18.102 Midterm

Octavio Vega

April 23, 2023

Problem 1

Proof. We will show that $\Lambda([a,b])$ is a proper closed subspace of C([a,b]), which we know is a Banach space. Let $\{f_n\}_n$ be a cauchy sequence in $\Lambda([a,b])$ such that $f_n \to f$ pointwise. Then for every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $||f - f_n|| < \epsilon$. This is equivalent to

$$\sup_{x \in [a,b]} |f(x) - f_n(x)| + \sup_{x \neq y \in [a,b]} \frac{|f(x) - f_n(x) - f(y) + f_n(y)|}{|x - y|} < \epsilon.$$
 (1)

Since both terms on the left hand side are non-negative, this implies

$$\sup_{x \neq y \in [a,b]} \frac{|f(x) - f_n(x) - f(y) + f_n(y)|}{|x - y|} < \epsilon.$$
 (2)

Then for any $x \neq y \in [a, b]$, we have

$$|f(x) - f_n(x) - f(y) + f_n(y)| < \epsilon |x - y|,$$
 (3)

which confirms that for each $n \geq N$, the function $f - f_n$ is Lipschitz continuous. By assumtion, f_n is Lipschitz continuous $\forall n \in \mathbb{N}$, and the sum of Lipschitz continuous functions is also Lipschitz, thus $f = f_n + (f - f_n)$ is Lipschitz continuous.

So, $\lim_{n\to\infty} f_n = f \in \Lambda([a,b])$, which proves that $\Lambda([a,b])$ is a proper closed subspace of C([a,b]).

Therefore, $\Lambda([a,b])$ is a Banach space.