

FaSTAR Results of Sixth Drag Prediction Workshop

Atsushi Hashimoto, Takashi Ishida, Takashi Aoyama (JAXA) Kenji Hayashi, Keiji Ueshima (Ryoyu Systems)

Summary of FaSTAR results Fastar

Flow Solver: FaSTAR (unstructured-grid solver)

Results

- Case 1: Verification Study of 2D NACA0012 airfoil
 - Grid: Family II
 - Turbulence model: SA
 - Discretization: Cell-center/Node-center
- Case 2: CRM Nacelle-Pylon Drag Increment
 - Grid: unstructured NASA GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center
- Case 3: CRM WB Static Aero-Elastic Effect
 - Grid: unstructured NASA GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center

Computational Scheme

- Full compressible Navier-Stokes equations with the Spalart-Allmaras model
- Finite volume method (FVM)
- HLLEW for inviscid flux
- U-MUSCL reconstruction
- GLSQ for gradient computation
- van Leer-type Hishida limiter
- LU-SGS for time integration
- Wall distance code of TAS

Computational time with JSS2

JSS2, Fujitsu FX100 100, 512, 1024 cores, Medium grid (10M), Multigrid

FaSTAR can compute aerodynamic forces in 2 minutes with 10M grid and 1024 CPU cores of JSS2. 1024cores(=32CPUs) are only 1% of the total system.

Cell center/ Node center

- Both cell-center and node-center discretization methods are supported in FaSTAR
 - Solver is common, but pre/post are different
 - Only neighboring cell information is stored. We switch the discretization method due to the grid type (tetra or hexa)
 - Cell-center method was used for DPW5 problems. We validate node-center method for DPW6 problems.

Node center

Summary of FaSTAR results

Flow Solver: FaSTAR (unstructured-grid solver)

- Results
 - Case 1: Verification Study of 2D NACA0012 airfoil
 - Grid: Family II
 - Turbulence model: SA
 - Discretization: Cell-center/Node-center
 - Case 2: CRM Nacelle-Pylon Drag Increment
 - Grid: unstructured_NASA_GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center
 - Case 3: CRM WB Static Aero-Elastic Effect
 - Grid: unstructured_NASA_GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center

Grid convergence of C_D

Grid convergence of C_D

Pressure drag

Friction drag

Grid convergence of C_I and C_m Fostar 4

Lift

Pitching moment

Slope limiter effect

Grid convergence of C_{Dp} , C_{Df}

Pressure drag

Friction drag

Summary of FaSTAR results

Flow Solver: FaSTAR (unstructured-grid solver)

Results

- Case 1: Verification Study of 2D NACA0012 airfoil
 - Grid: Family II
 - Turbulence model: SA
 - Discretization: Cell-center/Node-center
- Case 2: CRM Nacelle-Pylon Drag Increment
 - Grid: unstructured_NASA_GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center
- Case 3: CRM WB Static Aero-Elastic Effect
 - Grid: unstructured_NASA_GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center

Grid convergence of C_D

Wing-Body (WB) configuration

Grid convergence of C_D

Wing-Body (WB) configuration

Pressure drag

Friction drag

Grid convergence of WB and WBNP FOSTAR &

EXP: NTF data t197R44, t197R79

3.4 -WBNP 3.3 --Exp(WBNP) -WB 3.2 Exp(WB) 3.1 3 alpha [deg] 2.9 2.8 WBNP 2.7 2.6 **WB** 2.5 2.4 0.E + 005.E-06 1.E-05 2.E-05 1 / GRIDSIZE^{2/3}

Drag

Alpha(~Lift)

Grid convergence of WB and WBNP | Fastar >

EXP: NTF data t197R44, t197R79

Pitching moment

Grid convergence of NP interference Fastar 4

 Δ Drag

 Δ Alpha(~Lift)

Grid convergence of NP interference Fastars

EXP: NTF data t197R44, t197R79

 Δ Pitching moment

QCR model effect

Pressure drag

Friction drag

Summary of FaSTAR results

Flow Solver: FaSTAR (unstructured-grid solver)

Results

- Case 1: Verification Study of 2D NACA0012 airfoil
 - Grid: Family II
 - Turbulence model: SA
 - Discretization: Cell-center/Node-center
- Case 2: CRM Nacelle-Pylon Drag Increment
 - Grid: unstructured_NASA_GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center
- Case 3: CRM WB Static Aero-Elastic Effect
 - Grid: unstructured NASA GeoLab.REV00
 - Turbulence model: SA-noft2-R-QCR2000
 - Discretization: Node-center

Alpha-sweep (CL and CD)

EXP: NTF data t197R44

CL-alpha

CD-alpha

Alpha-sweep (Cm)

Alpha-sweep (CL and CD)

EXP: NTF data t197R44

CL-alpha

Rivers, et al., AIAA2015-1093

Support interference is $\Delta CL^{\circ}0.024@2deg$, WBT0

Rivers, et al., AIAA2012-3209

Summary

Case 1: Verification Study of 2D NACA0012 airfoil

- The FaSTAR results agree with the FUN3D, CFL3D, and TAU results
- The cell center method is close to the CFL3D, whereas the node center method is close to the FUN3D. This difference is caused by the discretization method.

Case 2: CRM Nacelle-Pylon Drag Increment

- Drag increase with number of grid due to the skinfriction.
- The nacelle-pylon increment is almost same as the NTF data.

Case 3: CRM WB Static Aero-Elastic Effect

- Overall trend is same as the NTF experiment.
- It seems that the difference is caused by the wing deflection and support interference.

Grid type dependency

Grid convergence of C₁

Family I grid

Family II grid

Slope limiter effect

Grid convergence of $C_{L_i} C_m$

Lift

Pitching moment

SOB (case2)

WB (ExtraFine)

WB (tiny)

Cp contours (case2)

Cp contours (case2)

Cfx contours

Nacelle

Wing-pylon interference

SOB (case3)

Alpha=4.0deg

Cp contours (case3)

Cp contours (case3)

Polar curve

