

161

NUMERICAL METHODS LABORATORY (MA29202) & NUMERICAL TECHNIQUES LABORATORY (MA39110) Assignment-3 based on The Method of Least Squares ¹

☐ Assignment Lpdf

#

03

 Using the method of least squares, find the linear function that best fits the following data. Also, plot a curve in xy-plane.

	Х	1	1.5	2	2.5	3	3.5	4
	y	25	31	27	28	36	35	32

Find the least squares polynomial of degree three that fits the following table of values.
Also, plot a curve in xy-plane.

1	Х	0.0	0.5	1.0	1.5	2.0	2.5
Ì	y	0.0	0.20	0.27	0.30	0.32	0.33

04

NUMERICAL METHODS LABORATORY (MA29202) & NUMERICAL TECHNIQUES LABORATORY (MA39110) Assignment-2 based on Natural Cubic Splines 1

1. Use the values given by $f(x) = x^3 + 2$ at points x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 to find an approximation of f(x) at points x = 0.1, 0.3, and 0.5 using natural cubic spline interpolation. Also find error |f(x) - S(x)| at these points, where S(x) denotes an approximation of f(x) obtained using natural cubic splines.

2. Determine a, b, c, and d so that the following function is a natural cubic spline.

$$f(x) = \begin{cases} -3x^3 & \text{if } 0 \le x \le 2, \\ a(x-2)^3 + b(x-2)^2 + c(x-2) + d & \text{if } 2 \le x \le 3. \end{cases}$$