Some Universal Algebra Methods for Constraint Satisfaction Problems

William DeMeo
williamdemeo@gmail.com
University of Hawaii
joint work with Clifford Bergman

AMS Fall Western Sectional Meeting
University of Denver
8 October 2016

What is a CSP?

Informally, a Constraint Satisfaction Problem consists of

- a list of variables ranging over a finite domain and
- a set of constraints on those variables.

Question: Can we assign values to all of the variables so that all of the constraints are satisfied?

More formally...

Let
$$D$$
 be a finite set and $\Re \subseteq \operatorname{Rel}(D) = \bigcup_{n < \omega} \Re(D^n)$

 $\mathsf{CSP}(D, \mathcal{R})$ is the following decision problem:

Instance:

- variables: $V = \{v_1, \ldots, v_n\}$, a finite set
- constraints: $(C_1, ..., C_m)$, a finite list each constraint C_i is a pair (\mathbf{s}_i, R_i) ,

$$\mathbf{s}_i(j) \in V$$
 and $R_i \in \mathcal{R}$

Question: Does there exist a solution?

an assignment $f: V \to D$ of values to variables satisfying

$$\forall i \quad f \circ \mathbf{s}_i = (f \mathbf{s}_i(1), f \mathbf{s}_i(2), \dots, f \mathbf{s}_i(p)) \in R_i$$

The CSP-Dichotomy Conjecture

Conjecture of Feder and Vardi

Every $CSP(D, \mathbb{R})$ either lies in \mathbb{P} or is \mathbb{NP} -complete.

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_k(D)$ and $f \colon D^n \to D$. We say f preserves R if

$$(a_{11}, \ldots, a_{1k}), \ldots, (a_{n1}, \ldots, a_{nk}) \in R \implies$$

 $(f(a_{11}, \ldots, a_{n1}), \ldots, f(a_{1k}, \ldots, a_{nk})) \in R$

Notation

Let \Re be a set of relations on D.

 $Poly(\mathbb{R})$ = set of all operations that preserve all relations in \mathbb{R} .

These are the polymorphisms of \Re .

Let \mathcal{F} be a set of operations on D.

 $Inv(\mathfrak{F})$ = set of all relations preserved by all operations in \mathfrak{F} .

Galois Connection...

...from relational to algebraic structures, and back.

$$\begin{array}{cccc} \textbf{Relational} & & \textbf{Algebraic} \\ (D, \mathbb{R}) & \longrightarrow & (D, \mathsf{Poly}(\mathbb{R})) \\ (D, \mathsf{Inv}(\mathfrak{F})) & \longleftarrow & (D, \mathfrak{F}) \\ \end{array}$$

$$CSP(D, \mathbb{R}) \equiv_{p} CSP(D, Inv(Poly(\mathbb{R})))$$

We can use algebra to help classify CSPs!

Algebraic CSP

For an algebra $\mathbf{A} = \langle A, \mathfrak{F} \rangle$ define $\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(A, \mathsf{Inv}(\mathfrak{F}))$

Informal algebraic CSP dichotomy conjecture

If $Poly(\mathbf{A})$ is rich, then $CSP(\mathbf{A})$ is in \mathbb{P} "tractable"

If $Poly(\mathbf{A})$ is poor, then $CSP(\mathbf{A})$ is \mathbb{NP} -complete "intractable"

Algebraic CSP

For an algebra $\mathbf{A} = \langle A, \mathfrak{F} \rangle$ define $\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(A, \mathsf{Inv}(\mathfrak{F}))$

Informal algebraic CSP dichotomy conjecture

If $Poly(\mathbf{A})$ is rich, then $CSP(\mathbf{A})$ is in \mathbb{P} "tractable"

If Poly(A) is poor, then CSP(A) is \mathbb{NP} -complete "intractable"

What does it mean to be rich?

Definitions

Weak NU term

An n-ary term f is called a weak near-unanimity term if

$$f(x,x,\ldots,x) \approx x$$
 and $f(y,x,x,x,\ldots,x) \approx f(x,y,x,x,\ldots,x) \approx \cdots \approx f(x,x,x,\ldots,x,y)$

Note: no essentially unary term is WNU

Definitions

Weak NU term

An *n*-ary term *f* is called a *weak near-unanimity term* if

$$f(x,x,\ldots,x) \approx x$$
 and $f(y,x,x,x,\ldots,x) \approx f(x,y,x,x,\ldots,x) \approx \cdots \approx f(x,x,\ldots,x,y)$

Note: no essentially unary term is WNU

Cube term

An *n*-ary term *f* is called a *cube term* if it satisfies $f(x, x, ..., x) \approx x$ and for every $i \leq k$ there exists $(z_1, ..., z_k) \in \{x, y\}^{k-1}$ such that

$$f(z_1,\ldots,z_{i-1},x,z_{i+1},\ldots,z_k)\approx y$$

Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard If $\mathsf{Poly}(\mathfrak{R})$ contains a "cube term" then $\mathsf{CSP}(\mathfrak{R}) \in \mathbb{P}$

Algebras with a cube term operation possess "few subpowers."

This is used to prove the algorithm is poly-time.

Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard

If $\text{Poly}(\mathfrak{R})$ contains a "cube term" then $\text{CSP}(\mathfrak{R}) \in \mathbb{P}$

Algebras with a cube term operation possess "few subpowers."

This is used to prove the algorithm is poly-time.

