Initial Results

TeeJet Adaptive Controls Research Project 2020

Objective: Designing a reference-tracking control mechanism for the plant

Conclusions:

• The system was originally identified on a sampling time 10 [ms] unlike the original data which gathered at 50 [ms]. The data, original state space, new state space are plotted in the following figure. It is noted how the data do not represent the dynamics and also how far the original state space model.

figure 1: Model Verification

- The control gains K_1, K_2, K_3 are determined using the Q-Learning process.
- The main control signal is decided by

$$u^{Total}(k+1) = (\sum_{i=1}^{k} \tilde{u}(i)) + 48.00, e(0) = e(-1) = 0$$

• Three simulation scenarios are considered (Case 1: Fixed Reference, Case 2: Staircase Reference, Case 3: Sinusoidal Reference). The final gains coming from the learning process are given by Case 1:

$$K_1 = 0.0879, K_2 = 0.0895, K_3 = 0.0907$$

Case 2:

$$K_1 = -0.0563, K_2 = 0.1078, K_3 = 0.1209$$

Case 3:

$$K_1 = -0.0948, K_2 = 0.0976, K_3 = 0.1145$$

• The performance figures are listed as follows

figure 2: Tracking Response

figure 3: Control Signal

figure 4: Performance of the states

figure 5: Variations in the control law

Case 2: A stair-case reference is considered

figure 6: Tracking Response

figure 7: Control Signal

figure 8: Performance of the states

figure 9: Variations in the control law

figure 10: Tracking Response

figure 11: Control Signal

figure 12: Performance of the states

figure 13: Variations in the control law