

Generation And Simulation Of Manufacturable 2D Soft Bodies

Naudé Conradie Supervisor: Dr MP Venter

Department of Mechanical and Mechatronic Engineering, Stellenbosch University

8 May 2020

Naudé Conradie

• Project scope

- Project scope
- Objectives

- Project scope
- Objectives
- Methodology

- Project scope
- Objectives
- Methodology
- Upcoming Work

• Automate the generation and simulation of 2D soft bodies

- Automate the generation and simulation of 2D soft bodies
 - Generate 2D bodies built from smaller building blocks with specific deformations

- Automate the generation and simulation of 2D soft bodies
 - Generate 2D bodies built from smaller building blocks with specific deformations
 - Non-linear FEM with hyper-elastic material models

- Automate the generation and simulation of 2D soft bodies
 - Generate 2D bodies built from smaller building blocks with specific deformations
 - Non-linear FEM with hyper-elastic material models
 - Evaluate the bodies and building blocks according to predefined goals

• Automation for future use and development

- Automation for future use and development
- Generation of soft bodies built from generated smaller units

- Automation for future use and development
- Generation of soft bodies built from generated smaller units
- Selection of best models according to selected metrics

- Automation for future use and development
- Generation of soft bodies built from generated smaller units
- Selection of best models according to selected metrics
- Accurate modelling of real-world materials

- Automation for future use and development
- Generation of soft bodies built from generated smaller units
- Selection of best models according to selected metrics
- Accurate modelling of real-world materials
- Computationally efficient manner

- Automation for future use and development
- Generation of soft bodies built from generated smaller units
- Selection of best models according to selected metrics
- Accurate modelling of real-world materials
- Computationally efficient manner
- Limitations

- Automation for future use and development
- Generation of soft bodies built from generated smaller units
- Selection of best models according to selected metrics
- Accurate modelling of real-world materials
- Computationally efficient manner
- Limitations
 - Two dimensions

- Automation for future use and development
- Generation of soft bodies built from generated smaller units
- Selection of best models according to selected metrics
- Accurate modelling of real-world materials
- Computationally efficient manner
- Limitations
 - Two dimensions
 - Pre-existing material models

• LS-Dyna

- LS-Dyna
 - License expired

- LS-Dyna
 - License expired
- Siemens NX 12

• MSC Marc Mentat

- LS-Dyna
 - License expired
- Siemens NX 12
 - Unnecessary
- MSC Marc Mentat

- LS-Dyna
 - License expired
- Siemens NX 12
 - Unnecessary
- MSC Marc Mentat
 - Python

• Generate grid of square elements

- Generate grid of square elements
- Random internal elements are removed

- Generate grid of square elements
- Random internal elements are removed
- Simulation is evaluated

- Generate grid of square elements
- Random internal elements are removed
- Simulation is evaluated
 - Maximum stress

- Generate grid of square elements
- Random internal elements are removed
- Simulation is evaluated
 - Maximum stress
 - Boundary energy

- Generate grid of square elements
- Random internal elements are removed
- Simulation is evaluated
 - Maximum stress
 - Boundary energy

.

$$E_b = \sum_{i=1}^{n_n} d_i \times F_i$$

• If i is a boundary node

Methodology (cont.)

Methodology (cont.)

File Hierarchy

• Material testing of Mold Star 15 and possibly other materials

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing
 - Long travel extensometer

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing
 - Long travel extensometer
 - DIC

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing
 - Long travel extensometer
 - DIC
 - Compression testing

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing
 - Long travel extensometer
 - DIC
 - Compression testing
 - DIC

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing
 - Long travel extensometer
 - DIC
 - Compression testing
 - DIC
- Ogden material model

- Material testing of Mold Star 15 and possibly other materials
 - Tensile testing
 - Long travel extensometer
 - DIC
 - Compression testing
 - DIC
- Ogden material model

_

$$W_1(\lambda_1, \lambda_2, \lambda_3) = \sum_{i=1}^{N} \frac{\mu_i}{\alpha_i} \left(\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 \right)$$

• Select best performing units

- Select best performing units
- Build bodies from units

- Select best performing units
- Build bodies from units
 - Generative design

- Select best performing units
- Build bodies from units
 - Generative design
 - L-systems

- Select best performing units
- Build bodies from units
 - Generative design
 - L-systems
 - CPPNs

Questions?