Automatique - Partie Système commandé

Chapitre 2 : Stabilité des systèmes dynamiques

O. Cots et J. Gergaud

Département Sciences du Numérique

21 septembre 2021

Introduction

$$(IVP) \left\{ \begin{array}{l} \dot{x}(t) = f(x(t)) \\ x(0) = x_0. \end{array} \right.$$

Définition (Point d'équilibre)

On appelle point d'équilibre tout point x_e de \mathbb{R}^n qui vérifie $f(x_e) = 0$.

Si $x_0 = x_e$ alors on a trivialement comme solution $x(t) = x_e$ pour tout t.

Question : Équilibre stable ou instable? Lorsque l'on s'écarte de ce point d'équilibre, on y revient ou on s'en écarte?

Exemple (Pendule simple)

Pour le pendule simple non contrôlé (0,0) est un point d'équilibre stable, alors que $(\pi,0)$ est un point d'équilibre instable.

Équations Différentielles Ordinaires (EDO) linéaires, homogènes et autonomes

Cas d'une edo linéaire autonome sans second membre

On s'intéresse ici à la solution du problème à valeur initiale

$$(IVP1) \left\{ \begin{array}{l} \dot{x}(t) = Ax(t) \\ x(0) = x_0, \end{array} \right.$$

Les points d'équilibre sont les éléments de ker A. Si A est inversible, il n'y a qu'un seul point d'équilibre $x_e = 0$.

Approche élémentaire (exemple)

On considère l'équation différentielle ordinaire linéaire scalaire

$$(IVP2) \left\{ \begin{array}{l} \dot{x}(t) = \lambda x(t) \\ x(0) = x_0, \end{array} \right.$$

où $\lambda \in \mathbf{R}$ et $x(\cdot) \colon \mathbf{R} \to \mathbf{R}$. On sait que la solution de cette équation, qui est unique, est donnée par

$$x(t)=e^{\lambda t}x_0.$$

Cette solution est définie sur R et on a le comportement asymptotique :

- Si $\lambda < 0$ alors $\lim_{t \to +\infty} x(t) = 0$;
- Si $\lambda = 0$ alors $x(t) = x_0$;
- $\bullet \ \, \text{Si} \,\, \lambda > 0 \,\, \text{alors} \, \begin{cases} \ \, \text{Si} \,\, x_0 < 0 \,\, \text{alors} \,\, \lim_{t \to +\infty} x(t) = -\infty; \\ \ \, \text{Si} \,\, x_0 = 0 \,\, \text{alors} \,\, x(t) = 0; \\ \ \, \text{Si} \,\, x_0 > 0 \,\, \text{alors} \,\, \lim_{t \to +\infty} x(t) = +\infty. \end{cases}$

Exponentielle de matrice

L'espace vectoriel normé $(\mathcal{M}_n(\mathbf{R}), \|\cdot\|)$ est un espace de Banach. Si la norme $\|\cdot\|$ vérifie $\|AB\| \leq \|A\| \|B\|$, alors la série $\sum_{k=0}^{+\infty} \frac{A^k}{k!}$ est absolument convergente 1 car

$$\sum_{k=0}^{+\infty} \frac{\|A^k\|}{k!} \le \sum_{k=0}^{+\infty} \frac{\|A\|^k}{k!} = e^{\|A\|} < +\infty.$$

Définition (Exponentielle de matrice)

On appelle exponentielle de matrice l'application

exp:
$$\mathcal{M}_n(\mathsf{R}) \longrightarrow \mathcal{M}_n(\mathsf{R})$$

$$A \longmapsto \exp(A) = e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}.$$

1. Or dans un Banach, toute série absolument convergente est convergente, *cf.* proposition 3.19.5, Wagschal, topologie et analyse fonctionnelle.

INP ENSEEIHT #

Propriété de l'exponentielle de matrice $(e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!})$

Théorème

- $e^0 = I$
- 2 si $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ alors $\exp(A) = \operatorname{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$
- 3 si P est inversible on a $exp(PAP^{-1}) = P exp(A)P^{-1}$
- si A et B sont deux matrices qui commutent alors

$$\exp(A+B)=\exp(A)\exp(B).$$

- **5** pour tout α et β scalaires, $e^{(\alpha+\beta)A} = e^{\alpha A}e^{\beta A}$.
- o pour toute matrice A, e^A est inversible et $(\exp(A))^{-1} = \exp(-A)$.
- pour toute matrice A, l'application $t \mapsto e^{tA}$ est C^{∞} et

$$\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A.$$

Propriété de l'exponentielle de matrice $(e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!})$

Démonstration.

