NLF

花式自然语言处理

苏剑林 · 2018 年 1 月 23 日

中山大学

NLP

Overview

- 1. CNN 与 NLP
- 2. Attention 新谈
- 3. 一些训练技巧
- 4. 交叉验证与融合
- 5. 无监督 NLP
- 6. 小杂烩

1. CNN与NLP

是时候抛开固有的 RNN 思维,尝试迎接 CNN 的拥抱了。

1.1. 一维卷积

CNN 实际上是 NLP 的标配方法, 其思路比 RNN 更加自然。去年 facebook 的大作《Convolutional Sequence to Sequence Learning》 充分体现了 CNN 在 NLP 中还有很大的挖掘空间。

$$h_t = f(x_{t-1}, x_t, x_{t+1}) = W[x_{t-1}, x_t, x_{t+1}] + b$$

1.1. 一维卷积

CNN 实际上是 NLP 的标配方法, 其思路比 RNN 更加自然。去年 facebook 的大作《Convolutional Sequence to Sequence Learning》 充分体现了 CNN 在 NLP 中还有很大的挖掘空间。

$$h_t = f(x_{t-1}, x_t, x_{t+1}) = W[x_{t-1}, x_t, x_{t+1}] + b$$

1.2. 门激活机制

经过多番测试,可以比较肯定的是:在自然语言处理中,使用GLU (Gated Linear Unit,门线性单元)作为激活函数,效果最佳。

$$GLU(\mathbf{x}) = \mathbf{f}_{\mathbf{W}_1}(\mathbf{x}) \otimes \sigma \Big(\mathbf{f}_{\mathbf{W}_2}(\mathbf{x})\Big)$$

1.3. 残差机制

残差机制本来是为了解决深层神经网络的而提出的,但事实上残 差有助于加速信息流动,使得简单的问题可以用简单的路径。

残差计算公式:
$$o = x \pm f(x)$$

如果与一维卷积、GLU 激活函数配合使用,则它在数学上等效于

$$o = x \otimes [1 - \sigma(f_{W_2}(x))] + f_{W_1}(x) \otimes \sigma(f_{W_2}(x))$$

这体现了信息在双通道中的选择性流动。

1.4. 位置向量

CNN 容易捕捉序列的结构信息,但不能很好地捕捉序列的位置信息(位置信息是 RNN 擅长的)。一个有趣的方案是给 CNN 的输入加入"位置向量",增强 CNN 的"位置感"。

$$\begin{cases} PE_{2i}(p) = \sin\left(p/10000^{2i/d_{pos}}\right) \\ PE_{2i+1}(p) = \cos\left(p/10000^{2i/d_{pos}}\right) \end{cases}$$

1.5. 膨胀 CNN

膨胀 CNN,又叫空洞 CNN,它通过在卷积核中增加"空洞",从 而在不增加参数量的情况下让捕捉更远的距离,目前已经广泛用 干图像、语音、NLP 中。

普通 CNN

NLP

1.5. 膨胀 CNN

膨胀 CNN,又叫空洞 CNN,它通过在卷积核中增加"空洞",从 而在不增加参数量的情况下让捕捉更远的距离,目前已经广泛用 于图像、语音、NLP 中。

普通 CNN

膨胀 CNN

2. Attention 新谈

有所注意有所不注意。注意力集中了,接下来就好办了。

2.1. Attention

Attention,即注意力机制,是模拟人在某一时刻会有选择地关注某些事情的算法。Attention 本已广泛用于 NLP 中,而 Google 的大作《Attention is All You Need》将 Attention 推到了高潮。

Attention(
$$Q, K, V$$
) = softmax $\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$
 $Q \in \mathbb{R}^{n \times d_k}, K \in \mathbb{R}^{m \times d_k}, V \in \mathbb{R}^{m \times d_v}$

2.1. Attention

Attention,即注意力机制,是模拟人在某一时刻会有选择地关注某些事情的算法。Attention 本已广泛用于 NLP 中,而 Google 的大作《Attention is All You Need》将 Attention 推到了高潮。

$$Attention(oldsymbol{Q},oldsymbol{K},oldsymbol{V}) = softmax\left(rac{oldsymbol{Q}oldsymbol{K}^ op}{\sqrt{d_k}}
ight)oldsymbol{V}$$
 $oldsymbol{Q} \in \mathbb{R}^{n imes d_k},oldsymbol{K} \in \mathbb{R}^{m imes d_k},oldsymbol{V} \in \mathbb{R}^{m imes d_v}$ $\mathbb{R}^{n imes d_k}
ightarrow \mathbb{R}^{n imes d_v}$

