Theory of Computation: CS-202

Deterministic Finite Automata Minimization

Outlines

Deterministic Finite Accepters (DFA)

- ☐ Minimization of DFA
 - ➤ Equivalence Theorem or Set Partitioning method

Finite Automata

• Minimization of DFA means reducing the number of states from the given DFA.

DFA minimization is possible by considering following states:

- Dead states
- 2. Unreachable states
- 3. Equal or indistinguishable states

- **Dead states:** A dead state is non accepting state whose transitions for every input symbols terminate on themselves.
- There is no way for dead state to reach a final state.
- Merge all the dead states of DFA.

- Unreachable states: Unreachable states are the states that are not reachable from the initial state of the DFA for any input string.
- Remove unreachable states from DFA.

q2 and q4 are unreachable

• Equal or indistinguishable states: Two states (q_i, q_j) of a DFA are said to be equal or indistinguishable if

$$\delta^*(q_i, w) \in F \implies \delta^*(q_i, w) \in F$$

And

$$\delta^*(q_i, w) \notin F \implies \delta^*(q_i, w) \notin F$$

 $\forall w \in \Sigma^*$, q_i , q_i are called equal or indistinguishable.

 \exists , $w \in \Sigma^*$ such that

$$\delta^*(q_i, w) \in F \implies \delta^*(q_i, w) \notin F$$

Then q_i, q_i are called unequal or distinguishable.

Note: merge the equal states.

DFA Minimization using Equivalence Theorem or Set Partitioning method

If q_i and q_j are two states in a DFA, we can combine these two states into $\{q_i, q_i\}$ if they are equal.

Two states are distinguishable, if there is at least one string 'w', such that one of δ (q_i, w) and δ (q_j, w) is accepting and another is not accepting.

Hence, a DFA is minimal if and only if all the states are distinguishable.

Steps for DFA Minimization using Equivalence Theorem or Set Partitioning method

- Step 1 All the states Q are divided in two partitions final states and non-final states and are denoted by P_0 . All the states in a partition are 0^{th} equivalent. Take a counter k and initialize it with 0.
- **Step 2** Increment k by 1. For each partition in P_k , divide the states in P_k into two partitions if they are k-distinguishable.
- Two states within this partition q_i and q_j are k-distinguishable if there is an input w such that $\delta(q_i, w)$ and $\delta(q_j, w)$ are (k-1) distinguishable.
- **Step 3** If $P_k \neq P_{k-1}$, repeat Step 2, otherwise go to Step 4.
- **Step 4** Combine kth equivalent sets and make them the new states of the reduced DFA.

Note: merge dead states and remove unreachable states before following these steps. 10

Example: Minimize the DFA using set partitioning method.

Solution

States (q _i)	$\delta(\mathbf{q_i}, 0)$	$\delta(q_i, 1)$
$\Rightarrow q_0$	q1	q2
q_1	q0	q3
<pre>q₁ *q₂ *q₃ *q₄</pre>	q4	q5
*q ₃	q4	q5
*q ₄	q4	q5
q ₅	q5	q5

States (q)	$\delta(q_i, 0)$	$\delta(q_i, 1)$
$\longrightarrow q_0$	q_1	q_2
q_1	q_0	q_3
*q ₂ *q ₃ *q ₄	q_4	q_5
*q ₃	q_4	q_5
*q ₄	q_4	q_5
q_{5}	q_5	q_5

Now, apply the equivalence theorem to the DFA:

$$P_0 = \{(q2,q3,q4), (q0, q1, q5)\}$$

$$P_1 = \{(q2,q3,q4),$$

```
Check 1-equivalence of (q2, q3) \delta(q2,0)=q4 and \delta(q3,0)=q4 \delta(q2,1)=q5 and \delta(q3,1)=q5 Check 1-equivalence of (q2, q4) \delta(q2,0)=q4 and \delta(q4,0)=q4 \delta(q2,1)=q5 and \delta(q4,1)=q5 Check 1-equivalence of (q3, q4) \delta(q3,0)=q4 and \delta(q4,0)=q4 \delta(q3,1)=q5 and \delta(q4,1)=q5
```

States (q)	$\delta(\mathbf{q_i}, 0)$	$\delta(q_i, 1)$
\rightarrow q_0	q1	q2
q_1	q0	q3
<pre>q₁ *q₂ *q₃ *q₄</pre>	q4	q5
*q ₃	q4	q5
*q ₄	q4	q5
q ₅	q5	q5

Now, apply the equivalence theorem to the DFA:

$$P_0 = \{(q2,q3,q4), (q0, q1, q5)\}$$

$$P_1 = \{(q2,q3,q4), (q0, q1), (q5)\}$$

Check 1-equivalence of (q0, q1) δ (q0,0)=q1 and δ (q1,0)=q0 δ (q0,1)=q2 and δ (q1,1)=q3

Check 1-equivalence of (q0, q5) δ (q0,0)=q1 and δ (q5,0)=q5 δ (q0,1)=q2 and δ (q5,1)=q5

States (q)	$\delta(q_i, 0)$	$\delta(q_i, 1)$
\rightarrow q_0	q1	q2
q_1	q0	q3
*q ₂	q4	q5
*q ₂ *q ₃ *q ₄	q4	q5
*q ₄	q4	q5
q ₅	q5	q5

