T5 - Estudo de Processos com Decaimento Radioativo

Maria Helena Nunes da Silva

Dezembro 2023

Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto

Resumo

Com um contador de Geiger-Muller, verificou-se que, em geral, o decaimento radioativo de Rádio-226 pode ser descrito pela Distribuição de Poisson (para atividade baixa) ou pela Distribuição Normal (para atividade alta). Observou-se que a atividade da fonte referida não é diretamente proporcional ao inverso do quadrado da distância ao detetor, e que para distâncias relativamente pequenas, até pode ser descrita por uma relação exponencial. A partir desta mesma relação exponencial estimou-se o alcance das partículas α em 57.5 \pm 1.3 mm, valor dentro do intervalo esperado dada as possíveis energias das partículas no decaimento, mas provavelmente superior ao valor real, dada a influência da atividade β . Determinou-se o tempo de semivida do Protactínio-234, isótopo neto de Urânio-238, com incerteza de 6% e erro de 61%, que se deverá, muito provavelmente, ao facto das contagens não terem sido realizadas durante tempo suficiente.

1 Objetivos

- Estudo da estatística do sinal associado a decaimentos radioativos, em regimes de baixa e alta atividade;
- Contacto com contadores de Geiger-Muller;
- Métodos para separação/filtragem de partículas energéticas (radiação γ , β^+ , β^- e α);
- Determinação do alcance de partículas α no ar.

2 Introdução [1]

Decaimento define-se como a quebra espontânea de um núcleo atómico instável, resultando em emissão de radiação.

A **Atividade** corresponde ao número de decaimentos atómicos por unidade de tempo:

$$A = \dot{N} = \frac{\Delta N}{\Delta t} \tag{1}$$

e tem como unidade o Bequerel (Bq = s^{-1}).

O decaimento radioativo consiste na ocorrência de eventos (decaimentos) aleatórios e independentes entre si. Um parâmetro que caracteriza este processo é o **tempo de semivida** $T_{1/2}$, isto é, o tempo médio necessário para que um dado número de átomos se reduza a metade. É determinado recorrendo à **equação de decaimento**:

$$N = N_0 e^{-\frac{t}{\tau}} \tag{2}$$

onde N é o número de átomos sobrevivente após tempo $t,\,N_0$ é o número de átomos inicial, τ é a vida média da amostra, e $1/\tau$ é a constante de decaimento. Deste modo, tem-se:

$$T_{1/2} = \tau \ln \left(2\right) \tag{3}$$

Para fontes de radiação com tempo de semivida muito grande, na escala de tempo humana a taxa de decaimentos (atividade) é praticamente constante.

Pode-se descrever a probabilidade de observar N decaimentos numa amostra radioativa usando a **Distribuição de Poisson**:

$$P(N) = \frac{M^N}{N!} e^{-M} \tag{4}$$

na qual

$$M = A \times \Delta t \tag{5}$$

corresponde ao valor médio de eventos relativos a intervalo de tempo de contagem de eventos Δt .

Também se poderá recorrer à Distribuição Gaussiana ou **Distribuição Normal**:

$$P(N) = \frac{1}{\sqrt{M}\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{N-M}{\sqrt{M}})^2}$$
 (6)

sendo \sqrt{M} o desvio-padrão.

Existem diferentes tipos de radiação, e a sua interação com os átomos da matéria determina o seu alcance [2]:

• Radiação α - consiste em partículas constituídas por dois protões e dois neutrões (isto é, núcleos de hélio). Possuem massa e carga, ou seja, as partículas carregadas interagem fortemente tanto com a nuvem eletrónica como com o núcleo atómico, resultando em interações elásticas e inelásticas e, consequentemente, perda de energia à medida que se propagam na matéria e dispersão espacial (scattering - altera-se a direção de propagação). Uma das equações empíricas mais usadas para relacionar o alcance no ar e a energia das partículas α baseia-se na fórmula de Bragg-Kleeman [3]:

$$d_{ar} = 0.324 \cdot (E_{\alpha})^{3/2} \tag{7}$$

com o alcance em cm e a energia em MeV. Dado que a energia destas partículas varia entre aproximadamente 4 e 8 MeV, de acordo com esta equação o seu alcance será de aproximadamente 26 a 73 mm.

- Radiação β podem ser eletrões (β^-) ou positrões (β^+). Assim, possuem também massa e carga, perdendo energia e dispersando-se à medida que se propagam no meio. A sua energia varia entre alguns keV e alguns MeV e sendo mais leves do que as partículas α , a sua trajetória é mais errática, mas o seu alcance será de aproximadamente 4 metros por MeV de energia[4].
- Radiação γ consiste em fotões com energias típicas de 0.1 a 3 MeV, que não têm massa nem carga, logo penetram muito mais facilmente pela matéria, tendo um maior alcance do que a radiação α e β .

