Dynamic Programming

Thomas J. Sargent and John Stachurski

Longye Tian longye.tian@anu.edu.au

Australian National University School of Economics

May 2nd, 2025

- Wage space: $W \in [0, M] \subset \mathbb{R}_+$ and M > 0.
- Wage offer: (W_t) is P-Markov on W.
- State space: $X = \{e, u\} \times W, e \implies$ employed; $u \implies$ unemployed
- **Policy**: a Borel measurable map: $\sigma: W \to \{0,1\}$, i.e., we only choose when unemployed
- Separation probability := α , the probability of job termination

ADP with Job Search with Separation

- Value space: $V = bm(X, \mathbb{R})$ with supremum norm and pointwise partial order
- Policy operator when employed (let $v_u := v(u, \cdot)$; $v_e := v(e, \cdot)$; $\mathbf{w}(w) := w$)

$$T_{\sigma}v_{e} = \mathbf{w} + \beta \left[\underbrace{\alpha P v_{u}}_{\text{transit to unemployed}} + \underbrace{(1 - \alpha)v_{e}}_{\text{stay employed}}\right]$$

Remark: we don't have σ explicitly here.

• Policy operator when unemployed

$$T_{\sigma}v_{u} = \underbrace{\sigma v_{e}}_{\text{transit to employed}} + \underbrace{(1-\sigma)\left[c\mathbf{1} + \beta P v_{u}\right]}_{\text{stay unemployed}}$$

Simplify

We treat the policy operator when employed as a fixed point problem i.e.,

$$T_{\sigma}v_e = \mathbf{w} + \beta \left[\alpha P v_u + (1 - \alpha)v_e \right]$$

to

$$v_e = \mathbf{w} + \beta \left[\alpha P v_u + (1 - \alpha) v_e \right]$$

$$= \mathbf{w} + \alpha \beta P v_u + \beta (1 - \alpha) v_e$$

$$= \frac{1}{1 - \beta (1 - \alpha)} \left[\mathbf{w} + \alpha \beta P v_u \right]$$

$$= \underbrace{\frac{1}{1 - \beta (1 - \alpha)}}_{=:h} \mathbf{w} + \underbrace{\frac{\alpha \beta}{1 - \beta (1 - \alpha)}}_{=:\gamma} P v_u$$

 $v_e = h + \gamma P v_u$ (a relation between v_e and v_u)

Reduce dimension

For the policy operator when unemployed:

$$T_{\sigma}v_{u} = \sigma v_{e} + (1 - \sigma)\left[c\mathbf{1} + \beta P v_{u}\right]$$

we have $v_e = h + \gamma P v_u$, then, we have

$$T_{\sigma}v_{u} = \sigma(h + \gamma P v_{u}) + (1 - \sigma)[c\mathbf{1} + \beta P v_{u}]$$

now we reduce the state space into just W compared to $X = \{e, u\} \times W$.

Reduce dimension

The state space is reduced from $X = \{e, u\} \times W$ to W, we can reduce the value space

$$V = bm(X, \mathbb{R})$$
 to $bm(W, \mathbb{R}) =: bmW$

with policy operator

$$T_{\sigma}v_{u} = \sigma(h + \gamma P v_{u}) + (1 - \sigma)[c\mathbf{1} + \beta P v_{u}]$$

Remark: We can rewrite $T_{\sigma}v_{u} = J_{\sigma} + K_{\sigma}v_{u}$, where $J_{\sigma} = \sigma h + (1 - \sigma)c\mathbf{1}$; and $K_{\sigma} = (\sigma \gamma + (1 - \sigma)\beta)P$

Prove that T_{σ} is an order preserving self-map on bmW

Proof of order preserving.

Fix $\sigma \in \Sigma$. Let $v_u^1 \leq v_u^2 \in bmW$, For $w \in \{w \in W : \sigma(w) = 1\}$, we have

$$T_{\sigma}v_u^1(w) = h(w) + \gamma(Pv_u^1)(w) \le h(w) + \gamma(Pv_u^2)(w)$$

by order preserving of the Markov operator P. For $w' \in \{w \in W : \sigma(w) = 0\}$, we have

$$T_{\sigma}v_u^1(w) = c + \beta(Pv_u^1)(w') \le c + \beta(Pv_u^2)(w')$$

by order preserving of the Markov operator P. Hence in all, we have

$$T_{\sigma}v_u^1 \le T_{\sigma}v_u^2$$

Hence, T_{σ} is order preserving.

] [

7 / 23

Longye DP2 May 2nd, 2025

Prove that T_{σ} is an order preserving self-map on bmW

Proof of $T_{\sigma}v_u$ is bounded.

