FICHE DE COURS 11

ÉQUILIBRES DE DISSOLUTION ET DE PRÉCIPITATION

Ce que je dois être capable de faire après avoir appris mon cours

	Donner la définition d'un sel soluble et d'un sel peu soluble.
☐ I	Définir la notion de solution saturée.
	Exprimer le produit de solubilité associé à une réaction de dissolution.
☐ Í	Énoncer le critère d'équilibre de précipitation.
	Tracer un diagramme d'existence en fonction des conditions expérimentales fournies.
☐ I	Définir la solubilité d'un solide.
☐ I	Discuter le rôle de la température et l'effet d'ion commun.
☐ I	Décrire le principe de la précipitation sélective à l'aide d'une échelle de pK_s .
☐ I	Discuter l'influence du pH sur une dissolution ou une précipitation.
☐ Í	Établir les asymptotes d'une courbe $\log s = f(pH)$ et les tracer en utilisant la conservation d'un élement.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Produit de solubilité :

$$A_aB_b(s) \Longleftrightarrow aA^{x+}(aq) + bB^{y-}(aq)$$

et

$$K_s = \frac{\left[A^{x+}\right]_{\text{\'eq}}^a \left[B^{y-}\right]_{\text{\'eq}}^b}{(C^\circ)^{a+b}}$$

☐ Condition pour qu'il y ait équilibre de précipitation/dissolution à l'état final :

$$Q_{\mathrm{dissolution},initial} \geq \mathrm{K_s}$$

 $\hfill \square$ Solubilité dans l'eau pure :

$$K_{s} = a^{a}b^{b} \frac{s^{a+b}}{(C^{\circ})^{a+b}}$$