

VGA Signals

Concept Design

Block Diagram

Entity

- Input: Clock and reset with type STD_logic
- Output: Horizontal Sync and Vertical Sync with type STD_logic, Red Green Blue with STD_Logic_Vector

Architecture

- Signals: Clock25, Horizontal Position, Vertical Position and VideoOn
- Constants for Horizontal (pixel number): Display, front porch, back porch, sync pulse/retrace
- Constants for Vertical (line number): Display, upper porch, lower porch, sync pulse/retrace

Processes I

- Every **process depends on the rising edge** of the clock
- Clock Divider: creates a clock of 25 mHz (default is 50mHz)
- Horizontal Position Counter: horizontal position = the total horizontal pixels? If true then start from left side, if not then counter++ and head to the next pixel
- Vertical Position Counter: If true when start from the top

Processes II

- Horizontal Synchronization: checks if the actual horizontal position is inside the horizontal front porch or back porch. If true then HSYNC set to 1
- Vertical Synchronization: checks for upper and lower porch
- Video On Check: ensures that the video is only on when the actual position is not inside a porch

Processes III

- **Draw Box:** set the output RGB to 111 if we are between 10 and 60 for the horizontal position and vertical position, outside those boundaries RGB is set to 000
 - -> white square appears on the VGA monitor

Testbench

 testbench is toggling the clock every 5ns and the reset every 100ns

RTL Schematic I

```
NET "CLK" LOC = "C9" | IOSTANDARD = LVCMOS33;

NET "RST" LOC = "P14";

NET "RGB<0>" LOC = "H14" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = FAST;

NET "RGB<1>" LOC = "H15" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = FAST;

NET "RGB<2>" LOC = "G15" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = FAST;

NET "HSYNC" LOC = "F15" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = FAST;

NET "VSYNC" LOC = "F14" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = FAST;

NET "VSYNC" LOC = "F14" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = FAST;
```


RTL Schematic II

Routed Design

PCB schematic

- Spartan 3E from Xilinx
- Two 317 voltage regulators (2.5 and 1.2 volts)
- Oscillator is providing a 25 MHz clock signal

PCB layout

• Width: 80.1 mm

• Length: 67.5 mm

Part	Value	Package	Cost	
C1	0.1 uF	0603	0.10€	
J1	PW_Jack		0.62€	
R1-3	270 Ohm	0603	0.55€	(10 pieces)
R4-5	82.5 Ohm	0603	0.50€	(5 pieces)
R6-8	1000 Ohm	0603	0.45€	(10 pieces)
U\$2			22.07€	:
V_REG	317SMD	S0T223	1.30€	(2 pieces)
Y1			1.68€	

Total cost for the components: €27.27 PCB: ~€4.74 (with shipping ~€25)

Conclusion

