anaerobic, 292, 319 autosome, 170 **INDEX** anaerobic cellular respiration, autosomes, 165 113 autotroph, 118, 132, 563 Α analogous structure, 270, 283, autotrophs, 535 288 axial skeleton, 426, 440 absorption spectrum, 124, 132 analogous structures, 253 axon, 433, 440 abyssal zone, **556**, **563** anaphase, 140, 149 acellular, 450, 472 В aneuploid, 165, 170 acetyl CoA, 104, 113 anion, 51 acid, 51 B cell, 472 anions, 31 Acid rain, 547 B cells, 460 anneal, 245 acid rain, 563 Basal angiosperms, 348 annealing, 229 Acids, 38 basal angiosperms, 351 Annelida, 378, 395 acoelomate, 395 basal ganglia, 436, 440 anoxic, 292, 319 acoelomates, 360 base, **51** anther, 344, 351 Actinopterygii, 387, 395 bases, 38 Anthophyta, 347, 351 action potential, 432, 440 Basic science, 22 Anthropoids, 393 activation energy, 97, 113 basic science, 24 anthropoids, 395 active immunity, 461, 472 Basidiomycota, 314 antibody, 461, 472 active site, 98, 113 basidiomycota, 319 antigen, 460, 472 Active transport, 81 benthic realm, 555, 563 antigen-presenting cell (APC), active transport, 85 bicuspid valve, 417, 440 462, 472 adaptation, 253, 270 Bilateral symmetry, 359 Anura, 388, 395 Adaptive immunity, 460 bilateral symmetry, 395 anus, 411, 440 adaptive immunity, 472 Bile, 410 aorta, 417, 440 adaptive radiation, 264, 270 bile, **440** apex consumer, 563 adhesion, 37, 51 binary fission, 145, 149 apex consumers, 531 adrenal gland, 440 binomial nomenclature, 276, aphotic zone, **555**, **563** adrenal glands, 423 288 apical meristem, 329, 351 Age structure, 512 biodiversity, 568, 590 Apoda, 388, 395 age structure, 525 biodiversity hotspot, 586, 590 apoptosis, 453, 472 algal bloom, 560, 563 bioenergetics, 92, 113 appendicular skeleton, 428, 440 allele, 194 biofilm, 294, 319 applied science, 22, 24 alleles, 178 biogeochemical cycle, 537, 563 Archaeplastida, 306, 319 allergy, 469, 472 Biology, 5 Arctic tundra, 553 Allopatric speciation, 262 biology, 24 arctic tundra, 563 allopatric speciation, 270 Biomagnification, 536 Arteries, 419 allosteric inhibition, 100, 113 biomagnification, 563 artery, 440 alternation of generations, 155, biomarker, 243, 245 Arthropoda, 371, 395 170 biome, 531, 563 Ascomycota, 314, 319 alternative RNA splicing, 219, bioremediation, 301, 319 Asexual reproduction, 478 220 biosphere, 12, 24 asexual reproduction, 495 alveoli, 415 Biotechnology, 225 Asymmetrical, 358 alveolus, 440 biotechnology, 245 asymmetrical, 395 amino acid, 51 birth rate, 505, 525 atom, 9, 24 Amino acids, 46 Black Death, 297, 319 atomic number, 28, 51 amniote, 395 blastocyst, 483, 495 ATP, 102, 113 amniotes, 389 body plan, 356, 395 ATP synthase, 107, 113 amoebocyte, 395 bolus, 409, 440 atrium, 417, 440 Amoebocytes, 362 bones, **391** attenuation, 455, 472 Amoebozoa, 306, 319 boreal forest, 552, 563 auditory ossicles, 427, 440 Amphibia, 388, 395 bottleneck effect, 256, 270 autoantibody, 470, 472 ampulla of Lorenzini, 395 botulism, 299, 319 Autoimmunity, 470 ampullae of Lorenzini, 387 brachiation, 393, 395 autoimmunity, 472 amygdala, 437, 440 brainstem, 437, 440 autonomic nervous system, 437, amylase, 409, 440 branch point, 279, 288

440

anabolic, 93, 113

bronchi, 415, 440	chaetae, 379	complete digestive system, 370,
bronchiole, 440	channel, 561 , 563	396
bronchioles, 415	chaparral, 550 , 563	concentration gradient, 77, 85
budding, 363, 395, 495	chelicerae, 373 , 395	cone, 351
Budding, 479	chemical bond, 51	cones, 339
