匹配人和交通

滴滴出行.算法工程师.郭栋 http://dongguo.me

Facebook

Netflix

淘宝

世間

百度

美团

滴滴

匹配问题

	Facebook	Netflix	百度	淘宝	美团	滴滴
匹配对象	人	视频	广告	商品	服务	车(人)
匹配对象的 资源限制	无限制	无限制	弱限制	弱限制	弱限制	强限制 (独占)

如何匹配?

• 优化目标: 转化率

• 策略1: 相关性过滤+排序(大规模机器学习)?

• 策略2: 数学优化问题

匹配人和交通

• 核心目标: 最大化乘客的出行体验

• 背景:

- 出行方式多种多样(专车、出租车、快车(快车拼车)、 顺风车、大巴…)
- 供求常常不均衡,且在时空2个维度差异显著
- 乘客有自己的偏好
- 司机是博弈专家

滴滴生态

- 建立一个健康的出行生态
 - 产品导流
 - 动态价格
 - 智能补贴
 - 订单分配

订单如何分配?

• 不同业务线情况不一样

• 出租车

• 特点: 司机的弱控制性

• 目标: 最大化成交率

• 产品形态: 多轮播单, 梯度播单距离

• 策略: 整体匹配,组合优化,听抢率预估

定义

 $STR_{ij}(t)$:司机j在t秒之后抢订单i的概率

 $STR_{ij}(0)$:司机j抢订单i的概率(简化为 STR_{ij})

$$PSR(i, H_i) = 1 - \prod_{j=1}^{|H_i|} (1 - STR_{d_i}(t_{ij}))$$
: 订单 i 在播单历史 H_i 时被接单的概率

$$PSR(i,H_i)\cdot (1-CAN_i) = (1-\prod_{i=1}^{|H_i|}(1-STR_{d_i}(t_{ij})))\cdot (1-CAN_i):$$
 订单 i 在播单历史 H_i 时成交概率

优化目标

	o_1	 o_j	 o_N
d_1	x_11	 x_1j	 x_1N
d_i	x_i1	 x_ij	 x_iN
d_M	x_M1	 x_Mj	 x_MN

$$x_{ij} \in \{0, 1\}, \sum_{j=1}^{N} x_{ij} = 1, x_{ij} = 1$$
: 给司机 i 播送订单 j
 $Maximize \sum_{i=1}^{N} \{1 - [1 - PSR(i, H(i))] \cdot \prod_{j=1}^{M} [1 - x_{ij} \cdot STR_{ij}(0)]\} \cdot (1 - CAN_{i})$
 $Giving \ x_{ij} \in \{0, 1\}, \ \sum_{j=1}^{N} x_{ij} = 1 \ \forall \ i \in \{1, 2, ..., M\}$

技术总结

• 策略上

- 基于Spark的大数据处理和分布式模型训练自动化流程
- STR预估: 十亿级别样本, Logistic Regression + L-BFGS
- 在线学习,深度学习
- 优化求解: O(m*n)

• 架构上

- 分布式分单引擎: 十万订单十万司机的1s匹配
- 分单全流程的track和监控

其它总结

- 从整体统筹策略设计
- 了解真正的业务目标(知道痛点)
- 算法策略 + 产品策略 + 运营策略
- 简单好过复杂

欢迎加入滴滴

- 和优秀的人一起做有价值的事
- 内推: 简历至 guodong@didichuxing.com