

电子竞赛

——具有语音功能的电阻、电容、电感测试仪

Electron—competition Specification

北京北阳电子技术有限公司

http://www.unsp.com.cn

目录

具有语音功能的电阻、电容、电感测试仪	3
摘要	2
一、设计功能及要求	
1.1 设计要求	
1.2 系统功能	
二、方案设计与论证	
三、系统硬件电路设计	5
3.1 电路方框图及说明	5
3.2 各部分电路设计	6
3.2.1 电阻测量电路	6
3.2.2 电容测量电路	7
3.2.3 电感测量电路	8
3.2.4 多路选择开关电路	9
3.2.5 按键及数码管显示电路	10
3.2.6 音频输出电路	11
四、软件设计	12
4.1 主程序流程图	13
4.2 中断服务程序流程	
	15
	16
七、参考资料	16

http://www.unsp.com.cn

具有语音功能的电阻、电容、电感测试仪

摘要

本系统是通过凌阳的 16 位单片机 SPCE061A 测量电阻、电容和电感对应振荡电路 所产生的频率实现各个参数的测量,一方面测量精度较高,另一方面便于使仪表实现 自动化,而且还能加入语音播报的功能使其更加智能化。

其中电阻和电容是采用 555 多谐振荡电路产生的,而电感则是根据电容三点式产生的。SPCE061A 的定时器可以利用外部时钟源来计数,这里我们将 RCL 的测量电路产生的频率作为单片机 SPCE061A 的时钟源,通过计数则可以计算出被测频率在通过该频率计算出各个参数。

关键词: SPCE061A 单片机 555 多谐振荡电路 电容三点式振荡

SPCE061A 单片机概述

SPCE061A 是继μ'nSP 系列产品 SPCE500A 等之后凌风科技推出的又一个 16 位结构的微控制器。目前有两种封装形式: 84 引脚的 PLC S8 封装和 80 引脚的 LQFP80 贴片封装。

主要性能如下:

- ■16 位 µ'n SP 微处理器;
- ■工作电压: VDD 为 2.4~3.6V(cpu), VDDH 为 2.4~5.5V(I/O);
- CPU 时钟: 32768Hz~49.152MHx
- ■内置 2K 字 SRAM、內置 32K FLASH;
- ■可编程音频处理;
- ■32 位通用可编程输入输出端口;
- ■32768Az 实时时钟, 频相环 PLL 振荡器提供系统时钟信号;
- ■2 个 14 位可编程定时器/计数器(可自动预置初始计数值);
- ■2 个 10 位 DAC 数-模转换)输出通道;
- ■7 通道 10 包里压模-数转换器(ADC)和单通道语音模-数转换器;
- ■声音模-数转换器输入通道内置麦克风放大器自动增益控制(AGC)功能;
- ■系统处于备用状态下(时钟处于停止状态)耗电小于 2µA@3.6V:
- ■14个中断源: 定时器 A/B, 2个外部时钟源输入, 时基, 键唤醒等;
- ■具备触键唤醒的功能:
- ■使用凌阳音频编码 SACM S240 方式(2.4K 位/秒), 能容纳 210 秒的语音数据;
- ■具备异步、同步串行设备接口;
- ■具有低电压复位(LVR)功能和低电压监测(LVD)功能;
- ■内置在线仿真电路接口 ICE (In- Circuit Emulator);
- ■具有保密能力;

http://www.unsp.com.cn

■具有 WatchDog 功能(由具体型号决定)

一、设计功能及要求

1.1 设计要求

设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:

具体要求

- (1) 测量范围: 电阻 100Ω~1MΩ; 电容 100pF~10000pF; 电感 100μH~10mH。
- (2) 测量精度: ±5%。
- (3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。

1.2 系统功能

- 1、基本完成以上具体要求
- 2、使用三个按键分别控制 A、C、L的测试
- 3、红、黄、绿三一极管分别代表三种类别的测试
- 4、加入语音播报功能:如测量结果为 6.8K 欧姆则语音播报"六点八 K 欧姆";如果电阻小于 100 欧姆则语音播报"电阻小于 100 欧姆"。