Method 2 Kozik, Krokhin, Valeriote, Willard (improving Barto, Kozik; Bulatov)

If $\mathsf{Poly}(\mathfrak{R})$ contains WNU terms v(x,y,z) and w(x,y,z,u) satisfying v(y,x,x) = w(y,x,x,x), then $\mathsf{CSP}(\mathfrak{R}) \in \mathbb{P}$.

Examples: majority, semilattice

Algebras with these operations are congruence SD-∧

Current State of Affairs

The two general techniques do not cover all cases of a WNU term.

Two possible directions:

- 1. Find a completely new algorithm.
- 2. Combine the two existing algorithms.

We describe some progress in the second direction.

A Motivating Example

Let $\mathbf{A} = \langle \{0, 1, 2, 3\}, \cdot \rangle$, have the following Cayley table:

•	0	1	2	3
0	0	0	3	2
1	0	1	3	2
0 1 2 3	0 0 3 2	3	2	1
3	2	2	1	3

What is an instance of $CSP(S(\mathbf{A}))$?

Constraint relations are subdirect products of subalgebras of **A**.

The proper nontrivial subuniverses of \boldsymbol{A} are $\{0,1\}$ and $\{1,2,3\}.$

Potatoes of a six-variables instance of $CSP(S(\mathbf{A}))$

Constraint = Subuniverse of Product

Each colored line represents a tuple in the relation R

$$\textit{R} \subseteq \textit{A} \times \textit{A} \times \textit{Sq}_3 \times \textit{Sq}_3 \times \textit{S}_2 \times \textit{S}_2$$

Constraint = Subuniverse of Product

Each colored line represents a tuple in the relation *R*

$$\textit{R} \subseteq \textit{A} \times \textit{A} \times \textit{Sq}_{3} \times \textit{Sq}_{3} \times \textit{S}_{2} \times \textit{S}_{2}$$

Question: Why isn't the *R* shown above a subuniverse?

williamdemeo@gmail.com Algebraic CSP 8 Oct 2016

Let \mathbf{A}_i , \mathbf{B}_j be finite algebras in a Taylor variety. Assume

- each A_i is abelian
- each **B**_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\mathsf{Proj}_{1...J}\,R\times\{s_1\}\times\{s_2\}\times\cdots\times\{s_K\}\subseteq R$$

By Taylor variety we mean an idempotent variety with a Taylor term.

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each A_i is abelian
- each B_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\operatorname{\mathsf{Proj}}_{1...J} R \times \{s_1\} \times \{s_2\} \times \cdots \times \{s_K\} \subseteq R$$

By Taylor variety we mean an idempotent variety with a Taylor term.

 $s \in B$ is called a sink if for all $t \in Clo_k(\mathbf{B})$ and $1 \le j \le k$, if t depends on its j-th argument, then $t(b_1, \ldots, b_{j-1}, s, b_{j+1}, \ldots, b_k) = s$ for all $b_i \in B$.

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each A_i has a cube term operation
- each B_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\mathsf{Proj}_{1...J}\,R\times\{s_1\}\times\{s_2\}\times\cdots\times\{s_K\}\subseteq R$$

Let \mathbf{A}_i , \mathbf{B}_i be finite algebras in a Taylor variety. Assume

- each A_i has a cube term operation
- each B_i has a sink s_i

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\mathsf{Proj}_{1...J}\,R\times\{s_1\}\times\{s_2\}\times\cdots\times\{s_K\}\subseteq R$$

The proof depends on the following result of Barto, Kozik, Stanovsky: a finite idempotent algebra has a cube term iff every one of its subalgebras has a so called transitive term operation.

Application

Corollary

Suppose every algebra in the set $\mathcal A$ contains either a cube term or a sink. Then $\mathsf{CSP}(\mathcal A)$ is tractable.

Algorithm:

Restrict the given instance to potatoes with cube terms.

Find a solution to the restricted instance (in poly-time by few subpowers).

If a restricted solution exists, then there is a full solution (by Thm 2).

If no restricted solution exists, then no full solution exists.

Quotient strategy

Start with

$$\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \times \mathbf{A}_n$$

Choose a tuple of congruence relations

$$\Theta = (\theta_1, \theta_2, \dots, \theta_n) \in \prod \mathsf{Con}\,\mathsf{A}_i$$

so that $A := \{\mathbf{A}_1/\theta_0, \dots, \mathbf{A}_n/\theta_n\}$ is a "jointly tractable" set of algebras.

That is, CSP(A) is tractable.

Obvious fact: a solution to I is a solution to I/Θ .

For some problems, we have the following converse:

 (\star) a solution to I/Θ always extends to a solution to I.

Problem: For what algebras does the ★-converse hold?

Quotient strategy

Start with

$$\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \times \mathbf{A}_n$$

Choose a tuple of congruence relations

$$\Theta = (\theta_1, \theta_2, \dots, \theta_n) \in \prod \mathsf{Con}\, \mathbf{A}_i$$

so that $A := \{\mathbf{A}_1/\theta_0, \dots, \mathbf{A}_n/\theta_n\}$ is a "jointly tractable" set of algebras.

That is, CSP(A) is tractable.

Obvious fact: a solution to I is a solution to I/Θ .

For some problems, we have the following converse:

 (\star) a solution to I/Θ always extends to a solution to I.

Problem: For what algebras does the ★-converse hold?

Thank you!

 ${\tt williamdemeo@gmail.com}$

Algebraic CSP