

MACHINE LEARNING PHASE TRANSITIONS OF THE **ONE-DIMENSIONAL ISING MODEL**

²Nguyen Vo Nguyen Huy, ²Pham Long Nhat, ¹Nguyen Duc Dung, ³Duong Xuan Nui, ¹Dao Xuan Viet ¹International Training Institute for Materials Science, School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

²Faculty of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Viet Nam ³Faculty of Mechanical Engineering, National University of Civil Engineering, Ha Noi, Vietnam *Contact: viet.daoxuan@.hust.edu.vn

MOTIVATION

2D and 1D Ising Model

 $T_c \neq 0$

 $T_c = ?$

Two-Dimensional Ising Model

One-Dimensional Ising Model

 $T_c = 0$

Ferreira et al. 2021

Open question:

ACTIVITIES

METHOD: MONTE CARLO AND MACHINE LEARNING

Hamiltonian

$$\varkappa = -J \sum_{i=1}^{N-1} s_i s_{i+1}$$

- J: Exchange interaction between ith and (i+1)th spin (J = 1).
- $s = \pm 1$ (spin up or down).
- $s_i s_{i+1}$: nearest neighbour.

Monte Carlo simulation

N lattice sites

The state space is of size 2^N

[-1-1-1-1-1-1 1] [-1-1-1-1-1-1-1] [-1-1-1-1 1-1-1-1] [1-1-1-1-1-1-1] [11-1-1-1-1] [11-1-1-1-11] [-1 1-1-1-1-1-1]

[-1-1-1-1-1-1-1]

Or

Convolutional Neural Network

RESULTS AND IMPACT

1D Ising Model

Output layer for L = 256

Output layer for L = 256, 576, 1024, 2304 and 4096

Finite-size scaling

Conclusion: 1D Ising Model exist a phase transition temperature

 $T_c = 0.291$ and v = 2.0