[2019–2020] группа: Геом-10 01 октября 2019 г.

Серия 3. Отношение степеней и пучки окружностей

- **1.** (Основная лемма на сегодня) Окружность ω лежит внутри окружности Ω и касается её в точке T. На окружности Ω выбраны произвольные точки A и B. Для каждой точки X плоскости обозначим длину отрезка касательной из X к ω через $\delta(X,\omega)$. Докажите, что $AT/BT = \delta(A,\omega)/\delta(B,\omega)$.
- **2.** Хорды AC и BD окружности Ω пересекаются в точке K. Окружность ω касается отрезков AK и DK в точках P и Q и касается окружности Ω внутренним образом в точке T. Прямая PQ пересекает отрезок AB в точке X. Докажите, что прямая TX биссектриса угла ATB.
- 3. Окружность Ω проходит через вершины B и C неравнобедренного треугольника ABC и содержит внутри себя вершину A. Окружность ω касается отрезков AB и AC в точках P и Q и касается окружности Ω внутренним образом в точке T. Прямые BC и PQ пересекаются в точке X. Докажите, что прямая TX проходит через середину дуги BC окружности Ω .
- **4.** Полувписанная окружность касается сторон AB и AC треугольника ABC в точках P и Q и касается окружности (ABC) внутренним образом в точке T. Отрезки AT и PQ пересекаются в точке S. Докажите, что $\angle ABS = \angle ACS$.
- **5.** Вписанная окружность неравнобедренного треугольника ABC с центром в точке I касается стороны BC в точке K. Некоторая окружность касается прямой BC в точке K и касается окружности (ABC) в точке T, причём точки A и T лежат в одной полуплоскости относительно прямой BC. Докажите, что $\angle ATI = 90^{\circ}$.
- **6.** (a) Окружность задана уравнением $f(x,y) = x^2 + y^2 + Ax + By + C = 0$ в декартовых координатах. Выразите через многочлен f значение степень точки с координатами (x,y) относительно этой окружности. (b) Даны две окружности. Докажите, что локусом точек плоскости с постоянными отношением степеней относительно этих окружностей служит окружность, прямая, точка или пустое множество.
 - **Пучком окружностей** называется семейство окружностей, заданных уравнениями $\lambda \cdot f(x,y) + \mu \cdot g(x,y) = 0$, где f(x,y) и g(x,y) фиксированные многочлены вида $x^2 + y^2 + Ax + By + C$, а λ и μ пробегают всевозможные вещественные значения.
- 7. Дан угол и точка P внутри него. Рассматриваются всевозможные вписанные четырёхугольники ABCD такие, что точки A и B лежат на одной стороне угла, точки C и D на другой, а диагонали AC и BD пересекаются в точке P. Докажите, что все описанные окружности таких четырёхугольников имеют общую радикальную ось.
- **8.** Четырехугольник ABCD вписан в окружность Ω . Окружность ω касается прямых AB и CD в точках X и Y и пересекает дугу AD окружности Ω в точках P и Q. Прямая XY пересекает AC и BD в точках U и V. Докажите, что P, Q, U V лежат на одной окружности, касающейся прямых AC и BD.