TRABAJO PRÁCTICO Nº 3 CUESTIONES TEÓRICO PRÁCTICAS

1. Sean f,g funciones cuyas transformadas de Laplace existen para $s > \alpha$ y sean a y b dos constantes cualesquiera. Demuestre, para $s > \alpha$, la **Linealidad de las transformadas de Laplace.** Es decir, demuestre que si a y b son constantes, entonces

Año: 2020

$$\mathcal{L}[af(t)+bg(t)]=a\mathcal{L}[f(t)]+b\mathcal{L}g(t)$$

para todo s tal que las transformadas de las funciones f y g existan a la vez.

- 2. Para las transformadas F(s) de la tabla, ¿qué se puede decir acerca de $\lim_{s \to \infty} F(s)$?
- 3. Traslación en s:
- a) Demuestre que si la transformada de Laplace $\mathcal{L}'[f(t)](s)=F(s)$ existe para $s>\alpha$, entonces $\mathcal{L}'[e^{at}.f(t)](s)=F(s-a)$
- b) Observar las conclusiones anteriores en gráficos de f(t) = t, $\mathcal{L}[f(t)]$, $h(t) = e^{at} f(t)$ y $\mathcal{L}[h(t)]$.
- 4. Derivadas de la transformada de Laplace:
- a) Sea $F(s) = \mathcal{L}[f(t)]$ y suponga que f(t) es continua por partes en $[0,\infty)$ y de orden exponencial. Demuestre que para $s > \alpha$ se cumple que:

$$\mathcal{L}\left[t^{n}f\left(t\right)\right]=\left(-1\right)^{n}\frac{d^{n}}{ds^{n}}F\left(s\right)$$

- b) Use la propiedad anterior para determinar:
- i) $\mathcal{L}[t\cos bt] =$

ii)
$$\mathcal{L}\left[t^2\cos bt\right] =$$

c) Partiendo de la transformada $\mathcal{L}'[1] = \frac{1}{s}$, use la propiedad anterior para demostrar que \mathcal{L}'

$$\left[t^{n}\right] = \frac{n!}{s^{n+1}}.$$

5. Demostrar la siguiente identidad para funciones continuas f(t) (suponiendo que la transformada existe)

$$\angle \left[\int_0^t f(t) dt \right] = \frac{1}{s} F(s)$$

- 6. Traslación en t:
- a) Demuestre que, si $\mathcal{L}[f(t)](s)=F(s)$ existe para $s>\alpha\geq 0$ y a es una constante positiva, entonces:

$$\mathcal{L}\left[f(t-a).u_{a}(t)\right]=e^{-as}.F(s)$$

- b) Use la propiedad anterior para demostrar que $\mathcal{L}^{-1}[e^{-3s}.F(s)] = f(t-3).u_3(t)$
- 7. Transformadas de funciones periódicas:

Demuestre que si la función f(t) con período p es continua por partes para $t \ge 0$, entonces, la transformada de Laplace $\mathcal{L}[f(t)](s)=F(s)$ existe para s>0 y está dada por

$$\mathcal{L}\left[f(t)\right] = \frac{1}{1 - e^{-ps}} \int_{0}^{p} f(t)e^{-st}dt$$

Es decir, de debe demostrar que:

$$si f(t) = f(t+p) \Longrightarrow \mathcal{L}[f(t)] = \frac{1}{1-e^{-ps}} \int_0^p f(t)e^{-st} dt$$

8. Convolución: sean f(t) y g(t) funciones continuas por partes en $[0,\infty)$. La convolución de f(t) y g(t), que se denota f * g, se define como

Año: 2020

$$(f * g)(t) := \int_0^t f(t-v)g(v)dv.$$

Sean f(t) y g(t) continuas por partes en $[0,\infty)$ y de orden exponencial α ; sean $F(s) = \mathcal{L}[f]$ y $G(s) = \mathcal{L}[g]$

Demuestre que $\mathcal{L}[f * g] = F(s).G(s)$, o, de manera equivalente,

$$\mathcal{L}^{-1}\left[F(s).G(s)\right] = (f * g)(t)$$

CUESTIONES TECNICAS

1. Hallar la transformada de Laplace de cada función:

a)
$$f(t) = 3t + 1$$

b)
$$f(t) = \cos 2t$$

e)
$$f(t) = \begin{cases} t, \ para \ 0 \le t \le 1 \\ 1, \ para \ 1 \le t \end{cases}$$

c)
$$f(t) = e^{2t}$$

d)
$$f(t) = 5 + t^2$$

2. Con ayuda de las propiedades y tabla de transformadas, obtener:

a)
$$\mathcal{L}\left\{3t^2-e^{2t}\right\}$$

b)
$$\mathcal{L}\left\{t^2 + e^t sen 3t\right\}$$

c)
$$\mathcal{L}\{3t^4 - 2t^2 + 1\}$$

d)
$$\mathcal{L}\left\{e^{3t}t^2 + e^{-2t}\cos(5t+1)\right\}$$

Use la transformada de Laplace para calcular el valor de las siguientes integrales impropias: 3.

