Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.2.

по курсу общей физики на тему: «Исследование эффекта Комптона»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1. Цель работы

Провести исследование энергетического спектра γ -квантов, рассеянных на графите. Определить зависимость энергии рассеянных γ -квантов в от угла рассеяния, а также получить энергию покоя частиц, на которых происходит комптоновское рассеяние.

2. Суть исследуемого явления

 \mathcal{P} ффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим. Интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

3. Теория явления

Пусть электрон до соударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma=1/\sqrt{1-\beta^2},\ \beta=v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становят соответственно равными $\hbar\omega_1$ и $\hbar\omega_1/c$ (puc. 1).

 Рис.
 1.
 Векторная рассеяния

 γ-кванта на электроне

Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$\begin{cases} mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1 \\ \frac{\hbar\omega_0}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_1}{c}\cos\theta \\ \gamma mv\sin\varphi = \frac{\hbar\omega_1}{c}\sin\theta \end{cases}$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_{\rm K} (1 - \cos \theta), \tag{1}$$

где λ_0 и λ_1 — длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_{\rm K} = \frac{h}{mc} = 2.42 \cdot 10^{-10} \text{ cm}$$

называется комптоновской длиной волны электрона. Из формулы (1) следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние. В приведенном выводе электрон в атоме считается свободным.

Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Выражение будет иметь вид:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ — выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ, m — масса электрона.

4. Эксперимент

4.1. Экспериментальная установка

Блок-схема установки изображена на puc.~2. Источником излучения 1 служит 137 Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Рис. 2. Блок-схема установки по изучению рассеяния γ -квантов

Кванты, испытывающие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее $\Phi \ni V$) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром $40\,\mathrm{mm}$ и высотой $40\,\mathrm{mm}$, его выходное окно находится в оптическом контакте с фотокатодом $\Phi \ni V$. Сигналы, возникающие на аноде $\Phi \ni V$, подаются на $\ni BM$ для амплитудного анализа. Кристалл и $\Phi \ni V$ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

Головная часть сцинтилляционного блока закрыта свинцовым коллиматором 5, который формирует входной пучок и защищает детектор от постороннего излучения. Основной вклад в это излучение вносят γ -кванты, проходящие из источника 1 через 6-сантиметровые стенки защитного контейнера. Этот фон особенно заметен при исследовании комптоновского рассеяния на большие углу ($\simeq 120^{\circ}$), когда расстояние между детектором и источником уменьшается.

Существуют три механизма взаимодействия γ -квантов с веществом: комптоновское рассеяние, фотоэффект и рождение электрон-позитронных пар (в нашем случае этот механизм не реализуется, так как энергия γ -квантов не превосходит порог рождения пар). Во всех этих случаях в веществе появляется быстрый электрон, который за счет кулоновского взаимодействия эффективно возбуждает на своем пути атомы и молекулы.

При фотоэффекте γ -квант целиком поглащается атомом, а один из электронов внутренней оболочки выбрасывается за пределы атома, унося все переданную γ -квантом энергию и теряя ее затем в кристалле. При комптоновском рассеянии электрону передается только часть энергии γ -кванта, а оставшаяся часть уносится рассеянным γ -квантом.

Рис. 3. Амплитудное распределение импульсов, возникающих под действием монохроматических γ -квантов в сцинтилляторе NaI(Ti)

Таким образом, под действием монохроматического излучения на выходе ФЭУ возникает распределение электрических импульсов, показанное на рис. 3. В амплитудном распределении импульсов имеется так называемый фотопик, возникающий в результате фотоэффекта, и обязанное комптоновскому рассеянию сплошное распределение. Его положение однозначно связано в энергией регистрируемого у-излучения.

Слева от фотопика после большого провала начинается непрерывный спектр комптоновских электро-

нов. Этот фон сохраняется при любом угле рассеяния и мешает определению фотопика рассеянных γ -квантов. Его положение легко идентифицируется при рассмотрении всех зарегистрированных спектров.

Для определения энергии γ -квантов нужно исследовать кривую распределения энергетических потерь в кристалле, т.е. распределение по амплитуде электрических импульсов на выходе Φ ЭУ. Такое распределение измеряется в данной работе с помощью компьютера, работающего в режиме амплитудного анализатора.

5. Результаты эксперимента

$\theta,^{\circ}$	0	10	20	30	40	50	60
N	824	839	704	685	595	531	491
$\theta,^{\circ}$	70	80	90	100	110	120	
N	432	384	352	332	288	253	

Таблица 1. Зависимость номера канала N от угла рассеяния θ

Построим график зависимости величины, обратной к номеру канала 1/N от $(1-\cos\theta)$.

Рис. 4. График зависимости величины, обратной к номеру канала 1/N от $(1-\cos\theta)$

6. Анализ результатов

Заменим в формуле (2) энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, найдем:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$$
 (3)

Пересечение прямой на puc. 4 с осью ординат определяет наилучшее значение $N_{\rm наил}(0).$

$$1/N_{\mbox{\tiny HAUJ}}(0) = (1{,}23 \pm 0{,}04) \cdot 10^{-3}$$

$$N_{\mbox{\tiny HAUJ}}(0) = 813 \pm 26$$

Пересечение линии $(puc.\ 4)$ с прямой $\cos\theta=0$ позволяет найти наилучшее значение $N_{\text{наил}}(90)$.

$$1/N_{\text{наил}}(90) = (2.91 \pm 0.09) \cdot 10^{-3}$$

 $N_{\text{наил}}(90) = 343 \pm 10$

Найдем энергию покоя частиц, на которых происходит комптоновское рассеяние. Вернемся от переменной ε к энергии E в формуле (2). При $\theta=90^\circ$ формула принимает вид

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_{\gamma} \frac{N(90)}{N(0) - N(90)}$$
 (4)

 $E(0) = E_{\gamma}$ — энергия электронов, рассеянных вперед, — просто равна энергии γ -лучей, испускаемых источником.

$$mc^2 = (0.48 \pm 0.3) \text{ M} \cdot \text{B}$$

7. Выводы

В работе был исследован энергетический спектр γ -квантов, рассеянных на графите. Была определена энергия рассеянных γ -квантов в зависимости от угла рассеяния $(puc.\ 4)$, что подтверждает справедливость формулы (2). Из полученной зависимости на $puc.\ 4$ найдена энергия покоя частиц, на которых происходит комптноновское рассеяние:

$$mc^2 = (0.48 \pm 0.3) \text{ M} \cdot \text{B}$$

Величина в пределах погрешности совпадает с табличной энергией покоя электрона:

$$(m_ec^2)^{\mathrm{табл}}=0{,}512~\mathrm{M}$$
эВ

Это подтверждает гипотезу о том, что комптоновское рассеяние происходит на свободных электронах.