Software Analysis & Verification

Due: Mar 31, 2020

Homework 3

Instructor: Fei He Chenhao Li (2017011466)

TA: Jianhui Chen, Fengmin Zhu

Read the instructions below carefully before you start working on the assignment:

- Please typeset your answers in the attached LATEX source file, compile it to a PDF, and finally hand the PDF to Tsinghua Web Learning before the due date.
- Make sure you fill in your name and Tsinghua ID, and replace all "TODO"s with your solutions.
- Any kind of dishonesty is *strictly prohibited* in the full semester. If you refer to any material that is not provided by us, you *must cite* it.

Problem 1: Short-Answered Questions

1-1 First-order logic is "semidecidable" – which half is decidable?

Solution The validity of any valid first-order formula can be decided in finite time. ■

- **1-2** Are the following statements about $T_{\mathbb{Z}}$ true? Briefly explain the reason (you may use conclusions from lectures).
 - (a) $T_{\mathbb{Z}}$ is decidable.
 - (b) $T_{\mathbb{Z}}$ is complete.
 - (c) If a formula ϕ is both a $\Sigma_{\mathbb{Z}}$ -formula and a $\Sigma_{\mathbb{N}}$ -formula, then: ϕ is $T_{\mathbb{N}}$ -valid if and only if ϕ is $T_{\mathbb{Z}}$ -valid.

Solution

- (a) True. A $T_{\mathbb{Z}}$ -formula can be reduced into a $T_{\mathbb{N}}$ -formula, and $T_{\mathbb{N}}$ is decidable.
- (b) True. A $T_{\mathbb{Z}}$ -formula can be reduced into a $T_{\mathbb{N}}$ -formula, and $T_{\mathbb{N}}$ is complete.
- (c) False. $\exists x.x+1=0$ is both a $\Sigma_{\mathbb{Z}}$ -formula and a $\Sigma_{\mathbb{N}}$ -formula, while it is $T_{\mathbb{Z}}$ -valid but not $T_{\mathbb{N}}$ -valid.

1-3 Is the following formula T_A -valid? Briefly explain the reason:

$$(a[i] = x \land x = y) \rightarrow a\langle i \triangleleft y \rangle = a$$

Solution No. In T_A , equality is only captured between array elements, i.e., there is no axiom to decide the equality between arrays.

1-4 T_A is not convex – show that by providing a counterexample.

Solution Let $F: x = a\langle i \triangleleft y \rangle[j]$. It is easy to show that $F \Rightarrow x = a[j] \lor x = y$, but $F \not\Rightarrow x = a[j]$ and $F \not\Rightarrow x = y$.

Chenhao Li Homework 3

Problem 2: Semantic Argument

Use the semantic method to check the validity of the following formulas. If not valid, please find a counterexample (a falsifying interpretation in its theory).

2-1 In
$$T_E$$
: $f(f(f(a))) = f(f(a)) \land f(f(f(f(a)))) = a \rightarrow (f(a) = a)$

Solution

- 1. $I \not\models F$
- 2. $I \models (f(f(f(a))) = f(f(a)) \land f(f(f(f(a)))) = a) \land \neg (f(a) = a), 1, \rightarrow f(f(a)) = a)$
- 3. $I \models f(f(f(a))) = f(f(a)) \land f(f(f(f(a)))) = a, 2, \land$
- 4. $I \models \neg (f(a) = a), 2, \land$
- 5. $I \models f(f(f(a))) = f(f(a)), 3, \land$
- 6. $I \models f(f(f(f(a)))) = a, 3, \land$
- 7. $I \models f(f(f(f(a)))) = f(f(f(a))), 5, \text{ cong.}$
- 8. $I \models f(f(f(a))) = f(f(f(f(a)))), 7, \text{ symm.}$
- 9. $I \models f(f(f(a))) = a, 6, 8, \text{ trans.}$
- 10. $I \models f(f(f(f(a)))) = f(a), 9, \text{ cong.}$
- 11. $I \models f(a) = f(f(f(f(a)))), 10, \text{ symm.}$
- 12. $I \models f(a) = a, 6, 11, \text{ trans.}$
- 13. $I \not\models f(a) = a, 4, \neg$
- 14. $I \models \bot$, 12, 13