2.1. Attention

Attention,即注意力机制,是模拟人在某一时刻会有选择地关注某些事情的算法。Attention 本已广泛用于 NLP 中,而 Google 的大作《Attention is All You Need》将 Attention 推到了高潮。

$$Attention(m{Q},m{K},m{V}) = softmax\left(rac{m{Q}m{K}^ op}{\sqrt{d_k}}
ight)m{V}$$
 $m{Q} \in \mathbb{R}^{n imes d_k}, m{K} \in \mathbb{R}^{m imes d_k}, m{V} \in \mathbb{R}^{m imes d_v}$ $\mathbb{R}^{n imes d_k}
ightarrow \mathbb{R}^{n imes d_v}$

Attention(
$$m{q}_t, m{K}, m{V}$$
) = $\sum\limits_{s=1}^{m} \frac{1}{Z} \exp\left(\frac{\langle q_t, k_s \rangle}{\sqrt{d_k}}\right) m{v}_s$

2.2. Multi-Head Attention

Multi-Head Attention 是 Google 在《Attention is All You Need》 提出的新概念,类比多个卷积核的方式,将 Attention 重复多次 并把结果拼接起来,从而实现多角度集中注意力。

 $head_i = Attention(\mathbf{Q}\mathbf{W}_i^Q, \mathbf{K}\mathbf{W}_i^K, \mathbf{V}\mathbf{W}_i^V)$

 $m{W}_i^Q \in \mathbb{R}^{d_k imes ilde{d}_k}$, $m{W}_i^K \in \mathbb{R}^{d_k imes ilde{d}_k}$, $m{W}_i^V \in \mathbb{R}^{d_v imes ilde{d}_v}$

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)$

2.3. Self Attention

Attention 中的 Q, K, V 选取存在很大的自由度。如果做阅读理解的话,Q 可以是篇章的词向量序列,取 K = V 为问题的词向量序列,那么输出就是所谓的 Aligned Question Embedding。

对于一般的序列任务,如文本分类等,我们更常用的是 Self Attention (自注意力),也就是

3. 一些训练技巧

介绍从训练角度提高模型准确率的技巧,又名曰"深度炼丹"。

3.1. focal loss

focal loss 是 Kaiming 在《Focal Loss for Dense Object Detection》 提出的新 loss,用于解决类别不平衡、分类难度差异的问题,效 果良好。具体形式为

$$-\alpha_t(1-\hat{p}_t)^{\gamma}\log\hat{p}_t$$

3.1. focal loss

focal loss 是 Kaiming 在《Focal Loss for Dense Object Detection》 提出的新 loss,用于解决类别不平衡、分类难度差异的问题,效 果良好。具体形式为

$$-\alpha_t(1-\hat{p}_t)^{\gamma}\log\hat{p}_t$$

用在二分类问题中,形式为

$$-\alpha(1-\hat{p})^{\gamma}\log\hat{p}-(1-\alpha)\hat{p}^{\gamma}\log(1-\hat{p})$$

经过 Kaiming 的调参,发现如果正样本的数目远小于负样本的数目,那么取 $\alpha=0.25$, $\gamma=2$ 比较好。

3.2. 学习率下降

深度学习的调参主要指超参数,如节点数、批大小、输出阈值等。训练方面,一般而言精调的 sgd 会更好,而用 adam 算法进行优化,那么可以参考的经验如下:

- 1. 以默认学习率 (10^{-3}) 将模型迭代足够多次数,保留验证正确率最高的模型;
- 加载上一步最优模型,学习率降到 10⁻⁴,继续训练模型,保 留验证正确率最高的模型;
- 3. 加载上一步最优模型,去掉正则化策略(dropout 等),学习率调为 10^{-5} ,训练至最优。

3.3. 数据扩增

解决过拟合的最好方法是找更多的数据!数据扩增(data augmentation)是指在原标注数据的基础上造更多的数据,来增强模型的泛化能力。常用的数据扩增手段有

- 1. 想办法找更多的标签数据(很多时候很难做到);
- 2. 一个句子重复拼接、随机去掉若干个词、打乱词序,类别不变;
- 3. 随机挑两个同类句子,拼接成一个新句子,类别不变;
- 4. none of above: 收集更多的其它语料,将分类器多加 1 类,新语料都归为新类(Universum Prescription- Regularization Using Unlabeled Data)。

