05	20	37 42 48 54 1	0.08 .10 .10 .12	75 74 73 72 71	85.1 84.8 84.5 84.1 83.8
	20 21 22 23 24	19 5 20 5 21 4	96295	1.05 1.07 1.05 1.07 1.05	19	4 11 19 27 35	0.12 .13 .13 .13	18 19 20 21 22	56 52 49 45 41	1.07 1.05 1.07 1.07 1.05	20	36 43 51 59 7	0.12 .13 .13 .13	18 19 20 21 22	52 48 45 41 37	1.07 1.05 1.07 1.07		8 15 22 30 39	0.12 .12 .13 .15	70 69 68 67 66	83.4 83.1 82.7 82.3 82.0
	25 26 27 28 29	24 3 25 3 26 3	2 8 5 1	1.07 1.05 1.07 1.07 1.05	20	43 52 2 12 23	0.15 .17 .17 .18 .18	23 24 25 26 27	38 34 30 26 22	1.07 1.07 1.07 1.07		16 25 35 45 56	0.15 .17 .17 .18	23 24 25 26 27	33 29 25 21 17	1.07 1.07 1.07 1.07	21	48 58 8 18 29	0.17 .17 .18 .20	65 64 63 62 61	81.6 81.2 80.8 80.4 80.0
	30 31 32 33 34	29 2 30 I	40628	1.07 1.07 1.07 1.07	21	34 46 58 11 24	0.20 .20 .22 .22 .23	28 29 30 31 32	18 14 10 6 2	1.07 1.07 1.07 1.07 1.09	21	7 19 32 45 59	0.20 .22 .22 .23 .23	28 29 30 31	13 9 4 0 55	1.07 1.09 1.07 1.09	22	53 6 19 33	0.20 .22 .22 .23 .25	59 58 57 56	79.6 79.2 78.8 78.4 77.9
	35 36 37 38 39	34 5 35 5	4 9 5 0 6	1.09 1.07 1.09 1.07 1.09	22	38 53 8 24 41	0.25 .25 .27 .28 .30	33 34 35 36	57 53 48 43 38	1.07 1.09 1.09 1.09	23	13 28 44 1 18	0.25 .27 .28 .28	32 33 34 35 36	51 46 41 36 31	1.09 1.09 1.09 1.09	23	48 3 19 36 54	0.25 .27 .28 .30	55 54 53 52 51	77.5 77.0 76.6 76.1 75.6
	40 41 42 43 44	38 3 39 3 40 2	46 1.09 41 .3 41 1.09 59 0.3 36 1.09 23 18 .3 31 1.09 37 .3 26 1.09 57 .3 21 1.09 24 18 .3			0.32 •32 •33 •35 •38		33 28 23 18	1.09 1.09 1.11 1.09	24	36 55 14 35 57	0.32 .32 .35 .37		26 20 15 9 3	1.11 1.09 1.11 1.11	24 25	12 32 52 13 35	0.33 •33 •35 •37 •38	50 49 48 47 46	75.1 74.6 74.1 73.5 73.0	
	45	42 I	6			41		42	7		25	19			57	Í		58		45	72.4
	t	а		$\frac{60'}{\Delta}$		b	<u>Δ</u> 60'	a	ı	<u>6ο'</u> Δ		b.	$\frac{\Delta}{60'}$	0	ı ·	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$		a
100 000			(d = 1	8° ()′			a	l=18	3° 3	0′				d = 1	9° ()′	0		

-	6			a = 1	8° ()′		200	(a = 18	3° 3	0′	11	,		a = 1	9°	0′	-	\ c	a
	$B \setminus$	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	**	Δ 60'	$C \setminus$	$\beta \setminus$
	45 46 47 48 49	42 43 44 45	16 10 4 58 52	1.11 1.11 1.11 1.11	24 25 26	41 4 28 54 21	0.38 .40 .43 .45 .47	42 43 44 45	7 1 55 49 42	I.II I.II I.II I.I3 I.I3	25 26 27	19 43 8 34 1	0.40 .42 .43 .45	41 42 43 44 45	57 51 45 39 32	1.11 1.11 1.11 1.13 1.13	25 26 27	58 22 47 14 42	0.40 .42 .45 .47	° 45 44 43 42 41	72.4 71.8 71.2 70.6 69.9
	50 51 52 53 54	46 47 48 49 50	46 39 32 25 18	1.13 1.13 1.13 1.13 1.15	27 28	49 18 49 22 56	0.48 •52 •55 •57 •60	46 47 48 49 50	35 28 21 14 6	1.13 1.13 1.13 1.15 1.15	28 29	30 0 31 4 39	•.50 •52 •55 •58 •60	46 47 48 49	25 18 10 2 54	1.13 1.15 1.15 1.15 1.15	28 29 30	11 41 13 47 22	• 53 • 57 • 58 • 62	40 39 38 37 36	69.3 68.6 67.9 67.2 66.4
	55 56 57 58 59	51 52 53 54	10 2 54 46 37	1.15 1.15 1.15 1.18 1.20	29 30 31 32	32 10 49 31 15	0.63 .65 .70 .73 .77	51 52 53 54	58 50 41 32 23	1.15 1.18 1.18 1.18 1.20	30 31 32 33	15 54 34 16	0.65 .67 .70 .75 .77	50 51 52 53 54	46 37 28 18	I.18 I.18 I.20 I.20 I.20	31 32 33	59 37 18 1 46	0.63 .68 .72 .75 .78	35 34 33 32 31	65.6 64.8 64.0 63.1 62.2
	60 61 62 63 64	55 56 57 58	27 17 7 56 44	1.20 1.20 1.22 1.25 1.25	33 34 35 36	50 41 35 33	0.82 .85 .90 .97	55 56 57 58	13 51 40 28	I.22 I.22 I.22 I.25 I.28	34 35 36 37	47 37 29 23 21	0.83 .87 .90 .97 I.02	55 56 57 58	58 47 36 24	1.22 1.22 1.25 1.28 1.28	34 35 36 37 38	33 23 16 11 9	0.83 .88 .92 .97	30 29 28 27 26	61.2 60.2 59.2 58.1 57.0
	65 66 67 68 69	59 60 61 62	32 19 6 52 37	1.28 1.28 1.30 1.33 1.36	37 38 39 40 42	33 37 45 56	I.07 I.13 I.18 I.27 I.33	59 60 61 62	15 2 48 33 18	1.28 1.30 1.33 1.33 1.40	38 39 40 41 43	22 26 34 46 2	1.07 1.13 1.20 1.27 1.33	59 60 61	58 44 30 15 58	1.30 1.30 1.33 1.40 1.40	39 40 41 42 43	10 15 23 35 51	1.08 1.13 1.20 1.27 1.33	25 24 23 22 21	55.8 54.5 53.2 51.9 50.4
	70 71 72 73 74	63 64 65 66	45 45 26 6	1.40 1.46 1.46 1.50 1.58	43 44 46 48 49	32 56 26 1 42	1.40 1.50 1.58 1.68	63 64 65	1 43 25 5 44	1.43 1.43 1.50 1.54 1.62	44 45 47 48 50	22 47 17 51 31	1.42 1.50 1.57 1.67 1.77	62 63 64 65	4I 23 4 43 2I	1.43 1.46 1.54 1.58 1.62	45 46 48 49 51	36 6 40 19	1.42 1.50 1.57 1.65	20 19 18 17 16	48.9 47.3 45.7 43.9 42.1
	75 76 77 78 79	67 68 69	44 20 55 29 0	1.67 1.71 1.76 1.94 2.07	51 53 55 57 59	28 20 18 23 35	i.87 i.97 2.08 2.20 2.30	66 67 68	21 57 31 4 35	1.67 1.76 1.82 1.94 2.14	52 54 56 58 60	17 8 5 8 18	1.85 1.95 2.05 2.17 2.27	66 67 68	58 33 7 39 9	1.71 1.76 1.88 2.00 2.14	53 54 56 58 61	4 55 51 53 0	1.85 1.93 2.03 2.12 2.23	15 14 13 12	40.2 38.2 36.0 33.8 31.5
	80 81 82 83 84	70 71	29 56 21 44 3	2.22 2.40 2.61 3.16 3.53	61 64 66 69 72	53 18 49 26 10	2.42 2.52 2.62 2.73 2.82	69 70	30 54 16 35	2.22 2.50 2.73 3.16 3.53	62 64 67 69 72	34 57 25 59 39	2.38 2.47 2.57 2.67 2.75	69 70	37 3 27 48 7	2.31 2.50 2.86 3.16 3.75	63 65 68 70 73	14 34 0 31 7	2.33 2.43 2.52 2.60 2.68	9 8 7 6	29.1 26.5 23.9 21.2 18.3
	85 86 87 88 89		20 35 46 54 58	4.00 5.45 7.50 15.0 30.0	74 77 80 83 86	59 53 51 52 55	2.90 2.97 3.02 3.05 3.08	71	52 5 16 24 28	4.62 5.45 7.50 15.0 30.0	75 78 81 84 87	24 13 7 3 1	2.82 2.90 2.93 2.97 2.98		23 36 46 54 58	4.62 6.00 7.50 15.0 30.0	75 78 81 84 87	48 33 22 13 6	2.75 2.82 2.85 2.88 2.90	5 4 3 2 1	15.4 12.4 9.4 6.3 3.1
	90	72	0		90	0			30		90	0		71	0		90	0		0	0.0
	t	_	a	60' Δ		ь	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$	1	6	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	1	Ь	$\frac{\Delta}{60'}$		a
				d = 1	8° ()′				d = 18	3° 3	0′				d=1	9°′	0′			

					/						2.0/5							,	
$\setminus b$	a = 19° 30′						a = 20° 0′						a = 20° 30′						a
$B \setminus$	h	$\frac{\epsilon o'}{\Delta}$	Z	t	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 6ο'	$C \setminus$	B
0 I 2 3 4	0 0 57 1 53 2 50 3 46	1.05 1.07 1.05 1.07 1.05	19	30 30 31 32 33	0.00 .02 .02 .02	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	56 53 49 46	1.07 1.05 1.07 1.05 1.07	20	0 0 1 2 3	0.00 .02 .02 .02	0 I 2 3	6 56 52 49 45	1.07 1.07 1.05 1.07	20	30 30 31 32 33	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.7 89.3 89.0 88.6
5 6789	4 43 5 39 6 36 7 32 8 29	1.07 1.05 1.07 1.05 1.07		34 36 38 41 44	•••3 ••5 ••5 ••5	4 5 6 7 8	42 38 35 31 27	1.07 1.05 1.07 1.07		4 6 8 11 14	.03 .03 .05 .05	4 5 6 7 8	41 37 33 29 26	1.07 1.07 1.07 1.05 1.07		34 36 38 41 44	0.03 .03 .05 .05	85 84 83 82 81	88.3 87.9 87.6 87.2 86.9
10 11 12 13 14	9 25 10 22 11 18 12 15 13 11	1.05 1.07 1.05 1.07 1.07	20	47 50 54 58 3	.05 .07 .08 .08	9 10 11 12 13	23 20 16 12 8	1.05 1.07 1.07 1.07 1.05		17 21 25 29 34	0.07 .07 .08 .08	9 10 11 12 13	22 18 14 10 6	1.07 1.07 1.07 1.07	21	47 51 55 0 5	.07 .08 .08 .08	80 79 78 77 76	86.5 86.2 85.8 85.5 85.1
15 16 17 18 19	14 7 15 4 16 0 56 17 52	1.05 1.07 1.07 1.07		8 13 19 25 32	0.08 .10 .10 .12	14 15 16 17	5 57 53 49	1.07 1.07 1.07 1.07 1.07	21	39 44 50 56 3	0.08 .10 .10 .12	14 15 16 17	2 58 54 49 45	1.07 1.07 1.09 1.07		10 15 21 28 35	0.08 .10 .12 .12	75 74 73 72 71	84.8 84.4 84.0 83.7 83.3
20 21 22 23 24	18 48 19 45 20 41 21 37 22 33	1.05 1.07 1.07 1.07 1.07	21	39 46 54 2	0.12 .13 .13 .15	18 19 20 21 22	45 41 37 32 28	1.07 1.07 1.09 1.07 1.07		10 18 26 34 43	0.13 .13 .13 .15	18 19 20 21 22	4I 37 32 28 24	1.07 1.09 1.07 1.07 1.09	22	42 50 58 6	0.13 .13 .13 .15	70 69 68 67 66	82.9 82.5 82.1 81.7 81.3
25 26 27 28 29	23 29 24 25 25 20 26 16 27 12	1.07 1.09 1.07 1.07 1.09	22	20 30 40 51 2	0.17 .17 .18 .18	23 24 25 26 27	24 20 15 11 6	1.07 1.09 1.07 1.09 1.07	22	53 3 13 24 36	0.17 .17 .18 .20	23 24 25 26 27	19 15 10 5 0	1.07 1.09 1.09 1.09 1.09	23	25 35 46 57 9	0.17 .18 .18 .20	65 64 63 62 61	80.9 80.5 80.1 79.7 79.3
30 31 32 33 34	28 7 29 3 58 30 54 31 49	1.07 1.09 1.07 1.09 1.09	23	14 27 40 54 8	0.22 .22 .23 .23 .25	28 29 30 31	57 52 47 42	1.09 1.09 1.09 1.09	23	48 I 14 28 42	0.22 .22 .23 .23 .25	28 29 30 31	5.5 50 4.5 40 35	1.09 1.09 1.09 1.09	24	21 34 48 2 17	0,22 .23 .23 .25 .25	60 59 58 57 56	78.8 78.4 77.9 77.5 77.0
35 36 37 38 39	3 ² 44 33 39 34 34 35 29 36 23	1.09 1.09 1.09 1.11 1.09	24	23 39 55 12 30	0.27 .27 .28 .30 .32	32 33 34 35 36	37 32 26 21 15	1.09 1.11 1.09 1.11 1.11	24	57 13 30 48 6	0.27 .28 .30 .30 .32	32 33 34 35 36	30 24 19 13 7	1.11 1.09 1.11 1.11	25	32 48 5 23 42	0.27 .28 .30 .32 .32	55 54 53 52 51	76.5 76.0 75.5 75.0 74.5
40 41 42 43 44	37 18 38 12 39 6 40 0 54	1.11 1.11 1.11 1.11			0.32 •35 •35 •38 •38	40	9 3 57 51 45	1.11 1.11 1.11 1.11	26	25 45 6 27 50	0.33 .35 .35 .38	39	55 49 42 36	1.11 1.11 1.13 1.11 1.13	26	1 21 42 5 28	• 35 • 38 • 38 • 40	50 49 48 47 46	74.0 73.4 72.9 72.3 71.7
45	41 48			36		41	39		27	14		41	29			52		45	71.1
$ _t$	$a \left \frac{60'}{\Delta} \right $		$b \mid \frac{\Delta}{60'}$		$\frac{\Delta}{60'}$	а		$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		а		$b \left \frac{\Delta}{60'} \right $			a	
		d=19° 30′						d = 20° 0′						d = 20° 30′					

Λ -	1				1						1						1\	1.
1	a	a=19	9° 30′				a=2	0°	0′			C	a=20)° 3	0′		\ c	a
B	h	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	60' Δ	Z	t	<u>Δ</u> 6ο'	$c \setminus$	$\beta \setminus$
45 46 47 48 49	41 48 42 42 43 35 44 28 45 21	I.II I.I3 I.I3 I.I3 I.I3	26 31 27 28 2	1 .42 5 .45 3 .48	41 42 43 44 45	39 32 25 18	1.13 1.13 1.13 1.15 1.15	27 28 29	14 39 5 33 1	0.42 •43 •47 •47 •50	41 42 43 44	29 22 15 7 59	I.13 I.13 I.15 I.15	27 28 29	52 17 44 12 41	0.42 •45 •47 •48 •50	45 44 43 42 41	71.1 70.5 69.9 69.2 68.5
50 51 52 53 54	46 14 47 6 58 48 50 49 42	1.15 1.15 1.15 1.15 1.18	5 29 2: 30 2: 31	2 .53	46 47 48 49	2 54 46 38 29	1.15 1.15 1.15 1.18 1.18	30 31	31 36 10 46	0.53 •55 •57 •60 •63	45 46 47 48 49	51 43 34 25 16	1.15 1.18 1.18 1.18	30 31 32	11 43 16 51 28	0.53 •55 •58 •62 •63	40 39 38 37 36	67.8 67.1 66.4 65.6 64.8
55 56 57 58 59	50 33 51 24 52 14 53 4 54	1.18 1.20 1.20 1.20 1.20	32 2 33 4 34 3	.68 2 .72 5 .77	50 51 52 53	20 10 0 50 39	I.20 I.20 I.20 I.22 I.22	32 33 34 35	24 3 45 29 15	0.65 .70 .73 .77	50 51 52 53	7 57 46 35 24	I.20 I.22 I.22 I.22 I.22	33 34 35	6 46 28 12 59	•.67 •7° •73 •78 •80	35 34 33 32 31	64.0 63.1 62.2 61.3 60.3
60 61 62 63 64	54 43 55 32 56 20 57 8 55	1.22 1.25 1.25 1.28 1.30		.88 2 .92 7 .98	54 55 56 57	28 16 4 51 38	1.25 1.25 1.28 1.28 1.30	36 37 38 39	3 54 47 43 42	0.85 .88 .93 .98 1.03	54 55 56 57	13 48 34 20	1.25 1.28 1.30 1.30 1.30	36 37 38 39 40	47 38 32 29 28	•.85 •90 •95 •98	30 29 28 27 26	59.3 58.3 57.2 56.1 55.0
65 66 67 68 69	58 41 59 27 60 12 56 61 39	1.30 1.33 1.36 1.40 1.43	39 5 41 42 1 43 2 44 3	3 I.13 I.20 3 I.27	58 59 60 61	24 9 53 36 19	1.33 1.36 1.40 1.40	40 41 42 44 45	44 49 58 11 27	1.08 1.15 1.22 1.27 1.33	58 59 60	6 50 34 17 59	1.36 1.36 1.40 1.43 1.46	41 42 43 44 46	30 35 44 57 13	1.08 1.15 1.22 1.27 1.33	25 24 23 22 21	53.7 52.5 51.1 49.7 48.3
70 71 72 73 74	62 21 63 2 42 64 21 59	1.46 1.50 1.54 1.58 1.67	46 0 47 24 48 5 50 2 52 0	1.48	62 63 64	1 41 21 59 36	1.50 1.50 1.58 1.62 1.71	46 48 49 51 52	47 11 40 14 52	1.40 1.48 1.57 1.63 1.72	61 62 63 64	40 20 59 36 12	1.50 1.54 1.62 1.67 1.71	47 48 50 51 53	33 57 26 59 36	1.40 1.48 1.55 1.62 1.70	20 19 18 17 16	46.8 45.2 43.5 41.8 40.0
75 76 77 78 79	65 35 66 9 42 67 14 43	1.76 1.82 1.88 2.07 2.14	53 50 55 40 57 3 59 3 61 4	1.92 2.00 2.10	65 66 67	11 45 18 48 17	1.76 1.82 2.00 2.07 2.22	54 56 58 60 62	35 23 17 16 20	1.80 1.90 1.98 2.07 2.17	65 66	47 21 53 23 51	1.76 1.88 2.00 2.14 2.31	55 57 58 60 62	18 6 58 55 58	1.80 1.87 1.95 2.05 2.12	15 14 13 12 11	38.1 36.1 34.0 31.9 29.6
80 81 82 83 84	68 11 36 59 69 20 38	2.40 2.61 2.86 3.33 3.75	63 5 66 16 68 3 71 73 3	2.38 3 2.47 2.53	68 69	44 9 31 51 9	2.40 2.73 3.00 3.33 3.75	64 66 69 71 73	30 45 5 29 59	2.25 2.33 2.40 2.50 2.55	67 68	17 41 3 23 41	2.50 2.73 3.00 3.33 4.00	65 67 69 71 74	5 18 35 57 23	2.22 2.28 2.37 2.43 2.50	10 9 8 7 6	27.3 24.8 22.3 19.7 17.1
85 86 87 88 89	70 7 17 24 29	4.62 6.00 8.57 12.0 60.0	76 10 78 5 81 30 84 2: 87 1	2.75 5 2.77 2 2.82		25 37 47 54 59	5.00 6.00 8.57 12.0 60.0		32 9 49 31 15	2.62 2.67 2.70 2.73 2.75	69		5.00 6.67 8.57 12.0 60.0		53 26 2 40 20	2.55 2.60 2.63 2.67 2.67	5 4 3 2	14.3 11.6 8.7 5.8 2.9
90	30		90 (70	0		90	0			30		90	0		0	0.0
	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	a		<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	a	ı	<u>6ο'</u> Δ	1	b	$\frac{\Delta}{60'}$		a
t	à	l = 19	° 30′				d = 2	0° ()′			C	l=20)° 3	0′			

81

									2.5							/3				
1	1	4	a = 2	1° ()′			a	2 = 2	l° 3	0′	÷-			a = 2	2° (0′		c	a
B	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	*	∆ 60'	h	d	60' Δ	Z	t	<u>Δ</u> 60'	$C \setminus$	$\beta \setminus$
0 0 1 2 3 4	0 I 2 3	56 52 48 44	1.07 1.07 1.07 1.07 1.07	21	0 0 1 2 3	0.00 .02 .02 .02	0 I 2 3	6 56 52 47 43	1.07 1.07 1.09 1.07	21	30 30 31 32 33	0.00 .02 .02 .02	0 I 2 3	56 51 47 42	1.07 1.09 1.07 1.09	22	0 0 1 2 3	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.6 89.3 88.9 88.5
5 6789	4 5 6 7 8	40 36 32 28 24	1.07 1.07 1.07 1.07		4 6 9 11 14	•••3 •••5 •••5 •••7	4 5 6 7 8	39 35 31 26 22	1.07 1.07 1.09 1.07		34 36 39 42 45	0.03 .05 .05 .05	4 5 6 7 8	38 34 29 25 20	1.07 1.09 1.07 1.09 1.07		5 7 9 12 15	0.03 .03 .05 .05	85 84 83 82 81	88.2 87.8 87.4 87.1 86.7
10 11 12 13 14	9 10 11 12 13	20 16 12 7 3	1.07 1.07 1.09 1.07		18 22 26 30 35	.07 .07 .08 .08	9 10 11 12 13	18 14 9 5 0	1.07 1.09 1.07 1.09	22	48 52 56 1	.07 .08 .08 .08	9 10 11 12	16 11 7 2 58	1.09 1.07 1.09 1.07 1.09		18 22 26 31 36	.07 .08 .08	80 79 78 77 76	86.3 85.9 85.5 85.2 84.8
15 16 17 18 19	14 15 16 17	59 55 50 46 42	1.07 1.09 1.07 1.07 1.09	22	40 46 52 59 6	0, IO .IO .I2 .I2	14 15 16 17	56 52 47 43 38	1.07 1.09 1.07 1.09 1.09	-	11 17 23 30 37	0.10 .10 .12 .12	13 14 15 16	53 48 44 39 34	1.09 1.09 1.09 1.09	23	42 48 54 1 8	0.10 .10 .12 .12	75 74 73 72 71	84.4 84.0 83.6 83.2 82.8
20 21 22 23 24	18 19 20 21 22	37 33 28 24 19	1.07 1.09 1.07 1.09		13 21 29 38 47	0.13 .13 .15 .15	18 19 20 21 22	33 29 24 19 14	1.07 1.09 1.09 1.09	23	45 53 1 10 20	0.13 .13 .15 .17	18 19 20 21 22	29 24 19 14 9	1.09 1.09 1.09 1.09		16 24 33 42 52	0.13 .15 .15 .17	70 69 68 67 66	82.4 82.0 81.6 81.2 80.7
25 26 27 28 29	23 24 25 26	9 4 59 54	1.09 1.09 1.09 1.09	23	57 8 19 30 42	0.18 .18 .18 .20	23 24 25 26	9 4 59 54 49	1.09 1.09 1.09 1.09	24	30 40 51 3 15	0.17 .18 .20 .20	23 24 25 26	59 54 48 43	1.09 1.11 1.09 1.11	24	2 12 23 35 48	0.17 .18 .20 .22	65 64 63 62 61	80.3 79.9 79.4 79.0 78.5
30 31 32 33 34	27 28 29 30 31	49 44 39 34 2 8	1.09 1.09 1.09 1.11	24	54 7 21 36 51	0.22 .23 .25 .25 .27	27 28 29 30 31	43 38 33 27 21	1.09 1.09 1.11 1.11	25	28. 41 55 10 25	0.22 .23 .25 .25 .27	27 28 29 30 31	37 32 26 20 14	1.09 1.11 1.11 1.11	25	1 14 28 43 59	0.22 .23 .25 .27 .27	59 58 57 56	78.1 77.6 77.1 76.6 76.1
35 36 37 38 39	32 33 34 35	23 17 11 5 59	I.II I.II I.II I.II	25 26	7 23 40 58 17	0.27 .28 .30 .32 .33	32 33 34 35	1 5 9 3 57 50	1.11 1.11 1.11 1.13 1.11	26	41 58 15 33 53	0.28 .28 .30 .33	32 33 34 35	8 1 55 48 42	1.13 1.11 1.13 1.11 1.13	26 27	32 50 9 28	0.28 .30 .32 .32 .33	55 54 53 52 51	75.6 75.1 74.6 74.0 73.5
40 41 42 43 44		53 46 40 33 26	1.13 1.11 1.13 1.13 1.13	27 28	4 ² 5	0.35 •35 •38 •38 •42	40	44 37 30 23 16	1.13 1.13 1.13 1.13 1.15	28	13 34 56 18 42	0.35 .37 .37 .40 .42	36 37 38 39 40		1.13 1.13 1.15 1.13 1.15		48 10 32 55 19	0.37 .37 .38 .40 .42	50 49 48 47 46	72.9 72.3 71.7 71.1 70.5
45	41	19			30		41	8		29	7			58			44		45	69.9
4		a	$\frac{60'}{\Delta}$		b	<u>Δ</u> 6ο'	(ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$		a	6ο' Δ	l	b	$\frac{\Delta}{60'}$		a
t			d=2	21°	0′			0	<i>l</i> = 2	1° 8	30′				d = 2	2°	0′			

			_			-		1	-					-				_		1	ī.
1	b	/		a=2	21°	0′				a = 2	1° 3	0′				a=2	22°	0′		$\setminus c$	a
B	/	h	$\frac{d}{}$	60'	Z	t	$\frac{\Delta}{60'}$	h	d	60' A	z	t	$\frac{\Delta}{60'}$	h	$\frac{d}{}$	<u>6ο′</u> Δ	Z	t	$\frac{\Delta}{60'}$	$c \setminus$	β
4 4 4 4	7	42 43	19 11 4 56 48	1.15 1.13 1.15 1.15	28 29 30	30 55 22 50 20	0.42 •45 •47 •50 •52	41 42 43 44	8 1 53 45 36	1.13 1.15 1.15 1.18 1.18	29 30	7 33 1 29 59	0.43 •47 •47 •50 •52	40 41 42 43 44	58 50 42 33 24	1.15 1.15 1.18 1.18 1.18	29 30 31	44 11 39 8 38	0.45 •47 •48 •50 •52	45 44 43 42 41	69.9 69.2 68.5 67.8 67.1
5 5 5 5 5	I 2 3	46 47	40 31 22 13	1.18 1.18 1.18 1.20 1.20	31 32 33	51 23 57 32 9	0.53 ·57 ·58 ·62 ·65	45 46 47 48	27 18 9 0 50	1.18 1.18 1.18 1.20 1.22	31 32 33	30° 37 12 50°	0.55 •57 •58 •63	45 46 47 48	56 46 36	I.18 I.20 I.20 I.20 I.22	32 33 34	9 42 17 53 30	0.55 .58 .60 .62 .67	40 39 38 37 36	66.4 65.6 64.9 64.1 63.2
5. 5. 5. 5. 5.	5 7 8	50 . 51	53 43 32 21	1.20 1.22 1.22 1.25 1.25	34 35 36	48 28 11 55 42	0.67 •72 •73 •78 •82	49 50 51 52	39 28 17 6 54	1.22 1.22 1.22 1.25 1.28	34 35 36 37	29 10 53 38 25	0.68 •72 •75 •78 •82	49 50 51 52	25 14 2 50 38	I.22 I.25 I.25 I.25 I.28	35 36 37 38	10 51 34 19 7	0.68 •72 •75 •80 •82	35 34 33 32 31	62.4 61.5 60.6 59.6 58.6
6: 6: 6: 6:	2	54 · 55 ·	57 44 31 17	1.28 1.28 1.30 1.30 1.33	37 38 39 40 41	31 22 16 13	0.85 .90 .95 1.00	53 54 55 56	41 28 14 0 45	1.28 1.30 1.30 1.33 1.36	38 39 40 41	14 6 0 57 57	0.87 .90 .95 1.00	53 54 55 56	25 11 57 42 27	1.30 1.30 1.33 1.33	39 40 41 42	56 48 43 40 40	0.87 .92 .95 1.00	30 29 28 27 26	57.6 56.5 55.4 54.3 53.1
60 60 60 60	7 8	58	48 32 15 57 39	1.36 1.40 1.43 1.43 1.50	42 43 44 45 46	15 21 30 42 58	1.10 1.15 1.20 1.27 1.33	57 58 59 60	29 12 55 37 18	1.40 1.40 1.43 1.46 1.50	42 44 45 46 47	59 5 14 26 42	1.10 1.15 1.20 1.27 1.33	57 58 59	54 36 17 57	1.40 1.43 1.46 1.50 1.54	43 44 45 47 48	43 49 58 10 26	1.10 1.15 1.20 1.27 1.32	25 24 23 22 21	51.8 50.5 49.2 47.8 46.3
70 71 72 73 74	2	62 63	19 58 36 13	1.54 1.58 1.62 1.67 1.76	48 49 51 52 54	18 42 10 42 19	1.40 1.47 1.53 1.62 1.70	61 62 63	58 37 14 51 26	1.54 1.62 1.62 1.71 1.82	49 50 51 53 55	2 26 53 25 1	1.40 1.45 1.53 1.60 1.68	60 61 62 63	36 14 51 27 2	1.58 1.62 1.67 1.71 1.82	49 51 52 54 55	45 8 35 7 42	1.38 1.45 1.53 1.58 1.65	20 19 18 17 16	44.8 43.2 41.6 39.8 38.0
7: 7: 7: 7: 7: 7: 7:	5 7 8	65	23 56 27 57 25	1.82 1.94 2.00 2.14 2.40	56 57 59 61 63	1 47 38 34 34	1.77 1.85 1.93 2.00 2.10	64 65	59 32 2 31 58	1.82 2.00 2.07 2.22 2.40	56 58 60 62 64	42 27 16 10 9	1.75 1.82 1.90 1.98 2.07	64 65	35 7 37 5 32	1.88 2.00 2.14 2.22 2.50	57 59 60 62 64	5 53 46 43	1.73 1.80 1.88 1.95 2.02	15 14 13 12 11	36.2 34.2 32.2 30.1 27.9
80 81 82 83 84	2	67	50 14 36 55 12	2.50 2.73 3.16 3.53 4.29	65 67 70 72 74	40 50 4 23 46	2.17 2.23 2.32 2.38 2.43	66 67	23 46 8 26 43	2.61 2.73 3.33 3.53 4.29	66 68 70 72 75	13 20 32 48 8	2.12 2.20 2.27 2.33 2.38	66 67	56 19 40 58 14	2.61 2.86 3.33 3.75 4.29	66 68 71 73 75	44 50 0 13 30	2.10 2.17 2.22 2.28 2.33	10 9 8 7 6	25.7 23.4 21.0 18.5 16.0
81 83 83 83	7		26 38 48 55 59	5.00 6.00 8.57 15.0 60.0	84 87		2.50 2.53 2.57 2.60 2.60	68	57 9 18 25 29	5.00 6.67 8.57 15.0 60.0	87	31 57 26 56 28	2.43 2.48 2.50 2.53 2.53		59	5.45 6.67 8.57 15.0 60.0	87	50 12 37 4 32	2.37 2.42 2.45 2.47 2.47	5 4 3 2 1	13.4 10.8 8.1 5.4 2.7
90	0	69	0		90	0			30		90	0		68	0		90	0		0	0.0
$\Big\ _{t}$		a		<u>6ο'</u> Δ	1	5	<u>Δ</u> 60'	0	ı	<u>6ο′</u> Δ	6	b -	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$		b	<u>Δ</u> 60'		a
1			,	d=2	1° ()′			(d = 2	i° 3	0′				d=2	2°	0′			

7															7
b		a=2	2° 30′			a = 2	23° 0)′			a=2	3° 30′		$\setminus c$	1
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	$\frac{1}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	C	β
0 I 2 3 4	0 0 55 1 51 2 46 3 42	1.09 1.07 1.09 1.07 1.09	22 30 30 31 32 33	0.00 .02 .02 .02	5 I 5 2 4 3 4	1 1.09 6 1.09		0 0 1 2 3	0.00 .02 .02 .02	55 1 50 2 45 3 40	1.09	23 30 30 31 32 33	.02	90 89 88 87 86	90.0 89.6 89.2 88.8 88.4
5 6 78 9	4 37 5 33 6 28 7 23 8 19	1.07 1.09 1.09 1.07 1.09	35 37 39 42 45	0.03 .03 .05 .05	4 3 5 3 6 2 7 2 8 1	1 1.09 6 1.07 2 1.09		5 7 9 12 15	0.03 .03 .05 .05	4 35 5 30 6 25 7 20 8 15	1.09	35 37 39 42 46	0.03 .03 .05 .07	85 84 83 82 81	88.0 87.6 87.3 86.9 86.5
10 11 12 13 14	9 14 10 9 11 4 12 0 55	1.09 1.09 1.07 1.09 1.09	49 53 57 23 2 7	0.07 .08 .08		7 1.09 2 1.09 7 1.09		19 23 27 32 38	0.07 .07 .08 .10	9 10 10 5 11 0 54 12 49	1.09	49 53 58 24 3	0.07 .08 .08 .08	80 79 78 77 76	86.1 85.7 85.3 84.8 84.4
15 16 17 18 19	13 50 14 45 15 40 16 35 17 30	1.09 1.09 2.5 1.09 3.9 1.09 4.7 0 1.09 5.5 1.09 1.09 1.11 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.			13 4 14 4 15 3 16 3 17 20	2 1.09 7 1.09 2 1.11	24	43 49 56 3	0.10 .12 .12 .13	13 44 14 39 15 33 16 28 17 22	1.09 1.11 1.09 1.11	14 20 27 34 42	0.10 .12 .12 .13	75 74 73 72 71	84.0 83.6 83.2 82.8 82.3
20 21 22 23 24	18 25 19 20 20 15 21 10 22 4	1.09	55 24 4 14	0.13 .15 .17 .17	18 2 19 10 20 10 21	1.11		19 27 36 45 55	0.13 .15 .15 .17	18 17 19 11 20 6 21 0	1.11	50 58 25 7 17 27	0.13 .15 .17 .17	70 69 68 67 66	81.9 81.5 81.0 80.6 80.1
25 26 27 28 29	59 23 54 24 48 25 42 26 37	1.09	34 45 56 25 8 21	0.18 .18 .20 .22	22 54 23 48 24 42 25 36 26 30	3 1.11 2 1.11 5 1.11		6 17 28 40 53	0.18 .18 .20 .22 .23	22 48 23 42 24 36 25 30 26 24	I.II I.II I.II I.II	38 49 26 I 13 26	0.18 .20 .20 .22 .23	65 64 63 62 61	79.7 79.2 78.7 78.3 77.8
30 31 32 33 34	27 31 28 25 29 19 30 13 31 7	1.11	34 48 26 2 17 33	0.23 .23 .25 .27 .28	27 22 28 18 29 12 30 5	1.11		7 21 35 51 7	0.23 .23 .27 .27 .28	27 18 28 11 29 5 58 30 51	1.13 1.11 1.13 1.13	40 54 27 9 24 40	0.23 .25 .25 .27 .28	59 58 57 56	77.3 76.8 76.3 75.8 75.2
35 35 37 38 39	32 0 54 33 47 34 40 35 33	1.11 1.13 1.13 1.13	50 27 7 25 44 28 4	0.28 .30 .32 .33	31 52 32 45 33 38 34 31 35 24	1.13	28	24 41 59 18 38	0.28 .30 .32 .33 .35	31 44 32 37 33 30 34 23 35 15	1.13 1.13 1.13 1.15 1.15	57 28 15 34 53 29 14	0.30 .32 .32 .35	55 54 53 52 51	74.7 74.2 73.6 73.0 72.4
40 41 42 43 44	1	1.13 1.15 1.15 1.15	24 45 29 8 32 56	0.35 .38 .40 .40 .43	36 17 37 9 38 1 39 45	1.15	30	59 21 44 8 33	0.37 .38 .40 .42 .43	36 7 59 37 51 38 43 39 34	1.15 1.15 1.15 1.18 1.15		0.37 .38 .40 .42 .43	50 49 48 47 46	71.8 71.2 70.6 70.0 69.3
45	40 47		30 22		40 37			59		40 26		35		45	68.7
t	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	a	<u>6ο'</u> Δ	b		$\frac{\Delta}{60'}$	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$		a
	d	=22	° 30′			d=2	3° 0′	,		(l=23	3° 30′			

\ b		a	=22	2° 3	0′			(a=2	3° ()′			a	ı = 23	3° 3	0′		c	a
B	h	d	<u>6ο'</u> Δ	z	t	<u>Δ</u> 60'	h	d	<u>6ο′</u> Δ	z	t	<u>Δ</u> 6ο'	h	d	<u>60'</u> Δ	Z	*	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
45 46 47 48 49	40 41 42 43 44	47 39 31 22 13	1.15 1.15 1.18 1.18 1.20	30° 31 32	22 48 16 45 16	0.43 .47 .48 .52 .53	40 41 42 43 44	37 28 19 10	1.18 1.18 1.18 1.20 1.20	30 31 32	59 26 54 23 54	0.45 •47 •48 •52 •53	40 41 42 43	26 17 7 58 48	1.18 1.20 1.18 1.20 1.20	31 32 33	35 3 31 1 32	0.47 •47 •50 •52 •55	45 44 43 42 41	68.7 68.0 67.3 66.5 65.8
50 51 52 53 54	45 46 47 48	3 53 43 33 22	I.20 I.20 I.20 I.22 I.22	33 34 35	48 21 56 32 10	0.55 .58 .60 .63	45 46 47 48	50 40 30 19	I.20 I.20 I.22 I.22 I.25	33 34 35	26 0 35 12 50	0.57 .58 .62 .63	44 45 46 47	38 27 16 5 54	I.22 I.22 I.22 I.22 I.25	34 35 36	5 39 14 51 30	0.57 .58 .62 .65	40 39 38 37 36	65.0 64.2 63.4 62.6 61.7
55 56 57 58 59	49 50 51 52	59 47 35 22	1.25 1.25 1.25 1.28 1.30	36 37 38	50 32 15 1 48	0.70 •72 •77 •78 •83	49 50 51 52	56 44 32 19	1.25 1.25 1.28 1.28 1.30	36 37 38 39	30 12 56 42 30	0.70 •73 •77 .80 .83	48 49 50 51	42 29 16 3 49	1.28 1.28 1.28 1.30 1.30	37 38 39 40	10 52 36 22 10	•.7° •73 •77 .8° .85	35 34 33 32 31	60.8 59.9 59.0 58.0 57.0
60 61 62 63 64	53 54 55 56	8 54 40 24 8	1.30 1.30 1.36 1.36 1.40	2 40 31 .90 41 25 .97 42 23 1.00 43 23 1.05 44 26 1.08 45 31 1.15 46 40 1.27 49 8 1.32 2 50 27 1.38 5 51 50 1.45 5 53 17 1.50 5 54 47 1.57 1.57		53 54 55	52 37 22 6 49	1.33 1.33 1.36 1.40 1.40	40 41 42 43 44	20 12 7 5 5	0.87 .92 .97 1.00	52 53 54 55	35 20 4 48 31	1.33 1.36 1.36 1.40 1.43	41 42 43 44	53 48 46 46	0.87 .92 .97 1.00 1.05	30 29 28 27 26	55.9 54.8 53.7 52.5 51.3	
65 66 67 68 69	57 58 59	51 34 16 56 36	1.40 1.43 1.50 1.50 1.54	45 46 47	31 40 52	1.15 1.20 1.27	56 57 58 59	32 14 55 35 15	1.43 1.46 1.50 1.50 1.58	45 46 47 48 49	8 13 22 34 50	1.08 1.15 1.20 1.27 1.30	56 57 58	13 54 35 15 53	1.46 1.46 1.50 1.58 1.58	45 46 48 49 50	49 55 3 15 30	1.10 1.13 1.20 1.25 1.32	25 24 23 22 21	50.0 48.7 47.4 46.0 44.5
70 71 72 73 74	60 61 62	15 52 29 4 38	1.62 1.62 1.71 1.76 1.82	51 53 54	50 17 47	1.45 1.50 1.57	60 61 62	53 30 6 41 14	1.62 1.67 1.71 1.82 1.88	51 52 53 55 57	8 31 57 27 0	1.38 1.43 1.50 1.55 1.63	59 60 61	31 8 43 17 50	1.62 1.71 1.76 1.82 1.94	51 53 54 56 57	49 11 36 5 38	1.37 1.42 1.48 1.55 1.60	20 19 18 17 16	43.0 41.4 39.7 38.0 36.3
75 76 77 78 79	63 64 65	11 42 11 39 5	1.94 2.07 2.14 2.31 2.50	40 43 23 1.05 40 44 26 1.08 43 45 31 1.15 50 46 40 1.20 54 47 52 1.27 54 49 8 1.32 62 50 27 1.38 62 51 50 1.45 71 53 17 1.50 76 54 47 1.57 82 56 21 1.65 94 58 0 1.72 97 59 43 1.78 14 61 30 1.85 31 63 21 1.92		63 64	46 16 45 13 38	2.00 2.07 2.14 2.40 2.50	58 60 62 63 65	38 19 5 54 48	1.68 1.77 1.82 1.90 1.95	62 63 64	21 51 19 46 11	2.00 2.14 2.22 2.40 2.61	59 60 62 64 66	14 55 39 27 18	1.68 1.73 1.80 1.85 1.93	15 14 13 12 11	34·4 32·5 30.6 28·5 26·4	
80 81 82 83 84	66	29 51 11 29 45	2.73 3.00 3.33 3.75 4.29	67 69 71 73 75	15 19 26 36 50	2.07 2.12 2.17 2.23 2.28	65 66	2 23 43 1 16	2.86 3.00 3.33 4.00 4.62	67 69 71 73 76	45 46 51 59	2.02 2.08 2.13 2.18 2.23	65	34 56 15 32 47	2.73 3.16 3.53 4.00 4.62	68 70 72 74 76	15 21	1.98 2.03 2.10 2.13 2.18	10 9 8 7 6	24.3 22.1 19.8 17.4 15.1
85 86 87 88 89	67	59 10 19 25 29	5.45 6.67 10.0 15.0 60.0	85	7 26 48 11 35	2.32 2.37 2.38 2.40 2.42		29 40 49 55 59	5.45 6.67 10.0 15.0 60.0	85	24 40 58 18 39	2.27 2.30 2.33 2.35 2.35	66	0 11 19 25 29	5.45 7.50 10.0 15.0 60.0	78 80 83 85 87	40 53 8 25 42	2.22 2.25 2.28 2.28 2.30		12.ó 10.1 7.6 5.1 2.6
òo		30	$\left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $			Δ	67		60'	90	0	Δ		30	601		0		0	0.0
t		<i>a</i>				60'			$\frac{60'}{\Delta}$		<i>b</i>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	1	$\frac{60'}{\Delta}$		<i>b</i>	<u>∆</u>		-12
		C	l = 2:	2° 3	0′				d=2	3°	0′			0	<i>l</i> = 23	3° 3	0′			

	b	Ī		a	= 2	24°	0′		T		a = 2	24°	30′		T		a = 1	25°	0′		1\0	
	\	1	-	l I	601		t	Δ	- -	à	_	11	t	Δ	+	d	1 .		t	ΙΛ	- \ \	\ a
B	/	h	/	1	Δ	Z	. 1	60	h		Δ	2	- \	60	h		$\frac{1}{\Delta}$	Z	-	<u>Δ</u> 60	$C \setminus$	β
	0 I	C	5.	5 1	1.09 1.09	24		.02		55		24	4 30 30		0	54		11 .	5 0		89	90.0
1 3	3	3	2 44	4 1	1.11		3	.02	2		1.11		31 32 33	.0:	2 2	1 49 2 43 3 38	1.00		2 3	.02	87	89.2 88.8 88.3
1		4	29) 1	1.09	-	5	.05	5	27	1.11		35 37	0.03		1 32 5 26	1.11	11	5		84	87.9 87.5 87.1
8		7 8		3 1	.09		13 16	.05	1 2		1.11		40 43 46	.05	1 2		1.09		10 13 16	.05	83	87.1 86.7 86.2
10 I I		9	2	1 5	.11		20 24	0.07	10	ō	1.09		50 54	0.07		57	1.11		20 24	.08	80 79	85.8 85.4
12 13 14	3	I I I 2		1 1	.09		28 33 39	80.	I I I 2		1.11	25	59 4 9	.08	11	46	1.11 1.11 1.11		29 34 40	.10	1 /	85.0 84.5 84.1
15 16	5	13	35	1.	.11		45	0.10	13 14		1.09		15	0.12	14	. 28	1,11		46 53	.12	75	83.7 83.2
17 18 19	1	15 16 17	29 24 18	1.	.09	25	58 5 13	.13	15 16 17	26 20 14	1.11		29 36 44	.13	15 16 17	16	1.11	26	7	.13	73 72 71	82.8 82.3 81.9
20 2 I	1	18	I 2 7	I.	.09		21 30	0.15	18 19	8	1.11	26		0.15	18	3 57	1.11		23 32	0.15	70 69	81.4 81.0
22 23 24	ı	20 21	55 49	Ι.	11.		39 49 59	.17 .17	20 21	56 50 43	1.11		10 20 31	.17 .18	19 20 21		1.13	27	42 52 3	.17	68 67 66	80.5 80.0 79.5
25 26	ŀ	22 23	43 37	1.	11	26	10 21	0.18	22 23	37 31	1.11		42 53	0.18	22 23	31 25	1.11		14 25	0.18	65 64	79.1 78.6
27 28 29	1	24 25 26	30 24 17	1.	13		33 46 5 9	.22	24 25 26	24 17 11	1.13	27	18 31	.22	24 25 26	18 11 4	I.13 I.13	28	37 50 4	.23	63 62 61	78.1 77.6 77.1
30		27 28	11	1.	13	27	I 3 27	0.23	27	4 57	1.13	28	45 O	0.25	27	57 50	1.13		18 33 48	0.25	60 59	76.5 76.0
32 33 34		29 30	57 50 43	ı.	13 13	28	42 58 14	.27 .27 .28	28 29 30	50 43 35	I.13 I.15 I.13		15 31 48	.27 .28	28 29 30	42 35 27	I.13 I.15 I.15	29	48 4 21	.27 .28	58 57 56	75.5 74.9 74.4
35 36		3 I 3 2	36 29	ı.	13		31 49	0.30	31 32	28 20	1.15	29	5 23	o.30	31 32	19	1.15		39 58	0.32	55 54	73.8 73.2
37 38 39	13	33 34 35	21 13 5	1.	15 15	29	28 49	•33 •35 •35	33 34	12 4 56	1.15 1.15 1.15	30	43 3 24	•33 •35 •35	33 34	3 55 47	1.15	30	37 58	-33 -35 -37	53 52 51	72.6 72.0 71.4
40		36	57 49	I.	15	30	10 32	°.37	36	48 39	1.18	31	45	°•37	35 36	38 29	1.18	31	20 43	0.38	50 49	70.8 70.2
42 43 44	3	38	41 32 23	I.	18	31	56 20 45	.40 .42 .45	37 38 39	30 21 12	1.18	32	31 56 21	.42 .42 .45	37 38	20 II I	1.18 1.20 1.20	32	7 31 57	.40 .43 .45	48 47 46	69.5 68.9 68.2
45		to			- 11	32			40	3			48			51	1	33			45	67.5
		а		<u>6α</u>	7	t		<u>Δ</u> 6ο'	a		<u>6ο'</u> Δ	b		Δ 60'	a		<u>6ο'</u> Δ	t		<u>Δ</u> 6ο'	Y	a
t			(-	24	°C)'	- /1		d	= 24	l° 3	0'			0	l=2	5° 0	y'	Υ.		
	1							7.1														

1	, [a = 2	10 0)'		1		<i>i</i> = 2	1.º c	20'				a = 2	50	n'		1	\
/	-	. 7		14			_		1	4 6	_				1	10		1 2	\ c	a
R	1	h d	<u>6ο'</u> Δ	Z	*	<u>Δ</u> 6ο'	h	d	$\frac{60'}{\Delta}$	Z	1	$\frac{\Delta}{6\sigma'}$	h	d	$\frac{60'}{\Delta}$	Z	1	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
45 46 47 48 49	4	0 14 11 5 55 12 45 13 35	1.18 1.20 1.20 1.20 1.20	33	12 39 8 38 10	0.45 .48 .50 .53	40 41 42 43	3 53 43 33 22	1.20 1.20 1.20 1.22 1.22	32 33 34	48 16 45 15 47	0.47 .48 .50 .53 .55	39 40 41 42 43	51 41 31 20 9	I.20 I.20 I.22 I.22 I.22	33 34 35	24 52 22 52 24	0.47 .50 .50 .53 .55	45 44 43 42 41	67.5 66.8 66.0 65.3 64.5
50 51 52 53 54	2	14 25 15 14 16 3 51 17 39	1.22 1.22 1.25 1.25 1.25	35	43 17 53 30 9	0.57 .60 .62 .65	44 45 46 47	11 0 49 37 25	1.22 1.22 1.25 1.25 1.25	35 36 37	20 55 31 8 47	0.58 .60 .62 .65	44 45 46 47	58 47 35 22 9	1.22 1.25 1.28 1.28 1.28	36 37 38	57 32 8 46 26	0.58 .60 .63 .67	40 39 38 37 36	63.7 62.9 62.0 61.2 60.3
55 56 57 58 59		48 27 49 14 50 1 47 51 33	1.28 1.30 1.30 1.33	38 39 40	49 32 16 2 50	0.72 .73 .77 .80 .85	48 49 50 51	12 58 44 30 15	1.30 1.30 1.30 1.33	38 39 40 41	28 11 55 42 30	.72 .73 .78 .80 .85	48 49 50	56 42 28 14 59	1.30 1.30 1.30 1.33 1.36	39 40 41 42	7 49 34 21	0.70 •75 •78 •80 •85	35 34 33 32 31	59·4 58·4 57·4 56·4 55·4
61 62 63 64		52 18 53 2 46 54 29 55 11	1 1.30 39 16 47 1.30 40 2 33 1.33 50 18 1.36 41 41 0 2 1.36 42 34 46 1.40 43 29 29 1.43 44 27 1 11 1.43 45 27 1 53 1.46 46 30 1 34 1.50 47 35 1 14 1.54 48 44 1 53 1.58 49 55 1 31 1.62 51 10 1 8 1.67 52 28 1		0.88 .92 .97 1.00	52 53 54	0 44 27 10 52	1.36 1.40 1.40 1.43 1.46	42 43 44 45 46	21 14 9 7	0.88 .92 .97 1.00	51 52 53 54	43 26 9 51 33	1.40 1.43 1.43 1.50	43 44 45 46	53 48 46 46	0.88 .92 .97 1.00	30 29 28 27 26	54·3 53·2 52·0 50·9 49·6	
65 66 67 68 69		53 56 34 57 14 53 58 31	2 1.36 42 34 16 1.40 43 29 29 1.43 44 27 1 11 1.43 45 27 1 13 1.46 46 30 1 14 1.50 47 35 1 15 1.54 48 44 1 15 1.62 51 10 1 8 1.67 52 28 1 14 1.71 53 49 1 19 1.76 55 14 1				55 56 57 58	33 14 53 32 9	1.46 1.54 1.54 1.62 1.62	47 48 49 50 51	10 15 24 35 49	1.08 1.15 1.18 1.23 1.30	55 56 57	13 53 32 10 47	1.50 1.54 1.58 1.62 1.67	47 48 50 51 52	49 54 2 13 27	1.08 1.13 1.18 1.23 1.28	25 24 23 22 21	48.4 47.0 45.7 44.3 42.8
70 71 72 73 74	6	59 8 44 50 19 51 25	1.71	1.35 1.42 1.47 1.53 1.60	59 60 61	46 22 56 29	1.67 1.76 1.82 1.88 2.00	53 54 55 57 58	7 28 52 19 50	1.35 1.40 1.45 1.52 1.57	58 59 60	23 58 32 5 36	1.71 1.76 1.82 1.94 2.00	53 55 56 57 59	44 5 .28 55 25	1.35 1.38 1.45 1.50 1.55	20 19 18 17 16	41.3 39.7 38.1 36.4 34.7		
75 76 77 78 79	6	56 52 26 54 53 20 44	2.00 2.14 2.31 2.50 2.61	61 63 64	50 29 12 58 48	1.65 1.72 1.77 1.83	62 63	31 O 27 53 17	2.07 2.22 2.31 2.50 2.73	60 62 63 65 67	24 24 44 29 17	1.63 1.70 1.75 1.80 1.87	61 62	6 34 1 26 50	2.14 2.22 2.40 2.50 2.73	60 62 64 65 67	58 35 15 58 45	1.62 1.67 1.72 1.78 1.83	15 14 13 12 11	32.9 31.0 29.1 27.1 25.1
80 81 82 83 84	1	54 7 28 47 55 3 18	2.86 3.16 3.75 4.00 4.62	70 72 74	42 39 39 42 47	1.95 2.00 2.05 2.08 2.13	64	39 0 18 35 49	2.86 3.33 3.53 4.29 4.62	69 71 73 75 77	9 3 1 2 5	1.90 1.97 2.02 2.05 2.08	63 64	32 50 6 20	3.00 3.33 3.75 4.29 5.00	69 71 73 75 77	35 27 23 21 22	1.87 1.93 1.97 2.02 2.05	10 9 8 7 6	23.6 20.9 18.7 16.5 14.2
85 86 87 88 89		31 41 49 55 59	6.00 7.50 10.0 15.0 60.0	81	55 6 18 31 45	2.18 2.20 2.22 2.23 2.25	65	2 12 20 25 29	6.00 7.50 12.0 15.0 60.0		10 18 27 37 48	2.13 2.15 2.17 2.18 2.20		32 42 50 56 59	6.00 7.50 10.0 20.0 60.0	79 81 83 85 87	25 30 36 43 51	2.08 2.10 2.12 2.13 2.15	5 4 3 2 1	9.6 7.2 4.8 2.4
90	===	66 o		90	0			30		90	0		65 —	0		90	0		0	0.0
l.		a	<u>6ο'</u> Δ	b	,	$\frac{\Delta}{60'}$	a	ı	6ο' Δ		b	$\frac{\Delta}{60'}$	(ı	$\frac{60'}{\Delta}$		Ь	$\frac{\Delta}{60'}$		a
	-		d=2	4° ()′			d	=24	4° 3	0′	-	•		d = 2	5° (0′	•		- i

\ b		a=25	5° 30′			a = 2	6° 0′			a	=26	5° 30′		_c	\ a
B	h d	$\left \frac{60'}{\Delta} \right $	Z	$\frac{\Delta}{60'}$	$\frac{d}{h}$	6ο' Δ	Z	Δ 60'	h	d	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	$c \setminus$	β
0 0 1 2 3 4	0 0 54 1 48 2 43 3 37	1.11	25 30 30 31 32 33	0.00 .02 .02 .02 .03	0 0 54 1 48 2 42 3 36	I.II I.II I.II I.II	26 0 0 1 2 3	0.00 .02 .02 .02		ó 54 47 41 35	1.11 1.13 1.11 1.11	26 30 30 31 32 33	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.6 89.1 88.7 88.2
5 6 7 8 9	4 31 5 25 6 19 7 13 8 7	1.11 1.11 1.11 1.11	35 37 40 43 47	0.03 .05 .05 .07	4 30 5 23 6 17 7 11 8 5	1.13 1.11 1.11 1.11	5 7 10 13 17	0.03 .05 .05 .07	4 5 6 7 8	28 22 16 9 3	1.11 1.13 1.11 1.13	35 37 40 43 47	0.03 .05 .05 .07	85 84 83 82 81	87.8 87.4 86.9 86.5 86.1
10 11 12 13	11 43	1.11	51 55 26 0 5	0.07 .08 .08 .10	59 9 53 10 46 11 40 12 34	1.11 1.13 1.11 1.11	21 25 30 35 41	0.07 .08 .08 .10	9 10 11 12	56 50 43 37 30	1.11 1.13 1.11 1.13 1.11	51 56 27 1 6	.08	80 79 78 77 76	85.6 85.1 84.7 84.2 83.8
15 16 17 18	15 18 16 12	1.11	17 24 31 38 46	0.12 .12 .12 .13	13 27 14 21 15 14 16 8 17 1	1.11 1.13 1.11 1.13 1.13	47 54 27 I 9 17	0.12 .12 .13 .13	13 14 15 16	24 17 10 3 56	I.13 I.13 I.13 I.13	18 25 32 40 48	.12	75 74 73 72 71	83.3 82.8 82.4 81.9 81.4
20 21 22 23 24	18 52 19 46 20 39	1.11	55 27 4 13 23 34	.17	54 18 47 19 40 20 33 21 2 6	1.13 1.13 1.13 1.13 1.13	26 35 45 55 28	.17	17 18 19 20 21	49 42 35 28 21	1.13 1.13 1.13 1.13 1.15	28 6 16 26 37	.17	70 69 68 67 66	80.9 80.4 80.0 79.5 79.0
25 26 27 28 29	23 18 24 11 25 4	1.13	45 57 28 10 23 37	.22	22 19 23 12 24 5 57 25 50	1.13 1.13 1.15 1.13 1.15	17 29 42 55 29	.22	22 23 24 25	13 6 58 51 43	1.13 1.15 1.13 1.15 1.15	29 1 29 1 27 41	.22	65 64 63 62 61	78.4 77.9 77.4 76.9 76.3
31 32 33 34	27 42 28 3 29 2	1.13	29 6 22 38 55	.27 .27 .28	26 42 27 34 28 26 29 18 30 10	1.15 1.15 1.15 1.15 1.15	30 11 28	.27	29	35 27 19 10 2	1.15 1.15 1.18 1.15 1.18	30 II 20 31	.27	57	75.8 75.2 74.7 74.1 73.5
3. 3. 3. 3. 3. 3. 3.	32 7 8 33 4	3 1.18 1 1.18 5 1.18	30 13 31 51 31 11 32	·33 ·33 ·35	31 2 53 32 45 33 36 34 27	1.18 1.15 1.18 1.18 1.18	31 2 4 32	33	31 32 33	26	1.18 1.18 1.18 1.18 1.20	39 39 32 4	9 ·33 9 ·33 9 ·37 1 ·38	54 53 52 51	72.9 72.3 71.7 71.1 70.5
4444	36 I 37 3 38	8 1.18 9 1.18 0 1.20		3 .40 2 .42 7 .43		I.20 I.20 I.20 I.20 I.20		2 .42		7 57 47 37 26	I.20 I.20 I.20 I.22 I.22	2 5 34 I	7 .43	49 48 47	69.8 69.1 68.5 67.8 67.1
4	39 4		34		39 28	-	31	-	39	15	1	35 1	1	45	56.3
	a	60' Δ	В	Δ 60'	G	60' Δ	b	00°		а	60' Δ	b	$\frac{\Delta}{60'}$		a
		d = 2	5° 30′		·	d = 2	26° 0′				d=2	6° 30′			

1	l 	a = 2	5° 30′				a=2	6°	0′			C	<i>i</i> = 2	6° 3	30′		C	a
$B \setminus$	h	β <u>60'</u> Δ	Z	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	t	<u>Δ</u> 6ο'	h	d	<u>6ο′</u> Δ	z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
o 45 46 47 48 49	39 40 40 29 41 18 42 7	I.22 I.22 I.22	34 28 58 35 29 36 1	.50	39 40 41 42	28 17 6 55 43	I.22 I.22 I.22 I.25 I.25	34 35 36	36 4 34 5 37	0.47 .50 .52 .53 .57	39 40 41 42	15 4 53 41 29	I.22 I.22 I.25 I.25 I.25	35 36 37	11 40 10 41 14	0.48 .50 .52 .55	° 45 44 43 42 41	66.3 65.6 64.8 64.0 63.2
50 51 52 53 54	43 45 44 33 45 26 46 3	I.28 I.28 I.28	35 37 10 46 38 24 39 4	.63	43 44 45 46	31 18 5 52 39	1.28 1.28 1.28 1.28 1.30	37 38 39	11 46 23 1 41	0.58 .62 .63 .67	43 44 45 46	17 4 51 37 23	1.28 1.28 1.30 1.30 1.30	38 39 40	48 23 0 38 18	0.58 .62 .63 .67	39 38 37 36	62.4 61.6 60.7 59.8 58.9
55 56 57 58 59	47 41 48 27 49 12 57 50 41	1.33 1.33 1.36	45 40 28 41 13 59 42 48	0.72 •75 •77 .82 .85	47 48 49 50	25 10 55 40 24	1.33 1.33 1.33 1.36 1.40	40 41 42 43	23 6 51 38 26	0.72 •75 •78 •80 •85	47 48 49 50	9 54 38 22 6	1.33 1.36 1.36 1.36 1.40	41 42 43 44	0 43 28 15 4	0.72 •75 •78 •82 •85	35 34 33 32 31	58.0 57.0 56.0 54.9 53.9
60 61 62 63 64	51 25 52 8 50 53 32 54 13	1.43 1.43 1.46	43 39 44 32 45 27 46 25 47 25	0.88 •92 •97 1.00	51 52 53	7 49 31 13 53	1.43 1.43 1.43 1.50 1.50	44 45 46 47 48	17 10 6 3 3	0.88 •93 •95 1.00 1.03	51 52 53	49 31 12 53 33	1.43 1.46 1.46 1.50 1.54	45 46 47 48	55 48 43 41 41	0.88 .92 .97 1.00 1.03	30 29 28 27 26	52.8 51.7 50.5 49.3 48.1
65 66 67 68 69	53 55 33 56 11 49 57 25	1.58	48 28 49 33 50 41 51 51 53 5	1.08 1.13 1.17 1.23 1.27	54 55 56 57	33 12 50 27 3	1.54 1.58 1.62 1.67 1.71	49 50 51 52 53	5 10 18 28 42	1.08 1.13 1.17 1.23 1.27	54 55 56	50 28 4 40	1.58 1.58 1.67 1.67 1.71	49 50 51 53 54	43 48 55 5 18	1.08 1.12 1.17 1.22 1.25	25 24 23 22 21	46.8 45.4 44.1 42.7 41.2
70 71 72 73 74	58 I 35 59 8 40 60 II	1.82 1.88 1.94	54 21 55 41 57 4 58 30 59 59		58 59	38 12 44 16 46	1.76 1.88 1.88 2.00 2.07	54 56 57 59 60	58 17 39 4 32	I.32 I.37 I.42 I.47 I.52	57 58 59	15 48 20 51 21	1.82 1.88 1.94 2.00 2.14	55 56 58 59 61	33 51 13 37 4	1.30 1.37 1.40 1.45 1.50	20 19 18 17 16	39·7 38.1 36.5 34·9 33·2
75 76 77 78 79	61 8 35 62 22	2.22 2.50 2.61	61 31 63 6 64 45 66 27 68 12	1.58 1.65 1.70 1.75 1.80	60 61	15 42 8 32 55	2.22 2.31 2.50 2.61 2.86	62 63 65 66 68	37 14 55 38	1.57 1.62 1.68 1.72 1.77	60 61	49 16 41 5 28	2,22 2,40 2,50 2,61 3.00	62 64 65 67 69	34 7 43 22 4	1.55 1.60 1.65 1.70 1.73	15 14 13 12 11	31.4 29.6 27.8 25.9 23.9
80 81 82 83 84	63 4 21 37 51	3.53 3.75 4.29	70 0 71 51 73 44 75 40 77 38	1.85 1.88 1.93 1.97 2.02	62 63	16 35 53 8 22	3.16 3.33 4.00 4.29 5.45	70 72 74 75 77	24 13 4 58 54	1.82 1.85 1.90 1.93 1.97	62	48 7 24 39 53	3.16 3.53 4.00 4.29 5.45	70 72 74 76 78	48 35 24 16	1.78 1.82 1.87 1.90 1.92	9 8 7 6	21.9 19.9 17.8 15.6 13.5
85 86 87 88 89	64 3 20 26 29	8.57 10.0 20.0	79 39 81 41 83 44 85 49 87 54	2.08		33 43 50 56 59	6.00 8.57 10.0 20.0 60.0	79 81 83 85 87	52 52 53 55 57	2.00 2.02 2.03 2.03 2.05	63	-	6.67 8.57 10.0 20.0 60.0		52000	1.95 1.97 2.00 2.00 2.00	5 4 3 2 1	9.1 6.8 4.6 2.3
90	30		90 0		64	0		90	0			30		90	0		0	0.0
_	а	60' <u>∆</u>	b	$\frac{\Delta}{60'}$	0	ı	<u>6ο'</u> Δ		ь	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$		ь	<u>Δ</u> 6ο'		a
t		d = 2	5° 30′				d = 2	6° ()′			d	= 26	3° 3	0′			

b	,	a = 2	27° 0′			a=2	7° 3	0′	1			a=2	8° (0′	(\ c	a
B	h	<u>60'</u> Δ	Z	$\frac{\Delta}{60'}$	h d	$\frac{60'}{\Delta}$	z	t	<u>Δ</u> 60'	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	53 1 47 2 40 3 34	1.13 1.11 1.13 1.11 1.13	27 0 0 1 2 3		53 1 46 2 40 3 33	1.13	27	30 30 31 32 33	0.00 .02 .02 .02	0 I 2 3	53 46 39 32	I.13 I.13 I.13 I.13	28	0 0 1 2 3	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.5 89.1 88.6 88.2
5 6 7 8 9	4 27 5 21 6 14 7 7 8 1	1.11 1.13 1.13 1.11 1.13	5 8 11 14 17	0.05 .05 .05 .05	4 26 5 19 6 12 7 5 59	1.13 1.13 1.11		35 38 41 44 48	0.05 .05 .05 .07	4 5 6 7	25 18 11 4 56	I.13 I.13 I.13 I.15 I.13		5 8 11 14 18	0.05 .05 .05 .07	85 84 83 82 81	87.7 87.2 86.8 86.3 85.8
10 11 12 13 14	54 9 47 10 41 11 34 12 27	1.13 1.11 1.13 1.13 1.13	21 26 31 36 42	0.08 .08 .08 .10	8 52 9 45 10 38 11 31 12 23	1.13 1.13 1.15	28	52 56 1 7	0.07 .08 .10 .10		49 42 35 27 20	I.13 I.15 I.15 I.13		22 27 32 37 43	0.08 .08 .08 .10	80 79 78 77 76	85.3 84.9 84.4 83.9 83.4
15 16 17 18 19	13 20 14 13 15 6 59 16 52	1.13 1.13 1.13 1.13	49 56 28 3 11 19	0.12 .12 .13 .13	13 16 14 9 15 2 55 16 47	1.13 1.13 1.15		19 26 34 42 50	0.12 .13 .13 .13	13 14 15 16	13 58 50 42	1.15 1.13 1.15 1.15	29	50 57 4 12 21	0.12 .12 .13 .15	75 74 73 72 71	82.9 82.5 82.0 81.5 81.0
20 21 22 23 24	17 45 18 37 19 30 20 22 21 15	1.15 1.13 1.15 1.13 1.15	28 37 47 58 29 9	0.15 .17 .18 .18	17 40 18 32 19 24 20 17 21 9	1.15 1.13 1.15	29	59 9 19 30 41	0.17 .17 .18 .18	17 18 19 20 21	35 27 19 11 3	1.15 1.15 1.15 1.15	30	30 40 50 1	0.17 .17 .18 .18	70 69 68 67 66	80.5 79.9 79.4 78.9 78.4
25 26 27 28 29	22 7 23 0 52 24 44 25 36	1.13 1.15 1.15 1.15 1.18	33 46 59 30 13	0.20 .22 .22 .23	22 I 53 23 45 24 37 25 28	1.15	30	53 5 18 32 46	0.20 .22 .23 .23	22 23 24 25	55 46 38 29 21	1.18 1.15 1.18 1.15 1.15	31	24 37 50 3 18	0.22 .22 .22 .25 .25	65 64 63 62 61	77.8 77.3 76.8 76.2 75.6
30 31 32 33 34	26 27 27 19 28 11 29 2 53	1.15 1.15 1.18 1.18 1.18	28 44 31 0 17 35	0.27 .27 .28 .30 .30	26 20 27 11 28 2 53 29 44	1.18	31	1 16 33 50 8	0.25 .28 .28 .30	26 27 28 29	3 54 45 35	1.18 1.18 1.18 1.20 1.18	32	33 49 5 22 40	0.27 .27 .28 .30 .32	60 59 58 57 56	75.1 74.5 73.9 73.3 72.7
35 36 37 38 39	30 44 31 35 32 26 33 16 34 6	1.18 1.18 1.20 1.20 1.20	32 12 32 53 33 15	0.32 -33 -35 -37 -38	30 35 31 26 32 16 33 6 56	1.20	33	26 46 6 27 49	0.33 .33 .35 .37	30 31 32 33	26 16 6 56 46	I,20 I,20 I,20 I,20 I,22	33 34	59 19 39 1 23	0.33 .33 .37 .37 .38	55 54 53 52 51	72.1 71.5 70.8 70.2 69.5
40 41 42 43 44	56 35 46 36 36 37 25 38 14		38 34 I 26 52 35 I9	0.38 .42 .43 .45 .47		I.22 I.22	34 35	12 36 1 27 54	0.40 •42 •43 •45 •47		35 24 13 2 50	1.22 1.22 1.22 1.25 1.25	35 36	46 10 35 1 28	0.40 •42 •43 •45 •48	50 49 48 47 46	68.8 68.1 67.4 66.7 66.0
45	39 3		47		51		36	22		38	38	6.1		57		45	65.2
$ _t$	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	а	<u>6ο'</u> Δ		b	Δ 60'	a	,	<u>6ο'</u> Δ	. 1	b	<u>Δ</u> 6ο'	-	a
		d = 2	27° 0′			d=2	7° 3	80′				d=2	28° () [′]	,		

\ b	, ,	a = 2	27° 0′				a = 2	7° 8	30′				a=2	8°	0′		\ c	a
$B \setminus$	h d	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	39 3 52 40 40 41 28 42 15	I.22 I.25 I.25 I.28 I.28	35 47 36 16 46 37 17 50	50 52 55	38 39 40 41 42	51 39 27 14 1	1.25 1.25 1.28 1.28 1.28	36 37 38	22 51 21 53 26	0.48 .50 .53 .55 .57	38 39 40 41	38 26 13 0 47	I.25 I.28 I.28 I.28 I.28	36 37 38 39	57 26 56 28 1	0.48 .50 .53 .55	45 44 43 42 41	65.2 64.4 63.7 62.9 62.0
50 51 52 53 54	43 2 49 44 36 45 22 46 7	1.28 1.28 1.30 1.33 1.33	38 24 39 0 40 1 55	.62	43 44 45	48 35 21 6 51	1.28 1.30 1.33 1.33	39 40 41	36 13 52 32	0.60 .62 .65 .67	42 43 44 45	34 20 5 50 35	1.30 1.33 1.33 1.33 1.36	40 41 42	36 12 49 28 8	0.60 .62 .65 .67	40 39 38 37 36	61.2 60.3 59.4 58.5 57.6
55 56 57 58 59	52 47 37 48 21 49 5 48	1.33 1.36 1.36 1.40 1.43	41 37 42 20 43 5 44 41	.75 .78 .82	46 47 48 49	36 20 4 47 29	1.36 1.36 1.40 1.43	42 43 44 45	14 57 42 29 18	0.72 •75 •78 •82 •85	46 47 48 49	19 3 46 29 11	1.36 1.40 1.40 1.43 1.46	43 44 45	50 34 19 6 55	0.73 •75 •78 •82 •85	35 34 33 32 31	56.6 55.6 54.6 53.5 52.5
60 61 62 63 64	50 30 51 12 53 52 33 53 13	1.43 1.46 1.50 1.50 1.58	45 32 46 25 47 21 48 18 49 18	·95	50 51 52	52 33 13 52	1.46 1.46 1.50 1.54 1.58	46 47 48 49	9 2 57 54 54	0.88 .92 .95 I.00 I.03	50 51 52	52 33 13 53 31	1.46 1.50 1.50 1.58 1.58	46 47 48 49 50	46 38 33 30 30	0.87 .92 .95 1.00	30 29 28 27 26	51.3 50.2 49.0 47.8 46.6
65 66 67 68 69	51 54 29 55 6 42 56 17	1.58 1.62 1.67 1.71 1.76	50 20 51 22 52 31 53 41 54 53	I.12 I.17 I.20	53 54 55	30 8 44 20 54	1.58 1.67 1.67 1.76 1.76	50 52 53 54 55	56 0 7 16 27	1.07 1.12 1.15 1.18 1.25	53 54 55	9 46 22 57 31	1.62 1.67 1.71 1.76 1.82	51 52 53 54 56	31 35 41 50 1	1.07 1.10 1.15 1.18 1.23	25 24 23 22 21	45·3 44·0 42·6 41·2 39·7
70 71 72 73 74	51 57 24 56 58 26 ->55	1.82 1.88 2.00 2.07 2.14	56 8 57 25 58 46 60 6 61 35	1.35 1.38 1.43	56 57 58	28 0 31 1 30	1.88 1.94 2.00 2.07 2.22	56 57 59 60 62	42 59 18 41 6	1.28 1.32 1.38 1.42 1.47	56 57 58	4 36 7 36 4	1.88 1.94 2.07 2.14 2.22	57 58 59 61 62	15 31 50 12 36	1.27 1.32 1.37 1.40 1.45	20 19 18 17 16	38.2 36.7 35.1 33.5 31.8
75 76 77 78 79	59 23 50 60 15 38 61 0	2.22 2.40 2.61 2.73 3.00	63 2 64 36 66 11 67 48 69 28	1.58 1.62 1.67	59 60	57 23 48 11 32	2.31 2.40 2.61 2.86 3.00	63 65 66 68 69	34 5 38 14 52	1.52 1.55 1.60 1.63 1.68	59 60	31 57 21 44 5	2.31 2.50 2.61 2.86 3.16	64 65 67 68 70	3 32 4 39 16	1.48 1.53 1.58 1.62 1.65	15 14 13 12 11	30.1 28.4 26.6 24.7 22.8
80 81 82 83 84	20 39 56 62 10 23	3.16 3.53 4.29 4.62 5.00	71 11 72 56 74 4. 76 3. 78 22	1.78 1.83 1.85	61	52 10 27 41 54	3.33 3.53 4.29 4.62 5.45	71 73 75 76 78	33 16 2 50 39	1.72 1.77 1.80 1.82 1.85	61	24 42 58 12 25	3·33 3·75 4·29 4.62 5·45	71 73 75 77 78	55 36 20 6 53	1.68 1.73 1.77 1.78 1.82	10 9 8 7 6	20.9 18.9 16.9 14.9 12.8
85 86 87 88 89	35 44 51 56 59	6.67 8.57 12.0 20.0 60.0		1.93	62	5 14 21 26 29				1.87 1.90 1.90 1.92 1.92			7.50 8.57 12.0 20.0 60.0		42 32 23 15 7	1.83 1.85 1.87 1.87 1.88	5 4 3 2 1	10.7 8.6 6.5 4.3 2.2
90	63 0		90 (30	1	90	0		62 ==	0		90	0		0	0.0
t	а	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	0	ı	<u>60'</u> Δ	,	b	<u>Δ</u> 60'	0	ı	<u>6ο′</u> Δ		Ь	$\frac{\Delta}{60'}$		a.
		d = 2	2 7° 0′	- c		0	l=2	7° 3	0′				d = 2	8° ()′	-		

b	a	i = 28	3° 30)′				a = 2	9° ()′			a	= 29)° 3	0′		\ c	a
B	h	$\left \frac{\epsilon_{\mathbf{O'}}}{\Delta} \right $	z	t	<u>Δ</u> 6ο'	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{6o'}{\Delta}$	Z	t	<u>Δ</u> 6ο'	$C \setminus$	β
0 I 2 3 4	0 0 53 1 46 2 38 3 31	I.13 I.13 I.15 I.13 I.13		30 30 31 32 34	.02	2	52 45 37 30	1.15 1.13 1.15 1.13	29	0 0 1 2 4	0.00 .02 .02 .03	0 I 2 3	0 52 44 37 29	1.15 1.15 1.13 1.15 1.15	29	30 30 31 32 34	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.5 89.0 88.5 88.1
5 6 78 9	4 24 5 16 6 9 7 2 54	1.15 1.13 1.13 1.15 1.15		36 38 41 44 48	.03 .05 .05 .07	6	22 15 7 59 52	1.13 1.15 1.15 1.13 1.15		6 8 11 14 18	0.03 .05 .05 .07	4 5 6	21 13 5 57 49	1.15 1.15 1.15 1.15 1.15		36 38 41 44 48	0.03 .05 .05 .07	85 84 83 82 81	87.6 87.1 86.6 86.1 85.6
10 11 12 13 14	8 47 9 39 10 32 11 24 12 17	1.15 1.13 1.15 1.13 1.15	29	52 57 2 8 14	.08 .10 .10	8 9 10 11 12	44 36 29 21	1.15 1.13 1.15 1.15		22 27 32 38 44	0.08 .08 .10 .10	8 9 10 11 12	41 33 25 17 9	1.15 1.15 1.15 1.15	30	53 58 3 9	0.08 .08 .10 .10	80 79 78 77 76	85.1 84.6 84.1 83.6 83.1
15 16 17 18 19	13 9 14 1 53 15 45 16 37	1.15 1.15 1.15 1.15 1.15		21 0 28 35 43 52	.12 .13 .15		5 57 49 41 33	1.15 1.15 1.15 1.15 1.18	30	51 58 6 14 23	0.12 .13 .13 .15	13 14 15 16	53 45 36 28	1.15 1.15 1.18 1.15 1.15		22 29 37 45 54	0.12 .13 .13 .15	75 74 73 7 ² 71	82.6 82.1 81.6 81.0 80.5
20 21 22 23 24	17 29 18 21 19 13 20 5 57	1.15 1.15 1.15 1.15 1.18		I 6 II 2I 32 44	.17 .18 .20	17 18 19	24 16 8 59 50	1.15 1.15 1.18 1.18	31	32 42 52 3 15	0.17 .17 .18 .20	17 18 19	19 11 2 53 44	1.15 1.18 1.18 1.18 1.18	31	3 13 24 35 46	0.17 .18 .18 .18	70 69 68 67 66	80.0 79.5 78.9 78.4 77.8
25 26 27 28 29	2I 48 22 40 23 3I 24 22 25 I3	1.15 1.18 1.18 1.18	31	56 8 21 35 50	0.20 .22 .23 .25	21 22 23 24 25	41 32 23 14 5	1.18 1.18 1.18 1.18 1.18	32	27 40 53 7 22	0.22 .22 .23 .25	21 22 23 24	35 26 16 7 57	1.18 1.20 1.18 1.20 1.18	32	58 11 25 39 54	0.22 .23 .23 .25 .27	65 64 63 62 61	77.3 76.7 76.1 75.5 75.0
30 31 32 33 34	26 4 55 27 45 28 36 29 26	1.18 1.20 1.18 1.20 1.20		5 21 38 55 13	0.27 .28 .28 .30	26 27 28 29	56 47 37 27 17	I.18 I.20 I.20 I.20 I.20	33	37 53 10 28 46	0.27 .28 .30 .30 .32	25 26 27 28 29	48 38 28 18 7	I.20 I.20 I.20 I.22 I.22	33	10 26 43 0	0.27 .28 .28 .32 .32	60 59 58 57 56	74·4 73·8 73·1 72·5 71·9
35 36 37 38 39	30 16 31 6 56 32 45 33 34	I.20 I.20 I.22 I.22 I.22	34°	32 52 13 34 57	• 33 • 35 • 35 • 38 • 38	30 31 32 33	7 56 46 35 24	I.22 I.20 I.22 I.22 I.22	34 35	5 25 46 7 30	0.33 .35 .35 .38	30 31 32 33	57 46 35 24 13	I.22 I.22 I.22 I.22 I.25	35 36	38 58 19 41 3	0.33 -35 -37 -37 -40	55 54 53 52 51	71.3 70.6 69.9 69.3 68.6
40 41 42 43 44	34 23 35 12 36 1 49 37 37	I.22 I.22 I.25 I.25 I.25	36	20 44 9 36 3	0.40 •42 •45 •45 •47	34 35 36 37	13 1 49 37 25	I.25 I.25 I.25 I.25 I.25	36 37	53 18 43 10 37	0.42 .42 .45 .45	34 35 36 37	1 49 37 25 12	1.25 1.25 1.25 1.28 1.28	3 <i>7</i> 38	27 51 17 44 11	0.40 •43 •45 •45 •48	50 49 48 47 46	67.9 67.1 66.4 65.7 64.9
45	38 25			31		38	12		38	5			59			40		45	64.1
	а	<u>6ο'</u> Δ	b	•	<u>Δ</u> 6ο'	а	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t		l=2	8° 30	0′				d=2	29° (0′				d = 2	9° 8	30′			

\ b		C	ı = 28	8° 3	0′				a=2	9°	0′		Π		a = 2	9° 8	30′		\ c	a
$B \setminus$	h	d	6ο' Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	C	β
45 46 47 48 49	38 39 40 41	25 13 0 47 33	1.25 1.28 1.28 1.30 1.30	37 38 39	31 31 31 33 37	0.50 .50 .53 .57 .57	38 39 40 41	59 46 32 18	1.28 1.28 1.30 1.30	38 39 40	5 35 6 38 11	0.50 .52 .53 .55 .58	37 38 39 40 41	59 46 32 18 4	1.28 1.30 1.30 1.30 1.33	38 39 40	40 10 41 13 46	0.50 .52 .53 .55 .58	° 45 44 43 42 41	64.1 63.3 62.5 61.7 60.9
50 51 52 53 54	42 43 44 45	19 5 50 35 19	1.30 1.33 1.33 1.36 1.36	40 41 42	11 47 24 3 44	0.60 .62 .65 .68	42 43 44 45	4 49 34 18 2	1.33 1.33 1.36 1.36 1.36	41 42 43	46 22 0 39 19	0.60 .63 .65 .67	42 43 44	49 34 18 2 46	1.33 1.36 1.36 1.36 1.40	41 42 43	21 57 35 14 54	0.60 .63 .65 .67	40 39 38 37 36	60.0 59.1 58.2 57.2 56.3
55 56 57 58 59	46 47 48	3 46 29 11 53	1.40 1.40 1.43 1.43 1.46	43 44 45 46	26 9 55 42 31	0.72 •77 •78 •82 •85	46 47 48	46 29 11 53 34	1.40 1.43 1.43 1.46 1.50	44 45 46 47	45 30 17 6	0.73 .75 .78 .82 .85	45 46 47 48	29 11 53 34 15	1.43 1.43 1.46 1.46 1.50	44 45 46 47	36 20 5 52 41	0.73 .75 .78 .82 .85	35 34 33 32 31	55·3 54·3 53·3 52·2 51·1
60 61 62 63 64	49 50 51 52	34 14 53 32 10	1.50 1.54 1.54 1.58 1.58	47 48 49 50 51	22 14 9 6 5	0.87 .92 .95 .98	49 50 51	14 54 33 12 49	1.50 1.54 1.54 1.62 1.62	48 49 50 51	57 50 44 41 40	0.88 .90 .95 .98	49 50 51	55 34 13 51 28	1.54 1.54 1.58 1.62 1.67	48 49 50 51 52	32 25 19 15 14	0.88 .90 .93 .98	30 29 28 27 26	50.0 48.8 47.6 46.4 45.2
65 66 67 68 69	53 54 55	48 24 59 34 8	1.67 1.71 1.71 1.76 1.88	52 53 54 55 56	6 16 24 35	1.07 1.10 1.13 1.18 1.22	52 53 54	26 2 37 11 44	1.67 1.71 1.76 1.82 1.88	52 53 54 55 57	41 44 49 57 7	1.05 1.08 1.13 1.17 1.20	52 53 54	4 40 14 48 21	1.67 1.76 1.76 1.82 1.94	53 54 55 56 57	14 17 22 29 39	1.05 1.08 1.12 1.17 1.20	25 24 23 22 21	43.9 42.6 41.2 39.8 38.4
70 71 72 73 74	56 57	40 12 42 11 39	1.88 2.00 2.07 2.14 2.31	57 59 60 61 63	48 3 21 42 5	I.25 I.30 I.35 I.38 I.43	55 56 57	16 47 17 46 13	1.94 2.00 2.07 2.22 2.31	58 59 60 62 63	19 34 52 12 34	I.25 I.30 I.33 I.37 I.40	55 56	52 23 52 20 47	1.94 2.07 2.14 2.22 2.31	58 60 61 62 64	51 5 21 40 2	1.23 1.27 1.32 1.37 1.38	20 19 18 17 16	36.9 35.4 33.8 32.2 30.6
75 76 77 78 79	58 59	5 30 54 16 37	2.40 2.50 2.73 2.86 3.16	64 65 67 69 70	31 59 29 2 38	1.47 1.50 1.55 1.60 1.63	58 59	39 4 27 49 9	2.40 2.61 2.73 3.00 3.16	64 66 67 69 71	58 25 54 26 0	1.45 1.48 1.53 1.57 1.60	5 <i>7</i> 58	13 37 0 21 41	2.50 2.61 2.86 3.00 3.16	65 66 68 69 71	25 51 19 49 22	1.43 1.47 1.50 1.55 1.57	15 14 13 12 11	28.9 27.2 25.5 23.7 21.8
80 81 82 83 84	60	56 14 29 43 56	3.33 4.00 4.29 4.62 6.00	72 73 75 77 79	16 56 37 21 6	1.67 1.68 1.73 1.75 1.78	60	28 45 0 14 26	3.53 4.00 4.29 5.00 6.00	72 74 75 77 79	36 14 54 36 19	1.63 1.67 1.70 1.72 1.75	59	0 17 32 45 57	3.53 4.00 4.62 5.00 6.00	72 74 76 77 79	56 33 11 51 32	1.62 1.63 1.67 1.68 1.70	9 8 7 6	20.0 18.1 16.2 14.2 12.2
85 86 87 88 89	61	6 15 21 26 29	6.67 10.0 12.0 20.0 60.0			1.80 1.82 1.82 1.83 1.85			6.67 10.0 12.0 20.0 60.0				60	7 15 22 26 29	7.50 8.57 15.0 20.0 60.0			1.73 1.75 1.75 1.77 1.77	5 4 3 2 1	10.2 8.2 6.2 4.1 2.1
90		30		90	0		61	0		90	0		_	30		90	0		0	0.0
t	(ı	$\frac{60'}{\Delta}$		b	<u>Δ</u> 6ο'	a	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	1	b	$\frac{\Delta}{60'}$		G.
ι	d=28° 30′								d=2	9° ()′			C	l = 29	9° 3	0′			

\ b		a=3	0° 0′		1	a = 30	0° 3	30′				a=3	1° (D′		\ c	
$B \setminus$	h d	$\left \frac{60'}{\Delta} \right $	Z t	$\frac{\Delta}{60'}$	h d	6ο' Δ	Z	t	<u>Δ</u> 6ο'	h	$\frac{d}{}$	60' Δ	Z	t	$\frac{\Delta}{60'}$	$c \setminus$	3
0 0 1 2 3 4	0 0 52 1 44 2 36 3 28	1.15 1.15 1.15 1.15 1.15	30 0 0 1 2 4	0.00 .02 .02 .03	0 0 52 1 43 2 35 3 27	1.15 1.18 1.15 1.15	30	30 30 31 32 34	0.00 .02 .02 .03	2	6 51 43 34 26	1.18 1.15 1.18 1.15 1.15	31	0 0 1 2 4	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.5 89.0 88.5 88.0
5 6 78 9	4 20 5 12 6 4 55 7 47	1,15 1,15 1,18 1,15 1,15	6 8 11 15 19	0.03 .05 .07 .07	4 18 5 10 6 2 53 7 45	1.15 1.15 1.18 1.15 1.18		36 38 41 45 49	0.03 .05 .07 .07	5	17 8 0 51 43	1.18 1.15 1.18 1.15 1.18	1	6 8 11 15	0.03 .05 .07 .07	85 84 83 82 81	87.5 86.9 86.4 85.9 85.4
10 11 12 13 14	8 39 9 31 10 22 11 14 12 6	1.15 1.18 1.15 1.15 1.18	23 28 33 39 45	0.08 .08 .10 .10	8 36 9 28 10 19 11 11 12 2	1.15 1.18 1.15 1.18 1.18	31	53 58 3 9	0.08 .08 .10 .12	9 10 11	34 25 16 7 58	1.18 1.18 1.18 1.18		23 28 34 40 46	0.08 .10 .10	80 79 78 77 76	84.9 84.4 83.8 83.3 82.8
15 16 17 18 19	57 13 49 14 40 15 31 16 23	1.15 1.18 1.18 1.15 1.15	52 59 31 7 16 25	0.12 .13 .15 .15	53 13 44 14 35 15 26 16 17	1.18 1.18 1.18 1.18		23 30 38 46 55	0.12 •13 •13 •15 •17	13 14 15	49 40 31 22 12	1.18 1.18 1.18 1.20 1.18	32	53 1 9 17 26	0.13 .13 .13 .15	75 74 73 72 71	82.3 81.7 81.2 80.6 80.1
20 21 22 23 24	17 14 18 5 56 19 47 20 37	1.18 1.18 1.18 1.20 1.18	34 44 55 32 6 18	0.17 .18 .18 .20	17 8 59 18 50 19 41 20 31	1.18 1.18 1.18 1.20 1.20	32	5 15 26 37 49	0.17 .18 .18 .20	18	3 53 44 34 24	I.20 I.18 I.20 I.20 I.20	33	36 46 57 8 20	0.17 .18 .18 .20	70 69 68 67 66	79.5 79.0 78.4 77.8 77.3
25 26 27 28 29	21 28 22 19 23 9 59 24 49	I.18 I.20 I.20 I.20 I.20	30 43 57 33 11 26	0.22 .23 .23 .25	2I 2I 22 II 23 I 5I 24 4I	I.20 I.20 I.20 I.20 I.20	33	1 14 28 42 57	0.22 .23 .23 .25 .27	22	14 54 44 33	I.20 I.20 I.20 I.22 I.22	34	33 46 0 14 29	0.22 .23 .23 .25 .27	65 64 63 62 61	76.7 76.1 75.5 74.9 74.3
30 31 32 33 34	25 39 26 29 27 19 28 9 58	I.20 I.20 I.20 I.22 I.22	41 58 34 15 33 51	0.28 .28 .30 .30	25 31 26 21 27 10 59 28 48	I.20 I.22 I.22 I.22 I.22	34	13 30 47 5 24	0.28 .28 .30 .32 .32	26 27	23 12 1 50 39	I.22 I.22 I.22 I.22 I.25	35	45 2 19 37 56	0.28 .28 .30 .32 .33	59 58 57 56	73.7 73.0 72.4 71.8 71.1
35 36 37 38 39	29 47 30 36 31 25 32 13 33 1	I.22 I.22 I.25 I.25 I.25	35 11 31 52 36 14 37	0.33 •35 •37 •38 •38	29 37 30 26 31 14 32 2 50	I.22 I.25 I.25 I.25 I.25	36 37	43 4 25 47 10	0.35 .35 .37 .38 .40	30 31	27 15 3 51 39	I.25 I.25 I.25 I.25 I.28	36 37	16 36 57 20 43	0.33 •35 •38 •38 •40	55 54 53 52 51	70.4 69.8 69.1 68.4 67.7
40 41 42 43 44	49 34 37 35 25 36 12 59	1.25 1.25 1.28 1.28 1.28	37 0 25 51 38 17 45	0.42 •43 •43 •47 •48	33 38 34 25 35 12 59 36 46	1.28 1.28 1.28 1.28 1.30	38 39	34 58 24 51	•43 •45 •47 •48	34 35		1.28 1.28 1.30 1.28 1.30		7 31 57 24 52	•43 •45 •47 •48	50 49 48 47 46	66.9 66.2 65.4 64.7 63.9
45	37 46		39 14		37 32			48		37	19		40	21		45	63.1
	а	<u>60'</u> Δ	b	<u>Δ</u> 60'	a	<u>6ο'</u> Δ		b	<u>Δ</u> 6ο'	a		$\frac{60'}{\Delta}$	1	b	$\frac{\Delta}{60'}$		a
t		d = 3	0° 0′			d=3	0° 3	 30′				d = 3	1°	0′			

\ b			a=3	0° ()′			C	<i>i</i> = 30	0° 3	0′				a = 3	31°	0′	5.	c	a
B	h	d	6ο' Δ	z	*	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	Z	t	<u>Δ</u> 6ο'	h	d	60' Δ	Z	*	$\frac{\Delta}{60'}$	$C \setminus$	B
9 45 40 47 48 49	37 38 39 40	46 32 18 4 49	1.30 1.30 1.30 1.33 1.33	39 40 41	14 44 15 47 21	0.50 .52 .53 .57	37 38 39 40	32 18 4 49 34	1.30 1.30 1.33 1.33	39 40 41	48 18 49 21 55	0.50 •52 •53 •57 •58	37 38 39 40	19 4 49 34 19	1.33 1.33 1.33 1.33 1.36	41 42	21 52 23 55 29	0.52 .52 .53 .57	45 44 43 42 41	63. 1 62.3 61.4 60.6 59.7
50 51 52 53 54	41 42 43 44	34 18 2 46 29	1.36 1.36 1.36 1.40 1.43	42 43 44	56 32 10 49 29	0.60 .63 .65 .67	41 42 43 44	18 2 46 29 12	1.36 1.36 1.40 1.40	42 43 44 45	30 6 44 23 4	0.60 .63 .65 .68	41 42 43	3 46 29 12 54	1.40 1.40 1.40 1.43 1.43	43 44 45	40 18 57 38	0.60 .63 .65 .68	40 39 38 37 36	58.8 57.9 57.0 56.0 55.1
55 56 57 58 59	45 46 47	53 35 16 56	1.43 1.43 1.46 1.50 1.50	45 46 47 48	55 40 27 16	0.73 •75 •78 •82 •83	45 46 47	54 35 16 57 37	1.46 1.46 1.46 1.50 1.54	46 47 48	46 30 15 2 50	0.73 .75 .78 .80 .83	44 45 46 47	36 17 58 38 17	1.46 1.46 1.50 1.54 1.54	46 47 48 49	20 4 49 35 24	0.73 .75 .77 .82 .83	35 34 33 32 31	54.1 53.0 52.0 50.9 49.8
60 61 62 63 64	48 49 50 51	36 15 53 30 7	1.54 1.58 1.62 1.62 1.67	49 50 51 52	6 59 53 49 48	0.88 .90 .93 .98	48 49 50	16 54 32 9 45	1.58 1.58 1.62 1.67 1.71	49 50 51 52 53	40 33 27 23 21	0.88 .90 .93 .97	48 49 50	56 34 11 48 24	1.58 1.62 1.62 1.67 1.71	50 51 52 53	14 6 0 56 53	0.87 .90 .93 .95 1.00	30 29 28 27 26	48.7 47.5 46.3 45.1 43.9
65 66 67 68 69	52 53	43 18 52 25 57	1.71 1.76 1.82 1.88 1.94	53 54 55 57 58	48 50 55 1	1.03 1.08 1.10 1.15 1.18	51 52 53	20 55 29 1 33	1.71 1.76 1.88 1.88	54 55 56 57 58	21 23 27 33 41	1.03 1.07 1.10 1.13 1.18	51 52 53	59 33 6 38 9	1.76 1.82 1.88 1.94 2.00	54 55 56 58 59	53 55 58 3	1.03 1.05 1.08 1.13 1.17	25 24 23 22 21	42.6 41.3 39.9 38.5 37.1
70 71 72 73 74	54 55 56	28 58 27 55 21	2.00 2.07 2.14 2.31 2.40	59 60 61 63 64	21 35 51 9 29	I.23 I.27 I.30 I.33 I.37	54 55	4 33 2 29 55	2.07 2.07 2.22 2.31 2.40	59 61 62 63 64	52 4 19 36 55	1.20 1.25 1.28 1.32 1.37	54 55	39 8 36 3 29	2.07 2.14 2.22 2.31 2.50	60 61 62 64 65	21 33 47 3 21	1.20 1.23 1.27 1.30 1.35	20 19 18 17 16	35.6 34.2 32.6 31.1 29.5
75 76 77 78 79	5 <i>7</i>	58 2.07 60 35 1 27 2.14 61 51 1 55 2.31 63 9 1 5 21 2.40 64 29 1 46 2.50 65 51 1 10 2.61 67 16 1 33 2.86 68 43 1 54 3.16 70 12 1					56 57	20 43 5 26 45	2.61 2.73 2.86 3.16 3.33	66 67 69 70 72	17 40 6 33 3	1.38 1.43 1.45 1.50 1.52	56 57	53 16 38 58 17	2.61 2.73 3.00 3.16 3.33	66 68 69 70 72	42 4 29 55 23	1.37 1.42 1.43 1.47 1.50	15 14 13 12 11	27.8 26.2 24.5 22.7 21.0
80 81 82 83 84	59	31 48 3 16 28	3.53 4.00 4.62 5.00 6.00	73 74 76 78 79	16 50 27 5 44	1.57 1.62 1.63 1.65 1.68	58	3 19 34 47 58	3.75 4.00 4.62 5.45 6.00	73 75 76 78 79	34 7 42 18 56	1.55 1.58 1.60 1.63 1.65	58	35 51 5 18 29	3.75 4.29 4.62 5.45 6.67	73 75 76 78 80	53 24 57 32 8	1.52 1.55 1.58 1.60 1.62	9 8 7 6	19.2 17.3 15.5 13.6 11.7
85 86 87 88 89		38 46 52 56 59	7.50 10.0 15.0 20.0 60.0	81 83 84 86 88	25 7 49 32 16	1.70 1.70 1.72 1.73 1.73	59	8 16 22 26 29	7.50 10.0 15.0 20.0 60.0	81 83 84 86 88	35 15 55 36 18	1.67 1.68 1.70 1.70		38 46 52 56 59	7.50 10.0 15.0 20.0 60.0	81 83 85 86 88	45 23 I 40 20	1.63 1.63 1.65 1.67 1.67	5 4 3 2 1	9.8 7.8 5.9 3.9 2.0
90	60	0		90	0		_	30		90	0		59	0		90	0		0	0.0
$ _{t}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	_	a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	-	a
			d = 3	30°	0′				d = 3	0° 3	30′				d = 3	31° ()′			

