Métodos Estatísticos Básicos

Aula 9 - Valor esperado e variância

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

31 de agosto de 2020

Conteúdo

Valor esperado Propriedades do valor esperado

Variância Propriedades da variância

Desigualdade de Tchebycheff

Coeficiente de correlação

Valor esperado condicionado

Lei dos grandes números

Valor esperado

Variável aleatória discreta:
$$E(x) = \sum_{i=1}^{\infty} x_i p(x_i)$$

Variável aleatória contínua:
$$E(x) = \int_{-\infty}^{+\infty} x f(x) dx$$

Propriedades do valor esperado

- 1. E(c) = c
- 2. E(cX) = cE(X)
- 3. E(X + Y) = E(X) + E(Y)
- 4. $E(X_1 + \ldots + X_n) = E(X_1) + \ldots + E(X_n)$
- 5. Se X e Y são independentes, então E(XY) = E(X).E(Y)

Variância

A variância de uma variável aleatória X, denotada V(X) ou σ_x^2 , é dada por:

$$V(X) = E[X - E(X)]^{2} = E(X^{2}) - [E(X)]^{2}$$

A raiz quadrada de V(X) é o desvio-padrão da variável aleatória X, denotado σ_{x}

Propriedades da variância

- 1. V(X + c) = V(X)
- 2. $V(cX) = c^2 V(X)$
- 3. Se X e Y foram independentes, então V(X+Y)=V(X)+V(Y)

Desigualdade de Tchebycheff

• Se X for uma variável aleatória com $E(X) = \mu$ e $E(X - c)^2$ for finita, sendo c qualquer número real e ϵ qualquer número positivo, então:

$$P[|X-c| \ge \epsilon] \le \frac{1}{\epsilon^2} E(X-c)^2$$

- Alternativamente, $P[|X-c|<\epsilon]\geq 1-\frac{1}{\epsilon^2}E(X-c)^2$
- Se $c = \mu$, então $P[|X \mu| \ge \epsilon] \ge \frac{V(X)}{\epsilon^2}$
- Se $c = \mu$ e $E = K\sigma$, então $P[|X \mu| \ge K\sigma] \le K^{-2}$

Coeficiente de correlação

A correlação entre duas variáveis aleatórias X e Y é dada por:

$$\rho_{XY} = \frac{E(XY) - E(X)E(Y)}{\sqrt{V(X)V(Y)}} = \frac{Cov(XY)}{\sigma_x \sigma_y}$$

sendo
$$-1 \le \rho \le 1$$

Valor esperado condicionado

Valor esperado condicional:

- Se X e Y são discretas: $E(X|Y_i) = \sum_{i=1}^{\infty} x_i p(x_i|y_i)$
- Se X e Y são contínuas: $E(X|Y) = \int_{-\infty}^{+\infty} x f(x|y) dx$

Propriedades:

- 1. E[E(X|Y)] = E(X) e E[E(Y|X)] = E(Y)
- 2. E[E(Y|X,Z)|X] = E[Y|X]
- 3. Se X e Y são independentes, então E(X|Y) = E(X) e E(Y|X) = E(Y)

Lei dos grandes números

Considere n repetições independentes de um experimento e seja n_A o número de vezes em que um envento A ocorre nessas n repetições. Façamos $f_A = n_A/n$ e seja P(A) = p, então, para qualquer número positivo ϵ , temos:

$$P[|f_A - p| \ge \epsilon] \le \frac{p(1-p)}{n\epsilon^2}$$
, ou $P[|f_A - p| < \epsilon] \ge 1 - \frac{p(1-p)}{n\epsilon^2}$

- Com isso, definimos limites inferiores e superiores para a distância de f_A da real probabilidade p, de modo que quando n aumenta, f_A converge para p
- Este resultado decorre da desigualdade de Tchebycheff