Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich

Support Vector Machine

Context for this topic

- Context 1: Compare different generalisation error bounds for SVM
 - Bounds for Hard SVM using VC dimension, Rademacher complexity
 - Bounds for Soft SVM using algorithmic stability
- Context 2: Limitations for VC dimension based bounds
 - Rademacher complexity gives problem-dependant bounds
 - Stability allows analysis beyond ERM, including regularised loss minimisation

Hard SVM

$$\underset{w,b}{\text{minimise}} \ \|w\|^2$$

s.t.
$$y_i(\langle w, x_i \rangle + b) \ge 1 \quad \forall i \in [m]$$

 $w, x_i \in \mathbb{R}^p$

Is hard SVM an ERM?

Generalisation error

• Hard SVM learns from function class

$$\mathcal{H}_{lin} = \{ sign(\langle w, x \rangle + b) : w \in \mathbb{R}^p, b \in \mathbb{R} \}$$

- $VCdim(\mathcal{H}) = p + 1$
- Hard SVM work for linearly separable data (realisable setting)
- What is the generalisation error w.r.t. 0-1 loss?

Generalisation error

Theorem SVM.1 (Generalisation error for hard SVM)

Let \mathcal{D} be realisable w.r.t \mathcal{H}_{lin}

• High probability bound: With probability $1 - \delta$

$$L_{\mathcal{D}}^{0-1}(\mathcal{A}_{hard\text{-}SVM}(S)) \le \sqrt{\frac{8(p+1)\ln(\frac{2me}{p+1}) + \ln(\frac{4}{\delta})}{m}}$$

• Expected generalisation error: For a constant C > 0,

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}^{0-1} (\mathcal{A}_{hard\text{-}SVM}(S)) \right] \leq C \sqrt{\frac{(p+1)\ln(\frac{2me}{p+1})}{m}}$$

 $L_{\mathcal{D}}^{0-1}$ denotes generalisation error w.r.t 0-1 loss

Generalisation error under margin assumption

Theorem SVM.2 (Generalisation error for hard SVM)

Assume \mathcal{D} satisfies separation with (ρ, γ) -margin, that is,

- $||x|| \le \rho$ for all x
- $y(\langle w^*, x \rangle + b^*) \ge \gamma$ for some w^*, b^* with $||w^*|| = 1$

Then, for some constant C > 0,

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}^{0-1}(\mathcal{A}_{hard\text{-}SVM}(S)) \right] \le C \frac{\rho}{\gamma} \sqrt{\frac{(1 + (b^*)^2) \ln m}{m}}$$

- Proof skipped. Based on Rademacher complexity (discussed later)
- For large margin, bound better than VC / data dimension based bound

Soft SVM

minimise
$$||w||^2 + C \sum_{i=1}^m \xi_i$$

s.t. $y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i$, $\xi_i \ge 0 \quad \forall i \in [m]$

Is soft SVM an ERM?

Soft SVM as regularised loss minimisation

• Rewrite $C = \frac{1}{m\lambda}$

minimise
$$\frac{1}{m} \sum_{i=1}^{m} \xi_i + \lambda ||w||^2$$
s.t.
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0 \qquad \forall i \in [m]$$

• Rewrite $\xi_i = \max\{0, 1 - y_i(\langle w, x_i \rangle + b)\}$

minimise
$$\frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i(\langle w, x_i \rangle + b)\} + \underbrace{\lambda \|w\|^2}_{\text{regulariser}}$$

Generalisation error

• Soft SVM is Tikhonov RLM with hinge loss

$$\underset{w}{\text{minimise}} L_S^{hinge}(w) + \lambda ||w||^2$$

• Use generalisation error bound for Tikhonov RLM

Theorem SVM.3 (Generalisation error for Soft SVM)

Assume
$$\mathcal{X} = \{x \in \mathbb{R}^p : ||x|| \le \rho\}$$

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}^{0-1}(\mathcal{A}_{soft\text{-}SVM}(S)) \right] \leq \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}^{\text{hinge}}(\mathcal{A}_{soft\text{-}SVM}(S)) \right]$$

$$\leq L_{\mathcal{D}}^{\text{hinge}}(w) + \lambda \|w\|^2 + \frac{2\rho^2}{\lambda m} \qquad \text{for all } w$$

$$\leq \min_{w: \|w\| \leq B} L_{\mathcal{D}}^{\text{hinge}}(w) + \sqrt{\frac{8\rho^2 B^2}{m}} .$$

Proof

- First inequality holds since hinge loss is a surrogate for 0-1 loss
- For second, write

$$\mathbb{E}_{S} \left[L_{\mathcal{D}}^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) \right] = \mathbb{E}_{S} \left[L_{S}^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) \right]$$

$$+ \mathbb{E}_{S} \left[L_{\mathcal{D}}^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) - L_{S}^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) \right]$$

$$\leq \mathbb{E}_{S} \left[L_{S}^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) \right] + \frac{2\rho^{2}}{\lambda m}$$

... bound for Tikhonov RLM

Proof

• Since $\mathcal{A}_{\text{soft-SVM}}(S)$ is regularised hinge risk

$$\begin{split} L_S^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) &\leq L_S^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S)) + \lambda \|\mathcal{A}_{\text{soft-SVM}}(S)\|^2 \\ &\leq L_S^{\text{hinge}}(w) + \lambda \|w\|^2 \quad \text{for all } w \end{split}$$

• Take expectation on both sides

$$\mathbb{E}_{S}\left[L_{S}^{\text{hinge}}(\mathcal{A}_{\text{soft-SVM}}(S))\right] \leq L_{\mathcal{D}}^{\text{hinge}}(w) + \lambda \|w\|^{2} \quad \text{for all } w$$

• This gives 2^{nd} inequality

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}^{\text{hinge}} (\mathcal{A}_{\text{soft-SVM}}(S)) \right] \le L_{\mathcal{D}}^{\text{hinge}}(w) + \lambda \|w\|^2 + \frac{2\rho^2}{\lambda m} \quad \text{for all } w$$

Proof

• For 3^{rd} inequality, note

$$\min_{\lambda} \left(\lambda \|w\|^2 + \frac{2\rho^2}{\lambda m} \right) = \sqrt{\frac{8\rho^2 \|w\|^2}{m}} \\
\leq \sqrt{\frac{8\rho^2 B^2}{m}} \quad \text{if } \|w\| \leq B$$

- Practical choice for λ or C
 - Choose λ so that above minimum is achieved
 - If we want to restrict to $||w|| \le B$ (think in terms of SRM)

choose
$$\lambda = \sqrt{\frac{2\rho^2}{B^2 m}}$$
 or $C = \frac{1}{\lambda m} = \sqrt{\frac{B^2}{2\rho^2 m}}$

Rademacher complexity (data dependent)

- Let \mathcal{Z} be some space, and consider a finite set $Z = \{z_1, \ldots, z_m\} \subset \mathcal{Z}$
- Let \mathcal{F} be class of real-valued functions defined on \mathcal{Z} , that is $\mathcal{F} \subset \mathbb{R}^{\mathcal{Z}}$
 - Example 1: $\mathcal{Z} = \mathcal{X}$ and $\mathcal{F} = \mathcal{H}$ for some hypothesis class $\mathcal{H} \subset \{\pm 1\}^{\mathcal{X}}$
 - Example 2: $\mathcal{Z} = \mathbb{R}^p$ and $\mathcal{F} = \{ f_w(z) = \langle w, z \rangle : w \in \mathbb{R}^p \}$
 - Example 3: $\mathcal{Z} = \mathcal{X} \times \{0,1\}$ and $\mathcal{F} = \{f_h(z) = f_h(x,y) = \mathbf{1}\{h(x) \neq y\}$: $h \in \mathcal{H}\}$
- Rademacher complexity of \mathcal{F} with respect to set Z

$$R(\mathcal{F} \circ Z) = \mathbb{E}_{\underbrace{\sigma_1, \dots, \sigma_m \sim_{iid} \text{Unif}\{\pm 1\}}_{\text{Rademacher variables}}} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right]$$

Rademacher complexity: Intuition

$$R(\mathcal{F} \circ Z) = \mathbb{E}_{\sigma_1, \dots, \sigma_m \sim_{iid} \text{Uniform}\{\pm 1\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right]$$

