(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 January 2001 (18.01.2001)

(10) International Publication Number WO 01/04325 A1

(51) International Patent Classification7: C12N 15/54. 15/62, C12P 13/08, C12Q 1/68, C12P 13/06, 13/22 // (C12P 13/08, C12R 1:15)

View, Roscrea, County Tipparary (IE). BURKE, Kevin; 5. Greenfields Road, Newcastle, Galway, County Galway (IE). MÖCKEL, Bettina: Benrodestrasse 35, D-40597 Düsseldorf (DE).

(21) International Application Number: PCT/EP00/06304

(81) Designated States (national): AU, BR, CA, CN, HU, ID,

(22) International Filing Date:

5 July 2000 (05.07.2000)

(25) Filing Language:

English

(26) Publication Language:

(30) Priority Data:

60/142,915 09/531,266

9 July 1999 (09.07.1999) US 20 March 2000 (20.03.2000) US

English

(71) Applicants: DEGUSSA-HÜLS AKTIENGE-SELLSCHAFT [DE/DE]; D-60287 Frankfurt am Main (DE). NATIONAL UNIVERSITY OF IRELAND [IE/IE]; Galway (IE).

(72) Inventors: DUNICAN, L., K. (deceased). MC-CORMACK, Ashling; Moate Road, Athlone, County Westmeath (IE). STAPELTON, Cliona; 27, Railway JP, KR, MX, PL, RU, SK, UA, ZA.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SÉ).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.
- With (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEOTIDE SEQUENCES FOR THE TAL GENE

(57) Abstract: The invention relates to an isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of a) polynucleotide which is identical to the extent of at least 70 % to a polynucleotide which codes for a polypeptide which comprises the amino acid sequences of SEQ 1D NO. 2 or SEQ 1D NO. 4, b) polypucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70 % to the amino acid sequences of SEQ ID NO. 2 or SEQ ID NO. 4, c) polynucleotide which is complementary to the polynucleotides of a) or b) and, d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequences of a), b) or c) and a process for the preparation of L-amino acids, which comprises carrying out the following steps: a) fermentation of the desired L-amino acid-producing bacteria in which at least the tal gene is amplified, b) concentration of the desired product in the medium or in the cells of the bacteria and c) isolation of the L-amino acid.

WO 01/04325 PCT/EP00/06304

NUCLEOTIDE SEQUENCES FOR THE TAL GENE

The invention provides nucleotide sequences which code for the tal gene and a process for the fermentative preparation of amino acids, in particular L-lysine, L-threonine, L-5 isoleucine and L-tryptophan, using coryneform bacteria in which the tal gene is amplified.

Prior art

Amino acids, in particular L-lysine, are used in human medicine and in the pharmaceuticals industry, but in 10 particular in animal nutrition.

It is known that amino acids are prepared by fermentation by strains of coryneform bacteria, in particular Corynebacterium glutamicum. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the processes can relate to fermentation measures, such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to

25 antimetabolites, such as e. g. the lysine analogue S-(2-aminoethyl)-cysteine, or are auxotrophic for metabolites of regulatory importance and produce L-amino acids, such as

Methods of the recombinant DNA technique have also been 30 employed for some years for improving the strain of Corynebacterium strains which produce amino acids, by amplifying individual amino acid biosynthesis genes and investigating the effect on the amino acid production.

e. g. L-lysine, are obtained in this manner.

Review articles in this context are to be found, inter alia, in Kinoshita ("Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (Eds.), Benjamin Cummings, London, UK, 1985, 115-142), Hilliger (BioTec 2, 40-44 (1991)), Eggeling (Amino Acids 6:261-272 (1994)), Jetten and Sinskey (Critical Reviews in Biotechnology 15, 73-103 (1995)) and Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)).

The importance of the pentose phosphate cycle for the 10 biosynthesis and production of amino acids, in particular L-lysine, by coryneform bacteria is the subject of numerous efforts among experts.

Thus Oishi and Aida (Agricultural and Biological Chemistry 29, 83-89 (1965)) report on the "hexose monophosphate shunt" of Brevibacterium ammoniagenes. Sugimoto and Shio (Agricultural and Bilogical Chemistry 51, 101-108 (1987)) report on the regulation of glucose 6-phosphate dehydrogenase in Brevibacterium flavum.

Object of the invention

20 The inventors had the object of providing new measures for improved fermentative preparation of amino acids, in particular L-lysine, L-threonine, L-isoleucine and L-tryptophan.

Description of the invention

- 25 Amino acids, in particular L-lysine, are used in human medicine, in the pharmaceuticals industry and in particular in animal nutrition. There is therefore a general interest in providing new improved processes for the preparation of amino acids, in particular L-lysine.
- 30 When L-lysine or lysine are mentioned in the following, not only the base but also the salts, such as e.g. lysine

monohydrochloride or lysine sulfate, are also meant by this.

The invention provides an isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence 5 chosen from the group consisting of

- a) polynucleotide which is identical to the extent of at least 70 % to a polynucleotide which codes for a polypeptide which comprises the amino acid sequences of SEQ ID NO. 2 or SEQ ID NO. 4,
- 10 b) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70% to the amino acid sequences of SEQ ID NO. 2 or SEQ ID NO. 4,
- c) polynucleotide which is complementary to thepolynucleotides of a) or b) and
 - d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a), b) or c).

The invention also provides the polynucleotide as claimed 20 in claim 1, this preferably being a DNA which is capable of replication, comprising:

- (i) a nucleotide sequence chosen from the group consisting of SEQ ID NO. 1 and SEQ ID NO. 3 or
- - (iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii), and optionally
- 30 (iv) sense mutations of neutral function in (i).

WO 01/04325 PCT/EP00/06304

The invention also provides

- a polynucleotide as claimed in claim 4, comprising one of the nucleotide sequences as shown in SEQ ID NO. 1 and SEQ ID NO. 3,
- 5 a polynucleotide as claimed in claim 5, which codes for a polypeptide which comprises the amino acid sequence as shown in SEQ ID NO. 2 and SEQ ID NO. 4,
 - a vector containing the polynucleotide as claimed in claim 1,
- 10 and coryneform bacteria, serving as the host cell, which contain the vector.

The invention also provides polynucleotides which substantially comprise a polynucleotide sequence, which are obtainable by screening by means of hybridization of a

- 15 corresponding gene library, which comprises the complete gene with the polynucleotide sequence corresponding to SEQ ID NO. 1 or SEQ ID NO. 3, with a probe which comprises the sequence of the polynucleotide mentioned, according to
- SEQ ID NO. 1 or SEQ ID NO. 3 or a fragment thereof, and 20 isolation of the DNA sequence mentioned.

Polynucleotide sequences according to the invention are suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate, in the full length, cDNA which code for transaldolase and to isolate those cDNA or genes which have

25 a high similarity of sequence with that of the transaldolase gene.

Polynucleotide sequences according to the invention are furthermore suitable as primers for the preparation of DNA of genes which code for transaldolase by the polymerase 30 chain reaction (PCR).

Such oligonucleotides which serve as probes or primers comprise at least 30, preferably at least 20, especially preferably at least 15 successive nucleotides.

Oligonucleotides which have a length of at least 40 or 50 nucleotides are also suitable.

"Isolated" means separated out of its natural environment.

"Polynucleotide" in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.

10 "Polypeptides" is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds.

The polypeptides according to the invention include a polypeptide according to SEQ ID NO. 2 or SEQ ID NO. 4, in 15 particular those with the biological activity of transaldolase, and also those which are identical to the extent of at least 70 % to the polypeptide according to SEQ ID NO. 2 or SEQ ID NO. 4, and preferably are identical to the extent of at least 80% and in particular to the extent 20 of at least 90 % to 95 % to the polypeptide according to SEQ ID NO. 2 or SEQ ID NO. 4, and have the activity mentioned.

The invention also provides a process for the fermentative preparation of amino acids, in particular L-lysine, L
25 threonine, L-isoleucine and L-tryptophan, using coryneform bacteria which in particular already produce an amino acid, and in which the nucleotide sequences which code for the tal gene are amplified, in particular over-expressed.

The term "amplification" in this connection describes the increase in the intracellular activity of one or more enzymes in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or

WO 01/04325 6 PCT/EP00/06304

using a gene which codes for a corresponding enzyme having a high activity, and optionally combining these measures.

The microorganisms which the present invention provides can prepare L-amino acids, in particular L-lysine, from

5 glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They can be representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species

10 Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.

Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 and
Brevibacterium divaricatum ATCC14020

and L-lysine-producing mutants or strains prepared therefrom, such as, for example

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 and
Corynebacterium glutamicum ATCC13032
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DSM12866.

WO 01/04325 7 PCT/EP00/06304

and L-threonine-producing mutants or strains prepared therefrom, such as, for example

Corynebacterium glutamicum ATCC21649
Brevibacterium flavum BB69
Brevibacterium flavum DSM5399
Brevibacterium lactofermentum FERM-BP 269
Brevibacterium lactofermentum TBB-10

and L-isoleucine-producing mutants or strains prepared therefrom, such as, for example

Corynebacterium glutamicum ATCC 14309
Corynebacterium glutamicum ATCC 14310
Corynebacterium glutamicum ATCC 14311
Corynebacterium glutamicum ATCC 15168
Corynebacterium ammoniagenes ATCC 6871

15 and L-tryptophan-producing mutants or strains prepared therefrom, such as, for example

Corynebacterium glutamicum ATCC21850 and Corynebacterium glutamicum KY9218(pKW9901)

The inventors have succeeded in isolating the new tal gene 20 of C. glutamicum which codes for transaldolase (EC 2.2.1.2).

