- 10.7.4 Let G be a group, ρ a representation, C a conjugacy class, and $T = \sum_{g \in C} \rho_g$. We want to show that T is G-invariant. Therefore for a group element $h \in G$, we have that $\rho_h(T) = \rho_h(\sum_{g \in C} \rho_g) = \sum_{g \in C} \rho_{hg}$. Note for each hg, there exists a unique $g' \in C$ such that hg = g'h, since C is a conjugacy class. Therefore the sum is equivalent to $\sum_{g' \in C} \rho_{g'h} = \sum_{g' \in C} \rho_{g'} \rho_h = T(\rho_h)$. Therefore T is G-invariant
- 11.1.8b What are the units in $\mathbb{Z}/8\mathbb{Z}$? If n=2k, then $4 \cdot 2k \equiv 0 \mod 8$, thus all even elements are zero divisors. If $\gcd(n,8)=1$, then by Bezout's lemma there exists $x,y \in \mathbb{Z}$ such that nx+8y=1, therefore $nx \equiv 1 \mod 8$. Since $8=2^3$, then n must be odd. Thus the units of $\mathbb{Z}/8\mathbb{Z}$ is $\{1,3,5,7\}$.
- 11.3.2 Let $a \subset \mathbb{Z}[i]$ be a non-zero ideal. Then there exists $x,y \in \mathbb{Z}$ with both not equal to 0 such that $x+iy \in a$. Therefore $(x-iy)\cdot(x+iy)=x^2+y^2\in a$. Since at least (WLOG) x is non-zero, x^2 is a non-zero integer. Thus a has a non-zero integer.
- 11.3.9 (a) Let x be nilpotent, therefore there exists $n \in \mathbb{N}$ such that $x^n = 0$. We want to find $a \in R$ such that a(1+x) = 1. I claim that $a = 1 x + x^2 x^3 + x^4 + \cdots + (-1)^{n-1}x^{n-1} = \sum_{i=0}^{n-1} (-1)^i x^i$. Observe that

$$a(1+x) = (1+x) \sum_{i=0}^{n-1} (-1)^{i} x^{i}$$

$$= \sum_{i=0}^{n-1} (-1)^{i} x^{i} + \sum_{i=0}^{n-1} (-1)^{i} x^{i+1}$$

$$= 1 + \sum_{i=1}^{n-1} (-1)^{i} x^{i} + \sum_{i=1}^{n} (-1)^{i+1} x^{i}$$

$$= 1 + \sum_{i=1}^{n-1} (-1)^{i} x^{i} + \sum_{i=1}^{n-1} (-1)^{i+1} x^{i}$$

$$= 1$$

The final line works since $x^n = 0$. Thus 1 + x is a unit.

(b) Let R be a ring with prime characteristic p, and let $a \in R$ be a nilpotent element with $n \in \mathbb{N}$ such that $a^n = 0$. We want to show there exists $k \in \mathbb{N}$ such that $(1+a)^k = 1$. Observe that if 0 < l < p then $\binom{p}{l} \mid p$ since both l, p - l < p, therefore l!, (p-l)! do not contain the prime factor p. Thus $\frac{p!}{l!(p-l)!} \mid p$. Therefore $(1+a)^p = \sum_{l=0}^p \binom{p}{l} a^l = 1 + a^p$ Furthermore by induction we have that $(1+a)^{p^l} = 1 + a^{p^l}$. Since there exists $m \in \mathbb{N}$ such that $n < p^m$, if we take $(1+a)^{p^m} = 1 + a^{p^m}$, then since $a^{p^m} = 0$ we have that 1 + a is unipotent.