Fix $\sigma \in \Sigma$:

$$||T_{\sigma}v_{u}||_{\infty} = ||(\sigma h + (1 - \sigma)c\mathbf{1}) + (\sigma \gamma + (1 - \sigma)\beta)Pv_{u}||_{\infty}$$

$$\leq ||\sigma h + (1 - \sigma)c\mathbf{1}||_{\infty} + ||(\sigma \gamma + (1 - \sigma)\beta)Pv_{u}||_{\infty} \qquad (\Delta \text{ ineq.})$$

$$\leq ||h||_{\infty} + ||c\mathbf{1}||_{\infty} + (\gamma + \beta)||Pv||_{\infty} \qquad (\Delta \text{ ineq.})$$

$$\leq \frac{M}{1 - \beta(1 - \alpha)} + c + (\gamma + \beta)||v||_{\infty} \qquad (||P|| = 1)$$

Remark: another way to bound $\|(\sigma\gamma + (1-\sigma)\beta)Pv_u\|_{\infty} \le \lambda \|v\|_{\infty}$, $\lambda := \max\{\gamma, \beta\}$

Longye DP2 May 2nd, 2025 8 / 23

Prove that T_{σ} is an order preserving self-map on bmW

Proof of $T_{\sigma}v_{u}$ is Borel measurable.

- v_u is Borel measurable
- P is bounded linear operator hence continuous hence Borel measurable
- \bullet σ is Borel measurable
- h, c1 are constant functions hence Borel measurable.

Hence, $T_{\sigma}v_{\mu}$ is Borel measurable.

Hence, we have (bmW, \mathbb{T}) , $\mathbb{T} := \{T_{\sigma} : \sigma \in \Sigma\}$ is an ADP (still bmW has a supremum norm and pointwise partial order).

> DP2Longye May 2nd, 2025

Why supremum norm?

Claim 1: The metric induced by supremum norm is sup-nonexpansive.

Let $(v_n), (w_n) \in bmW$ with supremum v and w which are bounded above. We have

$$v_n = v_n - w_n + w_n$$

$$\leq |v_n - w_n| + w_n$$

$$\Longrightarrow$$

$$\sup_n v_n \leq \sup_n (|v_n - w_n| + w_n) \leq \sup_n |v_n - w_n| + \sup_n w_n$$

$$\sup_n v_n - \sup_n w_n \leq \sup_n |v_n - w_n|$$

Similar for the other direction, we have

$$|\sup_{n} v_n - \sup_{n} w_n| \le \sup_{n} |v_n - w_n|$$

Supremum norm induce a sup-nonexpansive metric

For

$$|\sup_n v_n - \sup_n w_n| \le \sup_n |v_n - w_n|$$

we have

$$\sup_{x\in W}|\sup_n v_n(x)-\sup_n w_n(x)|\leq \sup_{x\in W}\sup_n|v_n(x)-w_n(x)|=\sup_n\sup_{x\in W}|v_n(x)-w_n(x)|$$

the last equality is by the uniquness of supremum. This implies

$$\|\sup_{n} v_n - \sup_{n} w_n\|_{\infty} \le \sup_{n} \|v_n - w_n\|_{\infty}$$

in term of the metric induced by supremum norm, we have

$$d_{\infty}(\sup_{n} v_n, \sup_{n} w_n) \le \sup_{n} d_{\infty}(v_n, w_n)$$

Hence, supremum norm induce a sup-nonexpansive metric

Longye DP2 May 2nd, 2025

11 / 23

Why supremum norm?

Claim 2: The metric induced by supremum norm is complete.

Let (v_n) be a Cauchy sequence in bmW. By definition, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$, we have

$$d_{\infty}(v_m, v_n) = \sup_{x \in W} |v_m(x) - v_n(x)| < \varepsilon$$

This implies for a fixed $x \in W$, $(v_n(x))$ is a Cauchy sequence in \mathbb{R} (with Euclidean metric). By the completeness of \mathbb{R} , we get there exists v such that

$$v(x) = \lim_{n \to \infty} v_n(x)$$

Now we just need to show that $v \in bmW$ and $d_{\infty}(v_n, v) < \epsilon$.

Supremum metric is complete

Measurability: For $v_n : W \to \mathbb{R}$, pointwise limit of measurable function is measurable. (See details in appendix page 20)

Boundedness: let $m, n \geq N$, we have

$$|v_m(x) - v_n(x)| < \epsilon \implies |v_m(x)| \le |v_m(x) - v_n(x)| + |v_n(x)| < \epsilon + |v_n(x)|$$

for all $m \geq N$, hence

$$\lim_{m \to \infty} |v_m(x)| = |v(x)| < \epsilon + |v_n(x)|$$

hence bounded.

Supremum metric is complete

Convergence in supremum metric:

$$\sup_{x \in W} |v_n(x) - v_m(x)| < \epsilon, \forall m \ge N$$

implies

$$\sup_{x \in X} |v_n(x) - v(x)| < \epsilon$$

Hence, d_{∞} is a complete metric. This makes the underlying value space $(bmW, \|\cdot\|_{\infty})$ a Banach space.

v_u -greedy policy

Claim: $\sigma(w) := \mathbf{1}\{v_e(w) \ge c + \beta(Pv_u)(w)\}\$ is v_u -greedy

Proof.

