System F_i

a higher-order polymorphic λ -calculus with erasable term indices

Ki Yung Ahn Tim Sheard

Portland State University {kya,sheard}@cs.pdx.edu

Marcelo Fiore Andrew M. Pitts
University of Cambridge
{Marcelo.Fiore,Andrew.Pitts}@cl.cam.ac.uk

Abstract

The purpose of this paper is to introduce a foundational type system, System F_i , for the design of programming languages with first-class term-indexed datatypes – higher-order datatypes whose parameters range over data such as Natural Numbers or Lists.

To do this, we have devised a minimal extension of System F_{ω} that incorporates term indices. While term-indexed datatypes are expressible in rich type theories, like the Implicit Calculus of Constructions (ICC), these systems typically come coupled with orthogonal features such as large eliminations and full type dependency. We argue that there are important pedagogical benefits of isolating the minimal features to support term-indexing. We show that System F_i provides a theory for analysing programs with termindexed types and also argue that it constitutes a basis for the design of logically-sound light-weight dependent programming languages.

In terms of expressivity, System F_i sits in between System F_{ω} (the prototypical logical calculus for functional programming) and ICC (a full-featured dependent type theory). Indeed, we relate System F_i to System F_{ω} and ICC as follows. We establish erasure properties of F_i -types that capture the idea that term indices are discardable in that they are irrelevant for computation. Index erasure projects typing in System F_i to typing in System F_{ω} ; so System F_i inherits the strong-normalisation property from System F_{ω} . The logical consistency of System F_i is established by embedding it into a subset of ICC.

Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features—data types and structures; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—lambda calculus and related systems

General Terms Languages, Theory

Keywords term-indexed data types, generalized algebraic data types, higher-order polymorphism, type-constructor polymorphism, higher-kinded types, impredicative encoding

1. Introduction

We wish to incorporate dependent types into ordinary programming languages. We are interested in two kinds of dependent types. Full dependency, where the type of a function can depend upon the value of its run-time parameters, and static dependency, where the type of a function can depend only upon static (or compile-time) parameters. Static dependency is sometimes referred to as indexed typing. The first is very expressive, while the second is often much easier to learn and use especially for those who are familiar to functional programming languages like Haskell or ML. Indexed types come in two flavors: type-indexed and term-indexed types. Type indexing includes parametric polymorphism, but it also includes more sophisticated typing as found in Generalized Algebraic Datatypes (GADTs). An example of type indexing using GADTs is a type representation:

```
data TypeRep t where
  Int :: TypeRep Int
  Bool:: TypeRep Bool
  Pair:: TypeRep a -> TypeRep b -> TypeRep(a,b)
```

Here, a value of type (TypeRep t) is isomorphic in "shape" with the type t. For example (Pair Int Bool) is isomorphic in shape with its type (Int,Bool).

On the other hand, term-indexed types include indices that range over data structures, such as Natural Numbers (like Z, (S Z)) or Lists (like Nil or (Cons Z Nil)). The classic example of a term index is the second parameter to the length-indexed list type Vec (as in (Vec Int (S Z))). In languages such as Haskell, which support GADTs with type indexing, term-indices are not first-class; they are "faked" by reflecting data at the type level with uninhabited type constructors (see §6 for a very recent GHC extension, which enable term-indices be first class). For example,

```
data Succ n
data Zero
data Vector t n where
   Cons :: a -> Vector a n -> Vector a (Succ n)
   Nil :: Vector a Zero
```

This comes with a number of problems. First, there is no way to say that types such as (Succ Int) are ill-formed, and second the costs associated with duplicating the constructor functions of data to be used as term-indices. Nevertheless, "faked" term-indexed GADTs have become extremely popular as a light-weight, type-based mechanism to raise the confidence of users that software systems maintain important properties.

A salient example is Guillemette's thesis [11] encoding the classic paper by Morrisett et al. [18] completely in Haskell. This impressive system embeds a multi-stage compiler, from System F all the way to typed assembly language using indexed datatypes (many of them "faked" term-indices) to show that every stage preserves type information. As such, it provides confidence but no guarantees. Indeed, since in Haskell the non-terminating computation can be assigned any type, it is in principle possible that the type-preservation property is a consequence of a non-terminating computation in the program code.

[Copyright notice will appear here once 'preprint' option is removed.]

short description of paper 1 2012/9/11

This drawback is absent in approaches based on strongly normalizing logical calculi; like, for instance, System F_{ω} , the higherorder polymorphic lambda calculus, which is rich enough to express a wide collection of data structures. Unfortunately, the termindexed datatypes that are necessary to support Guillemette's system are not known to be expressible in System F_{ω} .

In his CompCert system, Leroy [13] showed that the much richer logical Calculus of Inductive Constructions (CIC), which constitutes the basis of the Coq proof assistant, is expressive enough to guarantee type preservation (and more) between compiler stages. This approach, however, comes at a cost. Programmers must learn to use both dependent types and a new programming paradigm, programming by code extraction.

Some natural questions thus arise: Is there an expressive system supporting term-indexed types, say, sitting somewhere in between System F_{ω} and fully dependent calculi? If only term-indexed types are needed to maintain properties of interest, is there a language one can use? Can one program, rather than extract code? The goal of this paper is to develop the theory necessary to begin answering these and related questions.

Our approach in this direction is to design a new foundational calculus, System F_i, for functional programming languages with term-indexed datatypes. In a nutshell, System F_i is obtained by minimally extending System F_{ω} with type-indexed kinds. Notably, this yields a logical calculus that is expressive enough to embed non-dependent term-indexed datatypes and their eliminators. Our contributions in this development are as follows.

- Identifying the features that are needed for a higher-order polymorphic λ -calculus to embed term-indexed datatypes (§2), in isolation from other features normally associated with such calculi (e.g., general recursion, large elimination, dependent
- The design of the calculus, System F_i (§3), and its use to study properties of languages with term-indexed datatypes, by embedding these into the calculus (§4). For instance, one can use System Fi to prove that the Mendler-style eliminators for GADTs of [3] are normalizing.
- Showing that System F_i enjoys a simple erasure property and inherits meta-theoretic results (strong normalization and logical consistency) from well-known calculi (System F_{ω} and ICC) that enclose System F_i (§5).

From System F_{ω} to System F_i , and back

It is well known that datatypes can be embedded into polymorphic lambda calculi by means of functional encodings (e.g., [1]), such as the Church and Boehm-Berarducci encodings.

In System F, for instance, one can embed regular datatypes [4], like homogeneous lists:

Haskell: data List a = Cons a (List a) | Nil System F: List
$$A \triangleq \forall X.(A \rightarrow X \rightarrow X) \rightarrow X \rightarrow X$$

In such regular datatypes, constructors have algebraic structure that directly translates into polymorphic operations on abstract types as encapsulated by universal quantification.

In the more expressive System F_{ω} , one can encode more general type-indexed datatypes that go beyond the algebraic class. For example, one can embed powerlists with heterogeneous elements in which an element of type a is followed by an element of the product type (a,a):

Haskell: data Powl a = PCons a (Powl(a,a)) | PNil $\begin{array}{ll} \text{System F}_{\omega} \colon \operatorname{Powl} \; \stackrel{\triangle}{=} \; \lambda A^*. \forall X^{* \to *}. \\ & (A \to X(A \times A) \to XA) \to XA \to XA \end{array}$

$$(A \to X(A \times A) \to XA) \to XA \to XA$$

Note the non-regular occurrence (Powl(a,a)) in the definition of (Powl a), and the use of universal quantification over higher-order

What about term-indexed datatypes? What extension to System F_{ω} is needed to embed these, as well as type-indexed ones? Our answer is System F_i .

In a functional language supporting term-indexed datatypes, we envisage that the classic example of homogeneous length-indexed lists would be defined along the following lines:

```
data Nat = S Nat | Z
data Vec (a:*) {i:Nat} where
  VCons : a -> Vec a {i} -> Vec a {S i}
  VNil : Vec a {Z}
```

Here the type constructor Vec is defined to admit parameterisation by both type and term indices. For instance, the type (Vec (List Nat) {S (S Z)}) is that of two-dimensional vectors of lists of natural numbers. By design, our syntax directly reflects the different type and term indexing by indicating the latter in curly brackets. This feature has been directly transferred from System F_i , where it is used as a mechanism for guaranteeing the static nature of term indexing.

The encoding of the vector datatype in System F_i is as follows:

$$\begin{split} \operatorname{Vec} &\triangleq \lambda A^*.\lambda i^{\operatorname{Nat}}. \forall X^{\operatorname{Nat} \to *}. \\ &(\forall j^{\operatorname{Nat}}. A \to X\{j\} \to X\{\mathtt{S}\; j\}) \to X\{\mathtt{Z}\} \to X\{i\} \end{split}$$

where Nat, Z, and S respectively encode the Natural Numbers, zero and successor. Without going into the details of the formalism, which are given in the next section, one sees that such a calculus incorporating term-indexing structure needs four additional constructs.

- 1. Type-indexed kinding $(A \to \kappa)$ (as in (Nat $\to *$) in the example above) where the compile-time nature of term-indexing will be reflected in the enforcement that A be a closed type (rule (Ri)in Figure 1).
- 2. Term-index abstraction $\lambda i^A . F$ (as $\lambda i^{\text{Nat}} . \cdots$ in the example above) for constructing (or introducing) type-indexed kinds (rule (λi) in Figure 1).
- 3. Term-index application $F\{s\}$ (as $X\{z\}, X\{j\}$, and $X\{S\}$) in the example above) for destructing (or eliminating) typeindexed kinds, where the compile-time nature of indexing will be reflected in the enforcement that the index be statically typed (rule (@i) in Figure 1).
- 4. Term-index polymorphism $\forall i^A.B$ (as $\forall j^{\text{Nat}}.\cdots$ in the example above) where the compile-time nature of polymorphic termindexing will be reflected in the enforcement that the variable ibe static of closed type A (rule $(\forall Ii)$ in Figure 1).

As exemplified above, System F_i maintains a clear-cut separation between higher-order kinding and term indexing. This adds a level of abstraction to System F_{ω} and yields types that in addition to structural invariants also keep track of indexing invariants. Being static, all term-index information can be erased. This projects System F_i into System F_{ω} fixing the latter. For instance, the erasure of the F_i -type Vec is the F_{ω} -type List, the erasure of which (when regarded as an F_i -type that is) is in turn itself. Since, as already mentioned, typing in System F_i imposes structural and indexing constraints on terms one expects that the structural projection from System F_i to System F_ω provided by index erasure preserves typing. This is established in §5 and used to deduce the strong normalization of System F_i .

