Fonctionnement des Ordinateurs

Ch. 3 Caractères et chaînes de caractères

B. Quoitin (bruno.quoitin@umons.ac.be)

Codes de caractères

- Code ASCII
- Extensions ISO 8859
- Unicode

Représentation des Caractères

Code de caractères

- Les ordinateurs peuvent manipuler des caractères.
 - Exemple: 26 caractères de l'alphabet latin en minuscule (a z) et majuscule (A Z), 10 chiffres décimaux (0 9) et symboles spéciaux (espace, point, virgule, signe moins, retour à la ligne, etc).
- Un caractère est représenté sous forme d'un nombre appelé code de caractère ou code point.
 - Exemple : le caractère A pourrait être représenté par 65.
- On désigne par code, un ensemble de correspondance entre caractères et codes de caractères. A chaque code de caractère correspond généralement un seul caractère, et vice versa (bijection).

Représentation des Caractères

Propriété des codes de caractères

- Certains sous-ensembles de caractères sont naturellement ordonnés.
 Par exemple,
 - les caractères qui correspondent aux chiffres décimaux (0 à 9)
 - les caractères qui correspondent aux lettres de l'alphabet latin minuscules (a à z) et majuscules (A à Z).

 Une propriété intéressante d'un code est que les code points correspondant aux caractères de ces sous-ensembles soient dans le même ordre

Codes de caractères

- Code ASCII
- Extensions ISO 8859
- Unicode

Code ASCII

American Standard Code for Information Interchange (ASCII)

- Codes standard représentés sur 7 bits → codes de 0 à 127.
- Encode les caractères de l'alphabet latin en minuscule et majuscule, les chiffres décimaux, des signes de ponctuation et de codes de contrôle.

_																
car de	bel	7	ack	6	enq	5	eot	4	etx	3	stx	2	soh	1	nul	0
ractères	si	15	so	14	cr	13	np	12	vt	11	nl	10	ht	9	bs	8
actères	etb	23	syn	22	nak	21	dc4	20	dc3	19	dc2	18	dc1	17	dle	16
es Île	us	31	rs	30	gs	29	fs	28	esc	27	sub	26	em	25	can	24
	1	39	&	38	%	37	\$	36	#	35	11	34	!	33	sp	32
	/	47	•	46	_	45	,	44	+	43	*	42)	41	(40
	7	55	6	54	5	53	4	52	3	51	2	50	1	49	0	48
	?	63	>	62	=	61	<	60	;	59	:	58	9	57	8	56
i Ω	G	71	F	70	E	69	D	68	C	67	В	66	A	65	<u>@</u>	64
caractères imprimables	0	79	N	78	M	77	L	76	K	75	J	74	I	73	Н	72
ma	M	87	V	86	U	85	T	84	S	83	R	82	Q	81	P	80
ère		95	^	94]	93	\	92	[91	Z	90	Y	89	X	88
SS	g	103	f	102	е	101	d	100	С	99	b	98	a	97	`	96
	0	111	n	110	m	109	1	108	k	107	j	106	i	105	h	104
	W	119	V	118	u	117	t	116	S	115	r	114	q	113	р	112
	del	127	~	126	}	125		124	{	123	Z	122	У	121	X	120
,										•		1 4				.

Notes: cette table peut être obtenue avec "man ascii"; le caractère ht est la tabulation horizontale (« tab »)

Code ASCII

Limitation - encodage prévu pour l'anglais

- Le code de caractères ASCII a été conçu pour l'encodage de documents en langue anglaise. Il n'est pas approprié pour l'encodage de caractères tels que "ç" en français et encore moins pour des caractères chinois, russes ou grecs, par exemple.
- Il existe des extensions (non standard) au code ASCII avec une représentation sur 8 bits. 128 codes de caractères supplémentaires sont alors disponibles. Ces codes de caractères ne sont cependant pas universels.

Codes de caractères

Code ASCII

- Extensions ISO 8859
- Unicode

Code ASCII

Tables ASCII étendues ISO 8859

- Ensemble de plusieurs extensions standard, majoritairement pour les formes d'écriture utilisées en Europe. Définies par l'ECMA et standardisées par l'ISO.
- Encodage sur 8 bits; les 128 premiers codes correspondent à ASCII
- <u>Exemple</u>: ISO-8869-1 (Latin-1)
 - ISO-8859-15 est similaire à ISO-8859-1 mais remplace 8 caractères et permet l'introduction du symbole Euro (€ 0xA4)

ECMA: European Computer Manufacturer Association ISO: International Organization for Standardization

Code ASCII

Tables ASCII étendues ISO 8859

- D'autres extensions existent pour supporter d'autres langues.
- Par exemple

 ISO 8859-2 : langues slaves dérivées du Latin (Tchèque, Slovaque, Polonais, Hongrois, ...)

- ISO 8859-3 : Turque, Maltais, Esperanto, ...

- ISO 8859-4 : Estonien, Letton, Lituanien, ...

- etc.

Codes de caractères

- Code ASCII
- Extensions ISO 8859

Unicode

Unicode

Unicode

- Code destiné à remplacer ASCII et ses extensions.
- Supporte un très grand nombre de caractères différents et a l'ambition de supporter toutes les formes d'écriture. Supporte également l'écriture de certaines langues mortes.

