NXP LPC 1768 fast usage guide

Reference manual:

LPC176x_USER_MANUAL.pdf

Schematic:

HY-LandTiger_BOARD_SCHEMATIC.pdf

Example:

Sample project

Composition of the chip

- ARM 32-bit Cortex-M3 Microcontroller with MPU, CPU clock up to 100MHz,
- 5 I 2kB on-chip Flash ROM with enhanced Flash Memory Accelerator,
- Four 32-bit Timers with capture/compare,
 Standard PWM Timer block,
- 64kB RAM, Nested Vectored Interrupt Controller,
- Eight channel General purpose DMA controller, AHB Matrix, APB,
- System Tick Timer, Repetitive Interrupt Timer, Brown-out detect circuit,

Composition of the chip (II)

- Ethernet 10/100 MAC with RMII interface and dedicated DMA,
- USB 2.0 full-speed Device controller and Host/OTG controller with DMA,
- CAN 2.0B with two channels, Four UARTs, one with full Modem interface,
- Three I2C serial interfaces, Three SPI/SSP serial interfaces, I2S interface,
- General purpose I/O pins, I2-bit ADC with 8 channels, I0-bit DAC,

Composition of the chip(III)

- Motor control PWM for three-phase Motor control, Quadrature Encoder,
- Watchdog Timer, Real Time Clock with optional Battery backup,

- Power-On Reset, Power Management Unit, Wakeup Interrupt Controller,
- Crystal oscillator, 4MHz internal RC oscillator, PLL,

Tool chain

Block diagram of the Chip (p.9)

Sample project

- It is a base project that includes
 - boot of the chip
 - startup_LPCI7xx.sincludes libraries
 - core_cm3.c
 - system_LPC17xx.c & system_LPC17xx.c
 - The libraries of some peripheral core according to the following convention
 - peripheral.h
 /* prototypes */
 - lib_peripheral.c /* base functions */
 - IRQ_peripheral.c /* interrupt service routines */
 - funct_peripheral.c /* advanced user functions */

startup.s

- Has two main functionalities
 - To define stack e heap
 - To define the interrupt vector table.

Clock

Clock selection

Current values in sample

Forced I => on Forced 0 => off

Look at the schematic

• LD4 \rightarrow p2.7 LD5 \rightarrow p2.8

LDII \rightarrow p2.0

etc....

LD11

LD10

Pin connect block (pag. 113)

Table 84. Pin function select register 4 (PINSEL4 - address 0x4002 C010) bit description

Tuble 04.	. I in function select register 4 (I model - address 0x4002 00 10) bit description					ption
PINSEL4	Pin name	Function when	Function when 01	Function when 10	Function when 11	Reset value
1:0	P2.0	SPIO Port 2.0	PWM1.1	TXD1	Reserved	00
3:2	P2.1	GPIO Port 2.1	PWM1.2	RXD1	Reserved	00
5:4	P2.2	GPIO Port 2.2	PWM1.3	CTS1	Reserved 2	00
7:6	P2.3	GPIO Port 2.3	FWM1.4	DCD1	Reserved 2	00
9:8	P2.4	GPIO Port 2.4	FWM1.5	DSR1	Reserved 2	00
11:10	P2.5	GPIO Port 2.5	P WM1.6	DTR1	Reserved 2	00
13:12	P2.6	GPIO Port 2.6	PCAP1.0	RI1	Reserved 2	00
15:14	P2.7	GPIO Port 2.7	RD2	RTS1	Reserved	00
17:16	P2.8	GPIO Port 2.8	TD2	TXD2	ENET_MDC	00
19:18	P2.9	GPIO Port 2.9	USB_CONNECT	RXD2	ENET_MDIO	00
21:20	P2.10	GPIO Port 2.10	EINT0	NMI	Reserved	00
23:22	P2.11[1]	GPIO Port 2.11	EINT1	Reserved	I2STX_CLK	00
25:24	P2.12[1]	GPIO Port 2.12	EINT2	Reserved	I2STX_WS	00
27:26	P2.13[1]	GPIO Port 2.13	EINT3	Reserved	I2STX_SDA	00
31:28	-	Reserved	Reserved	Reserved	Reserved	0