buffer, 51	chemical bonds, 31	conifer, 351
Buffers, 38	chemical diversity, 569, 590	Conifers, 341
bulbourethral gland, 486, 495	chemiosmosis, 107, 113	conjugation, 296 , 319
Bush meat, 578	chemoautotroph, 563	Continuous variation, 174
bush meat, 590	chemoautotrophs, 535	continuous variation, 194
,	chiasmata, 158 , 170	control, 20, 24
C	chitin, 41 , 51 , 370 , 395	convergent evolution, 253, 270
	chlorophyll, 120 , 132	coral reef, 563
caecilian, 395	chlorophyll <i>a</i> , 124 , 132	Coral reefs, 557
Caecilians, 389	chlorophyll <i>b</i> , 124 , 132	corolla, 344 , 351
Calvin cycle, 127 , 132	chloroplast, 85 , 120 , 132	corpus callosum, 435 , 441
calyx, 344 , 351	Chloroplasts, 69	corpus luteum, 487, 495
canopy, 548 , 563	choanocyte, 362, 395	cotyledon, 351
capillaries, 419	Chondrichthyes, 386, 395	cotyledons, 347
capillary, 440	Chordata, 382, 395	covalent bond, 32, 51
capsid, 451 , 472	Chromalveolata, 306, 319	craniate, 396
capsule, 295 , 319	chromosome inversion, 168 ,	craniates, 385
carbohydrate, 51	170	Crocodilia, 390, 396
Carbohydrates, 40	chyme, 410 , 441	crossing over, 158 , 170
carbon fixation, 127, 132	chytridiomycosis, 580, 590	cryptofauna, 558 , 563
cardiac cycle, 418, 440	Chytridiomycota, 314, 319	ctenidia, 375 , 396
Cardiac muscle tissue, 430	cilia, 64	cutaneous respiration, 388, 396
cardiac muscle tissue, 440	cilium, 85	cyanobacteria, 292, 319
carpel, 344 , 351	citric acid cycle, 105 , 113	cycad, 351
carrying capacity, 505, 525	clade, 288	Cycads, 341
cartilaginous joint, 440	clades, 285	cytokine, 457 , 472
Cartilaginous joints, 428	cladistics, 285 , 288	Cytokinesis, 140
catabolic, 93 , 113	class, 276 , 288	cytokinesis, 149
cation, 51	cleavage furrow, 140 , 149	cytopathic, 453 , 472
cations, 31	climax community, 524 , 525	cytoplasm, 63, 85
cell, 10 , 24	clitellum, 380, 395	cytoskeleton, 63, 85
cell cycle, 137 , 149	clitoris, 487 , 495	cytosol, 63, 85
cell cycle checkpoints, 142, 149	cloning, 228, 245	cytotoxic T lymphocyte (T _C),
cell plate, 140 , 149	closed circulatory system, 417 ,	472
cell wall, 69 , 85	441	412
cell-mediated immune	club moss, 351	D
response, 460, 472	club mosses, 335	
Cellulose, 41	Cnidaria, 363, 395	dead zone, 544 , 563
cellulose, 51	cnidocyte, 395	death rate, 505 , 525
central nervous system (CNS),	cnidocytes, 363	Deductive reasoning, 19
435, 440	codominance, 186 , 194	deductive reasoning, 24
central vacuole, 70, 85	codon, 214 , 220	demography, 500 , 525
centriole, 149	coelom, 360 , 395	denaturation, 46, 51
centrioles, 138	cohesion, 36 , 51	dendrite, 441
Cephalochordata, 383, 395	colon, 411 , 441	Dendrites, 432
cephalothorax, 373, 395	commensalism, 302 , 319	dendritic cell, 462, 472
cerebellum, 437, 441	community, 12 , 24	density-dependent, 508
cerebral cortex, 435, 441	competitive exclusion principle,	density-dependent regulation,
cerebrospinal fluid (CSF), 435,	518 , 525	525
441	competitive inhibition, 99, 113	density-independent, 508
chaeta, 395	complement system, 459, 472	

density-independent regulation,	ectotherms, 404	eutherian mammal, 396
525	effector cell, 472	Eutherian mammals, 393
deoxyribonucleic acid (DNA),	effector cells, 464	eutrophication, 542, 564
49, 51	electrocardiogram (ECG), 419,	evaporation, 35 , 51
deoxyribose, 200, 220	441	evolution, 12, 24
depolarization, 432, 441	electrochemical gradient, 81, 85	Excavata, 306 , 319
Descriptive, 19	electromagnetic spectrum, 123,	exergonic, 113
descriptive science, 24	132	exergonic reactions, 96
