

Machine learning

Logistic Regression

Wouter Gevaert & Marie Dewitte

Inhoud

Introductie

Logistic regression

Evaluatie van een classifier

Introductie

Wat is classificatie?

Classificatie is een supervised learning techniek waarbij een getraind model niet geziene inputs toewijst aan één of meerdere gelabelde categorieën (classes)

- Gezichtsherkenning
- Nummerplaatherkenning
- Spam detectie
- Medische diagnoses
- Voorspelling of een klant op een advertentie zal klikken
- Kwaliteitscontrole

Female Male

Types van classifiers

Binairy (binomial) classifier

Verdeel de samples in twee verschillende klasses

Voorbeeld: bepaal of een kanker goedaardig of kwaadaardig is

Types van classifiers

Multiclass classifier

Verdeel de samples in drie of meerdere verschillende klasses

Voorbeelden: gezichtsherkenning, sentiment analyse

SENTIMENT ANALYSIS

Discovering people opinions, emotions and feelings about a product or service

Types van classifiers

Multilabel classifier

Er kunnen meerdere labels aan een sample toegewezen worden. Een sample kan tot meerdere klasses behoren

Voorbeelden: image content analysis, een film kan tot meerdere genres behoren.

Huis	Boom	Strand	Wolken	Bergen	Dieren
Ja	Ja	Nee	Ja	Nee	Nee

Voorbeeld

	rondheid	groenheid	appel
0	9	8	1
1	10	7	1
2	2	3	0
3	1	2	0
4	5	8	1
5	7	7	1
6	6	3	0
7	3	3	0
8	9	5	1
9	9	3	1
10	4	5	0
11	6	1	0
12	5	7	1
13	8	8	1
14	2	7	0

Voorspel of een stuk fruit een appel is op basis van vorm en kleur

features: rondheid en groenheid

target: appel: ja/nee

trainingset met 15 training examples

Classificatie

Bij classificatie is de output/target een (discrete) variabele / klasse

Voorbeeld

Waarom regressie geen goede optie is

Waarom regressie geen goede optie is

Waarom regressie geen goede optie is

Het model

We willen dat het model $h_{\theta}(x)$ voldoet aan

$$0 \le h_{\theta}(x) \le 1$$

- $h_{\theta}(x)$ = de geschatte kans dat y=1 bij input x
- Voorbeeld: $h_{ heta}(x)=0.80$ Het model is voor 80% zeker dat het om een appel gaat

Het model

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$y = 1$$
 als $h_{\theta}(x) \ge 0.5 \Rightarrow \theta^{T} x \ge 0$
 $y = 0$ als $h_{\theta}(x) < 0.5 \Rightarrow \theta^{T} x < 0$

Het model - interpretatie via voorbeeld appels

Het model is van de vorm: $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

met x_1 = rondheid en x_2 = groenheid

Veronderstel na training: $\theta_0 = -40, \ \theta_1 = 4, \ \theta_2 = 4$

Voorspel
$$y = 1$$
 als $-40 + 4x_1 + 4x_2 \ge 0$

Voorspel
$$y = 0$$
 als $-40 + 4x_1 + 4x_2 < 0$

Gegeven een rondheid van 8 en een groenheid van 6:

$$-40 + 4 \times 8 + 4 \times 6 = 16 \Rightarrow Appel$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-16}} = 0.999999887$$

Het model - interpretatie via voorbeeld appels

Gegeven een rondheid van 5 en een groenheid van 4.5:

$$-40 + 4 \times 5 + 4 \times 4.5 = -2 \Rightarrow$$
 Geen appel

$$h_{\theta}(x) = \frac{1}{1 + e^{+2}} = 0.12$$

- Het model is maar voor 12% zeker dat het om een appel gaat
- Met 88% zekerheid gaat het volgens het model niet om een appel

