Ερωτήσεις κλειστού τύπου

- 3.170 Να συμπληρώσετε τα παρακάτω κενά με το κατάλληλο σύμβολο (<, =, >).
- α) $(-1)^7 \dots (-1)^{10}$
- **β)** $(-1)^{20} \dots 1^{25}$ **δ)** $(-7)^0 \dots 13^0$
- γ) $8^0 \dots (-3)^0$

- **E)** $7^{16} \dots 7^{16}$ $\sigma \tau$) $-5^{17} \dots (-5)^{17}$
- $5^7 \dots 6^7$
- η) $(-5)^8 \dots (-5)^{10}$
- **9)** $(-5)^9 \dots (-5)^{11}$ **1)** $\left(\frac{3}{4}\right)^8 \dots \left(\frac{3}{4}\right)^9$
- 3.171 Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις:
- α) Όλοι οι πραγματικοί αριθμοί έχουν αντίθετο.
- β) Όλοι οι πραγματικοί αριθμοί έχουν αντίστροφο.
- γ) Δεν υπάργει πραγματικός αριθμός που να ισούται με τον αντίθετό του.
- δ) Το 1 είναι ο μοναδικός πραγματικός αριθμός που ισούται με τον αντίστροφό του.
- ε) Αν δύο αριθμοί είναι ετερόσημοι, τότε σίγουρα είναι αντίθετοι.
- στ) Αν δύο αριθμοί είναι αντίστροφοι, τότε σίγουρα είναι ομόσημοι.
- ζ) Ισχύει η ισοδυναμία αβ ≠ 0 ⇔ (α ≠ 0 ἡ β ≠ 0).
- η) Αν ο αριθμός γ έχει αντίστροφο και αγ = βγ, τότε θα ισχύει ότι α = β.
- θ) Αν $\alpha \neq 0$ και $\alpha x + \alpha y = 0$, τότε σίγουρα οι αριθμοί x και y είναι αντίθετοι.
- 3.172 Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις:
- α) Ισχύει ότι $-5^4(-5)^6 = (-5)^{10}$.
- β) Ισχύει ότι $-2^3(-2)^5 = 2^8$.
- γ) Για κάθε $x \in \mathbb{R}$ ισχύει ότι $(x^3)^3 = x^2x^4$.
- δ) Ισχύει ότι $2 \cdot 3^7 = 6^7$.
- ε) Ισγύει ότι $4^8 + 4^8 + 4^8 + 4^8 = 4^9$.
- στ) Αν οι αριθμοί μ και ν είναι αντίθετοι, τότε είναι $5^{\mu} \cdot 5^{\nu} = 1$.
- ζ) Για οποιονδήποτε πραγματικό αριθμό x ισχύει $ότι (x - 1)^0 = 1.$
- η) Για οποιονδήποτε φυσικό αριθμό ν ισχύει ότι $(-5)^{v}(-5)^{v+2} > 0.$
- θ) Αν ο αριθμός ν είναι άρτιος, τότε $-7^{v} > 0$.
- ι) Αν ο αριθμός ν είναι περιττός, τότε οι αριθμοί -5° kai $(-5)^{-\circ}$ είναι αντίστροφοι.

- 3.173 Να γαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις:
- $\alpha) (\alpha \beta)^2 = (\beta \alpha)^2$
- $\beta) (-\beta \alpha)^2 = (\alpha + \beta)^2$
- $\gamma) (\alpha + \beta)^2 = -(-\alpha \beta)^2$
- $\delta) (\alpha \beta)^3 = (\beta \alpha)^3$
- $\epsilon) (-\alpha \beta)^3 = -(\alpha + \beta)^3$
- $(\alpha + \beta)(\beta \alpha) = \alpha^2 \beta^2$
- $\zeta) (-\alpha + \beta)(\alpha + \beta) = \beta^2 \alpha^2$
- $\mathbf{n}) \quad (-\alpha \beta)(\alpha \beta) = \beta^2 \alpha^2$
- 3.174 Σε καθεμία από τις παρακάτω ερωτήσεις νο επιλέξετε τη σωστή απάντηση.
- α) Αν οι αριθμοί x, y ≠ 0 είναι αντίθετοι, τότε ποιο από τις παρακάτω παραστάσεις δεν είναι ίση με 0.
 - A: $\frac{3}{x} + \frac{3}{y}$
- **B**: $\frac{x}{y} (-1)^{2017}$
- Γ : $(-2)^5 x 2^5 y$ Δ : $-2^4 x + (-2)^4 y$
- β) Η παράσταση $(\alpha^{-2}\beta^3)^{-1}$, όπου α , $\beta \neq 0$, δεν εί-
 - A: $\alpha^2 \beta^{-3}$ B: $\frac{\alpha^2}{\beta^3}$ Γ : $\frac{\beta^{-3}}{\alpha^{-2}}$ Δ : $\frac{\beta^3}{\alpha^2}$
- γ) Το $\frac{1}{2}$ του αριθμού 6^6 είναι ίσο με:
- **B**: 6^3 Γ : $3 \cdot 6^5$ Δ : 3^3
- δ) Ο αριθμός $2^{31} 2^{30}$ ισούται με:
- B: 2³¹
- Δ: 0
- ε) Ο αριθμός $5 \cdot 3^{21} 6 \cdot 3^{20}$ ισούται με:
- B: 3²¹ Γ: 3²²
- στ) Αν α, β, $\gamma \neq 0$, τότε η παράσταση α : $\left(\frac{\beta}{\gamma}\right)^{-\nu}$ δεν είναι ίση με:
 - A: $\alpha \left(\frac{\gamma}{\beta}\right)^{-\nu}$ B: $\alpha \left(\frac{\beta}{\gamma}\right)^{\nu}$
 - Γ : $\alpha : \left(\frac{\gamma}{\beta}\right)^{v}$ Δ : $\alpha \left(\frac{\gamma}{\beta}\right)^{v}$
- ζ) Αν ο αριθμός ν είναι φυσικός και ισχύει ότι $(-1)^{v}x + (-1)^{v+8}y = 0$, τότε:
 - **A:** x y = 0
- **B**: x + y = 0
- Γ : xy = 1
- Δ : x + y = -1
- η) Αν α, $\beta \neq 0$, τότε η παράσταση $(-\alpha \beta)^2$ δεν είναι ίση με:
- A: $(\alpha + \beta)^2$ B: $[-(\alpha + \beta)]^2$ Γ : $[-(-\alpha \beta)]^2$ Δ : $-(\alpha + \beta)^2$