# Texhuчeckoe задание для эксперементального чипа FRAM

Соловьянов Михаил. Лаборатория Нейровычислительных систем. 12 сентября 2020 г.

## 1 Постановка задачи

Предлагается в сжатые сроки создать уникальный чип-тестовую станцию, для тестирования инновационных энергоэффективных видов памяти. Помещение тестирующей аппаратуры прямо «на чип» позволит избежать проблем связанных с паразитными параметрами зондовых станций, что позволит изучать высокочастотные характеристики памяти, а также позволит автоматизировать процесс изучения качества выращенной памяти.

## 2 Устройство чипа

Поставленные требования будут достигнуты следующим образом: чип будет состоять как из массивов памяти, так и из аналогового измерительного блока, информация от которого может в оцифрованном виде поступать в контроллер чипа. Контроллер будет представлять из себя встроенный микропроцессор управляющий памятью и измерительными блоками, а также обмениваться информацией, настройками и записанными измерениями с внешним миром через интерфейс SPI.



Рис. 1: Супер общая схема чипа

Примерное устройство чипа представлено на рисунке, и предполагает контроль/измерение нескольких ядер различной памяти,а также анализаторов от-



клика, с возможностью подключать их как к интересующим нас столбцам выбранного стека, так и к индивидуальной ячейки. Планируется покрыть спектр измерений ячеек, схожий с возможностями тестовой станции <u>B1500A</u>

Ядро памяти (Test memory array) Представляет собой почти обычное ядро памяти (для примера можно посмотреть ядро DRAM памяти (рис. 2)), только с конденсаторами интересующего нас оксида, а так же с драйвом (то есть подачей питания) для нижней обкладки. А так же необходимо продумать мультиплексер (переключатель) для подключения тестирующей аппаратуры к линиям стоков транзисторов и плейт лайнам.

В принципе задача не требует создания супер компактного и продуманного ядра, поэтому можно сэкономить время не создавая различные пре-декодеры и системы сложной адресации.



Рис. 2: Для понимания схема DRAM

**Измерительная часть (Measuring electronics block)** Самая сложная, аналоговая часть, способная подавать стимулы напряжения и тока в необходимые части исследуемого массива см. (2). Предполагается реализовать возможности измерения схожие с <u>B1500A</u>, однако лишенного минусов связанного с физическими зондами.

Так же было бы желательно реализовать возможность записи относительно короткого промежутка измерения, но с хорошим битрейтом в буфер обмена контроллера (см. 2), после чего уже передачу ее через интерфейс наружу.



**Контроллер чипа (Digital logic)** Для управления измерениями прямо на чипе планируется реализовать микропроцессор поддерживающий набор инструкций RISCV (!), так же необходимая для него оперативная статическая память, необходимая память для буфера измерения, необходимая внутренняя периферия.

**Память** Количиство SRAM памяти очень жестко зависит от того сколько времени измерения мы хотим зафиксировать. К примеру современная SRAM на техпроцессе 90 nm имеет плотность 2  $mm^2/MB$  (3)

| 1T-SRAM Cell sizes (μm²/bit or mm²/Mbit) |               |        |        |        |       |       |       |
|------------------------------------------|---------------|--------|--------|--------|-------|-------|-------|
| Process node                             |               | 250 nm | 180 nm | 130 nm | 90 nm | 65 nm | 45 nm |
| 6T-SRAM                                  | bit cell      | 7.56   | 4.65   | 2.43   | 1.36  | 0.71  | 0.34  |
|                                          | with overhead | 11.28  | 7.18   | 3.73   | 2.09  | 1.09  | 0.52  |
| 1T-SRAM                                  | bit cell      | 3.51   | 1.97   | 1.10   | 0.61  | 0.32  | 0.15  |
|                                          | with overhead | 7.0    | 3.6    | 1.9    | 1.1   | 0.57  | 0.28  |
| 1T-SRAM-Q                                | bit cell      |        |        | 0.50   | 0.28  | 0.15  | 0.07  |
|                                          | with overhead |        |        | 1.05   | 0.55  | 0.29  | 0.14  |

Рис. 3: Плотность SRAM, источник Wikipedia

#### Переферия (SPI, I2C)

**SPI** Кажется разумным использовать SPI интерфейс для обмена данными с контроллером, а так же конфигурации всей системы использовать slave SPI, редактируя нужные блоки памяти контроллера тем самым производя необходимые настройки (подобно тому как это происходит при прошивке любого микроконтроллера).

**I2C** Поскольку память на чипе энергозависимая, то необходимо реализовать некоторый загрузочный сектор, откуда можно подгрузить некую прошивку, и куда же ее можно сохранить. Для этого уместно использовать I2C интерфейс с подключенному к нему чипу памяти вроде такого.

Тактирование (Clock) Для нормальной работы управляющей цифровой и измерительной аналоговой электроники требуется реализовать тактирование, причем если мы хотим проводить измерения с большим битрейтом (большой частотой), то нам нужен тактирующий сигнал большой частоты. Дима предложил два варианта (поправьте если я не так понял): Либо заводить сигнал нужной частоты в чип посредством LVDS, либо по средством достройки частоты (ФАПЧ) увеличивать частоту обычного тактирующего резонатора. Так или иначе для измерений внутри должен где то быть клок порядка ГГц и память способная быстро записать снятые измерения. По крайней мере таков план.



### 3 Выполнение

Предлагаю скоординировать коллектив, выполнение и постановку тактических задач в Todoist.

#### 3.1 Roadmap

Предположительно придется уложиться вот в такие сроки (уточнить практическую возможность):



Рис. 4: Черновик предлагаемой карты проекта

Актуальная ссылка на карту проекта: https://docs.google.com/spreadsheets/d/liLgjOFxgOekC7h\_q5b4wdxDc1nRjKAJDCEXyratIL5U/edit?usp=sharing

## 3.2 Квалификации

Ниже приведены необходимые hard skills к выполнению задач, а так же люди подходящие под описание. Диму я исключил тут из всех категорий, но он есть во всех видимо.

- **Цифровая электроника** Разработка контроллера, имлементация verilog кода, настройка синтеза на кристалл. (Миша)
- **Аналоговая электроника** Схемотехника, Симуляция, Создание Layout ячеек (Паша, Миша)
- Python programming : создание компилятора для SPICE и физической репрезентации, возможно написание скриптов для отладки, тестирования, автоматизированной симуляции. (Паша, Миша)

Явно не хватает коллег для работы над аналоговой электроникой в виду огромного объема сопряженых с ней работ, а так же низкой возможностью автоматизации этого процесса.

#### 3.3 Имеющиеся Ассеты

- Имеется недописанный компилятор ядра
- В открытом доступе можно найти много verilog кода для RISCV архитектуры и перефирии.
- SDAM KOMPHERED HER HEORETS OF MEKNONS





• У Димы есть готовый базовый чип памяти, но он плохо маштабируется. Можно использовать для референса рабочего ядра.