Het model - grafische interpretatie via voorbeeld appels

Op de scheidingslijn is: $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$

In het voorbeeld: $-40 + 4x_1 + 4x_2 = 0$

Het model - grafische interpretatie - niet lineair

Het model - grafische interpretatie - niet lineair

Extra features: $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$

Veronderstel: $\theta_0 = -2, \ \theta_1 = 0, \ \theta_2 = 0, \ \theta_3 = 1, \ \theta_4 = 1$

Voorspel y = 1 als $-2 + x_1^2 + x_2^2 \ge 0$

 $x_1^2 + x_2^2 \ge 2$ (vergelijking van een circel met straal $\sqrt{2}$)

Het model

De kostenfunctie wordt:

$$J(heta) = egin{cases} -\ln\left(h_{ heta}(x)
ight) & ext{als } y = 1 \ -\ln\left(1 - h_{ heta}(x)
ight) & ext{als } y = 0 \end{cases}$$

$$J(heta) = -rac{1}{m} \left[\sum_{i=1}^m y^{(i)} \ln \left(h_ heta(x^{(i)})
ight) + (1-y^{(i)}) \ln \left(1 - h_ heta(x^{(i)})
ight)
ight]$$

Zoek de waarden voor θ die de kostenfucntie $J(\theta)$ minimaliseert via Gradiënt Descent (GDS).

Preprocessing van de data

Analoog aan preprocessing bij lineaire regressie:

- Data inlezen
- Check op inconsistenties
- Check uitschieters
- Plot de data
- Splits op in features en targets
- Verdeel in een training en test set

Preprocessing van de data

```
# Importeer de dataset
dataset = pd.read_csv('appels.csv')
features = list(dataset.columns[:dataset.columns.size -1])
X = dataset[features].values
y= dataset['appel'].values
sns.set(font_scale = 2) # lettergrootte van de axis labels
colors = ["blue", "red", "greyish", "faded_green",
    "dusty_purple"]
sns.lmplot(x='rondheid',y='groenheid',data=dataset,fit_reg=False,
hue='appel',palette =sns.xkcd_palette(colors),
scatter_kws={'s':500}, size=7, aspect=1.5)
```

Trainen van het logistic regression model

intercept: $\theta_0 = -43.94116677$

```
# Train een logistic regression classifier
logreg = linear model. LogisticRegression (C=1e5)
# C= Inverse of regularization strength;
# must be a positive float. Like in support vector machines,
# smaller values specify stronger regularization.
logreg.fit(X, y)
print('coefficienten:_',logreg.coef_)
print('intercept:',logreg.intercept )
coëfficiënten: \theta_1 = 4.28747762 en \theta_2 = 4.06244327
```

Classificeren van een nieuwe sample

```
#voorspel de klasse van een rondheid=8 en een groenheid van 6
print (logreg. predict (np. array ([8,6]). reshape (1,-1)))
print('kans_op_een_appel/geen_appel',
logreq.predict_proba(np.array([8,6]).reshape(1,-1)))
#voorspel de klasse van een rondheid=4 en een aroenheid van 4
print (logreg. predict (np. array ([4,4]). reshape (1,-1)))
print('kans_op_een_appel/geen_appel',
logreg.predict_proba(np.array([4,4]).reshape(1,-1)))
```

- [1] kans op een appel/geen appel 3.99395302e-07 | 9.99999601e-01
- [0] kans op een appel/geen appel 9.99973583e-01 | 2.64168196e-05

Visualiseer de decision boundary

```
h = 0.01
rond min = X[:,0]. min() -2
rond max = X[:,0].max()+2
groen min = X[:,1]. min() -2
groen max = X[:,1].max()+2
xx, yy = np.meshqrid(np.arange(rond min, rond max, h),
np.arange(groen_min, groen_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
sns.set(font_scale = 2)
colors = ["blue", "red"]
sns.lmplot(x='rondheid',y='groenheid',data=dataset,
fit reg=False, hue='appel', palette = sns.xkcd palette(colors),
scatter kws={'s':200}, size=8, aspect=1.5)
sns.plt.ylim(0, 11)
sns.plt.xlim(0, 11)
plt.contour(xx, yy, Z, colors='green')
```

