

SEQUENCE LISTING

<110> Sun, Tian-Qiang
Feng, Jia-Jia
Reinhard, Christoph
Fantl, Wendy J.
Williams, Lewis T.

<120> ISOLATION OF DROSOPHILA AND HUMAN POLYNUCLEOTIDES ENCODING PAR-1 KINASE, POLYPEPTIDES ENCODED BY THE POLYNUCLEOTIDES AND METHODS UTILIZING THE POLYNUCLEOTIDES AND POLYPEPTIDES

<130> PP-016093.002/200130.525

<140> US
<141> 2001-07-30

<160> 22

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2271
<212> DNA
<213> Homo sapiens

<400> 1

gaattaaatgtccactaggaccattgc	caacggtgaa	tgaacgagac	60
actgaaaaccacacgtcaca	tggagatggcgtaa	ttacctctcg	120
tcaggagctc	ctctata	tccgtgcag	180
aactacagac	tgttggaaaac	aatcggcaag	240
catatccta	caggcagaga	ggatgttgcata	300
acaagtctac	aaaagcttt	aaaataatttgc	360
atagtgaagt	tattcgaagt	aaaaaaacac	420
gcaagtggag	tgttgcatttgc	tctaccta	480
gcaagatcta	atttagaca	gttgcacatg	540
gtacatcgag	acctcaaggc	gcagttcaat	600
gcagatttcg	tgaaaatcta	actgccatca	660
agtcctccat	tttttagccaa	gaaacggatc	720
cgcggcactc	tgaatttact	gttggcggt	780
gatgtgttgc	gttgcacat	aatatgacgg	840
ggcggaaaacc	gttgcacat	gttgcacat	900
tacatgtcta	aaacatttcc	tttgcgttgc	960
cgcggcactc	aaacatttcc	tttgcgttgc	1020
gatgtgttgc	aaacatttcc	tttgcgttgc	1080
ggcggaaaacc	aaacatttcc	tttgcgttgc	1140
tacatgtcta	aaacatttcc	tttgcgttgc	1200
cgcggcactc	aaacatttcc	tttgcgttgc	1260
gatgtgttgc	aaacatttcc	tttgcgttgc	1320
ggcggaaaacc	aaacatttcc	tttgcgttgc	1380
tacatgtcta	aaacatttcc	tttgcgttgc	1440

gcaagtaatc ctaataaggc ggatattcct gaacgcaaga aaagctccac tgcgtccatgt	1500
agtaaacacag catctggtgg aatgacacga cgaaataactt atgtttcgag tgagagaact	1560
acagctgata gacactcagt gatcagaat ggcaaagaaa acagcactat tcctgatcag	1620
agaactccag ttgcttcaac acacagtatc agtagtgcat ccaccccaaa tcgaatccgc	1680
ttcccaagag gcactgcag tcgtacact ttccacggcc agccccggaa acggcgaacc	1740
gcaacatata atggccctcc tgccctccc agcctgtccc atgaagccac accattgtcc	1800
cagactcgaa gccgaggctc cactaatctc tttagtaat taacttcaaa actcacaagg	1860
aggcttccaa ctgaatatga gagaacggg agatatgagg gctcaagtgc caatgtatct	1920
gctgagcaaa aagatgaaaa caaagaagca aagcctcgat ccctacgctt cacctggagc	1980
atgaaaacca ctgttcaat ggatccggg gacatgtgc gggaaatccg caaagtgttg	2040
gacccaata actgcgacta tgagcagagg gagcgccttct tgctcttctg cgtccacgga	2100
gatgggcacg cgagaaacct cgtcagtg gaaatggaag tgtcaagct gccaagactg	2160
tctctgaacg gggtcccggtt taagcggata tcggggacat ccatagcctt caaaaatatt	2220
gcttccaaaa ttgccaatga gctaaagctg taacccagtg attatgtgt a	2271

<210> 2

<211> 2271

<212> DNA

<213> Homo sapiens

<400> 2

cttaatttca cgtcatttta caggtgatcc tgggttaacg gttgccactt acttgctctg	60
tgacttttgg ttgtcagttt acctctaccc gcagtttttc aatggagagc atggcggcg	120
agtccctcgag ccacatctt gagatatcg aggacacgtc tacttggat agtgtagcct	180
ttgatgtctg acaactttt ttagccgtt cccttaaaaac gttttcattt taaccgttct	240
gtataaggaat gtccgtctt ccaacgttat ttttattaaac tttttttagt caacttaggt	300
tgttcagatg ttttcgagaa gtctttcat tcttattact tctaaaattt agtagggta	360
tatcaattca ataagcttca gtaactttgg cttttttgg agatggatta gtacattata	420
cgttcacccctc cacttcataa actgataaac caacgtgtac cgccctactt ctttttctt	480
cgttctagat ttaaatctgt ctaacacaga cgtcaagttt tgacggtagt ctttgcttag	540
catgtagctc tggagttccg acttttagat aacaatctac ggctatactt gtaattttat	600
cgtctaaagc caaaatcggtt acttaaatga caaccggcat ttgagctgtg caaaaacaccg	660
tcaggaggtt tgctcggtt actcgagaag gtcccgctt ttatactgcc cggtcttcac	720
ctacacacctt cagaccccca gtaaaaatatg tgtgtatcgtt caccgagtga agggaaacta	780
cccggtttgg atttccttga ctctctctt cataattctc cctttatgtc ttaagggaaag	840
atgtacatgtt gtctgacact ttttggaaagat tttgcaaaagg accacgattt aggttaattt	900
gcgcgcgttagt atctcgttt gtacttccctg tccacctagt tacgtccctg acttcttcta	960
cttgagtttgg gtaaaacaact tggctctgtt ctgttagatc tgggttttttcc ttatctataa	1020
taccaccctt accctataag tggttttttttaa gagaatcattt ctactttatg	1080
ctactttatgt gtctgatgtt aaacaataac ccctttttaa gaagtctcga cctacgatca	1140
ctaaggtcaa gatcgctgtt agaaagtggaa cgattccaaat ccggctcgatc actagagttt	1200
ttgtcatgac cggtcagagg agtgggtttt cacgtctttt cacaagaagat ttccgttttcc	1260
gtttctgcgtt tgtcactgtt acgacatgtt cgataaggaa gacaacacccg cataggctt	1320
tcctcagtctt ggtcgtagt tttttttttt tacctttttt gggccctttt	1380
agtttccatgtt caccgacaaacc ttctttttttt taacggatgtt ggtccgggtt cggccctttt	1440
cgttcattttt gatttttttcc cttttttttt taacggatgtt ggtccgggtt cggccctttt	1500
tcattttttttt gttttttttt tttttttttt tttttttttt tttttttttt	1560
tgtcgactat ctgtgagttt ctaatgttttta cttttttttt tttttttttt	1620
tcttgagggtt aacggatgtt tttttttttt tttttttttt tttttttttt	1680
aagggttctt cgtgacgggtt agcattttttt tttttttttt tttttttttt	1740
cgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1800
gtctgagttt cggctccggat gtgattttttt tttttttttt tttttttttt	1860
tccggatgtt gactttttttt tttttttttt tttttttttt tttttttttt	1920
cgactcgatgtt ttctttttttt tttttttttt tttttttttt tttttttttt	1980

tacttttgtt gatcaaggta cctagggccc ctgtactacg cccttaggc gtttcacaac	2040
ctgcggttat tgacgctgat actcgctcc ctcgcagaaga acgagaagac gcagggcct	2100
ctaccctgtgc gccttttgc gcacgtcacc ctttaccttc acacgttcga cggttctgac	2160
agagacttgc cccaggccaa attcgctat agcccctgta ggtatcgaa gttttataa	2220
cgaaggttt aacggttact cgatttcgac attgggtcac taatactaca t	2271

<210> 3

<211> 744

<212> PRT

<213> Homo sapiens

<400> 3

Met Ser Thr Arg Thr Pro Leu Pro Thr Val Asn Glu Arg Asp Thr Glu	
1 5 10 15	
Asn His Thr Ser His Gly Asp Gly Arg Gln Glu Val Thr Ser Arg Thr	
20 25 30	
Ser Arg Ser Gly Ala Arg Cys Arg Asn Ser Ile Ala Ser Cys Ala Asp	
35 40 45	
Glu Gln Pro His Ile Gly Asn Tyr Arg Leu Leu Lys Thr Ile Gly Lys	
50 55 60	
Gly Asn Phe Ala Lys Val Lys Leu Ala Arg His Ile Leu Thr Gly Arg	
65 70 75 80	
Glu Val Ala Ile Lys Ile Ile Asp Lys Thr Gln Leu Asn Pro Thr Ser	
85 90 95	
Leu Gln Lys Leu Phe Arg Glu Val Arg Ile Met Lys Ile Leu Asn His	
100 105 110	
Pro Asn Ile Val Lys Leu Phe Glu Val Ile Glu Thr Glu Lys Thr Leu	
115 120 125	
Tyr Leu Ile Met Glu Tyr Ala Ser Gly Gly Glu Val Phe Asp Tyr Leu	
130 135 140	
Val Ala His Gly Arg Met Lys Glu Lys Glu Ala Arg Ser Lys Phe Arg	
145 150 155 160	
Gln Ile Val Ser Ala Val Gln Tyr Cys His Gln Lys Arg Ile Val His	
165 170 175	
Arg Asp Leu Lys Ala Glu Asn Leu Leu Asp Ala Asp Met Asn Ile	
180 185 190	
Lys Ile Ala Asp Phe Gly Phe Ser Asn Glu Phe Thr Val Gly Gly Lys	
195 200 205	
Leu Asp Thr Phe Cys Gly Ser Pro Pro Tyr Ala Ala Pro Glu Leu Phe	
210 215 220	
Gln Gly Lys Lys Tyr Asp Gly Pro Glu Val Asp Val Trp Ser Leu Gly	
225 230 235 240	
Val Ile Leu Tyr Thr Leu Val Ser Gly Ser Leu Pro Phe Asp Gly Gln	
245 250 255	
Asn Leu Lys Glu Leu Arg Glu Arg Val Leu Arg Gly Lys Tyr Arg Ile	
260 265 270	
Pro Phe Tyr Met Ser Thr Asp Cys Glu Asn Leu Leu Lys Arg Phe Leu	
275 280 285	
Val Leu Asn Pro Ile Lys Arg Gly Thr Leu Glu Gln Ile Met Lys Asp	
290 295 300	
Arg Trp Ile Asn Ala Gly His Glu Glu Asp Glu Leu Lys Pro Phe Val	
305 310 315 320	
Glu Pro Glu Leu Asp Ile Ser Asp Gln Lys Arg Ile Asp Ile Met Val	
325 330 335	

