Análise das variáveis Saeb - moda por escola Série $5\mathrm{EF}$

Livia Kobayashi

14 junho 2021

A tibble: 1 x 2
Groups: id_serie [1]
id_serie n
<chr> <int>
1 5EF 5764

Missing

Base 100% preenchida

plot_missing(df)

Volume

Variáveis com baixa variância:

- $mode_q001_sb mode_q003a_sb mode_q003b_sb mode_q003c_sb$
- $mode_q003d_sb mode_q003e_sb mode_q006b_sb$
- $mode_q008b_sb mode_q008c_sb mode_q009a_sb mode_q009b_sb$
- $\bullet \quad mode_q009f_sb mode_q010b_sb mode_q010e_sb mode_q010f_sb$
- $mode_q010h_sb mode_q010i_sb mode_q011_sb mode_q014_sb$
- $\bullet \quad mode_q004_f_sb mode_q005_f_sb$

plot_bar(final_data)

Page 1

Page 2

Page 3

Page 4

Page 5

Médias das notas x variáveis

Variáveis que discriminam e tem volume nas categorias:

- mode q002 sb: Maioria branca => notas maiores
- mode_q004_sb: maior graduação => notas maiores (agrupar A, B e C)
- mode_q005_sb: maior graduação => notas maiores (agrupar A, B e C)
- mode q006a sb: Os pais conversarem sobre a escola => notas >
- $mode_q009c_sb: \# computador => notas >$
- $mode_q009d_sb: \# Quartos => notas >$
- $mode_q009g_sb: \# Carro => Notas >$
- $mode_q010c_sb$: Ter um quarto só para si => notas >
- $mode_q010d_sb$: Ter escrivaninha => Notas >
- $mode_q010g_sb: Ter aspirador => Notas >$
- mode_q012_sb: Vai de carro/outros para escola => notas maiores
- a.À pé.

- b.De ônibus urbano.
- c.De transporte escolar.
- d.De barco.
- e.De bicicleta.
- f.De carro
- g.Outros meios de transporte.
- mode_q017c_sb: menos tempo gasto em tarefas domésticas => notas > (Isolar o A e juntar as outras)
- $mode_q017d_sb$: Não usar!!!
- $mode_q018a_sb$: Leitura notícias => notas >
- mode_q018b_sb: Leitura extraescolar => notas >

```
vars <- colnames(final_data)
vars <- vars[-c(1,2)]
plots <- list()
i <- 1
for (variable in vars) {
    plots[[i]] <- ggplot(final_data, aes_string(variable, "media")) + geom_boxplot()
    i <- i + 1
}

n <- length(plots)

i <- 1
while (i <= n) {
    do.call("grid.arrange", c(plots[i:(min(i+5, n))], ncol=3, nrow = 2))
    i <- i + 6
}</pre>
```


Análise Univariada

Variáves mais significativas

- mode_q010d_sb: Na sua casa tem: Mesa para estudar (ou escrivaninha).
- mode_q010g_sb: Na sua casa tem: Aspirador de pó.
- mode_q004_sb: Qual é a maior escolaridade da sua mãe (ou homem responsável por você)?
- mode q005 sb: Qual é a maior escolaridade de seu pai (ou homem responsável por você)?
- mode_q002_sb: Qual é a sua cor ou raça?

```
##
    [1] "nivel_socio_economico"
                                 "mode_q002_sb"
                                                           "mode_q006a_sb"
       "mode_q009b_sb"
                                                           "mode_q009d_sb"
##
                                  "mode_q009c_sb"
##
        "mode_q009e_sb"
                                  "mode_q009g_sb"
                                                           "mode_q010c_sb"
    [7]
   [10]
##
        "mode_q010d_sb"
                                  "mode_q010e_sb"
                                                           "mode_q010g_sb"
       "mode_q012_sb"
                                  "mode_q017d_sb"
                                                           "mode q018a sb"
   [13]
   [16] "mode_q018c_sb"
                                  "mode_q004_f_sb"
                                                           "mode_q005_f_sb"
```

```
tb_r2 <- data.frame(var = final_cols)

rsquared <- c()
for (variable in final_cols) {
   lm_formula <- as.formula(str_glue("{y_resp} ~ {variable}"))
   model_lm <- lm(lm_formula, df)
   rsquared <- append(rsquared, summary(model_lm)$r.squared)
}

tb_r2$rsquared <- rsquared
tb_r2 %>% head(nrow(tb_r2))
```

```
##
                         var
                               rsquared
## 1
     nivel_socio_economico 0.34817539
## 2
               mode_q002_sb 0.08573031
## 3
              mode_q006a_sb 0.02152228
## 4
              mode_q009b_sb 0.03311918
## 5
              mode_q009c_sb 0.14083616
## 6
              mode_q009d_sb 0.04435681
              mode_q009e_sb 0.08283319
## 7
## 8
              mode_q009g_sb 0.13808660
## 9
              mode q010c sb 0.06442949
## 10
              mode_q010d_sb 0.08728693
## 11
              mode_q010e_sb 0.06280649
## 12
              mode_q010g_sb 0.22197681
## 13
               mode_q012_sb 0.20341427
## 14
              mode_q017d_sb 0.03392041
## 15
              mode_q018a_sb 0.03746296
## 16
              mode_q018c_sb 0.01826739
## 17
             mode_q004_f_sb 0.12168962
## 18
             mode_q005_f_sb 0.12809613
```

MAtriz de correlação

- $mode_q002_sb$ (raça) e $mode_q006a_sb$ (pais conversam com os filhos) => $mode_q002_sb$ ou combinar ambas
- mode_q004_sb (escolaridade mãe) e mode_q006a_sb (pais conversam com os filhos) => manter mode_q004_sb ou combinar ambas
- $mode_q018b_sb$ (leitura livros) e $mode_q018c_sb$ (leitura em quadrinhos) => baixo r2

```
catcorrm <- function(vars, dat) sapply(vars, function(y) sapply(vars, function(x) assocstats(table(dat[
matriz <- catcorrm(final_cols, data_corr)

ggcorrplot(matriz, show.diag = F, type="lower", lab=TRUE, lab_size=6, show.legend = F)</pre>
```

