MACHINE LEARNING MODEL DEPLOYEMENT IBM CLOUD WATSON STUDIO

Phase 3: Development Part1

Introduction:

IBM Watson Studio is an integrated development environment (IDE) designed to streamline the process of building, training, and deploying AI models and applications. It is part of IBM's suite of AI tools and services and is aimed at enabling data scientists, developers, and domain experts to collaborate effectively and efficiently in creating and deploying machine learning and deep learning models.

Machine learning model deployment is a critical phase in the machine learning lifecycle, involving the integration of trained models into real-world applications for making predictions or decisions based on new data. IBM Cloud Watson Studio provides a powerful and user-friendly platform for deploying machine learning models effectively and efficiently. Leveraging the comprehensive capabilities of IBM Cloud Watson Studio for model deployment enables organizations to scale AI applications and deliver actionable insights.

1. Define the Predictive Use Case:

In this initial stage, you should have a clear understanding of the problem you aim to solve. For instance, if your use case is customer churn prediction, you need to specify what "churn" means in your context and the business implications.

2. Select a Relevant Dataset:

Carefully choose a dataset that aligns with your predictive use case. For customer churn prediction, your dataset might include information on customers, their interactions, demographics, purchase history, and whether they churned or not.

3. Access IBM Cloud Watson Studio:

Log in to your IBM Cloud account and access Watson Studio. This is your hub for all your machine learning activities.

4. Import the Dataset:

Use Watson Studio's data management tools to import your dataset. You can upload data files in various formats or connect to external data sources if your data is not already in Watson Studio.

R.N	Cus.Id	Surname	C.Score	Geograph	Gender	Age	Tenure	Balance	N.pro	Hashcrd		Estimated 8	Exited
1	15634602	Hargrave	619	France	Female	42	2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502	France	Female	42	8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645	Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	50	7	0	2	1	1	10062.8	0
8	15656148	Obinna	376	Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	44	4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684	France	Male	27	2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528	France	Male	31	6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497	Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264	Kay	476	France	Female	34	10	0	2	1	0	26260.98	0
14	15691483	Chin	549	France	Female	25	5	0	2	0	0	190857.8	0
15	15600882	Scott	635	Spain	Female	35	7	0	2	1	1	65951.65	0
16	15643966	Goforth	616	Germany	Male	45	3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653	Germany	Male	58	1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549	Spain	Female	24	9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587	Spain	Male	45	6	0	1	0	0	158684.8	0
20	15568982	Hao	726	France	Female	24	6	0	2	1	1	54724.03	0
21	15577657	McDonald	732	France	Male	41	8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636	Spain	Female	32	8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510	Spain	Female	38	4	0	1	1	0	118913.5	1
24	15725737	Mosman	669	France	Male	46	3	0	2	0	1	8487.75	0
25	15625047	Yen	846	France	Female	38	5	0	1	1	1	187616.2	0
26	15738191	Maclean	577	France	Male	25	3	0	2	0	1	124508.3	0
27	15736816	Young	756	Germany	Male	36	2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571	France	Male	44	9	0	2	0	0	38433.35	0
29	15728693	McWillian	574	Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411	France	Male	29	0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591	Spain	Female	39	3	0	3	1	0	140469.4	1
32	15706552	Odinakach	533	France	Male	36	7	85311.7	1	0	1	156731.9	0
33	15750181	Sandersor	553	Germany	Male	41	9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520	Spain	Female	42	6	0	2	1	1	34410.55	0
35		Clements	722	Spain	Female	29	9	0	2	1	1	142033.1	0

5. Data Preprocessing:

- This is the data cleaning and preparation phase:
- Handle missing data: Decide how to impute or remove missing values.
- Detect and deal with outliers: Outliers can adversely affect your model's performance.
- Encode categorical variables: Convert non-numeric data into numerical form, commonly through one-hot encoding.
 - Scale or normalize numerical features: Ensure numerical attributes are on the same scale.

6. Feature Selection:

- Identify which features (attributes) are most relevant to your predictive model. Use Watson Studio's tools for feature selection or explore feature importance metrics.

