HOCHSCHULE LUZERN

PAWI

Evaluation of different content extraction algorithms

Author:
Joel Rolli

 $Supervisor: \\ Patrick Huber / Patrik \\ Lengacher$

A thesis submitted in fulfilment of the requirements for the degree of some HSLU degree

in the

Research Group Name Department or School Name

September 2014

Declaration of Authorship

I, Joel Rolli, declare that this thesis titled, 'Evaluation of different content extraction algorithms' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:		
Date:		

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

HSLU

Abstract

Faculty Name
Department or School Name

some HSLU degree

Evaluation of different content extraction algorithms

by Joel Rolli

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Contents

D	eclar	ation of Authorship	i
A l	bstra	.ct	iii
A	cknov	wledgements	iv
Co	onter	nts	\mathbf{v}
Li	\mathbf{st} of	Figures	⁄ii
Li	\mathbf{st} of	Tables vi	iii
${f A}$	bbre	viations	ix
Ρl	nysic	al Constants	x
Sy	mbo	ls	xi
1	Plan	nning	1
•	1.1	Planning concept	1
	1.2	Milestones overview	2
	1.3	Delivery objects	3
	1.4	Milestone one - m1	4
		1.4.1 Stories m1	4
	1.5	Milestone two - m2	6
		1.5.1 Stories m2	6
	1.6	Milestone three - m3	7
		1.6.1 Stories m3	7
	1.7	Milestone four - m4	8
		1.7.1 Stories m4	8
	1.8	Milestone five - m5	8
		1.8.1 Stories m5	a

Contents	vi
A Appendix Title Here	10
Bibliography	11

List of Figures

List of Tables

Abbreviations

LAH List Abbreviations Here

Physical Constants

Speed of Light $c = 2.997 \ 924 \ 58 \times 10^8 \ \mathrm{ms^{-S}} \ (\mathrm{exact})$

Symbols

a distance m

P power W (Js⁻¹)

 ω angular frequency rads⁻¹

For/Dedicated to/To my...

Chapter 1

Planning

1.1 Planning concept

So as to plan the project, a combination of the two well known planning frameworks scrum and RUP are used.

For a first rough planning, the assignment is split into working packages and assigned to milestones. Delivery objects are defined for each milestone.

This plan is then assigned to the given time table of about 12 weeks. The project effort is defined as 180 hours. This results in about 15 hours work load per week.

A more detailed planning is done for the incoming milestone / sprint. The predefined working packages are split into smaller packages. For the first draft, only the first milestone is split into smaller packages. The later milestones are going to be defined in more detail as soon as all needed information is available.

The effort needed for the documentation is not listed separately. All the tasks already contain additional time for updating the documentation.

The milestones dates are not finally defined, which means that the meeting dates can vary by up to some days.

1.2 Milestones overview

Name	Shortcut	Weeks	Estimated	Hours	Closing
			hours	total	date
Milestone one	m1	2.5	39	39	01.10.2014
Milestone two	m2	3	45	84	22.10.2014
Milestone three	m3	2	30	114	05.11.2014
Milestone four	m4	2	30	144	19.11.2014
Milestone five	m5	2.5	38	182	08.12.2014

1.3 Delivery objects

Milestone	Delivery	Delivery objects
	date	
Milestone one	01.10.2014	 System specification Sketch software architecture Short presentation CI environment Draft risk evaluation
Milestone two	22.10.2014	 Elaborated software architecture Tested code of test framework (tbd: which components) Interface definition for justext/boilerplate components HTML test data
Milestone three	05.11.2014	Working test environment with both justext and boilerplate components integrated
Milestone four	19.11.2014	 Evaluation environment for output data of test framework First approach to new algorithm
Milestone five	08.12.2014	 Implementation of new algorithm Final documentation Final presentation

1.4 Milestone one - m1

 \bullet Closing date date: 1.10.2014

• Available time: ca. 39h

Story	Shortcut	Estimated
		time
Planning	s1	4h
Research HTML / Algorithms	s2	8h
System specification	s3	12h
Risk evaluation	s4	3h
Draft software architecture	s5	8h
Configuration CI environment	s6	4h
Total		39h

1.4.1 Stories m1

Title	Planning
Id	s0
Estimated time	4h
Description	As a project owner, you need to have a time schedule so
	that you can see when you will achieve which results. The
	PAWI project is split into several working packages which
	are then split into single stories. The working packages are
	assignment to milestones and for each milestone, delivery
	objects are defined. This can be a document, a piece of test
	or production code or some other kind of work.

