

Bab 5 Context-Free Grammars

Formalism
Derivations
Backus-Naur Form
Left- and Rightmost Derivations

Informatika

Review Minggu Lalu

- Product Automaton
 - Equivalence 2 FA (apakah L = M)
 - Containment 2 FA (apakah L ⊆ M)
- Minimisasi State dg Table Filling Algorithm (menggunakan Distinguishable Table)

В	x						
B C	х	x					
D	х	x	x				
E		x	x	x			
F	x	x	х		х		
G	X	x	х	х	х	х	
E F G H	x		x	x	x	x	х
	Α	В	С	D	Е	F	G

Buatlah sebuah Language yang dapat menerima string palindrom

- Contoh:
 - MALAM
 - MAKAM
 - KASUR NABABAN RUSAK

Informal Comments

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Informal Comments – (2)

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- These variables are defined recursively, in terms of one another.
- Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\{0^n1^n \mid n \ge 1\}$

Productions:

- Basis: 01 is in the language.
- Induction: if w is in the language, then so is 0w1.

CFG Formalism

- There are 4 components.
- Terminals = symbols of the alphabet of the language being defined.
- Variables = nonterminals = a finite set of other symbols, each of which represents a language.
- Start symbol = the variable whose language is the one being defined.

Productions

 A production has the form variable -> string of variables and terminals.

Convention:

- A, B, C,... are variables.
- a, b, c,... are terminals.
- ..., X, Y, Z are either terminals or variables.
- ..., w, x, y, z are strings of terminals only.
- α , β , γ ,... are strings of terminals and/or variables.

Example: Formal CFG

- Here is a formal CFG for { 0ⁿ1ⁿ | n ≥ 1}.
- Terminals = {0, 1}.
- Variables = {S}.
- Start symbol = S.
- Productions =

$$S -> 01$$

Derivations – Intuition

- We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
 - That is, the "productions for A" are those that have A on the left side of the ->.

KK - Informatika

Derivations – Formalism

- We say $\alpha A\beta => \alpha \gamma \beta$ if A -> γ is a production.
- Example: S -> 01; S -> 0S1.
- (S => 0(S)) => 0((S))1 => 0(01)11.

Iterated Derivation

- =>* means "zero or more derivation steps."
- Basis: $\alpha = >^* \alpha$ for any string α .
- Induction: if $\alpha =>^* \beta$ and $\beta => \gamma$, then $\alpha =>^* \gamma$.

Example: Iterated Derivation

- S -> 01; S -> 0S1.
- S => 0S1 => 00S11 => 000111.
- So, S =>* S; S =>* 0S1; S =>* 00S11; S =>* 000111.

Sentential Forms

- Any string of variables and/or terminals derived from the start symbol is called a sentential form.
- Formally, α is a sentential form iff $S = >^* \alpha$.

Language of a Grammar

- If G is a CFG, then L(G), the language of G, is {w | S =>* w}.
 - Note: w must be a terminal string, S is the start symbol.
- Example: G has productions S -> ∈ and S -> 0S1.
- $L(G) = \{0^n1^n \mid n \ge 0\}.$

Note: ϵ is a legitimate right side.

KK - Informatika

Example:
$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$
, where $A = \{P \to \epsilon, P \to 0, P \to 1, P \to 0P0, P \to 1P1\}$.

Sometimes we group productions with the same head, e.g. $A = \{P \rightarrow \epsilon |0|1|0P0|1P1\}$.

KK - Informatika

Context-Free Languages

- A language that is defined by some CFG is called a context-free language.
- There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuitively: CFL's can count two things, not three.

Buatlah sebuah CFG yang menerima Bahasa {w | length of w is odd} $\{w \mid |w| \text{ is odd}\}$ dengan symbol a dan b

$$S \rightarrow A \mid B$$

 $A \rightarrow aSS \mid a$

KK - Informatika

$$\{0^n1^{2n} \mid n>0\}$$

$S \rightarrow 011 | 0S11$

$$\{0^n1^n \mid n>0\} \ U \ \{0^n1^{2n} \mid n>0\}$$

$$S \rightarrow B \mid A$$

 $B \rightarrow 01 \mid 0B1$
 $A \rightarrow 011 \mid 0A11$

$$\{a^n b^m \mid 0 \le n \le m \le 2n\}$$

$$S \rightarrow eps$$

$$S \rightarrow ab$$

$$S \rightarrow abb$$

$$S \rightarrow aSb$$

Aabbb: S→aSbb→aaSbbb→aabbb

BNF Notation

- Grammars for programming languages are often written in BNF (Backus-Naur Form).
- Variables are words in <...>; Example:
 <statement>.
- Terminals are often multicharacter strings indicated by boldface or underline; Example: while or WHILE.

BNF Notation – (2)

- Symbol ::= is often used for ->.
- Symbol | is used for "or."
 - A shorthand for a list of productions with the same left side.
- Example: S -> 0S1 | 01 is shorthand for S -> 0S1 and S -> 01.

