MATTHIAS TSCHÖPE, KUNAL OBEROI

•ÜBUNG 9 (EXKURS- DEEP LEARNING)

EINFÜHRUNG IN CONVOLUTIONAL NEURAL NETWORK

- Probleme der Fully-Connceted Layers
 - Nachbarschaftsbeziehungen werden nicht besonders gewertet
 - Sehr viele weights werden gegen 0 laufen und haben dadurch keinen Einfluss
 - Das Netz wird unnötig groß

WAS IST EIN CNN?

- Idee:Wir geben dem Neuronalen Netz zusätzliche Intuitionen über unsere Daten mit
 - Dazu wird ein CNN-Layer verwendet
 - Die Frage ist aber was bedeutet Convolution?
 - Das Neuronale Netz kann lernen, Kanten zu erkennen egal ob rechts oder links von einem Bild

WIE IST EIN CNN AUFGEBAUT?

- Conv2D
 - Filters
 - Wie viele Neuronen wollen wir verwenden?
 - Kernel-size
 - Beschreibt Höhe und Breite der Filter
 - Strides
 - Definiert mit welchen Abständen wir den Filter sliden
 - Padding
 - Um mehr Platz für die Kernel zu ermöglichen wird Padding verwendet, damit man das ganze Bild abdecken kann
 - Activation
 - Sigmoid, Relu etc. siehe letzte Woche

LOSS FUNKTIONEN

- Mean Squared Error
 - Wird z.B für Regression verwn
- Crossentropy
 - z.B für Klassifizierung

```
1 classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

UNTERSCHIED EPOCHE UND ITERATION

- Iteration: Eine einmalige Verarbeitung für einen Stapel von Bildern (Vorwärts- und Rückwärtsverarbeitung)
- Epoche: Wenn alle Bilder einmal einzeln vorwärts und rückwärts zum Netzwerk verarbeitet werden
- Was ist ein Batch?
 - Verwendete Trainings Samples für einen Iterations durchlauf

BEISPIEL (CNN) IN KERAS

```
classifier = Sequential()

classifier.add(Conv2D(32,(3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPool2D(pool_size=(2, 2)))

classifier.add(Conv2D(32,(3, 3), activation='relu'))
classifier.add(MaxPool2D(pool_size=(2, 2)))
```

TRANSFER LEARNING

"TRANSFERING THE KNOWLEGDE OF ONE MODEL TO PERFOM A NEW TASK"

- Motivation
 - "Cheaper, faster way of adapting a neural network by exploiting their generalization properties"
- Transfer Learning Applicastions
 - Bilder Klassifizierung
 - Texte übersetze in neue Sprachen
- Transfer Learning Types
 - Inductive: Training mit supervised learning Model an neuen "labeled" Daten z.B Klassifikation, Regression
 - Transductive: Training mit supervised learning Model an neuen "unlabeled" Daten z.B Klassifikation, Regression
 - Unsupervised: Training mit unsupervised training Model mit neuen "unlabeled" Daten z.B Clustering, Dimensionality Reduction

FEATURE ERKENNUNG

FEATURE ERKENNUNG