Title	Research HTML / Algorithms
Id	s1
Estimated time	8h
Description	My knowledge of HTML and content extraction algorithms
	is still limited. In order to find out what challenges I will face
	and which aspects I will have to take into consideration for
	performing the first tasks, a short research on these topics
	is needed.

Title	System specification	
Id	s2	
Estimated time	12h	
Description	The PAWI project is defined through a short project de-	
	scription. This description does not cover all necessary in-	
	formation to both plan and perform this project. The key	
	features, interfaces and delivered objects have to be defined	
	more closely. The system specification should cover all these	
	requirements.	

Title	Draft software architecture
Id	s3
Estimated time	8h
Description	A first rough software architecture should be made as soon
	as possible, so that any misunderstandings between tutors
	and student can be uncovered. Moreover, it is much easier to
	plan the further steps when the software is split into several
	parts.

Title	Risk evaluation	
Id	s4	
Estimated time	8h	
Description	Potential risks should be uncovered with the knowledge that	
	was gathered by defining the specification and the software	
	architecture. What is more, further actions can be defined	
	to minimize the above mentioned risks.	

Title	Configuration CI environment	
Id	s5	
Estimated time	4h	
Description	To deliver high quality software a continuous integration en-	
	vironment is required. Following tools should be evaluated	
	and configured for further use:	
	• Version control (git)	
	• Project build automation tool (gradle)	
	• continuous integration service (Travis CI)	

1.5 Milestone two - m2

 \bullet Closing date date: 22.10.2014

• Available time: ca. 45h

Story	Shortcut	Estimated
		time
Implementation test framework	s6	20h
Prototype Integration of justext/boilerpipe	s7	17h
Collection of test data	s8	8h
Total		45h

1.5.1 Stories m2

Title	Implementation Testframework	
Id	s6	
Estimated time	20h	
Description	Implementation of a first part of the test framework. This	
	story will be divided into smaller stories as soon as the soft-	
	ware architecture and the system specification is reviewed.	

Title	Prototype Integration of justext/boilerpipe
Id	s7
Estimated time	4h
Description	Implementation of a small prototype which uses the existing
	implementation of justext and boilerpipe. A final interface
	for both components needs to be defined for further use.
	This story will be divided into smaller stories as soon as
	the software architecture and the system specification is re-
	viewed.

Title	Collection of test data
Id	s8
Estimated time	8h
Description	To evaluate the functionality of the text extraction algo-
	rithms, a certain amount of test data is needed. This test
	data contains HTML files of several web pages. The HTML
	code is categorized into content and boilerplate.

1.6 Milestone three - m3

 \bullet Closing date date: 5.11.2014

• Available time: ca. 30

Story	Shortcut	Estimated
		time
Implementation test framework	s9	20h
Final integration of justext / boilerplate	s10	10h
Total		30h

1.6.1 Stories m3

Title	Implementation test framework
Id	s9
Estimated time	20h
Description	Final implementation of the test framework. This story will
	be divided into smaller stories as soon as the software archi-
	tecture and the system specification is reviewed.

Title	Prototype Integration of justext/boilerpipe
Id	s10
Estimated time	4h
Description	Complete integration of the justext and boilerplate algo-
	rithms into the test framework. This story will be divided
	into smaller stories as soon as the software architecture and
	the system specification is reviewed.

1.7 Milestone four - m4

 \bullet Closing date date: 19.11.2014

• Available time: ca. 30h

Story	Shortcut	Estimated
		time
Evaluation environment for results	s11	20h
Research on new algorithm	s12	10h
Total		30h

1.7.1 Stories m4

Title	Evaluation environment of results
Id	s11
Estimated time	20h
Description	The test framework will produce a lot of output data, which
	has to be reviewed using an evaluation environment. This
	should process this data and present the results in a descrip-
	tive way. This story will be divided into smaller stories as
	soon as the software architecture and the system specifica-
	tion is reviewed.

Title	Research on new algorithm
Id	s12
Estimated time	20h
Description	A first research on the new algorithm should be performed.
	After this research it should be possible to decide if this so-
	lution is possible and if an implementation with the remain-
	ing time resources is realistic. This story will be divided into
	smaller stories as soon as the software architecture and the
	system specification is reviewed.

1.8 Milestone five - m5

 \bullet Closing date date: 8.12.2014

• Available time: ca. 38h

Story	Shortcut	Estimated
		time
Implementation of new algorithm	s13	19h
Complete documentation	s14	15h
Prepare final presentation	s15	4h
Total		38h

1.8.1 Stories m5

Title	Implementation of new algorithm
Id	s13
Estimated time	19h
Description	Implementation of the new algorithm and analysis of the
	test results with the existing evaluation environment.

Title	ttle Complete documentation							
Id	s14							
Estimated time	15h							
Description	Complete and review all chapters of the documentation.							

Title	Prepare final presentation
Id	s15
Estimated time	4h
Description	Prepare the final presentation and the final printed / digital
	version of the thesis.

Chapter 2

Software requirement specification

2.1 Introduction

2.1.1 Purpose

The software requirement specification should provide all needed information to develop the context extraction framework and define all delivery objects. All interfaces to external components, input and output data, deployment considerations and quality attribute should be well defined within this document.

2.1.2 Scope

The context extraction framework will perform automated text extraction on a set of HTML test data with two to three different text extraction algorithms. The performance of each algorithm is measured and an output file with the measured results is generated.

2.2 General description

2.2.1 Operating Environment

see travis ci

2.2.2 Design and Implementation Constraints

2.3 System Features

In this chapter, each system feature is specified.

Name	Read configuration									
Feature id	f1									
Description	The text extraction framework is configurable with an external text file.									
	The configuration file will contain following items:									
	• Path to folder with html files									
	• Path to folder with text files									
	• Path to folder with output files									
	• Configuration for algorithms									
	• etc.									
	The configuration file location is defined as a relative path to the source									
	directory. The configuration file is structured in a key value list:									
	key:value;									
	key:value;									
	key:value;									
Relevance	needed									
Related stories	tbd									

Name	Create test							
Feature id	f2							
Description	A test contains two input files which are a html file and a text file. The							
	are located in the defined directories by the configuration. As soon as							
	the test framework finds a html and a text file with the same name, a							
	new test is created and the files are read.							
Relevance	needed							
Related stories	tbd							

Name	Run test							
Feature id	f3							
Description	A test is run as defined in the configuration file. The configuration file							
	defines which algorithms are tested. The output of a test is a text file							
	which contains the results. A result file is formatted as follows: *							
Relevance	needed							
Related stories	tbd							

*)

		_			_			_			_			_			_		_					
file	name	1	chars	HTML	١	chars	text	1	algo	1	1	a1:	TN	1	a1	FP	I	algo 2	1	a2 T	'N	I	a2 FP	١
t1		1	1000		1	100		-	just	ext	1	10		1	10		1	boilerplate	-	100		I	100	-1
t2		1	2000		1	200		-	just	ext	1	20		-	20		1	boilerplate	-	200		I	200	-
t3		-	3000		1	300		-	just	ext	-	30		-	30		-	${\tt boilerplate}$	-	300		I	300	-
t4		1	4000		1	400		-	just	ext	1	40		-	40		1	boilerplate	-	400		I	400	-
t5		1	5000		1	500		-	just	ext	1	50		-	50		1	boilerplate	-	500		I	500	-

Name	Integrate Justext algorithm							
Feature id	f4							
Description	In the configuration file, all the tested algorithms are defined. If the jus-							
	text algorithm is activated and a test is run, the HTML file is extracted							
	with justext and the result is compared with the text file. The outcome							
	is put into the output file.							
Relevance	needed							
Related stories	tbd							

Name	Integrate Boilerpipe algorithm							
Feature id	f5							
Description	In the configuration file, all the tested algorithms are defined. If th							
	Boilerpipe algorithm is activated and a test is run, the HTML file is							
	extracted with Boilerpipe and the result is compared with the text file.							
	The outcome is put into the output file.							
Relevance	needed							
Related stories	tbd							

Name	Integrate RSS feed algorithm							
Feature id	f6							
Description	In the configuration file, all the tested algorithms are defined. If the RS							
	feed algorithm is activated and a test is run, the HTML file is extracted							
	with the RSS feed algorithm and the result is compared with the text							
	file. The outcome is put into the output file.							
Relevance	nice to have							
Related stories	tbd							

Name	Analize data					
Feature id	f7					
Description	The output file is read and the data is analyzed in a statistical way.					
Relevance	needed					
Related stories	tbd					

