Fashion Products Analysis

Anisha

2022-11-03

```
library(janitor)
library(dplyr)
library(ggplot2)
library(tibble)
library(tidyr)
library(inspectdf)
library(nnet)
library(randomForest)
library(confintr)
library(waffle)
library(PASWR2)
# Look at the dataset
head(df_hist)
     item_no
               category
                            main_promotion color stars success_indicator
## 1 739157
                 Tunic
                                   Catalog Green
                                                     3.1
                                                                      flop
## 2 591846
                Hoodie Category_Highlight
                                                     1.5
                                              Red
                                                                      flop
## 3 337574 Sweatshirt
                                   Catalog
                                              Red
                                                     4.4
                                                                      top
## 4 401933 Polo-Shirt Category_Highlight
                                             Blue
                                                     3.1
                                                                      flop
## 5 812151
             Hoodie Category_Highlight Green
                                                     4.1
                                                                      top
## 6 200284
                Hoodie Display_Ad_Campaign Yellow
                                                                      flop
head(df_pred)
##
     item_no
                            main_promotion color stars
              category
## 1 405901 Sweatshirt
                                  Catalog
                                            Blue
                                                    3.1
## 2 644275 Polo-Shirt
                         Frontpage_Header Yellow
                                                    2.6
## 3 533070
                 Tunic
                                  Catalog Green
                                                    2.7
## 4 829436 Polo-Shirt
                                   Catalog Yellow
                                                    2.6
## 5 801722
                 Tunic
                                  Catalog Yellow
                                                    4.9
## 6 866263
               T-Shirt Category_Highlight Black
                                                    2.6
# Check structure of variables
str(df_hist)
```

```
## $ item_no : int 739157 591846 337574 401933 812151 200284 974264 389059 413025 615692 ... ## $ category : Factor w/ 6 levels "Blouse", "Hoodie", ..: 6 2 4 3 2 2 4 4 5 2 ...
```

8000 obs. of 6 variables:

'data.frame':

```
## $ main_promotion : Factor w/ 4 levels "Catalog", "Category_Highlight",..: 1 2 1 2 2 3 1 2 1 2 ...
             : Factor w/ 10 levels "Black", "Blue", ...: 4 8 8 2 4 10 8 8 1 9 ...
## $ color
                     : num 3.1 1.5 4.4 3.1 4.1 3.9 1.4 1.8 3.2 5 ...
## $ stars
## $ success_indicator: Factor w/ 2 levels "flop", "top": 1 1 2 1 2 1 1 2 2 2 ...
str(df_pred)
## 'data.frame':
                   2000 obs. of 5 variables:
## $ item no
                   : int 405901 644275 533070 829436 801722 866263 502221 545865 440112 930925 ...
## $ category
                   : Factor w/ 6 levels "Blouse", "Hoodie", ...: 4 3 6 3 6 5 4 6 4 6 ...
## $ main_promotion: Factor w/ 4 levels "Catalog", "Category_Highlight",..: 1 4 1 1 1 2 1 2 3 1 ...
               : Factor w/ 10 levels "Black", "Blue", ...: 2 10 4 10 10 1 8 4 2 4 ...
## $ color
## $ stars
                   : num 3.1 2.6 2.7 2.6 4.9 2.6 1.6 3.5 3.7 2 ...
#Check columns with na's
inspect_na(df_hist)
## # A tibble: 6 x 3
   col\_name
##
                       cnt pcnt
##
    <chr>
                      <int> <dbl>
## 1 item no
                          0
## 2 category
                          0
                                0
## 3 main_promotion
                          0
                                0
## 4 color
                                0
                          Ω
## 5 stars
                          0
                                0
## 6 success_indicator
inspect_na(df_pred)
## # A tibble: 5 x 3
   col name
                    cnt pcnt
                   <int> <dbl>
##
    <chr>
## 1 item_no
                       0
## 2 category
                       0
## 3 main_promotion
## 4 color
                             0
                       0
## 5 stars
# See the levels of nominal variables
unique(df_hist$category)
                            Sweatshirt Polo-Shirt T-Shirt
## [1] Tunic
                 Hoodie
                                                             Blouse
## Levels: Blouse Hoodie Polo-Shirt Sweatshirt T-Shirt Tunic
unique(df_hist$color)
## [1] Green
                   Red
                               Blue
                                           Yellow
                                                       Black
                                                                  White
## [7] Multi-Color Brown
                               Pink
                                           Orange
## Levels: Black Blue Brown Green Multi-Color Orange Pink Red White Yellow
```

unique(df_hist\$main_promotion)

Data has no missing values. There is one numerical variable and four factor variables.