To isolate the tal gene or also other genes of C. glutamicum, a gene library of this microorganism is first set up in E. coli. The setting up of gene libraries is
25 described in generally known textbooks and handbooks. The textbook by Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie [Genes and Clones, An Introduction to Genetic Engineering] (Verlag Chemie, Weinheim, Germany, 1990) or the handbook by Sambrook et al.: Molecular
30 Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) may be mentioned as an example. A well-known gene library is that of the E. coli K-12 strain W3110 set

5

up in λ vectors by Kohara et al. (Cell 50, 495-508 (1987)). Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) describe a gene library of C. glutamicum ATCC13032, which was set up with the aid of the cosmid vector SuperCos

- 5 I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the E. coli K-12 strain NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575). Börmann et al. (Molecular Microbiology 6(3), 317-326)) (1992)) in turn describe a gene library of C.
- 10 glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)). O'Donohue (The Cloning and Molecular Analysis of Four Common Aromatic Amino Acid Biosynthetic Genes from Corynebacterium glutamicum. Ph.D. Thesis, National University of Ireland, Galway, 1997)
- 15 describes the cloning of C. glutamicum genes using the λ Zap expression system described by Short et al. (Nucleic Acids Research, 16: 7583). To prepare a gene library of C. glutamicum in E. coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979))
- or pUC9 (Vieira et al., 1982, Gene, 19:259-268). Suitable hosts are, in particular, those E. coli strains which are restriction- and recombination-defective. An example of these is the strain DH5 α mcr, which has been described by Grant et al. (Proceedings of the National Academy of
- 25 Sciences USA, 87 (1990) 4645-4649). The long DNA fragments cloned with the aid of cosmids can then in turn be subcloned and subsequently sequenced in the usual vectors which are suitable for sequencing, such as is described e. g. by Sanger et al. (Proceedings of the National Academy
- 30 of Sciences of the United States of America, 74:5463-5467, 1977).

The DNA sequences obtained can then be investigated with known algorithms or sequence analysis programs, such as e.g. that of Staden (Nucleic Acids Research 14, 217-

35 232(1986)), the GCG program of Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) the FASTA algorithm

of Pearson and Lipman (Proceedings of the National Academy of Sciences USA 85,2444-2448 (1988)) or the BLAST algorithm of Altschul et al. (Nature Genetics 6, 119-129 (1994)) and compared with the sequence entries which exist in databanks accessible to the public. Databanks for nucleotide sequences which are accessible to the public are, for example, that of the European Molecular Biologies Laboratories (EMBL, Heidelberg, Germany) of that of the National Center for Biotechnology Information (NCBI, 10 Bethesda, MD, USA).

The invention provides the new DNA sequence from C.glutamicum which contains the DNA section which codes for the tal gene, shown as SEQ ID NO 1 and SEQ ID NO 3. The amino acid sequence of the corresponding protein has furthermore been derived from the present DNA sequence using the methods described above. The resulting amino acid sequence of the tal gene product is shown in SEQ ID NO 2

A gene library produced in the manner described above can furthermore be investigated by hybridization with nucleotide probes of known sequence, such as, for example, the zwf gene (JP-A-09224661). The cloned DNA of the clones which show a positive reaction in the hybridization is sequenced in turn to give on the one hand the known nucleotide sequence of the probe employed and on the other

hand the adjacent new DNA sequences.

and SEQ ID NO 4.

Coding DNA sequences which result from SEQ ID NO 3 by the degeneracy of the genetic code are also a constituent of the invention. In the same way, DNA sequences which 30 hybridize with SEQ ID NO 3 or parts of or SEQ ID NO 3 are a constituent of the invention. Conservative amino acid

constituent of the invention. Conservative amino acid exchanges, such as e. g. exchange of glycine for alanine or of aspartic acid for glutamic acid in proteins, are furthermore known among experts as "sense mutations" which 35 do not lead to a fundamental change in the activity of the

WO 01/04325 10 PCT/EP00/06304

protein, i.e. are of neutral function. It is furthermore known that changes on the N and/or C terminus of a protein cannot substantially impair or can even stabilize the function thereof. Information in this context can be found by the expert, inter alia, in Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), in O'Regan et al. (Gene 77:237-251 (1989)), in Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), in Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) and in known textbooks of genetics and molecular biology. Amino acid sequences which result in a corresponding manner from SEQ ID NO 2 or SEQ ID NO 4 are also a constituent of the invention.

In the same way, DNA sequences which hybridize with or SEQ ID NO 3 or parts of or SEQ ID NO 3 are a constituent of the invention. Finally, DNA sequences which are prepared by the polymerase chain reaction (PCR) using primers which result from SEQ ID NO 3 are a constituent of the invention. Such oligonucleotides typically have a length of at least 15 nucleotides.

- 20 Instructions for identifying DNA sequences by means of hybridization can be found by the expert, inter alia, in the handbook "The DIG System Users Guide for Filter Hybridization" from Boehringer Mannheim GmbH (Mannheim, Germany, 1993) and in Liebl et al. (International Journal
- 25 of Systematic Bacteriology (1991) 41: 255-260).

 Instructions for amplification of DNA sequences with the aid of the polymerase chain reaction (PCR) can be found by the expert, inter alia, in the handbook by Gait:

 Oligonukleotide synthesis: a practical approach (IRL Press,
- 30 Oxford, UK, 1984) and in Newton and Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Germany, 1994).

The inventors have found that coryneform bacteria produce amino acids in an improved manner after over-expression of the tal gene.

culture procedure.

To achieve an over-expression, the number of copies of the corresponding genes can be increased, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes 5 which are incorporated upstream of the structural gene act in the same way. By inducible promoters, it is additionally possible to increase the expression in the course of fermentative L-amino acid production. The expression is likewise improved by measures to prolong the life of the m-10 RNA. Furthermore, the enzyme activity is also increased by preventing the degradation of the enzyme protein. The genes or gene constructs can either be present in plasmids with a varying number of copies, or can be integrated and amplified in the chromosome. Alternatively, an over-15 expression of the genes in question can furthermore be achieved by changing the composition of the media and the

Instructions in this context can be found by the expert, inter alia, in Martin et al. (Bio/Technology 5, 137-146 20 (1987)), in Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya and Morinaga (Bio/Technology 6, 428-430 (1988)), in Eikmanns et al. (Gene 102, 93-98 (1991)), in European Patent Specification EPS 0 472 869, in US Patent 4,601,893, in Schwarzer and Pühler (Bio/Technology 9, 84-87 (1991), in 25 Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), in LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in Patent Application WO 96/15246, in Malumbres et al. (Gene 134, 15 - 24 (1993)), in Japanese Laid-Open Specification JP-A-10-30 229891, in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), in Makrides (Microbiological Reviews 60:512-538 (1996)) and in known textbooks of genetics and molecular biology.

By way of example, the tal gene according to the invention 35 was over-expressed with the aid of plasmids.

Suitable plasmids are those which are replicated in coryneform bacteria. Numerous known plasmid vectors, such as e. g. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) or pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) are based on the cryptic plasmids pHM1519, pBL1 or pGA1. Other plasmid vectors, such as e. g. those based on pCG4 (US-A 4,489,160), or pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), or pAG1 (US-A 5,158,891), can be used in the same manner.

Plasmid vectors which are furthermore suitable are also those with the aid of which the process of gene amplification by integration into the chromosome can be 15 used, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or amplification of the hom-thrB operon. In this method, the complete gene is cloned in a plasmid vector which can replicate in a host (typically E. 20 coli), but not in C. glutamicum. Possible vectors are, for example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological 25 Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Invitrogen, Groningen, Holland; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) or pBGS8 (Spratt et al., 1986, Gene 41: 337-342). The plasmid vector 30 which contains the gene to be amplified is then transferred into the desired strain of C. glutamicum by conjugation or transformation. The method of conjugation is described, for example, by Schäfer et al. (Applied and Environmental

Microbiology 60, 756-759 (1994)). Methods for

(1988)), Dunican and Shivnan (Bio/Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)). After homologous recombination by means of a "cross over" event, the resulting strain contains at 5 least two copies of the gene in question.

An example of a plasmid vector with the aid of which the process of amplification by integration can be carried out is pSUZ1, which is shown in Figure 1. Plasmid pSUZ1 consists of the E. coli vector pBGS8 described by Spratt et al. (Gene 41: 337-342(1986)), into which the tal gene has been incorporated.

In addition, it may be advantageous for the production of amino acids to amplify or over-express one or more enzymes of the particular biosynthesis pathway, of glycolysis, of anaplerosis, of the pentose phosphate pathway or of amino acid export, in addition to the tal gene.

Thus, for example, for the preparation of L-amino acids, in particular L-lysine, one or more genes chosen from the group consisting of

- 20 \circ the dapA gene which codes for dihydrodipicolinate synthase (EP-B 0 197 335),
 - the lysC gene which codes for a feed back resistant aspartate kinase (Kalinowski et al. (1990), Molecular and General Genetics 224: 317-324),
- 25 o the gap gene which codes for glycerolaldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - the pyc gene which codes for pyruvate carboxylase (DE-A-198 31 609),
- 30 o the mqo gene which codes for malate:quinone oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),

- the tkt gene which codes for transketolase (accession number AB023377 of the databank of European Molecular Biologies Laboratories (EMBL, Heidelberg, Germany)),
- the gnd gene which codes for 6-phosphogluconate
 dehydrogenase (JP-A-9-224662),
 - the zwf gene which codes for glucose 6-phosphate dehydrogenase (JP-A-9-224661),
 - the lysE gene which codes for lysine export (DE-A-195 48 222),
- 10 the zwal gene (DE 199 59 328.0; DSM 13115),
 - the eno gene which codes for enolase (DE: 19947791.4),
 - o the devB gene,
 - the opcA gene (DSM 13264)

can be amplified, preferably over-expressed, at the same 15 time.

Thus, for example, for the preparation of L-threonine, one or more genes chosen from the group consisting of

- o at the same time the hom gene which codes for homoserine dehydrogenase (Peoples et al., Molecular Microbiology 2,
- 20 63-72 (1988)) or the hom^{dr} allele which codes for a "feed back resistant" homoserine dehydrogenase (Archer et al., Gene 107, 53-59 (1991),
 - the gap gene which codes for glycerolaldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology
- 25 174:6076-6086),
 - the pyc gene which codes for pyruvate carboxylase (DE-A-198 31 609),

WO 01/04325 PCT/EP00/06304

- the mqo gene which codes for malate:quinone oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
- the tkt gene which codes for transketolase (accession number AB023377 of the databank of European Molecular Biologies Laboratories (EMBL, Heidelberg, Germany)),
 - the gnd gene which codes for 6-phosphogluconate dehydrogenase (JP-A-9-224662),
- the zwf gene which codes for glucose 6-phosphate
 dehydrogenase (JP-A-9-224661),
 - the thrE gene which codes for threonine export (DE 199 41 478.5; DSM 12840),
 - the zwal gene (DE 199 59 328.0; DSM 13115),
 - o the eno gene which codes for enolase (DE: 19947791.4),
- 15 o the devB gene,
 - the opcA gene (DSM 13264)

can be amplified, preferably over-expressed, at the same time.

It may furthermore be advantageous for the production of 20 amino acids to attenuate

- the pck gene which codes for phosphoenol pyruvate carboxykinase (DE 199 50 409.1 DSM 13047) and/or
- the pgi gene which codes for glucose 6-phosphate isomerase (US 09/396,478, DSM 12969), or
- 25 o the poxB gene which codes for pyruvate oxidase (DE 199 51 975.7; DSM 13114), or

the zwa2 gene (DE: 199 59 327.2; DSM 13113)

at the same time, in addition to the amplification of the tal gene.

- In addition to over-expression of the tal gene it may

 5 furthermore be advantageous for the production of amino
 acids to eliminate undesirable side reactions (Nakayama:
 "Breeding of Amino Acid Producing Micro-organisms", in:
 Overproduction of Microbial Products, Krumphanzl, Sikyta,
 Vanek (eds.), Academic Press, London, UK, 1982).
- 10 The microorganisms prepared according to the invention can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of L-amino acids. A summary of
- 15 known culture methods are described in the textbook by Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik [Bioprocess Technology 1. Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und
- 20 periphere Einrichtungen [Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained

- 25 in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981). Sugars and carbohydrates, such as e. g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as
- 30 e. g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e. g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e. g. glycerol and ethanol, and organic acids, such as e. g. acetic acid, can be used as the source of carbon. These substances can be

used individually or as a mixture. Organic nitrogencontaining compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium 5 sulphate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture. Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or 10 the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e. g. magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino 15 acids and vitamins, can be employed in addition to the abovementioned substances. Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH of the culture.

- 25 Antifoams, such as e. g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, such as e. g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions,
- 30 oxygen or oxygen-containing gas mixtures, such as e. g. air, are introduced into the culture. The temperature of the culture is usually 20°C to 45°C, and preferably 25°C to 40°C. Culturing is continued until a maximum of L-amino acid has formed. This target is usually reached within 10

20 suitable manner.

The analysis of L-amino acids can be carried out by anion exchange chromatography with subsequent ninhydrin derivatization, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190).

- 5 The following microorganism has been deposited at the Deutsche Sammlung für Mikrorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty:
- 10 ∘ Escherichia coli JM109/pSUZ1 as DSM 13263.

SEQ ID NO 1 also contains the new devB gene. The process according to the invention is used for fermentative preparation of amino acids.

The following figures are attached:

Figure 1: Map of the plasmid pSUZ1

The abbreviations and designations used have the following meaning.

5 lacZ: segments of lacZα gene fragment

kan r: kanamycin resistance
tal: transaldolase gene

ori: origin of replication of plasmid pBGS8

BclI: cleavage site of restriction enzyme BclI
10 EcoRI: cleavage site of restriction enzyme EcoRI
HindIII: cleavage site of restriction enzyme HindIII
PstI: cleavage site of restriction enzyme PstI
SacI: cleavage site of restriction enzyme SacI

Examples

The following examples will further illustrate this invention. The molecular biology techniques, e.g. plasmid DNA isolation, restriction enzyme treatment, ligations, standard transformations of Escherichia coli etc. used are, (unless stated otherwise), described by Sambrook et al., (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratories, USA).

Example 1

10 Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032

Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179) and partly cleaved with the restriction enzyme

- 15 Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Code no. 1758250). The DNA of the cosmid
- 20 vector SuperCosl (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description SuperCosl Cosmid Vector Kit, Code no. 251301) was cleaved with the restriction enzyme XbaI (Amersham Pharmacia,
- 25 Freiburg, Germany, Product Description XbaI, Code no. 27-0948-02) and likewise dephosphorylated with shrimp alkaline phosphatase. The cosmid DNA was then cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04).
- 30 The cosmid DNA treated in this manner was mixed with the treated ATCC13032 DNA and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04). The ligation mixture was then packed in phages with the aid of

Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217). For infection of the E. coli strain NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) the cells were taken up in 10 mM MgSO₄ and mixed with an aliquot of the phage suspension. The infection and titering of the cosmid library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor), the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) with 100 μg/ml ampicillin. After incubation overnight at 37°C, recombinant individual clones were selected.

Example 2

Isolation and sequencing of the tal gene

- 15 The cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product
- 20 Description Sau3AI, Product No. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250). After separation by gel electrophoresis, the cosmid
- 25 fragments in the size range of 1500 to 2000 bp were isolated with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany). The DNA of the sequencing vector pZero-1, obtained from Invitrogen (Groningen, Holland, Product Description Zero Background Cloning Kit,
- Product No. K2500-01) was cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No. 27-0868-04). The ligation of the cosmid fragments in the sequencing vector pZero-1 was carried out as described by Sambrook et al.
- 35 (1989, Molecular Cloning: A laboratory Manual, Cold Spring

Harbor), the DNA mixture being incubated overnight with T4 ligase (Pharmacia Biotech, Freiburg, Germany). This ligation mixture was then electroporated (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) into the E. coli

- 5 strain DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) and plated out on LB agar (Lennox, 1955, Virology, 1:190) with 50 μg/ml zeocin. The plasmid preparation of the recombinant clones was carried out with Biorobot 9600 (Product No. 900200,
- 10 Qiagen, Hilden, Germany). The sequencing was carried out by the dideoxy chain-stopping method of Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) with modifications according to Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). The "RR
- 15 dRhodamin Terminator Cycle Sequencing Kit" from PE Applied Biosystems (Product No. 403044, Weiterstadt, Germany) was used. The separation by gel electrophoresis and analysis of the sequencing reaction were carried out in a "Rotiphoresis NF Acrylamide/Bisacrylamide" Gel (29:1) (Product No.
- 20 A124.1, Roth, Karlsruhe, Germany) with the "ABI Prism 377" sequencer from PE Applied Biosystems (Weiterstadt, Germany).

The raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research,

- 25 14:217-231) version 97-0. The individual sequences of the pZerol derivatives were assembled to a continuous contig. The computer-assisted coding region analysis were prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231). Further analyses were carried out
- 30 with the "BLAST search program" (Altschul et al., 1997, Nucleic Acids Research, 25:3389-3402), against the non-redundant databank of the "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA).

The nucleotide sequence obtained is shown in SEQ ID NO 1 35 and SEQ ID NO 3.

Example 3

Cloning of the tal gene

PCR was used to amplify DNA fragments containing the entire tal gene of C. glutamicum 13032 and flanking upstream and 5 downstream regions. PCR reactions were carried out using oligonucleotide primers designed from the sequence as determined in Examples 1 and 2. Genomic DNA was isolated from Corynebacterium glutamicum ATCC13032 according to Heery and Dunican (Applied and Environmental Microbiology 10 59: 791-799 (1993)) and used as template. The tal primers used were:

fwd. primer: 5' GGT ACA AAG GGT CTT AAG 3'C
rev. primer: 5' GAT TTC ATG TCG CCG TTA 3'

PCR Parameters were as follows:

15

20

35 cycles

95°C for 3 minutes

94°C for 1 minute

47°C for 1 minute

72°C for 45 seconds

2.0 mM MgCl2

approximately 150-200 ng DNA template.