- $e^0 = I$: évident.
- évident.
- **3** P inversible : $e^{PAP^{-1}} = \sum \frac{(PAP^{-1})^k}{k!} = \sum \frac{PA^kP^{-1}}{k!} = Pe^AP^{-1}$
- **3** Si A, B commutent, alors a $(A+B)^{n} = \sum_{k=0}^{n} \binom{n}{k} A^{k} B^{n-k}$. Ainsi, $e^{A}e^{B} = \sum_{n=0}^{+\infty} c_{n} = \sum_{n=0}^{+\infty} \frac{(A+B)^{n}}{n!} = e^{A+B}$, avec b $c_{n} = \sum_{k=0}^{n} \frac{A^{k}}{k!} \frac{B^{n-k}}{(n-k)!}$.
- **6** $e^{(\alpha+\beta)A} = e^{\alpha A}e^{\beta A}$ car αA et αB commutent.
- **3** A et -A commutent donc $e^A e^{-A} = e^{A-A} = e^0 = I$. Ainsi, $(e^A)^{-1} = e^{-A}$.
- $\mathbf{O} \frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A$: on dérive sous le signe somme.
 - a. Ceci est la formule du binôme de Newton.
 - b. Ceci est le produit de Cauchy.

Solution du problème à valeur initiale

Théorème

L'unique solution de
$$(IVP1) \left\{ \begin{array}{l} \dot{x}(t) = A\,x(t) \\ x(t_0) = x_0, \end{array} \right.$$

s'écrit $x(t) = e^{(t-t_0)A}x_0$.

Démonstration.

Soit $y(\cdot)$ une solution. On pose $z(t) = e^{-(t-t_0)A}y(t)$. Alors, $z(t_0) = x_0$ et

$$\dot{z}(t) = -Az(t) + e^{-(t-t_0)A}\dot{y}(t) = -Ae^{-(t-t_0)A}y(t) + e^{-(t-t_0)A}Ay(t) = 0,$$

donc
$$z(\cdot)$$
 est constant et finalement $y(t) = e^{(t-t_0)A}x_0$.

Remarque

On peut fixer $t_0 = 0$.

A diagonale

Si nous considérons le cas du système différentiel

$$(IVP3) \left\{ \begin{array}{l} \dot{x}(t) = \Lambda x(t) \\ x(0) = x_0, \end{array} \right.$$

avec

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}.$$

La solution est alors

$$x(t) = \begin{pmatrix} e^{t\lambda_1} x_{0,1} \\ \vdots \\ e^{t\lambda_n} x_{0,n} \end{pmatrix} = \begin{pmatrix} e^{t\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{t\lambda_n} \end{pmatrix} x_0 = e^{t\Lambda} x_0$$

A diagonale – Comportement asymptotique

On rappelle la solution :

$$x(t) = egin{pmatrix} e^{t\lambda_1} x_{0,1} \ dots \ e^{t\lambda_n} x_{0,n} \end{pmatrix} = e^{t\Lambda} x_0.$$

Le comportement asymptotique est alors

- si tous les λ_i sont strictement négatifs alors $\lim_{t\to+\infty} x(t)=0=x_e$;
- si tous les λ_i sont négatifs ou nuls alors la solution est bornée quand $t \to +\infty$;
- si au moins un λ_i est strictement positif et que $x_{0,i} \neq 0$ alors $||x(t)|| \to +\infty$, quand $t \to +\infty$.

Rappels sur la diagonalisation de matrices

Soit $A \in M_n(\mathbb{R})$. On note $P(X) = \det(XI_n - A)$ le polynôme caractéristique de A et Sp(A) le spectre de A, *i.e.* l'ensemble des valeurs propres de A. On introduit :

- la multiplicité algébrique m_{λ} de $\lambda \in \operatorname{Sp}(A)$ est son ordre de multiplicité en tant que racine de P(X);
- la multiplicité géométrique d_{λ} de $\lambda \in \operatorname{Sp}(A)$ est la dimension du sous-espace propre associé $E_{\lambda} = \ker(\lambda I_n A)$.

On rappelle qu'une matrice $A \in M_n(\mathbb{R})$ est diagonalisable ssi $\forall \lambda \in \operatorname{Sp}(A)$, $d_{\lambda} = m_{\lambda}$ et si P(X) est scindé, *i.e.* de la forme $P(X) = \prod (X - \lambda)^{m_{\lambda}}$.

Exemple

$$A=egin{pmatrix} \lambda & 1 \ 0 & \lambda \end{pmatrix}$$
 . On a $P(X)=(X-\lambda)^2$ donc $m_\lambda=2$ mais

$$\ker(\lambda I_2 - A) = \ker\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathsf{R}\begin{pmatrix} 1 \\ 0 \end{pmatrix} \ donc \ d_\lambda = 1 \ : A \ non \ diagonalisable.$$

A diagonalisable dans R

 $\exists P \in GL_n(\mathbb{R}) \text{ t.q. } A = P\Lambda P^{-1}. \text{ Posons } z(t) = P^{-1}x(t), \text{ alors } z(t) \text{ est solution de}$

$$(IVP4) \left\{ \begin{array}{l} \dot{z}(t) = P^{-1}\dot{x}(t) = P^{-1}P\Lambda P^{-1}x(t) = \Lambda\,z(t) \\ z(0) = P^{-1}x_0. \end{array} \right.$$

On a donc $z(t) = e^{t\Lambda} P^{-1} x_0$ et

$$x(t) = P z(t) = (P e^{t\Lambda} P^{-1}) x_0.$$

Par suite le comportement asymptotique est caractérisé par les valeurs propres de la matrice A.

