TSN2201 Computer Networks

Lab Test Report

Tutorial Section: TT9L

TAM LI XUAN : 1211101186

Content

1 Connectivity Checks	4
1.1 Static + Default Routing	4
1.1.1 PC to PC	4
1.1.1.1 PC1	4
1.1.1.2 PC2	6
1.1.1.3 PC3	8
1.1.1.4 PC4	10
1.1.1.5 PC5	12
1.1.2 Router to Router	14
1.1.2.1 Router1	14
1.1.2.2 Router2	15
1.1.2.3 Router3	16
1.1.2.4 Router4	17
1.1.2.4 Router5	18
1.1.3 Router to PC	19
1.1.3.1 Router1	19
1.1.3.2 Router2	
1.1.3.3 Router3	23
1.1.3.4 Router4	25
1.1.3.5 Router5	
1.2 OSPF Routing.	
1.2.1 PC to PC	
1.2.1.1 PC1	29
1.2.1.2 PC2	
1.2.1.3 PC3	
1.2.1.4 PC4	
1.2.1.5 PC5	
1.2.2 Router to Router	
1.2.2.1 Router 1	
1.2.2.2 Router 2	
1.2.2.3 Router 3	
1.2.2.4 Router 4	
1.2.2.5 Router 5	
1.2.3 Router to PC	44

1.2.3.1 Router 1	44
1.2.3.2 Router 2	46
1.2.3.3 Router 3	48
1.2.3.4 Router 4	50
1.2.3.5 Router 5	52
2 Routing Table Entries	54
2.1 Router1	
2.2 Router2	52
2.3 Router3	52
2.4 Router4	52
2.5 Router5	55

1 Connectivity Checks

1.1 Static + Default Routing

1.1.1 PC to PC

1.1.1.1 PC1

PC1 to PC2

```
C:\>ping 211.10.2.100

Pinging 211.10.2.100 with 32 bytes of data:

Reply from 211.10.2.100: bytes=32 time=12ms TTL=126
Reply from 211.10.2.100: bytes=32 time=9ms TTL=126
Reply from 211.10.2.100: bytes=32 time<\lambda TTL=126
Reply from 211.10.2.100: bytes=32 time<\lambda TTL=126
Ping statistics for 211.10.2.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 12ms, Average = 5ms</pre>
```

PC1 to PC3

```
C:\>ping 211.10.3.100

Pinging 211.10.3.100 with 32 bytes of data:

Reply from 211.10.3.100: bytes=32 time=18ms TTL=125
Reply from 211.10.3.100: bytes=32 time<1ms TTL=125
Reply from 211.10.3.100: bytes=32 time=18ms TTL=125
Reply from 211.10.3.100: bytes=32 time=1ms TTL=125
Ping statistics for 211.10.3.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 18ms, Average = 9ms</pre>
```

• PC1 to PC4

```
C:\>ping 211.10.4.100
Pinging 211.10.4.100 with 32 bytes of data:

Reply from 211.10.4.100: bytes=32 time=lms TTL=124
Reply from 211.10.4.100: bytes=32 time<lms TTL=124
Reply from 211.10.4.100: bytes=32 time=l3ms TTL=124
Reply from 211.10.4.100: bytes=32 time<lms TTL=124
Ping statistics for 211.10.4.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 13ms, Average = 3ms</pre>
```

• PC1 to PC5

```
C:\>ping 211.10.5.100

Pinging 211.10.5.100 with 32 bytes of data:

Reply from 211.10.5.100: bytes=32 time<lms TTL=123
Ping statistics for 211.10.5.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

1.1.1.2 PC2

PC2 to PC1

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 211.10.1.100

Pinging 211.10.1.100 with 32 bytes of data:

Reply from 211.10.1.100: bytes=32 time<lms TTL=124
Reply from 211.10.1.100: bytes=32 time=lms TTL=124
Reply from 211.10.1.100: bytes=32 time<lms TTL=124
Reply from 211.10.1.100: bytes=32 time<lms TTL=124
Reply from 211.10.1.100: bytes=32 time=loms TTL=124

Ping statistics for 211.10.1.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = 10ms, Average = 2ms
```

