TUYỂN CHỌN 100 ĐỀ THI HỌC SINH GIỎI

UBND THÀNH PHỐ HUẾ PHÒNG GIÁO DUC VÀ ĐÀO TAO

Kỳ THI CHỌN HỌC SINH GIỎI THÀNH PHỐ L□P 8 THCS - N□M H□C 2007 - 2008

Môn: TOÁN

Thời gian làm bài: 120 phút

<u>Bài 1</u>: (2 điểm)

Phân tích đa thức sau đây thành nhân tử:

- 1. $x^2 + 7x + 6$
- 2. $x^4 + 2008x^2 + 2007x + 2008$

Bài 2: (2điểm)

Giải ph-ơng trình:

- 1. $x^2 3x + 2 + |x 1| = 0$
- 2. $8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2$

<u>Bài 3</u>: (2điểm)

- Căn bậc hai của 64 có thể viết d- ới dạng nh- sau: √64 = 6+√4
 Hỏi có tồn tại hay không các số có hai chữ số có thể viết căn bậc hai của chúng d- ới dạng nh- trên và là một số nguyên? Hãy chỉ ra toàn bộ các số đó.
- 2. Tìm số d- trong phép chia của biểu thức (x+2)(x+4)(x+6)(x+8)+2008 cho đa thức $x^2+10x+21$.

<u>Bài 4</u>: (4 điểm)

Cho tam giác ABC vuông tại A (AC > AB), đ-ờng cao AH ($H \in BC$). Trên tia HC lấy điểm D sao cho HD = HA. Đ-ờng vuông góc với BC tại D cắt AC tại E.

- 1. Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB.
- 2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM
- 3. Tia AM cắt BC tại G. Chứng minh: $\frac{GB}{BC} = \frac{HD}{AH + HC}$.

PHÒNG GD&ĐT HẢI LĂNG ĐỀ CHÍNH THỰC

ĐỀ THI KHẢO SÁT HỌC SINH GIỚI LỚP 8 NĂM HỌC 2008-2009

Thời gian làm bài 150 phút (Không kể thời gian giao đề)

Bài 1: (3 điểm) Làm thế nào để đem được 6 lít nước từ sông về nếu trong tay chỉ có hai cái can, một can có dung tích 4 lít, một can có dung tích 9 lít và không can nào có vạch chia dung tích ?

Bài 2: (3 điểm) Một số gồm 4 chữ giống nhau chia cho một số gồm 3 chữ số giống nhau thì được thương là 16 và số dư là một số r nào đó.

Nếu số bị chia và số chia đều bớt đi một chữ số thì thương không đổi và số dư giảm bớt 200. Tìm các số đó.

Bài 3: (3 điểm) Chứng minh rằng n³ – n chia hết cho 6 với mọi số tự nhiên n.

Bài 4: (3 điểm) Tính tổng
$$S = \frac{1}{1-x} + \frac{1}{1+x} + \frac{2}{1+x^2} + \frac{4}{1+x^4} + \frac{8}{1+x^8}$$

Bài 5: (4 điểm) Nhân ngày 1-6 một phân đội thiếu niên được tặng một số kẹo. Số kẹo này được chia hết và chia đều cho mọi người trong phân đội. Để đảm bảo nguyên tắc ấy phân đội trưởng đề xuất cách nhận phần kẹo của mỗi người như sau:

Bạn thứ nhất nhận 1 cái kẹo và được lấy thêm $\frac{1}{11}$ số kẹo còn lại. Sau khi bạn thứ nhất đã lấy phần mình, bạn thứ hai nhận 2 cái kẹo và được lấy thêm $\frac{1}{11}$ số kẹo còn lại. Cứ tiếp tục như thế đến bạn cuối cùng thứ n nhận n cái kẹo và được lấy thêm $\frac{1}{11}$ số kẹo còn lại.

Hỏi phân đội thiếu niên nói trên có bao nhiều đội viên và mỗi đội viên nhận bao nhiều kẹo.

Bài 6: (4 điểm) Cho tam giác ABC cân tại A, có góc $\widehat{A} = 20^{\circ}$. Trên AB lấy điểm D sao cho AD = BC. Tính góc \widehat{BDC}

PHÒNG GD &ĐT ĐẠI LỘC

ĐỀ THI HỌC SINH GIỚI LỚP 8 (Năm học 2013-2014)

Môn: TOÁN – Thời gian: 150 phút

Họ và tên GV ra đề: Hồ Thị Song

Đơn vị: Trường THCS Hoàng Văn Thụ

ĐỀ ĐỀ NGHỊ

Bài 1: (5 đ)

a) Không tính giá trị mỗi biểu thức ,hãy so sánh :

$$\left(\frac{2015-2014}{2015+2014}\right)^2$$
 và $\frac{2015^2-2014^2}{2015^2+2014^2}$

b) Phân tích đa thức sau thành nhân tử: $(x^2 - 8)^2 + 36$

c) Cho ba số hữu tỉ x, y,z đôi một khác nhau . Chứng minh :

$$\frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} + \frac{1}{(z-x)^2}$$
 là bình phương của một số hữu tỉ.

Bài 2: (5 đ)

a) Chứng minh bất đẳng thức sau : $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$

b) Tìm giá trị nhỏ nhất của A = $\frac{2}{6x-5-9x^2}$

c) Xác định dư của phép chia đa thức : $x^{19} + x^5 - x^{1995}$ cho đa thức x^2 -1

Bài 3: (4 đ) Giải các phương trình sau:

a) $X^4 + 6y^2 - 7 = 0$

b)
$$\frac{1}{2011x+1} - \frac{1}{2012x+2} = \frac{1}{2013x+4} - \frac{1}{2014x+5}$$

Bài 4: (4đ) Cho hình vuông ABCD. Gọi E là một điểm trên BC. Qua E kẻ tia Ax vuông góc với AE. Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.

a) Chứng minh: AE = AF và tứ giác EGKF là hình thoi.

b) Chứng minh : $\triangle AEF \sim \triangle CAF$ và $AF^2 = FK.FC$.

c) Khi E thay đổi trên BC chứng minh : EK = BE + DK và chu vi tam giác EKC không đổi.

Bài 5 : (2đ) Cho tam giác ABC có $\hat{A} = 2\hat{B}$. Tính độ dài AB biết AC = 9cm, BC = 12cm.

ĐỀ ĐỀ NGHỊ

TRƯỜNG THCS KIM ĐỒNG Người ra đề : **TRẦN ĐINH TRAI**

ĐỀ ĐỀ NGHỊ HOC SINH GIỚI

Năm học 2013- 2014

Môn TOÁN – Lớp 8

Thời gian: 150 phút (không kể thời gian giao đề)

Câu 1: (2 điểm)

Cho
$$P = \frac{a^3 - 4a^2 - a + 4}{a^3 - 7a^2 + 14a - 8}$$

- a) Rút gọn P
- b) Tìm giá trị nguyên của a để P nhận giá trị nguyên

Câu 2: (1 điểm)

Chứng minh rằng: $(n^5 - 5n^3 + 4n)$: 120 với m, $n \in \mathbb{Z}$.

Câu 3: (2 điểm)

a) Giải ph-ơng trình:
$$\frac{1}{x^2 + 9x + 20} + \frac{1}{x^2 + 11x + 30} + \frac{1}{x^2 + 13x + 42} = \frac{1}{18}$$

Câu 4: (1 điểm)

Trong hai số sau đây số nào lớn hơn:

$$a = \sqrt{1969} + \sqrt{1971}$$
; $b = 2\sqrt{1970}$

<u>Câu 5</u>: (4 điểm): Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.

- a) Tính tổng $\frac{HA'}{AA'} + \frac{HB'}{BB'} + \frac{HC'}{CC'}$
- b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN. IC.AM.
- c) Tam giác ABC như thế nào thì biểu thức $\frac{(AB+BC+CA)^2}{AA'^2+BB'^2+CC'^2}$ đạt giá trị nhỏ nhất?

PHÒNG GD&ĐT ĐẠI LỘC

ĐỀ THI HỌC SINH GIỚI (NĂM HỌC 2013 – 2014)

ĐỀ ĐỀ NGHỊ

MÔN: TOÁN 8 (Thời gian 150 phút) GV ra đề: Võ Công Tiển

Đơn vị: Trường THCS Lê Lợi

<u>Bài 1</u>: (3 điểm) Cho biểu thức $A = \left(\frac{1}{3} + \frac{3}{x^2 - 3x}\right) : \left(\frac{x^2}{27 - 3x^2} + \frac{1}{x + 3}\right)$

- 1) Rút gọn A
- 2) Tìm x để A < -1

Bài 2: (2 điểm) Phân tích các đa thức sau ra thừa số:

- 1) $x^4 + 4$
- 2) (x+2)(x+3)(x+4)(x+5)-24

<u>Bài 3</u>: (4 điểm)

- 1) Giải phương trình $\frac{x-2}{2010} + \frac{x-3}{2009} + \frac{x-4}{2008} = \frac{x-2010}{2} + \frac{x-2009}{3} + \frac{x-2008}{4}$
- 2) Cho ba số x, y, z khác nhau và khác 0 thoả mãn $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$.

Chứng minh:
$$\frac{1}{x^2 + 2yz} + \frac{1}{y^2 + 2zx} + \frac{1}{z^2 + 2xy} = 0$$

<u>Bài 4:</u> (4 điểm)

- a. Tìm giá trị lớn nhất của A = $\frac{2x+6}{x^3+27}$ với $x \ne -3$
- b/ Tìm giá trị nhỏ nhất của $B = \frac{3x^2 8x + 6}{x^2 2x + 1}$

Bài 5: (7,0 điểm)

Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.

- a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
- b) Chứng minh rằng: CH.CD = CB.CK
- c) Chứng minh rằng : $AB.AH + AD.AK = AC^2$.

PHÒNG GD & ĐT ĐẠI LỘC

ĐỀ ĐỀ NGHỊ KIỂM TRA HỌC SINH GIỚI NĂM HỌC 2013- 2014

Môn: Toán 8 (Thời gian làm bài: 120 phút)

Người ra đề: TRẦN MƯỜI

ĐƠN VỊ: TRƯỜNG THCS LÊ QUÝ ĐÔN

ĐỀ ĐỀ NGHỊ

Bài 1(4 điểm).

- a) Phân tích đa thức thành nhân tử: x(x+4)(x+6)(x+10) + 128
- b) Tìm số dư của phép chia $x^7 + x^5 + x^3 + 1$ cho $x^2 1$ Câu 2 (4 điểm).
- a) Tìm GTNN, GTLN của $A = \frac{3-4x}{x^2+1}$
- b) Rút gọn biểu thức $\left(\frac{1}{1-x} + \frac{2}{x+1} \frac{5-x}{1-x^2}\right) : \frac{1-2x}{x^2-1} \text{ với } x \neq \pm 1$

Bài 3(4 điểm).

- a) Cho abc = 2. Rút gọn biểu thức $A = \frac{a}{ab + a + 2} + \frac{b}{bc + b + 1} + \frac{2c}{ac + 2c + 2}$
- b) Tìm số nguyên dương n để các biểu thức sau là số chính phương b1) $n^2 n + 2$ b2) $n^5 n + 2$
- **Bài 4 (5 điểm).** Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM, cắt AB, AC tại E và F
- a) Chứng minh DE + DF không đổi khi D di động trên BC
- b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. Chứng minh rằng K là trung điểm của FE

Bài 5(3 điểm). Cho $\triangle ABC$, O là một điểm nằm trong tam giác. Từ O kẻ OA' \bot BC, OB' \bot AC, OC' \bot AB (A' \in BC; B' \in AC; C' \in AB).

Chứng minh rằng: $\frac{OA'}{AH} = \frac{OB'}{BK} = \frac{OC'}{CI} = 1$ (Với AH, BK, CI là ba đường cao của tam giác hạ lần lượt từ A, B, C)

_______ ------- Hết ------

PHÒNG GD&ĐT ĐẠI LỘC

ĐỀ THI HỌC SINH GIỚI LỚP 8 (NĂM HỌC 2013 - 2014)

ĐỀ ĐỀ NGHI

Môn: Toán (Thời gian: 150 phút)

Họ và tên GV ra đề: Phạm Thanh Bình

Đơn vị: Trường THCS Lý Thường Kiệt

ĐỀ BÀI

Bài 1(5đ).

a) Phân tích đa thức $x^3 - 5x^2 + 8x - 4$ thành nhân tử

b) Tìm giá trị nguyên của x để A : B biết

$$A = 10x^2 - 7x - 5 \text{ và B} = 2x - 3$$
.

c) Cho x + y = 1 và $x y \neq 0$. Chứng minh rằng

$$\frac{x}{y^3 - 1} - \frac{y}{x^3 - 1} + \frac{2(x - y)}{x^2 y^2 + 3} = 0$$

Bài 2(5đ). Giải các phương trình sau:

 $\frac{x^2}{a^2} (x^2 + x^2)^2 + 4(x^2 + x^2) = 12$

b) Tìm số dư của đa thức (x+2)(x+4)(x+6)(x+8) + 2014 chia cho đa thức $x^2+10x+21$.

c)
$$\frac{x+2}{2007} + \frac{x+3}{2006} = \frac{x+4}{2005} + \frac{x+5}{2004}$$

Bài 3(3đ). Giải bài toán bằng cách lập phương trình:

Một người đi xe gắn máy từ A đến B với dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.

Bài 4(7đ). Cho góc xOy và điểm I nằm trong góc đó. Kẻ IC vuông góc với Ox(C thuộc Ox), ID vuông góc với Oy(D thuộc Oy) sao cho IC = ID = a. Đường thẳng qua I cắt Ox ở A cắt Oy ở B.

a/ Chứng minh rằng tích AC . DB không đổi khi đường thẳng qua I thay đổi.

b/ Chứng minh rằng $\frac{CA}{DB} = \frac{OC^2}{OB^2}$

c/ Biết $S_{AOB} = \frac{8a^2}{3}$. Tính CA; DB theo a.

PHÒNG GD&ĐT ĐẠI LỘC KÌ THI CHỌN HỌC SINH GIỎI CẤP THCS TRƯỜNG THCS LÝ TỰ TRỌNG Năm học 2013-2014

ĐỀ ĐỀ NGHỊ

MÔN: TOÁN (8) (Thời gian: 150 phút) Họ và tên GV ra đề: NGUYỄN THỊ TRÂM OANH.

Đơn vị: THCS LÝ TỰ TRONG.

<u>Câu 1</u>: (2 điểm)

a. Cho a, b, c là các số hữu tỉ thỏa mãn điều kiện: ab + ac + bc = 1. Chứng minh rằng:

 $(a^2 + 1)(b^2 + 1)(c^2 + 1)$ là bình phương của một số hữu tỉ.

b.Tính:

$$A = (1 - \frac{1}{x^2})(1 - \frac{1}{(x+1)^2})(1 - \frac{1}{(x+2)^2})...(1 - \frac{1}{(x+9)^2})$$

<u>Câu 2</u>: (5 điểm)

- a) Tìm giá trị nhỏ nhất của $P(x) = \frac{2x^2 2x + 3}{x^2 x + 2}$
- b) Tìm dư trong phép chia đa thức $f(x) = x^{1994} + x^{1993} + 1$ cho $g(x) = x^2 1$
- c) Chứng minh rằng: $16^{n} 15n 1$: 225

Câu 3: (5 điểm)

a) Định m để phương trình sau có nghiệm duy nhất:

$$\frac{x+2}{x-m} = \frac{x+1}{x-1}$$

- b) Giải phương trình: |x| + |2x + 1| |x 3| = 14
- c)Cho a, b, c là ba cạnh của tam giác . Chứng minh rằng:

$$\frac{a}{b+c-a} + \frac{b}{a+c-b} + \frac{c}{a+b-c} \ge 3$$

- <u>Câu 4</u>: (2điểm)Tính độ dài đường trung bình của hình thang cân có các đường chéo vuông góc với nhau và có độ dài đường cao bằng 10 cm.
- <u>Câu 5</u>: (6điểm)Cho hình vuông OCID cạnh a, AB là đường thẳng bất kì đi qua I cắt tia OC, OD lần lượt ở A và B.
 - a. Chứng minh rằng tích CA.CB có giá trị không đổi (tính theo a)
 - b.Chúng minh: $\frac{CA}{DB} = \frac{OA^2}{OB^2}$
 - c. Xác định đường thẳng AB sao cho DB = 4CA
 - d.Cho diện tích tam giác AOB bằng $\frac{8a^2}{3}$. Tính CA + DB theo a.

Hết_

Phòng GD & ĐT Đại Lộc Trường THCS MỸ HOÀ

GV: Nguyễn Hai

ĐỀ THAM KHẢO

KÝ THI CHỌN HỌC SINH GIỚI LỚP 8 Năm học: 2013-2014 Môn thi TOÁN

Thời gian 120 phút (không kể thời gian giao đề)

Câu 1 (6 điểm):

1)Cho biểu thức:

$$P = \left[\frac{2}{3x} - \frac{2}{x + 2y} \left(\frac{x + 2y}{3x} - x - 2y \right) \right] : \frac{x - 2y}{x}$$

- a) Tìm điều kiện xác định của P
- b) Rút gọn P
- c) Tính giá trị của P khi x = 3y.
- 2) a) Chúng minh: $(a + b c)^2 = a^2 + b^2 + c^2 + 2ab 2ac 2bc$.
 - b) Cho xy = 2. Chứng minh rằng: $x^2 + y^2 \ge 4 (x y)$

Câu 2 (*4điểm*) :

Giải phương trình:

a)
$$\frac{x-2005}{9} + \frac{4x-8038}{18} = \frac{2x-4004}{24} + \frac{3x-6022}{20}$$

b)
$$\frac{1}{x^2 + x} + \frac{1}{x^2 + 3x + 2} + \frac{1}{x^2 + 5x + 6} + \frac{1}{x + 3} = \frac{1}{2013}$$

Câu 3 (4 điểm): Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. M là điểm bất kì nằm giữa hai điểm B và C. Từ M vẽ các đường vuông góc MH, MK lần lượt đến AB, AC

- a) Chứng minh tứ giác AHMK là hình chữ nhật.
- b) Tìm vị trí M nằm giữa hai diễm Bvà C để HK có giá trị nhỏ nhất, Tìm giá trị nhỏ nhất đó?

Câu 4 (4 điểm) :

Cho tam giác nhọn ABC. Trên cạnh BC, AC lần lượt lấy hai điểm M, N sao cho BC = 3BM; AC = 3AN. Từ A vẽ tia Ax song song với BC sao cho Ax cắt MN tại P.BP cắt AC tai I.

- a) Chứng minh $AI^2 = IN.IC$
- b)BN cắt PC tại Q. Giả sử diện tích tam giác ABC bằng S. Tính theo S diện tích tam giác BPQ?

Câu 5 (2điểm):

- 1) Chứng minh rằng trong 11 số nguyên bất kì bao giờ cũng tồn tại một số chia hết cho 10 hoặc tồn tại ít nhất hai số có hiệu chia hết cho 10?
 - 2) Tìm các số nguyên n biết $n^2 n + 1$ là số chính phương. -----Hết-----

PHÒNG GD&ĐT ĐẠI LỘC

ĐỀ THI HỌC SINH GIỚI LỚP 8 (NĂM HỌC 2013 - 2014)

Môn: TOÁN (Thời gian: 150 phút)

ĐỀ ĐỀ NGHỊ

Họ và tên GV ra đề: Lê Thị Nề Đơn vị: Trường THCS Nguyễn Trãi.

Bài 1: (3 điểm)

a/Phân tích đa thức sau thành nhân tử

$$x^4 - 30x^2 + 31x - 30$$

b/ Cho a + b + c = 6 va ab + bc + ca = 12

Tính giá trị của biểu thức:

$$(a - b)^{2012} + (b - c)^{2013} + (c - a)^{2014}$$

<u>**Bài 2:**</u> (4 điểm)

a/ Tìm số nguyên dương n bé nhất sao cho:

$$A = n^3 + 4n^2 - 20n - 48$$
 chia hết cho 36

b/ Chứng minh rằng: $\mathbf{A} = \mathbf{n}^8 + 4\mathbf{n}^7 + 6\mathbf{n}^6 + 4\mathbf{n}^5 + \mathbf{n}^4$ chia hết cho 16 với n là số nguyên

Bài 3: (5 điểm)

a/ Giải và biện luận phương trình sau:

$$\frac{x-m}{x+1} = \frac{x-2}{x-1}$$

b/ Tìm giá trị nhỏ nhất của M biết:

$$M=\frac{x^2-2x+2014}{x^2} \ v\acute{or} \ x\neq 0$$

<u>Bài 4</u>: (2,5 điểm)

Cho tam giác ABC có $\hat{A} = 80^{\circ}$, AD là phân giác. Qua D kẻ đường thẳng song song với AC cắt AB ở E, kẻ đường thẳng song song với AB cắt AC ở F. Tình số đo góc FED.

Bài 5: (5,5 điểm)

Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh rằng :

a/ Tứ giác BEDF là hình bình hành?

$$c/AB.AH + AD.AK = AC^2$$
.

ĐỀ ĐỀ NGHỊ

ĐỀ THI MÔN: TOÁN - LỚP 8

Thời gian làm bài 150 phút - Không tính thời gian giao đề

Bài 1 (4 điểm)

Cho biểu thức
$$A = \left(\frac{1-x^3}{1-x} - x\right) : \frac{1-x^2}{1-x-x^2+x^3}$$
 với x khác -1 và 1.

- a, Rút gọn biểu thức A.
- b, Tính giá trị của biểu thức A tại $x = -1\frac{2}{3}$.
- c, Tìm giá trị của x để A < 0.

Bài 2 (3 điểm)

Cho
$$(a-b)^2 + (b-c)^2 + (c-a)^2 = 4 \cdot (a^2 + b^2 + c^2 - ab - ac - bc)$$
.
Chứng minh rằng $a = b = c$.

Bài 3 (*3 điểm*)

Giải bài toán bằng cách lập phương trình.

Một phân số có tử số bé hơn mẫu số là 11. Nếu bớt tử số đi 7 đơn vị và tăng mẫu lên 4 đơn vị thì sẽ được phân số nghịch đảo của phân số đã cho. Tìm phân số đó.

Bài 4 (2 điểm)

Tìm giá trị nhỏ nhất của biểu thức $A = a^4 - 2a^3 + 3a^2 - 4a + 5$.

Bài 5 (3 điểm)

Cho tam giác ABC vuông tại A có góc ABC bằng 60^{0} , phân giác BD. Gọi M,N,I theo thứ tự là trung điểm của BD, BC, CD.

- a, Tứ giác AMNI là hình gì? Chứng minh.
- b, Cho AB = 4cm. Tính các cạnh của tứ giác AMNI.

Bài 6 (5 điểm)

Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N.

- a, Chứng minh rằng OM = ON.
- b, Chứng minh rằng $\frac{1}{AB} + \frac{1}{CD} = \frac{2}{MN}$.
- c, Biết S_{AOB} = 2013^2 (đơn vị diện tích); S_{COD} = 2014^2 (đơn vị diện tích). Tính S_{ABCD} .

ĐỀ THI HOC SINH GIỚI LỚP 8 (Năm học 2013-2014)

ĐỀ ĐỀ NGHỊ

MÔN: TOÁN (Thời gian: 150 phút) Ho và tên GV ra đề: HO VĂN VIỆT. Đơn vị: THCS PHAN BỘI CHÂU

Bài 1 (4,5 đ)

a/Tính tổng
$$S(n) = \frac{1}{2.5} + \frac{1}{5.8} + \dots + \frac{1}{(3n-1)(3n+2)}$$

b/ Chứng minh $B = n^3 + 6n^2 - 19n - 24$ chia hết cho 6

c/ Tìm giá trị lớn nhất của $N = 2004 - x^2 - 2y^2 - 2xy + 6y$

Bài 2: (3d).

a/ Tìm số dư trong phép chia của biểu thức A=(x+1)(x+3)(x+5)(x+7) + 2028 $cho x^2 + 8x + 12$

b/ Phân tích đa thức sau thành nhân tử: $x^4 + 2013x^2 + 2012x + 2013$

Bài 3: (4,5đ).

a/ Giải phương trình:
$$\frac{x+1}{2012} + \frac{x+2}{2011} + \frac{x+3}{2010} = \frac{x+4}{2009} + \frac{x+5}{2008} + \frac{x+6}{2007}$$

b/ Tính giá trị biểu thức : $\frac{2a-b}{3a-b} + \frac{5b-a}{3a+b}$ Biết $10a^2 - 3b^2 + 5ab = 0$ và $9a^2 - b^2 \neq 0$

Biết
$$10a^2 - 3b^2 + 5ab = 0$$
 và $9a^2 - b^2 \neq 0$

c/ Cho x,y,z là số đo ba cạnh của một tam giác chứng minh $x^2y + y^2z + z^2x + zx^2 + yz^2 + xy^2 - x^3 - y^3 - z^3 > 0$

Bài 4: (4,5 đ) Cho hình bình hành ABCD, đường chéo lớn AC. Tia Dx cắt AC, AB, CB lần lượt ở I,M, N. Vẽ CE vuông góc với AB, CF vuông góc với AD,BG vuông góc với AC. Gọi K là điểm đối xứng của D qua I.