\ b	C	<i>i</i> = 3	1° 30′			a=3	2° (0′			a=3	2° 30′		\ c	a
$B \setminus$	h	$\frac{60'}{\Delta}$	Z^{t}	$\frac{\Delta}{60'}$	h d	<u>6ο′</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	$\frac{1}{\Delta}$	Z	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	0 0 51 1 42 2 34 3 25	1.18 1.18 1.15 1.18	31 30 30 31 32 34	0.00	0 0 51 1 42 2 33 3 23	1.18 1.18 1.18 1.20 1.18	32	0 0 1 2 4	0.00 .02 .02 .03	5 1 4 2 3 3 2	1.18	32 30 30 31 32 32	.02	90 89 88 87 86	90.0 89.5 88.9 88.4 87.9
5 6 78 9	4 16 5 7 58 6 49 7 40	1.18 1.18 1.18 1.18	36 38 41 45 49	0.03 .05 .07 .07	4 14 5 5 56 6 47 7 37	1.18 1.18 1.18 1.20 1.18		6 8 11 15 19	0.03 .05 .07 .07	4 I 5 5 6 4 7 3	1.18 1.20 1.18	39 42 41 49	.05	85 84 83 82 81	87.3 86.8 86.3 85.7 85.2
10 11 12 13 14	8 31 9 22 10 13 11 4 54	1.18 1.18 1.18 1.20 1.18	54 59 32 4 10 17	0.08 .08 .10 .12	8 28 9 19 10 9 11 0 50	1.18 1.20 1.18 1.20 1.18		24 29 34 40 47	0.08 .08 .10 .12	8 2 9 10 10 6 11 40	I.20 I.20 I.20	33	.10	80 79 78 77 76	84.7 84.1 83.6 83.0 82.5
15 16 17 18 19	12 45 13 36 14 26 15 17 16 7	1.18 1.20 1.18 1.20 1.20	24 31 39 48 57	0.12 .13 .15 .15	12 41 13 31 14 21 15 12 16 2	1.20 1.20 1.18 1.20 1.20	33	54 2 10 18 27	0.13 .13 .13 .15	12 30 13 20 14 10 15 0	1.20 1.20 1.20	22 32 49 55	.13	75 74 73 72 71	81.9 81.4 80.8 80.2 79.7
20 21 22 23 24	57 17 47 18 37 19 27 20 17	I.20 I.20 I.20 I.20 I.20	33 7 17 28 39 51	0.17 .18 .18 .20	52 17 42 18 31 19 21 20 11	I.20 I.22 I.20 I.20 I.20	34	37 48 59 10 22	0.18 .18 .18 .20	16 4 17 3 18 2 19 1 20	5 1.22 5 1.22	34 19 30 4 51	.18	70 69 68 67 66	79.1 78.5 77.9 77.3 76.7
25 26 27 28 29	2I 7 57 22 47 23 36 24 25	I.20 I.20 I.22 I.22 I.22	34 4 17 31 46 35 1	0.22 .23 .25 .25	2I 0 49 22 38 23 27 24 16	I.22 I.22 I.22 I.22 I.22	35	35 48 2 19 33	0.22 .23 .25 .27 .27	5 2I 4 22 3 23 2 24	2 1.22 I 1.22	34	1 .25	65 64 63 62 61	76.1 75.5 74.9 74.3 73.6
30 31 32 33 34	25 14 26 3 52 27 40 28 29	1.22 1.22 1.25 1.22 1.25	17 34 51 36 9 28	0.28 .28 .30 .32 .33	25 5 54 26 42 27 30 28 18	I.22 I.25 I.25 I.25 I.25	36 37	49 6 23 41 0	0.28 .28 .30 .32 .33	5 25 4 26 3 27 2 28	5 1.25 3 1.25	37 1 33 33 35 35 35 35 35 35 35 35 35 35 35	7 .30 5 .30 3 .32	59 58 57 56	73.0 72.3 71.7 71.0 70.3
35 36 37 38 39	29 17 30 5 53 31 40 32 27	1.25 1.25 1.28 1.28 1.28	48 37 9 30 52 38 15	0.35 -35 -37 -38 -40	29 6 54 30 41 31 28 32 15	1.25 1.28 1.28 1.28 1.28	38	20 41 2 25 48	0.35 •35 •38 •38 •40	5 29 4 30 3 31 1 32	3 1.28	38 I 38 I 39 2	3 ·37 5 ·37 7 ·40	55 54 53 52 51	69.6 68.9 68.2 67.5 66.8
40 41 42 43 44	33 14 34 1 47 35 33 36 19	1.28 1.30 1.30 1.30 1.30	39 39 5 31 58 40 26	0.43 .43 .45 .47	33 2 48 34 34 35 20 36 6		39 40	37 4 31 59	0.42 •45 •45 •47 •48	33. 3 34. 2 35. 5	6 1.30	40 10	·43 ·47 4 ·47	50 49 48 47 46	66.0 65.3 64.5 63.7 62.9
45	37 5		5.5		51		41	28		36 3		42	1	45	62.1
	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	а	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$		a
t	-1-	d = 3	1° 30′			d = 3	2° (0′			d = 3	2° 30′			

\ b		a=3	1° 30′				a=3	2° (0′			(a=3	2° 3	0′		\ c	a
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 40 47 48 49	37 5 50 38 35 39 19 40 3	1.33 1.33 1.36 1.36 1.36	40 5 41 2 5 42 2 43	5 .52	36 37 38 39	51 36 20 4 48	1.33 1.36 1.36 1.36 1.40	41 42 43	28 58 30 2 36	0.50 •53 •53 •57 •58	36 37 38 39	37 21 5 49 32	1.36 1.36 1.36 1.40 1.40	43 44	31 36 10	0.50 •53 •55 •57 •58	° 45 44 43 42 41	62.1 61.2 60.4 59.5 58.6
50 51 52 53 54	47 41 30 42 13 55 43 37	1.40 1.43 1.43 1.46	44 I. 5 45 3 46 I	4 .63 2 .65 1 .68	40 41 42 43	31 14 56 38 19	1.40 1.43 1.43 1.46 1.46	44 45 46	48 26 5 45	0.62 .63 .65 .67	40 41 42 43	15 57 39 21 2	1.43 1.43 1.43 1.46 1.50	45 46 47	45 21 59 38 18	0.60 .63 .65 .67	40 39 38 37 36	57.7 56.8 55.9 54.9 53.9
55 56 57 58 59	44 18 59 45 39 46 19 58	1.46 1.50 1.50 1.54 1.58	47 3 48 2 49 5	7 .75 .78 .80	44 45 46	0 40 20 59 38	1.50 1.50 1.54 1.54 1.58	47 48 49 50	27 10 55 42 30	0.72 •75 •78 •80 •83	44 45 46	42 22 I 40 I8	1.50 1.54 1.54 1.58 1.62	48 49 50 51	0 43 28 15 3	0.72 •75 •78 •80 •83	35 34 33 32 31	52.9 51.8 50.8 49.7 48.6
60 61 62 63 64	47 36 48 13 50 49 26 50 1	1.62 1.62 1.67 1.71 1.71	50 4 51 3 52 3 53 2 54 2	9 .9c 3 .92 8 .95	47 48 49	16 53 29 5 40	1.62 1.67 1.67 1.71 1.76	51 52 53 54	20 12 5 0 57	0.87 .88 .92 .95 .98	47 48 49	55 32 8 43 17	1.62 1.67 1.71 1.76 1.76	52 53 54 55	53 44 37 32 28	0.85 .88 .92 .93 .97	30 29 28 27 26	47.5 46.3 45.1 43.9 42.6
65 66 67 68 69	36 51 10 42 52 14 45	1.76 1.88 1.88 1.94 2.00	55 2 56 2 57 2 58 3 59 4	1.05 1.08 1.12	50 51 52	14 47 19 50 21	1.82 1.88 1.94 1.94 2.07	55 56 57 59 60	56 56 59 4	1.00 1.05 1.08 1.10	50 51	51 24 56 27 56	1.82 1.88 1.94 2.07 2.07	56 57 58 59 60	26 27 29 33 39	1.02 1.03 1.07 1.10	25 24 23 22 21	41.3 40.0 38.7 37.3 35.9
70 71 72 73 74	53 15 44 54 11 38 55 3	2.07 2.22 2.22 2.40 2.50	60 50 62 63 1. 64 30 65 4	I I.22 4 I.27 D I.28	53 54	50 18 45 11 36	2.14 2.22 2.31 2.40 2.50	61 62 63 64 66	18 29 41 56 12	1.18 1.20 1.25 1.27 1.30	52 53 54	25 53 20 46 10	2.14 2.22 2.31 2.50 2.61	61 62 64 65 66	46 56 8 21 36	I.17 I.20 I.22 I.25 I.28	20 19 18 17 16	34·5 33.0 31·5 30.0 28.4
75 76 77 78 79	27 50 56 11 31 49	2.61 2.86 3.00 3.33 3.53	67 68 2: 69 50 71 1 72 4	1.42 5 1.45	55 56	0 22 43 3 21	2.73 2.86 3.00 3.33 3.53	67 68 70 71 73	30 50 12 36 1	1.33 1.37 1.40 1.42 1.45	55	33 55 16 35 53	2.73 2.86 3.16 3.33 3.53	67 69 70 71 73	53 12 33 56 20	1.32 1.35 1.38 1.40 1.42	15 14 13 12 11	26.8 25.2 23.5 21.9 20.1
80 81 82 83 84	57 6 22 36 49 58 0	3.75 4.29 4.62 5.45 6.67	74 I 75 4 77 I: 78 4 80 I	1 1.52 2 1.55 5 1.57	5 <i>7</i>	38 53 7 19 30	4.00 4.29 5.00 5.45 6.67	74 75 77 78 80	28 57 27 58 30	1.48 1.50 1.52 1.53 1.57	56 5 <i>7</i>	10 25 38 50 1	4.00 4.62 5.00 5.45 6.67	74 76 77 79 80	45 12 41 10 41	1.45 1.48 1.48 1.52 1.53	10 9 8 7 6	18.4 16.6 14.9 13.0 11.2
85 86 87 88 89	9 16 22 27 29	8.57 10.0 12.0 30.0 60.0	81 54 83 30 85 4 86 4 88 2:	1.62 7 1.62 1 1.63		39 47 53 57 59	7.50 10.0 15.0 30.0 60.0			1.57 1.58 1.58 1.60		10 17 23 27 29	8.57 10.0 15.0 30.0 60.0			1.53 1.55 1.57 1.57 1.57	5 4 3 2 1	9·4 7·5 5·6 3·8 1·9
90	30		90		58	0		90	0			30		90	0		0	0.0
=	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{\epsilon o'}$	a	ı	<u>6ο′</u> Δ	1	b	Δ 60'	0	ı	<u>6ο'</u> Δ	1	5	<u>Δ</u> 60'		a
t	(d=3	l° 30′	1			d=3	2° () _′			C	l=32	2° 3	0′			

97

G

1	i				1									1/	1
b	,	a=3	33° 0′			a=3	3° 8	30′			a = 3	84° 0′		$\setminus c$	a
$B \setminus$	h d	<u>6ο′</u> Δ	Z	$\frac{\Delta}{60'}$	h d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h d	60' <u>A</u>	Z	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	0 0 50 1 41 2 31 3 21	I.20 I.18 I.20 I.20 I.18	33 0	.02	0 0 50 1 40 2 30 3 20	I.20 I.20 I.20	33		0.00	0 0 50 1 39 2 29 3 19	I.22 I.20 I.20		0.00 0.02 1.02 2.03 4.03	90 89 88 87 86	90.0 89.4 88.9 88.3 87.8
5 6 78 9	4 12 5 2 52 6 42 7 32	I.20 I.20 I.20 I.20 I.20	12	.05	4 10 5 0 50 6 40 7 30	I.20 I.20 I.20		36 39 42 46 50	0.05 .05 .07 .07	4 58 5 48 6 38 7 27	I.20	100	2 .07	85 84 83 82 81	87.2 86.7 86.1 85.6 85.0
10 11 12 13 14	8 22 9 12 10 2 52 11 42	I.20 I.20 I.20 I.20 I.20	24 29 35 41 48	.IO .IO	8 20 9 9 59 10 49 11 38	1.22	34	54 59 5 11 18	0.08 .10 .10 .12	8 17 9 6 56 10 45 11 34	I.22 I.22	30 31 41 48	.08	80 79 78 77 76	84.4 83.9 83.3 82.7 82.2
15 16 17 18 19	12 32 13 22 14 12 15 1 51	I.20 I.20 I.22 I.20 I.22	34 3 11 20 29	.13	12 28 13 17 14 7 56 15 45	I.22 I.20 I.22 I.22 I.22	35	33 41 50 0	0.13 .13 .15 .17	12 23 13 13 14 2 51 15 40	I.22 I.22	35 2 12 21 30	1 .13 2 .15 1 .15	75 74 73 72 71	81.6 81.0 80.4 79.8 79.2
20 21 22 23 24	16 40 17 29 18 19 19 8 57	I.22 I.20 I.22 I.22 I.22	35 49 35 12 24	.18	16 34 17 23 18 12 19 1 50	I.22 I.22 I.22 I.22 I.25		10 20 31 43 55	0.17 .18 .20 .20	16 28 17 17 18 6 54 19 42	I.22 I.22 I.25 I.25 I.25	36 2 26	.18	70 69 68 67 66	78.6 78.0 77.4 76.8 76.2
25 26 27 28 29	20 46 21 34 22 23 23 11 59	1.25 1.22 1.25 1.25 1.25	37 51 36 20 36	.25	20 38 21 27 22 15 23 3 51	I.22 I.25 I.25 I.25 I.25	36 37	8 22 36 51 7	0.23 .23 .25 .27	20 30 21 18 22 6 54 23 42	1.25 1.25 1.25 1.25 1.25	37 37 23 38	.25	65 64 63 62 61	75.6 74.9 74.3 73.6 73.0
30 31 32 33 34	24 47 25 35 26 23 27 11 58	1.25 1.25 1.25 1.28 1.28	45	.30	24 39 25 26 26 13 27 0 47	1.28 1.28 1.28 1.28 1.28	38	23 40 58 17 36	0.28 .30 .32 .32 .33	24 29 25 16 26 3 50 27 37	1.28 1.28 1.28 1.28 1.28	38 12 30 49 39	30 .32	60 59 58 57 56	72.3 71.7 71.0 70.3 69.6
35 36 37 38 39	28 45 29 32 30 19 31 5 51	11 1.28 45 .3 58 1.28 38 4 .3 45 1.28 24 0.3 32 1.28 45 .3 19 1.30 39 7 .3 5 1.30 30 .3			28 34 29 21 30 7 53 31 39	1.28 1.30 1.30 1.30 1.30	39 40	56 17 39 2 25	0.35 .37 .38 .38 .42	28 24 29 10 56 30 42 31 27	1.30 1.30 1.30 1.33 1.33	28 49 40 11 34 57	·37 ·38 ·38	55 54 53 52 51	68.9 68.1 67.4 66.7 65.9
40 41 42 43 44	32 37 33 23 34 8 53 35 38	1.30 1.33 1.33 1.33 1.36	40 17 43 41 9 36 42 5	.48	32 25 33 10 55 34 40 35 24		4I 42	50 15 41 9 37	0.42 •43 •47 •47 •48	32 12 57 33 42 34 26 35 10	1.33 1.33 1.36 1.36 1.40		·45 ·45 ·48	50 49 48 47 46	65.2 64.4 63.6 62.8 61.9
45	36 22	12	34		36 8	- 1	43	6		53		39)	45	61.1
	a	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	а	60' Δ	1	b	$\frac{\Delta}{60'}$	а	60' Δ	b	$\frac{\Delta}{60'}$		a
t	d	l=33	3° 0′	,	(d=33	3° 3	0′			d=3	4° 0′			

					_						_	==		_			1	1.
$\setminus b$		a = 3	3° 0′			a	= 38	3° 3	0′				a=3	4° ()′		$\setminus c$	a
B	h d	6ο' Δ	Z	$t \mid \frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	z	t	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	Z	t	<u>∆</u> 60'	$C \setminus$	$\beta \setminus$
9 45 46 47 48 49	36 22 37 6 50 38 33 39 16	1.36 1.36 1.40 1.40	43 3	4 0.50 4 .53 6 .55 9 .57 .3	36 37 38 39	8 52 35 18 0	1.36 1.40 1.40 1.43 1.43	43 44 45	6 37 8 41 15	0.52 .52 .55 .57	35 36 37 38	53 36 19 2 44	I.40 I.40 I.40 I.43	43 44 45	39 9 41 14 48	• 53 • 55 • 57 • 58	° 45 44 43 42 41	61.1 60.3 59.4 58.5 57.6
50 51 52 53 54	59 40 41 41 22 42 3 44	1.43 1.46 1.46 1.46 1.50	46 3 47 I	4 .63 2 .65	40 41 42	42 24 5 45 25	1.43 1.46 1.50 1.50	46 47 48	50 27 4 43 23	0.62 .62 .65 .67	39 40 41 42	26 7 48 28 7	1.46 1.46 1.50 1.54 1.54	46 47 48	23 59 37 16 56	0.60 .63 .65 .67	40 39 38 37 36	56.7 55.7 54.8 53.8 52.8
55 56 57 58 59	43 24 44 3 42 45 20 58	1.54 1.54 1.58 1.58 1.62	48 3 49 1 50 4 51 3	6 .75 I .77 7 .80	43 44 45	5 44 22 0 37	1.54 1.58 1.58 1.62 1.62	49 50 51 52	5 48 33 19 7	•.72 •.75 •.77 •.80	43 44 45	46 25 3 40 17	1.54 1.58 1.62 1.62 1.67	49 50 51 52	37 20 5 51 38	•.72 •75 •77 •78 •82	35 34 33 32 31	51.8 50.7 49.6 48.5 47.4
60 61 62 63 64	46 35 47 11 46 48 21 55	1.67 1.71 1.71 1.76 1.82	55		46 47 48	50 25 59 33	1.67 1.71 1.76 1.76 1.88	53 54 55 56	56 47 39 33 29	0.85 .87 .90 .93	46 47 48	53 28 3 37 10	1.71 1.71 1.76 1.82 1.88	53 54 55 56	27 18 10 4 59	0.85 .87 .90 .92 .95	30 29 28 27 26	46.3 45.1 43.9 42.7 41.5
65 66 67 68 69	49 28 50 I 32 51 2 32	1.82 1.94 2.00 2.00 2.07		7 1.02	49 50 51	37 8 38 7	1.88 1.94 2.00 2.07 2.14	57 58 59 60 61	26 26 27 30 34	1.00 1.02 1.05 1.07 1.10	49 50	42 14 44 14 43	1.88 2.00 2.00 2.07 2.22	57 58 59 60 62	56 55 57	0.98 1.00 1.03 1.07 1.10	25 24 23 22 21	40.2 38.9 37.6 36.2 34.8
70 71 72 73 74	52 1 28 54 53 19 43	2.22 2.31 2.40 2.50 2.61	64 3 65 4	3 1.15 2 1.18 3 1.22 6 1.23 0 1.27	52 53	35 28 28 53	2.22 2.31 2.40 2.50 2.73	62 63 64 66 67	40 48 58 10 24	1.13 1.17 1.20 1.23 1.25	51 52	37 3 27 50	2.22 2.31 2.50 2.61 2.73	63 64 65 66 67	7 14 23 34 46	1.12 1.15 1.18 1.20 1.23	20 19 18 17 16	33.4 32.0 30.5 29.0 27.5
75 70 77 78 79	54 6 28 48 55 7 25	2.73 3.00 3.16 3.33 3.75	69 3 70 5 72 I	6 1.30 4 1.33 4 1.35 5 1.38 1.40	54	39 1 21 39 56	2.73 3.00 3.33 3.53 3.75	68 69 71 72 73	39 55 14 34 55	1.27 1.32 1.33 1.35 1.38	53 54	33 53 11 28	2.86 3.00 3.33 3.53 3.75	69 70 71 72 74	0 16 33 52 12	1.27 1.28 1.32 1.33 1.37	15 14 13 12 11	25.9 24.3 22.7 21.1 19.4
80 81 82 83 84	41 56 56 9 21 31	4.00 4.62 5.00 6.00 6.67	77 5 79 2	2 I.42 7 I.45 4 I.47 2 I.48 I I.50	55 56	12 27 40 52 2	4.00 4.62 5.00 6.00 7.50	75 76 78 79 81	18 42 7 34 2	1.40 1.42 1.45 1.47 1.47	55	44 58 11 22 32	4.29 4.62 5.45 6.00 6.67	75 76 78 79 81	34 57 21 46 12	1.38 1.40 1.42 1.43 1.43	10 9 8 7 6	17.7 16.0 14.3 12.5 10.8
85 86 87 88 89	40 47 53 57 59	8.57 10.0 15.0 30.0 60.0	83 5 85 2 86 5	1 1.52 1.52 1.53 1.53 1.55		10 17 23 27 29	8.57 10.0 15.0 30.0 60.0	82 83 85 86 88	30 59 29 59 29	1.48 1.50 1.50 1.50 1.50		41 48 53 57 59	8.57 12.0 15.0 30.0 60.0	82 84 85 87 88	38 6 34 2 31	1.47 1.47 1.47 1.48 1.48	5 4 3 2 1	9.0 7.2 5.4 3.6 1.8
90	57 0		90	0		30		90	0		56	0		90	0		0	0.0
$ _t$	a _.	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	(ı	6ο' Δ		b	<u>Δ</u> 6ο'	(a	$\frac{60'}{\Delta}$		b	<u>Δ</u> 6ο'	1	a
		d = 3	3° 0′			(d = 3	3° 3	30′				d=3	4°	0′			

\ b	1 0	a=3	4° 3	80′				a=3	5°	0′				i = 3	5° 9	30′		\setminus_{c}	\ a
	d	60'		t	Δ	_	\overline{d}	60'		$\frac{1}{t}$	Δ	-	d	60'		t	Δ	\'	
$B\setminus$	h	Δ	$ z\rangle$		60'	h	/	Δ	Z	<u>`</u>	60'	h	13.	Δ	z	/	60'	$C \setminus$	$\beta \setminus$
0 1 2 3 4	0 0 49 1 39 2 28 3 18	I.22 I.20 I.22 I.20 I.22	34	30 30 31 32 34	0.00 .02 .02 .03	0 I 2 3	49 38 27 17	I.22 I.22 I.22 I.20 I.20	35	0 0 1 2 4	0.00 .02 .02 .03	0 I 2 3	49 38 27 15	I.22 I.22 I.22 I.25 I.25	35	30 30 31 32 34	0.00	90 89 88 87 86	90.0 89.4 88.9 88.3 87.7
5 6789	4 7 57 5 46 6 35 7 24	I.20 I.22 I.22 I.22 I.20		36 39 42 46 50	.05 .05 .07 .07	4 5 6 7	55 44 33 22	I.22 I.22 I.22 I.22 I.22		6 9 12 16 20	0.05 .05 .07 .07	4 5 6 7	4 53 42 30 19	I.22 I.22 I.25 I.22 I.22		36 39 42 46 50	0.05 .05 .07 .07	85 84 83 82 81	87.1 86.6 86.0 85.4 84.8
10 11 12 13 14	8 14 9 3 52 10 41 11 30	I.22 I.22 I.22 I.22 I.22	35	55 6 12 19	0.08 .10 .10 .12	9 10 11	0 48 37 26	I.22 I.25 I.22 I.22 I.25		25 30 36 42 49	0.08 .10 .10 .12	9 10 11	8 56 45 33 22	I.25 I.22 I.25 I.22 I.25	36	55 0 6 12 19	0.08 .10 .10 .12	80 79 78 77 76	84.2 83.6 83.0 82.5 81.9
15 16 17 18 19	12 19 13 8 57 14 45 15 34	I.22 I.22 I.25 I.22 I.25	36	26 34 42 51	0.13 .13 .15 .17	12 13 14 15	3 51 40 28	I.22 I.25 I.22 I.25 I.25	36	56 4 13 22 31	0.13 .15 .15 .15	13 14 15	58 46 34 22	I.25 I.25 I.25 I.25 I.25	37	27 35 43 52 2	0.13 .13 .15 .17	75 74 73 72 71	81.3 80.7 80.1 79.4 78.8
20 21 22 23 24	16 22 17 11 59 18 47 19 35	1.22 1.25 1.25 1.25 1.25		11 22 33 45 57	0.18 .18 .20 .20	16 17 18 19	16 4 52 40 28	1.25 1.25 1.25 1.25 1.25	37	41 52 4 16 28	0.18 .20 .20 .20	16 17 18 19	10 58 45 33 20	1.25 1.28 1.25 1.28 1.28		12 23 34 46 59	0.18 .18 .20 .22	70 69 68 67 66	78.2 77.6 77.0 76.3 75.7
25 26 27 28 29	20 23 21 11 58 22 46 23 33	1.25 1.28 1.25 1.28 1.28	37	10 24 39 54 10	0.23 .25 .25 .27 .27	20 21 22 23	3 50 37 24	1.25 1.28 1.28 1.28 1.28	38	41 55 10 25 41	0.23 .25 .25 .27 .27	20 21 22 23	7 54 41 28 15	1.28 1.28 1.28 1.28 1.30	38	12 26 41 56 12	0.23 .25 .25 .27 .28	65 64 63 62 61	75.0 74.4 73.7 73.0 72.4
30 31 32 33 34	24 20 25 7 54 26 40 27 26	1.28 1.28 1.30 1.30 1.30	39	26 43 1 20 40	0.28 .30 .32 .33 .33	24 25 26 27	57 44 30 16	1.30 1.28 1.30 1.30 1.30	39 40	57 15 33 52 11	0.30 •30 •32 •32 •33	24 25 26 27	1 47 33 19 5	I.30 I.30 I.30 I.30 I.33	40	29 46 4 23 43	0.28 .30 .32 .33	59 58 57 56	71.7 71.0 70.3 69.6 68.9
35 36 37 38 39	28 12 58 29 44 30 29 31 14	1.30 1.33 1.33 1.33	40	0 21 43 6 30	0.35 •37 •38 •40 •40	28 29 30 31	2 47 32 17 2	1.33 1.33 1.33 1.33 1.36	41 42	31 52 14 37	0.35 •37 •38 •40 •42	28 29 30	50 35 20 5 49	1.33 1.33 1.33 1.36 1.36	41	3 24 46 9 33	0.35 .37 .38 .40 .42	55 54 53 52 51	68.1 67.4 66.6 65.9 65.1
40 41 42 43 44	59 32 44 33 28 34 12 56	1.33 1.36 1.36 1.36 1.40	42	54 19 46 13 42	•45 •45 •48 •48	32 33 34	46 30 14 58 41	1.36 1.36 1.36 1.40 1.40		26 51 18 45 14	0.42 •45 •45 •48 •48	31 32 33 34	33 17 0 43 26	1.36 1.40 1.40 1.40 1.40	43 44	58 23 50 17 45	0.42 •45 •45 •47	50 49 48 47 46	64.3 63.5 62.7 61.9 61.0
45	35 39		44	11		35	24		H	43		35	9		45	15		45	60.2
,	a	$\left\ \frac{60'}{\Delta} \right\ b \left\ \frac{\Delta}{60'} \right\ $					a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	60' Δ		b	$\frac{\Delta}{60'}$		a
$\mid t \mid$		d=3	4° 3	0′				d=3	5°	0′				d=3	5° 3	30′			

\ b	a	a = 34	1° 30′				a=3	5° (0′			0	i = 3	5° 3	80′		\ c	a
$B \setminus$	h	$\frac{60'}{\Delta}$	Z t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
o 45 46 47 48 49	35 39 36 22 37 4 46 38 28	1.40 1.43 1.43 1.43	44 11 42 45 13 46 46 20	0.52 .52 .55 .57 .58	35 36 37 38	24 6 48 30 11	1.43 1.43 1.43 1.46 1.46	44 45 46	43 14 45 18 52	0.52 .52 .55 .57 .58	35 36 37	9 51 33 14 55	1.43 1.43 1.46 1.46 1.50	45 46 47	15 45 17 50 24	0.50 •53 •55 •57 •58	° 45 44 43 42 41	60.2 59.3 58.4 57.5 56.6
50 51 52 53 54	39 9 50 40 30 41 10 49	1.46 1.50 1.50 1.54 1.54	55 47 31 48 9 48 49 28	0.60 .63 .65 .67	39 40 41	52 32 12 52 31	1.50 1.50 1.50 1.54 1.58	47 48 49	27 3 41 19 59	0.60 .63 .63 .67	38 39 40 41	35 15 54 33 12	1.50 1.54 1.54 1.54 1.58	48 49 50	59 35 12 51 31	0.60 .62 .65 .67	40 39 38 37 36	55.6 54.7 53.7 52.7 51.7
55 56 57 58 59	42 28 43 6 43 44 20 56	1.58 1.62 1.62 1.67 1.67	50 9 52 51 36 52 22 53 9	0.72 •73 •77 •78 .82	42 43 44	9 47 24 0 36	1.58 1.62 1.67 1.67 1.71	50 51 52 53	41 23 7 53 40	0.70 •73 •77 •78 •80	42 43 44	50 27 4 40 15	1.62 1.62 1.67 1.71	51 52 53 54	54 38 23 10	•.70 •73 •75 •78 •80	35 34 33 32 31	50.7 49.6 48.5 47.4 46.3
60 61 62 63 64	45 32 46 7 41 47 15 48	1.71 1.76 1.76 1.82 1.88	58 54 48 55 40 56 33 57 28	0.83 .87 .88 .92 .95	45 46 4 7	11 46 20 53 25	1.71 1.76 1.82 1.88 1.94	54 55 56 57	28 18 10 3 57	0.83 .87 .88 .90 .93	45 46 47	50 24 57 30 2	1.76 1.82 1.82 1.88 1.94	55 56 57 58	58 48 39 32 26	0.83 .85 .88 .90	30 29 28 27 26	45.2 44.0 42.8 41.6 40.4
65 66 67 68 69	48 20 51 49 21 50 50 18	1.94 2.00 2.07 2.14 2.22	58 25 59 23 60 23 61 25 62 28	0.97 1.00 1.03 1.05 1.08	48 49	56 27 56 25 53	1.94 2.07 2.07 2.14 2.22	58 59 60 61 62	53 51 50 51 54	0.97 .98 I.02 I.05 I.07	48 49	33 32 1 28	2.00 2.07 2.07 2.22 2.22	59 60 61 62 63	21 18 17 18 20	0.95 .98 1.02 1.03 1.05	25 24 23 22 21	39.1 37.8 36.5 35.2 33.8
70 71 72 73 74	45 51 11 36 52 0 23	2.31 2.40 2.50 2.61 2.73	63 33 64 39 65 47 66 57 68 9	I.10 I.13 I.17 I.20 I.22	50 51	20 46 10 34 57	2.31 2.50 2.50 2.61 2.86	63 65 66 67 68	58 4 11 20 31	1.10 1.12 1.15 1.18 1.20	50 51	55 20 44 8 30	2.40 2.50 2.50 2.73 2.86	64 65 66 67 68	23 28 35 43 52	1.08 1.12 1.13 1.15 1.18	20 19 18 17 16	32.4 31.0 29.5 28.1 26.6
75 76 77 78 79	53 6 25 43 54 0	2.86 3.16 3.33 3.53 4.00	69 22 70 37 71 53 73 10 74 29	1.25 1.27 1.28 1.32 1.33	52 53	18 38 57 15 31	3.00 3.16 3.33 3.75 4.00	69 70 72 73 74	43 56 11 28 45	1.22 1.25 1.28 1.28 1.32	52 53	51 11 30 47 3	3.00 3.16 3.53 3.75 4.00	70 71 72 73 75	30 30 45	1.22 1.23 1.25 1.27 1.30	15 14 13 12 11	25.0 23.5 21.9 20.3 18.7
80 81 82 83 84	15 29 42 53 55 3	4.29 4.62 5.45 6.00 7.50	75 49 77 11 78 33 79 57 81 21	I.37 I.37 I.40 I.40 I.42	54	46 0 13 24 33	4.29 4.62 5.45 6.67 7.50	76 77 78 80 81	4 24 46 8 31	1.33 1.37 1.37 1.38 1.38	54	18 31 43 54 4	4.62 5.00 5.45 6.00 7.50	76 77 78 80 81	19 38 58 18 40	I.32 I.33 I.33 I.37 I.37	10 9 8 7 6	17.1 15.4 13.8 12.1 10.4
85 86 87 88 89	11 18 23 27 29	8.57 12.0 15.0 30.0 60.0	82 46 84 12 85 39 87 6 88 33	I.43 I.45 I.45 I.45 I.45		41 48 53 57 59	8.57 12.0 15.0 30.0 60.0	82 84 85 87 88	54 19 44 9 34	I.42 I.42 I.42 I.42 I.43		12 18 23 27 29	10.0 12.0 15.0 30.0 60.0				5 4 3 2 1	8.7 7.0 5.2 3.5 1.7
90	30		90 0		55	0		90	0			30		90	0		0	0.0
4	a	$\left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60'} \right $				ı	60' ∆		b	$\frac{\Delta}{60'}$	0	ı	6ο' Δ		b	<u>Δ</u> 6ο'		a
t	0	l=34	4° 30′				d=3	5° ()′			d	l=38	5° 3	0′	1		

\ b		a = 3	6° 0)′			C	a = 3	6° 8	30′				a=3	7°	0′		\ c	a
$B \setminus$	h d	<u>6ο'</u> Δ	z	-	0/1	h	d	<u>6ο′</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 0 1 2 3 4	0 0 49 1 37 2 26 3 14	1.22 1.25 1.22 1.25 1.25	36	O	00 02 02 03	0 I 2 3	0 48 36 25 13	I.25 I.25 I.22 I.25 I.25	36	30 30 31 32 34	0.00	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 48 36 24 12	1.25 1.25 1.25 1.25 1.25	37°	0 0 1 2 4	0.00	90 89 88 87 86	90.0 89.4 88.8 88.2 87.6
5 6 7 8 9	4 3 51 5 39 6 28 7 16	1.25 1.25 1.22 1.25 1.25		12 .	05 05 07 07 08	4 5 6 7	1 49 37 25 13	I.25 I.25 I.25 I.25 I.25		36 39 42 46 50	0.05 .05 .07 .07	4 5 6 7	59 47 35 23	1.25 1.25 1.25 1.25 1.25		6 9 12 16 20	0.05 .05 .07 .07	85 84 83 82 81	87.0 86.4 85.8 85.2 84.6
10 11 12 13 14	8 5 53 9 41 10 29 11 17	1.25 1.25 1.25 1.25 1.25		36 . 43 ·	08 10 12 12	9 10 11	1 49 37 25 13	I.25 I.25 I.25 I.25 I.25	37	55 1 7 13 20	0.10 .10 .10 .12	8 9 10	58 46 34 21 8	1.25 1.25 1.28 1.28 1.25		25 31 37 43 50	0.10 .10 .10 .12	80 79 78 77 76	84.0 83.4 82.8 82.2 81.6
15 16 17 18 19	12 5 53 13 41 14 29 15 16	1.25 1.25 1.25 1.28 1.28	37	13 .	13 13 15 17	13 14 15	0 48 36 23 10	I.25 I.25 I.28 I.28 I.28	38	27 35 44 53 3	0.13 .15 .15 .17	12 13 14 15	56 43 30 17 4	1.28 1.28 1.28 1.28 1.28	38	57 5 14 23 33	0.13 15 .15 .17	75 74 73 72 71	80.9 80.3 79.7 79.1 78.4
20 21 22 23 24	16 4 51 17 38 18 25 19 12	5 4 1.28 43 5 5 1 1.28 54 7 38 1.28 38 5 8 25 1.28 17 1 12 1.28 30 5 9 1.28 43 0 5 9 1.28 57 3 3 1.30 39 12					57 44 31 18	1.28 1.28 1.28 1.28 1.28	39	13 24 36 48 1	0.18 .20 .20 .22 .22	16 17 18	51 38 25 11 57	1.28 1.28 1.30 1.30 1.30	39	44 55 6 18 31	0.18 .18 .20 .22	70 69 68 67 66	77.8 77.1 76.5 75.8 75.2
25 26 27 28 29	20 46	1.28	39	57 · · · · · · · · · · · · · · · · · · ·	23 25 25 27 28	20 21 22	52 38 24 10 56	1.30 1.30 1.30 1.30	40	14 28 43 58 14	0.23 .25 .25 .27 .28	19 20 21 22	43 29 15 1 47	1.30 1.30 1.30 1.30	40	45 59 13 29 45	0.23 .23 .27 .27 .28	65 64 63 62 61	74.5 73.8 73.1 72.5 71.8
30 31 32 33 34	51 24 37 25 23 26 9 54	1.30 1.30 1.30 1.33 1.33		35 54	28 30 32 33	23 24 25 26	42 27 13 58 43	I.33 I.30 I.33 I.33	41	31 48 6 25 45	0.28 .30 .32 .33 .35	23 24 25 26	32 17 2 47 32	1.33 1.33 1.33 1.33 1.36	4I 42	19 37 56 16	0.28 .30 .32 .33 .35	59 58 57 56	71.0 70.3 69.6 68.9 68.1
35 36 37 38 39	27 39 28 24 29 8 52 30 36	1.33 1.36 1.36 1.36 1.36	42	18 .	37 37 38 38 38	27 28 29 30	28 12 56 40 24	1.36 1.36 1.36 1.36 1.40	42	6 27 49 12 36	0.35 .37 .38 .40 .42	27 28 29 30	16 0 44 27 10	1.36 1.36 1.40 1.40	43	37 58 20 43 7	0.35 .37 .38 .40 .42	55 54 53 52 51	67.4 66.6 65.9 65.1 64.3
40 41 42 43 44	31 20 32 3 46 33 29 34 12	1.40 1.40 1.40 1.40 1.43	44	49	43 47 47 47	31 32 33	7 50 33 15 57	1.40 1.43 1.43 1.43	44	1 26 53 20 49	0.42 •45 •45 •48 •48	31 32 33	53 36 18 0 42	1.40 1.43 1.43 1.43 1.46	45 46	32 58 24 52 20	0.43 .43 .47 .47 .48	50 49 48 47 46	63.5 62.7 61.8 61.0 60.1
45	9 54		, ,	46		34	39		46	18	,	34	23		ď	49		45	59-3
	a	<u>€o'</u> Δ	b	6	2	a	t	$\frac{60'}{\Delta}$	1. 1	b	$\frac{\Delta}{60'}$	- 0	ı	$\frac{60'}{\Delta}$	1	Ь	<u>Δ</u> 6ο'		a
t	:	d = 3	6° 0	, ₁			á	l=3	6° 3	30′				d=3	7° (0′	0		

8			a = 3	6° ()′			a	ı = 36	3° 3	0′				a=3	7° (0′		\ c	\\ \ \ \ \ \ \ \ \ \ \ \ \ \
$B \setminus$	h	d	<u>6ο'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	C	$\beta \setminus$
45 46 47 48 49	34 35 36 37	54 35 16 57 38	1.46 1.46 1.46 1.46	45 46 47	46 17 49 21 55	0.52 •53 •53 •57 •58	34 35 36 37	39 20 1 41 21	1.46 1.46 1.50 1.50	46 47 48	18 48 20 53 26	0.50 •53 •55 •55 •55	34 35 36 37	23 4 44 24 4	1.46 1.50 1.50 1.50	46 47 48		0.52 .52 .55 .55	9 45 44 43 42 41	59·3 58·4 57·5 56.6 55.6
50 51 52 53 54	38 39 40	18 57 36 15 53	1.54 1.54 1.58 1.62	48 49 50 51	30 6 43 22 2	0.60 .62 .65 .67	38 39 40	1 40 18 56 34	1.54 1.58 1.58 1.58 1.62	49 50 51	37 14 52 32	0.60 .62 .63 .67	38 39 40	43 22 0 38 15	1.54 1.58 1.58 1.62 1.62	49 50 51 52	32 8 45 23 3	0.60 .62 .63 .67	39 38 37 36	54·7 53·7 52·7 51·7 50·7
55 56 57 58 59	41 42 43	30 7 43 19 54	1.62 1.67 1.67 1.71 1.71	52 53 54	43 25 9 54 40	•.7° •73 •75 •77 .8°	41 42 43	11 47 23 58 33	1.67 1.67 1.71 1.71 1.76	52 53 54 55	13 55 39 24 10	•.7° •73 •75 •77 •78	41 42 43	52 28 3 38 12	1.67 1.71 1.71 1.76 1.76	53 54 55	43 25 8 53 39	0.70 •72 •75 •77 •78	35 34 33 32 31	49.7 48.6 47.5 46.4 45.3
60 61 62 63 64	44 45 46	29 2 35 7 39	1.82 1.82 1.88 1.88 2.00	55 56 57 58	28 17 8 0 54	0.82 .85 .87 .90	44 45 46	7 40 13 45 16	1.82 1.82 1.88 1.94 2.00	56 57 58 59	57 46 36 28 21	0.82 .83 .87 .88	44 45	46 19 51 22 52	1.82 1.88 1.94 2.00 2.00	56 57 58 59	26 15 5 56 49	0.82 .83 .85 .88	30 29 28 27 26	44.1 43.0 41.8 40.6 39.4
65 66 67 68 69	47 48 49	9 39 8 36 3	2.00 2.07 2.14 2.22 2.31	59 60 61 62 63	49 46 44 44 45	0.95 •97 1.00 1.02 1.05	47 48	46 15 43 11 38	2.07 2.14 2.14 2.22 2.40	60 61 62 63 64	16 12 10 9 10	0.93 .97 .98 1.02	46 47 48	22 51 19 46 13	2.07 2.14 2.22 2.22 2.40	60 61 62 63 64	43 39 36 34 34	0.93 •95 •97 1.00 1.02	25 24 23 22 21	38.1 36.8 35.5 34.2 32.8
70 71 72 73 74	50	29 54 18 41 3	2.40 2.50 2.61 2.73 2.86	2.00 54 .92 2.00 59 49 0.95 2.07 60 46 .97 2.14 61 44 1.00 2.22 62 44 1.02 2.31 63 45 1.05 2.40 64 48 1.07 2.50 66 58 1.12 2.73 68 5 1.15				3 28 52 14 36	2.40 2.50 2.73 2.73 3.00	65 66 67 68 69	12 15 20 26 34	1.05 1.08 1.10 1.13 1.15	49 50	38 2 26 48 9	2,50 2,50 2,73 2,86 3.00	65 66 67 68 69	35 38 42 48 55	1.05 1.07 1.10 1.12 1.13	20 19 18 17 16	31.5 30.1 28.6 27.2 25.7
75 76 77 78 79	52	24 43 1 18 34	3.16 3.33 3.53 3.75 4.00	70 71 72 74 75	24 35 48 2 17	1.18 1.22 1.23 1.25 1.27	51 52	56 15 33 50 6	3.16 3.33 3.53 3.75 4.29	70 71 73 74 75	43 54 5 18 33	1.18 1.18 1.22 1.25 1.25	51	29 48 6 22 37	3.16 3.33 3.75 4.00 4.29	71 72 73 74 75	3 12 23 35 47	I.15 I.18 I.20 I.20 I.23	15 14 13 12 11	24.3 22.7 21.2 19.7 18.1
80 81 82 83 84	53	49 2 14 25 34	4.62 5.00 5.45 6.67 7.50	76 77 79 80 81	33 51 9 29 49	1.30 1.30 1.33 1.33	53	20 33 45 56 5	4.62 5.00 5.45 6.67 7.50	76 78 79 80 81	48 4 21 39 58	1.27 1.28 1.30 1.32 1.32	52	51 4 16 26 35	4.62 5.00 6.00 6.67 7.50	77 78 79 80 82	1 16 32 49 6	1.25 1.27 1.28 1.28 1.30	10 9 8 7 6	16.5 14.9 13.3 11.7 10.0
85 86 87 88 89		42 49 54 57 59	34 7.50 81 49 1.35 42 8.57 83 10 1.35 49 12.0 84 31 1.37 54 22.0 85 53 1.37 57 30.0 87 15 1.37 59 60.0 88 37 1.38					13 19 24 27 29	10.0 12.0 20.0 30.0 60.0	83 84 85 87 88	17 37 57 18 39	I.33 I.33 I.35 I.35 I.35		43 49 54 57 59	10.0 12.0 20.0 30.0 60.0	83 84 86 87 88	24 43 2 21 40	1.32 1.32 1.32 1.32 1.33	5 4 3 2 1	8.4 6.7 5.0 3.4 1.7
90	54	0		90	0			30		90	0		53	0		90	0		0	0.0
t		a	$\frac{60'}{\Delta}$		ь	<u>Δ</u> 6ο'		ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	11 6	a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	١.	a
			d=3	6° (0′			(d = 3	6° 3	80′	7			d = 3	87°	0′			.: .: .:

b		a=3	7° 3	0′				a = 3	88°	0′				a=3	8° 3	30′		c	\ a
$B \setminus$	h	<u>6ο'</u> Δ	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{\epsilon o'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$c \setminus$	β
0 I 2 3 4	0 0 48 1 35 2 23 3 10	1.25 1.28 1.25 1.28 1.25	37	30 30 31 32 34	0.00	0 I 2 3	6 47 35 22 9	1.28 1.25 1.28 1.28 1.28	38	0 0 1 2 4	0.00 .02 .02 .03	0 I 2 3	47 34 21 8	1.28 1.28 1.28 1.28 1.28	38	30 30 31 32 34	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.4 88.8 88.2 87.5
5 6 7 8 9	58 4 46 5 33 6 20 7 8	1.25 1.28 1.28 1.25 1.25		36 39 42 46 51	0.05 .05 .07 .08	4 5 6 7	56 44 31 18	1.25 1.28 1.28 1.28 1.28		6 9 12 16 21	0.05 .05 .07 .08	4 5 6 7	55 42 28 15 2	1.28 1.30 1.28 1.28 1.28		36 39 42 46 51	0.05 .05 .07 .08	85 84 83 82 81	86.9 86.3 85.7 85.1 84.4
10 11 12 13 14	55 8 42 9 30 10 17 11 4	1.28 1.25 1.28 1.28 1.28	38	56 1 7 13 20	0.08 .10 .10 .12	8 9 10	52 39 26 13 59	1,28 1,28 1,28 1,30 1,28		26 31 37 43 50	0.08 .10 .10 .12	8 9 10	49 35 22 8 55	1.30 1.28 1.30 1.28 1.30	39	56 1 7 14 21	0.08 .10 .12 .12	80 79 78 77 76	83.8 83.2 82.5 81.9 81.3
15 16 17 18 19	51 12 38 13 25 14 12 58	1.28 1.28 1.28 1.30 1.28	39	28 36 45 54 4	0.13 .15 .15 .17	11 12 13 14	46 33 19 6 52	1.28 1.30 1.28 1.30 1.30	39	58 6 15 24 34	0.13 .15 .15 .17	11 12 13 14	41 28 14 0 46	1.28 1.30 1.30 1.30 1.30	40	28 36 45 54 4	0.13 .15 .15 .17	75 74 73 72 71	80.6 80.0 79.3 78.7 78.0
20 21 22 23 24	15 45 16 31 17 17 18 3 49	1.30 1.30 1.30 1.30	40	14 25 37 49 2	0,18 .20 .20 .22 .22	15 16 17 18	38 24 10 56 42	1.30 1.30 1.30 1.30	40	44 55 7 19 32	0.18 .20 .20 .22 .23	15 16 17 18	32 17 3 48 34	I.33 I.30 I.33 I.30 I.33	41	15 26 38 50 3	0.18 .20 .20 .22 .22	70 69 68 67 66	77.4 76.7 76.0 75.4 74.7
25 26 27 28 29	19 35 20 21 21 7 52 22 37	1.30 1.30 1.33 1.33	41	15 29 44 0 16	0.23 .25 .27 .27 .28	19 20 21 22	27 13 58 43 28	1.30 1.33 1.33 1.33	41	46 0 15 30 46	0.23 .25 .25 .27 .28	19 20 21 22	19 4 49 34 18	1.33 1.33 1.36 1.36	42	16 30 45 1	0.23 .25 .27 .27 .28	65 64 63 62 61	74.0 73.3 72.6 71.9 71.2
30 31 32 33 34	23 22 24 7 52 25 36 26 20	1.33 1.33 1.36 1.36 1.36	42	33 50 8 27 47	0.28 .30 .32 .33 .35	23 24 25 26	12 57 41 25	1.33 1.36 1.36 1.36	42	39 58 18	0.30 .30 .32 .33	23 24 25	2 46 30 14 57	1.36 1.36 1.36 1.40 1.40	43	34 52 10 29 49	0.30 .30 .32 .33	60 59 58 57 56	70.4 69.7 69.0 68.2 67.4
35 36 37 38 39	27 4 48 28 31 29 14 57	1.36 1.40 1.40 1.40	43 44	8 29 51 14 38	0.35 •37 •38 •40 •42	27 28 29	52 35 18 1 44	I.40 I.40 I.40 I.40	44	39 0 22 45 9	0.35 .37 .38 .40 .42	26 27 28 29	40 23 6 48 30	1.40 1.43 1.43 1.43	44	10 31 53 16 40	0.35 .37 .38 .40 .42	55 54 53 52 51	66.7 65.9 65.1 64.3 63.5
40 41 42 43 44	30 40 31 22 32 4 45 33 26	0 1.43 45 3 0.42 2 1.43 28 44 4 1.46 55 47 5 1.46 46 23 47 1.46 51 48				30 31 32 33	26 8 49 30 11	1.43 1.46 1.46 1.46 1.46	46 47	34 0 26 53 22	•43 •45 •48 •48	31	54 35 16 56	1.43 1.46 1.46 1.50 1.50	46 47	5 31 57 24 53	•43 •45 •48 •48	50 49 48 47 46	62.7 61.8 61.0 60.1 59.3
45	34 7		47	20			52			51		33	36		48	22		45	58.4
t	a	$\frac{60'}{\Delta}$	l	,	$\frac{\Delta}{60'}$	а		$\frac{60'}{\Delta}$	i	6	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	1	5	$\frac{\Delta}{60'}$		a
	C	d = 37° 30′						d=3	8° ()′			d	1=38	3° 3	0′			

	b		C	a = 3	7° 8	80′				a = 3	88°	0′			(<i>i</i> = 3	8° 3	30′		C	a
	B	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
I	45 46 47 48 49	34 35 36	7 48 28 8 47	1.46 1.50 1.50 1.54 1.54	47 48 49	20 51 22 55 28	0.52 •52 •55 •55 •58	33 34 35 36	52 32 12 51 30	1.50 1.50 1.54 1.54 1.58	47 48 49	51 22 53 25 59	0.52 .52 .53 .57	33 34 35 36	36 16 55 34 12	1.50 1.54 1.54 1.58 1.58	48 49 50	22 52 24 56 29	0.50 •53 •53 •55 •58	45 44 43 42 41	58.4 57.5 56.6 55.6 54.7
	50 51 52 53 54	37 38 39	26 4 42 19 56	1.58 1.58 1.62 1.62 1.62	50 51 52	3 39 16 54 33	0.60 .62 .63 .65	37 38 39	8 46 23 0 36	1.58 1.62 1.62 1.67 1.67	50 51 52 53	33 9 46 24 3	0.60 .62 .63 .65	37 38 39	50 28 5 41 17	1.58 1.62 1.67 1.67 1.71	51 52 53	4 39 16 53 32	0.58 .62 .62 .65	40 39 38 37 36	53·7 52.8 51.8 50.8 49·7
	55 56 57 58 59	40 41 42	32 8 43 17 51	1.67 1.71 1.76 1.76 1.82	53 54 55 56	13 55 38 22 8	0.70 •72 •73 •77 •78	40 41 42	12 47 22 56 29	1.71 1.71 1.76 1.82 1.82	54 55 56	43 24 7 51 36	0.68 •72 •73 •75 •78	40 41 42	52 27 1 35 8	1.71 1.76 1.76 1.82 1.88	54 55 56 57	54 36 20 5	0.70 .70 .73 .75 .77	35 34 33 32 31	48.7 47.6 46.5 45.4 44.3
	60 61 62 63 64	43 44 45	24 56 28 59 29	1.88 1.88 1.94 2.00 2.07	57 58 59 60	55 43 32 23 16	0.80 .82 .85 .88	43 44 45	34 5 36 6	1.88 1.94 1.94 2.00 2.07	57 58 59 60	23 11 0 50 42	0.80 .82 .83 .87	43 44	40 12 43 13 42	1.88 1.94 2.00 2.07 2.07	58 59 60 61	51 38 27 17 8	0.78 .82 .83 .85 .88	30 29 28 27 26	43.2 42.0 40.8 39.6 38.4
	65 66 67 68 69	46 47	58 27 55 21 47	2.07 2.14 2.31 2.31 2.40	9 4 59 58	0.92 •95 •97 •98 1.02	46 47	35 30 56 22	2.14 2.22 2.31 2.31 2.50	61 62 63 64 65	35 30 26 23 22	0.92 •93 •95 •98	45 46	38 5 31 56	2.22 2.22 2.31 2.40 2.50	62 63 64 65	55 50 47 45	0.90 .92 .95 .97	25 24 23 22 21	37.1 35.9 34.6 33.3 31.9	
	70 71 72 73 74	48 49	12 36 59 21 42	2.50 2.61 2.73 2.86 3.00	1.03 1.05 1.08 1.10 1.12	48 49	46 10 33 54 15	2.50 2.61 2.86 2.86 3.16	66 67 68 69 70	22 23 25 29 34	1.02 1.03 1.07 1.08 1.10	47 48	20 44 6 27 47	2.50 2.73 2.86 3.00 3.16	66 67 68 69 70	44 44 46 49 53	1.00 1.03 1.05 1.07	20 19 18 17 16	30.6 29.2 27.8 26.4 25.0		
	75 76 77 78 79	50	2 20 38 54 9	3.33 3.33 3.75 4.00 4.29	71 72 73 74 76	22 30 40 50 2	I.I3 I.I7 I.I7 I.20 I.22	50	34 52 9 25 40	3·33 3·53 3·75 4·00 4·29	71 72 73 75 76	40 48 56 6	1.13 1.13 1.17 1.18 1.18	49 50	6 24 41 57 12	3·33 3·53 3·75 4.00 4.62	71 73 74 75 76	58 5 13 21 31	1.12 1.13 1.13 1.17 1.17	15 14 13 12 11	23.5 22.0 20.5 19.0 17.5
	80 81 82 83 84	52	23 36 47 57 6	4.62 5.45 6.00 6.67 8.57	77 78 79 80 82	15 29 43 58 14	I.23 I.23 I.25 I.27 I.28	51	54 6 17 27 36	5.00 5.45 6.00 6.67 8.57	77 78 79 81 82	28 41 54 8 23	I.22 I.22 I.23 I.25 I.25	51	25 37 48 58	5.00 5.45 6.00 7.50 8.57	77 78 80 81 82	41 52 4 17 31	I.18 I.20 I.22 I.23 I.23	9 8 7 6	16.0 14.4 12.9 11.3 9.7
	85 86 87 88 89		1 3 10.0 83 31 1.2 14 1.3 10.0 19 12.0 24 20.0 27 30.0 29 60.0 88 42 1.3 30 90 0						43 49 54 57 59	10.0 12.0 20.0 30.0 60.0	87	38 54 10 26 43	1.27 1.27 1.27 1.28 1.28		13 19 24 27 29	10.0 12.0 20.0 30.0 60.0	86	29	I.23 I.25 I.25 I.25 I.27	5 4 3 2 1	8.1 6.5 4.9 3.2 1.6
	90	_	30		90	0		52 —	0		90	0			30		90	0		0	0.0
	t	a	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $						ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$	1	b	$\frac{\Delta}{60'}$		a
			à	l=37	7° 3	0′				d=3	8° ()′			á	=38	3° 3	0′			

8		a = 3	9° 0′			a = 3	9° 3	0′			C	i = 4	0° ()′		\ c	\ a
B	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	$d \frac{60'}{\Delta}$	Z	t	<u>∆</u> 60′	h	d	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 6ο'	C	β
0 0 1 2 3 4	° ′ ′ ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ °	1.28 1.30 1.28 1.28 1.30	39 0 0 1 2 4	1	1 3	0 1.30 16 1.28 33 1.30 1.30 5 1.30	39°	30 30 31 32 34	0.00 .02 .02 .03	I	0 46 32 18	1.30 1.30 1.30 1.30	4°	0 0 1 2 4	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.4 88.7 88.1 87.5
5 6 78 9	53 4 40 5 26 6 13 59	1.28 1.30 1.28 1.30 1.30	6 9 13 17 21	.07	4 3 5 2 6 I	1 1.28 38 1.30 24 1.30 1.30 1.30		36 39 43 47 51	0.05 .07 .07 .07	4 5 6	50 36 21 7 53	1.30 1.33 1.30 1.30		6 9 13 17 21	0.05 .07 .07 .07	85 84 83 82 81	86.8 86.2 85.5 84.9 84.2
10 11 12 13 14	7 45 8 32 9 18 10 4 50	1.28 1.30 1.30 1.30 1.30	26 31 37 44 51	0.08 .10 .12 .12	8 2 9 I 10	12 1.30 28 1.30 14 1.30 0 1.30 16 1.33	40	56 7 14 21	0.08 .10 .12 .12	7 8 9	39 24 10 55 41	1.33 1.30 1.33 1.30		26 31 37 44 51	0.08 .10 .12 .12	80 79 78 77 76	83.6 83.0 82.3 81.6 81.0
15 16 17 18 19	11 36 12 22 13 8 54 14 40	1.30 1.30 1.30 1.30	59 40 7 16 25 35	.15	12 1	31 1.30 17 1.33 2 1.30 18 1.33 1.33	41	29 37 46 55	0.13 .15 .15 .17	11 12 13 14	26 11 56 41 26	I.33 I.33 I.33 I.33 I.33	41	59 7 16 25 35	0.13 .15 .15 .17 .18	75 74 73 72 71	80.3 79.7 79.0 78.3 77.6
20 21 22 23 24	15 25 16 10 55 17 40 18 25	1.33 1.33 1.33 1.33 1.33	45 56 41 8 20	.20	16 4	18 1.33 3 1.33 48 1.33 33 1.33 1.36	42	16 27 39 51 4	0.18 .20 .20 .22	15 16 17 18	11 56 41 25	1.33 1.33 1.36 1.36 1.36	42	46 57 9 21 34	0.18 .20 .20 .22 .23	70 69 68 67 66	77.0 76.3 75.6 74.9 74.2
25 26 27 28 29	19 10 55 20 40 21 24 22 8	1.33 1.33 1.36 1.36 1.36	47 42 1 16 32 48	.25	20 3	2 1.36 46 1.36 30 1.36 14 1.36 58 1.36	43	17 31 46 2 18	0.23 .25 .27 .27 .28	19 20 21	53 37 21 5 48	1.36 1.36 1.36 1.40 1.40	43	48 2 17 33 49	0.23 .25 .27 .27 .28	65 64 63 62 61	73.5 72.8 72.0 71.3 70.6
30 31 32 33 34	52 23 36 24 19 25 2 45	1.36 1.40 1.40 1.40	43 5 22 41 44 0 20	32 .32	23 2 24	42 1.40 25 1.40 8 1.40 51 1.40 34 1.43	44	35 53 11 30 50	0.30 .30 .32 .33	22 23 24 25	31 14 57 40 22	I.40 I.40 I.43 I.43	44	6 23 42 I 21	0.28 •32 •32 •33 •33	60 59 58 57 56	69.8 69.1 68.3 67.6 66.8
35 36 37 38 39	26 28 27 11 53 28 35 29 17	1.40 1.43 1.43 1.43 1.46	45 2 45 2 47 46 11	-37 -38 -40	27	1.43 58 1.43 40 1.43 22 1.46	46	32 54	0.35 .37 .38 .40 .42	26 27 28	4 46 27 8 49	1.43 1.46 1.46 1.46 1.46	46 47	41 3 25 48 12	0.37 .37 .38 .40	55 54 53 52 51	66.0 65.2 64.4 63.6 62.7
40 41 42 43 44	58 30 39 31 20 32 0 40	1.46 1.46 1.50 1.50	47 1 28 48 23	•45 •45 •47	30 2 31	1.46 25 1.50 5 1.50 45 1.50 25 1.54	48	58 58 25 54	.48	30	30 10 50 30 9	1.50 1.50 1.50 1.54 1.54		36 28 55 24	•43 •45 •48		61.9 61.1 60.2 59.3 58.4
45	33 20		52		33	4	49	23			48			53	1	45	57.5
t	а	6ο' Δ	b	$\frac{\Delta}{60'}$	a	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$	0	a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
		d = 3	9° 0′			d=3	9° 3	30′				d = 4	10°	0′			

b	0	(a = 3	9° ()′			a	<i>i</i> = 39	9° 3	0′				a = 4	0° (0′		$\setminus c$	a
B	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	t	<u>Δ</u> 60'	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
45 46 47 48 49	33 34 35	20 59 38 17 55	1.54 1.54 1.54 1.58 1.62	48 49 50	52 23 54 26 59	0.52 .52 .53 .55 .57	33 34 35	4 43 21 59 37	1.54 1.58 1.58 1.58 1.62	49 50 51	23 53 24 56 29	0.50 .52 .53 .55	32 33 34 35	48 26 4 42 19	1.58 1.58 1.58 1.62 1.62	49 50 51	53 23 54 26 59	0.50 .52 .53 .55	° 45 44 43 42 41	57.5 56.6 55.7 54.8 53.8
50 51 52 53 54	36 37 38	32 9 46 22 57	1.62 1.62 1.67 1.71	51 52 53 54	33 9 45 23 2	.60 .63 .65	36 37 38	14 51 27 3	1.62 1.67 1.67 1.71 1.76	52 53 54	39 15 52 30	0.60 .60 .62 .63	36 37 38	56 32 8 43 18	1.67 1.67 1.71 1.71 1.76	52 53 54	33 8 44 21 59	0.58 .60 .62 .63	39 38 37 36	52.8 51.9 50.9 49.8 48.8
55 56 57 58 59	39 40 41	32 7 41 14 46	1.71 1.76 1.82 1.88 1.88	55 56 57	41 22 4 48 33	•.68 •7° •73 •75 •77	39 40 41	12 46 19 52 24	1.76 1.82 1.82 1.88 1.88	55 56 57 58	10 51 33 16 0	o.68 •7° •72 •73 •77	39 40 41	52 26 59 31	1.76 1.82 1.88 1.88	55 56 57 58	39 19 1 44 28	0.67 •7° •72 •73 •75	35 34 33 32 31	47.7 46.7 45.6 44.5 43.4
60 61 62 63 64	42 43 44	18 49 20 50	1.94 1.94 2.00 2.07 2.14	58 59 60 61	19 6 54 43 34	0.78 .80 .82 .85	42	56 27 57 26 54	1.94 2.00 2.07 2.14 2.14	59 60 61 62	46 32 20 9	0.77 .80 .82 .85	42 43	34 34 33 31	2.00 2.00 2.07 2.14 2.22	59 60 61 62	13 59 47 35 25	0.77 .80 .80 .83 .85	30 29 28 27 26	42.2 41.1 39.9 38.7 37.5
65 66 67 68 69	45 46	47 14 40 6 31	2.22 2.31 2.31 2.40 2.50	62 63 64 65 66	26 20 15 11 8	0.90 .92 .93 .95	44 45 46	22 49 15 41 5	2.22 2.31 2.31 2.50 2.50	63 64 65 66	51 44 38 34 30	•.88 •90 •93 •93 •97	44 45	58 25 51 16 40	2.22 2.31 2.40 2.50 2.61	63 64 65 66	16 8 2 57 53	0.87 .90 .92 .93 .95	25 24 23 22 21	36.2 35.0 33.7 32.4 31.1
70 71 72 73 74	47 48	39 3.33 72 16 15 77 3.75 73 22 149 13 3.75 74 29 1					47	29 51 12 33 53	2.73 2.86 2.86 3.00 3.33	67 68 69 70 71	28 27 27 28 31	0.98 1.00 1.02 1.05 1.05	46 47	3 25 46 6 26	2.73 2.86 3.00 3.00 3.33	67 68 69 70 71	50 48 47 47 49	0.97 .98 1.00 1.03 1.03	20 19 18 17 16	29.8 28.4 27.1 25.7 24.3
75 76 77 78 79	49	57	3.75	73	22	1.10 1.12 1.12 1.15 1.15	48 49	11 29 45 0 14	3·33 3·75 4·00 4·29 4·62	72 73 74 75 76	34 39 44 51 58	1.08 1.08 1.12 1.12 1.13	48	44 1 17 32 46	3.53 3.75 4.00 4.29 5.00	72 73 75 76 77	51 55 0 5	1.07 1.08 1.08 1.10 1.12	15 14 13 12 11	22.8 21.4 19.9 18.5 17.0
80 81 82 83 84	50	43 4.62 76 45 1. 56 5.00 77 54 1. 50 8 5.45 79 4 1. 19 6.00 80 15 1. 29 7.50 81 27 1. 37 8.57 82 39 1.						27 39 50 59 7	5.00 5.45 6.67 7.50 8.57	78 79 80 81 82	6 15 25 35 46	1.15 1.17 1.17 1.18 1.20	49	58 10 20 29 37	5.00 6.00 6.67 7.50 8.57	78 79 80 81 82	18 26 35 44 54	1.13 1.15 1.15 1.17	9 8 7 6	15.5 14.0 12.5 10.9 9.4
85 86 87 88 89		44 10.0 83 52 1.2 85 5 1.2 86 18 1.2 57 30.0 59 60.0 88 46 1.2 51 0 90 0						14 20 24 27 29	10.0 15.0 20.0 30.0 60.0	83 85 86 87 88	58 10 22 34 47	1.20 1.20 1.20 1.22 1.22		44 50 54 57 59	10.0 15.0 20.0 30.0 60.0	84 85 86 87 88	4 15 26 37 48	1.18 1.18 1.18 1.18 1.20	5 4 3 2 1	7.8 6.3 4.7 3.1 1.6
90	51	0		90	0			30		90	0		50	0		90	0	1	0	0.0
	$a \left \frac{60'}{\Delta} \right b \left \frac{4}{60'} \right $							а	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$, (a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t		y	d = 3	9°	0′	١,		. (d=3	9° 3	0′			,	d=4	0°	0′			

8		a = 4	0° ٤	30′				a = 4	1° (0′			0	i = 4	1° 3	0′		\ c	\ a
$B \setminus$	h	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	$\frac{d}{d}$	6ο' Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	$\stackrel{t}{\swarrow}$	$\frac{\Delta}{60'}$	$C \setminus$	3
o I 2 3 4	0 0 46 1 31 2 17 3 2	1.30 1.33 1.30 1.33 1.30	40	30 30 31 32 34	0.00 .02 .02 .03	0 I 2 3	6 45 31 16 1	1.33 1.30 1.33 1.33 1.33	41	0 0 1 2 4	0.00 .02 .02 .03	0 I 2 3	6 45 30 15 0	I.33 I.33 I.33 I.33 I.33	41	30 30 31 32 34	0.00	90 89 88 87 86	90.0 89.3 88.7 88.0 87.4
5 6 78 9	48 4 34 5 19 6 5 50	1.30 1.33 1.30 1.33 1.33		36 39 43 47 51	0.05 .07 .07 .07	4 5 6	46 31 17 2 47	1.33 1.30 1.33 1.33 1.33		6 9 13 17 21	0.05 .07 .07 .07	4 5 6	45 29 14 59 44	1.36 1.33 1.33 1.33 1.36		36 39 43 47 51	0.05 .07 .07 .07	85 84 83 82 81	86.7 86.1 85.4 84.7 84.1
10 11 12 13 14	7 35 8 21 9 6 51 10 36	1.30 1.33 1.33 1.33	41	56 8 14 21	0.10 .10 .10 .12	7 8 9	32 17 2 47 31	1.33 1.33 1.33 1.36 1.33		26 32 38 44 51	0.10 .10 .10 .12	7 8 9	28 13 58 42 26	1.33 1.33 1.36 1.36 1.36	42	56 2 8 14 21	0.10 .10 .10 .12	80 79 78 77 76	83.4 82.7 82.1 81.4 80.7
15 16 17 18 19	11 21 12 6 51 13 35 14 20	1.33 1.33 1.36 1.33 1.36	42	29 37 46 55 5	0.13 .15 .15 .17	11 12 13 14	16 0 45 29 13	1.36 1.33 1.36 1.36 1.36	42	59 7 16 26 36	0.13 .15 .17 .17	11 12 13 14	55 39 23 7	1.36 1.36 1.36 1.36 1.36	43	29 37 46 56 6	0.13 .15 .17 .17	75 74 73 72 71	80.0 79.3 78.7 78.6 77.3
20 21 22 23 24	15 4 49 16 33 17 17 18 1	1 1.33		0.18 .20 .20 .22 .23	15 16 17	57 41 25 9 53	1.36 1.36 1.36 1.36 1.40	43	46 57 9 22 35	0.18 .20 .22 .22	15 16 17	51 34 18 1 44	1.40 1.36 1.40 1.40	44	17 28 40 52 5	0.18 .20 .20 .22 .23	70 69 68 67 66	76.6 75.9 75.2 74.4 73.7	
25 26 27 28 29	45 19 29 20 12 55 21 38	1.36 27		0.23 .25 .27 .27 .28	18 19 20 21	36 19 2 45 28	I.40 I.40 I.40 I.40 I.43	44	48 3 18 33 49	0.25 .25 .25 .27 .28	18 19 20 21	27 10 53 35 17	I.40 I.40 I.43 I.43	45	19 33 48 4 20	0.23 .25 .27 .27 .28	65 64 63 62 61	73.0 72.3 71.5 70.8 70.0	
30 31 32 33 34	22 21 23 4 46 24 28 25 10	1.43	45	54	0.30 .30 .32 .33	22 23 24	10 52 34 16 58	I.43 I.43 I.43 I.43 I.46	45 46	6 24 43 2 22	0.30 .32 .32 .33	22 23 24	59 41 23 4 45	1.43 1.43 1.46 1.46	46	37 55 13 32 52	0.30 .30 .32 .33 .33	59 58 57 56	69.3 68.5 67.7 66.9 66.1
35 36 37 38 39	52 26 33 27 14 55 28 36	4 1.43 54 54 6 1.43 8 1.43 51 51 51 51 51 6 6 6 6 6 6 6 6 6 6 6 6			0.35 .37 .38 .40 .42	25 26 27 28	39 20 I 41 21	1.46 1.46 1.50 1.50 1.50	47 48	42 3 25 48 12	0.35 .37 .38 .40 .42	25 26 27 28	26 7 47 27 7	1.46 1.50 1.50 1.50 1.50	47 48	34 56 19 42	0.37 .37 .38 .38 .42	55 54 53 52 51	65.3 64.5 63.7 62.9 62.0
40 41 42 43 44	29 16 56 30 35 31 14 53	1.50 1.54 1.54 1.54 1.54	48	7 32 58 25 54	0.42 •43 •45 •48	29 30 31	1 41 20 59 37	1.50 1.54 1.54 1.58 1.58	49 50	37 28 55 23	•43 •45 •47 •48	29 30 31	47 26 5 43 21	1.54 1.54 1.58 1.58	49 50	7 32 58 25 53	0.42 •43 •45 •47 •48	50 49 48 47 46	61.2 60.3 59.4 58.5 57.6
45	32 32		50	23		32	15			52			59		51	22		45	56.7
t	a	$\frac{60'}{\Delta}$	t	$\frac{\Delta}{60'}$	а		$\frac{\epsilon_{\mathbf{O'}}}{\Delta}$	t		$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$	l		$\frac{\Delta}{60'}$		a	
	(l = 40)° 3	0′				d = 4	1° ()′			d	=41	° 3	0′			

2/3

1	b		(<i>a</i> = 4	0° 3	30′				a=4	1° (0′				a = 4	1° 8	30′		\ c	a
B	/	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	z	t	$\frac{\Delta}{60'}$	C	β
4 4 4	• 15	32 33 34 35	32 10 47 24 1	1.58 1.62 1.62 1.62 1.62	50° 51 52	23 53 24 55 28	0.50 •52 •52 •55 •55	32 33 34	15 53 30 7 43	1.58 1.62 1.62 1.67 1.67	50 51 52	52 22 53 25 57	0.50 .52 .53 .53 .57	31 32 33 34	59 36 13 49 25	1.62 1.62 1.67 1.67	51 52 53	22 52 22 54 26	0.50 .50 .53 .53	° 45 44 43 42 41	56.7 55.8 54.9 53.9 53.0
555	1 2 3 4	36 37	38 14 49 24 58	1.67 1.71 1.71 1.76 1.76	53 54 55	2 37 13 50 28	0.58 .60 .62 .63	35 36 37	55 30 4 38	1.67 1.71 1.76 1.76 1.82	53 54 55	31 6 42 18 56	0.58 .60 .60 .63	35 36 37	36 10 44 18	1.71 1.76 1.76 1.76 1.82	54 55 56	0 35 10 46 24	0.58 .58 .60 .63	40 39 38 37 36	52.0 51.0 50.0 49.0 47.9
5 5 5	56 78 9	38 39 40	32 5 37 9 40	1.82 1.88 1.88 1.94 1.94	56 57 58	7 47 28 11 54	0.67 .68 .72 .72 .75	38 39 40	11 44 16 48 19	1.82 1.88 1.88 1.94 2.00	56 57 58 59	35 15 56 38 21	0.67 .68 .70 .72 .75	38 39	51 23 55 26 56	1.88 1.88 1.94 2.00 2.00	57 58 59	3 42 23 5 48	0.65 .68 .70 .72 .73	35 34 33 32 31	46.9 45.8 44.7 43.6 42.5
666	1 2 3 4	41 42 43	11 41 11 39 7	2.00 2.00 2.14 2.14 2.22	59 60 61 62	39 25 12 0 50	0.77 .78 .80 .83 .83	41 42	49 18 47 15 43	2.07 2.07 2.14 2.14 2.31	60 61 62 63	6 51 38 25 14	0.75 .78 .78 .82 .83	40 41 42	26 55 24 52 19	2.07 2.07 2.14 2.22 2.31	60 61 62 63	32 17 3 50 38	0.75 .77 .78 .80 .83	30 29 28 27 26	41.3 40.2 39.0 37.8 36.6
666	56 78 9	44	34 0 25 50 14	2.31 2.40 2.40 2.50 2.73	63 64 65 66 67	40 32 25 19 14	0.87 .88 .90 .92 .95	43 44	9 35 0 24 48	2.31 2.40 2.50 2.50 2.73	64 65 66 67	4 55 48 41 36	0.85 .88 .88 .92	43 44	45 10 35 59 22	2.40 2.40 2.50 2.61 2.73	64 65 66 67	28 19 10 3 57	0.85 .85 .88 .90	25 24 23 22 21	35·4 34·2 32·9 31·6 30·3
777	1 2 3 4	46	36 58 19 39 58	2.73 2.86 3.00 3.16 3.33	68 69 70 71 72	8 6 6 7	0.95 .97 1.00 1.02 1.02	45 46	10 32 52 12 30	2.73 3.00 3.00 3.33 3.33	68 69 70 71 72	31 28 26 25 25	0.95 .97 .98 1.00	45 46	44 5 25 45 3	2.86 3.00 3.00 3.33 3.53	68 69 70 71 72	52 48 45 43 42	0.93 •95 •97 •98	20 19 18 17 16	29.0 27.7 26.3 25.0 23.6
777	5 6 78 9	47 48	16 33 48 3 17	3.53 4.00 4.00 4.29 5.00	73 74 75 76 77	8 11 15 19 24	1.05 1.07 1.07 1.08 1.10	47	48 5 20 35 48	3.53 4.00 4.00 4.62 5.00	73 74 75 76 77	25 27 30 33 37	1.03 1.05 1.05 1.07 1.08	47	20 37 52 6 19	3.53 4.00 4.29 4.62 5.00	73 74 75 76 77	42 42 44 47 50	1.00 1.03 1.05 1.05	15 14 13 12 11	22.2 20.8 19.4 18.0 16.5
8 8	3 4	49	29 41 51 0 8	5.00 6.00 6.67 7.50 8.57	78 79 80 81 83	30 37 45 53 1	1.12 1.13 1.13 1.13 1.15	48	0 12 22 31 39	5.00 6.00 6.67 7.50 10.0	78 79 80 82 83	42 48 54 1 9	1.10 1.10 1.12 1.13 1.13	48	31 42 52 1	5.45 6.00 6.67 7.50 10.0	78 79 81 82 83	54 58 3 9 16	I.07 I.08 I.10 I.12 I.12	9 8 7 6	15.0 13.6 12.1 10.6 9.1
8 8	56 78 9		15 20 24 27 29	12.0 15.0 20.0 30.0 60.0	84 85 86 87 88	10 20 30 40 50	I.17 I.17 I.17 I.17		45 50 54 57 59	12.0 15.0 20.0 30.0 60.0	88	51	I.13 I.13 I.15 I.15		15 20 24 27 29	.12.0 15.0 20.0 30.0 60.0	84 85 86 87 88	23 30 37 44 52	I.12 I.12 I.12 I.13 I.13	5 4 3 2 1	7.6 6.1 4.6 3.0 1.5
9	0		30	601	90	0		49		601	90				30	601	90		Δ.	0	0.0
	t		$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $						ı	$\frac{60'}{\Delta}$)	$\frac{\Delta}{60'}$	- 0		$\frac{60'}{\Delta}$		b	<u>Δ</u> 6ο'	•	a
			d = 40° 30′							d = 4	11°	0′			(d = 4	1° 3	0′			

	$\setminus b$			a=4	ł2°	0′			a	i = 4	2° 8	30′				a = 4	3° ()′		$\setminus c$	a
	B	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
	0 I 2 3 4	0 0 I 2	ó 45 29 14 58	1.33 1.36 1.33 1.36 1.33	42		0.00 .02 .02 .03	0 I 2	ó 44 29 13 57	1.36 1.33 1.36 1.36 1.36	42	30 30 31 32 34	0.00	0 I 2	ó 44 28 12 55	1.36 1.36 1.36 1.40 1.36	43	0 0 1 2 4	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.3 88.6 88.0 87.3
	5 6 7 8 9	5	43 27 12 56 41	1.36 1.33 1.36 1.33 1.36		6 9 13 17 21	0.05 .07 .07 .07	3 4 5 6	41 25 9 53 37	1.36 1.36 1.36 1.36 1.36		36 39 43 47 51	0.05 .07 .07 .07	3 4 5 6	39 23 7 51 34	1.36 1.36 1.36 1.40 1.36		6 9 13 17 21	0.05 .07 .07 .07	85 84 83 82 81	86.6 85.9 85.3 84.6 83.9
	10 11 12 13 14	7 8 9 10	25 9 53 37 21	1.36 1.36 1.36 1.36 1.36		26 32 38 45 52	0.10 .10 .12 .12	7 8 9 10	21 5 49 33 16	1.36 1.36 1.36 1.40 1.36	43	56 8 15 22	0.10 .10 .12 .12	7 8 9 10	18 1 45 28 11	1.40 1.36 1.40 1.40 1.36		26 32 38 45 52	0.10 .10 .12 .12	80 79 78 77 76	83.2 82.5 81.8 81.1 80.4
	15 16 17 18 19	11 12 13 14	5 49 33 17	1.36 1.36 1.36 1.40 1.36	43	59 8 17 26 36	0.15 .15 .15 .17	11 12 13	0 44 27 10 53	1.36 1.40 1.40 1.40	44	30 38 47 56 6	0.13 .25 .15 .17	11 12 13	55 38 21 4 46	1.40 1.40 1.40 1.43 1.40	44	0 8 17 26 36	0.13 .15 .15 .17	75 74 73 72 71	79.7 79.0 78.3 77.6 76.9
	20 21 22 23 24	15 16	44 27 10 53 36	1.40 1.40 1.40 1.40 1.40	44	47 58 10 22 35	0, 18 .20 .20 .22 .23	14 15 16	36 19 2 45 27	I.40 I.40 I.40 I.43 I.43	45	17 28 40 52 5	0.18 .20 .20 .22 .23	14 15 16 17	29 12 54 36 18	I.43 I.43 I.43 I.43	45	47 58 10 22 35	0.18 .20 .20 .22 .23	70 69 68 67 66	76.2 75.5 74.7 74.0 73.3
	25 26 27 28 29	19	19 1 43 25 7	I.43 I.43 I.43 I.43 I.43	45	49 3 18 34 50	0.23 .25 .27 .27 .28	18 19 20	9 51 33 15 57	1.43 1.43 1.43 1.43 1.46	46	19 33 48 4 20	0.23 .25 .27 .27 .28	18 19 20	0 42 24 5 46	1.43 1.43 1.46 1.46 1.46	46	49 3 18 34 50	0.23 .25 .27 .27 .28	65 64 63 62 61	72.5 71.8 71.0 70.2 69.5
	30 31 32 33 34	22 23	49 30 11 52 33	1.46 1.46 1.46 1.46 1.46	46 47	7 25 43 2 22	0.30 .30 .32 .33	21 22 23 24	38 19 0 41 21	1.46 1.46 1.46 1.50 1.50	47	37 55 13 32 52	0.30 .30 .32 .33	21 22 23 24	27 8 48 28 8	1.46 1.50 1.50 1.50 1.50	47	7 25 43 2 22	0.30 .30 .32 .33	60 59 58 57 56	68.7 67.9 67.1 66.3 65.5
	35 36 37 38 39	26 27	14 54 34 14 53	1.50 1.50 1.50 1.54 1.54	48 49	42 4 26 49 12	0.37 .37 .38 .38 .42	25 26 27	1 41 21 0 39	1.50 1.50 1.54 1.54 1.58	48 49	12 33 55 18 42	0.35 .37 .38 .40	25 26 27	48 28 7 46 24	1.50 1.54 1.54 1.58 1.58	49	42 3 25 48 12	0.35 .37 .38 .40 .40	55 54 53 52 51	64.7 63.9 63.0 62.2 61.3
2	40 41 42 43 44	29	27	1.54 1.58 1.58 1.58 1.58	50	37 28 55 23	•43 •45 •47 •47	28 29 30	17 55 33 11 48	1.58 1.58 1.58 1.62 1.62	50	6 31 57 24 52	•.42 •43 •45 •47 •48	28 29 30	2 40 18 55 32	1.58 1.58 1.62 1.62 1.62	51	36 1 27 54 21	0.42 •43 •45 •45 •48	50 49 48 47 46	60.5 59.6 58.7 57.8 56.9
	45		42			51		31	25		52	21		31	9		-	50		45	56.0
	t	. a	$a \left\ \frac{60'}{\Delta} \right\ b \left\ \frac{\Delta}{60} \right\ $							$\frac{60'}{\Delta}$	t	5	<u>Δ</u> 6ο'	0	ı	$\frac{60'}{\Delta}$	b		$\frac{\Delta}{60'}$		a
	ı		C	l=4	2° ()′			d	= 42	2° 3	0′			(d = 4	3° ()′			

b		a = 4	ŀ2° 0′			C	a=4	2° 3	0′				a = 4	3° (0′		\ c	a
$B \setminus$	h	$\frac{l}{\Delta}$	Z^{t}	$\frac{\Delta}{60'}$	h	$\stackrel{d}{\swarrow}$	<u>6ο'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	60' Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	31 4 32 1 5 33 3 34	5 1.67	51 51 52 21 52 53 23 55	0.50 .52 .52 .53 .57	31 32 33	25 2 38 13 48	1.62 1.67 1.71 1.71	52 53 54	21 50 20 52 24	0.48 .50 .53 .53	3 ¹ 3 ² 33	9 45 20 55 30	1.67 1.71 1.71 1.71 1.76	52 53 54	50 19 49 20 52	0.48 •50 •52 •53 •55	° 45 44 43 42 41	56.0 55.0 54.1 53.1 52.1
50 51 52 53 54	35 I 35 2 36 2 5	7 1.76 I 1.82 4 1.82	54 29 55 3 38 56 15 52	0.57 .58 .62 .62 .63	34 35 36	23 57 31 4 37	1.76 1.76 1.82 1.82 1.88	55 56 57	57 31 6 42 19	0.57 .58 .60 .62 .63	343536	38 11 44 17	1.76 1.82 1.82 1.82 1.94	55 56 57	25 59 34 10 47	0.57 .58 .60 .62 .62	40 39 38 37 36	51.2 50.2 49.2 48.1 47.1
55 56 57 58 59	- 3	2 I.94 3 I.94 4 2.00	57 30 58 9 50 59 31 60 14	0.65 .68 .68 .72 .72	37 38 39	9 41 12 42 12	1.88 1.94 2.00 2.00 2.07	58 59 60	57 36 17 58 40	0.65 .68 .68 .70 .72	37 38	48 19 50 20 49	1.94 1.94 2.00 2.07 2.07	58 59 60 61	24 3 43 24 5	0.65 .67 .68 .68	35 34 33 32 31	46.0 45.0 43.9 42.8 41.7
60 61 62 63 64	3	2.22	57 61 42 62 28 63 15 64 2	0.75 .77 .78 .78 .82	40 41	41 9 37 4 30	2.14 2.14 2.22 2.31 2.31	61 62 63 64	23 7 52 39 26	0.73 .75 .78 .78 .78	39 40 41	18 46 13 40 6	2.14 2.22 2.22 2.31 2.40	62 63 64	48 32 17 2 49	0.73 .75 .75 .78 .80	30 29 28 27 26	40.5 39.4 38.2 37.0 35.8
65 66 67 68 69	42 20 44 43 10 3 5	2.40 2.61 2.61	51 65 41 66 32 67 25 68 18	0.83 .85 .88 .88	42 43	56 21 45 8 30	2.40 2.50 2.61 2.73 2.86	65 66 67 68	15 4 54 46 39	0.82 .83 .87 .88	42 43	31 55 19 42 4	2.50 2.50 2.61 2.73 2.86	65 66 67 68	37 26 16 7 59	0.82 .83 .85 .87	25 24 23 22 21	34.6 33.4 32.1 30.9 29.6
70 71 72 73 74	44 I 35 45 I 3	3.00 3.16 8 3.33	69 12 70 7 71 3 72 1 59	0.92 •93 •97 •97 •98	44 45	51 12 31 50 8	2.86 3.16 3.16 3.33 3.53	69 70 71 72 73	32 26 22 18 15	0.90 •93 •93 •95 •98	44	25 45 4 22 40	3.00 3.16 3.33 3.33 3.53	69 70 71 72 73	52 45 40 36 32	0.88 .92 .93 .93	20 19 18 17 16	28.3 27.0 25.7 24.3 23.0
75 76 77 78 79	46 ⁵ 2 3 5	4.00 4.29 8.4.62	73 58 74 58 75 58 77 0 78 2	1.00 1.03 1.03 1.05	46	25 40 55 9 22	4.00 4.00 4.29 4.62 5.00	74 75 76 77 78	14 13 13 13	0.98 1.00 1.00 1.02 1.03	45	57 12 27 41 53	4.00 4.00 4.29 5.00 5.00	74 75 76 77 78	29 27 26 26 26	0.97 .98 I.00 I.00	15 14 13 12 11	21.6 20.3 18.9 17.5 16.1
80 81 82 83 84	47 I 2 3 3	3 6.67 2 8.57	79 5 80 9 81 13 82 18 83 23	1.07 1.07 1.08 1.08	47	34 44 54 2	6.00 6.00 7.50 7.50 10.0	79 80 81 82 83	16 19 22 26 30	1.05 1.05 1.07 1.07 1.07	46	5 15 24 32 40	6.00 6.67 7.50 7.50 10.0	79 80 81 82 83	27 29 31 33 36	1.03 1.03 1.03 1.05 1.05	9 8 7 6	14.6 13.2 11.8 10.3 8.8
85 86 87 88 89	4 5 5 5 5	1 15.0 5 20.0 8 60.0	84 28 85 34 86 40 87 47 88 53	I.10 I.12 I.10 I.12		16 21 25 28 29	12.0 15.0 20.0 60.0 60.0	84 85 86 87 88	34 39 44 49 54	1.08 1.08 1.08 1.08		46 51 5 5 58 59	12.0 15.0 20.0 60.0 60.0	84 85 86 87 88	5 I	1.07 1.07 1.07 1.08 1.07	5 4 3 2 1	7·4 5·9 4·4 3.0 1.5
90	48	0	90 0			30		90	0		47	0		90	0		0	0.0
t	а	$\left \frac{6o'}{\Delta} \right b \left \frac{\Delta}{6o'} \right $				ı	60' Δ		b	<u>A</u> 60'	(ı	<u>6ο′</u> Δ	1	Ь	$\frac{\Delta}{60'}$		a ·
l		d = d	42° 0′			C	l=4	2° 3	0′				d = 4	3° (D′			

$\setminus b$	a	= 43	3° 30′				a = 4	4 ° (0′			C	a = 4	4° 3	0′		\ c	a
$B \setminus$	h d	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	<u>Δ</u> 60'	$C \setminus$	B
0 0 1 2 3 4	0 0 44 1 27 2 11 54	1.36 1.40 1.36 1.40 1.36	43 30 30 31 32 32	.02 I .02 2 .03	0 0 I 2	ó 43 26 10 53	1.40 1.40 1.36 1.40 1.40	44	0 0 1 2 4	0.00 .02 .02 .03	0 0 1 2	ó 43 26 8 51	1.40 1.40 1.43 1.40 1.40	44	30 30 31 32 34	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.3 88.6 87.9 87.2
5 6 78 9	3 38 4 21 5 4 48 6 31	1.40 1.40 1.36 1.40 1.40	39 39 44 47 5	9 .07 3 .07 7 .07 1 .08	3 4 5 6	36 19 2 45 28	1.40 1.40 1.40 1.40		6 9 13 17 21	.05 .07 .07 .07 .08	3 4 5 6	34 17 59 42 24	1.40 1.43 1.40 1.43 1.40		36 39 43 47 51	0.05 .07 .07 .07	85 84 83 82 81	86.5 85.8 85.1 84.4 83.7
10 11 12 13 14	7 14 57 8 40 9 23 10 6	1.40 1.40 1.40 1.40		2 .10 8 .12 5 .12	7 8 9 10	53 36 19	1.43 1.40 1.40 1.43 1.40		26 32 38 45 52	0.10 .10 .12 .12	7 8 9	7 49 32 14 56	1.43 1.40 1.43 1.43	45	56 8 15 22	0.10 .10 .12 .12	80 79 78 77 76	83.0 82.3 81.6 80.9 80.2
15 16 17 18 19	49 11 32 12 15 57 13 40	1.40 1.40 1.43 1.40 1.43	39 34 45	8 .15	11 12	44 26 8 50 32	1.43 1.43 1.43 1.43 1.43	45	8 17 26 36	0.13 .15 .15 .17	10 11 12	38 20 2 44 26	1.43 1.43 1.43 1.43 1.46	46	30 38 47 56 6	0.13 .15 .15 .17	75 74 73 72 71	79.5 78.7 78.0 77.3 76.5
20 21 22 23 24	14 22 15 4 46 16 28 17 10	1.43 1.43 1.43 1.43 1.46	1 2 4 5 46	8 .20	14 15 16 17	14 56 38 19	1.43 1.43 1.46 1.43 1.46	46	47 58 10 22 35	0.18 .20 .20 .22 .23	14 15 16	7 49 30 11 52	1.43 1.46 1.46 1.46 1.46	47	17 28 40 52 5	0.18 .20 .20 .22 .23	70 69 68 67 66	75.8 75.1 74.3 73.6 72.8
25 26 27 28 29	51 18 32 19 13 54 20 35	1.46 1.46 1.46 1.46 1.46			18 19 20	42 23 4 44 25	1.46 1.46 1.50 1.46 1.50	47	49 3 18 34 50	0.23 .25 .27 .27 .28	17 18 19 20	33 13 54 34 14	1.50 1.46 1.50 1.50 1.50	48	19 33 48 4 20	0.23 .25 .27 .27 .28	65 64 63 62 61	72.1 71.3 70.5 69.7 68.9
30 31 32 33 34	21 16 56 22 36 23 16 56	1.50 1.50 1.50 1.50		5 .30	21 22 23	5 45 25 4 43	1.50 1.50 1.54 1.54 1.54	48 49	7 25 43 2 21	0.30 .30 .32 .32 .35	21 22 23	54 33 12 51 30	1.54 1.54 1.54 1.54 1.54	49	37 54 12 31 51	0.28 .30 .32 .33	59 58 57 56	68.1 67.3 66.5 65.7 64.9
35 36 37 38 39	24 35 25 14 53 26 32 27 10	1.54 1.54 1.54 1.58 1.58	3 50 I	2 0.35 3 .37 5 .38 8 .38 1 .40	25 26	22 39 17 55	1.54 1.58 1.58 1.58 1.62	50	42 3 25 47	0.35 .37 .37 .40	24 25 26	9 47 25 3 40	1.58 1.58 1.58 1.62 1.62	50	32 54 17 40	0.35 .37 .38 .38 .40	55 54 53 52 51	64.1 63.2 62.4 61.5 60.6
40 41 42 43 44	48 28 25 29 2 39 30 15	1.62 1.62 1.62 1.67 1.67	52 2	5 0.42 0 .43 6 .45 3 .45 0 .48	28 29	32 9 46 23 59	1.67		35 0 25 52 19	0.42 .42 .45 .45 .47	28 29	17 54 30 6 42	1.62 1.67 1.67 1.67 1.71	53	48	1	47 46	59.8 58.9 58.0 57.1 56.1
45	51		53 1	9	30	34			47		30	17		54	16		45	55.2
	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		æ
			3° 30	,			d = 4	4°	0′				d = 4	4° 3	30′			

\ b		-	i = 4	3° 3	0′		1		a = 4	4°	0′			0	i = 4	4° ?	30′		\ c	\ a
	-	d	60'		t	Δ	-	\overline{d}	60'	<u></u>	$\frac{1}{t}$	Δ	7	$\frac{d}{d}$	60'		$\frac{1}{t}$	Δ		
$B \setminus$	h	/	Δ	Z		60'	h`	/	Δ	z	/	60'	h		Δ	Z	/	60'	$C \setminus$	$\beta \setminus$
45 46 47 48 49	30 31 32 33	51 27 2 37 11	1.67 1.71 1.71 1.76 1.76	53 54 55	19 48 18 49 21	0.48 .50 .52 .53	30 31 32	34 10 45 19 53	1.67 1.71 1.76 1.76 1.82	53 54 55	47 16 46 17 49	0.48 •50 •52 •53 •53	30 31 32	17 52 26 0 34	1.71 1.76 1.76 1.76 1.76	54 55 56	16 45 14 45 16	0.48 .48 .52 .52 .55	45 44 43 42 41	55.2 54.3 53.3 52.4 51.4
50 51 52 53 54	34 35	45 19 52 24 56	1.76 1.82 1.88 1.88	56 57 58	53 27 2 37 13	0.57 .58 .58 .60 .63	33 34 35	26 59 32 4 35	1.82 1.82 1.88 1.94 1.94	56 57 58	21 55 29 4 40	••57 •57 •58 •60 •62	33 34 35	7 40 12 44 15	1.82 1.88 1.88 1.94 2.00	57 58 59	49 22 56 31 7	0.55 .57 .58 .60 .62	40 39 38 37 36	50.4 49.4 48.4 47.3 46.3
55 56 57 58 59	36 37 38	27 58 28 58 27	1.94 2.00 2.00 2.07 2.14	59 60 61	51 30 9 49 31	0.65 .65 .67 .70	36 37 38	6 36 6 35 4	2.00 2.00 2.07 2.07 2.14	59 60 61	17 56 35 15 56	0.65 .65 .67 .68	36 37	45 15 44 13 41	2.00 2.07 2.07 2.14 2.14	60 61 62	44 21 0 40 21	0.62 .65 .67 .68	35 34 33 32 31	45.2 44.2 43.1 42.0 40.9
60 61 62 63 64	39 40	55 23 50 16 41	2.14 2.22 2.31 2.40 2.40	62 63 64 65	13 56 41 26 12	•.72 •.75 •.75 •.77 •.80	39 40	32 59 26 52 17	2.22 2.22 2.31 2.40 2.50	62 63 64 65	38 21 4 49 35	0.72 .72 .75 .77 .78	38 39	9 36 2 27 52	2.22 2.31 2.40 2.40 2.50	63 64 65	2 44 28 12 57	0.70 •73 •73 •75 •78	30 29 28 27 26	39·7 38·6 37·4 36·3 35·1
65 66 67 68 69	41 42	6 2.50 66 0 0.8 30 2.61 48 .8 53 2.61 67 37 .8 16 2.86 68 28 .8 37 2.86 69 19 .8 58 3.00 70 11 0.8 18 3.16 71 4 .9 37 3.33 58 .9 55 3.33 72 53 .9		0.80 .82 .85 .85	4I 42	41 5 28 50 11	2.50 2.61 2.73 2.86 3.00	66 67 68 69	22 10 58 48 38	0.80 .80 .83 .83	40 41	16 40 2 24 45	2.50 2.73 2.73 2.86 3.00	66 67 68 69	44 31 19 8 58	0.78 .80 .82 .83 .85	25 24 23 22 21	33.9 32.7 31.4 30.2 28.9		
70 71 72 73 74	43 44	53 2.61 67 37 .8 16 2.86 68 28 .8 37 2.86 69 19 .8 58 3.00 70 11 0.8 18 3.16 71 4 .9 37 3.33 58 .9 55 3.33 72 53 .9 13 3.75 73 48 .9 29 4.00 74 45 0.9		0.88 .90 .92 .92	43	31 51 10 28 45	3.00 3.16 3.33 3.53 3.75	70 71 72 73 74	30 22 15 9 4	0.87 .88 .90 .92 .93	42 43	5 24 43 0 17	3.16 3.16 3.53 3.53 3.75	70 71 72 73 74	49 40 33 26 20	0.85 .88 .88 .90	20 19 18 17 16	27.7 26.4 25.1 23.8 22.4		
75 76 77 78 79	45	29 44 58 12 24	4.00 4.29 4.29 5.00 5.45	74 75 76 77 78	45 42 40 39 38	0.95 •97 •98 •98	44	1 16 30 43 55	4.00 4.29 4.62 5.00 5.45	75 76 77 78	56 53 51 49	0.93 •95 •97 •97 •98	44	33 48 1 14 26	4.00 4.62 4.62 5.00 5.45	75 76 77 78 79	15 10 6 3 1	0.92 •93 •95 •97 •97	15 14 13 12 11	21.1 19.7 18.4 17.0 15.6
80 81 82 83 84	46	5 12 5.00 77 39 .9 24 5.45 78 38 1.0 35 5.45 79 38 1.0 46 6.67 80 38 1.0 55 7.50 81 39 1.0 6 3 8.57 82 41 1.0				1.00 1.02 1.03 1.03 1.03	45	6 16 26 34 41	6.00 6.00 7.50 8.57 10.0	79 80 81 82 83	48 48 48 48 49	I.00 I.00 I.00 I.02 I.02	45	37 47 56 4	6.00 6.67 7.50 8.57	80 81 82 83	59 57 56 56 56	0.97 0.98 1.00 1.00	9 8 7 6	14.2 12.8 11.4 10.0 8.6
85 86 87 88 89		16 12.0 84 45 1.0 21 15.0 85 48 1.0 25 20.0 86 51 1.0 28 60.0 87 54 1.0		1.05 1.05 1.05 1.05 1.05		47 51 55 58 59	15.0 15.0 20.0 60.0 60.0		50 52 54 56 58	1.03 1.03 1.03 1.03 1.03		17 21 25 28 29	15.0 15.0 20.0 60.0 60.0	84 85 86 87 88	56 56 57 58 59	I.00 I.02 I.02 I.02 I.02	5 4 3 2 1	7.2 5.7 4.3 2.9 1.4		
90		30		90	0		46	0		90	0			30		90	0		0	0.0
t	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $						(a	$\frac{60'}{\Delta}$	i	b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
	d=43° 30′								d = 4	4° (0′			á	l=44	4° 3	80′			

