Scilab Textbook Companion for Physics by R. Resnick, D. Halliday, K. S. Krane¹

Created by
Joshi Prajakta Sanjay
3rd year, Engineering
Mechanical Engineering
Pune University
College Teacher
Gautam Chandekar
Cross-Checked by
K. V. P. Pradeep

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Physics

Author: R. Resnick, D. Halliday, K. S. Krane

Publisher: John Wiley And Sons , New Delhi

Edition: 5

Year: 2009

ISBN: 978-81-265-1088-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	MEASUREMENT	5
2	MOTION IN ONE DIMENSION	9
3	FORCE AND NEWTONS LAWS	25
4	MOTION IN TWO AND THREE DIMENSIONS	34
5	APPLICATIONS OF NEWTONS LAWS	46
6	MOMENTUM	58
7	SYSTEMS OF PARTICLES	72
8	ROTATIONAL KINEMATICS	81
9	ROTATIONAL DYNAMICS	88
10	ANGULAR MOMENTUM	104
11	ENERGY 1 WORK AND KINETIC ENERGY	108
12	ENERGY 2 POTENTIAL ENERGY	122
13	ENERGY 3 CONSERVATION OF ENERGY	126
14	GR AVITATION	135

15	FLUID STATICS	146
16	FLUID DYNAMICS	151
17	OSILLATIONS	155
18	WAVE MOTION	165
19	SOUND WAVES	172
20	THE SPECIAL THEORY OF RELATIVITY	179
21	TEMPERATURE	191
22	MOLECULAR PROPERTIES OF GASES	194
23	THE FIRST LAW OF THERMODYNAMICS	204
24	ENTROPY AND THE SECOND LAW OF THERMODYNAMICS	216

List of Scilab Codes

Exa 1.1	C1P1	5
Exa 1.2	C1P2	6
Exa 1.3	C1P3	7
Exa 1.5	C1P5	8
Exa 2.1	C2P1	9
Exa 2.2	C2P2	0
Exa 2.3	C2P3	1
Exa 2.4	C2P4	2
Exa 2.5	C2P5	4
Exa 2.6	C2P6	5
Exa 2.7	C2P7	7
Exa 2.8	C2P8	8
Exa 2.9	C2P9	0
Exa 2.10	C2P10	1
Exa 2.11	C2P11	3
Exa 3.1	C3P1	5
Exa 3.2	C3P2	6
Exa 3.3	C3P3	7
Exa 3.4	C3P4	8
Exa 3.5	C3P5	9
Exa 3.6	C3P6	0
Exa 3.7	C3P7	1
Exa 4.1	C4P1	4
Exa 4.2	C4P2	7
Exa 4.3	C4P3	8
Exa 4.4	C4P4	0
Exa 4.5	C4P5	2
Exa 4.6	C4P6	3

Exa 4.7	C4P7	44
Exa 5.1	C5P1	46
Exa 5.2	C5P2	47
Exa 5.3	C5P3	49
Exa 5.4	C5P4	50
Exa 5.7	C5P7	52
Exa 5.9	C5P9	53
Exa 5.10	C5P10	54
Exa 5.11	C5P11	56
Exa 6.1	C6P1	58
Exa 6.2	C6P2	60
Exa 6.3	C6P3	62
Exa 6.4	C6P4	63
Exa 6.5	C6P5	65
Exa 6.6	C6P6	66
Exa 6.7	C6P7	67
Exa 6.8	C6P8	68
Exa 6.9	C6P9	70
Exa 7.2	C7P2	72
Exa 7.3	C7P3	75
Exa 7.7	C7P7	76
Exa 7.8	C7P8	77
Exa 7.9	C7P9	78
Exa 7.10	C7P10	80
Exa 8.1	C8P1	81
Exa 8.2	C8P2	82
Exa 8.3	C8P3	83
Exa 8.4	C8P4	84
Exa 8.5	C8P5	85
Exa 8.6	C8P6	87
Exa 9.1	C9P1	88
Exa 9.2	C9P2	89
Exa 9.3	C9P3	91
Exa 9.6	C9P6	92
Exa 9.7	C9P7	93
Exa 9.8	C9P8	95
Exa 9.9	C9P9	97
Exa 9 10	C9P10	99

Exa 9.12	C9P12			100
Exa 9.13	C9P13			101
Exa 10.2	C10P2			104
Exa 10.4	C10P4			106
Exa 10.5	C10P5			107
Exa 11.1	C11P1			108
Exa 11.2	C11P2			109
Exa 11.3	C11P3			110
Exa 11.4	C11P4			112
Exa 11.6	C11P6			113
Exa 11.7	C11P7			114
Exa 11.8	C11P8			115
Exa 11.9	C11P9			115
Exa 11.10	C11P10			117
Exa 11.11	C11P11			118
Exa 11.12	C11P12			120
Exa 12.1	C12P1			122
Exa 12.2	C12P2			123
Exa 12.3	C12P3			123
Exa 12.4	C12P4			124
Exa 12.7	C12P7			125
Exa 13.1	C13P1			126
Exa 13.2	C13P2			127
Exa 13.3	C13P3			129
Exa 13.4	C13P4			130
Exa 13.5	C13P5			131
Exa 13.6	C13P6			132
Exa 13.7	C13P7			133
Exa 14.1	C14P1			135
Exa 14.2	C14P2			136
Exa 14.3	C14P3			138
Exa 14.4	C14P4			139
Exa 14.5	C14P5			139
Exa 14.7	C14P7			140
Exa 14.8	C14P8			141
Exa 14.9	C14P9			142
Exa 14.10				143
				146

Exa 15.2	C15P2												147
Exa 15.3	C15P3												148
Exa 15.4	C15P4												149
Exa 15.5	C15P5												149
Exa 16.1	C16P1												151
Exa 16.2	C16P2												152
Exa 16.3	C16P3												154
Exa 17.1	C17P1												155
Exa 17.2	C17P2												156
Exa 17.3	C17P3												158
Exa 17.4	C17P4												160
Exa 17.6	C17P6												160
Exa 17.7	C17P7												161
Exa 17.8	C17P8												162
Exa 17.9	C17P9												163
Exa 18.1	C18P1												165
Exa 18.2	C18P2												166
Exa 18.3	C18P3												168
Exa 18.4	C18P4												169
Exa 18.5	C18P5												169
Exa 19.1	C19P1												172
Exa 19.2	C19P2												173
Exa 19.3	C19P3												174
Exa 19.4	C19P4												175
Exa 19.5	C19P5												176
Exa 19.6	C19P6												177
Exa 20.1	C20P1												179
Exa 20.2	C20P2												180
Exa 20.3	C20P3												181
Exa 20.4	C20P4												182
Exa 20.5	C20P5												183
Exa 20.6	C20P6												184
Exa 20.7													185
Exa 20.8	C20P8												186
Exa 20.9	C20P9												187
Exa 20.10													188
Exa 20.11	C20P11 .												189
Exa 21.1	C21P1												191

Exa 21.2	C21P2	191
Exa 21.3	C21P3	192
Exa 22.1	C22P1	194
Exa 22.2	C22P2	195
Exa 22.3	C22P3	196
Exa 22.4	C22P4	198
Exa 22.5	C22P5	199
Exa 22.6	C22P6	200
Exa 22.7	C22P7	201
Exa 22.9	C22P9	202
Exa 23.2	C23P2	204
Exa 23.3	C23P3	205
Exa 23.4	C23P4	206
Exa 23.5	C23P5	208
Exa 23.6	C23P6	208
Exa 23.7	C23P7	210
Exa 23.8	C23P8	211
Exa 23.9	C23P9	212
Exa 24.1	C24P1	216
Exa 24.2	C24P2	217
Exa 24.3	C24P3	218
Exa 24.4	C24P4	219
Exa 24.5	C24P5	220
Exa 24.6	C24P6	221
Exa 24.7	C24P7	222
Exa 24.8	C24P8	223
Exa 24.9	C24P9	224

Chapter 1

MEASUREMENT

Scilab code Exa 1.1 C1P1

```
1 clear
  clc
3 //To find speed in meters per second
4 //to find volume in cubic centimeters
6 // GIVEN::
8 //speed
9 speed1 = 55 // miles per hour
10 //volume of gasoline
11 volume1 = 16 //gallons
12
13 // SOLUTION:
14
15 //speed in meters per second
16 // since 1 mile = 1609 meters and 1 hour = 3600
      seconds
17 speed = (55)*(1609/1)*(1/3600) //miles per hour
18
19 //volume of gasoline in cubic centimeters
20 // since 1 gallon = 231 cubic inches and 1 inch =
```

Scilab code Exa 1.2 C1P2

```
1
2 clear
  clc
4 //To find conversion factor between light year ang
5 //to find distance to the star proxima centuri
7 // GIVEN::
9 // distance
10 d = 4*10^16 //in light years
11 // velocity of light
12 v = 3.00*10^8 / m/s
13
14 // SOLUTION:
15
16 //conversion factor
17 // first finding conversion between 1 year and
     seconds
18 y = (1)*(365.25/1)*(24/1)*(60/1)*(60/1) // seconds
19 //now finding conversion between light year ang
     meters
20 light_year = (y*v) // meters
21
22 //to find distance to the star proxima centuri
```

```
23 distance = (d)*(1/light_year) // light years
24 light_year = nearfloat("pred",9.48e15)
25 printf ("\n\n Conversion between 1 year and seconds
        y = \n\n %.2e seconds",y);
26 printf ("\n\n Conversion between light year ang
        meters 1 light year =\n\n %.2e m",light_year);
27 printf ("\n\n Distance to the star proxima centuri
        distance =\n\n %.1f light years", distance);
```

Scilab code Exa 1.3 C1P3

```
1
2 clear
  clc
4 //to find fractional and percentage uncertainty in
      your weight
5 //to find fractional and percentage uncertainty in
      cat's weight
6
7 // GIVEN::
9 //your weight
10 \text{ w1} = 119 //\text{in lbs}
11 // your and cat's combined weight
12 \text{ w2} = 128 // \text{ in lbs}
13
14 // SOLUTION:
15
16 //fractional uncertainty in your weight
17 u1 = (1/119)
18 // percentage uncertainty in your weight
19 u2 = u1*100 //percentage
20 //fractional uncertainty in cat's weight
21 	 u3 = (1/9)
22 //percentage uncertainty in cat's weight
```

Scilab code Exa 1.5 C1P5

```
1
2
3 clear
4 clc
5 //to find value of plank time
6 // GIVEN::
8 //speed of light
9 c = 3.00e8 //m/s
10 // Newton's gravitational constant
11 G = 6.67e-11 / m^3/s^2.Kg
12 //plank's constant
13 h = 6.63e-34// \text{Kg.m}^2/\text{s}
14
15 // SOLUTION:
16
17 //plank time
18 tp = sqrt((G*h)/c^5)// seconds
19 //answer in the book is slightly different which is
      printing mistake
    printf ("\n Plank time tp =\n %.2e seconds", tp
20
       );
```

Chapter 2

MOTION IN ONE DIMENSION

Scilab code Exa 2.1 C2P1

```
1
2 clear
3 clc
4 //to find distance travelled to the north and east
     does the airplane travel
6 // GIVEN::
8 //distance travelled by airplane
9 d = 209// in km
10 //angle made by airplane east of due north that is
     angle made with y direction
11 theta = 22.5// in degrees
12
13 // SOLUTION:
14
15 //angle made by airplane with x direction
16 fi = 90-theta//in degrees
17 // distance travelled to the north
```

```
18 dy = d*sind(fi)
19 //distance travelled to the east
20 dx = d*cosd(fi)
21 printf ("\n\n Angle made by airplane with x
         direction fi =\n\n %.1f degrees",fi);
22 printf ("\n\n Distance travelled to the north by
         airplane dx =\n\n %.1f km",dx);
23 printf ("\n\n Distance travelled to the east by
         airplane dy =\n\n %3i km",dy);
```

Scilab code Exa 2.2 C2P2

```
1
2 clear
   clc
4 //to find magnitude and direction of vector
     indicating location of car
6 // GIVEN::
8 //distance travelled due east on a level of road
9 //s is represented as ax+by.since b has no x
     component and a has no y componebt we can write
10 Sx = 32// in km
11 //distance travelled before stopping after taking
     turn due north
12 Sy = 47// in km
13
14
15 // SOLUTION:
16
17 //magnitude of distance travelled
18 x = sqrt(Sx^2 + Sy^2)/in meters
19 //direction of travelling
20 fi = atand(Sy/Sx)//in degrees
```

Scilab code Exa 2.3 C2P3

```
1
2 clear
   clc
4 //to find magnitude and direction of resultant of a
      and b and c vector
6 // GIVEN::
8 //coefficient in x direction for vector a
9 \text{ ax} = 4.3
10 //coefficient in y direction for vector a
11 \text{ ay} = -1.7
12 //coefficient in x direction for vector b
13 \text{ bx} = -2.9
14 //coefficient in y direction for vector b
15 \text{ by = } 2.2
16 //coefficient in x direction for vector c
17 cx = 0
18 //coefficient in y direction for vector c
19 \text{ cy} = -3.6
```

```
20 //we can write a,b and c in vector form
21 \ a = [4.3 -1.7]
22 b = [-2.9 2.2]
23 c = [0 -3.6]
24
25 // SOLUTION:
26
27 //coefficient in x direction for resultant vector
28 \text{ sx} = \text{ax} + \text{bx} + \text{cx}
29 //coefficient in y direction for resultant vector
30 \text{ sy} = \text{ay} + \text{by} + \text{cy}
31 //direction of resultant vector
32 fi = atand(sy/sx)+360
33 printf ("\n\n Coefficient of resultant vector in x
       direction sx = \langle n \rangle n \%.1 f, sx);
34 printf ("\n\n Coefficient of resultant vector in y
       direction sy =\langle n \rangle n \%.1 f", sy);
35 printf ("\n Resultant vector s =\n %.1 fi + %.1 fj
       ', sx , sy );
36 \text{ printf } (" \n \n \text{ Direction of resultant vector with})
      positive x axis measured counterclockwise fi =\n\
      n %3i degrees", fi);
```

Scilab code Exa 2.4 C2P4

```
10 A = 1.00 / in m/s^2
11 B = -32.0//in m/s
12 C = 5.0//in m/s^2
13 D = 12.0 / in m
14
15
16 // SOLUTION:
17
18 //for position vector
19 //coefficient in x direction for resultant vector
20 \text{ rx} = A*t^3 + B*t
21 //coefficient in y direction for resultant vector
22 \text{ ry} = C*t^2 + D
23
24 //for velocity vector
25 //coefficient in x direction for resultant vector
\frac{26}{a} //as v = dx/dt therefore differentiating rx and ry w
      r.t t
27 \text{ vx} = 3*A*t^2 + B
28 //coefficient in y direction for resultant vector
29 \text{ vy } = 2* \text{ C*t}
30
31 //for acceleration vector
32 //as a = dv/dt therefore differentiating rx and ry
      again w.r.t t
33 //coefficient in x direction for resultant vector
34 \text{ ax} = 6*A*t
35 //coefficient in y direction for resultant vector
36 \text{ ay} = 2*C
37 printf ("\n Position vector r =\n %1i m i + %1i
      m j', rx, ry);
38 printf ("\n\n Velocity vector v =\n\n %1i m/s i +
      %1i m/s j',vx,vy);
39 printf ("\n Acceleration vector a =\n %1i m/s^2
      i + \%1i \text{ m/s}^2 \text{ j'}, \text{ax, ay};
```

Scilab code Exa 2.5 C2P5

```
1
2 clear
   clc
4 //to find average velocity of car
6 // GIVEN::
8 //distance travelling by car
9 d1 = 5.2//in mi
10 //distance travelled while walking
11 d2 = 1.2//in mi
12 //time required to reach to gas station while
      walking
13 t1 = 27//in \min
14 //speed of car
15 \quad v = 43//in \quad mi/h
16
17 // SOLUTION:
18
19 //net displacement
20 delta_x = d1 + d2//in mi
21 //speed of car in mi/minutes
22 v1 = v/60//in mi/minutes
23 //total elapsed time
24 	 delta_t1 = (d1/v1) + t1//in min
25 //total elapsed time in h
26 delta_t = delta_t1/60//in h
27 //average velocity
28 //applying kinematic equations
29 Vav_x = delta_x/delta_t/in mi/h
30 printf ("\n Net displacement delta_x =\n %.1 f mi
     ",delta_x);
```

- 31 printf (" \n Total elapsed time delta_t = \n %.2 f h", delta_t);
- 32 printf ("\n\n Average velocity of car required Vav_x =\n\n \%.1 f mi/h", Vav_x);

Scilab code Exa 2.6 C2P6

```
1
2 clear
    clc
4 //to find average velocity for interval AD and DF
5 //to find slope of position curve at the points B
      and F and compare it with the value in velocity
      curve
6 //to find average acceleration in the interval AD
      and AF
7 //to find slope of velocity curve at the points D
      and compare it with the value in acceleration
      curve
  // GIVEN : :
10
11 //distance travelling by the point D has come
12 \text{ xD} = 5.0 // \text{in m}
13 //distance travelling by the point A has come
14 \text{ xA} = 1.0 / / \text{in m}
15 //distance travelling by the point F has come
16 \text{ xF} = 1.4 // \text{in m}
17 //time elapsed by the point D has come
18 tD = 2.5//in seconds
19 //time elapsed by the point A has come
20 \text{ tA} = 0.0//\text{in seconds}
21 //time elapsed by the point F has come
22 \text{ tF} = 4.0//\text{in seconds}
23 //velocity at point D
```

```
24 \text{ vD} = 0.0 / / \text{in m/s}
25 //velocity at point A
26 \text{ vA} = 4.0 // \text{in m/s}
27 //velocity at point F
28 \text{ vF} = -6.2 // \text{in m/s}
29
30
31
32 // SOLUTION:
33
34 //average velocity for the interval AD
35 //applying kinematic equations
36 \quad Vav_x = (xD-xA)/(tD-tA)
37 //average velocity for the interval DF
38 //applying kinematic equations
39 \quad Vavx = (xF-xD)/(tF-tD)
40 //slope of position curve at the point B
41 slope_B = (4.5-2.8)/(1.5-0.5)//refer to the graph
      2.6(b) given in the book on page no. 25
42 //slope of position curve at the point F
43 slope_F = (1.4-4.5)/(4.0-3.5)//refer to the graph
      2.6(b) given in the book on page no. 25
44 //average acceleration in the interval AD
45 //applying kinematic equations
46 Aav_x = (vD-vA)/(tD-tA)//in m/s^2
47 //average acceleration in the interval AF
48 //applying kinematic equations
49 Aavx = ((vF-vA)/(tF-tA))/in m/s^2
50 Aavx = nearfloat("pred", -2.6)
51 //slope of velocity curve at the point D
52 \text{ slope_D} = (-0.9-0.9)/(3.0-2.0)//\text{refer to the graph}
      2.6(c) given in the book on page no. 25
53
54 printf ("\n Average velocity for the interval AD
      Vav_x = \langle n \rangle n \%.1 f m/s, Vav_x \rangle;
55 printf ("\n\n Average velocity for the interval DF
      V_avx = n n \%.1 f m/s, Vavx);
56 printf ("\n\n Slope of position curve at the point B
```

```
slpoe_B=\n \%.1 f m/s", slope_B);
57 printf ("\n Slope of position curve at the point F
      = \ln n \%.1 f m/s, slope_F);
58 //refer velocity time graph 2.6(c) given in the book
       on the page no.25
59 printf ("\n From velocity curve value of velocity
      at point B is \n 1.7 \text{m/s};
60 printf ("\n From velocity curve value of velocity
      at point Bis \n = 6.2 \text{m/s};
61 printf ("\n Average acceleration for the interval
     AD Aav_x = \ln n \%.1 f m/s^2, Aav_x;
62 printf ("\n\n Average acceleration for the interval
     AF Aavx =\n \%.1 f m/s^2", Aavx);
63 printf ("\n\n Slope of velocity curve at the point D
       slope_D =\n\n \%.1 f m/s^2", slope_D);
64 //refer velocity time graph 2.6(d) given in the book
       on the page no.25
65 printf ("\n\n From acceleration curve value of
      acceleration at point D is \ln -1.8 \text{m/s}^2;
```

Scilab code Exa 2.7 C2P7

```
1
2 clear
3 clc
4 //to find acceleration of partical
5 //to find velocity of partical when it leaves the
        tube
6
7 // GIVEN::
8
9 //length of the tube
10 x = 2.0//in m
11 //velocity of partical when it enters in the tube i.
        e.at t=0s
```

```
12 v0x = 9.5*10^5/in m/s
13 //time when the partical emerges out of the tube
14 t = 8.0*10^{-7}/in m/s
15
16 // SOLUTION:
17
18 //acceleration of the partical
19 //applying kinematic equations
20 ax = (x-(v0x*t))/(0.5*t^2)/(in m/s^2)
21 //velocity of the partical when it leaves the tube
22 //applying kinematic equations
23 \quad vx = v0x + (ax*t)
24
25 printf ("\n\ Acceleration of the partical ax =\n\
     \%.1e \text{ m/s}^2, ax);
26 printf ("\n Velocity of the partical when it
      leaves the tube vx = \ln n \%.1e m/s, vx);
```

Scilab code Exa 2.8 C2P8

```
clear
clc
//to find timw elapsed
//to find acceleration
//after apply brakes with constant acceleration time
required to stop vehicle
//additionl distance covered after vehicle has
stopped
// GIVEN::
// limitial velocity at t=0
vox = 23.6//in m/s
//final velocity
```

```
14 \text{ vx} = 12.5 / / \text{in m/s}
15 //distance travelled
16 \text{ delta_x} = 105//\text{in m}
17 //velocity after vehicle has stopped
18 \text{ vxf} = 0//\text{in m/s}
19
20 // SOLUTION:
21
22 //average velocity
23 //applying kinematic equations
24 \quad vav_x = (v0x + vx)/2//in \quad m/s
25 //time elapsed
26 time = delta_x/vav_x//in seconds
27 //acceleration
28 //applying kinematic equations
29 ax = (vx-v0x)/time//in m/s^2
30 //time required to stop vehicle
31 //applying kinematic equations
32 t = (vxf-v0x)/ax//in s
33 //total distance covered by vehicle
34 //applying kinematic equations
35 x = (v0x*t) + (0.5*ax*t^2) / in m/s^2
36 //additional distance travelled by vehicle
37 \text{ x\_final} = x - \text{delta\_x}//\text{in m}
38 x = round(x)
39 x_final = round(x_final)
40 time = nearfloat("pred",5.81)
41
42 printf ("\n\n Average velocity vav_x =\n\n %.2 f m/s"
      , vav_x)
43 printf ("\n\n Time elapsed time =\n\n %.2 f s", time);
44 printf ("\n Acceleration of vehicle ax =\n %.2 f
      m/s^2", ax);
45 printf ("\n After apply brakes with constant
      acceleration time required to stop vehicle t = \langle n \rangle
      n \%.1 f s",t);
46 printf ("\n Total distance covered by vehicle x =\n
      n n \%3i m", x);
```

```
47 printf ("\n\n Additionl distance covered after vehicle has stopped x_final =\n\n %1i m",x_final);
```

Scilab code Exa 2.9 C2P9

```
1
2 clear
3 clc
4 //to find position and acceleration after t=1,2,3,4s
        have elapsed
5
7 // GIVEN::
9 //linitial velocity due free fall of body
10 \quad vOy = O//in \quad m/s
11 //acceleration due to gravity
12 g = 9.8//in m/s^2
13 //time elapsed
14 \text{ t1} = 1.0 // \text{in s}
15 	 t2 = 2.0 / / in s
16 	 t3 = 3.0 //in 	 s
17 \text{ t4} = 4.0 // \text{in s}
18
19
20 // SOLUTION:
21
22 / \text{velocity } v = -(g*t)
23 //since initial velocity is zero
v1 = (v0y*t1) - (g*t1) / (in m/s)
v2 = (v0y*t2) - (g*t2) / (in m/s)
26 \text{ v3} = (\text{v0y*t3}) - (\text{g*t3}) / (\text{in m/s})
27 \text{ v4} = (\text{v0y*t4}) - (\text{g*t4}) / / \text{in m/s}
28 //since body is moving vertically downwards s0,
```

```
velocity has -ve sign
29 //distance travelled y = -(0.5*g*t^2)
30 \text{ y1} = (\text{v0y*t1}) - 0.5*(\text{g*t1^2}) //\text{in m}
31 y2 = (v0y*t2)-0.5*(g*t2^2)/in m
32 \text{ y3} = (\text{v0y*t3}) - 0.5*(\text{g*t3^2}) //\text{in m}
33 y4 = (v0y*t4)-0.5*(g*t4^2)/in m
34 // -ve sign indicates body is travelling in -ve y
      direction
35 printf ("\n\n Distance travelled after elapsed time
      t1 = \langle n \rangle n \%.1 f m'', y1);
36 printf ("\n\n Distance travelled after elapsed time
      t2 = \langle n \rangle n \%.1 f m'', y2 \rangle;
  printf ("\n\n Distance travelled after elapsed time
      t3 = \ln n \%.1 f m, y3);
38 printf ("\n\n Distance travelled after elapsed time
      t4 = \ln n \%.1 f m, y4);
39 printf ("\n\ Velocity after elapsed time t1 =\n\
      .1 f m/s, v1);
40 printf ("\n\ Velocity after elapsed time t2 =\n\
      .1 f m/s, v2);
41 printf ("\n\ Velocity after elapsed time t3 =\n\
      .1 f m/s, v3);
42 printf ("\n\ Velocity after elapsed time t4 =\n\
      .1 f m/s, v4);
```

Scilab code Exa 2.10 C2P10

```
1
2 clear
3 clc
4 //to find time required to reach highest point
5 //to find distance travelled by the ball till the
    highest position is reached
6 //to find time at which ball will be 27m above the
    groung
```

```
8 // GIVEN::
10 //initial speed of the ball
11 v0y = 25.2//in m/s
12 //final speed of the ball
13 vy = 0//in m/s
14 //acceleration due to gravity
15 g = 9.8//in m/s^2
16 //for calculating time distance of ball above the
      ground
17 \text{ y1} = 27.0 //\text{in meters}
18
19
20
21 // SOLUTION:
22 //time required to reach highest psition
23 //applying kinematic equations
24 t = (v0y-vy)/g//in seconds
25 //distance travelled by the ball till the highest
      position is reached
26 //applying kinematic equations
27 y = (v0y*t) - (1/2*g*t^2) / in meters
28 //time at which ball will be 27m above the groung
29 //solving quadratic equation
30 y1 = poly([y1 - (v0y) (1/2*g)], 't', 'coeff')
31 c = roots(y1)
32 t1 = c(1)
33 t2 = c(2)
34 //velocity of ball at t1
35 vy1 = v0y-(g*t1)//in m/s
36 //velocity of ball at t2
37 \text{ vy2} = \text{v0y-(g*t2)}//\text{in m/s}
38
39 printf ("\n Time required to reach highest psition
       t = \ln n \%.2 f s, t);
40 printf ("\n Distance travelled by the ball till
      the highest position is reached y = \ln n \%.1 f m,
```

Scilab code Exa 2.11 C2P11

```
1
2 clear
   clc
4 //maximum distance travelled by the rocket above the
       water surface
5
6
7 // GIVEN::
9 // distance below the water surface
10 //this can be written as y-y0 = s = 125
11 s = 125//in meters
12 //initial velocity of rocket
13 v0y = 0//in m/s
14 //acceleration due to gravity
15 g = 9.8//in m/s^2
16 //time required to reach the water surface
17 t = 2.15//in seconds
18 //velocity of rocket at highest position
19 v2 = 0/(in m/s^2)
20
21 // SOLUTION:
22 //acceleration of rocket in upward direction
```

```
23 //applying kinematic equations
24 ay = (2*s)/t^2/in m/s^2
25 //final velocity of the rocket at the surface of
     water
26 //applying kinematic equations
27 vy = v0y+(ay*t)//in m/s
28 //now taking v3 as initial velocity of rocketi.e.
      velocity at the water surface level
  //so, at highest rocket will have 0 velocity which
     we will take as final velocity of rocket
30 //time required to reach highest position from water
       surface
31 //applying kinematic equations
32 time = (vy-v0y)/g//in seconds
33 //maximum distance travelled by the rocket above the
       water surface
34 //applying kinematic equations
35 y = (vy*time)-(0.5*g*time^2)/in meters
36 time = nearfloat("pred",11.8)
37 y = nearfloat("pred",688)
38 printf ("\n Acceleration of rocket in upward
      direction ay = \ln \%.1 \text{ f m/s}^2, ay);
39 printf ("\n Final velocity of the rocket at the
      surface of water vy = \ln n \%3i \text{ m/s}, vy);
40 printf ("\n\n Time required to reach highest
      position from water surface time = \ln n \%.1 f
     seconds", time);
41 printf ("\n\n Maximum distance travelled by the
     rocket above the water surface y = \ln \%2i m, y)
```

Chapter 3

FORCE AND NEWTONS LAWS

Scilab code Exa 3.1 C3P1

```
1
2
    clc
3
    //To Find the final velocity of sled
5
    //Given :
    // refer to figure 3-7(a) and 3-7(b) from page no. 49
    //mass of sled
    m = 240 // in kg
   //distance travelled
10
11
    d = 2.3 / / in m
12
    //force applied
13
    Fsw = 130//in N
14
15 // solution:
16
17 //calculating first acceleration
18 //applying newton's second law
19 ax =Fsw/m //m/ s ^2
```

```
// calculating time required to move sled by distance d // applying kinemtic equation  
22 t = ((2*d)/ax)^{(1/2)} // in seconds  
23 // calculating velocity  
24 // applying kinemtic equation  
25 vx = ax*t //m/ s  
26 printf ("\n\n Acceleration ax = \n\n %.2fm/s^2", ax)  
27 printf ("\n\n final velocity vx = \n\n %.1f m/s", vx );
```

