基于在线裁判的编程学习系统 设计思维:原型展示

何雨菁 孙秋实 章可儿 郑佳辰 朱汉伦

华东师范大学 数据科学与工程学院

2020年7月31日

- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作

- ① 愿景和意义 项目来源 需求调研
- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作

0000000000

- 1 愿景和意义 项目来源

- 4 设计思维体现

4 / 44

0000000000 项目来源

愿景和意义

00000000000 项目来源

愿景和意义

00000000000 项目来源

愿景和意义

项目灵感

- ① 愿景和意义 项目来源 需求调研
- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作

调研结果分析

传统计算机通识教育满意程度

愿景和意义

0000000000 需求调研

用户在学习中遇到的困难

0000000000

用户对在线自主学习系统的意愿

- ② 创新性 初学者为导向 多种指导模式
- 3 可行性
- 4 设计思维体现
- 5 团队协作

- 1 愿景和意义
- ② 创新性 初学者为导向 多种指导模式
- 3 可行性
- 4 设计思维体现
- 5 团队协作

两种不同的探索模式

● 支持多种编程语言 ✓

基于在线裁判的编程学习系统

- 支持多种编程语言 ✓
- 零基础上手,不需要任何纸质教材 ✓

- 支持多种编程语言 ✓
- 零基础上手, 不需要任何纸质教材 ✓
- 系统指导学生进行纠错 ✓

- 1 愿景和意义
- ② 创新性 初学者为导向 多种指导模式
- 3 可行性
- 4 设计思维体现
- 5 团队协作

原景和意义回行性回行性回行性回行性回行性回行<

• 教程式学习

创新性 可行性 ○○○○**○○○○**○○

可行性 0000000000 设计思维体现 0000

多种指导模式

● 教程式学习 ✓

- 教程式学习 ✓
- 自由探索式学习

21 / 44

- 教程式学习 ✓
- 自由探索式学习
 - 基于内容过滤的推荐算法

- 教程式学习 ✓
- 自由探索式学习
 - 基于内容过滤的推荐算法
 - 基于深度学习的推荐算法

Design Thinking Online Judge 口首页 口问题	ロ 练习&比赛	口 状态	口 排名口	ロ 关于ロ	Usersname □		
A+B Problem				□ Submiss	□ Submissions		
相似题目推荐					ロ 題目信息	□ 题目信息	
根据此题和其它题目的相似度,为您推荐以下几道题型类似的题目:					ID	1-1	
1-3 FJ的字符串					时间限制	1000MS	
1-8 高精度加法					内存限制	256MB	
1-11 阶乘计算					IO 类型	Standard IO	
描述					出題人	root	
请计算两个整数的和并输出结果。					难度 标签	Low	
注意不要有不必要的输出、比如"请输入 a 和 b 的值: "。					10/202	Snow	
输入					□ Statistic	Details	
一行两个整数。							
输出							
一个整数表示答案。							
输入样例 1 口	输出样例 1						
1 1	2						

- 1 愿景和意义
- 2 创新性
- ③ 可行性 依托现有的开源 OJ 进行改进 推荐系统效能检验
- 4 设计思维体现
- 5 团队协作

- 1 愿景和意义
- 2 创新性
- ③ 可行性 依托现有的开源 OJ 进行改进 推荐系统效能检验
- 4 设计思维体现
- 5 团队协作

以开源项目为基础进行功能扩充

- 1 愿景和意义
- 2 创新性
- ③ 可行性 依托现有的开源 OJ 进行改进 推荐系统效能检验
- 4 设计思维体现
- 5 团队协作

Precision

推荐系统效能检验

Precision

precision
$$=\frac{\sum u \in U|R(u) \cap T(u)|}{|R(u)|}$$

可行性

000000000

Precision √

可行性 000000000

- Precision √
- Recall

Recall

$$\mathsf{Recall} \ = \frac{\sum u \in U | R(u) \cap T(u) |}{|T(u)|}$$

可行性

000000000

Precision √

推荐系统效能检验

- Precision √
- Recall √

基于在线裁判的编程学习系统

可行性

- Precision √
- Recall √
- F1-score

$$F_1$$
 – Score

$$F_1 - Score = 2 \cdot \frac{\mathsf{precision} \cdot \mathsf{recall}}{\mathsf{precison} + \mathsf{recall}}$$

