# A Control Framework for Immunology: Threat Detection, Learning, and Stability

Matthew M. Peet\*, Peter S. Kim and Peter P. Lee
\*Illinois Institute of Technology

IEEE Conference on Decision and Control Orlando, FL



December 13, 2011



# How To Recognize a Threat?

The Innate Immune Response

Threats: viruses, bacteria, parasites

Detection: Pattern Recognition Receptors (PRRs) identify Pathogen-Associated Molecular Patterns (PAMPs).

- TLR3 recognizes double-stranded RNA (viruses)
- TLR4 recognizes polysaccharides (bacteria)
- TLR5 recognizes bacterial flagellin
- TLR9 recognizes unmethylated CpG-containing DNA (common in viruses and bacteria)

Response: Macrophages, Dendritic Cells attack pathogens, amplify immune response, and recruit monocytes.

- Activation (Phagocytosis, Lysis)
- Cytokine signaling attracts monocytes (yield more DCs and  $M\Phi$ s).
- Cytokine signaling causes inflamation.
- Antigen presentation

M. Peet Control in Immunology:

2 / 22

# Problems with Innate Response





Paul, Fundamental Immunology

### Problems with innate immunity:

- Slow
- No immunity
- Not robust
- No response to cancer

# The Adaptive Immune System?

#### A Secondary System

Adaptive Immunity is new.

Not present in plants

#### Several Functions

- Respond quickly to known threats Immunity
- Identify threats missed by PRRs



Figure: T Cell Receptors are only bind with one antigen (peptide)

The key to adaptive immunity is that it is antigen-specific.

- The adaptive response targets a single biological marker (antigen).
- In contrast to PRR defense, which targets entire classes of cells.

M. Peet Control in Immunology: 4 / 22

# The Adaptive Immune System

How does it work?

Antigen-Presenting Cells (APCs) sweep up antigens

- Macrophages, Dendritic Cells, B-cells
- Antigens are presented to T cells



### Response: T cells train B cells and killer T cells

- B cells produce antibodies which bind to a single type of antigen.
- Killer T cells induce apoptosis in infected cells.

In this talk, we focus on the T cell dynamics.

# The Adaptive Immune System

### The Decision-Making Process

• Should a presented antigen be targeted?

## Congressional Committee: Decision-makers congregate in Lymph nodes.

- Helper T cells vote to amplify immune response.
- Regulatory cells vote to suppress immune response.
- Memory cells of both types can override decisions.

#### Constraints

• All antigens look the same (more or less).

### Consequences

- Targeting of self-antigens results in auto-immune disease.
  - ► Type-I diabetes; graph vs. host; allergies; septic shock.
- Tolerance of hostile pathogen results in chronic disease.
  - Cancer, HIV, parasites.

6 / 22

# The Adaptive Immune System?



Figure: Decision-Making in the Lymph Nodes (C. Zindle )

## Outline of Our Model

Direct Modeling of the immune system is impossible/useless.

- An emerging field with lots of uncertainty.
- Time-series data not available.
- Too much complexity.
  - Nonlinear with thousands of possible states

We will pick our fights carefully

- Self-nonself discrimination.
- Threat communication and triggering.
- Maintain stability of response.

# Basics of the Control System

### What are we looking for?



## A Basic Model

Proportional Response: Sensor

The first step is a common model of proportional response.

$$\underbrace{ \begin{array}{c} s \\ \text{supply} \end{array}}_{\substack{Na\"{\text{Na\"{re}}} \\ \text{T cells}}} \underbrace{ \begin{array}{c} a(t)N \\ \text{activation} \end{array}}_{\substack{\text{T cells}}$$

Hypothesis: A stabilized reservoir of naïve T cells is available.

Sensor: Helper Cell Dynamics

$$\frac{dE(t)}{dt} = R_{Ea}Na(t) - d_EE(t),$$

N is the size of the pool of Naïve T cells.  $R_{Ea}$  is a reaction rate.  $d_E$  is death/loss rate. a(t) is antigen concentration. System at steady-state has

$$E(t) = \frac{NR_{Ea}}{d_E}a(t)$$

### Threat Detection

#### Derivative Control







### Friendly Objects Don't Move

Consider first-order differential approximation

- Trigger an alarm if:
  - $\dot{x}(t) \cong \frac{x(t) x(t \tau)}{\tau} \neq 0$

More generally: Define threat based on behavior

We consider rate of change in antigen concentration.

# Threat Detection: Derivative Response

First Order Approximation

Observation: The  $T_{reg}$  response is delayed.