2.1 Fontes de radiação

Existem também diferentes fontes de radiação. A radiação ambiente consiste em isótopos raros - títrio (3 H), carbono-14 (14 C), fósforo (32 P), etc - originados por raios cósmicos de elevada energia (protões, α , β^- , núcleos pesados, etc) que interagem com núcleos de átomos de materiais terrestres (rochas, solo, atmosfera terrestre, e resíduos de meteoritos). Neste trabalho utilizam-se como fontes:

Rádio ²²⁶Ra

Está contida num tubo metálico, com radiação acessível pela abertura frontal. Tem tempo de semivida $T_{1/2}=1620$ anos, e consiste na emissão de partículas α , β e γ em decaimentos sucessivos, até se transformar no elemento estável ²⁰⁶Pb.

Figura 1: Esquema do decaimento de ²²⁶Ra.

Urânio ²³⁸U

Durante o decaimento, 238 U produz o isótopo protactínio (234 Pa) com tempo de semivida $T_{1/2}=1.175$ minutos e emissão predominante de radiação β^- . A fonte é um contentor de duas soluções (aquosa e orgânica) de sais de urânio. Quando este é agitado, os complexos químicos formados pelo urânio-238 e pelo protactínio-234 dissolvem-se na camada orgânica (de elevadas concentrações de iões de hidrogénio) que está sobre a camada aquosa, na qual se mantém tório-234 (234 Th, átomofilho de 238 U). Assim, na janela de saída na zona superior do contentor, na qual se mede as contagens, é esperado apenas detetar as partículas β de alta energia de 234 Pa, e não as partículas α de baixa energia do urânio e do tório, pois mesmo que as emissões destes isótopos sejam detetadas, estes têm tempos de semivida relativamente longos e como tal contribuem apenas para um fundo de radiação constante.

Figura 2: Esquema do decaimento de ²³⁸U.

Geralmente, como as fontes de radiação estão encapsuladas e têm apenas uma janela de saída, a direção de emissão de partículas no decorrer do decaimento tem uma área limitada. Contudo, a uma distância da fonte conhecida, define-se um ângulo sólido de emissão que pode ser generalizado a todo o espaço. Assim, considerando uma área de deteção ativa S_{det} à distância d, é possível determinar a atividade total A_t da fonte, tendo em conta a relação linear da atividade da fonte A com o inverso do quadrado da distância, de acordo com a equação:

$$A = \frac{A_t \cdot S_{det}}{4\pi} \frac{1}{d^2} + A_{amb} \tag{8}$$

onde A_{amb} é a radiação ambiente (medida na ausência de fonte).

2.2 Energia das partículas radioativas

nuclide	decay mode	half-life	E / MeV	product of
				decay
²³⁸ U	cr	4.468·109 a	4.270	²³⁴ Th
²³⁴ Th	β-	24.10 d	0.273	²³⁴ Pa
²³⁴ Pa	β-	6.70 h	2.197	²³⁴ U
²³⁴ U	α	245500 a	4.859	²³⁰ Th
²³⁰ Th	α	75380 a	4.770	²²⁶ Ra
²²⁶ Ra	α	1602 a	4.871	²²² Rn
²²² ₽⊓	α	3.8235d	5.590	²¹⁸ Po
²¹⁸ Po	α 99.98 %	3.10 min	6.115	²¹⁴ Pb
	β- 0.02 %		0.265	²¹⁸ At
²¹⁸ At	a 99.90 %	1.5 s	6.874	²¹⁴ Bi
	β- 0.10 %		2.883	²¹⁸ Rn
²¹⁸ Rn	α	35 ms	7.263	²¹⁴ Po
²¹⁴ Pb	β-	26.8 min	1.024	²¹⁴ Bi
²¹⁴ Bi	β- 99.98 %	19.9 min	3.272	²¹⁴ Po
	α 0.02 %		5.617	²¹⁰ Tl
²¹⁴ Po	α	0.1643 ms	7.833	²¹⁰ Pb
²¹⁰ TI	β-	1.30 min	5.484	²¹⁰ Pb
²¹⁰ Pb	β-	22.3 a	0.064	²¹⁰ Bi
²¹⁰ Bi	β- 99.99987%	5.013 d	1.426	²¹⁰ Po
	α 0.00013%		5.982	²⁰⁶ Tl
²¹⁰ Po	α	138.376 d	5.408	²⁰⁶ Pb
²⁰⁶ TI	β-	4.199 min	1.533	²⁰⁶ Pb
²⁰⁶ Pb		stable		

Figura 3: Energias das partículas α e β emitidas nos decaimentos sucessivos tanto de 238 U como de 226 Ra.[5] (nota: o tempo de semivida de protactínio aqui apresentado não corresponde ao mencionado anteriormente pois na verdade o tempo de semivida de 1.175 min refere-se a um dos metaestados deste isótopo, 234m Pa, cuja probabilidade de ser gerado é de 99.8%[6]; ainda assim continuar-se-á a usar a notação 234 Pa neste trabalho.)

No decaimento de 226 Ra é também possível, para alguns isótopos, a emissão de radiação γ com energias até 0.6 MeV [7].

2.3 Tubo Geiger-Muller

O tubo Geiger-Muller é o equipamento utilizado para a deteção da radiação de alta energia. É constituído por uma câmara cilíndrica preenchida com um gás ionizável pela radiação de alta energia que interage com este. Um ânodo a alta tensão recolhe a carga de ionização gerada a cada interação. Assim, com este modo de operação, define-se:

- contagem ou evento cada impulso de carga detetado;
- medida número de contagens/eventos detetada pelo contado num intervalo de tempo Δt definido previamente;
- número de medidas n repetição n vezes de uma medida;

• tempo morto - tempo em que a eletrónica reinicializa-se para a medida seguinte. No caso deste detetor, é de 100μ s, afetando medições onde a taxa de contagens é elevada (maior do que 1000 contagens por segundo).

Por último, este detetor tem área ativa $S_{det} = 0.635 \text{ cm}^2$.

3 Método Experimental

3.1 Medição da atividade ambiente

Figura 4: Montagem utilizada para as três primeiras partes da experiência. No plano frontal sobre o suporte magnético, à esquerda a fonte de radiação ²²⁶Ra e à direita o detetor Geiger-Muller coberto com a tampa plástica frontal e conectado à interface COBRA (PHYWE) com cabo coaxial, que por sua vez está conectada ao computador.

- Afastou-se a fonte radioativa do detetor;
- No software VMWare > WindowsME > interface COBRA > aplicação RADIO1, configurou-se medição automática, definiu-se como tempo ativo do detetor $\Delta t = 10$ s e n = 100 medidas pretendidas, e inicializou-se a medição;
- Guardaram-se os dados resultantes em formato ASCII.

3.2 Estatística da medida da atividade de ²²⁶Ra

- Colocou-se fonte de rádio-226 a aproximadamente 5 mm do detetor (relativamente perto), estando os dois equipamentos bem alinhados com a ajuda do suporte magnético;
- Na aplicação definiu-se $\Delta t = 2$ s e n = 100 medidas pretendidas e inicializou-se a medição;
- Repetiu-se o passo anterior para n = 150, 250, 500 medidas guardando os dados;
- Reajustou-se a fonte para aproximadamente 6 cm (relativamente longe) do contador, de modo a que o nº de contagens fosse reduzido (maioritariamente inferiores a 10), e repetiu-se os dois passos anteriores.

3.3 Atividade de ²²⁶Ra em função da distância

- Aproximou-se a fonte tanto quanto possível (aproximadamente 1 mm) do detetor;
- Configurou-se no software o modo de medição manual e $\Delta t = 10$ s;
- Aumentou-se a distância da fonte ao detetor em intervalos de 1 mm, registando para cada distância as contagens medidas, até à fonte ter sido movida de 30 mm. Garantiu-se que fonte e detetor continuavam alinhados em todo o processo;
- Continuou-se a mover a fonte desta vez em intervalos de 5 mm, registando para cada distância as medidas, até à atividade se aproximar dos valores de radiação ambiente.

3.4 Decaimento radioativo de $^{238}\mathrm{U}$ - $^{234}\mathrm{Pa}$

Figura 5: Montagem utilizada para esta parte da experiência. No plano frontal sobre o suporte magnético, à direita o detetor Geiger-Muller destapado, e à esquerda a fonte de decaimento rápido, antes de ser agitada: no topo do contentor, a solução orgânica com elevadas concentrações de iões de hidrogénio, e em baixo, de tom vermelho, a solução aquosa com os elementos produzidos por ²³⁸U (²³⁴Pa e ²³⁴Th).

