PL-TR-91-2009

SURFACE OPTICAL PROPERTY MEASUREMENTS ON BARK AND LEAF SAMPLES

- J. T. Neu
- R. S. Dummer
- M. Beecroft
- P. McKenna
- D. C. Robertson

Surface Optics Corporation P.O. Box 261602 San Diego, CA 92196

31 December 1990

Scientific Report No. 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Phillips Laboratory
Air Force Systems Command
Hanscom Air Force Base, Massachusetts 01731-5000

Q I C I C . I C . I C . I

This technical report has been reviewed and is approved for publication.

Vean F. Kimball

DEAN F. KIMBALL Contract Manager Simulation Branch DONALD E. BEDO, Chief

DONALD E. BEDO, Chief Electro-Optical Measurements Branch Optical Environment Division

A Block

ALAN D. BLACKBURN, Col, USAF, Director Optical Environment Division

This document has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting builden for this infection of information is estimated to average a nour per response, including the time for reviewing instructions, searching existing data sources, gastering and maintaining the data needed, and completing and reviewing the cultestion of information. I need comments regarding this burden estimate or any other aspect of this cultestion of information including sources for reducing this outden it, wishington readquarters services, birectorate for information Operations and Reports, 1215 reflession basis highway, suite 1234. Turington, vA. 2202-4302, and to the other of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, pC 20503.

		·	······································		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	TYPE AND DATES COVERED		
	31 December 1990	Scientific I	Report No. 2		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Surface Optical Propert	v Measurements on Ba	rk and Leaf	PE: 62101F		
Samples	,		PR 3054 TA 02 WU AJ		
			11. 005 1 11. 02 110 110		
6. AUTHOR(S)	Mall and		710/00 00 0 0100		
J. T. Neu P. I			F19628-89-C-0128		
R. S. Dummer D. M. Beecroft	C. Robertson*				
7. PERFORMING ORGANIZATION NAME	(C) AND ADDRECC/EC)		8. PERFORMING ORGANIZATION		
Surface Optics Corporat	·		REPORT NUMBER		
P.O. Box 261602	1011				
San Diego, CA 92196					
9. SPONSORING/MONITORING AGENCY			10. SPONSORING / MONITORING		
Phillips Laboratory	Spectral Sc	iences, Inc.	AGENCY REPORT NUMBER		
Hanscom AFB, MA 01731-					
Burlington, MA 01803			PL-TR-91-2009		
Contract Manager: Dean	Vimball/ODB				
11. SUPPLEMENTARY NOTES	KIMUATI/OFB				
*Spectral Sciences, Inc	•				
12a. DISTRIBUTION/AVAILABILITY STATE	rement		12b. DISTRIBUTION CODE		
APPROVED FOR PUBLIC REL	EASE; DISTRIBUTION U	NLIMITED			

13. ABSTRACT (Maximum 200 words)

This paper presents reflectance data for leaf and bark samples taken from a big-leaf aspen tree located near Orono, ME. Total hemispherical directional reflectance measurements were made for several angles of incidence between 20 and 80° and over the 0.3 to 25.0 μm spectral region. Since the leaves are translucent, transmittance measurements were also made. Bidirectional reflectances were measured for incident angles of 20,40 and 60° at wavelengths of 1.3, 4.6 and 10.0 μm . In addition, some reflectance data from a concrete runway and adjacent grasses are presented.

14. SUBJECT TERMS Reflectance	Infrared UV		15. NUMBER OF PAGES 400
Vegetation	Infrared UV Visible		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	SAR

PREFACE

Enclosed as an appendix is Surface Optics Corporation's (SOC) Final Report to Spectral Sciences, Inc. (SSI) entitled, "Surface Optical Property Measurements on Bark and Leaf Samples". This report has been reviewed by SSI and found to be acceptable under Contract No. F19628-89-C-0128.

	*** **********************************		<i>t</i>
Acos	esion For	1	
	95441	Ŋ	اد باز اد باز
BT C	१८५ इन्सारको		
3/			
1	ibution/	-	
AVE I	lacility Co		
Dist	Aveil and/	or	
0 1	Special		l
H-1			1
			-

SOC-R628-002-1290

SURFACE OPTICAL PROPERTY MEASUREMENTS ON BARK AND LEAF SAMPLES

FINAL REPORT
AND
APPENDICES A THROUGH Y

Authors:

J.T. Neu, R.S. Dummer, M. Beecroft, P. McKenna

Prepared for: SPECTRAL SCIENCES, INC. Burlington, MA 01803

Prepared under: CONTRACT NUMBER F19628-89-C-0128

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

15 DECEMBER 1990

SURFACE OPTICS CORPORATION

P.O. Box 261602 San Diego, CA 92196 TEL: (619) 578-8910 FAX: (619) 578-0484

TABLE OF CONTENTS

SECTION					•		<u>P.</u>	AGE
1.0	INTE	RODUCI	rion	· · · · · · · · · · · · ·	. .			1
2.0	SAM	PLE DE	SCRIPTIO	ONS AND ME	ASUREMENT	s requirei	D	3
3.0	DEF	INITION	IS AND N	OMENCLATU	RE			7
	3.1	Symbo	ls and Uni	ts				7
	3.2	Coordi	nate Syste	m and Sign Co	nvention			7
	3.3	Polariz	zation Conv	ention				10
4.0	REF	LECTAN	ICE PROI	PERTIES				11
	4.1	Direct	ional Refle	ctance				11
	4.2	Quant	ities Deriv	ed from Direction	onal Reflectanc	ce		12
		4.2.1	Emittance					12
		4.2.2	Solar Abs	orptance				13
	4.3	Transı	mittance .	• • • • • • • • •				14
	4.4	Bidire	ctional Ref	ectance				15
5.0	EXP	ERIMEN	ITAL MEA	SUREMENTS				17
	5.1	Direct	ional Refle	ctance			. .	17
		5.1.1	Cary-Inte	grating Sphere	Reflectometer			17
		5.1.2	Infrared !	Reflectometer				19
		5.1.3	Direction	al Reflectance I	Error Analysis		. 	23
			5.1.3.1	Cary-Sphere			. 	24
			5.1.3.2	Ellipsoidal Rei	flectometer		. .	24
	5.2	Bidire	ctional Ref	lectance				25
		5.2.1	Bidirectio	nal Goniometri	c Reflectometer	r		25
			5.2.1.1	Complete Map	ping		. .	29
			5.2,1.2	Selective Map	ping	,		29
		5.2.2	Bidirectio	nal Reflectance	Error Analysi	is	· • • • • • •	31
6.0	DAT	a redu	ICTION A	ND PRESENT	ATION			37
	6.1	Codes	for Data F	leduction			. <i></i>	37
		6.1.1	Direction	al Reflectance (Codes			37
		6.1.2	Direction	al Transmittan	e Codes			38
		6.1.3	Bidirectio	nal Reflectance	Codes			38

TABLE OF CONTENTS: (Continued)

SECTION		<u> </u>	AGE
	6.2 ,	Data Presentation	. 43
7.0	ANA	LYSIS	. 45
	7.B	Introduction:	. 45
	72	Sample Mounting,	. 45
	7.3:	Sample Orientation	. 46
	7.4 :	Dependence of Reflectance on Orientation	. 47
	7.5	Angular Reflectance Problems of Leaves	. 56
	7.6	Fresh and Dry Leaf Measurements	. 58
	7.7	Transmittance (Leaves)	. 59
	7.8	Bidirectional Reflectance	. 71
		-	

TABLE OF APPENDICES

APPENDIX	Į	PAGE
A	Spectral Sciences, Inc.: Bark Sample #1, 2:00 PM, West Side 55" Up, Surface Optics Corporation Sample Number FS4833	A-1
В	Spectral Sciences, Inc.: Bark Sample #2, 2:16 PM, North East Side, 51" Up, Gray Color 26251, Surface Optics Corporation Sample Number FS4834	B-1
C	Spectral Sciences, Inc.: Leaf Sample, Top Side, Surface Optics Corporation Sample Number FS4835	C-1
D	Spectral Sciences Inc.: Leaf Sample, Bottom Side, Surface Optics Corporation Sample Number FS4836	D-1
Œ	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf A, Surface Optics Corporation Sample Number FS4866	E-1
F	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf A, Surface Optics Corporation Sample Number FS4867	F-1
G	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf B, Surface Optics Corporation Sample Number FS4868	-G-1

