

# Youngju Yoo Internship Presentation

@Youngju Yoo 2022/02/11

Performance Analysis based on requested categories and respond categories



# Background



In the case of PDP(product Detail Page), the GS SHOP requests **selected items** for each Sponsored AD for each **context item**.

#### **Context item**

The item that made a request.

focal-elf-631.commerce\_prod.selection\_request



#### Selected item

Respond item

focal-elf-631.commerce\_prod.selection\_response

## Purpose

Context item(request item) category



Selected item(response item) category

Does the difference between the requested item categories and the response categories have an impact on advertising performance?



#### Method

- Set two groups and compare the performance(CTR, CR, ROAS) between them
  - A: (1) Respond to the request, (2) impression occurred, and (3) the requested item's category and the response items' category were the same.
  - B: (1) Respond to the request, (2) impression occurred, and (3) the requested item's category and the response items' category were different.
- Also consider the categories 1, 2, 3(large, medium, small) to analysis

```
t_cmp_result AS(
 SELECT
    t_cmp_click.mtid_per_item,
    t_cmp_click request_category,
    t cmp click response category,
    t_cmp_click.is_click,
    t_cmp_click.Ad_spending,
    t cmp click click timestamp,
    IF(purchase.mtid IS NOT NULL, TRUE, FALSE) AS is_purchase,
    SUM(IF(purchase mtid IS NOT NULL, purchase revenue amount, 0)) AS revenue
  FROM
    t_cmp_click
  LEFT OUTER JOIN
    `focal-elf-631.dcr prod.attributed purchases` AS purchase
 ON
    t cmp click mtid per item = purchase mtid
    AND TIMESTAMP_SUB(purchase.event_at, INTERVAL 7 DAY) <= t_cmp_click.click
    AND purchase event_at > t_cmp_click click_timestamp
 GROUP BY 1,2,3,4,5,6,7
```

<u>colab</u>



| Category difference type      | impression | Imp ratio(%) | CTR(%) | CR(%) | Ad_spending | revenue    | D7_ROAS(%) |
|-------------------------------|------------|--------------|--------|-------|-------------|------------|------------|
| Different category            | 4,424,126  | 66.24        | 3.81   | 1.23  | 10,155,390  | 55,437,741 | 545.89     |
| Same first category           | 826,415    | 12.37        | 5.49   | 1.24  | 2,772,340   | 19,569,365 | 705.87     |
| Same second category          | 266,224    | 3.98         | 6.08   | 1.49  | 964,210     | 6,924,164  | 718.11     |
| Same third category           | 728,819    | 10.91        | 7.78   | 1.86  | 3,635,670   | 40,992,989 | 1127.52    |
| Different category with empty | 408,179    | 6.11         | 3.32   | 1.71  | 827,700     | 13,262,607 | 1602.34    |
| Same category with empty      | 24,417     | 0.36         | 2.89   | 2.41  | 58,830      | 1,357,235  | 2307.04    |

- If the requested item's category and the response item's category were the same, the performance was better in all of CTR, CR, D7 ROAS than the different category case.
- Also, the more sub-categories are the equal, the better performance in all of CTR, CR, D7 ROAS is.



# Discovery of Evergreen Seller Cluster



# **Background & purpose**



- If we know the typical characteristics of **sellers with good performance**, it will be helpful to track the performance of the RMP product and onboard new clients.
- We know high churn-rate sellers show low performance and low churn-rate sellers show a growth trend from Minho's pre-analysis
- Define the evergreen sellers and divide evergreen sellers into some clusters and analyze the differences among clusters



#### Method

#### 1. Define the evergreen sellers

#### 2. Cluster the evergreen sellers

- Data Exploration
  - Check which data we can use
- Research Methodologies
  - Research which clustering algorithm is the best suitable for this task
- Feature engineering
  - define features to be used in clustering
- Find Clusters
  - o cluster sellers into several seller groups and compare between groups
- Implications
  - Find the implications (significant differences and its reason) between groups

<u>colab</u>



#### **Definition of Evergreen Seller**

Seller who operates campaigns until now and whose valid date(daily campaign spending over \$\mathbb{1},000\$) ratio is over 0.7

