ЗАДАНИЕ на лабораторную работу №2

Тема: Программно- алгоритмическая реализация метода Рунге-Кутта 4-го порядка точности при решении системы ОДУ в задаче Коши.

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Исходные данные.

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k}, \\ \frac{dU}{dt} = -\frac{I}{C_k}. \end{cases}$$

Начальные условия:

$$t = 0, I = I_o, U = U_o.$$

Здесь I, U - ток и напряжение на конденсаторе.

Сопротивление R_p рассчитать по формуле

$$R_p = \frac{l_p}{2\pi R^2 \int_{0}^{1} \sigma(T(z)) z \, dz}.$$

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0) z^m$.

Параметры T_0 , m находятся интерполяцией из табл. 1 при известном токе I .

Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1

I, A	To, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2

T, K	σ , 1/Om cm
4000	0. Ф3 блица 2
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура:

R=0.35 см

 $L_{\rm s}=12~{\rm cm}$ $L_{\rm k}=187~10^{-6}~{\rm \Gamma H}$ $C_{\rm k}=268~10^{-6}~{\rm \Phi}$

 $R_k = 0.25 \text{ Om}$

 $U_{co} = 1400 \text{ B}$

 $I_0 = 0..3 A$

 T_w =2000 K

Для справки: при указанных параметрах длительность импульса около 600 мкс, максимальный ток – около 800 А

Результаты работы

- 2. График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут незатухающими.
- 3. График зависимости I(t) при $R_k + R_p = const = 200$ Ом в интервале значений t 0-20 мкс.
- 4. Результаты исследования влияния параметров контура C_k , L_k , R_k на длительность импульса tимп. апериодической формы Длительность импульса определяется по кривой зависимости тока от времени на высоте $0.35\,I_{\rm max}$, $I_{\rm max}$ значение тока в максимуме (см. рисунок).

Вопросы при защите лабораторной работы.

Ответы на вопросы дать письменно в Отчете о лабораторной работе.

- 1. Какие способы тестирования программы, кроме указанного в п.2, можете предложить ещё?
- 2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.
- 3. Из каких соображений проводится выбор численного метода того или иного порядка точности, учитывая, что чем выше порядок точности метода, тем он более сложен и требует, как правило, больших ресурсов вычислительной системы?

4. Можно ли метод Рунге - Кутта применить для решения задачи, в которой часть условий задана на одной границе, а часть на другой? Например, напряжение по-прежнему задано при t=0, т.е. t=0, $U=U_0$, а ток задан в другой момент времени, к примеру, в конце импульса, т.е. при t=T, $I=I_T$. Какой можете предложить алгоритм вычислений?

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено 6 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на все вопросы, и эти ответы не являются копией ответов в ранее сданных работах 10 баллов (максимум).
- 3. В дополнение к п.1 даны удовлетворительные ответы на отдельные вопросы 7-9 баллов.