Глава 1: Кинематика точки

§ 2 Косоугольные координаты

Здесь можно немного добавить строгости, а то ничерта не понятно. Пусть V — евклидово пространство (линейное со скалярным произведением). Как нам определяли, $g_{ik} = \mathbf{e_i} \cdot \mathbf{e_k}$,

$$\mathbf{a} \cdot \mathbf{b} = \sum_{ij} a^i b^j g_{ij}$$

Здесь a^k — коэффициенты разложения по $\mathbf{e_k}$ — называются контравариантными координатами.

Пусть V^* — сопряжённое к V, его базисом являются координатные функции f_k :: $f_k(\mathbf{x}) = x^k$. Поскольку задано скалярное произведение, задан канонический изоморфизм $V \to V^*$. Нам, правда, потребуется $V^* \to V$.

Введём ещё одну систему *векторов* в $V: \mathbf{e^k} = \mathbf{f_k^*}$, то есть $\mathbf{f_k(x)} = \mathbf{e^k \cdot x}$. Она и называется взаимным базисом, коэффициенты разложения по ней — ковариантные координаты. Из линейности скалярного произведения, ровно такие же координаты будут у соответствующей формы в V^* . Линейную независимость легко получить из ЛНЗ $\mathbf{f_k}$, а раз их $\dim V$, то полученные векторы являются базисом.

Так что можно сформулировать правило:

- Контравариантные координаты коэффициенты разложения по базису линейного пространства.
- Ковариантные координаты коэффициенты разложения по базису пространства линейных форм.

А вот теперь можно уже развлекаться с индексами.

Утверждение 1. $e^{k} \cdot e_{j} = \delta_{kj}$

Утверждение 2. Пусть $\mathbf{r} = \xi^k \mathbf{e_k}$ $u = \xi^k \mathbf{e_k}$. Тогда $\xi_k = \mathbf{r} \cdot \mathbf{e_k}$