20. Sea $A \in M_3(\mathbb{R})$ dada por:

$$A = \left(\begin{array}{rrr} -2 & 1 & -2 \\ -2 & 1 & -4 \\ 8 & -3 & 0 \end{array}\right),$$

Demuestra que A no es diagonalizable. ¿Es diagonalizable si se considera con entradas en \mathbb{C} ? Utiliza el Teorema de Cayley-Hamilton para poner A^{2018} como combinación lineal de $\{A^2, A, I_3\}$.

21. Dados $a, b \in \mathbb{R}$ con $b \neq 0$ se define la matriz cuadrada de orden $n \geq 2$

$$A = \left(\begin{array}{cccc} a & b & b & \dots & b \\ b & a & b & \dots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \dots & a \end{array}\right).$$

- a) Prueba que $\lambda_1 = a b$ y $\lambda_2 = a + (n-1)b$ son valores propios de A. (Ayuda: Para λ_1 comprueba que $\det(A \lambda_1 I_n) = 0$ y para λ_2 comprueba que (1, 1, ..., 1) es un vector propio asociado a λ_2).
- b) Se definen los vectores $v_1 = (1, -1, 0, ..., 0)$, $v_2 = (1, 1, -2, 0, ..., 0)$, ..., $v_{n-1} = (1, 1, 1, ..., 1, -(n-1))$, $v_n = (1, 1, 1, ..., 1, 1)$. Prueba que
 - i) $\{v_1, v_2, \dots, v_{n-1}\}$ son vectores propios asociados a λ_1 y que v_n es un vector propio asociado a λ_2 .
 - ii) $v_i \cdot v_j = 0$ para $\forall i, j \in \{1, \dots, n\}, i \neq j$.
 - iii) La matriz que tiene por columnas los vectores v_1, v_2, \dots, v_n tiene determinante n!. (Ayuda: utiliza inducción sobre n).
 - iv) Como consecuencia de i) y iii) se tiene que $\{v_1, v_2, \dots, v_n\}$ es una base de \mathbb{R}^n formada por vectores propios de A, A es diagonalizable, los únicos valores propios de A son λ_1 con multiplicidad n-1 y λ_2 con multiplicidad 1, el polinomio característico de A es $p_A(t) = (a-b-t)^{n-1} \cdot (a+(n-1)b-t)$, el subespacio propio asociado a λ_1 es $L(\{v_1, v_2, \dots, v_{n-1}\})$ y el subespacio propio asociado a λ_2 es $L(\{v_n\})$.
- c) Se definen los vectores $w_1 = \frac{1}{\sqrt{2}}(1, -1, 0, \dots, 0)$, $w_2 = \frac{1}{\sqrt{2 \cdot 3}}(1, 1, -2, 0, \dots, 0)$, ..., $w_{n-1} = \frac{1}{\sqrt{(n-1) \cdot n}}(1, 1, 1, \dots, 1, -(n-1))$, $w_n = \frac{1}{\sqrt{n}}(1, 1, 1, \dots, 1, 1)$. Prueba que la matriz P que tiene por columnas los vectores w_1, w_2, \dots, w_n verifica:
 - i) $P^t \cdot P = P \cdot P^t = I_n$. (Ayuda: utiliza el apartado 2.ii)).

ii)

$$P^{-1} \cdot A \cdot P = P^{t} \cdot A \cdot P = \begin{pmatrix} a-b & 0 & 0 & \dots & 0 \\ 0 & a-b & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a-b & 0 \\ 0 & 0 & 0 & \dots & a+(n-1)b \end{pmatrix}.$$

- 21. Discute de forma razonada si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si $f: V \to V$ es un endomorfismo diagonalizable, entonces el endomorfismo traspuesto $f^t: V^* \to V^*$ también es diagonalizable.
 - b) La suma de dos valores propios de un endomorfismo es siempre un valor propio del mismo endomorfismo.
 - c) Si A es diagonalizable, entonces A^n también lo es para cada $n \in \mathbb{N}$.
 - d) Si una matriz de orden dos es singular, entonces es diagonalizable.
 - e) Si el polinomio característico de un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ es $(1 \lambda)(1 + \lambda^2)$ entonces f no es diagonalizable.
 - f) Si dos endomorfismos son diagonalizables y tienen los mismos valores propios, entonces son iguales.
 - g) Toda matriz cuadrada regular es diagonalizable.
 - h) Si un endomorfismo f de un espacio vectorial V cumple $f \circ f = f$, y 0 no es un valor propio de f, entonces $f = I_V$.
 - i) Sea f un endomorfismo de \mathbb{R}^3 con $\text{Im}(f) = \{(x, y, z) \in \mathbb{R}^3 / x y + 2z = 0\}$, y tal que $\lambda_1 = -1$, $\lambda_2 = 13$ son valores propios de f. Entonces, f es diagonalizable.
 - *j*) Si dos matrices tienen la misma traza, el mismo determinante y el mismo polinomio característico, entonces son semejantes.
 - k) Un endomorfismo diagonalizable puede ser diagonalizado en varias bases diferentes.
 - *l*) Si A y C son matrices cuadradas diagonalizables entonces $A + C y A \cdot C$ son diagonalizables.
 - m) Existe un endomorfismo de \mathbb{R}^4 que verifica:
 - 1) 2 y 5 son los únicos valores propios de f.
 - 2) Las multiplicidades algebraicas y geométricas de dichos valores coinciden.
 - 3) f no es diagonalizable.
 - *n*) Si λ es un valor propio de una matriz regular $M \in M_n(\mathbb{K})$, entonces $\lambda \neq 0$ y $\frac{1}{\lambda}$ es un valor propio de M^{-1} .
 - \tilde{n}) Sea $A \in M_n(\mathbb{K})$. Entonces A es diagonalizable si y sólo si $A + aI_n$ es diagonalizable $\forall a \in \mathbb{K}$.
 - o) Sea $A \in M_n(\mathbb{R})$ que verifica $A(A I_n) = 0_n$, donde I_n es la matriz identidad de orden $n \neq 0_n$ la matriz nula de orden $n \times n$. Si λ es un valor propio de A entonces $\lambda = 0$ o $\lambda = 1 \neq A$ es diagonalizable.