A diagonalisable dans R – Plan de phase pour n = 2

$$x(t) = (P e^{t\Lambda} P^{-1}) x_0, \quad \Lambda = \operatorname{diag}(\lambda_1, \lambda_2).$$

Figure 1: (Gauche) $\lambda_1 < 0$, $\lambda_2 < 0$. (Milieu) $\lambda_1 > 0$, $\lambda_2 > 0$. (Droite) $\lambda_1 \lambda_2 < 0$.

Remarque

$$Si \ x_0 \in \ker(\lambda_1 I_2 - A)$$
, alors $x(t) = e^{t\lambda_1} x_0 \in \ker(\lambda_1 I_2 - A)$.

n=2 et A diagonalisable dans C, mais non dans R

• $\lambda = \alpha + i\beta$, $\beta \neq 0$:

$$\exists P \in \mathsf{GL}_2(\mathsf{R}), \quad \mathsf{tel que } A = PBP^{-1} \quad \mathsf{avec} \quad B = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}.$$

- Dans cette base le système $\dot{x}(t) = Ax(t)$ s'écrit $\dot{z}(t) = Bz(t)$.
- La solution en z est donc

$$z(t) = \exp(\alpha t) \begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix} z_0 = \exp(\alpha t) R(-\beta t) z_0.$$

- Comportement asymptotique
 - Si $\alpha < 0$ alors $z(t) \to 0$ quand $t \to +\infty$;
 - Si $\alpha = 0$ z(t) est borné;
 - Si $\alpha > 0$ et $z_0 \neq 0$ alors $||z(t)|| \to +\infty$ quand $t \to +\infty$.

A diago dans \mathbf{C} , pas dans \mathbf{R} – Plan de phase pour n=2

$$x(t) = \exp(\alpha t) \left(PR(-\beta t) P^{-1} \right) x_0, \quad R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Figure 2: (Gauche) α < 0. (Milieu) α = 0. (Droite) α > 0.

n=2 et A non diagonalisable dans C

• L'unique valeur propre λ est réel et le sous espace propre est de dimension 1 et A est semblable à la matrice

$$J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

• Dans cette base le système différentielle s'écrit $\dot{z}(t) = J z(t)$

$$J = \lambda I + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \lambda I + N.$$

• Les matrices commutent et la matrice $N^2 = 0$, donc

$$z(t) = e^{\lambda t} \left(I + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right) z_0.$$

• Une nouvelle fois donc, si $\lambda < 0$ alors $z(t) \to 0$ quand $t \to +\infty$.

A non diagonalisable dans C – Plan de phase pour n = 2

$$x(t) = e^{\lambda t} \left(P \left(I + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right) P^{-1} \right) x_0.$$

Figure 3: (Gauche) $\lambda < 0$. (Milieu) $\lambda = 0$. (Droite) $\lambda > 0$.

TD1

L'objectif du TD1 est de comprendre / construire le diagramme suivant :

Équations Différentielles Ordinaires linéaires avec second membre

Équations différentielles linéaires avec second membre

On s'intéresse maintenant aux équations différentielles linéaires à condition initiale

$$(IVP5) \left\{ \begin{array}{l} \dot{x}(t) = A(t) x(t) + b(t) \\ x(t_0) = x_0. \end{array} \right.$$

Les fonctions $A: I \subset \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ et $b: I \to \mathbb{R}^n$ seront toujours supposées de classe $C^k, k \geq 0$.

Remarque

On admet l'existence d'une solution unique.

Équation linéaire homogène (i.e. sans second membre $\mathit{b}(t)$)

On considère ici l'équation linéaire homogène

$$\dot{x}(t) = A(t)x(t). \tag{1}$$

Théorème

L'ensemble des solutions $\mathcal E$ de l'équation différentielle linéaire et homogène (1) est un espace vectoriel de dimension n.

Équation linéaire homogène (i.e. sans second membre $\mathit{b}(t))$

On considère ici l'équation linéaire homogène

$$\dot{x}(t) = A(t)x(t). \tag{1}$$

Théorème

L'ensemble des solutions \mathcal{E} de l'équation différentielle linéaire et homogène (1) est un espace vectoriel de dimension n.

Démonstration.

