Лабораторная работа №8

Модель конкуренции двух фирм

Севастьянов Дмитрий Вадимович

Содержание

Цель работы	3
Теоретическое введение	3
Выполнение лабораторной работы	8
Построение математической модели. Решение с помощью программ	8
Julia	8
Результаты работы кода на Julia	9
Julia	. 10
Результаты работы кода на Julia	. 11
OpenModelica	.12
Результаты работы кода на OpenModelica	.12
OpenModelica	.13
Результаты работы кода на OpenModelica	. 14
Выводы	. 15
Список литературы	. 15

Цель работы

Цель даннои 0 работы: 1. Построение графика изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденнои 0 нормировкои 0 для случая 1. 2. Построение графика изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденнои 0 нормировкои 0 для случая 2.

Теоретическое введение

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель однои фирмы. Вначале рассмотрим модель фирмы, производящеи продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в неи отсутствуют[1]. Обозначим: N – число потребителеи производимого продукта. S – доходы потребителеи данного продукта. Считаем, что доходы всех потребителеи одинаковы. Это предположение справедливо, если речь идет об однои рыночнои нише, т.е. производимыи продукт ориентирован на определенныи слои населения. М – оборотные средства предприятия т – длительность производственного цикла р – рыночная цена товара р – себестоимость продукта, то есть переменные издержки на производство единицы продукции.

Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в однои рыночнои нише. Последнее означает, что у потребителеи в этои нише нет априорных предпочтении, и они приобретут тот или инои товар, не обращая внимания на знак фирмы [2]. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашеи модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителеи каким- либо иным способом.) Уравнения

динамики оборотных средств запишем в виде:

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1} + N_1 q \left(1 - \frac{p}{p_{cr}} \right) p - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2} + N_2 q \left(1 - \frac{p}{p_{cr}} \right) p - \kappa_2$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первои0 и второи0 фирме, соответственно. Величины N1 и N2 – числа потребителеи0, приобретших товар первои0 и второи0 фирмы.

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодеи0ствие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М1М2 будет отличаться[2]. Рассмотрим следующую модель:

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,002\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Вариант 29

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где
$$a_1 &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}. \end{split}$$

Также введена нормировка $t = c_1 \theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг

от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,00019\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и

$$M_0^1=8.5,\,M_0^2=9.1,$$
 параметрами: $p_{cr}=33,N=83,q=1$ $au_1=27, au_2=24,$ $ilde{p}_1=11.3,\, ilde{p}_2=12.5$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N – число потребителей производимого продукта.

т – длительность производственного цикла

р – рыночная цена товара

 $ilde{p}$ — себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q – максимальная потребность одного человека в продукте в единицу времени

$$\theta = \frac{t}{c_1}$$
 - безразмерное время

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Выполнение лабораторной работы

Построение математической модели. Решение с помощью программ

Julia

Первыи 0 случаи 0:

```
using DifferentialEquations
using Plots
p cr = 33
N = 83
\alpha = 1
tau1 = 27
tau2 = 24
p1 = 11.3
p2 = 12.5
a1 = p cr/(tau1*tau1*p1*p1*N*q)
a2 = p cr/(tau2*tau2*p2*p2*N*q)
b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p cr-p1)/(tau1*p1)
c2 = (p cr-p2) / (tau2*p2)
function Fun(du, u, p, t)
    M1, M2 = u
    du[1] = u[1]-b/c1*u[1]*u[2]-a1/c1*u[1]*u[1]
    du[2] = c2/c1*u[2]-b/c1*u[1]*u[2]-a2/c1*u[2]*u[2]
end
v = [8.5, 9.1]
time = (0.0, 30.0)
prob = ODEProblem(Fun, v, time)
sol = solve(prob, dtmax = 0.05)
M1 = [u[1] \text{ for u in sol.u}]
M2 = [u[2] \text{ for u in sol.u}]
T = [t \text{ for t in sol.t}]
plt = plot(
```

```
dpi = 300,
    legend =:topright)

plot!(
    plt,
    T,
    M1,
    label = "M1",
    color = :red)

plot!(
    plt,
    T,
    M2,
    label = "M2",
    color = :blue)
```

Результаты работы кода на Julia

Получим график для первого случая (рис.1)

