Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

IMDAD ULLAH KHAN

A set is an unordered collection of objects

- $\bullet A : \{1, 2, a, b, Fred, LUMS\}$
- \mathbb{N} : $\{0,1,2,3...\}$
- B : the set of all professors in LUMS
- lacksquare $B: \{x \mid x \text{ is a professor in LUMS }\}$

Order of elements is not significant

 \blacksquare {1,2,3} is the same as {2,3,1}

Repetition does not count

Different from arrays in C++/Java (order, same type)

Sets: Notation

Notation:

- Names of sets usually denoted by upper case letters
- Objects in a set are called it's elements/members
- $x \in A$: x is an element of A
- \blacksquare $A \ni x$: A contains x

Sets: Description

- Sets can be described by listing it's elements
 - TAs := {20102222, 20103333, 20104444, 20105555}
 - $\mathbb{N} := \{0, 1, 2, 3 \dots \}$
- Sets can be described by an English phrase
 - Set of students in CS-210
 - Set of all professors in LUMS
- Sets can be described by providing a membership predicate
 - Objects for which the predicate is true will be members of the set
 - $lacksquare B := \{x \mid x \text{ is a professor in LUMS}\}$
 - $C := \{x \in \mathbb{N} \mid x > 10\}$

Sets: Description

- Sets could have many different equivalent descriptions
- Follows from logical equivalence of membership predicates

ICP 4-1 List 5 elements of each of the following sets

- $B = \{x \mid x+1 \text{ is a multiple of 4} \}$
- $C = \left\{ x \text{ rational number } \mid x^2 < 2 \right\}$
- $\mathbf{5} \ Y = \left\{ 4x 1 \mid x \in \mathbb{Z} \right\}$
- **6** $Z = \{ \sqrt{x} \mid x < 2 \}$

Standard Numerical Sets

$$\mathbb{N} := \{0, 1, 2, 3 \dots \}$$

▶ Natural numbers

$$\blacksquare \mathbb{Z} := \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

▶ Integers

$$\blacksquare \ \mathbb{Z}^+ := \left\{ \ldots, 1, 2, 3, \ldots \right\}$$

▷ Positive integers

$$\blacksquare \ \mathbb{Q} := \left\{ P/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \right\}$$

▶ Rational numbers

- \blacksquare \mathbb{R} := the set of **Real numbers**
- int := set of integers that can be expressed in 32 bits
- double := the set of real numbers that can be expressed in 64 bits

Some other sets

- **■** Empty Set
 - $A = \emptyset = \{ \}$
- Family/Collection of sets: Set of sets
 - $A = \{\{x,y\},\{y,z\},\{z\}\}$
- Set containing sets
 - $A = \{ \{p, q\}, x, \{x\}, \{y\} \}$

Set Equality

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

ICP 4-2
$$A = \{3, 1, -3, 9\}$$
 $B = \{-3, 1, 3, 9\}$

Is
$$A = B$$
? why?

Set Equality

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

ICP 4-3
$$A = \{p, q, r, s\}$$
 $B = \{r, q, s\}$

Is
$$A = B$$
? why?

Set Equality

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

ICP 4-3
$$A = \{p, q, r\}$$
 $B = \{p, r, q, p\}$

Is
$$A = B$$
? why?

Set Complement

The complement of a set A contains those elements that are not in A

- lacksquare $\mathbb{Q}=\left\{ { extit{P}/q}\mid p\in\mathbb{Z},q\in\mathbb{Z},q
 eq0
 ight\}$ (rationals)
- Irrational numbers: non-rational number
- $\{ \sqrt{2}, \pi, e, \text{ cat, dog, calculus...} \}$
- Universal Set

The complement of a set A contains those elements (of the universal set) that are not in A

Set Complement

The complement of a set A consists of all elements of U that are not in A

Denoted by \overline{A}

$$\overline{A} := \{x \in U \mid x \notin A\}$$

Universal Set

Puzzle

In a town, there is a male barber who shaves all the men and only those men who do not shave themselves

Does the barber shave himself?

- Let $M = \{ \text{men who shave themselves} \}$
- *M* is the set of people that the barber *b* does not shave
- If the barber b shaves himself, then $b \in M$
- Then barber must not shave himself, i.e. $b \notin M$
- But barber shaves all those not in M, so $b \in M$
- $b \in M$ is neither true nor false

Universal Set

Russell's Paradox

Let S be the set that contains all sets, which do not contain themselves

Can this set exist?