desmosome, 85	electron, 28, 51	exocrine gland, 441
desmosomes, 72	electron transfer, 31, 51	Exocrine glands, 421
detrital food web, 534, 563	electron transport chain, 105 ,	Exocytosis, 83
Deuteromycota, 319	113	exocytosis, 85
deuterostome, 396	element, 51	exon, 220
Deuterostomes, 360	elements, 28	exons, 212
diaphragm, 415 , 441	Emergent vegetation, 562	Exotic species, 579
diastole, 418 , 441	emergent vegetation, 563	exotic species, 590
dicot, 351	Endemic species, 571	exponential growth, 504 , 525
	endemic species, 571	
dicots, 348	•	external fertilization, 481, 495
Diffusion, 77	endergonic, 113	extinction, 570, 590
diffusion, 85	endergonic reactions, 96	extinction rate, 590
dihybrid, 183 , 194	endocrine gland, 441	extinction rates, 584
dioecious, 371, 396	endocrine glands, 421	extracellular digestion, 365, 396
diphyodont, 396	Endocytosis, 82	extracellular matrix, 70, 85
diphyodonts, 392	endocytosis, 85	extremophile, 319
diploblast, 396	endomembrane system, 64, 85	extremophiles, 294
diploblasts, 359	endoplasmic reticulum (ER), 65,	_
diploid, 136 , 149	85	F
diploid-dominant, 155 , 170	endosymbiosis, 319	F ₁ , 175 , 194
Diplontic, 327	endosymbiotic theory, 303	
diplontic, 351	endotherm, 404 , 441	F ₂ , 175, 194
disaccharide, 51	environmental disturbance, 525	facilitated transport, 78, 85
Disaccharides, 41	environmental disturbances,	fallout, 546 , 564
discontinuous variation, 174,	523	falsifiable, 20, 24
194	enzyme, 51 , 113	family, 276, 288
dispersal, 263 , 270	Enzymes, 45	fat, 43 , 51
divergent evolution, 253, 270	enzymes, 97	Feedback inhibition, 102
DNA ligase, 205, 220	epidemic, 319	feedback inhibition, 113
DNA polymerase, 205, 220	epidemics, 297	fermentation, 108, 113
domain, 288	epidermis, 364 , 396	fern, 351
domains, 276	epigenetic, 216 , 220	ferns, 336
Dominant, 177	epistasis, 192 , 194	fertilization, 157 , 170
dominant, 194	Equilibrium, 531	fibrous joint, 441
dorsal hollow nerve cord, 382,	equilibrium, 563	fibrous joints, 428
396	esophagus, 408 , 441	filament, 344 , 351
double helix, 201 , 220	essential nutrient, 441	Fission, 478
down feather, 396	essential nutrients, 413	fission, 495
down feathers, 391	estrogen, 491 , 495	Flagella, 64
<i>,</i>	•	flagellum, 85
down-regulation, 422, 441	Estuaries, 559 estuary, 563	fluid mosaic model, 74 , 85
E		follicle stimulating hormone
_	eucoelomate, 396	(FSH), 490, 495
Echinodermata, 380, 396	eucoelomates, 360	food chain, 531 , 564
ecosystem, 12, 24, 530, 563	eudicots, 347, 351	food web, 533 , 564
ecosystem diversity, 569, 590	eukaryote, 24	foodborne disease, 299, 319
ecosystem services, 560, 563	eukaryotes, 10	Foundation species, 521
ectotherm, 441	eukaryotic cell, 60, 85	foundation species, 525
•	euploid, 165 , 170	

founder effect, 257, 270	gestation period, 493, 495	homosporous, 327, 351
fragmentation, 363 , 396 , 495	gingkophyte, 351	homozygous, 178 , 194
Fragmentation, 479	ginkgophyte, 342	hormone, 51 , 441
frog, 396	glia, 432 , 441	hormone receptors, 421
Frogs, 389	Glomeromycota, 314 , 319	Hormones, 45, 421
frontal lobe, 436 , 441	Glycogen, 41	hornwort, 351
FtsZ, 147 , 149	glycogen, 51	hornworts, 333
162, 141, 140	Glycolysis, 103	horsetail, 351
G	glycolysis, 113	Horsetails, 335
G ₀ phase, 141 , 149	glycoprotein, 451, 472	host, 519, 525
G ₁ phase, 137 , 149	gnathostome, 396	human beta chorionic
G ₂ phase, 138 , 149	Gnathostomes, 386	gonadotropin (β-HCG), 493, 495
gallbladder, 411 , 441	gnetophyte, 351	humoral immune response, 460,
~	Gnetophytes, 342	472
