HIPERPARÂMETROS

1. São parâmetros configuráveis externamente que influenciam o processo de treinamento de um modelo de aprendizado de máquina, mas que não são aprendidos durante o treinamento;

- 2. São **essenciais para controlar a complexidade do modelo, ajustar o desempenho e prevenir o overfitting**. Em contraste, os parâmetros do modelo são os valores internos que são aprendidos durante o treinamento com base nos dados de treinamento;
- 3. Os hiperparâmetros variam de acordo com o algoritmo de aprendizado de máquina e podem incluir coisas como a taxa de aprendizado, o número de árvores em um *ensemble*, a profundidade máxima de uma árvore de decisão, o parâmetro de regularização em modelos lineares, entre outros.

Algoritmo	Hiperparâmetros	Possíveis Valores
Random Forest	Número de árvores	Geralmente um número inteiro
	(n_estimators)	entre 10 e 1000
	Profundidade máxima das árvores	Geralmente um número inteiro
	(max_depth)	entre 5 e 50
	Número mínimo de amostras para dividir um nó	Geralmente um número inteiro
	(min_samples_split)	entre 2 e 20
	Número mínimo de amostras em uma folha	Geralmente um número inteiro
	(min_samples_leaf)	entre 1 e 10
	Critério de divisão (<i>criterion</i>)	'gini' ou 'entropy'
SVM	Parâmetro de regularização	Geralmente uma escala logarítmica
	(<i>C</i>)	de valores, como [0.01, 0.1, 1, 10, 100]
	Tipo de kernel (<i>kernel</i>)	'linear', 'poly', 'rbf', 'sigmoid'

Algoritmo	Hiperparâmetros	Possíveis Valores	
	Número de vizinhos	Geralmente um número inteiro entre 1 e	
	(n_neighbors)	20	
KNN	Métrica de distância	'euclidean', 'manhattan', 'chebyshev'	
IXIVIV	(metric)	euchaeun, mannattan, chebyshev	
	Estratégia de ponderação	'uniform', 'distance'	
	(weights)		
	Número de árvores	Geralmente um número inteiro entre 50 e	
	(n_estimators)	500	
	Profundidade máxima das árvores	Geralmente um número inteiro entre 3 e	
	(max_depth)	10	
	Taxa de aprendizado	Geralmente uma escala logarítmica de	
XGBoost	(learning_rate)	valores, como [0.01, 0.1, 0.3]	
	Fração de colunas a serem amostradas		
	aleatoriamente por árvore	Geralmente um valor entre 0.6 e 1.0	
	(colsample_bytree)		
	Subamostragem de linhas	Geralmente um valor entre 0.6 e 1.0	
	(subsample)		