MD51V65405

16,777,216-Word × 4-Bit DYNAMIC RAM : FAST PAGE MODE TYPE WITH EDO

DESCRIPTION

The MD51V65405 is a 16,777,216-word \times 4-bit dynamic RAM fabricated in Oki's silicon-gate CMOS technology. The MD51V65405 achieves high integration, high-speed operation, and low-power consumption because Oki manufactures the device in a quadruple-layer polysilicon/double-layer metal CMOS process. The MD51V65405 is available in a 32-pin plastic SOJ or 32-pin plastic TSOP.

FEATURES

• 16,777,216-word × 4-bit configuration

• Single 3.3 V power supply, ±0.3 V tolerance

• Input : LVTTL compatible, low input capacitance

• Output : LVTTL compatible, 3-state

• Refresh:

 $\overline{\text{RAS}}$ -only refresh : 4096 cycles/64 ms $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh, hidden refresh : 4096 cycles/64 ms

• Fast page mode with EDO, read modify write capability

 \bullet CAS before RAS refresh, hidden refresh, RAS-only refresh capability

Package options:

32-pin 400 mil plastic SOJ (SOJ32-P-400-1.27) (Product : MD51V65405-xxJA) 32-pin 400 mil plastic TSOP (TSOPII32-P-400-1.27-K) (Product : MD51V65405-xxTA) xx indicates speed rank.

PRODUCT FAMILY

Eomily	Ac	cess Ti	me (M	ax.)	Cycle Time	Power Dissipation		
Family trac taa tcac toea		(Min.)	Operating (Max.)	Standby (Max.)				
MD51V65405-50	50 ns	25 ns	13 ns	13 ns	84 ns	504 mW	1.8 mW	
MD51V65405-60	60 ns	30 ns	15 ns	15 ns	104 ns	432 mW	1.0 11100	

This version: Mar. 1998

PIN CONFIGURATION (TOP VIEW)

Pin Name	Function
A0 - A11	Address Input
RAS	Row Address Strobe
CAS	Column Address Strobe
DQ1 - DQ4	Data Input/Data Output
<u>ŌE</u>	Output Enable
WE	Write Enable
V _{CC}	Power Supply (3.3 V)
V _{SS}	Ground (0 V)
NC	No Connection

Note : The same power supply voltage must be provided to every V_{CC} pin, and the same GND voltage level must be provided to every V_{SS} pin.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	V_{T}	-0.5 to 4.6	V
Short Circuit Output Current	I _{0S}	50	mA
Power Dissipation	P _D *	1	W
Operating Temperature	T _{opr}	0 to 70	°C
Storage Temperature	T _{stg}	-55 to 150	°C

^{*:} $Ta = 25^{\circ}C$

Recommended Operating Conditions

 $(Ta = 0^{\circ}C \text{ to } 70^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{CC}	3.0 3.3		3.6	V
	V _{SS}	0	0	0	V
Input High Voltage	V _{IH}	2.0	_	Vcc + 0.3	V
Input Low Voltage	V _{IL}	-0.3	_	0.8	V

Capacitance

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{Ta} = 25^{\circ}\text{C}, \text{ f} = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance (A0 - A11)	C _{IN1}	_	5	pF
Input Capacitance (\overline{RAS} , \overline{CAS} , \overline{WE} , \overline{OE})	C _{IN2}	_	7	pF
Output Capacitance (DQ1 - DQ4)	$C_{I/O}$	_	7	pF

DC Characteristics

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{Ta} = 0^{\circ}\text{C to } 70^{\circ}\text{C})$

Parameter	Symbol	Condition	MD51V65405 -50		MD51V65405 -60		Unit	Note
			Min.	Max.	Min.	Max.		
Output High Voltage	V _{OH}	I _{OH} = −2.0 mA	2.4	V _{CC}	2.4	V _{CC}	V	
Output Low Voltage	V _{OL}	I _{OL} = 2.0 mA	0	0.4	0	0.4	V	
Input Leakage Current	ILI	$\begin{split} 0 \ V &\leq V_I \leq V_{CC} + 0.3 \ V; \\ \text{All other pins not} \\ \text{under test} &= 0 \ V \end{split}$	-10	10	-10	10	μА	
Output Leakage Current	I _{LO}	DQ disable $0 \text{ V} \le V_0 \le V_{CC}$	-10	10	-10	10	μА	
Average Power Supply Current (Operating)	I _{CC1}	\overline{RAS} , \overline{CAS} cycling, t_{RC} = Min.	_	140	_	120	mA	1, 2
Power Supply		\overline{RAS} , $\overline{CAS} = V_{IH}$		1	_	1		
Current (Standby)	I _{CC2}	\overline{RAS} , \overline{CAS} $\geq V_{CC} - 0.2 \text{ V}$	_	0.5	_	0.5	mA	1
Average Power Supply Current (RAS-only Refresh)	I _{CC3}	\overline{RAS} cycling, $\overline{CAS} = V_{IH}$, $t_{RC} = Min$.	_	140	_	120	mA	1, 2
Power Supply Current (Standby)	I _{CC5}	$\overline{RAS} = V_{IH},$ $\overline{CAS} = V_{IL},$ $DQ = enable$	_	5	_	5	mA	1
Average Power Supply Current (CAS before RAS Refresh)	I _{CC6}	RAS cycling, CAS before RAS	_	140	_	120	mA	1, 2
Average Power Supply Current (Fast Page Mode)	I _{CC7}	$\label{eq:RAS} \hline \hline RAS = V_{IL}, \\ \hline \hline CAS cycling, \\ t_{HPC} = Min. \\ \hline $	_	140	_	120	mA	1, 3

