Politecnico di Milano – Facoltà di Ingegneria dei Sistemi – A.A. 2011/2012 Corso di Laurea in Ingegneria Fisica – Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica Primo appello di Metodi Analitici (13-2-12) – Prof. I. FRAGALÀ

I. ANALISI COMPLESSA

Calcolare

$$\int_{C_1(0)} \left(\frac{1}{z} + \frac{1}{\cos z} + \frac{\sin z}{z} + e^{1/z^2} \right) dz ,$$

dove $C_1(0)$ è la circonferenza di centro l'origine e raggio 1 percorsa una volta in senso antiorario.

Soluzione. Esaminiamo le singolarità della funzione integranda f(z) all'interno di $C_1(0)$.

- $\bullet\,$ La funzione $\frac{1}{z}$ ha una singolarità isolata nell'origine (polo semplice con residuo 1).
- La funzione $\frac{1}{\cos z}$ ha singolarità isolate nei punti del tipo $\frac{\pi}{2} + k\pi$, nessuna delle quali cade all'interno di $C_1(0)$.
- La funzione $\frac{\sin z}{z}$ ha una singolarità isolata nell'origine (singolarità eliminabile con residuo 0).
- La funzione e^{1/z^2} ha una singolarità isolata nell'origine (singolarità essenziale con residuo 0, in quanto la funzione è pari).

Pertanto per il teorema dei residui si ha

$$\int_{C_2(0)} f(z) dz = 2\pi i .$$

II. ANALISI FUNZIONALE

Si consideri la successione di funzioni

$$f_n(x) := \frac{1}{n} \chi_{[0,n]}(x) \qquad \forall x \in \mathbb{R} ,$$

dove $\chi_{[0,n]}$ indica la funzione caratteristica dell'intervallo [0,n].

Stabilire per quali $p \in [1, +\infty]$ la successione f_n converge in $L^p(\mathbb{R})$ e per tali valori di p si determini il limite in $L^p(\mathbb{R})$.

Soluzione. La successione f_n converge a zero puntualmente. Inoltre $||f_n||_{L^{\infty}} = \frac{1}{n}$, e pertanto $f_n \to 0$ in $L^{\infty}(\mathbb{R})$. Per $p \in [1, +\infty)$, si ha

$$||f_n||_{L^p}^p = \int |f_n|^p = \frac{1}{n^p} \cdot n = n^{1-p} .$$

Pertanto, per ogni p > 1, si ha $f_n \to 0$ in $L^p(\mathbb{R})$. D'altra parte f_n non converge in $L^1(\mathbb{R})$: infatti, se ammettesse un limite in $L^1(\mathbb{R})$, tale limite dovrebbe essere necessariamente 0 dato che $f_n \to 0$ puntualmente, ma l'uguaglianza sopra mostra che $||f_n||_{L^1} = 1$ per ogni n.

III. SERIE/TRASFORMATA DI FOURIER

Determinare tutte le soluzioni in $L^2(\mathbb{R})$ dell'equazione differenziale

$$u''(x) + u(x) = (4x^2 - 1)e^{-x^2}$$
 per q.o. $x \in \mathbb{R}$.

Soluzione. Trasformando ambo i membri dell'equazione, si ottiene

$$(1-\xi^2)\widehat{u}(\xi) = -4\frac{d^2}{d\xi^2} \left(\sqrt{\pi}e^{-\frac{\xi^2}{4}}\right) - \sqrt{\pi}\,e^{-\frac{\xi^2}{4}} = \sqrt{\pi}\,e^{-\frac{\xi^2}{4}}(1-\xi^2) \ .$$

Pertanto $\widehat{u}(\xi) = \sqrt{\pi} \, e^{-\frac{\xi^2}{4}} \in L^2(\mathbb{R}) \Rightarrow u(x) = e^{-x^2} \in L^2(\mathbb{R}).$ La soluzione trovata è l'unica soluzione in $L^2(\mathbb{R})$ (per la biunivocitá della trasformata di Fourier in $L^2(\mathbb{R})$).