ST2132 Cheatsheet

by Wei En & Yiyang, AY21/22

ST2131 Topics

Theorems & Identities

Tail Sum Formula

For DRV. X with non-negative integer-valued support, E(X) = $\textstyle \sum_{k=1}^{\infty} P(X \geq k) = \sum_{k=0}^{\infty} P(X > k).$

For CRV. X with positive support, $E(X) = \int_0^\infty P(X > x) dx =$ $\int_0^\infty P(X \ge x) \, dx$

Markov's Inequality

For **non-negative** r.v. X, $P(X \ge a) \le \frac{E(X)}{a}$ for any a > 0.

Chebyshev's Inequality

Let *X* be a r.v. with mean μ , $P(|X - \mu| \ge a) \le \frac{\text{var}(X)}{a^2}$ for any a > 0.

One-sided Chebyshev's Inequality

Let *X* be a r.v. with **zero mean** and variance σ^2 , $P(X \ge a) \le \frac{\sigma^2}{\sigma^2 + \sigma^2}$ for any a > 0.

Iensen's Inequality

For r.v. X and convex function g(X), $E[g(X)] \ge g(E[X])$, provided the expectations exist and are finite.

Definitions

Covariance, $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) -$

Coefficient of Correlation, $\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{var}(X)\text{var}(Y)}}$

Moment Generating Function, $M_X(t) = E[e^{tX}]$

DRV

Bernoulli

 $X \sim Be(p)$, indicate whether an event is successful.

$$P(X = k) = p^{k}(1 - p)^{(1-k)}, k = 0 \text{ or } 1$$

Statistics: E(X) = p, var(X) = pq = p(1 - p)

MGF: $M_X(t) = 1 - p + pe^t$

Binomial

 $X \sim Bin(n, p)$, total number of successes in *n* i.i.d. Be(p) trials.

$$P(X=k)=\binom{n}{k}p^xq^{n-x},\,k=0,1,\ldots,n$$

Statistics: E(X) = np, var(X) = npq = np(1 - p)

MGF: $M_X(t) = (1 - p + pe^t)^n$

Geometric

 $X \sim Geom(p)$, where $X = 1, 2, \dots$ Memoryless Property.

$$P(X = k) = pq^{k-1}, k = 1, 2, ...$$

Statistics: $E(X) = \frac{1}{\nu}$, $var(X) = \frac{1-p}{\nu^2}$

MGF: $M_X(t) = \frac{pe^t}{1-ae^t}$

Negative Binomial

 $X \sim NB(r, p)$, where X = r, r + 1, ...

$$P(X=k) = \binom{k-1}{r-1} \, p^r q^{x-r}, \; k=r,r+1, \dots$$

Statistics: $E(X) = \frac{r}{p}$, $var(X) = \frac{r(1-p)}{r^2}$

Poisson

 $X \sim Poisson(\lambda)$

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, ...$$

Statistics: $E(X) = \text{var}(X) = \lambda$ MGF: $M_X(t) = e^{\lambda(e^t - 1)}$

Properties: $Poisson(\alpha) + Poisson(\beta) = Poisson(\alpha + \beta)$

Hypergeometric

Suppose there are N identical balls, m of them are red and N-m are blue. $X \sim H(n, N, m)$ is #red balls in n draws without replacement.

$$P(X = k) = \frac{\binom{m}{k} \binom{N-m}{n-k}}{\binom{N}{n}}, \ k = 0, 1, ..., n$$

Statistics: $E(X) = \frac{nm}{N}$, $var(X) = \frac{nm}{N} \left[\frac{(n-1)(m-1)}{N-1} + 1 - \frac{nm}{N} \right]$

CRV

Uniform

 $X \sim U(a,b)$

$$f(x) = \frac{1}{b - a}, \quad a < x < b$$

Statistics: $E(X) = \frac{a+b}{2}$, $var(X) = \frac{(b-a)^2}{12}$

MGF: $M_X(t) = \frac{e^{\beta t} - e^{\alpha t}}{(\beta - \alpha t)^t}, \ t \neq 0$

