PATENT ABSTRACTS OF JAPAN

(11)Publication number :

04-291913

(43)Date of publication of application: 16.10.1992

(51)Int.CL

H01L 21/027

(21)Application number: 03-057469

(22)Date of filing:

20.03.1991

(71)Applicant:

FUJITSU LTD

(72)Inventor:

KAI JUNICHI

YASUDA HIROSHI WATANABE YOSHIO

(54) CHARGED PARTICLE BEAM ALIGNER AND CHARGED PARTICLE BEAM EXPOSURE METHOD

(57)Abstract:

PURPOSE: To set an optimum movement speed in a real-time manner by a method wherein the movement speed of a stage is adjusted fine according to the deflecting position of a charged particle beam in the movement direction of the stage within a drawable range.

CONSTITUTION: By means of a comparison circuit 61, a deflecting position Y1out by an electromagnetic deflector is compared with reference positions A to D within a drawable range. When the deflecting position Y1out is situated on the upstream side with reference to the reference position B as a result of this comparison, the movement speed of a stage is quickened by using a DSP 62. When it is situated on the downstream side of the reference position C, the movement speed of said stage is slowed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

(19) []本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特閉平4-291913

(43)公開日 平成4年(1992)10月16日

(51)Int.Cl. ⁵ H 0 1 L 21/027	識別記号	庁内整理番号 7013-4M 7013-4M 7013-4M 7013-4M	F I	技術表示箇所		
			H01L	21/30	3 1 1	1 J
					341	
					341	
					341	L
				審査請求 オ	詩求 請求	頁の数5(全 18 頁)
(21)出願番号	特顧平3-57469	今顧平3-57469 (71)出願人 000005223				
				富士通株式	会社	
(22) 出願日	平成3年(1991)3月20日			神奈川県川	崎市中原区_	上小田中1015番地
			(72)発明者	甲斐 潤一	•	
			1	神奈川県川	崎市中原区	上小田中1015番地
				富上通株式	会社 内	
			(72)発明者	安田 洋		
				神奈川県川	「崎市中原区」	L小田中1015番地
				富士通株式	会社内	
			(72)発明者	渡辺 義雄	<u>l</u>	
				神奈川県川	崎市中原区_	上小田中1015番地
			1	富士通株式	会社内	
			(74)代理人	弁理士 井	:桁 首一	

(54) 【発明の名称】 荷電粒子線露光装置、及び荷電粒子線露光方法

(57)【要約】

【目的】 本発明は荷電粒子線露光装置、及び荷電粒子線露光方法に関し、可播画範囲におけるステージ移動方向の荷電粒子線の偏向位置に応じてステージの移動速度を微調整することにより、リアルタイムで最適な移動速度を設定することを目的としている。

【構成】 比較回路61によって電磁偏向器による偏向位置Y1outと可描面範囲の基準位置A~Dとを比較する。比較の結果、偏向位置Y1outが基準位置Bに対して上流側に位置する場合はDSP62によって、ステージの移動速度を速め、基準位置Cの下流側に位置する場合は該ステージの移動速度を遅くする。

ステージ関御杯の一実施例を示す画路図

【特許請求の範囲】

【請求項1】 荷電粒子線を照射する荷電粒子線照射器 と、該荷電粒子線を所定の可措画範囲に偏向する電磁偏 向器と、蘇光対象物を載置して該蘇光対象物が可描画範 囲内を通過するように移動するステージと、を備え、前 記露光対象物の露光範囲を複数本の帯状領域に分割し、 該 状領域の長手方向の一端側から他端側に向けて荷電 粒子線を偏向して所望のパターンを描画する荷電粒子線 露光装置において、前記電磁偏向器によるステージ移動 方向の偏向位置と前配可描画範囲におけるステージ移動 10 方向の基準位置とを比較する比較回路と、この比較結果 に基づいて偏向位置が可描画範囲の基準位置に対してス テージ移動方向の上流側に位置するときは前記ステージ の移動速度を速め、偏向位置が可描画範囲の基準位置に 対してステージ移動方向の下流側に位置するときは該ス テージの移動速度を遅くするステージ速度制御部と、を 備えたことを特徴とする荷電粒子線露光装置。