TABLE OF APPENDICES (Continued)

APPENDIX	Ë	PAGE
H	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf C, Surface Optics Corporation Sample Number FS4869	H-1
I	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf C, Surface Optics Corporation Sample Number FS4870	I-1
J.	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf B, Surface Optics Corporation Sample Number FS4871	J-1
K	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf D, Surface Optics Corporation Sample Number FS4872	K-1
L	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf D, Surface Optics Corporation Sample Number FS4873	L-1
M	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf E, Surface Optics Corporation Sample Number FS4874	M-1
N	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf E, Surface Optics Corporation Sample Number FS4875	N-1
O	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf F, Surface Optics Corporation Sample Number FS4876	0-1
P	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf F, Surface Optics Corporation Sample Number FS4877	P-1
Q	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf G, Surface Optics Corporation Sample Number FS4878	Q-1
R	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf G, Surface Optics Corporation Sample Number FS4879	R-1
S	Spectral Sciences, Inc.: Green Aspen Leaf, Top of Leaf H, Surface Optics Corporation Sample Number FS4880	S-1
T	Spectral Sciences, Inc.: Green Aspen Leaf, Bottom of Leaf H, Surface Optics Corporation Sample Number FS4881	T-1
U	Spectral Sciences, Inc.: Green Aspen Leaf, Transmittance #1, Surface Optics Corporation Sample Number FS4882	U-1
v	Spectral Sciences, Inc.: Green Aspen Leaf, Transmittance #2, Surface Optics Corporation Sample Number FS4883	V-1
W	Spectral Sciences, Inc.: Green Aspen Leaf, Transmittance #3, Surface Optics Corporation Sample Number FS4884	W-1
X	Spectral Sciences, Inc.: Green Aspen Leaf, Transmittance #4, Surface Optics Corporation Sample Number FS4885	X-1
Y	Additional Background Materials	Y-1

LIST OF FIGURES

<u>FIGURE</u>		PAGE
1	Coordinate System for Reflectometry Measurements	. 7
2	Definition of Striae Orientation	9
3	Convention Describing the Polarization of Reflected Light	. 10
4	Diagram Illustrating Concept of Directional Reflectance	. 11
5	Transmittance of Transparent and Translucent Materials	. 14
6	Diagram Illustrating Concept of Bidirectional Reflectance	. 15
7	Schematic of Cary-Integrating Sphere Reflectometer	. 18
8	Schematic of Infrared Reflectometer	. 22
9	Directional Reflectance of Fused Silica Standard at 16 micrometers - Perpendicular (L), Parallel (11), and Average	. 26
10	Schematic of Bidirectional Goriometric Reflectometer	. 28
11	Goniometric Structure of Bidirectional Reflectometer	. 28
12 (a)	In-Plane Scan	. 30
12 (b)	Cross-Plane Scan	. 30
12 (c)	Principal Ring Scan	. 31
13	Angular Divergence of Detector Beam as a Function of Source Aperture	. 32
14	Relative Bidirectional Reflectance of Dull and Polished Aluminum as a Function of the Reflected Angle θ_r at $\lambda=0.507~\mu m$. 33
15	Directional Reflectance Data Processing for Thermal Analysis Calculations	. 39
16	Directional Reflectance Data Processing for Signature Calculations	. 40
17	Directional Transmittance Data Processing	. 41
18	Bidirectional Reflectance Data Processing	. 42
19	Schematic Showing Orientation of Bark Sample	. 46
20	Schematic Showing Orientation of Leaf Sample	. 47
21	FS4833: Bark Sample #1, Directional Reflectance vs. Wavelength, ϕ_i = 0 and 90°, Bandwidth 0.3 to 2.0 μm	. 48
22	FS4833: Bark Sample #1, Directional Reflectance vs. Wavelength, φ _i = 0 and 90°, Bandwidth 2.2 to 10.0 μm	. 49

LIST OF FIGURES (Continued)

