第五章

		74 11 11
5. 1.	1.	虚拟存储管理系统的基础是程序的()原理。
	Α.	动态性
	В.	虚拟性
	С.	局部性
	D.	共享性
5. 1.	2.	下列关于虚拟存储的叙述中,正确的是()。
	Α.	虚拟存储只能基于连续分配技术
	В.	虚拟存储只能基于离散分配技术
	С.	虚拟存储容量只受外存容量的限制
	D.	虚拟存储容量只受内存容量的限制
5. 2.	1.	在请求分页存储管理中, 若所需页面不在内存中, 则会引起
()) 。	
	Α.	I/O 中断
	В.	缺段中断
	С.	越界中断
	D.	缺页中断
5. 2.	2.	在缺页处理过程中, OS 执行的操作可能是()。
	Ι,	修改页表 II、磁盘 I/0
	III	I、分配物理块
	Α.	仅I、II

B. 仅II

- C. 仅III
- D. I. II. III
- 5.2.3. 关于进程页表的页表项,基本分页存储管理方式和请求分页存储管理方式均须设立的字段为()。
 - A. 状态位
 - B. 访问字段
 - C. 修改位
 - D. 物理块号
- 5.2.4. 在请求分页系统中,页面分配策略与页面置换策略不能组合使用的是()。
 - A. 可变分配,全局置换
 - B. 可变分配,局部置换
 - C. 固定分配,全局置换
 - D. 固定分配,局部置换
- 5.2.5. 在请求分页存储管理中,缺页率与进程所分得的物理块数、
 - ()、进程页面流的走向等因素有关。
 - A. 页表的位置
 - B. 页面置换算法
 - C. 外存管理算法
 - D. 进程调度算法
- 5.3.1. 在一个请求分页系统中,系统为某进程分配了4个物理块, 考虑以下页面8、1、3、6、9、8、6、1、7、0,若使用最佳置换算

法,则访问页面9时会淘汰页面()。
A. 8
B. 1
C. 3
D. 6
5.3.2. 某系统的页面大小是 1KB, 某进程的大小是 4.9KB, 依次装入
如下逻辑地址访问存储器: 756、897、1044、1950、235、4000、1504、
2597、2896、4501、4890、3768。
(1) 写出进程的页面访问序列。
(2) 假设系统只有 2KB 内存可供程序使用, 假设当前时刻没有装入
任何该进程的页面,若采用 FIFO 页面置换算法,则会发生多少次缺
页中断?
(9) 某收 (9) 由的五面黑格質法本共 I DII 五面黑格質法 - 剛人學是
(3) 若将(2) 中的页面置换算法改为 LRU 页面置换算法,则会发生 多少次缺页中断?
5.3.3. 某计算机的逻辑地址空间和物理地址空间均为 64KB。若某讲

程最多需要 6 页数据存储空间, 页的大小是 1KB, OS 采用固定分配局

部置换策略为此进程分配 4 个物理块。进程执行到 T 时刻时,即将访问逻辑地址为 17CAH 的数据,此时页表如下所示:

页号	物理块号	装入时刻	访问位
0	7	130	1
1	4	230	1
2	2	200	1
3	9	260	1

(1) 该逻辑地址对应的页号是多少?

(2) 若采用 FIFO 页面置换算法,则该逻辑地址对应的物理地址是多少?

(3) 若采用 Clock 置换算法,则逻辑地址 17CAH 对应的物理地址是 多少? 当前页面按 3号页->2号页->1号页->0号页->3号页组成一个循环队列,且当前指向 2号页。

- 5.3.4. 下列因素中,影响请求分页系统有效(平均)访存时间的是 ()。
 - I、缺页率 II、磁盘读写时间
 - III、内存访问时间 IV、执行缺页处理程序的 CPU 时间
 - A. 仅II、III
 - B. 仅I、IV
 - C. 仅I、II、III
 - D. I. II. III. IV
- 5.3.5. 某系统采用改进型 Clock 页面置换算法,页表项中字段 A 为访问位, M 为修改位。按(A, M)形式可将页分为 4 类(0,0),(1,0),(0,1),(1,1),则该页面置换算法淘汰页的次序为()。
 - A. (0, 0), (0, 1), (1, 0), (1, 1)
 - B. (0, 0), (1, 0), (0, 1), (1, 1)
 - C. (0, 0), (0, 1), (1, 1), (1, 0)
 - D. (0, 0), (1, 1), (0, 1), (1, 0)
- 5. 3. 6. 请求分页管理系统中,系统采用固定分配局部置换策略,采用 LRU 页面置换算法。假设快表初始为空,地址转换时先访问快表,若快表未命中,再访问页表(忽略访问页表之后的快表更新时间)。假设某进程的页表如下:

