

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 18 AUG 2011		3. DATES COVERED 00-00-2011 to 00-00-2011					
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
NASA TEERM He	exavalent Chrome A	lternatives Projects		5b. GRANT NUMBER			
				5c. PROGRAM E	LEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
				5e. TASK NUMBER			
				5f. WORK UNIT	NUMBER		
National Aeronaut	ZATION NAME(S) AND AD ics and Space Admidy Space Center,FL	nistration (NASA),I	Engineering	8. PERFORMING REPORT NUMB	GORGANIZATION ER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO Presented at the 20	otes 111 Air Force Corro	sion Conference hel	d 16-18 Aug 2011	at Robins A	FB, GA.		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	Same as			OF PAGES 50	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

NASA

Marine Environment Test Locations

Corrosion Rate Comparison

Location or Region	Type of Environment	μm / year	Corrosion Rate (a) Mils / Year	
Esquimalt, Vancouver Island, BC, Canada	Rural Marine	13	0.5	
Pittsburgh, PA	Industrial	30	1.2	
Cleveland, OH	Industrial	38	1.5	
Limon Bay, Panama, CZ	Tropical Marine	61	2.4	
East Chicago, IL	Industrial	84	3.3	
Brazos River, TX	Industrial Marine	94	3.7	
Daytona Beach, FL	Marine	295	11.6	
Pont Reyes, CA	Marine	500	19.7	
Kure Beach, NC	Marine	533	21	
Galeta Point Beach, Panama, CZ	Marine	686	27	
Kennedy Space Center, FL	Marine	1070	42	

⁽a) Two-year average...* Data extracted from: S. Coburn, Atmospheric Corrosion, in Metals Handbook, 9th ed, Vol. 1, Properties and Selection, Carbon Steels, American Society for Metals, Metals Park, Ohio, 1978, p. 720.

NASA

LC-39B Test Location

NASA

LC-39B Test Location

NASA

LC-39B Test Location

HISTORIC TESTING AND RESEARCH WITHIN THE AGENCY

NASA

External Tank Research

Testing between 1992-2007:

Looking For:

- Replacements for Iridite 14-2 (pretreat)
- Replacements for DeSoto K719 (primer)

Tested:

- Tested primers (≈30) → None passed
- Tested pretreatments (≈ 6) → None passed

Positive results:

- TCP (Metalast, Alodine)
- Hentzen Primers (good corrosion protection)

Issues (Very difficult tests to pass):

- Cryoflex Adhesion
- SLA Cryogenic Flexibility
- Corrosion (2000+ Hrs)
- LOX Compatibility

Orbiter Dem-Val

Orbiter Dem-Val

Columbia (OV-102) Field Demonstration (1998-2003):

Looking For:

- Replacements for Alodine 1200 (pretreat)
- Replacements for Koropon (primer)

Tested:

- Elevon Cove Seal Doors
- Identified as "drip points" and areas subject to more than average corrosion
- Every-other door coated with Control
- Every-other door coated with Alternative

Coating Tested:

- Dexter Aerospace Materials / Crown Metro Aerospace: 10PW22-2/ECW-119
- Coating performed well in this test for 2+ years at KSC, and performed well in standard tests performed by JGPP.

NASA

SRB Implementation

Testing and Qualification of Coating Systems:

Two-Phase Project Resulting in:

- Replacements for Alodine 1200 (pretreat)
- Replacements for Deft 44-GN-7 (primer)
- Replacements for Deft 03-W-127A (topcoat)

Initial Testing:

6 Pretreatments, 6 Primers

Secondary Testing:

3 Pretreats, 3 Primers → 3 Cr+6 Free Passed

Approved Coating Systems for SRB Aluminum

Approved Coating Systems for SND Addition							
Pretreatment	Primer	Topcoat					
Alodine 1201	Deft 44GN7	Deft 03W127					
Alodine 1201	Hentzen 05510WEP-X/05511CEH-X	Hentzen 4636WUX-3/4600CHA-SG					
Alodine 1201	Lord 9929 A/B	Lord A276					
Alodine 5700	Deft 44GN7	Deft 03W127					
Alodine 5700	Hentzen 05510WEP-X/05511CEH-X	Hentzen 4636WUX-3/4600CHA-SG					
Alodine 5700	Lord 9929 A/B	Lord A276					
Chemidize 727	Deft 44GN7	Deft 03W127					
Chemidize 727	Lord 9929 A/B	Lord A276					

