Project 2

Group members
Ahmed Awad-Allah Mohamed Ali
Ibrahim Khaled Mohamed
Farah Ahmed Fathy

Design:

```
module RAM(din,rx_valid,clk,rst_n,dout,tx_valid);
parameter MEM_DEPTH=256;
parameter ADDR_SIZE=8;
input [9:0] din;
input rx_valid,clk,rst_n;
output reg [7:0] dout;
output reg tx_valid;
reg [ADDR_SIZE-1:0] ram [MEM_DEPTH-1:0];
reg [7:0] write_addr,read_addr;
always @(posedge clk or negedge rst_n) begin
    if (!rst_n) begin
        dout <= 0;
        tx valid <= 0;
    else if (din[9:8] == 2'b00 && rx_valid == 1) begin
        write_addr <= din[7:0];</pre>
        tx_valid <= 0;</pre>
    else if (din[9:8] == 2'b01 && rx_valid == 1) begin
        ram[write_addr] <= din[7:0];</pre>
        tx_valid <= 0;</pre>
    else if (din[9:8] == 2'b10 && rx_valid == 1) begin
        read_addr <= din[7:0];</pre>
        tx_valid <= 0;</pre>
    else if (din[9:8] == 2'b11 && rx_valid == 1) begin
        dout <= ram[read addr];</pre>
        tx_valid <= 1;</pre>
```

```
module SPI_SLAVE(MOSI,MISO,SS_n,clk,rst_n,rx_data,rx_valid,tx_data,tx_valid);
parameter IDLE=3'b000;
parameter CHK CMD=3'b001;
parameter WRITE=3'b010;
parameter READ ADD=3'b011;
parameter READ_DATA=3'b100;
input MOSI,SS_n,clk,rst_n,tx_valid;
input [7:0] tx data;
output reg [9:0] rx_data;
output reg MISO,rx_valid;
reg check_addr=0;
reg [3:0] count;
reg [2:0] count2;
(* fsm_encoding = "one_hot" *)
reg [2:0] cs,ns;
always @(posedge clk or negedge rst_n) begin
    if (!rst n) begin
        cs <= IDLE;
    else begin
        cs <= ns;
end
always @(cs,MOSI,SS_n,tx_valid) begin
    case(cs)
    IDLE: begin
        if(SS_n == 1) begin
            ns = IDLE;
        end
        else begin
            ns = CHK_CMD;
        end
    CHK CMD: begin
        if (SS_n == 1) begin
            ns = IDLE;
        else if (SS n == 0 && MOSI == 0) begin
            ns = WRITE;
        end
        else if (SS_n == 0 && MOSI == 1) begin
            if (check_addr == 0) begin
                ns = READ_ADD;
            end
            else begin
                ns = READ_DATA;
            end
```

```
WRITE: begin
        if (SS_n == 1) begin
             ns = IDLE;
        else begin
             ns = WRITE;
    READ_ADD: begin
        if (SS_n == 1) begin
             ns = IDLE;
        else begin
             ns = READ_ADD;
    READ DATA: begin
        if (SS_n == 1) begin
             ns = IDLE;
        else begin
             ns = READ_DATA;
        end
    endcase
end
always @(posedge clk) begin
    case(cs)
    IDLE: begin
        rx_valid <= 0;</pre>
        rx_data <= 0;</pre>
        count <= 0;
        count2 <= 0;
    CHK_CMD: begin
        rx_valid <= 0;</pre>
        rx_data <= 0;</pre>
        count <= 0;</pre>
        count2 <= 0;
    WRITE: begin
        if(count == 10) begin
             rx_valid <= 1;</pre>
        else begin
             count <= count+1;</pre>
             rx_data[9-count] <= MOSI;</pre>
```

```
READ ADD: begin
         if(count == 10) begin
              rx valid <= 1;</pre>
              check addr <=1;</pre>
         else begin
              count <= count+1;</pre>
              rx_data[9-count] <= MOSI;</pre>
    READ_DATA: begin
         if(count == 10) begin
              rx valid <= 1;</pre>
              check addr <= 0;</pre>
              if(tx_valid == 1) begin
                   MISO <= tx_data[7-count2];</pre>
                   count2 <= count2 + 1;</pre>
              end
         else begin
              count <= count+1;</pre>
              rx_data[9-count] <= MOSI;</pre>
         end
    endcase
end
endmodule
```

```
module project_2(MOSI,MISO,SS_n,clk,rst_n);
input MOSI,SS_n,clk,rst_n;
output MISO;
wire [9:0] rx_data;
wire [7:0] tx_data;
wire rx_valid,tx_valid;
RAM
RAM1(.din(rx_data),.rx_valid(rx_valid),.clk(clk),.rst_n(rst_n),.dout(tx_data),.tx_valid(tx_valid));
SPI_SLAVE
SPI1(.MOSI(MOSI),.MISO(MISO),.SS_n(SS_n),.clk(clk),.rst_n(rst_n),.rx_data(rx_data),.rx_valid(rx_valid),.tx_data(tx_data),.tx_valid(tx_valid));
endmodule
```

