CSCI361 Computer Security

Classical cryptology

Outline

- What is cryptology?
 - Cryptography.
 - Cryptanalysis.
- Communication model.
- Secret-key cryptography.
- Epochs.
- Early ciphers:
 - Caesar.
 - Monoalphabetic.
- Statistical cryptanalysis.

Cryptology

- From the Greek words:
 - kryptos meaning "hidden"
 - logos meaning "word"

Cryptology is the art/science of secure communication. It splits into...

- Cryptography: Designing algorithms to ensure security: i.e. confidentiality, integrity and authenticity.
- Cryptanalysis: Analysing security algorithms with the aim of breaching security.

The basic secrecy channel

The basic secrecy channel

- The channel can be a communication channel or a storage channel.
- Sender (A for Alice) wants to send a message X to the Receiver (B for Bob), through this channel, such that the opponent/enemy/intruder O (O for Oscar) cannot access X.
- Alice applies a transformation, known as encryption, to X, referred to as the plaintext, to produce a garbled message Y, referred to as the ciphertext (or cryptogram).
- Bob applies another transformation, known as decryption, to Y to obtain the plaintext again.

Key dependence

- The transformations are not fixed, they are key dependent. The key K controls the transformation and is known only by Alice and Bob. The key is secret.
- Encryption and decryption are sometimes referred to as enciphering and deciphering, respectively.
- Note that if a transformation does not depend on a key, it is referred to as encoding, with the inverse transformation being referred to as decoding.
 - Morse code.
 - ASCII code.

Secret-key cryptography

- In secret key cryptography the participants all have only secret key information.
- Basically this means there is no role, other than as an attacker, for anybody who doesn't hold a secret key of some sort.
- We shall later look at public-key cryptography, where persons without secret-keys can play a role (other than an attacker) in the cryptosystem.

Symmetric and asymmetric encryption

- In classical cryptography the encryption and decryption keys are the same, this is an example of a symmetric encryption scheme.
- In asymmetric encryption the encryption and decryption keys are different, this is the case in public-key encryption.
- We emphasise that the terms symmetric and private are not equivalent. It is possible to have private asymmetric key systems (not necessarily encryption), although we shall not be discussing such in this course.

Kirchoff's Law

This is the main assumption of cryptology.

The cryptanalyst knows all the details of the encryption and decryption transformations, except for the value of the secret key or keys.

Some possible attacks

- Oscar is trying to decrypt a particular ciphertext, and possibly (although it is harder in general) to figure out the key.
- Ciphertext only: Oscar knows Y. Alice and Bob don't want Oscar to figure out what either X or K is.
- Known plaintext: Oscar knows some X-Y pairs. Alice and Bob don't want Oscar to figure out what K is, or the correspondence between other X-Y pairs.
- Chosen plaintext: Oscar is allowed to choose some plaintexts (X's), and receives the corresponding ciphertexts (Y's).
- Chosen ciphertext: Oscar is allowed to choose some ciphertexts (Y's), and receives the corresponding plaintexts (X's).
- Some combination of these.

Epochs in cryptology

- Non-scientific cryptography: from antiquity until 1949.
 Cryptology was more an "art" than a science.
- Scientific cryptography starts with Shannon's paper:
 Communication theory of secrecy systems (1949).
 This was based on Shannon's 1948 paper in which he had founded information theory.
- Cryptologic research really took off in 1976 with the paper New directions in cryptography, by Diffie & Hellman.
 They showed that secret communication is possible without a shared key.

Early ciphers

- Studying some early ciphers is useful because the empirical principles developed through their use are applied in the design and analysis of modern ciphers.
- Caesar cipher: (Julius Caesar 2050 years ago).
 - Every letter is replaced by the letter "three to the right" in the alphabet, where this operation is cyclic. A→D, B→E, ... X→A, Y→B, Z→C
 - For example: CABBAGE → FDEEDJH
 - There is no key though ⊗, so it isn't a true cipher!
 - The generalised Caesar (or shift) cipher allowed the 3 to be replaced by an value between 1 and 25 inclusive.

