A Fast Restart Mechanism for Checkpointing in Networked Environments

Yawei Li and **Zhiling Lan**

Department of Computer Science
Illinois Institute of Technology

Email: {liyawei,lan}@iit.edu

Outline

- Motivation
- FREM: a <u>Fast RE</u>start <u>M</u>echanism
 - Design & implementation
- Experiments
- Summary

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Reliability Crisis

- Failures are inevitable in large-scale systems
 - MTBF drops dramatically in large systems

 Long-running programs are forced to restart more frequently

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

2

Checkpoint/Recovery

- C/R saves program state onto stable storage
 - Reduce rollback cost after restart
 - In networked systems, enable remote process restart on alternative resource
- C/R is not a silver bullet!
 - Extensive studies on reducing checkpointing overhead & determining an optimal frequency
 - Little work on optimizing its restart

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Problem Statement

- Currently, a restart requires the entire checkpoint image before it can proceed
 - Substantial restart latency in networked environments
 - Network transmission and I/O operation time
- Insatiable data demand from applications leads to larger checkpoint size
 - Thus, longer restart latency

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

The Pain of Restart Latency

- Restart latency directly contributes to program downtime
 - Avail = (up time)/(up time + down time)

Amazon Did NOT Just Lose \$3 Mil of Revenue In 90 Mins Downtime (AMZN)

Henry Blodget | June 6, 2008 5:19 PM

Around 1:30 ET, Amazon's site crashed (AMZN). Around 3:30, we got an email with what will no doubt be the first of many estimates that try to quantify how much revenue Amazon just "lost." (The first estimate was \$1.8 million an hour, or about \$3 million during the 90 minutes of downtime.)

But how much revenue did Amazon really "lose" during this outage? Most likely only a small fraction of this.

Parallel jobs make it worse: all processes stall during restart!

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

7

FREM: A Fast REstart Mechanism

- Provide a quick restart through latency hiding
 - Overlapping process execution with checkpoint image retrieval
- Based on two key observations
 - Data locality: only a small portion of the checkpoint image is immediately needed after resurrection
 - Predictable pattern: data access patterns of restart from checkpoint can be known

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Main Idea

- 1) Post-checkpoint tracking
 - Record the touch set following each CKP within the tracking window
 - Touch set: defined as the intersection of the process address space saved in the checkpoint and its working set
 - It shows which data is immediately needed for restart from the image file
- 2) Fast restarting
 - Restart the process as soon as the touch set is retrieved
 - Overlap the process execution with data retrieval of the remaining image

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Technical Challenges

- 1) How to accurately identify the touch set?
- 2) How to appropriately set the tracking window?
- 3) How to effectively load the partial image?

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

11

Technical Challenges

- 1) How to accurately identify the touch set?
- 2) How to appropriately set the tracking window?
- 3) How to effectively load the partial image?

 $^{\prime}$ illinois institute of technology

Zhiling Lan

Identifying Touch Set

- Find out the data that is immediately needed for restart from the image file
- Two types of errors
 - False negative a page of interest is missed
 - False positive a page not interested is included
- Sources of inaccuracy:
 - Hardware bypassing, page swapping, dynamic memory usage

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Hardware Bypassing - DMA

- Hardware devices access system memory for reading/writing independently of the CPU
 - Direct I/O, zero copy optimization
- Solution: include the mapped DMA pages in the touch set

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

10

Page Swapping

- OS page swapping may cause false negatives
 - Page swapping algorithm clears the access bits when do the page table walk
- Solution: intercept kswapd to record the page per swapping

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Dynamic Memory Usage

- Observation:
 - The touch set is always a subset of the checkpoint image, which monotonically decreases
- Solution
 - Record the pages saved in the checkpoint image as the candidate pages;
 - Intercept do_munmap to capture memory shrinking
 - Scan the intersection of the *candidate pages* and the pages to be freed
 - Update the *candidate pages* to exclude the intersection

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Experiments

- A prototype implementation with the BLCR tool in Linux 2.6.22
 - Use a red-black tree for fast touch set tracking
 - Instrument the kernel in a non-intrusive way
- FREM-enhanced BLCR vs. BLCR
 - Evaluated with the SPEC CPU2006 suite
 - Two network settings

Network	Network Latency	Network Bandwidth		
SLOW	200 ms	7MB/s		
FAST	70 ms	32MB/s		

