- 1. (DF7.1.13) An element x in R is called *nilpotent* if $x^m = 0$ for some $m \in \mathbb{Z}^+$.
 - (a) Show that if $n = a^k b$ for some integers a and b then \overline{ab} is a nilpotent element of $\mathbb{Z}/n\mathbb{Z}$.

Proof. Suppose that $n=a^kb$ for some integers a and b. Then in the commutative ring $\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}/a^kb\mathbb{Z}$, the element \overline{ab} is nilpotent if there exists a positive integer m such that $\overline{ab}^m=\overline{a^mb^m}=\overline{0}$, which is equivalent to requiring that $a^mb^m\equiv 0\pmod{a^kb}$. Then we should have that $a^kb\mid a^mb^m$, and of course we can choose $m\geq k$ so that $a^kb\mid a^mb^m$. Since a suitable m does exist such that $(\overline{ab})^m=\overline{0}$, \overline{ab} is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

(b) If $a \in \mathbb{Z}$ is an integer, show that the element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if every prime divisor of n is also a divisor of a. In particular, determine the nilpotent elements of $\mathbb{Z}/72\mathbb{Z}$ explicitly.

Proof. Let a, n be integers, and let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ be the prime factorization of n for primes p_i . Suppose that every prime divisor of n is also a divisor of a. Observe that $p_1 p_2 \cdots p_s \mid a$, and let $\alpha = \max \{\alpha_i \mid 1 \le i \le s\}$. Then $p_1^{\alpha} p_2^{\alpha} \cdots p_s^{\alpha} \mid a^{\alpha}$, but due to our choice of α , $n \mid p_1^{\alpha} p_2^{\alpha} \cdots p_s^{\alpha}$. It follows that $n \mid a^{\alpha}$, so that $\overline{a^{\alpha}} = \overline{0}$, meaning that \overline{a} is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

Conversely, suppose that \overline{a} is nilpotent in $\mathbb{Z}/n\mathbb{Z}$; that is, there exists a positive integer α such that $\overline{a}^{\alpha} = \overline{0}$ so that $n \mid a^{\alpha}$. Since $a \in \mathbb{Z}$ and $p_i \mid n$, we must have that $p_i \mid a$, for $1 \leq i \leq s$. (If $p_i \nmid a$, then we arrive at a contradiction with the fact that $n \mid a^{\alpha}$ by taking $\alpha = \max\{\alpha_i \mid 1 \leq i \leq s\}$ and observing that $n \mid p_1^{\alpha} p_2^{\alpha} \cdots p_s^{\alpha}$ but $p_1^{\alpha} p_2^{\alpha} \cdots p_s^{\alpha} \nmid a^{\alpha}$.)

Hence $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if every prime divisor of n is also a divisor of a.

In $\mathbb{Z}/72\mathbb{Z} = \mathbb{Z}/2^33^2\mathbb{Z}$ it follows that every nilpotent element is of the form $\overline{2^i3^ja}$ for positive integers i, j, a, since 2 and 3 divide 2^i3^j . Explicitly, these are the elements whose integer representative is even and divisible by three; i.e., a multiple of 6:

$$\overline{0}, \overline{6}, \overline{12}, \overline{18}, \overline{24}, \overline{30}, \overline{36}, \overline{42}, \overline{48}, \overline{54}, \overline{60}, \overline{66}$$

(c) Let R be the ring of functions from a nonempty set X to a field F. Prove that R contains no nonzero nilpotent elements.

Proof. Let R be the ring of functions from a nonempty set X to a field F as given. Suppose by way of contradiction that R contains a nonzero nilpotent element q.

Because g is a nilpotent element of R, there exists a positive integer k such that g^k is the zero function $0_R \colon X \to F$ with $0_R(x) = 0_F$ for all $x \in X$.

We have that g is not the zero function 0_R , so that there exists $y \in X$ such that $g(y) \neq 0_F$. Then $g^k(y) = [g(y)]^k = 0_F$. But $g(y) \neq 0_F$ so that F contains a nonzero zero divisor, which is a contradiction. Hence R does not contain a nonzero nilpotent element g.

2. (DF7.1.21) Let X be any nonempty set and let $\mathcal{P}(X)$ be the set of all subsets of X (the power set of X). Define addition and multiplication on $\mathcal{P}(X)$ by

$$A + B = (A - B) \cup (B - A)$$
 and $A \times B = A \cap B$

i.e., addition is symmetric difference and multiplication is intersection.

(a) Prove that $\mathcal{P}(X)$ is a ring under these operations ($\mathcal{P}(X)$ and its subrings are often referred to as rings of sets).