Monoalphabetic ciphers

- Also known as simple substitution ciphers, each letter of the plaintext alphabet is replaced with an element of the ciphertext alphabet.
- The substitution alphabet is the key.
- Consider that the plaintext and ciphertext alphabets are both the English alphabet.

а	b	С	d	е	 Х	у	Z
F	G	N	Т	Α	 K	Р	L

а	b	а	d	d	а	у
F	G	L	H	Τ	H	Ρ

Example: Consider the plaintext and ciphertext alphabets to be the set of binary strings of length 3.

Plaintext: 100 101 111

Ciphertext: 010 100 011

Unique decryption: One-to-one.

In order for decryption to be unique, we need one-toone mappings. Consider...

а	b	С	d	е	 X	у	Z
F	G	Z	G	Α	 K	Ρ	L

а	b	а	d	d	а	У
F	G	F	G	G	F	Р

Decryption: a bad day, a dad day, a bab day, a dab day, a bad bay, a dad bay, a bab bay, a dab bay.

Security: Monoalphabetic ciphers

- To decipher a ciphertext we need to know the substitution alphabet (key), or at least the subset of the key corresponding to those symbols which appear in the ciphertext.
- One can use an exhaustive key search, to find the full key. This means use each key to decipher the ciphertext and accept the one that produces a meaningful plaintext.
- For an alphabet of size N, the number of possible keys is N!.
- The key is N elements long.

$$N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N$$

- For the English alphabet there are 26!≈4*10^(26) keys.
- The key length is 26 symbols long, although the information content is 25 symbols long.
- We need 5 bits (log base 2 of 26) to represent each symbol.

Weak keys

- Not every substitution alphabet is suitable.
- For example, a possible substitution which doesn't hide the message very well at all is:

а	b	С	d	е	 X	у	Z
Х	В	С	D	Е	 A	Y	Z

С	0	m	р	u	t	е	r
С	0	M	Р	U	T	E	R

In most ciphers there are some weak keys.

Properties of keys

- Keys must be easy to remember, a long random string is difficult to remember.
- The key set must be large enough so that exhaustive key search is not easy.
- To reduce the number of keys we may restrict ourselves to an indexed subset of all possible substitutions and use the index to identify the substitution that is used.
- In this case the cipher algorithm is the collection of substitutions, and the key is the index.
- Additive and multiplicative ciphers are examples of such indexed constructions.

Additive ciphers

- Also known as translation ciphers, the substitution alphabet is obtained by shifting the plaintext alphabet by a fixed value. The amount of the shift is the key.
- For example with the key of 3 we have

а	b	С	d	е	 X	у	Z
D	E	F	G	Н	 Α	В	C

which is the substitution alphabet for the Caesar cipher.

Modular addition for additive ciphers

Additive ciphers can be described by modular addition.

1	а	b	С	d	е	•	X	у	Z
	0	1	2	3	4		23	24	25

- Plaintext character X, ciphertext character Y, shift (key) Z. Each of X,Y,Z is an element of the set {0,1,2,3,...,25} and they are related by Y = X ⊕ Z, where ⊕ denotes addition modulo 26. There are 26 keys, so bits are needed to represent the key.
- This is a key space, hence exhaustive key search is a feasible attack against additive ciphers.

Multiplicative Ciphers

- The plaintext alphabet will again be taken as the set {0,1,...,25}.
- The ciphertext alphabet can be determined using modular multiplication. We multiply each plaintext alphabet by a constant value, which is the *key* for this cipher.
- Using similar notation to that for additive ciphers we write

$$Y = X \otimes Z$$

where \otimes represents multiplication modulo 26.

- Not all possible numbers for the key Z will result in a one-to-one mapping. The set of keys is therefore a subset of {0,1,...,25}.
- Consider Z=2

$$1 \otimes 2 = 2$$
 b \rightarrow c
 $14 \otimes 2 = 2$ o \rightarrow c

- For all even numbers, and 13, the mapping not one-to-one. Hence the number of keys is 12, we need only 4 bits to represent the key.
- Again exhaustive key search can easily break the cipher (find the secret key).

