HCI Summary

Frédéric Vogel vogelfr@ethz.ch , ETH Zürich, HS16

- HCI Summary
- Introduction
 - Definitions
- The User
 - Components of Cognition
 - Model Human Processor
 - Definition
 - Overview
 - Perception (Visual System)
 - Perceptual Processor
 - Cognitive Processor
 - Motor Processor
 - User Modeling
 - Fitts' Law
 - Analyzing the User Experience
- The User Centered Design Process
 - Interaction Style
- Gestures and Kinect
 - Formally Defined Gestures
 - Semiotic Gestures
 - Kinect v2
- Interaction Design
 - o Aim
 - Design Process
 - Scenarios
 - Sketching
 - Prototyping
 - Running a study
 - Design principles
 - Gestalt Laws
 - Video Analysis
- Beyond Mouse and Keyboard

- Touch Interaction
- Smartphone as Command Support for Digital Whiteboard
- Cross-Device Testing and Debugging Framework (XDTools)
- Digital Pen and Paper (EdFest 2005)
- Tilt-and-Tap
- Lightroom Case Study
 - Process
 - Outcome
 - Questionnaires
 - Likert Item and Scale
- Communication and Collaboration
 - Conversation rules
 - Irritating conversations
 - Concluding remarks

Introduction

Definitions

Human Computer Interaction

Human-computer interaction is a discipline concerned with the **design**, **evaluation** and **implementation of interactive computing systems** for human use and with the study of major phenomena surrounding them

Human

Single user (end user of program)

Others

- Local (friends, colleagues)
- Remote (social networks, remote collaboration)

Computer

Machine running program

Often distributed

Many different form factors and capabilities

Interaction

User provides input

Machine communicates results

User Interfaces (UI)

Main point of contact between user and running program

Graphical UI

Hardware is an integral part of the UI

The HCI Process

The User

Components of Cognition

- Perception
 - Visual system
 - o Auditory System
 - o Haptic System
- Memory
 - Sensory memory
 - Short-term memory
 - Long-term memory
- Action
 - o Motor system

Model Human Processor

Definition

Model Human Processor

Basic model that gives us an abstracted understanding of

- Perception
- Memory
- Motor System

Can be applied to measure (predict)

- Execution time
- Error rates
- Training effects for simile stimulation / reaction interactions

Overview

- Three <u>processors</u> with associated <u>memory</u>
- Perceptual System
 - Sensors and buffers
- Cognitive System
 - Working memory content symbolically coded
- Motor System
 - Movements
- Each processor has associated runtime
 - Overall system runtime sum of these

Perception (Visual System)

- Visual field:
 - Horizontal: 60° nasally +90° temporally
 - Vertical: -70° +60°
- Foveal vision (fine details) within 2° radius of fovea
- Retina decodes light through photo receptors
 - Rods (low-light vision):
 - Very light sensitive
 - Slow response time
 - In periphery
 - Maximum sensitivity at 500nm
 - Cones (color vision):
 - Less light sensitive
 - Fast response time
 - Concentrated at fovea

- 3 Types:
 - S type (420nm, blue)
 - M type (534nm, green)
 - L type (564nm, red)
- Useful Field of View: 1° 4°, max 15°

Object Based versus View Based Representation

Object centric representation

Description of objects as combination of structural parts in 3D, view independent

View centric representation

Description of objects as view dependent 2D projections with hierarchical recognitions along ventral pathway, from low-level features to complex objects

View based models more likely accurate

Perceptual Processor

- Receives sensor signals and stores in buffers (one buffer/sensory channel)
- Perception time $au_P pprox 100 exttt{ms}$ (range: 50 200 ms)
- ullet Bloch's Law: $R=I\cdot t$
 - R: Response, I: Intensity, t: exposure time
 - $\circ \ R$ is constant for $t < 100 \mathrm{ms}$

