SO₂ Plumes Observation with LMOL: Theory, Modeling, and Validation

Guillaume Gronoff (SSAI/NASA LaRC), T. Berkoff (NASA LaRC), W. Carrion(SSAI/NASA LaRC, retired), L. Lei (NASA LaRC), D. Phoenix (SSAI/NASA LaRC)

LMOL, part of the TOLNET project is funded by the NASA Tropospheric Composition Program, the Tropospheric Ozone Lidar network (TOLNET) and Langley Internal Research and Development program (IRAD) for the development of the SO₂ capabilities.

June 2022

The Langley Mobile Ozone Lidar (LMOL)

LMOL

- Mobile Lidar for Aerosols and O₃ measurements, part of the TOLNet network.
- Inputs parameters, outputs parameters, uncertainty validatation, etc, validated by the network.
- Adapted to study evolution of O₃.
- Available to support calibration/validation of satellites (TROPOMI, TEMPO)
- Typical resolution: 5 min, 20 m 1000 m (vertical).
- Capabilities: 100m 6/7 km altitude (day), 10 km (night)...and improving!
- Smallest TOLNet Lidar / most mobile.
- TUNABLE LASER

Adaptation to SO₂

Wavelength selection to observe SO₂ with minimal contribution from O₃

- Density retrieval sensitive to $\Delta \sigma$
- Wavelength dedicated to lower O₃ sensitivity relative to SO₂
- Wavelength selection so that high O₃ would appear as negative SO₂ value

Validation of SO₂ capabilities

Retrieval of modeled lidar signals

- Lidar signals were modeled with fixed SO₂
- Daylight contribution was added based on LMOL observation
- LMOL standard retrieval algorithm was applied to modeled signals
- Validates the capabilities of LMOL to retrieve and estimate the uncertainty

Observation of SO₂ from the Hampton Steam Plant

Steam Plant Plume observation

- LMOL observed a SO₂ plume that is coming from the nearby steamplant
- 90 PPBV is observed over a 50 m height.
- Windspeed was 0.5m/s, if we approximate the plume by a 50 m diameter "tube" this gives 10 tons of SO₂ emitted per year, to be compared with the 8 tons reported.
- (Large uncertainties exist in the variation of the emissions and the shape of the plume, which means we are way inside the errorbars)

Discussion / Conclusions

Conclusions

- Adaptation of LMOL to SO₂ observations was validated by modeling.
- The current system works if O₃ density is small /not varying.
- Observation of SO₂ plume of the nearby steamplant is consistent with the official exhaust numbers.
- Future development of LMOL involve using 3 wavelengths to retrieve both O₃ and SO₂ without interference.