Power-based number system for toki pona



jan loje, jan Tamalu March 10, 2024

# 0.1 Toki pona power-based number system

with the help of jan Tamalu (mistakes are mine only)

This system should be:

- 1. based on the common decimal system and digits,
- 2. unambiguous,
- 3. easy to understand, learn, and use for all common non-scientific and non-mathematical purposes,
- 4. suitable for toki pona.

# 0.2 Vocabulary

The ideas for the choice of the names are indicated between square brackets []

| 1    | wan         | 1            | one                                                                    |
|------|-------------|--------------|------------------------------------------------------------------------|
| 2    | tu          | II           | two                                                                    |
| 3    | sin         | _!_          | three [3 lines]                                                        |
| 4    | lipu        |              | four [4 sides]                                                         |
| 5    | luka        | J            | five                                                                   |
| 6    | pipi        | #            | six [6 elements]                                                       |
| 7    | len         | H            | seven [4 sides + 3 lines]                                              |
| 8    | musi        | છ            | eight; two circles look a kind of 8                                    |
| 9    | suli        | V            | nine [the "big" digit]                                                 |
| 10   | sewi        | Ė            | 10 (base) followed by integer powers (1 is implicit): 2, 3, 4, [raise] |
| 20   | tu sewi     | ПĊ           | $two \times ten$                                                       |
| 30   | sin sewi    | -'-广         | three $\times$ ten                                                     |
| 100  | sewi tu     | Η̈́ΙΙ        | $10^2$                                                                 |
| 300  | sin sewi tu | -'-:         | $three \times ten^2$                                                   |
| 1000 | sewi sin    | <b>∴</b> -'- | $10^{3}$                                                               |
| +    | en          | +            | addition                                                               |
| -    | weka        | Ж            | negative [subtract]                                                    |
|      | sike        | 0            | separator for decimal part                                             |
| Nº   | nanpa       | #            | number prefix (ordinal)*                                               |
| #    | mute        |              | number prefix (cardinal)                                               |

<sup>\*</sup>NOTE: compare Philipino ika- or pang-, Malay or Indonesian ke-

#### 0.2.1 Prefixes (when needed)

Ordinal and cardinal numbers nanpa #: ordinal number mute |||: cardinal number

### 0.2.2 Non-additive numbers

Numbers are non-additive  $120 = wan \ tu \ ala$   $2024 = tu \ ala \ tu \ lipu$ 

# 0.2.3 Numbers as powers of 10

```
sewi is the base 10 for all powers 1000 = 10^3 = sewi sin
10\ 000 = 10^4 = sewi lipu
...
1\ 000\ 000\ 000 = 10^9 = sewi suli
Ex. 1: jan\ li\ jo\ \$1,000,000,000
jan\ li\ jo\ e\ mani\ Mewika\ pi\ mute\ sewi\ suli
```

## 0.2.4 Very large (or small) numbers

Very large (or small) numbers can be expressed easily.

```
a googol = 10^{100}

10^{100} = sewi wan ala ala or

10^{10^2} = sewi sewi tu
```

### 0.2.5 Composed numbers

Numbers with multiplicative and additive values

The number to the left of *sewi* has multiplicative value.

The additive value of a number (sequence) is stated explicitly with en.

 $4\ 000\ 000\ 012 = 4 \times 10^9 + 12 = lipu\ sewi\ suli\ en\ wan\ tu$ 

#### 0.2.6 Numbers with fractional parts

```
Number with a fractional part separated by a decimal point 3.14 = \sin sike \ wan \ lipu 3.14 = 314 \times 10^{-2} = \sin wan \ lipu \ sewi \ weka \ tu
```

### 0.2.7 Numbers with negative exponents

 $6.62 \times 10^{-34} = pipi \ sike \ pipi \ tu \ sewi \ weka \ sin \ lipu$ 

# 0.2.8 Dates

# ISO 8601 system

2024-05-12 = tenpo sike tu ala tu lipu en tenpo mun luka en tenpo suno wan tu Ex. 2: 05-12 ona li kama lon = His birthday is May 12th tenpo mun luka en tenpo suno wan tu la ona li kama lon  $\text{OD}\cap +\text{OO}(1)$   $\text{OD}\cap +\text{OO}(1)$   $\text{OD}\cap +\text{OO}(1)$