PC2 to PC3

```
C:\>ping 211.10.3.100
Pinging 211.10.3.100 with 32 bytes of data:

Reply from 211.10.3.100: bytes=32 time=lms TTL=126
Reply from 211.10.3.100: bytes=32 time=lms TTL=126
Reply from 211.10.3.100: bytes=32 time<lms TTL=126
Reply from 211.10.3.100: bytes=32 time<lms TTL=126
Ping statistics for 211.10.3.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = lms, Average = Oms</pre>
```

• PC2 to PC4

```
C:\>ping 211.10.4.100

Pinging 211.10.4.100 with 32 bytes of data:

Reply from 211.10.4.100: bytes=32 time<lms TTL=125
Reply from 211.10.4.100: bytes=32 time<lms TTL=125
Reply from 211.10.4.100: bytes=32 time<lms TTL=125
Reply from 211.10.4.100: bytes=32 time=lms TTL=125
Ping statistics for 211.10.4.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

• PC2 to PC5

```
C:\>ping 211.10.5.100

Pinging 211.10.5.100 with 32 bytes of data:

Reply from 211.10.5.100: bytes=32 time=lms TTL=124

Reply from 211.10.5.100: bytes=32 time<lms TTL=124

Reply from 211.10.5.100: bytes=32 time=lms TTL=124

Reply from 211.10.5.100: bytes=32 time<lms TTL=124

Ping statistics for 211.10.5.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

1.1.1.3 PC3

PC3 to PC1

```
C:\>ping 211.10.1.100
Pinging 211.10.1.100 with 32 bytes of data:

Reply from 211.10.1.100: bytes=32 time=3ms TTL=125
Reply from 211.10.1.100: bytes=32 time<1ms TTL=125
Reply from 211.10.1.100: bytes=32 time=1ms TTL=125
Reply from 211.10.1.100: bytes=32 time=1ms TTL=125
Ping statistics for 211.10.1.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 3ms, Average = 1ms</pre>
```

• PC3 to PC2

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 211.10.2.100

Pinging 211.10.2.100 with 32 bytes of data:

Reply from 211.10.2.100: bytes=32 time<lms TTL=124

Reply from 211.10.2.100: bytes=32 time=lms TTL=124

Reply from 211.10.2.100: bytes=32 time<lms TTL=124

Reply from 211.10.2.100: bytes=32 time=lms TTL=124

Ping statistics for 211.10.2.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

PC3 to PC4

```
Pinging 211.10.4.100 with 32 bytes of data:

Reply from 211.10.4.100: bytes=32 time=10ms TTL=126
Reply from 211.10.4.100: bytes=32 time=7ms TTL=126
Reply from 211.10.4.100: bytes=32 time<1ms TTL=126
Reply from 211.10.4.100: bytes=32 time=1ms TTL=126
Ping statistics for 211.10.4.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 4ms
```

• PC3 to PC5

```
C:\>ping 211.10.5.100

Pinging 211.10.5.100 with 32 bytes of data:

Reply from 211.10.5.100: bytes=32 time=17ms TTL=125
Reply from 211.10.5.100: bytes=32 time<1ms TTL=125
Reply from 211.10.5.100: bytes=32 time<1ms TTL=125
Reply from 211.10.5.100: bytes=32 time<1ms TTL=125
Ping statistics for 211.10.5.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 17ms, Average = 4ms</pre>
```

1.1.1.4 PC4

PC4 to PC1

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 211.10.1.100

Pinging 211.10.1.100 with 32 bytes of data:

Reply from 211.10.1.100: bytes=32 time<lms TTL=126
Reply from 211.10.1.100: bytes=32 time<lms TTL=126
Reply from 211.10.1.100: bytes=32 time<lms TTL=126
Reply from 211.10.1.100: bytes=32 time=llms TTL=126

Ping statistics for 211.10.1.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 11ms, Average = 2ms
```

• PC4 to PC2

```
C:\>ping 211.10.2.100

Pinging 211.10.2.100 with 32 bytes of data:

Reply from 211.10.2.100: bytes=32 time<lms TTL=125

Reply from 211.10.2.100: bytes=32 time<lms TTL=125

Reply from 211.10.2.100: bytes=32 time<lms TTL=125

Reply from 211.10.2.100: bytes=32 time=lms TTL=125

Reply from 211.10.2.100: bytes=32 time=lms TTL=125

Ping statistics for 211.10.2.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

• PC4 to PC3

```
Pinging 211.10.3.100 with 32 bytes of data:

Reply from 211.10.3.100: bytes=32 time=lms TTL=124
Reply from 211.10.3.100: bytes=32 time<lms TTL=124
Reply from 211.10.3.100: bytes=32 time<lms TTL=124
Reply from 211.10.3.100: bytes=32 time<lms TTL=124
Ping statistics for 211.10.3.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

• PC4 to PC5

```
C:\>ping 211.10.5.100

Pinging 211.10.5.100 with 32 bytes of data:

Reply from 211.10.5.100: bytes=32 time=16ms TTL=126
Reply from 211.10.5.100: bytes=32 time<1ms TTL=126
Reply from 211.10.5.100: bytes=32 time<1ms TTL=126
Reply from 211.10.5.100: bytes=32 time=9ms TTL=126
Ping statistics for 211.10.5.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 16ms, Average = 6ms
```

1.1.1.5 PC5

PC5 to PC1

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 211.10.1.100

Pinging 211.10.1.100 with 32 bytes of data:

Reply from 211.10.1.100: bytes=32 time=2ms TTL=123
Reply from 211.10.1.100: bytes=32 time=9ms TTL=123
Reply from 211.10.1.100: bytes=32 time=1ms TTL=123
Reply from 211.10.1.100: bytes=32 time=15ms TTL=123

Ping statistics for 211.10.1.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 15ms, Average = 6ms
```

PC5 to PC2

```
C:\>ping 211.10.2.100

Pinging 211.10.2.100 with 32 bytes of data:

Reply from 211.10.2.100: bytes=32 time<lms TTL=126
Reply from 211.10.2.100: bytes=32 time<lms TTL=126
Reply from 211.10.2.100: bytes=32 time=9ms TTL=126
Reply from 211.10.2.100: bytes=32 time<lms TTL=126
Ping statistics for 211.10.2.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 9ms, Average = 2ms</pre>
C:\>
```

PC5 to PC3

```
C:\>ping 211.10.3.100
Pinging 211.10.3.100 with 32 bytes of data:

Reply from 211.10.3.100: bytes=32 time=lms TTL=125
Reply from 211.10.3.100: bytes=32 time<lms TTL=125
Reply from 211.10.3.100: bytes=32 time<lms TTL=125
Reply from 211.10.3.100: bytes=32 time<lms TTL=125
Ping statistics for 211.10.3.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

• PC5 to PC4

```
C:\>ping 211.10.4.100

Pinging 211.10.4.100 with 32 bytes of data:

Reply from 211.10.4.100: bytes=32 time=lms TTL=124
Reply from 211.10.4.100: bytes=32 time=lms TTL=124
Reply from 211.10.4.100: bytes=32 time=lms TTL=124
Reply from 211.10.4.100: bytes=32 time=2ms TTL=124
Ping statistics for 211.10.4.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

1.1.2 Router to Router

1.1.2.1 Router1

• Router1 to Router 2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/5/17 ms
Router>
```

Router1 to Router 3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/12 ms

Router>
```