Le fait que ${\mathcal E}$ soit un espace vectoriel est immédiat. Considérons maintenant l'application

$$\begin{array}{cccc} L_{t_0} \colon & \mathbf{R}^n & \longrightarrow & \mathcal{E} \\ & x_0 & \longmapsto & L_{t_0}(x_0) = x(\cdot, t_0, x_0) \end{array}$$

où $x(\cdot,t_0,x_0)$ est l'unique solution de (1) t.q. $x(t_0,t_0,x_0)=x_0$. Il est évident que L_{t_0} est linéaire. L'existence et l'unicité de solution implique que L_{t_0} est une bijection, c'est donc un isomorphisme a et ainsi dim $\mathcal{E}=n$.

a. Deux espaces vectoriels sont isomorphes ssi ils sont de même dimension.

Résolvante – Définition

Définition

On appelle résolvante de l'équation différentielle linéaire et homogène $\dot{x}(t) = A(t) \, x(t)$ l'application

$$R(t,t_0)\colon \mathbf{R}^n \longrightarrow \mathbf{R}^n$$

 $x_0 \longmapsto R(t,t_0)\cdot x_0 = x(t,t_0,x_0) = L_{t_0}(x_0)(t).$

Résolvante – Théorème

Théorème

- **1** On a $R(t, t_0) \cdot x_0 = x(t, t_0, x_0)$.
- 2 Si le système est autonome on a $R(t, t_0) = e^{(t-t_0)A}$.
- **3** Pour tout t_0 fixé, $R(\cdot, t_0)$ est la solution du problème de Cauchy

$$(IVP6)$$
 $\begin{cases} \dot{X}(t) = A(t)X(t) \\ X(t_0) = I_n. \end{cases}$

• Pour tout t_0 , t_1 et t_2 dans I on a

$$R(t_2, t_0) = R(t_2, t_1) \times R(t_1, t_0).$$

- **6** Pour tout t_0, t_1 dans I on a $R(t_0, t_1) = (R(t_1, t_0))^{-1}$.
- **6** Si $A(\cdot)$ est C^k , alors $R(\cdot, t_0)$ est C^{k+1} .

Résolvante – Théorème

Démonstration.

- $R(t, t_0) \cdot x_0 = x(t, t_0, x_0)$ par définition.
- 2 Cas autonome : $R(t, t_0) = e^{(t-t_0)A}$. Voir théorème slide 9.
- 3 On a

$$R(t, t_0) \cdot x_0 = x(t, t_0, x_0) = x_0 + \int_{t_0}^t A(s) \, x(s, t_0, x_0) \, \mathrm{d}s$$

$$= x_0 + \int_{t_0}^t A(s) \, R(s, t_0) \cdot x_0 \, \mathrm{d}s = \left(I_n + \int_{t_0}^t A(s) \, R(s, t_0) \, \mathrm{d}s\right) \cdot x_0$$

Remarque. Soit $M(t) = (m_{ij}(t)) \in M_n(R)$. Alors,

$$\int M(t) dt = \left(\int m_{ij}(t) dt \right).$$

Résolvante – Théorème

Démonstration.

- 2 Cas autonome : $R(t, t_0) = e^{(t-t_0)A}$. Voir théorème slide 9.
- On a

$$R(t, t_0) \cdot x_0 = x(t, t_0, x_0) = x_0 + \int_{t_0}^t A(s) \, x(s, t_0, x_0) \, \mathrm{d}s$$

$$= x_0 + \int_{t_0}^t A(s) \, R(s, t_0) \cdot x_0 \, \mathrm{d}s = \left(I_n + \int_{t_0}^t A(s) \, R(s, t_0) \, \mathrm{d}s\right) \cdot x_0$$

- $R(t_2, t_0) = R(t_2, t_1) \times R(t_1, t_0)$: composée d'applications linéaires.
- Cela vient des propriétés de régularité des solutions des équations différentielles (voir polycopié).

Théorème

La solution du problème de Cauchy linéaire

$$(IVP5)$$
 $\left\{ egin{array}{l} \dot{x}(t) = A(t)x(t) + b(t) \ x(t_0) = x_0, \end{array}
ight.$

s'écrit

$$x(t) = R(t, t_0) x_0 + \int_{t_0}^t R(t, s) b(s) \, \mathrm{d}s. \tag{2}$$

Théorème

La solution du problème de Cauchy linéaire

$$(IVP5) \left\{ \begin{array}{l} \dot{x}(t) = A(t)x(t) + b(t) \\ x(t_0) = x_0, \end{array} \right.$$

s'écrit

$$x(t) = R(t, t_0) x_0 + \int_{t_0}^t R(t, s) b(s) ds.$$
 (2)

Remarque

Dans le cas où A ne dépend pas du temps on obtient

$$x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s) ds.$$
 (3)

