安徽大学 2020-2021 学年第一学期分析化学期中试卷 (A 卷)

出卷人: 金葆康

1.分析化学就其性质而言. 是一门的科学.		
A. 获取物质的物理性质 B. 获取物质的化学性质	C. 获取物质的化学组成与结构信息	D. 获取物质的性质信息

2.以 0.1000 mol/L NaOH 滴定 20 mL 0.1000 mol/L HCl 和 2.0×10^{-4} mol/L 盐酸羟胺 (p K_b =8.00) 混合溶液, 则滴 定HCl 至化学计量点的 pH 是_____.

A.5.20 **B.**6.00 **C.**5.00 **D.**5.50

选择题 (10小题×1分=10分)

- 3.下列有关随机误差的论述中不正确的是_____.
 - A. 随机误差在滴定分析中是不可避免的
- B. 绝对值相等的正负误差出现的概率均等
- C. 随机误差是一些不确定因素造成的
- D. 通过增加平行测定次数可以消除随机误差
- 4.要判断一组平行测定所得的分析数据是否存在可疑值,应用_____.
 - **A.**F 检验法和 t 检验法 **B.**Q 检验法 **C.**U 检验法 **D.**t 检验法
- 5.0.040 mol/L 的 H_2CO_3 (饱和碳酸)的水溶液, $K_{a_1} = 4.2 \times 10^{-7}$, $K_{a_2} = 5.6 \times 10^{-11}$ 分别为它的电离常数, 该溶液中[H⁺]和[CO₃²⁻]分别为_____.
 - $\mathbf{A.}\sqrt{0.04K_{a_1}}, K_{a_1} \qquad \mathbf{B.}\sqrt{0.04K_{a_1}}, \sqrt{0.04K_{a_2}} \qquad \mathbf{C.}\sqrt{0.04K_{a_1}K_{a_2}}, K_{a_2} \qquad \mathbf{D.}\sqrt{0.04K_{a_1}}, K_{a_2}$
- 6.用 0.1000 mol/L HCl 滴定等浓度的NH3 溶液至化学计量点时的质子平衡式为_____.
- $\mathbf{A} \cdot [\mathrm{H}^+] = [\mathrm{OH}^-] + [\mathrm{NH}_3]$ $\mathbf{B} \cdot [\mathrm{NH}_4^+] + [\mathrm{H}^+] = [\mathrm{OH}^-]$ $\mathbf{C} \cdot [\mathrm{H}^+] = [\mathrm{OH}^-] + [\mathrm{Cl}^-]$ $\mathbf{D} \cdot [\mathrm{H}^+] + [\mathrm{NH}_4^+] = [\mathrm{OH}^-] + [\mathrm{Cl}^-]$ 7.以 0.02000 mol/L EDTA 滴定同浓度 Zn^{2+} ,若 $\Delta\mathrm{pM} = 0.2$,终点误差为 0.1%,要求 $\mathrm{lg}\,K'_{\mathrm{ZnY}}$ (条件稳定常数) 的最小值为_____.
 - **A.**5 **B.**6 **C.**8 **D.**7
- 8.若用 0.02 mol/L EDTA 滴定 $0.02 \text{ mol/L Zn}^{2+}$ 溶液 ($\Delta \text{pM} = 0.2, \text{TE} = 0.1\%$) 滴定时最高允许酸度大约是 $\text{pH} = \underline{\hspace{1cm}}$.

已知
$$\lg K_{\rm ZnY} = 16.5$$
,且 $\frac{\rm pH}{\lg \alpha_{\rm Y(H)}}$ 8.45 6.45 4.65 3.32 A.4 B.5 C.6 D.7

9.在 pH=5.00 时用EDTA 溶液滴定含有 Al^{3+} , Zn^{2+} , Mg^{2+} 和大量 F^- 等离子的溶液.

已知 $\lg K_{AlY} = 16.3, \lg K_{MgY} = 8.7.$ pH=5.00 时 $\lg \alpha_{Y(H)} = 6.5$,则测得的是_____.

- **A.**Al, Zn, Mg 的总量 **B.**Zn, Mg 的总量 **C.**Zn 的含量 **D.**Mg 的含量
- 10.用 H_3PO_4 和 Na_3PO_4 配制 pH=7.20 的缓冲溶液, H_3PO_4 和 Na_3PO_4 的物质的量之比是_____. 已知 H_3PO_4 有 $pK_{a_1}=2.12, pK_{a_2}=7.20, pK_{a_3}=12.40.$
 - **A.**1:2 **B.**2:3 **C.**3:2 **D.**1:1

II 填空题 (20空×1分=20分)