Affine ciphers

To increase the number of keys we can combine additive and multiplicative ciphers to obtain *affine* ciphers.

Key phrase based ciphers

The next thing we can try and do is use a phrase as the key (index). We can also specify a starting letter for the translation alphabet.

This increases the size of the key space but makes the key (index) easy to remember. Phrase: bubble bath

Starting letter: e

а	b	С	d	е	f	g	h	i
W	X	Υ	Z	В	J	L	Ш	Α
j	k		m	n	0	р	q	r
Т	Ξ	О	D	F	G		٦	K
S	t	u	V	W	Х	у	Z	
M	Ν	0	Р	Q	R	S	V	

This cipher is significantly more resistant to exhaustive key search, but ...

Statistical cryptanalysis

- … it is insecure against statistical cryptanalysis.
- Statistical properties of the plaintext language can be used to cancel many keys in one step and enable the cryptanalyst to find the key without trying all of them.
- Statistical analysis relies on there being a relationship between the statistical properties of the plaintext and the statistical properties of the ciphertext, since we assume the attacker has only the ciphertext.

Statistics of the English language

The letters can be grouped according to the frequency with which they occur.

I	e
II	taoinshr
III	dl
IV	cumwfgypb
V	vkj×qz

- The frequency of pairs of consecutive letters (bigrams) and triples of consecutive letters (trigrams) are important clues to cryptanalysts, as are spaces between words.
- Frequent bigrams: th, he, in, er, an, re, ed, on, es, st, en, at, to
- Frequent trigrams: the, ing, and, her, ere, ent tha, nth, was, eth, for, dth
- It is important to realise that frequency counts only provide clues to the actual key used. The distribution will differ from sample to sample.

- What is the plaintext associated with the following ciphertext?
- According to Kirchoff's Law the encryption algorithm is known to the attacker; it is key phrase substitution.

YKHLBA JCZ SVIJ JZB TZVHI JCZ VHJ DR IZXKHLBA VSS RDHEI DR YVJV LBXSKYLBA YLALJVS IFZZXC CVI LEFHDNZY EVBLRDSY JCZ FHLEVHT HZVIDB RDH JCLI CVI WZZB JCZ VYNZBJ DR ELXHDZSZXJHDBLXI JCZ XDEFSZQLJT DR JCZ RKBXJLDBI JCVJ XVB BDP WZ FZHRDHEZY WT JCZ EVXCLBZ CVI HLIZB YHVEVJLXVSST VI V HZIKSJ DR JCLI HZXZBJ YZNZSDFEZBJ LB JZXCBDSDAT EVBT DR JCZ XLFCZH ITIJZEI JCVJ PZHZ DBXZ XDBILYZHZY IZXKHZ VHZ BDP WHZVMVWSZ.

Breaking the cipher

■ There are 337 letters, with frequencies:

Α	В	С	D	Е	F	G	Н	I
5	24	19	23	12	7	0	24	21
J	K	L	M	N	0	Р	Q	R
29	6	21	1	3	0	3	1	11
5	Т	U	V	W	X	У	Z	
14	8	0	27	5	17	12	44	

■ This suggests we should first try **Z** being the encryption of **e**.

Ciphertext distribution

- There are 8 JCZ in the ciphertext, this is almost certainly the in the plaintext.
- The single letters will generally be i or a. In this case there is a single letter word V in the ciphertext.
- The word JZB in the ciphertext can be identified by looking at the word teB and noting that B occurs in the second frequency group for this ciphertext.
 - Some of those letters († a o i n s h r) have already been identified.