Chứng minh : $a/IM.IN = ID^2$.

$$b/\frac{KM}{KN} = \frac{DM}{DN}$$

 $c/AB.AE + AD.AF = AC^2$.

Bài 5: (3,5đ)

Cho tam giác ABC, điểm D thuộc cạnh BC (D ≠ B và C). Đường thẳng qua D và song song với AC cắt AB ở E, đường thẳng qua D và song song với AB cắt AC ở F. Cho biết diên tích tam giác $BED = 4 \text{ cm}^2$, diên tích tam giác $CFD = 9 \text{ cm}^2$. Tính diên tích tam giác ABC.

PHÒNG GD&ĐT ĐẠI LỘC

ĐỀ ĐỀ NGHỊ

ĐỀ THI HỌC SINH GIỚI LỚP 8

_(Thời gian: _ 180 _ _ phút) Môn: TOÁN

i: TOAN______(1hơi gian: _ 18U__ Họ và tên GV ra đề: _MAI VĂN DŨNG _ _ _

Đơn vị: Trường THCS QUANG TRUNG

Bài 1: (4 điểm)

Phân tích đa thức sau đây thành nhân tử:

1.
$$x^2 + 7x + 6$$

2.
$$x^4 + 2014x^2 + 2013x + 2014$$

Bài 2: (4điểm) Giải phương trình:

1.
$$x^2 - 3x + 2 + |x - 1| = 0$$

2.
$$8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2$$

Bài 3: (4điểm) 1. CMR với a,b,c,là các số dương ,ta có:

$$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$$

3. Tìm số phép d trong chia của biêu thức (x+2)(x+4)(x+6)(x+8)+2008 cho đa thức $x^2+10x+21$.

Bài 4: (8 điểm)Cho tam giác ABC vuông tại A (AC > AB), đờng cao AH (H∈BC). Trên tia HC lấy điểm D sao cho HD = HA. Đờng vuông góc với BC tại D cắt AC tại E.

- 1. Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB.
- 2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM
- Tia AM cắt BC tại G. Chứng minh: $\frac{GB}{BC} = \frac{HD}{AH + HC}$. 3.

–Đại Lộc Tây Sơn 'ần Đình Mạo

ĐỀ THI HỌC SINH GIỎI TOÁN 8

Năm học 2013-2014

Thời gian: 120 phút

ĐỀ ĐỀ NGHỊ

Bài 1: (2đ) a/ Phân tích đa thức sau thành nhân tử

$$a^4 + 8a^3 + 14a^2 - 8a - 15$$

b/ Chứng minh rằng biểu thức

 $10^n + 18n - 1$ chia hết cho 27 với n là số tự nhiên

Bài 2: (2đ) Tìm tất cả các số chính phương gồm 4 chữ số ,biết rằng Khi ta thêm 1 đơn vị vào chữ số hàng nghìn ,thêm 3 đơn vị vào chữ số hàng trăm ,thêm 5 đơn vị vào chữ số hàng chục ,thêm 3 đơn vị vào chữ số hàng đơn vị , ta vẫn được số chính phương

Bài 3: (2đ) a/Tìm giá trị nhỏ nhất của biểu thức

$$\mathbf{A} = a^4 - 2a^3 + 3a^2 - 4a + 5$$

b/ Giải phương trình
$$\frac{3x}{x-2} + \frac{x}{5-x} + \frac{3x}{(x-2)(x-5)} = 0$$

Bài 4: (4đ) Hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại

- 0. Đường thẳng qua 0 và song song với đáy AB cắt các cạnh bên AD BC theo thứ tự ở M và N .
 - a/ Chứng minh OM= ON

b/ Chứng minh rằng : $\frac{1}{AB} + \frac{1}{CD} = \frac{2}{MN}$

c/ Biết $S_{A0B} = 2008^2$ (đơn vị diện tích); $S_{C0D} = 2009^2$ (đơn vị diện tích) Tính S_{ABCD}

ĐỀ THI HỌC SINH GIỚI LỚP 8 (Năm học 2013-2014)

ĐỀ ĐỀ NGHỊ

MÔN: TOÁN (Thời gian: 150 phút) Họ và tên GV ra đề: PHAM THỊ PHƯỢNG. Đơn vị: THCS Trần Hưng Đạo.

Bài 1 (4,5 đ)

a/Tính tổng
$$S(n) = \frac{1}{2.5} + \frac{1}{5.8} + \dots + \frac{1}{(3n-1)(3n+2)}$$

b/ Chứng minh $B = n^3 + 6n^2 - 19n - 24$ chia hết cho 6

c/ Tìm giá trị lớn nhất của $N = 2004 - x^2 - 2y^2 - 2xy + 6y$

Bài 2: (3đ).

a/ Tìm số dư trong phép chia của biểu thức A=(x+1)(x+3)(x+5)(x+7)+2028 $cho x^2 + 8x + 12$

b/ Phân tích đa thức sau thành nhân tử: $x^4 + 2013x^2 + 2012x + 2013$

Bài 3: (4,5đ).

a/ Giải phương trình :
$$\frac{x+1}{2012} + \frac{x+2}{2011} + \frac{x+3}{2010} = \frac{x+4}{2009} + \frac{x+5}{2008} + \frac{x+6}{2007}$$

b/ Tính giá trị biểu thức :
$$\frac{2a-b}{3a-b} + \frac{5b-a}{3a+b}$$

Biết $10a^2 - 3b^2 + 5ab = 0$ và $9a^2 - b^2 \neq 0$

Biết
$$10a^2 - 3b^2 + 5ab = 0$$
 và $9a^2 - b^2 \neq 0$

c/ Cho x,y,z là số đo ba cạnh của một tam giác chứng minh $x^{2}y + y^{2}z + z^{2}x + zx^{2} + yz^{2} + xy^{2} - x^{3} - y^{3} - z^{3} > 0$

Bài 4: (4.5 đ) Cho hình bình hành ABCD, đường chéo lớn AC. Tia Dx cắt AC, AB, CB lần lượt ở I,M, N. Vẽ CE vuông góc với AB, CF vuông góc với AD,BG vuông góc với AC .Gọi K là điểm đối xứng của D qua I.

Chứng minh : $a/IM.IN = ID^2$.

b/
$$\frac{KM}{KN} = \frac{DM}{DN}$$

c/ AB.AE + AD.AF = AC².

Bài 5:(3,5d)

Cho tam giác ABC , điểm D thuộc cạnh BC (D \neq B và C). Đường thẳng qua D và song song với AC cắt AB ở E, đường thẳng qua D và song song với AB cắt AC ở F. Cho biết diện tích tam giác $BED = 4 \text{ cm}^2$, diện tích tam giác $CFD = 9 \text{ cm}^2$. Tính diên tích tam giác ABC.

PHÒNG GD-ĐT ĐẠI LỘC

ĐỀ THI HỌC SINH GIỚI LỚP 8 (NĂM HỌC 2013-2014)

Môn Toán (Thời gian 150 phút)

ĐỀ ĐỀ NGHỊ

Đơn vị : Trường THCS Võ Thị Sáu Người ra đề: Nguyễn Phước Hai

Bài 1 (3 điểm) Phân tích các đa thức sau thành nhân tử:

$$a/x^4 + 4$$

b/(x+2)(x+3)(x+4)(x+5) - 24

Bài 2: (2 điểm) Tìm giá trị của m để cho phương trình: 6x - 5m = 3 + 3mx có nghiệm số gấp ba nghiệm số của phương trình: $(x + 1)(x - 1) - (x + 2)^2 = 3$

Bài 3 (3 điểm) Giải phương trình:

$$a/x^2-3x+2+|x-1|=0$$

$$b/8\left(x+\frac{1}{x}\right)^2 + 4\left(x^2 + \frac{1}{x^2}\right)^2 - 4\left(x^2 + \frac{1}{x^2}\right)\left(x + \frac{1}{x}\right)^2 = \left(x+4\right)^2$$

Bài 4 (2 điểm) Tìm đa thức bậc 3 P(x), cho biết $P(x) = x^3 + ax^2 + bx + c$ chia cho x-1; x-2; x-3 đều có số dư là 6

Bài 5: (6 điểm) Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.

- a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?
- b) Chứng minh rằng: CH.CD = CB.CK
- C) Chứng minh rằng : $AB.AH + AD.AK = AC^2$.

Bài 6: (4 điểm) Cho tam giác ABC vuông tại A, D là điểm di động trên cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của điểm D lên AB, AC.

- a) Xác định vị trí của điểm D để tứ giác AEDF là hình vuông.
- b) Xác định vị trí của điểm D sao cho 3AD + 4EF đạt giá trị nhỏ nhất

<u>Câu 1:</u>

Phân tích thành nhân tử:

$$a, a^3 + b^3 + c^3 - 3abc$$

a,
$$a^3 + b^3 + c^3 - 3abc$$
 b, $(x-y)^3 + (y-z)^3 + (z-x)^3$

<u>Câu 2:</u>

Cho A =
$$\frac{x(1-x^2)^2}{1+x^2}$$
: $\left[(\frac{1-x^3}{1-x} + x)(\frac{1+x^3}{1+x} - x) \right]$

a, Rút gọn A b, Tìm A khi
$$x = -\frac{1}{2}$$
 c, Tìm x để $2A = 1$

c, Tìm x để
$$2A = 1$$

<u>Câu 3:</u>

a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của
$$M = x^2 + y^2 + z^2$$

b, Tìm giá trị lớn nhất của
$$P = \frac{x}{(x+10)^2}$$

Câu 4:

a, Cho a,b,c
$$> 0$$
, CMR:

a, Cho a,b,c > 0, CMR:
$$1 < \frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a} < 2$$

b, Cho x,y
$$\neq 0$$
 CMR:

b, Cho x,y
$$\neq 0$$
 CMR: $\frac{x^2}{y^2} + \frac{y^2}{x^2} \ge \frac{x}{y} + \frac{y}{x}$

Câu 5:

Cho $\triangle ABC$ đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a

- a, Tính số đo các góc $\triangle ACM$
- b, CMR: AM \perp AB
- c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR \(\triangle MNP \) đều.

Câu1(2 d): Phân tích đa thức sau thành nhân tử

$$A = (a+1)(a+3)(a+5)(a+7)+15$$

Câu 2(2 d): Với giá trị nào của a và b thì đa thức:

$$(x-a)(x-10)+1$$

phân tích thành tích của một đa thức bậc nhất có các hệ số nguyên

<u>Câu 3(1 d)</u>: tìm các số nguyên a và b để đa thức $A(x) = x^4 - 3x^3 + ax + b$ chia hết cho đa thức $B(x) = x^2 - 3x + 4$

<u>Câu 4(3 đ):</u> Cho tam giác ABC, đường cao AH,vẽ phân giác Hx của góc AHB và phân giác Hy của góc AHC. Kẻ AD vuông góc với Hx, AE vuông góc Hy.

Chứng minh rằngtứ giác ADHE là hình vuông

Câu 5(2 d): Chứng minh rằng

$$P = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^4} + \dots + \frac{1}{100^2} < 1$$

Đáp án và biểu điểm

Câu	Đáp án	Biểu điểm
1	A = (a+1)(a+3)(a+5)(a+7)+15	
2 đ	$=(a^2+8a+7)(a^2+8a+15)+15$	0,5 đ
		0,5 đ
	$=(a^2+8a)^2+22(a^2+8a)+120$	0,5 đ
	$= (a^2 + 8a + 11)^2 - 1$	0,5 đ
	$= (a^2 + 8a + 12)(a^2 + 8a + 10)$	
	$=(a+2)(a+6)(a^2+8a+10)$	
2	Giả sử: $(x-a)(x-10)+1=(x-m)(x-n); (m,n \in \mathbb{Z})$	0,25 đ
2 đ	$\Leftrightarrow x^2 - (a+10)x + 10a + 1 = x^2 - (m+n)x + mn$	0,25 đ
	$\Leftrightarrow \begin{cases} m+n=a+10 \\ m.n=10a+1 \end{cases}$	0,25 đ
	Khử a ta có:	
	mn = 10(m + n - 10) + 1	0,25 đ
	$\Leftrightarrow mn - 10m - 10n + 100 = 1$	0,25 đ
	$\Leftrightarrow m(n-10)-10n+10)=1$	0,25 đ

ĐÈ SỐ 11

Bài 1: (2điểm)

a) Cho
$$x^2 - 2xy + 2y^2 - 2x + 6y + 13 = 0$$
. Tính $N = \frac{3x^2y - 1}{4xy}$

b) Nếu a, b, c là các số dương đôi một khác nhau thì giá trị của đa thức sau là số dương: $A = a^3 + b^3 + c^3 - 3abc$

Bài 2: (2 điểm)

Chứng minh rằng nếu a + b + c = 0 thì:

$$A = \left(\frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b}\right) \left(\frac{c}{a-b} + \frac{a}{b-c} + \frac{b}{c-a}\right) = 9$$

<u>Bài 3</u>: (2 điểm)

Một ô tố phải đi quãng đường AB dài 60 km trong thời gian nhất định. Nửa quãng đường đầu đi với vận tốc lớn hơn vận tốc dự định là 10km/h. Nửa quãng đường sau đi với vận tốc kém hơn vận tốc dự định là 6 km/h.

Tính thời gian ô tô đi trên quãng đường AB biết người đó đến B đúng giờ. **Bài 4**: (3 điểm)

Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.

a) Chứng minh tứ giác MENF là hình thoi.

b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BC **Bài 5**: (1 điểm)

Tìm nghiệm nguyên của phương trình: $x^6 + 3x^2 + 1 = y^4$

Bài 1: (2 điểm)

a) Phân tích đa thức sau thành nhân tử:

$$a(b+c)^{2}(b-c)+b(c+a)^{2}(c-a)+c(a+b)^{2}(a-b)$$

b) Cho a, b, c khác nhau, khác 0 và $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$

Rút gọn biểu thức:
$$N = \frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab}$$

Bài 2: (2điểm)

a) Tìm giá trị nhỏ nhất của biểu thức:

$$M = x^2 + y^2 - xy - x + y + 1$$

b) Giải phương trình: $(y-4.5)^4 + (y-5.5)^4 - 1 = 0$

Bài 3: (2điểm)

Một người đi xe máy từ A đến B với vận tốc 40 km/h. Sau khi đi được 15 phút, người đó gặp một ô tô, từ B đến với vận tốc 50 km/h. ô tô đến A nghỉ 15 phút rồi trở lại B và gặp người đi xe máy tại một một địa điểm cách B 20 km.

Tính quãng đường AB.

Bài 4: (3điểm)

Cho hình vuông ABCD. M là một điểm trên đường chéo BD. Kẻ ME và MF vuông góc với AB và AD.

- a) Chứng minh hai đoạn thẳng DE và CF bằng nhau và vuông góc với nhau.
- b) Chứng minh ba đường thẳng DE, BF và CM đồng quy.
- c) Xác định vị trí của điểm M để tứ giác AEMF có diện tích lớn nhất.

<u>Bài 5</u>: (1điểm)

Tìm nghiệm nguyên của phương trình: $3x^2 + 5y^2 = 345$

Câu1.

a. Phân tích các đa thức sau ra thừa số:

$$x^4 + 4$$

(x+2)(x+3)(x+4)(x+5) - 24

b. Giải phương trình:
$$x^4 - 30x^2 + 31x - 30 = 0$$

c. Cho
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = 1$$
. Chứng minh rằng: $\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0$

Câu2. Cho biểu thức:
$$A = \left(\frac{x}{x^2 - 4} + \frac{2}{2 - x} + \frac{1}{x + 2}\right) : \left(x - 2 + \frac{10 - x^2}{x + 2}\right)$$

- a. Rút gọn biểu thức A.
- b. Tính giá trị của A, Biết $|x| = \frac{1}{2}$.
- c. Tìm giá trị của x để A < 0.
- d. Tìm các giá trị nguyên của x để A có giá trị nguyên.

<u>Câu 3.</u> Cho hình vuông ABCD, M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME⊥AB, $MF \perp AD$.

- a. Chứng minh: DE = CF
- b. Chứng minh ba đường thẳng: DE, BF, CM đồng quy.
- c. Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất.

<u>Câu 4.</u>

a. Cho 3 số dương a, b, c có tổng bằng 1. Chứng minh rằng:
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$$

b. Cho a, b d-¬ng v μ a²⁰⁰⁰ + b²⁰⁰⁰ = a²⁰⁰¹ + b²⁰⁰¹ = a²⁰⁰² + b²⁰⁰²
Tinh: a²⁰¹¹ + b²⁰¹¹

b. Cho a, b d-
$$\neg$$
ng v μ a²⁰⁰⁰ + b²⁰⁰⁰ = a²⁰⁰¹ + b²⁰⁰¹ = a²⁰⁰² + b²⁰⁰²

HƯỚNG DẪN CHẨM THI HỌC SINH GIỚI LỚP 8

Câu	Đáp án	Điểm
Câu 1 (6 điểm)	a. $x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2$ $= (x^4 + 4x^2 + 4) - (2x)^2$ $= (x^2 + 2 + 2x)(x^2 + 2 - 2x)$ $(x + 2)(x + 3)(x + 4)(x + 5) - 24$ $= (x^2 + 7x + 11 - 1)(x^2 + 7x + 11 + 1) - 24$ $= [(x^2 + 7x + 11)^2 - 1] - 24$ $= (x^2 + 7x + 11)^2 - 5^2$ $= (x^2 + 7x + 6)(x^2 + 7x + 16)$ $= (x + 1)(x + 6)(x^2 + 7x + 16)$	(2 điểm)
	b. $x^4 - 30x^2 + 31x - 30 = 0 \iff$	
	$(x^2 - x + 1)(x - 5)(x + 6) = 0 (*)$	(2 điểm)

Câu 1: (2 điểm) Cho
$$P = \frac{a^3 - 4a^2 - a + 4}{a^3 - 7a^2 + 14a - 8}$$

- a) Rút gọn P
- b) Tìm giá trị nguyên của a để P nhận giá trị nguyên

Câu 2 : (2 điểm)

- a) Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3.
 - b) Tìm các giá trị của x để biểu thức:

P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.

Câu 3: (2 điểm)

a) Giải phương trình:
$$\frac{1}{x^2 + 9x + 20} + \frac{1}{x^2 + 11x + 30} + \frac{1}{x^2 + 13x + 42} = \frac{1}{18}$$

b) Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng:

$$A = \frac{a}{b+c-a} + \frac{b}{a+c-b} + \frac{c}{a+b-c} \ge 3$$

Câu 4 : (3 điểm)

Cho tam giác đều ABC , gọi M là trung điểm của BC . Một góc xMy bằng 60^0 quay quanh điểm M sao cho 2 cạnh Mx , My luôn cắt cạnh AB và AC lần lượt tại D và E . Chứng minh :

a) BD.CE=
$$\frac{BC^2}{4}$$

- b) DM,EM lần lượt là tia phân giác của các góc BDE và CED.
- c) Chu vi tam giác ADE không đổi.

Câu 5 : (1 điểm)

Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi .

ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI

$$C\hat{a}u\ 1$$
: (2 d)

a)
$$(1,5)$$
 $a^3 - 4a^2 - a + 4 = a(a^2 - 1) - 4(a^2 - 1) = (a^2 - 1)(a-4)$
 $= (a-1)(a+1)(a-4)$ 0,5
 $a^3 - 7a^2 + 14a - 8 = (a^3 - 8) - 7a(a-2) = (a-2)(a^2 + 2a + 4) - 7a(a-2)$
 $= (a-2)(a^2 - 5a + 4) = (a-2)(a-1)(a-4)$ 0,5

Bài 1(3 điểm): Tìm x biết:

a)
$$x^2 - 4x + 4 = 25$$

b)
$$\frac{x-17}{1990} + \frac{x-21}{1986} + \frac{x+1}{1004} = 4$$

c)
$$4^x - 12.2^x + 32 = 0$$

Bài 2 (1,5 điểm): Cho x, y, z đôi một khác nhau và $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$.

Tính giá trị của biểu thức:
$$A = \frac{yz}{x^2 + 2yz} + \frac{xz}{y^2 + 2xz} + \frac{xy}{z^2 + 2xy}$$

Bài 3 (1,5 điểm): Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương.

Bài 4 (4 điểm): Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.

a) Tính tổng
$$\frac{HA'}{AA'} + \frac{HB'}{BB'} + \frac{HC'}{CC'}$$

- b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN. IC.AM.
- c) Tam giác ABC như thế nào thì biểu thức $\frac{(AB+BC+CA)^2}{AA'^2+BB'^2+CC'^2}$ đạt giá trị nhỏ nhất?

ĐÁP ÁN

• <u>Bài 1(3 điểm):</u>

a) Tính đúng
$$x = 7$$
; $x = -3$ (1 điểm)
b) Tính đúng $x = 2007$ (1 điểm)
c) $4^{x} - 12.2^{x} + 32 = 0 \Leftrightarrow 2^{x}.2^{x} - 4.2^{x} - 8.2^{x} + 4.8 = 0$ (0,25điểm)
 $\Leftrightarrow 2^{x}(2^{x} - 4) - 8(2^{x} - 4) = 0 \Leftrightarrow (2^{x} - 8)(2^{x} - 4) = 0$ (0,25điểm)
 $\Leftrightarrow (2^{x} - 2^{3})(2^{x} - 2^{2}) = 0 \Leftrightarrow 2^{x} - 2^{3} = 0$ hoặc $2^{x} - 2^{2} = 0$ (0,25điểm)
 $\Leftrightarrow 2^{x} = 2^{3}$ hoặc $2^{x} = 2^{2} \Leftrightarrow x = 3$; $x = 2$ (0,25điểm)

• Bài 2(1,5 điểm):

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \Rightarrow \frac{xy + yz + xz}{xyz} = 0 \Rightarrow xy + yz + xz = 0 \Rightarrow yz = -xy - xz (0.25\text{diễm})$$

Bài 1 (4 điểm)

Cho biểu thức
$$A = \left(\frac{1-x^3}{1-x} - x\right) : \frac{1-x^2}{1-x-x^2+x^3}$$
 với x khác -1 và 1.

a, Rút gọn biểu thức A.

b, Tính giá trị của biểu thức A tại $x = -1\frac{2}{3}$.

c, Tìm giá trị của x để A < 0.

Bài 2 (3 điểm)

Cho
$$(a-b)^2 + (b-c)^2 + (c-a)^2 = 4.(a^2 + b^2 + c^2 - ab - ac - bc)$$
.

Chứng minh rằng a = b = c.

Bài 3 (3 điểm)

Giải bài toán bằng cách lập phương trình.

Một phân số có tử số bé hơn mẫu số là 11. Nếu bớt tử số đi 7 đơn vị và tăng mẫu lên 4 đơn vị thì sẽ được phân số nghịch đảo của phân số đã cho. Tìm phân số đó.

Bài 4 (2 điểm)

Tìm giá trị nhỏ nhất của biểu thức $A = a^4 - 2a^3 + 3a^2 - 4a + 5$.

Bài 5 (3 điểm)

Cho tam giác ABC vuông tại A có góc ABC bằng 60° , phân giác BD. Gọi M,N,I theo thứ tự là trung điểm của BD, BC, CD.

a, Tứ giác AMNI là hình gì? Chứng minh.

b, Cho AB = 4cm. Tính các cạnh của tứ giác AMNI.

Bài 6 (5 điểm)

Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N

a, Chứng minh rằng OM = ON.

b, Chứng minh rằng $\frac{1}{AB} + \frac{1}{CD} = \frac{2}{MN}$.

c, Biết S_{AOB} = 2008^2 (đơn vị diện tích); S_{COD} = 2009^2 (đơn vị diện tích). Tính S_{ABCD} .