$\setminus b$		a = 4	ŀ5° C)′			(a = 4	5° 8	30′				a = 4	6° (D′		\ c	a
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	0 0 0 42 1 25 2 7 50	I.40 I.43 I.40	45	, 0 0 1 2 4	0.00 .02 .02 .03	0 0 I 2	0 42 24 6 48	I.43 I.43 I.43 I.43 I.43	45	30 30 31 32 34	0.00	O I 2		1.43 1.46 1.43 1.43 1.46	46	0 0 1 2 4	0.00	90 89 88 87 86	90.0 89.3 88.6 87.9 87.1
5 0 7 8 9	3 32 4 14 57 5 39 6 21	I.40 I.43 I.43	l	6 9 13 17 21	0.05 .07 .07 .07	3 4 5 6	30 12 54 36 18	I.43 I.43 I.43 I.43 I.43		36 39 43 47 51	0.05 .07 .07 .07	3 4 5 6	28 10 51 33 14	1.43 1.46 1.43 1.46 1.43		6 9 13 17 21	0.05 .07 .07 .07	85 84 83 82 81	86.4 85.7 85.0 84.3 83.6
10 11 12 13 14	7 3 45 8 27 9 9 51	I.43 I.43 I.43		26 32 38 45 52	0.10 .10 .12 .12	7 8 9	0 41 23 4 46	1.46 1.43 1.46 1.43 1.46	46	56 2 8 15 22	0.10 .10 .12 .12	7 8 9	56 37 18 59 40	1.46 1.46 1.46 1.46 1.46		26 32 38 45 52	0.10 .10 .12 .12	80 79 78 77 76	82.8 82.1 81.4 80.7 79.9
15 16 17 18	10 33 11 15 56 12 37 13 18	3		10 11 12 13	27 8 49 30 11	1.46 1.46 1.46 1.46 1.46	47	30 38 47 56	0.13 .15 .15 .17	10 11 12 13	21 2 43 24 4	1.46 1.46 1.46 1.50 1.46	47	0 8 17 26 36	0.13 .15 .15 .17	75 74 73 72 71	79.2 78.4 77.7 77.0 76.2		
20 21 22 23 24	59 14 40 15 21 16 2 43	1.46 1.46 1.46	47	58	.20	14 15 16	52 33 13 54 34	1.46 1.50 1.46 1.50 1.50	48	17 28 40 52 5	0.18 .20 .20 .22 .23	14 15 16	45 25 5 45 25	1.50 1.50 1.50 1.50	48	47 58 10 22 35	0.18 .20 .20 .22 .23	70 69 68 67 66	75.4 74.7 73.9 73.2 72.4
25 26 27 28 29	17 23 18 3 43 19 23 20 3	1.50	48	49 18 33 49	0.23 .25 .25 .27 .28	17 18 19	14 54 33 13 52	1.50 1.54 1.50 1.54 1.54	49	19 33 48 3 19	0.23 .25 .25 .27 .28	17 18 19	5 44 23 2 41	I.54 I.54 I.54 I.54 I.54	49	49 3 17 33 49	0.23 .23 .27 .27 .28	65 64 63 62 61	71.6 70.8 70.0 69.2 68.4
30 31 32 33 34	42 21 21 22 0 39 23 18	1.54	50	6 24 42 1 20	0.30 .30 .32 .32 .35	20 21 22 23	31 10 48 26 4	1.54 1.58 1.58 1.58 1.58	50	36 54 12 30 50	0.30 .30 .30 .33	20 21 22	20 58 36 14 52	1.58 1.58 1.58 1.58 1.62	50	6 23 41 0	0.28 .30 .32 .32 .33	60 59 58 57 56	67.6 66.8 66.0 65.1 64.3
35 36 37 38 39	56 24 34 25 11 48 26 25	1.58 1.62 1.62 1.62 1.62	51	41 2 23 46 9	0.35 .35 .38 .38 .40	24 25 26	42 20 57 34 11	1.58 1.62 1.62 1.62 1.62	51 52	10 31 53 15 38	0.35 .37 .37 .38 .40	23 24 25	29 6 43 19 55	1.62 1.62 1.67 1.67 1.67	52 53	39 0 22 44 7	• 35 • 37 • 37 • 38 • 40	55 54 53 52 51	63.5 62.6 61.7 60.9 60.0
40 41 42 43 44	28 14 50 29 25	25 1.62 2 1.67 38 1.67 14 1.67 50 1.71 25 1.71		33 58 23 49 16	0.42 .42 .43 .45 .47	27 28 29	47 23 58 33 8	1.67 1.71 1.71 1.71 1.71	53 54	2 26 52 18 45	•43 •43 •45 •45	26 27 28	31 7 42 17 51	1.67 1.71 1.71 1.76 1.76	54 55	31 55 20 46 13	0.40 .42 .43 .45	50 49 48 47 46	59.1 58.2 57.3 56.4 55.4
45	30 0	1	4	44			43		55	12		29	25			40		45	54·5 ———
t	а	$\frac{60'}{\Delta}$	b		$\frac{\Delta}{60'}$	a	ı	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	1	b	$\frac{\Delta}{60'}$		a
ι		d = 4	5° 0	,			a	=4	5° 3	0′				d = 4	6° ()′			

\ b			a = 4	50 (γ			~	=48	ç o	n'				a = 4	6° ()′			\
	_			5 (_	_			, 3						0 (1 .	C	a
B	h	d	<u>6ο'</u> Δ	z	$\frac{t}{t}$	<u>Δ</u> 6ο'	h	$\frac{d}{}$	$\frac{60'}{\Delta}$	z	t	<u>Δ</u> 6ο'	h	$\frac{d}{d}$	$\frac{60'}{\Delta}$	z	*	<u>Δ</u> 6ο'	$C\setminus$	$\beta \setminus$
45 46 47 48 49	3° 31 32	ó 34 8 42 15	1.76 1.76 1.76 1.82 1.82	54 55 56	44 13 42 13 44	0.48 .48 .52 .52 .53	29 30 31	43 17 50 23 56	1.76 1.82 1.82 1.82 1.88	55 56 57	12 41 10 40 11	0.48 .48 .50 .52 .53	29 30 31	25 59 32 5 37	1.76 1.82 1.82 1.88 1.88	55 56 57	40 9 38 8 39	0.48 .48 .50 .52 .52	° 45 44 43 42 41	54.5 53.6 52.6 51.6 50.6
50 51 52 53 54	33 34	48 20 52 23 54	1.88 1.88 1.94 1.94 2.00	57 58 59	16 49 23 58 33	•.55 •57 •58 •58 •62	32 33 34	28 0 32 3 33	1.88 1.88 1.94 2.00 2.00	58 59	43 16 50 24 59	• 55 • 57 • 57 • 58 • 62	32 33 34	9 40 11 42 12	1.94 1.94 1.94 2.00 2.07	58 59 60	10 43 16 50 25	• 55 • 55 • 57 • 58 • 60	39 38 37 36	49.6 48.6 47.6 46.6 45.5
55 50 57 58 59	353637	24 53 22 51 19	2.07 2.07 2.07 2.14 2.22	60 61 62	47 26 5 45	.65 .65 .67 .68	35 36	3 32 0 28 56	2.07 2.14 2.14 2.14 2.22	60 61 62 63	36 13 51 30 9	.63 .65 .65	35 36	41 10 38 6 33	2.07 2.14 2.14 2.22 2.31	61 62 63	38 15 54 33	.62 .65 .65	35 34 33 32 31	44.5 43.4 42.3 41.2 40.1
60 61 62 63 64	38 39	46 12 38 3 27	2.31 2.31 2.40 2.50 2.50	63 64 65 66	26 8 51 35 20	•.7° •72 •73 •75 •75	37 38 39	23 49 14 39 3	2.31 2.40 2.40 2.50 2.61	64 65 66	50 32 14 57 42	0.70 .70 .72 .75 .75	37 38	59 25 50 14 38	2.31 2.40 2.50 2.50 2.61	64 65 66 67	14 55 37 20 3	0.68 •70 •72 •72 •75	30 29 28 27 26	39.0 37.9 36.7 35.5 34.4
65 66 67 68 69	40 41	51 14 36 58 19	2.61 2.73 2.73 2.86 3.00	67 68 69 70	5 52 40 28 17	0.78 .80 .80 .82 .83	40	26 49 11 32 52	2.61 2.73 2.86 3.00 3.00	67 68 69 70	27 13 0 48 36	0.77 .78 .80 .80	39 40	1 23 45 6 26	2.73 2.73 2.86 3.00 3.16	68 69 70	48 33 20 7 55	0.75 .78 .78 .80	25 24 23 22 21	33.2 32.0 30.8 29.5 28.3
70 71 72 73 74	4.2	39 58 16 33 49	3.16 3.33 3.53 3.75 3.75	71 72 73 74	7 58 50 42 35	0.85 .87 .87 .88	41 42	12 30 48 5 21	3.33 3.33 3.53 3.75 3.75	71 72 73 74	25 15 6 58 51	0.83 .85 .87 .88	41	45 3 21 38 54	3·33 3·33 3·53 3·75 4·00	71 72 73 74 75	43 33 23 14 6	0.83 .83 .85 .87 .87	20 19 18 17 16	27.0 25.8 24.5 23.2 21.9
75 76 77 78 79	43	5 19 33 46 57	4.29 4.29 4.62 5.45 5.45	75 76 77 78 79	29 24 19 15 12	0.92 .92 .93 .95	43	37 51 5 17 29	4.29 4.29 5.00 5.00 6.00	75 76 77 78 79	44 38 32 27 23	0.90 .90 .92 .93	42	9 23 36 48 0	4.29 4.62 5.00 5.00 6.00	76 77 78 79	58 51 45 39 34	0.88 .90 .90 .92	15 14 13 12 11	20.6 19.3 17.9 16.6 15.2
80 81 82 83 84	44	8 18 27 34 41	6.00 6.67 8.57 8.57 10.0	80 81 82 83 84	9 7 5 3 2	•97 •97 •97 •98 •98	44	39 49 57 5 12	6.00 7.50 7.50 8.57 12.0	80 81 82 83 84	19 16 13 10 8	0.95 •95 •95 •97 •97		10 20 28 35 42	6.00 7.50 8.57 8.57 12.0	80 81 82 83 84	29 25 21 17 14	0.93 •93 •93 •95 •95	10 9 8 7 6	13.9 12.5 11.2 9.8 8.4
85 86 87 88 89		47 52 55 58 59	12.0 20.0 20.0 60.0 60.0		I 0 0 0	0.98 1.00 1.00 1.00		17 22 25 28 29	12.0 20.0 20.0 60.0 60.0		6 5 3 2 1	0.98 •97 •98 •98		47 52 55 58 59	12.0 20.0 20.0 60.0 60.0		9 6 4 2	0.97 .95 .97 .97	5 4 3 2 1	7.0 5.6 4.2 2.8 1.4
90	45	0	0 90 0				_	30		90	0		44	0		90	0		0	0.0
+	0	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $						a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$	l	b	$\frac{\Delta}{60'}$		а
$\mid t \mid$			d=4	.5°	0′			(d=4	5° 8	30′				d = 4	6° (0′			

			•949				733							1
b	C	a=40	6° 30′			a = 4	7° 0′			a = 4	7° 30′		c	a
B	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h d	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h d	<u>6ο′</u> Δ	Z	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
o 0 1 2 3 4	0 0 4I I 23 2 4 45	1.46 1.43 1.46 1.46	46 30 30 31 32 34	0.00 .02 .02 .03	0 0 4I I 22 2 3 44	1.46 1.46 1.46 1.46 1.46		0.00	0 / 0 0 4I I 2I 2 2 42	1.46 1.50 1.46 1.50 1.46	47 30 30 31 32 34	.02	90 89 88 87 86	90.0 89.3 88.5 87.8 87.1
5 6789	3 26 4 8 49 5 30 6 11	1.43 1.46 1.46 1.46 1.46	36 39 43 47 51	0.05 .07 .07 .07	3 25 4 5 46 5 27 6 7	1.50 1.46 1.46 1.50 1.46	I I I I I I I I I I I I I I I I I I I	.07	3 23 4 3 43 5 24 6 4	1.50 1.50 1.46 1.50 1.50	36 39 43 47 51	.07 3 .07 7 .07	85 84 83 82 81	86.3 85.6 84.9 84.1 83.4
10 11 12 13 14	52 7 33 8 14 55 9 35	1.46 1.46 1.46 1.50 1.46	56 47 2 8 15 22	0.10 .10 .12 .12	48 7 29 8 9 49 9 30	1.46 1.50 1.50 1.46 1.50	33 34 4 55	.10	44 7 24 8 4 44 9 24	1.50 1.50 1.50 1.50 1.50	48 2 8 12 21	2 .10 3 .10 4 .12	80 79 78 77 76	82.7 81.9 81.2 80.4 79.7
15 16 17 18 19	10 16 56 11 37 12 17 57	1.50 1.46 1.50 1.50 1.50	30 38 47 56 48 6	0.13 .15 .15 .17	10 10 50 11 30 12 10 50	1.50 1.50 1.50 1.50 1.54	48 6	3 .15 7 .15 5 .17	10 4 44 11 24 12 3 43	1.50 1.50 1.54 1.50 1.54	37 46 56 49	7 .15 5 .17 5 .17	75 74 73 72 71	78.9 78.2 77.4 76.6 75.9
20 21 22 23 24	13 37 14 17 57 15 36 16 16	1.50 1.50 1.54 1.50 1.54	17 28 40 52 49 5	0.18 .20 .20 .22 .22	13 29 14 9 48 15 27 16 6	1.50 1.54 1.54 1.54 1.54	49 49 2 34	.20	13 22 14 1 40 15 19 57	1.54 1.54 1.58 1.58	39 50 50	.20 .20 .22	70 69 68 67 66	75.1 74.3 73.5 72.8 72.0
25 26 27 28 29	55 17 34 18 13 51 19 30	1.54 1.54 1.58 1.54 1.54	18 32 47 50 2 18	0.23 .25 .25 .27 .28	45 17 24 18 2 40 19 18	1.54 1.58 1.58 1.58 1.58	50 1 3 4	2 .25	16 35 17 13 51 18 29 19 7	1.58 1.58 1.58 1.58 1.58	18 34 46 51	2 .23 5 .25 1 .27	65 64 63 62 61	71.2 70.4 69.6 68.8 67.9
30 31 32 33 34	20 8 46 21 24 22 1 38	1.58 1.58 1.62 1.62 1.62	35 52 51 10 29 48	0.28 .30 .32 .32 .33	56 20 34 21 11 48 22 25	1.58 1.62 1.62 1.62 1.62	51 2: 40 52 52 1;	30 .30	45 20 22 59 21 36 22 12	1.62 1.62 1.62 1.67 1.67	52 51 52 28 42	.30 .32 .32	59 58 57 56	67.1 66.3 65.4 64.6 63.7
35 36 37 38 39	23 15 52 24 28 25 4 40	1.62 1.67 1.67 1.67 1.67	52 29 . 52 48 . 52 52 8 0. 67 29 . 67 51 . 67 53 13 .		23 2 38 24 14 50 25 25	1.67 1.67 1.67 1.71	53 53 54 54	35	48 23 24 24 0 35 25 10	1.67 1.67 1.71 1.71 1.76	53 2 27 48 54 10 31	7 ·35 8 ·37 0 ·38 3 ·38	55 54 53 52 51	62.9 62.0 61.1 60.3 59.4
40 41 42 43 44	26 16 51 27 26 28 0 34	1.71 59 0. 1.71 54 23 . 1.76 48 . 1.76 55 14 .		0.40 •42 •43 •45 •45	26 0 35 27 9 43 28 17	1.71 1.76 1.76 1.76 1.76	56	2 .42 7 .42 2 .45 9 .45	26 18 52 27 26 59	1.76 1.76 1.76 1.82 1.82	55 20 55 20 56 10	0 .42 5 .42 0 .43	47 46	58.5 57.6 56.6 55.7 54.8
45	29 8		56 8		50		3	5	28 32		57	3	45	53.8
	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$		a
t			6° 30′				7° 0′			d = 4	7° 30′	,		

b		a	ı = 46	3° 3	0′				a = 4	7° (D'			0	a=4	7° 3	30′		\ c	a
B	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	ŧβ
45 46 47 48 49	29 30 31	8 41 14 46 18	1.82 1.82 1.88 1.88	56 57 58	8 36 5 35	0.47 .48 .50 .52 .52	28 29 30	50 23 55 27 59	1.82 1.88 1.88 1.88	56 57 58	36 4 33 2 33	0.47 .48 .48 .52 .52	28 29 30	3 ² 5 37 8 39	1.82 1.88 1.94 1.94 1.94	57 58	3 31 0 29 59	0.47 .48 .48 .50 .52	° 45 44 43 42 41	53.8 52.9 51.9 50.9 49.9
50 51 52 53 54	32 33	49 20 51 21 50	1.94 1.94 2.00 2.07 2.07	59 60	37 9 42 16 51	•.53 •55 •57 •58 •58	31 32 33	30 0 30 0 29	2.00 2.00 2.00 2.07 2.07	59 60 61	36 8 42 16	•53 •53 •57 •57 •60	31 32 33	10 40 10 39 8	2.00 2.00 2.07 2.07 2.14	59 60 61	30 2 34 7 41	• 53 • 53 • 55 • 57 • 58	39 38 37 36	48.9 47.9 46.9 45.9 44.8
55 56 57 58 59	34 35 36	19 48 16 43 10	2.07 2.14 2.22 2.22 2.31	61 62 63	26 3 40 18 57	0.62 .62 .63 .65	34 35	58 26 53 20 46	2.14 2.22 2.22 2.31 2.31	62 63 64	52 28 4 42 21	0.60 .60 .63 .65	34 35	36 4 31 57 23	2.14 2.22 2.31 2.31 2.40	62 63 64	16 52 29 6 44	0.60 .62 .62 .63	35 34 33 32 31	43.8 42.7 41.6 40.5 39.4
60 01 62 63 64	<i>37</i> <i>38</i>	36 1 26 50 13	2.40 2.40 2.50 2.61 2.61	64 65 66 67	37 18 59 41 25	•.68 •.7° •.73 •.73	36 37	37 1 25 48	2.40 2.50 2.50 2.61 2.73	65 66 67	0 40 21 3 46	0.67 .68 .70 .72 .73	36 37	48 13 37 0 23	2.40 2.50 2.61 2.61 2.73	65 66 67 68	23 3 43 25 7	0.67 .67 .70 .70	30 29 28 27 26	38.3 37.2 36.0 34.9 33.7
65 60 67 68 69	39	36 58 19 39 59	2.73 2.86 3.00 3.00 3.16	68 69 70 71	9 54 39 26 13	•75 •75 •78 •78 •80	38 39	10 32 53 13 33	2.73 2.86 3.00 3.00 3.33	68 69 70 71	59	0.73 .75 .77 .77 .80	38 39	45 6 27 47 6	2.86 2.86 3.00 3.16 3.33	69 70 71	50 34 18 3 49	0.73 .73 .75 .77 .78	25 24 23 22 21	32.5 31.3 30.1 28.9 27.7
70 71 72 73 74	40 41	18 36 53 10 26	3.33 3.53 3.53 3.75 4.29	72 73 74 75	50 39 29 20	0.82 .82 .83 .85	40	51 9 26 42 58	3·33 3·53 3·75 3·75 4·29	72 73 74 75	7 56 45 35	0.80 .82 .82 .83	40	24 42 59 15 30	3.33 3.53 3.75 4.00 4.29	72 73 74 75	36 23 11 0 49	0.78 .80 .82 .82 .83	20 19 18 17 16	26.5 25.2 24.0 22.7 21.4
75 76 77 78 79	42	40 54 7 19 31	4.29 4.62 5.00 5.00 6.00	76 77 78 79	12 4 57 50 44	0.87 .88 .88 .90	41 42	12 26 39 51 2	4.29 4.62 5.00 5.45 6.00	76 77 78 79	26 17 9 2 55	0.85 .87 .88 .88	41	44 58 10 22 33	4.29 5.00 5.00 5.45 6.00	76 77 78 79 80	39 30 21 13 5	0.85 .85 .87 .87	15 14 13 12 11	20.1 18.8 17.5 16.2 14.9
80 81 82 83 84	43	41 50 58 6 12	6.67 7.50 7.50 10.0	80 81 82 83 84	38 33 29 24 20	•93 •93 •93 •93		12 21 29 36 42	6.67 7.5° 8.57 10.° 10.°	80 81 82 83 84	48 42 36 31 26	0.90 .90 .92 .92	42	43 52 0 7 13	6.67 7.50 8.75 10.0 12.0	81 82 83 84	58 51 44 38 32	0.88 .88 .90 .90	9 8 7 6	13.6 12.2 10.9 9.5 8.2
85 86 87 88 89		18 22 26 28 30	15.0 15.0 30.0 30.0	85 86 87 88 89	16 13 9 6 3	0.95 •93 •95 •95	43	48 52 56 58 0	15.0 15.0 30.0 30.0	85 86 87 88 89	21 17 12 8 4	c.93 .92 .93 .93		18 22 26 28 30	15.0 15.0 30.0 30.0	89	26 20 15 10 5	0.90 .92 .92 .92 .92	5 4 3 2 1	6.8 5.5 4.1 2.7 1.4
90		30		90 0 60' A A				0		90	0			30	10.1	90	0		0	0.0
		a			b	$\frac{\Delta}{60'}$	0	ı			b	$\frac{\Delta}{60'}$		a	60′ <u>∆</u>	1	b	$\frac{\Delta}{60'}$		a
t		ĺ	d=40	6° 3	0′			C	l = 4	.7° (O'			ä	l = 4	7° 8	30′			

1	Ī			4.00	<u> </u>		T	==					1	==					1/	Th.
1			a = a	48°	0′				a = 4	8°	30′				a = a	49°	0′		0	a
B	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 60'	C	β
0 I 2 3 4	11 22	40	1.50 1.50 1.50	1	0 0 1 2 4	.02		40	1.50 1.50 1.54 1.50 1.50	48	30 30 31 32 34	.02	C	39 19 58	1.54 1.50 1.54 1.54 1.50			4	89 88 87	90.0 89.3 88.5 87.8 87.0
5 6 7 8 9	56	40	1.50 1.50 1.50 1.50		6 9 13 17 21	0.05 .07 .07 .07	3 4 5	58 38 17 57	1.54 1.50 1.54 1.50 1.54		36 39 43 47 51	0.05 .07 .07 .07	3 4 5	56	1.54 1.54 1.54 1.54 1.54		6 9 13 17 21	0.05 .07 .07 .08	84 83 82	86.3 85.5 84.7 84.0 83.2
10 11 12 13 14	7 8 9	39 19	1.50 1.50 1.54 1.50 1.54		26 32 38 44 51	0.10 .10 .10 .12	6 7 8 9	36 16 55 34 13	1.50 1.54 1.54 1.54 1.54	49	56 8 14 21	0.10 .10 .10 .12	6 7 8 9	32 11 50 29 8	1.54 1.54 1.54 1.54 1.54		26 32 38 44 51	0.10 .10 .10 .12	80 79 78 77 76	82.5 81.7 81.0 80.2 79.4
15 16 17 18 19	10 11	58 38 17 56 35	1.50 1.54 1.54 1.54 1.54	49	59 7 16 25 35	0.13 .15 .15 .17	10 11	52 31 10 49 28	1.54 1.54 1.54 1.54 1.58	50	29 37 46 55 5	0.13 .15 .15 .17	10 11	47 25 4 42 20	1.58 1.54 1.58 1.58 1.58	50	59 7 16 25 35	0.13 .15 .15 .17	75 74 73 72 71	78.7 77.9 77.1 76.3 75.5
20 21 22 23 24	13 14 15	53 31 9 47	1.54 1.58 1.58 1.58 1.58	50	46 57 9 21 34	0.18 .20 .20 .22	13 14 15	6 44 22 0 38	1.58 1.58 1.58 1.58 1.58	51	16 27 38 50 3	0.18 .18 .20 .22	13 14 15	58 36 14 51 29	1.58 1.58 1.62 1.58 1.62	51	45 56 8 20 33	0.18 .20 .20 .22 .22	70 69 68 67 66	74.8 74.0 73.2 72.4 71.6
25 26 27 28 29	16 17 18	25 3 41 19 56	1.58 1.58 1.58 1.62 1.62	51	47 1 16 31 47	0.23 .25 .25 .27	16 17 18	16 53 30 7 44	1.62 1.62 1.62 1.62 1.62	52	17 31 45 0 16	0.23 .23 .25 .27	16 17 18	6 43 20 56 33	1.62 1.62 1.67 1.62 1.67	52	46 0 14 29 45	0.23 .23 .25 .27 .28	65 64 63 62 61	70.7 69.9 69.1 68.3 67.5
30 31 32 33 34	19 20 21	33 10 46 22 58	1.62 1.67 1.67 1.67 1.67	52 53	3 20 38 56 15	0.28 .30 .30 .32 .33	19 20 21	21 57 33 9 45	1.67 1.67 1.67 1.67 1.71	53	32 49 7 25 44	0.28 .30 .30 .32 .33	19 20 21	9 45 21 56 31	1.67 1.67 1.71 1.71	53 54	2 19 36 54 13	0.28 .28 .30 .32 .33	60 59 58 57 56	66.6 65.8 64.9 64.1 63.2
35 36 37 38 39	22 23 24	34 10 45 20 54	1.67 1.71 1.71 1.76 1.76	54 55	35 56 17 39	•35 •35 •37 •37 •38	22 23 24	20 55 30 5 39	1.71 1.71 1.71 1.76 1.76	54 55	4 24 45 7 29	• 33 • 35 • 37 • 37 • 38	22 23 24	6 41 15 49 23	1.71 1.76 1.76 1.76 1.76	55	33 53 14 35 57	•33 •35 •35 •37 •38	55 54 53 52 51	62.3 61.4 60.6 59.7 58.8
40 41 42 43 44	25 26 27	28 2 36 9 42	1.76 1.76 1.82 1.82 1.88	56 57	24 48 13 38 4	0.40 .42 .42 .43 .45	252627	13 46 19 52 24	1.82 1.82 1.82 1.88 1.88	56 57	52 16 41 6 32	0.40 .42 .42 .43 .43	25 26 27	35	1.82 1.82 1.88 1.88 1.94	56 57	20 44 8 33 59	0.40 .40 .42 .43 .43	50 49 48 47 46	57.9 56.9 56.0 55.1 54.1
45	28	14			31			56			58			38		58	25		45	53.2
+	0	ı	$\frac{60'}{\Delta}$	ľ		$\frac{\Delta}{60'}$	а		$\frac{60'}{\Delta}$	l		$\frac{\Delta}{60'}$	a		$\frac{60'}{\Delta}$	ĕ	,	$\frac{\Delta}{60'}$		a.
t		,	d = 4	8° 0)′			d	=48	° 3	0′			a	l=4	9° ()′			

6			a = 4	8° ()′			(a = 4	8° 8	30′				a = 4	9°	0′		c	a
B	h	d	$\frac{60'}{\Delta}$	z	·t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	·t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	28 29 30	14 46 18 49 20	1.88 1.88 1.94 1.94 2.00	57 58 59	31 59 27 56 26	0.47 .47 .48 .50 .50	27 28 29 30	56 28 59 30 0	1.88 1.94 1.94 2.00 2.00	57 58 59	58 26 54 23 52	0.47 .47 .48 .48 .50	27 28 29	38 9 40 11 41	1.94 1.94 1.94 2.00 2.07	58 59 60	25 52 20 49 18	0.45 •47 •48 •48 •50	° 45 44 43 42 41	53.2 52.2 51.2 50.2 49.3
50 51 52 53 54	31 32	50 20 49 18 46	2.00 2.07 2.07 2.14 2.14	60 61 62	56 28 0 33 7	•53 •53 •55 •57 •57	31 32	30 0 29 57 25	2.00 2.07 2.14 2.14 2.22	60 61 62	22 53 25 58 32	0.52 •53 •55 •57 •57	30 31 32	39 8 36 3	2.07 2.07 2.14 2.22 2.22	61 62	48 19 51 23 56	•53 •53 •55 •55	40 39 38 37 36	48.2 47.2 46.2 45.2 44.1
55 56 57 58 59	33 34 35	14 41 8 34 0	2.22 2.22 2.31 2.31 2.40	63 64 65	41 17 53 30 7	0.60 .60 .62 .62	33 34	52 19 45 11 36	2.22 2.31 2.31 2.40 2.40	63 64 65	6 41 16 53 30	0.58 .58 .62 .62 .63	33 34	30 57 23 48 13	2.22 2.31 2.40 2.40 2.50	63 64 65	30 5 40 16 53	0.58 .58 .60 .62 .63	35 34 33 32 31	43.1 42.0 40.9 39.8 38.7
60 61 62 63 64	36	25 49 13 36 58	2.50 2.50 2.61 2.73 2.73		46 25 5 46 28	.65 .67 .68 .7°	35 36	1 25 48 11 33	2.50 2.61 2.61 2.73 2.86	66 67 68	8 47 27 7 48	0.65 .67 .67 .68	35 36	37 1 24 46 8	2.50 2.61 2.73 2.73 2.86	66 67 68 69	31 9 48 28 8	0.63 .65 .67 .67	30 29 28 27 26	37.6 36.5 35.4 34.2 33.1
65 66 67 68 69	37 38	20 41 1 21 40	2.86 3.00 3.00 3.16 3.33	69 70 71 72	10 53 37 22 7	•.72 •73 •75 •75 •77	37 38	54 15 35 54 13	2.86 3.00 3.16 3.16 3.33	69 70 71 72	30 13 56 40 25	0.72 •72 •73 •75 •75	37	29 49 9 28 46	3.00 3.00 3.16 3.33 3.53	70 71 72	50 32 14 58 42	•.7° •.7° •.73 •.73	25 24 23 22 21	31.9 30.7 29.5 28.3 27.1
70 71 72 73 74	39 40	58 15 31 47 2	3.53 3.75 3.75 4.00 4.29	73 74 75 76	53 40 27 15	0.78 .78 .80 .82 .82	39	31 48 4 19 34	3.53 3.75 4.00 4.00 4.29	73 74 75 76	10 56 43 30 18	•.77 •.78 •.78 •.80	38 39	3 20 36 51 6	3.53 3.75 4.00 4.00 4.62	73 74 75 76	27 12 58 44 31	•75 •77 •77 •78 •80	20 19 18 17 16	25.9 24.7 23.5 22.2 21.0
75 76 77 78 79	41	16 29 41 53 3	4.62 5.00 5.00 6.00 6.00	78 79	53 43 33 24 15	0.83 .83 .85 .85	40	48 I I3 24 34	4.62 5.00 5.45 6.00 6.00	77 78 79 80	6 55 45 35 25	0.82 .83 .83 .83	40	19 32 44 55 5	4.62 5.00 5.45 6.00 6.00	77 78 79 80	7 56 45 35	0.80 .82 .82 .83	15 14 13 12 11	19.7 18.4 17.1 15.8 14.6
80 81 82 83 84		13 22 30 37 43	6.67 7.50 8.57 10.0 12.0	81 82 83 84	7 59 52 45 38	0.87 .88 .88 .88	41	44 53 1 8 14	6.67 7.50 8.57 10.0 12.0	81 82 83 84	16 7 59 51 43	0.85 .87 .87 .87 .87		15 23 31 38 44	7.50 7.50 8.57 10.0	81 82 83 84	25 15 6 57 48	0.83 .85 .85 .85	10 9 8 7 6	13.2 11.9 10.6 9.3 8.0
85 86 87 88 89	42	48 52 56 58 0	15.0 15.0 30.0 30.0		31 24 18 12 6	0.88 .90 .90 .90	=	19 23 26 28 30	15.0 20.0 30.0 30.0	85 86 87 88 89	35 28 21 14 7	0.88 .88 .88 .88	41	49 53 56 58 0	15.0 20.0 30.0 30.0	85 86 87 88 89	40 32 24 16 8	0.87 .87 .87 .87 .87	5 4 3 2 1	6.7 5.3 4.0 2.7 1.3
90	_	0		90	0			30		90	0			0		90	0		0	0.0
$ _t$	0	ı	$\frac{60'}{\Delta}$	t	Ò	$\frac{\Delta}{60'}$	a	ı	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$	i	Ь	$\frac{\Delta}{60'}$		a
			d = 4	8° 0)′			C	l=48	8° 3	0′				d = 4	9° ()′			

6	a	i = 49	9° 3	0′				a = 5	0° ()′			C	a = 50)° 3	0′		\ c	a
B	h d	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 60'	h	d	$\frac{60'}{\Delta}$	\overline{z}	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	\overline{z}	t	$\frac{\Delta}{60'}$	C	β
0 0 1 2 3 4	0 0 39 1 18 57 2 36	1.54 1.54 1.54 1.54 1.54	49	30 30 31 32 34	0.00 .02 .02 .03	0 I 2	39 17 56 34	1.54 1.58 1.54 1.58 1.54	50	0 0 1 2 4	0.00 .02 .02 .03	0 0 1 2	38 16 54 33	1.58 1.58 1.58 1.54 1.54	50	30 30 31 32 34	0.00	90 89 88 87 86	90.0 89.2 88.5 87.7 86.9
5 6 7 8 9	3 15 54 4 32 5 11 50	1.54 1.58 1.54 1.54 1.54		36 39 43 47 51	0.05 .07 .07 .07	3 4 5	13 51 30 8 46	1.58 1.54 1.58 1.58 1.54		6 9 13 17 21	0.05 .07 .07 .07	3 4 5	11 49 27 5 43	1.58 1.58 1.58 1.58 1.62		36 39 43 47 51	0.05 .07 .07 .07	85 84 83 82 81	86.2 85.4 84.6 83.9 83.1
10 11 12 13 14	6 29 7 7 46 8 24 9 2	1.58 1.54 1.58 1.58 1.58	50	56 1 7 14 21	0.08 .10 .12 .12	6 7 8	25 3 41 19 57	1.58 1.58 1.58 1.58 1.58		26 31 37 44 51	0.08 .10 .12 .12	6 7 8	20 58 36 14 51	1.58 1.58 1.58 1.62 1.58	51	56 1 7 14 21	0.08	80 79 78 77 76	82.3 81.5 80.8 80.0 79.2
15 16 17 18 19	10 18 56 11 34 12 12	1.58 1.58 1.58 1.58 1.58	51	29 37 46 55 5	0.13 .15 .15 .17	9 10 11 12	35 12 50 28 5	1.62 1.58 1.58 1.62 1.62	51	59 7 15 24 34	0.13 .13 .15 .17	9 10	29 6 43 20 57	1.62 1.62 1.62 1.62 1.62	52	28 36 45 54 4	0.13 .15 .15 .17	75 74 73 72 71	78.4 77.6 76.8 76 0 75.2
20 21 22 23 24	50 13 28 14 5 42 15 19	1.58 1.62 1.62 1.62 1.62	52	26 38 50 2	0.18 .20 .20 .20	13 14 15	42 19 56 33 9	1.62 1.62 1.62 1.67 1.67	52	45 56 7 19 32	0.18 .18 .20 .22	12 13	34 11 47 23 59	1.62 1.67 1.67 1.67 1.67	53	14 25 37 49	0.18 .20 .20 .20	70 69 68 67 66	74·4 73.6 72.8 72.0 71.2
25 20 27 28 29	56 16 33 17 9 45 18 21	1.62 1.67 1.67 1.67 1.67	53	15 29 44 59 15	0.23 .25 .25 .27 .27	16 17 18	46 22 58 34 10	1.67 1.67 1.67 1.67 1.71	53	45 59 13 28 44	0.23 .23 .25 .27	15 16 17	35 11 47 23 58	1.67 1.67 1.67 1.71	54	14 28 42 57 13	c.23 .23 .25 .27 .27	65 64 63 62 61	70.3 69.5 68.7 67.8 67.0
30 31 32 33 34	57 19 33 20 8 43 21 18	1.67 1.71 1.71 1.71 1.76	54	31 48 5 23 42	0.28 .28 .30 .32 .32	19 20 21	45 20 55 30 4	1.71 1.71 1.71 1.76 1.76	54 55	0 17 34 52 11	0.28 .28 .30 .32	18 19 20	33 8 42 16 50	1.71 1.76 1.76 1.76 1.76	55	29 46 3 21 39	0.28 .28 .30 .30 .32	59 58 57 56	66.1 65.3 64.4 63.6 62.7
35 36 37 38 39	52 22 26 23 0 34 24 7	1.76 1.76 1.76 1.82 1.82	5 5	1 21 42 3 25	0.33 .35 .35 .37 .38	22 23	38 12 46 19 52	1.76 1.76 1.82 1.82 1.88	56	30 50 10 32 54	0.33 .33 .37 .37	21 22 23	24 57 30 3 36	1.82 1.82 1.82 1.82 1.88	56 57	58 18 39 0 22	0.33 .35 .35 .37 .37	55 54 53 52 51	61.8 60.9 60.0 59.1 58.2
40 41 42 43 44	40 25 13 45 26 17 49		5 <i>7</i> 58	48 12 36 1 26	0.40 .40 .42 .42 .43	24 25 26		1.88 1.88 1.88 1.94 1.94	57 58	16 39 3 28 53	0.38 .40 .42 .42 .43	24 25 26	8 40 11 42 13	1.88 1.94 1.94 1.94 1.94	58 59	44 7 31 55 20	0.38 .40 .40 .42 .43	50 49 48 47 46	57·3 56·3 55·4 54·5 53·5
45	27 20		- 0 1-				2		59	19			44			46		45	52.5
t	a		b	$\frac{\Delta}{60'}$	0	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	(a	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$		а	
	a	l = 49	9° 3	0′				d = 5	60° ()′			(d = 5	0° 3	30°			

1.,																				N I	l.
b			a =	= 49°	30)′			•	a = 50)° ()′			a	a = 50	0° 3	0′		$\setminus c$	a
B	7	'in a	l	<u>60′</u> <u>△</u>	Z	t	<u>Δ</u> 6ο'	h	d	60' ▲	Z	t	<u>∆</u> 60′	h	d	$\left \frac{60'}{\Delta} \right $	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
45 46 47 48 49	7 2	° 27 2 5 28 2 5 29 2	I I	1.94 2.00 2.00 2.00 2.07	58 59 60	52 19 47 15 44	0.45 .47 .47 .48	27 28 29	32 32 32 32 1	2.00 2.00 2.00 2.07 2.07	59 60 61	19 46 13 41	0.45 •45 •47 •48 •50	26 27 28	44 14 43 12 41	2.00 2.07 2.07 2.07 2.07	59 60 61	46 12 39 7 36	0.43 .45 .47 .48 .48	° 45 44 43 42 41	52.5 51.6 50.6 49.6 48.6
50 52 52 53 53	1 3 2 3 3	30 I 4 31 I	7	2.07 2.14 2.14 2.22 2.22	61 62 63	45	0.52 .52 .53 .55 .55	30 31	30 58 26 53 20	2.14 2.14 2.22 2.22 2.31	62 63	40 10 41 13 45	•52 •53 •53 •55	29 30	38 5 32 58	2.14 2.22 2.22 2.31 2.31	62 63 64	5 35 6 37 9	0.50 .52 .52 .53	40 39 38 37 36	47.6 46.6 45.6 44.5 43.5
55 57 58 58	7 3	3 33 2	5 0 5	2.31 2.40 2.40 2.40 2.50	64 65 66	54 28 3 39 15	0.57 .58 .60 .60	32 33	46 12 37 2 26	2.31 2.40 2.40 2.50 2.50	64 65 66	18 52 26 2 38	•57 •57 •60 •60	31 32 33	24 49 14 39 3	2.40 2.40 2.40 2.50 2.61	65 66 67	42 15 49 24 0	0.55 •57 •58 •60 •60	35 34 33 32 31	42.4 41.4 40.3 39.2 38.1
6: 6: 6: 6:	2 3	35 2	4 7 0 2 3	2.61 2.61 2.73 2.86 2.86	67 68 69	52 30 9 48 28	0.63 .65 .65 .67	34	50 13 35 56 17	2.61 2.73 2.86 2.86 2.86	67 68 69	14 52 30 9 48	0.63 .63 .65 .65	34	26 48 10 31 52	2.73 2.73 2.86 2.86 3.00	68 69 70	36 13 51 29 8	0.62 .63 .63 .65	30 29 28 27 26	37.0 35.9 34.8 33.6 32.5
65 66 66	5 7 3 3	2 4 37		3.00 3.16 3.16 3.33 3.53	70 71 72	9 51 33 16 59	0 70 .70 .72 .72 .73	36	38 58 17 35 53	3.00 3.16 3.33 3.33 3.53	70 71 72 73	28 9 51 33 16	0.68 •70 •70 •72 •72	35 36	12 31 50 8 26	3.16 3.16 3.33 3.33 3.75	71 72 73	48 28 9 50 32	0.67 .68 .68 .70 .72	25 24 23 22 21	31.3 30.2 29.0 27.8 26.6
70 7 7 7	1 2 3	38 2	7 3 9 4 8	3.75 3.75 4.00 4.29 4.62	73 74 75 76	43 28 13 59 45	0.75 .75 .77 .77	37 38	10 26 41 56 10	3.75 4.00 4.00 4.29 4.62	74 75 76	59 43 28 13 59	0.73 .75 .75 .77 .77	37	42 58 13 28 42	3.75 4.00 4.00 4.29 4.62	74 75 76 77	15 59 43 27 12	•.73 •.73 •.73 •.75 •.75	20 19 18 17 16	25.4 24.2 23.0 21.8 20.5
7: 7: 7: 7: 7: 7:	6 . 7 8	39 I 2	1 4 6 7	4.62 5.00 5.45 6.00 6.67	77 78 79 80	32 20 8 56 45	0.80 .80 .80 .82	39	23 35 47 57 7	5.00 5.00 6.00 6.00 6.67	77 78 79 80	45 32 19 6 54	0.78 .78 .78 .80 .80	38	55 7 18 28 38	5.00 5.45 6.00 6.00 6.67	78 79 80 81	57 43 30 17 4	0.77 .78 .78 .78 .78	15 14 13 12 11	19.3 18.0 16.8 15.5 14.2
86 8 8 8	1 2 3	40	6 4 2 8 4	7.50 7.50 10.0 10.0	81 82 83 84	34 23 13 3 54	0.82 .83 .83 .85		16 24 32 38 44	7.5° 7.5° 10.0 10.0	81 82 83 84	42 31 20 10 59	0.82 .82 .83 .82 .83	39	47 55 3 9	7.50 7.50 10.0 10.0	82 83 84 85	51 39 27 16 5	0.80 .80 .82 .82	9 8 7 6	13.0 11.7 10.4 9.1 7.8
8: 8: 8: 8: 8: 8:	7	2	9368	15.0 20.0 30.0 30.0	85 86 87 88 89	45 36 27 18 9	0.85 .85 .85 .85		49 53 56 58 0	15.0 20.0 30.0 30.0		49 39 29 19	0.83 .83 .83 .85 .83		19 23 26 28 30	15.0 20.0 30.0 30.0		54 43 32 21 10	0.82 .82 .82 .82	5 4 3 2 1	6.5 5.2 3.9 2.6 1.3
90		3	30		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0		90	0			30		90	0		0	0.0
		a		$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	(ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		а	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t			d	=49	9° 3	0′				d = 5	60°	0′	1		(d=5	0° 3	0′			
	1							1						1							E

b		a = 5	51° 0′			. 0	i=5	1° 3	0′				a = 5	2° (0′		\ c	
$B \setminus$	h d	60' Δ	Z	$\frac{\Delta}{60'}$	h	$\frac{d}{}$	$\frac{60'}{\Delta}$	z	t	<u>Δ</u> 6ο'	h	d	$\frac{6o'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	0 0 38 1 16 53 2 31	1.58 1.58 1.62 1.58 1.58	51 0 0 1 2 4	0.00 .02 .02 .03	0 I 2	37 15 52 29	1.62 1.58 1.62 1.62 1.58	51	30 30 31 32 34	0.00 .02 .02 .03	0 I 2	0 37 14 51 28	1.62 1.62 1.62 1.62 1.62	52	0 0 1 2 4	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.2 88.4 87.7 86.9
5 6 7 8 9	3 9 47 4 24 5 2 39	1.58 1.62 1.58 1.62 1.62	6 9 13 17 21	0.05 .07 .07 .07	3 4 5	7 44 21 58 35	1.62 1.62 1.62 1.62 1.62		36 39 42 46 51	0.05 .05 .07 .08	3 4 5	5 41 18 55 32	1.67 1.62 1.62 1.62 1.67		6 9 12 16 21	0.05 .05 .07 .08	85 84 83 82 81	86.1 85.3 84.5 83.7 82.9
10 11 12 13 14	6 16 54 7 31 8 8 45	1.58 1.62 1.62 1.62 1.62	26 31 37 44 51	0 08 10 .12 .12	6 7 8	12 49 26 3 40	1.62 1.62 1.62 1.62 1.67	52	56 1 7 13 20	0.08 .10 .10 .12	6 7 8	8 45 21 58 34	1.62 1.67 1.62 1.67 1.67		26 31 37 43 50	0.08 .10 .10 .12	80 79 78 77 76	82.1 81.4 80.6 79.8 79.0
15 16 17 18 19	9 22 59 10 36 11 13 49	1.62 1.62 1.62 1.67 1.62	58 52 6 15 24 34	0.13 .15 .15 .17	9 10 11	16 53 29 5 41	1.62 1.67 1.67 1.67 1.67	53	28 36 45 54 3	0.13 .15 .15 .15	9	10 46 22 58 34	1.67 1.67 1.67 1.67	53	58 6 14 23 33	0.13 .13 .15 .17	75 74 73 72 71	78.2 77.4 76.5 75.7 74.9
20 21 22 23 24	12 26 13 2 38 14 14 50	1.67 1.67 1.67 1.67 1.67	44 55 53 6 18 30	0.18 .18 .20 .20	12 13 14	17 53 29 5 40	1.67 1.67 1.67 1.71 1.71	54	13 24 35 47 0	0.18 .18 .20 .22	12 13 14	9 45 20 55 30	1.67 1.71 1.71 1.71 1.71	54	43 54 5 17 29	0.18 .18 .20 .20	70 69 68 67 66	74.1 73.3 72.5 71.6 70.8
25 26 27 28 29	15 26 16 1 36 17 11 46	1.71 1.71 1.71 1.71 1.71	43 57 54 11 26 42	0.23 .23 .25 .27	15 16 17	15 50 25 0 34	1.71 1.71 1.71 1.76 1.76	55	13 26 40 55 10	0.22 .23 .25 .25	15 16 17	5 40 14 48 22	1.71 1.76 1.76 1.76 1.76	55	42 55 9 24 39	0.22 .23 .25 .25	65 64 63 62 61	70.0 69.1 68.3 67.4 66.5
30 31 32 33 34	18 20 55 19 29 20 3 37	1.71 1.76 1.76 1.76 1.76	58 55 14 31 49 56 7	0.27 .28 .30 .30	19	8 42 16 49 22	1.76 1.76 1.82 1.82 1.82	56	26 43 0 18 36	0.28 .28 .30 .30	18 19 20	56 29 2 35 8	1.82 1.82 1.82 1.82 1.82	56 57	55 11 28 46 4	0.27 .28 .30 .30	59 58 57 56	65.7 64.8 63.9 63.1 62.2
35 36 37 38 39	21 10 43 22 16 48 23 20	1.82 1.82 1.88 1.88	26 46 57 7 28 49	0.33 .35 .35 .35 .37	2I 22 23	55 28 0 32 4	1.82 1.88 1.88 1.88	5 <i>7</i>	55 14 34 55 17	0.32 •33 •35 •37 •37		41 13 45 17 48	1.88 1.88 1.88 1.94 1.94	58	23 42 2 23 44	•33 •35 •35 •35	55 54 53 52 51	61.3 60.4 59.5 58.6 57.6
40 41 42 43 44	52 24 23 54 25 25 55	1.94 1.94 1.94 2.00 2.00	58 11 34 58 59 22 47	0.38 .40 .40 .42 .42	24 25	35 6 37 7 37	1.94 1.94 2.00 2.00 2.00	59 60	39 2 25 49 13	0.38 .38 .40 .40 .43	24	19 50 20 50 19	1.94 2.00 2.00 2.07 2.07	59 60	6 29 52 15 40	0.38 .38 .38 .42 .42	50 49 48 47 46	56.7 55.8 54.8 53.9 52.9
45	26 25		60 12		26	7			39			48		61	5		45	52.0
$ _t$	а	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	а	,	60' Δ		b	$\frac{\Delta}{60'}$	0	ı	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$		a
		d = 5	1° 0′			C	l=5	1° 3	0′				d=5	2° ()′	0		

ſ	<u> </u>					_		_						_						1	1
	\ b			a = 5	61° (0′				a = 5	1° 3	30′				a = 5	52°	0′		$\setminus c$	a
	$B \setminus$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	C	β
	o 45 46 47 48 49	26 27 28	25 55 24 53 21	2.00 2.07 2.07 2.14 2.14	60° 61 62	12 38 5 33 1	0.43 .45 .47 .47	26 27 28	7 36 5 33 1	2.07 2.07 2.14 2.14 2.14	60 61 62	39 5 31 58 26	0.43 .43 .45 .47 .48	25 26 27	48 17 46 14 41	2.07 2.07 2.14 2.22 2.22	6i 62	31 57	0.43 .43 .45 .47	° 45 44 43 42 41	52.0 51.0 50.0 49.0 48.0
	50 51 52 53 54	29 30	49 17 44 10 36	2.14 2.22 2.31 2.31 2.31	63 64	30 30 1 33	0.50 .50 .52 .53	29 30	29 56 23 49	2.22 2.22 2.31 2.31 2.40	63 64	55 24 54 25 56	0.48 .50 .52 .52 .53	28 29	8 35 1 27 52	2.22 2.31 2.31 2.40 2.40	63 64 65	20 49 19 49 20	0.48 .50 .50 .52 .53	40 39 38 37 36	47.0 46.0 45.0 43.9 42.9
	55 56 57 58 59	31	2 27 51 15 39	2.40 2.50 2.50 2.50 2.61	65 66 67	5 38 12 47 22	0.55 .57 .58 .58	31 32	40 4 28 52 15	2.50 2.50 2.50 2.61 2.73	65 66 67	28 I 35 9 43	• 55 • 57 • 57 • 57 • 60	30	17 41 5 28 51	2.50 2.50 2.61 2.61 2.73	66 67 68	52 24 57 31 5	0.53 •55 •57 •57 •58	35 34 33 32 31	41.8 40.8 39.7 38.6 37.5
	60 61 62 63 64	33 34	2 24 45 6 27	2.73 2.86 2.86 2.86 3.00	68 69 70	58 34 11 49 27	0.60 .62 .63 .63	33 34	37 59 20 41 1	2.73 2.86 2.86 3.00 3.00	68 69 70	19 55 31 9 47	0.60 .60 .63 .63	32	13 35 56 16 36	2.73 2.86 3.00 3.00 3.16	69 70 71	40 15 51 28 6	0.58 .60 .62 .63	30 29 28 27 26	36.4 35.3 34.2 33.1 31.9
	65 66 67 68 69	35	47 6 24 42 59	3.16 3.33 3.33 3.53 3.75	71 72 73	6 46 26 7 49	0.67 .67 .68 •7° •7°	35	21 40 58 15 32	3.16 3.33 3.53 3.53 3.75	71 72 73 74	25 4 44 24 5	0.65 .67 .67 .68	34 35	55 13 31 48 5	3.33 3.33 3.53 3.53 3.75	72 73 74	44 22 I 4I 2I	0.63 .65 .67 .67	25 24 23 22 21	30.8 29.6 28.5 27.3 26.1
	70 71 72 73 74	36 37	15 31 46 0	3.75 4.00 4.29 4.62 4.62	74 75 76 77	31 14 57 41 25	0.72 •72 •73 •73 •75	36	48 3 18 32 45	4.00 4.00 4.29 4.62 4.62	75 76 77	47 29 11 54 38	0.70 .70 .72 .73 .73	36	21 36 50 4 17	4.00 4.29 4.29 4.62 5.00	75 76 77	2 44 26 8 51	0.70 .70 .70 .72 .72	20 19 18 17 16	24.9 23.7 22.5 21.3 20.1
	75 76 77 78 79	38	26 38 49 59	5.00 5.45 6.00 6.00 6.67	78 79 80 81	10 55 41 27 13	0.75 .77 .77 .77 .78	37	58 10 21 31 40	5.00 5.45 6.00 6.67 6.67	78 79 80 81	22 6 51 36 22	0.73 .75 .75 .77 .77	37	29 41 52 2 11	5.00 5.45 6.00 6.67 7.50	78 79 80 81	34 18 2 46 31	0.73 .73 .73 .75 .75	15 14 13 12 11	18.9 17.7 16.5 15.2 13.9
	80 81 82 83 84		18 26 33 39 45	7.50 8.57 10.0 10.0	82 83 84 85	0 47 34 22 10	0.78 .78 .80 .80	38	49 57 4 10 15	7.50 8.57 10.0 12.0 15.0	82 83 84 85	8 54 41 28 15	0.77 .78 .78 .78 .78		19 27 34 40 45	7.50 8.57 10.0 12.0 12.0	82 83 84 85	16 2 48 34 20	0.77 .77 .77 .77 .77	9 8 7 6	12.7 11.4 10.2 8.9 7.6
	85 86 87 88 89	39	49 53 56 58 0	15.0 20.0 30.0 30.0	86 87 88 89	58 46 34 23	0.80 .80 .82 .80		19 23 26 28 30	15.0 20.0 30.0 30.0		2 49 37 24 12	0.78 .80 .78 .80 .80	38	50 53 56 58 0	20.0 20.0 30.0 30.0		53 39 26 13	0.78 .77 .78 .78 .78	5 4 3 2 1	6.4 5.1 3.8 2.6 1.3
-	90		0		90	0			30		90	0			0		90	0		0	0.0
		(ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	a	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
	t			d = 5	1° (D'			(d = 5	1° 3	30′				d = 5	2°	0′			

b	a	a = 52	2° 30′			a = 5	63° ()′			а	= 53	3° 3	0′		c	a
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	$\frac{d}{\Delta}$	z	$\stackrel{t}{\checkmark}$	$\frac{\Delta}{60'}$	h	$\frac{d}{}$	<u>6ο'</u> Δ	Z	\downarrow^t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	0 0 37 1 13 50 2 26	1.62 1.67 1.62 1.67 1.62	5 ² 30 30 31 32 32	.02	3 1 1 4	0 1.67 6 1.67 2 1.67 8 1.67 24 1.67	53	, 0 0 1 2 4	0.00 .02 .02 .03	0 0 I 2	ó 36 11 47 23	1.67 1.71 1.67 1.67	53	30 30 31 32 34	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.2 88.4 87.6 86.8
5 6 7 8 9	3 3 39 4 15 52 5 28	1.67 1.62 1.67 1.67	30 30 42 40 50	.05	3 4 I 4	0 1.67 36 1.67 2 1.67 8 1.67		6 9 12 16 20	0.05 .05 .07 .07	3 4 5	58 34 9 45 20	1.67 1.71 1.67 1.71 1.67		36 39 42 46 50	0.05 .05 .07 .07	85 84 83 82 81	86.0 85.2 84.4 83.6 82.8
10 11 12 13 14	6 4 40 7 16 52 8 28	1.67 1.67 1.67 1.67 1.67	53	.10	7 I 4	0 1.67 36 1.71 1 1.67 17 1.71 122 1.67		25 30 36 43 50	0.08 .10 .12 .12	6 7 8	56 31 6 41 16	1.71 1.71 1.71 1.71 1.71	54	55 0 6 12 19	0.08	80 79 78 77 76	82.0 81.2 80.4 79.6 78.7
15 16 17 18 19	9 4 40 10 15 51 11 26	1.67 1.71 1.67 1.71	2; 3; 44 5; 54	.15	9 3 10 4	8 1.71 8 1.71 8 1.71 3 1.71 1.71	54	57 5 13 22 32	0.13 .13 .15 .17	9 10	51 26 1 36 10	1.71 1.71 1.71 1.76 1.76	55	27 35 43 52 I	0.13 .13 .15 .15	75 74 73 72 71	77.9 77.1 76.3 75.5 74.6
20 21 22 23 24	12 I 36 13 II 46 14 20	1.71 1.71 1.71 1.76 1.76	12 2; 34 46 58	.18	12 2	1.76 27 1.71 2 1.76 36 1.76 1.76	55	42 52 3 15 27	0.17 .18 .20 .20	12 13 14	44 18 52 26 0	1.76 1.76 1.76 1.76 1.76		11 22 33 44 56	0.18 .18 .18 .20	70 69 68 67 66	73.8 73.0 72.1 71.3 70.4
25 26 27 28 29	54 15 28 16 2 36 17 10	1.76 1.76 1.76 1.76 1.82	55 11 22 38 56	.23	15 I 16 2	1.76 8 1.82 1.76 25 1.82 1.82	56	40 53 7 22 37	0.22 .23 .25 .25	15 16	34 7 40 13 46	1.82 1.82 1.82 1.82 1.88	56 57	9 22 36 50 5	0.22 .23 .23 .25 .27	65 64 63 62 61	69.6 68.7 67.9 67.0 66.1
30 31 32 33 34	43 18 16 49 19 22 54	1.82 1.82 1.82 1.88 1.88	22 49 57 57 12 32	.28	18 19	3 1.88 3 1.82 36 1.88 8 1.88 40 1.88	57	52 8 25 42 0	0.27 .28 .28 .30 .32	17 18 19	18 50 22 54 26	1.88 1.88 1.88 1.88	58	21 37 54 11 29	0.27 .28 .28 .30	60 59 58 57 56	65.2 64.4 63.5 62.6 61.7
35 36 37 38 39	20 26 58 21 30 22 1 32	1.88 1.88 1.94 1.94 2.00	58 16 30 59 1	33 33 35 35	2I I	1.94 1.94 1.94 1.94 2.00 2.00	59	19 38 58 18	0.32 .33 .33 .35 .35	20 21	57 28 59 29 59	1.94 1 94 2.00 2.00 2.00	59 60	47 6 25 45 6	0.32 •32 •33 •35 •35	55 54 53 52 51	60.8 59.9 59.0 58.0 57.1
40 41 42 43 44	23 2 32 24 2	2.00 2.00 2.00 2.07 2.07	3. 60 13 61 6	38 .40	23 1 24 1	2.00 2.00 45 2.07 2.07 2.07 2.14	61	22 45	0.37 .38 .38 .40 .42	22 23 24	29 58 27 56 24	2.07 2.07 2.07 2.14 2.14	61	27 49 12 35 59	0.37 .38 .38 .40	50 49 48 47 46	56.2 55.2 54.3 53.3 52.4
45	30		3		25 1	11		57			52		62	23		45	51.4
	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t	0	d = 5	2° 30′			d = 3	53°	0′			c	l = 5	3° 3	30′			

\ b		0	t = 52	2° 3	0′				a = 5	3° (0′				i = 5	3° 5	30′			\ a
	_	$\frac{d}{d}$	60'		$\frac{t}{t}$	Δ		\overline{d}	60'		$\frac{t}{t}$	Δ	_	$\frac{d}{d}$	60'		$\frac{1}{t}$	Δ		
$B \setminus$	h	1	Δ	z	/	60'	h	\ <u>a</u>	$\frac{\delta \delta}{\Delta}$	z	/	60'	h	\ <u>a</u>	$\frac{30}{\Delta}$	z	/	60'	$C \setminus$	$\beta \setminus$
45 40		30 58	2.14	61	31 57	0.43 •43	25 25	11 39	2.14	61 62	57 22	0.42	0 24 25	52 20	2.14	62	48	0.42	° 45 44	51.4 50.4
47 48 49		26 54 21	2.14 2.22 2.22	62 63	23 50 17	•45 •45 •47	26 27	7 34 I	2.22 2.22 2.31	63	48 15 42	•45 •45 •45	26	47 14 40	2.22 2.31 2.31	63 64	39 6	·43 ·45 ·47	43 42 41	49·4 48·4 47·4
50 51	28	48 14	2.31	64	45 14	0.48 .48	-0	27 53	2.31	64	9 38	0.48	27	6 32	2.31	65	34	°.47	40 39	46.4 45.4
52 53 54	29	40 5 30	2.40 2.40 2.40	65	43 13 44	.50 .52 .52	28 29	19 44 8	2.40 2.50 2.50	65 66	7 36 6	.48 .50	28	57 22 46	2.40 2.50 2.50	66	31 0 30	.48 .50	38 37 36	44·4 43·3 42·3
55 56	30	55	2.50	_	15 47	∘.53 •53		32 56	2.50 2.61	67	37 9	•53 •53	29	33	2.61 2.61	67	0 31	0.52 •53	35 34	41.2 40.2
57 58 59	31	42 5 27	2.61 2.73 2.73	67 68	52 26	•55 •57 •58	30	19 41 3	2.73 2.73 2.73	68	41 14 47	•55 •55 •57	30	56 18 39	2.73 2.86 2.86	68 69	3 3 8	•53 •55 •57	33 32 31	39.1 38.0 37.0
60 61	32	49 10	2.86 2.86	69	36	0.58		25 46	2.86 3.00	69	21 56	0.58	31	0 2I	2,.86 3.00	70	42 16	0.57 .58	30 29 28	35·9 34·8
62 63 64		31 51 10	3.00 3.16 3.16	70 71	47 24	.60 .62	32	6 26 45	3.00 3.16 3.33	70 71	31 7 43	.60 .60	32	4I 0 I9	3.16 3.16 3.33	7I 72	51 26 2	.58 .60	27 26	33·7 32·5 31·4
65		29 47	3·33 3·33	72	2 40	0.63	33	3 21	3·33 3·53	72	20 58	o.63		37 55	3·33 3·53	73	38 15	0.62	25 24	30.3
67 68 69		5 22 38	3.53 3.75 3.75	73	19 58 37	.65 .65	34	38 55 11	3.53 3.75 4.00	73 74	36 14 53	.63 .65	33	12 28 44	3.75 3.75 4.00	74 75	52 30 9	.63 .65	23 22 2 I	28.0 26.8 25.7
70 71	35	54	4.00	75	18 59	o.68 .68		26 41	4.00 4.29	75 76	33 13	0.67 .68	34	59 13	4.29	76	48 27	0.65	20 19 18	24.5 23.3
72 73 74		23 36 49	4.62 4.62 5.00	76 77 78	40 21 3	.68 .7° .72	35	55 8 21	4.62 4.62 5.00	77 78	54 35 16	.68 .68		27 40 52	4.62 5.00 5.00	77	47 28	.67 .68	17 16	22.1 20.9 19.7
75 76		12	5•45 5•45	79	46 29	0.72 •72		33 44	5.45 6.00	79	58 40	0.70 •72	35	4	5.45	79	9 51	•.7°	15 14	18.5 17.3 16.1
77 78 79		23 33 42	6.00 6.67 7.50	80	56 40	•73 •73 •75	36	54 4 13	6.00 6.67 7.50	80	23 6 49	•72 •72 •73		25 35 44	6.00 6.67 7.50	80	33 15 58	.7° .72	13 12 11	14.9
80 81		50 57	8.57 8.57	82 83	25 9	•73 •75		2I 28	8.57 8.57	82 83	33 17	•73 •73	26	52 59	8.57	82	41 24	0.72 •72	1 0 9 8	12.5 11.2 10.0
82 83 84	37	4 10 15	12.0	84 85	54 39 25	•75 •77 •75		35 41 46	10.0 12.0 15.0	84	45 30	•73 •75 •75	36	5 11 16	10.0	84	7 51 35	•73 •73 •73	7 6	8. ₇ 7. ₅
85 86 87		20 24	15.0	86	10 56	°-77		50 54	15.0	86 87	0	0.75 •75		20 24	15.0	86 87	19	○.73 ·73	5 4 3	6.3 5.0 3.8
88 89		27 29 30	30.0 60.0		42 28 14	•77 •77	37	57 59 0	30.0 60.0	88 89	45 30 15	•75 •75 •75		27 29 30	30.0 60.0	88 89	47 31 16	•73 •75 •73	2 I	2.5
90		30		90	0			0		90	0			30		90	0		0	0.0
	а		6ο' Δ		b	$\frac{\Delta}{60'}$	(a	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t		(d=5	2°	30′				$d = \xi$	53°	0′			a	l=5	3° 3	0′			

N												1						1	1
b		a = 5	4° ()′			a	u = 54	4° 3	30′				a = 5	5° ()′		$\setminus c$	a
$B \setminus$	h d	$\frac{60'}{\Delta}$	\overline{z}	t	$\frac{\Delta}{60'}$	h	$\stackrel{d}{\searrow}$	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	0 0 35 1 11 46 2 21	1.71 1.67 1.71 1.71	54	0 0 1 2 4	0.00 .02 .02 .03	0 I 2	0 35 10 44 19	1.71 1.71 1.76 1.71	54	30 30 31 32 34	0.00 .02 .02 .03	0 I 2	0 34 9 43 18	1.76 1.71 1.76 1.71	55	0 0 1 2 4	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.2 88.4 87.6 86.7
5 6 7 8 9	56 3 31 4 6 41 5 16	1.71 1.71 1.71 1.71 1.71		6 9 12 16 20	0.05 .05 .07 .07	3 4 5	54 29 3 38 13	1.71 1.76 1.71 1.71 1.76		36 39 42 46 50	0.05 .05 .07 .07	3 4 5	52 26 0 35	1.76 1.76 1.71 1.76 1.76		6 9 12 16 20	0.05 .05 .07 .07	85 84 83 82 81	85.9 85.1 84.3 83.5 82.7
10 11 12 13 14	51 6 26 7 1 36 8 11	1.71 1.71 1.71 1.71 1.76		25 30 36 42 49	0.08 .10 .10 .12	6 7 8	47 22 56 30 4	1.71 1.76 1.76 1.76 1.76	55	55 0 6 12 19	0.08 .10 .10 .12	6 7	43 17 51 25 59	1.76 1.76 1.76 1.76 1.82		25 30 36 42 49	0.08 .10 .10 .12	80 79 78 77 76	81.8 81.0 80.2 79.4 78.5
15 16 17 18	45 9 19 54 10 28 11 2	1.76 1.71 1.76 1.76 1.76	55	56 4 12 21 31	0.13 .13 .15 .17	9	38 12 46 20 54	1.76 1.76 1.76 1.76 1.82	56	26 34 42 51 0	0.13 .13 .15 .15	8 9 10	32 6 39 13 46	1.76 1.82 1.76 1.82 1.82	56	56 3 11 20 29	0,12 .13 .15 .15	75 74 73 72 71	77.7 76.9 76.0 75.2 74.3
20 21 22 23 24	36 12 10 43 13 17 50	1.76 1.82 1.76 1.82 1.82	56	41 51 2 14 26	0.17 .18 .20 .20	11 12 13	27 I 34 7 40	1.76 1.82 1.82 1.82 1.82		10 20 31 43 55	0.17 .18 .20 .20	11 12 13	19 52 25 57 30	1.82 1.82 1.88 1.82 1.88	57	39 49 0 12 24	0.17 .18 .20 .20	70 69 68 67 66	73.5 72.6 71.8 70.9 70.1
25 26 27 28 29	14 23 56 15 29 16 1 33	1.82 1.82 1.88 1.88 1.88	57	38 51 5 19 34	0.22 .23 .23 .25 .25	14 15 16	13 45 17 49 21	1.88 1.88 1.88 1.88	57 58	7 20 34 48 3	0.22 .23 .23 .25	14 15 16	34 6 37 9	1.88 1.88 1.94 1.88 1.94	58	36 49 2 16 31	0.22 .22 .23 .25	65 64 63 62 61	69.2 68.3 67.5 66.6 65.7
30 31 32 33 34	17 5 37 18 9 40 19 11	1.88 1.88 1.94 1.94 1.94	58	49 5 22 39 56	0.27 .28 .28 .28 .30	17 18	53 24 55 26 57	1.94 1.94 1.94 1.94 2.00	59	18 34 50 7 24	0.27 .27 .28 .28 .30	1 <i>7</i> 18	40 11 42 12 42	I.94 I.94 2.00 2.00	59	46 2 18 35 52	0.27 .27 .28 .28	59 58 57 56	64.8 63.9 63.0 62.1 61.2
35 36 37 38 39	42 20 I3 43 21 I3 43	1.94 2.00 2.00 2.00 2.07	59 60	14 33 52 12 33	0.32 .32 .33 .35	19 20 21	27 57 27 57 26	2.00 2.00 2.00 2.07 2.07	60 61	42 I 20 40 O	0.32 .32 .33 .33	19 20 21	12 42 12 41 10	2.00 2.00 2.07 2.07 2.14	60	10 28 47 7 27	0.30 .32 .33 .33	55 54 53 52 51	60.3 59.4 58.5 57.5 56.6
40 41 42 43 44	22 12 41 23 10 38 24 6	2.07 2.07 2.14 2.14 2.14	61 62	54 16 38 1 25	0.37 .37 .38 .40 .40	22	55 24 52 20 48	2.07 2.14 2.14 2.14 2.22	62	21 42 4 27 50	0.35 •37 •38 •38 •40	22	38 6 34 2 29	2. I4 2. I4 2. I4 2. 22 2. 22	62 63	48 9 31 53 16	•35 •37 •37 •38 •40	40	55·7 54·7 53.8 52.8 51.8
45	34			49		24	15		63	14			56			40		45	50.9
	a	<u>6ο′</u> Δ	b		$\frac{\Delta}{60'}$	C	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$		a	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$		a
		d = 5	4° ()′			á	l = 54	4° 3	30′				d = 5	5°	0′			

$\setminus b$		($\alpha = 5$	4° ()′			а	= 54	° 3	0′			(a = 5	5° ()′		\ c	a
B	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	\overline{z}	t	<u>Δ</u> 6ο'	C	β
9 45 46 47 48 49	25	34 1 28 54 20	2.22 2.22 2.31 2.31 2.31	62 63 64	49 13 38 4 31	0.40 .42 .43 .45	24 25 26	15 42 8 34 0	2.22 2.31 2.31 2.31 2.40	63 64	14 38 3 29 55	0.40 •42 •43 •43	23 24 25	56 22 48 14 39	2.31 2.31 2.31 2.40 2.40	63 64 65	40 4 29 54 20	0.40 .42 .42 .43 .43	° 45 44 43 42 41	50.9 49.9 48.9 47.9 46.9
50 51 52 53 54	27	16 11 36 0 24	2.40 2.40 2.50 2.50 2.61	65 66	58 26 54 23 52	•47 •48 •48 •5°	27 28	25 50 14 38 1	2.40 2.50 2.50 2.61 2.61	65 66 67	22 49 17 46 15	0.45 •47 •48 •48 •50	26 27	4 28 52 16 39	2.50 2.50 2.50 2.61 2.61	66 67	46 13 41 9 38	•47 •47 •48 •48	40 39 38 37 36	45.9 44.8 43.8 42.8 41.7
55 56 57 58 59	29	17 10 32 54	2.61 2.73 2.73 2.86 2.86	67 68 69	22 53 25 57 29	•52 •53 •53 •53 •55	29	24 47 9 30 51	2.61 2.73 2.86 2.86 3.00	68 69	45 15 46 18 50	0.50 •52 •53 •53 •53	28 29	2 24 45 6 27	2.73 2.86 2.86 2.86 3.00	68 69 70	7 37 8 39 10	0.50 .52 .52 .52 .53	35 34 33 32 31	40.7 39.6 38.6 37.5 36.4
60 61 62 63 64	31	36 56 16 35	3.00 3.00 3.16 3.33 3.33	70 71 72	2 36 10 45 20	•57 •57 •58 •58 •60	30	11 31 51 10 28	3.00 3.00 3.16 3.33 3.53	70 71 72	22 55 29 3 38	• 55 • 57 • 57 • 58 • 58	30 31	47 7 26 44 2	3.00 3.16 3.33 3.33 3.53	71 72	42 15 48 22 56	0.55 .55 .57 .57 .58	30 29 28 27 26	35·3 34·3 33·1 32·0 30·9
65 66 67 68 69	33	1 1 28 45 1	3.53 3.53 3.75 3.75 4.00	73 74 75	56 32 9 46 24	0.60 .62 .62 .63	32	45 2 19 35 50	3.53 3.53 3.75 4.00 4.29	73 74 75	13 49 25 2 39	0.60 .60 .62 .62	32	19 36 52 8 23	3.53 3.75 3.75 4.00 4.29	73 74 75	31 6 42 18 55	0.58 .60 .60 .62 .62	25 24 23 22 21	29.8 28.7 27.5 26.4 25.2
70 71 72 73 74	34	32 46 59 12	4.29 4.62 4.62 5.00 5.45	76 77 78	3 42 21 1 41	0.65 .65 .67 .67	33	4 18 31 44 56	4.29 4.62 4.62 5.00 5.45	76 77 78	17 55 34 13 53	0.63 .65 .65 .67	33	37 51 4 16 28	4.29 4.62 5.00 5.00 5.45	76 77 78 79	32 9 47 26 5	0.62 .63 .65 .65	20 19 18 17 16	24.1 22.9 21.8 20.6 19.4
75 76 77 78 79	35	35 46 56 6	5.45 6.00 6.00 7.50 7.50	79 80 81 82	21 2 43 25 7	0.68 .68 .70 .70	34	7 18 28 37 45	5.45 6.00 6.67 7.50 7.50	79 80 81 82	33 13 53 34 15	0.67 .67 .68 .68	34	39 49 59 8 16	6.00 6.00 8.57 7.50 7.50	80 81 82	44 23 3 43 23	0.65 .67 .67 .68	15 14 13 12 11	18.2 17.0 15.8 14.6 13.4
80 81 82 83 84		22 29 36 41 46	8.57 8.57 12.0 12.0 15.0	83 84 85	49 31 13 56 39	0.70 .70 .72 .72 .73	35	53 0 6 12 17	8.57 10.0 10.0 12.0 15.0	83 84 85	56 38 20 2 44	0.70 .70 .70 .70		24 31 37 42 47	8.57 10.0 12.0 12.0 15.0	83 84 85	4 45 26 7 49	0.68 .68 .68 .70 .68	10 9 8 7 6	12.2 11.0 9.8 8.6 7.4
85 86 87 88 89		50 54 57 59	15.0 20.0 30.0 60.0	86 87 88 89	23 6 49 33 16	0.72 .72 .73 .72 .73		21 24 27 29 30	20.0 20.0 30.0 60.0	86 87 88 89	26 9 52 34 17	0.72 .72 .70 .72 .72		51 54 57 59 0	20.0 20.0 30.0 60.0	86 87 88 89	30 12 54 36 18	0.70 •70 •70 •70	2	6.1 4.9 3.7 2.5 1.2
90		0		90	0			30		90	0			0		90	0		0	0.0
$ \cdot _{t}$	а		$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	-	а	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$		а	6ο' Δ		<i>b</i>	$\frac{\Delta}{60'}$		a
			d = 5	64°	0′			Ó	l=5	4° 8	30′				$d = \xi$	55°	0′			

N .								_								7	1.
b	а	u=58	5° 30′			<i>a</i> =	56°	0′			а	= 56	3° 3	0′		$\setminus c$	0
$B \setminus$	h d	60' Δ	z	$\frac{\Delta}{60'}$	h	$d \frac{60}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	$\frac{d}{\langle}$	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{\epsilon o'}$	$C \setminus$	β
0 1 2 3 4	0 0 34 1 8 42 2 16	1.76 1.76 1.76 1.76 1.76	55 3 3 3 3 3	0 .02 I .02 2 .03	I 4	0 1.70 34 1.83 7 1.70 41 1.83 14 1.70		0 0 0 0 1 2 4	0.00		33 6 39 12	1.82 1.82 1.82 1.82 1.82	56	30 30 31 32 34	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.2 88.3 87.5 86.7
5 6 7 8 9	50 3 24 57 4 31 5 5	1.76 1.82 1.76 1.76 1.76	3 3 4 4 5	9 .05	3 2	18 1.8: 21 1.8: 54 1.70 28 1.8: 1 1.8:	5	6 9 12 16 20	0.05 .05 .07 .07	3	45 18 51 24 57	1.82 1.82 1.82 1.82 1.82		36 39 42 46 50	0.05 .05 .07 .07	85 84 83 82 81	85.9 85.0 84.2 83.4 82.5
10 11 12 13 14	39 6 12 46 7 19 53	1.82 1.76 1.82 1.76 1.82		0 .08 5 .10 I .12	6 7 1	7 1.8: 40 1.8: 13 1.8: 16 1.8:		24 29 35 41 48	0.08 .10 .10 .12	6 7	30 35 35 40	1.82 1.88 1.82 1.88 1.82	57	54 59 5 11 18	0.08 .10 .10 .12	80 79 78 77 76	81.7 80.8 80.0 79.2 78.3
15 16 17 18 19	8 26 59 9 32 10 5 38	1.82 1.82 1.82 1.82 1.88	2 3 4 5 5	3 .13 I .15 O .15	9 2	19 1.8 52 1.8 25 1.8 57 1.8 29 1.8	57	55 3 11 19 28	0.13 .13 .13 .15	9	13 45 17 49 21	1.88 1.88 1.88 1.88		25 32 40 49 58	0.12 .13 .15 .15	75 74 73 7 ² 7 ¹	77.5 76.6 75.8 74.9 74.1
20 21 22 23 24	11 10 43 12 15 47 13 19	1.82 1.88 1.88 1.88 1.88	57 I 3 4 5	1 .20	12	1 1.83 33 1.83 5 1.83 7 1.83 9 1.93	5 58	38 48 59 10 22	0.17 .18 .18 .20	11	53 25 56 27 58	1.88 1.94 1.94 1.94 1.94	58	7 17 28 39 50	0.17 .18 .18 .18	70 69 68 67 66	73.2 72.3 71.5 70.6 69.7
25 26 27 28 29	51 14 23 54 15 25 56	1.88 1.94 1.94 1.94 1.94	58 I 3 4 5	1 .23 5 .23	14 1 2 15 1	10 1.9. 11 1.9. 12 1.9. 13 1.9. 14 2.0	59 1	34 47 0 14 28	0.22 .22 .23 .23	14	29 0 31 1 31	1.94 1.94 2.00 2.00 2.00	59	2 15 28 42 56	0.22 .22 .23 .23	65 64 63 62 61	68.9 68.0 67.1 66.2 65.3
30 31 32 33 34	16 27 58 17 28 58 18 28	1.94 2.00 2.00 2.00 2.00	59 I 3 4 60 2	0 .27 6 .28 3 .28	17 1	14 2.0 14 2.0 14 2.0 14 2.0 13 2.0	60	43 58 14 30 47	0.25 .27 .27 .28 .30	16 17	31 1 30 59	2.00 2.00 2.07 2.07 2.07	60	11 26 42 58 15	0.25 .27 .27 .28	59 58 57 56	64.4 63.5 62.6 61.7 60.8
35 36 37 38 39	58 19 27 56 20 25 53	2.07 2.07 2.07 2.14 2.14	61 1 3 5	5 ·32 4 ·33 4 ·33	19 1 20	12 2.0 1 1 2.0 40 2.1 8 2.1 36 2.1	62	23 41	0.30 .30 .32 .33	19	28 56 24 52 20	2. I4 2. I4 2. I4 2. I4 2. I4	62	32 50 8 27 47	0.30 .30 .32 .33	55 54 53 52 51	59.9 58.9 58.0 57.1 56.1
40 41 42 43 44	21 21 49 22 16 43 23 10	2.14 2.22 2.22 2.22 2.22	62 I 3 5 63 I 4	5 · 37 7 · 37 9 · 38	22 2	4 2.2 3 I 2.2 5 8 2.2 2.5 2 2.3 2.3	63	23 45	0.35 .37 .37 .38	21	47 14 41 7 33	2.22 2.22 2.31 2.31 2.40	63 64	7 27 48 10 32	0.33 .35 .37 .37 .38		55.2 54.2 53.3 52.3 51.3
45	37		64	5	23 1	7		30			58			55		45	50.3
	а	<u>6ο'</u> Δ	b	$\frac{\Delta}{60'}$	а	<u>60</u> Δ		b	$\frac{\Delta}{60'}$	а	,	60' Δ		b	$\frac{\Delta}{60'}$		a
t	a		5° 30				56°	0′			C	l=5	6° 3	ŋ'			

	_																			
\b		а	= 5	5° 3	0′			Ш.,	a = 5	6° ()′			a	<i>t</i> = 56	3° 3	0′		$\setminus c$	a
B	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	\overline{z}	t	$\frac{\Delta}{60'}$	$c \setminus$	β
45 40 47 48 49	23 24 25	37 38 28 53 18	2.31 2.40 2.40 2.40 2.40	64 65	5 29 53 18 44	0.40 .40 .42 .43	23 24	17 43 33 58	2.31 2.40 2.40 2.40 2.50	64 65 66	30 54 18 43 8	0.40 .40 .42 .42 .43	22 23 24	58 23 48 13 37	2.40 2.40 2.40 2.50 2.50	64 65 66	55 18 42 7 32	0.38 .40 .42 .42 .42	9 45 44 43 42 41	50.3 49.4 48.4 47.4 46.4
50 51 52 53 54	26 27	43 7 31 54 16	2.50 2.50 2.61 2.73 2.73	.66 67 68	37 4 32 0	0.45 •45 •47 •47 •48	25 26	22 46 9 32 54	2.50 2.61 2.61 2.73 2.73	67 68	34 0 27 54 22	•43 •45 •45 •47 •48	25 26	1 24 47 9 31	2.61 2.61 2.73 2.73 2.73	67 68	57 23 50 17 45	0.43 .45 .45 .47 .47	40 39 38 37 36	45·3 44·3 43·3 42·3 41·2
55 56 57 58 59	28 29	38 0 22 43 3	2.73 2.73 2.86 3.00 3.00	69 70	29 59 29 59 30	0.50 .50 .50 .52 .53	27	16 37 58 18 38	2.86 2.86 3.00 3.00 3.00	69 70	51 20 50 20 51	0.48 .50 .50 .52 .52	27 28	53 14 34 54 14	2.86 3.00 3.00 3.00 3.16	69 70 71	13 41 10 40 10	•.47 •.48 •.50 •.50 •.52	35 34 33 32 31	40.2 39.1 38.1 37.0 35.9
60 61 62 63 64	30	23 42 0 18 36	3.16 3.33 3.33 3.33 3.53	71 72 73	2 34 7 40 14	•53 •55 •55 •57 •57	29 30	58 17 35 53 10	3.16 3.33 3.33 3.53 3.53	71 72 73	22 54 26 59 32	•53 •53 •55 •55 •55	29	33 52 10 27 44	3.16 3.33 3.53 3.53 3.53	72 73	41 12 44 16 49	•53 •53 •55 •55	30 29 28 27 26	34.9 33.8 32.7 31.6 30.5
65 66 67 68 69	31	53 10 26 41 55	3.53 3.75 4.00 4.29 4.29	74 75 76	48 23 58 34 10	0.58 .58 .60 .60	31	27 43 59 14 28	3.75 3.75 4.00 4.29 4.29	74 75 76	5 39 14 49 25	0.57 .58 .58 .60	30	1 17 32 47 1	3.75 4.00 4.00 4.29 4.62	74 75 76	22 56 30 4 39	•57 •57 •58 •60	25 24 23 22 21	29. 4 28. 2 27. I 26. 0 24. 8
70 71 72 73 74	32	9 23 36 48 59	4.29 4.62 5.00 5.45 5.45	77 78 79	46 23 0 38 16	.62 .63 .63	32	42 55 8 20 31	4.62 4.62 5.00 5.45 5.45	77 78 79	37 14 51 28	0.60 .62 .62 .62	32	14 27 40 52 3	4.62 4.62 5.00 5.45 6.00	77 78 79	50 26 3 40	0.58 .60 .62 .62 .62	20 19 18 17 16	23.7 22.6 21.4 20.2 19.1
75 76 77 78 79	33	10 20 30 39 47	6.00 6.00 6.67 7.50 8.57	80 81 82	55 34 13 52 32	0.65 .65 .65 .67	33	42 52 1 10 18	6.00 6.67 6.67 7.50 8.57	80 81 82	6 44 22 1 40	0.63 .63 .65 .65		13 23 32 40 48	6.00 6.67 7.50 7.50 8.57	80 81 82	17 54 32 10 48	0.62 .63 .63 .63	15 14 13 12 11	17.9 16.7 15.6 14.4 13.2
80 81 82 83 84	34	54 7 12 17	8.57 10.0 12.0 12.0 15.0	83 84 85	52 32	0.67 .67 .68 .67		25 32 38 43 47	8.57 10.0 12.0 15.0 15.0	83 84 85	59 38 18 58	0.67 .65 .67 .67	33	55 8 13 17	8.57 10.0 12.0 15.0 15.0	83 84 85 86	26 5 44 23 3	0.65 .65 .67	9 8 7 6	12.0 10.8 9.6 8.4 7.2
85 86 87 88 89		21 24 27 29 30	20.0 20.0 30.0 60.0	89	56 38 19	.68				89	18 59 39	.68		21 24 27 29 30	-	11 -	42 21 1 41 20	1	I	6.0 4.8 3.6 2.4 1.2
90	_	30	1	90	0		_	0		90	0	1 .	_	30	1	90	0		0	0.0
t		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
			d = 5	5° 3	30′				d = 3	56°	0′				d = 5	6° 3	30′			

129

1	1/1	a = 5	7° 0′			C	a=5	7° 3	80′				a = 5	68°	0′		c	\ a
B	h	<u>6ο'</u> Δ	Z^{t}	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	C	β
0 I 2 3 4	0 0 33 1 5 38 2 11	1.82 1.88 1.82 1.82 1.88	57 O	.02	O I 2	32 4 37 9	1.88 1.88 1.82 1.88 1.88	57	30 30 31 32 34	0.00 .02 .02 .03	0 I 2	32 4 35 7	1.88 1.88 1.94 1.88	58	0 0 1 2 4	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.2 88.3 87.5 86.6
• 5 6 7 8 9	43 3 16 48 4 21 53	1.82 1.38 1.82 1.88 1.82	6 9 12 15	.05	3 4	41 13 45 17 49	1.88 1.88 1.88 1.88		36 39 42 45 49	0.05 .05 .05 .07	3 4	39 11 42 14 45	1.88 1.94 1.88 1.94 1.88		6 8 11 15	0.03 .05 .07 .07	85 84 83 82 81	85.8 84.9 84.1 83.2 82.4
10 11 12 13 14	5 26 58 6 30 7 2 34	1.88 1.88 1.88 1.88	24 29 35 41 47	0.08 .10 .10	5 6 7	21 53 25 57 28	1.88 1.88 1.88 1.94 1.88	58	54 59 4 10	0.08 .08 .10 .12	5 6 7	17 48 20 51 22	1.94 1.88 1.94 1.94 1.94		24 29 34 40 46	0.08 .08 .10 .10	80 79 78 77 76	81.5 80.7 79.8 79.0 78.1
15 16 17 18	8 6 38 9 10 42 10 13	1.88 1.88 1.88 1.94 1.94	58 2 10 18 27	0.13 .13 .13 .15	8 9 10	0 31 2 33 4	1.94 1.94 1.94 1.94 1.94		24 31 39 47 56	0.12 .13 .13 .15	8	53 24 55 26 56	1.94 1.94 1.94 2.00	59	53 0 8 17 26	0.12 .13 .15 .15	75 74 73 72 71	77·3 76·4 75·5 74·7 73·8
20 21 22 23 24	44 11 15 46 12 17 48	1.94 1.94 1.94 1.94 1.94	36 46 57 59 8 19	0.17 .18 .18 .18	11 12	35 6 37 7 37	1.94 1.94 2.00 2.00 2.00	59	6 16 26 37 48	0.17 .17 .18 .18	10 11 12	27 57 27 57 27	2,00 2,00 2,00 2,00 2,00	60	35 45 55 6	0.17 .17 .18 .18	70 69 68 67 66	72.9 72.1 71.2 70.3 69.4
25 26 27 28 29	13 19 49 14 19 49 15 19	2.00 2.00 2.00 2.00 2.07	31 44 57 60 10 24	0.22 .22 .22 .23	13 14 15	7 37 7 37 6	2.00 2.00 2.00 2.07 2.07	60	0 12 25 38 52	0,20 .22 .22 .23 .25	13	57 26 55 24 53	2.07 2.07 2.07 2.07 2.07	61	29 41 54 7 21	0.20 .22 .22 .23 .23	65 64 63 62 61	68.5 67.6 66.7 65.8 64.9
30 31 32 33 34	48 16 17 46 17 15 44	2.07 2.07 2.07 2.07 2.14	39 54 61 10 26 42	0.25 .27 .27 .27 .28	16 17	35 4 33 1 29	2.07 2.07 2.14 2.14 2.14	61	7 22 37 53 10	0.25 .25 .27 .28	15 16 17	22 50 18 46 14	2.14 2.14 2.14 2.14 2.14	62	35 50 5 21 37	0.25 .25 .27 .27 .28	59 58 57 56	64.0 63.1 62.2 61.3 60.4
35 36 37 38 39	18 12 40 19 8 36 20 3	2.14 2.14 2.14 2.22 2.22	62 17 35 54 63 13	0.30 .30 .32 .32 .33	18 19	57 25 52 19 46	2.14 2.22 2.22 2.22 2.31	63	27 44 2 21 40	0.28 .30 .32 .32 .32	18	42 9 36 3 29	2.22 2.22 2.22 2.31 2.31	63 64	54 11 29 47 6	0.28 .30 .30 .32 .32	55 54 53 52 51	59·4 58·5 57·6 56·6 55·7
40 41 42 43 44	30 56 21 22 48 22 14	30 2.31 33 33 0.3 56 2.31 53 53 34 14 2.31 48 2.31 2.40 58 3				12 38 4 30 55	2.31 2.31 2.31 2.40 2.40	64 65	59 19 40 1 23	0.33 .35 .35 .37 .37	20 21	55 21 46 11 36	2.31 2.40 2.40 2.40 2.50	65	25 45 5 26 48	0.33 .33 .35 .37 .37	50 49 48 47 46	54.7 53.8 52.8 51.8 50.8
45	39		65 20		22	20			45		22	0		66	10		45	49.9
	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$		ь	$\frac{\Delta}{60'}$		a
t		d = 5	7° 0′			C	l=5	7° 3	0′				d = 5	8° (0′			

7	1				ī						1			==	===		1\	l
$\setminus b$	(a = 5	8° 30′				a = 5	9° (0′				a = 5	9° 3	30′		$\setminus c$	a
$B \setminus$	h	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	$\frac{d}{}$	<u>6ο'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	0 0 31 1 3 34 2 5	1.94 1.88 1.94 1.94 1.88	58 30 30 31 32 34	.02	0 0 1 2	0 31 2 33 4	1.94 1.94 1.94 1.94 2.00	59	0 0 1 2 4	0.00 .02 .02 .03	0 0 I 2	0 30 1 31 2	2.00 I.94 2.00 I.94 2.00	59	30 30 31 32 34	0.00 .02 .02 .03	90 89 88 87 86	90.0 89.1 88.3 87.4 86.6
5 6 78 9	37 3 8 39 4 10 41	1.94 1.94 1.94 1.94 1.94	36 38 41 45 49	.05	3 4	34 5 36 7 37	1.94 1.94 1.94 2.00		6 8 11 15 19	0.03 .05 .07 .07	3 4	32 2 33 3 3	2.00 1.94 2.00 2.00 2.00		36 38 41 45 49	0.03 .05 .07 .07	85 84 83 82 81	85.7 84.9 84.0 83.1 82.3
10 11 12 13 14	5 12 43 6 14 45 7 16	1.94 1.94 1.94 1.94	53 58 59 4 10 16	01.	5 6 7	8 38 9 39 9	2.00 1.94 2.00 2.00 2.00		23 28 33 39 45	0.08 .08 .10 .10	5 6 7	3 33 33 33 3	2.00 2.00 2.00 2.00 2.00	60	53 58 3 9	0.08 .08 .10 .10	80 79 78 77 76	81.4 80.5 79.7 78.8 77.9
15 16 17 18 19	8 17 47 9 17 47	2.00 2.00 2.00 2.00 2.00	23 30 38 46 55	.13	8 9	39 39 39 39	2.00 2.00 2.00 2.00 2.00	60	52 59 7 15 24	0.12 .13 .13 .15	8	33 32 1 31	2.00 2.07 2.07 2.00 2.07		22 29 37 45 53	0.12 .13 .13 .13	75 74 73 72 71	77.1 76.2 75.3 74.4 73.6
20 21 22 23 24	10 17 •47 11 17 47 12 16	2.00 2.00 2.00 2.07 2.07	60 4 14 24 34 45	.17	10 11 12	38 7 36 5	2.07 2.07 2.07 2.07 2.07	61	33 43 53 3 14	0.17 .17 .17 .18	10	0 29 58 26 55	2.07 2.07 2.14 2.07 2.14	61	2 12 22 32 43	0.17 .17 .17 .18	70 69 68 67 66	72.7 71.8 70.9 70.0 69.1
25 26 27 28 29	45 13 14 43 14 12 41	2.07 2.07 2.07 2.07 2.07 2.14	61 9 22 35 49	.22	13	34 31 59 27	2.07 2.14 2.14 2.14 2.14	62	26 38 50 3 17	0.20 .20 .22 .23	12 13 14	23 51 19 47 15	2.14 2.14 2.14 2.14 2.14 2.22	62	54 6 18 31 44	0.20 .20 .22 .22 .23	65 64 63 62 61	68.2 67.3 66.4 65.5 64.6
30 31 32 33 34	15 9 37 16 5 32 59	2.14 2.14 2.22 2.22 2.22	62 3 17 32 48 63 4	.25	15 16	55 23 50 17 44	2.14 2.22 2.22 2.22 2.22	63	31 45 0 15 31	0.23 .25 .25 .27 .28	15 16	42 9 36 3 29	2,22 2,22 2,22 2,31 2,31	63	58 13 28 43 58	0.25 .25 .25 .25 .27	59 58 57 56	63.7 62.8 61.8 60.9 60.0
35 36 37 38 39	17 26 53 18 20 46 19 12	2.22 2.22 2.31 2.31 2.31	21 38 55 64 13	.28	17	37 3 29 55	2.31 2.31 2.31 2.31 2.40	64	48 5 22 40 58	0.28 .28 .30 .30	1 <i>7</i> 18	55 21 47 12 37	2.31 2.31 2.40 2.40 2.40	64 65	31 48 6 24	0.28 .28 .30 .30 .32	55 54 53 52 51	59.0 58.1 57.1 56.2 55.2
40 41 42 43 44	38 20 3 28 53 21 17	2.40 2.40 2.40 2.50 2.50	65 11 31 66 13	•33 •35 •35	20	20 45 10 34 58	2.40 2.40 2.50 2.50 2.50	65 66	17 36 56 17 38	0.32 ·33 ·35 ·35 ·35		2 27 51 15 39	2.40 2.50 2.50 2.50 2.61	66 67	43 2 22 42 2	•33 •33 •33 •35	50 49 48 47 46	54·3 53·3 52·3 51·4 50·4
45	41		34		21	22			59		21	2			23		45	49-4
	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a	ι	6ο' Δ		b	$\frac{\Delta}{60'}$	(ı	6ο' Δ		Ь	$\frac{\Delta}{60'}$		a
t			8° 30′				d = 5	9° ()′			(d = 5	9° 8	30′			

\ b		C	<i>u</i> = 58	8° 3	0′				a = 5	9° (0′			a	ı = 5	9° 3	0′		\ c	\ a
$B \setminus$	h	d	<u>6ο'</u> Δ	z	*	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	6ο' Δ	z	*	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	21 22 23	41 5 28 51 14	2.50 2.61 2.61 2.61 2.73	66 67 68	34 56 19 42 6	0.37 .38 .38 .40	2I 22	22 45 8 30 52	2.61 2.61 2.73 2.73 2.73	66 67 68	59 21 43 6 29	0.37 .37 .38 .38 .40	2°1 22	2 25 47 9 31	2.61 2.73 2.73 2.73 2.73	67 68	23 45 7 29 52	0.37 .37 .37 .38	° 45 44 43 42 41	49.4 48.4 47.4 46.4 45.4
50 51 52 53 54	24 25	36 58 19 40 0	2.73 2.86 2.86 3.00 3.00	69 70	30 55 20 45 11	0.42 .42 .42 .43 .45	23 24	14 36 57 17 37	2.73 2.86 3.00 3.00 3.00	69 70	53 17 42 7 33	0.40 .42 .42 .43 .43	23 24	53 14 35 55 15	2.86 2.86 3.00 3.00 3.16	69 70	16 40 4 29 54	0.40 .40 .42 .42 .43	40 39 38 37 36	44·4 43·4 42·3 41·3 40·3
55 56 57 58 59	26	20 40 59 18 36	3.00 3.16 3.16 3.33 3.33	71 72	38 5 33 1 29	0.45 •47 •47 •47 •48	25 26	57 17 36 54 12	3.00 3.16 3.33 3.33 3.53	71 72	59 26 53 20 48	•45 •45 •45 •47 •48	25	34 53 12 30 47	3.16 3.16 3.33 3.53 3.53	71 72 73	20 46 13 40 7	0.43 •45 •45 •45 •47	35 34 33 32 31	39.2 38.2 37.1 36.1 35.0
60 61 62 63 64	27 28	54 12 29 45 1	3.33 3.53 3.75 3.75 4.00	73 74	58 27 57 27 58	0.48 .50 .50 .52	27	29 46 3 19 35	3.53 3.53 3.75 3.75 4.00	73 74 75	17 46 15 45 15	0.48 .48 .50 .50	26 27	4 21 37 53 8	3.53 3.75 3.75 4.00 4.00	74 75	35 4 33 2 31	0.48 .48 .48 .48	30 29 28 27 26	34.0 32.9 31.8 30.7 29.6
65 66 67 68 69	29	16 31 45 59 12	4.00 4.29 4.29 4.62 5.00	75 76 77	29 0 32 4 37	0.52 •53 •53 •55 •55	28	50 4 18 31 44	4.29 4.29 4.62 4.62 4.62	76 77	45 16 47 19 51	•52 •53 •53 •53	28	23 37 51 4 17	4.29 4.29 4.62 4.62 5.00	76 77 78	31 2 33 5	0.50 •52 •52 •53 •53	25 24 23 22 21	28.5 27.4 26.3 25.2 24.1
70 71 72 73 74	30	24 36 48 59	5.00 5.00 5.45 6.00 6.00	78 79 80	10 43 17 51 25	0.55 .57 .57 .57 .57	29	57 9 20 30 40	5.00 5.45 6.00 6.00 6.00	78 79 80	23 56 29 2 36	• 55 • 55 • 55 • 57 • 57	29	29 41 52 2 12	5.00 5.45 6.00 6.00 6.67	79 80	37 9 41 14 47	•53 •53 •55 •55 •55	20 19 18 17 16	23.0 21.9 20.8 19.6 18.5
75 76 77 78 79		19 28 36 44 51	6.67 7.50 7.50 8.57 8.57	81 82 83	59 34 9 44 20	0.58 .58 .58 .60	30	50 59 7 15 22	6.67 7.50 7.50 8.57 8.57	81 82 83	10 44 18 53 28	•57 •57 •58 •58 •58		30 38 46 53	6.67 7.50 7.50 8.57 10.0	81 82 83	20 53 27 1 35	• 57 • 57 • 57 • 57 • 57 • 58	15 14 13 12 11	17.4 16.2 15.1 13.9 12.8
80 81 82 83 84	31	58 4 9 14 18	10.0 12.0 12.0 15.0 15.0	84 85 86	56 32 8 44 20	0.60 .60 .60 .60		29 35 40 45 49	10.0 12.0 12.0 15.0 20.0	84 85 86	38 13 49 24	0.58 .58 .60 .58 .60	30	59 5 10 15 19	10.0 12.0 12.0 15.0 20.0	84 85 86	10 44 19 54 29	0.57 .58 .58 .58	10 9 8 7 6	11.6 10.5 9.3 8.2 7.0
85 86 87 88 89		22 25 27 29 30	20.0 30.0 30.0 60.0	87 88 89	56 33 10 46 23	0.62 .62 .60 .62		52 55 57 59 0	20.0 30.0 30.0 60.0	87 88 89	0 36 12 48 24	0.60 .60 .60 .60		22 25 27 29 30	20.0 30.0 30.0 60.0	87 88 89	4 39 14 49 25	0.58 .58 .58 .60 .58	5 4 3 2 1	5.8 4.7 3.5 2.3 1.2
90		30		90	0			0		90	0			30		90	0		0	0.0
,		a	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $					ı	$\frac{60'}{\Delta}$	1	ь	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a.
t		C	l=5	8° 3	0′			(d = 5	9° (0′			d	= 59	9° 3	0′			

	b			a = 0	60°	0′	***		(a = 6	0° 8	30′	(، شد	1	,	a = 0	31°	0′		\\ c	a
1	8	h	d	60' <u>A</u>	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	Δ 60'	h	d	. <u>60'</u> Δ	Z	t	Δ 60'	$C \setminus$	B
	o 1 2 3 4	0 0 1 2	30 0 30 0			0 0 1 2 4	0.00	00	30 59 29 58	2.00 2.07 2.00 2.07 2.00	60°	30 30 31 32 34	0.00 .02 .02 .03	I	0 29 58	2.07 2.07 2.07 2.07 2.07	61	0 0 1 2 4	0.00	90 89 88 87 86	90.0 89.1 88.3 87.4 86.5
	5 6 78 9	3 4	30 30 59 29	2.00 2.00 2.07 2.00 2.00		6 8 11 14 18	0.03 .05 .05 .07	3 4	28 57 26 56 25	2.07 2.07 2.00 2.07 2.07		36 38 41 44 48	0.03 .05 .05 .07		54 23 52	2.07 2.07 2.07 2.07 2.07		6 8 11 14 18	0.03	85 84 83 82 81	85.6 84.8 83.9 83.0 82.2
	10 11 12 13 14	5 6	59 29 58 28 57	2.00 2.07 2.00 2.07 2.07		23 28 33 38 44	0.08 .08 .08 .10	5 6	54 23 52 21 50	2.07 2.07 2.07 2.07 2.07	61	52 57 2 8 14	0.08 .08 .10 .10	5	50 19 47 16 44	2.07 2.14 2.07 2.14 2.07		22 27 32 38 44	0.08	80 79 78 77 76	81.3 80.4 79.5 78.6 77.8
	15 16 17 18 19	7 8 9	26 55 24 53 22	2.07 2.07 2.07 2.07 2.07	61	51 58 6 14 22	0.12 .13 .13 .13	7 8 9	19 48 17 45 14	2.07 2.07 2.14 2.07 2.14		21 28 35 43 51	0.12 .12 .13 .13	7 8 9	13 41 9 37 5	2.14 2.14 2.14 2.14 2.14	62	50 57 4 12 20	0.12 .12 .13 .13	75 74 73 72 71	76.9 76.0 75.1 74.2 73.3
2 2 2	20 21 22 23 24	10	51 19 48 16 44	2.14 2.07 2.14 2.14 2.14	62	31 40 50 1	0.15 .17 .18 .18	10	42 10 38 6 33	2. I4 2. I4 2. I4 2. 22 2. I4	62	0 9 19 29 40	0.15 .17 .17 .18	10	33 0 28 55 22	2.22 2.14 2.22 2.22 2.22	63	29 38 48 58	0.15 .17 .17 .18	70 69 68 67 66	72.4 71.5 70.6 69.7 68.8
2 2 2	25 26 27 28 29	12 13 14	12 40 7 34 1	2.14 2.22 2.22 2.22 2.22	63	23 35 47 59 12	0,20 .20 .20 .22 .23	13	28 55 22 49	2.22 2.22 2.22 2.22 2.31	63	51 3 15 27 40	0.20 .20 .20 .22 .23	12	49 16 43 9 36	2.22 2.22 2.31 2.31 2.31	64	20 31 43 55 8	0.18 .20 .20 .22 .22	65 64 63 62 61	67.9 67.0 66.1 65.2 64.2
3333	30 31 32 33 34	15 16	28 55 22 48 14	2.22 2.22 2.3I 2.3I 2.3I	64	26 40 55 10 25	0.23 .25 .25 .25 .25	14	15 41 7 33 59	2.31 2.31 2.31 2.31 2.40	64	54 22 37 52	0.23 .23 .25 .25 .27	14	28 53 19 44	2.31 2.40 2.31 2.40 2.40	65	21 35 49 4 19	0.23 .23 .25 .25	60 59 58 57 56	63.3 62.4 61.5 60.5 59.6
3000	35 36 37 38 39	17	40 6 31 56 21	2.31 2.40 2.40 2.40 2.50	65	41 58 15 32 50	0.28 .28 .28 .30	16 17 18	24 49 14 39 3	2.40 2.40 2.40 2.50 2.50	65 66	8 24 41 58 16	0.27 .28 .28 .30	16	9 34 58 22 46	2.40 2.50 2.50 2.50 2.50	66	35 51 7 24 42	0.27 .27 .28 .30 .30	55 54 53 52 51	58.6 57.7 56.7 55.8 54.8
4 4 4		19	45 9 33 56 19	2.50 2.50 2.61 2.61 2.61	66	8 27 47 7 27	•33 •33 •33 •35	-	27 51 14 37 0	2.50 2.61 2.61 2.61 2.61	67	34 53 12 31 51	0.32 .32 .32 .33	18	10 33 56 19 41	2.61 2.61 2.61 2.73 2.73	67 68		0.30 .32 .32 .33	50 49 48 47 46	53.9 52.9 51.9 50.9 50.0
4	5		42	60'	7	48	Δ		23	60'	68		Δ	20	3	60'		36	Δ	45	49.0
1	t			d = 6			60'	а		=60		0 ′	60′	a		d = 6)'	60'	O	a

