NASA Technical Memorandum

NASA TM-86534

HEX BALL TORQUE TEST

By B. A. Robinson and C. L. Foster

Structures and Propulsion Laboratory Science and Engineering Directorate

January 1986

(NASA-TM-86534) HEX BALL TORQUE TEST (NASA) 110 p HC A06/MF A01 CSCL 20K N86-23973

Unclas G3/39 00541.

Space Administration

George C. Marshall Space Flight Center

		L REPORT STAND	ARD TITLE PAGE						
1. REPORT NO. NASA TM-86534	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CA	TALOG NO.						
4. TITLE AND SUBTITLE		5. REPORT DATE	1006						
Hex Ball Torque Test		January 6. PERFORMING ORG							
7. AUTHOR(S)		8. PERFORMING ORGA	ANIZATION REPORT #						
B. A. Robinson and C. L. Fo									
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT NO.							
George C. Marshall Space Flig Marshall Space Flight Center,		11. CONTRACT OR G							
12 SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT	& PERIOD COVERED						
National Aeronautics and Space		Technical M	lemorandum						
Washington, D.C. 20546		14 SPONSORING AG	ENCY CODE						
15. SUPPLEMENTARY NOTES		<u> </u>							
Prepared by Structures and Propulsion Laboratory, Science and Engineering Directorate.									
16. ABSTRACT									
joints in order to characterize of this device. The universa instruments within the Hubble bind slightly during the initia function of the universal joint loading cycles. The torsional consistent among the four tes complete failure exceeded 80 i joint is suitable for its intend	e were performed on four flight and determine the actual load I joint is a part of manual actual Space Telescope. It was found load application. This binding to the units would "wear-inguilated load was approximately the specimens. Also, the torquest-lb. It is concluded that the ed applications.	-carrying capa ation rods for nd that the her ng did not affe n" after a few 50 ft-lb, and v required to ca	bility scientific x ball will ect the additional vas ause						
17. KEY WORDS	18. DISTRIBUTION STA	TEMENT							
Torque Testing Angular Deflection Shear Stress	Unclassified	- Unlimited							
19 SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF, (of this page)	21 NO. OF PAGES	22 PRICE						
Unclassified	Unclassified	112	NTIS						

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	APPROACH	1
	A. Scope B. Test Hardware C. Test Procedure D. Test Setup	1
III.	SUMMARY OF RESULTS	2
IV.	DISCUSSION OF TEST	2
V.	CONCLUSIONS AND RECOMMENDATIONS	5
APPE	NDIX A	15
APPE	NDIX B	23
	NDIX C	59
APPE	NDIX D	81
Δ DDF	NDIY F	105

PRECEDING PAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Hex ball and hex ball housing	6
2.	Hex ball universal joint	7
3.	Photograph of test setup	8
4.	Test setup	9
5.	Universal joint installed in fixture	10
6.	Hex ball after run No. 1	11
7.	Hex ball housing after run No. 1	12
8.	Hex ball after failure	13
9.	Fracture interface	14

化维尔斯 空間 網絡的 有性心 化二

DEFINITION OF SYMBOLS AND ABBREVIATIONS

SI Scientific Instrument FGS Fine Guidance Sensor OTA Optical Telescope Assembly ft-lb foot-pound of torque in-lb inch-pound of torque CW clockwise CCW counterclockwise MoS_2 molybdenum disulfide shear stress τ $\mathbf{f}_{\mathbf{sy}}$ shear yield stress fty tensile yield stress KSI stress, thousand pounds per square inch \mathbf{T} torque J polar moment of inertia C distance from centroid to point of maximum shear stress (= radius for circular specimen) \mathbf{D} outer diameter of specimen d inner diameter of specimen **MSFC** Marshall Space Flight Center

TECHNICAL MEMORANDUM

HEX BALL TORQUE TEST

I. INTRODUCTION

The purpose of these tests was to characterize the function of and to determine the load-carrying capability of the hex ball universal joint, Perkin-Elmer part number 679-0760. This universal joint is installed in a total of 17 locations within the scientific instruments (SI) and focal plane structure of the Hubble Space Telescope. It is used in the manual actuation rods for the axial SI, radial SI and FGS point "A" latches, and in the radial SI blind-mate electrical connector. Although the actuation rods had previously been qualified for the maximum specified load of 35 ft-lb, higher loads have been anticipated. Further testing was necessary to prove the structural integrity of the rods and to establish the actual margins on yield and ultimate load.

II. APPROACH

A test fixture was designed to apply torque to the universal joint in a controlled manner. Angular deflection was measured using a digital inclinometer readout. Visual examinations and dimensional checks were made at several times throughout the course of testing, and photographs of the test articles were obtained. Two universal joints were subjected to life cycle testing, and all four test specimens were loaded to the maximum specified load of 35 ft-lb. The units were subsequently loaded to increasingly higher values until an indication of yielding was obtained. Finally, each specimen was tested to destruction.

A. Scope

These tests were not intended as a formal qualification of the universal joint; rather, the tests were for engineering information. Therefore, the test procedure was unreleased, and testing was performed in an engineering laboratory without MSFC Quality Assurance surveillance. However, to assure that the results were valid and representative for the flight hardware, all test instrumentation was within the current calibration period and all test specimens were fabricated per MSFC quality assurance requirements.

B. Test Hardware

Four test specimens were fabricated per the Perkin-Elmer drawings, except the microseal coating on the hex ball was not applied. This exception was specified in the procurement contract for these parts. All material, heat treatment, and dimensional requirements were verified per MSFC quality assurance standard practice. Figure 1 is a photograph of the hex ball and hex ball housing, and Figure 2 shows those pieces assembled as the universal joint.

C. Test Procedure

The tests were conducted per the test procedure, included as Appendix A of this report, with some minor exceptions or modifications which are described in the "Discussion of Test" section.

D. Test Setup

A photograph of the test fixture is included as Figure 3 of this report.

III. SUMMARY OF RESULTS

The test results were consistent for all four specimens. The corners of the hex ball bind slightly in the hex ball housing during the initial load application, but will "wear-in" after a few loading cycles. This binding does not affect the function of the universal joint. The hex ball begins to yield at approximately 50 ft-lb, with permanent deformation occurring both at the reduced diameter "neck" behind the hex ball, and at the edge of the keyway along the shank of the hex ball. Ultimate failure in shear occurs at the neck, at a torque in excess of 90 ft-lb.

IV. DISCUSSION OF TEST

Testing was performed per the run numbers listed in the test procedure, Appendix A of this report. The various test runs are discussed in the following paragraphs in the sequence in which the events occurred. During the course of testing, several changes to the test setup, load application techniques, and data recording requirements were implemented in order to facilitate the successful completion of the tests. These changes are described in the discussion also.

Figure 3 is a photograph of the setup, and a diagram of the overall test setup is shown in Figure 4. The bellcrank/turnbuckle system did not allow sufficient adjustment to always maintain the claw uniformly seated on the handle of the torque wrench. At various times during the testing, small slippages occurred at this interface. Several of the plots of torque-versus-twist show one or more obvious erroneous data points, which are attributed to such movements in the fixture. The test setup also included a metal protractor and pointer as an alternate measurement of twist angle. However, the pointer attachment to the socket wrench extension allowed additional deflection which was not measured by the digital inclinometer. Also, the readability of the pointer/protractor was too coarse to correlate with the inclinometer. Therefore, the twist angle results are taken only from the inclinometer measurements.

Run No. 1 commenced on July 9, 1985. Specimen No. 1 was installed in the test fixture (Fig. 5) and initial readings were taken with the torque wrench attached, and hanging under its own weight while attached to the adapter. The torque reading in this condition was 1.5 ft-lb. This arrangement is referred to as the "slack" condition, and is the typical configuration for beginning and ending data points for all test runs. The unit was torqued clockwise and data was recorded at 5 ft-lb increments up to 35 ft-lb. The digital readout for the torque wrench was switched to the "track" mode, and the applied torque was relaxed to the initial position, with data recorded at 5 ft-lb increments. A copy of the recorded data (Table 1 of the test

procedure) is included as Appendix B of this report. Plotted data is included as Appendix C. Specimen No. 1 was removed from the test fixture and visual and dimensional inspections were performed. Pre- and post-test data were recorded on a copy of Figure 1 of the test procedure. This data is included in Appendix D of this report. Figures 6 and 7 are photographs of specimen No. 1, taken after run No. 1. Wear marks on the hex ball and burnishing within the hex ball housing can be seen.

For run No. 2 and subsequent runs, the torque wrench was recalibrated to read in inch-pounds for more precise readings. Run No. 2 was conducted in the same manner as the first run, except the maximum applied torque was 480 in-lb (40 ft-lb), which corresponded to the value which had been proposed by Perkin-Elmer as a latch breakaway torque. Reference Proposed Interface Revision Notice (PIRN) No. 1377 to the Space Telescope Interface Control Document ST-ICD-01. Recorded torque and angle measurements are given in Appendix B, and plotted data is included as Appendix C. Note that a single bad data point was taken at the 360 in-lb reading. As mentioned before, this is attributed to slippage of the turnbuckle on the torque wrench, and should be disregarded.

Run Nos. 3 through 7 were a durability test of the hex ball universal joint specimen No. 2, and consisted of 50 clockwise/counterclockwise cycles to a torque of 420 in-lb (35 ft-lb) in each direction. Visual and dimensional inspections were made after each 10 cycles. Copies of the recorded data are included in Appendices D and The first two cycles were completed per the description in the test procedure; that is, clockwise loading using the turnbuckle, and counterclockwise loading applied manually. This technique was very inaccurate and difficult to do, so beginning at cycle No. 3, the fixture setup on the bench was reversed to make use of the turnbuckle during the counterclockwise half of each cycle. The testing was continued in this manner through cycle No. 40. The torque/angle measurements were acceptable, but the setup activity was very time-consuming. At cycle 40, the test setup was modified to add a longer turnbuckle which would bear on an adapting piece attached to the spacer block. By lengthening the new turnbuckle, counterclockwise torque could be applied to the wrench without having to disassemble the test fixture every one-half cycle. This "upward push" technique was used for the remaining counterclockwise torque applications. This method introduced a slight moment to the test specimen which caused the wrench adapter to lift off the bracket. For the next durability test, which was run on specimen No. 4, a small plate was added which acted as a "collar" to hold the adapter in line in the bracket. This plate worked very effectively.

During the disassembly following cycle Nos. 1 and 2 (specimen No. 1), it had been observed that the corners of the hex ball had deformed very slightly resulting in the ball binding in the hex ball housing. A side force of 17 lb applied at a moment arm of approximately 0.75 in. (or approximately 12.8 in-lb was required to cause the hex ball to "swivel" in the housing. After initially overcoming the binding condition, the ball could be made to move in the housing with less than 10 lb of side force applied. Such motion is believed to help to "wear in" the corners of the hex ball and does not affect the function of the universal joint. This conclusion is supported by the findings during the disassembly of the durability test unit, Specimen No. 2. Removal of the hex ball from the housing was easier than for specimen No. 1, which had been subjected to only a couple of torque applications.

Also, the wear on the corners of the hex ball specimen No. 2 is indicated by the amount of "dead band" or looseness which can be shown by the change in the initial angle reading for clockwise to counterclockwise torque applications. A small

portion of this "dead band" is due to the clearances at the keyways when the adapter attaches to the hex ball, and the hex ball housing attaches to the fixture base. However, changes in the magnitude of this angle are consistent wih the visual appearance of the wear marks on the corners of the hex ball. It was found that for approximately the first 20 cycles, the looseness would increase. After that, the looseness stabilized and remained nearly constant for the balance of the 50 cycles. This can be seen on a composite plot of three durability cycles, which is included in Appendix E. Clockwise-to-counterclockwise readings within the same cycle can be compared; however, end-to-end comparisons cannot be made because the inclinometer mounting plate did not remain cemented to the adapter throughout the test sequence. This installation had to be made several times, and a note was written on the affected data sheets. However, if the inclinometer to adapter cemented joint was not disturbed, a consistent repeatability of the test setup of less than one degree was obtained.

Run Nos. 8 and 9 were performed on specimen No. 3. Results were consistent with run Nos. 1 and 2. There was no detectable difference between specimens 1 and 3.

