Camera Calibration

Lecturer: Sang Hwa Lee

Calibration problem (I)

- Given *n* points $P_1, P_2, ...P_n$ with known positions in 3D space and their images, $p_1, p_2, ..., p_n$,
- ☐ Find the intrinsic and extrinsic camera parameters

Calibration problem (II)

- ☐ Intrinsic parameters
 - What kind of camera is?
 - Focal length, optical center (principal point), skew angle, aspect ratio, radial distortion
- ☐ Extrinsic parameters
 - Where is the camera?
 - Rotation and translation of coordinates
- ☐ Least squares methods
 - Approximate the coefficients of projection matrix (camera matrix) from multiple points set
 - Newton method, Levenberg-Marquardt method

Calibration procedure (I)

- □ STEP 1: Find projection matrix **M**
 - We need at least 6 points for 3x4 projection matrix
 - > 12 parameters in M
 - Given known n 3D points and their corresponding pixels
 - Calibration box: Cubic grid

$$\begin{pmatrix} u_i \\ v_i \end{pmatrix} = \begin{pmatrix} \frac{\boldsymbol{m}_1 \cdot \boldsymbol{P}_i}{\boldsymbol{m}_3 \cdot \boldsymbol{P}_i} \\ \frac{\boldsymbol{m}_2 \cdot \boldsymbol{P}_i}{\boldsymbol{m}_3 \cdot \boldsymbol{P}_i} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} \boldsymbol{m}_1 - u_i \boldsymbol{m}_3 \\ \boldsymbol{m}_2 - v_i \boldsymbol{m}_3 \end{pmatrix} \boldsymbol{P}_i = 0$$

Homogeneous linear system

Calibration procedure (II)

- Solve linear system equation
 - \triangleright n points $\rightarrow 2n$ equations

$$\mathcal{P}\boldsymbol{m} = 0 \text{ with } \mathcal{P} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{P}_1^T & \boldsymbol{0}^T & -u_1 \boldsymbol{P}_1^T \\ \boldsymbol{0}^T & \boldsymbol{P}_1^T & -v_1 \boldsymbol{P}_1^T \\ \dots & \dots & \dots \\ \boldsymbol{P}_n^T & \boldsymbol{0}^T & -u_n \boldsymbol{P}_n^T \\ \boldsymbol{0}^T & \boldsymbol{P}_n^T & -v_n \boldsymbol{P}_n^T \end{pmatrix} \text{ and } \boldsymbol{m} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{m}_1 \\ \boldsymbol{m}_2 \\ \boldsymbol{m}_3 \end{pmatrix} = 0$$

Least squares methods for 12 parameters

$$\sum_{i=1}^{n} \left[\left(u_i - \frac{\boldsymbol{m}_1(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i}{\boldsymbol{m}_3(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i} \right)^2 + \left(v_i - \frac{\boldsymbol{m}_2(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i}{\boldsymbol{m}_3(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i} \right)^2 \right] \quad \text{is minimized}$$

Calibration procedure (III)

■ STEP 2: Find intrinsic and extrinsic parameters using the obtained projection matrix

$$\mathcal{M} = egin{pmatrix} lpha oldsymbol{r}_1^T - lpha \cot heta oldsymbol{r}_2^T + u_0 oldsymbol{r}_3^T & lpha t_x - lpha \cot heta t_y + u_0 t_z \ rac{eta}{\sin heta} oldsymbol{r}_2^T + v_0 oldsymbol{r}_3^T & rac{eta}{\sin heta} t_y + v_0 t_z \ oldsymbol{r}_3^T & t_z \end{pmatrix}$$

$$\rho(\mathcal{A} \quad b) = \mathcal{K}(\mathcal{R} \quad t) \Longleftrightarrow \rho\begin{pmatrix} \boldsymbol{a}_1^T \\ \boldsymbol{a}_2^T \\ \boldsymbol{a}_3^T \end{pmatrix} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T \\ \boldsymbol{r}_3^T \end{pmatrix},$$

Calibration procedure (IV)

$$\begin{cases} \rho = \varepsilon/|a_3|, \\ r_3 = \rho a_3, \\ u_0 = \rho^2(a_1 \cdot a_3), \\ v_0 = \rho^2(a_2 \cdot a_3), \end{cases} \text{ where } \varepsilon = \mp 1.$$

$$\begin{cases} \rho^2(a_1 \times a_3) = -\alpha r_2 - \alpha \cot \theta r_1, \\ \rho^2(a_2 \times a_3) = \frac{\beta}{\sin \theta} r_1, \end{cases} \text{ and } \begin{cases} \rho^2|a_1 \times a_3| = \frac{|\alpha|}{\sin \theta}, \\ \rho^2|a_2 \times a_3| = \frac{|\beta|}{\sin \theta}. \end{cases}$$

$$\begin{cases} \cos \theta = -\frac{(a_1 \times a_3) \cdot (a_2 \times a_3)}{|a_1 \times a_3| |a_2 \times a_3|}, \\ \alpha = \rho^2|a_1 \times a_3| \sin \theta, \\ \beta = \rho^2|a_2 \times a_3| \sin \theta, \end{cases}$$

$$\begin{cases} r_1 = \frac{\rho^2 \sin \theta}{\beta} (a_2 \times a_3) = \frac{1}{|a_2 \times a_3|} (a_2 \times a_3), \\ r_2 = r_3 \times r_1. \end{cases}$$

Calibration toolbox

- ☐ Matlab toolbox for camera calibration
 - http://www.vision.caltech.edu/bouguetj/calib_doc/
- ☐ Procedure
 - Images loading
 - Extraction of 4 grid corners
 - Main calibration
 - > Iterative distortion correction
 - Results
 - > Camera parameters
 - > Reprojection errors

Least square problem (I)

 \boldsymbol{A}

: | =

 \boldsymbol{b}

Square linear system:

- unique solution
- Gaussian elimination

Rectangular system ??

- underconstrained: infinity of solutions regularization
- overconstrained:no solution

Minimize $||Ax-b||^2$

 $oxed{x} = oxed{b}$

Least square problem (II)

How to solve overconstrained • Define $E = |e|^2 = e \cdot e$ with linear equations ??

• At a minimum,

$$\frac{\partial E}{\partial x_i} = \frac{\partial \mathbf{e}}{\partial x_i} \cdot \mathbf{e} + \mathbf{e} \cdot \frac{\partial \mathbf{e}}{\partial x_i} = 2 \frac{\partial \mathbf{e}}{\partial x_i} \cdot \mathbf{e}$$

$$= 2 \frac{\partial}{\partial x_i} (x_1 \mathbf{c}_1 + \dots + x_n \mathbf{c}_n - \mathbf{b}) \cdot \mathbf{e} = 2 \mathbf{c}_i \cdot \mathbf{e}$$

$$oldsymbol{e} = Aoldsymbol{x} - oldsymbol{b} = \left[egin{array}{c} oldsymbol{c}_1 & oldsymbol{c}_2 & \dots & oldsymbol{c}_n \end{array} \right] \left[egin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] - oldsymbol{b}$$

$$= x_1 oldsymbol{c}_1 + x_2 oldsymbol{c}_2 + \dots + x_n oldsymbol{c}_n - oldsymbol{b}$$

 \bullet or

 $= 2\boldsymbol{c}_i^T(A\boldsymbol{x} - \boldsymbol{b}) = 0$

$$0 = \begin{bmatrix} \boldsymbol{c}_i^T \\ \vdots \\ \boldsymbol{c}_n^T \end{bmatrix} (A\boldsymbol{x} - \boldsymbol{b}) = A^T (A\boldsymbol{x} - \boldsymbol{b}) \Rightarrow A^T A \boldsymbol{x} = A^T \boldsymbol{b},$$

where $\mathbf{x} = A^{\dagger} \mathbf{b}$ and $A^{\dagger} = (A^{T} A)^{-1} A^{T}$ is the *pseudoinverse* of A!

Least square problem (III)

$$A$$
 $x = 0$

Homogenous square system

- unique solution: 0
- unless Det(A)=0

Rectangular system ??

• 0 is always a solution

Minimize $||Ax||^2$ under constraint $||x||^2 = 1$ due to many solutions with scalars and **0**

Least square problem (IV)

How do you solve overconstrained homogeneous linear equations ??

$$E = |\mathcal{U}\boldsymbol{x}|^2 = \boldsymbol{x}^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{x}$$

- Orthonormal basis of eigenvectors: e_1, \ldots, e_q .
- Associated eigenvalues: $0 \le \lambda_1 \le \ldots \le \lambda_q$.
- Any vector can be written as

$$\boldsymbol{x} = \mu_1 \boldsymbol{e}_1 + \ldots + \mu_q \boldsymbol{e}_q$$

for some μ_i $(i=1,\ldots,q)$ such that $\mu_1^2+\ldots+\mu_q^2=1$.

$$E(\boldsymbol{x}) - E(\boldsymbol{e}_1) = \boldsymbol{x}^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{x} - \boldsymbol{e}_1^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{e}_1$$
$$= \lambda_1^2 \mu_1^2 + \ldots + \lambda_q^2 \mu_q^2 - \lambda_1^2$$
$$\geq \lambda_1^2 (\mu_1^2 + \ldots + \mu_q^2 - 1) = 0$$

The solution is e_1 .

Minimum error is λ_I .