【蘭求項2】 可描画範囲の基準位置を上流側と下流側 にそれぞれ設定したことを特徴とする請求項1の荷電粒 子線露光装置。

【翻求項3】 荷電粒子線を照射する荷電粒子線照射器と、該荷電粒子線を所定の可描画範囲に偏向する電磁偏向器と、離光対象物を載置して該露光対象物が可描函範囲内を通過するように移動するステージと、を備え、前記露光対象物の露光範囲を複数本の帯状領域に分割し、該帯状領域の長手方向の一端側から他端側に向けて荷電粒子線を偏向して所望のパターンを描画する荷電粒子線露光装置において、前記電磁偏向器によるステージ移動方向の偏向位置を所定時間毎に積分する積分回路と、該積分値に基づいて前記ステージの移動速度を変更するス 30 テージ速度制御部と、を備えたことを特徴とする荷電粒子線露光装置。

【請求項4】ステージ速度制御部におけるステージ速度 の変更量に上限を設けたことを特徴とする請求項3の荷 電粒子線爾光装置。

【請求項5】ステージ上に載置された露光対象物の露光 領域を複数の帯状領域に分割し、該ステージを連続的に 移動させながら所定の可描画範囲内にて該帯状領域毎に 長千方向の一方側から他方側に向けて荷電粒子線を偏向 して所望のパターンを播画する荷電粒子線露光方法にお いて、前記荷電粒子線のステージ移動方向における偏向 位置を監視して、該偏向位置に応じて前記ステージの移 動速度を可変することを特徴とする荷電粒子線露光方 法

【発明の詳細な説明】

[1000]

【産業上の利用分野】本発明は、電子ビーム露光を高速 高精度で行うことを可能とする荷電粒子線露光装置、及 び荷電粒子線露光方法に関する。

【0002】近年、ますますIC (Integrated Circuí 50

i) の集積度と機能が向上して計算機、通信装置、機械制御等、広く産業全般に渡る技術の進歩の核技術としての役割が期待されている。I Cは2年から3年で4倍の高集積化を達成しており、例えばDRAM (Dynamic Random-Access-Memory) では1 M、4 M、16M、64M、256M、1 Gとその集積化が進んでいる。このような高集積化はひとえに微細加工技術の進歩によっており、取り分け、光技術は 0.5μmの微細加工が可能になるまでに進歩を続けている。

2

0 【0003】しかし、光技術の限界は 0.4μm程度にあ り、取り分け、コンタクトホールの窓開けや下層のパタ ーンとの位置合わせ等の精度において、0.15μm以下の 精度を確保することが、非常に困難になりつつある。

【0004】それに対して電子ビームを代表とする荷電 粒子線を用いる露光方法が、これ以上の微細加工を高信 類かつ高速、高精度の位置合わせまで含めて、安定に遂 成できる方法として注目されている。

【0005】以下に、荷電粒子線を用いた露光方法を説明する。図17は荷電粒子線により露光される試料を示す 20 平面図である。図において、ウエハまたはガラス乾板上に複数のチップ10が並んでいる。このチップ10は約2mm 口のセル11を複数個集めたものであり、露光時には所定のステージ上に報置され矢示のステージ移動方向に移動される。このセル11をステージ移動方向に一列に並べたものをフレーム12と称し、ステージを連続的に移動させながらフレーム単位に露光が行われる。1個のセル11は約100mm口のサプフィールド13により形成されており、サプフィールド13をステージ移動方向と直交する方向に並べた帯状領域をパンド14と呼ぶ。

