Relative K-theory for C^* -algebras and factor groupoids

Groups, Operators, and Banach Algebras Seminar

Mitch Haslehurst

Department of Mathematics & Statistics University of Victoria

June 7, 2021

Let A be a C^* -algebra.

Let A be a C^* -algebra.

Two projections are *Murray-von Neumann* equivalent if there is a partial isometry v with $v^*v = p$ and $vv^* = q$.

Let A be a C^* -algebra.

Two projections are *Murray-von Neumann* equivalent if there is a partial isometry v with $v^*v = p$ and $vv^* = q$.

The abelian group $K_0(A)$ consists of stable Murray-von Neumann equivalence classes of projections p in $M_{\infty}(\tilde{A}) = \bigcup_n M_n(\tilde{A})$, with group operation diagonal sum: [p] + [q] is the class of

$$p \oplus q = \left[\begin{array}{cc} p & 0 \\ 0 & q \end{array} \right].$$

The abelian group $K_1(A)$ consists of stable homotopy equivalence classes of unitaries u in $M_{\infty}(\tilde{A}) = \bigcup_n M_n(\tilde{A})$, with group operation diagonal sum: [u] + [v] is the class of $u \oplus v = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}$.

The abelian group $K_1(A)$ consists of stable homotopy equivalence classes of unitaries u in $M_{\infty}(\tilde{A}) = \bigcup_n M_n(\tilde{A})$, with group operation diagonal sum: [u] + [v] is the class of $u \oplus v = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}$.

 K_0 and K_1 are functors: if $\phi:A\to B$ is a *-homomorphism, then there are induced group homomorphisms $\phi_*:K_j(A)\to K_j(B)$ that satisfy

$$\phi_*([a]) = [\phi(a)]$$

If the sequence

$$0 \longrightarrow I \longrightarrow A \stackrel{\pi}{\longrightarrow} A/I \longrightarrow 0$$

of C^* -algebras is exact,

If the sequence

$$0 \longrightarrow I \longrightarrow A \stackrel{\pi}{\longrightarrow} A/I \longrightarrow 0$$

of C^* -algebras is exact, there are group homomorphisms δ_0 and δ_1 such that the sequence

$$K_0(I) \xrightarrow{\iota_*} K_0(A) \xrightarrow{\pi_*} K_0(A/I)$$

$$\downarrow^{\delta_1} \qquad \qquad \downarrow^{\delta_0}$$
 $K_1(A/I) \leftarrow_{\pi_*} K_1(A) \leftarrow_{\iota_*} K_1(I)$

is exact.

Let $\phi: A \to B$ be a *-homomorphism. Let $\Gamma_0(\phi)$ be all triples (p, q, v) where $p, q \in M_{\infty}(\tilde{A})$ are projections and $v \in M_{\infty}(\tilde{B})$ is a partial isometry with $v^*v = \phi(p)$ and $vv^* = \phi(q)$.

Let $\phi: A \to B$ be a *-homomorphism. Let $\Gamma_0(\phi)$ be all triples (p, q, v) where $p, q \in M_{\infty}(\tilde{A})$ are projections and $v \in M_{\infty}(\tilde{B})$ is a partial isometry with $v^*v = \phi(p)$ and $vv^* = \phi(q)$.

We can add them:

$$(p,q,v)\oplus (p',q',v')=\left(\left[egin{array}{ccc} p&0\0&p'\end{array}
ight],\left[egin{array}{ccc} q&0\0&q'\end{array}
ight],\left[egin{array}{ccc} v&0\0&v'\end{array}
ight]
ight)$$

Let $\phi: A \to B$ be a *-homomorphism. Let $\Gamma_0(\phi)$ be all triples (p,q,v) where $p,q \in M_\infty(\tilde{A})$ are projections and $v \in M_\infty(\tilde{B})$ is a partial isometry with $v^*v = \phi(p)$ and $vv^* = \phi(q)$.

We can add them:

$$(p,q,v)\oplus (p',q',v')=\left(\left[egin{array}{ccc} p&0\0&p'\end{array}
ight],\left[egin{array}{ccc} q&0\0&q'\end{array}
ight],\left[egin{array}{ccc} v&0\0&v'\end{array}
ight]
ight)$$

Say $(p,q,v)\cong(p',q',v')$ if there are partial isometries $c,d\in M_\infty(\tilde{A})$ with $c^*c=p$, $cc^*=p'$, $d^*d=q$, $dd^*=q'$, and $\phi(d)v=v'\phi(c)$.

Say (p, p, v) is elementary if there is a homotopy v_t with $v_1 = v$, $v_0 = \phi(p)$, and $v_t^* v_t = v_t v_t^* = \phi(p)$ for all t.

Say (p, p, v) is elementary if there is a homotopy v_t with $v_1 = v$, $v_0 = \phi(p)$, and $v_t^* v_t = v_t v_t^* = \phi(p)$ for all t. Equivalently, v is a unitary homotopic to the identity in $\phi(p) M_{\infty}(\tilde{B}) \phi(p)$.

Say (p, p, v) is elementary if there is a homotopy v_t with $v_1 = v$, $v_0 = \phi(p)$, and $v_t^* v_t = v_t v_t^* = \phi(p)$ for all t. Equivalently, v is a unitary homotopic to the identity in $\phi(p) M_{\infty}(\tilde{B}) \phi(p)$.

Say $(p,q,v) \sim (p',q',v')$ if there are elementary triples (r,r,c) and (s,s,d) such that

$$(p,q,v) \oplus (r,r,c) \cong (p',q',v') \oplus (s,s,d)$$

Say (p, p, v) is elementary if there is a homotopy v_t with $v_1 = v$, $v_0 = \phi(p)$, and $v_t^* v_t = v_t v_t^* = \phi(p)$ for all t. Equivalently, v is a unitary homotopic to the identity in $\phi(p) M_{\infty}(\tilde{B}) \phi(p)$.

Say $(p, q, v) \sim (p', q', v')$ if there are elementary triples (r, r, c) and (s, s, d) such that

$$(p,q,v) \oplus (r,r,c) \cong (p',q',v') \oplus (s,s,d)$$

Definition

$$K_0(\phi) := \Gamma_0(\phi)/\sim$$

Properties of $K_0(\phi)$:

1 It is an abelian group with addition being direct sum,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0
- If pp' = qq' = 0, then [p, q, v] + [p', q', v'] = [p + p', q + q', v + v'],

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0
- If pp' = qq' = 0, then [p, q, v] + [p', q', v'] = [p + p', q + q', v + v'],

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0
- If pp' = qq' = 0, then [p, q, v] + [p', q', v'] = [p + p', q + q', v + v'],
- **⑤** $[v^*v, vv^*, \phi(v)] = 0$ for v a partial isometry in $M_{\infty}(\tilde{A})$,
- [p,q,v]=[p,q,v'] if v and v' are homotopic,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0
- ① If pp' = qq' = 0, then [p, q, v] + [p', q', v'] = [p + p', q + q', v + v'],
- **5** $[v^*v, vv^*, \phi(v)] = 0$ for v a partial isometry in $M_{\infty}(\tilde{A})$,
- [p, q, v] = [p, q, v'] if v and v' are homotopic,
- [p, q, v] + [q, r, v'] = [p, r, v'v].

Let $\Gamma_1(\phi)$ be all triples (p, u, g) where $p \in M_{\infty}(\tilde{A})$ is a projection, u is a unitary in $pM_{\infty}(\tilde{A})p$, and g is a unitary in $C[0,1] \otimes \phi(p)M_{\infty}(\tilde{B})\phi(p)$ with $g(0) = \phi(p)$ and $g(1) = \phi(u)$.

Let $\Gamma_1(\phi)$ be all triples (p,u,g) where $p \in M_{\infty}(\tilde{A})$ is a projection, u is a unitary in $pM_{\infty}(\tilde{A})p$, and g is a unitary in $C[0,1] \otimes \phi(p)M_{\infty}(\tilde{B})\phi(p)$ with $g(0) = \phi(p)$ and $g(1) = \phi(u)$.

We can add them by diagonal sum, as with $\Gamma_0(\phi)$.

Let $\Gamma_1(\phi)$ be all triples (p, u, g) where $p \in M_{\infty}(\tilde{A})$ is a projection, u is a unitary in $pM_{\infty}(\tilde{A})p$, and g is a unitary in $C[0,1] \otimes \phi(p)M_{\infty}(\tilde{B})\phi(p)$ with $g(0) = \phi(p)$ and $g(1) = \phi(u)$.

We can add them by diagonal sum, as with $\Gamma_0(\phi)$.

Say $(p, u, g) \cong (p', u', g')$ if there is a partial isometry $v \in M_{\infty}(\tilde{A})$ with $v^*v = p$, $vv^* = p'$, vu = u'v, and vg(s) = g'(s)v for all $0 \le s \le 1$.

Say (p, u, g) is elementary if there are homotopies u_t and g_t with $u_1 = u$, $g_1 = g$, $u_0 = p$, $g_0(s) = \phi(p)$ for all $0 \le s \le 1$, and $g_t(1) = \phi(u_t)$ for all $0 \le t \le 1$.

Say (p, u, g) is elementary if there are homotopies u_t and g_t with $u_1 = u$, $g_1 = g$, $u_0 = p$, $g_0(s) = \phi(p)$ for all $0 \le s \le 1$, and $g_t(1) = \phi(u_t)$ for all $0 \le t \le 1$.