											_						7
b		a = 6	80° 0′			C	a = 60	0° 3	0′				a = 6	1° 0′		c	a
$B \setminus$	h	$\frac{1}{\Delta}$	Z	$t \frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{6\phi'}$	h	d	<u>60'</u> Δ	Z	$\frac{\Delta}{60'}$	$C \setminus$	β
9 45 46 47 48 49	20 4 21 2 4 22 10	2.73 2.73 2.86	68	8 0.35 9 .37 1 .37 3 .37 5 .38	20 21	23 45 7 28 49	2.73 2.73 2.86 2.86 2.86	68 ⁶	33 54 16 38	0.35 .35 .37 .37 .38	20 21	3 25 46 7 28	2.73 2.86 2.86 2.86 3.00	69 I	6 35	45 44 43 42 41	49.0 48.0 47.0 46.0 45.0
50 51 52 53 54	23 I: 33 55	2 3.00 2 3.00 2 3.00	70 2	8 0.40 2 .40 6 .40 0 .42 5 .43	22	10 30 50 10 29	3.00 3.00 3.16 3.33	70 <u>.</u>	1 24 48 12 36	0.38 .40 .40 .40	22	48 8 28 47 6	3.00 3.00 3.16 3.16 3.33	71 3 5	6 .38 9 .40 3 .40	39 38 37 36	44.0 42.9 41.9 40.9 39.9
55 56 57 58 59	24 I 25 25 2	3·33 7 3·33 5 3·33	3	7 ·43 3 ·43 9 ·45	24	47 5 23 41 58	3·33 3·33 3·33 3·53 3·53	72	1 27 53 19 45	0.43 •43 •43 •43	24	24 42 0 17 33	3·33 3·33 3·53 3·75 3·75	72 2 4 73 I 3 74	7 .42	35 34 33 32 31	38.8 37.8 36.7 35.7 34.6
60 61 62 63 64	26 1: 26 1: 27	3.75 2 4.00 7 4.00	74 2	0 .48 9 .48	25 26	31 46 1 16	3.75 4.00 4.00 4.00 4.29	74 75 76	40 8 36 4	•47 •47 •47 •47 •48	25	49 5 21 36 50	3.75 3.75 4.00 4.29 4.29	75 2 76 2	7 .47 5 .47 3 .47 1 .47	30 29 28 27 26	33.6 32.5 31.4 30.3 29.3
65 66 67 68 69	27 1 22 32 50	4.62 4.62 4.62	76 I 4 77 I 4 78 I	7 ·5° 7 ·5² 8 ·5²	27	30 44 57 10 22	4.29 4.62 4.62 5.00 5.00	77 78	33 2 32 2 32	0.48 .50 .50 .50	26	4 17 30 43 55	4.62 4.62 4.62 5.00 5.45	77 I 4 78 I 4	8 .48 7 .48 6 .50	25 24 23 22 21	28.2 27.1 26.0 24.9 23.8
70 71 72 73 74	28 1 1 22 34	5.45 4 6.00 4 6.00	79 2 80 2	3 .53	28	34 45 56 6 15	5.45 5.45 6.00 6.67 6.67	79. 80. 81	3 34 5 36 8	0.52 .52 .52 .53	27	6 17 27 37 46	5.45 6.00 6.00 6.67 6.67	79 I 80 I 81 I	6 .52 7 .52 8 .52	20 19 18 17 16	22.7 21.6 20.5 19.4 18.2
75 76 77 78 79	_	7.50 7.50 8.57	82 83	3 ·55 6 ·55 9 ·57 13 ·55		24 32 40 47 54	7.50 7.50 8.57 8.57 10.0	82	40 12 45 17 50	• 53 • 55 • 53 • 55 • 55	28	55 3 11 18 25	7.50 7.50 8.57 8.57 10.0	82 2 5 83 2 5	2 ··53 4 ·53 6 ·53	15 14 13 12 11	17.1 16.0 14.0 13.', 12.6
80 81 82 83 84	30 4 4 4	12.0 1 15.0 5 15.0	85 2	6 0.57 0 .57 4 .57 8 .58 3 .57	29	0 6 11 15 19	10.0 12.0 15.0 15.0 20.0	84 85 86	23 56 30 3 37	0.55 .57 .55 .57 .57		31 37 42 46 50	10.0 12.0 15.0 15.0 20.0	84 3 85 3 86 4	3 ·53 5 ·55 8 ·55	10 9 8 7 6	11.5 10.3 9.2 8.0 6.9
85 86 87 88 89	5 5 5 5 30	30.0	88 I 89 2	7 0.58 .57 .6 .58 .1 .57 .58		22 25 27 29 30 30	20.0 30.0 30.0 60.0	87 88 89 90	11 44 18 52 26	0.55 .57 .57 .57 .57	29	53 55 57 59 0	30.0 30.0 30.0 60.0	87 I 4 88 2 5 89 2	7 -55 0 -55 3 -57 7 -55	5 4 3 2 1	5.7 4.6 3.4 2.3 1.1
=	a	$\frac{60'}{\Delta}$	$\frac{\parallel}{\parallel}$ b	$\frac{\Delta}{60'}$		a	60' \(\Delta \)	11	b	<u>Δ</u> 6ο'	-		<u>6ο'</u> Δ	b	Δ 6ο'		
t		-	∥ 60° 0′			d	l=60)° 3	0′	00	_			1° 0′	00'	:	

$\setminus b$	a	u = 6	l° 30′			a = 6	2° 0′		a	<i>i</i> = 62	2° 30′		c	a
$B \setminus$	h	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h d	$\left \frac{6o'}{\Delta} \right $	Z	$\frac{\Delta}{60'}$	h d	6ο' Δ	Z t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	0 0 29 57 1 26 54	2.07 2.14 2.07 2.14 2.07	61 30 30 31 32 33	0.00 .02 .02 .02	0 0 28 56 1 25 53	2.14 2.14 2.07 2.14 2.14	62 0 0 1 2 3	.02	0 0 28 55 1 23 51	2.14 2.22 2.14 2.14 2.22	62 30 30 31 32 33	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.1 88.2 87.4 86.5
5 6 7 8 9	2 23 52 3 20 49 4 17	2.07 2.14 2.07 2.14 2.14	35 38 41 44 48	0.05 .05 .05 .07	2 21 49 3 17 45 4 13	2.14 2.14 2.14 2.14 2.14	5 8 11 14 18	0.05 .05 .05 .07	2 18 46 3 14 41 4 9	2.14 2.14 2.22 2.14 2.22	35 38 41 44 47	0.05 .05 .05 .05	85 84 83 82 81	85.6 84.7 83.8 82.9 82.0
10 11 12 13 14	45 5 13 41 6 9 37	2. I4 2. I4 2. I4 2. I4 2. I4	52 57 62 2 7 13	0.08 .08 .08	5 8 5 36 6 4 31	2.22 2.14 2.14 2.22 2.14	22 26 31 37 43	.10	36 5 3 31 58 6 25	2.22 2.14 2.22 2.22 2.22	51 56 63 1 6	0.08	80 79 78 77 76	81.2 80.3 79.4 78.5 77.6
15 16 17 18 19	7 5 33 8 1 29 56	2.14 2.14 2.14 2.22 2.14	19 26 33 41 49	0.12 .12 .13 .13	59 7 26 53 8 20 47	2.22 2.22 2.22 2.22 2.22	63 3 11	.12	52 7 19 46 8 12 39	2.22 2.22 2.31 2.22 2.31	18 25 32 40 48	0.12 .12 .13 .13	75 74 73 72 71	76.7 75.8 74.9 74.0 73.1
20 21 22 23 24	9 24 51 10 18 45 11 12	2.22 2.22 2.22 2.22 2.31	63 7 17 27 37	0.15 .17 .17 .17	9 14 41 10 8 34 11 0	2.22 2.22 2.31 2.31 2.31	27 36 45 55 64	.17	9 5 31 57 10 23 49	2.31 2.31 2.31 2.31 2.31	56 64 5 14 24 34	0.15 .15 .17 .17	70 69 68 67 66	72.2 71.3 70.4 69.5 68.5
25 26 27 28 29	38 12 4 30 56 13 22	2.31 2.31 2.31 2.31 2.31	48 59 64 11 23 36	0.18 .20 .20 .22 .22	26 52 12 18 44 13 9	2.31 2.31 2.31 2.40 2.40	16 27 39 51 65 4	.20	11 15 41 12 6 31 56	2.31 2.40 2.40 2.40 2.40	45 56 65 7 19 31	0.18 .18 .20 .20	65 64 63 62 61	67.6 66.7 65.8 64.9 63.9
30 31 32 33 34	48 14 14 39 15 4 29	2.31 2.40 2.40 2.40 2.50	65 3 17 31 46	0.23 .23 .23 .25	34 59 14 24 49 15 13	2.40 2.40 2.40 2.50 2.50	17 30 44 58 66 13	.23	13 21 46 14 10 34 58	2.40 2.50 2.50 2.50 2.50	44 57 66 11 25 39	0,22 .23 .23 .23 .25	60 59 58 57 56	63.0 62.1 61.1 60.2 59.2
35 36 37 38 39	53 16 17 41 17 5 29	2.50 2.50 2.50 2.50 2.61	66 I 17 33 50 67 7	0.27 .27 .28 .28	37 16 I 25 48 17 II	2.50 2.50 2.61 2.61 2.61	67 6 16 33	.27	15 22 45 16 8 31 54	2.61 2.61 2.61 2.61 2.73	67 10 26 42 59	0.27 .27 .27 .28 .28	55 54 53 52 51	58.3 57.3 56.4 55.4 54.4
40 41 42 43 44	52 18 15 37 59 19 21	2.61 2.73 2.73 2.73 2.73	25 43 68 2 21 40	0.30 .32 .32 .32 .33		2.73 2.73 2.73 2.73 2.73 2.86	68 8 26 45 69 4	.30		2.73 2.73 2.86 2.86 2.86	68 16 33 51 69 9 28	0.28 .30 .30 .32	50 49 48 47 46	53.5 52.5 51.5 50.5 49.5
45	43		69 0		23		24		19 3		47		45	48.6
	а	6ο' Δ	b	$\frac{\Delta}{60'}$	а	60' Δ	b	$\frac{\Delta}{60'}$	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$		a
t	0	l=6	1° 30′			$d = \epsilon$	32° 0′		(d=6	2° 30′			

b		a	=61	° 3	0′	`		C	a = 6	2° C)′			а	=62	2° 3	0′		$\setminus c$	a
$ B\rangle$	h	d	<u>6ο'</u> Δ	\overline{z}	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	\overline{z}	t	<u>Δ</u> 6ο'	h	d	<u>6ο′</u> Δ	\overline{z}	t	$\frac{\Delta}{60'}$	$C \setminus$	β
9 45 46 47 48 49	0 19 20 21	43 4 25 46 6	2.86 2.86 2.86 3.00 3.00	69°	0 20 41 2 24	0.33 .35 .35 .37 .37	20	23 44 5 25 45	2.86 2.86 3.00 3.00 3.00	69 70	24 44 4 25 46	0.33 .33 .35 .35	20	3 24 44 4 24	2.86 3.00 3.00 3.00 3.16	69 70 71	47 7 27 48 9	0.33 .33 .35 .35	° 45 44 43 42 41	48.6 47.6 46.6 45.6 44.6
50 51 52 53 54	22	26 46 5 24 43	3.00 3.16 3.16 3.16 3.33	71 72	46 8 31 54 18	•.37 •38 •38 •40 •40	2I 22	5 24 43 1 19	3.16 3.16 3.33 3.33 3.33	7 I 72	8 30 52 15 39	0.37 .37 .38 .40 .38	21	43 20 38 56	3.16 3.33 3.33 3.33 3.53	72	30 52 14 36 5 9	0.37 .37 .37 .38 .38	40 39 38 37 36	43.5 42.5 41.5 40.5 39.5
55 56 57 58 59	23 24	18 35 52 8	3.53 3.53 3.53 3.75 3.75	73 74	42 7 32 57 23	0.42 .42 .42 .43 .43	23	37 54 11 28 44	3.53 3.53 3.53 3.75 4.00	73 74	2 26 51 16 41	0.40 •42 •42 •42 •43	22	13 30 47 3 19	3.53 3.53 3.75 3.75 4.00	73 74 75	22 46 10 35 0	0.40 .40 .42 .42 .42	35 34 33 32 31	38.4 37.4 36.3 35.3 34.2
60 61 62 63 64	25	24 40 55 10 24	3.75 4.00 4.00 4.29 4.29	75 76	49 15 42 9 37	0.43 .45 .45 .47	24	59 14 29 44 58	4.00 4.00 4.00 4.29 4.62	75 76	7 33 59 26 53	•43 •45 •45 •45	24	34 49 4 18 31	4.00 4.00 4.29 4.62 4.62	76 77	25 50 16 42 9	0.42 •43 •43 •45 •45	30 29 28 27 26	33.2 32.1 31.0 30.0 28.9
65 66 67 68 69	26	38 51 3 15 27	4.62 5.00 5.00 5.00 5.45	77 78	5 33 1 30 59	0.47 •47 •48 •48 •50	25 26	11 24 36 48 0	4.62 5.00 5.00 5.00 5.45	77 78 79	20 48 16 44 13	0.47 .47 .47 .48 .48	25	44 57 9 21 32	4.62 5.00 5.00 5.45 5.45	78 79	36 30 58 26	0.45 .45 .47 .47	25 24 23 22 21	27.8 26.8 25.7 24.6 23.5
70 71 72 73 74	27	38 49 59 18	5.45 6.00 6.00 6.67 6.67	79 80 81	29 59 29 59 29	0.50 .50 .50 .50		11 21 31 41 50	6.00 6.00 6.00 6.67 7.50	80 81	42 11 40 10 40	0.48 .48 .50 .50	26	43 53 3 12 21	6.00 6.00 6.67 6.67 7.50	80 81	54 23 52 21 50	0.48 .48 .48 .48	20 19 18 17 16	22.4 21.3 20.2 19.1 18.0
75 76 77 78 79		27 35 42 49 56	7.5° 8.57 8.57 8.57 10.0	82 83 84	31 2 33	0.52 .52 .52 .53	27	58 6 13 20 26	7.50 8.57 8.57 10.0	82 83 84	10 40 11 41 12	0.50 .52 .50 .52		29 37 44 51 57	7.50 8.57 8.57 10.0	82 83 84	49 19 49	0.48 .50 .50 .52	15 14 13 12 11	16.9 15.8 14.7 13.5 12.4
80 81 82 83 84	28	2 7 12 16 20	12.0 12.0 15.0 15.0 20.0	85 86	37 9 41 13 45	• 53 • 53 • 53 • 53		32 37 42 46 50	12.0 12.0 15.0 15.0 20.0	85 86	43 15 46 18 49	0.53 .52 .53 .52 .53	27	3 8 13 17 20	12.0 12.0 15.0 20.0 20.0	85 86	51	0.52 .50 .52 .52	10 9 8 7 6	11.3 10.2 9.0 7.9 6.8
85 86 87 88 89		23 25 27 29 30	30.0 60.0	87 88 89	50	.53		53 56 58 59	20.0 30.0 60.0 60.0	87 88 89	21 52 24 56 28	0.52 •53 •53 •53		23 26 28 29 30		87 88 89	55	0.52 .52 .53 .52 .52	3 2	5·7 4·5 3·4 2·3 1·1
90	_	30	-	90	0	1 .	_	0		90	0		_	30	<u> </u>	90	0	1	0	0.0
$ _t$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a °	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
			d = 6	1° a	30′				$d = \mathbf{c}$	32°	0′				d = 6	2°	30′			

b	1		a = 6	33°	0			_	a = 6	3° :	30′	-,			a = 0	34°	0′		\ c	\ a
B	h	d	60' Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	\downarrow^t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	O	27 54	2.22	63°	0 0 1 2 3	0.00	, O	0 27 54	2.22 2.22 2.31 2.22 2.22	63	30 30 31 32 33	0.00 .02 .02 .02	O		2.31 2.22 2.31 2.31 2.31	64	0 0 1 2 3	0.00		90.0 89.1 88.2 87.3 86.4
56789	3 4	16 43 10 37 4	2,22 2,22 2,22 2,22 2,22		5 7 10 13 17	0.63 .05 .05 .07	3 4	14 40 7 34 0	2.31 2.22 2.22 2.31 2.22		35 37 40 43 47	0.03 .05 .05 .07	3	38	2.22 2.31 2.31 2.31 2.31		5 7 10 13 17	0.03 .05 .05 .07	85 84 83 82 81	85.5 84.6 83.7 82.8 81.9
10 11 12 13 14	5	31 58 25 52 18	2.22 2.22 2.22 2.31 2.22		21 26 31 36 42	0.08 .08 .08	5 6	27 53 20 46 12	2.31 2.22 2.31 2.31 2.31	64	51 55 0 .5	0.07 .08 .08 .10	4 5 6	22 48 14 40 5	2.31 2.31 2.31 2.40 2.31		21 25 30 35 40	0.07 .08 .08 .08	80 79 78 77 76	81.0 80.1 79.2 78.3 77.4
15 16 17 18 19	7 8	45 11 38 4 30	2.31 2.22 2.31 2.31 2.31	64	48 54 1 9	0.10 .12 .13 .13	<i>7</i> 8	38 4 30 56 21	2.31 2.31 2.31 2.40 2.31		17 24 31 38 46	0.12 .12 .12 .13	<i>7</i> 8	31 56 22 47 12	2.40 2.31 2.40 2.40 2.40	65	46 53 0 7 15	0.12 .12 .12 .13	75 74 73 72 71	76.5 75.6 74.7 73.8 72.9
20 21 22 23 24	01	56 22 48 13 39	2.31 2.31 2.40 2.31 2.40	65	25 34 43 52 2	0.15 .15 .15 .17	9	47 12 37 2 27	2.40 2.40 2.40 2.40 2.40	65	54 2 11 21 31	0.13 .15 .17 .17	9	37 2 27 52 16	2.40 2.40 2.40 2.50 2.40		23 31 40 49 59	0.13 .15 .15 .17	70 69 68 67 66	72.0 71.0 70.1 69.2 68.3
25 26 27 28 29	11	4 29 54 19 43	2.40 2.40 2.40 2.50 2.50		13 24 35 47 59	0.18 .18 .20 .20	11	52 17 41 5 29	2.40 2.50 2.50 2.50 2.50	66	41 52 3 14 26	0.18 .18 .18 .20	11	41 5 29 53 16	2.50 2.50 2.50 2.61 2.50	66	9 20 31 42 54	0.18 .18 .18 .20	65 64 63 62 61	67.3 66.4 65.5 64.6 63.6
30 31 32 33 34	13	7 31 55 19 43	2.50 2.50 2.50 2.50 2.61	66 67	11 24 38 52 6	0.22 .23 .23 .23 .25	13	53 17 41 4 27	2.50 2.50 2.61 2.61 2.61	67	39 52 5 19 33	0,22 .22 .23 .23 .23	13	40 3 26 49 12	2.61 2.61 2.61 2.61 2.73	67	6 19 32 45 59	0.22 .22 .22 .23 .23	59 58 57 56	62.7 61.7 60.8 59.8 58.9
35 36 37 38 39	15	6 29 52 14 36	2.61 2.61 2.73 2.73 2.73	68	21 36 51 7 24	0.25 .25 .27 .28	15	50 12 34 56 18	2.73 2.73 2.73 2.73 2.73	68	47 2 17 33 49	0.25 .25 .27 .27 .28	15 16	34 56 18 40	2.73 2.73 2.73 2.86 2.86	68 69	13 28 43 59 15	0.25 .25 .27 .27 .27	55 54 53 52 51	57.9 57.0 56.0 55.0 54.1
40 41 42 43 44	17	58 20 41 2 23	2.73 2.86 2.86 2.86 2.86	69	41 58 16 34 52	0.28 .30 .30 .30	17 18	40 I 22 43 3	2.86 2.86 2.86 3.00 3.00	69 70	6 23 40 58 16	0.28 .28 .30 .30	17	22 43 4 24 44	2.86 2.86 3.00 3.00 3.00	70	31 48 5 22 40	0.28 .28 .28 -30	50 49 48 47 46	53.1 52.1 51.1 50.2 49.2
45		44		70	11	'		23		1	35		18	4			58		45	48.2
t	a		.6ο' Δ	t)	$\frac{\Delta}{60'}$	а	,	<u>6ο'</u> Δ	1	b	<u>Δ</u> 6ο'	a	ı	60' ∆	ĕ		$\frac{\Delta}{60'}$		a
			d = 6	3° ()′			d	=68	3° 3	0′				d = 6	4° ()′			1

b		a = 6	3° 0′			(a = 6	3° 3	30′			1	a = 6	4° (0′		c	a
$B \setminus$	h	<u>60'</u> Δ	Z	t <u>∆</u> 60'	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
o 45 46 47 48 49	0 18 44 19 4 24 43 20 2	3.00 3.16 3.16	71	0.32 30 .33 50 .33 10 .35 31 .35	18	23 43 3 22 41	3.00 3.00 3.16 3.16 3.33	70°	35 54 13 33 53	0.32 •32 •33 •33 •35	18	4 23 42 1 19	3.16 3.16 3.16 3.33 3.33	70 71 72	58 17 36 55 15	0.32 •32 •32 •33 •35	°45 44 43 42 41	48.2 47.2 46.2 45.2 44.2
50 51 52 53 54	21 40 58 21 16 33	3.33	72 1	32 0.35 33 ·37 35 ·37 57 ·38 20 ·38	20	59 17 35 52 9	3.33 3.33 3.53 3.53 3.53	72 73	14 35 56 18 40	0.35 .35 .37 .37 .37	20	37 55 12 29 46	3·33 3·53 3·53 3·53 3·53	73 74	36 56 17 38 0	0-33 -35 -35 -37 -37	39 38 37 36	43.2 42.1 41.1 40.1 39.1
55 56 57 58 59	22 7 23 39 54	3.75 3.75 4.00	74	0.38 6 .40 30 .40 4 .40 8 .40	22	26 42 58 14 29	3.75 3.75 3.75 4.00 4.00	74 75	2 25 48 12 36	0.38 .38 .40 .40	21	3 19 34 49 4	3.75 4.00 4.00 4.00 4.00	75	22 45 7 30 54	0.38 •37 •38 •40 •40	35 34 33 32 31	38.0 37.0 36.0 34.9 33.9
60 61 62 63 64	23 9 24 38 52 24 5	4.00 4.29 4.29 4.62 4.62	76 3 5	7 ·43 3 ·43 9 ·43 5 ·43	23	44 58 12 26 39	4.29 4.29 4.29 4.62 5.00	76 77	0 25 50 15 40	0.42 .42 .42 .42 .43	23	19 33 46 59 12	4.29 4.62 4.62 4.62 5.00	76 77	18 42 6 31 56	0.40 .40 .42 .42 .42	30 29 28 27 26	32.8 31.8 30.7 29.7 28.6
65 66 67 68 69	18 30 42 54 25 5	5.00 5.00 5.00 5.45 6.00	78 I 4 79 I	8 .45 .45 .45 .2 .45 .9 .47	24	51 3 15 26 37	5.00 5.00 5.45 5.45 6.00	78 79	6 32 58 25 52	•43 •45 •45 •45	24	24 36 48 59	5.00 5.00 5.45 5.45 6.00	78 79 80	21 47 13 39 5	0.43 .43 .43 .43	25 24 23 22 21	27.5 26.5 25.4 24.3 23.2
70 71 72 73 74	25 25 35 44 53	6.00 6.00 6.67 6.67 7.50	81	7 0.47 35 .47 3 .48 32 .47 0 .48	25	47 57 7 16 24	6.00 6.00 6.67 7.50 7.50	80 31 82	19 47 15 43	•47 •47 •47 •47 •47		20 29 38 47 55	6.67 6.67 6.67 7.50 7.50	81 82	32 59 26 53 20	0.45 •45 •45 •45 •47	20 19 18 17 16	22.1 21.0 20.0 18.9 17.8
75 76 77 78 79	26 I 8 I 5 22 28	8.57 8.57 8.57 10.0 12.0	83 2	29 0.48 58 .50 28 .48 57 .50 27 .50		32 39 46 53 59	8.57 8.57 8.57 10.0 12.0	83 84	39 7 36 5 34	0.47 .48 .48 .48	25	3 10 17 23 29	8.57 8.57 10.0 10.0	83 84	48 16 44 13 41	•47 •48 •47 •47	15 14 13 12 11	16.7 15.6 14.5 13.4 12.3
80 81 82 83 84	33 38 43 47 50	15.0	85 2 86 2	7 0.50 27 .50 57 .50 57 .50	26	4 9 13 17 21	12.0 15.0 15.0 15.0 20.0	85 86 87	32 2 31 1	0.48 .50 .48 .50	-	34 39 43 47 51	12.0 15.0 15.0 15.0 20.0	85 86 87	9 38 7 36 5	0.48 .48 .48 .48	9 8 7 6	11.1 10.0 8.9 7.8 6.7
85 86 87 88 89	53 56 58 59 27	60.0	88 2	27 0.52 58 .50 28 .52 59 .50		24 26 28 29 30	30.0 30.0 60.0 60.0	88 89	31 30 0 30	0.48 .50 .50 .50	26	54 56 58 59 0	30.0 30.0 60.0 60.0	88 89	34 32 1 31	0.48 .48 .48 .50	5 4 3 2 1	5.6 4.5 3.4 2.2 1.1
90	0		90	0		30		90	0			0		90	0		0	0.0
t	а 	<u>δο'</u> Δ	b	$\frac{\Delta}{60'}$	0	t	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	- 0	ı	$\frac{60'}{\Delta}$	- 1	b	Δ 60'		a
		d = 6	3° 0′	. 1			d = 6	3° 3	80′				d = 6	4° (0′			1)

b		C	a = 6	4° 8	30′				a = 6	5°	0′				a=6	5° 3	30′		\ c	a
B	h	d	<u>60'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 I 2 3 4	O	26 52	2.31 2.31 2.31 2.40 2.31	64	30 30 31 32 33	0.00	0	0 25 51 16 41	2.40 2.31 2.40 2.40 2.31	65	0 0 1 2 3	0.00	O	0 25 50	2.40 2.40 2.40 2.50 2.40	65	30 30 31 32 33	0.00	90 89 88 87 86	90.0 89.1 88.2 87.3 86.4
5 6 7 8 9	3	9 35 0 26 52	2.31 2.40 2.31 2.31 2.40		35 37 40 43 46	0.03 .05 .05 .05	3	7 32 57 22 47	2.40 2.40 2.40 2.40 2.40		5 7 10 13 16	0.03 .05 .05 .05	3	4 29 54 19 43	2.40 2.40 2.40 2.50 2.40		35 37 40 43 46	0.03 .05 .05 .05	85 84 83 82 81	85.5 84.6 83.7 82.7 81.8
10 11 12 13 14	5	17 43 8 3 3 59	2.31 2.40 2.40 2.31 2.40	65	50 54 59 4	0.07 .08 .08 .10	4 5	12 37 2 27 52	2.40 2.40 2.40 2.40 2.40		20 24 29 34 39	0.07 .08 .08 .08	5	8 32 57 21 45	2,50 2,40 2,50 2,50 2,40	66	50 54 58 3 9	0.07 .07 .08 .10	80 79 78 77 76	80.9 80.0 79.1 78.2 77.3
15 16 17 18 19	6 7 8	24 49 14 39 4	2.40 2.40 2.40 2.40 2.50		16 0.10 22 29 36 .13 44 .13 66 0 52 0.15 9 18 .15		6 7	17 41 6 30 54	2.50 2.40 2.50 2.50 2.50	66	45 51 58 5	0.10 .12 .12 .12	6 7	10 34 58 22 46	2.50 2.50 2.50 2.50 2.61		15 21 27 34 41	0.10 .10 .12 .12	75 74 73 72 71	76.4 75.4 74.5 73.6 72.7
20 21 22 23 24	9	28 53 17 41 5	2.40 2.50 2.50 2.50 2.50	66	9	.15	9	18 42 6 30 54	2.50 2.50 2.50 2.50 2.61		20 28 37 46 56	0.13 .15 .15 .17	8 9	9 33 56 19 42	2.50 2.61 2.61 2.61 2.61	67	49 57 6 15 24	0.13 .15 .15 .15	70 69 68 67 66	71.7 70.8 69.9 69.0 68.0
25 26 27 28 29	11 12	29 53 17 40 3	2.50 2.50 2.61 2.61 2.61	67	37 48 59 10 21	0.18 .18 .18 .18	10	17 41 4 27 50	2.50 2.61 2.61 2.61 2.73	67	6 16 26 37 49	0.17 .17 .18 .20	11	5 28 51 14 36	2.61 2.61 2.61 2.73 2.73	68	34 44 54 5 16	0.17 .17 .18 .18	65 64 63 62 61	67.1 66.2 65.2 64.3 63.3
30 31 32 33 34	13	26 49 11 34 56	2.61 2.73 2.61 2.73 2.73	68	33 46 59 12 26	0.22 .22 .22 .23 .23	12	34 56 18 40	2.73 2.73 2.73 2.73 2.73 2.73	68	1 13 25 38 52	0.20 .20 .22 .23	12	58 20 42 3 24	2.73 2.73 2.86 2.86 2.86	69	28 40 52 5 18	0,20 .20 .22 .22 .23	60 59 58 57 56	62.4 61.4 60.5 59.5 58.6
35 36 37 38 39	14	18 40 1 22 43	2.73 2.86 2.86 2.86 2.86	69	40 54 9 24 40	0.23 .25 .25 .27 .27	14	2 23 44 5 26	2.86 2.86 2.86 2.86 3.00	69 70	6 20 34 49 5	0.23 .23 .25 .27 .27	14	45 6 27 48 8	2.86 2.86 2.86 3.00 3.00	70	32 46 0 15 30	0.23 .23 .25 .25	55 54 53 52 51	57.6 56.6 55.7 54.7 53.7
40 41 42 43 44	16 17	4 24 44 4 24	3.00 3.00 3.00 3.00 3.16		56 12 29 46 4	0.27 .28 .28 .30	16 17	46 6 26 45 4	3.00 3.00 3.16 3.16 3.16	71	21 37 53 10 27	0.27 .27 .28 .28	16	28 47 6 25 44	3.16 3.16 3.16 3.16 3.16	71	45 1 17 34 51	0.27 .27 .28 .28 .28	50 49 48 47 46	52.7 51.8 50.8 49.8 48.8
45		43			22			23			45		17	3		72	8		45	47.8
	0	ı	<u>6ο'</u> Δ	l	6	<u>Δ</u> 60'	a	ı	<u>6ο'</u> Δ	i	ь	<u>Δ</u> 60'	d	ı	$\frac{60'}{\Delta}$	l	5	$\frac{\Delta}{60'}$		a
t		d	=64	۱° 3	0′			(d = 6	5° ()′				d = 6	5° 3	30′			

8		(a = 6	4° 3	30′				a = 6	5° (0′			C	a = 6	5° 8	30′		c	\ a
$B \setminus$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	17 18	43 2 21 40 58	3.16 3.16 3.33 3.33	7º 72	22 40 59 18 37	0.30 .32 .32 .32 .33	17 18	23 42 0 18 36	3.16 3.33 3.33 3.33 3.53	7 I 72	45 3 21 40 59	0.30 .30 .32 .32 .33	18	3 21 39 57 14	3.33 3.33 3.33 3.53 3.53	72	8 26 44 2 21	0.30 .30 .30 .32	° 45 44 43 42 41	47.8 46.8 45.8 44.8 43.8
50 51 52 53 54	19 20	16 33 50 7 23	3.53 3.53 3.53 3.75 3.75	73 74	57 17 38 59 20	0.33 .35 .35 .35 .37	19	53 10 27 43 59	3.53 3.53 3.75 3.75 3.75	73 74	19 39 59 19 40	0.33 .33 .33 .35	19	31 48 4 20 36	3.53 3.75 3.75 3.75 3.75	74 75	40 0 20 40 0	• 33 • 33 • 33 • 33 • 35	39 38 37 36	42.8 41.8 40.8 39.7 38.7
55 56 57 58 59	21	39 55 10 25 39	3.75 4.00 4.00 4.29 4.29	75 76	42 4 26 49 12	0.37 .37 .38 .38 .38	20 21	15 30 45 0	4.00 4.00 4.00 4.29 4.29	75 76	1 23 45 7 30	0.37 .37 .37 .38 .38	20	52 7 21 35 49	4.00 4.29 4.29 4.29 4.29	76	21 42 4 26 48	0.35 .37 .37 .37 .37	35 34 33 32 31	37.7 36.7 35.6 34.6 33.5
60 61 62 63 64	22	53 7 20 33 46	53 4-29 35 0. 7 4-62 59 20 4-62 77 23 33 4-62 78 11 58 5.00 36 0. 10 5-45 79 1 26 32 6.00 52 2 3			0.40 .40 .40 .40	22	28 42 55 7 19	4.29 4.62 5.00 5.00 5.00	77 78	53 16 39 3 27	0.38 .38 .40 .40	21	3 16 29 41 53	4.62 4.62 5.00 5.00 5.00	77 78	10 32 55 19 42	0.37 .38 .40 .38 .40	30 29 28 27 26	32.5 31.5 30.4 29.3 28.3
65 66 67 68 69	23	21	33 4.62 47 46 5.00 78 11 58 5.00 36 0 10 5.45 79 1 26 32 6.00 80 18 52 6.67 44 0 52 6.67 44 0			0.42 .42 .43 .43	23	31 43 54 4 14	5.00 5.45 6.00 6.00 6.00	79 80	51 16 41 6 31	0.42 .42 .42 .42 .42	22	5 16 27 37 47	5.45 5.45 6.00 6.00 6.67	79 80	6 30 54 19 44	0.40 .40 .42 .42 .42	25 24 23 22 21	27.2 26.2 25.1 24.0 23.0
70 71 72 73 74	24	52 I IO I9 27		81 82		0.43 •45 •45 •45 •45		24 33 42 50 58	6.67 6.67 7.50 7.50 7.50	81	56 22 48 14 40	0.43 .43 .43 .43	23	56 5 14 22 30	6.67 6.67 7.50 7.50 8.57	81	9 34 59 25 51	0.42 .42 .43 .43	20 19 18 17 16	21.9 20.8 19.7 18.6 17.6
75 76 77 78 79	25	34 41 48 54 0	8.57 8.57 10.0 10.0 12.0	83 84	58 25 52 20 48	0.45 •45 •47 •47	24	6 13 19 25 31	8.57 10.0 10.0 10.0	83 84	7 34 1 28 55	0.45 •45 •45 •45 •45	24	37 44 50 56 1	8.57 10.0 10.0 12.0 12.0	83 84 85	17 43 9 35 2	0.43 .43 .43 .45 .45	15 14 13 12 11	16.5 15.4 14.3 13.2 12.1
80 81 82 83 84		5 10 14 18 21	12.0 15.0 15.0 20.0 20.0	85 86 87	16 44 12 40 9	0.47 .47 .47 .48 .47		36 40 44 48 51	15.0 15.0 15.0 20.0 20.0	85 86 87	22 50 17 45 12	• 47 • 45 • 47 • 45 • 47		6 11 15 18 21	12.0 15.0 20.0 20.0 20.0	86 87	29 55 22 49 16	0.43 •45 •45 •45 •47	9 8 7 6	9.9 8.8 7.7 6.6
85 86 87 38 89		21 20.0 87 9 24 30.0 37 0 26 30.0 88 6 28 60.0 34 29 60.0 89 3 30 — 89 3				0.48 •47 •48 •47 •48	25	54 56 58 59	30.0 30.0 60.0 60.0	88 89	40 8 36 4 32	0.47 .47 .47 .47 .47		24 26 28 29 30	30.0 30.0 60.0 60.0	88 89	44 11 38 5 33	•45 •45 •47 •45	5 4 3 2 1	5.5 4.4 3.3 2.2 1.1
90		30		90	0			0		90	0			30		90	0		0	0.0
t		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$	1	b	$\frac{\Delta}{60'}$	(ı	$\frac{60'}{\Delta}$	i	b	$\frac{\Delta}{60'}$		a
ı		C	l=64	4° 3	0′				d = 6	5° (0′			á	= 68	5° 3	0′			

\ b		a = 6	36° 0′			(a = 6	6° 3	30′				a = 0	37°	0′		\ c	a
B	h	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	0 0 24 49 1 13 38	2.50 2.40 2.50 2.40	66 0 0 1 2 3	0.00 .02 .02 .02	0	6 24 48 12 36	2.50 2.50 2.50 2.50 2.50	66	30 30 31 32 33	0.00	O	0 23 47	2.61 2.50 2.61 2.50 2.61	67°	0 0 1 2 3	0.00	90 89 88 87 86	90.0 89.1 88.2 87.2 86.3
5 6 7 8 9	2 2 26 50 3 15 39	2.50 2.50 2.40 2.50 2.50	5 7 9 12 16	0.03 .03 .05 .07	3	0 23 47 11 35	2.61 2.50 2.50 2.50 2.61		35 37 39 42 45	0.03 .03 .05 .05	3	57 20 44 7 30	2.61 2.50 2.61 2.61 2.61		5 7 9 12 15	.03 .03 .05 .05	85 84 83 82 81	85.4 84.5 83.6 82.7 81.7
10 11 12 13 14	4 3 27 51 5 15 39	2.50 2.50 2.50 2.50 2.50	20 24 28 33 38	0.07 .07 .08 .08	4 5	58 22 45 9 32	2.50 2.61 2.50 2.61 2.61	67	49 53 57 2 7	0.07 .07 .08 .08	4 5	53 16 39 2 25	2.61 2.61 2.61 2.61 2.61		19 23 27 32 37	0.07 .07 .08 .08	80 79 78 77 76	80.8 79.9 79.0 78.0 77.1
15 16 17 18 19	6 3 26 50 7 13 37	2.61 2.50 2.61 2.50 2.61	44 50 56 67 3	0.10 .10 .12 .12	6 7	55 18 41 4 27	2.61 2.61 2.61 2.61 2.61		13 19 25 32 39	0.10 .10 .12 .12	6 7	48 11 34 56 19	2.61 2.61 2.73 2.61 2.73	68	42 48 54 1 8	0.10 .10 .12 .12	75 74 73 72 71	76.2 75.3 74.3 73.4 72.5
20 21 22 23 24	8 0 23 46 9 9 31	2.61 2.61 2.61 2.73 2.61	18 26 34 43 52	0.13 .13 .15 .15	8	50 13 36 58 20	2.61 2.61 2.73 2.73 2.73	68	46 54 2 11 20	0.13 .13 .15 .15	8	41 3 25 47 9	2.73 2.73 2.73 2.73 2.73 2.86		15 23 31 39 48	0.13 .13 .13 .15	70 69 68 67 66	71.5 70.6 69.7 68.7 67.8
25 26 27 28 29	54 10 16 38 11 0 22	2.73 2.73 2.73 2.73 2.73 2.73	68 2 12 22 32 43	0.17 .17 .17 .18	10	42 4 26 48 9	2.73 2.73 2.73 2.86 2.86	69	29 39 49 0	0.17 .17 .18 .18	10	30 52 13 34 55	2.73 2.86 2.86 2.86 2.86	69	57 7 17 27 38	0.17 .17 .17 .18	65 64 63 62 61	66.8 65.9 65.0 64.0 63.1
30 31 32 33 34	12 6 27 48 13 9	2.73 2.86 2.86 2.86 2.86 2.86	55 69 7 19 31 44	0.20 .20 .20 .22	12	30 51 12 33 53	2.86 2.86 2.86 3.00 3.00	<i>7</i> 0	22 34 46 58 11	0.20 .20 .20 .22	11	16 37 57 17 37	2.86 3.00 3.00 3.00 3.00	70	49 0 12 24 37	0.18 .20 .20 .22 .22	60 59 58 57 56	62.1 61.1 60.2 59.2 58.3
35 36 37 38 39	30 50 14 10 30 50	3.00 3.00 3.00 3.00 3.16	58 70 12 26 40 55	0.23 .23 .23 .25	13	13 33 53 13 32	3.00 3.00 3.00 3.16 3.16	71	24 37 51 5 20	0.22 .23 .23 .25	13	57 17 36 55 14	3.00 3.16 3.16 3.16 3.16	71	50 30 30 44	0.22 .22 .23 .23	55 54 53 52 51	57·3 56·3 55·4 54·4 53·4
40 41 42 43 44	15 9 28 47 16 6 25	3.16 3.16 3.16 3.16 3.33	71 10 26 42 58 72 14	0.27 .27 .27 .27 .28	15	51 10 29 47 5	3.16 3.16 3.33 3.33 3.33	72	35 50 6 22 38	0.25 .27 .27 .27 .28	15	33 51 9 27 45	3·33 3·33 3·33 3·33 3·53	72	59 14 29 45	0.25 .25 .27 .27 .28	50 49 48 47 46	52.4 51.4 50.5 49.5 48.5
45	43		31			23			55		16	2			18		45	47.5
	а	<u>6ο'</u> Δ	b	<u>Δ</u> 6ο'	а		<u>60'</u> Δ	l	ь	<u>Δ</u> 6ο'	a		<u>6ο'</u> Δ	l	5	$\frac{\Delta}{60'}$		a
t		d = 6	6° 0′		_	d	=66	3° 3	0′				d = 6	7° ()′	1		

b			a = 6	6° ()′			а	=66	3° 3	0′				a=6	7° ()′		c	a
$ B\rangle$	h	d	60' Δ	Z	t	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	Z	t	<u>∆</u> 60′	h	d	6ο' Δ	\overline{z}	t	<u>Δ</u> 60'	$C \setminus$	$\beta \setminus$
45 46 47 48 49	16	43 1 18 35 52	3-33 3-53 3-53 3-53 3-53	7 ^o 73	31 49 7 25 43	0.30 .30 .30 .30	16	23 40 57 14 31	3.53 3.53 3.53 3.53 3.75	72 73 74	55 12 29 47 5	0.28 .28 .30 .30	16	19 36 53 9	3.53 3.53 3.53 3.75 3.75	73	18 34 51 8 26	0.27 .28 .28 .30	° 45 44 43 42 41	47.5 46.5 45.5 44.5 43.5
50 51 52 53 54	18	9 25 41 57 13	3.75 3.75 3.75 3.75 4.00	74 75	2 21 40 0 20	0.32 .32 .33 .33	18	47 3 19 34 49	3.75 3.75 4.00 4.00 4.00	75	23 42 1 20 40	0.32 .32 .32 .33	18	25 41 56 11 26	3.75 4.00 4.00 4.00 4.29	75	44 3 21 40 59	0.32 .30 .32 .32 .33	39 38 37 36	42.5 41.4 40.4 39.4 38.4
55 56 57 58 59	20	28 43 57 11 24	4.00 4.29 4.29 4.62 4.62	76 77	40 I 22 43 5	0.35 .35 .35 .37 .37	19	4 18 32 46 59	4.29 4.29 4.29 4.62 4.62	76 77	0 20 41 2 23	•35 •35 •35 •35 •35	19	40 54 8 21 34	4.29 4.29 4.62 4.62 4.62	76 77	19 39 59 19 40	0.33 •33 •33 •35 •35	35 34 33 32 31	37·4 36·3 35·3 34·3 33·2
60 61 62 63 64	21	37 50 3 15 27	4.62 4.62 5.00 5.00 5.45	78	27 49 11 34 57	0.37 .37 .38 .38	20	12 25 37 49 0	4.62 5.00 5.00 5.45 5.45	78 79	44 6 28 50 12	• 37 • 37 • 37 • 37 • 38	20	47 59 11 23 34	5.00 5.00 5.00 5.45 5.45	78 79	1 22 44 6 28	0.35 •37 •37 •37 •37	30 29 28 27 26	32.2 31.2 30.1 29.1 28.0
65 66 67 68 69	22	38 49 59 9	5.45 6.00 6.00 6.00 6.67	79 80	20 44 8 32 56	0.40 .40 .40 .40		11 22 32 42 51	5.45 6.00 6.00 6.67 6.67	80 81	35 58 21 45 9	0.38 .38 .40 .40	21	45 55 5 15 24	6.00 6.00 6.67 6.67	80 81	50 12 35 58 21	0.37 .38 .38 .38	25 24 23 22 21	27.0 25.9 24.8 23.8 22.7
70 71 72 73 74	23	28 37 45 53	6.67 7.50 7.50 7.50 8.57	81 82 83	20 45 10 35 0	0.42 .42 .42 .42 .43	22	0 9 17 25 32	6.67 7.50 7.50 8.57 8.57	82	33 57 21 45 10	0.40 .40 .40 .42 .42	22	33 41 49 57 4	7.5° 7.5° 7.5° 8.57 8.57	82	44 8 32 56 20	0.40 .40 .40 .40	20 19 18 17 16	21.6 20.6 19.5 18.4 17.4
75 76 77 78 79		8 15 21 27 32	8.57 10.0 10.0 12.0 12.0	84 85	26 51 17 43 9	0.42 •43 •43 •43 •43	23	39 46 52 58 3	8.57 10.0 10.0 12.0 12.0	84	35 O 25 50 I 5	0.42 •42 •42 •42 •43		11 17 23 28 33	10.0 10.0 12.0 12.0 12.0	8 ₄	44 8 33 57 22	0.40 .42 .40 .42 .42	15 14 13 12 11	16.3 15.2 14.1 13.1 12.0
80 81 82 83 84		37 41 45 49 52	15.0 15.0 15.0 20.0 30.0	86 87	35 1 27 54 20	0.43 .43 .45 .43 .45		8 12 16 19 22	15.0 15.0 20.0 20.0 30.0	86 87	41 6 32 58 24	0.42 •43 •43 •43 •43		38 42 46 49 52	15.0 15.0 20.0 20.0 30.0	86 87	47 12 37 2 28	0.42 .42 .42 .43 .42	10 9 8 7 6	9.8 8.7 7.6 6.5
85 86 87 88 89	24	54 56 58 59	30.0 30.0 60.0 60.0	88 89	47 13 40 7 33	0.43 .45 .45 .43 .45		24 26 28 29 30	30.0 30.0 60.0 60.0	88 89	50 16 42 8 34	0.43 .43 .43 .43 .43	23	54 56 58 59	30.0 30.0 60.0 60.0	88 89	53 18 44 9 34	0.42 •43 •42 •42 •43	5 4 3 2 1	5.5 4.4 3.3 2.2 1.1
90	_	0	90 0				_	30	6-1	90	0		_	0	601	90			0	0.0
t		a	60' Δ		b	$\frac{\Delta}{60'}$		a	60' <u>∆</u>		<i>b</i>	<u>Δ</u> 6ο'		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
			d = 6	6°	0′				d=6	6° 3	30′				$d = \mathbf{c}$	37°	0′			

Ĭ\ _	1				1			_							_	===	(7.
$\setminus b$		a = 6	7° 30′				$a = \epsilon$	38°	0′			(a = 6	8° 3	30′		c	x /
$B \setminus$	h d	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	\overline{z}	t	$\frac{\Delta}{60'}$	$C \setminus$	3
0 1 2 3 4	0 0 23 46 1 9 32	2.61	67 30 30 31 32 33	.02	0	0 22 45 7 30	2.73 2.61 2.73 2.61 2.73	68	0 0 1 2 3	0.00	O		2.73 2.73 2.73 2.73 2.73	68	30 30 31 32 33	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.1 88.1 87.2 86.3
5 6 78 9	55 2 18 40 3 3 26	2.61 2.73 2.61 2.61 2.61	35 37 39 42 45	.03	3	52 15 37 59 22	2.61 2.73 2.73 2.61 2.73		5 7 9 12 15	0.03 .03 .05 .05	3	50 12 34 55 17	2.73 2.73 2.86 2.73 2.73		35 37 39 41 44	0.03 .03 .03 .05	85 84 83 82 81	85.4 84.4 83.5 82.6 81.6
10 11 12 13 14	49 4 11 34 56 5 19	2.73 2.61 2.73 2.61 2.73	48 52 56 68 1	.08	4 5	44 6 28 50 12	2.73 2.73 2.73 2.73 2.73 2.73		18 22 26 31 36	.07 .08 .08	4 5	39 1 22 44 5	2.73 2.86 2.73 2.86 2.73	69	48 52 56 0 5	0.07 .07 .07 .08	80 79 78 77 76	80.7 79.8 78.9 77.9 77.0
15 16 17 18 19	6 3 25 47 7 9	2.73 2.73 2.73 2.73 2.73 2.73	12 18 24 30 37	.10	6 7	34 56 17 39 0	2.73 2.86 2.73 2.86 2.73	69	41 47 53 59 6	0,10 .10 .10 .12	6	27 48 9 30 51	2.86 2.86 2.86 2.86 2.86		10 16 22 28 34	0.10 .10 .10 .10	75 74 73 72 71	76.0 75.1 74.2 73.2 72.3
20 21 22 23 24	31 53 8 15 36 57	2.73 2.73 2.86 2.86 2.86	69 0 8	.13	8	22 43 4 25 46	2.86 2.86 2.86 2.86 2.86		13 20 28 36 44	0.12 .13 .13 .13	8	12 33 54 14 34	2.86 2.86 3.00 3.00 3.00	70	41 48 56 4 12	0.12 .13 .13 .13	70 69 68 67 66	71.4 70.4 69.5 68.5 67.6
25 26 27 28 29	9 18 39 10 0 21 42	2.86 2.86 2.86 2.86 3.00	25 35 45 55 70 5	.17	9	7 27 48 8 28	3.00 2.86 3.00 3.00 3.00	70	53 2 12 22 32	0.15 .17 .17 .17	9	54 14 34 54 14	3.00 3.00 3.00 3.00 3.00		21 30 39 49 59	0.15 .15 .17 .17	65 64 63 62 61	66.6 65.7 64.7 63.8 62.8
30 31 32 33 34	11 2 22 42 12 2 22	3.00 3.00 3.00 3.16	16 27 39 51 71 3	.20	11	48 27 46 5	3.00 3.16 3.16 3.16 3.16	71	43 54 5 17 29	0.18 .18 .20 .20	ΙΊ	34 53 12 31 50	3.16 3.16 3.16 3.16 3.33	71	10 21 32 43 55	0.18 .18 .18 .20	59 58 57 56	61.8 60.9 59.9 58.9 58.0
35 36 37 38 39	41 13 0 19 38 56	3.16 3.16 3.16 3.33 3.33	15 28 41 55 72 9	.22	13	24 43 2 20 38	3.16 3.16 3.33 3.33 3.33	72	41 54 7 20 34	0.22 .22 .22 .23 .23	12	8 26 44 2 20	3.33 3.33 3.33 3.33 3.33	72	7 19 32 45 59	0.20 .22 .22 .23 .23	55 54 53 52 51	57.0 56.0 55.1 54.1 53.1
40 41 42 43 44	14 14 32 50 15 8 25	3·33 3·33 3·33 3·53 3·53	24 39 54 73 9 25	.25	14	56 14 31 48 5	3.33 3.53 3.53 3.53 3.53	73	48 2 17 32 48	0.23 .25 .25 .27 .25	14	38 55 12 29 45	3.53 3.53 3.53 3.75 3.75	73 74	13 27 41 56 11	0.23 .23 .25 .25 .25	50 49 48 47 46	52.1 51.1 50.1 49.2 48.2
45	42		41			22		74	3		15	I			26		45	47.2
+	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$. (a	<u>6ο'</u> Δ	b		$\frac{\Delta}{60'}$		a
$\mid t \mid$	(l = 67	7° 30′				d = 6	8° (0′			à	= 68	3° 3	0′			

6		a	a = 67	7° 3	0′				a = 6	8° ()′			a	=68	3° 3	0′		c	a
B	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 60'	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 60'	h	d	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 6ο′	$C \setminus$	β
9 45 46 47 48 49	16	42 59 15 31 47	3.53 3.75 3.75 3.75 3.75 3.75	73 74	41 57 14 31 48	0.27 .28 .28 .28	16	22 38 54 10 26	3.75 3.75 3.75 3.75 4.00	74 75	3 19 36 52 9	0.27 .28 .27 .28 .28	16	1 17 33 48 3	3.75 3.75 4.00 4.00 4.00	74 75	26 42 58 14 31	0.27 .27 .27 .28 .28	\$45 44 43 42 41	47.2 46.2 45.2 44.2 43.2
50 51 52 53 54	17	3 18 33 48 2	4.00 4.00 4.00 4.29 4.29	75 76	6 24 42 0 19	0.30 .30 .30 .32 .32	17	41 56 10 24 38	4.00 4.29 4.29 4.29 4.29	76	26 44 2 20 38	0.30 .30 .30 .30	17	18 33 47 1	4.00 4.29 4.29 4.29 4.62	76	48 5 22 40 58	0.28 .28 .30 .30	40 39 38 37 36	42.1 41.1 40.1 39.1 38.1
5 5 56 57 58 59	19	16 30 43 56 9	4.29 4.62 4.62 4.62 5.00	77	38 57 17 37 57	•33 •33 •33 •35	18	52 6 19 32 44	4.29 4.62 4.62 5.00 5.00	77 78	57 16 35 55 15	•32 •33 •33 •33	18	28 41 54 6 18	4.62 4.62 5.00 5.00 5.00	77 78	16 35 54 13 32	0.32 .32 .32 .32 .32	35 34 33 32 31	37.1 36.0 35.0 34.0 32.9
60 61 62 63 64	20	21 33 45 56 7	5.00 5.45 5.45 5.45	78 79	18 39 0 21 42	0.35 .35 .35 .35 .37	19	56 8 19 30 41	5.00 5.45 5.45 5.45 6.00	<i>7</i> 9	35 55 16 37 58	•33 •35 •35 •35 •35	19	30 42 53 4 14	5.00 5.45 5.45 6.00 6.00	79 80	51 11 31 51 12	0.33 .33 .33 .35 .35	30 29 28 27 26	31.9 30.9 29.8 28.8 27.7
65 66 67 68 69		18 28 38 47 56	6.00 6.00 6.67 6.67 6.67	80	48 48 11 33	• 37 • 37 • 38 • 37 • 38	20	51 10 10 19 28	6.00 6.67 6.67 6.67 6.67	80	19 40 2 24 46	• 35 • 37 • 37 • 37 • 37	20	24 34 43 52 I	6.00 6.67 6.67 6.67 7.50	81	33 54 15 36 58	0.35 .35 .35 .37 .37	25 24 23 22 21	26.7 25.7 24.6 23.5 22.5
70 71 72 73 74	21	5 13 21 28 35	7.5° 7.5° 8.57 8.57 8.57	82	56 19 42 6 29	0.38 .38 .40 .38 .40	21	37 45 52 59 6	7.5° 8.57 8.57 8.57 8.57	82	8 30 53 16 39	0.37 .38 .38 .38 .38		9 17 24 31 38	7.50 8.57 8.57 8.57 10.0	82 83	20 42 4 26 48	0.37 .37 .37 .37 .38	20 19 18 17 16	21.4 20.4 19.3 18.3 17.2
75 76 77 78 79	22	42 48 54 59 4	10.0 10.0 12.0 12.0	84 85	53 17 41 5 29	0.40 .40 .40 .40		13 19 25 30 35	10.0 10.0 12.0 12.0 15.0	84 85	2 25 48 12 36	0.38 .38 .40 .40 .38	21	44 50 55 0	10.0 12.0 12.0 12.0 15.0	84 85	33 56 19 42	0.37 .38 .38 .38 .38	15 14 13 12 11	16.1 15.1 14.0 12.9 11.8
80 81 82 83 84	-	8 12 16 19 22	15.0 15.0 20.0 20.0 20.0	86 87	53 17 42 7 31	0.40 •42 •42 •40 •42		39 43 47 50 53	15.0 15.0 20.0 20.0 30.0	86 87	59 23 47 11 35	0.40 .40 .40 .40		9 13 17 20 23	15.0 15.0 20.0 20.0 30.0	86 87	28 52 15 39	0.38 .40 .38 .40 .38	9 8 7 6	9.7 8.6 7.5 6.5
85 86 87 88 89		25 27 28 29 30	30.0 60.0 60.0 60.0	88 89	56 21 45 10 35	0.42 .40 .42 .42 .42	22	55 57 58 59 0	30.0 60.0 60.0 —	88 89	59 23 47 12 36	0.40 .40 .42 .40		25 27 28 29 30	30.0 60.0 60.0 -	88	2 26 49 13 36	0.40 .38 .40 .38	5 4 3 2 1	5.4 4.3 3.2 2.2 1.1
90	_	30	604	90			_	0	601	90		Δ		30	600	90		 	0	0.0
t	_	a					-	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	0	ı	$\frac{60'}{\Delta}$		b	<u>Δ</u> 6ο'		a
		C	d=6	7° 3	0′				d = 6	8°	0′			(<i>l</i> = 6	8° 3	30′		A	

145

1	,6			a=6	9° (D'				a = 6	9° 8	30′				a = 7	70°	0′	4	\ c	\ a
1	B	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
	0 1 2 3 4	2 4 I	0 2 3 5 6	2.73 2.86 2.73 2.86 2.86	69°	0 0 1 2 3	0.00 .02 .02 .02	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0 21 42 3 24	2.86 2.86 2.86 2.86 2.86	69°	30 30 31 32 33	0.00 .02 .02 .02	0	0 2I 4I 2 22	2.86 3.00 2.86 3.00 2.86	7°	0 0 1 2 3	0.00	90 89 88 87 86	90.0 89.1 88.1 87.2 86.3
	56789	2 3	7 9 0 2 3	2.73 2.86 2.73 2.86 2.86		4 6 8 11 14	0.03 .03 .05 .05	2	45 6 27 48 9	2.86 2.86 2.86 2.86 3.00		34 36 38 41 44	.03 .05 .05	3	43 3 23 44 4	3.00 3.00 2.86 3.00 3.00		4 6 8 11 14	0.03 .03 .05 .05	85 84 83 82 81	85.3 84.4 83.4 82.5 81.6
	10 11 12 13 14	4 1	5 6 7 8	2.86 2.86 2.86 2.86 2.86		17 21 25 29 34	0.07 .07 .07 .08	4	29 50 11 31 52	2.86 2.86 3.00 2.86 3.00	70	47 51 55 59 4	0.07 .07 .07 .08	4	24 45 5 25 45	2.86 3.00 3.00 3.00 3.00		17 20 24 28 33	0.05 .07 .07 .08	80 79 78 77 76	80.6 79.7 78.7 77.8 76.8
	15 16 17 18 19	6 2	9 0 1 2	2.86 2.86 2.86 3.00 2.86	70	39 45 51 57 3	0.10 .10 .10 .10	6	33 53 13 33	2.86 3.00 3.00 3.00 3.00		9 14 20 26 32	0.08 .10 .10 .10	5 6	5 25 44 4 24	3.00 3.16 3.00 3.00 3.16	71	38 43 49 55 1	0.08	75 74 73 72 71	75.9 75.0 74.0 73.1 72.1
	20 21 22 23 24	· 8 4	33333	3.00 3.00 3.00 3.00 3.00		10 17 24 32 40	0.12 .12 .13 .13	7 8	53 13 32 52 12	3.00 3.16 3.00 3.00 3.16	71	39 46 53 1	0.12 .12 .13 .13	7 8	43 3 22 41 0	3.00 3.16 3.16 3.16 3.16		7 14 21 29 37	0.12 .12 .13 .13	70 69 68 67 66	71.2 70.2 69.3 68.3 67.4
	25 26 27 28 29	9 2	3 2 2 1 0	3.16 3.00 3.16 3.16 3.16	71	49 58 7 17 27	0.15 .15 .17 .17	9	31 50 9 28 47	3.16 3.16 3.16 3.16 3.33		17 26 35 44 54	0.15 .15 .15 .17	9	19 38 56 15 33	3.16 3.33 3.16 3.33 3.33	72	45 53 2 11 20	0.13 .15 .15 .15	65 64 63 62 61	66.4 65.4 64.5 63.5 62.6
	30 31 32 33 34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 8 7 5 3	3.16 3.16 3.33 3.33 3.33	72	37 47 58 9 21	0.17 .18 .18 .20	11	5 23 41 59 17	3-33 3-33 3-33 3-33	72	4 14 25 36 47	0.17 .18 .18 .18	10	51 9 27 44 2	3·33 3·33 3·53 3·33 3·53	73	30 40 51 2 13	0.17 .18 .18 .18	59 58 57 56	61.6 60.6 59.7 58.7 57.7
	35 36 37 38 39	12	9752	3·33 3·33 3·33 3·53 3·53	73	33 45 57 10 23	0.20 .20 .22 .22 .23	12	35 53 10 27 44	3.33 3.53 3.53 3.53 3.53	73	58 10 22 35 48	0.20 .20 .22 .22	12	19 36 53 9 26	3.53 3.53 3.75 3.53 3.75	74	24 36 48 0	0.20 .20 .20 .20	55 54 53 52 51	56.7 55.8 54.8 53.8 52.8
	40 41 42 43 44	3 5 14	13 2 3.53 19 3.53 36 3.53 53 3.75 14 9 3.75 25 3.75		37 51 5 19 34	0.23 .23 .23 .25	13	1 17 33 49 5	3.75 3.75 3.75 3.75 4.00	74	1 14 28 42 57	0.22 .23 .23 .25 .23	13	42 58 14 29 44	3.75 3.75 4.00 4.00 4.00	75	25 38 52 6 20	0.22 .23 .23 .23 .23	50 49 48 47 46	51.8 50.8 49.9 48.9 47.9	
_	45	4	I	6.1		49			20		75	11			59	6.1		34		45	46.9
	t	a		<u>6ο'</u> Δ	l	b	$\frac{\Delta}{60'}$	_ a	ı	60' Δ	l	6	$\frac{\Delta}{60'}$	0	ı	<u>6ο'</u> Δ	l	,	<u>Δ</u> 60'		a
			(d = 6	9° ()′			C	l=69	9° 3	80′				d = 7	′0° ()′			į,

\ b	1		a = 6	9°	0′	÷		a	ı = 69	9° 3	0′				a = 7	70°	0′		\ c	a
B	h	d	<u>60'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
45 46 47 48 49	14	41 56 11 26 41	4.00 4.00 4.00 4.00 4.00	74 75	49 4 20 36 52	0.25 .27 .27 .27 .27	14	20 35 50 5 19	4.00 4.00 4.00 4.29 4.29	75°	11 26 42 57 13	0.25 .27 .25 .27 .27	13 14	59 14 29 43 57	4.00 4.00 4.29 4.29 4.29	75°	34 49 4 19 34	0.25 .25 .25 .25	° 45 44 43 42 41	46.9 45.9 44.9 43.9 42.9
50 51 52 53 54	16	56 10 24 38 51	4.29 4.29 4.29 4.62 4.62	76 77	8 25 42 59 17	.28 .28 .30 .30	16	33 47 1 14 27	4.29 4.29 4.62 4.62 4.62	77	29 45 2 19 36	0.27 .28 .28 .28 .30	15	11 25 38 51 4	4.29 4.62 4.62 4.62 5.00	77	50 6 22 39 55	0.27 .27 .28 .27 .28	40 39 38 37 36	41.9 40.8 39.8 38.8 37.8
55 56 57 58 59	17	4 17 29 41 53	4.62 5.00 5.00 5.00 5.00	78	35 53 11 30 49	0.30 .30 .32 .32	17	40 53 5 17 28	4.62 5.00 5.00 5.45 5.45	78 79	54 12 30 48 6	0.30 .30 .30 .30	17	16 28 40 52 3	5.00 5.00 5.45 5.45	78 79	12 30 47 5 23	0.30 .28 .30 .30	35 34 33 32 31	36.8 35.8 34.7 33.7 32.7
60 61 62 63 64	18	5 16 27 37 47	5.45 5.45 6.00 6.00 6.00	79 80	8 27 47 7 27	0.32 •33 •33 •33 •33	18	39 50 I II 21	5.45 5.45 6.00 6.00 6.67	80	25 44 3 22 42	0.32 .32 .32 .33 .33		14 24 34 44 54	6.00 6.00 6.00 6.00 6.67	80	41 0 18 37 56	0.32 .30 .32 .32 .32	30 29 28 27 26	31.6 30.6 29.6 28.5 27.5
65 66 67 68 69	19	57 7 16 25 33	6.00 6.67 6.67 7.50 7.50	81	47 8 28 49 10	•35 •35 •35 •35	19	30 39 48 57 5	6.67 6.67 6.67 7.50 7.50	81	I 2I 4I I 22	•33 •33 •35 •35	18	3 12 21 29 37	6.67 6.67 7.50 7.50 7.50	81	15 35 54 14 34	•33 •33 •33 •33	25 24 23 22 21	26.5 25.4 24.4 23.3 22.3
70 71 72 73 74	20	41 49 56 3	7.50 8.57 8.57 10.0 10.0	83	31 53 14 36 58	• 37 • 35 • 37 • 37 • 37		13 20 27 34 40	8.57 8.57 8.57 10.0	8 ₃	43 4 25 46 7	0.35 •35 •35 •35 •35	19	45 52 59 6	8.57 8.57 8.57 10.0	8 ₃	54 15 35 56 16	•35 •35 •35 •35	20 19 18 17 16	21.2 20.2 19.1 18.1 17.0
75 76 77 78 79		15 21 26 31 36	10.0 12.0 12.0 12.0 15.0	84 85	20 42 4 26 49	• 37 • 37 • 38 • 37	20	46 52 57 2 6	10.0 12.0 12.0 15.0 15.0	85	28 50 11 33 55	•37 •35 •37 •37 •37		18 23 28 33 37	12.0 12.0 12.0 15.0	8 ₅	37 58 19 40 2	•35 •35 •35 •37 •35	15 14 13 12 11	16.0 14.9 13.8 12.8 11.7
80 81 82 83 84		40 44 47 50 53	15.0 20.0 20.0 20.0 30.0	86 87	11 34 57 19 42	0.38 .38 .37 .38 .38		10 14 17 20 23	15.0 20.0 20.0 20.0 30.0	86 87	17 39 1 23 46	• 37 • 37 • 37 • 38 • 37		41 45 48 51 53	15.0 20.0 20.0 30.0 30.0	87	23 44 6 28 49	0.35 .37 .37 .35 .37	10 98 7 6	10.7 9.6 8.5 7.5 6.4
85 86 87 88 89	21	55 57 58 59 0	30.0 60.0 60.0 -	88	5 28 51 14 37	0.38 .38 .38 .38		25 27 28 29 30	30.0 60.0 60.0 	88	8 30 53 15 37	• 37 • 38 • 37 • 37 • 38	20	55 57 58 59 0	30.0 60.0 60.0 60.0	88 89	33 55 16 38	• 37 • 35 • 37 • 37	5 4 3 2 1	5.3 4.3 3.2 2.1 1.1
90		ο 90 ο <u>Δ</u>					_	30	601	90	0	Δ	_	0	600	90		Δ.	0	0.0
t		$a \mid \overline{\Delta} \mid b \mid \overline{60}$						1	$\frac{60'}{\Delta}$		b	<u>Δ</u> 6ο'	-	ı	$\frac{60'}{\Delta}$		<i>b</i>	<u>Δ</u> 6ο′		a
	d = 69° 0′							a	l = 69	9° 3	0′				d = 7	0°	0′			

b		(a = 7	0° 8	30′				a = 7	1°	0′			-	<i>a</i> = 7	1° 8	30′		\ c	a
B	h	d	<u>6ο'</u> Δ	Z	t	<u>∆</u> 60′	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	$\beta \setminus$
0 I 2 3 4	O	20 40 0 20	3.00 3.00 3.00 3.00 3.00	70	30 30 31 32 33	0.00 .02 .02 .02	00	0 20 39 59 18	3.00 3.16 3.00 3.16 3.00	71	0 0 1 2 3	0.00 .02 .02 .02	O	0 19 38 57 16	3.16 3.16 3.16 3.16 3.16	7 I	30 30 31 32 33	0.00 .02 .02 .02	90 89 88 87 86	90.0 89.1 88.1 87.2 86.2
5 6 7 8 9	3	40 0 20 40 0	3.00 3.00 3.00 3.00 3.00		34 36 38 40 43	0.03 .03 .03 .05	2	38 57 17 36 55	3.16 3.00 3.16 3.16 3.00		4 6 8 10 13	0.03 .03 .03 .05	2	35 54 13 32 51	3.16 3.16 3.16 3.16 3.16		34 36 38 40 43	0.03 .03 .03 .05	85 84 83 82 81	85.3 84.3 83.4 82.4 81.5
10 11 12 13 14	4	20 39 59 18 38	3.16 3.00 3.16 3.00 3.16	71	46 50 54 58 2	0.07 .07 .07 .07	3	15 34 53 12 31	3.16 3.16 3.16 3.16 3.16		16 19 23 27 31	0.05 .07 .07 .07	3	10 28 47 6 24	3.33 3.16 3.16 3.33 3.16	72	46 49 53 57	0.05 .07 .07 .07	80 79 78 77 76	80.5 79.6 78.6 77.7 76.7
15 16 17 18 19	5	57 17 36 55 14	3.00 3.16 3.16 3.16 3.16		7 12 17 23 29	0.08	5 6	50 9 28 46 5	3.16 3.16 3.33 3.16 3.16		36 41 46 52 58	0.08	5	43 1 19 38 56	3.33 3.33 3.16 3.33 3.33		5 10 15 21 27	0.08	75 74 73 72 71	75.8 74.8 73.9 72.9 72.0
20 21 22 23 24	7	33 52 11 30 48	3.16 3.16 3.16 3.33 3.16	72	35 42 49 57 5	0.12 .12 .13 .13	7	24 42 0 18 36	3.33 3.33 3.33 3.33 3.33	72	4 11 18 25 32	0.12 .12 .12 .12	6 7	14 32 50 7 25	3·33 3·33 3·53 3·33 3·53	73	33 39 46 53 0	0.10 .12 .12 .12	70 69 68 67 66	71.0 70.1 69.1 68.1 67.2
25 26 27 28 29	9	7 25 43 1	3·33 3·33 3·33 3·33 3·33		13 21 29 38 47	0.13 .13 .15 .15	8	54 12 30 48 5	3·33 3·33 3·33 3·53 3·53	73	40 48 56 5	0.13 .13 .15 .15	8	42 0 17 34 51	3·33 3·53 3·53 3·53 3·53		8 16 24 32 41	0.13 .13 .13 .15	65 64 63 62 61	66.2 65.2 64.3 63.3 62.3
30 31 32 33 34	10	37 54 11 28 45	3.53 3.53 3.53 3.53 3.53	73	57 7 17 27 38	0.17 .17 .17 .18 .18	10	39 56 13 30	3.53 3.53 3.53 3.53 3.75	74	24 34 44 54 4	0.17 .17 .17 .17	9	8 24 41 57 13	3.75 3.53 3.75 3.75 3.75	74	50 0 10 20 30	0.17 .17 .17 .17	60 59 58 57 56	61.4 60.4 59.4 58.4 57.5
35 36 37 38 39	11	2 19 35 51 7	3.53 3.75 3.75 3.75 3.75 3.75	74	49 1 13 25 37	0.20 .20 .20 .20	11	46 18 34 50	3.75 3.75 3.75 3.75 4.00	75	15 26 37 49 1	0.18 .18 .20 .20	11	29 45 1 16 31	3.75 3.75 4.00 4.00 4.00	75	40 51 2 14 26	0.18 .18 .20 .20	55 54 53 52 51	56.5 55.5 54.5 53.5 52.6
40 41 42 43 44	13	23 39 54 9 24	3.75 4.00 4.00 4.00 4.00	75	49 15 29 43	0.22 .22 .23 .23 .23	12	- 1	4.00 4.00 4.00 4.29 4.29	76	13 26 39 52 5	0.22 .22 .22 .22 .23	12	46 1 16 30 44	4.00 4.00 4.29 4.29 4.29	76	38 50 2 15 28	0,20 ,20 ,22 ,22	50 49 48 47 46	51.6 50.6 49.6 48.6 47.6
45		39	60'	,	57	Δ		18	60'		19	Δ		58	60'	7	41	Δ	45	46.6
t	a		Δ		9	$\frac{\Delta}{60'}$	a		Δ		b	<u>Δ</u> 6ο'			Δ			60′		α
		d	=70)° 3	0′			(d=7	1° ()′ 			d	=71	° 3	0′			

\ b		C	<i>u</i> = 70)° 3	0′				a = 7	71° (0′			(a = 7	1° 3	0′		c	a
$ B\rangle$	h	d	<u>60'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
9 45 46 47 48 49	13	39 54 8 22 36	4.00 4.29 4.29 4.29 4.62	75 76	57 11 25 40 55	0.23 .23 .25 .25	13	18 32 46 0	4.29 4.29 4.29 4.62 4.62	76 77	19 33 47 1 16	0.23 .23 .23 .25	12 13	58 12 25 38 51	4.29 4.62 4.62 4.62 4.62	78 77	41 55 9 23 37	0.23 .23 .23 .23 .25	° 45 44 43 42 41	46.6 45.6 44.6 43.6 42.6
50 51 52 53 54	15	49 2 15 28 40	4.62 4.62 4.62 5.00 5.00	77 78	10 26 42 58 15	0.27 .27 .27 .28 .27	15	26 39 52 4 16	4.62 4.62 5.00 5.00 5.00	78	31 46 2 18 34	0.25 .27 .27 .27 .27	14	4 17 29 41 53	4.62 5.00 5.00 5.00 5.45	78	52 7 22 37 52	0.25 .25 .25 .25 .27	40 39 38 37 36	41.6 40.6 39.6 38.6 37.5
55 56 57 58 59	16	52 4 16 27 38	5.00 5.00 5.45 5.45 6.00	79	31 48 5 22 40	0.28 .28 .28 .30	16	28 40 51 2 12	5.00 5.45 5.45 6.00 6.00	79	50 6 23 40 57	0.27 .28 .28 .28	15	4 15 26 37 47	5.45 5.45 5.45 6.00 6.00	79 80	8 24 40 57 13	0.27 .27 .28 .27 .28	35 34 33 32 31	36.5 35.5 34.5 33.5 32.4
60 61 62 63 64	17	48 58 8 18 27	6.00 6.00 6.00 6.67 6.67	80	58 16 34 52 10	0.30 .30 .30 .30	17	22 32 42 52 1	6.00 6.00 6.00 6.67 6.67	80	14 31 49 7 25	0.28 .30 .30 .30	16	57 7 16 25 34	6.00 6.67 6.67 6.67 6.67	81	30 47 4 22 39	0.28 .28 .30 .28	30 29 28 27 26	31.4 30.4 29.4 28.3 27.3
65 66 67 68 69	18	36 45 54 2	6.67 6.67 7.50 7.50 8.57	82	29 48 7 27 46	0.32 .32 .33 .32 .33		10 18 26 34 42	7.5° 7.5° 7.5° 7.5° 8.57	82	43 2 20 39 58	0.32 .30 .32 .32 .32	17	43 51 59 7 14	7.50 7.50 7.50 8.57 8.57	82	57 15 33 51 10	0.30 .30 .30 .32 .30	25 24 23 22 21	26.3 25.2 24.2 23.1 22.1
70 71 72 73 74		17 24 31 37 43	8.57 8.57 10.0 10.0	83 84	6 25 45 5 26	0.32 .33 .33 .35 .33	18	49 56 2 8 14	8.57 10.0 10.0 10.0	83 84	17 36 56 15 35	0.32 •33 •32 •33 •32		21 28 34 40 46	8.57 10.0 10.0 10.0	84	28 47 6 25 44	0.32 .32 .32 .32 .32	20 19 18 17 16	21.1 20.0 19.0 17.9 16.9
75 76 77 78 79	19	49 54 59 4 8	12.0 12.0 12.0 15.0 15.0	8 ₅	46 6 27 47 8	0.33 .35 .33 .35 .35		20 25 30 34 38	12.0 12.0 15.0 15.0 15.0	8 ₅	54 14 34 54 14	0.33 .33 .33 .33	18	51 56 1 5	12.0 12.0 15.0 15.0	85 86	3 22 42 1 21	0.32 .33 .32 .33 .32	15 14 13 12 11	15.8 14.8 13.7 12.7 11.6
80 81 82 83 84		12 15 18 21 23	20.0 20.0 20.0 30.0 30.0	87	29 50 11 32 53	0.35 .35 .35 .35		42 45 48 51 53	20.0 20.0 20.0 30.0 30.0	87	35 55 15 36 56	0.33 .33 .35 .33		13 16 19 22 24	20.0 20.0 20.0 30.0 30.0	87 88	40 0 20 40 0	0.33 .33 .33 .33	9 8 7 6	10.6 9.5 8.5 7.4 6.3
85 86 87 88 89		25 27 28 29 30	30.0 60.0 60.0	88	14 35 56 18 39	0.35 .35 .37 .35 .35	19	55 57 58 59 0	30.0 60.0 60.0 60.0	88	17 37 58 19 39	0.33 •35 •35 •33 •35		26 27 28 29 30	60.0 60.0 60.0 -	89	20 40 0 20 40	0.33 .33 .33 .33	5 4 3 2 1	5·3 4·2 3·2 2·1 1·1
90	_	30 90 0 a 60' b 4				_	0		90	0		_	30		90	0		0	2.0 ——	
t	_					$\frac{\Delta}{60'}$	0	ı	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$		a	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$		a
			d=7	0° 3	0′				d = 7	71°	0′			(d=7	1° 3	80′			

\ b	/	a = 7	2° 0′	\ \ 1		a	s = 72	2º 3	0′				a = 7	3° ()′	y	c	\ a
B	h d	$\frac{60'}{\Delta}$	Z	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	C	β
0 0 1 2 3 4	0 0 19 37 56 1 14	3.16 3.33 3.16 3.33 3.16	72 ° 0 ° 0 ° 1 ° 1 ° 2	0.00 .02 .00 .02		0 18 36 54 12	3·33 3·33 3·33 3·33	72	30 30 31 31 32	0.00 .02 .00 .02	0	0 18 35 53 10	3·33 3·53 3·33 3·53 3·33	73	0 0 1 1 2	0.00 .02 .00 .02	90 89 88 87 86	90.0 89.0 88.1 87.1 86.2
5 6 78 9	33 51 2 9 28 46	3.33 3.33 3.16 3.33 3.16	4 6 8 10 13	0.03 .03 .03 .05	2	30 48 6 24 42	3.33 3.33 3.33 3.33 3.33		34 35 37 39 42	0.02 .03 .03 .05	2	28 45 3 20 37	3.53 3.33 3.53 3.53 3.33		4 5 7 9 12	0.02 .03 .03 .05	85 84 83 82 81	85.2 84.3 83.3 82.4 81.4
10 11 12 13 14	3 5 23 41 59 4 17	3.33 3.33 3.33 3.33 3.33	16 19 22 26 30	0.05 .05 .07 .07		0 17 35 53 10	3.53 3.33 3.33 3.53 3.53		45 48 51 55 59	0.05 .05 .07 .07	3	55 12 29 46 3	3.53 3.53 3.53 3.53 3.53		15 18 21 25 29	0.05 .05 .07 .07	80 79 78 77 76	80.5 79.5 78.5 77.6 76.6
15 16 17 18 19	35 53 5 11 29 46	3.33 3.33 3.33 3.53 3.33	34 39 44 49 55	0.08 .08 .08		28 45 3 20 37	3.53 3.33 3.53 3.53 3.53	73	3 8 13 18 24	80.0 80. 80. 10	5	20 37 54 11 28	3.53 3.53 3.53 3.53 3.75		33 37 42 47 52	0.07 .08 .08 .08	75 74 73 72 71	75·7 74·7 73·7 72·8 71.8
20 21 22 23 24	6 4 21 39 56 7 13	3.53 3.53 3.53 3.53 3.53	73 I 7 14 21 28	0.10 .12 .12 .12		54 11 28 45 2	3.53 3.53 3.53 3.53 3.75		30 36 42 49 56	0.10 .10 .12 .12	6	44 1 17 34 50	3.53 3.75 3.53 3.75 3.75	74	58 4 10 17 24	0,10 .10 .12 .12	70 69 68 67 66	70.9 69.9 68.9 68.0 67.0
25 26 27 28 29	30 47 8 4 21 37	3.53 3.53 3.53 3.75 3.75	35 43 51 59 74	0.13 .13 .13 .15	8	18 35 51 7 23	3.53 3.75 3.75 3.75 3.75	74	3 11 19 27 35	0.13 .13 .13 .13	<i>7</i> 8	6 22 38 54 9	3.75 3.75 3.75 4.00 3.75	75	31 38 46 54 2	0.12 .13 .13 .13	65 64 63 62 61	66.0 65.1 64.1 63.1 62.1
30 31 32 33 34	53 9 9 25 41 57	3.75 3.75 3.75 3.75 3.75	17 26 36 46 56	0.15 .17 .17 .17	9	39 55 10 26 41	3.75 4.00 3.75 4.00 4.00	75	44 53 2 11 21	0.15 .15 .15 .17	9	25 40 55 10 25	4.00 4.00 4.00 4.00 4.29		10 19 28 37 46	0.15 .15 .15 .15	59 58 57 56	61.2 60.2 59.2 58.2 57.2
35 36 37 38 39	10 13 28 43 58 11 13	4.00 4.00 4.00 4.00	75 6 16 27 38 50	0.17 .18 .18 .20	10	56 11 26 40 54	4.00 4.00 4.29 4.29 4.29	76	31 41 52 3 14	0.17 .18 .18 .18	10	39 54 8 22 36	4.00 4.29 4.29 4.29 4.29	76	56 6 17 27 38	0.17 .18 .17 .18	55 54 53 52 51	56.3 55.3 54.3 53.3 52.3
40 41 42 43 44	28 42 56 12 10 24	4.29 4.29 4.29 4.29 4.29		0.20		8 22 36 50 3	4.29 4.29 4.29 4.62 4.62	77	25 37 49 1	0.20 .20 .20 .20	11	50 4 17 30 43	4.29 4.62 4.62 4.62 4.62	77	49 0 12 24 36	0.18 .20 .20 .20	50 49 48 47 46	51.3 50.3 49.3 48.4 47.4
45	38		77 4	1		16	6-1		26			56	601		48	1 1	45	46.4
t	а	6ο' Δ	b	$\frac{\Delta}{60'}$	0	ı	<u>δο'</u> Δ		b	$\frac{\Delta}{60'}$	- 0	a	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$		a
		d = 7	2° 0′	,		(d = 7	2° 3	0′				d = 7	'3° (0′			

8			a = 7	2°	0′			a	a = 72	2° 3	0′	1		:	a=7	3° ()′∶	.)	\ c	
B	h	<i>d</i>	<u>6ο′</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	<u>60</u> ⁴ Δ	z	t	<u>Δ</u> 6ο'	h	d	6ο'. Δ	Z	t	<u>A</u> ,	$C \setminus$	β
45 46 47 48 49	13	38 51 4 17	4.62 4.62 4.62 5.00 5.00	77	4 17 30 44 58	0,22 ,22 ,23 ,23 ,23	12	16 29 42 55 7	4.62 4.62 4.62 5.00 5.00	77 78	26 39 52 5	0.22	0 II I2	56 9 21 33 45	4.62 5.00 5.00 5.00 5.00	77 78	48 1 13 26 39	0.22	45 44 43 42 41	46.4 45.4 44.4 43.4 42.3
50 51 52 53 54	14	41 53 5 17 29	5.00 5.00 5.00 5.00 5.45	78 79	12 26 41 56 11	0.23 .25 .25 .25 .25	14	19 31 43 54 5	5.00 5.00 5.45 5.45 5.45	79	33 47 1 15 30	0.23 .23 .23 .25	13	57 8 19 30 41	5.45 5.45 5.45 5.45 5.45	79	53 7 21 35 49	0.23 .23 .23 .23 .23	40 39 38 37 36	41.3 40.3 39.3 38.3 37.3
55 56 57 58 59	15	40 51 1 11 21	5.45 6.00 6.00 6.00 6.00	80	26 42 58 14 30	0.27 .27 .27 .27 .27	Ļ	16 26 36 46 56	6.00 6.00 6.00 6.00	80	45 0 15 31 47	0.25 .25 .27 .27 .27	14	52 12 22 31	6.00 6.00 6.67 6.67	80	3 3 3 48 3	25 25 25 25 25	35 34 33 32 31	36.3 35.3 34.3 33.2 32.2
60 61 62 63 64	2	31 50 59 8	6.00 6.67 6.67 6.67 7.50	81	46 3 20 37 54	.28 .28 .28 .28	15	6 15 24 33 41	6.67 6.67 6.67 7.50 7.50	81	3 19 35 51 8	0.27 .27 .27 .28 .28	15	40 49 58 6	6.67 6.67 7.50 7.50 7.50	82	18 34 50 22	0.27 .27 .27 .27 .27	30 29 28 27 26	31.2 30.2 29.1 28.1 27.1
65 66 67 68 69	(A critical	16 24 32 39 46	7.50 7.50 8.57 8.57 8.57	82	11 28 46 4 22	.30 .30 .30	16	49 57 4 11 18	7.5° 8.57 8.57 8.57 8.57	83	25 42 59 16 33	.28 .28 .28 .28		22 30 37 44 51	7.50 8.57 8.57 8.57 10.0	83	38 55 11 28 45	0.28 .27 .28 .28	25 24 23 22 21	26.1 25.0 24.0 23.0 21.9
70 71 72 73 74	17	53 59 51 17	10.0 10.0 10.0 10.0	84	40 58 16 34 53	0.30 .30 .30 .32 .32		25 31 37 43 48	10.0 10.0 10.0 12.0 12.0	84	51 8 26 44 2	.30 .30 .30 .30	16	57 3 9 14 19	10.0 10.0 12.0 12.0	84	19 36 53 11	0.28 .28 .28 .30 .28	20 19 18 17 16	20.9 19.9 18.8 17.8 16.7
75 76 77 78 79	2	22 27 31 35	12.0 15.0 15.0 15.0	85	30 49 8 27	0.30 .32 .32 .32 .32	17	53 58 2 6	12.0 15.0 15.0 15.0	86	20 38 56 15 33	0.30 .30 .32 .30		24 29 33 37 41	12.0 15.0 15.0 15.0 20.0	86	28 46 4 22 40	.30 .30 .30 .30	15 14 13 12 11	15.7 14.7 13.6 12.6 11.5
80 81 82 83 84	4	13 16 19 52	20.0 20.0 20.0 30.0 30.0	87 88	46 5 25 44 3	•33 •32 •32 •33		14 17 20 22 24	20.0 20.0 30.0 30.0 30.0	87 88	52 10 29 48 7	0.30 .32 .32 .32 .30		44 47 50 52 54	20.0 20.0 30.0 30.0 30.0	87 88	58 16 34 52 10	.30 .30 .30 .30	9 8 7 6	10.5 9.4 8.4 7.3 6.3
85 86 87 88 89		56 57 58 59 0	60.0 60.0 60.0	89	23 42 1 21 40	0.32 •32 •33 •32 •33		26 27 28 29 30	60.0 60.0 60.0	89	25 44 3 22 41	0.32 •32 •32 •32 •32	17	56 57 58 59 0	60.0 60.0 60.0	89	28 47 5 23 42	.30 .30 .32 .30	5 4 3 2 1	5.2 4.2 3.1 2.1 1.0
90	a	0	60'	90	о b	Δ	-	30	60'	90	b	Δ	-	о а	60′	90	o b:	Δ	0	0.0 a
t			d = 7			60'	_		d = 7	1		60'			d = 7			60'		, , , ,

1	,			a=7	'3° :	30′				a = 7	74°	0′			1	a = 7	4° 8	80′		c	\ a
B		h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	6ο' Δ	z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
3 4		o	34 51 8	3.53 3.53 3.53				0		3.53 3.75 3.53 3.75 3.53	74		0,00 ,02 ,00 ,02	O		3.75 3.75 3.75 3.75 3.75 3.75	74		0.00 .02 .00 .02	90 89 88 87 86	90.0 89.0 88.1 87.1 86.2
5 6 7 8 9		2	25 42 59 16 33	3.53 3.53 3.53 3.53 3.53		33 35 37 39 41	.03 .03 .03 .03	2	23 39 56 12 28	3.75 3.53 3.75 3.75 3.53		3 5 7 9	0.03 .03 .03 .03	2	20 36 52 8 24	3.75 3.75 3.75 3.75 3.75		33 35 37 39 41	0.03 .03 .03 .03	85 84 83 82 81	85.2 84.2 83.3 82.3 81.3
10 11 12 13 14		3	50 6 23 40 56	3.75 3.53 3.53 3.75 3.53		44 47 50 54 58	0.05 .05 .07 .07	3	45 1 17 33 49	3.75 3.75 3.75 3.75 3.75		14 17 20 23 27	0.05 .05 .05 .07	3	40 55 11 27 42	4.00 3.75 3.75 4.00 3.75		43 46 49 53 56	0.05 .05 .07 .05	80 79 78 77 76	80.4 79.4 78.5 77.5 76.5
15 16 17 18 19		5	13 29 46 2 18	3.75 3.53 3.75 3.75 3.75	74	2 6 11 16 21	0.07 .08 .08 .08	5	5 21 37 53 9	3.75 3.75 3.75 3.75 3.75		31 35 40 45 50	0.07 .08 .c8 .08	4	58 14 29 44 59	3.75 4.00 4.00 4.00 4.00	75	0 4 9 13 18	0.07 .08 .07 .08	75 74 73 72 71	75.6 74.6 73.6 72.7 71.7
20 21 22 23 24		6	34 50 6 22 38	3.75 3.75 3.75 3.75 3.75		27 33 39 45 51	0.10 .10 .10 .10	6	25 40 56 11 26	4.00 3.75 4.00 4.00 4.00	75	55 1 7 13 19	0.10 .10 .10 .10	5 6	14 29 44 59 14	4.00 4.00 4.00 4.00 4.00		23 29 35 41 47	0.10	70 69 68 67 66	70.7 69.7 68.8 67.8 66.8
25 26 27 28 29		7	54 9 25 40 55	4.00 3.75 4.00 4.00 4.00	75	58 5 13 21 29	0.12 .13 .13 .13	7	41 56 11 26 41	4.00 4.00 4.00 4.00 4.29		26 33 40 48 55	0.12 .12 .13 .12 ,13	7	29 44 58 12 26	4.00 4.29 4.29 4.29 4.29	76	53 0 7 14 22	0,12 .12 .12 .13	65 64 63 62 61	65.9 64.9 63.9 62.9 62.0
30 31 32 33 34		9	10 25 40 54 8	4.00 4.29 4.29 4.29	76	37 45 54 3	0.13 .15 .15 .15	8	55 10 24 38 52	4.00 4.29 4.29 4.29 4.29	76	3 11 20 29 38	0.13 .15 .15 .15	8	40 54 8 22 36	4.29 4.29 4.29 4.29 4.62	77	30 38 46 54 3	0.13 .13 .13 .15	59 58 57 56	61.0 60.0 59.0 58.0 57.0
35 36 37 38 39	1	0	22 36 50 4 18	4.29 4.29 4.29 4.29 4.62	77	22 32 42 52 2	0.17 .17 .17 .17	9	6 19 33 46 5 9	4.62 4.29 4.62 4.62 4.62	77	47 56 6 16 26	0.15 .17 .17 .17	9	49 2 15 28 41	4.62 4.62 4.62 4.62 4.62		12 21 31 40 50	0.15 .17 .15 .17	55 54 53 52 51	56.1 55.1 54.1 53.1 52.1
40 41 42 43 44	I	I	31 44 57 10 23	4.62 4.62 4.62 4.62 5.00		13 24 35 46 58	0.18 .18 .18 .20	10	12 25 38 50 2	4.62 4.62 5.00 5.00 5.00	78	37 47 58 9 21	0.17 .18 .18 .20	10	54 6 18 30 42	5.00 5.00 5.00 5.00 5.00	78	0 11 21 32 43	0.18 .17 .18 .18	50 49 48 47 46	51.1 50.1 49.1 48.1 47.1
45	_	_	35		78	10			14			32			54			54		45	46.1
t		a		6ο' Δ	b	,	<u>Δ</u> 6ο'	(ı	<u>6ο'</u> Δ	i	b	$\frac{\Delta}{60'}$	C	ı	6ο' Δ		b	$\frac{\Delta}{60'}$		α
			d	=78	0′				d = 7	4° ()′			d	l=74	1° 3	0′				