TEERM INITIATED RESEARCH AND TESTING (PAST, PRESENT, FUTURE)

Overview of TEERM Projects

NASA

Demonstration / Validation Testing of Coating Systems

Past:

- Phase I Completed 2007
- Intl. Collaboration NASA/C3P/TAP C. 2007

Recent Past / Present:

- Phase II
 - JTR Drafted Will be finalized in CY2011
- Lifecycle Corrosion Project
 - Feb 2011 (Analysis Pending)
 - Corrosion Rate Study Oct 2010
 - Combined Environment Testing Nov 2010
 - Mini-CBA of shift away from CrVI Feb 2011

Overview of TEERM Projects

Demonstration / Validation Testing of Coatings

Newly Kicked Off Projects:

- Electronics / Avionics
 - March 2010 (Development Began)
 - September 2011 (Panel Preparation Begins)
- International Collaboration (ESA/NASA)
 - March 2010 (Development Began)
 - June 2011 (Agreement in Place to begin "work")
- ESTCP Comprehensive Primer Testing
 - September 2010

Future:

- Alts. for heavy-lift and commercial space sector
- Cadmium / Chromium for Electronic Connectors
- BR-127 Alternatives (NASA/DOD/ESA) ?

NASA

TEERM Phase I

Testing between 2005-2007:

Looking For Systems Alternatives:

Sys C: Alodine 1200 + Deft 02-Y-40 + Deft 03-GY-321

Substrates:

2219, 2195, 6061, 2024 Bare, 2024 Clad, and 7075

Systems Tested:

- Sys T: Alodine 5700 / Sicopoxy 577-630 / Deft 03-GY-321
- Sys N: PreKote / Mg-Rich / Deft 03-GY-321
- Sys H: Alodine 5700 / Hentzen 05510WEP-X / Deft 03-GY-321
- Sys D: Boegel AC-131CB / Dupont Corlar 13570S / Deft 03-GY-321
- Sys S: PreKote / AquaSurTec Crosslinker / AquaSurTec D45

Positive results, (but not fully successful):

System T, System N, System H

Tests Performed:

 3000 Hr. Salt-Spray, 2,000 Hr. Cyclic Corrosion, Filiform Corrosion, Dissimilar Metals Corrosion, SAS, Hydrogen Embrittlement & Adhesion

Hex-Chrome Free Systems Phase I 3000 Hour Salt Fog Results

	Primer and Topcoat	Primer Only	Primer and Topcoat	Primer Only	Primer and Topcoat	Primer Only	Primer and Topcoat	Primer Only	Primer and Topcoat	Primer Only	Primer and Topcoat	Primer Only
Coating System	2219-T81	2219-T81	2024-T3	2024-T3	2024-T3 Clad	2024-T3 Clad	7075-T6	7075-T6	6061-T6	6061-T6	2195- T8M4	2195- T8M4
, , , , , ,												
С	C2-1	C3-1	C4-1	C5-1	C6-1	C7-1	C8-1	C9-1	C10-1	C11-1	C12-1	C13-1
	C2-2	C3-2	C4-2	C5-2	C6-2	C7-2	C8-2	C9-2	C10-2	C11-2	C12-2	C13-2
_	T2-1	T3-1	T4-1	T5-1	T6-1	T7-1	T8-1	T9-1	T10-1	T11-1	T12-1	T13-1
'	T2-2	T3-2	T4-2	T5-2	T6-2	T7-2	T8-2	T9-2	T10-2	T11-2	T12-2	T13-2
N	N2-1	N3-1	N4-1	N5-1	N6-1	N7-1	N8-1	N9-1	N10-1	N11-1	N12-1	N13-1
IN	N2-2	N3-2	N4-2	N5-2	N6-2	N7-2	N8-2	N9-2	N10-2	N11-2	N12-2	N13-2
Н	H2-1	H3-1	H4-1	H5-1	H6-1	H7-1	H8-1	H9-1	H10-1	H11-1	H12-1	H13-1
"	H2-2	H3-2	H4-2	H5-2	H6-2	H7-2	H8-2	H9-2	H10-2	H11-2	H12-2	H13-2
D	D2-1	D3-1	D4-1	D5-1	D6-1	D7-1	D8-1	D9-1	D10-1	D11-1	D12-1	D13-1
	D2-2	D3-2	D4-2	D5-2	D6-2	D7-2	D8-2	D9-2	D10-2	D11-2	D12-2	D13-2
S	S2-1	S3-1	S4-1	S5-1	S6-1	S7-1	S8-1	S9-1	S10-1	S11-1	S12-1	S13-1
	S2-2	S3-2	S4-2	S5-2	S6-2	S7-2	S8-2	S9-2	S10-2	S11-2	S12-2	S13-2
			3000 Hrs			< 2000 Hrs			< 500 Hrs			
			< 2500 Hrs			< 1500 Hrs						

NASA

TEERM International Collaboration

Dem / Val & Field-testing of Coating Systems

Looking For:

- Replacements for hex-chrome pretreatments
- Replacements for hex-chrome primers

Coatings Tested:

- Sys M: M790E + Aviox CF + Aviox Finish 77702
- Sys P: PreKote SP + Aviox CF + Aviox Finish 77702

Laboratory Testing:

 Gloss, Color, Adhesion, Impact, Flexibility, Fluid Resistance, Filiform Corrosion, Salt-Spray Corrosion, Artificial Weathering, Stripability, Restoration & Heat Stability

Field Testing:

- Painted exterior service door of a TAP Airbus A319 (2004)
- Visual inspections (2+ Yrs) appeared favorable with no visual signs of corrosion, deterioration in thickness or in color. (2007)

TEERM Phase II (Non-Chrome Systems Testing)

Laboratory & Atmospheric Testing of Coating Systems Coatings Tested:

- Systems H, N, T, P + Others
- CxP contributed other coatings to be tested

Pretreatments:

 Alodine 1200, Iridite 14-2, Alodine 5200, Surtec 650, Prekote, Metalast TCP-HF, Metalast TCP-HF/EPA, Alodine 5900T, VpCl-440

Primers:

Koropon (515X346 / 910x520) (Control), STMK719 Superkoropon (Control), ANAC / Mg Rich XP417-183, Hentzen 05510WEP-X / 05511CEH-X, Hentzen 16708TEP / 16709CEH (Type I), Hentzen 7176KEP / 16709CEH (Type II), Sicopoxy 577-630, Aviox CF Primer (TC) 330312, Deft 44GN098 (Waterborne), Deft 02GN084 (High Solid), VpCI-373 (Vapor Phase CI), Lockheed Martin (CF Epoxy Primer), Ecoprime CF, Hentzen Epoxzen

Testing:

 Atmospheric Exposure (Beach & Pad), Adhesion, Bare Corrosion Resistance (limited), Corrosion Rate (Field Testing Complete in November 2010)

Phase II Coating Systems

Ph I Code	Ph II Code	Pretreatment	Primer	Topcoat
С	C1	Alodine 1200s	Koropon (515X346 / 910x520)	PRC-Desoto CA8211/F27925
N/A	C2	None	Koropon (515X346 / 910x520)	PRC-Desoto CA8211/F27925
N	S1	PreKote	ANAC / Mg Rich	PRC-Desoto CA8211/F27925
Т	S2	Alodine 5200	Sicopoxy 577-630	PRC-Desoto CA8211/F27925
N/A	\$3	METALAST TCP-HF/EPA	Deft 084 (High Solid)	PRC-Desoto CA8211/F27925
N/A	S4	METALAST TCP-HF/EPA	Deft 098 (Waterborne)	PRC-Desoto CA8211/F27925
N/A	S5	METALAST TCP-HF/EPA	Hentzen (Type I - 16708TEP / 16709 CEH)	PRC-Desoto CA8211/F27925
N/A	S6	METALAST TCP-HF/EPA	Hentzen (Type II - 7176KEP / 16709 CEH)	PRC-Desoto CA8211/F27925
Н	S7	Alodine 5200	Hentzen Primer (05510WEP-X / 05511CEH-X)	PRC-Desoto CA8211/F27925
N/A	S8	VpCI-440	VpCI-373	PRC-Desoto CA8211/F27925
Р	S9	PreKote	Aviox CF Primer (TC)	PRC-Desoto CA8211/F27925

