Planning for Human-Robot Collaboration

PhD of Christoph Strassmair (Audi AG)

Human-Robot Collaboration

What's Involved

- The goal is to allow efficient Human-Robot Collaboration (HRC) in industrial settings
- Create a system that allows the robot to support the human during task execution as a human co-worker would
- Means scheduling the right action at the right time for the robot
- Requires interpretation of the human behaviour and reasoning about spatio-temporal consequences of actions
- A further critical aspect is the reactivity of the system
 - In order to allow realistic HRC the robot has to react within a few seconds
 - Time intensive online reasoning is thus not an option

Approach

- 1. Construct all possible task execution strategies for the HRC-team for a given task description and a given set of available actions
- 2. Verify these strategies:
 - a. Spatially by applying a motion planning module for dynamic environments
 - b. Temporally by applying a temporal reasoning framework
- 3. Start the task execution with the set of HRC schedules
- 4. During task execution:
 - a. Monitor the human and determine their current action
 - b. Update the set of valid HRC schedules using the current time and the current human action
 - c. Select the HRC schedules leading to the fastest task execution
 - d. Dispatch the next robot action according to the selected schedules
 - e. End when the task is completed or no valid HRC schedules remain

Example – Assembling a Cupboard

HRC-Recipe for assembly: list of related actions

ID	Description	Predecessor	Duration Robot	Duration Human
1	Bring closet bottom to assembly area	0	5	3
2	Bring first side wall to assembly area	0	5	3
3	Mount first side wall to bottom	1, 2	5	3
4	Bring second side wall to assembly area	0	5	3
5	Bring back board to assembly area	0	5	3
6	Mount second side wall	3, 4	5	3
7	Mount back board	3, 5	5	3
8	Bring closet top to assembly area	0	5	3
9	Mount closet top	6, 8	5	3
10	Bring first closet door to assembly area	0	5	3
11	Mount first closet door	3, 10	5	3
12	Bring second closet door to assembly area	0	5	3
13	Mount second closet door	6, 12	5	3
14	Carry closet to transport area	7, 9, 11, 13	8	8

Task Graph

Collaborative Execution Plans

Option 1

Option 3

Event Timing

- Simple Temporal Network (STN)
 - [x,y] specifies min and max time difference between linked events
- Distance Graph (DG)
 - STN is consistent if no negative cycles in the corresponding DG

- Simple Temporal Network with Uncertainty (STNU)
 - Requirement links as per STN
 - Contingent links introduce dependence on external events of uncertain durations

Task Description

a) Task graph; b) Action descriptions; c) Workspace map; d) Temporal constraints

Offline: Compiler (I)

Online: Dispatcher (r)

Simulations

Real-world Testing

