## 損失関数をつなぐ学習理論

ソシオグローバル情報工学研究センター講演会 2020年9月7日 情報理工学系研究科 博士2年 包 含(つつみ ふくむ / Bao Han)

# 自己紹介 | 包含(つつみふくむ)

https://hermite.jp/

- 2013 2017 東京大学 理学部情報科学科
  - ▶ 2014/8 松浦研究室でインターン
- 2017 東京大学大学院 情報理工学系研究科 コンピュータ科学専攻
  - ▶博士2年
  - ▶ 専門:機械学習(損失関数の理論や転移学習など)
- ■その他
  - ▶ 2018/10 2020/3 JST ACT-I 研究者
  - ▶ 2019/10 2020/2 米ミシガン大学にて研究滞在



### 学習時 予測時 特徴量(x) 教師(y) 特徴量(x) 信号機 ニューラル ニューラル ネット ネット $\exp(z_i)$ 出力→予測 $\sum \exp(z_k)$ softmax softmax "違い"の度合い $\sum y_i \log z_i$ 教師と予測の 信号機? cross-entropy 最小化

### 評価時



Machine Learning, 20, 273–297 (1995)

© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

#### Support-Vector Networks

CORINNA CORTES
VLADIMIR VAPNIK
AT&T Bell Labs., Holmdel, NJ 07733, USA

corinna@neural.att.com vlad@neural.att.com



$$\min_{w,b} \sum_{i} \max \left\{ 0, 1 - y_i(w^{\mathsf{T}} x_i + b) \right\}$$

hinge lossの最小化



誤分類率の最小化

マージン最大化



## 講演の目的

■統計的学習理論の一端を紹介



- ▶ 機械学習を用いる際の指針として役立つように
- ■応用研究の誘発
  - ▶応用領域の要請から
    <u>新たな評価指標</u>が考えられるかも?
  - ▶ 新たな評価指標と既存の損失関数の関係性は?

### 二值分類問題

- ■入力
  - ▶ サンプル  $\{(x_i, y_i)\}_{i=1}^n$ : 特徴量  $x_i \in \mathcal{X}$  とラベル  $y_i \in \{\pm 1\}$  の組
- ■出力
  - ▶ 分類器  $f: \mathcal{X} \to \mathbb{R}$  の学習
  - ▶ sign(*f*(·)) を用いてラベルを予測
  - ▶ 基準: 誤分類率  $R_{01}(f) = \mathbb{E}\left[\mathbf{1}[Y \neq \text{sign}(f(X))]\right]$





### 二值分類問題

- 二値分類の真のゴール: 誤分類率の最小化  $R_{01}(f) = \mathbb{E} \left[ \mathbf{1}[Y \neq \text{sign}(f(X))] \right]$
- 誤分類率 = O-1 lossの期待値  $\mathbf{1}[Y \neq \text{sign}(f(X))] = \phi_{01}(Yf(X))$



■ 誤分類率の最小化はNP困難 [Feldman+ 2012]



最小化 = 勾配降下方向に点を更新



離散関数は勾配がない

## 評価損失と代理損失

#### 0-1 loss (target loss)



- 最終的な評価指標  $R_{01}(f) = \mathbb{E}[\phi_{01}(Yf(X))]$
- ■最適化が困難

#### surrogate loss



- 最適化の容易な関数で置換  $R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$ 
  - ▶ 凸上界、滑らかな関数、etc.
  - ▶ logistic loss, hinge loss, etc.

## 学習理論ことはじめ

(empirical) **surrogate risk** 

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

(population) **surrogate risk** 

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

汎化誤差の理論: (大雑把に言えば) モデルが複雑過ぎなければ収束 よくある学習理論の話

今回の鍵:

損失関数の **適合性** 理論 calibration

target risk

$$R_{01}(f) = \mathbb{E}[\phi_{01}(Yf(X))]$$

# 妥当な代理損失 φ とは?

[Steinwart 2007]

surrogate  $A.R_{\phi}$  の最小化が  $R_{\psi}$  の最小化を誘導する  $\phi$ 



$$R_{\phi}(f_m) \stackrel{m \to \infty}{\to} R_{\phi}^*$$
 となる列  $\{f_m\}_{m \ge 1}$  について  $R_{\psi}(f_m) \stackrel{m \to \infty}{\to} R_{\psi}^*$  が成立

