

ETAP Dynamic Motor Modelling and Testing

Theoretical Concepts

The most widely recognized and studied effect of motor-starting is the voltage dip experienced throughout an industrial power system. Available accelerating torque drops appreciably at the motor terminal bus voltage drops, extending the starting interval and affecting, sometimes adversely, overall motor-starting performance. Acceptable voltage for motor-starting depends on motor and load torque characteristics. Requirements for minimum starting voltage can vary over a wide range, depending on the application. (Voltages can range from 80% or lower to 95% or higher).

Several other problems may arise on the electrical power system due to the voltage dips caused by motor-starting. Motors that are running normally on the system, for example, will slow down in response to the voltage dip occurring when a large motor is started. The running machines must be able to reaccelerate once the machine being started reaches operating speed. When the voltage depression caused by the starting motor is severe, the loading on the running machines may exceed their breakdown torque (at the reduced voltage), and they may decelerate significantly or even stall before the starting interval is concluded. The decelerating machines all impose heavy current demands that only compound the original distress caused by the machine that was started. This result can lead to the loss of all load.

Other types of loads, such as electronic devices and sensitive control equipment, may be adversely effected during motor-starting. There is a wide range of variation in the amount of voltage drop that can be tolerated by static drives and computers. Voltage fluctuations may also cause objectionable fluctuations in lighting.

By industry standards, AC control devices are not required to pick up at voltages below 85% of rated nameplate voltage, whereas dc control devices must operate dependably (i.e., pick-up) at voltages above 80% of their rating. Critical control operations may, therefore, encounter difficulty during motor-starting periods where voltage dips are excessive. A motor-starting study might be required to determine if this is a problem with thoughts to using devices rated at 110 V rather than normal 115 V nominal devices.

Table summarizes some critical system voltage levels of interest when performing a motor starting study for the purpose of evaluating the effects of voltage dips.

Voltage drop location or problem	Minimum allowable voltage (% rated)
At terminals of starting motor	80% ^a
All terminals of other motors that must reaccelerate	71% ^a
AC contactor pick-up (by standard) (see 9.8, NEMA standards)	85%
DC contactor pick-up (by standard) (see 9.8, NEMA standards)	80%
Contactor hold-in (average of those in use)	60-70% ^b
Solid-state control devices	90% ^c
Noticeable light flicker	3% change
NOTE—More detailed information is provided in Table 51 of IEEE Std 242-19	86.

^aTypical for NEMA design B motors only. Value may be higher (or lower) depending on actual motor and load characteristics.

^bValue may be as high as 80% for certain conditions during prolonged starting intervals.

 $^{^{}c}$ May typically vary by $\pm 5\%$ depending on available tap settings of power supply transformer when provided.

ETAP Dynamic Motor Modelling and Testing

Purpose and Description

The purpose of this exercise is to model the dynamic motor & study its effects during the motor start using software.