二、方案设计与论证

测量电子元器件集中参数 R、C、L 的仪表种类较多,方法也各有不同,但都有其优缺点。一般的测量方法都存在计算复杂、不易实现自动测量而且很难实现智能化。

在这里我们着重要介绍的是把电子元件的参数 R、C、L 转换成频率信号 f, 然后用单片机计数后在运算求出 R、C、L, 并送显示, 转换原理分别是 RC 振荡和 LC 三

历届全国大学生电子竞赛 SPCE061A 实现方案

http://www.unsp.com.cn

点式振荡,这样就能够把模拟量近似的转换位数字量,而频率 f 是单片机很容易处理的数字量,这种数字化的处理一方面便于使仪表实现智能化,。

方案中用到的单片机式凌阳的 16 位单片机 SPCE061A,由于该 CPU 具有丰富的 I/O 口和丰富的时基信号,为我们提供了极大的方便,其中可以利用 I/O 口置高低电平来实现量程的转换,由于单片机 SPCE061A 的定时器可以通过外部时钟源来计数,我们便可以将 555 电路或电容三点式振荡电路产生的频率作为 SPCE061A 的定时器的时钟源,这样就很容易得到被测 R/C/L 对应产生的频率。而且 SPCE061A 具有语音处理功能,我们在显示的基础上还可以加入语音播报,使得整个测量过程更加智能化。

三、系统硬件电路设计

3.1 电路方框图及说明

系统分三大部分,及测量电路,通道选择和控制电路,如下图所示。SPCE061A 根据所选通道,通过 IOA4 和 IOA3 向模拟开关送两位地址常号,取得振荡频率,然后 根据所测频率判断是否转换量程,或者是把数据进行处理后,得出相应的参数值。

http://www.unsp.com.cn

3.2 各部分电路设计

3.2.1 电阻测量电路

电阻的测量采用"脉冲计数法",如下图所示由 555 电路构成的多谐振荡电路,通过计算振荡输出的频率来计算被测电阻的大小。

555 接成多谐振荡器的形式, 其振荡周期为:

T=t1+t2=(ln2)(R1+Rx)*C1+(ln2)Rx*C1

得出:
$$fx = \frac{1}{(\ln 2)(R1 + 2Rx)C1}$$
即: $Rx = (\frac{1}{(\ln 2)C1} - R1)/2$

电路分为 2 档:

1、100≤Rx<1000 欧姆: IOA5 设置为高电平输出 IOA7 设为低电平输出; R2=200 欧姆; C2=0.22uF;

Rx=(6.56*(1e+6))/(2*fx)-330/2

对应的频率范围为: 2.8K≤fx 16K

2、1000≤Rx<1M 欧姆: IOA6 设置为高电平输出。IOA8 设为低电平输出。 R1=20k 欧姆; C1=103PF;

$$Rx = (1.443*(1e+8))/(2*fx)-(1e+4)$$

http://www.unsp.com.cn

3.2.2 电容测量电路

电容的测量同样采用"脉冲计数法",如下图所示由 555 电路构成的多谐振荡电路,通过计算振荡输出的频率设计算被测电容的大小。

555 接成多谐振荡器的形式, 其振荡周期为:

T=t1+t2= (ln2) (R1+R2) *Cx+ (ln2) R2*Cx

我们设置 R1=R

得出:
$$fx = \frac{1}{3(\ln 2)R1 * Cx}$$
 即: $Cx = \frac{1}{3(\ln 2)R1 * fx}$

电路分为2档

1、R1=510K 欧姆: IOA10 设置为高电平输出; R4=R6;

Cx = (0.94*(1e+6))/ fx;

对应的频率范围为: 9.4K≤fx < 0.94K

2、R1=100K 欧姆: IOA9 设置为高电平输出; R5=R6:

Cx = (4.81*(1e+6))/fx;

对应的频率范围为: 480Hz≤fx <4.8K

http://www.unsp.com.cn

C测试电路

3.2.3 电感测量电路

电感的测量是采用电容三点式振荡电路来实现的。三点式电路是指:LC 回路中与发射极相连的两个电抗元件必须是同性质的,另外一个电抗元件必须为异性质的,而与发射极相连的两个电抗元件同为电容时的三点式电路,成为电容三点式电路。

