5 Mayıs 2021 Çarşamba

08:02

01 GPIO

Giris

 Butonlar ve anahtarlar mikrodenetleyiciye giriş pini üzerinden lojik 1 ve lojik 0 olarak bilgi girişini sağlayan mekanik elemanlardır.

Bağlantılar

- Pull-Up bağlantıda GPIO girişi direnç üzerinden + beslemeye (VCC/VDD) bağlanır.
 - Butona basılmadığı durumda GPIO girişinde lojik 1 vardır.
 - o Butona basıldığı durumda girişe OV (lojik 0) uygulanmış olur.
- Pull-Down bağlantıda, GPIO girişi direnç üzerinden GND ye bağlanır.
 - o Butona basılmadığı durumda girişte lojik 0 bulunur.
 - o Butona basıldığı durumda buton üzerinden lojik 1 uygulanmış olur.

Pull-Up Direnç

Pull-Down Direnç

- Push-pull çıkışlar, bir pini yüksek veya düşük seviyeye aktif bir şekilde çekebilir.

 Bu yapılandırmada, çıkış aşamasında genellikle iki transistör bulunur: biri çıkışı VCC'ye (yüksek voltaj)
 - çekerken, diğeri çıkışı toprak seviyesine (düşük voltaj) çeker. Bu iki transistör birbirinin tamamlayıcısı olarak çalışır; **biri açıkken diğeri kapalıdır**. Bu sayede çıkış hızlı bir şekilde yüksekten düşüğe veya düşükten yükseğe geçebilir. Push-pull çıkışlar genellikle LED'ler veya iç direnci olan diğer yüklerle kullanılır.
 - Daha hızlı geçiş hızları sağlar çünkü çıkış direk olarak hem yüksek hem de düşük voltaj seviyelerine çekilebilir.
 - Çıkışta bulunan iki transistör sayesinde daha yüksek akım taşıyabilir.
 - Kısa devre riski daha yüksektir. Eğer her iki transistör de yanlışlıkla aynı anda aktif olursa, Vcc ve toprak arasında direkt bir bağlantı oluşur.
- Open drain (veya open collector) çıkışında, çıkış noktasında yalnızca bir transistör bulunur ve bu transistör çıkışı yalnızca toprağa (düşük seviyeye) çekebilir. Yüksek seviyeye çıkması için harici bir çekme direncine (pull-up resistor) ihtiyaç duyar. Bu direnç, çıkışı VCC'ye çekerken transistör kapalıdır.
 - Birden fazla open drain çıkışı aynı hat üzerinde bağlanabilir (örneğin I²C gibi veri yollarında kullanılır).
 Bu, birbiri ile iletişim halinde olan cihazların çakışmadan veri alışverişinde bulunmasını sağlar.
 - Transistör yalnızca tek bir yönde çalıştığı için tasarım daha basit olabilir.
 - Harici bir çekme direncine ihtiyaç duyar.
 - o Genellikle push-pull çıkışlara göre daha yavaş geçiş hızlarına sahiptir.

 Resimde görüldüğü gibi STM32F446RE Nucleo bordunda kullanıcı butonu A portunun 0. pinine bağlı ve pull down durumundadır.

Ark

Buton ve anahtarda konum değiştiğinde arktan dolayı mikrodenetleyici girişinde çok sayıda istenmeyen lojik değer oluşur. Bu duruma ark deniyor.

• Ark problemini https://akademi.robolinkmarket.com/buton-arki-nedir-nasil-cozulur/ linkten donanımsal ve yazılımsal olarak paylaşılan çözümleri inceleyip uygulayabiliriz.

Kontrol Yöntemleri

- GPIO pinlerini kontrol etmek için iki temel yöntem vardır. Bunlar interrupt ve polling. İşlemcinin ve uygulamanın gereksinimlerine bağlı olarak her iki yöntem de tercih edilebilir.
- **Polling yöntemi**, mikrodenetleyici tarafından belirli bir durumun sürekli olarak kontrol edilmesine dayanır. Örneğin, bir GPIO pininin durumu sürekli bir döngü içinde kontrol edilebilir.
 - Avantajları basit ve doğrudan bir yaklaşım ile donanım ve yazılım karmaşıklığı düşüktür.
 - Dezavantajları sürekli olarak işlem yaparak sistem kaynaklarını tüketir. Anında tepki verme yeteneği sınırlıdır.
 - Basit uygulamalarda veya sürekli düşük güç tüketimi gerektiren durumlarda tercih edilebilir. Kesmelerin işlemi engelleyeceği veya karmaşık hale getireceği durumlarda kullanışlıdır. Zamanlama veya hızlı tepki gerekli olmadığında kullanılabilir.
- Interrupt yöntemi, bir olay (örneğin, GPIO pininin durum değiştirmesi) gerçekleştiğinde normal programın çalışmasını kesip belirli bir kesme servis rutinini çalıştırarak olaya tepki verir.
 - Avantajları düşük enerji tüketimi, çünkü işlemci, beklenmeyen olaylar olana kadar bekler. Anında tepki verme yeteneği yüksektir.
 - Dezavantajları, Kod karmaşıklığı ve debug işlemleri artabilir. Zamanlaması hassas olabilir ve bazı durumlarda kesmeler birbirini engelleyebilir.

- Anında tepki gerektiren durumlarda (örneğin, düğme basıldığında). Enerji tüketiminin daha fazla toleranslı olduğu durumlarda. Sık sık kontrol etmenin pratik olmadığı durumlar için uygun bir seçenektir.
- Genel olarak, interrupt yöntemi, enerji tüketimi veya anında tepki gereksinimleri gibi durumlarda daha uygun olabilirken, sadece belirli durumlarda kontrol yapılması gereken basit uygulamalarda polling sorgulama kullanılabilir.