可行性

- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作

从发散到收敛

• 问题定义:初学者学习编程过程中遇到的问题

- 问题定义: 初学者学习编程过程中遇到的问题
- 发散思维:没有合适的课程资源,看不懂编译器的提示,不知道如何开始.没有计算机基础

- 问题定义:初学者学习编程过程中遇到的问题
- 发散思维:没有合适的课程资源,看不懂编译器的提示,不 知道如何开始, 没有计算机基础
- 可视化: 目前已完成原型界面设计

- 问题定义: 初学者学习编程过程中遇到的问题
- 发散思维: 没有合适的课程资源,看不懂编译器的提示,不知道如何开始. 没有计算机基础
- 可视化: 目前已完成原型界面设计
- 评估 & 优化: 上线后逐步优化推荐算法, 并细化标签

- 问题定义:初学者学习编程过程中遇到的问题
- 发散思维:没有合适的课程资源,看不懂编译器的提示,不 知道如何开始, 没有计算机基础
- 可视化: 目前已完成原型界面设计
- 评估 & 优化: 上线后逐步优化推荐算法, 并细化标签
- 实践: 预计今年九月份上线, 吸收第一波使用者

设计思维初步过程

• 理解: 基于学习者的学习痕迹, 个性化地为他们推荐练习题

- 理解: 基于学习者的学习痕迹, 个性化地为他们推荐练习题
- 观察: 详见问卷调查分析

- 理解: 基于学习者的学习痕迹, 个性化地为他们推荐练习题
- 观察: 详见问卷调查分析
- 可视化: 目前已完成原型界面设计, 正考虑用户行为可视化

- 理解: 基干学习者的学习痕迹, 个性化地为他们推荐练习题
- 观察: 详见问卷调查分析
- 可视化: 目前已完成原型界面设计, 正考虑用户行为可视化
- 评估: 使用多个指标衡量推荐算法效能

设计思维体现

0000

- 理解: 基干学习者的学习痕迹, 个性化地为他们推荐练习题
- 观察: 详见问卷调查分析
- 可视化: 目前已完成原型界面设计, 正考虑用户行为可视化
- 评估:使用多个指标衡量推荐算法效能
- 优化: 上线后逐步优化推荐算法, 并细化标签

- 理解: 基于学习者的学习痕迹, 个性化地为他们推荐练习题
- 观察: 详见问卷调查分析
- 可视化: 目前已完成原型界面设计, 正考虑用户行为可视化
- 评估:使用多个指标衡量推荐算法效能
- 优化: 上线后逐步优化推荐算法, 并细化标签
- 实践: 预计今年九月份上线并开展宣传, 实践中完善产品

"双钻"模型

- 1 愿景和意义
- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作 团队协作平台 成员分工

- 1 愿景和意义
- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作 团队协作平台 成员分工

Link:https://github.com/DesignThinking-OJ

团队协作平台

- 1 愿景和意义
- 2 创新性
- 3 可行性
- 4 设计思维体现
- 5 团队协作 团队协作平台 成员分工

• (18) 何雨菁: Web 开发

基于在线裁判的编程学习系统

- (18) 何雨菁: Web 开发
- (18) 孙秋实: 教程式学习的设计与实现, 项目文档

- (18) 何雨菁: Web 开发
- (18) 孙秋实: 教程式学习的设计与实现, 项目文档
- (18) 章可儿: 教程式学习的设计与实现

- (18) 何雨菁: Web 开发
- (18) 孙秋实: 教程式学习的设计与实现. 项目文档
- (18) 章可儿: 教程式学习的设计与实现
- (18) 郑佳辰: 推荐算法设计

- (18) 何雨菁: Web 开发
- (18) 孙秋实: 教程式学习的设计与实现, 项目文档
- (18) 章可儿: 教程式学习的设计与实现
- (18) 郑佳辰: 推荐算法设计
- (19) 朱汉伦: 系统 (体验) 测试员, 数据采集

• (18) 何雨菁: 界面设计

- (18) 何雨菁: 界面设计
- (18) 孙秋实: Slides 制作, 主讲

- (18) 何雨菁: 界面设计
- (18) 孙秋实: Slides 制作, 主讲
- (18) 章可儿: 界面设计

- (18) 何雨菁: 界面设计
- (18) 孙秋实: Slides 制作, 主讲
- (18) 章可儿: 界面设计
- (18) 郑佳辰: 情景设计

- (18) 何雨菁: 界面设计
- (18) 孙秋实: Slides 制作, 主讲
- (18) 章可儿: 界面设计
- (18) 郑佳辰: 情景设计
- (19) 朱汉伦: 知识点梳理

Questions!