FIGURE	<u> </u>	PAGE
23	FS4834: Bark Sample #2, Directional Reflectance vs. Wavelength, $\phi_i = 0$ and 90°, Bandwidth 0.3 to 2.0 μm	50
24	FS4834: Bark Sample #2, Directional Reflectance vs. Wavelength, $\phi_i=0$ and 90°, Bandwidth 2.2 to 10.0 μm	51
25	FS4835: Leaf Sample - Top Side, Directional Reflectance vs. Wavelength, ϕ_i = 0 and 90°, Bandwidth 0.3 to 2.0 μm	52
26	FS4835: Leaf Sample - Top Side, Directional Reflectance vs. Wavelength, φ_i = 0 and 90°, Bandwidth 2.2 to 25.0 μm	53
27	FS4836: Leaf Sample - Bottom Side, Directional Reflectance vs. Wavelength, φ_i = 0 and 90°, Bandwidth 0.3 to 2.0 μm	54
28	FS4836: Leaf Sample - Bottom Side, Directional Reflectance vs. Wavelength, ϕ_i = 0 and 90°, Bandwidth 2.2 to 25.0 μm	55
29	Comparison of Directional Reflectance for Eight Leaf Samples (Top, Fresh), Bandwidth 0.3 to 2.0 µm	60
30	Comparison of Directional Reflectance for Eight Leaf Samples (Top, Fresh), Bandwidth 2.2 to 26.0 µm	61
31	Comparison of Directional Reflectance for Eight Leaf Samples (Top, Dry), Bandwidth 0.3 to 2.0 µm	62
32	Comparison of Directional Reflectance for Eight Leaf Samples (Top, Dry), Bandwidth 2.2 to 26.0 µm	63
33	Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Fresh), Bandwidth 0.3 to 2.0 µm	64
34	Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Fresh), Bandwidth 2.2 to 26.0 µm	65
35	Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Dry), Bandwidth 0.3 to 2.0 µm	66
36	Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Dry), Bandwidth 2.2 to 26.0 µm	67
37	Comparison of Scattered Transmittance for Four Leaf Samples, Bandwidth 0.3 to 2.0 µm	68
38	Comparison of Scattered Transmittance for Four Leaf Samples, Bandwidth 2.2 to 26.0 µm	69
39	FS4835: Leaf Sample - Top Side, Comparison of Observed Reflectance (Curve 1) to True Reflectance (Curve 2), Bandwidth 0.3 to 2.0 µm	70

LIST OF TABLES

TABLE	<u>P.</u>	AGE
1 (a)	Measurement Matrix	3
1 (b)	Measurement Matrix	4
1 (c)	Measurement Matrix	5
2	Symbols and Units	8
3	Cary-Integrating Sphere Reflectometer	20
4	Infrared Reflectometer	21
5	Bidirectional Reflectometer	27
6	FS4835: Leaf Sample - Top Side, Comparison of Directional Reflectance at 1.6 µm for Cary Reflectometer and Ellipsoidal Reflectometer	57
7	FS4836: Leaf Sample - Bottom Side, Comparison of Directional Reflectance at 1.6 µm for Cary Reflectometer and Ellipsoidal Reflectometer	58

1.0 INTRODUCTION

This work was performed for Spectral Sciences, Inc. (SSI) under Contract Number F19628-89-C-0128.

Infrared backgrounds play an important role in determining target contrast signatures and hence the ability of an IR sensor to detect and track a target. Target simulation models used in systems analysis must also calculate the background radiances in order to predict the brightness of a target relative to various background scene elements. To meet this need, the Balanced Technology Initiative (BTI) for Smart Weapons Operability Enhancement (SWOE) has established the modeling of the infrared (IR) radiation from complex natural backgrounds as a program requirement. As a starting point, vegetative backgrounds offer particular modeling challenges due to their extensive variability in types, distributions, and states of vegetation. One vegetation type of concern is a single or small group of trees, such as might be found in a clearing or around buildings.