Exponential

 $X \sim Exp(\lambda)$ for $\lambda > 0$. Memoryless Property

$$f(x) = \lambda e^{-\lambda x}, x \ge 0$$

$$F(x) = 1 - e^{-\lambda x}, x \ge 0$$

Statistics: $E(X) = \frac{1}{\lambda}$, $var(X) = \frac{1}{\lambda^2}$

MGF: $M_X(t) = \frac{\lambda}{\lambda - t}$, for $t < \lambda$

Normal

 $X \sim N(u, \sigma^2)$. Special case : $Z \sim N(0, 1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}, \ x \in \mathbb{R}$$

Statistics: $E(X) = \mu$, $var(X) = \sigma^2$

MGF: $M_X(t) = e^{\mu t + \sigma^2 t^2/2}$

Gamma

 $X \sim Gamma(\alpha, \lambda)$ for shape α , and rate $\lambda > 0$. $(1/\lambda)$ is scale param-

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \ge 0$$

Statistics: $E(X) = \frac{\alpha}{\lambda}$, $var(X) = \frac{\alpha}{\lambda^2}$

MGF: $M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-\alpha}, \quad t < \beta$

Special case: $Exp(\lambda) = Gamma(1, \lambda), \chi_n^2 = Gamma(\frac{n}{2}, \frac{1}{2})$

Properties: $Gamma(a, \lambda) + Gamma(b, \lambda) = Gamma(a + b, \lambda)$, and $cX \sim Gamma(\alpha, \frac{\lambda}{\alpha})$

Gamma function $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy$

 $\Gamma(1) = 1$, $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and $\Gamma(n) = (n-1)!$, $n \in \mathbb{Z}^+$

Beta

 $X \sim B(a, b)$ where a > 0, b > 0 has support [0, 1]

$$f(X) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, 0 \le x \le 1$$

Statistics: $E(X) = \frac{1}{1+\beta/\alpha}$, $var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ Special case: Unif(0,1) = B(1,1)

Beta function $B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

Chapter 02 - Random Variables

Functions of a Random Variable

Properties of CDF

(Ch 2.3 Prop. C) Let Z = F(X), then $Z \sim \text{Unif}(0, 1)$

(Ch 2.3 Prop. D) Let $U \sim \text{Unif}(0,1)$, and let $X = F^{-1}(U)$, then the CDF of X is F.

Inverse CDF Method

For a r.v. X with CDF F to be generated, let U = F(X) and write it as $X = F^{-1}(U)$, then generate with following steps:

- 1. Generate u from a Unif(0,1).
- 2. Deliver $x = F^{-1}(u)$.

Distribution of a Function of R.V.

For r.v. X with pdf. $f_X(x)$, assume g(x) is a function of X that is **strictly monotonic** and **differentiable**. Then the pdf. of Y = g(X),

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|, \ y = g(x) \text{ for some } x$$

Chapter 03 - Joint Distributions

Joint Distributions

Copula

A **copula**, C(u, v), is a joint CDF where the marginal distributions are standard uniform. It has properties as shown below:

- C(u, v) is defined over $[0, 1] \times [0, 1]$ and is non-decreasing
- $P(U \le u) = C(u, 1)$ and $P(V \le v) = C(1, v)$
- joint density function $c(u, v) = \frac{\partial^2}{\partial u \partial v} C(u, v) \ge 0$

Construct joint distributions from marginal distributions given using copula: For any two CRVs X and Y and a copula C(u, v) given,

$$F_{XY}(x,y) = C(F_X(x), F_Y(y))$$

is a joint distribution that has marginal distributions $F_X(x)$ and $F_Y(y)$. Correspondingly, the joint density is

$$f_{XY}(x,y) = c(F_X(x), F_Y(y)) f_X(x) f_Y(y)$$

Farlie Morgenstern Family

For any two CRVs X and Y with their CDFs F(x) and G(y) given, it is shown that for any constant $|\alpha| \le 1$,

$$H(x,y) = F(x) G(y) [1 + \alpha (1 - F(x))(1 - G(y))]$$

is a bivariate joint CDF of X and Y, with its marginal CDFs equal to F(x) and G(y).

