

Ide Mesin Pembelajaran

Fakta harian dalam 6 hari dan keputusan untuk berolah-raga sebagai berikut:

#	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
1	Cerah	Normal	Pelan	Ya
2	Cerah	Normal	Pelan	Ya
3	Hujan	Tinggi	Pelan	Tidak
4	Cerah	Normal	Kencang	Ya
5	Hujan	Tinggi	Kencang	Tidak
6	Cerah	Normal	Pelan	Ya

- (1) Ketika cuaca cerah, apakah akan berolah-raga?
- (2) Ketika cuaca cerah dan temperatur normal, apakah akan berolah-raga?

Penyajian keputusan berdasarkan fakta inilah yang mengilhami konsep dari mesin pembelajaran

Data Training

K	Key Attribut		Target —→	
Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D1	Cerah	Normal	Pelan	Ya
D2	Cerah	Normal	Pelan	Ya
D3	Hujan	Tinggi	Pelan	Tidak
D4	Cerah	Normal	Kencang	Ya
D5	Hujan	Tinggi	Kencang	Tidak
D6	Cerah	Normal	Pelan	Ya

- Attribut adalah kolom data, ada atribut dan target
- Instance adalah isi dari attribut sebagai contoh attribut cuaca mempunyai instance "cerah" dan "hujan", sering ditulis dengan cuaca={cerah,hujan}
- Record/tuple adalah baris data

Pengisian Data Dalam Matlab

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D1	Cerah	Normal	Pelan	Ya
D2	Cerah	Normal	Pelan	Ya
D3	Hujan	Tinggi	Pelan	Tidak
D4	Cerah	Normal	Kencang	Ya
D5	Hujan	Tinggi	Kencang	Tidak
D6	Cerah	Normal	Pelan	Ya

```
dtTraining(1,:) = {'D1', 'cerah', 'normal', 'pelan', 'ya'}
dtTraining(2,:) = {'D2', 'cerah', 'normal', 'pelan', 'ya'}
dtTraining(3,:) = {'D3', 'hujan', 'tinggi', 'pelan', 'tidak'}
dtTraining(4,:) = {'D4', 'cerah', 'normal', 'kencang', 'ya'}
dtTraining(5,:) = {'D5', 'hujan', 'tinggi', 'kencang', 'tidak'}
dtTraining(6,:) = {'D6', 'cerah', 'normal', 'pelan', 'ya'}
```

Menyimpan dan Memanggil Data

Untuk menyimpan data training yang sudah dibuat:

Untuk memanggil data training yang sudah disimpan:

Mengambil Ukuran data

Setiap data di dalam MATLAB dinyatakan sebagai matrik, sehingga dapat diambil ukuran data yang berupa jumlah baris data dan jumlah kolom (attribut).

```
nData=size(dtTraining,1);
nAttribut=size(dtTraining,2);
```

nData adalah jumlah data (baris) nAttribut adalah jumlah attribut (kolom)

Membaca Instance Keputusan

```
% Instance pertama diambil dari data pertama
nInstance=1;
instance{1}=dtTraining{1,nAttribut};
% Membaca semua baris data
for i=2:nData
    % Cek apa instance data ke I adalah instance baru
    sw=0;
    for k=1:nInstance
        if strcmp(dtTraining{i,nAttribut},instance{k})==1
            sw=1;
        end
    end
    % Jika instance baru, maka tambahkan data instance
    if(sw==0)
        nInstance=nInstance+1;
        instance(nInstance) = dtTraining(i, nAttribut);
    end
end
```

#	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
3	Hujan	Tinggi	Pelan	Tidak
5	Hujan	Tinggi	Kencang	Tidak

Attribut cuaca dan temperatur mempunyai nilai yang sama dalam satu keputusan (berolah-raga), maka data ini adalah data yang konsisten.

#	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
1	Cerah	Normal	Pelan	Ya
2	Cerah	Tinggi	Pelan	Ya
4	Hujan	Normal	Kencang	Ya
6	Cerah	Normal	Pelan	Ya

Tidak satupun attibut yang mempunyai nilai yang sama dalam satu keputusan (berolah-raga), maka data ini adalah data yang tidak konsisten.

#	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
1	Cerah	Normal	Pelan	Ya
2	Cerah	Normal	Pelan	Ya
3	Hujan	Normal	Pelan	Ya
4	Cerah	Normal	Pelan	Tidak

Perhatikan data ke 4, data ini mempunyai keputusan yang berbeda dengan data 1 dan data 2, tetapi instance pada semua attributnya sama, sehingga data ini disebut dengan data bias.

Hipotesa dituliskan dengan:

 $H(attribut_1, attribut_2, ..., attribut_n) = keputusan$

<u>H(cuaca=cerah, temperatur=normal, kec.angin=pelan) = ya</u>

Hipotesa ini menunjukkan bahwa keputusan untuk berolahraga bila cuaca=cerah, temperatur=normal dan kec.angin=pelan, untuk singkatnya dituliskan hanya instance pada setiap attibut dengan **H(cerah,normal,pelan)=ya**

H(cuaca=cerah, kec.angin=pelan) = ya

Hipotesa ini menunjukkan bahwa keputusan untuk berolahraga bila cuaca=cerah, dan kec.angin=pelan, untuk singkatnya dituliskan hanya instance pada setiap attibut dengan **H(cerah,*,pelan)=ya**

H(cuaca=cerah) = ya

Hipotesa ini menunjukkan bahwa keputusan untuk berolahraga bila cuaca=cerah, untuk singkatnya dituliskan hanya instance pada setiap attibut dengan **H(cerah,*,*)=ya**

Penulisan Hipotesa Dalam Matlab

Penulisan untuk hipotesa H(cerah, normal, pelan)=ya dalam MATLAB adalah:

Penulisan ini menggunakan format cell-array dengan array 1 baris dan 3 kolom (sesuai jumlah attribut yang dimasukkan). Nilai 1 berarti keputusan untuk YA.

