Exersise 3.1

The algebraic closure of \mathbb{F}_p is the infinite vectorspace over \mathbb{F}_p

$$K = \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}$$

Where each \mathbb{F}_{p^n} extends $\mathbb{F}_{p^{n-1}}$ as the splitting field of $x^{p^n} - x$: $\mathbb{F}_p \subset \mathbb{F}_{p^2} \subset \mathbb{F}_{p^3} \cdots \subset \mathbb{F}_{p^n} \ldots$. We know that the algebraic closure must contain the splitting field of $x^{p^n} - x$ and thus each \mathbb{F}_{p^n} is contained in the closure. Therefore the algebraic closure necessarily contains K. Conversly every algebraic extension of $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ is a finite vectorspace over \mathbb{F}_p and thus letting $n = [\mathbb{F}_p(\alpha) : \mathbb{F}_p]$ it is the case that $\mathbb{F}(\alpha) \cong \mathbb{F}_{p^n}$ and thus is a subfield of K. Thus K contains all algebraic extensions of \mathbb{F}_p which means K contains the algebraic closure.

Exersise 3.2

We have that $[\mathbb{F}_p(\sqrt{\alpha}) : \mathbb{F}_p] = [\mathbb{F}_p(\sqrt{\beta}) : \mathbb{F}_p] = 2$. Therefore $|\mathbb{F}_p(\sqrt{\alpha})| = |\mathbb{F}_p(\sqrt{\beta})| = p^2$. As we have established in lecture it is necessarily the case that they are the splitting field of $x^{p^2} - x$ over \mathbb{F}_p and are thus isomorphic to \mathbb{F}_{p^2} , so isomorphic to each other.

Exersise 3.3

 \mathbb{F}_{p^n} is the splitting field of $x^{p^n} - x$, and for any $\alpha \in \mathbb{F}_{p^n}$,

$$\alpha^{p^n} - \alpha = F^n(\alpha) - \alpha = 0 \Rightarrow F^n(\alpha) = \alpha \Rightarrow F^n = \mathrm{id}_{\mathbb{F}_{n^n}}$$

Thus $\operatorname{ord}(F)|n$.

If it is the case for $d \geq 1$, $F^d = \mathrm{id}_{\mathbb{F}_{p^n}}$, then for all $\alpha \in \mathbb{F}_{p^n}$, $\alpha^{p^d} = \alpha$ so $\alpha^{p^d} - \alpha = 0$. Since $x^{p^d} - x$ has exactly p^d roots, in order for every element of \mathbb{F}_{p^n} to be a root, it would have to be the case

$$p^n = |\mathbb{F}_{p^n}| \le p^d \Rightarrow n \le d$$

Thus n must be the order of F

Exersise 3.4

As we have established in lecture, every finite field is of the form \mathbb{F}_{p^n} which is the splitting field for the seperable polynomial $x^{p^n} - x$ over \mathbb{F}_p . Thus since $x^{p^n} - x$ is seperable, $\mathbb{F}_{p^n}/\mathbb{F}_p$ is Galois: $|\operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p)| = n$. Since the orbit of $F \in \operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is of size n, it must be the case $\operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \operatorname{orb}(F)$

Exersise 3.5

In the field \mathbb{F}_{p^m} every element is a root of $x^{p^m}-x$. For n|m we will show that any element α in the splitting field of $x^{p^n}-x$ is a root of $x^{p^m}-x$ thus showing that \mathbb{F}_{p^n} is contianed in the splitting field of $x^{p^m}-x$ which is \mathbb{F}_{p^m} . Since n|m we have that $p^m=p^np^np^n\ldots p^n$ so

$$\alpha^{p^m} = \alpha^{p^n p^n p^n \dots p^n} = ((\alpha^{p^n})^{p^n} \dots)^{p^n}$$

Since $\alpha^{p^n} = \alpha$, we get $\alpha^{p^m} = \alpha$ and thus is a root of $x^{p^m} - x$. Thus \mathbb{F}_{p^n} embeds into \mathbb{F}_{p^m} . Since \mathbb{F}_{p^m} is still the splitting field of the seperable polynomial $x^{p^m} - x$ over \mathbb{F}_{p^n} , it is Galois:

$$[\mathbb{F}_{p^m}:\mathbb{F}_{p^n}]=|\mathrm{Aut}(\mathbb{F}_{p^m}/\mathbb{F}_{p^n})|$$

Exersise 3.6

We have that F is not surjective. There is no $f(t) = \frac{p(t)}{q(t)} \in K$ where F(f) = t. The reason for this if

$$t = F(f(t)) = \frac{(p(t))^p}{(q(t))^p}$$

Then

$$t(q(t))^p = (p(t))^p \in \mathbb{F}_{p^n}[x]$$

This cannot be the case however since the degree of $(p(t))^p$ is divisible by p while $t(q(t))^p$ is not (it is of the form kp+1)