Farlie Morgenstern copula: $C(u,v) = uv(1+\alpha(1-u)(1-v))$ is the copula used in the Farlie Morgenstern Family.

Bivariate Normal Distribution

If X and Y are jointly distributed with bivariate normal,

$$f(X,Y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]}$$

where $-1 < \rho < 1$ is the correlation coefficient and the other 4 parameters are reflected in marginal distributions,

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2), \ Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$$

For a joint distribution to be considered bivariate normal, it must satisfy both:

- 1. Its two marginal distributions are normal
- 2. The contours for its joint density function are elliptical

Conditional Joint Distributions

Rejection Method

For a r.v. X with density function f(x) to be generated, if f(x) > 0 for a < x < b, then

- 1. Let M = M(x) s.t. $M(x) \ge f(x)$ for $a \le x \le b$
- 2. Let $m = m(x) = \frac{M(x)}{\int_a^b M(t)dt}$ (i.e. m is a pdf of support [a, b])
- 3. Generate T with density m.
- 4. Generate U which follows Unif(0,1) independent of T.
- 5. If $M(T) \times U \leq f(T)$ then deliver T; otherwise, go base to Step 1 and repeat.

Functions of Joint Distributions

(*Ch* 3.6.2 *Prop. A*) Suppose *X* and *Y* are jointly distributed and $u = g_1(x,y)$, $v = g_2(x,y)$ can be inverted as $x = h_1(u,v)$, $y = h_2(u,v)$ then

$$f_{IIV}(u,v) = f_{XY}(h_1(u,v), h_2(u,v)) |J^{-1}(h_1, h_2)|$$

Sum/Quotient of Random Variables

Suppose X and Y are independent and have JDF f. Then for U = X + Y,

$$f_{U}(u) = \int_{-\infty}^{\infty} f(x, u - x) \, dx,$$

and for V = X/Y,

$$f_V(v) = \int_{-\infty}^{\infty} |x| f(x, xv) \, dx.$$

Order Statistics

(Ch 3.7 Thm. A) Density function of $X_{(k)}$, the k-th order statistics,

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} f(x) F^{k-1}(x) [1 - F(x)]^{n-k}$$

Chapter 04 - Expected Values

Model for Measurement Error

Let x_0 denotes the true value of a quantity being measured. Then the measurement, X, can be modeled as:

$$X = x_0 + \beta + \epsilon$$

where β is **bias**, a constant and ϵ is the random component of error. $E(\epsilon)=0$ and $\mathrm{var}(\epsilon)=\sigma^2$.

Mean Squared Error (MSE) is a measure of the overall measurement error,

MSE =
$$E[(X - x_0)^2]$$
 (Definition)
= $\sigma^2 + \beta^2$

Conditional Expectation & Prediction

Find Expectation & Variance by Conditioning

$$E(Y) = E[E(Y|X)], var(Y) = var[E(Y|X)] + E[var(Y|X)]$$

Random Sum

$$E(T) = E(N)E(X)$$
, $var(T) = [E(X)]^2 var + E(N)var(X)$

Predictions

Suppose X and Y are jointly distributed. If X is observed, the predictor of Y that minimises MSE would be

$$h(Y) = E(Y|X)$$

Delta Method

Consider Y = g(X) where the PDF of X is unknown but μ_X and σ_X^2 is known. Then

$$E(Y) \approx g(\mu_X) + \frac{1}{2} \sigma_X^2 g''(\mu_X), \quad \text{var}(Y) \approx \sigma_X^2 [g'(\mu_X)]^2.$$

Chapter 05 - Limit Theorems

The RV *X* **converges in probability** to μ if for any $\epsilon > 0$,

$$P(|X-\mu|>\epsilon)\to 0.$$

The RVs $X_1, X_2, ...$ with CDFs $F_1, F_2, ...$ converge in distribution to X with CDF F if

$$\lim_{n \to \infty} F_n(x) = F(X)$$

at every point which F is continuous.

Weak Law of Large Numbers

Let $X_1, X_2, ...$ be a sequence of independent RVs. Then $\overline{X_n} = n^{-1} \sum_{i=1}^n X_i$ converges to μ in probability as $n \to \infty$.

Strong Law of Large Numbers

$$P(\lim_{n\to\infty} \overline{X_n} = \mu) = 1.$$

Continuity Theorem

Let F_n be a sequence of CDFs with corresponding MGFs M_n . If $M_n(t) \to M(t)$ for all t in an open interval containing zero, then $F_n(x) \to F(x)$ at all continuity points of F.

Central Limit Theorem

Let $X_1, X_2, ...$ be a sequence of independent RVs with mean μ and variance σ^2 , and CDF F and MGF M defined in a neighbourhood of zero. Let $S_n = \sum_{i=1}^n (X_i - \mu)$. Then

$$\lim_{n \to \infty} P\left(\frac{S_n}{\sigma \sqrt{n}} \le x\right) = \Phi(x), \quad -\infty < x < \infty.$$

Common Convergences in Distribution

(Tut.5 Qn3) $Bin(n,p) \stackrel{d}{\to} Poission(np)$ as $n \to \infty$, $p \to 0$.

Miscellaneous

(*Tut.5 Qn13*) For sequence $a_n \to a$, $(1 + \frac{a_n}{n})^n \to e^a$.

Chapter 06 - Distributions Derived from the Normal Distribution

(Tut.5 Qn4) For X standardised $Gamma(\alpha, \lambda)$, $X \stackrel{d}{\to} Z$ as $\alpha \to \infty$.

Common Distributions

Chi-Square Distribution

For independent $Z_1, \dots, Z_n \sim N(0, 1)$,

$$V = \sum_{i=1}^n Z_i^2 \sim \chi_n^2.$$

$$M_V(t) = (1 - 2t)^{-n/2}.$$

t-distribution

If $Z \sim N(0,1)$ and $U \sim \chi_n^2$ are independent, then

$$T = \frac{Z}{\sqrt{U/n}} \sim t_n.$$

F-distribution

For independent $U \sim \chi_m^2$ and $V \sim \chi_n^2$,

$$W = \frac{U/m}{V/n} \sim F_{m,n}.$$

Related Identities

(Tut.6 Qn2) For
$$X \sim F_{n,m}$$
, $X^{-1} \sim F_{m,n}$.
(Tut.6 Qn3) For $X \sim t_n$, $X^2 \sim F_{1,n}$.

Sample Mean & Variance

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi_{n-1}^2.$$

Related Identities

For i.i.d $X_1, ..., X_n$ from $N(\mu, \sigma^2)$,

 $(Ch\ 6.2\ Thm.A)\ \bar{X}$ and the vector $(X_1-\bar{X},...,X_n-\bar{X})$ are independent.

$$(Ch \ 6.2 \ Thm.B) \ \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

(Ch 6.2 Coro.B)
$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$
.

Chapter 08 - Estimation of Parameters and Fitting of Probability Distributions

Let $\hat{\theta}_n$ be an estimate of a parameter θ based on a sample of size n. Then $\hat{\theta}_n$ is **consistent in probability** if it converges in probability to θ as $n \to \infty$.

Method of Moments

- 1. Calculate low order moments in terms of their parameters.
- 2. Find expressions for the parameters in terms of the moments.
- 3. Insert sample moments into the expressions.

Method of Maximum Likelihood

Consider RVs X_1, \dots, X_n with joint PDF $f(x_1, \dots, x_n \mid \theta)$. The **like-lihood** of θ is

$$\mathrm{lik}(\theta) = f(x_1, \dots, x_n \mid \theta).$$

If X_1,\ldots,X_n are independent, then the \log likelihood can be expressed as

$$l(\theta) = \sum_{i=1}^{n} \log[f(x_i \mid \theta)].$$

Invariance Property

Let $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_k)$ be a mle of $\theta = (\theta_1, \dots, \theta_k)$ in the density $f(x \mid \theta_1, \dots, \theta_k)$. If $\tau(\theta) = (\tau_1(\theta), \dots, \tau_r(\theta)), 1 \le r \le k$ is a transformation of the parameter space Θ , then a mle of $\tau(\theta)$ is $\tau(\hat{\theta}) = (\tau_1(\hat{\theta}), \dots, \tau_r(\hat{\theta}))$.