Say $(p,u,g)\sim(p',u',g')$ if there are elementary triples (p'',u'',g'') and (p''',u''',g''') such that

$$(p,u,g)\oplus(p'',u'',g'')\cong(p',u',g')\oplus(p''',u''',g''')$$

Say (p, u, g) is elementary if there are homotopies u_t and g_t with $u_1 = u$, $g_1 = g$, $u_0 = p$, $g_0(s) = \phi(p)$ for all $0 \le s \le 1$, and $g_t(1) = \phi(u_t)$ for all $0 \le t \le 1$.

Say $(p, u, g) \sim (p', u', g')$ if there are elementary triples (p'', u'', g'') and (p''', u''', g''') such that

$$(p, u, g) \oplus (p'', u'', g'') \cong (p', u', g') \oplus (p''', u''', g''')$$

Definition

$$K_1(\phi) := \Gamma_1(\phi)/\sim$$

Every element of $K_1(\phi)$ is represented by $(1_n, u, g)$, for some n.

Properties of $K_1(\phi)$:

1 It is an abelian group with addition being direct sum,

Properties of $K_1(\phi)$:

1 It is an abelian group with addition being direct sum,

$$[0,0,0]=0$$
,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0,
- **1** If pp' = 0, then [p, u, g] + [p', u', g'] = [p + p', u + u', g + g'],

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0,
- **1** If pp' = 0, then [p, u, g] + [p', u', g'] = [p + p', u + u', g + g'],
- **⑤** [p, u, g] = 0 if $g(s) = \phi(u_s)$ for a path u_s in $M_{\infty}(\tilde{A})$ with $u_1 = u$ and $u_0 = p$,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0]=0,
- $(p, u, g) = [p, u^*, g^*],$
- **1** If pp' = 0, then [p, u, g] + [p', u', g'] = [p + p', u + u', g + g'],
- **⑤** [p,u,g]=0 if $g(s)=\phi(u_s)$ for a path u_s in $M_\infty(\tilde{A})$ with $u_1=u$ and $u_0=p$,
- [p, u, g] = [p, u', g'] if u and u' are homotopic via u_t , g and g' are homotopic via g_t , and $g_t(1) = \phi(u_t)$,

- 1 It is an abelian group with addition being direct sum,
- [0,0,0] = 0,
- $(p, u, g) = [p, u^*, g^*],$
- **1** If pp' = 0, then [p, u, g] + [p', u', g'] = [p + p', u + u', g + g'],
- **⑤** [p,u,g]=0 if $g(s)=\phi(u_s)$ for a path u_s in $M_\infty(\tilde{A})$ with $u_1=u$ and $u_0=p$,
- [p, u, g] = [p, u', g'] if u and u' are homotopic via u_t , g and g' are homotopic via g_t , and $g_t(1) = \phi(u_t)$,
- [p, u, g] + [p, u', g'] = [p, uu', gg'].

Define the maps

$$u_0: K_0(\phi) \to K_0(A): [p, q, v] \mapsto [p] - [q]$$

$$\nu_1: K_1(\phi) \to K_1(A): [1_n, u, g] \mapsto [u]$$

Define the maps

$$u_0: K_0(\phi) o K_0(A): [p,q,v] \mapsto [p] - [q]$$

$$\nu_1: K_1(\phi) o K_1(A): [1_n,u,g] \mapsto [u]$$

$$\mu_0: K_1(B) o K_0(\phi): [u] \mapsto [1_n,1_n,u]$$

$$\mu_1: K_0(B) o K_1(\phi): [p] - [q] \mapsto [1_n,1_n,f_pf_q^*]$$
where $f_p(t) = e^{2\pi i t p}$.

Define the maps

$$u_0: K_0(\phi) \to K_0(A): [p, q, v] \mapsto [p] - [q]$$

$$\nu_1: K_1(\phi) \to K_1(A): [1_n, u, g] \mapsto [u]$$

$$\mu_0: K_1(B) \to K_0(\phi): [u] \mapsto [1_n, 1_n, u]$$

 $\mu_1: K_0(B) \to K_1(\phi): [p] - [q] \mapsto [1_n, 1_n, f_p f_q^*]$

where $f_p(t) = e^{2\pi i t p}$. Then we have the six-term exact sequence

$$K_1(B) \xrightarrow{\mu_0} K_0(\phi) \xrightarrow{\nu_0} K_0(A)$$
 \downarrow^{ϕ_*}
 $K_1(A) \longleftarrow_{\nu_1} K_1(\phi) \longleftarrow_{\mu_1} K_0(B)$

Example 1.

• If $\pi: A \to A/I$ is a quotient map, then $K_j(\pi) \cong K_j(I)$.

Example 1.

• If $\pi: A \to A/I$ is a quotient map, then $K_j(\pi) \cong K_j(I)$.

This is a noncommutative version of a standard excision result: If $Y \subseteq X$, then the restriction map $\pi: C(X) \to C(Y)$ is a quotient map with kernel $C_0(X-Y)$, and

Example 1.

