4.4 SHORTEST PATHS APIs

- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
 - negative weights

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

an edge-weighted DAG

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

0 1 4 7 5 2 3 6

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to E + V.

edge weights can be negative!

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed),
 leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] cannot increase ← distTo[] values are monotone decreasing
 - − distTo[v] will not change ← because of topological order, no edge pointing to v
 will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold. •

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   public AcyclicSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      Topological topological = new Topological(G);
                                                                topological order
      for (int v : topological.order())
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

To remove vertical seam:

• Delete pixels on seam (one in each row).

To remove vertical seam:

• Delete pixels on seam (one in each row).

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

equivalent: reverse sense of equality in relax()

longest paths input shortest paths input

5->4	0.35	5->4	-0.35
4->7	0.37	4->7	-0.37
5->7	0.28	5->7	-0.28
5->1	0.32	5->1	-0.32
4->0	0.38	4->0	-0.38
0->2	0.26	0->2	-0.26
3->7	0.39	3->7	-0.39
1->3	0.29	1->3	-0.29
7->2	0.34	7->2	-0.34
6->2	0.40	6->2	-0.40
3->6	0.52	3->6	-0.52
6->0	0.58	6->0	-0.58
6->4	0.93	6->4	-0.93

Key point. Topological sort algorithm works even with negative weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

job	duration	musi	t con befor	nplete re										
0	41.0	1	7	9										
1	51.0	2												
2	50.0													
3	36.0													
4	38.0						_							
5	45.0]	1					
6	21.0	3	8					7			3			
7	32.0	3	8			0		9	6		8	2		
8	32.0	2				5				4				
9	29.0	4	6		0		 41	7	0	91	123			173
					Parallel job scheduling solution									

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

	job	duration	must com before		
	0	41.0	1	7	9
	1	51.0	2		
	2	50.0			
	3	36.0			
	4	38.0			
	5	45.0			
	6	21.0	3	8	
	7	32.0	3	8	
	8	32.0	2		
•	9	29.0	4	6	

Critical path method

CPM. Use longest path from the source to schedule each job.

Parallel job scheduling solution

4.4 SHORTEST PATHS APIs

- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
 - negative weights

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

APIS

> shortest-paths properties

Dijkstra's algorithm

edge-weighted DAGs

negative weights

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

Adding 9 to each edge weight changes the shortest path from $0\rightarrow1\rightarrow2\rightarrow3$ to $0\rightarrow3$.

Conclusion. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

```
for (int i = 0; i < G.V(); i++)
  for (int v = 0; v < G.V(); v++)
    for (DirectedEdge e : G.adj(v))
      relax(e);</pre>
pass i (relax each edge)
```

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

an edge-weighted digraph

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Bellman-Ford algorithm visualization

passes

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path containing at most i edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
Bellman-Ford	no negative cycles	EV	ΕV	V
Bellman-Ford (queue-based)		E + V	ΕV	V

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle()

is there a negative cycle?

Iterable <DirectedEdge> negativeCycle()

negative cycle reachable from s

digraph

```
4->5 0.35

5->4 -0.66

4->7 0.37

5->7 0.28

7->5 0.28

5->1 0.32

0->4 0.38

0->2 0.26

7->3 0.39

1->3 0.29

2->7 0.34

6->2 0.40

3->6 0.52

6->0 0.58

6->4 0.93
```


negative cycle
$$(-0.66 + 0.37 + 0.28)$$

5->4->7->5

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros } \Rightarrow 1,012.206 \text{ Canadian dollars } \Rightarrow $1,007.14497.$

 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

4.4 SHORTEST PATHS

APIS

shortest-paths properties

Dijkstra's algorithm

edge-weighted DAGs

negative weights

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Algorithms

4.4 SHORTEST PATHS

- **APIs**
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights