Teil 2: FO

Kompaktheit

FO 4

FO Kompaktheit (Satz 4.1)

Kompaktheitssatz (Endlichkeitssatz)

Version 1: (Erfüllbarkeit)

Für $\Phi \subseteq FO$ sind äquivalent:

- (i) Φ erfüllbar.
- (ii) Jede endliche Teilmenge $\Phi_0 \subseteq \Phi$ ist erfüllbar.

Version 2: (Folgerungsbeziehung)

Für $\Phi \subseteq FO$, $\varphi \in FO$ sind äquivalent:

- (i) $\Phi \models \varphi$.
- (ii) $\Phi_0 \models \varphi$ für eine endliche Teilmenge $\Phi_0 \subseteq \Phi$.

Version $1 \Leftrightarrow \text{Version 2 (zur Übung!)}$

Version 1 für universell-pränexes $\Phi \subseteq FO_0^{\neq}$: Reduktion auf AL

FGdI II

Sommer 2011

M.Otto und M.Ziegler

81/15

Teil 2: FO

Kompaktheit

FO 4

FO Kompaktheit

Konsequenzen: die Stärken des Endlichkeitssatzes die Schwächen von FO

mit Kompaktheitsargumenten findet man:

Nichtstandardmodelle

von (unendlichen) Standardmodellen in FO ununterscheidbare Strukturen

z.B.
$$\mathcal{N}^*$$
 zu $\mathcal{N}=(\mathbb{N},+,\,\cdot\,,0,1,<)$

Nichtstandardmodell der Arithmetik mit 'unendlich großen natürlichen Zahlen'

zur vollständigen FO-Theorie von \mathcal{N} , $\Phi := \{ \varphi \in FO \colon \mathcal{N} \models \varphi \}$

betrachte $\Phi \cup \{\underbrace{1+\cdots+1}_{n} < c \colon n \geqslant 2\}$ für neue Konstante c

Teil 2: FO

Kompaktheit

→ Abschnitt 4

Konsequenzen: die Stärken des Endlichkeitssatzes

die Schwächen von FO

FO 4

mit Kompaktheit findet man:

FO Kompaktheit

beliebig große endliche Modelle ⇒ unendliche Modelle

zu Φ betrachte $Φ \cup \{\exists x_1 ... \exists x_n \bigwedge_{1 \le i \le n} \neg x_i = x_j : n \ge 1\}$

unendliche Modelle ⇒ beliebig große unendliche Modelle

zu Φ betrachte $\Phi \cup \{ \neg c_i = c_j : i \neq j; i, j \in I \}$ für neue Konstanten $(c_i)_{i \in I}$

⇒ keine unendliche Struktur in FO bis auf Isomorphie charakterisierbar

FGdI II

Sommer 201

1.Otto und M.Ziegle

82/156

Teil 2: FO

FO Sequenzenkalkül

FO 6

Sequenzenkalküle

ightarrow Abschnitt 6.1

vgl. AL Sequenzenkalkül

Allgemeingültigkeitsbeweise

(für bel. FO-Formeln/Sätze)

Gegenstand: FO-Sequenzen $\Gamma \vdash \Delta$

für endliche $\Gamma, \Delta \subseteq FO_0(S)$

 $\Gamma \vdash \Delta$ allgemeingültig wenn $\bigwedge \Gamma \models \bigvee \Delta$

Beweisziel: Ableitung allgemeingültiger Sequenzen

Ableitungsschritte: Anwendung von Regeln

(zur Erzeugung von Sequenzen)

Korrektheit: jede ableitbare Sequenz ist allgemeingültig.

Vollständigkeit: jede allgemeingültige Sequenz ist ableitbar.

(schwache Form, wird später verschärft)

FGdl II Sommer 2011 M.Otto und M.Ziegler 83/156 FGdl II Sommer 2011 M.Otto und M.Ziegler

Teil 2: FO

FO Sequenzenkalkül

FO 6

Sequenzenkalkül: Regeln und Korrektheit

Prämissen Format von Sequenzenregeln (wie in AL): Konklusion

Konklusionen von Regeln ohne Prämissen: Axiome

ableitbare Sequenzen:

ausgehend von Axiomen (in endlich vielen Schritten) durch Anwendung von Sequenzenregeln erzeugte Sequenzen

Korrektheit: jede ableitbare Sequenz ist allgemeingültig

folgt aus der Korrektheit der einzelnen Regeln:

- die Axiome sind allgemeingültige Sequenzen;
- für Regeln mit Prämissen: Prämissen allgemeingültig ⇒ Konklusion allgemeingültig.

