Aprendizado de Máquina em Sistemas de Detecção de Intrusão em Rede baseados em Anomalia

Thiago R. C. De Lima

30 de Junho de 2015 Universidade Federal do Paraná

Sumário

- Sistemas de Detecção de Intrusão
- Aprendizado de Máquina
- Dados
- Algoritmos
- Testes
- Conclusão

Introdução

Arquitetura

Dados

- Cabeçalho
- Corpo
- Conexão Única (SCD)
- Conexões Múltiplas (MCD)
- Redução

Algoritmos

- Rede de Bayes
- Cadeia de Markov
- Redes Neurais
- •SVM
- Árvore de Decisão

Representabilidade

	Tamanho Treino	Tamanho Teste	Tempo	Precisão
1	10%	90%	16h13m	92.22%
2	20%	80%	24h02m	94.54%
3	30%	70%	27h32m	95.65%
4	40%	60%	32h11m	98.62%
5	50%	50%	38h45m	99.64%

Imprevisibilidade

• Inicial:

Treino - 258880

Teste - 275204

Análogo:

148343

Desconhecido:

276548

Imprevisibilidade

	DT					
	TP_{rate}	FP_{rate}	Tempo	Acertos	Precisão	
Inicial	0.982	0.018	6.92s	98.18%	0.982	
Análogo	0.912	0.856	3.73s	91.23%	0.885	
Desconhecido	0.503	0.497	6.95s	50.29%	0.751	

	SVM					
	TP_{rate}	FP_{rate}	Tempo	Acertos	Precisão	
Inicial	0.971	0.029	15h13min	98.43%	0.984	
Análogo	0.902	0.845	8h12min	90.27%	0.891	
Desconhecido	0.52	0.484	15h29min	50.78%	0.753	

Seleção de Atributos

	DT					
	TP_{rate}	FP_{rate}	Tempo	Acertos	Precisão	
Inicial	1.0	0.0	5.75s	99.98%	1.0	
Análogo	0.848	0.429	3.1s	84.82%	0.914	
Desconhecido	0.499	0.501	5.78s	49.86%	0.414	

	SVM				
	TP_{rate}	FP_{rate}	Tempo	Acertos	Precisão
Inicial	0.503	0.502	14h45min	50.3%	0.75
Análogo	0.068	0.068	7h56min	6.78%	0.937
Desconhecido	0.5	0.5	14h51min	50.0%	0.75

Conclusão

- Resultados
- Open Issues
- Dúvidas

Referências

- [1] R. Sommer e V. Paxson. Outside the closed world: On using machine learning for network intrusion detection. Security and Privacy (SP), 2010 IEEE Symposium on, páginas 305–316, May de 2010.
- [2] Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, e Ian H. Witten. Weka—experiences with a java open-source project. J. Mach. Learn. Res., 11:2533–2541, dezembro de 2010.
- [3] Carlos A. Catania e Carlos García Garino. Automatic network intrusion detection: Current techniques and open issues. Comput. Electr. Eng., 38(5):1062–1072, setembro de 2012.
- [4] Jonathan J. Davis e Andrew J. Clark. Data preprocessing for anomaly based network intrusion detection: A review. volume 30, páginas 353–375, Oxford, UK, UK, setembro de 2011. Elsevier Advanced Technology Publications.