Processos e Threads

Anthony Ferreira La Marca anthony@computacao.cua.ufmt.br

O que é um processo

- Oriundo da execução de um programa
- É uma atividade ou tarefa de um programa
- Contém todo o código e dados de uma atividade
- Todo processo possui um Contexto

Contexto

- Um identificador do processo (PID).
- Um segmento de código.
- Um segmento de dados.
- Os valores dos registradores da CPU.
- Um contador de programa lógico.
- Uma pilha de execução.
- O estado do processo.
- Informações para escalonamento
- Dados para contabilização de uso.
- Recursos alocados: arquivos, portas, eventos,

Problemas com Processo

- Na época (anos 80) pensavam em programação concorrente, paralela e distribuída
- Havia a necessidade de criar "quebrar" o processo em várias atividades para poder agilizar a execução das tarefas
- Criar vários tarefas que compartilhavam o mesmo espaço de endereçamento e parcialmente o contexto
- Exemplo navegador

Surgimento Threads

- Com o surgimento de processadores mais rápidos, ou seja, evolução física
- Vários fluxos de execução (múltiplas threads) dentro de um mesmo processo
- Cada fluxo de execução era chamado de thread

Thread

Atualmente, um processo consiste em um ambiente de execução, contendo uma ou mais threads.

Tem pelo menos uma. MAIN

Contexto de uma Thread

- Um identificador da Thread.
- Um segmento de código.
- Um segmento de dados.
- Os valores dos registradores da CPU.
- O contador de programa.
- Uma pilha de execução.
- O estado da Thread.
- Informações para escalonamento
- Dados para contabilização de uso.
- Recursos alocados que pertencem a processos: arquivos, portas, eventos, outros.

Multthreading

 Múltiplas threads executam concorrentemente em um processo

Threads pertencentes a um mesmo processo, compartilham os mesmos recursos e memória do processo.

Multthreading

- Suporte a Threads:
 - Threads nativas do SO
 - Threads como entidades a nível do usuário.
 - Suporte de programação multithreading.
 Exemplo: JVM do Java
 - Linguagem de programação multithreading.
 Exemplo: Java

Um processo com 3 Threads

Escalonamento de Threads

Todo SO tem um programa chamado Scheduler que seleciona, num dado instante, uma thread que deve ser executada pelo processador, alternando este entre threads.

Algoritmo de Escalonamento

- Define a ordem de execução de processos/ threads
- Processos/Threads do sistema SO e de aplicações críticas exigem maior prioridade.
- Em geral, os sistemas operacionais adotam uma política para atender a todas os processos/threads de maneira justa.

Escalonamento por Time-Slicing

- Fracionamento de tempo do processador.
- Divide o tempo do processador entre threads de igual prioridade.
- Implementado por um Timer (hardware) o qual interrompe o processamento periodicamente, para permitir o scheduler buscar uma outra thread para executar.

Escalonamento Time-Slicing

Por Processo: escalonador aloca tempo para execução dos processos, os quais definem como usar este tempo para executar suas threads.

```
P1 P2 P3
t11 t12 t21 t22 t23 t31 t32
```

Por Thread: escalonador aloca tempo e define a ordem na qual as threads serão executadas.

```
t11 t31 t21 t32 t23 t12 t22 t16
```

Escalonamento Pre-Emptivo

- Baseado nas prioridades dos processos/threads.
- Implementado para garantir que um processo/thread de alta prioridade possa executar logo que torna-se pronto, mesmo que signifique suspender a execução de um processo de mais baixa prioridade.

Ciclo de Vida de um Processo/Thread

Mudança de Estado de um Processo

- Processos/Threads trocam de estado de acordo com o:
 - Algoritmo de escalonamento.
 - Troca de mensagens entre esses.
 - Interrupções de hardware ou software.

Threads

Cada thread tem seu estado e segue um ciclo de vida particular.

A vida da thread depende do seu processo.

Troca de Contexto

- Quando duas threads de um mesmo processo se alternam no uso do processador, ocorre uma troca de contexto parcial.
- Numa troca parcial, o contador de programa, os registradores e a pilha devem ser salvos.

Processos x Threads

- Troca de Contexto: Completa | Parcial
- **Comunicação:** Inter-Processo | Inter-Threads
- Suporte em S.O.'s:

Quase todos | Os mais atuais

Suporte em Linguagem de Programação:

Quase todas | As mais recentes