Scilab code Exa 3.2 C3P2

```
1
2 //To Find the force to be apply on sled
3 //referring to data from problem 3.1 on page no.48
  clc;
5
   //Given :
7 //refer to figure 3-7(a) and 3-7(b) from page no. 49
8 \text{ m} = 240; //\text{kg}
9 d =2.3; //distance travelled in m
10 Fsw =130; // force in N
11
12 // solution:
13 //calculating acceleration
14 //applying newton's second law
15 ax1 = Fsw/m //m/s^2
16 //calculating time
17 //applying kinematic equation
18 t = sqrt((2*d)/ax1) // s e c o n d s
19 //calculating velocity
20 //applying one dimensinal kinematic equation
21 vx = ax1*t; //m/s
22 v0x = -(ax1*t); //m/s
```

```
23 t2 = 4.5 // s e c o n d s
24 // calculating first acceleration using equation vx
     = v0x + ax*t
25 ax = (v0x-vx)/t2; //m/s^2
26 \text{ ax} = \text{nearfloat}("succ", 0.71)
27
28 // calculating force
29 //applying newton's second law
30 \text{ F_dashsw} = \text{m*ax; } // \text{ N}
31 F_dashsw = nearfloat("pred",-170)
32 F_{dashsw1} = F_{dashsw}/(0.4535*9.81)
34 printf ("\n\ Acceleration ax1 = \n\ %.2 f m/s^2",
      ax1)
35 printf ("\n Time t = \n %.1 f s" ,t)
36 printf ("\n\ Final velocity vx = \n\ f m/s", vx
      )
37 printf ("\n\n Final velocity v0x = \ln \%.1 f m/s",
38 printf ("\n\n Acceleration ax = \n\n \%.2 f m/s^2", ax
39 printf ("\n Constant force F_dashsw = \n %3i N"
      ,F_dashsw);
40 printf ("\n\n Constant force F_{dashsw1} = \ln n \%2i lb
     ",F_dashsw1);
```

Scilab code Exa 3.3 C3P3

```
1
2  clc
3
4  //To find force acting on crate
5
6  //Given :
7  //refer to figure 3-8(a) and3-8(b) from page no. 49
```

```
8 // mass
9 \text{ m} = 360 / \text{kg}
10 // initial velocity of crate
11 vx1 = 62 / \text{km/ph}
12 // final velocity of crate
13 \text{ v0x1} = 105 //\text{km/ph}
14 // time elapsed
15 t = 17 // seconds
16
17 // solution:
18 //calculating initial velocity in m/s
19 vx = (62*5)/18 //in m/s
20 // calculating final velocity in m/s
21 v0x = (105*5)/18 //in m/s
22 //calculating acceleration
23 ax = (vx-v0x)/t //in m/s^2
24 //calculating force
25 //applying newton's secong law
26 Fct =m*ax //in seconds
27 \text{ ax} = \text{nearfloat}("succ", -0.70)
28 Fct = nearfloat("pred", -250)
29
30 printf ("\n\ Acceleration a = \n\ %.2fm/s^2", ax)
31 printf ("\n Force acting on crate Fct =\n %.3iN"
       ,Fct);
```

Scilab code Exa 3.4 C3P4

```
1
2
3 clear
4 clc
5
6 //To find force acting on crate
7
```

```
//Given :
    // refer to figure 3-17(a) and 3-17(b) from page no.
    // mass of first crate
10
11
    m1 = 4.2 / kg
12
    // mass of second crate
    m2 = 1.4 / kg
13
14
    // force on first crate
    P1w = 3 //in N
15
16
17 //solution://for two crate remain in contact acc(
      crate 1)=acc(crate 2). we will call this as
      common acelration as a.
18 // calculating common acceleration of both crate in
     m/s^2
19 //applying newton's secong law
20 a = P1w/(m1+m2) //m/s
21 // calculating force exerted on crate 2 by 1
22 //applying newton's secong law
23
    f21 = m2*a // m/s^2
24
    f21 = nearfloat("succ", 0.76)
25
26 printf ("\n\n Calculating common acceleration of
      both crate a = \langle n \rangle n \%.2 \,\text{fm/s}^2, a)
27 printf ("\n Force acting on crate f21 = \n %.2 f
     N", f21);
```

Scilab code Exa 3.5 C3P5

```
1 2 3 4 clear 5 clc 6
```

```
7 //To find force acting on crate
9
    //Given :
10
    // refer to figure 3-18(a) and 3-18(b) from page no.
         55
11
    // mass of flat-bed cart
12
    mc = 360 / kg
    // mass of box
13
    mb = 150 / kg
14
    // magnitude of acceleration for cart
15
16
    ac = 0.167 / m/s^2
17
    // magnitude of acceleration for box
18
    ab =1 // m/s^2
19
20
21 // solution:
22 //force on cart
23 //applying newton's second law
24 Fcb =mc*ac //in N
25 // force on box
26 //applying newton's second law
27 Fbw = Fcb + (mb*ab) // in N
28
29 printf ("\n Force acting on crate Fcb = \n %2i N
     ", Fcb);
30 printf ("\n Force acting on box Fbw = \n %2i N"
      , Fbw);
```

Scilab code Exa 3.6 C3P6

```
1 2 3 4 clear 5 clc
```

```
6
   //To find frictional force of the box on the cart
  // referrinf to same problem as 3-5 on page no.55
9
10
    //Given :
11
    // mass of flat-bed cart
12
    mc = 360 / kg
    // mass of box
13
    mb = 150 / kg
14
    // magnitude of acceleration for cart
15
    ac = 0.167 / m/s^2
16
17
    // magnitude of acceleration for box
18
    ab =1 // m/s^2
19
20
21 // solution:
22 // force on cart
23 //applying newton's second law
24 Fcb =mc*ac //in N
25 // force on box
26 //applying newton's second law
27 Fbw = Fcb + (mb*ab) // in N
28 //frictional force
29 //applying newton's second law
30 Fcb = (mc*Fbw)/(mc+mb)// in N
31 Fcb = nearfloat("succ",150)
32 //answer of Fcb slightli varies.but answer by scilab
       is same as on calculator
33 printf ("\n Frictional force
                                     of box on the cart
      fcb = \langle n \rangle n \%3iN", Fcb);
```

Scilab code Exa 3.7 C3P7

1 2

```
3
    clc
4 //to find net force on passenger ang scale reading
      while descending and ascending
5
6 // GIVEN::
  // refer to figure 3-19(a) and 3-19(b) from page no.
8 //mass of passenger
9 m = 72.2 // in Kg
10 //acceleration of elevator while descending
11 a0y = 0// in m/s^2
12 // acceleration of elevator while ascending
13 ay = 3.20//in \text{ m/s}^2
14 //acceleration due to gravity
15 g = 9.81//in \text{ m/s}^2
16
17 // SOLUTION:
18
19 //passenger while descending
20 //applying newton's second law
21 Fps_d = m*(g+a0y)//in m/s^2
22 Fps_d1 = Fps_d/(g*.4535) // in lb
23 //passenger while ascending
24 //applying newton's second law
25 Fps_a = m*(g+ay)//in m/s^2
26 \text{ Fps_a1} = \text{Fps_a/(g*.4535)} // \text{in lb}
27 printf ("\n Net force on passenger while
      descending Fps_d = \langle n \rangle n \% 3i \ N", Fps_d);
28 printf ("\n Net force on passenger while
      descending Fps_d1 = \langle n \rangle n \%3i \ lb", Fps_d1);
29 printf ("\n Net force on passenger while ascending
       Fps_a = \langle n \rangle n \% 3i N", Fps_a;
30 printf ("\n Net force on passenger while ascending
       Fps_a1 = \langle n \rangle n \% 3i \ lb", Fps_a1);
31 printf ("\n Scale randing will not change while
      descending due to constant acceleration
      whilescale reading will increase while ascending
      due to increase in acceleration");
```

Chapter 4

MOTION IN TWO AND THREE DIMENSIONS

Scilab code Exa 4.1 C4P1

```
1
2
3 clc
4 //to find ship's velocity and position relative to
     its location when the tractor beam first appeared
6 // GIVEN::
7 //refer to figure 4-1 from page no.66
8 //problem mainly divides into two parts
9 //1. t=0 to t=4 seconds //FIRST PART
10 //2. t=4 to t=7 seconds
                            //SECOND PART
11
12 //1. for first part i.e. t=0 to t=4 seconds
13 // time interval for the first part is (4-0)=4
14 t1 = 4//in seconds
15 //initial position is (0,0)
16 \times 01 = 0
17 y01 = 0
18 //initial velocity in x direction for first part
```

```
19 v0x1 = 15//in \, km/s
20 //initial velocity in y direction for first part
21 \quad v0y1 = 0//in \quad km/s
22 //acceleration in x direction for the first part
23 \text{ ax1} = 0//\text{in km/s}^2
24 //acceleration in y direction for the first part
25 \text{ ay1} = 4.2 // \text{in km/s}^2
26
\frac{27}{1.5} for second part i.e. t=4 to t=7 seconds
28 // time interval for the second part is (7-4)=3
29 t2 = 3//in seconds
30 //initial velocity in x direction for first part
31 \text{ v0x2} = 15//\text{in km/s}
32 //initial velocity in y direction for first part
33 \text{ v0y2} = 16.8 //\text{in km/s}
34 //acceleration in x direction for the first part
35 \text{ ax2} = 18//\text{in km/s}^2
36 //acceleration in y direction for the first part
37 \text{ ay2} = 4.2 // \text{in km/s}^2
38
39 // SOLUTION:
40
41 //1 for first part i.e.t=0 to t=4 seconds
42 //final velocity in x direction
43 vx1 = v0x1 + ax1*t1//in km/s
44 //final velocity in y direction
45 \text{ vy1} = \text{v0y1} + \text{ay1*t1}//\text{in km/s}
46 //distance travelled in x direction
47 	ext{ x1} = 	ext{x01} + 	ext{v0x1*t1} + (0.5*ax1*t1^2) //in 	ext{km}
48 //distance travelled in y direction
49 \text{ y1} = \text{y01} + \text{v0y1*t1} + (0.5*\text{ay1*t1^2}) //\text{in km}
50
51 //1 for second part i.e. t=4 to t=7 seconds
52 //now the position of ship is (x1,y1)
53 \times 02 = x1
54 \text{ y}02 = \text{y}1
55 // final velocity in x direction
56 //applying kinematic equations
```

```
57 \text{ vx2} = \text{v0x2} + \text{ax2*t2}//\text{in km/s}
58 //final velocity in y direction
59 //applying kinematic equatio
60 \text{ vy2} = \text{v0y2} + \text{ay2*t2}//\text{in km/s}
61 //distance travelled in x direction
62 //applying kinematic equation
63 	ext{ x2} = 	ext{x02} + 	ext{v0x2*t2} + (0.5*ax2*t2^2) //in 	ext{ km}
64 //distance travelled in y direction
65 //applying kinematic equation
66 \text{ y2} = \text{y02} + \text{v0y2*t2} + (0.5*\text{ay2*t2^2}) //\text{in km}
67 //distance travelled by of ship
68 r = sqrt(x2^2 + y2^2) / in km
69 //velocity of ship
70 v = sqrt(vx2^2 + vy2^2) / in km/s
71 //position of ship
72 theta = atand(vy2/vx2)//in degrees
73 \text{ y2} = \text{round}(\text{y2})
74 r = round(r)
75 printf ("\n Final velocity in x direction for
       first part vx1 = \langle n \rangle n \%.1 f \text{ km/s}, vx1);
76 printf ("\n Final velocity in y direction for
       first part vy1 = \langle n \rangle n \%.1 f \text{ km/s}, vy1);
77 printf ("\n\n Distance travelled in x direction for
       first part x1 = \ln \%.1 f \text{ km}, x1);
78 printf ("\n Distance travelled in y direction for
       first part y1 = \ln \%.1 f \text{ km}, y1);
79
80 printf ("\n\n Final velocity in x direction for
       second part vx2 = \langle n \rangle n \%.1 f \text{ km/s}, vx2 \rangle;
81 printf ("\n\n Final velocity in y direction for
       second part vy2 = \ln \%.1 f \, km/s, vy2);
82 printf ("\n\n Distance travelled in x direction for
       second part x2 = \ln n \%3i \text{ km}, x2);
83 printf ("\n\n Distance travelled in y direction for
       second part y2 = \langle n \rangle n \%3i \text{ km}, y2);
84 printf ("\n Distance travelled by ship r = \n
      \%3i \text{ km}",r);
85 printf ("\n Velocity of ship v = \n \%2i \text{ km/s}",v)
```

```
; 86 printf ("\n\n Position of ship theta = \n\n %2i degrees", theta);
```

Scilab code Exa 4.2 C4P2

```
1
2
3
   clc
4
5 //to find direction in which crate moving
7 // GIVEN::
8 //refer to figure 4-3(a), (b, (c) from page no.68
9 //mass of crate
10 \, \text{m} = 62 / / \text{in kg}
11 //initial velocity of crate in x direction
12 v0x = 6.4//in m/s
13 //initial velocity of crate in y direction
14 \quad vOy = O//in \quad m/s
15 //force applied in opposite direction
16 Fct = 81//in N
17 //force applied in perpendicular direction
18 Fcj = 105//in N
19 //time interval while application of force
20 t = 3//in seconds
21
22 // SOLUTION:
23
24 //in x direction -Fct = m*ax
25 //in y direction Fcj = m*ay
26 //acceleration in x direction
27 //applying newton's second laww of motion
28 ax = -(Fct/m)//in m/s^2
29 //acceleration in y direction
```

```
30 ay = (Fcj/m)//in m/s^2
31 //component of velocity of crate in x direction
32 //applying kinematic equatio
33 \text{ vx} = \text{v0x} + \text{ax*t}
34 //component of velocity of crate in y direction
35 //applying kinematic equation
36 \text{ vy} = \text{vOy} + \text{ay*t}
37 //resultant velocity of crate
38 v = sqrt(vx^2 + vy^2)//in m/s
39 //direction of velocity of crate
40 theta = atand(vy/vx)//in degrees
41 theta = nearfloat("succ",64)
42
43 printf ("\n\n Acceleration in x direction ax = \n\n
     \%.2\ f\ m/s^2",ax);
44 printf ("\n Acceleration in y direction ay = \n
     \%.2 \text{ f m/s}^2, ay);
45 printf ("\n Component of velocity of crate in x
      direction vx = \langle n \rangle n \%.1 f m/s", vx);
46 printf ("\n Component of velocity of crate in y
      direction vy = \langle n \rangle n \%.1 f m/s, vy);
47 printf ("\n\n Resultant velocity of crate v = \ln n \%
      .1 f m/s", v);
48 printf ("\n Direction of velocity of crate theta =
       \n \n \%2i degrees, theta);
```

Scilab code Exa 4.3 C4P3

```
1
2
3
4 clc
5 //to find direction in which crate moving
6
7 // GIVEN::
```

```
8 //refer to figure 4-8 from page no.70
9 //velocity of plane
10 \ v = 155 / / in \ km/h
11 //horizontal velocity of package
12 \text{ v0x} = 155 / / \text{in km/h}
13 //since initial velocity of package is same that of
      plane but in horizontal direction
14
15 //elevation of plane directly above the target
16 y = -225//in meters
17 // y is negetive as packages are falling in downward
       direction
18 //acceleration due to gravity
19 g = 9.81//in m/s^2
20
21
22
23 // SOLUTION:
24
25 //time of fall
26 t = sqrt(-(2*y)/g)//in seconds
27 //horizontal distance travelled by the package in
      time t
28 //applying kinematic equations
29 x = ((v0x*t)/3600)*1000//in meters
30 //angle of sight should be
31 alpha = atand(x/abs(y))//in degrees
32 x = round(x)
33 t = nearfloat("succ", 6.78)
34 printf ("\n\n Time of fall t = \ln n \%.2 f seconds",t)
35 printf ("\n\n Horizontal distance travelled by the
      package in time t x = \ln n \%3i \text{ meters}, x);
36 printf ("\n\n Angle of sight should be alpha = \n\n
      \%2i degrees", alpha);
```

Scilab code Exa 4.4 C4P4

```
1
2
3
4
   clc
5 //to find time t1 at which the ball reaches highest
      position of its trajectory
6 //maximun height at which ball can reach
7 //total time of flight and range of ball
8 //velocity of ball when it strikes the ground
9
10 // GIVEN : :
11
12 //initial velocity of ball
13 v0 = 15.5 / / in m/s
14 //angle made by the ball with horizontal
15 fi0 = 36//in degrees
16
17
18 //acceleration due to gravity
19 g = 9.81//in m/s^2
20
21
22
23 // SOLUTION:
24
25 //vertical component of initial velocity of ball
26 \text{ vOy} = \text{vO*sind(fi0)}//\text{in m/s}
27 //vertical component of initial velocity of ball
28 \text{ v0x} = \text{v0*cosd(fi0)}//\text{in m/s}
29 //velocity at the top position of trajectory
30 \text{ vy} = 0//\text{in m/s}
31 // time t1 at which the ball reaches highest
```

```
position of its trajectory
32 //applying kinematic equatio
33 t1 = (v0y-vy)/g//in seconds
34 ///maximun height at which ball can reach
35 //as maximum height is reached at time t = t1
36 //applying kinematic equation
37 \text{ y_max} = \text{v0y*t1-(0.5*g*t1^2)//in meters}
38 //total time of flight and range of ball
39 //for total time displacement = 0 i.e.y = 0
40 //applying kinematic equation
41 t2 = (2*v0y)/g//in seconds
42 //range of the ball
43 //here range is the horizontal distance travelled in
       time t2
44 //applying kinematic equation
45 	 x = v0x*t2//in m/s
46 ///velocity of ball when it strikes the ground
47 //horizontal componebt of velocty of ball when it
       strikes the ground
48 \text{ vx} = \text{v0*cosd(fi0)}//\text{in m/s}
49 //vertical component of velocity of ball when it
      strikes the ground i.e. at time t2
50 \text{ vy} = \text{v0y} - (\text{g*t2}) / / \text{in m/s}
51 //applying kinematic equation vy = v0y - (g*t2)//in m/s
52 //magnitude of velocity of ball when it strikes the
      ground
53 v = sqrt(vx^2 + vy^2)//in m/s
54 //direction of ball when it strikes the ground from
      x axis
55 fi = atand(vy/vx)//in degrees
56 fi = round(fi)
57 printf ("\n Time t1 at which the ball reaches
      highest position of its trajectory t1 = \ln n \%.2 f
       seconds",t1);
58 printf ("\n\n Maximun height at which ball can reach
       y_{max} = \ln \%.1 f \text{ meters}^{"}, y_{max};
59 printf ("\n\n Total time of flight and range of ball
       t2 = \langle n \rangle n \%.2 f seconda", t2);
```

- 60 printf ("\n\n Range of the ball $x = \ln \%.1f$ meters ",x);
- 61 printf ("\n\n Horizontal component of velocty of ball when it strikes the ground $vx = \frac{n \cdot m}{s}.1 f m/s$ ", vx);
- 62 printf ("\n\n Vertical component of velocity of ball when it strikes the ground i.e. at time t2 vy = $\n\n\$ %.1 f m/s",vy);
- 63 printf ("\n\n Magnitude of velocity of ball when it strikes the ground $v = \ln \%.1f$ meters",v);
- 64 printf ("\n\n Direction of ball when it strikes the ground from x axis fi = \n \n %2i degrees",fi);

Scilab code Exa 4.5 C4P5

```
1
2
3
4
    clc
5 //to find magnitude of gravitational force exterted
      on the moon by the earth
6
7 // GIVEN::
9 //time required for i revolution
10 \, d = 27.3 / / in \, days
11 //radius of orbit
12 \text{ r1} = 238000 //\text{in mi}
13 //radius of orbit in meters
14 r = (238000*1609.344) / in meters
15 //mass of the moon
16 \text{ m} = 7.36*10^2 / \text{in kg}
17
18 // SOLUTION:
19
```

```
//time for one complete revolution in seconds
| T = (27.3*86400) //in seconds
| //speed of the moon
| v = (2*3.14*r)/T//in m/s
| v = nearfloat("pred",1019)
| //centripital force by gravitational force
| // equation of centripital force F_ME = mv^2/r
| F_ME = (m*v^2)/r//in N
| printf ("\n\n Time for one complete revolution in seconds T = \n\n %.2e seconds",T);
| printf ("\n\n Speed of the moon v = \n\n %4i m/s",v);
| printf ("\n\n Magnitude of gravitational force exterted on the moon by the earth F_ME = \n\n %.2
| e N",F_ME);
```

Scilab code Exa 4.6 C4P6

```
1
2
3
4
   clc
\frac{5}{\sqrt{to}} find weight of the satellite at h = 210 \text{km} above
       the earth's surface
  //to find tangential speed of satellite required
8
  // GIVEN : :
10 //mass of the satellite
11 m = 1250 / in kg
12 //altitude at which satellite is required to be
      placed
13 h = 210 //in km
14 //radius of the earth
15 R = 6370 / / in km
```

```
16 //acceleration due to gravity
17 g = 9.2//in \text{ m/s}^2
18
19 // SOLUTION:
20
21 //weight of the satellite at the altitude h = 210km
      above earth's surface
22 \quad w = m*g//in \quad N
23 //to find tangential speed of satellite required
24 //force of gravity is weight of the satellite i.e.
      F_SE = w
25 //radius of orbit of satellite
26 \text{ r} = R + h//in \text{ km}
27 v = sqrt(w*(r*1000)/m)//in m/s //taking radius in
      meters
v1 = v*(3600/1609.344) / in mi/h
29 v1 = nearfloat("pred",17401)
30 printf ("\n Weight of the satellite at the
      altitude h = 210 \text{km} above earths surface w = \ln n
      \%.2 \,\mathrm{e} \,\mathrm{N}", w);
31 printf ("\n\n Tangential speed of satellite required
       v = \langle n \rangle n \% 4i m/s, v);
32 printf ("\n\n Tangential speed of satellite required
       v = \langle n \rangle n \%5i \text{ mi/h}, v1);
```

Scilab code Exa 4.7 C4P7

```
1
2
3
4 clc
5 //to find velocity of plane with respect to ground
6 //to find compass reading if pilot wishes to fly due
east
7
```

```
8 // GIVEN ::
9 //refer to figure 4-18(a), (b) from page no.77
10 //speed of air on the indicator
11 V_PA = 215 / in km/h
12 //velocity of wind blowing due north
13 V_AG = 65//in \, km/h
14
15
16
  // SOLUTION:
17
18
19 //magnitude of velocity of plane with respect to
      ground
20 V_PG1 = \frac{\text{sqrt}(V_PA^2 + V_AG^2)}{\ln km/h}
21 //direction of plane
22 //angle made by the plane with east direction
23 alpha = atand(V_AG/V_PA)//in degrees
24
25 //magnitude of velocity of plane if pilot wishes to
      fly due east
26 //now velocity of plane with respect to groung
      points east
27 V_PG2 = sqrt(V_PA^2 - V_AG^2) / in km/h
28 //direction of plane
29 //angle made by the plane with east direction
30 bita = asind(V_AG/V_PA)/in degrees
31 \text{ V_PG1} = \text{round}(\text{V_PG1})
32 V_PG2 = round(V_PG2)
33 printf ("\n\n Magnitude of velocity of plane with
      respect to ground V_PG1 = \n\ \%3i \ \km/h", V_PG1);
34 printf ("\n Angle made by the plane with east
      direction alpha = \n\ %.1f degrees", alpha);
35 printf ("\n\n Magnitude of velocity of plane if
      pilot wishes to fly due east V_PG2 = \ln m \%3i \text{ km}
      h", V_PG2);
36 printf ("\n Angle made by the plane with east
      direction bita = \ln \%.1 f degrees", bita);
```

Chapter 5

APPLICATIONS OF NEWTONS LAWS

Scilab code Exa 5.1 C5P1

```
1
2 clear
  clc
4 //to find tension in three strings, TA,TB and TC in
     strings A,B and C respectively.
6 // GIVEN::
7 //refer to figure 5-4(a) on page no. 91
8 //mass of block
9 m = 15//in kg
10 //acceleration due to gravity
11 g = 9.81//in m/s^2
12
13 // SOLUTION:
14
15 //considering free body diagram 5-4(b) let TA, TB, TC
     are tensions in string A,B and C respectively.
16 //applying newton's second law to the knot i.e. SUM(
     forces) = mass*acceleration
```

```
17 //resolving forces first in y direction refer fig.
      5-4(d)
18 //resolving forces first in x and y direction refer
      fig. 5-4(c)
19 //solving equations by generating matrix
20
21 A = [-\cos d(30) \cos d(45) 0 ; \sin d(30) \sin d(45) -1 ; 0]
       0 1]
22 B = [0;0;(m*g)]
23
24
25 \quad C = A \setminus B
26 //tension in sting A
27 TA = C(1); //in N
28 //tension in sting B
29 TB = C(2); //in N
30 //tension in sting C
31 TC = C(3); //in N
32 \text{ TA} = \text{round}(C(1))
33 TB = round(C(2))
34 \text{ TC} = \text{round}(C(3))
35
36 printf ("\n Tension in string A is TA = \n %3i N
      ",TA);
37 printf ("\n\ Tension in string B is TB = \n\ %3i N
      ",TB);
38 printf ("\n\ Tension in string C is TC = \n\ %3i N
      ",TC);
```

Scilab code Exa 5.2 C5P2

```
1
2 clear
3 clc
4 //to find tension in the string (1)when elevator
```

```
descending with constant velocity and (2)
      ascending with the acceleration of 3.2 m/s<sup>2</sup>
5
6 // GIVEN::
7 //refer to figure 5-2(a) on page no. 91
8 //mass of block
9 m = 2.4//in kg
10 //acceleration due to gravity
11 g = 9.81//in \text{ m/s}^2
12 //acceleration of elevator in y direction while
     descending
13 ay1 = 0/(in m/s^2) since elevator is moving with
     constant velocity
14 //acceleration of elevator in y direction while
     ascending
15 ay2 = 3.2//in m/s^2
16
17
18 // SOLUTION:
19
20 //when elevator is descending
21 //considering free body diagram 5-4b from page no.91
22 //resolving forces first in y direction
23 //applying newton's second law i.e. SUM(forces) =
     mass * acceleration
24 T1 = (m*(g+ay1))//in N
25
26 //when elevator is descending
27 //considering free body diagram 5-4b from page no.91
28 //resolving forces first in y direction
29 //applying newton's second law i.e. SUM(forces) =
     mass * acceleration
30 T2 = m*(g+ay2)//in N
31 T1 = round(T1)
32 printf ("\n Tension in the string when elevator
      descending with constant velocity T1 = \ln \% 2i N
     ",T1);
33 printf ("\n Tension in the string when elevator
```

Scilab code Exa 5.3 C5P3

```
1
2 clear
  clc
4 //to analyse the motion if (1) cord is horizontal and
      (2) the cord is making an angle of 15 degree with
      the horizontal
6 // GIVEN::
7 //refer to figure 5-7(a) on page no. 92
8 //mass of sled
9 m = 7.5//in kg
10 //force by which sled is pulled
11 P = 21.0//in N
12 //angle made by sled with horizontal
13 theta = 15//in degrees
14 //acceleration due to gravity
15 g = 9.81//in m/s^2
16
17 // SOLUTION:
18
19 //when cord is horizontal
20
21 //considering free body diagram 5-7b from page no
      .92.
22 //euating forces in x direction
23 //applying newton's secong law of motion
24 //horizontal acceleration
25 ax = P/m//in m/s^2
26 ///equating forces in y direction
27 //applying newton's secong law of motion
```

```
28 //force exerted bu surface
29 N = round(m*g)//in N
30
31 //when cord is making an angle of 15 degree with
      the horizontal
32
33 //considering free body diagram 5-7c from page no
      .93.
34 //euating forces in x direction and applying newton'
      s secong law of motion
35 //acceleration
36 a_x = P*cosd(theta)/m//in m/s^2
37 ///euating forces in y direction
38 //applying newton's secong law of motion
39 //normal force exerted bu surface
40 N_2 = ceil((m*g)-(P*sind(theta)))//in N
41 N = round(N)
42 N_2 = ceil(N_2)
43
44 printf ("\n\n Normal force exerted bu surface when
      cord is horizontal N1 = \langle n \rangle n \% 2i N, N);
45 printf ("\n Acceleration in x direction when cord
      is horizontal ax1 = \ln n \%.2 \text{ f m/s}^2, ax);
46 printf ("\n\n Normal force exerted bu surface when
      cord is making an angle of 15 degree with the
      horizontal N2 = \n \%2i \ N", N_2);
47 printf ("\n Acceleration in x direction when cord
      is making an angle of 15 degree with the
      horizontal ax2 = \langle n \rangle n \%.2 f m/s^2, a_x);
```

Scilab code Exa 5.4 C5P4

```
1
2 clear
3 clc
```

```
4 //to find tension in the string and normal force
      exerted on the block by the plane
5 //to analyse the motion when the string is cut
7 // GIVEN::
8 //refer to figure 5-7(a) on page no. 92
9 //mass of block
10 \, \text{m} = 18 / / \text{in kg}
11 //angle of inclination of plane
12 theta = 27//in degrees
13 //acceleration due to gravity
14 g = 9.81//in m/s^2
15
16
17 // SOLUTION:
18
19 //refer to the figure 5-8a from page no. 93
20 //considering free body diagram 5-8b from page no
      .93.
21
22 //whenthe block is stationary on the plane
23 //equating forces in x direction
24 //applying newton's second law of motion
25 //tension in the string
26 T = m*g*sind(theta)//in N
27 //equating forces in y direction
28 //applying newton's second law of motion
29 //normal reaction by the surface
30 N = m*g*cosd(theta)//in N
31
32 //when the string is cut
33 //equating forces in x direction
34 //applying newton's second law of motion
35 //acceleration of block in x direction ax
36 ax = -(g*sind(theta))//in m/s^2
37 //-ve sign indicates acceleration acting in -ve x
      direction i.e. downwards
38 printf ("\n\n Tension in the string T = \ln n \%2i N",
```

```
T);
39 printf ("\n\n Normal force exerted on the block by
        the plane N = \n\n %3i N",N);
40 printf ("\n\n Acceleration of block in x direction
        when the string is cut ax = \n\n %.2f m/s^2",ax)
;
```

Scilab code Exa 5.7 C5P7

```
1
2
3
   clc
4 //to find tension in the string
  //to find acceleration of blocks
7 // GIVEN::
8 //refer to figure 5-11(a) on page no. 95
9 //mass of first block
10 \text{ m1} = 9.5 // \text{in kg}
11 //angle of inclination of plane
12 theta = 34//in degrees
13 //mass of second block
14 \text{ m2} = 2.6 / / \text{in kg}
15 //acceleration due to gravity
16 \text{ g} = 9.81 // \text{in m/s}^2
17
18
19 // SOLUTION:
20
\frac{21}{refer} to the free body diagrams 5-11b and 5-11c
      from page no. 95
22
23
24 //for mass m1
25 //assuming m1 moves in positive x direction
```

```
26 //equating forces in x direction and applying newton
     's second law of motion
27 //equating forces in y direction and applying newton
     's second law of motion
28
29 //for mass m2
30 //equating forces in y direction and applying newton
     's second law of motion
31 //solving above equations simultaneously using
     matrix form
32 //acceleration of blocks
33 a = (m2-(m1*sind(theta)))*g/(m1 + m2)//in m/s^2
34 //if ans. for a is -ve then our assumption is wrong
     i.e. m1 is moving in -ve x direction but
     magnitude of ans is correct
35 //tension in the string
36 \text{ T} = ((m1*m2*g)*(1 + sind(theta)))/(m1 + m2)//in N
37
38 printf ("\n\n Acceleration of blocks a = \n\n %.1f m
     / s^2, a);
39 printf ("\n\n Tension in the string T = \n\n \%2i N",
     T);
```