Vérifions que $x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s)\,\mathrm{d}s$ est solution de

$$\begin{cases} \dot{x}(t) = Ax(t) + b(t) \\ x(t_0) = x_0. \end{cases}$$

•
$$x(t_0) = e^{(t_0 - t_0)A} x_0 + \int_{t_0}^{t_0} e^{(t-s)A} b(s) ds = x_0.$$

•

$$\begin{split} \dot{x}(t) &= \frac{\mathrm{d}}{\mathrm{d}t} (e^{(t-t_0)A}) x_0 + \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{tA} \int_{t_0}^t e^{-sA} b(s) \, \mathrm{d}s \right) \\ &= A e^{(t-t_0)A} x_0 + A e^{tA} \int_{t_0}^t e^{-sA} b(s) \, \mathrm{d}s + e^{tA} e^{-tA} b(t) \\ &= A x(t) + b(t). \end{split}$$

Retrouvons la solution de $\dot{x}(t) = Ax(t) + b(t)$, $x(t_0) = x_0$.

On pose $x(t) = e^{(t-t_0)A}z(t)$ et on cherche z(t). Tout d'abord,

- $x(t_0) = e^{(t_0-t_0)A}z(t_0) = z(t_0) = x_0.$
- $\dot{x}(t) = Ax(t) + e^{(t-t_0)A}\dot{z}(t)$.

On veut donc que $b(t) = e^{(t-t_0)A}\dot{z}(t)$, ou encore que $\dot{z}(t) = e^{(t_0-t)A}b(t)$.

Finalement

$$z(t) = x_0 + \int_{t_0}^t e^{(t_0-s)A} b(s) ds,$$

d'où

$$x(t) = e^{(t-t_0)A}z(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s) ds,$$

car $e^{(t-t_0)A}e^{(t_0-s)A}=e^{(t-s)A}$.

Vérifions dans le cas où A dépend du temps que

$$x(t) = R(t, t_0) x_0 + \int_{t_0}^t R(t, s) b(s) ds$$

est solution de

$$\begin{cases} \dot{x}(t) = A(t)x(t) + b(t) \\ x(t_0) = x_0. \end{cases}$$

•
$$x(t_0) = R(t_0, t_0)x_0 + \int_{t_0}^{t_0} R(t, s)b(s) ds = x_0.$$

$$\begin{split} \dot{x}(t) &= \frac{\mathrm{d}}{\mathrm{d}t} (R(t,t_0)) x_0 + \frac{\mathrm{d}}{\mathrm{d}t} \left(R(t,t_0) \int_{t_0}^t R(t_0,s) b(s) \, \mathrm{d}s \right) \\ &= A(t) R(t,t_0) x_0 + A(t) R(t,t_0) \int_{t_0}^t R(t_0,s) b(s) \, \mathrm{d}s \\ &+ R(t,t_0) R(t_0,t) b(t) \\ &= A(t) x(t) + b(t). \end{split}$$

Équations Différentielles Ordinaires non linéaires : existence et unicité des solutions

EDO non linéaires

On considère l'équation autonome (i.e. f ne dépend pas de t):

$$(IVP) \left\{ \begin{array}{l} \dot{x}(t) = f(x(t)) \\ x(t_0) = x_0, \end{array} \right.$$

οù

$$f: \quad \Omega \in \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}^n$$

 $\qquad \qquad \longmapsto \quad f(x), \quad \Omega \text{ ouvert.}$

Définition

On suppose f continue. On appelle solution de (IVP) tout couple (I,x), t.q. I intervalle ouvert de R contenant t_0 et $x:I\to R^n$ dérivable en tout point et vérifiant

- \bullet $x(t) \in \Omega, \forall t \in I$;
- $\dot{x}(t) = f(x(t)), \forall t \in I;$
- $x(t_0) = x_0.$

EDO non linéaires

Définition

On suppose f continue. On appelle solution de (IVP) tout couple (I,x), t.q. I intervalle ouvert de R contenant t_0 et $x:I \to R^n$ dérivable en tout point et vérifiant

- $\mathbf{0}$ $x(t) \in \Omega$, $\forall t \in I$;
- $\mathbf{2} \ \dot{x}(t) = f(x(t)), \ \forall t \in I;$
- $(x(t_0) = x_0.$

Exemple

Considérons le système $\dot{x}(t) = x(t)^2$ sur R.

- La fonction nulle est une solution globale, i.e. définie sur tout R.
- La fonction $x(t) = -\frac{1}{t}$ définie deux solutions resp. sur $]-\infty,0[$ et $]0,+\infty[$ avec $x_0=\mp 1,\ t_0=\pm 1.$ Ces solutions sont maximales, i.e. non prolongeables, mais non globales.