7. Model Training:

- Select an appropriate machine learning algorithm for your use case:
- Logistic Regression, Decision Trees, Random Forests, Support Vector Machines, Neural Networks, etc.
- Split your dataset into training and testing sets to assess your model's performance.

8. Model Evaluation:

- Assess how well your model performs using appropriate metrics:
- Accuracy, Precision, Recall, F1-score, ROC-AUC, etc.
- Watson Studio provides tools to help you with model evaluation.

9. Fine-Tuning:

- If your model's performance is unsatisfactory, you can:
- Adjust hyperparameters: Tweak the settings of your algorithm.
- Try different algorithms: Experiment with different machine learning techniques.
- Iterate on the training process to improve results.

10. Deployment:

- Once you're content with your model's performance, you can deploy it using Watson Studio.
- Deployed models can be used for making predictions, integrated into applications, and accessed through APIs for real-time use.

SOURCE CODE:

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set_theme(color_codes=True) from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, classification_report, f1_score

dataset = pd.read_csv('/kaggle/input/churn-modelling/Churn_Modelling.csv')
dataset.head()

Out[3]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1
+											+

Data Processing 1:

Dataset.columns

dataset.select_dtypes(include="object").nunique()

Out[5]:

Surname 2932 Geography 3 Gender 2 dtype: int64

dataset.head()

Out[6]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1

```
dataset.drop(columns = 'RowNumber',inplace = True)
dataset.drop(columns = 'CustomerId',inplace = True)
dataset.drop(columns = 'Surname',inplace = True)
dataset.head()
```

Out[7]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619	France	Female	42	2	0.00	1	1	1	101348.88
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	699	France	Female	39	1	0.00	2	0	0	93826.63
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10

Exploratory Data Analysis:

```
\label{eq:Cat_var} \begin{split} & \text{Cat\_var} = [\text{'Geography','Gender','Tenure','NumOfProducts', 'HasCrCard','IsActiveMember'}] \\ & \text{fig, axs} = \text{plt.subplots}(\text{nrows} = 2, \, \text{ncols} = 3, & \text{figsize} = (20,10)) \\ & \text{axs} = \text{axs.flatten}() \\ & \text{for i,var in enumerate}(\text{Cat\_var}): \\ & \text{sns.barplot}(\text{x=var,y='Exited',data=dataset ,ax=axs[i]}) \end{split}
```

sns.barplot(x=var,y='Exited',data=dataset ,ax=axs[i])
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation = 90)
fig.tight_layout()
plt.show()


```
# Create a grid of subplots based on the number of categorical variables
num_cat_vars = len(Cat_var)
num_cols = 2 # You can adjust the number of columns as needed
num_rows = (num_cat_vars + num_cols - 1) // num_cols
fig, axs = plt.subplots(num_rows, num_cols, figsize=(15, 10))
axs = axs.flatten() # Flatten the 2D array of axes for easier indexing
for i, var in enumerate(Cat_var):
   row = i // num\_cols
   col = i % num_cols
   ax = axs[i]
   sns.countplot(data=dataset, x=var, hue='Exited', ax=ax)
   ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
   ax.set_title(var)
fig.tight_layout()
plt.show()
                                 Geography
                                                                                                Gender
     4000
                                                          Exited
                                                                                                                         Exited
                                                                   4000
     3000
                                                                   3000
                                                                  count
     2000
                                                                   2000
     1000
                                                                                                                Male
                  France
                                                      Germany
                                                                                                 Gender
                                 Geography
                                                                                              NumOfProducts
                                  Tenure
      800
                                                          Exited
                                                                   4000
                                                                                                                         Exited
                                                                                                                         ____0
      600
                                                                   3000
    100 400
                                                                   2000
                                                                   1000
      200
                                                                                           NumOfProducts
                                  Tenure
                                 HasCrCard
                                                                                              IsActiveMember
                                                          Exited
                                                                                                                         Exited
                                                                   4000
     5000
     4000
                                                                   3000
   3000
                                                                  2000
     2000
                                                                   1000
     1000
                                 HasCrCard
                                                                                              IsActiveMember
```

```
num_cat_vars = len(Cat_var)
num_cols = 2 # You can adjust the number of columns as needed
num_rows = (num_cat_vars + num_cols - 1) // num_cols
fig, axs = plt.subplots(num_rows, num_cols, figsize=(10, 10))
axs = axs.flatten() # Flatten the 2D array of axes for easier indexing
for i, var in enumerate(Cat_var):
    if i < len(axs):
        ax = axs[i]
        cat_counts = dataset[var].value_counts()
        ax.pie(cat_counts, labels=cat_counts.index, autopct='%1.1f%%', startangle=90)
        ax.set_title(f'{var} Distribution')
fig.tight_layout()
if len(axs) > num_cat_vars:
    fig.delaxes(axs[-1])
plt.show()
```


