

Uniorb

Задача 12. Сервис планирования передачи данных от космических аппаратов на земные станции

Альберт Шайхутдинов

- **К**апитан
- @chivelazur
- +7 985 466 5805

Елена Красулина

- о Поддержка
- @positivecatcher
- o +7 981 806 2481

Владислав Мещеряков

- Аналитика
- @vladmeshcheryako v
- o +7 911 836 4495

- . Вход спутника S на территорию России.
- 2. Выход спутника S с территории России.
- 3. Вход спутника S в зону видимости станции Т.
- 4. Выход спутника S из зоны видимости станции T.

Событие - это фиксация некоторого факта. Входные данные преобразуются в последовательность событий, упорядоченных по времени. Вся обработка происходит дискретно по событиям. На каждом событии нужно актуализировать данные и можно разветвить сценарий.

Стратегия отвечает на вопрос:

С какого спутника станция должна начинать скачивать данные, когда меняется набор спутников в зоне ее видимости?

Варианты стратегии

Стратегия 1 (очевидная)

Станция скачивает данные со спутника с максимально заполненной бортовой памятью (практически - значит поддерживать минимальный уровень среднего заполнения бортовой памяти).

Стратегия 2 (наивная)

Станция скачивает данные со спутника, который может передавать данные с наибольшей скоростью (приоритет Киноспутникам). При равных скоростях передачи приоритет отдается спутнику с максимально заполненной бортовой памятью.

Стратегия 3 (отладочная)

Станция не скачивает никаких данных. Используется для отладки решения.

Стратегия 4 (лучшая)

Станция скачивает данные с Киноспутников в первом приоритете, если объем бортовой памяти занят более чем на 20% и спутник не ведет съемку. Если таких нет – берем спутник с максимально заполненным объемом данных. Стратегия найдена обычным бинарным поиском по параметру заполнения бортовой памяти Киноспутников.

Результаты

Показатель	Стратегия 1	Стратегия 2	Стратегия 3	Стратегия 4
Минут до первого переполненного спутника	3475	1921	378	1917
Объем переданных на Землю данных, ГБ	683159	476219	0	808798
Суммарный балл	686635	478141	378	810715
Время работы алгоритма, с	1.313	1.382	0.866	1.459

Стратегия 1 старается максимально уравнять объем занятой бортовой памяти, без учета скорости передачи данных.

Стратегия 2 интересная тем, что если все время пытаться скачивать данные с Киноспутников, то не даем им достаточно заполнить бортовую память.

Стратегия 3 лишь показывает, что если не скачивать данные со спутников, то к 378 минуте появится первый спутник с переполненной бортовой памятью, а через двое суток уже все спутники полностью исчерпают лимит.

Стратегия 4 учитывает недостатки Стратегии 2, поэтому показывает лучший результат.

Оценка результатов (Стратегия 4)

Теоретический максимум собранных спутниками данных, если пролетая над РФ в нужное время, спутник всегда ведет съемку:

2245640 GB

Теоретический максимум полученных на Земле данных, если все станции все время скачивают данные со скоростью передачи Киноспутника:

14 станций * 13 полных суток * 86400 секунд * 0.125 GB/c = 1965600 GB

Практический максимум полученных на Земле данных, если считать среднюю скорость передачи данных по группировке:

14 станций * 13 полных суток * 86400 секунд * (0.125 * ¼ + 0.03125 * ¾) = 859950 GB

Суммарный объем данных, переданных на Землю: 808798 GB (94% от практического максимума)

Средний объем переданных данных одним спутником: 4043 GB

Минимальный объем переданных данных спутником: 2270 GB (KinoSat_110606, Зоркий)

Максимальный объем переданных данных спутником: 10761 GB (KinoSat_110507, Киноспутник)

Оценка результатов (Стратегия 4)

Для оценки возможности улучшения стратегии посчитан теоретический для каждого спутника:

- для КиноСпутников коэффициент утилизация = отношение фактически переданных данных к теоретическому максимум, в среднем 94% (абсолютно у всех он больше 91%). Число переполнений бортовой памяти = 0
- для Зорких этот же коэффициент равен 21%, и у всех он больше 20%.
- так как все станции практически всегда ведут передачу данных, это значит, что мы исчерпали лимит по КиноСпутникам, и максимально добиваем утилизацию Зоркими, но для самих Зорких еще не хватает мощности наземного контура.

Простота	Алгоритм крайне прост для понимания, позволяет менять результат путем изменения всего лишь одной стратегии. Наивный вариант показал неплохой результат в ~700k ГБ данных.			
Скорость	Время работы алгоритма: порядка 1 секунды.			
Точное решение	Рассмотрев все возможные варианты ответвлений (которых порядка триллиона), можно найти самый оптимальный вариант «переключения станций». Это точное и простое для реализации решение задачи.			
Практичность	 Стратегия позволяет легко: учесть физические ограничения, например, время переключения станции. отдавать приоритет тем или иным спутникам = регионам съемки, что важно для коммерческой эксплуатации системы. 			
Оптимизация системы	Скорость алгоритма позволяет параметризовать стратегии и оптимизировать систему градиентным спуском. Например: • можно отыскать оптимальное положение новой станции на южном полушарии для увеличения утилизации системы. • оптимизировать конфигурацию группировки по типовому составу.			
Реализация	С++17, без каких-либо сторонних зависимостей, простая архитектура библиотеки.			
Результат	Время до первого переполненного спутника: 1917 минут Суммарный объем переданных данных: 808798 ГБ			

СПАСИБО ЗА ВНИМАНИЕ