4. Exercise

Timo Bergerbusch 344408 Thomas Näveke 311392 Shu Xing 381176

27.11.2017

Exercise 4.1

1.

 T_1 and T_2

 $T_1 \subseteq T_2$?

Find mapping
$$h:T_2\to T_1,x\mapsto \begin{cases} b_3&x=b_1\\5&x=b_2\\b_4&x=b_3\\b_3&x=b_4\\a_1&x=a_1\\a_2&x=a_2 \end{cases} \Rightarrow T_1\subseteq T_2$$

$$T_2 \subseteq T_1$$
?

Impossible since we would have to map the constant 5 to an other constant and T_2 does not contain a constant. So $T_2 \not\subseteq T_1$

Overall

 \Rightarrow $T_1 \subset T_2$, but $T_2 \not\subseteq T_1$ and therefore $T_1 \not\equiv T_2$

$\underline{T_2}$ and $\underline{T_3}$

 $T_2 \subseteq T_3$?

 $T_3 \subseteq T_3$?

Overall

T_1 and T_3

 $T_1 \subseteq T_3$?

 $T_3 \subseteq T_3$?

Analogously to $T_2\subseteq T_1$ we would have to map the constant 5 to an other constant and T_3 does not contain a constant. So $T_3\not\subseteq T_1$

Overall

 \Rightarrow $T_1 \not\subseteq T_3, T_3 \not\subseteq T_1$ and therefore especially $T_1 \not\equiv T_3$

2.