- Let say S exists. Then either $S \in S$ or $S \notin S$
- If $S \in S$, since all elements of S do not contain themselves, thus S does not contain S, i.e. $S \notin S$
- If $S \notin S$, since S contains all those sets that do not contain themselves, so S should contain S, i.e. $S \in S$
- In both cases the assumption is contradicted

Cardinality of finite sets

For a finite set A it's cardinality is the number of distinct elements in A

Denoted by |A|

 $A = \{ \text{Even integers among the first 100 positive integers} \}$

| ICP 4-4 |
$$|A| = ?$$

$$B = \{ \text{Positive factors of 16} \}$$

| ICP 4-5 |
$$|B| = ?$$

Sets Summary

- A set is an ordered collection of objects
- Order and repetition of objects do not matter
- Sets can be described in various ways
- Empty set is a well-defined set with zero objects
- Two sets are equal if and only if they have the same elements
- *A* is the collection of all objects in universal set that are not in *A*
- Cardinality of A is the number of distinct elements in A

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

IMDAD ULLAH KHAN

Sets Summary

- A set is an ordered collection of objects
- Order and repetition of objects do not matter
- Sets can be described in various ways
- Empty set is a well-defined set with zero objects
- Two sets are equal if and only if they have the same elements
- *A* is the collection of all objects in universal set that are not in *A*
- Cardinality of A is the number of distinct elements in A

A is a subset of B if and only if every element of A is an element of B

Denoted by $A \subseteq B$

$$A \subseteq B$$
 means $\forall x (x \in A \rightarrow x \in B)$

When $A \subseteq B$, B is superset of A

$$\mathbb{N} = \{0, 1, 2, 3 \dots \}$$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

$$\mathbb{Z}^+ = \{1, 2, 3, \dots\}$$

$$\blacksquare \mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$$

▶ Natural numbers

▷ Integers

Positive integers

▶ Rational numbers

Which of the following is True/False?

ICP 4-6
$$\mathbb{N} \subset \mathbb{Z}$$

- True
- False

ICP 4-7
$$\mathbb{Z} \subset \mathbb{Z}^+$$

- a) True
- b) False

$$\mathbb{N} = \{0, 1, 2, 3 \dots \}$$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

$$\mathbb{Z}^+ = \{1, 2, 3, \dots\}$$

$$\blacksquare \mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$$

▶ Natural numbers

▶ Integers

Positive integers

▶ Rational numbers

Which of the following is True/False?

ICP 4-8
$$\mathbb{Z}^+ \subset \mathbb{N}$$

- a) True
- False

ICP 4-9
$$\mathbb{Q} \subseteq \mathbb{N}$$

- a) True
- b) False

$$\mathbb{N} = \{0, 1, 2, 3 \dots \}$$

$$\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$$

$$\mathbb{Z}^+ = \{1, 2, 3, \dots\}$$

$$\blacksquare \mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$$

▶ Natural numbers

▶ Integers

Positive integers

▶ Rational numbers

Which of the following is True/False?

ICP 4-10
$$\mathbb{Z} \subset \mathbb{Q}$$

- True
- False

ICP 4-11
$$\mathbb{Z}^+ \subseteq \mathbb{Q}$$

- a) True
- b) False

$$\mathbb{N} = \{0, 1, 2, 3 \dots \}$$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

$$\mathbb{Z}^+ = \{1, 2, 3, \dots\}$$

$$\blacksquare \mathbb{Q} = \{ P/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$$

Natural numbers

▶ Integers

> Positive integers

▶ Rational numbers

Which one of the following is True/False?

ICP 4-12
$$\mathbb{Z} \subset \mathbb{N}$$

- True

ICP 4-13
$$\mid \mathbb{Z}^+ \subseteq \mathbb{Z}$$

- True
- False

Empty set is subset of every set

A is a subset of B if and only if every element of A is an element of B

$$A \subseteq B$$
 means $\forall x (x \in A \rightarrow x \in B)$

$$\forall A \quad \emptyset \subset A$$

Need to show that the following is true

$$\forall x \ (x \in \emptyset \to x \in A)$$

 $x \in \emptyset$ is always false (for every x)

thus

$$(x \in \emptyset \to x \in A)$$
 is always true

Every set is subset of itself

A is a subset of B if and only if every element of A is an element of B

$$A \subseteq B$$
 means $\forall x (x \in A \rightarrow x \in B)$

$$\forall A \quad A \subseteq A$$

Need to show that the following is true

$$\forall x \ (x \in A \to x \in A)$$

 $(x \in A \rightarrow x \in A)$ is always true (for every x)

Proper Subset

A set A is called a proper subset of B if $A \subseteq B$ but $A \neq B$

Denoted by $A \subset B$ or $A \subsetneq B$

 $A \subset B$ means $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$

Set Equality A = B

Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$

■ A = B means $\forall x (x \in A \leftrightarrow x \in B)$

▷ earlier definintion

■ A = B means $A \subseteq B$ AND $B \subseteq A$

$$A = B$$
 means $\forall x (x \in A \to x \in B)$ AND $\forall x (x \in B \to x \in A)$

