

ERWIN KREYSZIG
ADVANCED ENGINEERING
MATHEMATICS

PART A

Chaps. 1–6 Ordinary Differential Equations (ODEs)

> Chaps. 1–4 Basic Material

Chap. 5 Series Solutions Chap. 6 Laplace Transforms

PART B

Chaps. 7–10 Linear Algebra. Vector Calculus

Chap. 7 Chap. 9
Matrices, Vector Differential
Cinear Systems Calculus

Chap. 8 Chap. 10
Vector Integral Calculus

PART C

Chaps. 11–12 Fourier Analysis. Partial Differential Equations (PDEs)

> Chap. 11 Fourier Analysis

Chap. 12 Partial Differential Equations

PART D

Chaps. 13–18 Complex Analysis, Potential Theory

> Chaps. 13–17 Basic Material

Chap. 18 Potential Theory

PART E

Chaps. 19-21 Numeric Analysis

Chap. 19 Numerics in General Chap. 20 Numeric Linear Algebra

Chap. 21 Numerics for ODEs and PDEs

PART F

Chaps. 22–23 Optimization, Graphs

Chap. 22 Linear Programming Chap. 23 Graphs, Optimization

PART G

Chaps. 24–25 Probability, Statistics

Chap. 24 Data Analysis. Probability Theory

> Chap. 25 Mathematical Statistics

GUIDES AND MANUALS

Maple Computer Guide Mathematica Computer Guide

Student Solutions Manual and Study Guide

Instructor's Manual

Same Jopich Next Sem

PART A Ordinary Differential Equations (ODEs)

	CHAI	PTER 1 First-Order ODEs					
	1.1	Basic Concepts. Modeling 2					
	1.2	Geometric Meaning of $y' = f(x, y)$. Direction Fields, Euler's Method 9					
	1.3	Separable ODEs. Modeling 12					
	1.4	Exact ODEs. Integrating Factors 20					
	1.5	Linear ODEs. Bernoulli Equation. Population Dynamics 27					
	1.6	Orthogonal Trajectories. Optional 36					
١	1.7	Existence and Uniqueness of Solutions for Initial Value Problems 38					
1	Chap	hapter 1 Review Questions and Problems 43					
	Sumi	mary of Chapter 1 44					
	L						
	CHAI	PTER 2 Second-Order Linear ODEs 46					
	2.1	Homogeneous Linear ODEs of Second Order 46					
	2.2	Homogeneous Linear ODEs with Constant Coefficients 53					
	2.3	Differential Operators. Optional 60					
	2.4	Modeling of Free Oscillations of a Mass-Spring System 62					
١	2.5	Euler–Cauchy Equations 71					
١	2.6	Existence and Uniqueness of Solutions. Wronskian 74					
l	2.7	Nonhomogeneous ODEs 79					
١	2.8	Modeling: Forced Oscillations. Resonance 85					
١	2.9	Modeling: Electric Circuits 93					
l	2.10	Solution by Variation of Parameters 99					
	Chap	ter 2 Review Questions and Problems 102					
	Sumi	mary of Chapter 2 103					