- Voltou-se a configurar o modo de medição automática e definiu-se $\Delta t = 3$ s e n = 300 medidas de modo a ocorrerem medições durante 15 min;
- Com o contentor encostado ao detetor sem agitar como na figura 5, inicializou-se a medição da radiação causada pelo decaimento da substância mãe (²³⁸U), que foi considerada como radiação "ambiente", e gravou-se os dados;
- Definiu-se $\Delta t = 3$ s e n = 100 medidas de modo a ocorrerem medições durante 5 min;
- Agitou-se o contentor durante alguns segundos e colocou-se na mesma posição do passo anterior, inicializando-se a medição e gravando os dados.

4 Análise e Discussão de Resultados

4.1 Medição da atividade ambiente

Realizando a média de todas as contagens obtidas, obteve-se $M=3.4\pm0.2$. Construiu-se um histograma que mostra a frequência de cada contagem. De modo a caracterizar a radiação detetada, aplicou-se aos dados obtidos a distribuição de Poisson (equação 4) e distribuição Normal (equação 6)(nota: multiplicou-se o valor da distribuição para cada contagem pelo número de medidas n realizadas).

Figura 6: Contagens com radiação ambiente (n = 100 medidas).

Por observação da figura acima, verifica-se que a distribuição de Poisson será a mais adequada para caracterizar a radiação ambiente (número relativamente baixo de contagens), dado que a distribuição Normal se encontra ligeiramente desviada à direita. Recorrendo à equação 5, obteve-se para a atividade ambiente:

$$A_{amb} = (0.34 \pm 0.02) \text{ Bq}$$

4.2 Estatística da medida da atividade de ²²⁶Ra

4.2.1 Fonte próxima do detetor - atividade alta

Analogamente à parte anterior, determinou-se o valor médio M de cada grupo de contagens (n=100,150,250,500) e a respetiva atividade A, e aplicou-se a cada grupo as duas distribuições referidas.

Figura 7: Distribuição de contagens para n = 100, 150, 250, 500.

Dado que cada grupo de contagens é independente entre si, juntou-se grupos diferentes de contagens (para preservar a aleatoriedade do processo de decaimento radioativo) de modo a obter n > 500 medidas:

Figura 8: Distribuição de contagens para n = 500 + 250 = 750 e n = 500 + 250 + 150 + 100 = 1000.

Procedendo ao cálculo de M e A novamente usando estes novos grupos de contagens, tem-se como resultados finais:

n	M	u(M)	A (Bq)	u(A) (Bq)	incerteza (%)
100	105	1	52.3	0.5	0.9%
150	104	1	52.1	0.4	0.8%
250	106	1	52.9	0.3	0.6%
500	105.1	0.5	52.5	0.2	0.4%
750	105.3	0.4	52.7	0.2	0.4%
1000	105.1	0.3	52.5	0.2	0.3%

Figura 9: Valores médios e atividade para cada grupo de medidas com a fonte próxima do detetor (número de contagens alto). A incerteza percentual corresponde tanto a M como a A.

Observa-se que, em todas as medições, sejam individuais (figura 7) ou agrupadas (figura 8), a distribuição de Poisson e a distribuição Normal são praticamente coincidentes, exceto para n=750, onde a curva da distribuição Normal se adequa melhor aos dados experimentais. Assim, a distribuição Normal será a mais adequada para caracterizar atividade alta, sendo que a distribuição de Poisson não tem uma diferença muito significativa a esta. Além disso, verifica-se quanto maior o número de medidas n, maior a semelhança das contagens às distribuições (notando também que já não há uma diferença muito significativa entre n=750 e n=1000).

De acordo com a figura 9, quanto maior é o tempo de amostragem, isto é, quanto maior é o número de medidas n, maior é a precisão de M e A, ou seja, maior é a convergência do valor médio e da atividade para um valor limite, o qual é o valor esperado.

4.2.2 Fonte afastada do detetor - atividade baixa

Realizou-se análise idêntica à secção anterior:

Figura 10: Distribuição de contagens para n = 100, 150, 250, 500.

Figura 11: Distribuição de contagens para n = 500 + 250 = 750 e n = 500 + 250 + 150 + 100 = 1000.

n	M	u(M)	A (Bq)	u(A) (Bq)	incerteza (%)
100	4.9	0.2	2.4	0.1	4.3%
150	4.5	0.2	2.3	0.1	4.3%
250	4.9	0.1	2.4	0.1	3.0%
500	4.9	0.1	2.45	0.05	2.0%
750	4.9	0.1	2.45	0.04	1.6%
1000	4.8	0.1	2.42	0.03	1.4%

Figura 12: Valores médios e atividade para cada grupo de medidas com a fonte afastada do detetor (número de contagens baixo). A incerteza percentual corresponde tanto a M como a A.

