Mouvement et lois de Newton

Partie A. Cinématique

1. Objet de l'étude - Référentiel

- Le « système » désigne l'objet de l'étude mécanique que l'on effectue. Généralement, le système est modélisé par un point matériel où toute la masse du système est concentrée.
- Le centre de masse G d'un système, où toute la masse du système est concentrée, est l'unique point de ce système où peut toujours s'appliquer le principe d'inertie (cf. §6)
- Le « référentiel » désigne le point de vue adopté pour étudier le système.

• Le « repère » est l'association d'une base orthonormée et d'un point origine. Il permet de repérer la position d'un point dans l'espace.

2. Vecteur position OG

• Le vecteur OG définit la position du système modélisé par le point G. Le point O appartient au référentiel.

Expression dans un repère cartésien	Expression dans le repère de Frenet	
$\overrightarrow{OG} = x \ \overrightarrow{i} + y \ \overrightarrow{j}$, noté souvent $\begin{pmatrix} x \\ y \end{pmatrix}$	$\overrightarrow{OG} = -R \ \overrightarrow{u_n}$, noté $\begin{pmatrix} -R \\ 0 \end{pmatrix}$ $R = \ \overrightarrow{OG}\ $, constante pour un mouvement circulaire.	

3. Vecteur vitesse \vec{v}

- Le vecteur vitesse \vec{v} est la variation du vecteur position au cours du temps.
- 4 Approche expérimentale

À l'instant t_i , on approche le vecteur vitesse par $\vec{v}_i = \frac{\overrightarrow{OG_{i+1}} - \overrightarrow{OG}_i}{t_{i+1} - t_i}$.

Remarque: La variation $\overline{OG_{i+1}} - \overline{OG}_i = \overline{G_iG_{i+1}}$ est le vecteur déplacement.

En utilisant la fonction dérivée ($\Delta t \rightarrow 0$) on définit le vecteur vitesse à chaque instant : $\vec{v} = \frac{d\vec{O}\vec{G}}{dt}$.

Expression dans un repère cartésien	Expression dans le repère de Frenet		
Comme i et j sont constants :	Comme la vitesse est tangente à la trajectoire, le vecteur \vec{v} est colinéaire à $\vec{u_t}$:		
$\vec{v} = \frac{d\vec{OG}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} \text{ note} \begin{pmatrix} v_x = \frac{dx}{dt} \\ v_y = \frac{dy}{dt} \end{pmatrix}$	$\vec{v}\!=\!v\vec{u}_t, not\acute{e}\begin{pmatrix} v_n\!=\!0\\ v_t\!=\!v \end{pmatrix}$ Dans le cas d'un mouvement circulaire où R = Cte. On note classiquement $\ \vec{v}\ \!=\!v$.		

La valeur de la vitesse, ou norme du vecteur vitesse vaut : $\|\vec{v}\| = v = \sqrt{v_x^2 + v_y^2}$.

4. Vecteur accélération a

- Le vecteur accélération \vec{a} est la variation du vecteur vitesse au cours du temps.
- 4 Approche expérimentale : à l'instant t_i , on approche le vecteur accélération par $\vec{a}_i = \frac{\vec{v}_{i+1} \vec{v}_i}{t_{i+1} t_i}$.
- ▶ Vecteur accélération :

Avec la fonction dérivée ($\Delta t \rightarrow 0$) on définit le vecteur accélération à chaque instant : $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{O} \vec{b}}{dt^2}$

Expression dans un repère cartésien	Expression dans le repère de Frenet
Comme \vec{i} et \vec{j} sont constants:	\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j} \text{ note} \begin{cases} a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} \\ a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2} \end{cases}$	$\vec{a} = \frac{v^2}{R} \vec{u}_n + \frac{dv}{dt} \vec{u}_t \text{ note} \begin{bmatrix} a_n = \frac{1}{R} \\ a_t = \frac{dv}{dt} \end{bmatrix}$
	Dans le cas d'un mouvement circulaire où R = Cte.

Remarque sur les notations :

:	Notations	Variable	Fonction	Dérivée	Dérivée seconde
	Mathématiques	х	f(x)	f'(x)	f''(x)
	Physique Chimie	t	х	dx dt	$\frac{d^2x}{dt^2}$

5. Caractéristiques du vecteur accélération \vec{a} pour divers mouvements

• Mouvement rectiligne uniforme $\frac{d\vec{v}}{dt} = \vec{a} = \vec{0}$

• Mouvement rectiligne uniformément accéléré $\vec{a} \neq \vec{0}$

↳ Direction : portée par la trajectoire

4 Sens : sens de v v

4 Valeur: $\|\vec{a}\| = a = \text{constante (m} \cdot \text{s}^{-2})$

• Mouvement circulaire uniforme $\text{Comme } \frac{dv}{dt} = 0, \ \vec{a} = \frac{v^2}{R} \vec{u}_n.$

4 Direction : portée par les rayons du cercle

Sens : vers le centre de la trajectoire

Partie B. Lois de Newton

6. Première loi de Newton - Principe d'inertie

• Lorsque la somme des forces qui s'exercent sur un système est le vecteur nul, le mouvement ne change pas, et réciproquement.

$$\Sigma \vec{F} \!=\! \vec{0} \! \Leftrightarrow \! \vec{v}_{\scriptscriptstyle G} \! =\! \overrightarrow{cte}$$

4 Un système qui subit une résultante des forces nulles peut être :

isolé: il ne subit aucune force.

pseudo-isolé : les forces qu'il subit se compensent.

- 4 Dans un référentiel donné, le vecteur vitesse est constant lorsque le système est immobile, ou en mouvement rectiligne uniforme.
- Un référentiel galiléen est un référentiel dans lequel le principe d'inertie est vérifié.

7. Deuxième loi de Newton - Principe fondamental de la dynamique

• Dans un référentiel galiléen, la somme des forces $\Sigma \vec{F}$ appliquées à un système de masse m constante, est égale au produit de sa masse par l'accélération \vec{a}_G de son centre de masse.

$$\Sigma \vec{F} = m \vec{a}_c$$

8. Troisième loi de Newton - Principe des actions réciproques

• Si un objet A exerce sur un objet B une force $\overrightarrow{F_{A \to B}}$, alors l'objet B exerce sur A une force $\overrightarrow{F_{B \to A}}$ telle que :

$$\overrightarrow{F_{A \rightarrow B}} + \overrightarrow{F_{B \rightarrow A}} = \overrightarrow{0}$$