Announcements

Assignments

- HW4
 - Due Wed, 10/14, 11:59 pm
- HW5
 - Plan: Out tomorrow
 - Due Mon, 10/26, 11:59 pm

Recitation

- No recitation the next two Fridays 😊
- We'll post a worksheet for neural nets and record a walk-through

Survey

Introduction to Machine Learning

Neural Networks

Instructor: Pat Virtue

Plan

Last Time

- Neural Networks
 - Perceptron
 - Multilayer perceptron

Today

- Neural Networks
 - Building blocks
 - Optimization
 - Composite functions and chain rule
 - Forward-backward passes
 - Matrix calculus

Perceptron

$$sign(\mathbf{z}) = \begin{cases} 1, & if \ z \ge 0 \\ -1, & if \ z < 0 \end{cases}$$

Classification: Hard threshold on linear model

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$$

Classification Design Challenge

How could you configure three specific perceptrons to classify this data?

$$z_{1} = h_{A}(\mathbf{x}) = sign(\mathbf{w}_{A}^{T}\mathbf{x} + b_{A})$$

$$z_{2} = h_{B}(\mathbf{x}) = sign(\mathbf{w}_{B}^{T}\mathbf{x} + b_{B})$$

$$h_{C}(\mathbf{z}) = sign(\mathbf{w}_{C}^{T}\mathbf{z} + b_{C})$$

Classification Design Challenge

How could you configure three specific perceptrons to classify this data?

Neural Networks Inspired by actual human brain

Input Signal

Output

Signal

Image: https://en.wikipedia.org/wiki/Neuron

Classification Design Challenge

How could you configure three specific perceptrons to classify this data?

$$h_A(\mathbf{x}) = sign(\mathbf{w}_A^T \mathbf{x} + b_A)$$

$$h_B(\mathbf{x}) = sign(\mathbf{w}_B^T \mathbf{x} + b_B)$$

$$h_C(\mathbf{x}) = sign(\mathbf{w}_C^T \mathbf{x} + b_C)$$

Neural Networks Simple single neuron example:

Selling my car

Neural Networks

Many layers of neurons, millions of parameters

Output Signal Input Signal **CAT** TREE CAR

Neural Networks

Many layers of neurons, millions of parameters

Signal Input Signal **CAT** TREE CAR

Output

Neural Networks

Many layers of neurons, millions of parameters

Signal Input Signal **RIGHT**

Output

Single Neuron

Single neuron system

- Perceptron (if g is step function)
- Logistic regression (if g is sigmoid)
- Linear regression (if *g* is nothing)

Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

■ Hard threshold:
$$g(z) = \begin{cases} 1 & z \ge 0 \\ 0 & z < 0 \end{cases}$$
 $\frac{dg}{dz} = \begin{cases} 0 & z \ge 0 \\ 0 & z < 0 \end{cases}$

• Sigmoid:
$$g(z) = \frac{1}{1+e^{-z}}$$

$$\frac{dg}{dz} = g(z) (1 - g(z))$$

ReLU:

$$g(z) = max(0, z) \qquad \frac{dg}{dz} = \begin{cases} 1 & z \ge 0 \\ 0 & z < 0 \end{cases}$$

Optimizing

How do we find the "best" set of weights?

$$h_{\mathbf{w}}(\mathbf{x}) = g\left(\sum_{j} w_{j} x_{j}\right)$$

Loss Functions

Regression

■ Squared error: $\ell(y, \hat{y}) = (y - \hat{y})^2$

Classification

• Cross entropy: $\ell(\boldsymbol{y}, \widehat{\boldsymbol{y}}) = -\sum_k y_k \log \widehat{y}_k$

Multilayer Perceptrons

A *multilayer perceptron* is a feedforward neural network with at least one *hidden layer* (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Neural Network Equations

$$h_{w}(\mathbf{x}) = z_{4,1} \qquad z_{1,1} = x_{1}$$

$$z_{4,1} = g(\sum_{i} w_{3,i,1} z_{3,i})$$

$$z_{3,1} = g(\sum_{i} w_{2,i,1} z_{2,i}) \qquad h_{w}(\mathbf{x}) = g\left(\sum_{k} w_{3,k,1} g\left(\sum_{j} w_{2,j,k} g\left(\sum_{i} w_{1,i,j} x_{i}\right)\right)\right)$$

$$z_{d,1} = g(\sum_{i} w_{d-1,i,1} z_{d-1,i})$$

Optimizing

How do we find the "best" set of weights?

$$h_w(x) = g\left(\sum_k w_{3,k,1} \ g\left(\sum_j w_{2,j,k} \ g\left(\sum_i w_{1,i,j} \ x_i\right)\right)\right)$$

Neural Network Equations

How do we describe this network?