#### 定義. 適合的損失 (calibrated surrogate loss)

任意の f と  $\varepsilon > 0$  についてある  $\delta > 0$  が存在して以下が成り立つとき、 surrogate  $\phi$  は target  $\psi$  に対して**適合的**という。

$$R_{\phi}(f) < R_{\phi}^* + \delta \quad \Longrightarrow \quad R_{\psi}(f) < R_{\psi}^* + \varepsilon.$$

limの定義を  $\varepsilon$ - $\delta$  で言い換え

## どうやって適合性を確認する?

**Idea**: 条件を満たす  $\delta$  を  $\epsilon$  の関数として書く

#### 定義. 適合的損失 (calibrated surrogate loss)

任意の f と  $\varepsilon > 0$  についてある  $\delta > 0$  が存在して以下が成り立つとき、 surrogate  $\phi$  は target  $\psi$  に対して**適合的**という。

$$R_{\phi}(f) < R_{\phi}^* + \delta \quad \Longrightarrow \quad R_{\psi}(f) < R_{\psi}^* + \varepsilon.$$

#### 定義. 適合関数 (calibration function)

$$\delta(\varepsilon) = \inf_f \ R_\phi(f) - R_\phi^* \quad \text{s.t.} \quad R_\psi(f) - R_\psi^* \geq \varepsilon$$

制約付き変分問題として解ける / 詳細略 (cf. [Steinwart 2007; Osokin+ 2017] など)

 $\blacktriangleright \phi$  は適合的  $\Leftrightarrow$  すべての  $\varepsilon > 0$  について  $\delta(\varepsilon) > 0$ 

Steinwart, I. (2007). How to compare different loss functions and their risks. Constructive Approximation, 26(2), 225-287. Osokin, A., Bach, F., & Lacoste-Julien, S. (2017).

On structured prediction theory with calibrated convex surrogate losses. In NeurIPS.

## 適合性理論

任意の f と  $\varepsilon > 0$  についてある  $\delta > 0$  が存在して以下が成り立つとき、 surrogate  $\phi$  は target  $\psi$  に対して**適合的**という。

$$R_{\phi}(f) < R_{\phi}^* + \delta \quad \Longrightarrow \quad R_{\psi}(f) < R_{\psi}^* + \varepsilon.$$

適合関数 
$$\delta(\varepsilon) = \inf_f R_\phi(f) - R_\phi^*$$
 s.t.  $R_\psi(f) - R_\psi^* \ge \varepsilon$ 

- 損失関数を**「定性的」**につなぐ
  - ▶ すべての  $\varepsilon > 0$  について  $\delta(\varepsilon) > 0$  ⇒ 適合的
- 損失関数を**「定量的」**につなぐ
  - $\blacktriangleright$  (適合関数の定義から) 任意の f について  $\delta(R_{\psi}(f)-R_{\psi}^*) \leq R_{\phi}(f)-R_{\phi}^*$
  - $\blacktriangleright \delta$  が可逆なら  $R_{\psi}(f) R_{\psi}^* \le \delta^{-1}(R_{\phi}(f) R_{\phi}^*)$

surrogate riskが減少したら target riskがどれくらい減少するか

# 代理損失の例

|                                                                  | 損失の形 | 適合関数                                                                                                                        |  |  |
|------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| hinge loss $\phi_{\text{hinge}}(\alpha) = \max\{0, 1 - \alpha\}$ | 1 α  | $\delta \uparrow 1 \\ \delta(\varepsilon) = \varepsilon$ $0 \qquad 1 \qquad \varepsilon$                                    |  |  |
| logistic loss $\phi_{\log}(\alpha) = \ln(1 + e^{-\alpha})$       |      | $\delta = \frac{1}{0} \frac{\varepsilon}{1 + \varepsilon \ln(1 + \varepsilon) + (1 - \varepsilon) \ln(1 - \varepsilon)}{2}$ |  |  |
| squared loss $\phi_{\rm sq}(\alpha) = (1 - \alpha)^2$            |      | $\delta \uparrow 1 \\ \delta(\varepsilon) = \varepsilon^2$                                                                  |  |  |

### 凸損失の場合

[Bartlett+ 2006]

■適合性の必要十分条件が簡潔に記述可能

定理. Surrogate  $\phi$  が凸関数なら以下の場合に限り0-1 lossに対して適合的

- ▶ 原点で微分可能
- $\phi'(0) < 0$

#### hinge loss



#### logistic loss



#### squared loss



## 適合性は必ずしも直感的ではない

- ■例:多值分類
  - ▶ 予測マージン最大化として定式化



**Crammer-Singer loss** 

[Crammer & Singer 2001]

max{0,1 – 予測マージン}

hinge lossの 多値拡張のひとつ

#### Crammer-Singer lossは0-1 lossに対して適合的でない!

logistic lossの同様な拡張なら適合的

[Zhang 2004]

Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of machine learning research, 2(Dec), 265-292

Zhang, T. (2004). <u>Statistical analysis of some multi-category large margin classification methods</u>. *Journal of Machine Learning Research*, *5*(Oct), 1225-1251.

### 損失関数をつなぐ理論

### Surrogate vs. Target loss

評価損失 (target) は最適化がしばしば困難

⇒ 代理損失 (surrogate) で置換





#### 二值分類

Hinge, logisticなどが適合的  $\phi'(0) < 0$  が適合性に必要十分

#### 多值分類

CS-loss (多値hinge loss) は 適合的でない!

cross-entropyは適合的 (詳細略)

代理損失の妥当性が厳密に議論可能に!

### 評価損失が0-1 lossでないとき

**H. Bao** and M. Sugiyama.

<u>Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification</u>. In *AISTATS*, 2020.

### 分類正答率は適切?

■ 例: 二值分類





正答率: 0.8

正答率: 0.8

### 医療診断などでは重大な問題に!

### 分類正答率は適切?





正答率: 0.8

F值: **0.75** 

正答率: 0.8

F値: **0** 

Fig. 
$$F_1 = \frac{21P}{2TP + FP + FN}$$

TP: True Positive TN: True Negative

FP: False Positive FN: False Negative

## 学習 vs. 評価

■通常の二値分類



■F値で評価したい場合



Fowlkes-Mallows index

$$\mathsf{FMI} = \frac{\mathsf{TP}}{\pi} \sqrt{\frac{1}{\mathsf{TP} + \mathsf{FP}}}$$

Weighted Accuracy

$$WAcc = \frac{w_1TP + w_2TN}{w_1TP + w_2TN + w_3FP + w_4FN}$$

F-measure

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Jaianced Error Rate 
$$BER = \frac{1}{\pi}FN + \frac{1}{1-\pi}FP$$

Jaccard ind

$$Jac = \frac{1}{TP + rP + FN}$$

Matthews Correlation Coefficient

$$\label{eq:mcc} \text{MCC} = \frac{\text{TP} \cdot \text{TN} - \text{FP} \cdot \text{FN}}{\sqrt{\pi (1 - \pi) (\text{TP} + \text{FP}) (\text{TN} + \text{FN})}}$$

Gower-Legendre index

$$GLI = \frac{TP + TN}{TP + \alpha(FP + FN) + TN}$$

## 評価指標の統一

### 評価指標の例

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$Jac = \frac{TP}{TP + FP + FN}$$



 $a_k, b_k, c_k$ :評価指標に依存する定数

### 分数線形型の評価指標の下で学習するには?

識別器の評価指標 
$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$
 を1つ決めたとき、

### Q. *U*(*f*) の下でどのように性能を <u>直接</u> 最大化する?



## 適合性 & 最適化の容易さ

#### 分類正答率の場合

#### surrogate risk

 $R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$ 



最適化が容易 (例: convex)



### target risk

$$R_{01}(f) = \mathbb{E}[\phi_{01}(Yf(X))]$$



#### 分数線形型の場合

surrogate utility

???



