Усточивость МГД течений полимерной жидкости в цилиндрическом канале (обобщение модели Виноградова-Покровского)

Ткачев Дмитрий Леонидович Институт математики им. С.Л. Соболева tkachev@math.nsc.ru

Соавторы: Бибердорф Элина Арнольдовна

Секция: Уравнения в частных производных, математическая физика и спектральная теория

Изучается устойчивость состояния покоя для течений несжимаемой вязкоупругой полимерной жидкости в бесконечном цилиндрическом канале в классе осесимметрических возмущений. В качестве математической модели используется структурнофеноменологическая модель Виноградова–Покровского [1, 2].

Сформулированы два уравнения для радиальной компоненты скорости, в основном определяющие спектр задачи в случае абсолютной проводимости $b_m = 0$ и в общем случае $b_m \neq 0$. Проведенные вычислительные эксперименты показывают, что с ростом частоты возмущений вдоль оси канала у спектрального уравнения (в случае $b_m = 0$) появляются собственные значения с положительными вещественными частями, однако по величине они малы.

В целом исследования показывают, что введение в модель внешнего магнитного поля позволяет ослабить или даже погасить линейную неустойчивость по Ляпунову состояния покоя в отличие от базовой модели [3].

Работа первого автора выполнена при поддержке Математического Центра в Академгородке, соглашение с Министерством науки и высшего образования Российской Федерации № 075-15-2022-281.

- [1] Pokrovskii V. N., The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht (2010).
- [2] Altukhov Yu. A., Gusev A. S., Pishnograi G. V., Introduction into mesoscopic theory of flowing polymeric systems, Alt. GPA, Barnaul (2012).
- [3] Tkachev D. L. and Biberdorf E. A., Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model), Siberian Electronic Mathematical Reports, 20(2), 1269–1289 (2023).