- Consider Example 1: $Z = \{x_1, \ldots, x_m\} \subset \mathcal{X} \text{ and } \mathcal{F} = \mathcal{H} \subset \{\pm 1\}^{\mathcal{X}}$
- $\mathcal{F} \circ Z = \{(f(x_1), \dots, f(x_m)) : f \in \mathcal{F}\} = \mathcal{H}_{|Z}$
- Think of $\sigma_1, \ldots, \sigma_m \sim_{iid} \text{Uniform}\{\pm 1\}$ as random labels
- $\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(z_i)$ is max alignment with $\sigma_1, \ldots, \sigma_m$ that we can get using any $h \in \mathcal{H}$
- $R(\mathcal{F} \circ Z)$ = expected maximum alignment with random labels

Rademacher complexity: Another intuition

$$R(\mathcal{F} \circ Z) = \mathbb{E}_{\sigma_1, \dots, \sigma_m \sim_{iid} \text{Uniform}\{\pm 1\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right]$$

- Consider Example 3: $Z = \{(x_1, y_1), \dots, (x_{2m}, y_{2m})\}$ and $\mathcal{F} = \{f_h(z) = f_h(x, y) = \mathbf{1}\{h(x) \neq y\} : h \in \mathcal{H}\}$
- Split training data $Z = S \cup S'$ into $S = \{(x_i, y_i) : \sigma_i = +1\}, \ S' = \{(x_i, y_i) : \sigma_i = -1\}$
- For random $\sigma_1, \ldots, \sigma_{2m} \sim_{iid} \text{Uniform}\{\pm 1\}$, above is a random split
- $\sup_{h \in \mathcal{H}} \sum_{i \in S} \mathbf{1} \{h(x_i) \neq y_i\} \sum_{i \in S'} \mathbf{1} \{h(x_i) \neq y_i\}$ similar to $\sup_{h \in \mathcal{H}} (L_S(h) L_{S'}(h))$
- Recall from uniform convergence proof: If $\sup_{h\in\mathcal{H}}(L_S(h)-L_{S'}(h))$ is small, then $\sup_{h\in\mathcal{H}}|L_S(h)-L_{\mathcal{D}}(h)|$ is also small

Rademacher complexity (distribution dependent)

$$R(\mathcal{F} \circ Z) = \mathbb{E}_{\sigma_1, \dots, \sigma_m \sim_{iid} \text{Uniform}\{\pm 1\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right]$$

- Above definition depends on data $Z = \{z_1, \ldots, z_m\} \subset \mathcal{Z}$
- Let \mathcal{D} be a distribution on \mathcal{Z} , and $z_1, \ldots, z_m \sim_{iid} \mathcal{D}$, that is, $Z \sim \mathcal{D}^m$
- Rademacher complexity of \mathcal{F} with respect to set \mathcal{D}

$$R_{\mathcal{D},m}(\mathcal{F}) = \mathbb{E}_{Z \sim \mathcal{D}^m}[R(\mathcal{F} \circ Z)]$$

Generalisation error bound (proof skipped)

Theorem SVM.4 (Generalisation bound using Rademacher complexity)

Let $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ be a hypothesis class (not necessarily binary)

Let
$$\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$
 be a loss that satisfies $|\ell(h(x), y)| \leq c$ for all $h \in \mathcal{H}, (x, y) \in \mathcal{X} \times \mathcal{Y}$

Define
$$\mathcal{F} = \{\ell(h(x), y) : h \in \mathcal{H}\}$$
. For any distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$ and $\delta \in (0, 1)$,

• with probability $1 - \delta$ over training samples $S \sim \mathcal{D}^m$,

$$\sup_{h \in \mathcal{H}} \left(L_{\mathcal{D}}(h) - L_{S}(h) \right) \leq 2R_{\mathcal{D},m}(\mathcal{F}) + c\sqrt{\frac{2\ln(\frac{2}{\delta})}{m}}$$

• with probability $1 - \delta$ over training samples $S \sim \mathcal{D}^m$,

$$\sup_{h \in \mathcal{H}} \left(L_{\mathcal{D}}(h) - L_{S}(h) \right) \leq 2R(\mathcal{F} \circ S) + 4c\sqrt{\frac{2\ln(\frac{4}{\delta})}{m}}$$

Generalisation error bound: Discussions

- Rademacher complexity based bounds are applicable for all setting/loss (unlike VC)
- ullet 2nd bound is practical since one can compute the bound from training data S
- Rademacher bounds could be more tight than VC/growth function based bounds, since for $\mathcal{F} = \{\mathbf{1} \{h(x) \neq y\} : h \in \mathcal{H}\},\$

for every
$$\mathcal{D}$$
, $R_{\mathcal{D},m}(\mathcal{F}) \leq \sqrt{\frac{2\ln(\tau_{\mathcal{H}}(m))}{m}} \leq \sqrt{\frac{2d\ln(\frac{em}{d})}{m}}$

