

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Т «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №15

по курсу «Функциональное и логическое программирование» на тему: «Формирование эффективных программ на Prolog»

Студент _	ИУ7-63Б (Группа)	(Подпись, дата)	Миронов Г. А. (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Толпинская Н. Б. (И. О. Фамилия)

1 Практическая часть

Задание 15: В одной программе написать правила, позволяющие найти

- 1. Максимум из двух чисел
 - (а) без использования отсечения,
 - (b) с использованием отсечения;
- 2. Максимум из трех чисел
 - (а) без использования отсечения,
 - (b) с использованием отсечения;

Убедиться в правильности результатов. Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы: Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

Листинг 1.1 – Реализация базы знаний

```
domains
2
       number = integer
3
4
  predicates
       maxTwo(number, number, number).
5
6
       maxTwoCut(number, number, number).
7
8
       maxThree(number, number, number, number).
       maxThreeCut(number, number, number, number).
9
10
11
  clauses
12
       maxTwo(A, B, A) :- A >= B.
13
       maxTwo(A, B, B) :- A < B.
14
15
       maxTwoCut(A, B, A) :- A >= B, !.
16
       maxTwoCut(_, B, B).
17
       maxThree(A, B, C, A) :- A >= B, A >= C.
18
19
       maxThree(_, B, C, Res) :- maxTwo(B, C, Res).
20
21
       maxThreeCut(A, B, C, A) :- A >= B, A >= C, !.
22
       maxThreeCut(_, B, C, Res) :- maxTwo(B, C, Res).
23
24
   goal
25
       % maxThree(3, 1, 2, R). %(1)
26
       maxThreeCut(3, 1, 2, R). %(2)
```

В Таблицах 1.1-1.2 представлен порядок поиска ответа на вопросы 1 и 2, соответственно.

Таблица 1.1 – Порядок формирования результата для 1-го вопроса

Шаг	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	maxThree(3, 1, 2, R)	Прямой ход	maxThree(3, 1, 2, R)	
\vdash	и \max Тwo(A, B, A)	Переход к		
	Главные функторы не равны	след. предл.		
:		:	:	:
ಬ	maxThree(3, 1, 2, R) и maxThree(A, B, C, A)	Прямой ход	3>=1, 3>=2	A = 3, B = 1, C = 2, R = 3
9	3>=1	Прямой ход	3>=2	A = 3, B = 1, C = 2, R = 3
	3>=2	Нашли ответ		A = 3, B = 1, C = 2, R = 3
∞	maxThree(3, 1, 2, R)	Прямой ход	$\max Two(2, 1, Res)$	B=1
	и maxThree(_, B, C, Res)			$\mathrm{C}=2$
6	$\max Two(2, 1, Res)$	Прямой ход	A>=B	$\mathrm{A}=2,\mathrm{B}=1$
	и \max Тwo(A, B, A)			$\mathrm{R}=2$
10	A>=B	Нашли ответ		A = 2, B = 1, R = 2
:		:	:	:
30	maxThree(3, 1, 2, R)	Завершение	$\max \text{Three}(3, 1, 2, R)$	
	и maxThreeCut(_, B, C, Res)	работы		
	Line, Sex)	2 подст.		
	Главные функторы не равны	в рез-те		
				Конец таблицы

Таблица 1.2 – Порядок формирования результата для 2-го вопроса

IIIar	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	maxThreeCut(3, 1, 2, R)	Прямой ход	maxThreeCut(3, 1, 2, R)	
<u> </u>	и maxTwo(A, B, A)	Переход к		
	Главные функторы не равны	след. предл.		
:	÷	÷	÷	:
2	maxThreeCut(3, 1, 2, R)	Прямой ход	3>=1, 3>=2, !	A = 3, B = 1
	и maxThreeCut(A, B, C, A)			$\mathrm{C}=2,\mathrm{R}=3$
∞	3 >= 1	Прямой ход	3 >= 1, !	A = 3, B = 1, C = 2, R = 3
6	3>=2	Нашли ответ		A = 3, B = 1, C = 2, R = 3
10		Завершение		A = 3, B = 1, C = 2, R = 3
		работы		
		1 подст.		
		в рез-те		
				Конец таблицы

2 Контрольный вопросы

2.1 Какое первое состояние резольвенты?

Заданный вопрос (goal).

2.2 В каком случае система запускает алгоритм унификации?

Система запускает алгоритм унификации автоматически при необходимости что-то доказать

2.3 Каково назначение и результат использования алгоритма унификации?

Унификация – механизм логического вывода. Результат – подстановка.

2.4 В каких пределах программы переменные уникальны?

Именованная переменная уникальна в рамках предложения, в котором она используется. Анонимные переменные всегда уникальны.

2.5 Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм.

2.6 Как изменяется резольвента?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- к полученной конъюнкции целей применяется подстановка, полученная

как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

2.7 В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.