3. System F_i

System F_i is a higher-order polymorphic lambda calculus designed to extend System F_ω by the inclusion of term indices. The syntax and rules of System F_i are described in Figures 1 and 2. The extensions new to System F_i , which are not originally part of System F_ω , are highlighted by grey boxes. Eliding all the grey boxes from Figures 1 and 2, one obtains a version of System F_ω with Curry-style terms and the typing context separated into two parts (type-level context Δ and term-level context Γ).

In this section, we first discuss the rational for our design choices ($\S 3.1$) and then introduce the new constructs of System F_i ($\S 3.2$).

3.1 Design of System F_i

Terms in F_i are Curry style. That is, term level abstractions are unannotated $(\lambda x.t)$, and type generalizations $(\forall I)$ and type instantiations $(\forall E)$ are implicit at term level. A Curry-style calculus generally has an advantage over its Church-style counterpart when reasoning about properties of reduction. For instance, the Church-Rosser property naturally holds for β -, η -, and $\beta\eta$ -reduction in the Curry style, but may not hold in the Church style. This is due to the presence of annotations in abstractions [16].

Type constructors, on the other hand, remain Church style in F_i . That is, type level abstractions are annotated by kinds $(\lambda X^{\kappa}.F)$. Choosing type constructors to be Church style makes the kind of a type constructor visually explicit. The choice of style for type constructors is not as crucial as the choice of style for terms, since the syntax and kinding rules at type level are essentially a simply typed lambda calculus. Annotating the type level abstractions with kinds makes kinds explicit in the type syntax. Since F_i is essentially an extension of F_{ω} with a new formation rule for kinds, making kinds explicit is a pedagogical tool to emphasize the consequences of this new formation rule. As a notational convention, we write A and B, instead of F and G, where A and B to are expected to be types (i.e., nullary type constructors) of kind *.

In a language with term indices, terms appear in types (e.g., the length index (n+m) in the type $Vec\ Nat\ \{n+m\}$). Such terms contain variables. The binding sites of these variables matter. In F_i , we expect such variables to be statically bound. Dynamically bound index variables would require a dependently typed calculus, such as the calculus of constructions. To reflect this design choice, typing contexts are separated into type level contexts (Δ) and term level contexts (Γ) . Type level (static) variables (X, i) are bound in Δ and term (dynamic) variables (x) are bound in Γ . Type level variables are either type constructor variables (X) or term variables to be used as indices (i). As a notational convention, we write i, instead of x, when term variables are to be used as indices (i.e., introduced by either index abstraction or index polymorphism).

In contrast to our design choice, System F_ω is most often formalized using a single context, which binds both type variables (X) and term variables (x). In such a formalization, the free type variables in the typing of the term variable must be bound earlier in the context. For example, if X and Y appear free in the type of f, they must appear earlier in the single context (Γ) as below:

$$\Gamma = \dots, X^*, \dots, Y^*, \dots, (f : \forall Z^*.X \to Y \to Z), \dots$$

In such a formalization, the side condition $(X \notin \Gamma)$ in the $(\forall I)$ rule of Figure 1 is not necessary, since such a condition is already a part of the well-formedness condition for the context (i.e., Γ , X^{κ} is well-formed when $X \notin FV(\Gamma)$). Thus, for F_{ω} , it is only a matter of

taste whether to formalize the system using a single context or two contexts, since they are equivalent formalizations with comparable complexity.

However, in F_i , we separate the context into two parts to distinguish term variables used in types (which we call index variables, or indices, and are bound as Δ , i^A) from the ordinary use of term variables (which are bound as Γ , x:A). The expectation is that indices should have no effect on reduction at the term level. Although it is imaginable to formalize F_i with a single typing context and distinguish index variables from ordinary term variables using more general concepts (e.g., capability, modality), we think that splitting the typing context into two parts is the simplest solution.

3.2 System F_i compared to System F_{ω}

We assume readers to be familiar with System F_{ω} and focus on describing the new constructs of F_i . These appear in grey boxes.

Kinds. The key extension to F_{ω} is the addition of term-indexed arrow kinds of the form $A \to \kappa$. This allows type constructors to have terms as indices. The rest of the development of F_i flows naturally from this single extension.

Sorting. The formation of indexed arrow kinds is governed by the sorting rule (Ri). The rule (Ri) specifies that an indexed arrow kind $A \to \kappa$ is well-sorted when A has kind * under the empty type level context (\cdot) and κ is well-sorted.

Requiring the use of the empty context avoids dependent kinds (i.e., kinds depending on type level or value level bindings). The type A appearing in the index arrow kind $A \to \kappa$ must be well-kinded under the empty type level context (\cdot) . That is, A should to be a closed type of kind *, which does not contain any free type variables or index variables. For example, $(List X \to *)$ is not a well-sorted kind, while $((\forall X^*. List X) \to *)$ is a well-sorted kind.

Typing contexts. Typing contexts are split into two parts. Type level contexts (Δ) for type level (static) bindings, and term level contexts (Γ) for term level (dynamic) bindings. A new form of index variable binding (i^A) can appear in type level contexts in addition to the traditional type variable bindings (X^κ) . There is only one form of term level binding (x:A) that appears in term level contexts.

Well formed typing contexts. A type level context Δ is well-formed if (1) it is either empty, or (2) extended by a type variable binding X^{κ} whose kind κ is well-sorted under Δ , or (3) extended by an index binding i^A whose type A is well-kinded under the empty type level context at kind *. This restriction is similar to the one that occurs in the sorting rule (Ri) for term-indexed arrow kinds (see the paragraph Sorting). The consequence of this is that, in typing contexts and in sorts, A must be a closed type (not a type constructor!) without free variables.

A term level context Γ is well-formed under a type level context Δ when it is either empty or extended by a term variable binding x:A whose type A is well-kinded under Δ .

Type constructors and their kinding rules. We extend the type constructor syntax by three constructs, and extend the kinding rules accordingly for these new constructs.

 $\lambda i^A.F$ is the type level abstraction over an index (or, index abstraction). Index abstractions introduce indexed arrow kinds by the kinding rule (λi) . Note, the use of the new form of context extension, i^A , in the kinding rule (λi) .

 $F\{s\}$ is the type level index application. In contrast to the ordinary type level application (FG) where the argument (G) is a type constructor, the argument of an index application $(F\{s\})$

 $^{^1}$ The Church-Rosser property, in its strictest sense (i.e., $\alpha\text{-}\text{equivalence}$ over terms), generally does not hold in Church-style calculi , but may hold under certain approximations, such as modulo ignoring the annotations in abstractions.

Syntax: Sort Term Variables x, iType Constructor Variables X $\kappa ::= * \mid \kappa \to \kappa \mid A \to \kappa$ Kinds $A, B, F, G ::= X \mid A \to B \mid \lambda X^{\kappa}.F \mid FG \mid \forall X^{\kappa}.B \mid \lambda i^{A}.F \mid F\{s\} \mid \forall i^{A}.B$ Type Constructors $r, s, t ::= x \mid \lambda x.t \mid r s$ Terms $\Delta ::= \cdot \mid \Delta, X^{\kappa} \mid \Delta, i^{A}$ Typing Contexts $\Gamma ::= \cdot \mid \Gamma, x : A$ Well-formed typing contexts: $\begin{array}{c|c} \hline \vdash \Delta & \hline \\ \hline \vdash \cdot & \hline \\ \hline \vdash \Delta, X^{\kappa} \\ \hline \end{array} \left(X \not\in \mathrm{dom}(\Delta) \right) \\ \hline \begin{array}{c|c} \vdash \Delta & \cdot \vdash A : * \\ \hline \vdash \Delta, i^A \\ \hline \end{array} \left(i \not\in \mathrm{dom}(\Delta) \right) \\ \hline \end{array}$ $\boxed{ \Delta \vdash \Gamma } \quad \frac{\vdash \Delta}{\Delta \vdash \cdot} \quad \frac{\Delta \vdash \Gamma \quad \Delta \vdash A : *}{\Delta \vdash \Gamma, x : A} \left(x \not \in \mathsf{dom}(\Gamma) \right)$ Sorting: $\[\vdash \kappa : \Box \]$ $(A) \xrightarrow{\[\vdash \kappa : \Box \] \]} (R) \xrightarrow{\[\vdash \kappa : \Box \] \]} (Ri) \xrightarrow{\[\vdash A : \ast \]} (Ri) \xrightarrow{\[\vdash A : \ast \]} (Ri) \xrightarrow{\[\vdash A : \ast \]} (Ri)$ $(\lambda) \frac{\vdash \kappa : \Box \quad \Delta, X^{\kappa} \vdash F : \kappa'}{\Delta \vdash \lambda X^{\kappa}.F : \kappa \to \kappa'} \qquad (\textcircled{0}) \frac{\Delta \vdash F : \kappa \to \kappa' \quad \Delta \vdash G : \kappa}{\Delta \vdash FG : \kappa'} \qquad (\forall) \frac{\vdash \kappa : \Box \quad \Delta, X^{\kappa} \vdash B : *}{\Delta \vdash \forall X^{\kappa}.B : *}$ $(\lambda i) \frac{\cdot \vdash A : * \quad \Delta, i^A \vdash F : \kappa}{\Delta \vdash \lambda i^A \quad F : A \to \kappa} \quad (@i) \frac{\Delta \vdash F : A \to \kappa \quad \Delta; \cdot \vdash s : A}{\Delta \vdash F \{s\} : \kappa} \quad (\forall i) \frac{\cdot \vdash A : * \quad \Delta, i^A \vdash B : *}{\Delta \vdash \forall i^A . B : *}$ $(Conv) \underline{\quad \Delta \vdash A : \kappa \quad \Delta \vdash \kappa = \kappa' : \square}_{\quad \Delta \vdash A : \kappa'}$ $\textit{Typing:} \quad \boxed{\Delta; \Gamma \vdash t : A} \qquad \qquad \text{(:)} \quad \frac{(x : A) \in \Gamma \quad \Delta \vdash \Gamma}{\Delta : \Gamma \vdash x : A} \qquad \text{(: i)} \quad \frac{i^A \in \Delta \quad \Delta \vdash \Gamma}{\Delta : \Gamma \vdash i : A}$ $(\rightarrow I) \cfrac{\Delta \vdash A: * \quad \Delta; \Gamma, x: A \vdash t: B}{\Delta; \Gamma \vdash \lambda x. t: A \rightarrow B} \qquad (\rightarrow E) \cfrac{\Delta; \Gamma \vdash r: A \rightarrow B \quad \Delta; \Gamma \vdash s: A}{\Delta; \Gamma \vdash rs: B}$ $(\forall I) \frac{\vdash \kappa : \Box \quad \Delta, X^{\kappa}; \Gamma \vdash t : B}{\Delta; \Gamma \vdash t : \forall X^{\kappa}.B} (X \notin \mathrm{FV}(\Gamma)) \qquad (\forall E) \frac{\Delta; \Gamma \vdash t : \forall X^{\kappa}.B \quad \Delta \vdash G : \kappa}{\Delta; \Gamma \vdash t : B[G/X]}$ $(\forall Ii) \frac{\cdot \vdash A : * \quad \Delta, i^A; \Gamma \vdash t : B}{\Delta \colon \Gamma \vdash t : \forall i^A \mid B} \begin{pmatrix} i \notin FV(t), \\ i \notin FV(\Gamma) \end{pmatrix} \quad (\forall Ei) \frac{\Delta; \Gamma \vdash t : \forall i^A . B \quad \Delta; \cdot \vdash s : A}{\Delta; \Gamma \vdash t : B[s/i]}$ $(=) \frac{\Delta; \Gamma \vdash t : A \quad \Delta \vdash A = B : *}{\Delta; \Gamma \vdash t : B}$ **Reduction:** $t \rightsquigarrow t'$ $\frac{t \rightsquigarrow t'}{(\lambda x.t) s \rightsquigarrow t[s/x]}$ $\frac{t \rightsquigarrow t'}{\lambda x.t \rightsquigarrow \lambda x.t'}$ $\frac{r \rightsquigarrow r'}{r s \rightsquigarrow r' s}$ $\frac{s \rightsquigarrow s'}{r s \rightsquigarrow r s'}$

