2-Stage OpAMP Design (1st stage -> NMOS Diff Amp, 2nd stage -> PMOS CSA)

KARNATI PARANJAI

IEC2021097

Final year student, B-Tech ECE, IIIT Allahabad

Required Specifications of the Design:

Low Frequency Gain (DC Gain)	1000 (60dB)		
Gain x Bandwidth product	50 MHz		
Phase Margin	60 deg		
Slew Rate	30 V/usec		
Load Capacitance	1 pF		

VDD	1.8 V
ICMR(+)	1.6 V
ICMR(-)	0.8 V
Power	400 uW
Technology	UMC-180 nm

Design Parameters after Final Tuning:

Channel Length (L)	500 nm
Compensation Capacitance (C _c)	325 fF
Tail Current (Iss)	20 uA
M1, M2	(w/I) = (3u/0.5u)
M3, M4	(w/I) = (6u/0.5u)
M6	(w/I) = (100u/0.5u)
M7	(w/I) = (64u/1u)
M5, M8	(w/l) = (8u/1u)

Sample Outputs

1) Vin = ICMR(-)

Schematic: (The DC operating point of each MOSFET is annotated beside)

Gain and Phase Plot:

Obtained:

2) Vin = 1.2 V

Schematic: (The DC operating point of each MOSFET is annotated beside)

Gain and Phase Plot:

Obtained:

	DC Gain = 65.5928 dB	Bandwidth = 56-57 MHz	Phase Margin = 56.5794 deg	Power = 360.954 uW
--	----------------------	-----------------------	----------------------------	--------------------

3) Vin = ICMR(+)

Schematic: (The DC operating point of each MOSFET is annotated beside)

Gain and Phase Plot:

Obtained:

DC Gain = 59.0958 dB Bandwidth = 55-56 MHz Phase Margin = 57.434 deg Powel	ver = 371.412 uW
--	------------------

Obtained Slew Rate and Power of the Design:

Slew Rate	61.5 V/usec
Average Power	359.688 uW

Process Corner Analysis:

Setting up the outputs and desired specifications are mentioned:

Results:

Corner analysis is setup for 3 processes typical, fast-fast and slow-slow, each at 3 different temperatures of -55°C, 27°C and 125°C.

Summary:

			•	•				
Test 🛆	Output	Min	Max	Mean	Median	Std Dev	Spec	Pass/Fail
ac	Gain	64.09	66.87	65.57	65.59	888.9m	> 60	pass
ac	BW	46.58M	73.29M	57.92M	56.56M	9.383M	> 50M	near
ac	PM	54.38	58.85	56.74	56.97	1.667	range 55 60	near
trans	Average Power	358.3u	364.1u	360.7u	360.2u	1.7u	< 400u	pass

typical_0, fast-fast_0, slow-slow_0 -> corresponding process corner at -55°C.

typical_1, fast-fast_1, slow-slow_1 -> corresponding process corner at 27°C.

typical_2, fast-fast_2, slow-slow_2 -> corresponding process corner at 125°C.

Waveforms:

