Příklad (Teoretický příklad 8)

Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnosť reálných čísel s vlastností, že pro každé přirozené číslo k > 1 je $\{a_{nk}\}_{n=1}^{\infty}$ konvergentní posloupnost. Plyne odtud, že $\{a_n\}_{n=1}^{\infty}$ musí být konvergentní?

 \check{R} ešení Nechť $a_n := \left\{ \begin{array}{l} 1 \ \dots \ n \ \text{je prvočíslo} \\ 0 \ \dots \ \text{jinak} \end{array} \right.$ Potom každá posloupnost $\{a_{nk}\}_{n=1}^{\infty}$ má limitu 0, jelikož nejvýše jeden (první) člen bude 1 (protože prvočíslo nemůže být složené z n,k>1) a odstraněním konečného počtu prvků se limita nezmění (bez prvního členu je každá taková posloupnost konstantně 0).

Ale jelikož je prvočísel nekonečně mnoho, tak můžeme z $\{a_n\}_{n=1}^{\infty}$ vybrat podposloupnost $(\{a_p\}_{p=2,p \text{ prvočíslo}}^{\infty})$, která je konstantně 1, tedy má limitu 1. Ale výše jsme ukázali, že podposloupnosti tvaru $\{a_{kn}\}_{n=1}^{\infty}$ mají limitu 0, tedy z věty o limitě vybrané posloupnosti a jednoznačnosti limit vyplývá, že $\{a_n\}_{n=1}^{\infty}$ nemá limitu, tudíž není konvergentní.