PadhAl: Information Theory and Cross Entropy

One Fourth Labs

Relation to Number of Bits

Relation between number of bits and entropy

- 1. Consider the Entropy equation from the previous section using shorthand P_i for P(X=i)
- 2. $H(X) = -\sum_{i \in \{A,B,C,D\}} P_i * log P_i$
- 3. Suppose there is a message X that you want to transfer that can take 4 values: A, B, C, D
- 4. For 4 values, we would use 2 Bits to transfer each message

Random Variable: X	2 Bit version	Probability Distribution: P(X=?)	Information Content: IC(X=?)
А	00	1/4	$-\log_2 2^2 = 2$ (ie $\log_a a^n = n$)
В	01	1/4	$-\log_2 2^2 = 2$
С	10	1/4	$-\log_2 2^2 = 2$
D	11	1/4	$-\log_2 2^2 = 2$

- 5. Now we can make the connection that the number of bits required to transfer a message is equal to the information content of that message
- 6. Consider another message X with 8 values: A, B, C, D, E, F, G, H

Random Variable: X	3 Bit version	Probability Distribution: P(X=?)	Information Content: IC(X=?)
А	000	1/8	$-\log_2 2^3 = 3$ (ie $\log_a a^n = n$)
В	001	1/8	$-\log_2 2^3 = 3$
С	010	1/8	$-\log_2 2^3 = 3$
D	100	1/8	$-\log_2 2^3 = 3$
Е	011	1/8	$-\log_2 2^3 = 3$
F	101	1/8	$-\log_2 2^3 = 3$
G	110	1/8	$-\log_2 2^3 = 3$
Н	111	1/8	$-\log_2 2^3 = 3$

- 7. While sending a continuous stream of messages, we would be interested in minimizing the stream of bits that we send
- 8. Consider the same 4 valued example but with a different distribution

Random Variable: X	Probability Distribution: P(X=?)	Information Content: IC(X=?)
А	1/2 (High prob)	$-\log_2 2^1 = 1$ (ie $\log_a a^n = n$)
В	1/4 (Medium prob)	$-\log_2 2^2 = 2$
С	1/8 (Low prob)	$-\log_2 2^3 = 3$
D	1/8 (Low prob)	$-\log_2 2^3 = 3$

PadhAl: Information Theory and Cross Entropy

One Fourth Labs

- 9. This situation is considered favourable only if the average number of bits is less that the value it takes for an equally distributed set of values
- 10. The average is calculated using Entropy $H(X) = -\sum_{i \in \{A,B,C,D\}} P_i * log P_i$
- 11. Average/Entropy = $\frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{8}(3) = 1.75$ which is < 2
- 12. Thus, the Entropy gives us the ideal number of bits that should be used to transmit the message