3.9. ANULADOR Y PROPIEDADES.

En esta sección V soza siempx un e.v. de dimension finita, y denotaremos por $V^* = \mathcal{L}(V_s \mid k)$ su e.v. dual.

Def. Sea 5 subunjunto de V. Se define el <u>anulador</u> de S wmo Ann(5) = {A \in V*: A (V) = 0 \times V \in S \in V*

·Algunos autores esocibon Ann(5) = 5 y dien que 5 se llama ortogonal de 5.

Prop 9.1. Sea S subconjunto de V (e.v).

- a) Amn (5) es un subesp. vectoralal de V*
- b) Si ScU se tren Ann(U) (Ann(S), Usub. de V
- c) Ann (V) = { 0} y Ann (10}) = V*
- d) Si V_1 so un subs. vect. & V_1 dim ('Ann(V_1)) = = dim (V) dim (V_1).
- D/ a) Secon a, belk, A, BEAM(S). Si VES $(aA+bB)(\vec{V}) = aA(\vec{V}) + bB(\vec{V}) = a.0 + b.0 = 0 \text{ pg}.$ A, BEAM(S). Entances $aA+bB \in Am(S)$.
 - b) Si A & Ann(U) => A(V)=0 & F& U. Com Scu, A(V)=0 & V&S => A & Ann(S).
 - c) $Ann(V) = \{A \in V^* : A(\vec{v}) = 0 \ \forall \ \vec{v} \in V \} = \{0\}$ $Como \ A(\vec{v}) = 0 \ \forall \ A \in V^*, \ Ann(\{\vec{o}\}) = V^*$

(Para estas tres propiedades ho se ha wado que V sea de dim. Pinita)

d) Sea \$ = { \vec{e}_1, ..., \vec{e}_k \} base de V_1. Complete mosta hasta obtenes una base \$ = {\vec{e}_1, ..., \vec{e}_k, \vec{e}_{k+1}, ..., \vec{e}_n \} de V. Sea \$ = = {\vec{E}_1, ..., \vec{E}_k, \vec{E}_{k+1}, ..., \vec{E}_n \} da base dual de \$\vec{B}\$. Teremos que \$\vec{V}\$]= k+1, ..., \$\vec{n}\$ \$\vec{V}\$ \$\vec{V}\$ \$\vec{V}\$ \$\vec{V}\$ \$\vec{V}\$ \$\vec{V}\$.

 $E_j^*(\vec{e}_i) = S_{ji} = 0 \quad (pq, \hat{k} \neq j).$

Por tento, si V ∈ V1, V= Zajei y

 $E_j^*(\vec{v}) = E_j(\sum_{i=1}^k a_i \vec{e}_i) = \sum_{i=1}^k a_i E(\vec{e}_i) = 0$

para todo j=k+1,-, n. Esto demuestra que \$= {Ex+1,-, En} C Ann(V1). Si probamos que \$2 es base de Ann(V1) se tendrá

 $\dim (Ann(V_1)) = n - k = \dim (V) - \dim (V_1)$.

· Bourge es un subconjunto de pt que es bax de V*

• $\underline{\beta_2}$ 5. de \underline{g} de $\underline{Ann}(V_1)$: si $\underline{A} \in \underline{Ann}(V_1) \subset V^+$, como $\underline{\beta}^*$ es bax de \underline{V}^+ , $\underline{A} = \underline{\sum} \underline{a_j} \, \underline{E_j}^*$. Ahore been, si $\underline{j} = 1, -, |\underline{c}_j|$ $\underline{e_g} \in .V_1$ y por tento $\underline{A}(\underline{e_g}) = 0$ pq. $\underline{A} \in \underline{Ann}(V_1)$. Adeimos $\underline{A}(\underline{e_g}) = \underline{\sum} \underline{a_j} \, \underline{E_j}^* (\underline{e_e}) = \underline{\sum} \underline{a_j} \, \underline{U_j} \, \underline{e} = \underline{a_e} \cdot \underline{Por} \, \underline{tento} \, \underline{a_e} = 0$ $\underline{L} = 1, -\underline{L} \, \underline{V} \, \underline{A} = \underline{\sum} \underline{a_j} \, \underline{E_j}^*$.

Egg. 1. Sea V1 = < E2 > CR3. Desvabe las ecuaciones de Ann(V1) en función de coordenados en la base dual cano neca de IR3.

