Линейная алгебра · Linear Algebra

Вектор

Вектор – элемент векторного пространства с произвольной размерностью по одному из измерений.

Основные операции на векторами: $\overrightarrow{A} = (a_1, a_2, a_3); \overrightarrow{B} = (b_1, b_2, b_3)$

- 1. Сумма векторов $\overrightarrow{A}+\overrightarrow{B}=(a_1+b_1,a_2+b_2,a_3+b_3);$
- 2.Разность векторов $\overrightarrow{A}-\overrightarrow{B}=(a_1-b_1,a_2-b_2,a_3-b_3);$
- **3.Произведение вектора** \overrightarrow{A} на число λ : $\lambda \overrightarrow{A} = (\lambda a_1, \lambda a_2, \lambda a_3);$
- 4.Длина (норма) вектора $|\overrightarrow{A}| = \sqrt{a_1^2 + a_2^2 + a_3^2};$
- 5.Скалярное произведение векторов \overrightarrow{A} и \overrightarrow{B} : $(\overrightarrow{A},\overrightarrow{B})=|\overrightarrow{A}|\cdot|\overrightarrow{B}|\cdot\cos\angle(\overrightarrow{A},\overrightarrow{B});$
- 6.Скалярное произведение через координаты: $(\overrightarrow{A}, \overrightarrow{B}) = \sum_{i=1}^n a_i b_i;$
- 7.Косинусное сходство: $\cos \angle (\overrightarrow{A}, \overrightarrow{B}) = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}};$

Векторное пространство

Векторное пространство – пространство всех векторов, для которых определены операции выше. Так же хороший способ визуализации

	feature1	feature2					
а	1	2					
b	4	3					

4D и выше явной возможности отобразить у нас нет, однако все операции над векторами все так же продолжают работать

Базис векторного пространства

Базис векторного пространства – такой набор векторов в пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора.

	feature1	feature2
0	7.64	6.37
1	7.12	0.00
	•••	•••
48	3.28	8.08
49	0.37	7.65

Коллинеарные векторы

Векторы называются колинеарными, если один можно выразить линейным образом через другой

feature1	feature2					
1.0	1.469590					
1.2	4.942208					
•••	•••					
50.6	79.625369					
50.8	81.806239					

векторы feature1 и feature2 коллинеарны.

Матрицы

• Матрица прямоугольная структура хранения данных. Матрицу можно трактовать как совокупность векторов, И использовать для хранения данных.

Table data to matrix

• Содержимое таблицы в данном случае является матрицей

Text to matrix

- O. I like this movie, it's funny.
- 1. I hate hate this movie movie.
- 2. This was awesome! I like it.
- 3. Nice one. I love love love it.

	awesome	funny	hate	it	like	love	movie	nice	one	this	was
0	0	1	0	1	1	0	1	0	0	1	0
1	0	0	2	0	0	0	2	0	0	1	0
2	1	0	0	1	1	0	0	0	0	1	1
3	0	0	0	1	0	3	0	1	1	1	0

• при изучениии NLP вы будете изучать разные способы text to Matrix

image to Matrix

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

• Каждое значение интенсивность пикселя в конкретной координате

Основные виды матриц

ullet если m=n, то матрица квадратная

$$egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{22} & a_{33} \end{pmatrix}$$

• если все элементы матрицы равны нулю, то матрица нулевая

$$0_1=|0|,0_2=egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$$

• если элементы главной диагонали матрицы равны 1, а остальные нулю, то матрица едничиная

$$I_1 = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} I_3 = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Операции над матрицами

• Самая важная операция - матричное умножение

$$\begin{bmatrix} 1 & 2 \\ 5 & 6 \\ 7 & 8 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 3 + 2 \cdot 4 \\ 5 \cdot 3 + 6 \cdot 4 \\ 7 \cdot 3 + 8 \cdot 4 \end{bmatrix} = \begin{bmatrix} 11 \\ 39 \\ 53 \end{bmatrix}$$

• Умножение матриц доступно только в случае, если кол-во столбцов первой матрицы совпадает с количеством строк второй матрицы

Операции над матрицами

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \bullet \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + by_2 \end{pmatrix}$$
$$A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} B = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$$
$$A \cdot B = ?$$

Операции над матрицами

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \bullet \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + by_2 \end{pmatrix}$$
$$A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} B = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$$
$$A \cdot B = \begin{pmatrix} -1 & 4 \\ 3 & 3 \end{pmatrix}$$

Матрица как линейный оператор

Матрицу можно воспринимать как **объект линейной трансформации** входного объекта путем линейных преобразований.

Линейные операторы

• Данная матрица делает поворот на 180 градусов, а также растягивает пространство в два раза вдоль обеих координат.

Транфсформация в изображениях

Предположим, существует линейный оператор

$$\mathbf{A}(v) = 2v$$

Его можно записать в матричном виде. Если есть базис $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ в двумерном пространстве, применяем оператор к базисным векторам:

$$ullet \mathbf{A}(e_1) = 2 egin{pmatrix} 1 \ 0 \end{pmatrix} o \mathbf{A} = egin{pmatrix} 2 & * \ 0 & * \end{pmatrix}$$

$$ullet \mathbf{A}(e_2) = 2 egin{pmatrix} 0 \ 1 \end{pmatrix}
ightarrow \mathbf{A} = egin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix}$$

$$ullet$$
 Дан вектор $c=inom{-1}{3}$, матрица линейного преобразования ${f A}(v)=2v$

Решение:

$$\mathbf{A}(c) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$$

 $\mathbf{A}(v)=kv$ – преобразование подобия:

- ullet если k>1, то объект растягивается в k раз
- ullet если 0 < k < 1, то объект сжимается в k раз
- ullet если k=1, то преобразование тождественно
- ullet если k < 0, то ?

Что произойдет с объектом, если применить к нему следующие преобразования:

$$ullet$$
 $\mathbf{A}_1 = egin{pmatrix} 0.3 & 0 \ 0 & 1 \end{pmatrix}$

$$\bullet \ \mathbf{A}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix}$$

$$ullet \ \mathbf{A}_3 = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$$

$$ullet \mathbf{A}_4 = egin{pmatrix} \cos lpha & -\sin lpha \ \sin lpha & \cos lpha \end{pmatrix}$$

Итоги

- Матрицы, векторы и операции над ними ключевое в линейной алгебре
- Многие алгоритмы машинного обучения и глубокого обучения сплошное перемножение матриц
- Для матриц полезными характеристиками также являются ранг матрицы, определитель матрицы, обратная матрица. Это остается на самоизучение в силу достаточной простоты. Короткие видео в плейлисте ниже помогут вам в этом.
- https://www.youtube.com/playlist?list=PLVjLpKXnAGLXPaS7FRBjd5yZeXwJxZil2