Network Optimization Details

Reminder: Calculus Chain Rule (scalar version)

$$y = f(z)$$

$$z = g(x)$$

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

Network Optimization

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

Network Optimization: Forward then Backwards

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Lots of repeated calculations

Network Optimization: Layer Implementation

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Lots of repeated calculations

Backpropagation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(w)

Arbitrary layer: y = f(x, w)

Need:

One way to think of it: Bag of Derivatives

One way to think of it: Bag of Derivatives

Jacobian: Vector in, vector out

Numerator-layout

$$y = f(x)$$
 $y \in \mathbb{R}^N$, $x \in \mathbb{R}^M$, $\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M}$

Vector in, scalar out

Numerator-layout

$$y = f(x)$$
 $y \in \mathbb{R}$, $x \in \mathbb{R}^M$, $\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}$

Scalar in, vector out

Numerator-layout

$$y = f(x)$$
 $y \in \mathbb{R}^N$, $x \in \mathbb{R}$, $\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times 1}$

Gradient: Vector in, scalar out

Transpose of numerator-layour

$$y = f(x)$$
 $y \in \mathbb{R}$, $x \in \mathbb{R}^M$, $\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}$, $\nabla_x f \in \mathbb{R}^{M \times 1}$

Matrix in, scalar out

Keep same dimensions as matrix

$$y = f(X)$$
 $y \in \mathbb{R}$, $X \in \mathbb{R}^{N \times M}$, $\frac{\partial y}{\partial X} \in \mathbb{R}^{N \times M}$

Multivariate Chain Rule

$$z_1 = g_1(x) = \sin(x)$$

$$z_2 = g_2(x) = x^3$$

$$y = f(z_1, z_2) = z_1^4 e^{z_2} + 5z_1 + 7z_2$$

Multivariate Chain Rule

$$z_1 = g_1(x) = \sin(x)$$

 $z_2 = g_2(x) = x^3$
 $y = f(z_1, z_2) = z_1 z_2$

Calculus Chain Rule

Scalar:

$$y = f(z)$$

$$z = g(x)$$

$$\frac{dy}{dz} = \frac{dy}{dz} \frac{dz}{dz}$$

Multivariate:

$$y = f(\mathbf{z})$$
$$\mathbf{z} = g(x)$$

$$\frac{dy}{dx} = \sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}$$

Multivariate:

$$\mathbf{y} = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{dy_{i}}{dx_{k}} = \sum_{j} \frac{\partial y_{i}}{\partial z_{j}} \frac{\partial z_{j}}{\partial x_{k}}$$

Network Optimization

$$J(w) = z_4$$

$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!

Network Optimization

$$J(\mathbf{w}) = z_4$$

$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!

$$\frac{\partial J}{\partial w_E} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_E}$$

$$\frac{\partial J}{\partial w_D} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_D}$$

$$\frac{\partial J}{\partial z_3} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_3}$$
$$\frac{\partial J}{\partial z_2} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_2}$$

$$\frac{\partial J}{\partial w_C} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_C}$$
$$\frac{\partial J}{\partial w_B} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial w_B}$$

$$\frac{\partial J}{\partial z_1} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_1}$$

$$\frac{\partial J}{\partial w_A} = \frac{\partial J}{\partial z_1} \frac{\partial z_1}{\partial w_A}$$

Backpropagation (updated)

Compute derivatives per layer, utilizing previous derivatives

Objective: I(w)

Arbitrary layer: y = f(x, w)

Init:

$$\blacksquare \frac{\partial J}{\partial x} = 0$$

$$\frac{\partial J}{\partial x} = 0$$

$$\frac{\partial J}{\partial w} = 0$$

Compute:

Neural Networks Properties

Practical considerations

- Large number of neurons
 - Danger for overfitting
- Modelling assumptions vs data assumptions trade-off
- Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

 A deep neural network with only linear layers can be reduced to an exactly equivalent single linear layer

Universal Approximation Theorem:

 A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.