Scilab code Exa 5.9 C5P9

```
10 \text{ v01} = 60 // \text{in mi/h}
11 //coefficient of static friction
12 \text{ mew_s} = 0.60
13 //acceleration of gravity
14 g = 9.81//in m/s^2
15
16 // SOLUTION:
17 //N is normal reaction force by surface.
18 //refer to the free body diagrams 5-16b from page no
      . 95
19
20 //initial velocity of automobile in m/s
21 \text{ v0} = \text{v01}*(1609/3600) //\text{in m/s}
22 //applying newton's law in x and y direction
23 //applying kinematic equation of motion
24 //shortest distance in which automobile can stop
25 d = ((v0^2)/(2*mew_s*g))/in meters
26 d = ceil(d)
27 printf ("\n\n Shortest distance in which automobile
      can stop d = \langle n \rangle n \% 2i m, d);
```

Scilab code Exa 5.10 C5P10

```
1
2 clear
3 clc
4 //to find tension in the string and normal force
    exerted on the block by the plane
5 //to analyse the motion when the string is cut
6
7 // GIVEN::
8 //refer to problem 5.7 from page no. 95
9 //mass of first block
10 m1 = 9.5//in kg
11 //angle of inclination of plane
```

```
12 theta = 34//in degrees
13 //mass of second block
14 \text{ m2} = 2.6 / / \text{in kg}
15 //acceleration due to gravity
16 \text{ g} = 9.81 // \text{in m/s}^2
17 //coefficient of static friction
18 \text{ mew\_s} = 0.24
19 //coefficient of kinetic friction
20 \text{ mew\_k} = 0.15
21
22
23
24 // SOLUTION:
25 //T is tension in the spring and N is normal
      reaction force by surface.
  //refer to the free body diagrams 5-17a from page no
      . 99
27
28 //for mass m1 and m2
29 //assuming m1 moves in positive x direction
30 //equating forces in x direction and applying newton
      's second law of motion
31 //equating forces in y direction and applying newton
      's second law of motion
32 //acceleration of blocks
33 a = (m2-(m1*(sind(theta)-(mew_k*cosd(theta)))))*g/(
      m1 + m2) / in m/s^2
34 //if ans. for a is -ve then our assumption is wrong
      i.e. m1 is moving in -ve x direction but
      magnitude of ans is correct
35 //tension in the string
36 \text{ T} = (((m1*m2*g)*(1 + sind(theta) - (mew_k*cosd(theta)))))
      ))))/(m1 + m2))//in N
37 T = round(T)
38
39 printf ("\n\ Acceleration of blocks a = \n\ %.1f m
      / s^2, a);
40 printf ("\n\n Tension in the string T = \n\n \%2i N",
```

Scilab code Exa 5.11 C5P11

```
1
2 clear
   clc
4 //to find time required by the car to come to rest.
  //to find the distance travelled by car before
      stopping.
6
  // GIVEN : :
9
10 //mass of car
11 m = 1260 / / in kg
12 //velocity of car
13 \text{ v0x} = 29.2 // \text{in m/s}
14 //rate at which breaking force increases with time
15 c = 3360 / / in N/s
16
17 // SOLUTION:
18 //assuming car's velocity is in +ve x direction
19 //applying newton's second law of motion
20 //applying kinematic equation of motion to derive
      velocity relation and distance travelled relation
21 //time required by the car to come to rest
22 t1 = sqrt((2*v0x*m)/c)/in seconds
23 //distance travelled by car before stopping
\frac{24}{here} we are taking time is t1 and x0 is 0
25 \times (t1) = 0 + (v0x*t1) - ((c*(t1^3))/(6*m))/in \text{ meters}
26 printf ("\n Time required by the car to come to
      rest t1 = \ln \%.2 f seconds, t1);
27 printf ("\n\n Distance travelled by car before
      stopping x(t1) = \langle n \rangle n \%.1 f m, x(t1);
```

Chapter 6

MOMENTUM

Scilab code Exa 6.1 C6P1

```
2 clear
3 clc
4 //to find impluse of the force exerted on the ball.
5 //to find average force assuming collision lasts for
       1.5\,\mathrm{ms}
  //to find the change in momentum of the bat
8 // GIVEN::
9 //refer to figure 6-8(a) on page no. 123
10 //mass of baseball
11 m = 0.14//in \text{ kg}
12 //refer to figure 6.1
13 //horizontal speed of the ball
14 vi = 42//in m/s
15 //speed at which ball leaes i.e. final speed of the
      ball
16 \text{ vf} = 50 // \text{in m/s}
17 //angle at which
                     ball leaves
18 fi = 35//in degrees
19 //time for which collision lasts
```

```
20 delta_t = 0.0015//in seconds
21
22 // SOLUTION:
23
\frac{24}{refer} to figure 6-8(a) on page no. 123
25 //component of final momentum in x direction
26 pfx = m*vf*cosd(fi)//in kgm/s
27 //component of final momentum in y direction
28 pfy = m*vf*sind(fi)//in kgm/s
29 //since initial momentum has only x componen
30 piy = 0//in \text{ kgm/s}
31 //component of intial momentum in x direction
32 //considering our coordinate system as shown 6-8(a)
33 pix = m*(-vi)//in \text{ kgm/s}
34 //using impluse momentum relation
35 //component of impluse in x direction
36 \text{ Jx} = \text{pfx-pix}//\text{in kgm/s}
37 //component of impluse in y direction
38 Jy = pfy-piy//in kgm/s
39 //final magnitude of impluse
40 J = sqrt(Jx^2 + Jy^2)/in kgm/s
41 //direction in which impluse acts
42 theta = atand(Jy/Jx)//in degrees
43 //average force
44 //using impluse force relationship
45 Fav = J/delta_t//in N
46 Fav = nearfloat("succ", 8200)
47
48 //applying newton's third law of motion
49 //for bat delta_px will be equal and opposite to
      that of ball
50 //component change in momentum in x direction
51 \text{ delta_px} = -(\text{pfx} - \text{pix})//\text{in } \text{kgm/s}
52 //component change in momentum in y direction
53 delta_py = -(pfy - piy)//in kgm/s
54
55 printf ("\n\n Component of final momentum in x
      direction pfx = \n \%.1 f \text{ kgm/s}",pfx);
```

```
56 printf ("\n\n Component of final momentum in y
      direction pfy = \n \%.1 f \text{ kgm/s}", pfy);
57 printf ("\n Component of intial momentum in x
      direction pix = \ln \%.1 f \text{ kgm/s}, pix);
58 printf ("\n Component of impluse in x direction Jx
        = \ln n \%.1 f \text{ kgm/s}, Jx);
59 printf ("\n Component of impluse in y direction Jy
        = \n \%.1 f \text{ kgm/s}", Jy);
60 printf ("\n\n Final magnitude of impluse J = \ln \%
      .1 f \text{ kgm/s}", J);
61 printf ("\n Direction in which impluse acts theta
      = \n \%2i degrees, theta);
62 printf ("\n\ Average force Fav = \n\ %4i N", Fav);
63 printf ("\n\n Component change in momemtum in x
      direction delta_px = \ln \%.1 f \text{ kgm/s}, delta_px);
64 printf ("\n\n Component change in momentum in y
      direction delta_py = \ln \%.1 f \text{ kgm/s}, delta_py);
```

Scilab code Exa 6.2 C6P2

```
clear
clc
//to find velocity of carts after collision

// GIVEN::
//we consider +ve x direction as direction of motion
of first cart
//refer to figure 6-9 on page no. 123
//mass of first cart
m1 = 0.24//in kg
//initial velocity of first cart
vii = 0.17//in m/s
//initial velocity of second cart
//as 2nd cart is initially at rest
```

```
15 v2i = 0//in m/s
16 //mass of second cart
17 \text{ m2} = 0.68 / / \text{in kg}
18
19
20
21 // SOLUTION:
22
\frac{23}{refer} to figure 6-9 on page no. 123
24 //using impluse force relationship
\frac{25}{magnitude} of impluse i.e. area under graph 6-9 on
      page 123
26 \text{ J} = 0.5*(0.014-0.003)*10//in \text{ kgm/s}
27
28 //assuming direction of motion of first cart is in +
      ve x direction
29 //change in momentum in x direction for first cart
30 delta_p1x = -(J)//in \text{ kgm/s}
31 //initial momentum of first cart in x direction
32 plix = m1*v1i//in kgm/s
33 //final momentum for first cart
34 p1fx = p1ix + delta_p1x//in kgm/s
35 //final velocity of first cart in x direction
36 \text{ v1fx} = \text{p1fx/m1//in m/s}
37 v1fx = nearfloat("pred", -0.058)
38
39
40 //as direction of motion of first cart is in +ve x
      direction for second cart it will be in -ve x
      direction
41 //using newton's third law of motion
42 //change in momentum in x direction for second cart
43 delta_p2x = (J)//in \text{ kgm/s}
44 //initial momentum of second cart in x direction
45 p2ix = m2*v2i//in kgm/s
46 //final momentum for second cart
47 p2fx = p2ix + delta_p2x//in kgm/s
48 //final velocity of second cart in x direction
```

Scilab code Exa 6.3 C6P3

```
1
2 clear
3 clc
4 //to find direction in which Fred is skating after
      breaking in contact
6 // GIVEN : :
7 //we consider +ve x direction for initial motion
8 //refer to figure 6-11 on page no. 125
9 //mass of Fred
10 \text{ mF} = 75 / / \text{in kg}
11 //mass of Ginger cart
12 \text{ mG} = 55//\text{in kg}
13 //common velocity of Fred ang Ginger
14 vG = 3.2//in m/s
15 vF = 3.2//in m/s
16 //after breaking contact angle of Ginger skating
17 theta1 = 32//in degrees
```

```
18
19 // SOLUTION:
20
\frac{21}{refer} to figure 6-11(a) on page no. 125
22 //using consevation of momentum
23 //x component of Ginger original momentum
24 PGx = mG*vG //in kgm/s
25 //x component of Fred original momentum
26 \text{ PFx} = \text{mF*vF} //\text{in kgm/s}
27 //after they push off y component of Ginger momentum
28 PGy = PGx*tand(theta1)//in kgm/s
29 //after they push off y component of Fred momentum
      will be opposite that of Ginger
30 //using consevation of momentum
31 PFy = -(PGy)//in \text{ kgm/s}
32 tan_theta = (PFy/PFx)
33 //direction in which Fred is skating after breaking
      in contact
34 theta = atand(PFy/PFx)//in degrees
35 \text{ PGy} = \text{round}(\text{PGy})
36 theta = round(theta)
37
38 printf ("\n\n X component of Ginger original momentum
       PGx = \langle n \rangle n \% 3i \text{ Kg.m/s}, PGx \rangle;
39 printf ("\n\n X component of Fred original momentum
      PFx = \frac{n}{n} \frac{\pi}{s} %3i Kg.m/s, PFx);
40 printf ("\n After they push off y component of
      Ginger momentum PGy = \langle n \rangle n \% 3i \text{ Kg.m/s}, PGy \rangle;
41 printf ("\n\ Value of tan_theta = \n\ 3f degrees
      ",tan_theta);
42 printf ("\n Direction in which Fred is skating
      after breaking in contact theta = \n\ %2i
      degrees", theta);
```

```
1
2 clear
3 clc
4 //to find final velocity of man when seated in
      rowboat
6 // GIVEN::
7 //we consider +ve x direction as man's original
      velocity
8 //refer to figure 6-12 on page no. 126
9 //mass of man
10 \quad mm = 65//in \quad kg
11 //speed of man initially in x direction
12 vmx = 4.9//in m/s
13 //mass of rowboat
14 \text{ mb} = 88 / / \text{in kg}
15 //speed of rowboat in x direction
16 \text{ vbx} = 1.2 // \text{in m/s}
17
18 // SOLUTION:
19
20 //refer to figure 6-12(a) and 6-12(b) on page no.
      126
21
22
23 //before man jumps
24 //momentum of man in x direction
25 pmx = mm*vmx//in kgm/s
26 //momentum of boat in x direction
27 \text{ pbx} = \text{mb*vbx}//\text{in kgm/s}
28 //total initial momentum in x direction
29 pix = pmx + pbx//in kgm/s
30
31 //after man jumps
32 //combined final momentum of man and boat in x
      direction
33 //applying conservation of momentum for boat and man
34 //final velocity of man when seated in rowboat in x
```

direction 35 vfx = (pix/(mm + mb))//in m/s 36 printf ("\n\n Total initial momentum in x direction pix = \n\n %.3 i Kg.m/s",pix); 37 printf ("\n\n Final velocity of man when seated in rowboat in x direction vfx = \n\n %.1 f m/s",vfx);

Scilab code Exa 6.5 C6P5

```
1
2 clear
3 clc
4 //to find velocity of second glider after collision
6 // GIVEN::
8 //we consider +ve x direction as initial motion of
      first glider
9 //mass of first glider
10 \text{ m1} = 1.25 // \text{in kg}
11 //initial velocity of first glider in +ve x
      direction
12 v1ix = 3.62//in m/s
13 //mass of second glider
14 \text{ m2} = 2.30 // \text{in kg}
15 //final velocity of first glider in +ve x direction
16 // - sign since after collision first glider is
      moving in -ve x direction
17 \text{ v1fx} = -1.07 // \text{in m/s}
18 //initial velocity of second glider in +ve x
      direction
19 //since 2nd glider is initially at rest
20 \text{ v2ix} = 0//\text{in m/s}
21
22 // SOLUTION:
```

```
23
24 //applying conservation of momentum
25 //final velocitiy of second glider in +ve x
      direction
26 \text{ v2fx} = (m1/m2)*(v1ix-v1fx)//in m/s
27 //change in momentums for glider having mass m1
28 delta_p1x = m1*(v1fx-v1ix)//in Kg.m/s
29 //change in momentums for glider having mass m2
30 delta_p2x = m2*(v2fx-v2ix)//in Kg.m/s
31
32 printf ("\n\n Velocitiy of second glider in +ve x
      direction after collision v2fx = \ln \%.2 f m/s,
      v2fx);
33 printf ("\n\n Change in momentums for glider having
      mass m1 delta_p1x = \n \%.2 f \text{ Kg.m/s}, delta_p1x);
34 printf ("\n Change in momentums for glider having
      mass m2 delta_p2x = \langle n \rangle n \%.2 f Kg.m/s", delta_p2x);
```

Scilab code Exa 6.6 C6P6

```
clear
clc
//to find final velocity of combination of 1st and 2
   nd glider

// GIVEN::
//refer to problem 6-5 from page no. 127

//we consider +ve x direction as initial motion of first glider
//mass of first glider
//mass of first glider
//initial velocity of first glider in +ve x
   direction
```

```
13 v1ix = 3.62//in m/s
14 //mass of second glider
15 \text{ m2} = 2.30 // \text{in kg}
16 //initial velocity of second glider in +ve x
      direction
17 //since 2nd glider is initially at rest
18 v2ix = 0//in m/s
19
20
21 // SOLUTION:
22
23 //applying conservation of momentum
24 //final velocitiy of second glider in +ve x
      direction
25 \text{ vfx} = (m1*v1ix)/(m1 + m2)//in m/s
26 //change in momentums for glider having mass m1
27 delta_p1x = m1*(vfx-v1ix)//in Kg.m/s
28 //change in momentums for glider having mass m2
29 delta_p2x = m2*(vfx-v2ix)//in Kg.m/s
30
31 printf ("\n Final velocity of combination of 1st
      and 2nd glider vfx = \n \%.2 \text{ f m/s}", vfx);
32 printf ("\n\n Change in momentums for glider having
      mass m1 delta_p1x = \n \%.2 f \text{ Kg.m/s}, delta_p1x);
33 printf ("\n\n Change in momentums for glider having
      mass m2 delta_p2x = \n \%.2 f \text{ Kg.m/s}, delta_p2x);
```

Scilab code Exa 6.7 C6P7

```
1
2
3
4 clc
5 //to find final speed of larger craft
```

```
7 // GIVEN::
8 //refer to diagram 6-14 from page no. 127
10 //we consider +ve x direction as original motion of
      spaceship (and also that of final velocity of
      smaller craft)
11 //total mass of spaceship
12 / M = m//in kg
13 //let us consider m = 1
14 M = 1//in kg
15 //mass of smaller crafy
16 //m1 = m/4//in kg
17 \text{ m1} = \frac{1}{4} / \text{in kg}
18 //mass of larger craft
19 / m2 = 3* m/4//in kg
20 \text{ m2} = 3* \frac{1}{4} / in \text{ kg}
21 //initial velocity of spaceship in +ve x direction
22 vix = 8.45//in \, km/s
23 //final speed of smaller craft in +ve x direction
24 \text{ v1fx} = 11.63 //in \text{ km/s}
25
26
27 // SOLUTION:
28
29 //applying conservation of momentum
30 //final velocity of larger craft in +ve x direction
31 v2fx = (((m1 + m2)*vix)-(m1*v1fx))/m2//in m/s
32
33 printf ("\n\n Final velocity of larger craft in +ve
      x direction v2fx = \n \%.2 f \mbox{ km/s}, v2fx);
```

Scilab code Exa 6.8 C6P8

1 2

```
3
   clc
5 //to find final speed and direction of second puck
      after collision
6
7 // GIVEN::
8 //refer to diagram 6-15 from page no. 128
10 //we consider +ve x direction as initial motion of
      first puck
11 //mass of first puck
12 //assume mass of first puck be 1kg
13 \text{ m1} = 1//\text{in kg}
14 //mass of second puck
15 //mass of second puck is 1.5 times mass of first
      puck
16 \text{ m2} = 1.5 // \text{in kg}
17 //initial velocity of first puck in +ve x direction
18 v1ix = 2.48//in m/s
19 //initial velocity of second puck in +ve x direction
20 \text{ v2ix} = 1.86 // \text{in m/s}
21 //initial direction of second puck away from the
      direction of first puck
22 theta1 = 40//in degrees
23 //final velocity of first puck after collision
24 \text{ v1fx} = 1.59 / / \text{in m/s}
25 //final direction of first puck after collision
26 theta2 = 50//in degrees
27
28 // SOLUTION:
29
30 //applying law of conservation of momentum in x and
      y direction
31 //solving equation
32 //final direction of second puck after collision
33 theta = atand (0.38/2.40) //in degrees
34 //final speed of second puck after collision
35 v2f = 2.40/\cos d(theta)//in m/s
```

```
36 printf ("\n\n Final speed of second puck after collision v2f = \ln n \%.2 f m/s", v2f);
37 printf ("\n\n Final direction of second puck after collision theta = \ln n \%.1 f degrees", theta);
```

Scilab code Exa 6.9 C6P9

```
1
2
3
   clc
5 //to find velocity of alpha partical after collision
6 //to find which type of collision is this listed in
      fig. 6-17
8 // GIVEN::
9 //refer to diagram 6-17 from page no. 130
10
11 //we consider +ve x direction as initial velocity of
       alpha partical
12 / \text{mass of alpha partical m1} = 4.0 \text{ u}
13 / assume u = 1
14 \text{ ma} = 4.0
15 / \text{mass of oxygen nucleus } m2 = 16.0 u
16 //assume u = 1
17 \text{ mo} = 16.0
18 //initial velocity of alpha partical in +ve x
      direction
19 vaix = 1.52*10^7 / in m/s
20 //initial velocity of oxygen nucleus in +ve x
      direction
21 //as oxygen nucleus is initially at rest
22 \text{ voix} = 0//\text{in m/s}
23 //final velocity of oxygen nucleus after collision
24 \text{ vofx} = 6.08*10^6//in
```

```
25
26
27 // SOLUTION:
28
29 //applying law of conservation of momentum in x
      direction
30 //final velocity of alpha partical after collision
     in x direction
31 vafx = ((ma*vaix)-(mo*vofx))/ma//in m/s
32 //applying law of conservation of momentum in x
      direction
33 //we can find out collision is elstic collision as
     alpha partical only reverses the direction of
     momentum after collision
34 //relative velocity
35 vx = (ma*vaix+mo*voix)/(ma+mo)//in m/s
36
37 printf ("\n\n Final velocity of alpha partical after
       collision in x direction vafx = \ln \%.2e \text{ m/s},
     vafx);
38 printf ("\n\n Relative velocity vx = \n\3e m/s"
39 printf ("\n Collision is elstic collision");
```

Chapter 7

SYSTEMS OF PARTICLES

Scilab code Exa 7.2 C7P2

```
1 clear
2 clc
3 //to find center of mass of system
4 //to find acceleration of center of mass
6 // GIVEN::
8 //refer to figure 7-10(a) from page no. 144
9 //consider +ve x direction as our reference axis
10 //mass of first partical
11 m1 = 4.1//in \text{ kg}
12 //mass of second partical
13 \text{ m2} = 8.2 // \text{in kg}
14 //mass of third partical
15 \text{ m3} = 4.1//\text{in kg}
16 //from figure 7-20(a)
17 //x coordinate of first partical
18 \times 1 = -2//in \text{ cm}
19 //y coordinate of first partical
20 \text{ y1} = 3//\text{in cm}
21 //x coordinate of second partical
```

```
22 \times 2 = 4//in \text{ cm}
23 //y coordinate of second partical
24 \text{ y2} = 2//\text{in cm}
25 //x coordinate of third partical
26 \text{ x3} = 1//\text{in cm}
27 //y coordinate of third partical
28 \text{ y3} = -2//\text{in cm}
29 //magnitude of first external force
30 F1 = -6//in N //since acting in -ve x direction
31 //magnitude of second external force
32 \text{ F2} = \frac{12}{\sin N}
33 //magnitude of third external force
34 \text{ F3} = 14//\text{in N}
35
36 // SOLUTION:
37 //refer to figure 7-10(a) and 7-10(b) from page no.
       144
38 //assuming all external forces are applied at center
        of mass
39 //total mass of system
40 \text{ M} = \text{m1} + \text{m2} + \text{m3}//\text{in} \text{ kg}
41 //applying center of mass formula
42 //x coordinate of center of mass
43 \text{ x_cm} = (1/\text{M})*(\text{m1}*\text{x1} + \text{m2}*\text{x2} + \text{m3}*\text{x3})//\text{in cm}
44 //y coordinate of center of mass
45 \text{ y_cm} = (1/\text{M})*(\text{m1*y1} + \text{m2*y2} + \text{m3*y3})//\text{in cm}
46
47 //refer to figure 7-10(b)
48 //component of force F1 in x direction
49 F1x = F1//in N
50 //component of force F2 in x direction
51 	ext{ F2x} = 	ext{F2*cosd}(45) // 	ext{in } 	ext{N}
52 //component of force F3 in x direction
53 \text{ F3x} = \text{F3}//\text{in N}
54 //component of force F1 in y direction
55 \text{ Fly} = 0//\text{in N}
56 //component of force F2 in y direction
57 \text{ F2y} = \text{F2*sind}(45) //\text{in N}
```

```
58 //component of force F3 in y direction
59 \text{ F3y} = 0//\text{in N}
60 //x component of net external force acting on the
      center of mass
61 SUM_fextx = F1x + F2x + F3x//in N
62 //y component of net external force acting on the
      center of mass
63 SUM_fexty = F1y + F2y + F3y//in N
64 //magnitude of net external force acting on the
      center of mass
65 SUM_Fext = sqrt(SUM_fextx^2 + SUM_fexty^2)//in N
66 //direction in which net force acts
67 fi = atand(SUM_fexty/SUM_fextx)//in degrees with x
      axis
68 //acceleration of center of mass
69 a_cm = SUM_Fext/(M)//in m/s^2
70 SUM_Fext = nearfloat("succ",18.6)
71
72 printf ("\n x coordinate of center of mass x<sub>cm</sub> =
      \n \n \%.1 f cm", x_cm);
73 printf ("\n y coordinate of center of mass y<sub>c</sub> =
      \n \n \%.1 f cm", y_cm);
74 printf ("\n\n Magnitude of net external force acting
       on the center of mass in x direction SUM_fextx =
       \n \n \%.1 f N", SUM_fextx);
75 printf ("\n\n Magnitude of net external force acting
       on the center of mass in y direction SUM_fexty =
       \n \n \%.1 f N", SUM_fexty);
76 printf ("\n\n Magnitude of net external force acting
       on the center of mass SUM_Fext = \langle n \rangle n \%.1 f N,
      SUM_Fext);
77 printf ("\n Direction in which net force acts with
       x axis fi = \n\ %2i degrees",fi);
78 printf ("\n Acceleration of center of mass a_cm =
      \n \n \%.1 f m/s^2",a_cm);
```

Scilab code Exa 7.3 C7P3

```
1
2
3
   clc
5 //to find location of second fragment
7 // GIVEN::
9 //refer to figure 7-11 from page no. 145
10 //consider +ve x direction as our reference axis
11 //mass of projectile
12 M = 9.6 / / in kg
13 //initial velocity of projectile
14 \text{ v0} = 12.4 // \text{in m/s}
15 //angle of projectile above horizontal
16 fi0 = 54//in degrees
17 //mass of first piece after explosion
18 \text{ m1} = 6.5 / / \text{in kg}
19 //time after which first piece id observed
20 t = 1.42//in seconds
21 // vertical distance at which first piece is observed
22 \text{ y1} = 5.9//\text{in meters}
23 //horizontal distance at which first piece is
      observed
24 \times 1 = 13.6 / in meters
25 //acceleration due to gravity
26 \text{ g} = 9.80 // \text{in m/s}^2
27
28 // SOLUTION:
29
30 //refer to figure 7-11 from page no. 145
31 //mass of second piece
```

```
32 //by mass conservation
33 m2 = M-m1//in kg
34 // velocity of projectile in +ve x direction
35 \text{ v0x} = \text{v0*cosd(fi0)}//\text{in m/s}
36 //velocity of projectile in +ve y direction
37 \text{ vOy} = \text{vO*sind(fi0)}//\text{in m/s}
38 //using kinematic equation of motion
39 //x coordinate of position of original projectile
40 x = v0x*t//in m
41 //y coordinate of position of original projectile
42 y = (v0y*t) - (0.5*g*t^2) / in m
43 //applying center of mass formula
44 //x coordinate of posion of second piece
45 \times 2 = (M*x - m1*x1)/m2//in meters
46 //y coordinate of posion of second piece
47 \text{ y2} = (M*y - m1*y1)/m2//in \text{ meters}
48 \times = nearfloat("succ", 10.4)
49 y = nearfloat("pred",4.3)
50 \text{ x2} = \text{nearfloat}("succ", 3.7)
51 y2 = nearfloat("pred",0.9)
52
53 printf ("\n x coordinate of position of original
      projectile x = \ln \%.1 f m'', x);
54 printf ("\n y coordinate of position of original
      projectile y = \ln \%.1 f m'', y);
55 printf ("\n\n x coordinate of posion of second piece
       x2 = \langle n \rangle n \%.1 f m, x2);
56 printf ("\n y coordinate of posion of second piece
       y2 = \langle n \rangle n \%.1 f m", y2);
```

Scilab code Exa 7.7 C7P7

```
1
2 clear
3 clc
```

```
4 //to find speed of block after it has absorbed eight
       bullets
6 // GIVEN::
7 //refer to figure 7-16 from page no. 148
8 //mass of bullet
9 \text{ m1} = 3.8//n \text{ gram}
10 m = 3.8*10^{-3}/in \text{ kg}
11 //speed of bullet
12 v = 1100 / / in m/s
13 //mass of wooden block
14 M = 12//in kg
15 //number of bulletes
16 N = 8
17
18 // SOLUTION:
19 //refer to figure 7-16 from page no. 148
20 //consider +ve x direction to the right as seen in
      fig. 7-16
21 //applying momentum conservation before bullets are
      stillin flight and after bullets are in the block
22 //speed of block after it has absorbed eight bullets
23 V = ((N*m)/(M + N*m))*v//in m/s
24 printf ("\n\n Speed of block after it has absorbed
      eight bullets V = \langle n \rangle n \%.1 f m/s, V);
```

Scilab code Exa 7.8 C7P8

```
1 clear
2 clc
3 //to find velocity of the recoiling cannon with
    respect to the earth
4 //to find initial velocity vE of the ball with
    respect to the earth
5
```

```
6 // GIVEN::
8 //refer to figure 7-17 from page no. 149
9 //mass of cannon
10 M = 1300 / / in kg
11 //mass of ball fired
12 \, \text{m} = \frac{72}{\sin kg}
13 //speed of ball in horizontal x direction
14 \text{ vx} = 55 / / \text{in m/s}
15
16 // SOLUTION:
17
18 //refer to figure 7-17 from page no. 149
19 //considering cannon and ball is our system and
      consider +ve x as right direction
20 //finding momentum of our system with respect to the
       earth
21 //applying conservation of momentum
22 Vx = -(m*vx)/(M + m)/(in m/s)/-ve signs as cannon
      recoils in left direction
23 //initial velocity vE of the ball with respect to
      the earth
24 vEx = vx + Vx//in m/s
25
26 printf ("\n\n Velocity of the recoiling cannon with
      respect to the earth Vx = \ln \%.1 \, \text{f m/s}, Vx);
27 printf ("\n\n Initial velocity vE of the ball with
      respect to the earth vEx = \langle n \rangle n \%2i m/s", vEx);
```

Scilab code Exa 7.9 C7P9

```
1 clear
2 clc
3 //to find thrust produced by the rocket
4 //to find velocity of the spaceship after the
```

```
rockets have fired
5
6 // GIVEN : :
8 //total mass of spaceship
9 M = 13600 / / in kg
10 //initial speed of spaceship
11 vix = 960//in m/s
12 //rate at which rocket ejects gas
13 dM_by_dt = 146//in kg/s
14 //speed at which rocket ejects gas
15 vrel = 1520//in m/s
16 //mass of gas burned and ejected from spaceship
17 \text{ m} = 9100 // \text{in kg}
18
19 // SOLUTION:
20
21 //consider +ve x direction in the direction of
      spaceship's initial velocity
22 //thrust produced by the rocket
23 F = vrel*dM_by_dt//in N
24 //initial mass of gas
25 \text{ Mi} = 13600 / / \text{inkg}
26 //final mass of gass
27 Mf = Mi-m//in kg
28 //rewriting equation of velocity and integrating
      velocity equation from initial to final
      conditions
29 //velocity of the spaceship after the rockets have
      fired
30 vfx = vix + (-vrel*(log(Mf/Mi)))//in m/s
31 vfx = nearfloat("pred", 2641)
32 printf ("\n Thrust produced by the rocket F = \n
       \%.2 \,\mathrm{e} \,\mathrm{N}", F);
33 printf ("\n Velocity of the spaceship after the
      rockets have fired vfx = \ln m / \sin w / \sin w / \sin w, vfx);
```