Gly Met Gly Tyr Ser Gln Glu Glu Ile Gln Glu Ser Leu Ser Lys Met
 340 345 350
 Lys Tyr Asp Glu Ile Thr Ala Thr Tyr Leu Leu Leu Gly Arg Lys Ser
 355 360 365
 Ser Glu Leu Asp Ala Ser Asp Ser Ser Ser Ser Asn Leu Ser Leu
 370 375 380
 Ala Lys Val Arg Pro Ser Ser Asp Leu Asn Asn Ser Thr Gly Gln Ser
 385 390 395 400
 Pro His His Lys Val Gln Arg Ser Val Ser Ser Ser Gln Lys Gln Arg
 405 410 415
 Arg Tyr Ser Asp His Ala Gly Pro Ala Ile Pro Ser Val Val Ala Tyr
 420 425 430
 Pro Lys Arg Ser Gln Thr Ser Thr Ala Asp Ser Asp Leu Lys Glu Asp
 435 440 445
 Gly Ile Ser Ser Arg Lys Ser Ser Gly Ser Ala Val Gly Gly Lys Gly
 450 455 460
 Ile Ala Pro Ala Ser Pro Met Leu Gly Asn Ala Ser Asn Pro Asn Lys
 465 470 475 480
 Ala Asp Ile Pro Glu Arg Lys Lys Ser Ser Thr Val Pro Ser Ser Asn
 485 490 495
 Thr Ala Ser Gly Gly Met Thr Arg Arg Asn Thr Tyr Val Cys Ser Glu
 500 505 510
 Arg Thr Thr Ala Asp Arg His Ser Val Ile Gln Asn Gly Lys Glu Asn
 515 520 525
 Ser Thr Ile Pro Asp Gln Arg Thr Pro Val Ala Ser Thr His Ser Ile
 530 535 540
 Ser Ser Ala Ala Thr Pro Asp Arg Ile Arg Phe Pro Arg Gly Thr Ala
 545 550 555 560
 Ser Arg Ser Thr Phe His Gly Gln Pro Arg Glu Arg Arg Thr Ala Thr
 565 570 575
 Tyr Asn Gly Pro Pro Ala Ser Pro Ser Leu Ser His Glu Ala Thr Pro
 580 585 590
 Leu Ser Gln Thr Arg Ser Arg Gly Ser Thr Asn Leu Phe Ser Lys Leu
 595 600 605
 Thr Ser Lys Leu Thr Arg Arg Leu Pro Thr Glu Tyr Glu Arg Asn Gly
 610 615 620
 Arg Tyr Glu Gly Ser Ser Arg Asn Val Ser Ala Glu Gln Lys Asp Glu
 625 630 635 640
 Asn Lys Glu Ala Lys Pro Arg Ser Leu Arg Phe Thr Trp Ser Met Lys
 645 650 655
 Thr Thr Ser Ser Met Asp Pro Gly Asp Met Met Arg Glu Ile Arg Lys
 660 665 670
 Val Leu Asp Ala Asn Asn Cys Asp Tyr Glu Gln Arg Glu Arg Phe Leu
 675 680 685
 Leu Phe Cys Val His Gly Asp Gly His Ala Glu Asn Leu Val Gln Trp
 690 695 700
 Glu Met Glu Val Cys Lys Leu Pro Arg Leu Ser Leu Asn Gly Val Arg
 705 710 715 720
 Phe Lys Arg Ile Ser Gly Thr Ser Ile Ala Phe Lys Asn Ile Ala Ser
 725 730 735
 Lys Ile Ala Asn Glu Leu Lys Leu
 740

<211> 2112
<212> DNA
<213> *Homo sapiens*

<400> 4

ccccacattt gaaactaccg gctcctcaag accattggca agggtaattt tgccaagggtg
aagttggccc gacacatcct gactggaaa gagtagctg tgaagatcat tgacaagact
caactgaact cctccagect ccagaaacta ttccgcgaag taagaataat gaagggtttg
aatcatccca acatagttaa attatttcaa gtgattgaga ctgagaaaac gctctacott
gtcatggagt acgctagtgg cgagaggtt tttgattacc tagtgctca tggcaggatg
aaagaaaaag aggctcgagc caaattccgc cagatagtgt ctgctgtcga gtactgtcac
cagaagttt ttgtccatag agacttaag gcagaaaacc tgcttttggta tgctgatatg
aacatcaaga ttgcagactt tggcttcagc aatgaattca cctttggaa caagctggac
accttctgtg gcagttccccc ttatgtgcc ccagaactct tccaggggcaa aaaatatgt
ggaccggagg tggatgtgtg gagcttagga gttatcctt atacacttgtt cagcggatcc
ctgcctttt atggacagaa cctcaaggag ctgcgggaac gggtacttag gggaaaatac
cgtattccat tctacatgtc cacggactgt gaaaacctgc ttaagaaatt tctcatttctt
aatcccgca agagaggcac ttttagagcaa atcatgaaag atcgatggat gaatgtgggt
cacgaagatg atgaactaaa gccttaacgtg gagccactcc ctgactacaa ggaccccccgg
cgagacagac ttagtgggtgc catgggttat acacgggaag agatccagga ctcgcgtgg
ggccagagat acaacggaggt gatggccacc tatctgtcc tgggtaccaa gagctccgag
ctggaaaggcg acaccatcac cctgaaaccc cggccttcag ctgatctgac caatagcaac
gccccatccc catcccacaa ggtacagcgc agcgtgtcgg ccaatccaa gcagcggcgc
ttcagcggacc aggctggtcc tgccattccc acctctaatt cttaactctaa gaagactcag
agtaacaacg cagaaaataa gcggctttag gaggaccggg agtcaggcgc gaaagccagc
agcacagcca aggtgcctgc cagccccctg cccggctctgg agaggaagaa gaccacccca
acccctcca cgaacagcgt cctctccacc agcacaatc gaagcaggaa ttccccactt
ttggagcggg ccagcctcggtt ccaggcctcc atccagaatg gcaaaagacag cacagccccc
cagcgtgtcc ctgttgcctc cccatccgc cacaacatca gcagcagtgg tggagcccca
gaccgaacta acttcccccg gggtgtgtcc agccgaagca cttccatgc tggcagcgtc
cgacagggtgc gggaccagca gaatttgcctc tacgggtgtga ccccaagcctc tccctctggc
cacagccagg gccggcgggg ggcctctggg agcatcttca gcaagttcac ctccaagttt
gtacgcagga acctgaatga acctgaaaac aaagaccggag tggagacgct cagacctcac
gtggtgggca gtggcggca cgcacaagaa aaggaagaat ttcgggaggc caagcccccgc
tccctccgct tcacgtggag tatgaagacc acgagctcca tggagcccaa cgagatgt
cgggagatcc gcaagggtgtc ggacgcgaac agctgccaga gcgagctgca tgagaagtac
atgctgtgtc gcatgcacgg cacgcggc cacgaggact tcgtgcgtg ggagatggag
gtgtgcacaaac tgccgcggct ctctctcaac ggggttcgat ttaagcggat atcgggcacc
tccatggcct tcaaaaacat tgcctccaaa atagccaaac agctgaagct ttaacaggt
gccaqqqacq qq

<210> 5
<211> 2112
<212> DNA
<213> Homo

—100— 5

```

gggtcgcat tcaggttcta ctaagccccg gcgttgagtc ggtggagacg actactcgta 60
gggtgtaac ctgtatggc cgaggagttc tggtaaccgt tcccataaa acggttccac 120
ttcaaccggg ctgtgttagga ctgacccttt ctccatcgac acttctagta actgttctga 180
gttacttga ggaggtcggg ggttttgat aaggcgctc attcttattt ctccaaaac 240
tttagtaggt ttttatcaatt taataaaactt cactaactct gactttttg cgagatggaa 300
cagtaccca tgcgtatccc qcctctccat aaactaatqq atcaccqagt accqtcctac 360

