Computação Gráfica e Interfaces

2017-2018 Fernando Birra

Transformações Geométricas

2017-2018 Fernando Birra

Objetivos

- Introduzir as transformações geométricas simples:
 - Translação
 - Rotação
 - Mudança de Escala
 - Deformação Transversa
- Derivar as respetivas matrizes de transformação com coordenadas homogéneas
- Aprender a usar a composição de transformações simples para deduzir transformações geométricas arbitrárias

Transformações Geométricas Genéricas

 Uma transformação geométrica qualquer transforma pontos e/ou vetores em outros pontos/vetores.

Transformações Afins

- Preservam as linhas
- As transformações mais importantes são transformações afins:
 - Transformações dos corpos rígidos (translação, rotação)
 - Mudança de escala e deformação transversa (shear)

Importância nos sistemas gráficos: Basta transformar os extremos duma linha e unirmos os pontos transformados com uma linha

Tratamento no Pipeline

Notação

- *P*, *Q*, *R*: pontos num espaço afim
- u,v,w: vetores num espaço afim
- α, β, γ: escalares
- p, q, r: representações de pontos array com 4 escalares em coordenadas homogéneas
- u, v, w: representações de vetores array com 4 escalares em coordenadas homogéneas

Translação

 Mover (transladar, deslocar) um ponto para uma nova localização.

- Deslocamento determinado por um vetor d
- 3 graus de liberdade

Translação

 Embora um ponto se possa mover para outra localização mais do que de uma forma, para um conjunto de pontos existe normalmente apenas uma forma.

objeto

translação: todos os pontos deslocados dum mesmo vetor

Translação

 Usando a representação em coordenadas homogéneas num determinado referencial:

$$\begin{aligned} & \textbf{p} = [p_x \ p_y \ p_z \ 1]^T \\ & \textbf{p}' = [p'_x \ p'_y \ p'_z \ 1]^T \\ & \textbf{d} = [d_x \ d_y \ d_z \ 0]^T \end{aligned} \end{aligned}$$
 Componente
$$\begin{aligned} & \text{Esta expressão \'e em 4D e} \\ & \text{exprime o conceito:} \\ & \text{ponto = ponto + vetor} \end{aligned}$$

$$\begin{aligned} & p'_x = p_x + d_x \\ & p'_y = p_y + d_y \\ & p'_z = p_z + d_z \end{aligned}$$

$$\begin{aligned} & \textbf{p}' = \textbf{p} + \textbf{d} \end{aligned}$$

 $p'_{w} = p_{w} + d_{w}$

Translação (Matriz de Transformação)

Também se pode representar uma translação usando uma matriz
 T, de 4x4, usando coordenadas homogéneas, de tal modo que:

$$\mathbf{p}' = \mathbf{Tp}$$

$$\mathsf{M} = \mathsf{T}(d_X, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_X \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 A vantagem desta abordagem é que todas as transformações afins se podem exprimir desta forma, podendo várias transformações ser concatenadas e guardadas numa única matriz.


```
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)

y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```



```
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)

