

4IM-131 Capítulo 8 Diseño de levas

Introducción a Levas

- Fácil de diseñar, difícil de hacer
- Equivalente al mecanismo de cuatro barras
- Generador de funciones
- Puede generar una verdadera permanencia

Created for "Design of Machinery, 3rd ed." by R. L. Norton and "The Multimedia Handbook of Mechanical Devices" by S. Wang Software copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.

Terminología de levas

- Tipo de movimiento del seguidor (rotación, traslación)
- Tipo de cierre articular (fuerza, forma)
- Tipo de seguidor (rodillo, seta, plano)
- Dirección del movimiento del seguidor (radial, axial)
- Tipo de restricciones de movimiento (posición extrema crítica (CEP) y movimiento de trayectoria crítica (CPM))
- Tipo de programa de movimiento (subida-bajada (RF), subida-caída-permanencia (RFD), subidapermanencia-caída-permanencia (RDFD)

Tipo de movimiento del seguidor

Leva-seguidor oscilante

Tipo de movimiento del seguidor

Leva-seguidor trasladante

Tipo de cierre de junta

Los cierres de fuerza o forma

Cierre de fuerza
requiere una fuerza
externa para mantener
la leva en contacto con
el seguidor

 Un resorte
 usualmente proporciona / esta fuerza

Seguidor

Resorte

Dirección del movimiento del seguidor

Leva radial o axial

Leva axial

Created for "Design of Machinery, 3rd ed." by R. L. Norton and "The Multimedia Handbook of Mechanical Devices" by S. Wang Software copyright 2004 © by The McGraw-Hill Companies, Inc.
All rights reserved.

Tipo de cierre de junta

- Forma cierra la junta por geometría.
- Ranura fresada de la leva

Tipo de seguidor

Seguidor de rodillo

Seguidor de hongo

Seguidor de cara plana

Terminología de levas (revisión) Tipo de movimiento del seguidor (rotación, traslación)

- Tipo de cierre articular (fuerza, forma)
- Tipo de seguidor (rodillo, seta, plano)
- Dirección del movimiento del seguidor (radial, axial)

Tipo de restricciones de movimiento

- Posición crítica extrema(CEP) las posiciones inicial y final se definen, pero no especifican ninguna restricción en el movimiento entre las posiciones extremas
- Movimiento de trayectoria crítica(CPM) La trayectoria o derivada se define sobre todo o parte de la leva.

Tipo de programa de movimiento

- Desde el perfil de leva CEP
- Detenimiento: período sin movimiento de salida con movimiento de entrada.
- Ninguno detenimiento (RF): sin demora (piense en usar un balancín de manivela)
- Un detenimiento (RFD), subida-bajadadetenimiento
- Más de un detenimiento (RDFD), subidadetenimiento-bajada-detenimiento

DIAGRAMAS S V A J

- Desenrollar la leva
- Grafique la (s)
 posición (es), la
 velocidad (v), la
 aceleración (a) y el
 sacudimiento (j)
 versus el ángulo de
 la leva
- Base para el diseño de levas

RDFD DISEÑO DE LEVAS

Movimiento entre dos detenimientos

RDFD, "mal" diseño de leva

- Conecta puntos usano líneas rectas
- Velocidad constante
- Aceleración y sacudimiento infinitos
- No es un programa de levas aceptable

Ley fundamental de diseño de levas

Cualquier leva diseñada para funcionar a velocidades que no sean muy bajas debe diseñarse con las siguientes restricciones:

• La función de la leva debe ser <u>continua</u> a través de la <u>primera</u> y <u>segunda</u> derivadas de desplazamiento en todo el intervalo. (360°).

Corolario:

 El sacudimiento debe ser finito en todo el intervalo (360°).

RDFD Diseño de leva inexperto Movimiento armónico simple

 La función seno tiene derivadas continuas

$$s = \frac{h}{2} \left[1 - \cos \left(\frac{\pi \theta}{\beta} \right) \right]$$

$$v = \frac{ds}{d\theta} = \frac{h\pi}{2\beta} \sin \left(\frac{\pi \theta}{\beta} \right)$$

$$a = \frac{dv}{d\theta} = \frac{h\pi^2}{2\beta^2} \cos \left(\frac{\pi \theta}{\beta} \right)$$

$$j = \frac{da}{d\theta} = \frac{-h\pi^3}{2\beta^3} \sin \left(\frac{\pi \theta}{\beta} \right)$$

Sacudimiento es infinito (mal diseño de leva)