2.4 Data Requirements

2.5 External Interface Requirements

2.5.1 Boilerpipe

The boilerpipe algorithm is already implemented in Java so it is easy to integrate. The API can be found under following link. https://code.google.com/p/boilerpipe/

Other useful links:

Getting started: http://code.google.com/p/boilerpipe/wiki/QuickStart

javadoc extractor: http://boilerpipe.googlecode.com/svn/trunk/boilerpipe-core/ javadoc/1.0/de/13s/boilerpipe/extractors/ExtractorBase.html

2.5.2 justext

The justext algorithem is implemented in python and it is not yet defined how it will be integrated into the text extraction framework. See risk analysis. The documentation can be found under following link:

https://code.google.com/p/justext/

jython: http://www.jython.org/

2.6 Quality Attributes

Chapter 3

Risk analysis

3.1 Risks

This document evaluates and weights all possible risks and defines actions to minimize them as good as possible.

3.1.1 Unclear requirements

Requirements are somehow vague at the beginning of each project and if they are not well defined as soon as possible, they stay vague trough out the whole project and this can lead to a disaster.

3.1.2 New technologies

The new technologies which are present in this project are:

- Gradle
- Travis CI
- Python

Each of them brings his own risk.

Risk analysis 17

3.1.3 Interface Boilerpipe

The Boilerplate algorithm needs to be integrated into the text extraction framework. Every interface of an external component is a possible risk factor.

3.1.4 Interface Justext

The Justext algorithm needs to be integrated into the text extraction framework. Every interface of an external component is a possible risk factor.

3.1.5 Implementation RSS algorithm

The development and implementation of a new algorithm is predestined to generate risks.

3.2 Risk analysis

Risk	Impact	Probability of occurrence	Risk factor
Unclear requirements	2	4	8
New technologies	3	3	9
Interface Boilerpipe	5	1	5
Interface Justext	5	5	20
Implementation RSS algorithm	1	5	5

3.3 Consequences

3.3.1 Unclear requirements

As I am working with the client each and every day, it is very easy prevent missunderstanding with asking the client at once. Even though misunderstandings can occur between student and expert. To prevent this, it is necessary to have a document to define the requirements as soon and as exact as possible. This well be done in the form of the system requirement specification in the first mile stone. Possible ambiguities can be clarified at the first mile stone meeting. Risk analysis 18

3.3.2 New technologies

It is important to do prototyping with new technologies in the first phase of the project to eliminate these risks as soon as possible.

Gralde and Travic CI are needed in the first mile stone to set up the programming environment. So if there is any problem it will occur in a very early stage of the project and a possible solution can be found.

The risks about python are related to the chapter ??.

3.3.3 Interface Boilerpipe

This risk is rated much lower than the Justext interface becaus it's implementation is in Java and it provides a Java API. Never then less a prototype should be done as soon as possible to prevent any nasty surprises with the interface.

3.3.4 Interface Justext

This point is classified as the biggest risk of all. This is because the implementation is in Python and it is not clarified yet how it will be integrated into the text extraction framework. An analysis of possible solution with prototypes needs to be done as soon as possible.

3.3.5 Implementation RSS algorithm

This risk has a very high probability of occurrence because it is very likely that a development and an implementation of a new algorithm is going to cause problems. There is no real solution to that risk. But because of this requirement is nice to have, the impact on the outcome of the project is very low. Further more Patrik Lengacher, the tutor of this project, is very experienced in this subject area and will be able to help out if any problems occur.

Appendix A

Appendix Title Here

Write your Appendix content here.

Bibliography

- [1] A. S. Arnold, J. S. Wilson, and M. G. Boshier. A simple extended-cavity diode laser. *Review of Scientific Instruments*, 69(3):1236–1239, March 1998. URL http://link.aip.org/link/?RSI/69/1236/1.
- [2] Carl E. Wieman and Leo Hollberg. Using diode lasers for atomic physics. *Review of Scientific Instruments*, 62(1):1–20, January 1991. URL http://link.aip.org/link/?RSI/62/1/1.
- [3] C. J. Hawthorn, K. P. Weber, and R. E. Scholten. Littrow configuration tunable external cavity diode laser with fixed direction output beam. *Review of Scientific Instruments*, 72(12):4477–4479, December 2001. URL http://link.aip.org/link/?RSI/72/4477/1.