Método dos Fótons Equivalentes Revisão e Aplicações

Alfredo Achterberg S. Pacheco

Orientado por: Prof. Dr. Werner Krambeck Sauter Defesa da Proposta de Trabalho de Conclusão de Curso

Curso de Bacharelado em Física - Universidade Federal de Pelotas

25 de Setembro, 2023

Estrutura da Apresentação

- 1 Introdução e Contextualização
- Objetivos do Trabalho
- 3 Seção de Choque Diferencial e Total
- 4 Demonstração do Método
- **5** Sobre o Fator de Forma

Figura: Foto do detector ATLAS do LHC. Créditos: [https://home.web.cern.ch/science/experiments/atlas]

Colisões de partículas constituem o método experimental mais utilizado atualmente para o entendimento da estrutura fundamental da matéria e de teste para novos modelos físicos.

Estudos desse tipo de processo tem longa história na física.

- Como exemplo o trabalho de decréscimo de velocidade de partículas α e β em meios materiais por N. Bohr;
- nesse trabalho, o físico propôs que a interação de partículas carregadas pode ser entendida pelo fenômeno eletromagnético de dispersão (uma analogia);
- em 1924, E. Fermi propôs que os campos de uma partícula carregada podem ser aproximados como pulsos de onda ou *fluxos de fótons* virtuais.

Disso, E. J. Williams, em 1933, propôs a generalização relativística do que seria o método dos fótons equivalentes.

- O método consiste, de forma introdutória, em obter o número de fótons virtuais do campo eletromagnético de uma partícula a partir da transformada de Fourier dos mesmos campos;
- este consiste de uma aproximação semi-clássica para o cálculo desses fótons virtuais.

Figura: Esquema representando os campos relativísticos de dois íons Z_1 e Z_2

Desde tais desenvolvimentos, este método aproximativo teve maior aplicação e desenvolvimentos na área de interação nuclear e de partículas fundamentais.

- Em especial, focaremos nas colisões ultraperiféricas de íons;
- são colisões com maior distância (parâmetro de impacto) e com interação dominantemente eletromagnética;
- pela interação ser eletromagnética também há menos multiplicidade nos estados finais e os resultados experimentais são mais facilmente tratados;
- fenômenos de interesse nesses processos incluem a produção de pares de partículas a partir de colisões de fótons.

Objetivos do Trabalho

Para a realização do trabalho propomos uma revisão bibliográfica com cálculo analítico e computacional de quantidades de interesse dos processos de colisão. Para isso, temos os seguintes objetivos específicos:

- 1 realizar a revisão bibliográfica do método;
- realizar o cálculo do fator de forma para o fator de forma para diferentes distribuições de carga;
- **3** deduzir o número de fótons equivalentes para diferentes distribuições de carga;
- realizar um estudo mais aprofundado sobre o fenômeno de fotoprodução de pares de partícula-antipartícula;
- obter as curvas teóricas para as seções de choque de diferentes processos de colisão e compará-las com as curvas experimentais.

O problema de interesse do método é o de colisão de partículas carregadas. A quantidade de interesse em colisões é a seção de choque.

Figura: Partícula adentrando a região de espalhamento por uma seção de área $d\sigma$ e sendo espalhada em um ângulo sólido $d\Omega$.

Da figura temos as diferenciais,

$$d\sigma = |b\,db\,d\phi|,\tag{1}$$

$$d\Omega = | \operatorname{sen} \theta \, d\theta \, d\phi |.$$

(2) A seção de choque total vem pela integral sobre Ω ,

A razão entre as duas é,

$$\frac{d\sigma}{d\Omega} = \left| \frac{b}{\sin \theta} \frac{db}{d\theta} \right|. \tag{3}$$

$$\sigma = \int \frac{d\sigma}{d\Omega} \operatorname{sen}\theta \, d\theta \, d\phi. \tag{4}$$

Que é a seção de choque diferencial.

Isto para uma partícula incidente individual!

Estamos levando em conta uma partícula individual. Se quisermos tratar um feixe de partículas, vamos precisar definir a *luminosidade*.

Luminosidade

Para um feixe de N partículas com mesma energia atravessando a área $d\sigma$, a luminosidade \mathcal{L} é definida como a quantidade de partículas que atravessam a região de espalhamento por unidade de área por unidade de tempo.

Disso, reescrevemos a seção de choque para um feixe de múltiplas partículas,

$$dN = \mathcal{L}d\sigma,\tag{5}$$

$$\Rightarrow \frac{d\sigma}{d\Omega} = \frac{1}{\mathcal{L}} \frac{dN}{d\Omega}.$$
 (6)

Inicialmente consideramos uma carga em movimento como abaixo.1

Figura: Carga q em movimento com velocidade \mathbf{v} passando por um ponto de observação P com parâmetro de impacto b e distância r. Referencial Σ é solidário ao ponto P e Σ' é solidário à carga pontual q.

¹A partir dagui usaremos unidades naturais ($\hbar = c = 1$).

Para o caso com velocidade da partícula em x_1 , a transformação de Lorentz dos campos é,

$$\begin{cases} E'_1 = E_1 \\ E'_2 = \gamma (E_2 - \beta B_3) \\ E'_3 = \gamma (E_3 + \beta B_2) \end{cases} \begin{cases} B'_1 = B_1 \\ B'_2 = \gamma (B_2 + \beta E_3) \\ B'_3 = \gamma (B_3 - \beta E_2) \end{cases} , \tag{7}$$

sendo $\gamma = (1 - \beta^2)^{-1/2}$ e $\beta = \nu/c$ os parâmetros relativísticos da partícula.