```

tttcttttc	tccgagctcg	gtttaaggcg	gtctatcaca	gacgacacgt	catgacagtg	420
gtcttcaa at	aacagg tata tc	tctgaatttc	cgtctttgg	acgagaacct	acgactatac	480
ttgttagttct	aacgtctgaa	accgaagt cg	ttacttaagt	ggaaaac ctt	gttcgacctg	540
t ggaagacac	cgtcaggggg	aatacga cgg	ggtcttgaga	agg tccc gtt	ttttatacta	600
cctgggtctc	acctacacac	ctcggatc ct	caataggaga	tatgtgacca	gtcgcctagg	660
gacggaaaac	tacctgtctt	ggagttcctc	gacgccctt g	cccatgactc	cccttttatg	720
gcataaggta	agatgtacag	gtgcctgaca	cttttgac g	aattctttaa	agagtaagaa	780
ttagggtcgt	tctctccgtg	aaatctcg tt	tagtactt tc	tagtaccc ta	cttacaccca	840
gtgcttctac	tacttgattt	cggaatgc ac	ctcggtgagg	gactgatgtt	cctggggg cc	900
gcctgtctcg	actaccacag	gtacccaata	tgtgccctt c	tctaggtcct	gagc gaccac	960
ccggtctcta	tgttgctcca	ctaccgg tgg	atagacgagg	acc ccatg tt	ctcgaggc tc	1020
gaccttccgc	tgtggtagt g	ggactttggg	gccggaagtc	gactagactg	gtt atcg tgc	1080
cggggttaggg	gtagggtgtt	ccatgtc cg	tgcacagcc	ggttagggtt	cgtcgcccg	1140
aagtgcgtgg	tccgaccagg	acggtaagg g	tggagattaa	gaatgagatt	cttctgagtc	1200
tcattgttgc	gtcttttatt	cgccggactc	ctcc tggccc	tcag tccc g	ctttcgg tgc	1260
tcgtgtcggt	tccacggac g	gtcgggggac	gggccc agacc	tctc ttctt	ctgg tgggg	1320
tgggggaggt	gcttgcgc a	ggagagg tgg	tcgtgttt ag	cttcg tcc tt	aagg ggtg aa	1380
aacctcgccc	ggtcggagcc	gg tccggagg	taggtctt ac	cgtt tctg tc	gtgtcg gggg	1440
gtcgcacagg	gacaacggag	gggtaggc gg	gtgtt gtagt	cgtcg tcacc	acctcg gggg	1500
ctggc ttgat	tgaaggggc	cccacacagg	tcggctt cgt	ggaagg tacg	acccgtc gag	1560
gctgtccacg	ccctgg tctg	cttaaacggg	atgccc acact	ggggtc ggag	agggagac g	1620
gtgtcggtcc	cggccgcccc	ccggagaccc	tctg taga agt	cgttca agt g	gaggtt caaa	1680
catcgcttct	tggacttact	tggactt ttc	tttctggctc	acctctg cga	gtctggagtg	1740
caccacccgt	caccgccc tt	gctgtttctt	ttccttctt a	aaggccctcc	gttcggggcg	1800
agggaggcga	agtgcacctc	atacttctgg	tgctcgagg t	acctcg ggtt	gtctactac	1860
gccctctagg	cgttccacga	cctgcgctt g	tgcacggt ct	cgctcgac gt	actcttcatg	1920
tacgacgaca	cgtacgtg cc	gtgcggcccg	gtgctcctg a	agcacgtc ac	cctctacctc	1980
cacacgtttg	acggcgccga	gagagat t g	ccccaa gcta	aattcgcct a	tagcccg tgg	2040
aggtaccgga	agttttt gta	acggaggtt t	tatcggttgc	tcgacttc ga	aattgtccga	2100
cggtcctcgc	cc					2112

<210> 6
<211> 691
<212> PRT
<213> Homo sapiens

```

<400> 6
Met Ile Arg Gly Arg Asn Ser Ala Thr Ser Ala Asp Glu Gln Pro His
   1           5           10          15
Ile Gly Asn Tyr Arg Leu Leu Lys Thr Ile Gly Lys Gly Asn Phe Ala
   20          25          30
Lys Val Lys Leu Ala Arg His Ile Leu Thr Gly Lys Glu Val Ala Val
   35          40          45
Lys Ile Ile Asp Lys Thr Gln Leu Asn Ser Ser Ser Leu Gln Lys Leu
   50          55          60
Phe Arg Glu Val Arg Ile Met Lys Val Leu Asn His Pro Asn Ile Val
   65          70          75          80
Lys Leu Phe Glu Val Ile Glu Thr Glu Lys Thr Leu Tyr Leu Val Met
   85          90          95
Glu Tyr Ala Ser Gly Gly Glu Val Phe Asp Tyr Leu Val Ala His Gly
  100         105         110
Arg Met Lys Glu Lys Glu Ala Arg Ala Lys Phe Arg Gln Ile Val Ser
  115         120         125
Ala Val Gln Tyr Cys His Gln Lys Phe Ile Val His Arg Asp Leu Lys

```

130	135	140
Ala	Glu Asn Leu Leu Leu Asp Ala Asp Met Asn Ile Lys Ile Ala Asp	
145	150	155
Phe	Gly Phe Ser Asn Glu Phe Thr Phe Gly Asn Lys Leu Asp Thr Phe	160
	165	170
Cys	Gly Ser Pro Pro Tyr Ala Ala Pro Glu Leu Phe Gln Gly Lys Lys	
	180	185
Tyr	Asp Gly Pro Glu Val Asp Val Trp Ser Leu Gly Val Ile Leu Tyr	
	195	200
Thr	Leu Val Ser Gly Ser Leu Pro Phe Asp Gly Gln Asn Leu Lys Glu	
	210	215
Leu	Arg Glu Arg Val Leu Arg Gly Lys Tyr Arg Ile Pro Phe Tyr Met	
	225	230
Ser	Thr Asp Cys Glu Asn Leu Leu Lys Lys Phe Leu Ile Leu Asn Pro	
	245	250
Ser	Lys Arg Gly Thr Leu Glu Gln Ile Met Lys Asp Arg Trp Met Asn	
	260	265
Val	Gly His Glu Asp Asp Glu Leu Lys Pro Tyr Val Glu Pro Leu Pro	
	275	280
Asp	Tyr Lys Asp Pro Arg Arg Thr Glu Leu Met Val Ser Met Gly Tyr	
	290	295
Thr	Arg Glu Glu Ile Gln Asp Ser Leu Val Gly Gln Arg Tyr Asn Glu	
	305	310
Val	Met Ala Thr Tyr Leu Leu Leu Gly Tyr Lys Ser Ser Glu Leu Glu	
	325	330
Gly	Asp Thr Ile Thr Leu Lys Pro Arg Pro Ser Ala Asp Leu Thr Asn	
	340	345
Ser	Ser Ala Pro Ser Pro Ser His Lys Val Gln Arg Ser Val Ser Ala	
	355	360
Asn	Pro Lys Gln Arg Arg Phe Ser Asp Gln Ala Gly Pro Ala Ile Pro	
	370	375
Thr	Ser Asn Ser Tyr Ser Lys Lys Thr Gln Ser Asn Asn Ala Glu Asn	
	385	390
Lys	Arg Pro Glu Glu Asp Arg Glu Ser Gly Arg Lys Ala Ser Ser Thr	
	405	410
Ala	Lys Val Pro Ala Ser Pro Leu Pro Gly Leu Glu Arg Lys Lys Thr	
	420	425
Thr	Pro Thr Pro Ser Thr Asn Ser Val Leu Ser Thr Ser Thr Asn Arg	
	435	440
Ser	Arg Asn Ser Pro Leu Leu Glu Arg Ala Ser Leu Gly Gln Ala Ser	
	450	455
Ile	Gln Asn Gly Lys Asp Ser Thr Ala Pro Gln Arg Val Pro Val Ala	
	465	470
Ser	Pro Ser Ala His Asn Ile Ser Ser Ser Gly Gly Ala Pro Asp Arg	
	485	490
Thr	Asn Phe Pro Arg Gly Val Ser Ser Arg Ser Thr Phe His Ala Gly	
	500	505
Gln	Leu Arg Gln Val Arg Asp Gln Gln Asn Leu Pro Tyr Gly Val Thr	
	515	520
Pro	Ala Ser Pro Ser Gly His Ser Gln Gly Arg Arg Gly Ala Ser Gly	
	530	535
Ser	Ile Phe Ser Lys Phe Thr Ser Lys Phe Val Arg Arg Asn Leu Asn	
	545	550
Glu	Pro Glu Ser Lys Asp Arg Val Glu Thr Leu Arg Pro His Val Val	
	560	

565	570	575	
Gly Ser Gly Gly Asn Asp Lys Glu Lys	Glu Glu Phe Arg Glu Ala Lys		
580	585	590	
Pro Arg Ser Leu Arg Phe Thr Trp Ser Met Lys	Thr Thr Ser Ser Met		
595	600	605	
Glu Pro Asn Glu Met Met Arg Glu Ile Arg Lys	Val Leu Asp Ala Asn		
610	615	620	
Ser Cys Gln Ser Glu Leu His Glu Lys Tyr	Met Leu Leu Cys Met His		
625	630	635	640
Gly Thr Pro Gly His Glu Asp Phe Val Gln	Trp Glu Met Glu Val Cys		
645	650	655	
Lys Leu Pro Arg Leu Ser Leu Asn Gly Val Arg	Phe Lys Arg Ile Ser		
660	665	670	
Gly Thr Ser Met Ala Phe Lys Asn Ile Ala Ser	Lys Ile Ala Asn Glu		
675	680	685	
Leu Lys Leu			
690			

<210> 7
<211> 2222
<212> DNA
<213> Homo sapiens

<400> 7

tcccttcctc	caagcttctc	ggttccctcc	cccgagatac	cggcgccatg	tccagcgtc	60
ggaccccccct	acccacgctg	aacgagaggg	acacggagca	gcccaccttg	ggacacccctg	120
actccaagcc	cagcagttaag	tccaaacatga	ttcggggccg	caactcagcc	acctctgtctg	180
atgaggcagcc	ccacatttgg	aactaccggc	tcctcaagac	cattggcaag	gttaattttg	240
ccaaaggtaaa	gttggcccg	cacatcctga	ctgggaaaga	gttagctgtg	aagatcattg	300
acaagactca	actgaactcc	tccagcctcc	agaaaactatt	ccgcgaagta	agaataatga	360
aggttttgaa	tcatccaaac	atagttaaat	tatttgaagt	gattgagact	gagaaaacgc	420
tctaccttgt	catggagtagc	gctagtggcg	gagaggattt	tgattaccta	gtggctcatg	480
gcaggatgaa	agaaaaaagag	gctcgagcc	aattccgcca	gatagtgtct	gctgtgcagt	540
actgtcacca	gaagtttatt	gtccatagag	acttaaaggc	agaaaacctg	ctttggatg	600
ctgatatgaa	catcaagatt	gcagactttg	gcttcagcaa	tgaattcacc	tttggaaaca	660
agctggacac	cttctgtggc	agtccccctt	atgtgcctcc	agaactcttc	caggcaaaa	720
aatatgatgg	accccgaggtg	gatgtgtgga	gccttaggat	tatcctctat	acactgtca	780
gcggatccct	gccttttgat	ggacagaacc	tcaaggagct	gcggaaacgg	gtactgaggg	840
gaaaataccg	tattccatcc	tacatgtcca	cggaactgt	aaacctgctt	aagaaatttc	900
tcattcttaa	tcccagcaag	agaggcactt	tagagcaat	catgaaagat	cgatggatga	960
atgtgggtca	cgaagatgt	gaactaaagc	cttacgttgg	gccactccct	gactacaagg	1020
accccccggcg	gacagagctg	atgggttcca	tgggttatac	acggaaagag	atccaggact	1080
cgctgggtgg	ccagagatac	aacgaggtga	tggccaccta	tctgtctctg	ggctacaaga	1140
gctccgagct	ggaaggcgac	accatcaccc	tgaaaaccccg	gccttcagct	gatctgacca	1200
atagcagcgc	cccatccccca	tcccacaagg	tacagcgcag	cgtgtcgccc	aatcccaagc	1260
agcggcgctt	cagcgaccag	gctggctctg	ccattcccac	ctctaattct	tactctaaga	1320
agactcagag	taacaacgc	gaaaataaggc	ggcctgagga	ggaccgggag	tcagggcgga	1380
aagccagcag	cacagccaag	gtgcctgcca	gccccctgcc	cggctggag	aggaagaaga	1440
ccaccccaac	cccctccacg	aacagcgtcc	tctccaccag	cacaatcga	agcaggaatt	1500
ccccactttt	ggagcgggcc	agcctcgcc	aggcctccat	ccagaatggc	aaagacagca	1560
cagcccccca	gcgtgtccct	gttgcctccc	catccgcctca	caacatcage	agcagttgg	1620
gagccccaga	ccgaactaac	ttccccccgg	gtgtgtccag	ccgaagcacc	ttccatgctg	1680
ggcagctccg	acaggtgcgg	gaccagcaga	atttgcctta	cggtgtgacc	ccagcctctc	1740
cctctggcca	cagccagggc	cggcgggggg	cctctggag	catcttcage	aagttcacct	1800