Figure 1. Syntax, Typing rules, and Reduction rules of F_i

Figure 2. Equality rules of F_i

is a term (s). We use the curly bracket notation around an index argument in a type to emphasize the transition from ordinary type to term, and to emphasize that s is an index term, which is erasable. Index applications eliminate indexed arrow kinds by the kinding rule (@i). Note, we type check the index term (s) under the current type level context paired with the empty term level context $(\Delta;\cdot)$ since we do not want the index term (s) to depend on any term level bindings. Allowing such a dependency would admit true dependent types.

 $\forall i^A.B$ is an index polymorphic type. The formation of indexed polymorphic types is governed by the kinding rule $\forall i$, which is very similar to the formation rule (\forall) for ordinary polymorphic types.

In addition to the rules (λi) , (@i), and $(\forall i)$, we need a conversion rule (Conv) at kind level. This is because the new extension to the kind syntax $A \to \kappa$ involves types. Since kind syntax involves types, we need more than simple structural equality over kinds. The new equality over kinds is the usual structural equality extended by type constructor equality when comparing indexed arrow kinds (see Figure 2).

Terms and their typing rules The term syntax is exactly the same as other Curry-style calclui. We write x for ordinary term variables introduced by term level abstractions $(\lambda x.t)$. We write i for index variables introduced by index abstractions $(\lambda i^A.F)$ and by index polymorphic types $(\forall i^A.B)$. As discussed earlier, the distinction between x and i is for the convenience of readability.

Since F_i has index polymorphic types $(\forall i^A.B)$, we need typing rules for index polymorphism: $(\forall Ii)$ for index generalization and $(\forall Ei)$ for index instantiation.

The index generalization rule $(\forall Ii)$ is similar to the type generalization rule $(\forall I)$, but generalizes over index variables (i) rather than type consturctor variables (X). The rule $(\forall Ii)$ has two side conditions while the rule $(\forall I)$ has only one side conditions. The additional side condition $i \notin FV(t)$ in the $(\forall Ii)$ rule prevents terms from accessing the type level index variables introduced by index polymorphism. Without this side condition, \forall -binder would no longer behave polymorphically, but instead would behave as a dependent function, which are usually denoted by the Π -binder in dependent type theories. The rule $(\forall I)$ for ordinary type generalization does not need such additional side condition because type variables cannot appear in the syntax of terms. The side conditions on generalization rules for polymorphism is fairly standard in de-

$$(0i) \frac{\Delta, i^A \vdash F : A \to \kappa}{\Delta, i^A \vdash A : *} \frac{(:i) \frac{i^A \in \Delta, i^A \quad \Delta \vdash \cdot}{\Delta, i^A ; \cdot \vdash i : A}}{\Delta, i^A \vdash F\{i\} : \kappa} \frac{\Delta \vdash \lambda i^A . F\{i\} : A \to \kappa}{\Delta \vdash \lambda i^A . F\{i\} : A \to \kappa}$$

Figure 3. Kinding derivation for an index abstraction

pendently typed languages supporting distinctions between polymorphism (or, erasable arguments) and dependent functions (e.g., IPTS[17], ICC[16]).

The index instantiation rule $(\forall Ei)$ is similar to the type instantiation rule $(\forall Ei)$, except that we type check the index term s to be instantiated for i in the current type level context paired with the empty term level context $(\Delta;\cdot)$ rather than the current term level context. Since index terms are at type level, they should not depend on term level bindings.

In addition to the rules $(\forall Ii)$ and $(\forall Ei)$ for index polymorphism, we need an additional variable rule (:i) to be able to access the index variables already in scope. Terms (s) used at type level in index applications $(F\{s\})$ should be able to access index variables already in scope. For example, $\lambda i^A.F\{i\}$ should be well-kinded under a context where F is well-kinded, justified by the derivation in Figure 3.

4. Embedding datatypes and their eliminators

System F_i can express a rich collection of datatypes. First, we illustrate embeddings for both non-recursive and recursive datatypes using Church encodings [6] to define data constructors (§4.1). Second, we illustrate a more involved embedding for recursive datatypes based on two-level types (§4.2). Lastly, we discuss an encoding of equality over term indices (§4.3).

4.1 Embedding datatypes using Church-encoded terms

Church [6] invented an embedding of the natural numbers into the untyped λ -calculus, which he used to argue that the λ -calculus was expressive enough for the foundation of logic and arithmetic. Church encoded the data constructors of natural numbers, successor and zero, as higher-order functions, succ = $\lambda x.\lambda x_s.\lambda x_z.x_s(x\,x_sx_z)$ and zero $=\lambda x_s.\lambda x_z.x_z$. The heart of the Church encoding is that a value is encoded as an elimination function. The bound variables x_s and x_z (of both succ and zero) stand for the operations needed to eliminate the successor case and the zero case respectively. The Church encodings of successor states: to eliminate succ x, "apply x_s to the elimination of the predecessor $(x x_s x_z)$ "; and, to eliminate zero, just "return x_z ". Since values are elimination functions, the eliminator can be defined as applying the value itself to the needed operations. One for each of the data constructors. For instance, we can define an eliminator for the natural numbers as $elim_{Nat} = \lambda x. \lambda x_s. \lambda x_z. x_s. x_z.$ This is just an η -expansion of the identity function $\lambda x.x$. The Church encoded natural numbers are typable in a polymorphic λ -calculi, such as System F_{ω} , as follows:

$$\begin{array}{lll} \operatorname{Nat} & = \ \forall X^*.(X \to X) \to X \to X \\ & : & \operatorname{Nat} \to \operatorname{Nat} \ = \ \lambda x.\lambda x_s.\lambda x_z.x_s(x\,x_sx_z) \\ & Z & : & \operatorname{Nat} \ = \ \lambda x_s.\lambda x_z.x_z \\ & \operatorname{elim}_{\operatorname{Nat}} & : & \operatorname{Nat} \to \forall X^*.(X \to X) \to X \to X \\ & = \ \lambda x.\lambda x_s.\lambda x_z.x\,x_sx_z \end{array}$$

In a Similar fashion, other datatypes are also embeddable into polymorphic λ -calculi. Embeddings of some well-known non-recursive datatypes are illustrated in Figure 4, and embeddings

```
= \forall X.X \to X \to X
Bool
true
                  : Bool = \lambda x_1.\lambda x_2.x_1
                  : Bool = \lambda x_1.\lambda x_2.x_2
false
                : Bool \rightarrow \forall X.X \rightarrow X \rightarrow X
elim_{Bool}
                  = \lambda x.\lambda x_1.\lambda x_2.x \ x_1 \ x_2 (if x then x_1 else x_2)
A_1 \times A_2 = \forall X. (A_1 \to A_2 \to X) \to X
                  : \forall A_1^*. \forall A_2^*. A_1 \times A_2 = \lambda x_1. \lambda x_2. \lambda x'. x' x_1 x_2
pair
                   : \forall A_1^*, \forall A_2^*, A_1 \times A_2 \rightarrow \forall X, (A_1 \rightarrow A_2 \rightarrow X) \rightarrow X
elim(x)
                  = \lambda x.\lambda x'.x x'
                  (by passing appropriate values to x', we get
                    fst = \lambda x.x(\lambda x_1.\lambda x_2.x_1), snd = \lambda x.x(\lambda x_1.\lambda x_2.x_2)
A_1 + A_2 = \forall X^* . (A_1 \to X) \to (\overline{A_2 \to X}) \to X
                   : \forall A_1^*. \forall A_2^*. A_1 \to A_1 + A_2 = \lambda x. \lambda x_1. \lambda x_2. x_1 x
inl
                   \forall A_1^*. \forall A_2^*. A_2 \to A_1 + A_2 = \lambda x. \lambda x_1. \lambda x_2. x_2 x_1
inr
                  : \forall A_1^*. \forall A_2^*. (A_1 + A_2) \to
elim_{(+)}
                       \forall X^*.(A_1 \to X) \to (A_2 \to X) \to X
                  = \lambda x.\lambda x_1.\lambda x_2.x x_1 x_2
                       (case x of \{ \text{inl } x' \rightarrow x_1 \ x'; \text{inr } x' \rightarrow x_2 \ x' \} )
```

Figure 4. Embedding non-recursive datatypes

of the list-like recursive datatypes, which we discussed earlier as motivating examples (§2), are illustrated in Figure 5. Note that the term encodings for the constructors and eliminators of the list-like datatypes in Figure 5 are exactly the same. For instance, the term encodings for nil, pnil, and vnil are all the same term: $\lambda x_s.\lambda x_z.x_z$. The nil and cons terms capture the linear nature of lists, so they are the same for all list like structures. But, the types differ, capturing different invariants about lists – shape of the elements (Powl), and length of the list (Vec).

4.2 Embedding recursive datatypes as two-level types

We can divide a recursive datatype definition into two parts – a recursive type operator and a base structure. The operator "weaves" recursion into the datatype definition, and the base structure describes its shape (i.e., number of data constructors and their types). One can program with two-level types in any functional language that supports higher-order polymorphism², such as Haskell. In Figure 6, we illustrate this by giving an example of a two level definition for ordinary lists (all the other types in this paper have similar definitions).

