生物实验设计 第三章 概率和概率分布

王超

广东药科大学中医药研究院

Email: wangchao@gdpu.edu.cn

2022-09-13

第三章 概率与概率分布

目的和要求

为什么学习概率?

- 进行资料统计的目的不在于描述部分样本
- 而是通过样本统计数来推断数据总体的参数(统计推断)
- 统计推断的基础是: 概率和概率分布

学习要求

• 掌握: 事件、频率、概率的定义

● 熟悉: 正态分布

第一节 概率基础知识 一、概率的概念

(一)事件

在一定条件下,某种事物出现与否被称为是事件。

- 确定事件:
 - 必然事件 *U*: 在一定条件下必然出现的现象。
 - 不可能事件 V: 在一定条件下必然不出现的事件。
- 随机事件:
 - 有可能发生, 也可能不发生。

第一节 概率基础知识 一、概率的概念

(二) 频率

• 在 n 次试验中,事件 A 出现的次数 m 称为事件 A 出现的频数,比值 $\frac{m}{n}$ 称为事件 A 出现的频率

$$W(A) = \frac{m}{n}, 0 \le W(A) \le 1$$

为测定某批玉米种子的发芽率,分别取 10,20,50,100,200,500,1000 粒种子。在相同条件下进行发芽试验:

Table 1: 某批种子的发芽试验结果

种子总数	发芽种子总数	种子发芽率
10	9	0.900
20	19	0.950
50	47	0.940
100	91	0.910
200	186	0.930
500	459	0.918
1000	920	0.920

第一节 概率基础知识 一、概率的概念

(三) 概率

• 假设在相同的条件下,进行大量重复试验,若事件 A 的频率稳定 地在某一确定值 p 的附近摆动,则称 p 为事件 A 出现的概率

$$P(A) = p = \lim_{x \to \infty} \frac{m}{n}$$

不可能完全准确得到 p, 在 n 充分大时, 频率 W(A) 作为 P(A) 的近似值。

- 概率的基本性质:
 - ① 任何事件的概率都在 0 和 1 之间 $0 \le P(A) \le 1$;
 - ② 必然事件的概率等于 1 P(U) = 1
 - ③ 不可能事件的概率等于 0 P(V) = 0

(一) 事件的相互关系

- 和事件
 - 事件 A 和事件 B 至少有一件发生而构成的新事件, A+B

 $A \cup B$

- (一) 事件的相互关系
 - 积事件
 - 事件 A 和事件 B 同时发生而构成的新事件, A·B

$A \cap B$

- 互斥事件
 - 事件 A 和事件 B 不能同时发生, A⋅B = V

- (一) 事件的相互关系
 - 对立事件
 - 事件 A 和事件 B 必有一个事件发生,但二者不能同时发生, $A \cap B = V, A \cup B = U, \bar{A} = B, \bar{B} = A$
 - 新生儿要么为男孩, 要么为女孩

(一) 事件的相互关系

- 独立事件
 - 事件 A 的发生与事件 B 的发生毫无关系
 - 独立事件群: 多个事件 $A_1, A_2, A_3, \dots, A_n$ 彼此独立
 - 条件概率: 当 A 发生时, B 发生的概率 P(B|A)
- 完全事件系
 - 多个事件 A_1,A_2,A_3,\cdots,A_n 两两相斥,且每次试验结果必然发生 其一

(二) 概率计算法则

- 乘法定理
 - 如果事件 A 和事件 B 为独立事件,则事件 A 与事件 B 同时发生的概率等于事件 A 和事件 B 各自概率的乘积,称为乘法定理。

$$P(A \cap B) = P(A) \cdot P(B)$$

- 推理: 如果 $A_1, A_2, A_3, \dots, A_n$ 彼此独立,则 $P(A_1 \cdot A_2 \cdot \dots \cdot A_n) = P(A_1) \cdot P(A_2) \cdot \dots \cdot P(A_n)$
- 如果是非独立事件,则 $P(A \cap B) = P(A) \cdot P(B|A)$

(二) 概率计算法则

- 加法定理
 - 互斥事件A 和 B 的和事件的概率等于事件 A 和事件 B 的概率之和,称为加法定理。

$$P(A \cup B) = P(A) + P(B)$$

- 推理 1: 如果 $A_1, A_2, A_3, \dots, A_n$ 为 n 个互斥事件,则其和事件的概 率为 $P(A_1 + A_2 + A_3 + \dots + A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$
- 推理 2: 对立事件 \bar{A} 的概率为 $P(\bar{A}) = 1 P(A)$
- 推理 3: 完全事件系和事件的概率等于 1
- 如果事件 A 和 B 不互斥,那需要减去两个事件的交集