ccaagttgt acgcaggaac ctgaatgaac ctgaaagcaa agaccgagtg gagacgctca	1860
gacctcacgt ggtgggcagt ggccggcaacg acaaagaaaa ggaagaattt cgggaggcca	1920
agcccgctc cctccgcttc acgtggagta tgaagaccac gagctccatg gagcccaacg	1980
agatgatgctg ggagatccgc aagggtctgg acgcgaacag ctgccagagc gagctgcatg	2040
agaagtacat gctgctgtgc atgcacggca cgccgggcca cgaggacttc gtgcagtgg	2100
agatggaggt gtgcaaactg ccggcgctct ctctcaacgg ggtcgattt aagcgatata	2160
cggcaccc catggccttc aaaaacattt cctccaaat agccaacgag ctgaagcttt	2220
aa	2222

<210> 8

<211> 2222

<212> DNA

<213> Homo sapiens

<400> 8

aggaaaggag gttcgaagag ccaaggagg gggctctatg gccgcggtag aggtcgcgag	60
cctgggggga tgggtgcac ttgtctctcc ttgtgcctcg cgggtggAAC cctgtggAAC	120
tgaggttcgg gtcgtcatTC aggttgact aagccccggc gttgagtcgg tggagacgac	180
tactcgtcgg ggtgtAACCT ttgtatggcc aggagtctg gtaaccgttc ccattaaAC	240
ggttccactt caaccggct gtgttagact gacccttttccatccatcgacac ttcttagtaac	300
tgttctgagt tgacttgagg aggtcgagg tctttgataa ggcgttcat tcttattact	360
tccaaaactt agtaggggtt tatcaattt ataaacttca ctaactctga ctctttgcg	420
agatgaaaca gtacccatcg cgatcaccgc ctctccataa actaatggat caccgagttac	480
cgtcttactt tcttttctc cgagctcggt ttaaggcggt ctatcacaga cgacacgtca	540
tgacagtggc cttaaaataa caggtatctc tgaatttccg tctttggac gagaacctac	600
gactatactt gttagtctaa cgtctgaaac cgaagtgcgtt acttaagtgg aaacccttgt	660
tcgacctgtg gaagacaccg tcagggggaa tacgacgggg tcttgagaag gtcccgttt	720
ttataactacc tgggctccac ctacacaccc cggatcctca ataggagata tgtgaccgt	780
cgcctaggaa cggaaaacta cctgtcttgg agttcctcga cgccttgcg catgactccc	840
cttttatggc ataaggtaag atgtacttca cggactgtga aaacctgttt aagaaatttc	900
tcattcttaa tcccagcaag agaggactt tactcggtt gtactttcta gctacctact	960
tacacccagt gcttctacta cttgatttcg gaatgcacct cggtgaggga ctgatgttcc	1020
tggggccgc ctgtctcgac taccacaggc acccaatatg tgcccttctc taggtcctga	1080
gcgaccaccc ggtctctatg ttgtcttccact accgggtggat agacgaggac ccgatgttct	1140
cggactcga ctttcccgctg tggtagtggg actttggggc cggaaagtgcg ctagactgg	1200
tatcgctcg gggtaggggt aggggtttcc atgtcgctc gcacagccgg ttagggttcg	1260
tcgcccggaa gtcgctggc cgaccaggac ggtaaagggtg gagattaaga atgagattct	1320
tcttagtctc attgttgcgt cttttattcg cggactctt cctggccctc agtcccgcct	1380
ttcgtctcg tggtaggttc cacggacgg cggggacgg gccagacctc tccttcttct	1440
ggtaggggtt ggggagggtgc ttgtcgagg agaggtgtc gtgttttagt tcgtccttaa	1500
ggggtagaaa cctcgccccgg tcggagccgg tccggaggtt ggtcttaccg tttctgtcg	1560
gtcgggggtt cgcacagggca aacggaggg gttaggcgggt ttttagtgc tcgtcaccac	1620
ctcggttctt ggtttagt aaggggggcc cacacaggc ggttctgtgg aaggtacgac	1680
ccgtcgaggc tggccacggcc ctggctgtt taaaacggat gccacactgg ggtcgagag	1740
ggagaccggc gtcggccccgg gcccgggggg ggagaccctc gtagaagtgc ttcaagtgg	1800
ggttcaaaaca tgcgtcttgc gacttacttgc gactttcggt tctggctcac ctctgcgagt	1860
ctggagtgc ccacccgtca ccggccgtgc tgggtttt cctcttaaa gcccctcggt	1920
tcggggcgag ggaggcgaag tgcacccat acttctgtc ctgggttac ctgggttgc	1980
tctactacgc cctcttagggc ttccacggacc tgcgttgc gacggctcg ctgcacgtac	2040
tcttcatgttca cgacgacacg tacgtggcgt gcccgggggt gctctgtaaag cacgtcaccc	2100
tctaccccca cacgttgcac ggcggcgaga gagagttgc ccaagctaaa ttgcctata	2160
gcccgtggag gtaccggaaag tttttgttaac ggaggttttca tcgggttgc gacttcgaaa	2220
tt	2222

<210> 9
<211> 724
<212> PRT
<213> Homo sapiens

<400> 9
Met Ser Ser Ala Arg Thr Pro Leu Pro Thr Leu Asn Glu Arg Asp Thr
1 5 10 15
Glu Gln Pro Thr Leu Gly His Leu Asp Ser Lys Pro Ser Ser Lys Ser
20 25 30
Asn Met Ile Arg Gly Arg Asn Ser Ala Thr Ser Ala Asp Glu Gln Pro
35 40 45
His Ile Gly Asn Tyr Arg Leu Leu Lys Thr Ile Gly Lys Gly Asn Phe
50 55 60
Ala Lys Val Lys Leu Ala Arg His Ile Leu Thr Gly Lys Glu Val Ala
65 70 75 80
Val Lys Ile Ile Asp Lys Thr Gln Leu Asn Ser Ser Ser Leu Gln Lys
85 90 95
Leu Phe Arg Glu Val Arg Ile Met Lys Val Leu Asn His Pro Asn Ile
100 105 110
Val Lys Leu Phe Glu Val Ile Glu Thr Glu Lys Thr Leu Tyr Leu Val
115 120 125
Met Glu Tyr Ala Ser Gly Gly Glu Val Phe Asp Tyr Leu Val Ala His
130 135 140
Gly Arg Met Lys Glu Lys Glu Ala Arg Ala Lys Phe Arg Gln Ile Val
145 150 155 160
Ser Ala Val Gln Tyr Cys His Gln Lys Phe Ile Val His Arg Asp Leu
165 170 175
Lys Ala Glu Asn Leu Leu Asp Ala Asp Met Asn Ile Lys Ile Ala
180 185 190
Asp Phe Gly Phe Ser Asn Glu Phe Thr Phe Gly Asn Lys Leu Asp Thr
195 200 205
Phe Cys Gly Ser Pro Pro Tyr Ala Ala Pro Glu Leu Phe Gln Gly Lys
210 215 220
Lys Tyr Asp Gly Pro Glu Val Asp Val Trp Ser Leu Gly Val Ile Leu
225 230 235 240
Tyr Thr Leu Val Ser Gly Ser Leu Pro Phe Asp Gly Gln Asn Leu Lys
245 250 255
Glu Leu Arg Glu Arg Val Leu Arg Gly Lys Tyr Arg Ile Pro Phe Tyr
260 265 270
Met Ser Thr Asp Cys Glu Asn Leu Leu Lys Phe Leu Ile Leu Asn
275 280 285
Pro Ser Lys Arg Gly Thr Leu Glu Gln Ile Met Lys Asp Arg Trp Met
290 295 300
Asn Val Gly His Glu Asp Asp Glu Leu Lys Pro Tyr Val Glu Pro Leu
305 310 315 320
Pro Asp Tyr Lys Asp Pro Arg Arg Thr Glu Leu Met Val Ser Met Gly
325 330 335
Tyr Thr Arg Glu Glu Ile Gln Asp Ser Leu Val Gly Gln Arg Tyr Asn
340 345 350
Glu Val Met Ala Thr Tyr Leu Leu Leu Gly Tyr Lys Ser Ser Glu Leu
355 360 365
Glu Gly Asp Thr Ile Thr Leu Lys Pro Arg Pro Ser Ala Asp Leu Thr
370 375 380