1 If $\pi: A \to A/I$ is a quotient map, then $K_j(\pi) \cong K_j(I)$.

This is a noncommutative version of a standard excision result: If $Y \subseteq X$, then the restriction map $\pi: C(X) \to C(Y)$ is a quotient map with kernel $C_0(X-Y)$, and

$$K_j(\pi) \cong K_j(C_0(X-Y)) \cong K^j(X,Y)$$

Example 1.

• If $\pi: A \to A/I$ is a quotient map, then $K_j(\pi) \cong K_j(I)$.

This is a noncommutative version of a standard excision result: If $Y \subseteq X$, then the restriction map $\pi: C(X) \to C(Y)$ is a quotient map with kernel $C_0(X-Y)$, and

$$K_j(\pi) \cong K_j(C_0(X-Y)) \cong K^j(X,Y)$$

② If $K_*(B) = 0$, then $K_*(\phi) = K_*(A)$. If $K_*(A) = 0$, then $K_j(\phi) = K_{1-j}(B)$.

Example 1.

• If $\pi: A \to A/I$ is a quotient map, then $K_j(\pi) \cong K_j(I)$.

This is a noncommutative version of a standard excision result: If $Y \subseteq X$, then the restriction map $\pi: C(X) \to C(Y)$ is a quotient map with kernel $C_0(X-Y)$, and

$$K_j(\pi) \cong K_j(C_0(X-Y)) \cong K^j(X,Y)$$

- ② If $K_*(B) = 0$, then $K_*(\phi) = K_*(A)$. If $K_*(A) = 0$, then $K_j(\phi) = K_{1-j}(B)$.
- **3** If ϕ is a *-isomorphism, then $K_*(\phi) = 0$.

Example 2. Let D be a C^* -algebra, $B = M_2(D)$, and $A \subseteq B$ the subalgebra of diagonal matrices. With $\phi : A \to B$ being the inclusion map, denote $K_i(A; B) := K_i(\phi)$.

Example 2. Let D be a C^* -algebra, $B = M_2(D)$, and $A \subseteq B$ the subalgebra of diagonal matrices. With $\phi : A \to B$ being the inclusion map, denote $K_i(A; B) := K_i(\phi)$.

Example 2. Let D be a C^* -algebra, $B = M_2(D)$, and $A \subseteq B$ the subalgebra of diagonal matrices. With $\phi : A \to B$ being the inclusion map, denote $K_j(A; B) := K_j(\phi)$.

$$K_1(D) \xrightarrow{\mu_0} K_0(A;B) \xrightarrow{\nu_0} K_0(D) \oplus K_0(D)$$

$$\downarrow^{\phi_*} \qquad \qquad \downarrow^{\phi_*} \qquad \qquad \downarrow^{\phi$$

The vertical maps are surjective, so $K_j(A; B) \cong \ker \phi_* \cong K_j(D)$.

Let $\mathcal H$ be a separable Hilbert space and $\mathcal M$ a proper nonzero subspace. Regard $A=\mathcal K(\mathcal M)\oplus\mathcal K(\mathcal M^\perp)$ as a subalgebra of $B=\mathcal K(\mathcal H)$ via $(a,b)\mapsto \left[egin{array}{cc} a & 0 \\ 0 & b \end{array}\right].$

Let $\mathcal H$ be a separable Hilbert space and $\mathcal M$ a proper nonzero subspace. Regard $A=\mathcal K(\mathcal M)\oplus\mathcal K(\mathcal M^\perp)$ as a subalgebra of $B=\mathcal K(\mathcal H)$ via $(a,b)\mapsto \left[egin{array}{cc} a & 0 \\ 0 & b \end{array} \right].$

Let $\xi \in \mathcal{M}$ and $\eta \in \mathcal{M}^{\perp}$ be nonzero vectors, and p_{ξ} , p_{η} be the projections onto span $\{\xi\}$ and span $\{\eta\}$.

Let $\mathcal H$ be a separable Hilbert space and $\mathcal M$ a proper nonzero subspace. Regard $A=\mathcal K(\mathcal M)\oplus\mathcal K(\mathcal M^\perp)$ as a subalgebra of $B=\mathcal K(\mathcal H)$ via $(a,b)\mapsto \left[egin{array}{cc} a & 0 \\ 0 & b \end{array} \right].$

Let $\xi \in \mathcal{M}$ and $\eta \in \mathcal{M}^{\perp}$ be nonzero vectors, and p_{ξ} , p_{η} be the projections onto span $\{\xi\}$ and span $\{\eta\}$.

Then $K_0(A; B) \cong \mathbb{Z}$ is generated by the triple (p_{ξ}, p_{η}, v) , where v is a partial isometry in $\mathcal{K}(\mathcal{H})$ with $v^*v = p_{\xi}$ and $vv^* = p_{\eta}$.

