NAME: FINAL VERSION 020

MAT-181 FINAL TAKE-HOME EXAM

This exam is to be taken without discussion or correspondance with any human. Please show work!

question	available points	earned points
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
EC	5	
EC	5	
Total	100	

1. (10 Points)

For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of test scores on a very difficult exam, in which most students have poor to average scores, but a few did quite well.
- (b) The distribution of hours spent per week reading by adults. In this distribution, many people do not read much, and a similar number of people read a lot.
- (c) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (d) The distribution of lengths of newborn babies

Solution:

- (a) I
- (b) IV
- (c) II
- (d) III

BHCC Mat-181

FINAL VERSION 020

2. (15 Points)

In a deck of strange cards, there are 347 cards. Each card has an image and a color. The amounts are shown in the table below.

	black	green	orange	violet	Total
kite	15	28	45	34	122
mop	14	25	44	22	105
wheel	16	43	11	50	120
Total	45	96	100	106	347

- (a) What is the probability a random card is a kite?
- (b) Is a mop or a wheel more likely to be green?
- (c) What is the probability a random card is either a wheel or violet (or both)?
- (d) What is the probability a random card is a mop given it is black?
- (e) What is the probability a random card is violet?
- (f) What is the probability a random card is orange given it is a kite?
- (g) What is the probability a random card is both a mop and violet?

Solution:

- (a) P(kite) = 0.352
- (b) P(green given mop) = 0.238 and P(green given wheel) = 0.358, so a wheel is more likely to be green than a mop is.
- (c) P(wheel or violet) = 0.507
- (d) P(mop given black) = 0.311
- (e) P(violet) = 0.305
- (f) P(orange given kite) = 0.369
- (g) P(mop and violet) = 0.0634

3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	64	7
В	88	11
C	71	12
D	65	4

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)	
Α	75.2	
В	72.27	
C	71.72	
D	61.84	

Which specimen is the most unusually far (in either direction) from average (relative to others of its type)?

Solution: We compare the absolute z-scores. The largest absolute z-score corresponds to the specimen that is most unusually far from average.

Type of fruit	formula	absolute z-score
Α	$Z = \frac{ 75.2 - 64 }{7}$	1.6
В	$Z = \frac{ 72.27 - 88 }{11}$	1.43
C	$Z = \frac{ 71.72 - 71 }{12}$	0.06
D	$Z = \frac{ 61.84 - 65 }{4}$	0.79

Thus, the specimen of type A is the most unusually far from average.

4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 143.8 millimeters and a standard deviation of 2.8 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 136.9 and 146.5 millimeters?

Solution:

$$\mu = 143.8$$

$$\sigma = 2.8$$

$$x_1 = 136.9$$

$$x_2 = 146.5$$

$$Z_1 = \frac{x_1 - \mu}{\sigma} = \frac{136.9 - 143.8}{2.8} = -2.46$$

$$Z_2 = \frac{x_2 - \mu}{\sigma} = \frac{146.5 - 143.8}{2.8} = 0.96$$

$$P(x_1 < X < x_2) = P(z_1 < Z < z_2) = 0.8315 - 0.0069 = 0.8246$$

5. (10 points)

A species of duck is known to have a mean weight of 223.7 grams and a standard deviation of 44 grams. A researcher plans to measure the weights of 121 of these ducks sampled randomly. What is the probability the **sample mean** will be between 220.7 and 225.7 grams?

Solution:

$$n = 121$$

$$\mu = 223.7$$

$$\sigma = 44$$

$$SE = \frac{44}{\sqrt{121}} = 4$$

$$x_1 = 220.7$$

$$x_2 = 225.7$$

$$Z_1 = \frac{x_1 - \mu}{SE} = \frac{220.7 - 223.7}{4} = -0.75$$

$$Z_2 = \frac{x_2 - \mu}{SE} = \frac{225.7 - 223.7}{4} = 0.5$$

$$P(x_1 < \overline{X} < x_2) = P(z_1 < Z < z_2) = 0.6915 - 0.2266 = 0.4649$$

6. (10 points)

An ornithologist wishes to characterize the average body mass of *Catharus ustulatus*. She randomly samples 14 adults of *Catharus ustulatus*, resulting in a sample mean of 32.68 grams and a sample standard deviation of 7.38 grams. Determine a 95% confidence interval of the true population mean.

