

Prof. Dr. Stefan Decker, PD Dr. Ralf Klamma K. Fidomski, M. Slupczynski, S. Welten 21.06.2021

Datenbanken und Informationssysteme (Sommersemester 2021)

Übung 7

Abgabe bis 28.06.2021 18:30 Uhr Zu spät eingereichte Übungen werden nicht berücksichtigt.

Wichtige Hinweise

- Bei Nichtbeachtung dieser Hinweise wird die Abgabe mit 0 Punkten bewertet!
- Bitte reichen Sie Ihre Lösung nur in Dreier- oder Vierergruppen ein.
- Achten Sie auch darauf, dass Ihre Gruppe im Moodle korrekt eingerichtet ist.
- Bitte laden Sie Ihre schriftlichen Lösungen ins Moodle als ein zusammenhängendes PDF-Dokument hoch.
- Bitte geben Sie Namen, Matrikelnummern und Moodle-Gruppennummer auf der schriftlichen Lösung an.
- Wird offensichtlich die gleiche Lösung von zwei Gruppen abgegeben, dann erhalten beide Gruppen 0
 Punkte.

Die Lösung zu diesem Übungsblatt wird in den Übungen am 28. und 30. Juni 2021 vorgestellt. Bitte beachten Sie auch die aktuellen Ankündigungen im Moodle-Lernraum zur Vorlesung. * bezeichnet Bonusaufgaben.

Nummer der Abgabegruppe: [124]

Gruppenmitglieder: [Andrés Montoya, 405409], [Marc Ludevid, 405401], [Til Mohr, 405959]

Vergessen Sie nicht, alle Gruppenmitglieder einzutragen!

Der Bearbeitungsmodus kann mit Doppelklick aktiviert und mit der Tastenkombination **Strg+Enter** beendet werden.

WICHTIG:

Das **gesamte** Übungsblatt ist **schriftlich** zu bearbeiten und wird manuell bewertet.

Die Lösungen der Übungsaufgaben müssen in einem zusammenhängenden .pdf Dokument abgegeben werden.

Aufgabe 7.1 (Funktionale Abhängigkeiten) - Schriftlich (5 Punkte)

Über der Attributmenge $X = \{A, B, C, D, E, G\}$ sei die folgende Menge funktionaler Abhängigkeiten gegeben:

$$F = \{ADE
ightarrow CG, \ B
ightarrow AD, \ CG
ightarrow D, \ DG
ightarrow A, \ G
ightarrow BC\}$$

Identifizieren Sie alle Schlüsselkandidaten von F. Zeigen Sie, dass es sich um Schlüsselkandidaten handelt. Eine Attributmenge $\alpha\subseteq X$ ist ein Schlüsselkandidat, falls X voll funktional abhängig von α ist.

Zeigen Sie außerdem, dass es keine weiteren Schlüsselkandidaten gibt.

E muss in jedem Schlüsselkandidat κ enthalten sein, denn sonst gäbe es kein κ mit $\kappa \to E$.

```
\kappa_1=\{A,D,E\}
\kappa_1 ist ein Schlüsselkandidat, da wegen ADE 	o CG, G 	o BC \ \kappa_1 	o X.
\kappa_2=\{E,G\}
\kappa_2 ist ein Schlüsselkandidat, da wegen CG 	o D, DG 	o A, G 	o BC \ \kappa_2 	o X.
\kappa_3=\{B,E\}
\kappa_3 ist ein Schlüsselkandidat wegen C 	o AD und ab dann wie \kappa_1.
```

```
\{A,E\} ist kein Schlüsselkandidat, \{A,E\} kein Superschlüssel ist (\{A,E\}^+=\{A,E\}\neq X). \{D,E\} ist kein Schlüsselkandidat, \{D,E\} kein Superschlüssel ist (\{D,E\}^+=\{D,E\}\neq X). \{C,E\} ist kein Schlüsselkandidat, \{C,E\} kein Superschlüssel ist (\{C,E\}^+=\{C,E\}\neq X). \{E\} ist kein Schlüsselkandidat, \{E\} kein Superschlüssel ist (\{E\}^+=\{E\}\neq X).
```

Jede Andere Teilmenge von X ist kein Schlüsselkandidat, da diese dann nicht minimal ist.

Aufgabe 7.2 (Synthesealgorithmus) - Schriftlich (10 Punkte)

Gegeben sei das Relationenschema R mit der Attributmenge $X = \{A, B, C, D, E, G\}$ und den funktionalen Abhängigkeiten:

$$F = \{AC
ightarrow DE, \ BG
ightarrow CE, \ CE
ightarrow A, \ E
ightarrow B, \ G
ightarrow BE\}$$

a.

R hat den Schlüssel $\kappa=\{G\}$. Obermengen von κ sind dann offensichtlich Superschlüssel. R ist nicht in 3NF, da E,B Nichtschlüsselattribute sind, jedoch $E \to B \in F$.

b.