Cognitive Processor

- Operates on chunks of information
- Processing time $au_C pprox 70 exttt{ms}$
- Divided into short (STM) and long (LTM) term memory

Motor Processor

- Controls and runs motor system
- ullet Without perceptual control: $au_M pprox 70 exttt{ms}$

Total Processing time (middle-man times): $au_P + au_C + au_M pprox 240 exttt{ms}$

User Modeling

Fitts' Law

Models throughput in aimed movements

$$MT = I_M \cdot I_D$$

- ullet Index of Difficulty $I_D = \log_2(rac{2D}{W})$
- ullet Index of Movement $I_M=100 {
 m ms/bit}$

Fitts' Thesis

Fixed information-transmission capacity of the motor system

- ullet ID= # of bits required to specify movement
- Index of performance $IP = \frac{ID}{MT}(\frac{ ext{bits}}{ ext{ms}})$

Implications

- Doubling distance adds roughly a constant to execution time
- Doubling target width (within limits) is roughly equal to halving distance
- Bigger benefit to increasing size of small targets than large targets

MHP to Fitts' Law

Movement consists of multiple sub-movements of constant time t and constant error arepsilon

- Time to move to a target is $n \cdot (au_P + au_C + au_M)$
- 1st cycle: $X_1 = arepsilon X_0 = arepsilon D$
- ullet 2nd cycle: $X_2=arepsilon X_1=arepsilon(arepsilon D)=arepsilon^2 D$
- $ullet \ n^{th}$ cycle: $X_n=arepsilon^n D$
- Movement stops when in target area: $arepsilon^n D \leq rac{1}{2} W$
- $n = -\log_2(rac{2D}{W})/\log_2arepsilon$
- ullet $MT = I_M \log_2(rac{2D}{W})$ where $I_M = -rac{ au_P + au_C + au_M}{\log_2 arepsilon}$

Shannon Analogy

- a, b are constants
 - o depend on input device and user skill
 - o empirically derived
- ullet $\log_2(rac{A}{W}+1)$: Index of difficulty
- ullet 2D Motion? $ID = \log_2(\sqrt{(rac{A}{W})^2 + \omega(rac{A}{H})^2} + 1)$

Analyzing the User Experience

Evaluation Types

Formative

- Early in the design process
- Sanity checks that you're building the right thing

Summative

- Is our solution working?
- Has it improved from last iteration?
- Does it work better than other solutions?

Usability metrics

Effectiveness

Being able to complete a task

Efficiency

Amount of effort required to complete a task

Satisfaction

Degree to which the user was happy completing the task

Find cause and effect!

Designing an empirical study

- 1. What is being compared? (Independent variables)
- 2. What are they being compared in? (Dependent variables, "metrics")
- 3. What (else) is being varied? (Extraneous variables)

Types of variables:

- Categorical: unordered discrete values
- Ordinal: ordered discrete values
- Cardinal/Interval: continuous values

Main question: Does independent variable cause differences in dependent variable?

Extraneous variables

Similar to independent variables but we want to eliminate/control an effect

The (one) Equation

$$extstyle extstyle ext$$

T Test

$$t=rac{\overline{B}-\overline{A}}{Var_B}$$
 with $Var=rac{1}{N-1}\sum_{i=0}^{N}(x_i-\overline{x})^2$

Limitations:

- Assumes error term has Normal distribution
- Sample size should be the same
- All data should be independent
- Interval type variables

The User Centered Design Process

Interaction Style

Established Interaction Paradigms

- Commands
- Dialogue Systems
- Searching and Browsing
- Direct Manipulation
 - Visibility of Objects and Actions
 - o Rapid, reversible, incremental actions
 - Replacement of complex command-language syntax with direct, visual manipulation of object of interest

Notable Emerging Interaction Paradigms

- Context Sensitive UIs
- Natural Language Interfaces
- AR/VR

Designing Interactive Technologies

Must consider all dimensions from hardware to UI!

