rfTextController

© 2022 Robert Finch

Description

This is a text mode video display controller that supports color intended for use with a 64 or 32-bit bus. The controller uses several internal dual ported r/w memories to store text, text attributes and character bitmaps. The display memory is sixty-four bits wide. 512 different simultaneous characters may be displayed along with 21-bit background and foreground colors (RGB777 format). The use of internal dual ported memories means that the text controller does not consume any memory bandwidth from the processor.

The controller is programmable using only seven registers. Default values are established that should provide a reasonable display for 800x600 VGA mode.

The core respects byte lane selects and partial updates of registers are possible. This makes it possible for the core to have an optional 32-bit bus slave interface.

The core is selected via a circuit select input.

Address	Description	
\$0000 to	text screen and attribute memory area, currently the controller only	
\$1DEFF	supports a 119.75kB memory	
\$1E000 to	character bitmap memory, currently the controller only supports a 8kx9	
\$1FFFF	memory, which allows 1024 8x8 character bitmaps.	
\$1DF00 to	tout controller resistances	
\$1DFFF	text controller register area	

Text and Attribute Memory Lavout

63 58	57 37	36 16	9 0
z-order	Fg Color	Bk Color	char code

Clocks

The text video display controller uses two clocks, a bus timing clock (clk_i) and a video timing clock (dot_clk_i), which can be completely independent.

The core synchronizes the display relative to externally supplied horizontal and vertical synchronization signals.

Register Description

Reg No.	Bit	R/W		Default Value
00	7 - 0	RW	Number of character columns	64
	15 - 8	RW	Number of character row	32
	19 - 16	RW	Character output delay	7
	31 - 20	-	These bits are reserved	
	43 - 32	RW	Window left	3956
	47-44	-	These bits are reserved	
	59-48	RW	Window top	4058
	63 - 60	-	These bits are reserved	
08	4 - 0	RW	Maximum scanline for character -1	7
	7 - 5	-	Reserved	
	11 – 8	RW	Pixel size width -1 (dot clocks)	0
	15 - 12	RW	Pixel size height -1 (scan lines)	0
	24	RW	Reset state (auto resets to zero)	0
	32	RW	Controller enable	1
	40	RW	Multi-color mode enable	0
	52 - 48	RW	Y scroll	0
	60 - 56	RW	X scroll	0
	Other	-	reserved	
10	30 - 0	RW	Color for transparent color ZRGB 4-9-9-9	511
	62 - 32	RW	Border color ZRGB 4-9-9-9	FFBF2020h
18	30 - 0	RW	Tile color 1 (multi-color mode)	0
	62 - 32	RW	Tile color 2 (multi-color mode)	0
20	4 - 0	RW	Cursor end	31
	7 - 5	RW	Blink Control	7
				_
			00 No blink	
			01 No display	
			10 1/16 field rate	
			11 1/32 field rate	
	12 - 8	RW	Cursor start	0
	15 - 14	RW	Cursor image type	0
	47 - 32	RW	Cursor location in memory	3
	Other	-	reserved	
28	15 – 0	RW	start address – index into display memory	0
	Other	-	reserved	
30	15 - 0	RW	Font address in char bitmap memory	0
	Other	-	reserved	

Graphics

The core may be used as a low-resolution graphics controller via the programmable character set. The characters can be programmed for block graphics. For instance, each character could be a two by two grid of pixels. Sixteen different characters would be required to represent all the different combinations. It is also possible to program characters to a three by three grid of pixels using all 512 programmable characters to represent every possible combination of on/off pixels. The default resolution is 64x32 or (448x256 pixels).

Graphics and text may be intermixed by allocating part of the programmable character set for a graphic arrray. For instance using 256 programmable characters a 128x128 bitmapped display can be created.

Display Input / Output Bus

The controller inputs 40-bit ZRGB data and outputs 40-bit ZRGB video data. ZRGB is RGB data with plane number indicator bits tacked on. Four bits are reserved for the plane number and 12 bits are reserved for each RGB color component.

Core Parameters

Name	Default Value	Description
COLS	64	default number of columns of text
ROWS	32	default number of rows of text
BUSWID	64	Slave bus width may be 64 or 32

Module Interface Description

rfTextController

module rfTextController(rst_i, clk_i, cs_i, cyc_i, stb_i, ack_o, wr_i, sel_i, adr_i, dat_i, dat_o, dot_clk_i, hsync_i, vsync_i, blank_i, border_i, zrgb_i, zrgb_o, xonoff_i);

System	Description	
rst_i	This signal is normally connected to the system reset signal. It resets the text controller interface forcing it to the reset state.	
clk_i	This is usually connected to the system clock and is used as a base timing clock for I/O operations.	
Slave Port		
cs_i	circuit select input - selects the core for a read or write operation.	
cyc_i	indicates that a valid bus cycle is taking place. The core will not respond to the bus unless this signal is active.	

stb_i	This strobe signal also indicates that a valid bus cycle is taking place	
ack_o	This signal indicates that the core has processed the bus transaction (it is the logical and of cyc_i and stb_i).	
wr_i	This signal is used to signify a write operation to the text controller.	
sel_i	These are byte lane selects Either 8 for 64 bit interface or 4 for 32-bit interface.	
adr_i	This seventeen bit address bus is used to address one of text controllers's registers or internal memory. (Registers are described above). Registers respond to the address range \$1DFxx	
dat_i	This is the 64 or 32 bit data input bus to the text controller.	
dat_o	This is the 64 or 32 bit data output bus from the text controller.	
Video Ports		
vclk	This input is the video clock input. Pixel timing is derived from it.	
hsync	Horizontal sync. This input signal signals the start/end of a video scanline (end-of-line)	
vsync	Vertical sync. This input signal indicates the end of the video frame.	
blank	This input signal indicates that the display should be blanked. It is active during the video blanking period.	
border	This input signal indicates that a border area is active.	
zrgb_i	This 40-bit input bus can be connected to an external RGB input. (The text controller may display on top of the external input).	
zrgb_o	This output signal bus contains the 40-bit RGB display data.	
Parameters		
ROWS	Use this parameter to specify the default number of text rows.	
COLS	Use this parameter to specify the default number of text columns.	
BUSWID	Specify the slave bus width using this parameter	

WISHBONE Compatibility Datasheet

The text controller core may be directly interfaced to a WISHBONE compatible bus.

WISHBONE Datasheet			
WISHBONE SoC Architec	cture Specifica	tion, Revision B.3	
Description:	Specifications:		
General Description:	rfTextController - Text mode video display controller		
Supported Cycles:	SLAVE, READ / WRITE SLAVE, BLOCK READ / WRITE SLAVE, RMW		
Data port, size: Data port, granularity: Data port, maximum operand size: Data transfer ordering: Data transfer sequencing	64 or 32 bit (configurable) 8 bit byte lane selects 64 or 32 bit Little Endian any (undefined)		
Clock frequency constraints:	None, uses separate independent slave bus and video clocks.		
Supported signal list and cross reference to equivalent WISHBONE signals	ack_o sel_i(7:0) adr_i(16:0) clk_i dat_i(63:0) dat_o(63:0) cyc_i stb_i wr_i	WISHBONE Equiv. ACK_O SEL_I() ADR_I() CLK_I DAT_I() CYC_I STB_I WE_I RST_I	
Special Requirements:	external sync go	enerator	