Birim Yapısı

Register

Offset	Register	31	30	59	28	27	97	23	3 2	22	21	20	19	18	17	,	14	13	12	1	10	6	8	7	9	2	4	8	2	-	0	
0x00	GPIOx_MODER (where x = CI/J/K)	MODER15[1:0]		MODER14[1:0]		MODER13[1:0]		MODER12[1:0]		MODER 11[1:0]			MODER9[1:0]		MODER8[1:0]		MODER7[1:0]		MODER6[1:0]		MODER5[1:0]		MODER4[1:0]		moderal rol	MODERATI-01	51	MODER1[1:0]		MODER0[1:0]		
	Reset value	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x04	GPIOx_ OTYPER (where x = AI/J/K) Reset value		Reserved												OT15	OT14	o OT13	OT12	OT11	OT10	OT9	OT8	0177	O OT6	O 075	O 014	OT3	o 012	OT1	OT0 0		
	reset value	_																					-									
0x08	GPIOx_ OSPEEDR (where x = A.I/J/K except B)	O SPEEDB16[1:0]	OSFEEDNISH.	0.575 100 1 11:01	OSPEEDR14[1:0	OSPEEDR13[1:0]	OSPEEDR12[1:0]			OSPEEDR11[1:0]	OSPEEDR10[1:0]		OSPEEDR9[1:0]		OSPEEDR8[1:0]		OSPEEDR7[1:0]		OSFEEDRO 1:0	OSPEEDR5[1:0]		OSPEEDR4[1:0]		OSPEEDB311-01	ooree on a land	OSPEEDR2[1:0]		OSPEEDR 111-01	OSPEEDR1[1:0]		OSPEEDR0[1:0]	
	Reset value	0	0	0		0	0 0) (0	10	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x0C	GPIOx_PUPDR (where x = Cl/J/K)	PUPDR15[1:0]		PUPDR14[1:0]		PUPDR13[1:0]		PUPDR12[1:0]		PUPDR11[1:0]	PUPDR10[1:0]		PUPDR9[1:0]		PUPDR8[1:0]		PUPDR7[1:0] -		lo: loudana	PUPDR5[1:0]		PUPDR4[1:0]		PUPDR3[1:0]		PUPDR2[1:0]		PUPDR1[1:0]		PUPDR0[1:0]		
	Reset value	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x10	GPIOx_IDR (where x = AI/J/K)		Reserved												IDR15	IDR14	IDR13	IDR12	IDR11	_		IDR8	IDR7	IDR6	IDRS		IDR3	IDR2		IDRO		
	Reset value															X	X	X	X	X	X	X	Х	Х	X	X	X	X	X	Х	X	
0x14	GPIOx_ODR (where x = AI/J/K)		Reserved QQ													ODR14	ODR13	ODR12	ODR11	ODR 10	ODR9	ODR8	ODR7	ODR6	ODRS	ODR4	ODR3	ODR2	ODR1	ODRO		
	Reset value															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x18	GPIOx_BSRR (where x = AI/J/K)	BR15	BR14	BR13	BR12	BR11	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1 BR0	BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BSe	BSS	BS4	BS3	BS2	BS1	BS0	
	Reset value	0	0	0	0	0	0 0) (0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x1C	GPIOx_LCKR (where x = AI/J/K)															LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCKO	
	Reset value															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0x20	GPIOx_AFRL (where x = AI/J/K)	Α	FRL	.7[3	:0]	AFI	RL6[3:0]	F	AFRI	_5[3:0	0]	AFRL		4[3:0]	1	AFRL		:0]	AFRL		L2[3:0]		AFRL		1[3:0]		AFF		.0[3:	0]	
	Reset value	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x24	GPIOx_AFRH (where x = AI/J)	AF	RH	15[3	3:0]	AFRH14[3:0]			A	AFRH13[3:0			AFF	RH	12[3:0]	A	AFRH		11[3:0]		AFRH1		10[3:0]		AFRH		9[3:0]		AFRH		H8[3:0]	
	Reset value	0	0	0	0	0	0 0	0	0	TO	O	0	0	0	0 0	0	To	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

• GPIOx_MODER (Mode Register), her pin için iki bit kullanılır. Giriş, çıkış, alternatif fonksiyon veya analog

- modunu seçmek için kullanılır.
- **GPIOx_OTYPER** (Output Type Register), her pin için bir bit kullanılır. Push-pull veya Open-drain çıkış tipini seçmek için kullanılır.
- **GPIOx_OSPEEDR** (Output Speed Register), her pin için iki bit kullanılır. Çıkış hızını kontrol etmek için kullanılır.
- **GPIOx_PUPDR** (Pull-up/Pull-down Register), her pin için iki bit kullanılır. Dahili pull-up veya pull-down direncini etkinleştirmek için kullanılır.
- **GPIOx_IDR** (Input Data Register), her pin için bir bit kullanılır. Pinin mevcut durumunu okumak için kullanılır.
- **GPIOx_ODR** (Output Data Register), her pin için bir bit kullanılır. Çıkış durumunu ayarlamak veya temizlemek için kullanılır.
- **GPIOx_BSRR** (Bit Set/Reset Register), her pin için iki bit içerir. Bir GPIO pininin durumunu set etmek veya resetlemek için kullanılır.
- GPIOx_LCKR (Lock Register), her pin için bir bit içerir. GPIO pin konfigürasyonunun kilitlenmesini sağlar.
- **GPIOx_AFRL** ve **GPIOx_AFRH** (Alternate Function Low/High Register), her biri 32-bit uzunluğunda iki registerdir ve her pin için dört bit içerir. GPIO pinlerinin alternatif fonksiyonlarını belirlemek için kullanılır.