

대한민국특허 KOREAN INDUSTRIAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Industrial Property Office.

출 원 번 호

특허출원 2000년 제 711 호

Application Number

출 원 년 월 일

2000년 01월 07일

Date of Application

술

원

인 :

엘지정보통신주식회사

Applicant(s)

2000

11

21

01

특

허

청

년

COMMISSIONER

00000				
당	당	심	사	관
		T		
		-00		
		1		

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0009

【제출일자】 2000.01.07

【국제특허분류】 H04B

【발명의 국문명칭】최적의 셀 식별 코드 생성 및 그의 전송 방법

【발명의 영문명칭】method for generating optimal cell identification

code, and for transmitting the code

【출원인】

【명칭】 엘지정보통신주식회사

【출원인코드】 1-1998-000286-1

【대리인】

【성명】 강용복

【대리인코드】 9-1998-000048-4

【포괄위임등록번호】 1999-057037-3

【대리인】

【성명】 김용인

【대리인코드】 9-1998-000022-1

【포괄위임등록번호】 1999-057038-1

【발명자】

【성명의 국문표기】 송영준

【성명의 영문표기】 SONG, Young Joon

【주민등록번호】 651214-1108619

【우편번호】 431-080

【주소】 경기도 안양시 동안구 호계동 570번지 럭키아파트 101동 903호

【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다.

대리인 강용복 (인)

대리인 김용인 (인)

[수수료]

【기본출원료】	20	면	29,000	원	•	
【가산출원료】	20	면	20,000	원		
【우선권주장료】	0	건	0	원		
【심사청구료】	0	항	0	원		
[합계]			49,000	원		

【첨부서류】 1.요약서·명세서(도면)_1통

【요약서】

【요약】

본 발명은 차세대 이동통신에 관한 것으로, 특히 광대역 코드분할 다중접속(이하, W-CDMA 라 약칭함) 방식의 이동통신 시스템에서 셀(=기지국)을 식별하기 위한 셀 식별 코드의 생성과 그 생성된 코드의 전송 방법에 관한 것이다.

이에 대해 본 발명에서는 최적 성능의 셀 식별을 만족시키고, 소프트 핸드오 버 모드에서 최적의 다이버시티 효과를 발휘할 수 있도록, 하다마드 코드(Hadamard code)와 배직교 코드(Bi-orthogonal code)를 이용하여 최소해밍거리(Minimum Hamming Distance)가 최대가 되는 최적의 사이트 선택 다이버시티 전송(SSDT : Site Selection Diversity Transmit) 셀 식별 코드를 만들고, 이를 상향링크 채널 을 통해 보다 효과적으로 전송하는 방법을 제공한다.

【 대표도】

도 4c

【 색인어】

피이드백 식별자(FBI), 하다마드 코드(Hadamard code), 배직교 코드(Bi-orthogonal code)

【명세서】

【 발명의 명칭】

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

فلجائك ما و د م د ه

201 4 4

최적의 셀 식별 코드 생성 및 그의 전송 방법{method for generating optimal cell identification code, and for transmitting the code}

【 도면의 간단한 설명】

도 1은 3GPP 규격에 따른 상향링크 전용물리채널(DPCH) 구조를 나타낸 도면.

도 2는 3GPP 규격에 따른 상향링크 전용물리채널(DPCH)에서 피이드백 식별자(FBI) 필드의 상세 구조를 나타낸 도면.

도 3은 본 발명에서 각 슬롯당 피이드백 식별자(FBI) 필드에 1비트씩 삽입되는 경우, 셀 식별 코드 전송의 여러 예들을 설명하기 위한 도면.

도 4는 본 발명에서 각 슬롯당 피이드백 식별자(FBI) 필드에 2비트씩 삽입되는 경우, 셀 식별 코드 전송의 여러 예들을 설명하기 위한 도면.

도 5a 내지 도 5d는 본 발명에서 각 슬롯당 피이드백 식별자(FBI) 필드에 1 비트씩 삽입되는 경우, AWGN 채널에 대한 성능 평가 결과를 나타낸 도면.

도 6a 내지 도 6d는 본 발명에서 각 슬롯당 피이드백 식별자(FBI) 필드에 2 비트씩 삽입되는 경우, AWGN 채널에 대한 성능 평가 결과를 나타낸 도면.

도 7a 내지 도 7d는 본 발명에서 각 슬롯당 피이드백 식별자(FBI) 필드에 1 비트씩 삽입되는 경우, 페이딩 채널에 대한 성능 평가 결과를 나타낸 도면.

도 8a 내지 도 8d는 본 발명에서 각 슬롯당 피이드백 식별자(FBI) 필드에 2 비트씩 삽입되는 경우, 페이딩 채널에 대한 성능 평가 결과를 나타낸 도면. 【 발명의 상세한 설명】

【 발명의 목적】

<9>

<10>

<11>

<12>

【 발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 차세대 이동통신에 관한 것으로, 특히 W-CDMA 방식의 이동통신 시스템에서 셀(=기지국)을 식별하기 위한 셀 식별 코드의 생성과 그 생성된 코드의 전송 방법에 관한 것이다.

일반적으로 3세대 공동 프로젝트(3GPP : Third Generation Partnership

Project)의 무선 접속 네트워크(RAN : Radio Access Network) 규격에서는 사이트

선택 다이버시티 전송(Site Selection Diversity Transmit ; 이하, SSDT 라 약칭

함)에 대해 기술하고 있다. 여기서 사이트(Site), 기지국 및 셀은 서로 동일한 의

미를 갖는다.

SSDT는 소프트 핸드오버 모드(soft handover mode)에서의 선택적인 대규모

다이버시티(macro diversity) 기법으로, 이러한 시스템측(UTRAN : UMTS

Terrestrial Radio Access Network)에 의해 그 서비스 여부가 결정되는 SSDT 동작

을 통해 사용자측(UE: User Equipment)은 활성군(active set)에 있는 셀들 중에서

"Primary cell"이라는 한 개의 셀을 선택한다. 이 때 선택되지 않은 다른 모든 셀

들은 "Non-primary cell"이 된다.

여기서 SSDT의 첫 번째 목적은 하향링크에서의 정보 전송을 제1 순위 셀(이

하, Primary cell 라 칭함)에서 실행하도록 하여, 소프트 핸드오버 모드에서 다중

전송에 의해 야기되는 간섭을 줄이고자 함이다.

<13>

SSDT의 두 번째 목적은 사이트의 빠른 선택을 시스템측(UTRAN)의 개입 없이이 이행하여, 소프트 핸드오버의 이점을 유지하기 위함이다.

<14>

그런데 Primary cell 선택을 위해서는 전송 레벨이 일정 수준 이상이 되는 각 유효 셀들에게 각 임시 식별자(temporary identification)가 할당되며, 사용자 측(UE)은 Primary cell에 해당되는 식별자 코드를 접속되어 있는 셀들에게 알린다.

<15>

이 때 사용자측(UE)은 유효 셀들(active cells)에 의해 전송된 공통 파일럿의 수신 레벨을 주기적으로 측정하고 비교하여 Primary cell을 선택하며, 가장 큰파일럿 전력을 가진 셀이 Primary cell로 선택된다. 이후 사용자측(UE)에 의해 후순위(이하, Non-primary 라 칭함)로 선택된 셀들의 전송 전력을 단절시킨다.

<16>

<17>

Primary cell의 식별자 코드는 도 1에 도시된 상향링크 전용물리채널(DPCH)에서 상향링크 전용물리제어채널(DPCCH: Dedicated Physical Control Channel)과 같은 제어채널의 여러 필드 중 피이드백 식별자(Feed-Back Indicator: 이하, FBI라 약칭함)필드를 통해 활성군에 속해 있는 셀들에게 주기적으로 전달된다. 다음의 표 2에서 알 수 있듯이 FBI는 한 개의 슬롯에 1비트 또는 2비트가 전송되는데, FBI가 1비트인 경우는 한 무선프레임에 15비트가 전송되고, FBI가 2비트인 경우는한 무선프레임에 30비트가 전송된다. 이는 한 무선프레임이 15개의 타임슬롯으로 구성되기 때문이다. 그리고 사용자측(UE)은 식별자 코드를 선택된 Primary cell에게 전송할 때, 각 슬롯당 FBI 필드에 1비트를 삽입하여 전송할지 아니면 2비트를 삽입하여 전송할지 결정한다.

참고로 도 1에서 k는 상향링크 전용물리채널(DPCH)에서의 확산인자(SF :

 Spreading Factor)와 관계되는데, 256에서 4까지의 값을 갖는 확산인자(SF)는

 256/2^k로 주어진다. 또한 상향링크 전용물리채널(DPCH)의

전용물리데이터채널(DPDCH)과 전용물리제어채널(DPCCH)에서 각 슬롯당 필드들의 비 트수는 다음 표 1과 표 2와 같이 정해진다.

슬롯 포맷 번호	채널 비트 레이트	채널 심볼 레이트	확산		슬롯당	N _{data}
(Slot Format #1)	(Channel Bit Rate)	(Channel Symbol Rate)	인자	비트수	비트수	비트수
	(kbps)	(ksps)	(SF)	(Bits/	(Bits/	''
				Frame)	Slot)	
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80
4	240	240	16	2400	160	160
5	480	480	8	4800	320	320
6	960	960	4	9600	640	640

【 丑 2】

<19>

<20>

슬롯 포맷 번호	채널 비트	채널 심볼 레	확산	프레임당	슬롯당		N _{TFC1}	N _{FBI}	N _{TPC}
(Slot Format #I)	레이트	이트	인자	비트수	비트수		비	비	비
İ	(Channel	(Channe I	(SF)	(Bits/	(Bits/	트	트	E	트
	Bit Rate)	Symbol Rate)		Frame)	Slot)	수	수	수	수
	(kbps)	(ksps)				<u>'</u>		'	. '
0	15 ⁻	15	256	150	10	6	2	0	2
1	15	15	256	150	· 10	8	0	0	2
2	15	15	256	150	10	5	2	1	2
3	15	15	256	150	10	7	0	1	2
4	15	15	256	150	10	6	0	2	2
5	15	15	256	150	10	5	2	2	1

상기한 표 2에서 FBI 필드에 삽입되는 각 슬롯당 비트수를 나타내는 NFBI는

사용자측(UE)과 시스템측(UTRAN)의 접속점(Access point) 사이에 피이드백이 요구되는 폐쇄 루프 모드 전송 다이버시티(closed loop mode transmit diversity)나 SSDT에 사용된다. 또한 N_{FBI}는 도 2에 도시된 바와 같이 S 필드(S field)와 D

필드(D field)로 나뉘어진다. 여기서 S 필드는 SSDT 신호처리에 사용되고, D 필드는 피이드백 모드의 전송 다이버시티 신호처리에 사용된다.

<21>

도 2에서 S 필드 및 D 필드의 길이는 각각 0, 1, 2가 될 수 있으며, 이 또한 표 2를 통해 알 수 있다. 만약 SSDT에 의한 전력제어와 피이드백 모드의 전송 다이버시티를 동시에 사용할 경우에는 S 필드와 D 필드에 각각 1비트씩을 사용한다.

<22>

이하 소프트 핸드오버 모드에서 다중 전송에 의해 야기되는 간섭을 줄이기 위한 SSDT 동작에 대해 보다 상세히 설명한다.

<23>

상기의 SSDT은 소프트 핸드오버 모드(soft handover mode)에서 활성군의 셀들에 근거한 시스템측(UTRAN)에 의해 초기 동작되며, 이후 현재 소프트 핸드오버주기 동안 활성화되어 있는 SSDT 옵션의 시스템측(UTRAN)은 셀과 사용자측(UE)에게 이를 알린다.

<24>

이 때 임시 식별자가 활성군의 순서에 근거하여 할당되며, 활성화되어 있는 여러 유효 셀 및 사용자측(UE)에게 전달된다.

<25>

유효 리스트(Active list)를 수신한 특정 셀은 자신의 식별자 코드를 결정할수 있는 그 리스트에서 등록지위(entry position)를 알 수 있으며, 동시에 유효 리스트를 수신 중에 있는 사용자측(UE)은 그 리스트에서 셀이 등록하는 순서에 따른 유효 셀들의 각 식별자 코드를 정할 수 있다. 그러므로 시스템측(UTRAN)과 사용자측(UE)은 식별자 코드와 셀들간에 동일한 조합을 갖는다. 이 때 유효 리스트는 매번 갱신되며, 갱신된 유효 리스트는 모든 유효 셀들과 사용자측(UE)에 전달된다.

<26>

SSDT와 사용자측(UE) 인증(acknowledgement)의 활성화 이후 사용자측(UE)이

Primary cell의 식별자 코드를 보내기 시작하는데, 성공적인 SSDT의 활성화와 사용자축(UE) 인증 수락에 따라 유효 셀들은 Primary cell 식별자 정보를 검출하기 시작한다.

<27> 다음은 임시 셀 식별자의 설정에 대해 설명한다.

<28>

<29>

<30>

<31>

<32>

SSDT 동안 각 셀에게 임시 식별자가 부여되며, 이 식별자는 사이트 선택 신호(Site Selection signal)로써 사용된다.

상위계층에서 SSDT 모드로 사용자측(UE)과 셀간 전송할 것으로 결정되는 경우, 사용자측(UE)은 유효 셀 중 가장 적절한 하나의 셀을 Primary cell로 정하여 FBI 필드를 통해 시스템측(UTRAN)에 알려 준다.

또한 SSDT 모드로 동작하는 경우 하나의 셀에서만 신호가 전송되므로, 나머지 유효 셀들에 대해서는 셀간 간섭이 줄어들어 셀 성능을 증가시킬 수 있다.

임시 셀 식별자는 특정 비트길이를 갖는 이진 비트 시퀀스로 부여되며, 이를 다음 표 3과 표 4에 나타내었다. 표 3에는 각 슬롯당 FBI가 1비트인 경우의 임시 식별자 코드이며, 표 4는 각 슬롯당 FBI가 2비트인 경우의 임시 식별자 코드이다.