gametangia, 327	Golgi apparatus, 66, 86	hybridization, 194
gametangium, 351	gonadotropin-releasing	hybridizations, 175
gamete, 149	hormone (GnRH), 490 , 495	hydrogen bond, 33, 51
gametes, 136	Gram-negative, 295, 319	hydrophilic, 34 , 52
gametophyte, 170 , 327 , 351	Gram-positive, 295, 319	hydrophobic, 34, 52
gametophytes, 157	granum, 121 , 132	hydrosphere, 537, 564
gap junction, <mark>85</mark>	grazing food web, 534, 564	hydrothermal vent, 293, 319
Gap junctions, <mark>72</mark>	gross primary productivity, 535 ,	hyoid bone, 427 , 441
gastrodermis, <mark>364, 396</mark>	564	hypersensitivity, 469, 472
gastrovascular cavity, 365 , 396	gymnosperm, 351	hypertonic, 79, 86
gastrulation, <mark>484, 495</mark>	Gymnosperms, 339	hypha, 312 , 319
Gel electrophoresis, 226	gynoecium, 344 , 351	hypothalamus, 437 , 441
gel electrophoresis, 245	9,1100014111, 001	hypothesis, 18, 24
gemmule, <mark>396</mark>	Н	hypothesis-based science, 19 ,
gemmules, 363		24
gene, 149	habitat heterogeneity, 572, 590	hypotonic, 79, 86
gene expression, <mark>216, 220</mark>	hagfish, <mark>396</mark>	Trypotoriic, 79, 00
gene flow, 257, 270	Hagfishes, 385	1
gene pool, <mark>254, 270</mark>	haplodiplontic, 327, 351	•
Gene therapy, 233	haploid, 136 , 149	immune tolerance, 468, 473
gene therapy, 245	haploid-dominant, 155, 170	Immunodeficiency, 469
genes, 136	Haplontic, 327	immunodeficiency, 473
genetic code, 214 , 220	haplontic, 351	incomplete dominance, 186 ,
Genetic diversity, 569	heat energy, 94 , 113	194
genetic diversity, 500	helicase, 205 , 220	Inductive reasoning, 18
genetic diversity, 390 genetic drift, 255, 270	helper T lymphocyte (T _H), 472	inductive reasoning, 24
-	hemizygous, 189 , 194	inferior vena cava, 417 , 441
genetic engineering, 232, 245	hemocoel, 371 , 396	inflammation, 457, 473
genetic map, 236, 245	herbaceous, 349 , 351	inheritance of acquired
genetic testing, 245		characteristics, 250, 270
genetically modified organism,	Hermaphroditism, 480	inhibin, 491 , 495
232	hermaphroditism, 495	
genetically modified organism	heterodont teeth, 392, 396	Innate immunity, 456
(GMO), <mark>245</mark>	heterosporous, 327, 351	innate immunity, 473
genome, 136 , 149	heterotroph, 132	inner cell mass, 483, 495
genomics, 236 , 245	Heterotrophs, 118	interferon, 457 , 473
genotype, 178 , 194	heterozygous, 179, 194	interkinesis, 161, 170
genus, 276 , 288	hippocampus, 436, 441	internal fertilization, 481, 495
germ cell, 170	homeostasis, 8, 24	interphase, 137 , 149
germ cells, 155	homologous chromosomes,	interstitial cell of Leydig, 495
germ layer, <mark>396</mark>	136, 149	interstitial cells of Leydig, 485
germ layers, 359	homologous structure, 270	interstitial fluid, 406, 441
gestation. 493 . 495	homologous structures, 253	intertidal zone, 555, 564

intracellular, 421 intracellular digestion, 362, 396 intracellular hormone receptor, 441 intraspecific competition, 506, 525 intron, 220 introns, 212 ion, 31, 52 ionic bond, 32, 52 Island biogeography, 521 island biogeography, 525 isotonic, 80, 86 isotope, 52 Isotopes, 29 J J-shaped growth curve, 505, 525 joint, 428, 442 K K-selected species, 510, 525 karyogram, 164, 170 karyotype, 164, 170 keystone species, 522, 525 kidney, 442 kidneys, 406 kinetic energy, 95, 113 kinetochore, 140, 149 kingdom, 276, 288 L labia majora, 487, 495 labia minora, 487, 495 lagging strand, 205, 220 lamprey, 396 Lampreys, 386 lancelet, 396 Lancelets, 384 large intestine, 411, 442 larynx, 415, 