1 Working of a Regular Current Mirror

Useful Youtube Video

I want to point out that the regular current mirror, M1 is diode connected so it always stays in saturation. Its drain current equation without channel length modulation ($\lambda=0$) is

$$V_G = V_D$$

 $I_{D1} = \frac{1}{2} \mu_n C_{ox} (W/L) (V_{DS} - V_t)^2$

We see that the free variables are I_{D1} and V_{DS} , current source I_{REF} is used to set I_{D1} , which sets V_{DS} , which sets V_G . On the other side, M2's drain current $(\lambda = 0)$ is

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} (W/L) (V_{GS} - V_t)^2$$

The only moving variable is V_{GS} . This is saying that I_{D2} can be set by V_G only, and M2's drain current doesn't depend on V_{DS} of M2!!

However this is no longer true once channel length modulation is introduced. λ brings a small deviation when setting I_{D2} to be our I_{REF} , but it's still pretty close.