Asn Ser Ser Ala Pro Ser Pro Ser His Lys Val Gln Arg Ser Val Ser
 385 390 395 400
 Ala Asn Pro Lys Gln Arg Arg Phe Ser Asp Gln Ala Gly Pro Ala Ile
 405 410 415
 Pro Thr Ser Asn Ser Tyr Ser Lys Lys Thr Gln Ser Asn Asn Ala Glu
 420 425 430
 Asn Lys Arg Pro Glu Glu Asp Arg Glu Ser Gly Arg Lys Ala Ser Ser
 435 440 445
 Thr Ala Lys Val Pro Ala Ser Pro Leu Pro Gly Leu Glu Arg Lys Lys
 450 455 460
 Thr Thr Pro Thr Pro Ser Thr Asn Ser Val Leu Ser Thr Ser Thr Asn
 465 470 475 480
 Arg Ser Arg Asn Ser Pro Leu Leu Glu Arg Ala Ser Leu Gly Gln Ala
 485 490 495
 Ser Ile Gln Asn Gly Lys Asp Ser Thr Ala Pro Gln Arg Val Pro Val
 500 505 510
 Ala Ser Pro Ser Ala His Asn Ile Ser Ser Ser Gly Gly Ala Pro Asp
 515 520 525
 Arg Thr Asn Phe Pro Arg Gly Val Ser Ser Arg Ser Thr Phe His Ala
 530 535 540
 Gly Gln Leu Arg Gln Val Arg Asp Gln Gln Asn Leu Pro Tyr Gly Val
 545 550 555 560
 Thr Pro Ala Ser Pro Ser Gly His Ser Gln Gly Arg Arg Gly Ala Ser
 565 570 575
 Gly Ser Ile Phe Ser Lys Phe Thr Ser Lys Phe Val Arg Arg Asn Leu
 580 585 590
 Asn Glu Pro Glu Ser Lys Asp Arg Val Glu Thr Leu Arg Pro His Val
 595 600 605
 Val Gly Ser Gly Gly Asn Asp Lys Glu Lys Glu Glu Phe Arg Glu Ala
 610 615 620
 Lys Pro Arg Ser Leu Arg Phe Thr Trp Ser Met Lys Thr Thr Ser Ser
 625 630 635 640
 Met Glu Pro Asn Glu Met Met Arg Glu Ile Arg Lys Val Leu Asp Ala
 645 650 655
 Asn Ser Cys Gln Ser Glu Leu His Glu Lys Tyr Met Leu Leu Cys Met
 660 665 670
 His Gly Thr Pro Gly His Glu Asp Phe Val Gln Trp Glu Met Glu Val
 675 680 685
 Cys Lys Leu Pro Arg Leu Ser Leu Asn Gly Val Arg Phe Lys Arg Ile
 690 695 700
 Ser Gly Thr Ser Met Ala Phe Lys Asn Ile Ala Ser Lys Ile Ala Asn
 705 710 715 720
 Glu Leu Lys Leu

<210> 10
 <211> 2706
 <212> DNA
 <213> Homo sapiens

<400> 10
 tgcccgacaa aaatgtcgcc ccggacgcca ttgccgacgg tgaacgagcg ggacacggaa 60
 aatcatacat ctgtggatgg atatactgaa ccacacatcc agcttaccaa gtcgagtagc 120
 agacagaaca tcccccggtg tagaaaactcc attacgtcag caacagatga acagcctcac 180

attggaaatt accgttaca	aaaaacaata	gggaagggaa	atttgc当地	agtcaaattg	240
gcaagacacg ttctaactgg	tagagaggt	gctgtaaaa	taatagacaa	aactcagcta	300
aatccatcca gtctacaaa	gttatttcga	gaagtacgga	taatgaagat	actgaatcat	360
cctaatacg taaaatttgtt	tgaagttatt	gaaacagaga	agactctcta	tttagtcatg	420
gaatacgcga gtgggggtga	agtatttgat	tacttagttg	cccatggaag	aatgaaagag	480
aaagaggccc gtgcaaattt	tagcagatt	gtatctgt	tacagtattg	tcataaaag	540
tacattgtt accgtgatct	taaggctgaa	aaccttctcc	ttgatggtga	tatgaatatt	600
aaaattgctg actttggttt	tagaatgaa	tttacagttg	gaaacaaattt	ggacacattt	660
tgtggaagcc caccctatgc	tgctccgag	ctttccaag	gaaagaagta	tgtatggcct	720
gaagtggatg tgtggagtct	ggcgcttatt	ctctatacat	tagtcagtgg	ctccttgcc	780
ttcgatggcc agaatttaaa	ggaactgcga	gagcgagtt	tacgagggaa	gtaccgtatt	840
cccttctata tgtccacaga	ctgtgaaaat	cttctgaaga	aattattatg	cctgaatcca	900
ataaaagagag gcagcttgg	acaataatg	aaagatcgat	ggatgaatgt	tgtcatgaa	960
gaggaagaac taaagccata	tactgagct	gatccggatt	tcaatgacac	aaaaagaata	1020
gacattatgg tcaccatggg	ctttgcacga	gatgaaataa	atgatgcctt	aataaaatcag	1080
aagtatgatg aagttatggc	tacttatatt	cttctaggt	gaaaaccacc	tgaatttgaa	1140
ggtggtaat cgttatccag	tggaaacttg	tgtcagaggt	cccgccccag	tagtactta	1200
aacaacagca ctttcagtc	ccctgctcac	ctgaagggtcc	agagaagtt	ctcagcaaatt	1260
cagaagcagc ggcgttccag	tgatcatgct	ggtccatcca	ttcctctgc	tgtatcatat	1320
accaaaagac ctcaggctaa	cagtggaa	agtgaacaga	aagaggagtg	ggacaaagat	1380
gtggctcgaa aacttggcag	cacaacagtt	ggatcaaaaa	gchgagatgac	tgcaaggcc	1440
ctttagggc cagagagggaa	aaaatcttca	actattccaa	gtaacaatgt	gtattctgga	1500
ggtagcatgg caagaagggaa	tacatatgtc	tgtgaaagga	ccacagatcg	atacgttagca	1560
ttcagaatg gaaaagacag	cagccttacg	gagatgtctg	tgagtagcat	atcttctgca	1620
ggcttcttg tggcctctgc	tgtcccctca	gcacgacccc	gccaccagaa	gtccatgtcc	1680
acttctggc atcctattaa	agtcacactg	ccaaccatta	aagacggctc	tgaagcttac	1740
cggcctggta caacccagag	agtgcctgct	gcttccccat	ctgctcacag	tatttagact	1800
gcgactccag accggaccgg	ttttccccga	gggagctcaa	gccgaagcac	tttccatgg	1860
gaacagctcc gggagcgacg	cagcgttgc	tataatggc	cacctgcttc	accatccat	1920
gaaacgggtg catttgacaa	tgccagaagg	ggaacgtcaa	ctggtataat	aagcaaaatc	1980
acatccaaat ttgttcgcag	ggatccaagt	gaaggcgaag	ccagtggcag	aaccgacacc	2040
tcaagaagta catcagggg	acccaaagaa	agagacaagg	aagagggtaa	agattctaag	2100
ccgcgttctt tgcgttccac	atggagttatg	aagaccacta	gttcaatgga	ccctaatgac	2160
atgatgagag aaatccgaaa	agtgtttagat	gcaaataact	gtgattatga	gcaaaaagag	2220
agattttgc ttttctgtgt	ccatggagac	gctagacagg	atagcctgat	gcagtgggag	2280
atggaaagtct gcaagttgcc	acgactgtca	cttaatgggg	ttcgcttcaa	gogaatatct	2340
gggacatcta ttgccttaa	gaacattgca	tcaaaaatag	caaatgagct	taagctgtaa	2400
agaagtccaa attacaggt	tcagggaga	tacatacata	tatgaggtac	agtttttgaa	2460
tgtactggta atgcctaatt	ttgtctgcct	gtgaatctcc	ccatgttagaa	tttgcctta	2520
atgcataataag gttatacata	gttatgaaact	gtaaaattaa	agtcagttatg	aactataata	2580
aatatctgtt gctaaaaaaag	tagttcaca	tgtacaggt	agtatatttg	gtatttctgt	2640
tcattttctg ttcatagagt	tgtataataa	aacatgattt	cttaaaaaaaa	aaaaaaaaaa	2700
aaaaaaa					2706

<210> 11
<211> 2706
<212> DNA
<213> Homo sapiens

<400> 11
acggcgctgt ttacagccg ggctcgccgt aacggctgcc acttgctcgc cctgtgcctt 60
tttagtatgtt gacacccatc tatatgactt ggtgtgttagg tcggatggtt cagctcatcg 120
tctgtcttgtt agggggccac atcttgagg taatgcagtc gttgtctact tgtcggagtg 180
taacctttaa tggcaaatgt tttttgttat cccttccctt taaaacgggtt tcagtttaac 240

cgttctgtgc aagattgacc atctctccaa cgacactttt attatctgtt ttgagtcgt 300
 ttagatggc cagatgtttt caataaagct cttcatgcctt attacttcta tgacttagta 360
 ggattatac attttaacaa acttcaataa ctttgtctt tctgagagat aaatcagtac 420
 cttatgcgtt caccggact tcataaaacta atgaatcaac gggtaccttc ttacttttc 480
 tttctccggg cacgtttaa atccgtctaa catagacgac atgtcataaac agtagtttc 540
 atgtacaacaa tggcactaga attccgactt ttgaaagagg aactaccact atacttataa 600
 ttttaacgac taaaacccaaa atcattactt aaatgtcaac cttgtttaa cctgtgtaaa 660
 acaccccggtt gtgggatacg acgaggcgtc gaaaagggtc cttcttcattt actaccgg 720
 cttcacctac acaccccggtt acaccccggtt gagatatgtt atcagtccacc gaggaaacgg 780
 aagctaccgg tcttaaattt ctttgacgtt ctcgtctaaa atgtccctt catggcataaa 840
 gggaaagat acagggtctt gacactttt gaagacttctt ttaataatca ggacttaggt 900
 tatttcttc cgtcgaacct tttttttttt cttctacttata accagtactt 960
 ctcccttctt atttcggtt atgactcggtt ctggcctaa agttactgtt tttttttttt 1020
 ctgtataacc atgtggtaccc gaaacgtgtt ctactttttt tactacggaa ttattnnntt 1080
 ttcataactac ttcaataccg atgaatataa gaagatccat cttttgggtt actttaaactt 1140
 ccaccactta gcaatagggtc acctttaac acagtctcca gggccgggtc atcactgaat 1200
 ttgtgtcggtt gagaagtcgtt gggacgagttt gacttccagg tctttttttt catggcgtt 1260
 gtcttcgtcg ccgcaaaatgtc actagtacgtt ccaggttaggtt aaggaggacg acatagata 1320
 tggttttctt ggttccgtt gtcacacccctt tcacttgcctt ttcttcctt cctgtttctt 1380
 caccgggtt ttgaaccgggtt gtgtgtcaa cctagttttt cgctctactt acgttccgg 1440
 gaacatccccgtt gtcttcctt ttttagaagt tgataaggtt catgttttata cataagacct 1500
 ccatcgtaacc gttttttttt atgtataacgtt acacttttctt ggttcttagt tatgtttttt 1560
 aacgtcttac cttttttttt gtcggaaatgtc ctctacagac actcatcgta tagaagacgt 1620
 ccgagaagac accggagacg acaggggggtt cgtgtttttt cgggtttttt caggtacagg 1680
 tgaagaccat taggataattt tcagtgtgtt ggttggtaat ttctggccggactt 1740
 gcccggaccat gttttttttt tcacggacgtt cgggggtt gacgggtgtt ataattttttt 1800
 cgctcgaggc tggcctgggtt aaaagggtt ccctcgagtt cgggtttttt cgggtttttt 1860
 cttgtcgagg ccctcgctgtc gtcgcaacgtt atattttttt gtggacgtt 1920
 ctggcccttccat gtaaaacgtgtt acgggtttttt ccttgcgtt gaccatattttt ttctttttttt 1980
 tttttttttt tttttttttt aacaagggttcc cttttttttt cttttttttt ggttccgtt 2040
 agttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
 ggcggcaagaa acggcaagttt taccttccat tttttttttt ttctgggtt caagtttaccc 2160
 tactacttcc tttttttttt tcacaaatctt cttttttttt cttttttttt cttttttttt 2220
 tctaaaaacgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2280
 taccccttccat cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 2340
 ccccttccat cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 2400
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2460
 acatggccat tacggattttt accagacgtt cttttttttt cttttttttt cttttttttt 2520
 tacgttattttt caatatgttat cttttttttt tttttttttt tttttttttt tttttttttt 2580
 ttatagacat cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2640
 agtaaaagac aagtatcttca acatattttt tttttttttt tttttttttt tttttttttt 2700
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2706

<210> 12
 <211> 795
 <212> PRT
 <213> Homo sapiens

<400> 12
 Met Ser Ala Arg Thr Pro Leu Pro Thr Val Asn Glu Arg Asp Thr Glu
 1 5 10 15
 Asn His Thr Ser Val Asp Gly Tyr Thr Glu Pro His Ile Gln Pro Thr
 20 25 30
 Lys Ser Ser Ser Arg Gln Asn Ile Pro Arg Cys Arg Asn Ser Ile Thr

35	40	45
Ser Ala Thr Asp Glu Gln Pro His Ile Gly Asn Tyr Arg Leu Gln Lys		
50	55	60
Thr Ile Gly Lys Gly Asn Phe Ala Lys Val Lys Leu Ala Arg His Val		
65	70	75
80		
Leu Thr Gly Arg Glu Val Ala Val Lys Ile Ile Asp Lys Thr Gln Leu		
85	90	95
Asn Pro Thr Ser Leu Gln Lys Leu Phe Arg Glu Val Arg Ile Met Lys		
100	105	110
Ile Leu Asn His Pro Asn Ile Val Lys Leu Phe Glu Val Ile Glu Thr		
115	120	125
Glu Lys Thr Leu Tyr Leu Val Met Glu Tyr Ala Ser Gly Gly Glu Val		
130	135	140
Phe Asp Tyr Leu Val Ala His Gly Arg Met Lys Glu Lys Glu Ala Arg		
145	150	155
160		
Ala Lys Phe Arg Gln Ile Val Ser Ala Val Gln Tyr Cys His Gln Lys		
165	170	175
Tyr Ile Val His Arg Asp Leu Lys Ala Glu Asn Leu Leu Asp Gly		
180	185	190
Asp Met Asn Ile Lys Ile Ala Asp Phe Gly Phe Ser Asn Glu Phe Thr		
195	200	205
Val Gly Asn Lys Leu Asp Thr Phe Cys Gly Ser Pro Pro Tyr Ala Ala		
210	215	220
Pro Glu Leu Phe Gln Gly Lys Lys Tyr Asp Gly Pro Glu Val Asp Val		
225	230	235
240		
Trp Ser Leu Gly Val Ile Leu Tyr Thr Leu Val Ser Gly Ser Leu Pro		
245	250	255
Phe Asp Gly Gln Asn Leu Lys Glu Leu Arg Glu Arg Val Leu Arg Gly		
260	265	270
Lys Tyr Arg Ile Pro Phe Tyr Met Ser Thr Asp Cys Glu Asn Leu Leu		
275	280	285
Lys Lys Leu Leu Val Leu Asn Pro Ile Lys Arg Gly Ser Leu Glu Gln		
290	295	300
Ile Met Lys Asp Arg Trp Met Asn Val Gly His Glu Glu Glu Glu Leu		
305	310	315
320		
Lys Pro Tyr Thr Glu Pro Asp Pro Asp Phe Asn Asp Thr Lys Arg Ile		
325	330	335
Asp Ile Met Val Thr Met Gly Phe Ala Arg Asp Glu Ile Asn Asp Ala		
340	345	350
Leu Ile Asn Gln Lys Tyr Asp Glu Val Met Ala Thr Tyr Ile Leu Leu		
355	360	365
Gly Arg Lys Pro Pro Glu Phe Glu Gly Glu Ser Leu Ser Ser Gly		
370	375	380
Asn Leu Cys Gln Arg Ser Arg Pro Ser Ser Asp Leu Asn Asn Ser Thr		
385	390	395
400		
Leu Gln Ser Pro Ala His Leu Lys Val Gln Arg Ser Ile Ser Ala Asn		
405	410	415
Gln Lys Gln Arg Arg Phe Ser Asp His Ala Gly Pro Ser Ile Pro Pro		
420	425	430
Ala Val Ser Tyr Thr Lys Arg Pro Gln Ala Asn Ser Val Glu Ser Glu		
435	440	445
Gln Lys Glu Glu Trp Asp Lys Asp Val Ala Arg Lys Leu Gly Ser Thr		
450	455	460
Thr Val Gly Ser Lys Ser Glu Met Thr Ala Ser Pro Leu Val Gly Pro		

465	470	475	480
Glu Arg Lys Lys Ser Ser Thr Ile Pro Ser Asn Asn Val Tyr Ser Gly			
485	490	495	
Gly Ser Met Ala Arg Arg Asn Thr Tyr Val Cys Glu Arg Thr Thr Asp			
500	505	510	
Arg Tyr Val Ala Leu Gln Asn Gly Lys Asp Ser Ser Leu Thr Glu Met			
515	520	525	
Ser Val Ser Ser Ile Ser Ser Ala Gly Ser Ser Val Ala Ser Ala Val			
530	535	540	
Pro Ser Ala Arg Pro Arg His Gln Lys Ser Met Ser Thr Ser Gly His			
545	550	555	560
Pro Ile Lys Val Thr Leu Pro Thr Ile Lys Asp Gly Ser Glu Ala Tyr			
565	570	575	
Arg Pro Gly Thr Thr Gln Arg Val Pro Ala Ala Ser Pro Ser Ala His			
580	585	590	
Ser Ile Ser Thr Ala Thr Pro Asp Arg Thr Arg Phe Pro Arg Gly Ser			
595	600	605	
Ser Ser Arg Ser Thr Phe His Gly Glu Gln Leu Arg Glu Arg Arg Ser			
610	615	620	
Val Ala Tyr Asn Gly Pro Pro Ala Ser Pro Ser His Glu Thr Gly Ala			
625	630	635	640
Phe Ala His Ala Arg Arg Gly Thr Ser Thr Gly Ile Ile Ser Lys Ile			
645	650	655	
Thr Ser Lys Phe Val Arg Arg Asp Pro Ser Glu Gly Glu Ala Ser Gly			
660	665	670	
Arg Thr Asp Thr Ser Arg Ser Thr Ser Gly Glu Pro Lys Glu Arg Asp			
675	680	685	
Lys Glu Glu Gly Lys Asp Ser Lys Pro Arg Ser Leu Arg Phe Thr Trp			
690	695	700	
Ser Met Lys Thr Thr Ser Ser Met Asp Pro Asn Asp Met Met Arg Glu			
705	710	715	720
Ile Arg Lys Val Leu Asp Ala Asn Asn Cys Asp Tyr Glu Gln Lys Glu			
725	730	735	
Arg Phe Leu Leu Phe Cys Val His Gly Asp Ala Arg Gln Asp Ser Leu			
740	745	750	
Val Gln Trp Glu Met Glu Val Cys Lys Leu Pro Arg Leu Ser Leu Asn			
755	760	765	
Gly Val Arg Phe Lys Arg Ile Ser Gly Thr Ser Ile Ala Phe Lys Asn			
770	775	780	
Ile Ala Ser Lys Ile Ala Asn Glu Leu Lys Leu			
785	790	795	

<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense oligonucleotide

<400> 13
cgtatggagg actgccacaa aacgt

<210> 14

<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense oligonucleotide	
<400> 14	
tgcaaaacac cgtcaggagg tatgc	25
<210> 15	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense oligonucleotide	
<400> 15	
tgaggtctga gcgtctccac tcgg	24
<210> 16	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense oligonucleotide	
<400> 16	
ggctcacctc tgcgagtcg gagt	24
<210> 17	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense oligonucleotide	
<400> 17	
gagaatgacg cccagactcc acaca	25
<210> 18	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense oligonucleotide	
<400> 18	
acacacacctca gaccgcgagt aagag	25

<210> 19
<211> 3154
<212> DNA
<213> Drosophila sp.

<400> 19

gcagcgacca tcagcttagcg actcctctct gagcgagaga gctaatacgct tttcagcttt 60
agcttttctt gggccaatcg gaaattgtat ttcatgtat tgaaggagta ccacggatga 120
tagaaaaccca ttgggcattt gactacttt aagcaccgaa acctgaaaga ctccccaaaa 180
tactcgaatc tcacgtcgag aatctctaag aatccctatt ggactgttta aaaatatgtc 240
gacagcaatg cgcaccacac tgcaagtca gtcgtggcc ctggcagcgg atagcgtgtc 300
caatggcaca gcatccaatg tagcagcacc ggcggcgcca gtatcgagcg caacaaacgc 360
ggtgcacca ctggccggcc tctccagcac aaccggcacc tacgcccacca actcgatcag 420
cacatcctcg cattcggtca aggtacgca gcagcaacag cagcagcaggc agcatgatcc 480
ggccaatgca aacattgtgt cactgccacc aacgacaacg ccagtcgcca acactaacac 540
aatgatgccc attgtAACGT cctcgaattc ggccaccaggc aatacgactg cgccacgccc 600
cacggccggcc tcggggggcg cagcgacagg tggagtggga tcagtttccc agggtcagc 660
gaccgtttcg gcgtcagcgg ccaacaccaa tcactcgac cagcacagcc accaacacca 720
ccaccatgtg gccaacaaca tgaccaccgca cgggtcccgcc ttgtccagca acaattcggc 780
ggtgtggcg agctcagcgta ttaaccacca ccatcaccac acccccgccca gtggagtggc 840
gcccacggtc aacaagaacg tgcttagcac ccactcggt catccctccg cgatcaagca 900
acgaacctcg tccgccaagg gttcgcctaa catgcaaatg cggagtagtg ctccatcg 960
atggcgtgct actgaggagc atattggca atacaaactc ataaagacga tcggcaaggg 1020
caatttgcc aaggtgaaac tagcgaaaca cctggccact ggcaaggagg tcgccccaa 1080
gataattgac aagacccaaac tcaatcctgg gtcactacag aaacttta gagaggttag 1140
aataatgaag atgctggatc accccaaacat agttaaattt ttccaagtaa tcgaaacgg 1200
gaagacgctc tatctgatca tggagtacgc atctggcgga gaagtcttcg actacctgg 1260
tctccacggc cgcatgaagg agaaggaggc gcgagttaag ttccacaaa tgcgtctcagc 1320
cgtcaatat tgtcatcaaa aaagaataat tcacaggac taaaagctg aaaacctttt 1380
gctggacagc gaactgaaca tcaaaaatcg tgactttggc ttttgcacacg agttcacacc 1440
cggtcaaaag ctggacacgt tctgcgttag cccgcattat gcggcaccgg agctgtttca 1500
gggaaaaaag tacgacggac cggaggcgtc tgtttggcgt ctggcggtca tcctgtatac 1560
gttagtgac ggttccctgc ctttcgacgg ctccacccgtt agggagttgc gtgaacgcgt 1620
gctcagaggc aaatatagaa ttcccttcta tatgtcgact gactgcgaaa acttgctccg 1680
caaattctta gtactgaatc ccgcaaaacgc tgcttagtctg gaaacaatca tggcgacaa 1740
gtggatgaac atggggtttggaggacgactcaaggccc tatattgacg ccaaaggccg 1800
tttagccgat cccaaaggcgta tagaagctct agtcgcgtat ggctacaatc gatcgagat 1860
cgaggcttcg ctctcccgagg tgcgtacga cgatgttttgc cccacatatt tgctgtggg 1920
tcgcaagaggt acagacccgg aaagtgcacgg atcgcgttgc ggctcctcgc tctcaactcg 1980
caacatctcg ggtaatgtat cgggcggccaa tgctggtagt gcgagtgttc agagtcaccc 2040
gcacagagga gtccacaggc gcatatcgcc gtctagcactc aagccaagtc gccgagccctc 2100
gtctgggtcg gaaactttgc gtgttggacc gacaaatgcg gcagcaacag ttgcggcgcc 2160
cacgggagcc gttgggtcggt ttaatccaag caataactac aatgtcgacg gatcagcg 2220
ggatcgagca tcagttggca gcaactttaa ggcacagaac acaatcgact cggctacgat 2280
taaggagaac acagcgcgac tggccgtca aatcagaga cccgcttcgg ccacacaaaa 2340
gatgtctacc acggcagaca ccacactgaa cagtcccggc aagcccgaa cggcaacgaa 2400
gtacgatccg acgaatggca atcgcacggt cagcggcaca agtggcatca ttccacgtcg 2460
ctccaccacg ctttatggaaa agacttcgtc gacggagaaa accaacgttta ttccctgcaga 2520
gacaaaaatg gcatcggtg ttaaatcaag cagacactt ccaaggaatg ttccatcacc 2580
ttcaacctt cactctggtc aaaccagacg acgaaacaac acagcgctgg aataactcg 2640
caccagcggt gcctccggcg actctccca tccgggtcgat gtagacttct tctccaaact 2700
ctcctcacgt tttagcaaac ggccaaacca gtaattaaca aaacaagcat taactacttc 2760
ttgttaatag ttctaaaact gaaactgaaa caaacgatcc ccctagagta aacgcgcgtg 2820
acggagaggt tcagatcgatc acagacacgac acagatatgg tcgaatccaa tcggatcgct 2880

cgatcgat cagatcggga aacgatactg ttcacgttgc cgttgccat ccgaaatcgc 2940
 tttcgaaattc catttcgagt tcagatccgt ttccggtttc gattcgaacc ccttcaaattg 3000
 aacaccgaca acgttgagtt ccattgcgtt aattgaaatt tcacaaatac gcctatgttt 3060
 tattacaatt attaactaat tatacatata aatttatata aattnaagat acatatacat 3120
 atattnaaaa gtaaagcaac cacaaacaga aatt 3154

<210> 20
 <211> 3154
 <212> DNA
 <213> Drosophila sp.

<400> 20
 cgtcgcttgt agtcgatcgc tgaggagaga ctgcgtctct cgattatcga aaagtgcggaa 60
 tcgaaaagaa ccccggttagc ctttaacata aagtaactac acttcctcat ggtgcctact 120
 atctttgggt aacccgtaaa ctgatgaaaa ttctgtggctt tggactttctt gagggttttt 180
 atgagcttag agtgcacgtc tttagagattc tttagggataa cctgacaaat ttttatacag 240
 ctgtcggtac gcgtgggtgt acgtcagtca aggactccgg gacgggtcgcc tatcgacag 300
 gttaccgtgt cgttaggttac atcgctgtgg ccggccgcgt catagctcgc gttgtttcg 360
 ccacgggtgtt gaccggccgc agaggtcggtt ttggcggtgg atgcgggtgt tgagctagtc 420
 gtgttaggagc gtaagccagt tcctagtcgt cgtcggtgtc gtcgtcgctg tcgtactaag 480
 ccgggttacgt ttgttaacaca gtgacgggtgg ttgtctgtgc ggtcagcggt tttgtatgtt 540
 ttactacggg taacattgca ggagcttaag ccgggtggctt ttatcggtac gcccgggtcg 600
 gtgcggccgg agccccccgc gtcgtgtcc acctcaccc agtcaaaaggg tcccaggtcg 660
 ctggcaaaacg cgcagtcgc ggttgggtt agtgagcgtg gtctgtcggtt tgggttgggt 720
 ggtgttacac cggttgggtt actgggtggct gccacgggcg aacaggtcg ttttaagccg 780
 ccaccaccgc tcgagtcgt aattgggtgtt ggttagtgggtt tggggggccgtt cacctcaccg 840
 cgggtggcag ttgttcttc acgaatcggtt ggtgagccga gttagggagcc gctagttcg 900
 tgcttggagc aggccgttcc caagcggtt acgtgttttac gcctcatcac gaggatacgc 960
 taccgcacga tgactcctcg tataaccgtt tatgttttgcg tattttctgtt agccgttccc 1020
 gttaaaacgg ttccactttt atcgctttgtt ggacgggtga ccgttctcc agcggtagtt 1080
 ctattaactg ttctgggtt agttaggacc cagtgtatgtc ttttagaaat ctctccaatc 1140
 ttattacttc tacgacccatg tgggttgcg tcaatttaac aagtttgcatt agctttgcct 1200
 cttctgcgag atagactagt acctcatcg tagaccgcctt cttcagaagc ttagggacca 1260
 agaggtgcct gcgtacttcc tcttcctccg cgctcaatttcc aagactgtttt agcagagtcg 1320
 gcacgttata acagtagttt ttcttattt agtgtccctg aattttcgac ttttggaaaa 1380
 cgacctgtcg cttgacttgtt agtttttagcg actgaaaccg aaaagcttgc tcaagttgtgg 1440
 gccgagtttc gacctgtgcg agacgccttcc gggcggtata cgccgtggcc tgcacaaagt 1500
 cccgttttc atgctgcctg gcctccagctt acaaaccagc gaccgcgtt aggacatatg 1560
 caatcactcg ccaaggagacg ggaagctgcg gaggtggaaac tccctcaacg cacttgcgc 1620
 cgagtctccg ttatatactt aaggaaat atacagctga ctgacgtttt tgaacgaggc 1680
 gtttaagaat catgacttag ggcgtttcgac acgtatcgatc ttgtttagt acccgctgtt 1740
 cacctacttg taccctaaac tcctcctgtc tgatgtcggtt atataactcg gttttcggtt 1800
 aaatcggtca gggttcgctt atttcgatcg tcaatcgatc ccgtatgttagt ctacgttcta 1860
 gctccgaagc gagaggggtcc acgcgtatgtt gctacaaaag cgggtgtataa acgacgaccc 1920
 agcgttctca tgcgtggcc tttactgcg tagcgccaga ccgaggagcc agagtgcgc 1980
 gtttagagc ccattactac gcccgggtt acgaccatca cgctcacaag tctcagggtt 2040
 cgtgtctctt caggtgtctt cgtatagccg cagatgtgc ttccgttgcg cggctcgag 2100
 cagaccacgc ctttggaaacg cacaacctgg ctgtttacgc cgtcggttgc aacgcccgg 2160
 gtgcctcggtt caaccacgc aatttaggtt gttattgtatg ttacgacgtc ttagtgcgg 2220
 ccttagctgtt agtcaaccgt cggttggaaattt cgtcggttgcg ttttagtgcg tccgtatgtca 2280
 attcccttttgc tgcgtcgatc accggcgatgtt ttttagtgcg ttttagtgcg tccgtatgtca 2340
 ctacgatgtt gtcgtcgatc ggtgtactt gtcaggccgg ttccggcgctt gccgttgctt 2400
 catgttaggc tgcgttaccgt tagcgtgcgatc gtcggccgtt tcaccgtatgtt aaggtgcagc 2460
 gaggtggatc gaaataactttt tctgtatgttgcgatc aaggacgtctt 2520