testbench:

```
module project_2_tb();
reg MOSI,SS_n,clk,rst_n;
wire MISO;
integer i;
integer j;
project_2 SPI(MOSI,MISO,SS_n,clk,rst_n);
initial begin
    for(i=0;i<256;i=i+1) begin</pre>
        SPI.RAM1.ram[i]=i;
    clk = 0;
    forever begin
        #1 clk = \sim clk;
end
initial begin
    for(j=0;j<2;j=j+1) begin
        $display("start rst_n case = ",$time);
        rst_n = 0;
        MOSI = 1;
        SS n=1;
        #10;
        $display("end rst_n case = ",$time);
        rst_n = 1;
        #20;
        MOSI=0;
        #20;
        MOSI=1;
        SS_n=0;
        #2;
        MOSI=0;
        #2;
        MOSI=0;
        #4;
        repeat(8) begin
            MOSI=$random;
            #2;
        SS_n=1;
        #10;
        MOSI=0;
        SS_n=0;
        #6;
        MOSI=1;
        #2;
        repeat(8) begin
            MOSI=$random;
            #2;
```

```
SS_n=1;
    #20;
    SS_n=0;
    #2;
    MOSI=1;
    #4;
    MOSI=0;
    #2;
    repeat(8) begin
        MOSI=$random;
        #2;
    SS_n=1;
    #10;
    SS_n=0;
    #2;
    MOSI=1;
    #6;
    repeat(8) begin
        MOSI=$random;
        #2;
    #18;
    SS_n=1;
    #20;
rst_n=0;
#6;
rst_n=1;
SS_n=0;
#2;
SS_n=1;
#20;
SS_n=0;
#2;
MOSI=0;
#6;
repeat(6) begin
    MOSI=$random;
    #2;
SS_n=1;
#4;
SS_n=0;
#2;
MOSI=0;
#4;
MOSI=1;
#2;
```

```
repeat(6) begin
    MOSI=$random;
    #2;
SS_n=1;
#4;
SS_n=0;
#2;
MOSI=1;
#4;
MOSI=0;
#2;
repeat(6) begin
    MOSI=$random;
    #2;
SS_n=1;
#4;
SS_n=0;
#2;
MOSI=1;
#6;
repeat(6) begin
    MOSI=$random;
    #2;
SS_n=1;
#4;
for(i=0;i<1000;i=i+1) begin</pre>
    SS_n=0;
    #2;
    MOSI=1;
    #4;
    MOSI=0;
    #2;
    repeat(8) begin
        MOSI=$random;
        #2;
    SS_n=1;
    #20;
    SS_n=0;
    #2;
    MOSI=1;
    #6;
    repeat(8) begin
        MOSI=$random;
        #6;
    SS_n=1;
```

```
#20;
        SS_n=0;
        #2;
        MOSI=0;
        #6;
        repeat(8) begin
            MOSI=$random;
            #2;
        SS_n=1;
        #20;
        SS_n=0;
        #2;
       MOSI=0;
        #4;
        MOSI=1;
        #2;
        repeat(8) begin
            MOSI=$random;
            #2;
        SS_n=1;
        #20;
    $stop;
end
endmodule
```