Fonction localement lipschitzienne

Définition (Fonction localement lipschitzienne)

L'application $f:\Omega\subset \mathbb{R}^n\to \mathbb{R}^n$, Ω ouvert, est localement lipschitzienne par rapport à la variable x si et seulement si pour tout $x_0\in \Omega$ il existe un voisinage $V\in \mathcal{V}(x_0)$ et une constante $k\geq 0$ tels que

$$\forall x_1 \in V, \quad \forall x_2 \in V, \quad \|f(x_1) - f(x_2)\| \le k \|x_1 - x_2\|.$$

Théorème

Si f est différentiable par rapport à x et si l'application

$$f' : \Omega \longrightarrow \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$$

 $x \longmapsto f'(x)$

est continue alors f est localement lipschitzienne.

Théorème de Cauchy-Lipschitz

Théorème (Théorème de Cauchy-Lipschitz)

Soit $f: \Omega \to \mathbb{R}^n$, Ω ouvert de \mathbb{R}^n , f localement lipschitzienne alors pour tout $x_0 \in \Omega$, il existe une unique solution locale au problème de Cauchy

$$(IVP) \left\{ \begin{array}{l} \dot{x}(t) = f(x(t)) \\ x(t_0) = x_0. \end{array} \right.$$

Équations Différentielles Ordinaires non linéaires : stabilité des équilibres

Stabilité

Définition

On appelle point d'équilibre tout point x_e de \mathbb{R}^n qui vérifie $f(x_e) = 0$.

Définition

Nous dirons qu'un équilibre x_e est stable si, pour tout $\epsilon>0$, il existe $\delta>0$ tel que

$$||x_0 - x_e|| < \delta$$
 et $t > 0$ \Rightarrow $||x(t, x_0) - x_e|| < \varepsilon$.

Toute solution proche de x_e stable en reste proche.

Équilibre asymptotiquement stable

Définition

Nous dirons qu'un équilibre x_e est asymptotiquement stable (A.S.) si il est stable et si il existe un voisinage V de x_e tel que, pour tout $x_0 \in V$,

$$\lim_{t\to +\infty} x(t,x_0) = x_e.$$

Remarque

En automatique, on appelle souvent points d'équilibre stable les points d'équilibre asymptotiquement stable !

Stabilité dans le cas linéaire autonome et homogène

Théorème

- L'origine est un équilibre asymptotiquement stable de $\dot{x}(t) = Ax(t)$ si et seulement si toutes les valeurs propres de A sont à partie réelle strictement négative.
- ② Si A a au moins une valeur propre à partie réelle strictement positive, alors l'origine n'est pas un équilibre stable de $\dot{x}(t) = Ax(t)$.

Théorème

L'origine est un équilibre stable de $\dot{x}(t) = Ax(t)$ ssi toutes les valeurs propres de A sont à partie réelle négative ou nulle et si pour toute valeur propre de partie réelle nulle, les multiplicités algébrique et géométrique coïncident.

Théorème

Soit x_e un point d'équilibre de $\dot{x}(t) = f(x(t))$. Si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle strictement négative, alors le point d'équilibre x_e est asymptotiquement stable.

Théorème

Soit x_e un point d'équilibre de $\dot{x}(t) = f(x(t))$. Si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle strictement négative, alors le point d'équilibre x_e est asymptotiquement stable.

Remarque

Cette condition est suffisante mais non nécessaire dans le cas non linéaire.

Théorème

Soit x_e un point d'équilibre de $\dot{x}(t) = f(x(t))$. Si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle strictement négative, alors le point d'équilibre x_e est asymptotiquement stable.

Remarque

Cette condition est suffisante mais non nécessaire dans le cas non linéaire.

Exemple

Considérons $\dot{x}(t) = f(x(t)) = -x^3(t)$. Alors, $x_e = 0$ est un point d'équilibre A.S. tel que $f'(x_e) = 0$, car pour $x_0 \neq 0$, on a :

$$x(t, x_0) = \frac{\operatorname{sign}(x_0)}{\sqrt{2t + \frac{1}{x_0^2}}}.$$

Théorème

Si $f'(x_e)$ a au moins une valeur propre à partie réelle strictement positive, alors x_e n'est pas un équilibre stable.

Théorème

Si $f'(x_e)$ a au moins une valeur propre à partie réelle strictement positive, alors x_e n'est pas un équilibre stable.

Remarque

La réciproque est fausse.

Exemple

On considère les cas $\dot{x}(t) = f(x(t))$ et $\dot{x}(t) = g(x(t))$ avec $x_e = (0,0)$ et

$$f(x) = \begin{pmatrix} x_2 - x_1(x_1^2 + x_2^2) \\ -x_1 - x_2(x_1^2 + x_2^2) \end{pmatrix}, \quad g(x) = \begin{pmatrix} x_2 + x_1(x_1^2 + x_2^2) \\ -x_1 + x_2(x_1^2 + x_2^2) \end{pmatrix}.$$

Alors, x_e est A.S. pour $\dot{x}(t) = f(x(t))$ et instable pour $\dot{x}(t) = g(x(t))$.