Scilab code Exa 7.10 C7P10

```
1 clear
2 clc
3 //to find force to be applied on conveyor belt to
     keep it moving with constant speed
5 // GIVEN::
7 //refer to figure 7-20 from page no. 151
8 //rate at which sand is being dropped
9 \, dM_by_dt = 0.134//in \, kg/s
10 //speed at which sand is being dropped
11 vx = 0.96 / in m/s
12
13 // SOLUTION:
14
15 //refer to figure 7-20 from page no. 151
16 //consider +ve x as direction of motion of belt and
     applying equation for systems of variable mass
17 //force to be applied on conveyor belt to keep it
     moving with constant speed
18 sum_F_extx = (vx*dM_by_dt)//in N
19 printf ("\n Force to be applied on conveyor belt
     to keep it moving with constant speed sum_F_extx
```

Chapter 8

ROTATIONAL KINEMATICS

Scilab code Exa 8.1 C8P1

```
1 clear
2 clc
3 //to find average angular velocity of fan blade
4 //to find average angular aceleration of fan blade
6 // GIVEN::
8 //initial angular velocity of fan blade
9 wi1 = 48.6//in revolution per minute
10 wi = wi1/60//in rev/s
11 //final angular velocity of fan blade
12 //as finally fan blade comes to rest
13 wf = 0//in revolution per minute
14 //time required for fan blade to come to rest
15 \text{ delta_t} = 32//\text{in seconds}
16 //no. of revolution completed by fan blade before
      come to rest
17 \text{ delta_fi} = 8.8
18
19
20 // SOLUTION:
```

Scilab code Exa 8.2 C8P2

```
1 clear
2 clc
3 //to find angular posion at t = 2 seconds
4 //to find instantaneous angular acceleration of
      reference line at t = 0.5 seconds
5 // GIVEN:
7 //refer to the figure 8-1 from page no. 159
8 //in angular velocity function w = A*t + B*t^2
     values of conatanta
9 A = 6.2//in rad/s^2
10 B = 8.7/in \text{ red/s}^2
11 //for calculating angular position time interval
12 t1 = 2//in seconds
13 //for calculating angular acceleration time
     interval
14 t2 = 0.50//in seconds
15 //initial condition
16 //reference line initially is at fi = 0 when t = 0
17
18 // SOLUTION:
```

Scilab code Exa 8.3 C8P3

```
1 clear
2 clc
3 //to find angular displacement of grindstone 2.7
      seconds later
4 //to find angular speed of grindstone 2.7 seconds
      later
5 // GIVEN:
7 //refer to the figure 8-7 from page no. 165
8 //constant angular acceleration of grindstone in +ve
       z direction
9 az = 3.2//in rad/s^2
10 //time initerval for calculating angular acceleration
       and angular displacement
11 t = 2.7//in seconds
12 //initially angular displacement
13 fi_0 = 0//in rad
14 //initially angular velocity in +ve z direction
15 \text{ wOz} = 0//\text{in rad/s}
16
```

```
// SOLUTION:
// consider angular velocity in +ve z direction
// using kinematic equation of motion for rotational
motion
// angular displacement of grindstone 2.7 seconds
later
fi = fi_0 + (w0z*t) + (0.5*az*t^2)//in rad
// angular speed of grindstone 2.7 seconds later
wz = w0z + (az*t)//in rad/s

printf ("\n\n Angular displacement of grindstone 2.7
seconds later fi = \n\n %.1f rad",fi);
printf ("\n\n Angular speed of grindstone 2.7
seconds later wz = \n\n %.1f rad/s",wz);
```

Scilab code Exa 8.4 C8P4

```
1 clear
2 clc
3 //to find angular acceleration of grindstone
4 //to find total angle turned through during slowing
     down of grindstone
6 // GIVEN:
7 //refer to problem 8-3 and from page no. 165
8 //refer to the figure 8-7 from page no. 165
9 //initial angular speed of grindstone
10 w0z = 8.6//in rad/s
11 //final angular speed of grindstone
12 //as grindstone comes to rest
13 wz = 0//in rad/s
14 //time interval in which grindstone comes to rest
15 t = 192//in seconds
16 //initial angular displacement of grindstone
17 fi_0 = 0//in rad
```

```
18
19 // SOLUTION:
20 //consider angular velocity in +ve z direction
21 //using kinematic equation of motion for rotational
     motion
22 //angular acceleration of grindstone
23 az = (wz-w0z)/t//in rad/s^2
24 //total angle turned through during slowing down of
     grindstone
25 fi = fi_0 + (w0z*t) + ((1/2)*az*(t^2))//in rad
26 fi = nearfloat("pred",823)
27
28 printf ("\n Angular acceleration of grindstone az
     = \ln n \%.3 f rad/s^2, az);
29 printf ("\n\n Total angle turned through during
     slowing down of grindstone fi = \n\ 3i rad", fi
     );
```

Scilab code Exa 8.5 C8P5

```
clear
clc
//to find linesr or tangential speed of a point on a
    rim
//to find tangential acceleration of a point on a
    rim
//to find radial acceleration of a point on a rim
// GIVEN:
// GIVEN:
// refer to problem 8-3 from page no. 165
// refer to the figure 8-7 from page no. 165
// radius of grindstone for first case
// radius of grindstone for second case
```

```
14 //initial angular speed of grindstone
15 w = 8.6//in rad/s
16 //constant angular acceleration of grindstone
17 a = 3.2//in \, rad/s^2
18 //time interval
19 t = 2.7//in seconds
20
21 // SOLUTION:
22 //using kinematic equation of motion for rotational
      motion
23
24 / for r1 = 0.24m
25 //linesr or tangential speed of a point on a rim
26 \text{ vT} = \text{w*r1}//\text{in m/s}
27 //tangential acceleration of a point on a rim
28 \text{ aT} = \frac{\text{a*r1}}{\sin m/s^2}
29 //radial acceleration of a point on a rim
30 aR = w^2*r1//in m/s^2
31
32 / for r1 = 0.12m
33 //linesr or tangential speed of a point on a rim
34 \text{ v_T} = \text{w*r2}//\text{in m/s}
35 //tangential acceleration of a point on a rim
36 \ a_T = a*r2//in \ m/s^2
37 //radial acceleration of a point on a rim
38 \ a_R = w^2*r^2//in \ m/s^2
39 \text{ aR} = \text{round}(\text{aR})
40
41 printf ("\n Linesr or tangential speed of a point
      on a rim for r1 = 0.24 \text{m vT} = \ln \%.1 \text{ f m/s}, \text{vT};
42 printf ("\n\n Tangential acceleration of a point on
      a rim for r1 = 0.24m aT = \langle n \rangle n \% .2 f m/s<sup>2</sup>, aT);
43 printf ("\n Radial acceleration of a point on a
      rim for r1 = 0.24 \text{m aR} = \ln \%2 \text{i m/s}^2, aR);
44 printf ("\n Linesr or tangential speed of a point
      on a rim for r1 v_T = 0.12 \text{m} v_T = \ln \%.1 \text{ f m/s},
      v_T);
45 printf ("\n Tangential acceleration of a point on
```

```
a rim for r1 = 0.12m a_T = \n\ \%.2 \, f \, m/s^2, a_T); 46 printf ("\n\n Radial acceleration of a point on a rim for r1 = 0.12m a_R = \n\ \%.1 \, f \, m/s^2, a_R);
```

Scilab code Exa 8.6 C8P6

```
1 clear
2 clc
3 //to find tangential speed of point on the equator
      of pulsar
4
5 // GIVEN:
6 //rotational period of pulsar
7 T = 0.033//in seconds
8 //radius of pulsar
9 r = 15//in km
10
11 // SOLUTION:
12 //using kinematic equation of motion for rotational
      motion
13 //angular speed
14 w = (2*3.14)/T//in rad/s
15 //tangential speed of point on the equator of pulsar
16 \text{ vT} = \text{w*r}//\text{in km/s}
17
18 printf ("\n\n Angular speed w = \n\n \%3i rad/s",w);
19 //answer of vT is slightly varying. But answer of
      scilab program and calculator is same
20 printf ("\n Tangential speed of point on the
      equator of pulsar vT = \ln m \%4i \text{ km/s}, vT;
```

Chapter 9

ROTATIONAL DYNAMICS

Scilab code Exa 9.1 C9P1

```
1 clear
2 clc
3 //To find magnitude of torque due to gravity about
     the pivot point o
4
5 // GIVEN::
7 //refer to figure 9-5 from page no. 178
8 //mass of body
9 m = 0.17 / / in kg
10 //length of rod
11 L = 1.25//in \text{ meters}
12 //angle of pendulum with vertical
13 theta = 10//in degrees
14 //acceleration due to gravity
15 g = 9.8//in m/s^2
16
17 // SOLUTION:
18
19 //magnitude of torque
20 tow = L*m*g*sind(theta)//in N.m
```

Scilab code Exa 9.2 C9P2

```
1 clear
2 clc
3 //To find rotational inertia
4 //to find angular acceleration
6 // GIVEN::
8 //refer to figure 9-9 from page no. 181
9 //mass of first partical
10 m1 = 2.3//in \text{ kg}
11 //mass of second partical
12 \text{ m2} = 3.2 / / \text{in kg}
13 //mass of third partical
14 \text{ m3} = 1.5 // \text{in kg}
15 //force applied to m2
16 	ext{ F} = 4.5 / / in 	ext{ N}
17 //angle made by force with horizontal
18 theta = 30//in degrees
19
20 // SOLUTION:
21
22 //consider firstly the axis passes through m1
23 \text{ r1f} = 0.0 // \text{in m}
24 \text{ r2f} = 3.0 // \text{in m}
25 \text{ r3f} = 4.0 // \text{in m}
26 //rotational inertia about the axis
27 	ext{ I1} = (m1*r1f^2) + (m2*r2f^2) + (m3*r3f^2) / in 	ext{ Kg.m}^2
28
29 //consider secondly the axis passes through m2
```

```
30 \text{ r1s} = 3.0 // \text{in m}
31 \text{ r2s} = 0.0 // \text{in m}
32 \text{ r3s} = 5.0//\text{in m}
33 //rotational inertia about the axis
34 	ext{ I2} = (m1*r1s^2) + (m2*r2s^2) + (m3*r3s^2) / (in 	ext{ Kg.m}^2)
35
36 //consider thirdly the axis passes through m3
37 \text{ r1t} = 4.0 // \text{in m}
38 \text{ r2t} = 5.0 // \text{in m}
39 \text{ r3t} = 0.0 // \text{in m}
40 //rotational inertia about the axis
41 I3 = (m1*r1t^2)+(m2*r2t^2)+(m3*r3t^2)/in \text{ Kg.m}^2
42 \quad \text{I1} = \text{round}(\text{I1})
43 	ext{ I2} = round(I2)
44 \quad I3 = round(I3)
45
46 //from figure fi
47 fi = asind(3/5)//in degrees
48 //angle between F and line connecting m3 and m2
49 fi1 = theta + fi//in degrees
50 //value of moment arm
51 \text{ r_perpendicular} = r3s*sind(fi1)//in m
52 //magnitude of torque about m3
53 \text{ tow_z} = \text{r_perpendicular*F}//\text{in N.m}
54 //using rotational inertia about axis through m3
55 //angular acceleration
56 az = -(tow_z)/I3//in rad/s^2
57
58 printf ("\n Rotational inertia about the axis when
        the axis passes through m1 is I1 = \langle n \rangle n %2i Kg.m
       ^2",I1);
59 printf ("\n Rotational inertia about the axis when
        the axis passes through m2 is I2 = \langle n \rangle n %2i Kg.m
       ^2",I2);
60 printf ("\n\n Rotational inertia about the axis when
        the axis passes through m3 is I3 = \ln \%3i Kg.m
       ^2",I3);
61 printf ("\n Magnitude of torque about m3 tow_z = \n
```

```
n\n \%.1 f N.m", tow_z);
62 printf ("\n\n Angular acceleration az = \n\n %.2 f rad/s^2",az);
```

Scilab code Exa 9.3 C9P3

```
1
2 clear
3 clc
4 //To find rotational inertia
6 // GIVEN::
8 //refer to figure 9-9 from page no. 181
9 //mass of first partical
10 m1 = 2.3//in \text{ kg}
11 //mass of second partical
12 \text{ m2} = 3.2 / / \text{in kg}
13 //mass of third partical
14 \text{ m3} = 1.5 // \text{in kg}
15
16 // SOLUTION:
17 //locating center of mass
18
19 \times 1 = 0 / / in m
20 \quad x2 = 0//in \quad m
21 \times 3 = 4.0 / / in m
22 //x coordinate of center of mass
23 \text{ x_cm} = (m1*x1+m2*x2+m3*x3)/(m1+m2+m3)//in m
24
25 \text{ y1} = 0//\text{in m}
26 \text{ y2} = 3.0 // \text{in m}
27 \text{ y3} = 0//\text{in m}
28 //y coordinate of center of mass
29 \text{ y_cm} = (\text{m1*y1+m2*y2+m3*y3})/(\text{m1+m2+m3})//\text{in m}
```

```
30 //squqred distance from center of mass to each of
      particals
31 //for first partical
32 r1_square = x_cm^2 + y_cm^2/in m^2
33 //for second partical
34 \text{ r2\_square} = x_cm^2 + (y2-y_cm)^2//in m^2
35 //for third partical
36 r3_square = (x3-x_cm)^2 + y_cm^2/in m^2
37 //rotational inertia
38 \text{ I_cm} = (m1*r1\_square+m2*r2\_square+m3*r3\_square) //in
     Kg.m^2
39
40 r2_square = nearfloat("succ",3.40)
41 r3_square = nearfloat("pred",11.74)
42 \quad I_cm = ceil(I_cm)
43
44 printf ("\n x coordinate of center of mass x<sub>cm</sub> =
      \n n \ \%.2 f \ m, x_cm);
45 printf ("\n y coordinate of center of mass y<sub>c</sub> =
      \n n \%.2 f m", y_cm);
46 printf ("\n Squqred distance from center of mass
      for first partical r1_square = \ln \%.2 \text{ f m}^2,
      r1_square);
47 printf ("\n Squqred distance from center of mass
      for second partical r2-square = n \times 2,
      r2_square);
48 printf ("\n Squqred distance from center of mass
      for third partical r3\_square = \n\ \%2i \ m^2",
      r3_square);
49 printf ("\n Rotational inertia I_cm = \n \%.1 f Kg
      .m^2", I_cm);
```

Scilab code Exa 9.6 C9P6

```
2 clear
  clc
4 //to find forces that is scale reading
7 // GIVEN::
9 //refer to figure 9-22(a) from page no. 189
10 //mass od beam
11 \ m = 1.8 / / in \ kg
12 //massof block
13 M = 2.7//in kg
14 //acceleration due to gravity
15 g = 9.8//in m/s^2
16
17 // SOLUTION:
18
19 //refer to figure 9-22(b) from page no. 189
20 //consider our system as beam and block together
21 //equating net torque to zero
22 //force Fr
23 Fr = (g/4)*(M+2*m)//in N
24 //equating forces iny direction as 0 for
      equillibrium condition
25 //force F1
26 \text{ F1} = (M+m)*g - Fr//in N
27 	ext{ F1} = round(F1)
28
29 printf ("\n Force Fr = \n %2i N", Fr);
30 printf ("\n\n Force F1 = \n\n \%2i N", F1);
```

Scilab code Exa 9.7 C9P7

```
1 2 clear
```

```
3
    clc
4 //to find forces exerted on the ladder by the ground
       and by the wall
5
6
7 // GIVEN::
9 //refer to figure 9-23(a) from page no. 189
10 //length of ladder
11 L = 12//in meters
12 //mass of ladder
13 \text{ m} = 45 / / \text{in kg}
14 //distance of upper end of ladder above the ground
15 h = 9.3//in meters
16 //mass of firefighter
17 M = 72 / / in kg
18 //acceleration due to gravity
19 g = 9.8//in m/s^2
20
21 // SOLUTION:
22
\frac{23}{\text{refer}} to figure 9-23(b) from page no. 189
24 //distance from the wall to the foot of ladder
25 a = sqrt(L^2 - h^2)/in meters
26 //considering equillibrium conditions
27 //finding normal reaction by ground
28 N = (M+m)*g//in N
29 //force exerted on ladder by the wall
30 Fw = (g*a*(M/2 + m/3))/h//in N
31 N = round(N)
32 \text{ Fw} = \text{round}(\text{Fw})
33 printf ("\n Distance from the wall to the foot of
      ladder a = \langle n \rangle n \%.1 f m, a);
34 //answer is slightly different than book. But answer
      of scilab program is same as that of calculator
35 printf ("\n Forces exerted on the ladder by the
      ground N = \langle n \rangle n \% 3i N", N);
36 //answer is slightly different than book. But answer
```

```
of scilab program is same as that of calculator 37 printf ("\n\n Forces exerted on the ladder by the wall Fw = \n\ %3i N", Fw);
```

Scilab code Exa 9.8 C9P8

```
1
2 clear
3 clc
4 //to find tension in the wire
5 //to find force exerted by the hinge on the beam
8 // GIVEN::
10 //refer to figure 9-24(a) from page no. 190
11 //length of the beam
12 L = 3.3//in meters
13 //mass of beam
14 \text{ m} = 8.5 / / \text{in kg}
15 //distance at which wire is connected
16 d = 2.1//in meters
17 //angle made by beam with horizontal
18 theta = 30//in degrees
19 //mass of body
20 \, M = 56 / / in \, kg
21 //acceleration due to gravity
22 \text{ g} = 9.8 / / \text{in m/s}^2
23
24 // SOLUTION:
25
\frac{26}{\text{refer}} to figure 9-24(b) from page no. 190
27 //angle alpha from geometry
28 alpha = atand((d-(L*sind(theta)))/(L*cosd(theta)))//
      in degrees
```

```
29 k = M*g+m*g;
30 \quad j = m*g/2;
31 //applying equilibrium conditions to get 4 equations
32 A = [0 1 0 -1 ; 1 0 1 0 ; 1 -tand(theta) 0 0 ; 0 0 1
       -tand(alpha)];
33 b = [0 ; k ; j ; 0];
34 c = A \backslash b
35 \text{ Fv} = c(1)
36 \text{ Fh} = c(2)
37 \text{ Tv} = c(3)
38 \text{ Th} = c(4)
39
40 \text{ Fv} = \text{round}(\text{Fv})
41 \text{ Fh} = \text{round}(\text{Fh})
42 \text{ Th} = \text{round}(\text{Th})
43 //resultant tension in the wire
44 T = sqrt(Th^2 + Tv^2)//in N
45 //resultant force exerted by the hinge on the beam
46 F = sqrt(Fh^2 + Fv^2)//in N
47 T = round(T)
48 F = round(F)
49 //angle made by vector F with horizontal
50 fi = atand(Fv/Fh)//in degrees
51
52 printf ("\n\n Vertical force Fv = \n\n \%3i N", Fv);
53 printf ("\n\ Horizontal force Fh = \n\ %3i N", Fh);
54 printf ("\n vertical tension in in wire Tv = \n
      \%3i \text{ N", Tv};
55 printf ("\n Horizontal tension in in wire Th = \n
      n \%3i N", Th);
56 printf ("\n Resultant tension in the wire T = \n
       \%3i \text{ N", T)};
57 printf ("\n\n Resultant force exerted by the hinge
      on the beam F = \langle n \rangle n \% 3i N'', F);
58 printf ("\n\n angle made by vector F with horizontal
        fi = \langle n \rangle n \%.1 f degrees", fi);
```

Scilab code Exa 9.9 C9P9

```
1
2 clear
   clc
4 //to find magnitude of torque
5 //to find resultant angular acceleration of the
      system
6
8 // GIVEN::
9
10 //refer to figure 9-25 from page no. 191
11 //force exerted
12 F = 115//in N
13 // distance from axis of rotation at which force is
      exerted
14 r = 1.50//in meters
15 //angle of apllication of force
16 theta1 = 32//in degrees
17 // direction of horizontal component
18 theta2 = 15//in degrees
19 //acceleration due to gravity
20 \text{ g} = 9.8 / / \text{in m/s}^2
21 //radius od disk
22 R = 1.5//in meters
23 //thicknes of disk
24 d = 0.40 / in cm
25 //mass of child
26 \text{ m} = 25//\text{in kg}
27 //radius of position of child
28 \text{ r1} = 1.0 //\text{in meters}
29
30
```

```
31 // SOLUTION:
32
33 //refer to figure 9-25 from page no. 191
34 //horizontal component of force
35 Fh = F*cosd(theta1)//in N
36 //component of force perpendicular to r
37 F_perpendicular = Fh*cosd(theta2)//in N
38 //vertical torque along the axis of rotation
39 tow = r*F_perpendicular//in N.m
40
41 //volume of disk
42 volume = \%pi*(R*100)^2*d//in m^3
43 //consider density of steel
44 density = 7.9/in g/cm^3
45 //mass of merry-go-round
46 \text{ M} = (\text{volume*density})*10^-3//\text{in kg}
47 //rotational inertia of disk
48 Im = ((1/2)*M*R^2)//in \text{ kg.m}^2
49 //rotational inertia of child
50 Ic = m*r1^2//in \ kg.m^2
51 //total rotational inertia
52 It = Im + Ic//in kg.m^2
53 //angular acceleration of the system
54 alpha_z = tow/It//in rad/s^2
55
56 printf ("\n Horizontal component of force Fh = \n
     n \%.1 f N", Fh);
57 printf ("\n\n Component of force perpendicular to r
      F_{perpendicular} = \ln n \%.1 f N", F_{perpendicular};
58 printf ("\n\ Vertical torque along the axis of
      rotation tow = \n \%3i \text{ N.m.}, tow);
59 printf ("\n Rotational inertia of disk Im = \n
      \%3i \text{ kg.m}^2", Im);
60 printf ("\n Rotational inertia of child Ic = \n
     \%3i\ kg.m^2",Ic);
61 printf ("\n Total rotational inertia It = \n %3i
      kg.m^2", It);
62 printf ("\n Angular acceleration of the system
```

Scilab code Exa 9.10 C9P10

```
1
2 clear
   clc
4 //to find acceleration of the falling block
5 //to find tension in the chord
6 //to find angular acceleration of the disk
8
9 // GIVEN::
10
11 //refer to figure 9-26(a) from page no. 192
12 //mass of disk
13 M = 2.5//in kg
14 //radius of disk
15 R = 20 / / in cm
16 //mass of block
17 \text{ m} = 1.2 // \text{in kg}
18 //acceleration due to gravity
19 g = 9.8//in m/s^2
20
21 // SOLUTION:
22
\frac{23}{\text{refer}} to figure 9-26(b) from page no. 192
24 //applying newton's second law in y direction for
      block
25 //and applying rotational form of newton's second
      law for disk
26 //we get 2 equations and 2 unknowns
27 A = [m 1; (1/2*M) -1]
28 B = [(m*g);0]
29 c = A \setminus B
```

```
30 //acceleration of block
31 a = c(1) / in m/s^2
32 //tension in the string
33 T = c(2) / in N
34 //angular acceleration of disk
35 az = a/(R*10^-2)/in rad/s^2
36 a_z = az/(2*\%pi)//in rev/s^2
37
38 printf ("\n\ Acceleration of block a = \n\ %.1 f m/
     s^2",a);
39 printf ("\n\n Tension in the string T = \ln n \%.1 f N"
     ,T);
40 printf ("\n\n Angular acceleration of disk az in rad
     /s^2 = \ln m \%.1 f rad/s^2",az);
41 printf ("\n Angular acceleration of disk a_z in
     rev/s^2 = \ln m \%.1 f rev/s^2",a_z);
```

Scilab code Exa 9.12 C9P12

```
clear
clc
//to find velocity of center of mass at time t
//to find value of t

// GIVEN::

// GIV
```

```
and cylinder
17 \text{ mew\_k} = 0.21
18 //acceleration due to gravity
19 g = 9.8//in m/s^2
20
21 // SOLUTION:
22
23 //refer to figure 9-33(b) from page no. 192
24 \text{ w_0} = \text{w0*2*\%pi//in rad/rev}
25 //applying newton's second law in x direction
26 //and applying rotational form of newton's second
     law
27 //velocity of center of mass
28 vcm = (1/3*w_0*(R*10^-2))/in m/s
29 //value of t
30 t = vcm/(mew_k*g)//in seconds
31
32 printf ("\n Velocity of center of mass vcm = \n
     \%.1 f m/s, vcm);
33 printf ("\n\n Value of t = \ln \%.1 f seconds",t);
```

Scilab code Exa 9.13 C9P13

```
12 R = 2.8 / in cm
13 //radius of shaft
14 R0 = 0.25 / in cm
15 //length of the string
16 L = 1.2//in meters
17 //initial velocity of yo-yo
18 \text{ v0} = 1.4 / / \text{in m/s}
19 //acceleration due to gravity
20 \text{ g} = 9.8 / / \text{in m/s}^2
21
22 // SOLUTION:
23
24 //refer to figure 9-34(b) from page no. 196
25 //moment of inertia
26 I = (1/2*(M*R^2))
27 //applying newton's second law
28 //and applying rotational form of newton's second
      law
29 //angular acceleration
30 az = (g*100/R0)*(1/(1+R^2/(2*R0^2)))/in rad/s^2
31 //angle through which yo-yo rotates
32 fi = L/(R0*10^-2)/in rad
33 //initial angular velocity
34 \text{ w0z} = \text{v0/(R0*10^-2)//in rad/s}
35 //solving using equation to find out time
36 \text{ y} = \text{poly}([-fi w0z (1/2*az)], 't', 'coeff')
37 c = roots(y)
38 //taking only positive value as it is time
39 t2 = c(2)//in seconds
40 //rotational velocity when it reaches end of the
      string
41 wz = w0z+(az*t2)//in rad/s^2
42
43 printf ("\n\ Angular acceleration az = \n\ %.1 f
      rad/s^2, az);
44 printf ("\n Time for calculating rotational
      velocity t2 = \langle n \rangle n \%.2 f seconds, t2);
45 printf ("\n initial angular velocity \n0z = \n1n
```

```
%3i rad/s",w0z);
46 printf ("\n\n Rotational velocity when it reaches end of the string wz = \n \%3i \text{ rad/s}^2",wz);
```

Chapter 10

ANGULAR MOMENTUM

Scilab code Exa 10.2 C10P2

```
1 clear
2 clc
3 //To find which magnitude is greater
4 //angular momentum of earth associated with its
      rotation on its axis
                               //OR
  //angular momentum of earth associated with its
      orbital motion around the sun
8 // Given:
9 //refer to figure 10-8 from page no. 213
10 //rotation period of the earth about its axis in
     hour
11 t1 = 24//in hour
12 //rotation period of earth about its axis in seconds
13 T1 = (t1*60*60)//in seconds
14 //T2 is time required by earth to complete one
      revolution around the sun
15 \text{ T2} = 3.16*10^7/\text{in seconds}
16 //mass of the earth
17 M = 5.98*10^24//in kg
```

```
18 //radius of the earth
19 RE = 6.37*10^6/in \text{ meters}
20
21 // Solution:
22 //considering earth as a uniform sphere mmoment of
      inertia
23 I = (2/5)*M*RE^2
24 //angular speed
25 \text{ w1} = (2*3.14)/\text{T1}//\text{in per seconds}
26 //angular momentum of earth associated with its
      rotation
27 L_rot = I*w1//in kg m^2/s
28 //radius of orbit
29 R_orb = 1.50*10^11/in meters
30
31 //angular speed
32 \text{ w2} = (2*3.14)/T2//in \text{ per second}
33 //velocity of rotation of earth around the sun
34 \text{ v} = \text{w2*R\_orb}//\text{in m/s}
35 //linear momentum
36 p = M*v
37 //angular momentum of earth associated with its
      orbital motion around the sun
38 L_orb = R_orb*p//in kg m<sup>2</sup>/s
39
40 printf ("\n\n Angular momentum of earth associated
      with its rotation on its axis is L_{rot} = \ln \%.2
      e kg m^2/s", L_rot);
41 printf ("\n\n Angular momentum of earth associated
      with its orbital motion around the sun L_{orb} = n
      n \%.2e \text{ kg m}^2/\text{s}, L_orb);
42 if (L_rot>L_orb) then
       printf('\n\n Angular momentum of earth
          associated with its rotation on its axis is
          greater than angular momentum of earth
          associated with its orbital motion around the
           suns');
44 else
```

```
printf('\n\n Angular momentum of earth
associated with its orbital motion around
the sun is greater than angular momentum of
earth associated with its rotation on its
axis');

46 end
```

Scilab code Exa 10.4 C10P4

```
1 clear
2 clc
3 //to find centripital force austronautshould apply
      at distance 50 m from spacecraft
4 //to find centripital force austronautshould apply
      at distance 5 m from spacecraft
5
6 // Given:
7 //mass of austronaut
8 M = 120//in kg
9 //length of cord
10 \text{ ri} = 180//\text{in meters}
11 // initial tangential velocity acquired by astronaut
12 vi = 2.5//in m/s
13
14 // Solution:
15 //applying conservation of angular momentum
16 //initially required centripital force
17 F = (M*vi^2)/ri//in N
18 //when astonaut is at a distance of 50 m from
      spacecraft
19 \text{ r1} = 50//\text{in meters}
20 //velocity at this stage
21 \quad v = (vi*ri)/r1//in \quad m/s
22 //centripital force
23 f = (M*v^2)/r1//in N
```

Scilab code Exa 10.5 C10P5

```
1 clear
2 clc
3 //to find angular speed of combination of disk
5 // Given:
6 //refer to figure 10-17(a) and (b) from page no. 219
7 //mass of disk
8 M = 125//in g
9 //radius of disk
10 r = 7.2//in centimeters
11 // initial angular speed of disc about vertical axis
12 omega_i = 0.84//in rev/s
13
14 // Solution:
15 //completely inelastic collision.
16 //appllying conservation of angular momentum
17 //ratio of rotational inertia of disks
18 R = (1/3)
19 //angular speed of combination of disk
20 omega_f = omega_i*(R) //in rev/s
21
22 printf ("\n Angular speed of combination of disk
     omega_f = \n\ \%.2 f rev/s", omega_f);
```

Chapter 11

ENERGY 1 WORK AND KINETIC ENERGY

Scilab code Exa 11.1 C11P1

```
1
2 clear
3 clc
4 //to find work done
6 // GIVEN::
8 //refer to figure 11-8(a) from page no. 232
9 //mass of block
10 m = 11.7//in kg
11 //distance by which block is pushed on inclined
      plane
12 s = 4.65//in meters
13 //height by which block is raised
14 h = 2.86//in \text{ meters}
15 //acceleration due to gravity
16 \text{ g} = 9.8 / / \text{in m/s}^2
17
18 // SOLUTION:
```

```
19
\frac{20}{\sqrt{\text{refer}}} to figure 11-8(b) from page no. 232
21 //from diagram sin(theta) can be calculated as
22 \sin_{\text{theta}} = (h/s)
23 //angle between applied force and displacement of
      block
24 fi = 0//in degrees
25 //using newton's second law of motion
26 //force pushing the block
27 F = m*g*sin_theta//in N
28 //work done by force F
29 W = F*s*cosd(fi)//in J
30 //work done by raising block vertically
31 Work = m*g*h//in J
32 W = round(W)
33 Work = round(Work)
34 printf ("\n\n Force pushing the block F = \ln \%.1 f
     N", F);
35 printf ("\n\n Work done by force FW = \ln \%3i J", W
      );
36 printf ("\n\n Work done by raising block vertically
      \n \n \ Work = \n \ %3i J", Work);
```

