Network Systems Capstone @CS.NYCU

Lab7: MIMO ZF Equalization

Example of Wireless Transmission

Example Code

- 1. Generate a sequence of data bits
- 2. Modulate the bits into BPSK samples
- 3. Generate random channel h
 - (TODO) | h | ² should be equal to the receiving power
 - (TODO) P_{rx} should be derived based on the Friis path loss model
- 4. Simulate the reception over the channel with AWGN
 - y = hx + n
 - Expected noise power E[|n|²] is set to -85 dBm
- 5. SNR and BER calculation

Snapshot of Example Code

pre _ lab7_SISO()

```
%% Equalization
% Detection Scheme:(Soft Detection)
% +1 if o/p >=0
% -1 if o/p<0
% Error if input and output are of different signs
for d=1:length(dist)
% TODO: s = y/Pr
% TODO: x_est = 1 if real(s) >= 0; otherwise, x_est = -1

SNR(d)=Pr(d)/Pn;
SNRdB(d)=10*log10(SNR(d));
BER_simulated(d)=0;
SNRdB_simulated(d)=0;
% TODO: compare x_est with x (true value) and calculate BER_simulated(d)
% TODO: noise = s - x, and, then, calculate SNR_simulated(d)
end
```

Output of Example Code

SNRdB =

11.9643 10.0261 8.4425 7.1035 5.9437 4.9207 4.0055 3.1776 2.4219 1.7266 1.0829

TODO: Pre-Lab7-SISO

Input and Output

- Input
 - Link distances: 200m ~ 700m
 - Tx Power: 4dBm
 - Noise Power: -85dBm
- Output
 - SNR, BER
 - Plot the figures
 - Constellation points for every different distance
 - BER bar graph (x-axis: distances, y-axis: BER)
 - SNR bar graph (x-axis: distances, y-axis: SNR)

TODO

Given a link distance and 1,000 random samples

- Calculate the path loss and drive the receiving power
- 2. Given the received sample y, decode the received sample x'
- 3. Determine whether x' is decoded correctly and calculate BER
- Calculate the error (noise) by n' = x'-x and derive the average noise power and, thereby, the average SNR
- 5. Plot figures

Code Submission

- Deadline: May. 10 (Mon.) 23:59
- Submit to new E3
 - Source code: pre_lab7_SISO.m