Assume  $T_{reg}$  and  $T_h$  populations both in steady state.

$$E(t) = K_E a(t), \qquad R(t) = K_R a(t - \tau)$$

Regulator cells de-activate helper cells.

$$\frac{dE(t)}{dt} = r_{Ea}a(t)E(t) - r_{RE}R(t)E(t)$$
$$= (r_{Ea}a(t) - K_{RE}a(t-\tau))E(t)$$



Now, include the steady-state actuator dynamics

# The Activation Dynamics: Derivative Gain

#### **Actuator Dynamics**

### Proportional-Differential Control

$$\frac{dE(t)}{dt} = K_1 a(t) E(t) + K_2 \frac{(a(t) - a(t - \tau))}{\tau} E(t)$$
  

$$\cong (K_1 a(t) + K_2 \dot{a}(t)) E(t)$$

#### where

•  $K_1 = (r_{Ea} - K_{RE})$  and  $K_2 = \tau K_{RE}$ .

If the system is in balance:

- If  $r_{Ea} \cong K_{RE}$ , there is no proportional response.
- Further, if a threat is persistent,  $a(t) = a(t \tau)$ , then  $\dot{E}(t) = 0$ , so the threat is ignored.

#### Conclusion

- No cell is able to determine threat level.
- Threat is determined by overall balance of  $T_{reg}/T_{eff}$  populations.

# Return to Motion Detection







**Problem:** The signal  $x(t) - x(t-\tau)$  is not strong or persistent.

#### Solution

• Use  $x(t) - x(t - \tau)$  as a trigger:

# The Activation Dynamics: Trigger Mechanism

A Switching Model

Observation:  $T_h$  cell proliferation is driven by cytokine IL-2.

$$\frac{dp(t)}{dt} = r_p E(t) - d_p p(t).$$

- p is concentration of IL-2.
- Assume dynamics are fast.

$$p(t) = \frac{r_p E(t)}{d_n}.$$



Figure: Release and Absorption of Growth Signals

Effector T cells

Effector Cell Dynamics become

$$\frac{dE(t)}{dt} = -d_E E(t) + r_E E(t)^2 \frac{r_p}{d_p} + u(t)$$

Positive growth

signals

# The Activation Dynamics: Trigger Mechanism

Stability Threshold

The one-dimensional Effector Dynamics:  $\dot{E}(t) = f(E(t)) + u(t)$ 



When  $u(t) < u_{trig}$ :

- Two Equilibria: one stable, one unstable.
- $u_{trig} = d_E^2 \frac{d_p}{4r_p r_E}$

When  $u(t) > u_{trig}$ :

- No equilibria, exponential growth.
- If u(t) returns to 0, growth continues anyway.

# The Activation Dynamics: Containment

#### Integral Control

Unbounded (unstable) exponential growth is unrealistic.

• We model contraction using a long-lived  $iT_{reg}$  population which emerges from the helper T cell population.



$$\frac{dR_i(t)}{dt} = \nu_R p(t) E(t) - d_{Ri} R_i(t).$$

•  $\nu_R$  is the emergence rate via cytokines.

# The Activation Dynamics: Containment

Integral Control

If we assume the death rate  $d_R$  is relatively small. Then we have

$$R_i(t) \cong K_i \int_0^t E(s)ds$$

**Question:**Is this enough to overcome the positive feedback loop? To answer this we use Sum-of-Squares Optimization

- An approach to optimization over the cone of positive polynomials
- Find a Lyapunov function  $V(x) \ge \epsilon ||x||^2$
- With Negative Derivative:

$$\nabla V(x)^T f(x) \le -\alpha ||x||^2$$

# Regions of Stability

### Lyapunov Stability Analysis

- We find a degree 6 Lyapunov function.
- Use nominal values of the parameters.



Figure: Lyapunov Level Sets and Vector Field: Helper vs. Regulatory Cell Concentration

# Regions of Stability

We can automate the search over the parameter space.

- $\nu_R$  is the differentiation rate of  $iT_{req}$  cells
- ullet  $r_{RiE}$  is the suppression rate of helper cells by  $iT_{reg}$  cells



Figure: Stability for  $\nu_R$  vs.  $r_{RiE}$ . Generated from SeDuMi on a grid. 1 implies stability. -1 means indeterminate

### Parameter Region of Stability:

$$\nu_R \cdot r_{RiE} > 12.$$

# Why is the Control Perspective important?

Consider the idle system on an automobile



Figure: Illustration of the automotive idle control system

For a malfunctioning automotive idle: What is the better solution -

- Apply the Brakes?
- Re-calibrate the fuel sensor?

### Conclusion

### Modeling Immune Response as a Control System

### The System Responds to Behavior

- Optimal dosing strategies may induce tolerance
  - ▶ Reduce rejection in transplantation
- Experimental tests in preparation

## **Ongoing Work:**

- Modeling Memory.
- Optimal Control theory Modeling Evolution.

#### Web Site:

http://mmae.iit.edu/~mpeet