The PCR product obtained was cloned into the commercially available pGEM-T vector purchased from Promega Corp. (pGEM-T Easy Vector System 1, cat. no. A1360, Promega UK,

25 Southampton, UK) using strain E. coli JM109 (Yanisch-Perron et al., Gene, 33: 103-119 (1985)) as a host. The entire tal gene was subsequently isolated from the pGEM T-vector on an Eco RI fragment and cloned into the lacZα EcoRI site of the E. coli vector pBGS8 (Spratt et al., Gene 41(2-3): 337-342 (1986)). The restriction enzymes used were obtained from Boehringer Mannheim UK Ltd. (Bell Lane, Lewes East Sussex BN7 1LG, UK) and used according to manufacturer's instructions. E. coli JMI09 was then transformed with this ligation mixture and electrotransformants were selected on

Luria agar supplemented with isopropylthiogalactopyranoside (IPTG), 5-bromo-4-chloro-3-indolylgalactopyranoside (XGAL) and kanamycin at concentrations of
lmM, 0.02% and 50 mg/l respectively. Plates were incubated
for twelve hours at 37°C. Plasmid DNA was isolated from one
transformant, characterised by restriction enzyme analysis
using Eco RI. This new construct was designated pSUZ 1.

Example 4

Preparation of the strain Corynebacterium glutamicum 10 DSM5715::pSUZ1

The strain DSM5715 was transformed with the plasmid pSUZ1 using the electroporation method described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989)). Selection of the transformants took place on LBHIS agar comprising

- 15 18.5 g/l brain-heart infusion broth, 0.5M sorbitol, 5 g/l Bacto-tryptone, 2.5 g/l Bacto-yeast extract, 5 g/l NaCl and 18 g/l Bacto-agar, which had been supplemented with 25 mg/l kanamycin. Incubation was carried out for 2 days at 33°C.
- Since the vector pSUZ1 cannot replicate in the strain 20 DSM5715, only clones which show kanmycin resistance imparted by integration of pSUZ1 were able to grow.

The resulting integrant was called DSM5715::pSUZ1.

Example 5

Preparation of lysine

- 25 The C. glutamicum strain DSM5715/pSUZ1 obtained in Example 4 was cultured in a nutrient medium suitable for the production of L-lysine and the L-lysine content in the culture supernatant was determined.
- For this, the strain was first incubated on an agar plate 30 with the corresponding antibiotic (brain-heart agar with kanamycin (25 mg/l)) for 24 hours at 33°C. Starting from

this agar plate culture, a preculture was seeded (10 ml medium in a 100 ml conical flask). The complete medium CgIII was used as the medium for the preculture.

Medium Cg III:

NaCl	2.5 g/l
Bacto-Peptone	10 g/l
Bacto-Yeast extract	10 g/l

Glucose (autoclaved separately) 2% (w/v)

The pH was brought to pH 7.4.

Kanamycin (25 mg/l) was added to this. The preculture was 5 incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1. Medium MM was used for the main culture.

Medium MM:

CSL (corn steep liquor)	5 g/l
MOPS (morpholinopropanesulfonic acid)	20 g/l
Glucose(autoclaved separately)	50g/l
(NH ₄) ₂ SO ₄	25 g/l
(1114) 2004	23 g/1
KH ₂ PO ₄	0.1 g/l
$MgSO_4 * 7 H_2O$	1.0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l

MnSO ₄ * H ₂ O	5.0mg/l
Biotin (sterile-filtered)	0.3 mg/l
Thiamine * HCl (sterile-filtered)	0.2 mg/l
L-Leucine	0.1 g/l
CaCO ₃	25 g/l

The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaCO₃ 5 autoclaved in the dry state.

Culturing was carried out in a 10 ml volume in a 100 ml conical flask with baffles. Kanamycin (25 mg/l) was added. Culturing was carried out at 33°C and 80% atmospheric humidity.

- 10 After 24 and 48 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich). The amount of lysine formed was determined with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange 15 chromatography and post-column derivatization with
- 15 chromatography and post-column derivatization with ninhydrin detection.

The result of the experiment is shown in Table 1.

13

Table 1

Strain	Time,	Lysine-HCl
	hours	g/l
DSM5715	24	8.1
DSM5715::pSUZ1	24	8.6
DSM5715	48	14.7
DSM5715::pSUZ1	48	15.4

Original (for SUBMISSION) - printed on 03.07.2000 03:06:22 PM

0-1	Form - PCT/RO/134 (EASY) Indications Relating to D posited Microorganism(s) or Other Biological	
	Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.90
		(updated 08.03.2000)
0-2	International Application No.	
0-3	Applicant's or agent's file reference	990228 BT
1	The indications made below relate to	
•	the deposited microorganism(s) or other biological material referred to in the description on:	
1-1	page	18
1-2	line	5-10
1-3	Identification of Deposit	
1-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
	<u></u>	Mikroorganismen und Zellkulturen GmbH
1-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
	ľ	Braunschweig, Germany
1-3-3	Date of deposit	26 January 2000 (26.01.2000)
1-3-4	Accession Number	DSMZ 13263
1-4	Additional Indications	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
	FOR	RECEIVING OFFICE USE ONLY
0-4	This form was received with the international application: (yes or no)	yes
0-4-1	Authorized officer	C. van Arustel
	FOR INT	ERNATIONAL BUREAU USE ONLY
0-5	This form was received by the international Bureau on:	18.09.200.
0-5-1	Authorized officer	18.09 2000 N Wagner

Patent claims

- An isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
- a) polynucleotide which is identical to the extent of at least 70 % to a polynucleotide which codes for a polypeptide which comprises the amino acid sequences of SEQ ID NO. 2 or SEQ ID NO. 4,
- b) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is identical to the extent of at least 70 % to the amino acid sequences of SEQ ID NO. 2 or SEQ ID NO. 4
 - c) polynucleotide which is complementary to the polynucleotides of a) or b) and
- d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequences of a), b) or c).
- A polynucleotide as claimed in claim 1
 wherein the polynucleotide is a preferably recombinant
 DNA which is capable of replication in coryneform
 bacteria and additionally contains at least one of the
 nucleotide sequences which codes for the genes tkt,
 zwf, opcA and devB.
- 3. A polynucleotide as claimed in claim 1, wherein the polynucleotide is an RNA.
 - 4. A polynucleotide as claimed in claim 2, comprising one of the nucleotide sequence as shown in SEQ ID NO. 3.
- A polynucleotide as claimed in claim 2,
 which codes for a polypeptide which comprises the

amino acid sequence as shown in SEQ ID NO. 2 and SEQ ID NO. 4.

- A DNA as claimed in claim 2 which is capable of replication, comprising
- 5 (i) a nucleotide sequence as shown in SEQ ID NO. 3, or
 - (ii) at least one sequence which corresponds to sequences (i) within the range of the degeneration of the genetic code, or
- (iii) at least one sequence which hybridizes with the sequences complementary to sequences (i) or (ii), and optionally
 - (iv) sense mutations of neutral function in (i).
- 7. A coryneform bacterium serving as the host cell, which contains a vector which carries a polynucleotide as claimed in claim 1.
 - 8. A process for the preparation of L-amino acids, which comprises carrying out the following steps:
- a) fermentation of the bacteria which produce the desired L-amino acid, in which at least the tal gene and optionally one or more of the genes tkt gene, zwt gene, devB gene or opcA gene are amplified at the same time,
- b) concentration of the desired product in the medium or in the cells of the bacteria and
 - c) isolation of the desired L-amino acid.
 - A process as claimed in claim 8, wherein
- bacteria in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally amplified are employed.

ħ

٨

5

- 10. A process as claimed in claim 8, wherein bacteria in which the metabolic pathways which reduce the formation of the desired L-amino acid are at least partly eliminated are employed.
- 11. A process as claimed in one or more of claims 8 to 12, wherein coryneform bacteria which produce one of the amino acids from the group consisting of L-lysine, L-threonine, L-isoleucine or L-tryptophan are used.
 - 12. A process for the fermentative preparation of L-amino acids, in particular lysine, as claimed in claim 8, wherein
- in the coryneform microorganisms which in particular already produce L-amino acids, one or more genes chosen from the group consisting of
 - 12.1 the dapA gene which codes for dihydrodipicolinate synthase,
- 12.2 the lysC gene which codes for a feed back resistant aspartate kinase,
 - 12.3 the gap gene which codes for glycerolaldehyde 3-phosphate dehydrogenase,
 - 12.4 the pyc gene which codes for pyruvate carboxylase,
- 25 12.5 the mgo gene which codes for malate-quinone oxidoreductase,
 - 12.6 the tkt gene which codes for transketolase,
 - 12.7 the gnd gene which codes for 6-phosphogluconate dehydrogenase,

12.8 the zwf gene which codes for glucose 6-phosphate dehydrogenase,

PCT/EP00/06304

- 12.9 the lysE gene which codes for lysine export,
- 12.10 the zwal gene,
- 5 12.11 the eno gene which codes for enolase,
 - 12.12 the opcA gene
 - is or are amplified or over-expressed at the same time.
- 13. A process for the fermentative preparation of Lthreonine as claimed in claim 8,
 wherein
 in coryneform microorganisms which in particular
 already produce L-threonine, one or more genes chosen
 from the group consisting of
- 13.1 at the same time the hom gene which codes for homoserine dehydrogenase or the hom^{dr} allele which codes for a "feed back resistant" homoserine dehydrogenase,
- 13.2 the gap gene which codes for glyceraldehyde 3phosphate dehydrogenase,
 - 13.3 the pyc gene which codes for pyruvate carboxylase,
 - 13.4 the mgo gene which codes for malate:quinone oxidoreductase,
- 25 13.5 the tkt gene which codes for transketolase,
 - 13.6 the gnd gene which codes for 6-phosphogluconate dehydrogenase,

3

- 13.7 the zwf gene which codes for glucose 6-phosphate dehydrogenase,
- 13.8 the thrE gene which codes for threonine export,
- 13.9 the zwal gene,
- 5 13.10 the eno gene which codes for enolase,
 - 13.11 the opcA gene

is or are amplified, in particular over-expressed, at the same time.