Analisando tanto medições individuais (figura 10) como agrupadas (figura 11) vê-se que, de forma semelhante aos dados da radiação ambiente (figura 6), a distribuição de Poisson, em comparação à distribuição Normal (cujo máximo está desviado da contagem de maior frequência), é a mais adequada para descrever atividade com um número de contagens baixo. Desta forma, a distribuição de Poisson é útil para a caracterização de eventos raros.

Observa-se que, quanto maior o número de medidas n, maior a semelhança das contagens à distribuição de Poisson (mais uma vez não havendo uma diferença muito significativa entre n=750 e n=1000).

De acordo com a figura 12, tem-se de novo que quanto maior é o tempo de amostragem, isto é, quanto maior é o número de medidas n, maior é a precisão de M e A, ou seja, maior é a convergência do valor médio e da atividade para um valor limite (valor esperado).

4.3 Atividade de ²²⁶Ra em função da distância

Calculou-se a atividade A para cada distância d a partir do número de contagens recorrendo à equação $A = \frac{N}{\Delta t}$, obtendo-se graficamente:

Figura 13: Atividade da fonte ²²⁶Ra em função da distância ao detetor.

Representou-se graficamente a atividade em função do inverso do quadrado da distância (ver figura 19 em anexo) e verificou-se que não existe uma relação linear para todos os pontos, pelo que a equação 8 não é aplicável a todas as distâncias registadas.

A parte inicial do gráfico da figura 13 é semelhante a uma relação exponencial da forma:

$$A = A_0 e^{-Cd} (9)$$

onde A_0 é a atividade inicial.

Para verificar esta hipótese, representou-se graficamente o logaritmo da atividade em função da distância (ver figura 20 em anexo) e observou-se uma tendência linear para os valores iniciais de d. Linearizando a equação 9:

$$\ln\left(A\right) = -Cd + \ln\left(A_0\right) \tag{10}$$

Assim, realizou-se um ajuste linear com base nesta equação, desde o d inicial até ao ponto no qual ainda se verificava a linearidade (d = 21.0 mm):

Figura 14: $\ln(A)$ em função de distância até $d=21.0\pm0.5$ mm com respetivo ajuste, resíduos e parâmetros de ajuste.

Os resíduos são tendenciosos, logo os pontos correspondentes a d=1 e 2 mm foram considerados duvidosos. Estes pontos podem não estar de acordo com a relação esperada pois o método podia ainda não estar totalmente mecanizado no início desta parte da experiência, isto é, o detetor e a fonte podiam não estar perfeitamente alinhados. Realizou-se, então, um segundo ajuste linear sem estes pontos:

Figura 15: $\ln(A)$ em função de distância até $d=21.0\pm0.5$ mm com respetivo ajuste, resíduos e parâmetros de ajuste, sem pontos duvidosos.

Observando a matriz com os parâmetros do ajuste 2, o valor de r^2 está mais próximo de 1 e o desvio-padrão s(y) reduziu-se para metade. Além disso, os resíduos são aleatórios, pelo que o ajuste 2 tem maior qualidade.

As partículas α , comparativamente à radiação β e γ , têm um menor alcance, pois tendo maior massa e energia, têm uma maior probabilidade de interagirem com as moléculas do ar, e por sua vez, são dispersadas mais facilmente. Desta forma, é plausível afirmar que o decaimento radioativo exponencial será maioritariamente causado pela atenuação da radiação α . Assim, será possível extrapolar o alcance máximo das partículas α , determinando a distância a partir da qual a atividade medida no detetor é igual à atividade ambiente, A_{amb} , determinada na primeira parte da experiência. Assim, partindo da equação 10:

$$\ln\left(A_{amb}\right) = -Cd_{\alpha} + \ln\left(A_{0}\right) \Leftrightarrow d_{\alpha} = \frac{\ln\left(A_{amb}\right) - \ln\left(A_{0}\right)}{-C} \tag{11}$$

ou seja, em termos do declive e da ordenada na origem do ajuste 2,

$$d_{\alpha} = \frac{\ln\left(A_{amb}\right) - b}{m} \tag{12}$$

obtendo-se

$$d_{\alpha} = (57.5 \pm 1.3) \text{ mm}$$

Recorrendo à equação 7, é possível estimar a energia das partículas α em $E_{\alpha}=6.807\pm0.032)$ MeV. Este é um valor plausível pois está acima da energia das partículas α emitidas no decaimento de 238 U (4.270 MeV), que muito provavelmente não seriam detetadas pelo contador; além disso, encontra-se dentro da gama da cadeia de decaimento de 226 Ra (figura 3). No entanto, não será possível escolher um valor de referência para d_{α} a partir das várias energias do decaimento de Rádio-226 dado que não é possível saber, com certeza, qual o isótopo com o decaimento mais predominante ou a idade da fonte. Ainda assim, é possível afirmar que este valor poderá ter sido calculado com erro por excesso, dada a influência da atenuação das partículas β nos pontos utilizados para o ajuste.