Scilab code Exa 11.2 C11P2

```
1
2 clear
3 clc
4 //to find work done by the chid
5
6 // GIVEN::
7
8 //refer to figure 11-9(a) from page no. 233
9 //mass of sled
10 m = 5.6//in kg
```

```
11 // distance by which sled is pushed horizontally
12 s = 12//in meters
13 //coefficient of kinetic friction
14 \text{ mew\_k} = 0.20
15 //angle made by the rope with horizontal
16 fi = 45//in degrees
17 //acceleration due to gravity
18 \text{ g} = 9.8 / / \text{in m/s}^2
19
20 // SOLUTION:
21
\frac{22}{\text{refer}} to figure 11-9(b) from page no. 233
23 //using newton's second law of motion
24 //we get three equations and three unknowns
25 A = [cosd(fi) -1 0; sind(fi) 0 1; 0 1 -mew_k]
26 B = [0; m*g; 0]
27 c = A \setminus B
28 //force applied by the child
29 F = c(1) / in N
30 //frictional force
31 f = c(2) //in N
32 //normal reaction
33 N = c(3) / in N
34 //work done by the child
35 \text{ W} = \text{F*s*cosd(fi)}//\text{in J}
36
37
38 F = round(F)
39 W = round(W)
40 printf ("\n\n Force applied by the child F = \n\n
      \%2i \ N", F);
41 printf ("\n\n Work done by the child W = \n\n \%3i J"
      , W);
```

Scilab code Exa 11.3 C11P3

```
1
2 clear
  clc
4 //to find average power must be applied by the
      elevator motor
6 // GIVEN::
8 //weight of elevator
9 \text{ w} = 5160 / / \text{in N}
10 //average weight of passenger
11 wp = 710//in N
12 //number of passengers
13 \, n = 20
14 //distance between floors
15 sf = 3.5//in meters
16 //time elasped
17 t = 18//in seconds
18 //acceleration due to gravity
19 g = 9.8//in m/s^2
20
21 // SOLUTION:
22
23 //total weight of elevator and passenger
24 //upward force exerted by motor
25 F = w+n*wp//in N
26 //total height by which elevator moves
27 	 s = sf*25//in meters
28 //work done must be applied by the elevator motor
29 W = F*s//in J
30 //average power
31 Pav = (W/t)*10^-3//in kW
32
33 //value of force F is slightly different than scilab
34 //but silab answer is same as calculator answer
35 printf ("\n\n Upward force exerted by motor F = \n\n
       \%5i \text{ N",F};
```

```
36 printf ("\n\n Work done must be applied by the elevator motor W = \n\n \%.1e\ J",W);
37 printf ("\n\n Average power Pav = \n\n %2i kW",Pav);
```

Scilab code Exa 11.4 C11P4

```
1
2 clear
3
  clc
4 //to find work done by gravity
5 //to find work done by the spring
  //to find work done by the hand
7
8
9 // GIVEN::
10
11 //refer to figure 11-15(a) from page no. 237
12 //mass of block
13 m = 6.40//in \text{ kg}
14 //distance streched by spring
15 d = 0.124//in meters
16 //acceleration due to gravity
17 g = 9.8//in m/s^2
18
19 // SOLUTION:
20
21 //refer to figure 11-8(b) and 11-5(c) from page no.
22 //applying equillibrium condition in y direction
23 //force constant of spring
24 k = m*g/d//in N/m
25 //work done by gravity
26 \text{ Wg} = \text{m*g*d}//\text{in J}
27 //work done by the spring
28 Ws = (-1/2)*k*d^2/in J
```

Scilab code Exa 11.6 C11P6

```
1
2 clear
3 clc
4 //to find kinetic energy
6 // GIVEN::
8 //distance travelled by neutron
9 d = 6.2//in meters
10 //time for neutron travel
11 t = 160//in micrometers
12 //mass of neutron
13 \text{ m} = 1.67 \text{e} - 27 // \text{in kg}
14
15 // SOLUTION:
16
17 //speed of neutron
18 v = d/(t*10^-6)/in m/s
```

Scilab code Exa 11.7 C11P7

```
1
2 clear
   clc
4 //to find speed of body when it strikes the ground
6 // GIVEN : :
7 //mass of body
8 m = 4.5//in kg
9 //height from which body is dropped
10 h = 10.5//in meters
11 //acceleration due to gravity
12 g = 9.80 / in m/s^2
13
14 // SOLUTION:
15 //using work-energy principle
16 //speed of body when it strikes the ground
17 v = sqrt(2*g*h)//in m/s
18 printf ("\n\n Speed of body when it strikes the
      ground v = \langle n \rangle n \%.1 f m/s", v);
```

Scilab code Exa 11.8 C11P8

```
1
2 clear
   clc
4 //to find spring compression
6 // GIVEN::
7 //mass of body
8 m = 3.63//in kg
9 //speed of block
10 \ v = 1.22 // in \ m/s
11 //force constant for spring
12 k = 135 // in
13
14 // SOLUTION:
15 //using work-energy principle
16 //spring compression
17 d = v*sqrt(m/k)//in meters
18 d1 = d*10^2/in
19 printf ("\n\n Spring compression d = \ln n \%.3 f m",d)
20 printf ("\n Spring compression d = \n %.1 f cm",
     d1);
```

Scilab code Exa 11.9 C11P9

```
1
2 clear
3 clc
4 //to find speed of crate according to observer o
```

```
5 ///to find work and change in kinetic energy
7 // GIVEN:
8 //refer to figure 11-18(a), (b) from page no. 242
9 //force applied
10 Fx = 5.63//in N
11 //mass of crate
12 \text{ m} = 12.0 // \text{in kg}
13 //speed of train
14 \text{ vx} = 15.0 // \text{in m/s}
15 //distance travelled by crate
16 s = 2.4//in meters
17
18 // SOLUTION:
19 //using work-energy principle
20 //work done
21 W = Fx*s//in J
22 //initial kinetic energy according to observer in
      car
23 \text{ Ki} = 0
24 ///final kinetic energy according to observer in
      car
25 \text{ Kf} = W - \text{Ki}
26 //speed of crate according to observer o
27 vf = sqrt(2*Kf/m)//in m/s
28 //applying impulse-momentum theorem
29 //time interval
30 delta_t = (m*vf/Fx)//in seconds
31 //forward distance travelled
32 d = vx*delta_t//in meters
33 //total distance moved by crate
34 \text{ s\_dash} = d+s//in \text{ meters}
35 //work done
36 \text{ W_dash} = \text{Fx*s_dash}//\text{in J}
37 //final speed of crate
38 \text{ vf\_dash} = \text{vx+vf}//\text{in m/s}
39 //change in kinetic energy
40 deltaK_dash = (1/2*m*(vf_dash^2)) - (1/2*m*(vx^2))
```

```
41 W_dash = round(W_dash)
42 deltaK_dash = round(deltaK_dash)
43 printf ("\n\n Final kinetic energy according to
        observer in car Kf = \n\n %.1 f J", Kf);
44 printf ("\n\n Speed of crate according to observer o
        vf = \n\n %.2 f m/s", vf);
45 printf ("\n\n Time interval delta_t = \n\n %.2 f
        seconds", delta_t);
46 printf ("\n\n Work done W_dash = \n\n %3i J", W_dash)
    ;
47 printf ("\n\n Change in kinetic energy deltaK_dash =
        \n\n %3i J", deltaK_dash);
48 printf ("\n\n As W_dash = deltaK_dash work-energy
        principle is valid")
```

Scilab code Exa 11.10 C11P10

```
1
2 clear
3 clc
4 //to find conatance force to be applied
6 // GIVEN:
7 //refer to figure 11-21 from page no. 244
8 //initial angular velocity of spacecraft
9 wi = 2.4//in rev/s
10 //radius of spacecraft
11 R = 1.7//in meters
12 //mass of spacecraft
13 M = 245//in \text{ Kg}
14 //final angular velocity of spacecraft
15 wf = 1.7//in rev/s
16 //rotation of spacecraft
17 theta = 3//in revolutions
18
```

```
19
20 // SOLUTION:
21
22 //moment of inertia of spacecraft
23 I = (2/3*M*R^2)/in \text{ Kg.m}^2
24 //change in rotational kinetic energy
25 delta_k_dash = (1/2*I*(2*\%pi*wf)^2) - (1/2*I*(2*\%pi*wi)
      )^2)/in J
26 //using work-energy principle
27 //work done = change in rotational kinetic energy
28 //thruster force F
29 F = (delta_k_dash/(-R*theta*2*\%pi))//in N
30 F = nearfloat("pred",834)
31 printf ("\n Moment of inertia of spacecraft I = \n
      \n %3i Kg.m<sup>2</sup>",I);
32 printf ("\n\n Change in rotational kinetic energy
      delta_k - dash = \langle n \rangle n \%.2e J, delta_k_dash;
33 printf ("\n\n Thruster force F = \n\n \%3i N",F);
```

Scilab code Exa 11.11 C11P11

```
1
2 clear
3 clc
4 //to find kinetic energy lost by neutron
5
6 // GIVEN:
7
8 //initial kinetic energy of neutron
9 K1i = 5.0//in MeV
10 //mass of neuron mn
11 mn = 1//considering it as unity as other masses are given with reference to mn
12 //mass of neucleus of lead
13 mPb = 206*mn
```

```
14 //mass of neucleus of carbon
15 \text{ mC} = 12*\text{mn}
16 //mass of neucleus of hydrogen
17 \text{ mH} = \text{mn}
18
19 // SOLUTION:
20
21 //As collision is elastic collision
22 //using conservation of energy principle
23
24 //collision with neucleus of lead
25 //final kinetic energy of neutron
26 K1f = K1i*((mn-mPb)/(mn+mPb))^2/in MeV
27 //kinetic energy lost by neutron
28 \text{ K_lostl} = \text{K1i-K1f}/\text{in MeV}
29
30
31 //collision with neucleus of carbon
32 //final kinetic energy of neutron
33 K1f_C = K1i*((mn-mC)/(mn+mC))^2//in MeV
34 //kinetic energy lost by neutron
35 \text{ K_lostC} = \text{K1i-K1f_C}/\text{in MeV}
36
37
38 //collision with neucleus of lead
39 //final kinetic energy of neutron
40 K1f_H = K1i*((mn-mH)/(mn+mH))^2/in MeV
41 //kinetic energy lost by neutron
42 K_lostH = K1i - K1f_H//in MeV
43
44 printf ("\n Collision with neucleus of lead")
45 printf ("\n\n Final kinetic energy of neutron K1f =
      \n \n \%.1 f MeV", K1f);
46 printf ("\n Kinetic energy lost by neutron K_lostl
       = \langle n \rangle n \%.1 f \text{ MeV}", K_lostl);
47 printf ("\n Collision with neucleus of carbon")
48 printf ("\n Final kinetic energy of neutron K1f_C
      = \ \ \ \ \%.1 f \ \ MeV", K1f_C);
```

Scilab code Exa 11.12 C11P12

```
1
2 clear
   clc
4 //to find initial speed of bullet
5 //to find lost in kinetic energy
6
7 // GIVEN:
8 //refer to figure 11-23 from page no. 246
9 //mass of block
10 M = 5.4//in Kg
11 //mass of bullet
12 \text{ m} = 9.5e-3//in \text{ Kg}
13 //height to which block rises
14 h = 6.3e-2//in meters
15 //acceleration due to gravity
16 g = 9.8//in m/s^2
17
18 // SOLUTION:
19
20 //applying work-energy principle
21 //initial speed of bullet
22 vi = ((M+m)/m)*(sqrt(2*g*h))/in m/s
23 //ratio of final to initial kinetic enerdy
24 \quad Kf_by_Ki = (m/(M+m))
25 //initialkinetic energy remains after collision
```

```
26 Kr = (Kf_by_Ki)*100//in percentage
27 //kinetic energy stored inside pendullum
28 Ks = 100-Kr//in percentage
29 //answer of vi is slightly different than textbook.
        but answer by calculator is same as that of
        scilab
30 printf ("\n\n Initial speed of bullet vi = \n\n %3i
        m/s",vi);
31 printf ("\n\n Ratio of final to initial kinetic
        enerdy Kf/Ki = \n\n %.4f ",Kf_by_Ki);
32 printf ("\n\n Initial kinetic energy remains after
        collision Kr = \n\n %.2f percent",Kr);
33 printf ("\n\n Kinetic energy stored inside pendullum
        Ks = \n\n %.2f percent",Ks);
```

Chapter 12

ENERGY 2 POTENTIAL ENERGY

Scilab code Exa 12.1 C12P1

```
1
2 clear
3 clc
4 //to find change in gravitational potential energy
6 // GIVEN:
7 //mass of elevator
8 m = 920 / / in Kg
9 //height above the groung
10 h = 412//in meters
11 //acceleration due to gravity
12 g = 9.8//in m/s^2
13
14 // SOLUTION:
15 //applying potential energy formula
16 //change in gravitational potential energy
17 delta_U = m*g*h//in J
18 delta_U1 = delta_U*10^-6 // in MJ
```

```
20 printf ("\n\n Change in gravitational potential
        energy delta_U = \n\n %.1e J", delta_U);
21 printf ("\n\n Change in gravitational potential
        energy delta_U1 = \n\n %.1f MJ", delta_U1);
```

Scilab code Exa 12.2 C12P2

```
1
2 clear
3 clc
4 //to find potential energy stored in the spring
6 // GIVEN:
7 //foce constant of spring
8 k = 1.25e8//in N/m
9 //compression in spring
10 x = 5.6e-2//in meters
11
12 // SOLUTION:
13 //applying spring force formula
14 //potential energy stored in the spring
15 U = (1/2*k*x^2)/in J
16 printf ("\n\n Potential energy stored in the spring
     U = \langle n \rangle n \%.2 e J, U)
```

Scilab code Exa 12.3 C12P3

```
1
2 clear
3 clc
4 //to find speed of ball
5
6 // GIVEN:
```

```
//refer to figure 12-1
//compression in spring
d = 3.2e-2//in meters
//mass of ball
m = 12e-3//in Kg
//force constant of spring
k = 7.5//in N/cm
// SOLUTION:
// applying conservation of energy principle
//speed of ball
wm = d*sqrt((k*10^2)/m)//in m/s

printf ("\n\n Speed of ball vm = \n\n %.1 f m/s", vm)
```

Scilab code Exa 12.4 C12P4

```
1
2
3 clear
  clc
5 //to find speed of ball
7 // GIVEN:
8 //refer to figure 12-6 on page no. 263
9 //lift of car
10 y = 25//in meters
11 //acceleration due to gravity
12 g = 9.8//in m/s^2
13
14 // SOLUTION:
15 //applying conservation of energy principle
16 //speed of car
17 v = sqrt(2*g*y) / in m/s
18 printf ("\n Speed of car v = \n \% 2i m/s", v)
```

Scilab code Exa 12.7 C12P7

```
1
2 clear
   clc
4 //to find speed of ball
6 // GIVEN:
7 //refer to problem 9-10
8 //mass of disk
9 M = 2.5//in kg
10 //distance of fall
11 y = 0.56//in meters
12 //mass of block
13 \text{ m} = 1.2 / / \text{in kg}
14 //acceleration due to gravity
15 g = 9.8//in m/s^2
16
17 // SOLUTION:
18 //applying conservation of mechanocal energy
      principle
19 //speed of block
20 v = sqrt((4*m*g*y)/(M+2*m))/in m/s
21 printf ("\n Speed of ball v = \n \ \%.1 f m/s",v)
```

Chapter 13

ENERGY 3 CONSERVATION OF ENERGY

Scilab code Exa 13.1 C13P1

```
1
2 clear
3 clc
4 //to find change in internal energy
6 // GIVEN:
7 //mass of baseball
8 m = 0.143 //in kg
9 //height of tower
10 h = 443 / / in m
11 //terminal velocity
12 v = 42 / / in m / s
13 //acceleration due to gravity
14 g = 9.8//in m/s^2
15
16 // SOLUTION:
17
18 //initial potential energy
19 Ui = m*g*h//in J
```

```
20 //final potential energy
21 Uf = 0//in J
22 //change in potential energy
23 delta_U = (Uf-Ui)//in J
24 //final kinetic energy
25 Kf = (1/2)*(m*v^2)//in J
26 //initial kinetic energy
27 \text{ Ki} = 0//\text{in J}
28 //change in kinetic energy
29 delta_K = (Kf-Ki)//in J
30 //applying conservation of energy principle
31 //change in internal energy
32 delta_Eint = (-delta_U-delta_K)//in J
33 delta_U = round (Uf-Ui)
34 delta_K = round(Kf-Ki)
35 delta_Eint = round(-delta_U-delta_K)
36
37 printf ("\n Change in potential energy delta_U =
     \n \n \%3i J", delta_U)
38 printf ("\n Change in kinetic energy delta_K = \n
     \n %3i J", delta_K)
39 printf ("\n\n Change in internal energy delta_Eint
     = \n \ \%3i \ J", delta_Eint)
```

Scilab code Exa 13.2 C13P2

```
clear
clc
//to find gain in internal energy
//to find speed of block

// GIVEN:
// mass of block
```

```
10 m = 4.5//in \text{ Kg}
11 //angle of inclination
12 theta = 30//in degrees
13 //initial speed
14 \ v = 5.0 / / in \ m/s
15 //distance travelled
16 d = 1.5//in meters
17 //acceleration due to gravity
18 \text{ g} = 9.8 / / \text{in m/s}^2
19
20 // SOLUTION:
21 //applying conservation of energy principle
22 //consider block+plane+earth as our system
23 //final potential energy
24 Uf = m*g*(d*sind(theta))//in J
25 //initial potential energy
26 Ui = 0//in J
27 //change in potential energy
28 delta_U = Uf-Ui//in J
29 //final kinetic energy
30 Kf = 0//in J
31 //initial kinetic energy
32 Ki = (1/2) *m*v^2/in J
33 //change in kinetic energy
34 \text{ delta_K} = \text{Kf-Ki}//\text{in J}
35 //change in mechanical energy in system
36 delta_U_plus_delta_K = delta_U+delta_K//in J
37 //applying conservation of energy principle
38 //gain in internal energu
39 delta_E_int = -(delta_U_plus_delta_K)/in J
40 // final kinetic energy for downhill journy
41 //here delta_K = 2*delta_E_int as round tripi.e.
      uphill and downhill motion
42 KF = (-(2*delta_E_int))+(-delta_K)/in J
43 //speed of block
44 vf = sqrt(2*KF/m)//in m/s
45 \text{ KF} = \text{round}(\text{KF})
46
```

```
47 printf ("\n\n Change in potential energy delta_U =
   \n\n %2i J",delta_U)
48 printf ("\n\n Change in kinetic energy delta_K = \n
   \n %2i J",delta_K)
49 printf ("\n\n Change in mechanical energy in system
   delta_U_plus_delta_K = \n\n %2i J",
   delta_U_plus_delta_K)
50 printf ("\n\n Gain in internal energy delta_E_int =
   \n\n %2i J",delta_E_int)
51 printf ("\n\n Final kinetic energy for downhill
   journy KF = \n\n %2i J",KF)
52 printf ("\n\n Speed of block vf = \n\n %.1f m/s",vf)
```

Scilab code Exa 13.3 C13P3

```
1
2 clear
   clc
4 //to find speed of center of mass
5 //to find change in stored internal energy
6
7
8 // GIVEN:
9 //refer to figure 13-5 on page no. 285
10 //mass of ice skater
11 M = 50//in Kg
12 //force exerted
13 F = 55//in N
14 //distance moved by center of mass
15 \text{ scm} = 32e-2//in \text{ m}
16 // SOLUTION:
17 //consider newton's third law and center of mass
      equation
18 //speed of center of mass
19 vcm = sqrt(2*F*scm/M)/in m/s
```

```
//applying conservation of energy principle
//change in stored internal energy
delta_Eint = -(1/2)*(M*vcm^2)//in J

printf ("\n\n Speed of center of mass vcm = \n\n % .2 f m/s",vcm)
printf ("\n\n Change in stored internal energy delta_Eint = \n\n %.1 f J",delta_Eint)
```

Scilab code Exa 13.4 C13P4

```
1
2 clear
  clc
4 //to find speed of John after contact is broken
5 //to find change in stored internal energy of skater
6
8 // GIVEN:
9 //refer to figure 13-9(a), (b) on page no. 288
10 //mass of John skater
11 M = 50//in \text{ Kg}
12 //mass of Jim skater
13 M1 = 72//in Kg
14 //force exerted by Jim
15 Fext = 55//in N
16 // distance through which force is applied
17 	 s = 32e-2//in 	 m
18 //distabce moved by center of mass
19 scm = 58e-2//in m
20
21 // SOLUTION:
22 //consider John as our system
23 //applying consevation of energy principle
24 //applying center of mass equation
```

```
25 //change in kinetic energy
26 \text{ delta_Kcm} = \text{Fext*scm}//\text{in} \text{ J}
27 //speed of John after contact is broken
28 vcm = sqrt(2*delta_Kcm/M)/in m/s
29 //change in John's internal energy
30 delta_E_int_John = Fext*s-Fext*scm//in J
31 //change in Jim's internal energy
32 delta_E_int_Jim = -(Fext*s)//in J
33
34 printf ("\n Change in kinetic energy delta_Kcm =
      \n \n \%.1 f J", delta_Kcm)
35 printf ("\n\n Speed of John after contact is broken
      vcm = \langle n \rangle n \%.2 f m/s", vcm \rangle
36 printf ("\n\n Change in Johns internal energy
      delta_E_int_John = \n\ \%.1f J", delta_E_int_John)
37 printf ("\n\n Change in Jim internal energy
      delta_E_int_Jim = \langle n \rangle n \%.1f J, delta_E_int_Jim)
```

Scilab code Exa 13.5 C13P5

```
clear
clc
//to find change in stored internal energy of system
    of block+surface
//distance travelled by block befire coming to rest
// GIVEN:
//mass of block
M = 5.2//in Kg
//initial horizontal velocity of block
vcm = 0.65//in m/s
//coefficient of kinetic friction
mew = 0.12
//acceleration due to gravity
```

```
15 g = 9.8//in m/s^2
16
17 // SOLUTION:
18 //applying consevation of energy principle
19 //change in stored internal energy of system of
     block+surface
20 //final kinetic energy is zero as block comes to
     rest
21 delta_Eint = -(0-(1/2*M*vcm^2))/in J //-ve sign as
      kinetic energy is lost
22 //distance travelled by block befire coming to rest
23 scm = (vcm^2/(2*mew*g))/in m
24
25 printf ("\n\n Final kinetic energy is zero as block
     comes to rest delta_Eint = \n \%.1 f J",
     delta_Eint)
26 printf ("\n\n Distance travelled by block befire
     coming to rest scm = \n \%.2 \, \text{f m}, scm)
```

Scilab code Exa 13.6 C13P6

```
clear
clc
//to find energy and direction of outgoing particl 3
H

GIVEN:
//refer to figure 13-11 from page no. 290
//difference in internal energy of initial and final partical
delta_Eint = 4.03//in MeV
//initial kinetic energy of deuteron
Ki = 1.50//in MeV
//initial kinetic energy of proton
```

```
13 K1 = 3.39//in \text{ MeV}
14 //mass of hydrogen
15 \text{ m1} = 1.01//\text{u}
16 //mass of deuteron
17 \text{ m2} = 2.01//\text{u}
18 //mass of proton
19 \text{ m3} = 3.02 // u
20
21 // SOLUTION:
22 //applying consevation of energy principle
23 //final kinetic energy
24 Kf = delta_Eint+Ki//in MeV
25 //final kinetic energy of outgoing partical 3H
26 K3 = Kf - K1 / in MeV
27 //applying conservation of momentum principle
28 //value of cosfi
29 f = sqrt((m2*Ki)/(m3*K3))
30 //direction of outgoing particl 3H
31 fi = acosd(sqrt((m2*Ki)/(m3*K3)))/in degrees
32
33 printf ("\n Final kinetic energy Kf = \n %.2 f
      \mathrm{MeV}", Kf)
34 printf ("\n Final kinetic energy of outgoing
      partical 3H K3 = \n \%.2 \text{ f MeV}", K3)
35 printf ("\n\ Value of cosfi = \n\ %.3f ",f)
36 printf ("\n Direction of outgoing particl 3H fi =
      \n \n \%.1f degree",fi)
```

Scilab code Exa 13.7 C13P7

```
1
2 clear
3 clc
4 //to find kinetic energy of radon and alpha partical
5
```

```
7 // GIVEN:
8 //decrease in internal energy
9 delta_E = 4.87 / in MeV
10 //mass of alpha partical
11 mHe = 4.00 / / in u
12 //mass of radon partical
13 mRn = 222.0//in u
14
15 // SOLUTION:
16 //applying conservation of energy principle
17 //we get two equations
18 //one for ratio of kinetic energies and second for
      total kinetic energy
19 //solving two equations using matrix
20 A = [1 (-mHe/mRn); 1 1]
21 b = [0;4.87]
22 c = A \setminus b
23 //ratio of kinetic energies
24 \text{ KRn_by_KHe} = \text{mHe/mRn}
25 //total kinetic energy of products
26 \text{ Kf} = \text{delta_E}//\text{in MeV}
27 //kinetic energy of radon partical
28 \text{ K}_{Rn} = c(1) // in
                     MeV
29 //kinetic energy of alpha partical
30 K_He = c(2) / in
                     MeV
31
32 printf ("\n Ratio of kinetic energies KRn_by_KHe =
       \n \n \%.4 f", KRn_by_KHe)
33 printf ("\n Total kinetic energy of products Kf =
      \n \  \%.2 f MeV", Kf)
34 printf ("\n\n Kinetic energy of radon partical K_Rn
       = \ \ \ \ \%.3 f \ \ MeV", K_Rn)
35 printf ("\n Kinetic energy of alpha partical K-He
       = \ \ \ \ \ \%.2 f \ \ \ MeV", K_He)
```

Chapter 14

GRAVITATION

Scilab code Exa 14.1 C14P1

```
1 clear
   clc
3 //to find magnitude of gravitational force exerted
       on cantaloupe on the surface of earth
4 //due to (a) the Earth (b) the Moon (c) the Sun
6 // GIVEN:
7 //mass of cantaloupe
8 \text{ mc} = 1.00 // \text{in Kg}
9 //acceleration due to gravity
10 g = 9.8//in m/s^2
11 // Gravitational constant
12 G = 6.67e-11//in N.m^2/Kg^2
13 //mass of moon
14 \text{ m_M} = 7.36 \text{ e} 22 // \text{in Kg}
15 //mass of sun
16 \text{ m_S} = 1.99 \text{ e} 30 / / \text{in Kg}
17 //radius of moon
18 \text{ r_M} = 3.82 \text{ e8} / / \text{in m}
19 //radius of sun
20 \text{ r_S} = 1.50 \text{ e} 11 / \text{in m}
```

```
21
22 // SOLUTION:
23 //applying newton's law of universal gravitation
24 //gravitational force exerted on cantaloupe on the
     surface of earth
25 //due to (a) the Earth
26 FcE = mc*g//in N
27 //gravitational force exerted on cantaloupe on the
     surface of earth
28 //due to (a) the Moon
29 FcM = G*((mc*m_M)/(r_M)^2)/in N
30 //gravitational force exerted on cantaloupe on the
     surface of earth
31 //due to (a) the Sun
32 FcS = G*((mc*m_S)/(r_S)^2)/in N
33
34 printf ("\n Gravitational force exerted on
     cantaloupe on the surface of earth\n due to (a)
     the Earth FcE = \ln \%.1 f N, FcE)
35 printf ("\n Gravitational force exerted on
     cantaloupe on the surface of earth\n due to (b)
     the Moon FcM = \n \%.2e N", FcM)
36 printf ("\n Gravitational force exerted on
     cantaloupe on the surface of earth\n due to (c)
     the Sun FcS = \n \%.2e N", FcS)
```

Scilab code Exa 14.2 C14P2

```
1 clear
2 clc
3 //to find magnitude and direction of gravitational
    force
4
5 // GIVEN:
6 //refer to figure 14-4 on page no. 302
```

```
7 //mass of astronaut
8 \text{ ma} = 105 / / \text{in Kg}
9 //mass of first asteroid
10 m1 = 346//in \text{ Kg}
11 //radius of first asteroid
12 \text{ r1} = 215 // \text{in m}
13 //mass of second asteroid
14 \text{ m2} = 184 / / \text{in Kg}
15 //radius of second asteroid
16 \text{ r2} = \frac{142}{\sin m}
17 //angle between forces
18 theta = 120//in degrees
19 // Gravitational constant
20 G = 6.67e-11//in N.m^2/Kg^2
21
22 // SOLUTION:
23 //applying newton's law of universal gravitation
24 //magnitude of gravitational force due to first
      asteroid
25 Fa1 = G*((ma*m1)/(r1^2))/in N
26 //magnitude of gravitational force due to second
      asteroid
27 \text{ Fa2} = G*((ma*m2)/(r2^2))//in N
28 //magnitude of total gravitational force
29 //using parallelogram method
30 \text{ Fa} = \frac{\text{sqrt}((Fa1^2) + (Fa2^2) + (2*Fa1*Fa2*cosd(theta)))}{2}
31 //direction of gravitational force
32 fi = atand((Fa2*sind(theta))/(Fa1+(Fa2*cosd(theta)))
      )//in degrees
33 Fa = nearfloat("pred", 5.80e-11)
34
35 printf ("\n\n Magnitude of gravitational force due
      to first asteroid Fa1 = \ln n \%.2e N, Fa1)
36 printf ("\n\n Magnitude of gravitational force due
      to second asteroid Fa2 = \langle n \rangle n \%.2 e N, Fa2)
37 printf ("\n\n Magnitude of total gravitational force
       Fa = \langle n \rangle n \%.2e N, Fa)
38 printf ("\n Direction of gravitational force fi =
```