M.Otto und M.Zieglei

Teil 2: FO

FO Sequenzenkalkül

FO 6

Sequenzenkalkül: Quantorenregeln

$$(\forall L) \quad \frac{\Gamma, \varphi(t/x) \vdash \Delta}{\Gamma, \forall x \varphi(x) \vdash \Delta}$$

$$(\forall \mathbf{R}) \quad \frac{\Gamma \vdash \Delta, \varphi(c/x)}{\Gamma \vdash \Delta, \forall x \varphi(x)}$$

falls c nicht in $\Gamma, \Delta, \varphi(x)$

(
$$\exists$$
L) $\frac{\Gamma, \varphi(c/x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}$

$$(\exists \mathbf{R}) \quad \frac{\Gamma \vdash \Delta, \varphi(t/x)}{\Gamma \vdash \Delta, \exists x \varphi(x)}$$

falls c nicht in $\Gamma, \Delta, \varphi(x)$

Korrektheit prüfen!

Sequenzenkalkül: Regeln

FO Sequenzenkalkül \mathcal{SK} , drei Gruppen von Regeln:

- AL Regeln (analog zum AL-Sequenzenkalkül).
- Quantorenregeln: Einführung von \forall oder \exists links/rechts. $(\forall L)$, $(\forall R)$, $(\exists L)$, $(\exists R)$.
- Gleichheitsregeln: Umgang mit Term-Gleichheiten. (=), (Sub-L), (Sub-R).

AL + Quantorenregeln: vollständiger Beweiskalkül \mathcal{SK}^{\neq} für FO^{\neq}

 \mathcal{SK}^{\neq} + Gleichheitsregeln: vollständiger Beweiskalkül \mathcal{SK} für FO

Zusätzlich (nicht notwendig aber natürlich) in \mathcal{SK}^+ :

• Schnittregeln: Kettenschlüsse und Beweise durch Widerspruch.

Teil 2: FO

FO Sequenzenkalkül

FO 6

Sequenzenkalkül: Gleichheitsregeln

$$(=) \qquad \frac{\Gamma, \, t = t \vdash \Delta}{\Gamma \vdash \Delta}$$

(Sub-L)
$$\frac{\Gamma, \varphi(t/x) \vdash \Delta}{\Gamma, t = t', \varphi(t'/x) \vdash \Delta} \quad \text{(Sub-R)} \quad \frac{\Gamma \vdash \Delta, \varphi(t/x)}{\Gamma, t = t' \vdash \Delta, \varphi(t'/x)}$$
 und analoge Regeln mit $t' = t$ statt $t = t'$

Korrektheit prüfen!

Teil 2: FO

FO Sequenzenkalkül

FO 6

Sequenzenkalkül: Schnittregeln (optional)

 $\frac{\Gamma, \varphi \vdash \Delta \qquad \Gamma' \vdash \varphi}{\Gamma, \Gamma' \vdash \Delta}$ (modus ponens)

 $\frac{\Gamma \vdash \varphi \qquad \Gamma' \vdash \neg \varphi}{\Gamma, \Gamma' \vdash \emptyset}$ (Kontradiktion)

Korrektheit prüfen!

Bem.: Kontradiktionsregel (lokal) mit modus ponens simulierbar beide Regeln lassen sich (nicht lokal) eliminieren (vgl. AL-Sequenzenkalkül) unterscheide schnittfreie Kalküle wie \mathcal{SK} von solchen mit Schnittregeln wir \mathcal{SK}^+

M.Otto und M.Ziegler

Teil 2: FO

Vollständigkeit

FO 6.2/3

Ziel: Vollständigkeit

→ Abschnitt 6.3

Definitionen:

Ableitbarkeit aus Theorie $\Phi \subseteq FO_0$:

 φ ableitbar aus Φ $[\Phi \vdash \varphi]$ gdw.

für geeignetes $\Gamma_0 \subseteq \Phi$ (Voraussetzungen) ist $\Gamma_0 \vdash \varphi$ ableitbar.

Φ konsistent (widerspruchsfrei) gdw. *nicht* $\Phi \vdash \emptyset$.

