

Introduction to Audio Content Analysis

module 8.0: intensity

alexander lerch

introduction overview

corresponding textbook section

chapter 8

lecture content

- quick overview: human perception of loudness
- intensity related features

■ learning objectives

- discuss level and loudness
- list and describe typical intensity related low level features

module 8.0: intensity $1 \ / \ 1$

introduction overview

corresponding textbook section

chapter 8

lecture content

- · quick overview: human perception of loudness
- intensity related features

learning objectives

- discuss level and loudness
- list and describe typical intensity related low level features

intensity, magnitude & loudness introduction

- intensity-related descriptors commonly used
 - waveform view
 - level monitoring (PPM, VU,...)

related terms: magnitude • intensity • envelope • level • volume • velocity • loudness

intensity, magnitude & loudness introduction

Georgia Center for Music Tech Technology

- intensity-related descriptors commonly used
 - waveform view
 - level monitoring (PPM, VU,...)

related terms: magnitude • intensity • envelope • level • volume • velocity • loudness

Georgia Center for Music

perception has non-linear relation to magnitude/RMS:

■ model: logarithmic relation

$$v_{\mathrm{dB}}(n) = 20 \cdot \log_{10} \left(\frac{v(n)}{v_0} \right)$$

- v_0 : reference constant (0 dB point)
 - ▶ digital: $v_0 = 1 \Rightarrow dBFS$
 - ▶ sound pressure $v_0 = 20 \cdot 10^{-6} \Rightarrow dBSPL$
- scaling factor: $1\,\text{dB} \approx \text{JNDL}$ for sound pressure level

module 8.0: intensity $3 \ / \ 1$

intensity, magnitude & loudness side note: level computation

Georgia Center for Music Tech II Technology

if
$$v(n) = 0$$
 \Rightarrow : computation of $\log_{10}(0)$

- work-arounds
 - a add constant ϵ

$$v_{\rm dB}(n) = 20 \cdot \log_{10}(v(n) + \epsilon)$$

b add **if** statement

$$v_{\mathrm{trunc}}(n) = \left\{ egin{array}{ll} v(n), & \mathrm{if} \ v(n) \geq \epsilon \\ \epsilon, & \mathrm{otherwise} \end{array}
ight.$$

Georgia Center for Music

intensity, magnitude & loudness side note: level computation

if
$$v(n) = 0$$
 \Rightarrow : computation of $\log_{10}(0)$

work-arounds

a add constant ϵ

$$v_{\mathrm{dB}}(n) = 20 \cdot \log_{10}(v(n) + \epsilon)$$

$$v_{\text{trunc}}(n) = \begin{cases} v(n), & \text{if } v(n) \geq \\ \epsilon, & \text{otherwise} \end{cases}$$

Georgia Center for Music

if
$$v(n) = 0$$
 \Rightarrow : computation of $\log_{10}(0)$

work-arounds

a add constant ϵ

$$v_{\mathrm{dB}}(n) = 20 \cdot \log_{10}(v(n) + \epsilon)$$

b add if statement

$$v_{ ext{trunc}}(n) = \left\{ egin{array}{ll} v(n), & ext{if } v(n) \geq \epsilon \ \epsilon, & ext{otherwise} \end{array}
ight.$$

intensity, magnitude & loudness human perception 2/2

- decibel scale is not loudness scale:
 - equal-sized steps on the decibel scale not perceived as equal-sized loudness steps
- perceptual phenomenon loudness depends on
 - frequency
 - cochlear resolution
 - masking effects

intensity, magnitude & loudness human perception 2/2

- decibel scale is not loudness scale:
 - equal-sized steps on the decibel scale not perceived as equal-sized loudness steps
- perceptual phenomenon loudness depends on
 - frequency
 - cochlear resolution
 - masking effects

verview intro perception **music** features summary

O OO ● OOOOOOO O

intensity, magnitude & loudness dynamics in music

score:

- only several rough dynamic steps,e.g.:
 - pp, p, mf, f, ff
- comparably vague instructions on volume modifications, e.g.: crescendo, decrescendo, sf
- dynamics influenced by
 - ▶ instrumentation
 - timbre
 - number of voices
 - context and musical tension

MIDI:

- 128 velocity steps
- no standardized relation to magnitude, power, ...

verview intro perception **music** features summary

O OO ● OOOOOOO O

intensity, magnitude & loudness dynamics in music

score:

- only several rough dynamic steps,e.g.:
 - pp, p, mf, f, ff
- comparably vague instructions on volume modifications, e.g.: crescendo, decrescendo, sf
- dynamics influenced by
 - ▶ instrumentation
 - timbre
 - number of voices
 - context and musical tension

MIDI:

- 128 velocity steps
- no standardized relation to magnitude, power, ...

intensity, magnitude & loudness features: root mean square 1/2

$$v_{\mathrm{RMS}}(n) = \sqrt{\frac{1}{\mathcal{K}} \sum_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} x(i)^2}$$

intensity, magnitude & loudness features: root mean square 1/2

$$v_{\mathrm{RMS}}(n) = \sqrt{\frac{1}{\mathcal{K}} \sum_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} x(i)^2}$$

