Ecuaciones Diferenciales Parciales Parabólicas

Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

curso.fisica.comp@gmail.com

Problema

Hay una barra de longitud $L=100~{\rm cm}$ y de diámetro w (vista desde el eje x). La barra está aislada en su perímetro, excepto los extremos.

Al inicio la barra cuenta con una temperatura uniforme de 100° C y los extremos de la misma están en contacto con agua helada. El calor fluye hacia los extremos que no están dentro del aislante.

El problema a resolver es: estimar cómo varía la temperatura a lo largo de la barra para un instante de tiempo dado, además de ver cómo cambia con respecto al tiempo.

Ecuación de calor

¿Cómo es el flujo de calor de una región caliente a una región fría?

Expresando el fenómeno en términos matemáticos: decimos que la razón de cambio de flujo de calor $\mathbf H$ a través de un material, es proporcional al gradiente de temperatura T en el material.

$$\mathbf{H} = -k\nabla T(\mathbf{x}, t)$$

donde k es la conductividad térmica del material.

Breviario 1

La cantidad total de calor Q(t) en cualquier momento, es proporcional a la integral de la temperatura sobre del volumen del material:

$$Q(t) = \int d\mathbf{x} C \rho(\mathbf{x}) T(\mathbf{x}, t)$$

Donde C es el calor específico del material y es ρ la densidad del material.

Breviario 2

Dado que la energía se conserva, la razón de decremento de Q con el tiempo debe de ser igual a la cantidad de calor fluyendo fuera del material. Después de que tenemos este balance de energía y aplicamos el teorema de la divergencia, la ecuación de calor, resulta:

$$\frac{\partial T(\mathbf{x}, t)}{\partial t} = \frac{k}{C\rho} \nabla^2 T(\mathbf{x}, t)$$

Suponemos que la densidad ρ del material es constante.

Breviario 3

Tenemos una EDP de tipo parábolico con variables independientes de posición y tiempo. Especificar este tipo de problema implica que no hay variación de la temperatura en las direcciones perpendiculares de la barra (y, z), por lo que sólo tenemos una coordenada espacial:

$$\frac{\partial T(\mathbf{x}, t)}{\partial t} = \frac{k}{C\rho} \nabla^2 T(\mathbf{x}, t)$$

De nuevo al problema

La temperatura inicial de la barra y las condiciones de frontera son:

$$T(x, t = 0) = 100^{\circ}$$

 $T(x = 0, t) = T(x = L, t) = 0^{\circ}$

Solución numérica

Como se revisó con la ecuación de Laplace, la solución numérica se basa en convertir una ecuación diferencial en una aproximación por diferencias finitas.

El algoritmo se desarrolla a partir de expandir $T(x,t+\Delta t)$ y $T(x+\Delta x,t)$ en series de Taylor, dejándo los términos de menor orden en Δ :

Desarrollo en series de Taylor

$$T(x,t+\Delta t) \simeq T(x,t) + \frac{\partial T(x,t)}{\partial t} \Delta t$$

$$T(x+\Delta x,t) \simeq T(x,t) + \frac{\partial T}{\partial x} \Delta x$$

$$\Rightarrow \frac{\partial T(x,t)}{\partial t} \simeq \frac{T(x,t+\Delta t) - T(x,t)}{\Delta t}$$

$$\frac{\partial^2 T(x,t)}{\partial x^2} \simeq \frac{T(x+\Delta x,t) + T(x-\Delta x,t) - 2T(x,t)}{\Delta x)^2}$$