【0006】このような試料に対して行われていた従来 の荷電粒子線による露光方法を以下に説明する。荷電粒 了級として電子ビームを用いた露光は、前述したように 複数のセル11をステージ移動方向に一列に配置したフレ ーム単位に実施される。フレーム12においてはセル11各 個を1つの露光範囲とし、さらにセル11内のバンド14毎 に露光処理を行う。すなわち、約2㎜□のセル11の全域 をカパーするメインデフレクタ(電磁偏向器、偏向範囲 ±1000 µm) によって、パンド14毎にステージ移動方向 と直交する方向に電子ビームを偏向する。このとき、電 子ピームは、各サプフィールド13の中心位置に偏向され る。このように、メインデフレクタを扱りながら、かつ サプデフレクタ(静電偏向器、偏向範囲±50 μm) によ ってサブフィールド13内の微小範囲に電子ピームを偏向 する。そして、スリットデフレクタ(静電偏向器、例え ば最大3µm)により電子ピームサイズを所望のショッ トサイズに変化させながら、ショット15を形成し該ショ ット15の集まりであるパターン16を形成してパターン盤 光を実施する。この際、一つのバンド14内のバターン16 を全て露光できる時間内に、ステージがそのパンド幅分 (100 µm) 移動すれば、ステージ移動と露光処理時間

の同期が取れて無駄がない。

【0 0 0 7】 しかし、一般に I Cのパターン16には疎密 があり、各パンド14毎の露光時間は一定でない。ステー ジの移動速度が速過ぎると、メインデフレクタによる可 **揣画範囲をステージが通り過ぎてしまい(メインデフオ** ーバーフローという)露光できないバターン部分が発生 し、正常なパターンが描画できなくなる。また、ステー ジの移動速度が遅過ぎると、無駄時間が発生し、スルー ブットが低くなる。

[0008] そこで、適切なステージ移動速度で解光を 10 実施する必要があり、これを決定するのが重要な要素技 術となる。

[0009]

【従来の技術】図18は従来のステージ制御部の一例を示 すプロック図である。ステージはX軸、Y軸の直交座標 系において移動制御されるもので、例えばレーザ干渉計 等によりその位置座標がX-LASER、Y-LASERとして測定さ れる。このX-LASER、Y-LASERは速度制御部であるDSF (Digital Signal Processor) 20に入力される。DSP 20は、設定値X、Yに対するX軸、Y軸の移動速度指令 20 Vx、Vyを位置座標X-LASER、Y-LASERにより補正する。 補正後の移動速度指令は、DAC (Digital-to-Analog Converter) 21、AMP (amplifier) 22を介して、それ ぞれX軸、Y軸の移動用モータ23に出力される。

【0010】以下に、DSP20におけるステージ移動速 度の求め方を説明する。ステージ移動速度を決定するた めに、まずサブフィールド13毎のパターン16の数、ショ ット15の数を元に、パンド14毎の露光時間を計算する。 その上で、

(1) 最遅速度に設定する方法

各パンド毎の露光時間の中で最長の露光時間に合わせて 移動速度を設定し、一番時間のかかるバンドを露光する のに充分な移動速度でステージを移動する。

【0011】(2) 平均移動速度を見直して、移動速度を

セル11内のパンド14の平均移動速度を求め、パンド毎に 移動速度を見直し、その移動速度では可描画範囲内で露 光を終了できない場合に、移動速度を遅くする等の調整 をしながら、ステージ移動速度を設定する。このため に、サブフィールド13年のパターン16の数、ショット15 40 の数を元に、パンド毎の露光時間を計算する。その上 で、①セル11内で最長の露光時間に合わせて移動速度を 設定し、一番露光時間のかかるパンドを露光するのに充 分な移動速度でステージを移動する。この結果、セル11 において若干無駄時間は発生するが、メインデフオーバ ーフローすることなく露光はできる。②各パンド14毎の 健光時間からセル11内での平均移動速度を決め、これを 基準移動速度とし、可描画範囲(±1000 μm)内で全て のパンド14が露光できるように調整する。可描画範囲内 に入らなければ、基準移動速度を落とし、全てのバンド 50 対して上流側であるときは、ステージ速度制御部によっ

が露光できるようにステージ移動速度を決定する。 3各 セル11のステージ移動速度を求め、このステージ移動速 度からフレーム12内で共通なステージ移動速度を決定す

[0012]

【発明が解決しようとする課題】しかしながら、上記の ような従来の荷電粒子線の露光技術においては、ステー ジ移動速度を決定するために、以下のような問題があっ

(a) 予め、パンド14の数、サブフィールド13の数、パタ ーン16の数、ショット15の数を把握する必要があり、こ れらの数からステージ移動速度を計算しなければならな いため、処理時間が長くなる。

(b)速度算出時に設定した露光電流と、算出速度で実際 に移動したときに要する露光電流とが異なる場合がある が、このような場合には露光電流の変化に迫従できな い。その他、露光途中でのパラメータ変化に追従できな

(c) パターン16の疎密が大きいような場合、建度変化点 数が多くなりステージ移動速度が細かく変化する。移動 速度を緩やかに変化させるためには複雑な計算を要し、 処理時間が長くなる。

【0013】 [目的] そこで、本発明は、可播画範囲に おけるステージ移動方向の荷電粒子線の偏向位置に応じ てステージの移動速度を微調整することにより、リアル タイムで最適な移動速度を設定することができる荷電粒 子線露光装置、及び荷電粒子線露光方法を提供すること を目的としている。

[0014]

【課題を解決するための手段】上記目的達成のため、請 求項1または2の発明に係る荷電粒子線露光装置は、比 較回路によって電磁偏向器による偏向位置と可描画範囲 の基準位置とを比較する。比較の結果、偏向位置が基準 位置に対して上流側に位置する場合は、ステージ速度制 御部によって、ステージの移動速度を速め、下流側に位 置する場合は該ステージの移動速度を遅くする。

【0015】また、請求項3または4の発明に係る荷電 粒子線露光装置は、積分回路において電磁偏向器による ステージ移動方向の偏向位置を所定時間毎に積分し、ス テージ速度制御部において該積分値に基づいてステージ の移動速度を変更する。

【0016】また、請求項5の発明に係る荷電粒子線露 光方法は、荷電粒子線のステージ移動方向における偏向 位置を監視し、該偏向位置に応じてステージの移動速度 を可変する。

[0017]

【作用】上記構成を有する請求項1または2の発明に係 る荷電粒子線露光装置においては、比較回路によって倡 向位置と基準位置とが比較され、偏向位置が基準位置に

てステージの移動速度が加速され、下流側であるときは 酸ステージの移動速度が減速される。

[0018] また、請求項3または4の発明に係る荷電粒子線露光装置においては、積分回路によって電磁偏向器によるステージ移動方向の偏向位置が所定時間毎に積分され、該積分値に基づいてステージ速度制御部によりステージの移動速度が変更される。

【0019】また、請求項5の発明に係る荷電粒子線露 光方法においては、荷電粒子線のステージ移動方向にお ける偏向位置が監視され、該偏向位置に応じてステージ 10 の移動速度が可変される。

[0020]

【実施例】以下、本発明を図面に基づいて説明する。図 2 は本発明に係る荷電粒子線露光装置の一実施例を示す 図である。まず、構成を説明する。図2において、図18 に示した従来例に付された番号と同一番号は同一部分を 示す。パターンのデータは、CPU (Central Processi og Unit)30によって図示していないハードディスク等 から読み込まれ、前記サブフィールド15毎の位置座標 (Xm, Ym) がメインデフレクタ座標としてメインパッ 20 ファメモリ31に格納される。一方、1つのメインデフレ クタ座標毎に該当するサブフィールドの内部のパターン データが、サブデフレクタ座標としてサブバッファメモ リ32に格納される。そして、前記セル11単位の描画に先 立って、メインパッファメモリ31のメインデフレクタ座 標 (Xm, Ym) が読み出されて、メインデフ位置レジス 夕33に格納される。該当するサプフィールドのパターン データはサブバッファメモリ32から読み出されるが、こ の段階ではまだパターン発生回路34は起動しない。

【0021】メインデフ位置レジスタ33にメインデフレ 30 クタ座標 (Xm, Ym) が格納されると同時に、その瞬間 のステージ35の位置座標すなわち露光対象となるセル11 の中心位置座標(Xst, Yst)が、レーザ干渉計36のレ ーザーカウンタ37からステージ位置読込レジスタ38に格 納される (図3参照)。このステージ位置読込レジスタ 38に格納されたセル11の中心位置座標(Xst, Yst) と、ステージ目標値レジスタ39にあらかじめ格納されて いる前記セル11の中心があるべきステージ35の位置すな わち図3に示す可描画範囲40の中心位置(Xo, Yo)、 との差分値 (Δ X, Δ Y) が減算器41から出力される。 この差分値 (AX, AY) は、加算器42において前記メ インデフレクタ座標(Xm, Ym) と加算される。この加 算値は、メイン補正演算回路43にて補正されて、メイン デフレクタによる偏向位置 (Xlout, Ylout) が決定 される。

6

回路43は、加算値について、メインデフレクタ46の回転 誤差、メインデフアンプ45の偏向感度誤差を補正して、 偏向位置(X 1 out, Y 1 out)を出力する。従って、メ インデフDAC44への偏向位置(X 1 out, Y 1 out)セ ットストローポは、メインパッファメモリ31からメイン デフレクタ座標(X m, Y m) を読み出した後、一定時間 後に行われる。

【0023】一方、パターン発生回路34から出力されるサブデフレクタの駆動信号(偏向位置)は、前述したようなメインデフレクタ46の駆動ラインと同様に、サブ補正演算回路47、サブデフDAC48、サブデフアンブ49を介して、サブデフレクタ(静電偏向器、偏向範囲±50μm)50に伝達される。なお、サブデフレクタ50の駆動ラインにおいても、前配中心位置座標(Xst, Yst)がステージフィードパック補正演算回路51に入力されており、位置座標設差、サブデフレクタ50の回転誤差、サブデフアンブ49の偏向感度誤差を補正する信号がサブデフDAC52を介してサブデフアンブ49に印加されている。

【0024】以上のように、メインデフレクタ46及びサブデフレクタ50に偏向位置を与えることにより、電子ビーム銃(荷電粒子線照射器)53から照射された電子ビーム(荷電粒子線)を所定位置に偏向する。なお、以上のような偏向動作は、DSP55によりシーケンス制御されている。

【0025】ここで、本実施例で特徴的なのは、メインデフDAC44に送られる偏向位置(X1out, Y1out)と同一データ(または上位数ピット〔例えば8ピット〕)をステージ制御部56にも送っている点である。ステージ制御部56は、図1に示すように、DAC21及びAMP22により構成されるステージドライバ57を介して、ステージ35の移動用モータ23を駆動する。

【0026】図1は図2に示したステージ制御部56の一 実施例を示す回路図であり、請求項1または2記載の発 明に係る荷電粒子線露光装置の主要構成部である。図1 において、図2及び図18に示した番号と同一番号は同一 部分を示す。

【0027】ステージ制御部56において、切り替え器60は、入力される偏向位置(X1out, Y1out)について、ステージ移動方向のデータすなわちY1outだけを比較回路61に入力する。比較回路61は、この偏向位置Y1outと、前記可描画範囲40におけるステージ移動方向の基準位置とを比較する。基準位置としては、図4に示すA、B、C、D、あるいは可描画範囲40の中心位置Y0等がある。比較結果は、ステージ速度制御部であるDSP62に入力される。この比較結果に基づいてDSP62は、偏向位置Y1outが可措画範囲40の基準位置、例えば中心位置Yoに対して所定以上離れたステージ移動方向の上流側に位置するときは前記ステージ35の移動速度を速め、所定以上離れたステージ移動方向の下流側に位置するときけなステージ35の移動速度を速め、所定以上離れたステージ移動方向の下流側に位置するときけなステージ35の移動速度を速め、所定以上離れたステージ移動方向の下流側に位置するときなりませなステージ35の移動速度を運

【0028】以下、可描画範囲40で上流側基準位置をBとし、下流側基準位置をCとしたときの本実施例の動作を図5のフローチャートに従って説明する。なお、本実施例においては、ステージ35を-Y方向に移動して描画するものとする。

【0029】まず、DSP55からパターンデータ読み込み指示が出され(step1)、メインデフレクタ座標(二m、Ym) がメインパッファメモリ31に読み込まれる。

【0030】次に、ステージ位置競み込みパルスが出て、ステージ35の現在位置すなわち図3に示すセル中心 10 位置(Xst, Yst) がステージ位置読込レジスタ38に読み込まれる(step 2)。

【0031】続いて、減算器41において、該セル中心位置 (Xst, Yst) と可描画範囲40の中心位置 (Xo, Yo) との差分値 (Δ二, ΔY) を計算する (step 3)。

【0032】 次いで、加算器42において、上記メインデフレクタ座標(\square n、Yn)とステージ差分値(Δ 二、 Δ Y)とを加算し、メインデフレクタ46の偏向位置(Xi ont、Y1 out)を出力する(step 4)。

【0033】この偏向位置(X1out, Y1out)に対応 20 するサプフィールド内で、サプデフレクタ50によって行う偏向パターンをパターン発生回路34により発生し、サプデフレクタ50による偏向作業すなわち露光作業を開始する(step5)。

【0034】次に、1つのサブフィールド内の露光が終了するのを待機し(step6)、このサブフィールド内の露光が終了したら、step1に戻って次のメインデフデータを読み取る。以下、メインデフレクタ座標の全データ(1セル)の露光が終了するまでstep1からの動作を繰り返す(step7)。

【0035】一方、step4にて算出されたメインデフレクタ46の偏向位置(X1out, Y1out)は、前記ステージ制御部56にも山力される。ステージ制御部56におけるDSP62は、比較回路61においてステージ移動方向におけるメインデフレクタ46の偏向位置Y1outと、前記基準位置A~Dとを比較して、以下のようにステージ35の移動速度を可変する。すなわち、

(step 1 1) A < Y 1 out

NO……可描画範囲に未到達であるから、露光停止した状態でステージ85を移動させながら前記セル11が可描画範 40 囲40に入るまで待つ。

YES……露光作業開始。

(step 1 2) B<Y 1 out ≤A

YES……step 1 3 に進み、ステージ移動方向における速度 V y をあらかじめ決められている速度 v だけ上げる。 NO……step 1 4 に進む。

(step 14) C<Y 1 out≤B

YES……step 1 5 に進み、移動速度は変えず、一定の速度でステージ35を移動させる。

NO……step 1 6 に進む。

8

(step 16) D<Y 1 out ≤C

YES……step 1 7 に進み、ステージ移動方向における速度 V y をあらかじめ決められている速度 v だけ落す。

NO……step 1 8 に進む。

(step 18) Y1out≦D

NO……step 1 1 に戻る。

YES……可描画範囲40から偏向位置Y 1 outがオーバーしたため、露光中止(異常事態)。step 1 9 に進む。

(step 19) メインデフ・オーパーフローにより処理 を終了する。

【0036】ここで、ステージ連続移動について、図6~図15を使って説明する。前記ステージ35の移動により、セル11はY方向に図の上から下に移動するものとする。図6と図7ではまだ可描画範囲40に入っていないので、パターンは鬱光されない。

【0037】図8になって偏向位置Y1outが可描面範囲40に入り、初めて露光が開始される。以後、順に図9~図13と露光が実施される。

【0038】図14と図15の場合は、偏向位置Y1ou tが可描画範囲40を越えてしまい、かつステージが遠ざ かる方向なので、メインデフオーバーフローとなりエラ ーとなる。

【0039】ここで、本実施例においては、比較回路61によってメインデフレクタ46による偏向位置Yloutと可描画範囲40の基準位置A~Dとを比較し、比較の結果、偏向位置Yloutが基準位置Bに対して上流側に位置する場合は、DSP62によって、ステージ35の移動速度を速め、基準位置Cの下流側に位置する場合は該ステージ35の移動速度を遅くしているため、偏向位置Yloutが可描画範囲40の中心位置Yo近傍(C<B)に集中することになり、図14または図15に示すように、セル11が露光未了のまま可描画範囲40を越えてしまうことがない。このため、セル11の全選光時間に対応した速度制御をリアルタイムで実行することができ、ステージ35を常に適切な移動速度で移動することができる。従って、ロスタイムを低減でき、荷電粒子線の路光を高速に処理することができる。

【0010】また、本実施例において、メインデフレクタ46による偏向位置Y1outと可描画範囲40の中心位置Y0とを比較し、偏向位置Y1outが中心位置Y0に対して上流側に位置する場合は、ステージ35の移動速度を速め、中心位置Y0の下流側に位置する場合は該ステージ35の移動速度を遅くすることもできる。この場合も、前記同様の効果を得ることができる。

【0041】なお、本実施例においては、基準位置を設定し該基準位置に対する偏向位置Y1outの相対位置に応じてステージ移動速度を可変したが、例えば基準位置AまたはDから偏向位置Y1outまでの離間距離に応じてステージ移動速度を可変してもよい。

50 【0042】図16はステージ制御部の他の実施例を示

す回路図であり、請求項3または4記載の発明に係る荷 電粒了線個光装置の主要構成部である。

【0043】前記実施例では、基準位置A~Dの値と偏向位置Y1outとを比較したが、本実施例では、一定時間(例えば1ms)毎の偏向位置Y1outの積分値をもとに、ステージ移動速度を変更する。すなわち、積分回路70において、メインデフレクタ46によるステージ移動方向の偏向位置Y1outを、

により積分する。そして、DSP62において該積分値 △ Vに基づいて前記ステージ35の移動速度を変更する。

【0044】なお、 | ΔV | <V maxとし、ステージ移動速度の変更量に上限を設ける。この結果、速度変化(加速度)が小さくなり、ステージ移動速度を緩やかに変化させることができ、ギクシャクしたステージの動きを防止して、スムーズに露光することができる。

[0045] このように、本実施例においては、前配実施例と同様の効果を得ることができる上、可描画範囲内全域で速度制御することができ、またステージ35を滑ら 20かに移動することができる。

【0046】以上説明したことより明らかなように、請求項5記載の発明に係る荷電粒子線露光方法は、荷電粒子線のステージ移動方向における偏向位置Y1outを監視し、該偏向位置Y1outに応じて前記ステージ35の移動速度を可変するものである。本発明によれば、前記実施例で説明したように、リアルタイムで最適な移動速度を設定することができる。

【0047】なお、荷電粒子線として電子ビームを例示 したが、イオンビームを用いても構わない。

[0048]

【発明の効果】請求項1の発明に係る荷電粒了線解光装置では、電磁偏向器による偏向位置と可描画範囲の基準位置とを比較し、偏向位置が基準位置に対して上流側に位置する場合はステージの移動速度を速め、基準位置の下流側に位置する場合は該ステージの移動速度を遅くすることにより、ステージを常に適切な移動速度で移動することができ、荷電粒子線の露光を高速に処理することができる