Đáp án

0.5 d

Bài 1(4 điểm)

a, (2 điểm)

Với x khác -1 và 1 thì:

 $A = \frac{1 - x^3 - x + x^2}{1 - x} : \frac{(1 - x)(1 + x)}{(1 + x)(1 - x + x^2) - x(1 + x)}$

Bài 1:

Cho x =
$$\frac{b^2 + c^2 - a^2}{2bc}$$
; y = $\frac{a^2 - (b - c)^2}{(b + c)^2 - a^2}$

Tính giá trị P = x + y + xy

Bài 2:

Giải phương trình:

a,
$$\frac{1}{a+b-x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
 (x là ẩn số)

b,
$$\frac{(b-c)(1+a)^2}{x+a^2} + \frac{(c-a)(1+b)^2}{x+b^2} + \frac{(a-b)(1+c)^2}{x+c^2} = 0$$

(a,b,c là hằng số và đôi một khác nhau)

Bài 3:

Xác định các số a, b biết:

$$\frac{(3x+1)}{(x+1)^3} = \frac{a}{(x+1)^3} + \frac{b}{(x+1)^2}$$

<u>Bài 4:</u> Chứng minh phương trình: $2x^2 - 4y = 10$ không có nghiệm nguyên.

Bài 5:

Cho \triangle ABC; AB = 3AC

Tính tỷ số đường cao xuất phát từ B và C

<u>Bài 1</u>: (2 điểm)

Cho biểu thức:
$$A = \left[\frac{2}{(x+1)^3} \left(\frac{1}{x} + 1 \right) + \frac{1}{x^2 + 2x + 1} \left(\frac{1}{x^2} + 1 \right) \right] : \frac{x-1}{x^3}$$

a/ Thu gọn A

b/ Tìm các giá trị của x để A<1

c/ Tìm các giá trị nguyên của x để Acó giá trị nguyên

Bài 2: (2 điểm)

a/ Phân tích đa thức sau thành nhân tử (với hệ số là các số nguyên):

 $x^2 + 2xy + 7x + 7y + y^2 + 10$

b/ Biết $xy = 11 \text{ và } x^2y + xy^2 + x + y = 2010$. Hãy tính $x^2 + y^2$

Bài 3 (1,5 điểm):

Cho đa thức $P(x) = x^2 + bx + c$, trong đó b và c là các số nguyên. Biết rằng đa thức $x^4 + 6x^2 + 25$ và $3x^4 + 4x^2 + 28x + 5$ đều chia hết cho P(x). Tính P(1)

<u>Bài 4</u> (3,5 điểm):

Cho hình chữ nhật có AB= 2AD, gọi E, I lần lượt là trung điểm của AB và CD. Nối D với E. Vẽ tia Dx vuông góc với DE, tia Dx cắt tia đối của tia CB tại M.Trên tia đối của tia CE lấy điểm K sao cho DM = EK. Gọi G là giao điểm của DK và EM.

a/ Tính số đo góc DBK.

b/ Gọi F là chân đường vuông góc hạ từ K xuống BM. Chứng minh bốn điểm A, I, G, H cùng nằm trên một đường thẳng.

<u>Bài 5</u> (1 điểm):

Chứng minh rằng: Nếu ba số tự nhiên m, m+k, m+ 2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6.

Bài 1: (3 điểm)

Cho biểu thức
$$A = \left(\frac{1}{3} + \frac{3}{x^2 - 3x}\right) : \left(\frac{x^2}{27 - 3x^2} + \frac{1}{x + 3}\right)$$

- a) Rút gọn A.
- b) Tìm x để A < -1.
- c) Với giá trị nào của x thì A nhận giá trị nguyên.

Bài 2: (2 điểm) Giải phương trình:

a)
$$\frac{1}{3y^2 - 10y + 3} = \frac{6y}{9y^2 - 1} + \frac{2}{1 - 3y}$$

b) $x - \frac{\frac{x}{2} - \frac{3 + x}{4}}{2} = 3 - \frac{\left(1 - \frac{6 - x}{3}\right) \cdot \frac{1}{2}}{2}$

Bài 3: (2 điểm)

Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B. Khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ và vận tốc theo thứ tự là 15 km/h; 35 km/h và 55 km/h.

Hỏi lúc mấy giờ ô tô cách đều xe đạp và xe đạp và xe máy?

<u>Bài 4</u>: (2 điểm)

Cho hình chữ nhật ABCD từ điểm P thuộc đường chéo AC ta dựng hình chữ nhật AMPN ($M \in AB$ và $N \in AD$). Chứng minh:

- a) BD // MN.
- b) BD và MN cắt nhau tai K nằm trên AC.

<u>**Bài 5**</u>: (1 điểm)

Cho a = 11...1 (2n chữ số 1), b = 44...4 (n chữ số 4). Chứng minh rằng: a + b + 1 là số chính phương.

ĐÈ SỐ 12

Bài 1:

Phân tích thành nhân tử:

a,
$$(x^2 - x + 2)^2 + (x-2)^2$$

a,
$$(x^2 - x + 2)^2 + (x-2)^2$$

b, $6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$

Bài 2:

a, Cho a, b, c thoả mãn: a+b+c=0 và $a^2+b^2+c^2=14$.

Tính giá trị của $A = a^4 + b^4 + c^4$

b, Cho a, b, c \neq 0. Tính giá trị của D = $x^{2011} + y^{2011} + z^{2011}$

Biết x,y,z thoả mãn:
$$\frac{x^2 + y^2 + z^2}{a^2 + b^2 + c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$

Bài 3:

a, Cho a,b > 0, CMR: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$

b, Cho a,b,c,d > 0

CMR:
$$\frac{a-d}{d+b} + \frac{d-b}{b+c} + \frac{b-c}{c+a} + \frac{c-a}{a+d} \ge 0$$

Bài 4:

a, Tìm giá trị lớn nhất: $E = \frac{x^2 + xy + y^2}{x^2 - xy + y^2}$ với x,y > 0

b, Tìm giá trị lớn nhất: $M = \frac{x}{(x+1995)^2}$ với x > 0

Bài 5:

a, Tìm nghiệm \in Z của PT: xy - 4x = 35 - 5yb, Tìm nghiệm \in Z của PT: $x^2 + x + 6 = y^2$

Bài 6:

Cho $\triangle ABC$ M là một điểm \in miền trong của $\triangle ABC$. D, E, F là trung điểm AB, AC, BC; A', B', C' là điểm đối xứng của M qua F, E, D.

a, CMR: AB'A'B là hình bình hành.

b, CMR: CC' đi qua trung điểm của AA'

Đề SỐ 16:

Câu 1: (2Đ) Phân tích biểu thức sau ra thừa số

$$M = 3 \text{ xyz} + \text{ x} (y^2 + z^2) + \text{ y} (x^2 + z^2) + \text{ z} (x^2 + y^2)$$

 $M = 3 \text{ xyz} + \text{ x} (y^2 + z^2) + \text{ y} (x^2 + z^2) + \text{ z} (x^2 + y^2)$ **Câu 2**: (4**Đ**) Định a và b để đa thức $A = x^4 - 6 x^3 + ax^2 + bx + 1$ là bình phương của một đa thức khác.

Câu 3: (4Đ) Cho biểu thức:

$$\mathbf{P} = \left(\frac{x^2}{x^3 - 4x} + \frac{6}{6 - 3x} + \frac{1}{x + 2}\right) : \left(x - 2 + \frac{10 - x^2}{x + 2}\right)$$

a) Rút gọn p.

b) Tính giá trị của biểu thức p khi /x / = $\frac{3}{4}$

c) Với giá tri nào của x thì p = 7

d) Tìm giá trị nguyên của x để p có giá trị nguyên.

Câu 4: (3 **D**) Cho a, b, c thỏa mãn điều kiện $a^2 + b^2 + c^2 = 1$ Chứng minh : $abc + 2 (1 + a + b + c + ab + ac + bc) \ge 0$

Câu 5 : (3Đ)

Qua trong tâm G tam giác ABC, kẻ đường thẳng song song với AC, cắt AB và BC lần lượt tại M và N. Tính độ dài MN, biết AM + NC = 16 (cm); Chu vi tam giác ABC bằng 75 (cm)

Câu 6: (4Đ) Cho tam giác đều ABC. M, N là các điểm lần lượt chuyển động trên hai cạnh BC và AC sao cho BM = CN xác định vị trí của M, N để độ dài đoạn thẳng MN nhỏ nhất.

Bài 1: (3đ) a) Phân tích đa thức $x^3 - 5x^2 + 8x - 4$ thành nhân tử

b) Tìm giá trị nguyên của x để A : B biết

$$A = 10x^2 - 7x - 5$$
 và $B = 2x - 3$.

c) Cho x + y = 1 và $x y \neq 0$. Chứng minh rằng

$$\frac{x}{y^3 - 1} - \frac{y}{x^3 - 1} + \frac{2(x - y)}{x^2 y^2 + 3} = 0$$

Bài 2: (3đ) Giải các phương trình sau:

a)
$$(x^2 + x)^2 + 4(x^2 + x) = 12$$

b)
$$\frac{x+1}{2008} + \frac{x+2}{2007} + \frac{x+3}{2006} = \frac{x+4}{2005} + \frac{x+5}{2004} + \frac{x+6}{2003}$$

<u>Bài 3:</u> (2đ) Cho hình vuông ABCD; Trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE = CF

- a) Chứng minh Δ EDF vuông cân
- b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF. Chứng minh O, C, I thẳng hàng.

Bài 4: (2)Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho BD = AE. Xác địnhvị trí điểm D, E sao cho:

a/ DE có độ dài nhỏ nhất

b/ Tứ giác BDEC có diện tích nhỏ nhất.

HD CHẨM

$$\overline{\underline{a})} (0,75\underline{d})$$
 $x^3 - 5x^2 + 8x - 4 = x^3 - 4x^2 + 4x - x^2 + 4x - 4$ $(0,25\underline{d})$

$$= x(x^{2} - 4x + 4) - (x^{2} - 4x + 4)$$

$$= (x - 1)(x - 2)^{2}$$
(0,25đ)
(0,25đ)

$$\underline{b)(0,75\text{d})} \quad \text{X\'et } \underline{A} = \frac{10x^2 - 7x - 5}{2x - 3} = 5x + 4 + \frac{7}{2x - 3}$$
 (0,25\text{d})

Với
$$x \in Z$$
 thì $A \stackrel{?}{:} B$ khi $\frac{7}{2x-3} \in Z \Rightarrow 7 \stackrel{?}{:} (2x-3)$ (0,25đ)

Mà U(7) =
$$\{-1;1;-7;7\} \Rightarrow x = 5; -2; 2; 1 \text{ thì } A : B$$
 (0,25đ)

c) (1,5đ) Biến đổi
$$\frac{x}{y^3-1} - \frac{y}{x^3-1} = \frac{x^4 - x - y^4 + y}{(y^3-1)(x^3-1)}$$

$$= \frac{\left(x^4 - y^4\right) - (x - y)}{xy(y^2 + y + 1)(x^2 + x + 1)} \quad (\text{ do } x + y = 1 \Rightarrow y - 1 = -x \text{ và } x - 1 = -y) (0,25\text{\it d})$$

$$= \frac{(x-y)(x+y)(x^2+y^2)-(x-y)}{xy(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1)}$$
(0,25đ)

Bài 1: Phân tích đa thức thành nhân tử:

a)
$$x^2 - y^2 - 5x + 5y$$

b)
$$2x^2 - 5x - 7$$

Bài 2: Tìm đa thức A, biết rằng:

$$\frac{4x^2 - 16}{x^2 + 2} = \frac{A}{x}$$

Bài 3: Cho phân thức: $\frac{5x+5}{2x^2+2x}$

- a) Tìm điều kiện của x để giá tri của phân thức đợc xác đinh.
- b) Tìm giá trị của x để giá trị của phân thức bằng 1.

Bài 4: a) Giải phong trình :
$$\frac{x+2}{x-2} - \frac{1}{x} = \frac{2}{x(x-2)}$$

b) Giải bất phong trình: $(x-3)(x+3) < (x=2)^2 + 3$

Bài 5: Giải bài toán sau bằng cách lập phong trình:

Một tổ sản xuất lập kế hoạch sản xuất, mỗi ngày sản xuất đợc 50 sản phẩm. Khi thực hiện, mỗi ngày tổ đó sản xuất đợc 57 sản phẩm. Do đó đã hoàn thành trớc kế hoạch một ngày và còn vợt mức 13 sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất bao nhiều sản phẩm và thực hiện trong bao nhiều ngày.

Bài 6: Cho Δ ABC vuông tại A, có AB = 15 cm, AC = 20 cm. Kẻ đờng cao AH và trung tuyến AM.

- a) Chứng minh \triangle ABC ~ \triangle HBA
- b) Tính: BC; AH; BH; CH?
- c) Tính diện tích Δ AHM ?

Biểu điểm - Đáp án

Đáp án	Biểu điểm
Bài 1: Phân tích đa thức thành nhân tử:	
a) $x^2 - y^2 - 5x + 5y = (x^2 - y^2) - (5x - 5y) = (x + y)(x - y) - 5(x$	
— y)	
= (x - y) (x + y - 5) (1 diểm)	
b) $2x^2 - 5x - 7 = 2x^2 + 2x - 7x - 7 = (2x^2 + 2x) - (7x + 7) = 2x(x + 1)$	
-7(x+1)	

Bài 1(3 điểm): Tìm x biết:

a)
$$x^2 - 4x + 4 = 25$$

b)
$$\frac{x-17}{1990} + \frac{x-21}{1986} + \frac{x+1}{1004} = 4$$

c)
$$4^x - 12.2^x + 32 = 0$$

Bài 2 (1,5 điểm): Cho x, y, z đôi một khác nhau và $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$.

Tính giá trị của biểu thức:
$$A = \frac{yz}{x^2 + 2yz} + \frac{xz}{y^2 + 2xz} + \frac{xy}{z^2 + 2xy}$$

Bài 3 (1,5 điểm): Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương.

Bài 4 (4 điểm): Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực a) Tính tổng $\frac{HA'}{AA'} + \frac{HB'}{BB'} + \frac{HC'}{CC'}$ tâm.

b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM.

c) Chứng minh rằng:
$$\frac{(AB + BC + CA)^2}{AA'^2 + BB'^2 + CC'^2} \ge 4.$$

ĐÁP ÁN ĐỂ THI CHỌN HỌC SINH GIỚI

• Bài 1(3 điểm):
a) Tính đúng
$$x = 7$$
; $x = -3$
điểm)

b) Tính đúng
$$x = 2007$$
 (1 tiểm)

c)
$$4^{x} - 12.2^{x} + 32 = 0 \Leftrightarrow 2^{x}.2^{x} - 4.2^{x} - 8.2^{x} + 4.8 = 0$$
 (

0.25điểm)

$$\Leftrightarrow 2^{x}(2^{x} - 4) - 8(2^{x} - 4) = 0 \Leftrightarrow (2^{x} - 8)(2^{x} - 4) = 0$$

0.25điểm)

$$\Leftrightarrow (2^{x} - 2^{3})(2^{x} - 2^{2}) = 0 \Leftrightarrow 2^{x} - 2^{3} = 0 \text{ hoặc } 2^{x} - 2^{2} = 0$$

0,25điểm)

$$\Leftrightarrow 2^{x} = 2^{3} \text{ hoặc } 2^{x} = 2^{2} \Leftrightarrow x = 3; x = 2$$

$$0.25 \text{ diểm})$$

Câu 1: (4,0 điểm)

Phân tích các đa thức sau thành nhân tử:

a)
$$3x^2 - 7x + 2$$
; b) $a(x^2 + 1) - x(a^2 + 1)$.

Câu 2: (5,0 điểm)

Cho biểu thức:

$$A = \left(\frac{2+x}{2-x} - \frac{4x^2}{x^2 - 4} - \frac{2-x}{2+x}\right) : \left(\frac{x^2 - 3x}{2x^2 - x^3}\right)$$

- a) Tìm ĐKXĐ rồi rút gọn biểu thức A?
- b) Tìm giá trị của x để A > 0?
- c) Tính giá trị của A trong trường hợp : |x 7| = 4.

Câu 3: (5,0 điểm)

a) Tìm x,y,z thỏa mãn phương trình sau:

$$9x^2 + y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0.$$

b) Cho
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 và $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0$. Chứng minh rằng : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Câu 4: (6,0 điểm)

Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.

- a) Tứ giác BEDF là hình gì? Hãy chứng minh điều đó?
- b) Chứng minh rằng: CH.CD = CB.CK
- C) Chứng minh rằng : $AB.AH + AD.AK = AC^2$.

HƯỚNG DẪN CHẨM THI

	Nội dung đáp án	Điểm
1		
		2,0
	$3x^2 - 7x + 2 = 3x^2 - 6x - x + 2 =$	1,0
	=3x(x-2)-(x-2)	0,5

Bài 1: (4 điểm)

Phân tích các đa thức sau thành nhân tử:

a)
$$(x + y + z)^3 - x^3 - y^3 - z^3$$
.
b) $x^4 + 2010x^2 + 2009x + 2010$.

b)
$$x^4 + 2010x^2 + 2009x + 2010$$

Bài 2: (2 điểm)

Giải phương trình:

$$\frac{x-241}{17} + \frac{x-220}{19} + \frac{x-195}{21} + \frac{x-166}{23} = 10.$$

<u>**Bài 3:**</u> (3 điểm)

Tìm x biết:

$$\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}.$$

Bài 4: (3 điểm)

Tìm giá trị nhỏ nhất của biểu thức $A = \frac{2010x + 2680}{x^2 + 1}$.

Bài 5: (4 điểm)

Cho tam giác ABC vuông tại A, D là điểm di động trên cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của điểm D lên AB, AC.

- a) Xác đinh vi trí của điểm D để tứ giác AEDF là hình vuông.
- b) Xác định vị trí của điểm D sao cho 3AD + 4EF đạt giá trị nhỏ nhất.

Bài 6: (4 điểm)

Trong tam giác ABC, các điểm A, E, F tương ứng nằm trên các cạnh BC, CA, AB sao cho: AFE = BFD, BDF = CDE, CED = AEF.

- a) Chứng minh rằng: BDF = BAC.
- b) Cho AB = 5, BC = 8, CA = 7. Tính đô dài đoan BD.

Một lời giải:

Bài 1:

Bài 1: (2,5điểm)

Phân tích đa thức thành nhân tử

a)
$$x^5 + x + 1$$

b)
$$x^4 + 4$$

c)
$$x\sqrt{x} - 3x + 4\sqrt{x} - 2$$
 với $x > 0$

Bài 2: (1,5điểm)

Cho abc = 2 Rút gọn biểu thức:

$$A = \frac{a}{ab+a+2} + \frac{b}{bc+b+1} + \frac{2c}{ac+2c+2}$$

Bài 3: (2điểm)

Cho
$$4a^2 + b^2 = 5ab \text{ và } 2a > b > 0$$

Tính:
$$P = \frac{ab}{4a^2 - b^2}$$

Bài 4 : (3điểm)

Cho tam giác ABC cân tại A. Tròn BC lấy M bất kì sao cho BM < CM. Từ N vẽ đường thẳng song song với AC cắt AB tại E và song song với AB cắt AC tại F. Gọi N là điểm đối xứng của M qua E F.

- a) Tính chu vi tứ giác AEMF. Biết: AB =7cm
- b) Chứng minh : AFEN là hình thang cân
- c) Tính : ANB + $\overrightarrow{ACB} = ?$
- d) M ở vị trí nào để tứ giác AEMF là hình thoi và cần thêm điều kiện của Δ ABC để cho AEMF là hình vuông.

<u>Bài 5:</u> (1điểm)

Chứng minh rằng với mọi số nguyên n thì : $5^{2n+1} + 2^{n+4} + 2^{n+1}$ chia hết cho 23.

$$5^{2n+1} + 2^{n+4} + 2^{n+1}$$
 chia hết cho 23.

Bài 1: (2 điểm)

a) Phon tớch thành thừa số: $(a+b+c)^3 - a^3 - b^3 - c^3$

b) Rỳt gọn:
$$\frac{2x^3 - 7x^2 - 12x + 45}{3x^3 - 19x^2 + 33x - 9}$$

<u>Bài 2</u>: (2 điểm)

Chứng minh rằng: $A = n^3(n^2 - 7)^2 - 36n$ chia hết cho 5040 với mọi số tự nhiờn n.

Bài 3: (2 điểm)

a) Cho ba máy bơm A, B, C hút nước trên giếng. Nếu làm một mỡnh thỡ mỏy bơm A hút hết nước trong 12 giờ, máy bơm B hút hếtnước trong 15 giờ và máy bơm C hút hết nước trong 20 giờ. Trong 3 giờ đầu hai máy bơm A và C cùng làm việc sau đó mới dùng đến máy bơm B.

Tớnh xem trong bao lõu thỡ giếng sẽ hết nước.

b) Giải phương trỡnh: 2|x+a|-|x-2a|=3a (a là hằng số).

Bài 4: (3 điểm)

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

- a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.
- b) So sỏnh hai tam giỏc ABC và INC.
- c) Chứng minh: gúc MIN = 90° .
- d) Tốm vị trớ điểm I sao cho diện tích Δ IMN lớn gấp đôi diện tích Δ ABC.

Bài 5: (1 điểm)

Chứng minh rằng số:

22499.....9100.....09 là số chính phương.
$$(n \ge 2)$$
.

<u>Bài 1</u>: (2 điểm)

Phân tích đa thức sau đây thành nhân tử:

- 1. $x^2 + 7x + 6$
- 2. $x^4 + 2008x^2 + 2007x + 2008$

Bài 2: (2điểm) Giải phương trình:

1.
$$x^2 - 3x + 2 + |x - 1| = 0$$

2.
$$8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2$$

<u>**Bài 3**</u>: (2điểm) 1. CMR với a,b,c,là các số dơng ,ta có: $(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$

3. Tìm số d trong phép chia của biểu thức (x+2)(x+4)(x+6)(x+8)+2008 cho đa thức $x^2+10x+21$.

Bài 4: (4 điểm)Cho tam giác ABC vuông tại A (AC > AB), đờng cao AH ($H \in BC$). Trên tia HC lấy điểm D sao cho HD = HA. Đờng vuông góc với BC tại D cắt AC tại E.

- 1. Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB.
- 2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM
- 3. Tia AM cắt BC tại G. Chứng minh: $\frac{GB}{BC} = \frac{HD}{AH + HC}$.

$B\Box I$	Câu	<u>Nội dung</u>	Điểm
1			
1.			2,0
1.	1.1	<u>(0,75 điểm)</u>	

ĐỀ BÀI:

Bài 1(6 điểm): Cho biểu thức:

$$P = \left(\frac{2x-3}{4x^2-12x+5} + \frac{2x-8}{13x-2x^2-20} - \frac{3}{2x-1}\right) : \frac{21+2x-8x^2}{4x^2+4x-3} + 1$$

a) Rút gọn P

- b) Tính giá trị của P khi $|x| = \frac{1}{2}$
- c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
- d) Tìm x để P > 0.

Bài 2(3 điểm): Giải phương trình:

a)
$$\frac{15x}{x^2 + 3x - 4} - 1 = 12\left(\frac{1}{x + 4} + \frac{1}{3x - 3}\right)$$

b) $\frac{148 - x}{25} + \frac{169 - x}{23} + \frac{186 - x}{21} + \frac{199 - x}{19} = 10$
c) $||x - 2| + 3| = 5$

Bài 3(2 điểm): Giải bài toán bằng cách lập phương trình:

Một ngời đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu ngời ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của ngời đó.

Bài 4 (7 điểm):

Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P, gọi M là điểm đối xứng của điểm C qua P.

- a) Tứ giác AMDB là hình gì?
- b) Gọi E và F lần lợt là hình chiếu của điểm M lên AB, AD. Chứng minh EF//AC và ba điểm E, F, P thẳng hàng.
- c) Chứng minh rằng tỉ số các cạnh của hình chữ nhật MEAF không phụ thuộc vào vị trí của điểm P.
- d) Giả sử CP \perp BD và CP = 2,4 cm, $\frac{PD}{PB} = \frac{9}{16}$. Tính các cạnh của hình chữ nhất ABCD.

Bài 5(2 điểm): a) Chứng minh rằng: $2009^{2008} + 2011^{2010}$ chia hết cho 2010

b) Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:

$$\frac{1}{1+x^2} + \frac{1}{1+y^2} \ge \frac{2}{1+xy}$$

Bài 1: Tìm số tự nhiên n biết:

a.
$$A = n^3 - n^2 + n - 1$$
 là một số nguyên tố.

b.
$$C = \frac{n^4 - 16}{n^4 - 4n^3 + 8n^2 + 16}$$
 có giá trị là một số nguyên.
c. $D = n^4 + 4^n$ là một số nguyên tố.

c.
$$D = n^4 + 4^n$$
 là một số nguyên tố.