- 1. Sensing human activity
 - Noisy and sparse data
 - Huge variety of sensors
 - New types emerging
 - o Diverse human behavior
 - Highly complex & non-linear
 - Context and user specific
- 2. Computational Interface Design
 - o Goal: Enable non-experts to create complex interactive technologies
 - Designer-in-the-loop tools:
 - 1. Sensing based devices
 - 2. Interactive systems without domain knowledge

Gestures and Kinect

Gesture

Motion of the body that contains information.

Formally Defined Gestures

Examples:

- Hand signs of traffic police
- Hand signs while diving

Semiotic Gestures

Symbolic

Single meaning within a culture

• Pantomimic

Show use of some invisible tool or object

• Iconic

Convey information about size, shape or orientation

• Deictic

Referential specifying an object or directing attention

Kinect v2

- Full-body 3D motion capture, face tracking and speech recognition
- Skeletal tracking of up to 6 persons
 - o Set of 25 joints per person
- Built-in microphone array to record and locate voices
- Promises to deliver a "Natural user Interface" experience, your body is the controller
- Hand tracking:
 - o Hand state tracked for two bodies closest to sensor
 - o Different states for each hand:
 - Open
 - Closed
 - Lasso
 - Unknown
 - NotTracked

Interaction Design

Aim

- Support users rather then replace them
- Create technologies and applications to enrich the user experience
- Requires better understanding of users' needs and desires
- Users should be unaware of technologies as they focus on task at hand

Design Process

- 1. Establish requirements
- 2. Develop a conceptual model
- 3. Produce rough prototypes
- 4. Experiment with alternative designs

Scenarios

- Informal narrative descriptions: Helps visualise things from user perspective, explores the actual/potential and usual/unusual
- Developed into use cases
- Storyboards used for establishing requirements and sketching out ideas, as well as for communication

Sketching

- Not about drawing, about design
- Tool to help express, develop and communicate design ideas
- Part of a process:
 - o idea generation
 - design elaboration and choices
 - engineering

Prototyping

- Turning sketches into prototypes (user interaction possible)
- User feedback early in development process
- promotes agile development and user participation in design

Paper prototyping

- Early detection of basic flaws
- Fast and cheap
- Encourages creativity

Steps:

- 1. Create user profile
- 2. Decide on set of tasks
- 3. Create prototype
- 4. Perform walkthroughs
- 5. Plan and carry out study

Good tasks:

- Based on goal that matters to user
- covers questions important to success
- Neither too broad nor too narrow
- Finite and predictable set of possible solutions
- Clear end point that user can recognize
- Elicits action not just opinion

Good at:

- raising issues about requirements and functionality
- detecting unclear concepts and terminology
- problems related to navigation, task flow and workflow
- raising content issues
- defining documentation and help requirements
- identifying issues related to screen layout

Bad at:

- detecting interaction issues
- · input methods
- · response times
- subtle screen changes
- scrolling and animation

Running a study

Facilitator

guides the process

Computer

simulates system dialogue

Observers

document the study

Helpers

Users can ask for help

Helper gradually provide more detail to determine information that gets user unstuck

Design principles

- Visibility
- Feedback
- Constraints
- Mapping
- Consistency
- Affordances

Design systems that are *easy to learn* and exploit things we do *automatically* rather than imposing *cognitive load*.

We perceive what we expect.

Gestalt Laws

Emergence

Process of complex pattern formation from simpler rules

Multistability

Tendency of ambiguous perceptual experience to pop back and forth unstably between two or more alternative interpretations

Reification

Constructive or generative aspect of perception by which perceived object contains more explicit spatial information than sensory stimulus on which it is based

Invariance

Property of perception whereby simple geometrical objects are recognized independent of rotation, translation and scale

Closure

Objects, such as shapes, letters and pictures, perceived as being whole when they are not complete

Similarity

Objects perceptually form a group if they are similar to each other in terms of shape, colour, shading, etc.