- 1. Kanonische Überdeckung
 - Linksreduktion: Ergebis: $F_c = F$
 - lacksquare AC o DE: OK
 - \circ Überprüfe A: DE ist nicht in $(\{A,C\}\setminus\{A\})^+=\{C\}$
 - \circ Überprüfe C: DE ist nicht in $(\{A,C\} \setminus \{C\})^+ = \{A\}$
 - lacksquareBG o CE: OK
 - \circ Überprüfe B:CE ist nicht in $(\{B,G\}\setminus\{B\})^+=\{G,B,E\}$
 - \circ Überprüfe G: CE ist nicht in $(\{B,G\} \setminus \{G\})^+ = \{B\}$
 - lacksquare CE
 ightarrow A: OK
 - \circ Überprüfe C: A ist nicht in $(\{C, E\} \setminus \{C\})^+ = \{E, B\}$
 - \circ Überprüfe E: A ist nicht in $(\{C, E\} \setminus \{E\})^+ = \{C\}$
 - lacksquare E o B: OK
 - \circ Überprüfe E: B ist nicht in \emptyset^+
 - lacksquare G o BE: OK
 - \circ Überprüfe G:BE ist nicht in \emptyset^+
 - Rechtsreduktion: Ergebnis: $F_c = \{AC \to DE, BG \to CE, CE \to A, E \to B, G \to E\}$
 - lacksquare AC o DE: OK
 - \circ Überprüfe D: D ist nicht in

$$\mathsf{AttrH\"ulle}(\{AC \to E\} \cup F_c \setminus \{AC \to DE\}, AC) = \{A, C, E, B\}$$

 \circ Überprüfe E: E ist nicht in

$$\text{AttrH\"ulle}(\{AC \to D\} \cup F_c \setminus \{AC \to DE\}, AC) = \{A, C, D\}$$

- lacksquareBG o CE: OK
 - \circ Überprüfe C: C ist nicht in

$$\mathsf{AttrH\"{u}lle}(\{BG \to E\} \cup F_c \setminus \{BG \to CE\}, BG) = \{B, G, E, A\}$$

 \circ Überprüfe E: E ist nicht in

$$ext{AttrH\"ulle}(\{BG o C\}\cup F_c\setminus \{BG o CE\},BG)=\{B,G,C\}$$

- lacksquare CE
 ightarrow A: OK
 - Überprüfe *A*: *A* ist nicht in

$$AttrH\"ulle(\{CE \to \emptyset\} \cup F_c \setminus \{CE \to A\}, CE) = \{C, E, B\}$$

- lacksquare E o B: OK
 - \circ Überprüfe B:B ist nicht in $\operatorname{AttrH\"ulle}(\{E o\emptyset\}\cup F_c\setminus\{E o B\},E)=\{E,B\}$
- $\blacksquare G \rightarrow BE$:
 - \circ Überprüfe B: B ist nicht in $ext{AttrH\"ulle}(\{G o E\}\cup F_c\setminus \{G o BE\},G)=X$ Ersetze durch G o E
- lacksquare G o E: OK
 - \circ Überprüfe E:E ist nicht in $\operatorname{AttrH\"ulle}(\{G \to \emptyset\} \cup F_c \setminus \{G \to E\},G) = \{G\}$
- ullet Endergebnis: $F_c = \{AC o DE, BG o CE, CE o A, E o B, G o E\}$

- 2. Relationsschema R_{lpha} für alle $lpha
 ightarrow eta \in F_c$:
 - $R_{AC}(A,C,D,E)$ mit $F_{AC}=\{AC \rightarrow DE\}$
 - ullet $R_{BG}(B,G,C,E)$ mit $F_{AC}=\{BG o CE\}$
 - $R_{CE}(C, E, A)$ mit $F_{AC} = \{CE \rightarrow A\}$
 - ullet $R_E(E,B)$ mit $F_{AC}=\{E o B\}$
 - $T_{E}(E,B)$ and $T_{AC}=\{E \mid \forall B\}$
 - ullet $R_G(G,E)$ mit $F_{AC}=\{G
 ightarrow E\}$
- 3. Schlüsselkandidaten
 - ullet G ist ein Schlüsselkandidat für R gewesen. Es muss keine weitere Relation erzeugt werden
- 4. Elimination
 - ullet Eliminiere R_{CE} , da dies in R_{AC} enthalten ist.
 - ullet Eliminiere R_E , da dies in R_{BG} enthalten ist.
 - Eliminiere R_{G} , da dies in R_{BG} enthalten ist.

Lösung:

 R_{AC}, R_{BG}

Aufgabe 7.3 (Dekompositionsalgorithmus) - Schriftlich

(10 Punkte)

Sei
$$R = (\{A, B, C, D, E, G\}, F)$$
 mit

$$F = \{A \rightarrow C,$$

$$B o CD$$
,

$$C \rightarrow G$$
,

$$DE o B$$
}

- a) Entscheiden Sie, mit Begründung, in welcher Normalform das Relationenschema R vorliegt.
- **b)** Führen Sie mithilfe des in der Vorlesung vorgestellten Dekompositionsalgorithmus eine BCNF Zerlegung von R durch.

Beachten Sie: Sowohl die Attributmenge als auch die funktionalen Abhängigkeiten eines aus einer Zerlegung resultierenden Relationenschemas müssen angegeben werden.

c) Zeigen Sie, dass das Ergebnis in BCNF vorliegt und entscheiden Sie, mit Begründung, ob das Ergebnis abhängigskeitserhaltend ist.

a

 $\kappa_1=\{A,B,E\}, \kappa_2=\{A,D,E\}$ sind die einzigen Schlüsselkandidaten von R. Da es aber gilt: $\kappa_2\setminus\{A\}\to B\in F^+$, ist R nicht in 2NF. Also ist R in 1NF.

b.

$$Z = \{R\}$$

- 1. R nicht in BCNF: Zerlegung entlang $A \rightarrow C$:
 - R_1 mit $X_1 = \{A, C\}$ und $F_1 = \{A \to C\}$
 - ullet R_2 mit $X_2=\{B,C,D,E,G\}$ und $F_2=\{B
 ightarrow CD,C
 ightarrow G,DE
 ightarrow B\}$
 - $Z = \{R_1, R_2\}$
- 2. R nicht in BCNF: Zerlegung entlang C o G:

$$\bullet \ R_{21} \ \mathsf{mit} \ X_{21} = \{\}$$

C.