BNF Notation – Kleene Closure

- Symbol ... is used for "one or more."
- Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9
- <unsigned integer> ::= <digit>...
 - Note: that's not exactly the * of RE's.
- Translation: Replace α ... with a new variable A and productions A -> A α | α .

Example: Kleene Closure

 Grammar for unsigned integers can be replaced by:

BNF Notation: Optional Elements

- Surround one or more symbols by [...] to make them optional.
- Example: <statement> ::= if <condition> then
 <statement> [; else <statement>]
- Translation: replace [α] by a new variable A with productions A -> α | ϵ .

Example: Optional Elements

Grammar for if-then-else can be replaced by:

A -> ;eS |
$$\epsilon$$

BNF Notation – Grouping

- Use {...} to surround a sequence of symbols that need to be treated as a unit.
 - Typically, they are followed by a ... for "one or more."
- Example: <statement list> ::= <statement> [{;<statement>}...]

KK - Informatika

Translation: Grouping

- You may, if you wish, create a new variable A for {α}.
- One production for A: A -> α .
- Use A in place of $\{\alpha\}$.

Example: Grouping

- Replace by L -> S [A...] A -> ;S
 - A stands for {;S}.
- Then by L -> SB B -> A... | ε A -> ;S
 - B stands for [A…] (zero or more A's).
- Finally by L -> SB B -> C | ε C -> AC | A A -> ;S
 - C stands for A...

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these "distinctions without a difference."

Leftmost Derivations

- Say wA $\alpha =>_{lm} w\beta\alpha$ if w is a string of terminals only and A -> β is a production.
- Also, $\alpha =>^*_{lm} \beta$ if α becomes β by a sequence of 0 or more $=>_{lm}$ steps.

KK - Informatika

Example: Leftmost Derivations

Balanced-parentheses grammar:

- $S =>_{Im} SS =>_{Im} (S)S =>_{Im} (())S =>_{Im} (())()$
- Thus, $S = >^*_{lm} (())()$
- S => SS => S() => (S)() => (())() is a derivation, but not a leftmost derivation.

Rightmost Derivations

- Say $\alpha Aw =>_{rm} \alpha \beta w$ if w is a string of terminals only and A -> β is a production.
- Also, $\alpha = >^*_{rm} \beta$ if α becomes β by a sequence of 0 or more $= >_{rm}$ steps.

Example: Rightmost Derivations

Balanced-parentheses grammar:

- $S =>_{rm} SS =>_{rm} S() =>_{rm} (S)() =>_{rm} (())()$
- Thus, S =>*_{rm} (())()
- S => SS => SSS => S()S => ()()S => ()()() is neither a rightmost nor a leftmost derivation.

Parse Trees

Definitions
Relationship to Left- and Rightmost
Derivations
Ambiguity in Grammars

Informatika

Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- Leaves: labeled by a terminal or ε.
- Interior nodes: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree for (())()

Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order
 - That is, in the order of a preorder traversal.

is called the *yield* of the parse tree.

• Example: yield of S is (())()

Parse Trees, Left- and Rightmost Derivations

 For every parse tree, there is a unique leftmost, and a unique rightmost derivation.

We'll prove:

- 1. If there is a parse tree with root labeled A and yield w, then A =>*_{Im} w.
- 2. If A =>*_{lm} w, then there is a parse tree with root A and yield w.

Proof – Part 1

- Induction on the height (length of the longest path from the root) of the tree.
- Basis: height 1. Tree looks like
- A -> a₁...a_n must be a

A production.

• Thus, $A = >^*_{lm} a_1 ... a_n$. $a_1 ... a_n$

Part 1 – Induction

- Assume (1) for trees of height < h, and let this tree have height h:
- By IH, $X_i = >^*_{Im} W_i$.
 - Note: if X_i is a terminal, then $X_i = w_i$.
- Thus, $A =>_{lm} X_1...X_n$ $=>^*_{lm} W_1X_2...X_n =>^*_{lm}$ $W_1W_2X_3...X_n =>^*_{lm} ...$ $=>^*_{lm} W_1...W_n$

Proof: Part 2

- Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.

Part 2 – Basis

• If $A = >^*_{lm} a_1...a_n$ by a one-step derivation, then there must be a parse tree

Part 2 – Induction

- Assume (2) for derivations of fewer than k > 1 steps, and let A =>*_{lm} w be a k-step derivation.
- First step is $A =>_{lm} X_1...X_n$.
- Key point: w can be divided so the first portion is derived from X₁, the next is derived from X₂, and so on.
 - If X_i is a terminal, then $w_i = X_i$.

Induction – (2)

- That is, $X_i = \sum_{lm}^* w_l$ for all i such that X_i is a variable.
 - And the derivation takes fewer than k steps.
- By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield w_i.
- Thus, there is a parse tree

1

Parse Trees and Rightmost Derivations

- The ideas are essentially the mirror image of the proof for leftmost derivations.
- Left to the imagination.