Average Across Coatings

Average Across Substrates - 6 Months Exposure

Average Across Substrates - 12 Months Exposure

Average Across Substrates - 18 Months Exposure

18 Months Exposure

	Phase I Te	Phase II Testing						
		B117 B117		Beach				
Phase II Nomenclature	Phase I Nomenclature	2219-T81	2195-T8M4	Duration	2219-T81	2195-T8M4		
		∧ T2-1	T12-1	6 Mos	5	7		
S2	T	12-1		12 Mos	4.66	6.66		
32		ر T2-2	2-2 T12-2	18 Mos	3.70	7.00		
		12-2	112-2	Avg.	4.45	6.89		
	N	N	N2-1	NV-1	6 Mos	10	10	
S1			11/2 1		12 Mos	10	10	
21			IV	IV	N2-2	N12-2	18 Mos	8.30
		IVZ-Z	1/12-2	Avg.	9.43	10		
		H2-1	H2-1 H12-1	6 Mos	<u> </u>	6		
\$7	S7 H			12 Mos	4.66	6		
37		H2-2	H12-2	18 Mos	4.70	6		
		112-2	1112-2	Avg.	4.786667	6		

Phase I				
B117 Exposure				
Hrs Exposed w/o Failure				
< 500 Hrs				
< 1500 Hrs				
< 2000 Hrs				
< 2500 Hrs				
3000 Hrs				

Phase II				
Beach Exposure				
Panel Rating				
<5				
	<7			
	<8			
	<10			
	=10			

2219 - Coatings Failed in the Field

Combined Environment

New Test Method (Early Development)

New Project – March 2010

Hexavalent Chrome Free Coatings for Electronics / Avionics

Project Participants

- NASA
 - Multiple Centers
- Navy
 - Multiple Commands
- Air Force
 - Multiple Organizations
- Army
 - Multiple Divisions
- MDA
- DMEA
- AFSPC
- Sandia

- Harris
- USA
- Northrop Grumman
- Honeywell
- Spirit AeroSystems
- Lockheed Martin
- SpaceX
- Hamilton Sundstrand
- Raytheon
- Selex Galileo
- Atlantic Inertial Systems
- University of Maryland
- AAI Corporation
- United Technologies Research Center
- Missouri University of Science and Technology

- AIA
- ATK
- Celestica
- ComDev
- Medtronic
- General Dynamics
- **GE**
- Boeing
- BAE Systems
- Garmin
- Rockwell Collins
- Tyco Electronics

NASA

Hex Chrome Free Coatings for Electronics (NASA-DoD)

Description:

- Identification, demonstration and validation of hexavalent-chrome free coatings for aerospace applications.
- Evaluate and test individual coatings and systems (pretreatment, primer and topcoat) as replacements for hexavalent chrome coatings in aircraft and aerospace avionics applications.

Drivers:

- Hex-Chrome PEL
 - 5 micrograms of Cr(VI) per cubic meter of air
- RoHS
 - Restriction of Hazardous Substances Directive
- DFAR
 - Minimizing Use of Hexavalent Chromium (DFARS Case 2009-D004)
 - The draft final rule is currently being reviewed
 - Office of Information and Regulatory Affairs
 - Office of Management and Budget

Hex Chrome Free Coatings for Electronics (NASA-DoD)

Tier I Testing:

- Salt Spray Resistance
 - ASTM B 117
 - Surface Resistance (ASTM D 257)
 - Contact Electrical Resistance (81706)
- Cyclic Corrosion
 - ASTM G 85, Annex 5
 - Surface Resistance (ASTM D 257)
 - Contact Electrical Resistance (81706)
- 18-Month Marine Environment
 - KSC Beach Corrosion Test Site
 - Surface Resistance (ASTM D 257)
 - Contact Electrical Resistance (81706)

- Patti-Jr. Pull-Off Adhesion Test
 - ASTM D 4541
- Cross-Cut Tape Test
 - ASTM D 3359, Procedure B
- Wet Tape Paint Adhesion
 - FED-STD-141, Method 6301.3

NASA

Hex Chrome Free Coatings for Electronics (NASA-DoD)

Tier II Testing:

- EMI (electromagnetic interference) + baseline
- RFI (radio frequency interference) + baseline

Shielding of electronic enclosures is critical for EMI. The main leakage is through seams and apertures. Seams have either direct metal-to-metal contact or a gasket with fasteners to apply recommended pressure. Continuous electrical contact along the seam is required to maintain the shielding. Therefore the direct contact resistance or indirect contact resistance through the gasket is important. The surface treatment of the metal in the seams directly affects the contact resistance.

Repair / Rework:

Hex-chrome free pretreatments will require extensive analysis before being qualified for repair / rework procedures. Application processes, procedures and equipment will need to be evaluated as well.

Areas of Need

NASA

Other Hex Chrome Free Project Need Areas

- Hex-chrome Bond Primer Alternatives
 - BR 127 (Cytec Industries)
- Hex-chrome free coatings used on space hardware
 - Satellites (largely unaddressed)
 - Liquid fueled launchers (very difficult performance requirements)
 - Outer mold line applications (implementation woes)
- Hex-chrome and Cadmium plating alternatives for fasteners
- Hex-chrome and Cadmium plating alternatives for electrical connectors
 - Many attempting to address with few solutions (compatibility issues)
- Hex-chrome free high temperature sealants (Polysulfide Sealants)
- Hex-chrome free corrosion prevention compounds (CPCs) / lubricants

Questions? NASA TEERM Principal Center

Backup Slides

6 & 12 Months Exposure

	Coating		6-Mc	onths	12-M	onths
	System	Substrate	Pad B	Beach	Pad B	Beach
С	C1	2024-T3	10	10	10	10
	C2	2024-T3	10	10	10	10
Ν	S1	2024-T3	10	10	10	10
Т	S2	2024-T3	10	4	7	2.66
	S3	2024-T3	10	10	10	8.66
	S4	2024-T3	10	10	10	10
	S5	2024-T3	10	10	10	9.33
	S6	2024-T3	10	10	10	10
Н	S7	2024-T3	10	2.7	6.33	0
	S8	2024-T3	10	10	10	9
Р	S9	2024-T3	10	8.3	10	8.33

Coating		6-Mc	onths	12-M	onths	
System	Substrate	Pad B	Beach	Pad B	Beach	
C1	7075-T6	10	10	9	10	С
C2	7075-T6	10	10	10	8.66	
S1	7075-T6	10	10	10	10	N
S2	7075-T6	10	2	10	0.33	Т
S3	7075-T6	10	10	10	10	
S4	7075-T6	10	10	10	10	
S5	7075-T6	10	10	10	10	
S6	7075-T6	10	10	10	9.66	
S7	7075-T6	10	3.3	10	1.33	Н
S8	7075-T6	10	9.3	10	8	
S9	7075-T6	10	7.3	10	6.33	P

	Coating		6-Mc	12-M	onths	
	System	Substrate	Pad B	Beach	Pad B	Beach
C	C1	2195-T8	10	10	10	10
	C2	2195-T8	10	10	10	10
N	S1	2195-T8	10	10	10	10
Т	S2	2195-T8	8.3	7	7	6.66
	S3	2195-T8	10	10	10	10
	S4	2195-T8	10	10	10	10
	S5	2195-T8	10	10	10	10
	S6	2195-T8	10	10	10	10
Н	S7	2195-T8	10	6	7.33	6
	S8	2195-T8	10	10	10	10
Р	S9	2195-T8	10	9.3	10	7.33