• Router1 to Router 4

```
Router>ping 211.10.4.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/5/13 ms

Router>
```

• Router 1 to Router 5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/5/12 ms

Router>
```

1.1.2.2 Router2

• Router2 to Router 1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

• Router2 to Router 3

```
Router>ping 211.10.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/19 ms

Router>
```

• Router 2 to Router 4

```
Router>ping 211.10.4.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/7/16 ms

Router>
```

• Router2 to Router 5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/8 ms
Router>
```

1.1.2.3 Router3

• Router3 to Router 1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/5/12 ms

Router>
```

• Router3 to Router 2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/8 ms
Router>
```

• Router3 to Router 4

```
Router>ping 211.10.4.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/8/17 ms
Router>
```

• Router3 to Router 5

```
Router>ping 211.10.5.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms

Router>
```

1.1.2.4 Router4

• Router4 to Router1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/13 ms

Router>
```

Router4 to Router2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/6/13 ms
Router>
```

• Router4 to Router3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/13 ms
Router>
```

Router4 to Router5

```
Router>ping 211.10.5.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/7/13 ms

Router>
```

1.1.2.4 Router5

• Router5 to Router1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
Router>
```

• Router5 to Router2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/8 ms

Router>
```

• Router5 to Router3

```
Router>ping 211.10.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/8 ms

Router>
```

Router5 to Router4

```
Router>ping 211.10.4.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms
Router>
```

1.1.3 Router to PC

1.1.3.1 Router1

• Router1 to PC1

```
Router>ping 211.10.1.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
Router>
```

• Router1 to PC2

```
Router>ping 211.10.2.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/6/12 ms

Router>
```

• Router1 to PC3

```
Router>ping 211.10.3.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/13 ms

Router>
```

• Router1 to PC4

```
Router>ping 211.10.4.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.4.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/10 ms
Router>
```

• Router1 to PC5

```
Router>ping 211.10.5.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/12 ms

Router>
```

1.1.3.2 Router2

• Router2 to PC1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
Router>
```

• Router2 to PC2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/7 ms
Router>
```

• Router2 to PC3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/21 ms

Router>
```

Router2 to PC4

```
Router>ping 211.10.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/6/12 ms

Router>
```

• Router2 to PC5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/9 ms
Router>
```

1.1.3.3 Router3

• Router3 to PC1

```
Router>ping 211.10.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/7 ms

Router>
```

• Router3 to PC2

```
Router>ping 211.10.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/7 ms

Router>
```

• Router3 to PC3

```
Router>ping 211.10.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/6 ms

Router>
```

• Router3 to PC4

```
Router>ping 211.10.4.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/9/17 ms

Router>
```

• Router3 to PC5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/8 ms
Router>
```

1.1.3.4 Router4

• Router4 to PC1

```
Router>ping 211.10.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/11 ms

Router>
```

• Router4 to PC2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/5/9 ms
Router>
```

• Router4 to PC3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms

Router>
```

• Router4 to PC4

```
Router>ping 211.10.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/5 ms

Router>
```

• Router4 to PC5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/7/11 ms
Router>
```

1.1.3.5 Router5

• Router5 to PC1

```
Router>ping 211.10.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms

Router>
```

• Router5 to PC2

```
Router>
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/12 ms
Router>
```

• Router5 to PC3

```
Router>
Router>ping 211.10.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/12 ms

Router>
```

Router5 to PC4

```
Router>ping 211.10.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

• Router5 to PC5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/5 ms
Router>
```

1.2 OSPF Routing

1.2.1 PC to PC

1.2.1.1 PC1

• PC1 to PC2

```
C:\>ping 211.10.2.2

Pinging 211.10.2.2 with 32 bytes of data:

Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Reply from 211.10.2.2: bytes=32 time=8ms TTL=254
Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Reply from 211.10.2.2: bytes=32 time<lms TTL=254

Ping statistics for 211.10.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 8ms, Average = 2ms