General purpose I/O

Table 102. GPIO register map (local bus accessible registers - enhanced GPIO features)

Table 102.	2. GPIO register map (local bus accessible registers - enhanced GPIO features)						
Generic Name	Description	Access	Reset value[1]	PORTn Register Name & Address			
FIODIR	Fast GPIO Port Direction control register. This register individually controls the direction of each port pin.	R/W	0	FIO0DIR - 0x2009 C000 FIO1DIR - 0x2009 C020 FIO2DIR - 0x2009 C040 FIO3DIR - 0x2009 C060 FIO4DIR - 0x2009 C080			
FIOMASK	Fast Mask register for port. Writes, sets, clears, and reads to port (done via writes to FIOPIN, FIOSET, and FIOCLR, and reads of FIOPIN) alter or return only the bits enabled by zeros in this register.	R/W	0	FIO0MASK - 0x2009 C010 FIO1MASK - 0x2009 C030 FIO2MASK - 0x2009 C050 FIO3MASK - 0x2009 C070 FIO4MASK - 0x2009 C090			
FIOPIN	Fast Port Pin value register using FIOMASK. The current state of digital port pins can be read from this register, regardless of pin direction or alternate function selection (as long as pins are not configured as an input to ADC). The value read is masked by ANDing with inverted FIOMASK. Writing to this register places corresponding values in all bits enabled by zeros in FIOMASK.	R/W	0	FIO0PIN - 0x2009 C014 FIO1PIN - 0x2009 C034 FIO2PIN - 0x2009 C054 FIO3PIN - 0x2009 C074 FIO4PIN - 0x2009 C094			
	Important: if an FIOPIN register is read, its bit(s) masked with 1 in the FIOMASK register will be read as 0 regardless of the physical pin state.						
FIOSET	Fast Port Output Set register using FIOMASK. This register controls the state of output pins. Writing 1s produces highs at the corresponding port pins. Writing 0s has no effect. Reading this register returns the current contents of the port output register. Only bits enabled by 0 in FIOMASK can be altered.	R/W	0	FIO0SET - 0x2009 C018 FIO1SET - 0x2009 C038 FIO2SET - 0x2009 C058 FIO3SET - 0x2009 C078 FIO4SET - 0x2009 C098			
FIOCLR	Fast Port Output Clear register using FIOMASK. This register controls the state of output pins. Writing 1s produces lows at the corresponding port pins. Writing 0s has no effect. Only bits enabled by 0 in FIOMASK can be altered.	WO	0	FIO0CLR - 0x2009 C01C FIO1CLR - 0x2009 C03C FIO2CLR - 0x2009 C05C FIO3CLR - 0x2009 C07C FIO4CLR - 0x2009 C09C			

Direction In/out

If input Read pin value

If output set/clr

Buttons

Look at the schematic

released = I pressed = 0

KEY

- INT0 → p2.10
- KEYI \rightarrow p2.11
- KEY2 \rightarrow p2.12

F Z . 0/ 1 D Z/ 1 A D Z
.9/USB_CONNECT/RXD2
P2.10/EINT0/NMI
P2.11/EINT1/I2STX_CLK
P2.12/EINT2/I2STX WS
P2.13/EINT3/I2STX SDA
_

64	P2.9	USB CONNECT
53	P2.10	ICD CONNECT
52	P2.11	VEVI
51	P2.12	KETT KEY2
50	P2.13	TP INT
		TI_IIVI
	52 51	53 P2.10 52 P2.11 51 P2.12

CPU

Pin connect block (pag. 113)

Table 84. Pin function select register 4 (PINSEL4 - address 0x4002 C010) bit description

