R6. 10. 16 Network (4)

金沢工業大学 工学部情報工学科

大城 優賀

前学期の復習!!

ゆっくり思い出していきましょう

インターネットと ネットワークは何が違う?

まずはネットワークとは?

ネットワークとは

複数のコンピュータを互いに接続して使うこと

ネットワークの分類

 $LAN(5) \geq WAN(7)$

ネットワークの分類

LAN:1つの建物内や学内等の限られた狭い地域のネットワークのこと

ネットワークの分類

WAN:離れた地域のコンピュータやLAN同士を接続したネットワークのこと

次にインターネットとは?

インターネットとは

WANを世界規模で実現しているのが、インターネットである(世界規模のネットワーク)

インターネットを通じて 世界とつながる!

インターネット

これでインターネットと ネットワークの違いに ついて理解した

どうやってコンピュータ同士は通信できるのか?

通信の仕組み

コンピュータ同士が通信できているわけには

「プロトコル」と呼ばれる「約束事」を決めてい

るからである

通信の仕組み

同じ「プロトコル」を用いることで、メーカーや OSが異なるコンピュータ同士でも通信ができる!

通信の仕組み

こんにちは

HELLO

プロトコル (共通の言語)を 決めていないから会話が不成立

こんにちは

こんにちは

プロトコル (共通の言語)を 決めているから会話が成立

コンピュータ同士の通信は 複数のプロトコルを 用いて通信をしている

OSI参照モデルとは?

OSI参照モデルとは

国際標準化機構(ISO)によって、策定された コンピュータネットワークに求められる通信機能 を7階層に分割、定義したものである

OSI参照モデル

層	名称	主な役割	
第7層	アプリケーション層	アプリケーションごとの規定	
第6層	プレゼンテーション層	データフォーマットの交換	
第5層	セッション層	通信の管理	
第4層	トランスポート層	データ転送の管理	
第3層	ネットワーク層	アドレスの管理と経路選択	
第2層	データリンク層	データフレームの識別と転送	
第1層	物理層	物理的な接続の規定	

※これは「モデル」であり、プロトコルの設計や勉強する時のガイドラインである

現在、使われているプロトコル はTCP/IPである

TCP/IPとは?

TCP/IPとは

現在のインターネット通信等で最も利用されているプロトコルである。プロトコル群の総称である中心的な役割を果たすのがTCPとIPの2つのプロトコルであるため、この名称である。

TCP/IPとOSI参照モデルの対応付け

層	OSI参照モデル名称	TCP/IP	プロトコル
第7層	アプリケーション層		HTTP, POP
第6層	プレゼンテーション層	アプリケーション層	SMTP
第5層	セッション層		TELNET,IMAP
第4層	トランスポート層	トランスポート層	UDP, TCP
第3層	ネットワーク層	インターネット層	IP, ICMP
第2層	データリンク層	ネットワークインターフェース層	Ethernet, PPP
第1層	物理層	ー・イントラーションダーフェース僧	

まず「IP」とは

OSI参照モデルの第3層ネットワーク層の「IP」は パケットを送り届けるためのプロトコルである。 パケットを目的のコンピュータまで届ける役割が ある

ネットワークに接続するコンピュータにはIPアドレスという識別子が割り当てられている。

例. 204.56.3.1

郵便物を送るときの住所のようなもの

IPアドレス 「204.56.3.1」

IPアドレスが 「204. 56. 3. 1」に データを届けよう

現在多く使われているのがIPv4である

[11001011000000000111000100000000]

このような2進数32桁の数字の列

人間にとってわかりずらい 普段使っている10進数のほうが 分かりやすい

なので、IPアドレスを記述するときは

8桁ずつ4つに分け、2進数から10進数に変換

110010110000000000111000100000000

「203.0.113.0」のようにピリオドで区切る

IPv4アドレスが割り当てられる数は2³²、約43億である

インターネットが発達したこと により、IPアドレスが 不足し始めた。

このままだと、使い切る可能性

対策として

自宅や社内などの限定されたネットワーク内で

はプライベートIPアドレスが各デバイスに割り振

ることにした

グローバルIPアドレスと プライベートIPアドレス とは?

IPアドレスの種類

グローバルIPアドレス:インターネットに接

続するとき際に割り当てられるIPアドレス

世界でユニーク(唯一)である

グローバルIPアドレス

IPアドレスの種類

プライベートIPアドレス:特定のネットワーク

内で割り当てられるIPアドレスのこと。

そのネットワーク内でユニーク(唯一)である

プライベートIPアドレス

ネットワークの範囲を定義するためのもの 1つの大きなネットワークを小さなネット ワークに分割する

IPアドレスはネットワーク部とホスト部に分けることができる サブネットマスクとはネットワーク部とホスト部を示している

ネットワーク部:「どのネットワークですよ」 という情報を示している

ホスト部:「どのコンピュータですよ」という情報を示している

サブネットマスクとは ネットワーク部とホスト部を 示している

ネットワーク部とホスト部に分けてみよう!