Example 3. Let D be a C^* -algebra, $B = D \oplus D$, and $A = \{(a, a) \mid a \in D\} \subseteq B$, which we identify with D. This time the vertical maps are injective, and we have $K_i(A; B) \cong K_{1-i}(D)$.

Example 3. Let D be a C^* -algebra, $B = D \oplus D$, and $A = \{(a, a) \mid a \in D\} \subseteq B$, which we identify with D. This time the vertical maps are injective, and we have $K_i(A; B) \cong K_{1-i}(D)$.

In the case that $D=\mathcal{K}$, $K_1(A;B)\cong\mathbb{Z}$ is generated by the triple (p,p,g), where p is any rank one projection in \mathcal{K} and $g(t)=(e^{2\pi it}p,p)$.

Suppose we have a commutative diagram

Suppose we have a commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & C \\
\downarrow^{\phi} & & \downarrow^{\psi} \\
B & \xrightarrow{\beta} & D
\end{array}$$

Then there is a group homomorphism $\alpha_*: K_0(\phi) \to K_0(\psi)$ such that

$$\alpha_*([p,q,v]) = [\alpha(p), \alpha(q), \beta(v)]$$

and similarly for $K_1(\phi) \to K_1(\psi)$.

lf

$$0 \longrightarrow I \xrightarrow{\iota_A} A \xrightarrow{\pi_A} A/I \longrightarrow 0$$

$$\downarrow^{\psi} \qquad \downarrow^{\phi} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow J \xrightarrow{\iota_B} B \xrightarrow{\pi_B} B/J \longrightarrow 0$$

is commutative with exact rows,

lf

$$0 \longrightarrow I \xrightarrow{\iota_A} A \xrightarrow{\pi_A} A/I \longrightarrow 0$$

$$\downarrow^{\psi} \qquad \downarrow^{\phi} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow J \xrightarrow{\iota_B} B \xrightarrow{\pi_B} B/J \longrightarrow 0$$

is commutative with exact rows, we have a six-term exact sequence

Consider the commutative diagram

where $\phi(f)(t) = f(e^{2\pi it})$ and $\gamma(z) = (z, z)$.

Consider the commutative diagram

$$0 \longrightarrow C_0(\mathbb{R}) \hookrightarrow C(S^1) \xrightarrow{ev_1} \mathbb{C} \longrightarrow 0$$

$$\downarrow \phi \qquad \qquad \downarrow \gamma$$

$$0 \longrightarrow C_0(\mathbb{R}) \hookrightarrow C[0,1] \xrightarrow{ev_{0,1}} \mathbb{C} \oplus \mathbb{C} \longrightarrow 0$$
where $\phi(f)(t) = f(e^{2\pi i t})$ and $\gamma(z) = (z,z)$.
$$0 \longrightarrow K_0(C(S^1); C[0,1]) \xrightarrow{ev_*} K_0(\mathbb{C}; \mathbb{C} \oplus \mathbb{C})$$

 $K_1(\mathbb{C};\mathbb{C}\oplus\mathbb{C}) \leftarrow K_1(C(S^1);C[0,1]) \leftarrow$

Consider the commutative diagram

$$0 \longrightarrow C_0(\mathbb{R}) \hookrightarrow C(S^1) \xrightarrow{ev_1} \mathbb{C} \longrightarrow 0$$

$$\downarrow \phi \qquad \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow C_0(\mathbb{R}) \hookrightarrow C[0,1] \xrightarrow{ev_{0,1}} \mathbb{C} \oplus \mathbb{C} \longrightarrow 0$$

where
$$\phi(f)(t) = f(e^{2\pi it})$$
 and $\gamma(z) = (z, z)$.

$$0 \longrightarrow \mathcal{K}_0(\mathcal{C}(S^1); \mathcal{C}[0,1]) \stackrel{ev_*}{\longrightarrow} \mathcal{K}_0(\mathbb{C}; \mathbb{C} \oplus \mathbb{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $\mathcal{K}_1(\mathbb{C}; \mathbb{C} \oplus \mathbb{C}) \longleftarrow \mathcal{K}_1(\mathcal{C}(S^1); \mathcal{C}[0,1]) \longleftarrow 0$

So
$$K_*(C(S^1); C[0,1]) \cong K_*(\mathbb{C}; \mathbb{C} \oplus \mathbb{C}).$$

Consider the diagram

$$0 \longrightarrow C_0(\mathbb{R}^2) \longrightarrow C(\mathbb{D}) \longrightarrow C(S^1) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \phi \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow C[0,1] = C[0,1] \longrightarrow 0$$

where ϕ is the composition of the restriction to S^1 and the inclusion to [0,1].

