- 1. Искомая точка на графике такая, что площади под обеими прямыми равны. Из этого условия получаем t=12 с, l=24 м (остается только надеяться, что вне рисунка в условии зависимости продолжают оставаться линейными).
- 2. Обе фигуры подобны с коэффициентом подобия k=1000. Тогда их массы относятся как $3k^3=3\cdot 10^9$. Окончательно получаем m=2,4 г.
- 3. Увеличение линзы $\Gamma = \frac{F}{F-d}$, где d расстояние от предмета до линзы, F ее фокусное расстояние (этот результат нетрудно получить из формулы тонкой линзы). В первом случае $\Gamma = 2$, во втором $\Gamma = -2$. Отсюда сразу получаем $d_1 = 3F/2$, $d_2 = F/2$ (d_1 , d_2 расстояние от предмета до линзы в обоих случаях). Так как $d_1 d_2 = 20$ см, то F = 20 см. Тогда D = 5 дптр.
- 4. Пусть натяжение веревки в руках у человека T. Тогда натяжение веревки, держащей груз, равно 4T. В статическом случае оно должно равняться (M+m)g. Отсюда получаем T=(M+m)g/4=225 Н. Соответственно, сила давления человека на платформу N=Mg-T=(3M-m)g/4=375 Н. Так как сила натяжения ограничена условием $T \leq Mg$ (считаем, что человек не может зацепиться ногами за платформу) и m=4T/g-M, то максимальная масса платформы, при которой человек еще может ее удержать $m_{\max}=3M=180$ кг.