• Combining the two we get our old definition of A = B

The power set of a set A is the set of all subsets of A

Denoted by $\mathcal{P}(A)$

$$A = \{p, q, r\}$$

$$\mathcal{P}(A) = \left\{\emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\}\right\}$$

- $\emptyset \notin A$ but $\emptyset \subseteq A$, thus $\emptyset \in \mathcal{P}(A)$
- $A \notin A$ but $A \subseteq A$, thus $A \in \mathcal{P}(A)$

Power set

Power set of the empty set, $\mathcal{P}(\emptyset)$

$$\mathcal{P}(\emptyset) \; = \; \Big\{\emptyset\Big\} \; = \; \Big\{\; \{\}\; \Big\}$$

Power set of the set containing \emptyset , $\mathcal{P}\Big(\big\{\emptyset\big\}\Big)$

$$\mathcal{P}\Big(\big\{\emptyset\big\}\Big) \;=\; \Big\{\emptyset,\big\{\emptyset\big\}\Big\}$$

Cardinality of Power set

If
$$|A| = n$$
, then $|\mathcal{P}(A)| = 2^n$

- $A = \{p, q, r\}$
- $P(A) = \{\emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\}\}$
- $|\mathcal{P}(A)| = 2^3 = 8$

ICP 4-14 Let $B = \{p\}$. What is $|\mathcal{P}(B)|$?

ICP 4-15 Let $C = \{\} = \emptyset$. What is $|\mathcal{P}(C)|$?

ICP 4-16 Let $D = \{\{\}\} = \{\emptyset\}$. What is $|\mathcal{P}(D)|$?

Subsets: Summary

- A is a subset of B if and only if every element of A is an element of B
- $A \subseteq B$, A is subset of B, B is superset of A
- Empty set is a subset of every set
- Every set is a subset of itself
- Power Set of A is the set of all subsets of A
- Cardinality of power set of A with |A| = n is 2^n

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

IMDAD ULLAH KHAN

Set Operations

- Set operations (typically) take two sets and return another set
 - Set complement is a unary operation (takes one set)
 - Universal set is also involved in the background
- Set Algebra is built upon these set operations

Set Operations: Union

The union of two sets A and B is the set containing all elements that are in A or B or both

$$A \cup B = \{x | x \in A \lor x \in B\}$$

$$\big\{1,3,5\big\} \cup \big\{1,5,6,7\big\} \ = \ \big\{1,3,5,6,7\big\}$$

Two sets A and B

Set Operations: Intersection

The intersection of two sets A and B is the set containing all elements that are both in A and B

$$A \cap B = \{x | x \in A \land x \in B\}$$

$$\big\{1,3,5\big\}\cap \big\{1,5,6,7\big\} \ = \ \big\{1,5\big\}$$

Two sets A and B

Disjoint Sets

Two sets A and B are disjoint if $A \cap B = \emptyset$

No elements in common. Logical expression!

$$\big\{1,3,5\big\} \cap \big\{2,4,6\big\} \; = \; \emptyset$$

Disjoint sets A and B

Set Operations: Set Difference

The difference of two sets A and B is the set containing those elements that are in A but not in B

$$A \setminus B = \{x | x \in A \land x \notin B\}$$

$$\{1,3,5\} \setminus \{1,5,6,7\} = \{3\}$$

Two sets A and B

Set Operations: Symmetric Difference

The symmetric difference of two sets A and B is the set containing those elements that are in exactly one of the two sets

$$A \oplus B = \{x | x \in A \oplus x \in B\}$$

$$\big\{1,3,5\big\} \oplus \big\{1,5,6,7\big\} \ = \ \big\{3,6,7\big\}$$

Two sets A and B

 $A \oplus B$

Generalized Union

The union of a collection of sets is the set containing those elements that are members of at least one set in the collection

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i = \{x \mid \exists i \ x \in A_i\}$$

Generalized Union

The union of a collection of sets is the set containing those elements that are members of at least one set in the collection

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i = \{x \mid \exists i \ x \in A_i\}$$

- Let $A_i = \{i, i+1, i+2, \dots\}$
 - $A_1 = \{1, 2, 3, \dots\}$
 - $A_2 = \{2, 3, 4, \dots\}$
 - **ICP 4-17** $A_3 = ?$
 - **ICP 4-18** $A_4 = ?$

ICP 4-19
$$\bigcup_{i=1}^{n} A_i = \{1, 2, 3, \dots\}$$

Generalized Intersection

The intersection of a collection of sets is the set containing those elements that are members of all the sets in the collection

