Topology Presentation Notes

Nilay Tripathi

December 4, 2023

Contents

1	Metric Space Preliminaries 1.1 Function Space	1 1
2	Vector Space Preliminaries2.1 Function Spaces2.2 Linear Maps	2 2 2
3	Normed Spaces 3.1 Examples	3 3
4	Inner Product Spaces4.1 Examples4.2 Hilbert Space	
5	Topological Vector Spaces 5.1 Continuous & Bounded Linear Map 5.2 Continuous ←⇒ Bounded	4 4 5
6	Closed Graph Theorem 6.1 Open Mapping Theorem	6

1 Metric Space Preliminaries

- Sequences and Cauchy sequences
 - A sequence converges to a point $x_0 \in X$ if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} : n \ge N_{\varepsilon} \implies d(x_n, x) < \varepsilon$$

- A sequence is Cauchy if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} : m, n \geq N_{\varepsilon} \implies d(x_n, x_m) < \varepsilon$$

- Every convergent sequence is Cauchy. PROOF: use triangle inequality with $\varepsilon/2$ argument.
- \bullet Complete metric space: every Cauchy sequence in X converges to a limit in X.
 - The metric space $\mathbb Q$ is not complete. PROOF: consider the sequence of rational approximations to any irrational number.

- Discrete spaces are complete. PROOF: every Cauchy sequence is eventually constant.
- Briefly comment about equivalent formulas of completeness in ℝ (i.e. least upper bound property, montone convergence property, etc.). Cauchy completeness is the most general definition and works in all metric spaces.

1.1 Function Space

We define the function space, C[a, b], to be all continuous functions from [a, b] to \mathbb{R} . That is

$$C[a,b] = \{f : [a,b] \to \mathbb{R} \mid f \text{ is continuous}\}\$$

We define a metric on the function space as follows: for $f, g \in C[a, b]$

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|$$

• The metric is well defined (i.e. is finite). PROOF: f - g is continuous and [a, b] is compact. EVT implies existence of a maximum (and minimum)

2 Vector Space Preliminaries

- A vector space V over a field \mathbb{F} has two operations: vector addition and scalar multiplication where
 - Vector addition is an abelian group
 - Scalar multiplicatin satisfies: 1v = v, a(bv) = (ab)v, and two distributive laws: scalar multiplication distributes over vector addition and field addition.
- Linearly independent sets: a (finite) set V is linearly independent if for scalars c_i and vectors v_i

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0 \implies c_1 = c_2 = \dots = c_n = 0$$

Infinite sets are linearly independent if all of its finite subsets are L.I.

• If V is a V.S. over \mathbb{F} and $S \subseteq V$ is finite, then span S is defined as

span
$$S = \{c_1v_1 + \dots + c_nv_n : c_i \in \mathbb{F}, v_i \in S\}$$

The span of an infinite set is the union of the span of all its finite subsets.

- If $E \subseteq X$ is a subspace, then a set S is a spanning set if span S = E.
- A basis is a linearly independent generating set.
 - It is the smallest generating set and the largest L.I. set (in a f.d. V.S.)
 - Every vector has a unique representation in a basis
 - The dimension of a V.S. is the size of its basis (either finite or infinite)
 - Every V.S. has a basis. For f.d. spaces, all bases have the same size

2.1 Function Spaces

We turn the function space C[a, b] into a vector space over \mathbb{R} . For $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$, define

$$(f+g)(t) = f(t) + g(t)$$
$$(\alpha f)(t) = \alpha f(t)$$

The additive identity is the zero function. It is also an infinite dimensional V.S.

2.2 Linear Maps

Linear maps preserve linear combos. So $T: X \to Y$ is linear if

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1Tv_1 + c_2Tv_2 + \cdots + c_nTv_n$$

Notably, linear maps send the identity of X to the identity of Y (i.e. T0 = 0)

• The differentiation operator on C[a, b], Df = f', is linear. PROOF: derivative rules from calculus.

3 Normed Spaces

- A norm on a V.S. V generalizes the length of a vector. It satisfies these axioms
 - 1. $||x|| \ge 0$ with $||x|| = 0 \iff x = 0$
 - 2. $\|\alpha x\| = |\alpha| \|x\|$ (norm only depends on direction)
 - 3. $||x + y|| \le ||x|| + ||y||$ (satisfies triangle inequality)

We use the word "norm" to mean both the value ||x|| and the function $x \mapsto ||x||$.

