Math 185

Homework #13

Chapter VIII, Sec. 1, ex. 1; Sec. 2, ex. 2, 8; Sec. 3, ex. 2; Sec. 4, ex. 4, 6

Chapter VIII, Sec. 1, ex. 1

Show that $z^4 + 2z^2 - z + 1$ has exactly one root in each quadrant:

This is a polynomial with real coefficients and no real zeros,

 $z^4+2z>0$ for all $z\in\mathbb{R}$

and for all z < 0, p(z) > 0

for all $z \ge 1$, $z^2 \ge z$, so $2z^2 - z > 0$, meaning p(z) > 0 for $z \ge 1$

for z = 0, p(z) = 1 > 0

so for 0 < z < 1:

$$-1 < -z < 0 \implies 0 < -z + 1 < 1$$
, so $p(z) > 0$

so in the end: p(z)>0 for all $z\in\mathbb{R}$

so we have 2 conjugate pairs of zeros. ($a_i \neq b_i$, i = 1, 2)

So we need only to check two quadrants: the first and second

We have that there are 2 zeros in the 1st and 2nd quadrant and 2 zeros in the 3rd and 4th quadrant possibilities: 2 in either the first or second, or one in each:

First Quadrant:

estimate the increase of $\arg p(z)$ around the boundary of the quarter disk D_R of a large radius R

The increase in the argument of p(z) around $\partial D_R = 2\pi(N_0)$ (no singularities)

where N_0 is the number of zeros in D_R

 ∂D_R is made up of three paths:

1. The real axis from 0 to R

$$p(x) > 0$$
, so there is no increase in argument, i.e., $= 0$

2. The quarter-circle Γ_R defined by |z|=R and $0\leq \arg z \leq \pi/2$,

the term z^4 "dominates"

and
$$\arg p(z) \approx 4 \arg z$$

so the increase is approximately 2π along this path

3. along the imaginary axis from iR to 0

let
$$z = iy$$
 with $0 \le y \le R$

$$p(iy) = y^4 - 2y + 1 - iy$$

$$\mathfrak{R}(p(iR)) \approx R^4, \mathfrak{I}(p(iR)) = -R$$

so p(iy) starts in the 4th quadrant with argument pprox 0

At
$$0, p(0) = 1$$

So starts at about the real axis, ends at about the real axis

Need to know k for $2\pi k$ for increase in argument here

so how many times does it cross the real axis?

crosses once at y = 0, the terminal point

so the increase is approximately $\boldsymbol{0}$ here

So in the first quadrant, the increase in argument around ∂D_R is approx. 2π and therefore exactly 2π by the theorem on page 226

the number of zeros we have in the first quadrant is 1, so that means

- 1. there's a conjugate zero in the 4th quadrant
- 2. a zero in the 2nd quadrant with a conjugate zero in the 3rd

Therefore, one zero in each quadrant.

Chapter VIII, Sec. 2 ex. 2

How many roots does $z^9 + z^5 - 8z^3 + 2z + 1$ have between the circles $\{|z| = 1\}$ and $\{|z| = 2\}$

Let D be the region bounded by the two circles

Goal: find f(z), h(z) analytic on D and ∂D with |h(z)| < |f(z)| for $z \in \partial D$

$$f(z)=z^9+z^5-8z^3$$
 , $h(z)=2z+1$

I want to use the property:

 $|a-b| \ge ||a|-|b||$ but to prove it I need to show:

if $a,b\in\mathbb{R}$ with $b\geq 0$ then:

$$|a| \le b \iff -b \le a \le b$$

Proof:

$$\mathsf{let}\,|a| \le b \equiv -|a| \ge -b$$

$$\implies$$
 since $-|a| \le a \le |a|$

we immediately get $-b \leq a \leq b$

Let
$$-b \le a \le b$$
:

$$a$$
 is either $= -|a|$ or $= |a|$

if a = |a|:

|a| < b as desired

if
$$a = -|a|$$

then
$$-|a| \ge -b \equiv |a| \le b$$

so proving $|a - b| \ge ||a| - |b||$:

using triangle inequality:

$$|a - b + b| = |a| \le |a - b| + |b| \equiv |a| - |b| \le |a - b|$$

$$|b-a+a| = |b| \le |b-a| + |a| = |a-b| + |a| \equiv |b| - |a| \le |a-b| \equiv |a| - |b| \ge -|a-b|$$

$$|a-b| < |a-b| < |a-b| \implies |a-b| < |a-b|$$

for |z| = 1:

$$|h(z)| = |2z + 1| < 2|z| + 1 = 3$$

$$|f(z)| = |z^9 + z^5 - 8z^3| \ge ||z^9 + z^5| - |8z^3||$$

since
$$|z|=1$$
, $|z^k|=1$ for any $k\in\mathbb{N}$

so z^9 and z^5 are on the unit circle still and the longest length the resultant vector from adding any two vectors of length one gets is ${\bf 2}$