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i = \{x | \forall i x \in A_i\}$$

 $n \text{ sets } A_1, A_2, \ldots, A_n$

 $A_1 \cap A_2 \cap A_3 \cap A_4$

Generalized Intersection

The intersection of a collection of sets is the set containing those elements that are members of all the sets in the collection

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i = \{x \mid \forall i \ x \in A_i\}$$

- Let $A_i = \{i, i+1, i+2, \dots\}$
 - $A_1 = \{1, 2, 3, \dots\}$
 - $A_2 = \{2, 3, 4, \dots\}$
 - ICP 4-20 $A_5 = ?$
 - **ICP 4-21** $A_6 = ?$

$$\bigcap_{i=1}^{n} A_i = \{n, n+1, n+2, \dots\}$$

Set Operations

- Set Operation (Binary)
 - Union
 - Intersection
 - Difference
 - Symmetric Difference
- Generalized Union
- Generalized Intersection

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

IMDAD ULLAH KHAN

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

- To prove two sets A and B to be equal
- Start with one set (say A) and replace it with an equal set
- These established equalities between sets are called "set identities"
- Continue doing this until we get the set B

Set Identities

Identity	Name
$A \cup \emptyset = A$ $A \cap U = A$	Identity Laws
$ \begin{array}{ccc} A \cap \emptyset &= \emptyset \\ A \cup U &= U \end{array} $	Domination Laws
$A \cup A = A$ $A \cap A = A$	Idempotent Laws

Set Identities

Identity	Name
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Laws
$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$	Associative Laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Laws

Set Identities

Identity	Name
$\overline{\overline{(A)}} = A$	Double Complement Law
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement Laws
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's Laws

Set Identities: Demonstration

$$U = \{1, 2, 3, 4, 5, 6\}$$
 $A = \{2, 3, 5\}$ $B = \{2, 3, 4\}$

- $\blacksquare \overline{B} = \{1,5,6\}$
- $\overline{A} = \{1,4,6\}$
- $\overline{(\overline{A})} = \{2,3,5\}$
- $A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\}$
- $\bullet A \cap \overline{A} = \{\}$

Set Identities: Demonstration

$$U = \{1, 2, 3, 4, 5, 6\}$$
 $A = \{2, 3, 5\}$ $B = \{2, 3, 4\}$

$$\overline{B} = \{1,5,6\}$$

$$\overline{A} = \{1,4,6\}$$

$$\overline{(\overline{A})} = \{2,3,5\}$$

$$A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\}$$

$$A \cap \overline{A} = \{ \}$$

$$A \cap B = \{2,3\}$$

$$A \cup B = \{2, 3, 4, 5\}$$

$$\overline{A \cap B} = \{1,4,5,6\}$$

$$\blacksquare \ \overline{A} \cup \overline{B} = \{1,4,5,6\}$$

$$\blacksquare \ \overline{A \cup B} = \{1,6\}$$

$$\overline{A} \cap \overline{B} = \{1,6\}$$

Set Identities: Demonstration

$$0 = \{1, 2, 3, 4, 5, 0\}$$

$$A = \{2, 3, 5\}$$

$$U = \{1, 2, 3, 4, 5, 6\}$$
 $A = \{2, 3, 5\}$ $B = \{2, 3, 4\}$

$$\overline{B} = \{1, 5, 6\}$$

$$\overline{A} = \{1, 4, 6\}$$

$$\overline{(\overline{A})} = \{2,3,5\}$$

$$A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\}$$

$$\bullet A \cap \overline{A} = \{\}$$

$$A \cap B = \{2,3\}$$

$$A \cup B = \{2, 3, 4, 5\}$$

$$\overline{A \cap B} = \{1,4,5,6\}$$

$$\overline{A} \cup \overline{B} = \{1,4,5,6\}$$

$$\blacksquare \ \overline{A \cup B} = \{1,6\}$$

$$\overline{A} \cap \overline{B} = \{1,6\}$$

■ ICP 4-23
$$B \cap \overline{B} = ?$$

■ ICP 4-24
$$B \cup \overline{B} = ?$$

■ ICP 4-25
$$\overline{(\overline{B})} = ?$$

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$LHS = \overline{A \cup B \cup C}$$

Show using set identities that

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$LHS = \overline{A \cup B \cup C}$$
$$= \overline{A} \cap \overline{(B \cup C)}$$

DeMorgan's Law

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$LHS = \overline{A \cup B \cup C}$$

$$= \overline{A} \cap \overline{(B \cup C)}$$
DeMorgan's Law
$$= \overline{A} \cap (\overline{B} \cap \overline{C})$$
DeMorgan's Law