다음 표 3과 표 4에서 알 수 있듯이, 임시 식별자 코드는 "long", "medium", 그리고 "short"의 3가지 형태를 가지며, 이들 각각의 형태에 대해 모두 8가지 코드가 있다. 이들 임시 식별자 코드는 반드시 한 프레임 내에서 전송되어야 하는데, 만약 임시 식별자 코드를 한 프레임의 각 FBI 필드에 전부 삽입하여 전송하지 못하고 두 프레임에 삽입하여 전송할 경우에는 임시 식별자 코드의 마지막 비트가 평쳐링(Puncturing)된다.

<34>

<36>

식별자 라벨	식별자 코드		
	long	medium	shor t
a	0000000000000000	0000000(0)	00000
b	1111111111111111	1111111(1)	11111
С	000000001111111	0000111(1)	00011
d	111111110000000	1111000(0)	11100
е	000011111111000	0011110(0)	00110
f	111100000000111	1100001(1)	11001
g	001111000011110	0110011(0)	01010
h	110000111100001	1001100(1)	10101

상기한 표 3에서 코드길이가 15인 long 식별자 코드는 최소해밍거리(dmin)가

최대 7이 되고, 코드길이가 8인 medium 식별자 코드는 최소해밍거리(dmin)가 최대 4가 되고, 코드길이가 8인 각 medium 식별자 코드에서 마지막 비트를 펑쳐링한 코드길이 7인 식별자 코드들은 최소해밍거리(dmin)가 최대 3이 되고, 코드길이가 5인 short 식별자 코드는 최소해밍거리(dmin)가 최대 2가 된다.

<35> 【 丑 4】

식별자 라벨	T	식별자 코드	
7 27 4 2	long	medium	short
a	0000000(0)	000(0)	000
	0000000(0)	000(0)	000
b	1111111(1)	111(1)	111
	1111111(1)	111(1)	111
С	0000000(0)	000(0)	000
	1111111(1)	111(1)	111
đ	1111111(1)	111(1)	111
	0000000(0)	000(0)	000
e	0000111(1)	001(1)	001
	1111000(0)	110(0)	100
f	1111000(0)	110(0)	110
	0000111(1)	001(1)	011
g	0011110(0)	011(0)	010
	0011110(0)	011(0)	010
h	1100001(1)	100(1)	101
	1100001(1)	100(1)	101

상기한 표 4에서 코드길이가 16인 long 식별자 코드는 최소해밍거리(dmin)가

최대 8이 되고, 코드길이가 16인 각 long 식별자 코드에서 마지막 비트쌍을 평쳐링한 코드길이 14인 식별자 코드들은 최소해밍거리(dmin)가 최대 6이 되고, 코드길이가 8인 medium 식별자 코드는 최소해밍거리(dmin)가 최대 4가 되고, 코드길이가 8인 각 medium 식별자 코드에서 마지막 비트를 평쳐링한 코드길이 6인 식별자 코드들은 최소해밍거리(dmin)가 최대 2가 되고, 코드길이가 6인 short 식별자 코드는 최소해밍거리(dmin)가 최대 2가 된다.

다음 표 5는 상기한 표 3과 표 4에 나타낸 임시 식별자 코드의 특성에 의해 각 식별자 코드 형태별로 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수를 나타내었다.

【 丑 5】

<37>

<38>

<39>

<40>

코드 길이	SSDT를 위해 할당된	슬롯당 FBI 비트수
	1	2
"long"	프레임당 1회 사이트 선택	프레임당 2회 사이트 선택
"medium"	프레임당 2회 사이트 선택	프레임당 4회 사이트 선택
"short"	프레임당 3회 사이트 선택	프레임당 5회 사이트 선택

상기한 표 5를 자세히 설명하면, 먼저 슬롯당 FBI가 1비트인 경우에 long 식별자 코드는 각 슬롯에 1비트씩 한 프레임당 15비트가 전송되므로 한 프레임당 1회의 사이트 선택이 이루어지며, 슬롯당 FBI가 2비트인 경우에 long 식별자 코드는 각 슬롯에 2비트씩 한 프레임당 30비트가 전송되므로 한 프레임당 2회의 사이트 선택이 이루어진다.

또한 슬롯당 FBI가 1비트인 경우에 medium 식별자 코드는 한 프레임당 15비트가 전송되므로 한 프레임당 2회의 사이트 선택이 이루어지며, 슬롯당 FBI가 2비

트인 경우에 medium 식별자 코드는 한 프레임당 30비트가 전송되므로 한 프레임당 4회의 사이트 선택이 이루어진다.

<41>

마지막으로 슬롯당 FBI가 1비트인 경우에 short 식별자 코드는 한 프레임당 15비트가 전송되므로 한 프레임당 3회의 사이트 선택이 이루어지며, 슬롯당 FBI가 2비트인 경우에 medium 식별자 코드는 한 프레임당 30비트가 전송되므로 한 프레임당 5회의 사이트 선택이 이루어진다.

<42>

앞에서도 언급했듯이 SSDT 및 사용자측(UE) 인증(acknowledgement)의 활성화이후 사용자측(UE)이 상기한 임시 식별자 코드 중 하나를 Primary cell 식별자 코드로 결정하여 전달할 때는 상향링크 제어채널의 FBI 필드를 통해 주기적으로 전달한다.

<43>

만약 어느 셀이 자신의 식별자 코드와 일치되지 않은 Primary cell 식별자 코드를 수신하고 이 셀에 수신된 상향링크 신호의 품질이 시스템측(UTRAN)에 의해 정의되는 임계값을 만족하지 않을 경우에는, 이 셀은 Non-primary 셀이 된다.

<44>

다음 SSDT의 종료는 시스템측(UTRAN)에 의해 결정된다. 시스템측(UTRAN)은 소프트 핸드오버의 종료 절차와 동일한 방식으로 SSDT를 종료하고 이 사실을 모든 셀들과 사용자측(UE)에게 알린다.

<45>

이와 같은 종래의 SSDT에서 각 셀을 식별하는데 있어 사용되는 셀 식별 코드의 성능은 최대 상호 상관함수 값 또는 최소해밍거리(dmin)에 의해 결정된다. 이에따라 최대 상호 상관함수 값이 작거나 최소해밍거리(dmin)가 최대인 최적의 셀 식별

코드가 현재 요구되고 있으며, 이를 이용하여 보다 우수한 성능을 내는 셀 식별 방 안이 요구되고 있다.

【 발명이 이루고자 하는 기술적 과제】

<46>

본 발명의 목적은 상기한 점을 감안하여 안출한 것으로, 최적 성능의 셀 식별을 만족시키고, 소프트 핸드오버 모드에서 최적의 다이버시티 효과를 발휘할 수있도록, 하다마드 코드(Hadamard code)와 배직교 코드(Bi-orthogonal code)를 이용하여 최소해밍거리(Minimum Hamming Distance)가 최대가 되는 최적의 SSDT 셀 식별코드를 만들고, 이를 상향링크 채널을 통해 보다 효과적으로 전송하는 방법을 제공한다.