ctgttttac cgtagccgac aatttagttc gtctgtgaaa ggttcattac aaggtagtgc 2580
 aagttggaaa gtgagaccag tttggctcg tgctttgtt tgtcgcgacc ttatgagccc 2640
 gtggcgcca cggaggccgc tgaggagggt aggcccacgc tactcgaaga agaggttga 2700
 gaggagtca aaatcgttt ccggtttgggt cattaattgt tttggctcgta attgatgaag 2760
 aacaattatc aagatttga ctggacttt gtttgctaag gggatctcat ttgcgcac 2820
 tgcctctcca agtctatact tggctgtctg tgtctatacc agcttaggtt agcctagcga 2880
 gcctagccta gtctagccct ttgctatgac aagtgcacg gcaacggcta ggctttagcg 2940
 aaagcttaag gtaaaagctca agtctaggca aaggccaaag ctaagcttgg ggaagttac 3000
 ttgtggctgt tgcaactcaa ggtaacgcaa ttaactttaa agtgttatg cggatacaa 3060
 ataatgttaa taattgatata atatgtatat ttaaatatata ttaatttcta tgtatatgt 3120
 tataaatttt catttcgtt gtgtttgtct ttaa 3154

<210> 21
<211> 832
<212> PRT
<213> Drosophila sp.

<400> 21

Met	Ser	Thr	Ala	Met	Arg	Thr	Thr	Leu	Gln	Ser	Val	Pro	Glu	Ala	Leu
1				5				10				15			
Pro	Ala	Asp	Ser	Val	Ser	Asn	Gly	Thr	Ala	Ser	Asn	Val	Ala	Ala	Pro
				20				25				30			
Ala	Ala	Pro	Val	Ser	Ser	Ala	Thr	Asn	Ala	Val	Pro	Pro	Leu	Ala	Ala
				35				40			45				
Val	Ser	Ser	Thr	Thr	Ala	Thr	Tyr	Ala	Thr	Asn	Ser	Ile	Ser	Thr	Ser
				50				55			60				
Ser	His	Ser	Val	Lys	Asp	Gln	His								
				65				70			75			80	
Asp	Ser	Ala	Asn	Ala	Asn	Ile	Val	Ser	Leu	Pro	Pro	Thr	Thr	Thr	Pro
				85				90			95				
Val	Ala	Asn	Thr	Asn	Thr	Met	Met	Pro	Ile	Val	Thr	Ser	Ser	Asn	Ser
				100				105			110				
Ala	Thr	Ser	Asn	Ser	Thr	Ala	Ala	Thr	Pro	Thr	Pro	Ala	Ser	Gly	Ala
				115				120			125				
Ala	Ala	Thr	Gly	Gly	Val	Gly	Ser	Val	Ser	Gln	Gly	Pro	Ala	Thr	Val
				130				135			140				
Ser	Ala	Ser	Ala	Ala	Asn	Thr	Asn	His	Ser	His	Gln	His	Ser	His	Gln
				145				150			155			160	
His	His	His	His	Val	Ala	Asn	Asn	Met	Thr	Thr	Asp	Gly	Ala	Arg	Leu
				165				170			175				
Ser	Ser	Asn	Asn	Ser	Ala	Val	Val	Ala	Ser	Ser	Ala	Ile	Asn	His	His
				180				185			190				
His	His	His	His	Thr	Pro	Gly	Ser	Gly	Val	Ala	Pro	Thr	Val	Asn	Lys
				195				200			205				
Val	Leu	Ser	Thr	His	Ser	Ala	His	Pro	Ser	Ala	Ile	Lys	Gln	Arg	Thr
				210				215			220				
Ser	Ser	Ala	Lys	Gly	Ser	Pro	Asn	Met	Gln	Met	Arg	Ser	Ser	Ala	Pro
				225				230			235			240	
Met	Arg	Trp	Arg	Ala	Thr	Glu	Glu	His	Ile	Gly	Lys	Tyr	Lys	Leu	Ile
				245				250			255				
Lys	Thr	Ile	Gly	Lys	Gly	Asn	Phe	Ala	Lys	Val	Lys	Leu	Ala	Lys	His
				260				265			270				
Leu	Pro	Thr	Gly	Lys	Glu	Val	Ala	Ile	Lys	Ile	Ile	Asp	Lys	Thr	Gln
				275				280			285				

Leu Asn Pro Gly Ser Leu Gln Lys Leu Phe Arg Glu Val Arg Ile Met
 290 295 300
 Lys Met Leu Asp His Pro Asn Ile Val Lys Leu Phe Gln Val Ile Glu
 305 310 315 320
 Thr Glu Lys Thr Leu Tyr Leu Ile Met Glu Tyr Ala Ser Gly Gly Glu
 325 330 335
 Val Phe Asp Tyr Leu Val Leu His Gly Arg Met Lys Glu Lys Glu Ala
 340 345 350
 Arg Val Lys Phe Arg Gln Ile Val Ser Ala Val Gln Tyr Cys His Gln
 355 360 365
 Lys Arg Ile Ile His Arg Asp Leu Lys Ala Glu Asn Leu Leu Leu Asp
 370 375 380
 Ser Glu Leu Asn Ile Lys Ile Ala Asp Phe Gly Phe Ser Asn Glu Phe
 385 390 395 400
 Thr Pro Gly Ser Lys Leu Asp Thr Phe Cys Gly Ser Pro Pro Tyr Ala
 405 410 415
 Ala Pro Glu Leu Phe Gln Gly Lys Lys Tyr Asp Gly Pro Glu Val Asp
 420 425 430
 Val Trp Ser Leu Gly Val Ile Leu Tyr Thr Leu Val Ser Gly Ser Leu
 435 440 445
 Pro Phe Asp Gly Ser Thr Leu Arg Glu Leu Arg Glu Arg Val Leu Arg
 450 455 460
 Gly Lys Tyr Arg Ile Pro Phe Tyr Met Ser Thr Asp Cys Glu Asn Leu
 465 470 475 480
 Leu Arg Lys Phe Leu Val Leu Asn Pro Ala Lys Arg Ala Ser Leu Glu
 485 490 495
 Thr Ile Met Gly Asp Lys Trp Met Asn Met Gly Phe Glu Glu Asp Glu
 500 505 510
 Leu Lys Pro Tyr Ile Glu Pro Lys Ala Asp Leu Ala Asp Pro Lys Arg
 515 520 525
 Ile Glu Ala Leu Val Ala Met Gly Tyr Asn Arg Ser Glu Ile Glu Ala
 530 535 540
 Ser Leu Ser Gln Val Arg Tyr Asp Asp Val Phe Ala Thr Tyr Leu Leu
 545 550 555 560
 Leu Gly Arg Lys Ser Thr Asp Pro Glu Ser Asp Gly Ser Arg Ser Gly
 565 570 575
 Ser Ser Leu Ser Leu Arg Asn Ile Ser Gly Asn Asp Ala Gly Ala Asn
 580 585 590
 Ala Gly Ser Ala Ser Val Gln Ser Pro Thr His Arg Gly Val His Arg
 595 600 605
 Ser Ile Ser Ala Ser Ser Thr Lys Pro Ser Arg Arg Ala Ser Ser Gly
 610 615 620
 Ala Glu Thr Leu Arg Val Gly Pro Thr Asn Ala Ala Ala Thr Val Ala
 625 630 635 640
 Ala Ala Thr Gly Ala Val Gly Ala Val Asn Pro Ser Asn Asn Tyr Asn
 645 650 655
 Ala Ala Gly Ser Ala Ala Asp Arg Ala Ser Val Gly Ser Asn Phe Lys
 660 665 670
 Arg Gln Asn Thr Ile Asp Ser Ala Thr Ile Lys Glu Asn Thr Ala Arg
 675 680 685
 Leu Ala Ala Gln Asn Gln Arg Pro Ala Ser Ala Thr Gln Lys Met Leu
 690 695 700
 Thr Thr Ala Asp Thr Thr Leu Asn Ser Pro Ala Lys Pro Arg Thr Ala
 705 710 715 720

Thr Lys Tyr Asp Pro Thr Asn Gly Asn Arg Thr Val Ser Gly Thr Ser
 725 730 735
 Gly Ile Ile Pro Arg Arg Ser Thr Thr Leu Tyr Glu Lys Thr Ser Ser
 740 745 750
 Thr Glu Lys Thr Asn Val Ile Pro Ala Glu Thr Lys Met Ala Ser Ala
 755 760 765
 Val Lys Ser Ser Arg His Phe Pro Arg Asn Val Pro Ser Arg Ser Thr
 770 775 780
 Phe His Ser Gly Gln Thr Arg Ala Arg Asn Asn Thr Ala Leu Glu Tyr
 785 790 795 800
 Ser Gly Thr Ser Gly Ala Ser Gly Asp Ser Ser His Pro Gly Arg Met
 805 810 815
 Ser Phe Phe Ser Lys Leu Ser Ser Arg Phe Ser Lys Arg Pro Asn Gln
 820 825 830

<210> 22
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 22
 Gln Arg Leu Gln Val Arg Lys Lys Pro Gln Arg Arg Lys Lys Arg Ala
 1 5 10 15
 Pro Ser Met Ser Arg Thr Ser Ser Tyr Ser Ser Ile Thr Asp Ser Thr
 20 25 30
 Met Ser Leu Asn
 35