Untuk hipotesa dengan keputusan tidak seperti H(hujan)=tidak dituliskan dengan indeks 2 sebagai berikut:

$$H(2,:) = \{\text{'hujan'}, \text{'*'}, \text{'*'}\}$$

Ide Mesin Pembelajaran

Pada dasarnya semua algoritma yang dikembangkan dalam mesin pembelajaran adalah algoritma yang menghasilkan hipotesa dari suatu keputusan berdasarkan data pembelajaran yang diberikan.

- Find-S adalah suatu metode paling sederhana yang dapat digunakan untuk mendapatkan suatu hipotesa berdasarkan data.
- Find-S mencari kesamaan nilai attribut untuk memperoleh suatu hipotesa
- Kelemahan dari Find-S adalah data yang digunakan harus bersifat konsisten dan tidak bias ??? (Terlalu sulit untuk dapat memperoleh data semacam ini pada persoalan nyata)

(1) Langkah Find-S

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D1	Cerah	Normal	Pelan	Ya
D2	Cerah	Normal	Pelan	Ya
D3	Hujan	Tinggi	Pelan	Tidak
D4	Cerah	Normal	Kencang	Ya
D5	Hujan	Tinggi	Kencang	Tidak
D6	Cerah	Normal	Pelan	Ya

Untuk memperoleh hipotesa dengan Find-S dari data training di atas, langkah pertama yang harus dilakukan adalah memcah data berdasarkan keputusannya, sehingga akan diperoleh 2 data: pertama untuk keputusan=ya dan kedua untuk keputusan=tidak

(2) Langkah Find-S

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D1	Cerah	Normal	Pelan	Ya
D2	Cerah	Normal	Pelan	Ya
D4	Cerah	Normal	Kencang	Ya
D6	Cerah	Normal	Pelan	Ya

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D3	Hujan	Tinggi	Pelan	Tidak
D5	Hujan	Tinggi	Kencang	Tidak

Dari hasil pemisahan tersebut, terlihat bahwa data training tersebut Konsisten dan tidak bias. Langkah berikutnya adalah membuat hipotesa untuk masing-masing keputusan. Pembuatan hipotesa ini dilakukan dengan mengambil data pertama sebagai hipotesa awal yang dianggap sebagai hipotesa spesifik, dan diteruskan hingga data terakhir dengan memperhatikan kesamaan sampai didapatkan hipotesa umum.

[3] Langkah Find-S

Langkah ini digunakan untuk menentukan hipotesa dari keputusan=ya

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D1	Cerah	Normal	Pelan	Ya
D2	Cerah	Normal	Pelan	Ya
D4	Cerah	Normal	Kencang	Ya
D6	Cerah	Normal	Pelan	Ya

- Hipotesa awal disamakan dengan data pertama:
 - H(Cerah, Normal, Pelan) = Ya
- Data kedua, tidak ada perubahan karena semua nilai instancenya sama: H(Cerah, Normal, Pelan) = Ya
- Data ketiga, ada perubahan di attribut kec angin, sehingga : H(Cerah, Normal, *) = Ya
- Data keenam, ada perubahan di attribut kec angin, sehingga : H(Cerah, Normal, *) = Ya

Langkah ini digunakan untuk menentukan hipotesa dari keputusan=tidak

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D3	Hujan	Tinggi	Pelan	Tidak
D5	Hujan	Tinggi	Kencang	Tidak

Hipotesa awal disamakan dengan data pertama (D3): H(Hujan, Tinggi, Pelan) = Tidak

Data kelima, ada perubahan di kec.angin
H(Cerah, Normal, *) = Tidak

Hasil Find-S

Day	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
D1	Cerah	Normal	Pelan	Ya
D2	Cerah	Normal	Pelan	Ya
D3	Hujan	Tinggi	Pelan	Tidak
D4	Cerah	Normal	Kencang	Ya
D5	Hujan	Tinggi	Kencang	Tidak
D6	Cerah	Normal	Pelan	Ya

Hasil Find-S adalah:

H(Cerah, Normal, *) = Ya

H(Hujan, Tinggi, *) = Tidak

Contoh Keputusan Dari Hipotesa

HIPOTESA

H(Cerah, Normal, *) = Ya

H(Hujan, Tinggi, *) = Tidak

JAWAB: YA

Proses Dilakukan Untuk Setiap Instance

```
for n=1:nInstance
      % Menyeleksi data sesuai instance ke-l
      nh=0;
      for i=1:nData
         if strcmp(dtTraining{i,nAttribut},instance{n})==1
           nh=nh+1;
           dataH(nh,:)=dtTraining(i,:);
         end
      end
      % Proses Find-S untuk menentukan hipotesa
      % dari keputusan ke-l
end
```

```
% Hipotesa awal diambil dari data pertama dari data terseleksi
hipotesis(n,:)=dataH(1,2:nAttribut-1);
% Proses pembentukan hipotesa berdasarkan semua
% data terseleksi
for i=2:nh
  for j=2:nAttribut-1
    % Penentuan apakah ada instance yang berbeda
    % pada attribut yang sama
    % Bila ada maka hipotesa dijadikan *
    % Proses ini hanya dilakukan untuk hipotesa bukan *
    if strcmp(hipotesis(n,j-1),'*')==0
       if strcmp(hipotesis{n,j-1},dataH{i,j})==0
         hipotesis{n,j-1}='*';
       end
    end
  end
end
```


BAGAIMANA BILA DATA TIDAK KONSISTEN DAN BIAS?