This report presents the results from laboratory measurements of the reflectances and transmittances of leaves and bark from a single big-leaf aspen tree located in Maine. The tree was instrumented with thermocouples, and the diurnal structure of its temperature was measured in September, 1990.¹ The leaves and bark samples were taken from the tree in September, shipped overnight to Surface Optics Corporation (SOC) and measured over a two and one-half week period. The total hemispherical reflectance was measured in the 0.3 to 25.0 µm spectral region, and the bidirectional reflectance was measured at three IR wavelengths, 1.3, 4.6 and 10.0 µm. The leaves were found to be translucent, so transmittance measurements were also made. SOC had made previous measurements from samples of other background materials taken from Wright-Patterson AFB, concrete runways and adjacent grasses.² These measurements are also included in Appendix Y.

Section 2.0 describes the measurements which were made on the leaf and bark samples. A review of the standard nomenclature for directional and bidirectional reflectance parameters is given in Section 3.0. Descriptions of the laboratory equipment used for the measurements are given in the next two sections, data reduction is described in Section 6.0, and a detailed analysis of the samples and measurement procedures is given in Section 7.0. Finally, all the data with supporting graphs are presented in the Appendices. Since the samples, especially the leaves, showed significant degradation before and during the measurement process, an attempt has been made to fully characterize the timing and repeatability of the measurement. Thus the reader is

J.R. Hummel, J.R. Jones, M.G. Cheifetz, D.R. Longtin, and N.L. Paul, "Thermal Modelling of Natural Backgrounds for BTI/SWOE Program", presented at 1991 IRIS TBD meeting, ERIM, Ann Arbor, MI.

J.T. Neu et. al., "Surface Optical Property Measurements on Samples of Target and Background Materials from WPAFB Area B", prepared under Contract No. F33615-86-C-11')2, SOC Report Number SOC-0086(R)-024 (September 1986).

cautioned to allow for error bars when using these data; as an initial estimate, the authors suggest a maximum uncertainty of 12% for the angular data on the top side of the leaf in the spectral band of 0.5 to 2.0 μ m. The uncertainty in the angular data for the bottom side of the leaf is estimated to be \sim 3% reflectance over the same spectral band as the top side. All other measurements fall within 2%.

2.0 SAMPLE DESCRIPTIONS AND MEASUREMENTS REQUIRED

The vegetative samples used for these measurements included two bark samples taken from heights of 51 and 55" on the tree and five small branches with multiple leaves. The total number of leaves was approximately tworty. The branches were shipped with bud vases so that they had a constant supply of water up to the time of measurement. Upon receipt at SOC, they were kept refrigerated until measured. A second set of leaves from a different tree were received in October; these leaves were much dryer and on the verge of turning color. They were taken from an aspen located in Lexington, MA, and handled in a similar manner. Because of the heat generated from the internal light sources in the instruments, the leaves changed significantly (drying out) during the time of measurement. In order to provide an indication of the effects of drying, some of the leaf measurements were repeated on samples that had been left out to dry for several days.

Tables 1 provide an overview of all measurements made with the bark and leaf samples. Table 1 (a) gives the directional reflectance measurements made at 20° angle of incidence on the leaves and bark received in September, 1990, and their ERAS identification numbers. Table 1 (b) lists the full set of measurements made on the September samples; these include directional reflectance at different angles of incidence, the derived thermal emittances and the bidirectional reflectances at three angles of incidence. Table 1 (c) tabulates measurement information for the second set of leaf samples.

Table 1 (a)

Measurement Matrix
Spectral Sciences, Inc.

ERAS FORMAT BASIC NUMBER	SSI MATERIAL DESCRIPTION	DIRECTIONAL, REFLECTANCE $\phi_i = 0.90^{\circ}, \ \theta_i = 20^{\circ}$	
		$\lambda = 0.3$ to 2.0 μm	$\lambda = 2.0 \text{ to } 25.0 \mu\text{m}$
FS4833 ¹	Bark Sample #1: 2:00 PM West Side, 55" up	х	X ²
FS4834 ¹	Bark Sample #2: 2:16 PM North East Side, 51" up	х	X ²
FS4835	Leaf Sample: Top Side	х	х
FS4836	Leaf Sample: Bottom Side	х	Х

For bark samples FS4833 and FS4834, $\phi_i = 0^\circ$ implies that the plane of incidence of the beam is aligned with the vertical direction of the bark as if it were on the tree. The $\phi_i = 90^\circ$ orientation implies that the plane of incidence is aligned with the horizontal direction of the bark. Raw material for the bark was cut such that the longest dimension was in the vertical direction of the tree.