<47>

상기한 목적을 달성하기 위한 본 발명에 따른 최적의 셀 식별 코드 생성 및 그의 전송 방법의 특징은, 사용자측(UE)이 SSDT 동안 각 유효 셀들에게 부여할 다수의 식별자 코드가 하다마드 코드 및 배직교 코드를 사용하여 생성되는 단계와, 상기 사용자측(UE)에 의해 선택된 해당 셀의 식별자 코드를 상향링크 특정 제어채 널을 통해 전송하고자 할 때, 각 슬롯의 FBI 필드에 삽입될 비트수가 상기 사용자측(UE)에 의해 결정되는 단계와, 상기 생성된 식별자 코드 중 상기 사용자측(UE)에 의해 선택된 해당 셀의 식별자 코드 중 상기 사용자측(UE)에 의해 선택된 해당 셀의 식별자 코드를 그의 코드 형태에 따라 1회 또는 그 이상의회수만큼 반복하여 상기 각 유효 셀들에게 전송하는 단계로 이루어진다.

<48>

바람직하게는 상기 코드 생성 단계가, 코드길이 8과 16인 하다마드 코드의 첫 번째 비트를 평쳐링하여 상기 식별자 코드를 생성시키며, 상기 식별자 코드의 형태에 따라 상기 첫 번째 비트 및 그 밖의 하나 또는 그 이상의 다른 비트를 평쳐 링하여 상기 식별자 코드를 생성시킨다.

<49>

여기서 상기 코드길이 16인 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 코드길이 14인 식별자 코드가 생성되며, 경우에 따라 상기 코드길이 16 인 하다마드 코드의 첫 번째 비트와 아홉 번째 비트를 평쳐링하여 코드길이 14인 식별자 코드가 생성된다.

<50>

또한 상기 코드 전송 단계가, 코드길이 8과 16인 배직교 코드를 사용하여 생성된 식별자 코드와, 각 프레임마다 정해진 비트길이에 맞춰 코드길이 8과 16인 하다마드 코드를 평쳐링하여 생성된 식별자 코드가 각 프레임에 함께 전송된다.

【 발명의 구성】

<51>

이하 본 발명에 따른 최적의 셀 식별 코드 생성 및 그의 전송 방법에 대한 바람직한 일 실시 예를 첨부된 도면을 참조하여 설명한다.

<52>

임시 셀 식별자는 특정 비트길이를 갖는 이진 비트 시퀀스로 부여되며, 본 발명에서 제안한 SSDT 임시 식별자 코드를 다음 표 6과 표 7에 나타내었다.

<53>

표 6에는 각 슬롯당 FBI가 1비트인 경우의 SSDT 임시 식별자 코드이며, 표 7은 각 슬롯당 FBI가 2비트인 경우의 SSDT 임시 식별자 코드이다.

<54>

다음 표 6과 표 7에서 알 수 있듯이, 본 발명의 임시 식별자 코드는 "Long", "Medium", 그리고 "Short"의 3가지 형태를 가지며, 이들 각각의 형태에 대해 모두 8가지 코드가 있다. 이들 임시 식별자 코드는 반드시 한 프레임 내에서 전송되어야 하는데, 만약 임시 식별자 코드를 한 프레임의 각 FBI 필드에 전부 삽입하여 전송하지 못하고 두 프레임에 삽입하여 전송할 경우에는 평쳐링(Puncturing)된 식별자

코드를 사용한다.

【 丑 6】

<55>

<56>

식별자 라	식별자 코드				
벨	long	medium(8)	medium(7)	short	
A	0000000000000000	0000000	0000000	00000	
В	101010101010101	11111111	1010101	10010	
C	011001100110011	01010101	0110011	01001	
D	110011001100110	10101010	1100110	11011	
E	000111100001111	00110011	0001111	00111	
F	101101001011010	11001100	1011010	10101	
G	0111100001111100	01100110	0111100	01110	
Н	110100101101001	10011001	1101001	11100	

상기한 표 6에서 하다마드 코드에 기반하여 코드길이가 15인 long 식별자 코드는 최소해밍거리(dmin)가 최대 8이 되고, 배직교 코드에 기반하여 코드길이가 8인 medium 식별자 코드는 최소해밍거리(dmin)가 최대 4가 되고, 길이가 8인 하다마드 코드에서 첫 번째 비트를 평쳐링한 코드길이 7인 식별자 코드들은 최소해밍거리(dmin)가 최대 4가 되고, 하다마드 코드에 기반하여 코드길이가 5인 short 식별자 코드는 최소해밍거리(dmin)가 최대 2가 된다.

<57> 【 표 7】

J별자 라	벤 (여기 체이 스크	olejoj por	식별자 코드		
, E - .	벨 <u>(열과 행은 슬롯</u> long(16)	<u> </u>			
A	00000000	long(14)	medium(8)	medium(6)	short
	00000000	0000000	0000	000	000
В	11111111		0000	000	000
_	11111111	0000000	1111	000	000
С	00000000	1111111	1111	111	1111
•	11111111	1010101	0000	101	101
D		1010101	1111	101	101
D	11111111	1010101	1111	101	101
E	00000000	0101010	0000	010	010
E	01010101	0110011	0101	011	011
F	01010101	0110011	0101	011	011
Г	10101010	0110011	1010	011	011
 -	10101010	1001100	1010	100	100
G	01010101	1100110	0101	110	110
	10101010	1100110	1010	110	
Н	10101010	1100110	1010	110	110
	01010101	0011001	0101	001	110

상기한 표 7에서 길이가 16인 배직교 코드에 기반하여 코드길이가 16인 long

식별자 코드는 최소해밍거리(d_{min})가 최대 8이 되고, 길이가 16인 하다마드 코드에서

첫 번째 비트와 두 번째 비트를 펑쳐링한 코드길이 14인 long 식별자 코드는 최소해밍거리(dmin)가 최대 7이 되고, 배직교 코드에 기반하여 코드길이가 8인 medium 식

별자 코드는 최소해밍거리(dmin)가 최대 4가 되고, 길이가 8인 하다마드 코드에서 첫

번째 비트와 다섯 번째 비트를 펑쳐링한 코드길이 6인 식별자 코드들은 최소해밍거

리(d_{min})가 최대 3이 되고, 하다마드 코드에 기반하여 코드길이가 6인 short 식별자

코드는 최소해밍거리(dmin)가 최대 3이 된다.

상기한 표 6과 표 7에 나타낸 본 발명의 임시 식별자 코드는 다음에 표 8에 나타낸 길이가 각각 8이고 16인 하다마드 코드를 기반으로 하여 생성되며, 또한 다음 표 9에 나타낸 길이가 각각 8이고 16인 배직교 코드를 기반으로 하여 생성된다.

