Response of turbulent fluctuations to the periodic perturbations in a flow over a backward facing step

LI Zhuoyue¹, BAI Honglei², GAO Nan¹

¹School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, China ²Dept. of Mechanical Engineering, University of Melbourne, Melbourne, Australia

May 26, 2015

Background

Flow over a backward facing step:

- time-averaged reattachment length $X_r/H \approx 4$ to 7;
- at $x/X_r = 1/4$, low frequency fluctuations $fX_r/U_o \approx 0.1$, 'flapping' (Heenan & Morrison, 1998);
- at $x/X_r = 1$, high frequency $fX_r/U_o \approx 1$ 'shedding' (Simpson, 1989);

Spectra of wall pressure/skin friction from literature

Objectives

Schematics of a feedback control system

- Feedback control based on linear control theory to increase the pressure in the separated region (e.g. Dahan et al., 2012);
- Construct a functional controller requires accurate linear model of system;
- 'Black-box model' approach to found the linear model for a separated flow, i.e. examine the response of flow parameter (e.g. wall pressure) to the acutation
- current investigation focuses the size of the peak in wall pressure spectra to the actuation strength

$$F_{pp}(f=f_A)\sim u'$$

Experiment Facility

Schematics of the test ri

- Step height H = 0.025m;
- Free-stream velocity $U_o = 5.7 m/s$, Re = 9100;
- Boundary layer thickness $\delta/H = 0.24$, $\theta/H = 0.02$;
- Free-stream turbulence intensity 2.0%.

Mean and r.m.s. velocities at x/H = -0.1

Experimental Facility

- 0.22 * 0.08 * 0.02m box with a speaker (20cm diameter, 8Ω , 150W) and an 1mm wide slot;
- jet directed at a 45° to the free-stream;
- forcing frequency: $St_A = fH/U_o = 0.04 0.4$;
- forcing strength: $u'/U_o = 0.1 0.4$, u' standard deviation of the jet velocity, measured using a single hotwire 1mm downstream of the jet centerline;

Experimental Facility

- Lavision 2D PIV, 49Hz, 2000 realizations
- Smoke-wire visualization, 0.1mm diameter steel wire, liquid paraffin
- Wall pressure measurement, 20 Panasonic WB61A microphones embedded in the bottom wall at x/H = 0.5 10, $\Delta x = 0.5H$

Schematics of the actuator and test rig

Effect of forcing frequency St_A on the mean flow

Phase averaged streamlines for different St_A

Effect of forcing frequency St_A on the shear layer

9 of 18

max. local turbulent kinetic energy $k=\overline{u^2}+\overline{v^2}$

location of the max. local kinetic energy

Surface pressure for the un-controlled flow

 Proper Orthogonal Decomposition (POD) to separate acoustic pressure (p_a) and hydrodynamic pressure (p_h)

$$p(t) = p_a(t) + p_h(t)$$

A total of N=20 sensors, p decomposed into N modes (p_n)

$$p(x, t) = \sum_{n=1}^{N} p_n(x, t) = \sum_{n=1}^{N} a_n(t) \phi^{(n)}(x)$$

where

$$a_n(t) = \int p(x, t)\phi^{(n)}dx$$

The orthogonal basis $\phi(n)$ was obtained by computing the eigenvectors of the correlation matrix:

$$\int R(x, x', \tau = 0)\phi^{(n)}(x')dx' = \Lambda^{(n)}\phi^{(n)}(x)$$

Decomposition of surface pressure for the un-controlled flow

12 of 18

Re-construction of surface pressure for the un-controlled flow

$$p_n(x,t) = a_n(t)\phi^{(n)}(x)$$

POD for cases with different forcing frequencies St_{λ}

Effect forcing frequency St_A on wall pressure fluctuations

Coef. of the fluctuating wall pressure

$$C_{p_{h'}} = \frac{(\overline{\rho_h^2})^{\frac{1}{2}}}{1/2\rho U_o^2}$$

Pressure and velocity Spectra

hot-wire probe location at y/H=0.2 above the microphones

Effect of forcing strength u^{\prime}/U_o on the peak in spectrum

Conclusion

- Forcing the shear layer at the 'flapping' frequency ($St_A = 0.04$) caused very large scale vortical motion, p' increases significantly;
- forcing the flow at the 'shedding' frequency ($St_A \approx 0.2$) caused turbulent kinetic energy grow fast, X_r becomes very small;
- wall pressure at $x/H \le 1.0$ changes linearly to the actuation at $St = St_A$ when $u'/U_o \le 0.4$ in magnitude;
- phase will be examined in the future.