CSCI 340 Data Structures and Algorithm Analysis

Binary trees (general binary trees, B.S.T.)

What is tree

- Tree is a data type that consists of
 - Nodes
 - A node may have child(ren) and a single parent
 - Edges
 - Edges indicate the parent-child relationship
- A tree can be empty and non-empty
 - In case of non-empty tree, it must have one and single one root node which doesn't have a parent
 - The nodes that do not have child(ren) are called leaves.

Example of trees

Minmei Hou, Ph.D., Computer Science Department, NIU

What is binary tree

- Binary tree is a tree where any node has at most two children.
 - Left and right child
 - Left and right subtrees
 - Examples:

Minmei Hou, Ph.D., Computer Science Department, NIU

Implementing a linked list

Data fields in Node:

T value Link to the next node

Data fields in the list: Root node

Implementing a binary tree

A binary tree

- Minimum data fields of a node:
 - T value
 - Link to the left child
 - Link to the right child
- Minimum data fields of the tree
 - Root node

Implementing a binary tree

A binary tree

Operations on the tree

- IsEmpty
- Tree traversal
- Insert an element
- Delete an element
- clear
- (search in B.S.T.)
- (balancing for height balanced tree)

Implementing a binary tree

bool IsEmpty()

Tree traversal

- Breadth-first traversal
 - Visit each node starting from the highest (or lowest) level and moving down (or up) level by level
 - Visiting nodes on each level from left to right (or right to left).
 - ==> 4 possibilities:
 - Top-down, left-to-right (most common one)
 - Top-down, right-to-left
 - Bottom-up, left-to-right
 - Bottom-up, right-to-left
- Depth-first traversal

Top-down, left-to-right breadth-first traversal implementation

A binary tree

Visit order: 8 5 6 2 7 1 9 3

Use a queue

Pseudocode

```
push the root to the queue Q
while (Q is not empty)
     P \leftarrow \text{front \& pop of } Q
     visit P
     If ( P's left child L is not empty )
           push L to Q
     If (P's right child R is not empty)
           push R to Q
```

Depth-first traversal

A binary tree

PreOrder

- Visit the current node before traversing sub-trees
- 85276139

InOrder

- Traverse left sub-tree first, then visit the current node, then traverse right sub-tree
- 25781369

PostOrder

- Visit the current node after traversing sub-trees
- 27531968

Pseudocode of recursive implementation of depth-first binary tree traversal

A binary tree


```
InOrder ( a node N )
if N is not empty
InOrder( N's left child )
visit N
InOrder( N's right child )
```

```
PreOrder ( a node N )

If N is not empty

visit N

PreOrder (N's left child)

PreOrder (N's right child)
```

PostOrder (a node N)

- If N is not empty
 - PostOrder (N's left child)
 - PostOrder (N's right child)Visit N

Implementing tree traversal

public member function of the tree class:void PreOrder() { PreOrder(root); }

private member function of the tree class:
 void PreOrder(Node* n);

Nonrecursive implementation of PreOrder binary tree traversal

- Use a stack S
- Pseudocode

A binary tree


```
p \leftarrow \text{root of the tree}
if ( p is not empty )
    push p to S
    while (S is not empty)
        p \leftarrow \text{top and pop } S
        visit p
        if (p's right child R is not empty)
            push R to S
        if (p's left child L is not empty)
            push L to S
```

Nonrecursive implementation of PostOrder binary tree traversal

- Use a stack S
- Pseudocode

A binary tree


```
p \leftarrow q \leftarrow root of the tree
while ( p is not empty )
    while (p's left child L is not empty)
        push p to S
        p \leftarrow L
    while ( p is not empty AND
        (p's right child is empty OR
         p's right child is q))
        visit p
        q \leftarrow p
        If (S is empty)
             stop
        p \leftarrow \text{top and pop } S
    push p to S
    p \leftarrow p's right child
```

Nonrecursive implementation of InOrder binary tree traversal

- Use a stack S
- Pseudocode

A binary tree


```
p \leftarrow \text{root of the tree}
while (p is not empty)
    while (p is not empty)
         if (p's right child R is not empty)
             push R to S
         push p to S
        p \leftarrow p's left child
    p \leftarrow \text{top \& pop } S
    while (S is not empty AND p's
                    right chid R is empty)
         visit p
         P \leftarrow \text{top \& pop } S
    visit p
    if (S is not empty)
         p \leftarrow \text{top \& pop } S
    else
                            Minmei Hou, Ph.D., Dept.
                            Computer Science, NIU
         p \leftarrow \text{null}
```

Note

For depth-first tree traversal, only recursive implementations are required (for your exam).

Nonrecursive implementations of depth-first tree traversal are for your reference only.