①最適化が容易(例: concave)

② **適合性** 

#### target utility

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$



# Surrogate Utility

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1} = \frac{a_0 \text{Ep} + b_0 \text{Ep} + b_0 \text{Ep} + c_0}{a_1 \text{Ep} + b_1 \text{Ep} + c_1}$$

■ TP / FP = 0/1 lossの期待値

$$\mathsf{TP} = \mathbb{E}_{X,Y=+1} \left[ \mathbf{1}[f(X) > 0] \right]$$
 ラベルが正 && 予測が正

$$\mathsf{FP} = \mathbb{E}_{X,Y=-1} \left[ \mathbf{1}[f(X) > 0] \right]$$
 ラベルが負 && 予測が正

# Surrogate Utility





# Surrogate Utility



$$U(f) = \frac{a_0 \mathsf{TP} + b_0 \mathsf{FP} + c_0}{a_1 \mathsf{TP} + b_1 \mathsf{FP} + c_1} \ge \frac{a_0 \mathbb{E}_{\mathsf{P}}}{a_1 \mathbb{E}_{\mathsf{P}}}$$







### **Surrogate Utility**

$$U_{\phi}(f) = \frac{a_0 \mathbb{E}_{P} [1 - \phi(f(X))] + b_0 \mathbb{E}_{N} [-\phi(-f(X))] + c_0}{a_1 \mathbb{E}_{P} [1 + \phi(f(X))] + b_1 \mathbb{E}_{N} [\phi(-f(X))] + c_1}$$

# ①Surrogate Utilityの最適化

$$U_{\phi}(f) = \frac{a_0 \mathbb{E}_{\mathbf{P}} + b_0 \mathbb{E}_{\mathbf{N}} + c_0}{a_1 \mathbb{E}_{\mathbf{P}} + b_1 \mathbb{E}_{\mathbf{N}} + c_1} = \frac{1}{2}$$

### ポイント: concave / convex = quasi-concave

quasi-concave: (直感的には) 山がひとつの関数

concaveとは 限らない

⇒ 勾配上昇方向に更新すると値が増加(勾配法)

[Hazan+ NeurlPS2015]



Hazan, E., Levy, K., & Shalev-Shwartz, S. (2015). Beyond convexity: Stochastic quasi-convex optimization. In *Advances in Neural Information Processing Systems* (pp. 1594-1602).

# ②Surrogate Utilityの適合性

#### 分類正答率の場合



#### 分数線形型の場合



 $\phi$  はどのような性質を満たす必要がある?

# **②Surrogate Utilityの適合性**

### Special Case: F値の場合

定理.  $\phi$  が以下を満たすとき  $U_{\phi}$  は適合的

- $\phi$ : 単調非増加
- $\phi$ : convex
- ▶  $\exists c \in (0,1) \text{ s.t. } \sup_{f} U_{\phi}(f) \ge \frac{2c}{1-c}, \lim_{m \to +0} \phi'(m) \ge c \lim_{m \to -0} \phi'(m)$

#### 適合的な $\phi$ の例



# 数值実験: F値

| $\overline{\text{(F}_{1}\text{-measure)}}$ | Proposed    |            | Baselines   |            |             |
|--------------------------------------------|-------------|------------|-------------|------------|-------------|
| Dataset                                    | U-GD        | U-BFGS     | ERM         | W-ERM      | Plug-in     |
| adult                                      | 0.617 (101) | 0.660 (11) | 0.639 (51)  | 0.676 (18) | 0.681 (9)   |
| australian                                 | 0.843(41)   | 0.844(45)  | 0.820(123)  | 0.814(116) | 0.827(51)   |
| breast-cancer                              | 0.963(31)   | 0.960(32)  | 0.950(37)   | 0.948(44)  | 0.953(40)   |
| cod-rna                                    | 0.802 (231) | 0.594(4)   | 0.927(7)    | 0.927(6)   | 0.930(2)    |
| diabetes                                   | 0.834(32)   | 0.828(31)  | 0.817(50)   | 0.821(40)  | 0.820(42)   |
| fourclass                                  | 0.638(70)   | 0.638(64)  | 0.601(124)  | 0.591(212) | 0.618(64)   |
| german.numer                               | 0.561 (102) | 0.580(74)  | 0.492(188)  | 0.560(107) | 0.589(73)   |
| heart                                      | 0.796(101)  | 0.802(99)  | 0.792(80)   | 0.764(151) | 0.764(137)  |
| ionosphere                                 | 0.908(49)   | 0.901(43)  | 0.883 (104) | 0.842(217) | 0.897(54)   |
| madelon                                    | 0.666(19)   | 0.632(67)  | 0.491(293)  | 0.639(110) | 0.663(24)   |
| mushrooms                                  | 1.000(1)    | 0.997(7)   | 1.000(1)    | 1.000(2)   | 0.999(4)    |
| phishing                                   | 0.937(29)   | 0.943(7)   | 0.944(8)    | 0.940(12)  | 0.944(8)    |
| phoneme                                    | 0.648(27)   | 0.559(22)  | 0.530(201)  | 0.616(135) | 0.633(35)   |
| skin_nonskin                               | 0.870(3)    | 0.856(4)   | 0.854(7)    | 0.877(8)   | 0.838(5)    |
| sonar                                      | 0.735 (95)  | 0.740(91)  | 0.706(121)  | 0.655(189) | 0.721 (113) |
| spambase                                   | 0.876(27)   | 0.756(61)  | 0.887(42)   | 0.881(58)  | 0.903(18)   |
| splice                                     | 0.785(49)   | 0.799(46)  | 0.785(55)   | 0.771(67)  | 0.801 (45)  |
| w8a                                        | 0.297 (80)  | 0.284 (96) | 0.735(35)   | 0.742(29)  | 0.745(26)   |

