习题课材料(九)

习题 1. 构造符合要求的矩阵 A:

1. A 的特征多项式为 $\lambda^2 - 9\lambda + 20$. 构造三个不同的 A.

2.
$$A = \begin{bmatrix} 0 & 1 \\ * & * \end{bmatrix}$$
, 且 A 的特征值为 4,7.

3.
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ * & * & * \end{bmatrix}$$
, 且 A 的特征值为 1,2,3.

习题 2. 设 λ_1, λ_2 是 A 的两个不同特征值, x_1, x_2 是分别属于 λ_1, λ_2 的特征向量. 证明, $x_1 + x_2$ 不是 A 的特征向量.

习题 3. ♡ 设 A,B 分别是 $m \times n, n \times m$ 矩阵, 证明对任意复数 λ , 有

$$\lambda^n \det(\lambda I_m - AB) = \lambda^m \det(\lambda I_n - BA).$$

特别地, 当 m=n 时, $\det(\lambda I_n - AB) = \det(\lambda I_n - BA)$.

习题 $4. \, \bigcirc \bigcirc \bigcirc$ 如果复矩阵 A,B 可交换, 证明 A,B 至少有一个公共的特征向量.

习题 5. 设 M_{11} , M_{12} , M_{21} , M_{22} 为二阶方阵, 如果分块矩阵 $M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$ 满足每一行、每一列以及四个二阶子方阵中的四个元素都是 1,2,3,4,则称 M 为四阶数独矩阵.

设 A 是四阶数独矩阵, 证明其绝对值最大的特征值为 10, 且属于该特征值的特征向量的所有分量都相等.

习题 6. ♡♡ 设方阵 A 的每个元素都是整数,证明 $\frac{1}{2}$ 一定不是 A 的特征值.

习题 7. $\Diamond \Diamond \Diamond$ 给定 m 阶方阵 A_1 , n 阶上三角矩阵 A_2 和 $m \times n$ 矩阵 B. 证明如果 A_1 和 A_2 没有相同的特征值, 关于 $m \times n$ 矩阵 X 的矩阵方程 $A_1X - XA_2 = B$ 有唯一解.

矩阵方程 $A_1X - XA_2 = B$ 称为 Sylvester 方程, 在控制论中有不少应用.

习题 8. 设 $A = \begin{bmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{bmatrix}$. 当 k 取何值时, A 可对角化? 当 A 可对角化时, 写出其谱分

习题 9. 证明 $A = \begin{bmatrix} I_r & O \\ B & -I_{n-r} \end{bmatrix}$ 可对角化.

习题 10. ♡

- 1. 若 $A^2 = A$, 则 A 可对角化.
- 2. 若 $A^2 = O$, 且 $A \neq O$, 则 A 不可对角化.
- 3. 若 $A^2 + A + I_n = O$, 则 A 在 \mathbb{R} 上不可对角化.