3.4. 其它细节

可以优化的地方还有很多,比如分词、词向量、正则化方法等, 需要多尝试、多看论文,总结出自己的调参方案。

- 1. 分词: 想办法准备一个领域相关的词表,优化分词效果,如果用 jieba 分词,关闭新词发现功能;
- 2. 词向量: 准备领域相关的语料, 训练 Skip Gram 模型(耗更多时间, 但能保证效果);
- 3. 正则化: 适当使用 Dropout(要设置 noise_shape),如果使用 CNN 的话,还可以考虑使用 DropPath(出自《FractalNet: Ultra-Deep Neural Networks without Residuals》)。

4. 交叉验证与融合

模型融合是提高模型准确率的"杀手锏",尤其是在打比赛时。

4.1. 交叉验证

事实上,交叉验证才是评估模型性能的最可靠方法。交叉验证,就是把数据打乱,然后分为 n 分,挑一份做验证集,剩下 n-1 做训练集,如此验证完整个数据集(训练 n 个模型)。

4.2. 单模型融合

模型融合能大幅提升准确率,是打比赛的"杀器"。把交叉验证训练的n个模型直接求一下平均,就是最简单的模型融合方案。

4.3. 多模型融合

假如有 m 种不同的模型,每种模型做 n 划分交叉验证,可以得到 mn 个不同的模型,通过一个新模型来融合这 mn 个模型。

4.4. 迁移学习

迁移学习是一种半监督学习过 程,是一种充分利用无标签数据 的技巧。首先我们利用标签数据 训练一个模型, 然后用这个模型 来预测测试集,得到测试集的 "伪标签",把测试集连同其"伪 标签"当作额外的训练集,加入 到训练集中继续训练。这样有助 干提高测试集的准确率(因为提 前过了一遍测试集),也能提高 模型的泛化能力。

5. 无监督 NLP

在满大街深度学习的今天,你还愿意思考 NLP 背后的原理么?

5.1 最小熵原理

熵衡量了一个事物的信息量,而我们接收信息的速度是基本固定的,那么熵就是衡量了我们的学习成本!不管作为教师还是学生,我们都想办法降低学习成本,这就是最小熵原理——通过降低熵来完成自然语言的无监督学习。

平均单字平均熵:
$$\mathcal{L} = \frac{\mathcal{H}}{\bar{s}} = \frac{-\sum\limits_{w} p_w \log p_w}{\sum\limits_{w} p_w s_w}$$

如果不分词,按字算,平均单字信息熵约为 9.65; 分词后,算得约为 7.2。也就是说,分词有助于降低学习成本! 这也就是为什么很多 NLP 模型都需要先分词。

5.2 构建词库

既然分词有助于降低学习成本。那么反过来,能找到一种降低学习成本的切分方案,那么它就是好的分词方案,这就是无监督构建词库的思路。(《Redundancy re- duction as a strategy for unsupervised learning》,1993 年的文章)

组合指标:
$$\mathcal{F} pprox p_{a} \left(\log rac{p_{a}}{\prod_{i \in a} p_{i}} - 1
ight)$$

该指标的意思是:连续的 k 个字 $a = (a_1, a_2, ..., a_k)$,如果它是一个"词",那么它应该使得上式越大越好。可以沿着这条路走下去,直到无监督句法分析!(参考《一种基于生语料的无监督的语法规则学习方法》)

6. 小杂烩

还有这些内容可能也是大家会感兴趣的~

6.1 有意思的玩意

深度学习最初的成功领域是图像,后来迁移到 NLP 中。目前图像也有很多新的成果,这些成果其实也有可能迁移到 NLP 中。

- 1. FractalNet: "分形" 网络,亮点有两个: 1、通过函数的复合来增强非线性; 2、DropPath来正则化;
- 2. CapsuleNet: Hinton 最新提出的神经网络的新概念,目前只在图像上做了实验,还有很大挖掘潜力;
- 3. Attention: 在 Google 的《Attention is All You Need》中还提出了一个 restrict 版的 Attention,有待研究;
- 4. ...

6.2 有价值的资源

即使我们平时的研究难以做到面面俱到,然而我们还是有必要去关注各个领域的最新内容,寻求想法,"他山之石,可以攻玉"。

1. 公众号: PaperWeekly

2. 公众号: 机器之心

3. 公众号: 机器学习算法与自然语言处理

4. 知乎专栏: 西土城的日常搬砖

5. 博客: 科学空间

6. QQ 群 & 微信群: 相互推荐加入

Thanks

有想法或疑问欢迎再聊~