since $|z^9+z^5|-8$ gets smaller the closer $|z^9+z^5|$ gets to 8, and the closest it gets to 8 is 2:

so
$$||z^9 + z^5| - |8z^3|| = ||z^9 + z^5| - 8| \ge 6$$

so
$$|f(z)| > |h(z)|$$
 on $|z| = 1$

|z| = 2:

$$|h(z)| = |2z + 1| < 2|z| + 1 = 5$$

$$|f(z)| > ||z^9 + z^5| - |8z^3|| = ||z^9 + z^5| - 64|$$

 z^9 will have length 2^9 and z^5 will have length 2^5

again, $|z^9+z^5|-64$ gets smaller in magnitude to the closer $|z^9+z^5|$ gets to 64

the smallest we can get from adding two vectors of these lengths, 2^9 and 2^5 is 480

and
$$480 - 64 = 416$$

so
$$|f(z)| \geq 416$$
 for $|z| = 2$ so $|f(z)| > |h(z)|$ on $|z| = 2$

so we may use Rouche's Theorem: f(z) has the same number of zeros as f(z) + h(z)

the number of zeros $z^9 + z^5 - 8z^3$ has in D:

$$z^3(z^6+z^2-8)$$

so 0 is a root of multiplicity 3, and we have 6 remaining to find:

$$|z^6 + z^2 - 8|$$
 when $|z| \ge 2$:

 $|z^6+z^2-8| \ge |z^6+z^2|-8$, and $|z^6+z^2|$ is at least $2^6-2^2=60$ (if we consider adding two vectors, one of at least length 2^6 and the other at least 4, the shortest a resultant vector can get is if they are going the opposite direction, thus the length of this vector = absolute value subtracting one length from the other)

so we have $|z^6+z^2-8|>0$ when $|z|\geq 2$, which means $z^6+z^2-8
eq 0$ when $|z|\geq 2$

so the roots must lie in the circle of radius 2

and when $|z| \leq 1$:

if
$$z=re^{i\theta}$$

$$z^6 = r^6(\cos(6\theta) + i\sin(6\theta))$$

$$z^2 = r^2(\cos(2\theta) + i\sin(2\theta))$$

$$z^6 + z^2 - 8 = (r^6 \cos(6\theta) + r^2 \cos(2\theta) - 8) + i(r^6 \sin(6\theta) + r^2 \sin(2\theta))$$

The real part will be at least -10 and at most -8, which means we never obtain 0 within the unit circle or on its boundary

so we must have 6 roots lying in between the circle of radius 1 and the circle of radius 2

Chapter VIII, Sec. 2 ex. 8

Let D be a bounded domain, and let f(z) and h(z) be meromorphic functions on D that extend to be analytic on ∂D . Suppose that |h(z)| < |f(z)| on ∂D . Show by example that f(z) and f(z) + h(z) can have different numbers of zeros on D. What can be said about f(z) and f(z) + h(z)? Prove your assertion.

$$f(z) = z$$

$$h(z) = \frac{1}{2z}$$

D is the region inside the unit circle

f(z) has one zero in D at 0

h(z) has an isolated singularity at z=0 and is otherwise analytic on ∂D

on
$$\partial D$$
, $|z|=1$

$$|f(z)| = |z| = 1$$

$$|h(z)| = \frac{1}{2|z|} = \frac{1}{2} < |f(z)| = 1$$

$$f(z)+h(z)=z+rac{1}{2z}$$
 for $|z|<1$ has 2 zeros:

$$z + \frac{1}{2z} = 0 \cdot z^2 + \frac{1}{2} = 0$$

$$z=\sqrt{-1/2}=\pm i/\sqrt{2}$$
 , which are both in the unit circle

We still have that the increase in argument for f(z) is the same as for f(z) + h(z)

so
$$\int d \arg(f(z)) = \int d \arg(f(z) + h(z))$$

and these are each equal to $2\pi(N_0-N_\infty)$ (for respective N_0 , N_∞)

so while they may not have the same number of zeros, they have the same value for N_0-N_∞ :

$$f(z)$$
: $N_0 = 1$, $N_{\infty} = 0$

$$f(z) + h(z) : N_0 = 2, N_{\infty} = 1$$

Chapter VIII, Sec. 3 ex. 2

Let S be the family of univalent functions f(z) defined on the open unit disk $\{|z| < 1\}$ that satisfy f(0) = 0 and f'(0) = 1. Show that S is closed under normal convergence, that is, if a sequence in S converges normally to f(z), then $f \in S$.

Remark: It is also true, but more difficult to prove, that S is a compact family of analytic functions, that is, every sequence in S has a normally convergent subsequence.

Univalent: analytic and one-to-one on a domain D (in this case the open unit disk)

let $\{f_k(z)\}$ be a sequence of univalent functions on the open disk.

