Impact of early summer hair shedding on susceptibility to fescue toxicosis and heat stress in taurine cattle

Harly J. Durbin¹, Helen Yampara-Iquise¹, Robert D. Schnabel¹, Jared E. Decker¹ ¹Division of Animal Sciences, University of Missouri, Columbia

@harlyjaned

Background

- Two key abiotic stressors (heat stress and fescue toxicosis) cost the beef industry > \$1 billion a year
 - Heat stress
 - Fescue toxicosis: caused by consumption of fescue forage infected with the endophytic funugs Neotyphodium coenophialum. The fungus makes fescue more hardy but causes adverse side effects in livestock.
- Susceptibility to heat stress and fescue toxicosis can be quantified via animal's ability to adaptively shed their winter coat at the beginning of the summer
- Adaptive hair shedding is also correlated with cow performance, particularly day 205 weaning weight of progeny¹. Less stress = higher productivity.

Methods

Data generation

- Enrolled cattle are hair shedding scored between May 1 and June 30 in 2016, 2017, and 2018 by beef producers
- **Genotyped** via GGP F250 SNP panel developed by the University of Missouri and Neogen GeneSeek
 - ~170,000 candidate functional variants
 - ~25,000 variants in common with industry standard genotyping assays

GWAA

Univariate linear mixed model for each year implemented in GEMMA².

 $y = u + sex + SDD + age + MYT + SNP + Z_{II} + e$

Where:

- *u* is the mean
- Sex: M, F, U (unknown)
- SDD is the deviation of the scoring date from May 1
 - Missing date deviations mean imputed
 - 2016: 27 days
 - 2017: 29 days
- Age is the animal's age at time of scoring in years
 - Missing ages mean imputed
 - 2016: 3
 - 2017: 4
- MYT is the 30-year mean yearly temperature from the PRISM database for the zip code where the animal was located.
- SNP is the SNP effect
- u is the random animal effect fit using the genomic relationship matrix.

Future directions

- Data sharing agreements with breed associations
 - Obtaining genotypes of animals assayed through breed association outside of the project
- Work in cooperation with breed associations
 - Further recruitment, especially in currently under-sampled regions
 - Addition of several un-sampled breeds, including those with Bos indicus (zebu) ancestry
- Genotype imputation
 - MU Animal Genomics imputation pipeline
 - ~500 enrolled animals with lower density genotypes on hand
- More sophisticated modelling of genotype-by-environment interaction
- Multivariate model using repeated measures
- Herd adjustment

Reduced datasets 2016 (n) 2017 (n) **Breed** Angus 1,467 1,677 Red Angus 301 217 (ANR) Charolais

(CHA)	207	132
Chianina (CHI)	1	1
Cross-bred (CROS)	217	85
Gelbvieh (GEL)	252	126
Hereford (HFD)	459	608
Maine- Anjou (MAAN)	1	1
Shorthorn (SH)	171	46
Simmental (SIM)	1,336	1,411
TOTAL:	4.439	4.364

Visualization of 2016 univariate GWAA results using 4,439 observations and 104,890 SNPs. Red line represents Bonferroni corrected significance threshold. A heritability of 0.482 was estimated by the model.

Mean yearly temperature (C), 2017 datase

Geographic distribution of samples: full dataset

Breed

- Angus: 2,935
- ANR: 708
- CHA: 285
- HFD: 1,273 SH: 276

• GEL: 282

SIM: 1,831

CROS: 439

Visualization of 2017 univariate GWAA results using 4,364 observations and 104,890 SNPs. No SNPs exceed Bonferroni corrected significance threshold. A heritability of 0.527 was estimated by the model.

Acknowledgements

- This project is funded by USDA NIFA 2016-68004-24827
- Participating beef cattle producers and breed associations. THANK YOU!
- CAFNR Thompson Research Center
- Photos courtesy of Trent Smith, Mississippi State

United States Department of Agriculture National Institute of Food and Agriculture

1. Gray, K. A. et al. Differences in hair coat shedding, and effects on calf weaning weight and BCS among

Angus dams. Livest. Sci. 140, 68-71 (2011).

References

- 2. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821 (2012) 3. PRISM Climate Group. PRISM Climate Data. Oregon State University, http://prism.oregonstate.edu,
- created 4 Feb 2004. 4. Turner, S.D. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv DOI: 10.1101/005165.
 - 5. Elsik, C. G. et al. Bovine Genome Database: new tools for gleaning function from the Bos taurus

genome. Nucleic Acids Res. 44, D834-D839 (2016).