Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Estruturas de dados retroativas Um estudo sobre Union-Find e ...

Felipe Castro de Noronha

Monografia Final

mac 499 — Trabalho de Formatura Supervisionado

Supervisora: Prof^a. Dr^a. Cristina G. Fernandes

São Paulo 2022 O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License)

Esta seção é opcional e fica numa página separada; ela pode ser usada para uma dedicatória ou epígrafe.

Agradecimentos

Eu sou quem sou porque estou aqui.

Paul Atreides

Texto texto. Texto opcional.

Resumo

Felipe Castro de Noronha. Estruturas de dados retroativas: *Um estudo sobre Union-Find e ...*. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavras-chave: Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Felipe Castro de Noronha. **Retroactive data structures:** *A study about Union-Find and.* Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2022.

Keywords: Keyword1. Keyword2. Keyword3.

Lista de Abreviaturas

CFT	Transformada contínua de Fourier (Continuous Fourier Transform)
DFT	Transformada discreta de Fourier (Discrete Fourier Transform)
EIIP	Potencial de interação elétron-íon (Electron-Ion Interaction Potentials)
STFT	Transformada de Fourier de tempo reduzido (Short-Time Fourier Transform)
ABNT	Associação Brasileira de Normas Técnicas
URL	Localizador Uniforme de Recursos (Uniform Resource Locator)
IME	Instituto de Matemática e Estatística
USP	Universidade de São Paulo

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ
- O Notação O-grande

Lista de Figuras

Lista de Tabelas

Lista de Programas

Sumário

1	Intr	odução	1
	1.1	Retroatividade Parcial	1
	1.2	Retroatividade Total	1
2	Link	x-Cut Trees	3
	2.1	Splay Trees	3
	pênd nexo		
Re	ferêr	ncias	9
Ín	dice I	Remissivo	11

Capítulo 1

Introdução

Estruturas de dados retroativas bla bla bla

- 1.1 Retroatividade Parcial
- 1.2 Retroatividade Total

Capítulo 2

Link-Cut Trees

Neste capítulo, apresentaremos a estrutura de dados chamada de Link-Cut Tree. Introduzida por Sleator e Tarjan (1981), essas arvores nos permitem realizar três operações principais, são elas:

- *make root(u)*: enraíza no vértice *u* a arvore que o contem.
- link(u, v): dado que u e v estão em arvores separadas, transforma v em raiz e o liga como filho de u.
- cut(u, v): retira da arvore a aresta com pontas em $u \in v$, criando duas novas arvores.

Além disso, a Link-Cut Tree possui a capacidade de realizar operações agregadas nos vertices, isto é, consultas acerca de propriedades de uma sub-arvore ou de um caminho entre dois vertices. Em particular, para as estruturas que estudaremos nos próximos capítulos, vamos utilizar a função $maximum_edge(u, v)$, que nos informa o valor máximo de uma aresta entre os vertices u e v.

Para que essas operações sejam realizadas de maneira rápida, usamos a ideia de *preferred paths*. No artigo original, os autores utilizam uma arvore binaria enviesada para cuidar destes caminhos, porém, 4 anos depois, os autores apresentam a Splay Tree, que possibilita realizarmos as operações necessárias para manter os *preferred paths* em tempo O(log n) amortizado.

2.1 Splay Trees

Também introduzida por Sleator e Tarjan (1985), a Splay Tree é uma arvore binaria de busca auto-ajustável, capaz de realizar as operações de inserção, deleção e busca em tempo $O(\lg n)$ amortizado.

Insira o conteúdo dos apêndices do seu trabalho no arquivo "apendices.tex" do diretório "conteudo" (ou comente a linha correspondente em tese.tex).

Insira o conteúdo dos anexos do seu trabalho no arquivo "anexos.tex" do diretório "conteudo" (ou comente a linha correspondente em tese.tex).

Referências

[SLEATOR e TARJAN 1981] Daniel D. SLEATOR e Robert Endre TARJAN. "A data structure for dynamic trees". Em: *Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing.* STOC '81. Milwaukee, Wisconsin, USA: Association for Computing Machinery, 1981, pgs. 114–122. ISBN: 9781450373920. DOI: 10.1145/800076.802464. URL: https://doi.org/10.1145/800076.802464 (citado na pg. 3).

[Sleator e Tarjan 1985] Daniel D. Sleator e Robert Endre Tarjan. "Self-adjusting binary search trees". Em: *J. ACM* 32.3 (jul. de 1985), pgs. 652–686. ISSN: 0004-5411. DOI: 10.1145/3828.3835. URL: https://doi.org/10.1145/3828.3835 (citado na pg. 3).

Índice Remissivo

 \mathbf{C}

Captions, *veja* Legendas Código-fonte, *veja* Floats

 \mathbf{E}

Equações, veja Modo Matemático

 \mathbf{F}

Figuras, *veja* Floats Floats

Algoritmo, *veja* Floats, Ordem Fórmulas, *veja* Modo Matemático

I

Inglês, veja Língua estrangeira

p

Palavras estrangeiras, veja Língua es-

trangeira

R

Rodapé, notas, veja Notas de rodapé

S

Subcaptions, *veja* Subfiguras Sublegendas, *veja* Subfiguras

Т

Tabelas, veja Floats

 \mathbf{v}

Versão corrigida, *veja* Tese/Dissertação, versões

Versão original, *veja* Tese/Dissertação, versões