分けてみよう

IPアドレス「192. 168. 0. 2」 サブネットマスク「255. 255. 255. 0」

まずはIPアドレスを2進数に変換する

IPアドレス「192.168.0.2」 サブネットマスク「255.255.255.0」

IPアドレスを2進数に変換すると

```
\begin{array}{r}
  192 \Rightarrow 11000000 \\
  168 \Rightarrow 10101000 \\
  0 \Rightarrow 00000000 \\
  2 \Rightarrow 00000010
\end{array}
```

11000000. 10101000. 00000000. 00000010

IPアドレス「192.168.0.2」 サブネットマスク「255.255.255.0」

サブネットマスクを2進数に変換すると

 $255 \Rightarrow 11111111$

 $0 \quad \Rightarrow \quad 00000000$

11111111. 11111111. 11111111. 00000000

2進数に変換したIPアドレスと サブネットマスクを並べてみると

サブネットマスクの「1」の部分に対応するところがIPアドレスのネットワーク部を示している

11000000. 10101000. 00000000. 00000010 1111111. 1111111. 1111111. 00000000 つまり、IPアドレス「192.168.0.2」は

11000000. 10101000. 00000000. 00000010 の中の

「11000000.10101000.0000000」の部分である

これが、どのネットワークかを示すアドレス

残りのサブネットマスクの「0」の部分に対応するところがIPアドレスのホスト部を示している

つまり、IPアドレス「192.168.0.2」は

11000000. 10101000. 00000000. 00000010 の中の

「0000010」の部分である

これが、どのコンピュータかを示すアドレス

前学期はここまで学んだ

今から新しい内容!

少し難しいかもしれませんが、 頑張りましょう!

このネットワークでは、割り振ることができるコンピュータ数は254台である。

192. 168. 0. 2

11000000. 10101000. 00000000. 00000010

なぜ254台割り振ることができるか?

青丸はどのネットワークを示している (ネットワーク部) 赤丸はどのホストを示している (ホスト部)

11000000. 10101000. 00000000.

11111111. 11111111. 1111111.

00000010

赤丸で囲まれたホスト部に注目!!

11000000. 10101000. 00000000.

1111111. 1111111. 1111111.

ホスト部に注目すると、8ビットある 1ビットは1と0の2通り表すことができる 8ビットあるので、2⁸で256個 表すことができる

11000000. 10101000. 000000000.

1111111. 11111111. 1111111.

実際にコンピュータに 割り振ることができる数は

254台!

なぜなら求めた数の中には ネットワークアドレスと ブロードキャストアドレスが 含まれているから!!

ネットワークアドレス、 ブロードキャストアドレス とは?

ネットワークアドレスとは?

ネットワークアドレスとは

ホスト部が全部「0」にしたのがネットワークアド レスである。ネットワークそのものを表すアドレス

11000000. 10101000. 00000000. 00000010

11000000. 10101000. 00000000. 00000000

ブロードキャストアドレスとは?

ブロードキャストアドレスとは

ホスト部が全部「1」にしたのがブロードキャストアドレスである。ブロードキャストアドレスにデータを送信するとそのネットワークに所属しているコンピュータ全部に同じデータが送信される。

ブロードキャストアドレスとは

ホスト部が全部「1」にしたのがブロードキャスト アドレスである。

11000000. 10101000. 00000000. 00000010

11000000. 10101000. 00000000. 111111111

なので

割り振ることができる数は

254台となる!

必ず求めたホスト数に2を 引くことを忘れないように!!

実際に問題を 解いてみましょう!

練習問題①

Q1. 割り当てることができるホスト数は?

IPアドレス:192.168.10.5

11000000.10101000.00001010.00000101

サブネットマスク:255.255.255.192

1111111. 11111111. 11111111.11000000

①解答&解説

A1. 割り当てられるホスト数は62である

サブネットマスク:255.255.255.192

1111111. 1111111. 1111111.11(000000)

サブネットマスクの「0」に注目、6ビットあ

るので26で64、2を引くことで62である

練習問題②

Q2. ブロードキャスト、ネットワークアドレスを求め、10進数表記で示せ

IPアドレス: 192.168.100.45/26

11000000.10101000.01100100.00101101

②解答

A2.

ネットワークアドレス:192.168.100.0

ブロードキャストアドレス:192.168.100.63

②解答&解説

IPアドレス:192.168.100.45/26 11000000.10101000.01100100.00101101 ネットワークはホスト部を「0」にする 11000000.10101000.01100100.0000000

A. ネットワークアドレス:192.168.100.0

②解答&解説

IPアドレス:192.168.100.45/26

11000000.10101000.01100100.00101101

ブロードキャストはホスト部を「1」にする

11000000.10101000.01100100.00111111

A. ブロードキャストアドレス: 192.168.100.63

ネットワーク機器

リピーター

勢いが弱まった電気信号を増幅/整形する機器 電気信号は伝送距離が長くなるほど減衰する リピーターを使うことで伝送距離を延ばせる 最近は使われなくなっている

ハブ

ネットワークを分岐、中継する機器である

2台以上のパソコンでネットワークを構築すると

きに使用する

スイッチングハブ

LANケーブルのポートを増設する機器

家庭ではあまり使うことがないが、オフィスでは

よく使用される

L2スイッチングハブ

L3スイッチングハブなど

ハブとスイッチングハブの違い

伝送方式

ハブは受け取ったデータをネットワーク上のすべ ての端末に送信する

スイッチングハブはデータを特定の必要な端末の みに送信する

ルーター

IPアドレスを元に異なるネットワークへパケットを転送する機器である

外部のネットワーク(インターネット)と接続す

るときに、使用される

アクセスポイント

無線LANの環境でネットワークを構築するときに 使用する

アクセスポイントは、主にブリッジタイプとルー

タータイプの2種類ある

アクセスポイント

ブリッジタイプはハブのようにネットワークを分 岐、中継することができる

ルータータイプはルーターのように複数台のパソコンが同時にインターネットに接続することができる

これからハンズオン開始!

おしまい

ありがとうございました

アンケートの回答をお願いします。

https://forms.gle/7KuwXrS4JVHHmENw6

※次回はLAMケーブル 必要なので 持ってきてください!!