Como referido na introdução teórica, a radiação γ , ao contrário da radiação β e α , é ondas eletromagnéticas, logo, além de ter um maior alcance, é o único tipo de radiação cuja atividade será possivelmente diretamente proporcional ao inverso do quadrado da distância ao detetor. Desta forma, realizou-se um ajuste linear com base na equação 8 usando os valores finais de distância onde a atividade, apesar de já bastante reduzida, já não será predominantemente influenciada pelas partículas α e β .

Figura 16: A em função de d^{-2} a partir de $d=20.0\pm0.5$ mm com respetivo ajuste, resíduos e parâmetros de ajuste.

De acordo com a equação 8 seria esperado que $b=A_{amb}$; no entanto tal não se verifica. Partindo da mesma equação, calculou-se a atividade total da fonte:

$$A_t = \frac{4\pi \cdot m}{S_{det}} \Rightarrow A_t = (842 \pm 40) \text{ Bq}$$

Este valor tem um erro por defeito de 72% em relação à atividade nominal da fonte, 3 kBq. O erro justifica-se pela fraca qualidade do ajuste: os resíduos apresentam tanto tendências lineares como parabólicas, logo o facto de os dados terem sido registados entre maiores intervalos de distância a partir de 30 mm evidenciou ainda mais a aleatoriedade do decaimento radioativo. Para além disso, este ajuste ainda poderá ter em conta atividade gerada pelas partículas α e β . Assim, concluiu-se que $n\tilde{a}o$ foi possível relacionar a atividade da fonte com o inverso do quadrado da distância ao detetor.

4.4 Decaimento radioativo de $^{238}\mathrm{U}$ - $^{234}\mathrm{Pa}$

4.4.1 Decaimento da substância mãe ²³⁸U

Realizou-se uma análise análoga à da primeira parte da experiência (radiação ambiente), obtendo-se como valor médio de contagens $M_{ur\hat{a}nio} = 4.4 \pm 0.1$.

Figura 17: Contagens com radiação de ²³⁸U e distribuições Normal e de Poisson.

Seria esperado que a distribuição de Poisson se adequasse às contagens registadas, dada a baixa atividade; contudo, nenhuma das distribuições se encontra centrada com o pico de maior frequência, enfatizando-se a aleatoriedade do decaimento radioativo. Mais uma vez, com base na equação 5, calculou-se a atividade da substância mãe:

$$A_{ur\hat{a}nio} = (1.46 \pm 0.04) \text{ Bq}$$

4.4.2 Decaimento da substância neta ²³⁴Pa

Tendo em conta as contagens em função do tempo registadas, estas irão tender, teoricamente, para valores correspondentes à atividade de ²³⁸U, pelo que, partindo da equação 2, o ajuste mais adequado aos dados obtidos será da forma:

$$N = N_0 e^{-Ct} + D \tag{13}$$

onde $C=\frac{1}{\tau}$ e D deverá corresponder, neste caso, ao valor médio de contagens da substância mãe, $M_{ur\hat{a}nio}$.

Dado que este ajuste não é possível de ser realizado em Excel, recorreu-se à função $curve_fit()$ de Python, cujo o gráfico está em anexo (figura 22). Os parâmetros desse ajuste são:

- $-N_0 = 42 \pm 3$
- $C = 0.006 \pm 0.001$
- $-D = 0.06 \pm 3$

Observa-se claramente que a constante D não foi determinada com precisão, além de que o próprio valor não está próximo de $M_{ur\hat{a}nio}$. Assim, decidiu-se voltar ao Excel e realizar um ajuste sem a constante D, isto é, aplicando diretamente a equação 2.

Figura 18: Contagens registadas com respetivo ajuste exponencial 2.

E os parâmetros do ajuste são:

- $-N_0 = 41.5 \pm 0.1$
- $-C = 0.0061 \pm 0.0003$

Vê-se que as constantes foram determinadas com mais precisão, pelo que foi este o ajuste considerado para determinar o tempo de semivida do protactínio-234. Tem-se que $\tau=\frac{1}{C}$, logo:

$$\tau = (164 \pm 9) \text{ s}$$

por isso, usando a equação 3, o tempo de semivida é dado por:

$$T_{1/2} = (1.893 \pm 0.104) \text{ min}$$

que tem um erro por excesso de 61%.

