Algorithme de Babylone

L'objectif de ce problème est de présenter deux suites de nombres rationnels convergeant vers $\sqrt{2}$ puis de comparer leur vitesse de convergence.

Les parties I et II sont totalement indépendantes, la partie III les exploitent toutes les deux.

Partie I – Première suite

On considère les suites réelles $(p_{\scriptscriptstyle n})$ et $(q_{\scriptscriptstyle n})$ définies par $\begin{cases} p_{\scriptscriptstyle 0}=1 \\ q_{\scriptscriptstyle 0}=1 \end{cases}$ et $\forall n\in\mathbb{N}, \quad \begin{cases} p_{\scriptscriptstyle n+1}=p_{\scriptscriptstyle n}+2q_{\scriptscriptstyle n} \\ q_{\scriptscriptstyle n+1}=p_{\scriptscriptstyle n}+q_{\scriptscriptstyle n} \end{cases}$.

- 1.a Montrer que pour tout $n \in \mathbb{N}$, les nombres p_n et q_n sont entiers strictement positifs.
- 1.b Justifier que $\forall n \in \mathbb{N}, p_n \geq q_n$.
- 2. On définit une suite réelle (u_n) en posant pour tout $n\in\mathbb{N}$: $u_n=\frac{p_n}{q_n}$.
- $2.a \qquad \text{Exprimer} \ \ u_{\scriptscriptstyle n+1} \ \ \text{en fonction de} \ \ u_{\scriptscriptstyle n} \ .$
- $\text{2.b} \qquad \text{Justifier que } \left| u_{n+1} \sqrt{2} \right| \leq \frac{\sqrt{2} 1}{2} \left| u_n \sqrt{2} \right|.$
- 2.c En déduire la limite de la suite (u_n) .
- 3.a Déterminer $a,b \in \mathbb{R}$ tels que $\forall n \in \mathbb{N}, p_{n+2} = ap_{n+1} + bp_n$.
- 3.b En déduire l'expression du terme général de la suite (p_n) .
- 3.c De même exprimer le terme général de la suite (q_n) .
- 3.d Retrouver le résultat de la question I.2.c

Partie II – Deuxième suite

On considère la suite réelle (v_n) définie par $v_0=1$ et $\forall n\in\mathbb{N}, v_{n+1}=\frac{1}{2}\bigg(v_n+\frac{2}{v_n}\bigg)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, v_n est bien défini et est un nombre rationnel de l'intervalle [1,2].
- $\text{2.} \qquad \text{Observer que pour tout } \ n \in \mathbb{N} \ : \ v_{n+1} \sqrt{2} = \frac{\left(v_n \sqrt{2}\right)^2}{2v_n} \, .$
- 3. En déduire que $v_n \to \sqrt{2}$.

Partie III – Comparaison des vitesses de convergence

- 1. Donner les valeurs décimales approchées de u_3, v_3 et $\sqrt{2}$ à la précision 10^{-3} .
- 2. On pose $t_n = \frac{v_n \sqrt{2}}{u_n \sqrt{2}}$.
- 2.a Exprimer t_{n+1} en fonction de t_n , u_n et v_n .
- 2.b En déduire la limite de la suite (t_n) .

 Quelle est celle des deux suites (u_n) et (v_n) qui convergent le plus rapidement vers $\sqrt{2}$?