

Al 3-in-1: Agents, RAG, and Local Models

Presented by Brent Laster &

Tech Skills Transformations LLC

© 2025 Brent C. Laster & Tech Skills Transformations LLC

All rights reserved

About me

- Founder, Tech Skills Transformations LLC
- https://getskillsnow.com
- info@getskillsnow.com
- Long career in corporate as dev, manager, and director in DevOps and other areas
- Author

* * * 10 0

- O'Reilly "reports"
- **Books**
 - Professional Git
 - Jenkins 2 Up and Running
 - Learning GitHub Actions
 - Learning GitHub Copilot
 - AI-Enabled SDLC
- Speaker
- Social media
- LinkedIn: brentlaster
- X: @BrentCLaster
- **□** Bluesky: brentclaster.bsky.social
- GitHub: brentlaster

\$ ChatGPT

LISTED BELOW ARE A FEW OF THE TECHNOLOGIES FOR WHICH WE OFFER HANDS-ON TRAINING. THESE CAN BE **CUSTOMIZED FOR ANY** SIZE TEAM FROM 1-100 AND FOR ANY LEVEL FROM BEGINNER TO ADVANCED.

- ArgoCD
- Containers
- Docker
- Gerrit
- · Git
- GitHub Actions GitHub Codespaces
- GitHub Copilot
- GitHub Foundations
- GitHub Security
- GitLab
- GitOps • Gradle
- Grafana
- Helm
- Jenkins Kubernetes
- Kustomize
- LLMs
- Prometheus Tekton
- VS Code

Running models locally

Why run models locally?

- Privacy no need to share data
- Gives you control over setup, configuration, and customization options
 - Can tailor LLM to your needs, experiment with settings, integrate into your infra
- Can easily swap between different models for different tasks
- Work in offline mode
- Cost savings
 - No charges for subscriptions or API calls
- No censoring of results

Where to get models +

Options for running LLMs locally

GPT4All 3.0

The Local LLM Desktop App
All new Ul and improved LocalDocs chat

- GPT4All https://github.com/nomic-ai/gpt4all
- LM Studio https://lmstudio.ai
- Jan AI https://jan.ai
- llama.cpp https://github.com/ggerganov/llama.cpp
- LlamaFile https://github.com/Mozilla-Ocho/llamafile
- Ollama https://ollama.com/
- HuggingFace Transformers https://huggingface.co/docs/transformers
- More!

- Command line tool for downloading, exploring and using LLMs on local machine
- open source
- supports most of Hugging Face's popular models
- allows uploading new ones
- Links:
 - main site: https://ollama.com
 - GitHub: https://github.com/ollama/
- Advantages
 - speeds up and simplifies
 - » model selection and download
 - » configuring endpoints
 - » integration with Python or JavaScript codebase

Working with Ollama #1

o (py_env) @gwstudent2 → /workspaces/3in1 (main) \$ □ \

ollama pull

Ollama

Working with Ollama #2

>>> Briefly explain what an AI model is

ollama run

Working with Ollama #3

```
a bash - 3in1 <u>∧</u> + ∨ □ i ii
  PROBLEMS
               TERMINAL
o (py_env) @gwstudent2 → /workspaces/3in1 (main) $ □
```

ollama serve

http://localhost:11434/v1

llama3.2

Demo #1 – Simple program to work with local model

Agents

What is an Al Agent?

- A system that operates within an environment by using sensors to perceive information, a decision-making mechanism to process and reason about the data, and actuators to take actions that influence or update/respond to the environment
- This interaction enables the agent to achieve specific goals autonomously while continuously learning and adapting over time
- Agents use LLMs to identify key data, drive decisions, and communicate naturally

Architectural Features of Al Agents

Planning

- Al autonomously outlines and executes a logical series of steps for accomplishing a given objective.
- Provides the AI with a way to dynamically adapt its approach based on real-time data and feedback..
- Might employ reflection to evaluate and improve responses
- Example: A research agent plans search → summarize → generate report.

Tool Use

- Al agents interact with external APIs, databases, and functions.
- Enhances LLMs by providing access to realworld knowledge.
- Reduces hallucinations by using retrievalaugmented generation (RAG).
- Example: Calling a Python function to perform complex calculations.

Memory

- Short-term handles tasks; long term stores knowledge and experience
- Memory ensures consistency and efficiency in multi-step decisions
- Memory recalls preferences to enhance personalization and user experience
- Example: Storing user preferences for future reference or personalized responses

You have access to the following tools:

Tool Name: find_weather, Description: Get weather for a location.,

Arguments: latitude: float, longitude: float, Outputs: string

You should think step by step in order to fulfill the objective with a reasoning process divided into Thought/Action/Observation. This cycle can repeat multiple times if needed.

You should first reflect with "Thought: {your_thoughts}" on the current query, then (if necessary), call a tool with the proper JSON formatting "Action: {JSON_BLOB}", or else print your final answer starting with the prefix "Final Answer:"""

You have access to the following tools:

Tool Name: find_weather, Description: Get weather for a location., Arguments: latitude: float, longitude: float, Outputs: string

You should think step by step in order to fulfill the objective with a reasoning process divided into Thought/Action/Observation. This cycle can repeat multiple times if needed.

You should first reflect with "Thought: {your_thoughts}" on the current query, then (if necessary), call a tool with the proper JSON formatting "Action: {JSON_BLOB}", or else print your final answer starting with the prefix "Final Answer:"""

Par

User

What's the weather in Paris?


```
AIResponse(
   tool calls=[{
      name:
"find_weather"
      parameters: {
          latitude:
"48.8566"
          longitude:
"2.3522"
                                  name:
                              "find_weather"
      id: "call tool123"
                                  parameters:
   Agent executes tool call
                                      latitude:
                              "48.8566",
                                      longitude:
         Weather
                              "2.3522",
        Search Tool
```

Al Agent

You have access to the following tools:

Tool Name: find_weather, Description: Get weather for a location., Arguments: latitude: float, longitude: float, Outputs: string

You should think step by step in order to fulfill the objective with a reasoning process divided into Thought/Action/Observation. This cycle can repeat multiple times if needed.

You should first reflect with "Thought: {your_thoughts}" on the current query, then (if necessary), call a tool with the proper JSON formatting "Action: {JSON_BLOB}", or else print your final answer starting with the prefix "Final Answer:"""

AIResponse(

What's the weather in Paris?

User

```
LLM
```

"call_tool123"

```
tool_calls=[{
    name:
    "find_weather"
        parameters: {
        latitude:
    "48.8566",
        longitude:
    "2.3522",
        },
        id: "call_tool123",
        type: "tool_invoke"
/eathedtool returns result
```

```
Weather tool returns result
```

```
Weather
Search Tool
```

```
Al Agent type: "t
```

ToolResponse(
content="53 and rainy",

name="find_weather",
tool invoke id:

name:

"48.8566",

"2.3522",

"find_weather"

parameters:

latitude:

longitude:

You have access to the following tools:

Tool Name: find_weather, Description: Get weather for a location., Arguments: latitude: float, longitude: float, Outputs: string

You should think step by step in order to fulfill the objective with a reasoning process divided into Thought/Action/Observation. This cycle can repeat multiple times if needed.

You should first reflect with "Thought: {your_thoughts}" on the current query, then (if necessary), call a tool with the proper JSON formatting "Action: {JSON_BLOB}", or else print your final answer starting with the prefix "Final Answer:"""

What's the weather in Paris?

User

```
AIResponse(
                                     tool calls=[{
                                       name:
                                 "find_weather"
                                       parameters: {
  LLM
                                           latitude:
                                 "48.8566"
                                           longitude:
                   Agent includes tool
                                                                  name:
                        output in
                                                               "find_weather"
                  message/prompt back
                                        d: "call_tool123",
                                                                   parameters: {
                        to model
                                       type: "tool_invoke"
                                                                      latitude:
ToolResponse(
                                                               "48.8566",
   content="53 and
                                                                      longitude:
                                          Weather
rainy",
                                                               "2.3522",
                                         Search Tool
name="find_weather",
   tool invoke id:
                                         Al Agent
"call_tool123"
```


Demo #2 – Adding agency to our code

RAG

What is RAG and how does it work?

- Combination of retrieval and generation: RAG combines information retrieval (like a search engine) with text generation (like a language model).
- **Uses external knowledge**: Instead of relying solely on pre-trained knowledge, RAG retrieves relevant documents or data from an external source (like a database or private knowledge bases) to generate more accurate and up-to-date responses.
- Improves factual accuracy: By pulling in real-time data or documents, RAG reduces the risk of generating factually incorrect or outdated information.
- Two-step process:
 - Retrieve: The model searches for relevant information from a knowledge source.
 - Generate: It then uses the retrieved data to create a coherent, contextually accurate answer.

Source: https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

Doc Ingestion and Retrieval

- You provide data sources and point application to them
- Info is retrieved from the data sources and tokenized, embedded and stored in a data store
- For queries/prompts, application gathers results (most relevant ones) from the vector database with your data

- Embeddings represent text as sets of numeric data tensors (lots of dimensions)
- Each dimension stores some info about the text's meaning, context, or syntactical aspects
- Words or sentences with similar meanings are stored closer together in the vector space
 - If two pieces of text are similar syntactically, they will have similar embeddings (smaller distance between their vectors)
- During training, models learn to place text with similar meanings closer together in the embedding space
- Common pre-trained models used for generating embeddings include BERT and variants (RoBERTa, DistilBERT)
- Once you have embeddings, you can use them for NLP tasks like semantic search, text classification, sentiment analysis

R (255,0,0)

Understanding vectors in Al

 Collection of data points that encapsulate an item's relationship to other items

Understanding vectors in Al

 Collection of data points that encapsulate an item's relationship to other items

Semantic meaning / relationships

- Suppose we have 3 words
- King and Queen are more similar to each other than they are to lunch
- In order for neural net to understand the relationships, each word needs to be represented as a vector
- Suppose each word is represented by a 2dimensional vector

- Plotting in 2-dimensional embedding space shows relationships
- Way to let NN understand relationships between words
- We want the NN to learn that King and Queen are more similar to each other than they are to lunch

King [-130.16]
Queen [-115.43]
Lunch [-89.5]

Searching for Vectors - similarity metrics

3 metrics commonly used to determine similarity of two vectors (2-dimensional representation)

Cosine similarity - measure the angle between two vectors; values from -1 to 1; 1 = both point in same direction; -1 point in opposite directions; 0 = orthogonal (perpendicular)

Dot product / inner product - measures how well 2 vectors align with each other; values from - ∞ to ∞; positive values indicate vectors are in same direction; negative values indicate opposite directions; 0 = orthogonal

Euclidean distance - measures the distance between two vectors; values from 0 to ∞ ; 0 = identical; larger numbers farther apart

imagine 3 vectors - a,b,c

$$a = \begin{bmatrix} .01 \\ .07 \\ .1 \end{bmatrix}$$
 $b = \begin{bmatrix} .01 \\ .08 \\ .11 \end{bmatrix}$ $c = \begin{bmatrix} .91 \\ .57 \\ .6 \end{bmatrix}$

Cosine similarity

$$sim(u,v) = \frac{u \cdot v}{\|u\| \|v\|} = \frac{\sum_{i=1}^{n} a_n b_n}{\sqrt{\sum_{i=1}^{n} u_n^2} \sqrt{\sum_{i=1}^{n} v_n^2}}$$

$$sim(a,b) = \frac{(d_1 * b_1) + (a_2 * b_2) + (a_3 * b_3)}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

$$= \frac{(0.01 * 0.01) + (0.07 * 0.08) + (0.1 * 0.11)}{\sqrt{0.01^2 + 0.07^2 + 0.1^2} \sqrt{0.01^2 + 0.08^2 + 0.11^2}}$$

Dot product / inner product

$$u \cdot v = |u||v|\cos\theta = \sum_{i=1}^{n} a_n b_n \qquad a \cdot b = (a_1 b_1) + (a_2 b_2) + (a_3 b_3)$$

