Homework 6

Jarett Smith, Max Thompson, Charlie Deaton, and Balin Allred

2023-11-20

Question 1

- 1. In the following, we have ten market-basket transactions:
 - (a) What is the maximum size of frequent itemsets that can be extracted (assuming minsup = 0)?

Response: There are a maximum of 5 itemsets.

(b) What is the maximum number of association rules that can be extracted from this data set (including rules that have zero support)?

```
(3^5)-(2^6)+1
```

[1] 180

Response: There are 180 possible rules.

(c) Compute the support, confidence, and lift for the association rule $\{A, D\} \rightarrow \{E\}$

```
# Support
support<- 4/10
support</pre>
```

[1] 0.4

```
# Confidence
confidence <- 4/4
confidence
```

[1] 1

```
# Lift
lift<- confidence/(6/10)
lift</pre>
```

[1] 1.666667

(d) Find all the frequent itemsets assuming minsup count = 2.

```
rules<- apriori(TRANS, parameter=list(support=0.2, conf = 0))
table<- inspect(rules)</pre>
```

kable(table)

	lhs		rhs	support	confidence	coverage	lift	count
[1]	{}	=>	{C}	0.5	0.5000000	1.0	1.0000000	5
[2]	{}	=>	$\{A\}$	0.5	0.5000000	1.0	1.0000000	5
[3]	{}	=>	$\{E\}$	0.6	0.6000000	1.0	1.0000000	6
[4]	{}	=>	$\{B\}$	0.7	0.7000000	1.0	1.0000000	7
[5]	{}	=>	$\{D\}$	0.9	0.9000000	1.0	1.0000000	9
[6]	$\{C\}$	=>	$\{A\}$	0.2	0.4000000	0.5	0.8000000	2
[7]	$\{A\}$	=>	$\{C\}$	0.2	0.4000000	0.5	0.8000000	2
[8]	$\{C\}$	=>	$\{\mathrm{E}\}$	0.2	0.4000000	0.5	0.6666667	2
[9]	$\{E\}$	=>	$\{C\}$	0.2	0.33333333	0.6	0.6666667	2
[10]	$\{C\}$	=>	$\{B\}$	0.3	0.6000000	0.5	0.8571429	3
[11]	$\{B\}$	=>	$\{C\}$	0.3	0.4285714	0.7	0.8571429	3
[12]	$\{C\}$	=>	$\{D\}$	0.4	0.8000000	0.5	0.8888889	4
[13]	$\{D\}$	=>	$\{C\}$	0.4	0.4444444	0.9	0.8888889	4
[14]	$\{A\}$	=>	$\{\mathrm{E}\}$	0.4	0.8000000	0.5	1.3333333	4
[15]	$\{E\}$	=>	$\{A\}$	0.4	0.6666667	0.6	1.3333333	4
[16]	$\{A\}$	=>	$\{B\}$	0.3	0.6000000	0.5	0.8571429	3
[17]	$\{B\}$	=>	$\{A\}$	0.3	0.4285714	0.7	0.8571429	3
[18]	$\{A\}$	=>	$\{D\}$	0.4	0.8000000	0.5	0.8888889	4
[19]	$\{D\}$	=>	$\{A\}$	0.4	0.4444444	0.9	0.8888889	4
[20]	$\{E\}$	=>	$\{B\}$	0.4	0.6666667	0.6	0.9523810	4
[21]	$\{B\}$	=>	$\{\mathrm{E}\}$	0.4	0.5714286	0.7	0.9523810	4
[22]	$\{E\}$	=>	$\{D\}$	0.6	1.0000000	0.6	1.1111111	6
[23]	$\{D\}$	=>	$\{E\}$	0.6	0.6666667	0.9	1.1111111	6
[24]	$\{B\}$	=>	$\{D\}$	0.6	0.8571429	0.7	0.9523810	6
[25]	$\{D\}$	=>	$\{B\}$	0.6	0.6666667	0.9	0.9523810	6
[26]	$\{C, E\}$	=>	$\{D\}$	0.2	1.0000000	0.2	1.1111111	2
[27]	$\{C, D\}$	=>	$\{E\}$	0.2	0.5000000	0.4	0.8333333	2
[28]	$\{D, E\}$	=>	$\{C\}$	0.2	0.3333333	0.6	0.6666667	2
[29]	$\{B, C\}$	=>	$\{D\}$	0.2	0.6666667	0.3	0.7407407	2
[30]	$\{C, D\}$	=>	{B}	0.2	0.5000000	0.4	0.7142857	2
[31]	$\{B, D\}$	=>	$\{C\}$	0.2	0.3333333	0.6	0.6666667	2
[32]	$\{A, E\}$	=>	$\{B\}$	0.2	0.5000000	0.4	0.7142857	2
[33]	$\{A, B\}$	=>	$\{E\}$	0.2	0.6666667	0.3	1.1111111	2
[34]	$\{B, E\}$	=>	$\{A\}$	0.2	0.5000000	0.4	1.0000000	2
[35]	$\{A, E\}$	=>	$\{D\}$	0.4	1.0000000	0.4	1.1111111	4
[36]	$\{A, D\}$	=>	{E}	0.4	1.0000000	0.4	1.6666667	4
[37]	$\{D, E\}$	=>	$\{A\}$	0.4	0.6666667	0.6	1.3333333	4
[38]	$\{A, B\}$	=>	$\{D\}$	0.2	0.6666667	0.3	0.7407407	2
[39]	$\{A, D\}$	=>	$\{B\}$	0.2	0.5000000	0.4	0.7142857	2
[40]	$\{B, D\}$	=>	{A}	0.2	0.3333333	0.6	0.6666667	2
[41]	$\{B, E\}$	=>	{D}	0.4	1.0000000	0.4	1.1111111	4
[42]	$\{D, E\}$	=>	{B}	0.4	0.6666667	0.6	0.9523810	4
[43]	$\{B, D\}$	=>	$\{E\}$	0.4	0.6666667	0.6	1.1111111	4
[44]	$\{A, B, E\}$	=>	$\{D\}$	0.2	1.0000000	0.2	1.1111111	2
[45]	$\{A, D, E\}$	=>	{B}	0.2	0.5000000	0.4	0.7142857	2
[46]	$\{A, B, D\}$	=>	$\{E\}$	0.2	1.0000000	0.2	1.6666667	2

	lhs		rhs	support	confidence	coverage	lift	count
[47]	$\{B,D,E\}$	=>	{A}	0.2	0.5000000	0.4	1.0000000	2

(e) Find an itemset (of size 2 or larger) that has the largest support.

Response: Itemset [B, D] and [D, E] has the largest support at 6/10.

(f) Find a pair of items, say x and y, such that $\{x\} -> \{y\}$ and $\{y\} -> \{x\}$ have the same confidence.

Response: $\{A\}$ -> $\{C\}$ and $\{C\}$ -> $\{A\}$ have the same confidence of .4

```
rules<- apriori(TRANS, parameter=list(support=0.2, conf=0, minlen=2))
table<- inspect(subset(rules, lhs %in% c("A", "C")))</pre>
```

kable(head(table, 2))

	lhs		rhs	support	confidence	coverage	lift	count
[1]	{C}	=>	{A}	0.2	0.4	0.5	0.8	2
[2]	$\{A\}$	=>	$\{C\}$	0.2	0.4	0.5	0.8	2