Proof. Let X be a nonempty set and let $\mathcal{P}(X)$ be the power set of X as given with the operations of addition and multiplication as given above. Observe that the symmetric difference and intersection of subsets of X return subsets of X, so they are valid choices of binary operations.

Under the addition (symmetric difference) operation, $\mathcal{P}(X)$ is an abelian group. The additive identity is the empty set \emptyset : For any subset A of X,

$$\emptyset + A = (\emptyset - A) \cup (A - \emptyset) = \emptyset \cup A = A = A \cup \emptyset = (A - \emptyset) \cup (\emptyset - A) = A + \emptyset.$$

Addition is also associative: For any subsets A, B, C of X we have by lots of set algebra (writing S^c to mean the complement of S in X) that

$$A + (B + C) = A + ((B - C) \cup (C - B))$$

$$= [A - ((B - C) \cup (C - B))] \cup [((B - C) \cup (C - B)) - A]$$

$$= [(A \cap B^c \cap C^c) \cup (A \cap B \cap C)] \cup [(A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)]$$

$$= [(A^c \cap B \cap C^c) \cup (A \cap B^c \cap C^c)] \cup [(A^c \cap B^c \cap C) \cup (A \cap B \cap C)]$$

$$= [((A - B) \cup (B - A)) - C] \cup [C - ((A - B) \cup (B - A))]$$

$$= ((A - B) \cup (B - A)) + C$$

$$= (A + B) + C.$$

Each subset of X is its own additive inverse: For any subset A of X,

$$A + A = (A - A) \cup (A - A) = \emptyset.$$

Addition is also commutative: For any subsets A, B of X,

$$A + B = (A - B) \cup (B - A) = (B - A) \cup (A - B) = B + A.$$

With the power set of X being an abelian group under addition, the remaining ring axioms are checked for the multiplication given by intersection. Associativity of multiplication is immediate since set intersection is already associative; that is, for any subsets A, B, C of X, we have $(A \times B) \times C = (A \cap B) \cap C = A \cap (B \cap C) = A \times (B \times C)$.

The distributive laws hold: For any subsets A, B, C of X, we have

$$(A+B) \times C = [(A-B) \cup (B-A)] \times C$$

$$= (A \cap B^c \cap C) \cup (B \cap A^c \cap C)$$

$$= [(A \cap C \cap B^c) \cup (A \cap C \cap C^c)] \cup [(B \cap C \cap A^c) \cup (B \cap C \cap C^c)]$$

$$= [(A \cap C) \cap (B \cap C)^c] \cup [(B \cap C) \cap (A \cap C)^c]$$

$$= (A \cap C - B \cap C) \cup (B \cap C - A \cap C)$$

$$= (A \times C) + (B \times C)$$

and

$$A \times (B+C) = A \times [(B-C) \cup (C-B)]$$

$$= (A \cap B \cap C^c) \cup (A \cap C \cap B^c)$$

$$= [(A \cap B \cap C^c) \cup (A \cap B \cap A^c)] \cup [(A \cap C \cap B^c) \cup (A \cap C \cap A^c)]$$

$$= [(A \cap B) \cap (A \cap C)^c] \cup [(A \cap C) \cap (A \cap B)^c]$$

$$= (A \cap B - A \cap C) \cup (A \cap C - A \cap B)$$

$$= (A \times B) + (A \times C).$$

Hence $\mathcal{P}(X)$ is a ring under the operations of addition and multiplication given above.

(b) Prove that this ring is commutative, has an identity and is a Boolean ring.

Proof. The ring $\mathcal{P}(X)$ is commutative because set intersection is commutative; that is, $A \times B = A \cap B = B \cap A = B \times A$ for any subsets A, B of X.

The multiplicative identity in this ring is the subset X, since for any subset A of X, we have $A \times X = A \cap X = A = X \cap A = X \times A$.

Then for any subset A of X, we have $A^2 = A \times A = A \cap A = A$, from which it follows that $\mathcal{P}(X)$ is a Boolean ring.

3. (DF7.1.23) Let D be a squarefree integer, and let \mathcal{O} be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{D})$. For any positive integer f prove that the set $\mathcal{O}_f = \mathbb{Z}[f\omega] = \{a + bf\omega \mid a, b \in \mathbb{Z}\}$ is a subring of \mathcal{O} containing the identity. Prove that $[\mathcal{O} \colon \mathcal{O}_f] = f$ (index as additive abelian groups). Prove conversely that a subring of \mathcal{O} containing the identity and having finite index f in \mathcal{O} (as additive abelian groups) is equal to \mathcal{O}_f . (The ring \mathcal{O}_f is called the *order of conductor* f in the field $\mathbb{Q}(\sqrt{D})$. The ring of integers \mathcal{O} is called the *maximal order* in $\mathbb{Q}(\sqrt{D})$.)