442 lateral, 387 lateral line, 397 law of independent assortment, 183, 194 leading strand, 205, 220 lichen, 319 Lichens, 317	life sciences, 18 life table, 525 life tables, 500 light-dependent reaction, 132 light-dependent reactions, 121 limbic system, 437, 442 line, 387 linkage, 191, 194 Lipids, 42 lipids, 52 litmus, 37 litmus paper, 52 liver, 411, 442 liverwort, 352 Liverworts, 333 locus, 136, 149 logistic growth, 505, 525 Lophotrochozoa, 374, 397 luteinizing hormone (LH), 490, 495 Lymph, 466 lymph, 473 lymphocyte, 458, 473 lysosome, 86 lysosomes, 66 M macroevolution, 254, 270 macromolecule, 24, 52 macromolecules, 9, 39 macrophage, 457, 473 madreporite, 381, 397 major histocompatibility class (MHC) I, 473 major histocompatibility class (MHC) I molecules, 458 major histocompatibility class (MHC) II molecule, 473 mammal, 397 Mammals, 392 mammary gland, 397 Mammals, 392 mammary glands, 392 mark and recapture, 501, 525 marsupial, 397 Marsupials, 392 mass number, 28, 52 mast cell, 473 Mast cells, 457 Matter, 28 matter, 52 maximum parsimony, 287, 288	meiosis I, 157, 170 Meiosis II, 157 meiosis II, 170 membrane potential, 442 memory cell, 464, 473 meninges, 435, 442 menstrual cycle, 491, 495 mesoglea, 364, 397 mesohyl, 362, 397 mesophyll, 120, 132 metabolism, 92, 114 Metagenomics, 240 metagenomics, 245 metamerism, 379, 397 metaphase, 140, 149 MHC class II molecule, 461 microbial mat, 293, 320 microevolution, 254, 270 microscope, 56, 86 microsporocyte, 352 microsporocytes, 339 migration, 255, 270 mimicry, 516, 525 mineral, 442 Minerals, 413 mismatch repair, 208, 220 Mitochondria, 68 mitochondria, 68 mitochondria, 86 mitosis, 138, 149 mitotic phase, 149 mitotic spindle, 149 model organism, 245 model organisms, 238 model system, 174, 194 modern synthesis, 254, 270 mold, 320 molds, 313 molecular systematics, 284, 288 molecule, 9, 24 Mollusca, 374, 397 monocyte, 457, 473 monocyte, 457, 473 monocotos, 347 monocyte, 457, 473 monosaccharide, 52 Monosaccharides, 40 monosomy, 165, 170 monotremes, 397 monotremes, 397 monotremes, 397 monotremes, 392
law of segregation, 181, 194 leading strand, 205, 220	Matter, 28 matter, 52	Monosaccharides, 40 monosomy, 165, 170

mRNA, <mark>210, 220</mark>	nucleotide excision repair, 208,	paper, 37
MRSA, <mark>320</mark>	220	parasite, 320 , 519 , 525
mutation, <mark>209</mark> , <mark>220</mark>	nucleotides, 49	parasites, 305
mutualism, 519 , 525	nucleus, 28, 52, 65, 86	parasympathetic nervous
mycelium, 312 , 320	0	system, 439, 442
Mycorrhiza, 316	0	parathyroid gland, 442
mycorrhiza, <mark>320</mark>	occipital lobe, 436, 442	parathyroid glands, 423
mycoses, 315	oceanic zone, 556 , 564	parietal lobe, 436, 442
mycosis, 320	octet rule, 31 , 52	Parthenogenesis, 480
myelin sheath, 433 , 442	oil, 52	parthenogenesis, 496
myofibril, 442	oils, 44	passive immune, 461
myofibrils, 430	Okazaki fragments, 205, 220	passive immunity, 473
myofilament, 442	oncogene, 150	Passive transport, 77
myofilaments, 431	oncogenes, 143	passive transport, 86
Myxini, 385 , 397	one-child policy, 513, 525	pathogen, 296, 320
N	oogenesis, 488, 495	pectoral girdle, 428, 442
•	open circulatory system, 442	peer-reviewed article, 24 Peer-reviewed articles, 23
nacre, <mark>376</mark> , <mark>397</mark>	Open circulatory systems, 417	pelagic realm, 555, 564
nasal cavity, <mark>415</mark> , 442	Opisthokonta, 306, 320	pellicle, 320
natural killer (NK) cell, 458, 473	oral cavity, 409 , 442	pellicles, 305
