STOCHASTIC QUANTIZATION AT FINITE CHEMICAL POTENTIAL

Gert Aarts

with Nucu Stamatescu

arXiv:0807.1597 [hep-lat]

Swansea University

first collaboration meeting below sea level

INTRODUCTION

QCD AT NONZERO BARYON DENSITY

QCD at finite μ : complex fermion determinant

$$\det M(\mu) = [\det M(-\mu)]^*$$

$$Z = \int DU \, e^{-S_B(U)} \det M$$

importance sampling not possible

- reweighting
- Taylor expansion
- analytical continuation

- density of states
- canonical ensemble

here:

stochastic quantization

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

- alternative nonperturbative numerical approach
- weight = equilibrium distribution of stochastic process

think: Brownian motion

particle in a fluid: friction (γ) and kicks (η) Langevin equation:

$$\frac{d}{dt}\vec{v}(t) = -\gamma \vec{v}(t) + \vec{\eta}(t) \qquad \langle \eta_i(t)\eta_j(t')\rangle = 2kT\gamma \delta_{ij}\delta(t - t')$$

equilibrium solution/noise average:

$$\lim_{t \to \infty} \frac{1}{2} \langle v_i(t) v_j(t) \rangle = \frac{1}{2} \delta_{ij} kT$$

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

apply to field theory (Parisi and Wu '81)

$$\frac{\partial \phi(x,\theta)}{\partial \theta} = -\frac{\delta S[\phi]}{\delta \phi(x,\theta)} + \eta(x,\theta)$$

Gaussian noise

$$\langle \eta(x,\theta) \rangle = 0$$
 $\langle \eta(x,\theta)\eta(x',\theta') \rangle = 2\delta(x-x')\delta(\theta-\theta')$

corresponding Fokker-Planck equation

$$\frac{\partial P[\phi, \theta]}{\partial \theta} = \int d^d x \, \frac{\delta}{\delta \phi(x, \theta)} \left(\frac{\delta}{\delta \phi(x, \theta)} + \frac{\delta S[\phi]}{\delta \phi(x, \theta)} \right) P[\phi, \theta]$$

stationary solution:
$$P[\phi] \sim e^{-S}$$

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

- real action: formal proofs of convergence (but can also use importance sampling)
- complex action: no formal proofs available (but other methods in serious trouble)

force $\delta S/\delta \phi$ complex:

complex Langevin dynamics

example: real scalar field $\phi \to \operatorname{Re} \phi + i\operatorname{Im} \phi$

$$\phi \to \operatorname{Re} \phi + i \operatorname{Im} \phi$$

$$\frac{\partial \operatorname{Re} \phi}{\partial \theta} = -\operatorname{Re} \frac{\delta S}{\delta \phi} + \eta$$

$$\frac{\partial \operatorname{Im} \phi}{\partial \theta} = -\operatorname{Im} \frac{\delta S}{\delta \phi}$$

observables: analytic extension

$$\langle O(\phi) \rangle \rightarrow \langle O(\operatorname{Re} \phi + i \operatorname{Im} \phi) \rangle$$

(PRE)HISTORY

- Parisi and Wu '81
- Damgaard and Hüffel, Physics Reports '87

application to finite μ :

effective three-dimensional spin models

- Karsch and Wyld '85
- Ilgenfritz '86
- Bilic, Gausterer, Sanielevici '88

FINITE CHEMICAL POTENTIAL

WHAT WE DID

three models of the form

$$Z = \int DUe^{-S_B} \det M \qquad \det M(\mu) = [\det M(-\mu)]^*$$

- QCD in hopping expansion
- SU(3) one link model
- U(1) one link model

observables:

- (conjugate) Polyakov loops
- density
- phase of determinant

THREE MODELS

I: QCD IN HOPPING EXPANSION

fermion matrix:

$$M = 1 - \kappa \sum_{i=1}^{3} \operatorname{space} - \kappa \left(e^{\mu} \Gamma_{+4} U_{x,4} T_{4} + e^{-\mu} \Gamma_{-4} U_{x,4}^{-1} T_{-4} \right)$$

hopping expansion:

$$\det M \approx \det \left[1 - \kappa \left(e^{\mu} \Gamma_{+4} U_{x,4} T_4 + e^{-\mu} \Gamma_{-4} U_{x,4}^{-1} T_{-4} \right) \right]$$
$$= \prod_{\mathbf{x}} \det \left(1 + h e^{\mu/T} \mathcal{P}_{\mathbf{x}} \right)^2 \det \left(1 + h e^{-\mu/T} \mathcal{P}_{\mathbf{x}}^{-1} \right)^2$$

with $h=(2\kappa)^{N_{\tau}}$ and the (conjugate) Polyakov loops $\mathcal{P}_{\mathbf{x}}^{(-1)}$ full gauge dynamics included

THREE MODELS

II: SU(3) ONE LINK MODEL

$$Z = \int dU e^{-S_B} \det M \qquad \qquad \mathsf{link} \, U \in \mathsf{SU(3)}$$

$$S_B = -\frac{\beta}{6} \left(\text{Tr } U + \text{Tr } U^{-1} \right)$$

determinant:

$$\det M = \det \left[1 + \kappa \left(e^{\mu} \sigma_{+} U + e^{-\mu} \sigma_{-} U^{-1} \right) \right]$$
$$= \det \left(1 + \kappa e^{\mu} U \right) \det \left(1 + \kappa e^{-\mu} U^{-1} \right)$$

with
$$\sigma_{\pm} = (1 \pm \sigma_3)/2$$

- det in colour space remaining
- exact evaluation by integrating over the Haar measure

THREE MODELS

III: U(1) ONE LINK MODEL

U(1) model: link $U = e^{ix}$ with $-\pi < x \le \pi$

$$S_B = -\frac{\beta}{2} \left(U + U^{-1} \right) = -\beta \cos x$$

determinant:

$$\det M = 1 + \frac{1}{2}\kappa \left[e^{\mu}U + e^{-\mu}U^{-1} \right] = 1 + \kappa \cos(x - i\mu)$$

partition function:

$$Z = \int_{-\pi}^{\pi} \frac{dx}{2\pi} e^{\beta \cos x} \left[1 + \kappa \cos(x - i\mu) \right]$$

all observables can be computed analytically

COMPLEX LANGEVIN DYNAMICS

Langevin update:

$$U(\theta + \epsilon) = R(\theta) U(\theta)$$

$$R = \exp \left[i\lambda_a \left(\epsilon K_a + \sqrt{\epsilon} \eta_a \right) \right]$$

drift term

$$K_a = -D_a S_{\text{eff}}$$
 $S_{\text{eff}} = S_B + S_F$ $S_F = -\ln \det M$

noise

$$\langle \eta_a \rangle = 0 \qquad \qquad \langle \eta_a \eta_b \rangle = 2\delta_{ab}$$

real action: $\Rightarrow K^{\dagger} = K \Leftrightarrow U \in SU(3)$

complex action: $\Rightarrow K^{\dagger} \neq K \Leftrightarrow U \in SL(3, \mathbb{C})$

U(1) ONE LINK MODEL

- data points: complex Langevin stepsize $\epsilon = 5 \times 10^{-5}$, 5×10^{7} time steps
- lines: exact results

excellent agreement for all μ

SU(3) ONE LINK MODEL

- data points: complex Langevin stepsize $\epsilon = 5 \times 10^{-5}$, 5×10^{7} time steps
- lines: exact results

excellent agreement for all μ

SU(3) ONE LINK MODEL

scatter plot of *P* during Langevin evolution

QCD IN HOPPING EXPANSION

first results on 4^4 lattice at $\beta=5.6$, $\kappa=0.12$, $N_f=3$

low-density "confining" phase ⇒ high-density "deconfining" phase

DENSITY

U(1) ONE LINK MODEL

SU(3) ONE LINK MODEL

- ullet linear increase at small μ
- ullet saturation at large μ

excellent agreement for all μ

DENSITY

QCD IN HOPPING EXPANSION

first results on 4^4 lattice at $\beta=5.6$, $\kappa=0.12$, $N_f=3$

low-density phase ⇒ high-density phase

REAL VS. COMPLEX LANGEVIN

U(1) ONE LINK MODEL

plaquette as a function of μ^2

 $\mu^2 < 0$: imaginary chemical potential \Leftrightarrow real action

NUMERICAL STABILITY/RUNAWAYS

PROBLEM IN THE 80'S

one link models: no problem

field theory: runaways practically eliminated careful with numerical precision and roundoff errors dynamical step size