<59>

<58>

길이가 8인 하다마드 코드	길이가 16인 하다마드 코드
$H_{3,0} = 0000 \ 0000$	$H_{4.0} = 0000 \ 0000 \ 0000 \ 0000$
$H_{3,1} = 0101 \ 0101$	$H_{4,1} = 0101 \ 0101 \ 0101 \ 0101$
$H_{3,2} = 0011 \ 0011$	$H_{4,2} = 0011 \ 0011 \ 0011 \ 0011$
$H_{3,3} = 0110 \ 0110$	$H_{4.3} = 0110 \ 0110 \ 0110 \ 0110$
$H_{3,4} = 0000 1111$	$H_{4.4} = 0000 1111 0000 1111$
$H_{3.5} = 0101 \ 1010$	$H_{4.5} = 0101 \ 1010 \ 0101 \ 1010$
$H_{3.6} = 0011 \ 1100$	$H_{4.6} = 0011 \ 1100 \ 0011 \ 1100$
$H_{3,7} = 0110 \ 1001$	$H_{4.7} = 0110 \ 1001 \ 0110 \ 1001$
	$H_{4.8} = 0000 0000 1111 1111$
	$H_{4,9} = 0101 \ 0101 \ 1010 \ 1010$
	H _{4.10} = 0011 0011 1100 1100
	H _{4.11} = 0110 0110 1001 1001
	H _{4.12} = 0000 1111 1111 0000
	H _{4.13} = 0101 1010 1010 0101
	H _{4,14} = 0011 1100 1100 0011
	H _{4.15} = 0110 1001 1001 0110

상기한 표 8에서 길이가 8인 하다마드 코드와 길이가 16인 하다마드 코드는 첫 번째 비트가 모두 0의 비트값을 가지므로, 이 첫 번째 비트를 평쳐링하더라도 최소해밍거리에는 영향을 주지 않는다는 특성이 있다.

특히 본 발명에서는 식별자 코드 형태별로 각각 8개의 SSDT 식별자 코드가 사용되므로, 길이가 8인 하다마드 코드 8개를 사용하며, 길이가 16인 하다마드 코드에서는 16개 중 상위 8개를 사용한다.

그런데 특이한 점은 본 발명에서 사용되는 길이가 16인 상위 8개의 하다마드 코드들이 모두 아홉 번째 비트에서 비트값으로 0을 갖는다는 것이다. 이에 따라 이 들 아홉 번째 비트들을 펑쳐링하더라도 첫 번째 비트를 펑쳐링할 때와 같이 최소해 밍거리에는 영향을 주지 않는다는 것이다. 따라서 본 발명에서는 별도로 다음에 설 명할 표 10과 같이 길이가 16인 하다마드 코드의 첫 번째 비트와 아홉 번째 비트를

<61>

평쳐링한 코드길이 14인 long 식별자 코드를 상호 보완적으로 사용한다.

【 班 9】

<64>

<65>

길이가 8인 배직교 코드	길이가 16인 배직교 코드
B _{3.0} = 0000 0000	B _{4.0} = 0000 0000 0000 0000
$B_{3,1} = 1111 \ 1111$	$B_{4,1} = 1111 \ 1111 \ 1111 \ 1111$
$B_{3,2} = 0101 \ 0101$	$B_{4,2} = 0101 \ 0101 \ 0101 \ 0101$
$B_{3,3} = 1010 \ 1010$	$B_{4,3} = 1010 \ 1010 \ 1010 \ 1010$
$B_{3,4} = 0011 \ 0011$	$B_{4,4} = 0011 \ 0011 \ 0011 \ 0011$
$B_{3,5} = 1100 \ 1100$	$B_{4.5} = 1100 \ 1100 \ 1100 \ 1100$
$B_{3.6} = 0110 \ 0110$	$B_{4.6} = 0110 \ 0110 \ 0110 \ 0110$
$B_{3,7} = 1001 \ 1001$	$B_{4.7} = 1001 \ 1001 \ 1001 \ 1001$
$B_{3,8} = 0000 1111$	$B_{4.8} = 0000 \ 1111 \ 0000 \ 1111$
$B_{3,9} = 1111 \ 0000$	$B_{4.9} = 1111 \ 0000 \ 1111 \ 0000$
$B_{3,10} = 0101 \ 1010$	$B_{4.10} = 0101 \ 1010 \ 0101 \ 1010$
$B_{3,11} = 1010 \ 0101$	$B_{4.11} = 1010 \ 0101 \ 1010 \ 0101$
$B_{3,12} = 0011 \ 1100$	$B_{4.12} = 0011 \ 1100 \ 0011 \ 1100$
$B_{3,13} = 1100 \ 0011$	$B_{4,13} = 1100 \ 0011 \ 1100 \ 0011$
$B_{3,14} = 0110 \ 1001$	$B_{4,14} = 0110 \ 1001 \ 0110 \ 1001$
$B_{3,15} = 1001 \ 0110$	$B_{4,15} = 1001 \ 0110 \ 1001 \ 0110$
	$B_{4,16} = 0000 0000 1111 1111$
	$B_{4,17} = 1111 \ 1111 \ 0000 \ 0000$
	$B_{4,18} = 0101 \ 0101 \ 1010 \ 1010$
	$B_{4.19} = 1010 \ 1010 \ 0101 \ 0101$
	B _{4,20} = 0011 0011 1100 1100
	B _{4,21} = 1100 1100 0011 0011
	B _{4.22} = 0110 0110 1001 1001
,	B _{4.23} = 1001 1001 0110 0110
,	B _{4,24} = 0000 1111 1111 0000
•	B _{4,25} = 1111 0000 0000 1111
	B _{4.26} = 0101 1010 1010 0101
	B _{4.27} = 1010 0101 0101 1010
	B _{4.28} = 0011 1100 1100 0011
	B _{4.29} = 1100 0011 0011 1100
	B _{4,30} = 0110 1001 1001 0110
	$B_{4.31} = 1001 \ 0110 \ 0110 \ 1001$

상기한 표 9에서 길이가 8인 배직교 코드와 길이가 16인 배직교 코드는 동일한 각 길이의 하다마드 코드에 비해 최소해밍분포(minimum Hamming distribution) 측면에서 더 이득이 있다. 다시 말하면 길이가 8인 배직교 코드의 경우에는 해밍거

=

리가 코드길이와 동일하게 8인 경우가 4번 있으며, 길이가 16인 배직교 코드의 경우에는 해밍거리가 코드길이와 동일하게 16인 경우가 4번 있다.

<66>

따라서 본 발명에서는 각 슬롯당 FBI가 1비트인 경우에 코드길이가 8인 medium 식별자 코드 8개와, 각 슬롯당 FBI가 2비트인 경우에 코드길이가 8인 medium 식별자 코드 8개로써, 상기한 표 9의 길이가 8인 배직교 코드를 사용한다. 또한 각 슬롯당 FBI가 2비트인 경우에 코드길이가 16인 long 식별자 코드 8개로써 상기한 표 9의 길이가 16인 32개의 배직교 코드 중 상위 8개를 사용한다.

<67>

그러나 상기와 같은 경우를 제외한 나머지 SSDT 식별자 코드로는 모두 상기 한 표 8의 하다마드 코드를 사용한다.

<68>

다음은 최소해밍거리를 최대화할 수 있도록 하다마드 코드 및 배직교 코드에 기반하여 생성되는 SSDT 식별자 코드의 생성 절차를 설명한다.

<69>

이 생성 절차에서 하다마드 코드를 기반한 SSDT 식별자 코드의 생성 원리 중하나는, 앞에서도 언급했듯이 길이가 8인 하다마드 코드나 길이가 16인 하다마드 코드 모두의 첫 번째 비트가 0의 비트값을 갖는다는 점을 이용한다. 결국 하다마드 코드의 첫 번째 비트를 평쳐링하여 생성된 SSDT 식별자 코드가 전송되더라도 최소해밍거리가 감소하지 않고 동일하게 유지된다.

