Project I-Scan

Open Source 3D Scanner

The Concept

- Modular, adaptable structure with movable and stationary modules
- Movable modules traverse the Z-axis, reorienting sensors to converge on dynamic center points
- Stepper and servo motors coordinate linear and angular positioning, managed via REST API
- Mathematical logic ensures optimal sensor focus and perspective at any position
- Fixed modules can also dynamically target new center points for flexible scan paths

Goals & Advantages

Primary Goal:

- Movable modules generate more perspectives than fixed arrays, eliminating blind spots and enabling gapless digitization of complex, non-convex geometries
 - → Overcomes limitations of static camera setups (e.g., cavities, undercuts, reentrant angles)

Goals & Advantages

Secondary Goal:

- Modular architecture allows easy integration of diverse sensors (e.g., cameras, LiDAR, ToF) and supports advanced techniques like structured light scanning

Geometric Angle Calculation

show on website

Servo Interpolation with Physical Correction

Other Configuration

Servo Interpolation with Physical Correction

show in Program

- math calculation
- csv generation
- camera Json Config

Practical Benefits

- 1. **Known Cam Pos:** Each camera's spatial vector is precisely known, allowing for defined scan areas and extracting all possible perspectives.
- 2. Easy Configuration: Scan settings, camera configurations, and workflow steps are easily accessible via JSON or CSV files.
- 3. Faster Processing: Significantly accelerates Meshroom processing by largely skipping camera position determination.

Meshroom

show website