Incorporación de técnicas de muestreo mediante histogramas multidimensionales al código de simulación de fuentes de Monte Carlo KDSource

Carrera: Ingeniería Nuclear

Lucas Ezequiel Ovando

Director: Dr. Ariel Marquez Codirectora: Ing. Zoe Prieto Jurado: Dr. Edmundo Lopasso Jurado: Mg. Norberto Schmidt

San Carlos de Bariloche, Río Negro, Argentina. 5 de marzo de 2025

Resumen

- 1 Introducción
- Resultados preliminares
- Conclusiones

1. Introducción

Motivación - Simulación en 1 etapa

Motivación - Simulación en 1 etapa

Motivación - Simulación en múltiples etapas

Motivación - Simulación en múltiples etapas

Histogramas multidimensionales

Nº partícula	Dimensión 1		Dimensión M
1	~	~	~
	~	~	~
N	~	~	~

Histogramas macro:

- Similitud por variables.
- Cantidad de macrogrupos.
- Límites de macrogrupos manuales.

Histogramas multidimensionales

```
orden_columnas = ['letargia', 'x', 'y', 'mu', 'phi']
macro_grupos = [6,5,5,4]
```


■ Total: 6 + 30 + 150 + 600 = 786 grupos macro en estructura de árbol.

Histogramas multidimensionales

- Distribución de probabilidad de las variables.
- Correlación en el espacio de fases.

Muestreo de partículas

■ Comparación simulando la lista de partículas original y la lista de partículas sintéticas.

Entorno: OpenMC y KDSource

- Código Monte Carlo open source.
- Transporte de neutrones y fotones.

- Inicialmente para simular fuentes de neutrones y fotones mediante kernel density estimation.
- En desarrollo para incorporar histogramas multidimensionales.
- Originado en trabajos de grado y posgrado en el Instituto Balseiro.

2. Resultados preliminares

Ejemplo de aplicación

Características de la fuente:

- Monoenergética de 1 MeV
- Uniforme en el plano XY
- lacksquare Colimada en $\mu=\mathbf{1}$

Ejemplo de aplicación: Flujo

Ejemplo de aplicación: Espectro

3. Conclusiones

Conclusiones preliminares

- Se realizó una interiorización del problema y de las técnicas para abordarlo.
- Se implementó un método de muestreo mediante histogramas multidimensionales en Python.
- Se obtuvieron resultados preliminares de la aplicación del método propuesto.
 - Se encontró que existe un compromiso en la elección de la cantidad de macro y micro bines para obtener mejores resultados.
 - Se incorporaron límites manuales en las interfaces vacío/agua, así como para separar partículas con colisiones de aquellas sin colisiones.

Trabajo futuro

- Incorporar método de muestreo basado en histogramas multidimensionales al entorno KDSource.
- Incorporar algoritmo de selección de parámetros automáticos.
- Aplicar el método a una simulación del CHOPPER en el conducto N5 del RA6.

FIN

FIN

¿Preguntas?

