# Ames Housing Sale Price Prediction Model

Ling Chong Gold

# Agenda

- Background
- Methodology
- Problem Statement
- Gather and Data Cleaning
- Exploring Data
- Model Data
- Second Iteration
- Third Iteration
- Conclusion

## Background

- 2 datasets of Aimes Iowa Housing Dataset was Provided
- Test dataset consists of 80 columns and 879 rows
- Create a model for price prediction
- Refine and improve the model
- Score is calculated based on the Root Mean Square Error after submission to Kaggle

#### Methodology Define Problem Gather Data Explore Data Answer Evaluate Model \* Three Problem Model Data Iterations

## **Problem Statement**

 From the Ames Housing dataset, create a model to predict the sale price and perform improvements to the model after it is created

|   | ld  | PID       | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | <br>Screen<br>Porch | Pool<br>Area | Pool<br>QC | Fence | Misc<br>Feature | Misc<br>Val |   | Yr<br>Sold | Sale<br>Type |
|---|-----|-----------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|---------------------|--------------|------------|-------|-----------------|-------------|---|------------|--------------|
| 0 | 109 | 533352170 | 60             | RL           | 69.017462       | 13517       | Pave   | None  | IR1          | Lvl             | <br>0               | 0            | None       | None  | None            | 0           | 3 | 2010       | WD           |
| 1 | 544 | 531379050 | 60             | RL           | 43.000000       | 11492       | Pave   | None  | IR1          | Lvl             | <br>0               | 0            | None       | None  | None            | 0           | 4 | 2009       | WD           |
| 2 | 153 | 535304180 | 20             | RL           | 68.000000       | 7922        | Pave   | None  | Reg          | Lvl             | <br>0               | 0            | None       | None  | None            | 0           | 1 | 2010       | WD           |
| 3 | 318 | 916386060 | 60             | RL           | 73.000000       | 9802        | Pave   | None  | Reg          | Lvl             | <br>0               | 0            | None       | None  | None            | 0           | 4 | 2010       | WD           |
| 4 | 255 | 906425045 | 50             | RL           | 82.000000       | 14235       | Pave   | None  | IR1          | Lvl             | <br>0               | 0            | None       | None  | None            | 0           | 3 | 2010       | WD           |



# Gathering and Clean Data

- Data was provided and there were quite a number of null values
- 3 Row with Null Values Exclusive to Train dataset was dropped
- Most of the null values are due to Python recognizing NA as null (They are filled with 'None' or 0 dependent on the columns data type)
- Lot Frontage has a total of 490 null values

(They are filled with the mean)



## Exploring Data and Feature Engineering

A column for Total Finished Basement Square Feet was created

(Basement Finish Square Feet 1 + Basement Finish Square Feet 2)

Garage Cars Column was dropped

(Details can be inferred from Garage Area)

- A column for Age When Sold was created (Year Sold – Year Built)
- Ordinal Encoding was performed for Columns Depicting Quality

(Central Air, Electrical, Functional)

One Hot Encoding was performed for columns with discrete object values

```
train_cols = train.columns
test_cols = test.columns

for col in train_cols:
    if col not in test_cols:
        test[col] = 0
        test[col] = test[col].astype('uint8')

for col in test_cols:
    if col not in train_cols:
        train[col] = 0
        train[col] = train[col].astype('uint8')

print(train.shape)
print(test.shape)
```

```
train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2048 entries, 0 to 2047
Columns: 223 entries, Id to MS SubClass_SPLIT OR MULTI-LEVEL
dtypes: float64(20), int64(39), uint8(164)
memory usage: 1.2 MB

test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 879 entries, 0 to 878
Columns: 222 entries, Id to MS SubClass_1-1/2 STORY PUD - ALL
AGES
dtypes: float64(20), int64(38), uint8(164)
memory usage: 539.2 KB
```

#### Model Data – 1<sup>st</sup> Iteration



- Features higher than 0.5 in correlation with sale price is selected and heatmap plotted
- 9 features were selected base on
  - Their correlation with sale price
  - They are not correlated with each other
  - If 2 features are correlated with each other the one with a higher correlation with sale price is selected
- Interaction terms related to selected will be created during the next iteration

#### Model Data – 1<sup>st</sup> Iteration



- Outliers was discovered based on scatterplot
- These outliers will be removed during the next iteration



- 1 unit increase in Age After
   Remodeled When Sold is equals to
   around 8000 decrease in Sale Price
- 1 unit increase in Age When Sold is equals to around 5000 decrease in Sale Price

## Model Data – 2<sup>nd</sup> Iteration



- High Quality Finish Area was created
- Lot Size Overall Quality was created
- Garage Overall was created
- Fireplace Overall was created
- Sale Overall Condition created
- Heatmap was plotted again
- Top 9 features was selected using the same methodology during the first iteration

#### Model Data – 2<sup>nd</sup> Iteration



- 1 unit increase in Sale Overall Condition is equals to around 1000 decrease in Sale Price
- 1 unit increase in Age When Sold is equals to around 4000 decrease in Sale Price

## Model Data - 3<sup>rd</sup> Iteration



- Top 9 features was selected and Polynomial Feature was performed on them
- Another heatmap was plotted for visualization and select the best predictors based on the same methodology as per previous iterations
- 6 features was selected

## Model Data – 3<sup>rd</sup> Iteration



- 1 unit increase in Age When Sold is equals to around 10000 decrease in Sale
   Price
- 1 unit increase in the interaction between Overall Qual and Lot Size Overall Qual is equals to around 14000 increase in Sale Price

# Prediction and Residual Scatter – (Train Test Split)







- You would want to see that the points are heteroscedastic signifying that your error rate is consistent
- The second iteration performed better than the first, however the error increased as predicted price increase
- The third iteration is the best when predicted price is low, but declined when predicted price is high

Prediction and Actual Scatter – (Train Test Split)







- You would want to see that the points are highly correlated
- The second iteration performed better than the first, as the predicted price increase, the points get scattered
- The third iteration is the best when predicted price is low, but the points are scattered more when the predicted price is high

#### Conclusion

- The first model submitted to Kaggle for scoring:
  - Public Score : 30, 596- Private Score : 34, 528
- The second model submitted to Kaggle for scoring
  - Public Score: 26, 639 - Private Score: 39, 360
- This means that the second model is not generalized enough.
- The first model is more generalized despite the higher error rate
- I will consider the first model as a better model
- More improvements can be made iterating from the first model