Bài 2. Cho a + b + c = 0; $abc \neq 0$.

a. Chứng minh:
$$a^{3} + b^{3} + c^{3} - 3abc = 0$$

b. Tính giá trị của biểu thức:

$$P = \frac{c^{2}}{a^{2} + b^{2} - c^{2}} + \frac{a^{2}}{b^{2} + c^{2} - a^{2}} \frac{b^{2}}{c^{2} + a^{2} - b^{2}}$$

Bài 3:

a. Giải phương trình:

$$\frac{(x-a)(x-c)}{(b-a)(b-c)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} = 1$$

b. Tìm nghiệm nguyên dương của phương trình: $x^2 - y^2 + 2x - 4y - 10 = 0$

$$x^2 - y^2 + 2x - 4y - 10 = 0$$

Bài 4. Cho hình thang ABCD (AB//CD), O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song với AB cắt DA tại E; cắt BC tại F.

a. Chứng minh :
$$\mathbf{S}_{\Delta \mathrm{AOD}} = \mathbf{S}_{\Delta \mathrm{BOC}}$$

c. Chứng minh:
$$\frac{1}{AB} + \frac{1}{CD} = \frac{2}{EF}$$

d. Gọi K là điểm bất kì thuộc OE. Nêu cách dựng đường thẳng đi qua K và chia đôi diện tích tam giác DEF.

Câu 1: Xác định hệ số a sao cho:

a)
$$27x^2 + a$$

chia hết cho 3x + 2

b)
$$3x^2 + ax + 27$$

chia hết cho x + 5 có số dư bằng 2

Câu2: Cho 3 số a, b, c thỏa mãn abc = 1999

Rút gọn biểu thức:

$$\frac{1999a}{ab+1999a+1999} + \frac{b}{bc+b+1999} + \frac{c}{ac+c+1}$$

Câu 3: Cho abc $\neq 0$ và a + b+ c $\neq 0$ giải phương trình:

$$\frac{a+b-x}{c} + \frac{a+c-x}{b} + \frac{b+c-x}{a} + \frac{4x}{a+b+c} = 1$$

Câu 4: Gọi M là một điểm bất kỳ trên đoạn thẳng AB. Vẽ về một nửa mặt phẳng có bờ là AB các hình vuông AMCD, BMEF.

- a. Chứng minh AE vuông góc với BC.
- b. Gọi H là giao điểm của AE và BC. Chứng minh ba diểm D, H, F thẳng hàng.
- c. Những minh đoạn thẳng DF luôn đi qua một điểm cố định khi M di chuyển trên đoạn thẳng AB cố định.
- d. Tìm tập hợp các trung điểm K của đoạn thẳng nối tâm hai hình vuông khi điểm M chuyển động trên đoạn thẳng AB cố định.

Câu 1: (4 điểm)

Cho biểu thức:

$$P = \frac{a^2}{ab + b^2} + \frac{b^2}{ab - a^2} - \frac{a^2 + b^2}{ab}$$

a. Rút gọn P.

b. Có giá trị nào của a, b để P = 0?

c. Tính giá trị của P biết a, b thỏa mãn điều kiện:

$$3a^2 + 3b^2 = 10ab \text{ và } a > b > 0$$

Câu 2: (3,5 điểm)

Chúng minh rằng:

a. $(n^2 + n - 1)^2 - 1$ chia hết cho 24 với mọi số nguyên n.

b. Tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9.

Câu 3: (3 điểm)

Giải phương trình: $x^4 + x^2 + 6x - 8 = 0$

Câu 4: (3 điểm)

Tìm nghiệm nguyên của phương trình:

$$x^2 = y(y+1)(y+2)(y+3)$$

Câu 5: (7,5 điểm)

Cho tam giác ABC, O là giao điểm của các đường trung tực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH.

a. Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì để OPQR là hình thoi?

b. Chứng minh AQ = OM.

c. Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng.

d. Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào?

Câu 1: Cho a + b = 1. Tính giá trị biểu thức:

$$M = 2(a^3 + b^3) - 3(a^2 + b^2)$$

Câu 2: Chứng minh rằng:

1,
$$\frac{a}{ab+a+1} + \frac{b}{bc+a+1} + \frac{c}{ac+c+1} = 1$$
 biết abc = 1.

$$2, \ \frac{n^2+n+1}{n^4+n^2+1} \quad (n \in N^*) \ không là phân số tối giản.$$

Câu 3: Cho biểu thức:

$$P = \frac{1}{a^2 - a} + \frac{1}{a^2 - 3a + 2} + \frac{1}{a^2 - 5a + 6} + \frac{1}{a^2 - 7a + 12} + \frac{1}{a^2 - 9a + 20}$$

- a. Tìm điều kiện để P xác định.
- b. Rút gọn P.
- c. Tính giá trị của P biết $a^3 a^2 + 2 = 0$

Câu 4*: Tìm số tự nhiên n để đa thức:

$$A(x) = x^{2n} + x^{n} + 1$$
 chia hết cho đa thức $x^{2} + x + 1$

Câu 5: Cho hình bình hành ABCD có AD = 2AB. Kẻ đường thẳng qua C và vuông góc với AB tại E. Gọi M là trung điểm của AD.

- a. Chứng minh: tam giác EMC cân.
- b. Chứng minh: Góc BAD = 2 góc AEM.
- c. Gọi P là một điểm thuộc đoạn thẳng EC. Chứng minh tổng khoảng cách từ P đến Me và đến MC không phụ thuộc vào vị trí của P trên EC.

Câu 1:

Cho x =
$$\frac{b^2 + c^2 - a^2}{2bc}$$
; y = $\frac{a^2 - (b - c)^2}{(b + c)^2 - a^2}$

Tính giá trị P = x + y + xy

Câu 2:

Giải phương trình:

a,
$$\frac{1}{a+b-x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
 (x là ẩn số)

b,
$$\frac{(b-c)(1+a)^2}{x+a^2} + \frac{(c-a)(1+b)^2}{x+b^2} + \frac{(a-b)(1+c)^2}{x+c^2} = 0$$

(a,b,c là hằng số và đôi một khác nhau)

<u>Câu 3:</u>

Xác định các số a, b biết:

$$\frac{(3x+1)}{(x+1)^3} = \frac{a}{(x+1)^3} + \frac{b}{(x+1)^2}$$

Câu 4:

Chứng minh phương trình:

 $2x^2 - 4y = 10$ không có nghiệm nguyên.

<u>Câu 5:</u>

Cho \triangle ABC; AB = 3AC

Tính tỷ số đường cao xuất phát từ B và C

ĐỀ THI SỐ 1

Câu 1: (4,0 điểm)

Phân tích các đa thức sau thành nhân tử:

a)
$$3x^2 - 7x + 2$$
;

b)
$$a(x^2 + 1) - x(a^2 + 1)$$
.

Câu 2: (5,0 điểm)

Cho biểu thức:

$$A = \left(\frac{2+x}{2-x} - \frac{4x^2}{x^2 - 4} - \frac{2-x}{2+x}\right) : \left(\frac{x^2 - 3x}{2x^2 - x^3}\right)$$

- a) Tìm ĐKXĐ rồi rút gọn biểu thức A?
- b) Tìm giá trị của x để A > 0?
- c) Tính giá trị của A trong trường hợp : |x 7| = 4.

Câu 3: (5,0 điểm)

a) Tìm x,y,z thỏa mãn phương trình sau:

$$9x^2 + y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0.$$

b) Cho
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 và $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0$. Chứng minh rằng : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Câu 4: (6,0 điểm)

Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD.

Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.

- a) Tứ giác BEDF là hình gì? Hãy chứng minh điều đó?
- b) Chứng minh rằng: CH.CD = CB.CK
- C) Chứng minh rằng : $AB.AH + AD.AK = AC^2$.

HƯỚNG DẪN CHẨM THI

	Nội dung đáp án	Điểm
Bài 1		
а		2,0
	$3x^2 - 7x + 2 = 3x^2 - 6x - x + 2 =$	1,0
	= 3x(x-2) - (x-2)	0,5
	= (x - 2)(3x - 1).	0,5
b		2,0
	$a(x^2 + 1) - x(a^2 + 1) = ax^2 + a - a^2x - x =$	1,0
	= ax(x - a) - (x - a) =	0,5
	= (x - a)(ax - 1).	0,5

Bài 2:		5,0
а		3,0
	ĐKXĐ :	
	$\begin{cases} 2 - x \neq 0 \\ x^2 - 4 \neq 0 \\ 2 + x \neq 0 \\ x^2 - 3x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ x \neq \pm 2 \\ x \neq 3 \end{cases}$	
	$x^2 - 4 \neq 0 \qquad x \neq 0$	4.0
	$\begin{cases} 2+x \neq 0 & \Leftrightarrow \begin{cases} x \neq \pm 2 \end{cases} \end{cases}$	1,0
	$x^2 - 3x \neq 0 \qquad x \neq 3$	
	$2x^2 - x^3 \neq 0$	
	$\frac{2+x}{x^2} = \frac{4x^2}{x^2} = \frac{2-x}{x^2} = \frac{x^2-3x}{x^2} = \frac{(2+x)^2+4x^2-(2-x)^2}{x^2(2-x)}$	4.0
	$A = (\frac{2+x}{2-x} - \frac{4x^2}{x^2 - 4} - \frac{2-x}{2+x}) : (\frac{x^2 - 3x}{2x^2 - x^3}) = \frac{(2+x)^2 + 4x^2 - (2-x)^2}{(2-x)(2+x)} \cdot \frac{x^2(2-x)}{x(x-3)} =$	1,0
	$4x^2 + 8x \qquad x(2-x)$	0.5
	$\frac{4x^2 + 8x}{(2-x)(2+x)} \cdot \frac{x(2-x)}{x-3} =$	0,5
	$=\frac{4x(x+2)x(2-x)}{(2-x)(2+x)(x-3)} = \frac{4x^2}{x-3}$	0,25
	$-\frac{(2-x)(2+x)(x-3)}{(x-3)}$	0,23
	Vây với $x \ne 0, x \ne +2, x \ne 3$ thì $A = \frac{4x^2}{x^2}$	0,25
	Vậy với $x \ne 0, x \ne \pm 2, x \ne 3$ thì $A = \frac{4x^2}{x-3}$.	
b	. 2	1,0
	Với $x \ne 0, x \ne 3, x \ne \pm 2 : A > 0 \Leftrightarrow \frac{4x^2}{x-3} > 0$	0,25
	$\Leftrightarrow x-3>0$	0,25
	$\Leftrightarrow x > 3(TMDKXD)$	0,25
	Vậy với x > 3 thì A > 0.	0,25
С		1,0
	$ x-7 = 4 \Leftrightarrow \begin{bmatrix} x-7 = 4 \\ x-7 = -4 \end{bmatrix}$	0,5
	$\int x = 11(TMDKXD)$	0.05
	$\Leftrightarrow \begin{cases} x = 11(TMDKXD) \\ x = 3(KTMDKXD) \end{cases}$	0,25
	Với x = 11 thì A = $\frac{121}{2}$	0,25
	2	
Bài 3		5,0
a	$0y^2 + y^2 + 2z^2 + 49y + 4z + 6y + 20 = 0$	2,5
	$9x^{2} + y^{2} + 2z^{2} - 18x + 4z - 6y + 20 = 0$ $\Rightarrow (9x^{2} - 18x + 9) + (y^{2} - 6y + 9) + 2(z^{2} + 2z + 1) = 0$	1,0
	$\Rightarrow (9x^2 - 18x + 9) + (y^2 - 6y + 9) + 2(z^2 + 2z + 1) = 0$ $\Rightarrow 9(x - 1)^2 + (y - 3)^2 + 2(z + 1)^2 = 0 (*)$	0,5
	Do: $(x-1)^2 \ge 0; (y-3)^2 \ge 0; (z+1)^2 \ge 0$	0,5
	Nên: (*) \Leftrightarrow x = 1; y = 3; z = -1	0,25
	$V_{ay}^{2}(x,y,z) = (1,3,-1).$	0,25
b		2,5
	$T\dot{U}: \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0 \Leftrightarrow \frac{ayz + bxz + cxy}{xyz} = 0$	0,5
	$\Rightarrow ayz + bxz + cxy = 0$	0,25
	-	
	Ta có: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \Leftrightarrow (\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2 = 1$	0,5

	$\Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 2\left(\frac{xy}{ab} + \frac{xz}{ac} + \frac{yz}{bc}\right) = 1$	0,5
	$\Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 2\frac{cxy + bxz + ayz}{abc} = 1$	0,5
	$\Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1(dfcm)$	0,25
Bài 4	u v c	6,0
	H C K	0,25
а		2,0
	Ta có : BE⊥AC (gt); DF⊥AC (gt) => BE // DF	2,0 0,5
	Chứng minh : $\Delta BEO = \Delta DFO(g-c-g)$	0,5
	=> BE = DF	0,25
	Suy ra : Tứ giác : BEDF là hình bình hành.	0,25
b		2,0
	Ta có: $ABC = ADC \Rightarrow HBC = KDC$	0,5
	Chứng minh : $\triangle CBH \sim \triangle CDK(g-g)$	1,0
	$\Rightarrow \frac{CH}{CB} = \frac{CK}{CD} \Rightarrow CH.CD = CK.CB$	0,5
b,	CB CD	1,75
, D,	Chứng minh: ΔAFD ~ ΔAKC(g-g)	0,25
	$\Rightarrow \frac{AF}{AD} = \frac{AK}{AC} \Rightarrow AD.AK = AF.AC$	0,25
	Chứng minh : ΔCFD ~ ΔAHC(g – g)	0,25
	$\Rightarrow \frac{CF}{CD} = \frac{AH}{AC}$	0,25
	$M\grave{a}: CD = AB \Rightarrow \frac{CF}{AB} = \frac{AH}{AC} \Rightarrow AB.AH = CF.AC$	0,5
	Suy ra : AB.AH + AB.AH = CF.AC + AF.AC = (CF + AF)AC = AC ² (đfcm).	0,25

ĐỀ SỐ 2

Câu1.

a. Phân tích các đa thức sau ra thừa số:

$$x^4 + 4$$

$$(x+2)(x+3)(x+4)(x+5)-24$$

b. Giải phương trình: $x^4 - 30x^2 + 31x - 30 = 0$

c. Cho
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = 1$$
. Chứng minh rằng: $\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0$

Câu2. Cho biểu thức:
$$A = \left(\frac{x}{x^2 - 4} + \frac{2}{2 - x} + \frac{1}{x + 2}\right) : \left(x - 2 + \frac{10 - x^2}{x + 2}\right)$$

- a. Rút gọn biểu thức A.
- b. Tính giá trị của A, Biết $|x| = \frac{1}{2}$.
- c. Tìm giá trị của x để A < 0.
- d. Tìm các giá trị nguyên của x để A có giá trị nguyên.

<u>Câu 3.</u> Cho hình vuông ABCD, M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME \perp AB, MF \perp AD.

- a. Chứng minh: DE = CF
- b. Chứng minh ba đường thẳng: DE, BF, CM đồng quy.
- c. Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất.

Câu 4.

a. Cho 3 số dương a, b, c có tổng bằng 1. Chứng minh rằng: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$ b. Cho a, b d-¬ng vµ a^{2000} + b^{2000} = a^{2001} + b^{2001} = a^{2002} + b^{2002} Tinh: a^{2011} + b^{2011}

HƯỚNG DẪN CHẨM THI HOC SINH GIỎI LỚP 8

Câu	Đáp án	Điểm
Câu 1 (6 điểm)	a. $x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2$ = $(x^4 + 4x^2 + 4) - (2x)^2$ = $(x^2 + 2 + 2x)(x^2 + 2 - 2x)$ (x + 2)(x + 3)(x + 4)(x + 5) - 24 = $(x^2 + 7x + 11 - 1)(x^2 + 7x + 11 + 1) - 24$ = $[(x^2 + 7x + 11)^2 - 1] - 24$ = $(x^2 + 7x + 11)^2 - 5^2$ = $(x^2 + 7x + 6)(x^2 + 7x + 16)$ = $(x^2 + 7x + 6)(x^2 + 7x + 16)$ b. $x^4 - 30x^2 + 31x - 30 = 0 \iff$ $(x^2 - x + 1)(x - 5)(x + 6) = 0 \iff$ $(x^2 - x + 1)(x - 5)(x + 6) = 0 \iff$ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 5)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 6)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 6)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 6)(x + 6)(x + 6) = 0$ ⇒ $(x^3 - x + 1)(x - 6)(x + $	(2 điểm) (2 điểm)
Câu 2 (6 điểm)	Biểu thức: $A = \left(\frac{x}{x^2 - 4} + \frac{2}{2 - x} + \frac{1}{x + 2}\right) : \left(x - 2 + \frac{10 - x^2}{x + 2}\right)$	

	a. Rút gọn được kq: $A = \frac{-1}{x-2}$	(1.5 điểm)
	a. Rút gọn được kq: $A = \frac{-1}{x-2}$ b. $ x = \frac{1}{2} \Rightarrow x = \frac{1}{2}$ hoặc $x = \frac{-1}{2}$	
	$\Rightarrow A = \frac{4}{3} \text{ hoặc } A = \frac{4}{5}$ c. $A < 0 \Leftrightarrow x > 2$	
	$\frac{3}{2}$ $\frac{5}{2}$	(1.5 điểm)
		(1.5 điểm)
	d. $A \in \mathbb{Z} \Leftrightarrow \frac{-1}{x-2} \in \mathbb{Z} \dots \Rightarrow x \in \{1;3\}$	(1.5 điểm)
	HV + GT + KL A F M	(1 điểm)
Câu 3	a. Chứng minh: $AE = FM = DF$	
(6 điểm)	$\Rightarrow \Delta AED = \Delta DFC \Rightarrow \text{dpcm}$	(2 điểm)
	b. DE, BF, CM là ba đường cao của $\Delta EFC \Longrightarrow$ đpcm c. Có Chu vi hình chữ nhật AEMF = 2a không đổi	(2 điểm)
	$\Rightarrow ME + MF = a \text{ không đổi}$ $\Rightarrow S_{AEMF} = ME.MF \text{ lớn nhất} \Leftrightarrow ME = MF \text{ (AEMF là hình vuông)}$ $\Rightarrow M \text{ là trung điểm của BD.}$	(1 điểm)
	a. Từ: $a + b + c = 1 \Rightarrow$ $\begin{cases} \frac{1}{a} = 1 + \frac{b}{a} + \frac{c}{a} \\ \frac{1}{b} = 1 + \frac{a}{b} + \frac{c}{b} \\ \frac{1}{c} = 1 + \frac{a}{c} + \frac{b}{c} \end{cases}$	
Câu 4: <i>(2 điểm)</i>	$\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3 + \left(\frac{a}{b} + \frac{b}{a}\right) + \left(\frac{a}{c} + \frac{c}{a}\right) + \left(\frac{b}{c} + \frac{c}{b}\right)$ $\geq 3 + 2 + 2 + 2 = 9$ Dấu bằng xảy ra \Leftrightarrow a = b = c = $\frac{1}{3}$	(1 điểm)
	b. $(a^{2001} + b^{2001}).(a + b) - (a^{2000} + b^{2000}).ab = a^{2002} + b^{2002}$ $\Rightarrow (a + b) - ab = 1$ $\Rightarrow (a - 1).(b - 1) = 0$ $\Rightarrow a = 1 \text{ hoÆc } b = 1$ $V\text{(i } a = 1 \Rightarrow b^{2000} = b^{2001} \Rightarrow b = 1 \text{ hoÆc } b = 0 \text{ (lo¹i)}$ $V\text{(i } b = 1 \Rightarrow a^{2000} = a^{2001} \Rightarrow a = 1 \text{ hoÆc } a = 0 \text{ (lo¹i)}$	(1 điểm)

VËy
$$a = 1$$
; $b = 1 = a^{2011} + b^{2011} = 2$

ĐỀ THI SỐ 3

Câu 1: (2 điểm) Cho
$$P = \frac{a^3 - 4a^2 - a + 4}{a^3 - 7a^2 + 14a - 8}$$

- a) Rút gọn P
- b) Tìm giá trị nguyên của a để P nhận giá trị nguyên

Câu 2: (2 điểm)

- a) Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập ph- ơng của chúng chia hết cho 3.
 - b) Tìm các giá trị của x để biểu thức:

P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó .

Câu 3: (2 điểm)

a) Giải ph-ong trình:
$$\frac{1}{x^2 + 9x + 20} + \frac{1}{x^2 + 11x + 30} + \frac{1}{x^2 + 13x + 42} = \frac{1}{18}$$

b) Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng:

$$A = \frac{a}{b+c-a} + \frac{b}{a+c-b} + \frac{c}{a+b-c} \ge 3$$

Câu 4: (3 điểm)

Cho tam giác đều ABC, gọi M là trung điểm của BC. Một góc xMy bằng 60^{0} quay quanh điểm M sao cho 2 cạnh Mx, My luôn cắt cạnh AB và AC lần I- ợt tại D và E. Chứng minh :

a) BD.CE=
$$\frac{BC^2}{4}$$

- b) DM,EM lần l- ợt là tia phân giác của các góc BDE và CED.
- c) Chu vi tam giác ADE không đổi.

Câu 5: (1 điểm)

Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên d-ơng và số đo diện tích bằng số đo chu vi .

ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI

Câu 1 : (2 đ)

a)
$$(1,5)$$
 $a^3 - 4a^2 - a + 4 = a(a^2 - 1) - 4(a^2 - 1) = (a^2 - 1)(a-4)$
= $(a-1)(a+1)(a-4)$ 0,5

$$a^{3} - 7a^{2} + 14a - 8 = (a^{3} - 8) - 7a(a-2) = (a-2)(a^{2} + 2a + 4) - 7a(a-2)$$

= $(a-2)(a^{2} - 5a + 4) = (a-2)(a-1)(a-4)$ 0,5

Nêu ĐKXĐ :
$$a \ne 1; a \ne 2; a \ne 4$$
 0,25

Rút gọn P=
$$\frac{a+1}{a-2}$$
 0,25

b) (0,5đ) P=
$$\frac{a-2+3}{a-2}$$
 = 1 + $\frac{3}{a-2}$; ta thấy P nguyên khi a-2 là - ớc của 3,

mà
$$U'(3) = \{-1;1;-3;3\}$$
 0,25

Từ đó tìm đ-ợc $a \in \{-1;3;5\}$

0,25

Câu 2: (2đ)

a)(1d) Gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3.

Ta có $a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]=$

$$= (a+b)[(a+b)^2 - 3ab]$$
 0,5

Vì a+b chia hết cho 3 nên (a+b)²-3ab chia hết cho 3;

Do vậy
$$(a+b)[(a+b)^2-3ab]$$
 chia hết cho 9 0,25

b)
$$(1\text{d})$$
 P= $(x-1)(x+6)(x+2)(x+3)=(x^2+5x-6)(x^2+5x+6)=(x^2+5x)^2-36$ 0,5

Ta thấy
$$(x^2+5x)^2 \ge 0$$
 nên $P=(x^2+5x)^2-36 \ge -36$ 0,25

Do đó Min P=-36 khi $(x^2+5x)^2=0$

Câu 3: (2đ)

a) (1d) $x^2+9x+20 = (x+4)(x+5)$;

$$x^2+11x+30=(x+6)(x+5)$$
;

$$x^2+13x+42 = (x+6)(x+7)$$
; 0,25

ÐKXÐ:
$$x \neq -4$$
; $x \neq -5$; $x \neq -6$; $x \neq -7$

Ph- ơng trình trở thành:

$$\frac{1}{(x+4)(x+5)} + \frac{1}{(x+5)(x+6)} + \frac{1}{(x+6)(x+7)} = \frac{1}{18}$$

$$\frac{1}{x+4} - \frac{1}{x+5} + \frac{1}{x+5} - \frac{1}{x+6} + \frac{1}{x+6} - \frac{1}{x+7} = \frac{1}{18}$$

$$\frac{1}{x+4} - \frac{1}{x+7} = \frac{1}{18}$$

$$18(x+7) - 18(x+4) = (x+7)(x+4)$$

$$(x+13)(x-2) = 0$$

$$0,25$$

0,25

b) (1d) Đặt b+c-a=x >0; c+a-b=y >0; a+b-c=z >0

Từ đó suy ra a=
$$\frac{y+z}{2}$$
; $b = \frac{x+z}{2}$; $c = \frac{x+y}{2}$; 0,5

Thay vào ta đ- ợc
$$A = \frac{y+z}{2x} + \frac{x+z}{2y} + \frac{x+y}{2z} = \frac{1}{2} \left[(\frac{y}{x} + \frac{x}{y}) + (\frac{x}{z} + \frac{z}{x}) + (\frac{y}{z} + \frac{z}{y}) \right]$$
 0,25

Từ đó suy ra
$$A \ge \frac{1}{2}(2+2+2)$$
 hay $A \ge 3$ 0,25

Câu 4: (3 đ)

a) (1đ)

Trong tam giác BDM ta có : $\hat{D}_1 = 120^{0} - \hat{M}_1$

Vì
$$\hat{M}_2 = 60^0$$
 nên ta có : $\hat{M}_3 = 120^0 - \hat{M}_1$

Suy ra
$$\hat{D}_1 = \hat{M}_3$$

Chứng minh
$$\triangle BMD \sim \triangle CEM$$
 (1)

0,5

Suy ra
$$\frac{BD}{BM} = \frac{CM}{CE}$$
, từ đó BD.CE=BM.CM

Vì BM=CM=
$$\frac{BC}{2}$$
, nên ta có BD.CE= $\frac{BC^2}{4}$

b) (1đ) Từ (1) suy ra $\frac{BD}{CM} = \frac{MD}{EM}$ mà BM=CM nên ta có

$$\frac{BD}{BM} = \frac{MD}{EM}$$

Chứng minh $\triangle BMD \sim \triangle MED$

0,5

Từ đó suy ra $\hat{D}_1 = \hat{D}_2$, do đó DM là tia phân giác của góc BDE

Chúng minh t-ong tự ta có EM là tia phân giác của góc CED

0,5

c) (1đ) Gọi H, I, K là hình chiếu của M trên AB, DE, AC

0,5

Tính chu vi tam giác bằng 2AH; Kết luận.