The use of two-level types has been recognized as a useful functional programming pearl [21], since two-level types separate the two concerns of (1) recursion on recursive sub components and (2) handling different cases (by pattern matching over the shape of the (non-recursive) base structure). An advantage of such an approach, is that a single eliminator can be defined once for all datatypes of the same kind. For example, the function \mathtt{mit}_κ describes Mendler-style iteration 3 for the recursive types defined by μ_κ . Although it is possible to write programs using two level datatypes in a general purpose functional language, one could not expect logical consistency in such systems.

² a.k.a. higher-kinded polymorphism, or type-constructor polymorphism

³ An iteration is a principled recursion scheme guaranteed to terminate for any well-founded input. Also known as fold, or catamorphism.

```
= \lambda A^* \cdot \forall X^* \cdot (A \to X \to X) \to X \to X
List
                 : \forall A^*.A \rightarrow \texttt{List}\,A \rightarrow \texttt{List}\,A
cons
                                                 = \lambda x_a.\lambda x.\lambda x_c.\lambda x_n.x_c x_a (x x_c x_n)
                 : \forall A^*. \text{List } A = \lambda x_c. \lambda x_n. \lambda x_n
nil
\mathsf{elim}_{\mathsf{List}}: \forall A^*.\mathsf{List}\, A \to \forall X^*.(A \to X \to X) \to X \to X
                 = \lambda x.\lambda x_c.\lambda x_n.x \ x_c \ x_n (foldr x_z \ x_c \ x in Haskell)
                = \lambda A^*.
Powl
                      \forall X^{* \to *}.(A \to X(A \times A) \to XA) \to XA \to XA
                : \forall A^*.A \rightarrow \texttt{Powl}(A \times A) \rightarrow \texttt{Powl} A
pcons
                                                  = \lambda x_a . \lambda x . \lambda x_c . \lambda x_n . x_c x_a (x x_c x_n)
                 : \forall A^*. \text{Powl } A = \lambda x_c. \lambda x_n. \lambda x_n
pnil
elim_{Powl} : \forall A^*.Powl A \rightarrow
                      \forall X^{*\to *}.(A \to X(A \times A) \to XA) \to XA \to XA
                 = \lambda x.\lambda x_c.\lambda x_n.x x_c x_n
               = \lambda A^*.\lambda i^{\text{Nat}}.
Vec
                    \forall X^{\mathtt{Nat} \to *}.(\forall i^{\mathtt{Nat}}.A \to X\{i\} \to X\{\mathtt{S}\,i\}) \to
                                       X\{\mathbf{Z}\} \to X\{i\}
              : \forall A^*. \forall i^{\mathtt{Nat}}. A \rightarrow \mathtt{Vec} \, A \, \{i\} \rightarrow \mathtt{Vec} \, A \, \{\mathtt{S} \, i\}
vcons
                                             = \lambda x_a . \lambda x . \lambda x_c . \lambda x_n . x_c x_a (x x_c x_n)
vnil
                 : \forall A^*. \text{Vec } A \{Z\} = \lambda x_c. \lambda x_n. x_n
elim_{Vec} : \forall A^*. \forall i^{Nat}. Vec A \{i\} \rightarrow
                    \forall X^{\mathtt{Nat} \to *}. (\forall i^{\mathtt{Nat}}. A \to X\{i\} \to X\{\mathtt{S}\,i\}) \to
                                       X\{\mathbf{Z}\} \to X\{i\}
               = \lambda x.\lambda x_c.\lambda x_n.x x_c x_n
```

Figure 5. Embedding recursive datatypes

Interestingly, there exist embeddings of the recursive type operator μ_{κ} , its data constructor In_{κ} , and the Mendler-style iterator mit_{κ} for each kind κ into the higher-order polymorphic λ -calculus F_i , as illustrated in Figure 7. In addition to illustrating the general form of embedding μ_{κ} , we also fully expand the embeddings for some instances (μ_* , $\mu_{*\to *}$, $\mu_{\mathrm{Nat}\to *}$), which are used in Figure 6. These embeddings support the embedding of arbitrary type- and term-indexed recursive datatypes into System F_i . Thus we can reason about these datatypes in a logically consistent calculus.

However, it is important to note that there does not exist an embedding of the arbitrary destruction (or, pattern matching away) of the In_κ constructor. It is known that combining arbitrary recursive datatypes with the ability to destruct (or, unroll) their values is powerful enough to define non-terminating computations in a type safe way, leading to logical inconsistency. Some systems maintain consistency by restricting which recursive datatypes can be defined, but allow arbitrary unrolling. In System F_i , we can define any datatype, but restrict unrolling to Mendler style operators definable in F_i . Such operators are quite expressive, capturing at least iteration, primitive recursion, and courses of values recursion.

Example 1. The datatype of λ -terms in context

```
data Lam ( C: Nat -> * ) { i: Nat } where
  LVar : C {i} -> Lam C {i}
  LApp : Lam C {i} -> Lam C {i} -> Lam C {i}
  LAbs : Lam C {S i} -> Lam C {i}
```

```
newtype \mu_* (f :: * -> *)
   = In_* (f (\mu_* f))
data ListF (a::*) (r::*)
   = Cons a r
                              | Nil
type List a = \mu_* (ListF a)
cons x xs = In_* (Cons x xs)
                = In* Nil
newtype \mu_{(* 
ightarrow *)} (f :: (*->*) -> (*->*)) (a::*)
   = \operatorname{In}_{(* \to *)} (f (Mu<sub>(* \to *)</sub> f)) a
data PowlF (r::*->*) (a::*)
   = PCons a (r(a,a)) | PNil
type Powl a = \mu_{(* 	o *)} PowlF a
pcons x xs = In_{(*\to*)} (PCons x xs)
                 = In_{(*\rightarrow *)} PNil
\operatorname{mit}_{(* \to *)} :: (\forall r a.(\foralla.r a->x a) -> f r a -> x a)
           \rightarrow \mu_{(*\to *)} fa \rightarrow xa
mit_{(*\to*)} phi (In_{(*\to*)} z) = phi (mit_{(*\to*)} phi) z
-- above is Haskell (with some GHC extensions)
-- below is Haskell-ish pseudocode
\texttt{newtype} \ \mu_{(\texttt{Nat} \rightarrow *)} \ (\texttt{f}::(\texttt{Nat} \rightarrow *) \rightarrow (\texttt{Nat} \rightarrow *)) \ \{\texttt{n}::\texttt{Nat}\}
   = \operatorname{In}_{(\operatorname{Nat} \to *)} (f (\mu_{(\operatorname{Nat} \to *)} f)) {n}
data VecF (a::*) (r::Nat->*) {n::Nat} where
   VCons :: a -> r n -> VecF a r {S n}
   VNil :: VecF a r {Z}
type Vec a {n::Nat} = \mu_{(\mathrm{Nat} \to *)} (VecF a) {n} vcons x xs = \mathrm{In}_{(\mathrm{Nat} \to *)} (VCons x xs)
                = In_{(Nat \rightarrow *)} VNil
vnil
mit_{(Nat \rightarrow *)}::(\forall r n.(\foralln.r{n}->x{n})->f r {n}->x{n})
             \rightarrow \mu_{(\mathrm{Nat} \to *)} f {n} \rightarrow x{n}
mit_{(Nat \to *)} phi (In_{(Nat \to *)} z) = phi (mit_{(Nat \to *)} phi) z
```

Figure 6. 2-level types and their Mendler-style iterators in Haskell

is encoded as:

$$\begin{split} \operatorname{Lam} &\triangleq \lambda C^{\operatorname{Nat} \to *} \lambda i^{\operatorname{Nat}}. \, \forall X^{\operatorname{Nat} \to *}. \\ & (\forall j^{\operatorname{Nat}}. \, C\{j\} \to X\{j\}) \\ & \to (\forall j^{\operatorname{Nat}}. \, X\{j\} \to X\{j\} \to X\{j\}) \\ & \to (\forall j^{\operatorname{Nat}}. \, X\{\operatorname{S} j\} \to X\{j\}) \\ & \to X\{i\} \end{split}$$

For a concrete representation one can consider Lam Fin where

```
data Fin { i: Nat } where FZ : Fin{S i} FS : Fin{i} \rightarrow Fin{S i}

This is encoded as Fin \triangleq \lambda i^{\text{Nat}} \cdot \forall X^{\text{Nat} \rightarrow *}.  (\forall j^{\text{Nat}} . X\{\text{S}\,j\}) \rightarrow (\forall j^{\text{Nat}} . X\{j\} \rightarrow X\{\text{S}\,j\})  \rightarrow X\{i\}
```

$$\begin{array}{lll} \mu_{\kappa} & : & (\kappa \rightarrow \kappa) \rightarrow \kappa & = \lambda F^{\kappa \rightarrow \kappa}. \lambda \mathbb{I}^{\kappa}. \forall X^{\kappa}. (\forall X_{r}^{\kappa}. (X_{r} \xrightarrow{\kappa} X) \rightarrow (FX_{r} \xrightarrow{\kappa} X)) \rightarrow X \mathbb{I} \\ \mu_{*} & : & (* \rightarrow *) \rightarrow * & = \lambda F^{* \rightarrow *}. & \forall X^{*}. (\forall X_{r}^{\kappa}. (X_{r} \rightarrow X) \rightarrow (FX_{r} \rightarrow X)) \rightarrow X \\ \mu_{* \rightarrow *} & : & ((* \rightarrow *) \rightarrow (* \rightarrow *)) \rightarrow (* \rightarrow *) \\ & = \lambda F^{(* \rightarrow *) \rightarrow (* \rightarrow *)}. \lambda X_{1}^{*}. \forall X^{* \rightarrow *}. (\forall X_{r}^{* \rightarrow *}. (\forall X_{1}^{*}. X_{r}X_{1} \rightarrow XX_{1}) \rightarrow (\forall X_{1}^{*}. FX_{r}X_{1} \rightarrow XX_{1})) \rightarrow XX_{1} \\ \mu_{\mathrm{Nat} \rightarrow *} & : & ((\mathrm{Nat} \rightarrow *) \rightarrow (\mathrm{Nat} \rightarrow *)) \rightarrow (\mathrm{Nat} \rightarrow *) \\ & = \lambda F^{(\mathrm{Nat} \rightarrow *) \rightarrow (\mathrm{Nat} \rightarrow *)}. \lambda i_{1}^{\mathrm{Nat}}. \forall X^{\mathrm{Nat} \rightarrow *}. (\forall X_{r}^{\mathrm{Nat} \rightarrow *}. (\forall i_{1}^{\mathrm{Nat}}. X_{r}i_{1} \rightarrow Xi_{1}) \rightarrow (\forall i_{1}^{\mathrm{Nat}}. FX_{r}i_{1} \rightarrow Xi_{1})) \rightarrow Xi_{1} \\ \mathrm{In}_{\kappa} & : & \forall F^{\kappa \rightarrow \kappa}. F(\mu_{\kappa}F) \xrightarrow{\kappa} \mu_{\kappa}F & = \lambda x_{r}. \lambda x_{\varphi}. x_{\varphi} \left(\mathrm{mit}_{\kappa} x_{\varphi}\right) x_{r} \\ \mathrm{mit}_{\kappa} & : & \forall F^{\kappa \rightarrow \kappa}. \forall X^{\kappa}. (\forall X_{r}^{\kappa}. (X_{r} \xrightarrow{\kappa} X) \rightarrow (FX_{r} \xrightarrow{\kappa} X)) \rightarrow (\mu_{\kappa}F \xrightarrow{\kappa} X) & = \lambda x_{\varphi}. \lambda x_{r}. x_{r} x_{\varphi} \end{array}$$

Figure 7. Embedding of the recursive operators (μ_{κ}) , their data constructors (\mathbf{In}_{κ}) , and the Mendler-style iterators (\mathbf{mit}_{κ}) .

4.3 Leibniz index equality

The quantification over type-indexed kinding available in System F_i allows the definition of *Leibniz-equality type* constructors $\mathsf{Eq}_A:A\to A\to *$ on closed types A, defined as follows:

$$\begin{split} & \operatorname{Eq}_A \triangleq \lambda i^A.\,\lambda j^A.\,\operatorname{LEq}_A\{i\}\{j\} \times \operatorname{LEq}_A\{j\}\{i\} \ , \\ & \operatorname{where}\,\operatorname{LEq}_A \triangleq \lambda i^A.\,\lambda j^A.\,\forall X^{A \to *}.\,X\{i\} \to X\{j\} \end{split}$$

For $F_A \in \{ Eq_A, LEq_A \}$, observe that the following types are inhabited:

(Reflexive)
$$\forall i^A . F_A\{i\}\{i\}$$

(Transitive) $\forall i^A . \forall j^A . \forall k^A . F_A\{i\}\{j\} \rightarrow F_A\{j\}\{k\} \rightarrow F_A\{i\}\{k\}$
(Logical) $\forall i^A . \forall j^A . F_A\{i\}\{j\} \rightarrow \forall f^{A \rightarrow B} . F_B\{fi\}\{fj\}$
 $\forall f^{A \rightarrow B} . \forall g^{A \rightarrow B} . F_{A \rightarrow B}\{f\}\{g\} \rightarrow \forall i^A . F_B\{fi\}\{gi\}$

Hence Leibniz equality is a congruence; in that, in addition to the above one also has the inhabitation of the type

(Symmetric)
$$\forall i^A . \forall j^A . \operatorname{Eq}_A\{i\}\{j\} \to \operatorname{Eq}_A\{j\}\{i\}$$

In applications, the types \mathtt{LEq}_A are useful in constraining the term-indexing of datatypes. A general such construction is given by the type constructors $\mathtt{Ran}_{A,B}:(A \to B) \to (A \to *) \to B \to *$. These are defined as

$$\operatorname{Ran}_{A,B} \triangleq \lambda f^{A \to B} \cdot \lambda X^{A \to *} \cdot \lambda j^{B} \cdot \forall i^{A} \cdot \operatorname{LEq}_{B} \{j\} \{f i\} \to X \{i\}$$

and are in spirit right Kan extensions, a notion that is being extensively used in programming, e.g. [2, 12]. One of their usefulness comes from the fact that the following type is inhabited by a section

$$\forall Y^{B \to *}. \, \forall X^{A \to *}. \, \forall f^{A \to B}. \\ \left(\forall i^A. \, Y\{f\, i\} \to X\{i\} \right) \to \left(\forall j^B. \, Y\{j\} \to (\mathtt{Ran}_{A,B}\{f\}X)\{j\} \right)$$

This allows one to represent functions from input datatypes with constrained indices as plain indexed functions, and vice versa. For instance, by means of the iterators of the previous section one can define a vector tail function of type

$$\forall X^*. \forall j^{\text{Nat}}. \text{Vec } X \{j\} \rightarrow (\text{Ran}_{\text{Nat}, \text{Nat}} \{S\} (\text{Vec } X)) \{j\}$$

and retract it to one of type

$$\forall X^*. \, \forall i^{\mathtt{Nat}}. \, \mathtt{Vec} \, X \, \{\mathtt{S} \, i\} o \mathtt{Vec} \, X \, \{i\}$$
 .

Analogously, one can use an iterator to define a single-variable capture-avoiding substitution function of type

$$\begin{split} \forall i^{\text{Nat}}. & (\text{Lam} \text{Fin}) \{i\} \\ & \to \left(\text{Ran}_{\text{Nat}, \text{Nat}} \{ \text{S} \} (\lambda j^{\text{Nat}}. \text{Lam} \text{Fin} \{j\} \to \text{Lam} \text{Fin} \{j\}) \right) \{i\} \end{split}$$
 and then retract it to one of type

$$orall i^{ exttt{Nat}}. (exttt{Lam}\, exttt{Fin}) \{ exttt{S}\,i\}
ightarrow (exttt{Lam}\, exttt{Fin}) \{i\}
ightarrow (exttt{Lam}\, exttt{Fin}) \{i\}$$
 .

Type constructors $\operatorname{Lan}_{A,B}:(A\to B)\to (A\to *)\to B\to *$, which are in spirit left Kan extensions, permit the encoding of functions of type $(\forall i^A.\ F\{i\}\to G\{ti\})$, for $F:A\to *$, $G:B\to *$, and $t:A\to B$, as functions of type $(\forall j^B.\ (\operatorname{Lan}_{A,B}\{t\}F)\{j\}\to G\{j\})$. Left Kan extensions are dual to right Kan extensions, but to define them as such one needs existential and product types. In formalisms without them, these have to be encoded. This can be done as follows:

$$\begin{split} \mathsf{Lan}_{A,B} \triangleq \lambda f^{A \to B}.\, \lambda X^{A \to *}.\, \lambda j^B. \\ \forall Z^*.\, (\forall i^A.\, \mathsf{LEq}_R\{f\,i\}\{j\} \to X\{i\} \to Z) \to Z \end{split}$$

The type

$$\forall X^{A \to *}. \forall Y^{B \to *}. \forall f^{A \to B}.$$

$$(\forall i^A.\,X\{i\}\rightarrow Y\{f\,i\})\rightarrow (\forall j^B.\,(\mathtt{Lan}_{A,B}\{f\}X)\{j\}\rightarrow Y\{j\})$$

is thus inhabited by a section, providing a retractable coercion between the two functional representations.

Left Kan extensions come with a canonical section of type $\forall f^{A \to B}. \forall X^{A \to *}. \forall i^A. X\{i\} \to (\operatorname{Lan}_{A,B}\{f\}X)\{fi\}$ that, according to a reindexing function $t: A \to B$, embeds an A-indexed type F (at index s) into the B-indexed type $\operatorname{Lan}_{A,B}\{t\}F$ (at index ts). For instance, the type constructor $\operatorname{Lan}_{A,A \times A}\{\lambda x. \operatorname{pair} x. x\}$ embeds arrays of types into matrices along the diagonal; while the type constructors $\operatorname{Lan}_{A \times A,A}\{\operatorname{fst}\}$ and $\operatorname{Lan}_{A \times A,A}\{\operatorname{snd}\}$ respectively encapsulate matrices of types as arrays by columns and by rows.

5. Metatheory

The expectation is that System F_i has all the nice properties of System F_{ω} , yet is more expressive because of the addition of term-indexed types.

We show some basic well-formedness properties for the judgments of F_i in §5.1. We prove erasure properties of F_i , which captures the idea that indices are erasable since they are irrelevant for

reduction in §5.2. We show strong normalization, logical consistence, and subject reduction for F_i by reasoning about well-known calculi related to F_i in §5.3.

5.1 Well-formedness properties and substitution lemmas

We want to show that the sorting, kinding, and typing derivations give well-formed results under well-formed contexts. That is, sorting derivations result in well-formed sorts (Proposition 1), kinding derivations result in well-sorted kinds under well-formed type level contexts (Proposition 2), and typing derivations result in well-kinded types under well-formed type and term level contexts (Proposition 3).

Since the definitions of sorting, kinding, and typing rules are mutually recursive, these three properties are considered as one big property (illustrated below) in order to be more rigorous abouts the induction principle used in the proof.

Proposition (The big well-formedness property of F_i , roughly⁴).

The big well-formedness property has one of the three forms - $\vdash \kappa : \square$ (sorting), $\Delta \vdash F : \kappa$ (kinding), and $\Delta ; \Gamma \vdash t : A$ typing. That is, a derivation for a judgment of either sorting, kinding, or typing results in either a well-formed sort (when it is a sorting judgment), a well-sorted kind (when it is a kinding judgment), or a well-kinded type (when it is a typing judgment), under well-formed contexts for the judgment (no context for sorting judgments, Δ for kinding judgments, and Δ ; Γ for typing judgments).

We can prove the big well-formedness property of F_i by induction on the derivation of a judgment, which can be any one of the three forms. Here, we illustrate the proof for the three propositions as if they were separate proofs. Because it provides a more intuitive proof sketch, during the proof description, the proof for each proposition references the other properties (which are yet another application of the induction hypothesis of the big well-formedness property). So, when we say "by induction" during the proofs, what we really mean is the induction hypothesis of the big well-formedness

Proposition 1 (sorting derivations result in well-formed sorts).

$$\vdash \kappa : \mathfrak{s}$$

Proof. Obvious since \square is the only sort in F_i .

Proposition 2 (kinding derivations under well-formed contexts result in well-sorted kinds).

$$\begin{array}{c|c} \vdash \Delta & \Delta \vdash F : \kappa \\ \hline \vdash \kappa : \Box \end{array}$$

Proof. By induction on the derivation.

case (Var) Trivial by the second well-formedness rule of Δ .

case (Conv) By induction and Lemma 1.

case (λ) By induction and Proposition 1 we know that $\vdash \kappa : \Box$.

By the second well-formedness rule of Δ , we know that \vdash Δ, X^{κ} since we already know that $\vdash \kappa : \Box$ and $\vdash \Delta$ from the property statement.