Run Nos. 10 through 14 were durability tests performed on specimen No. 4. For this test, Braycote No. 602 lubricant was applied to the hex ball. This lubricant contains particles of molybdenum disulfide (MoS₂) suspended in a perfluorinated polyether-based grease. At the very large contact pressure which is on the corners of the hex ball during torque application, the liquid lubrication of the grease is considered negligible. This lubricant was used to determine if the MoS₂ particles would inhibit the wear which had been observed on specimen No. 2 during run Nos. 3 through 7. On the flight hardware, a dry film MoS₂ coating, Microseal 200, is applied. Post-test inspection of specimen No. 4 indicated smoother wear marks than on specimen No. 2. Also, the looseness indicated by the clockwise-to-counterclockwise "dead band" was slightly less. See the plotted data in Appendix E. These results confirm the conclusion from the first durability test, that wear on the corners of the hex ball does not affect the function of the universal joint.

In run Nos. 15 through 18, each hex ball was torqued in the clockwise direction until an indication of yielding occurred. This point cannot be determined exactly, but can be estimated by the distinct change in slope of the torque-versus-angular deflection plots. Yielding began at approximately 50 ft-lb for each test specimen. See the plotted data in Appendix C. Visual examination of the hex balls after these tests indicated that yielding had occurred in two places, at the "neck" behind the hex ball, and along the edge of the keyway. This result is slightly less than the calculated yield point for the neck area of the hex ball as shown below.

Material: Ph 13-8 Mo, Condition H1000

From MIL-HDBK-5C,

$$f_{sy} \approx 0.55 x f_{ty} = 105.6 KSI = \tau$$

$$T = \frac{\pi J}{c}$$
 $J = \frac{\pi (D^4 - d^4)}{32}$

$$c = 0.320/2 = 0.16$$
 $D = 0.320$ $d = 0.112$

$$T = \frac{(104.5 \times 10^6) \left[\pi (0.320^4 - 0.112^4)/32\right]}{(0.16)} = 662 \text{ in.-lb} - 55.2 \text{ ft-lb}$$

(52.6 ft-lb at minimum B/P diameter).

The initial yielding may have occurred at the keyway, which is of less concern than the neck area behind the ball. Although there was some deformation (and there was difficulty in removal of the hex ball from the adapter), the keyway was able to sustain much higher loading after yielding had occurred.

The remaining runs were to load each hex ball specimen to ultimate failure. However, during run No. 19, yielding of the hex ball-to-wrench adapter occurred at approximately 65 ft-lb; thus, the specimen No. 1 was not taken to ultimate failure on this test run. This unit was later tested to destruction in run No. 23. In order to continue the tests, a one-half inch socket wrench adapter and a three-eighths inch allen wrench bit were used with a second hex ball housing as a replacement for the wrench adapter.

Accurate torque-versus-angular deflection data was not obtained at the ultimate failure point for any of the four specimens. The test fixture was set up to position the torque wrench at a different initial angle. The larger turnbuckle was used for part of the runs, and a switch to the shorter turnbuckle was made when the torque wrench had moved to within the fully extended adjustment of the shorter turnbuckle. At higher loading levels (above 80 ft-lb), the hex ball universal joints exhibited time-dependent load-versus-deflection characteristics. The hex ball would not sustain a specific input torque value, and continued to twist with severe plastic deformation in the neck area. The specimens were able to carry a higher load, however, if the application was a continuously increasing input torque. The load application equipment (turnbuckle, claw, etc.) was not sufficiently stiff to input a specific deflection and hold that position to allow the torque level to stabilize at a lower value (which might have shown as a negatively sloped plot of torque versus angle). Consequently, the angle readings at torque values above 80 ft-lb are questionable. When the range of travel of the inclinometer was exceeded, the cement joint at the attachment to the replacement adapter would become loose. Also, the hex ball did not fail before the full adjustment range of the turnbuckle was taken up. In each case, the ultimate failure load had to be applied manually, and ranged from 91 to 96 ft-lb. Failure occurred at the neck, immediately adjacent to the hex ball. Figures 8 and 9 are photographs of one of the hex balls following the test failure.

V. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of these tests, it is concluded that the proposed maximum torque value of 40 ft-lb per PIRN 1377 can be approved. It is recommended that the torque applied to any of the actuation rods not exceed 45 ft-lb in order to avoid a yield-type failure of the universal joint. It should be noted, however, that the load-carrying capability of the universal joint exceeds 45 ft-lb by a comfortable margin. In a contingency situation, higher torque values may be considered, although some yielding is likely to be sustained.

Figure 1. Hex ball and hex ball housing.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. Hex ball universal joint.

Figure 3. Photograph of test setup.

Figure 4. Test setup.

Figure 5. Universal joint installed in fixture.

Figure 6. Hex ball after run No. 1.

Figure 7. Hex ball housing after run No. 1.

Figure 8. Hex ball after failure.

Figure 9. Fracture interface.

APPENDIX A

TEST PROCEDURE

HEX BALL TORQUE TEST

Purpose

A series of torque tests will be performed on representative test specimens to characterize the torque-transmission and wear tolerance of the hex ball universal joint used in various places in manual actuation devices within the Space Telescope OTA. These tests will be carried to destruction to establish the actual maximum torque capability of this universal joint.

Test Hardware

Four (4) specimens, fabricated per Perkin-Elmer drawings, will be tested. The specimens shall be identified as No 1 through 4. MSFC quality assurance verification of materials, heat treat condition, and dimensions is required.

Test Setup

The test setup is shown on drawing SK679-3628. Prior to final assembly of the test fixture, the components shall be fit checked and modified, if required, to meet the intended function. Note: The base includes provisions for match drilling and doweling the hex ball housing in place. The MS16555-629 dowel pin should not be installed unless necessary for stability and repeatability.

Visual and Dimensional Inspection

The hex ball and the hex ball housing shall be visually inspected under 10X magnification, and dimensions shall be measured and recorded on a copy of Figure 1 prior to the start of testing. Any excessive looseness or tightness of the fit of the ball in the housing shall be noted. The ball should be free to pivot within the housing, or should move with slight thumb pressure applied. Any looseness or "play" about the axis of rotation should be noted, along with any difficulty in insertion or removal of the hex ball.

Test Setup Adjustments and Repeatability

Following the preliminary fit check, the fixture shall be set up on a bench and firmly clamped in place. The mounting plate shall be oriented in a vertical plane (as indicated by a carpenter's level). Use shims at interface, if required. Any rotational play in the bracket-to-plate interface shall be taken out in the clockwise direction prior to tightening attachment hardware. Similarly, all play in the test article, adapter, socket, turnbuckle, torque wrench, etc. shall be taken out in the clockwise direction. In this position, the inclinometer and pointer for the protractor shall be zeroed.

After zeroing the angle measurement equipment, the test article shall be removed from the setup, taking care not to disturb the inclinometer-to-adapter or collar-to-socket attachments. The setup shall then be repeated and the inclinometer reading shall be recorded. Repeatability within ±1° is a goal; the actual fixture and test article repeatability is needed to evaluate the test results.

Test

Run No. 1

Verify the fixture is set up and instrumentation is adjusted prior to initial application of torque. The test article shall be test specimen No. 1.

Slowly and uniformly apply torque in clockwise direction, using turnbuckle. Closely observe all components of test setup for abnormal movement or instability. Continuous hands-on support and control may be required, particularly at higher torque values. Pause at 5 ft-lb increments during torque application and record torque value and angle of twist on a test data sheet, Table 1. Continue clockwise torque application up to 35 ft-lb, recording data at each step. Slowly and uniformly relax applied torque, recording data at 5 ft-lb increments. Without disturbing angle measurement equipment, remove the test article from the fixture and perform visual and dimensional inspection. Record results on a copy of Figure 1.

Run No. 2

Repeat above sequence, except maximum torque shall be 40 ft-lb.

Run No. 3

Set up test fixture with specimen No. 2 installed. Zero instrumentation with all "play" taken out in the clockwise direction. Apply torque and record data per run No. 1, above, except upon returning to zero applied torque, do not disturb setup or remove the test article. Record data on a copy of Table 2. Reverse the torque wrench and change the readout instrumentation as required for counterclockwise torque application. Taken out all "play" in the CCW direction and record, but do not re-zero the inclinometer or pointer. Apply torque (manually, fixture is not configured for turnbuckle use in CCW direction) and record data per Table 2. Note: Bracket-to-plate interface has been adjusted for CW torque application; watch carefully for any slippage at this location. Fixture modification may be required. Repeat CW and CCW torque application to 35 ft-lb for a total of 10 cycles. Do not re-zero inclinometer. "Initial" angle for each cycle will be compared to previous readings for an indication of wear. After 10 cycles, remove the test article and perform the visual and dimensional inspection. Record data per Figure 1.

Runs 4 through 7

Repeat run 3 for a total of 50 cycles on test specimen No. 2. Note: Some of the intermediate data points may be omitted if linearity and hysteresis/repeatability characteristics warrant such.

Runs 8 and 9

Repeat runs 1 and 2, using specimen No. 3.

Runs 10 through 14

Repeat runs 3 through 7, using specimen No. 4. Exception: Apply a small amount of Braycote No. 602 to the hex ball bearing surfaces prior to each sequence of 10 cycles. Note any change in wear indications during visual and dimensional inspections.

Run No. 15

Repeat sequence of steps 1 and 2, except continue beyond 40 ft-lb, in 5 ft-lb increments, until a definite indication of yielding occurs. (Recorded data shall be plotted in real time, and a distinct change of slope shall be regarded as an indication of yielding. The inclinometer will also not return to zero by an amount greater than the established hysteresis and repeatability values.) If possible, try to pinpoint the location of yielding in the test article during the visual and dimensional inspection. Possible locations include: the reduced diameter behind the hex ball; the keyways; on the corners of the flats on the hex ball or hex ball housing.

Run No. 16

Repeat run No. 15 using specimen No. 2. Note any change in yield points in comparison with specimen No. 1.

Run No. 17

Repeat run No. 15 using specimen No. 3. Note any change in yield points in comparison with specimen No. 1 and No. 2.

Run No. 18

Repeat run 15 using specimen No. 4. Again, compare yield with previous specimens.

Run No. 19

Repeat above sequence, except continue torque application until failure occurs. This may be an actual fracture of the test article, or a negative slope on the torque versus angle plot. Note: Inclinometer will not read angles beyond 20°, and manual torque application is necessary when adjustable range of turnbuckle is exceeded.

Run No. 20

Repeat run No. 19 using specimen No. 2. Note any change in failure points for specimen No. 2 in comparison with specimen No. 1.

Run No. 21

Repeat run No. 19 using specimen No. 3. Note any change in failure points for specimen No. 3 in comparison with specimen No. 1 and No. 2.

Run No. 22

Repeat run No. 19 using specimen No. 4. Again, compare failure points.

Runs 23 and 24

Assuming the failures occur on the 679-3628 hex balls, and that the 679-3629 hex ball housing is still serviceable, one specimen of the hex ball housing shall be tested to establish the yield and ultimate capability. Using a 3/8 in. allen wrench bit, apply torque per runs 3 and 4. Note: Failure may occur at the keyway of the fixture base. If this occurs, note results and discontinue test.