- Les code points d'Unicode vont de 0x000000 à 0x10FFFF. Tous ne sont pas utilisés à ce stade et certains d'entre eux sont réservés. Les 256 premiers code points sont les mêmes qu'ISO-8859-1.
- Unicode est un standard qui continue à évoluer. La version 14 (Septembre 2021) définissait 144697 code points différents pour 159 formes d'écritures (appelées « blocs »).

Unicode

Unicode Transformation Format (UTF)

- Unicode supporte l'encodage d'un code point sur un <u>nombre variable</u> <u>d'octets</u>. Plusieurs encodages sont standardisés.
 - UTF-32 : encodage de <u>taille fixe</u>, sur 4 octets (32 bits); représente exactement le *code point*
 - UTF-16: encodage de <u>taille variable</u>, sur 2 octets (16 bits) ou 4 octets (32 bits)
 - UTF-8 : encodage de taille variable sur de 1 à 4 octets; les 128 premiers codes sont les mêmes qu'ASCII
- Aujourd'hui, l'encodage le plus utilisé est UTF-8 car il est le plus efficace en terme d'occupation d'espace.

 Note: le fonctionnement détaillé des encodages UTF-8 et UTF-16 sort du cadre de ce cours.

Unicode

Exemples d'encodages

	Caractère	Code ASCII	Code point Unicode	Encodage UTF-8	Encodage UTF-16	Encodage UTF-32
identique	Н	48	48	48	00 48	00 00 00 48
ASCII	7	37	37	37	00 37	00 00 00 37
	CR	0a	a	0a	00 0a	00 00 00 0a
identique	û	1	fb	c3 bb	00 fb	00 00 00 fb
ISO-8859-1	Ö	1	f6	c3 b6	00 f6	00 00 00 f6
	€	1	20ac	e2 82 ac	20 ac	00 00 20 ac
	③	1	2622	e2 98 a2	26 22	00 00 26 22
	\mathbb{H}	1	2318	e2 8c 98	23 18	00 00 23 18
	Њ	1	40a	d0 8a	04 0a	00 00 04 0a
	蠓	1	8813	e8 a0 93	88 13	00 00 88 13
	A	1	f09380a3	f0 93 80 a3	d8 0c dc 23	00 01 30 23

obtenu avec par exemple: echo -n "₺" | iconv -t utf-16be | hexdump -C

Codes de caractères

- Code ASCII
- Extensions ISO 8859
- Unicode

- Une chaîne de caractères est représentée comme la suite des codes des caractères qui la composent. Ces codes sont placés de manière consécutive en mémoire.
 - Exemple: la chaîne « HELLO » pourrait être représentée en mémoire par la suite des codes ASCII 72, 69, 76, 76 et 79.
- Si tous les codes ont la même taille (p.ex. 8 bits en ASCII), alors la représentation de la chaîne en mémoire peut être vue comme un tableau de codes et chaque caractère peut facilement être indexé.
 - ASCII: « HELLO » \rightarrow 48 45 4C 4C 4F
- Dans le cas contraire, (p.ex. en UTF-8), il est plus difficile de trouver un caractère à une position donnée.

- Il existe plusieurs variantes de la représentation des chaînes de caractères en mémoire
 - sans longueur explicite: utilisation d'une sentinelle (p.ex. zéro terminal)
 - avec longueur explicite: utilisation d'un en-tête ou d'une variable contenant la longueur

Chaîne à zéro terminal

- Une chaîne à zéro terminal (nul-terminated string) est une représentation dans laquelle les caractères de la chaîne sont suivis d'un caractère spécial de code 0 (sentinelle). Il n'y a donc pas de représentation explicite de la longueur.
- Le caractère 0 terminal est souvent noté '\0' dans les langages de programmation.

```
void str_print(char [] str) {
    unsigned int i = 0;
    while (str[i] != 0) {
        putchar(str[i]);
        i++;
    }
    L=5 caractères
}
```

- <u>Avantage</u>: une telle chaîne peut avoir une longueur illimitée (seulement limitée par la mémoire disponible).
- <u>Inconvénient</u>: déterminer la longueur de la chaîne nécessite de la parcourir entièrement.

Chaîne avec en-tête longueur

- La chaîne est associée à, une zone mémoire contenant une représentation (explicite) de sa *longueur*. Cette zone mémoire peut être composée d'un ou plusieurs octets.
- La longueur peut soit précéder la chaîne en mémoire ou se trouver dans une variable associée.

```
en-tête
longueur

H E L D

5 72 69 76 76 79

L=5 caractères

void str_print(char [] str) {
    unsigned int i = 0;
    while (i < str[0]) {
        putchar(str[i+1]);
        i++;
    }
}</pre>
```

- Avantage: il est possible de connaître rapidement la longueur de la chaîne.
- <u>Inconvénient</u>: la longueur maximale d'une telle chaîne est limitée par la taille réservée à sa longueur. Par exemple, si l'en-tête fait 8 bits, la longueur maximale est 255 caractères.

Références

- Computer Organization and Design: The Hardware/Software Interface,
 4th Edition, D. Patterson and J. Hennessy, Morgan-Kaufmann, 2009
- http://www.unicode.org
- http://www.charset.org

Remerciements

Merci à toutes les personnes qui ont permis par leurs remarques de corriger et d'améliorer ces notes de cours.