a)
$$\int_{0}^{\infty} \frac{\cos(t \, x)}{x^2 + 1} dx$$

b)
$$\int_{0}^{\infty} t \cdot e^{-2t} \cos t dt =$$

4. Hallar f(t) para cada F(s) dada:

a)
$$F(s) = \frac{1}{(s-1)(s-2)}$$

b)
$$F(s) = \frac{s}{s^2 - 4}$$
 c) $F(s) = \frac{3s - 1}{s^2 + 9}$

c)
$$F(s) = \frac{3s-1}{s^2+9}$$

d)
$$F(s) = \frac{9s-6}{(s-1)(s^2-4)}$$

e)
$$F(s) = \frac{s+12}{s^2+4s}$$

e)
$$F(s) = \frac{s+12}{s^2+4s}$$
 f) $F(s) = \frac{3s}{s^2+2s-8}$

5. Resolver las siguientes ecuaciones diferenciales aplicando transformadas de Laplace:

a)
$$y'' + y = 0$$

$$y(0) = 1$$
, $y'(0) = -1$

b)
$$4y'' + \pi^2 y = 0$$

$$y(0) = 2$$
, $y'(0) = 0$

c)
$$y'' + 2y' + 2y = 0$$

$$v(0) = 0$$
, $v'(0) = 1$

Año: 2020 ANÁLISIS IV

$$d) \quad y'' - ky = 0$$

$$y(0) = 2$$
, $y'(0) = k$

e)
$$v'' + v = 2$$

$$y(0) = 0$$
, $y'(0) = 3$

f)
$$y'' + y = 3\cos 2t$$

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = 3$

g)
$$y''' + 3y'' + 3y' + y = 0$$

$$v(0) = -4$$
, $v'(0) = 4$, $v''(0) = -2$

h)
$$y''' + 4y'' + y' - 6y = -12$$

$$y(0) = 1$$
, $y'(0) = 4$, $y''(0) = -2$

i)
$$y''' + y'' + 3y' - 5y = 16e^{-t}$$

$$y(0) = 0$$
, $y'(0) = 2$, $y''(0) = -4$

j)
$$y''+4y = g(t)$$
 donde

$$g(t) = \begin{cases} sent, 0 \le t \le 2\pi \\ 0, 2\pi < t \end{cases} \quad y(0) = 1; y'(0) = 3$$

6. Resolver las siguientes ecuaciones diferenciales aplicando transformadas de Laplace cuando las condiciones iniciales no están dadas en el origen:

a)
$$y'' - y = t - 2$$

$$y(2) = 3$$
, $y'(2) = 0$

b)
$$y'' - 2y' + 2y = 6t - 2$$

$$y(-1) = 3$$
, $y'(-1) = 7$

c)
$$y'' + y = t$$

$$y(\pi) = 0, y'(\pi) = 0$$

d)
$$y'' - y' - 2y = -8\cos t - 2\sin t$$

$$y(\pi/2) = 1$$
, $y'(\pi/2) = 0$

7. Encontrar la solución los problemas de valor inicial:

a)
$$y'' + 3t y' - 6y = 1$$

$$y(0) = 0$$
, $y'(0) = 0$

b)
$$t y'' - 2y' + t y = 0$$

$$y(0) = 1$$
, $y'(0) = 0$

Sugerencia: $\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\}(t) = \frac{1}{2}(sent-t\cos t)$

c)
$$ty'' - ty' + y = 2$$

$$y(0) = 2$$
, $y'(0) = -1$

d)
$$y'' + t y' - y = 0$$

$$y(0) = 0$$
, $y'(0) = 3$

8. Determinar $\mathcal{L}\{f\}$ donde f(t) es periódica. Trazar la gráfica de f(t).

a)
$$f(t) = t$$
 $0 < t < 2, p = 2$

b)
$$f(t) = e^t$$
 $0 < t < 1$, $p = 1$

c)
$$f(t) = \begin{cases} e^{-t} & 0 < t < 1 \\ 1 & 1 < t < 2 \end{cases}$$
 $p = 2$

Ejercicios adicionales: Resolver algunos de los ejercicios que aparecen en la bibliografía citada a continuación:

Zill, D. (1986). "Ecuaciones Diferenciales con aplicaciones". México: Iberoamérica. Páginas 271, 272, 287, 288, 289, 299

Edwards H., Penney D. (2001) "Ecuaciones diferenciales" México: Prentice Hall.. Páginas 455, 456, 467, 476, 477, 487, 488, 499.

Bibliografía

Edwards H., Penney D. (2001). "Ecuaciones diferenciales". México: Prentice Hall

López Rodriguez, M. (2007). "Problemas resueltos de Ecuaciones Diferenciales". España: Thomson.

Nagle K., Saff, E., Snider A. (2001). "Ecuaciones diferenciales y problemas con valores en la frontera". México: Addison Wesley

Zill D. (1986) "Ecuaciones Diferenciales con aplicaciones". México: Iberoamérica

Zill D., Cullen M. (2002) "Ecuaciones Diferenciales con problemas de valores en la frontera". México: Thomson