- 14. A process as claimed in claim 10,
- 10 wherein

for the preparation of L-amino acids, in particular L-lysine, L-threonine, L-isoleucine or L-tryptophan, bacteria in which one or more genes chosen from the group consisting of,

- 14.1 the pck gene which codes for phosphoenol pyruvate carboxykinase
 - 14.2 the pgi gene which codes for glucose 6-phosphate6 isomerase
 - 14.3 the poxB gene which codes for pyruvate oxidase or
- 20 14.4 the zwa2 gene

is or are attenuated at the same time, are fermented.

- 15. A use of polynucleotide sequences as claimed in claim 1 as hybridization probes for isolation of the cDNA which codes for the tal gene product.
- 25 16. A use of polynucleotide sequences as claimed in claim 1 as hybridization probes for isolation of the cDNA or genes which have a high similarity with the sequence of the tal gene.

Figure 1:


```
SEQUENCE PROTOCOL
   <110> National University of Ireland, Galway
          Degussa-Hüls AG
 5
   <120> New nucleotide sequences which code for the tal gene
   <130> 990228BT
10 <140>
   <141>
   <160> 4
15' <170> PatentIn Ver. 2.1
   <210> 1
    <211> 6995
    <212> DNA
20 <213> Corynebacterium glutamicum
    <220>
    <221> CDS
    <222> (2471)..(3550)
25 <223> tal-Gen
    <400> 1
   cacatttgaa ccacagttgg ttataaaatg ggttcaacat cactatggtt agaggtgttg 60
30 acgggtcaga ttaagcaaag actactttcg gggtagatca cctttgccaa atttgaacca 120
   attaacctaa gtcgtagatc tgatcatcgg atctaacgaa aacgaaccaa aactttggtc 180
   ccggtttaac ccaggaagga ttgaccacct tgacgctgtc acctgaactt caggcgctca 240
35
   ctgtacgcaa ttacccctct gattggtccg atgtggacac caaggctgta gacactgttc 300
   gtgtcctcgc tgcagacgct gtagaaaact gtggctccgg ccacccaggc accgcaatga 360
40 gcctggctcc ccttgcatac accttgtacc agcgggttat gaacgtagat ccacaggaca 420
    ccaactgggc aggccgtgac cgcttcgttc tttcttgtgg ccactcctct ttgacccagt 480
   acatccagct ttacttgggt ggattcggcc ttgagatgga tgacctgaag gctctgcgca 540
45
   cctgggattc cttgacccca ggacaccctg agtaccgcca caccaagggc gttgagatca 600
    ccactggccc tettggccag ggtettgcat etgcagttgg tatggccatg getgetegte 660
50 gtgagcgtgg cctattcgac ccaaccgctg ctgagggcga atccccattc gaccaccaca 720
    tctacgtcat tgcttctgat ggtgacctgc aggaaggtgt cacctctgag gcatcctcca 780
    tegetggeae ceageagetg ggeaacetea tegtgttetg ggatgaeaae egeateteea 840
55
    tegaagacaa caetgagate gettteaaeg aggaegttgt tgetegttae aaggettaeg 900
    gctggcagac cattgaggtt gaggctggcg aggacgttgc agcaatcgaa gctgcagtgg 960
60 ctgaggctaa gaaggacacc aagcgaccta ccttcatccg cgttcgcacc atcatcggct 1020
    teccagetee aactatgatg aacaceggtg etgtgeacgg tgetgetett ggegeagetg 1080
```

	aggttggagg	22002200					
		aaccaagact	•				
	atgaggttat	cgctcacacc	cgctccctcg	cagagcgcgc	tgcacagaag	aaggctgcat	1200
5	ggcaggtcaa	gttcgatgag	tgggcagctg	ccaaccctga	gaacaaggct	ctgttcgatc	1260
	gcctgaactc	ccgtgagctt	ccagcgggct	acgctgacga	gctcccaaca	tgggatgcag	1320
10	atgagaaggg	cgtcgcaact	cgtaaggctt	ccgaggctgc	acttcaggca	ctgggcaaga	1380
	cccttcctga	gctgtggggc	ggttccgctg	acctcgcagg	ttccaacaac	accgtgatca	1440
	agggctcccc	ttccttcggc	cctgagtcca	tctccaccga	gacctggtct	gctgagcctt	1500
15	acggccgtaa	cctgcacttc	ggtatccgtg	agcacgctat	gggatccatc	ctcaacggca	1560
	tttccctcca	cggtggcacc	cgcccatacg	gcggaacctt	cctcatcttc	tccgactaca	1620
20	tgcgtcctgc	agttcgtctt	gcagctctca	tggagaccga	cgcttactac	gtctggaccc	1680
	acgactccat	cggtctgggc	gaagatggcc	caacccacca	gcctgttgaa	accttggctg	1740
	cactgcgcgc	catcccaggt	ctgtccgtcc	tgcgtcctgc	agatgcgaac	gagaccgccc	1800
25	aggcttgggc	tgcagcactt	gagtacaagg	aaggccctaa	gggtcttgca	ctgacccgcc	1860
	agaacgttcc	tgttctggaa	ggcaccaagg	agaaggctgc	tgaaggcgtt	cgccgcggtg	1920
30	gctacgtcct	ggttgagggt	tccaaggaaa	ccccagatgt	gatcctcatg	ggctccggct	1980
	ccgaggttca	gcttgcagtt	aacgctgcga	aggctctgga	agctgagggc	gttgcagctc	2040
	gcgttgtttc	cgttccttgc	atggattggt	tccaggagca	ggacgcagag	tacatcgagt	2100
35	ccgttctgcc	tgcagctgtg	accgctcgtg	tgtctgttga	agctggcatc	gcaatgcctt	2160
	ggtaccgctt	cttgggcacc	cagggccgtg	ctgtctccct	tgagcacttc	ggtgcttctg	2220
40	cggattacca	gaccctgttt	gagaagttcg	gcatcaccac	cgatgcagtc	gtggcagcgg	2280
	ccaaggactc	cattaacggt	taattgccct	gctgtttta	gcttcaaccc	ggggcaatat	2340
	gattctccgg	aattttattg	ccccgggttg	ttgttgttaa	tcggtacaaa	gggtcttaag	2400
45	cacatccctt	acttgcctgc	tctccttgag	cacagttcaa	gaacaattct	tttaaggaaa	2460
50	atttagtttc	atg tct cac Met Ser His 1	att gat ga Ile Asp As 5	t ctt gca c p Leu Ala G	ag ctc ggc In Leu Gly 10	act tcc Thr Ser	2509
- •	act tgg cto Thr Trp Let 15	gac gac ct Asp Asp Le	c tcc cgc g u Ser Arg G 20	ag cgc att lu Arg Ile	act tcc ggc Thr Ser Gly 25	aat ctc Asn Leu	2557