By induction, we know that $\vdash \kappa' : \Box$ since we already know that $\vdash \Delta, X^{\kappa}$ and that $\Delta, X^{\kappa} \vdash F : \kappa'$ from induction

By the sorting rule (R), we know that $\vdash \kappa \to \kappa' : \square$ since we already know that $\vdash \kappa : \square$ and $\vdash \kappa' : \square$.

case (@) By induction, easy.

case (λi) By induction we know that $\cdot \vdash A : *$. By the third well-formedness rule of Δ , we know that $\vdash \Delta$, i^A since we already know that $\cdot \vdash A : *$ and that $\vdash \Delta$ from the property statement. By induction, we know that $\vdash \kappa : \square$ since we already know that $\vdash \Delta, i^A$ and that $\Delta, i^A \vdash F : \kappa$ from the induction hypothesis. By the sorting rule (Ri), we know that $\vdash A \rightarrow \kappa : \square$ since we already know that $\cdot \vdash A : *$ and $\vdash \kappa : \square$.

case (@i) By induction and Proposition 3, easy.

case (\rightarrow) Trivial since $\vdash * : \square$.

case (\forall) Trivial since $\vdash * : \Box$.

case $(\forall i)$ Trivial since $\vdash * : \Box$.

The basic structure of the proof for the following proposition on typing derivations is similar to above. So, we illustrate the proof for most of the cases, which can be done by applying the induction hypothesis, rather bravely. We elaborate more on interesting cases $(\forall E)$ and $(\forall Ei)$ which involve substitutions in the types resulting from the typing judgments.

Proposition 3 (typing derivations under well-formed contexts result in well-kinded types).

$$\frac{\Delta \vdash \Gamma \quad \Delta; \Gamma \vdash t : A}{\Delta \vdash A : *}$$

Proof. By induction on the derivation.

case (:) Trivial by the second well-formedness rule of Γ .

case (: i) Trivial by the third the well-formedness rule of Δ .

case (=) By induction and Lemma 2.

case $(\rightarrow I)$ By induction and well-formedness of Γ .

case $(\rightarrow E)$ By induction.

case $(\forall I)$ By induction and well-formedness of Δ .

case $(\forall E)$ By induction we know that $\Delta \vdash \forall X^{\kappa}.B : *$.

By the kinding rule (\forall) , which is the only kinding rule able to derive $\Delta \vdash \forall X^{\kappa}.B : *$, we know that $\Delta, X^{\kappa} \vdash B : *$.

Then, we use the type substitution lemma (Lemma 4(1)).

case $(\forall Ii)$ By induction and well-formedness of Δ .

case $(\forall Ei)$ By induction we know that $\Delta \vdash \forall i^A.B : *$.

By the kinding rule $(\forall i)$, which is the only kinding rule able to derive $\Delta \vdash \forall i^A.B : *$, we know that $\Delta, i^A \vdash B : *$.

Then, we use the index substitution lemma (Lemma 4(2)).

Lemma 1 (kind equality is well-sorted).
$$\frac{\vdash \kappa = \kappa' : \Box}{\vdash \kappa : \Box \vdash \kappa' : \Box}$$

Proof. By induction on the derivation of kind equality and using the sorting rules.

Lemma 2 (type constructor equality is well-kinded).

$$\frac{\Delta \vdash F = F' : \kappa}{\Delta \vdash F : \kappa \quad \Delta \vdash F' : \kappa}$$

⁴ Technically, this is not yet completely rigorous since there are three more forms of judgments in the mutually recursive definition. The kind equality, type considered equality, and term equality rules are part of the mutually recursive definition along with the sorting, kinding, and typing rules. So, the complete description of the big well-formedness property will consist of six cases, which correspond to Proposition 1, Proposition 2, Proposition 3, Lemma 1, Lemma 2, and Lemma 3.

Proof. By induction on the derivation of type constructor equality and using the kinding rules. Also use the type substitution lemma (Lemma 4(1)) and the index substitution lemma (Lemma 4(2)).

Lemma 3 (term equality is well-typed).

$$\Delta, \Gamma \vdash t = t' : A$$

$$\Delta, \Gamma \vdash t : A \quad \Delta, \Gamma \vdash t' : A$$

Proof. By induction on the derivation of term equality and using the typing rules. Also use the term substitution lemma (Lemma 4(3)).

The proofs for the three lemmas above are straightforward once we have dealt with the interesting cases for the equality rules involving substitution. We can prove those interesting cases by applying the substitution lemmas. The other cases fall into two categories: firstly, the equality rules following the same structure of the sorting, kinding, and typing rules; and secondly, the reflexive rules and the transitive rules. The proof for the equality rules following the same structure of the sorting, kinding, and typing rules can be proved by induction and applying the corresponding sorting, kinding, and typing rules. The proof for the reflexive rules and the transitive rules can be proved simply by induction.

Lemma 4 (substitution).

$$I. \text{ (type substitution)} \quad \frac{\Delta, X^{\kappa} \vdash F : \kappa' \quad \Delta \vdash G : \kappa}{\Delta \vdash F[G/X] : \kappa'}$$

2. (index substitution)
$$\frac{\Delta, i^A \vdash F : \kappa \quad \Delta; \cdot \vdash s : A}{\Delta \vdash F[s/i] : \kappa}$$

$$3. \ \, (\text{term substitution}) \ \, \frac{\Delta; \Gamma, x: A \vdash t: B \qquad \Delta; \Gamma \vdash s: A}{\Delta, \Gamma \vdash t[s/x]: B}$$

The substitution lemma is fairly standard, comparable to substitution lemmas in other well-known systems such as F_{ω} or ICC.

5.2 Erasure properties

We define a meta-operation of index erasure that projects F_i -types to F_ω -types.

Definition 1 (index erasure).

$$\begin{array}{c|cccc}
\hline
\kappa^{\circ}
\hline
& *^{\circ} = * & (\kappa_{1} \to \kappa_{2})^{\circ} = \kappa_{1}^{\circ} \to \kappa_{2}^{\circ} & (A \to \kappa)^{\circ} = \kappa^{\circ} \\
\hline
F^{\circ}
\hline
& X^{\circ} = X & (A \to B)^{\circ} = A^{\circ} \to B^{\circ} \\
& (\lambda X^{\kappa}.F)^{\circ} = \lambda X^{\kappa^{\circ}}.F^{\circ} & (\lambda i^{A}.F)^{\circ} = F^{\circ} \\
& (F G)^{\circ} = F^{\circ} G^{\circ} & (F \{s\})^{\circ} = F^{\circ} \\
& (\forall X^{\kappa}.B)^{\circ} = \forall X^{\kappa^{\circ}}.B^{\circ} & (\forall i^{A}.B)^{\circ} = B^{\circ} \\
\hline
\Delta^{\circ}
\hline
& \cdot^{\circ} = \cdot & (\Delta, X^{\kappa})^{\circ} = \Delta^{\circ}, X^{\kappa^{\circ}} & (\Delta, i^{A})^{\circ} = \Delta^{\circ} \\
\hline
\Gamma^{\circ}
\hline
& \cdot^{\circ} = \cdot & (\Gamma, x : A)^{\circ} = \Gamma^{\circ}, x : A^{\circ}
\hline
\end{array}$$

Example 2. The meta-operation of index erasure simply discards all indexing information. The effect of this on most datatypes is to project the indexing invariants while retaining the type structure. This is clearly seen for the vector type constructor Vec whose index erasure is the list type constructor List, see Figure 5. One can however build pathological examples. For instance, the type $P_A \triangleq \forall i^A . \forall j^A . Leq_A\{i\}\{j\}$ has index erasure Vector V

Theorem 1 (index erasure on well-sorted kinds). $\frac{\vdash \kappa : \Box}{\vdash \kappa^{\circ} : \Box}$

Proof. By induction on the sorting derivation.

Remark 1. For any well-sorted kind κ in F_i , κ° is a kind in F_{ω} .

Theorem 2 (index erasure on well-formed type level contexts).

$$\vdash \Delta$$

 $\vdash \Delta^{\circ}$

Proof. By induction on the derivation for well-formed type level context and using Theorem 1.

Remark 2. For any well-formed type level context Δ in F_i , Δ° is a well-formed type level context in F_ω .

Theorem 3 (index erasure on kind equality). $\frac{\vdash \kappa = \kappa' : \Box}{\vdash \kappa^{\circ} = \kappa'^{\circ} : \Box}$

Proof. By induction on the kind equality judgement.

Remark 3. For any well-sorted kind equality $\vdash \kappa = \kappa' : \Box$ in F_i , $\vdash \kappa^{\circ} = \kappa'^{\circ} : \Box$ is a well-sorted kind equality in F_{ω} .

The three theorems above on kinds are rather simple to prove since there is no need to consider mutual recursion in the definition of kinds due to the erasure operation on kinds. Recall that the erasure operation on kinds discards the type (A) appearing in the index arrow type $(A \to \kappa)$. So, there is no need to consider the types appearing in kinds and the index terms appearing in those types, after the erasure.

Theorem 4 (index erasure on well-kinded type constructors).

$$\frac{ \ \vdash \Delta \quad \Delta \vdash F : \kappa \ }{\Delta^{\circ} \vdash F^{\circ} : \kappa^{\circ}}$$

Proof. By induction on the kinding derivation.

case (Var) Use Theorem 2.

case (Conv) By induction and using Theorem 3.

case (λ) By induction and using Theorem 1.

case (@) By induction.

case (λi) We need to show that $\Delta^{\circ} \vdash (\lambda i^A.F)^{\circ} : (A \to \kappa)^{\circ}$, which simplifies to $\Delta^{\circ} \vdash F^{\circ} : \kappa^{\circ}$ by Definition 1. By induction, we know that $(\Delta, i^A)^{\circ} \vdash F^{\circ} : \kappa^{\circ}$, which

simplifies $\Delta^{\circ} \vdash F^{\circ} : \kappa^{\circ}$ by Definition 1.

case (@i) We need to show that $\Delta^{\circ} \vdash (F \{s\})^{\circ} : \kappa^{\circ}$, which simplifies to $\Delta^{\circ} \vdash F^{\circ} : \kappa^{\circ}$ by Definition 1.

By induction we know that $\Delta^{\circ} \vdash F^{\circ} : (A \to \kappa)^{\circ}$, which simplifies to $\Delta^{\circ} \vdash F^{\circ} : \kappa^{\circ}$ by Definition 1.

case (\rightarrow) By induction.

case (\forall) We need to show that $\Delta^{\circ} \vdash (\forall X^{\kappa}.B)^{\circ} : *^{\circ}$, which simplifies to $\Delta^{\circ} \vdash \forall X^{\kappa^{\circ}}.B^{\circ} : *$ by Definition 1.

Using Theorem 1, we know that $\vdash \kappa^{\circ} : \Box$.

By induction we know that $(\Delta, X^{\kappa})^{\circ} \vdash B^{\circ} : *^{\circ}$, which simplifies to $\Delta^{\circ}, X^{\kappa^{\circ}} \vdash B^{\circ} : *$ by Definition 1.