得出:
$$fx = \frac{1}{2\pi\sqrt{LC}}$$
 即: $Lx = \frac{1}{4\pi * \pi * fx * fx}$

$$Lx = (38*(16*6))/f0^2$$

http://www.unsp.com.cn

3.2.4 多路选择开关电路

利用 CD4052 实现测量类别的转换, CD4052 是双 4 选一的模拟开关选择器件。当选择了某一通道的频率层、输出频率通过通过 IOB4 作为 CPU 定时器的时钟源并开始计数, 当计数到 3 秒 后读出计数器的值,除以 3 就得到了被测 R/C/L 所对应产生的频率,通过计算得到要被测值。

IOA4	IOA3	测量类别
0	0	Y0-R
0	1	Y1-C
1	0	Y2-L
1	1	*

http://www.unsp.com.cn

3.2.5 按键及数码管显示电路

历届全国大学生电子竞赛 SPCE061A 实现方案

http://www.unsp.com.cn

3.2.6 音频输出电路

语音播报测量结果、当测试结果显示机对较稳定后开始播报测试结果。

http://www.unsp.com.cn

四、软件设计

4.1I/O 口的分配

I/OA 口的分配

IOA0-IOA3:按键输入;

IOA3-IOA4:模拟开关通道选择;

IOA5-IOA6:R 测量电路中充电电阻选择; IOA7-IOA8:R 测量电路中充放电电容选择; IOA9-IOA10:C 测量电路中充电电阻选择;

IOA12-IOA14:R/C/L 测量指示灯;

具体可参见下表:

IO.	A15-IOA12	I	OA11-IOA8		I	OA7-IOA4		IOA	A3-IOA0
A15	A14A13A12	A11	A10A9	A8	A7	A6A5	A4	A3	A2A1A0
×	二极管 R:100 C:010 L:000	×	1"有效	"("有效	"1"有效	通道道 R:0 C:0 L:1 *:1	选择 0 1 0	key R:001 C:010 L:100

I/OB 口的分配如下表所示:

IOB 口分配情况如下:

IOB2:设置为反向输出

IOB4:设置为悬浮输入

IOB3、IOB4-IOB7:数码管的位选 IOB8-IOB15:数码管的段码控制

具体可参见下表:

http://www.unsp.com.cn

IOB15-IOB12	IOB11-IOB8	IOB7-IOB4		IOB3-IOB0		
		B7B6B5	B4	В3	B2	B1B0
数码管段码		数码管位选	悬浮输入	位选	反相输出	××

4.2 主程序流程图

http://www.unsp.com.cn

历届全国大学生电子竞赛 SPCE061A 实现方案

http://www.unsp.com.cn

4.3 中断服务程序流程

五、系统测试及整机指标

http://www.unsp.com.cn

电阻表值	万用表读数	本仪表读数
200 欧姆	197.4	196
1k 欧姆	991	1.06k
20k 欧姆	19.8k	20.8k
10k 欧姆	9.88	10.4k
100k 欧姆	99.8	104k
510K 欧姆	516	515k

电容表值	万用表读数	本仪表读数
100pF		
120pF		
1000pF		
0.01uF		

六、总结

由于 SPCE061A 的时钟最高可达 49M, 32 I/O 口, 而且具有一定的语音处理功能等, 这些都为我们实现电路提供了非常便利的条件:

- 1、量程的切换,一般情况我们会采用模拟开关或继电器来控制,我们在这里只需要几个 I/O 口即可实现该功能不需要外加任何电路,控制简单、节省成本;
- 2、SPCE061A 有丰富的时基中断, 我们可以采用 2Hz 实现定时一两秒, 程序简单而且精度高;
- 3、SPCE061A 定时器可以采用外部时钟源计数,则为我们计算振荡电路产生频率提供了便利,而且计算精度较高,控制简单;
- 4、SPCE061A具有语音处理功能,可以非常轻松的加入语音播报功能,使整个设计更加智能;
- 5、SPCE061A 具有"看门狗"功能,避免出现"死机"现象。

该设计将也有很多不足之处,这里只是为大家提供一种思路,您可以根据自己的 需求更加完善:如采用标准的电阻、电容和电感进行校准,可提高测量精度等。

七、参考资料

http://www.unsp.com.cn

参考文献:

- 1、《LM555 数据手册》
- 2、《CD4052 数据手册》
- 3、《数字电子技术基础》
- 4、《SPCE061A单片机原理与应用》
- 5、《第二届全国大学生电子设计竞赛获奖作品选编(1995)》
- 6. http://www.unsp.com.cn

