Changed

Primer R

↑ pase¢↑

.........GTGGCGAACGGGGGTCTTACCTCCTCCCACAGACATAA¥GACCCGCTCCACAGGA...... CTTGCCCCAGAATGGATGCGCATGTCTG
..........CACCGCTTGCCCCCAGAATGGAGGGGGGGTGTCTG7ATTACTGGGCGAGGTGTCCT..

Target Sequence

Polymorphic

nucleotide

PCR amplify

Fok I/Fsp I

GAACGGGGGTCTTACCTCCCACACATAATGACCCGCTCCACAGGA...... CTTGCCCCCAGAATGGATGCGCATGTCTGTATTACTGGGCGAGGTGTCCT...

Digest with Fok I and Fsp I

GCATGTCT GTATTACTGGGCGAGGTGTCCT..... CCCACAGACATA ATGACCCGCTCCACAGGA.... CTTGCCCCCAGAATGGATGC GAACGGGGGTCTTACCTCCT

Cut with Fok I

Fsp I

nnnnnnTGCGCAnnnnn nnnnnACGCGInnnnn

Cut with Fsp I

nnnnnnTGC GCAnnnnnnnnnnnnnACG CGTnnnnnn

```
Fok I GGATG
CCGAC

TGCGCA Fsp I
ACGCGT

Combined Fok I and Fsp I site

GGATGCGCA Fok I/Fsp I
CCGACGCGT
```

FIG. 3

FIG. 4

TGGCTGGAGTTGCGCTAGCAAGACGTGCAG CTGCAAAAGGATTTAT AAACTTC GACGITITCCTAAA TATITGAAG 14 mer ACCGACCTCAACGCGATCGTTCTGCACGTC

FIG. 5

FIG. 6

Fok I/Fsp I

CTTGCCCCCAGAATGGAGGAGGATGCGCAGGT&TCTG7ATTACTGGGCGAGGT...... GAACGGGGGTCTTACCTCCTCCTACGCGTCCACAGACATAATGACCGGCTCCA.......

Remove nucleotides and digest with Fok I

CTTGCCCCCAGAATGGAGGAGGATGCGCAGGTGT GAACGGGGGTCTTACCTCCTACGCGTCCACAGACA Fill in with mass

Modified nucleotide

CTTGCCCCCAGAATGGAGGAGGATGCGCAGGTGTCTGTmod GAACGGGGGTCTTACCTCCTCCTACGCGTCCACAGACA

FIG 7

Cleave with Bcg I

GACCGCTCCA.... CTTGCCCCCAGAATGGAGGAGAGTCGGAT GGGTGTCTGau ATTACTGGGCGAGGT... GAACGGGGGTCTTACCTCCTCTCAGCCTACCCACAGACATAAT

FIG. 9

GACCCGCTCCA...... CTTGCCCCCAGAATGGAGGATGGrG TGTCTGT ATTACTGGGCGAGGT. GAACGGGGGTCTTACCTCCTCCTACC-CACAGACATAAT

FIG. 10

METHODS FOR HAPLOTYPING ALLELE SPECIFIC AMPLIFICATION

FIG. 12

ALLELE 1 T PRIMER	ATCTGGANNNNNNNNNNNTCCAGAT TAGACCTNNNNNNNNNNNAGGTCTA	ATCTGGANNNNNNNNNNTCC	ALLELE 2 T PRIMER	ATCTGGANNNNNNNNNNNTCCGGAT TAGACCTNNNNNNNNNNAGGCCTA TAGACCTNNNNNNNNNNAGGCCTA
ALL T PR			ALL T PR	

FIG. 14

FIG. 15

Hair PCR Primers

Minus strand resulting from PCR of allele 1

Minus Strand	Hairpin loop forms inhibiting hybridization of PCR primer and amplification of allele 1 Minus Strand	Minus strand resulting from PCR of allele 2	Minus Strand	Hairpin loop doesn't form due to mismatch allowing hybridization of PCR primer and amplification of allele Minus Strand
TAGACCTNNNNNNNNNNNAGGTCTA —	ALLELE 1 N TCCAGAT T PRIMER N AGGTCTA — N N N N	Minus strand resul	TAGACCTNNNNNNNNNNAGGCCTA -	ALLELE 2 N TCC GAT N AGGCCTA – N N N N N