Notes : 1. I_{CC} Max. is specified as I_{CC} for output open condition.

- 2. The address can be changed once or less while $\overline{RAS} = V_{IL}$.
- 3. The address can be changed once or less while $\overline{CAS} = V_{IH}$.

AC Characteristics (1/2)

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Ta} = 0^{\circ}\text{C to } 70^{\circ}\text{C}) \text{ Note } 1, 2, 3$

Parameter	Symbol		V65405 50	MD51	V65405 60		Note
		Min.	Max.	Min.	Max.	ns n	
Random Read or Write Cycle Time	t _{RC}	84	_	104	_	ns	
Read Modify Write Cycle Time	t _{RWC}	110	_	135	_	ns	
Fast Page Mode Cycle Time	t _{HPC}	20	_	25	_	ns	
Fast Page Mode Read Modify Write Cycle Time	t _{HPRWC}	58	_	68	_	ns	
Access Time from RAS	t _{RAC}	_	50	_	60	ns	4, 5, 6
Access Time from CAS	t _{CAC}	_	13	_	15	ns	4, 5
Access Time from Column Address	t _{AA}	_	25		30	ns	4, 6
Access Time from CAS Precharge	t _{CPA}	_	30	_	35	ns	4
Access Time from $\overline{\text{OE}}$	t _{OEA}	_	13	_	15	ns	4
Output Low Impedance Time from $\overline{\text{CAS}}$	t _{CLZ}	0	_	0	_	ns	4
Data Output Hold After CAS Low	t _{DOH}	5	_	5	_	ns	
CAS to Data Output Buffer Turn-off Delay Time	t _{CEZ}	0	13	0	15	ns	7, 8
RAS to Data Output Buffer Turn-off Delay Time	t _{REZ}	0	13	0	15	ns	7, 8
OE to Data Output Buffer Turn-off Delay Time	t _{OEZ}	0	13	0	15	ns	7
WE to Data Output Buffer Turn-off Delay Time	twez	0	13	0	15	ns	7
Transition Time	t _T	1	50	1	50	ns	3
Refresh Period	t _{REF}	_	64	_	64	ms	
RAS Precharge Time	t _{RP}	30	_	40	_	ns	
RAS Pulse Width	t _{RAS}	50	10,000	60	10,000	ns	
RAS Pulse Width (Fast Page Mode with EDO)	t _{RASP}	50	100,000	60	100,000	ns	
RAS Hold Time	t _{RSH}	7	_	10	_	ns	
RAS Hold Time referenced to OE	t _{ROH}	7	_	10	_	ns	
CAS Precharge Time (Fast Page Mode with EDO) t _{CP}	7	_	10	_	ns	
CAS Pulse Width	t _{CAS}	7	10,000	10	10,000	ns	
CAS Hold Time	t _{CSH}	35	_	40	_	ns	
CAS to RAS Precharge Time	t _{CRP}	5	_	5	_	ns	
RAS Hold Time from CAS Precharge	t _{RHCP}	30	_	35	_	ns	
OE Hold Time from CAS (DQ Disable)	t _{CHO}	5	_	5	_	ns	
RAS to CAS Delay Time	t _{RCD}	11	37	14	45	ns	5
RAS to Column Address Delay Time	t _{RAD}	9	25	12	30	ns	6
Row Address Set-up Time	t _{ASR}	0	_	0	_	ns	
Row Address Hold Time	t _{RAH}	7	_	10	_	ns	
Column Address Set-up Time	t _{ASC}	0	_	0	_	ns	
Column Address Hold Time	t _{CAH}	7	_	10	_		
Column Address to RAS Lead Time	t _{RAL}	25	_	30	<u> </u>		

AC Characteristics (2/2)

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Ta} = 0^{\circ}\text{C to } 70^{\circ}\text{C}) \text{ Note } 1, 2, 3$

