

7.2.3 锰族元素及其化合物

d⊠	VIIB族	Mn	Tc	Re	Bh
		锰	锝	铼	铍

1925年,德国化学家诺达克夫妇 从铂矿中发现了它 Re的熔点高(3170°C),仅次于W 特别是W—Re合金,可做火箭外 壳,核反应堆内衬

大学化学

锰的主要氧化态

主要氧化数	d 电子构型 最常见状		颜色
. 7	J.0	$\mathbf{Mn_2O_7}$	绿
+7	\mathbf{d}^0	MnO ₄	紫红
+6	\mathbf{d}^1	MnO ₄	绿
+4	d^3	MnO ₂	7717
1.2	d 5	Mn(OH) ₂	白
+2	u ^o	Mn ²⁺	淡红

锰的电势图

$$E_{\mathbf{A}}^{\circ}/\mathbf{V}$$

$$MnO_4^{-} \xrightarrow{0.56} MnO_4^{2-} \xrightarrow{2.24} MnO_2 \xrightarrow{0.95} Mn^{3+} \xrightarrow{1.5} Mn^{2+} \xrightarrow{-1.18} Mn$$

1.70

1.51

$$E_{\rm B}^{\Theta}/{\rm V}$$

大学化学

●酸性溶液中, Mn³+、MnO⁴-易发生歧化反应

$$2Mn^{3+} + 2H_2O \rightarrow Mn^{2+} + MnO_2 \downarrow + 4H^+$$

 $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 \downarrow + 2H_2O$

- ●酸性溶液中, Mn²+稳定, 不易被氧化或还原
- ●碱性溶液中, Mn(OH)₂易被空气中氧氧化
- ●酸性溶液中, MnO₄、MnO₂有强氧化性

大学化学

锰的主要氧化物及其水合物

主要氧化数	氧化物及其水合物	颜色	酸碱性
+7	Mn ₂ O ₇ (液) HMnO ₄	氧 紫	强酸性
+6	H_2MnO_4	丝鐘	酸性
+4	MnO_2 $MnO(OH)_2$	棕悠	两性
+3	Mn_2O_3 $Mn(OH)_3$	物酸性	弱碱性
+2	MnO Mn(OH) ₂	增强	碱性

氢氧化锰Mn(OH)2

●锰(II)盐与碱反应,生成白色胶状沉淀

$$Mn^{2+} + 2OH^{-} \rightarrow Mn(OH)_{2}$$

白色

● 在空气中不稳定,被氧化为水合二氧化锰

$$2Mn(OH)_2 + O_2 \rightarrow 2MnO(OH)_2$$

 棕黑色

锰(II)盐

- 强酸盐均溶于水,少数弱酸盐(如MnCO₃、 MnS) 难溶于水
- [Mn(H₂O)₆]²⁺为淡红色,简写为Mn²⁺,带结晶
 水的锰(II) 盐为粉红色晶体
- 酸性溶液中,能被强氧化剂氧化为MnO₄
 2Mn²⁺+14H⁺+5NaBiO₃ →
 2MnO₄⁻+5Bi³⁺+5Na⁺+7H₂O

$$2Mn^{2+}+4H^{+}+5PbO_{2} \rightarrow 2MnO_{4}^{-}+5Pb^{2+}+2H_{2}O$$

$$2Mn^{2+}+8H_2O+5S_2O_8^{2-}\rightarrow 2MnO_4^-+10SO_4^{2-}+16H^+$$

二氧化锰

- ●棕黑色粉末,难溶于水,稳定
- 在酸性溶液中有强氧化性

$$MnO_2+4HCl(液) \rightarrow MnCl_2+Cl_2 +2H_2O$$

$$2MnO_2+2H_2SO_4 \rightarrow 2MnSO_4+O_2 \uparrow +2H_2O$$

$$MnO_2+SO_3 +2H^+ \rightarrow Mn^{2+} + SO_4^{2-} + H_2O$$

此反应用于在实验室制取少量氯气

与碱共浴,形饭全气中鲜鲜化

锰(VI) 盐

●制取:

$$2MnO_2+4KOH+O_2 \xrightarrow{\Delta} 2K_2MnO_4+2H_2O$$

$$3MnO_2+6KOH+KClO_3 \xrightarrow{\Delta} 3K_2MnO_4+KCl+3H_2O$$

● 性质

- 1. MnO₄² 为深绿色, 仅存在于强碱性溶液中
- 2. 在酸性溶液中易发生歧化

$$3\text{MnO}_4^{2-}+4\text{H}^+ \rightarrow 2\text{MnO}_4^{-}+\text{MnO}_2 +2\text{H}_2\text{O}$$

3. 在中性或碱性溶液中歧化趋势、速率较小

$$3\text{MnO}_4^{2-} + 2\text{H}_2\text{O} \rightarrow 2\text{MnO}_4^{-} + \text{MnO}_2 \downarrow + 4\text{OH}^{-}$$

锰(VII) 盐——KMnO₄(灰锰氧) 大学化学

● 制取:

2.
$$2MnO_4^{2-} + Cl_2 \rightarrow 2MnO_4^{-} + 2Cl^{-}$$

3.
$$3\text{MnO}_4^{2}+2\text{CO}_2 \longrightarrow 2\text{MnO}_4^{-}+\text{MnO}_2 \downarrow +2\text{CO}_3^{2}$$

锰(VII) 盐——KMnO₄(灰锰氧)

大学化学

● 性质

- 1. KMnO₄为深紫色晶体,易溶于水;
- 2. 在酸性溶液或光照缓慢分解, 应保存在棕色瓶中;

$$4MnO_4^- + 4H^+ \rightarrow 4MnO_2 + 3O_2 \uparrow + 2H_2O$$

3.对热不稳定

$$2KMnO_4$$
 $\rightarrow 200$ $\stackrel{\circ}{C}$ $K_2MnO_4+MnO_2+O_2$

锰(VII) 盐——KMnO₄(灰锰氧) 大学化学

4. 强氧化性, 不同介质被还原产物不同

介质	酸性	中性或弱碱性	强碱性
被还原产物	Mn ²⁺	MnO ₂	MnO ₄

$$2MnO_{4}^{-} + 5SO_{3}^{2-} + 6H^{+} \longrightarrow 2Mn^{2+} + 5SO_{4}^{2-} + 3H_{2}O$$

$$2MnO_{4}^{-} + 3SO_{3}^{2-} + H_{2}O \longrightarrow 2MnO_{2} + 3SO_{4}^{2-} + 2OH^{-}$$

$$2MnO_{4}^{-} + SO_{3}^{2-} + 2OH^{-}(浓) \longrightarrow 2MnO_{4}^{2-} + SO_{4}^{2-} + H_{2}O$$

$$2MnO_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} \longrightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

锰(VII) 盐——KMnO₄(灰锰氧)

大学化学

同一元素较高氧化数与较低氧化数化合物之间的反应

- $E_{\odot}^{\ominus}(MnO_4^{-}/Mn^{2+}) = 1.51 \text{ V}$
- E (MnO₂/Mn²⁺) =1.224 V

$$3Mn^{2+} + 2MnO_4^- + 2H_2O \longrightarrow 5MnO_2 + 4H^+$$