\ b		a =	73°	30′				a = 7	4°	0′			C	a=74	4° 3	0′		c	a
B	h	d 60 Δ	1 2	* *	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	11 3 4 5 12 1 2	7 5.0 9 5.0 I 5.0		22 34 47	0.20 .20 .22 .22	12	14 26 38 49 0	5.00 5.00 5.45 5.45 5.45	78 79	3 ² 44 56 8 21	0.20 .20 .20 .22 .20	10 11	54 5 16 27 38	5.45 5.45 5.45 5.45 5.45	78 79	54 6 17 29 41	0.20 .18 .20 .20	\$\frac{9}{45}\$ 44 43 42 41	46.1 45.1 44.1 43.1 42.1
50 51 52 53 54	3 4 5 13	5 5.4 6 5.4 7 6.0	5	13 26 40 54 7	0.22 .23 .23 .22 .23		11 22 33 43 53	5.45 5.45 6.00 6.00 6.00	80	33 46 59 13 26	0.22 .22 .23 .22 .23	12	49 59 9 19 29	6.00 6.00 6.00 6.00 6.00	80	53 6 19 32 45	0.22 .22 .22 .22 .22	40 39 38 37 36	41.1 40.1 39.1 38.1 37.1
55 56 57 58 59	2 3 4 5	7 6.0 7 6.6	7 8:	21 36 50 1 5 20	0.25 .23 .25 .25	13	3 13 22 31 40	6.00 6.67 6.67 6.67 6.67	81	40 54 8 22 36	0.23 .23 .23 .23	13	39 48 57 6	6.67 6.67 6.67 6.67 7.5°	81	58 11 25 38 52	0.22 .23 .22 .23 .23	35 34 33 32 31	36.1 35.1 34.0 33.0 32.0
61 62 63 64	1 2 3 3 4	3 7.59 1 7.59 9 7.59	82	35 50 2 5 20 36	0.25 .25 .25 .27 .27	14	49 57 5 13 21	7.5° 7.5° 7.5° 7.5° 8.57	82	50 5 20 35 50	0.25 .25 .25 .25		23 31 39 47 54	7.5° 7.5° 7.5° 8.57 8.57	82	6 20 35 49 4	0.23 .25 .23 .25 .25	30 29 28 27 26	31.0 30.0 29.0 27.9 26.9
65 66 67 68 69		2 8.5 9 8.5 5 8.5	7 8	52 8 24 40 56	0.27 .27 .27 .27 .28		28 35 42 49 55	8.57 8.57 8.57 10.0	83 84	5 21 36 52 8	0.27 .25 .27 .27 .27	14	1 8 15 21 27	8.57 8.57 10.0 10.0	84	19 34 49 4 19	0.25 .25 .25 .25 .27	25 24 23 22 21	25.9 24.9 23.8 22.8 21.8
70 71 72 73 74	2 3 4 4 5	5 12. 5 12.	8	29 46	0.27 .28 .28 .28	15	1 7 12 17 22	10.0 12.0 12.0 12.0 12.0	85	24 40 56 12 29	0.27 .27 .27 .28 .27		33 38 43 48 53	12.0 12.0 12.0 12.0	85	35 50 6 22 38	0.25 .27 .27 .27 .27	20 19 18 17 16	20.7 19.7 18.7 17.6 16.6
75 76 77 78 79		15.0	86	37 54 5 11 28 46	0.28 .28 .28 .30 .28		27 31 35 39 42	15.0 15.0 15.0 20.0 20.0	86	45 2 19 35 52	0.28 .28 .27 .28 .28	15	58 2 6 9	15.0 15.0 20.0 20.0 20.0	86	54 10 26 42 58	0.27 .27 .27 .27 .27	15 14 13 12 11	15.6 14.5 13.5 12.5 11.4
80 81 82 83 84	I I 2 2 2	7 20.0 30.0 2 30.0		21 38 56	0.30 .28 .30 .28		45 48 51 53 55	20.0 20.0 30.0 30.0 60.0	87 88	9 26 43 0	0.28 .28 .28 .28		15 18 21 23 25	20.0 20.0 30.0 30.0 30.0	87 88	14 31 47 4 20	0.28 .27 .28 .27 .28	10 9 8 7 6	10.4 9.4 8.3 7.3 6.2
85 86 87 88 89	2 2 2 2 3	7 60.6 8 60.6 9 60.6	89	31 49 7 24 42	0.30 .30 .28 .30	16	56 57 58 59 0	60.0 60.0 60.0 -	89	34 51 8 26 43	0.28 .28 .30 .28 .28		27 28 29 30 30	60.0 60.0 60.0	89	37 53 10 27 43	0.27 .28 .28 .27 .28	5 4 3 2 1	5.2 4.2 3.1 2.1 1.0
90	3		90	0			0		90	0			30		90	0		0	0.0
t	а	<u>6ον</u>		b	$\frac{\Delta}{60'}$	a	ı	<u>6ο'</u> Δ	l	5	$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$	l)	$\frac{\Delta}{60'}$		α
ı		d='	73°	30′				d=7	4° ()′			à	l=74	۱° 3	0′			

b	1	,	a = 7	5°	0′,	¥ .,†		(a = 7	5° 3	80′	۸.			a = 7	6°	0′)	c	a
$B \setminus$	h	d	<u>6ο'</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	z	t	$\frac{\Delta}{60'}$	h,	d	<u>60′</u> Δ	Z	t	<u>Δ</u> 60'	$C \setminus$	β
0 1 2 3 4	0	0 16 31 47 2	3.75 4.00 3.75 4.00 3.75	75	0 0 1 1 2	0.00 .02 .00 .02	O	0 15 30 45 0	4.00 4.00 4.00 4.00 4.00	75	30 30 31 31 32	0.00	°O	0 15 29 44 58	4.00 4.29 4.00 4.29 4.00	76	0 0 0 1 2	0.00 .00 .02 .02	90 89 88 87 86	90.0 89.0 88.1 87.1 86.1
5 6 78 9	2	18 33 49 4 19	4.00 3.75 4.00 4.00 3.75		3 5 6 8 10	0.03 .02 .03 .03	2	15 30 45 0	4.00 4.00 4.00 4.00 4.00		33 34 36 38 40	0.02 .03 .03 .03	2	13 27 41 56 10	4.29 4.29 4.00 4.29 4.00		3 4 6 8 10	0.02 .03 .03 .03	85 84 83 82 81	85.2 84.2 83.2 82.3 81.3
10 11 12 13 14	3	35 50 5 20 35	4.00 4.00 4.00 4.00 4.00		13 16 19 22 25	0.05 .05 .05 .05	3	30 44 59 14 28	4.29 4.00 4.00 4.29 4.00		43 45 48 51 55	0.03 .05 .05 .07	3	25 39 53 7 21	4.29 4.29 4.29 4.29 4.29		12 15 18 21 24	0,05	80 79 78 77 76	80.3 79.3 78.4 77.4 76.4
15 16 17 18 19	4	50 5 20 35 50	4.00 4.00 4.00 4.00 4.00		29 33 38 42 47	0.07 .08 .07 .08	4	43 57 12 26 41	4.29 4.00 4.29 4.00 4.29	76	58 2 7 11 16	0.07 .08 .07 .08	.4	35 49 3 17 31	4.29 4.29 4.29 4.29 4.29		27 31 35 40 44	0.07 .07 .08 .07	75 74 73 72 71	75.5 74.5 73.5 72.5 71.6
20 21 22 23 24	6	5 19 34 48 3	4.29 4.00 4.29 4.00 4.29	76	52 57 3 9	0.08	5	55 9 23 37 51	4.29 4.29 4.29 4.29 4.62		20 25 31 37 43	0.08	5	45 59 12 26 39	4.29 4.62 4.29 4.62 4.62	77	49 54 59 4	0.08	70 69 68 67 66	70.6 69.6 68.6 67.7 66.7
25 26 27 28 29	7	17 31 45 59 13	4.29 4.29 4.29 4.29 4.62		21 27 34 41 48	0.10 .12 .12 .12	6	4 18 32 45 58	4.29 4.29 4.62 4.62 4.62	77	49 55 1 8 15	0.10 .10 .12 .12	6	52 5 18 31 44	4.62 4.62 4.62 4.62 4.62		16 22 28 35 42	0.10 .10 .12 .12	65 64 63 62 61	65.7 64.7 63.7 62.8 61.8
30 31 32 33 34	8	26 40 53 6 19	4.29 4.62 4.62 4.62 4.62	77	56 4 12 20 28	0.13 .13 .13 .13	<i>7</i> 8	11 24 37 50 3	4.62 4.62 4.62 4.62 4.62		22 30 38 46 54	0.13 .13 .13 .13	7	57 10 22 34 46	4.62 5.00 5.00 5.00 5.00	78	49 56 4 11	0,12 .13 .12 .13	60 59 58 57 56	60.8 59.8 58.8 57.8 56.9
35 36 37 38 39	9	32 45 58 10 22	4.62 4.62 5.00 5.00 5.00	78	37 46 55 4 14	0.15 .15 .15 .17	9	16 28 40 52 4	5.00 5.00 5.00 5.00 5.00	78	2 11 20 29 38	0.15 .15 .15 .15	8	58 10 22 34 46	5.00 5.00 5.00 5.00 5.45	79	27 36 44 53 2	0.15 .13 .15 .15	55 54 53 52 51	55.9 54.9 53.9 52.9 51.9
40 41 42 43 44	10	34 5.00 24 0.17 46 5.00 34 .17 58 5.00 44 .18 10 5.00 55 .17 22 5.45 79 5 .18 33 16					10	16 27 39 50 1	5.45 5.00 5.45 5.45 5.45	79	47 57 7 17 28	0.17 .17 .17 .18	9	57 8 19 30 41	5.45 5.45 5.45 5.45 6.00		11 21 30 40 50	0.17 .15 .17 .17	50 49 48 47 46	50.9 49.9 48.9 47.9 46.9
45		33			16			12			38		_	51	,	80	0	11	45 ===	45-9
t	0	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$	C	ı	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$. (a ·	60' <u>Δ</u>	1	b	$\frac{\Delta}{60'}$	0	a
L			d = 7	5° ()′				d = 7	5°	30′				d = 7	6° ()′ ,			

8	,	Ĭ	a = 7	5° (0′.			а	= 75	5° 3	0′ -				a = 7	6°	0′.	, ,	c	\ a
$B \setminus$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	Z	t	$\frac{\Delta}{60^{s}}$	$C \setminus$	β
45 46 47 48 49	11		5.45 5.45 5.45 6.00 6.00	7.9 80	16 27 39 50 2	0.18 .20 .18 .20	10	12 23 33 43 53	5.45 6.00 6.00 6.00 6.00	7.9 80	38 49 0 11 ,22	0.18 .18 .18 .18	9	51 1 11 21 31	6.00 6.00 6.00 6.00 6.00	80	0 10 21 32 43	0.17 .18 .18 .18	° 45 44 43 42 41	45.9 44.9 43.9 42.9 41.9
50 51 52 53 54	12	26 36 46 56	6.00 6.00 6.00 6.67 6.67	81	14 26 38 50 3	.20 .20 .20 .22 .22	11	3 13 23 32 41	6.00 6.67 6.67 6.67	81	34 45 57 9 21	0.18 .20 .20 .20 .22	11	41 50 59 8 17	6.67 6.67 6.67 6.67 6.67	81	54 5 16 28 40	0.18 .18 .20 .20	39 38 37 36	40.9 39.9 38.9 37.9 36.9
55 56 57 58 59		14 23 32 41 49	6.67 6.67 6.67 7.50 7.50	82	16 29 42 55 9	0.22 .22 .22 .23 .22	12	50 59 7 15 23	6.67 7.50 7.50 7.50 7.50	82	34 46 59 12 25	0.20 .22 .22 .22 .22		26 34 42 50 58	7.50 7.50 7.50 7.50 7.50	82	52 4 16 28 41	0.20 .20 .20 .22	35 34 33 32 31	35.9 34.9 33.9 32.8 31.8
60 61 62 63 64	13	57 5 13 20 27	7.5° 7.5° 8.57 8.57 8.57	83	22 36 50 4 18	0.23 .23 .23 .23 .23	13	31 39 46 53 0	7.5° 8.57 8.57 8.57 8.57 8.57	83	38 51 5 18 32	0.22 .23 .22 .23 .23	12	6 13 20 27 34	8.57 8.57 8.57 8.57 10.0.	83	54 7 20 33 46	0.22 .22 .22 .22 .22	30 29 28 27 26	30.8 29.8 28.8 27.8 26.7
65 66 67 68 69		34 41 47 53 59	8.57 10.0 10.0 10.0	84	32 47 1 16 31	0.25 .23 .25 .25 .25		7 13 19 25 31	10.0 10.0 10.0 10.0	84	46 0 14 28 42	0,23 .23 .23 .23 .25	13	40 46 52 58 3	10.0 10.0 10.0 12.0 12.0	84	59 12 26 40 54	0.22 .23 .23 .23	25 24 23 22 21	25.7 24.7 23.7 22.7 21.6
70 71 72 73 74	14	5 10 15 20 25	12.0 12.0 12.0 12.0 15.0	85	46 1 16 31 47	0.25 .25 .25 .27 .25		36 41 46 51 56	12.0 12.0 12.0 12.0 15.0	85	57 11 26 40 55	0.23 .25 .23 .25 .25	,	8 13 18 23 27	12.0 12.0 12.0 15.0	8 ₅	8 22 36 50 4	0.23 .23 .23 .23	20 19 18 17 16	20.6 19.6 18.6 17.5 16.5
75 76 77 78 79		29 33 37 40 43	15.0 15.0 20.0 20.0 20.0	86 87	2 17 33 49 4	0.25 .27 .27 .25 .27	14	0 4 7 10 13	15.0 20.0 20.0 20.0 20.0	86	10 25 40 55 10	0.25 .25 .25 .25		31 35 38 41 44	15.0 20.0 20.0 20.0 20.0	87	18 33 47 2 17	0.25 .23 .25 .25	15 14 13 12 11	15.5 14.4 13.4 12.4 11.4
80 81 82 83 84		46 49 51 53 55	20.0 30.0 30.0 30.0 30.0	88	20 36 52 8 24	0.27 .27 .27 .27 .27		16 19 21 23 25	20.0 30.0 30.0 30.0 30.0	88	26 41 56 12 27	0.25 .25 .27 .25 .25		47 50 52 54 56	20.0 30.0 30.0 30.0 60.0	88	31 46 1 15 30	0.25 .25 .23 .25 .25	10 9 8 7 6	10.3 9.3 8.3 7.2 6.2
85 86 87 88 89	15	57 60.0 40 0.27 58 60.0 56 .27 59 60.0 89 12 .27 0 — 28 .27 0 — 44 .27			27 28 29 30 30	60.0 60.0 60.0	89	42 58 13 29 44	0.27 .25 .27 .25 .27	14	57 58 59 0	60.0 60.0 	89	45 0 15 30 45	0.25 .25 .25 .25	5 4 3 2 1	5.2 4.1 3.1 2.1 1.0			
90		0		90	0			30		90	0			0		90	0		0	0.0
t	. ($a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $						ı	$\frac{60'}{\Delta}$	ŀ		$\frac{\Delta}{60'}$	a	ı	$\frac{60'}{\Delta}$	ľ)	$\frac{\Delta}{60'}$		a
0.	d=75° 0′							à	= 78	5° 3	0′			(d = 7	6° C)′ ,			-

\b		a	ı = 76	3° 3	0′				a = 7	7° (0′			C	i = 7	7° 3	0′		$\setminus c$	a
$B \setminus$	h	d	$\frac{60'}{\Delta}$	z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	z	*	<u>Δ</u> 6ο'	h	$\frac{d}{}$	$\frac{60'}{\Delta}$	Z	*	<u>3</u>	$C \setminus$	3
0 I 2 3 4	0	0 14 28 42 56	4.29 4.29 4.29 4.29 4.29	76	30 30 30 31 32	0.00 .00 .02 .02	0	ó 14 27 41 54	4.29 4.62 4.29 4.62 4.62	77 [°]	, 0 0 0 1 2	0.00 .00 .02 .02	00	0 13 26 39 52	4.62 4.62 4.62 4.62 4.62 4.62	77 [°]	30 30 30 31 32	0.00 .00 .02 .02	90 89 88 87 86	90.0 89.0 88.1 87.1 86.1
5 6 78 9	2	10 24 38 52 6	4.29 4.29 4.29 4.29 4.62		33 34 36 38 40	0.02 .03 .03 .03	2	7 21 34 48 1	4.29 4.62 4.29 4.62 4.62		3 4 6 7 9	0.02 .03 .02 .03	I	5 31 44 56	4.62 4.62 4.62 5.00 4.62		33 34 35 37 39	0.02 .02 .03 .03	85 84 83 82 81	85.1 84.2 83.2 82.2 81.2
10 11 12 13 14	3	19 33 47 1	4.29 4.29 4.29 4.62 4.29		42 44 47 50 53	0.03 .05 .05 .05	3	14 28 41 54 7	4.29 4.62 4.62 4.62 4.62		11 14 16 19 22	0.05 .03 .05 .05	3	9 22 35 47 0	4.62 4.62 5.00 4.62 4.62		41 43 46 49 52	0.03 .05 .05 .05	80 79 78 77 76	80.3 79.3 78.3 77.3 76.3
15 16 17 18 19	4	28 42 55 8 22	4.29 4.62 4.62 4.29 4.62	77	57 0 4 8 13	0.05 .07 .07 .08	4	20 33 46 59 12	4.62 4.62 4.62 4.62 4.62		26 29 33 37 41	0.05 .07 .07 .07	4	13 25 38 50 2	5.00 4.62 5.00 5.00 4.62	78	55 58 2 6	0.05 .07 .07 .07	75 74 73 72 71	75·4 74·4 73·4 72·4 71·5
20 21 22 23 24	5	35 48 1 14 27	4.62 4.62 4.62 4.62 4.62		17 22 27 32 38	0.08	5	25 37 50 3 15	5.00 4.62 4.62 5.00 5.00	78	45 50 55 0 5	0.08 .08 .08	5	15 27 39 51 3	5.00 5.00 5.00 5.00 5.00		14 18 23 28 33	0.07 .08 .08 .08	70 69 68 67 66	70.5 69.5 68.5 67.5 66.5
25 26 27 28 29	6	40 53 5 18 30	4.62 5.00 4.62 5.00 5.00	78	44 50 56 2 8	0.10 .10 .10 .10	6	27 39 51 3 15	5.00 5.00 5.00 5.00 5.00		11 17 23 29 35	01,0	6	15 27 38 50 2	5.00 5.45 5.00 5.00 5.45	79	38 44 50 56 2	01.0	65 64 63 62 61	65.6 64.6 63.6 62.6 61.6
30 31 32 33 34	7	42 54 6 18 30	5.00 5.00 5.00 5.00 5.00		15 22 30 37 45	0.12 .13 .12 .13 .12	7	27 39 51 2 14	5.00 5.00 5.45 5.00 5.45	79	41 48 55 3	0.12 .12 .13 .12		13 24 35 46 57	5.45 5.45 5.45 5.45 5.45		8 14 21 28 35	0,10 .12 .12 .12	59 58 57 56	60.6 59.7 58.7 57.7 56.7
35 36 37 38 39	8	42 53 5 16 27	5.45 5.00 5.45 5.45 5.45	79	52 0 9 17 26	0.13 .15 .13 .15	8	25 36 47 58 8	5.45 5.45 5.45 6.00 5.45		17 25 33 41 50	0.13 .13 .13 .15	7	8 19 29 40 50	5.45 6.00 5.45 6.00 6.00	80	42 50 58 5	0.13 .13 .12 .13	55 54 53 52 51	55.7 54.7 53.7 52.7 51.7
40 41 42 43 44	9		5.45 6.00 5.45 6.00 6.00	80	35 44 53 2 12	0.15 .15 .15 .17		19 29 39 49 5 9	6.00 6.00 6.00 6.00	80	58 7 16 25 34	0.15 .15 .15		0 10 20 29 39	6.00 6.00 6.67 6.00 6.67		30 39 47 56	0.13 .15 .13 .15	50 49 48 47 46	50.7 49.7 48.7 47.7 46.7
45		30			22		9	9			43		_	48		81	5		45	45.7
$ _t$	a	ι	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		а	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a	$\frac{60'}{\Delta}$	1	b	$\frac{\Delta}{60'}$		a
		(l=70	6° 3	0′				d = 7	7 7 °	0′			(l = 7'	7° 3	0′			

\ b		a	ı = 76	3° 3	0′				a = 7	7° () [′]			a	a = 77	7° 3	0′		\ c	a
$B \setminus$	h	d	<u>6ο'</u> Δ	\overline{z}	*	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	Z	*	<u>Δ</u> 6ο'	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
45 46 47 48 49	9 10	30 40 50	6.00 6.00 6.00 6.67 6.67	80°	22 32 42 52 3	0.17 .17 .17 .18	9	9 19 28 37 46	6.00 6.67 6.67 6.67 6.67	80 81	43 53 3 13 23	0.17 .17 .17 .17	8 9	48 57 6 15 24	6.67 6.67 6.67 6.67 6.67	81	5 15 24 34 43	0.17 .15 .17 .15	° 45 44 43 42 41	45.7 44.7 43.7 42.7 41.7
50 51 52 53 54		18 27 36 45 53	6.67 6.67 6.67 7.50 7.50		14 25 36 47 58	0.18 .18 .18	10	55 4 13 21 29	6.67 6.67 7.50 7.50 7.50	82	33 44 55 6	0.18 .18 .18 .18	10	33 41 49 57 5	7.50 7.50 7.50 7.50 7.50 7.50	82	53 3 14 24 35	0.17 .18 .17 .18	40 39 38 37 3 6	40.7 39.7 38.7 37.7 36.7
55 56 57 58 59	II	9 17 25 33	7.50 7.50 7.50 7.50 8.57	82	9 21 33 45 57	0.20 .20 .20 .20	11	37 45 53 0 7	7.5° 7.5° 8.57 8.57 8.57	83	28 39 50 1	0.18 .18 .18 .20		13 20 27 34 41	8.57 8.57 8.57 8.57 8.57	83	45 56 7 18 29	0.18 .18 .18	35 34 33 32 31	35·7 34·7 33·7 32·7 31·7
60 61 62 63 64	12	40 47 54 I 7	8.57 8.57 8.57 10.0	83	9 22 34 47 59	0.22 .20 .22 .20		14 21 28 34 40	8.57 8.57 10.0 10.0	84	25 37 49 1	0.20 .20 .20 .20	11	48 55 1 7 13	8.57 10.0 10.0 10.0	84	40 52 3 15 27	0.20 .18 .20 .20	30 29 28 27 26	30.6 29.6 28.6 27.6 26.6
65 66 67 68 69		13 19 25 30 35	10.0 10.0 12.0 12.0 12.0	84 85	12 25 38 52 5	0.22 .22 .23 .22	12	46 52 57 2 7	10.0 12.0 12.0 12.0 12.0	85	25 38 51 3	0.22 .22 .20 .22 .22		19 24 29 34 39	12.0 12.0 12.0 12.0 12.0	85	39 51 3 15 27	0.20 .20 .20 .20	25 24 23 22 21	25.6 24.6 23.5 22.5 21.5
70 71 72 73 74		40 45 50 54 58	12.0 12.0 15.0 15.0	86	18 32 45 59 13	0.23 .22 .23 .23 .23		12 17 21 25 29	12.0 15.0 15.0 15.0	86	29 42 55 8 22	0.22 .22 .22 .23 .22	12	44 49 53 57	12.0 15.0 15.0 15.0 20.0	86	40 52 5 17 30	0.20 .22 .20 .22 .22	20 19 18 17 16	20.5 19.5 18.4 17.4 16.4
75 76 77 78 79	13	2 6 9 12 15	15.0 20.0 20.0 20.0 20.0	87	27 41 55 9 23	0.23 .23 .23 .23 .23		33 37 40 43 46	15.0 20.0 20.0 20.0 30.0	87	35 48 2 15 29	0.22 .23 .22 .23 .22		4 7 10 13 16	20.0 20.0 20.0 20.0 30.0	87	43 56 9 22 35	0.22 .22 .22 .22 .22	15 14 13 12 11	15.4 14.4 13.3 12.3 11.3
80 81 82 83 84		18 20 22 24 26	30.0 30.0 30.0 30.0 60.0	88	37 51 5 19 34	0.23 .23 .23 .25 .23		48 50 52 54 56	30.0 30.0 30.0 60.0	88	42 56 10 23 37	0.23 .23 .22 .23 .23		18 20 22 24 26	30.0 30.0 30.0 60.0	88	48 I 14 27 40	0.22 .22 .22 .22 .23	9 8 7 6	10.3 9.2 8.2 7.2 6.2
85 86 87 88 89		27 60.0 48 0.23 28 60.0 29 12 .25 29 60.0 17 .23 30 — 31 .23 30 90 0		13	57 58 59 0	60.0 60.0 60.0	89	51 5 18 32 46	0.23 .22 .23 .23 .23		27 28 29 30 30	60.0 60.0 60.0	89	54 7 20 33 47	0.22 .22 .22 .23 .22	5 4 3 2 1	5.I 4.I 3.I 2.I 1.0			
90	_	30	60'	90		Δ	_	0	60'	90	0	Δ	_	30	60′	90	0	Δ	0	0.0
t	_ '	Δ 60						ι	Δ		b	60'		а —	Δ	1		60'		a
	d=76° 30′								d = 7	7° (0′			(l=7	7° 3	0′			

b		а	=7	8° 0)′			a	a = 78	3° 3	0′				a = 7	/9° ()′		c	a
$B \setminus$	h	d	60' Δ	\overline{z}	t	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	60' Δ	z	t	$\frac{\Delta}{60'}$	$C \setminus$	β
0 1 2 3 4	1 2 3	2 4 5 5 7 4	5.00 4.62 5.00 4.62 5.00	78	0 0 0 1 2	0.00 .00 .02 .02	0	0 12 24 36 48	5.00 5.00 5.00 5.00 5.00	78	30 30 30 31 32	0.00	0	0 11 23 34 46	5.45 5.00 5.45 5.00 5.45	79°	0 0 0 1 2	0.00 .00 .02 .02	90 89 88 87 86	90.0 89.0 88.0 87.1 86.1
5 6 78 9	3	5 5 7 5 9 4	4.62 5.00 5.00 4.62 5.00		3 4 5 7 9	.02 .03 .03 .03	I	0 12 24 35 47	5.00 5.00 5.45 5.00 5.00		33 34 35 37 38	0.02 .02 .03 .02	I	57 9 20 31 43	5.00 5.45 5.45 5.00 5.45		3 4 5 6 8	.02 .02 .02 .03	85 84 83 82 81	85.1 84.1 83.1 82.2 81.2
10 11 12 13 14	1 2 4	7 5 9 5 I 5	4.62 5.00 5.00 5.00		11 13 15 18 21	0.03 .03 .05 .05	2	59 11 23 34 46	5.00 5.00 5.45 5.00 5.00		40 42 45 47 50	0.03 .05 .03 .05	2	54 5 16 28 39	5.45 5.45 5.00 5.45 5.45		10 12 14 16 19	0.03 .03 .03 .05	80 79 78 77 76	80.2 79.2 78.2 77.3 76.3
15 16 17 18 19	2 4	17 5.00 27 .05 29 5.00 30 .07 41 5.00 34 .07 53 5.00 38 .07 4 5 5.00 42 0.07		3	58 9 21 32 43	5.45 5.00 5.45 5.45 5.00	79	53 56 59 3	0.05 .05 .07 .07	3	50 I I 2 23 34	5.45 5.45 5.45 5.45 5.45		22 25 28 31 35	0.05 .05 .05 .07	75 74 73 72 71	75-3 74-3 73-3 72-3 71-4			
20 21 22 23 24	4 1 2 4 5	7 5 8 5 0 5	5.00 5.45 5.00 5.45		42 46 51 56 1	0.07 .08 .08 .08	4	55 6 17 28 39	5.45 5.45 5.45 5.45 5.45		11 15 19 24 28	.07 .08 .07 .08	4	45 55 6 17 27	6.00 5.45 5.45 6.00 5.45		39 43 47 51 56	0.07 .07 .07 .08	70 69 68 67 66	70.4 69.4 68.4 67.4 66.4
25 26 27 28 29	5 1 2 3 4	4 5 5 5 5 5 5 5 5 5	5.45 5.45 5.45 5.45		6 11 16 22 28	0.08 .08 .10	5	50 I I2 22 33	5.45 5.45 6.00 5.45 6.00		33 38 43 49 54	0.08 .08 .10 .08	5	38 48 58 8 18	6.00 6.00 6.00 6.00	80	1 6 11 16 21	0.08 .08 .08 .08	65 64 63 62 61	65.4 64.5 63.5 62.5 61.5
30 31 32 33 34	6 2	9 5			34 40 47 54	0.10 .12 .12 .12	6	43 54 4 14 24	5.45 6.00 6.00 6.00 6.00	80	0 6 12 19 25	0.10 .10 .12 .10	6	28 38 48 58	6.00 6.00 6.00 6.00 6.67		27 33 39 45 51	01.0 01. 01. 01.	59 58 57 56	60.5 59.5 58.5 57.5 56.5
35 36 37 38 39	41 6.00 80 1 .12 51 6.00 8 0.12		.13	7	34 44 54 3	6.00 6.67 6.00 6.67	81	32 39 46 53 1	0,12 .12 .12 .13		17 27 36 45 54	6.00 6.67 6.67 6.67 6.67	81	57 4 11 18 25	0.12 .12 .12 .12	55 54 53 52 51	55.5 54.6 53.6 52.6 51.6			
40 41 42 43 44	41 6.00 45 0.13 51 6.67 53 .13 8 0 6.67 81 1 .15 9 6.67 10 .13 18 6.67 18 .15			22 31 40 49 58	6.67 6.67 6.67 6.67 7.50		8 16 24 32 40	0.13 .13 .13 .13	7	3 12 20 29 37	6.67 7.50 6.67 7.50 7.50	82	32 39 47 55 2	0.12 .13 .13 .12	50 49 48 47 46	50.6 49.6 48.6 47.6 46.6				
45	2	27 27 27 A						6			49		A	45).		10	1	45	45.6
t	а	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60'} \right $					a		<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	a	,	6ο' Δ	1	5	<u>Δ</u> 60'		a
		d=78° 0′						d	=78	3° 3	0′-				d = 7	9° (0′	-		

0.203

0.194

8			a=7	8° (oʻ			a	-78	3° 3	0′				a = 7	9°	0′		\ c	\ .
B	h	d	6ο' Δ	Z	t	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	z	*	<u>Δ</u> 60'	$C \setminus$	β
45 46 47 48 49	8	27 36 45 53 2	6.67 6.67 7.5° 6.67 7.5°	81	27 36 45 54 4	0.15 .15 .15 .17	8	6 15 23 31 39	6.67 7.5° 7.5° 7.5° 7.5°	81° 82	49 57 6 15 24	0,13 .15 .15 .15	°7 8	45 53 1 9	7.5° 7.5° 7.5° 7.5° 8.57	82	10 19 27 35 44	0.15 .13 .13 .15	45 44 43 42 41	45.6 44.6 43.6 42.6 41.6
50 51 52 53 54		10 18 26 34 41	7.5° 7.5° 7.5° 8.57 8.57		13 23 33 43 53	0.17 .17 .17 .17	9	47 55 3 10 17	7.50 7.50 8.57 8.57 8.57	83	33 42 51 1	0.15 .15 .17 .17	,	24 32 39 46 53	7.50 8.57 8.57 8.57 8.57	83	53 2 11 20 29	0.15 .15 .15 .15	40 39 38 37 36	40.6 39.6 38.6 37.6 36.6
55 56 57 58 59	10	48 55 2 9 16	8.57 8.57 8.57 8.57 8.57	83	3 13 24 34 45	0.17 .18 .17 .18		24 31 38 44 50	8.57 8.57 10.0 10.0	84	21 31 41 51	0.17 .17 .17 .17	9	0 6 13 19 25	10.0 8.57 10.0 10.0	84	38 48 57 7 17	0.17 .15 .17 .17	35 34 33 32 31	35·5 34·5 33·5 32·5 31·5
60 61 62 63 64		23 29 35 41 46	10.0 10.0 10.0 12.0 10.0	84	56 7 18 29 41	0.18 .18 .18 .20	10	56 2 8 14 19	10.0 10.0 10.0 12.0 12.0		11 22 33 43 54	0.18 .18 .17 .18		31 37 42 47 52	10.0 12.0 12.0 12.0 12.0	85	27 37 47 57 8	0.17 .17 .17 .18	30 29 28 27 26	30.5 29.5 28.5 27.5 26.5
65 66 67 68 69	11	52 57 2 7 12	12.0 12.0 12.0 12.0 15.0	85	52 4 15 27 39	0.20 .18 .20 .20		24 29 34 39 44	12.0 12.0 12.0 12.0 15.0	85	5 16 27 38 50	0.18 .18 .18 .20	10	57 2 7 11 15	12.0 12.0 15.0 15.0	86	18 29 39 50 1	0.18 .17 .18 .18	25 24 23 22 21	25.4 24.4 23.4 22.4 21.4
70 71 72 73 74		16 20 24 28 32	15.0 15.0 15.0 15.0 20.0	86	51 3 15 27 39	0.20 .20 .20 .20	11	48 52 56 0 3	15.0 15.0 15.0 20.0 20.0	86	1 13 24 36 47	0.20 .18 .20 .18		19 23 27 31 34	15.0 15.0 15.0 20.0 20.0		12 23 34 45 56	0.18 .18 .18 .18	20 19 18 17 16	20.4 19.4 18.3 17.3 16.3
75 76 77 78 79		35 38 41 44 47	20.0 20.0 20.0 20.0 30.0	87	51 3 16 28 41	0.20 .22 .20 .22 .20		6 9 12 15	20.0 20.0 20.0 30.0 30.0	87	59 11 23 35 47	0.20 .20 .20 .20		37 40 43 46 48	20.0 20.0 20.0 30.0 30.0	87	7 18 30 41 53	0.18 .20 .18 .20	15 14 13 12 11	15.3 14.3 13.3 12.2 11.2
80 81 82 83 84		49 51 53 55 56	30.0 30.0 30.0 60.0 60.0	88	53 6 18 31 44	0.22 .20 .22 .22 .20		19 21 23 25 26	30.0 30.0 30.0 60.0 60.0	88	59 11 23 35 47	0.20 .20 .20 .20		50 52 54 55 56	30.0 30.0 60.0 60.0 60.0	88	4 15 27 39 50	0.18 .20 .20 .18	10 9 8 7 6	10.2 9.2 8.2 7.1 6.1
85 86 87 88 89	12	57 58 59 0	60.0 60.0 60.0	89	56 9 22 34 47	0.22		27 28 29 30 30	60.0 60.0 60.0	89	59 11 23 35 48	0.20 .20 .20 .22 .22	11	57 58 59 0	60.0 60.0 60.0	89	2 13 25 37 48	0.18 .20 .20 .18	5 4 3 2 1	5.1 4.1 3.1 2.0 1.0
90	_	0		90	0		_	30		90	0			0		90	0		0	0.0
t	(ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	0	a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		а	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$		a
			d = 7	78°	0′				d = 7	8° 3	30′			,	d = 7	/9° (0′			

1			00.65		Ī	-					ī	-		_			i\	Ţ
\"		a=7	9° 30′				a = 8	0°	0′				a = 8	0° 3	30′		$\setminus c$	C
$B \setminus$	h d	<u>6ο'</u> Δ	Z	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	z	t	$\frac{\Delta}{60'}$	h	d	<u>60'</u> Δ	Z	t	$\frac{\Delta}{60'}$	$C \setminus$	3
0 I 2 3 4	0 0 11 22 33 44	5.45 5.45 5.45 5.45 5.45	79 30 30 30 31 31	0,00	0	0 10 21 31 42	6.00 5.45 6.00 5.45 6.00	8ô	0 0 0 1 1	0.00	0	0 10 20 30 40	6.00 6.00 6.00 6.00 6.00	80	30 30 30 31 31	0.00 .00 .02 .00	90 89 88 87 86	90.0 89.0 88.0 87.0 86.1
56 78 9	55 1 6 17 27 38	5.45 5.45 6.00 5.45 5.45	32 33 34 36 38	.02	I	52 13 23 33	6.00 5.45 6.00 6.00 5.45		3 4 6 7	0.02 .02 .03 .02 .03	I	50 59 9 19 29	6.67 6.00 6.00 6.00 6.00		32 33 34 35 37	0.02 .02 .02 .03 .02	85 84 83 82 81	85.1 84.1 83.1 82.1 81.1
10 11 12 13 14	49 2 0 10 21 32	5.45 6.00 5.45 5.45 6.00	39 41 43 46 48	0.03 .03 .05 .03	2	44 54 4 14 24	6.00 6.00 6.00 6.00		9 11 13 15	0.03 .03 .03 .03	2	39 48 58 8	6.67 6.00 6.00 6.67 6.00		38 40 42 44 46	0.03 .03 .03 .03	80 79 78 77 76	80.1 79.2 78.2 77.2 76.2
15 16 17 18 19	42 53 3 3 14 24	5.45 6.00 5.45 6.00 6.00	51 54 57 80 0	0.05 .05 .05 .05	3	34 44 54 4 14	6.00 6.00 6.00 6.00		20 23 26 29 32	0.05 .05 .05 .05	3	27 36 46 55 5	6.67 6.00 6.67 6.00 6.67	81	49 52 54 57 0	0.05 .03 .05 .05	75 74 73 72 71	75.2 74.2 73.2 72.3 71.3
20 21 22 23 24	34 45 55 4 5 15	5.45 6.00 6.00 6.00 6.00	7 11 15 19 23	0.07 .07 .07 .07	4	24 34 44 53 3	6.00 6.67 6.00 6.00		35 39 43 47 51	0.07 .07 .07 .07 .07		14 24 33 42 51	6.00 6.67 6.67 6.67 6.67		4 7 11 15	0.05 .07 .07 .07	70 69 68 67 66	70.3 69.3 68.3 67.3 66.3
25 26 27 28 29	25 35 45 55 5 4	6.00 6.00 6.00 6.67 6.00	28 33 37 42 47	0.08 .07 .08 .08		13 22 31 41 50	6.67 6.67 6.00 6.67 6.67	81	55 0 4 9 14	0.08 .07 .08 .08	4	0 9 18 27 36	6.67 6.67 6.67 6.67 7.50		23 27 31 36 40	0.07 .07 .08 .07	65 64 63 62 61	65.3 64.3 63.4 62.4 61.4
30 31 32 33 34	14 23 33 42 51	6.67 6.67 6.67 6.67	53 58 81 4 10 16	0.08	5	59 8 17 26 34	6.67 6.67 6.67 7.50 6.67		19 24 30 35 41	0.08	5	44 53 1 9 18	6.67 7.50 7.50 6.67 7.50	82	45 50 55 1 6	0.08 .08 .10 .08	60 59 58 57 56	60.4 59.4 58.4 57.4 56.4
35 36 37 38 39	6 0 9 18 27 35	6.67 6.67 6.67 7.50 6.67	22 28 35 41 48	0.10 .12 .10 .12	6	43 52 0 8 16	6.67 7.50 7.50 7.50 7.50 7.50	82	47 53 59 5	0.10 .10 .10 .12		26 34 42 50 58	7.5° 7.5° 7.5° 7.5° 8.57		12 17 23 29 35	0.08 .10 .10 .10	55 54 53 52 51	55-4 54-4 53-4 52-4 51-4
40 41 42 43 44	44 52 7 0 8 16	7.5° 7.5° 7.5° 7.5° 7.5°	82 ⁵⁵ 9 17 24	0.12 .12 .13 .12		24 32 40 48 56	7.5° 7.5° 7.5° 7.5° 8.57		18 25 32 39 46	0.12 .12 .12 .12	6	5 13 20 28 35	7.5° 8.57 7.5° 8.57 8.57	83	42 48 55 1 8	0.10 .12 .10 .12		50.4 49.4 48.4 47.4 46.4
45	24		32		7	3			54			42			15		45	45-4
	a	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	a		60' <u>∆</u>		b	Δ 60'	a	ı	<u>6ο'</u> Δ	ŀ		<u>Δ</u> 60'		a.
t	(d = 79	9° 30′			(d = 8	0° (0′			á	2=80)° 3	0′			

				.105									_							
b		a	-79	9° 3	0′				a=8	0° (0′			ı	a = 8	0° 3	0′		$\setminus c$	a
$B \setminus$	h	d	<u>6ο'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	Z	*	<u>Δ</u> 60'	h	d	$\frac{60'}{\Delta}$	Z	*	$\frac{\Delta}{60'}$	$c \setminus$	β
45 46 47 48 49	7	24 32 40 47 54	7.5° 7.5° 8.57 8.57 8.57	82 83	32 40 48 56 4	0.13 .13 .13 .13	7	3 11 18 25 32	7.5° 8.57 8.57 8.57 8.57	82 83	54 1 9 16 24	0.12 .13 .12 .13	6 7	42 49 56 3 9	8.57 8.57 8.57 10.0 8.57	83°	1 5 22 29 37 44	0.12 .12 .13 .12	45 44 43 42 41	0 45.4 44.4 43.4 42.4 41.4
50 51 52 53 54	8	1 8 15 22 29	8.57 8.57 8.57 8.57 10.0		12 21 29 38 47	0.15 .13 .15 .15	8	39 45 52 58 4	10.0 8.57 10.0 10.0	84	32 40 48 5 7 5	0.13 .13 .15 .13		16 22 28 34 40	10.0 10.0 10.0 10.0	84	52 59 7 15 23	0.12 .13 .13 .13	40 39 38 37 36	40.4 39.4 38.4 37.4 36.4
55 56 57 58 59		35 41 47 53 59	10.0 10.0 10.0	84	56 5 14 23 33	0.15 .15 .15 .17		16 22 28 34	10.0 10.0 10.0 10.0		13 22 31 40 49	0.15 .15 .15 .15	8	46 52 58 3	IO.0 IO.0 I2.0 I2.0 I2.0	85	31 39 47 56 4	0.13 .13 .15 .13	35 34 33 32 31	35·4 34·4 33·4 32·4 31·4
60 61 62 63 64	9	5 11 16 21 26	10.0 12.0 12.0 12.0 12.0	85	42 52 I II 2I	0.17 .15 .17 .17		39 44 49 54 59	12.0 12.0 12.0 12.0 12.0	85	58 7 16 25 35	0.15 .15 .15 .17		13 18 23 28 32	12.0 12.0 12.0 15.0		13 22 30 39 48	0.15 .13 .15 .15	30 29 28 27 26	30.4 29.4 28.4 27.4 26.3
65 66 67 68 69		31 15.0 31 0.17 35 15.0 41 .17 39 15.0 86 2 .17 47 15.0 12 .17 51 15.0 22 0.18 55 15.0 33 1.7 59 20.0 43 .18		9	4 8 12 16 20	15.0 15.0 15.0 15.0	86	44 54 4 13 23	0.17 .17 .15 .17		36 40 44 48 52	15.0 15.0 15.0 15.0	86	57 6 15 25 34	0.15 .15 .17 .15	25 24 23 22 21	25.3 24.3 23.3 22.3 21.3			
70 71 72 73 74	10	51 55 59 2 5	15.0	87		.17		24 27 30 33 36	20.0 20.0 20.0 20.0 20.0	87	33 43 53 3 13	0.17 •17 •17 •17	9	56 59 2 5	20,0 20,0 20,0 20,0 20,0	87	43 53 2 12 22	0.17 .15 .17 .17	20 19 18 17 16	20.3 19.3 18.3 17.2 16.2
75 76 77 78 79		8 11 14 16 18	20.0 20.0 30.0 30.0 30.0		26 37 47 58	0.18 .18 .17 .18		39 42 45 47 49	20.0 20.0 30.0 30.0 30.0	88	23 33 44 54 4	0.17 .18 .17 .17		11 13 15 17	30.0 30.0 30.0 30.0	88	31 41 51 0	0.17 .17 .15 .17	15 14 13 12 11	15.2 14.2 13.2 12.2 11.2
80 81 82 83 84		18 30.0 58 .1 20 30.0 88 9 0.1 22 30.0 20 .1 24 60.0 31 .1 25 60.0 42 .1 26 60.0 53 .1		0.18 .18 .18 .18		51 53 54 55 56	30.0 60.0 60.0 60.0		25 36 46 57	0.17 .18 .17 .18		21 23 25 26 27	30.0 30.0 60.0 60.0 60.0	89	20 30 40 50	0.17 .17 .17 .17	9 8 7 6	9.1 8.1 7.1 6.1		
85 86 87 88 89		28 60.0 15 .2 29 60.0 27 .1 30 — 38 .1				0.18 .20 .18 .18	10	57 58 59 0	60.0 60.0 -	89	7 18 28 39 49	0.18 .17 .18 .17 .18		28 29 29 30 30	60.0 60.0		10 20 30 40 50	0.17 .17 .17 .17	5 4 3 2 1	5.1 4.1 3.0 2.0 1.0
90	_	30		90		<u> </u>	_	0	601	90		1 4		30	60'	90			0	0.0
$ _t$		a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a 	<u>60'</u> <u>∆</u>		b	$\frac{\Delta}{60'}$	Ĺ	a 	$\frac{60'}{\Delta}$	111	b	$\frac{\Delta}{60'}$		a
		(d = 7	9° 8	30′				d = 8	80°	0′			(d = 8	0° 3	80′			

\ b			a = 8	1° ()′			C	ı = 81	° 3	0′			(<i>a</i> = 8	2° ()′		\ c	\ a
$B \setminus$	h	d	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 60'	h	$\frac{d}{}$	60' ∆	Z	t	<u>∆</u> 60′	h	d	<u>6ο'</u> Δ	\overline{z}	*	<u>Δ</u> 60'	$C \setminus$	β
0 1 2 3 4	2	0 9 9 8 8	6.67 6.00 6.67 6.00 6.67	81	0 0 0 I I	0.00 .00 .02 .00	00	0 9 18 27 35	6.67 6.67 6.67 7.50 6.67	81	30 30 30 31 31	0.00 .00 .02 .00	00	0 8 17 25 33	7.50 6.67 7.50 7.50 6.67	82	0 0 0 1	0.00 .00 .02 .00	90 89 88 87 86	90.0 89.0 88.0 87.0 86.0
5 6 7 8 9	1 1	7 6 6 5 4	6.67 6.00 6.67 6.67 6.67		2 3 4 5 6	0.02 .02 .02 .02	I	44 53 2 11 20	6.67 6.67 6.67 6.67 7.50		32 33 34 35 36	0.02 .02 .02 .02	I	42 50 58 7 15	7.5° 7.5° 6.67 7.5° 7.5°		2 3 4 5 6	0.02 .02 .02 .02	85 84 83 82 81	85.1 84.1 83.1 82.1 81.1
10 11 12 13 14	2	3 3 2 1	6.00 6.67 6.67 6.67 6.67		8 10 12 14 16	0.03 .03 .03 .03	2	28 37 46 54 3	6.67 6.67 7.50 6.67 6.67		38 39 41 43 45	.03 .03 .03 .03		23 31 40 48 56	7.50 6.67 7.50 7.50 7.50		7 9 10 12 14	0.03 .02 .03 .03	80 79 78 77 76	80.1 79.1 78.1 77.1 76.1
15 16 17 18 19	3	9876	6.67 6.67 6.67 6.67 6.67		18 20 23 26 29	0.03 .05 .05 .05		12 20 29 37 46	7.50 6.67 7.50 6.67 7.50		47 49 52 55 57	0.03 .05 .05 .03	2	4 12 20 28 36	7.50 7.50 7.50 7.50 7.50 7.50		16 18 21 23 26	0.03 .05 .03 .05	75 74 73 72 71	75.2 74.2 73.2 72.2 71.2
20 21 22 23 24	3	4 3 2 2 3 0 9 9	6.67 6.67 7.50 6.67 7.50		32 35 39 42 46	0.05 .07 .05 .07	3	54 2 10 19 27	7.50 7.50 6.67 7.50 7.50	82	0 3 7 10 13	0.05 .07 .05 .05	3	44 52 59 7 15	7.5° 8.57 7.5° 7.5° 8.57		29 32 35 38 41	0.05 .05 .05 .05	70 69 68 67 66	70.2 69.2 68.2 67.2 66.2
25 26 27 28 29	4	5 3 21	6.67 6.67 7.50 7.50 7.50	82	50 54 58 2 7	.07 .07 .08 .08	4	35 43 51 59 7	7.5° 7.5° 7.5° 7.5° 8.57		17 21 25 29 33	0.07 .07 .07 .07		22 30 37 45 52	7.5° 8.57 7.5° 8.57 8.57	83	44 48 52 56 0	0.07 .07 .07 .07	65 64 63 62 61	65.2 64.2 63.3 62.3 61.3
30 31 32 33 34	3	29 15 15 1	7.5° 7.5° 7.5° 7.5° 7.5°		11 16 21 26 31	0.08 .08 .08 .08		14 22 30 37 45	7.5° 7.5° 8.57 7.5° 8.57		37 42 47 51 56	0.08 .08 .07 .08	4	59 7 14 21 28	7.5° 8.57 8.57 8.57 8.57		4 8 12 17 21	.07 .08 .07 .08	59 58 57 56	60.3 59.3 58.3 57.3 56.3
35 36 37 38 39	3	9 7 24 32	7.50 8.57 7.50 8.57 8.57		36 42 47 53 59	01.0	5	52 59 6 13 20	8.57 8.57 8.57 8.57 8.57	83	1 6 12 17 22	0.08 .10 .08 .08	5	35 42 48 55 2	8.57 10.0 8.57 8.57 10.0		26 31 36 41 46	0.08 .08 .08 .08	55 54 53 52 51	55·3 54·3 53·3 52·3 51·3
40 41 42 43 44	6	46 8.57 83 5 0.10 53 8.57 11 .10 6 0 8.57 17 .10 7 8.57 23 .12 14 8.57 30 .12			27 34 41 47 54	8.57 8.57 10.0 8.57 10.0		28 34 40 46 52	01.0		8 14 21 27 33	10.0 8.57 10.0 10.0	84	51 57 2 8 14	0.10	50 49 48 47 46	50.3 49.3 48.3 47.3 46.3			
45	-	21 37					6	0			58			39			20		45	45-3
	a	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60} \right $					0	ı	<u>6ο'</u> Δ		b	$\frac{\Delta}{60'}$	(a	$\frac{60'}{\Delta}$		b	$\frac{\Delta}{60'}$		a
t		d=81° 0′						(l = 8	1° 8	0'				d = 8	2° (0′			

\ b		a = 8	31° 0′			C	u = 81	l° 3	0′				a = 8	2° ()′		\ c	a
B	h	$\frac{60'}{\Delta}$	Z	$\frac{\Delta}{60'}$	h	d	<u>6ο′</u> Δ	Z	t	$\frac{\Delta}{60'}$	h	d	$\frac{60'}{\Delta}$	Z	t	$\frac{\Delta}{60'}$	cackslash	β
9 45 46 47 48 49	6 21 28 34 41 47	8.57 10.0	83 37 43 50 57 84 4	.12	6	0 6 12 18 24	10.0 10.0 10.0	83 84	58 4 11 17 24	0.10 .12 .10 .12	6	39 45 51 56 2	10.0 10.0 12.0 10.0	84	20 26 32 38 44	0.10	° 45 44 43 42 41	0 45·3 44·3 43·3 42·3 41·3
50 51 52 53 54	53 59 7 5 11 16	10.0 10.0 12.0	11 18 26 33 41	0.12 .13 .12 .13		30 36 41 47 52	10.0 12.0 10.0 12.0 12.0		31 38 45 52 59	0.12 .12 .12 .12		7 13 18 23 28	10.0 12.0 12.0 12.0 12.0	85	50 57 3 10 17	0.12 .10 .12 .12	40 39 38 37 36	40.3 39.3 38.3 37.3 36.3
55 56 57 58 59	22 27 32 · 37 42	12.0 12.0 12.0	49 56 85 4 12 20	0.12 .13 .13 .13	7	57 7 12 17	12.0 12.0 12.0 12.0 12.0	85	6 13 21 28 36	0.12 .13 .12 .13		33 38 42 47 51	12.0 15.0 12.0 15.0		23 30 37 44 52	0.12 .12 .12 .13	35 34 33 32 31	35·3 34·3 33·3 32·3 31·3
60 61 62 63 64	47 52 57 8 I	12.0 15.0 15.0	28 37 45 53 86 2	0.15 .13 .13 .15		22 26 30 34 38	15.0 15.0 15.0 15.0	86	44 51 59 7 15	0.12 .13 .13 .13	7	55 59 3 7	15.0 15.0 15.0 15.0	86	59 6 13 21 28	0.12 .12 .13 .12	30 29 28 27 26	30.3 29.3 28.3 27.3 26.3
65 66 67 68 69	9 13 17 21 24	15.0 15.0 20.0	10 19 28 36 45	0.15 .15 .13 .15		42 46 49 53 56	15.0 20.0 15.0 20.0 20.0		23 31 39 48 56	0.13 .13 .15 .13		15 19 22 25 28	15.0 20.0 20.0 20.0 20.0	87	36 44 51 59 7	0.13 .12 .13 .13	25 24 23 22 21	25.2 24.2 23.2 22.2 21.2
70 71 72 73 74	27 30 33 36 39	20.0	87 3 12 21 30	.15	8	59 5 8 10	20.0 20.0 20.0 30.0 20.0	87	4 13 21 30 38	0.15 .13 .15 .13		31 34 37 39 41	20.0 20.0 30.0 30.0 30.0		15 23 31 39 47	0.13 .13 .13 .13	20 19 18 17 16	20.2 19.2 18.2 17.2 16.2
75 76 77 78 79	42 44 46 48 50	30.0	39 48 58 7 16	1.15		13 15 17 19 21	30.0 30.0 30.0 60.0	88	47 56 4 13 22	0.15 .13 .15 .15	-	43 45 47 49 51	30.0 30.0 30.0 30.0 30.0	88	55 3 11 20 28	0.13 .13 .15 .13	15 14 13 12 11	15.2 14.2 13.1 12.1 11.1
80 81 82 83 84	54 55 56				22 24 25 26 27	30.0 60.0 60.0 60.0 60.0	89	31 40 48 57 6	0.15 .13 .15 .15		53 54 55 56 57	60.0 60.0 60.0 60.0	89	36 44 53 1	0.13 .15 .13 .15	10 9 8 7 6	10.1 9.1 8.1 7.1 6.1	
85 86 87 88 89	59 59	0 - 50 .17			28 29 29 30 30	60,0 60,0		15 24 33 42 51	0.15 .15 .15 .15	8	58 59 59 0	60.0 60.0 		18 26 35 43 52	0.13 .15 .13 .15	5 4 3 2 1	5.1 4.0 3.0 2.0 1.0	
90		 	90 0			30		90	0			0		90	0		0	0.0
t	а	$\frac{60'}{\Delta}$	b	$\frac{\Delta}{60'}$	0	ı	<u>60'</u> Δ		b	$\frac{\Delta}{60'}$	(ı	60' ▲		b	∆ 60′		a
L		d = 8	31° 0′			C	l = 8	1°3	0′				d=8	2° ()′			

b		C	a = 8	2° 3	30′				a = 8	3°	0′			(a = 83	3° 3	0′		c	•
$B \setminus$	h	d	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 6ο'	h	d	<u>6ο'</u> Δ	z	*	$\frac{\Delta}{60'}$	h	$\frac{d}{d}$	$\frac{60'}{\Delta}$	Z	t	<u>Δ</u> 6ο'	$C \setminus$	β
0 1 2 3 4	0	0 8 16 24 31	7.50 7.50 7.50 8.57 7.50	82	30 30 30 31 31	0.00	°	0 7 15 22 29	8.57 7.50 8.57 8.57 7.50	83	0 0 0 1 1	0.00	°O	0 7 14 20 27	8.57 8.57 10.0 8.57 8.57	83	30 30 30 31 31	0.00 .00 .02 .00	90 89 88 87 86	90.0 89.0 88.0 87.0 86.0
5 6 78 9	I	39 47 55 3	7.5° 7.5° 7.5° 8.57 7.5°		32 32 33 34 35	0.00 .02 .02 .02	I	37 44 51 58 6	8.57 8.57 8.57 7.50 8.57		2 2 3 4 5	0.00 .02 .02 .02	I	34 41 47 54	8.57 10.0 8.57 8.57 8.57		31 32 33 34 35	0.02 .02 .02 .02	85 84 83 82 81	85.0 84.0 83.1 82.1 81.1
10 11 12 13 14		18 26 33 41 49	7.5° 8.57 7.5° 7.5° 8.57		37 38 40 41 43	.03 .02 .03 .03		13 20 27 34 41	8.57 8.57 8.57 8.57 8.57		6 8 9 11 12	0.03 .02 .03 .02		8 14 21 28 34	10.0 8.57 8.57 10.0 8.57		36 37 38 40 41	0.02 .02 .03 .02 .03	80 79 78 77 76	80.1 79.1 78.1 77.1 76.1
15 16 17 18 19	2	56 4 11 19 26	7.5° 8.57 7.5° 8.57 7.5°		45 47 49 52 54	0.03 .03 .05 .03	2	48 55 2 9 16	8.57 8.57 8.57 8.57 8.57 8.57		14 16 18 20 23	0.03 .03 .03 .05	2	41 47 54 0 7	10.0 8.57 10.0 8.57 10.0		43 45 47 49 51	0.03 .03 .03 .03	75 74 73 72 71	75.1 74.1 73.1 72.1 71.1
20 21 22 23 24	3	34 41 48 55	8.57 8.57 8.57 7.5° 8.57	83	5 .05 8 .07 12 0.05 15 .05 18 .07			23 30 37 44 50	8.57 8.57 8.57 10.0 8.57		25 28 30 33 36	0.05 .03 .05 .05		13 20 26 32 38	8.57 10.0 10.0 10.0 8.57	84	53 56 58 1	0.05 .03 .05 .03	70 69 68 67 66	70.1 69.1 68.1 67.2 66.2
25 26 27 28 29		10 17 24 31 38	8.57 8.57 8.57 8.57 8.57			.05	3	57 4 10 17 23	8.57 10.0 8.57 10.0 8.57		39 42 45 49 52	0.05 .05 .07 .05	3	45 51 57 3 9	10.0 10.0 10.0 10.0		6 9 12 15	0.05 .05 .05 .05	65 64 63 62 61	65.2 64.2 63.2 62.2 61.2
30 31 32 33 34	4	45 51 58 5	8.57 8.57 10.0 8.57		30 34 38 42 46	0.07 .07 .07 .07		30 36 42 48 54	10.0 10.0 10.0 10.0	84	56 0 3 7	0.07 .05 .07 .07		15 21 26 32 38	10.0 12.0 10.0 10.0		22 25 29 32 36	0.05 .07 .05 .07	60 59 58 57 56	60,2 59.2 58.2 57.2 56.2
35 36 37 38 39		18 24 30 37 43	10.0 10.0 8.57 10.0 10.0	46 .08 51 0.07 55 .08 84 0 .08 5 .07 9 .08		4	0 6 12 18 24	10.0 10.0 10.0 10.0		15 20 24 28 33	0.08 .07 .07 .08	4	43 49 54 0 5	10.0 12.0 10.0 12.0 12.0		40 44 48 52 56	0.07 .07 .07 .07	55 54 53 52 51	55.2 54.2 53.2 52.2 51.2	
40 41 42 43 44	5	49 55 1 6	5 10.0 19 .10 1 12.0 25 .08 6 10.0 30 .08 2 10.0 35 .10					30 35 41 46 52	12.0 10.0 12.0 10.0 12.0		38 42 47 52 57	0.07 .08 .08 .08		10 16 21 26 31		85	1 5 10 14 19	0.07 .08 .07 .08	50 49 48 47 46	50.2 49.2 48.2 47.2 46.2
45		18			41			57		85	2		_	36			24		45	45.2
+	a	$a \left \frac{60'}{\Delta} \right b \left \frac{\Delta}{60'} \right $						1	60' ▲		b	$\frac{\Delta}{60'}$	(ı	60' <u>∆</u>		b	$\frac{\Delta}{60'}$		a
t		d = 82° 30'							d = 8	3°	0′			C	<i>l</i> = 8	3° 3	0′			

c

a

B

0

45.2

44.2

43.2

42.2

41.2

40.2

39.2 38.2

37.2 36.2

35.2

34.2

33.2

32.2

31.2

30.2

29.2

28.2

27.2

26.2

25.2

24.2

23.2

22.2

2I.I

20. I

19.1

18.1

17.1

16.1

15.1

14.1

13.1

12.1

II.I

10. I

9.I 8.I

7.1

6.0

5.0

4.0

3.0

2.0

I.O

0.0

a.

5

4

Δ

60

b

601

Δ

 $d = 83^{\circ} 30'$

a

 $d = 83^{\circ} 0'$

601

Δ

 α

60

b

60'

604

Δ

 $d = 82^{\circ} 30'$

 α

t

h

	b			a = 8	4° (0′				a = 8	5° (0′				a = 8	6° (0′		\ c	\ a
E	3/	h	d	$\frac{60'}{\Delta}$	z	t	$\frac{\Delta}{60'}$	h	d	<u>6ο'</u> Δ	Z	*	$\frac{\Delta}{60'}$	h	$\frac{d}{d}$	<u>6ο′</u> Δ	Z	*	<u>∆</u> 60′	C	β
	o 0 1 2 3 4		ó 6 13 19 25	10.0 8.57 10.0 10.0	84	0 0 0 0	0.00	0	6 5 10 16 21	12.0 12.0 10.0 12.0 12.0	85	0 0 0 0	0.00	0	0 4 8 13	15.0 15.0 12.0 15.0	86	0 0 0 0	0.00	90 89 88 87 86	90.0 89.0 88.0 87.0 86.0
	56 78 9		31 38 44 50 56	8.57 10.0 10.0 10.0		1 2 3 3 4	.02 .02 .00 .02 .02		26 31 37 42 47	12.0 10.0 12.0 12.0 12.0		1 2 2 3 4	0.02 .00 .02 .02		21 25 29 33 38	15.0 15.0 15.0 12.0 15.0		I I 2 2 3	0.00 .02 .00 .02 .02	85 84 83 82 81	85.0 84.0 83.0 82.0 81.0
1	10 11 12 13 14		2 9 15 21 27	8.57 10.0 10.0 10.0		5 7 8 9	.02 .02 .03 .02	I	52 57 2 7	12.0 12.0 12.0 12.0 10.0		5 6 7 8 9	.02 .02 .02 .02		42 46 50 54 58	15.0 15.0 15.0 15.0		4 4 5 6 7	0.00 .02 .02 .02	80 79 78 77 76	80.0 79.0 78.0 77.0 76.1
1	15 16 17 18		33 39 45 51 57	10.0 10.0 10.0 10.0		12 14 16 18 20	0.03 .03 .03 .03		18 23 28 33 38	12.0 12.0 12.0 12.0 12.0		10 12 13 15	0.03 .02 .03 .02	1	2 6 10 14 18	15.0 15.0 15.0 15.0		8 9 10 12 13	0.02 .02 .03 .02	75 74 73 72 71	75.1 74.1 73.1 72.1 71.1
2 2 2	21 22 23 24		3 9 1 5 20 26	10.0 10.0 12.0 10.0		22 24 26 28 31	0.03 .03 .03 .05	2	43 48 52 57 2	12.0 15.0 12.0 12.0 12.0		18 20 22 24 26	0.03 .03 .03 .03		22 26 30 34 38	15.0 15.0 15.0 15.0 20.0		14 16 17 19 21	0.03 .02 .03 .03	70 69 68 67 66	70.1 69.1 68.1 67.1 66.1
2 2 2	25 26 27 28 29		32 38 43 49 54	10.0 12.0 10.0 12.0 10.0		34 36 39 42 45	0.03 .05 .05 .05		7 11 16 21 25	15.0 12.0 12.0 15.0 12.0		28 30 33 35 37	0.03 .05 .03 .03		41 45 49 53 56	15.0 15.0 15.0 20.0 15.0		22 24 26 28 30	0.03 .03 .03 .03	65 64 63 62 61	65.1 64.1 63.1 62.1 61.1
63,63,63	30 31 32 33 34		0 5 11 16 21	12.0 10.0 12.0 12.0 12.0	85	48 51 54 58 1	0.05 .05 .07 .05		30 35 39 43 48	12.0 15.0 15.0 12.0 15.0		40 43 45 48 51	0.05 .03 .05 .05	2	0 4 7 11	15.0 20.0 15.0 20.0 15.0		32 34 3 6 39 41	0.03 .03 .05 .03	60 59 58 57 56	60.1 59.1 58.1 57.1 56.1
30303	35 36 37 38 39		26 31 36 41 46	12.0 12.0 12.0 12.0 12.0		5 8 12 16 20	0.05 .07 .07 .07	3	52 56 0 5	15.0 15.0 12.0 15.0 15.0	86	54 57 0 3 7	.05 .05 .05 .07		18 21 24 28 31	20.0 20.0 15.0 20.0 20.0		43 46 48 51 53	0.05 .03 .05 .03	55 54 53 52 51	55.1 54.1 53.1 52.1 51.1
4 4	40 11 12 13 14	4	51 56 1 5	12.0 12.0 15.0 12.0		24 28 32 36 41	0.07 .07 .07 .08		13 17 21 25 28	15.0 15.0 15.0 20.0 15.0		10 13 17 20 24	0.05 .07 .05 .07		34 37 41 44 47	20.0 15.0 20.0 20.0 20.0	87	56 59 2 4 7	0.05 .05 .03 .05	50 49 48 47 46	50.1 49.1 48.1 47.1 46.1
4	45 —		14			45			32			28			50			10	•	45	45.1
	t	а		6ο' Δ	t)	<u>Δ</u> 6ο'	(ı	<u>60'</u> Δ	t	,	<u>Δ</u> 6ο'	a	ı	<u>60'</u> Δ		b	<u>∆</u> 60′		a
				d = 8	4° (0′				d = 8	5° ()′				d = 8	6° ()′			

1	ь			a=8	4° ()′				a = 8	5°	0′				a = 8	6°	0′		c	a
B	/	h	$\frac{d}{}$	<u>6ο'</u> Δ	Z	t	<u>Δ</u> 6ο'	h	d	60' <u>A</u>	\overline{z}	*	<u>Δ</u> 6ο'	h	d	<u>6ο′</u> Δ	Z	t	∆/60'	$C \setminus$	β
4 4 4 4 4	5 6 78 9	4		12.0 15.0 15.0 15.0	85 86	45 49 54 59 3	0.07 .08 .08 .07	3	32 36 39 43 46	15.0 20.0 15.0 20.0 15.0	86	28 31 35 39 43	0.05 .07 .07 .07	3	50 53 55 58 I	20.0 30.0 20.0 20.0 20.0	87	10 13 16 19 22	0.05 .05 .05 .05	° 45 44 43 42 41	45.1 44.1 43.1 42.1 41.1
5 5 5 5 5 5	I 2 3		35 39 43 47 51	15.0 15.0 15.0 15.0		8 13 18 23 28	0.08 .08 .08 .08	4	50 53 56 59 2	20.0 20.0 20.0 20.0 20.0	87	47 51 55 59 3	0.07 .07 .07 .07 .08		4 7 9 12 14	20.0 30.0 20.0 30.0 20.0		26 29 32 35 39	0.05 .05 .05 .07	40 39 38 37 36	40.1 39.1 38.1 37.1 36.1
5 5 5 5 5 5	6 7 8	5	55 58 2 58	20.0 15.0 20.0 20.0 20.0		33 38 43 49 54	0.08		5 8 11 14 17	20.0 20.0 20.0 20.0 20.0		8 12 16 21 25	0.07 .07 .08 .07 .08		17 19 21 24 26	30.0 30.0 20.0 30.0 30.0		42 46 49 53 56	0.07 .05 .07 .05	35 34 33 32 31	35.1 34.1 33.1 32.1 31.1
6 6 6 6 6	I 2 3		11 14 17 20 23	20.0 20.0 20.0 20.0 20.0	87	0 5 11 16 22	0.08 .10 .08 .10		20 22 25 27 30	30.0 20.0 30.0 20.0 30.0		30 34 39 44 48	0.07 .08 .08 .07		28 30 32 34 36	30.0 30.0 30.0 30.0 30.0	88	0 3 7 11 15	0.05 .07 .07 .07	30 29 28 27 26	30.1 29.1 28.1 27.1 26.1
6 6 6 6 6	6 7 8		26 29 31 34 36	20.0 30.0 20.0 30.0 30.0		27 33 39 45 51	0.10		32 34 36 38 40	30.0 30.0 30.0 30.0 30.0	88	53 58 3 7	0.08 .08 .07 .08		38 39 41 42 44	60.0 30.0 60.0 30.0 30.0		18 22 26 30 34	0.07 .07 .07 .07	25 24 23 22 21	25.1 24.1 23.1 22.1 21.1
777	2		38 40 42 44 46	30.0 30.0 30.0 30.0 30.0	88	56 2 8 14 20	0.10 .10 .10 .10		42 44 45 47 49	30.0 60.0 30.0 30.0 60.0		17 22 27 32 37	0.08 .08 .08 .08		46 47 48 50 51	60.0 60.0 30.0 60.0 60.0		38 42 46 50 54	0.07 .07 .07 .07	20 19 18 17 16	20.1 19.1 18.1 17.1 16.1
77	5 6 78 9		48 49 51 52 53	60.0 30.0 60.0 60.0 6 0.0		27 33 39 45 51	0.10		50 51 52 53 54	60.0 60.0 60.0 60.0	89	42 47 52 57 3	0.08 .08 .08		52 53 54 55 56	60.0 60.0 60.0 60.0	89	58 2 6 10 14	0.07 •07 •07 •07	15 14 13 12 11	15.1 14.1 13.0 12.0 11.0
8 8 8	1 2 3 4		54 55 56 57 58	60.0 60.0 60.0 60.0	89	57 3 10 16 22	0,10 .12 .10 .10		55 56 57 58 58	60.0 60.0 60.0		8 13 18 23 29	0.08 .08 .08		56 57 58 58 59	60.0 60.0 — 60.0		18 22 27 31 35	0.07 .08 .07 .07	10 9 8 7 6	10.0 9.0 8.0 7.0 6.0
8 8	56789	6	59 59 0 0	60.0		29 35 41 47 54	0,10 .10 .10 .12	5	59 59 0 0	60.0 —		34 39 44 50 55	0.08 .08 .10 .08	4	59 59 0 0	 60.0 		39 43 47 52 56	0.07 .07 .08 .07	5 4 3 2 1	5.0 4.0 3.0 2.0 1.0
9	0	_	0		90	0		_	0		90	0			0		90	0		0	0.0
	t		а	60' <u>A</u>	1	b	<u>Δ</u> 6ο'	,	a	<u>6ο′</u> Δ		b	$\frac{\Delta}{60'}$	а	ı	$\frac{60'}{\Delta}$	1	b	<u>Δ</u> 6ο'		a
'				d = 8	4° (0′				d = 8	5°	0′				d = 8	86°	0′			

a=89° 0' h Z 0 '89 0 1 2 0 3 0 4 0 5 0 7 0 10 11 13 14 15 2 16 2 17 2 18 3 19 20 4 4 22 4 23 55		90 888 887 886 885 884 883 881 80 778 777 70 698 686 667 666
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Z	90 889 887 86 85 884 882 881 80 79 77 77 77 77 77 77 77 77 77 77 77 77
1 2 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		85 84 83 81 80 79 78 77 76 75 74 73 77 70 69 68
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		85 84 83 81 80 79 78 77 76 75 74 73 77 70 69 68
5 0 6 0 7 8 1 9 1 10 1 11 1 13 1 14 2 15 2 16 2 17 18 3 19 3		85 84 83 81 80 79 78 77 76 75 74 73 77 70 69 68
9 I 10 I 11 I 13 I 14 2 15 2 16 2 17 2 18 3 19 3 20 4		81 80 79 78 77 76 75 74 73 72 71 70 69 68
9 I 10 I 11 I 13 I 14 2 15 2 16 2 17 2 18 3 19 3 20 4		81 80 79 78 77 76 75 74 73 72 71 70 69 68
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		79 78 77 76 75 74 73 72 71 70 69 68
15 2 16 2 17 2 18 3 19 3 20 4		75 74 73 72 71 70 69 68
17 2 18 3 19 3 20 4		74 73 72 71 70 69 68
19 20 4		71 70 69 68
21 4 22 4 22 4	0 0 0 0 0 0	70 69 68
22 4	0 0	68
23 5 24 5	0 0	66
25 6 26 6	0 0	65
27 7 28 7	0 0	63
30 8	0 0	61 60
31 9 32 9 33 10	0 0 0 0	59 58
34 10	0 0	57 56
35 II 36 I2	0 0	55 54 53
37 38 14	0 0	53 52 51
39 14 39 15	0 0	50 49 48
41 16 42 17	0 0	40 47 46
43 18	0 0	45
	a b	
a b		
	39 14 39 15 40 15 41 16 42 17 43 18	39

Change of Altitude per Minute of Arc of Hour Angle.

$$d \text{ and } L \text{ same name} \begin{cases} L < b : \frac{\Delta h}{\Delta t} = -; \frac{\Delta_1 Z}{\Delta t} = -\\ L > b : ,, = -; ,, = + \end{cases} \qquad \frac{\Delta h}{\Delta t} = \mp \cos L \sin Z'$$

$$d \text{ and } L \text{ contrary names} \ldots \ldots ,, = +; ,, = +$$

$$d \text{ and } L \text{ contrary names} \ldots \ldots ,, = -; ,, = +$$

L	$\frac{\mathbf{o}^{\circ}}{\sin Z'}$	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60 °	65°	70°	L/Z'
0° 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0° 2
4 6 8	.07	.07	.07	.07	.07	.06	.06	.06	.05	.05	.04	.04	.03	.03	.02	4 6 8
10 12 14	0.17	0.17	0.17	0.17 .20	0.16	0.16	0.15	0.14 .17	0.13 .16	0.12	0.11	0.10 .12	0.09	0.07 .09	0.06 .07 .08	10 12 14
14 16 18	.28	.27 .31	.30	.30	.26 .29	.25	.24	.23	.21	.19	.18	.16	.14	.12	.09	16 18
20 22 24 26 28	0.34 .37 .41 .44 .47	0.34 .37 .41 .44 .47	•.34 •37 •40 •43 •46	0.33 .36 .39 .42 .45	0.32 ·35 ·38 ·41 ·44	•34 •37 •40 •43	0.30 .32 .35 .38 .41	0.28 .31 .33 .36 .38	0.26 .29 .31 .34 .36	.27 .29 .31	0.22 .24 .26 .28	0.20 .21 .23 .25	0.17 .19 .20 .22	0.14 .16 .17 .19	0.12 .13 .14 .15	20 22 24 26 28
30 32 34 36 38	0.50 •53 •56 •59 •62	•.50 •53 •56 •59 •61	0.49 .52 .55 .58 .61	0.48 .51 .54 .57	0.47 .50 .53 .55 .58	0.45 .48 .51 .53	0.43 .46 .48 .51	0.41 •43 •46 •48	0.38 .41 .43 .45	0.35 .37 .40 .42 .44	0.32 •34 •36 •38 •40	0.29 .30 .32 .34	0.25 .27 .28 .29	0.21 .22 .24 .25 .26	0.17 .18 .19 .20	30 32 34 36 38
40 42 44 46 48	0.64 .67 .69 .72 .74	0.64 .67 .69 .72 .74	0.63 .66 .68 .71 .73	0.62 .65 .67 .69	0.60 .63 .65 .68	0.58 .61 .63 .65	0.56 .58 .60 .62 .64	• 53 • 55 • 57 • 59 • 61	0.49 .51 .53 .55	0.45 •47 •49 •51 •53	0.41 •43 •45 •46 •48	0.37 .38 .40 .41	0.32 •33 •35 •36 •37	0.27 .28 .29 .30	0.22 .23 .24 .25	40 42 44 46 48
50 52 54 56 58	°-77 •79 •81 •83 •85	0.76 .78 .81 .83	0.75 .78 .80 .82 .83	0.74 .76 .78 .80	0.72 •74 •76 •78 •80	0.69 •71 •73 •75 •77	0.66 .68 .70 .72 .73	0.63 .65 .66 .68	0.59 .60 .62 .64 .65	0.54 .56 .57 .59 .60	0.49 .51 .52 .53	•.44 •45 •46 •48 •49	0.38 .39 .40 .41	0.32 •33 •34 •35 •36	0.26 .27 .28 .28	50 52 54 56 58
60 62 64 66 68	0.87 .88 .90 .91 .93	0.86 .88 .90 .91	0.85 .87 .89 .90	0.84 .85 .87 .88	0.81 .83 .84 .86 .87	0.78 .80 .81 .83 .84	••75 •76 •78 •79 •80	0.71 .72 .74 .75 .76	0.66 .68 .69 .70	0.61 .62 .64 .65	0.56 •57 •58 •59 •60	0.50 .51 .52 .52 .53	•.43 •44 •45 •46	••37 •37 •38 •39 •39	0.30 .30 .31 .31	60 62 64 66 68
70 72 74 76 78	.94 .95 .96 .97	••94 •95 •96 •97 •97	0.93 •94 •95 •96	0.91 .92 .93 .94 .94	0.88 .89 .90 .91	0.85 .86 .87 .88	0.81 .82 .83 .84 .85	°.77 •78 •79 •79 •8°	0.72 •73 •74 •74 •75	0.66 .67 .68 .69	0.60 .61 .62 .62 .63	•.54 •55 •55 •56 •56	0.47 .48 .48 .49 .49	0.40 .40 .41 .41	•33 •33 •33 •33	70 72 74 76 78
80 82 84 86 88	0.98 •99 •99 1.00	0.98 •99 •99 •99	0.97 .98 .98 .98	0.95 .96 .96 .96	0.93 •93 •94 •94	0.89 .90 .90 .90	0.85 .86 .86 .86	0.81 .81 .81 .82 .82	0.75 .76 .76 .76 .77	0.70 .70 .70 .71	0.63 .64 .64 .64	0.56 •57 •57 •57 •57	0.49 .50 .50 .50	0.42 .42 .42 .42 .42	0.34 .34 .34 .34 .34	80 82 84 86 88
90	1.00	1.00	0.98	0.97	0.94	0.91	0.87	0.82	o. 7 7	0.71	0.64	0.57	0.50	0.42	0.34	90

To find $\frac{\Delta_1 Z}{\Delta t}$ or sin L, enter column $L = 0^\circ$ with L instead of Z'.

Change of Hour Angle per Minute of Arc of Altitude

 $\frac{\Delta t}{\Delta h} = \sec L \csc Z$

L	60°	62°	64°	66°	68°	70°	72°	74°	76°	78°	80°	82°	84°	87°	90°	Z_L
0 2 4 6 8	1.16	I.I3 I.I4 I.I4	I.II I.I2 I.I2	1.09 1.09 1.10 1.10	1.08 1.08	1.06	1.05 1.05 1.06	1.04 1.04 1.05	1.03 1.03 1.04	I.02 I.02 I.03	I.02 I.02 I.02	1.01 1.01 1.01	1.01 1.01 1.01	1.00	1.00	4 6
10 11 12 13 14	1.18	1.15	I.14 I.14	1.11 1.12 1.12	I.10 I.10 I.11	1.09	1.07	1.06	1.05 1.05 1.06	1.04 1.04 1.05	1.04 1.04	1.03 1.03 1.04	1.03	1.02	1.02 1.02 1.03	12
15 16 17 18 19	I.20 I.21 I.21 I.22	1.18	1.16	1.14	1.12	I.II I.II I.I2	I.10 I.11	1.08	1.07 1.08 1.08	1.06 1.07 1.07	1.06	1.05 1.06 1.06	1.05 1.05 1.06	1.04 1.05 1.05	1.05	18
20 21 22 23 24	1.23 1.24 1.24 1.25 1.26	1.21 1.22 1.23 1.24	I.2I I.22	1.17 1.18 1.19 1.20	1.16 1.17 1.18	1.14 1.15 1.16 1.17	1.13 1.13 1.14 1.15	1.11 1.12 1.13 1.14	I.IO I.II I.I2 I.I3	1.09 1.09 1.10 1.11 1.12	1.09	1.08	1.08	1.07 1.08 1.09	1.08	21 22 23 24
25 26 27 28 29	1.27 1.28 1.30 1.31 1.32	1.28	1.25 1.26 1.27	1.24	I.22 I.23	1.18	1.17 1.18 1.19 1.20	1.16	1.15 1.16 1.17	· 1	1.14	I.11 I.12 I.13 I.14 I.15	1.12 1.13 1.14		1.13	25 26 27 28 29
30 31 32 33 34	1.33 1.35 1.36 1.38 1.39	1.34 1.35 1.37	1.31 1.33 1.34	1.31	1.24 1.26 1.27 1.29 1.30	1.23 1.24 1.26 1.27 1.28	I.24 I.25 I.27	1.23 1.24 1.26	I.22 I.23 I.24	1.19 1.21 1.22 1.23	I.20 I.21 I.22	I.19 I.20 I.22	I.17 I.19 I.20 I.21		1.18	30 31 32 33 34
35 36 37 38 39	1.41 1.43 1.45 1.47 1.49	1.40 1.42 1.44 1.46	1.38 1.39 1.41	1.35 1.37 1.39	1.35 1.37 1.39	1.31 1.33 1.35 1.37	1.30 1.32 1.33 1.35	1.29 1.30 1.32 1.34	1.27 1.29 1.31 1.33	I.25 I.26 I.28 I.30 I.32	1.25 1.27 1.29	1.25	1.24 1.26 1.28	1.25	1.24 1.25 1.27	35 36 37 38 39
40 41 42 43 44	1.51 1.53 1.55 1.58 1.60	1.50 1.52 1.55 1.57	1.50 1.52	I.45 I.47 I.50	I.43 I.45	1.39 1.41 1.43 1.46 1.48	1.39 1.41 1.44	1.40	1.37 1.39 1.41	1.36 1.38 1.40	1.35 1.37 1.39	1.34 1.36 1.38		1.33 1.35 1.37	I.31 I.32 I.35 I.37 I.39	40 41 42 43 44
45 46 47 48 49	1.69 1.73 1.76	1.66 1.69 1.73	1.63 1.66 1.70	1.58 1.61 1.64 1.67	1.55 1.58 1.61 1.64	1.59	I.51 I.54 I.57 I.60	1.50 1.53 1.56 1.59	1.51 1.54 1.57	1.56	1.49 1.52 1.55	1.48 1.51 1.54	1.47 1.50 1.53	I.44 I.47 I.50 I.53	1.47 1.49 1.52	45 46 47 48 49
50 51 52 53 54	1.84 1.88 1.92 1.96	1.80 1.84 1.88 1.93	1.77 1.81 1.85 1.89		1.71 1.75 1.79 1.83	1.69 1.73 1.77 1.81	1.67 1.71 1.75 1.79	1.65 1.69 1.73 1.77	1.64 1.67 1.71 1.75	1.63 1.66 1.70 1.74	1.61 1.65 1.69 1.73	1.60 1.64 1.68 1.72	1.60 1.63 1.67 1.71	1.59 1.63 1.66	1.59 1.62 1.66 1.70	50 51 52 53 54
55 56 57 58 59 60	2.06 2.12 2.18 2.24	2.03 2.08 2.14 2.20	1.99 2.04 2.10 2.16	1.91 1.96 2.01 2.07 2.13	1.93 1.98 2.04 2.10	2.01	1.88 1.93 1.98 2.04	1.86 1.91 1.96 2.02	1.84 1.89 1.94 2.00	1.83 1.88 1.93 1.99	1.82 1.86 1.92 1.97	1.81 1.85 1.91 1.96	1.90	1.79 1.84 1.89 1.94	1.79 1.84 1.89 1.94	55 56 57 58 59 60
	2.31	2.2/	2.23	2.19		2.13	2.10	2.00	2.00	2.05	2.03	2.02	2.01	2.00	2.50	

Change of Azimuth per Minute of Arc of Altitude.

 $\frac{\Delta_2 Z}{\Delta h} = -\tan h' \cot Z'$ (-always with Z' less than 90°).

Z'	o°	5°									1					
$h' \setminus$		5	10°	15°	20°	25°	30°	35°	40°	45°	50°	60°	70°	80°	90°	Z'
0° 2	ind.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90°
4 6	∞	.80	•40	.26	.19	.15	.12	.10	.08	.07	.06	.04	.03	.01	.00	86
8	8 8	1.20	.80	•39 •52	• 3 9	.30	.18	.15	.13	.11	.09	.08	.04	.02	.00	84 82
10 12	8 8	2.02	1.00	o.66	0.48 .58	0.38 .46	0.31 •37	0.25 .30	0.21	0.18	0.15	0.10	o.o6 .o8	0.03 .04	0.00	80 78
14 16	∞	2.85	1.41	•93 1.07	.69	.61	•43	.36	.30	.25	.21	.14	.09	.04	.00	76
18	8 8	3.20	1.63 1.84	1.21	•79 •89	.70	.50 .56	.41 .46	•34	.32	.27	.19	.12	.06	.00	74 72
20 22	∞	4.16	2.06	1.36	1.00	°.78 .87	0.63	0.52 .58	0.43 .48	0.36	0.31	0.2I .23	0.13	0.06	0.00	70 68
24	8 8	5.09	2.29	1.51	1.22	.95	•7°	.64	•53	•45	•34 •37	.26	.16	.08	.00	66
26 28	8	5.57 6.08	2.77 3.02	1.82	1.34 1.46	1.05	.84	.7° .76	.58 .63	•49 •53	.41 .45	.28	.18	.09	.00	64 62
30	8	6.60	3.27	2.15	1.59	1.24	1.00	0.82	0.69	0.58	0.48	0.33	0.21	0.10	0,00	60
32 34	8 8	7.14	3.54 3.83	2.33	1.72	1.34 1.45	1.08	.89 .96	•74 .80	.67	•52 •57	.36	.23	.11	.00	58 56
36 38	8 8	8.30 8.93	4.12 4.43	2.71	2.00	1.56	1.26	1.04	.87	•73 •78	.61 .66	.42 .45	.26	.13	.co	54 52
40	8	9.59	4.76	3.13	2.31	1.80	1.45	1.20	1.00	0.84	0.70	0.48	0.31	0.15	0.00	50
42	8 8	10.29	5.11 5.48	3.36 3.60	2.47	1.93	1.56	1.29	1.07	.90	.76 .81	•52 •56	•33 •35	.16	.00	48
44 46	8	11.84	5.87	3.86	2.85	2.22	1.79	1.48	1.23	1.04	.87	.60	.38	.18	.co	44
48	8	12.69	6.30	4.14	3.05	2.38	1.92	1.59	1.32	1.11	•93	.64 0.69	.40	.20	.00	42
50 52	8 8	13.62	6.76 7.26	4.45 4.78	3.27 3.52	2.56 2.74	2.06 2.22	1.70	1.42	1.19	1.00	•74	•43 •47	.23	0.00	40 38
54 56	∞	15.73	7.81	5.14	3.78	2.95	2.38	1.97	1.64	1.38	I.15 I.24	.86	.50	.24	.00	36
50 58	8 8	16.95	8.41 9.08	5·53 5·97	4.4°	3.18 3.43	2.57 2.77	2.12	1.77	1.60	1.34	.92	•54 •58	.28	.00	34 32
60	00	19.80	9.82	6.46 7.02	4.76	3.71 4.03	3.00 3.26	2.47	2.06 2.24	1.73 1.88	1.45 1.58	1.00	0.63 .68	0.31 •33	0.00	30 28
62 64	8	21.50	11.63	7.65	5.63	4.40	3.55	2.93	2.44	2.05	1.72	1.19	-75	.36	.co	26
66 68	8 8	25.67	12.74	8.38 9.24	6.17	4.82 5.31	3.89 4.29	3.21 3.53	2.68 2.95	2.25	1.88	1.30	.82	.40	.00	24
70	8	31.40	14.04	10.25	7.55	5.89	4.76	3.92	3.27	2.75	2.31	1.59	1.00	0.48	0.00	20
72	00	35.18	17.45	11.49	8.46	6.60	5-33	4.40	3.67	3.08	2.58	1.78	1.12	•54	.00	18
74 76	8	39.86 45.84	19.78	13.01	9.58	7.48 8.60	6.04	4.98 5.73	4.16 4.78	3.49 4.01	2.93 3.37	2.01	1.27	.61	.00	16
78	00	53.77	26.68		12.93	10.09	8.15	6.72	5.61	4.70	3.95	2.72	1.71	.83	.00	12
80 82	% %	64.82 86.68	32.16 40.35		15.58	12.16 15.26	9.82	8.10	6.76 8.48	5.67 7.12	4.76 5.97	3.27 4.11	2.06	1.00	0.00	10
84	∞	_	53.96	35.51	26.14	20.40	16.48	13.59	11.34	9.51	7.98	5.49	3.46	1.68	.co	6
86 88	8	_	81.10	53.37	39.29 78.68	30.67 61.41	24.77 49.60	20.42 40.90	17.04 34.13	14.30 28.64	12.00 24.03	8.26 16.53	5.21	2.52	.00	4 2
90	∞	∞	8	8	8	8	8	∞	∞	∞	∞	∞	∞	∞	ind.	0
h'	90°	85°	80°	75°	70°	65°	60°	55°	50°	45°	40°	30°	20 °	100	o°	Z'

Table for Controlling the Coincidence of Lines of Position.

Giving D ($\frac{1}{2}$ of the useful length of the line of position) in minutes of the Equator.

d					Tru	e Alt	itude	of C	elesti	ial B	ody.					,
or t	o°	10°	20 °	30°	40°	50°	55°	60°	65°	70°	75°	80°	83°	86°	89°	t
o °	83	82	80	77	73	67	63	59	54	49	42	35	29	22	11	180°
10 20 30	84 86 89	83 85 88	81 83 86	78 80 83	73 75 78	67 69 71	63 65 67	59 61 63	54 56 58	49 50 52	43 44 45	35 36 37	29 30 31	22 23 24	11 11 12	170 160 150
40 50 60	95 103 117	94 103 116	92 100 114	96 109	83 91 103	76 83 94	72 78 89	67 73 83	62 67 76	55 60 6 ₇	48 53 60	39 43 49	33 36 41	25 27 31	13 14 15	140 130 120
70 80 90	142 199 ∞	141 198 ∞	137 193 ∞	132 185 ∞	124 174 ∞	114 159 ∞	107 151 ∞	100 141 ∞	92 129 ∞	83 116 ∞	72 101 ∞	59 83 ∞	49 69 ∞	° 37 53 ∞	19 26 ∞	100 100

To find D ($\frac{1}{2}$ of the useful length of the line of position on Mercator's chart: BB_3 in Fig. 3) enter the table with the declination in column d and corresponding to the altitude h will be found D_0 ($\frac{1}{2}$ of the useful length if t was 0°). Entering the table again with D_0 in the first horizontal line corresponding to $d=0^\circ$ and with t in column t we will find crossing the value of D, expressed in minutes of longitude.

Ex. $d=50^{\circ}$, $h=60^{\circ}$ and $t=40^{\circ}$. First we would find $D_0=73'$ and afterwards D=83'.

				F	Azim	uth	s of	Po	lari	s.				
Local Sidereal	Name.					L	atitud	ie.					Nome	Local
Time	Tvame,	o°	10°	20°	30°	40°	45°	50°	55°	60 °	65°	70°	Name.	Sidereal Time.
0 ^h 1 2	E E W	0.4	0.4 .1	0.5 .I .2	0.5	0.6	0.6	0.7 .2 .3	o.8 .2 .3	•.9 •3 •3	·3 ·4	.3 .6	W W E	12 ^h 13
3 4 5	W W W	•5 •7 •9	•5 •7 •9	.5 .8	.5 .8 1.1	.6 .9	.6 1.0 1.3	•7 1.1 1.5	.8 1.3 1.7	.9 1.4 1.9	I.I I.7 2.2	1.5 2.1 2.7	E E E	15 16 17
6 7 8	W W W	I.I I.2 I.2	I.I I.2 I.2	I.2 I.2 I.2	I.3 I.3 I.3	1.4 1.5 1.5	1.5 1.6 1.6	1.7 1.8 1.8	1.9 2.0 2.0	2.2 2.3 2.3	2.6 2.7 2.7	3.2 3.4 3.4	E E E	18 19 20
10 11	W W	·9 ·7	•9 •7	1.1 1.0 •7	1.2 1.1 .8	1.4 1.2 .9	I.5 I.3 I.0	1.7 1.4 1.1	1.9 1.6 1.2	2. I 1.8 1.4	2.5 2.2 1.7	3.2 2.7 2.1	E E E	21 22 23

This table will be very useful for finding the deviation of the compass in the northern hemisphere. It was computed assuming the Star's Right Ascension $1^h 27^m$ and its Declination 88° 50′ N. by the following formula: $Z \cos L = p \sin t$, where p represents the Star's Polar Distance=70′, the other terms being negligible within the limits of the table.

			C	ha	nge	e of	A	ltitı	ıde	per	Mi	nute	e of	Tin	ıe.			
LAT.										Azim	uth.							
DA1.	o°	5°	100	15°	20 °	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	90°
° 0	0	1.3	2.6	3. 9	5. I	6.3	7·5	8.6	9.6	10.6	11.5	12.3	13.0	13.6	14.1	14.5	14.8	15.0
4 8	0 0	1.3	2.6	3.9 3.8	5.1 5.1	6.3	7·5 7·4	8.6	9.6 9.5	10.6	11.5	12.3	13.0	13.6	14.1	14.5	14.7 14.6	15.0
12 16	0 0	1.3	2.5	3.8 3.7	5.0 4.9 4.8	6.2 6.1	7·3 7·2 7·0	8.4 8.3 8.1	9.4	10.4	11.2	11.8	12.7	13.3	13.8	13.9	14.4	14.7
20 24 26 28	0000	I.2 I.2 I.2	2.4 2.4 2.3 2.3	3.6 3.5 3.5 3.4	4.6 4.5	5.8 5.7 5.6	6.9 6.7 6.6	7.9 7.7 7.6	9.1 8.8 8.7 8.5	9.7 9.5 9.4	10.5	11.0	11.9	12.4 12.2 12.0	12.9 12.7 12.4	13.2 13.0 12.8	13.9 13.5 13.3 13.1	14.1 13.7 13.5 13.2
30 32 34 36	0 0 0 0	I.I I.I I.I I.I	2.3 2.2 2.2 2.1	3.4 3.3 3.2 3.1	4·4 4·4 4·3 4·2	5.5 5.4 5.3 5.1	6.5 6.4 6.2 6.1	7·4 7·3 7·1 7·0	8.3 8.2 8.0 7.8	9.2 9.0 8.8 8.6	9·9 9·7 9·5 9·3	10.6 10.4 10.2 9.9	11.2 11.0 10.8 10.5	11.8	12.2 12.0 11.7 11.4	12.5 12.3 12.0 11.7	12.8 12.5 12.3 12.0	13.0 12.7 12.4 12.1
38 40 42 44 46 48	0 0 0 0 0	1.0 1.0 .9	2.1 2.0 1.9 1.9 1.8	3.0 2.9 2.8 2.7 2.6	3.9 3.8 3.7 3.6 3.4	5.0 4.9 4.7 4.6 4.4 4.3	5.9 5.7 5.6 5.4 5.2 5.0	6.8 6.6 6.4 6.2 6.0 5.8	7.6 7.4 7.2 6.9 6.7 6.5	8.4 8.1 7.9 7.6 7.4 7.1	9.1 8.8 8.5 8.3 8.0 7.7	9.7 9.4 9.1 8.8 8.5 8.2	10.2 10.0 9.7 9.3 9.0 8.7	10.7 10.4 10.1 9.8 9.4 9.1	11.1 10.8 10.5 10.1 9.8 9.4	11.4 11.1 10.8 10.4 10.1 9.7	11.6 11.3 11.0 10.6 10.3	11.8 11.5 11.1 10.8 10.4
50 52 54 56 58	00000	.8 .8 .7	1.7 1.6 1.5 1.5	2.5 2.4 2.3 2.2 2.1	3·3 3·2 3·0 2·9 2·7	4. I 3. 9 3. 7 3. 5 3. 4	4.8 4.6 4.4 4.2 4.0	5.5 5.3 5.1 4.8 4.6	6.2 5.9 5.7 5.4 5.1	6.8 6.5 6.2 5.9 5.6	7.4 7.1 6.8 6.4 6.1	7.9 7.6 7.2 6.9 6.5	8.3 8.0 7.6 7.3 6.9	8.7 8.4 8.0 7.6 7.2	9.1 8.7 8.3 7.9 7.5	9.3 8.9 8.5 8.1 7.7	9.5 9.1 8.7 8.3 7.8	9.6 9.2 8.8 8.4 7.9
60 62 64 66 68	00000	.6 .6 .5	I.3 I.2 I.I I.I	1.9 1.8 1.7 1.6	2.6 2.4 2.2 2.1 1.9	3.2 3.0 2.8 2.6 2.4	3.8 3.5 3.3 3.1 2.8	4.3 4.0 3.8 3.5 3.2	4.8 4.5 4.2 3.9 3.6	5.3 5.0 4.6 4.3 4.0	5.7 5.4 5.0 4.7 4.3	6.1 5.8 5.4 5.0 4.6	6.5 6.1 5.7 5.3 4.9	6.8 6.4 6.0 5.5 5.1	7.0 6.6 6.2 5.7 5.3	7.2 6.8 6.4 5.9 5.4	7.4 6.9 6.5 6.0 5.6	7.5 7.0 6.6 6.1 5.6
70	0	•4	.9	1.3	1.8	2.2	2.6	2.9	3.3	3.6	3.9	4.2	4.4	4.6	4.8	5.0	5.1	5.1

	•	Tabl	e fo	or R	ecti	fyin	g L	ines	of	Pos	itior	1.	
h	D=	=30′	D	= 36′	D:	=42′	D:	=48′	D:	=54′	D:	=60′	h
	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	
20 30 40 45 50 55 60 61 62 63 64 65 66 67 68 69 70	0.0 .II .II .2 .2 .2 .2 .2 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .4 .4 .4	89.8 89.7 89.6 89.5 89.1 89.1 89.1 89.0 89.0 88.9 88.8 88.8 88.7 88.6 88.5	0.1 .1 .2 .2 .2 .3 .3 .3 .4 .4 .4 .4 .5 .5 .5 .5	89.8 89.7 89.5 89.4 89.1 88.9 88.9 88.8 88.7 88.6 88.5 88.4 88.4 88.3	0.1 .2 0.3 .3 .4 0.4 .5 .5 .5 .6 .6 .6 .6 .7	89.7 89.4 89.3 89.2 89.0 88.8 88.7 88.6 88.6 88.4 88.4 88.4 88.3 88.2 88.1 88.0 87.8	0.1 1 2 3 3 0.3 3 4 4 5 5 0.6 6 6 6 7 7 7 8 8 8 8 9 9 9 9 1.0	89.7 89.5 89.3 89.0 88.9 88.6 88.6 88.5 88.4 88.4 88.3 88.2 88.1 88.0 87.9 87.8	0.2 .2 .4 0.4 .5 .6 0.7 .8 .8 .8 .9 0.9 1.0 1.0 1.1	89.7 89.5 89.1 88.9 88.7 88.4 88.3 88.2 88.1 88.0 87.9 87.7 87.5 87.4	0.2 3 4 0.5 6 6 7 0.9 9 1.0 1.1 1.1 1.2 1.2 1.3 1.4 1.5 1.6	89.6 89.4 89.2 89.0 88.8 88.6 88.3 88.0 88.0 87.9 87.6 87.5 87.4 87.3 87.1 86.9	30 40 45 50 55 60 61 62 63 64 65 66 67
72 73 74 75	·4 ·4 ·5	88.5 88.4 88.3 88.1	.6 .7	88.0 87.9 87.8	.8	87.7 87.6 87.4	I.0 I.I I.2 I.3	87.5 87.4 87.2 87.0	1.3 1.4 1.5	87.1 86.9 86.6	1.7	86.7 86.5 86.3	72 73 74 75

			Tal	ble f	for 1	Rect	ifyir	ıg L	ines	s of	Pos	sitio	1		
h	D:	=6′	D=	=10′	D=	14'	D=	: 18′	D=	22′	D=	26′	D=	= 30′	h
12	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	Δh	Z_1	,,,
75 0 76 0 77 0 78 0 79 0	, o. o. o. o. o. o	89.6 89.6 89.5 89.5	, o. i . i . i . i	89.4 89.3 89.3 89.2 89.1	1,0 I .I .I .I .I .I .I	89.1 89.1 89.0 88.9 88.8	, 0, 2 , 2 , 2 , 2 , 2	88.9 88.8 88.7 88.6 88.5	·3 ·3 ·3 ·4	88.6 88.5 88.4 88.3 88.1	0.4 .4 .4 .5	88.4 88.3 88.1 88.0 87.8	0.5 .5 .6 .6	88.1 88.0 87.8 87.6 87.4	°5 0 75 0 76 0 77 0 78 0 79 0
80 0 81 0 82 0 83 0 84 0 30	0.0	89.5 89.4 89.3 89.2 89.0 89.0	1.0 1. 1. 1. 1.	89.0 88.9 88.8 88.6 83.4 88.3	.2 .2 .2 .3 .3	88.7 88.5 88.3 88.1 87.8 87.6	0.3 .3 .3 .4 .5	88.3 88.1 87.9 87.5 87.1 86.9	0.4 .4 .5 .6 .7	87.9 87.7 87.4 87.0 86.5 86.2	0.6 .6 .7 .8 .9	87.5 87.2 86.9 86.5 85.9	0.7 .8 .9 I.I I.2 I.4	87.1 86.8 86.4 85.9 85.2 84.8	80 0 81 0 82 0 83 0 84 0
85 0 20 40 86 0 20 40	1.0 1. 1. 1. 1.	88.9 88.8 88.7 88.6 88.4 88.3	0.2 .2 .2 .2 .2	88.1 83.0 87.8 87.6 87.4 87.1	0.3 .3 .4 .4 .4	87.3 87.1 86.9 86.7 86.4 86.0	0.5 .6 .6 .7 .7	86.6 86.3 86.0 85.7 85.3 84.9	0.8 .9 .9 I.0 I.I	85.8 85.5 85.2 84.8 84.3 83.7	1.1 1.2 1.3 1.4 1.5	85.0 84.7 84.3 83.8 83.3 82.6	I.5 I.6 I.7 I.9 2.0 2.2	84.3 83.9 83.4 82.9 82.2 81.5	85 0 20 40 86 0 20 40
87 0 10 20 30 40 50	1.0 1. 1. 1. 1.	88.1 88.0 87.9 87.7 87.5 87.4	0.3 .3 .3 .4 .4	86.8 86.7 86.4 86.2 85.9 85.6	0.5 .6 .6 .7 .7	85.6 85.3 85.0 84.7 84.3 83.9	0.9 1.0 1.1 1.1	84.3 84.0 83.6 83.2 82.7 82.1	1.3 1.4 1.5 1.6 1.7	83.0 82.6 82.2 81.7 81.1 80.4	1.9 2.0 2.1 2.2 2.4 2.6	81.8 81.3 80.8 80.2 79.5 78.7	2.5 2.6 2.8 3.0 3.2 3.4	80.5 80.0 79.4 78.7 77.9 77.0	87 0 10 20 30 40 50
88 0 5 10 15 20 25	0.I .2 .2 .2 .2 .2	87.1 87.0 86.9 86.7 86.6 86.4	0.4 •4 •5 •5 •5	85.2 85.0 84.8 84.6 84.3 84.0	0.8 .8 .9 .9 I.0	83.3 83.1 82.7 82.4 82.0 81.6	1.3 1.4 1.5 1.5 1.6	81.5 81.1 80.7 80.3 79.8 79.3	2.0 2.1 2.2 2.3 2.4 2.5	79.6 79.2 78.7 78.2 77.6 77.0	2.8 2.9 3.0 3.2 3.3 3.5	77.8 77.3 76.7 76.1 75.4 74.7	3.7 3.8 4.0 4.2 4.4 4.6	76.0 75.4 74.7 74.1 73.3 72.5	88 0 5 10 15 20 25
30 35 40 45 50 55	0.2 .2 .2 .2 .3 .3	86.2 86.0 85.7 85.4 85.1 84.7	0.6 .6 .6 .7 .7	83.7 83.3 82.9 82.4 81.9 81.3	I.I I.I I.2 I.3 I.4 I.5	81.2 80.6 80.1 79.4 78.7 77.8	1.8 1.9 2.0 2.1 2.3 2.4	78.7 78.0 77.3 76.5 75.6 74.5	2.7 2.8 3.0 3.2 3.4 3.6	76.3 75.5 74.6 73.7 72.6 71.3	3.7 3.9 4.1 4.4 4.7 5.0	73.9 73.0 72.0 70.9 69.6 68.2	4.9 5.1 5.4 5.8 6.2 6.6	71.6 70.6 69.4 68.2 66.8 65.2	30 35 40 45 50 55
89 0 3 6 9	•·3 •·3 •·4	84.3 84.0 83.7 83.3	0,8 •9 •9 1.0	80.5 80.0 79.5 78.9	1.6 1.7 1.8 1.9	76.9 76.2 75.5 74.6	2.6 2.8 2.9 3.1	73·3 72·5 71·6 70·6	3.9 4.1 4.3 4.5	69.9 68.9 67.8 66.7	5.4 5.7 5.9 6.3	66.6 65.5 64.3 63.0	7.0 7.4 7.8 8.2	63.4 62.2 60.9 59.5	89 0 3 6 9
12 15 18 21	0.4 •4 •4	82.9 82.4 81.9 81.3	I.0 I.I I.2 I.3	78.2 77.5 76.6 75.6	2.0 2.1 2.3 2.4	73.7 72.7 71.6 70.3	3·3 3·5 3·7 3·9	69.4 68.2 66.8 65.2	4.8 5.1 5.4 5.8	65.4 63.9 62.4 60.6	6.6 7.0 7.4 7.9	61.6 60.0 58.3 56.3		58.0 56.3 54.5 52.4	12 15 18 21
24 26 28 30	0.5 .5 .6 .6	80.5 80.0 79.4 7 8.7	I.4 I.5 I.5 I.6	74.5 73.6 72.6 71.6	2.6 2.8 2.9 3.1	68.7 67.6 66.6 65.0	4.2 4.5 4.7 5.0	63.4 62.1 60.6 59.0	6.2 6.5 6.8 7.2	58.6 57.1 55.5 53.7	8.4 8.8 9.2 9.7	54.2 52.6 50.9 49.1	11.3	50.2 48.6 46.8 45.0	24 26 28 30

	Con	versio	n	of I	Hours	ar	ıd	Minu	tes	int	o De	cim	ıal	Parts	of	a	Day.
h	ı m	D.P.	h	m	D.P.	h	m	D.P.	h	m	D.P.	h	m	D.P.	h	m	D.P.
C	0 10 20 30 40 50	0.00C .007 .014 .021 .028	4	0 10 20 30 40 50	0.167 .174 .181 .188 .194	8	0 10 20 30 40 50	0.333 .340 .347 .354 .361 .368	12	0 10 20 30 40 50	0.500 ·507 ·514 ·521 ·528 ·535	16	0 10 20 30 40 50	0.667 .674 .681 .688 .694	20	0 10 20 30 40 50	0.833 .840 .847 .854 .861 .868
I	0 10 20 30 40 50	0.042 .049 .056 .063 .069	5	0 10 20 30 40 50	0.208 .215 .222 .229 .236 .243	9	0 10 20 30 40 50	0.375 .382 .389 .396 .403 .410	13	0 10 20 30 40 50	 542 549 556 563 569 576 	17	0 10 20 30 40 50	0.708 .715 .722 .729 .736 .743	21	0 10 20 30 40 50	0.875 .882 .889 .896 .903
2	0 10 20 30 40 50	0.083 .090 .097 .104 .111	6	0 10 20 30 40 50	0.250 .257 .264 .271 .278 .285		0 10 20 30 40 50	0.417 .424 .431 .438 .444 .451	14	0 10 20 30 40 50	0.583 •590 •597 •604 •611 •618	18	0 10 20 30 40 50	0.750 .757 .764 .771 .778 .785	22	0 10 20 30 40 50	0.917 •924 •931 •938 •944 •951
3	0 10 20 30 40 50	0.125 .132 .139 .146 .153 .160	7	0 10 20 30 40 50	0.292 .299 .306 .313 .319		0 10 20 30 40 50	0.458 .465 .472 .479 .486 .493	15	0 10 20 30 40 50	0.625 .632 .639 .646 .653 .660	19	0 10 20 30 40 50	0.792 .799 .806 .813 .819	23	0 10 20 30 40 50	0.958 .965 .972 .979 .986 .993
4	0	0.167	8	0	0.333	12	0	0.500	16	0	0.667	20	0	0.833	24	0	1.000

Coı	nversion	of Interv			Time intar Time.	-	alent
1	7/	Cidonal	7//	Cidomost	7//	Cidamal	36-

	ereal erval.		Mea			ereal erval.		Mea			ereal rval.		Mea			real rval.	Mean Interval		
h 23	m 30 31 32 33 34	h 23	m 26 27 28 29 3°	s 9.0 8.8 8.7 8.5 8.4	h 23	m 45 46 47 48 49	h 23	m 41 42 43 44 45	s 6.6 6.4 6.2 6.1 5.9	h 24	m 0 1 2 3 4	h 23	m 56 57 58 59	s 4.1 3.9 3.8 3.6 3.4	h 24	m 15 16 17 18	h 24	m 11 12 13 14	s 1.6 1.5 1.3 1.1
23	35 36 37 38 39	23	31 32 33 34 35	8.2 8.0 7.8 7.7 7.5	23	50 51 52 53 54	23	46 47 48 49 50	5.7 5.6 5.4 5.2 5.1	24	56 78 9	24	1 2 3 4 5	3.3 3.1 2.9 2.8 2.6	24	20 21 22 23 24	24	16 17 18 19 20	0.8 0.7 0.5 0.3 0.2
23	40 41 42 43 44	23	36 37 38 39 40	7.4 7.2 7.0 6.9 6.7	23	55 56 57 58 59	23	51 52 53 54 55	4.9 4.7 4.6 4.4 4.3	24	10 11 12 13 14	24	6 7 8 9	2.5 2.3 2.1 1.9 1.8	24	25 26 27 28 29	24	21 21 22 23 24	59.8 59.7 59.5 59.3

This table is used in connection with the daily comparison of mean and sidereal time chronometers.