	$(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, 1a = 0^{\circ}\text{C to } 70^{\circ}\text{C})$ Note 1						
Parameter	Symbol	MD51V65405 Symbol -50		MD51\ -(Unit	Note	
		Min.	Max.	Min.	Max.	Unit Ins Ins Ins Ins Ins Ins Ins Ins Ins In	
Read Command Set-up Time	t _{RCS}	0	_	0		ns	
Read Command Hold Time	t _{RCH}	0	_	0	_	ns	9
Read Command Hold Time referenced to RAS	t _{RRH}	0	_	0	_	ns	9
Write Command Set-up Time	twcs	0	_	0	_	ns	10
Write Command Hold Time	twch	7	_	10	_	ns	
Write Command Pulse Width	t _{WP}	7	_	10	_	ns	
WE Pulse Width (DQ Disable)	t _{WPE}	7	_	10	_	ns	
OE Command Hold Time	toeh	7	_	10	_	ns	
OE Precharge Time	t _{OEP}	7	_	10	_	ns	
OE Command Hold Time	toch	7	_	10	_	ns	
Write Command to RAS Lead Time	t _{RWL}	7	_	10	_	ns	
Write Command to CAS Lead Time	t _{CWL}	7	_	10	_	ns	
Data-in Set-up Time	t _{DS}	0	_	0	_	ns	11
Data-in Hold Time	t _{DH}	7	_	10	_	ns	11
OE to Data-in Delay Time	t _{OED}	13	_	15	_	ns	
CAS to WE Delay Time	t _{CWD}	30	_	34		ns	10
Column Address to WE Delay Time	t _{AWD}	42	_	49	_	ns	10
RAS to WE Delay Time	t _{RWD}	67	_	79	_	ns	10
CAS Precharge WE Delay Time	t _{CPWD}	47	_	54	_	ns	10
$\overline{\text{CAS}}$ Active Delay Time from $\overline{\text{RAS}}$ Precharge	t _{RPC}	5	_	5	_	ns	
$\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ Set-up Time ($\overline{\text{CAS}}$ before $\overline{\text{RAS}}$)	t _{CSR}	5	_	5	_	ns	
\overline{RAS} to \overline{CAS} Hold Time (\overline{CAS} before \overline{RAS})	t _{CHR}	10	_	10	_	ns	
WE to RAS Precharge Time (CAS before RAS)	t _{WRP}	10	_	10	_	ns	
WE Hold Time from RAS (CAS before RAS)	t _{WRH}	10	_	10	_	ns	

Notes:

- 1. A start-up delay of 200 μs is required after power-up, followed by a minimum of eight initialization cycles (RAS-only refresh or CAS before RAS refresh) before proper device operation is achieved.
- 2. The AC characteristics assume $t_T = 2$ ns.
- 3. V_{IH} (Min.) and V_{IL} (Max.) are reference levels for measuring input timing signals. Transition times (t_T) are measured between V_{IH} and V_{IL} .
- 4. This parameter is measured with a load circuit equivalent to 1 TTL load and 100 pF. The output timing reference levels are $V_{OH} = 2.0 \text{ V}$ and $V_{OL} = 0.8 \text{ V}$.
- 5. Operation within the t_{RCD} (Max.) limit ensures that t_{RAC} (Max.) can be met. t_{RCD} (Max.) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (Max.) limit, then the access time is controlled by t_{CAC} .
- 6. Operation within the t_{RAD} (Max.) limit ensures that t_{RAC} (Max.) can be met. t_{RAD} (Max.) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (Max.) limit, then the access time is controlled by t_{AA} .
- 7. t_{CEZ} (Max.), t_{REZ} (Max.), t_{WEZ} (Max.) and t_{OEZ} (Max.) define the time at which the output achieves the open circuit condition and are not referenced to output voltage levels.
- 8. t_{CEZ} and t_{REZ} must be satisfied for open circuit condition.
- 9. t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. t_{WCS} , t_{CWD} , t_{RWD} , t_{AWD} and t_{CPWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS}$ (Min.), then the cycle is an early write cycle and the data out will remain open circuit (high impedance) throughout the entire cycle. If $t_{CWD} \ge t_{CWD}$ (Min.), $t_{RWD} \ge t_{RWD}$ (Min.), $t_{AWD} \ge t_{AWD}$ (Min.) and $t_{CPWD} \ge t_{CPWD}$ (Min.), then the cycle is a read modify write cycle and data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, then the condition of the data out (at access time) is indeterminate.
- 11. These parameters are referenced to the \overline{CAS} leading edge in an early write cycle, and to the \overline{WE} leading edge in an \overline{OE} control write cycle, or a read modify write cycle.

TIMING WAVEFORM

Read Cycle

Write Cycle (Early Write)

Read Modify Write Cycle

Fast Page Mode Read Cycle (Part-1)

* : Same Data, [//// "H" or "L"

Fast Page Mode Read Cycle (Part-2)

Fast Page Mode Write Cycle (Early Write)

Fast Page Mode Read Modify Write Cycle

RAS-Only Refresh Cycle

CAS before **RAS** Refresh Cycle

Note: \overline{OE} , Address = "H" or "L" "H" or "L"

Hidden Refresh Read Cycle

Hidden Refresh Write Cycle

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).