After a few of these kind of steps we can build up a preliminary mapping such as:

a	b	С	d	е	f	9	h	i
V				Z			С	L
j	k	•	m	n	0	р	q	r
				В	D			Н
S	†	u	٧	W	×	У	Z	
I	J							

■ Most of the time we would probably be safe to guess **f** as the starting position. With that assumption we can fill b,c,d → W,X,Y!

a	b	С	d	e	f	9	h	i
V	W	X	У	Z	R	Α	С	L
j	k	I	m	n	0	р	q	r
0	M	5	Е	В	D	F	G	Н
S	t	u	V	w	×	У	Z	
I	J	K	N	Р	Q	Т	U	

YKHLBA JCZ SVIJ JZB TZVHI JCZ VHJ DR IZXKHLBA VSS RDHEI DR YVJV LBXSKYLBA YLALJVS IFZZXC CVI LEFHDNZY EVBLRDSY JCZ FHLEVHT HZVIDB RDH JCLI CVI WZZB JCZ VYNZBJ DR ELXHDZSZXJHDBLXI JCZ XDEFSZQLJT DR JCZ RKBXJLDBI JCVJ XVB BDP WZ FZHRDHEZY WT JCZ EVXCLBZ CVI HLIZB YHVEVJLXVSST VI V HZIKSJ DR JCLI HZXZBJ YZNZSDFEZBJ LB JZXCBDSDAT EVBT DR JCZ XLFCZH ITIJZEI JCVJ PZHZ DBXZ XDBILYZHZY IZXKHZ VHZ BDP WHZVMVWSZ.

during the last ten years the art of securing all forms of data including digital speech has Improved manifold the primary reason for this has been the advent of microelectronics the complexity of the functions that can now be performed by the machine has risen dramatically as a result of this recent development in technology many of the cipher systems that were once considered secure are now breakable.

What does this tell us?

A cipher system should not allow statistical properties of the plaintext language to pass to the ciphertext.

The ciphertext generated by a "good" cipher system should be statistically indistinguishable from random text.

Outline

- Flattening the ciphertext frequency histogram.
- Polyalphabetic ciphers.
 - -Vigenere ciphers.
- Statistical analysis of polyalphabetic ciphers.
 - -Kasiski method.
 - Index of coincidence.

Ciphertext distribution

Flattening the histogram

- To avoid the basic statistical analysis of identifying letters by frequency, we want to try and flatten the histogram. That is, we want the elements of ciphertext to all occur with similar frequency.
- We are going to look at two ways of doing this.

Homophonic substitution ciphers

A plaintext characters is mapped into a set of ciphertext characters, called *homophones*. To encipher a plaintext character, one of it's homophones is randomly chosen.

а	86	42	69	51
9	2	59	<i>75</i>	
1	56	23	0	4
n	24	3	98	7
0	13	9	5	
W	12	99		

Letters: $\{a,b,...z\}$

Homophones: {0,1,...99}

wollongong \rightarrow 12, 9, 23, 0, 5, 98, 75, 13, 3, 2

- Homophonic ciphers in which the number of homophones are proportional to the letter frequencies are hard to break by observing homophone frequency.
 - For example, the letter e should have more homophones.
- For large enough text, statistical analysis is still going to be relatively simple.
- A significant drawback of this method is that the cryptogram is longer than the message.
 - For the example on the previous page we lengthen a 50 bit (10*5) plaintext into a 70 bit (10*7) ciphertext.

Use more than one substitution alphabet

- By combining substitution alphabets, each of which produces non-flat frequency distributions for the ciphertext, we can compensate by aligning the alphabets so the effective combination has a flat frequency distribution.
- We shall consider an example using two substitution alphabets and a key sequence that determinates which substitution alphabet must be used for encrypting each plaintext letter.

Plaintext alphabet: {a,b,c,d}
P(a)=0.5, P(b)=0.05, P(c)=0.2, P(d)=0.25

Polyalphabetic ciphers

- A ciphertext character represents more than one plaintext character. This must be done in a way that allows the plaintext to be recovered.
 - For example, if B represents n and t we need to know when to decipher it as n, and when as t.
- A polyalphabetic cipher uses a sequence of substitution alphabets. If this sequence repeats after p characters, we say it has period p.