On a tout d'abord

$$f'(x_e) = g'(x_e) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = A.$$

Ainsi, $P_A(\lambda) = \det(\lambda I_2 - A) = \lambda^2 + 1$ donc $\lambda = \pm i$. Rq. : Re($\pm i$) = 0. Soit $x(\cdot)$ une solution de $\dot{x} = f(x)$. On pose $\rho(t) = \|x(t)\|^2$ et on a alors $\rho'(t) = -2\rho(t)^2$. Pour $\dot{x} = g(x)$, on a $\rho'(t) = 2\rho(t)^2$. On peut alors conclure, cf. polycopié.

Équilibre hyperbolique

Définition

Un point d'équilibre est dit hyperbolique si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle non nulle.

Équilibre hyperbolique

Définition

Un point d'équilibre est dit hyperbolique si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle non nulle.

Corollaire

Un point d'équilibre hyperbolique est soit asympotiquement stable, soit non stable.

Équilibre hyperbolique

Définition

Un point d'équilibre est dit hyperbolique si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle non nulle.

Corollaire

Un point d'équilibre hyperbolique est soit asympotiquement stable, soit non stable.

Remarque

Pour n = 2 on a en x_e un point d'équilibre :

- $Si \det(f'(x_e)) < 0$ ou $(\det(f'(x_e)) > 0$ et $\operatorname{trace}(f'(x_e)) > 0)$ alors x_e n'est pas stable.
- $Si \det(f'(x_e)) > 0$ et trace $(f'(x_e)) < 0$ alors x_e est A.S.

Stabilité des équilibres - Récapitulatif

- Cas linéaire : $\dot{x}(t) = Ax(t)$. On pose $x_e = 0$.
 - x_e est un eq. A.S. ssi $\forall \lambda \in \operatorname{Sp}(A) : \operatorname{Re}(\lambda) < 0$;
 - Si $\exists \lambda \in Sp(A)$ t.q. Re(λ) > 0 alors x_e est un eq. instable;
 - x_e est un eq. stable ssi $\forall \lambda \in \operatorname{Sp}(A) : \operatorname{Re}(\lambda) \leq 0$ et si $\forall \lambda \in \operatorname{Sp}(A)$ t.q. $\operatorname{Re}(\lambda) = 0$ on a $m_{\lambda} = d_{\lambda}$.
- Cas non linéaire : $\dot{x}(t) = f(x(t))$. Soit x_e t.q. $f(x_e) = 0$ et $A = f'(x_e)$.
 - Si $\forall \lambda \in \operatorname{Sp}(A) : \operatorname{Re}(\lambda) < 0 \text{ alors } x_e \text{ A.S.};$
 - Si $\exists \lambda \in Sp(A)$ t.q. $Re(\lambda) > 0$ alors x_e est un eq. instable.
- **Cas hyperbolique :** x_e eq. hyperbolique ssi $\forall \lambda \in Sp(A) : Re(\lambda) \neq 0$.
 - Un point d'équilibre hyperbolique est soit A.S., soit instable.

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{g}{l}\sin(x_1(t)) \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0 \end{cases}$$

La figure ci-dessous montre les trajectoires dans le plan de phase. On a un point d'équilibre stable, mais non asymptotiquement stable et deux points d'équilibre instables. En présence de frottements, le point d'équilibre stable devient alors un point d'équilibre asymptotiquement stable.

Pendule simple : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{g}{I}\sin(x_1(t)))$. On a

$$f'(x) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l}\cos(x_1) & 0 \end{pmatrix}.$$

Pendule simple : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{g}{I}\sin(x_1(t)))$.

On a

$$f'(x) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{I}\cos(x_1) & 0 \end{pmatrix}.$$

Donc en $x_e = (0,0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{pmatrix}$$
 \Rightarrow $\det(f'(x_e)) > 0$ et $\operatorname{trace}(f'(x_e)) = 0$ \Rightarrow on ne peut pas conclure.

Pendule simple : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{g}{I}\sin(x_1(t)))$.

On a

$$f'(x) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l}\cos(x_1) & 0 \end{pmatrix}.$$

Donc en $x_e = (0,0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{pmatrix} \Rightarrow \det(f'(x_e)) > 0 \text{ et trace}(f'(x_e)) = 0$$

 \Rightarrow on ne peut pas conclure.