C:\>
```

• PC1 to PC3

```
C:\>ping 211.10.3.3

Pinging 211.10.3.3 with 32 bytes of data:

Reply from 211.10.3.3: bytes=32 time<1ms TTL=253
Reply from 211.10.3.3: bytes=32 time=15ms TTL=253
Reply from 211.10.3.3: bytes=32 time<1ms TTL=253
Reply from 211.10.3.3: bytes=32 time<1ms TTL=253
Ping statistics for 211.10.3.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 15ms, Average = 3ms</pre>
C:\>
```

PC1 to PC4

```
C:\>ping 211.10.4.4

Pinging 211.10.4.4 with 32 bytes of data:

Reply from 211.10.4.4: bytes=32 time<lms TTL=254
Reply from 211.10.4.4: bytes=32 time=lms TTL=254
Reply from 211.10.4.4: bytes=32 time<lms TTL=254
Reply from 211.10.4.4: bytes=32 time<lms TTL=254
Ping statistics for 211.10.4.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms</pre>
C:\>
```

• PC1 to PC5

```
C:\>ping 211.10.5.5
Pinging 211.10.5.5 with 32 bytes of data:

Reply from 211.10.5.5: bytes=32 time=12ms TTL=253
Reply from 211.10.5.5: bytes=32 time=9ms TTL=253
Reply from 211.10.5.5: bytes=32 time<1ms TTL=253
Reply from 211.10.5.5: bytes=32 time<1ms TTL=253
Ping statistics for 211.10.5.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 12ms, Average = 5ms
C:\>
```

1.2.1.2 PC2

• PC2 to PC1

```
Pinging 211.10.1.1 with 32 bytes of data:

Reply from 211.10.1.1: bytes=32 time=10ms TTL=254
Reply from 211.10.1.1: bytes=32 time<1ms TTL=254
Reply from 211.10.1.1: bytes=32 time=1ms TTL=254
Reply from 211.10.1.1: bytes=32 time<1ms TTL=254
Ping statistics for 211.10.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 2ms

C:\>
```

• PC2 to PC3

```
C:\>ping 211.10.3.3

Pinging 211.10.3.3 with 32 bytes of data:

Reply from 211.10.3.3: bytes=32 time<lms TTL=254
Reply from 211.10.3.3: bytes=32 time<lms TTL=254
Reply from 211.10.3.3: bytes=32 time=13ms TTL=254
Reply from 211.10.3.3: bytes=32 time<lms TTL=254
Ping statistics for 211.10.3.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 13ms, Average = 3ms</pre>
C:\>
```

• PC2 to PC4

```
C:\>ping 211.10.4.4

Pinging 211.10.4.4 with 32 bytes of data:

Reply from 211.10.4.4: bytes=32 time<lms TTL=253
Reply from 211.10.4.4: bytes=32 time<lms TTL=253
Reply from 211.10.4.4: bytes=32 time<lms TTL=253
Reply from 211.10.4.4: bytes=32 time=lms TTL=253
Reply from 211.10.4.4: bytes=32 time=lms TTL=253

Ping statistics for 211.10.4.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms

C:\>
```

• PC2 to PC5

```
C:\>ping 211.10.5.5
Pinging 211.10.5.5 with 32 bytes of data:

Reply from 211.10.5.5: bytes=32 time=13ms TTL=254
Reply from 211.10.5.5: bytes=32 time=lms TTL=254
Reply from 211.10.5.5: bytes=32 time=lms TTL=254
Reply from 211.10.5.5: bytes=32 time=lms TTL=254
Ping statistics for 211.10.5.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = lms, Maximum = 13ms, Average = 4ms
C:\>
```

1.2.1.3 PC3

PC3 to PC1

```
Cisco Packet Tracer PC Command Line 1.0

C:\>ping 211.10.1.1 with 32 bytes of data:

Reply from 211.10.1.1: bytes=32 time=9ms TTL=253

Reply from 211.10.1.1: bytes=32 time=1ms TTL=253

Reply from 211.10.1.1: bytes=32 time<1ms TTL=253

Reply from 211.10.1.1: bytes=32 time=7ms TTL=253

Reply from 211.10.1.1: bytes=32 time=7ms TTL=253

Ping statistics for 211.10.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 9ms, Average = 4ms

C:\>
```

• PC3 to PC2

```
C:\>ping 211.10.2.2

Pinging 211.10.2.2 with 32 bytes of data:

Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Reply from 211.10.2.2: bytes=32 time=lms TTL=254
Reply from 211.10.2.2: bytes=32 time=lms TTL=254
Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Ping statistics for 211.10.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = lms, Average = 0ms

C:\>
```

• PC3 to PC4

```
C:\>ping 211.10.4.4
Pinging 211.10.4.4 with 32 bytes of data:

Reply from 211.10.4.4: bytes=32 time<lms TTL=254
Reply from 211.10.4.4: bytes=32 time<lms TTL=254
Reply from 211.10.4.4: bytes=32 time=10ms TTL=254
Reply from 211.10.4.4: bytes=32 time=10ms TTL=254
Ping statistics for 211.10.4.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 10ms, Average = 2ms
C:\>
```

• PC3 to PC5

```
C:\>ping 211.10.5.5
Pinging 211.10.5.5 with 32 bytes of data:

Reply from 211.10.5.5: bytes=32 time<lms TTL=253
Reply from 211.10.5.5: bytes=32 time<lms TTL=253
Reply from 211.10.5.5: bytes=32 time<lms TTL=253
Reply from 211.10.5.5: bytes=32 time=13ms TTL=253
Ping statistics for 211.10.5.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 13ms, Average = 3ms

C:\>
```

1.2.1.4 PC4

PC4 to PC1

```
Cisco Packet Tracer PC Command Line 1.0

C:\>ping 211.10.1.1 with 32 bytes of data:

Reply from 211.10.1.1: bytes=32 time=10ms TTL=254

Reply from 211.10.1.1: bytes=32 time=10ms TTL=254

Reply from 211.10.1.1: bytes=32 time<1ms TTL=254

Reply from 211.10.1.1: bytes=32 time<7ms TTL=254

Reply from 211.10.1.1: bytes=32 time=7ms TTL=254

Ping statistics for 211.10.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 6ms

C:\>
```

• PC4 to PC2

```
C:\>ping 211.10.2.2

Pinging 211.10.2.2 with 32 bytes of data:

Reply from 211.10.2.2: bytes=32 time<lms TTL=253

Ping statistics for 211.10.2.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```

• PC4 to PC3

```
C:\>ping 211.10.3.3

Pinging 211.10.3.3 with 32 bytes of data:

Reply from 211.10.3.3: bytes=32 time<1ms TTL=254

Reply from 211.10.3.3: bytes=32 time=9ms TTL=254

Reply from 211.10.3.3: bytes=32 time=9ms TTL=254

Reply from 211.10.3.3: bytes=32 time<1ms TTL=254

Ping statistics for 211.10.3.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 9ms, Average = 4ms

C:\>
```

• PC4 to PC5

```
C:\>ping 211.10.5.5
Pinging 211.10.5.5 with 32 bytes of data:

Reply from 211.10.5.5: bytes=32 time=12ms TTL=252
Reply from 211.10.5.5: bytes=32 time<1ms TTL=252
Reply from 211.10.5.5: bytes=32 time=1ms TTL=252
Reply from 211.10.5.5: bytes=32 time=1ms TTL=252
Ping statistics for 211.10.5.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 12ms, Average = 3ms</pre>
```