FIGURE 1

Date	9		
Hex	Ba 1 1	Specimen No.	
Hex	Ba11	Housing Specimen	No.
	Run	No.	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE	REMARKS (Visual Condition)
A B			
Č			
D (1 to 4) E (2 to 5)			
F (3 to 6) G (1,2 to 5,4)			
H (2,3 to 6,5) I (3,4 to 1,6)			
J			
K L (1 to 4)			
M (2 to 5) N (3 to 6)			
0			

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

irection of Toro	que Application	
ORQUE ()	ANGLE (Degrees)	REMARKS (Record maximum torque applied, a
		significant observations)
· · · · · · · · · · · · · · · · · · ·		
		
<u></u>		
		
		
		
		
		
 		

		0.5	Angle																												
		CYCLE N	Applied Angle	Torque																											
		0.4	Angle							}																					
		CYCLE N	Applied Ang	lorque																											
		0.3	Angle																												
		CYCLE N	Applied Angle	lorque																											
		0.2	Angle																												
		CYCLE N	Applied Angle	Torque																											
	n No.	NO. 1	Angle																			:									
Specimen No.	Housing Specimen No No.		Applied	Torque										; 																	
	Ball Run		Set Point &	Direction (A)	, , , , ,		5 C	25 CW	30 CM	35 05	30 08	25 CE	Z C C	75 CM	 - LC	(A)	(100)	מט פר	מיט ער	# TO CC	25 CCW	30 CZ	35 CE	30 08	25 25	20 02	ויין זין דר	ביים היים כר	ביים סיים ביים	(NO)	

_
์ ס
യ
Ž
⊆
ب
Ξ
ည
ပ
ပ
) 2
_ ~
_ E 2 (
_ E 2 (
_ E 2 (
_ ~

	. 10 Angle	•																									!			
	CYCLE NO. 10 Applied Angl	Torque																												
	7. 9 Angle	•								}													1							
	CYCLE NO. 9 Applied Angle	Torque																												
	0.8 Angle	•																												
	CYCLE NO. 8 Applied Angle	Torque	.		_ _	_	-			_ -				-	-			-	_ -	-			-		-	- -	-	 - -	-	
	7. 7. Angle	•																												
	CYCLE NO. 7 Applied Ang	Torque																												
No.	6 Angle																													
Specimen No. Housing Specimen No. No.	CYCLE NO. Applied	Torque																												
Date Hex Ball Speci Hex Ball Housi Run No.	Set Point &	_) (M) (M)	10 CM	15 CM	70 CM	25.05	30 CF	מיט מיט	. C.	00 CM	N C C C C	אט ער ביט ער	S C	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב		יא האטע איז טער	X ()	איני מיני מיני	M 100 C C C	MOD 96	20 CM	35 05	20 CE	25 25	100 CC	מטט ער	ביי יייייייייייייייייייייייייייייייייי	(1) (1) (1)	/ w > > > > >

APPENDIX B

TORQUE, TWIST DATA FROM RAW DATA SHEETS

PRECEDING PAGE BLANK NOT FILMED

TABLE 1

Hex Ball Specimer Hex Ball Housing Run No		
TORQUE (ft-1b)	ANGLE (Degrees)	REMARKS
001	+0.039	(Record maximum torque applied, any significant observations)
005	-0.526	Significant observations;
010		
015	-2.019	
020	-2.666	
025	-3.307	
030	-3.972	
035	-4.644	
034	-4.644	Switched to "track"
030	-4.417	
025	-4.113	
020	-3.754	
015	-3.170	
010	-2.352	
005		
001	-0.525	Turnbuckle slack
		Inclinometer installation reversed, resulting in negative angle readings.
		Inclinometer cement broke after final reading.
		
	· · · · · · · · · · · · · · · · · · ·	

TABLE 1

Run No Direction of Tor	2 que Application <u>C</u>	W
TORQUE (in-lb)	ANGLE (Degrees)	REMARKS
	-0.27	(Record maximum torque applied, any significant observations)
60	+0.457	Inclinometer has been set up in reve
120	+1.237	of Run No. 1, thus the change in si
180	+1.932	
240	+2.610	
300	+3.248	
360	+3.380	
420	+4.535	
483	+5.319	
470	+5.324	Switched to "track"
420	+5.092	
360	+4.768	
300	+4.374	
240	+3.871	
180	+3.153	
120	+2.284	
60	+1.306	
22	+0.501	
		Turnbuckle slack
		
,		
······································		

TABLE 1

Hex Ball Spec	80-85 imen No. 1 ing Specimen No. 1	
Run No.	2A	
Direction of	Torque Application	CW
TORQUE (in-lb)) ANGLE (Degrees	
Slack 21	+2.987	(Record maximum torque applied, any
60	+3.584	significant observations)
120	+4.372	_
180	+5.066	SLOP
240	+5.749	Initial - CW (+2.336)
300	+6.401	CCW (-0.624)
360	+7.041	Final - CW (+2.725)
420	+7.705	CCW (-0.075
480	+8.477	
420	+8.201	
360	+7.884	
300	+7.505	
240	+6.964	
180	+6.290	
120	+5.420	
60	+4.421	
Slack 22	+3.525	
		Error was made in this measurement.
		I should have used the torque in place for more accuracy. All Slop.
		m place for more accuracy. Im plop.

Initial Angle Reading (Repeatability Setup) +1.611 o 000 Torque Final Angle Reading (Repeatability Setup) +0.036 o 000 Torque

			Angle	+0 667	+1.064	+1.726	+3.225	+3.942	+5.309	+4.736	+4.352	+3.017	+2.051	-2.714	-5.330	-6,030	-7.710	-8.823	-8.675 -8.497	-8.04	-6.512 -5.497	4.740
		TRACK	Applied	Torque	09	120	240	360	420	300	240	120	9,6	19	120	180	300	420	300	240	120	20
		Z.K.	Angle	696 0+	+0.692	+1.640	+3.202	+3.898	+5.330	+4.757	+4.368	+2.990	+2.001	-2.870	-5.184	-6.352 -6.690	-7.434	-8.850	-8.600 -8.065	-7.818	-6.318 -5.553	-4.695
		TRACK	Applied	Torque	09	120	240	360	420	300	240	120	25	19	120	180	300	420	300	240	120	20
		× =		540 0-	+0.509	+1.687	+3.236	+3.925	+5.313	+4.703	+4.304	+2.940	+1.964	$\frac{-2.703}{-3.990}$	-5.058	-5.896 -6.680	- 6430	-8.950	-8.600 -8.280	-7.880	-6.310 -5.375	-4.537
		TRACK	Applied	Torque	09	120	240	360	420	300	240 180	120	27	19	120	180	300	420	300	240	120 60	20
		RACK	Angle	000	+0.546	+1.525	+3.050	+4.533	+5.305	+4.751	+4.362 $+3.830$	+3.074	+1.278	-2.704 -3.836	-4.862	-5.615 -6 385	-7.260 -7.950	-8.750	-8.490 -8.122	-7.755	-6.269 -5.280	-4.392
1	11	TRACK	Applied	Torque	09	120	240	360	420 360	300	240 180	120	21	18	120	180	300	420	300	240	120	19
	2 n No. 7		Angle	920.0-	+0.335	+1.136	+2.575	+4.023	+4.745	+4.250	+3.876	+2.698	+0.955	+0.795	-4.585	-5.385	-7.095 -7.820	-8.730	-8.435	-7.665 -6.860	-6.345 -5.400	-4.558
12	Specimen No. 2 Housing Specimen No.	S CVCI F N		Torque	61	121	140	360	421/409 360	300	240	120	23	16/22	-120	-180	-300	-420	-360	-240	-120 -60	-23
Date 7-11,12	Hex Ball Specime Hex Ball Housing	Kun No.	et Point &	Direction O (CE)	S CW	10 CW 15 CW	20 CW	30 CW	35 CW 30 CW	25 CW	15 CW	10 CW	(CK) 0	0 (CCM) 5 CCM	NO CCW	15 CCW 20 CCW	25 CCW 30 CCW	35 CCW	30 CCM 25 CCM	20 CCW 15 CCW	10 CCW 5 CCW	(MDD) 0
á	ΞĪ		Ñ	•	09	120	240	360	420 360	300	240 180	120	0	0	120	180 240	300	420	300	240 180	120 60	0

TABLE 2 (Continued)

	Angle -0.363 +0.678 +1.702 +2.422 +3.103 +3.103 +4.409 +3.871 +4.409 +3.556 -4.062 -7.186 -7.844 -8.556 -6.921 -7.486 -6.921 -7.486 -6.921 -7.486 -6.921 -7.486 -6.921 -7.486
	CYCLE 1 Applied 7 26 60 120 180 240 360 360 360 360 360 360 360 360 360 36
	Angle +0.249 +1.664 +2.801 +4.153 +4.
	CYCLE Applied Torque 25 60 120 360 360 240 120 120 120 120 360 360 360 360 360 360 360 360 360 36
	Angle +1.806 +2.253 +3.004 +4.430 +5.736 +5.425 +4.940 +5.736 +6.153 +5.425 +4.940 +4.237 +4.940 +4.237 +2.538 +6.153 -4.128 -6.200 -6.609 -6.200 -6.209 -6.209 -6.209 -6.209 -6.209 -2.674 -2.674 -2.674
	CYCLE Applied Torque 26 60 120 120 300 360 360 240 120 120 120 120 120 120 120 120 120 12
	Angle -0.980 +0.239 +1.513 +2.317 +3.042 +3.042 +4.469 +4.469 +4.270 +4.270 +4.270 +4.270 +4.270 +4.270 +4.270 +4.358 -5.508 -6.280 -7.004 -7.504 -7.504 -7.504 -7.504 -7.504 -7.471 -7.471 -7.471 -4.884
	CYCLE Applied Torque 23 60 120 180 180 180 180 180 180 180 180 180 18
2 en No. 2	Angle +0.193 +0.193 +0.618 +1.651 +2.447 +3.195 +4.617 +4.617 +4.617 +4.617 +5.041 +4.731 +3.027 +4.731 +3.027 +2.058 +1.290 -2.568 -2.
7-16-17 Specimen No. 2 Housing Specimen No. 3	CYCLE 7 Applied 7 Torque 26 60 120 300 360 420 180 180 180 180 180 180 180 180 180 18
Date 7-16-17 Hex Ball Specimer Hex Ball Housing Run No. 3	Set Point & Direction 0 (CW) 5 CW 15 CW 15 CW 30 CW 30 CW 30 CW 15 CW 10 CW 5 CW 5 CW 5 CW 5 CW 5 CCW 5 CCW 5 CCW 30 CCW 25 CCW 25 CCW 25 CCW 25 CCW 10 CCW 10 CCW 5 CCW 5 CCW 5 CCW 5 CCW 6 CCW

		Angle
		CYCLE Applied Torque 021 60 120 120 120 120 120 120 120 120 120 12
		Angle 40.168 +0.168 +0.168 +0.168 +1.582 +2.913 +4.891 +4.891 +4.891 +4.627 +4.680 -5.190 -6.015 -6.696 -7.363 -8.671 -8.671 -8.671 -7.700 -5.974 -5.974 -5.136
		CYCLE NApplied Torque 023 60 120 120 120 120 120 120 120 120 120 12
		Angle +1.438 +1.438 +1.952 +2.757 +3.462 +4.117 +4.117 +4.117 +5.972 +5.972 +5.972 +5.972 +7.980 -7.980
-		CYCLE NApplied Torque 024 60 120 120 120 120 120 120 120 120 120 12
		Angle Angle + 4.285 + 4.285 + 4.237 + 4.237 + 4.237 + 4.237 + 4.237 + 4.237 + 4.237 + 4.237 + 4.237 + 4.237 + 4.231 + 6.036 + 5.301 + 6.031 +
į		CYCLE N Applied Torque 024 60 120 120 300 300 300 240 120 60 60 60 60 60 60 60 60 60 60 60 60 60
	2 sn No2	+0.445 +1.211 +2.068 +2.804 +2.155 +4
- 7/23	Specimen No. 2 Housing Specimen No. 4	CYCLE Papplied Torque 024 60 120 120 360 360 240 240 120 240 120 60 60 60 60 60 60 60 60 60 60 60 60 60
Date	Hex Ball Specime Hex Ball Housing Run No.	Set Point & Direction 0 (CV) 5 CW 15 CW 15 CW 25 CW 25 CW 25 CW 15 CW 10 CW 10 CW 10 CCW 10 CCW 25 CCW 30 CCW 30 CCW 30 CCW 25 CCW 30 CCW 25 CCW 25 CCW 25 CCW 10 CCW 25 CCW 25 CCW 25 CCW 25 CCW 25 CCW 26 C