Fisher Information

$$I(\theta) = E\left\{ \left[\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right]^2 \right\}.$$

Large Sample Theory

Under (varying) smoothness conditions on f,

- 1. The mle from i.i.d. sample is consistent.
- 2.

$$I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta) \right].$$

3. The distribution of $\hat{\theta}$ tends towards

$$N\left(\theta_0, \frac{I}{nI(\theta_0)}\right).$$

4. An approximate $100(1-\alpha)\%$ confidence interval for θ_0 is

$$\hat{\theta} \pm z_{\alpha/2} \frac{1}{\sqrt{nI(\hat{\theta})}}.$$

Bayesian Inference

Unknown parameter θ is treated as a distribution, not a value. **Prior distribution** $f_{\Theta}(\theta)$ represents our knowledge (assumption) about θ before observing data X. After observation, we have a better estimation using the **posterior distribution** $f_{\Theta|X}(\theta|x)$, where

$$f_{\Theta|X} = \frac{f_{X\Theta}(x,\theta)}{f_X(x)} = \frac{f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}{\int f_{X|\Theta}(x|t)f_{\Theta}(t)dt}$$

In short, it means

Posterior density ∝ likelihood × prior density

Large Sample Theory for Bayesian

As
$$n \to \infty$$
,

$$\Theta|X \sim N(\hat{\theta}, -[l''(\hat{\theta})]^{-1})$$

where $\hat{\theta}$ is the mle of θ_0 .

Bootstrapping Method

For Estimating Sampling Distribution

- 1. Assume some distribution provides a good fit to the data.
- 2. Simulate *N* random samples of size *n* from the distribution using the estimated parameter $\hat{\theta}$.
- 3. For each random sample, calculate estimates of the distribution parameters using either Method of Moments or Maximum Likelihood, θ_i^* for j = 1, ..., N.
- 4. Use the N values of estimates θ_j^* to approximate the sampling distributions of the parameters.

For Estimating Confidence Interval

- 1. Approximate the distribution of $\hat{\theta} \theta_0$ with that of $\theta^* \hat{\theta}$.
- 2. Obtain the lower and upper bounds δ and $\overline{\delta}$

$$P(\theta^* - \hat{\theta} < \underline{\delta}) = P(\theta^* - \hat{\theta} > \overline{\delta}) = \frac{\alpha}{2}$$

3. The CI for θ_0 can then be constructed:

$$P(\hat{\theta} - \overline{\delta} \le \theta_0 \le \hat{\theta} - \delta) = 1 - \alpha$$

Estimator Properties

An estimator $\hat{\theta}$ of θ_0 is **consistent** if $\hat{\theta} \stackrel{p}{\to} \theta_0$ as $n \to \infty$.

The **efficiency** of $\hat{\theta}$ relative to $\tilde{\theta}$ is

$$\operatorname{eff}(\hat{\theta}, \tilde{\theta}) = \frac{\operatorname{var}(\tilde{\theta})}{\operatorname{var}(\hat{\theta})}.$$

A statistic $T(X_1, \dots, X_N)$ is **sufficient** for θ if the conditional distribution of X_1, \dots, X_n given T = t does not depend on θ for any value of t.

MSE

MSE = $var(\hat{\theta}) + (E(\hat{\theta}) - \theta_0)^2$. If $\hat{\theta}$ is an unbiased estimator of θ_0 , MSE = $var(\hat{\theta})$.

Cramer-Rao Inequality

Let $T = t(X_1, ..., X_n)$ be an unbiased estimator of θ . Then, under smoothness assumptions on $f(x \mid \theta)$, $var(T) \ge 1/nI(\theta)$.