RDFD Desplazamiento cicloidal

Empieza con aceleración e integra:

$$a = C \sin\left(\frac{2\pi\theta}{\beta}\right)$$

$$v = -\frac{C\beta}{2\pi} \cos\left(\frac{2\pi\theta}{\beta}\right) + k_1$$

Como v = 0 en $\theta = 0$ así:

$$k_1 = \frac{C\beta}{2\pi}$$

$$v = \frac{C\beta}{2\pi} \left| 1 - \cos\left(\frac{2\pi\theta}{\beta}\right) \right|$$

$$s = \frac{C\beta}{2\pi}\theta - C\left(\frac{\beta}{2\pi}\right)^2 \sin\left(\frac{2\pi\theta}{\beta}\right) + k_2$$

RDFD Desplazamiento cicloidal

$$s = \frac{C\beta}{2\pi}\theta - C\left(\frac{\beta}{2\pi}\right)^2 \sin\left(\frac{2\pi\theta}{\beta}\right) + k_2$$

- Como s=0 en $\theta=0$, $k_2=0$
- Como s=h en $\theta=\beta$,

$$h = \left(\frac{C\beta}{2\pi}\right)\beta \Rightarrow C = \frac{2\pi h}{\beta^2}$$

$$s = \frac{h}{\beta}\theta - \frac{h}{2\pi}\sin\left(\frac{2\pi\theta}{\beta}\right)$$

$$v = \frac{h}{\beta}\left(1 - \cos\left(\frac{2\pi\theta}{\beta}\right)\right)$$

$$a = \frac{2\pi h}{\beta^2}\sin\left(\frac{2\pi\theta}{\beta}\right)$$

$$j = \frac{h(2\pi)^2}{\beta^3}\cos\left(\frac{2\pi\theta}{\beta}\right)$$

RDFD Desplazamiento cicloidal

$$s = \frac{h}{\beta}\theta - \frac{h}{2\pi}\sin\left(\frac{2\pi\theta}{\beta}\right)$$

Ecuación para una cicloide.

La leva tiene un desplazamiento cicloidal o una aceleración sinusoidal

Diseño de leva válido (sigue la ley fundamental del diseño de leva

©La aceleración y la velocidad sor más altas que otras funciones.

El procedimiento general para el diseño es comenzar con una curva continua para la aceleración e integración.

RDFD Leva, Trapezoidal

- La aceleración constante da una sacudida infinito.
- La aceleración trapezoidal da una sacudida finita, pero la aceleración es mayor.

RDFD, Trapezoidal modificada.

- Combinación de aceleración sinusoidal y constante.
- Necesita integrarse para obtener la magnitud.

RDFD, Trapezoidal modificada

- Después de integrar, obtenemos las siguientes curvas
- Tiene la magnitud más baja de aceleración máxima de las funciones de leva estándar(fuerzas más bajas)

RDFD Senoidal modificada

- Combinación de una función sinusoidal de baja y alta frecuencia
- Tiene la velocidad máxima más baja (energía cinética más baja)

(a) Sine wave #1 of period β/2

Á

RDFD Familia SCCA de funciones de doble detenimiento

Las funciones de leva discutidas hasta ahora pertenecen a la familia SCCA (Seno-Constante-Coseno-Aceleración)

RDFD Familia SCCA de funciones de doble detenimiento

- Comparación de aceleraciones en la familia SCCA
- Todos son una combinación de seno, constante,

Funciones polinomiales

- También podemos elegir <u>polinomios</u> para funciones de levas.
- Forma general:

$$s = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + C_4 x^4 + \dots + C_n x^n$$

donde $x = \theta/\beta$ o t

• Elija el número de condiciones de frontera (BC) para satisfacer la ley fundamental del diseño de levas

Polinomio 3-4-5

Condiciones de frontera

$$> @ \theta = 0, s = 0, v = 0, a = 0$$

$$> @ \theta = \beta, s = h, v = 0, a = 0$$

Seis condiciones de frontera,
 así que ordene 5 términos
 desde C₀

$$s = C_0 + C_1 \left(\frac{\theta}{\beta}\right) + C_2 \left(\frac{\theta}{\beta}\right)^2 + C_3 \left(\frac{\theta}{\beta}\right)^3 + C_4 \left(\frac{\theta}{\beta}\right)^4 + C_5 \left(\frac{\theta}{\beta}\right)^5$$

Polinomio 3-4-5

$$s = C_0 + C_1 \left(\frac{\theta}{\beta}\right) + C_2 \left(\frac{\theta}{\beta}\right)^2 + C_3 \left(\frac{\theta}{\beta}\right)^3 + C_4 \left(\frac{\theta}{\beta}\right)^4 + C_5 \left(\frac{\theta}{\beta}\right)^5$$

$$v = \frac{1}{\beta} \left[C_1 + 2C_2 \left(\frac{\theta}{\beta}\right) + 3C_3 \left(\frac{\theta}{\beta}\right)^2 + 4C_4 \left(\frac{\theta}{\beta}\right)^3 + 5C_5 \left(\frac{\theta}{\beta}\right)^4 \right]$$

$$a = \frac{1}{\beta^2} \left[2C_2 + 6C_3 \left(\frac{\theta}{\beta}\right) + 12C_4 \left(\frac{\theta}{\beta}\right)^2 + 20C_5 \left(\frac{\theta}{\beta}\right)^3 \right]$$