y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```



```
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)

y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```


$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

Rotação em torno de Z (3D)

- Em 3D, a rotação em torno de Z deixa todos os pontos com o valor da coordenada Z inalterada.
- É equivalente à rotação 2D em planos de Z constante:

$$x'=x\cos(\theta) - y\sin(\theta)$$

 $y'=x\sin(\theta) + y\cos(\theta)$
 $z'=z$

Em coordenadas homogéneas:

$$\mathbf{p}' = \mathbf{R}_{z}(\theta)\mathbf{p}$$
 $\mathbf{R} = \mathbf{R}_{z}(\theta)\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Matrizes de rotação em 3D

De forma análoga:

Rotação em torno de X não altera a coordenada X Rotação em torno de Y não altera a coordenada Y

$$R = R_x(\theta) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R = R_y(\theta) \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R = R_z(\theta) \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Mudança de escala

 Expansão ou contração ao longo de cada um dos eixos, com o ponto fixo na origem

$$x' = S_x x$$

 $y' = S_y y$ $p' = Sp$
 $z' = S_z z$

$$S = S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflexões

São um caso particular da mudança de escala (com fatores unitários negativos)

Transformações inversas

- As transformações inversas das transformações simples podem ser obtidas sem recorrer a fórmulas gerais:
 - Translação: $\mathbf{T}^{-1}(d_x,d_y,d_z)=\mathbf{T}(-d_x,-d_y,-d_z)$

Rotação: R-1(θ)=R(-θ)

$$=\mathbf{R}^{T}(\theta)$$
, pq. $\sin(-\theta)=-\sin(\theta)$ e $\cos(-\theta)=\cos(\theta)$

• Escala: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Composição de transformações geométricas

- Podem formar-se transformações afins arbitrárias por composição das transformações simples: rotações, translação e mudança de escala
- Supondo que temos um conjunto grande de vértices p, para transformar com uma composição de transformações simples M_n(...M₂(M₁p))...), o custo do cálculo de M=M_n... M₂.M₁, é negligenciável quando comparado com o custo M.p, para um grande número de vértices.
- O desafio é encontrar a composição certa para fazer o que se pretende numa dada aplicação.

Ordem de aplicação

 O produto de matrizes (a composição de transformações) é associativo, mas não é comutativo!

$$p' = ABCp = A(B(Cp))$$

 Se se usassem vetores linha para representar os pontos, a transformação acima seria:

$$\mathbf{p}' = \mathbf{p} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} = ((\mathbf{p} \mathbf{C}^{\mathsf{T}}) \mathbf{B}^{\mathsf{T}}) \mathbf{A}^{\mathsf{T}}$$

Rotação em torno de eixo arbitrário (que cruza a origem)

- Transformação complexa que pode ser decomposta em transformações simples
- Uma rotação de θ em torno dum eixo arbitrário pode ser decomposta em rotações em torno dos eixos x, y e z

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z})\mathbf{R}_{y}(\theta_{y})\mathbf{R}_{x}(\theta_{x})$$

- Os ângulos θ_x , θ_y e θ_z denominam-se por ângulos de Euler.
- Embora as rotações não se possam trocar, é possível encontrar 3 outros ângulos de Euler, para outra ordem de aplicação das transformações, que produza o mesmo efeito.

Rotação em torno de eixo arbitrário (que cruza a origem)

- Alternativamente, poder-se-ia deduzir uma expressão que faz a mesma transformação usando os seguintes passos:
 - Rodar, segundo y, o vetor v que passa pelo eixo de rotação, por forma colocá-lo no plano xy
 - 2. Rodar em z por forma a que o vector de 1 fique coincidente com o eixo x
 - 3. Rodar em torno do eixo x do valor θ
 - 4. Desfazer as rotações dos passos 1 e 2, pela ordem inversa.

 $\mathbf{R}(\theta) = \mathbf{R}_{y}(-\theta_{y})\mathbf{R}_{z}(-\theta_{z})\mathbf{R}_{x}(\theta)\mathbf{R}_{z}(\theta_{z})\mathbf{R}_{y}(\theta_{y})$

Rotação em torno dum eixo que não passa na origem

- Usa-se o resultado anterior, mas com a seguinte alteração:
 - Mover um ponto (**p**_f) do eixo para a origem
 - 2. Rodar $\mathbf{R}(\theta)$
 - 3. Mover o ponto de volta para a sua posição inicial

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_f)\mathbf{R}(\theta)\mathbf{T}(-\mathbf{p}_f)$$

Transformações de instanciação

- Em modelação, os objetos primitivos estão normalmente centrados na origem, orientados com os eixos principais e com um determinado tamanho
- Aos vértices desses objetos "primitivos" aplicam-se transformações que seguem muitas vezes o padrão:
 - Escala
 - Orientação
 - Posicionamento

Transformação de Instanciação Comum

Transformações de instanciação

- Mas também é possível aplicar uma sequência arbitrária de transformações geométricas (acumulação), sem nenhuma ordem especial que não a definida pelo modelador.
- A maior parte do software adopta a ordem fixa TRS:
 - Blender
 - Unity
 - Maya
 - etc.

Deformação Transversa em 2D

$$a = tan \theta$$

$$SH_y(\theta) = \begin{bmatrix} 1 & \tan \theta & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$SH_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ tan \theta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Nota: usamos como índice o eixo que não sofre qualquer alteração

Deformação Transversa

Exemplo dum caso particular em 3D

 A matriz de deformação transversa, para o caso geral, é dada por:

$$x' = x + ay + bz$$

 $y' = y + cx + dz$
 $z' = z + ex + fy$

Operações comutativas

- Apesar de, no caso geral, a ordem das transformações ser importante, em alguns casos pode trocar-se a ordem das operações visto serem comutativas:
 - S(a, b, c) S(d, e, f) = S(d, e, f) S(a, b, c) = S(ad, be, cf)
 - T(a,b,c) T(d, e, f) = T(d, e, f) T(a, b, c) = T(a+d, b+e, c+f)
 - $\mathbf{R}_{i}(\theta)\mathbf{R}_{i}(\phi) = \mathbf{R}_{i}(\phi)\mathbf{R}_{i}(\theta) = \mathbf{R}_{i}(\theta+\phi), i \in \{x,y,z\}$
 - $\mathbf{R}_{x}(\theta) \mathbf{S}(a, k, k) = \mathbf{S}(a, k, k) \mathbf{R}_{x}(\theta)$
 - $\mathbf{R}_{y}(\theta) \mathbf{S}(k, a, k) = \mathbf{S}(k, a, k) \mathbf{R}_{y}(\theta)$
 - $\mathbf{R}_{z}(\theta) \, \mathbf{S}(k, k, a) = \mathbf{S}(k, k, a) \, \mathbf{R}_{z}(\theta)$

Escala uniforme em dois dos eixos e rotação no 3º eixo

