Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 22: June 19th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

22.1 Eulerian Circuits

Eulers Question: What graphs have a closed walk that contains all the edges of G exactly once? Such walks are known as **Eulerian tours**

Theorem 22.1 (Euler) A connected graph has an Euler Tour \iff every vertex has an even degree.

Proof: In course notes

Example 22.2 -

22.2 Trees

Definition 22.3 A tree is a connected graph with no cycles

Lemma 22.4 There is a unique path between vertices u and v in a tree T.

Proof: Suppose there are two paths, $P: x_0x_1 \dots x_n$ and $Q: y_0y_1 \dots y_m$ where $u = x_0 = y_0$ and $v = x_n = y_m$

Let i+1 be the smallest index for which $x_{i+1} \neq y_{i+1}$.

There is a closed walk connecting the ends of $e := x_i x_{i+1}$ that does not go through e : W is defined by following Q from y_i to y_m and then returning back from x_m to x_{i+1} .

Since x_i and x_{i+1} are connected in T-e, then e is not a bridge *implies* there is a cycles in T containing e, thus contradicting that T is a tree

Observation: Every edge of a tree is a bridge

Theorem 22.5 A tree T with $|V(G)| \ge 2$ has at least two vertices of degree 1

Theorem 22.6 If T is a tree $\Longrightarrow |E(T)| = |V(T)| - 1$

Proof:

Base: n=1 and and n=2 holds

I.H: Suppose that every tree with n-1 vertices has n-2 edges.

I.S: Let T be a tree with n vertices. By the previous theorem, T has vertex c such that deg(v) = 1Next Lecture