Заняття 14. Правила Гунда Розщеплення рівнів у магнітному полі. Правила відбору. Елементи ядерної фізики

Аудиторне заняття

1. Використовуючи правила Гунда знайти основний терм атома, електронна конфігурація незаповненої підоболонки якого

$$n d^2$$
; $n d^3$; $n f^{10}$; $n f^4$.

- 2. Користуючись правилами Гунда написати основний терм атома, єдина незаповнена підоборонка якого містить третину від можливого числа електронів і S = 1.
- 3. Скориставшись правилами Гунда, знайти число електронів у єдиній незаповненій підоболонці атома, основний терм якого а) 3F_2 ; б) ${}^2P_{3/2}$.
- 4. Схематично намалювати енергетичні рівні, пов'язані з термами 1D_2 та 1P_1 за відсутності магнітного поля та при його наявності. Вказати можливі переходи.
- 5. Визначити фактор Ланде для наступних термів: а) ${}^{5}F_{2}$; б) ${}^{5}P_{1}$.
- 6. Визначити спіновий механічний момент атому в стані D_2 , якщо максимальне значення проекції магнітного моменту при цьому дорівнює чотирьом магнетонам Бора.

Домашнє завдання

- 1. Скориставшись правилами Гунда, знайти число електронів у єдиній незаповненій підоболонці атома, основний терм якого ${}^6S_{5/2}$.
- 2. Атом знаходиться в магнітному полі з індукцією B = 0.25 Тл. Підрахувати повну величину розщеплення терма а) ^{1}D ; б) $^{3}F_{4}$.
- 3. самостійно розглянути задачі з теми «. Елементи ядерної фізики» (https://youtu.be/1IbwTeWbZ s)