STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

DN1.12: IMPLICIT DIFFERENTIATION

Derivative of an implicit function

If we are able to put an equation relating x and y in the form of y = f(x) then we can find the derivative $\frac{dy}{dx}$ or y'. Note: $\frac{dy}{dx}$ and y' mean the same thing.

Example 1

$$y-3x^2+2x-5=0$$
 $\Rightarrow y=3x^2-2x+5$

$$\frac{dy}{dx} = 6x - 2$$
 or $\frac{d}{dx}(3x^2 - 2x + 5) = 6x - 2$

But what about $\frac{d}{dx}(y^5 + 3xy + x^2 - 5)$ or similar? These are much harder to differentiate.

Example 2

Find
$$\frac{d}{dx}(y^2x)$$

Using the **Product Rule** first

$$\frac{d}{dx}(y^2x) = y^2 \frac{d}{dx}(x) + x \frac{d}{dx}(y^2)$$
 Equation 1

Now, using the Chain Rule for $\frac{d}{dx}(y^2)$

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2)\frac{dy}{dx} = 2y\frac{dy}{dx}$$

Substituting back into Equation 1

$$\frac{d}{dx}(y^2x) = y^2.(1) + x(2y)\frac{dy}{dx} = y^2 + 2xy\frac{dy}{dx}$$

Example 3

Find $\frac{d}{dx}(y^3 + 2xy)$

Chain Rule

Product Rule

$$\frac{d}{dx}(y^{3} + 2xy) = \frac{d}{dx}(y^{3}) + \frac{d}{dx}(2xy) = \frac{d}{dy}(y^{3})\frac{dy}{dx} + 2x\frac{d}{dx}(y) + y\frac{d}{dx}(2x)$$

$$= 3y^2 \frac{dy}{dx} + 2x \frac{dy}{dx} + 2y$$

Exercise 1

Find

1.
$$\frac{d}{dx}\left(\frac{x}{y}\right)$$

$$2. \ \frac{d}{dx} \left(\frac{x^3}{y^3} \right)$$

3.
$$\frac{d}{dx} \left(\frac{x+y}{x-y} \right)$$

Finding the equation of tangent lines to implicit functions

Example 4

Find the equation of the tangent line $y^3 + 2xy = 6$ at the point (1, 1)

See Example 2 above

First, we need to find the slope y' of this curve at (1, 1).

$$\frac{d}{dx}(y^3 + 2xy = 6) \implies \frac{d}{dx}(y^3 + 2xy) = \frac{d}{dx}(6) \implies 3y^2y' + 2xy' + 2y = 0$$

$$\Rightarrow y' = \frac{-2y}{3y^2 + 2x}$$

Derivative of a constant is zero

At (1, 1):
$$y' = \frac{-2(1)}{3(1)^2 + 2(1)} = \frac{-2}{5}$$

Since the equation of a line is $y - y_1 = m(x - x_1)$ where $m = y' = \frac{-2}{5}$, and $x_1 = 1$, $y_1 = 1$:

$$y-1 = \frac{-2}{5}(x-1) \qquad \Rightarrow \qquad 2x+5y=7$$

Hence, the equation of the tangent line is 2x + 5y = 7

Exercise 2

- Find the equation of the tangent line to the graph of $x^2 + 2xy + y = 7$ at the point (1, 2). 1.
- Find the equation of the tangent line to the graph of $x^2 + 4y^2 = 8$ at the point (2, -1). 2.
- Find the equation of the tangent line to the graph of $3xy y^2 + x + 9 = 0$ at the point (1, -2). 3.

Answers

Exercise 1

$$1. \quad \frac{y - xy'}{v^2}$$

1.
$$\frac{y - xy'}{y^2}$$
 2. $\frac{3x^2y^3 - 3x^3y^2y'}{y^6}$

$$3. \quad \frac{2xy'}{(x-y)^2}$$

Exercise 2

1.
$$y-2=-2(x-1)$$

2.
$$y+1=\frac{1}{2}(x-2)$$

1.
$$y-2=-2(x-1)$$
 2. $y+1=\frac{1}{2}(x-2)$ 3. $y+2=\frac{5}{7}(x-1)$