En revanche, en $x_e = (\pi, 0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{pmatrix} \Rightarrow \det(f'(x_e)) < 0 \text{ et trace}(f'(x_e)) = 0$$
$$\Rightarrow x_e \text{ est instable}.$$

L'énergie mécanique du pendule s'écrit $E(x_1,x_2)=T(x_2)+V(x_1)$, avec $T(x_2)=\frac{1}{2}ml^2x_2^2\geq 0$ l'énergie cinétique et $V(x_1)=-mgl\cos x_1$ l'énergie potentielle de pesanteur. On a :

$$\forall t : E(x(t)) = E(x(0)),$$

c-a-d l'énergie mécanique est conservée. On peut alors montrer que (0,0) est stable, cf. la figure ci-dessous :

Exemple du pendule amorti (non contrôlé)

Pendule simple amorti : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{k}{m}x_2(t) - \frac{g}{l}\sin(x_1(t))).$

En
$$x_e = (0,0)$$
, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{k}{m} \end{pmatrix} \Rightarrow \det(f'(x_e)) > 0 \text{ et } \operatorname{trace}(f'(x_e)) < 0$$
$$\Rightarrow x_e \text{ est A.S.}$$

Exemple du pendule amorti (non contrôlé)

Pendule simple amorti : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{k}{m}x_2(t) - \frac{g}{l}\sin(x_1(t))).$

En $x_e = (0,0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{I} & -\frac{k}{m} \end{pmatrix} \Rightarrow \det(f'(x_e)) > 0 \text{ et trace}(f'(x_e)) < 0$$
$$\Rightarrow x_e \text{ est A.S.}$$

On a de plus : $\Delta = \text{trace}(f'(x_e))^2 - 4 \det(f'(x_e)) = \frac{k^2}{m^2} - 4 \frac{g}{l}$.

Ainsi:

- Si $\Delta>0$, alors $\lambda_{1,2}=\frac{1}{2}(-\frac{k}{m}\pm\sqrt{\Delta})<0$: cas P1, Fig. 1, slide 14.
- Si Δ < 0, alors $\lambda_{1,2}=\frac{1}{2}(-\frac{k}{m}\pm i\sqrt{|\Delta|})=\alpha\pm i\beta$, α < 0 : cas P7, Fig. 2, slide 16.
- Si $\Delta=0$, alors $\lambda=\lambda_{1,2}=-\frac{k}{2m}<0$ et dim $(\ker(f'(x_e)-\lambda I_2))=1$: cas P1, Fig. 3, slide 18.

Question: Dans le cas du pendule simple amorti, a-t-on montré que pour $\alpha_0 = \frac{\pi}{2}$, $\dot{\alpha}_0 = 0$, le système allait converger vers l'équilibre A.S. (0,0)?

Question: Dans le cas du pendule simple amorti, a-t-on montré que pour $\alpha_0 = \frac{\pi}{2}$, $\dot{\alpha}_0 = 0$, le système allait converger vers l'équilibre A.S. (0,0)?

Réponse : Non, on ne l'a pas montré!

Question: Dans le cas du pendule simple amorti, a-t-on montré que pour $\alpha_0 = \frac{\pi}{2}$, $\dot{\alpha}_0 = 0$, le système allait converger vers l'équilibre A.S. (0,0)?

Réponse : Non, on ne l'a pas montré!

On a montré que $\exists \, \bar{\alpha}_0 > 0$, $\exists \, \dot{\bar{\alpha}}_0 > 0$ t.q.

$$\forall (\alpha_0,\dot{\alpha}_0) \in V_0 =] - \bar{\alpha}_0, \bar{\alpha}_0[\times] - \dot{\bar{\alpha}}_0, \dot{\bar{\alpha}}_0[\in \mathcal{V}(0,0), \ (\alpha(t),\dot{\alpha}(t)) \to (0,0),$$

avec $(\alpha(0), \dot{\alpha}(0)) = (\alpha_0, \dot{\alpha}_0)$. Mais on ne connait pas $\bar{\alpha}_0$, $\dot{\bar{\alpha}}_0$! Pour aller plus loin, il faut utiliser la théorie de Lyapunov.

Question: Dans le cas du pendule simple amorti, a-t-on montré que pour $\alpha_0 = \frac{\pi}{2}$, $\dot{\alpha}_0 = 0$, le système allait converger vers l'équilibre A.S. (0,0)?

Réponse : Non, on ne l'a pas montré!

On a montré que $\exists \, \bar{\alpha}_0 > 0$, $\exists \, \dot{\bar{\alpha}}_0 > 0$ t.q.

$$\forall (\alpha_0,\dot{\alpha}_0) \in V_0 =] - \bar{\alpha}_0, \bar{\alpha}_0[\times] - \dot{\bar{\alpha}}_0, \dot{\bar{\alpha}}_0[\in \mathcal{V}(0,0), \ (\alpha(t),\dot{\alpha}(t)) \rightarrow (0,0),$$

avec $(\alpha(0), \dot{\alpha}(0)) = (\alpha_0, \dot{\alpha}_0)$. Mais on ne connait pas $\bar{\alpha}_0$, $\dot{\bar{\alpha}}_0$! Pour aller plus loin, il faut utiliser la théorie de Lyapunov.

Attention : dans le cas non linéaire, la notion de stabilité est locale!