Vollständigkeit (starke Form)

Korrektheit

 $\Phi \models \varphi \Rightarrow \Phi \vdash \varphi$

 $\Phi \vdash \varphi \Rightarrow \Phi \models \varphi$

 Φ konsistent $\Rightarrow \Phi$ erfüllbar

 Φ erfüllbar $\Rightarrow \Phi$ konsistent

alles, was wahr ist, ist ableitbar

alles, was ableitbar ist, ist wahr

Teil 2: FO

Vollständigkeit

FO 6.2/3

Kurt Gödel

(1906-1978)

mit Albert Einstein

der Logiker des 20. Jahrhunderts

Teil 2: FO

Vollständigkeit

FO 6.2/3

Gödelscher Vollständigkeitssatz

(Satz 6.7)

(Vollständigkeit & Korrektheit des Sequenzenkalküls)

Für jede Satzmenge $\Phi \subset FO_0(S)$ und jeden Satz $\varphi \in FO_0(S)$ gelten:

- $\Phi \models \varphi$ gdw. $\Phi \vdash \varphi$.
- Φ erfüllbar gdw. Φ konsistent.

Zentrale Folgerungen

Kompaktheitssatz (wesentlich neuer Zugang)

Allgemeingültigkeit rekursiv aufzählbar

(später: nicht entscheidbar)

M.Otto und M.Ziegler

Vollständigkeit

FO 6.2/3

Vollständigkeitsbeweise

→ Abschnitt 6.3

zu zeigen:

 $\mathsf{Konsistenz} \quad \Rightarrow \ \mathsf{Erf\"{u}llbarkeit}$

dazu

Ableitbarkeit von Sequenzen aus einer Satzmenge

Ableitbarkeit unter gegebenen Voraussetzungen:

 $\begin{array}{ll} \Gamma \vdash \Delta \ \textit{ableitbar aus} \ \Phi \quad \text{gdw.} & \text{für geeignetes} \ \Gamma_0 \subseteq \Phi \\ & \Gamma_0, \Gamma \vdash \Delta \ \text{ableitbar ist.} \end{array}$

rGai II

Sommer 2011

M.Otto und M.Ziegler

93/15

Teil 2: FO

Unentscheidbarkeit

Church-Turing

FO 7

Unentscheidbarkeit

Church (1903-1995)

Turing (1912–1954)

Teil 2: FO

Unentscheidbarkeit

FO 7

Unentscheidbarkeit von SAT(FO)

→ Abschnitt 7.1

Satz von Church und Turing

SAT(FO) ist unentscheidbar.

genauer: nicht rekursiv aufzählbar.

Beweis: Reduktion des Halteproblems

FO ausreichend ausdrucksstark für Kodierung des Verhaltens von TM (in einzelnen Sätzen)

Finde berechenbare Zuordnung

$$\mathcal{M}, w \longmapsto \varphi_{\mathcal{M}, w} \in \mathrm{FO}_0(S_{\mathcal{M}}),$$

$$\varphi_{\mathcal{M}, w} \text{ erfüllbar gdw. } w \xrightarrow{\mathcal{M}} \infty$$

Idee: $\varphi_{\mathcal{M},w}$ besagt, dass die Konfigurationenfolge in der Berechnung von \mathcal{M} auf w nicht abbricht.

Teil 2: FO

Unentscheidbarkeit

FO 7

Reduktion des Halteproblems auf SAT(FO)

einfache Variante

zu
$$\mathcal{M} = (\Sigma, Q, q_0, \delta, q^+, q^-)$$
 wähle als Signatur $S_{\mathcal{M}}$:

succ Nachfolgerfunktion, 1-st.

(Schritt-/Positionszähler)

0 Konstante

 R_a 2-st. Relation für $a \in \Sigma \cup \{\Box\} =: \Gamma$

(Bandbeschriftung) (Zustände)

K 2-st. Relation

(Kopfpositionen)

intendierte Interpretation über \mathbb{Z} :

1-st. Relation für $q \in Q$

 $(t,i) \in R_a$: zum Zeitpunkt #t steht in Zelle #i das Symbol a.

 $t \in Z_q$: zum Zeitpunkt #t ist $\mathcal M$ im Zustand q.

 $(t,i) \in K$: zum Zeitpunkt #t steht der Kopf auf Zelle #i.

FGdl II Sommer 2011 M.Otto und M.Ziegler 95/156 FGdl II Sommer 2011 M.Otto und M.Ziegler