

# Detecting Abdominal Trauma

By: Eric Wolf

#### Introduction

- Traumatic injuries as a global health threat
- Over 5 million annual deaths worldwide
- Timely and accurate diagnosis
- CT scans typically utilized for diagnosis

# **Challenges in Abdominal Trauma Diagnosis**

- Interpreting CT scans for abdominal trauma is complex
- Especially challenging in cases of multiple injuries or subtle bleeding



#### **RSNA Abdominal Trauma Detection**

- Collaboration with ASER and SAR
- Focus on detecting severe injuries to internal abdominal organs
- Liver, kidneys, spleen, bowel, and identification of internal bleeding

### **Data Source and Wrangling**

- Data sourced from 23 research institutions across 14 countries
- Dataset includes de-identified abdominal CT studies and clinical information
- Key findings from data wrangling and exploratory data analysis

#### **Slice Thickness Distribution**



# **Data Modeling**

- Meticulous data cleaning and preprocessing
- Conversion of the dataset into PNG images from DICOM
- Selection of four distinct models: Baseline, ResNet-50, EfficientNet B7, and Xception

#### **Model Details**

- Baseline model: Established for comparison
- ResNet-50: Depth and capacity for intricate feature capture
- EfficientNet B7: Tailored design for high computational capacity
- Xception: Innovative architecture with depthwise separable convolutions

# **Results Summary**

| Model           | Best Loss | Accuracy | Recall | Precision |
|-----------------|-----------|----------|--------|-----------|
| Base            | 3.159     | 75.5%    | 73.9%  | 76.2%     |
| Resnet 50       | 0.753     | 100.0%   | 100.0% | 100.0%    |
| EfficientNet B7 | 1.05      | 97.8%    | 97.7%  | 97.9%     |
| Xception        | 1.336     | 94.8%    | 94.5%  | 95.0%     |

#### **Final Model Selection**

ResNet-50 recommended due to consistent dominance across metrics

## **Future Improvements**

- Multifaceted approach for refining AI in abdominal trauma detection
- Iterative refinement of existing models
- Exploration of ensemble methods
- Commitment to collaboration with the medical community
- Incorporation of interpretability tools into models
- Addressing emerging challenges and staying abreast of advancements

# **Questions?**