EDA

Frequency distribution of Stars


```
# Summary statistics of stars
boxplot(df_hist$stars, col = "#FEB24C", main = "Summary Statistics of Stars",
    ylab = "Stars")
```

Summary Statistics of Stars


```
summary(df_hist$stars)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
                    3.500
     0.300
           2.800
                             3.473
                                             6.100
                                     4.200
# check product with max and min stars
df_hist[which.max(df_hist$stars),]
                                main_promotion color stars success_indicator
##
        item_no
                  category
## 5189 560398 Polo-Shirt Display_Ad_Campaign Yellow
df_hist[which.min(df_hist$stars),]
                  category main_promotion color stars success_indicator
        item_no
## 7762 227347 Sweatshirt
                                  Catalog Orange
                                                                     flop
Two outliers based on stars. Frequency of stars is normally distributed.
# Distribution of products based on category
table(df_hist$category)
##
##
       Blouse
                  Hoodie Polo-Shirt Sweatshirt
                                                   T-Shirt
                                                                Tunic
```

1360

1459

1650

1246

##

739

1546

```
# Distribution of products based on promotion type
table(df_hist$main_promotion)
##
##
               Catalog Category_Highlight Display_Ad_Campaign
                                                                     Frontpage_Header
##
                   2246
                                        2432
                                                                                  2013
# Distribution of products based on color
table(df_hist$color)
##
##
         Black
                       Blue
                                   Brown
                                               Green Multi-Color
                                                                        Orange
##
           812
                       1244
                                     585
                                                 728
                                                             1443
                                                                           592
          Pink
##
                        Red
                                   White
                                              Yellow
##
           412
                        776
                                     352
                                                1056
# tabulate previous top/flop products
tab1 <- table(df_hist$success_indicator)</pre>
# Get percentage of previous top products
percntg_top <- (tab1[2]/sum(tab1))*100</pre>
round(percntg_top,2)
##
     top
## 64.81
# Get percentage of previous flop products
percntg_flop <- (tab1[1]/sum(tab1))*100</pre>
round(percntg_flop,2)
## flop
## 35.19
# Plot above result using a waffle plot
# Vector
z \leftarrow c(Top = 65, Flop = 35)
# Waffle plot
waffle(z, rows = 10,
       colors = c("#FEB24C","#FFEDA0"))
```


65% of products were successful. 35% weren't.

Cramer's v Association

Association between stars and success indicator is 0.58

Association between category and success indicator is 0.23

Association between promotion type and success indicator is 0.13

Association between color and success indicator is 0.22

Plots

Distribution of success of products based on promotion type


```
# Some percentages
promo <- unique(df1$main_promotion)
top_promo1 <- c() # -- promotion type where --% of its products were successful
top_promo2 <- c() # --% of top total is --</pre>
```

```
for (i in promo) {
  top_promo1[i] <- (df1[which(df1$main_promotion == i &</pre>
                        df1$success_indicator == "top"),3]/
                      sum(df1[which(df1$main_promotion == i),3]))*100
 top_promo2[i] <- (df1[which(df1$main_promotion == i &</pre>
                        df1$success_indicator == "top"),3]/
               sum(df1[which(df1$success_indicator == "top"),3]))*100
}
top_promo1 # -- promotion type where --% of its products were successful
## $Catalog
## [1] 57.56901
##
## $Category_Highlight
## [1] 61.75987
##
## $Display_Ad_Campaign
## [1] 74.40794
##
## $Frontpage_Header
## [1] 70.34277
top_promo2 # --% of top total is --
## $Catalog
## [1] 24.93732
##
## $Category_Highlight
## [1] 28.96818
## $Display_Ad_Campaign
## [1] 18.78496
##
## $Frontpage_Header
## [1] 27.30955
#~~~~~~~
# Change data for plots
df2 <- df_hist %>% group_by(category,success_indicator) %>% tally()
# change column names
colnames(df2)<- c("category", "success_indicator", "count")</pre>
# plot Distribution of success of products based on category
ggplot(df2, aes(x=category, y=count, fill=success_indicator)) +
  geom_bar(stat="identity") +
  geom_text(aes(label=count),color="black",
            position = position_stack(vjust = 0.5))+
 theme_minimal() + scale_color_manual(values = c("#FFEDAO","#FEB24C")) +
  scale fill manual(values = c("#FFEDAO","#FEB24C")) +
  ggtitle("Distribution of success of products based on Category")
```