<70>

또한 이 생성 절차에서 배직교 코드를 기반한 SSDT 식별자 코드의 생성 원리 중 하나는, 길이가 8 또는 길이가 16인 배직교 코드가 동일한 각 길이의 하다마드 코드에 비해 최소해밍분포(minimum Hamming distribution) 측면에서 더 이득이 있다는 점을 이용한다.

<71>

먼저 각 슬롯당 FBI가 1비트인 경우이다.

<72>

코드길이가 15인 8개의 long 식별자 코드는 코드길이가 16인 8개의 하다마드 코드의 첫 번째 비트를 평쳐링하여 만든다. 이에 따른 최소해밍거리(d_{min})는 최대 8이다.

<73>

다음 코드길이가 8인 8개의 medium 식별자 코드는 코드길이가 8인 8개의 배직교 코드를 그대로 사용한다. 이에 따른 최소해밍거리(dmin)는 최대 4이다.

<74>

다음 코드길이가 7인 8개의 medium 식별자 코드는 코드길이가 8인 8개의 하다마드 코드의 첫 번째 비트를 펑쳐링하여 만든다. 이에 따른 최소해밍거리(d_{min})는 최대 4이다.

<75>

다음 코드길이가 5인 8개의 short 식별자 코드는 코드길이가 8인 8개의 하다 마드 코드의 첫 번째 비트를 먼저 평쳐링하고, 나머지 임의의 위치의 두 비트를 평 쳐링하여 만든다. 이에 대한 평쳐링 비트 패턴을 다음 표 10, 표 11 및 표 12에 나 타내었으며, 이에 따른 최소해밍거리(dmin)는 모든 경우에서 최대 2이다.

<76> 【 丑 10】

_		
L	코드길이 8인 하다마드 코드	코드길이 5인 short 식별자 코드
-	비트의 열 위치	
00	00000000	
0	0110011	
0		011110111100111001110010100101100111000110001100011000110001100011000110001100011000110000
0	0111100	
		0 1001 1100 11000 11100 11110 11110 100 100 100 1110 100 11

<77> 【 班 11】

코드길이 8인 하다마드 코드	코드길이 5인 short 식별자 코드				
비트의 열 위치 12345678 00000000 01010101 00110011 01100110	24678 24578 24568 24567 23678 23578 23568 000000000000000000000000000000000000				

<78> 【 丑 12】

<79>

코드길이 8인 하다마드 코드 비트의 열 위치	코드길이 5인 short 식별자 코드			
12345678 000000000 01010101 001100110 01100110	$\begin{smallmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 &$			

상기한 표 10, 표 11 및 표 12에 나타낸 short 식별자 코드들은 공통적으로

코드길이 8인 하다마드 코드의 첫 번째 비트를 펑쳐링하여 생성되며, 이후 2비트는 21가지의 패턴으로 펑쳐링되어 최종 코드길이 5의 short 식별자 코드가 된다.

다시 말하자면, 표 10에 나타낸 코드길이 5의 short 식별자 코드는 코드길이 8인 8개의 하다마드 코드에서 각각 순서대로 (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,3,4) 위치 패턴의 각 3비트들을 평쳐링하여 생성된다.

<80>

<81>

<82>

<83>

<84>

다음 표 11에 나타낸 코드길이 5의 short 식별자 코드는 코드길이 8인 8개의 하다마드 코드에서 각각 순서대로 (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,4,5), (1,4,6), (1,4,7) 위치 패턴의 각 3비트들을 펑쳐링하여 생성된다.

마지막 표 12에 나타낸 코드길이 5의 short 식별자 코드는 코드길이 8인 8개의 하다마드 코드에서 각각 순서대로 (1,4,8), (1,5,6), (1,5,7), (1,5,8), (1,6,7), (1,6,8), (1,7,8) 위치 패턴의 각 3비트들을 평쳐링하여 생성된다.

그러나 상기한 21가지의 평쳐링 위치 패턴 중 코드길이가 8인 8개의 하다마드 코드에서 첫 번째, 두 번째 및 여섯 번째 비트들을 평쳐링하여 생성된 8개의 short 식별자 코드를 사용할 때 최적의 성능을 발휘한다.

또한 본 발명에서는 별도의 예로 상기한 표 10의 일부 short 식별자 코드들과 같이 공통적으로 코드길이 8비트인 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 생성되며, 이후 나머지 1비트는 6가지의 패턴으로 평쳐링되어 각각 순서대로 (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8) 위치 패턴의 3비트들을 평쳐링하여 생성된 최종 코드길이 5비트의 short 식별자 코드가 사용된다.

<85>

이와 같이 코드길이 8비트인 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 코드길이 5인 식별자 코드들 또는 코드길이 6인 식별자 코드들을 생성하면, 각 슬롯당 피이드백 식별자(FBI) 필드에 1비트씩 삽입되는 경우나 각 슬롯당 피이드백 식별자(FBI) 필드에 2비트씩 삽입되는 경우에서 공통되는 평쳐링 패턴에 의해 식별자 코드가 생성될 수 있으므로, 수신측 디코딩에 사용될 하드웨어를 보다 간단하게 구현할 수 있게 된다.

<86>

다음은 각 슬롯당 FBI가 2비트인 경우이다.

<87>

코드길이가 16인 8개의 long 식별자 코드는 코드길이가 16인 8개의 배직교 코드를 그대로 사용한다. 이에 따른 최소해밍거리(d_{nin})는 최대 8이다.

<88>

다음 코드길이가 14인 8개의 long 식별자 코드는 코드길이가 16인 8개의 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 만든다. 이에 따른 최소해밍거리(dmin)는 최대 7이다.

<89>

다음 코드길이가 8인 8개의 medium 식별자 코드는 코드길이가 8인 8개의 배 직교 코드를 그대로 사용한다. 이에 따른 최소해밍거리(dmin)는 최대 4이다.

<90>

다음 코드길이가 6인 8개의 medium 식별자 코드는 코드길이가 8인 8개의 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 만든다. 이에 따른 최소해밍거리(dmin)는 최대 3이다.

<91>

다음 코드길이가 6인 8개의 short 식별자 코드는 코드길이가 8인 8개의 하다 마드 코드의 첫 번째 비트와 두 번째 비트를 펑쳐링하여 만든다. 이에 따른 최소해 밍거리(dmin)는 최대 3이다.

<92>

그런데 본 발명에서는 각 슬롯당 FBI가 2비트인 경우에, 상기와 같이 코드길이가 16인 8개의 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 생성된 SSDT 식별자 코드에 대해 상호 보완적으로 사용할 수 있는 표 13의 SSDT 식별자코드를 더 사용한다.