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

	eckpoint image size						
Application	W	Touch	set size	RL	with	RL with I	FREM (s)
(input set)	(MB)	(I)	/IB)	BLCR (s)			
		FAST	stow	FAST	SLOW	FAST	SLOW
1: astar (1)	280	34	44	49.4	80.1	6.0 (87.88%)	12.6 (84.26%)
2: bzip2 (5)	847	45	152	161.3	254.1	8.6 (94.64%)	45.6 (82.04%)
3: bzip2 (6)	609	64	244	109.3	176.0	11.5 (89.49%)	70.5 (59.97%)
4: deal∏	239	12	28	31.0	57.2	1.6 (94.80%)	6.8 (88.13%)
5: gamess (1)	629	5	9	112.0	180.9	0.8 (99.28%)	2.6 (98.57%)
6: gee (4)	311	48	82	53.4	87.6	11.6 (78.20%)	23.0 (73.75%)
7: gec (6)	771	216	211	136.7	221.2	38.2 (72.05%)	60.6 (72.62%)
8: lbm	409	402	402	73.6	118.5	72.3 (1.80%)	116.3 (1.80%)
9: mcf	830	394	827	151.0	242.8	70.9 (53.03%)	239.5 (1.37%)
10: perl (1)	1771	31	50	24.7	43.5	4.4 (82.16%)	12.8 (70.66%)
11: soplex (2)	490	186	191	89.3	142.9	33.9 (62.05%)	55.7 (61.06%)
12: wrf	685	37	346	117.8	192.9	54.5 (53.78%)	97.9 (49.25%)
LINOIS INST	7171172	OFI	ECHN	OLOGY	/	Zhiling La	n

Runtime Overhead during Post-							
Checkpo	oint Tr	acking	(in mi	lliseco	onds)		
Applicat		Search and	Descriptor L/O time	Tracking overhead			
1: astar (13.517	1.360	33.632			
2: bzip2	` '	0.257	0.184	49.231			
3: bzip2 4: dealII	4.663	1.718	0.149	6.601			
5: games	e (1) 36.711	1.678	0.298	38.687			
6: gec (4	<u></u>	4.641	0.549	34.487			
7: gec (6 8: lbm	21.832	14.954 0.462	1.488 0.119	60.176			
9: mcf	3.390	0.175	0.161	34.234	\rangle		
10: perl (18.573	13.630	1.350	33.553			
11: sople	· · · · · · · · · · · · · · · · · · ·	14.359	1.459	45.566			
12: wrf	41.594	4.643	0.608	46.845			
ILLINOIS IN	ILLINOIS INSTITUTE OF TECHNOLOGY Zhiling Lan 27						

Ru	Runtime Overhead during Fast						
	Restart (in seconds)						
	Application	Remaining	Duration of	Fast restart			
	(input set)	image (MB)	overlapping	overhead			
	1: astar (1)	162	19	7.1			
	2: bzip2 (5)	476	55	13.1			
	3: bzip2 (6)	250	48	11.8			
	4: dealⅡ	144	14	10.2			
	5: gamese (1)	424	60	21.7			
	6: gcc (4)	157	19	10.6			
	7: gec (6)	560	77	22.7			
	8: Ibm	5	0.8	0.1			
	9: mcf	8	1.4	0.3			
	10: perl (1)	83	12	6.9			
	11: soplex (2)	205	30	4.8			
	12: wrf	231	35	7.8			
ILLINO	s institute	OF TECHNOLO)GY	Zhiling Lan	28		

Related Work

- Existing work on fast restart
 - OS, Database, Internet services, ...
 - The novelty of FREM is its ability to reduce restart latency by recording data accesses after CKP
- Traditional work on C/R
 - Focus on checkpoint optimization, e.g., determining an optimal checkpoint frequency
 - FREM complements these studies
- Demand paging
 - FREM selectively restores the pages needed by tracking data access patterns

🇗 ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

Summary

- Have presented a novel mechanism for fast recovery of C/R applications
 - Through a user-transparent system support
- Have demonstrated its effectiveness
 - FREM can reduce process restart latency by 61.96% on average
- Future work
 - Adaptive tracking window estimation
 - Better image loading mechanism
 - Integration with checkpointing tools

ILLINOIS INSTITUTE OF TECHNOLOGY

Zhiling Lan

31

Questions?

FENCE Project Website: http://www.cs.iit.edu/~zlan/fence.html