	agc Ser 30	cag Gln	gtt Val	att Ile	gag Glu	gaa Glu 35	aag Lys	tct Ser	gta Val	gtc Val	ggt Gly 40	gtc Val	acc Thr	acc Thr	aac Asn	cca Pro 45	2605
5	gct Ala	att Ile	ttc Phe	gca Ala	gca Ala 50	gca Ala	atg Met	tcc Ser	aag Lys	ggc Gly 55	gat Asp	tcc Ser	tac Tyr	gac Asp	gct Ala 60	Gln	2653
10	atc Ile	gca Ala	gag Glu	ctc Leu 65	aag Lys	gcc Ala	gct Ala	ggc Gly	gca Ala 70	tct Ser	gtt Val	gac Asp	cag Gln	gct Ala 75	gtt Val	tac Tyr	2701
15	gcc Ala	atg Met	agc Ser 80	atc Ile	gac Asp	gac Asp	gtt Val	cgc Arg 85	aat Asn	gct Ala	tgt Cys	gat Asp	ctg Leu 90	ttc Phe	acc Thr	ggc Gly	2749
20	atc Ile	ttc Phe 95	gag Glu	tcc Ser	tcc Ser	aac Asn	ggc Gly 100	tac Tyr	gac Asp	ggc Gly	cgc Arg	gtg Val 105	tcc Ser	atc Ile	gag Glu	gtt Val	2797
	gac Asp 110	cca Pro	cgt Arg	atc Ile	tct Ser	gct Ala 115	gac Asp	cgc Arg	gac Asp	gca Ala	acc Thr 120	ctg Leu	gct Ala	cag Gln	gcc Ala	aag Lys 125	2845
25		ctg Leu	tgg Trp	gca Ala	aag Lys 130	gtt Val	gat Asp	cgt Arg	cca Pro	aac Asn 135	gtc Val	atg Met	atc Ile	aag Lys	atc Ile 140	cct Pro	2893
30	gca Ala	acc Thr	cca Pro	ggt Gly 145	tct Ser	ttg Leu	cca Pro	gca Ala	atc Ile 150	acc Thr	gac Asp	gct Ala	ttg Leu	gct Ala 155	gag Glu	ggc Gly	2941
35	atc Ile	agc Ser	gtt Val 160	aac Asn	gtc Val	acc Thr	ttg Leu	atc Ile 165	ttc Phe	tcc Ser	gtt Val	gct Ala	cgc Arg 170	tac Tyr	cgc Arg	gag Glu	2989
40	gtc Val	atc Ile 175	gct Ala	gcg Ala	ttc Phe	atc Ile	gag Glu 180	ggc Gly	atc Ile	aag Lys	cag Gln	gct Ala 185	gct Ala	gca Ala	aac Asn	ggc Gly	3037
	cac His 190	gac Asp	gtc Val	tcc Ser	aag Lys	atc Ile 195	cac His	tct Ser	gtg Val	gct Ala	tcc Ser 200	ttc Phe	ttc Phe	gtc Val	tcc Ser	cgc Arg 205	3085
45	gtc Val	gac Asp	gtt Val	gag Glu	atc Ile 210	gac Asp	aag Lys	cgc Arg	ctc Leu	gag Glu 215	gca Ala	atc Ile	gga Gly	tcc Ser	gat Asp 220	gag Glu	3133
50	gct Ala	ttg Leu	gct Ala	ctg Leu 225	cgc Arg	ggc Gly	aag Lys	gca Ala	ggc Gly 230	gtt Val	gcc Ala	aac Asn	gct Ala	cag Gln 235	cgc Arg	gct Ala	3181
55	tac Tyr	gct Ala	gtg Val 240	tac Tyr	aag Lys	gag Glu	ctt Leu	ttc Phe 245	gac Asp	gcc Ala	gcc Ala	gag Glu	ctg Leu 250	cct Pro	gaa Glu	ggt Gly	3229
60	gcc Ala	aac Asn 255	act Thr	cag Gln	cgc Arg	cca Pro	ctg Leu 260	tgg Trp	gca Ala	tcc Ser	acc Thr	ggc Gly 265	gtg Val	aag Lys	aac Asn	cct Pro	3277
	gcg Ala 270	tac Tyr	gct Ala	gca Ala	act Thr	ctt Leu 275	tac Tyr	gtt Val	tcc Ser	gag Glu	ctg Leu 280	gct Ala	ggt Gly	cca Pro	aac Asn	acc Thr 285	3325

5	gtc aac acc Val Asn Th	c atg cca or r Met Pro (290	gaa ggc acc Glu Gly Thr	atc gac gcg Ile Asp Ala 295	gtt ctg ga Val Leu Gl	g cag ggc u Gln Gly 300	3373
•	aac ctg cad Asn Leu His	c ggt gac a s Gly Asp s 305	acc ctg tco Thr Leu Ser	aac tcc gcg Asn Ser Ala 310	gca gaa gc Ala Glu Al 31	a Asp Ala	3421
10	gtg ttc tcc Val Phe Ser 320	r eru ren (gag gct ctg Glu Ala Leu 325	ggc gtt gac Gly Val Asp	ttg gca ga Leu Ala As 330	t gtc ttc p Val Phe	3469
15	cag gtc ctc Gln Val Let 335	g gag acc o u Glu Thr o	gag ggt gtg Glu Gly Val 340	gac aag ttc Asp Lys Phe	gtt gct tc Val Ala Se 345	t tgg agc r Trp Ser	3517
.2.0	gaa ctg ctf Glu Leu Leu 350	u Glu Ser I	atg gaa gct Met Glu Ala 355	cgc ctg aag Arg Leu Lys 360		acgctgcatc	3570
	agtaacggcg	acatgaaat	gaattagtt	c gatcttatgt	ggccgttaca	catctttcat	3630
25	taaagaaagg	atcgtgacad	c taccatcgt	g agcacaaaca	cgaccccctc	cagctggaca	3690
23	aacccactgc	gcgacccgca	a ggataaacg	a ctcccccgca	tcgctggccc	ttccggcatg	3750
	gtgatcttcg	gtgtcactg	g cgacttggc	t cgaaagaagc	tgctccccgc	catttatgat	3810
30	ctagcaaacc	gcggattgct	gccccagg	a ttctcgttgg	taggttacgg	ccgccgcgaa	3870
	tggtccaaag	aagactttg	a aaaatacgt	a cgcgatgccg	caagtgctgg	tgctcgtacg	3930
35	gaattccgtg	aaaatgttt	g ggagcgcct	c gccgagggta	tggaatttgt	tcgcggcaac	3990
23	tttgatgatg	atgcagctti	cgacaacct	c gctgcaacac	tcaagcgcat	cgacaaaacc	4050
	cgcggcaccg	ccggcaact	g ggcttacta	c ctgtccattc	caccagattc	cttcacagcg	4110
40	gtctgccacc	agctggagc	g ttccggcat	g gctgaatcca	ccgaagaagc	atggcgccgc	4170
	gtgatcatcg	agaagcctti	cggccacaa	c ctcgaatccg	cacacgaget	caaccagctg	4230
45	gtcaacgcag	tcttcccaga	a atcttctgt	g ttccgcatcg	accactattt	gggcaaggaa	4290
43	acagttcaaa	acatcctgg	tctgcgttt	t gctaaccagc	tgtttgagcc	actgtggaac	4350
	tccaactacg	ttgaccacgt	ccagatcac	c atggctgaag	atattggctt	gggtggacgt	4410
50	gctggttact	acgacggcat	cggcgcagc	c cgcgacgtca	tccagaacca	cctgatccag	4470
				a atttctttcg			
				g ccgtgctacc			
55				c tctgagttag			
				g acttttgcgg			
60				c ctgcgcaccg			
				c gcaccacacc			

5

	actgtatece	ttggccaaaa	cgccatcgtg	attcgcgtgc	agcctgatga	aggtgtgctc	4890
•	atccgcttcg	gttccaaggt	tccaggttct	gccatggaag	tccgtgacgt	caacatggac	4950
5	ttctcctact	cagaatcctt	cactgaagaa	tcacctgaag	catacgagcg	cctcattttg	5010
	gatgcgctgt	tagatgaatc	cagcctcttc	cctaccaacg	aggaagtgga	actgagctgg	5070
10	aagattctgg	atccaattct	tgaagcatgg	gatgccgatg	gagaaccaga	ggattaccca	5130
- •	gcgggtacgt	ggggtccaaa	gagcgctgat	gaaatgcttt	cccgcaacgg	tcacacctgg	5190
	cgcaggccat	aatttagggg	caaaaaatga	tctttgaact	tccggatacc	accacccagc	5250
15	aaatttccaa	gaccctaact	cgactgcgtg	aatcgggcac	ccaggtcacc	accggccgag	5310
	tgctcaccct	catcgtggtc	actgactccg	aaagcgatgt	cgctgcagtt	accgagtcca	5370
20	ccaatgaagc	ctcgcgcgag	cacccatctc	gcgtgatcat	tttggtggtt	ggcgataaaa	5430
	ctgcagaaaa	caaagttgac	gcagaagtcc	gtatcggtgg	cgacgctgġt	gcttccgaga	5490
	tgatcatcat	gcatctcaac	ggacctgtcg	ctgacaagct	ccagtatgtc	gtcacaccac	5550
25	tgttgcttcc	tgacaccccc	atcgttgctt	ggtggccagg	tgaatcacca	aagaatcctt	5610
	cccaggaccc	aattggacgc	atcgcacaac	gacgcatcac	tgatgctttg	tacgaccgtg	5670
30	atgacgcact	agaagatcgt	gttgagaact	atcacccagg	tgataccgac	atgacgtggg	5730
	cgcgccttac	ccagtggcgg	ggacttgttg	cctcctcatt	ggatcaccca	ccacacagcg	5790
	aaatcacttc	cgtgaggctg	accggtgcaa	gcggcagtac	ctcggtggat	ttggctgcag	5850
35	gctggttggc	gcggaggctg	aaagtgcctg	tgatccgcga	ggtgacagat	gctcccaccg	5910
	tgccaaccga	tgagtttggt	actccactgc	tggctatcca	gcgcctggag	atcgttcgca	5970
40	ccaccggctc	gatcatcatc	accatctatg	acgctcatac	ccttcaggta	gagatgccgg	6030
	aatccggcaa	tgccccatcg	ctggtggcta	ttggtcgtcg	aagtgagtcc	gactgcttgt	6090
	ctgaggagct	tcgccacatg	gatccagatt	tgggctacca	gcacgcacta	tccggcttgt	6150
45	ccagcgtcaa	gctggaaacc	gtctaaggag	aaatacaaca	ctatggttga	tgtagtacgc	6210
	gcacgcgata	ctgaagattt	ggttgcacag	gctgcctcca	aattcattga	ggttgttgaa	6270
50	gcagcaactg	ccaataatgg	caccgcacag	gtagtgctca	ccggtggtgg	cgccggcatc	6330
	aagttgctgg	aaaagctcag	cgttgatgcg	gctgaccttg	cctgggatcg	cattcatgtg	6390
	ttcttcggcg	atgagcgcaa	tgtccctgtc	agtgattctg	agtccaatga	gggccaggct	6450
55	cgtgaggcac	tgttgtccaa	ggtttctatc	cctgaagcca	acattcacgg	atatggtctc	6510
	ggcgacgtag	atcttgcaga	ggcagcccgc	gcttacgaag	ctgtgttgga	tgaattcgca	6570
60	ccaaacggct	ttgatcttca	cctgctcggc	atgggtggcg	aaggccatat	caactccctg	6630
	ttccctcaca	ccgatgcagt	caaggaatcc	tccgcaaagg	tcatcgcggt	gtttgattcc	6690
	cctaagcctc	cttcagagcg	tgcaactcta	accettectg	cggttcactc	cgcaaagcgc	6750

