Using Machine Learning to predict property prices

The Krieken: Floriane, Augustin, Nadiya

Choosing set of model parameters

based on linear regression model

1) Obvious to dram		parameters	R2_test	R2_train	MAE_test	MAE_train	
1) Obvious to drop: irrelevant, non- precise,	non- precise, dependent on price nicipality,	"Core 6"	0.403	0.416	104632	104301	
ID, URL, dependent on price Locality, Municipality,		+ Has garden	-0.000	-0.000	37	-12	
Price per square meter		+ Garden surface	+0.001	+0.000	-138	-79	←
2) Obvious to keep: numerical, logical -> numerical,		+ Type	+0.007	+0.008	-327	-615	
		+ Subtype	+0.040	+0.040	-3138	-3683	—
categorial ordinal -> numerical		+ Postcode (-> latitude, longitude)	+0.058	+0.055	-4720	-4556	
Bedroom count, Habitable surface, Has terrace, Has parking, Building condition, EPC score		+ Region	+0.088	+0.091	-9011	-9616	
		+ Province	+0.114	+0.116	-12156	-12600	
Building Condition, Erc score		"Core 6 "+ 3 ←	0.551	0.566	88845	88003	

Choosing model type

Linear regression

Polynomial regression 2nd order

Random forest N_est. = 200

Problems:

over-/under-predicted prices

large scatter

inconsistency training vs testing

And the winner is: Gradient Boosting!

Best fitting line of regression

Train vs Testing

Learning from mistakes

- 1. Growing a tree
- 2. Basic prediction
- 3. Correcting the residuals
- 4. Growing another tree
- Then a forest

n_estimators = 100

Models and results

Model	MAE test	R² test	MAE train	R² train
Linear regression	96969	0.5003	97641	0.4918
Random Forest	62582	0.7632	23639	0.9652
Gradient Boosting	73229	0.7035	72844	0.7053
Polynomial Regression	87150	0.5849	86626	0.5923

ADVANTAGES

- Highest R²
- Stable
- No overfitting
- Best management for low prices properties

LIMITATIONS

- MAE is high = 73.000 euros
- Struggle with expensive properties
- Need to improve to have higher R²

Distribution of residues by type of asset

Distribution of residues by type of asset