natural science, <mark>24</mark>	order, 276 , 288	pelvic girdle, 428, 442
natural sciences, 18	organ, <mark>24</mark>	penis, 485 , 496
Natural selection, 251	organ system, 10 , 24	pepsin, 410 , 442
natural selection, <mark>270</mark>	organelle, <mark>24, 86</mark>	peptidoglycan, 295 , 320
nematocyst, 397	organelles, 10 , 60	periodic table of elements, 29,
nematocysts, <mark>363</mark>	organism, <mark>24</mark>	52
Nematoda, 370, 397	Organisms, 10	peripheral nervous system
nephron, 442	organogenesis, 484, 496	(PNS), 437, 442
nephrons, 407	Organs, 10	peristalsis, 408, 442
neritic zone, 556, 564	origin, 145 , 150	permafrost, 553 , 564
Net primary productivity, 535	osculum, 362, 397	peroxisome, <mark>86</mark>
net primary productivity, 564	osmolarity, 79 , 86	Peroxisomes, 68
neuron, 442	Osmoregulation, 406	petal, <mark>352</mark>
neurons, <mark>432</mark> neutron, <mark>52</mark>	osmoregulation, 442 Osmosis, 79	Petals, 344
Neutrons, 28	osmosis, 86	Petromyzontidae, 386, 397
neutrophil, 458, 473	osmotic balance, 406, 442	pH scale, 37 , 52
nitrogenous base, 200, 220	Osteichthyes, 387, 397	Phagocytosis, 83
non-renewable resource, 541 ,	ostracoderm, 397	phagocytosis, 86
564	ostracoderms, 385	Pharmacogenomics, 240
noncompetitive inhibition, 100,	ovarian cycle, 491 , 496	pharmacogenomics, 245
114	ovary, 344 , 352	pharyngeal slit, 397
nondisjunction, 164, 170	oviduct, 496	Pharyngeal slits, 382
nonpolar covalent bond, 52	oviducts, 487	pharynx, 415 , 442
Nonpolar covalent bonds, 32	oviparity, 482, 496	phase, 137
nontemplate strand, 211, 220	ovoviparity, 482, 496	phenotype, 178 , 194 phloem, 334 , 352
nonvascular plant, 352	ovulation, 492, 496	phosphate group, 200 , 220
nonvascular plants, 331	oxidative phosphorylation, 105,	phospholipid, 52
notochord, 382, 397	114	Phospholipids, 45
nuclear envelope, 65, 86	D	photic zone, 555 , 564
nucleic acid, <mark>52</mark>	Р	photoautotroph, 132 , 564
nucleic acids, 49	P, 175 , 194	photoautotrophs, 118 , 535
nucleolus, 65, 86	pancreas, 411 , 423 , 442	photon, 124 , 132
nucleotide, <mark>52</mark>	pandemic, 320	photosystem, 124 , 132
	pandemics, 297	phototroph, 320

phototrophs, <mark>292</mark>	prokaryotic cell, 59, 86	resistance, 531
phylogenetic tree, 14, 24, 279,	prometaphase, 139, 150	resistance (ecological), 564
288	promoter, 210 , 221	restriction enzyme, 245
phylogeny, 276 , 288	prophase, 139 , 150	restriction enzymes, 229
phylum, <mark>276</mark> , <mark>288</mark>	Prosimians, 393	reverse genetics, 232, 245
physical map, <mark>245</mark>	prosimians, 398	Rhizaria, <mark>306</mark> , <mark>320</mark>
Physical maps, <mark>236</mark>	prostate gland, 486, 496	ribonucleic acid (RNA), 49, 52
physical science, <mark>24</mark>	protein, 52	ribosome, <mark>86</mark>
physical sciences, 18	protein signature, 243, 245	Ribosomes, 68
pigment, 120 , 132	Proteins, 45	RNA polymerase, 211, 221
pinocytosis, <mark>83, 86</mark>	proteomics, 243, 245	rooted, 279, 288
pioneer species, 524, 526	proto-oncogene, 150	rough endoplasmic reticulum
pistil, 344 , 352	proto-oncogenes, 143	(RER), 65, 86
pituitary gland, <mark>422, 443</mark>	proton, 28, 52	rRNA, 213 , 221
placenta, 493 , 496	protostome, 398	
planktivore, <mark>564</mark>	Protostomes, 360	S
planktivores, <mark>558</mark>	pseudocoelomate, 398	
plasma membrane, <mark>63, 86</mark>	pseudocoelomates, 360	S phase, 138 , 150
plasmid, 228 , 245	pseudopeptidoglycan, 296, 320	S-shaped curve, 505
