

Task 5: Networking and Security Operations with SIEM, Forensics, and Traffic Analysis

Submitted by:

Shashanka U N SOC Intern – Cyber Security

Submitted to:

CyArt Tech

Date:

30th August 2025

Introduction:

This task integrated multiple domains of cybersecurity, combining networking fundamentals with security operations. The exercises focused on designing efficient subnets, analyzing network traffic, troubleshooting protocol issues, and deploying a Security Information and Event Management (SIEM) system. Additionally, the lab simulated a security incident to apply forensic analysis techniques and concluded with proactive threat hunting. The goal was to replicate real-world scenarios where organizations must not only build secure and scalable networks but also detect, investigate, and respond to threats using both network traffic data and centralized log analysis.

Objectives:

- Design and calculate a subnet for a small network.
- Analyze captured network traffic for patterns.
- Troubleshoot common network protocol issues.
- Deploy a SIEM (ELK Stack) for log collection and monitoring.
- Simulate an incident and investigate using forensics.
- Perform proactive threat hunting using traffic and log data.

Methodology

The following methodology was adopted to complete Task:

Network Setup:

- Base Network: 192.168.1.0/27 (Subnet design for 20 devices).
- Ubuntu 22.04 VM (used for SIEM setup and traffic analysis).

Tools:

- draw.io → Subnet diagram and network design.
- Wireshark $4.x \rightarrow$ Packet capture and protocol analysis.
- tcpdump \rightarrow Command-line traffic collection.
- Cisco Packet Tracer → Simulation of troubleshooting scenarios.

- ELK Stack (Elasticsearch, Logstash, Kibana) → SIEM setup, log collection, and visualization.
- hping3 / SSH brute-force attempts → Simulated attack traffic for forensic analysis.

Scan Results & Observations:

Task 1 – Subnet Design

Steps:

1. Selected private IP range 192.168.1.0/24 for the office network.

2. Requirement was 20 devices \rightarrow chose subnet /27 which provides 32 total IPs (30 usable).

3. Calculated subnet details:

• Network Address: 192.168.1.0

• **Subnet Mask**: 255.255.255.224 (/27)

• Usable Range: 192.168.1.1 – 192.168.1.30

• **Broadcast Address**: 192.168.1.31

4. Documented subnet math to justify CIDR selection.

5. Designed topology in **draw.io**, connecting router, switch, and sample PCs.

Results:

Calculation:

Requirement = 20 devices.

Choose /27 since usable hosts = $2^{(32-27)} - 2 = 2^5 - 2 = 32 - 2 = 30$ (>=20).

Therefore subnet chosen: 192.168.1.0/27 (mask 255.255.255.224), usable range 192.168.1.1–192.168.1.30, broadcast 192.168.1.31.

• Network: 192.168.1.0/27

• Subnet Mask: 255.255.255.224

Gateway: 192.168.1.1Broadcast: 192.168.1.31

• Usable Hosts: 192.168.1.2 – 192.168.1.30

Task 2 – Network Traffic Analysis Steps:

- 1. Configured Wireshark on Ubuntu VM to capture traffic from the active network interface.
- 2. Collected traffic for ~10 minutes while performing normal activities (web browsing, DNS lookups, SSH connections).
- 3. Applied Wireshark filters to identify specific protocols:
 - a. $tcp \rightarrow TCP traffic$
 - b. $\mathbf{udp} \to \mathbf{UDP}$ traffic
 - c. $dns \rightarrow DNS$ queries/responses
- 4. Used **Statistics** → **Protocol Hierarchy** to observe protocol distribution.
- 5. Used **Statistics** → **Conversations** to find **Top Talkers** (hosts generating the most traffic).
- 6. Checked for anomalies such as spikes in DNS queries or abnormal port usage.

Results

Task 3 – Troubleshoot Network Protocol Issues

Steps:

1. Designed a small test network with 1 Router, 1 Client (PC), and 1 Server using Packet Tracer / VM setup.

2. Assigned IP addresses:

Router: 192.168.1.1/24

Client: 192.168.1.10/24, gateway 192.168.1.1 Server: 192.168.1.20/24, gateway 192.168.1.1

- 3. Introduced a deliberate issue \rightarrow configured incorrect DNS IP on the client.
- 4. Tested connectivity:

Ping to Router IP \rightarrow successful (local connectivity OK).

Traceroute to Server IP \rightarrow successful (routing OK).

DNS resolution (pinging hostname) \rightarrow failed.

- 5. Captured traffic in **Wireshark** to confirm repeated DNS queries without valid responses.
- 6. Corrected DNS configuration (set valid DNS IP).

Task 4: SOC and Networking Integration

1. Set Up ELK Stack for SIEM

Steps Performed:

- 1. Installed ELK Stack on a Linux VM (Ubuntu).
 - o Installed Elasticsearch, Logstash, and Kibana.
- 2. Configured Logstash to collect logs:
 - System logs (syslog)
 - o Network device logs (router, firewall)
- 3. Created Kibana dashboards to visualize key metrics:
 - o Login attempts
 - o Traffic volume
 - Security alerts

2. Simulate an Incident and Perform Network Forensics

Steps Performed:

- 1. Simulated a security incident:
 - o Example: Unauthorized SSH access attempt / DoS attack
- 2. Captured network traffic using Wireshark during the incident.
- 3. Analyzed captured traffic to:
 - o Identify attack vector (source IP, destination IP, port, protocol)
 - o Document malicious packets (e.g., SYN flood pattern, repeated login attempts)
- 4. Correlated network data with SIEM logs in Kibana to build a timeline of the incident.

3. Conduct Threat Hunting

Steps Performed:

- 1. Reviewed SIEM logs in Kibana for suspicious activities.
- 2. Monitored network traffic in Wireshark for anomalies:
 - o Unusual outbound connections
 - o Repeated failed login attempts
 - Suspicious protocols or ports
- 3. Correlated findings with historical data to detect potential threats.