□ キーワード: 弧度法, 三角関数 (正弦, 余弦, 正接), 加法定理 (教科書 p.64-78, 83-88)

三平方の定理(ピタゴラスの定理)-

直角三角形の斜辺の長さが c, 他の 2 辺の長さが a,b のとき, a,b,c は以下の関係を満たす;

$$a^2 + b^2 = c^2$$

問題 4.1. 次の図中の x を三平方の定理を用いて求めなさい.

(1) 正三角形

(2) 直角二等辺三角形

(3)

(4)

問題 4.2. 次の弧度を度数に直しなさい.

- (1) $\frac{\pi}{3}$ (2) $-\frac{\pi}{6}$ (3) $\frac{5\pi}{4}$ (4) $\frac{\pi}{2}$

2009.10.28 (担当:佐藤)

- 三角関数 -

半径 1 の円周上の点 P に対し,x 軸の正の部分と のなす角が θ (ただし θ は一般角) であるとき,点 P の \underline{x} 座標の値を $\cos\theta$, \underline{y} 座標の値を $\sin\theta$ と定義 する; $P = (\cos\theta, \sin\theta)$,

$$\cos \theta$$
 : θ の余弦

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
: θ の正接

問題 4.3. 次の三角関数の値を求めなさい.

(1)
$$\sin \frac{\pi}{3}$$
 (2) $\sin \left(-\frac{\pi}{6}\right)$ (3) $\sin \frac{5\pi}{4}$ (4) $\sin \frac{\pi}{2}$ (5) $\sin 0$

(6)
$$\cos \frac{\pi}{3}$$
 (7) $\cos \left(-\frac{\pi}{6}\right)$ (8) $\cos \frac{5\pi}{4}$ (9) $\cos \frac{\pi}{2}$ (10) $\cos 0$

(11)
$$\tan \frac{\pi}{3}$$
 (12) $\tan \left(-\frac{\pi}{6}\right)$ (13) $\tan \frac{5\pi}{4}$ (14) $\tan \frac{\pi}{2}$ (15) $\tan 0$

問題 **4.4.** θ の値(範囲)によって、 $\sin\theta$, $\cos\theta$, $\tan\theta$ の符号がどうなるか考えて、下表の空欄にその符号(正または負)を書きなさい。

三角関数の符号	$0 < \theta < \frac{\pi}{2}$	$\frac{\pi}{2} < \theta < \pi$	$\pi < \theta < \frac{3\pi}{2}$	$\frac{3\pi}{2} < \theta < 2\pi$
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				

三角関数の性質

(1)
$$\sin^2 + \cos^2 \theta = 1$$
 (ただし, $\sin^2 \theta = (\sin \theta)^2$ を意味する).

(2) 整数
$$n$$
 に対して、 $\sin(\theta + 2n\pi) = \sin \theta$

(3) 整数
$$n$$
 に対して, $\cos(\theta + 2n\pi) = \cos\theta$

$$(4) \sin(-\theta) = -\sin\theta$$

(5)
$$\cos(-\theta) = \cos\theta$$

(6)
$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$$

(7)
$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$$

2009.10.28 (担当:佐藤)

問題 **4.5.** $\sin \theta = -\frac{5}{13}$ とする(ただし、 $\frac{3\pi}{2} < \theta < 2\pi$).

- (1) $\cos \theta$ の値を求めなさい.
- (2) $\tan \theta$ の値を求めなさい.

- 加法定理 -

(
$$\beta$$
D-1) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$

(加-2)
$$\sin(\alpha - \beta) =$$

(加-2)
$$\sin(\alpha - \beta) =$$
 (加-3) $\cos(\alpha + \beta) =$

(
$$\text{MI-4}$$
) $\cos(\alpha - \beta) =$

問題 **4.6.** 加法定理を用いて、 $\sin \frac{\pi}{12}$, $\cos \frac{\pi}{12}$ の値を求めたい.

- (1) $\frac{\pi}{12}$ を $\frac{\pi}{3}$ と $\frac{\pi}{4}$ を用いて表しなさい.
- (2) 加法定理を用いて $\sin \frac{\pi}{12}$ を計算しなさい.
- (3) 加法定理を用いて $\cos \frac{\pi}{12}$ を計算しなさい.

問題 4.7. (加-1) 式と三角関数の性質 $(4)\sim(7)$ を用いて、加法定理の残りの公式 (加-2)、 (加-3), (加-4) を導きだせ.