Dr. Gerhard Paaß
Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)
Sankt Augustin





<u>TensorFlow</u>, the <u>TensorFlow logo</u> and any related marks are trademarks of <u>Google Inc. Tensorflow Logo</u> by <u>TensorFlow</u> - vectors combined, edited - <u>Begoon</u> / <u>Apache 2.0</u>



#### **Course Overview**

| 1. Intro to Deep Learning                 | Recent successes, Machine Learning, Deep Learning & types |  |  |
|-------------------------------------------|-----------------------------------------------------------|--|--|
| 2. Intro to Tensorflow                    | Basics of Tensorflow, logistic regression                 |  |  |
| 3. Building Blocks of Deep Learning       | Steps in Deep Learning, basic components                  |  |  |
| 4. Unsupervised Learning                  | Embeddings for meaning representation, Word2Vec, BERT     |  |  |
| 5. Image Recognition                      | Analyze Images: CNN, Vision Transformer                   |  |  |
| 6. Generating Text Sequences              | Text Sequences: Predict new words, RNN, GPT               |  |  |
| 7. Sequence-to-Sequence and Dialog Models | Transformer Translator and Dialog models                  |  |  |
| 8. Reinforcement Learning for Control     | Games and Robots: Multistep control                       |  |  |
| 9. Generative Models                      | Generate new images: GAN and Large Language Models        |  |  |







### Agenda

- 1. Training with Tensorflow
- 2. Jupyter Notebooks
- 3. Steps to Specify Network



### **Parallel Processing**

- Deep Learning requires high computational effort→ parallel processing
- Multicore processors
- Graphical Processing Units (GPUs). H100 ...
  - ~14592 specialized processors (FP32 CUDA Cores)
  - Use for general computations by CUDA language
  - 80 GB GPU-memory, up to 3958 TeraFlops
  - Memory Bandwidth: ~ 2 TB/s
  - Plugin card to servers
- Cluster of Computers, may have GPUs
  - Slower connection by fast LAN network
  - Usually sublinear speedup
- Computing in the cloud: Amazon cloud

# The NVIDIA A100 vs H100, How Do They Compare?

2023-11-30

|                                       | H100        |                                                    | A100        |                                                 |
|---------------------------------------|-------------|----------------------------------------------------|-------------|-------------------------------------------------|
| Form Factor                           | SXM5        | x16 PCIe Gen5<br>2 Slot FHFL<br>3 NVLINK<br>Bridge | SXM4        | x16 PCIe Gen4<br>2 Slot FHFL<br>3 NVLink Bridge |
| Max Power                             | 700W        | 350W                                               | 500W        | 300W                                            |
| FP64 TC   FP32 TFLOPS <sup>2</sup>    | 67   67     | 51   51                                            | 19.5   19.5 |                                                 |
| TF32 TC   FP16 TC TFLOPS <sup>2</sup> | 989   1979  | 756   1513                                         | 312   624   |                                                 |
| FP8 TC   INT8 TC TFLOPS/TOPS2         | 3958   3958 | 3026   3026                                        | NA   1248   |                                                 |
| GPU Memory / Speed                    | 80GB HBM3   | 80GB HBM2e                                         | 80GB HBM2e  |                                                 |
| Multi-Instance GPU (MIG)              | Up to 7     |                                                    | Up to 7     |                                                 |
| NVLink Connectivity                   | Up to 256   | 2                                                  | Up to 8     | 2                                               |

### **Requirements for Deep Learning Software**

- Specify model computations: vectors, matrices, n-dimensional "tensors"
  - Linear algebra: add, multiply
  - Nonlinear functions on tensors: sigmoid, exp, tanh, softmax
  - Compute derivatives for these functions
  - Optimization algorithms: exploit parallel processing
  - Evaluation of performance, apply for prediction
- Large number of available toolkits
  - CNTK: special language, Python, autom. Differentiation. Microsoft
  - PyTorch: Python, autom. Diff., parallel execution. Facebook
  - fast.ai: library on top of Pytorch
  - ...

https://en.wikipedia.org/wiki/Comparison\_of\_deep\_learning\_software https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750



### **Tensorflow**

- Python open source library for numerical computation
  - Represents calculation steps as a flow graph
    - Nodes in the graph are mathematical operations or read/write operations
    - Edges in the graph are multidimensional data arrays (tensors)
- Data Flow Graph
  - May be used to compute derivatives automatically (previously major source of error)
- Why Tensorflow?
  - Released by Google in Nov. 2015
  - Python is currently the most polular language of data analysis
  - Large community of contributors
  - 77728 repositories on GitHub mentioning TensorFlow in title



#### **Tensorflow Execution**

- Data Flow Graph
  - Nodes may be assigned to computational devices
    - different processors of a machine
    - Graphical Processing
      Units
    - Compute Clusters
- Execute asynchronously and in parallel
  - once all the tensors on their incoming edges becomes available.