Coating		6-Mo	onths	12-M	onths	
System	Substrate	Pad B Beach Pa		Pad B	Beach	
C1	2219-T87	10	10	10	10	С
C2	2219-T87	10	10	10	10	
S1	2219-T87	10	10	10	10	N
S2	2219-T87	10	5	7	4.66	Т
S3	2219-T87	10	10	10	5.66	
S4	2219-T87	10	6.7	9	5.66	
S5	2219-T87	10	6.3	9	5.66	
S6	2219-T87	10	6.7	10	6	
S7	2219-T87	7.7	5	7	4.66	Н
S8	2219-T87	10	9	10	6.33	
S9	2219-T87	10	8	10	7	Р

18 Months Exposure

	Coating		18-Months					
	System	Substrate	Pad B	Beach				
С	C1	2024-T3	10	10				
	C2	2024-T3	10	8.3				
Ν	S1	2024-T3	10	10				
Т	S2	2024-T3	5.0	2.3				
	S3	2024-T3	10	8.3				
	S4	2024-T3	10	9.7				
	S5	2024-T3	10	9				
	S6	2024-T3	10	9.3				
Н	S7	2024-T3	6.3	0				
	S8	2024-T3	10	8.3				
P	S9	2024-T3	10	5				

	Coating		18-Months					
	System	Substrate	Pad B	Beach				
С	C1	2195-T8	10	10				
	C2	2195-T8	10	10				
Ν	S1	2195-T8	10	10				
Т	S2	2195-T8	7	7				
	S3	2195-T8	10	10				
	S4	2195-T8	10	10				
	S5	2195-T8	10	10				
	S6	2195-T8	10	10				
Н	S7	2195-T8	7.3	6				
	S8	2195-T8	10	9.3				
P	S9	2195-T8	10	7				

	Coating		18-Months					
	System	Substrate	Pad B	Beach				
C	C1	7075-T6	9	9				
	C2	7075-T6	10	8.3				
N	S1	7075-T6	10	9.3				
Т	S2	7075-T6	6	0				
	S3	7075-T6	10	9.3				
	S4	7075-T6	9	5.3				
	S5	7075-T6	10	8.7				
	S6	7075-T6	10	9.3				
Н	S7	7075-T6	9	0.3				
	S8	7075-T6	10	8				
P	S9	7075-T6	10	5.7				

	Coating		18-Months					
	System	Substrate	Pad B	Beach				
С	C1	2219-T87	10	10				
	C2	2219-T87	10	8.3				
N	S1	2219-T87	10	8.3				
Т	S2	2219-T87	6.7	3.7				
	S3	2219-T87	10	4				
	S4	2219-T87	9	5.3				
	S5	2219-T87	6	5.7				
	S6	2219-T87	10	5.7				
Н	S7	2219-T87	7	4.7				
	S8	2219-T87	10	6.3				
P	S9	2219-T87	9.3	5.7				

18 Months Exposure (S1-S3)

18 Months Exposure (S4-S6)

18 Months Exposure (S7-S9)

NASA

Combined Environment Test chamber and Experimental Design

					Bare		Coated	l - Syste	em 2	Coate	d - Syst	tem 7		Bare			Bare		Coate	d - Co	ntrol	TS
Setting	3	Ozone	Αï×	Hou	Hours Exposure			Expos	ure	Hour	s Expo	sure	Hours Exposure		Hours Exposure		sure	Hour	s Expo	sure	DATA POINTS	
Sett)ZO	Salt Mix	24h	48h	72h	24h	48h	72h	24h	48h	72h	24h	48h	72h	24h	48h	72h	24h	48h	72h	TAF
				S	ubstrat	e	Su	ubstrate		Substrate		Substrate		Substrate		e	Su	ıbstrat	e	ا ۵		
				A	AL-2024		AI	L-2024		Д	L-2024	1	S	T-1010)	Ag			Д	L-2024	1	
Setting 1	Low	Low	B117 - 5%	4	4	4		4			4		4	4	4	1	1	1		1		36
Setting 2	High	Low	B117 - 5%	4	4	4		4		4		4	4	4	1	1	1		1		36	
Setting 3	Low	High	B117 - 5%	4	4	4		4		4		4	4	4	1	1	1		1		36	
Setting 4	High	High	B117 - 5%	4	4	4		4		4		4	4	4	1	1	1		1		36	
Setting 5	Low	Low	KSC (XPS)	4	4	4		4			4		4	4	4	1	1	1		1		36
Setting 6	High	Low	KSC (XPS)	4	4	4		4			4		4	4	4	1	1	1		1		36
Setting 7	Low	High	KSC (XPS)	4	4	4		4			4		4	4	4	1	1	1		1		36
Setting 8	High	High	KSC (XPS)	4	4	4		4		4		4	4	4	1	1	1		1		36	
			Data Points:	32	32	32		32			32		32	32	32	8	8	8		8		288
	Total: 96 Total: 32 Total: 32				Total: 96			Total: 24				Total:	8	200								

