Kinds of Proofs (part 2)

PROOF BY DIVISION INTO CASES

Theorem $\forall x, P(x) \text{ or } Q(x) \Rightarrow R(x)$

Proof" Either P(x) or Q(x) istrue.

Case 1 Assume P(x) is true. . Clearly and carefully state P(x). . Step-by-step, show that...

· R(x) is true.

(might them (might them) (ase 2. Assume Q(x) is true.

2 cases!) Case 2. Assume Q(x) is true.

Clearly and carefully state Q(x).

· Step - by- step, show that ...

· R(x) is true.

PROOF BY CONTRAPOSITION

Theorem $\forall x, P(x) \Rightarrow Q(x).$

Proof 'It is sufficient to show that $\sim Q(x) \Rightarrow \sim P(x)$ "

. Assume Q(x) is false. Clearly and carefully state that Q(x) is false.

· Step-by-Step, show that ...

. P(x) is false.

. Therefore P(x) -> Q(x) 1.

PROOF BY CONTRADICTION

Theorem Yx, P(x) is true.

Proof "Suppose not."

. Clearly and carefully state that P(x) is false.

Cool symbol:

. Step-by-step, show that ...

. this leads to a contradiction.

means

contradiction! Therefore, P(x) is true.

Chapter 5 Summary: More About Sets
Review: $\{x \in \mathbb{Z} \mid 1 \le x < 5\} = \{1, 2, 3, 4\}$ the set of all x element of the integers such that
of all x element of the integers such that
Subsets ACB mades "A is a subset of B."
A is completely contained in B - every element of B.
$\forall x : if x \in A, then x \in B.$
Equality out Diagram: Proper Subset A is a subset of B, and of B that is
Proper Subset A is a subset of B, and
1 Land is some chemen
not in A. (ACB.)
The Empty Set (The Null Set)
Ø = { } = the set with nothing in it!
Union AUB = The set of all elements in A and/or
Diagrami.
Intersection ANB = the set of all elements in A
and in B.
Diagram: MA
Difference B-A = the set of all elements in B but not in A.
Complement Ac (or A) [4]
The set of all elements of the universe that are not in A.