<93> 【 丑 13】

	1		식별자 코드		•		
식별자 라벨	(열과 행은 슬롯 역	위치와 FBI 비트 위	· - ·				
	long(16)	long(14)	medium(8)	medium(6)	short		
A `	00000000	0000000	0000	000	000		
	00000000	0000000	0000	000	000		
В	11111111	1111000	1111	000	000		
	111111111	0001111	1111	111	111		
C	0000000	0101101	0000	101	101		
	11111111	1010101	1111	101	101		
D	11111111	1010101	1111	101	101		
	00000000	1011010	0000	010	010		
E	01010101	0011011	0101	011	011		
	01010101	0110011	0101	011	011		
F	10101010	1100011	1010	011	011		
	10101010	0111100	1010	100	100		
G	01010101	0110110	0101	110	110		
	10101010 .	1100110	1010	110	110		
Н	10101010	1001110	1010	110	110		
	01010101	1101001	0101	001	001		

<94>

<95>

상기한 표 13에서 길이가 16인 하다마드 코드에서 첫 번째 비트와 아홉 번째 비트를 펑쳐링한 코드길이 14인 long 식별자 코드는 최소해밍거리(d_{min})가 최대 8이되므로, 상기한 표 7에서 길이가 16인 하다마드 코드에서 첫 번째 비트와 두 번째 비트를 펑쳐링한 코드길이 14인 long 식별자 코드가 최소해밍거리(d_{min})로 최대 7일때에 비해 이득이 있다.

사용자측(UE)은 상기와 같이 생성된 SSDT 식별자 코드 중 하나를 Primary

cell 식별자 코드로 결정한 후 해당 식별자 코드를 활성군에 속해 있는 셀들에게 주기적으로 전달하며, 이 때는 상향링크 제어채널의 FBI 필드를 통해 전달한다.

다음은 상기 생성된 SSDT 식별자 코드의 전송 절차를 설명한다.

도 3은 본 발명에서 각 슬롯당 FBI 필드에 1비트씩 삽입되는 경우, 셀 식별 코드 전송의 여러 예들을 설명하기 위한 도면이다.

도 3a는 코드길이 15인 long 식별자 코드가 한 프레임에 전송되는 경우로써, 사용자측(UE)이 표 6에 나타낸 코드길이 15인 8개의 식별자 코드 중에서 선택한 하나를 각 슬롯의 FBI 필드에 1비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 1회이다.

다음 도 3b는 코드길이 8인 medium 식별자 코드와 코드길이 7인 medium 식별자 코드가 함께 한 프레임에 전송되는 경우로써, 사용자측(UE)이 표 6에 나타낸 코드길이 8인 8개의 식별자 코드 중에서 선택한 하나를 처음 8개 슬롯의 FBI 필드에 1비트씩 삽입하고, 나머지 7개의 슬롯에는 표 6에 나타낸 코드길이 7인 8개의 식별자 코드 중에서 선택된 하나를 각 FBI 필드에 1비트씩 삽입하여 전송한다. 따라서이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 2회이다.

다음 도 3c는 코드길이 5인 short 식별자 코드가 한 프레임에 3번 전송되는 경우로써, 사용자측(UE)이 표 6에 나타낸 코드길이 5인 8개의 식별자 코드 중에서 선택한 하나를 5개 슬롯단위의 각 FBI 필드에 1비트씩 연속적으로 반복 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트

<99>

<96>

<97>

<98>

<100>

선택 회수가 3회이다.

<101>

도 4는 본 발명에서 각 슬롯당 FBI 필드에 2비트씩 삽입되는 경우, 셀 식별 코드 전송의 여러 예들을 설명하기 위한 도면이다.

<102>

도 4a는 코드길이 16인 long 식별자 코드와 코드길이 15인 long 식별자 코드가 함께 한 프레임에 전송되는 경우로써, 사용자측(UE)이 표 7에 나타낸 코드길이 16인 8개의 식별자 코드 중에서 선택한 하나를 처음 8개 슬롯의 FBI 필드에 각열(column)별로 2비트씩 삽입하고, 나머지 7개의 슬롯에는 표 7에 나타낸 코드길이 14인 8개의 식별자 코드 중에서 선택된 하나를 각 FBI 필드에 각 열별 2비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는사이트 선택 회수가 2회이다.

<103>

다음 도 4b는 코드길이 8인 medium 식별자 코드와 코드길이 6인 medium 식별자 코드가 함께 한 프레임에 전송되는 경우로써, 사용자측(UE)이 표 7에 나타낸 코드길이 8인 8개의 식별자 코드 중에서 선택한 하나를 처음 12개 슬롯 중 4개 슬롯 단위의 각 FBI 필드에 열별 2비트씩 3회 반복 삽입하고, 나머지 3개의 슬롯에는 표 7에 나타낸 코드길이 6인 8개의 식별자 코드 중에서 선택된 하나를 각 FBI 필드에 2비트씩 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 4회이다.

<104>

다음 도 4c는 코드길이 6인 short 식별자 코드가 한 프레임에 5번 전송되는 경우로써, 사용자측(UE)이 표 7에 나타낸 코드길이 6인 8개의 식별자 코드 중에서 선택한 하나를 3개 슬롯단위의 각 FBI 필드에 2비트씩 연속적으로 반복 삽입하여 전송한다. 따라서 이 경우에는 한 프레임당 primary cell을 선택할 수 있는 사이트 선택 회수가 5회이다.

<105>

다음은 지금까지 설명된 본 발명에 대한 성능 평가 결과이다.

<106>

도 5a 내지 도 5d는 본 발명에서 각 슬롯당 FBI 필드에 1비트씩 삽입되는 경우, AWGN 채널에 대한 성능 평가 결과를 나타낸 도면이며, 도 6a 내지 도 6d는 본 발명에서 각 슬롯당 FBI 필드에 2비트씩 삽입되는 경우, AWGN 채널에 대한 성능 평가 결과를 나타낸 도면이다.

<107>

또한 다음 표 14은 식별자 코드 형태별로 기존의 성능 이득을 기준으로 한 본 발명의 성능 이득을 나타낸 것이다.

<108> 【 丑 14】

AWG	N 가 숙	가 슬롯당 FBI가 1비트인 경우			각 슬롯당 FBI가 2비트인 경우				
채니		medium	medium	short	long	long	medium	medium	short
"	(15)	(8)	(7)	(5)	(16)	(14)	(8)	(6)	(6)
713		0	0	0	0	0	0	0	0
본	0.3	0	0.7	0.25	0	0.25	0	0.8	0.8
발대	병	1	·		<u> </u>	J	<u> </u>	<u> </u>	

<109>

상기한 표 14의 성능 이득은 각 슬롯당 FBI가 2비트인 경우에서, 코드길이가 16인 하다마드 코드의 첫 번째 비트와 두 번째 비트를 펑쳐링하여 만들어지는 코드길이 14의 SSDT 식별자 코드가 사용되는 경우이며, 이와 상호 보완적으로 사용되도록 표 13에서와 같이 길이가 16인 하다마드 코드의 첫 번째 비트와 아홉 번째 비트를 펑쳐링한 코드길이 14인 long 식별자 코드가 사용되는 경우에는 다음 표 15와 같이 성능 이득을 갖는다.

