Digit Recognition with Support Vector Machines

Lisa Gaedke-Merzhäuser Paul Korsmeier Lisa Mattrisch Vanessa Schreck

Freie Universität Berlin, Mathematical Aspects of Machine Learning

July 18, 2017

Overview

Outline

- 1. Introduction & Problem Statement
- 2. Support Vector Machines (SVM)
- 3. Sequential Minimal Optimization (SMO)
- 4. Multi-Class Classification
- 5. Results & Conclusions

Introduction & Problem Statement

Idee

- Existenz von fair handelnden Individuen blablablabla
- ► Soziale Ziele sind nicht für alle Menschen gleichgültig
- Infragestellung der Annahmen im Standardmodellvvvvvvvvv

Motivation

- 1. Handelsmacht wird in Wettbewerbssituationen ausgenutzt, in biliteralen Situationen nicht.
- 2. Trittbrettfahrerei wird in freiwilligen Kooperationsspielen ausgenutzt. Besteht allerdings die Möglichkeit, Trittbrettfahrer zu bestrafen, wird diese wahrgenommen auch wenn es kostspielig ist.

Introduction & Problem Statement

Matthew Rabin (1993):

- People like to help those who are helping them, and to hurt those who are hurting them
- ► Reziprozität

David K. Levine (1998):

▶ Menschen sind zu einem gewissen Grad altruistisch oder gehässig

Gary E. Bolton & Axel Ockenfels (2000):

 Ähnlich wie Modell von FS(1999) basierend auf Ungleichheitsaversion

Support Vector Machines (SVM)

Was ist fair?

- 1. 2 Arten von Menschen: Egoisten & Ungleichaverse (faire) Menschen
- 2. *n* Spieler mit $i \in \{1, ..., n\}$
- 3. Vektor der monetären Auszahlungen: $x = x_1..., x_n$
- 4. Nutzenfunktion des Spielers $i \in \{1, ..., n\}$

Support Vector Machines (SVM)

$$U_{i}(x) = x_{i} - \alpha_{i} \frac{1}{n-1} \sum_{j \neq i} \max\{x_{j} - x_{i}, 0\} - \beta_{i} \frac{1}{n-1} \sum_{j \neq i} \max\{x_{i} - x_{j}, 0\}$$
es gilt: $\beta_{i} \leq \alpha_{i} \& 0 \leq \beta_{i} < 1$

Sequential Minimal Optimization (SMO)

Ablauf & Annahmen

- ➤ 2 Spieler (Proposer & Responder) handeln um die Aufteilung eines festen Betrags (=1)
- ▶ Proposer kann dem Responder einen Anteil (share) s vorschlagen mit $s \in [0,1]$
- ▶ Akzeptanz: Proposer: $s^P = 1 s$ & Responder: $s^R = s$
- Ablehnung: Beide Spieler erhalten 0
- ► Proposer = Spieler 1 & Responder = Spieler 2

Multi-Class Classification

Standard Modell

- SVMs are binary classifiers but we needed to be able to differentiate among 10 classes
- there are different ways to tackle this problem, we decided to mainly focus on two different approaches:
- 1. One-vs-All
- 2. Error Correcting Output Codes

Multi-Class Classification

1. One-Vs-All

- ► Auszahlungsdifferenz: $x_1 x_2 = \Pi_1 \Pi_2 = (1 s) s = 1 2s$
- Nutzenverlust durch Auszahlungsdifferenz für Spieler 2: $\alpha_2(1-2s)$
- Akzeptanz wenn $s \alpha_2(1 2s) \ge 0 \Leftrightarrow \frac{s}{1 2s} \ge \alpha_2$
- Kleinster akzeptierter Anteil s*= $\frac{\alpha_2}{(1+2\alpha_2)} = s'(\alpha)$

Multi-Class Classification

2. Error Correcting Output Codes Idea:

Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}
0	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1	1	-1
1	-1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1	1
2	1	-1	-1	1	-1	-1	-1	1	1	1	1	-1	1	-1
3	-1	-1	1	1	-1	1	1	1	-1	-1	-1	-1	1	-1
4	1	1	1	-1	1	-1	1	1	-1	-1	1	1	-1	-1
5	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	-1
6	1	-1	1	1	1	-1	-1	-1	-1	1	-1	1	-1	-1
7	-1	-1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1
8	1	1	-1	1	-1	1	1	-1	-1	1	-1	-1	-1	1
9	-1	1	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1