Examen d'algèbre et arithmétique

Dans tout le problème, d désigne un entier relatif différent de 0 et de 1, et sans facteur carré (c'est-à-dire qu'il n'existe pas de nombre premier p tel que p^2 divise d).

Le symbole \sqrt{d} désignera le réel \sqrt{d} si d > 0, et le complexe $i\sqrt{-d}$ si d < 0.

On note $\mathbb{Z}[\sqrt{d}]$ le sous-ensemble de \mathbb{C} défini par :

$$\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d}, (a, b) \in \mathbb{Z}^2\}$$

et $\mathbb{Q}[\sqrt{d}]$ le sous-ensemble de \mathbb{C} défini par :

$$\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d}, (a, b) \in \mathbb{Q}^2\}$$

PARTIE A : Structure de $\mathbb{Z}[\sqrt{d}]$

- $\mathbf{1}^{\circ}$) Démontrer que \sqrt{d} n'appartient pas à \mathbb{Q} .
- **2°)** Démontrer que, dans l'écriture $z = a + b\sqrt{d}$ d'un élément $z \in \mathbb{Z}[\sqrt{d}]$, les entiers a et b sont uniques.
- **3°)** Démontrer que $\mathbb{Z}[\sqrt{d}]$ est un sous-anneau de $(\mathbb{C}, +, \times)$.
- $\mathbf{4}^{\circ}$) Montrer que $\mathbb{Q}[\sqrt{d}]$ est le plus petit sous-corps de \mathbb{C} contenant $\mathbb{Z}[\sqrt{d}]$.
- 5°) a) Pour tout élément $z = a + b\sqrt{d}$ de $\mathbb{Z}[\sqrt{d}]$, on pose : $\overline{z} = a b\sqrt{d}$. Montrer que l'application $z \mapsto \overline{z}$ est un automorphisme involutif de l'anneau $\mathbb{Z}[\sqrt{d}]$.
 - b) Pour tout élément $z = a + b\sqrt{d}$ de $\mathbb{Z}[\sqrt{d}]$, on pose : $N(z) = z\overline{z}$. Montrer que N est un morphisme du magma $(\mathbb{Z}[\sqrt{d}], \times)$ dans (\mathbb{Z}, \times) .

PARTIE B : Éléments inversibles de l'anneau $\mathbb{Z}[\sqrt{d}]$

- 1°) En utilisant la question A.5.b, montrer qu'un élément $z \in \mathbb{Z}[\sqrt{d}]$ est inversible si et seulement si $N(z) = \pm 1$.
- 2°) Dans cette question, on suppose d < 0.
 - a) Montrer qu'un élément $z \in \mathbb{Z}[\sqrt{d}]$ est inversible si et seulement si N(z) = 1.
 - **b)** En déduire que
 - i. si d=-1, le groupe des éléments inversibles de $\mathbb{Z}[\sqrt{d}]$ est égal au groupe des racines quatrièmes de l'unité.
 - ii. si $d \leq -2$, le groupe des éléments inversibles de $\mathbb{Z}[\sqrt{d}]$ est égal à $\{-1,1\}$.
- 3°) Dans la suite de cette partie, on suppose d > 0.
 - a) Démontrer que, si un élément inversible $z=a+b\sqrt{d}$ de $\mathbb{Z}[\sqrt{d}]$ est strictement supérieur à 1, alors a et b sont strictement positifs (on pourra considérer les quatre nombres z, 1/z, -z, -1/z). \longrightarrow On admettra désormais le résultat suivant : il existe un plus petit élément inversible de $\mathbb{Z}[\sqrt{d}]$ qui est strictement supérieur à 1. Cet élément s'appelle <u>l'unité fondamentale</u> de $\mathbb{Z}[\sqrt{d}]$, et sera noté ω .
 - b) En remarquant que tout élément inversible de $\mathbb{Z}[\sqrt{d}]$, supérieur à 1, est nécessairement de la forme $a + \sqrt{a^2 \pm 1}$ avec $a \ge 1$, déterminer les unités fondamentales des anneaux $\mathbb{Z}[\sqrt{d}]$ pour $d \in \{2, 3, 5, 6\}$.
 - c) Soit z un élément inversible de $\mathbb{Z}[\sqrt{d}]$, z > 0. Démontrer qu'il existe un entier $n \in \mathbb{Z}$ tel que : $1 \le z.\omega^{-n} < \omega$. En déduire que l'ensemble des éléments inversibles de $\mathbb{Z}[\sqrt{d}]$ est l'ensemble des éléments de la forme $\pm \omega^n$ lorsque n décrit \mathbb{Z} .
- $4^{\circ})$ Le but de cette question est de résoudre les équations de <u>Pell-Fermat</u> :

$$(E)$$
: $a^2 - db^2 = 1$ et (E') : $a^2 - db^2 = -1$

(on suppose toujours d > 0), avec a et b dans \mathbb{N}^* .

On note $\omega = a_1 + b_1 \sqrt{d}$ l'unité fondamentale de $\mathbb{Z}[\sqrt{d}]$, et on définit les suites $(a_n)_{n \in \mathbb{N}^*}$ et $(b_n)_{n \in \mathbb{N}^*}$ par :

$$a_{n+1} = a_n a_1 + db_n b_1$$
 et $b_{n+1} = a_n b_1 + b_n a_1$

En utilisant les résultats de la question B.3.c :

- a) Montrer que, si $N(\omega) = 1$, les solutions de (E) sont les couples (a_n, b_n) , et que (E') n'a pas de solution.
- b) Montrer que, si $N(\omega) = -1$, les solutions de (E) sont les couples (a_{2n}, b_{2n}) , et que celles de (E') sont les couples (a_{2n+1}, b_{2n+1}) .