Hair PCR Primers

Minus strand resulting from PCR of allele 1

Minus Strand	Hairpin loop doesn't form due to mismatch allowing hybridization of PCR primer and amplification of allele	Minus strand resulting from PCR of allele 2	Minus Strand	Hairpin loop forms inhibiting hybridization of PCR primer and amplification of allele 2 Minus Strand
TAGGCCTNNNNNNNNNNAGGTCTA	ALLELE 1 N TCC GAT N AGGTCTA N N N N	Minus strand resulting	TAGACCTNNNNNNNNNNAGGCCTA	ALLELE 2 N TCCGGAT C PRIMER N AGGCCTA N N NN

FIG. 17

FIG 18

Digest with exonuclease

Add single strand nuclease to remove/degrade remaining single strand

FIG. 20

Dihydropyrimidine dehydrogenase (DPD) polymorphisms used in haplotyping assay.

Allele Specific Primers for DPD

ŷ	33	3,
5' <u>acacag</u> actcatgcaactctg	5' <u>acgcag</u> actcatgcaactctg	5' actcatgcaactctg
DPDASCF	DPDASTF	DPDNSF
A.	DFU	

Ġ.

DPD Sequence

⁵, actcatgcaactctg[T or C]gttccacttcggccaagaa, tgagtacgttgagac[A or G]caaggtgaagccggttctt

FIG. 22

33

5,

PCR Amplification Using DPDNSF Primer

DPDNSF primer Template: T allele	$5,\\ \ \ \ \ \ \ \ \ \ \ \ \ \ $
DPDNSF primer	5 actcatgcaactctg
Template: C allele	
T allele	5'actcatgcaactctgTgttccac3'
PCR Product	
C allele PCR Product	⁵ actcatgcaactctgCgttccac ₃ actcatgcaactctgCgttccac ₃ tgagtacgttgagacGcaaggtg ₅ ,

FIG. 23

PCR Amplification Using DPDASTF Primer

orimer ⁵ ' <u>acgcag</u> actcatgcaactctg ³ ' allele ₃ ,tgagtacgttgagacAcaaggtg5	orimer 5' <u>acgcag</u> actcatgcaactctg 	s sacqcaqactcatgcaactctgTgttccac	s acgcagactcatgcaactctgCgttccac
DPDASTF primer	DPDASTF primer	T allele	C allele
Template T allele	Template C allele	PCR Product	PCR Product

FIG. 24

PCR Amplification Using DPDASCF Primer

DPDASCF primer Template T allele	⁵ ' <u>acacagactcatgcaactctg</u> 3' 3'tgagtacgttgagacAcaaggtg5'
DPDASCF primer Template C allele	5' <u>acacagactcatgcaactctg</u>
T allele PCR Product	5, acacagactcatgcaactctgTgttccac
C allele PCR Product	5, acacagactcatgcaactctgCgttccac

FIG. 25

Hairpin Structures for PCR Products Generated Using DPDNSF Primer

Hairpin Structure T Allele Reverse Strand

> Hairpin Structure C Allele Reverse Strand

Hairpin Structures for PCR Products Generated Using DPDASCF Primer

Hairpin Structure T Allele Reverse Strand

Hairpin Structure C Allele Reverse Strand

Hairpin Structures for PCR Products Generated Using DPDASTF Primer

Hairpin Structure T Allele Reverse Strand

Hairpin Structure C Allele Reverse Strand

3 , $Tm = 41^{\circ}C^{-}$ ALLELE T **DPDNSF** primer Non-Allele Specific Amplification Using DPDNSF Primer 5' actcatgcaactctg $Tm = 41^{\circ}C$ ALLELE C **DPDNSF** primer 5' actcatgcaactctg gttgcatgag

Not Stable

cAcaaggtg.....

agagttgcatgag

 $Tm = 40^{\circ}C$

agacGcaaggtg...

Allele Specific Amplification Using DPDASCF Primer

ALLELE C

ALLELE T

DPDASCF primer $Tm = 60^{\circ}C$ $\frac{3}{\text{acacagactcatgcaactctg}}$

DPDASCF primer $Tm = 60^{\circ}C$ 3' acacagactcatgcaactctg

Hairpin inhibits
Primer Hybridization
and Amplification

Primer
Hybridization
and Amplification

5, <u>acacag</u>actcatgcaactctg

FIG 30

Allele Specific Amplification Using DPDASTF Primer

ALLELE C

ALLELE T

DPDASTF primer Tm = 65°C

DPDASTF primer Tm = 65°C

5'<u>acgcag</u>actcatgcaactctg

<u>acgcag</u>actcatgcaactctg

- cgttgagacGcaaggtg.....Tm = 100° C

ि atgagt<u>ctqcqt</u> └─ cgttgagacAcaaggtg.....

 $Tm = 42^{\circ}C$

| Primer hybridizes | and amplification ensues

Hairpin inhibits primer hybridization and Amplification

5' acgcagactcatgcaactctg

= atgagtctg**c**gt ||TTT|||| |- cgttgagacGcaaggtg......

5, acacagactcatgcaactctg 3, tgcatctgagtacgttgagtacgttgagtacgttgagacAcaaggtg...

3

Allele Specific Amplification of a Heterozygous Sample with Haplotype T¹⁸⁶, A⁵⁹⁷ and C¹⁸⁶, G⁵⁹⁷

FIG. 32

Phi X 174 Hae III DPDNSF DPDASTF DPDASCF

FIG. 33

FIG. 34

ApoE21250-LR

T Allele Amplicon

CCCGGCTGGGCGCGGACATGGGATGCGCAAGGACGTG TGCGGCCGCCTGGTGCAGTAC GGGCCGACCCGCGCCTGTACCCTACGCGT#CCTGCACGCCGGGCGGACCACGTCATG CGCGGCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCG GCGCCGCTCCACGTCCGGTACGAGCCGGTCTCGTGGCTCCTCGACGCCCACGCGGGGGC

GGAGGTGGACGCGTTCGACGCATTCGCCGAGGAGGCGCTACGGCTACTGGACGTCTTCG CCTCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCAGAAGC

C Allele Amplicon

GGGCCGACCCGCGCCTGTACCCTACGCGTACCTGCACGCGCCGGGCGGACCACGTCATG CGCGGCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCG GCGCCGCTCCACGTCCGGTACGAGCCGGTCTCGTGGCTCCTCGACGCCCACGCGGAGC

GGAGGTGGACGCGTTCGACGCATTCGCCGAGGCGCTACGGCTACTGGACGTCTTCG CCTCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCAGAAGC

CACCGCTTGCCCCAGAATGGAGGGGGGTGTCTG (SEQ ID NO:1)

NO:3) ..GTGGCGAACGGGGGTCTTACCTCCTCCCACAGACATAATGACCCGCTCCACAGGA. (SEQ ID

Target Sequence Polym

Polymorphic nucleotide

PCR amplify

Fok I/Fsp I

(SEQ ID NO:5) CTTGCCCCCAGAATGGATGCGCAHGTCTGTATTACTGGGCGAGGTGTCCT (SEQ ID NO:4) GAACGGGGGTCTTACTCCTCCCACAGACATAATGACCCGCTCCACAGGA

Digest with Fok I and Fsp I

8 mer

CTTGCCCCCAGAATGGATGC GCATGTCT GTATTACTGGGCGAGGTGTCCT (SEQ ID NO:4) ID NO:5) (SEQ CCCACAGACATA ATGACCCGCTCCACAGGA GAACGGGGGTCTTACCTCCT

12 mer

Cut with Fok I

nnnnnnnnn nnnnnn

Fsp I

nnnnnnTGCGCAnnnnn nnnnnACGCGTnnnnn

Cut with Fsp I

FIG. 2

nnnnnnTGC nnnnnnACG GCAnnnnnn CGTnnnnnn

Fok I GGATG CCGAC TGCGCA ACGCGT Combined Fok I and Fsp I site GGATGCGCA CCGACGCGT Fok I/Fsp I

FIG. 3

Restriction Enzyme Genotyping

FIG. 4

CTGTATTACTGGGCGAGGT (SEQ ID NO:8)

TAATGACCCGCTCCA (SEQ ID NO:9)