U(1) ONE LINK MODEL

$$\det M(\mu) = [\det M(-\mu)]^* = |\det M(\mu)|e^{i\phi}$$

average phase factor: $\langle e^{2i\phi} \rangle = \left\langle \frac{\det M(\mu)}{\det M(-\mu)} \right\rangle$

$$\det M(\mu) = [\det M(-\mu)]^* = |\det M(\mu)|e^{i\phi}$$

scatter plot of $e^{2i\phi}$ during Langevin evolution

$$\det M(\mu) = [\det M(-\mu)]^* = |\det M(\mu)|e^{i\phi}$$

scatter plot of $e^{2i\phi}$ during Langevin evolution

$$\det M(\mu) = [\det M(-\mu)]^* = |\det M(\mu)|e^{i\phi}$$

scatter plot of $e^{2i\phi}$ during Langevin evolution

QCD IN HOPPING EXPANSION

average phase factor: $\langle e^{2i\phi} \rangle = \left\langle \frac{\det M(\mu)}{\det M(-\mu)} \right\rangle$

scatter plot of $e^{2i\phi}$ during Langevin evolution

$$SU(3) \rightarrow SL(3,\mathbb{C})$$

QCD IN HOPPING EXPANSION

$$\frac{1}{3} \operatorname{Tr} U^{\dagger} U \ge 1 \qquad = 1 \text{ if } U \in \text{SU(3)}$$

WHY DOES IT (APPARENTLY) WORK?

- one link models: excellent
- precise agreement with exact results
- sign problem not a problem
- well defined distributions
- field theory encouraging

why?

- classical flow
- Fokker-Planck equation

in U(1) model

CLASSICAL FLOW

U(1) ONE LINK MODEL

$$link U = e^{ix}$$

complexification $x \to z = x + iy$

Langevin dynamics: $\dot{x} = K_x + \eta$ $\dot{y} = K_y$

$$\dot{x} = K_x + \eta$$

$$\dot{y} = K_y$$

classical forces:
$$K_x = -\text{Re} \frac{\partial S}{\partial x}\Big|_{x \to z}$$
 $K_y = -\text{Im} \frac{\partial S}{\partial x}\Big|_{x \to z}$

$$K_y = -\mathrm{Im} \frac{\partial S}{\partial x} \Big|_{x \to z}$$

- classical fixed points: $K_x = K_y = 0$
- one stable fixed point at x=0, $y=y_s(\mu)$
- unstable fixed points at $x = \pi$, $y = y_u(\mu)$

structure is independent of $\mu!$

CLASSICAL FLOW

U(1) ONE LINK MODEL

flow diagrams and Langevin evolution

- black dots: classical fixed points
- $\mu = 0$: dynamics only in x direction
- $\mu > 0$: spread in y direction

CLASSICAL FLOW

COMPLEX FOKKER-PLANCK EQUATION

U(1) ONE LINK MODEL

complex Fokker-Planck equation:

$$\frac{\partial P(x,\theta)}{\partial \theta} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial S}{\partial x} \right) P(x,\theta)$$

all eigenvalues are real $\Leftrightarrow \det M(\mu) = [\det M(-\mu)]^*$

smallest nonzero eigenvalue

all eigenvalues ≥ 0 (!)

open question: real Fokker-Planck equation for $\rho(x,y,\theta)$

SUMMARY

finite chemical potential: complex action stochastic quantization and complex Langevin dynamics

- one link models: excellent
- field theory: encouraging

detailed study of

(sign problem and) phase of the determinant

why? partly understood in simple models

- classical flow qualitatively unchanged
- complex FP equation: eigenvalues ≥ 0

to do: more field theory