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$LHS = \overline{A \cup B \cup C}$$

$$= \overline{A} \cap \overline{(B \cup C)}$$
DeMorgan's Law
$$= \overline{A} \cap \overline{(B} \cap \overline{C})$$
DeMorgan's Law
$$= \overline{A} \cap \overline{B} \cap \overline{C}$$
Associative Law

$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

$$LHS = \overline{A \cup B \cup C}$$

$$= \overline{A} \cap \overline{(B \cup C)}$$
DeMorgan's Law
$$= \overline{A} \cap \overline{(B} \cap \overline{C})$$
DeMorgan's Law
$$= \overline{A} \cap \overline{B} \cap \overline{C}$$
Associative Law
$$= RHS$$

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

- To prove two sets A and B to be equal
- We directly prove the above definition of equality
- For every element $x \in U$, we prove that it is either both in A and B or none of them
- When A and B are defined in terms of sets operations on other sets, every element $x \in U$ means all types of elements

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Prove using membership table that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

element type	A	B	C
x_1	1	1	1
x_2	1	1	0
x_3	1	0	1
x_4	1	0	0
x_5	0	1	1
x_6 x_7	0	1	0
	0	0	1
x_8	0	0	0

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С			
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$		
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	
1	1	1	1	
1	1	0	1	
1	0	1	1	
1	0	0	0	
0	1	1	1	
0	1	0	1	
0	0	1	1	
0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$		
1	1	1	1			
1	1	0	1			
1	0	1	1			
1	0	0	0			
0	1	1	1			
0	1	0	1			
0	0	1	1			
0	0	0	0			

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$		
1	1	1	1	1		
1	1	0	1	1		
1	0	1	1	1		
1	0	0	0	0		
0	1	1	1	0		
0	1	0	1	0		
0	0	1	1	0		
0	0	0	0	0		

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	
1	1	1	1	1		
1	1	0	1	1		
1	0	1	1	1		
1	0	0	0	0		
0	1	1	1	0		
0	1	0	1	0		
0	0	1	1	0		
0	0	0	0	0		

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	
1	1	1	1	1	1	
1	1	0	1	1	1	
1	0	1	1	1	0	
1	0	0	0	0	0	
0	1	1	1	0	0	
0	1	0	1	0	0	
0	0	1	1	0	0	
0	0	0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	
1	1	1	1	1	1		
1	1	0	1	1	1		
1	0	1	1	1	0		
1	0	0	0	0	0		
0	1	1	1	0	0		
0	1	0	1	0	0		
0	0	1	1	0	0		
0	0	0	0	0	0		

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A \cap C$	
1	1	1	1	1	1	1	
1	1	0	1	1	1	0	
1	0	1	1	1	0	1	
1	0	0	0	0	0	0	
0	1	1	1	0	0	0	
0	1	0	1	0	0	0	
0	0	1	1	0	0	0	
0	0	0	0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	
1	1	0	1	1	1	0	
1	0	1	1	1	0	1	
1	0	0	0	0	0	0	
0	1	1	1	0	0	0	
0	1	0	1	0	0	0	
0	0	1	1	0	0	0	
0	0	0	0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Prove using membership table that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

■ For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

Α	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

For each type of element in U the entries in red columns are the same

Α	В	С			
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Α	В	С	$A \setminus C$		
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Α	В	С	$A \setminus C$		
1	1	1	0		
1	1	0	1		
1	0	1	0		
1	0	0	1		
0	1	1	0		
0	1	0	0		
0	0	1	0		
0	0	0	0		

Α	В	С	$A \setminus C$	$B \setminus C$		
1	1	1	0			
1	1	0	1			
1	0	1	0			
1	0	0	1			
0	1	1	0			
0	1	0	0			
0	0	1	0			
0	0	0	0			

Α	В	С	$A \setminus C$	$B \setminus C$	
1	1	1	0	0	
1	1	0	1	1	
1	0	1	0	0	
1	0	0	1	0	
0	1	1	0	0	
0	1	0	0	1	
0	0	1	0	0	
0	0	0	0	0	

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	
1	1	1	0	0		
1	1	0	1	1		
1	0	1	0	0		
1	0	0	1	0		
0	1	1	0	0		
0	1	0	0	1		
0	0	1	0	0		
0	0	0	0	0		

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	
1	1	1	0	0	0	
1	1	0	1	1	1	
1	0	1	0	0	0	
1	0	0	1	0	1	
0	1	1	0	0	0	
0	1	0	0	1	1	
0	0	1	0	0	0	
0	0	0	0	0	0	

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	
1	1	1	0	0	0		
1	1	0	1	1	1		
1	0	1	0	0	0		
1	0	0	1	0	1		
0	1	1	0	0	0		
0	1	0	0	1	1		
0	0	1	0	0	0		
0	0	0	0	0	0		

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	
1	1	1	0	0	0	1	
1	1	0	1	1	1	1	
1	0	1	0	0	0	1	
1	0	0	1	0	1	1	
0	1	1	0	0	0	1	
0	1	0	0	1	1	1	
0	0	1	0	0	0	0	
0	0	0	0	0	0	0	

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	$(A \cup B) \setminus C$
1	1	1	0	0	0	1	
1	1	0	1	1	1	1	
1	0	1	0	0	0	1	
1	0	0	1	0	1	1	
0	1	1	0	0	0	1	
0	1	0	0	1	1	1	
0	0	1	0	0	0	0	
0	0	0	0	0	0	0	

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	$(A \cup B) \setminus C$
1	1	1	0	0	0	1	0
1	1	0	1	1	1	1	1
1	0	1	0	0	0	1	0
1	0	0	1	0	1	1	1
0	1	1	0	0	0	1	0
0	1	0	0	1	1	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Α	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	$(A \cup B) \setminus C$
1	1	1	0	0	0	1	0
1	1	0	1	1	1	1	1
1	0	1	0	0	0	1	0
1	0	0	1	0	1	1	1
0	1	1	0	0	0	1	0
0	1	0	0	1	1	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x (x \in A \leftrightarrow x \in B)$

- To prove two sets *R* and *S* to be equal
- Prove that the membership predicate of R is logically equivalent to the membership predicate of S
- Recall the membership predicate decides whether or not x is in a set
- When the two membership predicates are logically equivalent, for any x they will either both be True or both be False
- We get that $\forall x \ (x \in R \leftrightarrow x \in S)$ is true

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Prove using logical equivalences that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C)$$

⊳ LHS

Prove using logical equivalences that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C)$$
 \triangleright LHS
 $\equiv x \in A \land x \in (B \cup C)$ \triangleright Intersection

Prove using logical equivalences that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C)$$
 > LHS
 $\equiv x \in A \land x \in (B \cup C)$ > Intersection
 $\equiv x \in A \land (x \in B \lor x \in C)$ > Union

Prove using logical equivalences that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C)$$
 \triangleright LHS
$$\equiv x \in A \land x \in (B \cup C)$$
 \triangleright Intersection
$$\equiv x \in A \land (x \in B \lor x \in C)$$
 \triangleright Union
$$\equiv (x \in A \land x \in B) \lor (x \in A \land x \in C)$$
 \triangleright Distributive Law

Prove using logical equivalences that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C)$$
 \triangleright LHS
$$\equiv x \in A \land x \in (B \cup C)$$
 \triangleright Intersection
$$\equiv x \in A \land (x \in B \lor x \in C)$$
 \triangleright Union
$$\equiv (x \in A \land x \in B) \lor (x \in A \land x \in C)$$
 \triangleright Distributive Law
$$\equiv x \in (A \cap B) \lor x \in (A \cap C)$$
 \triangleright Intersection

Prove using logical equivalences that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$x \in A \cap (B \cup C)$$
 \triangleright LHS
$$\equiv x \in A \wedge x \in (B \cup C)$$
 \triangleright Intersection
$$\equiv x \in A \wedge (x \in B \vee x \in C)$$
 \triangleright Union
$$\equiv (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C)$$
 \triangleright Distributive Law
$$\equiv x \in (A \cap B) \vee x \in (A \cap C)$$
 \triangleright Intersection
$$\equiv x \in (A \cap B) \cup (A \cap C)$$
 \triangleright Union

Two sets R and S are equal if $R \subseteq S$ and $S \subseteq R$

Two sets R and S are equal if $R \subseteq S$ and $S \subseteq R$

- To prove R = S
- Prove $R \subseteq S$ and
- Prove $S \subseteq R$
- By the above definition we get that R = S

Proving using subset relations that

$$\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$$

Proving using subset relations that $\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$

