Quantifiers

Most mathematical statements of any significance contain quantifiers. Sometimes they're implied, sometimes their explicit, but either way they're important.

Goals:

- $\bullet\,$ Translate statements with quantifiers into logical symbols
- Determine the truth value of quantified statements
- 1. Translate the following logical statement into English sentences.

(a)
$$\forall n \in \mathbb{Z}, n = 2k \text{ for } k \in \mathbb{Z}$$

(b)
$$\forall x \in \mathbb{R}, x^2 > 0$$

(c)
$$\exists n \in \mathbb{Z}, 2^n < 0$$

(d)
$$\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, n+m=2$$

(e)
$$\exists k \in \mathbb{Z}, \forall n \in \mathbb{Z}, kn = 0$$

(f)
$$\exists n \in \mathbb{Z}, \forall m \in \mathbb{Z}, n+m=0$$

(g)
$$\exists A \subseteq \mathbb{R}, |A| < \infty$$

(h)
$$\forall n \in \mathbb{Z}, \exists A \in \mathscr{P}(\mathbb{N}), |A| < n$$

- 2. Determine the truth value of every statement in Exercise 1.
- 3. Translate the following mathematical statements into symbolic form using the symbols \land , \lor , \Rightarrow , \Leftrightarrow , \exists , and \forall .
 - (a) If f is a continuous function on the interval [a,b] and N is a number between f(a) and f(b) with $f(a) \neq f(b)$ then there exists $c \in (a,b)$ such that f(c) = N.

(b) A function f is continuous on [a,b] if and only if $\lim_{x\to c}=f(c)$ for all $c\in[a,b]$.

(c) The limit of the sequence a_n equals L if and only if for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - L| < \epsilon$.

(d) The limit of a function f at x=a equals L if and only if for all $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ if $|x-a|<\delta$.