Stožnice

Bor Bregant

Rešitve enačbe $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ (krivulja drugega reda ali kvadratna enačba z dvema neznankama) je lahko krožnica, elipsa, hiperbola, parabola, ena ali dve premici, točka ali pa prazna množica.

1 Krožnica

$$\{T(x,y)|d(T,S)=r\}$$

Enačba krožnice s središčem S(p,q) in polmerom r je $(x-p)^2+(y-q)^2=r^2$.

Potrebni pogoj A = C in B = 0. Zadostni pogoj $D^2 + E^2 > 4AF$.

Zgled. Napišimo enačbo krožnice s središčem S(3,-7) in polmerom r=3.

Zgled. Poiščimo krožnico, ki ima središče v S(2, -3) in se dotika premice x = 4.

Zgled. Pokažimo, da se krožnici $(x-8)^2 + (y-6)^2 = 25$ in $(5x-16)^2 + (5y-12)^2 = 25$ dotikata.

Zgled. Iz diametralnih točk A(-5,2) in B(1,4) zapišimo enačbo krožnice.

Zgled. Določimo konstanto k, da bo y = kx + 2 tangenta na $x^2 + y^2 = 2$. (vstavimo in iščemo le eno rešitev)

Dopolnjevanje do popolnega kvadrata: $x^2 + y^2 - 6x + 4y + 12 = 0$

- 1. Združimo x in y
- 2. Če gre, izpostavimo člen pred \boldsymbol{x}^2 in pred \boldsymbol{y}^2
- 3. Dopolnimo do kvadrata in uredimo, da cifra na desni, ostalo na levi
- 4. Če gre, delimo enačbo z desno cifro, da imamo na desni = 1

Zgled. Ali enačbi $x^2 + y^2 + 8x - 2y - 8 = 0$ in $x^2 + y^2 + 6y + 10 = 0$ predstavljata krožnico. Če ja, napiši njen polmer in središče.

Zgled. Napišimo enačbo krožnice, ki je očrtana trikotniku ABC z oglišči A(0,1), B(-2,-3) in C(-3,-1).

1

Naloga 1. NALOGE 228a, 229c, 231ac, 232adf, 234a, 239a, 241a.

2 Elipsa

Elipsa je množica točk v ravnini, katerih vsota razdalj od izbranih točk F_1 in F_2 (gorišč) je konstantna.

V središčni legi $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. a in b imenujemo velika in mala polos elipse, A(-a,0), B(a,0), C(0,-b), D(0,b) so temena elipse, $F_1(-e,0)$ in $F_2(e,0)$ gorišči elipse, e linearna ekscentričnost. Velja $e^2 = a^2 - b^2$ (če a > b) oziroma $e^2 = b^2 - a^2$ (če b > a).

Zgled. Napišimo enačbo elipse v središčni legi, na kateri ležita točki $A(\sqrt{3}, -\sqrt{10})$ in B(-3,0). Zapišimo še njena gorišča.

V splošni legi $\frac{(x-p)^2}{a^2}+\frac{(y-q)^2}{b^2}=1.$ SrediščeS(p,q),temena in gorišča kot na sliki.

Zgled. Premaknimo enačbo elipse $5x^2 + 12y^2 - 60 = 0$, da bo imela središče v točki S(3, -2) in zapišimo njeni novi gorišči.

Zgled. Ali enačba $9x^2 + 4y^2 + 36x - 8y + 4 = 0$ predstavlja elipso. Če ja, jo narišimo in označimo simetrijske osi.

Zgled. Ali enačba $4x^2 + 5y^2 - 4x + 10y + 6 = 0$ predstavlja elipso.

Potreben pogoj $A \neq C$ in AC > 0

Naloga 2. 253ac, 257ab, 260a, 263ab nariši , 266a, 272, 273.

3 Hiperbola

Hiperbola je množica točk v ravnini, katerih absolutna vrednost razlike razdalj od dveh izbranih točk (gorišč F_1 in F_2) je konstantna.

V središčni legi $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Glede na sliko, imenujemo a glavna (ali realna) polos, b imaginarna polos, A(-a,0) in B(a,0) temeni hiperbole, $F_1(-e,0)$ in $F_2(e,0)$ gorišči in e linearna ekscentričnost, ki jo izračunamo kot $e^2 = a^2 + b^2$. Asimptoti sta premici $y = \pm \frac{b}{a}x$.

Hiperbola oblike $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ (oziroma $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$) je "podobna", le da "gleda gor-dol". Enakoosa če a = b.

Zgled. Zapišimo enačbo hiperbole v središčni legi, če poznamo njeno asimptoto $y = \frac{3}{2}x$ in vemo, da točka $A(2\sqrt{5},3)$ leži na njej.

V splošni legi $\frac{(x-p)^2}{a^2} - \frac{(y-q)^2}{b^2} = 1.$

Potreben pogoj AC < 0.

Zgled. Izračunajmo gorišča, temeni, enačbi asimptot, simetrijske osi in narišimo hiperbolo $x^2 - y^2 - 2x + 4y - 28 = 0$.

Zgled. Nariši krivuljo $4x^2 - 9y^2 + 16x + 18y - 29 = 0$.

Naloga 3. NALOGE 277ab, 278ac, 282, 284ab, 286

4 Parabola

Parabola je množica točk v ravnini, ki so enako oddaljene od izbrane točke (gorišče F) in izbrane premice (vodnica).

V središčni legi $y^2=2px$. Glede na sliko imenujemo A(0,0) teme parabole, p=2|OF| parameter parabole, $F(\frac{p}{2},0)$ gorišče, enačba premice vodnice pa je $x=-\frac{p}{2}$.

Zgled. Zapišimo enačbo parabole, ki ima gorišče v F(4,0) in teme v koordinatnem izhodišču.

Zgled. Zapišimo enačbo parabole v izhodiščni legi, na kateri leži točka T(3,-2).

Zgled. Zapišimo točki parabole $y^2 = 12x$, ki sta od gorišča oddaljeni za 7 enot.

V splošni legi $(y-q)^2=2p(x-t)$. Potreben pogoj AC=0, a ne oba hkrati. V tem primeru $F(\frac{p}{2}+t,q), x=-\frac{p}{2}+q, T(t,q)$.

Zgled. Narišimo parabolo, če vemo, da je njeno teme T(-2,-6) in gorišče F(4,-6).

Zgled. Preveri ali $y^2-6x-10y-15$ predstavlja parabolo. Zapiši teme, gorišče, enačbo vodnice ter presečišča s koordinatnima osema.

Naloga 4. 289vse, 300a, 301b, 302a, 304vse, 306a

5 Presečišča stožnic

Zgled. Izračunajmo presečišča $x^2 + y^2 = 8$, $x^2 + 3y^2 = 12$.

Zgled. Izračunajmo presečišča $x^2 - 2y^2 = 125$, $y^2 = 10x$.

Zgled. Izračunajmo presečišča $(x-2)^2+(y+3)^2=14, \ (x+\frac{1}{2})^2+(y+\frac{1}{2})^2=\frac{13}{2}.$

Zgled. Izračunajmo presečišča $y^2 = 2x$, 2x - y - 6 = 0.

Zgled. Izračunajmo presečišča $4x^2 + 5y^2 = 20$, $4x^2 - y^2 = 36$.

Naloga 5. 309ab cd, 310a, 311ab.