- ullet Normed space \Longrightarrow metric space
 - Define the metric as d(x, y) = ||x y||

3.1 Examples

• The L^p -norms on \mathbb{R}^n are defined by

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$$

- The L^p -norm induces the L^p -metric on \mathbb{R}^n .
- If p=2, this is the usual notion of length/distance on \mathbb{R}^2 .
- Consider the function space C[a,b]. Define a norm on this space as

$$||f|| = \max_{t \in [a,b]} |f(t)|$$

ullet Metric space \implies normed space: the discrete metric on $\mathbb R$ is not induced by any norm.

3.2 Banach Spaces

A Banach space is any normed space where the norm induces a complete metric space.

- \mathbb{R}^n is a Banach space (when we consider its usual Euclidean norm)
- The function space C[a, b] is a Banach space, under its usual metric.
- Not all normed spaces are Banach spaces.
 - Define a different norm on C[a, b] as:

$$||f|| = \int_0^1 |f(t)| \ dt$$

The metric induced by the norm is

$$d(f,g) = \int_0^1 |f(t) - g(t)| dt$$

Under this metric C[a, b] is not a complete space.

4 Inner Product Spaces

An inner product satisfies the following axioms

- 1. $\langle x + y, z \rangle = \langle x, y \rangle + \langle y, z \rangle$
- 2. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 4. $\langle x, x \rangle \ge 0$ with $\langle x, x \rangle = 0 \iff x = 0$

If the V.S. is over \mathbb{R} , axiom 3 becomes $\langle x, y \rangle = \langle y, x \rangle$.

ullet We have inner product space \Longrightarrow normed space. A norm may be defined as

$$||x|| = \sqrt{\langle x, x \rangle}$$

• However, the reverse implication is NOT true. EXAMPLE: L^p -norms when $p \neq 2$.

4.1 Examples

• The standard inner product on \mathbb{R}^n is

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

It is better known as the dot product. It induces the Euclidean norm on \mathbb{R}^n .

• If $X = \mathbb{C}^n$ instead, then the standard inner product becomes

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

4.2 Hilbert Space

A Hilbert space is an I.P.S. where the norm induced by the inner product induces a complete metric space.

- ullet Hilbert space \Longrightarrow Banach space
- Converse not true. EXAMPLE: the max norm on C[a, b] is not given by any inner product, so it cannot be a Hilbert space
- \bullet \mathbb{R}^n , with the Euclidean norm/standard inner product is a Hilbert space.

5 Topological Vector Spaces

We now combine the notions of vector spaces and topological spaces. A **topological vector space** is a vector space with a topology such that

- 1. All one point sets in closed
- 2. The vector space operations + and \cdot are continuous

5.1 Continuous & Bounded Linear Map

• We say a linear map $T: X \to Y$ is continuous at $x_0 \in X$ if for every $\varepsilon > 0$, there is a $\delta > 0$ such that

$$||x - x_0|| < \delta \implies ||Tx - Tx_0|| < \varepsilon$$

If T is continuous at all points in X, then T is continuous.

• We say a linear map $T: X \to Y$ is bounded if there exists $M \in \mathbb{R}$ such that

$$||Tx|| \le M||x||$$

• We define the norm of an operator as follows

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{\substack{x \in X \\ ||x|| = 1}} ||Tx||$$

This gives us that for any bounded operator: $||Tx|| \le ||T|| ||x||$.

- The zero operator has norm 0. PROOF:

$$\frac{\|Tx\|}{\|x\|} = \frac{\|0\|}{\|x\|} = 0$$

- The identity operator has norm 1. PROOF:

$$\frac{\|Tx\|}{\|x\|} = \frac{\|x\|}{\|x\|} = 1$$

– The differentiation operator D(f) = f' is unbounded. PROOF: consider polynomials on [0,1]. If $x_n(t) = t^n$, then

$$||Tx_n|| = ||nt^{n-1}|| = n$$

5.2 Continuous \iff Bounded

We prove the following result.

Theorem 1. A linear operator $T: X \to Y$, between normed spaces is continuous iff it is bounded.