Solution: We are given the sample size, sample mean, sample standard deviation, and confidence level.

$$n = 14$$

 $\bar{x} = 32.68$
 $s = 7.38$
 $\gamma = 0.95$

Find the degrees of freedom.

$$df = n - 1$$

= 14 - 1
= 13

Determine the critical t value, t^* , such that $P(|T| < t^*) = 0.95$ and df = 13.

$$t^* = 2.16$$

Use the formula for bounds (mean, σ unknown).

$$LB = \bar{x} - t^* \frac{s}{\sqrt{n}}$$

$$= 32.68 - 2.16 \times \frac{7.38}{\sqrt{14}}$$

$$= 28.4$$

$$UB = \bar{x} + t^* \frac{s}{\sqrt{n}}$$

$$= 32.68 + 2.16 \times \frac{7.38}{\sqrt{14}}$$

$$= 36.9$$

We are 95% confident that the population mean is between 28.4 and 36.9 grams.

$$CI = (28.4, 36.9)$$

_	, . –	
7.	(15	points)

A student is taking a multiple choice test with 900 questions. Each question has 3 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 326 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

Solution: This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{3} = 0.333$$

State the hypotheses.

$$H_0$$
 claims $p = 0.333$

$$H_A$$
 claims $p > 0.333$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.333(1 - 0.333)}{900}} = 0.0157$$

Determine the sample proportion.

$$\hat{p} = \frac{326}{900} = 0.362$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.362 - 0.333}{0.0157} = 1.85$$

Make a sketch of the null's sampling distribution. The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.362)$
= $P(Z > 1.85)$
= $1 - P(Z < 1.85)$
= 0.0322

Compare *p*-value to α (which is 0.05).

p-value
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

We think the student did better than random guessing typically allows.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.333 and H_A claims p > 0.333.
- (c) The *p*-value is 0.0322
- (d) We reject the null hypothesis.
- (e) We think the student did better than random guessing typically allows.

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

X	У	xy
790	7	
420	6.1	
440	6.8	
180	5.9	
230	5.9	
520	5.6	
960	8.3	
720	6.6	
$\sum X =$	$\sum y =$	$\sum xy =$
$\sum X = \bar{X} = \bar$	$\bar{y} =$	
$S_X =$	S _y =	

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (*b* and *a*) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of a and b.)

(e) Please plot the data and a corresponding regression line.

Solution: Remember the formula for the correlation coefficient.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

We calculate the necessary values.

X	y	xy
790	7	5530
420	6.1	2562
440	6.8	2992
180	5.9	1062
230	5.9	1357
520	5.6	2912
960	8.3	7968
720	6.6	4752
$\sum x = 4260$	$\sum y = 52.2$	$\sum x_i y_i = 29135$
$\bar{x} = 532.5$	$\bar{y} = 6.525$	
$s_x = 272.9$	$s_y = 0.8681$	

$$r = \frac{29135 - (8)(532.5)(6.525)}{(8 - 1)(272.9)(0.8681)} = 0.807$$

If you didn't round any of the steps up to here, you'd get an exact value which is pretty close to our value.

$$r_{\text{exact}} = 0.8071281$$

The regression line has the form

$$y = a + bx$$

So, *a* is the *y*-intercept and *b* is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = 0.807 \cdot \frac{0.8681}{272.9} = 0.00257$$

$$a = \bar{y} - b\bar{x} = 6.52 - (0.00257)(532) = 5.16$$

Our regression line:

$$y = 5.16 + (0.00257)x$$

Make a plot.

9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.85. If 218 trials occur, what is the probability of getting at least 184 but at most 198 successes?

In other words, let $X \sim \text{Bin}(n = 218, p = 0.85)$ and find $P(184 \le X \le 198)$.

Use a normal approximation along with the continuity correction.

Solution: Find the mean.

$$\mu = np = (218)(0.85) = 185.3$$

Find the standard deviation.

$$\sigma = \sqrt{np(1-p)} = \sqrt{(218)(0.85)(1-0.85)} = 5.2721$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$z_1 = \frac{183.5 - 185.3}{5.2721} = -0.34$$

$$z_2 = \frac{198.5 - 185.3}{5.2721} = 2.5$$

Find the percentiles (from z-table).

$$\ell_1 = 0.3669$$

$$\ell_2 = 0.9938$$

Calculate the probability.

$$P(184 \le X \le 198) = 0.9938 - 0.3669 = 0.6269$$

10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean μ = 100. You decide to run two-tail test on a sample of size n = 10 using a significance level α = 0.1.

You then collect the sample:

129.3	87.8	119.1	122.9	107.6
101.2	104.8	101.4	128.1	85.8

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 100$

$$H_A$$
 claims $\mu \neq 100$

Find the mean and standard deviation of the sample.

$$\bar{x} = 108.8$$

$$s = 15.626$$

Determine the degrees of freedom.

$$df = 10 - 1 = 9$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{15.626}{\sqrt{10}} = 4.941$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{108.8 - 100}{4.941} = 1.78$$

Find the *p*-value.

$$p$$
-value = $P(|T| > 1.78)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 9.)

$$P(|T| > 1.83) = 0.1$$

$$P(|T| > 1.38) = 0.2$$

Basically, because t is between 1.83 and 1.38, we know the p-value is between 0.1 and 0.2.

$$0.1 < p$$
-value < 0.2

Compare the *p*-value and the significance level (α = 0.1).

p-value
$$> \alpha$$

No, we do not reject the null hypothesis.

- (a) 0.1 < p-value < 0.2
- (b) No, we do not reject the null hypothesis.