(a)
$$\theta = 0$$
, $s = 0 = C_0$ $v = 0 = C_1/\beta$ $a = 0 = 2C_2/\beta^2$

$$C_0 = 0$$
 $C_1 = 0$ $C_2 = 0$

@
$$\theta = \beta$$
, $s = h = C_3 + C_4 + C_5$, $v = 0 = 2C_3 + 3C_4 + 5C_5$
 $a = 0 = 6C_3 + 12C_4 + 20C_5$

Resolver las 3 ecuaciones para obtener

$$c_{5}^{0}$$
 cam angle θ

$$s = h \left[10 \left(\frac{\theta}{\beta} \right)^3 - 15 \left(\frac{\theta}{\beta} \right)^4 + 6 \left(\frac{\theta}{\beta} \right)^5 \right]$$

Polinomio 3-4-5 y 4-5-6-7

- Polinomio 3-4-5
 - Similar en forma a cicloidal
 - Sacudida discontinua

$$s = h \left[10 \left(\frac{\theta}{\beta} \right)^3 - 15 \left(\frac{\theta}{\beta} \right)^4 + 6 \left(\frac{\theta}{\beta} \right)^5 \right]$$

• Polinomio 4-5-6-7 : establecer la sacudida en en cero para $0 \text{ y } \beta$

$$s = h \left[35 \left(\frac{\theta}{\beta} \right)^4 - 84 \left(\frac{\theta}{\beta} \right)^5 + 70 \left(\frac{\theta}{\beta} \right)^6 - 20 \left(\frac{\theta}{\beta} \right)^7 \right]$$

• Tiene sacudidas continuas, pero todo lo demás es más grande

Polinomio 4-5-6-7

Comparación de aceleración

- Trapezoidal modificado es la mejor, seguido de seno modificado y 3-4-5
- Las bajas aceleraciones implican bajas fuerzas

Comparación de sacudida

- El cicloidal es el más bajo, seguido por el polinomio 4-5-6-7 y el polinomio 3-4-5
- La sacudida baja implica vibraciones más bajas

Comparación de Velocidad

- El seno modificado es el mejor, seguido del polinomio 3-4-5
- Baja velocidad significa baja energía cinética

Comparación de Posición

- No hay mucha diferencia en las curvas de posición.
- Los pequeños cambios de posición pueden dar lugar a grandes cambios de aceleración.

Tabla de Factores paraV y A pico de algunas funciones de leva

• La velocidad está en m/rad², la aceleración está en m/rad², la sacudida está en m/rad ³.

TABLA 8-3 Factores para velocidad y aceleración pico de algunas funciones de leva				
Función	Vel. máx.	Acel. máx.	Golpeteo	Comentarios
Aceleración constante	$2.000 h/\beta$	$4.000 \ h/\beta^2$	Infinito	Golpeteo ∞; no aceptable
Desplazamiento armónico	1.571 h/β	$4.945 \ h/\beta^2$	Infinito	Golpeteo ∞; no aceptable
Aceleración trapezoidal	$2.000 h/\beta$	$5.300 h/\beta^2$	44 h/ β^3	No es tan buena como la trapezoidal modificada
Aceleración trapezoidal modificada	$2.000 \ h/\beta$	$4.888 \ h/\beta^2$	61 <i>h/β</i> ³	Baja aceleración, pero aceleración brusca
Aceleración seno modificada	1.760 <i>h/β</i>	$5.528 \ h/\beta^2$	69 h/β ³	Baja velocidad, buena aceleración
Desplazamiento polinomial 3-4-5	1.875 h/β	$5.777 h/\beta^2$	60 h/β^3	Buena combinación
Desplazamiento cicloidal	$2.000 h/\beta$	$6.283 \ h/\beta^2$	$40 \ h/\beta^3$	Aceleración uniforme y golpeteo
Desplazamiento polinomial 4-5-6-7	$2.188 h/\beta$	$7.526 h/\beta^2$	52 h/β^3	Golpeteo uniforme, alta aceleración

Diseño de leva con detenimiento simple, y funciones con detenimiento doble

• Las funciones de la leva de doble permanencia tienen un retorno innecesario a cero en la aceleración, lo que hace que la aceleración sea mayor en otros lugares.