• Above follows from Massart's lemma:

For any finite set
$$A \subset \mathbb{R}^m$$
, $\mathbb{E}_{\sigma \sim \text{Uniform}(\{\pm 1\}^m)} \left[\max_{\mathbf{a} \in A} \sigma^{\top} \mathbf{a} \right] \leq \frac{\sqrt{2 \ln(|A|)}}{m} \cdot \max_{\mathbf{z} \in A} \|\mathbf{a}\|_2$ (how?)

Rademacher complexity for linear hypothesis class

Theorem SVM.5 (Rademacher complexity for linear hypothesis class)

Let
$$\mathcal{X} = \{x \in \mathbb{R}^p : ||x||_2 \le \rho\}$$
 and $\mathcal{F} = \{f_w(x) = \langle w, x \rangle : ||w||_2 \le B\}$

For any
$$X = \{x_1, \ldots, x_m\} \subset \mathcal{X}, \ R(\mathcal{F} \circ X) \leq \frac{B\rho}{\sqrt{m}}$$

Implication:

- Assume there is w^* such that $||w^*||_2 = 1$ and $y\langle w^*, x \rangle \ge \gamma$ (linearly separable with margin γ)
- Hard SVM can be rephrased as finding w such that $||w||_2 \leq 1/\gamma$ and $y_i \langle w, x_i \rangle \geq 1 \ \forall i$
- Hence, $R(\mathcal{F} \circ X) \leq \frac{\rho}{\gamma \sqrt{m}}$ and $L_{\mathcal{D}}(h_{SVM}) = O\left(\frac{\rho}{\gamma \sqrt{m}} + \sqrt{\frac{\ln(\frac{4}{\delta})}{m}}\right)$, with prob. 1δ

Proof: Bound on Rademacher complexity

$$R(\mathcal{F} \circ X) = \frac{1}{m} \mathbb{E}_{\sigma_{1},\dots,\sigma_{m} \sim \text{Uniform}\{\pm 1\}} \left[\sup_{w:\|w\|_{2} \leq B} \sum_{i=1}^{m} \sigma_{i} \langle w, x_{i} \rangle \right]$$

$$= \frac{1}{m} \mathbb{E}_{\sigma_{1},\dots,\sigma_{m}} \left[\sup_{w:\|w\|_{2} \leq B} \left\langle w, \sum_{i=1}^{m} \sigma_{i} x_{i} \right\rangle \right]$$

$$\leq \frac{1}{m} \mathbb{E}_{\sigma_{1},\dots,\sigma_{m}} \left[\sup_{w:\|w\|_{2} \leq B} \|w\|_{2} \left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2} \right]$$

$$\leq \frac{B}{m} \mathbb{E}_{\sigma_{1},\dots,\sigma_{m}} \left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2}$$

$$\leq \frac{B}{m} \left(\mathbb{E}_{\sigma_{1},\dots,\sigma_{m}} \left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2} \right)^{1/2}$$

Cauchy-Schwarz inequality

Jensen's inequality

Proof (contd.)

$$\mathbb{E}_{\sigma_1, \dots, \sigma_m \sim \text{Uniform}\{\pm 1\}} \left\| \sum_{i=1}^m \sigma_i x_i \right\|_2^2 = \mathbb{E}_{\sigma_1, \dots, \sigma_m \sim \text{Uniform}\{\pm 1\}} \sum_{i,j=1}^m \sigma_i \sigma_j \langle x_i, x_j \rangle$$

cross terms are 0 as σ_i 's are independent, zero mean

$$= \mathbb{E}_{\sigma_1,\dots,\sigma_m \sim \text{Uniform}\{\pm 1\}} \sum_{i=1}^m \sigma_i^2 ||x_i||_2^2$$

$$= \sum_{i=1}^m ||x_i||_2^2$$

$$\leq m\rho^2$$

Hence,
$$R(\mathcal{F} \circ X) \leq \frac{B}{m} (m\rho^2)^{1/2} = \frac{B\rho}{\sqrt{m}}$$