Goal:
$$\vec{b}$$
 \vec{a} $\vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

O) Notation:
$$\vec{a} = \langle a_1, u_2, a_3 \rangle$$

 $\vec{b} = \langle b_1, b_2, b_3 \rangle$

1) Observe
$$\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2 = |\vec{a}|^2$$
.

$$|\vec{a} - \vec{b}|^{2} = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}$$

$$= |\vec{a}|^{2} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}$$

$$\vec{a} \cdot \vec{b} = \frac{1}{2} \left[|\vec{a}|^2 + |\vec{b}|^2 - |\vec{a} - \vec{b}|^2 \right]$$

4) Porder this diagram:

$$\vec{b} + (\vec{a} - \vec{b}) = \vec{a}$$

5) Law of Cosines

(ambrie steps 3), 4), 5) with
$$A = |\vec{a}|$$
, $B = |\vec{b}|$, $C = |\vec{a} - \vec{b}|$:

$$\vec{a} \cdot \vec{b} = \frac{1}{2} \left[|\vec{a}|^2 + |\vec{b}|^2 - |\vec{a} - \vec{b}|^2 \right]$$

$$= \frac{1}{2} \left[A^2 + B^2 - C^2 \right]$$

$$= \frac{1}{2} \left[2AB \cos \theta \right] \quad (by \text{ step } 5)$$

$$= |\vec{a}| |\vec{b}| \cos \theta.$$

That is,