Soluzioni tutorato 08-05

May 2023

1 Esercizio 1

Per raggiungere la temperatura di fusione, il pezzetto di ghiaccio deve assorbire una quantità di calore pari a $Q_1 = m_g c_g (273 - T_g)$, dopodichè per fondere completamente deve assorbire una quantità di calore pari a $Q_2 = m_g \lambda$.

Se la quantità di calore che l'acqua può in tutto cedere è maggiore di Q_1+Q_2 , la temperatura di equilibrio sarà >273~K. Altrimenti sarà pari a 273 K. Per verificare questa condizione calcoliamo il calore $Q_3=m_ac_a(T_a-273)$ ceduto dall'acqua se la temperatura di equilibrio è 273 K. Se $Q_3>Q_1+Q_2$ ci troviamo nel primo caso, altrimenti nel secondo.

Se siamo nel secondo caso calcoliamo la temperatura di equilibrio risolvendo in \mathcal{T}_f la seguente equazione:

$$m_g c_g (273 - T_g) + m_g \lambda + m_{gcg} (T_f - 273) = m_a c_a (T_a - 273)$$

Otteniamo $T_f = 6.6^{\circ}$.

2 Esercizio 2

Il calore assorbito dal ferro è $Q=mc_{Fe}(T_2-T_1)=2688~J.$ Il lavoro compiuto durante l'espansione è $W=3p_{atm}=3\lambda\frac{m}{\rho}p_{atm}=2.1~10^{-3}~J.$ Notiamo che la variazione di energia interna sostazialmente pari a =Q.

3 Esercizio 3

Ipotizzando che la temperatura all'equilibrio della massa sia pari alla temepratura della vasca di azoto, ovvero la temperatura di ebollizione, il calore scambiato è pari a:

$$Q = mc(T - T_0) = 4.4 \ 10^3 \ J$$

Di conseguenza la massa di azoto liquido evaporata è $m=\frac{Q}{\lambda}=2.2\ 10^{-2}\ kg.$

4 Esercizio 4

Poichè tutta l'energia cinetica si trasforma in calore assorbito dal proiettile, la variazione di temperatura è:

$$\Delta T = \frac{v^2}{2c} = 153.8 \ C^{\circ} \iff T_f = 173.8 C^{\circ}$$

Tale temperatura è minore della temperatura di fusione del piombo.

5 Esercizio 5

Poichè la variazione di lunghezza deve essere uguale, otteniamo:

$$\Delta l_1 = \Delta l_2 \iff \lambda_1 l_1 = \lambda_2 l_2 \iff l_2 = \frac{l_1 \lambda_1}{\lambda_2} = 1.7 \ m$$

6 Esercizio 6

Imponendo l'uguaglianza fra la forza centrifuga e quella d'attrito troviamo

$$g\mu = \frac{v^2}{r} \implies r = \frac{v^2}{g\mu} = 332.66m$$
 (1)

7 Esercizio 7

Vogliamo imporre l'uguaglianza fra la forza peso e la forza d'attrito, generata dalla reazione vincolare che cquilibria la forza centrifuga.

Quindi

$$mg = m\mu \frac{v^2}{r} \implies v = \sqrt{\frac{gr}{\mu}}$$
 (2)

nota la velocità possiamo calcolare la frequenza con cui il cilindro ruota

$$f = \frac{v}{2\pi r} = 0.42Hz\tag{3}$$

8 Esercizio 8

Come nell'esercizio del pendolo nel treno, imponendo ilsistema per uguagliare le forze, troviamo l'equazione

$$\frac{g}{v^2/r} = \tan(30^\circ) \tag{4}$$

Imponendo che la velocità tangenziale sia data dall'accellerazione troviamo

$$\tan(30^\circ) = \frac{gl\sin(30^\circ)}{(at)^2} \quad \Rightarrow \quad t = \sqrt{\frac{gl}{a^2\tan(30^\circ)\sin(30^\circ)}} = 19.42s$$
 (5)