Giacomo Castiglioni

279 N Holliston ave, apt 8 Pasadena, CA 91106	+1 (213) 400 2514 castigli@caltech.edu
Education	
 PhD in Aerospace Engineering Research in Computational Fluid Dynamics of separated flows University of Southern California, Los Angeles, USA MS in Aerospace and Mechanical Engineering 	5/2015
 Computational Fluid and Solid Mechanics University of Southern California, Los Angeles, USA MS coursework in Mechanical Engineering 	12/2011
Technical University of Delft, The Netherlands	8/2008 - 8/2009
BS in Mechanical Engineering	. /
Politecnico of Milan, Italy	2/2009
Employment	
Postdoctoral fellow	44 /0046
 Multi-species high-pressure flow simulations California Institute of Technology / NASA JPL, Pasadena, USA Senior Engineer external aerodynamics 	11/2016 - current
- Responsible for researching new CFD methodologies Tesla Motors, Hawthorne, USA	7/2016 - 10/2016
 Senior Engineer thermal/aero systems Responsible for HVAC aerodynamics of Model 3 	7/2015 - 7/2016
- Responsible for HVAC aerodynamics of Model 3 - Main CFD analyst for HVAC system - Submitted a patent for novel air vent design	1/2015 - 1/2010
Tesla Motors, Palo Alto, USA	
• Research Assistant	
- Prediction of laminar separation bubbles over wing/blade geometries- Large Eddy Simulations	Fall 2010 - 2015
- Quantification of numerical dissipation	
- Immersed Boundary, Finite Volume code	
- Parallel computing	
University of Southern California, Los Angeles, USA • Computational Fluid Dynamics Analyst	
- Summer internship, simulations run on a cluster with STAR-CCM+ software Tesla Motors, Fremont, USA	5/2012 - 8/2012
• Teaching Assistant	F 11 0040 F 11
- AME 499 Turbine Design and Analysis- AME 408 Computer-Aided Design of Mechanical Systems	Fall 2010 - Fall 2013
(SolidWorks/CosmosWorks) - AME 301 Dynamics	2013
- AME 150 Introduction to Computational Methods (MATLAB) University of Southern California, Los Angeles, USA	

Reviewing activity

1. Reviewer for Journal of Computational Physics

Journal papers

- 1. G. Castiglioni and J.R. Bellan. On models for predicting thermodynamic regimes in high-pressure turbulent mixing and combustion of multi-species mixtures. *In revision at J. Fluid Mech.*, 2018
- 2. G. Castiglioni and J.A. Domaradzki. A numerical dissipation rate and viscosity in flow simulations with realistic geometry using low-order compressible Navier-Stokes solvers. *Comp. & Fluids*, 119:37–46, 2015
- 3. G. Castiglioni, J.A. Domaradzki, V. Pasquariello, S. Hickel, and M. Grilli. Numerical simulations of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles. *Int. J. Heat and Fluid Flow*, 49:91–99, 2014

Proceedings

- 1. G. Castiglioni, J.R. Bellan, G. Lamanna, and S. Baab. Simulations of high-pressure jet. In *Proceedings* of the fourth TRR40 Summer Program, Technische Universität München, 2017
- G. Castiglioni, Domaradzki J.A., N. Krais, A. Beck, C.-D. Munz, and F. Schranner. Characterization of numerical dissipation rates in numerical simulations performed using discontinuous galerkin methods. In Proceedings of the third TRR40 Summer Program, Technische Universität München, 2015
- 3. G. Castiglioni, Domaradzki J.A., V. Pasquariello, S. Hickel, and M. Grilli. Numerical modeling of 3-D separated flows at Reynolds numbers appropriate for turbine blades and unmanned aero vehicles. In *Proceedings of the second TRR40 Summer Program, Technische Universität München*, pages 177–190, 2013
- 4. G. Castiglioni, J.A. Domaradzki, M. Grilli, and S. Hickel. Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles. In *Proceedings of the first TRR40 Summer Program, Technische Universität München*, pages 67–76, 2011

Conference proceedings

- G. Castiglioni and J.R. Bellan. The thermodynamic regime during mixing under high-pressure conditions. In 2018 AIAA Aerospace Sciences Meeting, page 1188, 2018
- 2. G. Castiglioni and J.A. Domaradzki. On the evaluation of numerical dissipation rate and viscosity in a commercial code. In *Proceedings of 9th International Symposium on Turbulence and Shear Flow Phenomena (TSFP9)*, 2015
- 3. F. Cadiuex, G. Castiglioni, J.A. Domaradzki, T. Sayadi, S. Bose, M. Grilli, and S. Hickel. LES of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles. In *Proceedings of 8th International Symposium on Turbulence and Shear Flow Phenomena* (TSFP8), 2013

Conference presentations

- G. Castiglioni and J.A. Domaradzki. Quantifying numerical dissipation rate in a commercial CFD code. In Bulletin of the American Physical Society, 67th Annual Meeting of the APS Division of Fluid Dynamics (DFD06), volume 59, 2014
- 2. G. Castiglioni, J.A. Domaradzki, M. Grilli, and S. Hickel. LES of separated flows over an airfoil at moderate Reynolds numbers. In *Bulletin of the American Physical Society*, 65th Annual Meeting of the APS Division of Fluid Dynamics (DFD04), volume 57, 2012

Awards and grants

 Visiting research-fellow at SFB-TR40 summer program, Technische Universität München 2011, 2013, and 2017

Skills

• Programming languages:

Fortran, C, C++, python, Matlab, MPI, openMP, openACC and CUDA

Linux/Unix OS, MacOS, Windows OS

CATIA, SolidWorks, SolidEdge

STAR-CCM+, CFX

Abaqus, CosmosWorks

• Environments:

• CAD programs:

• Commercial CFD:

• Commercial FEA: