CSC236 Midterm 2 Version 1 Solution

Hyungmo Gu

May 11, 2020

Question 1

• Let $n, q \in \mathbb{N}$. Let $r \in \{0, 1\}$

Assume n > 2, and n = 2q + r.

I need to find a closed form for T(2q+r), using repeated subtitution.

Starting from T(n), we have

$$T(n) = n + T(n-2)$$
 [By def. since $n > 2$]

$$T(2q+r) = 2q + r + T(2q+r-2)$$
 [By replacing n for $2q+r$] (2)

$$= 2q + r + T(2(q-1) + r)$$
(3)

$$\Xi$$
 (4)

$$= \sum_{i=0}^{i=q-1} (2(q-i)+r) + T(r)$$
 [After $q-1$ repeatitions] (5)

$$=2\sum_{i=0}^{i=q-1}(q-i)+\sum_{i=0}^{i=q-1}r+T(r)$$
(6)

$$= 2\sum_{i=0}^{i=q-1} (q-i) + \sum_{i=0}^{i=q-1} r$$
 [Since $T(r) = 0$] (7)

$$=2\sum_{i'=1}^{i=q}i'+\sum_{i=0}^{i=q-1}r$$
(8)

$$=2\sum_{i'=1}^{i'=q}i'+\sum_{i=0}^{i=q-1}r$$
(9)

$$=2\sum_{i'=1}^{i'=q}i'+\sum_{i=0}^{i=q-1}r$$
(10)

$$= 2(q(q+1))/2 + \sum_{i=0}^{i=q-1} r$$
 [By using $\sum_{i=1}^{i=n} i = (n(n+1))/2$] (11)

$$= q(q+1) + rq \tag{12}$$

$$=q(q+1+r) \tag{13}$$

• Proof. For convenience, define H(q): q(q+r+1) = T(2q+r).

I will use simple induction to prove $\forall q \in \mathbb{N}, H(q)$.

Base Case (q = 0):

Let q = 0.

Then,

$$q(q+r+1) = 0 \tag{1}$$

$$= T(2 \cdot 0 + r)$$
 [By def.] (2)

$$=T(2q+r) \tag{3}$$

Thus, T(2q+r) verifies in this step.

Inductive Step:

Let $q \in \mathbb{N}$. Assume H(q).

I need to show H(q+1) follows. That is, (q+1)[(q+1)+r+1]=T(2(q+1)+r).

Starting with (q+1)[(q+1)+r+1], we have

$$(q+1)[(q+1)+r+1] = (q+1)(q+1)+(q+1)r+(q+1)$$
(4)

$$= q^{2} + 2q + 1 + (qr + r) + (q + 1)$$
(5)

$$= (q^2 + qr + q) + (2q + r + 2) \tag{6}$$

$$= q(q+r+1) + (2(q+1)+r)$$
(7)

$$=T(2q+r)+2(q+1)+r$$
 [By I.H] (8)

$$=T(2(q+1)+r)$$
 [By def.] (9)

Thus, H(q+1) follows from H(q) in this step.

• Proof. Define for convenience

$$H(n): \bigwedge_{i=0}^{n-1} T(n) - T(i) \ge 0$$
 (1)

I will use complete induction to prove that $\forall n \in \mathbb{N}, H(n)$.

Inductive Step:

Let $n \in \mathbb{N}$. Assume $\bigwedge_{i=0}^{n-1} H(i)$. I will show H(n) follows.

Base Case(n < 2):

Assume n < 2.

Then, all T(n) and T(n-1) are 0 by definition.

So,
$$T(n) - T(n-1) \ge 0$$
.

Thus, C(n) follows in this step.

Case $(n \ge 2)$:

Assume $n \geq 2$.

Then,

$$T(n) - T(n-1) = n + T(n-2)$$

 $-\left[(n-1) + T(n-3)\right]$ [By def.] (2)
 $= 1 + T(n-2) - T(n-3)$ (3)
 ≥ 1 [By I.H, since $0 \leq n-2 < n$] (4)
 > 0 (5)

Thus, C(n) follows from H(n) in this step.

Correct Solution:

Proof. Define for convenience

$$H(n): \bigwedge_{i=1}^{n-1} T(n) - T(i) \ge 0$$
 (1)

(5)

I will use complete induction to prove that $\forall n \in \mathbb{N}, H(n)$.

Inductive Step:

Let $n \in \mathbb{N}$. Assume $\bigwedge_{i=1}^{n-1} H(i)$. I will show H(n) follows.

Then, all T(n) and T(n-1) are 0 by definition.

So,
$$T(n) - T(n-1) \ge 0$$
.

Thus, C(n) follows in this step.

Case (n = 2):

Let n=2.

Then,

$$T(n) - T(n-1) = (2 + T(1)) - (1 + T(0))$$
 [By def.] (2)
= 1 [Since T(1) = T(0) = 0 by def.] (3)
> 0 (4)

Thus, C(n) follows in this step.

Case (n > 2):

Assume n > 2.

Then,

$$T(n) - T(n-1) = n + T(n-2)$$

$$- [(n-1) + T(n-3)]$$

$$= 1 + T(n-2) - T(n-3)$$

$$\geq 1$$
[By def.]
(5)
(6)
$$\geq 1$$
[By I.H, since $0 \leq n - 3 < n - 2 < n$]
(7)
$$> 0$$
(8)

Thus, C(n) follows from H(n) in this step.

Question 2

• Proof. Define P(n): If a_list is a python list, then the function $reversi(a_list)$ terminates, and returns $a_list[::-1]$, which is $a_list[:]$ in reverse order.

I will use complete induction to prove $\forall n \in \mathbb{N}, P(n)$.

Inductive Step:

Let $n \in \mathbb{N}$. Assume $H(n) : \bigwedge_{i=0}^{i=n-1} P(i)$. I will prove P(n) follows. That is, the function $reversi(a_list)$ terminates and returns a_list of size n in reverse order.

Base Case (n < 1):

Let n < 1.

Then, the if part of the $reversi(a_list)$ activates.

Then, by code, $a_list[:] = []$ is returned, which is $a_list[::-1]$

Thus, P(n) follows in this step.

Case $(n \ge 1)$:

Assume $n \geq 1$.

Then, the else part of the $reversi(a_list)$ activates.

Then, since $reversi(a_list[1:])$ has length n-1 and $0 \le n-1 < n$, $reversi(a_list[1:])$ is a list with elements in reverse order.

Then, since $reversi(a_list[1:]) + [a_list[0]]$ adds element $a_list[0]$ at the end of list, $a_list[::-1]$ follows.

Thus, P(n) follows from H(n) in this step.

Notes:

• Noticed the proof feels like the following

$$T(n) - T(n-1) = (2 + T(1)) - (1 + T(0))$$
 [By def.] (9)
= 1 [Since $T(1) = T(0) = 0$ by def.] (10)
> 0 (11)

where the since part the statement is in parenthesis, and the statement after comma is the expression on the left.