Consider the diagram

where ϕ is the composition of the restriction to S^1 and the inclusion to [0,1].

$$K_0(C_0(\mathbb{R}^2)) \longrightarrow 0 \longrightarrow K_0(C(S^1); C[0,1])$$

$$\downarrow \qquad \qquad \downarrow$$
 $K_1(C(S^1); C[0,1]) \longleftarrow 0 \longleftarrow K_1(C_0(\mathbb{R}^2))$

The map $\partial_1: K_1(C(S^1); C[0,1]) \to K_0(C_0(\mathbb{R}^2))$ is an isomorphism.

The map $\partial_1: K_1(C(S^1); C[0,1]) \to K_0(C_0(\mathbb{R}^2))$ is an isomorphism.

 $K_1(C(S^1); C[0,1])$ is generated by $(1, e^{2\pi i t}, e^{2\pi i s t})$, where $0 \le s, t \le 1$.

The map $\partial_1: K_1(C(S^1); C[0,1]) \to K_0(C_0(\mathbb{R}^2))$ is an isomorphism.

 $K_1(C(S^1); C[0,1])$ is generated by $(1, e^{2\pi i t}, e^{2\pi i s})$, where $0 \le s, t \le 1$.

The map ∂_1 takes this element to $[p] - [1 \oplus 0]$ in $K_0(C_0(\mathbb{R}^2))$, where p is the Bott projection:

$$p(z) = \begin{bmatrix} |z|^2 & z(1-|z|^2)^{1/2} \\ \overline{z}(1-|z|^2)^{1/2} & 1-|z|^2 \end{bmatrix}$$

for z in the unit disk $\mathbb{D}\subseteq\mathbb{C}$

The mapping cone C_{ϕ} gives an alternative portrait of relative K-theory.

The mapping cone C_{ϕ} gives an alternative portrait of relative K-theory.

$$C_{\phi} = \{(a, f) \mid f(1) = \phi(a)\} \subseteq A \oplus (C_0(0, 1] \otimes B)$$

The mapping cone C_{ϕ} gives an alternative portrait of relative K-theory.

$$C_{\phi} = \{(a, f) \mid f(1) = \phi(a)\} \subseteq A \oplus (C_0(0, 1] \otimes B)$$

There are natural isomorphisms $\Delta_j: \mathcal{K}_j(\phi) \to \mathcal{K}_j(\mathcal{C}_\phi)$ for j = 0, 1:

The mapping cone C_{ϕ} gives an alternative portrait of relative K-theory.

$$C_{\phi} = \{(a, f) \mid f(1) = \phi(a)\} \subseteq A \oplus (C_0(0, 1] \otimes B)$$

There are natural isomorphisms $\Delta_j: \mathcal{K}_j(\phi) \to \mathcal{K}_j(\mathcal{C}_\phi)$ for j=0,1:

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & C \\
\downarrow^{\phi} & & \downarrow^{\psi} \\
B & \xrightarrow{\beta} & D
\end{array}$$

commutes, then so does

The mapping cone C_{ϕ} gives an alternative portrait of relative K-theory.

$$C_{\phi} = \{(a, f) \mid f(1) = \phi(a)\} \subseteq A \oplus (C_0(0, 1] \otimes B)$$

There are natural isomorphisms $\Delta_j: \mathcal{K}_j(\phi) \to \mathcal{K}_j(\mathcal{C}_\phi)$ for j=0,1:

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & C \\
\downarrow^{\phi} & & \downarrow^{\psi} \\
B & \xrightarrow{\beta} & D
\end{array}$$

commutes, then so does

$$K_{j}(\phi) \xrightarrow{\alpha_{*}} K_{j}(\psi)$$

$$\downarrow \Delta_{j} \qquad \qquad \downarrow \Delta_{j}$$

$$K_{j}(C_{\phi}) \xrightarrow{\alpha_{*}} K_{j}(C_{\psi})$$

Problem. Given some K-theory data, find a groupoid G such that the data is $K_*(C_r^*(G))$.

Problem. Given some K-theory data, find a groupoid G such that the data is $K_*(C_r^*(G))$.

Notable references:

Li, X. "Every classifiable simple C^* -algebra has a Cartan subalgebra". Invent. math. 219, 653–699 (2020).

Putnam, I.F. "Some classifiable groupoid C^* -algebras with prescribed K-theory". Math. Ann. 370, 1361–1387 (2018).

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid morphism.

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid morphism.

Assume:

- $oldsymbol{0}$ G and G' are locally compact Hausdorff and étale,
- \bullet $\pi|_{G^u}: G^u \to (G')^{\pi(u)}$ is bijective for all u in $G^{(0)}$.

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid morphism.

Assume:

- $oldsymbol{0}$ G and G' are locally compact Hausdorff and étale,
- $oldsymbol{2}{\pi}$ is continuous and proper,
- 3 $\pi|_{G^u}: G^u \to (G')^{\pi(u)}$ is bijective for all u in $G^{(0)}$.

Obtain an inclusion $C_r^*(G') \subseteq C_r^*(G)$ via $b \mapsto b \circ \pi$ (b in $C_c(G')$)

Let (V, E) be a Bratteli diagram.

Let (V, E) be a Bratteli diagram.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Tail-equivalence $R_E \subseteq X_E \times X_E$ has an étale topology in which $C_r^*(R_E)$ is an AF-algebra.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Tail-equivalence $R_E \subseteq X_E \times X_E$ has an étale topology in which $C_r^*(R_E)$ is an AF-algebra.

Goal: make a factor groupoid of R_E .

Let (V, E) and (W, F) be two Bratteli diagrams.

Let (V, E) and (W, F) be two Bratteli diagrams.

Two graph embeddings $\xi^0, \xi^1 : (W, F) \to (V, E)$ with $\xi^0|_W = \xi^1|_W$ and $\xi^0(F) \cap \xi^1(F) = \emptyset$.

Let (V, E) and (W, F) be two Bratteli diagrams.

Two graph embeddings $\xi^0, \xi^1: (W, F) \to (V, E)$ with $\xi^0|_W = \xi^1|_W$ and $\xi^0(F) \cap \xi^1(F) = \emptyset$.

Equivalence relation \sim_{ξ} on X_E :

$$(x_1, x_2, \dots, x_{n_0-1}, x_{n_0}, \xi^0(z_{n_0+1}), \xi^0(z_{n_0+2}), \dots)$$
 (1)

$$\sim_{\xi} (x_1, x_2, \dots, x_{n_0-1}, x'_{n_0}, \xi^1(z_{n_0+1}), \xi^1(z_{n_0+2}), \dots)$$
 (2)

Denote $X_{\xi} := X_E / \sim_{\xi}$ and $\rho : X_E \to X_{\xi}$ the quotient map.

Denote $X_{\xi} := X_E / \sim_{\xi}$ and $\rho : X_E \to X_{\xi}$ the quotient map.

Facts:

- $oldsymbol{0} X_{\mathcal{E}}$ is a second-countable compact Hausdorff space,
- 2 the covering dimension of X_{ξ} is 1,
- \odot each connected component is either a single point or homeomorphic to S^1 .

Example 4. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

Example 4. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

$$(x_1, x_2, \ldots, x_n, 1, 0, 0, 0, 0, \ldots)$$
 (3)

$$\sim_{\xi} (x_1, x_2, \dots, x_n, 0, 1, 1, 1, 1, \dots)$$
 (4)

Example 4. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

$$(x_1, x_2, \ldots, x_n, 1, 0, 0, 0, 0, \ldots)$$
 (3)

$$\sim_{\xi} (x_1, x_2, \dots, x_n, 0, 1, 1, 1, 1, \dots)$$
 (4)

$$\{0,1\}^\omega o S^1: (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^\infty x_n 2^{-n}\right)$$

Example 4. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

$$(x_1, x_2, \ldots, x_n, 1, 0, 0, 0, 0, \ldots)$$
 (3)

$$\sim_{\xi} (x_1, x_2, \dots, x_n, 0, 1, 1, 1, 1, \dots)$$
 (4)

$$\{0,1\}^\omega o S^1: (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^\infty x_n 2^{-n}\right)$$

The fibres are precisely the \sim_{ξ} equivalence classes, so X_{ξ} is homeomorphic to S^1 .

Example 5. Let (V, E) have one vertex and three edges at each level. Identify X_E with $\{0, 1, 2\}^{\omega}$.

(W,F) is again a single path, and for f in F, $\xi^0(f)=0$ and $\xi^1(f)=2$.

Example 5. Let (V, E) have one vertex and three edges at each level. Identify X_E with $\{0, 1, 2\}^{\omega}$.

(W,F) is again a single path, and for f in F, $\xi^0(f)=0$ and $\xi^1(f)=2$.

There is a nested sequence $X_1 \subseteq X_2 \subseteq X_3 \subseteq \cdots \subseteq X_E$ such that

$$X_E = \overline{\bigcup_{n=1}^{\infty} X_n}$$

and each $\rho(X_n)$ is a disjoint union of finitely many circles.

Let
$$R_{\xi} = \rho \times \rho(R_E)$$
.

With the quotient topology, R_{ξ} is a second-countable locally compact Hausdorff étale groupoid, and a factor of R_{E} via $\rho \times \rho : R_{E} \to R_{\xi}$.

Let
$$R_{\xi} = \rho \times \rho(R_E)$$
.

With the quotient topology, R_{ξ} is a second-countable locally compact Hausdorff étale groupoid, and a factor of R_{E} via $\rho \times \rho : R_{E} \to R_{\xi}$.