Escrevendo os campos nas *coordenadas* de Σ e depois aplicando a transformada de Lorentz temos os campos no *referencial* Σ ,

$$E_1(t) = -\frac{q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},\tag{8}$$

$$E_2(t) = \frac{q\gamma b}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},\tag{9}$$

$$B_3(t) = \beta E_2(t). \tag{10}$$

Aproximamos estes campos como pulsos de onda.

Analisando esses campos podemos notar que E_2 e B_3 formam um pulso de onda na direção x_1 . Ainda assim, a interação do campo E_1 pode ser analisada como um pulso de onda pela inserção de um campo magnético artificial como aproximação.

(a) Campos observados no referencial do ponto *P*.

(b) Pulsos aproximados P_1 e P_2 atingindo P.

Figura: Aproximação chave do método dos fótons virtuais é a de substituir os campos elétrico e magnético por pulsos de radiação equivalentes.

Com isso, iremos calcular agora os espectros de frequência², para ambos os pulsos. Estes o são

$$I_1(\omega, b) = \frac{1}{2\pi} |E_2(\omega)|^2,$$
 (11)

$$I_2(\omega, b) = \frac{1}{2\pi} |E_1(\omega)|^2,$$
 (12)

em que

$$E_{1,2}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \, E_{1,2}(t) e^{i\omega t},$$
 (13)

é a transformada de Fourier da parte elétrica dos pulsos.

²A energia por unidade de frequência e área de um pulso

O cálculo da integral para os dois campos leva ao seguinte resultado,

$$I_1(\omega, b) = \frac{1}{\pi^2} \frac{q^2}{\beta^2 b^2} \xi^2 K_1^2(\xi), \qquad (14)$$

$$I_2(\omega, b) = \frac{1}{\pi^2} \frac{q^2}{\beta^2 b^2} \frac{1}{\gamma^2} \xi^2 K_0^2(\xi).$$
 (15)

onde $\xi \equiv \frac{\omega b}{\gamma \nu}$ e as funções K_1 e K_0 são as funções modificadas de Bessel.

A partir disso, o número de fótons equivalentes pode ser obtido pelo espectro de frequência como,

$$N(\omega, b) = \frac{1}{\omega} [I_1(\omega, b) + I_2(\omega, b)]$$

$$= \frac{1}{\pi^2} \frac{q^2}{\beta^2 b^2} \frac{1}{\omega^2} \xi^2 \left[K_1^2(\xi) + \frac{1}{\gamma^2} K_0^2(\xi) \right].$$
(16)

O número de fótons total é dado pela integral de $N(\omega, b)$ sobre os parâmetros de impacto,

$$n(\omega) = \int_{b_{\min}}^{\infty} db \, b N(\omega, b)$$

$$= \frac{1}{\pi} \frac{2q^2}{\beta^2} \frac{1}{\omega} \left\{ \xi_{\min} K_0(\xi) \, K_1(\xi_{\min}) - \frac{\beta^2}{2} \xi_{\min}^2 \left[K_1^2(\xi_{\min}) - K_0^2(\xi_{\min}) \right] \right\},$$
(17)

Sobre o Fator de Forma

Para o caso da partícula incidente não ser pontual é introduzido o *fator de forma F*($|\mathbf{q}|$). Assim, o $N(\omega, b)$ fica escrito como,

$$N(\omega, b) = \frac{1}{\pi^2} \frac{Z^2 \alpha}{\beta^2 \omega b^2} \left| \int du \, u^2 J_1(u) \frac{F[(u^2 + \xi^2)/b^2]}{u^2 + \xi^2} \right|^2.$$
 (18)

O fator de forma $F(|\mathbf{q}|)$ é a transformada de Fourier da distribuição de carga $f(\mathbf{r})$.

Sobre o Fator de Forma

A maior parte das distribuições de carga são esfericamente simétricas.

f(r)	$F(\mathbf{q})$
$\delta(r)/4\pi$	1
$\frac{a^3}{8\pi}e^{-ar}$ $(a^2/2\pi)^{3/2}e^{-a^2r^2/2}$	$\left(\frac{1+ \mathbf{q} ^2}{a^2}\right)^{-2}$ $e^{ \mathbf{q} ^2/2a^2}$
$\int 3/4\pi R^3, r \le R$	$\frac{3(\sin\alpha - \alpha\cos\alpha)}{\alpha}, \ \alpha = \mathbf{q} R$
[0, r>R]	α

Tabela: Fatores de forma disponíveis para diferentes distribuições de carga esfericamente simétricas.

Dedução da Transformada de Lorentz para os Campos

Sendo os campos elétrico e magnético escritos em termos dos potenciais,

$$\mathbf{E} = -\nabla\Phi - \frac{\partial\mathbf{A}}{\partial t},\tag{19}$$

$$\mathbf{B} = \nabla \times \mathbf{A},\tag{20}$$

estes são escritos em forma explicitamente covariante usando o tensor eletromagnético,

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & -B_3 & B_2 \\ E_2 & B_3 & 0 & -B_1 \\ E_3 & -B_2 & B_1 & 0 \end{pmatrix}. \tag{21}$$

Como escrevemos os Campos nas Coordenadas de Σ

Os campos como percebidos em P, no referencial Σ' tem a forma

$$E'_1 = -\frac{qvt'}{{r'}^3}, \qquad E'_2 = \frac{qb}{{r'}^3}.$$
 (22)

Escrevemos nas coordenadas de Σ usando,

$$t' = \gamma t,$$
 (23)
$$t' = \sqrt{b^2 + (vt')^2}$$
$$= \sqrt{b^2 + v^2 \gamma^2 t^2}.$$
 (24)

Assim

$$E_1' = -\frac{q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
 (25)

$$E_2' = \frac{qb}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
 (26)

para os quais devemos aplicar a transformação de Lorentz.