So this formula is valid. ■

2-2 In
$$T_{\mathbb{Z}}$$
: $(1 \le x \land x \le 2) \to (x = 1 \lor x = 2)$

Solution

- 1. $I \not\models F$
- 2. $I \models (1 \le x \land x \le 2) \land \neg (x = 1 \lor x = 2), 1, \rightarrow$
- 3. $I \models 1 \leq x \land x \leq 2, 2, \land$
- 4. $I \models \neg (x = 1 \lor x = 2), 2, \land$
- 5. $I \not\models x = 1 \lor x = 2, 4, \neg$
- 6. $I \models \neg (x = 1), 5, \lor$
- 7. $I \models \neg (x = 2), 5, \lor$
- 8. $I \models 1 \le x, 3, \land$
- 9. $I \models x \le 2, 3, \land$
- 10. $I \models 1 < x, 6, 8, T_{\mathbb{Z}}$
- 11. $I \models x < 2, 7, 9, T_{\mathbb{Z}}$
- 12. $I \models x \leq 1, 11, T_{\mathbb{Z}}$
- 13. $I \models \bot$, 10, 12, $T_{\mathbb{Z}}$

So this formula is valid.

2-3 In T_A : $a\langle i \triangleleft e \rangle[j] = e \rightarrow a[j] = e$

Solution

- 1. $I \not\models F$
- 2. $I \models a \langle i \triangleleft e \rangle[j] = e \land a[j] = e, 1, \rightarrow$
- 3. $I \models a \langle i \triangleleft e \rangle [j] = e, 2, \land$
- 4. $I \models a[j] = e, 2, \land$

No contradiction can be drawn, so this formula is not valid. A falsifying interpretation can be: $D = \{c_a, c_i, c_j, x, y\}, I = \{a \mapsto c_a, i \mapsto c_i, j \mapsto c_i, e \mapsto x\}$ and $c_a[c_i] = y, c_a[c_j] = x$.

Chenhao Li Homework 3

Problem 3: Decision Procedure for Theories

3-1 Apply the decision procedure for quantifier-free T_E to the following Σ_E -formula:

$$p(x) \wedge f(f(x)) = x \wedge f(f(f(x))) = x \wedge \neg p(f(x))$$

Solution First transform it into an EUF-formula: $f_p(x) = \bullet \land f(f(x)) = x \land f(f(f(x))) = x \land f_p(f(x)) \neq \bullet$

$$S_F = \{ \bullet, x, f(x), f_p(x), f(f(x)), f_p(f(x)), f(f(f(x))) \}$$

Step 0:
$$\{\{\bullet\}, \{x\}, \{f(x)\}, \{f_p(x)\}, \{f(f(x))\}, \{f_p(f(x))\}, \{f(f(f(x)))\}\}$$

Step 1: From
$$f_p(x) = \bullet$$
, merge $\{\bullet\}$ and $\{f_p(x)\}$:

$$\{\{\bullet, f_p(x)\}, \{x\}, \{f(x)\}, \{f(f(x))\}, \{f_p(f(x))\}, \{f(f(f(x)))\}\}$$

Step 2: From f(f(x)) = x, merge $\{f(f(x))\}$ and $\{x\}$:

$$\{\{\bullet, f_p(x)\}, \{x, f(f(x))\}, \{f(x)\}, \{f_p(f(x))\}, \{f(f(f(x)))\}\}$$

