Introduction to Machine Learning, Fall 2015 - Exercise session V

Rodion "rodde" Efremov, student ID 013593012

November 27, 2015

Problem 2 (3 points)

Exclusive or is a classical example used to demonstrate the limitations of linear classifiers. In the most basic setting, we have two binary inputs and a binary output. Using +1 and -1 as the binary values, the exclusive or function XOR is given by the following table:

$ x_1 $	x_2	$\mid XOR(x_1, x_2) \mid$
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

(a) Give a detailed proof for the fact that the exclusive or function cannot be represented as a linear classifier. That is, prove that there is no coefficient vector (w_0, w_1, w_2) such that

$$XOR(x_1, x_2) = sign(w_0 + w_1x_1 + w_2 + x_2)$$

whould hold for all possible inputs (x_1, x_2) .

(b) Show that if we include an extra input variable x_1x_2 , we can represent XOR as a linear classifier in terms of the modified inputs. That is, find a coefficient vector (w_0, w_1, w_2, w_3) such that

$$XOR(x_1, x_2) = sign(w_0 + w_1x_1 + w_2x_2 + w_3x_1x_2)$$

holds for all (x_1, x_2) .

Solution to (a)

Define three points in \mathbb{R}^3 :

$$A (-1, -1, w_0 - w_1 - w_2),$$

$$B(-1,+1,w_0-w_1+w_2),$$

$$C (+1, -1, w_0 + w_1 - w_2).$$

We must have

$$w_0 - w_1 - w_2 < 0,$$

 $w_0 - w_1 + w_2 > 0,$
 $w_0 + w_1 - w_2 > 0.$

Next, let us find a plane in \mathbb{R}^3 that passes through points A,B and C: z=ax+by+c. Now,

$$\begin{cases}
-a - b + c &= w_0 - w_1 - w_2 \\
-a + b + c &= w_0 - w_1 + w_2 \\
a - b + c &= w_0 + w_1 - w_2,
\end{cases}$$

which simplifies to

$$\begin{cases}
-a - b + c &= w_0 - w_1 - w_2 \\
2c &= 2w_0,
\end{cases}$$

so we have that $c = w_0$. Next,

$$\begin{cases}
-a - b &= -w_1 - w_2 \\
-a + b &= -w_1 + w_2.
\end{cases}$$

Which leads to $-2a = -2w_1$ and $a = w_1$, and finally $b = w_2$. Now our plane is defined as

$$z = w_1 x + w_2 y + w_3$$
.

The point D has coordinates $(+1, +1, w_0 + w_1 + w_2)$. Since

$$w_0 - w_1 + w_2 > 0$$

$$w_0 + w_1 - w_2 > 0,$$

summing the above inequalities we obtain $w_0 > 0$. Also, since $w_0 - w_1 - w_2 < 0$, we have that $w_0 < w_1 + w_2$. So $w_0 + w_1 + w_2 > 0$ and D is "misclassified" (we should have had $w_0 + w_1 + w_2 < 0$.).

If we chose instead of the point D, we would get the same contradiction. The problem is that all four points do not lie on a same single plane.

Solution to (b)

This one is easy. Just define $XOR(x_1, x_2) = -sign(x_1x_2)$. Now

x_1	x_2	$XOR(x_1, x_2)$		
-1	-1	$-\operatorname{sign}((-1) \times (-1)) = -\operatorname{sign}(1) = -1$		
-1	+1	$-\text{sign}((-1) \times (+1)) = -\text{sign}(-1) = 1$		
+1	-1	$-\operatorname{sign}((+1) \times (-1)) = -\operatorname{sign}(-1) = 1$		
+1	+1	$-\text{sign}((+1) \times (+1)) = -\text{sign}(1) = -1$		

Problem 3 (3 points)

Multilayer neural networks are another way of using linear classifiers for nonlinear problems. The most basic such classifier, for two-dimensional inputs and with two hidden units, has parameters (u_{ij}) , $i \in \{1,2\}$, $j \in \{0,1,2\}$ and (v_k) , $i \in \{0,1,2\}$ (that is, a total of 9 parameters), and computes a mapping $(x_1,x_2) \mapsto y$ as follows:

```
z_1 = \operatorname{sign}(u_{10} + u_{11}x_1 + u_{12}x_2)

z_2 = \operatorname{sign}(u_{20} + u_{21}x_1 + u_{22}x_2)

7 = \operatorname{sign}(v_0 + v_1z_1 + v_2z_2).
```

[The figure omitted.] The term "hidden unit" refers to the computation of intermediate values z_i that are not as such part of the visible input or output.

- (a) Show that with a suitable choice of the weights (u_{ij}) and (v_k) , the neural network explained above can compute the XOR function from Problem 2.
- (b) There are numerous variants of this basic neural network model. In particular, the signum function used above in computing the values z_i is often replaced by some continuous function, such as the logistic sigmoid $r \mapsto 1/(1+e^{-r})$. However, one variant that does *not* make sense is just to ignore the signum function for z_i and just compute

```
z_1 = u_{10} + u_{11}x_1 + u_{12}x_2
z_2 = u_{20} + u_{21}x_1 + u_{22}x_2
y = \operatorname{sign}(v_0 + v_1z_1 + v_2z_2).
```

Show that this model would not offer any advantage over a basic linear classifier $y = \text{sign}(w_0 + w_1x_1 + w_2x_2)$.

Solution to (a)

If we restrict the values of $v_0, v_1, v_2, u_{10}, u_{11}, u_{12}, u_{20}, u_{21}, u_{22}$ to the set $\{-1, +1\}$, there is 16 possible assignments such that the neural network in question com-

putes $XOR(x_1, x_2)$. One of them is

$$v_0 = -1$$

$$v_1 = +1$$

$$v_2 = -1$$

$$u_{10} = +1$$

$$u_{11} = -1$$

$$u_{12} = -1$$

$$u_{20} = -1$$

$$u_{21} = -1$$

$$u_{22} = -1$$

x_1	x_2	z_1	z_2	y
-1	-1	+1	+1	-1
-1	+1	+1	-1	+1
+1	-1	+1	-1	+1
+1	+1	-1	-1	-1

Solution to (b)

We have that

$$y = \operatorname{sign}(v_0 + v_1 z_1 + v_2 z_2)$$

$$= \operatorname{sign}(v_0 + v_1(u_{10} + u_{11}x_1 + u_{12}x_2) + v_2(u_{20} + u_{21}x_1 + u_{22}x_2))$$

$$= \operatorname{sign}(\underbrace{(v_0 + v_1 u_{10} + v_2 u_{20})}_{w_0} + \underbrace{(v_1 u_{11} + v_2 u_{21})}_{x_1} x_1 + \underbrace{(v_1 u_{12} + v_2 u_{22})}_{x_2} x_2),$$

which is exactly what we had in Problem 2 (a).

4 (15 points)

What comes to the (a) part, just run the Python script (013593012.py) and it will show the fitting polynomials for $K=0,1,\ldots,10$. The figure I got is: It would seem that K=4 would work best, but the best K varies from time to time. After K=5, the error does not really improve and becomes large at K=9. On another run of the program, I got that K=3 is the best with sum of squared errors of ~ 4.9 and coefficients something like

$$(0.006, -0.520, 0.994, 2.019),$$

which is almost the target polynomial with minor "corrections".