CHA	APTER 3 Higher Order Linear ODEs 105	
3.1	Homogeneous Linear ODEs 105	
3.2	Homogeneous Linear ODEs with Constant Coefficients 111	
3.3	Nonhomogeneous Linear ODEs 116	
Cha	pter 3 Review Questions and Problems 122	
Sum	nmary of Chapter 3 123	
CHA	ARTER 4. Systems of ODEs Phase Plane Qualitative Methods	124
	APTER 4 Systems of ODEs. Phase Plane. Qualitative Methods	124
4.0	For Reference: Basics of Matrices and Vectors 124	
4.1	Systems of ODEs as Models in Engineering Applications 130 Basic Theory of Systems of ODEs, Wropskian, 137	
4.2	Basic Theory of Systems of ODEs. Wronskian 137 Constant Coefficient Systems, Phase Plane Method, 140	
4.5	Constant-Coefficient Systems. Phase Plane Method 140	
5.3	Extended Power Series Method: Frobenius Method 180	
5.4	Bessel's Equation. Bessel Functions $J_{\nu}(x)$ 187	
5.5	Bessel Functions of the $Y_{\nu}(x)$. General Solution 196	
Chap	oter 5 Review Questions and Problems 200	
Sum	mary of Chapter 5 201	
СНА	PTER 6 Laplace Transforms 203	
6.1	Laplace Transform. Linearity. First Shifting Theorem (s-Shifting) 204	
6.2	Transforms of Derivatives and Integrals. ODEs 211	
6.3	Unit Step Function (Heaviside Function).	
	Second Shifting Theorem (t-Shifting) 217	
6.4	Short Impulses. Dirac's Delta Function. Partial Fractions 225	
6.5	Convolution. Integral Equations 232	
6.6	Differentiation and Integration of Transforms.	
	ODEs with Variable Coefficients 238	
6.7	Systems of ODEs 242	

6.8 Laplace Transform: General Formulas 248

Whats ODE?

Ordinary Difforential Equation.

Idea: We know something about de ordit

2 we wish to find out about f.

$$\frac{df}{dx} = 2 , find f(x)$$

$$\frac{df}{dx^2} + \frac{df}{dx^2} + \frac{df}{dx} + f = 0$$

$$find f(x)$$

Why care about knowing to solve ODEs:

Falling stone y'' = g = const.

(Sec. 1.1)

 $mv' = mg - bv^2$ (Sec. 1.2)

Outflowing water $h' = -k\sqrt{h}$

 ${\sf Displacement}\ y$

Vibrating mass on a spring my'' + ky = 0(Secs. 2.4, 2.8)

Beats of a vibrating system $y'' + \omega_0^2 y = \cos \, \omega t, \quad \omega_0 = \omega$ (Sec. 2.8)

Current I in an RLC circuit

$$LI'' + RI' + \frac{1}{C}I = E''$$

(Sec. 2.9)

Deformation of a beam

 $EIy^{to} = f(x)$

Pendulum

 $L\theta'' + g \sin \theta = 0$

Lotka-Volterra predator-prey model

$$y'_1 = ay_1 - by_1y_2$$

 $y'_2 = ky_1y_2 - ly_2$

H.W. -> Just read section 1.1 & 1.2.

-> Dou't solve exercise problems.

mathematical modelling: converting real world exencised into mathematical equations.

(in particular into ODE egns.

8- Whats ODE ?? Solving for a function f(n) from an equation where f'(x), f'(x), etc comus into picture

1.3 Separable ODEs

$$y' = (x+1)e^{-x}y^2$$

$$\frac{dy}{dx} = (1+x)e^{-x}x^2$$

$$-\frac{1}{7} = -(x+2)e^{-x} + c$$

$$\frac{1}{4} = \frac{1}{(x+2)e^{-x}+c}$$

Use separation of voriables

Cy try & more all x in our side

L all y in other side

L integrate

c is an arbitrary constant

Solve
$$y' = -2xy$$
, $y(0) = 1.8$.

$$\frac{dy}{dx} = -2xy$$

$$\frac{1}{4}dy = -2xdx$$

$$\int_{\mathbb{N}^{N}} A(s) = 1 \cdot g$$

$$\int_{\mathbb{N}^{N}} A = - \times_{J} + C \int_{\mathbb{N}^{N}} A(s) = 1 \cdot g$$

Solve using separation of variable initiat condition use the extra condition orbitrary constant C

$$2n = -x^{2} + 2n \cdot 1.8$$

$$2n \left(\frac{3}{1.8} \right) = -x^{2}$$

$$\frac{3}{1.8} = e^{-x^{2}}$$

$$\frac{3}{1.8} = 1.8e^{-2x}$$

EXAMPLE 5 Mixing Problem

Mixing proint involving a Brine runs kept unifor

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved. Brine runs in at a rate of 10 gal/min, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t.

y(t): amount of Salt in the tank at time t

initial scalt density??