From f(f(x)) = x, propagate $\{f(f(f(x)))\}$ and $\{f(x)\}$:

$$\{\{\bullet, f_p(x)\}, \{x, f(f(x))\}, \{f(x), f(f(f(x)))\}, \{f_p(f(x))\}\}$$

Step 3: From f(f(f(x))) = x, merge $\{x, f(f(x))\}\$ and $\{f(x), f(f(f(x)))\}\$:

$$\{\{\bullet, f_p(x)\}, \{x, f(x), f(f(x)), f(f(f(x)))\}, \{f_p(f(x))\}\}$$

From f(x) = x, propagate $f_p(x) = f_p(f(x))$:

$$\{\{\bullet, f_p(x), f_p(f(x))\}, \{x, f(x), f(f(x)), f(f(f(x)))\}\}$$

The final result is the congruence clusure of S_F . F asserts $f_p(f(x)) \neq \bullet$ while $f_p(f(x)) \sim \bullet$, so unsat. \blacksquare

3-2 Apply the decision procedure for quantifier-free T_A to the following Σ_A -formula:

$$a\langle i \triangleleft e \rangle \langle j \triangleleft f \rangle [k] = q \land j \neq k \land i = j \land a[k] \neq q$$

Solution

• For F, assume j = k:

$$F_1: f = g \land j \neq k \land i = j \land a[k] \neq g \land j = k$$

which has no write terms, so build a T_E -formula:

$$F_1': f = g \land j \neq k \land i = j \land a(k) \neq g \land j = k$$

which is not satisfiable.

• For F, assume $j \neq k$:

$$F_2: a\langle i \triangleleft e \rangle[k] = g \land j \neq k \land i = j \land a[k] \neq g \land j \neq k$$

- For F_2 , assume i = k:

 $F_3: e = g \land j \neq k \land i = j \land a[k] \neq g \land j \neq k \land i = k$ which has no write terms, so build a T_E -formula:

 $F_3': e = g \land j \neq k \land i = j \land a(k) \neq g \land j \neq k \land i = k$

which is not satisfiable.

– For F_2 , assume $i \neq k$:

$$F_4: a[k] = g \land j \neq k \land i = j \land a[k] \neq g \land j \neq k \land i \neq k$$

which has no write terms, so build a T_E -formula:

$$F_4': a(k) = g \land j \neq k \land i = j \land a(k) \neq g \land j \neq k \land i \neq k$$
 which is not satisfiable.

Every branch reaches contradiction, so unsat.

Chenhao Li Homework 3

3-3 Apply the Nelson-Oppen method to the following formula in $T_{\mathbb{Z}} \cup T_A$:

$$a[i] \geq 1 \wedge a[i] + x \leq 2 \wedge x > 0 \wedge x = i \wedge a \langle x \triangleleft 2 \rangle [i] \neq 1$$

Do it first using the nondeterministic version (i.e. guess and check), and then the deterministic version (i.e. equality propagation).

Solution First purify F to obtain F_1 and F_2 :

$$F = w_1 \ge 1 \land w_1 + x \le 2 \land x > 0 \land x = i \land w_2 \ne 1 \land a[i] = w_1 \land w_2 = a \langle x \triangleleft w_3 \rangle[i] \land w_3 = 2$$

$$F_1 = w_1 \ge 1 \land w_1 + x \le 2 \land x > 0 \land x = i \land w_2 \ne 1 \land w_3 = 2$$

$$F_2 = w_1 = a[i] \land w_2 = a \langle x \triangleleft w_3 \rangle[i]$$

$$V = free(F_1) \cap free(F_2) = \{w_1, w_2, w_3, x, i\}$$

• Guess-and-check method

Enumerate all the equivalence relation E on V:

1.
$$\{\{w_1, x, i\}, \{w_2, w_3\}\}$$
: sat.

Maybe I am lucky enough to find the correct equivalence relation within one guess.

• Equality propagation method

$$F_1 \models x = i$$

$$F_2 \land x = i \models w_2 = w_3$$

$$F_2 \land w_2 = w_3 \models x = w_1$$

Now no more equality can be drawn, so sat.