NEW ALTITUDE TABLES

A description of these Tables in Portuguese will be found in the *Revista Maritima Brazileira* for February, 1912, page 1335.

NEW ALTITUDE TABLES

HOW TO COMPUTE THE ALTITUDE OF A CELESTIAL BODY BY MEANS OF THE FOLLOWING TABLES

When the Hour Angle (t) and the Declination (d) of a celestial body are given and also the Latitude (L) of the observer we may calculate very easily, very rapidly and with as great accuracy as necessary the Altitude (h) of a celestial body as follows: In the fundamental equation

(1)
$$\cos (90^{\circ} - h) \text{ or } \sin h = \sin L \sin d + \cos L \cos d \cos t$$

we make

$$\cos t = I - 2 \sin^2 \frac{t}{2}$$

and we have

(2)
$$\cos (90^{\circ} - h) = \cos (L - d) - 2 \cos L \cos d \sin^2 \frac{t}{2}$$

or $I - \cos (90^{\circ} - h) = I - \cos (L - d) + 2 \cos L \cos d \sin^2 \frac{t}{2}$

If we make

(3)
$$2 \cos L \cos d \sin^2 \frac{t}{2} = \text{versine } \theta = 2 \sin^2 \frac{\theta}{2}$$

we will have finally

(4)
$$\operatorname{versine} (90^{\circ} - h) = \operatorname{versine} (L - d) + \operatorname{versine} \theta$$

Inverting equation (3), viz.:

$$2\cos L\cos d\sin^2\frac{t}{2} = 2\sin^2\frac{\theta}{2}$$

and multiplying both members by 2 we have

$$\sec L \sec d \csc^2 \frac{t}{2} = \csc^2 \frac{\theta}{2}$$

Applying logarithms to both members and dividing by 2 we have

(5)
$$1/2 \log \sec L + 1/2 \log \sec d + \log \csc \frac{t}{2} = \log \csc \frac{\theta}{2}$$

Therefore by means of formulæ (4) and (5) we can determine the Altitude with the aid of the following Tables.

The Tables on pages 2* to 9* give us 1/2 log sec L or 1/2 log sec d.

The Tables on pages 10* to 27* give us in columns marked "Hour Angle" the log cosec $\frac{t}{2}$ or log cosec $\frac{\theta}{2}$ when we enter with t or θ as arguments.

In columns marked "Sum or Diff." we find versine (L-d) and also in the same columns versine θ corresponding to the log cosec $\frac{\theta}{2}$ given in columns marked "Hour Angle."

The Tables on pages 28* to 36* give us log cosec $\frac{t}{2}$ when t is comprised between 90° and 270°.

The Altitude corresponding to versine $(90^{\circ} - h)$ will be found from below in columns marked "Alt.," the minutes of which are to be found on the right hand side of the pages.

Each versine and logarithm has been multiplied by 106 in order to reduce it to a whole number. On this account no characteristics appear and no periods also.

The numbers given correspond to six decimal places. When only five decimal place accuracy is desired drop the figure after the space or round up the fifth figure.

EXAMPLE I

GREENWICH HOUR ANGLE WEST.

The following expressions give us the value of to.—the Greenwich Hour Angle West:

$$t_a = G$$
. M. T. – Eq. of T. for the \odot
 $t_a = G$. M. T. +R. A. M. S – R. A. for *, \emptyset , and planets.

LOCAL HOUR ANGLE WEST.

Once known t_{a_n} the *local hour angle west* (t) is given by the expression

$$t = t_a \mp G$$

(- when G is West and + when G is East) G standing for Longitude.

When t_{a} is smaller than G add 360° to t_{a} . If $t_{a}+G$ is larger than 360° drop 360° from it.

EXAMPLE I.

On February 21, 1910, about 8^h A.M. in Lat. by D. R. = 36° 52′ N and Long. by D.R. = 8° 6′ W the Sun's true altitude was 21° 7′ at 21^h 6^m 11^s of the chronometer, 6^m 59^s slow of G. M. T. Required the D. R. altitude.

C.=21^h 6^m 11^s
C. C.= + 6 59
G. M. T.=21^h 13^m 10^s
Eq. of T.= - 13 46
G. A. T.=20^h 59^m 24^s or
$$t_a$$
=314° 51^q
 G_{W} = 8 6
 t =306° 45^r

EXPLANATION.

After applying the correction to the chronometer time and the equation of time to the G. M. T. we find the G. A. T. or t_a —the Sun's Greenwich Hour Angle West— t_a being G. A. T. converted into arc. The longitude by D. R. is combined with this t_a giving us t: the local hour angle west. Thus we have $t=306^{\circ}$ 45'.

¹ This procedure, not usually followed in the text books, has the *triple* advantage of simplifying the determination of *t*, abolishing the argument in time in the tables and the necessity of dealing with data expressed in time and in arc after G. A. T. is converted.

NEW ALTITUDE TABLES

The declination of the Sun, found in the Nautical Almanac at the same time as the Eq. of T., is taken to the nearest minute of arc. It is combined with the latitude, as shown.

When L and d are of the same name, both N or both S, subtract the smaller of the two from the larger. If they are of contrary names, as in our Examples, one N and the other S, add them together. We find $L+d=47^{\circ}$ 19'.

Entering the "Latitude or Declination" Tables with $L=36^{\circ}$ 52' we find on

page 5*: 4845, and with $d=10^{\circ}$ 27' we find on page 3*: 363.

Entering the tables on page 20* from below with $t=306^{\circ}$ 45' in the "Hour Angle" column we find 34858, which, added to the numbers corresponding to L and d, gives us 40066.

We look for this number 40066 on page 19* in the same "Hour Angle" column, and opposite it in column "Sum or Diff." we find 31609. Adding to this number 31609 the number 32205 found on page 19* corresponding to 47° 19' in "Sum or Diff." column we have 63814. This number corresponds to 21° 13' in the "Alt." column on page 23*.

Therefore the altitude from D. R. is 21° 13'.

EXAMPLE II.

On August 21, 1908, about 11^h A.M. in Lat. by D. R.=16° 34' S. and Long. by D. R.=38° 11' W. the Sun's true altitude was 59° 10' at 1^h 19^m 40^s of the chronometer 26^m 50^s slow of G. M. T. Required the D. R. altitude.

C.=1^h 19^m 40^s
C. C.=+ 26 59
G. M. T.=1^h 46^m 39^s
Eq. of T.=- 3 3
G. A. T.=1^h 43^m 36^s or
$$t_0$$
= 25° 54'
$$360^{\circ} + t_0 = 38^{\circ} 54'$$

$$G_{W} = 38 11$$

$$t = 347^{\circ} 43' 97067 t = 347^{\circ} 43'$$

$$L = 16 34 S 921$$

$$d = 12 10 N 493$$

$$98481 2143$$

$$L+d = 28^{\circ} 44' 12313$$

$$14456$$

$$h = 58^{\circ} 49'$$

How to FIND THE AZIMUTH.

The Azimuth can be readily and easily found by methods explained on pages xxxvii and xxxviii of the "Altitude and Azimuth Tables."

For the sake of further exercise we will find the Azimuth in one of the two examples above.

Example. Given $t=53^{\circ}$ 15' E, $d=10^{\circ}$ 27' S and $L=36^{\circ}$ 52' N. Find the Azimuth.

¹ When t is smaller than 180° we enter the tables at the top and the body is West of the meridian; when t is greater than 180° we enter the tables from below and the body is East of the meridian.

HOW TO FIND THE AZIMUTH

Entering the tables with $d=10^{\circ}$ 30' and $t=53^{\circ}$ we find on page 69: $a=52^{\circ}$ 0' and $b=17^{\circ}$. Combining b with L we have $C=54^{\circ}$ and entering the tables again with $a=52^{\circ}$ 0' and $C=54^{\circ}$ we find $Z=57^{\circ}$ 42'.

Generally (when $Z<70^\circ$) it will not be necessary to combine b and L. It is only necessary to run down column h corresponding to $a=52^\circ$ o' until we find $h=21^\circ$ 13 and alongside the value of the altitude we would find $Z=57^\circ$ 42'.

In the same way we would find $Z=23^{\circ}$ 41' in the second example.

Note.—It is evident that the Hour Angle t can be found given L, d and h by using backwards the process for finding h given L, d and t.

The author takes this opportunity to thank his good friend Lieutenant Renato Bayardino, Brazilian Navy, for his kindness in organising the "Latitude or Declination" Tables and for carefully revising with him these new Altitude Tables.

				Latitu		Declir	nation				
	o°	ı°	2 °	3°	4°	_5°	6°	7°	8°	9°	
0 I 2 3 4	0 0 0 0 0 0 0 0	3 3 3 4 3 5 3 6 3 8	13 3 13 5 13 7 13 9 14 1	29 8 30 I 30 4 30 8 31 I	53 ° 53 4 53 9 54 3 54 7	82 8 83 3 83 9 84 5 85 0	119 3 120 0 120 6 121 3 122 0	162 5 163 2 164 0 164 8 165 6	212 4 213 3 214 1 215 0 215 9	269 0 270 0 271 0 272 0 273 0	0 1 2 3 4
5 6 7 8 9	000000000000000000000000000000000000000	3 9 4 0 4 1 4 3 4 4 4 5	14 4 14 6 14 8 15 1 15 3	31 5 31 8 32 2 32 5 32 8 33 2	55 2 55 7 56 1 56 6 57 °	85 6 86 2 86 7 87 3 87 8 88 4	122 6 123 3 124 0 124 7 125 3 126 0	166 4 167 2 167 9 168 7 169 5	216 8 217 7 218 6 219 5 220 4	274 0 275 0 276 I 277 I 278 I 279 I	56 78 9
11 12 13 14 15	0 I 0 I 0 2 0 2	4 5 4 6 4 8 4 9 5 0 5 2	15 7 16 0 16 3 16 5	33 5 33 9 34 2 34 6 35 0	57 5 57 9 58 4 58 9 59 3 59 8	89 6 90 2 90 7 91 3	126 7 127 4 128 1 128 8	171 1 171 9 172 7 173 5	222 2 223 2 224 I 225 0 225 9	280 I 281 I 282 2 283 2 284 2	11 12 13 14 15 16
17 18 19 20	0 2 0 3 0 3 0 3	5 3 5 4 5 6 5 7 5 9	17 0 17 3 17 5 17 8	35 3 35 7 36 0 36 4 36 8	60 3 60 7 61 2 61 7 62 2	91 9 92 5 93 0 93 6 94 2	130 I 130 8 131 5 132 2	175 1 175 9 176 7 177 5	226 8 227 7 228 6 229 6 230 5	285 3 286 3 287 3 288 4 289 4	16 17 18 19 20 21
21 22 23 24 25 26	0 4 0 4 0 5 0 5 0 6	6 o 6 2 6 3 6 5 6 6 6 8	18 3 18 5 18 8 19 1 19 3 19 6	37 2 37 5 37 9 38 3 38 6 39 0	62 7 63 1 63 6 64 1 64 6 65 1	94 8 95 4 96 0 96 6 97 2 97 8	133 6 134 3 135 0 135 8 136 5 137 2	179 2 180 0 180 8 181 6 182 5 183 3	231 4 232 3 233 3 234 2 235 I 236 I	290 4 291 5 292 5 293 6 294 6 295 7	22 23 24 25 26
27 28 29 30 31	0 7 0 7 0 8 0 8	7 ° 7 1 7 3 7 4 7 6	19 9 20 1 20 4 20 7 21 0	39 4 39 8 40 2 40 5 40 9	65 6 66 1 66 5 67 0	98 4 99 0 99 6 100 2 100 8	137 9 138 6 139 3 140 0 140 8	184 1 184 9 185 7 186 6 187 4	237 0 238 0 238 9 239 8 240 8	296 7 297 8 298 8 299 9 300 9	27 28 29 30 31 32
32 33 34 35 36	0 9 1 0 1 1 1 1 1 2	7 8 7 9 8 1 8 3 8 5 8 6	21 2 21 5 21 8 22 1 22 4 22 7	41 3 41 7 42 1 42 5 42 9	68 0 68 5 69 0 69 6 70 1 70 6	101 4 102 0 102 7 103 3 103 9 104 5	141 5 142.2 142 9 143 7 144 4 145 1	188 2 189 1 189 9 190 8 191 6	241 7 242 7 243 6 244 6 245 5 246 5	302 0 303 0 304 I 305 2 306 2 307 3	33 34 35 36
37 38 39 40 41 42	1 3 1 4 1 4 1 5 1 5 1 6	8 8 9 0 9 2 9 4 9 6	22 7 22 9 23 2 23 5 23 8 24 I	43 3 43 7 44 1 44 5 44 9 45 3	71 1 71 6 72 1 72 6 73 1	105 I 105 8 106 4 107 0 107 6	145 9 146 6 147 3 148 1 148 8	193 3 194 1 195 0 195 8 196 7	247 5 248 4 249 4 250 3 251 3	308 4 309 5 310 5 311 6 312 7	38 39 40 41 42
43 44 45 46 47 48	17 18 19 19 20 21	9 8 9 9 10 1 10 3 10 5 10 7	24 4 24 7 25 0 25 3 25 6 25 9	45 7 46 1 46 5 47 0 47 4 47 8	73 7 74 2 74 7 75 3 76 3 76 8	108 3 108 9 109 5 110 2 110 8	149 6 150 3 151 0 151 8 152 5 153 3	197 5 198 4 199 3 200 1 201 0 201 8	252 3 253 2 254 2 255 2 256 2 257 1	313 8 314 9 315 9 317 0 318 1 319 2	40 47 48
50 51 52 53 54	2 2 2 3 2 4 2 5 2 6 2 7	10 9 11 1 11 3 11 5 11 7 11 9	26 2 26 6 26 9 27 2 27 5 27 8	48 2 48 6 49 1 49 5 49 9 50 3	77 4 77 9 78 4 79 0 79 5	112 1 112 7 113 4 114 0 114 7 115 4	154 0 154 8 155 6 156 3 157 1 157 8	202 7 203 6 204 4 205 3 206 2 207 I	258 I 259 I 260 I 261 I 262 0 263 0	320 3 321 4 322 5 323 6 324 7 325 8	50 51 52 53 54
55 56 57 58 59 60	28 29 30 31 32 33	12 2 12 4 12 6 12 8 13 0	28 2 28 5 28 8 29 1 29 5 29 8	50 8 51 2 51 7 52 1 52 5 53 0	80 I 80 6 81 2 81 7 82 2 82 8	116 0 116 6 117 3 118 0 118 6 119 3	158 6 159 4 160 1 160 9 161 7 162 5	208 0 208 8 209 7 210 6 211 5 212 4	264 0 265 0 266 0 267 0 268 0 269 0	326 9 328 0 329 I 330 2 331 3 332 4	56 57 58 59
	o°	ı°	2 °	3°	4°	5°	6°	7 °	8°	9°	
				Latitu	ide or	Decli	nation				

			I	Latitu	de or	Declin	ation				
	10°	IIº	12°	13°	14°	15°	16°	17°	18°	19°	
0 1 2 3 4	332 4 333 5 334 7 335 8 336 9	402 7 403 9 405 1 406 4 407 6	479 8 481 1 482 5 483 8 485 2	563 8 565 3 566 7 568 2 569 7	654 8 656 4 658 0 659 5 661 1	752 8 754 5 756 2 757 9 759 6	857 9 859 7 861 5 863 4 865 2	970 2 972 1 974 1 976 0 977 9	1089 7 1091 7 1093 8 1095 9 1097 9	1216 5 1218 7 1220 9 1223 0 1225 2	3 4
5 6 7 8 9	338 0 339 1 340 3 341 4 342 5 343 7	408 8 410 1 411 3 412 6 413 8 415 0	486 5 487 9 489 2 490 6 491 9 493 3	571 1 572 6 574 1 575 5 577 ° 578 5	662 7 664 3 665 9 667 5 669 0	761 3 763 0 764 7 766 4 768 1 769 8	867 0 868 8 870 6 872 5 874 3	979 9 981 8 983 8 985 7 987 6 989 6	1100 0 1102 0 1104 1 1106 2 1108 2	1227 4 1229 6 1231 8 1234 0 1236 2	5 6 7 8 9
11 12 13 14 15	344 8 345 9 347 1 348 2 349 3	416 3 417 5 418 8 420 1 421 3 422 6	494 7 496 0 497 4 498 8 500 1 501 5	580 0 581 4 582 9 584 4 585 9 587 4	672 2 673 8 675 4 677 0 678 6 680 2	771 6 773 3 775 0 776 7 778 4 780 1	878 0 879 8 881 6 883 5 885 3 887 2	991 6 993 5 995 5 997 4 999 4	1112 4 1114 5 1116 5 1118 6 1120 7 1122 8	1240 6 1242 8 1245 0 1247 2 1249 4 1251 6	11 12 13 14 15 16
17 18 19 20 21	35° 5 351 7 352 8 353 9 355 1 356 2	422 0 423 8 425 1 426 3 427 6 428 9	502 9 504 3 505 6 507 0 508 4	588 9 59° 4 591 9 593 4 594 9	681 9 683 5 685 1 686 7 688 3	781 9 783 6 785 3 787 1 788 8	889 0 890 8 892 7 894 5 896 4	1003 3 1005 3 1007 2 1009 2 1011 2	1124 9 1127 0 1129 0 1131 1 1133 2	1253 8 1256 0 1258 2 1260 4 1262 6	17 18 19 20 21
22 23 24 25 26 27	357 4 358 5 359 7 360 9 362 0 363 2	430 I 431 4 432 7 434 0 435 2 436 5	509 8 511 2 512 6 513 9 515 3 516 7	596 4 597 9 599 4 600 9 602 4 603 9	689 9 691 5 693 2 694 8 696 4 698 0	79° 5 792 3 794 ° 795 7 797 5 799 2	898 2 900 I 902 0 903 8 905 7 907 6	1013 2 1015 2 1017 1 1019 1 1021 1 1023 1	1135 3 1137 4 1139 5 1141 6 1143 7 1145 8	1264 8 1267 1 1269 3 1271 5 1273 7 1276 0	22 23 24 25 26 27
27 28 29 30 31 32 33	364 4 365 5 366 7 367 9 369 0 370 2	437 8 439 1 440 4 441 7 442 9 444 2	518 I 519 5 520 9 522 3 523 7 525 I	605 4 606 9 608 4 609 9 611 5 613 0	699 7 701 3 702 9 704 6 706 2 707 8	801 0 802 7 804 5 806 2 808 0 809 7	909 4 911 3 913 2 915 0 916 9	1025 0 1027 0 1029 0 1031 0 1033 0 1035 0	1148 0 1150 1 1152 2 1154 3 1156 4 1158 5	1278 2 1280 4 1282 7 1284 9 1287 2 1289 4	28
34 35 36 37 38 39	37 ¹ 4 37 ² 6 37 ³ 8 37 ⁴ 9 37 ⁶ 1 377 3	445 5 446 8 448 1 449 4 450 7 452 0	526 5 528 0 529 4 530 8 532 2 533 6	614 5 616 0 617 6 619 1 620 6 622 2	709 5 711 1 712 8 714 4 716 1 717 7	811 5 813 3 815 0 816 8 818 6 820 3	920 7 922 5 924 4 926 3 928 2 930 I	1037 0 1039 0 1041 0 1043 0 1045 0 1047 0	1160 6 1162 8 1164 9 1167 0 1169 1	1291 6 1293 9 1296 1 1298 4 1300 6 1302 9	34 35 36 37 38 39
40 41 42 43 44 45	378 5 379 7 380 9 382 1 383 3 384 5	453 3 454 6 455 9 457 2 458 5	535 ° 536 4 537 9 539 3 54° 7 542 I	623 7 625 2 626 8 628 3 629 8 631 4	719 4 721 0 722 7 724 3 726 0 727 6	822 I 823 9 825 6 827 4 829 2 831 0	932 0 933 9 935 8 937 7 939 6	1049 0 1051 1 1053 1 1055 1 1057 1	1173 4 1175 5 1177 7 1179 8 1182 0	1305 1 1307 4 1309 7 1311 9 1314 2	40 41 42 43 44
46 47 48 49 50	385 7 386 9 388 1 389 3 390 5	459 9 461 2 462 5 463 8 465 1 466 5	543 6 545 0 546 4 547 9	632 9 634 5 636 0 637 6 639 1	729 3 731 0 732 6 734 3 736 0	832 8 834 6 836 3 838 1 839 9	941 5 943 4 945 3 947 2 949 1 951 0	1061 2 1063 2 1065 2 1067 2 1069 3	1186 3 1188 4 1190 5 1192 7 1194 9	1318 7 1321 0 1323 3 1325 5 1327 8	47 48 49 50
51 52 53 54 55 56	391 7 392 9 394 1 395 3 396 6 397 8	467 8 469 1 470 4 471 8 473 1 474 4	550 8 552 2 553 6 555 1 556 5 558 0	640 7 642 3 643 8 645 4 646 9 648 5	737 7 739 3 741 0 742 7 744 4 746 1	841 7 843 5 845 3 847 1 848 9 850 7	952 9 954 8 956 7 958 6 960 6 962 5	1071 3 1073 3 1075 4 1077 4 1079 4 1081 5	1197 0 1199 2 1201 3 1203 5 1205 7 1207 8	1330 I 1332 4 1334 7 1337 0 1339 2 1341 5	52 53 54
55 56 57 58 59 60	399 0 400 2 401 4 402 7	475 8 477 1 478 4 479 8	559 4 560 9 562 3 563 8	650 1 651 7 653 2 654 8	747 7 749 4 751 1 752 8	852 5 854 3 856 1 857 9	964 4 966 3 968 3 97° 2	1083 5 1085 6 1087 6 1089 7	1210 0 1212 2 1214 3 1216 5	1343 8 1346 1 1348 4 1350 7	55 56 57 58 59 60
	10°	II°	12°	I 3°	14°	15° Declin	16°	17°	18°	19°	
				Latitu	ac or	Decini	ation				

				Latitu	ıde or	Decli	nation				,
	20°	21°	22°	23°	24°	25°	26°	27°	28°	29°	
0	1350 7	1492 4	1641 7	1798 7	1963 5	2136 2	2317 0	2506 0	2703 3	2909 0	0
1	1353 0	1494 8	1644 3	1801 4	1966 3	2139 2	2320 I	2509 2	2706 6	2912 5	1
2	1355 3	1497 3	1646 8	1804 1	1969 1	2142 1	2323 2	2512 4	2710 0	2916 0	2
3	1357 6	1499 7	1649 4	1806 8	1971 9	2145 1	2326 2	2515 6	2713 3	2919 6	3
4	1359 9	1502 1	1651 9	1809 4	1974 8	2148 0	2329 3	2518 9	2716 7	2923 I	4
5	1362 2	1504 6	1654 5	1812 1	1977 6	2151 0	2332 4	2522 I	2720 I	2926 6	56 78 9
6	1364 5	1507 0	1657 1	1814 8	1980 4	2153 9	2335 5	2525 3	2723 5	2930 I	
7	1366 9	1509 4	1659 6	1817 5	1983 2	2156 9	2338 6	2528 5	2726 8	2933 6	
8	1369 2	1511 9	1662 2	1820 2	1986 1	2159 9	2341 7	2531 8	2730 2	2937 I	
9	1371 5	1514 3	1664 8	1822 9	1988 9	2162 8	2344 8	2535 0	2733 6	2940 6	
10	1373 8	1516 8	1667 3	1825 6	1991 8	2165 8	2347 9	2538 3	2737 0	2944 2	10
11	1376 1	1519 2	1669 9	1828 3	1994 6	2168 8	2351 0	2541 5	2740 3	2947 7	11
12	1378 5	1521 7	1672 5	1831 0	1997 4	2171 7	2354 1	2544 8	2743 7	2951 2	12
13	1380 8	1524 1	1675 1	1833 7	2000 2	2174 7	2357 2	2548 0	2747 1	2954 8	13
14	1383 1	1526 6	1677 6	1836 4	2003 I	2177 7	2360 3	2551 2	2750 5	2958 3	14
15	1385 4	1529 0	1680 2	1839 2	2005 9	2180 7	2363 5	2554 5	2753 9	2961 8	15
16	1387 8	1531 5	1682 8	1841 9	2008 8	2183 6	2366 6	2557 8	2757 3	2965 4	16
17	1390 1	1533 9	1685 4	1844 6	2011 6	2186 6	2369 7	2561 0	2760 7	2968 9	17
18	1392 4	1536 4	1688 0	1847 3	2014 5	2189 6	2372 8	2564 3	2764 1	2972 5	18
19	1394 8	1538 9	1690 6	1850 0	2017 3	2192 6	2375 9	2567 5	2767 5	2976 0	19
20	1397 I	1541 3	1693 2	1852 8	2020 2	2195 6	2379 I	2570 8	2770 9	2979 5	20
21	1399 5	1543 8	1695 8	1855 5	2023 0	2198 6	2382 2	2574 I	2774 3	2983 1	21
22	1401 8	1546 3	1698 4	1858 2	2025 9	2201 6	2385 3	2577 3	2777 7	2986 7	22
23	1404 I	1548 7	1701 0	1860 9	2028 8	2204 6	2388 5	2580 6	2781 1	2990 2	23
24	1406 5	1551 2	1703 6	1863 7	2031 6	2207 6	2391 6	2583 9	2784 5	2993 8	24
25	1408 8	1553 7	1706 2	1866 4	2034 5	2210 6	2394 7	2587 I	2788 0	2997 3	_
26	1411 2	1556 2	1708 8	1869 1	2037 4	2213 6	2397 9	2590 4	2791 4	3000 9	
27	1413 5	1558 7	1711 4	1871 9	2040 2	2216 6	2401 0	2593 7	2794 8	3004 5	
28	1415 9	1561 1	1714 0	1874 6	2043 I	2219 6	2404 1	2597 0	2798 2	3008 0	
29	1418 3	1563 6	1716 6	1877 4	2046 0	2222 6	2407 3	2600 3	2801 6	3011 6	
30	1420 6	1566 1	1719 2	1880 1	2048 9	2225 6	2410 4	2603 6	2805 I	3015 2	30
31	1423 0	1568 6	1721 9	1882 9	2051 7	2228 6	2413 6	2606 8	2808 5	3018 7	31
32	1425 3	1571 1	1724 5	1885 6	2054 6	2231 6	2416 7	2610 1	2811 9	3022 3	32
33	1427 7	1573 6	1727 1	1888 4	2057 5	2234 6	2419 9	2613 4	2815 4	3025 9	33
34	1430 1	1576 1	1729 7	1891 1	2060 4	2237 7	2423 1	2616 7	2818 8	3029 5	34
35	1432 5	1578 6	1732 3	1893 9	2063 3	2240 7	2426 2	2620 0	2822 3	3033 I	35
36	1434 8	1581 1	1735 0	1896 6	2066 2	2243 7	2429 4	2623 3	2825 7	3036 6	36
37	1437 2	1583 6	1737 6	1899 4	2069 1	2246 7	2432 5	2626 6	2829 1	3040 2	37
38	1439 6	1586 1	1740 2	1902 2	2072 0	2249 8	2435 7	2629 9	2832 6	3043 8	38
39	1442 0	1588 6	1742 9	1904 9	2074 9	2252 8	2438 9	2633 2	2836 0	3047 4	39
40 41 42 43 44	1444 3 1446 7 1449 1 1451 5 1453 9	1591 1 1593 6 1596 1 1598 6 1601 1	1745 5 1748 1 1750 8 1753 4 1756 1	1907 7 1910 5 1913 2 1916 0 1918 8	2077 8 2080 7 2083 6 2086 5 2089 4	2255 8 2258 9 2261 9 2265 0 2268 0	2442 I 2445 2 2448 4 2451 6 2454 8	2636 6 2639 9 2643 2 2646 5 2649 8	2839 5 2842 9 2846 4 2849 9 2853 3	3051 0 3054 6 3058 2 3061 8 3065 4	42 43 44
45 46 47 48 49	1456 3 1458 7 1461 1 1463 5 1465 9	1603 7 1606 2 1608 7 1611 2 1613 8	1758 7 1761 4 1764 0 1766 7 1769 3	1921 6 1924 3 1927 1 1929 9 1932 7	2092 3 2095 2 2098 1 2101 0 2104 0	2283 2	2457 9 2461 1 2464 3 2467 5 2470 7	2653 1 2656 5 2659 8 2663 1 2666 5	2856 8 2860 3 2863 7 2867 2 2870 7	3069 0 3072 7 3076 3 3079 9 3083 5	46 47 48 49
50 51 52 53 54	1468 3 1470 7 1473 1 1475 5 1477 9	1616 3 1618 8 1621 4 1623 9 1626 4	1772 0 1774 7 1777 3 1780 0 1782 7	1935 5 1938 3 1941 1 1943 9 1946 7	2106 9 2109 8 2112 7 2115 7 2118 6	2292 4 2295 5 2298 5	2473 9 2477 1 2480 3 2483 5 2486 7	2669 8 2673 1 2676 5 2679 8 2683 1	2874 I 2877 6 2881 I 2884 6 2888 I	3087 I 3090 7 3094 4 3098 0 3101 6	52 53 54
55 56 57 58 59 60	1480 3 1482 7 1485 2 1487 6 1490 0 1492 4	1629 0 1631 5 1634 1 1636 6 1639 2 1641 7	1785 3 1788 0 1790 7 1793 3 1796 0 1798 7	1949 5 1952 3 1955 1 1957 9 1960 7 1963 5	2121 5 2124 5 2127 4 2130 3 2133 3 2136 2	2304 7	2489 9 2493 1 2496 3 2499 5 2502 7 2506 0	2686 5 2689 8 2693 2 2696 5 2699 9 2703 3	2891 6 2895 1 2898 5 2902 0 2905 5 2909 0	3105 3 3108 9 3112 5 3116 2 3119 8 3123 5	56 57 58 59
	20°	21°	22°	23°	24°	25°	26°	27°	28°	29°	
				Latiti	ıde or	Decli	nation				

				Latitu	ide or	Decli	nation				
	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	
0	3123 5	3346 7	3579 °	3820 4	4071 3	4331 8	4602 1	4882 6 4887 3 4892 1 4896 9 4901 6	5 ¹ 73 4	5474 9	0
1	3127 1	3350 5	3582 9	3824 5	4075 6	4336 2	4606 7		5 ¹ 78 3	5480 0	1
2	3130 7	3354 3	3586 9	3828 6	4079 8	4340 6	4611 3		5 ¹ 83 3	5485 1	2
3	3134 4	3358 1	359° 8	3832 8	4084 1	4345 1	4615 9		5 ¹ 88 2	5490 2	3
4	3138 1	3361 9	3594 8	3836 9	4088 4	4349 5	4620 5		5 ¹ 93 2	5495 4	4
5 6 7 8 9	3141 7 3145 4 3149 1 3152 7 3156 4	3365 7 3369 5 3373 4 3377 2 3381 0	3598 7 3602 7 3606 7 3610 6 3614 6	3841 0 3845 1 3849 2 3853 3 3857 5	4092 6 4096 9 4101 2 4105 5 4109 7	4353 9 4358 4 4362 8 4367 2 4371 7	4625 I 4629 7 4634 3 4638 9 4643 5	4906 4 4911 2 4916 0 4920 7 4925 5	5198 1 5203 1 5208 0 5213 0 5217 9	5500 5 5505 6 5510 8 5515 9 5521 0	5 6 7 8
10	3160 1	3384 8	3618 6	3861 6	4114 0	4376 I	4648 2	493° 3	5222 9	5526 2	10
11	3163 7	3388 6	3622 6	3865 7	4118 3	4380 6	4652 8	4935 I	5227 9	5531 3	11
12	3167 4	3392 4	3626 5	3869 8	4122 6	4385 0	4657 4	4939 9	5232 8	5536 5	12
13	3171 1	3396 3	3630 5	3874 0	4126 9	4389 5	4662 0	4944 7	5237 8	5541 6	13
14	3174 8	3400 I	3634 5	3878 1	4131 2	4394 0	4666 6	4949 5	5242 8	5546 8	14
15	3178 4	34°3 9	3638 5	3882 3	4135 5	4398 4	4671 3	4954 3	5247 8	5551 9	15
16	3182 1	34°7 8	3642 5	3886 4	4139 8	4402 9	4675 9	4959 1	5252 7	5557 1	16
17	3185 8	3411 6	3646 4	3890 5	4144 1	4407 4	4680 5	4963 9	5257 7	5562 3	17
18	3189 5	3415 4	3650 4	3894 7	4148 4	4411 8	4685 2	4968 7	5262 7	5567 4	18
19	3193 2	3419 3	3654 4	3898 8	4152 7	4416 3	4689 8	4973 5	5267 7	5572 6	19
20	3196 9	3423 I	3658 4	39°3 °	4157 0	4420 8	4694 5	4978 3	5272 7	5577 8	20
21	3200 6	3427 0	3662 4	39°7 2	4161 4	4425 3	4699 1	4983 2	5277 7	5583 0	21
22	3204 3	3430 8	3666 4	3911 3	4165 7	4429 7	4703 8	4988 0	5282 7	5588 1	22
23	3208 0	3434 7	3670 4	3915 5	4170 0	4434 2	4708 4	4992 8	5287 7	5593 3	23
24	3211 7	3438 5	3674 4	3919 6	4174 3	4438 7	4713 1	4997 6	5292 7	5598 5	24
25	3215 4	3442 4	3678 5	3923 8	4178 6	4443 2	4717 7	5002 5	5297 7 53°2 7 53°7 7 5312 7 5317 8	5603 7	25
26	3219 1	3446 3	3682 5	3928 0	4183 0	4447 7	4722 4	5007 3		5608 9	26
27	3222 8	3450 I	3686 5	3932 I	4187 3	4452 2	4727 1	5012 1		5614 1	27
28	3226 5	3454 0	3690 5	3936 3	4191 6	4456 7	4731 7	5017 0		5619 3	28
29	3230 3	3457 8	3694 5	3940 5	4196 0	4461 2	4736 4	5021 8		5624 5	29
30	3234 0	3461 7	3698 5	3944 7	4200 3	44 ⁶ 5 7	4741 1	5026 7	5322 8	5629 7	30
31	3237 7	3465 6	3702 6	3948 9	4204 7	447° 2	4745 7	5031 5	5327 8	5634 9	31
32	3241 4	3469 5	3706 6	3953 °	4209 0	4474 7	475° 4	5036 4	5332 8	5640 1	32
33	3245 2	3473 3	3710 6	3957 2	4213 4	4479 2	4755 1	5041 2	5337 9	5645 3	33
34	3248 9	3477 2	3714 7	3961 4	4217 7	44 ⁸ 3 7	4759 8	5046 1	5342 9	5650 6	34
35	3252 6	3481 1	3718 7	3965 6	4222 I	4488 3	4764 5	5050 9	5347 9	5655 8	35
36	3256 4	3485 0	3722 7	3969 8	4226 4	4492 8	4769 2	5055 8	5353 °	5661 0	36
37	3260 1	3488 9	3726 8	3974 0	4230 8	4497 3	4773 9	5060 7	5358 °	5666 2	37
38	3263 8	3492 8	3730 8	3978 2	4235 I	4501 8	4778 5	5065 5	5363 I	5671 5	38
39	3267 6	3496 7	3734 9	3982 4	4239 5	4506 4	4783 2	5070 4	5368 I	5676 7	39
40 41 42 43 44	3271 3 3275 1 3278 8 3282 6 3286 3	3500 5 3504 4 3508 3 3512 2 3516 2	3738 9 3743 ° 3747 ° 3751 1 3755 1	3986 6 3990 8 3995 0 3999 2 4003 5	4243 9 4248 2 4252 6 4257 0 4261 4	4510 9 4515 4 4520 0 4524 5 4529 1	47 ⁸ 7 9 479 ² 7 4797 4 4802 1 4806 8	5075 3 5080 2 5085 0 5089 9 5094 8	5373 2 5378 2 5383 3 5388 4 5393 4	5681 9 5687 2 5692 4 5697 7 5702 9	40 41
45	3290 I	3520 I	3759 2	4007 7	4265 7	4533 6	4811 5	5099 7	5398 5	5708 2	45
46	3293 8	3524 0	3763 3	4011 9	4270 1	4538 1	4816 2	5104 6	5403 6	5713 4	46
47	3297 6	3527 9	3767 3	4016 1	4274 5	4542 7	4820 9	5109 5	5408 6	5718 7	47
48	3301 4	3531 8	3771 4	4020 4	4278 9	4547 3	4825 7	5114 4	5413 7	5723 9	48
49	3305 I	3535 7	3775 5	4024 6	4283 3	4551 8	4830 4	5119 3	5418 8	5729 2	49
50	3308 9	3539 6	3779 5	4028 8	4287 7	4556 4	4835 I	5124 2	5423 9	5734 5	50
51	3312 7	3543 6	3783 6	4033 I	4292 1	4560 9	4839 8	5129 1	5429 0	5739 7	51
52	3316 4	3547 5	3787 7	4037 3	4296 5	4565 5	4844 6	5134 0	5434 0	5745 °	52
53	3320 2	3551 4	3791 8	404I 5	4300 9	4570 1	4849 3	5138 9	5439 1	575° 3	53
54	3324 0	3555 3	3795 9	4045 8	4305 3	4574 6	4854 I	5143 8	5444 2	5755 6	54
55 56 57 58 59 60	3327 8 3331 6 3335 3 3339 1 3342 9 3346 7	3559 3 3563 2 3567 1 3571 1 3575 0 3579 0	3800 0 3804 0 3808 1 3812 2 3816 3 3820 4	4050 0 4054 3 4058 5 4062 8 4067 0 4071 3	43°9 7 4314 1 4318 5 4322 9 4327 4 4331 8		4858 8 4863 6 4868 3 4873 1 4877 8 4882 6	5148 8 5153 7 5158 6 5163 5 5168 5	5449 3 5454 4 5459 5 5464 6 5469 8 5474 9	5760 8 5766 1 5771 4 5776 7 5782 0 5787 3	55 56 57 58 59 60
	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	
				Latit	ude or	Decli	nation				

				Latitu	ıde or	Decli	nation				
	40°	41°	42°	43°	44°	45°	46°	47°	48°	49°	
0 1 2 3 4	5787 3 5792 6 5797 9 5803 2 5808 5	6111 0 6116 5 6122 0 6127 5 6133 0	6446 3 6452 0 6457 7 6463 4 6469 I	6793 6 6799 5 6805 4 6811 3 6817 2	7153 3 7159 4 7165 5 7171 6 7177 7	7525 8 7532 1 7538 4 7544 7 7551 0	7911 4 7918 0 7924 5 7931 1 7937 6	8310 8 8317 6 8324 4 8331 2 8338 0	8724 5 8731 5 8738 5 8745 5 8752 6	9152 9 9160 1 9167 4 9174 7 9182 0	0 I 2 3 4
5 6 7 8 9	58138 58192 58245 58298 58351	6138 5 6144 0 6149 5 6155 0 6160 6	6474 8 6480 5 6486 2 6491 9 6497 7	6823 I 6829 0 6834 9 6840 9 6846 8	7183 8 7190 0 7196 1 7202 2 7208 3	7557 4 75 ⁶ 3 7 757 ⁰ 1 757 ⁶ 4 75 ⁸ 2 8	7944 2 7950 8 7957 3 7963 9 7970 5	8344 8 8351 6 8358 4 8365 2 8372 0	8759 6 8766 6 8773 7 8780 7 8787 8	9189 2 9196 5 9203 8 9211 1 9218 4	56 78 9
10 11 12 13 14	5840 5 5845 8 5851 1 5856 5 5861 8	6166 1 6171 6 6177 1 6182 7 6188 2	6503 4 6509 1 6514 8 6520 5 6526 3	6852 7 6858 6 6864 6 6870 5 6876 4	7214 5 7220 6 7226 8 7232 9 7239 0	7589 1 7595 5 7601 8 7608 2 7614 5	7977 ° 7983 6 799° 2 7996 8 8 8 8 9 3 4	8378 8 8385 6 8392 4 8399 2 8406 1	8794 8 8801 9 8808 9 8816 0 8823 1	9225 7 9233 0 9240 4 9247 7 9255 0	10 11 12 13 14
15 16 17 18 19	5867 2 5872 5 5877 9 5883 2 5888 6	61937 61993 62048 62104 62159	6532 0 6537 8 6543 5 6549 2 6555 0	6882 4 6888 3 6894 3 6900 2 6906 2	7245 2 7251 4 7257 5 7263 7 7269 8	7620 9 7627 3 7633 7 7640 0 7646 4	8010 0 8016 6 8023 2 8029 8 8036 4	8412 9 8419 7 8426 6 8433 4 8440 3	8830 I 8837 2 8844 3 885I 4 8858 5	9262 3 9269 7 9277 0 9284 3 9291 7	15 16 17 18 19
20 21 22 23 24	5893 9 5899 3 5904 7 5910 0 5915 4	6221 5 6227 0 6232 6 6238 2 6243 7	6560 7 6566 5 6572 3 6578 0 6583 8	6912 1 6918 1 6924 1 6930 0 6936 0	7276 0 7282 2 7288 4 7294 5 73 ⁰⁰ 7	7652 8 7659 2 7665 6 7672 0 7678 4	8043 0 8049 6 8056 3 8062 9 8069 5	8447 I 8454 0 8460 8 8467 7 8474 5	8865 6 8872 7 8879 8 8886 9 8894 0	9299 0 9306 4 9313 8 9321 1 9328 5	20 21 22 23 24
25 26 27 28 29	5920 8 5926 2 5931 6 5936 9 5942 3	6249 3 6254 9 6260 4 6266 0 6271 6	6589 6 6595 3 6601 1 6606 9 6612 7	6942 0 6947 9 6953 9 6959 9 6965 9	73°6 9 7313 1 7319 3 7325 5 7331 7	7684 8 7691 2 7697 6 7704 1 7710 5	8076 2 8082 8 8089 4 8096 1 8102 7	8481 4 8488 3 8495 2 8502 1 8508 9	8901 1 8908 2 8915 4 8922 5 8929 6	9335 9 9343 2 9350 6 9358 0 9365 4	25 26 27 28 29
30 31 32 33 34	5947 7 5953 1 5958 5 5963 9 5969 3	6277 2 6282 8 6288 4 6294 0 6299 6	6618 5 6624 2 6630 0 6635 8 6641 6	6971 9 6977 9 6983 9 6989 9 6995 9	7337 9 7344 1 7350 3 7356 5 7362 8	7716 9 7723 3 7729 8 7736 2 7742 7	8109 4 8116 1 8122 7 8129 4 8136 0	8515 8 8522 7 8529 6 8536 5 8543 4	8936 8 8943 9 8951 1 8958 2 8965 4	9372 8 9380 2 9387 6 9395 0 9402 4	30 31 32 33 34
35 36 37 38 39	5974 7 5980 2 5985 6 5991 0 5996 4	6305 2 6310 8 6316 4 6322 0 6327 6	6647 4 6653 2 6659 1 6664 9 6670 7	7001 9 7007 9 7013 9 7020 0 7026 0	7369 0 7375 2 7381 4 7387 7 7393 9	7749 1 7755 5 7762 0 7768 5 7774 9	8142 7 8149 4 8156 1 8162 8 8169 5	8550 4 8557 3 8564 2 8571 1 8578 0	8972 5 8979 7 8986 9 8994 0 9001 2	9409 8 9417 2 9424 7 9432 1 9439 5	38 39
40 41 42 43 44	6001 8 6007 3 6012 7 6018 1 6023 6	6333 2 6338 9 6344 5 6350 1 6355 8	6676 5 6682 3 6688 2 6694 0 6699 8	7032 0 7038 0 7044 I 7050 I 7056 2	7400 2 7406 4 7412 6 7418 9 7425 2	7781 4 7787 8 7794 3 7800 8 7807 3	8176 1 8182 8 8189 5 8196 3 8203 0	8585 0 8591 9 8598 8 8605 8 8612 8	9008 4 9015 6 9022 8 9029 9 9037 1	9447 ° 9454 4 9461 8 9469 3 9476 8	41 42 43 44
45 46 47 48 49	6029 0 6034 5 6039 9 6045 4 6050 8	6361 4 6367 0 6372 7 6378 3 6384 0	6705 7 6711 5 6717 3 6723 2 6729 0	7062 2 7068 2 7074 3 7080 4 7086 4	7431 4 7437 7 7444 0 7450 2 7456 5	78138 78202 78267 78332 78397	8209 7 8216 4 8223 1 8229 8 8236 6	8619 7 8626 6 8633 6 8640 6 8647 5	9073 2	9484 2 9491 7 9499 1 9506 6 9514 1	46 47 48 49
50 51 52 53 54	6056 3 6061 7 6067 2 6072 7 6078 1	6389 6 6395 3 6400 9 6406 6 6412 3	6734 9 6740 8 6746 6 6752 5 6758 3	7092 5 7098 5 7104 6 7110 7 7116 8	7462 8 7469 1 7475 3 7481 6 74 ⁸ 7 9	7846 2 7852 7 7859 2 7865 7 7872 3	8263 5 8270 3	8654 5 8661 5 8668 5 8675 5 8682 4	9080 4 9087 6 9094 9 9102 1 9109 3	9521 6 9529 1 9536 5 9544 0 9551 5	51 52 53 54
55 56 57 58 59 60	6083 6 6089 1 6094 6 6100 0 6105 5 6111 0	6417 9 6423 6 6429 3 6435 0 6440 6 6446 3	6764 2 6770 1 6776 0 6781 9 6787 7 6793 6	7122 8 7128 9 7135 0 7141 1 7147 2 7153 3	7494 ² 75°° 5 75°6 8 75°13 1 75°19 4 75°25 8	7878 8 7885 3 7891 8 7898 4 7904 9 7911 4	8277 0 8283 8 8290 5 8297 3 8304 I 8310 8	8689 4 8696 4 8703 4 8710 4 8717 4 8724 5	9116 6 9123 8 9131 1 9138 3 9145 6 9152 9	9559 ° 9566 6 9574 1 9581 6 9589 1 9596 6	57
	40°	41°	42°	43°	44°	45°	46°	47°	48°	49°	
						Decli					

				Latitu	ıde or	Decli	nation				,
	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	
0 1 2 3 4	9596 6 9604 2 9611 7 9619 2 9626 8		10549 1	11026 9 11035 2 11043 6 11052 0 11060 4	11547 8 11556 5 11565 2	12088 5	12631 3 12640 7 12650 0	13204 3 13214 0 13223 8	13789 5 13799 6 13809 7 13819 9 13830 0	14439 6	
56 78 9	9634 3 9641 9 9649 4 9657 0 9664 6	101190	10573 4 10581 5 10589 6 10597 7	11068 8 11077 2 11085 7 11094 1 11102 5	11582 6 11591 3 11600 1 11608 8	121156	12668 8 12678 2 12687 6 12697 0	13243 3 13253 0 13262 8	13840 1 13850 3 13860 4 13870 6	14460 7	56 78 9
10 11 12 13 14	9672 1 9679 7 9687 3 9694 9 9702 5	10134 6 10142 5 10150 4 10158 2	10614 0 10622 1 10630 3 10638 4	111109	11626 3 11635 0 11643 8 11652 5	12160 9 12170 0 12179 1	12715 9 12725 3 12734 7 12744 2	13292 I 13301 9 13311 7 13321 5	13890 9 13901 1 13911 3	14513 5 14524 1 14534 7 14545 3	10 11 12 13 14
15 16 17 18	9710 I 9717 7 9725 3 9732 9 9740 5	10173 9 10181 8 10189 7 10197 6 10205 5	10654 7 10662 9 10671 0 10679 2	11153 2 11161 6 11170 1 11178 6	11670 1 11678 9 11687 6	12206 4 12215 5 12224 6 12233 7	12763 I 12772 5 12782 0 12791 4	13341 2	13941 9 13952 1	14566 5 14577 1 14587 8 14598 4 14609 0	15 16 17 18
20 21 22 23 24	9748 1 9755 7 9763 3 9770 9 9778 6	10213 4 10221 2 10229 1 10237 1	10695 6 10703 8 10712 0	11195 5 11204 0 11212 5 11221 0	11714 0 11722 8 11731 6	12252 0 12261 1 12270 3 12279 4 12288 6	12810 4 12819 9 12829 4 12838 9	** *	13993 0 14003 3 14013 5 14023 8	14619 7 14630 3 14641 0 14651 7	20 21 22 23 24
25 26 27 28 29	9786 2 9793 9 9801 5 9809 2 9816 8	10252 9 10260 8 10268 7 10276 7 10284 6	10736 6 10744 8 10753 0 10761 2	11238 0 11246 5 11255 0	11758 1 11766 9 11775 8 11784 6	12316 1 12325 2	12857 9 12867 4 12876 9	13439 7 13449 6 13459 5 13469 4	14044 3 14054 6 14064 9	14673 0 14683 7 14694 4 14705 1 14715 8	25 26 27 28 29
30 31 32 33 34	9824 5 9832 1 9839 8 9847 5 9855 2	10292 5 10300 5 10308 4 10316 4 10324 3	10785 9 10794 1 10802 4	112977	11802 3 11811 2 11820 0 11828 9	12343 6 12352 8 12362 0	12905 5 12915 1 12924 6 12934 2	13489 2 13499 1 13509 0 13518 9 13528 9	14095 7 14106 1 14116 4 14126 7	14726 6 14737 3 14748 0 14758 8 14769 5	30 31 32 33 34
35 36 37 38 39	9870 5 9878 2 9885 9	10332 3 10340 3 10348 2 10356 2 10364 2	10827 I 10835 4 10843 6	11323 4 11331 9 11340 5 11349 1 11357 7	11855 5 11864 4 11873 3	12389 6 12398 8 12408 1 12417 3 12426 5	12962 9 12972 5 12982 1	13538 8 13548 8 13558 7 13568 7 13578 7	14168 1	14780 3 14791 0 14801 8 14812 6 14823 4	35 36 37 38 39
40 41 42 43 44	9916 8 9924 5	10388 2 10396 2		11374 8 11383 4 11392 0	11909 0	12454 3 12463 6		136186	14209 5 14219 9	14834 2 14845 0 14855 8 14866 6 14877 4	40 41 42 43 44
45 46 47 48 49	9939 9 9947 7 9955 4 9963 1	10412 2 10420 2 10428 2 10436 2	10901 7 10910 0 10918 3	11409 3 11417 9 11426 5 11435 1	11935 7 11944 7 11953 6 11962 6	12482 1 12491 4 12500 7	13049 4 13059 0 13068 6 13078 3	13638 6	14251 1 14261 5 14272 0 14282 4	14888 2	45 46 47 48 49
50 51 52 53 54	9978 6 9986 4 9994 2	10452 3	10943 3 10951 6 10960 0 10968 3	11452 4 11461 0	11980 5 11989 5 11998 4 12007 4	12528 6 12537 9	13097 6 13107 3 13116 9 13126 6	13688 8 13698 8 13708 9 13718 9	14303 3 14313 7 14324 2 14334 6	14942 5 14953 3 14964 2 14975 1 14986 0	50 51 52 53 54
55 56 57 58 59 60	10017 5 10025 2 10033 0 10040 8 10048 6 10056 4	10500 6 10508 7 10516 7 10524 8	10985 0 10993 4 11001 7 11010 1 11018 5 11026 9	11504 3 11513 0 11521 7 11530 4	12043 4 12052 4 12061 4	12575 2 12584 5 12593 9 12603 2 12612 6	13146 0 13155 7 13165 4 13175 1 13184 8	13759 2 13769 3 13779 4	14366 0 14376 5 14387 0 14397 5	15029 6 15040 6	55 56 57 58 59 60
	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	
		THE RESERVE		Latitu	ıde or	Decli	nation				

			1	Latitu	de or	Declin	ation				
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	
0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 12 22 32 4 25 26 27 28 29 30 31 32 33 33 34 40 41 42 42	150515 150624 150734 150844 150953 151063 151173 151283 151393 151593 151613 151723 151613 151723 151614 152275 152276 152276 152276 152276 152276 152276 152276 152276 152386 152496 152496 15264 15264 15264 15264 15275 15336 15336 15336 15336 15336 15336 15336 15336 15336 15349 153	15721 4 15732 8 15744 2 15755 7 15765 7 15769 0 15801 4 15812 9 15824 3 15835 8 15847 3 15836 8 15847 3 15858 8 15893 3 15894 8 15893 3 15994 8 15997 2 16985 6 15997 2 1608 8 1608 6 16095 5 16096 9 16098 5 16096 9 16098 5 16096 9 16098 5 16098 1 16101 8 16113 5 16125 1 16136 8 16148 5 16160 2 16171 9 16183 6 16195 3 16195 3 16195 3	16419 5 16431 4 16443 3 16445 2 16450 2 16450 9 16502 9 16502 8 16503 8 16507 7 16504 7 16504 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16508 7 16608 8 16640 9 16682 9 16693 1 16709 1 16709 1 16709 1 16709 7 16709 7 16709 7 16709 7 16804 0 16816 2 1682 8 16840 5 16840 5 16840 5 16840 7 16840 8 16840 1 16840 8 16840 9 16840 9 16840 9 16840 9 16850 7 166850 7 166850 7 166850 9 16864 9 16877 1 16880 3	17147 7 17160 1 17172 5 17184 9 17197 3 17209 8 17222 2 17234 7 17247 1 17259 6 17272 1 17284 6 17297 1 17334 6 17322 1 17334 6 17327 1 17359 7 17372 3 17347 2 17359 7 17372 3 17410 0 17422 6 17435 2 17447 8 17447 8 17561 7 17574 4 17561 7 17574 4 1758 7 17599 8 17612 5 17625 3 17638 0 17638 0 17638 0 17663 8 17663 8 17663 8 17663 6 17663 8	17907 9 17920 9 17936 8 17946 8 17959 8 17972 8 17985 8 17985 8 17985 8 17986 8 18011 8 18011 8 18050 9 18050 9 18070 1 18070 1 18070 1 18164 6 18129 5 18164 6 18155 7 18168 8 18182 0 18195 2 18201 5 18247 9 18261 1 18274 3 18247 9 18261 1 18274 3 18304 0 18327 3 18340 6 18353 8 18367 1 18367 1 18380 4 18393 7 18407 0 18420 4 18447 1 18447 1	18702 6 18716 1 18729 7 18749 7 18749 7 18749 7 18770 5 18784 1 18797 7 18811 3 18824 9 18838 6 18852 2 18865 9 188920 6 18934 4 18948 1 18966 8 18975 6 18989 3 19003 1 19016 9 19030 7 19044 5 19058 3 19072 1 19086 0 19099 8 19113 7 19141 4 19155 3 19141 4 19155 3 19169 2 19183 1 19197 0 19120 9 19224 9 19224 9 19238 8 19250 8 19252 8 19250 8	19534 3 19548 5 19562 7 19576 9 19591 2 19605 4 19619 7 19633 9 19662 5 19666 8 19691 1 19705 4 19719 7 19734 1 19748 4 19762 8 19777 1 19748 4 19762 8 19777 1 19748 9 19805 9 19805 9 19805 9 19805 9 19805 0 1995 5 1995 5 1995 6 19994 1 2008 7 20023 2 20037 8 20057 6 20081 6 20096 2 20110 9 20125 5 20140 2	20406 I 20421 0 20435 9 20450 8 20450 7 20495 6 20510 6 20510 6 20525 5 20550 5 20550 5 20560 6 20615 6 20615 6 20630 7 20645 7 20645 7 20645 7 20736 4 20751 6 20761 7 20781 9 20797 1 20812 3 20827 5 20828 8 20875 9 20919 I 20941 9 20941 9 20941 7 20965 I	21321 2 21336 9 21352 5 21368 2 21383 9 21399 6 214415 3 21443 0 21446 7 21446 7 21462 5 21446 2 21599 8 21525 6 21521 4 21557 2 21573 1 21588 9 21604 8 21620 7 21636 6 21620 7 21636 6 21620 2 21748 2 21780 2 21812 3 21828 3 21844 4 21860 5 21890 7 21908 8 21925 0 21941 1 21957 3 21997 3 21997 3 21997 3 21997 3 21997 3 21997 3 21997 3 21997 3	22283 5 22300 0 22316 5 22330 0 22349 5 22332 0 22449 5 22445 6 22432 2 22448 8 22465 4 22482 0 22598 7 22565 4 22598 8 22615 5 22632 3 22649 7 22566 8 2269 5 22733 1 22733 1 22730 6 22817 6	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60	15528 8 15540 1 15551 4 15552 7 15574 0 15585 3 15596 6 15607 9 15619 2 15630 2 15641 9 15653 2 15664 6 15675 3 15687 3 15698 7 15710 0	16265 8 16277 6 16289 4 16301 2 16313 0 16324 8 16336 6 16348 4 16360 2 16372 1 16383 9 16395 8 16407 7	16975 0 16987 2 16999 5 17011 8 17024 1 17036 5 17048 8 17061 1 17073 4 17085 8 17098 1	17714 7 17727 5 17740 3 17753 2 17766 0 17778 9 17791 7 17804 6 17817 5 17830 4 17843 3 17856 2 17869 1 17882 0 17895 0	18487 2 18500 6 18514 0 18527 4 18540 8 18554 2 18567 6 18581 1 18594 6 18608 0 18621 5 18648 5 18648 5 18652 0	19350 8 19364 9 19378 9 19393 0 19407 1 19421 2 19435 3 19449 4 19463 5 19477 7 19491 8	20169 5 20184 2 20198 9 20213 7 20228 4 20243 1 20257 9 20272 7 20287 4 20302 2 20317 0 20331 8 20346 7 20361 5 20376 4	21072 8 21088 2 21103 6 21115 0 21165 5 21181 0 21196 6 21227 7 21243 2 21258 8 21274 4 21290 0	22022 I 22038 3 22054 6 22070 8 22087 I 22119 7 22136 0 22152 4 22168 7 22185 I 22201 4 22217 8 22237 9	23021 7 23038 8 23056 0 23073 I 23090 3 23107 5 23124 7 23141 9 23159 I 23176 3 23193 6 23228 I 23245 4 23262 7 23280 I	44 45 46 47 48 49 55 55 55 55 55 55 55 55 55 55 55 55 55
	60°	61°	62°	63°	64°	65°	66°	67°	68°	6)°	
				Latit	ude or	Decli	nation				

				Latitu	ide or	Decli	nation					
	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°		
0 I 2 3 4	23297 4 23314 8 23332 2 23349 6 23367 0	24367 9 24386 3 24404 6 24423 0 24441 4	25500 9 25520 3 25539 8 25559 3 25578 8	26703 2 26723 9 26744 6 26765 3 26786 0	27983 I 28005 I 28027 2 28049 3 28071 4	29350 2 29373 8 29397 4 29421 0 29444 7	30816 2 30841 6 30867 0 30892 4 30917 8	32395 6 32423 0 32450 4 32477 8 32505 3	34106 I 34135 8 34165 6 34195 4 34225 3	35970 I 36002 6 36035 2 36067 8 36100 5	0 1 2 3 4	
5 6 7 8 9	23384 4 23401 8 23419 3 23436 8 23454 2	24459 8 24478 3 24496 7 24515 2 24533 7	25598 3 25617 9 25637 4 25657 0 25676 6	26806 8 26827 6 26848 4 26869 2 26890 1	28115 7 28137 9 28160 1 28182 3	29468 4 29492 1 29515 9 29539 7 29563 5	30943 3 30968 8 30994 4 31020 0 31045 6	32532 8 32560 4 32588 0 32615 6 32643 3	34255 2 34285 1 34315 1 34345 2 34375 3	36133 2 36166 0 36198 8 36231 7 36264 6	7 8 9	
10 11 12 13 14	23471 8 23489 3 23506 8 23524 4 23541 9	24552 2 24570 8 24589 3 24607 9 24626 4	25696 3 25715 9 25735 6 25755 3 25775 0	26910 9 26931 8 26952 7 26973 6 26994 6	28226 9 28249 2 28271 5 28293 9	29587 3 29611 2 29635 1 29659 0 29682 9	31071 2 31096 9 31122 6 31148 3 31174 1	32671 0 32698 8 32726 6 32754 4 32782 3	344° 5 4 34435 6 34465 8 34496 ° 34526 3	36297 6 36330 6 36363 7 36396 8 36430 0		
15 16 17 18 19	23559 5 23577 1 23594 7 23612 4 23630 0	24645 0 24663 7 24682 3 24700 9 24719 6	25794 7 25814 4 25834 2 25854 0 25873 8 25893 6	27015 6 27036 6 27057 6 27078 6 27099 7 27120 8	28338 7 28361 1	29706 9 29730 9 29755 0 29779 0 29803 1 29827 2	31199 9 31225 7 31251 5 31277 4 31303 3 31329 3	32810 2 32838 1 32866 1 32894 1 32922 1 32950 2	345567 345871 346175 346480 346785 347091	36463 3 36496 6 36529 9 36563 3 36596 8	15 16 17 18 19	
21 22 23 24 25	23665 4 23683 1 23700 8 23718 5	24757 0 24775 7 24794 5 24813 2 24832 0	25933 3 25933 3 25953 2 25973 1	27141 9 27163 0 27184 2 27205 4 27226 6	28451 1 28473 7 28496 3 28518 9 28541 5	29851 4 29875 6 29899 8	31355 3 31381 3 31407 4 31433 5 31459 6	32978 3 33006 5 33034 7 33062 9 33091 2	34739 7 3477° 3 34801 0 34831 8 34862 6	36663 9 36697 5 36731 2 36764 9 36798 7	21 22 23 24	
26 27 28 29 30	23754 0 23771 8 23789 6 23807 4 23825 2	24850 8 24869 6 24888 5 24907 3 24926 2	26012 9 26032 9 26052 9 26072 9	27247 8 27269 0 27290 3 27311 6	28564 2 28586 9 28609 6 28632 3 28655 1	29972 6 29996 9 30021 2 30045 6	31485 8 31512 0 31538 2 31564 5	33119 5 33147 9 33176 3 33204 7 33233 2	34893 4 34924 3 34955 2 34986 2 35017 2	36832 5 36866 4 36900 3 36934 3 36968 4	25 26 27 28 29 30	
31 32 33 34 35	23843 I 23861 0 23878 8 23896 7 23914 6	24945 I 24964 0 24982 9 25001 8	26113 0 26133 0 26153 1 26173 2 26193 3	27354 2 27375 6 27397 0 27418 4 27439 8		30094 5 30118 9 30143 4 30167 9 30192 5	31617 1 31643 4 31669 8	33261 7 33290 2 33318 8 33347 4 33376 1	35048 3 35079 4 35110 6 35141 8 35173 1	37002 5 37036 6 37070 8 37105 1 37139 4	31 32 33 34	
36 37 38 39 40	23932 6 23950 5 23968 5 23986 4	25039 8 25058 8 25077 8 25096 8	26213 5 26233 7 26253 9 26274 1 26294 3	27461 3 27482 8 27504 3 27525 8	28792 2 28815 I 28838 I 28861 I	30217 1 30241 7 30266 4 30291 1 30315 8	31749 2 31775 7 31802 3 31828 9	33404 8 33433 6 33462 4 33491 2 33520 1	35204 4 35235 7 35267 1 35298 5 35330 0	37173 8 37208 3 37242 8 37277 4 37312 0	35 36 37 38 39 40	
41 42 43 44 45	24022 5 24040 5 24058 5 24076 6	25135 0 25154 1 25173 2 25192 3	26314 5 26334 8 26355 1 26375 4 26395 7	27568 9 27590 5 27612 1 27633 7 27655 4	28907 2 28930 3 28953 4 28976 5	30340 5 30365 3 30390 1 30414 9 30439 7		33549 ° 33577 9 33606 9 33635 9	35361 6 35393 2 35424 8	37346 7 37381 4 37416 2 37451 0	41 42 43 44 45	
46 47 48 49 50	241128 241309 241490	25230 6 25249 8 25269 0 25288 2	26416 1 26436 5 26456 9 26477 3	27677 I 27698 8 27720 5	29022 8 29046 0 29069 3 29092 5	30464 6 30489 5 30514 5 30539 5	32016 1 32043 0 32069 9 32096 8	33694 I 33723 3 33752 5	35520 0 35551 8 35583 7 35615 6	37520 9 37555 9 37591 0	46 47 48 49	
51 52 53 54		25365 3 25384 6	26518 2 26538 7 26559 2 26579 7	27764 6 2778 5 8 27807 6 27829 5 27851 4 27873 3	29139 1 29162 5 29185 9 29209 3	30614 6	32150 8 32177 9 32205 0 32232 1	33840 3 33869 7 33899 1	35679 6 35711 7 35743 8 35776 0	84872 7 85189 7 85511 3 85837 8 86169 3	50 51 52 53 54	
55 56 57 58 59 60	24294 7 24313 0 24331 3 24349 6	25423 3 25442 6 25462 0 25481 4	26620 8 26641 4 26662 0	27895 2 27917 I 27939 I 27961 I	29256 1 29279 6 29303 1 29326 6	30715 2 30740 4 30765 6 30790 9	32286 5 32313 7 32341 0 32368 3	33987 5 34017 1 34046 7 34076 4 34106 1	35840 5 35872 8 35905 2 35937 6	86506 0 86847 9 87195 3 87548 3 87907 2	55 56 57 58 59 60	
	70°	70° 71° 72° 73° 74° 75° 76° 77° 78° 79°										
				Latiti	ude or	Decli	nation					

		o°		ı°		2°		3°		4°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	0.0	383730 4 353627 4 336018 3 323524 4	15 2 15 7 16 3 16 8	205915 8 205198 0 204491 8 203796 9 203113 0	60 9 61 9 63 0 64 0 65 0	175814 5 175454 1 175096 7 174742 2 174390 6	137 0 138 6 140 1 141 6 143 2	158208 1 157967 5 157728 3 157490 4 157253 8	243 6 245 6 247 7 249 7 251 8	145718 1 145537 6 145357 8 145178 8 145000 5	60 59 58 57 56
56 78 9	0 I 0 I 0 2 0 3 0 3	313833 4 305915 3 299220 6 293421 4 288306 1	17 9 18 4 19 0 19 6 20 1	202439 7 201776 7 201123 6 200480 2 199846 2	66 1 67 2 68 2 69 3 70 4	174041 8 173695 8 173352 5 173011 9 172674 0	144 8 146 3 147 9 149 5 151 1	157018 5 156784 4 156551 6 156320 0 156089 7	253 8 255 9 258 0 260 1 262 2	144823 0 144646 1 144470 0 144294 6 144119 9	55 54 53 52 51
10 11 12 13 14	0 4 0 5 0 6 0 7 0 8	283730 4 279591 1 275812 3 272336 1 269117 6	20 7 21 3 21 9 22 6 23 2	199221 3 198605 3 197997 9 197398 9 196808 1	71 5 72 6 73 7 74 8 76 0	172338 6 172005 9 171675 7 171347 9 171022 7	152 7 154 3 155 9 157 5 159 2	155860 6 155632 6 155405 9 155180 4 154956 0	264 3 266 4 268 5 270 7 272 8	143946 0 143772 7 143600 1 143428 1 143256 9	50 49 48 47 46
15 16 17 18 19	09 11 12 14 15	266121 3 263318 4 260685 5 258203 2 255855 1 253627 5	23 8 24 4 25 I 25 7 26 4 27 I	196225 1 195649 9 195082 2 194521 9 193968 6	77 1 78 2 79 4 80 6 81 7 82 9	170699 8 170379 3 170061 2 169745 4 169431 9	160 8 162 5 164 1 165 8 167 5	154732 7 154510 7 154289 7 154069 9 153851 1	275 0 277 I 279 3 281 5 283 7 285 9	143086 3 142916 4 142747 2 142578 6 142410 7	45 44 43 42 41 40
2I 22 23 24 25	1 9 2 0 2 2 2 4 2 6	251508 5 249488 2 247557 7 245709 4 243936 5	27 8 28 4 29 1 29 9 30 6	192882 9 192350 0 191823 6 191303 5 190789 6	84 I 85 3 86 5 87 7 88 9	168811 5 168504 6 168199 9 167897 3	170 9 172 6 174 3 176 0	153417 0 153201 5 152987 1 152773 7 152561 4	288 I 290 3 292 5 294 7 297 0	142076 8 141910 8 141745 4 141580 7 141416 6	39 38 37 36 35
26 27 28 29 30	2 9 3 1 3 3 3 6 3 8	242233 2 240594 1 239014 7 237490 7 236018 4	31 3 32 0 32 8 33 5 34 3	190281 7 189779 6 189283 3 188792 6 188307 4	90 2 91 4 92 7 93 9 95 2 96 4	167298 4 167002 0 166707 6 166415 2 166124 7 165836 2	179 5 181 2 183 0 184 7 186 5 188 3	152350 2 152139 9 151930 7 151722 4 151515 2	299 2 301 5 303 7 306 0 308 3 310 5	141253 I 141090 2 140927 9 140766 2 140605 2	34 33 32 31 30
31 32 33 34 35 36	4 1 4 3 4 6 4 9 5 2 5 5	234594 4 233215 5 231879 2 230582 7 229323 8 228100 3	35 0 35 8 36 6 37 4 38 2 39 0	187827 5 187352 9 186883 4 186419 0 185959 4 185504 7	97 7 99 0 100 3 101 6	165549 6 165264 8 164981 9 164700 9 164421 7	190 I 191 9 193 7 195 5 197 3	151309 0 151103 7 150899 4 150696 0 150493 6	3128 3151	140444 7 140284 8 140125 5 139966 8 139808 7 139651 1	29 28 27 26 25 24
37 38 39 40 41	5 8 6 1 6 4 6 8 7 1	226910 4 225752 2 224624 2 223524 6 222452 3	39 8 40 6 41 5 42 3 43 2	185054 7 184609 3 184168 4 183731 9 183299 8	104 3 105 6 106 9 108 3 109 6	164144 2 163868 5 163594 5 163322 3 163051 8	199 2 201 0 202 8 204 7 206 6	150091 6 149892 0 149693 3 149495 5 149298 6	326 8 329 I 33I 5 333 9	139494 2 139337 7 139181 9 139026 6 138871 8	22 21 20 19
42 43 44 45 46	.8 9.	221405 7 220383 8 219385 4 218409 4 217454 9 216520 9	44 9 44 9 45 8 46 6 47 5 48 4	182872 0 182448 3 182028 7 181613 1 181201 5 180793 8	111 0 112 4 113 8 115 2 116 6 118 0	162782 9 162515 7 162250 1 161986 2 161723 8 161463 0	210 3 212 2 214 I 216 0	149102 6 148907 5 148713 3 148519 9 148327 4 148135 7	345 9	138717 7 138564 0 138410 9 138258 3 138106 3 137954 8	17 16
47 48 49 50 51 52	97 102 106 110	215606 6 214711 1 213833 8 212973 8 212130 5	49 3 50 3 51 2 52 1 53 1	180389 8 179989 6 179593 0 179200 0 178810 5	119 4 120 8 122 2 123 7 125 1	161203 8 160946 1 160689 9 160435 2 160182 1	219 8 221 8 223 7 225 7 227 6	147944 9 147754 9 147565 7 147377 4 147189 8	350 7 353 1 355 6 358 0 360 5	137803 8 137653 4 137503 5 137354 1 137205 2	12 11 10 9 8
53 54 55 56 57 58 59 60	11 9 12 3 12 8 13 3 13 7 14 2	211303 2 210491 5 209694 6 208912 1 208143 4 207388 1	54 ° 55 ° 55 9 56 9 57 9 58 9	178424 5 178041 9 177662 6 177286 6 176913 9 176544 3	126 6 128 1 129 5 131 0 132 5 134 0	159930 4 159680 1 159431 3 159183 9 158937 9 158693 2	229 6 231 6 233 5 235 5 237 5 239 5	147003 I 146817 2 146632 I 146447 7 146264 2 146081 4	363 0 365 5 368 0 370 5 373 0 375 5	137056 8 136908 9 136761 5 136614 6 136468 3 136322 4	5 4 3
59	14 7 15 2 Alt.	206645 7 205915 8 Hour Angle	50 9 59 9 60 9 Alt.	Hour Angle	134 0 135 5 137 0 Alt.	158450 0 158208 1 Hour Angle	241 6 243 6 Alt.	145899 3 145718 1 Hour Angle	378 o 380 5 Alt.	136177 0 136032 0 Hour Angle	0 ,
	89°	359°	88°	358°	87°	357°	86°	356°	85°	355°	

		5°		6°		7°		8°		9°	
′	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4		135887 6 135743 7 135600 2	553 9 557 °	128120 0 127999 6 127879 6 127759 9 127640 5	756 I	121432 5 121329 3 121226 4 121123 8 121021 3	9854	115641 5 115551 3 115461 3 115371 4 115281 7	1235 7 1240 3 1244 9	110455 5 110375 4 110295 6	60 59 58 57 56
56 78 9			566 2 569 3 572 4 575 5	127521 5 127402 8 127284 4 127166 3 127048 6		120919 2 120817 2 120715 5 120614 1 120512 8	1001 7 1005 8 1010 0	115192 2 115102 9 115013 8 114924 9 114836 1	1258 6 1263 2 1267 8 1272 5	110056 8 109977 5 109898 3 109819 3	55 54 53 52 51
10 11 12 13 14	411 6 414 2 416 8	134608 9 134469 2 134329 8 134191 0 134052 5	581 8 584 9 588 0 591 2	126931 2 126814 1 126697 3 126580 8 126464 6	788 5 792 2 795 8	120010 3	1018 2 1022 4 1026 5 1030 7	114482 9	1281 7 1286 4 1291 0 1295 7	109661 7 109583 1 109504 7 109426 4	50 49 48 47 46
15 16 17 18 19	422 2 424 8 427 5 430 2	133914 5 133777 0 133639 8 133503 2 133366 9	594 4 597 5 600 7 603 9 607 1	126348 8 126233 3 126118 0 126003 1 125888 5	803 2 806 9 810 6 814 3	119910 4 119810 8 119711 5 119612 4 119513 4 119414 8	1039 0 1043 2 1047 4 1051 6	114219 9 114132 6 114045 4	1305 0 1309 7 1314 4 1319 1	109270 3 109192 4 109114 7 109037 1	45 44 43 42 41 40
21 22 23 24 25	435 6 438 3 441 1 443 8	133095 7 132960 7 132826 1 132692 0	613 5 616 7 620 0 623 2	125660 I 125546 4 125433 0 125319 8	821 7 825 4 829 1 832 9 836 6	119316 3 119218 1 119120 1 119022 3 118924 7	1060 1 1064 3 1068 5 1072 8	113785 1 113698 6 113612 3 113526 2	1328 6 1333 3 1338 0 1342 8	108882 3 108805 1 108728 1 108651 2	39 38 37 36 35
26 27 28 29 30	452 0 454 8 457 6 460 4	132424 9 132292 0 132159 5 132027 4 131895 7	629 7 633 0 636 2 639 5 642 8	125094 5 124982 2 124870 3 124758 6 124647 2	840 4 844 2 847 9 851 7 855 5	118827 4 118730 2 118633 3 118536 6 118440 1	1081 3 1085 5 1089 8 1094 1 1098 4	113354 5 113269 0 113183 5 113098 3	1352 3 1357 1 1361 8 1366 6 1371 4	108421 3 108345 0 108268 7 108192 7	34 33 32 31 30
31 32 33 34 35	466 0 468 8 471 6 474 4	131764 4 131633 5 131502 9 131372 8	649 4 652 7 656 0 659 4	124536 1 124425 3 124314 8 124204 5 124094 6	863 1 866 9 870 8 874 6	118343 9 118247 8 118152 0 118056 4	1107 0 1111 3 1115 7 1120 0	112843 5 112759 0 112674 5 112590 3	1381 1 1385 9 1390 7 1395 5	108040 9 107965 2 107889 7 107814 2	28 27 26 25
36 37 38 39 40 41	480 1 482 9 485 8 488 7	131113 7 130984 8 130856 2 130728 0 130600 2 130472 8	669 4 672 8 676 2	123984 9 123875 5 123766 3 123657 5 123548 9 123440 6	882 3 886 2 890 0 893 9	1176760	1128 7 1133 1 1137 4 1141 8	112422 3 112338 5 112254 9 112171 5	1405 2 1410 1 1415 0 1419 9	107663 8 107588 8 107513 9 107439 1	24 23 22 21 20 10
42 43 44 45 46	494 4 497 3 500 2 503 I	130345 7	682 9 686 3 689 7	123332 5 123224 8 123117 2 123010 0 122903 0	901 7 905 6 909 5 913 4 917 3	117298 9 117205 1 117111 6 117018 2 116925 1	1150 6 1155 0 1159 4 1163 8 1168 3	112005 1 111922 1 111839 3 111756 7 111674 2	1429 6 1434 6 1439 5 1444 4 1449 3	107290 0 107215 6 107141 3 107067 2 106993 2	18 17 16
47 48 49 50 51	511 9 514 9 517 8 520 8	129466 5 129342 3 129218 5	700 0 703 4 706 9 710 3 713 8	122796 3 122689 9 122583 7 122477 7 122372 1	921 3 925 2 929 2 933 1 937 1	116832 1 116739 3 116646 8 116554 4 116462 3	1172 7 1177 2 1181 6 1186 1 1190 5	111591 9 111509 7 111427 7 111345 8 111264 1	1454 3 1459 2 1464 2 1469 1 1474 1	106919 4 106845 6 106772 0 106698 5 106625 1	13 12 11 10
52 53 54 55 56 57	523 7 526 7 529 7 532 7 535 7	128972 0 128849 3 128726 8		122161 5	945 I 949 0 953 I 957 I	116370 3 116278 5 116187 0 116095 6 116004 4 115913 4	1199 5 1204 0 1208 5 1213 0	111182 6 111101 2 111019 9 110938 8 110857 9	1484 I 1489 I 1494 I 1499 I	106478 8 106405 8 106332 9 106260 2	98 76 5432 I
55 56 57 58 59 60	541 7 544 8 547 8	128361 7 128240 6 128120 0	738 3	121639 5 121535 9 121432 5	965 I	115822 6 115732 0 115641 5	1222 I 1226 6	110696 5	1509 I 1514 2	106115 0	0
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	84°	354°	83°	353°	82°	352°	81°	351°	80°	350°	

	1	o°	I	ı°	12	2°	13	3°	14	°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	1519 2 1524 3 1529 3 1534 4	105970 4 105898 3 105826 2 105754 3 105682 6			2191 3 2197 3 2203 4	98076 5 98016 5 97956 5 97896 6 97836 8		94614 I 94558 7 94503 4 94448 I 94392 9	297° 4 2977 5 2984 5 2991 6	91410 6 91359 1 91307 8 91256 5	60 59 58 57 56
5 6 7 8	1539 5 1544 6 1549 7 1554 8 1559 9	105610 9 105539 4 105467 9 105396 6	1865 1 1870 7 1876 3 1881 9	101516 0 101450 9 101385 9 101321 1	2215 6 2221 7 2227 8 2233 9	97777 1 97717 5 97 ⁶ 57 9 9759 ⁸ 4	2595 8 2602 4 2609 0 2615 6	94337 8 94282 8 94227 8 94172 9	2998 6 3005 7 3012 8 3019 9 3027 0	91205 3 91154 1 91103 0 91052 0 91001 0	55 54 53 52
9 10 11 12 13	1565 0 1570 1 1575 3 1580 4 1585 6		1887 6 1893 2 1898 8 1904 5 1910 1	101256 3 101191 7 101127 1 101062 6 100998 3	2246 I 2252 3 2258 4	97539 ° 97479 7 9742° 5 97361 4 973°2 3	2622 2 2628 8 2635 5 2642 1 2648 8	94118 0 94063 3 94008 6 93954 0 93899 4	3034 I 304I 2 3048 3 3055 5 3062 6	90950 0 90899 2 90848 4 90797 6 90747 0	51 50 49 48 47
14 15 16 17 18	1590 8 1595 9 1601 1 1606 3 1611 5	104971 3	1915 8 1921 5 1927 1 1932 8	100934 0 100869 8 100805 7 100741 7 100677 8	2270 7 2276 9 2283 I	97243 3 97184 4 97125 6 97066 8 97008 2	2655 4 2662 1 2668 7 2675 4 2685 1	93844 9 9379° 5 93736 1 93681 9 93627 6	3069 7 3076 9 3084 1 3091 2 3098 4	90696 3 90645 8 90595 3 90544 8 90494 4	46 45 44 43 42
19 20 21 22	1616 7 1621 9 1627 1 1632 4	104620 0 104550 1 104480 3 104410 6	1944 2 1949 9 1955 7 1961 4	100614 0 100550 3 100486 7 100423 2	2301 6 2307 8 2314 1 2320 3	96949 6 96891 1 96832 7 96774 3	2688 8 2695 5 2702 2 2708 9	93573 5 93519 4 93465 4 93411 5	3105 6 3112 8 3120 0 3127 2	90444 I 90393 8 90343 6 90293 5	41 40 39 38
23 24 25 26 27	1637 6 1642 8 1648 1 1653 4 1658 6	104341 0 104271 6 104202 2 104133 0 104063 8	1972 9 1978 6 1984 4 1990 2	100359 8 100296 4 100233 2 100170 1 100107 0	2326 5 2332 8 2339 0 2345 3 2351 5	96716 1 96657 9 96599 8 96541 8 96483 8	2715 7 2722 4 2729 2 2735 9 2742 7	93357 6 93303 8 93250 1 93196 4 93142 8	3134 4 3141 7 3148 9 3156 2 3163 4	90243 4 90193 4 90143 4 90093 5 90043 6	37 36 35 34 33
28 29 30 31 32	1663 9 1669 2 1674 5 1679 8 1685 1	103994 8 103925 9 103857 1 103788 4 103719 9	1995 9 2001 7 2007 5 2013 3 2019 1	100044 0 99981 2 99918 4 99855 7 99793 1	2357 8 2364 1 2370 4 2376 7 2383 0	96425 9 96368 1 96310 4 96252 8 96195 2	2749 4 2756 2 2763 0 2769 8 2776 6	93089 3 93035 8 92982 4 92929 1 92875 8	3170 7 3178 0 3185 2 3192 5 3199 8	89993 8 89944 1 89894 4 89844 8 89795 2	32 31 30 29 28
33 34 35 36	1690 4 1695 8 1701 1 1706 5	103651 4	2025 0 2030 8 2036 6 2042 5	99730 6 99668 2 99605 9 99543 7	2389 3 2395 6 2402 0 2408 3	96137 7 96080 3 96023 0 95965 8	2783 4 2790 2 2797 I 2803 9 2810 7	92822 6 92769 4 92716 4 92663 4 92610 4	3207 I 3214 4 3221 7 3229 I	89745 7 89696 3 89646 9 89597 5 89548 3	27 26 25 24
37 38 39 40 41	1711 8 1717 2 1722 6 1727 9 1733 3	103310 7 103242 8 103175 1 103107 5	2054 2 2060 I 2065 9 2071 8	99481 5 99419 5 99357 5 99295 6 99233 9	2421 0 2427 4 2433 8 2440 I	95908 6 95851 5 95794 5 95737 5 95680 6	2817 6 2824 5 2831 3 2838 2	92557 6 92504 7 92452 0 92399 3	3236 4 3243 8 3251 1 3258 5 3265 8	89499 0 89449 9 89400 8 89351 7	23 22 21 20 19
42 43 44 45 46	1738 7 1744 1 1749 5 1755 0 1760 4	103040 0 102972 6 102905 3 102838 1 102771 1	2083 6 2089 5	99172 2 99110 6 99049 0 98987 6 98926 3	2452 9 2459 3	95623 8 95567 1 95510 5 95453 9 95397 4	2845 I 2852 0 2858 9 2865 8 2872 7	92346 7 92294 2 92241 7 92189 3 92136 9	3273 2 3280 6 3288 0 3295 4 3302 8	89302 7 89253 8 89204 9 89156 1 89107 3	18 17 16 15
47 48 49 50	1765 8 1771 3 1776 7 1782 2	102704 1 102637 2 102570 4 102503 8	2107 3 2113 3 2119 2 2125 2	98865 0 98803 8 98742 8 98681 8	2478 6 2485 I 249I 5 2498 0	95341 0 95284 6 95228 3 95172 1	2879 6 2886 6 2893 5 2900 5	92084 6 92032 4 91980 2 91928 1	3310 2 3317 7 3325 1 3332 5	89058 6 89009 9 88961 3 88912 7	13 12 11 10
51 52 53 54 55	1787 7 1793 1 1798 6 1804 1 1809 6	102370 7 102304 4 102238 1	2143 I 2149 I	98620 9 98560 0 98499 3 98438 7 98378 1	25109	94892 2	2907 4 2914 4 2921 4 2928 3 2935 3	91824 I 91772 2 91720 3 91668 5	334°° 3347 4 3354 9 3362 4 3369 9	88815 8 88767 4 88719 1 88670 8	9 8 7 6 5
55 56 57 58 59 60	1815 1 1820 7 1826 2 1831 7 1837 3	102105 9 102040 0 101974 1 101908 4	2161 1 2167 1 2173 2 2179 2	98317 6 98257 2 98196 9 98136 7	2536 9 2543 4 2549 9 2556 4	94836 5 94780 8 94725 I 94669 6	2942 3 2949 3 2956 4	916168 915652 915136 914620	3377 4 3384 9 3392 4 3399 9 3407 4	88574 4 88526 3 88478 2	5 4 3 2 1 0
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	79°	349°	78°	348°	77°	347°	76°	346°	75°	345°	

	15°	16°	17°	18°	19°	
,	Sum or Hour Angle	Sum or Diff. Hour Angle	Sum or Hour Angle	Sum or Diff. Hour Angle	Sum or Diff. Hour Angle	
0 I 2 3 4	3407 4 88430 2 3414 9 88382 3 3422 5 88334 4 3430 0 88286 5 3437 6 88238 7	3881 8 85599 5 3889 9 85554 7 3897 9 85509 8	4378 0 82987 5 4386 5 82945 3 4395 1 82903 2	4903 3 80526 9 4912 3 80487 1	5448 I 78239 I 5457 6 7820I 3 5467 I 78163 7 5476 6 78126 0 5486 I 78088 4	60 59 58 57 56
5 6 7 8 9	3445 2 88191 0 3452 7 88143 3 3460 3 88095 7 3467 9 88048 1 3475 5 88000 6	3922 1 85375 7 3930 2 85331 0 3938 2 85286 4	4420 7 82777 0 4429 3 82735 0 4437 8 82693 0	4948 4 80328 1 4957 5 80288 5	5495 6 78050 8 5505 1 78013 2 5514 6 77975 7 5524 2 77938 2 5533 7 77900 7	55 54 53 52 51
10 11 12 13 14	3483 I 87953 I 3490 7 87905 7 3498 3 87858 3 3506 0 87811 0 3513 6 87763 8	3962 5 85152 9 3970 6 85108 5 3978 7 85064 2	4463 6 82567 4 4472 2 82525 6 4480 8 82483 9	4984 6 80169 8 4993 7 80130 3 5002 8 80090 9 5011 9 80051 4 5021 0 80012 1	5543 2 77863 3 5552 8 77825 9 5562 4 77788 5 5571 9 77751 2 5581 5 77713 9	50 49 48 47 46
15 16 17 18 19	3521 3 87716 5 3528 9 87669 4 3536 6 87622 3 3544 3 87575 2 3551 9 87528 2	4003 2 84931 4 4011 3 84887 2 4019 5 84843 1 4027 6 84799 0	4506 6 82358 9 4515 3 82317 3 4523 9 82275 8 4532 6 82234 3	5030 I 79972 7 5039 2 79933 4 5048 3 79894 I 5057 4 79854 9 5066 6 79815 7	5591 1 77676 6 5600 7 77639 4 5610 3 77602 2 5619 9 77565 1 5629 5 77527 9	45 44 43 42 41
20 21 22 23 24	3559 6 87481 3 3567 3 87434 4 3575 0 87387 5 3582 7 87340 7 3590 5 87294 0	4044 0 84710 9 4052 2 84667 0 4060 4 84623 1 4068 6 84579 2	4549 9 82151 4 4558 6 82110 0 4567 3 82068 7 4576 0 82027 4	5075 7 79776 6 5084 9 79737 4 5094 0 79698 3 5103 2 79659 3 5112 4 79620 3	5639 1 77490 8 5648 8 77453 8 5658 4 77416 7 5668 1 77379 7 5677 7 77342 7	40 39 38 37 36
25 26 27 28 29	3598 2 87247 3 3605 9 87200 7 3613 7 87154 1 3621 4 87107 5 3629 2 87061 0	4085 0 84491 7 4093 3 84447 9 4101 5 84404 3 4109 8 84360 6	4584 7 81986 1 4593 4 81944 9 4602 1 81903 7 4610 8 81862 6 4619 6 81821 5	5140 0 79503 4 5149 2 79464 6 5158 4 79425 7	5687 4 77305 8 5697 1 77268 9 5706 8 77232 0 5716 4 77195 2 5726 1 77158 4	35 34 33 32 31
30 31 32 33 34	3636 9 87014 6 3644 7 86968 2 3652 5 86921 9 3660 3 86875 6 3668 1 86829 4	4126 3 84273 5 4134 6 84230 0 4142 8 84186 5 4151 1 84143 1	4628 3 81780 4 4637 1 81739 4 4645 8 81698 4 4654 6 81657 5 4663 4 81616 6	5167 6 79386 9 5176 9 79348 1 5186 1 79309 4 5195 4 79270 7 5204 6 79232 1	5735 8 77121 6 5745 6 77084 9 5755 3 77048 2 5765 0 77011 5 5774 7 76974 8	30 29 28 27 26
35 36 37 38 39	3675 9 86783 2 3683 7 86737 0 3691 6 86690 9 3699 4 86644 9 3707 2 86598 9	4167 7 84056 5 4176 1 84013 2 4184 4 83969 9 4192 7 83926 8	4689 7 81494 1 4698 5 81453 4 4707 4 81412 6	5213 9 79193 4 5223 2 79154 8 5232 4 79116 3 5241 7 79077 8 5251 0 79039 3	5784 5 76938 2 5794 2 76901 6 5804 0 76865 1 5813 8 76828 5 5823 6 76792 1	25 24 23 22 21
40 41 42 43 44	3715 1 86553 0 3723 0 86507 1 3730 8 86461 3 3738 7 86415 5 3746 6 86369 7	4209 4 83840 5 4217 7 83797 5 4226 1 83754 4 4234 5 83711 5	4725 0 81331 4 4733 8 81290 8 4742 7 81250 2 4751 6 81209 7	5260 3 79000 8 5269 6 78962 4 5279 0 78924 0 5288 3 78885 7 5297 6 78847 4	5833 3 76755 6 5843 1 76719 2 5852 9 76682 8 5862 8 76646 4 5872 6 76610 1	20 19 18 17 16
45 46 47 48 49	3754 5 86324 0 3762 4 86278 4 3770 3 86232 8 3778 2 86187 2 3786 1 86141 8	4251 2 83625 7 4259 6 83582 8 4268 0 83540 0 4276 5 83497 3	4769 3 81128 8 4778 2 81088 4 4787 1 81048 1 4796 0 81007 7	5307 0 78809 I 5316 3 78770 9 5325 7 78732 6 5335 I 78694 5 5344 4 78656 3	5911 9 76465 1 5921 8 76428 9	15 14 13 12 11
50 51 52 53 54	3794 I 86096 3 3802 0 8605 0 9 3809 9 86005 6 3817 9 85960 2 3825 9 85915 0 3833 8 85869 8	4293 3 83411 9 4301 7 83369 3 4310 2 83326 7 4318 6 83284 1	4822 7 80887 0 4831 6 80846 8 4840 6 80806 7	5353 8 78618 2 5363 2 78580 2 5372 6 78542 1 5382 0 78504 1 5391 5 78466 2	5931 6 76392 7 5941 5 76356 6 5951 4 76320 5 5961 3 76284 5 5971 2 76248 5	10 8 7 6
55 56 57 58 59 60	3833 8 85809 8 3841 8 85824 6 3849 8 85779 5 3857 8 85734 5 3865 8 85689 4 3873 8 85644 5	4344 0 83156 8 4352 5 83114 4	4849 5 80766 6 4858 5 80726 6 4867 4 80686 6 4876 4 80646 6 4885 4 80606 7 4894 3 80566 8	5400 9 78428 2 5410 3 78390 3 5419 8 78352 5 5429 2 78314 6 5438 7 78276 8 5448 1 78239 1	5981 1 76212 5 5991 0 76176 5 6000 9 76140 6 6010 9 76104 7 6020 8 76068 8 6030 7 76033 0	5 4 3 2 1
	Alt. Hour Angle	Alt. Hour Angle	Alt. Hour Angle	Alt. Hour Angle	Alt. Hour Angle	
	74° 344°	73° 343°	72° 342°	71° 341°	70° 340°	