# **How to Parallelize Neural Network Training**

- Assume we have a neural network
  - m layer
  - n elements  $(x_i, x_i)$  in the training set
- Parallelization by data:
  - Split the training data into subsets  $S_1, ..., S_r$ distribute the  $S_i$  to different processors train them with the same model code
- Parallelization by operators:
  - In addition distribute the different layers to different processors
  - Establish a pipeline between processors
- Usually this is perfored automatically by Tensorflow / Pytorch or specialized tools





### **Tensorflow Architecture**



### **ML Frameworks**

#### ML Framework usage by data scientists



**?**02-a



#### Agenda

- 1. Training with Tensorflow
- 2. Keras
- 3. Jupyter Notebooks
- 4. Steps to Specify Network



### **Keras**

- Environment on top of Tensorflow: generates Tensorflow commands
- Usually each Command defines a layer
- **Example:** Dense layer: implements f(Ax + b)
- Dense generates a function

```
dense_fct = Dense(units=10,activation='softmax')
```

Computing softmax(Ax + b), may be applied to a numeric input tensor

G. Keras

```
hid= dense fct(x)
```



Fraunho

# How to specify a network

Simple network: sequence of layers

```
model=Sequential()
model.add(Dense(32,input_shape(16,),activation='tanh')
model.add(Dense(10, activation='softmax')
```

alternative

model is a function and may be applied to numeric input tensor

```
out= model(inp)
```



### How to specify a network

Network with parallel paths: need to specify input and output tensors

```
inp = keras.Input(shape=(None, 28, 28)
hidA=Dense(100, activation='tanh')(inp)
hidB=Dense(100, activation='relu')(inp)
hid = layers.concatenate(hidA, hidB)
probs = Dense(10, activation='softmax')(hid)
```

May specify arbitrary Directed Acyclic Graphs: Networks without cyclic connections







### Agenda

- 1. Training with Tensorflow
- 2. Jupyter Notebooks
- 3. Steps to Specify Network



### **Jupyter Notebook**

- interactive computing environment
- documents include: Narrative text Equations Images Live code Interactive widgets Plots Video.
- Three components:
- Notebook web application: interactive authoring notebook documents and running code

Kernels: Separate process started by the notebook web application runs users' code.

- Notebook documents: contain content visible in the web application:
  - narrative text, equations, images,
  - inputs and outputs of the computations, rich media representations of objects.
- Installation instructions:

https://www.tensorflow.org/install/ http://jupyter.org/install.html



# **Jupyter Notebook**

- Programming skills of data scientists
- according to Kaggle survey 2022





- IDE usage by data scientists
- according to Kaggle survey 2022

https://www.kaggle.com/kaggle-survey-2022



### **Notebook Web Application**

- Notebook consist of a linear sequence of cells.
  - Markdown cells contain narrative text and equations
  - Code cells contain code in a programming language





### **Google Colab**

- Notebook environment for Python hosted in the cloud
  - Installation of Libraries on the fly
  - Very similar to Jupyter Notebook
  - Interactive selection of runtime environment
  - Loading <u>data</u>
    - Load / store from local computer
    - Load / store from Google drive
    - Load / store from Google cloud
    - Load from GitHub and Web
- Start with free version
- Purchase more compute time and better GPUs





#### Agenda

- 1. Training with Tensorflow
- 2. Jupyter Notebooks
- 3. Steps to Specify Network



### **Model training and Application**

#### **Steps for Model Training**

- 1. Read training & test data
- 2. Preprocess training & test data
- Define model
- Estimate model by optimization on training data, save trained model
- Validate Model on test data

#### **Steps for Model Application**

- Read application data
- Preprocess application data
- Read trained model
- 4. Apply model to application data



#### **Keras**

#### **Keras Steps**

- 2. Define operators / Layers with specific functions, e.g.
  Outputtensor=Layertype (hyperparams) (Inputtensors)
- 3. Define the model using the Model function
   model = Model(inputTensors, outputTensors)
- 4. Define loss, optimizer, and evaluation metric using compile model.compile(loss=..., optimizer=..., metrics=...)
- 5. Start training with the fit function history = model.fit(trainData, valData, hyperparam)