The Vigenère cipher

- This uses 26 substitution alphabets, and a key word or key phrase.
- The substitution alphabets are cyclically related, they form a Trithemius tableau.

а	b	С	d	е	 X	у	Z
0	1	2	3	4	 23	24	25

	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n	0	р	q	r	s	t	u	٧	W	Χ	у	Z
а	Α	В	С	О	Ε	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z
b	В	С	D	Е	F	G	Η	_	J	Κ	L	М	Ν	0	Ρ	Q	R	S	Т	U	٧	W	Х	Υ	Ζ	Α
С	С	D	Е	F	G	Η	_	7	Κ	┙	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В
d	D	Е	F	G	Н	1	J	Κ	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С
е	Е	F	G	Н	1	J	K	L	М	Ν	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D
f	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е
g	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F
h	Н	I	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	E	F	G
i	I	J	K	L	М	Ν	О	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н
j	J	K	L	М	Ν	Ο	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I
k	K	L	М	Ν	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J
П	L	М	Ν	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K
m	М	N	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L
n	Ν	О	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
0	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν
р	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
q	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р
r	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	Ν	О	Р	Q
s	S	Т	U	٧	W	Χ	Υ	Z	A	В	С	D	E	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R
t	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	Ν	0	Р	Q	R	S
u	U	V	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	О	Р	Q	R	S	Т
٧	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U
W	W	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧
Х	Х	Υ	Z	Α	В	С	D	Е	F	-	Н	I	J	K	L	_	N	0	Р	Q	R	S	Т	U	٧	W
у	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	Р	Q	R	S	Т	U	٧	W	_
Z	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ

X	W	0	l		0	n	9	0	n	9
	22	14	11	11	14	13	6	14	13	6
Z	С	а	f	e	С	а	f	e	С	а
	2	0	5	4	2	0	5	4	2	0
У	24	14	16	15	16	13	11	18	15	6
	У	0	Q	Р	Q	2	L	5	Р	G

 $Y = X \oplus Z$, remember addition modulo 26.

Analysing Vigenère ciphers

- As we stated earlier, the frequency distribution of the ciphertext can be flattened by using multiple substitution alphabets.
- We analyse these ciphers by
 - 1. Finding the period.
 - 2. Breaking the ciphertext into components each obtained from a single substitution alphabet.
 - 3. Solving each component using techniques discussed for monoalphabetic ciphers, although cross component techniques are also useful.

Finding the period: The Kasiski method

■ We observe that two identical plaintexts will be encrypted to the same ciphertext if their occurrence is *m* positions apart, where *m*=0 mod *p*, i.e. when *m* is a multiple of the period p.

X	W	0	l	1	•••	•••	W	0	ı	I
Z	С	а	f	e	•••	•••	С	a	f	e
У	У	0	Q	Р	•••	•••	У	0	Q	Р

We search the ciphertext for repeated segments, and measure the distances between such repeated segments. It is likely, but not guaranteed, that these distances will be a multiple of the period.

Finding the period: The index of coincidence.

Consider a string of length n, where each element is a letter from the English alphabet. X=x₁x₂...x_n

 $\lambda \in \{A,B,C,...,Z\}$, and f_{λ} frequency of λ

$$IC(x) = \frac{\sum_{\lambda=A}^{Z} f_{\lambda}(f_{\lambda} - 1)}{n(n-1)}$$

- IC(x) is an estimate of the probability that two randomly chosen elements of X are identical.
- It is also a measure of roughness of the histogram, that is, it indicates how uneven the histogram is.
- The Index of Coincidence can be used to estimate the period (Friedman or Kappa test).

$$\kappa = \frac{0.027n}{IC(n-1) - 0.038n + 0.065}$$

Random IC and English IC

If X were a random string over the English alphabet we would expect the probability of each letter occurring to be the same, so that

$$IC \approx 1/26 \approx 0.038$$

If X is an English language text then we would expect, for $p(\lambda)$ the probability of a particular letter being λ ,

$$IC(x) \approx \sum_{\lambda=A}^{Z} p(\lambda)^2 \approx 0.065$$

The two values 0.065 and 0.038 are sufficiently far apart that we will often be able to determine the correct keyword length.