Proximity

Objects perceptually form a group if they are close to each other

Continuity

Objects tend to be integrated into perceptual wholes if they are aligned within an object

Use spacing and similarity to give structure in a lightweight way.

Video Analysis

Often observing users can be more revealing than asking them.

Why video?

- Revisit scene many times
- Focus on different parts of scene
- Analysis can be done collaboratively
- Details which initially go unnoticed may come to light

Facial expressions, gestures and body language play an important role in how users coordinate activities and behaviour.

A study with reluctant participants is unlikely to yield fruitful results.

Informed consent

All pertinent aspects of what is to occur or might occur are disclosed to subject, subject should comprehend information

Subject is competent to make rational, mature judgment. Agreement should be voluntary, free from coercion and influence.

Beyond Mouse and Keyboard

Touch Interaction

FBTouch

Project to investigate alternative touch interfaces for image tagging in an application as Facebook

Served to demonstrate jQuery-like framework for web applications (jQMultiTouch)

Smartphone as Command Support for Digital Whiteboard

Eyes Free vs. Classic vs. Whiteboard Popup

Eyes Free and Classic similar

- Both faster than Popup
- People also used Classic UI in eyes-free manner
- -> Be aware of Carry-over Effects (within-subject study)

Cross-Device Testing and Debugging Framework (XDTools)

- Within-subject study
- One debugging and on implementation task each with and without tools
- Participants generally preferred implementing and debugging with XDTools

Digital Pen and Paper (EdFest 2005)

Tilt-and-Tap

Lightroom Case Study

Process

- 1. Phone interviews and site visits
 - Two hours each
 - Determine photographer's workflow
 - timeline of recent shot
 - timeframe for parts of workflow
 - NOT about Photoshop experience
- 2. Card sort exercise
 - 1. Arrange and group task cards to represent their workflow
 - Asked to demonstrate if and how grouping could be changed
 - 2. Map feature cards to task groupings

Outcome

- Ease with which many tasks and feature were discarded
- Level of consensus which tasks and feature were essential

Questionnaires

Different kinds of questions:

- General background questions (e.g. age, gender, skills)
- Scalar questions (level of (dis-)agreement with statements)
- Multiple choice
- Open questions

Likert Item and Scale

Likert Item

Value in numerical range encoding level of (dis-)agreement

Likert Scale

Sum of responses from a set of Likert items

Communication and Collaboration

Conversation rules

- 1. The current speaker chooses the next speaker by asking a question, making a request or inviting an opinion
- 2. Another person starts speaking
- 3. The current speaker keeps speaking

Irritating conversations

People who don't play by the rules and

- constantly interrupt
- don't pick up on the cues when to stop

	same time	different time
	synchronous	asynchronous
same place	face to face interactions presentation software, electronic meeting systems, interactive whiteboards, digital tabletop systems	continuous task project management, team rooms, shift work groupware
different place remote	remote interactions video conferencing, instant messaging, chat rooms, shared screens	communication & coordination email, blogs, discussion forums, shared repositories, group authoring systems

Collaboration	Crossover	Social Media
email, phone calls, audio and video conferencing, shared documents and repositories	wikis, blogs, chat rooms, instant messaging, short messages, listservers	chat rooms, blogs, Web 2.0, tagging, rating, reviewing
Skype, Google Docs, LiveMeeting	Wikipedia, LinkedIn, Twitter	YouTube, Flickr, Netflix, Facebook, del.icio.us, Twitter
typically 2-2000 people goal-directed, time-limited identified partners assign tasks review each other's work		typically 20-200,000,000 people social and playful open-ended open unknown partners act independently

Concluding remarks

- Supporting collaboration is about helping people work together and not solely about avoiding conflict
- If users are aware of what others are doing they will naturally tend to avoid conflict
- There needs to be a balance between keeping users informed and respecting privacy