页号	物理块号	存在位
0	101H	1

1		0
2	254H	1

系统给该进程分配的物理块数是 2。页面大小为 4KB,一次内存访问时间是 100ns,一次快表访问时间是 10ns,处理一次缺页的平均时间是 108ns(已含更新快表和页表时间)。设有逻辑地址访问序列 2362H、1565H、25A5H,请问:

- (1) 依次访问上述 3 个逻辑地址, 各需要多少时间?
- (2) 基于上述访问序列,逻辑地址 1565H 对应的物理地址是多少?

5.4.1. 某进程访问页面的页号如下:

若工作集的窗口大小为 6,则在 t 时刻的工作集为()。

- A. {6, 0, 3, 2}
- B. $\{2, 3, 0, 4\}$
- C. $\{0, 4, 3, 2, 9\}$

- D. $\{4, 5, 6, 0, 3, 2\}$
- 5.4.2. "抖动"是指在请求分页系统中,由于()设计不当或者进程分配的物理块数太少,刚被淘汰的页面很快又被调入内存,如此反复。
 - A. 进程调度算法
 - B. 磁盘调度算法
 - C. 作业调度算法
 - D. 页面置换算法

第六章

6.1.1. 计算机 I/O 控制方式主要有()、()、()和 I/O 通道 控制方式等 4 种。

- 6.1.2. 从设备的共享属性角度来讲,系统设备可划分为()。
 - A. 字符设备和块设备
 - B. 独占设备和共享设备
 - C. 逻辑设备和物理设备
 - D. 高速设备、中速设备和低速设备
- 6.2.1. 为解决由通道不足所造成的瓶颈问题,可采取()技术。
 - A. 字节多路通道
 - B. 数组多路通道
 - C. 数组选择通道

- D. 多通路2. 为了缓和 CPU ³
- 6. 2. 2. 为了缓和 CPU 和 I/O 设备速度不匹配的矛盾,提高 CPU 和 I/O 设备的并行性,现代 OS 实现 I/O 设备与 CPU 之间的数据交换时几乎都用到了()。
 - A. 临界区
 - B. 缓冲区
 - C. 对换区
 - D. 工作集
- 6.3.1. 中断处理的正确流程为()。
 - (1) 转入对应的中断处理子程序:
 - (2) 保护被中断进程的 CPU 现场环境;
 - (3)恢复被中断进程的 CPU 现场环境;
 - (4) 执行中断处理子程序。
 - A. (1) (2) (3) (4)
 - B. (2) (1) (3) (4)
 - C. (2) (1) (4) (3)
 - D. (1) (4) (2) (3)
- 6.4.1. (多选题)一般而言,设备驱动程序的功能应包括()。
- A. 检查用户 I/O 的请求合法性,了解设备工作状态、传递操作 控制参数并设置工作方式
- B. 接收来自设备无关性软件层的命令和参数,并将其转化为与设备相关的低级操作序列

- C. 根据设备状态阻塞请求进程或发出 I/O 命令启动设备
- D. 及时响应和处理源自设备控制器的中断请求
- 6.4.2. (多选题)就 I/O 控制方式而言, () 支持内存和外设之间进行直接的数据传输。
 - A. 使用轮询的可编程 I/0 方式
 - B. 使用中断的可编程 I/0 方式
 - C. 直接存储器访问方式
 - D. I/O 通道控制方式
- 6.4.3. 关于 I/O 控制方式, () 控制方式使对 I/O 操作的组织和数据的传送能最大限度地独立运行而无需处理机干预。
 - A. 使用轮询的可编程 I/0
 - B. 使用中断的可编程 I/O
 - C. 直接存储器访问
 - D. I/O 通道
- 6.5.1. 为提高 OS 自身的可适应性和可扩展性,现代 OS 通过引入()的概念实现了设备独立性。
 - A. 共享设备
 - B. 循环缓冲
 - C. 独占设备
 - D. 逻辑设备
- 6.5.2. (多选题)为了实现设备的独立性,须从如下几方面着手()。
 - A. 引入并区分物理设备和逻辑设备这两个概念