Proof. Let \mathcal{O}_f be as given. It is clear that \mathcal{O}_f is a nonempty subset of \mathcal{O} because f is an integer. We check that this subset is closed under subtraction and multiplication:

For integers a, b, c, d we have $(a + bf\omega) - (c + df\omega) = (a - c) + (b - d)f\omega$, which is clearly an element of \mathcal{O}_f . Similarly, $(a + bf\omega)(c + df\omega) = ac + (ad + bc)f\omega + bdf^2\omega^2$, where

$$\omega^2 = \begin{cases} D & \text{if } D \not\equiv 1 \pmod{4} \\ \left(\frac{D-1}{4}\right) + \omega & \text{if } D \equiv 1 \pmod{4}, \end{cases}$$

and in either case we have an element of \mathcal{O}_f (when $D \equiv 1 \pmod{4}$) the product is the element $(ac + bdf^2(D - 1)/4) + (ad + bc + bdf)f\omega$).

Hence \mathcal{O}_f is a subring of \mathcal{O} , and it also inherits the same $1 = 1 + 0f\omega$ from \mathcal{O} which behaves the same way: $1(a + bf\omega) = (a + bf\omega)1 = a + bf\omega$.

To show that the index of \mathcal{O}_f in \mathcal{O} is f, we use the group homomorphism given by projection onto $\mathbb{Z}/f\mathbb{Z}$ which maps $a + bf\omega$ to \bar{b} . Since b was an arbitary integer, this map is surjective. We check that this map is a group homomorphism: For integers a, b, c, d we have

$$(a+bf\omega)+(c+df\omega)=(a+c)+(b+d)f\omega\mapsto \overline{(b+d)}=\overline{b}+\overline{d},$$

where in the last equality the addition inside of the parenthesis is the addition in \mathbb{Z} and the addition on the right hand side is the addition in $\mathbb{Z}/f\mathbb{Z}$. The kernel of this homomorphism is \mathcal{O}_f (it is clear that elements of \mathcal{O}_f are mapped to $\overline{0}$): For integers a, b, asserting the element $a + b\omega$ is in the kernel is equivalent to saying that f divides b, meaning $a + b\omega = a + b'f\omega$ where b' is the quotient b/f. Since b was arbitrary, b' is also arbitrary.

Thus by the first isomorphism theorem for groups we have

$$[\mathcal{O}\colon \mathcal{O}_f] = |\mathbb{Z}/f\mathbb{Z}| = f.$$

Suppose that we are given a subring \mathcal{O}' of \mathcal{O} of index f, containing 1. Since \mathcal{O}' is closed under addition, \mathbb{Z} is contained in \mathcal{O}' , so that for any integer a, the quantity (f-1)a is an element of \mathcal{O}' .

We have that the quotient group \mathcal{O}/\mathcal{O}' has order f, so that for any element $a+b\omega$ of \mathcal{O} , the coset $f(a+b\omega)+\mathcal{O}'$ (where $f(a+b\omega)$ denotes the f-fold sum given by $af+bf\omega$) is equivalent to the coset \mathcal{O}' . Furthermore, since $(f-1)a \in \mathcal{O}'$, it follows that $(af+bf\omega)+\mathcal{O}'=((f-1)a+0f\omega)+\mathcal{O}'$, which is equivalent to saying that

$$(af + bf\omega) - ((f - 1)a + 0f\omega) = a + bf\omega \in \mathcal{O}^{\prime n}.$$

Since a, b were arbitrary, it follows that \mathcal{O}_f is contained in \mathcal{O}' . Then

$$f = [\mathcal{O} \colon \mathcal{O}'] = [\mathcal{O} \colon \mathcal{O}_f][\mathcal{O}_f \colon \mathcal{O}'] = f[\mathcal{O}_f \colon \mathcal{O}'],$$

so that $[\mathcal{O}_f : \mathcal{O}'] = 1$ and so $\mathcal{O}' = \mathcal{O}_f$. Hence any subring of \mathcal{O} containing the identity and having finite index f in \mathcal{O} is equal to \mathcal{O}_f .

4. (DF7.1.25) Let I be the ring of integral Hamilton Quaternions and define

$$N: I \to \mathbb{Z}$$
 by $N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$

(the map N is called a norm).