Angle + 4. 096 + 4. 761 4. 096 4. 761 4. 096 4. 761 7. 761 7. 7
CYCLE 1 Applied Torque 25 60 120 120 240 360 360 360 360 360 120 60 120 120 120 120 120 360 360 360 360 360 360 360 360 360 36
Angle Angle + 3.838 + 4.136 + 5.522 + 6.201 + 7.417 + 8.050 + 7.451 + 7.451 + 7.451 + 7.451 + 7.103 + 6.571 + 7.451 + 7.103 +
CYCLE N Applied Torque 24 60 120 120 360 360 360 360 360 360 240 240 240 240 360 360 360 360 360 360 360 360 360 36
Angle +3.616 +4.1888 +4.1888 +4.915 +6.915 +6.915 +6.042 +7.569 +6.753 +6.042 +7.569 +6.753 +6.753 +6.753 +6.753 +6.753 +6.753 +6.753 +6.753 +6.753 +6.753 +7.960 +
CYCLE N Applied Torque 22 60 120 180 240 360 360 360 120 60 120 180 240 360 360 360 360 360 360 360 360 360 36
Angle +0.655 +1.035 +1.824 +2.521 +3.175 +4.451 +4.520 +4.409 +2.383 +1.110 -4.409 -5.054 -7.682 -8.308 -8.308 -8.308 -8.308 -7.682 -8.308 -8.308 -7.682 -8.308 -8.308 -7.682 -8.308 -7.682 -8.308 -8.308 -8.308 -8.308 -7.682 -8.308 -7.308 -8.308 -7.308 -8.308 -7.308 -8.308 -7.308 -8.308 -7.
CYCLE N Applied Torque 23 60 120 120 120 300 360 420 360 420 360 120 60 120 360 360 120 360 120 360 360 360 360 360 360 360 360 360 36
Angle Angle +1.182 +1.182 +1.575 +2.334 +2.234 +4.222 +4.222 +4.222 +4.222 +4.800 +5.414 +5.414 +5.1153 +2.305 +1.505 +1.505 -7.185 -7.
CYCLE N Applied Torque 025 60 120 180 240 360 360 25 25 25 240 180 240 120 60 25 25 25 20 60 240 360 360 360 360 360 360 360 360 360 36
Set Point & Direction 0 (CW) 5 CW 10 CW 15 CW 20 CW 25 CW 25 CW 20 CW 25 CW 20 CW 15 CW 10 CW 10 CCW 15 CCW 30 CCW 30 CCW 30 CCW 25 CCW 26 CCW

Date 7/24
Hex Ball Specimen No. 2
Hex Ball Housing Specimen No. 8
Run No. 4

		NO. 5 Angle	+3.768 +4.116 +4.822	+5.479 +6.121 +6.759	+7.361 +7.968 +7.719	+7.403 +7.041 +6.581	+5.898 +5.003 +4.153	-2.231 -2.820	-4.220 -4.874	-5.426 -5.966 -6.511	-6.278 -5.998 -5.640	-4.569 -4.569 -3.666 -2.811
		CYCLE N Applied Torque	026 60 120	180 240 300	360 420 360	300 240 180	120 60 26	25	180	360	300	120 60 24
		NO. 4 Angle	3.385 +3.784 +4.529	+5.205 +5.856 +6.498	+7.196 +7.863 +7.607	+7.283 +6.898 +6.416	+5.706 +4.732 +3.904	-2.226 -3.310 -3.710	-4.226	-5.477 -6.022 -6.581	-6.321 -6.054 -5.712	-4.620 -3.721 -2.816
		CYCLE N Applied Torque	025 60 120	180 240 300	360 420 360	300 240 180	120 60 26	24 60	180	360 420	360	120 60 25
		NO. 3 Angle	+4.465 +4.998 +5.737	+6.409 +7.306 +7.681	+8.276 +8.899 +8.613	+8.325 +7.933 +7.409	+6.713 +5.722 +4.926	-1.232 -1.777 -2.589	-3.314 -4.002	-4.645 -5.334 -5.945	-5.684 -5.354 -4.923	-3.662 -2.716 -1.786
		CYCLE N Applied Torque	26 60 120	180 240 300	360 420 360	300 240 180	120 60 25	24 60 120	240	360 420	360 300 240	120 60 23
		NO. 2 Angle	+5.258 $+5.610$ $+6.334$	+7.020 +7.667 +8.295	+8.934 +9.558 +9.306	+8.986 +8.601 +8.099	+7.359 +6.393 +5.528	-1.858 -2.276 -3.036	-3.751	-5.120 -5.786 -6.473	-6.189 -5.844 -5.403	-4.088 -3.046 -2.147
		1	24 60 120	180 240 300	360 420 360	300 240 180	120 60 26	21 60 120	240	360 420	300	120 60 22
	2 n No	NO. 1 Angle	+5.786 $+6.317$ $+7.028$	+7.707 $+8.287$ $+8.933$	+9.585 +10.207 +9.933	+9.601 $+9.189$ $+8.577$	+7.894 +6.893 +6.076	-1.305 -1.974 -2.789	-3.670	-5.609 -6.305	$ \begin{array}{r} -6.031 \\ -5.689 \\ -5.279 \\ -4.675 \end{array} $	-3. 917 -2. 878 -2. 041
7/25-26	imen No. ing Specimen 5	YCLE Tied que	23 60 120	180 240 300	360 420 360	300 240 180	120 60 24	23 60 120	240	360	360 300 240	120 60 24
÷ .	Hex Ball Specimen Hex Ball Housing Run No.	<u> </u>	0 (CW) 5 CW 10 CW	15 CW 20 CW 25 CW	30 CM 30 CM 30 CM	25 CW 20 CW 15 CW	10 CW 5 CW 0 (CW)	0 (CCW) 5 CCW 10 CCW	15 CCW 20 CCW	MOD 95	30 CCW 25 CCW 20 CCW 15 CCW	10 CCW 5 CCW 0 (CCW)

	Angle + 3. 161 + 4. 316 + 4. 3
	CYCLE N Applied Torque 19 60 120 120 120 120 120 120 120 120 120 12
	4 200円には2000円400円400円1 1 100円
	Angle Applied Angle Angle Porque Torque Torq
	Angle Angle +3.585 +3.980 +4.591 +5.993 +6.667 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.414 +7.416 -6.0
	CYCLE N Applied Torque 19 60 120 120 120 120 120 120 120 120 120 12
	
	Angle Applied Angle for the following of the following states of the following
2 n No. 2	Angle Angle +3.819 +4.317 +5.054 +6.366 +6.981 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 +7.924 -7.928 -3.781 -7.928 -3.781 -4.412 -7.5323
7/29 imen No. ing Specimen 5	CYCLE N Applied Torque 25 60 1280 360 360 360 360 360 360 360 360 360 36
Date Hex Ball Specimen Hex Ball Housing Run No.	Set Point & Direction 0 (CW) 0 (CW) 10 CW 10 CW 25 CW 30 CW 30 CW 30 CW 15 CW 15 CW 15 CW 15 CCW 15 CCW 25 CCW 25 CCW 30 CCW 30 CCW 25 CCW 25 CCW 15 CCW 15 CCW 15 CCW 15 CCW 15 CCW 16

			0. 5	אוא וא	+3.003	+4.628	+5.968	+6.771 +7.575	+8.240	+7.634	+7.261 +6.258	$\frac{6.160}{15.207}$	+4.440	-3.024	-4.662	-5.398	$\frac{-7.080}{-7.737}$	$\frac{-7.447}{-7.115}$	-6.728	$\frac{-6.230}{-5.655}$	$-\frac{4.945}{-3.917}$
			CYCLE N	Torque	18	120	240	360	420	300	240	120	19	190	180	300	360	360	240	180 120	60 -4.94 3.901 18 -3.91
			NO. 4		+3.004			+7.593	+8.230				+4.095				-7.084	-7.475			-3.901
			CYCLE N Andlied	Torque	18			360	420				19				360 420	360			18
			NO. 3 Angle		+3.008			+7.592	+8,286 +8,008				+4.222 -2.860				$-\frac{7.106}{-7.831}$	-7.533			-3.790
			CYCLE N Applied	Torque	7 T			360	420		-		19				360	360			18
			NO. 2 Angle		47.995			+7.543	+8.226				+4.269 -2.369				$\frac{-7.116}{-7.828}$	-7.536			-3.657
	2	<u> </u>	ــاا	Torque	18			360	420				19				360	360			18
	2 n No.		NO. 1 Angle	, 6	+3.841	+4.581	+6.023	+7.545	+8.221 +7.965	+7.623	6.740	+6.033	+4.237 -2.418	-3.034	-4.741 -5.505	<u>-6.363</u>	$-\frac{7.114}{-7.860}$	$\frac{-6.588}{-7.237}$	-6.839	-6.279 -5.553	$-\frac{4.622}{3.558}$
7/30	Specimen No. 2 Housing Specimen No.	- 1	CYCLE N Applied	Torque	09	120	240	360	420	300	180	120	20	60	180	300	360 420	300	240	120	18
Date	Hex Ball Specime Hex Ball Housing	5	Set Point &	Direction 0 (CW)	5 CW	10 CW	20 CW	30 CM	32 CM 30 CM	25 CW	15 CW	10 CW 5 CW	0 (CM) 0 (CCM)	5 CCW 10 CCW	15 CCW	25 CCW	30 CCW	30 CCW 25 CCW	20 CCW	W 20 0 1	0 (CCM)

Angle +3.015 +4.243 +4.243 +4.243 +4.243 +4.243 +7.603 +7.603 +7.603 +7.603 +7.603 +7.603 +7.603 +7.603 +7.603 +7.603 -2.956 -2.956 -6.959 -7.324 -6.959 -6.959 -4.638 -6.134 -6.959 -7.887 -4.607
Angle Applied Angle 10
Angle +3.989 +7.550 +8.230 +7.928 -7.613 -7.332 -7.332 -7.006
CYCLE NO. 9 Applied Applied 18 18 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18
gle
CYCLE NO. 8 Applied An Torque 18 420 420 420 420 420 17 420 18 18 -2. 18 18 -4.
Angle +5.015 +7.589 +8.322 +8.033 +4.548 -2.398 -7.016 -7.016 -7.016 -7.016 -7.116
Applied P Torque 18
1 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7/31-8/ men No. ng Specim ng Specim 260 360 360 360 420 360 360 360 18
Date Hex Ball Special Run No. 6 Set Point & Direction O (CW) 5 CW 20 CW 25 CW 30 CW 30 CW 25 CW 10 CW 15 CW 26 CW 27 CW 28 CW 29 CW 29 CW 29 CW 30 CW 30 CW 25 CW 15 CW 16 CW 17 CW 18 CCW 19 CCW 25 CCW 26 CW 27 CW 28 CCW 28 CCW 29 CCW 30 CCW 30 CCW 31 CCW 32 CCW 33 CCW 34 CCW 5 CCW 6 CW 7 CW 7 CW 8 CCW 8 CCW 9 CCW 10 C

8/1-2

ORIGINAL PAGE IS OF POOR QUALITY

		Angle Angle +3.062 +3.774 +4.651 +5.4488 +6.1443 +6.1448 +7.694 +7.694 +7.694 +7.694 +7.694 +7.694 +7.694 +7.696 -3.006 -	-4.874 -3.905
		CYCLE N Applied Torque 180 60 120 180 240 360 360 180 120 180 180 180 180 360 360 360 360 360 360 360 360 360 36	18
		a 0	-3.862
		CYCLE NO. 4 Applied Angl Torque 18 +3.07 360 +7.77 420 +8.51 360 -7.09 420 420 -7.78 360 -7.78 360 -7.78	18
			-3.782
		CYCLE NO. 3 Applied Angli Torque 18 +3.05 18 +7.75 360 +7.75 19 +4.52 19 +4.52 19 -6.82 360 -7.18 360 -7.53	18
		1011 10	-3.665
	2	Applied Applie	18
l	2	Angle + 2.936 + 4.180	-3.498
8/1-2	Specimen No. Housing Specimen No No.	CYCLE N Applied Torque 17 60 180 180 180 180 180 180 180 180 180 18	18
Dato	Ball Ball Run	Set Point & Direction 0 (CW) 5 CW 10 CW 15 CW 35 CW 35 CW 35 CW 15 CW 10 CW 15 CCW 15 CCW 15 CCW 30 CCW 30 CCW 30 CCW 30 CCW 30 CCW 25 CCW 25 CCW 25 CCW 15 CCW 15 CCW 15 CCW 15 CCW 15 CCW 16	(MCC) 0

NO. 10	+3.210	+4.306	5.477	+7 156	+7.923	+8.656	+8.046	+7.668	+6.582	+5.812	+4.936	-2.844	-3.673	-5.596	-6.354	-6.988 -7.631	-7.353	$-\frac{7.007}{-6.597}$	-6.091	-5.528	-3.990
CYCLE	Torque 19																				
0. 9 Angle	+3.078				+8.011	+8.387					+4.852		}			$\frac{-7.027}{-7.699}$	-7.394				-4.011
CYCLE	Torque 19				360	360					19				0	420	360		-		18
0. 8 Angle	+3.122				+8.006	+8.368	}				+4.103 -2.370				7 0 4	-7.661	-7.385			}	-4.028
i	Torque 18										19										18
NO. 7 Angle	3.026				+7.981	+8.336					+4.764 -2.255				7 000	-7.733	-7.447				-3.994
	Torque 19				360	360					19				380	420	360				18
0. 6 Angle	+3.040				+7.959 +8 690	+8.347					+4.755 -2.309				-7 198	-7.799	-7.513				-3.896
	Torque +3.040																				
Set Point &	Direction 0 (CW)	10 CK	15 CW 20 CW	25 CW	30 CW	30 CE	M 30 C8	15 CM	10 CW	2 CM	(CM) (CCM) 0	5 CCW	35 CCW	20 CCW	25 CCW	35 CCW	30 CCW	20 CCW	15 CCW		(MDD) 0

irection of Toro	· · · · · · · · · · · · · · · · · · ·	
ORQUE $(in-lb)$	ANGLE (Degrees)	REMARKS
19	+1.550	(Record maximum torque applied, any significant observations)
60	+2.999	
120	+3.545	
180	+4.370	
240	+5.286	
300	+6.190	
360	+7.171	
420	+8.021	MAX TORQUE 35 ft-1b
360	+7.772	
300	+7.420	
240	+6.994	
180	+6.435	
120	+5.645	
60	+4.625	
Slack 20	3.732	
		I have no aunionation for this and
		I have no explanation for this err

19 60 120 180 240 300 360 420	+3.346 +4.030 +4.842 +5.564 +6.227 +6.876 +7.483	(Record maximum torque applied, an significant observations)
120 180 240 300 360 420	+4.842 +5.564 +6.227 +6.876	
180 240 300 360 420	+5.564 +6.227 +6.876	
240 300 360 420	+6.227	
300 360 420	+6.876	
360 420		
420	+7.483	
400	8.141	
480	+9.029	MAX TORQUE 40 ft-lb
420	+8.725	
360	+8.484	
300	+8.086	
240	+7.584	
180	+6.919	
120	+6.040	•
60	+5.033	
19	+4.074	

	Angle +2.551 +8.822 +9.661 +9.661 -0.893 -7.270
	CYCLE NO. 5 Applied Ang Torque 18 +2.5 360 +8.8 420 +9.4 18 -0.8 360 -6.8 360 -7.2 360 -7.2
	Angle Angle +2.249 +3.232 +4.122 +4.122 +4.122 +4.122 +6.567 +7.895 +9.402 +9.616 +9.605 +7.905 +6.979 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686 -7.686
	CYCLE Applied Torque 120 120 120 120 120 120 120 120 120 120
	Angle +2.186 +3.027 +4.014 +5.168 +6.390 +8.142 +8.142 +8.1325 +7.1828 +7.174 +6.334 +5.328 +4.443 -7.1925 -7.047
	CYCLE Applied Torque 180 240 360 360 360 360 360 360 360 360 360 36
	Angle Angle +2.079 +2.079 +2.915 +3.777 +4.732 +6.174 +7.848 +8.954 +7.848 +7.848 +7.848 +7.848 +7.848 +7.848 -1.706 -3.224 -4.5108 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708 -7.708
	CYCLE Applied Torque 18 60 120 120 180 120 120 120 120 120 120 120 120 120 12
4 en No. 4	Angle Angle 4.014 44.014 44.014 46.238 47.735 48.501 49.614 48.971 49.614 48.971 49.614 48.971 49.614 48.971 49.614 60.591 60.591 60.591 60.591 60.591 60.591 60.591
Specimen No. 4 Housing Specimen No. 10	i jed
Date	

TABLE 2 (Continued)

	Angle +2.759 +4.444 +5.251 +6.252 +7.105 +7.
	CYCLE NO. 10 Applied Angl Torque 18
	Angle +2.769 +2.769 +9.503 +9.264 -1.488 -7.579 -7.307 -2.759
	CYCLE NO. Applied Torque 18 420 420 420 18 18 18 18 18 18
	Angle +2.765 +2.765 +9.536 +9.295 -1.247 -7.594 -7.337 -2.925 -2.925 -2.925
	2 CYCLE N Applied Torque 18 360 420 360 360 360 360 360 360 360 360 360 36
	Angle +2.669 +2.669 +9.582 +9.352 +9.352 -7.589 -7.
	CYCLE N Applied Torque 18 360 420 360 420 360 420 360 18
4 n No. 4	Angle +2.686 +2.686 +9.650 +9.430 -1.212 -1.212 -7.593 -7.330 -2.952
8/8 Specimen No. 4 Housing Specimen No. No.10	CYCLE Applied Torque 18 360 360 420 360 360 420 360 18
Date Hex Ball Specimen Hex Ball Housing Run No.10	Set Point & Direction 0 (CW) 5 CW 10 CW 15 CW 30 CW 30 CW 30 CW 15 CW 10 CW 10 CCW 5 CW 25 CCW 10 CCW 5 CCW 10 CCW

		Angle +2.902 +4.667 +5.373 +7.186 +7.927 +8.737 +9.117 +8.737 +9.117 +8.737 +9.117 +8.737 +9.117 +8.757 +9.117 +8.757 -1.688 -2.275 -2.275 -7.673 -7.
		CYCLE Papplied Torque 19 60 120 1300 240 360 360 120 180 240 360 240 360 360 360 360 360 360 360 360 360 36
		Angle +2.854 +8.675 +9.398 +9.154 -7.723 -7.389 -7.430 -2.980
		CYCLE N Applied Torque 19 360 420 360 420 360 420 360 18
		42. 783 +2. 783 +9. 455 +9. 455 +9. 191 -6. 935 -7. 569 -7. 429
,		Applied Angle Torque +2.783
		Applied Ang Torque 18
	4 n No. 4	Angle +2.702 +4.474 +5.270 +6.264 +7.082 +7.082 +7.082 +8.678 +9.503 +8.882 8.531 +7.697 +6.854 +5.870 +7.697 +6.854 +5.870 +7.697 +6.875 -7.675 -7.635
6/8	men No. ng Specimen 11	CYCLE N Applied Torque 19 60 240 300 240 120 180 240 180 240 300 300 300 300 300 300 300 300 300 3
0+40	Hex Ball Specimen Hex Ball Housing	Set Point & Direction 0 (CW) 0 (CW) 10 CW 15 CW 25 CW 25 CW 15 CW 15 CW 15 CW 15 CW 15 CW 15 CCW 25

TABLE 2 (Continued)

	Angle +3.026 +4.598 +5.410 +6.313 +7.143 +7.
	CYCLE NO. 10 Applied Angle Torque 19 +3.026 60 +4.598 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 +8.205 120 -2.236 60.308 360 -7.707 360 -7.707 360 -7.707 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479 360 -7.479
	- 유 있
	20 +4.92 360 +8.65 420 +8.65 420 +8.65 420 +8.65 420 -6.97 360 -6.97 360 -6.97 360 -6.97 360 -7.37 360 -7.37
	Applied Angle Torque +2.818 19
	20 360 420 360 420 360 420 360 420 360
	42.906 +2.906 +2.906 +9.414 +9.414 +9.160 -7.027 -7.747 -7.747 -7.440
	CYCLE NO. 7 Applied Angle Torque +2.906 360 +8.663 420 +9.414 360 -7.027 420 -7.747 360 -7.747 360 -7.440
	Angle +2.927 +2.927 +8.645 +9.140 -2.068 -2.
8/12 imen No. 4 ing Specimen No	CYCLE Applied Torque 19 360 360 360 360 360 360 360 360 360 360
Date Hex Ball Specimen Hex Ball Housing Run No.	Set Point & Direction 0 (CW) 5 CW 10 CW 15 CW 25 CW 30 CW 30 CW 15 CW 10 CW 10 CW 15 CCW 15 CCW 25 CCW 30 CCW 25 CCW 30 CCW 25 C

		Angle + 2.915 + 4.540 + 5.476 + 6.323 + 7.1433 + 7.1433 + 7.1433 + 7.1433 + 7.1433 + 7.1433 + 7.1433 + 7.1433 + 7.1462 -
		Angle Applied Angle Torque 12.960 19 120 120 14.54 114 120 120 120 12.31 120 120 120 12.31 120 120 12.31 120 12.31 120 12.31 120 12.31 130 13.31 130 13.31 1
		40. 4 Angle +2. 960 +2. 960 -1. 160 -7. 728 -7. 728 -7. 468
		CYCLE NO, 4 Applied Ang Torque 19 +2.9 360 +8.6 420 +9.3 360 -7.0 360 -7.7 360 -7.7 360 -7.7 360 -7.7 360 -7.7 360 -7.7
	-	Angle +2.883 +2.883 +9.347 +9.347 +9.106
		CYCLE N Applied Torque 19 360 420 360 420 360 18 18 18 18 18
		16 16 19 19 19 19 19 19 19 19 19 19 19 19 19
		CYCLE NO. 2 Applied Ang Torque 19 +2.8 360 +8.6 420 +9.3 360 -7.0 420 -7.0 360 -7.0 360 -7.0 360 -7.0
	n No. 4	Angle +2.831 +4.743 +5.390 +6.293 +6.293 +7.190 +7.960 +8.218 +7.960 +8.218 +7.960 +8.218 +7.960 +8.218 +7.960 -7.190
8/13	Specimen No. 4 Housing Specimen No. 12	CYCLE rque
Date	Hex Ball Specimen Hex Ball Housing Run No. 12	

TABLE 2 (Continued)

	10. 10 Angle	+3.091 +4.661 +5.415 +6.330 +7.126 +7.126 +7.126 +9.319 +9.319 +9.319 +9.319 +9.319 +9.319 +9.319 +9.319 +9.319 +9.319 +0.7141 +6.74	-4.983 -3.050
	CYCLE N Applied	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60
	0.9 Angle	+2.995 +9.090 +9.090 -7.708 -7.493	-3.080
	CYCLE NO. 9 Applied Angle	19 360 420 360 360 420 360 360	18
			-3.106
•	CYCLE NO. 8 Applied Angle	19 360 420 360 360 420 360 420 360	18
	<u>0. 7</u> Angle	+2.920 +8.610 +9.298 +0.053 +0.053 +0.053 -7.078 -7.799 -7.468	-3.029
	CYCLE NO. 7 Applied Ang	19 360 420 360 360 420 360 360	18
n No. 4	NO. 6 Angle	+2.910 +8.688 +9.296 +9.052 -7.776 -7.776 -7.552	-3.082
8/14 Specimen No. 4 Housing Specimen No	CYCLE N Applied	19 360 420 360 360 420 360 360 360	18
Date Hex Ball Speci	Set Point &	10 CCW (CCW (CCW (CCW (CCW (CCW (CCW (CCW	(MDD) 0

		Angle Angle 43.131 44.635 46.401 47.189 47.189 47.189 48.689 48.689 49.406 49.406 49.889 49.893 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695 40.695
		CYCLE NO. 5 Applied Angle Torque 19 60 420 420 420 420 180 60 60 7. 142 802 180 60 7. 142 803 800 7. 142 803 800 7. 142 803 800 803 800 803 800 803 803 804 805 805 805 805 805 805 805
		Angle +3.011 +3.011
		CYCLE N Applied Torque 19 360 420 360 420 360 420 360 18
		Angle +3.050 +3.050 +3.050 +3.050 +4.864 +9.358 +9.119 -7.144 -7.852 -7.578 +4.864 -7.578 -7.57
TABLE 2	-	CYCLE NO. Applied A Torque 19
		Angle +3.019 +3.019 +3.019 +9.128 +9.128 -7.102 -7.102 -7.537 -3.113
		20 360 360 360 360 360 360 420 360 420 360 420 360
	4 n No. 4	Angle +3.034 +4.704 +5.456 +5.456 +5.456 +6.322 +7.150 +7.938 +8.630 +7.938 +8.630 +7.938 +8.194 +7.551 +9.355 -7.102 -7.102 -7.102 -7.110 -7.110 -7.110 -7.110 -7.110 -7.110 -7.110 -7.110
8/14	Specimen No. Housing Specimen No. 13	CYCLE NO Applied Torque 19 60 120 120 360 360 360 360 120 60 240 120 60 240 360 360 360 360 360 360 360 360 360 36
o+ c0	Sall Ball Run	Set Point & Direction 0 (CW) 5 CW 10 CW 15 CW 25 CW 30 CW 30 CW 25 CW 20 CW 15 CW 10 CCW 15 CCW 30 C

