question 3

1. A vector's degree of freedom depends upon the indepedent basis vector. Hence a vector having n independent basis has n degree of freedom

2

1 We take a cross product of a and b. With the right hand rule we know that the resulting cross vector of \vec{a} and \vec{b} will be a vector orthogonal to A and B. Lets assume the resulting vector of aXb to be \vec{d} . For \vec{c} to be parallel to vector \vec{a} and \vec{b} the vector \vec{c} has to be perpendicular to \vec{d}

Hence the constrant equation for c is $\vec{c} \cdot \vec{d}$ = 0

or
$$\vec{c} \cdot (\vec{a} imes \vec{b})$$
 = 0

Degree of Freedom= \vec{c} has two degree of freedoms as it can move in two directons perpendicular to \vec{d}

2 Similar to previous answer for previous question for vector \vec{c} to be perpendicular, \vec{c} has to be parallel to \vec{d} Hence $\vec{c} \times (\vec{a} \times \vec{b})$ = 0

Degree of Freedom= \vec{c} has one degree of freedom as it can only move in the direction of \vec{d} which is perpendicular to $(\vec{a} \times \vec{b})$

1 of 2

2 of 2