11.一般分析大平的称重误差为 ± 0.0001 g,为了使称重的相对误差小于 0.1% ,那么称取 Na_2CO_3 试样时可能引起的最大误差是g,该试样的质量应大于g.
12.决定正态分布曲线形状的两个基本参数为 μ 和 σ , 它们分别反映了测量值的和和
13.滴定分析法简便快速,可以用于测定多种元素及化合物,在常量组分分析中具有很高的 但滴定分析法的
14.用同一浓度的草酸标准溶液分别滴定等体积的 ${ m KMnO_4}$ 和 ${ m NaOH}$ 两种溶液. 达到化学计量点时, 若消耗的标准溶液 积相等, 则说明 $c_{ m NaOH}$: $c_{{ m KMnO_4}}$ =
15.选择酸碱指示剂的原则是使其变色点的 pH 处于滴定的
16.金属离子与EDTA 的绝对稳定常数越大, 测定时允许的溶液 pH 值就越 一般情况下, 能准确滴定单一离子] 的判别式为
17.某一物质 A^{3-} 的 $pK_{b_1}=1.0, pK_{b_2}=6.0, pK_{b_3}=11.0,$ 则其 $pK_{a_1}=$
18.某金属离子 M 与 EDTA 络合剂形成的配合物 MY, 其 $\lg K'_{\mathrm{MY}}$ 首先随溶液的 pH 增大而增大, 这是因为
19.EDTA 溶液中 $.H_{\circ}Y^{2-}$ 和 Y^{4-} 两种形式的分布系数之间的关系式为

III 简答题 (6小题×5分=30分)

- 20.为什么评价定量分析结果的优劣应从精密度和准确度两方面衡量? 两者是什么关系? 如何保证分析方法的准确度?
- 21.用 0.1000 mol/L NaOH 标准溶液滴定含有 0.1 mol/L NH₄Cl 的 0.1000 mol/L HCl 溶液. 问: 滴定HCl 时NH₄⁺ 能否产生干扰? 若能准确滴定, 化学计量点的 pH 是多少? 应选用何种指示剂? 已知NH₃ 的 $K_b = 1.8 \times 10^{-5}$.
- 22.影响配位滴定误差大小的因素有哪些?请从 Ringbom 误差公式分析讨论.
- 23.某化验室测定标样中的CaO 得到如下结果: $\overline{X}=30.51\%, S=0.05\%, n=6$. 标样中CaO 标准值是 30.43%, 问此测定方法是否存在系统误差? $(P=95\%,t_{0.05,5}=2.57)$
- 24.写出CH₃COONH₄溶液的质子平衡方程, 再推导出[H⁺]的计算式和最简式.
- 25.使用NaOH 标准溶液时, 若该标准溶液已经吸收了空气中的CO₂, 则在以其测定某一强酸的浓度时, 分别用甲基橙或酚酞作为指示剂指示终点, 分析说明对测定结果的准确度各有何影响.

IV 计算题 (4小题×10分=40分)

- 26.计算下列各溶液的 pH: (1)0.10 mol/L NH₄Cl; (2)0.010 mol/L Na₂HPO₄. 已知NH₃ 的 $K_b = 1.8 \times 10^{-5}$, H₃PO₄ 的 $K_{a_1} = 7.6 \times 10^{-3}$, $K_{a_2} = 6.3 \times 10^{-8}$, $K_{a_3} = 4.4 \times 10^{-13}$
- 27.在 pH=10.00 的氨性缓冲溶液中, 以铬黑 T(EBT) 为指示剂, 用 0.0200 mol/L EDTA 滴定同浓度的 Zn^{2+} . 滴定终点 时游离氨的浓度为 0.10 mol/L, 计算终点误差. 已知 $\lg K_{ZnY} = 16.5$; pH=10.00 时, $\lg \alpha_{Y(H)} = 0.45$, Zn^{2+} 与NH₃ 形成 的络合物累计稳定常数分别为 $\beta_1 = 2.37$, $\beta_2 = 4.81$, $\beta_3 = 7.31$, $\beta_4 = 9.46$, $\lg \alpha_{Zn(OH)} = 2.4$, ϱZn_{ep} (EBT) = 12.2.
- 28.称取 1.250g 纯一元弱酸 HA 溶于适量水中并稀释到 50.00 mL, 然后用 0.1000 mol/L NaOH 溶液滴定. 滴定至化学 计量点时,NaOH 溶液的用量为 37.10 mL. 当滴入 7.42 mL NaOH 溶液时, 测得 pH=4.30.
 - 问:(1)该一元弱酸的摩尔质量;(2)该弱酸的解离常数 K_a ;(3)滴定到化学计是点时溶液的pH.滴定最好使用何种指示剂?
- 29.以 0.1000 mol/L NaOH 标准溶液滴定 0.2000 mol/L NH₄Cl 和 0.1000 mol/L 的二氯乙酸的混合溶液. 问:(1) 是否可以进行分步滴定?(2) 化学计量点时溶液的 pH 值为多少?(3) 若滴定至 pH=5.00, 滴定终点误差为多少? 已知: 二氯乙酸的 $K=5.0\times 10^{-2}$; 氨水的 $K_b=1.8\times 10^{-5}$.