VALUE (MeV)

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

TECN COMMENT

π (1300) MASS

1300±100 OUR ESTIMATE

DOCUMENT ID

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

	$1345\pm$	$8\!\pm\!10$	18k	¹ SCHEGELSKY	06	RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
	$1200\pm$	40	90k	SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}$
	$1343\pm$	$15\!\pm\!24$		CHUNG	02		18.3 $\pi^- p \to \pi^+ \pi^- \pi^- p$
	$1375\pm$	40		ABELE	01	CBAR	$0.0 \; \overline{p} d \rightarrow \pi^- 4\pi^0 p$
	$1275\pm$	15		BERTIN			$0.05 \; \overline{p} p \rightarrow 2\pi^+ 2\pi^-$
~	1114			ABELE			$0.0 \ \overline{p}p \rightarrow 5\pi^{0}$
	$1190\pm$	30		ZIELINSKI	84	SPEC	$200 \pi^+ Z \rightarrow Z3\pi$
	$1240\pm$	30		BELLINI	82	SPEC	40 $\pi^- A \rightarrow A3\pi$
	$1273\pm$	50		² AARON	81	RVUE	
	$1342\pm$	20		BONESINI	81	OMEG	$12 \pi^- p \rightarrow p3\pi$
~	1400			DAUM	81 B	SPEC	63,94 $\pi^- p$

 $^{^{1}}$ From analysis of L3 data at 183–209 GeV.

EVTS

π (1300) WIDTH

TECN COMMENT VALUE (MeV) DOCUMENT ID

200 to 600 OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • •

260 20 20	101	3 COUECELOW	00	DV/IIIE	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
$260\pm\ 20\pm30$	18k	SCHEGELSKY			
470 ± 120	90k	SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$
$449 \pm 39 \pm 47$		CHUNG	02		18.3 $\pi^- p \to \pi^+ \pi^- \pi^- p$
$268\pm~50$		ABELE	01		$0.0 \ \overline{p} d \rightarrow \pi^- 4\pi^0 p$
218 ± 100		BERTIN			$0.05 \; \overline{p}p \rightarrow \; 2\pi^+ 2\pi^-$
\sim 340		ABELE	96	CBAR	$0.0 \; \overline{p} p \rightarrow 5\pi^0$
$440\pm~80$		ZIELINSKI	84	SPEC	$200 \pi^+ Z \rightarrow Z3\pi$
360 ± 120		BELLINI	82	SPEC	40 $\pi^- A \rightarrow A3\pi$
580 ± 100		⁴ AARON	81	RVUE	
$220\pm~70$		BONESINI	81	OMEG	$12 \pi^- p \rightarrow p3\pi$
~ 600		DAUM	81 B	SPEC	63,94 $\pi^- p$

 $^{^3}$ From analysis of L3 data at 183–209 GeV.

Created: 5/30/2017 17:21

²Uses multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

⁴ Uses multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

π (1300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$ ho\pi$	seen
Γ_2	$\pi(\pi\pi)$ S-wave	seen
Γ ₃	$\gamma \gamma$	

π (1300) Γ (i) Γ ($\gamma\gamma$)/ Γ (total)

$\Gamma(\rho\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_3/\Gamma_{\text{total}}$								
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT			
<0.085	90	ACCIARRI	97T	L3	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$	- $_{\pi}$ 0		
• • We do not use the following data for averages, fits, limits, etc. • •								
< 0.8	95				$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$			
< 0.54	90	ALBRECHT	97 B	ARG	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$	- π^0		
⁵ From analys	is of L3 data	at 183–209 GeV.						

π (1300) BRANCHING RATIOS

 Γ_2/Γ_1

Created: 5/30/2017 17:21

$\Gamma(\pi(\pi\pi)_{S-V})$	$_{\sf vave})/\Gamma(ho\pi)$			
<i>VALUE</i>	CL% EVTS	DOCUMENT ID	TECN	<u>COMMENT</u>

**	<u> </u>	<u> </u>		0	COMMENT
• • • We do n	ot use the followi	ng data for aver	ages, fits	, limits,	etc. • • •
2.2 ± 0.4	90k	SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$
seen		CHUNG			18.3 $\pi^- p \to \pi^+ 2\pi^- p$
< 0.15	90	ABELE	01	CBAR	$0.0 \overline{p} d \rightarrow \pi^- 4\pi^0 p$
2.12		⁶ AARON	81	RVUF	

 $^{^6}$ Uses multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

π (1300) REFERENCES

SCHEGELSKY	06	EPJ A27 199	V.A. Schegelsky et al.	
SALVINI	04	EPJ C35 21	P. Salvini et al.	(OBELIX Collab.)
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL E852 Collab.)
ABELE	01	EPJ C19 667	A. Abele et al.	(Crystal Barrel Collab.)
ACCIARRI	97T	PL B413 147	M. Acciarri et al.	(L3 Collab.)
ALBRECHT	97B	ZPHY C74 469	H. Albrecht et al.	(ARGUS Collab.)
BERTIN	97D	PL B414 220	A. Bertin et al.	(OBELIX Collab.)
ABELE	96	PL B380 453	A. Abele et al.	(Crystal Barrel Collab.)
ZIELINSKI	84	PR D30 1855	M. Zielinski et al.	(ROCH, MINN, FNAL)
BELLINI	82	PRL 48 1697	G. Bellini <i>et al.</i>	(MILA, BGNA, JINR)
AARON	81	PR D24 1207	R.A. Aaron, R.S. Longao	cre (NEAS, BNL)
BONESINI	81	PL 103B 75	M. Bonesini et al.	(MILA, LIVP, DARE+)
DANKOWY	81	PRL 46 580	J.A. Dankowych et al.	(TNTO, BNL, CARL+)
DAUM	81B	NP B182 269	C. Daum et al.	(AMST, CERN, CRAC, MPIM+)
DAUM	80	PL 89B 281	C. Daum et al.	(AMST, CERN, CRAC, MPIM+)
BOWLER	75	NP B97 227	M.G. Bowler et al.	(OXFTP, DARE)