TABLE 2 (Continued)

		01	Angle		+3.185	+4.751	+6.400	+7.215	+7,943	+9.382	+8 755	+8.206	+7.549	+0.823 +5.823	+5.007	-3.045	-4.069	$-\frac{4.933}{-5.712}$	-6.509	$\frac{-7.170}{-7.898}$	-7.617	$\frac{-7.211}{-6.570}$	-5.905	-4.123	-4.216
		ביוטאט	Applied	Torque	19	120	180	240	360	420	300	240	180	60	5.004 20 +5.00	09	120	240	300	360	360	300	180	60	18
		6	Angle	ì	+3.106				+8.711	+9.374	057.6				+5.004	7.40				$\frac{-7.161}{-7.849}$	-7.581				-3.179
		CYCLEN	Applied	Torque	19				360	420					20	07				360	360				18
			Angle		+3.089				+8.690	+9.382	001.0				+5.027	7.0.7				-7.171	-7.552				-4.185
		CYCLE N	1	Torque	19				360	420					20					360	360				18
		NO. 7	Angle		+3.065				+8.725	+9,450	277				+4.884	0				$\frac{-7.208}{-7.862}$	-7.565				-3.187
		CYCLE N	Applied	Torque	19				360	420					19					360	360				18
	n No. 4	NO. 6			+3.050				+8.686	+9.388	27				+4.975	70 1 1				-7.154	-7.548				$-\frac{3.132}{}$
8/15	Specimen No. 4 Housing Specimen No No. 13		Applied	Torque	19				360	360					20					360	360				18
	Hex Ball Specimen Hex Ball Housing Run No13		Set Point &	Direction	0 (CM) 2 (EM)	10 CW	15 CW	20 CK	30 CW	35 CW 30 CW	25 CW	20 CW	3 3 3	5 CW	(M) (CM) 0	S CCW	10 CCW	20 CCW	25 CCW	30 CCW 35 CCW	30 CCW	20 CCW	15 CCW	S CCW	(MOO) 0

		Angle + 3.136 + 4.770 + 5.502 + 6.365 + 7.168
		CYCLE 7 Applied Torque 19 60 120 360 360 360 360 360 240 120 120 120 120 360 360 360 360 240 360 240 360 360 360 360 360 360 360 360 360 36
		Angle +3.091 +3.091 +4.954 -2.406 -7.669 -3.206
		20 20 360 360 360 360 360 360 360 360 360 36
		90. 3 Angle +3.137 +9.348 +9.112 -7.286 -7.946 -7.946 -7.669
		20
		-7.258 -7.258 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942 -7.942
		Applied Angl Torque 19 +3.06 19 +8.66 420 +9.35 360 +9.35 360 -7.25 360 -7.25 360 -7.66
,	4	Angle +3.059 +4.889 +5.540 +6.388 +7.181 +7.181 +7.910 +8.745 +8.745 +9.334 +9.110 +8.745 +6.750 +7.912 -7.912 -7.912 -7.197 -7.912 -7.197 -7.
8/16	Specimen No. Housing Specimen No No. 14	CVCLE T que - CVCLE -
0+60	8a11 8a11 Run	Set Point & Direction 0 (CW) 5 CW 10 CW 10 CW 30 CW 30 CW 15 CW 10 CW 10 CW 10 CCW 10 CCW 30 CCW 30 CCW 30 CCW 30 CCW 25 CCW 30 CCW 25 CCW 25 CCW 15 CCW 10 CCW 15 CCW 10

TABLE 2 (Continued)

	. 01 0	Angle	+3.194	+4.802	+0.008	+7.213	+7.937	+8.631	+9.105	+8.729	48.179	+6.537 +6.790	15 800	+4.960	-2.505	-4.167	-5.092	-5.789	$\frac{-6.518}{-7.245}$	-7.965	879.7-	-6.646	-5.955	-5.130	$\frac{-4.140}{-3.188}$
	CYCLEN	Applied Torone	18	190	180	240	300	360	360	300	1 00	120	60	19	18	120	180	240	360	420	300	240	180	120	18
	6 0	Angle	+3.148					+8.619	+9.071					+4.954	-2.495				-7.306	-7.962	-7.081			}	-3.200
	CYCLEN	Applied Torque	18				000	360	360					19	18				360	420	200				18
	0.8	Angle	+3.135					+8.659	+9.107				/	+4.950	-2.401				-7.267	$\frac{-6.940}{-7.653}$	000				-3.176
	CYCLE N	Applied Torque	19					420	360					20	18				360	420					18
	0.7	Angle	+3.066				100	+9.368	+9.112					+4.970	-2.324				-7.274	-7.948					-3.208
	CYCLE N	Applied Torque	19				000	420	360					20	70				360	420					18
4	CYCLE N	Applied Angle Torque	19				960	420	360					20	10				360	360					18
Kun No. 14		Set Point & Direction	(CM)	30 CK	15 CW	20 CW	72 CM	35 CW	30 CW	20 CM	15 CW	10 CW	2 CM	(M) 0	2 CCW	10 CCW	15 CCW	20 CCW	30 CCM	35 CCW 30 CCW	25 CCW	20 CCW	300 CC	S CCW	(MOO) 0

Hex Ball Housing Run No Direction of Tor	15	
TORQUE (in-lb)	ANGLE (Degrees)	REMARKS
019	3.366	(Record maximum torque applied, a
025	3.505	significant observations) ATTACHED TURNBUCKLE
060	3.985	
123	4.857	
180	5.512	
240	6.126	
300	6.765	
360	7.381	
420	8.146	
480	8.591	
540	9.576	
600	12.000	DEFINITE SLOPE CHANGE
540	11.864	-
480	11.557	
420	11.210	
360	10.820	
300	10.340	
240	9.720	
180	8.979	
120	8.027	
060	6.674	
025	6.115	
019	5.981	
· · · · · · · · · · · · · · · · · · ·		
itial Augla Daga	ling (Repeatability S	etup) 3.366 inlb

Dàte	<u> </u>		8/5			
Hex	Ball	Specimen	No.	2		
Hex	Ba11	Housing	Specin	nen No.	2	
	Run	No. 16	·	_		
Dire	ection	of Toro	ue Apr	licatio	n CW	

TORQUE	(in-lb)	ANGLE (Degrees)
19		+3.422
60		+3.840
120		+5.596
180		+6.435
240		+7.174
300		+7.918
360		+8.607
420		+9.398
480		+10.100
500		10.387
515		10.551
530		10.809
545		11.143
560		11.338
575		11.558
590		11.979
605		12.336
620		12.609
635		13.336
650		13.640
665		14.295
600		14.095
500		13.509
400		12.933
300		12.100
200		11.189
100		9.541
60		8.765
20		7.775

REMARKS

(Record maximum torque applied, any significant observations)

Initial Angle Reading (Repeatability Setup)_____

Final Angle Reading (Repeatability Setup)_____

irection of lore ORQUE (in-lb)	que Application CW	 REMARKS
019	ANGLE (Degrees) 5.680	(Record maximum torque applied,
100	6.879	significant observations)
200	8.089	
300	9.217	
400	10.277	
500	11.670	
525	11.820	
550	12.243	
575	12.530	
600	12.976	
625	13.400	
650	14.060	
675	14.876	
700	15.753	
600	15.516	
500	14.984	
400	14.308	
300	13.432	
200	12.134	
100	10.541	
020	8.648	

					TABI	<u>.E</u>	1
Date	8-19						
Hex Bal	1 Specimer	n No.	4				•
Hex Bal	1 Housing	Specimen	No.	4			•
	n No. 1						_
Directi	on of Toro	que Appli	cation		CW		
TORQUE	(in-lb)	ANGLE	(Degre	<u>es</u>)		RE	
019	<u> </u>	<u>-7.</u>	890			(R	
100			316			3	•
200		9	004				

TOPOUE (in-1h)	ANCLE (Dogmoos)	DEMADUS
TORQUE (in-lb)	ANGLE (Degrees)	REMARKS (Record maximum torque applied, any
019	<u>-7.890</u>	significant observations)
100	-5.316	
200		
300	-2.617	
400		
500	-0.105	
525	+0.320	
550	+0.715	
575	1.111	
600	1.550	
625	1.970	
650	2.560	
675	3.147	
700	3.945	
600	3.571	,
500	2.996	
400	2.280	
300	+1.240	
200	-0.064	
100	-1.689	
019	-3.530	
	-	

Initial	Angle Reading	(Repeatability	Setup)	
Final Ar	nale Peadina (F	Deneatahility Se	tun)	

ORQUE_(in-lb)	ANGLE (Degrees)	REMARKS
20	-5.050	(Record maximum torque applied,
100	-3.814	significant observations)
200	-3.591	
300	-1.476	
400	-0.417	
500	+0.625	
600	+1.859	
700	+3.809	
725	+4.779	
750	+5.876	
766	+7.292	
700	+7.018	-
600	+6.474	
500	+5.869	
400	+5.165	
300	+4.134	
200	+2.755	
100	+1.030	
20	-0.950	
		

Date	8/22
Hex Ball	Specimen No. 2
Hex Ball	Housing Specimen No. 2
Run	No. 20
Direction	of Torque Application

TORQUE (in-lb)	ANGLE (Degrees)	REMARKS
19	-7.468	(Record maximum torque applied, any significant observations)
100	-5.721	significant observations)
200	-4.047	
300	-2.840	
400	-1.740	
500	-0.645	
600	+0.485	
700	+1.901	
725	+2.250	
750	+2.745	
775	+3.222	
800	+3.680	
825	+4.219	
850	+4.805	
875	+5.435	
900	+7.385	
925	+7.642	
950	+8.260	
975	+9.900	
1000	+12.046	
1025		
1050		
1092	Failure	
		•
		

Initial Angle Reading (Repeatability Setup)_____

Final Angle Reading (Repeatability Setup)_____

irection of Tor		
TORQUE (in-lb)	ANGLE (Degrees)	REMARKS (Record maximum torque applied, a
019	9.854	significant observations)
200	6.909	
	5.472	
	4.623	
500	3.485	
550	-2.910	
600	-2.389	
650		
700		
725	-0.753	
750	-0.367	
775	+0.091	
800	+0.618	
825	+1.226	
850	+1.990	
875	+2.571	
900	+3.338	
925	+4.058	
950	+5.3	
975	+6.176	
1000	+8.540	
1025	+9.071	
1050		
1121	<u>Failure</u>	

Direction of Toro	que Application	
TORQUE (in-lb)	ANGLE (Degrees)	REMARKS
19	-9.296	(Record maximum torque applied, a significant observations)
100	-7.125	0.3
200	-5.674	
300	-4.347	
400	-3.236	
500	-2.105	
600	-0.872	
650	-0.294	
700	+0.503	
725	+0.920	
750	+1.006	
775	+1.012	
800	+1.190	
825	+1.703	
850	+2.203	
875	+4.467	
900	+4.446	
925	+4.651	
950	+5.201	
975	+6.312	
1000	+7.492	
1025	+8.695	
1056	Failure	
`		

Date 8-26-8 Hex Ball Specimen Hex Ball Housing S Run No. 23 Direction of Torqu	No. 1 Specimen No. 2 (19.5)	CW
TORQUE (in-lb)	ANGLE (Degrees) -19.650	REMARKS (Record maximum torque applied, any
108	-18.009	significant observations)
170	-17.003	
240	-16.002	
321	-15.005	
400	-14.004	
481	-13.000	
555	-12.000	
621	-11.009	
686	-10.003	
749	-9.006	
802	-8.007	
<u>851</u>	-7.001	
887	-6.008	
855	-6.000	CHANGED TURNBUCKLE
917	-5.005	
947	4.001	
956	-3.000	
972		
986	-1.602	Initial
1002	-0.956	After 1 min. at -1.0/1015
1005	-0.757	After 1 min at -0.8/1016
1005	-0.550	After 1 min at -0.6/1016
1011		After 1 min at -0.2/1030
1019	+0.011	After 1 min at 0/1030
1033	+1.018	After 1 min at +1/1047
1049	+2.016	$\mathbf{A}\mathbf{f}$ té $\hat{\mathbf{r}}$ 1 min at +2/1065
nitial Angle Peadi	ng (Peneatability	Setup)

Initial Angle Reading (Repeatability Setup)_______

Final Angle Reading (Repeatability Setup)______

APPENDIX C PLOTTED DATA FROM APPENDIX B

PRECEDING PAGE BLANK NOT FILMED

HEX BALL TORQUE TEST, RUN NO. 1 FOR SPACE TELESCOPE RUN NO. 1 CW LOAD RUN NO. 1 CW UNLOAD

RUN #2, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW UNLOAD

RUN #3, CYCLE 1, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW LOAD CCW UNLOAD

RUN #3, CYCLE 1, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW UNLOAD CW UNLOAD

RUN #3, CYCLE 2, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW UNLOAD CW UNLOAD

RUN #3, CYCLE 3, HEX BALL TORQUE EXPERINMENT TORQUE VS. DEGREE TORSION CW LOAD CCW UNLOAD

RUN #3, CYCLE 3, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW UNLOAD

RUN #3, CYCLE 4, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW LOAD CCW UNLOAD

RUN #3, CYCLE 4, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW UNLOAD

RUN #3, CYCLE 5, HEX BALL TORQUE EXPERIMENT TORQUE VS. DEGREE TORSION CW LOAD CCW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #1

CCW LOAD CCW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #2

CCW LOAD CCW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #3

CW LOAD CW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #4

CW LOAD CW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #4

HEX BALL TORQUE TEST RUN #4, CYCLE #5

CW LOAD CW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #5

HEX BALL TORQUE TEST RUN #4, CYCLE #6

CCW UNLOAD

CW LOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #6

CCW LOAD CCW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #7

CW LOAD CW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #8

CW LOAD CW UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #8

HEX BALL TORQUE TEST RUN #4, CYCLE #10

cw LOAD cw UNLOAD

HEX BALL TORQUE TEST RUN #4, CYCLE #10

HEX BALL TORQUE TEST RUN #4, CYCLE #9

CCW LOAD

CCW UNLOAD

HEX BALL TORQUE TEST, RUN #15
FOR SPACE TELESCOPE

RUN NO. 1
RUN NO. 1
CCW LOAD

RUN NO. 1 CW LOAD RUN NO. 1 CCW LOAD

HEX BALL TORQUE TEST, RUN #17
FOR SPACE TELESCOPE

TO NO. 1

TO LOAD

TO LO

HEX BALL TORQUE TEST

RUN NO. 1 RUN NO. 1 CW LOAD CCW LOAD

HEX BALL TORQUE TEST, RUN 19 FOR SPACE TELESCOPE RUN NO 1 RUN NO 1 CW LOAD 1 CCW LOAD

HEX BALL TORQUE TEST, RUN 20 FOR SPACE TELESCOPE

HEX BALL TORQUE TEST, RUN 21 FOR SPACE TELESCOPE

HEX BALL TORQUE TEST, RUN 22 FOR SPACE TELESCOPE

HEX BALL TORQUE TEST, RUN 23 FOR SPACE TELESCOPE

APPENDIX D

PRE- AND POST-TEST DIMENSIONAL MEASUREMENTS

PRECEDING PAGE BLANK NOT FILMED

Date 7-9-85

Hex Ball Specimen No. 1

Hex Ball Housing Specimen No. 1

Run No. 1

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A	0.3743	0.3743
В	0.3742	0.3743
D (1 to 4)	$\frac{0.3200}{0.3749}$	$\frac{0.3200}{0.3750}$
E (2 to 5)	0.3749	0.3750
F (3 to 6)	0.3750	0.3750
G (1,2 to 5,4)	0.4298	0.4299
H (2,3 to 6,5)	0.4305	$\frac{0.1200}{0.4305}$
I (3,4 to 1,6)	0.4295	0.4300
J	0.4206	0.4206
K	0.3745	0.3745
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	$\phantom{00000000000000000000000000000000000$	0.3275

REMARKS (Visual Condition)

Dimensions K-L was measured with a digital caliper which was only accurate to three places.

Slight abrasions around the edges of the hex head.

Dimension C was measured with a three place accuracy blade micrometer.

Load markings were visible on the post test hex head. The hex housing also had load markings.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

ORIGINAL PAGE IS OF POOR QUALITY

Date	7/10/85	
Hex Ball	Specimen No.	1
Hex Ball	Housing Specimen	No. 1
Run	No 2	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3743	0.3743
В	0.3743	0.3743
C	0.3200	0.3200
D (1 to 4)	0.3750	0.3750
E (2 to 5)	0.3750	0.3750
F (3 to 6)	0.3750	0.3750
G (1,2 to 5,4)	0.4299	0.4301
H (2,3 to 6,5)	0.4305	0.4305
I (3,4 to 1,6)	0.4300	0.4300
J	0.4206	0.4206
K	0.3745	0.3745
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3275	0.3275

REMARKS (Visual Condition)

Post Test: Load markings were approximately the same as previous run.

Hex Ball 679-3628 B/P Dimensions & Tolerances Shown for Reference

Hex Ball Housing 679-3629
B/P Dimensions & Tolerances shown for reference

Date	8/27
Hex Ball	Specimen No. 1
Hex Ball	Housing Specimen No. 1
Run	No. 2-A

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE	REMARKS (Visual Condition)
Α	0.3744	0.3744	
В	0.3744	0.3744	
С	0.3190	0.3190	
D (1 to 4)	0.3750	0.3750	
E (2 to 5)	0.3750	0.3750	
F (3 to 6)	0.3751	0.3751	
G (1,2 to 5,4)	0.4300	0.4300	
H(2,3 to 6,5)	0.4304	0.4304	
I (3,4 to 1,6)	0.4300	0.4300	
J	0.4205	0.4205	
K	0.3740	0.3740	
L (1 to 4)	0.3750	0.3750	
M (2 to 5)	0.3745	0.3745	
N (3 to 6)	0.3745	0.3745	
0	0.3285	0.3285	

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	7/11/85		
	Specimen No.	2	
Hex Ball	Housing Specimen	No.	2
Run	No. 3	•	

ξź

ORIGINAL PAGE IS OF POOR QUALITY

PRE-TEST VALUE	POST-TEST VALUE
0.3745	0.3745
0.3744	0.3745
0.3190	0.3190
0.3750	0.3752
0.3750	0.3752
0.3750	0.3753
0.4308	0.4293
0.4309	0.4135
0.4305	0.4314
0.4210	0.4208
0.3750	0.3735
0.3760	0.3750
0.3750	0.3750
0.3755	0.3750
0.3270	0.3280
	0.3745 0.3744 0.3190 0.3750 0.3750 0.4308 0.4309 0.4305 0.4210 0.3750 0.3750 0.3750 0.3750

REMARKS (Visual Condition)

Dimension C was measured with a three place accuracy blade micrometer.

Slight scratches around hex edge of hex ball housing.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	8/27		
· Hex Ball	Specimen No.	2	
⊮Hex,∞Ball	Housing Specimen	No.	2
Run	No. 4	•	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A B C	$\begin{array}{r} 0.3745 \\ \hline 0.3745 \\ \hline 0.3190 \end{array}$	$\begin{array}{r} -0.3746 \\ \hline -0.3746 \\ \hline 0.3190 \end{array}$
D (1 to 4) E (2 to 5)	$0.3752 \\ 0.3752$	0.3751 0.3750
F (3 to 6) G (1,2 to 5,4)	0.3753 0.4295	0.3750
H (2,3 to 6,5) I (3,4 to 1,6)	0.4135 0.4304	0.4280
J K	0.4208	0.4211
L (1 to 4) M (2 to 5)	0.3750	0.3745
N (3 to 6)	0.3750 0.3280	0.3750
J K L (1 to 4) M (2 to 5) N (3 to 6)	0.4208 0.3735 0.3750 0.3750 0.3750	0.4211 0.3745 0.3745 0.3750 0.3750

REMARKS (Visual Condition)

The corners of the hex ball show more signs of wear.

.3758 + .0002

Across Flats Typ. L,M,N

Slight burnishing, more metallic flakes came out upon separation.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	-	_	/27			
		Specimen		2		_
Hex	Ball	Housing	Specimen	No.	2	_
	Run	No. 5		_		_

ORIGINAL PAGE IS OF POOR QUALITY

REMARKS	(Visual	Condition)
KEWAKV2	(VISUAI	condition

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A B	0.3746	0.3745 0.3745
C	$\begin{array}{r} 0.3746 \\ \hline 0.3190 \end{array}$	0.3190
D (1 to 4) E (2 to 5)	$\frac{0.3751}{0.3750}$	$\frac{0.3751}{0.3749}$
F (3 to 6) G (1,2 to 5,4)	0.3750 0.4279	0.3750 0.4279
H (2,3 to 6,5)	0.4280	0.4280
I (3,4 to 1,6) J	$\frac{0.4278}{0.4211}$	$\frac{0.4276}{0.4210}$
K L (1 to 4)	0.3745 0.3745	0.3740
M (2 to 5)	0.3750	0.3750
N (3 to 6) O	$\frac{0.3750}{0.3280}$	$\frac{0.3750}{0.3285}$

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date : 8/27	
Hex Ball Housing Speciment No.	2
Hex Ball Housing Specia	men No. 2
Run No. 6	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3745	0.3745
В	0.3745	0.3745
C	0.3190	0.3190
D (1 to 4)	0.3751	0.3750
E (2 to 5)	0.3749	0.3750
F (3 to 6)	0.3750	0.3749
G (1,2 to 5,4)	0.4279	0.4282
H (2,3 to 6,5)	0.4280	0.4280
I (3,4 to 1,6)	0.4276	0.4280
J	0.4210	0.4209
K	0.3740	0.3745
L (1 to 4)	0.3745	0.3745
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3285	0.3280

REMARKS (Visual Condition)

Hex ball visually shows very little change.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/27		
Hex Ba	<u> 11</u>	Specimen No.	2	
Hex Ba	11£	Housing Specimen	No.	2
	Run	No. 7		

ORIGINAL PAGE IS OF POOR QUALITY

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A	0.3745	0.3746
В	0.3745	0.3745
С	0.3190	0.3190
D (1 to 4)	0.3750	0.3751
E (2 to 5)	0.3750	0.3749
F (3 to 6)	0.3749	0.3749
G (1,2 to 5,4)	0.4282	0.4283
H (2,3 to 6,5)	0.4280	0.4281
I (3,4 to 1,6)	0.4280	0.4280
J	0.4209	0.4211
K	0.3745	0.3745
L (1 to 4)	0.3745	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3280	0.3285

Pretest and Post-test No change in visual appearance.