Life Cycle Corrosion of Space Vehicles

Understanding the KSC Performance Environment:

Details:

- Characterize KSC Environment (XPS) (Salt Solution)
- Determine ideal testing conditions and equipment
- Design 2k-Factorial Experiment
- Compare results to
 - Phase II Testing
 - Corrosion Rate Testing at KSC (Pad and Beach)
 - Historical Corrosion Rates at KSC (Beach)
- Utilize Silver as Indicator Substrate for Testing / Analysis

Factors of consideration:

 Temperature, Humidity, Salt Type, Salt Concentration, Light (UV / Xeon-Arc), Ozone (KSC < 50ppb on Avg.)

Equipment of consideration:

- Combination of B117 Salt-Fog Cabinet, UV / Xeon-Arc Chamber, Thermotron
- Modified Corrosion Cabinet w/ UV Lights & Ozone

Fresh sample

1 week - B117

1 month - B117

22 hours - B117 O3 +UV

NASA

Combined Environment Testing

Final Settings

Ozone:

- Ozone High = 800ppb
- Ozone Low = 100ppb

Light:

- UV High = 86% of UV Bulb Intensity
- UV Low = 10% of UV Bulb Intensity

Salt:

- Salt Mixture 1 5% NaCl
- Salt Mixture 2 XPS Determined
 - Simulated KSC Salt Solution
 - (H2SO4, NaCl, CuCl, Mg(OH)2, CaCl2, Cu2O, MgF2, Cu(OH)2, Ammonia)
 - pH ≈ 5.4

Temperature:

Constant - 46° C

Humidity:

≈ 90 - 100%

NASA

Initial Results – (NO DOE Analysis yet)

Silver Analysis

NASA

Hex Chrome Free Coatings for Electronics (NASA-DoD)

Substrates:

- 6061-T6
- 7075-T73
- 2024-T3
- 5052-H32

Pretreatments:

- Alodine 1600 (Baseline)
- Metalast HF
- Metalast HFEPA
- SurTec 650
- SurTec 650 C
- Alodine T 5900 RTU
- Iridite NCP

Moving Toward Solutions

NASA

Comprehensive Evaluation and Transition of Non Chromated Paint Primers

{ESTCP Project WP-201132}

Underlying Issue:

NASA and the US Department of Defense (DoD) continue to search for an alternative to hexavalent chromium in coatings and plating applications that meet their performance requirements in corrosion protection, cost, operability and health and safety; while underlining that performance must be equal to or greater than existing systems.

NASA TEERM Support:

2011 - Provide data, specifications, lessons learned and future material considerations in support of the Comprehensive evaluation and Transition of Non Chromated Paint Primers (ESTCP Project WP-201132) project.

2012 and beyond will focus on the testing of promising coatings identified during the first year of the project.

NASA

Comprehensive Evaluation and Transition of Non Chromated Paint Primers

{ESTCP Project WP-201132}

Focus of Testing:

Working jointly with the DOD, NASA Centers and industry, this project will focus on testing of coatings containing no hexavalent chromium that either have been approved for use within the DOD or private sector on aerospace equipment or have shown promise in previous testing by one or more of the project stakeholders. Additionally, some lower TRL materials, such as smart-coatings will be considered for evaluation.

Anticipated benefits to the Government for this project include:

Project builds off previously successful NASA, DOD and ESTCP sponsored testing. Reduced risk for materials obsolescence of hexchrome coatings with the discovery of coatings that perform to the requirements for current and future Programs within NASA, and the DOD.