	20	0	21	r°	2:	2°	2;	3°	2	4°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	6040 7 6050 6 6060 6	76033 0 75997 2 75961 4 75925 6 75889 9	6652 4 6662 8 6673 3	73936 7 73902 6 73868 6 73834 6 73800 6	7281 6 7292 5 73°3 4 7314 3 7325 3	71940 1 71907 6 71875 2 71842 7 71810 3		7°°34 5 7°°°3 4 69972 4 69941 4 69910 5	8645 4 8657 3 8669 1 8681 0 8692 8	68212 1 68182 4 68152 7 68123 1 68093 4	60 59 58 57 56
56 78 9	6080 6 6090 6 6100 6 6110 6	75854 2 75818 6 75783 0 75747 4 75711 8	6694 2 6704 6 6715 1 6725 6	73766 6 73732 7 73698 8 73664 9 73631 1	7336 2 7347 1 7358 1 7369 0 7380 0	71778 0 71745 6 71713 3 71681 0 71648 7	8006 4 8017 8 8029 3 8040 7 8052 1	69879 5 69848 6 69817 7 69786 8 69756 0	8704 7 8716 6 8728 5 8740 3 8752 2	68063 8	55 54 53 52 51
10 11 12 13 14	6130 6 6140 7 6150 7 6160 7	75676 3 75640 8 75605 3 75569 8	6746 6 6757 I 6767 6 6778 I	73597 3 73563 5 73529 7 73496 0	7391 0 7401 9 7412 9 7423 9 7434 9	71616 4 71584 2 71552 0 71519 8 71487 6	8063 6 8075 0 8086 5 8097 9 8109 4	69725 2	8764 2 8776 1	679160	50 49 48 47
15 16 17 18	6180 9 6190 9 6201 0 6211 1	75534 4 75499 0 75463 7 75428 3 75393 1 75357 8	6799 2 6809 8 6820 3 6830 9	734 ⁶ 2 3 734 ² 8 6 73394 9 733 ⁶ 1 3 733 ² 7 7 73 ² 94 1	7445 9 7445 9 7457 0 7468 0 7479 0 7490 1	71455 5 71423 4 71391 3 71359 2 71327 2	8120 9 8132 4 8143 9	69571 3 69540 7 69510 0 69479 3	8823 8 8835 7 8847 7 8859 7	67768 7 67739 3 67710 0 67680 6 67651 3	46 45 44 43 42 41
20 21 22 23 24	6231 3 7 6241 4 7 6251 5 7 6261 7	75322 5 75322 5 75287 3 75252 2 75217 0 75181 9	6852 0 6862 6 6873 2 6883 8	73260 5 73227 0 73193 5 73160 1 73126 6	7501 1 7512 2 7523 2	71295 2 71263 2 71231 2 71199 3	8178 4	69418 1 69387 5 69357 0	8883 6 8895 6	67622 0 67592 7 67563 4 67534 2	40 39 38 37 36
25 26 27 28 29	6281 9 6292 I 6302 3 6312 4	75146 8 75111 7 75076 7 75041 7 75006 7	6905 0	73093 2 73059 8 73026 4 72993 1 72959 8	7556 5 7567 6 7578 7 7589 8 7600 9	71135 5 71103 6 71071 8 71040 0	8236 I 8247 7 8259 2 8270 8 8282 4	69265 4	8943 6 8955 7 89 ⁶ 7 7	67475 7 67446 6	35 34 33 32 31
30 31 32 33 34	6332 8 6343 0 6353 2 6363 4	74971 8 74936 9 74902 0 74867 1 74832 3	6958 2 6968 9 6979 6 6990 3	72926 5 72893 3 72860 0 72826 8 72793 6	76120 76232 76343 76455 76566	70976 4 70944 7 70913 0 70881 3 70849 6	8294 0 8305 6 8317 2 8328 8 8340 4	69113 3	90159	67330 0 67300 9 67271 9 67242 8	30 29 28 27 26
35 36 37 38 39	6383 8 6394 0 6404 3 6414 5	74797 5 74762 7 74728 0 74693 3 74658 6	70116	72760 5 72727 4 72694 3 72661 2	7667 8 7679 0 7690 2 7701 3 7712 5	70818 0 70786 3 70754 7 70723 2 70691 6	8352 1 8363 7 8375 4 8387 0 8398 7	68901 3	9064 3 9076 4 9088 5 9100 6	67155 8 67126 9 67097 9	22
40 41 42 43 44	6435 0 6445 3 6455 6 6465 9	74623 9 74589 3 74554 7 74520 1 74485 6		72595 I 72562 I 72529 2 72496 2	7723 8 7735 0 7746 2 7757 4 7768 7	70597 I	8410 4 8422 0 8433 7 8445 4 8457 1	68780 6 68750 5 68720 4	9137 c 9149 2 9161 3	66982 4 66953 5	19 18
45 46 47 48 49	6486 5 6496 8 6507 1 6517 4	74451 0 74416 6 74382 1 74347 7 74313 3	71190 71298 71406 71514	7243° 4 72397 5		70408 7	8468 8 8480 6 8492 3 8504 0 8515 8	68630 2 68600 2 68570 3	9197 9 9210 0 9222 2	66780 9	14 13 12 11
50 51 52 53 54	6538 1 6548 5 6558 8 6569 2	74278 9 74244 6 74210 2 74175 9 74141 7	7173 ° 7183 9 7194 7 72°5 5 7216 4	72233 6 72200 9 72168 2	7847 5 7858 8 7870 1 7881 5	70283 6 70252 4 70221 2	8562 8 8574 6	68480 4 68450 5 68420 7 68390 8	9258 9 9271 1 9283 3 9295 6	66723 6 66694 9 66666 3 66637 6	9 8 7 6
55 56 57 58 59 60	6600 3 6610 7 6621 1 6631 5	74107 4 74073 2 74039 I 74004 9 73970 8	7259 8 7270 7	72070 3 72037 7 72005 2 71972 6	7892 8 7904 1 7915 4 7926 8 7938 1 7949 5	70158 8 70127 7 70096 6 70065 5	8610 0 8621 8	68331 1 68301 4 68271 6 68241 8	9320 I 9332 4 9344 6 9356 9	66580 5 66551 9 66523 3 66494 8	4 3 2
00	6642 0 Alt.	73936 7 Hour	7281 6 Alt.	Hour	Alt.	Hour	Alt.	Hour Angle	Alt.	Hour Angle	
	69°	Angle 339°	68°	Angle 338°	67°	Angle 337°	66°	336°	65°	335°	′

	2	5°	20	5°	2	7°	2	8°	20	o° l	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 I 2	9369 2 9381 5 9393 8	66466 3 66437 8 66409 4	10133 3	64763 8 64736 5	10912 6	63181 5 63155 2 63128 9	11718 9 11732 6	61607 2 61581 8	12552 I 12566 2	60140 0 60115 6 60091 2	60 59 58
3 4 5 6	9406 1 9418 5 9430 8 9443 1	66380 9 66352 5 66324 1 66295 7	10171 7 10184 4 10197 2	64681 9 64654 6 64627 4	10952 2 10965 5 10978 7	63102 6 63076 4 63050 1 63023 9	11759 9 11773 6 11787 3	61556 5 61531 3 61506 0 61480 8	12594 5 12608 6	60066 8 60042 5 60018 1 59993 8	57 56 55 54
7 8 9	9455 5 9467 8 9480 2	66267 4 66239 0 66210 7 66182 4	10210 0 10222 8 10235 7 10248 5	64572 9 64545 7	11005 2	62997 7 62971 5 62945 4	11814 7 11828 4	61430 3 61405 1	12636 9 12651 1 12665 2 12679 4	59969 4 59945 1 59920 8 59896 5	55 54 53 52 51
10 11 12 13 14	9492 5 9504 9 9517 3 9529 7 9542 1	66154 1 66125 8 66097 6 66069 3	10261 3 10274 2 10287 0	64491 3 64464 2	11045 1 11058 4 11071 7	62919 2 62893 1 62867 0 62840 9 62814 8	11855 9 11869 6 11883 4		12693 6 12707 8 12722 0	59872 3 59848 0 59823 8	50 49 48 47 46
15 16 17 18	9554 5 9566 9 9579 3 9591 7	66041 1 66012 9 65984 8 65956 6	10312 7 10325 6 10338 5 10351 4	64382 8 64355 7 64328 7 64301 6	11098 3 11111 6 11124 9 11138 3	62788 7 62762 7 62736 6 62710 6	11910 9 11924 7 11938 5 11952 3	61254 2 61229 1 61204 1 61179 0	12750 4 12764 6 12778 8	59775 3 59751 1 59726 9 59702 8	45 44 43 42
19 20 21 22	9604 2 9616 6 9629 1 9641 5	65928 5 65900 4 65872 3 65844 2	10364 2 10377 1 10390 1 10403 0	64274 6 64247 6 64220 6 64193 6	11151 6 11165 0 11178 3 11191 7	62684 6 62658 6 62632 6 62606 7	11966 1 11979 9 11993 7 12007 5	61078 9	12821 6 12835 8 12850 1	59678 6 59654 5 59630 3 59606 2	41 40 39 38
23 24 25 26	9654 0 9666 5 9678 9 9691 4	65816 1 65788 1 65760 1 65732 1	10428 8 10441 8 10454 7	64166 7 64139 7 64112 8 64085 9	11218 5 11231 8 11245 2	62580 8 62554 8 62528 9 62503 0	12035 1 12049 0 12062 8	61053 9 61028 9 61004 0 60979 0	12878 6 12892 9 12907 2	59509 9	37 36 35 34
27 28 29 30	9703 9 9716 4 9728 9 9741 5	65704 I 65676 I 65648 2 65620 3		64059 0 64032 2 64005 3 63978 5	11272 1 11285 5	62477 2 62451 3 62425 5 62399 7	12090 5 12104 4	60954 1 60929 2 60904 3 60879 4	12935 8 12950 1 12964 4	59485 9 59461 8 59437 8 59413 8	33 32 31 30
31 32 33 34		65592 4 65564 5 65536 6 65508 8	10532 5 10545 5 10558 5	63898 1 63871 3	11325 8 11339 2 11352 7		12146 1 12160 0 12173 9	60829 7 60804 9 60780 1	12993 1 13007 4 13021 8	59389 8 59365 9 59341 9 59318 0	29 28 27 26
35 36 37 38 39	9816 7 9829 3 9841 9	65480 9 65453 1 65425 3 65397 6 65369 8	10571 6 10584 6 10597 6 10610 6 10623 7	638178	11379 6 11393 1 11406 6	62270 8 62245 1 62219 4 62193 7 62168 0	12201 7 12215 6 12229 6	60730 5	13050 5 13064 9 13079 3	59246 2	
40 41 42 43	9867 1 9879 7 9892 3 9904 9	65342 1 65314 3 65286 6 65259 0	10636 7 10649 8 10662 9 10675 9	63711 1 63684 4 63657 8 63631 2	11433 6 11447 1 11460 6 11474 2	62142 3 62116 7 62091 1 62065 4	12257 5 12271 4 12285 4 12299 4	60631 5 60606 8 60582 1 60557 4	13108 0 13122 4 13136 8 13151 3	59174 6 59150 8 59126 9 59103 1	20 19 18 17
44 45 46 47 48	9930 2 9942 8 9955 5	65231 3 65203 7 65176 0 65148 4 65120 8	10702 1 10715 2 10728 3	63578 0	11501 2 11514 8 11528 3	62039 9 62014 3 61988 7 61963 2 61937 6	12327 3 12341 3 12355 3	60508 I	13180 1 13194 6 13209 0	59055 5 59031 8 59008 0	16 15 14 13
50 51 52	9980 8 9993 5 10006 1	65093 3 65065 7	10754 5 10767 7 10780 8	63471 9 63445 4 63419 0	11555 5 11569 0 11582 6	61912 1 61886 6	12383 3 12397 4 12411 4	60409 6 60385 0 60360 5	13237 9 13252 4 13266 9	58960 5 58936 8 58913 1	10
53 54	10031 5 10044 2 10056 9		10807 1 10820 2 10833 4	63366 I 63339 6 63313 2	11609 8 11623 4 11637 0	61810 2 61784 8 61759 4 61733 9	12439 5 12453 5 12467 6	60311 4 60286 8 60262 3 60237 9	13295 8 13310 3 13324 8	58865 7 58842 1 58818 4 58794 8	9 8 7 6 5 4
55 56 57 58 59 60		64873 4 64846 0 64818 6	10859 8 10872 9 10886 1	63260 5	11664 3 11677 9 11691 6	61708 6 61683 2 61657 8 61632 5	12495 8 12509 8 12523 9	602134	13353 9 13368 4 13382 9	58771 2	3 2 1
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	64°	334°	63°	333°	62°	332°	61°	331°	60°	330°	

	3	o°	3	ı°	3	2°	3	3°	3	4°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	13397 5 13412 0 13426 6 13441 1 13455 7	58700 4 58676 8 58653 3 58629 7 58606 2	14298 3 14313 2 14328 2	57287 3 57264 6 57241 8	15195 2 15210 6 15226 0 15241 5 15256 9	55944 I 55922 2 55900 2	16148 8	54623 2 54601 9	17096 2 17112 5 17128 8 17145 1 17161 4	53406 5 5338 5 8 53365 2 53344 5 53323 9	60 59 58 57 56
56 78 9	13470 3 13484 9 13499 4 13514 0 13528 7	585827 585592 585357	14358 3 14373 3 14388 3 14403 4	57196 4 57173 7	152 72 3 15287 8 15303 3	55856 2 55834 2 55812 3 55790 4	16212 2 16228 1 16244 0	54559 3 54538 1 54516 8 54495 6	17177 7 17194 0 17210 3 17226 6	533°3 3 53282 7 53262 1 53241 5	55 54 53 52
10 11 12 13	13543 3 13557 9 13572 5 13587 2	58465 3 58441 9 58418 5 58395 1	14433 4 14448 5 14463 6 14478 6	57083 0 57060 3 57037 7 57015 1	15349 7 15365 2 15380 7 15396 2	55746 5 55724 6 55702 7 55680 8	16291 7 16307 6 16323 6 16339 5	54410 7 54389 6	17259 3 17275 6 17291 9 17308 3	53221 0 53200 4 53179 8 53159 3 53138 8	51 50 49 48 47
14 15 16 17 18	13601 8 13616 4 13631 1 13645 8 13660 4	58278 3	14508 8 14523 9 14539 0 14554_1	56902 2	15411 7 15427 2 15442 7 15458 3 15473 8	55593 4 55571 6	16387 3 16403 3 16419 3	543°4 9 54283 8		53118 3 53097 8 53077 3 53056 8 53036 3	46 45 44 43 42
20 21 22 23	13675 1 13689 8 13704 5 13719 2 13733 9	58208 3 58185 0 58161 8	14599 5 14614 6 14629 8	567896	15536 o 15551 6	55528 0 55506 2 55484 5 55462 7	16467 2 16483 2 16499 2	54220 5 54199 4 54178 3	17406 6 17423 0 17439 4 17455 8 17472 2	53015 8 52995 4 52974 9 52954 5 52934 1	40 39 38 37 36
24 25 26 27 28	13807 6	58045 6	14705 6	56677 4		55375 8 55354 I		54157 3 54136 2 54115 2 54094 2 54073 2	17538 0 17554 4	52913 7 52893 3 52872 9 52852 5 52832 1	35 34 33 32
30 31 32 33	13881 4	58022 4 57999 3 57976 1 57953 0 57929 8	14751 2 14766 4 14781 6	56610 2 56587 8 56565 4	15692 1 15707 8	55289 1 55267 4 55245 8	16643 5 16659 6	54052 2 54031 2 54010 2 53989 2 53968 3	17603 9 17620 3 17636 8	52811 8 52791 4 52771 1 52750 8 52730 5	31 30 29 28 27 26
34 35 36 37 38	13925 8 13940 6 13955 4	57860 5 57837 4 57814 3	14827 3 14842 5 14857 8	56476 1 56453 8	15770 4 15786 1	551377	16724 0 16740 1	53947 3 53926 4 539°5 4 53884 5 53863 6	177194	52710 2 52689 9 52669 6 52649 3 52629 0	25 24 23 22
39 40 41 42 43	14029 6	57745 2 57722 2 57699 2	14888 3 14903 6 14918 9 14934 2	56409 2 56386 9 56364 7 56342 4	15817 5 15833 2 15848 9 15864 6		16772 3 16788 5 16804 6 16820 7	53842 7 53821 8 53801 0 53780 1 53759 3	17735 9 17752 5 17769 0 17785 6 17802 2	52527 9	21 20 19 18 17
44 45 46 47 48	14059 4 14074 2 14089 1 14104 0	57653 2 57630 3 57607 3 57584 4	14964 8 14980 1 14995 4 15010 7	56298 0 56275 8 56253 6 56231 4	15911 8 15927 6 15943 3	54987 ° 54965 5 54944 ° 54922 5	16869 2 16885 4 16901 6	53717 6 53696 8 53676 0 53655 2	17835 3 17851 9 17868 5 17885 1	52467 3 52447 I 52427 0	16 15 14 13 12
50 51 52 53 54	14133 8 14148 7 14163 6 14178 6	57538 5 57515 6 57492 7 57469 9	15041 4 15056 7 15072 1 15087 5	561428 561207	15974 9 15990 6 16006 4 16022 2	548154	16950 1 16966 3 16982 6	53613 6 53592 8 53572 1 53551 4	17901 7 17918 3 17934 9 17951 5 17968 2	52406 8 52386 7 52366 5 52346 4 52326 3	11 10 9 8 7 6
54 55 56 57 58 59 60	14208 4 14223 4 14238 4 14253 3	5737 ⁸ 5 57355 7	15118 2 15133 6 15149 0 15164 4	56032 3	160538 160696 160854 161013	54794 ° 54772 6 54751 2 54729 8 54708 5 54687 1	17031 2 17047 5 17063 7	53509 9 53489 2 53468 5 53447 8	18001 5 18018 1 18034 8	52306 2 52286 1 52266 0 52246 0 52225 9 52205 9	5 4 3 2 1
60	14283 3	57332 9 57310 1 Hour	15195 2	55988 2 55966 2 Hour	16132 9	54687 1 54665 8 Hour	17096 2		180848	Hour	0
	Alt.	Angle	Alt.	Angle	Alt.	Angle	Alt.	Angle	Alt.	Angle	1
	59°	329°	58°	328°	57°	327°	56°	326°	55°	325°	

	3	5°	3	6°	3	7°	3	8°	3	9°	
′	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	18101 5 18118 2 18134 9	52185 8 52165 8 52145 8 52125 8 52105 8	19132 5	50982 3 50962 9 50943 5	20154 0 20171 5 20189 0	49795 8	21 21 6 8 21234 8	48717 5 48699 1 48680 8	22303 7 22322 0	47650 5 47632 6 47614 8 47597 0 47579 2	60 59 58 57 56
5 6 7 8	18168 3 18185 0 18201 8 18218 5	52085 8 52065 8 52045 8 52025 9	19183 9 19201 0 19218 1 19235 3	50904 7 50885 3 50865 9 50846 5	20224 1 20241 6 20259 2 20276 7	49758 1 49739 3 49720 4 49701 6	21288 6 21306 5 21324 4 21342 4	48644 2 48625 9 48607 6 48589 3	22377 0 22395 4 22413 7 22432 I	47561 4 47543 6 47525 8 47508 0	55 54 53 52
9 10 11 12 13	18252 0 18268 7 18285 5 18302 3	51926 2	19269 6. 19286 8. 19304 0. 19321 1	50788 5	20311 8 20329 4 20347 0 20364 6	49664 0 49645 2 49626 5 49607 7	21378 3 21396 3 21414 3 21432 3	48498 1	22468 8		51 50 49 48 47
14 15 16 17 18	18369 4		19372 7	50730 5 50711 2 50691 9 50672 7 50653 4	20399 8 20417 4 20435 0	49570 2 49551 5 49532 7	21486 3 21504 3 21522 4	48461 6 48443 4 48425 2 48407 0	22597 6 22616 0	47401 6 47383 8 47366 1 47348 4 47330 7	46 45 44 43 42
20 21 22 23	18419 9 18436 7 18453 5		19441 6 19458 9 19476 1	50595 6 50576 4	20487 9 20505 6 20523 2	49457 9 49439 2	21558 4 21576 5 21594 5	48388 8 48370 6 48352 5 48334 3 48316 2	22689 7	47313 0 47295 4 47277 7 47260 0 47242 4	40 39 38 37
24 25 26 27 28	18520 9 18537 8	51707 9 51688 1 51668 4 51648 6 51628 8	19527 9 19545 2 19562 4	50499 5 50480 4	20576 2 20593 9 20611 6	49383 2 49364 6 49345 9	21666 8 21684 9	48279 9 48261 8 48243 6	22726 6 22745 1 22763 6 22782 1 22800 5	47224 7 47207 1 47189 5 47171 8 47154 2	36 35 34 33 32
30 31 32 33	18588 4 18605 3 18622 2	51609 1 51589 3 51569 6 51549 9 51530 2	19614 3	50442 0 50422 8 50403 7	20647 0 20664 7 20682 4 20700 I	493 ⁰⁸ 7 49 ² 90 1 49 ² 71 5 49 ² 52 9	21721 1 21739 2 21757 3 21775 4		228190 228375 228560 228746	47136 6 47119 0 47101 4 47083 9 47066 3	31 30 29 28 27
34 35 36 37 38	18673 0 18689 9	51510 5 51490 8 51471 1 51451 5 51431 8	19700 9 19718 2 19735 6	50346 3 50327 2 50308 1 50289 0 50269 9	20753 3 20771 0 20788 8	49178 6 49160 0	21829 8 21848 0 21866 1	48117 1 48099 0 48081 0 48062 9 48044 9	22930 I 22948 7 22967 2	47048 7 47031 2 47013 6 46996 1 46978 5	26 25 24 23 22
39 40 41 42 43	18740 8 18757 7 18774 7 18791 6 18808 6	51392 5	19822 4		20842 I 20859 9 20877 6	49104 4 49085 9 49067 4	21920 6 21938 8 21957 0	48026 9 48008 9 47990 9 47972 9 47954 9	23022 9 23041 5 23060 0	46961 0 46943 5 46926 0 46908 5 46891 0	21 20 19 18 17
44 45 46 47 48	18842 6 18859 6 18876 6 18893 6	51255 3	19874 6 19892 0 19909 4 19926 9	50117 5 50098 5 50079 6	20931 0 20948 8 20966 7 20984 5	49012 0 48993 5 48975 0 48956 6	22011 6 22029 8 22048 0 22066 2	47901 0 47883 1 47865 1	23115 8 23134 4 23153 0 23171 6	46821 1 46803 7	16 15 14 13 12
50 51 52 53	18910 6 1892 7 7 18944 7 18961 7 18978 8	51216 2 51196 6 51177 1 51157 6 51138 1	19944 3 19961 7 19979 2 19996 6 20014 1	50060 6 50041 6 50022 6 50003 7 49984 7	21002 3 21020 2 21038 0 21055 9 21073 7	48938 I 48919 7 48901 3 48882 8 48864 4	22084 4 22102 7 22120 9 22139 2 22157 4	47847 2 47829 3 47811 3 47793 4 47775 5	23190 3 23208 9 23227 5 23246 2 23264 8	46786 2 46768 8 46751 3 46733 9 46716 5	11 10 9 8 7 6
54 55 56 57 58 59 60	18995 8 19012 9 19030 0 19047 0 19064 1	51118 6 51099 1 51079 6 51060 1 51040 7	20031 5 20049 0 20066 5 20084 0 20101 5	49965 8 49946 9 49927 9 49909 0 49890 1	211091 6 21109 5 21127 3 21145 2 21163 1	48846 0 48827 6 48809 3 48790 9 48772 5	22175 7 22194 0 22212 2 22230 5 22248 8	47757 6 47739 8 47721 9 47704 0 47686 2	23283 5 23302 1 23320 8 23339 5 23358 2	46699 1 46681 7 46664 3 46646 9 46629 6	5 4 3 2
59 60		51021 2 51001 8	20118 9 20136 4	49852 4	211810	48735 8	22267 I 22285 4	47668 3 47650 5	23376 9 23395 6	46612 2 46594 8	0 —
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	54°	324°	53°	323°	52°	322°	51°	321°	50°	320°	

	4	o°	4	ı°	4	2 °	4.	3°	4	4°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 I 2 3	23433 0	46594 8 46577 5 46560 1 46542 8	24567 2	455 ⁶ 7 5 45550 6 45533 7 45516 8	25705 0 25724 5	44534 2	26864 6 26884 5 26904 3 26924 2	43560 4	28086 2 28106 4	426112	60 59 58 57
4 5 6 7 8	23489 I 23507 9 23526 6	46490 8 46473 5	24624 5 24643 7 24662 8		25782 9 25802 4 25821 9	44484 9 44468 5 44452 I	26983 8 27003 7	43512 4 43496 4 43480 4	28167 1 28187 4 28207 6	42564 4 42548 8 42533 2	56 55 54 53
9 10 11 12	23564 I 23582 9 23601 6	46439 0 46421 7 46404 4	24681 9 24701 1 24720 2 24739 4 24758 5	454 ¹ 5 7 4539 ⁸ 9 453 ⁸ 2 1	25860 9 25880 5 25900 0	44419 3 44402 9 44386 5	27043 4 27063 3 27083 2	43448 4 43432 4 43416 5	28268 4 28288 7	42502 0 42486 4 42470 9	52 51 50 49 48
13 14 15 16	23639 2 23658 0 23676 8 23695 6	46369 9 46352 6 46335 4 46318 2	24777 7 24796 8 24816 0 24835 2	45348 5 45331 7 45314 9 45298 1	25939 1 25958 6 25978 2 25997 7	44353 8 44337 4 44321 1	27123 0 27143 0 27162 9	43384 6 43368 6 43352 7	28329 2 28349 5 28369 8	424398	47 46 45 44
17 18 19 20	23714 4 23733 2 23752 0 23770 8	46300 9 46283 7 46266 5 46249 3	24854 4 24873 6 24892 8 24912 0	45281 3 45264 6 45247 8 45231 1	26017 3 26036 9 26056 5 26076 1	44288 4 44272 0 44255 7 44239 4	27202 8 27222 7 27242 7 27262 6	43320 8 43304 9 43289 0 43273 I	28410 4 28430 7 28451 0 28471 4	42377 6 42362 1 42346 6 42331 1	43 42 41 40
21 22 23 24 25	23808 5 23827 3 23846 2	46214 9 46197 7	24988 9	45197 6 45180 9	26115 2 26134 9 26154 5	44206 8 44190 5	27322 5 27342 5	43241 3 43225 4	28512 0 28532 4	42300 I 42284 6	39 38 37 36 35
26 27 28 29	23883 9 23902 8 23921 6 23940 5	46146 2 46129 1 46112 0 46094 8	25027 4 25046 6 25065 9	45130 7 45114 0	26193 7 26213 3 26233 0 26252 6	44141 7 44125 4 44109 1 44092 9	27382 5 27402 5 27422 5 27442 5	43177 8	28593 4 28613 8 28634 2 28654 6	42238 2 42222 7 42207 3 42191 8	34 33 32 31
30 31 32 33 34	23959 4 23978 3 23997 2 24016 1 24035 0	46043 5 46026 4	25123 7 25143 0	45064 0 45047 3 45030 7 45014 0 44997 4	26291 9 26311 6 26331 3	44044 2 44027 9	27462 6 27482 6 27502 6 27522 7 27542 7	43082 8 43067 0	287157 287361	42160 9 42145 5	30 29 28 27 26
35 36 37 38 39	24053 9 24072 9 24091 8 24110 7 24129 7	45958 o 45941 o		44964 I 44947 5 44930 8	26390 3 26410 0 26429 7	43963 1	27562 8 27582 8 27602 9 27622 9 27643 0	43003 8	28817 8 28838 3	420530	25 24 23 22 21
40 41 42 43	24148 6 24167 6 24186 6 24205 5	45906 9 45889 8 45872 8 45855 8	25297 5	44897 6 44881 0 44864 4 44847 9	26469 I 26488 8 26508 5 26528 3	43914 5 43898 4 43882 2 43866 1	27663 I 27683 2 27703 3 27723 4	42956 5 42940 7 42924 9 42909 2	28879 1 28899 6 28920 1 28940 5	42022 3 42006 9 41991 5 41976 2	20 19 18 17 16
44 45 46 47 48	24243 5 24262 5 24281 5 24300 5	45821 7 45804 7 45787 7 45770 7	25394 3 25413 6 25433 0 25452 4	44814 7 44798 2 44781 6 44765 1	26567 7 26587 5 26607 3 2662 7 0	43833 8 43817 6 43801 5 43785 4	27763 6 27783 7 27803 8 27824 0	42877 7 42862 0 42846 3 42830 5	28981 5 29001 9 29022 4 29042 9	41945 5 41930 1 41914 8 41899 5	15 14 13 12
49 50 51 52	24319 5 24338 5 24357 5 24376 6	45753 8 45736 8 45719 8 45702 9	25471 8 25491 2 25510 6 25530 0 25549 4	4474 ⁸ 5 4473 ² 0 447 ¹ 5 5 44699 0	26646 8 26666 6 26686 3 26706 1	43769 3 43753 2 43737 1 43721 0	27844 I 27864 3 27884 4	42814 8 42799 1 42783 4 42767 7	29063 4 29083 9 29104 4 29125 0	41884 2 41868 8 41853 5 41838 2 41822 9	10 9 8
53 54 55 56 57 58 59 60	24414 6 24433 7 24452 8 24471 8	45669 0 45652 0 45635 1 45618 2	25568 8 25588 3 25607 7 25627 2	44665 9 44649 4 44633 0 44616 5	26745 7 26765 5 26785 3 26805 1	43688 8 43672 7 43656 7 43640 6	27944 9 27965 1 27985 2 28005 4	42736 4 42720 7 42705 0 42689 4	29166 0 29186 5 29207 1 29227 6	41807 6 41792 4 41777 1 41761 8	7 6 5 4 3 2
58 59 60	24490 9 24510 0 24529 0	45601 3 45584 4 45567 5	25646 6 25666 I	44600 0	26825 0 26844 8	43624 5	28025 6 28045 8 28066 0	42673 7 42658 I	29248 2 29268 8	41746 5 41731 3	2 I 0
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	49°	319°	48°	318°	47°	317°	46°	316°	45°	315°	

	4	5°	4	6°	4	7 °	4	8°	4	9°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	29309 9 29330 5	41716 0 41700 8 41685 5 41670 3 41655 1	30576 o 30597 o	40797 3 40782 4 40767 6	31821 4 31842 7 31864 0	39915 5	33108 6 33130 2 33151 8	39054 5	344160	38227 3 38213 4 38199 6 38185 7 38171 9	60 59 58 57 56
5 6 7 8 9	29392 2 29412 8 29433 4	41639 9 41624 6 41609 4 41594 2	30638 9 30659 8 30680 8	4°737 9 4°723 ° 4°7°8 2 4°693 3	31906 6 31927 9 31949 2 31970 5	39857 5 39843 0 39828 5 39814 0	33195 I 33216 7 33238 4 33260 I	38997 8 38983 6 38969 5	345°3 9 345°5 9 34547 9	38158 1 38144 2 38130 4 38116 6 38102 8	55 54 53 52 51
10 11 12 13 14	29495 3 29515 9 29536 6	41563 9 41548 7 41533 5	30743 7	40663 7 40648 9 40634 1 40619 3	32013 2 32034 5 32055 9 32077 2	39785 0 39770 5	33303 4 33325 1 33346 8 33368 4	38927 I 38912 9 38898 8 38884 7 38870 6	34613 9 34635 9 34657 9	38089 0 38075 2 38061 4 38047 6 38033 8	50 49 48 47 46
15 16 17 18	29598 5 29619 2 29639 9 29660 5	41488 0 41472 8 41457 7	30848 7 30869 7 30890 7 30911 8	405 ⁸ 9 7 40574 9 40560 1	32119 9 32141 3 32162 7 32184 0	39712 8 39698 3	33411 8 33433 5 33455 2	388 56 5 388 42 4 388 28 3 388 14 2 388 00 1	34724 0 34746 I 34768 I 34790 2 34812 2	38020 0 38006 2 37992 4 37978 7 37964 9	45 44 43 42 41
20 21 22 23 24	29701 9 29722 6 29743 3	41412 3 41397 2 41382 1 41366 9		40515 8 40501 0 40486 3 40471 5	32226 8 32248 2 32269 6	39640 6 39626 2	33520 4 33542 1 33563 9	38786 0 38772 0 38757 9	34 ⁸ 34 3 34 ⁸ 56 3	37951 2 37937 4 37923 7 37909 9 37896 2	40 39 38 37 36
25 26 27 28 29	29805 4 29826 1 29846 9	41336 7 41321 7 41306 6 41291 5	31059 I 31080 2 31101 3 31122 4 31143 4	40442 0 40427 3 40412 6 40397 9	32333 8 32355 2 32376 7	39568 7 39554 3 39539 9 39525 5 39511 2	33629 1 33650 9 33672 7	387157	34944 7 34966 8 34988 9	37882 5 37868 7 37855 0 37841 3 37827 6	35 34 33 32 31
30 31 32 33 34	29909 I 29929 8	41261 4 41246 3 41231 2 41216 2	31164 5	40368 5 40353 8 40339 1 40324 4	32441 0 32462 4 32483 9	39496 8 39482 4 39468 1 39453 8 39439 4	33738 o 33759 8	38645 5 38631 5 38617 5 38603 5 38589 5	35°55 2 35°77 3 35°99 4 35121 6	37813 9 37800 2 37786 5 37772 8 37759 1	30 29 28 27 26
35 36 37 38 39	30012 9 30033 7 30054 5	411861 411711 411561 411410	31270 I 31291 2 31312 4 31333 5	40295 0 40280 4	32548 3 32569 8 32591 2 32612 7	39425 I 39410 8 39396 5 39382 I 39367 8	33847 ° 33868 8	38575 5	35165 9 35188 0 35210 2 35232 3	37745 4 37731 8 37718 1 37704 4 37690 8	25 24 23 22 21
40 41 42 43 44	301377	410660	31397 0 31418 2	401778	32655 7 32677 2 32698 7 32720 3	39353 5 39339 2 39324 9 39310 7		38505 6 38491 6 38477 7 38463 7	35276 7 35298 8 35321 0 35343 2	37677 I 37663 5 37649 8 37636 2 37622 6	20 19 18 17 16
45 46 47 48 49	30241 8	41021 1 41006 2 40991 2	31481 7 31502 9 31524 1 31545 3 31566 5	40134 0 40119 4 40104 8	32784 9 32806 4	39267 8 39253 6 39239 3	34087 3 34109 2 34131 0	38421 9 38407 9	35409 8 35432 0 35454 2	37608 9 37595 3 37581 7 37568 1 37554 5	15 14 13 12
50 51 52 53 54	30387 8 30408 7	40946 4 40931 4 40916 5 40901 6	31587 7 31608 9 31630 2 31651 4 31672 6	40061 0 40046 4 40031 9	32892 6 32914 2 32935 8 32957 3	39196 6 39182 3	34218 6 34240 6	38352 3 38338 4 38324 5 38310 6	35520 9 35543 1 35565 4 35587 6	3754° 9 37527 3 37513 7 375° 1 37486 5	10 9 8 7 6
55 56 57 58 59 60	30492 3	40871 8 40856 9 40842 0 40827 1	31693 9 31715 1 31736 4 31757 6 31778 9 31800 2	39988 2 39973 6 39959 1 39944 6	33022 I 33043 7 33065 3	391113	34306 3 34328 3 34350 2 34372 I	38282 8 38268 9	35632 I 35654 4 35676 7 35699 0	37473 ° 37459 4 37445 8 37432 3 37418 7 374°5 2	5 4 3 2 1
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	44°	314°	43°	313°	42°	312°	41°	31 1°	40°	310°	

	5	o°	5	r°	5	2°	53	3°	5-	4°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	35721 2 35743 5 35765 8 35788 1 35810 4	37405 2 37391 6 37378 1 37364 6 37351 0	37068 0 37090 6 37113 2 37135 8 37158 4	36601 6 36588 3 36575 1 36561 9 36548 6	38456 8 38479 7 38502 6	35789 9	39841 7 39865 0 39888 2	35°47 3 35°34 6 35°21 9 35°°9 3 34996 6		34295 3 34282 9 34270 5 34258 2 34245 8	60 59 58 57 56
56 78 9	35832 7 35855 0	37337 5	37181 1 37203 7	36535 4 36522 2	38548 5 38571 5 38594 4 38617 4	35751 I 35738 2	39934 7 39958 0 39981 2 40004 5	34984 0 34971 3	41339 2 41362 8	34233 4 34221 0	55 54 53 52 51
10 11 12 13 14	35944 3 35966 7 35989 0 36011 4 36033 7	37270 0 37256 5	37 ² 94 3 373 ¹ 7 0 373 ³ 9 6 37 ³ 6 ² 3 37 ³ 8 ⁵ 0		38663 3 38686 3	35686 5 35673 6 35660 7 35647 8	40051 1 40074 4 40097 6	34920 8 34908 2 34895 6 34882 9	41457 1 41480 6 41504 2 41527 8	34171 6 34159 2 34146 9 34134 5	50 49 48 47 46
15 16 17 18	36056 1 36078 5 36100 8 36123 2 36145 6	37202 6 37189 1 37175 6 37162 2	374°7 7 3743° 3 37453° 37475 7 37498 4	36403 5	38778 3 38801 3	35622 1 35609 2 35596 3 35583 5	40167 5 40190 8 40214 2 40237 5 40260 8	34857 7 34845 1 34832 5 34820 0	41598 6	34122 2 34109 9 34097 5 34085 2 34072 9 34060 6	45 44 43 42 41
20 21 22 23 24	36168 0 36190 4 36212 8 36235 2 36257 6	37135 3 37121 8 37108 4 37095 0 37081 5	37521 1 37543 9 37566 6 37589 3 37612 0	36337 7 36324 6 36311 4	38893 3 38916 4 38939 4	35557 7 35544 9 35532 0 35519 2	40284 1 40307 5 40330 8	34794 8 34782 2	41693 1	34048 3 34036 0	40 39 38 37 36
25 26 27 28 29	36280 0 36302 4 36324 9 36347 3 36369 7	37068 I 37054 7 37041 3	37634 8 37657 5 37680 3 37703 0 37725 8	36272 0 36258 9	39008 5 39031 6	35493 5 35480 7 35467 9 35455 0	40400 9	34732 0 34719 4 34706 9	41811 4 41835 0	33986 8 33974 5 33962 2 33949 9	35 34 33 32 31
30 31 32 33 34	36392 2 36414 6 36437 1 36459 5 36482 0	37001 I 36987 7	37748 5 37771 3 37794 1 37816 9 37839 6	36206 5 36193 4	39123 9 39146 9 39170 0 39193 1 39216 2	35429 4 35416 6 35403 8 35391 0	40517 7 40541 1	34669 2 34656 7 34644 2	41929 7 41953 4 41977 1 42000 8	33925 4 33913 1 33900 9 33888 6	30 29 28 27 26
35 36 37 38 39	36504 5 36526 9 36549 4 36571 9 36594 4	36934 2 36920 8 36907 5 36894 1	37862 4 37885 2 37908 0 37930 8 37953 6	36141 1 36128 0 36114 9 36101 9 36088 8	39239 3 39262 4 39285 5 39308 6 39331 8	35352 6 35339 9 35327 I	40634 7 40658 1 40681 5 40704 9 40728 4	34594 I 3458 I 6 34569 I	42048 2 42071 9 42095 6 42119 3 42143 0	33851 9 33839 7 33827 4	25 24 23 22 21
40 41 42 43 44	36684 4		37976 5 37990 3 38022 I 38044 9 38067 8	360627	39378 0 39401 2 39424 3	35288 8 35276 0 35263 3	40751 8 40775 2 40798 7 40822 1 40845 6	34531 7 34519 2 34506 7	42190 5 42214 2 42238 0	33790 8 33778 6 33766 3	20 19 18 17 16
45 46 47 48 49	36729 5 36752 0 36774 5 36797 1	36800 8 36787 5 36774 1 36760 8	38090 6 38113 5 38136 3 38159 2 38182 0	36010 6 35997 6 35984 6 35971 6	39470 6 39493 8 39516 9	35237 8 35225 1 35212 3 35199 6	40892 5 40916 0	34481 8 34469 3 34456 9 34444 4	42285 5 42309 2 42333 0 42356 8	33729 7 33717 5 33705 4	15 14 13 12
50 51 52 53 54	36842 2 36864 7 36887 3 36909 8	36734 2	38204 9 38227 8 38250 6	35945 6 35932 6 35919 6 35906 6	39586 4 39609 6 39632 8	35174 2 35161 5 35148 8 35136 1	40986 4 41009 9 41033 4 41056 9 41080 4	34407 I 34394 6 34382 2	42475 7	33681 0 33668 8 33656 7	10 9 8 7 6
55 56 57 58 59 60	36955 0 36977 6 37000 2 37022 8 37045 4	36667 8 36654 6 36641 3 36628 1 36614 8	383193 383422 383651 383880 384109	35880 6 35867 6 35854 7 35841 7 35828 8	397°2 4 39725 6 39748 8 39772 ° 39795 3	35110 7 35098 0 35085 3 35072 6 35059 9	41103 9 41127 4 41150 9 41174 4 41197 9	34357 4 34344 9 34332 5 34320 I 34307 7	42523 3 42547 1 42570 9 42594 7 42618 5	33620 2 33608 0 33595 9 33583 7 33571 6	5 4 3 2 1
00	37°68°° Alt.	Hour	384 33 9 Alt.	Hour	39818 5 Alt.	35°47 3 Hour Angle	41221 5 ————————————————————————————————————	Hour Angle	42642 4 Alt.	Hour Angle	0
	39°	Angle 309°	38°	Angle 308°	37°	307°	36°	306°	35°	305°	_

	5.	5°	5	6°	5	7°	5	8°	5	9°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	42642 4 42666 2 42690 0 42713 9 42737 7	33547 3 33535 2 33523 I	44080 7 44104 8 44129 0 44153 1 44177.2	32827 2	45536 I 45560 5 45584 9 45609 3 45633 7	32133 7 32122 1 32110 5 32098 8 32087 2	47008 I 47032 7 47057 4 47082 I 47106 8	31442 9 31431 5 31420 1 31408 7 31397 3	48521 1 48546 1	30766 I 30755 0 30743 8 30732 6 3072I 5	60 59 58 57 56
5 6 7 8 9	42761 6 42785 4 42809 3 42833 1 42857 0	33474 6 33462 5	44201 3 44225 5 44249 6 44273 8 44297 9	32756 o 32744 2	45658 1 45682 6 45707 0 45731 4 45755 8	32052 4	47131 5 47156 2 47180 9 47205 6 47230 3		48620 9 48645 9 48670 8 48695 8 48720 8	30710 3 30699 2 30688 1 30676 9 30665 8	55 54 53 52 51
10 11 12 13 14	42880 9 42904 8 42928 6 42952 5 42976 4	33402 I 33390 O	44322 I 44346 3 44370 4 44394 6 44418 8	32685 0 32673 2	45804 7 45829 2 45853 6 45878 1	32006 0 31994 4 31982 8 31971 2	47279 7 47304 4 47329 I 47353 9	31306 4 31295 1 31283 7	4 ⁸ 795 7 4 ⁸⁸ 20 7 4 ⁸⁸ 45 7	306102	50 49 48 47 46
15 16 17 18 19	43072 0 43096 0	33377 9 33365 8 33353 8 33341 7 33329 7 33317 6	44515 6 44539 8		45951 5 45976 0 46000 4	31959 7 31948 1 31936 5 31925 0 31913 4 31901 8	47428 1	31272 4 31261 1 31249 7 31238 4 31227 1 31215 7	48895 7 48920 7 48945 7 48970 7	30599 I 30588 0 30576 9 30565 8 30554 7 30543 6	45 44 43 42 41 40
21 22 23 24 25	43143 8	33305 6 33293 5 33281 5 33269 5	44588 2 44612 4 44636 6 44660 8	32590 5 32578 7	46049 4 46073 9	31890 3 31878 7 31867 2 31855 7	47527 I 4755I 9	31204 4 31193 1 31181 8	49020 8 49045 8 49070 8 49095 9	30532 5 30521 4 30510 3 30499 3	39 38 37 36 35
26 27 28 29 30	43263 5 43287 5 43311 4 43335 4 43359 4	33245 4 33233 4 33221 4 33209 4	447093	32531 6	46171 9 46196 5	318326	476510	31147 9 31136 6 31125 3 31114 0	49145 9 49171 0 49196 0	30477 I	34 33 32 31 30
31 32 33 34		33185 3	448306	32472 8 32461 0 32449 3 32437 6 32425 8	46294 6	31775 0 31763 5 31752 0 31740 5 31729 0	47774 9 47799 8 47824 6 47849 4 47874 2	31091 5 31080 2 31068 9 31057 7	49271 2 49296 3 49321 4	30421 8 30410 8 30399 7 30388 7	29 28 27 26 25
35 36 37 38 39 40		33125 4 33113 4 33101 4 33089 5 33077 5	44951 9 44976 2 45000 5 45024 8	32414 1 32402 4 32390 6 32378 9 32367 2	46466 4 46491 0	31717 5 31706 0 31694 5 31683 0		31023 9 31012 7 31001 4	49421 7 49446 8	30366 6 30355 6 30344 6 30333 6 30322 5	24 23 22 21 20
41 42 43 44 45	43 ⁶ 95 5 43719 5	33053 6 33041 6 33029 7 33017 7	45146 4 45170 7	32343 8 32332 I 32320 4 32308 7	46589 3 46613 9 46638 5	31648 6 31637 2 31625 7 31614 2	48097 8 48122 7	30967 7 30956 5 30945 2 30934 0	49547 2 49572 3 49597 5 49622 6	30311 5 30300 5 30289 5 30278 5 30267 5	19 18 17 16
46 47 48 49 50	43743 6 43767 6 43791 7 43815 7 43839 8	33005 8 32993 9 32981 9 32970 0 32958 1	45195 0 45219 3 45243 7 45268 0	32297 0 32285 3 32273 6 32261 9 32250 2	46663 1 46687 8 46712 4 46737 0 46761 6	31602 8 31591 3 31579 9 31568 5	48147 5 48172 4 48197 3 48222 2 48247 1	30922 8 30911 6 30900 4 30889 2 30878 0	49 ⁶ 47 7 49 ⁶ 72 9 49 ⁶ 98 0 49723 1 49748 3	30256 5 30245 5 30234 6 30223 6	14 13 12 11
51 52 53 54 55	43887 9	32922 3 32910 4 32898 5	453898 454142	32226 9 32215 2 32203 6 32191 9	46810 9 46835 5 46860 1 46884 8	31534 2 31522 7 31511 3 31499 9	48296 9 48321 8 48346 7 48371 6	30844 4 30833 2 30822 0	49798 6 49823 8 49848 9 49874 1	30179 7 30168 7	98 76 54
55 56 57 58 59 60	44008 4 44032 5 44056 6	32851 0 32839 1	454 ⁶² 9 454 ⁸ 7 3 455 ¹¹ 7	32168 6 32157 0 32145 3 32133 7	46934 1 46958 7 46983 4	31477 1 31465 7 31454 3 31442 9	48421 4 48446 3 48471 3	30766 1	49924 4 49949 6 49974 8	30146 8 30135 8 30124 9 30113 9 30103 0	5 4 3 2 1 0
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	34°	304°	33°	303°	32°	302°	31°	301°	30°	300°	

1,				ı°	0.	2°	6	3°	6.	4	
	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3	50000 0 50025 2 50050 4 50075 6 50100 8	30081 I 30070 2	51519 0 51544 5 51569 9 51595 4	29431 7 29421 0	53052 8 53078 5 53104 2 53129 9	28795 0 28784 5	54600 9 54626 9 54652 8 54678 7 54704 6	28181 2 28170 9 28160 6	56162 9 56189 9 56215 2 56241 3 56267 5	27579 0 27568 9 27558 8 27548 7 27538 6	60 59 58 57 56
4 5 6 7 8	50126 0 50151 2 50176 4 50201 7	30048 3 30037 4 30026 5	51620 8 51646 3 51671 8 51697 2 51722 7	29399 5 29388 8 29378 1	53155 6 53181 3 53207 0 53232 7 53258 4	28763 5 28753 1 28742 6	54730 6 54756 5 54782 5 54808 4	28140 0 28129 7 28119 4	56293 7 56319 8 56346 0 56372 2	27528 5 27518 4	55 54 53 52
9 10 11 12	50226 9 50252 I 50277 4 50302 6	29993 8 29982 9 29972 0		29356 7 29346 I 29335 4 29324 7	53361 3	28711 I 28700 6 28690 2	54834 4 54860 3 54886 3 54912 2	28088 6 28078 3 28068 0	56398 3 56424 5 56450 7 56476 9	27488 2 27478 I 27468 0 27458 0	51 50 49 48
13 14 15 16 17	50327 8 50353 1 50378 3 50403 6 50428 9	29939 3 29928 4	51850 1 51875 6 51901 1 51926 6 51952 1	29303 3 29292 7 29282 0 29271 3	53387 1 53412 8 53438 5 53464 3 53490 0	28658 8 28648 3 28637 9	54964 2 54990 2 55016 1 55042 1	28047 5 28037 2 28027 0 28016 7	56503 1 56529 3 56555 5 56581 7 56607 9	27447 9 27437 8 27427 8 27417 7 27407 6	47 46 45 44 43
18 19 20 21 22	50454 I 50479 4 50504 7 50529 9 50555 2	29874 I	51977 6 52003 2 52028 7 52054 2 52079 7		53515 8 53541 5 53567 3 53593 1 53618 8	28616 9 28606 5 28596 1	55068 1 55094 1 55120 1 55146 1 55172 1	27996 2	56634 1 56660 3 56686 5 56712 7 56739 0	27397 6 27387 5 27377 5 27367 5 27357 4	42 41 40 39 38
23 24 25 26	50580 5 50605 8 50631 1 50656 4	29852 3 29841 5 29830 6 29819 8	52105 3 52130 8 52156 4 52181 9	29207 4 29196 8 29186 1 29175 5	53644 6 53670 4 53696 2 53722 0	28575 2 28564 8 28554 3 28543 9	55198 I 55224 I 55250 I 55276 I	27955 3 27945 I 27934 8 27924 6	56765 2 56791 4 56817 7 56843 9	27347 4 27337 4 27327 3 27317 3	37 36 35 34
27 28 29 30 31	50681 7 50707 0 50732 3 50757 6 50783 0	29798 I 29787 3 29776 4	52207 4 52233 0 52258 6 52284 I 52309 7		53747 7 53773 5 53799 3 53825 1 53850 9	28523 I 28512 7 28502 2	55302 I 55328 2 55354 2 55380 2 55406 2	27914 4 27904 2 27894 0 27883 8 27873 6	56870 1 56896 4 56922 6 56948 9 56975 1	273°7 3 27297 3 27287 2 27277 2 27267 2	33 32 31 30 29
32 33 34 35	50808 3 50833 6 50858 9 50884 3		52335 3 52360 8	29111 8 29101 2	53876 7 53902 6 53928 4 53954 2	28481 4 28471 0	55432 3 55458 3 55484 4 55510 4	27863 4 27853 2 27843 0 27832 8	57001 4 57027 7 57053 9 57080 2	27257 2 27247 2 27237 2 27227 2	28 27 26 25
36 37 38 39	50909 6 50935 0 50960 3 50985 7	29700 7 29689 9 29679 I	52437 6 52463 2 52488 8 52514 4	29069 4 29058 8 29048 2 29037 6	53980 0 54005 8 54031 7 54057 5	28429 5 28419 1 28408 7	55562 5 55588 6 55 ⁶ 14 7	27822 6 27812 4 27802 2 27792 0 27781 9	57106 5 57132 8 57159 0 57185 3 57211 6	27187 3	24 23 22 21 20
40 41 42 43 44	51011 0 51036 4 51061 7 51087 1 51112 5	29657 5 29646 7 29635 9 29625 I	52540 0 52565 6 52591 2 52616 8 52642 4	29005 9 28995 3 28984 7	54135 0 54160 9 54186 7	28377 6 28367 2 28356 8	55640 7 55666 8 55692 9 55719 0 55745 0	27771 7 27761 5 27751 3	57237 9 57264 2 57290 5 57316 8	27167 3 27157 3 27147 4 27137 4	19 18 17 16
45 46 47 48 49	51137 9 51163 3 51188 6 51214 0 51239 4	29603 6 29592 8 29582 I	52668 0 52693 7 52719 3 52744 9 52770 6	28963 6 28953 0 28942 5	54212 6 54238 5 54264 3 54290 2 54316 1	28336 I 28325 8 28315 4	55771 1 55797 2 55823 3 55849 4 55875 5	27731 0 27720 9 27710 7 27700 6 27690 4	57343 I 573 ⁶ 9 4 57395 7 57422 I 5744 ⁸ 4	27127 4- 27117 5 27107 5 27097 6 27087 6	15 14 13 12 11
50 51 52 53 54	51264 8 51290 2 51315 6 51341 0	29560 5 29549 8 29539 0 29528 3	52796 2 52821 8 52847 5 52873 1	28921 4 28910 8 28900 3 28889 7	54342 0 54367 8 54393 7 54419 6	28294 7 28284 4 28274 I 28263 7	55901 6 55927 7 55953 8	27680 3 27670 1 27660 0 27649 9 27639 7	57474 7 57501 0 57527 4 57553 7 57580 1	27077 7	10 9 8 7 6
55 56 57 58 59 60	51366 5 51391 9 51417 3 51442 7 51468 2	29506 8 29496 0 29485 3 29474 6	52924 5 52950 1 52975 8 53001 5	28879 2 28868 7 28858 1 28847 6 28837 1	54445 5 54471 4 54497 3 54523 2 54549 1	28222 4 28212 I	56032 2 56058 3 56084 5 56110 6	27629 6 27619 5 27609 4 27599 3	57606 4 57632 7 57659 1 57685 4	27028 0 27018 0 27008 1 26998 2	5 4 3 2
59 60	51493 6 51519 0		53 ⁰²⁷ 2 53 ⁰⁵² 8	28826 6 28816 I Hour	54600 9	28201 8 28191 5 Hour	56136 7 56162 9	27589 I 27579 O Hour	57711 8 57738 2	26988 3 26978 4 ————————————————————————————————————	0
	Alt. 29°	Hour Angle	Alt. 28°	Angle 298°	Alt. 27°	Angle 297°	Alt. 26°	Angle 296°	Alt. 25°	Angle 295°	,

	6	5°	6	6°	6	7°	6	8°	6	9°	
′	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	57738 2 57764 5 57790 9 57817 3 57843 7	26978 3 26968 4 26958 5 26948 6 26938 7	59352 9 59379 5	26389 I 26379 4 26369 7 26360 0 26350 2		25811 1 25801 5 25792 0 25782 4 25772 9	62539 3 62566 3 62593 3 62620 3 62647 2	25243 8 25234 5 25225 1 25215 8 25206 4	64163 2 64190 4 64217 5 64244 7 64271 9	24687 2 24678 0 24668 8 24659 6 24650 5	60 59 58 57 56
5 6 7 8 9	57870 0 57896 4 57922 8 57949 2 57975 6	26928 8 26918 9 26909 0 26899 1 26889 2	59459 2 59485 8 59512 4 59539 \circ	26340 5 26330 8 26321 1 26311 4 26301 7	61060 8 61087 6 61114 4 61141 2 61168 0	25763 4 25753 8 25744 3 25734 8 25725 3	62674 2 62701 2 62728 2 62755 2 62782 2	25197 0 25187 7 25178 4 25169 0 25159 7	64326 2 64353 4	24641 3 24632 1 24622 9 24613 8 24604 6	55 54 53 52 51
10 11 12 13 14	58002 0 58028 4 58054 8 58081 2 58107 6	26879 4 26869 5 26859 6 26849 7 26839 8	59592 2 59618 9 59645 5 59672 1 59698 7	26292 0 26282 3 26272 6 26262 9 26253 3	611948 612216 612484 612753 613021	256967	62836 2 62863 2 62890 2	25150 3 25141 0 25131 7 25122 3 25113 0		24595 4 24586 3 24577 I 24568 0 24558 8	50 49 48 47 46
15 16 17 18 19	58134 0 58160 4 58186 9 58213 3 58239 7	26830 0 26820 1 26810 2 26800 4 26790 5	59725 3 59752 0 59778 6 59805 2 59831 9	26243 6 26233 9 26224 2 26214 5 26204 9	61328 9 61355 7 61382 6 61409 4 61436 2	25649 2 25639 8	62971 3 62998 3	25103 7 25094 4 25085 1 25075 7 25066 4		24549 7 24540 5 24531 4 24522 2 24513 1	45 44 43 42 41
20 21 22 23 24	58266 1 58292 6 58319 0 58345 5 58371 9	26780 7 26770 8 26761 0 26751 1 26741 3	59858 5 59885 1 59911 8 59938 4 59965 1	26195 2 26185 5 26175 9 26166 2 261 5 6 6	61463 1 61489 9 61516 8 61543 6 61570 5	25620 8 25611 3 25601 8 25592 3 25582 9	63106 4 63133 5 63160 5	25°57 1 25°47 8 25°38 5 25°29 2 25°19 9	64706 9 64734 2 64761 4 64788 6 64815 8	24504 0 24494 8 24485 7 24476 6 24467 4	40 39 38 37 36
25 26 27 28 29	58398 4 58424 8 58451 3 58477 7 58504 2	26731 5 26721 6 26711 8 26702 0 26692 1	59991 7 60018 4 60045 1 60071 7 60098 4	26146 9 26137 3 26127 6 26118 0 26108 3	61597 3 61624 2 61651 0 61677 9 61704 8	25573 4 25563 9 25554 5 25545 0 25535 6	63241 6 63268 7 63295 7	25010 6 25001 3 24992 1 24982 8 24973 5	64843 I 64870 3 64897 5 64924 8 64952 0	24458 3 24449 2 24440 I 2443I 0 2442I 9	35 34 33 32 31
30 31 32 33 34	58530 7 58557 1 58583 6 58610 1 58636 6	26682 3 26672 5 26662 7 26652 9 26643 I	60125 1 60151 8 60178 4 60205 1 60231 8	26098 7 26089 1 26079 4 26069 8 26060 2	61731 7 61758 5 61785 4 61812 3 61839 2	25526 1 25516 7 25507 2 25497 8 25488 3		24964 2 24954 9 24945 7 24936 4 24927 I	64979 3 65006 5 65033 8 65061 0 65088 3	24412 8 24403 7 24394 6 24385 5 24376 4	30 29 28 27 26
35 36 37 38 39	58663 1 58689 6 58716 0 58742 5 58769 0	26633 3 26623 5 26613 7 26603 9 26594 I	60285 2 60311 9 60338 6 60365 3	26050 6 26041 0 26031 3 26021 7 26012 1	1131	25478 9 25469 4 25460 0 25450 6 25441 I	635394	24917 9 24908 6 24899 3 24890 1 24880 8	65115 5 65142 8 65170 1 65197 3 65224 6	24367 3 24358 2 24349 I 24340 0 24330 9	25 24 23 22 21
40 41 42 43 44	58795 5 58822 0 58848 6 58875 1 58901 6	26584 3 26574 5 26564 7 26554 9 26545 1	60418 7 60445 4 60472 2 60498 9	26002 5 25992 9 25983 3 25973 7 25964 1	62027 5 62054 4 62081 3 62108 2	253940	63702 0 63729 I	24834 6	65251 9 65279 1 65306 4 65333 7 65361 0	24321 8 24312 8 24303 7 24294 6 24285 6	20 19 18 17 16
45 46 47 48 49	58981 2 59007 7 59034 2	26515 8 26506 1 26496 3	60552 3 60579 1 60605 8 60632 5	25945 0 25935 4 25925 8 25916 2	62162 1 62189 0 62215 9 62242 9	25375 2 25365 8 25356 4 25347 0	63783 3 63810 4 63837 5 63864 7	24825 4 24816 1 24806 9 24797 7 24788 5	65442 9 65470 2 65497 5	24276 5 24267 4 24258 4 24249 3 24240 3	15 14 13 12 11
50 51 52 53 54	59166 9	26486 5 26476 8 26467 0 26457 3 26447 5	60686 0 60712 8 60739 5 60766 3	25906 6 25897 I 25887 5 25877 9 25868 4	62296 7 62323 7 62350 6 62377 6	25337 6 25328 2 25318 8 25309 5 25300 1	63918 9 63946 0 63973 2 64000 3		65552 I 65579 4 65606 7 65634 0	24231 2 24222 2 24213 1 24204 1 24195 0	9 8 7 6
55 56 57 58 59 60	59193 5 59220 1 59246 6 59273 2 59299 8 59326 3	26437 8 26428 I 26418 3 26408 6 26398 9 26389 I	608198 608466 608733 609001	25858 8 25849 2 25839 7 25830 1 25820 6 25811 1	62431 5 62458 4 62485 4 62512 4	25271 9	64054 6 64081 7 64108 9 64136 0	24733 2 24724 0 24714 8 24705 6 24696 4 24687 2	65716 o 65743 3	24186 0 24177 0 24167 9 24158 9 24149 9 24140 9	5 4 3 2 1 0
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	
	24°	294°	23°	293°	22°	292°	21°	291°	20°	290°	

	7	0°	7	ı°	7:	2°	7.	3°	7	4°	
	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 I 2 3	65798 0 65825 3 65852 7 65880 0	24140 9 24131 9 24122 8 24113 8	67443 2 67470 7 67498 2 67525 7	23604 6 23595 7 23586 9 23578 0	691260	23078 I 23069 4 23060 7 23052 I	70790 6 70818 5	22544 2	72436 3 72464 2 72492 2 72520 2	22053 7 22045 3 22036 9 22028 6	60 59 58
4 5 6	65907 3 65934 7 65962 0	24104 8 24095 8 24086 8	67553 2 67580 7 67608 3	23569 2 23560 4 23551 5	69209 0 69236 7 69264 3	23043 4 23034 7 23026 0	70874 I 7090I 9 70929 8	22527 I 22518 6 22510 I	72548 1 72576 1 72604 1	22020 2 22011 8 22003 4	57 56 55 54
7 8 9 10	65989 4 66016 7 66044 1 66071 5	24077 8 24068 8 24059 8 24050 8	67635 8 67663 3 67690 8 67718 4	23542 7 23533 8 23525 0 23516 2	69292 0 69319 7 69347 4 69375 1	23008 7	71013 3	22484 5 22476 0	72660 0 72688 0 72716 0	21995 1 21986 7 21978 4 21970 0	53 52 51 50
11 12 13 14	66098 8 66126 2 66153 6 66180 9	24041 8 24032 8 24023 8 24014 8	67745 9 67773 4 67801 0 67828 5	23507 4 23498 5 23489 7 23480 9	69402 8 69430 5 69458 2 69485 9	22982 7 22974 0 22965 3 22956 7	710968 711247	22467 5 22459 0 22450 5 22442 0	72772 0	21961 6 21953 3 21944 9 21936 6	49 48 47 46
15 16 17 18	66208 3 66235 7 66263 1 66290 5	24005 9 23996 9 23987 9 23978 9	67856 0 67883 6 67911 1 67938 7	23472 I 23463 3 23454 4 23445 6	69513 6 69541 3 69569 0 69596 7	22922 1	71208 2 71236 1 71263 9	22416 5 22408 0	72856 0 72883 9 72911 9 72940 0	21928 2 21919 9 21911 6 21903 2	45 44 43 42
20 21 22 23	66317 9 66345 2 66372 6 66400 0 66427 4	23970 0 23961 0 23952 0 23943 I 23934 I	67966 3 67993 8 68021 4 68048 9 68076 5	23436 8 23428 0 23419 2 23410 4 23401 6	69624 4 69652 1 69679 8 69707 6 69735 3	22913 4 22904 8 22896 1 22887 5 22878 9	712918 713197 713475 713754 714033	22391 0	72968 0 72996 0 73024 0 73052 0 73080 0	21894 9 21886 6 21878 2 21869 9 21861 6	41 40 39 38 37
24 25 26 27	66454 8 66482 2 66509 7 66537 I	23925 2 23916 2 23907 3 23898 3	68104 1 68131 6 68159 2 68186 8	23392 8 23384 I 23375 3 23366 5	69763 0 69790 7 69818 5 69846 2	22870 2 22861 6 22853 0 22844 4	71431 2 71459 0 71486 9 71514 8	22357 I 22348 6 22340 2 2233I 7	73108 0 73136 0 73164 1 73192 1	21853 2 21844 9 21836 6 21828 3	37 36 35 34 33
28 29 30 31 32	66564 5 66591 9 66619 3 66646 7 66674 2	23889 4 23880 4 23871 5 23862 6 23853 6	68214 4 68241 9 68269 5 68297 1 68324 7	23357 7 23348 9 23340 2 23331 4 23322 6	69874 0 69901 7 69929 4 69957 2 69984 9	22835 7 22827 1 22818 5 22809 9 22801 3	' - '	22323 2 22314 8 22306 3 22297 9 22289 4		21820 0 21811 7 21803 4 21795 1 21786 8	32 31 30 29 28
33 34 35	66701 6 66729 0 66756 4	23844 7 23835 8 23826 8	68 352 3 68 379 9 68 407 5 68 435 1	23313 8 23305 1 23296 3	700127 700404 700682	22792 7 22784 I 22775 5	71682 1 71710 0 71737 9 71765 8	22280 9 22272 5 22264 I	73360 3 73388 3 73416 3	21778 5 21770 2 21761 9 21753 6	27 26 25 24
36 37 38 39	66783 9 66811 3 66838 8 66866 2 66893 7		68462 7 68490 3 68517 9	23287 6 23278 8 23270 0 23261 3	70095 9 70123 7 70151 4 70179 2 70207 0		71793 8 71793 8 71821 7 71849 6	22255 6 22247 2 22238 7 22230 3 22221 9	73472 4 73500 5 73528 5	21745 3 21737 0 21728 7 21720 4	23 22 21 20
40 41 42 43 44	66921 1 66948 6 66976 0 67003 5	² 3773 3 ² 3764 4 ² 3755 5	68545 5 68573 1 68600 7 68628 4 68656 0	23252 5 23243 8 23235 I 23226 3 23217 6	70234 7 70262 5 70290 3 70318 I	22723 9 22715 3 22706 7	71905 4 71933 3 71961 2 71989 2	22213 4 22205 0 22196 6	73584 6	21712 I 21703 9 21695 6 21687 3	19 18 17 16
45 46 47 48	67030 9 67058 4 67085 9 67113 3	23728 8 23719 9 23711 1	68683 6 68711 2 68738 9 68766 5	23200 I 2319I 4 23182 7	70373 6 70401 4 70429 2	22681 0 22672 4 22663 9	72017 1 72045 0 72073 0 72100 9	22171 3 22162 9 22154 5	73696 9 73724 9 73753 0 73781 1	21679 0 21670 8 21662 5 21654 2	14 13 12
50 51 52 53 54	67140 8 67168 3 67195 8 67223 2 67250 7	23693 3 23684 4 23675 5 23666 7	68794 I 6882I 8 68849 4 68877 I 68904 7	23147 8 23139 1	70457 0 70484 8 70512 6 70540 4 70568 2	22646 7 22638 2 22629 6 22621 1	72128 8 72156 8 72184 7 72212 6 72240 6	22137 6 22129 2 22120 8 22112 4	73865 3 73893 4 73921 5	21646 0 21637 7 21629 5 21621 2 21613 0	11 10 9 8 7 6
54 55 56 57 58 59 60	67278 2 67305 7 67333 2 67360 7 67388 2	23657 8 23648 9 23640 0 23631 2 23622 3		23121 6 23112 9 23104 2		22604 0 22595 4 22586 9	72268 5 72296 5 72324 4 72352 4 72380 3	22104 0 22095 6 22087 2 22078 9 22070 5	73949 5 73977 6 74005 7 74033 8 74061 9	21596 5 21588 2 21580 0 21571 8	54321
59 60	67415 7 67443 2	23613 5 23604 6	69070 6 69098 3	230868	7°735° 7°7628	22569 8	72408 3 72436 3	22062 I 22053 7	74090 0 74118 I	21563 5 21555 3	0
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	,
	19°	289°	18°	288°	17°	287°	16°	286°	15°	285°	

	7.	5°	7	6°	7:	7°	78	3°	7	9°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	74118 1 74146 2 74174 3 74202 4 74230 5	21547 I 21538 8 21530 6	75807 8 75836 0 75864 3 75892 5 75920 7	21049 6 21041 6	77533 2	20569 2	79237 3	20089 4	80919 1 80947 7 80976 2 81004 8 81033 3	19648 9 19641 3 19633 6 19626 0 19618 3	60 59 58 57 56
56 78 9	74258 6 74286 7 74314 8 74342 9 74371 1	21514 2 21505 9 21497 7 21489 5	75949 ° 75977 2 76005 4 76033 7 76061 9	1	77646 6 77675 0 77703 3 77731 7	20545 4 20537 4	79351 1 79379 6 79408 0 79436 5	20073 8 20066 I 20058 3 20050 5	81061 9 81090 5	19610 7 19603 0 19595 4 19587 7 19580 1	55 54 53 52 51
10 11 12 13	74399 ² 744 ² 7 3 74455 4 744 ⁸ 3 5	21473 I 21464 9 21456 7 21448 5	76090 2 76118 4 76146 6 76174 9 76203 2	20985 I 20977 0 20969 0	77788 4 77816 8 77845 1 77873 5 77901 9	20505 8 20497 8 20489 9	79493 4 79521 9 79550 4 79578 9 79607 3	20034 9 20027 2 20019 4 20011 6	812047 812333	19572 4 19564 8 19557 2 19549 5 19541 9	50 49 48 47 46
14 15 16 17 18	74511 7 74539 8 74567 9 74596 1 74624 2 74652 3	21432 I 21423 9 21415 7 21407 5	76231 4 76259 7 76287 9 76316 2 76344 4	20944 8 20936 8 20928 7 20920 7	7793° 3 77958 6	20466 2 20458 3 20450 4	79635 8 79664 3 79692 8 79721 3	19996 1 19988 3 19980 5 19972 8		19534 3 19526 6 19519 0 19511 4 19503 8	45 44 43 42 41
20 21 22 23 24	74680 5 74708 6 74736 8 74764 9	21391 1 21383 0 21374 8 21366 6	76372 7 76401 0 76429 2 76457 5 76485 8	20904 6 20896 6 20888 5 20880 5	78072 I 78100 5 78128 9 78157 3 78185 7	20426 7 20418 8 20410 9 20403 0		19957 3 19949 5 19941 8 19934 0		19496 1 19488 5 19480 9 19473 3 19465 7	40 39 38 37 36
25 26 27 28 29	74821 2 74849 4 74877 5 74905 7 74933 8	21350 3 21342 1 21333 9 21325 8	76514 1 76542 3 76570 6 76598 9 76627 2	20864 4 20856 4 20848 4 20840 4	78214 1 78242 5 78270 8 78299 2 78327 6	20387 3 20379 4 20371 5 20363 6	79920 7 79949 2 79977 7 80006 2 80034 7	19918 5 19910 8 19903 1 19895 3		19458 1 19450 5	35 34 33 32 31
30 31 32 33 34	74962 0 74990 2 75018 3 75046 5 75074 7	21309 4 21301 3 21293 1	76655 5 76683 7 76712 0 76740 3	20824 3 20816 3 20808 3 20800 3		20347 9 20340 0 20332 1 20324 3	80063 2 80091 7 80120 2	19879 9 19872 1 19864 4 19856 7		19420 I 19412 5 19404 9 19397 3 19389 7	30 29 28 27 26
35 36 37 38 39	75102 8 75131 0 75159 2 75187 4 75215 5	21268 7 21260 5 21252 4	76796 9 76825 2	20776 3 20768 3 20760 3	78498 1 78526 5 78554 9 78583 3 78611 7	20300 7 20292 8 20285 0	80205 7 80234 3 80262 8 80291 3 80319 8	19833 5	81919 5 81948 1 81976 7 82005 3 82033 9	19382 1 19374 6 19367 0 19359 4 19351 8	25 24 23 22 21
40 41 42 43 44	75243 7 75271 9 75300 1 75328 3 75356 5	21219 9 21211 7 21203 6	76938 4 76966 7 76995 0 77023 3 77051 6	20736 4 20728 4	78640 1 78668 5 78697 0 78725 4 78753 8	20261 4 20253 6	80376 9 80405 4 80433 9	19787 2	82062 5 82091 2 82119 8 82148 4 82177 0	19344 3 19336 7 19329 1 19321 5 19314 0	20 19 18 17 16
45 46 47 48 49	753 ⁸ 4 7 754 ¹² 9 7544 ¹ 1 754 ⁶ 9 3	21187 3 21179 2 21171 1 21163 0	77080 0	20696 5 20688 5 20680 5	78782 2 78810 7 78839 1 78867 5	20230 I 20222 3 20214 4 20206 6	80491 0 80519 5 80548 0 80576 6 80605 1	19756 4 19748 8 19741 1	82234 3 82262 9 82291 5	19298 9 19291 3 19283 7	15 14 13 12
50 51 52 53 54	75553 9 75582 1 75610 3	21138 7 21130 6 21122 5 21114 4	77221 6 77249 9 77278 2 77306 5 77334 9	20656 6 20648 6 20640 7 20632 7	78924 4 78952 8 78981 3 79009 7 79038 1	20190 9 20183 1 20175 3 20167 5	80633 6 80662 2 80690 7	197257 19718 0 19710 3 19702 6	82348 8 82377 4 82406 0 82434 7	19268 6 19261 1 19253 5 19246 0	10 9 8 7 6
55 56 57 58 59 60	75666 7 75694 9 75723 1 75751 4 75779 6 75807 8	21098 2 21090 1 21082 0 21073 9	77363 2 77391 5 77419 9 77448 2 7747 ⁶ 5 775°4 9	20616 8 20608 9 20600 9 20593 0	79095 0 79123 5	20136 2 20128 4 20120 6	80776 3 80804 9 80833 4 80862 0 80890 5 80919 1	19679 6 19671 9 19664 3 19656 6	82549 2	19230 9 19223 4 19215 8 19208 3 19200 8 19193 3	5 4 3 2 1
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	
	14.	284°	13°	283°	12°	282°	II°	281°	IO°	280°	1

	80	o°	81	c°	82	2°	8	3°	8.	4°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	82635 2 82663 8 82692 5 82721 1 82749 8		84356 5 84385 3 84414 0 84442 7 84471 5	18738 2 18730 8 18723 4	86082 7 86111 5 86140 3 86169 1 86197 9	18298 4 18291 2 18283 9	87841 9 87870 8 87899 7	17873 5 17866 4 17859 3 17852 1 17845 0	89633 9	17448 9 17441 9 17434 9 17427 9 17420 9	60 59 58 57 56
56 78 9	82778 4 82807 1 82835 7 82864 4 82893 1	19155 6 19148 1 19140 6 19133 1	84500 2 84529 0 84557 7 84586 4 84615 2	18708 6 18701 2 18693 8 18686 5	86226 7 86255 5 86284 4	18269 4 18262 1 18254 9 18247 6	87957 4 87986 3 88015 2 88044 1	17837 9 17830 7 17823 6 17816 5	89691 8 89720 7 89749 7 89778 6 89807 5	17413 9 17406 9 17399 9 17392 9 17385 9	55 54 53 52 51
10 11 12 13	82921 7 82950 4 82979 0 83007 7 83036 4	19118 1 19110 6 19103 1 19095 6	84643 9 84672 7 84701 4 84730 2 84758 9	18671 7 18664 3 18657 0 18649 6	86370 8 86399 6 86428 4	18233 2 18225 9 18218 7 18211 4	88101 8 88130 7 88159 6 88188 5	17802 3 17795 I	89836 5 89865 4 89894 4 89923 3 89952 2	17378 9 17371 9 17364 9 17357 9	50 49 48 47 46
14 15 16 17 18	83065 0 83093 7 83122 4 83151 1	19080 6 19073 1 19065 6 19058 1	84787 7 84816 4 84845 2 84873 9 84902 7	18634 9 18627 5 18620 1	86514 9 86543 7 86572 6	18197 0 18189 7 18182 5	88246 3 88275 1 88304 0 88332 9	17766 7 17759 6 17752 5 17745 4 17738 3	89981 2 90010 1 90039 1 90068 0	17343 9 17336 9 17329 9 17323 0 17316 0	45 44 43 42 41
20 21 22 23	83179 7 83208 4 83237 1 83265 8 83294 4	19043 I 19035 7 19028 2 19020 7	84931 4 84960 2 84988 9 850 17 7	18598 1 18590 7 18583 4 18576 0	86659 0 8668 7 9	18160 8 18153 6 18146 4 18139 1	88390 7 88419 6 88448 5 88477 4	17731 2 17724 1 17717 0 17709 9 17702 8	90125 9 90154 9 90183 8 90212 8	17309 0 17302 0 17295 1 17288 1 17281 1	40 39 38 37 36
24 25 26 27 28	83323 I 8335I 8 83380 5 83409 2 83437 9	18983 3	85046 5 85075 2 85104 0 85132 8 85161 5 85190 3	18561 3 18554 0 18546 7 18539 3	86803 2 86832 0 86860 9	18124 7 18117 5 18110 3	88535 2 88564 1 88593 0 88621 9	17695 7 17688 6 17681 5 17674 5 17667 4	90270 7	17274 2 17267 2 17260 2 17253 3 17246 3	35 34 33 32 31
30 31 32 33	83466 5 83495 2 83523 9 83552 6 83581 3 83610 0	18968 4 18961 0 18953 5 18946 0	85219 1 85247 8 85276 6 85305 4 85334 1	18524 7 18517 3 18510 0 18502 7	86947 4 86976 2	18088 7 18081 5 18074 3 18067 1 18059 9	88679 7 88708 6 88 7 37 5	17660 3	90415 4 90444 4 90473 3 90502 3 90531 2	17239 4 17232 4 17225 5 17218 5 17211 6	30 29 28 27 26
34 35 36 37 38	83638 7 83667 4 83696 1 83724 8	18931 1 18923 7 18916 2 18908 8	85362 9 85391 7 85420 5 85449 2 85478 0	18488 0 18480 7 18473 4 18466 1	87091 6 87120 4	18052 7 18045 5 18038 3 18031 1	88824 2 88853 I	17624 9 17617 9	90560 2 90589 2 90618 1	17204 6 17197 7 17190 7 17183 8	25 24 23 22 21
39 40 41 42 43	838109 838396 838683	18893 9 18886 5 18879 0 18871 6	85506 8 85535 6 85564 4 85593 2 85621 9	18451 5 18444 2 18436 8 18429 5	87235 8 87264 7 87293 5 87322 4 87351 2	180168 180096 180024 179952	88968 7	17589 6 17582 6 17575 5 17568 5	90705 0 90734 0 90762 9 90791 9	17169 9 17163 0 17156 1	20 19 18 17 16
46 47 48	83925 7 83954 4 83983 2 84011 9	18856 7 18849 3 18841 9 18834 5	85650 7 85679 5 85708 3 85737 1 85765 9	18414 9 18407 6 18400 4 18393 1	87380 1 87409 0 87437 8 87466 7	17980 9 17973 7 17966 5 17959 4		17554 4 17547 3 17540 3 17533 2	90849 8 90878 8	17135 3 17128 4 17121 4	15 14 13 12
50 51 52 53 54	84069 3 84098 0 84126 7 84155 5	18819 6 18812 2 18804 8 18707 4	85794 7 85823 5 85852 3 85881 1 85909 9	18378 5 18371 2 18363 9 18356 6	87524 4 87553 3 87582 1 87611 0	17945 0 17937 9 17930 7 17923 6	89257 9 89286 8 89315 7 89344 7	17519 2 17512 1 17505 1 17498 1	909947 910236 910526 910816	17100 7 17093 8 17086 9	10 9 8 7 6
55 56 57 58 59 60	84212 9 84241 6 84270 4 84299 1 84327 8	18782 6 18775 2 18767 8 18760 4 18753 0	85938 7 85967 5 85996 3 86025 1 86053 9	18342 I 18334 8 18327 5 18320 2 18313 0	87668 7 8769 7 6 87726 4 87755 3 87784 2	17909 3 17902 1 17895 0 17887 8 17880 7	89402 5 89431 4 89460 4 89489 3 89518 2	17484 0 17477 0 17470 0 17462 9 17455 9	91226 5 91255 4	17059 3 17052 4 17045 5 17038 6	5 4 3 2 1
66	84356 5		86082 7	18305 7 Hour	87813 1	Hour	89547 I ————————————————————————————————————	Hour	91284 4 Alt.	Hour	0
	Alt.	Angle 279°	Alt.	Angle 278°	Alt.	Angle 277°	6°	Angle 276°	5°	Angle 2.75°	'

	8	5°	8	6°	8	7°	8	8°	8	9°	
,	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	Sum or Diff.	Hour Angle	
0 1 2 3 4	91284 4 91313 4 91342 4 91371 4 91400 3	17031 7 17024 8 17017 9 17011 0 17004 1	93082 4	16621 7 16614 9 16608 1 16601 4 16594 6	94766 4 94795 4 94824 5 94853 5 94882 6	16218 8 16212 1 16205 5 16198 8 16192 2	96510 1 96539 1 96568 2 96597 3 96626 3	15822 9 15816 3 15809 8 15803 3 15796 7	98254 8 98283 8 98312 9 98342 0 98371 1	15433 8 15427 4 15421 0 15414 5 15408 1	60 59 58 57 56
5 6 7 8 9	91429 3 91458 3 91487 3 91516 3	16997 2 16990 3 16983 5	93169 4 93198 5 93227 5 93256 5 93285 5	16587 8 16581 1 16574 3 16567 5 16560 8	94911 6 94940 7 94969 8 94998 8 95027 9	16185 5 16178 9 16172 2 16165 6	96655 4 96684 5 96713 6 96742 6	15790 2 15783 7 15777 1 15770 6 15764 1	98400 2 98429 3 98458 3 98487 4	15401 7 15395 3 15388 9 15382 5 15376 0	55 54 53 52 51
10 11 12 13	91574 2 91603 2 91632 2 91661 2 91660 2	16962 8 16956 0 16949 1	93314 6 93343 6 93372 6 93401 6 93430 7	16554 0 16547 3 16540 5 16533 8	95056 9 95086 0 95115 0	16152 3 16145 7 16139 0 16132 4 16125 8		15757 6 15751 0 15744 5	98545 6	15369 6 15363 2 15356 8 15350 4 15344 0	50 49 48 47 46
14 15 16 17 18	91719 2 91748 2 91777 2 91806 1 91835 1	16928 5 16921 6 16914 8 16907 9	93459 7 93488 7 93517 7 93546 8 93575 8	16520 3 16513 5 16506 8 16500 1 16493 3	95202 2 95231 2 95260 3 95289 3 95318 4	16119 2 16112 5 16105 9 16099 3	96946 1 96975 2	15725 0 15718 5 15712 0 15705 4 15698 9	98691 0 98720 1 98749 2 98778 3	15337 6 15331 2 15324 8 15318 4 15312 0	45 44 43 42 41
20 21 22 23 24	91864 1 91893 1 91922 1 91951 1 91980 1	16894 2 16887 3 16880 5 16873 6	93604 8 93633 9 93662 9 93691 9	16486 6	95347 5 95376 5 95405 6 95434 6 95463 7	16086 0 16079 4 16072 8 16066 2		15692 4 15685 9 15679 4	98836 5 98865 6 98894 6 98923 7 98952 8	15305 6 15299 2 15292 9 15286 5 15280 1	40 39 38 37 36
25 26 27 28 29	92009 I 92038 I 92067 I 92096 I 92125 I	16860 o 16853 I	937500	16452 9 16446 2 16439 5 16432 8 16426 1	95492 8 95521 8 95550 9 95579 9 95609 0	16053 0 16046 4 16039 8 16033 2 16026 6	97236 9 97266 0	15659 9	98981 9 99011 0 99040 1 99069 2	152737	35 34 33 32 31
30 31 32 33 34	92154 I 92183 I 92212 I 9224I I 92270 I	16825 8	93895 I 93924 2 93953 2 93982 2 94011 3	16419 3 16412 6 16405 9 16399 2 16392 5	95638 I 95667 I	16020 0 16013 4 16006 8 16000 2 15993 6	97382 3 97411 4 97440 5 97469 5 97498 6	15627 5 15621 0 15614 5 15608 1 15601 6	991 27 3 99156 4	15241 8 15235 4 15229 1 15222 7 15216 4	30 29 28 27 26
35 36 37 38 39	92299 I 92328 I 92357 I 92386 I 92415 I	16791 6 16784 8 16778 0 16771 2 16764 3	94040 3 94069 4 94098 4 94127 4 94156 5	16385 8 16379 1 16372 4 16365 7	95783 4 95812 4 95841 5	15987 0 15980 4 15973 8 15967 2 15960 7	97527 7 97556 8 97585 9	15595 I 15588 6 15582 2 15575 7 15569 2	992 72 8 99301 9	15210 0 15203 6 15197 3 15190 9 15184 5	25 24 23 22 21
40 41 42 43 44	92444 I 92473 I 92502 I 9253I I 92560 I	16757 5 16750 7	94185 5 94214 6 94243 6 94272 6 94301 7	16352 3 16345 6 16338 9	95928 7	15954 I 15947 5 15940 9 15934 3 15927 8	97673 I 97702 2	15562 8 15556 3 15549 8 15543 4 15536 9	99418 2 99447 3 99476 4 99505 5	15178 2 15171 8 15165 5 15159 1 15152 8	20 19 18 17 16
45 46 47 48 49	92589 1 92618 2 92647 2	16723 5 16716 7 16709 9 16703 1	943598	16318 8 16312 2 16305 5 16298 8	96132 1 96161 2	15921 2 15914 6 15908 1	97818 5 97847 6 97876 7 97905 8	15530 4 15524 0 15517 5	99563 7 99592 8 99621 8 99650 9	15146 5 15140 1 15133 8	15 14 13 12
50 51 52 53 54	92734 2 92763 2 92792 2 92821 2 92850 3	16689 5 16682 7 16675 9 16669 1	94475 9	16285 4 16278 8 16272 1 16265 4	96219 3 96248 4 96277 5 96306 6	15888 4 15881 8 15875 3 15868 7	97963 9 97993 0 98022 1 98051 2 98080 3	15498 2 15491 7 15485 3 15478 9	99709 I 99738 2 99767 3 99796 4	15114 8 15108 4 15102 1 15095 8 15089 4	10 9 8 7 6
55 56 57 58 59 60	92879 3 92908 3 92937 3 92966 3 92995 3 93024 3	16648 8 16642 0 16635 2 16628 4	94621 2 94650 2 94679 3 94708 3 94737 4 94766 4	16252 I 16245 4 16238 8 16232 I 16225 4 16218 8	96364 7 96393 8 96422 8 96451 9 96481 0	15855 6 15849 1 15842 5	98109 3 98138 4 98167 5 98196 6 98225 7		99854 6 99883 6 99912 7 99941 8	15083 1 15076 8 15070 5 15064 1 15057 8 15051 5	543210
	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	Alt.	Hour Angle	
	4°	274°	3°	273°	2 °	272°	I°	271°	o°	270°	′

,					Hour	Angle	• .				
	90°,	91°	92°	93°	94°	95°	96°	97°	98°	99°	
0 1 2 3 4	15051 5 15045 2 15038 9 15032 6 15026 2	14663 4 14657 2 14651 0	14288 3 14282 2	13931 8 13925 8 13919 8	13581 4 13575 5 13569 6 13563 7	13231 1 13225 3 13219 6 13213 8	12887 0 12881 3 12875 6 12869 9	12548 8 1254 3 2 12537 6 12532 0	12211 0 12205 5 12200 1		60 59 58 57 56
5 6 7 8 9	15019 9 15013 6 15007 3 15001 0 14994 7		14257 8	13895 9 13889 9	13546 1 13540 2 13534 3	13202 2 13196 4 13190 7 13184 9	12852 9 12847 2 12841 5	12509 7 12504 2	12189 1 12183 6 12178 1 12172 7	11868 5 11863 1 11857 7 11852 3 11847 0	55 54 53 52 51
10 11 12 13 14	14988 4 14982 1 14975 8 14969 5 14963 2	14595 3 14589 1		13872 0 13866 0	135108	13173 3 13167 6 13161 8 13156 0	12824 5 12818 9 12813 2	12498 6 12493 0 12487 4 12481 9 12476 3	12156 2	11841 6 11836 2 11830 8 11825 4 11820 1	50 49 48 47 46 45
15 16 17 18 19 20	14950 7 14944 4 14938 1 14931 8	14576 7 14570 5 14564 4 14558 2	14209 2 14203 2 14197 1 14191 0	13848 I 13842 I 13836 2 13830 2 13824 2	13493 2 13487 4 13481 5 13475 6 13469 8	13144 5 13138 8 13133 0 13127 2 13121 5	12801 9 12 79 6 2 12 7 90 5 12 7 84 9	12465 2 12459 6 12454 1 12448 5	12134 4 12128 9 12123 4 12118 0	11809 3 11804 0 11798 6 11793 2 11787 9	44 43 42 41 40
21 22 23 24 25	14913 0 14906 7 14900 4	14545 8 14539 7 14533 5 14527 3 14521 2	14178 9 14172 8 14166 8 14160 7 14154 6	13812 3 13806 4 13800 4 13794 5	13458 1 13452 2 13446 4 13440 5		12767 9 12762 3 12756 6 12751 0	12426 3 12420 7 12415 2	12101 6 12096 1 12090 7 12085 2	117718	39 38 37 36 35
26 27 28 29 30			14148 6 14142 5 14136 5 14130 4	13782 6		13064 0	12739 7 12734 1 12728 4 12722 8	12409 6 12404 1 12398 6 12393 0 12387 5	12074 3	11755 7 11750 4 11745 0 11739 7	34 33 32 31 30
31 32 33 34	14856 6 14850 3 14844 1 14837 8 14831 5	14484 2 14478 1 14471 9 14465 8	14118 3 14112 3 14106 3 14100 2	13758 8 13752 9 13746 9	13405 5 13399 6 13393 8	13058 3 13052 6 13046 8 13041 1	12717 I 12711 5 12705 9 12700 2	12381 9 12376 4	12041 7	11729 0 11723 6 11718 3	29 28 27 26 25
35 36 37 38 39	14825 3 14819 0 14812 8 14806 6	14453 5 14447 4 14441 2 14435 1	14088 1 14082 1 14076 1 14070 0	13729 1 13723 2 13717 3 13711 3	13376 3 13370 5 13364 7 13358 8	13029 6 13023 9 13018 2 13012 5	12689 0 12683 4 12677 7 12672 1	12354 3 12348 7 12343 2 12337 7	12025 4	11702 3	24 23 22 21 20
40 41 42 43 44	14794 1 14787 8 14781 6 14775 3	14422 8 14416 7 14410 6 14404 4	14058 0 14052 0 14045 9 14039 9	13699 5 13693 6	13347 2 13341 4 13335 6 13329 7	13001 0 12995 3 12989 6 12983 9	12660 9 12655 2 12649 6 12644 0	12326 6 12321 1 12315 6 12310 1	11998 2 11992 8 11987 4 11982 0	11675 6 11670 3 11664 9 11659 6	19 18 17 16
45 46 47 48 49	14762 9 14756 6 14750 4 14744 2	14379 9 14373 8	14027 9 14021 9 14015 8 14009 8	13669 9 13664 0 13658 1 13652 2	13318 1 13312 3 13306 5 13300 7	12972 4 12966 7 12961 0	12632 8 12627 2 12621 6 12616 0	12299 0 12293 5 12288 0 12282 5	11971 1 11965 7 11960 3	11649 0 11643 6 11638 3 11633 0	14 13 12
50 51 52 53 54	14731 7 14725 5 14719 3 14713 1	14355 4	13997 8 13991 8 13985 8 13979 8	13640 3 13634 4 13628 5 13622 6	13289 1 13283 3 13277 5 13271 7	12943 9	12604 7 12599 1 12593 5 12587 9	12271 5 12266 0 12260 5 12255 0	11944 1 11938 7 11933 3 11927 8	11622 4 11617 1 11611 7 11606 4	9 8 7 6
55 56 57 58 59 60	14700 6 14694 4	14331 0 14324 9 14318 8	13967 8 13961 8 13955 8 13949 8	136108	13260 1 13254 3 13248 5	12915 4 12909 7 12904 0 12898 3	12576 8 12571 2 12565 6 12560 0	12244 0 12238 5 12233 0 12227 5	11917 0 11911 6 11906 2 11900 8	11595 8 11590 5 11585 2 11579 9	5 4 3 2 1 0
	269°	268°	267°	266°	265°	264°	263°	262°	261°	260°	,
					Hour	Angle	•		-		

,	Hour Angle 100° 101° 102° 103° 104° 105° 106° 107° 108° 109°											
	100°	IOI°	102°	103°	104°	105°	106°	107°	108°	109°		
0 1 2 3 4	11574 6 11569 3 11564 0 11558 7 11553 4	11259 4 11254 2 11249 0 11243 8 11238 6	10949 7 10944 6 10939 5 10934 4 10929 3	10635 5	10346 8 10341 9 10336 9 10332 0 10327 1	10053 3 10048 5 10043 6 10038 8 10034 0	9765 I 9760 4 9755 6 9750 9 9746 I	9482 I 9477 5 9472 8 9468 I 9463 4	9204 2 9199 7 9195 1 9190 5 9185 9	8931 4 8926 9 8922 4 8917 9 8913 4	60 59 58 57 56	
5 6 7 8 9	11548 1 11542 8 11537 5 11532 3 11527 0	11233 4 11228 2 11223 0 11217 8 11212 6	10919 1 10914 0 10908 9 10903 8	10615 4 10610 4 10605 4 10600 4	10322 I 10317 2 10312 3 10307 4 10302 4	100098	9741 4 9736 6 9731 9 9727 1 9722 4	9458 8 9454 1 9449 4 9444 8 9440 1	9181 3 9176 7 9172 1 9167 6 9163 0	8908 9 8904 4 8899 9 8895 4 8890 9	55 54 53 52 51	
10 11 12 13 14	115217 115164 115111 115058 115006		10888 5 10883 4 10878 3	10595 4 10590 4 10585 4 10580 4 10575 4	10297 5 10292 6 10287 7 10282 8 10277 8	10004 9 10000 1 9995 3 9990 4 9985 6 9980 8	9717 6 9712 9 9708 1 9703 4 9698 6	9435 5 9430 8 9426 1 9421 5 9416 8	9158 4 9153 8 9149 3 9144 7 9140 1 9135 6	8886 4 8881 9 8877 4 8872 9 8868 5 8864 0	50 49 48 47 46	
15 16 17 18 19	11495 3 11490 0 11484 7 11479 5 11474 2 11468 9	11181 5 11176 3 11171 1 11165 9 11160 7	108528	10570 4 10565 4 10560 4 10555 4 10550 4 10545 4	10272 9 10268 0 10263 1 10258 2 10253 3 10248 4	9976 0 9971 1 9966 3 9961 5	9693 9 9689 2 9684 4 9679 7 9675 0	9412 2 9407 5 9402 9 9398 2 9393 6 9388 9	9131 0 9126 4 9121 9 9117 3	8859 5 8855 0 8850 5 8846 0	45 44 43 42 41 40	
20 21 22 23 24 25	11463 6 11458 4 11453 1 11447 8	11155 4 11150 4 11145 2 11140 0 11134 9	10842 7 10837 6 10832 5 10827 4	10545 4 10540 4 10535 4 10530 4 10525 4	10243 5 10238 6 10233 7 10228 8	9930 7 9951 9 9947 1 9942 2 9937 4	9665 5 9660 8 9656 0 9651 3	9384 3 9379 6 9375 0 9370 4	9108 2 9103 6 9099 1 9094 5	8837 I 8832 6 8828 I 8823 7	39 38 37 36 35	
25 26 27 28 29 30	11437 3 11432 1 11426 8 11421 6	11124 5 11119 4 11114 2 11109 0	10817 3 10812 2 10807 1 10802 0	10515 4 10510 4 10505 5 10500 5	10219 0 10214 1 10209 2 10204 3	9927 8 9923 0 9918 2 9913 4 9908 6	9641 9 9637 1 9632 4 9627 7	9361 1 9356 4 9351 8 9347 2 9342 5	9085 4 9080 8 9076 3 9071 7	8814 7 8810 3 8805 8 8801 3	34 33 32 31 30	
31 32 33 34 35	11411 0 11405 8 11400 5 11395 3	11038 7 11093 6 11088 4 11083 2	10791 9 10786 8 10781 8 10776 7	10490 5 10485 5 10480 6 10475 6	10194 5 10189 6 10184 7 10179 8	9903 8 9899 0 9894 2 9889 4 9884 6	9618 3 9613 6 9608 8 9604 1	9337 9 9333 3 9328 7 9324 0	9062 6 9058 1 9053 6 9049 0	8792 4 8787 9 8783 5 8779 0	29 28 27 26 25	
35 36 37 38 39 40	11384 8 11379 6 11374 3 11369 1	11072 9 11067 8 11062 6 11057 5	10766 6 10761 5 10756 5 10751 4	10465 7 10460 7 10455 7 10450 7	10170 1 10165 2 10160 3 10155 4	9879 8 9875 0 9870 2 9865 4	9594 7 9590 0 9585 3 9580 6	9314 8 9310 2 9305 5 9300 9 9296 3	9039 9 9035 4 9030 9 9026 3	8770 I 8765 6 8761 2 8756 7 8752 3	24 23 22 21 20	
41 42 43 44	11358 6 11353 4 11348 1 11342 9	11047 2 11042 1 11036 9 11031 8	10741 3 10736 2 10731 2	10440 8 10435 9 10430 9 10425 9	10145 7 10140 8 10135 9 10131 1	9855 8 9851 0	9571 2 9566 5 9561 8 9557 1	9291 7 9287 1 9282 5 9277 8	9017 3 9012 7 9008 2 9003 7 8999 1	8747 8 8743 4 8738 9 8734 5 8730 0	19 18 17 16	
45 46 47 48 49 50	11332 4 11327 2 11322 0	11021 5 11016 4 11011 2 11006 1	10716 1 10711 0 10706 0 10700 9	10416 0 10411 1 10406 1 10401 2	10121 3 10116 5 10111 6 10106 7	9831 9 9827 1 9822 4 9817 6	9547 7 9543 0 9538 3 9533 6	9268 6 9264 0 9259 4 9254 8	8994 6 8990 1 8985 6 8981 0	8725 6 8721 2 8716 7 8712 3 8707 8	14 13 12 11	
51 52 53 54	11306 3 11301 1 11295 9 11290 7	10995 8 10990 7 10985 6 10980 5	10690 8 10685 8 10680 8	10391 3 10386 3 10381 4 10376 4	10097 0	9808 0 9803 3 9798 5 9793 7		9245 6 9241 0 9236 4 9231 8	8972 0 8967 5 8963 0 8958 5 8953 9	8703 4 8699 0 8694 5 8690 1	9 8 7 6	
55 56 57 58 59 60	11280 2 11275 0 11269 8 11264 6	10970 2 10965 1 10960 0	10665 7 10660 6 10655 6 10650 6	10366 5 10361 6 10356 7	10072 7	9784 2 9779 4 9774 7 9769 9	9500 8 9500 8 9496 2 9491 5 9486 8 9482 1	9227 2 9222 6 9218 0 9213 4 9208 8 9204 2	8949 4 8944 9 8940 4 8935 9 8931 4	8681 3 8676 8 8672 4 8668 0 8663 5	5 4 3 2 1 0	
	259°	258°	257°	256°	255°	254°	253°	252°	251°	250°	,	
					Hour	Angle	•					

