## Study Guide- Section 7.7

## Michael Levet

**Problem 1)** Consider the following state diagram. Determine the transition matrix and the steady-state distribution.



**Problem 2)** Consider the following state diagram. Determine the transition matrix and the steady-state distribution.



**Problem 3)** Consider the following state diagram. Determine the transition matrix and the steady-state distribution.



**Problem 4)** Consider the following transition matrix  $P = \begin{pmatrix} 0.5 & 0.5 \\ 0 & 1 \end{pmatrix}$ , along with the initial state vector  $v_0 = \begin{pmatrix} 1 & 0 \end{pmatrix}$ . Find the two-step transition matrix  $(P^2)$ , as well as the distribution vectors after one, two, and three applications of the Markov Chain.

**Problem 5)** An auto insurance company classifies each motorist as *high risk* if the motorist has had at least one moving violation during hte past calendar year. Motorists are classified as *low risk* otherwise. According to the company's data, a high risk motorist has a 50% chance of remaining in the high risk category and a 50% chance of moving to the low-risk category. A low-risk motorist has a 10% chance of moving into the high risk category and a 90% chance of remaining in the low-risk category. What is the distribution of the motorists in the long term?

**Problem 6)** A credit card company classifies its cardholders as falling into one of two credit ratings: *good* and *poor*. Based on its rating criteria, the company finds that a cardholder with a good credit rating has an 80% chance of remaining in that category the following year and a 20% chance of dropping into the poor category. A cardholder with a poor credit rating has a 40% chance of moving into the good rating the following year and a 60% chance of remaining in the poor category. In the long term, what percentage of cardholders fall into each category.

**Problem 7)** Recall the Gambler's Ruin game from class. At each round, you may choose to play a game. There is a 50% chance of winning; in which case, you have a net gain of \$10. Similarly, there is a 50% chance of losing; in which case, you have a net loss of \$10. [So if you start a round with \$20 and lose, you end with \$10.]. You stop playing when you have either \$0 or \$30. Do the following. [**Note:** There will not be time to discuss this problem during review before the quiz. Please stop by office hours if you wish to discuss this problem.]

- (a) Draw the state diagram.
- (b) Determine the transition matrix.
- (c) Suppose you start with \$20. Is it more likely that you will end with \$30 or \$0? It may help to examine a large number of iterations of the Markov Chain. [Note: Your calculator can quickly exponentiate a matrix.]
- (d) Suppose you start with \$10. Is it more likely that you will end with \$30 or \$0? It may help to examine a large number of iterations of the Markov Chain.