$$\overline{A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$$

$$(X \subseteq Y) \land (Y \subseteq X) \equiv X = Y$$

Proving using subset relations that

$$\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$$

$$(X \subseteq Y) \land (Y \subseteq X) \equiv X = Y$$

First show that

$$\boxed{1} \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A})$$

Proving using subset relations that

$$\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$$

$$(X \subseteq Y) \land (Y \subseteq X) \equiv X = Y$$

First show that

$$\boxed{1} \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A})$$

Next show that

$$\overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

$$\boxed{1} \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A})$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \end{cases}$$
$$x \notin (A \cup C)$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \notin (A \cup C) \cap B \end{cases}$$
$$x \notin (A \cup C) \cap B$$
$$x \notin (A \cup C)$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$
$$x \notin (A \cup C) \cap B \begin{cases} x \notin A \cup C \end{cases}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$
$$x \notin (A \cup C) \cap B \begin{cases} x \notin B & x \notin A \land x \notin C \\ x \notin (A \cup C) \end{cases}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$
$$x \notin (A \cup C) \cap B \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{A} \cup (\overline{C} \cap \overline{A}) \end{cases}$$
$$x \notin (A \cup C) \quad x \in \overline{A} \cap \overline{C}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-26 Prove
$$\boxed{\mathbf{1}}$$
: if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$
$$x \notin (A \cup C) \cap B \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$
$$x \notin (A \cup C) \quad x \in \overline{A} \cap \overline{C} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$

$$\boxed{1} \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A})$$

$$2 \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$2$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$\boxed{\mathbf{2}}$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \in \overline{B} \\ \\ x \in \overline{C} \cap \overline{A} \end{cases}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$\boxed{\mathbf{2}}$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \in \overline{B} \\ x \in \overline{C} \cap \overline{A} \end{cases}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$2$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \end{cases}$$
$$x \in \overline{C} \cap \overline{A}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$\boxed{\mathbf{2}}$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C) \cap B} \end{cases}$$

$$x \in \overline{C} \cap \overline{A}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$\boxed{\mathbf{2}}$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C) \cap B} \end{cases}$$
$$x \notin C \land x \notin A$$
$$x \in \overline{C} \cap \overline{A}$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$\boxed{\mathbf{2}}$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C) \cap B} \end{cases}$$
$$x \notin C \land x \notin A$$
$$x \in \overline{C} \cap \overline{A} \qquad x \notin C \cup A$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$\boxed{\mathbf{2}}$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C) \cap B} \end{cases}$$
$$x \notin C \land x \notin A$$
$$x \in \overline{C} \cap \overline{A} \quad x \notin (A \cup C) \cap B$$

$$\boxed{1} \ \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \ \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

ICP-4-27 Prove
$$2$$
: if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C) \cap B} \end{cases}$$
$$x \notin C \land x \notin A$$
$$x \notin C \land x \notin A$$
$$x \notin C \cup A$$
$$x \notin (A \cup C) \cap B$$
$$x \in \overline{(A \cup C) \cap B}$$

Set Equality

- Equality of two sets can be proved using
 - Algebraic Rules (Set Identities)
 - Set Membership Tables
 - Logical Equivalence of membership predicates
 - By proving bidirectional subset relationships

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

Imdad ullah Khan

Sets as bit-strings (bit vectors)

- Sets stored in an unordered fashion in memory
- Union/Intersection etc. are computationally expensive
- lacktriangle When |U| is small compared to computer memory, then we can do set operations efficiently
- Impose any fixed ordering on elements of *U*
- $U = \{DM, Cal, Chem, Bio, Phy, Pro\}$ (in order)
- lacksquare Sets (subsets of U) are represented by bit-string of length 6
- Each bit signifies whether the corresponding element is in the set
- Called bit-vector representation of sets or characteristic vector of a set

Sets as bit-strings (bit vectors)

DM	Calc	Chem	Bio	Phy	Prog	

The set $\{Calc, Chem, Phy\}$ is

0 1	1	0	1	0
-----	---	---	---	---

The set $\{Prog, DM, Calc, Phy\}$ is

ICP 4-28 | What is the characteristic vector of the set

$$\{Chem, DM\}$$
?

ICP 4-29 What is the characteristic vector of the set

 $\{Calc, DM, Chem, Phy, Prog, Bio\}$?

Sets as bit-strings (bit vectors)

DM	Calc	Chem	Bio	Phy	Prog	

The set

The set

ICP 4-30 What is the set corresponding to the characteristic vector

Sets operations using bit-strings

$$A \cup B = \{x | x \in A \lor x \in B\}$$

$A = \{ Calc, Chem, Phy \}$	0	1	1	0	1	0	Γ
$B = \{Prog, DM, Calc, Phy\}$	1	1	0	0	1	1	
$A \cup B$			A	/ B			_
$\{DM, Calc, Chem, Prog, Phy\}$	1	1	1	0	1	1	

Sets operations using bit-strings

$$A \cap B = \{x | x \in A \land x \in B\}$$

$A = \{ Calc, Chem, Phy \}$	0	1	1	0	1	0	
$B = \{Prog, DM, Calc, Phy\}$	1	1	0	0	1	1	
$A\cap B$	$A \wedge B$						
$\{Calc, Phy\}$	0	1	0	0	1	0	

