

11.
$$Ay(x) + By\left(\frac{ax-\beta}{x+b}\right) + Cy\left(\frac{bx+\beta}{a-x}\right) = f(x), \qquad \beta = a^2 + ab + b^2.$$

In the equation, let us substitute first $\frac{ax-\beta}{x+b}$ for x and then $\frac{bx+\beta}{a-x}$ for x to obtain (the original equation comes first)

$$Ay(x) + By(u) + Cy(w) = f(x),$$

 $Ay(u) + By(w) + Cy(x) = f(u),$
 $Ay(w) + By(x) + Cy(u) = f(w),$
(1)

where $u = \frac{ax - \beta}{x + b}$ and $w = \frac{bx + \beta}{a - x}$. Eliminating y(u) and y(w) from the system of linear algebraic equations (1), we arrive at a solution of the original functional equation.

Reference

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations: Exact Solutions (Supplement. Some Functional Equations) [in Russian], Faktorial, Moscow, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/fe/fe1211.pdf