A_{∞} -minimal models of matrix factorisations

Daniel Murfet

April 25, 2016

Abstract

We study A_{∞} -minimal models of the differential graded algebras obtained from endomorphisms of generators of triangulated categories of matrix factorisations, giving explicit higher products for the cases of simple singularities.

1 Introduction

Let k be a characteristic zero field, and $W \in k[x_1, ..., x_n]$ a potential in the sense of [3, §2.2] which has the origin as its only critical point. Choose a presentation of W as a sum $W = x_1W^1 + \cdots + x_nW^n$ with $W^i \in \mathfrak{m}$. Then the generator of the homotopy category of matrix factorisations is the stabilised diagonal

(1.1)
$$k^{\text{stab}} = \left(k[x] \otimes_k \bigwedge (k\psi_1 \oplus \cdots \oplus k\psi_n), \sum_i x_i \psi_i^* + \sum_i W^i \psi_i\right).$$

We calculate the A_{∞} -minimal model \mathscr{A}_W of the differential graded algebra $\operatorname{End}_{k[x]}(k^{\operatorname{stab}})$. This is a finite-dimensional \mathbb{Z}_2 -graded vector space, with a family of odd k-linear maps

$$\left\{r_q: \left(\mathscr{A}_W[1]\right)^{\otimes q} \longrightarrow \mathscr{A}_W[1]\right\}_{q\geq 2}$$

satisfying the forward suspended A_{∞} -constraints [1].

2 Perturbation and Koszul complexes

Set $R = k[x_1, ..., x_n]$. To apply the A_{∞} -minimal model construction to the DG-algebra $\operatorname{End}_R(k^{\operatorname{stab}})$, we would usually begin by finding a k-linear homotopy retract of this complex onto its cohomology. However, for our purposes it is better to first enlarge the DG-algebra to $S \otimes_k \operatorname{End}_R(k^{\operatorname{stab}})$, where

$$(2.1) S = \bigwedge (k\theta_1 \oplus \cdots \oplus k\theta_n)$$

is viewed as a DG-algebra with zero differential, and \mathbb{Z}_2 -grading determined by $|\theta_i| = 1$. We show $S \otimes_k \operatorname{End}_R(k^{\operatorname{stab}})$ is homotopy equivalent to the finite-dimensional DG-algebra

$$\underline{\operatorname{End}}(k^{\operatorname{stab}}) = R/\mathfrak{m} \otimes_k \operatorname{End}_R(k^{\operatorname{stab}}) \cong \operatorname{End}_k \left(\bigwedge (k\psi_1 \oplus \cdots \oplus k\psi_n) \right)$$

where $\mathfrak{m} = (x_1, \dots, x_n)$, and the corresponding homotopy retract is our starting point for the minimal model construction.

For this we will use the Koszul complex over R of x_1, \ldots, x_n ,

(2.2)
$$K = \left(R \otimes_k \bigwedge (k\theta_1 \oplus \cdots \oplus k\theta_n), d_K = \sum_i x_i \theta_i^*\right).$$

and the following diagram of \mathbb{Z}_2 -graded complexes over k:

$$(2.3) S \otimes_k \operatorname{End}_R(k^{\operatorname{stab}}) \xrightarrow{\exp(-\delta)} K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}}) \xrightarrow{\pi} \underbrace{\operatorname{End}}_{\sigma_{\infty}} (k^{\operatorname{stab}}).$$

The notation is as follows:

• The operator $\psi_j = \psi_j \wedge -$ on k^{stab} satisfies

$$[\psi_j, d_{k^{\text{stab}}}] = [\psi_j, \sum_i x_i \psi_i^*] = x_j \cdot 1,$$

where [-,-] always denotes the graded commutator. That is, ψ_j is a homotopy for the action of x_j on k^{stab} . It is then easy to check that the odd operator $\alpha \mapsto \psi_j \circ \alpha$ on $\text{End}_R(k^{\text{stab}})$ is also a homotopy for x_j , and where it will not cause confusion we will also write ψ_j for this operator of post-composition.

• Both $S \otimes_k \operatorname{End}_R(k^{\operatorname{stab}})$ and $K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}})$ have the same underlying \mathbb{Z}_2 -graded k-module, namely

$$R \otimes_k \bigwedge (k\theta_1 \oplus \cdots \oplus k\theta_n) \otimes_k \operatorname{End}_k \left(\bigwedge (k\psi_1 \oplus \cdots \oplus k\psi_n) \right).$$

On this space we define the even operator

(2.4)
$$\delta = \sum_{i=1}^{n} \psi_i \theta_i^*,$$

where ψ_i is the operator on $\operatorname{End}_R(k^{\operatorname{stab}})$ discussed above, given by $\alpha \mapsto (\psi_i \wedge -) \circ \alpha$, and θ_i^* acts by contraction on S. Note that in (2.3) the complex on the very left has differential $1 \otimes d_{k^{\operatorname{stab}}}$ while the middle complex has differential $1 \otimes d_{k^{\operatorname{stab}}} + d_K \otimes 1$. It is easy to check that $\exp(\delta), \exp(-\delta)$ intertwines these differentials and gives an isomorphism of complexes [2, Proposition 4.11].