REMARKS (Visual Condition)

Shown for Reference

1- Across 679-3682 Pin

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	9	8/28	
Hex	Ba 1 1	Specimen No. 3	
Hex	Ball	Housing Specimen No.	3
	Run	No 8	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α .	0.3744	0.3744
В	0.3744	0.3744
C	0.3200	0.3200
D (1 to 4)	0.3749	0.3750
E (2 to 5)	0.3750	0.3750
F (3 to 6)	0.3750	0.3750
G (1,2 to 5,4)	0.4290	0.4295
H (2,3 to 6,5)	0.4294	0.4300
I (3,4 to 1,6)	0.4295	0.4300
J	0.4207	0.4207
K	0.3750	0.3745
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3280	0.3280

REMARKS (Visual Condition)

Pre-test: No anomalies.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/28		
Hex	Ba 11	Specimen No.	3	
Hex	Ba11	Housing Specimen	No.	3
	Run	No. 9	_	

ORIGINAL PAGE IS OF POOR QUALITY

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3744	0.3743
В	0.3744	0.3743
C	0.3200	0.3200
D (1 to 4)	0.3750	0.3752
E (2 to 5)	0.3750	0.3751
F (3 to 6)	0.3750	0.3752
G (1,2 to 5,4)	0.4295	0.4298
H (2,3 to 6,5)	0.4300	0.4300
I (3,4 to 1,6)	0.4300	0.4302
J	0.4207	0.4206
K	0.3745	0.3750
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3280	0.3285

REMARKS (Visual Condition)
There was no change.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Shown for Reference

Across Flats Typ. L,M,N .43

Date	•		8/28		
Hex	Ball	Specime	n No.	4	
Hex	Ball	Housing	Specimen	No.	4
	Run	No. 10	-	_	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A B	$\frac{0.3742}{0.3745}$	$\frac{0.3744}{0.3747}$
C	0.3210	0.3210
D (1 to 4) E (2 to 5)	$\frac{0.3749}{0.3748}$	$\begin{array}{r} 0.3748 \\ \hline 0.3746 \end{array}$
F (3 to 6) G (1,2 to 5,4)	$\frac{0.3749}{0.4301}$	$0.3749 \\ \hline 0.4302$
H (2,3 to 6,5) I (3,4 to 1,6)	0.4302	0.4300
J K	0.4207 0.3750	0.4208 0.3750
L (1 to 4)	0.3750	0.3755 0.3750
M (2 to 5) N (3 to 6)	$\frac{0.3755}{0.3755}$	0.3755
Ü	0.3280	0.3280

REMARKS (Visual Condition)

Pre-test: No anomalies.

Post-test: Hex ball corners are burnished and housing also shows signs of wear.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	-	8/28		
Hex	Ball	Specimen No.	4	
Hex	Ball	Housing Specimen	No.	4
	Run	No. 11	_	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3744	0.3745
В	0.3747	0.3745
C	0.3210	0.3210
D (1 to 4)	0.3748	0.3747
E (2 to 5)	0.3746	0.3744
F (3 to 6)	0.3749	0.3746
G (1,2 to 5,4)	0.4302	0.4300
H (2,3 to 6,5)	0.4300	0.4298
I (3,4 to 1,6)	0.4300	0.4300
J	0.4208	0.4208
K	0.3750	0.3750
L (1 to 4)	0.3755	0.3755
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3755	0.3750
0	0.3280	0.3280

REMARKS (Visual Condition)

Hex ball shows very slight, smooth wear on corners. The housing shows very slight signs of further wear.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

	8/28		
	Specimen No.	4	
Hex Bal	Housing Specimen	No.	4
Rui	No. 12	'	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3745	0.3744
В	0.3745	0.3745
C	0.3210	0.3210
D (1 to 4)	0.3747	0.3747
E (2 to 5)	0.3744	0.3746
F (3 to 6)	0.3746	0.3747
G (1,2 to 5,4)	0.4300	0.4298
H (2,3 to 6,5)	0.4298	0.4300
I (3,4 to 1,6)	0.4300	0.4300
J	0.4208	0.4209
K	0.3750	0.3750
L (1 to 4)	0.3755	0.3755
M (2 to 5)	0.3750	0.3755
N (3 to 6)	0.3750	0.3750
0	0.3280	0.3280

REMARKS (Visual Condition)
No signs of further wear.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/29			
Hex	Ball	Specimen No.	4		
Hex	Ball	Housing Specimen	No.	4	
		No. 13			

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3744	0.3745
В	0.3745	0.3745
С	0.3210	0.3210
D (1 to 4)	0.3747	0.3748
E (2 to 5)	0.3746	0.3744
F (3 to 6)	0.3247	0.3746
G (1,2 to 5,4)	0.4298	0.4298
H (2,3 to 6,5)	0.4300	0.4300
I (3,4 to 1,6)	0.4300	0.4299
J	0.4209	0.4208
K	0.3750	0.3750
L (1 to 4)	0.3755	0.3755
M (2 to 5)	0.3755	0.3750
N (3 to 6)	0.3750	0.3750
.0	0.3280	0.3280

REMARKS (Visual Condition)
No further signs of wear.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	2	8/29		
		Specimen No.	4	
Hex	Ball	Housing Specimen	No.	4
	Run	No. 14	_	

ORIGINAL PAGE IS OF POOR QUALITY

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3745	0.3745
В	0.3745	0.3745
С	0.3210	0.3210
D (1 to 4)	0.3748	0.3747
E (2 to 5)	0.4744	0.3745
F (3 to 6)	0.3746	0.3747
G (1,2 to 5,4)	0.4298	0.4295
H (2,3 to 6,5)	0.4300	0.4300
I (3,4 to 1,6)	0.4299	0.4296
J	0.4208	0.4209
K	0.3750	0.3750
L (1 to 4)	0.3755	0.3755
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3280	0.3275

REMARKS (Visual Condition) Shows no signs of further wear.

Shown for Reference

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

C-2

Date	7/30/85
Hex Ball	Specimen No. 1
Hex Ball	Housing Specimen No. 1
Run	No. 15

ORIGINAL PAGE IS OF POOR QUALITY

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3744	0.3743
В	0.3744	0.3743
C	0.3190	0.3190
D (1 to 4)	0.3750	0.3753
E (2 to 5)	0.3750	0.3753
F (3 to 6)	0.3751	0.3753
G (1,2 to 5,4)	0.4300	0.4300
H (2,3 to 6,5)	0.4304	0.4304
I (3,4 to 1,6)	0.4300	0.4302
J	0.4205	0.4206
K	0.3740	0.3740
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3745	0.3750
N (3 to 6)	0.3745	0.3745
0	0.3285	0.3285

REMARKS (Visual Condition)

Hex ball does not visually show any massive signs of yielding. Burnished edges on ball. Burnished corners on housing.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

	ند د:	F160
Date -	8/29 *	
Hex Ball	Specimen No.	2
Hex Ball	Housing Specimen	No. 2
Run		

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A B	$\frac{0.3746}{0.3745}$	0.3746 0.3746
C D (1 to 4)	0.3190	$\frac{0.3190}{0.3750}$
E (2 to 5)	$\frac{0.3751}{0.3749}$	0.3750
F (3 to 6) G (1,2 to 5,4)	$\frac{0.3749}{0.4283}$	$\begin{array}{r} \underline{0.3748} \\ \underline{0.4283} \end{array}$
H (2,3 to 6,5) I (3,4 to 1,6)	$\frac{0.4381}{0.4280}$	$\frac{0.4282}{0.4278}$
J K	$\frac{0.4211}{0.3745}$	$\frac{0.4210}{0.3750}$
L (1 to 4) M (2 to 5)	0.3750 0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0	0.3285	0.3285

REMARKS (Visual Condition)

Hex is worn from initial durability torque test.

Post Yield: Hex looks twisted and shows extra signs of wear for CW load.

Hex Ball 679-3628 B/P Dimensions & Tolerances Shown for Reference

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	8/29	
Hex Ball	Specimen No. 3	
Hex Ball	Housing Specimen No.	3
Run	No. 17	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
A	0.3743	0.3743
В	0.3743	0.3743
C	0.3200	0.3200
D (1 to 4)	0.3752	0.3757
E (2 to 5)	0.3751	0.3756
F (3 to 6)	0.3752	0.3758
G (1,2 to 5,4)	0.4298	0.4300
H (2,3 to 6,5)	0.4300	0.4300
I (3,4 to 1,6)	0.4302	0.4302
J	0.4206	0.4204
K	0.3750	0.3750
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3750	0.3750
0-	0.3280	0.3280

REMARKS (Visual Condition) Hex ball looks twisted and

Hex ball looks twisted and shows further signs of CW load.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/29	
Hex	Ba 1 1	Specimen No. 4	
Hex	Ball	Housing Specimen No. 4	
	Run	No. 18	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE	REMARKS (Visual Condition)
A	0.3745	0.3745	
В	0.3745	0.3744	
C -	0.3210	0.3210	
D (1 to 4)	0.3747	0.3753	
E (2 to 5)	0.3745	0.3752	
F (3 to 6)	0.3747	0.3754	~
G (1,2 to 5,4)	0.4295	0.4300	
H (2,3 to 6,5)	0.4300	-0.4300	•
I (3,4 to 1,6)	0.4296	0.4300	
J	0.4209	0.4211	
K	0.3750	0.3745	
L (1 to 4)	0.3755	0.3755	
M (2 to 5)	0.3750	0.3755	
N (3 to 6)	0.3750	0.3755	
0	0.3275	0.3280	

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/29	
Hex	Ba 11	Specimen No. 1	
Hex	Ba11	Housing Specimen No.	1
		No. 19	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE
Α	0.3743	0.3788*
В	0.3743	0.3742
C	0.3190	0.3190
D (1 to 4)	0.3753	0.3758
E (2 to 5)	0.3753	0.3758
F (3 to 6)	0.3753	0.3757
G (1,2 to 5,4)	0.4300	0.4300
H (2,3 to 6,5)	0.4304	0.4298
I (3,4 to 1,6)	0.4302	0.4300
J	0.4206	0.4206
K	0.3740	0.3740
L (1 to 4)	0.3750	0.3750
M (2 to 5)	0.3750	0.3750
N (3 to 6)	0.3745	0.3750
0	0.3285	0.3270

REMARKS (Visual Condition)

Hex ball shows massive signs of yielding. Load mark from CW twist is quite obvious.

*Dutch key dimple on hex is pushed up from load. Hex housing is also burnished.

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/30		
Hex	Ba 1 1	Specimen No.	2	
Hex	Ball	Housing Specimen	No.	2
	Run	No. 20		

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE	REMARKS (Visual Condition)
Α	0.3746	0.3754	
В	0.3746	0.3744	
C	0.3190	0.3180	
D (1 to 4)	0.3750		
E (2 to 5)	0.3750		
F (3 to 6)	0.3748		
G (1,2 to 5,4)	0.4283		
H (2,3 to 6,5)	0.4282		
I (3,4 to 1,6)	0.4278		
J	0.4210		
K	0.3750	0.3750	
L (1 to 4)	0.3750	0.3750	0.3760
M (2 to 5)	0.3750	0.3750	0.3760
N (3 to 6)	0.3750	0.3750	0.3755
0	0.3285	0.3275	

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date	-	8/30		
Hex	Ba 1 1	Specimen No.	3	
Hex	Ba11	Housing Specimen	No.	3
	Run		_	

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE	REMARKS (Visual Condition)
Α	0.3743		
В	0.3743		
С	0.3200		
D (1 to 4)	0.3757		
E (2 to 5)	0.3756		
F (3 to 6)	0.3758		
G (1,2 to 5,4)	0.4300		
H (2,3 to 6,5)	0.4300		
I (3,4 to 1,6)	0.4302		
J	0.4204		
K	0.3750		
L (1 to 4)	0.3750		
M (2 to 5)	0.3750		
N (3 to 6)	0.3750		
0	0.3280		

Hex Ball Housing 679-3629 B/P Dimensions & Tolerances shown for reference

Date		8/30	
Hex	Ball	Specimen No. 4	_
Hex	Ball	Housing Specimen No. 4	_
	Run	No. 22	_

DIMENSION	PRE-TEST VALUE	POST-TEST VALUE	REMARKS (Visual Condition)
A B C	$\begin{array}{r} -0.3766 \\ -0.3745 \\ 0.3210 \end{array}$		
D (1 to 4) E (2 to 5)	0.3754 0.3754		
F (3 to 6) G (1,2 to 5,4) H (2,3 to 6,5)	$ \begin{array}{r} 0.3753 \\ 0.4298 \\ 0.4300 \end{array} $		
I (3,4 to 1,6) J K	0.4300 0.4208 0.3750		
L (1 to 4) M (2 to 5)	$0.3750 \\ 0.3750$		
N (3 to 6) O	$0.3750 \\ 0.3285$	$\begin{array}{r} 0.3760 \\ \hline 0.3255 \end{array}$	

Hex Ball 679-3628 B/P Dimensions & Tolerances Shown for Reference

Hex Ball Housing 679-3629
B/P Dimensions & Tolerances
shown for reference

APPENDIX E COMPOSITE PLOTS OF DURABILITY CYCLES

APPROVAL

HEX BALL TORQUE TEST

By B. A. Robinson and C. L. Foster

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

A. A. McCool

Director, Structures and Propulsion Lab.