1.2.1.5 PC5

PC5 to PC1

```
Cisco Packet Tracer PC Command Line 1.0

C:\>ping 211.10.1.1

Pinging 211.10.1.1 with 32 bytes of data:

Reply from 211.10.1.1: bytes=32 time<lms TTL=253

Reply from 211.10.1.1: bytes=32 time=lms TTL=253

Reply from 211.10.1.1: bytes=32 time=lms TTL=253

Reply from 211.10.1.1: bytes=32 time=lms TTL=253

Reply from 211.10.1.1: bytes=32 time=llms TTL=253

Ping statistics for 211.10.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1lms, Average = 3ms
```

PC5 to PC2

```
Pinging 211.10.2.2 with 32 bytes of data:

Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Reply from 211.10.2.2: bytes=32 time<lms TTL=254
Reply from 211.10.2.2: bytes=32 time=8ms TTL=254
Reply from 211.10.2.2: bytes=32 time=10ms TTL=254

Ping statistics for 211.10.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 4ms
```

• PC5 to PC3

```
C:\>ping 211.10.3.3

Pinging 211.10.3.3 with 32 bytes of data:

Reply from 211.10.3.3: bytes=32 time<lms TTL=253
Reply from 211.10.3.3: bytes=32 time=lms TTL=253
Reply from 211.10.3.3: bytes=32 time=9ms TTL=253
Reply from 211.10.3.3: bytes=32 time=9ms TTL=253
Reply from 211.10.3.3: bytes=32 time<lms TTL=253

Ping statistics for 211.10.3.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 9ms, Average = 2ms</pre>
```

• PC5 to PC4

```
C:\>ping 211.10.4.4
Pinging 211.10.4.4 with 32 bytes of data:

Reply from 211.10.4.4: bytes=32 time=1lms TTL=252
Reply from 211.10.4.4: bytes=32 time<1ms TTL=252
Reply from 211.10.4.4: bytes=32 time=1ms TTL=252
Reply from 211.10.4.4: bytes=32 time<1ms TTL=252
Ping statistics for 211.10.4.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1lms, Average = 3ms</pre>
```

1.2.2 Router to Router

1.2.2.1 Router 1

• Router1 to Router2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

• Router1 to Router3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/6/15 ms
Router>
```

• Router1 to Router4

```
Router>ping 211.10.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/6/15 ms

Router>
```

• Router1 to Router5

```
Router>ping 211.10.5.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms

Router>
```

1.2.2.2 Router 2

• Router2 to Router1

```
Router>ping 211.10.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

• Router2 to Router3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/5 ms
Router>
```

• Router2 to Router4

```
Router>ping 211.10.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/5 ms

Router>
```

• Router2 to Router5

```
Router>ping 211.10.5.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/9 ms

Router>
```

1.2.2.3 Router 3

• Router3 to Router1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/9 ms
Router>
```

• Router3 to Router2

```
Router>
Router>ping 211.10.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/6/12 ms

Router>
```

• Router3 to Router4

```
Router>ping 211.10.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/8 ms
```

• Router3 to Router5

```
Router>ping 211.10.5.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/12 ms

Router>
```

1.2.2.4 Router 4

• Router4 to Router1

```
Router>ping 211.10.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/3 ms

Router>
```

• Router4 to Router2

```
Router>ping 211.10.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
Router>
```

• Router4 to Router3

```
Router>ping 211.10.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
Router>
```

• Router4 to Router5

```
Router>ping 211.10.5.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.5.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/8 ms

Router>
```

1.2.2.5 Router 5

• Router5 to Router1

```
Router>ping 211.10.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms
Router>
```

• Router5 to Router2

```
Router>ping 211.10.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.2.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/9 ms

Router>
```

• Router5 to Router3

```
Router>ping 211.10.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/9 ms

Router>
```

• Router5 to Router4

```
Router>ping 211.10.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms

Router>
```

1.2.3 Router to PC

1.2.3.1 Router 1

• Router1 to PC1

```
Router>ping 211.10.1.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.100, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

Router1 to PC2