| Row | seller_title | seller_id | seller_end | seller_duration | cnt | ratio              |
|-----|--------------|-----------|------------|-----------------|-----|--------------------|
| 1   | (주)컨트롤케이앤제이  | 1031583   | 2022-01-11 | 252             | 238 | 0.944444444444444  |
| 2   | (주)인씨엘       | 1028688   | 2022-01-11 | 255             | 246 | 0.9647058823529412 |
| 3   | 엑스앤오         | 1040941   | 2022-01-11 | 255             | 253 | 0.9921568627450981 |
| 4   | 주식회사 다솜인터내셔널 | 1003350   | 2022-01-11 | 179             | 177 | 0.9888268156424581 |
| 5   | 금성덴탈         | 1044013   | 2022-01-11 | 255             | 238 | 0.9333333333333333 |
| 6   | (주)커커        | 1034555   | 2022-01-11 | 250             | 232 | 0.928              |
| 7   | 주식회사네이쳐리빙    | 1011216   | 2022-01-11 | 253             | 253 | 1.0                |
| 8   | 주식회사 한스갤러리   | 1031744   | 2022-01-11 | 93              | 87  | 0.9354838709677419 |
| 9   | 빼다 BBEDA     | 1045023   | 2022-01-11 | 252             | 245 | 0.97222222222222   |
| 10  | 피피컴퍼니        | 1045385   | 2022-01-11 | 199             | 197 | 0.9899497487437185 |
| 11  | (주)서울코리아     | 1038168   | 2022-01-11 | 245             | 240 | 0.9795918367346939 |
| 12  | 피카소          | 1042769   | 2022-01-11 | 246             | 228 | 0.926829268292683  |
| 13  | (주)디바인바이오    | 1040333   | 2022-01-11 | 253             | 235 | 0.9288537549407114 |
| 14  | D102 메리움점    | 1043443   | 2022-01-11 | 255             | 252 | 0.9882352941176471 |
| 15  | 가온누리         | 1030686   | 2022-01-11 | 230             | 225 | 0.9782608695652174 |
| 16  | (주)가담에스앤에이치  | 1028599   | 2022-01-11 | 227             | 209 | 0.920704845814978  |

Total 72 evergreen sellers



#### Cluster evergreen sellers based on seller feature

- Seller features
  - Valid date ratio
  - o Avg. # of campaign per month
  - o Avg. # of items per campaign
  - Avg. daily budget
  - o Avg. Item unit price
  - # of unique categories



- The distribution of sellers is concentrated except for a few
- Even after seller clustering, there is no evergreen seller group with distinct characteristic
- New approach: group the sellers by their performance(CTR, CR, ROAS)

#### Cluster evergreen sellers based on seller performance

- Seller Performance
  - o CTR(%)
  - o CR(%)
  - o ROAS(%)



Normalize & K-means algorithm





• 3 effective seller group

o Group1: High CR, Low CTR

o Group2: Low CR, High CTR

o Group6: highest ROAS









• 3 effective seller group

o Group1: High CR, Low CTR

o Group2 : Low CR, High CTR

o Group6: highest ROAS



mean\_item\_price



Seller who operates campaign with high price of items show low CR



Seller who operates campaign with low target cpc show high CR



group 6

# [Bucketplace] Sponsored AD Looker Dashboard





RMP Generic Performance Dashboard

Ad Spending



# RMP Value Pricing Investigation



# **Background & Purpose**

| platform_id | mtid                                                                | mtid_per_item                                                            | rank | срс   | score                |
|-------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|------|-------|----------------------|
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA | ChA6NQaIN3RDh5wXCf6B0FYNEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA   | 0    | 100.0 | 0.07033801823854446  |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | ChCN2FmFKTFNf49d8lSxwjF0EMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAhgB | 1    | 100.0 | 0.066044382750988    |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | ChAvGXuEkEBEllbhJJDdnLXhEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAhgC | 2    | 100.0 | 0.05926716700196266  |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA | ChDSCCYDAGIDHYwinPEnuKgcEMbvkZAGGhQIARoQvtCk47t5SOiS1vwKGNdlICACKgAyAhgD | 3    | 100.0 | 0.05584614723920822  |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | ChBt3tQ65YJOy70s99AjaLCaEMbvkZAGGhQIARoQvtCk47t5SOiS1vwKGNdllCACKgAyAhgE | 4    | 100.0 | 0.04614824801683426  |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA | ChAmy-3E2ONFXYZxlqXIo4F4EMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdIlCACKgAyAhgF | 5    | 100.0 | 0.037515074014663696 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | ChCj3AYRgoxIR6H77DHWHdXJEMbvkZAGGhQIARoQvtCk47t5SOiS1vwKGNdllCACKgAyAhgG | 6    | 70.0  | 0.040931664407253265 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA | ChARvp4EEP9NpIOyly459jpfEMbvkZAGGhQIARoQvtCk47t5SOiS1vwKGNdllCACKgAyAhgH | 7    | 70.0  | 0.034544359892606735 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | ChBFVZXAtVIJI7GsRGmU2WDPEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAhgI | 8    | 100.0 | 0.019597411155700684 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA | ChD9YbSN9mxEELWnaYhibUoZEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAhgJ | 9    | 100.0 | 0.016598261892795563 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | ChCZ5JuJJYJOB7L-AuYjitfUEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAhgK | 10   | 100.0 | 0.014208987355232239 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAA | ChBI1ogjr5JEsb0odFPSkY0hEMbvkZAGGhQIARoQvtCk47t5S0iS1vwKGNdllCACKgAyAhgL | 11   | 100.0 | 0.013976757414638996 |
| GSSHOP      | ChAMqJGhCjb5bSRcmwDTuEMbvkZAGGhQlARoQvtCk47t5SOiS1vwKGNdllCACKgAyAA | null                                                                     | 12   | 20.0  | 0.02286849357187748  |

Value price : CPC x relevency\_score



Top 6 value price are selected

Value price formula maximizes sellers' Ad spending compared to impressions



Check whether the high-ranked items showed higher (Ad spending) / (impression count).

If there's no relationship, propose a new value-pricing formula



#### Method

- 1. decide conditions to gather data: time period, platform (GS SHOP), inventory id, etc.
- 2. gather data (by joining the internal auction table with history\_imp/click tables)
- 3. check the relationship between rank and (Ad spending)/(impression count)
- 4. If there's no relationship, propose a new value-pricing formula instead of CPC x relevancy\_score.

colab

```
result_by_rank AS(
SELECT
 internal auction rank,
 COUNT(internal auction mtid per item) AS imp cnt,
 COUNT(t_click.click_info.Ad_spending) AS click_cnt,
 COUNT(purchase_mtid) AS purchase_cnt,
 SUM(t click click info Ad spending) AS Ad spending,
 SUM(purchase revenue amount) AS revenue
FROM
  internal auction
LEFT OUTER JOIN
  t_click
  internal_auction.mtid_per_item = t_click.click_info.mtid
LEFT OUTER JOIN
  `focal-elf-631.dcr_prod.attributed_purchases` AS purchase
ON
  internal auction mtid per item = purchase mtid
                                                  SELECT
 AND purchase platform_id = "GSSHOP"
WHERE
                                                    SAFE_DIVIDE(Ad_spending,
 internal_auction.mtid_count = 13
                                                       imp_cnt) * 100 AS spending_per_imp,
GROUP BY
                                                     SAFE DIVIDE(click cnt.
 1),
                                                      imp_cnt) *100 AS CTR,
                                                     SAFE DIVIDE(purchase cnt,
                                                      click cnt) *100 AS CR,
                                                     SAFE_DIVIDE(purchase_cnt,
                                                       imp_cnt) *100 AS purchase_per_imp,
                                                    SAFE_DIVIDE(revenue,
                                                      Ad_spending) * 100 AS ROAS
                                                  FROM
                                                     result_by_rank
                                                  ORDER BY
                                                     rank
```



| rank | imp_cnt | click_cnt | purchase_cnt | Ad_spending | revenue     | spending_per_imp | CTR    | CR    | ROAS     | purchase_per_imp |
|------|---------|-----------|--------------|-------------|-------------|------------------|--------|-------|----------|------------------|
| 0    | 1079498 | 43850     | 1000         | 3320350.0   | 3.5606913E7 | 307.583          | 4.062  | 2.281 | 1072.384 | 0.093            |
| 1    | 251946  | 26997     | 466          | 2001740.0   | 1.842108E7  | 794.512          | 10.715 | 1.726 | 920.253  | 0.185            |
| 2    | 180663  | 14608     | 239          | 1028170.0   | 8851709.0   | 569.109          | 8.086  | 1.636 | 860.919  | 0.132            |
| 3    | 166469  | 13049     | 181          | 897160.0    | 5726649.0   | 538.935          | 7.839  | 1.387 | 638.309  | 0.109            |
| 4    | 155658  | 11817     | 157          | 806630.0    | 5324500.0   | 518.207          | 7.592  | 1.329 | 660.092  | 0.101            |
| 5    | 152099  | 11445     | 148          | 761700.0    | 5427467.0   | 500.792          | 7.525  | 1.293 | 712.547  | 0.097            |

- The higher the rank, the higher CTR and ad spending per impression except rank0
- In rank0, the lowest CTR and ad spending per impression but the highest ROAS. We need to find the cause for extremely low CTR and ad spending per impression in rank0
- Also, since it shows great correlation among rank, CTR, and, ad spending per impression with CPC x relevancy score formula, we don't have to propose a new value-pricing formula



## Additional analysis

#### Find the cause of extremely low performance of rank0

- We supposed that the lowest CTR of rank0 is due to high impression caused by high repeated impression count.
- Repeated Impression: Hourly repeated impressions of the same item to the same user
- ullet But repeated impression occurs evenly at all rank o repeated impression is not the cause of the low performance of

rankO





total duplicate impression count for each rank



total duplicate impression count over 5 for each rank

It will be continued with jeonghyun,,



Investigating the different characteristics of new models



## **Background & Purpose**

- The ML team has run two experiments for GSSHOP HOME sponsored ads
  - Baseline model = recommends items based on user signals data
  - CTR optimization model = recommends items based on maximized CTR
  - Sales amount optimization model = recommends items based on maximized ROAS
- Have to check the characteristics of those different ranking scores
- Investigate the metrics' (CTR, CR, ROAS, etc.) trends by the rank in internal auctions



#### Baseline model

| rank | imp_cnt | click_cnt | purchase_cnt | Ad_spending | revenue   | spending_per_imp | CTR   | CR    | ROAS     | purchase_per_imp |
|------|---------|-----------|--------------|-------------|-----------|------------------|-------|-------|----------|------------------|
| 0    | 69541   | 2096      | 38           | 169930.0    | 3066500.0 | 244.359          | 3.014 | 1.813 | 1804.567 | 0.055            |
| 1    | 29745   | 1265      | 13           | 100620.0    | 339647.0  | 338.275          | 4.253 | 1.028 | 337.554  | 0.044            |
| 2    | 25110   | 664       | 5            | 48160.0     | 59560.0   | 191.796          | 2.644 | 0.753 | 123.671  | 0.02             |
| 3    | 24594   | 577       | 4            | 41570.0     | 65340.0   | 169.025          | 2.346 | 0.693 | 157.181  | 0.016            |
| 4    | 24431   | 535       | 7            | 39070.0     | 170028.0  | 159.92           | 2.19  | 1.308 | 435.188  | 0.029            |
| 5    | 24206   | 524       | 7            | 34550.0     | 132573.0  | 142.733          | 2.165 | 1.336 | 383.713  | 0.029            |

• The higher rank, the higher CTR except rank0



#### CTR optimized model

| rank | imp_cnt | click_cnt | purchase_cnt | Ad_spending | revenue  | spending_per_imp | CTR   | CR    | ROAS    | purchase_per_imp |
|------|---------|-----------|--------------|-------------|----------|------------------|-------|-------|---------|------------------|
| 0    | 69339   | 2242      | 16           | 184460.0    | 451019.0 | 266.026          | 3.233 | 0.714 | 244.508 | 0.023            |
| 1    | 30096   | 1405      | 12           | 112600.0    | 480823.0 | 374.136          | 4.668 | 0.854 | 427.019 | 0.04             |
| 2    | 25472   | 662       | 8            | 49230.0     | 148447.0 | 193.271          | 2.599 | 1.208 | 301.538 | 0.031            |
| 3    | 24560   | 541       | 5            | 39090.0     | 263250.0 | 159.161          | 2.203 | 0.924 | 673.446 | 0.02             |
| 4    | 24169   | 540       | 7            | 38580.0     | 189420.0 | 159.626          | 2.234 | 1.296 | 490.98  | 0.029            |
| 5    | 24067   | 533       | 4            | 35210.0     | 85420.0  | 146.3            | 2.215 | 0.75  | 242.602 | 0.017            |

• The higher rank, the higher CTR as model trained except rank0

#### Sales amount optimized model

| rank | imp_cnt | click_cnt | purchase_cnt | Ad_spending | revenue  | spending_per_imp | CTR   | CR    | ROAS    | purchase_per_imp |
|------|---------|-----------|--------------|-------------|----------|------------------|-------|-------|---------|------------------|
| 0    | 55677   | 1407      | 16           | 112830.0    | 779231.0 | 202.651          | 2.527 | 1.137 | 690.624 | 0.029            |
| 1    | 23892   | 1025      | 9            | 80170.0     | 335392.0 | 335.552          | 4.29  | 0.878 | 418.351 | 0.038            |
| 2    | 19969   | 545       | 5            | 40270.0     | 89449.0  | 201.663          | 2.729 | 0.917 | 222.123 | 0.025            |
| 3    | 19536   | 459       | 2            | 34340.0     | 62720.0  | 175.778          | 2.35  | 0.436 | 182.644 | 0.01             |
| 4    | 19286   | 446       | 4            | 32590.0     | 134403.0 | 168.983          | 2.313 | 0.897 | 412.406 | 0.021            |
| 5    | 19408   | 456       | 2            | 31090.0     | 22710.0  | 160.192          | 2.35  | 0.439 | 73.046  | 0.01             |

• Expected result was the higher the rank, the higher ROAS, but result came out different. We should test again after gathering more data.



# Internship review

Great time at MOLOCO!!





# THANK YOU!

www.moloco.com