0.1 15/gal

Brine & Balt +

EXAMPLE 5 Mixing Problem

Mixing proinvolving a
Brine runs
kept unifor

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved. Brine runs in at a rate of 10 gal/min, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t.

y(t): amount of salf in the tank at time t

initial scalt density??

0.1 15/gal

Solve of from
$$\frac{dy}{dt} = 50 - \frac{3}{100}, \quad \frac{4(0) = 100}{100}$$

Brine & salt ter

using separation of

$$-ln(5000-7) = \frac{t}{100} + C$$

$$lu(5000-4) = -\frac{t}{100}$$

$${}^{3} = {}^{3}.$$

Recall: what did we start?? ODE In differential equations, we solve for a function: Green some information about derivatives

e.g. $\frac{dx}{dt} = 2$, find x(t). $2\frac{d^2x}{dt^2} = 7 , \text{ find } x(t)$

-> We learnt last time: the first thing we should try when

Variable separable

$$\int n \, dy = 5 x^2 y$$

$$\frac{1}{4}d4 = \frac{5x^2}{x}dx$$

$$\int \frac{1}{4}d4 = \int 5x dx$$

$$Sin\left(\frac{dy}{dn}\right) = x$$

$$\frac{dy}{dn} = xin'(n)$$

Extended Method: Reduction to Separable Form

$$y' = f\left(\frac{y}{x}\right)$$

$$y_{x} = y$$

$$2xyy' = y^2 - x^2.$$

$$2xy \frac{dy}{du} = \frac{4^2 - x^2}{4^{2}} + \frac{1}{2} + \frac{1}{$$

$$2\frac{dy}{dx} = \frac{4^2 - x^2}{x^2}$$

$$\frac{dy}{dx} = \frac{1}{2} \left[\left(\frac{y}{x} \right) - \left(\frac{2}{4} \right) \right]$$

e eliminate

$$\frac{dy}{dx} = \frac{1}{2} \left[y - \frac{1}{y} \right]$$

$$\frac{dy}{dx} = \frac{1}{2} \left(y - \frac{1}{y} \right)$$

$$= y + x \frac{dy}{dx}$$

$$\sqrt{1+x} \frac{dv}{dx} = \frac{1}{2} \left[v - \frac{1}{v} \right]$$

C) is this separable??

$$\frac{\partial v}{\partial x} = -\frac{1}{2} \left[\frac{v^2 + 1}{9} \right]$$

$$\frac{\partial v}{\partial x} = -\frac{1}{2} \left[\frac{v^2 + 1}{9} \right]$$

$$\ln (v^2 + 1) = -\ln x + \ln c$$

$$v^2 + 1 = \frac{c}{2}$$

$$\frac{\chi^2}{\chi^2} + 1 = \frac{\zeta}{\chi}$$

y is given implicitly by this egu

32. Friction. If a body slides on a surface, it experiences friction F (a force against the direction of motion). Experiments show that $|F| = \mu |N|$ (Coulomb's law of kinetic friction without lubrication), where N is the normal force (force that holds the two surfaces together; see Fig. 15) and the constant of proportionality μ is called the coefficient of kinetic friction. In Fig. 15 assume that the body weighs 45 nt (about 10 lb; see front cover for conversion). $\mu = 0.20$ (corresponding to steel on steel), $a = 30^{\circ}$, the slide is 10 m long, the initial velocity is zero and air resistance is negligible. Find the velocity of the body at the end of the slide.