Input data

3 Unit Type: Standard: Rotation: Duty:	Three-Phase Induc 1SJ1808-4JE60-Z DIN VDE0530/IEC34 ccw	Mountin Cooling Therma	Laminated ng: IM g System: IC0 il Class: F system: Mica	B3 511	Enclosure: IP54 Sliprings — Ex-Protect: ExnAIT3 Ex-Stand.: IEC79-15 Service Altitude <= 1000 m				
Drivefor:	Turbo-Compressor	Type:	ysiem: Mica	lastic	Required In Required P		5628	tm ² kW	
Operating D	ata:	Rated	Point				0020	A. I	
Output Voltage Variation Current No-Load Cu Power Factor Frequency		± 6.0 / 60 8 0.1	00 1 6.0 6					٠	
Range Speed/Over- Cooling Temp Wdg. Limit Te Duty Type Servicefactor	Speed % min-1 o. sec./prim, *C imp. Stator *C <	± 5.0 / 1489 / 40 /	5.0 1500 58 20 (R)						
Starting Date						Counte	r-Toro	ue	
Permissible S	D.u. Torque p.u. ue p.u. orque p.u. Current p.u.	1.00 0.59 1.7 4.2 11	0.80 0.36 1.03 3.26 25 3/2	Moment of I	nedia Mach	0 0 0 0 0	.0 .8 .6 .4 .2	T p.u. 0,465 0,340 0,230 0,150 0,090 0,140 38,48 kNr 1,000 tm ²	
Efficiency / I	Power Factor				Losses	at Rated L	oad Ik	WI	
1.00 0.75 0.50 × Mark Stator	P.F. 0.85 0.90 0.85 ed Losses are Include Lamination M350–65A) d in the Efficience	97. 97. 96.	1	x Bear x Wind x Core x I ² R _{CX} x I ² R _{DX} x Addir Brus	ing Friction lage -Stator -Rotor tional	95 'C 95 'C	8 46 20 35 45 31	
Resistances	and Reactances in p.		5.178 Ω/Ph.	5 490	Time Co	onstants in			
R2' 0.0	0 F=FN 0050 0.0055 0069 0.0297 4. / System (F = Hz)	XS1 XS2' XM XK	s=0 0.171 0.1919 7.741	s=1 0,111 0,124 8,723	at 95 T0 T(3K)	°C	TG T(2K)		
MagneticFo		Therm.Time Running Standstill OverCurren		15 min 300 min 1.10	SuddenS	hortCircu	itTorq	ueinp.u.	

ETAP Dynamic Motor Modelling and Testing

Motor parameters from motor data sheet are tabulated as shown:

Operating Data			Rated Point					
Output	KW/HP		6000 /					
Voltage	V		6600	star				
Variation	%	土	6.0 / 6.0					
current	A		669					
No - Load current	A		86					
Power Factor			0.89					
Frequency	HZ		50					
Range	%	土	5.0 / 5.0					
Speed/Over-Speed	min ⁻¹		1489 /1500					
Cooling Temp Sec/Prim	°C		40 /58					
Wdg. Limit Temp. Stator	°C		120	(R)				
Duty type			S1					
Service factor								
Starting Data						Counte	r Torque	
External Reactance	p.u					Speed	P.u	T P.u
Voltage	p.u		1.00		0.80		1.0	0.465
Locked Rotor Torque	p.u		0.59		0.36		0.8	0.340
Pull up Torque	p.u						0.6	0.230
Breakdown Torque	p.u		1.7		1.03			
Locked Rotor current	p.u		4.2		3.26		0.4	0.150
Starting time	S		11		25		0.2	0.090

This document is confidential and proprietary to ETAP / ETAP Automation and may not be reproduced, published or disclosed to others without written authorization of ETAP / ETAP Automation. All Rights Reserved. Page 3 of 20

ETAP Dynamic Motor Modelling and Testing

LR Thermal Unit time	cold/hot				0.0	0.140
		3 / 2				38.48
Permissible Starts	cold/hot	3/2			TN	kNm
				Moment		
	direction-			of Inertia		
Method of starting	line			Mach/Ext	$0.345 / 1.000 \ 1m^2$	

Efficiency / Power Factor						Lo	(kW)	
				Efficiency				
Load	PF			(%)		X Bear	ing Friction	8
1	0.89			97.0		x Wind	age	46
0.75	0.90			97.1		x Core		20
0.50	0.89			96.6		x RRO	C Stator 95°C	35
						x RRO	C Rotor 95°C	45
						x Addit	tional	31
x Marked Losses are included in	the Efficier	су				Brushe	S	
Stator Lamination M350-55A 3.5	W/kg at 1	.5T				Separat	ed Fan power	
Resistances and Reactance in p.u Ref. to $ZN = 5.178 \square/ph$						Time co	onstant in S at 95°C	
	F=0		F= FN	S=0	S=1	T0	TG	

This document is confidential and proprietary to ETAP / ETAP Automation and may not be reproduced, published or disclosed to others without written authorization of ETAP / ETAP Automation. All Rights Reserved. $Page\ 4\ of\ 20$

ETAP Dynamic Motor Modelling and Testing

R1	0.0050		0.0055	XS1	0.171	0.111	T(3K)	T(2K)		
R2	0.0069		0.0297	XS2'	0.1919	0.124				
				XM	7.741	8.723				
Comm. React / System (F=Hz)				XK						
Magnetic Force	ic Force			,	Therm. Time Constant			Sudden short circuit Torque in p.u		
				Running 1		15 min				
					Standstill	300 min				
				Overcurrent						
					factor	1.10				

ETAP Dynamic Motor Modelling and Testing

Purpose and Description

This exercise involves creating the below shown SLD and entering the corresponding data. The detail modelling of the SLD is shown in the subsequent pages.

