Deterministically Approximating the Volume of a Hypercube Intersected with Halfspaces

KYRA GUNLUK SANTOSH S. VEMPALA

ABSTRACT

A deterministic approximation scheme for the volume of the hypercube $[0,1]^n$ intersected with a fixed number of halfspaces. Happy 80th Birthday, Professor Frieze!

BACKGROUND

Theorem [Dyer, Frieze (88')]

Computing the volume of $P(A,b) = \{x : A^{\top}x \leq b\}$ is #P-hard even when A is totally unimodular. In fact, it is #P-hard even for $P = [0,1]^n \cap \{x : a^{\top}x \leq b\}$, the hypercube intersected with a single integral halfspace.

RESULTS

Single Halfspace

$$P = [0, 1]^n \cap \{x : a^{\top} x \le b\}$$

Theorem: FPAS for vol(P), single halfspace

Given $a \in \mathbb{R}^n, b \in \mathbb{R}, \epsilon > 0, L \in \mathbb{Z}_+$, we can find Z' s.t.

$$vol(P) \le Z' \le (1 + \epsilon)vol(P)$$

using $O(\frac{n^3 \log^4(n/\epsilon)}{\epsilon})$ arithmetic operations on $O(L + \log n)$ -bit numbers, where L is the max bit size of any input number.

Multiple Halfspaces

$$P = [0, 1]^n \cap \{x : A^{\top} x \le b\},\$$
$$a_{ij}, b_i \ge 0 \ \forall i \in [k]$$

Theorem: FPAS for vol(P), multipel halfspaces

We can find Z' s.t. $vol(P) \leq Z' \leq (1 + \epsilon)vol(P)$ in $n^{O(k^2)}(\log(\frac{n}{\epsilon})/\epsilon)^{O(k)}$ arithmetic operations on $O(L + \log n)$ -bit numbers, where L is the max input bit size.

HYPERCUBE INTERSECTED WITH ONE HALFSPACE

Map to nonnegative constraint: Mirror *P* across axes using diagonal transformation matrices. Translate to positive orthant by increasing RHS by sum of absolute value of negative coefficients.

Scale: Dilate P by a factor of u in each dimension so that it lies in $[0, u]^n$ intersected with halfspace $a^{\top}x \leq ub = c$. The volume of the dilated polytope P_u is exactly $\operatorname{vol}(P_u) = u^n \cdot \operatorname{vol}(P)$

Using Integer Points to Estimate the Volume

For each integer point \bar{x} in P_u , consider the unit cube $\{x: \bar{x} \leq x \leq \bar{x} + e\}$. P_u lies within the union of these cubes, C. Any point in cube $\{x: \bar{x} \leq x \leq \bar{x} + e\}$ lies within \sqrt{n} of P_u , $P_u \subset C \subset P_u + B(\sqrt{n})$. $\operatorname{vol}(C) = \#\operatorname{cubes} = \#\operatorname{integer}$ points in $[0, u-1]^n$ satisfying $a^{\top}x \leq c$.

Sandwiching P

 P_u contains a simplex of axes lengths at least ℓ , the smallest x_i intercept of our hyperplane, or u if this is smaller. The simplex contains a ball of radius $\frac{\ell}{2n}$.

Next, $C \subset P_u + B(\sqrt{n}) \subset (1 + \frac{\sqrt{n}}{r})P_u$. Thus, $P_u \subseteq C \subseteq (1 + \frac{\sqrt{n}}{r})P_u$, and so C overestimates the volume of P_u by at most a factor of $(1 + \frac{\sqrt{n}}{r})^n$

APPROXIMATELY COUNTING KNAPSACK SOLUTIONS

Known Algorithm

Counting integer solutions to $a^{T}x \leq c$ can be solved approximately with Dynamic Programming using $\tilde{O}(\frac{n^3 \log^3 u}{\epsilon'})$ operations [SVV10].

HYPERCUBE INTERSECTED WITH MULTIPLE HALFSPACES

Scale P to get $P_u = [0, u]^n \cap \{x : a_i^\top x \le ub_i = c_i \ \forall i\}$. Consider unit cubes extending from each integer point in P_u .

To approximate the number of integer solutions to the multidimensional knapsack problem, we can no longer use the DP approach, so we turn to a different algorithm using Read Once Branching Programs (ROBPs) [GKM10].

USING ROBPS TO COUNT KNAPSACK SOLUTIONS

ROBP

For 0-1 knapsack constraint, ROBP has layers $0, 1, \ldots, n$ with at most W vertices per layer. Vertices have edges $\{0, 1\}$. Vertex v is a partial sum $\sum_{j=1}^{\ell} a_j x_j$ where x_j is edge prefix path from v_0 to v. Vertex in layer n is accepting (1) or rejecting (0). Probability of accepting from v_0 is the fraction of accepting solutions.

Small-width ROBP with probability distributions on edges out of vertices.

$P_{x_{i}}(0)$ $P_{x_{i}}(1)$ $P_{x_{i}}(1)$ $P_{x_{i}}(0)$

Algorithm:

Select polynomial number of vertices from each constraint ROBP to approximate probability of solution sampled from small-space source being feasible in time $n^{O(k^2)}(\log U/\epsilon)^{O(k)}\log W$.

ONGOING WORK

Algorithm:

- Using Small-Space Sources to iteratively approximate volume of $[0,1]^n \cap \{x: a_1^\top x \leq b_1\} \cap \cdots \cap \{x: a_k^\top x \leq b_k\}$.
- Using ROBPs to approximate volume of cube intersected with any read once monotone constraints i.e. $\sum_{i=1}^{n} a_{ij} x_i^{p_{ij}}$

REFERENCES

M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron. SIAM J. Comput., 17(5):967-974, 1988.
GKM10] Parikshit Gopalan, Adam R. Klivans, and Raghu Meka. Polynomial-time approximation schemes for knapsack and related counting problems using branching programs. CoRR, abs/1008.3187, 2010.

[SVV12] Daniel Stefankovic, Santosh S. Vempala, and Eric Vigoda. A deterministic polynomial-time approximation scheme for counting knapsack solutions. SIAM J. Comput., 41(2):356–366, 2012.