	gtgt	ggtt	gc t	ggtt	tct	gg to	gcgga	agaa	g gct	tgag	gcag	ctg	cggc	gat	cgtc	aacggt	6810
5	gago	ctg	ctg t	tgaç	gtggd	cc to	gctg	ctgga	a gci	tacc	ggat	ctg	agga	aac	ggta	ttgttc	6870
J	ttg	gctga	atg a	atgct	gca	gg aa	aatc	cta	a gca	agcg	ccag	ctc	taac	aag	aagc	tttaac	6930
	aaga	agct	ct a	aacga	aaaa	gc ad	ctaad	caaa	c taa	atcc	gggt	gcg	aacc	ttc	atct	gaatcg	6990
10	atgo	ja															6995
15	<212	> 36 > PF	RТ	ebact	eri	ım gl	lutar	nicum	n								
2.0	<400 Met 1		His	Ile	Asp 5	Asp	Leu	Ala	Gln	Leu 10	Gly	Thr	Ser	Thr	Trp 15	Leu	
	Asp	Asp	Leu	Ser 20	Arg	Glu	Arg	Ile	Thr 25	Ser	GŢŊ	Asn	Leu	Ser 30	Gln	Val	90
25	Ile	Glu	Glu 35	Lys	Ser	Val	Val	Gly 40	Val	Thr	Thr	Asn	Pro 45	Ala	Ile	Phe	
30	Ala	Ala 50	Ala	Met	Ser	Lys	Gly 55	Asp	Ser	Tyr	Asp	Ala 60	Gln	Ile	Ala	Glu	•
	Leu 65	Lys	Ala	Ala	Gly	Ala 70	Ser	Val	Asp	Gln	Ala 75	Val	Tyr	Ala	Met	Ser 80	
35	Ile	Asp	Asp	Val	Arg 85	Asn	Ala	Cys	Asp	Leu 90	Phe	Thr	Gly	Ile	Phe 95	Glu	
	Ser	Ser	Asn	Gly 100	Tyr	Asp	Gly	Arg	Val 105	Ser	Ile	Glu	Val	Asp 110	Pro	Arg	
40	Ile	Ser	Ala 115	Asp	Arg	Asp	Ala	Thr 120	Leu	Ala	Gln	Ala	Lys 125	Glu	Leu	Trp	
45	Ala	Lys 130	Val	Asp	Arg	Pro	Asn 135	Val	Met	Ile	Lys	Ile 140	Pro	Ala	Thr	Pro	
	Gly 145	Ser	Leu	Pro	Ala	Ile 150	Thr	Asp	Ala	Leu	Ala 155	Glu	Gly	Ile	Ser	Val 160	
50	Asn	Val	Thr	Leu	Ile 165	Phe	Ser	Val	Ala	Arg 170	Tyr	Arg	Glu	Val	Ile 175	Ala	
	Ala	Phe	Ile	Glu 180	Gly	Ile	Lys	Gln	Ala 185	Ala	Ala	Asn	Gly	His 190	Asp	Val	
55	Ser	Lys	11e 195	His	Ser	Val	Ala	Ser 200	Phe	Phe	Val	Ser	Arg 205	Val	Asp	Val	
60	Glu	11e 210	Asp	Lys	Arg	Leu	Glu 215	Ala	Ile	Gly	Ser	Asp 220	Glu	Ala	Leu	Ala	
	Leu 225	Arg	Gly	Lys	Ala	Gly 230	Val	Ala	Asn	Ala	Gln 235	Arg	Ala	Tyr	Ala	Val 240	

WO 01/04325 PCT/EP00/06304

7

	Tyr	Lys	Glu	Leu	Phe 245	Asp	Ala	Ala	Glu	Leu 250	Pro	Glu	Gly	Ala	Asn 255	Thr	
5	Gln	Arg	Pro	Leu 260	Trp	Ala	Ser	Thr	Gly 265	Val	Lys	Asn	Pro	Ala 270		Ala	
	Ala	Thr	Leu 275	Tyr	Val	Ser	Glu	Leu 280	Ala	Gly	Pro	Asn	Thr 285	Val	Asn	Thr	
10	Met	Pro 290	Glu	Gly	Thr	Ile	Asp 295	Ala	Val	Leu	Glu	Gln 300	Gly	Asn	Leu	His	
15	Gly 305	Asp	Thr	Leu	Ser	Asn 310	Ser	Ala	Ala	Glu	Ala 315	Asp	Ala	Val	Phe	Ser 320	
	Gln	Leu	Glu	Ala	Leu 325	Gly	Val	Asp	Leu	Ala 330	Asp	Val	Phe	Gln	Val 335	Leu	
20	Glu	Thr	Glu	Gly 340	Val	Asp	Lys	Phe	Val 345	Ala	Ser	Trp	Ser	Glu 350	Leu	Leu	
	Glu	Ser	Met 355	Glu	Ala	Arg	Leu	Lys 360									
25																	
30	<212	> 10 > DN	IA	bact	eriu	ım gl	.utam	ni cum	ı					-			
35		> CE !> (1	.) (1080))												
10	<400 atg Met 1	tct	cac His	att Ile	gat Asp 5	gat Asp	ctt Leu	gca Ala	cag Gln	ctc Leu 10	ggc Gly	act Thr	tcc Ser	act Thr	tgg Trp 15	ctc Leu	41

	gac Asp	gac Asp	ctc Leu	tcc Ser 20	cgc Arg	gag Glu	cgc Arg	att Ile	act Thr 25	tcc Ser	ggc Gly	aat Asn	ctc Leu	agc Ser 30	cag Gln	gtt Val	96
5	att Ile	gag Glu	gaa Glu 35	aag Lys	tct Ser	gta Val	gtc Val	ggt Gly 40	gtc Val	acc Thr	acc Thr	aac Asn	cca Pro 45	gct Ala	att Ile	ttc Phe	144
10	gca Ala	gca Ala 50	gca Ala	atg Met	tcc Ser	aag Lys	ggc Gly 55	gat Asp	tcc Ser	tac Tyr	gac Asp	gct Ala 60	cag Gln	atc Ile	gca Ala	gag Glu	192
15	ctc Leu 65	aag Lys	gcc Ala	gct Ala	ggc Gly	gca Ala 70	tct Ser	gtt Val	gac Asp	cag Gln	gct Ala 75	gtt Val	tac Tyr	gcc Ala	atg Met	agc Ser 80	240
20	atc Ile	gac Asp	gac Asp	gtt Val	cgc Arg 85	aat Asn	gct Ala	tgt Cys	gat Asp	ctg Leu 90	ttc Phe	acc Thr	ggc Gly	atc Ile	ttc Phe 95	gag Glu	288
. 	tcc Ser	tcc Ser	Asn	ggc Gly 100	tac Tyr	gac Asp	ggc Gly	cgc Arg	gtg Val 105	tcc Ser	atc Ile	gag Glu	gtt Val	gac Asp 110	cca Pro	cgt <u>A</u> rg	336
25	atc Ile	tct Ser	gct Ala 115	gac Asp	cgc Arg	gac Asp	gca Ala	acc Thr 120	ctg Leu	gct Ala	cag Gln	gcc Ala	aag Lys 125	gag Glu	ctg Leu	tgg Trp	384
30	gca Ala	aag Lys 130	gtt Val	gat Asp	cgt Arg	cca Pro	aac Asn 135	gtc Val	atg ·Met	atc Ile	aag Lys	atc Ile 140	cct Pro	gca Ala	acc Thr	cca Pro	432
35	ggt Gly 145	tct Ser	ttg Leu	cca Pro	gca Ala	atc Ile 150	acc Thr	gac Asp	gct Ala	ttg Leu	gct Ala 155	gag Glu	ggc Gly	atc Ile	agc Ser	gtt Val 160	480
40	aac Asn	gtc Val	acc Thr	ttg Leu	atc Ile 165	ttc Phe	tcc Ser	gtt Val	gct Ala	cgc Arg 170	tac Tyr	cgc Arg	gag Glu	gtc Val	atc Ile 175	gct Ala	528
	gcg Ala	ttc Phe	atc Ile	gag Glu 180	ggc Gly	atc Ile	aag Lys	cag Gln	gct Ala 185	gct Ala	gca Ala	aac Asn	ggc Gly	cac His 190	gac Asp	gtc Val	576
45	tcc Ser	aag Lys	atc Ile 195	cac His	tct Ser	gtg Val	gct Ala	tcc Ser 200	ttc Phe	ttc Phe	gtc Val	tcc Ser	cgc Arg 205	gtc Val	gac Asp	gtt Val	624
50	gag Glu								atc Ile								672
55	ctg Leu 225	cgc Arg	ggc Gly	aag Lys	gca Ala	ggc Gly 230	gtt Val	gcc Ala	aac Asn	gct Ala	cag Gln 235	cgc Arg	gct Ala	tac Tyr	gct Ala	gtg Val 240	720
60	tac Tyr	aag Lys	gag Glu	ctt Leu	ttc Phe 245	gac Asp	gcc Ala	gcc Ala	gag Glu	ctg Leu 250	cct Pro	gaa. Glu	ggt Gly	gcc Ala	aac Asn 255	act Thr	768
	cag Gln	cgc Arg	cca Pro	ctg Leu 260	tgg Trp	gca Ala	tcc Ser	acc Thr	ggc Gly 265	gtg Val	aag Lys	aac Asn	cct Pro	gcg Ala 270	tac Tyr	gct Ala	816

