

Lecture 9: Clustering

Pilsung Kang
School of Industrial Management Engineering
Korea University

Lecture 9: Clustering

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Clustering: Overview
02	K-Means Clustering
03	Hierarchical Clustering
04	Density-based Clustering: DBSCAN
04	R Exercise

- Hierarchical clustering
 - √ Produces a set of nested clusters organized as a hierarchical tree
 - ✓ Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

- Hierarchical clustering
 - √ Produces a set of nested clusters organized as a hierarchical tree
 - ✓ Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

- Strengths of Hierarchical clustering
 - ✓ Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by cutting the dendrogram at the proper level
 - ✓ May correspond to meaningful taxonomies
- Two main types of hierarchical clustering

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster left
- ✓ Divisive clustering みまって
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point

• Strengths of Hierarchical clustering

√ Agglomerative clustering vs. Divisive clustering

- Agglomerative clustering algorithm
 - √ Key operation: computation of the proximity of two clusters
 - Min, max, group average, between centroid, etc.

- Agglomerative clustering algorithm
 - ✓ Single linkage: minimum distance between two data points in different clusters
 - √ Complete linkage: maximum distance between two data points in different clusters

- Agglomerative clustering algorithm
 - ✓ Average linkage: mean distance between two data points in different clusters
 - ✓ Centroid linkage: distance between centroids in different clusters

- Agglomerative clustering algorithm 권합된 건가 취 분난
 - √ Ward method: Compare the sum of squared error (SSE) before and after the merge
 - SSE before merge: $1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 = 8$

• SSE after merge: $4 \times 1.5^2 + 4 \times 3^2 = 45$

Ward distance: 45-8 = 37

20th 772773

- Agglomerative Clustering Procedure
 - √ Step 1: Assume that each data point is an individual cluster, compute the cluster distance
 - ✓ Step 2: Repeat the following procedure
 - Step 2-1: Merge the two closest clusters
 - √ When all data points are merged as a single cluster, stop

• Example

Initial Data Items

Distance Matrix

Dist	Α	В	С	D
A		20	7	2
В			10	25
С				3
D				

• Example

Current Clusters

2			
A	$\left(\begin{array}{c} \end{array}\right)$	$\left(\begin{array}{c} \mathbf{B} \end{array} \right)$	$\left(\begin{array}{c} C \end{array}\right)$

Dist	A	В	С	D
А		20	7	2
В			10	25
С				3
D				

• Example

Current Clusters

Dist	AD	В	С	
AD		20	3	
В			10	
С				

• Example

Current Clusters

Dist	AD	В	С	
AD		20	3	
В			10	
С				

• Example

Dist	AD	В	С	
AD		20	3	
В			10	
C				

• Example

Current Clusters

Dist	AD C	В	
AD C		10	
В			

• Example

Current Clusters

Dist	AD C	В	
AD C		10	
В			

Example

• Example

HC example

 $https://towards datascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a 36d I\,36ef 68$

- Clustering top 100 film synopses (http://brandonrose.org/clustering)
 - √ Tokenizing and stemming each synopsis
 - √ Transforming the corpus into vector space using tf-idf
 - ✓ Calculating cosine distance between each document as a measure of similarity
 - ✓ Clustering the documents using the <u>k-means algorithm</u>
 - ✓ Using multidimensional scaling to reduce dimensionality within the corpus
 - ✓ Plotting the clustering output using matplotlib and mpld3
 - ✓ Conducting a hierarchical clustering on the corpus using <u>Ward clustering</u>.
 - ✓ Plotting a Ward dendrogram
 - √ Topic modeling using <u>Latent Dirichlet Allocation (LDA)</u>

MDS result

