Projet CSI: SQUEEZE

Pierre-Jean Coquard Tom Duong Joceran Gouneau

Présentation de l'article

Pajarola, R., & Rossignac, J. (2000, June). Squeeze: Fast and progressive decompression of triangle meshes. In Proceedings Computer Graphics International 2000 (pp. 173-182). IEEE.

- Edge collapse pour fusionner des sommets
- Contraintes topologiques pour garder un maillage triangulaire à chaque étape
- Compression par batch

Grandes étapes de l'algorithme de compression

- tant que les contraintes de complexité ou d'erreur de reconstruction sont respectées :
 - établissement des arêtes pouvant être sélectionnées sous contraintes topologiques
 - tant que des arêtes peuvent être sélectionnées :
 - sélection du prochain sommet à collapse en minimisant une métrique d'erreur
 - mise à jour des arêtes pouvant être sélectionnées sous les contraintes topologiques

Edge collapse / Edge split

Pajarola, R., & Rossignac, J. (2000, June). Squeeze: Fast and progressive decompression of triangle meshes

Contraintes topologiques

- a) Au maximum deux sommets peuvent être réduits à un seul.
- **b)** Pour chaque arête e = (v1, v2) qui sera regroupée et tout autre sommet w qui est incident à la fois à v1 et v2, le triplet (v1, v2, w) doit définir un triangle valide dans le maillage Mi.

Pajarola, R., & Rossignac, J. (2000). Compressed progressive meshes. IEEE Transactions on Visualization and Computer Graphics, 6(1), 79-93

c) Pour chaque arête e1 = (v1, v2) qui sera rabattue et toute arête e2 = (w1,w2) formant un quadrilatère (v1, v2,w1,w2) avec e1 dans Mi e1 et e2 ne peuvent pas être fusionnés dans le même lot.

Métrique d'erreur

Dans un lot, l'ordre de contraction des arêtes est fondamental pour la conservation de la forme générale de l'objet au fur et à mesure de la compression.

Ainsi, on associe à chaque sommet v une matrice Q, représentant l'ensemble des plans auquel le sommet appartient. L'erreur considérée lors de la contraction d'une arête est donc:

$$\mathbf{\bar{v}}^{\mathsf{T}}(\mathbf{Q}_1 + \mathbf{Q}_2)\mathbf{\bar{v}}$$

Où **v** est le sommet issu de la contraction, **Q1** et **Q2** les matrices des sommets v1 et v2 de l'arête contractée. Il s'agit d'une somme de distances entre le sommet **v** et les plans de v1 et v2, que l'on souhaite donc la plus petite possible

Décompression rapide

Optimisation de la mémoire : on retient un vecteur d'erreur au lieu de retenir la position du sommet supprimé

$$v_{est} = \frac{1}{k} \cdot \sum_{i=1}^{k} a_i$$

$$v_{err} = v_{del} - v_{est}$$

Pajarola, R., & Rossignac, J. (2000, June). Squeeze: Fast and progressive decompression of triangle meshes

Résultats

Résultats

Fandisk modèle M_n

Fandisk modèle M_{n-1}

Résultats

Points positifs

- Cet algorithme est robuste à tous les objets à maillages triangulaire (fonctionnent sur les modèles non watertight et / ou composé de plusieurs sous objets)
- Cet algorithme est facilement adaptable pour choisir un bon compromis entre la vitesse d'exécution et la qualité du modèle obtenu
- L'exécution de l'algorithme est rapide

Points négatifs

- La compression devient très longue si on essaye d'optimiser parfaitement l'erreur de construction à chaque étape de compression
- La compression ne priorise pas les zones nécessitant moins de détails

 $v_{est} = \frac{1}{k}.{\sum_{i=1}^{k}a_i}$