- B. 在应用程序中须使用逻辑设备名来请求和使用某类设备
- C. 在应用程序中须使用物理设备名来请求和使用某类设备
- D. OS 应具备把逻辑设备名转化为物理设备名的功能
- 6.6.1. 通过硬件和软件的功能扩充,把原来独占的设备改造成若干用户所共享的设备,这种设备称为()。
 - A. 存储设备
 - B. 系统设备
 - C. 虚拟设备
 - D. 用户设备
- 6.6.2. 下列关于 SP00Ling 技术的叙述中,错误的是()。
 - A. 需要外存的支持
 - B. 需要多道程序设计技术的支持
 - C. 可以让多个作业共享一台独占设备
 - D. 由用户作业控制设备与 I/O 井之间的数据传送
- 6.7.1. 在设备管理中,引入缓冲的主要原因不包括()。
 - A. 缓和处理机和外设之间访问速度不匹配的矛盾
 - B. 缓和处理机和内存之间访问速度不匹配的矛盾
 - C. 减少处理机的中断频率,放宽处理机中断响应时间的限制
 - D. 提高处理机和外围设备之间的并行性
- 6.7.2. 设系统缓冲区和用户工作区均采用单缓冲区,从外设读入 1 个数据块到系统缓冲区的时间为 100 μs ,从系统缓冲区读入 1 个 数据块到用户工作区的时间为 5 μs , CPU 对用户工作区中的 1 个数

据块进行分析的时间为 90 µs。进程从外设读入并分析 2 个数据块的最短时间是多少?

- 6.8.1. 用户程序发出磁盘 I/O 请求后,系统的处理流程是:用户程序->系统调用处理程序->设备驱动程序->中断处理程序。其中,用于计算数据所在磁盘的柱面号、磁道号、扇区号的程序是()。
 - A. 用户程序
 - B. 系统调用处理程序
 - C. 设备驱动程序
 - D. 中断处理程序
- 6.8.2. 磁盘访问时间包括包括()。
- 6.8.3. 某文件占 10 个磁盘块, 现要把该文件所占的磁盘块逐个地读入内存缓冲区, 并送往用户区进行分析, 假设一个缓冲区与一个磁盘块大小相同, 把一个磁盘块读入缓冲区的时间为 100 μs, 将缓冲区的数据传送到用户区的时间是 50 μs, CPU 对一块数据进行分析的时间为 50 μs。在单缓冲区和双缓冲区结构下, 读入并分析完该文件所需的时间分别是多少?

6.8.4. 磁盘请求服务队列中要访问的磁道分别为38、6、37、100、

14、124、65、67, 磁头上次访问了 20 磁道, 当前处于 30 磁道上, 试采用 FCFS、SSTF 和 SCAN 调度算法, 分别计算磁头移动的磁道数。

- 6.8.5. 下列磁盘调度算法中,不会导致磁臂粘着的是()。
 - A. FCFS 调度算法
 - B. SSTF 调度算法
 - C. SCAN 调度算法
 - D. CSCAN 调度算法
- 6. 8. 6. 假设计算机系统采用 CSCAN 磁盘调度策略,使用 2KB 的内存空间记录 16384 个磁盘块的空间状态。
 - (1) 请说明如何进行磁盘块空闲状态的管理。

(2)设某单面磁盘的旋转速度为6000r/min。每个磁道有100个扇区,相邻磁道间的平均移动时间为1ms。若在某时刻,磁头位于100号磁道处,并沿着磁道号增大的方向移动,磁道号请求队列为50、90、30、120。对请求队列中的每个磁道均须读取1个随机分布的扇

区,则读完这些扇区共需多少时间。

第七章

- 7.2.1. 逻辑文件是()的文件组织形式。
 - A. 在外部设备上
 - B. 从用户观点出发
 - C. 虚拟存储
 - D. 目录
- 7.2.2. 数据库文件的逻辑结构形式是()。
 - A. 字符流式文件
 - B. 档案文件
 - C. 记录式文件
 - D. 只读文件
- 7.2.3. 根据文件的逻辑组织可知,下列文件中()是记录文件。
 - A. 堆文件
 - B. 索引文件
 - C. 分区文件
 - D. 链接文件
- 7.2.4. (多选题)下列选项中,用于描述文件逻辑结构的是()。

- A. 记录式文件
- B. 流式文件
- C. 库文件
- D. 系统文件
- 7.2.5. 对于包含 40000 条记录的主数据文件,采用索引顺序文件组织方式,平均检索效率可提高到顺序文件组织方式的多少倍?

- 7.2.6. 已知 yourfile 文件的逻辑结构是由定长记录组成、按记录号排序的顺序文件,记录长度为 128B。其中物理结构采用了顺序文件结构(即逻辑上连续的记录存放在连续的磁盘块中),文件的起始地址为 200 号磁盘块,磁盘块长 512B。假设 yourfile 文件已经打开,要从打开的 yourfile 文件中读出 18 号记录(从 0 开始编号),请问:
 - (1) 启动磁盘的次数是多少? 每次读的磁盘块号是多少?

(2) 块内位移量是多少?

7. 3	. 1.	在文件系统中,文件访问控制信息所被存储的合理位置是()。
	Α.	FCB
	В.	文件分配表
	С.	用户口令表
	D.	系统注册表
7. 3	. 2.	在一个文件被用户首次打开的过程中, OS 需要做的是()。
	Α.	将文件内容读到内存中
	В.	将 FCB 读到内存中
	С.	修改 FCB 中的读/写权限
	D.	将文件的数据缓冲区首指针返回给用户进程
7. 3	. 3.	使用绝对路径名访问文件是指从()开始按目录结构访问某
个文	て件	•
	Α.	当前目录
	В.	用户主目录
	С.	根目录
	D.	父目录
7. 3	. 4.	采用多级目录结构后,不同用户文件的文件名()。
	Α.	应该相同
	В.	应该不同
	С.	相同或不同均可
	D.	不受系统约束
7.4	. 1.	就文件的共享方式来说,()会在文件主删除其共享文件后

留下悬空指针。

- A. 连访法
- B. 基于索引结点的共享方式
- C. 绕弯路法
- D. 基于符号链接的共享方式
- 7.4.2. 利用()实现文件共享时,只有文件主才拥有其索引结点的指针,而共享同一文件的其它用户仅拥有对应文件的路径名,故不会在文件主删除其共享文件后留下悬空指针。
 - A. PCB
 - B. 共享存储器
 - C. 索引结点
 - D. 符号链接
- 7.4.3. 关于文件共享方式,不论是基于索引结点的共享方式还是基于符号链接的共享方式,均存在()。
 - A. 遍历文件系统时时多次遍历共享文件的问题
 - B. 文件主删除共享文件后留下悬空指针的问题
- C. 非文件主的其它用户访问文件时访问时间开销额外增大的问题
- D. 为每个文件共享用户额外配置索引结点导致空间开销加大的问题

第八章

8.1.1. 按文件的物理结构可将文件分成()。

A. 数据文件、命令文件、文本文件 B. 命令文件、库文件、索引文件 C. 连续文件、链式文件、索引文件 D. 输入文件、输出文件、随机文件 8.1.2. 在文件系统中, 若文件的物理结构采用连续结构,则 FCB中 有关文件的物理位置的信息包括()。 X、首块地址 Y、文件长度 Z、索引表地址 A. X, Y B. X, Z C. Y, Z D. X, Y, Z 8.1.3. 若 FAT16 文件系统的簇和扇区大小分别为 2KB 和 512B,则其 所支持的磁盘分区容量为()。 A. 32MB B. 128MB C. 256MB D. 512MB 8.1.4. 某文件系统的簇和扇区大小分别为 1KB 和 512B, 若一个文件 大小为 1026B,则系统分配给该文件的磁盘空间的大小是()。 A. 1026B B. 1536B C. 1538B

- D. 2048B
- 8.1.5. 假定磁盘的盘块大小为 1KB, 若采用 FAT 文件系统进行管理, FAT 表项大小要求为半字节的整数倍,且 FAT 占用的空间要求尽可能小,
 - (1) 当磁盘分区容量为800MB时,其FAT占用多少存储空间?

(2) 当磁盘分区容量为 2GB 时, 其 FAT 占用多少存储空间?

8.1.6. 某 FAT 文件系统的簇大小为 4KB。假定目录树如下: 目录 dir 下有只有目录 dir1,目录 dir1下只有两个文件 file1 和 file2。各文件占用的簇号及顺序如下:

文件名	簇号
dir	1
dir1	48
file1	100、106、108
file2	200、201、202

(1) 请给出每个目录文件的目录项(只要给出文件名和簇号)。

(2) 若 FAT 的每个表项仅存放簇号,占 2B,则 FAT 的最大长度为多少字节?该文件系统支持的文件长度最大是多少?

(3) 系统通过目录文件和 FAT 实现对文件的按名存取,请说明 file1的 106、108两个簇号分别放在 FAT 的哪个表项中?

(4) 假设 FAT 和 dir 目录文件已读入内存,若要将文件 dir/dir1/file1的第5000个字节读入内存,则要访问哪几个簇?

