

Ablation study

- DeepSocNav no Aux: No auxiliary task
- DeepSocNav T=1: No history
- DeepSocNav half pretraining
- DeepSocNav no pretraining

Metrics

- SocialScore: Score distances to other agents
- Collisions
- Success rate
- Average Distance Error (ADE)
 Final Distance Error (FDE)

Results

Results

Model	Social Score	ADE [m]	FDE [m]	Collisions	Target
GT	0.034	-	-	-	-
SFM	0.054	0.20	0.16	0.037	1
NaviGAN	-	0.43	0.74	-	1
DeepSocNav	0.040	0.24	0.34	0.018	1
DeepSocNav no Aux	0.042	0.24	0.20	0.037	1
DeepSocNav T=1	0.051	0.32	0.52	0.018	1
DeepSocNav no Pre-train	0.047	0.33	0.41	0.094	1

Conclusions

Analysis and conclusion

- Competitive performance based on an input simpler to obtain (Depth First Person View).
- Pretraining on artificial trajectories lessen the required amount of social data.
- Predicting future observations boosts navigational performance.

Future work

- Add more pedestrian datasets.
- RGB image and more detail pedestrians models to exploit intention of other agents.