Tal erro poderá ser justificado por algum problema de calibração no detetor ou algum erro sistemático na montagem em geral; no entanto, será mais provável que se deva ao tempo de amostragem da fonte. De modo a comprovar este fator, determinou-se o instante a partir do qual a atividade da fonte se iguala à atividade do urânio-238, usando uma equação similar a 11:

$$\ln\left(M_{ur\hat{a}nio}\right) = -Ct_{ur\hat{a}nio} + \ln\left(N_0\right) \Leftrightarrow t_{ur\hat{a}nio} = \frac{\ln\left(N_0\right) - \ln\left(M_{ur\hat{a}nio}\right)}{C} \tag{14}$$

obtendo

$$t_{ur\hat{a}nio} = (368.57 \pm 20.74) \text{ s}$$

Este valor é superior ao último tempo registado (315.71 s) por 14%, e mesmo tendo uma incerteza de 6%, verifica-se que as contagens poderiam ter sido realizadas durante pelo menos mais 30 segundos de modo a que o ajuste exponencial 2 se adequasse melhor aos dados registados. Assim, seria provável que o ajuste 1, com a constante correspondente à atividade do urânio, também tivesse mais qualidade, calculando-se o tempo de semivida do protactínio com mais exatidão.

5 Conclusão

- Verificou-se que a distribuição de Poisson é a mais adequada para caracterizar atividade baixa (como a radiação ambiente), isto é, eventos raros (contagens maioritariamente inferiores a 10). Quanto a atividade alta (contagens maioritariamente superiores a 80), concluiu-se que a distribuição Normal é a melhor para descrever os eventos registados, sendo que a distribuição de Poisson não tinha uma diferença muito significativa;
- Tanto com a fonte próxima do detetor como distante, observou-se que quanto maior for o número de medidas n, maior a semelhança às distribuições (no caso de atividade baixa, apenas à distribuição de Poisson). Com o aumento de n (ou seja, aumento do tempo de amostragem), também é maior é a precisão do valor médio de eventos e respetiva atividade determinados, logo há a convergência destes valores para valores limite (ou valores esperados);
- Observou-se que, num aumento inicial da distância da fonte de Rádio-226 ao detetor, a atividade decai exponencialmente;
- Determinou-se o alcance máximo das partículas α , $d_{\alpha} = (57.5 \pm 1.3)$ mm (incerteza de 2%), que corresponde a partículas com energia $E_{\alpha} = (6.807 \pm 0.032)$ MeV (incerteza de 0.5%), valor que se encontra dentro do intervalo esperado, ainda

que o alcance não seja comparável a um valor de referência dado o desconhecimento da idade da fonte e a quantidade de isótopos na cadeia de decaimento de 226 Ra. Ainda assim, provavelmente será superior ao valor real dada a influência da atividade das partículas β ;

- Calculou-se a atividade total da fonte 226 Ra como $A_t = (842 \pm 40)$ Bq (incerteza de 5%) com erro de 72%, logo não se comprovou que a atividade é diretamente proporcional ao inverso da distância ao quadrado ao detetor;
- Determinou-se o tempo de semivida de 234 Pa como $T_{1/2} = (1.893 \pm 0.104)$ min (incerteza de 6%) com erro de 61%. Calculou-se o tempo a partir do qual a atividade retorna aos valores de atividade da substância mãe, 238 U, e $t_{ur\hat{a}nio}$, ainda que com incerteza de 6%, é 14% superior ao último tempo registado, pelo que, apesar da possibilidade da existência de algum problema na calibração do detetor, o erro será provavelmente causado pelo facto de que se deveria ter prolongado o tempo de amostragem pelo menos mais 30 segundos.