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(二) 概率计算法则

 贝叶斯定理:事件 A 在事件 B 发生的条件下与事件 B 在事件 A 发生的条件下,它们两者的概率并不相同,但是它们两者之间存 在一定的相关性,并具有以下关系:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- 统计学两大学派: 贝叶斯学派和频率学派
- 推导过程:

$$\begin{split} P(A \cap B) &= P(B \cap A) \\ P(A) \cdot P(B|A) &= P(B) \cdot P(A|B) \\ P(A|B) &= \frac{P(B|A)P(A)}{P(B)} \end{split}$$

- 研究随机变量主要是研究变量的取值范围, 也就是取值的概率
- 随机变量的概率分布:随机变量的取值与取这些值的概率之间的 对应关系
- 随机变量的概率分布可以用分布函数表述
- 离散型变量的概率分布
 - 二项分布
 - 泊松分布
- 连续型变量的概率分布
 - 正态分布

(一) 离散型随机变量的概率分布

【复习】离散型变量/非连续变量:在变量数列中仅能取得固定数值,并且通常 是整数

- 离散型随机变量 x 所有可能的取值为 $x = x_i (i = 1, 2, \dots, n)$
- 对于任意一个 x_i ,都有一个相应的概率为 $p_i(i=1,2,\cdots,n)$

可以用下式表示为,

$$P(x = x_i) = p_i \quad (i = 1, 2, \dots, n)$$

• x_i 与 p_i 为数值,表示事件 "变量 x 取值为 x_i 时" 的概率等于 p_i 并且,

$$\sum_{i=1}^{n} p_i = 1$$

(二) 连续型随机变量的概率分布

【复习】连续变量:在变量范围内可抽出某一范围内的所有值,变量之间是连续的、无限的

- 对于连续型随机变量,可以通过分组整理成次数分布表
- 如果从总体中抽取样本的容量 n 相当大,则频率分布就趋于稳定, 近似地看成总体的概率分布
- 对连续型随机变量的次数分布表作直方图,直方图中同一间距内的频率密度是相等的
- 当 n 无限大,频率转化为概率,频率密度转化为概率密度,直方 图逼近光滑连续曲线
 - 概率密度曲线(曲线下的总面积为1)
 - 概率密度函数 f(x)

(二) 连续型随机变量的概率分布

鲢鱼体长(cm)

鲢鱼体长(cm)

(二) 连续型随机变量的概率分布

对于一个连续型变量 \times ,取值于区间内的概率即黄色阴影部分的面积,也就是概率密度函数 f(x) 的积分,即

$$P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} f(x) dx$$

第一节 概率基础知识 四、大数定律

当 n 足够大的时候,为什么可以用样本中的 W(A) 代替 P(A)? 大数定律是用来阐述大量随机现象的平均结果稳定性的一系列定律

- 伯努利大数定律
- 辛钦大数定律

样本容量越大,样本的统计数与总体参数之差越小

第一节 概率基础知识 四、大数定律

(一) 伯努利大数定律

• m 是 n 次独立试验中事件 A 出现的次数, p 是事件 A 在每次试验中出现的概率,对于任意小的正数 ϵ , 有:

$$\lim_{n \to \infty} P\left\{ \left| \frac{m}{n} - p \right| < \epsilon \right\} = 1$$

- 以上,P 为实现 $\left|\frac{m}{n}-p\right|<\epsilon$ 这一事件的概率,P=1 是必然事件。
- ullet n 无限大的情况下, $\frac{m}{n}$ 与理论概率 p 可以基本相等

第一节 概率基础知识 四、大数定律

(二) 辛钦大数定律

- 设一个随机变量 x_i ,是由一个总体平均数 μ 和随机误差 ϵ_i 构成 $x_i = \mu + \epsilon_i$
- 从总体中抽取 n 个随机变量构成一组样本,样本的平均数是

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} (\mu + \epsilon_i) = \mu + \frac{1}{n} \sum_{i=1}^{n} \epsilon_i$$

- 当样本容量 n 越来越大, $\frac{1}{n}\sum_{i=1}^n \epsilon_i$ 就越小,使得 \bar{x} 逼近 μ
- 样本容量越大,样本统计数与总体参数之差越小