Measure bark samples up to 10.0 μm.

Table 1 (b)

Measurement Matrix
Spectral Sciences, Inc.

ERAS FORMAT BASIC NUMBER	SSI MATERIAL DESCRIPTION	DIRECTIONAL REFLECTANCE φ _i = 0° θ _i = 20,30,40,50,60,70,75,80°		HEMISPHERICAL, THERMAL EMITTANCE and ANGULAR SOLAP ABSORPTANCE	in-plane cross-plane and ring bidirectional reflectance $\phi_i = 0^\circ$ $\theta_i = 20,40,60^\circ$
-		λ = 0.3 to 1.6 μm	λ = 1.6 to 25.0 μm		$\lambda = 1.307, 4.601, 10.0 \mu \text{m}$
FS 1833	Bark Sample #1: 2:00 PM West Side, 55" up	x	x	х	х
FS4834	Bark Sample #2: 2:16 PM North East Side, 51" up	х	х	х	х
FS4835	Leaf Sample: Top Side	Х	х	Х	Х
FS3836	Leaf Sample: Bottom Side	Х	Х	Х	х

Note For measurements made at 1.6 μm and above use the following wavelengths. 1.6, <u>1.7</u>, 1.8, <u>1.9</u>, 2.0. <u>2.2</u>, 2.5, 3.0, <u>3.5</u>, 4.0, <u>4.5</u>, 5.0, <u>5.5</u>, 6.0, <u>6.5</u>, 7.0, <u>7.5</u>, 8.0, <u>8.5</u>, 9.0, <u>9.5</u>, 10.0, <u>10.5</u>, <u>11.0</u>, 12.0, <u>13.0</u>, 14.0, <u>15.0</u>, 16.0, <u>17.0</u>, 18.0, <u>19.0</u>, 20.0, <u>21.0</u>, 22.0, <u>23.0</u>, 24.0, 25.0 μm.

Table 1 (c)
Measurement Matrix
Spectral Sciences, Inc.

ERAS FORMAT BASIC NUMBER	SSI MATERIAL DESCRIPTION	DIRECTIONAL REFLECTANCE $\theta_i = 0^\circ, \theta_i = 20^\circ$		SCATTERED TRANSMITTANCE $\phi_i = 0^{\circ}, \theta_i = 20^{\circ}$	
		λ = 0.3 to 2.0 μ m	λ = 2.0 to 26.0 μ m	λ = 0.3 to 2.0 μm	λ = 2.0 to 26.0 μm
FS4866	Green Aspen Leaf, Bottom of Leaf A	х	х		
FS4867	Green Aspen Leaf, Top of Leaf A	x	х		-
FS4868	Green Aspen Leaf, Bottom of Leaf B	x	x		
FS4869	Green Aspen Leaf, Top of Leaf C	х	х	-	
FS4870	Green Aspen Leaf, Bottom of Leaf C	х	x		
F\$4871	Green Aspen Leaf, Top of Leaf B	х	х		
FS4872	Green Aspen Leaf, Top of Leaf D	х	x		
FS4873	Green Aspen Leaf, Bottom of Leaf D	х	х		
FS4874	Green Aspen Leaf, Top of Leaf E	х	х		
FS4875	Green Aspen Leaf, Bottom of Leaf E	х	х		
FS4876	Green Aspen Leaf, Top of Leaf F	х	х		
FS4877	Green Aspen Leaf, Bottom of Leaf F	х	х		
FS4878	Green Aspen Leaf, Top of Leaf G	х	х		
- FS4879	Green Aspen Leaf, Bottom of Leaf G	х	х		
FS4880	Green Aspen Leaf, Top of Leaf H	х	х		
FS4881	Green Aspen Leaf, Bottom of Leaf H	Х	х		
FS4882	Green Aspen Leaf, Transmittance #1			х	х
FS4883	Green Aspen Leaf, Transmittance #2			х	Х
FS4884	Green Aspen Leaf, Transmittance #3			х	х
FS4885	Green Aspen Leaf, Transmittance #4			х	х

Measure directional reflectance on the day the leaves are received (19 October 1990) and then again after being left out for three (3) days (22 October 1990) at room temperature.