(F<sub>1</sub>-measure is shown)

model: linear-in-parameter

surrogate loss:  $\phi(m) = \max\{\log(1 + e^{-m}), \log(1 + e^{-\frac{m}{3}})\}$ 

## より複雑な評価指標と損失関数

#### 分数線形型の評価指標

F値、Jaccard指標などを包摂 不均衡データを扱うときによく利用

$$U(f) = \frac{a_0 \mathsf{TP} + b_0 \mathsf{FP} + c_0}{a_1 \mathsf{TP} + b_1 \mathsf{FP} + c_1}$$







### target utility

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$



### ①最適化が容易: quasi-concave





複雑な評価指標に対する代理損失の設計指針に!

### ロバストな学習と損失関数

**H. Bao**, C. Scott, and M. Sugiyama. Calibrated Surrogate Losses for Adversarially Robust Classification. In *COLT*, 2020.

# 敵対者による分類器への攻撃

[Goodfellow+ 2015; Eykholt+ 2018]



+.007 ×



 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$  "nematode"

8.2% confidence



 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence



 $\boldsymbol{x}$ 





Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In ICLR, 2015.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., ... & Song, D. (2018). Robust physical-world attacks on deep learning visual classification. In *CVPR*, 2018.

# 攻撃者の定式化

- 攻撃者: $\ell_2$ -ノルムが  $\gamma \in (0,1)$  以下で分類器の予測を変えるノイズ
  - ▶ 損失関数として定式化

## **通常の 0-1 loss** 予測が間違っていたら

$$\mathcal{E}_{01}(x, y, f) = \begin{cases} 1 & \text{if } \text{sign}(f(x)) \neq \text{sign}(y) \\ 0 & \text{otherwise} \end{cases}$$



## ロバストな 0-1 loss 予測を間違うノイズが存在するなら

$$\mathcal{C}_{\gamma}(x, y, f) = \begin{cases} 1 & \text{if } \exists \Delta \in \mathbb{B}_{2}(\gamma) \text{ s.t. } \text{sign}(f(x + \Delta)) \neq \text{sign}(y) \\ 0 & \text{otherwise} \end{cases}$$

 $\mathbb{B}_2(\gamma) = \{ x \in \mathbb{R}^d \mid ||x||_2 \le \gamma \} \colon \gamma\text{-ball}$ 

## 線形分類境界の場合

線形分類器  $\mathcal{F}_{lin} = \{x \mapsto \theta^{\mathsf{T}}x \mid ||\theta||_2 = 1\}$ 





### ロバストな 0-1 loss

$$\mathcal{E}_{\gamma}(x, y, f) = \begin{cases} 1 & \text{if } \exists \Delta \in \mathbb{B}_{2}(\gamma) . yf(x + \Delta) \leq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$= 1\{yf(x) \le \gamma\} := \phi_{\gamma}(yf(x))$$