- (a) Prove that $N(\alpha) = \alpha \overline{\alpha}$ for all $\alpha \in I$, where if $\alpha = a + bi + cj + dk$ then $\overline{\alpha} = a bi cj dk$.
- **(b)** Prove that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in I$.
- (c) Prove that an element of I is a unit if and only if it has norm +1. Show that I^{\times} is isomorphic to the quaternion group of order 8. [The inverse in the ring of rational quaternions of a nonzero element α is $\overline{\alpha}/N(\alpha)$.]

Proof. Let I be the ring of integral Hamilton Quaternions as given and define $N: I \to \mathbb{Z}$ as above. Then for any integral quaternion $\alpha = a + bi + cj + dk$, we have

$$\alpha \overline{\alpha} = (a + bi + cj + dk)(a - bi - cj - dk) = (a^2 + b^2 + c^2 + d^2)$$

$$+ (-ab + ab - cd + cd)i$$

$$+ (-ac + ac - bd + bd)j$$

$$+ (-ad + ad - bc + bc)k$$

$$= a^2 + b^2 + c^2 + d^2$$

$$= N(\alpha).$$

The function N is also multiplicative. Given any two integral quaternions $\alpha = a + bi + cj + dk$ and $\beta = e + fi + gj + hk$, we have $\alpha\beta = (ae - bf - cg - dh) + (af + be + ch - dg)i + (ag + ce + df - bh)j + (ah + de + bg - cf)k$. Then (with many cancellations between the first equality and the second equality), we have

$$\begin{split} N(\alpha\beta) &= (ae - bf - cg - dh)^2 \\ &\quad + (af + be + ch - dg)^2 \\ &\quad + (ag + ce + df - bh)^2 \\ &\quad + (ah + de + bg - cf)^2 \\ &= a^2e^2 + b^2f^2 + c^2g^2 + d^2h^2 \\ &\quad + a^2f^2 + b^2e^2 + c^2h^2 + d^2g^2 \\ &\quad + a^2g^2 + c^2e^2 + d^2f^2 + b^2h^2 \\ &\quad + a^2h^2 + d^2e^2 + b^2g^2 + c^2f^2 \\ &= (a^2 + b^2 + c^2 + d^2)(e^2 + f^2 + g^2 + f^2) \\ &= N(\alpha)N(\beta). \end{split}$$

An integral quaternion is a unit if and only if its norm is 1. If a quaternion α is a unit then it has an inverse α^{-1} with $\alpha\alpha^{-1} = \alpha^{-1}\alpha = 1$. Then $N(1) = N(\alpha\alpha^{-1}) = N(\alpha)N(\alpha^{-1})$, so that $N(\alpha) = N\alpha^{-1} = \pm 1$ (they

both need to have the same sign). But $N(\alpha)$ and $N(\alpha^{-1})$ are sums of squared integers, meaning that their values are necessarily positive. This forces $N(\alpha) = N(\alpha^{-1}) = 1$, which means that units have a norm of 1.

If an integral quaternion $\alpha = a + bi + cj + dk$ has a norm of 1, we have that $a^2 + b^2 + c^2 + d^2 = 1$. In the integers, there are only eight solutions, which we write as tuples (a, b, c, d):

$$(\pm 1, 0, 0, 0), (0, \pm 1, 0, 0), (0, 0, \pm 1, 0), (0, 0, 0, \pm 1).$$

Any other combination of integers will not satisfy the equality $a^2 + b^2 + c^2 + d^2 = 1$. The corresponding integral quaternions (suppressing the zero-coefficient terms in each one) which have a norm of 1 are

$$\pm 1, \pm i, \pm j, \pm k,$$

and these are units (observe that we multiply by the conjugate to obtain a multiplicative inverse):

$$1 = (1)(1) = i(-i) = (-i)i = j(-j) = (-j)j = k(-k) = (-k)k.$$

Hence the units of the integral quaternions are those with norm 1.

It follows that these eight units form a group under multiplication, I^{\times} , which is isomorphic to Q_8 . The isomorphism needed is just the relabeling

$$\pm 1 + 0i + 0j + 0k \mapsto \pm 1$$

 $0 + \pm i + 0j + 0k \mapsto \pm i$
 $0 + 0i + \pm j + 0k \mapsto \pm j$
 $0 + 0i + 0j + \pm k \mapsto \pm k$

which is an isomorphism because these units as a group obey the same multiplication rule as Q_8 due to the multiplication on the integral Hamilton Quaternions being defined in the same manner (meaning the multiplication tables are identical under the relabeling given above).