Discrete Mathematics: Lecture 3

tautological implication, predicate, individual, function of individuals, universal quantifier, existential quantifier

Jiahua Jiang*

*School of Information Science and Technology, ShanghaiTech University

Go over: truth table and prove

				$P \to Q \equiv \neg P \lor Q$
P	Q	$\neg P$	$P \rightarrow Q$	$\neg P \lor Q$
Т	T	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	T	Т	Т

Rule of Replacement: Replacing a sub-formula in a formula F with a logically equivalent sub-formula gives a formula logically equivalent to the formula F

Example: prove $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$

$$P \to Q \equiv \neg P \lor Q \equiv Q \lor \neg P \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \to P \tag{1}$$

J. Jiang Lecture 3 2/18

Tautological Implications

Definition: Let **A** and **B** be WFFs in propositional variables p_1, \ldots, p_n .

- A tautologically implies B if every truth assignment that causes A to be true causes B to be true.
- Notation: $A \Rightarrow B$, called a tautological implication
- $A^{-1}(T) \subseteq B^{-1}(T)$
- $A^{-1}(F) \supseteq B^{-1}(F)$

Theroem: $A \Rightarrow B$ iff $A \rightarrow B$ is a tautology.

• $A \Rightarrow B$ iff $A^{-1}(T) \subseteq B^{-1}(T)$ iff $A \rightarrow B$ is a tautology

Theroem: $A \Rightarrow B$ iff $A \land \neg B$ is a contradiction.

$$\bullet \ \mathsf{A} \to \mathsf{B} \equiv \neg \mathsf{A} \lor \mathsf{B} \equiv \neg (\mathsf{A} \land \neg \mathsf{B})$$

Proving $A \Rightarrow B$:

- **1** $A^{-1}(T) \subseteq B^{-1}(T);$
- $\mathbf{2} \ \mathbf{A} \to \mathbf{B}$ is a tautology;
- **3** $A \land \neg B$ is a contradiction

J. Jiang Lecture 3 3/18

Proving $A \Rightarrow B$

Example: show the tautological implication $p \land (p \rightarrow q) \Rightarrow q$ **Proof:** Let $A \equiv p \land (p \rightarrow q)$; $B \equiv q$. Need to show that $A \Rightarrow B$

1 To show that $A^{-1}(T) \subseteq B^{-1}(T)$: $A^{-1}(T) = \{(T,T)\}; B^{-1}(T) = \{(T,T), (F,T)\}; A^{-1}(T) \subseteq B^{-1}(T).$

p	q	$p \rightarrow q$	Α	В
Т	Т	Т	Ī	Ī
Т	F	F	F	F
F	Т	Т	F	Т
F	F	Т	F	F

- 2 To show that $A \rightarrow B$ is tautology
- **3** To show that $A \land \neg B$ is contradiction

Tautological Implications

$$\checkmark$$
 $(P) \land (Q) \Rightarrow P \land Q$

- $P \wedge Q \Rightarrow P$
- $P \Rightarrow P \lor Q$
- $\neg P \Rightarrow P \rightarrow Q$
 - $\neg (P \rightarrow Q) \Rightarrow P$
- $Q \Rightarrow P \rightarrow Q$
 - $\neg (P \to Q) \Rightarrow \neg Q$
- $\neg P \land (P \lor Q) \Rightarrow Q$
- $\checkmark P \land (P \rightarrow Q) \Rightarrow Q$
- $| \bullet \quad \neg Q \land (P \to Q) \Rightarrow \neg P$

$$\checkmark (P \to Q) \land (Q \to R) \Rightarrow (P \to R)$$

- $(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)$
- $(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$
- $(Q \rightarrow R) \Rightarrow ((P \lor Q) \rightarrow (P \lor R))$
- $(Q \to R) \Rightarrow ((P \to Q) \to (P \to R))$
- $(P \to R) \land (O \to R) \land (P \lor O) \Rightarrow R$
- $(P \to R) \land (Q \to S) \land (P \lor Q) \Rightarrow R \lor S$
- $(P \to R) \land (Q \to S) \land (\neg R \lor \neg S) \Rightarrow \neg P \lor \neg Q$

Limitation of Propositional Logic

EXAMPLE: What is the underlying tautological implication in the following proof?