5/a) Sea $\{E=\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ base canonica de $(R^3y)(E^*=\{\vec{e}_1^*,\vec{e}_2^*,\vec{e}_3^*\}\}$ so bax dual. Si escribimos $A\in V^*$ como $A=\times \vec{e}_1^*+y \vec{e}_2^*+z \vec{e}_3^*$, que remos hallon loss relationes que cumplon X,Y,Z para que $A\in Ann(V_1)$. Como $A(\vec{e}_1)=0$ Se trere

 $0 = A(\vec{e_1}) = \times \vec{e_1}(\vec{e_1}) + y \vec{e_2}(\vec{e_2}) + 2 \vec{e_3}(\vec{e_1}) = \times$ Pox tento,

Ann (1) = { y E2 + ZE3 : Y, Z = 1 }.

b) 10tra forma) Como $\beta_1 = \{\vec{e}_1\}$ es base de V_1 , se completa con $\{\vec{e}_2, \vec{e}_3\}$ para obteror una base de \mathbb{R}^3 . Por la demosi- ; tración de la prop. 9.1 d), $\{E_2^{*}, E_3^{*}\}$ es base de $Ann(V_1)$.

Por tanto

Ann (V1)={y = + 2 = 1; y, z < IR} y su emavoir es x=0.

E' 9,2, Sea $V_1 = \langle \vec{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle \subset \mathbb{R}^4$. Halla una bax de Ann (V_1) en función de vectores de la baxe dual canónica de \mathbb{R}^4 y describe sus emanores en esta base.

S/a) Completamos $\{\vec{N}_1, \vec{N}_2\}$ won $\vec{U}_3 = \begin{pmatrix} \frac{1}{0} \\ 0 \end{pmatrix} \vec{y} \vec{u}_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \vec{p}_{ara}$

tener una bax de \mathbb{R}^4 (Comprueba que es base). Por la demostración de la Prop 9.1. d), $\{U_3^{\dagger}, U_4^{\dagger}\}$ es base de Ann (V_1) . Ahora hay que hallar la expressión de U_3^{\dagger} y de U_4^{\dagger} en función de $\mathcal{E}^{\dagger} = \{E_1^{\dagger}, E_2^{\dagger}, E_3^{\dagger}, E_4^{\dagger}\}$. Esto se hau como en el ejercicio 7.2:

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{array}{c}
6auss \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Ecuaciones implicitos

$$\begin{pmatrix} 1 & 0 & | & \times \\ -1 & 0 & | & \times \\ 0 & -1 & | & \times \\ 0 & 0 & | & + \times \\ 0 & 0 & | &$$

b) Otra forma de hallan los ecuaciones es esocibin $\Delta_{mn}(V_1) \ni A = \times E_1^+ + y E_2^+ + z E_3^+ + E_4^+ \quad y \text{ observer que}$ $0 = A(\vec{v_1}) = A(\vec{e_1} + \vec{e_2}) = \times + y$ $0 = A(\vec{v_2}) = A(\vec{e_3} + \vec{e_4}) = z + t$ Overemos ahora definir el anulador de un subconjunto B de V*. Tenemos dos opciones:

1. Como antes, definiendolo como subconjunto del ducel de V*:

Ann(B)= { < < V ** : < (w*) = 0, \ w * < B } < V **

2. Definion dale como subcenjunto del espano iniviel V: Ann (B) = { ve V: W*(v) = 0, V w & B} CV.

Estos dos anuladores se corresponden por el csomovefismo caronico de la prop 8.3. Si $\propto \in V^{++}$, existe $\vec{u} \in V$ tal que $\alpha = \varphi(\vec{u}) = \vec{\Phi}_{\vec{u}}$. Entones,

{ d ∈ V * * d(w) = 0 ∀ w eB} = { Φu ∈ V * * : Φū (w *) = 0, ∀ ω eB}

= { Φu ∈ V * * : w * (\vec{u}) = 0 , ∀ ω eB}

→ { \vec{u} ∈ V : w * (\vec{u}) = 0 , ∀ ω eB}.

Para el anulador de BCV* definido tanto de la forma 1 como la 2 se cumplon las propredades de la Propo 9.1. La proposición siguiente hos da otres tres propredades.

Prop 9.2.

- (4) Si SCV₉ Ann (Ann (S)) = $\langle 5 \rangle$. En particular ti V_1 es N.U. de V_9 Ann (Ann (V_1)) = V_1 .
- b) Si V1, V2 son S.V. de V,
 Ann (V11V2) = Ann (V1) + Ann (V2) y

$$Ann(V_1+V_2) = Ann(V_1) \wedge Ann(V_2)$$
C) SC V_1, V_2 S.v. de V_M $V = V_1 \oplus V_2$, entenues
$$V^* = Ann(V_1) \oplus Ann(V_2)$$

dim (Ann (Ann (45>)) = dim (V) - dim (Ann (S))
= dim (V) - (dim (V*) - dim (<5>)
= dim (<5>)

Como tochen la hisma dimensión, (5) = Ann (Ann (5)).