Tuble 04.	. I ill fallotton select register 4 (i littobb4 - address 0x4002 00 10) bit description					Ption
PINSEL4	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P2.0	GPIO Port 2.0	PWM1.1	TXD1	Reserved	00
3:2	P2.1	GPIO Port 2.1	PWM1.2	RXD1	Reserved	00
5:4	P2.2	GPIO Port 2.2	PWM1.3	CTS1	Reserved 2	00
7:6	P2.3	GPIO Port 2.3	PWM1.4	DCD1	Reserved 2	00
9:8	P2.4	GPIO Port 2.4	PWM1.5	DSR1	Reserved 2	00
11:10	P2.5	GPIO Port 2.5	PWM1.6	DTR1	Reserved 2	00
13:12	P2.6	GPIO Port 2.6	PCAP1.0	RI1	Reserved 2	00
15:14	P2.7	GPIO Port 2.7	RD2	RTS1	Reserved	00
17:16	P2.8	GPIO Port 2.8	TD2	TXD2	ENET_MDC	00
19:18	P2.9	GPIO Port 2.9	USB_CONNECT	RXD2	ENET_MDIO	00
21:20	P2.10	GPIO Port 2.10	EINT0	NMI	Reserved	00
23:22	P2.11[1]	GPIO Port 2.1	EINT1	Reserved	I2STX_CLK	00
25:24	P2.12[1]	GPIO Port 2.12	EINT2	Reserved	I2STX_WS	00
27:26	P2.13[1]	GPIO Port 2.13	EINT3	Reserved	I2STX_SDA	00
31:28	-	Reserved	Reserved	Reserved	Reserved	0

- ⊕ Chapter 1: LPC176x/5x Introductory information
- ⊕ Chapter 2: LPC176x/5x Memory map
- E- Chapter 3: LPC176x/5x System control
 - 3.1 Introduction
 - 3.2 Pin description
 - 📭 3.3 Register description
 - 3.4 Reset
 - 3.5 Brown-out detection
 - 3.6 External interrupt inputs
- ⊕ Chapter 4: LPC176x/5x Clocking and power control
- ⊕ Chapter 5: LPC176x/5x Flash accelerator

External Interrupt mode

Bit	Symbol	Value	Description	Reset value
0	EXTMODE0	0	Level-sensitivity is selected for $\overline{\text{EINT0}}.$	0
		1	EINT0 is edge sensitive.	_

Bit	Symbol	Value	Description	Reset value
0 EXTPOLAR0		0	EINT0 is low-active or falling-edge sensitive (depending on EXTMODE0).	0
		1	EINT0 is high-active or rising-edge sensitive (depending on EXTMODE0).	

Table 9. External Interrupt registers							
Name	Description	Access	Reset value[1]	Address			
EXTINT	The External Interrupt Flag Register contains interrupt flags for EINT0, EINT1, EINT2 and EINT3. See <u>Table 10</u> .	R/W	0x00	0x400F C140			
EXTMODE	The External Interrupt Mode Register controls whether each pin is edge- or level-sensitive. See Table 11.	R/W	0x00	0x400F C148			
EXTPOLAR	The External Interrupt Polarity Register controls which level or edge on each pin will cause an interrupt. See <u>Table 12</u> .	R/W	0x00	0x400F C14C			