Using the kinding rule (\forall) , we get exactly what we need to show: $\Delta^{\circ} \vdash \forall X^{\kappa^{\circ}}.B^{\circ}:*$.

case $(\forall i)$ We need to show that $\Delta^{\circ} \vdash (\forall i^A.B)^{\circ} : *^{\circ}$, which simplifies to $\Delta^{\circ} \vdash B^{\circ} : *$ by Definition 1.

By induction we know that $(\Delta, i^A)^{\circ} \vdash B^{\circ} : *^{\circ}$, which simplifies $\Delta^{\circ} \vdash B^{\circ} : *$ by Definition 1.

Theorem 5 (index erasure on type constructor equality).

$$\frac{\Delta \vdash F = F' : \kappa}{\Delta^{\circ} \vdash F^{\circ} = F'^{\circ} : \kappa^{\circ}}$$

Proof. By induction on the derivation of type constructor equality. Most of the cases are done by applying the induction hypothesis and sometimes using Proposition 2.

The only interesting cases, which are worth elaborating on, are the equality rules involving substitution. There are two such rules.

$$\Delta, X^{\kappa} \vdash F : \kappa' \quad \Delta \vdash G : \kappa$$
$$\Delta \vdash (\lambda X^{\kappa}.F) G = F[G/X] : \kappa'$$

We need to show $\Delta^{\circ} \vdash ((\lambda X^{\kappa}.F)\,G)^{\circ} = (F[G/X])^{\circ} : \kappa'^{\circ},$ which simplifies to $\Delta^{\circ} \vdash (\lambda X^{\kappa^{\circ}}.F^{\circ})\,G^{\circ} = (F[G/X])^{\circ} : \kappa'^{\circ}$ by Definition I.

By induction, we know that $(\Delta, X^{\kappa})^{\circ} \vdash F^{\circ} : \kappa'^{\circ}$, which simplifies to $\Delta^{\circ}, X^{\kappa^{\circ}} \vdash F^{\circ} : \kappa'^{\circ}$ by Definition 1.

Using the kinding rule (λ), we get $\Delta^{\circ} \vdash \lambda X^{\kappa^{\circ}}.F^{\circ}:\kappa^{\circ} \to \kappa'^{\circ}$. Using the kinding rule (@), we get $\Delta^{\circ} \vdash (\lambda X^{\kappa^{\circ}}.F^{\circ})G^{\circ}:\kappa'^{\circ}$. Using the very equality rule of this case,

we get $\Delta^{\circ} \vdash (\lambda X^{\kappa^{\circ}} F^{\circ}) G^{\circ} = F^{\circ} [G^{\circ}/X] : \kappa'^{\circ}$

All we need to check is $(F[G/X])^{\circ} = F^{\circ}[G^{\circ}/X]$, which is easy to see.

$$\Delta, i^{A} \vdash F : \kappa \quad \Delta; \cdot \vdash s : A$$
$$\Delta \vdash (\lambda i^{A} \cdot F) \{s\} = F[s/i] : \kappa$$

By induction we know that $\Delta^{\circ} \vdash F^{\circ} : \kappa^{\circ}$.

The erasure of the left hand side of the equality is $(2)^{A}$, $(2)^{A}$, $(3)^{A}$,

$$((\lambda i^A.F) \{s\})^{\circ} = (\lambda i^A.F)^{\circ} = F^{\circ}.$$

All we need to show is $(F[s/i])^{\circ} = F^{\circ}$, which is obvious since index variables can only occur in index terms and index terms are always erased. Recall the index erasure over type constructors in Definition 1; in particular, $(\lambda i^A.F)^{\circ} = F^{\circ}$, $(F\{s\})^{\circ} = F^{\circ}$, and $(\forall i^A.B)^{\circ} = B^{\circ}$.

Remark 4. For any well-kinded type constructor equality $\Delta \vdash F = F' : \kappa$ in $\mathsf{F}_i, \Delta^\circ \vdash F^\circ = F'^\circ : \kappa^\circ$ is a well-kinded type constructor equality in F_ω .

The proofs for the two theorems above on type constructors need not consider mutual recursion in the definition of type constructors due to the erasure operation. Recall that the erasure operation on type constructors discards the index term (s) appearing in the index application $(F\{s\})$. So, there is no need to consider the index terms appearing in the types after the erasure.

Theorem 6 (index erasure on well-formed term level contexts).

$$\frac{\Delta \vdash \Gamma}{\Delta^{\circ} \vdash \Gamma^{\circ}}$$

Proof. By induction on Γ .

case $(\Gamma = \cdot)$ It trivially holds.

case $(\Gamma = \Gamma', x : A)$, we know that $\Delta \vdash \Gamma'$ and $\Delta \vdash A : *$ by the well-formedness rules and that $\Delta^{\circ} \vdash \Gamma'^{\circ}$ by induction.

From $\Delta \vdash A$: *, we know that $\Delta^{\circ} \vdash A^{\circ}$: * by Theorem 4. We know that $\Delta^{\circ} \vdash \Gamma'^{\circ}$ $x \cdot A^{\circ}$ from $\Delta^{\circ} \vdash \Gamma'^{\circ}$ and $\Delta^{\circ} \vdash A^{\circ}$.

We know that $\Delta^{\circ} \vdash \Gamma'^{\circ}, x : A^{\circ}$ from $\Delta^{\circ} \vdash \Gamma'^{\circ}$ and $\Delta^{\circ} \vdash A^{\circ}$: * by the well-formedness rules.

Since $\Gamma'^\circ,x:A^\circ=(\Gamma',x:A)^\circ=\Gamma^\circ$ by definition, we know that $\Delta^\circ\vdash\Gamma^\circ$.

Theorem 7 (index erasure on index-free well-typed terms).

$$\frac{\Delta \vdash \Gamma \quad \Delta; \Gamma \vdash t : A}{\Delta^{\circ}; \Gamma^{\circ} \vdash t : A^{\circ}} \quad (\mathsf{dom}(\Delta) \cap \mathrm{FV}(t) = \emptyset)$$

Proof. By induction on the typing derivation. Interesting cases are the index related rules (:i), $(\forall Ii)$, and $(\forall Ei)$. Proofs for the other cases are straightforward by induction and applying other erasure theorems corresponding to the judgment forms.

case (:) By Theorem 6, we know that $\Delta^{\circ} \vdash \Gamma^{\circ}$ when $\Delta \vdash \Gamma$. By definition of erasure on term-level context, we know that $(x:A^{\circ}) \in \Gamma^{\circ}$ when $(x:A) \in \Gamma$.

case (: i) Vacuously true since t does not contain any index variables (i.e., $dom(\Delta) \cap FV(t) = \emptyset$).

case $(\to I)$ By Theorem 4, we know that $\cdot \vdash A^\circ : *$. By induction, we know that $\Delta^\circ ; \Gamma^\circ, x : A^\circ \vdash t^\circ : B^\circ$. Applying the $(\to I)$ rule to what we know, we have $\Delta^\circ ; \Gamma^\circ \vdash \lambda x. t^\circ : A^\circ \to B^\circ$.

case $(\rightarrow E)$ Straightforward by induction.

case $(\forall I)$ By Theorem 1, we know that $\vdash \kappa^{\circ} : \Box$. By induction, we know that $\Delta^{\circ}, X^{\kappa^{\circ}}; \Gamma^{\circ} \vdash t : B^{\circ}$. Applying the $(\forall I)$ rule to what we know, we have $\Delta^{\circ}; \Gamma^{\circ} \vdash t : \forall X^{\kappa^{\circ}}.B^{\circ}$.

case $(\forall E)$ By induction, we know that Δ° ; $\Gamma^{\circ} \vdash t : \forall X^{\kappa^{\circ}}.B^{\circ}$. By Theorem 4, we know that $\Delta^{\circ} \vdash G^{\circ} : \kappa^{\circ}$. Applying the $(\forall E)$ rule, we have Δ° ; $\Gamma^{\circ} \vdash t : B^{\circ}[G^{\circ}/X]$.

case $(\forall Ii)$ By Theorem 4, we know that $\cdot \vdash A^{\circ} : *$. By induction, we know that $\Delta^{\circ}; \Gamma^{\circ} \vdash t : B^{\circ}$, which is what we want since $(\forall i^{A}.B)^{\circ} = B^{\circ}$.

case $(\forall Ei)$ By induction, we know that Δ° ; $\Gamma^{\circ} \vdash t : B^{\circ}$, which is what we want since $(B[s/i])^{\circ} = B^{\circ}$.

case (=) By Theorem 5 and induction.

Example 3. The theorem yields that the pathological type P_A of Example 2 is not inhabited, as it is impossible to have both $t: P_A$ and $t: (P_A)^\circ = \text{Unit.}$ It follows as a corollary that the implication of Theorem 7 does not admit a converse.

In this context for A = Void, note that even though one has i^{Void} ; $\cdot \vdash \lambda x.i : \forall j^{\text{Void}}.\forall X^{\text{Void} \to *}.X\{i\} \to X\{j\}$, this open term cannot be closed by rule $(\forall Ii)$ because of its side condition. This is in stark contrast to what is possible in calculi with full type dependency. In System F_i , the index variables in type level context Δ cannot appear dynamically at term level. Conversely, term variables in the term level context Γ cannot be used for instantiation of index polymorphic types (rule $(\forall Ei)$).

Similar considerations to the above show that LEq_A is not symmetric, in that the type (Symmetric) in §4.3 is not inhabited.

We introduce an index variable selection meta-operation that selects all the index variable bindings from the type level context.

Definition 2 (index variable selection).

$$\cdot^{\bullet} = \cdot \quad (\Delta, X^A)^{\bullet} = \Delta^{\bullet} \quad (\Delta, i^A)^{\bullet} = \Delta^{\bullet}, i : A$$

Theorem 8 (index erasure on well-formed term level contexts prepended by index variable selection).

$$\frac{\Delta \vdash \Gamma}{\Delta^{\circ} \vdash (\Delta^{\bullet}, \Gamma)^{\circ}}$$

Proof. Straightforward by Theorem 6 and the typing rule (: i).

The following result is the appropriate version of Theorem 7 without the side condition therein.

Theorem 9 (index erasure on well-typed terms).

$$\frac{\Delta \vdash \Gamma \quad \Delta; \Gamma \vdash t : A}{\Delta^{\circ}; (\Delta^{\bullet}, \Gamma)^{\circ} \vdash t : A^{\circ}}$$

Proof. The proof is almost the same as that of Theorem 7, except for the (:i) case. The proof for the rule (:i) case is easy since $(i:A) \in \Delta^{\bullet}$ when $i^A \in \Delta$ by definition of the index variable selection operation. The indices from Δ being prepended to Γ do not affect the proof for the other cases.