0,5

Câu 5: (1đ)

Gọi các cạnh của tam giác vuông là x, y, z; trong đó cạnh huyền là z

(x, y, z là các số nguyên d-ơng)

Ta có xy =
$$2(x+y+z)$$
 (1) và $x^2 + y^2 = z^2$ (2)

0,25

Từ (2) suy ra $z^2 = (x+y)^2 - 2xy$, thay (1) vào ta có:

$$z^{2} = (x+y)^{2} - 4(x+y+z)$$

$$z^{2} + 4z = (x+y)^{2} - 4(x+y)$$

$$z^{2} + 4z + 4 = (x+y)^{2} - 4(x+y) + 4$$

$$(z+2)^{2} = (x+y-2)^{2}, \text{ suy ra } z+2 = x+y-2$$

$$z=x+y-4; \text{ thay vào (1) ta d- oc:}$$

$$xy=2(x+y+x+y-4)$$

$$xy-4x-4y=-8$$

$$(x-4)(y-4)=8=1.8=2.4$$
0.25

Từ đó ta tìm đ- ợc các giá trị của x, y, z là:

$$(x=5,y=12,z=13)$$
; $(x=12,y=5,z=13)$; $(x=6,y=8,z=10)$; $(x=8,y=6,z=10)$ 0,25

ĐỀ THI SỐ 4

Câu1(2 d): Phân tích đa thức sau thành nhân tử

$$A = (a+1)(a+3)(a+5)(a+7)+15$$

Câu 2(2 d): Với giá trị nào của a và b thì đa thức:

$$(x-a)(x-10)+1$$

phân tích thành tích của một đa thức bậc nhất có các hệ số nguyên

<u>Câu 3(1 d):</u> tìm các số nguyên a và b để đa thức $A(x) = x^4 - 3x^3 + ax + b$ chia hết cho đa thức $B(x) = x^2 - 3x + 4$

<u>Câu 4(3 d):</u> Cho tam giác ABC, đường cao AH,vẽ phân giác Hx của góc AHB và phân giác Hy của góc AHC. Kẻ AD vuông góc với Hx, AE vuông góc Hy.

Chứng minh rằngtứ giác ADHE là hình vuông

Câu 5(2 d): Chứng minh rằng

$$P = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^4} + \dots + \frac{1}{100^2} < 1$$

ĐÁP ÁN VÀ BIỂU ĐIỂM

Câu	Đáp án	Biểu điểm
1	A = (a+1)(a+3)(a+5)(a+7)+15	Died diem
2 đ	$= (a^2 + 8a + 7)(a^2 + 8a + 15) + 15$	0,5 đ 0,5 đ
	$= (a^2 + 8a)^2 + 22(a^2 + 8a) + 120$	0,5 đ 0,5 đ
	$= (a^2 + 8a + 11)^2 - 1$	
	$= (a^2 + 8a + 12)(a^2 + 8a + 10)$ = $(a+2)(a+6)(a^2 + 8a + 10)$	
2	Giả sử: $(x-a)(x-10)+1=(x-m)(x-n); (m,n \in \mathbb{Z})$	0,25 đ
2 đ	$\Leftrightarrow x^2 - (a+10)x + 10a + 1 = x^2 - (m+n)x + mn$	0,25 đ
	$\Leftrightarrow \begin{cases} m+n=a+10\\ m.n=10a+1 \end{cases}$	0,25 đ
	Khử a ta có:	0,25 đ
	$\Leftrightarrow mn - 10m - 10n + 100 = 1$ $\Leftrightarrow mn - 10m - 10n + 100 = 1$	0,25 đ
	$\Leftrightarrow m(n-10)-10n+10)=1$	0,25 đ
	vì m,n nguyên ta có: $\begin{cases} m-10=1 \\ n-10=1 \end{cases} v \begin{cases} m-10=-1 \\ n-10=-1 \end{cases}$	0,25 đ
	suy ra a = 12 hoặc a =8	0,25 đ
3	Ta có:	
1 đ	$A(x) = B(x).(x^{2}-1) + (a-3)x + b + 4$	0,5 đ
	$\oint \vec{e} A(x) : B(x) \text{ thi } \begin{cases} a-3=0 \\ b+4=0 \end{cases} \Leftrightarrow \begin{cases} a=3 \\ b=-4 \end{cases}$	0,5 đ

4 3 đ	A	
	D E	0,25 đ
	3 <u> </u>	
	н	0,25 đ
	Tứ giác ADHE là hình vuông	0,25 đ
		0,25 đ
	Hx là phân giác của góc AHB; Hy phân giác của góc AHC mà AHB và	0,25 đ
	AHC là hai gốc kề bù nên Hx và Hy vuông gốc	0,5 đ
	Hay DHE = 90° mặt khác ADH = AEH = 90°	
	Nên tứ giác ADHE là hình chữ nhật (1)	0,5 đ
	$AHD = \frac{AHB}{2} = \frac{90^{\circ}}{2} = 45^{\circ}$	0.25 4
	$AIID = \frac{1}{2} = \frac{1}{2} = \frac{1}{4}$	0,25 đ
	AHC 90 0	0,25 đ 0,25 đ
	Do $AHE = \frac{AHC}{2} = \frac{90^{\circ}}{2} = 45^{\circ}$	0,23 d
	$\Rightarrow AHD = AHE$	
	Hay HA là phân giác <i>DHE</i> (2)	
	Từ (1) và (2) ta có tứ giác ADHE là hình vuông	
5 2 đ	$P = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^4} + \dots + \frac{1}{100^2}$	
	1 1 1 1 1	0,5 đ
	$= \frac{1}{2.2} + \frac{1}{3.3} + \frac{1}{4.4} + \dots + \frac{1}{100.100}$	0,5 đ
	$<\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{99.100}$	0,5 đ
	$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}++\frac{1}{99}-\frac{1}{100}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		0,5 đ
	$=1-\frac{1}{100}=\frac{99}{100}<1$	
	100 100	

ĐỀ THI SỐ 5

Bài 1: (4 điểm)

Phân tích các đa thức sau thành nhân tử: a) $(x + y + z)^3 - x^3 - y^3 - z^3$. b) $x^4 + 2010x^2 + 2009x + 2010$.

a)
$$(x + y + z)^3 - x^3 - y^3 - z^3$$
.

b)
$$x^4 + 2010x^2 + 2009x + 2010$$

Bài 2: (2 điểm)

Giải phương trình:

$$\frac{x-241}{17} + \frac{x-220}{19} + \frac{x-195}{21} + \frac{x-166}{23} = 10$$
.

Bài 3: (3 điểm)

Tìm x biết:

$$\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}.$$

Bài 4: (3 điểm)

Tìm giá trị nhỏ nhất của biểu thức $A = \frac{2010x + 2680}{x^2 + 1}$.

Bài 5: (4 điểm)

Cho tam giác ABC vuông tại A, D là điểm di động trên cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của điểm D lên AB, AC.

- a) Xác định vị trí của điểm D để tứ giác AEDF là hình vuông.
- b) Xác định vị trí của điểm D sao cho 3AD + 4EF đạt giá trị nhỏ nhất.

Bài 6: (4 điểm)

Trong tam giác ABC, các điểm A, E, F tương ứng nằm trên các cạnh BC, CA, AB sao cho: AFE = BFD, BDF = CDE, CED = AEF.

- a) Chứng minh rằng: BDF=BAC.
- b) Cho AB = 5, BC = 8, CA = 7. Tính độ dài đoạn BD.

Một lời giải:

<u>Bài 1:</u>

a)
$$(x + y + z)^3 - x^3 - y^3 - z^3 = [(x + y + z)^3 - x^3] - [y^3 + z^3]$$

$$= (y + z)[(x + y + z)^2 + (x + y + z)x + x^2] - (y + z)(y^2 - yz + z^2)$$

$$= (y + z)(3x^2 + 3xy + 3yz + 3zx) = 3(y + z)[x(x + y) + z(x + y)]$$

$$= 3(x + y)(y + z)(z + x).$$

b)
$$x^4 + 2010x^2 + 2009x + 2010 = (x^4 - x) + (2010x^2 + 2010x + 2010)$$

= $x(x-1)(x^2 + x + 1) + 2010(x^2 + x + 1) = (x^2 + x + 1)(x^2 - x + 2010)$.

<u>Bài 2:</u>

$$\frac{x-241}{17} + \frac{x-220}{19} + \frac{x-195}{21} + \frac{x-166}{23} = 10$$

$$\Leftrightarrow \frac{x - 241}{17} - 1 + \frac{x - 220}{19} - 2 + \frac{x - 195}{21} - 3 + \frac{x - 166}{23} - 4 = 0$$

$$\Leftrightarrow \frac{x - 258}{17} + \frac{x - 258}{19} + \frac{x - 258}{21} + \frac{x - 258}{23} = 0$$

$$\Leftrightarrow (x - 258) \left(\frac{1}{17} + \frac{1}{19} + \frac{1}{21} + \frac{1}{23}\right) = 0$$

$$\Leftrightarrow x = 258$$

Bài 3:

$$\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}.$$

ĐKXĐ: $x \neq 2009$; $x \neq 2010$.

Đặt a = x - 2010 ($a \ne 0$), ta có hệ thức:

$$\frac{\left(a+1\right)^{2}-\left(a+1\right)a+a^{2}}{\left(a+1\right)^{2}+\left(a+1\right)a+a^{2}} = \frac{19}{49} \iff \frac{a^{2}+a+1}{3a^{2}+3a+1} = \frac{19}{49}$$

$$\Leftrightarrow 49a^2 + 49a + 49 = 57a^2 + 57a + 19 \iff 8a^2 + 8a - 30 = 0$$

$$\Leftrightarrow (2a+1)^2 - 4^2 = 0 \Leftrightarrow (2a-3)(2a+5) = 0 \Leftrightarrow \begin{bmatrix} a = \frac{3}{2} \\ a = -\frac{5}{2} \end{bmatrix}$$
 (thoả ĐK)

Suy ra x =
$$\frac{4023}{2}$$
 hoặc x = $\frac{4015}{2}$ (thoả ĐK)

Vậy
$$x = \frac{4023}{2}$$
 và $x = \frac{4015}{2}$ là giá trị cần tìm.

Bài 4:

$$A = \frac{2010x + 2680}{x^2 + 1}$$

$$= \frac{-335x^2 - 335 + 335x^2 + 2010x + 3015}{x^2 + 1} = -335 + \frac{335(x + 3)^2}{x^2 + 1} \ge -335$$

Vậy giá trị nhỏ nhất của A là -335 khi x = -3.

Bài 5:

- a) Tứ giác AEDF là hình chữ nhật (vì $E=A=F=90^{\circ}$) Để tứ giác AEDF là hình vuông thì AD là tia phân giác của BAC.
- b) Do tứ giác AEDF là hình chữ nhật nên AD = EF
 Suy ra 3AD + 4EF = 7AD
 3AD + 4EF nhỏ nhất ⇔ AD nhỏ nhất
 ⇔ D là hình chiếu vuông góc của A lên BC.

<u>Bài 6:</u>

a) Đặt $AFE = BFD = \omega$, $BDF = CDE = \alpha$, $CED = AEF = \beta$.

Ta có BAC +
$$\beta$$
 + ω = 180° (*)

Qua D, E, F lần lượt kẻ các đường thẳng vuông góc với BC, AC, AB cắt nhau tại O. Suy ra O là giao điểm ba đường phân giác của tam giác DEF.

$$\Rightarrow$$
 OFD + OED + ODF = 90° (1)

Ta có
$$OFD + \omega + OED + \beta + ODF + \alpha = 270^{\circ}$$
 (2)

(1) & (2)
$$\Rightarrow \alpha + \beta + \omega = 180^{\circ}$$
 (**)

(*) & (**)
$$\Rightarrow$$
 BAC = α = BDF.

b) Chứng minh tương tự câu a) ta có:

$$B = \beta$$
, $C = \omega$

$$\Rightarrow$$
 \triangle AEF ω \triangle DBF ω \triangle DEC ω \triangle ABC

$$\frac{CE}{CE} = \frac{1}{CB} = \frac{1}{8}$$

$$\frac{AE}{AE} = \frac{AB}{AE} = \frac{5}{4}$$

AF AC 7
$$\downarrow$$
 \Rightarrow CD-BD=3 (3)

(3) & (4)
$$\Rightarrow$$
 BD = 2,5

ĐỂ SỐ 6

Bài 1(3 điểm): Tìm x biết:

a)
$$x^2 - 4x + 4 = 25$$

b)
$$\frac{x-17}{1990} + \frac{x-21}{1986} + \frac{x+1}{1004} = 4$$

c)
$$4^x - 12.2^x + 32 = 0$$

Bài 2 (1,5 điểm): Cho x, y, z đôi một khác nhau và $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$.

Tính giá trị của biểu thức:
$$A = \frac{yz}{x^2 + 2yz} + \frac{xz}{y^2 + 2xz} + \frac{xy}{z^2 + 2xy}$$

Bài 3 (1,5 điểm): Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vi vào chữ số hàng nghìn, thêm 3 đơn vi vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vi, ta vẫn được một số chính phương.

Bài 4 (4 điểm): Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.

a) Tính tổng
$$\frac{HA'}{AA'} + \frac{HB'}{BB'} + \frac{HC'}{CC'}$$

- b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN. IC.AM.
- c) Tam giác ABC như thế nào thì biểu thức $\frac{(AB+BC+CA)^2}{AA'^2+BB'^2+CC'^2}$ đạt giá trị nhỏ nhất?

ĐÁP ÁN

 Bài 1(3 điểm): a) Tính đúng x = 7; x = -3(1 điểm b) Tính đúng x = 2007c) $4^x - 12.2^x + 32 = 0 \Leftrightarrow 2^x.2^x - 4.2^x - 8.2^x + 4.8 = 0$ (1 điểm) (0,25điểm) $\Leftrightarrow 2^{x}(2^{x} - 4) - 8(2^{x} - 4) = 0 \Leftrightarrow (2^{x} - 8)(2^{x} - 4) = 0$ $\Leftrightarrow (2^{x} - 2^{3})(2^{x} - 2^{2}) = 0 \Leftrightarrow 2^{x} - 2^{3} = 0 \text{ hoặc } 2^{x} - 2^{2} = 0$ (0,25điểm) (0,25điểm) $\Leftrightarrow 2^x = 2^3 \text{ hoăc } 2^x = 2^2 \Leftrightarrow x = 3; x = 2$ (0,25điểm) Bài 2(1,5 điểm):

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \Rightarrow \frac{xy + yz + xz}{xyz} = 0 \Rightarrow xy + yz + xz = 0 \Rightarrow yz = -xy - xz \text{ (0,25điểm)}$$

$$x^2 + 2yz = x^2 + yz - xy - xz = x(x - y) - z(x - y) = (x - y)(x - z)$$

$$\text{(0,25điểm)}$$

Tương tự:
$$y^2+2xz = (y-x)(y-z)$$
; $z^2+2xy = (z-x)(z-y)$ (0,25điểm)

Do đó:
$$A = \frac{yz}{(x-y)(x-z)} + \frac{xz}{(y-x)(y-z)} + \frac{xy}{(z-x)(z-y)}$$
 (0,25điểm)

(0,5 điểm) Tính đúng A = 1

Bài 3(1,5 điểm):

Gọi abcd là số phải tìm a, b, c, d \in N, $0 \le a, b, c, d \le 9, a \ne 0$ (0,25điểm)

$$\begin{cases}
 m = 67 \\
 k = 56
\end{cases}$$

$$\begin{cases}
 m = 37 \\
 k = 4
\end{cases}$$

(0,25điếm)

Kết

luận

đúng

abcd

3136

(0,25điếm)

Bài 4 *(4 điếm)*:

Vẽ hình đúng

(0,25điếm)

a)
$$\frac{S_{HBC}}{S_{ABC}} = \frac{\frac{1}{2}.HA'.BC}{\frac{1}{2}.AA'.BC} = \frac{HA'}{AA'};$$

(0,25điểm)

Tương tự:
$$\frac{S_{HAB}}{S_{ABC}} = \frac{HC'}{CC'}$$
; $\frac{S_{HAC}}{S_{ABC}} = \frac{HB'}{BB'}$

(0,25điểm)

$$\frac{\text{HA'}}{\text{AA'}} + \frac{\text{HB'}}{\text{BB'}} + \frac{\text{HC'}}{\text{CC'}} = \frac{S_{\text{HBC}}}{S_{\text{ABC}}} + \frac{S_{\text{HAB}}}{S_{\text{ABC}}} + \frac{S_{\text{HAC}}}{S_{\text{ABC}}} = 1$$

(0,25điểm)

b) Áp dụng tính chất phân giác vào các tam giác ABC, ABI, AIC:

$$\frac{BI}{IC} = \frac{AB}{AC}; \frac{AN}{NB} = \frac{AI}{BI}; \frac{CM}{MA} = \frac{IC}{AI}$$

(0,5điểm)

$$\frac{\text{BI}}{\text{IC}}.\frac{\text{AN}}{\text{NB}}.\frac{\text{CM}}{\text{MA}} = \frac{\text{AB}}{\text{AC}}.\frac{\text{AI}}{\text{BI}}.\frac{\text{IC}}{\text{AI}} = \frac{\text{AB}}{\text{AC}}.\frac{\text{IC}}{\text{BI}} = 1$$

(0,5điểm) (0,5điếm)

 \Rightarrow BI.AN.CM = BN.IC.AM

c)Vẽ Cx \(\perp CC'\). Gọi D là điểm đối xứng của A qua Cx

(0,25điểm)

-Chứng minh được góc BAD vuông, CD = AC, AD = 2CC' (0,25điêm)

- Xét 3 điểm B, C, D ta có: BD≤ BC + CD

(0,25điểm)

 $-\Delta$ BAD vuông tại A nên: $AB^2+AD^2=BD^2$

$$\Rightarrow AB^{2} + AD^{2} \leq (BC+CD)^{2}$$

$$AB^{2} + 4CC^{2} \leq (BC+AC)^{2}$$

$$4CC'^2 \leq (BC + AC')^2 - AB^2$$
 (0,25điểm)

 $4CC'^{2} \le (BC+AC)^{2} - AB^{2}$ (0,25điểm) Tương tự: $4AA'^{2} \le (AB+AC)^{2} - BC^{2}$ $4BB'^{2} \le (AB+BC)^{2} - AC^{2}$

-Chứng minh được : $4(AA^{2} + BB^{2} + CC^{2}) \le (AB+BC+AC)^{2}$

$$\iff \frac{(AB + BC + CA)^2}{\Delta \Delta^{2} + BB^{2} + CC^{2}} \ge 4 \qquad (0.25\text{dim})$$

Đẳng thức xảy ra \iff BC = AC, AC = AB, AB = BC ⇔ AB = AC =BC ⇔ △ABC đều

Kết luân đúng (0,25điểm)

*Chú ý :Học sinh có thể giải cách khác, nếu chính xác thì hưởng trọn số điểm câu đó

ĐỀ SỐ 7

Bài 1 (4 điểm)

Cho biểu thức $A = \left(\frac{1-x^3}{1-x} - x\right) : \frac{1-x^2}{1-x-x^2+x^3}$ với x khác -1 và 1.

- a, Rút gọn biểu thức A.
- b, Tính giá trị của biểu thức A tại $x = -1\frac{2}{3}$.
- c, Tìm giá tri của x để A < 0.

Bài 2 (3 điểm)

Cho
$$(a-b)^2 + (b-c)^2 + (c-a)^2 = 4.(a^2 + b^2 + c^2 - ab - ac - bc)$$
.

Chứng minh rằng a = b = c.

Bài 3 (3 điểm)

Giải bài toán bằng cách lập phương trình.

Một phân số có tử số bé hơn mẫu số là 11. Nếu bớt tử số đi 7 đơn vi và tăng mẫu lên 4 đơn vi thì sẽ được phân số nghịch đảo của phân số đã cho. Tìm phân số đó.

Bài 4 (2 điểm)

Tìm giá trị nhỏ nhất của biểu thức $A = a^4 - 2a^3 + 3a^2 - 4a + 5$.

Bài 5 (3 điểm)

Cho tam giác ABC vuông tại A có góc ABC bằng 60°, phân giác BD. Gọi M,N,I theo thứ tự là trung điểm của BD, BC, CD.

- a, Tứ giác AMNI là hình gì? Chứng minh.
- b, Cho AB = 4cm. Tính các canh của tứ giác AMNI.

Bài 6 (5 điểm)

Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tư ở M và N.

- a, Chứng minh rằng OM = ON.
- b, Chứng minh rằng $\frac{1}{AB} + \frac{1}{CD} = \frac{2}{MN}$
- c, Biết S_{AOB} = 2008² (đơn vị diện tích); S_{COD} = 2009² (đơn vị diện tích). Tính S_{ABCD} .

