nn-mlp

June 26, 2023

```
[1]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.preprocessing import StandardScaler
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import (
         accuracy_score,
         classification report,
        ConfusionMatrixDisplay
     from sklearn.neural_network import MLPClassifier
     import warnings
     warnings.filterwarnings("ignore")
[2]: white wines = pd.read_csv("./data/winequality-white.csv", sep=";")
[3]: white_wines.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4898 entries, 0 to 4897
    Data columns (total 12 columns):
         Column
                               Non-Null Count
                                               Dtype
        _____
                               -----
     0
         fixed acidity
                               4898 non-null
                                               float64
     1
         volatile acidity
                               4898 non-null
                                               float64
     2
         citric acid
                               4898 non-null
                                               float64
     3
         residual sugar
                               4898 non-null
                                               float64
     4
         chlorides
                               4898 non-null
                                               float64
```

4898 non-null

4898 non-null

4898 non-null

9 sulphates 4898 non-null
10 alcohol 4898 non-null
11 quality 4898 non-null
dtypes: float64(11), int64(1)
memory usage: 459.3 KB

total sulfur dioxide 4898 non-null

free sulfur dioxide

7

8

density

Нq

float64

float64

float64

float64

float64

float64

int64

A base não possui dados nulos ou faltantes

```
[4]: white_wines['rating'] = [0 if quality < 6 else 1 for quality in_
      ⇔white_wines['quality']]
     white_wines.head()
[4]:
        fixed acidity volatile acidity citric acid residual sugar
                                                                        chlorides \
                  7.0
                                                 0.36
                                                                  20.7
                                    0.27
                                                                            0.045
                  6.3
                                    0.30
                                                 0.34
                                                                  1.6
     1
                                                                            0.049
                                                 0.40
     2
                  8.1
                                    0.28
                                                                  6.9
                                                                            0.050
     3
                  7.2
                                    0.23
                                                 0.32
                                                                  8.5
                                                                            0.058
                  7.2
                                    0.23
                                                 0.32
                                                                  8.5
                                                                            0.058
     4
        free sulfur dioxide total sulfur dioxide density
                                                               pH sulphates
                       45.0
     0
                                             170.0
                                                     1.0010
                                                             3.00
                                                                         0.45
                       14.0
                                             132.0
                                                     0.9940
                                                             3.30
                                                                         0.49
     1
                       30.0
                                                                         0.44
     2
                                              97.0
                                                     0.9951 3.26
     3
                       47.0
                                             186.0
                                                     0.9956
                                                             3.19
                                                                         0.40
                       47.0
                                             186.0
                                                     0.9956 3.19
                                                                         0.40
        alcohol quality rating
            8.8
                       6
     0
     1
            9.5
                       6
                                1
     2
           10.1
                       6
                                1
            9.9
     3
                       6
                                1
     4
            9.9
                       6
                               1
[5]: fig, axs = plt.subplots(1, 2, figsize=(16,6))
     ax = plt.subplot(121)
     white_wines.quality.value_counts().sort_index(ascending=True).plot.bar()
     ax.set_title("Distribuição de Vinhos Verdes Brancos por Nota")
     ax = plt.subplot(122)
     white_wines.rating.value_counts().sort_index(ascending=True).plot.bar()
     ax.set_title("Quantidade de Vinhos Ruins/Bons")
```

[5]: Text(0.5, 1.0, 'Quantidade de Vinhos Ruins/Bons')

[6]: white_wines.describe()

[6]:		fixed acidity	volatile acidity	citric acid	residual sugar	١
	count	4898.000000	4898.000000	4898.000000	4898.000000	
	mean	6.854788	0.278241	0.334192	6.391415	
	std	0.843868	0.100795	0.121020	5.072058	
	min	3.800000	0.080000	0.000000	0.600000	
	25%	6.300000	0.210000	0.270000	1.700000	
	50%	6.800000	0.260000	0.320000	5.200000	
	75%	7.300000	0.320000	0.390000	9.900000	
	max	14.200000	1.100000	1.660000	65.800000	

	chlorides	free sulfur dioxide	total sulfur dioxide	density
count	4898.000000	4898.000000	4898.000000	4898.000000
mean	0.045772	35.308085	138.360657	0.994027
std	0.021848	17.007137	42.498065	0.002991
min	0.009000	2.000000	9.000000	0.987110
25%	0.036000	23.000000	108.000000	0.991723
50%	0.043000	34.000000	134.000000	0.993740
75%	0.050000	46.000000	167.000000	0.996100
max	0.346000	289.000000	440.000000	1.038980

	рН	sulphates	alcohol	quality	rating
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000
mean	3.188267	0.489847	10.514267	5.877909	0.665169
std	0.151001	0.114126	1.230621	0.885639	0.471979
min	2.720000	0.220000	8.000000	3.000000	0.000000
25%	3.090000	0.410000	9.500000	5.000000	0.000000
50%	3.180000	0.470000	10.400000	6.000000	1.000000
75%	3.280000	0.550000	11.400000	6.000000	1.000000
max	3.820000	1.080000	14.200000	9.000000	1.000000

Tipo				
Valor Médio				
Desvio Padrão				
fixed acidity				
Contínua				
6.854788				
0.843868				
volatile acidity				
Contínua				
0.278241				
0.100795				
citric acid				
Contínua				
0.334192				
0.121020				
residual sugar				
Contínua				
6.391415				
5.072058				
chlorides				
Contínua				
0.045772				
0.021848				
free sulfur dioxide				
Contínua				
35.308085				
17.007137				
total sulfur dioxide				
Contínua				
138.360657				
42.498065				

Variável

```
density
    Contínua
    0.994027
    0.002991
    На
    Contínua
    3.188267
    0.151001
    sulphates
    Contínua
    0.489847
    0.114126
    alcohol
    Contínua
    10.514267
    1.230621
    quality
    Categórica
    rating
    Categórica
[7]: features = white_wines.columns.drop(labels=['quality', 'rating'])
     features
[7]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
            'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
            'pH', 'sulphates', 'alcohol'],
           dtype='object')
      = white_wines[features].hist(figsize=(16, 10))
```



```
[9]: X = white_wines[features]
y = white_wines['rating']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, arandom_state=42, stratify=y)

scaler = StandardScaler()

scaler = scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

[10]: mlp = MLPClassifier(hidden_layer_sizes=(50,30), activation="tanh", solver='adam', max_iter=10000, alpha=0.05, learning_rate='adaptive')

[11]: mlp.fit(X_train_scaled, y_train)
```

Loss Curve

Confusion matrix: [[237 91]

plt.ylabel('Cost')

plt.show()

[95 557]]

Confusion Matrix

[15]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	${ t support}$
0	0.71	0.72	0.72	328
1	0.86	0.85	0.86	652
accuracy			0.81	980
macro avg	0.79	0.79	0.79	980
weighted avg	0.81	0.81	0.81	980

```
[36]: y_hat = mlp.predict_proba(X_train_scaled)
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
sns.distplot(y_hat[y_train.values == 1, 1], label="Good", ax=ax)
ax.set_xlim([0, 1])
sns.distplot(y_hat[y_train == 0, 1], label="Bad", ax=ax)
ax.legend();
ax.axvline(0.5, color="red", ls=":", lw=3)
```

[36]: <matplotlib.lines.Line2D at 0x1c76de6c520>