Dataset.heat()

Out[12]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619	France	Female	42	2	0.00	1	1	1	101348.88
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	699	France	Female	39	1	0.00	2	0	0	93826.63
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10

```
num_vars = ['CreditScore','Age','Balance','EstimatedSalary']
# Create a grid of subplots based on the number of categorical variables
num_cat_vars = len(num_vars)
num_cols = 2 # You can adjust the number of columns as needed
num_rows = (num_cat_vars + num_cols - 1) // num_cols
fig, axs = plt.subplots(num_rows, num_cols, figsize=(20, 10))
axs = axs.flatten()
for i, var in enumerate(num_vars):
    sns.boxplot(x=var,data=dataset, ax=axs[i])
# Adjust spacing between subplots
fig.tight_layout()
plt.show()
```



```
num_cat_vars = len(num_vars)
num_cols = 2 # You can adjust the number of columns as needed
num_rows = (num_cat_vars + num_cols - 1) // num_cols
fig, axs = plt.subplots(num_rows, num_cols, figsize=(20, 10))
axs = axs.flatten()
for i, var in enumerate(num_vars):
    sns.violinplot(x=var,data=dataset, ax=axs[i])
fig.tight_layout()
```

plt.show()

 $\label{eq:catalog} \begin{tabular}{ll} \#\ Create\ a\ grid\ of\ subplots\ based\ on\ the\ number\ of\ categorical\ variables\ num_cat_vars = len(num_vars)\ num_cols = 2\ \#\ You\ can\ adjust\ the\ number\ of\ columns\ as\ needed\ num_rows = (num_cat_vars + num_cols - 1)\ //\ num_cols\ fig,\ axs = plt.subplots(num_rows,\ num_cols,\ figsize=(20,\ 10))\ axs = axs.flatten()\ for\ i,\ var\ in\ enumerate(num_vars):\ sns.histplot(x=var,data=dataset,\ ax=axs[i])\ fig.tight_layout()\ plt.show() \end{tabular}$

Data Processing 2:

dataset.isnull()

Out[18]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False

9995	False	False	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False	False	False

sns.heatmap(dataset.isnull())

sns.heatmap(dataset.isnull(),yticklabels=False, cmap="YlGnBu")


```
dataset.isnull().sum()
Out[21]:
           CreditScore
           Geography
           Gender
           Age
           Tenure
           Tenure 0
Balance 0
NumOfProducts 0
           HasCrCard
           IsActiveMember 0
           EstimatedSalary 0
           Exited
           dtype: int64
cheak_missing = dataset.isnull().sum() * 100/ dataset.shape[0]
cheak_missing[cheak_missing > 0].sort_values(ascending=False)
Out[23]:
           Series([], dtype: float64)
dataset.shape
Out[24]:
            (10000, 11)
Label Encoding:
for col in dataset.select_dtypes(include=['object']).columns:
  #print column name and value
  print(f"{col}:{dataset[col].unique()}")
Geography:['France' 'Spain' 'Germany']
Gender:['Female' 'Male']
from sklearn import preprocessing
#loop to find object datatype
for col in dataset.select_dtypes(include=['object']).columns:
#initilization of LabelEncoder
  label_encoding= preprocessing.LabelEncoder()
label_encoding.fit(dataset[col].unique())
  dataset[col] = label_encoding.transform(dataset[col])
```

print(f"{col}:{dataset[col].unique()}")

Geography:[0 2 1] Gender:[0 1]

Removing Outliers using IQR: Heatmap Correlation:

plt.figure(figsize=(15,12))
sns.heatmap(dataset.corr(),fmt='.2g',annot=true)

