(1 point)
Find the area of the surface obtained by rotating the curve $9x = y^2 + 18$, $2 \le x \le 6$, about the <i>x</i> -axis.
Area = pi/27*((81+4*6^2)^(3/2)-81^(3/2))
(1 point)
The ellipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
$a^2 = b^2$ is rotated about the x -axis to form a surface called an <i>ellipsoid</i> . Find the surface area of this ellipsoid.
Area =
(1 point)
Find the area of the surface obtained by rotating the curve $x = \frac{1}{3}(y^2 + 2)^{3/2}, 1 \le y \le 2$, about the <i>x</i> -axis.
Area = 21pi/2
(1 point)
Find the area of the surface obtained by rotating the curve $x = 1 + 2y^2$, $1 \le y \le 2$, about the <i>x</i> -axis.
Area = pi/24*(65^(3/2)-17^(3/2))
(1 point) Find the area of the surface obtained by rotating the curve
$y = 1 + 2x^2$
from $x = 0$ to $x = 7$ about the <i>y</i> -axis.
pi/24*(785^(3/2)-1)
(1 point) Find the area of the surface obtained by rotating the curve
$y = \sqrt{6x}$
from $x = 0$ to $x = 3$ about the x -axis.
The area is 4sqrt(6)pi/3*((9/2)^(3/2)-(3/2)^(3/2)) square units.
(1 point) In each part, determine all values of p for which the integral is improper. Enter in interval notation or "none" if there are no relevant values of p .
(a) $\int_0^6 \frac{dx}{x^p}$
p values that make integral improper (1,inf)
(b) $\int_{1}^{2} \frac{dx}{x-p}$
$J_1 = x - p$ p values that make integral improper
(c) $\int_{3}^{7} e^{-px} dx$
p values that make integral improper -1
(1 point) Make the substitution $u=\sqrt{\frac{x}{8}}$ and evaluate the resulting definite integral.
$\int_0^{+\infty} \frac{e^{-\left(\sqrt{\frac{x}{8}}\right)}}{\sqrt{8x}} \ dx = \boxed{1/2}$