C programming

- The main program is written in C language, while boot is in ASM
- Please refer to libraries
 - Constants definition in LPC17xx.h makes easier the board programming (see next slide)
- Useful directives to link ASM to C
 - EXPORT : makes visible a function outside the file defining it
 - IMPORT : makes visible a function from other files

```
LPC17xx.h sample.c
 154
            uint32 t RESERVED8[4];
                                             /* USB Device/OTG Interrupt Register */
 155
         IO uint32 t USBIntSt;
 156
         IO uint32 t DMAREQSEL;
 157
         IO uint32 t CLKOUTCFG;
                                           /* Clock Output Configuration
                                                                                  */
       } LPC SC TypeDef;
 158
 159
      /*---- Pin Connect Block (PINCON) -------
 160
 161
      /** @brief Pin Connect Block (PINCON) register structure definition */
 162
      typedef struct
 163 🗀 {
 164
        IO uint32 t PINSELO;
 165
        IO uint32 t PINSEL1;
         IO uint32 t PINSEL2;
 166
 167
          IO uint32 t PINSEL3;
         IO uint32 t PINSEL4;
 168
 169
         TO wint32 t PINSEL5;
         IO uint32 t PINSEL6;
 170
 171
        IO uint32 t PINSEL7;
        __IO uint32 t PINSEL8;
 172
         IO uint32 t PINSEL9;
 173
 174
         IO uint32 t PINSEL10;
 175
             uint32 t RESERVED0[5];
 176
         IO uint32 t PINMODE0;
 177
         IO uint32 t PINMODE1;
 178
        IO uint32 t PINMODE2;
 179
         IO uint32 t PINMODE3;
         IO uint32 t PINMODE4;
 180
 181
        IO uint32 t PINMODE5;
        __IO uint32 t PINMODE6:
 182
 183
         IO uint32 t PINMODE7;
                                 LPC PINCON->PINSEL4 &= 0xFFFF0000;
         IO uint32 t PINMODE8;
 184
        __IO uint32 t PINMODE9;
 185
         IO uint32 t PINMODE ODO;
 186
 187
         IO uint32 t PINMODE OD1;
 188
         IO uint32 t PINMODE OD2;
 189
         IO uint32 t PINMODE OD3;
         IO uint32 t PINMODE OD4;
 190
          IO uint32 t I2CPADCFG;
 191
       LPC PINCON TypeDef;
 193
```

C programming (II)

- the <u>extern</u> directive
 - Permits to import a variable from other file (where it is defined)
 - Please see:
 - unsigned char led_value;
 - It is allocated file lib_led.h
 - It is used in funct_led.h
 - extern unsigned char led_value;
 - Can be imported (and manipulated with care) by any file in the project
 - like in sample.c.

° TIMER

Timer 0/1/2/3

Match register value calculation:

$$m = t [s] * f [1/s]$$

To obtain

$$t = 10s$$

$$\rightarrow$$
 m = 10 * 25*10⁶

$$\rightarrow$$
 M = 25*10⁷

$$\rightarrow$$
 M = 0×EE6B280

Table 420. Time I COOTTI E I CO STEGISTEI THAT	Table 426.	TIMER/COUNTER0-3 register n	nap
--	------------	-----------------------------	-----

	. TIMER/COUNTER0-3 register map	A	Decet	TIMED» Desistant
Generic Name	Description	Access		TIMERn Register/ Name & Address
IR	Interrupt Register. The IR can be written to clear interrupts. The IR can be read to identify which of eight possible interrupt sources are pending.	R/W	0	T0IR - 0x4000 4000 T1IR - 0x4000 8000 T2IR - 0x4009 0000 T3IR - 0x4009 4000
TCR	Timer Control Register. The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	R/W	0	T0TCR - 0x4000 4004 T1TCR - 0x4000 8004 T2TCR - 0x4009 0004 T3TCR - 0x4009 4004
TC	Timer Counter. The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	R/W	0	T0TC - 0x4000 4008 T1TC - 0x4000 8008 T2TC - 0x4009 0008 T3TC - 0x4009 4008
PR	Prescale Register. When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	R/W	0	T0PR - 0x4000 400C T1PR - 0x4000 800C T2PR - 0x4009 000C T3PR - 0x4009 400C
PC	Prescale Counter. The 32-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	R/W	0	T0PC - 0x4000 4010 T1PC - 0x4000 8010 T2PC - 0x4009 0010 T3PC - 0x4009 4010
MCR	Match Control Register. The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	R/W	0	T0MCR - 0x4000 4014 T1MCR - 0x4000 8014 T2MCR - 0x4009 0014 T3MCR - 0x4009 4014
MRD	Match Register 0. MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	R/W	0	T0MR0 - 0x4000 4018 T1MR0 - 0x4000 8018 T2MR0 - 0x4009 0018 T3MR0 - 0x4009 4018
MR1	Match Register 1. See MR0 description.	R/W	0	T0MR1 - 0x4000 401C T1MR1 - 0x4000 801C T2MR1 - 0x4009 001C T3MR1 - 0x4009 401C
MR2	Match Register 2. See MR0 description.	R/W	0	T0MR2 - 0x4000 4020 T1MR2 - 0x4000 8020 T2MR2 - 0x4009 0020 T3MR2 - 0x4009 4020
MR3	Match Register 3. See MR0 description.	R/W	0	T0MR3 - 0x4000 4024 T1MR3 - 0x4000 8024 T2MR3 - 0x4009 0024 T3MR3 - 0x4009 4024