We want to analyze the K-theory of $C_r^*(R_\xi) \subseteq C_r^*(R_E)$.

$$K_{1}(C_{r}^{*}(R_{E})) \longrightarrow K_{0}(C_{r}^{*}(R_{\xi}); C_{r}^{*}(R_{E})) \longrightarrow K_{0}(C_{r}^{*}(R_{\xi}))$$

$$\downarrow^{\iota_{*}} \qquad \qquad \downarrow^{\iota_{*}}$$

$$K_{1}(C_{r}^{*}(R_{\xi})) \longleftarrow K_{1}(C_{r}^{*}(R_{\xi}); C_{r}^{*}(R_{E})) \longleftarrow K_{0}(C_{r}^{*}(R_{E}))$$

$$K_{1}(C_{r}^{*}(R_{E})) \longrightarrow K_{0}(C_{r}^{*}(R_{\xi}); C_{r}^{*}(R_{E})) \longrightarrow K_{0}(C_{r}^{*}(R_{\xi}))$$

$$\downarrow^{\iota_{*}} \qquad \qquad \downarrow^{\iota_{*}} \qquad \qquad \downarrow^$$

and $H = (\rho \times \rho)^{-1}(H')$. Then we have excision: (Putnam, 2020)

 $K_*(C_r^*(R_{\varepsilon})); C_r^*(R_F)) \cong K_*(C_r^*(H'); C_r^*(H))$

It turns out that $C_r^*(H')$ is stably isomorphic to $C_r^*(R_F)$, and $C_r^*(H)$ may be identified with $C_r^*(H') \oplus C_r^*(H')$. Moreover,

$$C_r^*(H') \xrightarrow{} C_r^*(H)$$

$$\downarrow \cong$$

$$C_r^*(H') \xrightarrow{a \oplus a} C_r^*(H') \oplus C_r^*(H')$$

commutes.

It turns out that $C_r^*(H')$ is stably isomorphic to $C_r^*(R_F)$, and $C_r^*(H)$ may be identified with $C_r^*(H') \oplus C_r^*(H')$. Moreover,

$$C_r^*(H') \hookrightarrow C_r^*(H)$$

$$\downarrow \cong$$

$$C_r^*(H') \xrightarrow{a \oplus a} C_r^*(H') \oplus C_r^*(H')$$

commutes.

By Example 3, we have

$$K_j(C_r^*(H'); C_r^*(H)) \cong K_{1-j}(C_r^*(H')) \cong K_{1-j}(C_r^*(R_F))$$

$$K_{1}(C_{r}^{*}(R_{E})) \longrightarrow K_{0}(C_{r}^{*}(R_{\xi}); C_{r}^{*}(R_{E})) \longrightarrow K_{0}(C_{r}^{*}(R_{\xi}))$$

$$\downarrow^{\iota_{*}} \qquad \qquad \downarrow^{\iota_{*}}$$

$$K_{1}(C_{r}^{*}(R_{\xi})) \longleftarrow K_{1}(C_{r}^{*}(R_{\xi}); C_{r}^{*}(R_{E})) \longleftarrow K_{0}(C_{r}^{*}(R_{E}))$$

If one can show that the lower right map is zero...

If one can show that the lower right map is zero...

Thus we obtain

$$K_0(C_r^*(R_{\xi})) \cong K_0(C_r^*(R_E)) \qquad K_1(C_r^*(R_{\xi})) \cong K_0(C_r^*(R_F))$$

Thus we obtain

$$K_0(C_r^*(R_\xi)) \cong K_0(C_r^*(R_E)) \qquad K_1(C_r^*(R_\xi)) \cong K_0(C_r^*(R_F))$$

Through the set-up $\xi^0, \xi^1: (W, F) \to (V, E)$, we can prescribe $K_*(C_r^*(R_{\mathcal{E}}))$.

Thank you!

References

- Deeley, R.J.; Putnam, I.F.; Strung, K.R. "Non-homogeneous extensions of Cantor minimal systems". to appear, Proc. A.M.S.
- ② Haslehurst, M.J. "Relative K-theory for C^* -algebras". arXiv: https://arxiv.org/abs/2106.02620
- Maslehurst, M.J. "Some examples of factor groupoids". (in preparation)
- Waroubi, M. K-Theory: An Introduction. Springer-Verlag, 1978. ISBN: 0-387-08090-2.
- **5** Li, X. "Every classifiable simple *C**-algebra has a Cartan subalgebra". Invent. math. 219, 653–699 (2020).

References

- Rördam, M.; Larsen, F.; Lausten, N.J. An Introduction to K-theory for C*-Algebras. London Mathematical Society Student Texts. Cambridge University Press, 2000. ISBN: 0521 78944 3.
- Putnam, I.F. "An excision theorem for the K-theory of C*-algebras, with applications to groupoid C*-algebras". Munster Mathematics Journal (to appear).