Note under σ , we have

$$T_{\sigma}v_u = \max\{v_e, c + \beta P v_u\}$$

Fix $\tau \in \Sigma$, we have

$$T_{\tau}v_u = \tau(v_e) + (1 - \tau)(c + \beta Pv_u) \le \max\{v_e, c + \beta Pv_u\} = T_{\sigma}v_u$$

Hence, σ is v_u -greedy

Remark 1: economic interpretation is choose the one with higher expected discounted payoff.

Remark 2: Since for every v_u , such greedy policy is well-defined as above, we have the ADP is regular

Exercise 4.2.10

Prove that there exists $\lambda \in (0,1)$ such that T_{σ} is a contraction of modulus λ on bmW for all $\sigma \in \Sigma$.

Proof.

Recall that we can rewrite $T_{\sigma}v_u = J_{\sigma} + K_{\sigma}v_u$, where $J_{\sigma} = \sigma h + (1 - \sigma)c\mathbf{1}$; and $K_{\sigma} = (\sigma \gamma + (1 - \sigma)\beta)P$. Let $v_1, v_2 \in bmW$. We have

$$||T_{\sigma}v_{1} - T_{\sigma}v_{2}||_{\infty} = ||J_{\sigma} + K_{\sigma}v_{1} - (J_{\sigma} + K_{\sigma}v_{2})||_{\infty}$$

$$= ||K_{\sigma}(v_{1} - v_{2})||_{\infty}$$

$$= ||(\sigma\gamma + (1 - \sigma)\beta)P(v_{1} - v_{2})||_{\infty}$$

$$\leq ||\lambda P(v_{1} - v_{2})||_{\infty} \qquad (\lambda := \max\{\gamma, \beta\} \in (0, 1))$$

$$= \lambda ||v_{1} - v_{2}||_{\infty}$$

Remark and Summary

Remark: As shown before, the value space is a Banach space. Hence, by the Banach fixed point theorem, every policy operator has a unique fixed point and globally stable. And the ADP is well-posed.

Summary: Now we know that the

- ADP is regular and well-posed.
- Supremum norm induces a complete and sup-nonexpansive metric
- Every policy operator is a contraction, globally stable with unique fixed point

Proposition 4.2.2. Optimality

The ADP (bmW, \mathbb{T}) is well-posed. Moreover

- the fundamental optimality properties hold, and
- VFI, OPI and HPI all converge

Proof.

Invoke Theorem 1.3.5. See next page

Longye DP2 May 2nd, 2025 18 / 23

Theorem 1.3.5. Let (V, \mathbb{T}) be a **regular** ADP where $V = (V, d, \preceq)$ is a partially ordered metric space and **d** is **complete and sup-nonexpansive**. If each $T_{\sigma} \in \mathbb{T}$ is a **contraction of modulus** β on V, then

- (i) the fundamental optimality properties hold and
- (ii) VFI, OPI and HPI all converge.

Appendix 1 - pointwise limit

Let

- (X, A) be a measurable space
- (f_n) be a sequence of measurable functions from X to \mathbb{R}
- $f(x) = \lim_{n \to \infty} f_n(x)$

By definition, f is measurable if

$$f^{-1}((-\infty, \alpha]) \in \mathcal{A}, \quad \forall \alpha \in \mathbb{R}$$

i.e., we need to show $\{x \in X : f(x) \le \alpha\}$ is measurable.

Appendix 1 - pointwise limit

Using the definition of limit we have.

$$\{x \in X : f(x) \le \alpha\} = \{x \in X : \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, f_n(x) < \alpha + \epsilon\}$$

$$= \bigcap_{\epsilon > 0} \bigcup_{N \in \mathbb{N}} \bigcap_{n \ge N} \{x \in X : f_n(x) < \alpha + \epsilon\}$$

$$= \bigcap_{\epsilon > 0, \epsilon \in \mathbb{Q}} \bigcup_{N \in \mathbb{N}} \bigcap_{n \ge N} \underbrace{\{x \in X : f_n(x) < \alpha + \epsilon\}}_{\text{measurable}} \qquad (\mathbb{Q} \text{ is dense in } \mathbb{R})$$

Hence $\{x \in X : f(x) \leq \alpha\}$ is a countable intersection of countable union of countable intersection of measurable set, hence measurable.

> DP2May 2nd, 2025Longve 21 / 23

Appendix 2 - Optimal policy

Let σ^{\top} be the optimal policy and v_u^{\top} be the value function. We have

$$\boldsymbol{v}_u^\top = \max\{\boldsymbol{h} + \gamma P \boldsymbol{v}_u^\top, c\mathbf{1} + \beta P \boldsymbol{v}_u^\top\}$$

We can define optimal stopping value

$$s^{\top} = h + \gamma P v_u^{\top}$$

and optimal continuation value

$$\boldsymbol{f}^{\top} = c\mathbf{1} + \beta P \boldsymbol{v}_u^{\top}$$

Hence, we can characterize the optimal policy as

$$\sigma^{\top} = \mathbf{1}\{s^{\top} \ge f^{\top}\}$$

Appendix 2 - Reservation wage

We define the smallest $w \in W$ such that $\sigma^{\top}(w) = 1$ as **reservation wage**.