$$\frac{d^2s}{dt^2} = A, \qquad S(0) = 0$$

$$S'(0) = 0$$

$$S'(0) = 0$$

$$\frac{ds}{dt} = A$$

$$\frac{ds}{dt} = At + C$$

$$\frac{ds}{dt} = At$$

$$1 = At$$

$$C = ??$$

$$C = ??$$

$$S(t) = \frac{At^2}{1} + D$$

$$S(t) = At^2/2$$

$$\begin{bmatrix} S(0) = 0 \\ D = 0 \end{bmatrix}$$

$$t = \sqrt{\frac{20}{A}}$$

$$t = \sqrt{\frac{20}{A}}$$

$$= \sqrt{\frac{10}{A}} = \sqrt{\frac{10}{A}}$$

1.4 Exact ODEs. Integrating Factors

lets hope that there exist an equation

$$U(X,Y) = C$$
 — (2)

from which we get eq (1) by

differentiation

 $\frac{dn}{dn} = \frac{gn}{gn} + \frac{gn}{gn} \frac{gn}{gn}$

 $u(x,y) \quad S.t. \quad \frac{du}{dx} = |Y| + N \frac{dy}{dx}$ find a formula this helps be cause we will solve Jos y from a(x,y) = c

Objective: Salve for y from ogn of M+N & = 0 when can we do this? m (x13) Plan: find a formula du = M+Ndy

 $\rightarrow ODE: \frac{dy}{dx} = 0$

Aim:
$$find$$

$$a(x,y) = xy.$$

$$\frac{\partial y}{\partial x} = xy + xy = \frac{\partial y}{\partial x}$$

$$M + N dJ = 0$$

$$M dx + N dy = 0$$

(). COS(x+2) 9x + (342+34+ cos(x+2)) 91=0

-) is it exact??

-) Max+ Hay == is exact and = and

 $\frac{9N}{9M} = -\sin(x+4) = \frac{9N}{9M}$

-> there exist u(xi) 8.7. $\frac{\partial x}{\partial n} = NI + \frac{\partial A}{\partial n} = NI$

-) now fine this u(x,y)

$$\frac{\partial u}{\partial u} = \cos(x+a) + \delta(a) \qquad \begin{bmatrix} a(a) & i & b \\ a(a) & i & b \\ a(a) & i & b \end{bmatrix}$$

$$COS(X+y) + \frac{dy}{dy} = 34^2 + 24 + cos(X+y)$$

$$\frac{dq}{dq} = 3q^{2} + 2q^{2} + c$$

$$\Rightarrow finally: u(x,y) = sin(x+y) + q^{3} + q^{2} + c$$

$$\Rightarrow solve fex y from: u(x,y) = constant$$

$$\Rightarrow u(x,y) = constant$$

$$\Rightarrow u(x+y) + q^{2} + q^{2} = C$$

$$\Rightarrow u(x+y) + q^{3} + q^{2} = C$$

 $(\cos y \sinh x + 1) dx - \sin y \cosh x dy = 0, \qquad y(1) = 2.$

(cosy sinh x+1) dx - siny wshx dy =0

$$ainhx = \frac{e^{x} - e^{x}}{2} \left| \frac{d}{dx} \left(sinh_{x} \right) = cshn$$

check for exactness.

$$\frac{\partial u}{\partial x} = \frac{\cos y}{\cos h} \frac{\operatorname{sech} x}{x} + \frac{1}{2} \frac{1}{2} = \frac{-\sin y}{x} \frac{\operatorname{sech} x}{x} + \frac{1}{2} \frac{1}{2} = \frac{-\sin y}{x} \frac{\operatorname{sech} x}{x} + \frac{1}{2} \frac{1}{2} = \frac{-\sin y}{x} \frac{\operatorname{sech} x}{x} + \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} = \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} = \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} = \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac{1}{2} = \frac{1}{2} \frac{\operatorname{sech} x}{x} + \frac$$

file (1) = 2

Reduction to Exact Form. Integrating Factors

Mext time

 $-y\,dx + x\,dy = 0.$

 $(e^{x+y} + ye^y) dx + (xe^y - 1) dy = 0$