plasmodesma, <mark>86</mark>	pulmonary circulation, 417, 443	S-shaped growth curve, 526
Plasmodesmata, 71	Punnett square, 180, 194	salamander, 398
plastid, 303, 320		salamanders, 388
pneumatic, 391	Q	salivary gland, 443
pneumatic bone, 397		salivary glands, 409
polar covalent bond, 32, 52	quadrat, 501 , 526	saprobe, <mark>320</mark>
Polymerase chain reaction	quiescent, 150	saprobes, 310
(PCR), 227	_	sarcolemma, 430, 443
polymerase chain reaction	R	sarcomere, 431 , 443
(PCR), 245	r colocted species E10 E26	Sarcopterygii, 387, 398
polyp, 364 , 397	r-selected species, 510 , 526	saturated fatty acid, 52
polypeptide, 46, 52	radial symmetry, 358, 398	Saturated fatty acids, 44
polyploid, 167 , 170	radioactive isotope, 52	savanna, <mark>564</mark>
polysaccharide, 41, 52	radioactive isotopes, 29	Savannas, <mark>549</mark>
	radula, 374, 398	Science, 17
population, <mark>12, 24</mark> population density, <mark>500, 526</mark>	receptor-mediated endocytosis,	science, 19, 25
	83, 86	scientific law, 25
population genetics, 254, 270	Recessive, 177	scientific laws, 18
population size, 500, 526	recessive, 195	scientific method, 18, 25
Porifera, 361, 397	reciprocal cross, 177, 195	scientific theory, 18, 25
post-anal tail, 383, 397	recombinant, 158, 170	scrotum, 485, 496
post-transcriptional, 217, 220	recombinant DNA, 230, 245	sebaceous gland, 398
post-translational, 217, 220	recombinant protein, 245	Sebaceous glands, 392
potential energy, 95, 114	recombinant proteins, 230	secondary consumer, 564
primary bronchi, 415	recombination, 191 , 195	Secondary consumers, 531
primary bronchus, 443	rectum, 411 , 443	secondary immune response,
primary consumer, 564	reduction division, 162, 170	465, 473
primary consumers, 531	Relative species abundance,	secondary plant compound, 590
primary immune response, 464,	521	secondary plant compounds,
473	relative species abundance, 526	572
primary succession, 523, 526	renal artery, 407, 443	secondary succession, 523, 526
Primates, 393 , 397	renal vein, 407 , 443	selectively permeable, 77, 86
primer, 205 , 221	replication fork, 221	Semen, 485
producer, 564	replication forks, 205	semen, 496
producers, 531	Reproductive cloning, 230	semiconservative replication,
progesterone, 491, 496	reproductive cloning, 245	205, 221
prokaryote, <mark>24</mark>	resilience, 531	
Prokarvotes. 10	resilience (ecological) 564	seminal vesicle, 496

seminal vesicles, 486	Starch, 41	Temperate forests, 552
seminiferous tubule, 496	starch, 53	temperate grassland, 565
seminiferous tubules, 485	start codon, 214 , 221	Temperate grasslands, 551
sensory-somatic nervous	stereoscopic vision, 393, 398	Temperature, 35
system, 437, 443	steroid, 53	temperature, 53
sepal, 352	steroids, 45	template strand, 211, 221
sepals, 344	stigma, 344, 352	temporal lobe, 436 , 443
septum, 145 , 150 , 313 , 320	stoma, 132	tertiary consumer, 565
Sertoli cell, 496	stomach, 410 , 443	Tertiary consumers, 531
Sertoli cells, 485	stomata, 120	test cross, 181 , 195
set point, 404, 443	stop codon, 221	testes, 485, 496
sex determination, 481, 496	stop codons, 214	Testosterone, 490
sex determination, 431, 490 sexual reproduction, 478, 496	Strobili, 335	
•		testosterone, 496
shared ancestral character, 286,	strobili, 352	Testudines, 391 , 398
288	stroma, 121 , 132	tetrad, 171
shared derived character, 286,	stromatolite, 293, 320	tetrads, 158
288	style, 344 , 352	Tetrapod, 383
sister taxa, 279 , 288	subduction, 541 , 564	tetrapod, 398
Skeletal muscle tissue, 430	substrate, 114	thalamus, 437 , 443
