Conceptos fundamentales de electromagnetismo

1.1 Ecuaciones de Maxwell

Son ecuaciones lineales de modo que vale la superposición (con **E**, **B** y cualquier vector relacionado linealmente con ellos).

$$\begin{split} \nabla \cdot \mathbf{D} &= 4\pi \rho_{\ell} \qquad \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial B}{\partial t} \qquad \nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J}_{\ell} + \frac{1}{c} \frac{\partial D}{\partial t} \\ \mathbf{F} &= q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right) \end{split}$$

Los vectores pueden ser polares (tienen físicamente bien definido el sentido) o axiales (se les atribuye un sentido por convención).

Las ecuaciones son invariantes ante transformaciones del tipo: rotación y reflexión espacial y temporal.

1.2 Electrostática

La ley de Coulomb reza que

$$\mathbf{F}_{12} = q_1 q_2 \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3}$$

que es la fuerza sobre 1 debido a 2. De la ley de Coulomb se puede definir

$$\mathbf{E}_{12}(\mathbf{x}_1) \equiv \mathbf{F}_{12}/q_1$$

y tomando $\mathbf{x}_1 \equiv \mathbf{x}$ y haciendo el límite $q_1 \to 0$ se tiene

$$\mathbf{E}(\mathbf{x}) = \sum_{i=1}^{N} q_i \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^3}$$

que es el campo eléctrico y que en el paso al continuo resulta

$$\mathbf{E}(\mathbf{x}) = \int_{V'} \rho(\mathbf{x}) \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^3} dV'$$

siendo ${\bf x}$ punto campo y ${\bf x}_i$ punto fuente.

Figura 2.1

1.2.1 Conservación de la carga

La carga total sale de una integral

$$Q = \int_{V'} \rho(\mathbf{x'}) dV'$$

como muestra la imagen y si el volumen es fijo podemos tomar la derivada con respecto al tiempo que pasa el interior como derivada parcial,

$$\frac{dQ}{dt} = \int_{V'} \frac{\partial \rho}{\partial t}(\mathbf{x}') dV' = -\int_{S \equiv \partial V'} \mathbf{J} \cdot d\mathbf{S}$$

Figura 2.2

y el miembro extremo derecho se debe a que si la carga varía es a consecuencia de que se va en forma de flujo. Aplicando el teorema de la divergencia en el miembro derecho,

$$\int_{V'} \frac{\partial \rho}{\partial t}(\mathbf{x}') dV' = - \int_{V'} \nabla \cdot \mathbf{J} \; dV'$$

lo cual vale para todo volumen y entonces esto significa que

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

que es la ecuación de continuidad de la carga. Si fuera $\nabla \cdot \mathbf{J} = 0$ esto significa que las líneas de \mathbf{J} no tienen principio ni fin.

1.3 Interacción magnética

Cuando se da $\nabla \cdot \mathbf{J} = 0$ hablamos de una corriente estacionaria (no hay acumulación de carga en ninguna parte). Las corrientes estacionarias producen efectos magnéticos dados por la ley de Biot-Savart

$$\mathbf{B}(\mathbf{x}) = \frac{1}{c} \int_{\Gamma} \frac{Id\ell' \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$

que es válida para un circuito Γ , que es una curva que se recorre en sentido CCW. En el caso de un volumen la expresión es

$$\mathbf{B}(\mathbf{x}) = \frac{1}{c} \int_{\mathbf{x}'} \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dV'$$

mientras que la fuerza sobre un circuito Γ es

$$F = \frac{1}{c} \int_{\Gamma} I d\ell \times \mathbf{B}$$

y sobre un volumen

$$F = \frac{1}{c} \int_{V} \mathbf{J} \times \mathbf{B} dV$$

La transformación entre estas integrales puede hacerse merced al siguiente razonamiento,

$$Id\ell \times \mathbf{B} = \mathbf{J} \cdot d\mathbf{S}d\ell \times \mathbf{B} = \cos(\theta)dS\mathbf{J}d\ell \times \mathbf{B} =$$
$$\mathbf{J} \times \mathbf{B}\cos(\theta)dSd\ell = \mathbf{J} \times \mathbf{B}d\mathbf{S} \cdot d\ell = \mathbf{J} \times \mathbf{B}dV$$

1.3.1 Fuerza de un circuito sobre otro

La fuerza de un circuito 2 sobre otro circuito 1 puede calcularse con un poco de paciencia como sigue

$$\begin{split} F_{12} &= \frac{1}{c} \int_{\Gamma_1} I_1 d\ell_1 \times \left\{ \frac{1}{c} \int_{\Gamma_2} \frac{I_2 d\ell_2 \times (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_1 \times \left\{ \frac{d\ell_2 \times (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_2 \left\{ \frac{d\ell_1 \cdot (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} - \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \left\{ d\ell_1 \cdot d\ell_2 \right\} \end{split}$$

donde el primer término se comprueba nulo si se reescribe utilizando que

$$\frac{(\mathbf{x}_1-\mathbf{x}_2)}{|\mathbf{x}_1-\mathbf{x}_2|^3} = \nabla_{\mathbf{x}_2}\frac{1}{|\mathbf{x}_1-\mathbf{x}_2|} = -\nabla_{\mathbf{x}_1}\frac{1}{|\mathbf{x}_1-\mathbf{x}_2|}$$

de manera que entonces

$$-\int_{\Gamma_2} d\ell_2 \int_{\Gamma_1} d\ell_1 \cdot \nabla_{\mathbf{x}_1} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

donde se ve que es nula la última integral dado que

$$\int_{\Gamma_1} d\ell_1 \cdot \nabla_{\mathbf{x}_1} = 0.$$

Entonces, se tiene

$$F_{12} = -\frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \left(d\ell_1 \cdot d\ell_2 \right)$$

que vale lo mismo si intercambiamos Γ_1 con Γ_2 en la integración. Podemos decir que con corrientes estacionarias vale el principio de acción y reacción: las fuerzas son iguales y de sentido opuesto.

1.4 Teorema de Helmholtz

Nos dice que un campo vectorial está completamente determinado por su divergencia y su rotor. Por ejemplo, para un campo eléctrico

$$\mathbf{E} = \int_{V'} \rho \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3} dV' = -\int_{V'} \rho \nabla_{\mathbf{x}} \frac{1}{|\mathbf{x} - \mathbf{x}'|} dV' = -\nabla_{\mathbf{x}} \int_{V'} \frac{\rho}{|\mathbf{x} - \mathbf{x}'|} dV' =$$

y esta última es la integral de Poisson

$$\mathbf{E} = -\nabla_{\mathbf{x}}\phi(\mathbf{x}).$$

Entonces E es un gradiente y por ello

$$\nabla \times \mathbf{E} = 0$$

de manera que ${\bf E}$ es conservativo, cumple $\int {\bf E} \cdot d\ell = 0$ o lo que es lo mismo, ${\bf E}$ es irrotacional. Hemos hecho la construcción de un potencial electrostático.

1.5 Ley de Gauss

Figura 5.3

Figura 5.4