5.3 Strong normalization and logical consistency

Strong normalization is a corollary of the erasure property since we know that System F_{ω} is strongly normalizing. Logical consistency is immediate since System F_i is a strict subset of the *restricted implicit calculus* [15], which is in turn a restriction of ICC [16]. Subject reduction is also immediate for the same reason.

6. Related work

System F_i is most closely related to Curry-style System $F_{\omega}[1, 2, 9]$ and the Implicit Calculus of Constructions (ICC) [16]. All terms typable in a Curry-style System F_{ω} are typable (with the same type) in System F_i and all terms typable in F_i are typable (with the same type⁵) in ICC.

We can derive strong normalization, logical consistency, and subject reduction of System F_i , from both System F_ω and a subset of ICC. In fact, ICC is more than just an extension of System F_i with dependent types and stratified universes. ICC includes η -reduction and the extensionality typing rule. We do not foresee any problems adding η -reduction and the extensionality typing rule to System F_i . Although System F_i accepts fewer terms than ICC, it enjoys simpler erasure properties (Theorem 7 and Theorem 9), which ICC cannot enjoy due to its support for full dependent types. In System F_i , index terms appearing in types (e.g., s in $F\{s\}$) are always erasable. Mishra-Linger and Sheard [17] generalized the ICC framework to one which describes erasure on arbitrary Churchstyle calculi (EPTS) and Curry-style calculi (IPTS), but they only consider β -equivalence for type conversion.

We mentioned (§3.1) that Curry-style calculi enjoy better reduction properties (e.g. $\beta\eta$ -reduction is Church-Rosser) than Church-style calculi. For Church-style terms with $\beta\eta$ -reduction, Nederpelt [19] gave a counterexample to the Church-Rosser property. Geuvers [8] proved that $\beta\eta$ -reduction is Church-Rosser in functional PTSs, which are special classes of Church-style calculi. Seldin [20] discusses the relationship between the Church-style typing and the Curry-style typing.

In the practical setting of programming language implementations, Yorgey et al. [27], inspired by McBride [14], designed an extension to Haskell, allowing datatypes to be used as kinds. For instance, Bool is promoted to a kind (i.e., Bool : \square) and its data constructors True and False are promoted to types. To support this, they extended System F_C (The Glasgow Haskell Compiler's (GHC) intermediate core language), naming the extension System F_C^{\uparrow} . The key difference between F_C^{\uparrow} and F_i is the kind syntax, as illustrated below:

$$F_C^{\uparrow} \mathbf{kinds} : \quad \kappa ::= * \mid \kappa \to \kappa \mid F\vec{\kappa} \mid \mathcal{X} \mid \forall \mathcal{X}.\kappa \mid \cdots$$

$$F_i \mathbf{kinds} : \quad \kappa ::= * \mid \kappa \to \kappa \mid A \to \kappa$$

In F_C^{\uparrow} , all type constructors (F) are promotable to the kind level and become kinds when fully applied to other kinds $(F\vec{\kappa})$. On the other hand, in F_i , a type can only appear as the domain of an index arrow kind $(A \to \kappa)$. This seemingly small difference allows F_C^{\uparrow} to be a much more expressive language than F_i . The promotion of a type constructor, for instance, List: $* \to *$ to a kind constructor List: $\Box \to \Box$ enables type-level data structures such as $[\text{Nat}, \text{Bool}, \text{Nat} \to \text{Bool}]$: List*. Type-level data structures motivate type-level computations over promoted data. This is made possible by type families 6 . The promotion of polymorphic types naturally motivates kind polymorphism $(\forall \mathcal{X}.\kappa)$, which is known to break strong normalization and cause logical inconsistency [10]. In a functional programming language, inconsistency is not an is-

sue. However, when studying term-indexed datatypes in a logically consistent calculi, we need a more conservative approach, as in F_i .

System F_i is the smallest possible extension to \tilde{F}_ω that we could devise that maintains normalization and consistency. An alternative is to restrict a system with full-spectrum dependent types. Swamy et al. [24] developed F^* , a language for secure distributed programming with value dependent types. Terms appearing in dependent types in F^* are restricted to first-order values, similar to the value restriction of ML type inference. Taming dependent types with this restriction, they were able to have a usable programming language and self-certify [22] their compiler by implementing F^* type checker in F^* .

The Literature about type equality constraints in systems supporting GADTs is vast. We list just a few. System F_C [23] is arguably the most influential system, being the core language of GHC. Vytiniotis and Weirich [25] proved parametricity of System R_{ω} [7] (an extension to Curry-style System F_{ω} with the typerepresentation datatype and its primitive recursor), so that one may derive *free theorems* [26] in the presence of type equalities.

7. Conclusion and Future work

System F_i is a strongly-normalizing, logically-consistent, higherorder polymorphic lambda calculus that was designed to support the definition of datatypes indexed by both terms and types. In terms of expressivity, System F_i sits between System F_{ω} and ICC. We designed System F_i as a tool to reason about programming languages with term-indexed datatypes.

We have applied this tool to the design of the programming language Nax (not yet published). Nax is given semantics in terms of System F_i . In Nax, Mendler style operators are primitive operators with their own typing rules. Nax has been designed to be expressive over the Hindley-Milner subset of System F_i . It supports type inference with minimal typing annotations. We believe this is an advantage made possible because our extensions to F_ω are all static. This would be made much more difficult had we restricted ICC.

Typing annotations in Nax are necessary only on case statements (for non-recursive term-indexed datatypes) and Mendlerstyle operators (for recursive term-indexed datatypes). Programs involving only type-indexing require no annotations elsewhere. A typing annotation takes a limited form of a large elimination, which is an abstraction over both type- and term-indices to types (e.g., $X, i_1, i_2 \mapsto FX\{i_1+i_2\}$), which is somewhat similar to the convoy pattern idiom [5] found in Coq scripts to aid type checking dependent case expressions. Future work includes richer form of large elimination, which enables selection of different type constructors for the result type of case statements and Mendler-style operators (e.g., $X, i_1, i_2 \mapsto \mathbf{if} \ i_1 < i_2 \ \mathbf{then} \ F_1 X \{i_1\} \ \mathbf{else} \ F_2 X \{i_2\}$). Enriching the type annotations in Nax will motivate us to identify the features needed to extend F_i to support a notion of large eliminations

Acknowledgments

This work was supported by NSF grant 0910500.

References

- A. Abel, R. Matthes, and T. Uustalu. Generalized iteration and coiteration for higher-order nested datatypes. In *FoSSaCS*, volume 2620 of *LNCS*, pages 54–69. Springer, 2003.
- [2] A. Abel, R. Matthes, and T. Uustalu. Iteration and coiteration schemes for higher-order and nested datatypes. *Theoretical Computer Science*, 333(1-2):3 – 66, 2005.
- [3] K. Y. Ahn and T. Sheard. A hierarchy of Mendler-style recursion combinators: Taming inductive datatypes with negative occurrences. In *ICFP* '11, pages 234–246. ACM, 2011.

 $^{^5}$ The * kind in F_{ω} and F_i corresponds to Set in ICC

⁶ A GHC extension to define type-level functions in Haskell.

- [4] C. Böhm and A. Berarducci. Automatic synthesis of typed lambdaprograms on term algebras. *Theoretical Computer Science*, 39:135– 154, 1985.
- [5] A. Chlipala. Certified programming with dependent types. To be published real soon. URL http://adam.chlipala.net/cpdt/.
- [6] A. Church. A set of postulates for the foundation of logic (2nd paper). *Annals of Mathematics*, 34(4):839–864, Oct. 1933.
- [7] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in type-erasure semantics. In *ICFP* '98, pages 301–312. ACM, 1998.
- [8] H. Geuvers. The Church-Rosser property for βη-reduction in typed λ-calculi. In Seventh Annual IEEE Symposium on Logic in Computer Science, pages 453–460, June 1992.
- [9] P. Giannini, F. Honsell, and S. R. D. Rocca. Type inference: Some results, some problems. *Fundam. Inform.*, 19(1/2):87–125, 1993.
- [10] Girard, J.-Y. Interprétation Fonctionnelle et Élimination des Coupures de l'Arithmétique d'Ordre Supérieur. Thèse de doctorat d'état, Université Paris VII, June 1972.
- [11] L.-J. Guillemette. A Type-Preserving Compiler from System F to Typed Assembly Language. PhD thesis, Oct. 2010.
- [12] P. Johann and N. Ghani. Foundations for structured programming with GADTs. In POPL, pages 297–308, 2008.
- [13] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115, 2009.
- [14] C. McBride. The Strathclyde Haskell Enhancement. URL http://personal.cis.strath.ac.uk/conor/pub/she/.
- [15] A. Miquel. A model for impredicative type systems, universes, intersection types and subtyping. In *LICS*, pages 18–29. IEEE Computer Society, 2000.
- [16] A. Miquel. The implicit calculus of constructions. In *TLCA*, pages 344–359, 2001.
- [17] N. Mishra-Linger and T. Sheard. Erasure and polymorphism in pure type systems. In R. M. Amadio, editor, FoSSaCS, volume 4962 of Lecture Notes in Computer Science, pages 350–364. Springer, 2008.
- [18] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language. ACM Transactions on Programming Languages and Systems, 21(3):527–568, May 1999.
- [19] R. P. Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda Structured Types. PhD thesis, Eindhoven University of Technology, 1973.
- [20] J. P. Seldin. On the relation between the Church-style typing and the Curry-style typing. Submitted to Journal of Applied Logic. URL http://people.uleth.ca/~jonathan.seldin/RCS2.pdf.
- [21] T. Sheard and E. Pasalic. Two-level types and parameterized modules. J. Funct. Program., 14(5):547–587, Sept. 2004. ISSN 0956-7968.
- [22] P.-Y. Strub, N. Swamy, C. Fournet, and J. Chen. Self-certification: bootstrapping certified typecheckers in F* with Coq. In POPL '12, pages 571–584. ACM, 2012.
- [23] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly. System f with type equality coercions. In *TLDI '07*, TLDI '07, pages 53–66. ACM, 2007.
- [24] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed programming with value-dependent types. In *ICFP* '11, pages 266–278. ACM, 2011.
- [25] D. Vytiniotis and S. Weirich. Parametricity, type equality, and higherorder polymorphism. J. Funct. Program., 20(2):175–210, 2010.
- [26] P. Wadler. Theorems for free! In FPCA '89, pages 347–359. ACM, 1989.
- [27] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and J. P. Magalhães. Giving Haskell a promotion. In *TLDI*, pages 53–66. ACM, 2012.