Scilab code Exa 14.3 C14P3

```
1 clear
  clc
3 //to find free fall acceleration of neutron ster and
       asteroid ceres
5 // GIVEN:
6 //mass of neutron star
7 \text{ Mn} = 1.99 \, \text{e} \, 30 \, \text{//in Kg}
8 //radius of neutron star
9 \text{ Rn} = \frac{12e3}{\sin m}
10 //mass of asteroid ceres
11 Mc = 1.2e21//in Kg
12 //radius of asteroid ceres
13 Rc = 4.7e5//in m
14 // Gravitational constant
15 G = 6.67e-11//in N.m^2/Kg^2
16
17 // SOLUTION:
18 //applying newton's law of universal gravitation and
       newton's second law of motion
19 //free fall acceleration of neutron sterid
20 g0 = G*(Mn/(Rn^2))/(in m/s^2)
21 //free fall acceleration of austeroid ceres
22 go = G*(Mc/(Rc^2))/(in m/s^2)
23
24 printf ("\n\n Free fall acceleration of neutron
      sterid g0 = \ln \%.1e \text{ m/s}^2, g0)
25 printf ("\n\n Free fall acceleration of austeroid
      ceres go = \ln \%.2 \text{ f m/s}^2, go)
```

Scilab code Exa 14.4 C14P4

```
1 clear
2 clc
3 //to find speed of partical at r = 0
5 // GIVEN:
7 //mass of Earth
8 \text{ ME} = 5.98 \text{ e} 24 // \text{in Kg}
9 //radius of Earth
10 RE = 6.37e6//in m
11 // Gravitational constant
12 G = 6.67e-11//in N.m^2/Kg^2
13
14 // SOLUTION:
15 //applying newton's law of universal gravitation and
       law of conservation of energy
16 //speed of partical at r = 0
17 v = sqrt((G*ME)/(RE))//in m/s
18 printf ("\n Speed of partical at r = 0 is v = \n
      \%.2e m/s", v)
```

Scilab code Exa 14.5 C14P5

```
1 clear
2 clc
3 //to find speed of canister when it enters the Earth
    's atmosphere
4
5 // GIVEN:
```

```
7 //mass of Earth
8 \text{ ME} = 5.98 \text{ e} 24 // \text{in Kg}
9 //radius of Earth
10 RE = 6.37e6//in m
11 //initial speed of canister
12 vi = 525//in m/s
13 // distance above earth's surface
14 h = 100e3//in m
15 // Gravitational constant
16 G = 6.67e-11//in N.m^2/Kg^2
17
18 // SOLUTION:
19 //applying newton's law of universal gravitation and
       law of conservation of energy
20 //speed of canister when it enters the Earth's
      atmosphere
21 vf_square = vi - ((2*G*ME)*((1/(3*RE))-(1/(RE+h))))
      //in m^2/s^2
22 vf = sqrt(vi - ((2*G*ME)*((1/(3*RE))-(1/(RE+h))))))//
      in m/s
23 vf = nearfloat("succ",9.05e3)
24 vf_square = nearfloat("succ",8.18e7)
25
26 printf ("\n\n Square of speed of canister when it
      enters the Earths atmosphere vf_square = \langle n \rangle n \%.2
      e m^2/s^2", vf_square)
27 printf ("\n\n Speed of canister when it enters the
      Earths atmosphere vf = \ln \%.2e \text{ m/s}, vf)
```

Scilab code Exa 14.7 C14P7

```
1 clear 2 clc 3 // to find mass of Sun and mass of Jupiter 4
```

```
5 // GIVEN:
7 //orbital radius of earth
8 \text{ re} = 1.50 \text{ e} 11 / \text{in m}
9 //period of revolution for earth
10 Te = 3.15e7//in seconds
11 //orbital radius of Moon
12 \text{ rm} = 4.22 \text{ e8} / / \text{in m}
13 //period of revolution for Moon
14 Tm = 1.53e5//in seconds
15 // Gravitational constant
16 G = 6.67e-11//in N.m^2/Kg^2
17
18 // SOLUTION:
19 //applying Kepler's law of peroids
20 //mass of Sun using Earth's orbital motion
21 M = (4*(\%pi^2)*(re^3))/(G*(Te^2))//in \text{ Kg}
22 //mass of Jupiter using Moon's orbital motion
23 M_{-} = (4*(\%pi^2)*(rm^3))/(G*(Tm^2))//in Kg
24
25 printf ("\n\n Mass of Sun using Earth orbital motion
       M = \langle n \rangle n \%.2 e Kg, M)
26 printf ("\n\n Mass of Jupiter using Moon orbital
      motion M = \langle n \rangle n \%.2e \text{ Kg}, M_)
```

Scilab code Exa 14.8 C14P8

```
1 clear
2 clc
3 //to find height above the Earth
4
5 // GIVEN:
6
7 //period of the satellite
8 T = 86400//in seconds
```

```
9 //mass of Earth
10 ME = 5.98e24//in Kg
11 //radius of Earth
12 RE = 6.37e6//in meters
13 // Gravitational constant
14 G = 6.67e-11//in N.m^2/Kg^2
15
16 // SOLUTION:
17 //applying Kepler's law of peroids
18 //radius of orbit of satellite
19 r = ((G*T^2*ME)/(4*\%pi^2))^(1/3)//in meters
20 //height above the Earth
21 h = r-RE//in meters
22 r = nearfloat("pred", 4.22e7)
23 h = nearfloat("pred",3.58e7)
24
25 printf ("\n Radius of orbit of satellite r = \n
     \%.2em",r)
26 printf ("\n\n Height above the Earth h = \n\n \%.2e m
     ",h)
```

Scilab code Exa 14.9 C14P9

```
12 //minimum distance of Halley's comet from Sun
13 Rp = 8.8e10//in meters
14 // Gravitational constant
15 G = 6.67e-11//in N.m^2/Kg^2
16
17 // SOLUTION:
18 //applying Kepler's law of peroids
19 //semimajor axis
20 a = ((G*(T*365*24*60*60)^2*M)/(4*\%pi^2))^(1/3)//in
     meters //taking T in seconds
21 //refer to figure 14-14
22 //maximum distance of Halley's comet from Sun
23 Ra = (2*a)-Rp//in meters
24 //eccentricity of Halley's orbit
25 e = 1 - (Rp/a)
26
27 printf ("\n\ Semimajor axis a = \n\ %.1e m",a)
28 printf ("\n\n Maximum distance of Halley comet from
     Sun Ra = \n \%.1e m", Ra)
29 printf ("\n Eccentricity of Halley orbit e = \n
     \%.2 f ",e)
```

Scilab code Exa 14.10 C14P10

```
1 clear
2 clc
3 //to find energy, period, semimajor axis of B before
    and after burn
4
5 // GIVEN:
6 //refer to figure 14-19 from page no. 315
7 //mass of spacecraft
8 m = 3250//in Kg
9 //height above Earth
10 h = 270//in Km
```

```
11 //radius of earth
12 RE = 6370 / in \text{ Km}
13 //mass of earth
14 ME = 5.98e24//in Kg
15 //decrease in velocity after burn
16 d = 0.95//in percent
17 // Gravitational constant
18 G = 6.67e-11//in N.m^2/Kg^2
19
20 // SOLUTION:
21 //before burn
22 //semimajor axis before burn
23 a = RE+h//in Km
24 //energy before burn
25 E = -(G*m*ME)/(2*a*(1000))//in J
26 //period before burn
27 //applying Krpler's law of peroids
28 T = ((4*(\%pi^2)*((a*1000)^3))/(G*ME))^(1/2)//in
      seconds
29 //kinetic energy before burn
30 \text{ K} = -(E) // \text{in } J
31 //velocity before burn
32 \text{ v} = \frac{\text{sqrt}((2*K)/m)}{/in \text{ m/s}}
33
34 //after burn
35 //velocity after burn
36 \text{ v_dash} = (1-(d*0.01))*v//in m/s
37 //kinetic energy after burn
38 K_dash = 1/2*(m)*(v_dash)^2/in J
39 //potential energy after burn
40 U_dash = -(K)//in J
41 //total energy after burn
42 E_dash = K_dash+(2*U_dash)//in J
43 //semimajor axis after burn
44 a_dash = -((G*m*ME)/(2*E_dash))/in meters
45 //period after burn
46 T_{dash} = ((4*(\%pi^2)*((a_dash)^3))/(G*ME))^(1/2)//in
       seconds
```

```
47 T = nearfloat("pred",5381)
48 E_dash = nearfloat("succ", -9.94e10)
49 T_dash = nearfloat("succ",5240)
50
51 printf ("\n Semimajor axis before burn a = \n
      \%4i Km",a)
52 printf ("\n\n Energy before burn E = \ln \%.2e J", E)
53 printf ("\n\n Period before burn T = \ln n \%4i \text{ s},T)
54 printf ("\n\n Kinetic energy before burn K = \n\n
      .2e J",K)
55 printf ("n \in Velocity before burn v = n \in \%.2e m/s
      ", v)
56 printf ("\n Velocity after burn v_dash = \n %.2 e
      m/s", v_{dash})
57 printf ("\n Kinetic energy after burn K<sub>-</sub>dash = \n
      n~\%.2\,e~J", K_dash)
58 printf ("\n Total energy after burn E_{dash} = \n
     \%.2\,\mathrm{e} J", E_dash)
59 printf ("\n\n Semimajor axis after burn a_dash = \n\
      n \%.2e m, a_dash)
60 printf ("\n\n Period after burn T_{dash} = \ln n \%4i s"
      ,T_dash)
```

Chapter 15

FLUID STATICS

Scilab code Exa 15.1 C15P1

```
1 clear
2 clc
3 //to find density of oil
5 // GIVEN:
6 //refer to figure 15-6 from page no. 336
7 //height of water level above oil on one side
8 d = 12.3 //in mm
9 //height of water level above oil on second side
10 \ a = 67.5 / / in \ mm
11 //density of water
12 rho_w = 1.000e3//in Kg/m^3
13
14 // SOLUTION:
15 //equating pressure on both sides
16 //density of oil
17 rho = rho_w*((2*a)/((2*(a)+d)))//in Kg/m^3
18
19 printf ("\n Density of oil rho = \n %3i Kg/m<sup>3</sup>",
     rho)
```

Scilab code Exa 15.2 C15P2

```
1 clear
2 clc
3 //to find applied force
4 //to find distance by which car is raised
6 // GIVEN:
7 //refer to figure 15-9 from page no. 338
8 //diameter of smaller piston
9 Di = 2.2//in cm
10 //combined mass
11 M = 1980 / in Kg
12 //diameter of larger piston
13 D0 = 16.4//in cm
14 //length of pump handle
15 L = 36 / / in cm
16 //distance of pivot to the piston
17 x = 9.4 // in cm
18 //acceleration due to gravity
19 g = 9.8//in m/s^2
20 //vertical distance by which hand moves
21 h = 28 / / in cm
22
23 // SOLUTION:
24 //area of larger piston
25 A0 = \%pi*(D0/2)^2//in cm^2
26 //area of smaller piston
27 Ai = \%pi*(Di/2)^2//in cm^2
28 //applied force to the smaller piston
29 Fi = M*g*(Ai/A0)//in N
30 //using Newton's third law of motion
31 //applied force at the end of pump handle
32 Fh = Fi*(x/L)//in N
```

```
// distance moved by smaller piston
di = h*(x/L)//in cm
// equating pressure on each side
// distance moved by larger piston and car is raised by
do = di*(Ai/AO)//in cm

printf ("\n\n Applied force to the smaller piston Fi = \n\n %3i N",Fi)
printf ("\n\n Applied force at the end of pump handle Fh = \n\n %2i N",Fh)
printf ("\n\n Distance moved by smaller piston di = \n\n %.1 f cm",di)
printf ("\n\n Distance moved by larger piston and car is raised by dO = \n\n %.2 f cm",dO)
```

Scilab code Exa 15.3 C15P3

```
1 clear
2 clc
3 //to find fraction of total volume of iceberg is
      exposed
4
5 // GIVEN:
6 //density of water
7 \text{ rho_w} = 1024 // \text{in } \text{Kg/m}^3
8 //density of ice
9 rho_i = 917//in \text{ Kg/m}^3
10
11 // SOLUTION:
12 //applying Archimedes' principle
13 //ratio of volume of water displaced to volume of
      submerged portion of ice
14 Vw_by_Vi = (rho_i/rho_w)*100//in percent
15 //percent of iceberg exposed
```

```
16 V = 100-(Vw_by_Vi)//in percent
17
18 printf ("\n\n Ratio of volume of water displaced to
      volume of submerged portion of ice Vw_by_Vi = \n\
      n %.1f percent", Vw_by_Vi)
19 printf ("\n\n Percent of iceberg exposed = \n\n %.1
      f percent", V)
```

Scilab code Exa 15.4 C15P4

```
1 clear
2 clc
3 //to find atmospheric pressure
5 // GIVEN:
6 //height of mercury column in barometer
7 h = 740.35 //in mm
8 //temperature
9 T = -5.0//in degree
10 //density of mercure
11 rho = 1.3608e4//in Kg/m^3
12 //acceleration due to gravity
13 g = 9.7835//in m/s^2
14
15 // SOLUTION:
16 //atmospheric pressure
17 po = rho*g*h*10^-3//in Pa
18 //taking h in meters
19
20 printf ("\n Atmospheric pressure po = \n %.4 e
     Pa", po)
```

Scilab code Exa 15.5 C15P5

```
1 clear
2 clc
3 //to find surface tension of liquid
5 // GIVEN:
6 //refer to figure 15-15(a) on page no. 343
7 //upward force
8 p = 3.45e-3//in N
9 //length of wire
10 \, d = 4.85 // in \, cm
11 //linear mass density
12 mew = 1.75e-3//in \text{ Kg/m}
13 //acceleration due to gravity
14 g = 9.7835//in m/s^2
15
16 // SOLUTION:
17 //refer to figure 15-15(a) on page no. 343
18 //using equilibrium condition
19 //surface tension of liquid
20 Gamma = (p-(mew*(d*10^-2)*g))/(2*d*(10^-2))/in N/m
21 //taking d in meters
22
23 printf ("\n Surface tension of liquid Gamma = \n
     n \%.3 f N/m, Gamma)
```

Chapter 16

FLUID DYNAMICS

Scilab code Exa 16.1 C16P1

```
1 clear
2 clc
3 //to find volume flow rate of water
5 // GIVEN:
6 //refer to figure 16-5 on page no. 354
7 //cross sectional area
8 \text{ A1} = 1.2 // \text{in cm}^2
9 //cross sectional area
10 A2 = 0.35//in \text{ cm}^2
11 //vertical distance between two levels
12 h = 45 / / in mm
13 //acceleration due to gravity
14 g = 9.8//in m/s^2
15
16 // SOLUTION:
17 //applying equation of continuity and conservation
      of energy between two levels
18 //speed of water at level 1
19 v1 = sqrt((2*g*(h*10^-3)*(A2^2))/(A1^2-A2^2))/in m/
      s //taking h in meters
```

Scilab code Exa 16.2 C16P2

```
1 clear
2 clc
3 //to find pressure in horizontal pipe and flow speed
       in pressure in smaller pipe
4
5 // GIVEN:
6 //refer to figure 16-7 on page no. 356
7 //height of storage tower
8 h = 32//in m
9 //diameter of storage tower
10 D = 3.0//in m
11 //diameter of horizontal pipe
12 d = 2.54 // in m
13 //delivery rate of water
14 R = 0.0025 / / in m^3 / s
15 //diameter of smaller pipe
16 \, d_{ash} = 1.27 / in \, cm
17 // distance above the ground for water supply
18 \text{ yC} = 7.2 // \text{in m}
19 //initial pressure
20 \text{ p0} = 1.01 \text{e} 5 // \text{in Pa}
21 //density of water
22 rho = 1.0e3//in \text{ Kg/m}^3
23 //acceleration due to gravity
```

```
24 \text{ g} = 9.8 / / \text{in m/s}^2
25
26 // SOLUTION:
27 //area at leval A
28 A_A = \%pi*(1.5)^2//in m^2
29 //area at leval B
30 A_B = \%pi*(0.0127)^2//in m^2
31 //area at leval C
32 \text{ A_C} = \text{\%pi*}((d_dash*10^-2)/2)^2//in m^2
33 //applying equation of continuity
34 //speed of water at point A
35 vA = R/A_A//in m/s
36 //speed of water at point B
37 vB = R/A_B//in m/s
38 //applying Bernoulli's equation
39 //pressure in pipe at B
40 pB = p0+(rho*g*h)-((1/2)*rho*(vB^2))/in Pa
41 //applying equation of continuity
42 //speed of water at point C
43 vC = R/A_C//in m/s
44 // \text{take h} = yA
45 //applying Bernoulli's equation
46 //pressure in pipe at C
47 pC = p0-((1/2)*rho*(vC^2))+(rho*g*(h-yC))/in Pa
48 pB = nearfloat("succ", 4.03e5)
49
50
51 printf ("\n\n Speed of water at point A vA = \n\n %
      .1 \, \mathrm{e} \, \mathrm{m/s}", vA)
52 printf ("\n\n Speed of water at point B vB = \n\n \%
      .1 f m/s", vB)
53 printf ("\n\n Pressure in pipe at B pB = \n \%.2e
      Pa",pB)
54 printf ("\n\n Speed of water at point C vC = \n\n \%
      .1 f m/s", vC)
55 printf ("\n\n Pressure in pipe at C pC = \n\n \%.2 e
      Pa",pC)
```

Scilab code Exa 16.3 C16P3

```
1 clear
2 clc
3 //to find coefficient of viscocity of castor oil
5 // GIVEN:
6 //density of castor oil
7 rho = 0.96e3//in Kg/m^3
8 //gauge pressure of pump
9 delta_p = 950//in Pa
10 //diameter of pipe
11 D = 2.6//in cm
12 //length of pipe
13 L = 65//in \text{ cm}
14 //time interval in which oil is collected
15 	ext{ dt} = 90//\text{in seconds}
16 //mass of oil collected in dt time interval
17 \text{ dm} = 1.23 // \text{in Kg}
18 // SOLUTION:
19 //radius of pipe
20 R = (D*10^-2)/2/in \text{ meters}
21 //mass flux
22 dm_by_dt = (dm/dt)//in Kg/s
23 //coefficient of viscocity of castor oil
24 eta = (rho*\%pi*(R^4)*delta_p)/(8*(dm/dt)*(L*10^-2))
      //in N.s/m<sup>2</sup> //taking Lin meters
25
26 printf ("\n\n Mass flux dm_by_dt = \n\n \%.4 f Kg/s",
      dm_by_dt)
27 printf ("\n\n Coefficient of viscocity of castor oil
       eta = \n \%.2 f N.s/m^2", eta)
```

Chapter 17

OSILLATIONS

Scilab code Exa 17.1 C17P1

```
1 clear
2 clc
3 //to find force constant k of spring
4 //to find magnitude of horizontal force and period
      of oscillation
5
6 // GIVEN:
7 //refer to figure 17-5 from page no. 375
8 //mass of boby
9 M = 1.65 / / in Kg
10 //increase in length
11 y = 7.33 / / in cm
12 //mass of block
13 m = 2.43//in \text{ Kg}
14 //distance by which spring is streched
15 x = 11.6 / / in cm
16 //acceleration due to gravity
17 g = 9.81//in m/s^2
18
19 // SOLUTION:
20 //applying simple harmonic motion equation
```

```
// equating forces in y direction
// force constant k of spring
k = (-M*g)/(-y*10^-2)//in N/m //taking y in meters
// magnitude of horizontal force
F = k*(x*10^-2)//in N //taking x in meters
// period of oscillation
T = (2*%pi*(sqrt(m/k)))*10^3//in miliseconds
k = round(k)

printf ("\n\n Force constant k of spring k = \n\n %3i N/m",k)
printf ("\n\n Magnitude of horizontal force F = \n\n %.1f N",F)
printf ("\n\n Period of oscillation T = \n\n %3i ms",T)
```

Scilab code Exa 17.2 C17P2

```
1 clear
2 clc
3 //to find total energy stored in the system
4 //to find maximum speed and magnitude of maximum
      acceleration of block
5 //to find position, velocity and acceleration of
      block at t = 0.215 s
7 // GIVEN:
8 //refer to problem 17-1
9 //mass of boby
10 M = 1.65//in \text{ Kg}
11 //increase in length
12 y = 7.33 / / in cm
13 //mass of block
14 \text{ m} = 2.43 // \text{in Kg}
15 // distance by which spring is streched
```

```
16 \text{ x_m} = 11.6 // \text{in cm}
17 // time
18 t = 0.215 // seconds
19 //acceleration due to gravity
20 \text{ g} = 9.81 // \text{in m/s}^2
21
22 // SOLUTION:
23 //applying simple harmonic motion equation
24 //equating forces in y direction
25 //force constant k of spring
26 \text{ k} = (-M*g)/(-y*10^-2)//in N/m //taking y in meters
27 //total energy stored in the system
28 E = (1/2)*k*((x_m*10^-2)^2)/in J
29 //magnitude of kinetic energy
30 K_max = E//in J
31 //maximum speed of block
32 v_{max} = \frac{sqrt}{(2*K_{max})/m} / in m/s
33 //maximum acceleration of block
34 \text{ a_max} = (k*(x_m*10^-2))/m//in m/s^2
35 //period of oscillation
36 T = (2*\%pi*(sqrt(m/k)))*10^3//in miliseconds
37 //angular frequency
38 omega = (2*\%pi)/(T*10^-3)//in rad/s
39 z = omega*t
40 //position of block at t = 0.215 s
41 x = (x_m*10^-2)*(\cos(z))/in m
42 //velocity of block at t = 0.215 s
43 vx = -(\text{omega}*(x_m*10^-2))*(\sin(z))//\text{in m/s}
44 //acceleration of block at t = 0.215 s
45 ax = -(\text{omega}^2)*x//in \text{ m/s}^2
46 omega = nearfloat("succ", 9.536)
47 a_max = nearfloat("succ",10.6)
48 \times = nearfloat("succ", -0.0535)
49 ax = nearfloat("succ", 4.87)
50
51 printf ("\n Total energy stored in the system E =
      \n \n \%.2 f J",E)
52 printf ("\n\n Maximum speed of block v_max = \n\n \%
```

```
.2 f m/s",v_max)

printf ("\n\n Maximum acceleration of block a_max = \n\n %.1 f m/s^2",a_max)

printf ("\n\n Angular frequency omega = \n\n %.3 f rad/s",omega)

printf ("\n\n Position of block at t = 0.215s x = \n\n %.4 f m",x)

printf ("\n\n Velocity of block at t = 0.215s vx = \n\n %.3 f m/s",vx)

printf ("\n\n acceleration of block at t = 0.215s ax = \n\n %.2 f m/s^2",ax)
```

Scilab code Exa 17.3 C17P3

```
1 clear
2 clc
\frac{3}{t} //to find equation for x(t)
5 // GIVEN:
6 //refer to problem 17-1
7 //mass of boby
8 M = 1.65 // in Kg
9 //increase in length
10 \ y = 7.33 // in \ cm
11 //mass of block
12 \text{ m} = 2.43 // \text{in Kg}
13 // distance by which spring is streched
14 \text{ x_m} = 11.6 // \text{in cm}
15 //displacement of block
16 x = 0.0624 / / in meters
17 //velocity of block
18 \text{ vx} = 0.847 // \text{in m/s}
19 //acceleration due to gravity
20 \text{ g} = 9.81 // \text{in m/s}^2
21
```

```
22 // SOLUTION:
23 //applying simple harmonic motion equation
24 //equating forces in y direction
25 //force constant k of spring
26 \text{ k} = (-M*g)/(-y*10^2-2)//in N/m //taking y in meters
27 //total energy of system
28 E = ((1/2)*m*(vx^2))+((1/2)*k*(x^2))/in J
29 //maximum amplitude of motion
30 xm = sqrt((2*E)/k)//in meters
31 //using cosin equation of x
32 //value of cos(fi)
33 \cos_f i = x/xm
34 //phase constant
35 \text{ fil} = acosd(cos_fi)
36 \text{ fi2} = 360 - (\text{fi1})
37 fi = fi2*(\%pi/180)//in rad
38 //period of oscillation
39 T = (2*\%pi*(sqrt(m/k)))*10^3//in miliseconds
40 //angular frequency
41 omega = (2*\%pi)/(T*10^-3)//in rad/s
42 //initial velocity
43 v_x1 = -(omega*xm)*sind(fi1)//in m/s
44 v_x2 = -(omega*xm)*sind(fi2)//in m/s
45 xm = nearfloat("pred", 0.1085)
46 \cos_{fi} = \frac{\text{nearfloat}}{\text{nearfloat}}
47 omega = nearfloat("succ", 9.54)
48 fi = nearfloat("succ",5.33)
49
50 printf ("\n\n Total energy of system E = \ln \%.3 f J
      ",E)
51 printf ("\n\n Maximum amplitude of motion xm = \n\n
     \%.4 \text{ f m}", xm)
52 printf ("n \in Value \ of \ cos(fi) = n \in \%.4f",cos_fi)
53 printf ("\n Initial velocity = \n %.3 f for fi =
     \%.1f degree \n 0r \n \%.3f for fi = \%.1f degree",
      v_x1, fi1, v_x2, fi2)
54 printf ("\n\n Equation for x(t) = \ln n (\%.3 f m)*(cos)
      (\%.2 \, f \, rad/s) t + \%.2 \, f \, rad)", xm, omega, fi)
```

Scilab code Exa 17.4 C17P4

```
1 clear
2 clc
3 //to find rotaional inertia of traingle
5 // GIVEN:
6 //mass of rod
7 M = 0.112 // in Kg
8 //length of rod
9 L = 0.096 / / in m
10 //period of oscillations of rod
11 T_{rod} = 2.14//in seconds
12 //period of oscillations of traingular shape body
13 T_{triangle} = 5.83//in seconds
14
15
16 // SOLUTION:
17 //using equation of physical pendulum
18 //rotational inertia of body
19 I_rod = (M*L^2)/12//in \text{ Kg.m}^2
20 //rotaional inertia of traingle
21 I_triangle = I_rod*(T_triangle/T_rod)^2//in Kg.m^2
22
23 printf ("\n Rotational inertia of body I_{rod} = \n
      n \%.2 e \text{ Kg.m}^2", I_rod)
24 printf ("\n Rotaional inertia of traingle
      I_{triangle} = \ln \%.2e \text{ Kg.m}^2, I_{triangle}
```

Scilab code Exa 17.6 C17P6

```
1 clear
2 clc
3 //to find value of acceleration due to gravity
5 // GIVEN:
6 //radius of disk
7 R = 10.2 / / in cm
8 //period
9 T = 0.784//in seconds
10
11 // SOLUTION
12 //refer to problem 17-5
13 //acceleration due to gravity
14 g = (6*(\%pi^2)*(R*10^-2))/(T^2)/(in m/s^2)
15
16 printf ("\n\n Value of acceleration due to gravity g
       = \langle n \rangle n \%.2 f m/s^2,g)
```

Scilab code Exa 17.7 C17P7

```
clear
clc
//to find time required by body to come halfway

// GIVEN:
// GIVEN:
//refer to figure 17-15 from page no. 385
//from the equation given
//radius of reference circle
r = 0.35//in m
//angular speed
nomega = 8.3//in rad/s
// SOLUTION
// refer to problem 17-5
// angle turned to come halfway
```

Scilab code Exa 17.8 C17P8

```
1 clear
2 clc
3 //to find periods of oscillations
5 // GIVEN:
6 //refer to figure 17-11 from page no. 386
7 //mass of block
8 m = 250//in gram
9 //force constant
10 k = 85//in N/m
11 //damping constant
12 b = 0.070//in \text{ Kg/s}
13
14 // SOLUTION
15 //using equation of damped oscillatory motion
16 // for small damping period
17 T = 2*\%pi*(sqrt((m*10^-3)/k))/in seconds //taking m
      in Kg
18 //periods of oscillations
19 t = ((m*10^-3)*(\log(2)))/b//in seconds //taking m in
      Kg
20
21 printf ("\n\n For small damping period T = \ln n \%.2 f
```

```
seconds",T)  
22 printf ("\n\n Periods of oscillations t = \ln n \%.1f seconds",t)
```

Scilab code Exa 17.9 C17P9

```
1 clear
2 clc
3 //to find reduced mass of molecule
4 //to find effective force constant
6 // GIVEN:
7 //refer to figure 17-22 from page no. 390
8 //mass of hydrogen atom
9 \text{ m1} = 1.007825 // \text{in} \text{ u}
10 //mass of isotop cl -35
11 \text{ m2} = 34.968853 // in \text{ u}
12 //mass of isotop cl -37
13 \text{ m3} = 36.965903 // in u
14 //vibrational frequency
15 f = 8.5e13//in Hz
16 // \text{mass}
17 M = 1.66e-27//in Kg/u
18
19 // SOLUTION
20 //reduced mass of H35cl
21 \text{ m} = (m1*m2)/(m1+m2)//in \text{ u}
22 //reduced mass of H37cl
23 \text{ m}_1 = (\text{m}1*\text{m}3)/(\text{m}1+\text{m}3)//\text{in } u
24 //effective force constant
25 k = 4*(\%pi^2)*(f^2)*m_1*M//in N/m
26
27 printf ("\n\n Reduced mass of H35cl m = \n\n \%.6 f u"
28 printf ("\n\n Reduced mass of H37cl m_1 = \n\n \%.6 f
```

```
u",m_1)
29 //answer is slightly different than ans. in book.But
ans. by scilab program is same as that of
calculator.
30 printf ("\n\n Effective force constant k = \n\n %3i
N/m",k)
```

Chapter 18

WAVE MOTION

Scilab code Exa 18.1 C18P1

```
1 clear
2 clc
3 //to find amplitude, frequency, speed and wave length
      of the wave motion
4 //to find equation of wave
6 // GIVEN:
7 //distance moved up and down
8 x = 1.30 //in cm
9 //frequency
10 f = 125//in per second
11 //wavelength
12 lambda = 15.6//in cm
13
14 // SOLUTION
15 //using equations of sinusoidal wave motion
16 //amplitude of wave motion
17 ym = x/2//in cm
18 //wave speed
19 v = (lambda*10^-2)*f//in m/s //taking lambda in
     meters
```

```
20 //wave number
21 k = (2*\%pi)/(lambda*10^-2)//in rad/m //taking lambda
       in meters
22 //angular frequency
23 omega = v*k//in rad/s
24 omega = nearfloat("succ",786)
25
26 printf ("\n\n Amplitude of wave motion ym = \n\n \%.2
      f cm", ym)
27 printf ("\n\ Wave speed v = \n\ %.1 f m/s",v)
28 printf ("\n\n Wave number k = \n\n %.1 f rad/m",k)
29 printf ("\n\n Angular frequency omega = \n\ %3i rad
     /s", omega)
30 printf ("\n\n Equation of wave is \n\n y(x,t) = (\%.2)
      f cm) * sin [(\%.1 f rad/m)x - (\%3i rad/s)t]", ym, k,
      omega)
```

