Arc Vector Algebra - Warm-Burn Primitive (Constant Turn-Rate) with Apollo-11 Style Example

1. Setup

Work in an inertial frame at epoch t_0 with state $(\mathbf{r}_0, \mathbf{v}_0)$ and local RTN unit basis $(\hat{\mathbf{R}}, \hat{\mathbf{T}}, \hat{\mathbf{N}})$. Let \mathbf{v}_{req} be the required post-burn velocity at t_0 . Define the goal vector

$$\mathbf{g} = \mathbf{v}_{\text{req}} - \mathbf{v}_0. \tag{1}$$

2. Impulsive ("cold") AVA primitive

Given a Δv budget $\rho > 0$, the one-shot canted impulse is

$$\Delta \mathbf{v}_{\text{imp}} = \rho \frac{\mathbf{g}}{\|\mathbf{g}\|}.$$
 (2)

If \mathbf{v}_0 and \mathbf{v}_{req} have magnitudes $v_i = ||\mathbf{v}_0||$, $v_f = ||\mathbf{v}_{\text{req}}||$ and enclose angle Δi , then by the law of cosines

$$\rho_* = \|\mathbf{v}_{\text{req}} - \mathbf{v}_0\| = \sqrt{v_i^2 + v_f^2 - 2v_i v_f \cos \Delta i}.$$
 (3)

3. Finite ("warm") AVA primitive: constant turn-rate

Assume thrust acceleration magnitude a_t is approximately constant during the burn, and the thrust *direction* rotates at constant angular rate s about a fixed unit axis $\hat{\mathbf{n}}$:

$$\hat{\mathbf{u}}(t) = \mathcal{R}(\hat{\mathbf{n}}, st) \, \hat{\mathbf{u}}_0, \qquad 0 \le t \le T, \quad \Theta \equiv sT, \quad \hat{\mathbf{u}}_0 \equiv \frac{\mathbf{g}}{\|\mathbf{g}\|}.$$

Choose $\hat{\mathbf{n}}$ normal to the plane change, for example $\hat{\mathbf{n}} = \mathbf{v}_0 \times \mathbf{v}_{\text{req}} || \mathbf{v}_0 \times \mathbf{v}_{\text{req}} ||$ (when $\Delta i \neq 0$). With Rodrigues' formula,

$$\mathcal{R}(\hat{\mathbf{n}}, \theta) \, \hat{\mathbf{u}}_0 = \hat{\mathbf{u}}_0 \cos \theta + (\hat{\mathbf{n}} \times \hat{\mathbf{u}}_0) \sin \theta + \hat{\mathbf{n}} \, (\hat{\mathbf{n}} \cdot \hat{\mathbf{u}}_0) \, (1 - \cos \theta),$$

the delivered velocity change is

$$\Delta \mathbf{v}_{\text{fin}} = \int_0^T a_t \, \hat{\mathbf{u}}(t) \, dt = \frac{a_t}{s} \left[\sin \Theta \, \hat{\mathbf{u}}_0 + (1 - \cos \Theta) \, (\hat{\mathbf{n}} \times \hat{\mathbf{u}}_0) + (\Theta - \sin \Theta) \, (\hat{\mathbf{n}} \cdot \hat{\mathbf{u}}_0) \, \hat{\mathbf{n}} \right]. \tag{4}$$

Special case $\hat{\mathbf{n}} \cdot \hat{\mathbf{u}}_0 = 0$ (typical for pure plane-change coupling):

$$\|\Delta \mathbf{v}_{\text{fin}}\| = \frac{a_t}{s} 2 \sin \frac{\Theta}{2} = \frac{\rho}{\Theta} 2 \sin \frac{\Theta}{2}, \qquad \rho \equiv a_t T.$$
 (5)

To match the impulsive target magnitude ρ_* from (3), choose

$$\rho = \rho_* \frac{\Theta}{2\sin(\Theta/2)}. (6)$$

4. Arc vector (real Hilbert-space form) and "best next arc"

Represent a warm burn by the 6D arc vector

$$\mathbf{a} = [\rho \,\hat{\mathbf{u}}_0 ; \,\Theta \,\hat{\mathbf{n}}] \in \mathbb{R}^6, \quad splitas \mathbf{a} = [\mathbf{t}; \mathbf{c}], \, \mathbf{t}, \mathbf{c} \in \mathbb{R}^3.$$
 (7)

Endow R^6 with inner product

$$\langle \mathbf{a}, \mathbf{b} \rangle_W = \mathbf{t}_a^{\top} \mathbf{t}_b + \alpha \mathbf{c}_a^{\top} \mathbf{c}_b, \qquad \alpha > 0, \quad \|\mathbf{a}\|_W = \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle_W}.$$
 (8)

With budget $\|\mathbf{a}\|_W \leq \rho$, the best next arc is the W-metric projection of a goal arc \mathbf{g}_W :

$$\mathbf{a}^* = \rho \frac{\mathbf{g}_W}{\|\mathbf{g}_W\|_W}. \tag{9}$$

The impulsive ("cold") case is the limit $\Theta \to 0$, i.e. $\mathbf{a} = [\rho \hat{\mathbf{u}}_0; \mathbf{0}]$.

5. Worked numerical example (Apollo-11 style, perigee TLI)

Earth $\mu=398600.4418~{\rm km}^3/{\rm s}^2$, radius $R=6378.137~{\rm km}$. Parking orbit altitude $h=185~{\rm km}$: $r_p=R+h=6563.137~{\rm km}$. Circular speed $v_i=\sqrt{\mu/r_p}=7.793152~{\rm km/s}$. Target: translunar ellipse with apogee $r_a\approx384400~{\rm km}$: $a=12(r_p+r_a)$, perigee speed $v_f=\sqrt{\mu(2/r_p-1/a)}=10.928283~{\rm km/s}$. Consider a small plane change $\Delta i=5^\circ$ at perigee.

Impulsive comparison. Split baseline (pure tangential change $|v_f - v_i|$ plus pure plane change $2v_{\min}\sin(\Delta i/2)$ at the lower speed $v_{\min} = v_i$):

$$\Delta v_{\rm split} \approx 3.814996 \text{ km/s}.$$

Single canted burn from (3):

$$\Delta v_{\rm single} \approx 3.236852 \text{ km/s}.$$

Saving $\approx 15.15\%$ by coupling energy and plane change in one shot.

Warm-burn sizing (constant turn-rate). Let $\Theta = \Delta i = 5^{\circ} = 0.0872665$ rad. Using (6),

$$\frac{\Theta}{2\sin(\Theta/2)} \approx 1.000317$$
, $\rho = \rho_* \times 1.000317 \approx 3.237879 \text{ km/s}.$

Thus a constant-turn warm burn needs only about 0.032% more integrated thrust than the impulsive ideal at 5° .

Remarks. Apollo timed TLI so that $\Delta i \approx 0$; this example is a stress test showing AVA's default one-shot coupling benefit when a small plane change is unavoidable. In high-fidelity design (J2/three-body and constraints), use this AVA arc as a warm start; the full optimizer enforces the detailed physics.