DO FILE:

```
quit -sim
vlib work
vlog RAM.v SPI.v project2.v project_2 _tb.v
vsim -voptargs=+acc work.project_2_tb
add wave *
run -all
```

simulation:

Gray_encoding:

schematic after the elaboration:

schematic after the synthesis:

Synthesis report:

4	State	1	New Encoding	1	Previous Encoding
i					
5 1	IDLE	1	000	1	000
	CHK_CMD	1	001	1	001
1	WRITE	1	011	1	010
9	READ_ADD	1	010	1	011
)	READ DATA	1	111	1	100

Timing report after the synthesis:

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.143 ns	Worst Hold Slack (WHS):	0.147 ns	Worst Pulse Width Slack (WPWS):	4,500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4246	Total Number of Endpoints:	4246	Total Number of Endpoints:	2146
Il user specified timing constrai	nts are met.				

Critical path:

Utilization report (implementation):

Resource		Utilization		А	waila	able	Utiliz	ation %	
LUT			8	73		20	0800		4.20
FF			21	48		4	1600		5.16
10				5			106		4.72
FF 10	5% 5%	25		50 Utili	zatio	75 n (%)		100	
Name	1 Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Bonded IOB (106)	BUFGCTRL (32)
,,,,,,,					827	873	52	5	
project_2	873	2148	273	136	821	013	02		83
	873 811	2148 2100	273 273	136 136	811	811	8	0	0

Timing report(implementation):

Messages:

Device:

one_hot:

schematic after the elaboration:

schematic after the synthesis:

Synthesis report:

State	1	New Encoding	1	Previous Encoding
IDLE	1	00001	1	000
CHK_CMD	1	00010	1	001
WRITE	1	00100	1	010
READ_ADD	1	01000	1	011
READ DATA		10000	1	100

Timing report after the synthesis:

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.143 ns	Worst Hold Slack (WHS):	0.149 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4246	Total Number of Endpoints:	4246	Total Number of Endpoints:	2148

Critical path:

Utilization report (implementation):

Name	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Bonded IOB (106)	BUFGCTRL (32)
∨ N project_2	874	2152	273	136	714	874	55	5	1
RAM1 (RAM)	811	2100	273	136	695	811	8	0	0
I SPI1 (SPI_SLAVE)	63	52	0	0	23	63	46	0	0

Summary

Resource	Utilization	Available	Utilization %
LUT	874	20800	4.20
FF	2152	41600	5.17
10	5	106	4.72

Timing report(implementation):

Messages:

Device:

sequential:

schematic after the elaboration:

schematic after the synthesis:

Synthesis report:

State	New Encoding	1	Previous Encoding
IDLE	000]	000
CHK_CMD	001	1	001
WRITE	010	1	010
READ_ADD	011	1	011
READ DATA	100	1	100

Timing report after the synthesis:

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.143 ns	Worst Hold Slack (WHS):	0.147 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4250	Total Number of Endpoints:	4250	Total Number of Endpoints:	2146
user specified timing constrai	nts are met				

Critical path:

Utilization report (implementation):

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Bonded IOB (106)	BUFGCTRL (32)
∨ N project_2	872	2148	273	136	791	872	53	5	1
RAM1 (RAM)	811	2100	273	136	773	811	8	0	0
I SPI1 (SPI_SLAVE)	61	48	0	0	21	61	43	0	0

Resource	Utilization	Available	Utilization %
LUT	872	20800	4.19
FF	2148	41600	5.16
10	5	106	4.72

Timing report(implementation):

Design Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	2.069 ns	Worst Hold Slack (WHS):	0.197 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	4250	Total Number of Endpoints:	4250	Total Number of Endpoints:	2146

Messages:

Device:

❖ Best Setup Time Slack (Tss) for -> One hot encoding.

Setup debug

❖ In case of using synchronous rst_n we notice that Vivado Read the RAM as a RAM Block in the FBGA board.

