Сборник задач

Задача № 1.

Сколько существует точек, равноудаленных от трех попарно пересекающихся прямых?

Задача № 2.

Дан равнобедренный $\triangle ABC$ с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Задача № 3.

В $\triangle ABC \angle B = 120^{\circ}$. AA_1 , BB_1 , CC_1 - биссектрисы углов треугольника.

- a) Найти $\angle A_1B_1C_1$.
- b) Найти ∠ B_1C_1C .

Подсказка: доказать, что A_1 — центр вневписанной в ΔAB_1C_1 окружности, C_1 — центр вневписанной в ΔA_1B_1C окружности.

Задача № 4.

Пусть O_1 , O_2 и O_3 — центры вневписанных окружностей $\triangle ABC$, касающихся сторон BC, AC и AB соответственно. Докажите, что точки A, B и C — основания высот $\triangle O_1O_2O_3$. **Подсказка:** угол между биссектрисами смежных углов равен 90°.

Задача № 5.

Пусть O_1 , O_2 и O_3 — центры вневписанных окружностей $\triangle ABC$, касающихся сторон BC, AC и AB соответственно. Постройте $\triangle ABC$.

Задача № 6.

Дан $\triangle ABC$. Центры вневписанных окружностей O_1, O_2 и O_3 соединены прямыми. Доказать, что $\triangle O_1O_2O_3$ — остроугольный.

Задача № 7.

Пусть вневписанные окружности треугольника, касающиеся сторон AC и BC, касаются прямой AB в точках P и Q соответственно. Докажите, что середина стороны AB совпадает с серединой отрезка PQ.

Задача № 8.

Пусть r — радиус окружности, касающейся гипотенузы и продолжения катетов прямоугольного треугольника со сторонами a, b, c.

Докажите, что
$$r = \frac{a+b+c}{2} = p$$
.

Подсказка: четырёхугольник, образованный прямыми, содержащими катеты и радиусами, проведёнными в точки касания с продолжениями катетов, —квадрат.

Задача № 9.

В прямой угол с вершиной C вписаны две окружности, которые не пересекаются. K этим окружностям проведена общая касательная, которая пересекает угол в точках A и B. Найдите площадь ΔABC , если радиусы окружностей равны R_1 и R_2 .

Задача № 10.

Дан квадрат ABCD со стороной a. На сторонах BC и CD даны точки M и N такие, что периметр $\triangle CMN$ равен 2a. Найдите $\angle MAN$.

Задача № 11.

Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.

Подсказка: Пусть BC — катет прямоугольного $\triangle ABC$ ($\angle C = 90^{\circ}$).

Докажите, что расстояние от вершины B до точки касания гипотенузы с вписанной окружностью равно радиусу вневписанной окружности, касающейся катета BC.

Задача № 12.

На одной стороне угла с вершиной O взята точка A, а на другой — точки B и C, причём точка B лежит между O и C . Проведена окружность с центром O_1 , вписанная в ΔOAB , и окружность с центром O_2 , касающаяся стороны AC и продолжений сторон OA и OC ΔAOC .

Докажите, что если $O_1A = O_2A$, то $\triangle ABC$ – равнобедренный.

Подсказка: Докажите, что
$$\angle AO_1O_2 = \frac{1}{2} \angle ABC$$
 и $\angle AO_2O_1 = \frac{1}{2} \angle ACB$

Задача № 13.

В $\Delta PQR \angle QRP = 60^{\circ}$. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR.

Подсказка: центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Задача № 14.

Окружность радиуса 3, вписанная в $\triangle ABC$, касается стороны BC в точке D. Окружность радиуса 4 касается продолжения сторон AB и AC и касается стороны BC в точке E. Найдите ED, если $\angle BCA = 120^\circ$.

Задача № 15.

В $\triangle ABC$ с $\angle C = 90^\circ$ и $\angle A = 30^\circ$, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.

Подсказка: пусть O_1 и O_2 — центры данных окружностей, C — вершина прямого угла ΔABC . Тогда ΔO_1CO_2 — прямоугольный. Найдите его углы.

Задача № 16.

В $\triangle ABC$ с периметром 2p острый угол BAC равен α . Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь $\triangle DOK$.

Подсказка: отрезки касательных, проведённых из одной точки к окружности, равны между собой.

Задача № 17.

В трапеции ABCD основание BC равно 13, а $\angle BAD$ острый и вдвое больше $\angle ADC$. Окружность с центром на прямой BC касается прямых AC, AD и отрезка CD. Найдите площадь трапеции ABCD, если известно, что радиус окружности равен 5. $\mathbf{\Piodckaska:}$ докажите, что AC — биссектриса $\angle BAD$ и найдите $\cos \angle BAD$.

Задача № 18.

Докажите формулу Герона для площади треугольника $S = \sqrt{p(p-a)(p-b)(p-c)}$.

Задача № 19.

Продолжение биссектрисы $\angle B$ $\triangle ABC$ пересекает описанную окружность в точке M; O — центр вписанной окружности, O_1 — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и O_1 лежат на окружности с центром в точке M. $\mathbf{\Piodckaska:}$ докажите, что $\triangle OMA$ и $\triangle AMO_1$ — равнобедренные.

Задача № 20.

Докажите, что отрезок, соединяющий центры вписанной и вневписанной окружностей треугольника, делится описанной окружностью пополам.

Подсказка: пусть вневписанная окружность касается стороны AB ΔABC . Точки A, B и центры O_1 и O_2 вписанной и вневписанной окружностей лежат на окружности с центром в середине отрезка O_1O_2

Задача № 21.

Найдите произведение сторон треугольника, если известно, что радиусы его вневписанных окружностей равны 9,18 и 21.

Задача №22.

Доказать соотношения:

a) сумма радиусов вневписанных окружностей равна сумме радиуса вписанной окружности и удвоенному и удвоенного диаметра описанной окружности:

$$r_a + r_b + r_c = r + 4R$$
;

- b) сумма величин, обратных радиусам вневписанных окружностей, равна величине,
- обратной радиусу вневписанной окружности: $\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$;
- c) площадь треугольника равна отношению произведения всех трех радиусов вневписанных окружностей к полупериметру треугольника: $S = \frac{r_a r_b r_c}{p}$;

d) сумма всех попарных произведений радиусов вневписанных окружностей равна квадрату полупериметра треугольника: $r_a r_b + r_b r_c + r_c r_a = p^2$;

e) произведение всех трех радиусов вневписанных окружностей равно произведению радиуса вписанной окружности на квадрат полупериметра треугольника: $r_a r_b r_c = r p^2$; f) площадь треугольника равна квадратному корню из произведения всех трех радиусов вневписанных окружностей и радиуса вписанной окружности: $S = \sqrt{r_a r_b r_c r}$; g) величина, обратная высоте треугольника, опущенной на его данную сторону, равна полусумме величин, обратных радиусам вневписанных окружностей, касающихся двух других сторон треугольника:

$$\frac{1}{h_a} = \frac{1}{2} \left(\frac{1}{r_b} + \frac{1}{r_c} \right), \frac{1}{h_b} = \frac{1}{2} \left(\frac{1}{r_c} + \frac{1}{r_a} \right), \frac{1}{h_c} = \frac{1}{2} \left(\frac{1}{r_a} + \frac{1}{r_b} \right);$$