Complex Analysis Worksheet

Write a program in Python to find the following:

- 1. Construct a menu driven calculator for the following operations to be performed on complex numbers:
 - 1 : Sum (two numbers)
 - 2 : Difference (two numbers)
 - 3 : Conjugate
 - 4 : Polar form
 - 5 : Plot the number entered on the X-Y plane
 - 6: Plot the number entered on the Argand plane
 - 7: Modulus
 - 8 : Amplitude
 - 9 : Real part
 - 10: Imaginary part
- 2. Verify the following for two complex numbers $z_1 = 5 7i$ and $z_2 = 4 + i$:
 - (a) $|z_1 z_2| = |z_1||z_2|$
 - (b) $|z_1 + z_2| \le |z_1| + |z_2|$
 - (c) $amp(z_1z_2)=amp(z_1)+amp(z_2)$
 - (d) amp $\left(\frac{z_1}{z_2}\right)$ = amp (z_1) amp (z_2)
- 3. Evaluate $e^{2n\pi i}$ for any three values of n.
- 4. Find the locus such that $|z 1|^2 + |z + 1|^2 = 4$.
- 5. Check whether f(z) = log z is analytic. If yes, then find f'(z)
- 6. Verify whether $f(z) = z \bar{z}$ is differentiable using the C-R equations.
- 7. For the complex number z=3+3i, plot the following in the same X-Y plane:
 - (a) Reflection with respect to the Y-axis.
 - (b) Translation by c = 1 + 2i.

- 8. For the complex number z=5-2i, plot the following in the same argand plane:
 - (a) Magnification by $A=4e^i$ with respect to the Y-axis.
 - (b) Inversion by A = 2.
- 9. Find the points at which the functions $w_1=\cos z$ and $w_2=\frac{1}{2}\left(z+\frac{1}{z}\right)$ is not conformal.
- 10. Find the fixed points of the transformation $w = \frac{3z-4}{z}$.