Factorisation Theorem for Sufficiency

 $T(X_1,\dots,X_n)$ is sufficient for a parameter of θ iff the joint pdf factors in the form

$$f(x_1,\ldots,x_n\mid\theta)=g[T(x_1,\ldots,x_n),\theta]h(x_1,\ldots,x_n).$$

Rao-Blackwell Theorem

Let $\hat{\theta}$ be an estimator of θ with $E(\hat{\theta}^2) < \infty$ for all θ . Suppose that T is sufficient for θ and let $\tilde{\theta} = E(\hat{\theta} \mid T)$. Then for all θ ,

$$E[(\tilde{\theta}-\theta)^2] \le E[(\hat{\theta}-\theta)^2].$$

Testing Hypotheses and Assessing Goodness of Fit

Testing Hypotheses

The likelihood ratio is defined as

$$\frac{P(x\mid H_0)}{P(x\mid H_1)} = \frac{P(H_1)}{P(H_0)} \frac{P(H_0\mid x)}{P(H_1\mid x)}$$

with H_0 rejected if the likelihood ratio is less than $c = \frac{P(H_1)}{P(H_0)}$.

Uniformly Most Powerful

If H_0 is simple and H_1 is composite, a test that is most powerful for every simple alternative in H_1 is said to be **uniformly most powerful**

Conditions: 1) H_1 must be one-sided. 2) The threshold for rejection region must be independent of μ_1 of H_1 .

Neyman-Pearson Lemma

Suppose that H_0 and H_1 are simple hypotheses and that the test that rejects H_0 whenever the likelihood ratio is less than c has significance level α . Then any other test for which the significance level is at most α has power at most that of the likelihood ratio test.

Generalised Likelihood Ratio

The test statistic corresponding to the **generalised likelihood ratio** is

$$\Lambda = \frac{\max_{\theta \in \omega_0} [\text{lik}(\theta)]}{\max_{\theta \in \Omega} [\text{lik}(\theta)]}$$

where ω_0 is the set of all possible values of θ specified by H_0 and similarly for ω_1 , with $\Omega=\omega_0\cup\omega_1$. The threshold λ_0 is chosen such that $P(\Lambda\leq\lambda_0\mid H_0)=\alpha$, the desired significance level. Under large sample theory,

$$-2\log\Lambda\dot{\sim}\chi_{\nu}^2$$

where $\nu = \dim \Omega - \dim \omega_0$.

Multinomial Case

Let $O_i = n\hat{p_i}$ and $E_i = np_i(\hat{\theta})$ denotes the observed and estimated cases.

$$-2\log \Lambda = 2\sum_{i=1}^{m} O_i \log \left(\frac{O_i}{E_i}\right)$$

Pearson's Chi-square Statistic

$$X^2 = \sum_{i=1}^m \frac{[x_i - np_i(\hat{\theta})]^2}{np_i(\hat{\theta})} \sim \chi_{\nu}^2,$$

where ν is the number of degrees of freedom. In practice, $np_i(\hat{\theta}) \ge 5$ is required for the approximation to be good.

Poisson Dispersion Test

Given x_1,\ldots,x_n and testing H_0 that the counts are Poisson with a common parameter λ versus H_1 that they are Poisson but with different rates, the likelihood ratio test statistic is

$$-2\log\Lambda = 2\sum_{i=1}^n x_i\log\left(\frac{x_i}{\bar{x}}\right) \approx \frac{1}{\bar{x}}\sum_{i=1}^n (x_i - \bar{x})^2.$$

Goodness of Fit

Hanging Diagrams

• historgram: Plot of $n_j - \hat{n}_j$

• rootogram: Plot of $\sqrt{n_i} - \sqrt{\hat{n}_i}$, var-stabilised

• chi-gram: Plot of $\frac{n_j - \hat{n}_j}{\sqrt{\hat{n}_j}}$, var-stabilised

Variance-stabilising transform: a transformation Y = g(X) that makes var(Y) (approximately) constant using Delta Method.

Probability Plots

• P-P Plot: Plot $F(X_{(k)})$ against $\frac{k}{n+1}$

• Q-Q Plot: Plot $X_{(k)}$ against $F^{-1}(\frac{k}{n+1})$

Tests for Normality

The **coefficient of skewness** is defined as

$$b_1 = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^3}{s^3},$$

where the test rejects for large values of $|b_1|$. The **coefficient of kurtosis** is defined as

$$b_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^4}{s^4}$$

where the test rejects for large values of $|b_2|$.