- If 1/3 is a rational number, then 1/3 is a real number.
- 1/3 is a rational number.
- 1/3 is a real number.
 - $q \rightarrow r =$ "If 1/3 is a rational number, then 1/3 is a real number.
 - q = "1/3 is a rational number"
 - r = "1/3 is a real number"
 - What is the underlying tautological implication?
 - $(q \to r) \land q \Rightarrow r$
 - YES. This is a tautological implication.

Limitation of Propositional Logic

EXAMPLE: What is the underlying tautological implication in the following proof?

- All rational numbers are real numbers
- 1/3 is a rational number
- 1/3 is a real number
 - p ="All rational numbers are real numbers"
 - q = 1/3 is a rational number
 - r = "1/3 is a real number"
 - · What is the underlying tautological implication?
 - $p \land q \Rightarrow r$?
 - NO. $p \land q \rightarrow r$ is not a tautology.
 - Why is this a proof?
 - We need predicate logic.

Predicate and Individual

Predicate (informal): describe the property of the subject term (in a sentence)

Individual (informal): the object you are considering

- " $\sqrt{1+2\sqrt{1+3\sqrt{1+\cdots}}}$ is an integer"
- " e^{π} is greater than π^{e} "
 - Individual Constant ↑ 体常项: √1+2√1+3√1+···, e^π, π^e
 - Individual Variable 个体变项: x, y, z
 - Domain of individuals 个体域: the set of all individuals you are considering

Predicate(formal): a function from a domain of individuals to $\{T, F\}$

- n-ary predicate $_{n \in \mathbb{H}}$ a predicate on n individuals
 - I: "is an integer" // a unary predicate
 - G: "is greater than" //a binary predicate
- Predicate constant

 _{词间常项}: a concrete predicate // I, G
- Predicate variable 请问变项: a symbol that represents any predicate

J. Jiang Lecture 3 8 / 18

From Predicates to Propositions

Propositional function: $P(x_1,...,x_n)$, where P is an n-ary predicate

- P(x, y): "x is greater than y"
- P(x, y) gives a proposition when we assign values to x, y
 - $P(e^{\pi}, \pi^e)$ is a proposition (a true proposition)
- P(x, y) is not a proposition

Example: p : "Alice's father is a doctor"; q : "Bob's father is a doctor"

- Individuals: Alice's father, Bob's father; Predicate D: "is a doctor"
- p = D(Alice's father), q = D(Bob's father)

Function of Individuals: a map on the domain of individuals

- f(x) = x's father
- p = D(f(Alice)); q = D(f(Bob))

More examples: white board

Universal Quantifier

DEFINITION: Let P(x) be a propositional function. The **universal** quantification f(x) of f(x) is "f(x)" for all f(x) in the domain".

- notation: $\forall x \ P(x)$; read as "for all $x \ P(x)$ " or "for every $x \ P(x)$ "
 - "∀" is called the universal quantifier 全務量词
 - " $\forall x P(x)$ " is true iff P(x) is true for every x in the domain
 - " $\forall x P(x)$ " is false iff there is an x_0 in the domain such that $P(x_0)$ is false

Example: P(n): " $n^2 + n + 41$ is a prime"

- When domain = natural numbers, " $\forall nP(n)$ " is "for every natural number n, n^2+n+41 is a prime"
- When domain is $D=\{0,1,\dots,39\}$, " $\forall nP(n)$ " is "for every $n\in D$, n^2+n+41 is a prime"

Remark: If the domain is empty, then " $\forall x \ P(x)$ " is true for any P, because there are no elements x in the domain for which P(x) is false.

Existential Quantifier

DEFINITION: Let P(x) be a propositional function. The **existential quantification** P(x) is "there is an x in the domain such that P(x)"

- notation: $\exists x \ P(x)$; read as "for some $x \ P(x)$ " or "there is an $x \ s. \ t. \ P(x)$ "
 - "∃" is called the existential quantifier 存在量词
 - " $\exists x P(x)$ " is true iff there is an x in the domain such that P(x) is true
 - " $\exists x P(x)$ " is false iff P(x) is false for every x in the domain

Example: P(x): " $x^2 - x + 1 = 0$ "

- When $D = \mathbb{N}$, $\exists x \ P(x)$ is **F**
- When $D = \mathbb{R}$, $\exists x \ P(x)$ is **F**
- When $D = \mathbb{C}$, $\exists x \ P(x)$ is **T**

anything.

Remark: If the domain is empty, then " $\exists x \ P(x)$ " is false for any P, because there doesn't exist any x in the domain making P(x) to be true. **Remark:** If the domain of individuals is not stated, the individual can be

J. Jiang Lecture 3 11 / 18