Application of tree traversals

- Find the number of nodes in the tree
- Find the height of the tree
- Find the number of leaves in the tree
- Make a copy of the tree

Clear a tree

Use a recursion in private member method:

```
ClearTree (R) // R is the root at the first call if R is not empty
ClearTree R's left child
ClearTree R's right child
Deallocate R
```

A public member method simply invoke:

```
ClearTree( root ) // root is the data member root ← empty // reset root pointer
```

Make a clone

- Deep copy vs. shallow copy
- Recursive private method:

```
Clone (Curr)

If Curr is not empty

L ← Clone Curr's left child

R ← Clone Curr's right child

N ← Create new node with Curr's value, L and R

N is clone of Curr

Else

Clone of Curr is empty
```

Public method simply invoke:

Clone(src.root) // where src is source tree object

What is binary search tree

- First of all, it's a binary tree
- Assuming there is no redundant values, it satisfies the following property:
 - For any node *n* of the tree, all values stored in *n*'s left sub-tree are less that the value stored in *n*,
 - And all values stored in the right sub-tree are greater than the value stored in n.

Examples of B.S.T.

Minmei Hou, Ph.D., Computer Science Department, NIU

These are not B.S.T.

Depth-first traversals of B.S.T.

AB.S.T.

- PreOrder5 2 1 3 8 6 7 9
- InOrder1 2 3 5 6 7 8 9
- PostOrder1 3 2 7 6 9 8 5

Search in a B.S.T.

- A search in B.S.T. starts from the root
- Follows a path from the root to a leaf
- It may stop in the middle of the path in case the element is found
- The length of the path determines the efficiency of the search operation

Minmei Hou, Ph.D., Computer Science Department, NIU

Implementing B.S.T. Search


```
BSTSearch(N, val)
   If N is not empty
       If N's value is val
            Val is found
       If N's value > val
            Search in N's left sub-tree
       Else
            Search in N's right sub-tree
   Else
       Val is not found in the tree
```

Implementing B.S.T. search


```
BSTSearch(N, val)
   while N is not empty
       if N's value == val
           Val is found
       else if N's value > val
           N \leftarrow N's left link
       else
           N \leftarrow N's right link
    if N is empty
        Val is not found
```

Insertion in B.S.T.

Insertion in B.S.T.

Recursive insertion

```
BSTInsert( n, val )

If n is null

n ← new node with val

Else if n's data > val

BSTInsert( n->left, val )

Else

BSTInsert( n->right, val)
```

Non-recursive Insertion in B.S.T.


```
BSTInsert( val )
   N ← create node with val
   if ( root is empty )
       root \leftarrow N
       STOP
   curr \leftarrow root
   prev ← null
   while ( curr is not empty )
       prev ← curr
       if curr's value is less than val
           curr ← curr's right link
       else
           curr ← curr's left link
   if prev's value is less than val
       prev's right link ← N
   else
       prev's left link ← N
    Minmei Hou, Ph.D., Dept. Computer Science, NIU
```

Three cases:

- 1. the node to be deleted is a leaf
- 2. the node to be deleted has one child/subtree
- 3. the node to be deleted has two children/subtrees

1st case: Deleting a leaf.

2nd case: Deleting a node with one child/subtree.

3rd case: Deleting a node N with two children/subtrees.

Two approaches:

- Deletion by merging
- Deletion by copying

Approach I: deletion by merging.

- N: the node to be deleted; L: N's left subtree; R: N's right subtree
- R is attached to L's right-most node (N's immediate predecessor) as the right child
- N is replaced by its left child

More examples of deletion by merging:

More examples of deletion by merging:

Pseudocode of deletion by merging

Pseudocode of deletion by merging

How to find **immediate predecessor** of node *N* in case *N*has two children?

p ← N's left child
 while p's right child is not empty
 p ← p's right child
 p is the predecessor of node N

How do you find **immediate successor** of node *N*?

Approach II: deletion by copying.

- Replace N's value by N's immediate predecessor's value
- The problem becomes to delete N's immediate predecessor
 - It is a leaf
 - It has only one child.

Deletion by copying

More example

Pseudocode of deletion by copying


```
BSTDeletionByCopying ( N )
   // N is passed by "passing-by-reference"
   if N is empty
       STOP
   if N's right child is empty
       N \leftarrow N's left child
   else if N's left child is empty
       N \leftarrow N's right child
   else // in case N has two children
       pred ← immediate predecessor of N
       N's value ← pred's value
       tmp ← pred // for deallocation later
       if pred's right child is empty
          pred ← pred's left child
       else if pred's left child is empty
          pred ← pred's right child
       deallocate tmp
```

Practice questions

Questions:

What is the immediate predecessor of node 12?

What is the resulted tree if node 12 is deleted by merging?

Practice questions

Questions:

What is the immediate predecessor of node 8?

What is the resulted tree if node 8 is deleted by copying?