第二节 几种常见的理论分布

随机变量的概率分布可以用分布函数来表述。

- 离散型变量的概率分布
 - 二项分布
 - 泊松分布
- 连续型变量的概率分布
 - 正态分布

第二节 几种常见的理论分布 一、二项分布

(一) 二项分布的概率函数

- 二项分布是一种离散型随机变量的分布。
 - 每次试验只有两个对立结果,A 和 $ar{A}$,出现的概率分别记为 p 和 q (q=1-p)。
 - 试验具有重复性和独立性。
 - ullet 重复性:每次试验条件不变,在每次试验中事件 A 出现的概率都是 p
 - 独立性:任何一次试验中事件 A 的出现与其余各次试验中出现的任何 结果无关。

P(x) 为随机变量 x 的二项分布,记为 B(n,p),概率分布函数为:

$$P(x) = C_n^x p^x q^{(n-x)}$$

其中, $C_n^x = \frac{n!}{x!(n-x)!}$, q = 1 - p。

重复实验 N 次,每次在 n 个试验中出现事件 A 为 x 的理论次数等于 $N\cdot P(x)$

第二节 几种常见的理论分布 一、二项分布

(二) 二项分布的的性状和参数

- 二项分布的形状由 n 和 p 两个参数决定
 - n 值不同的情况下, p 值较小的时候, 分布是偏倚的。 p=0.1, n=10 or 50 or 100

• p 值趋于 0.5 的时候,分布趋于对称(如何图形化?)

第二节 几种常见的理论分布 一、二项分布

(二) 二项分布的的性状和参数

- 二项分布的参数
 - 二项分布的平均数

$$\mu = np$$

• 二项分布的总体标准差

$$\sigma = \sqrt{npq}$$

第二节 几种常见的理论分布 二、泊松分布

- 很多事件的发生概率很小,但是样本容量很大,即 n 很大和 p 很 小
- 这是二项分布的特殊情况,即泊松分布
- 泊松分布的概率函数由二项分布推导得到:

$$P(x) = C_n^x p^x (1-p)^{(n-x)}$$

由于是二项分布,所以 $P(x) = np = \mu$,即 $p = \frac{\mu}{n}$:

$$P(x) = \frac{n!}{(n-k)! \cdot k!} (\frac{\mu}{n})^x (1 - \frac{\mu}{n})^{n-x}$$

考虑到 n 无限大, μ 和 x 相对较小,可以近似后得到:

$$P(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

其中 λ 是参数, $\lambda = np$; e 为自然对数, x 为正整数。

第二节 几种常见的理论分布 二、泊松分布

- 泊松分布的平均数、方差和标准差为
 - $\mu = \lambda$
 - $\sigma^2 = \lambda$
 - $\sigma = \sqrt{\lambda}$
- 对于泊松分布来说,分布函数形状由 λ 决定。

- 正态分布是一种连续型随机变量的概率分布
- 多数变量都围绕在平均值左右,由平均值到分布的两侧,变量数 逐渐减少
- 在统计理论和应用上最重要的分布
 - 试验误差的分布一般都服从于这种分布
 - 许多生物现象的计量资料也服从于这种分布
 - 正态分布还可作为离散型随机变量或其他变量的近似分布(中心极限定理)

(一) 正态分布概率密度函数

ullet 正态分布的概率密度函数根据二项分布的函数在 $n o \infty$ 时推导出

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

其中 μ 为总体平均数, π 为圆周率,e 为自然对数底

ullet 正态分布记为 $N(\mu,\sigma^2)$,表示平均数为 μ ,方差为 σ^2 的正态分布

(二) 正态分布特征

- 当 $x = \mu$ 时,f(x) 有最大值为 $\frac{1}{\sigma\sqrt{2\pi}}$
- 当 $x \mu$ 的绝对值相等, f(x) 值也相等
- $\frac{x-\mu}{\sigma}$ 的绝对值越大,f(x) 的值越小,逼近但不等于 0
- 正态分布曲线完全由参数 μ 和 σ 决定
- 正态分布在 $x = \mu \pm \sigma$ 处各有一个拐点
- 正态分布曲线在 $x \in (-\infty, \infty)$ 皆能取值 (x 取值的完全事件系)

(二) 正态分布特征

(三)标准正态分布

- μ 确定了分布曲线的中心位置
- σ 确定了分布曲线的变异度
- 对于 $N(\mu, \sigma^2)$ 来说,是一条曲线系
- 为了便于一般化应用,令 $\mu = 0, \sigma = 1$,则

$$f(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$$

(三) 标准正态分布

• 对于任何一个服从 $N(\mu,\sigma^2)$ 的随机变量,都可以通过 u 进行标准 化变换

$$u = \frac{x - \mu}{\sigma}$$

ullet u 为标准正态离差,表示离开平均数 μ 几个标准差 σ

第三节 统计数的分布

统计学研究的两个方向:

- 由总体到样本(一般到特殊)
 - 从总体到总体抽样的变异特点
- 由样本到总体(特殊到一般)
 - 从一系列样本的统计数推断总体
 - 统计推断

- 理论上、从总体抽取所有可能的样本、就能获得有关统计数变异的全部信息
- 部分抽样或者复置抽样(小的有限总体)
- 复置抽样的样本容量可以是无限的, 具有无限总体抽样的性质

近似正态总体: [3,4,5] $x \leftarrow c(3, 4, 5)$ x_var <- mean((x-mean(x))^2) #population</pre> x var ## [1] 0.6666667 x_sd <- sqrt(x_var) #population</pre> x sd ## [1] 0.8164966 x VAR <- var(x) #sampling x VAR ## [1] 1 x SD < - sd(x) #samplingx SD

[1] 1

以 n=2 作独立的放回式抽样

Var1	Var2	mean	var	sd
3	3	3.0	0.0	0.0000000
4	3	3.5	0.5	0.7071068
5	3	4.0	2.0	1.4142136
3	4	3.5	0.5	0.7071068
4	4	4.0	0.0	0.0000000
5	4	4.5	0.5	0.7071068
3	5	4.0	2.0	1.4142136
4	5	4.5	0.5	0.7071068
5	5	5.0	0.0	0.0000000

对以上数据列进行求和

	×
Var1	36.000000
Var2	36.000000
mean	36.000000
var	6.000000
sd	5.656854

- 样本平均数 \bar{x} 的平均数 $\mu_{\bar{x}} = \frac{36}{9} = 4 = \mu$
- 样本方差 s^2 的平均数 $\mu_{s^2}=\frac{6}{9}=0.6667=\sigma^2$
- 样本标准差 s 的平均数 $\mu_s=rac{5.6568}{9}=0.6285
 eq \sigma$

无偏估计值: 样本某一统计数的平均数等于总体的相应参数, 该统计数为总体相应参数的无偏估计值

第三节 统计数的分布 二、样本平均数的分布

样本容量 n=2 情况下样本平均数的概率分布

Var1	Freq
3	1
3.5	2
4	3
4.5	2
5	1

样本容量 n=4 情况下样本平均数的概率分布

第三节 统计数的分布 二、样本平均数的分布

样本平均数分布的性质:

- ullet 样本平均数分布的平均数等于总体平均数: $\mu_{ar x}=\mu$
- 样本平均数分布的方差等于总体方差除以样本容量,即: $\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$; 平均数标准误: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$
- 从正态总体 $N(N,\sigma^2)$ 抽样,样本平均数 \bar{x} 是一个正态分布 $N(\mu,\frac{\sigma^2}{n})$
- 如果不是正态总体,当样本容量 n 不断增大,样本平均数 \bar{x} 的分 布也接近正态分布 $N(\mu, \frac{\sigma^2}{n})$,这就是中心极限定理

无论何种分布,只要样本容量 $n \geq 30$,认为样本平均数的分布是正态分布,可以对样本平均数进行标准化 $u = \frac{\bar{x} - \mu}{\sqrt[\sigma]{\pi}}$

第三节 统计数的分布 三、样本平均数差数的分布

样本平均数差数分布的性质:

- 样本平均数差数的平均数等于总体平均数的差数: $\mu_{\bar{x_1}-\bar{x_2}} = \mu_{\bar{x_1}} \mu_{\bar{x_2}}$
- 样本平均数差数的方差等于总体方差除以各自样本容量之和: $\sigma^2_{x_1-x_2}=\sigma^2_{x_1}+\sigma^2_{x_2}$
- ullet 样本平均数差数的标准误: $\sigma_{ar{x_1}-ar{x_2}}=\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$

第三节 统计数的分布 四、t 分布

如果:

- 总体方差 σ^2 未知,且
- 样本容量不大 (n < 30) 的情况

则, $\frac{ar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$ 不再服从正态分布

这时候,样本平均数服从 df = n - 1 的 t 分布

t 分布

$$t = \frac{\bar{x} - \mu}{s_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$
$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

第三节 统计数的分布 四、t 分布

t 分布的特征

- t 分布曲线左右对称
- ullet 受到自由度 df = n-1 的制约,每个自由度都有一条曲线
- 和正态分布相比, t 分布的顶部偏低, 尾部偏高

df=1, 5, 15, 20, 25, 30, 50, 100

总结

- 介绍概率的基础知识
- ▶ 大数定律: 当 n 充分大,可以用样本统计数对总体参数做出估计
- 常见的理论分布(前两种分布在特殊情况下可以向正态分布逼近)
 - 二项分布
 - 泊松分
 - 正态分布