5	gca Ala	act Thr	ctt Leu 275	tac Tyr	gtt Val	tcc Ser	gag Glu	ctg Leu 280	Ala	ggt Gly	cca Pro	aac Asn	acc Thr 285	gtc Val	aac Asn	acc Thr	864
,	atg Met	cca Pro 290	gaa Glu	ggc	acc Thr	atc Ile	gac Asp 295	gcg Ala	gtt Val	ctg Leu	gag Glu	cag Gln 300	ggc Gly	aac Asn	ctg Leu	cac His	912
10	ggt Gly 305	gac Asp	acc Thr	ctg Leu	tcc Ser	aac Asn 310	tcc Ser	gcg Ala	gca Ala	gaa Glu	gct Ala 315	gac Asp	gct Ala	gtg Val	ttc Phe	tcc Ser 320	960
15	cag Gln	ctt Leu	gag Glu	gct Ala	ctg Leu 325	ggc Gly	gtt Val	gac Asp	ttg Leu	gca Ala 330	gat Asp	gtc Val	ttc Phe	cag Gln	gtc Val 335	ctg Leu	1008
20	gag Glu	acc Thr	gag Glu	ggt Gly 340	gtg Val	gac Asp	aag Lys	ttc Phe	gtt Val 345	gct Ala	tct Ser	tgg Trp	agc Ser	gaa Glu 350	ctg Leu	ctt Leu	1056
25	gag Glu	tcc Ser	atg Met 355	gaa Glu	gct Ala	cgc Arg	ctg Leu	aag Lys 360	tag								1083
30	<212	l> 36 2> PE	RT	ebact	eri	ım gl	lutam	aicum	n								
	<400	> 4															
35	1				5	Asp				10					15		
	Asp	Asp	Leu	Ser 20	Arg	Glu	Arg	Ile	Thr 25	Ser	Gly	Asn	Leu	Ser 30	Gln	Val	
40	Ile	Glu	Glu 35	Lys	Ser	Val	Val	Gly 40	Val	Thr	Thr	Asn	Pro 45	Ala	Ile	Phe	
	Ala	Ala 50	Ala	Met	Ser	Lys	Gly 55	Asp	Ser	Tyr	Asp	Ala 60	Gln	Ile	Ala	Glu	
45	Leu 65	Lys	Ala	Ala	Gly	Ala 70	Ser	Val	Asp	Gln	Ala 75	Val	Tyr	Ala	Met	Ser 80	
50	Ile	Asp	Asp	Val	Arg 85	Asn	Ala	Cys	Asp	Leu 90	Phe	Thr	Gly	Ile	Phe 95	Glu	
30	Ser	Ser	Asn	Gly 100	Tyr	Asp	Gly	Arg	Val 105	Ser	Ile	Glu	Val	Asp 110	Pro	Arg	
55	Ile	Ser	Ala 115	Asp	Arg	Asp	Ala	Thr 120	Leu	Ala	Gln-	Ala	Lys 125	Glu	Leu	Trp	
	Ala	Lys 130	Val	Asp	Arg	Pro	Asn 135	Val	Met	Ile	Lys	Ile 140	Pro	Ala	Thr	Pro	
60	Gly 145	Ser	Leu	Pro	Ala	Ile 150	Thr	Asp	Ala	Leu	Ala 155	Glu	Gly	Ile	Ser	Val 160	
	Asn	Val	Thr	Leu	Ile	Phe	Ser	Val	Ala	Arg	Tyr	Arg	Glu	Val	Ile	Ala	

					165					170					175	
5	Ala	Phe	Ile	Glu 180	Gly	Ile	Lys	Gln	Ala 185	Ala	Ala	Asn	Gly	His 190	Asp	Val
·	Ser	Lys	Ile 195	His	Ser	Val	Ala	Ser 200	Phe	Phe	Val	Ser	Arg 205	Val	Asp	·Val
10	Glu	Ile 210	Asp	Lys	Arg	Leu	Glu 215	Ala	Ile	Gly	Ser	Asp 220	Glu	Ala	Leu	Ala
	Leu 225	Arg	Gly	Lys	Ala	Gly 230	Val	Ala	Asn	Ala	Gln 235	Arg	Ala	Tyr	Ala	Val 240
15	Tyr	Lys	Glu	Leu	Phe 245	Asp	Ala	Ala	Glu	Leu 250	Pro	Glu	Gly	Ala	Asn 255	Thr
2.0	Gln	Arg	Pro	Leu 260	Trp	Ala	Ser	Thr	Gly 265	Val	Lys	Asn	Pro	Ala 270	Tyr	Ala
	Ala	Thr	Leu 275	Tyr	Val	Ser	Glu ,	Leu 280	Ala	Gly	Pro	Asn	Thr 285	Val	Asn	Thr
25	Met	Pro 290	Glu	Gly	Thr	Ile	Asp 295	Ala	Val	Leu	Glu	Gln 300	Gly	Asn	Leu	His
	Gly 305	Asp	Thr	Leu	Ser	Asn 310	Ser	Ala	Ala	Glu	Ala 315	Asp	Ala	Val	Phe	Ser 320
30	Gln	Leu	Glu	Ala	Leu 325	Gly	Val	Asp	Leu	Ala 330	Asp	Val	Phe	Gln	Val 335	Leu
35	Glu	Thr	Glu	Gly 340	Val	Asp	Lys	Phe	Val 345	Ala	Ser	Trp	Ser	Glu 350	Leu	Leu
	Glu	Ser	Met 355	Glu	Ala	Arg	Leu	Lys 360				٠				

INTERNATIONAL SEARCH REPORT

nal Application No PCT/EP 00/06304

CLASSIFICATION OF SUBJECT MATTER PC 7 C12N15/54 C12N C12N15/62 C12P13/08 C1201/68 C12P13/06 C12P13/22 //(C12P13/08,C12R1:15) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12P C120 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EMBL, EPO-Internal, WPI Data, CHEM ABS Data, MEDLINE, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category * Relevant to claim No. X UWE KÖHLER ET AL.: "Transaldolase genes 1,3,6, from the cynobacteria Anabaena variabilis 15,16 and Synechocystis sp. PCC 6803: comparison with other eubacterial and eukaryotic homologues" PLANT MOLECULAR BIOLOGY, vol. 30, 1996, pages 213-218, XP000960916 abstract: figure 1 X JP 09 224661 A (MITSUBISHI CHEM CORP) 1,3,6, 2 September 1997 (1997-09-02) 15,16 sequence listing Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the set document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 22 November 2000 01/12/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Montero Lopez, B

Form PCT/ISA/210 (second sheet) (July 1992)

2

INTERNATIONAL SEARCH REPORT

information on patent family members

Interr. Aal Application No
PCT/EP 00/06304

 _			ation on patent family mem	<i>y</i> e, •	PCT/EP	00/06304	
Pa	itent document in search repor	t	Publication date	Patent family member(s)		Publication date	
JP	9224661	Α	02-09-1997	NONE			
			·*·				•
·							
							•
							4
							Sign

•		-1					
		•					
							•
						•	
					•		
			•				

	A				٠,
		, 1	3 1		V 5
	a a				
			**** **		
•					
				•	
					· v.
				* 0	*
				X + 1	
₩ ₩ ₩	, I				
		:			
					e de la companya del companya de la companya del companya de la co
			a set		
				*	
		8 1 1			
	A total	·			
		-			The state of the s
4					
				francisti (n. 1905). Ostorio	the second secon
			*		
				• •	*
					* (1)
				•	
			- C-		*
		•	. (4)		
- - -					
- 40					

-/1