

Product Summary

V _{(BR)DSS}	R _{DS(on)TYP}	ID	
150V	13mΩ@10V	50A	

Feature

- Fast Switching
- Low Gate Charge and Rdson
- Advanced Split Gate Trench Technology
- 100% Single Pulse avalanche energy Test

Applications

- Power switching application
- DC-DC Converter
- Power Management

Package

PDFN5X6-8L

Circuit diagram

Marking

015N13GH : Product code * : Month code

Order Information

Device	Package	Unit/Tape	
SP015N13GHNK	PDFN5X6-8L	5000	

Absolute maximum ratings (Ta=25°C,unless otherwise noted)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	150	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current (Tc=25°ℂ)	I _D	50	А
Continuous Drain Current (Tc=100°ℂ)	I _D	35	А
Pulsed Drain Current	I _{DM}	200	А
Single Pulse Avalanche Energy ¹	Eas	306	mJ
Power Dissipation (Tc=25°C)	P _D	120	W
Thermal Resistance Junction-to-Case	R _{θJC}	1.04	°C/W
Storage Temperature Range	T _{STG}	-55 to 150	$^{\circ}$
Operating Junction Temperature Range	TJ	-55 to 150	$^{\circ}$

Electrical characteristics (Ta=25°C, unless otherwise noted)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	ID = 250µA, VGS = 0V	150	-	-	V
Drain Cut-Off Current	I _{DSS}	VDS = 120V, VGS = 0V	-	-	1	
Gate Leakage Current	I _{GSS}	VGS = ±20V, VDS = 0V	-	-	±0.1	μA
Gate Threshold Voltage	$V_{GS(th)}$	VDS = VGS, ID = 250μA	2.0	3.0	4.0	V
Drain-Source ON Resistance	R _{DS(ON)}	VGS = 10V, ID = 20A	-	13	16	mΩ
Dynamic Characteristics						
Input Capacitance	Ciss		-	2230	-	pF
Output Capacitance	Coss	VDS = 75V, VGS = 0V, f = 1.0MHz	-	293	-	
Reverse Transfer Capacitance	C _{rss}		-	22	-	
Total Gate Charge	Qg		-	30	-	nC
Gate-Source Charge	Q _{gs}	VDS=75V , VGS=10V , ID=20A	-	5.8	-	
Gate-Drain Charge	Q_{gd}		-	7	-	
Switching Characteristics						
Turn-On Delay Time	t _{d(on)}		-	13	-	
Rise Time	tr	VGS = 10V, VDS = 50V, ID = 20A	-	25	-	
Turn-Off Delay Time	t _{d(off)}	$RG = 6\Omega$	-	31	-	nS
Fall Time	t _f		-	25	-	
Drain-Source Body Diode Characteris	tics					
Source-Drain Diode Forward Voltage	V _{SD}	I _S = 1A, VGS = 0V	-	-	1.2	V
Maximum Body-Diode Continuous Current	Is		-	-	50	Α
Body Diode Reverse Recovery Time	Trr	I _S =20A, di/dt=100A/us, TJ=25℃	-	65	-	nS
Body Diode Reverse Recovery Charge	Qrr	15-20A, di/di-100A/d5, 10-25 C	-	180	-	nC

Note:

1. The test condition is VDD=50V,VGS=10V,L=0.5mH,RG=25 Ω ;

Typical Characteristic

Saturation Characteristics

Transfer Characteristics

 $R_{DS(ON)}$ vs. Drain Current

 $R_{DS(ON)}$ vs. Junction Temperature

 $\mathbf{V}_{\text{GS(th)}}\,\mathbf{vs.}$ Junction Temperature

 $V_{\text{BR}(\text{DSS})}$ vs. Junction Temperature

2.5

Body-Diode Characteristics

Capacitance Characteristics

Current De-rating

Power De-rating

Maximum Safe Operating Area

Single Pulse Power Rating, Junction-to-Case

150V N-Channel Power MOSFET

Normalized Maximum Transient Thermal Impedance

PDFN5X6-8L Package Information

Bottom View [背视图]

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.000	0.035	0.039	
A3	0.254	0.254REF.		REF.	
D	4.944	5.096	0.195	0.201	
E	5.974	6.126	0.235	0.241	
D1	3.910	4.110	0.154	0.162	
E1	3.375	3.575	0.133	0.141	
D2	4.824	4.976	0.190	0.196	
E2	5.674	5.826	0.223	0.229	
k	1.190	1.390	0.047	0.055	
b	0.350	0.450	0.014	0.018	
е	1.270TYP.		0.050	TYP.	
L	0.559	0.711	0.022	0.028	
L1	0.424	0.576	0.017	0.023	
Н	0.574	0.726	0.023	0.029	
θ	10°	12°	10°	12°	