```
Router>ping 211.10.2.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

• Router1 to PC3

```
Router>ping 211.10.3.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/12 ms

Router>
```

• Router1 to PC4

```
Router>ping 211.10.4.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.100, timeout is 2 seconds:
!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/8 ms

Router>
```

• Router1 to PC5

```
Router>ping 211.10.5.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/13 ms

Router>
```

1.2.3.2 Router 2

• Router2 to PC1

```
Router>ping 211.10.1.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
Router>
```

• Router2 to PC2

```
Router>ping 211.10.2.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
Router>
```

• Router2 to PC3

```
Router>ping 211.10.3.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/9 ms

Router>
```

• Router2 to PC4

```
Router>ping 211.10.4.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/4/12 ms

Router>
```

• Router2 to PC5

```
Router>ping 211.10.5.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/8 ms
Router>
```

1.2.3.3 Router 3

• Router3 to PC1

```
Router>ping 211.10.1.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.100, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
Router>
```

• Router3 to PC2

```
Router>ping 211.10.2.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms

Router>
```

• Router3 to PC3

```
Router>ping 211.10.3.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.3.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

Router3 to PC4

```
Router>ping 211.10.4.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/3/11 ms

Router>
```

• Router3 to PC5

```
Router>ping 211.10.5.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/7/13 ms
Router>
```

1.2.3.4 Router 4

• Router4 to PC1

```
Router>ping 211.10.1.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.1.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms

Router>
```

• Router4 to PC2

```
Router>ping 211.10.2.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/8 ms
Router>
```

• Router4 to PC3

```
Router>ping 211.10.3.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/9 ms

Router>
```

• Router4 to PC4

```
Router>ping 211.10.4.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Router>
```

• Router4 to PC5

```
Router>ping 211.10.5.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/9 ms
Router>
```

1.2.3.5 Router 5

• Router5 to PC1

```
Router>ping 211.10.1.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.1.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/7 ms
Router>
```

• Router5 to PC2

```
Router>ping 211.10.2.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.2.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/5/10 ms
Router>
```

• Router5 to PC3

```
Router>ping 211.10.3.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.3.100, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/7/19 ms
Router>
```

• Router5 to PC4

```
Router>ping 211.10.4.100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 211.10.4.100, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/13 ms

Router>
```

• Router5 to PC5

```
Router>ping 211.10.5.100

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 211.10.5.100, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
Router>
```

2 Routing Table Entries

2.1 Router1

No	Network Address	Network Mask	Interface
1	211.10.1.0	255.255.255.0	FastEthernet0/0
2	211.10.12.0	255.255.255.0	FastEthernet0/1
3	211.10.14.0	255.255.255.0	Ethernet1/1

2.2 Router2

No	Network Address	Network Mask	Interface
1	211.10.2.0	255.255.255.0	FastEthernet0/0
2	211.10.12.0	255.255.255.0	FastEthernet0/1
3	211.10.23.0	255.255.255.0	Ethernet1/1
4	211.10.25.0	255.255.255.0	Ethernet1/0

2.3 Router3

No	Network Address	Network Mask	Interface
1	211.10.3.0	255.255.255.0	FastEthernet0/0
2	211.10.23.0	255.255.255.0	Ethernet1/1
3	211.10.34.0	255.255.255.0	Ethernet1/0

2.4 Router4

No	Network Address	Network Mask	Interface
1	211.10.4.0	255.255.255.0	FastEthernet0/0
2	211.10.14.0	255.255.255.0	Ethernet1/1
3	211.10.34.0	255.255.255.0	Ethernet1/0
4	211.10.45.0	255.255.255.0	FastEthernet0/1

2.5 Router5

No	Network Address	Network Mask	Interface
1	211.10.5.0	255.255.255.0	FastEthernet0/0
2	211.10.45.0	255.255.255.0	FastEthernet0/1
3	211.10.25.0	255.255.255.0	Ethernet1/0