PARTIE C : L'anneau $\mathbb{Z}[\sqrt{d}]$ est euclidien pour $d \in \{-2, -1, 2, 3\}$

Dans toute cette partie, d est un élément de $\{-2, -1, 2, 3\}$.

- **1°)** Démontrer : $\forall u \in \mathbb{Q}$, $\exists a \in \mathbb{Z}$ tq $|u a| \leq 1/2$.
- $\mathbf{2}^{\circ} \textbf{)} \ \ \text{D\'emontrer} : \ \forall \alpha \in \mathbb{Q}[\sqrt{d}] \ , \ \exists z \in \mathbb{Z}[\sqrt{d}] \ \text{tq} \ |N(\alpha-z)| < 1 \ (\textit{on \'etendra la d\'efinition de } N \ \grave{a} \ \mathbb{Q}[\sqrt{d}]).$
- 3°) En déduire : pour tous $z,z'\in\mathbb{Z}[\sqrt{d}]$ avec $z'\neq 0$, il existe q et $r\in\mathbb{Z}[\sqrt{d}]$ tels que : z=qz'+r et |N(r)|<|N(z')|.

A l'aide d'un exemple, vérifier que le couple (q, r) vérifiant cette propriété n'est pas nécessairement unique.

 4°) En déduire que l'anneau $\mathbb{Z}[\sqrt{d}]$ est principal.

PARTIE D : Une condition nécessaire pour que l'anneau $\mathbb{Z}[\sqrt{d}]$ soit principal

Un élément x non nul et non inversible de $\mathbb{Z}[\sqrt{d}]$ est dit <u>irréductible</u> s'il vérifie :

$$\forall y, z \in \mathbb{Z}[\sqrt{d}], \ x = yz \Rightarrow y \text{ inversible ou } z \text{ inversible.}$$

Un élément x' non nul et non inversible de $\mathbb{Z}[\sqrt{d}]$ est dit premier s'il vérifie :

$$\forall y, z \in \mathbb{Z}[\sqrt{d}], \ x'|yz \Rightarrow x'|y \text{ ou } x'|z.$$

- 1°) Montrer que tout élément premier est irréductible.
- 2°) Montrer que, si $\mathbb{Z}[\sqrt{d}]$ est un anneau principal, tout élément irréductible est premier (si x est irréductible et si x|yz, on pourra raisonner par l'absurde et considérer, par exemple, l'idéal engendré par x et y)
- **3°)** Démontrer que, pour $d \le -3$ ou $d \equiv 1$ [4], l'équation $|a^2 db^2| = 2$ n'a pas de solution $(a, b) \in \mathbb{Z}^2$ (dans le cas $d \equiv 1$ [4], on pourra étudier les congruences des carrés modulo 4).
- **4°)** En déduire que, pour $d \leq -3$ ou $d \equiv 1$ [4], 2 est irréductible dans $\mathbb{Z}[\sqrt{d}]$.
- **5°)** Montrer que 2 n'est pas premier dans $\mathbb{Z}[\sqrt{d}]$ (considérer le produit $(d + \sqrt{d})(d \sqrt{d})$). En conclure que, pour $d \le -3$ ou $d \equiv 1$ [4], l'anneau $\mathbb{Z}[\sqrt{d}]$ n'est pas principal.
- 6°) Démontrer que l'équation : $|a^2 10b^2| = 2$ n'a pas de solution $(a, b) \in \mathbb{Z}^2$ (étudier les congruences des carrés modulo 10).

En déduire, par une méthode analogue à celle de la question précédente, que l'anneau $\mathbb{Z}[\sqrt{10}]$ n'est pas principal $(calculer\ (2+\sqrt{10})(2-\sqrt{10}))$.

Ainsi, la condition de la question 5. n'est qu'une condition nécessaire, mais pas suffisante, pour que l'anneau $\mathbb{Z}[\sqrt{d}]$ soit principal.

PARTIE E : Étude de l'équation : (E) : $x^3 - y^2 = 2$

On note ici A l'anneau $\mathbb{Z}[\sqrt{-2}]$. D'après les parties B. et C., on sait que A est principal, et que ses éléments inversibles sont -1 et 1.

- 1°) Montrer que $i\sqrt{2}$ est premier dans A.
- **2°**) Montrer que, si $x \in \mathbb{N}^*$ est divisible par $i\sqrt{2}$ dans A, alors x est pair.
- 3°) Montrer que, si x est un entier impair, $x + i\sqrt{2}$ et $x i\sqrt{2}$ sont premiers entre eux dans A.
- **4°)** Montrer que, si u et v sont deux éléments de A premiers entre eux, et s'il existe $n \in \mathbb{N}^*$ et $\omega \in A$ tels que $uv = \omega^n$, alors il existe ω_1 et $\omega_2 \in A$ tels que $\omega = \omega_1 \omega_2$, $u = \pm \omega_1^n$, $v = \pm \omega_2^n$ (on pourra utiliser la décomposition en facteurs premiers).
- 5°) En remarquant que l'équation (E) équivaut à : $(y+i\sqrt{2})(y-i\sqrt{2})=x^3$, montrer que la seule solution dans \mathbb{N}^2 de cette équation est x=3, y=5 (on montrera d'abord, en utilisant les congruences modulo 8, que y ne peut être pair; puis on utilisera successivement les questions 3 et 4).