Distribution of success of products based on Category


```
## $Blouse
## [1] 70.86677
##
## $Hoodie
## [1] 65.08796
##
## $'Polo-Shirt'
## [1] 47.15395
##
## $Sweatshirt
## [1] 66.69118
##
## $'T-Shirt'
## [1] 81.42563
##
## $Tunic
```

```
## [1] 60.42424
```

```
top_cat2 # --% of top total is --
```

```
## $Blouse
## [1] 17.02989
##
## $Hoodie
## [1] 9.27676
##
## $'Polo-Shirt'
## [1] 14.05979
##
## $Sweatshirt
## [1] 17.49277
## $'T-Shirt'
## [1] 22.91225
##
## $Tunic
## [1] 19.22854
#~~~~~~
# Change data for plots
df3 <- df_hist %>% group_by(color,success_indicator) %>% tally()
# change column names
colnames(df3)<- c("color", "success_indicator", "count")</pre>
# plot Distribution of success of products based on color
ggplot(df3, aes(x=color, y=count, fill=success_indicator)) +
  geom_bar(stat="identity") +
  geom_text(aes(label=count),color="black",
           position = position_stack(vjust = 0.5))+
  theme_minimal() + scale_color_manual(values = c("#FFEDAO","#FEB24C")) +
  scale_fill_manual(values = c("#FFEDAO","#FEB24C")) +
  ggtitle("Distribution of success of products based on color")
```

Distribution of success of products based on color


```
## $Black
## [1] 76.72414
##
## $Blue
## [1] 73.3119
##
## $Brown
## [1] 69.40171
##
## $Green
## [1] 70.19231
##
## $'Multi-Color'
## [1] 50.93555
##
## $Orange
## [1] 67.90541
##
## $Pink
## [1] 78.8835
```

```
##
## $Red
## [1] 46.26289
##
## $White
## [1] 74.71591
##
## $Yellow
## [1] 61.45833

#------
# plot Distribution of success of products based on stars
ggplot(df_hist, aes(x=stars, fill=success_indicator, color=success_indicator)) +
    geom_histogram(position="identity", alpha=0.75, binwidth = 0.1, color=1)+
    theme_minimal() + scale_color_manual(values = c("#FFEDAO","#FEB24C")) +
    scale_fill_manual(values = c("#FFEDAO","#FEB24C")) +
    ggtitle("Distribution of success of products based on stars")
```

Distribution of success of products based on stars

ML model

```
# Same results
set.seed(2022)
N <- nrow(df_hist)
keep <- sample(1:N, 6000)
test <- setdiff(1:N, keep)
# Training data
dat <- df_hist[keep,]
N_train <- nrow(dat)</pre>
```

```
# Testing data
dat_test <- df_hist[test,]</pre>
```

logistic Regression

```
# Fit logistic regression
fit_lr <- multinom(success_indicator ~ ., data = dat[,-1],maxit = 30)</pre>
## # weights: 20 (19 variable)
## initial value 4158.883083
## iter 10 value 2851.947831
## iter 20 value 2725.405636
## final value 2719.266242
## converged
# examine the results
summary(fit_lr)
## Call:
## multinom(formula = success_indicator ~ ., data = dat[, -1], maxit = 30)
## Coefficients:
                                          Values Std. Err.
                                    -4.77557072 0.22947377
## (Intercept)
## categoryHoodie
                                     0.40249809 0.14609733
## categoryPolo-Shirt
                                     -0.30077193 0.11980555
## categorySweatshirt
                                     0.62186282 0.13144056
## categoryT-Shirt
                                     1.09953096 0.13776888
## categoryTunic
                                      0.09854679 0.11680030
## main_promotionCategory_Highlight    0.22934814    0.09063171
## main_promotionDisplay_Ad_Campaign -0.01515704 0.11611818
## main_promotionFrontpage_Header
                                      0.60620824 0.09705904
## colorBlue
                                      0.32107612 0.15403301
## colorBrown
                                     -0.41217642 0.18150205
## colorGreen
                                     -0.02812180 0.16951491
## colorMulti-Color
                                     -0.46807097 0.14396303
                                     0.28751277 0.18564195
## colorOrange
## colorPink
                                     0.40326722 0.20278003
## colorRed
                                     -0.94622888 0.16864581
## colorWhite
                                     -0.12192592 0.21777949
## colorYellow
                                     -0.47467737 0.15529805
## stars
                                      1.54560473 0.04832184
##
## Residual Deviance: 5438.532
## AIC: 5476.532
# Predict results for test set
dat_test$pred_lr <- predict(fit_lr, newdata = dat_test[,-1])</pre>
# Confusion matrix
tab2 <- table(dat_test$pred_lr,dat_test$success_indicator)</pre>
tab2
```

```
##
## flop top
## flop 479 134
## top 233 1154

# Check accuracy
acc <- (sum(diag(tab2))/sum(tab2))*100
round(acc,2)

## [1] 81.65</pre>
```