Procedure

1. Drag and place buses, transformer & grid on OLV and connect them. Proceed to enter the input data as shown below.

Note: Transformer and bus are required to run the ETAP. Otherwise, ETAP shows the following message.

2. Connect Induction machine to Bus1, double click on the Induction machine and enter kW rating & No of Poles.

ETAP Dynamic Motor Modelling and Testing

3. Go to Model page, click on "Parameter Estimation" tab.

ETAP Dynamic Motor Modelling and Testing

4. In Parameter Estimation, enter the locked rotor and full load data from Induction machine data sheet & set the solution parameter precision to 0.01.

Note: Locked rotor power factor is assumed to be 20%.

5. Click on Estimate button. Check estimated motor parameters.

ETAP Dynamic Motor Modelling and Testing

6. Click on update button to update motor parameters.

ETAP Dynamic Motor Modelling and Testing

7. Check for equivalent circuit parameters updated in to motor model.

Note: Parameter estimation is an iterative process, the results of your calculation might be slightly different.

8. Also check updated name plate, where, % Efficiency, % PF are updated from ETAP parameters estimated.

ETAP Dynamic Motor Modelling and Testing

9. Go to Inertia page, enter inertia data for motor & load model from motor data sheet.

10. Go to library, select Motor load model.

ETAP Dynamic Motor Modelling and Testing

11. Check the curve radio button. Click on Add and give a name for motor model as Load_model_1.

12. Enter the data of (% Speed vs % Torque) or (%Slip vs %Torque) as available in data sheet and delete other rows.

13. Double click on Induction motor, go to Load page.

ETAP Dynamic Motor Modelling and Testing

14. Select the radio button for curve model and select load_model_1.

15. Go to Transient Stability Analysis module, create New Study Case and create new case with case ID as Motor start.

- 16. Select study case ID "Motor start" from drop down menu. Then click on Edit study case for editing study events and for other settings.
- 17. Go to Events page click on Add button in events box, enter Event ID as Motor Start and Time = 1 sec.

ETAP Dynamic Motor Modelling and Testing

18. Click on Add button in Actions box. In the Action editor window select Device type as "Induction motor", Device ID as "Mtr 1", Action as "Accel" and Starting Category as "Normal".

19. Set the Total Simulation time as 35 second. Simulation time step as 0.001, Plot time step as 20 x dt.

ETAP Dynamic Motor Modelling and Testing

20. Go to Plot page, select motor terminal bus from Buses in device type and Induction motor from Ind. Machines, MV.

- 21. Go to Dyn Model page perform following actions
 - Select Ind Machines, MV check radio button with model machines larger or equal to "0" HP/KW to model all the MV motors dynamically.
 - In Dynamic modelling during simulation (time>0), uncheck both Include LTC action and Include starting device.

ETAP Dynamic Motor Modelling and Testing

 In starting load for acceleration motors, check radio button Based on motor mechanical load.

22. Click on the Run Transient stability button in Transient study toolbar.

ETAP Dynamic Motor Modelling and Testing

23. Click on the Transient Stability Plots, to plot the results.

24. Select Buses in Device type, Bus1 in Device ID and uncheck all in Plot type other than voltage and frequency. Check the results.

ETAP Dynamic Motor Modelling and Testing

ETAP Dynamic Motor Modelling and Testing

25. Select Ind. Machines, MV in Device type, and Mtr1 in Device ID and uncheck all in Plot type other than slip, MWe, MVAr, Current and terminal voltage. Check the results.

ETAP Dynamic Motor Modelling and Testing

