Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels

Martin Zlocha, Qi Dou, Ben Glocker

Biomedical Image Analysis Group, Imperial College London, UK

A simple RetinaNet with optimized configuration beats previous methods!

Adding dense supervision from weak RECIST labels plus attention, improves sensitivity for small lesions <10 mm by over 8%.

Beat our Al on spot-the-lesion.com

MOTIVATION

Problem: Accurate, automated lesion detection in Computed Tomography (CT) is an important yet challenging task due to the large variation of lesion types, sizes, locations and appearances. Most previous work focuses on a specific type of lesion within a relatively constrained (anatomical) context.

Solution: We propose a highly accurate and efficient one-stage lesion detector, by re-designing a RetinaNet. We evaluate our method on the public DeepLesion benchmark achieving a sensitivity of **90.77**% at 4 false positives per image, **significantly outperforming** the best reported methods by over **5**%.

METHOD

- RetinaNet is used as it can detect objects of various sizes well. VGG-19 is used as the backbone.
- Focal loss addresses the problem of class imbalance.
- To output a segmentation mask the network is modified similar to modifications made in **Retina U-Net**.
- Attention gates are used to filter feature responses propagated through skip connections.

Anchor Optimization

- Instead of using trial and error, frame the anchor optimisation problem as a maximisation of the overlap between the lesion bounding-box and the best anchor
- The ratios and scales of bounding boxes are optimised using differential evolution search algorithm.
- Code: bit.ly/anchor_optimization

Dense Supervision

- Build a quadrilateral by consecutively connecting the four vertices of the RECIST diameters.
 - o Foreground: Every pixel within the quadrilateral
 - Background: Every pixel outside of the bounding box
- Use GrabCut to generate a mask

RESULTS

Methods	0.5	1	2	4	8	16	runtime
Faster R-CNN [7]	56.90	67.26	75.57	81.62	85.83	88.74	32 ms
Mask R-CNN [3]	39.82	52.66	65.58	77.73	85.54	91.80	_
ULDor (Tang et al. [12])	52.86	64.80	74.84	84.38	87.17	91.80	_
3DCE (Yan et al. [13])	62.48	73.37	80.70	85.65	89.09	91.06	$114 \mathrm{ms}$
original RetinaNet [6]	45.80	54.17	62.50	69.80	75.34	79.48	$28 \mathrm{\ ms}$
+ anchor optimization	64.82	74.98	82.29	87.87	92.20	94.90	$31 \mathrm{ms}$
+ dense supervision	70.24	78.28	85.10	90.39	93.81	96.01	39 ms
+ attention gate	72.15	80.07	86.40	90.77	94.09	96.32	$41 \mathrm{ms}$

- RetinaNet with default anchor configuration is performing poorly
- Automatic anchor optimisation outperforms previous state-of-the-art by 2.34% at 0.5 FP.
- Adding dense supervision with segmentation masks **automatically** generated from RECIST diameters significantly boosts detection sensitivity, with **5.42**% improvement at 0.5 FP.

REFERENCES

[1] Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics. vol. 23 (2004)

[2] Jaeger, P.F., Kohl, S.A., Bickelhaupt, S., Isensee, F., Kuder, T.A., Schlemmer, H.P., Maier-Hein, K.H.: Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection. arXiv preprint arXiv:1811.08661 (2018)

[3] Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: MICCAI (2018)

[4] Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of Medical Imaging 5(3) (2018)