Sets operations using bit-strings

$$A \oplus B = \{x | x \in A \oplus x \in B\}$$

$A = \{ Calc, Chem, Phy \}$	0	1	1	0	1	0	
$B = \{Prog, DM, Calc, Phy\}$	1	1	0	0	1	1	
$A \oplus B$			A ∈	∌ <i>B</i>			
$\{DM, Chem, Prog\}$	1	0	1	0	0	1	

Sets as bit-vectors: Summary

- Sets can be represented as bit vectors, when universal set is 'small'
- Also called characteristic vectors of sets
- Order of U is critical
- Sets operations can be performed using bit-wise operators of programming language
- More suitable for computer implementations
- $lue{}$ Only feasible when U is small

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

IMDAD ULLAH KHAN

Multiset

A multiset is an unordered collection of objects where repetition of the elements matters

- $A : \{1, 2, 2, 2, 3, 3\}$
- B : {CS100, CS100, CS100, CS210, CS210}
- C: the multiset of last names of the all professors in LUMS

Order of elements is not significant

 \blacksquare {1, 2, 2, 3} is the same as {2, 3, 1, 2}

Repetition counts!

Multisets: Terminology

- Multiset is also termed as bag or mset
- Number of instances of each element in a multiset is called multiplicity

An infinite number of multisets exist which contain only elements a and b, but vary in the multiplicities of their elements

- \blacksquare $\{a,b\}$
- \blacksquare $\{a, a, b\}$

All of these are different multisets

All of these represent the same set

Multisets: Multiplicity

Multisets can be represented as a set of ordered pairs $(x, m_A(x))$

- x is an element in the multiset A
- $m_A(x)$ is the multiplicity of x in the multiset A

$$\{a,a,b,b,b\} \longrightarrow \{(a,2),(b,3)\}$$

$$\{1,2,3,2,1\} \longrightarrow \{(1,2),(2,2),(3,1)\}$$

$$\{Khan, Ali, Khan, Ali, Ayesha\} \longrightarrow \{(Ayesha,1), (Khan,2), (Ali,2)\}$$

Multisets: Support and Cardinality

The support of a multiset A in a universe U is the underlying set of A

$$support(A) = \{x \in U | m_A(x) > 0\}$$

$$A = \big\{ (Ayesha, 2), (Khan, 2), (Ali, 1) \big\} \implies support(A) = \{ Ayesha, Khan, Ali \}$$

The cardinality of a multiset A is the sum of multiplicities of its elements

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$|A| = 2 + 2 + 1 = 5$$

$$|Support(A)| = 3$$

Multisets: Inclusion

A multiset A is included in the multiset B if $\forall x \in U, m_A(x) \leq m_B(x)$

denoted as $A \subseteq B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Khan, 2), (Ali, 2), (Imdad, 1)\}$$

Is
$$A \subseteq B$$
?

Is
$$B \subseteq A$$
?

Multisets: Union

The union of a multiset A and a multiset B is a multiset C such that

$$\forall x \in U, \ m_C(x) = \max(m_A(x), m_B(x))$$

denoted as $C = A \cup B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \cup B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1), (Khan, 2)\}$$

Multisets: Intersection

The intersection of a multiset A and a multiset B is a multiset C such that

$$\forall x \in U, \ m_C(x) = \min(m_A(x), m_B(x))$$

denoted as $C = A \cap B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \cap B = \{(Ayesha, 2), (Ali, 1)\}$$

Multisets: Sum

The sum of a multiset A and a multiset B is a multiset C such that

$$\forall x \in U, \ m_C(x) = m_A(x) + m_B(x)$$

denoted as $C = A \sqcup B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

 $B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \sqcup B = \{(Ayesha, 5), (Ali, 3), (Imdad, 1), (Khan, 2)\}$$

Sum of two multisets (\sqcup) is also known as disjoint union

Multisets: Difference

The difference of a multiset B from a multiset A is a multiset C such that

$$\forall x \in U, \ m_C(x) = \max(m_A(x) - m_B(x), 0)$$

denoted as $C = A \setminus B$

$$A = \{(Ayesha, 5), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \setminus B = \{(Ayesha, 2), (Khan, 2)\}$$

The Set-of-Words Vector Model for Text Representation

Set-of-Words: Documents represented by vectors $\in \{0,1\}^{|\Sigma|}$

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
ANTHONY	Oleopatia 1	1	0	0	0	1	
	!	!	0	U	U	1	
Brutus	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

The Bag of words Vector Model for Text Representation

Bag-of-Words: Documents represented by term-frequency vectors $\in \mathbb{N}^{|\Sigma|}$

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
ANTHONY	157	73	0	0	0	1	
BRUTUS	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	