Relatório de CT-213

Henrique Fernandes Feitosa

• Introdução

Nessa prática, buscou-se imitar a caminhada de um robô utilizando uma técnica chamada "imitation learning." Para essa tarefa, foi criada uma rede neural assim como especificada na tabela 1.

Tabela 1. Arquitetura da rede neural usada para o imitation learning

Camada	Número de neurônios	Função de ativação
Dense	75	Leaky ReLU(α=0.01)
Dense	50	Leaky ReLU(α=0.01)
Dense	20	Linear

Para construir a rede neural, usou-se o framework tensorflow e o framework keras, que facilita o uso do tensorflow.

A partir dessas ferramentas, criou-se uma rede neural para estudar os efeitos da regularização e testou-a com as funções de classificação xor e sum_gt_zero. Para isso, variou-se o parâmetro de regularização para dois valores , $\lambda = 0$ (não tem regularização) e $\lambda = 0.02$.

Finalmente, criou-se rede neural apresentada na tabela 1 e a treinou com um dataset que continha o tempo e a posição das juntas do robô. Para a implementação, usou-se o erro quadrático como loss function, não usou-se regularização e todo o dataset foi usado em cada iteração.

• Resultados e discussão

Inicialmente, testou-se os efeitos da regularização usando a função de ativação sun_gt_zero. Os resultados são mostrados nas figura 1(a) e 1(b).

a 2. Mostra a função de custo para uma rede neural em que não possui regularização(a) e para outra que não possui(b).

Como o a função de custo convergiu para um valor maior no caso em que há regularização, pode-se concluir que está ocorrendo overfiting no caso em que não há regularização. Para comprovar isso, as figuras 3 e 4 mostram o dataset e o resultado da classificação.

Figura 3. Mostra o dataset e o resultado da classificação para o caso em que não há regularização

Figura 4. Mostra o dataset e o resultado da classificação para o caso em que não há regularização

Assim, percebe-se que no caso sem regularização a função tende a se adaptar perfeitamente ao dataset, o que não ocorre no caso sem regularização. Isso é uma evidência muito forte que caracteriza o fenômeno de overfitting.

Para a função de classificação xor, a análise foi semelhante, os resultados se encontram nas figuras 5,6 e 7.

a 5. Mostra a função de custo para uma rede neural em que não possui regularização(a) e para outra que não possui(b).

Figura 6. Mostra o dataset e o resultado da classificação para o caso em que não há regularização

Figura 7. Mostra o dataset e o resultado da classificação para o caso em que não há regularização

Por fim, os resultados do treinamento da rede neural especificada na tabela 1 estão nas figuras 8, 9 e 10.

Figura 8. Gráficos que mostram uma comparação entre as posições originais das juntas do robô e aquelas que foram aprendidas pela rede neural.

Figura 9. Gráficos que mostram uma comparação entre as posições originais das juntas do robô e aquelas que foram aprendidas pela rede neural.

Figura 10. Gráfico que mostra uma comparação entre as posições originais das juntas do robô e aquelas que foram aprendidas pela rede neural.

Analisando os gráficos , percebe-se que o resultado aprendido pela rede neural ficou bastante proximo do resultado original, o que é bastante satisfatório.