Random forest

```
# implement the random forest algorithm
fit_rf <- randomForest(success_indicator ~ ., data = dat[,-1],</pre>
                       importance = TRUE)
# examine the results
fit_rf
##
## Call:
  randomForest(formula = success_indicator ~ ., data = dat[, -1],
                                                                         importance = TRUE)
                  Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 2
##
           OOB estimate of error rate: 15.9%
##
## Confusion matrix:
       flop top class.error
## flop 1533 570 0.27104137
        384 3513 0.09853734
## top
# look at variable importance
varImpPlot(fit_rf, type = 1)
```

fit_rf


```
# Predict results for test set
dat_test$pred_rf <- predict(fit_rf, type = "class",</pre>
                              newdata = dat_test[,-c(1,7)])
# Confusion matrix
tab3 <- table(dat_test$pred_rf,dat_test$success_indicator)</pre>
##
##
          flop top
     flop 507 118
##
            205 1170
     top
# Check accuracy
acc <- sum(diag(tab3))/sum(tab3)*100</pre>
round(acc,2)
## [1] 83.85
Random Forest is better since higher accuracy.
{\it \# Plot above result using a waffle plot}
# Vector
```

x <- c(Accurate = 82, NotAccurate = 18) #Logistic
y <- c(Accurate = 84, NotAccurate = 16) #Random forest</pre>


```
waffle(y, rows = 10,
    colors = c("#FEB24C","#FFEDAO"))
```


Answer

```
# Use random forest to predict results for potential products
df_pred$pred_rf_new <- predict(fit_rf, type = "class", newdata = df_pred)</pre>
# See 10 results
head(df_pred,10)
##
      item_no
                category
                             main_promotion color stars pred_rf_new
      405901 Sweatshirt
## 1
                                     Catalog
                                              Blue
                                                     3.1
                                                                 top
## 2
       644275 Polo-Shirt
                           Frontpage_Header Yellow
                                                     2.6
                                                                flop
## 3
       533070
                   Tunic
                                    Catalog Green
                                                     2.7
                                                                flop
## 4
       829436 Polo-Shirt
                                    Catalog Yellow
                                                     2.6
                                                                flop
## 5
       801722
                  Tunic
                                    Catalog Yellow
                                                     4.9
                                                                 top
## 6
       866263
                T-Shirt Category_Highlight Black
                                                     2.6
                                                                 top
## 7
       502221 Sweatshirt
                                    Catalog
                                               Red
                                                     1.6
                                                                flop
## 8
       545865
                  Tunic Category_Highlight Green
                                                     3.5
                                                                 top
       440112 Sweatshirt Display_Ad_Campaign
                                              Blue
                                                     3.7
                                                                 top
## 10 930925
                   Tunic
                                    Catalog Green
                                                     2.0
                                                                flop
# Tabulate the result
tab4 <- table(df_pred$pred_rf_new)</pre>
tab4
```

```
##
## flop top
## 620 1380
# Percentage top
percntg_flop <- ((sum(tab4[1]))/sum(tab4))*100</pre>
percntg_flop
## [1] 31
# Percentage flop
percntg_top <- ((sum(tab4[2]))/sum(tab4))*100</pre>
percntg_top
## [1] 69
# Plot the results
# Change data for plots
df_pred_new <- df_pred %>% group_by(color, category, main_promotion, stars,
                                     pred_rf_new) %>% tally()
# Lowercase color naes
df_pred_new$color <- tolower(df_pred_new$color)</pre>
# change multi color and white to purple and linen for plots
df_pred_new$color <- ifelse(df_pred_new$color == "multi-color","purple",</pre>
                             df_pred_new$color)
df_pred_new$color <- ifelse(df_pred_new$color == "white","linen",</pre>
                             df_pred_new$color)
# get color columns as a new vector
col <- df_pred_new$color</pre>
# Plot Frequency of potential products sold based on category, color, and stars
ggplot(df_pred_new, aes(x=stars, y=n, shape=category,
                    size=pred_rf_new)) +
  geom_point(color=col) + ylab("Frequency") +
  ggtitle("Frequency of potential products sold based on category, color, and stars") +
  theme_minimal() +
  theme(text = element_text(size = 20))
```

Frequency of potential products sold based on category, color, and stars

Frequency of successful products based on category, color, stars, and promotion type

