Chapter 11: The Lebesuge Theory

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 11.1. If $f \geq 0$ and $\int_E f d\mu = 0$, prove that f(x) = 0 almost everywhere on E. (Hint: Let E_n be the subset of E on which $f(x) > \frac{1}{n}$. Write $A = \bigcup E_n$. Then $\mu(A) = 0$ if and only if $\mu(E_n) = 0$ for every n.)

Might assume that f is measurable on E.

Proof (Hint).

- (1) Define $A = \{x \in E : f(x) > 0\}$. So f(x) = 0 almost everywhere on E if and only if $\mu(A) = 0$.
- (2) Define

$$E_n = \left\{ x \in E : f(x) > \frac{1}{n} \right\}$$

for $n = 1, 2, 3, \ldots$ Note that $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$ and

$$A = \bigcup_{n=1}^{\infty} E_n.$$

Since μ is a measure,

$$\lim_{n\to\infty}\mu(E_n)=\mu(A)$$

(Theorem 11.3).

(3) (Reductio ad absurdum) If $\mu(A) > 0$, there is an integer N such that $\mu(E_n) \ge \frac{\mu(A)}{2}$ whenever $n \ge N$ (by (2)). In particular, take n = N to get

$$\int_E f d\mu \geq \int_{E_N} f d\mu \qquad \qquad (\mu \text{ is a measure and } E_N \subseteq E)$$

$$\geq \frac{1}{N} \cdot \mu(E_N) \qquad \qquad (\text{Remarks 11.23(b)})$$

$$\geq \frac{1}{N} \cdot \frac{\mu(A)}{2}$$

$$> 0,$$

contrary to the assumption that $\int_E f d\mu = 0$.

Note. Compare to Exercise 6.2.

Exercise 11.2. If $\int_A f d\mu = 0$ for every measurable subset A of a measurable set E, then f(x) = 0 almost everywhere on E.

Might assume that f is measurable on E.

Proof.

(1) Define

$$A = \{x \in E : f(x) \ge 0\}$$
 and $B = \{x \in E : f(x) \le 0\}.$

A and B are measurable subsets of a measurable set E since f is measurable.

- (2) Apply Exercise 11.1 to the fact that $f \ge 0$ on A (by construction) and $\int_A f d\mu = 0$ (by assumption), we have f(x) = 0 almost everywhere on A.
- (3) Similarly, apply Exercise 11.1 to the fact that $-f \ge 0$ on B and $\int_B (-f) d\mu = -\int_B f d\mu = 0$, we have f(x) = 0 almost everywhere on B.
- (4) As $E = A \cup B$, f(x) = 0 almost everywhere on E by (2)(3).

Exercise 11.3. If $\{f_n\}$ is a sequence of measurable functions, prove that the set of points x at which $\{f_n(x)\}$ converges is measurable.

Proof.

(1) It suffices to show that

$$E = \{x : \{f_n(x)\}\}$$
 is convergent $\} = \{x : \{f_n(x)\}\}$ is Cauchy $\}$

is measurable (since \mathbb{R}^1 is complete).

(2) Write

$$E = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n,m \ge N} \left\{ x : |f_n(x) - f_m(x)| \le \frac{1}{k} \right\}$$

Since $\{f_n\}$ is a sequence of measurable functions, $x \mapsto |f_n(x) - f_m(x)|$ is measurable (Theorem 11.16 and Theorem 11.18). Hence

$$\left\{ x : |f_n(x) - f_m(x)| \le \frac{1}{k} \right\}$$

is measurable (Theorem 11.15). Therefore E is measurable.

Exercise 11.4
Proof.
(1)
(2)
Exercise 11.5
Proof.
(1)
(2)
Exercise 11.6
Proof.
(1)
(2)
Exercise 11.7
Proof.
(1)
(2)
T
Exercise 11.8
Proof.

(1)	
(2)	
Exercise	11.9
Proof.	
(1)	
(2)	
Exercise	11.10
Proof.	
(1)	
(2)	
Exercise	11 . 11
Proof.	
(1)	
(2)	
Exercise	11 .12.
Proof.	
(1)	
(2)	

Exercise 11.13
Proof.
(1)
(2)
Exercise 11.14
Proof.
(1)
(2)
Exercise 11.15
Exercise 11.15 Proof.
Proof.
Proof. (1)
Proof. (1) (2)
Proof. (1) (2)
Proof. (1) (2) □
Proof. (1) (2) □ Exercise 11.16
Proof. (1) (2) □ Exercise 11.16 Proof.
Proof. (1) (2) □ Exercise 11.16 Proof. (1)
Proof. (1) (2) □ Exercise 11.16 Proof. (1) (2)
Proof. (1) (2) □ Exercise 11.16 Proof. (1) (2)

(1)

(2)

Exercise 11.18. ...

Proof.

- (1)
- (2)