CIRCUITI IN REGIME SINUSOIDALE

Il circuito in figura è in regime sinusoidale. Trovare la potenza attiva e reattiva assorbita da $L_1=1\,\mathrm{H}$.

Dati: $v_{S1}(t) = \sin(3t - 105^{\circ})V$.

Il circuito in figura è in regime sinusoidale. Trovare l'espressione di $v_4(t)$.

Dati: $v_{S1}(t) = \cos(2t + 150^{\circ})V$.

o a.
$$v_4(t) = 0.234 \cos(2t - 99^\circ)V$$

b.
$$v_4(t) = 0.165 \cos(2t - 99^\circ)V$$

$$\circ$$
 c. $v_4(t) = 3.3 \cos(2t + 128^\circ) V$

$$oldsymbol{o}$$
 d. $v_4(t) = 1.643 \cos(2t - 52^\circ) V$

Il circuito in figura è in regime sinusoidale. Trovare l'espressione di $i_2(t)$.

Dati: $i_{S1}(t)=2\cos(3t+105^\circ)\mathrm{V}$.

$$\circ$$
 a. $i_2(t) = 3.3\cos(2t + 128^{\circ})$ A

$$\odot$$
 b. $i_2(t) = 1.248\cos(3t + 128^{\circ}) ext{A}$

$$\odot$$
 c. $i_2(t)=1.643\cos(2t-52^\circ){
m A}$

$$\odot$$
 d. $i_2(t) = 1.765\cos(3t + 128^{\circ}) {
m A}$

~

DOPPIO BIPOLO

Calcolare la matrice delle ammettenze del doppio bipolo in figura.

$$a. \begin{bmatrix} 1 & 2 \\ 2 & 3j\omega + \frac{5}{6} \end{bmatrix}$$

o b.
$$\begin{bmatrix} \frac{1}{j\omega} & 2 \\ 2 & \frac{3}{2} \end{bmatrix}$$

o d.
$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 3j\omega + \frac{5}{6} \end{bmatrix}$$

Calcolare la matrice di trasmissione diretta del doppio bipolo in figura.

$$\odot$$
 a. $\left[\begin{array}{cc} 7 & 6 \\ \frac{7}{2}j\omega + \frac{5}{6} & j\omega + \frac{3}{4} \end{array} \right]$

$$igcup b. \left[egin{array}{ccc} rac{1}{j\omega} & rac{1}{2} \ 1 & rac{3}{2} \end{array}
ight]$$

$$\odot$$
 C. $\left[\begin{array}{cc} \frac{7}{2} & 3 \\ \frac{7}{2}j\omega + \frac{5}{6} & 3j\omega + 1 \end{array}\right]$

$$igcup ext{d.} \left[egin{array}{ccc} rac{7}{2} & 3 \ 5j\omega+1 & j\omega+rac{1}{3} \end{array}
ight]$$

La risposta corretta è:
$$\begin{bmatrix} rac{7}{2} & 3 \ rac{7}{2} j\omega + rac{5}{6} & 3j\omega + 1 \end{bmatrix}$$

Calcolare la matrice di trasmissione diretta del doppio bipolo in figura.

o d.
$$\begin{bmatrix} \frac{1}{j\omega} & \frac{1}{2} \\ 1 & \frac{3}{2} \end{bmatrix}$$

IMPEDENZA EQUIVALENTE

Trovare l'impedenza equivalente fra i morsetti A e B alla frequenza di 1 Hz.

$$\bigcirc$$
 a. $Z_{eq} = 10.143 + j2.951 Ω$

$$\bigcirc$$
 b. $Z_{eq} = 32.181 - j24.19 mΩ$

$$\odot$$
 c. $Z_{eq} = 10.143 + j0.342 \Omega$

o d.
$$Z_{eq} = 32.181 - j152 \, m\Omega$$

CIRCUITI DEL PRIMO ORDINE

Calcolare $v_2(t)$ per t > 0.

$$\circ$$
 a. $v_2(t) = 0.2e^{-t} \text{ V}$

o b.
$$v_2(t) = 0.2e^{-t} + 1 \text{ V}$$

$$\circ$$
 c. $v_2(t) = 0.2e^t + 1 \text{ V}$

$$oldsymbol{0}$$
 d. $v_2(t) = e^{-t} + 1 \text{ V}$

Calcolare $v_1(t)$ per t>0.

$$\odot$$
 a. $v_1(t)=1.2e^{t/2}~\mathrm{V}$

$$\odot$$
 b. $v_1(t) = 0.2e^{-t/4} + 1~
m{V}$

×

$$\odot$$
 C. $v_1(t)=1.2e^{-t/2}\,\mathrm{V}$

$$\odot$$
 d. $v_1(t) = 1.2e^{-t/2} + 1~
m{V}$

La risposta corretta è: $v_1(t)=1.2e^{-t/2}~
m V$

Calcolare $i_2(t)$ per t > 0.

$$oldsymbol{o}$$
 a. $i_2(t) = e^{-t/1.5} + 1 \text{ A}$

o b.
$$i_2(t) = e^{-t/0.667} - 1 \text{ A}$$

$$\circ$$
 c. $i_2(t) = e^{-t/1.5} - 1$ A

$$oldsymbol{o}$$
 d. $i_2(t) = e^{-t/0.667}$ A

La risposta corretta è:

$$i_2(t) = e^{-t/0.667} - 1 \text{ A}$$

Domanda 6

Risposta corretta

Punteggio ottenuto 6,00 su 6,00

Contrassegna domanda

Calcolare $i_3(t)$ per t>0.