AWGN	각 ﴿	슬롯당 FBI기	가 1비트인	경우	각 슬롯당 FBI가 2비트인 경우				
채널	long	medium	medium	short	long	long	medium	medium	short
" -	(15)	(8)	(7)	(5)	(16)	(14)	(8)	(6)	(6)
기존	0	0	0	0	0	0	0	0	0
본	0.3	0	0.7	0.25	0	0.3	0	0.8	0.8
발명									

도 7a 내지 도 7d는 본 발명에서 각 슬롯당 FBI 필드에 1비트씩 삽입되는 경우, 페이딩 채널에 대한 성능 평가 결과를 나타낸 도면이며, 도 8a 내지 도 8d는 본 발명에서 각 슬롯당 FBI 필드에 2비트씩 삽입되는 경우, 페이딩 채널에 대한 성능 평가 결과를 나타낸 도면이다.

또한 다음 표 16은 식별자 코드 형태별로 기존의 성능 이득을 기준으로 한 본 발명의 성능 이득을 나타낸 것이다.

【 丑 16】

<111>

<112>

<113>

<114>

AWGN	각 4	각 슬롯당 FBI가 1비트인 경우			각 슬롯당 FBI가 2비트인 경우				
채널	long	medium	medium	short	long	long	medium	medium	short
"-	(15)	(8)	(7)	(5)	(16)	(14)	(8)	(6)	(6)
기존	0	0	0	0	0	. 0	0	0	0
본	1.5	1.0	1.0	1.5	1.2	1.3	0.8	2.0	2.0
발명	•	1							

상기한 표 16의 성능 이득도 각 슬롯당 FBI가 2비트인 경우에서, 코드길이가 16인 하다마드 코드의 첫 번째 비트와 두 번째 비트를 평쳐링하여 만들어지는 코드길이 14의 SSDT 식별자 코드가 사용되는 경우이며, 이와 상호 보완적으로 사용되도록 표 13에서와 같이 길이가 16인 하다마드 코드의 첫 번째 비트와 아홉 번째 비트 를 평쳐링한 코드길이 14인 long 식별자 코드가 사용되는 경우에는 다음 표 17와 같이 성능 이득을 갖는다.

<115> 【 丑 17】

AWGN	각 ﴿	글롯당 FBI2	가 1비트인	경우	각 슬롯당 FBI가 2비트인 경우				
채널	long	medium	medium	short	long	long	medium	medium	short
,, ,	(15)	(8)	(7)	(5)	(16)	(14)	(8)	(6)	(6)
기존	0	0	0	0	0	0	0	0	0
본	1.5	1.0	1.0	1.5	1.2	2.2	0.8	2.0	2.0
발명									

이상의 본 발명에서 제안한 식별자 코드는 SSDT 외에도 사용자측(UE)이 자신이 가지고 있는 셀 정보를 시스템측(UTRAN)에 전달하고 할 때 사용할 수 있으며,이 경우 상호 상관 특성 및 최소해밍거리에 대해 최적화시킬 수 있다.

【 발명의 효과】

<117>

<116>

이상의 설명한 바와 같이 본 발명에 따른 최적의 셀 식별 코드 생성 및 그의전송 방법에 의하면, SSDT에서 각 셀을 식별하는데 있어 하다마드 코드 및 배직교코드에 기반한 셀 식별 코드를 조합 생성하여 사용함으로써, 주기가 빠른 식별자코드의 사용을 최대화시켜 페이딩 채널 및 AWGN 채널에서의 시스템 성능을 극대화시킬 수 있다는 효과가 있다. 또한 본 발명에 따른 셀 식별 코드를 수신하여 디코딩함에 있어 송신측에서 평쳐링된 비트를 미리 수신측에서 알 수 있으므로 디코딩할 때 이득이 극대화된다는 것이다. 그밖에도 본 발명에서는 하다마드 코드 및 배직교 코드를 조합적으로 사용하여 최대 상호 상관함수의 절대값이 작고 최소해밍거리는 최대가 되는 셀 식별 코드를 생성하고 전송함으로써, 소프트 핸드오버 모드에서 최적의 다이버시티 성능을 발휘할 수 있다.

【 특허청구범위】

【 청구항 1】

사용자측(UE)이 사이트 선택 다이버시티 전송(SSDT) 동안 각 유효 셀들에게 부여할 다수의 식별자 코드가 하다마드 코드 및 배직교 코드를 사용하여 생성되는 단계와,

상기 사용자측(UE)에 의해 선택된 해당 셀의 식별자 코드를 상향링크 특정 제어채널을 통해 전송하고자 할 때, 각 슬롯의 피이드백 식별자(FBI) 필드에 삽입 될 비트수가 상기 사용자측(UE)에 의해 결정되는 단계와,

상기 생성된 식별자 코드 중 상기 사용자측(UE)에 의해 선택된 해당 셀의 식별자 코드를 그의 코드 형태에 따라 1회 또는 그 이상의 회수만큼 반복하여 상기 각 유효 셀들에게 전송하는 단계로 이루어지는 것을 특징으로 하는 최적의 셀 식별코드 생성 및 그의 전송 방법.

【 청구항 2】

제 1 항에 있어서, 상기 코드 생성 단계는, 코드길이 8과 16인 하다마드 코드의 첫 번째 비트를 펑쳐링하여 상기 식별자 코드를 생성시키며, 상기 식별자 코드의 형태에 따라 상기 첫 번째 비트 및 그 밖의 하나 또는 그 이상의 다른 비트를 펑쳐링하여 상기 식별자 코드를 생성시키는 것을 특징으로 하는 최적의 셀 식별 코드 생성 및 그의 전송 방법.

【 청구항 3】

제 2 항에 있어서, 상기 코드길이 16인 하다마드 코드의 첫 번째 비트와 두

번째 비트를 펑쳐링하여 코드길이 14인 식별자 코드가 생성되며, 경우에 따라 상기 코드길이 16인 하다마드 코드의 첫 번째 비트와 아홉 번째 비트를 펑쳐링하여 코드 길이 14인 식별자 코드가 생성되는 것을 특징으로 하는 최적의 셀 식별 코드 생성 및 그의 전송 방법.

【 청구항 4】

제 1 항에 있어서, 상기 코드 전송 단계는, 코드길이 8과 16인 배직교 코드를 사용하여 생성된 식별자 코드와, 각 프레임마다 정해진 비트길이에 맞춰 코드길이 8과 16인 하다마드 코드를 평쳐링하여 생성된 식별자 코드가 각 프레임에 함께 전송되는 것을 특징으로 하는 최적의 셀 식별 코드 생성 및 그의 전송 방법.

【 도면】

[도1]

[도2]

[도 3a]

[도 3b]

[도 3c]

Short	Short	Short	Short	Short	Short
5余景	5会表	5 全天	5会₹	5金贵	5食表
 	프레임=15슏		 	프레임=15 (>

[도 4a]

Long(16)	Long(14)	Long(16)	Long(14)
▼ 8全景	7会录		
4			

【도 4b】

【도 4c】

[도 5a]

【 도 5b】

[도 5c]

[도 5d]

[도 6a]

[도 6b]

[도 6c]

[도 6d]

[도 7a]

[도 7b]

[도 7c]

[도 7d]

[도 8a]

[도 8b]

[도 8d]