CGTCCACAGACA

12 mer

8 mer GCAGGTGT

> CTTGCCCCCAGAATGGAGGAGGATGC GAACGGGGGTCTTACCTCCTACG

Introduction of Bsg I and Pvu II sites during PCR by loop followed by endonuclease digestion.

```
ID NO:11)
                                                                                                                                                 (SEQ ID NO:12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               AAACTTC (SEQ ID NO:13)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ID NO:14)
                                                                                                                                                                                                                                                                            (SEQ ID NO:13)
                                                                                                                         (SEQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (SEQ
                                                                          TGGCTGGAGTTGCGCTAGCAAGA CAAAAGGATTTA (SEQ ID NO:10)
                                                                                                                                                                                                                                                                                                     (SEQ
                                                                                                                                         	ext{GCGGATACCGACCTCAACGCGATCGTTCTGGTTTTCCTAAAT}_{f A} 	ext{TTGAAG} 	ext{ 5'}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TATTTGAAG
                                                                                                                                                                                                                                                                                             \mathsf{ACCGACCTCAACGCGATCGTTCTd}
                                                                                                                 CGCCTATGGCTGGAGTTGCGCTAGCAAGACCAAAAGGATTTATAAACTTC
                                                                                                                                                                                                                                                                     TGGCTGGAGTTGCGCTAGCAAGA | GTGCAGCTG| CAAAAGGATTTATAAACTTC
                                                                                                                                                                                                                                                                                                                                                                             Digest with Bsg I and PvuII
               Bsg I/Pvull
Loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CTGCAAAAGGATTTAT
                                                                                                                                                                                                          PCR amplify
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GACGTTTTCCTAAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                       16 mer
U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TGGCTGGAGTTGCGCTAGCAAGACGTGCAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ACCGACCTCAACGCGATCGTTCTGCACGTC
```

FIG. 5

Introduction of Fok I and Pvu II sites during PCR by loop followed by endonuclease digestion

C T G G Pvull/Fok I
A T Loop

A C G T LOOP TGGCTGGAGTTGCGCTAGCAAGACCA AAGGATTTA (SEQ ID NO:15)

- CGCCTATGGCTGGAGTTGCGCTAGCAAGACCAAAAGGATTTATAAAACTTC 3' (SEQ ID NO:16)
- $\texttt{GCGGATACCGACCTCAACGCGATCGTTCTGGTTTTCCTAAAT}_{f A} ext{TTGAAG}$ 5' (SEQ ID NO:17)

PCR amplify

ID NO:18) (SEQ (SEQ 5'CGCCTATGGCTGGAGTTGCGCTAGCAAGACCA<mark>CAGCTGGATG</mark>AAGGATTTATAAACTTC 3, GCGGATACCGACCTCAACGCGATCGTTCTGGT $\mathsf{Grcgaccrac}$ frc

Digest with Pvu II and Fok I

16 mer

ID NO:18) (SEQ (SEQ TAAACTTC GAAG GCGGATACCGACCTCAACGCGATCGTTCTGGTGTC GACCTACTTCCTAAAT ${f a}$ TTT CGCCTATGGCTGGAGTTGCGCTAGCAAGACCACAG CTGGATGAAGGATTTA

20 mei

FIG. 6

Fok I/Fsp I

(SEQ ID NO:20) (SEQ ID NO:21) CTTGCCCCCAGAATGGAGGA<mark>GGATGCGCA</mark>GGTGTCTG**T**ATTACTGGGCGAGGT gaacgggggtcttacctcct<mark>cctacgcgf</mark>ccacagac<u>a</u>taatgacccgctcca

Remove nucleotides and digest with Fok I

GAACGGGGGTCTTACCTCCTACGCGTCCACAGACA (SEQ ID NO:23) CTTGCCCCCAGAATGGAGGAGGATGCGCAGGTGT (SEQ ID NO:22)

Fill in with mass

Modified nucleotide

CTTGCCCCCAGAATGGAGGAGGATGCCGCAGGTGTCTGTmod (SEQ ID NO:24) GAACGGGGGTCTTACCTCCTACGCGTCCACAGACA (SEQ ID NO:23)

FIG. 7

Bcg I

†

Cleave with Bcg I

FIG. 8

FIG. 9

FIG. 10

FIG. 12

METHODS FOR HAPLOTYPING BASED ON ALLELE SPECIFIC RESTRICTION