skeletal muscle tissue, 443	substrates, 98	thallus, 312 , 320
skull, 427 , 443	subtropical desert, 564	Thermodynamics, 93
small intestine, 410, 443	Subtropical deserts, 549	thermodynamics, 114
smooth endoplasmic reticulum	sudoriferous gland, 398	thoracic cage, 428, 444
(SER), 66, 86	Sudoriferous glands, 392	threshold of excitation, 432, 444
Smooth muscle tissue, 430	superior vena cava, 417, 443	thylakoid, 132
smooth muscle tissue, 443	surface tension, 36 , 53	thylakoids, 120
solute, 79 , 86	survivorship curve, 503, 526	thymus, 424 , 444
solvent, 36 , 53	swim bladder, 387, 398	thyroid gland, <mark>423</mark> , 444
somatic cell, 157 , 170	sympathetic nervous system,	tight junction, 72, 87
source water, 561 , 564	438, 443	tissue, <mark>25</mark>
speciation, 262, 270	Sympatric speciation, 262	tissues, 10
species, 276 , 288	sympatric speciation, 270	Tonicity, 79
species distribution pattern, 501 ,	synapse, <mark>443</mark>	tonicity, <mark>87</mark>
526	synapses, <mark>432</mark>	trachea, 398 , 415 , 444
Species richness, 520	synapsis, 158 , 170	tracheae, 371
species richness, 526	synaptic cleft, 435, 443	tragedy of the commons, 578 ,
species-area relationship, 584 ,	syngamy, 327 , 352	590
590	Synovial joints, 428	trait, 176 , 195
spermatogenesis, 488, 496	synovial joints, 443	trans-fat, 44, 53
Sphenodontia, 391, 398	systematics, 276, 288	transcription bubble, 210, 221
spicule, 398	systemic circulation, 417, 443	transduction, 296, 320
spicules, 362	systole, 418, 443	transformation, 296, 320
spinal cord, 443		transgenic, 232, 245
spindle, 138	Т	Transgenic, 235
spiracle, 398		translocation, 171
spiracles, 371	T cell, 473	translocations, 164
splicing, 212 , 221	T cells, 460	tricuspid valve, 417, 444
spongocoel, 362 , 398	tadpole, 389 , 398	triglyceride, 53
sporangia, 327	taxon, 276 , 288	triglycerides, 43
sporangium, 352	Taxonomy, <mark>276</mark>	triploblast, 398
sporophyll, 352	taxonomy, 288	triploblasts, 359
sporophylls, 335	telomerase, 206, 221	trisomy, 165 , 171
sporophyte, 157 , 170 , 327 , 352	telomere, 221	tRNA, 221
Squamata, 391, 398	telomeres, 206	tRNAs, 213
stamen, 352	telophase, 140 , 150	trophic level, 531 , 565
stamens, 344	temperate forest, 564	trophoblast, 483 , 496
J. J		

tropical rainforests, 548 tumor suppressor gene, 150 Tumor suppressor genes, 144 tunicate, 398 tunicates, 383 U unified cell theory, 59, 87 unsaturated fatty acid, 44, 53 up-regulation, 422, 444 ureter, 407, 444 urethra, 407, 444 urinary bladder, 407, 444 Urochordata, 383, 398 Urodela, 388, 398 uterus, 487, 496 V vaccine, 455, 473 vacuole, 87 vacuoles, 67 vagina, 487, 496 van der Waals interaction, 53 van der Waals interactions, 33 variable, 20, 25 variation, 252, 270 vascular plant, 352 Vascular plants, 331 vein, 444 Veins, 420 ventricle, 417, 444 vertebral column, 382, 398, 428, 444 vesicle, 87 Vesicles, 67 vestigial structure, 270 vestigial structures, 259 vicariance, 263, 270 viral envelope, 451, 473 virion, 451, 473 virion, 451, 473 virionrity, 482, 496	Whole genome sequencing, 238 whole genome sequencing, 245 wild type, 187, 195 X X inactivation, 166, 171 X-linked, 188, 195 Xylem, 334 xylem, 352 Y yeast, 320 yeasts, 312 Z zero population growth, 505, 526 zona pellucida, 483, 496 Zygomycota, 314, 320
W 1482, 496	
water vascular system, 380, 398 wavelength, 123, 132 wetland, 565 Wetlands, 562 whisk fern, 352 whisk ferns, 336 white blood cell, 457, 473 white-nose syndrome, 580, 590	