【0049】請求項2の発明に係る荷電粒子線露光装置 40 では、電磁偏向器による偏向位置と可描面範囲に設定した上流側及び下流側の基準位置とを比較し、偏向位置が上流側基準位置に対して上流側に位置する場合は、ステージの移動速度を速め、下流側基準位置の下流側に位置する場合は該ステージの移動速度を遅くすることにより、ステージを常に適切な移動速度で移動することができる。

【0050】 請求項3の発明に係る荷電粒子線露光装置では、電磁偏向器によるステージ移動方向の偏向位置を 所定時間毎に積分し、該積分値に基づいてステージの移 50 動速度を変更することにより、ステージを常に適切な移 動速度で移動することができ、荷電粒子線の露光を高速

に処理することができる。 【0051】請求項4の発明に係る荷電粒子線構光装置では、ステージ速度の変更量に上限を設けることによ

10

り、速度変化を小さくでき、滑らかなステージ移動を実現することができる。 【0052】 請求項5の発明に係る荷電粒子線露光方法では、荷電粒子線のステージ移動方向における偏向位置

10 を監視して、該偏向位置に応じて前配ステージの移動速度を可変することにより、ステージを常に適切な移動速度で移動することができ、荷電粒子線の膨光を高速に処理することができる。

【図面の簡単な説明】

【図1】ステージ制御部の一実施例を示す回路図であ り、請求項1または2記載の発明に係る荷電粒子線露光 装置の主要構成部である。

【図2】本発明に係る荷電粒子線露光装置の一実施例を 示す図である。

り 【図3】セルと可描画範囲との位置座標を示す図である。

【図4】可描画範囲における基準位置を示す図である。

【図 5】図1及び図2における動作例を示すフローチャートである。

【図6】ステージ連続移動によるセルと可描画範囲の位置関係を示す図である。

【図7】ステージ連続移動によるセルと可描画範囲の位 置関係を示す図である。

【図8】ステージ連続移動によるセルと可描画範囲の位 30 置関係を示す図である。

【図9】ステージ連続移動によるセルと可描画範囲の位置関係を示す図である。

【図10】ステージ連続移動によるセルと可描画範囲の位 價関係を示す図である。

【図11】ステージ連続移動によるセルと可描画範囲の位 置関係を示す図である。

【図12】ステージ連続移動によるセルと可描画範囲の位置関係を示す図である。

【図13】ステージ連続移動によるセルと可描画範囲の位置関係を示す図である。

【図14】ステージ連続移動によるセルと可描画範囲の位置関係を示す図である。

【図15】ステージ連続移動によるセルと可描画範囲の位置関係を示す図である。

【図16】ステージ制御部の他の実施例を示す回路図であり、請求項3または4記載の発明に係る荷電粒子線露光装置の主要構成部である。

【図17】荷電粒子線により露光される試料を示す平面図である。

0 【図18】従来のステージ制御部の一例を示すブロック図

(7) 特開平4-291913

11

12

【符号の説明】

である。

11 セル (露光対象物)

40 可描画範囲

46 メインデフレクタ (電磁偏向器)

53 電子ビーム銃(荷電粒子線照射器)

56 ステージ制御部

61 比較回路

62 DSP (ステージ速度制御部)

70 租分回路

(図1)

ステージ制御部の一実施例を示す回路図

[図2] 本発明に係る荷電粒子線**露光装置**の一実施例を示す図

[図3]

セルと可描画範囲との位置座標を示す図

【図4】

可描画範囲における基準位置を示す図

[図5] 図1及び図2における動作例を示すフローチャート

[図6]

【図7】

[図8]

[図9]

【図10】

【図11】

[図12]

【図13】

【図14】

【図15】

(図16)
ステージ制御部の他の実施例を示す回路図

【図17】 荷電粒子線による解光される試料を示す平面図

【図18】 従来のステージ制御部の一例を示すブロック図