Visualiseer de decision boundary

Feature engineering

Niet lineair scheidbare dataset

Feature engineering

Niet lineair scheidbare dataset

Feature engineering

Toevoegen van hogere orde features:

```
# Aanmaken van de hogere orde features
graad = 3

poly = PolynomialFeatures(graad)

Xp = poly.fit_transform(X)

# Train model op hogere orde features en visualiseer de decision boundary

logreg_poly = linear_model.LogisticRegression(C=1)
logreg_poly.fit(Xp, y)
```

Feature engineering - voorbeeld appels met derde-orde features

Underfitting en overfitting

Regelen tussen underfitting en overfitting via regularisatie

Underfitting en overfitting

Via regularisatie een goed evenwicht zoeken tussen underfitting en overfitting

In Scikit Learn linear_model.LogisticRegression

- C = inverse regularisatie sterkte
 - kleine waarden voor C zorgen voor een sterke regularisatie (underfitting)
 - grote waarden voor C zorgen voor een zwakke regularisatie (overfitting)

```
logreg = linear_model.LogisticRegression(C=100)
logreg.fit(Xf, y)
```

Multi-class classification

One-vs-All

Je hebt 1 classifier per klasse. Totaal aantal classifiers: N

Gevoeliger voor niet-gebalanceerde data

Multi-class classification

One-vs-One

Je hebt $\frac{\textit{N}(\textit{N}-1)}{2}$ classifiers (met N aantal klasses) \Rightarrow Rekenintensief

Minder gevoelig voor niet-gebalanceerde data

Accuracy

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

Recall = Sensitivity = Hit rate = True Positive Rate (TPR)

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Recall =
$$\frac{TP}{TP + FN}$$

Precision = Positive Predictive Value (PPV)

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Precision =
$$\frac{TP}{TP + FP}$$

F1 score

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

F1 score =
$$\frac{2*(Recall * Precision)}{(Recall + Precision)}$$

Receiver Operating Characteristic (ROC)

- Gebruikt bij binaire classifiers
- Gebruikt om betere modellen te selecteren en minder goede te verwerpen

Receiver Operating Characteristic (ROC)

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

True Positive Rate (TPR) = Sensitivity = Recall =
$$\frac{TP}{TP + FN}$$

False Positive Rate (FPR) = 1 - specificity = $\frac{FP}{FP + TN}$
Specificity = $\frac{TN}{FP + TN}$
Precision = $\frac{TP}{TP + FP}$

Receiver Operating Characteristic (ROC)

ROC curve en AUC (Area Under ROC Curve)

ROC bij verschillende threshold settings voor p(y = 1|x) - **threshold = 0.5**

Example <u>nr.</u>	y_true	P(y=1 x)
1	1	0.93
2	0	0.55
3	0	0.30
4	0	0.53
5	1	0.81
6	1	0.69
7	0	0.42
8	1	0.28
9	1	0.96
10	0	0.51

	Predicted (y=1)	Predicted (y=0)
Actual (y=1)	4	1
Actual (y=0)	3	2

True Positive Rate (TPR) =
$$\frac{TP}{TP + FN} = \frac{4}{4+1} = 0.8$$

False Positive Rate (FPR) = $\frac{FP}{FP + TN} = \frac{3}{3+2} = 0.6$

ROC curve en AUC (Area Under ROC Curve)

ROC bij verschillende threshold settings voor p(y = 1|x) - **threshold = 0.6**

Example <u>nr.</u>	y_true	P(y=1 x)
1	1	0.93
2	0	0.55
3	0	0.30
4	0	0.53
5	1	0.81
6	1	0.69
7	0	0.42
8	1	0.28
9	1	0.96
10	0	0.51

	Predicted (y=1)	Predicted (y=0)
Actual (y=1)	4	1
Actual (y=0)	0	5

True Positive Rate (TPR) =
$$\frac{TP}{TP + FN} = \frac{4}{4+1} = 0.8$$

False Positive Rate (FPR) = $\frac{FP}{FP + TN} = \frac{0}{0+5} = 0$

AuROC (Area under ROC)

Vuistregel