Prop 9.1.6)

b) $V_{1} \cap V_{2} \subset V_{1} \quad y \quad V_{1} \cap V_{2} \subset V_{2} \Longrightarrow$ $Ann(V_{1}) \subset Ann(V_{1} \cap V_{2}) \quad y \quad Ann(V_{2}) \subset Ann(V_{1} \cap V_{2}) \Longrightarrow$ $Ann(V_{1}) + Ann(V_{2}) \subset Ann(V_{1} \cap V_{2}), \quad (9.1)$

 $V_1 + V_2 \supset V_1 \quad y \quad V_1 + V_2 \supset V_2 \implies$ $Ann (V_1 + V_2) \subset Ann(V_1) \quad y \quad Ann(V_1 + V_2) \subset Ann(V_2) \implies$ $Ann (V_1 + V_2) \subset Ann(V_1) \cap Ann(V_2) . \quad (9.2)$

Por la parte a),

(9.1)

(q,2)

 $V_1 \cap V_2 = \Delta nn \left(\Delta nn \left(V_1 \cap V_2\right)\right) \subset \Delta nn \left(\Delta nn \left(V_1\right) + \Delta nn \left(V_2\right)\right) \subset \Delta nn \left(\Delta nn \left(V_1\right)\right) \cap \Delta nn \left(\Delta nn \left(V_2\right)\right) = V_1 \cap V_2$ y todas las designal dades son ignal dades. Por tanto

 $V_1 \wedge V_2 = \Delta n \cdot n \cdot (\Delta n \cdot n \cdot (V_2) + \Delta n \cdot n \cdot (V_2))$

y por la parte a)

Ann (V, NV2) = Ann (V1) + Ann (V2).

La otra igualdad se have de marera similar (ejerviuo).

c) $V = V_1 \oplus V_2 \iff V = V_1 + V_2 \text{ y } V_1 \land V_2 = \{\vec{o}\} \iff \{0\} = Ann(V) = Ann(V_1 + V_2) = Ann(V_1) \land Ann(V_2) \text{ y}$ $V = Ann(\{\vec{o}\}) = Ann(V_1 \land V_2) = Ann(V_2) + Ann(V_2) \iff V = Ann(V_1) \oplus Ann(V_2)$

Prop. 9.3.

Sea $A: V \to W$ ap. lin. ontre e.v. de dim. finita, y $A^{+}: W^{+} \to V^{+}$ so apli. dual. Se trene Ann $(Ing(A)) = \ker(A^{+})$ y Ann $(\ker(A)) = Img(A^{+})$

 $D/ \cdot Ann(Img(A)) = \ker(A^{\dagger})$ $\omega^{*} \in Ann(Img(A)) \Leftrightarrow \omega^{*}(\vec{V}) = 0 \quad \forall \vec{V} \in Img'(A)$ $\Leftrightarrow \omega^{*}(A(\vec{u})) = 0 \quad \forall \vec{N} \in V \iff A^{*}(\omega^{*})(\vec{U}) = 0 \quad \forall u \in V$ $\Leftrightarrow A^{\dagger}(\omega^{*}) = 0 \quad \text{en} \quad V^{*} \Leftarrow) \quad \omega^{*} \in \ker(A^{*})$

Para probar la otra igualdad, comienza probando que Ann $(Img(A^*)) = her (A)$ y concluye usando la prop 9.2 a).

Podemos probaz ahora de manera sencilla que el rango de una matriz A coincide con el rango de A^t. Sea A una aplicación que trene A como matriz en unas bares dadas. Por el Teor. 4.3

rango (Δ) = dim $(Img(\Delta))$ = dim (V) - dim $(Kex(\Delta))$. Como $\Delta^{\frac{1}{2}}$ es la matriz de la aplication $\Delta^{\frac{1}{2}}$ en les bases duales,

rango (A^{t}) = dim $(Img(A^{t}))$ Frop 9.1 d)

= dim (Ann(kar(A)))= dim (V) - dim (kar(A)),

lo que procha rango (A) = rango (At)

Par tanto, da igual calcular el xango de una matriir haciendo transformaciones xlementales sobre sus files que sobre sus culcumnes.