Referências

- [1] Responsáveis pela unidade curricular Laboratório de Física III. T5 Estudo de Processos com Decaimento Radioativo.
- [2] Royal Society of Chemistry. Alpha, Beta and Gamma Radioactivity. https://www.rsc.org/images/3%20Alpha%20Beta%20Gamma_tcm18-17765.pdf.
- [3] Sreeja Menon, S Sunder, R Santhanam, M.T. Jose, and Venkatraman Balasubramaniam. Sensitivity Factor Analysis Using Computer Simulation For Radon Detection In Cylindrical Diffusion Chambers With Nuclear Track Detectors. https://www.researchgate.net/figure/Range-of-alpha-particles-of-different-energies-in-air_fig1_258857609, Dezembro 2012.
- [4] Raymond A. Guilmette Bobby R. Scott. Encyclopedia of Toxicology (Second Edition). https://www.sciencedirect.com/topics/earth-and-planetary-sciences/beta-particle, 2005.
- [5] PHYWE. Study of the Alpha-energies of Ra-226 with MCA. https://spegroup.ru/upload/wikifiles/opisanie_jeksperimenta_P2522315.pdf.
- [6] Wikipédia. Isotopes of protactinium. https://en.wikipedia.org/wiki/Isotopes_of_protactinium.
- [7] CERN. The radioactive series of radium-226. https://indico.cern.ch/ event/835006/contributions/3548764/attachments/1924479/3184497/ Ra226Decays.pdf.

A Anexo

A.1 Equações de Incerteza

$$u(M) = \frac{\sigma_N}{\sqrt{n}}$$

sendo σ_N o desvio-padrão das contagens e n o número de medidas realizadas.

$$u(A) = \frac{1}{\Delta t} \cdot u(M)$$

$$u(d_{\alpha}) = \sqrt{\left(\frac{u(b)}{m}\right)^2 + \left(-\frac{u(A_{amb})}{m \cdot A_{amb}}\right)^2 + \left(-\frac{\ln\left(A_{amb}\right) - b}{m^2} \cdot u(m)\right)^2}$$

$$u(E_{\alpha}) = \frac{2}{3} \left(\frac{d_{\alpha}}{0.324}\right)^{-1/3}$$

$$u(A_t) = \frac{4\pi}{S_{det}} \cdot u(m)$$

$$u(\tau) = \frac{u(C)}{C^2}$$

$$u(T_{1/2}) = \ln(2) \cdot u(\tau)$$

$$u(t_{ur\hat{a}nio}) = \sqrt{\left(\frac{u(N_0)}{N_0 \cdot C}\right)^2 + \left(-\frac{u(M_{ur\hat{a}nio})}{M_{ur\hat{a}nio} \cdot C}\right)^2 + \left(-\frac{\ln\left(N_0\right) - \ln\left(M_{ur\hat{a}nio}\right)}{C^2} \cdot u(C)\right)^2}$$

A.2 Atividade de ²²⁶Ra em função da distância

Figura 19: Atividade da fonte em função do inverso do quadrado da distância ao detetor. Valores para d < 6.0 mm não são apresentados para se visualizar melhor os restantes dados.

Figura 20: Logaritmo natural da atividade da fonte em função da distância ao detetor.

d (± 0.5 mm)	1/d² (mm ⁻²)	N	A (Bq)
1.0	1.0000	803	80.3
2.0	0.2500	708	70.8
3.0	0.1111	536	53.6
4.0	0.0625	440	44.0
5.0	0.0400	419	41.9
6.0	0.0278	391	39.1
7.0	0.0204	333	33.3
8.0	0.0156	321	32.1
9.0	0.0123	307	30.7
10.0	0.0100	263	26.3
11.0	0.0083	241	24.1
12.0	0.0069	214	21.4
13.0	0.0059	193	19.3
14.0	0.0051	173	17.3
15.0	0.0044	168	16.8
16.0	0.0039	153	15.3
17.0	0.0035	134	13.4
18.0	0.0031	120	12.0
19.0	0.0028	116	11.6
20.0	0.0025	111	11.1
21.0	0.0023	103	10.3
22.0	0.0021	98	9.8
23.0	0.0019	96	9.6
24.0	0.0017	84	8.4
25.0	0.0016	83	8.3
26.0	0.0015	81	8.1
27.0	0.0014	69	6.9
28.0	0.0013	68	6.8
29.0	0.0012	58	5.8
30.0	0.0011	54	5.4
31.0	0.0010	49	4.9
36.0	0.0008	52	5.2
41.0	0.0006	46	4.6
46.0	0.0005	43	4.3
51.0	0.0004	22	2.2
56.0	0.0003	25	2.5
61.0	0.0003	18	1.8
66.0	0.0002	15	1.5
71.0	0.0002	9	0.9

Figura 21: Valores de d e N registados. A verde os valores de d utilizados para o ajuste linear 2; a amarelo os valores de $1/d^2$ utilizados para o ajuste linear 3.

A.3 Decaimento radioativo de $^{238}\mathrm{U}$ - $^{234}\mathrm{Pa}$

Figura 22: Contagens registadas com respetivo ajuste exponencial 1.