CWB-YOLOV8

NOV 2024

DATASET

DATASET

- Number of samples
 - o Around 7300
- Number of classes: 6

Defect category	Number of defective images	Number of defects	Defect proportion (%)	
Live_knot	2431	3487	30.9	
Dead_knot	2005	2980	26.4	
Knot_with _crack	871	1079	9.6	
Crack	728	1254	11.1	
Resin	476	1186	10.5	
Marrow	756	1301	11.%	

FIRST IMPROVMENT

- ConvModule drawbacks
 - Cannot handle the complex and changeable appearances of wood defects
- Replace ConvModule with CondConv
- CondConv adaptively changes the weights of the convolution kernel based on input conditions.
- Enhances the extraction of features for different types of wood.

- W/
 - Convolution kernel
- ROUTR FN
 - Calculate the weights of different convolution kernels

$$r(x) = \text{Sigmoid}(\text{GlobalAveragePool}(x)R),$$

 Output: generates customized weight coefcients for the input features

Output(
$$x$$
) = $\sigma((\alpha_1 W_1 + \cdots + \alpha_n W_n) \cdot x)$,

SECOND IMPROVMENT

MULTIHEAD ATTENTION

- Multihead handle medium- and long-distance information
- BUT requiring large amounts of computing resources
- Use BiFormer, use dynamic sparse attention mechanism
 - o Four-layer pyramid
 - 3 patch merging layers
 - 1 patch embedding layer

BIFORMER

- Stage 2 4
 - o Patch Merging:
 - Input feature downsample, spatial patches are merged, and their channels are concatenated
 - Channel depth increase
 - o BiFormer Blocks
 - Depthwise Convolution
 - Captures local spatial information and encodes positional relationships.
 - Bi-Level Routing Attention
 - Filters out irrelevant regions
 - Multilayer Perceptron (MLP)

THIRD IMPROVMENT

LOSS FUNCTION

- Complete Intersection over Union (CloU) Loss is bounding box regression loss
- improve the alignment of predicted bounding boxes with ground truth

$$\mathcal{L}_{CIoU} = 1 - IoU + \frac{d^2}{c^2} + \alpha v,$$

D: Euclidean distance between predicted and ground-truth boxe

C: Diagonal length of the smallest enclosing box that contains both the predicted and ground-truth boxes.

• IoU represents the intersection-over-union ratio between the anticipated bounding box and the actual bounding box

C-IOU DRAWBACKS

- The penalty weights in CloU are not dynamically adjusted based on sample quality.
- •CloU applies a fixed penalty regardless of sample quality, which reduces the generalizability of the model.
- •Wood defect images often result in low-quality samples.
- •in the bounding box regression branch replace CloU by Wise-IoU

WISE-IOU ALGORITHM

- •Wise-IoU incorporates a distance-based attention mechanism.
- •Low-quality samples contribute less to the gradient updates.
- •High-quality samples, on the other hand, receive greater attention.
- •Outlier Handling: allows the model to handle diverse and noisy datasets better
- •Better habdle unseen or challenging defect samples

$$L_{WIoUv1} = (1 - IoU) \exp\left(\frac{(x - x_{gt})^2 + (y - y_{gt})^2}{(W_g^2 + H_g^2)^*}\right)$$

CWB-YOLO8

- use the BiFormer attention mechanism
- 2. <u>use Wise-IoUv3 to replace the</u> <u>original CloU loss function</u>
- 3. use the CondConv module to replace the original convolution module

IMPROVMENT

- •improve the ability of the model to understand the complex features of wood(BiFormer)
- •improving the bounding box regression process(Wise-IoUv3)
- •Dynamically adjusts the weight of the convolution kernel to improve the extraction of different types of wood defect features(CondConv)

RESULTS

 Table 3
 Results of an ablation experiment

Algorithm	Module			Results				
	CondConv	Wise-IoU	BiFormer	mAP@0.5	mAP@0.5:0.95	Precision	Recall	
YOLOv8				0.857	0.530	0.826	0.807	
	\checkmark			0.866	0.547	0.829	0.817	
	\checkmark	\checkmark		0.871	0.542	0.835	0.821	
	$\sqrt{}$	\checkmark	$\sqrt{}$	0.892	0.588	0.870	0.833	

RESULTS

0

Fig. 13 Original image and heatmaps: a YOLOv8, b YOLOv8+CondConv, c YOLOv8+CondConv+Wise-IoU, and d CWB-YOLOv8

RESULTS

FUTURE WORKS

- EfficientAD
- PatchCore

