Import des librairies et des données

```
library(tidyverse)
```

```
## — Attaching core tidyverse packages —
                                                              – tidyverse 2.0.0 —
## √ dplyr
               1.1.4
                        ✓ readr
                                     2.1.5
## √ forcats 1.0.0

√ stringr

                                     1.5.1
## √ ggplot2

√ tibble

               3.4.4
                                     3.2.1
## ✓ lubridate 1.9.3

√ tidyr

                                     1.3.1
## √ purrr
               1.0.2
## — Conflicts —
                                                     —— tidyverse conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to becom
e errors
```

```
library(ggplot2)
library(tibble)

dg <- read.csv("diagnostics.csv",sep = ";")
pt <- read.csv("patients.csv",sep = ";")</pre>
```

Jointure

```
full_df <- merge(x = dg, y = pt, by = "Patient_id", all.x = TRUE, all.y = TRUE)</pre>
```

Préparation des labels des epidermolyses

Description par le sexe

```
sex_patients <- full_df %>%
  select('Patient_id','Sexe') %>%
  distinct()

ggplot(sex_patients, aes(x = Sexe, fill = Sexe)) +
  geom_bar() +
  scale_fill_manual(values = c("M" = "lightblue", "F" = "pink")) +
  scale_x_discrete(labels = c(
    "M" = "Hommes",
    "F" = "Femmes")) +
  theme_minimal() +
  theme(legend.position="none")+
  labs(title = "Répartition des sexes des patients",
    x = "Sexe",
    y = "Nombre de patients")
```

Répartition des sexes des patients

Description par tranche d'age >< 18

Répartition des patients mineurs et majeurs

Description par ville de prise en charge

Nombre de cas dans chaque ville

Description par durée de suivi en jour

Distribution du nombre de jours de suivi

distribution des cas par groupe d'EBHs

```
codes_df <- as.data.frame(tibble::enframe(codes), stringsAsFactors = FALSE)</pre>
colnames(codes_df) <- c("diagnostic", "label_diag")</pre>
patient diag <- full df %>%
  select(Patient_id, diagnostic) %>%
  mutate(diagnostic = as.character(diagnostic)) %>%
  na.omit() %>%
  left_join(codes_df, by = "diagnostic") %>%
  mutate(diag_parent = case_when(
    diagnostic %in% filiation[['305']] ~ '305',
    diagnostic %in% filiation[['304']] ~ '304',
    TRUE ~ NA_character_
  )) %>%
  left_join(codes_df, by = c("diag_parent" = "diagnostic")) %>%
  rename(son_label = label_diag.x, ancestor_label = label_diag.y)
patient diag$ancestor label<- as.character(trimws(patient diag$ancestor label))</pre>
patient_diag$son_label<- as.character(trimws(patient_diag$son_label))</pre>
ggplot(patient_diag, aes(x = ancestor_label)) +
  geom bar(fill = "skyblue") +
  labs(title = "Répartition des Epidermolyses Bulleuses et Jonctionnelles",
       x = "EBJ vs EBS",
       y = "Nombre de patients")
```

Répartition des Epidermolyses Bulleuses et Jonctionnelles

