

Imperial College London

COMP70058 Computer Vision

Lecture 9 – Interest Point Detection

Stamatia (Matina) Giannarou, PhD The Hamlyn Centre for Robotic Surgery

stamatia.giannarou@imperial.ac.uk

Contents

- Feature Detection
- Interest Points in Vision
- Corner Detection and Harris Corner Detector
- Shi-Tomasi Corner Detector
- Automatic Scale Selection

Applications of Image Sequence Processing

- Image alignment and stitching
- Object recognition
- 3D reconstruction and modelling
- Motion tracking
- Indexing and content-based retrieval
- Robot mapping and navigation
- Gesture recognition

Feature Detection

- What is a feature?
 - An interesting part of an image
- Why local features?
 - Locality local features are associated with object features
 - Generalisability local features are more generalisable for scene representation
 - Abundance many of them, often with redundancy (numerically attractive)
 - Efficiency fast to calculate, thus good for real-time performance.
- Types of features
 - Edges
 - Corners (when there is high curvature in image gradient)
 - Blobs
 - Ridges

What Features are Good for Tracking

Interest Points in Vision

- Well defined position in images;
- Incorporate useful local image context (e.g., distinctive texture patch);
- Stable under local or global changes (e.g., illumination, contrast);
- Immune to geometrical changes (e.g., scale, translation, rotation);
- Generalisable to natural scenes and preferably with good mathematical representation.

Edges	Corners	Blobs	Ridges
Sobel Prewitt Roberts Robinson Canny Canny-Deriche	Harris Shi & Tomasi Yang & Chabat Level Curvature Susan AST/FAST	LoG DoG DoH (Determinant of Hessian) MSER (Maximally stable extremal regions) PCBR (Principal curvature based region)	Ridge sets Valley sets Relative critical sets

Interest Points in Vision

Why Corners

- Movement in uniform region results in no change in pixel distribution within the window
- Movement along an edge also results in no change in pixel distribution within the window
- For corners, any movement will result in significant changes

- Let's look at a small window W, when shifted by
 d=[u, v]^T
- The changes in intensity distribution due to **d** can be expressed as the squared difference of I(x+u, y+v)-I(x,y) within the window

$$\mathcal{E}(u,v) = \sum_{x,y \in W} \left(I(x+u,y+v) - I(x,y) \right)^2$$

By Taylor series expansion $I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \dots$

$$\mathcal{E}(u,v) \approx \sum_{x,u \in W} \left(I(x,y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v - I(x,y) \right)^2, \text{ define } I_x \equiv \frac{\partial I}{\partial x} \text{ and } I_y \equiv \frac{\partial I}{\partial y} \text{ we have } I_y = \frac{\partial I}{\partial y} \text{ for } I_y$$

$$\mathcal{E}(u,v) \approx \sum_{x,y \in W} \left(uI_x + vI_y \right)^2 = \sum_{x,y \in W} \left(u^2 I_x^2 + 2uvI_x I_y + v^2 I_y^2 \right)$$

For uniform patches, this will be near 0 and for distinctive patches such as corners, it will be large, therefore we are interested in maximising $\varepsilon(u,v)$ while searching for corners

$$\varepsilon(u,v) \approx \sum_{x,y \in W} \left(uI_x + vI_y \right)^2 = \sum_{x,y \in W} \left(u^2 I_x^2 + 2uvI_x I_y + v^2 I_y^2 \right)$$

When expressed in matrix form, we have the following equivalent expression

- We will get a large E(u, v), where image derivatives are large.
- M is a 2x2 matrix which can provide information about the directions of change.

Since M is a real symmetric matrix, we can decompose M as:

Corner Response Map

Corner Response Map

$$\varepsilon(u,v) \approx \sum_{x,y \in W} \left(uI_x + vI_y \right)^2 = \sum_{x,y \in W} \left(u^2 I_x^2 + 2uvI_x I_y + v^2 I_y^2 \right)$$

When expressed in matrix form, we have the following equivalent expression

Measure of corner response (where λ1, λ2 are eigenvalues of M)

$$R = \det \mathbf{M} - k(trace\mathbf{M})^2$$

$$\det \mathbf{M} = \lambda_1 \lambda_2$$
 Empirically determined constant
$$trace\mathbf{M} = \lambda_1 + \lambda_2$$

$$k \in [0.04, 0.06]$$

Algorithm Design – Harris Corner Detection

- Compute x and y derivatives of image (can convolve image with derivatives of Gaussians);
- Compute products of derivatives at every pixel;
- Compute the sums of the products of derivatives;
- Construct the M matrix;
- Calculate the corner response value R;
- Threshold on value R, suppress non-maximum value.

$$I_{x} = G_{x}(x, y, \boldsymbol{\sigma}) * f(x, y)$$
$$I_{y} = G_{y}(x, y, \boldsymbol{\sigma}) * f(x, y)$$

$$\mathbf{M} = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Harris Corner Detector in Action

Shi-Tomasi Corner Detector

$$R = \min(\lambda_{_{\! 1}}, \lambda_{_{\! 2}})$$

Corner Detector Invariance Properties

- If the corner has rotated, you can still get the same change of intensities when you shift the window. However, you need to shift along a different direction.
- The eigenvalues of *M* do not change. But the eigenvectors change.
- Therefore, the ellipse representing the feature will rotate but its shape will not change.

Corner Detector Invariance Properties

- When the image scale changes, the corner response will change.
- However, we can apply a corner detector at multiple scales and find the response at the most suitable scale.
- How do we normally get multi-scale images?
 - $_{ extstyle \Box}$ Gaussian smoothing with different σ
 - Sampling at different pixel resolutions

Image convolved with Gaussian kernels of different σ provide information at different scale.

We need to find the patch size for which the f response will be equal.

- The Laplacian of Gaussian (LoG) which is the second derivative of Gaussian is a suitable function to estimate the characteristic scale of image structures such as blobs and corners.
- When the size of the LoG kernel matches the size of an image structure the response attains an extremum.

Find local maxima in position-scale space of LoG

Approximate LoG with Difference-of-Gaussian (DoG).

- 1. Blur image with σ Gaussian kernel
- 2. Blur image with $k \sigma$ Gaussian kernel
- 3. Subtract 2. from 1.

Scale invariant detectors

- Harris-Laplace detector [1]
 - $_{\Box}$ Find the optimal scale σ using Laplacian response
 - Find the local maximum in space using Harris detector response

- SIFT [2]
 - Find the optimal scale σ using DoG response
 - Find the local extremum in space using DoG response

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	$_{\mathrm{Blob}}$	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	√			√			+++	+++	+++	++
Hessian		\checkmark		\checkmark			++	++	++	+
SUSAN				√			++	++	++	+++
Harris-Laplace	√	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		\checkmark	\checkmark		++	++	++	+++
Harris-Affine	\checkmark	(√)		√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			√	\checkmark	\checkmark	+++	+++	+	+
MSER				√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	√	(√)	(√)	+	+	+	+

Conclusions

- Feature Detection
- Interest Points in Vision
- Corner Detection and Harris Corner Detector
- Shi-Tomasi Corner Detector
- Automatic Scale Selection