We know that the sequence converges normally to a function f(z) that is either univalent or constant

for each
$$f_k(z)$$
, $f_k(0) = 0$, $f'_k(0) = 1$

for any k, $f_k(z)$ has at least one zero at 0 and we must have that the zeros of the functions in the sequence converge to the zeros of the limit function,

so f(z) must have at least one zero at 0

also, by the theorem on page 137,

the sequence of first derivatives $\{f'_k(z)\}$ also converges normally to f'(z)

if we were to take $f'_k(z) - 1$ as a new sequence

since converging normally means to converge uniformly on any closed disk in *D*:

if $\{f_k(z)\}, \{g_k(z)\}\$ each converge uniformly to f(z), g(z) respectively

$$\implies |f_j(x) - f(x)| \leq \epsilon_j$$
 for all $x \in D$, $|g_j(x) - g(x)| \leq \delta_j$

with
$$\epsilon_i, \delta_i \to 0$$
 as $j \to \infty$

and so we have $\epsilon_i + \delta_i o 0$

taking
$$|f_j(x)+g_j(x)-(f(x)+g(x))|=|f_j(x)-f(x)+g_j(x)-g(x)|\leq \epsilon_j+\delta_j$$
 by triangle inequality, so $f_k+g_k\to f+g$

therefore: $f'_k(z) - 1$ would converge normally to f'(z) - 1

and since these functions have a zero at 0, by the same logic as above

since $f_k^\prime(0)-1=0$ for all k and the zeros of $f_k^\prime-1$ converge to the zeros of $f^\prime-1$

$$0$$
 is a zero for $f'(z)-1 \implies f'(0)=1$

Chapter VIII, Sec 4, ex. 4

Let f(z) be an analytic function on the open unit disk $D=\{|z|<1\}$. Suppose there is an annulus $U=\{r<|z|<1\}$ such that the restriction of f(z) to U is one-to-one. Show that f(z) is one-to-one on D

let $z_0 \in U$ and $f(z_0) = w_0$

then f(z) attains w_0 only at z_0 some number $m(\geq 1)$ times

in some open disk centered on z_0 , we have that there is an open disk centered on w_0 such that

each w in this open disk centered on w_0 is attained exactly m times only by one point in the open disk centered on z_0

so the boundary of U is included in these open disks, and keeping with this, all of D is in these open disks, meaning each point in f(D) has m preimages (counting multiplicities)

If we were to take some ho with r<
ho<1 and take the image of the circle with radius ho

with
$$\gamma(\theta)=\rho e^{i\theta}$$
, $0\leq \theta \leq 2\pi$

we'd get a curve that starts and ends at the same point (closed)

and since f(z) is one-to-one on the annulus, simple

let z_0 be a point such that $|z| < \rho$

we have that $f(z) - f(z_0)$ has a zero of order m,

also, $f(z) - f(z_0)$ is 1 - 1 on the annulus:

$$f(z_1)-f(z_0)=f(z_2)-f(z_0)\equiv\!\!f(z_1)=f(z_2)$$

so similarly, the curve $f(\gamma) - f(z_0)$ is simple and closed

(since on |z|=
ho, f(z) is one-to-one, we have $f(z)-f(z_0)
eq 0$, else a contradiction to one-to-one)

$$\int_{|z|=
ho}rac{f'(z)}{f(z)-f(z_0)}dz=2\pi(m)$$
 (since $f(z)-f(z_0)$ is analytic in D , there's no singularities)

since the curve of $f(\gamma) - f(z_0)$ is a simple closed curve, it must only travel around origin once.

The increase in argument is therefore 2π

so m=1, which means each point in f(D) has exactly 1 preimage

Chapter VIII, Sec 4, ex. 6

Let f(z) be a meromorphic function on the complex plane, and suppose there is an integer m such that $f^{-1}(w)$ has at most m points for all $w \in \mathbb{C}$. Show that f(z) is a rational function.

let w_0 be a point in $\mathbb C$ such that there are in $f^{-1}(w_0)$ the maximum number of points z such that $f(z)=w_0$ since all other values of w can only be achieved at a number of points less than the number of points that achieve w_0 , we have that only near the points in $f^{-1}(w_0)$ does f(z)=w

so since there are finitely many points such that $f(z)-w_0 o 0$

 $1/(f(z)-w_0)$ as $z o\infty$ is bounded, which means $1/(f(z)-w_0)$ has a removable singularity at ∞ so $1/(f(z)-w_0)$ is analytic at ∞

which means that ∞ is a pole of $f(z)-w_0$, so $f(z)-w_0$ is meromorphic on \mathbb{C}^*

and since sums of meromorphic functions are meromorphic:

 w_0 is meromorphic on \mathbb{C}^* since it is bounded everywhere and at infinity

so $f(z)-w_0+w_0=f(z)$ is meromorphic on \mathbb{C}^* and therefore, rational by the theorem on page 179