WHY I SHOULD STICK MY NOSE IN OTHER PEOPLE'S BUSINESS

OR

WHY I SHOULD PARTICIPATE IN ALL PHASES OF THE DATA LIFE CYCLE

Data Life Cycle

- Planning
 - Directed planning process
 - Plan documents
 - Contracting Services
- Implementation
 - Sampling laboratory samples
 - Analysis laboratory analysis
- Assessment
 - Verification
 - Validation
 - Data quality assessment
- Blame

Often the only places where lab personnel are considered key players

MARLAP Warning

- "Although the diagram represents the data life cycle in a linear fashion, it is important to note that the actual process is an iterative one, with feedback loops"
- Summary
 - Don't go through the steps one at a time and think you are done

Additional Warning

- Steps appear compartmentalized
 - Everyone has their own job

- Steps truly overlap
 - Everyone should stick their nose in everyone else's business

Example

Characterize a questionable set of soil piles

Large project with high visibility

Many other projects to be completed at the site

Objectives

- Stakeholders meet to determine objectives
 - Determine if soil piles are dangerous to the public
 - Determine exactly what is in the piles
 - Efficacy of field testing methods at site
 - Can XRF and ISOCS be used to save money on future projects?
 - Determine efficacy as a screening tool
 - Possible to use in risk assessment?

Planning

- Many planning meetings held
 - Want to get everything just right
- Carefully select an appropriate sampling design
 - Use splits to be able to compare analytical lab measurements with XRF and ISOCS results
- Statistical analysis thoroughly discussed and evaluated before a single sample was collected

Safety Question

- Measurements obtained
- Soil piles are safe
 - All analytes of concern present in amounts well below action limits
- Conclusions based on lab techniques
 - Highly defensible

XRF Results

- Measured barium, chromium, lead, and uranium
- Relative error of upper confidence limits (UCLs) as large as 690% compared to laboratory data
- 5% of lead measurements were false positives relative to the no action limit
- 16% of uranium measurements were false positives relative to the no action limit
- 56% of uranium measurements were false negatives relative to background
- Chromium was not detected by XRF at background levels

ISOCS Results

- Measured Cs-137 and U-238
- Relative error of upper confidence limits (UCLs) as large as 540% compared to laboratory data
- 60% false negative rate relative to the no action limit for Cs-137
- Unable to detect U-238 at background levels
- Unable to detect U-238 at the no action limit

Conclusions from Results

XRF and ISOCS data cannot be used to compute UCLs

 Data were not adequately conclusive to determine if XRF and ISOCS were sufficient for screening

What Now?

Stakeholders were certain results would be better

Decided not to use XRF and ISOCS on future projects

Fast Forward - Lab

- Several months after project completed
 - Conversed with a subject matter expert from a laboratory familiar with the project
 - Insisted that better results should have been obtained
 - Explained sample preparation methods that may have produced data sufficiently accurate to compute UCLs
 - Questioned whether field workers properly performed XRF and ISOCs

Fast Forward - Field

- Spoke with person in charge of field sampling
 - Followed instructions exactly as outlined in vendor instructions
 - Not as rigorous as the method outlined by lab subject matter expert
 - Spoke with lab prior to sampling
 - Lab insisted on all or nothing they wanted complete control or did not want to help
 - Too expensive so knowledge from lab personnel not available
 - Unaware that XRF and ISOCS data were to be used to compute UCLs
 - Believed that XRF and ISOCS data were only to be qualitative

Breakdown

- Extensive planning, but ...
 - Laboratory personnel and field workers absent from all planning
 - Objectives not conveyed to those gathering the data
 - Laboratory personnel not consulted to ensure best practices were used in the field
 - Vendor information not adequate for data needs

Missing Pieces

- Data needs were specific but lab was not consulted on proper protocol for data needs
- Laboratory personnel were unwilling to provide information essential to project success when approached by field workers
- Data needs were not conveyed to those collecting and analyzing the data

Lessons Learned

- What about next time?
 - Laboratory personnel need to be involved in planning meetings
 - Laboratory personnel should meet with field samplers to ensure that field methods are executed properly for data needs
 - Project planners need to involve key personnel from all phases

Own Your Expertise

- Don't wait to be asked
 - Nobody will ask you because they don't know they need you
- Recognize that you may not be given the control you want or need
 - Be willing to help however you can
- Don't be afraid to be pushy
 - They don't know they need your help
 - They don't know how you can help

Contact Information

Jill Lundell, PStat®

Senior Statistician, Portage, Inc.

Phone: (208) 419-4163

Cell: (208) 360-5475

Email: jlundell@portageinc.com

Berta Oates

Carlsbad Technical Assistance Contract (Portage, Inc.)

Phone: (801) 782-5179

Cell: (801) 814-5082

Email: boates@portageinc.com

