单片机与复杂可编程 CPLD 器件的接口设计

一、基于总线结构的接口设计

单片机与 CPLD 之间的三总线结构,如下图所示:

二、实际电路连接

双向数据总线即单片机 P0 口,该 P0 口同 CPLD 的 IO 口之间通过 100 欧电阻匹配连接,解决电路设计不合理时带来的实验板安全问题。

单向控制总线包括读写控制输出 Rd 和 Wr, 地址锁存信号 ALE(AddressLockEnable)。 单向地址总线选择了 16 位地址最高位 P27,以便单片机系统实现统一编址。

三、地址锁存, 译码与统一编址

单片机低 8bit 地址锁存,同样采用 ALE 信号加地址锁存器 74373 模式 电路图:

地址译码:

编址:

驱动对象	电路设计	无关位为"x"
LCD 使能 12864-YA 1602-YB	YA	16'b 1xxx-xxxx-xxx0-1010 典型地址: (x = 1) 0xffea (x = 0) 0x800a 16'b 1xxx-xxxx-xxx0-1011 典型地址: (x = 1) 0xffeb (x = 0) 0x800b
数码管显示缓 冲寄存器 1 YD	VVR OR2 7Seg1	16'b 1xxx-xxxx-xxx0-1100 典型地址: 0xffec,0x800c
数码管显示缓 冲寄存器 2 YE	WR 0R2 7Seg2	16'b 1xxx-xxxx-xxx0-1101 典型地址: 0xffed,0x800d
数码管显示缓 冲寄存器 3 YF	WR 0R2 7Seg3	16'b 1xxx-xxxx-xxx0-1110 典型地址: 0xffee,0x800e
键盘输入 YD	WR OR2 7Seg4	16'b 1xxx-xxxx-xxx0-1111 典型地址: 0xffef,0x800f
IO1	Y0	16'b 1xxx-xxxx-xxx0-0000
IO2	Y1	16'b 1xxx-xxxx-xxx0-0001
IO3	Y2	16'b 1xxx-xxxx-xxx0-0010
IO4	Y3	16'b 1xxx-xxxx-xxx0-0011
IO5	Y4	16'b 1xxx-xxxx-xxx0-0100
IO6	Y5	16'b 1xxx-xxxx-xxx0-0101
预留	Y6	16'b 1xxx-xxxx-xxx0-0110
预留	Y7	16'b 1xxx-xxxx-xxx0-0111
预留	Y8	16'b 1xxx-xxxx-xxx0-1000
预留	Y9	16'b 1xxx-xxxx-xxx0-1001
预留	YA	16'b 1xxx-xxxx-xxx0-1010

四、电路设计

1、LCD总线接口设计

2、数码管接口设计

硬件电路

CPLD 内部电路

其中 7segscan 模块采用 VerilogHDL 语言描写

_7segscan(clk,dataA,dataB,dataC,dataD,segd,sel);	always@(posedge clk)
input [7:0]dataA;	begin
input [7:0]dataB;	i<=i+1;
input [7:0]dataC;	case(i)
input [7:0]dataD;	0:begin segd=dataA;sel=8;end
input clk;	1:begin segd=dataB;sel=4;end
output [7:0]segd;	2:begin segd=dataC;sel=2;end
output [3:0]sel;	3:begin segd=dataD;sel=1;end
	default:begin segd=8'bx;sel=0;end
reg [7:0]segd;	endcase
reg [3:0]sel;	end
reg [1:0]i;	endmodule