Now, apply the equivalence theorem to the DFA:

$$P_0 = \{(q2,q3,q4), (q0, q1, q5)\}$$

$$P_1 = \{(q2,q3,q4), (q0, q1), (q5)\}$$

Check 1-equivalence of (q0, q1) $\delta(q0,0)=q1$ and $\delta(q1,0)=q0$

 $\delta(q0,1)=q2$ and $\delta(q1,1)=q3$

Check 1-equivalence of (q0, q5)

$$\delta(q0,0)=q1$$
 and $\delta(q5,0)=q5$
 $\delta(q0,1)=q2$ and $\delta(q5,1)=q5$

States (q)	$\delta(\mathbf{q_i}, 0)$	$\delta(q_i, 1)$
\rightarrow q ₀	q1	q2
q_1	q0	q3
<pre>q₁ *q₂ *q₃ *q₄</pre>	q4	q5
*q ₃	q4	q5
*q ₄	q4	q5
q ₅	q5	q5

Now, apply the equivalence theorem to the DFA:

$$P_0 = \{(q2,q3,q4), (q0, q1, q5)\}$$

$$P_1 = \{(q2,q3,q4), (q0, q1), (q5)\}$$

Check 1-equivalence of (q1, q5)
$$\delta$$
(q1,0)=q0 and δ (q5,0)=q5 δ (q1,1)=q3 and δ (q5,1)=q5

States (q)	$\delta(q_i, 0)$	$\delta(q_i, 1)$
\rightarrow q ₀	q_1	q_2
q_1	q_0	q_3
<pre>q₁ *q₂ *q₃ *q₄</pre>	q_4	q_5
*q ₃	q_4	q_5
*q ₄	q_4	q_5
q_5	q ₅	q_5

Now, apply the equivalence theorem to the DFA:

$$P_0 = \{(q2,q3,q4), (q0, q1, q5)\}$$

$$P_1 = \{(q2,q3,q4), (q0, q1), (q5)\}$$

Hence,
$$P_1 = P_2$$
.

 $P_2 = \{(q2,q3,q4)\}$

Check 2-equivalence of (q2, q3) $\delta(q2,0)$ =q4 and $\delta(q3,0)$ =q4 $\delta(q2,1)$ =q5 and $\delta(q3,1)$ =q5 Check 2-equivalence of (q2, q4) $\delta(q2,0)$ =q4 and $\delta(q4,0)$ =q4 $\delta(q2,1)$ =q5 and $\delta(q4,1)$ =q5 Check 2-equivalence of (q3, q4) $\delta(q3,0)$ =q4 and $\delta(q4,0)$ =q4 $\delta(q3,1)$ =q5 and $\delta(q4,1)$ =q5

States (q)	$\delta(\mathbf{q_i}, 0)$	$\delta(q_i, 1)$
\rightarrow q ₀	q1	q2
q_1	q0	q3
<pre>q₁ *q₂ *q₃ *q₄</pre>	q4	q5
*q ₃	q4	q5
*q ₄	q4	q5
q ₅	q5	q5

Now, apply the equivalence theorem to the DFA:

$$P_0 = \{(q2,q3,q4), (q0, q1, q5)\}$$

$$P_1 = \{(q2,q3,q4), (q0, q1), (q5)\}$$

$$P_2 = \{(q2,q3,q4), (q0, q1), (q5)\}$$

Hence,
$$P_1 = P_2$$
.

Check 2-equivalence of (q0, q1)
$$\delta(q0,0)$$
=q1 and $\delta(q1,0)$ =q0 $\delta(q0,1)$ =q2 and $\delta(q1,1)$ =q3

Transition table of Minimized DFA

States (q)	$\delta(q_i, 0)$	$\delta(q_i, 1)$
$\longrightarrow q_0$	q1	q2
q_1	q0	q3
*q ₂	q4	q5
*q ₃	q4	q5
*q ₄	q4	q5
q_5	q5	q5

States (q)	$\delta(\mathbf{q_i}, 0)$	$\delta(\mathbf{q_i}, 1)$
$\longrightarrow \{q_{0}, q_{1}\}$	$\{q_{0,}q_{1}\}$	*{q ₂ , q ₃ , q ₄ }
*{q ₂ , q ₃ , q ₄ }	*{q ₂ , q ₃ , q ₄ }	q_5
q_5	q ₅	q_5

TO

Transition Diagram of Minimized DFA

States (q)	$\delta(q_i, 0)$	$\delta(q_i, 1)$
$\longrightarrow \{q_{0}, q_{1}\}$	$\{q_{0,}q_{1}\}$	*{q ₂ , q ₃ , q ₄ }
*{q ₂ , q ₃ , q ₄ }	*{q ₂ , q ₃ , q ₄ }	q_5
q ₅	q_5	q_5

Practice problem

1. Minimize the DFA using set partitioning method

2. Minimize the DFA using set partitioning method whose transition table is:

State	Inp	out
	а	b
$\rightarrow q_0$	90	q ₃
q_1	q_2	q_5
q_2	q_3	q_{λ}
q_3	$oldsymbol{q}_0$	q_5
q_4	q_0	q_{ϵ}
q_5	q_1	q_4
(q_6)	q_1	q_3

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA

Thank you