• The morphism of complexes $\pi: K \longrightarrow R/\mathfrak{m}$ is defined by composing the projection of K onto the submodule $R \cdot 1$ of θ -degree zero forms, with the quotient $R \longrightarrow R/\mathfrak{m}$. We also write π for the result of tensoring this morphism with $\operatorname{End}_R(k^{\operatorname{stab}})$ to obtain

$$K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}}) \xrightarrow{\pi \otimes 1} R/\mathfrak{m} \otimes_R \operatorname{End}_R(k^{\operatorname{stab}}) = \operatorname{\underline{End}}(k^{\operatorname{stab}}).$$

By [2] there is a diagram of k-linear homotopy equivalences and an odd k-linear map

$$H_{\infty}: K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}}) \longrightarrow K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}})$$

with

$$\sigma_{\infty} = \sum_{s \ge 0} \sum_{p_1, \dots, p_s} (-1)^{\binom{s+1}{2}} \frac{1}{s!} \operatorname{At}_{p_1} \cdots \operatorname{At}_{p_s} \theta_{p_1} \cdots \theta_{p_s} \qquad (\text{mod } \mathfrak{m})$$

3 Examples

To describe the higher multiplications it is convenient to write $[\psi_i, -]$ for the natural operator on \mathscr{A} (giving ψ_i, ψ_j^* the usual anticommutation relations for fermionic creation and annihilation operators), that is

$$[\psi_i, \psi_{j_1}^* \cdots \psi_{j_t}^*] = \sum_{l=1}^t (-1)^{l-1} \psi_{j_1}^* \cdots [\psi_i, \psi_{j_l}^*] \cdots psi_{j_t}^*$$
$$= \sum_{l=1}^t (-1)^{l-1} \delta_{i=j_l} \psi_{j_1}^* \cdots \psi_{j_t}^*.$$

A general fact is that the higher multiplications on \mathscr{A} are linear combinations of products of such operators. For example, when n=2 a standard term in r_3 would look like

$$\Phi_0 \otimes \Phi_1 \otimes \Phi_2 \mapsto \lambda \cdot [\psi_1, [\psi_2, \Phi_0]] \cdot [\psi_1, \Phi_1] \cdot [\psi_2, \Phi_2]$$
.

The coefficient λ is computed as a Feynman amplitude on a binary planar tree with with incoming fermion states $\psi_1\psi_2, \psi_1, \psi_2$ in the three leaves (respectively) and a simple list of allowed interactions, the most significant of which is a trivalent interaction vertex with an incoming fermion ψ_j and outgoing fermion θ_i and bosons $\partial_{x_i}(x^{\gamma})$ whenever the polynomial W^j has a nonzero coefficient for the monomial $x^{\gamma} = x_1^{\gamma_1} x_2^{\gamma_2}$ (the fermions θ_i are the auxiliary spinor representation generators as in [2]). There are two other interactions which do not depend on W, and which take place only at internal edges or internal vertices (respectively).

Example 3.1. Let $W = x^d$ so that $\mathscr{A} = k \oplus k\psi^*$. Then only r_2 and r_d are nonzero and on $(\mathscr{A}[1])^{\otimes d}$ the only basis element with a nonzero value under r_d is

$$r_d(\psi^* \otimes \cdots \otimes \psi^*) = 1$$
.

Another way to say this is

$$r_d(\Phi_0 \otimes \cdots \otimes \Phi_{d-1}) = \prod_{i=0}^{d-1} [\psi, \Phi_i].$$

This A_{∞} -structure is cyclic with respect to the trace form on \mathscr{A} which projects onto the $k\psi^*$ -summand. Note that all such products are expanded such that the index i increases from left to right.

References

[1] C. I. Lazaroiu, Generating the superpotential on a D-brane category: I, [arXiv:hep-th/0610120].

- [2] D. Murfet, Computing with cut systems, [arXiv:1402.4541].
- [3] N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg models, Adv. Math. 289 (2016), 480–566.
- [4] T. Dyckerhoff and D. Murfet, *Pushing forward matrix factorisations*, Duke Math. J. **162** (2013), 1249–1311.