,					Hour	Angle					
	110°	III°	112°	113°	114°	115°	116°	11 7 °	118°	119°	
0	8663 5	8400 6	8142 6	7889 3	7640 9	7397 I	7158 0	6923 4	6693 4	6468 0	60
1	8659 1	8396 3	8138 3	7885 2	7636 8	7393 I	7154 0	6919 6	6689 6	6464 2	59
2	8654 7	8392 0	8134 1	7881 0	7632 7	7389 0	7150 1	6915 7	6685 9	6460 5	58
3	8650 3	8387 6	8129 8	7876 8	7628 6	7385 0	7146 1	6911 8	6682 1	6456 8	57
4	8645 9	8383 3	8125 5	7872 6	7624 5	7381 0	7142 2	6907 9	6678 3	6453 I	56
56 78 9	8641 5 8637 0 8632 6 8628 2 8623 8	8378 9 8374 6 8370 3 8365 9 8361 6	8121 3 8117 0 8112 8 8108 5 8104 3	7868 5 7864 3 7860 1 7855 9 7851 8	7620 4 7616 3 7612 2 7608 1 7604 0	7377 ° 7373 ° 7368 9 7364 9 7360 9	7138 2 7134 3 7130 4 7126 4 7122 5	6904 I 6900 2 6896 4 6892 5 6888 6	6674 5 6670 7 6666 9 6663 1 6659 3	6449 4 6445 7 6441 9 6438 2 6434 5	55 54 53 52 51
10	8619 4	8357 3	8100 0	7847 6	7599 9	7356 9	7118 5	6884 8	6655 5	6430 8	50
11	8615 0	8353 0	8095 8	7843 4	7595 8	7352 9	7114 6	6880 9	6651 8	6427 1	49
12	8610 6	8348 6	8091 5	7839 3	7591 7	7348 9	7110 7	6877 1	6648 0	6423 4	48
13	8606 2	8344 3	8087 3	7835 1	7587 6	7344 9	7106 8	6873 2	6644 2	6419 7	47
14	8601 8	8340 0	8083 1	7830 9	7583 6	7340 9	7102 8	6869 4	6640 4	6416 0	46
15	8597 4	8335 7	8078 8	7826 8	7579 5 7575 4 757 ¹ 3 7567 2 7563 2	7336 9	7098 9	6865 5	6636 7	6412 3	45
16	8593 0	8331 3	8074 6	7822 6		7332 9	7095 0	6861 7	6632 9	6408 6	44
17	8588 6	8327 0	8070 3	7818 5		7328 9	7091 0	6857 8	6629 1	6404 9	43
18	8584 2	8322 7	8066 1	7814 3		7324 9	7087 1	6854 0	6625 3	6401 2	42
19	8579 8	8318 4	8061 9	7810 1		7320 9	7083 2	6850 1	6621 6	6397 5	41
20	8575 4	8314 I	8057 6	7806 0	7559 I	7316 9	7°79 3	6846 3	6617 8	6393 8	40
21	8571 0	8309 8	8053 4	7801 8	7555 °	7312 9	7°75 4	6842 4	6614 0	6390 1	39
22	8566 6	8305 4	8049 2	7797 7	755° 9	7308 9	7°71 4	6838 6	6610 2	6386 4	38
23	8562 2	8301 I	8044 9	7793 5	7546 9	7304 9	7°67 5	6834 7	6606 5	6382 7	37
24	8557 8	8296 8	8040 7	7789 4	7542 8	7300 9	7°63 6	6830 9	6602 7	6379 0	36
25	8553 4	8292 5	8036 5	7785 2	7538 7	7296 9	7°59 7	6827 0	6598 9	6375 3	35
26	8549 0	8288 2	8032 3	7781 1	7534 6	7292 9	7°55 8	6823 2	6595 2	6371 6	34
27	8544 6	8283 9	8028 0	7776 9	7530 6	7288 9	7°51 9	6819 4	6591 4	6368 0	33
28	8540 2	8279 6	8023 8	7772 8	7526 5	7284 9	7°47 9	6815 5	6587 7	6364 3	32
29	8535 9	8275 3	8019 6	7768 7	7522 4	7280 9	7°44 °	6811 7	6583 9	6360 6	31
30	8531 5	8271 0	80154	77 ⁶ 4 5	7518 4	7276 9	7040 I	6807 9	6580 I	6356 9	30
31	8527 1	8266 7	80111	77 ⁶ 0 4	7514 3	7273 0	7036 2	6804 0	6576 4	6353 2	29
32	8522 7	8262 4	80069	775 ⁶ 2	7510 3	7269 0	7032 3	6800 2	6572 6	6349 5	28
33	8518 3	8258 1	80027	775 ² 1	7506 2	7265 0	7028 4	6796 4	6568 9	6345 8	27
34	8514 0	8253 8	79985	774 ⁸ 0	7502 1	7261 0	7024 5	6792 5	6565 I	6342 2	26
35	8509 6	8249 5	7994 3	7743 8	7498 I	7257 ° 7253 ° 7249 1 7245 1 7241 1	7020 6	6788 7	6561 4	6338 5	25
36	8505 2	8245 2	7990 1	7739 7	7494 °		7016 7	6784 9	6557 6	6334 8	24
37	8500 8	8240 9	7985 9	7735 6	749° °		7012 8	6781 1	6553 9	6331 1	23
38	8496 5	8236 6	7981 6	7731 4	7485 9		7008 9	6777 2	6550 1	6327 5	22
39	8492 1	8232 4	7977 4	7727 3	7481 9		7005 0	6773 4	6546 4	6323 8	21
40	8487 7	8228 1	7973 2	7723 2	7477 8	7237 I	7001 1	6769 6	6542 6	6320 I	20
41	8483 4	8223 8	7969 0	7719 0	7473 8	7233 2	6997 2	6765 8	6538 9	6316 4	19
42	8479 0	8219 5	7964 8	7714 9	74 ⁶ 9 7	7229 2	6993 3	6762 0	6535 1	6312 8	18
43	8474 6	8215 2	7960 6	7710 8	74 ⁶ 5 7	7225 2	6989 4	6758 1	6531 4	6309 I	17
44	8470 3	8210 9	7956 4	7706 7	74 ⁶ 1 6	722I 3	6985 5	6754 3	6527 7	6305 4	16
45	8465 9	8206 6	7952 2	7702 5	7457 6	7217 3	6981 6	6750 5	6523 9	6301 8	15
46	8461 5	8202 4	7948 0	7698 4	7453 5	7213 3	6977 7	6746 7	6520 2	6298 1	14
47	8457 2	8198 1	7943 8	7694 3	7449 5	7209 4	6973 9	6742 9	6516 4	6294 4	13
48	8452 8	8193 8	7939 6	7690 2	7445 5	7205 4	6970 0	6739 1	6512 7	6290 8	12
49	8448 5	8189 5	7935 4	7686 1	7441 4	7201 5	6966 1	6735 3	6509 0	6287 1	11
50	8444 I	8185 3	7931 2	7681 9	7437 4	7197 5	6962 2	6731 5	6505 2	6283 5	10
51	8439 8	8181 0	7927 0	7677 8	7433 3	7193 5	6958 3	6727 6	6501 5	6279 8	9
52	8435 4	8176 7	7922 8	7673 7	7429 3	7189 6	6954 4	6723 8	6497 8	6276 2	8
53	8431 I	8172 4	7918 6	7669 6	7425 3	7185 6	6950 6	6720 0	6494 0	6272 5	7
54	8426 7	8168 2	7914 4	7665 5	7421 2	7181 7	6946 7	6716 2	6490 3	6268 8	6
55 56 57 58 59 60	8422 4 8418 0 8413 7 8409 3 8405 0 8400 6	8163 9 8159 6 8155 4 8151 1 8146 8 8142 6	7910 3 7906 1 7901 9 7897 7 7893 5 7889 3	7661 4 7657 3 7653 2 7649 1 7645 0 7640 9	7417 2 7413 2 7409 2 7405 1 7401 1 7397 1	7177 7 7173 7 7169 8 7165 8 7161 9 7158 0	6942 8 6938 9 6935 0 6931 2 6927 3 6923 4	6712 4 6708 6 6704 8 6701 0 6697 2 6693 4	6486 6 6482 9 6479 1 6475 4 6471 7 6468 0	6265 2 6261 5 6257 9 6254 2 6250 6 6246 9	5 4 3 2 1
	249°	7397 7397 7397 7397 7397 7397 7397 7397									
		· · · · · ·				Angle					1

					Hour	Angle					
′	120°	121°	122°	123°	124°	125°	126°	127°	128°	129°	
0 1 2 3 4	6246 9 6243 3 6239 6 6236 0 6232 4	6030 3 6026 7 6023 2 6019 6 6016 0	5818 I 5814 6 5811 I 5807 6 5804 I	5610 I 5606 7 5603 3 5599 9 5596 4	5406 5 5403 I 5399 8 5396 4 5393 I	5207 I 5203 8 5200 5 5197 2 5194 0	5011 9 5008 7 5005 5 5002 3 4999 0	4820 9 4817 7 4814 6 4811 4 4808 3	4634 0 4630 9 4627 8 4624 7 4621 7	4451 2 4448 2 4445 2 4442 1 4439 1	60 59 58 57 56
56 78 9	6228 7 6225 1 6221 4 6217 8 6214 2 6210 5	6012 5 6008 9 6005 3 6001 8 5998 2 5994 6	5800 6 5797 1 5793 6 5790 1 5786 6 5783 1	5593 0 5589 6 5586 2 5582 8 5579 3	5389 7 5386 4 5383 0 5379 7 5376 3	5190 7 5187 4 5184 1 5180 8 5177 6	4995 8 4992 6 4989 4 4986 2 4983 0 4979 8	4805 I 4802 0 4798 9 4795 7 4792 6 4789 4	4618 6 4615 5 4612 4 4609 4 4606 3	4436 I 4433 I 4430 I 4427 I 4424 I	55 54 53 52 51 50
11 12 13 14	6206 9 6203 3 6199 6 6196 0	5994 0 5991 1 5987 5 5984 0 5980 4	5779 6 5776 1 5772 7 5769 2	55/5 9 55/72 5 55/69 1 55/65 7 55/62 3 55/58 8	5369 6 5366 3 5362 9 5359 6 5356 3	51/4 3 5171 0 5167 7 5164 5 5161 2	4976 6 4973 4 4970 2 4967 0 4963 8	4786 3 4783 2 4780 0 4776 9 4773 8	4597 I 4594 0 4591 0 4587 9	4418 I 4415 I 4412 I 4409 I	49 48 47 46 45
15 16 17 18 19 20	6188 7 6185 1 6181 5 6177 9 6174 2	5973 3 5969 7 5966 2 5962 6	5762 2 5758 7 5755 2 5751 8 5748 3	5555 4 5552 0 5548 6 5545 2 5541 8	535 ² 9 5349 6 5346 2 534 ² 9 5339 6	5154 6 5151 4 5148 1 5144 8 5141 6	4960 6 4957 4 4954 2 4951 0 4947 8	4770 6 4767 5 4764 4 4761 3 4758 1	4584 8 4581 8 4578 7 4575 7 4572 6	4403 I 4400 I 4397 I 4394 I 4391 I	44 43 42 41 40
21 22 23 24 25 26	6170 6 6167 0 6163 4 6159 8	5955 5 5952 0 5948 4 5944 9 5941 4	5744 8 5741 3 5737 9 5734 4 5730 9	5538 4 5535 0 5531 6 5528 2 5524 8	5336 2 5332 9 5329 6 5326 2 5322 9	5138 3 5135 0 5131 8 5128 5 5125 3	4944 6 4941 4 4938 2 4935 0 4931 8	4755 ° 4751 9 4748 8 4745 6 4742 5	4569 5 4566 5 4563 4 4560 4 4557 3	4388 2 4385 2 4382 2 4379 2 4376 2	39 38 37 36 35
27 28 29 30 31	6152 5 6148 9 6145 3 6141 7 6138 1 6134 5	5937 8 5934 3 5930 7 5927 2 5923 7	5727 4 5724 0 5720 5 5717 0 5713 6 5710 I	5521 4 5518 0 5514 6 5511 2 5507 8	5319 6 5316 3 5312 9 5309 6 5306 3	5122 0 5118 8 5115 5 5112 2 5109 0	4928 6 4925 4 4922 2 4919 1 4915 9	4739 4 4736 3 4733 I 4730 0 4726 9 4723 8	4554 3 4551 2 4548 2 4545 1 4542 1 4539 0	4373 ² 4370 ² 4367 3 4364 3 4361 3 4358 3	34 33 32 31 30
32 33 34 35 36	6130 9 6127 3 6123 7 6120 0	5920 I 5916 6 5913 0 5909 5 5906 0	5706 6 5703 2 5699 7 5696 3	5504 4 5501 0 5497 6 5494 2 5490 8	5303 0 5299 6 5296 3 5293 0 5289 7	5105 7 5102 5 5099 2 5096 0	4912 7 4909 5 4906 3 4903 2 4900 0	4720 7 4717 6 4714 5 4711 4	4539 0 4536 0 4532 9 4529 9 4526 8 4523 8	4355 3 4352 4 4349 4 4346 4	29 28 27 26 25
37 38 39 40	6116 4 6112 8 6109 2 6105 6	5902 5 5898 9 5895 4 5891 9 5888 3	5692 8 5689 3 5685 9 5682 4 5679 0	5487 5 5484 1 5480 7 5477 3 5473 9	5286 4 5283 0 5279 7 5276 4 5273 I	5089 5 5086 2 5083 0 5079 8	4896 8 4893 6 4890 4 4887 3 4884 I	4708 2 4705 I 4702 0 4698 9 4695 8	4520 8 4517 7 4514 7 4511 7	4343 4 434° 5 4337 5 4334 5 4331 6	24 23 22 21 20
41 42 43 44 45 46	6098 4 6094 8 6091 3 6087 7	5884 8 5881 3 5877 8 5874 2 5870 7	5675 5 5672 1 5668 6 5665 2 5661 7	547° 5 5467 2 5463 8 546° 4	5269 8 5266 5 5263 2 5259 9 5256 6	5°73 3 5°70 ° 5°66 8 5°63 6	4880 9 4877 8 4874 6 4871 4 4868 3	4692 7 4689 6 4686 5 4683 4 4680 3	4508 6 4505 6 4502 6 4499 5 4496 5	4328 6 4325 6 4322 7 4319 7 4316 7	19 18 17 16
47 48 49 50	6080 5 6076 9 6073 3 6069 7	5867 2 5863 7 5860 2 5856 7 5853 I	5658 3 5654 8 5651 4 5647 9 5644 5	5453 6 5450 3 5446 9 5443 5 5440 2	5253 3 5250 0 5246 7 5243 3 5240 0	5057 I 5053 8 5050 6 5047 4 5044 2	4865 I 4861 9 4858 8 4855 6 4852 4	4677 2 4674 1 4671 0 4667 9 4664 8	4493 5 4490 4 4487 4 4484 4 4481 4	4313 8 4310 8 4307 9 4304 9 4301 9	14 13 12 11
51 52 53 54 55 56	6062 5 6059 0 6055 4 6051 8	5849 6 5846 1 5842 6 5839 1 5835 6	5641 1 5637 6 5634 2 5630 7 5627 3	5436 8 5433 4 5430 0 5426 7 5423 3	5236 7 5233 5 5230 2 5226 9 5223 6	5040 9 5037 7 5034 5 5031 2 5028 0	4849 3 4846 1 4843 0 4839 8 4836 6	4661 8 4658 7 4655 6 4652 5 4649 4	4478 3 4475 3 4472 3 4469 3 4466 3	4299 0 4296 0 4293 I 4290 I 4287 2	98 76 5
56 57 58 59 60	6044 6 6041 0 6037 5 6033 9 6030 3	5832 I 5828 6 5825 I 582I 6 5818 I	5623 9 5620 4 5617 0 5613 6 5610 1	5420 0 5416 6 5413 2 5409 9 5406 5	5220 3 5217 0 5213 7 5210 4 5207 1	5024 8 5021 6 5018 4 5015 1 5011 9	4833 5 4830 3 4827 2 4824 0 4820 9	4646 3 4643 2 4640 1 4637 1 4634 0	4463 2 4460 2 4457 2 4454 2 4451 2	4284 2 4281 3 4278 3 4275 4 4272 4	5 4 3 2 1 0
	239°	238°	237°	236°	235°	234°	233°	232°	231°	230°	
					Hour	Angle					'

,					Hour	Angle					
	130°	131°	132°	133°	134°	135°	136°	137°	138°	139°	
0 1 2 3 4	4272 4 4269 5 4266 5 4263 6 4260 7	4°97 7 4°94 8 4°92 ° 4°89 1 4°86 2	3927 ° 3924 2 3921 4 3918 6 3915 7	37 ⁶ 0 2 37 ⁵ 7 5 37 ⁵ 4 7 37 ⁵ 2 0 37 ⁴ 9 2	3597 4 3594 7 3592 0 3589 4 3586 7	3438 5 3435 8 3433 2 3430 6 3428 0	3283 4 3280 9 3278 3 3275 8 3273 2	3132 2 3129 7 3127 2 3124 8 3122 3	2984 8 2982 4 2980 0 2977 6 2975 I	2841 2 2838 9 2836 5 2834 2 2831 8	60 59 57 57 56
56 78 9	4257 7 4254 8 4251 8 4248 9 4246 0	4083 3 4080 5 4077 6 4074 7 4071 8	3912 9 3910 1 3907 3 3904 5 3901 7	3746 5 3743 8 3741 0 3738 3 3735 5	3584 ° 3581 3 3578 6 3576 ° 3573 3	3425 4 3422 8 3420 2 3417 6 3415 0	3270 7 3268 1 3265 6 3263 0 3260 5	3119 8 3117 3 3114 8 3112 3 3109 9	2972 7 2970 3 2967 9 2965 5 2963 0	2829 4 2827 1 2824 7 2822 4 2820 0	55 54 53 52 51
10 11 12 13 14	4243 0 4240 I 4237 2 4234 2 4231 3	4069 0 4066 1 4063 2 4060 4 4057 5	3898 9 3896 1 3893 3 3890 5 3887 7	3732 8 3730 I 3727 3 3724 6 3721 9	3570 6 3568 0 3565 3 3562 6 3560 0	3412 4 3409 8 3407 I 3404 5 3401 9	3257 9 3255 4 3252 9 3250 3 3247 8	3107 4 3104 9 3102 4 3100 0 3097 5	2960 6 2958 2 2955 8 2953 4 2951 0	2817 7 2815 3 2813 0 2810 6 2808 3	50 49 48 47 46
15 16 17 18 19	4228 4 4225 4 4222 5 4219 6 4216 7	4054 7 4051 8 4048 9 4046 1 4043 2	3884 9 3882 1 3879 3 3876 5 3873 7 3871 0	3719 1 3716 4 3713 7 3711 0 3708 2	3557 3 3554 6 3552 0 3549 3 3546 6	3399 3 3396 7 3394 1 3391 5 3389 0	3245 3 3242 7 3240 2 3237 6 3235 I	3095 0 3092 5 3090 1 3087 6 3085 1	2948 6 2946 2 2943 8 2941 4 2938 9	2805 9 2803 6 2801 2 2798 9 2796 6	45 44 43 42 41
21 22 23 24	4213 7 4210 8 4207 9 4205 0 4202 I	4040 4 4037 5 4034 6 4031 8 4028 9	3868 2 3865 4 3862 6 3859 8	37°5 5 37°2 8 37°0 1 36°97 3 36°94 6	3544 ° 3541 3 3538 7 3536 ° 3533 4	3383 8 3381 2 3378 6 3376 0	3232 6 3230 I 3227 5 3225 0 3222 5	3080 2 3077 7 3075 3 3072 8	2936 5 2934 1 2931 7 2929 3 2926 9	2794 2 2791 9 2789 5 2787 2 2784 9	40 39 38 37 36
25 26 27 28 29	4199 1 4196 2 4193 3 4190 4 4187 5	4026 I 4023 2 4020 4 4017 5 4014 7	3857 0 3854 2 3851 5 3848 7 3845 9	3691 9 3689 2 3686 5 3683 7 3681 0	3530 7 3528 0 3525 4 3522 7 3520 1	3373 4 3370 8 3368 2 3365 6 3363 0	3219 9 3217 4 3214 9 3212 4 3209 9	3070 3 3067 9 3065 4 3063 0 3060 5	2924 5 2922 1 2919 7 2917 3 2915 0	2782 5 2780 2 2777 9 2775 5 2773 2	35 34 33 32 31
30 31 32 33 34	4184 6 4181 7 4178 7 4175 8 4172 9	4011 8 4009 0 4006 2 4003 3 4000 5	3843 I 3840 3 3837 6 3834 8 3832 0	3678 3 3675 6 3672 9 3670 2 3667 5	3517 4 3514 8 3512 1 3509 5 3506 9	3360 5 3357 9 3355 3 3352 7 3350 1	3204 8 3204 8 3202 3 3199 8 3197 3	3058 0 3055 6 3053 I 3050 7 3048 2	2912 6 2910 2 2907 8 2905 4 2903 0	2770 9 2768 5 2766 2 2763 9 2761 5	30 29 28 27 26
35 36 37 38 39	41700 4167 1 4164 2 4161 3 4158 4	3997 6 3994 8 3992 0 3989 1 3986 3	3829 2 3826 5 3823 7 3820 9 3818 I	3664 8 3662 1 3659 3 3656 6 3653 9	3504 2 3501 6 3498 9 3496 3 3493 6	3347 5 3345 0 3342 4 3339 8 3337 2	31947 31922 31897 31872 31847	3045 8 3043 3 3040 9 3038 4 3036 0	2900 6 2898 2 2895 8 2893 4 2891 1	2759 2 2756 9 2754 6 2752 2 2749 9	25 24 23 22 21
40 41 42 43 44	4155 5 4152 6 4149 7 4146 8 4143 9	3983 5 3980 6 3977 8 3975 0 3972 1	3815 4 3812 6 3809 8 3807 1 3804 3	3651 2 3648 5 3645 8 3643 1 3640 4	3491 0 3488 4 3485 7 3483 1 3480 5	3334 7 3332 I 3329 5 3327 0 3324 4	3182 2 3179 7 3177 2 3174 7 3172 2	3033 5 3031 1 3028 6 3026 2 3023 8	2888 7 2886 3 2883 9 2881 5 2879 2	2747 6 2745 3 2743 0 2740 7 2738 3	19 18 17 16
45 46 47 48 49	4141 0 4138 1 4135 2 4132 3 4129 4	3969 3 3966 5 3963 6 3960 8 3958 0	3801 5 3798 8 3796 0 3793 3 3790 5	3637 7 3635 0 3632 3 3629 6 3627 0	3472 6 3469 9 3467 3	3321 8 3319 2 3316 7 3314 1 3311 6	3164 6 3162 1 3159 6	3021 3 3018 9 3016 4 3014 0 3011 6	2872 0 2869 7 2867 3	2736 0 2733 7 2731 4 2729 1 2726 8	15 14 13 12 11
50 51 52 53 54	4126 6 4123 7 4120 8 4117 9 4115 0	3955 ² 3952 3 3949 5 3946 7 3943 9	3787 7 3785 0 3782 2 3779 5 3776 7	3624 3 3621 6 3618 9 3616 2 3613 5	3464 7 3462 1 3459 4 3456 8 3454 2 3451 6	3309 0 3306 4 3303 9 3301 3 3298 7 3296 2	3157 I 3154 6 3152 I 3149 7 3147 2	3009 I 3006 7 3004 3 3001 8 2999 4 2997 0	2864 9 2862 5 2860 2 2857 8 2855 4 2853 I	2724 5 2722 2 2719 8 2717 5 2715 2 2712 9	9 8 7 6
55 56 57 58 59 60	4112 1 4109 2 4106 3 4103 5 4100 6 4097 7	3941 1 3938 2 3935 4 3932 6 3929 8 3927 0	3774 ° 3771 2 3768 5 3765 7 3763 ° 3760 2	3608 I 3605 4 3602 8 3600 I 3597 4	3448 9 3446 3 3443 7 3441 1 3438 5	3293 6 3291 1 3288 5 3286 0 3283 4	3144 7 3142 2 3139 7 3137 2 3134 7 3132 2	2994 5 2992 1 2989 7 2987 3 2984 8	2850 7 2848 3 2846 0 2843 6 2841 2	2712 9 2710 6 2708 3 2706 0 2703 7 2701 4	5 4 3 2 1 0
	229°	228°	227°	226°	225°	224°	223°	222°	221°	220°	
					Hour	Angle					'

	Hour Angle										
	140°	141°	142°	143°	144°	145°	146°	147°	148°	149°	
0	2701 4	2565 3	2433 0	2304 3	2179 4	2058 0	1940 4	1826 3	17158	1608 9	6 58 57 50
1	2699 1	2563 1	2430 8	2302 2	2177 3	2056 I	1938 4	1824 4	1714 0	1607 2	
2	2696 8	2560 9	2428 6	2300 I	2175 3	2054 I	1936 5	1822 6	1712 2	1605 4	
3	2694 5	2558 6	2426 5	2298 0	2173 2	2052 I	1934 6	1820 7	1710 4	1603 7	
4	2692 2	2556 4	2424 3	2295 9	2171 2	2050 I	1932 7	1818 8	1708 6	1601 9	
56 78 9	2689 9	2554 2	2422 I	2293 8	2169 I	2048 I	1930 7	1817 0	1706 8	1600 2	55
	2687 6	2551 9	2420 0	2291 7	2167 I	2046 I	1928 8	1815 1	1705 0	1598 5	54
	2685 4	2549 7	2417 8	2289 6	2165 0	2044 I	1926 9	1813 2	1703 2	1596 7	53
	2683 I	2547 5	2415 6	2287 5	2163 0	2042 I	1925 0	1811 4	1701 4	1595 0	52
	2680 8	2545 3	2413 5	2285 4	2160 9	2040 2	1923 0	1809 5	1699 6	1593 2	51
10	2678 5	2543 0	2411 3	2283 3	2158 9	2038 2	1921 1	1807 6	1697 8	1591 5	50
11	2676 2	2540 8	2409 1	2281 2	2156 9	2036 2	1919 2	1805 8	1696 0	1589 7	49
12	2673 9	2538 6	2407 0	2279 1	2154 8	2034 2	1917 3	1803 9	1694 2	1588 0	48
13	2671 6	2536 4	2404 8	2277 0	2152 8	2032 2	1915 3	1802 1	1692 4	1586 3	47
14	2669 3	2534 I	2402 6	2274 9	2150 7	2030 3	1913 4	1800 2	1690 6	1584 5	46
15	2667 I	2531 9	2400 5	2272 8	2148 7	2028 3	1911 5	1798 4	1688 8	1582 8	45
16	2664 8	2529 7	2398 3	2270 7	2146 7	2026 3	1909 6	1796 5	1687 0	1581 0	44
17	2662 5	2527 5	2396 2	2268 6	2144 6	2024 3	1907 7	1794 6	1685 2	1579 3	43
18	2660 2	2525 2	2394 0	2266 5	2142 6	2022 4	1905 8	1792 8	1683 4	1577 6	42
19	2657 9	2523 0	23919	2264 4	2140 6	2020 4	1903 9	1790 9	1681 6	1575 8	41
20	2655 6	2520 8	2389 7	2262 3	2138 5	2018 4	1901 9	1789 1	1679 8	1574 1	40
21	2653 4	2518 6	2387 5	2260 2	2136 5	2016 4	1900 0	1787 2	1678 0	1572 4	39
22	2651 1	2516 4	2385 4	2258 I	2134 5	2014 5	1898 1	1785 4	1676 2	1570 6	38
23	2648 8	2514 2	2383 2	2256 0	2132 4	2012 5	1896 2	1783 5	1674 4	1568 9	37
24	2646 5	2512 0	2381 1	2253 9	2130 4	2010 5	1894 3	1781 7	1672 7	1567 2	36
25	2644 3	2509 8	2378 9	2251 8	2128 4	2008 6	1892 4	1779 8	1670 9	1565 5	35
26	2642 0	2507 5	2376 8	2249 7	2126 3	2006 6	1890 5	1778 0	1669 1	1563 7	34
27	2639 7	2505 3	2374 6	2247 6	2124 3	2004 6	1888 6	1776 1	1667 3	1562 0	33
28	2637 5	2503 1	2372 5	2245 6	2122 3	2002 7	1886 7	1774 3	1665 5	1560 3	32
29	2635 2	2500 9	2370 4	2243 5	2120 3	2000 7	1884 8	1772 5	1663 7	1558 6	31
30 31 32 33 34	2632 9 2630 7 2628 4 2626 1 2623 9	2498 7 2496 5 2494 3 2492 I 2489 9	2368 2 2366 1 2363 9 2361 8 2359 6	2241 4 2239 3 2237 2 2235 2 2233 1	2118 3 2116 2 2114 2 2112 2 2110 2	1998 8 1996 8 1994 8 1992 9	1882 9 1881 0 1879 1 1877 2 1875 3	1770 6 1768 8 1766 9 1765 1 1763 3	1661 9 1660 2 1658 4 1656 6 1654 8	1556 8 1555 1 1553 4 1551 7 1550 0	30 29 28 27 26
35 36 37 38 39	2621 6 2619 3 2617 1 2614 8 2612 6	2487 7 2485 5 2483 3 2481 1 2478 9	2357 5 2355 4 2353 2 2351 1 2349 0	2231 0 2228 9 2226 8 2224 8 2222 7	2108 2 2106 I 2104 I 2102 I 2100 I	1989 0 1987 0 1985 1 1983 1	1873 4 1871 5 1869 6 1867 7 1865 8	1761 4 1759 6 1757 8 1755 9 1754 1	1653 1 1651 3 1649 5 1647 7 1646 0	1548 2 1546 5 1544 8 1543 1 1541 4	25 24 23 22 21
40	2610 3	2476 7	2346 8	2220 6	2098 I	1979 2	1863 9	1752 3	1644 2	1539 7	20
41	2608 0	2474 5	2344 7	2218 5	2096 I	1977 2	1862 0	1750 4	1642 4	1538 0	19
42	2605 8	2472 3	2342 6	2216 5	2094 I	1975 3	1860 1	1748 6	1640 6	1536 2	18
43	2603 5	2470 I	2340 4	2214 4	2092 I	1973 3	1858 3	1746 8	1638 9	1534 5	17
44	2601 3	2467 9	2338 3	2212 3	2090 0	1971 4	1856 4	1744 9	1637 1	1532 8	16
45	2599 0	2465 7	2336 2	2210 3	2088 0	1969 4	1854 5	1743 I	1635 3	1531 1	15
46	2596 8	2463 5	2334 0	2208 2	2086 0	1967 5	1852 6	1741 3	1633 6	1529 4	14
47	2594 5	2461 4	2331 9	2206 I	2084 0	1965 6	1850 7	1739 5	1631 8	1527 7	13
48	2592 3	2459 2	2329 8	2204 I	2082 0	1963 6	1848 8	1737 6	1630 0	1526 0	12
49	2590 0	2457 0	2327 7	2202 0	2080 0	1961 7	1846 9	1735 8	1628 3	1524 3	11
50	2587 8	2454 8	2325 5	2199 9	2078 0	1959 7	1845 I	1734 0	1626 5	1522 6	10
51	2585 5	2452 6	2323 4	2197 9	2076 0	1957 8	1843 2	1732 2	1624 8	1520 9	9
52	2583 3	2450 4	2321 3	2195 8	2074 0	1955 8	1841 3	1730 4	1623 0	1519 2	8
53	2581 0	2448 2	2319 2	2193 8	2072 0	1953 9	1839 4	1728 5	1621 2	1517 5	7
54	2578 8	2446 I	2317 0	2191 7	2070 0	1952 0	1837 5	1726 7	1619 5	1515 8	6
55 56 57 58 59 60	2576 5 2574 3 2572 1 2569 8 2567 6 2565 3	2443 9 2441 7 2439 5 2437 3 2435 2 2433 0	2314 9 2312 8 2310 7 2308 6 2306 5 2304 3	2189 6 2187 6 2185 5 2183 5 2181 4 2179 4	2068 0 2066 0 2064 0 2062 0 2060 0 2058 0	1950 0 1948 1 1946 2 1944 2 1942 3 1940 4	1835 7 1833 8 1831 9 1830 0 1828 2 1826 3	1724 9 1723 1 1721 3 1719 5 1717 6 1715 8	1617 7 1616 0 1614 2 1612 5 1610 7 1608 9	1514 1 1512 4 1510 7 1509 0 1507 3 1505 6	5 4 3 2 1
	219°	218°	217°	216°	215°	214°	213°	212°	211°	210°	
		•				Angle					'

		Hour Angle										
	,		,	1								
١		150°	151°	152°	153°	154°	155°	156°	157°	158°	159°	
I	0	1505 6 1503 9	1405 8	1309 6 1308 0	12168	1127 6	1041 8	959 6 958 2	880 7 879 4	805 3 804 I	733 4 732 2	60 50
ı	3	1502 2 1500 5	1402 6	1306 4	12138	11247	1039 0	956 9 955 5	878 2 876 9	802 9 801 7	731 0	59 58 57 56
ı	4	1498 9	1399 3	1303 3	12108	11218	1036 3	954 2 952 9	875 6 874 3	800 4 799 2	728 7	
ı	5 6 7	1495 5	1396 1	1300 2	1207 8	1118 9	1033 5	951 5	873 0 871 8	798 0	726 5	55 54
ŀ	7 8 9	1492 1	1392 8	1297 0	1204 7	11160	1030 7	948 9	870 5 869 2	795 6	725 2 724 I	53 52
	10	1488 7	13896	12939	12017	11131	1027 9	947 5 946 2	867 9	794 3 793 I	722 9	51 50
	11	1487 1 1485 4	1387 9	1292 3	11987	11116	1026 5	944 9 943 5	866 7 865 4	791 9 79° 7	720 6	49 48
I	13	1483 7	1384 7	1289 2	1197 2	11087	1023 7	942 2 940 9	864 1 862 8	789 5 788 2	718 2	47 46
	15 16	1480 3 1478 7	1381 4	1286 1	1194 2	11058	1021 0	939 5 938 2	861 6 860 3	787 ° 785 8	715 9 714 8	45 44
	17 18	1477 0 1475 3	1378 2	12830	11912	11030	1018 2 1016 8	936 9 935 5	859 o 857 8	784 6 783 4	7136	43
	19 20	1473 6	1375 0	12798	1188 2	1100 1	10154	934 2	856 5	782 2	711 3	41
	2I 22	1472 0 1470 3 1468 6	1373 4	12767	11852	1097 2	10140	932 9 931 6	855 2 854 0	7810	710 2	40 39 38
	23 24	1467 0	1370 1	1275 2	11837	1095 8	1009 9	930 3	852 7 851 4 850 2	778 6	707 9	38 37 36
	25	1465 3	1366 9	1272 1	1180 7	1092 9	1007 1	927 6 926 3	848 9	776 I 774 9	705 6	35
	26 27 28	1461 9	1363 7	12690	11777	10900	1005 8	925 0 923 7	847 6 846 4	773 7 772 5	7°3 3 7°2 I	34 33
	28	1458 6	1360 5	1265 9	11748	1087 2	1003 0	922 3	845 I 843 9	771 3 770 I	701 0 699 8	32 31
	30 31	1455 3 1453 6	1357 3 1355 7	12628	11718	1084 3	1000 3 998 9	9197 9184	842 6 841 4	768 9 767 7	698 7 697 6	30 29
i	32 33	14520	1354 1	1259 7	11688	1081 4	997 5 996 2	917 1	840 I 838 8	766 5 765 3	696 4 695 3	28 27
	34	1448 6	1350 9	12566	11658	1078 6	994 8	914 5	837 6 836 3	764 1	694 1	26
	35 36	1447 0	1349 3 1347 7	1253 5	11644	1077 2	993 4 992 I	913 2	835 1	763 0 761 8	693 0 691 9 690 7	25 24
	37 38	1443 7	1346 1	1252 0	11614	1074 3	99° 7 989 3 988 0	910 5	832 6	760 6 759 4 758 2	689 6	23
	39 40	1440 4	1342 9	1248 9	1158 4	1071 5	986 6	907 9 906 6	830 1	757 0	687 3	2I 20
	4I 42	1437 I 1435 4	1339 7 1338 1	1245 8	1155 5	1068 6	985 2 983 9	905 3 904 0	828 8	755 8 754 6	686 2 685 I	19
	43 44	1433 8 1432 1	1336 5 1334 9	1242 8 1241 2	1152 5 1151 1	1065 8	982 5 981 2	902 7 901 4	826 4 825 I	753 4 752 2	683 9 682 8	17 16
	45 46	1430 5	1333 3	1239 7 1238 2	1149 6 1148 1	1063 0 1061 5	979 8 978 5	900 I 898 8	823 9 822 6	751 1 749 9	681 7 680 5	15 14
	47 48	1427 2	1330 1	1236 6	11466	1060 1	977 I 975 7	897 5 896 2	821 4 820 1	748 7	679 4 678 3	13
	49	1423 9	13270	1233 6	11437	1057 3	974 4	894 9 893 6	8189	746 3	677 2	11
	50 51	1422 2	1325 4	1232 1	1142 2	1055 9	973 ° 971 7	892 3	8177	745 I 744 °	676 0 674 9	9
	52 53	1418 9	1322 2	1229 0	1139 3	1053 1	970 3 969 0	891 0 889 7 888 5	815 2 814 0 812 7	742 8 741 6	673 8 672 7	7 6
	54	14157	1319 1	12260	1136 4	1050 3	967 6 966 3	887 2	8127	74° 4 739 3	670 4	
	56 57	14124	1315 9	1222 9 1221 4	1133 4	1047 5 1046 1	964 9 963 6	885 9 884 6	8103	73 ⁸ 1 73 ⁶ 9	669 3 668 2	5 4 3 2
	55 56 57 58 59 60	1409 1	1312 7 1311 2	12199	1130 5	1044 7	962 2 960 9	883 3 882 0	807 8 806 6	735 7 734 6	667 I 666 o	1
	60	1405 8	1309 6	12168	11276	10418	959 6	880 7	805 3	733 4	664 9	0
		209°	208°	207°	206°	205°	204°	203°	202°	201°	200°	
					1	Hour	Angle					1
	!	Hour Angle										

,	Hour Angle										
	160°	161°	162°	163°	164°	165°	166°	167°	168°	169°	
0	664 9	599 7	538 o	479 7	424 7	373 ¹	324 9	280 I	238 6	200 4	60
1	663 7	598 7	537 o	478 7	423 8	37 ² ³	324 2	279 4	237 9	199 8	59
2	662 6	597 6	536 o	477 8	422 9	37 ¹ ⁵	323 4	278 6	237 2	199 2	58
3	661 5	596 6	535 o	476 9	422 I	37 ⁰ ⁷	322 6	277 9	236 6	198 6	57
4	660 4	595 5	534 o	475 9	421 2	369 ⁸	321 8	277 2	235 9	198 0	56
5 6 7 8 9	659 3 658 2 657 1 656 0 654 9	594 5 593 4 592 4 591 3 590 3	533 ° 532 ° 531 ° 53° ° 529 °	475 ° 474 ° 473 I 472 2 47I 2	420 3 419 4 418 5 417 7 416 8	369 0 368 2 367 4 366 5 365 7	321 1 320 3 319 5 318 8 318 0	276 5 275 8 275 1 274 3 273 6	235 3 234 6 233 9 233 3 232 6	197 4 196 8 196 2 195 6	55 54 53 52 51
10	653 8	589 2	528 0	47° 3	415 9	364 9	317 2	272 9	232 0	194 4	50
11	652 7	588 2	527 I	469 4	415 0	364 1	316 5	272 2	231 3	193 8	49
12	651 6	587 1	526 I	468 4	414 1	363 2	315 7	271 5	230 7	193 2	48
13	650 5	586 1	525 I	467 5	413 3	362 4	314 9	270 8	230 0	192 6	47
14	649 4	585 0	524 I	466 6	412 4	361 6	314 2	270 1	229 4	192 0	46
15	648 3	584 0	523 I	465 6	411 5	360 8	313 4	269 4	228 7	191 4	45
16	647 2	582 9	522 I	464 7	410 6	360 0	312 6	268 7	228 1	190 8	44
17	646 1	581 9	521 I	463 8	409 8	359 1	311 9	268 0	227 4	190 2	43
18	645 0	580 9	520 2	462 8	408 9	358 3	311 1	267 3	226 8	189 6	42
19	643 9	579 8	519 2	461 9	408 0	357 5	310 4	266 6	226 1	189 0	41
20	642 8	578 8	518 2	461 0	407 2	356 7	309 6	265 9	225 5	188 4	40
21	641 7	577 7	517 2	460 1	406 3	355 9	308 9	265 2	224 8	187 8	39
22	640 6	576 7	516 2	459 1	405 4	355 1	308 1	264 5	224 2	187 2	38
23	639 5	575 7	515 3	458 2	404 6	354 3	307 3	263 8	223 5	186 7	37
24	638 4	574 6	514 3	457 3	403 7	353 5	306 6	263 I	222 9	186 1	36
25	637 3	573 6	513 3	456 4	402 8	352 7	305 8	262 4	222 3	185 5	35
26	636 2	572 6	512 3	455 4	402 0	351 8	305 1	261 7	221 6	184 9	34
27	635 1	571 5	511 3	454 5	401 1	351 0	304 3	261 0	221 0	184 3	33
28	634 0	570 5	510 4	453 6	400 2	350 2	303 6	260 3	220 3	183 7	32
29	633 0	569 5	509 4	452 7	399 4	349 4	302 8	259 6	219 7	183 2	31
30	631 9	568 4	508 4	451 8	398 5	348 6	302 I	258 9	219 I	182 6	30
31	630 8	567 4	507 5	450 9	397 7	347 8	301 3	258 2	218 4	182 0	29
32	629 7	566 4	506 5	449 9	396 8	347 0	300 6	257 5	217 8	181 4	28
33	628 6	565 4	505 5	449 0	395 9	346 2	299 8	256 8	217 2	180 8	27
34	627 5	564 3	504 5	448 1	395 1	345 4	299 I	256 1	216 5	180 3	26
35 36 37 38 39	626 5 625 4 624 3 623 2 622 I	563 3 562 3 561 3 560 2 559 2	503 6 502 6 501 6 500 7 499 7	447 ² 446 3 445 4 444 5 443 6	394 2 393 4 392 5 391 7 390 8	344 6 343 8 343 0 342 2 341 4	298 4 297 6 296 9 296 1 295 4	255 5 254 8 254 I 253 4 252 7	215 9 215 3 214 6 214 0 213 4	179 7 179 1 178 5 178 0	25 24 23 22 21
40	621 1	558 2	498 7	442 7	390 0	340 6	294 7	252 0	212 8	176 8	20
41	620 0	557 2	497 8	441 8	389 1	339 8	293 9	251 3	212 1	176 2	19
42	618 9	556 2	496 8	440 9	388 3	339 0	293 2	250 7	211 5	175 7	18
43	617 8	555 2	495 9	440 0	387 4	338 3	292 4	250 0	210 9	175 1	17
44	616 8	554 I	494 9	439 0	386 6	337 5	291 7	249 3	210 3	174 5	16
45	615 7	553 I	493 9	438 I	385 7	336 7	291 0	248 6	209 6	174 0	15
46	614 6	552 I	493 0	437 2	384 9	335 9	290 2	248 0	209 0	173 4	14
47	613 6	551 I	492 0	436 3	384 0	335 1	289 5	247 3	208 4	172 8	13
48	612 5	550 I	491 1	435 4	383 2	334 3	288 8	246 6	207 8	172 3	12
49	611 4	549 I	490 1	434 5	382 3	333 5	288 0	245 9	207 I	171 7	11
50 51 52 53 54	610 3 609 3 608 2 607 2 606 1	548 I 547 ° 546 ° 545 ° 544 °	489 2 488 2 487 3 486 3 485 4	433 6 432 8 431 9 431 0 430 I	38 i 5 38 o 7 37 9 8 37 9 0 37 8 i	33 ² 7 33 ² 0 33 ¹ 2 33 ⁰ 4 329 6	287 3 286 6 285 9 285 1 284 4	245 3 244 6 243 9 243 2 242 6	206 5 205 9 205 3 204 7 204 I	171 1 170 6 170 0 169 5 168 9	98 76
55 56 57 58 59 60	605 0 604 0 602 9 601 8 600 8	543 ° 542 ° 541 ° 549 ° 539 ° 538 ° 538 °	484 4 483 5 482 5 481 6 480 6 479 7	429 2 428 3 427 4 426 5 425 6 424 7	377 3 376 5 375 6 374 8 374 0 373 1	328 8 328 0 327 3 326 5 325 7 324 9	283 7 283 0 282 2 281 5 280 8 280 1	241 9 241 2 240 6 239 9 239 2 238 6	203 5 202 8 202 2 201 6 201 0 200 4	168 4 167 8 167 2 166 7 166 0 165 6	5 4 3 2 1 0
	199°	198°	197°	196°	195°	194°	193°	192°	191°	190°	
						Angle	***				'

,	Hour Angle										
	170°	171°	172°	173°	174°	175°	176°	177°	178°	179°	
0 1 2 3 4	165 6 165 0 164 5 163 9 163 4	134 I 133 6 133 I 132 6 132 I	105 9 105 5 105 0 104 6 104 2	81 1 80 7 80 3 79 9 79 5	59 6 59 2 58 9 58 6 58 2	41 4 41 1 40 8 40 5 40 3	26 5 26 2 26 0 25 8 25 6	14 9 14 7 14 6 14 4 14 2	6 6 6 5 6 4 6 3 6 2	1 7 1 6 1 5 1 5	60 59 58 57 56
56 78 9	162 8 162 3 161 7 161 2 160 6	131 6 131 1 130 6 130 1 129 6	103 7 103 3 102 9 102 4 102 0	79 2 78 8 78 4 78 0 77 6	57 9 57 6 57 3 56 9 56 6	40 0 39 7 39 4 39 2 38 9	25 4 25 2 24 9 24 7 24 5	14 I 13 9 13 7 13 6 13 4	6 1 6 0 5 9 5 8 5 7	I 4 I 3 I 3 I 2 I 2	55 54 53 52 51
10 11 12 13 14	160 1 159 6 159 0 158 5 157 9	129 2 128 7 128 2 127 7 127 2	101 6 101 1 100 7 100 3 99 8	77 3 76 9 76 5 76 1 75 8	56 3 56 0 55 7 55 3 55 0	38 6 38 4 38 1 37 8 37 6	24 3 24 1 23 9 23 7 23 5	13 3 13 1 13 0 12 8 12 7	5 6 5 5 5 4 5 3 5 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 49 48 47 46
15 16 17 18	157 4 156 9 156 3 155 8	126 7 126 2 125 8 125 3 124 8	99 4 99 0 98 5 98 1 97 7	75 4 75 0 74 6 74 3 73 9	54 7 54 4 54 1 53 7 53 4	37 3 37 1 36 8 36 5 36 3	23 3 23 1 22 8 22 6 22 4	12 5 12 4 12 2 12 1 11 9	5 I 5 0 4 9 4 8 4 7	09 09 09 08	45 44 43 42 41
20 21 22 23 24	154 7 154 2 153 6 153 1 152 6	124 3 123 8 123 4 122 9 122 4	97 3 96 8 96 4 96 0 95 6	73 5 73 2 72 8 72 4 72 I	53 I 52 8 52 5 52 2 51 9	36 0 35 8 35 5 35 3 35 0	22 2 22 0 21 8 21 6 21 4	11 8 11 6 11 5 11 3	4 6 4 5 4 4 4 3 4 2	07 07 07 06 06	40 39 38 37 36
25 26 27 28 29	152 I 151 5 151 0 150 5 149 9	121 9 121 5 121 0 120 5 120 1	95 2 94 7 94 3 93 9 93 5	71 7 71 3 71 0 70 6 70 3	51 6 51 3 51 0 5° 7 5° 3	34 7 34 5 34 2 34 0 33 7	21 2 21 0 20 8 20 6 20 5	11 0 10 9 10 8 10 6	4 I 4 I 4 0 3 9 3 8	06 05 05 05	35 34 33 32 31
30 31 32 33 34	149 4 148 9 148 4 147 8	119 6 119 1 118 7 118 2	93 I 92 7 92 3 91 8 91 4	69 9 69 5 69 2 68 8 68 5	50 0 49 7 49 4 49 1 48 8	33 5 33 2 33 0 32 8 32 5	20 3 20 1 19 9 19 7	10 3 10 2 10 1 9 9 9 8	3 7 3 6 3 6 3 5 3 4	0 4 0 4 0 4 0 3 0 3	30 29 28 27 26
35 36 37 38 39	146 8 146 3 145 8 145 2 144 7	117 3 116 8 116 3 115 9	91 0 90 6 90 2 89 8 89 4	68 I 67 8 67 4 67 I 66 7	48 5 48 2 47 9 47 6 47 3	32 3 32 0 31 8 31 5 31 3	19 3 19 1 18 9 18 7 18 6	97 95 94 93	3 3 3 2 3 2 3 1 3 0	0 3 0 3 0 2 0 2 0 2	25 24 23 22 21
40 41 42 43 44	144 2 143 7 143 2 142 7 142 2	114 9 114 5 114 0 113 6 113 1	89 0 88 6 88 2 87 8 87 4	66 4 66 0 65 7 65 3 65 0	47 I 46 8 46 5 46 2 45 9	31 1 30 8 30 6 30 4 30 1	18 4 18 2 18 0 17 8 17 6	9 0 8 9 8 7 8 6 8 5	2 9 2 9 2 8 2 7 2 7	0 2 0 2 0 I 0 I	20 19 18 17 16
45 46 47 48 49	141 6 141 1 140 6 140 1 139 6	112 7 112 2 111 7 111 3 110 8	87 0 86 6 86 2 85 8 85 4	64 6 64 3 63 9 63 6 63 3	45 6 45 3 45 0 44 7 44 4	29 9 29 6 29 4 29 2 28 9	17 5 17 3 17 1 16 9 16 8	8 4 8 2 8 1 8 0 7 9	2 6 2 5 2 4 2 4 2 3	01 01 01 01 01	15 14 13 12
50 51 52 53 54	139 I 138 6 138 I 137 6	110 4 109 9 109 5 109 0 108 6	85 0 84 6 84 2 83 8 83 4	62 9 62 6 62 2 61 9 61 6	44 2 43 9 43 6 43 3 43 0	28 7 28 5 28 3 28 0 27 8	16 6 16 4 16 2 16 1 15 9	7 8 7 6 7 5 7 4 7 3	2 3 2 2 2 I 2 I 2 O	00	10 9 8 7 6
55 56 57 58 59 60	136 6 136 1 135 6 135 1 134 6	108 1 107 7 107 3 106 8 106 4	830 826 822 819 815 811	61 2 60 9 60 6 60 2 59 9	42 7 42 5 42 2 41 9 41 6	27 6 27 4 27 1 26 9 26 7 26 5	15 7 15 6 15 4 15 2 15 1 14 9	7 ² 7 ¹ 6 9 6 8 6 7 6 6	1 9 1 9 1 8 1 8 1 7	00	5 4 3 2 1
	134 ¹	188°	187°	186°	185°	184°	183°	182°	181°	180°	_
	189° 188° 187° 186° 185° 184° 183° 182° 181° 180° Hour Angle										

A FEW VALUABLE OPINIONS.

RIVISTA MARITTIMA ITALIANA, February 1910. BIBLIOGRAFIA.

"Il procedimento del de Aquino è ingegnosissimo, poichè, spezzando in due triangoli sferici rettangoli il noto triangolo SPZ, conducendo l'arco normale all'arco PZ, dà una serie di relazioni ben note, che abilmente utilizzate, per mezzo di una tavola di altezza ad azimut e tavole ausiliarie (pagg. 3-128), rende il conttegio pratico così semplice ed esatto per le esigenze nautiche da destare in verità meraviglia."— E. MILLOSEVICH, Director of the Observatory of Kome, Italy.

ALMIRANTE GARCIA MANSILLA, DETERMINACIÓN DEL PUNTO EN LA MAR, BUENOS AIRES, 1910.

"Sea como fuera, debo mencionar en primer término y con especial satisfacción, las tablas de Altura y Azimut, del señor Radler de Aquino por ser, sin duda alguna, la mejor solución del problema que yo conozco."—From Paper read before the Congreso Científico Internacional held at Buenos Aires, 1910.

ANNALEN DER HYDROGRAPHIE UND MARITIMEN METEOROLOGIE, *November* 1910.

RADLER DE AQUINO: Altitude and azimuth tables for facilitating the determination of lines of position and geographical position at sea. The simplest and readiest in solution. Spherical traverse tables for solving all problems of navigation. 8vo. 128 pp. London, 1910. J. D. Potter, and Rio de Janeiro, 1910. Radler de Aquino. Preis 10s. 6d.

Die Höhen- und Azimut-Tafeln des Leutnants RADLER DE AQUINO der brasilianischen Kriegs-Marine liefern ein recht bequemes Hilfsmittel, um die für Anwendung der Marcq St. Hilaireschen Methode notwendigen Berechnungen der Höhe und des Azimuts ohne logarithmische Rechnung durchzuführen. Durch Zerlegung des Poldreiecks in zwei rechtwinklige sphärische Dreiecke (durch Fällen eines Lots vom Gestirnsort auf den Meridian) wird ermöglicht, dass die Lösung der Haupt-aufgaben der nautischen Astronomie mit den Tafeln nach einheitlicher Methode zu erreichen ist. Um die Höhe und das Azimut eines Gestirns zu finden, geht man mit der Abweichung und dem Stundenwinkel in die Tafel und entnimmt zunächst Näherungswerte zweier Hilfsgrössen (a und b). Mit diesen findet man durch nochmaligen Eingang den der Abweichung entsprechenden Wert von b und aus diesem den Wert eines Stundenwinkels, der anstatt des aus der gegissten Länge hergeleiteten Stundenwinkels benutzt wird. Das gefundene b und die zweckentsprechend geändert Breite geben Höhe und Azimut, die also nicht für den gegissten Ort, sondern für einen Hilfspunkt gelten. Es ist jedoch nach den in den Tafeln gegebenen Anweisungen nur mit wenig Mehrarbeit verknüpft, wenn man Höhe und Azimut für das gegisste Besteck ermitteln will. Die Tafeln lassen sich, wie in der Gebrauchsanweisung ausführlich auseinander gesetzt wird, auch zur Lösung anderer Aufgaben der nautischen Astronomie mit Vorteil verwenden. So lässt sich mit den Tafeln leicht ermitteln, wenn Höhe und Azimut eines Gestirnes beobachtet sind, zu welchem Gestirne diese Grössen gehören. Auch die Ermittlung des Zeit- und des Zeithöhen-Azimuts, der Amplitude und der Höhe eines Gestirns im Ersten Vertikal usw. lässt an Bequemlichkeit nichts zu wünschen übrig, so dass sich diese Tafeln bald Freunde unter den Nautikern erwerben werden, die Höhenberechnungen ohne Benutzung der Logarithmentafeln bevorzugen. Sk.

NAUTICAL MAGAZINE, February 1910.

"Whether or no any marked simplification results from the use of the new processes is a point which the navigator may easily determine for himself, but we have no hesitation in endorsing the verdict of the Hydrographer of the U.S. Navy, that 'the plan of the work is sound in principle and scientific in conception.' The central idea is distinctly original, and the work forms an interesting addition to the literature of Nautical Astronomy."

"Altogether the book is a remarkable triumph of ingenuity, and does credit to designer and printer and publisher."—Rev. WILLIAM HALL, R.N., in the Nautical Magazine for November, 1910, page 486.

BRAZILIAN NAVY OFFICIAL OPINIONS

PARECERES OFFICIAES.

Cópia.—Ministerio da Marinha. Estado Maior da Armada. Em 15 de setembro de 1910.—Ao Sr. Vice-almirante Ministro da Marinha. Passo ás vossas mãos com os presentes papeis o parecer apresentado pelo capitão-tenente Augusto Cesar Burlamaqui, membro da commissão nomeada pelo capitão de mar e guerra João Baptista das Neves, commandante do encouraçado Minas Geraes, para estudar o trabalho apresentado pelo capitão-tenente Radler de Aquino, intitulado Altitude and Azimuth Tables. Não só pela leitura do referido parecer, como pela opinião daquelle commandante, que diz que o uso dessas taboas tornou-se generalisado a bordo durante a longa commissão emprehendida pelo mesmo encouraçado, do porto de Newcastle-on-Tyne ao desta Capital, facto este que demonstra a sua utilidade e o modo facil e pratico do seu emprego, podereis verificar que o trabalho desse intelligente e operoso official é digno de ser adoptado, pois torna de extrema facilidade o traçado da recta de posição e resolve com um grau de precisão acceitavel para a navegação um numeroso grupo de problemas. Saude e fraternidade. (Assignado) H. PINHEIRO GUEDES, Vice-almirante, Chefe do Estado Maior da Armada.

Cópia.—Commando do encouraçado *Minas Geraes*. Rio de Janeiro, 9 de setembro de 1910. N. 264.—Sr. Contra-Almirante Commandante da Divisão de Encouraçados. Cumpre-me enviar-vos o parecer apresentado pelo Sr. capitão-tenente Augusto Cesar Burlamaqui sobre o trabalho intitulado *Altitude and Azimuth Tables*, do Sr. capitão tenente Radler de Aquino. Tendo apparecido este trabalho antes da partida deste encouraçado do porto de Newcastle, nomeei uma commissão de tres officiaes do navio para dar parecer sobre o seu valor e utilidade; esta commissão era composta dos Srs. capitães-tenentes Augusto Cesar Burlamaqui, Alfredo Dodsworth e Leopoldo Nobrega Moreira. Pela leitura do parecer, podereis verificar a opinião favoravel da commissão, cabendo pela minha parte accrescentar que o uso dessas taboas tornou-se generalisado a bordo durante a commissão, facto este que demonstra a sua utilidade e o modo facil e pratico do seu emprego. Estas taboas representam mais um importante trabalho dado á publicidade pelo seu illustre e operoso autor. Saude e fraternidade. João Baptista das Neves, capitão de mar e guerra.

Ilha Grande, 10 de abril de 1910.—Passo ás vossas mãos o parecer elaborado pela commissão por vós nomeada para emittir juizo sobre o trabalho da lavra do Sr. capitão-tenente Radler de Aquino, intitulado Altitude and Azimuth Tables. Em abono das referidas taboas do estudioso official da nossa marinha de guerra vem a longa commissão desempenhada pelo couraçado Minas Geraes, sob o vosso commando, durante a qual foram verificados á saciedade os magnificos resultados fornecidos pelas taboas em comparação com os varios processos utilizados a bordo para o mesmo fim. O methodo Marcq, hoje definitivamente adoptado, encontra no inestimavel livro do Sr. capitão-tenente Radler de Aquino a sua resolução simples, rapida e segura, tornando de extrema facilidade o traçado da recta de posição e resolvendo com um gráo de precisão acceitavel para a navegação um numeroso grupo de pro-Julgo que as taboas de 360 paginas, que o Sr. capitão-tenente Radler de Aquino promette publicar, facilitarão de modo tal o calculo das coordenadas da posição do navio, que affirmo esperar o mais favoravel acolhimento por todos os que se interessam pelos progressos da navegação. - Augusto Cesar Burlamaqui, capitãotenente, instructor de navegação. Ao Sr. capitão de mar e guerra commandante do couraçado Minas Geraes, João Baptista das Neves.

OTHER WORKS OF THE AUTHOR NOT MENTIONED IN THESE TABLES

O Methodo de Marcq Saint Hilaire para um observador determinar a sua posição no mar, com taboas para a sua applicação. *Imprensa Nacional*, Rio de Janeiro, 1902. This work was printed by order of the Minister of Marine, and was first published in the *Revista Maritima Brazileira* for November, 1899, January, 1900, and October, 1900.

Typos de calculo para o methodo de Marcq Saint Hilaire pela modificação do Dr. Otto Fulst de Hamburgo. *Imprensa Nacional*, Rio de Janeiro, 1902. Reprinted from the *Revista Maritima Brazileira* for December, 1901.

Estudo theorico e pratico dos Instrumentos Nauticos de Lord Kelvin. Descripção e theoria da agulha de Lord Kelvin. Magnetismo dos navios. Theoria geral dos desvios das agulhas e de sua compensação. *Imprensa Nacional*, Rio de Janeiro, 1902. Reprinted by order of the Minister of Marine from the *Revista Maritima Brazileira*, August-September, 1900, January, 1901, and April-May, 1901.

Causas da instabilidade do caracter magnetico de um navio. Prisma azimuthal de Lord Kelvin. Regulação das agulhas por meio de azimuths. Determinação do caracter magnetico de um navio. Compensação horizontal das agulhas com azmuths. Balança magnetica de Lord Kelvin. Compensação vertical do desvio de banda. Machina de sondar de Lord Kelvin. Indicadores: mecanico e chimico. Theoria e manejo pratico. Imprensa Nacional, Rio de Janeiro, 1903. Reprinted from the Revista Maritima Brazileira, May and July, 1903, pages 1291 and 8, and March, 1902, page 1202.

Compensação e regulação das agulhas sem azimuths. Deflector de Lord Kelvin. Theoria e manejo pratico. Methodo do Kaptain Clausen. *Imprensa Nacional*, Rio de Janeiro, 1903. Reprinted from the *Revista Maritima Brazileira*, June, 1903. This work has been recently translated into English by Commander L. H. Chandler, U.S. Navy and published in the *United States Naval Institute Proceedings* for December, 1909.

Estudo theorico e pratico dos Instrumentos Nauticos de Lord Kelvin. Magnetismo dos navios. Compensação e regulação das agulhas com e sem azimuths. Sondagens no mar. New edition of above three works, by order of the Minister of Marine. *Imprensa Nacional*, Rio de Janeiro, 1910.

A Signaria Naval. Reprinted from the Revista Maritima Brazileira, January, 1903.

Estudo elementar de Trigonometria Espherica e algumas das suas applicações á Astronomia Espherica, Navegação e Geographia, edited by H. Garnier, Paris and Rio de Janeiro, 1903. Price 4s.

Relatorio annual da Associação Protectora dos Homens do Mar de 1903-1904. Rio de Janeiro, 1904.

JIU-JITSU. Educação Physica Japoneza, pelo Mr. H. Irving Hancock. Joint translation from English with the late Capitão de corveta J. A. dos Santos Porto. Rio de Janeiro, 1905. Price 4s.

Nomograms for Deducing Altitude and Azimuth and for Star Identification and Finding Course and Distance in Great Circle Sailing. Reprinted from the *United States Naval Institute Proceedings* for June, 1908.

Nomogrammas para achar alturas e azimuths, &c. Reprinted from the *Revista Maritima Brazileira*, July, 1908.

Taboas para achar alturas e azimuths facilitando a determinação de rectas de posição e o ponto observado no mar. *Imprensa Nacional*, 1910. Reprinted from the *Revista Maritima Brazileira*, August, 1910.

A Nomogram for Compass Deviations, with an Elementary Exposition of the Two Parallel Scale Nomograms. By Professor Guiseppe Pesci, Italian Navy. Translated from the original manuscript in Italian by Lieutenant Radler de Aquino. Reprinted from the *United States Naval Institute Proceedings* for December, 1910.

And many other articles in the Revista Maritima Brazileira since 1899.

LIST OF NAUTICAL WORKS

PUBLISHED BY

J. D. POTTER.

145, MINORIES, LONDON, E.C.

LIST OF NAUTICAL WORKS

PUBLISHED BY J. D. POTTER.

ALTITUDE TABLES.		,
Computed for Intervals of Four Minutes between the Parallels of Latitude 31° and 60° and Parallels of Declination 0° and 24°, designed for the Determination of the Position Line at all Hour Angles without Logarithmic Computation, by Frederick Ball, M.A. (late Scholar of Exeter College, Oxford), Chaplain and Naval	g.	a.
Instructor in His Majesty's Fleet	15	0
Ditto, ditto, between the Parallels of Latitude 0° and 30° and Parallels of Declination 0° and 24°	15	0
Ditto, ditto, between the Parallels of Latitude 24° and 60° and Parallels of Declination 24° and 60°	15	0
These Tables are so arranged for working by the New Navigation that only one correct has to be applied to the altitude taken direct from the book. The entire logarith work is replaced by a single subtraction and the application of the correction. conjunction with the Nautical Almanac all the usual problems of Navigation are so	imic In	; i
The Tables have been adopted for use in the Japanese Navy.		
New Log and Versine Altitude Tables (Reprinted from the 2nd Edition of	10	6
above Book), by Lieut. Radler de Aquino (Brazilian Navy). The simplest and readiest way of finding the Altitude by means of logarithms	2	6
COLUMBUS.		
The Landfall of Columbus on his First Voyage to America, with a Translation of The Baron Bonnefoux's History of his previous life, also a Chart showing his Track from the Landfall to Cuba, and an outline of his subsequent voyages, by Capt. A. B. Becher, R.N. (1856)		C
COOKERY.		
Ship's Cook and Steward's Guide, containing Hints for Management, and Two Hundred and Fifty Recipes, by James B. Wilson	1	C

List of Nautical Works published by J. D. POTTER.

AZIMUTHS.	s.	d
Davis's Sun's True Bearing, or Azimuth Tables (30° N. to 30° S.), by J. E. and Percy L. H. Davis. The only means of ensuring a correct course at sea is by the use of calculated or tabular azimuths, and the latter render the operation speedy and accurate. These tables, an addendum to those of Capt. Burdwood, R.N., which preceded them, have been in very general use since their publication. The instructions in several European languages have proved of great service to foreign seamen	11	6
Davis's Supplementary Azimuth Tables (now published separately). The Time Azimuth Tables in general use do not often give azimuths near the meridian, which are in frequent demand for ex-meridian observations, but they will be found in this book, in addition to complete tables extending to latitude 64° (Supplied to H.M. Fleet by Admiralty order.)	8	0
Davis's Star Azimuth Tables, computed for all latitudes between 60° North and 60° South, by P. L. H. Davis. This book has followed on the very general adoption of stellar observations as a means of navigation, and supplies the seaman with the same details regarding stars, as he can get from "Burdwood and Davis" when the sun is concerned. Some ingenious altitude marks are used for the first time in these tables which materially aid in the identification of any hastily observed star, as to which doubt may exist	11	в
High Latitude Tables, between 61° and 78°. By Percy L. H. Davis	7	0
This work, which was originally prepared for and used by the Antarctic Expedition of 1901, has now been adopted for use in H.M. Navy and will certainly be a necessity in all ships trading to northern ports. (Supplied to H.M. Fleet by Admiralty order.)		
Alt-Azimuth Tables. Under this title J. D. Potter will shortly publish a series of four books, two of which deal with latitudes and Declinations contained in Burdwood and Davis, and two with the higher Declinations needed for star work. The distinctive feature of these tables, which are being prepared by Mr. Percy L. H. Davis, F.R.A.S., and incorporate various suggestions made by the Hydrographer of the Navy, is that they will enable the user to correlate at a glance the Altitude and Azimuth of any observed body with its Hour Angle and Declination and thus immediately to recognise any star of whose identity he may be uncertain. A leaflet published for purposes of copyright is on sale, price 6d. The altitudes are printed in heavy figures, and the azimuths in ordinary type, each being for the time opposite which it appears. There is no altitude limit in these tables, the quantities being given from the meridian to the horizon		
Short, Accurate, and Comprehensive Altitude-Azimuth Tables to show the true bearing of the Sun, Moon, Planets, &c., for latitude 0° to 75° north or south; altitudes 0° to 75°; and declination 30° north to 30° south; also the Approximate Ship Time, by A. C. Johnson, R.N. (Published by request)	3	6
(Supplied to H.M. Fleet by Admiralty order.)		
Captain Weir's Azimuth Diagram	1	в
Time Azimuth Diagram, by Hugh Godfray, M.A	3	0
DOUBLE ALTITUDES.		
A Method for finding the Latitude by the Simultaneous Altitudes		
of Two Stars, by Capt. Burdwood, R.N. (reprinted 1896)	1	0

List of Nautical Works published by J. D. POTTER.

CHARTS.	s.	d.
Charts: their use and meaning, with thirteen figures and eight charts, by Dr. G. Herbert Fowler	4	0
Meteorological and other scientific charts, from a practical point of view in simple language.		
CHRONOMETERS.		
Davis's "Chronometer" Tables; or, hour angles for selected altitudes between latitudes 0° and 50°, with variations for 1' in all elements, by P. L. H. Davis. Means of working a Sun "Chronometer" arithmetically have been for many years a desideratum, and have been published, in 1793, by Lalande; in 1827, by Lynn; and by Hommey, in 1863; but Mr. Davis, by the omission of useless or undesirable altitudes, and the inclusion of Variations in 1' of Altitude, Latitude, and Declination, has made a table of great practical utility. The book, as a substitute for or a check on logarithmic calculation, is almost a necessity, and is especially useful in latitudes less than 45°. A comparison has been made in actual work of the		
tabular results with those obtained in the ordinary way, showing practically identical results	11	6
Notes on the Management of Chronometers and the Measurement of Meridian Distances, by Rear-Admiral Charles Shadwell, F.R.S. (1861)	4	6
EQUAL ALTITUDES.		
Tables for Facilitating the Method of Equal Altitudes, by F. A. L. Kitchin, B.A., Naval Instructor, R.N	1	0
COMPASS.		
Rev. William Hall's Visible Astronomical Compass. for Lat. 50. Channel and adjacent zone. Important for sea and air navigation, size, 6in. diameter	1	0
An Explanation of the Adjustment of Ships' Compasses, illustrated with numerous diagrams, by Captain the Honourable Wentworth Chetwynd, R.N		0
Handbook to Beall's Compass Deviascope, by Captain George Beall, contains, in addition to a complete explanation of this well-known instrument, much information necessary to compass correction	1	6
Elementary Manual for the Deviations of the Compass in Iron Ships, intended for the use of Seamen of the Royal Navy and Mercantile Marine, and Navigation Schools, by E. W. Creak, C.B., F.R.S., retired Captain, R.N	6	6
Practical Information on the Deviation of the Compass, for the use of Masters and Mates of Iron Ships, by J. T. Towson, F.R.G.S		
Supplement to the above; being the Questions on the Deviation of the Compass issued by the Board of Trade for the Examination for Masters' and Extra Masters' Certificates, and Answers to the Questions, by Capt. William Mayes, R.N	4	0
The Roxburgh Compass Error Card. For quickly and accurately correcting True and Compass Courses and Bearings by a New Method; extremely simple and easy to work. Size 10 × 11 inches, printed in black and red; varnished. By C. R. Wylie	3	0
The Pocket Compass Corrector. Makes an error in applying variation and deviation almost impossible	2	0
The Binnacle Compass, Corrected by itself, or the Deviation found with one Compass by both methods, and the Corrections applied, by Capt. A. B. Becher, R.N.	1	0
The Storm Compass, or Seaman's Hurricane Companion, containing a familiar explanation of the Hurricane Theory, by Capt. A. B. Becher, R.N., illustrated with		
Diagrams and Accounts of Hurricanes	1	6
Plain Deviation Curve Diagram, by Captain J. C. Robinson	0	6

A Chart of South Laitudes, beyond 20 degrees, to facilitate the practice of Great Circle Sailing; with an accompanying diagram for the determination of the courses and distances, by Hugh Godfway, M.A			
EX-MERIDIANS. Davis's Ex-Meridian Tables and Supplementary Azimuths, by P. L. H. Davis. This important work contains Calculated Reductions to the Meridian for hour angles less than 75th and altitudes lower than \$4th Davis. This important work contains Calculated Reductions to the Meridian for hour angles less than 75th and altitudes lower than \$4th Davis Properties of the book is quite easy to anyone familiar with the Azimuth Tables. The Supplementary Azimuths, which accompany it, give bearings too near the meridian for inclusion in "Burdwood and Davis," which are now in great request for position lines and ex-meridian work	Circle Sailing: with an accompanying diagram for the determination of the		
Davis's Ex-Meridian Tables and Supplementary Azimuths, by P. L. H. Davis. This important work contains Calculated Reductions to the Meridian for hour angles less than 75° and altitudes lower than 84°, Declinations and Latitudes 34° and 64° N. and S. The use of the book is quite easy to anyone familiar with the Azimuth Tables. The Supplementary Asimuths, which accompany it, give bearings too near the meridian for inclusion in Bardwood and Davis, "which are now in great request for position lines and ex-meridian work	courses and distances, by Hagh Godyray, M.A	o	O
Tables for the Reduction of Ex-Meridian Altitudes, by J. T. Towson, F.R.G.S. 1 0 Ex-Meridian Diagram, by F. A. L. Kitchin, B.A., Naval Instructor, R.N 1 0 HOUR ANGLES. Tables of Calculated Hour-Angles and Altitude Azimuth Tables, 3 f N. to 30° S. Ex-Meridian Tables and Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S., by H. S. Blackburne 7 6 The Calculated Reductions and Azimuths of 27 of the brightest stars up to about one hour from Meridian abothe Pole, and from two to three hours from the Meridian below the Pole for circumpolar stars, make accura position finding from two stars at twilight simpler than by any previously published tables. HYDROGRAPHICAL ENGINEERING. An Essay on Hydrographical Engineering, as applicable to Floating Sea Barriers, Harbours, Batteries, Coast Defences, and Naval Fortifications, by Capt. Adderly Sleigh, K.T.S., F.R.S.L. (with Illustrations), (1859) 10 0 INTERPOLATION. Notes on interpolation, Mathematical and Practical, by Rear-Admiral C. Shadwell, F.R.S	Davis's Ex-Meridian Tables and Supplementary Azimuths, by P. L. H. Davis. This important work contains Calculated Reductions to the Meridian for hour angles less than 75 ^m and altitudes lower than 84°, Declinations and Latitudes 34° and 64° N. and S. The use of the book is quite easy to anyone familiar with the Azimuth Tables. The Supplementary Azimuths, which accompany it, give bearings too near the meridian for inclusion in "Burdwood and Davis," which	11	6
HOUR ANGLES. Tables of Calculated Hour-Angles and Altitude Azimuth Tables, 3 f N. to 30° S. Ex-Meridian Tables and Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S., by H. S. Blackburne 7 6 The Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S., by H. S. Blackburne 7 6 The Calculated Reductions and Azimuths of 27 of the brightest stars up to about one hour from Meridian about the Pole, and from two to three hours from the Meridian below the Pole for dictumpolar stars, make accura position fluiding from two stars at twilight simpler than by any previously published tables. HYDROGRAPHICAL ENGINEERING. An Essay on Hydrographical Engineering, as applicable to Floating Sea Barriers, Harbours, Batteries, Coast Defences, and Naval Fortifications, by Gapt. Adderly Sleigh, K.T.S., F.R.S.L. (with Illustrations), (1859)		1	0
HOUR ANGLES. Tables of Calculated Hour-Angles and Altitude Azimuth Tables, 3 f N. to 30° S. Ex-Meridian Tables and Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S. by H. S. Blackburne 7 6 The Calculated Reductions and Azimuths of 27 of the brightest stars up to about one hour from Meridian about the Pole for circumpolar stars, make accura position finding from two stars at twilight simpler than by any previously published tables. HYDROGRAPHICAL ENGINEERING. An Essay on Hydrographical Engineering, as applicable to Floating Sea Barriers, Harbours, Batteries, Coast Defences, and Naval Fortifications, by Capt. Adderly Steigh, K.T.S., F.R.S.L. (with Illustrations), (1859)		_	-
Tables of Calculated Hour-Angles and Altitude Azimuth Tables, 3 f N. to 30° S. Ex-Meridian Tables and Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S., by H. S. Blackburne	Ex-Meridian Diagram, by F. A. L. Kitchin, B.A., Naval Instructor, R.N	1	0
Tables of Calculated Hour-Angles and Altitude Azimuth Tables, 3 f N. to 30° S. Ex-Meridian Tables and Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S., by H. S. Blackburne	TOTAL ANGLES		
HYDROGRAPHICAL ENGINEERING. An Essay on Hydrographical Engineering, as applicable to Floating Sea Barriers, Harbours, Batteries, Coast Defences, and Naval Fortifications, by Capt. Adderly Sleigh, K.T.S., F.R.S.L. (with Illustrations), (1859)	Tables of Calculated Hour-Angles and Altitude Azimuth Tables, $3 ^{\circ}$ N. to 30° S. Ex-Meridian Tables and Calculated Reductions and Azimuths of Bright Stars, 60° N. to 60° S., by H. S. Blackburne	7	6 abov
HYDROGRAPHICAL ENGINEERING. An Essay on Hydrographical Engineering, as applicable to Floating Sea Barriers, Harbours, Batteries, Coast Defences, and Naval Fortifications, by Capt. Adderly Sleigh, K.T.S., F.R.S.L. (with Illustrations), (1859)	the Pole, and from two to three hours from the Meridian below the Pole for circumpolar stars, make	acc	ura
An Essay on Hydrographical Engineering, as applicable to Floating Sea Barriers, Harbours, Batteries, Coast Defences, and Naval Fortifications, by Capt. Adderly Sleigh, K.T.S., F.R.S.L. (with Illustrations), (1859)	position finding from two stars at twilight simpler than by any previously published tables.		
INTERPOLATION. Notes on Interpolation, Mathematical and Practical, by Rear-Admiral C. Shadwell, F.R.S	An Essay on Hydrographical Engineering, as applicable to Floating Sea		
Notes on Interpolation, Mathematical and Practical, by Rear-Admiral C. Shadwell, F.R.S	Adderly Sleigh, K.T.S., F.R.S.L. (with Illustrations), (1859)	10	0
Notes on Interpolation, Mathematical and Practical, by Rear-Admiral C. Shadwell, F.R.S	INTERPOLATION		
On Finding the Latitude and Longitude in Cloudy Weather and at other Times, by A. C. Johnson, R.N. Enlarged to 56 pages, with Appendix and Part II	Notes on Interpolation, Mathematical and Practical, by Rear-Admiral C. Shadwell,	2	0
Scales of Latitude from 5° to 60° proportional to a scale of Longitude, where \(\frac{1}{2} \) in. = one mile, arranged to facilitate the finding of position from two Sumner lines, by \(R. \) \(E. \) Peake, \(A.M.I.C.E. \) per set 5 0 Charts to accompany above	On Finding the Latitude and Longitude in Cloudy Weather and at other Times, by A. C. Johnson, R.N. Enlarged to 56 pages, with Appendix	6	0
Scales of Latitude from 5° to 60° proportional to a scale of Longitude, where \(\frac{1}{2} \) in. = one mile, arranged to facilitate the finding of position from two Sumner lines, by \(R. \) \(E. \) Peake, \(A.M.I.C.E. \) per set 5 0 Charts to accompany above	Short Tables and Rules for finding Latitude and Longitude by Single		
Scales of Latitude from 5° to 60° proportional to a scale of Longitude, where \(\frac{1}{2} \) in. = one mile, arranged to facilitate the finding of position from two Sumner lines, by \(R. \) \(E. \) Peake, \(A.M.I.C.E. \) per set 5 0 Charts to accompany above	and Double Altitudes, Pole Star. Lunars, &c., by A. C. Johnson, R.N.	3	0
Charts to accompany above	Scales of Latitude from 5° to 60° proportional to a scale of Longi-	Ü	Ü
Charts to accompany above	from two Sumner lines, by R. E. Peake, A.M.I.C.E per set	5	0
Tables showing the Length in Feet of a Degree, Minute, and Second of Latitude and Longitude, with the corresponding number of Statute Miles in each Degree of Latitude; and the number of Minutes of Latitude or Nautical Miles contained in a Degree of Longitude, under each Parallel of Latitude, by R. C. Carrington, F.R.G.S. (1868)		9	G
Second of Latitude and Longitude, with the corresponding number of Statute Miles in each Degree of Latitude; and the number of Minutes of Latitude or Nautical Miles contained in a Degree of Longitude, under each Parallel of Latitude, by R. C. Carrington, F.R.G.S. (1868)	* *		U
LAW. Handbook on the Law and Practice relating to Apprentices to the Mercantile Marine Service, by F. W. Gardner (of the Middle Temple) 1 6 LIGHTS. Light Range Table (height of light, 10 to 1000 feet; and height of eye, 10 to 120 feet), compiled and arranged by J. S. Commander, Master Mariner 0 6 Lights in Lyrics, or a Glance at the Channel Lights as Piloting Marks, on a run from Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets, Notes and Charts.	Second of Latitude and Longitude, with the corresponding number of Statute Miles in each Degree of Latitude; and the number of Minutes of Latitude or		
Handbook on the Law and Practice relating to Apprentices to the Mercantile Marine Service, by F. W. Gardner (of the Middle Temple) 1 6 LIGHTS. Light Range Table (height of light, 10 to 1000 feet; and height of eye, 10 to 120 feet), compiled and arranged by J. S. Commander, Master Mariner 0 6 Lights in Lyrics, or a Glance at the Channel Lights as Piloting Marks, on a run from Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets, Notes and Charts.		1	0
Handbook on the Law and Practice relating to Apprentices to the Mercantile Marine Service, by F. W. Gardner (of the Middle Temple) 1 6 LIGHTS. Light Range Table (height of light, 10 to 1000 feet; and height of eye, 10 to 120 feet), compiled and arranged by J. S. Commander, Master Mariner 0 6 Lights in Lyrics, or a Glance at the Channel Lights as Piloting Marks, on a run from Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets, Notes and Charts.			
LIGHTS. Light Range Table (height of light, 10 to 1000 feet; and height of eye, 10 to 120 feet), compiled and arranged by J. S. Commander, Master Mariner 0 6 Lights in Lyrics, or a Glance at the Channel Lights as Piloting Marks, on a run from Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets, Notes and Charts.			
Light Range Table (height of light, 10 to 1000 feet; and height of eye, 10 to 120 feet), compiled and arranged by J. S. Commander, Master Mariner 0 6 Lights in Lyrics, or a Glance at the Channel Lights as Piloting Marks, on a run from Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets, Notes and Charts.	Mercantile Marine Service, by F. W. Gardner (of the Middle Temple)	1	6
Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets, Notes and Charts.	Light Range Table (height of light, 10 to 1000 feet; and height of eye, 10 to 120	0	6
	Lights in Lyrics, or a Glance at the Channel Lights as Piloting Marks, on a run from Scilly to the Nore, accompanied by a Parting Precept on Compass Deviation, addressed to all younger Mariners. With a view of the Casquets. Notes and Charts.		
		1	0

Notes on the Reduction of Lunar Observations, Mathematical and Practical, by Rear-Admiral C. Shadwell, F.R.S. (1881)		d. 6
See also Latitude and Longitude.		
LOGARITHMS.		
Davis's Requisite Tables (Logarithmic), by P. L. H. Davis. Tables of Logarithms to five places of decimals only, for practical sea work. The typography and arrangement of the book will render it suitable for habitual use, and it contains a table of Logarithmic and Natural Haversines specially designed for modern	7	6
Davis's Five-Figure Logs and Anti-Logs, by P. L. H. Davis. Specially prepared for use in Actuarial and General Calculations. These tables are very legible	'	U
and do not fatigue the eye in use	5	0
Ditto ditto with Index Tabs	6	0
MAST-HEAD ANGLES.		
Tables of Mast-Head Angles, for five feet intervals, from 30 to 280 feet, and varying distances from a cable's length to four miles, with their application to Nautical Surveying; also the determination of distance by sound, with an example	2	0
MEASURES.		
Foreign Measures and their English Values, compiled from Official Sources, by R. C. Carrington, F.R.G.S. (1864)	7	6
MERCANTILE MARINE.		
A Voice from the Quarter-Deck on the State of our Mercantile Marine, by Joseph Mayne (Master Mariner) (1876)	1	0
An Address delivered to the Boys of the Training Ships "Chichester" and "Arethusa," by G. M. Coxhead (1885)	0	4
	Ü	-30
METEOROLOGY.		
Solectrics; a theory explaining the causes of Tempests, Seismic and Volcanic Disturbances, and how to calculate their time and place. Illustrated by over 100 diagrams, by Alfred J. Cooper, Navigator. (Second Edition)	6	0
The Causes of Weather and Earthquakes (with four Diagrams), by Alfred J. Cooper (1902)	2	0
Light as a Motive Power, a Series of Meteorological Essays (1875), by Lieut.	_	Ū
R. H. Armit, R.N See also Winds.	15	0
REVERSIBLE TRANSIT INSTRUMENT.		
Notes on the use of the Portable Reversible Transit, and the Method of Calculation of the Observations, with diagrams and photographs, by Capt. C. E. Monro, R.N	2	0
	J	U
ROYAL NAVY.		
Chart of the Navy of Great Britain, from the Earliest Period of History, compiled from Historical publications, old records, Parliamentary returns, and other authorities, by Frederick Perigal (of the Admiralty), 1860	3	6
RULES OF THE ROAD.		
The Rules of the Road at Sea, comprising the Regulations for preventing collisions at Sea, 1897, and Rules in force in Harbours, Rivers, and Inland Waters; with explanatory notes and observations, by H. Stuart Moore, of the Inner Temple		
and the Admiralty Court, Barrister-at-Law. (Third Edition)	7	6
Diagrams, with Explanations, illustrating the Rule of the Road for Sailing Ships, by Capt. H. S. Blackburne	2	0
3 H (How's Her Head) Indicator and Rule of the Road at Sea.	1	c
by George Spillane	+	6

NAVIGATION AND NAUTICAL ASTRONOMY.	8.	d.
The "Conway" Manual of Navigation. In this book of 80 pages nothing is taken for granted. All formulas are proved and the dependence of Navigation and Nautical Astronomy upon the solution of Plane and Spherical Triangles is clearly brought out. Particular emphasis has been laid upon method. By J. Morgan, M.A. (Senior Master) and T. P. Marchant, A. L. Wood (Navigation Masters), H.M.S. "Convay" School Ship	5	0
Nautical Astronomy, by W. P. Symonds (ExCommissioner of Surveys). The best methods of calculating Hour-Angle, and finding Longitude and Latitude. The shortest Ex-Meridian method with New Table. Sidereal and Mean Time made clear. The New Navigation explained and the Modern methods of working Double Altitudes, and drawing Position lines. The Equation of Equal Altitudes made easy, and used for finding Longitude from Ex-Meridians, and for determining error in Latitude due to Ship moving N. or S. Lunars simplified. Chapters on finding Distances, the Tides, &c., with many diagrams	6	0
Nautical Astronomy Made Easy, by A. C. Johnson, R.N. All the Rules being worked by a Small Table on One Page, designed to economise Time and Labour	3	0
An Introduction to the Practice of Navigation and Nautical Astronomy, by R. E. Hooppell, M.A., F.R.A.S	3	6
The Practice of Navigation and Nautical Astronomy, complete with tables, by Lieut. Raper, R.N (See also the "New" Navigation)	18	0
Nautical Tables, by Lieut. Raper, R.N (do., do.)		0
Inman's Nautical Tables. A New Edition of this standard work, revised and brought thoroughly up to the present date, by the Rev. William Hall, R.N., and containing all the aids to rapid fixing of position which are essential in modern		
Navigation	18	0
Author of "Glossary of Navigation")	7	6
Navigation Simplified, by a System of Teaching based on First Principles, for Officers (from 2nd Mate to Extra Master) in the Mercantile Marine and Yachtsmen. Illustrated by numerous diagrams, by Captain P. Thompson, F.R.A.S., Younger Brother of the Trinity House, Senior Examiner of Masters and Mates, and Secretary	10	0
to the Local Marine Board of London	12	0
Examination Diagrams Simplified, for Navigation Students; illustrated by sixteen diagrams (including 5½ inch Boxwood Scale), by Captain P. Thompson, F.R.A.S	2	6
William Roy	0	6
Practical Coastal Navigation, with numerous charts and diagrams, by Count de Miremont	4	0
Tables of Allowance for Current when affecting Compass Course and Ship's Speed, by Capt. G. E. Hoar, War Department Fleet. A small and convenient Table to give by inspection the correction to a Compass Course made necessary by a Current in any direction, and the resulting distance made good. A		
desirable book for all Coastwise Navigation	2	0
"THE 'NEW' NAVIGATION."		
Appendix to Raper's Practice of Navigation. Being an explanation of the New Astronomical Navigation by the method of Calculated Zenith Distances, with Special Tables for Simplifying and Shortening the work, by William Hall, R.N., F.R.A.S., Chaplain and Naval Instructor (Chief Naval Instructor, Royal		
Australian Navy) See also Altitude Tables.	1	0

SAILING DIRECTIONS.		
Canadian North Atlantic Steamship Routes between the British Isles and Canada. Distance, Latitude, Longitude, Variation, and true Course, by R. A. Woodward, Lieut. R.N.R	s. 5	d. 0
Correct Magnetic Courses and Distances, from and to Various Ports round the British Isles, by Arthur Underhill, LL.D., Commodore of the Royal Cruising Club, assisted by several Members of the Club. Second Edition		0
Concise Navigating Directions for the River Thames, including all the Pools, Reaches, and Channels, from London Bridge to the South Foreland and Orfordness, and for the English Channel to Beachy Head; also for the Port of Dunkerque and the approaches to the Scheldt, by Stephen Penny, Trinity Pilot,	7	6
Gravesend (illustrated by nineteen Charts)	5	o o
The Pilot's Guide for the English Channel (with which is now incorporated "The Pilot's Handbook for the English Channel" by Staff Commander J. W. King, R.N.), comprising the South Coast of England, and general directions for the Navigation of the Channel; with numerous Charts and Plans of Harbours, edited by H. D. Lanking, P. R. C. S.	7	6
Yacht Cruising, illustrated with drawings and sketches, by Claud Worth. (This book consists partly of "logs" of cruises and partly of articles and notes on various matters connected with cruising)	7	6
A Chart of the Dutch Waterways, by J. & A. B. Powell	4	0
From Calcutta to Bombay Coasting, being the Second Edition of the Handbook to the Ports on the Coast of India between Calcutta and Bombay, including Ceylon and the Maldive and Laccadive Islands, with 11 Charts and 12 Photographs, by Lieut. H. S. Brown, R.N.R., Port Officer, Marine Department, Madras Presidency.		
The Occurrence and Paths of Storms, and the Method of Avoiding Damage from Them, by "Kalb Siad." An Essay on "The occurrence and paths of those storms known as 'Cyclones,' as they are encountered in Eastern Seas between Aden and Singapore, including the neighbourhood of Mauritius and that part of the Indian Ocean between Mauritius and India. Also the method of avoiding damage from them"		0
Winds and Currents of the Mediterranean, by Capt. A. B. Becher, R.N., with remarks on its Navigation at different Seasons of the Year, compiled from various authorities, chiefly Spanish (1864)	3	0
Navigation of the Atlantic Ocean, by Capt. A. B. Becher, R.N., with an account of the Winds, Weather and Currents found therein throughout the year (with Charts) (1892)	5	0
Navigation of the Indian Ocean, China and Australian Seas, by Capt. A. B. Becher, R.N., with an account of the Winds, Weather, and Currents found therein throughout the year (with Charts) (1864)	5	0
Chart of the Sulina Branch of the Danube (European Commission of the Danube), surveyed by Robert Hansford, Surveyor of the Commission, under the direction of C. A. Hartley, Engineer in Chief (showing 45 nautical miles of the River from Sulina), size 10 ft. × 2 ft. 3 in. (1860)	20	0
Notes on Cherbourg (Geographical and Historical description of, &c.), and Chart (1858), by Commander Bedford Pim, R.N., F.R.G.S	1	0
SALVAGE.		
How Ships are Lost, and How to Save Life and Property at Sea (Illustrated), by W. P. B. Manser (1877)	1	0

SEAMANSHIP.	S.	d
Under Square Sail, by Capt. Withers (1898)	2	0
Under the Red Ensign; or, "Going to Sea," by Thomas Gray (1892)	1	6
SEXTANTS.		
Stars and Sextants. Star Distance Tables for facilitating the use of Lord Ellenborough's method of Correcting the Centring and Total Errors of Sextants at Sea, by John Abner Sprigge, Wm. Fraser Doak, M.A., F.R.A.S., T. Charlton Hudson, B.A., F.R.A.S., of H.M. Nautical Almanac Office, Admiralty, and Arthur S. Cox, B.Sc., A.R.C.S	2	6
Captains' and Officers' Bridge or Poop Companion. Tables for finding the distance of an object at sea by inspection (without the use of pencil or paper), at the same time giving the distance the ship will go wide of the object before getting to it, and the course to steer to obtain a required distance. The above gives, with the aid of a compass only, the distance of a moving ship from any fixed object. By A. Hütteroth	2	6
Course and Position by Sextant Observations of two known	_	U
Objects, by LtCol. English, late R.E	0	6
SHIPPING.		
Historical Notes on Shipping, by P. L. Isaac, M.I.N.A. (1879)	1	0
SPEEDS.		
Speed and Consumption of Steam-Ships and Stability, with Algebraic Formula for Economical Speed, and Rules for calculating the alterations in Draught and Trim corresponding to Changes in Displacement, and for using the Hydrometer to estimate those due to Differences in the Specific Gravity of the Water; for use in the Royal Navy and Mercantile Marine; to which has been added a Chapter on Stability, with Practical Rules; Second Edition, Revised and Enlarged, by J. F. Ruthven, Master Mariner, late Lieut. R.N.R., Assoc.Inst.N.A., Younger Brother of the		
Trinity House, F.R.G.S	4	0
Speed Tables, for finding the distance run in a given time at a given speed, between the limits of 10 to 18 knots, by J. D. Macpherson (Pacific Steam Navigation Co.)	1	0
STABILITY.		
A New Theory of the Stability of Ships, second edition, revised and enlarged (with 28 diagrams), by Alf. J. Cooper (1899)	2	0
See also Speed and Consumption of Steamships.		
STARS.		
Steering by the Stars, for Night Flying, Night Marching and Night Boat-Work, between Lat. 40° N. and 60° N., with Sketch Maps and Directions for finding the selected Stars. By James Dundas White, LL.D., M.P	1	0
Position-Line Star Tables. A new and simple method of fixing ship's position by observations of stars near Meridian and Prime Vertical without logarithmic calculation, by H. B. Goodwin, R.N. [These Tables have been adopted officially in the United States Navy.]	5	0
The Bearings of the Principal Bright Stars of greater declination than 23°		
north or 23° south; also those of the Moon and Planets when similarly situated, by A. C. Johnson, R.N. (Published by request)	3	0
Pole-Star Latitude: a Method of Finding the Latitude from an Altitude of the Pole Star, by Darnton Hutton (Master Mariner), B.A., M.Inst.C.E	1	0
Tables for Facilitating the Determination of the Latitude and Time at Sea by Observations of the Stars, by Rear-Admiral C. Shadwell, F.R.S.	2	6
A Handbook for Star Double Altitudes, by A. C. Johnson, R.N., with directions for selecting the Stars	2	6
See also Sextants.		

SIGNALS.		,
Signal Cards—British System, with Plates, containing Instructions for Sema- phoring by Day, and with the Morse Code by Day or Night, together with the principal "Urgent" Light or Sound Signals, in accordance with the New Code. Also, Sheet of New Code Flags (34 Flags, coloured). Compiled by J. Whitly Dixon		d.
(Retired Captain, Royal Navy). (Size, $2\frac{1}{4} \times 19\frac{1}{2}$) mounted on thick card	$\frac{1}{2}$	6 0
SURVEYING.		
Practical Nautical Surveying and the Handicraft of Navigation, by		
Com. T. A. Hull, R.N	3	0
Practical Observations on Surveying (on determining the Position of a Vessel when Sounding), by Commander P. F. Shortland, R.N	1	0
TIDES.		
"How far is that Light?" Tables to allow for current in finding the distance by doubling the angle on the bow, by Fredk. Ball, M.A	1	0
Capt. D. Fulton's Tidal Diagram, an easy and ready method of computing the correction to be applied to the soundings, mounted on stiff cardboard with Rule and Case complete	4	0
Moxly's Theory of the Tides, with numerous diagrams, Second Edition, Revised and Enlarged, by Capt. J. F. Ruthven, F.R.G.S	5	0
Tide Charts of the English and Bristol Channels and entrance of the Thames, compiled from the Admiralty Tide Tables, by Algernon Heber Percy, late Lieut. Royal Navy	5	0
The Direction and Rate of the Tidal Streams at every Hour, for 48 Localities between the Nore and Scilly Isles, compiled from Admiralty Sources only, by F. Howard Collins	2	0
The General Direction of the Tidal Streams in the North Sea for every Hour "before" and "after," and at High Water, Dover, compiled by Com. G. K. Gandy, R.N.R., from Official Publications (on one sheet, size 23 by 17 inches)	1	0
The Universal Tidal Ready Reckoner, calculated by Capt. W. E. Hutchinson.	1	6
	•	Ü
The North Sea. Its Physical Characteristics, Tides, Currents and Fisheries, by W. H. Wheeler, M.Inst.C.E	2	6
TIME.		
How to Find the Time at Sea in less than a Minute, being a New and Accurate Method, with specially adapted Tables, by A. C. Johnson, R.N	2	6
Time, Tide, and Distances. A handy book of reference for the Shipowner, Underwriter, or Traveller. Contains the World's Time compared with Greenwich; the Tides round the British Coasts and those from Bergen viâ the Eastern Route to Japan with that at London Bridge; approximate Distances from Home Ports to Home and Foreign Ports (over 13,000 references); and a Speed and Distance Table for Rates of Speed from 8 to 21 knots for distances up to 14,000 nautical		
miles, by J. McKirdy, R.N.R	15	0
Time-Altitudes for Expediting the Calculation of Apparent-Time, &c., by A. C. Johnson, R.N	4	0
The Blue Coat Boys' Clock. A dial showing the simultaneous time of day at all parts of the earth's surface, size 20 × 17 inches	5	0

WINDS.

	8.	đ.
The True Direction and Velocity of Wind, observed from Ships while Sailing, by James N. Miller (Member of the Liverpool Polytechnic Society), with Table for Indicating the True Direction of the Winds at Sea (1870)		6
The Wind in its Circults: with the explanation of the Origin and Cause of Circular Storms and Equinoctial Gales; illustrated with numerous Diagrams and a Chart of the Prevailing Winds of the World for Spring and Summer, by Lieut. R. H. Armit, R.N. (1870)	7	6
USEFUL PUBLICATIONS FOR YACHTSMEN.		
Amateur Sailing, Reminiscences by C. F. Abdy Williams	4	0
Yacht Cruising, illustrated with drawings and sketches, by Claud Worth of cruises and notes on various matters connected with cruising)	7	6
Navigation Simplified, by a System of Teaching based on First Principles, for Officers (from 2nd Mate to Extra Master) in the Mercantile Marine and Yachtsmen. Illustrated by numerous diagrams, by Captain P. Thompson, F.R.A.S	12	0
Practical Coastal Navigation, with charts and diagrams by Count de Miremont	4	0
Concise Navigating Directions for the River Thames, including all the Pools, Reaches, and Channels, from London Bridge to the South Foreland and Orfordness, and for the English Channel to Beachy Head; also for the Port of Dunkerque, and the approaches to the Scheldt, by Stephen Penny, Trinity Pilot, Gravesent (illustrated by nineteen charts)	7	6
East Coast Rivers. Charts and Sailing Directions for the Rivers Roach, Crouch, Blackwater, Colne, Stour, Orwell, Deben, Ore and Alde; together with General Charts from the Thames to Southwold, by Lieut. S. V. S. C. Messum, R.N	5	0
The Pilot's Guide for the English Channel (with which is now incorporated "The Pilot's Handbook for the English Channel"), comprising the South Coast of England and general direction for the Navigation of the Channel; with numerous Charts and Plans of Harbours, edited by H. D. Jenkins, F.R.G.S	7	6
A Chart of the Dutch Waterways, by J. & A. B. Powell	4	0
Correct Magnetic Courses and Distances, from and to Various Ports round the British Isles, by Arthur Underhill, LL.D., Commodore of the Royal Cruising Club, assisted by several Members of the Club. 2nd edition	2	0
	4	Ü
3 H (How's Her Head) Indicator and Rule of the Road at Sea, by George Spillane	1	6
The Roxburgh Compass Error Card. For quickly and accurately correcting True and Compass Courses and Bearings by a New Method; extremely simple and easy to work. Size 10×11 inches; varnished. By C. R. Wylie	3	0
		1
ADMIRALTY CHARTS.		
Official Catalogue of Admiralty Charts, Plans, and Salling Directions. A Vol. of 330 pages and 24 Index Charts No ci	harg	ge.
On the Correction and Use of Charts, Light Lists, and Sailing		
Directions. 40 pp., bound red cloth No c	harg	je.

British Admiralty Charts

PUBLISHED BY THE HYDROGRAPHIC DEPARTMENT.

Comparative Statement, giving the number of New British Admiralty Charts published, Corrections made to the Chart Plates, and Number of Charts printed, for various years from 1879 to 1913, shewing the large increase of work in the Department during that period.

12						
Number of Charts Printed for the Royal Navy, Government Departments, and the General Public.	192,060	297,120	580,207	689,930	889,336	
Notices to Mariners issued,	205	723	874	1,392	2,030*	
Minor Corrections at the hands of the Draughtsmen.	21,550	37,270	35,500	60,499	169,064	•
Minor Corrections Made to the Chart Plates.	1,880	4,750	4,520	5,320	608'6	•
Chart Plates Improved by Large Corrections and Additions.	140	136	224	196	1,196	1916, and 1916 not yet available.)
Chart Plates Improved by Additional Plans.	20	10	30	36	45	1916, and 1916 r
New Chart Plates Engraved and Published.	62	92	102	110	20	The figures for years 1914,
Years.	1879	1890	1900	1905	1913	(The fig

* Of each of these Notices over 10,000 copies are printed off weekly and distributed gratis to the British and Foreign Mercantile Marine Services, Yachting centres, and the general Shipping public, as well as to H.M. Fleet.

BOOKS OF SAILING DIRECTIONS HAVE BEEN PUBLISHED FOR EVERY SEA.

CATALOGUES (GRATIS) FROM J. D. POTTER, 145, MINORIES, LONDON, E.C.

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.

This book is DUE on the last date stamped below.

AS'	TRONOMY	LIBRARY
		1
•		
		•
LD 21-100m-11,'49 (B7146	 	
22 32 20000 22, 20 (2) 1220		