文件名	簇号
dir	1
dir1	48
file1	100、106、108
file2	200、201、202

- 8.1.7. 采用直接存取方法来读/写硬盘上的物理记录时,效率最低的文件是()。
 - A. 连续文件
 - B. 索引文件
 - C. 链接文件
 - D. 索引连续文件
- 8.1.8. 在下列文件的物理结构中,适合随机访问且易于文件扩展的是()。
 - A. 连续结构
 - B. 索引结构
 - C. 隐式链接结构

- D. 显示链接结构
- 8.1.9. 为支持 CD-ROM 中视频文件的快速随机播放,播放性能最好的文件数据块组织方式是()。
 - A. 连续结构
 - B. 链接结构
 - C. 直接索引结构
 - D. 多级索引结构
- 8.1.10. 设文件索引结点中有7个地址项,其中4个地址项为直接地址索引,两个地址项为一级间接地址索引,1个地址项为二级间接地址索引,每个盘块号和地址项都占4B,若索引块和盘块的大小都是256B,则可表示的单个文件的最大长度是()。
 - A. 33KB
- B. 519KB
- C. 1057KB
- D. 16513KB
- 8.1.11. 在文件索引结点中有 10 个直接地址项, 一级间接地址项和二级间接地址项各一个, 每个盘块号和地址项都占 4B, 若索引块和盘块的大小都是 1KB, 则把该文件偏移量(按字节编址)为 1234 和307400 处所在的盘块读入内存,访问磁盘的次数分别是()。
 - A. 1, 2
- B. 1, 3
- C. 2, 3
- D. 2, 4
- 8.1.12. 某文件系统采用混合索引方式组织文件的存储空间,盘块和索引块大小都是 4KB,每个目录项中包括 13 个地址项,其中 0-9 是直接地址,10 为一级间址,11 为二级间址,12 位三级间址。已知一

个地址占 4B, 现有文件 A、B、C, 它们的大小分别为 5KB、40.5KB、4138KB, 若不计目录项,则请问系统分别给这些文件分配多大的磁盘空间?

- 8.1.13. 某文件系统采用索引结点存放文件的属性和地址信息,簇的 大小是 4KB,每个文件索引结点占 64B,每个目录项中包括 11 个地址 项,8 个直接地址,一级间址、二级间址和三级间址各一个。已知一 个地址占 4B。
- (1) 该文件系统能支持的最大文件长度是多少? (给出计算表达式即可)

(2) 文件系统采用 1M 个簇存放文件索引结点,用 512M 个簇存放文件数据。若一个图像文件的大小为 5600B,则该文件系统最多能存放多少个这样的图像文件?

(3) 若文件 F1 的大小为 6KB, 文件 F2 的大小为 40KB, 则该文件系统获取 F1 和 F2 最后一个簇的簇号需要的时间是否相同?
8.2.1. 现有容量为 10G 的磁盘分区,磁盘空间以簇为单位进行分配,
簇的大小为 4KB, 若采用位示图法管理该分区的空闲空间,则存放该
位示图所需簇的个数为()。
A. 80 B. 320
C. 80K D. 320K
8.2.2. 空闲链表法可用于()。
A. 磁盘的空闲盘块组织
B. 磁盘的设备调度
C. CPU 调度算法
D. 请求分页虚拟管理中的页面置换
8.2.3. 文件系统采用位示图法表示磁盘空间的分配情况,位示图存
放在磁盘的 32-127 号盘块中,每个盘块占 1024B,盘块和块内字节
均从0开始编号。假设要释放的盘块号为409612,则位示图中要修
改的位所在盘块号和块内字节序号分别是()。
A. 81, 1 B. 81, 2
C. 82, 1 D. 82, 2
8.2.4. 关于文件存储空间的管理方式, ()要使用空闲盘块号栈。

- A. 空闲表法
- B. 空闲链表法
- C. 位示图法
- D. 成组链接法
- 8.3.1. 在系统内存中设置磁盘缓冲区的主要目的是()。
 - A. 减少磁盘 I/0 的次数
 - B. 减少平均寻道时间
 - C. 提高磁盘速度的可靠性
 - D. 实现设备无关性
- 8.3.2. 下列优化方法中,可以提高文件访问速度的是()。
 - I. 提前读

- II. 为文件分配连续的簇
- III. 延迟写
- IV. 采用磁盘高速缓存

- A. 仅I、II
- B.仅II、III
- C. 仅 I、III、IV
- D. I. II. III. IV