English language letter probabilities

Α	В	С	D	Е	F	G	Н	_
0.082	0.015	0.028	0.043	0.127	0.022	0.020	0.061	0.070
J	K	L	M	N	0	Р	Q	R
0.002	0.008	0.040	0.024	0.067	0.075	0.019	0.001	0.060
S	Т	U	V	W	X	Υ	Z	
0.063	0.091	0.028	0.010	0.023	0.001	0.020	0.001	

IC for monoalphabetic ciphers

- For monoalphabetic ciphers the index of coincidence is the same for the plaintext as for the ciphertext.
- The IC for the ciphertext of a English text plaintext encrypted under a monoalphabetic cipher, will therefore be approximately 0.065, the same as English text.
- We can use this test to find the period.

Example

Suppose we know the following ciphertext was generated using the Vigenère cipher. We need to find the period.

ooon yho cshexjlg nz xfksledcl ky luw h dltqupduw jjhrolww jshehj dwns df llwpslpchlodf plzdv yohrh gm audwwyg uyg vvqnzuss zyghd wfirustg qp djl hbp psqcl augmsmdlguof pgmjontrf jshehj dwnslf zihj zaav u qxds fuyjw vt jcrxlgmtrfhz xtvupdftqwz whnomkwhr vgts ftnw soq aksyaunb zlofek jlzuehv wfiqhkzwiyv loon luw bbcbxw ac mfqq ds uch ssgi ekw solrhka ihohjnfuoxsas wpqllf qtwz avy hlvlgn cdfns iq sjvullpk hbx hllowh zxj usqwb xvfgpg ...

■ To find the period we guess and check the IC of the components. Lets try *p*=2.

oo yo sejg z fsec k lw dtudw jrlw sej ws f lplcld pzv or g adwg y vqzs zgd frsg p j hp sc agsdgo pmotf sej wsf ij av qd fyw t cxgtfz tudtw wnmwr gs tw o asan zoe jzev fqkwy lo lw bbw c fq s c sg ew ork iojfoss plf tz v hvg cfs q julk b hlw zj sw xfp uzpw t ck b dabp oh ew flwh zwhl l cqj rqfb fvfcvop vqeg glfb ew ilawd zcr ls zaz nwqd g v aqwl sr tdund qpug sl g yaopq wvv c s shg ybclc z fk yosr sr y ...

on h chxl n xkldl y u h lqpu jhow jhh dn d lwsphof ld yhh m uwy ug vnus yh wiut q dl b pql ummluf gjnr jhh dnl zh za u xs uj v jrlmrh xvpfqz hokh vt fn sq kyub lfk luh wihziv on u bcx a mq d uh si k slha hhnuxa wql qw ay lln dn i svlp hx loh x uqb vgg vfj v uw hx flwv pb k nywz jwuco v zh h ylpa qladbn hbulu jqpa k ogqay wyok o mfh mluy w ay kzwo u vrvcd zcql nd p cwtno shh a nh jch lydph i l ersxh u u ...

Component 1: IC = .047082

Component 2: IC = .050946

p=2	.047028	.050946					
p=3	.050229	.054603	.056575				
p=4	.047511	.051445	.047226	.051843			
p=5	.045771	.045228	.048290	.045118	.043533		
p=6	.070324	.068399	.065509	.066987	.063925	.070450	
p=7	.042861	.045826	.045078	.046161	.047380	.047236	.047230

- Therefore p=6 seems most likely.
- The keyword is *should*.

Notes on statistical methods

- Statistical methods work if "enough" ciphertext is available. We will discuss later what we mean by enough.
- Using long keys makes both the IC and Kasiski methods of less value.