Đáp án

Bài 1(4 điểm)

a, (2 điểm)

Với x khác -1 và 1 thì:

0,50

$$A = \frac{1 - x^3 - x + x^2}{1 - x} : \frac{(1 - x)(1 + x)}{(1 + x)(1 - x + x^2) - x(1 + x)}$$

$$=\frac{(1-x)(1+x+x^2-x)}{1-x} : \frac{(1-x)(1+x)}{(1+x)(1-2x+x^2)} \qquad 0,5d$$

$$=(1+x^2)(1-x) \qquad 0,5d$$

$$=(1+x^2)(1-x) \qquad 0,5d$$

$$b, (1 diểm) \qquad 0,25d$$

$$b, (1 diểm) \qquad 0,25d$$

$$c, (1 diểm) \qquad 0,25d$$

$$=(1+\frac{25}{3})(1+\frac{5}{3}) \qquad 0,25d$$

$$=\frac{34}{9} \cdot \frac{8}{3} = \frac{27}{27} = 10 \cdot \frac{2}{27}$$

$$c, (1 diểm) \qquad 0,5d$$

$$Với x khác -1 và 1 thì A<0 khi và chỉ khi $(1+x^2)(1-x) < 0$ (1) $\qquad 0,25d$

$$Với x khác -1 và 1 thì A<0 khi và chỉ khi $(1+x^2)(1-x) < 0$ (1) $\qquad 0,5d$

$$KL \qquad 0,5d$$

$$Vi 1+x^2 > 0 với mọi x nên (1) xây ra khi và chỉ khi $1-x < 0 \Leftrightarrow x > 1$ $\qquad 0,5d$

$$KL \qquad 0,5d$$

$$Vi 1+x^2 > 0 với mọi x nên (1) xây ra khi và chỉ khi $1-x < 0 \Leftrightarrow x > 1$ $\qquad 0,5d$

$$Vi 1+x^2 > 0 với mọi x nên (1) xây ra khi và chỉ khi $1-x < 0 \Leftrightarrow x > 1$ $\qquad 0,5d$

$$Vi (x-2) + x^2 + x^2$$$$$$$$$$$$

$$(a^2+2)(a-1)^2+3\geq 3\forall a$$

Dấu = xảy ra khi và chỉ khi $a-1=0 \Leftrightarrow a=1$ 0,25đ
KL 0,25đ
Bài 5 (3 điểm)

a,(1 điểm)

Chứng minh được tứ giác AMNI là hình thang 0,5đ Chứng minh được AN=MI, từ đó suy ra tứ giác AMNI là hình thang cân 0,5đ b,(2điểm)

Tính được AD =
$$\frac{4\sqrt{3}}{3}$$
 cm; BD = 2AD = $\frac{8\sqrt{3}}{3}$ cm

$$AM = \frac{1}{2}BD = \frac{4\sqrt{3}}{3}cm$$

Tính được NI = AM =
$$\frac{4\sqrt{3}}{3}cm$$
 0,5đ

DC = BC =
$$\frac{8\sqrt{3}}{3}cm$$
, MN = $\frac{1}{2}DC = \frac{4\sqrt{3}}{3}cm$

Tính được AI =
$$\frac{8\sqrt{3}}{3}cm$$

Bài 6 (5 điểm)

a, (1,5 điểm)

Lập luận để có
$$\frac{OM}{AB} = \frac{OD}{BD}$$
 , $\frac{ON}{AB} = \frac{OC}{AC}$

Lập luận để có
$$\frac{OD}{DB} = \frac{OC}{AC}$$

$$\Rightarrow \frac{OM}{AB} = \frac{ON}{AB} \Rightarrow OM = ON$$
b, (1,5 điểm)

Xét
$$\triangle ABD$$
 để có $\frac{OM}{AB} = \frac{DM}{AD}$ (1), xét $\triangle ADC$ để có $\frac{OM}{DC} = \frac{AM}{AD}$ (2)

Từ (1) và (2)
$$\Rightarrow$$
 OM. $(\frac{1}{AB} + \frac{1}{CD}) = \frac{AM + DM}{AD} = \frac{AD}{AD} = 1$

Chứng minh tương tự ON.
$$(\frac{1}{AB} + \frac{1}{CD}) = 1$$

từ đó có (OM + ON).
$$(\frac{1}{AB} + \frac{1}{CD}) = 2 \implies \frac{1}{AB} + \frac{1}{CD} = \frac{2}{MN}$$

b, (2 điểm)

$$\frac{S_{AOB}}{S_{AOD}} = \frac{OB}{OD}, \quad \frac{S_{BOC}}{S_{DOC}} = \frac{OB}{OD} \implies \frac{S_{AOB}}{S_{AOD}} = \frac{S_{BOC}}{S_{DOC}} \implies S_{AOB}.S_{DOC} = S_{BOC}.S_{AOD}$$

Chứng minh được
$$S_{AOD} = S_{BOC}$$
 0,5đ

$$\Rightarrow S_{AOB}.S_{DOC} = (S_{AOD})^2$$
 0,5đ

Thay số để có $2008^2.2009^2 = (S_{AOD})^2 \Rightarrow S_{AOD} = 2008.2009$ Do đó $S_{ABCD} = 2008^2 + 2.2008.2009 + 2009^2 = (2008 + 2009)^2 = 4017^2 0,5đ (đơn vị DT)$

ĐỀ SỐ 8

Bài 1:

Cho x =
$$\frac{b^2 + c^2 - a^2}{2bc}$$
; y = $\frac{a^2 - (b - c)^2}{(b + c)^2 - a^2}$

Tính giá trị P = x + y + xy

Bài 2:

Giải phương trình:

a,
$$\frac{1}{a+b-x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
 (x là ẩn số)

b,
$$\frac{(b-c)(1+a)^2}{x+a^2}$$
 + $\frac{(c-a)(1+b)^2}{x+b^2}$ + $\frac{(a-b)(1+c)^2}{x+c^2}$ = 0

(a,b,c là hằng số và đôi một khác nhau)

Bài 3:

Xác định các số a, b biết:

$$\frac{(3x+1)}{(x+1)^3} = \frac{a}{(x+1)^3} + \frac{b}{(x+1)^2}$$

Bài 4: Chứng minh phương trình:

 $\frac{1}{2}$ x² – 4y = 10 không có nghiệm nguyên.

Bài 5:

 $\overline{\mathsf{C}}\mathsf{ho}\ \Delta\mathsf{ABC};\ \mathsf{AB}=\mathsf{3AC}$

Tính tỷ số đường cao xuất phát từ B và C

ĐÈ SỐ 9

Bài 1: (2 điểm)

Cho biểu thức:
$$A = \left[\frac{2}{(x+1)^3} \left(\frac{1}{x} + 1 \right) + \frac{1}{x^2 + 2x + 1} \left(\frac{1}{x^2} + 1 \right) \right] : \frac{x-1}{x^3}$$

a/Thu gon A

b/ Tìm các giá trị của x để A<1

c/ Tìm các giá trị nguyên của x để Acó giá trị nguyên

Bài 2: (2 điểm)

a/ Phân tích đa thức sau thành nhân tử (với hệ số là các số nguyên):

$$x^2 + 2xy + 7x + 7y + y^2 + 10$$

b/ Biết xy = 11 và $x^2y + xy^2 + x + y = 2010$. Hãy tính $x^2 + y^2$

Bài 3 (1,5 điểm):

Cho đa thức $P(x) = x^2 + bx + c$, trong đó b và c là các số nguyên. Biết rằng đa thức

 $x^4 + 6x^2 + 25$ và $3x^4 + 4x^2 + 28x + 5$ đều chia hết cho P(x). Tính P(1)

Bài 4 (3,5 điểm):

Cho hình chữ nhật có AB= 2AD, gọi E, I lần lượt là trung điểm của AB và CD. Nối D với E. Vẽ tia Dx vuông góc với DE, tia Dx cắt tia đối của tia CB tại M.Trên tia đối của tia CE lấy điểm K sao cho DM = EK. Gọi G là giao điểm của DK và EM.

a/ Tính số đo góc DBK.

b/ Gọi F là chân đường vuông góc hạ từ K xuống BM. Chứng minh bốn điểm A, I, G, H cùng nằm trên một đường thẳng.

Bài 5 (1 điểm):

Chứng minh rằng: Nếu ba số tự nhiên m, m+k, m+ 2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6.

ĐỀ SỐ 10

Bài 1: (3 điểm)

Cho biểu thức
$$A = \left(\frac{1}{3} + \frac{3}{x^2 - 3x}\right) : \left(\frac{x^2}{27 - 3x^2} + \frac{1}{x + 3}\right)$$

- a) Rút gọn A.
- b) Tìm x để A < -1.
- c) Với giá trị nào của x thì A nhận giá trị nguyên.

Bài 2: (2 điểm) Giải phương trình:

a)
$$\frac{1}{3y^2 - 10y + 3} = \frac{6y}{9y^2 - 1} + \frac{2}{1 - 3y}$$

b) $x - \frac{\frac{x}{2} - \frac{3 + x}{4}}{2} = 3 - \frac{\left(1 - \frac{6 - x}{3}\right) \cdot \frac{1}{2}}{2}$

Bài 3: (2 điểm)

Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B. Khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ và vận tốc theo thứ tự là 15 km/h; 35 km/h và 55 km/h.

Hỏi lúc mấy giờ ô tô cách đều xe đạp và xe đạp và xe máy?

Bài 4: (2 điểm)

Cho hình chữ nhật ABCD từ điểm P thuộc đường chéo AC ta dựng hình chữ nhật AMPN ($M \in AB$ và $N \in AD$). Chứng minh:

- a) BD // MN.
- b) BD và MN cắt nhau tại K nằm trên AC.

Bài 5: (1 điếm)

Cho a = 11...1 (2n chữ số 1), b = 44...4 (n chữ số 4). Chứng minh rằng: a + b + 1 là số chính phương.

ĐỀ SỐ 11

Bài 1: (2điểm)

a) Cho
$$x^2 - 2xy + 2y^2 - 2x + 6y + 13 = 0$$
. Tính $N = \frac{3x^2y - 1}{4xy}$

b) Nếu a, b, c là các số dương đôi một khác nhau thì giá trị của đa thức $A = a^3 + b^3 + c^3 - 3abc$ sau là số dương:

Bài 2: (2 điểm)

Chứng minh rằng nếu a + b + c = 0 thì:

$$A = \left(\frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b}\right) \left(\frac{c}{a-b} + \frac{a}{b-c} + \frac{b}{c-a}\right) = 9$$

Bài 3: (2 điểm)

Một ô tô phải đi quãng đường AB dài 60 km trong thời gian nhất định. Nửa quãng đường đầu đi với vân tốc lớn hơn vân tốc dư đinh là 10km/h. Nửa quãng đường sau đi với vân tốc kém hơn vân tốc dư định là 6 km/h.

Tính thời gian ô tô đi trên quãng đường AB biết người đó đến B đúng qiờ.

Bài 4: (3 điếm)

Cho hình vuông ABCD trên canh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thắng song song với CD cắt AI tại N.

- a) Chứng minh tứ giác MENF là hình thoi.
- b) Chứng minh chi vi tam giác CME không đổi khi E chuyển đông trên BC **Bài 5**: (1 điếm)

Tìm nghiệm nguyên của phương trình: $x^6 + 3x^2 + 1 = y^4$

ĐỀ SỐ 12

Bài 1:

Phân tích thành nhân tử:

a,
$$(x^2 - x + 2)^2 + (x-2)^2$$

a,
$$(x^2 - x + 2)^2 + (x-2)^2$$

b, $6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$

Bài 2:

a, Cho a, b, c thoả mãn: a+b+c = 0 và $a^2 + b^2 + c^2 = 14$. Tính giá trị của $A = a^4 + b^4 + c^4$

b, Cho a, b, c \neq 0. Tính giá trị của D = $x^{2011} + y^{2011} + z^{2011}$

Biết x,y,z thoả mãn:
$$\frac{x^2 + y^2 + z^2}{a^2 + b^2 + c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$

Bài 3:

a, Cho a,b > 0, CMR: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$

b. Cho a.b.c.d > 0

CMR:
$$\frac{a-d}{d+b} + \frac{d-b}{b+c} + \frac{b-c}{c+a} + \frac{c-a}{a+d} \ge 0$$

Bài 4:

a, Tìm giá trị lớn nhất: $E = \frac{x^2 + xy + y^2}{x^2 - xy + y^2}$ với x,y > 0

b, Tìm giá trị lớn nhất: $M = \frac{x}{(x+1995)^2}$ với x > 0

Bài 5:

a, Tìm nghiệm ∈Z của PT: xy – 4x = 35 – 5y b, Tìm nghiệm ∈Z của PT: x² + x + 6 = y²

Bài 6:

Cho $\triangle ABC$ M là một điểm \in miền trong của $\triangle ABC$. D, E, F là trung điểm AB, AC, BC; A', B', C' là điểm đối xứng của M qua F, E, D.

a, CMR: AB'A'B là hình bình hành.

b, CMR: CC' đi qua trung điểm của AA'

ĐỀ SỐ 13

Bài 1: (2 điếm)

a) Phân tích đa thức sau thành nhân tử:

$$a(b+c)^{2}(b-c)+b(c+a)^{2}(c-a)+c(a+b)^{2}(a-b)$$

b) Cho a, b, c khác nhau, khác 0 và $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$

Rút gọn biểu thức:
$$N = \frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab}$$

Bài 2: (2điểm)

a) Tìm giá tri nhỏ nhất của biểu thức:

$$M = x^2 + y^2 - xy - x + y + 1$$

b) Giải phương trình: $(y-4.5)^4 + (y-5.5)^4 - 1 = 0$

Bài 3: (2điểm)

Một người đi xe máy từ A đến B với vân tốc 40 km/h. Sau khi đi được 15 phút, người đó gặp một ô tô, từ B đến với vân tốc 50 km/h. ô tô đến A nghỉ 15 phút rồi trở lại B và gặp người đi xe máy tại một một địa điểm cách B 20 km.

Tính quãng đường AB.

Bài 4: (3điểm)

Cho hình vuông ABCD. M là một điểm trên đường chéo BD. Kẻ ME và MF vuông góc với AB và AD.

- a) Chứng minh hai đoạn thẳng DE và CF bằng nhau và vuông góc với nhau.
 - b) Chứng minh ba đường thẳng DE, BF và CM đồng quy.
 - c) Xác định vị trí của điểm M để tứ giác AEMF có diện tích lớn nhất.

Bài 5: (1điểm)

Tìm nghiệm nguyên của phương trình: $3x^2 + 5y^2 = 345$

<u>ĐÈ SỐ 14</u>

Bài 1: (2,5điểm)

Phân tích đa thức thành nhân tử

a)
$$x^5 + x + 1$$

b)
$$x^4 + 4$$

c)
$$x\sqrt{x} - 3x + 4\sqrt{x} - 2$$
 với $x > 0$

Bài 2 : (1,5điểm)

Cho abc = 2 Rút gọn biểu thức:

$$A = \frac{a}{ab+a+2} + \frac{b}{bc+b+1} + \frac{2c}{ac+2c+2}$$

Bài 3: (2điểm)

Cho $4a^2 + b^2 = 5ab \text{ và } 2a > b > 0$

Tính:
$$P = \frac{ab}{4a^2 - b^2}$$

Bài 4: (3điểm)

Cho tam giác ABC cân tại A. Trên BC lấy M bất kì sao cho BM < CM. Từ N vẽ đường thẳng song song với AC cắt AB tại E và song song với AB cắt AC tại F. Gọi N là điểm đối xứng của M qua E F.

- a) Tính chu vi tứ giác AEMF. Biết: AB =7cm
- b) Chứng minh : AFEN là hình thang cân
- c) Tính : ANB + ACB = ?
- d) M ở vị trí nào để tứ giác AEMF là hình thoi và cần thêm điều kiện của Δ ABC

để cho AEMF là hình vuông.

Bài 5: (1điểm)

Chứng minh rằng với mọi số nguyên n thì : $5^{2n+1} + 2^{n+4} + 2^{n+1}$ chia hết cho 23.

<u>Đề SỐ 15</u>

Bài 1: (2 điểm)

a) Phân tích thành thừa số: $(a+b+c)^3-a^3-b^3-c^3$

b) Rút gọn:
$$\frac{2x^3 - 7x^2 - 12x + 45}{3x^3 - 19x^2 + 33x - 9}$$

Bài 2: (2 điểm)

Chứng minh rằng: $A = n^3(n^2 - 7)^2 - 36n$ chia hết cho 5040 với mọi số tự nhiên n.

Bài 3: (2 điểm)

a) Cho ba máy bơm A, B, C hút nước trên giếng. Nếu làm một mình thì máy bơm A hút hết nước trong 12 giờ, máy bơm B hút hếtnước trong 15 giờ và máy bơm C hút hết nước trong 20 giờ. Trong 3 giờ đầu hai máy bơm A và C cùng làm việc sau đó mới dùng đến máy bơm B.

Tính xem trong bao lâu thì giếng sẽ hết nước.

b) Giải phương trình: 2|x+a|-|x-2a|=3a (a là hằng số).

Bài 4: (3 điểm)

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

- a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.
- b) So sánh hai tam giác ABC và INC.
- c) Chứng minh: góc MIN = 90° .
- d) Tìm vị trí điểm I sao cho diện tích ΔIMN lớn gấp đôi diện tích ΔABC.

Bài 5: (1 điểm)

Chứng minh rằng số:

$$22499.....9100.....09$$
 là số chính phương. $(n \ge 2)$.

Đề SỐ 16:

Câu 1: $(2 \operatorname{diểm})$ Phân tích biểu thức sau ra thừa số $M = 3 \text{ xyz} + x (y^2 + z^2) + y (x^2 + z^2) + z (x^2 + y^2)$

Câu 2: (4 $\operatorname{diểm}$) Định a và b để đa thức A = $x^4 - 6 x^3 + ax^2 + bx + 1$ là bình phương của một đa thức khác .

Câu 3: (4 điểm) Cho biểu thức:

$$P = \left(\frac{x^2}{x^3 - 4x} + \frac{6}{6 - 3x} + \frac{1}{x + 2}\right) : \left(x - 2 + \frac{10 - x^2}{x + 2}\right)$$

- a) Rút gọn p.
- b) Tính giá trị của biểu thức p khi /x / = $\frac{3}{4}$
- c) Với giá trị nào của x thì p = 7
- d) Tìm giá trị nguyên của x để p có giá trị nguyên .

Câu 4: (3 $\overrightarrow{\text{diểm}}$) Cho a , b , c thỏa mãn điều kiện $a^2 + b^2 + c^2 = 1$ Chứng minh : abc + 2 (1 + a + b + c + ab + ac + bc) ≥ 0

Câu 5: (3điểm)

Qua trọng tâm G tam giác ABC, kẻ đường thẳng song song với AC, cắt AB và BC lần lượt tại M và N. Tính độ dài MN, biết AM + NC = 16 (cm); Chu vi tam giác ABC bằng 75 (cm)

Câu 6 : ($4 \, diem$) Cho tam giác đều ABC . M, N là các điểm lần lượt chuyển động trên hai cạnh BC và AC sao cho BM = CN xác định vị trí của M , N để độ dài đoạn thẳng MN nhỏ nhất .

ĐỀ SỐ 17

Bài 1: (2 điểm)

Phân tích đa thức sau đây thành nhân tử:

- 1. $x^2 + 7x + 6$
- 2. $x^4 + 2008x^2 + 2007x + 2008$

Bài 2: (2điểm) Giải phương trình:

- 1. $x^2 3x + 2 + |x 1| = 0$
- 2. $8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2$

<u>**Bài 3**</u>: (2điểm) 1. CMR với a,b,c,là các số dơng ,ta có: $(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$

3. Tìm số d trong phép chia của biểu thức (x+2)(x+4)(x+6)(x+8)+2008 cho đa thức $x^2+10x+21$.

<u>Bài 4</u>: (4 điểm)Cho tam giác ABC vuông tại A (AC > AB), đồng cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đồng vuông góc với BC tại D cắt AC tại E.

- 1. Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB.
- 2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM
- 3. Tia AM cắt BC tại G. Chứng minh: $\frac{GB}{BC} = \frac{HD}{AH + HC}$.

Bài	Câu	<u>Nội dung</u>	Điểm
1			2.0
1.	1.1	<u>(0,75 điểm)</u>	2,0

		$x^2 + 7x + 6 = x^2 + x + 6x + 6 = x(x+1) + 6(x+1)$	0.5
		=(x+1)(x+6)	0,5
	1.2	(1,25 điểm)	
		$x^4 + 2008x^2 + 2007x + 2008 = x^4 + x^2 + 2007x^2 + 2007x + 2007 + 1$	0,25
		$= x^{4} + x^{2} + 1 + 2007(x^{2} + x + 1) = (x^{2} + 1)^{2} - x^{2} + 2007(x^{2} + x + 1)$	0,25
		$= (x^2 + x + 1)(x^2 - x + 1) + 2007(x^2 + x + 1) = (x^2 + x + 1)(x^2 - x + 2008)$	0,25
2.			2,0
	2.1	$\left x^2 - 3x + 2 + \left x - 1 \right = 0 $ (1)	
		+ Nếu $x \ge 1$: (1) $\Leftrightarrow (x-1)^2 = 0 \Leftrightarrow x = 1$ (thỏa mãn điều kiện $x \ge 1$).	0,5
		+ Nếu $x < 1$: (1) $\Leftrightarrow x^2 - 4x + 3 = 0 \Leftrightarrow x^2 - x - 3(x - 1) = 0 \Leftrightarrow (x - 1)(x - 3) = 0$	0,5
		$\Leftrightarrow x = 1; x = 3$ (cả hai đều không bé hơn 1, nên bị loại)	0,5
	2.2	Vậy: Phong trình (1) có một nghiệm duy nhất là $x = 1$.	,
	2.2	$8\left(x+\frac{1}{x}\right)^{2}+4\left(x^{2}+\frac{1}{x^{2}}\right)^{2}-4\left(x^{2}+\frac{1}{x^{2}}\right)\left(x+\frac{1}{x}\right)^{2}=\left(x+4\right)^{2} (2)$	
		Điều kiện để phơng trình có nghiệm: $x \neq 0$	
		$(2) \Leftrightarrow 8\left(x + \frac{1}{x}\right)^2 + 4\left(x^2 + \frac{1}{x^2}\right)\left[\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right)^2\right] = \left(x + 4\right)^2$	0,25
		$\Leftrightarrow 8\left(x+\frac{1}{x}\right)^2 - 8\left(x^2 + \frac{1}{x^2}\right) = \left(x+4\right)^2 \Leftrightarrow \left(x+4\right)^2 = 16$	0,5
		$\Leftrightarrow x = 0 \text{ hay } x = -8 \text{ và } x \neq 0.$	0,25
2		Vậy phơng trình đã cho có một nghiệm $x = -8$	
3	3.1	Ta có:	2.0
		$A = (a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) = 1 + \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + 1 + \frac{b}{c} + \frac{c}{a} + \frac{b}{b} + 1$	0,5
		$= 3 + (\frac{a}{b} + \frac{b}{a}) + (\frac{a}{c} + \frac{c}{a}) + (\frac{c}{b} + \frac{b}{c})$	0,3
		Mà: $\frac{x}{y} + \frac{y}{x} \ge 2$ (BĐT Cô-Si)	0,5
	3.2	Do đó $A \ge 3 + 2 + 2 + 2 = 9$. Vậy $A \ge 9$	
	3.2	P(x) = (x+2)(x+4)(x+6)(x+8) + 2008	
		$= (x^2 + 10x + 16)(x^2 + 10x + 24) + 2008$	0.7
		Đặt $t = x^2 + 10x + 21$ ($t \neq -3$; $t \neq -7$), biểu thức P(x) đợc viết lại:	0,5
		$P(x) = (t-5)(t+3) + 2008 = t^2 - 2t + 1993$	
		Do đó khi chia $t^2 - 2t + 1993$ cho t ta có số d là 1993	0,5
4			4,0

1	4.1	+ Hai tam giác ADC và BEC	
	1.1	có:	
		Góc C chung.	
		\bigcirc E \bigcirc CD \bigcirc CA	
		CE CB	
		vuông CDE và CAB đồng	
		B H G D C	1,0
		Do đó, chúng dồng dạng	
		(c.g.c).	
		Suy ra: $BEC = ADC = 135^{\circ}$ (vì tam giác AHD vuông cân tại H theo giả thiết).	
		Nên $AEB = 45^{\circ}$ do đó tam giác ABE vuông cân tại A. Suy ra:	0.7
		$BE = AB\sqrt{2} = m\sqrt{2}$	0,5
	4.0		
	4.2	Ta có: $\frac{BM}{BC} = \frac{1}{2} \cdot \frac{BE}{BC} = \frac{1}{2} \cdot \frac{AD}{AC}$ (do $\Delta BEC \sim \Delta ADC$)	0,5
		mà $AD = AH\sqrt{2}$ (tam giác AHD vuông vân tại H)	
		nên $\frac{BM}{BC} = \frac{1}{2} \cdot \frac{AD}{AC} = \frac{1}{2} \cdot \frac{AH\sqrt{2}}{AC} = \frac{BH}{AB\sqrt{2}} = \frac{BH}{BE}$ (do $\triangle ABH \sim \triangle CBA$)	0,5
		$\frac{1}{RC} = \frac{1}{2} \cdot \frac{1}{AC} = \frac{1}{2} \cdot \frac{1}{AC} = \frac{1}{AR\sqrt{2}} = \frac{1}{RE} (\text{do } \Delta ABH \sim \Delta CBA)$	•
		Do đó $\triangle BHM \sim \triangle BEC$ (c.g.c), suy ra: $BHM = BEC = 135^{\circ} \Rightarrow AHM = 45^{\circ}$	0,5
	4.3	Tam giác ABE vuông cân tại A, nên tia AM còn là phân giác góc BAC.	
		Suy ra: $\frac{GB}{GB} - \frac{AB}{AB}$ mà $\frac{AB}{AB} - \frac{ED}{ABC} (AABC \sim ADEC) - \frac{AH}{ABC} (ED //AH) - \frac{HD}{ABC}$	0,5
		Suy ra: $\frac{GB}{GC} = \frac{AB}{AC}$, mà $\frac{AB}{AC} = \frac{ED}{DC} \left(\Delta ABC \sim \Delta DEC \right) = \frac{AH}{HC} \left(\frac{ED}{AH} \right) = \frac{HD}{HC}$,
			0,5
		Do đó: $\frac{GB}{GC} = \frac{HD}{HC} \Rightarrow \frac{GB}{GB + GC} = \frac{HD}{HD + HC} \Rightarrow \frac{GB}{BC} = \frac{HD}{AH + HC}$	0,5
		GC IIC GD+GC IID+IIC DC IIII+IIC	

Phßng GD & §T huyÖn Thêng TÝn

Trêng THCS V''n Tù Gv: Bii ThÞ Thu HiÒn

<u>ĐỀ SỐ 18</u>

ĐỀ BÀI:

Bài 1(6 điểm): Cho biểu thức:

$$P = \left(\frac{2x-3}{4x^2-12x+5} + \frac{2x-8}{13x-2x^2-20} - \frac{3}{2x-1}\right) : \frac{21+2x-8x^2}{4x^2+4x-3} + 1$$

- a) Rút gọn P
- b) Tính giá trị của P khi $|x| = \frac{1}{2}$
- c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
- d) Tìm x để P > 0.