Proof. Assume T is bounded. Then, we have $||T|| < \infty$. Let $\varepsilon > 0$ and $x_0 \in X$ be arbitrary. Let

$$\delta = \frac{\varepsilon}{\|T\|}$$

and assume $||x - x_0|| < \delta$. Then, we have

$$||Tx - Tx_0|| = ||T(x - x_0)||$$

$$\leq ||T|| ||x - x_0||$$

$$< ||T|| \cdot \frac{\varepsilon}{||T||}$$

$$= \varepsilon$$

Hence, T is continuous as it is continuous at all points.

Conversely, assume T is continuous. Then, T is continuous at x=0. So, there is a $\delta>0$ such that

$$||x|| < \delta \implies ||Tx|| < 1$$

Rewrite x as

$$x = \frac{2x\delta}{\|x\|} \cdot \frac{\|x\|}{2\delta}$$

So

$$Tx = T\left(\frac{2x\delta}{\|x\|} \cdot \frac{\|x\|}{2\delta}\right)$$
$$= \frac{2\|x\|}{\delta} T\left(\frac{x}{\|x\|} \cdot \frac{\delta}{2}\right)$$

Put $v = \frac{x}{\|x\|} \cdot \frac{\delta}{2}$ and note that

$$||v|| = \frac{\delta}{2} \left\| \frac{x}{||x||} \right\| = \frac{\delta}{2} < \delta$$

So ||Tv|| < 1. Hence, we see that

$$\|Tx\|<\frac{2}{\delta}\|x\|$$

which shows that T is bounded.

6 Closed Graph Theorem

6.1 Open Mapping Theorem

We state the open mapping theorem, and its corollary, the bounded inverse theorem.

- An open mapping sends open sets in the domain to open sets in the range i.e. the image of open sets is open
- Open Mapping Thrm: every surjective bounded linear operator between Banach spaces is an open mapping
 - IDEA OF PROOF: similar to the "neighborhood trick": show that for an open set U, any point in T(U) contains an open set contained in T(U).
 - However, the details are complicated since we are in an arbitrary space
- Bounded Inverse Thrm: if T is a bijective, continuous linear operator, then T^{-1} is bounded.
 - IDEA OF PROOF: show T^{-1} is continuous. Indeed, $T: X \to Y$ maps open sets to open sets. But this is roughly the same as the preimage of open sets in X being open under T^{-1} . Thus, T^{-1} is continuous and, therefore, bounded.

6.2 Norm On Product Space

If X, Y are Banach spaces, we define a norm on $X \times Y$ as follows

$$||(x,y)|| = ||x|| + ||y||$$

We remark: there are other norms on the product space (e.g. the "max" norm), but the closed graph theorem will go through for all of them. I think this is the easiest one.

Theorem 2. If X, Y are Banach spaces, then so is $X \times Y$.

Proof Sketch. Let (z_n) be an arbitrary Cauchy sequence. W.T.S. (z_n) converges

- From definition of the product norm, we have (x_n) and (y_n) are Cauchy
- The two Cauchy sequences converge. Then, (z_n) converges to the ordered pair (limit of x_n , limit of y_n)
- To show this, use a $\varepsilon/2$ argument.

6.3 Proof of Closed Graph Theorem

A linear operator $T: X \to Y$ if the graph of T

$$G_T = \{(x, Tx) : x \in X\}$$

is a closed set in $X \times Y$.

Theorem 3 (Closed Graph Thrm). Suppose $T:D\to Y$ is a closed linear operator. Then, T is bounded if D is closed.

Proof Idea. • Define a linear map $P: G_T \to D$ as

$$P(x, Tx) = x$$

 \bullet P is linear since

$$P(x + cy, T(x + cy)) = P(x + cy, Tx + cTy) = P[(x, Tx) + c(y, Ty)]$$

• P is bounded since

$$||P(x,Tx)|| = ||x|| \le ||x|| + ||Tx|| = ||(x,Tx)||$$

- P is bijective.
- G_T is a closed subset of $X \times Y$, a complete space $\implies G_T$ is closed.
- ullet Same argument shows D is a complete space.
- Invoke the bounded inverse theorem to get that P^{-1} is bounded.
- The proof is finished by noting that

$$||Tx|| \le ||x|| + ||Tx||$$

= $||(x, Tx)||$
= $||P^{-1}(x)||$
 $\le M||x||$

So T is bounded, as desired.