Diseño de leva con detenimiento simple, movimiento armónico doble

$$s = \frac{h}{2} \left\{ \left[1 - \cos\left(\pi \frac{\theta}{\beta}\right) \right] - \frac{1}{4} \left[1 - \cos\left(2\pi \frac{\theta}{\beta}\right) \right] \right\} \text{ for rise}$$

$$s = \frac{h}{2} \left\{ \left[1 + \cos\left(\pi \frac{\theta}{\beta}\right) \right] - \frac{1}{4} \left[1 - \cos\left(2\pi \frac{\theta}{\beta}\right) \right] \right\} \text{ for fall}$$
Subida armónica doble doble

Diseño de leva con detenimiento simple, polinomio 3-4-5-6

• Condiciones de frontera @ θ =0 s=v=a=0

@
$$\theta = \beta$$
 s=v=a=0 @ $\theta = \beta/2$ s=h

$$s = h \left[64 \left(\frac{\theta}{\beta} \right)^3 - 192 \left(\frac{\theta}{\beta} \right)^4 + 192 \left(\frac{\theta}{\beta} \right)^5 - 64 \left(\frac{\theta}{\beta} \right)^6 \right]$$

• Tiene una aceleración pico más baja (547) que cicloidal (573) o

39

Leva RFD con detenimiento simple de dos segmentos asimétricos

- Si la subida tiene un tiempo diferente al de la caída, se necesitan más condiciones de frontera.
- Con 7 condiciones de frontera

Leva RFD con detenimiento simple de dos segmentos asimétricos

• Si establece la velocidad a cero en el pico:

Leva RFD asimétricos

 Con 3 segmentos, el segmento 1 con 5CF y el segmento 2 con 6CF se obtienen una gran aceleración máxima

Leva RFD asimétricos

• Es mejor comenzar con el segmento con la aceleración más baja con 5CF y luego hacer el otro segmento con 6CF

Movimiento de ruta crítica (CPM)

- Se especifica la posición o una de sus derivadas
- Ej: velocidad constante para la mitad de la rotación
- Divida el movimiento en las siguientes partes:

Movimiento de ruta crítica (CPM) Poly 3

- El segmento 1 tiene4CF
- El segmento 2 tiene
 2CF (V constante)
- El segmento 3 tiene4CF
- El último segmento tiene 6CF (casi siempre)

Curvas Resultantes

Velocidad Constante, 2 Segmentos

• No se dan las divisiones en el enfoque anterior, solo un segmento de velocidad constante

Resultados del diagrama SVAJ

- El diseño de 2 segmentos tiene mejores propiedades
- El diseño de 4 segmentos tenía Δ s=6.112, v=-29.4, a=257

Dimensionamiento de la leva, terminología

 Círculo de base (R_b) – círculo más pequeño que se puede dibujar tangente a la superficie física de la leva

• Círculo primario (R_p) – círculo más pequeño que se puede dibujar tangente al lugar geométrico de la línea central del

seguidor

 Curva de paso lugar de la linea central del seguidor

Ángulo de presión de la leva

- Angulo de presión (\$\dphi\$)
 - el ángulo entre la dirección del movimiento (velocidad) delseguidor y la dirección del eje de transmisión
- Se quiere ϕ <30 para transladante y ϕ <35 para seguidor oscilante

Excentricidad de Leva

- Excentricidad (ε) la distancia perpendicular entre el eje de movimiento del seguidor y el centro de la leva
- Seguidor alineado: $\varepsilon=0$

Momento de volteo

- ②Para el seguidor de cara plana, el ángulo de presión es cero.
- Hay un momento en el seguidor porque la fuerza no está alineada con la dirección del movimiento del seguidor. Esto se llama Momento de volteo

Radio de curvatura

- Cada punto de la leva tiene un radio de curvatura asociado
- Si el radio de curvatura es menor que el radio del seguidor, el seguidor no se mueve correctamente.

• Regla de oro : $\rho_{min} = (2 \rightarrow 3) \times R_{f_1}$ $\mathbf{v}_{tollower}$ Follower Cam

Radio de curvatura— Seguidor de cara plana

• No podemos tener un radio de curvatura negativo Radius of curvature p (to point A) \mathbf{R}_{A} Common tangent Center of curvature C Base circle \mathbf{R}_b

Consideraciones de fabricación de levas

- Aceros de medio a alto contenido de carbono o fundición dúctil
- Molido o molido
- Tratamiento térmico para dureza (Rockwell HRC 50-55)

• Las máquinas CNC a menudo utilizan interpolación lineal (mayores aceleraciones)

— 1 Deg Linear Interpolated
— Original Displacement Function

Rendimiento de la leva real frente al teórico

 Mayor aceleración debido a errores de fabricación y vibraciones por sacudimiento

Consideraciones prácticas de diseño

- ¿Seguidor traductor u oscilante?
- ¿Fuerza o forma cerrada?
 - Salto del seguidor contra choque cruzado
- ¿Cámara radial o axial?
- ¿Rodillo o seguidor de cara plana?
- ¿Con detenimiento o no detenimiento?
- ¿Rectificar o no rectificar?
- ¿Lubricar o no lubricar?