Vibration Measurement

Vibration Measurement

Vibration is a physical movement & oscillation of a mechanical part about a reference point

Mostly vibrations are sinusoidal displacement in nature about its mean position

Vibration measuring devices having mass, spring, etc. are called seismic instruments

Vibratory response can be expressed through a number of parameters: It can be defined by specifying its frequency, its amplitude or maximum velocity or maximum acceleration

Nature of Vibrations

For sinusoidal vibration,

Displacement $x=x_m\sin\omega t$ $x_m=$ amplitude, $\omega=$ angular frequency Velocity $v=\dot{x}=x_m\omega\cos\omega t$ maximum velocity $v_0=x_m\omega$

Acceleration $a = \ddot{x} = -x_m \omega^2 \sin \omega t$ maximum acceleration $a_0 = -x_m \omega^2$

Quantities involved in Vibration Measurements

TWO WAYS FOR MEASUREMENT OF ACCELERATION

- Measuring either displacement or velocity and then taking their derivatives to obtain the value of acceleration. Here acceleration is measured indirectly
- Measuring the acceleration directly

Hence two types of Instruments

▶ VIBROMETERS & ACCELEROMETERS

Vibrometers and Accelerometers

- ▶ A vibration pickup or vibrometers is An instrument which yield an O/P that is either proportional to displacement or velocity.
- ▶ An accelerometer is a pickup whose O/P is a function of acceleration
- One of the most sensitive vibration detectors is human touch
- ▶ An average human being can detect sinusoidal vibrations having an amplitude as low as 0.3 micrometer

Types of Accelerometer

Potentiometric Type
LVDT
Variable Reluctance
Strain Gauge
Piezoelectric

Potentiometric type Accelerometer

Potentiometric type Accelerometer

- > Seismic mass is attached to wiper arm of resistance potentiometer.
- ▶ Relative motion of mass w.r.t. transducer frame is sensed either as change in resistance or as change in voltage O/P.
- ▶ **Damping** may be provided by filling housing of accelerometer completely with a viscous fluid or it may be provided by a dashpot.
- Proper damping is necessary because it increases the range of frequencies over which transducer may be used
- Drawback
 - limited resolution

LVDT type Accelerometer

LVDT type Accelerometer

- Core of LVDT acts as mass and two flexible reeds, attached at each end of rods of core, provide necessary spring action.
- Reeds are attached to a housing which is subject to vibrations.
- As sensor moves up and down on account of vibrations, LVDT secondaries give an a.c. O/P voltage.
- Magnitude of this O/P signal depends upon amplitude of vibrations
- Advantages: smaller mass, higher natural frequency, lower resistance to the motion, contactless device

Strain Gauge Accelerometer

Strain Gauge Accelerometer

- Seismic mass is mounted on a cantilever beam
- ▶ A strain gauge is mounted on each side of cantilever beam to sense the strain in beam resulting from vibrational displacement of mass
- Damping is provided by filling housing with a viscous fluid
- Strain gauges is connected to appropriate wheatstone circuit, whose O/P indicates relative displacement of mass w.r.t. housing frame
- Advantage: more sensitive then piezo-eleletric, can be used for small acceleration measurement

Piezoelectric Accelerometer

Piezoelectric Accelerometers

Piezoelectric Accelerometer

- When force F is applied to piezoelectric crystal it develops a charge Q = dF coulomb where d = charge sensitivity of crystal; C/N.
- With varying acceleration to mass-crystal assembly crystal experiences a varying force

Force
$$F = m \times a$$

- Force generated a varying change Q = dF = dMa
- ▶ Suppose crystal has capacitance C, no load output voltage is

$$e_0 = \frac{Q}{C} = \frac{dF}{C} = d\frac{Ma}{C}$$

 Therefore output voltage is measure of acceleration