"Puc.1 График изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1 на языке Julia"

Julia

Второи 0 случаи 0:

```
using DifferentialEquations
using Plots
p cr = 33
N = 83
a = 1
tau1 = 27
tau2 = 24
p1 = 11.3
p2 = 12.5
a1 = p cr/(tau1*tau1*p1*p1*N*q)
a2 = p cr/(tau2*tau2*p2*p2*N*q)
b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p cr-p1) / (tau1*p1)
c2 = (p cr-p2)/(tau2*p2)
function Fun(du, u, p, t)
    M1, M2 = u
    du[1] = u[1] - (b/c1+0.00019) *u[1] *u[2] -a1/c1*u[1] *u[1]
    du[2] = c2/c1*u[2]-b/c1*u[1]*u[2]-a2/c1*u[2]*u[2]
end
v = [8.5, 9.1]
time = (0.0, 30.0)
prob = ODEProblem(Fun, v, time)
sol = solve(prob, dtmax = 0.05)
M1 = [u[1] \text{ for u in sol.u}]
M2 = [u[2] \text{ for u in sol.u}]
T = [t \text{ for t in sol.t}]
plt = plot(
    dpi = 300,
    legend =:topright)
plot!(
```

```
plt,
    T,
    M1,
    label = "M1",
    color = :red)

plot!(
    plt,
    T,
    M2,
    label = "M2",
    color = :blue)
```

Результаты работы кода на Julia

По аналогии с предыдущим построением получим график для второго случая (рис.2)

"Puc.2 График изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2 на языке Julia"

OpenModelica

Первыи 0 случаи 0:

```
model lab8 1
Real M1:
Real M2:
Real p cr = 33;
Real N = 83;
Real q = 1;
Real tau1 = 27;
Real tau2 = 24;
Real p1 = 11.3;
Real p2 = 12.5;
Real a1 = p cr/(tau1*tau1*p1*p1*N*q);
Real a2 = p cr/(tau2*tau2*p2*p2*N*q);
Real b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
Real c1 = (p cr-p1)/(tau1*p1);
Real c2 = (p cr-p2)/(tau2*p2);
initial equation
M1 = 8.5:
M2 = 9.1;
equation
der(M1) = M1-b/c1*M1*M2-a1/c1*M1*M1;
der(M2) = c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;
end lab8 1;
```

Результаты работы кода на OpenModelica

Получим график для первого случая (рис.3)

"Рис.3 График изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1 на языке OpenModelica"

OpenModelica

Второи 0 случаи 0:

```
model lab8 2
Real M1;
Real M2;
Real p cr = 33;
Real N = 83;
Real q = 1;
Real tau1 = 27;
Real tau2 = 24;
Real p1 = 11.3;
Real p2 = 12.5;
Real a1 = p cr/(tau1*tau1*p1*p1*N*q);
Real a2 = p cr/(tau2*tau2*p2*p2*N*q);
Real b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
Real c1 = (p cr-p1)/(tau1*p1);
Real c2 = (p cr-p2)/(tau2*p2);
initial equation
M1 = 8.5;
M2 = 9.1;
```

```
equation
der(M1) = M1-(b/c1+0.00019)*M1*M2-a1/c1*M1*M1;
der(M2) = c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;
end lab8_2;
```

Результаты работы кода на OpenModelica

По аналогии с предыдущим построением получим график для второго случая (рис.4)

"Рис.4 График изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2 на языке OpenModelica"

Выводы

В ходе проделаннои 0 работы были построены: 1. График изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденнои 0 нормировкои 0 для случая 1. 2. График изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденнои 0 нормировкои 0 для случая 2. На языке Julia реализация кожа объемнее, чем на языке OpenModelica.

Список литературы

- [1] ДИНАМИЧЕСКАЯ МОДЕЛЬ КОНКУРЕНЦИИ ДВУХ ФИРМ НА ОДНОРОДНОМ РЫНКЕ: https://natural-sciences.ru/ru/article/view?id=14730&ysclid=lfy5n3s35h687499253
- [2] Руководство к лабоарторнои 0 работе: https://esystem.rudn.ru/pluginèile.php/1971672/mod_resource/content/2/Лабораторная%20работа%20№207.pdf