Scilab code Exa 18.2 C18P2

```
1 clear
2 clc
3 //to find expression of velocity and acceleration of partical p
4 //to find displacement, velocity and accleration of partical
5
6 // GIVEN:
7 //refer to problem 18-1
8 //distance moved up and down
9 x = 1.30//in cm
10 //frequency
11 f = 125//in per second
12 //wavelength
13 lambda = 15.6//in cm
14 //location of partical p
```

```
15 \text{ xp} = 0.245 / \text{in meters}
16 // time
17 t = 15.0 // in ms
18
19 // SOLUTION
20 //using equations of sinusoidal wave motion
21 //amplitude of wave motion
22 ym = x/2//in cm
23 //wave speed
24 v = (lambda*10^-2)*f//in m/s //taking lambda in
      meters
25 //wave number
26 k = (2*\%pi)/(lambda*10^-2)//in rad/m //taking lambda
        in meters
27 //angular frequency
28 omega = v*k//in rad/s
29 omega = nearfloat("succ",786)
30 //value of constant
31 ym_into_omega = ym*omega//in cm/s
32 \text{ k_into_x} = \text{k*xp//in rad}
33 omega2_into_ym = (omega^2)*ym//in cm/s^2
34 //displacement of partical at t
35 \text{ y} = (\text{ym})*(\sin((\text{k_into_x}) - (\text{omega*}(\text{t*10^-3})))) //in
      cm/s
36 //velocity of partical at t
37 \text{ uy} = -(ym_into_omega)*(cos((k_into_x) - (omega*(t_into_x)))
      *10^-3))))//in cm/s
38 //acceleration of partical at t
39 ay = -(\text{omega2\_into\_ym})*(\frac{\sin((k_into_x) - (\text{omega*}(t)))}{\cos(k_into_x)}
      *10^-3))))/in cm/s^2
40 ym_into_omega = round(ym_into_omega)
41
42 printf ("\n Expression of velocity of partical p
      is \ln \ln (xp, t) = -(\%3i \text{ cm/s}) * \cos (\%.2 \text{ f rad}) - (\%.2 \text{ f rad})
      \%3i \text{ rad/s})t] ",ym_into_omega,k_into_x,omega)
43 printf ("\n Expression of accleration of partical
      p is \n \  \    ay (xp, t) = -(\%.2e \ cm/s^2) * sin [(\%.2f \ rad)]
      -(\%3i \text{ rad/s})t ",omega2_into_ym,k_into_x,omega
```

Scilab code Exa 18.3 C18P3

```
1 clear
2 clc
3 //to find amplitude of combined wave
4 //to find value by which phase difference be changed
5
6 // GIVEN:
7 //amplitude of each wave
8 \text{ ym} = 9.7 // \text{in mm}
9 //phase difference
10 fi = 110//in degree
11
12 // SOLUTION
13 //using equations of interference of waves
14 //amplitude of combined wave
15 y = 2*ym*(cosd(fi/2))//in mm
16 //value by which phase difference be changed
17 delta_fi = 2*(acosd(1/2))/in degree
18 delta_fi1 = -(delta_fi)//in degree
19
20 printf ("\n\n Amplitude of combined wave y = \n\n \%
```

```
.1 f mm",y)
21 printf ("\n\n Value by which phase difference be changed delta_fi = \n\n %3i degree or %3i degree ",delta_fi,delta_fi1)
```

Scilab code Exa 18.4 C18P4

```
1 clear
2 clc
3 //to find tension in string to get 4 loops
5 // GIVEN:
6 //refer to figure 18-23 from page no. 418
7 //frequuency
8 \text{ fn} = 120 // \text{in Hz}
9 //length of string
10 L = 1.2//in meters
11 //linear mass density of string
12 mew = 1.6//in g/m
13 //no. of loops
14 \, n = 4
15
16 // SOLUTION
17 //using equation of wave motion
18 //tension in string to get 4 loops
19 F = (4*(L^2)*(fn^2)*(mew*10^-3))/(n^2)/(in N)/(in N)
      taking mew in Kg/m
20
21 printf ("\n\n Tension in string to get 4 loops F = \
      n \setminus n \%.1 f N", F)
```

Scilab code Exa 18.5 C18P5

```
1 clear
2 clc
3 //to find longest wavelengths of resonance of the
      string
4 //to fing corresponding wavelengths that reach the
      ear of the listener
5
6 // GIVEN:
7 //frequency
8 f = 440//in Hz
9 //length of string
10 L = 0.34//in meters
11 //wave speed in air
12 v_air = 343//in m/s
13
14 // SOLUTION
15 //using equation of wave for resonance condition
16 //longest wavelengths of resonance of the string
17 lambda1 = (2*L)/1//in meters
18 lambda2 = (2*L)/2//in meters
19 lambda3 = (2*L)/3//in meters
20 //wave speed
21 v_string = f*lambda1//in m/s
22 //multiplication factor
23 v_air_by_v_string = (v_air/v_string)
24 //corresponding wavelengths that reach the ear of
      the listener
25 lambda_1 = (lambda1)*(v_air/v_string)//in meters
26 lambda_2 = (lambda2)*(v_air/v_string)//in meters
27 \text{ lambda}_3 = (\text{lambda}_3)*(\text{v}_air/\text{v}_string)//in meters
28
29 printf ("\n Longest wavelengths of resonance of
      the string \n lamda1 = \%.2 \, f m \n lamda2 = \%.2 \, f m
      \ln \operatorname{lamda3} = \%.2 \, \text{f m} ", lambda1, lambda2, lambda3)
30 printf ("\n\n Wave speed v_string = \n\3i m/s ",
      v_string)
31 printf ("\n\n Relation between lambda_air and
      lambda_string is \n\n lambda_air = \%.2 f
```

Chapter 19

SOUND WAVES

Scilab code Exa 19.1 C19P1

```
1 clear
2 clc
3 //to find density and displacement amplitude
5 // GIVEN:
6 //maximum pressure variation
7 delta_pm = 28//in Pa
8 //frequency
9 f = 1000 / / in Hz
10 // pressure amplitude
11 delta_p1 = 2.8e-5//in Pa
12 //bulk modulus of air
13 B = 1.4e5//in Pa
14 //speed of sound in air
15 v = 343 / / in m/s
16 //density of air
17 \text{ rho}_0 = 1.21//in \text{ Kg/m}^3
18
19 // SOLUTION
20 //using equation of sound wave
21 //wave number
```

```
22 k = (2*\%pi*f)/v//in rad/m
23 //density amplitude
24 delta_rho_m = delta_pm*(rho_0/B)//in Kg/m^3
25 //displacement amplitude
26 \text{ s_m} = \text{delta_pm/(k*B)//in meters}
27 //for faintest sounds
28 //density amplitude
29 delta_rhom = delta_p1*(rho_0/B)//in Kg/m^3
30 //displacement amplitude
31 sm = delta_p1/(k*B)//in meters
32
33 printf ("\n\n Wave number k = \ln n \%.1 f rad/m",k)
34 printf ("\n\n Density amplitude delta_rho_m = \n\
      .1 \, \mathrm{e} \, \, \mathrm{Kg/m^3} ", delta_rho_m)
35 printf ("\n Displacement amplitude s<sub>m</sub> = \n %.1e
       m ",s_m)
36 printf ("\n\n Density amplitude for faintest sounds
      delta_rhom = \langle n \rangle n \%.1e Kg/m^3 ", delta_rhom)
37 printf ("\n Displacement amplitude for faintest
      sounds sm = \n \%.1e m ",sm)
```

Scilab code Exa 19.2 C19P2

```
1 clear
2 clc
3 //to find intensity and sound level of sound wave
4
5 // GIVEN:
6 //radiated power
7 p = 25//in W
8 //distance from source
9 r = 2.5//in meters
10 //intensity of sound having sound level 0 dB
11 IO = 1*10^-12//in W/m^2
```

```
// SOLUTION
// using equation of sound wave
// intensity of sound wave
If I = p/(4*%pi*r^2)//in W/m^2
// sound level of sound wave
SL = 10*(log10(I/I0))//in dB

printf ("\n\n Intensity of sound wave I = \n\n %.2f W/m^2 ",I)
printf ("\n\n Sound level of sound wave SL = \n\n %3i dB ",SL)
```

Scilab code Exa 19.3 C19P3

```
1 clear
2 clc
3 //to find wavelength for minimum sound intensity
5 // GIVEN:
6 //refer figure 19-6 from page no. 433
7 // distance of listener
8 \text{ r2} = 1.2//\text{in meter}
9 //distance between two speaker
10 D = 2.3//in meters
11
12 // SOLUTION
13 //using equation of interference of sound wave
14 //using pythagorean formula
15 //distance from speaker 1
16 r1 = sqrt((r2^2)+(D^2))/in meters
17 // difference between distance from two sources
18 \text{ r1\_minus\_r2} = \text{r1-r2}//\text{in meters}
19 //wavelengths for minimum sound intensity
20 lambda1 = r1_minus_r2*2//in meters
21 lambda2 = (r1\_minus\_r2*2)/3//in meters
```

```
22 lambda3 = (r1_minus_r2*2)/5//in meters
23
24 printf ("\n\n Distance from speaker 1 r1 = \n\n %.1f
    m ",r1)
25 printf ("\n\n Difference between distance from two
    sources r1_minus_r2 = \n\n %.1f m ",r1_minus_r2)
26 printf ("\n\n Wavelengths for minimum sound
    intensity \n\n lambda = %.1f m,%.2f m,%.2f m ",
    lambda1,lambda2,lambda3)
```

Scilab code Exa 19.4 C19P4

```
1 clear
2 clc
3 //to find speed of sound
5 // GIVEN:
6 //refer figure 19-8 from page no. 436
7 //frequeny
8 f = 1080 / / in Hz
9 //distances of water level at resonance
10 \text{ x} 1 = 6.5 // \text{in cm}
11 	 x2 = 22.2 / / in cm
12 \times 3 = 37.7 / in \text{ cm}
13
14 // SOLUTION
15 //using equation of sound wave for resonance
16 //from first two resonances
17 half_lambda = x2-x1//in cm
18 //from second and third resonance
19 halflambda = x3-x2//in cm
20 //average of both lambda values
21 half_lambda1 = (half_lambda+halflambda)/2//in cm
22 //wavelength of sound wave
23 lambda = 2*(half_lambda1)//in cm
```

Scilab code Exa 19.5 C19P5

```
1 clear
2 clc
3 //to find fundamental frequency of string
4 //to find fundamental frequency of string for first
      overtone
5 //to find original frequency
7 // GIVEN:
8 //refer figure 19-8 from page no. 436
9 //frequeny
10 \, f = 440 / / in \, Hz
11 //frequency of tuning fork
12 	 f2 = 3//in 	 Hz
13 //frequency of tuning fork for first overtone
14 	 f3 = 880 / / in Hz
15
16 // SOLUTION
17 //using equation of sound wave
18 //fundamental frequncy of string
19 f1 = f + f2 / / in Hz
```

Scilab code Exa 19.6 C19P6

```
1 clear
2 clc
3 //to find frequency we would perceive
5 // GIVEN:
6 //frequency of siren
7 f = 1125 / / in Hz
8 //speed of car
9 \text{ vs} = 29 / / \text{in m/s}
10 //speed of car and your speed
11 \quad v_0 = 14.5 / / in \quad m/s
12 //speed of sound
13 v = 343 / in m/s
14
15
16 // SOLUTION
17 //using equation of sound wave
18 //frequency we would perceiv when police car is
      moving
19 f_{dash} = f*(v/(v-vs))/in Hz
```

```
20 f_dash = round(f_dash)
21 //frequency we would perceiv when your car is moving
22 \text{ v0} = \text{vs}//\text{in m/s}
23 fdash = f*((v+v0)/v)//in Hz
24 //frequency we would perceiv when both police car
      and your car is moving
25 v0 = v_0
26 \text{ F_dash} = f*((v+v0)/(v-v0))//in \text{ Hz}
27 //frequency we would perceiv when your car moving at
       9m/s and police car is behind you with 38m/s
28 \text{ v0} = 9//\text{in m/s}
29 vs = 38//in m/s
30 Fdash = f*((v-v0)/(v-vs))//in Hz
31 Fdash = round(Fdash)
32 printf ("\n Frequency we would perceiv when police
       car is moving f_{-}dash = \n\n \%4i Hz, f_{-}dash
33 printf ("\n Frequency we would perceiv when your
      car is moving fdash = \n\ \%4i Hz", fdash)
34 printf ("\n\n Frequency we would perceiv when both
      police car and your car is moving F_{dash} = \ln n
      \%4i Hz", F_dash)
35 printf ("\n Frequency we would perceiv when your
      car moving at 9m/s and police car is behind you
      with 38m/s Fdash = \n \%4i Hz", Fdash)
```

Chapter 20

THE SPECIAL THEORY OF RELATIVITY

Scilab code Exa 20.1 C20P1

```
1 clear
2 clc
3 //to find minimum speed of muon in the Earth's fram
     of reference
4 //to find minimum speed of muon in the muon's fram
     of reference
6 // Given:
7 //refer to figure 20-8(a) and (b) from page no. 457
8 //lifetime of muon
9 delta_t0 = 2.2//in microsesonds
10 //height of atmosphere
11 L0 = 100 / / in Km
12 //speed of light
13 c = 3.00e8//in m/s
14
15 // Solution:
16 //appiying Einstein's posulates
17 //in the Earth's fram of reference
```

```
18 //time of travel
19 delta_t = (L0*10^3)/c//in microseconds
20 //minimum speed of muon
21 u = sqrt((1-((delta_t0/(delta_t)*10^-6)^2)))/in m/s
22
23 //in the muon's fram of reference
24 //height of atmosphere
25 L = c*(delta_t0*10^-6)/in meters
26 //minimum speed of muon
27 \text{ u1} = \text{sqrt}((1-(((L)/(L0*1000))^2)))//\text{in m/s}
28
29 printf ("\n\n Time of travel in the Earth fram of
      reference delta_t = \ln \%.2e seconds, delta_t);
30 printf ("\n Minimum speed of muon in the Earth
      fram of reference u = \ln \%.6 \, fc, u);
31 printf ("\n Height of atmosphere in the muon fram
      of reference L = \langle n \rangle n %3i meters", L);
32 printf ("\n Minimum speed of muon in the muon fram
       of reference u = \ln \%.6 fc, u1);
```

Scilab code Exa 20.2 C20P2

```
// Solution:
// Solution:
// applying formule for relativistic addition of
velocities
// speed of missile measured by observer on Earth
v = (v0+u)/(1+(v0*u))//times c

printf ("\n\n Speed of missile measured by observer
on the Earth v = \n\n %.2 fc",v);
```

Scilab code Exa 20.3 C20P3

```
1 clear
2 clc
3 //to find distance between two flashes and time
     between two flashes
5 // Given:
6 //seperated distance
7 delta_x = 2.45//in \text{ Km}
8 //time intervel
9 delta_t = 5.35//in microseconds
10 //speed of frame S'
11 u = 0.855 / times c
12 //speed of light
13 c = 3.00e8//in m/s
14
15 // Solution:
16 //appiying Lorentz transformations
17 //Lorentz parameters
18 gama = 1/(sqrt(1-u^2))
19 //refer to table 20-2
20 //using interval transformations
21 //distance between two flashe
22 delta_x_dash = gama*((delta_x*1000)-(u*c*(delta_t
      *10^-6)))//in meters //taking delta_t in seconds
```

```
and delta_x in meters

//time between two flashes

delta_t_dash = gama*((delta_t*10^-6)-(u*c*(((delta_x *1000))/(c^2))))//in seconds //taking delta_t in seconds and delta_x in meters

delta_t_dash = nearfloat("succ",-3.147e-6)

printf ("\n\n Lorentz parameters gama = \n\n %.3f", gama);

printf ("\n\n Distance between two flashe delta_x_dash = \n\n %4i meters", delta_x_dash);

printf ("\n\n Time between two flashes delta_t_dash);

printf ("\n\n Time between two flashes delta_t_dash);

// **Time between two flashes delt
```

Scilab code Exa 20.4 C20P4

```
1 clear
2 clc
3 //to find final velocity of particulas measured in
      the laboratory frame
5 // Given:
6 //refer to figure 20-14 from page no. 461
7 //velocity of partical
8 \text{ vx\_dash} = 0.60 / / \text{times} \text{ c}
9 ///velocity of partical w.r.t. frame moving with it
10 u = 0.60 / times c
11 //speed of light
12 c = 3.00 e8 / / in m/s
13
14 // Solution:
15 //appiying transformations of velocities
16 //final velocity of particulas measured in the
      laboratory frame
17 vx = (vx_dash+u)/(1+(u*vx_dash))/times c
```

```
18
19 printf ("\n\n Final velocity of particulas measured in the laboratory frame vx = \ln \%.2 \, fc", vx);
```

Scilab code Exa 20.5 C20P5

```
1 clear
2 clc
3 //to find time necessary for the rocket to pass
      particular point
4 //to find rest length for the rocket
5 //to find length of D of platform according to
      observer S'
6 //to find time required for S to pass entire length
      according to observer S'
7 //to find //time interval between two events
8 //Given:
9 // refer to figure 20-19(a), (b), (c) from page no. 465
10 //llength of platform
11 L = 65//in meters
12 //relative speed of rocket
13 u = 0.80 / times c
14 //speed of light
15 c = 3.00 e8 / / in m/s
16
17 // Solution:
18 //appiying formule for relativity of length
19 //time necessary for the rocket to pass particular
     point
20 delta_t0 = L*10^6/(u*c)//in microseconds
21 //rest length for the rocket
22 L0 = L/(sqrt(1-(u^2)))/in meters
23 //length of D of platform according to observer S'
24 DO = L
25 D = D0*(sqrt(1-(u^2)))/in meters
```

```
26 D = round(D)
27 //time required for S to pass entire length
      according to observer S'
28 delta_t_dash = L0*10^6/(u*c)//in microseconds
29 //time measured by S and S' usind time dilation
     formula
30 delta_tdash = delta_t0/(sqrt(1-(u^2)))//in
     microseconds
31 //refer to table 20-2
32 //time interval between two events
33 deltat_dash = -(u*c*(-L))*10^6/((c^2)*(sqrt(1-(u^2)))
     ))//in microseconds
34 //time interval between two events according to S'
35 deltatdash = (L0-D)*10^6/(u*c)//in microseconds
36
37 printf ("\n Time necessary for the rocket to pass
      particular point delta_t0 = \ln \%.2 f
     microseconds" ,delta_t0);
38 printf ("\n\n Rest length for the rocket L0 = \ln n
     %3i \text{ meters}, L0);
39 printf ("\n\n Length of D of platform according to
     observer S-dash D = \n \%2i meters",D);
40 printf ("\n Time required for S to pass entire
     length according to observer S-dash delta_t_dash
     = \ln \%.2 f \ microseconds, delta_t_dash);
41 printf ("\n Time measured by S and S-dash usind
     time dilation formula delta_tdash = \n\ %.2 f
     microseconds", delta_tdash);
42 printf ("\n Time interval between two events
     deltat_dash = \n\ \%.2f microseconds",
     deltat_dash);
43 printf ("\n Time interval between two events
      according to S-dash deltatdash = \n %.2 f
     microseconds", deltatdash);
```

Scilab code Exa 20.6 C20P6

```
1 clear
2 clc
3 //to find momentum of proton
5 // Given:
6 //speed of proton
7 v = 0.86 / times c
8 //speed of light
9 c = 3.00e8//in m/s
10 //mass of proton
11 m = 1.67e-27//in \text{ Kg}
12
13 // Solution:
14 //appiying fomule for relativistic momentum
15 //momentum of proton
16 P = (m*v*c)/(sqrt(1-(v^2)))/in Kg.m/s
17 //value of pc
18 Pc = P*c*(6.24e12) / in MeV / (6.24e12) is conversion
      factor between J and MeV
19
20 printf ("\n Momentum of proton P = \n %.2 e Kg.m/
     s",P);
21 printf ("\n\ Value of pc = \n\ MeV", Pc);
22 printf ("\n\ Momentum of proton p = \n\ 4i MeV/c"
      ,Pc);
```

Scilab code Exa 20.7 C20P7

```
5
6 // Given:
7 // kinetic energy of electron
8 \text{ K} = 50 // \text{in GeV}
9 //value of mc_square
10 mc_square = 0.511e-3//in \text{ GeV}
11 //speed of light
12 c = 3.00 e8 / / in m/s
13
14 // Solution:
15 //appiying fomule for relativistic energy
16 //speed of electron as fraction of c
17 v = sqrt(1-(1/(1+(K/mc_square)^2)))/times c
18 //speed of electron as difference from c
19 c_minus_v = (5.2e-11)*c//in m/s
20
21 printf ("\n Speed of electron as fraction of c v =
       \n \ \%.12 \text{ fc}", v);
22 printf ("\n\n Speed of electron as difference from c
       c_minus_v = \langle n \rangle n \%.3 f m/s, c_minus_v);
```

Scilab code Exa 20.8 C20P8

```
12
13 // Solution:
14 //appiying fomule for energy and mass in special
      relativity
15 //applying conservation of energy
16 //increase in rest energy
17 delta_E0 = 2*((1/2)*(m*10^-3)*(v^2))/in J //taking
     mass in Kg
18 //increase in mass
19 delta_m = delta_E0/(c^2)//in Kg
20
21 printf ("\n Increase in rest energy delta_E0 = \n
     n \%.3 f J", delta_E0);
22 printf ("\n\n Difference between masses of combined
      ball from sum of masses of original balls delta_m
      = \n \ \%.1e \ \mathrm{Kg}", delta_m);
```

Scilab code Exa 20.9 C20P9

```
1 clear
2 clc
3 //to find kinetic energy needed to produce Z0
4
5 // Given:
6 //refer to sample problem 20-8
7 //rest energy
8 E0 = 91.2 // in GeV
9 //rest energy of electron and positron
10 E = 0.511//in \text{ MeV}
11 //speed of light
12 c = 3.00 e8 / in m/s
13
14 // Solution:
15 //appiying fomule for energy and mass in special
      relativity
```

```
//change in rest energy
delta_E0 = E0-(2*(E*10^-3))//in GeV //coveting E
    into GeV

//applying conservation of energy
//kinetic energy needed to produce Z0
delta_K = -(delta_E0)//in GeV

printf ("\n\n Change in rest energy delta_E0 = \n\n %.1 f GeV" ,delta_E0);
printf ("\n\n Kinetic energy needed to produce Z0 delta_K = \n\n %.1 f GeV" ,delta_K);
```

Scilab code Exa **20.10** C20P10

```
1 clear
2 clc
3 //to find kinetic energy of each pion
5 // Given:
6 //value of mc^2 for Kaon
7 mk_c_square = 498//in MeV
8 //kinetic energy of Kaon
9 \text{ K} = 325 // \text{in MeV}
10 ///value of mc^2 for pion
11 mpi_c_square = 140 // in MeV
12 //speed of light
13 c = 3.00e8//in m/s
14
15 // Solution:
16 //appiying fomule for coservation of total
      relativistic energy
17 //applying conservation of energy
18 //initial total relativistic energy
19 Ek = K+mk_c_square//in MeV
20 //total initial momentum
```

```
21 pk_c = sqrt((Ek^2) - (mk_c_square)^2) / in MeV
22 //total energy of final system
23 E = Ek//in MeV
24 //applying conservation of momentum
25 //value of p1c
26 \text{ p1c} = 668 / / \text{in MeV}
27 \text{ p_1c} = -13 // \text{in MeV}
28 //kinetic energy of each pion
29 //kinetic energy of first pion
30 K1 = (sqrt((p1c^2)+(mpi_c_square^2)))-mpi_c_square//
      in MeV
31 //kinetic energy of second pion
32 \text{ K2} = (\text{sqrt}((\text{p_1c^2}) + (\text{mpi_c_square^2}))) - \text{mpi_c_square}
      //in MeV
33 \text{ K1} = \text{round}(\text{K1})
34
35 printf ("\n Initial total relativistic energy Ek =
       \n \n \%3i \text{ MeV}", Ek);
36 printf ("\n\n Total initial momentum pk_c = \n\3i
       \mathrm{MeV}", \mathrm{pk}_{-}\mathrm{c});
37 printf ("\n Total energy of final system E = \n
      \%3i~\mathrm{MeV}", E);
38 printf ("\n\n Value of p1c = \n\n \%3i MeV or \%3i MeV
      ",p1c,p_1c);
39 printf ("\n Kinetic energy of first pion K1 = \n
       \%3i~\mathrm{MeV"} ,K1);
40 printf ("\n\n Kinetic energy of second pion K2 = \n\
      n \%.1 f MeV", K2);
```

Scilab code Exa 20.11 C20P11

```
4
5 // Given:
6 //refer to figure 20-23 from page no. 470
7 //rest energy of proton
8 \text{ mp_c_square} = 938//\text{in MeV}
9 //speed of light
10 c = 3.00 e8 / / in m/s
11
12 //Solution:
13 //appiying fomule for relativistic momentum
14 //applying conservation of energy
15 / \text{value of mpc}^2/\text{E1}
16 \text{ mpc\_square\_by\_E1dash} = 1/2
17 // value of v1 '/ c
18 v1_dash_by_c = sqrt(1-(mpc_square_by_E1dash)^2)
19 //refer to table 20-3
20 //speed of incident proton
21 \text{ v_dash} = \text{v1_dash_by_c}/\text{times} \text{ c}
22 u = v1_dash_by_c/times c
v = (v_dash+u)/(1+(v_dash_by_c)^2)/times c
24 //total energy of incident proton
25 E = 1/(\operatorname{sqrt}(1-(v^2)))//\operatorname{times} \operatorname{mp_c\_square}
26 E = round(E)
27 //threshold kinetic energy to produce antiproton
28 K = (E*mp_c_square)-mp_c_square//in MeV
29
30 printf ("\n\n Value of v1_dash/c = \n\n \%.3f",
      v1_dash_by_c);
31 printf ("\n\n Speed of incident proton v = \n\.3
      fc",v);
32 printf ("\n\n Total energy of incident proton E = \n
      \n %1imp_c_square ",E);
33 printf ("\n Threshold kinetic energy to produce
      antiproton K = \langle n \rangle n %4i MeV", K);
```

Chapter 21

TEMPERATURE

Scilab code Exa 21.1 C21P1

```
1 clear
2 clc
3 //to find temperature measured by thermometer
5 // Given:
6 //factor by which resistance is increased
7 R_by_Rtr = 1.392
8 //temperature of triple point of water
9 Ttr = 273.16//in K
10
11 //Solution:
12 //using formula for measuring temperatures
13 //temperature measured by thermometer
14 \text{ T_R} = \text{Ttr*R_by_Rtr}//\text{in } K
15
16 printf ("\n Temperature measured by thermometer
      T_R = nn \%.1 f K, T_R;
```

Scilab code Exa 21.2 C21P2

```
1 clear
2 clc
3 //to find maximum temperature variation allowable
      during ruling
4
5 // \text{Given}:
6 //refer to table 21-3
7 //accuracy for milimeter interval
8 \text{ delta\_L} = 5e-5//in \text{ mm}
9 //coefficient of linear expansion
10 alpha = 11e-6//in per degree celsius
11 //consider length of steel
12 L = 1//in mm
13
14 // Solution:
15 //using formula for temperature expansion
16 //maximum temperature variation allowable during
      ruling
17 delta_T = delta_L/(alpha*L)//in degree celsius
18
19 printf ("\n\n Maximum temperature variation
      allowable during ruling delta_T = \n \%.1 f
      degree celsius" ,delta_T);
```

Scilab code Exa 21.3 C21P3

```
1 clear
2 clc
3 //to find final pressure of gas
4
5 //Given:
6 //refer to figure 21-13 from page 488
7 //initial temperature of oxygen
8 Ti = 20//in degree celsius
9 //initial pressure of oxygen
```

```
10 pi = 15//in atm
11 //initial volume of oxygen
12 vi = 22//in liters
13 //final temperature of oxygen
14 Tf = 25//in degree celsius
15 // final volume of oxygen
16 \text{ vf} = 16//\text{in liters}
17
18 // Solution:
19 //consider oxygen as ideal gas and applying
      equations of ideal gas
20 // final pressure of gas
21 pf = pi*((Tf+273)/(Ti+273))*(vi/vf)//in atm //taking
       temp. in kelvin
22 pf = round(pf)
23
24 printf ("\n Final pressure of gas pf = \n %2i
      \operatorname{atm} ,pf);
```

Chapter 22

MOLECULAR PROPERTIES OF GASES

Scilab code Exa 22.1 C22P1

```
1 clear
2 clc
3 //to find root mean square speed of hydrogen
      molecule
5 // Given:
6 //pressure
7 p = 1//in atm
8 //density of hydrogen
9 rho = 8.99e-2/in \text{ Kg/m}^3
10
11 // Solution:
12 //assume hydron as ideal gas
13 //applying formula of root mean square speed for
      ideal gas
14 //root mean square speed of hydrogen molecule
15 vrms = sqrt((3*p*1.01e5)/(rho))//in m/s //taking
      pressure in Pa
16
```

```
//answer of vrms is slightly different than book
answer.But ans. by scilab program is same as that
of calculator
printf ("\n\n Root mean square speed of hydrogen
molecule vrms = \n\n %4i m/s", vrms);
```

Scilab code Exa 22.2 C22P2

```
1 clear
2 clc
3 //to find number of moles of oxygen
4 //to find number of molecules of oxygen
5 //to find approximate rate at which oxygen molecule
      strike one face of the box
7 // Given:
8 //refer to figure 22-2 from page no. 499
9 //length of edge of cubical box
10 L = 10 // in cm
11 //pressure of oxygen
12 p = 1.0 // in atm
13 //temperature of oxygen
14 T = 300 // in K
15 //molar gas constant
16 R = 8.31//in J/mol.K
17 //Avogadro constant
18 NA = 6.02e23//in molecules/mol
19
20 // Solution:
21 ///assumong oxygen as ideal gas
22 //applying ideal gas equations
23 //volume of box
24 V = ((L*10^-2)^3) / in m^3
25 //number of moles of oxygen
26 \text{ n} = ((p*1.01*10^5)*V)/(R*T)//taking p into Pa
```

```
27 //number of molecules of oxygen
28 N = n * NA
29 N = nearfloat("succ", 2.5e22)
30 //refer to table 22-1
31 //root mean square speed of oxygen
32 \text{ vrms} = 483 / / \text{in m/s}
33 //approximate rate at which oxygen molecule strike
      one face of the box
34 Rate = (N*vrms)/(6*(L*10^-2))/in collisions/s
35
36 printf ("\n\n Number of moles of oxygen n = \n\
      .3 f mol", n);
37 printf ("\n Number of molecules of oxygen \n = \n
     n \%.1e molecules",N);
38 printf ("\n\n Root mean square speed of oxygen vrms
     = \langle n \rangle n \% 3i m/s, vrms);
39 printf ("\n Approximate rate at which oxygen
      molecule strike one face of the box Rate = \n\n \%
      .1e collisions/s", Rate);
```