Ambiguous Grammars

- A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- Example: S -> SS | (S) | ()
- Two parse trees for ()()() on next slide.

Example – Continued

Example: (simple) expressions in a typical proglang. Operators are + and *, and arguments are identifiers, i.e. strings in $L((a+b)(a+b+0+1)^*)$

The expressions are defined by the grammar

$$G = (\{E, I\}, T, P, E)$$

where $T = \{+, *, (,), a, b, 0, 1\}$ and P is the following set of productions:

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

the sentential form E + E * E has two derivations:

$$E \Rightarrow E + E \Rightarrow E + E * E$$

and

$$E \Rightarrow E * E \Rightarrow E + E * E$$

This gives us two parse trees:

Ambiguity, Left- and Rightmost Derivations

- If there are two different parse trees, they
 must produce two different leftmost
 derivations by the construction given in the
 proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, etc. – (2)

- Thus, equivalent definitions of "ambiguous grammar" are:
 - 1. There is a string in the language that has two different leftmost derivations.
 - There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, no Languages

 For the balanced-parentheses language, here is another CFG, which is unambiguous.

Example: Unambiguous Grammar

$$B \rightarrow (RB \mid \epsilon R \rightarrow) \mid (RR$$

- Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.
 - If we need to expand B, then use B -> (RB if the next symbol is "(" and ϵ if at the end.
 - If we need to expand R, use R ->) if the next symbol is ")" and (RR if it is "(".

Remaining Input:

(())()

Next

symbol

Steps of leftmost derivation:

B

$$B \rightarrow (RB \mid \epsilon R \rightarrow) \mid (RR)$$

Remaining Input:

())()

Next symbol Steps of leftmost derivation:

B

(RB

$$B \rightarrow (RB \mid \epsilon R \rightarrow) \mid (RR)$$

Remaining Input:

))()

Next symbol Steps of leftmost derivation:

B

(RB

((RRB

$$B \rightarrow (RB \mid \epsilon R \rightarrow) \mid (RR)$$

Remaining Input:

)()

Next symbol Steps of leftmost derivation:

B

(RB

((RRB

(()RB

R ->) | (RR

 $B \rightarrow (RB \mid \epsilon)$

Steps of leftmost Remaining Input: derivation:

Next symbol

 $B \rightarrow (RB \mid \epsilon R \rightarrow) \mid (RR)$

B

(RB

((RRB

(()RB

(())B

$$R \rightarrow) \mid (RR)$$

Steps of leftmos derivation:

Remaining Input:

(())(RB

)

(RB

((RRB

Next symbol

(()RB

(())B

$$B \rightarrow (RB \mid \epsilon)$$

Steps of leftmost derivation:

Remaining Input:

B (())(RB

(RB

(())()B

Next symbol ((RRB

(()RB

(())B

$$B \rightarrow (RB \mid \epsilon)$$

Steps of leftmost derivation:

Remaining Input:

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR$$

Next

symbol

LL(1) Grammars

- As an aside, a grammar such B → (RB | ∈ R →) | (RR, where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).
 - "Leftmost derivation, left-to-right scan, one symbol of lookahead."

LL(1) Grammars – (2)

- Most programming languages have LL(1) grammars.
- LL(1) grammars are never ambiguous.

Inherent Ambiguity

- It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.
- Unfortunately, certain CFL's are inherently ambiguous, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

- The language {0ⁱ1^j2^k | i = j or j = k} is inherently ambiguous.
- Intuitively, at least some of the strings of the form 0ⁿ1ⁿ2ⁿ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

One Possible Ambiguous Grammar

A generates equal 0's and 1's

B generates any number of 2's

C generates any number of 0's

D generates equal 1's and 2's

And there are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.:

$$S => AB => 01B => 012$$

The expressions are defined by the grammar

$$G = (\{E, I\}, T, P, E)$$

where $T = \{+, *, (,), a, b, 0, 1\}$ and P is the following set of productions:

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

8.
$$I \rightarrow Ib$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

Example: The terminal string a + a * a has two parse trees:

Latihan

Desain context free grammar:

- menerima string () yg berpasangan, contoh: (), (()), ()()
- menerima string berupa ekspresi matematika untuk simbol terminal {0, 1, +, *, (,)}.
- menerima string dengan jumlah 1 adalah dua kali jumlah 0

 $\{w \mid w \text{ starts and ends with the same symbol}\}$

 $\{a^nb^mc^k:k=n+m\ \}$

$$\{0^{i}1^{j}2^{k} \mid i=j \text{ or } j=k\}$$

 $\{w\#x\mid w^R \text{ is a substring of } x, \text{ where } w, x\in\{a,b\}^*\}$

 $\{w\#x\mid w^R \text{ is a substring of } x, \text{ where } w, x\in\{a,b\}^*\}$