Proofs

Miaoyan Wang, May 20, 2020

Proof. Note that $f \in \mathcal{F}$ implies that, there exist $\mathbf{B}^{\text{true}} \in \mathbb{R}^{d_1 \times d_2}$, such that $\text{rank}(\mathbf{B}^{\text{true}}) \leq r$ and f has the following representation,

$$\mathbb{P}(Y = 1 | X) = f(X) = \langle X, B^{\text{true}} \rangle$$
, for all $X \in \mathbb{R}^{d_1 \times d_2}$.

The low-rank SMM minimizes the sample version of the following population function

$$L_{\pi}(\boldsymbol{B}) \stackrel{\text{def}}{=} \mathbb{E}[\ell_{\pi}(\boldsymbol{B})] = \mathbb{E}\left\{ \sum_{y_i=1} \left[1 - \langle \boldsymbol{X}_i, \boldsymbol{B} \rangle\right]_+ + \sum_{y_i=-1} \left[1 + \langle \boldsymbol{X}_i, \boldsymbol{B} \rangle\right]_+ \right\},$$

where the expectation is over $(X_i, y_i) \sim_{\text{i.i.d}} \mathcal{X} \times \mathcal{Y}$. Straightforward calculation shows that

$$\frac{1}{n}L_{\pi}(\boldsymbol{B}) = \mathbb{E}\left\{ \left[1 - Y\langle \boldsymbol{X}, \boldsymbol{B} \rangle\right]_{+} \mathbb{1}\left(Y = 1\right) + \left[1 - Y\langle \boldsymbol{X}, \boldsymbol{B} \rangle\right]_{+} \mathbb{1}\left(Y = -1\right) \right\},\,$$

where $(\boldsymbol{X}, y) \sim \mathcal{X} \times \mathcal{Y}$. Let $\hat{\boldsymbol{B}} = \arg\min_{\{\boldsymbol{B}: \, \operatorname{rank}(\boldsymbol{B}) \leq r\}} L(\boldsymbol{B})$. We will prove that $\hat{\boldsymbol{B}} = \boldsymbol{B}^{\operatorname{true}}$. Note that

$$\frac{1}{n}L_{\pi}(\hat{\boldsymbol{B}}) = \mathbb{E}\left\{ \left[1 - Y\langle \boldsymbol{X}, \hat{\boldsymbol{B}} \rangle \right]_{+} \mathbb{1} \left(Y = 1 \right) + \left[1 - Y\langle \boldsymbol{X}, \hat{\boldsymbol{B}} \rangle \right]_{+} \mathbb{1} \left(Y = -1 \right) \right\}
= \mathbb{E}\left\{ \left(1 - Y\langle \boldsymbol{X}, \hat{\boldsymbol{B}} \rangle \right) \mathbb{1} \left(Y = 1 \right) \right\}
= \mathbb{E}(Y = 1) - \mathbb{E}\left\{ Y \mathbb{1} \left(Y = 1 \right) \langle \boldsymbol{X}, \hat{\boldsymbol{B}} \rangle \right\}.$$

We note that

$$\begin{split} \mathbb{E}\left\{Y\mathbb{1}(Y=1)\langle \boldsymbol{X}, \hat{\boldsymbol{B}}\rangle\right\} &= \mathbb{E}_{\boldsymbol{X}}\left\{\langle \boldsymbol{X}, \hat{\boldsymbol{B}}\rangle \mathbb{E}_{(\boldsymbol{X},Y)}[Y\mathbb{1}(Y=1)|\boldsymbol{X}]\right\} \\ &= \mathbb{E}_{\boldsymbol{X}}\left\{\langle \boldsymbol{X}, \hat{\boldsymbol{B}}\rangle \left\{\mathbb{P}(\boldsymbol{Y}=1|\boldsymbol{X}) - \frac{1}{2}\right)\right\} \\ &= \mathbb{E}_{\boldsymbol{X}}\left\{\langle \boldsymbol{X}, \hat{\boldsymbol{B}}\rangle \left(\langle \boldsymbol{X}, \boldsymbol{B}^{\mathrm{true}}\rangle - \frac{1}{2}\right)\right\}. \end{split}$$

Therefore, the optimal $\hat{\boldsymbol{B}}$ must satisfy $\operatorname{sign}\langle \boldsymbol{X}, \hat{\boldsymbol{B}} \rangle = \operatorname{sign}\left(\langle \boldsymbol{X}, \boldsymbol{B}^{\text{true}} \rangle - \frac{1}{2}\right)$.