Bài 2(3 điểm): Giải phơng trình:

a)
$$\frac{15x}{x^2 + 3x - 4} - 1 = 12\left(\frac{1}{x + 4} + \frac{1}{3x - 3}\right)$$

b) $\frac{148 - x}{25} + \frac{169 - x}{23} + \frac{186 - x}{21} + \frac{199 - x}{19} = 10$
c) $||x - 2| + 3| = 5$

Bài 3(2 điểm): Giải bài toán bằng cách lập phơng trình:

Một ngời đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu ngời ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự đinh đi của ngời đó.

Bài 4 (7 điểm):

Cho hình chữ nhật ABCD. Trên đờng chéo BD lấy điểm P, gọi M là điểm đối xứng của điểm C qua P.

- a) Tứ giác AMDB là hình gì?
- b) Gọi E và F lần lợt là hình chiếu của điểm M lên AB, AD. Chứng minh EF//AC và ba điểm E, F, P thẳng hàng.
- c) Chứng minh rằng tỉ số các cạnh của hình chữ nhật MEAF không phụ thuộc vào vi trí của điểm P.
- d) Giả sử CP \perp BD và CP = 2,4 cm, $\frac{PD}{PB} = \frac{9}{16}$. Tính các cạnh của hình chữ nhật ABCD.

Bài 5(2 điểm): a) Chứng minh rằng: 2009²⁰⁰⁸ + 2011²⁰¹⁰ chia hết cho 2010

b) Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:

$$\frac{1}{1+x^2} + \frac{1}{1+y^2} \ge \frac{2}{1+xy}$$

Đáp án và biểu điểm

Bài 1: Phân tích:

$$4x^{2} - 12x + 5 = (2x - 1)(2x - 5)$$

$$13x - 2x^{2} - 20 = (x - 4)(5 - 2x)$$

$$21 + 2x - 8x^{2} = (3 + 2x)(7 - 4x)$$

$$4x^{2} + 4x - 3 = (2x - 1)(2x + 3)$$

$$0,5d$$

Điều kiện:
$$x \neq \frac{1}{2}; x \neq \frac{5}{2}; x \neq \frac{-3}{2}; x \neq \frac{7}{4}; x \neq 4$$
 0,5đ

a) Rút gọn P =
$$\frac{2x-3}{2x-5}$$
 2đ

b)
$$|x| = \frac{1}{2} \Leftrightarrow x = \frac{1}{2} \text{ hoặc } x = \frac{-1}{2}$$

$$+) x = \frac{1}{2} \implies \dots P = \frac{1}{2}$$

$$+) x = \frac{-1}{2} \implies ... P = \frac{2}{3}$$

c)
$$P = \frac{2x-3}{2x-5} = 1 + \frac{2}{x-5}$$

Ta có: $1 \in Z$

$$v_{\hat{a}y} \in Z_{khi} \frac{2}{x-5} \in Z$$

$$\Rightarrow x - 5 \in U_{(2)}$$
Mà $U_{(2)} = \{ -2; -1; 1; 2 \}$

$$x - 5 = -2 \Rightarrow x = 3 \text{ (TMDK)}$$

$$\begin{array}{lll} x-5=1 & \Longrightarrow x=4 \text{ (KTMDK)} \\ x-5=1 & \Longrightarrow x=6 \text{ (TMDK)} \\ x-5=2 & \Longrightarrow x=7 \text{ (TMDK)} \\ \text{KL: } x\in \{3;6;7\} \text{ thi P nhận giá trị nguyên.} & \text{Id} \\ d) & P=\frac{2x-3}{2x-5}=1+\frac{2}{x-5} & \text{0,25d} \\ \hline \text{Ta có: } 1>0 & \text{Dé P > 0 thì } \frac{2}{x-5}>0 \Longrightarrow x-5>0 \Longleftrightarrow x>5 & \text{0,5d} \\ \hline \text{Với } x>5 \text{ thì P > 0.} & \text{0,25} \\ \hline \text{Bài 2:} & \text{0.25} \\ \hline \text{Bai 2:} & \text{0.25} \\ \hline \text{Bài 2:} & \text{0.25} \\ \hline \text{Bài 2:} & \text{0.25} \\ \hline \text{Bai 2:} & \text{0.25} \\ \hline \text{Ba$$

PT được viết dưới dạng:

 $\Leftrightarrow |x-2| = 5 - 3$

|x-2|+3=5

$$\iff |x-2|=2$$

$$+) x - 2 = 2 \implies x = 4$$

$$+) x - 2 = -2 => x = 0$$

$$S = \{0;4\}$$

Bài 3(2 đ)

Gọi khoảng cách giữa A và B là
$$x$$
 (km) ($x > 0$) 0,25đ

Vận tốc dự định của ngời đ xe gắn máy là:

$$\frac{x}{3\frac{1}{3}} = \frac{3x}{10} (km/h)$$
 (3^h20' = 3\frac{1}{3}(h)) 0,25d

Vân tốc của ngời đi xe gắn máy khi tăng lên 5 km/h là:

$$\frac{3x}{10} + 5\left(\frac{km}{h}\right)$$
 0,25đ

Theo đề bài ta có phơng trình:

$$\left(\frac{3x}{10} + 5\right) \cdot 3 = x \tag{0.5d}$$

$$\Leftrightarrow$$
 x =150 0,5đ

Vận tốc dự định là: $\frac{3.150}{10} = 45 (km/h)$

Bài 4(7đ)

Vẽ hình, ghi GT, KL đúng 0,5đ

- a) Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD.
- ⇒ PO là đường trung bình của tsm giác CAM.
- ⇒ AM//PO
- ⇒tứ giác AMDB là hình thang.

1đ

b) Do AM //BD nên góc OBA = góc MAE (đồng vị)

Tam giác AOB cân ở O nên góc OBA = góc OAB

Gọi I là giao điểm 2 đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên góc IAE = góc IEA.

Từ chứng minh trên: có góc FEA = góc OAB, do đó EF//AC (1) 1đ

Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC (2)

Từ (1) và (2) suy ra ba điểm E, F, P thẳng hàng.

c)
$$\Delta MAF \sim \Delta DBA(g-g)$$
 nên $\frac{MF}{FA} = \frac{AD}{AB}$ không đổi. (1đ)

d) Nếu
$$\frac{PD}{PB} = \frac{9}{16}$$
 thì $\frac{PD}{9} = \frac{PB}{16} = k \Rightarrow PD = 9k, PB = 16k$

Nếu
$$CP \perp BD$$
 thì $\Delta CBD \sim \Delta DCP(g-g) \Rightarrow \frac{CP}{PD} = \frac{PB}{CP}$ 1đ

do đó $CP^2 = PB.PD$

hay
$$(2,4)^2 = 9.16 \text{ k}^2 = \text{ } \text{k} = 0,2$$

$$PD = 9k = 1.8(cm)$$

$$PB = 16k = 3.2 \text{ (cm)}$$
 0,5d

$$BD = 5 (cm)$$

$$C/m BC^2 = BP.BD = 16$$
 0,5đ

do đó
$$BC = 4$$
 (cm)

$$CD = 3 \text{ (cm)}$$
 0,5đ

Bài 5:

a) Ta có:
$$2009^{2008} + 2011^{2010} = (2009^{2008} + 1) + (2011^{2010} - 1)$$

Vì $2009^{2008} + 1 = (2009 + 1)(2009^{2007} - ...)$
 $= 2010.(...)$ chia hết cho 2010 (1)
 $2011^{2010} - 1 = (2011 - 1)(2011^{2009} + ...)$
 $= 2010.(...)$ chia hết cho 2010 (2)

Từ (1) và (2) ta có đpcm.

b)
$$\frac{1}{1+x^2} + \frac{1}{1+y^2} \ge \frac{2}{1+xy}$$
 (1)

$$\Leftrightarrow \left(\frac{1}{1+x^2} - \frac{1}{1+xy}\right) + \left(\frac{1}{1+y^2} - \frac{1}{1+xy}\right) \ge 0$$

$$\Leftrightarrow \frac{x(y-x)}{(1+x^2)(1+xy)} + \frac{y(x-y)}{(1+y^2)(1+xy)} \ge 0$$

$$\Leftrightarrow \frac{(y-x)^2(xy-1)}{(1+x^2)(1+y^2)(1+xy)} \ge 0$$

$$\Leftrightarrow \frac{(y-x)^2(xy-1)}{(1+x^2)(1+y^2)(1+xy)} \ge 0$$

$$V_1 \ x \ge 1; y \ge 1 \implies xy \ge 1 \implies xy - 1 \ge 0$$

$$\Rightarrow$$
 BĐT (2) đúng \Rightarrow BĐT (1) đúng (dấu ''='' xảy ra khi x = y) 1đ

ĐÈ SỐ 19

Bài 1: **(3đ)** a) Phân tích đa thức $x^3 - 5x^2 + 8x - 4$ thành nhân tử b) Tìm giá trị nguyên của x để A : B biết $A = 10x^2 - 7x - 5$ và B = 2x - 3.

c) Cho x + y = 1 và x y \neq 0. Chứng minh rằng

$$\frac{x}{y^3 - 1} - \frac{y}{x^3 - 1} + \frac{2(x - y)}{x^2 y^2 + 3} = 0$$

Bài 2: (3đ) Giải các phương trình sau:

a)
$$(x^2 + x)^2 + 4(x^2 + x) = 12$$

b)
$$\frac{x+1}{2008} + \frac{x+2}{2007} + \frac{x+3}{2006} = \frac{x+4}{2005} + \frac{x+5}{2004} + \frac{x+6}{2003}$$

<u>Bài 3:</u> (2đ) Cho hình vuông ABCD; Trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE = CF

- a) Chứng minh Δ EDF vuông cân
- b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF. Chứng minh O, C, I thẳng hàng.

<u>Bài 4</u>: (2)Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho BD = AE. Xác địnhvị trí điểm D, E sao cho:

a/ DE có độ dài nhỏ nhất

b/ Tứ giác BDEC có diện tích nhỏ nhất.

H□ỚNG DẪN CHẨM VÀ BIỂU ĐIỂM

Bài 1: (3 điểm) $x^3 - 5x^2 + 8x - 4 = x^3 - 4x^2 + 4x - x^2 + 4x - 4$ a) (0,75đ) (0,25d) $= x(x^{2} - 4x + 4) - (x^{2} - 4x + 4)$ $= (x - 1)(x - 2)^{2}$ $= (x - 1)(x - 2)^{2}$ $b) (0.75d) \quad \text{X\'et } \frac{A}{B} = \frac{10x^{2} - 7x - 5}{2x - 3} = 5x + 4 + \frac{7}{2x - 3}$ (0.25d)(0,25d) $(0,25\bar{d})$ Với $x \in Z$ thì A : B khi $\frac{7}{2x-3} \in Z \Rightarrow 7$: (2x-3)(0,25d)Mà $U'(7) = \{-1,1,-7,7\} \implies x = 5, -2, 2, 1 \text{ thì } A : B$ (0,25d)<u>c) (1,5đ)</u> Biến đổi $\frac{x}{v^3-1} - \frac{y}{x^3-1} = \frac{x^4-x-y^4+y}{(v^3-1)(x^3-1)}$ $= \frac{(x^4 - y^4) - (x - y)}{xy(y^2 + y + 1)(x^2 + x + 1)} \quad (\text{do } x + y = 1 \Rightarrow y - 1 = -x \text{ và } x - 1 = -y) (0,25\text{d})$ $= \frac{(x-y)(x+y)(x^2+y^2)-(x-y)}{xy(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1)}$ (0,25d) $= \frac{(x-y)(x^2+y^2-1)}{xy[x^2y^2+xy(x+y)+x^2+y^2+xy+2]}$ (0,25d) $= \frac{(x-y)(x^2-x+y^2-y)}{xy[x^2y^2+(x+y)^2+2]} = \frac{(x-y)[x(x-1)+y(y-1)]}{xy(x^2y^2+3)}$ (0,25d) $= \frac{(x-y)[x(-y)+y(-x)]}{xy(x^2y^2+3)} = \frac{(x-y)(-2xy)}{xy(x^2y^2+3)}$ (0,25d) $= \frac{-2(x-y)}{x^2v^2+3}$ Suy ra điều cần chứng minh (0,25d)

$$(x^{2} + x)^{2} + 4(x^{2} + x) = 12 \text{ dặt } y = x^{2} + x$$

$$y^{2} + 4y - 12 = 0 \Leftrightarrow y^{2} + 6y - 2y - 12 = 0$$

$$\Leftrightarrow (y + 6)(y - 2) = 0 \Leftrightarrow y = -6; y = 2$$

$$* x^{2} + x = -6 \text{ vô nghiệm vì } x^{2} + x + 6 > 0 \text{ với mọi } x$$

$$* x^{2} + x = 2 \Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow x^{2} + 2x - x - 2 = 0$$

$$\Leftrightarrow x(x + 2) - (x + 2) = 0 \Leftrightarrow (x + 2)(x - 1) = 0 \Leftrightarrow x = -2; x = 1$$

$$(0,25\text{d})$$

$$(0,25\text{d})$$

$$(0,25\text{d})$$

$$(0,25\text{d})$$

$$(0,25\text{d})$$

$$(0,25\text{d})$$

$$(0,25\text{d})$$

$$\frac{\text{b)} (1,75\text{d})}{2008} = \frac{x+1}{2007} + \frac{x+3}{2006} = \frac{x+4}{2005} + \frac{x+5}{2004} + \frac{x+6}{2003} \Leftrightarrow \frac{x+1}{2008} + 1) + (\frac{x+2}{2007} + 1) + (\frac{x+3}{2006} + 1) = (\frac{x+4}{2005} + 1) + (\frac{x+5}{2004} + 1) + (\frac{x+6}{2003} + 1) + (\frac{x+6}{2003} + 1) + (\frac{x+2009}{2008} + \frac{x+2009}{2007} + \frac{x+2009}{2006} = \frac{x+2009}{2005} + \frac{x+2009}{2004} + \frac{x+2009}{2003} \Leftrightarrow \frac{x+2009}{2008} + \frac{x+2009}{2007} + \frac{x+2009}{2006} - \frac{x+2009}{2005} - \frac{x+2009}{2004} - \frac{x+2009}{2003} = 0$$

$$\frac{x+2009}{2008} + \frac{x+2009}{2007} + \frac{x+2009}{2006} - \frac{x+2009}{2005} - \frac{x+2009}{2004} - \frac{x+2009}{2003} = 0$$

$$\frac{x+2009}{2008} + \frac{x+2009}{2007} + \frac{x+2009}{2006} - \frac{x+2009}{2005} - \frac{x+2009}{2004} - \frac{x+2009}{2003} = 0$$

$$\Leftrightarrow (x+2009)(\frac{1}{2008} + \frac{1}{2007} + \frac{1}{2006} - \frac{1}{2005} - \frac{1}{2004} - \frac{1}{2003}) = 0 (0,5\text{d}) \text{ Vi } \frac{1}{2008} < \frac{1}{2005}; \frac{1}{2007} < \frac{1}{2004}; \frac{1}{2006} < \frac{1}{2003} < \frac{1}{2003} < \frac{1}{2003}; \frac{1}{2007} < \frac{1}{2004}; \frac{1}{2006} < \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008} < \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2008}; \frac{1}{2$$

В

Α

Do đó:
$$\frac{1}{2008} + \frac{1}{2007} + \frac{1}{2006} - \frac{1}{2005} - \frac{1}{2004} - \frac{1}{2003} < 0$$

$(0,25\text{d}) \text{ Vậy x} + 2009 = 0 \iff x = -2009$

Bài 3: (2 điểm)

a) (1đ)

Chứng minh Δ EDF vuông cân

Ta có Δ ADE = Δ CDF (c.g.c) \Rightarrow Δ EDF cân tại D

Mặt khác: Δ ADE = Δ CDF (c.g.c) $\Rightarrow \hat{E}_1 = \hat{F}_2$

Mà
$$\hat{E}_{_1} + \hat{E}_{_2} + \hat{F}_{_1} = 90^0 \implies \hat{F}_{_2} + \hat{E}_{_2} + \hat{F}_{_1} = 90^0$$

 \Rightarrow EDF= 90 $^{\circ}$. Vậy Δ EDF vuông cân

b) (1đ) Chứng minh O, C, I thẳng

 $\overline{\mathsf{Th}}$ eo tính chất đường chéo hình vuông \Rightarrow CO là trung trực BD

Mà
$$\Delta$$
 EDF vuông cân \Rightarrow DI = $\frac{1}{2}$ EF

Turong tự
$$BI = \frac{1}{2}EF \implies DI = BI$$

⇒ I thuộc dường trung trực của DB ⇒ I thuộc đường thẳng CO Hay O, C, I thẳng hàng

Bài 4: (2 điểm)

DE có độ dài nhỏ nhất

Đặt AB = AC = a không đổi; AE = BD = x (0 < x < a)

Áp dụng định lý Pitago với
$$\Delta$$
 ADE vuông tại A có:
DE² = AD² + AE² = $(a - x)^2 + x^2 = 2x^2 - 2ax + a^2 = 2(x^2 - ax) - a^2$

Ta có DE nhỏ nhất \Leftrightarrow DE² nhỏ nhất \Leftrightarrow x = $\frac{a}{2}$

$$= 2(x - \frac{a^2}{4})^2 + \frac{a^2}{2} \ge \frac{a^2}{2}$$

(0.25d)

$$\Leftrightarrow$$
 BD = AE = $\frac{a}{2} \Leftrightarrow$ D, E là trung điểm AB, AC

Tứ giác BDEC có diện tích nhỏ nhất.

Ta có:
$$S_{ADE} = \frac{1}{2} AD.AE = \frac{1}{2} AD.BD = \frac{1}{2} AD(AB - AD) = \frac{1}{2} (AD^2 - AB.AD)$$
 (0,25đ)

$$= -\frac{1}{2} \left(AD^2 - 2 \frac{AB}{2} . AD + \frac{AB^2}{4} \right) + \frac{AB^2}{8} = -\frac{1}{2} \left(AD - \frac{AB}{4} \right)^2 + \frac{AB^2}{2} \le \frac{AB^2}{8} \quad (0.25\text{d})$$

Vậy
$$S_{BDEC} = S_{ABC} - S_{ADE} \ge \frac{AB^2}{2} - \frac{AB^2}{8} = \frac{3}{8}AB^2$$
 không đổi (0,25đ)

Do đó min $S_{BDEC} = \frac{3}{8} AB^2$ khi D, E lần lượt là trung điểm AB, AC (0,25đ)

ĐÈ SỐ 20

Bài 1: Phân tích đa thức thành nhân tử:

a)
$$x^2 - y^2 - 5x + 5y$$

b)
$$2x^2 - 5x - 7$$

Bài 2: Tìm đa thức A, biết rằng:

$$\frac{4x^2 - 16}{x^2 + 2} = \frac{A}{x}$$

Bài 3: Cho phân thức: $\frac{5x+5}{2x^2+2x}$

- a) Tìm điều kiện của x để giá trị của phân thức đợc xác định.
- b) Tìm giá tri của x để giá tri của phân thức bằng 1.

Bài 4: a) Giải phong trình : $\frac{x+2}{x-2} - \frac{1}{x} = \frac{2}{x(x-2)}$

- b) Giải bất phong trình: $(x-3)(x+3) < (x=2)^2 + 3$
- Bài 5: Giải bài toán sau bằng cách lập phong trình:

Một tổ sản xuất lập kế hoạch sản xuất, mỗi ngày sản xuất đợc 50 sản phẩm. Khi thực hiện, mỗi ngày tổ đó sản xuất đợc 57 sản phẩm. Do đó đã hoàn thành trớc kế hoạch một ngày và còn vợt mức 13 sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất bao nhiều sản phẩm và thực hiện trong bao nhiều ngày.

- **Bài 6**: Cho Δ ABC vuông tại A, có AB = 15 cm, AC = 20 cm. Kẻ đờng cao AH và trung tuyến AM.
 - a) Chứng minh \triangle ABC ~ \triangle HBA
 - b) Tính: BC; AH; BH; CH?
 - c) Tính diện tích Δ AHM?

Biểu điểm - Đáp án

Đáp án	Biểu điểm
Bài 1: Phân tích đa thức thành nhân tử:	
a) $x^2 - y^2 - 5x + 5y = (x^2 - y^2) - (5x - 5y) = (x + y)(x - y) - 5(x$	
— y)	
= (x - y) (x + y - 5) (1 diểm)	
b) $2x^2 - 5x - 7 = 2x^2 + 2x - 7x - 7 = (2x^2 + 2x) - (7x + 7) = 2x(x + 1)$	
-7(x+1)	
= (x + 1)(2x - 7). (1 diểm)	

Rài 2: Tìm A (1 điểm)		
Bài 2: Tìm A (1 điểm) A =		
$\frac{x(4x^2 - 16)}{x^2 + 2x} = \frac{x[(2x)^2 - 4^2]}{x^2 + 2x} = \frac{x(2x - 4)(2x + 4)}{x(x + 2)} = \frac{x \cdot 2(x - 2) \cdot 2(x + 2)}{x(x + 2)} = 4(x - 2) = 4x - 8$		
Bài 3: (2 điểm)		
a) $2x^2 + 2x = 2x(x+1) \neq 0$		
$\Leftrightarrow 2x \neq 0 \text{ và } x + 1 \neq 0$		
$\Leftrightarrow x \neq 0 \text{ và } x \neq -1 \tag{1 diểm}$		
b) Rút gọn:		
$\frac{5x+5}{2x^2+2x} = \frac{5(x+1)}{2x(x+1)} = \frac{5}{2x}$ (0,5 điểm)		
$\frac{5}{2x} = 1 \Leftrightarrow 5 = 2x \Leftrightarrow x = \frac{5}{2} $ (0,25 diểm)		
Vì $\frac{5}{2}$ thoả mãn điều kiện của hai tam giác nên $x = \frac{5}{2}$ (0,25 điểm)		
Bài 4 : a) Điều kiện xác định: $x \neq 0$; $x \neq 2$		
- Giải: $\frac{x(x+2)-(x-2)}{x(x-2)} = \frac{2}{x(x-2)} \Leftrightarrow x^2 + 2x - x + 2 = 2;$	1 đ	
\Leftrightarrow x= 0 (loại) hoặc x = -1. Vậy S = {-1}		
b) $\Leftrightarrow x^2 - 9 < x^2 + 4x + 7$		
$\Leftrightarrow x^2 - x^2 - 4x < 7 + 9 \Leftrightarrow -4x < 16 \Leftrightarrow x > -4$	1đ	
Vậy nghiệm của phong trình là x > - 4		
Bài 5: — Gọi số ngày tổ dự định sản xuất là : x ngày		
Điều kiện: x nguyên dong và x > 1	0,5 đ	
Vậy số ngày tổ đã thực hiện là: x-1 (ngày)		
- Số sản phẩm làm theo kế hoạch là: 50x (sản phẩm)	0,5 đ	
- Số sản phẩm thực hiện là: 57 (x-1) (sản phẩm)		
Theo đề bài ta có phơng trình: $57 (x-1) - 50x = 13$	0,5 đ	
$\Leftrightarrow 57x - 57 - 50x = 13$		
\Leftrightarrow 7x = 70	0,5 đ	
\Leftrightarrow x = 10 (thoả mãn điều kiện)		
Vậy: số ngày dự định sản xuất là 10 ngày.		
Số sản phẩm phải sản xuất theo kế hoạch là: 50 . 10 = 500 (sản phẩm)		
Bài 6 : a) Xét \triangle ABC và \triangle HBA, có:		
Góc A = góc H = 90° ; có góc B chung		
$\Rightarrow \Delta ABC \sim \Delta HBA (góc. góc)$		
b) áp dụng pitago trong Δ vuông ABC		
ta có : BC = $\sqrt{AB^2 + AC^2}$ = $\sqrt{15^2 + 20^2}$ = $\sqrt{625}$ = 25 (cm)		
vì \triangle ABC \sim \triangle HBA nên $\frac{AB}{HB} = \frac{AC}{HA} = \frac{BC}{BA} hay \frac{15}{HB} = \frac{20}{HA} = \frac{25}{15}$		
$\Rightarrow AH = \frac{20.05}{25} = 12 \text{ (cm)}$		

BH =
$$\frac{15.15}{25}$$
 = 9 (cm)

HC = BC — BH = 25 — 9 = 16 (cm)

c) HM = BM — BH = $\frac{BC}{2}$ – BH = $\frac{25}{2}$ – 9 = 3,5(cm)

S_{AHM} = $\frac{1}{2}$ AH . HM = $\frac{1}{2}$. 12. 3,5 = 21 (cm²)

- Vẽ đúng hình:

A

1 đ

1 đ

ĐỀ SỐ 21

Bài 1(3 điểm): Tìm x biết:

a)
$$x^2 - 4x + 4 = 25$$

b)
$$\frac{x-17}{1990} + \frac{x-21}{1986} + \frac{x+1}{1004} = 4$$

c)
$$4^x - 12.2^x + 32 = 0$$

Bài 2 (1,5 điểm): Cho x, y, z đôi một khác nhau và $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$.