= $(0.01 * 0.01) + (0.07 * 0.08) + (0.1 * 0.11)$

0.0167

$$d(u, v) = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$

0.9998

Euclidean distance $\overline{d(a,b)} = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}$ $= \sqrt{(0.01 - 0.01)^2 + (0.08 - 0.07)^2 + (0.11 - 0.1)^2}$

edit: https://towardsdatascience.com/similarity-metrics-in-nlp-acc0777e234c

Visualizing Embeddings and Vector Similarity

source: https://projector.tensorflow.org/?config=https://gist.githubusercontent.com/martin-

labrecque/4483ff5a104f0b56417585c3bc9a12f1/raw/57348e12a70c8d70c2c573d3dbc0122ac077556b/journaux_config.json

Vectors and relationships example

Query - what words are related to "dog" in model "English Wikipedia"?

Show the raw vector of «dog» in model MOD enwiki upos skipgram 300 2 2021:

[-0.03301828354597092, 0.05134638026356697, 0.0036009703762829304, -0.04066073149442673, 0.10361430048942566, 0.013021323829889297, 0.028161464259028435, -0.0027567853685468435, 0.03388035297393799, -0.044882044196128845, 0.005169689189642668, -0.05818631127476692, 0.0533536821603775, 0.016616210341453552, 0.02030780538916588, -0.008570297621190548, -0.10925538837909698, -0.0708925873041153, 0.04675082117319107, -0.03091960959136486, -0.05172094330191612,0.04471702128648758. 0.008674593642354012. -0.01816382259130478. 0.05909318849444389, 0.10409023612737656, 0.05633684620261192, -0.024881813675165176, 0.01872968301177025, 0.007228093687444925, -0.023127363994717598, 0.01528552919626236, -0.0643191784620285, -0.010359424166381359, -0.06104437634348869, -0.13868044316768646, -0.023004498332738876, 0.0038427673280239105, -0.021551262587308884 -0.03467748314142227, 0.010687021538615227, -0.017304275184869766, 0.026886526495218277, -0.0030398862436413765, -0.03685504570603371, -0.06017328053712845, 0.047442398965358734, -0.10714898258447647, 0.14808930456638336, -0.06579480320215225, -0.004342162515968084, 0.06226382404565811, 0.08031187951564789, -0.055930640548467636, -0.07030591368675232, 0.015474628657102585, 0.05367768555879593, 0.0917837843298912, 0.031899698078632355, 0.055091146379709244, -0.025078952312469482, -0.048126623034477234, -0.09730836749076843, -0.07128141075372696, 0.019415033981204033, -0.025872433558106422, -0.01761292852461338, 0.015608762390911579, -0.029876720160245895, -0.008602319285273552, 0.049825914204120636, 0.06784739345312119,0.005586292129009962, -0.07148509472608566, -0.03097137063741684, -0.020296750590205193, 0.05099814385175705, 0.14920306205749512,

Source: http://vectors.nlpl.eu/explore/embeddings/en/MOD enwiki upos skipgram 300 2 2021/dog NOUN/

Vector Databases

- Specialized database that index and stores vector embeddings
- Useful for
 - fast retrieval
 - similarity search
- Offer comprehensive data management capabilities
 - metadata storage
 Vector Database
 - filtering
 - dynamic querying based on associate metadata
- Scalable and can handle large volumes of vector data
- Support real-time updates
- Play key role in AI and ML applications

How data gets into Vector Databases

- Data is input, converted to embeddings (vectors) and stored
- Queries are input, converted to embeddings (vectors) and then similarity metrics are used to find results ("nearest neighbors")

LLM

LLM Response

How does RAG work?

- For queries/prompts, application gathers results (most relevant ones) from the vector database with your data
- Adds results to your regular LLM query/prompt
- Asks the LLM to answer based on the augmented/enriched query/prompt

NOTE: Items returned via RAG search are existing items from the data store, not generated content

User Query and Response Generation

response (generative)

Demo #3 – Adding RAG to our code

DIY - github.com/brentlaster/3in1

- Fork if desired
- Click on button in README to start codespace
- Follow guide.md

Contact: training@getskillsnow.com

techskillstransformations.com getskillsnow.com

□LinkedIn: brentlaster

□X: @BrentCLaster

□Bluesky: brentclaster.bsky.social

□GitHub: brentlaster