- value of this feature for the hypothetical prototype signals
 - silence
 - sinusoidal (Amplitude A)

intensity, magnitude & loudness features: root mean square 1/2

Georgia Center for Music Tech II Technology College of Design

common variants (sample processing only):

■ reduce computational complexity

$$egin{array}{lcl} v_{
m RMS}^2(n) & = & rac{x(i_{
m e}(n))^2 - x(i_{
m s}(n-1))^2}{i_{
m e}(n) - i_{
m s}(n) + 1} + v_{
m RMS}^2(n-1) \ & v_{
m RMS}(n) & = & \sqrt{v_{
m RMS}^2(n)} \end{array}$$

■ single pole approximation

$$v_{\text{tmp}}(i) = \alpha \cdot v_{\text{tmp}}(i-1) + (1-\alpha) \cdot x(i)^{i}$$

 $v_{\text{RMS}}^{*}(i) = \sqrt{v_{\text{tmp}}(i)}$

es: root mean square 2/2

common variants (sample processing only):

■ reduce computational complexity

$$egin{array}{lcl} v_{
m RMS}^2(n) & = & rac{x(i_{
m e}(n))^2 - x(i_{
m s}(n-1))^2}{i_{
m e}(n) - i_{
m s}(n) + 1} + v_{
m RMS}^2(n-1) \ & v_{
m RMS}(n) & = & \sqrt{v_{
m RMS}^2(n)} \end{array}$$

single pole approximation

$$v_{\text{tmp}}(i) = \alpha \cdot v_{\text{tmp}}(i-1) + (1-\alpha) \cdot x(i)^{2}$$

 $v_{\text{RMS}}^{*}(i) = \sqrt{v_{\text{tmp}}(i)}$

intensity, magnitude & loudness features: weighted root mean square

H(z):

- A, B, C weighting
- RLB (BS.1770)
-

module 8.0: intensity $9 \ / \ 1$

- A, B, C weighting
- RLB (BS.1770)

intensity, magnitude & loudness features: peak envelope (max)

$$v_{\mathrm{Peak}}(n) = \max_{i_{\mathrm{s}}(n) \leq i \leq i_{\mathrm{e}}(n)} |x(i)|$$

intensity, magnitude & loudness features: peak envelope (PPM) 1/2

intensity, magnitude & loudness features: peak envelope (PPM) 1/2

■ release state $(|x(i)| < v_{PPM}(i-1) \Rightarrow \lambda = \alpha_{RT})$

■ release state
$$(|x(i)| < v_{\mathrm{PPM}}(i-1) \Rightarrow \lambda = \alpha_{\mathrm{RT}})$$

$$v_{\mathrm{PPM}}(i) = v_{\mathrm{PPM}}(i-1) - \alpha_{\mathrm{RT}} \cdot v_{\mathrm{PPM}}(i-1)$$

$$= (1 - \alpha_{\mathrm{RT}}) \cdot v_{\mathrm{PPM}}(i-1)$$

intensity, magnitude & loudness features: peak envelope (PPM) 1/2

■ attack state $(|x(i)| \ge v_{\mathrm{PPM}}(i-1) \Rightarrow \lambda = 0)$

■ attack state
$$(|x(i)| \ge v_{\text{PPM}}(i-1) \Rightarrow \lambda = 0)$$

$$v_{\text{PPM}}(i) = \alpha_{\text{AT}} \cdot (|x(i)| - v_{\text{PPM}}(i-1)) + v_{\text{PPM}}(i-1)$$

$$= \alpha_{\text{AT}} \cdot |x(i)| + (1 - \alpha_{\text{AT}}) \cdot v_{\text{PPM}}(i-1)$$

■ gold: max per block

■ blue: PPM

matlab source: matlab/plotFeatures.m

Georgia Center for Music Tech (Technology

outer ear transfer function¹

¹D. Hammershøi and H. Møller, "Methods for Binaural Recording and Reproduction," *Acta Acustica united with Acustica*, vol. 88, no. 3, pp. 303–311, May 2002.

ness

Georgia Center for Music Tech Technology

excitation patterns¹

¹M. Schleske, *Vibrato of the musician*, [Online]. Available:

http://www.schleske.de/en/our-research/handbook-violinacoustics/vibrato-of-the-musician.html (visited on 07/29/2015).

Georgia Center for Music Tech | Technology

specific loudness¹

¹U. of Salford, *Customised metrics*, [Online]. Available:

https://www.salford.ac.uk/computing-science-engineering/research/acoustics/psychoacoustics/sound-quality-making-products-sound-better/sound-quality-testing/customised-metrics (visited on 07/29/2015).

overall loudness

$$v_{\mathrm{loud}} = \sum_{\forall i} z_i$$

intensity, magnitude & loudness derived features

- number or ratio of pauses
- dynamic range
- other statistical features from (RMS) histogram

. .

module 8.0: intensity $14 \ / \ 1$

summary

■ loudness perception

- nonlinear relation to magnitude or power
- depends also on frequency, level, and signal (masking)

typical features

- derived from envelope (peak, RMS, weighted RMS)
- derived from histogram (range, mode)