This page intentionally left blank.

3.0 DEFINITIONS AND NOMENCLATURE

3.1 Symbols and Units

٤

Table 2 contains a listing of the symbols and units of quantities used in this investigation.

3.2 Coordinate System and Sign Convention

The quantities of reflectometry are conveniently referenced to a spherical polar coordinate system of unit radius (θ, ϕ) as shown in Figure 1.

Figure 1. Coordinate System for Reflectometry Measurements.

The sample center coincides with the origin of a right-handed Cartesian-coordinate system (x,y,z). The polar angle θ is measured downward from the positive z-axis, the azimuth angle ϕ counterclockwise from the positive x-axis. A fiducial mark placed at the edge of the sample serves to orient it relative to the coordinate axes. If the sample is smooth or randomly rough, the location of the mark is arbitrary and serves no other purpose than to provide the operator with a convenient reference during a set of measurements or for correlation of measurements made on more than one instrument. If the sample surface exhibits preferred orientation, such as striae resulting from machining, weaving, etc., it is SOC practice to align the fiducial mark in the direction of the striae as shown in Figure 2.

Table 2
Symbols and Units

Ni = Source Radiance watts meter 2-steradians 1 Nr = Reflected Radiance watts meter 2-steradians 1 Nr = Reflected Radiance watts meter 2-steradians 1 Nr = Reflected Radiance watts meter 2-steradians 1 Nr = Solar Absorptivity dimensionless Nr = Bandpass micrometers Nr = Spectral Directional Emittance dimensionless Nr = Incident Polar Angle degrees Nr = Reflected Polar Angle degrees Nr = Wavelength micrometers Nr = Upper Value of Wavelength micrometers Nr = Diffraction Angle degrees Nr = Diffraction Angle degrees Nr = Diffraction Angle degrees Nr = Parallel Polarized Light Nr = Perpendicular Polarized Light Nr = Perpendicular Polarized Light Nr = Directional Reflectance of an Unpolarized Incident Beam Nr = Directional Reflectance Uncorrected dimensionless Nr = Bidirectional Reflectance steradians 1 Nr = Reflected Azimuth Angle degrees Nr = Temperature degrees Nr = Temperature degrees Nr = Source Solid Angle steradians Nr = Reflected Solid Angle steradians Nr = Reflected Solid Angle steradians Nr = Scattered Train ittance dimensionless Nr = Scattered Train ittance dimensionless Nr = Speed of Light missec 1			SYMBOL	UNITS
Johnson's Solar Irradiance Function Value of Reflected Radiance Value of Wavelength Learn Parallel Polarized Light Learn Parallel Polarized Light Learn Directional Reflectance of an Unpolarized Incident Beam Value of Bidirectional Reflectance of an Unpolarized Incident Beam Value of Bidirectional Reflectance of an Unpolarized Incident Beam Value of Reflected Azimuth Angle Reflected Azimuth Angle Reflected Azimuth Angle Reflected Azimuth Angle Reflected Solid Angle Tear Source Solid Angle Source Solid Angle Reflected Solid Angle Reflected Solid Angle Reflected Solid Angle Reflected Solid Angle Planck's Constant Joulesce Planck's Constant Joulesce Watts meter 2.steradians 1 dimensionless dimensionless dimensionless dimensionless dimensionless dimensionless dimensionless steradians 1 degrees steradians 1 degrees steradians dimensionless dimensionless dimensionless steradians dimensionless dimensionless dimensionless dimensionless dimensionless dimensionless dimensionless dimensionless	BDR	=	Bidirectional Reflectance	steradians ⁻¹
Source Radiance watts meter 2-steradians 1)R	=	Directional Reflectance	dimensionless
N, = Reflected Radiance watts meter 2-steradians 1 2	J_{λ}	=	Johnson's Solar Irradiance Function	watts meter-2 micrometers-1
Solar Absorptivity Bandpass Bandpass Bandpass Bandpass Bi = Bandpass Bi = Incident Polar Angle Bi = Reflected Polar Angle Bi = Reflected Polar Angle Bi = Lower Value of Wavelength Bi = Diffraction Angle Bi = Parallel Polarized Light Bi = Perpendicular Polarized Light Bi = Directional Reflectance of an Unpolarized Incident Beam Bi = Directional Reflectance Uncorrected for Instrumentation Polarization Bi = Incident Azimuth Angle Bi = Reflected Azimuth Angle Bi = Source Solid Angle Collimated Transmittance Brack's Constant College Speed of Light Brack's Constant	N_i	=	Source Radiance	watts meter ⁻² .steradians ⁻¹