Tính giá trị của biểu thức:
$$A = \frac{yz}{x^2 + 2yz} + \frac{xz}{y^2 + 2xz} + \frac{xy}{z^2 + 2xy}$$

Bài 3 (1,5 điểm): Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn , thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị , ta vẫn được một số chính phương.

Bài 4 *(4 điểm)*: Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm. a) Tính tổng $\frac{HA'}{AA'} + \frac{HB'}{BB'} + \frac{HC'}{CC'}$

b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM.

c) Chứng minh rằng:
$$\frac{(AB + BC + CA)^2}{AA'^2 + BB'^2 + CC'^2} \ge 4$$
.

ĐÁP ÁN ĐỀ THI CHỌN HỌC SINH GIỚI

<u>Bài 1(3 điểm):</u>

 a) Tính đúng x = 7; x = -3

 1 điểm)

b) Tính đúng
$$x = 2007$$
 (1 điểm)
c) $4^x - 12.2^x + 32 = 0 \Leftrightarrow 2^x.2^x - 4.2^x - 8.2^x + 4.8 = 0$ (0,25điểm)

$$\Leftrightarrow 2^{x}(2^{x}-4)-8(2^{x}-4)=0 \Leftrightarrow (2^{x}-8)(2^{x}-4)=0$$
 0,25điểm)

 $\Leftrightarrow (2^{x} - 2^{3})(2^{x} - 2^{2}) = 0 \Leftrightarrow 2^{x} - 2^{3} = 0 \text{ hoặc } 2^{x} - 2^{2} = 0$ (

0,25điểm)

$$\Leftrightarrow$$
 $2^x = 2^3$ hoặc $2^x = 2^2 \Leftrightarrow x = 3$; $x = 2$ (

0,25điểm)

• Bài 2(1,5 điểm):

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \Rightarrow \frac{xy + yz + xz}{xyz} = 0 \Rightarrow xy + yz + xz = 0 \Rightarrow yz = -xy - xz$$
 (

0,25điểm)

$$x^2+2yz = x^2+yz-xy-xz = x(x-y)-z(x-y) = (x-y)(x-z)$$
 (0,25điểm)

Tương tự:
$$y^2+2xz = (y-x)(y-z)$$
; $z^2+2xy = (z-x)(z-y)$ (0,25điểm)

Do đó:
$$A = \frac{yz}{(x-y)(x-z)} + \frac{xz}{(y-x)(y-z)} + \frac{xy}{(z-x)(z-y)}$$
 (0,25điểm)

Tính đúng A = 1
$$(0.5)$$
 điểm (0.5

Bài 3(1,5 điểm):

Gọi \overline{abcd} là số phải tìm a, b, c, d \in **N**, $0 \le a, b, c, d \le 9, a \ne 0$ (0,25điểm)

$$\Rightarrow \begin{cases} m+k = 123 \\ m-k = 11^{hoặc} \end{cases} \begin{cases} m+k = 41 \\ m-k = 33 \end{cases}$$

$$\Leftrightarrow \begin{cases} m = 67 \\ hoặc \end{cases} \begin{cases} m = 37 \end{cases}$$

$$k = 56$$
 $k = 4$

(0,25điếm)

Kết abcd luận đúng 3136

(0,25điểm)

Bài 4 *(4 điểm)*:

Vẽ hình đúng

(0,25điểm)

a)
$$\frac{S_{HBC}}{S_{ABC}} = \frac{\frac{1}{2}.HA'.BC}{\frac{1}{2}.AA'.BC} = \frac{HA'}{AA'};$$

(0,25điểm)

Tương tự:
$$\frac{S_{HAB}}{S_{ABC}} = \frac{HC'}{CC'}$$
; $\frac{S_{HAC}}{S_{ABC}} = \frac{HB'}{BB'}$

(0,25điểm)

$$\frac{HA'}{AA'} + \frac{HB'}{BB'} + \frac{HC'}{CC'} = \frac{S_{HBC}}{S_{ABC}} + \frac{S_{HAB}}{S_{ABC}} + \frac{S_{HAC}}{S_{ABC}} = 1$$

(0,25điểm)

b) Áp dụng tính chất phân giác vào các tam giác ABC, ABI, AIC:

$$\frac{\overrightarrow{BI}}{IC} = \frac{\overrightarrow{AB}}{AC}; \frac{\overrightarrow{AN}}{NB} = \frac{\overrightarrow{AI}}{BI}; \frac{\overrightarrow{CM}}{MA} = \frac{\overrightarrow{IC}}{AI}$$

(0,5điểm)

$$\frac{BI}{IC} \cdot \frac{AN}{NB} \cdot \frac{CM}{MA} = \frac{AB}{AC} \cdot \frac{AI}{BI} \cdot \frac{IC}{AI} = \frac{AB}{AC} \cdot \frac{IC}{BI} = 1$$

$$\Rightarrow BI.AN.CM = BN.IC.AM$$
(0,5điểm)

c) Vẽ Cx \perp CC'. Goi D là điểm đối xứng của A qua Cx

(0,25điếm)

-Chứng minh được góc BAD vuông, CD = AC, AD = 2CC' (0,25điểm)

- Xét 3 điểm B, C, D ta có: BD≤ BC + CD

(0,25điểm)

 $-\Delta$ BAD vuông tại A nên: $AB^2+AD^2=BD^2$

$$\Rightarrow AB^2 + AD^2 \le (BC+CD)^2$$

(0,25điếm)

$$AB^2 + 4CC'^2 \le (BC+AC)^2$$

 $4CC'^2 \le (BC+AC)^2 - AB^2$
Tương tự: $4AA'^2 \le (AB+AC)^2 - BC^2$
 $4BB'^2 \le (AB+BC)^2 - AC^2$

Tương tự:
$$4AA'^2 \le (AB+AC)^2 - BC^2$$

(0,25điếm)

-Chứng minh được : 4(AA'2 + BB'2 + CC'2) ≤ (AB+BC+AC)2

$$\iff \frac{(AB + BC + CA)^2}{AA'^2 + BB'^2 + CC'^2} \ge 4$$

(0,25điệm)

(Đẳng thức xảy ra ← BC = AC, AC = AB, AB = BC ← AB = AC =BC

ĐỀ SỐ 22

a,
$$A=n^3-n^2+n-1$$
 là số nguyên tố.

b,
$$B = \frac{n^4 + 3n^3 + 2n^2 + 6n - 2}{n^2 + 2}$$
 Có giá trị là một số nguyên.

c, D=
$$n^5$$
-n+2 là số chính ph-ơng. $(n \ge 2)$

C,
$$C = 1 - 11 + 2$$
 là số chím phi- ông. (ng. $C = \frac{a}{ab + a + 1} + \frac{b}{bc + b + 1} + \frac{c}{ac + c + 1} = 1$ biết abc=1

b, Với
$$a+b+c=0$$
 thì $a^4+b^4+c^4=2(ab+bc+ca)^2$

c,
$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{c}{b} + \frac{b}{a} + \frac{a}{c}$$

Câu 3: (5điểm) Giải các ph- ơng trình sau:

a,
$$\frac{x-214}{86} + \frac{x-132}{84} + \frac{x-54}{82} = 6$$

b,
$$2x(8x-1)^2(4x-1)=9$$

b,
$$2x(8x-1)^2(4x-1)=9$$

c, $x^2-y^2+2x-4y-10=0$ với x,ynguyên d-ơng.

Câu 4: (5điểm). Cho hình thang ABCD (AB//CD), 0 là giao điểm hai đ-ờng chéo.Qua 0 kẻ đ-ờng thẳng song song với AB cắt DA tai E,cắt BCtai F.

a, Chứng minh :Diện tích tam giác AOD bằng diện tích tam giác BOC.

b. Chúng minh:
$$\frac{1}{AB} + \frac{1}{CD} = \frac{2}{EF}$$

Goi Klà điểm bất kì thuộc OE. Nêu cách dưng đ-ờng thẳng đi qua Kvà chia đôi diện tích tam giác DEF.

<u>Câu</u>	Nội dung bài giải				
	a, (1di\'em) $A=n^3-n^2+n-1=(n^2+1)(n-1)$ $D\'{e}$ A là số nguyên tố thì $n-1=1\Leftrightarrow n=2$ khi đó $A=5$	0,5 0,5			
	b, (2diểm) $B=n^2+3n-\frac{2}{n^2+2}$	0,5			
<u>Câu 1</u> (5điểm)	B có giá trị nguyên \Leftrightarrow 2: n^2+2 n^2+2 là - ớc tự nhiên của 2 $n^2+2=1$ không có giá trị thoả mãn Hoặc $n^2+2=2$ \Leftrightarrow $n=0$ Với $n=0$ thì B có giá trị nguyên.	0,5 0,5 0,5			

	c, $(2\tilde{\text{diem}})$ D=n ⁵ -n+2=n(n ⁴ -1)+2=n(n+1)(n-1)(n ² +1)+2			
	$= n(n-1)(n+1)\left[\left(n^2 - 4\right) + 5\right] + 2 = n(n-1)(n+1)(n-2)(n+2) + 5 n(n-1)(n+1)(n-2)(n+2) + 5 n(n-1)(n+1)(n-2)(n+2) + 5 n(n-1)(n+2)(n+2) + 5 n(n-1)(n+2)(n+2) + 5 n(n-1)(n+2)(n+2) + 5 n(n-2)(n+2) + 5 n(n-2)(n+2)(n+2) + 5 n(n-2)(n+2) + 5 n(n-2)(n+2)(n+2) + 5 n(n-2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+$	0,5		
	1)(n+1)+2			
	Mà $n(n-1)(n+1)(n-2)(n+2.5)$ (tich 5số tự nhiên liên tiếp)			
	$Va \ 5 \ n(n-1)(n+1) \ 5 \ Vay D \ chia \ 5 \ d-2$	0,5		
	Do đó số D có tận cùng là 2 hoặc 7nên D không phải số chính			
	ph- ong			
	Vậy không có giá trị nào của n để D là số chính ph-ơng			
	a, (1diểm) $\frac{a}{1+\frac{b}{1+\frac{c}}1+c}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$			
	$\frac{ab+a+1}{ab+a+1} + \frac{ac+c+1}{ac+c+1} - \frac{ac+c+1}{ac+c+1}$			
	ac abc c	0,5		
	$\frac{ac}{abc+ac+c} + \frac{abc}{abc^2 + abc + ac} + \frac{c}{ac+c+1}$			
	- ac $+$ abc $+$ c $ abc+ac+1$ -1	0,5		
	$= \frac{ac}{1+ac+c} + \frac{abc}{c+1+ac} + \frac{c}{ac+c+1} = \frac{abc+ac+1}{abc+ac+1} = 1$			
	b, $(2\text{diem}) \ a+b+c=0 \Rightarrow \ a^2+b^2+c^2+2(ab+ac+bc)=0 \Rightarrow \ a^2+b^2+c^2=-$	0.5		
	2(ab+ac+bc)			
~. .	$\Rightarrow a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 4(a^2b^2 + a^2c^2 + b^2c^2) + 8abc(a+b+c) \text{ V}i$	0.5		
<u>Câu 2</u>	a+b+c=0	0.5		
(5điểm)	$\Rightarrow a^4 + b^4 + c^4 = 2(a^2b^2 + a^2c^2 + b^2c^2) (1)$	0.5		
	Mặt khác $2(ab+ac+bc)^2=2(a^2b^2+a^2c^2+b^2c^2)+4abc(a+b+c)$. Vì	0.5		
	a+b+c=0			
	$\Rightarrow 2(ab+ac+bc)^2 = 2(a^2b^2 + a^2c^2 + b^2c^2) $ (2)			
	$T \hat{\mathbf{v}} (1) \hat{\mathbf{v}} (2) \Rightarrow a^4 + b^4 + c^4 = 2(ab + ac + bc)^2$	0.5		
	(2.4%) $(1.1\%.4^2.414$	0,5		
	c, (2điểm) áp dụng bất đẳng thức: $x^2+y^2 \ge 2xy$ Dấu bằng khi	0,5 0,5		
	X=Y	0,5		
	$\frac{a^2}{b^2} + \frac{b^2}{c^2} \ge 2 \cdot \frac{a}{b} \cdot \frac{b}{c} = 2 \cdot \frac{a}{c}; \qquad \frac{a^2}{b^2} + \frac{c^2}{a^2} \ge 2 \cdot \frac{a}{b} \cdot \frac{c}{a} = 2 \cdot \frac{c}{b};$			
	b^2 c^2 b c c b^2 a^2 b a b	0,5		
	$\frac{c^2}{a^2} + \frac{b^2}{c^2} \ge 2 \cdot \frac{c}{a} \cdot \frac{b}{c} = 2 \cdot \frac{b}{a}$			
	ci c ci c			
	Cộng từng vế ba bất đẳng thức trên ta có:			
	$2(\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2}) \ge 2(\frac{a}{c} + \frac{c}{b} + \frac{b}{a}) \implies$			
	a^2 b^2 c^2 a c b			
	$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{a}{c} + \frac{c}{b} + \frac{b}{a}$			
		ı		

a,
$$(2\tilde{\text{diểm}})$$

$$\frac{x-214}{86} + \frac{x-132}{84} + \frac{x-54}{82} = 6$$

$$\Leftrightarrow (\frac{x-214}{86} - 1) + (\frac{x-132}{84} - 2) + (\frac{x-54}{82} - 3) = 0$$

$$\Leftrightarrow \frac{x-300}{86} + \frac{x-300}{84} + \frac{x-300}{82} = 0$$

$$\Leftrightarrow (x-300) \left(\frac{1}{86} + \frac{1}{84} + \frac{1}{82}\right) = 0 \Leftrightarrow x-300 = 0 \Leftrightarrow x=300 \text{ Vậy } S = \{300\}$$

$$0,5$$

	1 (0 + 2)				
	b, (2diem)				
	$\Leftrightarrow (64x^2-16x+1)(8x^2-2x)=9 \Leftrightarrow (64x^2-16x+1)(64x^2-16x)=72$	0,5 0,5			
<u>Câu 3</u>	Đặt: $64x^2-16x+0,5 = k$ Ta có: $(k+0,5)(k-0,5)=72 \Leftrightarrow k^2=72,25 \Leftrightarrow$				
(5điểm)					
	Với k=8,5 tacó ph- ơng trình: $64x^2$ - $16x$ - $8=0 \Leftrightarrow (2x-1)(4x+1)=0; \Rightarrow$				
	$x = \frac{1}{2}; x = \frac{-1}{4}$				
	$\frac{\lambda-2}{2}$, $\lambda-\frac{4}{4}$	0,5			
	Với k=- 8,5 Ta có ph- ơng trình: $64x^2-16x+9=0 \Leftrightarrow (8x-1)^2+8=0$ vô				
	nghiệm.				
	$\mathbf{x} = \mathbf{c} \cdot (1 - 1)$				
	$V \hat{a} y S = \left\{ \frac{1}{2}, \frac{-1}{4} \right\}$				
	c, (1diểm) $x^2-y^2+2x-4y-10=0 \Leftrightarrow (x^2+2x+1)-(y^2+4y+4)-7=0$	0,5			
	$\Leftrightarrow (x+1)^2 - (y+2)^2 = 7 \Leftrightarrow (x-y-1)(x+y+3) = 7 \text{ Vi } x,y \text{ nguyên}$,			
	$\frac{\langle x+1\rangle - \langle y+2\rangle - r}{\langle x-y-1\rangle (x+y+3) - r} = r + \sqrt{x}, y \text{ liguyen}$ $ d-\text{ong} $	0,5			
	Nên $x+y+3>x-y-1>0 \Rightarrow x+y+3=7 \text{ và } x-y-1=1 \Rightarrow x=3 \text{ ; } y=1$,			
	Ph- ong trình có nghiệm d- ong duy nhất $(x,y)=(3;1)$				
		0.5			
	$a,(1\text{diem})$ Vì AB//CD \Rightarrow S DAB=S CBAA B	0,5			
	(cùng đáy và cùng đ- ờng cao)	0,5			
	\Rightarrow S DAB —SAOB = S CBA- SAOB K OFF				
	Hay $SAOD = SBOC$				
	N M	0,5			
	\mathcal{D}	1,0			
		1,0			
		0,5			
	b, (2điểm) Vì EO//DC $\Rightarrow \frac{EO}{DC} = \frac{AO}{AC}$ Mặt khác AB//DC	1,0			
<u>Câu 4</u>	$\frac{\partial \mathcal{L}}{\partial C} = \frac{\partial \mathcal{L}}{\partial C} = \partial $	1,0			
(5điểm)	$\Rightarrow \frac{AB}{DC} = \frac{AO}{OC} \Rightarrow \frac{AB}{AB + BC} = \frac{AO}{AO + OC} \Rightarrow \frac{AB}{AB + BC} = \frac{AO}{AC} \Rightarrow \frac{EO}{DC} = \frac{AB}{AB + DC}$				
		1,0			
	$\Rightarrow \frac{EF}{2DC} = \frac{AB}{AB + DC} \Rightarrow \frac{AB + DC}{AB \cdot DC} = \frac{2}{EF} \Rightarrow \frac{1}{DC} + \frac{1}{AB} = \frac{2}{EF}$				
	$\rightarrow \overline{2DC} - \overline{AB + DC} \rightarrow \overline{AB.DC} - \overline{EF} \rightarrow \overline{DC} + \overline{AB} - \overline{EF}$				
	c, (2điểm) +Dụng trung tuyến EM ,+ Dụng EN//MK (N∈DF) +Kẻ				
	đ-ờng thẳng KN là đ-ờng thẳng phải dựng				
	Chứng minh: SEDM=S EMF(1).Gọi giao của EM và KN là I thì				
	SIKE=SIMN				
	(cma) (2) $T\hat{\mathbf{r}}$ (1) $\hat{\mathbf{v}}$ (2) \Rightarrow SDEKN=SKFN.				
	(· · · · · · · · · · · · · · · · · · ·				

Bài 1: (2 điểm)

Cho
$$A = (0.8.7 + 0.8^2).(1.25.7 - \frac{4}{5}.1.25) + 31.64$$

$$B = \frac{(11,81+8,19).0,02}{9:11,25}$$

Trong hai số A và B số nào lớn hơn và lớn hơn bao nhiều lần?

b) Số $A = 10^{1998} - 4$ có chia hết cho 3 không? Có chia hết cho 9 không?

<u>Câu 2</u>: (2 điểm)

Trên quãng đ-ờng AB dài 31,5 km. An đi từ A đến B, Bình đi từ B đến A. Vận tốc An so với Bình là 2: 3. Đến lúc gặp nhau, thời gian An đi so với Bình đi là 3: 4. Tính quãng đ-ờng mỗi ng-ời đi tới lúc gặp nhau?

<u>Câu 3</u>:

a) Cho $f(x) = ax^2 + bx + c$ với a, b, c là các số hữu tỉ.

Chứng tỏ rằng: $f(-2).f(3) \le 0$. Biết rằng 13a+b+2c=0

b) Tìm giá trị nguyên của x để biểu thức $A = \frac{2}{6-x}$ có giá trị lớn nhất.

<u>Câu 4</u>: (3 điểm)

Cho $\triangle ABC$ dựng tam giác vuông cân BAE; $\widehat{BAE} = 90^{\circ}$, B và E nằm ở hai nửa mặt phẳng khác nhau bờ AC. Dựng tam giác vuông cân FAC, $\widehat{FAC} = 90^{\circ}$. F và C nằm ở hai nửa mặt phẳng khác nhau bờ AB.

- a) Chứng minh rằng: $\triangle ABF = \triangle ACE$
- b) FB \perp EC.

<u>Câu 5</u>: (1 điểm)

Tìm chữ số tận cùng của

$$A = 19^{5^{18^{9^0}}} + 2^{9^{19^{6^9}}}$$

□□ S□ 1

<u>Bài 1</u>: (2 điểm)

- 1) Chứng minh rằng nếu P và 2P + 1 là các số nguyên tố lớn hơn 3 thì 4P + 1 là hợp số.
- 2) Hãy tìm BSCNN của ba số tự nhiên liên tiếp.

Bài 2: (2 điểm)

Hãy thay các chữ số vào các chữ cái x, y trong $N = \overline{20x0y04}$ để N chia hết cho 13.

Bài 3: (2 điểm)

Vòi n- ớc I chảy vào đầy bể trong 6 giờ 30 phút. Vòi n- ớc II chảy vào đầy bể trong 11 giờ 40 phút. Nếu vòi n- ớc I chảy vào trong 3 giờ; vòi n- ớc II chảy vào trong 5 giờ 25 phút thì 1- ợng n- ớc chảy vào bể ở vòi nào nhiều hơn. Khi đó 1- ợng n- ớc trong bể đ- ợc bao nhiều phần trăm của bể.

Bài 4: (2 điểm)

Bạn Huệ nghĩ ra một số có ba chữ số mà khi viết ng-ợc lại cũng đ-ợc một số có ba chữ số nhỏ hơn số ban đầu. Nếu lấy hiệu giữa số lớn và số bé của hai số đó thì đ-ợc 396. Bạn Dung cũng nghĩ ra một số thoả mãn điều kiện trên.

Hỏi có bao nhiều số có tính chất trên, hãy tìm các số ấy.

<u>**Bài 5**</u>: (2 điểm)

Chứng minh rằng: một số có chẩn chữ số chia hết cho 11 thì hiệu giữa tổng các chữ số " đứng ở vị trí chẩn" và tổng các chữ số đứng ở "vị trí lẻ", kể từ trái qua phải chia hết cho 11.

(Biết $10^{2n} - 1$ và $10^{2n-1} + 1$ chia hết cho 11)

<u>□□ S□ 1</u> (T0□N 8)

<u>Bài 1</u>: (3 điểm)

Cho biểu thức
$$A = \left(\frac{1}{3} + \frac{3}{x^2 - 3x}\right) : \left(\frac{x^2}{27 - 3x^2} + \frac{1}{x + 3}\right)$$

- a) Rút gọn A.
- b) Tîm x để A < -1.
- c) Với giá trị nào của x thì A nhận giá trị nguyên.

<u>Bài 2</u>: (2 điểm)

Giải ph-ơng trình:

a)
$$\frac{1}{3y^2 - 10y + 3} = \frac{6y}{9y^2 - 1} + \frac{2}{1 - 3y}$$

b)
$$x - \frac{\frac{x}{2} - \frac{3+x}{4}}{2} = 3 - \frac{\left(1 - \frac{6-x}{3}\right) \cdot \frac{1}{2}}{2}$$

Bài 3: (2 điểm)

Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B. Khởi hành lần l- ợt lúc 5 giờ, 6 giờ, 7 giờ và vận tốc theo thứ tự là 15 km/h; 35 km/h và 55 km/h. Hỏi lúc mấy giờ ô tô cách đều xe đạp và xe đạp và xe máy.

<u>Bài 4</u>: (2 điểm)

Cho hình chữ nhật ABCD từ điểm P thuộc đ-ờng chéo AC ta dựng hình chữ nhật AMPN ($M \in AB$ và $N \in AD$). Chứng minh:

- a) BD // MN.
- b) BD và MN cắt nhau tại K nằm trên AC.

<u>Bài 5</u>: (1 điểm)

Cho a = 11...1 (2n chữ số 1), b = 44...4 (n chữ số 4).

Chứng minh rằng: a + b + 1 là số chính ph-ơng.