# 分類問題の定式化

## 通常の二値分類

0-1 riskの最小化

$$R_{\phi_{01}}(f) = \mathbb{E}\left[\phi_{01}(Yf(X))\right]$$



## ロバストな二値分類

γ-robust 0-1 riskの最小化

$$R_{\phi_{\gamma}}(f) = \mathbb{E}\left[\phi_{\gamma}(Yf(X))\right]$$

(※: 線形分類境界の場合)



# 既存のロバストな学習方法

Robust risk  $R_{\phi_{\gamma}}(w) = \mathbb{E}[\phi_{\gamma}(Y(w^{\mathsf{T}}X))]$  の直接最小化は困難

## Taylor近似



目的関数の近似の最小化が 正しい解を導くとは限らない

## 上界の最小化



上界の最小化の正しい解への 収束性は示されていない

Shaham, U., Yamada, Y., & Negahban, S. (2018). Understanding adversarial training: Increasing local stability of supervised models through robust optimization. *Neurocomputing*, 195-204.

Wong, E., & Kolter, Z. (2018,). Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope. In *International Conference on Machine Learning* (pp. 5286-5295).

# 適合性 & 最適化の容易さ

## 通常の二値分類の場合

## surrogate risk







## 0/1 risk

$$R_{01}(w) = \mathbb{E}[\phi_{01}(Y(w^{\mathsf{T}}X))]$$

ロバストな二値分類の場合

surrogate risk

???

①最適化が容易(例: convex)

② 適合性

## robust 0/1 risk

$$R_{\phi_{\gamma}}(w) = \mathbb{E}[\phi_{\gamma}(Y(w^{\mathsf{T}}X))]$$



# 意外とシンプル?

定理. Surrogate  $\phi$  が凸関数なら以下の場合に限り0-1 lossに対して適合的

- ▶ 原点で微分可能
- $\phi'(0) < 0$

#### 通常の 0-1 loss



#### ロバストな 0-1 loss

$$\phi_{\gamma}(\alpha) = \mathbf{1}\{\alpha \leq \gamma\}$$

$$\uparrow$$

$$0 \quad \gamma \quad y(w^{\mathsf{T}}x)$$

 $\phi'(\gamma) < 0$  であればロバストな 0-1 lossに対して適合的?

## 凸 & 適合的なSurrogateは存在しない!

定理. 任意のconvex surrogateは(線形分類器の中では)robust lossに 対して適合的でない

**証明の概略:** calibration function  $\delta(\varepsilon) = 0$  となる分布の存在を示す

calibration function

意味: 分類器 *f* がロバストでない

$$\delta(\varepsilon) = \inf_{f} \left| R_{\phi}(f) - R_{\phi}^{*} \right| \quad \text{s.t.} \quad \left| R_{\phi_{\gamma}}(f) - R_{\phi_{\gamma}}^{*} \ge \varepsilon \right|$$

$$R_{\phi_{\gamma}}(f) - R_{\phi_{\gamma}}^* \ge \varepsilon$$







ロバストでない解

# 適合的な代理損失の例: ramp loss

## Ramp loss

$$\phi(\alpha) = \text{clip}_{[0,1]} \left( \frac{1-\alpha}{2} \right)$$



## Shifted ramp loss

$$\phi_{\beta}(\alpha) = \text{clip}_{[0,1]} \left( \frac{1 - \alpha + \beta}{2} \right)$$



#### calibration function



# 数值実験

## Ramp loss



## Hinge loss



各点に付随する球は  $\gamma$ -ball / 黄色の球は決定境界に触れている (=非ロバストな) 点

## ロバストな学習と損失関数

## 損失関数にロバスト性を「埋め込む」





損失関数は予測の正誤だけでなく、予測のロバスト性を埋め込むことも可能

凸な代理損失では ロバスト性が得られない



凸関数は非ロバストな 領域に解を出力



ロバストな目的関数

適合性理論は分類器の性質を調べるのにも役立つ!

# まとめ

# まとめ

## 二值分類



## 不均衡データ



## 敵対的攻撃



- ■損失関数の適合性解析の紹介
- ■ロバスト性の適用を行った最新の研究