Timing checks (I)

```
#include "timer/timer.h"

int main(void) {
   int i=0, j=0;

   LED_init();
   BUTTON_init();
   init_timer(0,0xEE6B280);
   enable_timer(0);

] while(1) {
   i++;
   LED_Out(i);
   j=100000;
   while(--j);
   if(i==255)
    i=0;
}
```

Timer 0		23
Prescaler PR: 0x00000000 PC: 0x00000000	Timer TCR: 0x00000000	Interrupt Register
Match Channels MCR: 0x00000003 MR0: 0x0EE6B280	EMR: 0x00000000 MR1: 0x00000000 MR2: 0x000000	00 MR3: 0x00000000
✓ Interrupt on MR0 ✓ Reset on MR0 ✓ Stop on MR0	☐ Interrupt on MR1 ☐ Interrupt on ☐ Reset on MR1 ☐ Reset on MI ☐ Stop on MR1 ☐ Stop on MR	R2 Reset on MR3
EMC0: Nothing External Match 0 MR0 Interrupt	EMC1: Nothing External Match 1 External Match 1 MR1 Interrupt MR2 Interrupt	tch 2 External Match 3
CCR: 0x00000000 CR0: 0x00000000	CR1: 0x00000000	
Rising Edge 0 Falling Edge 0 Interrupt on Event (CAPO.0 CR0 Interrupt	Rising Edge 1 Falling Edge 1 Interrupt on Event 1 CAP0.1 CR1 Interrupt	
Count Control CTCR: 0x00000000	Mode: Timer	Counter Input: CAP0.0

Timing check (II)

Timer 0		23	_]
Prescaler Timer TCR: 0x0000000 TC: 0x009986		IR: 0x00000000	
Match Channels MCR: 0x00000003 EMR: 0x00000000 MR0: 0x0EE6B280 MR1: 0x00000000	MR2: 0x00000000		ilitato, sta ontando
✓ Interrupt on MR0	Reset on MR2 Stop on MR2 EMC2: Nothing	Interrupt on MR3 Reset on MR3 Stop on MR3 EMC3: Nothing ▼ External Match 3 MR3 Interrupt	
Capture Channels CCR: 0x00000000 CR0: 0x000000000 CR1: 0x000000000	j_ Milz incoropt	j_ Mito interrupt	
☐ Rising Edge 0 ☐ Rising Edge 1 ☐ Falling Edge 0 ☐ Falling Edge 1 ☐ Interrupt on Event 0 ☐ Interrupt on Eve ☐ CAP0.0 ☐ CAP0.1 ☐ CR0 Interrupt ☐ CR1 Interrupt	nt 1		
CTCR: 0x00000000 Mode: Timer	Count	er Input: CAP0.0	
le	/		
	Simulation	t1: 0.40339229 sec	L

Timing check(III)

