Daniel **Fitz** (43961229)

University Of Queensland

CSSE4010 - Digital System Design

ENGG2800 Lecture Notes

Table of Contents_____

What this subject covers	2
Introduction to moden design methodology	2
Modern FPGAs	2
How to succeed?	2
Logic Minimization with Karnaugh Maps	2
Circuit Minimization	2
Truth Tables, Minterms	3
The Combining Property	3
Visualizing the Combining Property	3
3 Variable Map	3
The formal Karnaugh Map Method	4
4 Variable Maps	4
Terminology	4
Essential Prime Implicants	4
Dont Care Conditions	4
Karnaugh Map Method Restated	5
Tutes	6
Tute 1	6
List of Tables	
Placeholder for table of contents	0
List of Figures	
Placeholder for table of contents	0

What this subject covers_____

- Combinational Circuit Design
 - Minimisation by manipulation of Boolean expressions
 - Two level and multilevel implementation of logic
 - MSI building blocks: multiplexers, decoders, ROM's and PLA's, parity blocks, etc
 - Arithmetic circuits
 - Timing problems in combinational circuits, hazards
- Sequential Circuit Design
 - Revised basic latches and flip-flops (FF), latch / FF timing and triggering
 - Sequential (Finite State Machine) advanced design methods
 - MSI sequential parts: registers, shift registers, counters, memories, special functions
 - · Principles of bus design
 - Controller-data path design methodology
 - Design for testability
 - Computer synthesis and optimization tools
- VHDL VHSIC Hardware Description Language
 - · A Language for describing digital systems
 - · Concepts of digital circuit simulation and synthesis
 - Skills with VHDL in simulation, synthesis and test → (Register Transfer Level) RTL design in VHDL
- Technology
 - Field Programmable Gate Arrays

Introduction to moden design methodology

![FPGA](sem2-2017/csse4010/FPGA.png)₅₀

Modern FPGAs

- · Millions of usable gates
 - Memory blocks on chip
 - DSP blocks
 - Processors (hard and soft cores)
- Integrated development
 - From 'C' or VHDL
 - From Matlab and Simulink
- Ready to compete with ASICs (Application Specific Integreated Circuits)

How to succeed?

- Structured design methodology
 - Start at high level of abstraction
 - · Start simulation as early as possible
 - Make prototypes on FPGAs
- Integrated CAD tools
 - Simulation, synthesis, test, emulation, documentation
- Knowledgeable designers

Logic Minimization with Karnaugh Maps Circuit Minimization

- Algebraic manipulations can be used to simplify Boolean expressions
 - As we've seen, this process is not always easy

- Karnaugh maps (K-maps) provide an easy and visual technique for finding the minimum cost SOP (or POS) form for a Boolean expression
 - This technique has limitations, i.e. works for number inputs less than 7
 - Not good for CAD tools, but good for teaching the idea of simplification

Truth Tables, Minterms

Consider majority function - output D=1, if at least 2 inputs are 1

Α	В	С	D	Minterm	Minterm number
0	0	0	0	A'B'C'	m_0
0	0	1	0	A'B'C	m_1
0	1	0	0	A'BC'	m_2
0	1	1	1	A'BC	m_3
1	0	0	0	AB'C'	m_4
1	0	1	1	AB'C	m_5
1	1	0	1	ABC'	m_6
1	1	1	1	ABC	m_7
	$D = \Sigma m(3)$	(5,5,6,7) = A'B	BCAB'C + A	BC' + ABC	

The Combining Property

• Recall the combining property

$$xyxy' = x(y+y') = x$$

• Example:

$$f = x1'x2'x3'x1'x2x3' + x1x2'x3' + x1x2'x3$$

= $m0 + m2 + m4 + m5$

- Minterms m0 and m2 differ in only one variable (x2)
 - m0 and m2 can be combined to get x1'x3'
 - Reduced fan in and reduced number of gates
- Hence, f = x1'x3' + x1x2' (still SOP but not canonical)

Visualizing the Combining Property

Minimum form: f=x1'+x2

3 Variable Map

$f(A, B, C) = \Sigma m(1, 2, 6, 7)$					
A\BC	00	01	11	10	
0	0	1	0	(lightblue) 1	
1	0	0	1	(lightblue) 1	

Minimum SOP is:

$$f = ABBC' + A'B'C$$

Gray Code: any two consecutive numbers differ in only a single bit

A\BC	00	01	11	10		
0	0	0	1	1		
1	1	1	0	0		
$f = A'B + AB'(A \oplus B)$						
۸۱۵۵	00	0.4	44	40		
A\BC	00	01	11	10		
0	0	1	1	0		
1	1	0	0	1		

The formal Karnaugh Map Method

- 1) Choose a 1 element
- 2) Find all maximal groups of 1's adjacent to that element
 - Note: "box" must be a power of 2 in size
- 1) Repeat steps 1-2 for all 1 elements
- 2) Select all boxes for which a 1 is "covered" by only that box
 - These boxes are essential!
- 1) For all 1's not covered by the essential boxes, select the smallest number of other boxes that cover them
 - In case of a choice, select the largest box!

4 Variable Maps

Tanabio mapo	f(A, B, C, D) =	$=\Sigma m(0,1,2,3,6)$	3, 8, 9, 11, 13, 14	
AB\CD	00	01	11	10
00	1	1	1	1
01	0	0	0	1
11	0	1	0	1
10	1	1	1	0
	f = AC'D +	-BCD'+B'C' -	+B'D+A'B'	

Terminology

- An **implicant** is a product term in an SOP expression (or a sum term in POS expression)
 - Implicants are always rectangular in shape and the number of 1's covered is a power of 2
- A **prime implicant** is an implicant that is not fully contained in some other larger implicant ![Prime Implicant](sem2-2017/csse4010/implicant.png)₇₅

Essential Prime Implicants

- An essential prime implicant is a prime implicant that contains a 1 not included in any other prime implicant
 - The minimum Boolean expression must use this term
- A cover is a collection of implicants that accounts for all valuations in which the function is "on" (e.g. 1)

Dont Care Conditions

- Many times there are incompletely specified conditions
 - Valuations that can never occur, or for which we "don't care what the device does"
- Modeling such a device requires us to specify don't care conditions in those instances
 - Use X as a value to indicate we don't care what happens
- Don't care situations are often called incompletely specified functions

	$f(A, B, C, D) = \sum m(1, 5, 8, 9, 10)d(3, 7, 11, 15)$			
AB\CD	00	01	11	10
00	0	1	X	0
01	0	1	X	0

11	0	0	Χ	0
10	1	1	X	1
f = AB' + A'D				

Karnaugh Map Method Restated

- 1) Choose an element from the "on" set
- 2) Find all maximal groups (prime implicants) of "on" elements and X elements adjacent to that element Note 1: prime implicants are always a power of 2 in size

 Note 2: do not feel compelled to include X's use them only when they provide a larger implicant
- 1) Repeat steps 1-2 for all elements in the "on" set
- 2) Select all essential prime implicants
- 3) For all elements of the "on" set not covered by the essential prime implicants, select the smallest number of prime implicants that cover them

Tutes _____

		I	nputs	Outputs	
М	In ₀	lı	n ₁	Out	
0	0	C)	0	
0	0	1		1	
0	1	C)	0	
0	1	1		1	
1	0	C)	0	
1	0	1		0	
1	1	C)	1	
1	1	1		1	
$M \setminus I_1I_0$	00	01	11	10	
0	0	1	1	0	
1	0	0	1	1	
	$Out = \overline{\langle} sub \rangle$	M < /sub >	I < u > 0M	I < /u > 1	