Scegli un'alternativa:

$$\odot$$
 a. $i_3(t) = -0.545 e^{-t/0.454}~{
m A}$

$$i_3(t) = 0.545e^{-t/4} + 0.272 \text{ A}$$

o.
$$i_3(t) = -0.545 e^{t/0.454} + 0.545 \, \mathrm{A}$$

o d.
$$i_3(t) = -0.545 e^{-t/0.454} + 0.545 \; ext{A}$$

La risposta corretta è:

$$i_3(t) = -0.545e^{-t/0.454} + 0.545 \text{ A}$$

CIRCUITI CON GENERATORI PILOTATI

Calcolare i valori di v_4 e i_5 .

$$\odot$$
 a. $v_4=-2~\mathrm{V}, i_5=3~\mathrm{A}$

$$igcup$$
 b. $v_4=0~\mathrm{V}, i_5=2~\mathrm{A}$

$$\odot$$
 c. $v_4=0~\mathrm{V}, i_5=-2~\mathrm{A}$

$$igcup$$
 d. $v_4=2~\mathrm{V}, i_5=0~\mathrm{A}$

La risposta corretta è: $v_4=0~\mathrm{V}, i_5=-2~\mathrm{A}$

Calcolare i valori di i_1 e i_4 .

$$\bigcirc$$
 a. $i_1 = 0.889 \text{ A}, i_4 = -1.111 \text{ A}$

$$\bigcirc$$
 b. $i_1 = 1$ A, $i_4 = -1$ A

$$\circ$$
 c. $i_1 = 3.333 \text{ A}, i_4 = 1.333 \text{ A}$

$$\bigcirc$$
 d. $i_1 = 3.6 \text{ A}, i_4 = 1.6 \text{ A}$

La risposta corretta è:

$$i_1 = 0.889 \text{ A}, i_4 = -1.111 \text{ A}$$

DIAGRAMMA DI BODE

Tracciare i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione di trasferimento $H_1(j\omega)$, che prende in ingresso $I_{S1}(j\omega)$ e in uscita $I_4(j\omega)$.

Tracciare i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione di trasferimento $H_1(j\omega)$, che prende in ingresso $I_{S1}(j\omega)$ e in uscita $I_3(j\omega)$.

10

100

0.1

La risposta corretta è:

-150 -165 -180

0.01

EQUIVALENTE THEVENIN O NORTON

Domanda 3

Risposta corretta

Punteggio ottenuto 5,00 su 5,00

Contrassegna domanda

Trovare l'equivalente Thevenin del circuito dato fra i terminali A and B.

Scegli un'alternativa:

$$ho$$
 a. $R_{eq}=0.6~\Omega, I_{eq}=0.4~\mathrm{A}$

$$ho$$
 b. $R_{eq}=0.6~\Omega, I_{eq}=-0.4~\mathrm{A}$

$$\odot$$
 c. $R_{eq} = 1.2~\Omega, I_{eq} = 0.4~ ext{A}$

d.
$$R_{eq}=1.2~\Omega, I_{eq}=-0.4~\mathrm{A}$$

La risposta corretta è:

$$R_{eq}=0.6\;\Omega, I_{eq}=-0.4\;\mathrm{A}$$

FATTORE DI POTENZA

Domanda 5

Risposta errata

Punteggio ottenuto 0,00 su 5,00

Calcolare il valore di C_1 che rende pari a 1 il fattore di potenza del generatore e(t). Dati:

$$e(t) = 20\cos(2\pi 50t) \text{ V}, R_1 = 3 \Omega, R_2 = 3 \Omega, C_2 = 100 \mu\text{F}, L = 50 \text{ mH}.$$

Scegli un'alternativa:

- \odot a. $C_1=203~\mu {
 m F}$
- \bullet b. $C_1 = 101.5 \, \mathrm{nF}$

×

- \odot c. $C_1=101.5~\mu\mathrm{F}$
- \odot d. $C_1=-203~\mu\mathrm{F}$

La risposta corretta è: $C_1=203~\mu\mathrm{F}$

Calcolare il valore di C che rende pari a 1 il fattore di potenza del generatore e(t).

Dati:

$$e(t) = 100 \cos(2\pi 50t) \text{ V}, R_1 = 5 \Omega, R_2 = 100 \cos(2\pi 50t) \text{ V}$$

$$\bigcirc$$
 a. $C = 67.52 \text{ nF}$

o b.
$$C = 67.52 \,\mu\text{F}$$

$$\circ$$
 c. $C = 33.76 \,\mu\text{F}$

$$\bigcirc$$
 d. $C = -67.52 \text{ nF}$

La risposta corretta è: $C = 67.52 \mu F$

Determinare R_x in modo tale che la corrente I_x risulti pari a 2 A. Sapendo che la riluttanza del percorso magnetico vale $\mathcal{R}=250~\mathrm{kA/Wb}$, si calcoli l'induttanza L_1 .

Dati:

$$E_1 = 10 \text{ V}, R_3 = 3 \Omega, R_4 = 1 \Omega, N = 50.$$

$$\bigcirc$$
 a. $R_x = 9 Ω$, $L_1 = 100 mH$

$$\bigcirc$$
 c. $R_x = 9 \Omega$, $L_1 = 10 \text{ mH}$

$$\bigcirc$$
 d. $R_x = 3 \Omega$, $L_1 = 100 \text{ mH}$