ENGR 305

Diodes

September 9, 2025

Diodes

- In the past we used linear circuit amplification.
- There are many other signal-processing functions that require nonlinear circuits.
 - Generation of dc voltages from an ac power supply
 - Generation of signals of various waveforms
 - Digital logic and memory circuits
- The simplest and most fundamental nonlinear circuit element is the diode.
- We begin with a simplified model, a fictitious element, the ideal diode.
- Then we move on to the silicon junction diode.

The ideal diode

- This ideal diode is the most fundamental nonlinear circuit element.
- It is a two-terminal device with the circuit symbol shown in part (a)
- The current-voltage, or i-v, characteristic, is shown in part (b)

The ideal diode

- If a negative voltage is applied to the anode with respect to the cathode, no current flows
 - It behaves as an open circuit (part (c) of figure)
 - The diode is reverse-biased. The diode is cut off.
- If a positive voltage is applied to the anode with respect to the cathode, zero voltage drop appears across the diode.
 - The ideal diode behaves as a short circuit in the forward direction and is forward-biased (part (d) of figure) The diode is on.

The ideal diode

- The circuit that is external to the diode must be designed to
 - Limit the forward current through a conducting diode
 - Limit the reverse voltage across a cutoff diode
- The diode in part (a) is conducting
 - The current through it is determined by the +10-V supply and the 1-k Ω resistor as 10 mA.
- The diode in part (b) is cut off, the current will be zero and the 10-V supply voltage

appears as a reverse bias across the diode.

- The positive terminal is the anode.
- The negative terminal is the cathode.

The rectifier

- The circuit consists of the series connection of a diode D and a resistor R.
- ▶ Let the input voltage v_I be the sinusoid shown.
 - During the positive half-cycles of the input sinusoid, the positive v_I will cause current to flow in the forward direction of the diode.
 - The circuit has the equivalent circuit shown in part (c).

The rectifier

- lacktriangle During the negative half-cycles of v_I , the diode does not conduct.
- In this case the equivalent circuit is shown in part (d) and v_0 is zero.
- The output has the waveform shown in part (e).
- While v_I alternates and has a zero average value, v_0 is unidirectional and has a finite average value or dc component.

Example 4.1

- Part (a) of the figure shows a circuit for charging a 12-V battery. If v_s is a sinusoid with 24-V peak amplitude, find the fraction of each cycle during which the diode conducts.
- Also find the peak value of the diode current and the maximum reverse-bias voltage that appears across the diode.

Limiting and protecting circuits

- A rearrangement of the circuit from the previous example results in a simple limiter circuit as shown in (a). Limiter circuits limit voltage excursions.
- When the input voltage v_I is below V_+ , the diode is off and an open circuit.
- No current flows through the resistor R, and $v_0 = v_I$.
- The equivalent schematic is shown in part (b).

Limiting and protecting circuits

- When the input v_I exceeds V_+ , the diode turns on, resulting in the circuit shown in part (c), where $v_O = V_+$.
- The circuit keeps v_0 from exceeding the upper limit established by V_+ .
 - The input-output characteristic is shown in part (d) of the figure.
 - When on the diode conducts a current $i_D = \frac{v_I V_+}{R}$.

Terminal characteristics of junction diodes

- The most common implementation of the diode uses a pn junction.
 - We consider the i-v, or current-voltage, characteristics of the pn junction.
 - The pn junction can conduct substantial current in the forward direction.
 - It conducts almost no current in the reverse direction.

Terminal characteristics of junction diodes

- The characteristic curve consists of three distinct regions
 - 1. The forward-bias region, determined by v > 0
 - 2. The reverse-bias region, determined by v < 0
 - 3. The breakdown region, determined by $v < -V_{BR}$

The forward-bias region

- The diode is in the forward-bias region when the terminal voltage v is positive.
- In the forward region, the i-v relationship is approximated by
 - $= i = I_S(e^{v/V_T} 1)$
- In this equation, I_S is a constant for a given diode at a given temperature.
 - lacktriangle The current I_S is usually called the **saturation current**.
 - It is sometimes referred to as the scale current.
 - \blacksquare Doubling the junction area produces a diode with double the value of I_S .
 - For "small-signal" diodes, intended for low-power applications, I_S is on the order of 10^{-15} A.

- \blacksquare The voltage V_T is called the **thermal voltage** and is given by
 - $ightharpoonup V_T = rac{kT}{q}$
 - Where k = Boltzmann's constant = $8.62 \times \frac{10^{-5} eV}{K} = 1.38 \times 10^{-23}$ joules/kelvin
 - \blacksquare T = absolute temperature in kelvins = 273 + temperature in °C
 - ightharpoonup q = the magnitude of electronic charge = 1.60 imes 10⁻¹⁹ coulomb
 - Substituting these gives a value $V_T = 0.0862T$, mV
 - ▶ At room temperature, we have $V_T \cong 25 \ mV$

For appreciable current i in the forward direction, where $i \gg I_S$, we can approximate it by the exponential relationship

$$ightharpoonup i \cong I_S e^{v/V_T}$$

We can rearrange this equation so that it is in the logarithmic form

$$v = V_T ln \frac{i}{I_S}$$

The exponential relationship of the current i to the voltage v holds over a span of many decades of current.

Applying the *i-v* relationship to a diode with current I_1 and voltage V_1

$$I_1 = I_S e^{V_1/V_T}$$

■ If the voltage is V_2 , the diode current I_2 will be

$$I_2 = I_S e^{V_2/V_T}$$

Taking the ratio of I₂ to I₁

This can be rewritten as $V_2 - V_1 = V_T \ln \frac{I_2}{I_1}$

Putting this in terms of base-10 logarithms, $V_2 - V_1 = 2.3V_T \log \frac{I_2}{I_1}$

- The equation states that for a decade change in current, the diode voltage drop changes by $2.3V_T$, which is approximately 60 mV.
- Referring to the i-v characteristic in the forward region, the current is negligibly small for voltages less than 0.5 V.
 - This voltage is referred to as the cut-in voltage.
- For a "fully conducting" diode, the voltage drop lies in a narrow range, 0.6-0.8 V.
- We use a simple "model" for the diode where we assume that a conducting diode has approximately a 0.7-volt drop across it.
- This 0.7-volt model applies to silicon diodes.

Temperature dependence of i-v curve

- \blacksquare Both I_S and V_T are functions of temperature
- The forward i-v characteristic varies with temperature
- At a given constant diode current, the voltage drop across the diode decreases by roughly 2 mV for every 1°C increase in temperature.

Reverse-bias region

- When v becomes negative, the diode enters the reverse-bias region of operation.
- If the negative voltage v becomes a few times larger than V_T in magnitude, the exponential term becomes negligible compared to unity.
 - The diode current is then $i \cong -I_S$
- The current in the reverse direction is constant.
- This is where the term saturation current comes from.

Breakdown region

- The diode enters the breakdown region when the magnitude of the reverse voltage exceeds a threshold value that is specific to the particular diode
 - \blacksquare It is called the **breakdown voltage**, or V_{BR}
- In the breakdown region, the reverse current increases rapidly, and the increase in voltage drop is very small.
- Diode breakdown is normally not destructive, as long as the power dissipated in the diode is limited to a "safe" level.
- The safe values of current and power dissipation are specified on the device data sheets.