LA2 Extra Exercises

KYB

Thrn, it's a Fact mathrnfact@gmail.com

October 8, 2020

Overview

Gochenbach

Friedberg

Ex 6.2.14

Let $f:X\to\mathbb{R}$ be linear, where X is a finite-dimensional inner product space over $\mathbb{R}.$ Prove that there exists a unique $u\in X$ such that

$$f(x) = \langle x, u \rangle.$$

Exmaple 292 in 6.4

Suppose we believe the variables t and y are related by

$$y = c_0 + c_1 t$$

and the following datas are measured from four trials:

$$(t_i, y_i) = (1, 2.2), (1, 2.3), (2, 4.5), (2, 4.7).$$

Find the most fitting c_0 and c_1 .

Ex 6.6.3

Let $A \in \mathbb{R}^{3 \times 4}$ be defined by

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 3 & 2 & 4 \\ 2 & 8 & 9 & 12 \end{bmatrix}$$

- (a) Find orthogonal bases for $\mathcal{N}(A)$ and $\operatorname{col}(A^T)$.
- (b) Write (1,1,1,1) as the combination of the basis elements that you have chosen.

Example 317 in 6.7

Let S be the subspace of \mathbb{C}^3 defined by $S=\mathrm{span}\{v_1,v_2\}$, where

$$v_1 = (1+i, 1-i, 1), v_2 = (2i, 1, i)$$

and let u = (i, 1, 1). Find the best approximation to u from S.

Dual Space

Let V be the set of all linear functions from \mathbb{R}^3 to \mathbb{R} .

(a) Show that V is a vector space over $\mathbb R$ with operations

$$(f+g)(x) = f(x) + g(x), (rf)(x) = rf(x)$$

for all $f, g \in V$, $x \in \mathbb{R}^3$ and $r \in \mathbb{R}$.

- (b) Find a basis of V.
- (c) Show that V is isomorphic to \mathbb{R}^3 .
- (d) Evaluate the Gram matrix for the basis you have chosen in (b).

Friedberg - Linear Algebra-Prentice Hall (2002)

Friedberg Ex6.1.17

Let $T:V\to V$ be a linear operator on an inner product space V. Suppoe $\|T(v)\|=\|v\|$ for all $v\in V$. Show that T is injective.

Friedberg Ex6.1.27

We know that if $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$, then the parallelogram law hold. What if the converse (over \mathbb{R})? (Hint: Define $\langle v, w \rangle = \frac{1}{4}(\|v+w\|^2 - \|v-w\|^2)$.)

The parallelogram law

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

Step 0

We have to prove two things, one is $\langle \cdot, \cdot \rangle$ is an inner product and the other is $\| \cdot \| = \sqrt{\langle \cdot, \cdot \rangle}$. The last thing is obvious.

- $ightharpoonup \langle v, w \rangle = \langle w, v \rangle$ by the definition.
- \triangleright $\langle v, v \rangle = ||v||^2$ is positive definite.

So it suffices to show that $\langle \cdot, \cdot \rangle$ is bilinear.

Step 1

$$\langle x, 2y \rangle = 2\langle x, y \rangle.$$

Step 2

$$\langle x + u, y \rangle = \langle x, y \rangle + \langle u, y \rangle.$$

It remains to show that $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.

Step 3

For $n \in \mathbb{Z}$, $\langle nx, y \rangle = n \langle x, y \rangle$.

Step 4

For $m \in \mathbb{Z}$, $m\left\langle \frac{1}{m}x, y \right\rangle = \langle x, y \rangle$.

Step 5

For $r \in \mathbb{Q}$, $\langle rx, y \rangle = r \langle x, y \rangle$.

Step 6

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Step 7

For $c \in \mathbb{R}$ and for $r \in \mathbb{Q}$,

$$|c\langle x,y\rangle - \langle cx,y\rangle| = |(c-r)\langle x,y\rangle - \langle (c-r)x,y\rangle| \le 2|c-r|\|x\|\|y\|.$$

Step 8

Using the fact that for given $c\in\mathbb{R}$ and for given $\epsilon>0$, there is $r\in\mathbb{Q}$ such that

$$|c-r|<\epsilon,$$

conclude that $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.

Remark

If V is a normed space over $\mathbb C$ and it satisfies the parallelogram law, define

$$\langle v, w \rangle = \frac{1}{4} \left(\|v + w\|^2 + i \|v + iw\|^2 - \|v - w\|^2 - i \|v - iw\|^2 \right).$$

Friedberg Ex6.3.5 (e)

If $T^*T=0$, then T=0. Similarly, if $TT^*=0$, then $T^*=0$.

Friedberg Ex6.4.11

Suppose $T:V\to V$ is linear where V is a complex (not necessarily finite dimensional) inner product space with an adjoint T^* .

- (a) If T is self-adjoint, $\langle T(x), x \rangle$ is real for all $x \in V$.
- (b) If $\langle T(x), x \rangle = 0$ for all $x \in V$, T = 0.
- (c) If $\langle T(x), x \rangle$ is real for all $x \in V$, then T is self-adjoint.

Friedberg Ex6.6.8

Let $A,B\in\mathbb{C}^{n\times n}$. If AB=BA and A is normal, then $A^*B=BA^*$. (Hint: C=0 iff ${\rm tr}(C^*C)=0$).

Extra Exercise

Let $A\in\mathbb{C}^{n\times n}.$ Suppose A is triangular. Then A is normal if and only if A is diagonal.