Scilab code Exa 22.3 C22P3

```
10 //abundance of 238-U
11 a2 = 99.3//in percentage
12 //final abundance of 235-U
13 a3 = 3//in percentage
14
15 //Solution:
16 //applying equations for root mean square speed
17 //molecular mass of 235-U
18 \text{ m}_235 = 235+6*(19)//\text{in u}
19 //molecular mass of 238-U
20 \text{ m}_238 = 238+6*(19)//\text{in u}
21 //ratio of rms speed of gas molecules containing
      235-U and gas molecules containing 238-U
22 \text{ vrms}_235_\text{by}_\text{vrms}_238 = \frac{\text{sqrt}}{\text{m}_238/\text{m}_235}
23 //ratio of abundances
24 r = a1/a2
25 //relative abundance of gas molecules containing
      235 - U
26 \text{ ratio}_1\text{_pass} = r*vrms_235\_by\_vrms_238
27 //isotope ratio
28 i = (a3)/(100-(a3))
29 //number of times gas molecule should be passed
      through barrier
30 \text{ n} = (\log(i/r))/(\log(vrms_235_by_vrms_238))
31
32 printf ("\n Molecular mass of 235-U m<sub>2</sub>35 = \n
      %3i u", m_235);
33 printf ("\n Molecular mass of 238-U m<sub>-</sub>238 = \n
      \%3i u",m_238);
34 printf ("\n\n Ratio of rms speed of gas molecules
      containing 235-U and gas molecules containing
      238-U \text{ vrms}_235_b\text{y}_v\text{rms}_238 = \ln \%.4 \text{ f},
      vrms_235_by_vrms_238);
35 printf ("\n\n Ratio of abundances = \n\, r);
36 printf ("\n Relative abundance of gas molecules
      containing 235-U ratio_1_pass = \ln n \%.5 f",
      ratio_1_pass);
37 printf ("\n\n Isotope ratio = \n\5 f",i);
```

passed through barrier = $\n\$ 3i", n);

Scilab code Exa 22.4 C22P4

```
1 clear
2 clc
3 //to find mean free path and average collision rate
     of nytrogen at room temperature
5 // Given:
6 //room temperature
7 T = 300 / / in K
8 //atmospheric pressure
9 p = 1.01e5//in Pa
10 //effective diameter of nytrogen
11 d = 3.15e-10//in meters
12 //average speed
13 vav = 478//in m/s
14 //Boltzmann constant
15 k = 1.38e-23//in J/K
16
17 // Solution:
18 //applying formula of mean path
19 //mean free path of nytrogen at room temperature
20 lambda = (k*T)/(sqrt(2)*%pi*(d^2)*p)//in meters
21 //average collision rate of nytrogen at room
     temperature
22 rate = vav/lambda//in collisions/second
23
24 printf ("\n\n Mean free path of nytrogen at room
     temperature lambda = \n \%.1e meters", lambda);
```

```
25 printf ("\n\n Average collision rate of nytrogen at room temperature rate = \n\ %.1e collisions/second", rate);
```

Scilab code Exa 22.5 C22P5

```
1 clear
2 clc
3 //to find average speed, root-mean speed, root-mean
      square speed and most probable speed of particals
4
5 // Given:
6 //number of particals
7 N = 10
8 //speed of particals
9 \text{ v1} = 0.0 / / \text{in m/s}
10 v2 = 1.0//in m/s
11 v3 = 2.0//in m/s
12 \text{ v4} = 3.0 // \text{in m/s}
13 v5 = 3.0//in m/s
14 \text{ v6} = 3.0 // \text{in m/s}
15 \text{ v7} = 4.0 // \text{in m/s}
16 \text{ v8} = 4.0 // \text{in m/s}
17 \text{ v9} = 5.0 // \text{in m/s}
18 \text{ v10} = 6.0 // \text{in m/s}
19
20 // Solution:
21 //applying formula for average speed
22 //average speed of particals
23 vav = (1/N)*(v1+v2+v3+v4+v5+v6+v7+v8+v9+v10)/in m/s
24 //applying formula for root-mean speed
25 //root-mean speed of particals
v7^2+v8^2+v9^2+v10^2)/in m^2/s^2
27 //applying formula for root-mean square speed
```

```
//root-mean square speed of particals
vrms = sqrt(v_square_av)//in m/s
//most probable speed of particals
//taking into consideration all speeds of particals
vp = v4//in m/s
printf ("\n\n Average speed of particals vav = \n\n
%.1f m/s" ,vav);

printf ("\n\n Root-mean speed of particals
    v_square_av = \n\n %.1f m^2/s^2" ,v_square_av);

printf ("\n\n Root-mean square speed of particals
    vrms = \n\n %.1f m/s" ,vrms);

printf ("\n\n Most probable speed of particals vp =
    \n\n %.1f m/s" ,vp);
```

Scilab code Exa 22.6 C22P6

```
1 clear
2 clc
3 //to find fraction of molecules having speed in
      range 599-601m/s
5 // Given:
6 //temperature
7 T = 300 // in K
8 //molar mass of oxygen
9 M = 0.032 / \text{in Kg/mol}
10 //molar gas constant
11 R = 8.31//in J/mol.K
12 // velocity
13 v = 600 / / in m/s
14
15 // Solution:
16 //fraction of molecules having speed in range
      599 - 601 \text{m/s}
17 // difference in speed
```

```
18  dv = 2//in m/s
19  f = 4*%pi*((M/(2*%pi*R*T))^(3/2))*(v^2)*%e^((-M*(v^2)/(2*R*T)))*dv
20  f1 = f*100//in percent
21
22  printf ("\n\n Fraction of molecules having speed in range 599-601m/s f = \n\n %.1e" ,f);
23  printf ("\n\n Percentage of molecules having speed in range 599-601m/s f = \n\n %.2 f percent" ,f1);
```

Scilab code Exa 22.7 C22P7

```
1 clear
2 clc
3 //to find most probable speed, average speed, root-
     mean square speed of oxygen
4
5 // Given:
6 //temperature
7 T = 300 / / in K
8 //molar gas constant
9 R = 8.31//in J/mol.K
10 //molar mass
11 M = 0.032//in \text{ Kg/mol}
12
13 // Solution:
14 //applying formula for most probable speed
15 //most probable speed of oxygen
16 vp = sqrt((2*R*T)/(M))//in m/s
17 //applying formula for average speed
18 //average speed of oxygen
19 vav = sqrt((8*R*T)/(\%pi*M))/in m/s
20 //applying formula for root-mean square speed
21 //root-mean square speed of oxygen
22 vrms = sqrt((3*R*T)/(M))//in m/s
```

```
23  vp = round(vp)
24  a = vav/vp
25  a1 = vrms/vp
26  a1 = nearfloat("succ",1.225)
27
28  printf ("\n\n Most probable speed of oxygen vp = \n\n %3i m/s", vp);
29  printf ("\n\n Average speed of oxygen vav = \n\n %3i m/s",vav);
30  printf ("\n\n Root-mean square speed of oxygen vrms = \n\n %3i m/s", vrms);
31  printf ("\n\n For any gas vp:vav:vrms = 1:%.3f:%.3f",a,a1);
```

Scilab code Exa 22.9 C22P9

```
1 clear
2 clc
3 //to find pressure according to ideal gas law
4 //to find pressure according to van der Waals
      equations
5
6 // Given:
7 //for qxygen van der Waals coefficients
8 a = 0.138 / (in J.m^3/mol^2)
9 b = 3.18e-5//in m^3/mol
10 //number mol of oxygen
11 n = 1//in \text{ mol}
12 //volume of box
13 V = 0.0224//in m^3
14 //molar gas constant
15 R = 8.31//in J/mol.K
16 //molar mass
17 M = 0.032 // in Kg/mol
18 //temperature
```

Chapter 23

THE FIRST LAW OF THERMODYNAMICS

Scilab code Exa 23.2 C23P2

```
1 clear
2 clc
3 //to find rate of heat energy pass through the
      insulation
4 //to find additional insulation required to reduce
     heat transfer rate by half
6 // Given:
7 //refer to figure 23-6 from page no. 520
8 ///temperature of steam
9 TS = 100//in degree celsius
10 //diameter of pipe
11 d = 5.4//in cm
12 //thickness of insulation
13 t = 5.2 / / in cm
14 //length of pipe
15 D = 6.2//in meters
16 //temperature of room
17 TR = 11//in degree celsius
```

```
18 //thermal conductivity
19 k = 0.048 / in W/m.K
20
21 // Solution:
22 //radius of cylinder
23 \text{ r1} = d/2//in \text{ cm}
24 //radius of cylinder with insulation
25 	ext{ r2} = 	ext{r1+t}/in 	ext{ cm}
26 //applying fourier's law of heat conduction
27 //rate of heat energy pass through the insulation
28 H = (2*\%pi*k*D*(TS-TR))/(log(r2/r1))//in W
29 //additional insulation required to reduce heat
      transfer rate by half
30 \text{ r2\_dash} = (r2^2)/r1//in \text{ cm}
31
32 printf ("\n Rate of heat energy pass through the
      insulation H = \langle n \rangle n \% 3i W, H);
33 printf ("\n Additional insulation required to
      reduce heat transfer rate by half r2_{dash} = \ln n
      \%2i cm", r2_dash);
```

Scilab code Exa 23.3 C23P3

```
12 //heat capacity of beaker
13 Cb = 190 / / in J/K
14 //intial temperature of water and beaker
15 Ti = 12.0//in degree celsius
16 //heat capacity of water
17 \text{ Cw} = 4190 // \text{in J/Kg.K}
18 //heat capacity of copper cube
19 Cc = 387 / in J/Kg.K
20
21 //Solution:
22 //applying laws of thermodynamics
23 //for equilibrium condition
24 //final equilibrium temperature of the system
25 Tf = (((mw*10^-3)*Cw*Ti)+(Cb*Ti)+((mc*10^-3)*Cc*T0))
      /(((mw*10^-3)*Cw)+(Cb)+((mc*10^-3)*Cc))/in
      degree celsius //taking masses in Kg
26 //heat transfer for water
27 \text{ Qw} = (\text{mw}*10^{-3})*\text{Cw}*(\text{Tf}-\text{Ti})//\text{in} \text{ J}
28 //heat transfer for beaker
29 Qb = Cb*(Tf-Ti)//in J
30 //heat transfer for copper
31 Qc = (mc*10^-3)*Cc*(Tf-T0)//in J
32 Qw = nearfloat("pred",7011)
33 Qb = nearfloat("pred",1441)
34 Qc = nearfloat("pred", -8450)
35
36 printf ("\n Final equilibrium temperature of the
      system Tf = \langle n \rangle n \%.1f degree celsius", Tf);
  printf ("\n Heat transfer for water Qw = \n \% 4i
      J", Qw);
38 printf ("\n\n Heat transfer for beaker Qb = \n\n \%4i
       J", Qb);
39 printf ("\n\n Heat transfer for copper Qc = \n\n \%4i
       J",Qc);
```

Scilab code Exa 23.4 C23P4

```
1 clear
2 clc
3 //to find work done by three different paths
5 // Given:
6 //refer to figure 23-17 from page no. 529
7 //final volume
8 \text{ vf} = 1.0 // \text{in m}^3
9 //initial volume
10 vi = 4.0//in \text{ m}^3
11 //final pressure
12 pf = 40//in Pa
13 //initialvolume
14 pi = 10//in Pa
15
16 //Solution:
17 //applying laws of thermodynamics
18 //work done by constant pressure in path 1
19 W = -pi*(vf-vi)//in J
20 //work done in constant volume in path 1
21 \quad w = 0 // in \quad J
22 //work done by path 1
23 W1 = W+w//in J
24 //work done by path 2
25 W2 = -pi*vi*(log(vf/vi))//in J
26 //work done by path 3
27 \text{ W3} = 0 - (\text{pf}*(\text{vf}-\text{vi})) / / \text{in } J
28
29 printf ("\n\n Work done by constant pressure in path
       1 \text{ W} = \langle n \rangle n \% 2i \text{ J}", W);
30 printf ("\n\n Work done by path 1 W1 = \n\n \%2i J",
      W1);
31 printf ("\n\n Work done by path 2 W2 = \n\n \%2i J",
      W2);
32 printf ("\n\n Work done by path 3 W3 = \n\n \%2i J",
      W3);
```

Scilab code Exa 23.5 C23P5

```
1 clear
2 clc
3 //to find speed of sound in the gas
5 // Given:
6 //room temperature
7 T = 20//in degree celsius
8 //parameter gama for air
9 \text{ gama} = 1.4
10 //molar gas constant
11 R = 8.31//in J/mol.K
12 //molar mass for air
13 M = 0.0290//in \text{ Kg/mol}
14
15 // Solution:
16 //applying laws of thermodynamics
17 //speed of sound in the gas
18 v = sqrt((gama*R*(T+273))/M)//in m/s
19 v = round(v)
20
21 printf ("\n Speed of sound in the gas v = \n %3i
      m/s", v);
```

Scilab code Exa 23.6 C23P6

```
4
5 // Given:
6 //room temperature
7 T = 0//in degree celsius
8 //length of room
9 1 = 6//in \text{ meters}
10 //breadth of room
11 b = 4//in meters
12 //height of room
13 h = 3//in meters
14 //power of heater
15 p = 2//in KW
16 //final air temperature
17 T1 = 21//in degree celsius
18
19 // Solution:
20 //applying laws of thermodynamics
21 //volume of room
22 V = (1*b*h)*1000//in L
23 //number of moles of gas
24 n = V/22.4//in \mod //since 1 \mod occupies 22.4L of
      volume
\frac{25}{\text{refer}} to table \frac{23-4}{\text{refer}}
26 //molar heat capacity
27 \text{ Cv} = 20.8 / / \text{in J/mol.K}
28 //using relation of heat capacity
29 //absorbtion of heat take place
30 \ Q = n*Cv*(T1-T) //in \ J
31 //time required for room temperature to be 21 degree
       celsius
32 t = Q/(p*10^3)/in seconds //taking power in W
33 t = nearfloat("pred",701)
34
35 printf ("\n\ Volume of room V = \n\ %5i L", V);
36 printf ("\n\n Number of moles of gas n = \n\n \%.1e
      mol", n);
37 printf ("\n Absorbtion of heat take place Q = \n
      \%.1e J",Q);
```

```
38 printf ("\n\n Time required for room temperature to be 21 degree celsius t = \ln \%3i seconds", t);
```

Scilab code Exa 23.7 C23P7

```
1 clear
2 clc
3 //to find change in internal energy
5 // Given:
6 //refer to figure 23-17 from page no. 529
7 //refer to problem 23-4
8 // final volume
9 \text{ vf} = 1.0 // \text{in m}^3
10 //initial volume
11 vi = 4.0//in \text{ m}^3
12 //initialvolume
13 pi = 10//in Pa
14 // value of constant for monoatomic gas
15 \text{ gama} = 1.66
16 //number of moles of ideal gas
17 n = 0.11 // in mol
18 //molar gas constant
19 R = 8.31//in J/mol.K
20
21 // Solution:
22 //applying laws of thermodynamics
23 //applying adiabatic relationship
24 //final pressure of gas
25 pf = (pi*(vi^gama))/(vf^gama)//in Pa
26 //initial temperature of gas
27 Ti = (pi*vi)/(n*R)//in K
28 //final temperature of gas
29 Tf = (pf*vf)/(n*R)//in K
30 //applying internal energy formula
```

```
//change in internal energy
delta_Eint = (3/2)*(n*R*(Tf-Ti))//in J
f = round(pf)
f Ti = round(Ti)

printf ("\n\n Final pressure of gas pf = \n\n %3i Pa ",pf);

printf ("\n\n Initial temperature of gas Ti = \n\n %2i K",Ti);

printf ("\n\n Final temperature of gas Tf = \n\n %3i K",Tf);

printf ("\n\n Change in internal energy delta_Eint = \n\n %2i J",delta_Eint);
```

Scilab code Exa 23.8 C23P8

```
1 clear
2 clc
3 //to find work done on the system
4 //to find heat added to the system
5 //to find change in internal energy of the system
6
7 // Given:
8 //refer to figure 23-23 from page no. 535
9 //mass of water
10 \text{ m} = 1.00 // \text{in Kg}
11 //initial volume of liquid
12 vi = 1.00e-3//in m^3
13 //final volume of steam
14 vf = 1.671//in \text{ m}^3
15 //atmospheric pressure
16 p = 1.01e5//in Pa
17 //molar gas constant
18 R = 8.31//in J/mol.K
19
```

```
20 //Solution:
21 //applying laws of thermodynamics
22 //applying constant pressure relationship
23 //work done on the system
24 W = (-p*(vf-vi)) //in KJ
25 //latent heat of vaporization
26 L = 2256 / / in KJ/Kg
27 //heat added to the system
28 Q = L*m//in KJ
29 //change in internal energy of the system
30 delta_Eint = Q+W//in KJ
31
32 printf ("\n\n Work done on the system W = \ln n \%.2e
      J", W);
33 //answer of Q and delta_Eint slightli changes.But
      answer by scilab program is same as that of
      calculator answer
34 printf ("\n\n Heat added to the system Q = \n\n \%4i
     KJ",Q);
35 printf ("\n Change in internal energy of the
      system delta_Eint = \langle n \rangle n \% 4i \text{ KJ}", delta_Eint);
```

Scilab code Exa 23.9 C23P9

```
1 clear
2 clc
3 //to find work done on the system
4 //to find heat added to the system
5 //to find change in internal energy of the system
6
7 //Given:
8 //refer to figure 23-21 from page no. 534
9 //number of moles
10 n = 0.75//in mol
11 //pressures at corresponding points
```

```
12 PA = 3.2e3//in Pa
13 PB = 1.2e3//in Pa
14 //volume at corresponding point
15 VA = 0.21//in \text{ m}^3
16 //molar gas constant
17 R = 8.31//in J/mol.K
18 //value of constants
19 Cv = 20.8 / in J/mol.K
20 Cp = 29.1//in J/mol.K
21
22 // Solution:
23 //applying laws of thermodynamics
24 //using ideal gas law
25 //temperature at A
26 TA = (PA*VA)/(n*R)//in K
27 ///temperature at B
28 TB = (PB*VA)/(n*R)//in K //since VA=VB
29 //volume at C
30 VC = (n*R*TA)/(PB)//in m^3 //since TC = TA and PC =
      PB
31 //during process A-B
32 //applying constant volume relationship
33 //heat added to the system
34 //redefining TA AND TB
35 \text{ TA} = 108 / / \text{in K}
36 \text{ TB} = 40 / / \text{in K}
37 \quad Q1 = n*Cv*(TB-TA)//in \quad J
38 //work done on the system
39 \quad \text{W1} = 0 // \text{in} \quad \text{J}
40 //change in internal energy of the system
41 delta_Eint1 = Q1+W1//in J
42
43 //during process B-C
44 //applying constant pressure relationship
45 //heat added to the system
46 Q2 = n*Cp*(TA-TB)//in J //since TC = TA
47 //work done on the system
48 W2 = -PB*(VC-VA)//in J //since VB = VA
```

```
49 //change in internal energy of the system
50 delta_Eint2 = Q2+W2//in J
51
52 //during process C-A
53 //applying isothermal relationship
54 //work done on the system
55 \text{ W3} = -n*R*TA*(\log(VA/VC))//in \text{ J}
56 //change in internal energy of the system
57 \text{ delta\_Eint3} = 0//\text{in J}
58 //heat added to the system
59 \text{ Q3} = \text{delta\_Eint3-W3} //\text{in} \text{ J}
60 // delta_Eint1 = nearfloat ("succ", -1061)
61 / Q2 = nearfloat ("succ", 1480)
62 //delta_Eint2 = nearfloat ("succ",1060)
63 //W3 = nearfloat ("succ", 660)
64 / Q3 = nearfloat ("succ", -661)
65 //totol work done during process
66 \text{ W} = \text{W1+W2+W3}//\text{in J}
67 //total change in internal energy during process
68 delta_Eint = delta_Eint1+delta_Eint2+delta_Eint3//in
       J
69 \text{ TA} = \text{round}(\text{TA})
70 //value of Q2, delta_Eint2, delta_E slightly varies
      than book. But answer by scilab is same as that of
       calculator answer
71
72 printf ("\n\n Temperature at A TA = \n\3i K", TA)
73 printf ("\n\n Temperature at B TB = \n\n \%3i K", TB)
74 printf ("\n\n Volume at C VC = \n\n \%.2 f m^3", VC);
75 printf ("\n During process A-B");
76 printf ("\n\n Heat added to the system Q1 = \n\n \%4i
       J",Q1);
77 printf ("\n\n Work done on the system W1 = \n\n \%3i
      J", W1);
78 printf ("\n Change in internal energy of the
      system delta_Eint1 = \langle n \rangle n \% 4i J", delta_Eint1);
```

```
79 printf ("\n During process B-C");
80 printf ("\n\n Heat added to the system Q2 = \n\n %4i
81 printf ("\n\n Work done on the system W2 = \n\n %3i
     J", W2);
82 printf ("\n Change in internal energy of the
     system delta_Eint2 = \n\ \%4i \ J", delta_Eint2);
83 printf ("\n\ During process C-A");
84 printf ("\n\n Heat added to the system Q3 = \ln n \%4i
       J",Q3);
85 printf ("\n\n Work done on the system W3 = \langle n \rangle n %3i
     J", W3);
86 printf ("\n Change in internal energy of the
      system delta_Eint3 = \langle n \rangle n \%4i J", delta_Eint3);
87 printf ("\n\n Totol work done during process W = \n
     n \%3i J", W);
88 printf ("\n\n Total change in internal energy during
       process delta_Eint = \n\ \%4i\ J" ,delta_Eint);
```

Chapter 24

ENTROPY AND THE SECOND LAW OF THERMODYNAMICS

Scilab code Exa 24.1 C24P1

```
1 clear
2 clc
3 //to find entropy change of water during process
5 // Given:
6 //mass of water
7 \text{ m} = 1.8 / / \text{in Kg}
8 //initial temperature of water and hot plate
9 Ti = 20//in degree celsius
10 //final temperature of hot plate
11 Tf = 100//in degree celsius
12 //heat capacity of water
13 c = 4190//in J/Kg.K
14
15 // Solution:
16 //applying laws of thermodynamics
17 //applying formula for entropy change
```

```
//entropy change of water during process
delta_S = m*c*(log((Tf+273)/(Ti+273)))//in J/K //
        taking temperatures in K

printf ("\n\n Entropy change of water during process delta_S = \n\n %4i J/K", delta_S);
```

Scilab code Exa 24.2 C24P2

```
1 clear
2 clc
3 //to find temperature rise of system water+stone
4 //to find entropy change of system
5 //to find entropy change of reverse process
7 // Given:
8 //refer to figure 24-1 from page no. 548
9 //mass of stone
10 ms = 1.5//in \text{ Kg}
11 //mass of water
12 \text{ mw} = 4.5 // \text{in Kg}
13 //vertical height
14 h = 2.5//in meters
15 //initial temperature of water and stone
16 T = 300 / / in K
17 //specific heat capacity of water
18 cw = 4190//in J/Kg.K
19 //specific heat capacity of stone material
20 \text{ cs} = 790 // \text{in } J/Kg.K
21 //acceleration due to gravity
22 \text{ g} = 9.8 / / \text{in m/s}^2
23
24 // Solution:
25 //applying laws of thermodynamics
26 //applying formula for entropy change for
```

```
irreversible process
27 //heat transfer
28 Q = mw*g*h//in J
29 //temperature rise of system water+stone
30 delta_T = Q/((mw*cw)+(ms*cs))//in K
31 //entropy change of system
32 delta_S = Q/(T)/on J/K
33 //entropy change of reverse process
34 delta_s = -Q/T//in J/k //since heat is extracted
      from system
35
36 printf ("\n\n Heat transfer Q = \ln n \%3i J",Q);
37 printf ("\n\n Temperature rise of system water+stone
       delta_T = \langle n \rangle n \%.1e K, delta_T);
38 printf ("\n Entropy change of system delta_S = \n
      n~\%.\,2~f~J/k\text{"} ,delta_S);
39 printf ("\n\n Entropy change of reverse process
      delta_s = \langle n \rangle n \%.2 f J/K", delta_s);
```

Scilab code Exa 24.3 C24P3

```
clear
clc
//to find net entropy change of irreverse process

//Given:
//refer to figure 24-3(a) and (b) from page no. 549
//mass of hot water
m = 0.57//in Kg
//initial temperature of hot water
TiH = 363//in K
//initial temperature of cold water
TiC = 283//in K
//equilibrium temperature
Tf = 323//in K
```

```
15 //specific heat capacity of water
16 c = 4190 / / in J/Kg.K
17
18 //Solution:
19 //applying laws of thermodynamics
20 //applying formula for entropy change for
      irreversible process
21 //entropy change of hot water
22 delta_SH = m*c*log(Tf/TiH)//in J/K
23 //entropy change of cold water
24 delta_SC = m*c*log(Tf/TiC)//in J/K
25 //net entropy change of irreverse process
26 delta_S = delta_SH+delta_SC//in J/K
27 delta_SH = round(delta_SH)
28 delta_SC = round(delta_SC)
29 delta_S = round(delta_S)
30
31 printf ("\n Entropy change of hot water delta_SH =
       \n \ \%3i \ J/K", delta_SH);
32 printf ("\n\n Entropy change of cold water delta_SC
     = \n\ %3i J/K", delta_SC);
33 printf ("\n\n Net entropy change of irreverse
      process delta_S = \langle n \rangle n \% 3i J/K, delta_S);
```

Scilab code Exa 24.4 C24P4

```
1 clear
2 clc
3 //to find net entropy change of the gas for
        irreverse process
4
5 //Given:
6 //refer to figure 24-5(a) and (b) from page no. 550
7 //number of moles
8 n = 0.55//in mol
```

```
9 //room temperature
10 T = 293 / / in K
11 //molar gas constant
12 R = 8.31//in J/mol.K
13
14 // Solution:
15 //applying laws of thermodynamics
16 //applying formula for entropy change for isothermal
       expansion
17 //ratio of final to initial volumes //since both
      chamber are of same volumes
18 \text{ Vf_by_Vi} = 2
19 //entropy change of the gas for irreverse process
20 delta_S = n*R*log(Vf_by_Vi)//in J/K
21
22 printf ("\n\n Ratio of final to initial volumes VF/
      Vi = \langle n \rangle n \% 1i", Vf_by_Vi;
23 printf ("\n\n Entropy change of the gas for
      irreverse process delta_S = \langle n \rangle n \%.2 f J/K,
      delta_S);
```

Scilab code Exa 24.5 C24P5

```
clear
clc
//to find maximum possible efficiency of turbine

//Given:
//temperature of steam in boiler
TH = 520//in degree celsius
///temperature of steam in condenser
TL = 100//in degree celsius
// Solution:
// Solution:
// Applying laws of thermodynamics
```

Scilab code Exa 24.6 C24P6

```
1 clear
2 clc
3 //to find work per cycle required to operate
      refrigerator
4 //to find heat per cycle discharged to the room
6 //Given:
7 // coefficient of performance of refrigerator
8 K = 4.7
9 //rate of heat extraction
10 QL = 250/\text{in J/cycle}
11
12 // Solution:
13 //applying laws of thermodynamics
14 //applying formula for refrigeration cycle
15 //work per cycle required to operate refrigerator
16 W = QL/K//in J/cycle
17 //heat per cycle discharged to the room
18 QH = W+QL//in J/cycle
19
20 printf ("\n\n Work per cycle required to operate
      refrigerator W = \langle n \rangle n \% 3i \ J/cycle, , W);
```

21 printf ("\n\n Heat per cycle discharged to the room $QH = \frac{n \% 3i \ J/cycle}{}$, QH);

Scilab code Exa 24.7 C24P7

```
1 clear
2 clc
3 //to find minimum rate of energy to be supplied to
     the heat pump
4
5 // Given:
6 //outside temperature
7 TL = -10//in degree celsius
8 //interior temperature
9 TH = 22//in degree celsius
10 //heat transfer
11 QH = 16//in \ KW
12
13 // Solution:
14 //applying laws of thermodynamics
15 //applying formula for refrigeration cycle
16 //coefficient of performance
17 K = (TL+273)/((TH+273)-(TL+273))/taking temperature
      in K
18 //minimum rate of energy to be supplied to the heat
     pump
19 W_by_deltat = QH/(K+1)//in KW
20
21 printf ("\n\n Coefficient of performance K = \n\n \%
      .2 f",K);
22 printf ("\n\n Minimum rate of energy to be supplied
     to the heat pump W_by_deltat = \ln \%.1 f KW,
     W_by_deltat);
```

Scilab code Exa 24.8 C24P8

```
1 clear
2 clc
3 //to find heat energy extracted from high
     temperature reservior per cycle
4 //to find heat energy discharge to low temperature
     reservior per cycle
5 //to find entropy change per cycle
7 // Given:
8 //work output
9 W = 120//in J per cycle
10 //efficiency
11 Ex = 75//in percent
12 //boiling point of water
13 TH = 100//in degree celsius
14 //freezing point of water
15 TL = 0//in degree celsius
16
17 // Solution:
18 //applying laws of thermodynamics
19 //applying formula for refrigeration cycle
20 //applying carnot cycle formula
21 //efficiency of carnot engine
22 Ec = 1-((273+TL)/(TH+273))/taking temperatures in K
23 Ec1 = Ec*100//in percent
24 //heat energy extracted from high temperature
      reservior per cycle
25 QH = W/(Ex*10^-2)/in J
26 //heat energy discharge to low temperature reservior
      per cycle
27 QL = QH - W / / in J
28 delta_SH = -(QH)/(TH+273)//in J/K //taking
```

```
temperatures in K
29 delta_SL = (QL)/(TL+273)//in J/K//taking
      temperatures in K
30 delta_SWS = 0//in J/K
31 //entropy change per cycle
32 delta_Sx = delta_SH+delta_SL+delta_SWS // in J/K
33 \text{ Ec1} = \text{round}(\text{Ec1})
34
35 printf ("\n Efficiency of carnot engine Ec = \n
     \%.3 f", Ec);
36 printf ("\n Efficiency of carnot engine Ec = \n
     \%2i percent", Ec1);
37 printf ("\n Heat energy extracted from high
      temperature reservior per cycle QH = \ln \%3i J"
      (HQ,
38 printf ("\n\n Heat energy discharge to low
      temperature reservior per cycle QL = \ln \%3i J"
      , QL);
39 printf ("\n Entropy change per cycle delta_Sx = \n
     \n %.2 f J/K" ,delta_Sx);
```

Scilab code Exa 24.9 C24P9

```
1 clear
2 clc
3 //to find number of independent ways
4 //to find number of microstates
5
6 //Given:
7 //number of molecules
8 N = 200//in molecules
9 //half number of molecules
10 N1 = 100//in molecules
11 //for 150 molecules in one box and 50 molecules in one box
```