De-scoped PICO r statistics

Aditya Rotti

Case	Moments	Parame
cMILC00	$I_{ m CMB}$	1
cMILC01	$I_{ m CMB} \; ; \; I_{ m sync}$	2
cMILC02	$I_{ m CMB} \; ; \; I_{ m dust}$	2
cMILC03	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust}$	3
cMILC04	$I_{ m CMB} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	3
${\rm cMILC05}$	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	4
cMILC06	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust} \; ; rac{dI_{ m sync}}{deta} \; ; rac{dI_{ m dust}}{deta} \; ({ m H})$	5
${\rm cMILC07}$	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust} \; ; rac{dI_{ m sync}}{deta} \; ; rac{dI_{ m dust}}{deta} \; ; rac{dI_{ m dust}}{dT}$	6
cMILC08	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust} \; ; rac{dI_{ m sync}}{deta} \; ; rac{dI_{ m dust}}{deta} \; ; rac{dI_{ m dust}}{dT} \; ; rac{d^2I_{ m dust}}{d^2T}$	7
cMILC09	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	7
cMILC10	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$	8
cMILC11	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	8
cMILC12	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$	9
cMILC13	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$ (H)	9
cMILC14	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2\beta}$	10

		$r_{ m bias}$	σ_r	r_{95}	SNR		
Case	Alens						
cMILC00	0.0	0.00042	0.00025	0.00096	1.72351		
	0.3	0.00087	0.00078	0.00261	1.11850		
	0.6	0.00096	0.00138	0.00408	0.69622		
	0.9	0.00099	0.00200	0.00552	0.49516		
cMILC01	0.0	0.00042	0.00025	0.00096	1.72503		
	0.3	0.00079	0.00077	0.00251	1.03168		
	0.6	0.00086	0.00138	0.00396	0.62416		
	0.9	0.00088	0.00200	0.00540	0.43888		
cMILC02	0.0	0.00004	0.00024	0.00057	0.17917		
	0.3	0.00067	0.00104	0.00299	0.64639		
	0.6	0.00165	0.00169	0.00538	0.98147		
	0.9	0.00219	0.00225	0.00720	0.97358		
cMILC03	0.0	0.00003	0.00025	0.00058	0.13816		
	0.3	0.00066	0.00104	0.00297	0.63507		
	0.6	0.00164	0.00168	0.00536	0.97578		
	0.9	0.00217	0.00225	0.00717	0.96775		
cMILC04	0.0	0.00024	0.00035	0.00100	0.68209		
	0.3	0.00031	0.00113	0.00287	0.27609		
	0.6	0.00134	0.00205	0.00591	0.65255		
	0.9	0.00244	0.00272	0.00846	0.89598		
cMILC05	0.0	0.00033	0.00037	0.00112	0.88920		
	0.3	0.00062	0.00115	0.00321	0.54222		
	0.6	0.00168	0.00191	0.00592	0.88009		
	0.9	0.00251	0.00250	0.00804	1.00670		
cMILC06	0.0	0.00028	0.00054	0.00149	0.52232		
	0.3	0.00047	0.00088	0.00242	0.53585		
	0.6	0.00058	0.00143	0.00378	0.40274		
	0.9	0.00061	0.00202	0.00516	0.30171		
cMILC07	0.0	0.00007	0.00206	0.00473	0.03338		
	0.3	0.00007	0.00221	0.00512	0.03183		
	0.6	0.00007	0.00257	0.00596	0.02790		
	0.9	0.00007	0.00300	0.00697	0.02353		
cMILC08	0.0	0.00007	NaN	NaN	NaN		
	0.3	0.00007	NaN	NaN	NaN		
	0.6	0.00007	NaN	NaN	NaN		
Continued on next page							

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
	0.9	0.00007	NaN	NaN	NaN
cMILC09	0.0	0.00019	0.00042	0.00110	0.45688
	0.3	0.00022	0.00324	0.00701	0.06874
	0.6	0.00018	0.00549	0.01164	0.03243
	0.9	0.00015	0.00716	0.01510	0.02054
cMILC10	0.0	0.00023	NaN	NaN	NaN
	0.3	0.00023	NaN	NaN	NaN
	0.6	0.00023	NaN	NaN	NaN
	0.9	0.00023	NaN	NaN	NaN
cMILC11	0.0	0.00283	0.00273	0.00855	1.03837
	0.3	0.00100	NaN	NaN	NaN
	0.6	0.00047	NaN	NaN	NaN
	0.9	0.00035	NaN	NaN	NaN
cMILC12	0.0	0.00078	NaN	NaN	NaN
	0.3	0.00078	NaN	NaN	NaN
	0.6	0.00078	NaN	NaN	NaN
	0.9	0.00078	NaN	NaN	NaN
cMILC13	0.0	0.00732	NaN	NaN	NaN
	0.3	0.00784	NaN	NaN	NaN
	0.6	0.00713	NaN	NaN	NaN
	0.9	0.00669	NaN	NaN	NaN
cMILC14	0.0	0.00267	NaN	NaN	NaN
	0.3	0.00267	NaN	NaN	NaN
	0.6	0.00267	NaN	NaN	NaN
	0.9	0.00267	NaN	NaN	NaN

- 1 Mask
- 2 Posterior plots

3 r constraints