Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study

Zhenyu Wu ¹ Zhangyang Wang ¹ Zhaowen Wang ² Hailin Jin ²

¹Texas A&M University

²Adobe Research

February 11, 2019

The Dilemma

- A smart home camera system is expected to
 - Be able to recognize important events and assist people's daily life by understanding videos
 - Be unable to obtain "too sensitive" visual information that can intrude people's privacy.

Would classical cryptographic solutions suffice? No.

- They secure the communication against unauthorized access from attackers
- ...but not applicable to preventing the abuse by authorized agents (e.g., the backend analytics)

What were there?

- Privacy Protection in Computer Vision Systems
 - Transmit feature descriptors to the cloud? Not safe
 - Homomorphic cryptographic solution? Expensive, working on only simple classifiers
 - Downsample the video aggressively, and strategically? Cheap, works empirically, but usually no competitive trade-off
 - A few game-theoretic or learning-based recent solutions . . .
 IMPORTANT to distinguish between model-specific and model-agnostic privacy!
- Privacy Protection in Social Media and Photo Sharing
 - Add empirical obfuscations? Not safe
 - Deep learning-based adversarial perturbations? Model-specific privacy, also with a different goal with ours: they wish to cause minimum perceptual quality loss to those photos

A Formal Problem Definition

$$\min_{f_T, f_d} L_T(f_T(f_d(X)), Y_T) + \gamma L_B(f_d(X)), \tag{1}$$

- X: raw visual data captured by camera:
 - ullet target task \mathcal{T} , e.g., action recognition or visual tracking
 - privacy budget B, e.g, leak of identity of other privacy attributes.
- f_T : a model to perform the target task T on its input data.
- Y_T : a label set provided on X for T.
- L_T : cost function for the performance on \mathcal{T} , e.g., action recognition accuracy.
- L_B: budget cost function to evaluate the privacy leak risk of X: the larger L_B, the higher privacy leak risk.

A Formal Problem Definition (Cont.)

Our goal is to seek such an active degradation function f_d to transform the original X for both L_T and L_B , such that:

- The achievable target task performance L_T is minimally affected compared to when using the raw data, i.e., $\min_{f_T, f_d} L_T(f_T(f_d(X)), Y_T) \approx \min_{f_T'} L_T(f_T'(X), Y_T)$.
- The privacy budget L_B is greatly suppressed compared to raw data: $L_B(f_d(X)) \ll L_B(X)$.

How to Define Privacy Cost?

The definition of the privacy budget cost L_B is not straightforward.

- Privacy is subjective, and usually needs to be placed in concrete application contexts, often in a task-driven way.
- We denote the privacy-related annotations (such as identity label) as Y_B , and rewrite $L_B(f_d(X))$ as $L_B(f_b(f_d(X)), Y_B)$, where f_b denotes a budget model to predict the corresponding privacy information.
- Different from L_T , minimizing L_B will encourage $f_b(f_d(X))$ to diverge from Y_B as much as possible.

The ∃-∀ Challenge

Define a privacy prediction function family \mathcal{P} : $f_d(X) \to Y_B$, the ideal privacy protection of f_d should be **suppressing every** possible model f_b from \mathcal{P} (worst-case guaranteed protection)

$$\min_{f_T, f_d} L_T(f_T(f_d(X), Y_T) + \gamma \underline{\max_{f_b \in \mathcal{P}} L_B(f_b(f_d(X)), Y_B)}. \tag{2}$$

For the solved f_d , the two goals should be simultaneously satisfied: (1) there **exists** (" \exists ") at least one f_T function that can predict Y_T from $f_d(X)$ well; (2) **for all** (" \forall ") f_b functions $\in \mathcal{P}$, **none of them** (even the best one) can reliably predict Y_B from $f_d(X)$.

(Naive) Adversarial Learning Implementation

Figure 1: The basic adversarial training framework for privacy-preserving visual recognition.

Learning Model-Agnostic Privacy Protection

- Naive implementation by choosing a very strong f_b is insufficient (overfitting one only).
- Improved Solution 1: Budget Model Re-starting and Re-fitting
- Improved Solution 2: Budget Model Ensemble Training
 - We approximate the continuous \mathcal{P} with a discrete set of M sample functions. Assuming the budget model ensemble $\{f_b^i\}_{i=1}^M$, we turn to minimizing the following discretized surrogate of (2):

$$\min_{f_T, f_d} L_T(f_T(f_d(X), Y_T) + \gamma \max_{i \in \{1, 2, ..., M\}} L_B(f_b^i(f_d(X))).$$
(3)

 Sampling the meta model space and always suppressing the most confident model

Two-Fold Evaluation Protocol

- The double-sided problem calls for two-folds evaluation:
 - Is target task utility maintained after active degradation? (standard)
 - Is privacy protected against any possible (unseen) privacy prediction model? (non-standard)
- For the second evaluation:
 - We first sample a different, unseen set of N privacy prediction models from $\mathcal P$
 - We then train each of them to predict privacy information, over the degraded training set X by applying the learned f_d
 - We finally apply them to the degraded testing set after applying the learned f_d, and the highest accuracy achieved among the N models is used to approximately represent the "worst-case privacy protection"

Experiments (i): SBU dataset

 \mathcal{T} : action recognition \mathcal{B} : actor pair identification

- **Method 1**: downsampling raw RGB frames under different ratios.
- Method 2 (Proposed): applying the proposed adversarial training to RGB frames, using budget model ensemble without restarting.
- Method 3 (Proposed): applying the proposed adversarial training to RGB frames, using budget model ensemble with restarting.
- Method 4: detect & crop out faces from RGB frames.
- Method 5: detect & crop out whole actor bodies.

Figure 2: The SBU trade-off plot.

Experiment (ii): UCF-101 + VISPR

- lacksquare \mathcal{T} : action recognition
- B: protection of multiple privacy attributes (VISPR-17/7)
- Cross-dataset training and evaluation
 - UCF101 dataset: 101 different action classes.
 - Visual Privacy (VISPR) dataset: 22, 167 images manually annotated with many privacy attributes, e.g. face, race, gender, skin color, age group...

Figure 3: UCF-101/VISPR trade-off plot. Left: VISPR-17; Right: VISPR-7.

Open Questions: A lot

- Current budget model ensemble is a rough discretized approximation of P. More elegant to tackle this ∀ optimization is desired.
- Stabilizing the adversarial training
- Need better theory information theory or game theory?
- lacksquare Collecting datasets with both ${\mathcal T}$ and ${\mathcal B}$ well defined