Bandpass micrometers Gd = Spectral Directional Emittance dimensionless Gd = Spectral Directional Emittance dimensionless Ge; = Incident Polar Angle degrees Ge; = Reflected Polar Angle degrees Wavelength micrometers Gd = Upper Value of Wavelength micrometers Gd = Upper Value of Wavelength degrees H = Diffraction Angle degrees H = Parallel Polarized Light L = Perpendicular Polarized Light Directional Reflectance of an Unpolarized Incident Beam Gd = Directional Reflectance Uncorrected dimensionless for Instrumentation Polarization Go = Bidirectional Reflectance steradians Go = Reflected Azimuth Angle degrees Go = Reflected Azimuth Angle degrees Go = Reflected Solid Angle steradians Gdo = Reflected Solid Angle steradians Gdo = Reflected Solid Angle dimensionless Gr = Scattered Train sittance dimensionless Gr = Speed of Light misser H = Planck's Constant joulesec Gr = Speed of Light misser	N_r	=	Reflected Radiance	watts meter ⁻² .steradians ⁻¹
Spectral Directional Emittance dimensionless Incident Polar Angle degrees Reflected Polar Angle micrometers Incident Polar Angle micrometers Incident Angle degrees Incident Angle degrees Incident Polarized Light Incident Reflectance of an dimensionless Incident Reflectance dimensionless Incident Azimuth Angle degrees Incident Azimuth Angle degrees Incident Azimuth Angle degrees Incident Azimuth Angle degrees Incident Reflectance degrees Incident Reflectance degrees Incident Azimuth Angle degrees Incident Azimuth Angle degrees Incident Reflectance degrees Incident	α	ä	Solar Absorptivity	dimensionless
Bi = Incident Polar Angle degrees Bi = Reflected Polar Angle degrees A = Wavelength micrometers A = Lower Value of Wavelength micrometers A = Upper Value of Wavelength micrometers Bi = Parallel Polarized Light L = Perpendicular Polarized Light Directional Reflectance of an Unpolarized Incident Beam Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance water and degrees Bidirectional Reflectance Fi = Incident Azimuth Angle degrees Cor = Reflected Azimuth Angle degrees Cor = Reflected Solid Angle To = Temperature degrees Cor = Reflected Solid Angle To = Collimated Transmittance dimensionless To = Scattered Transmittance dimensionless To = Planck's Constant joule.sec The second second second second degrees The planck's Constant joule.sec The second second second second degrees The second second degrees The second second second degree degrees The second second second second degree degrees The second second second second degree degrees The second second second second degree degree degrees The second second second second second degree de	β	=	Bandpass	micrometers
Ber = Reflected Polar Angle A = Wavelength Ber = Lower Value of Wavelength Ber = Lower Value of Wavelength Ber = Lower Value of Wavelength Ber = Diffraction Angle Here = Diffraction Angle Here = Parallel Polarized Light L = Perpendicular Polarized Light Directional Reflectance of an Unpolarized Incident Beam Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance Bidirectional Reflectance Fig. = Reflected Azimuth Angle Directional Reflectance Steradians' Directional Re	$\epsilon_{ m d}$	=	Spectral Directional Emittance	dimensionless
Wavelength Lower Value of Wavelength Diffraction Angle Parallel Polarized Light Perpendicular Polarized Light Directional Reflectance of an Unpolarized Instrumentation Polarization Bidirectional Reflectance Bidirectional Reflectance Bidirectional Reflectance For a Reflected Azimuth Angle Reflected Azimuth Angle Source Solid Angle Reflected Solid Angle Reflected Solid Angle Reflected Train sittance Contact Train sittance Bidirectional Reflectance Contact Train sittance Contact Train sitta	θ_{i}	=	Incident Polar Angle	degrees
Lower Value of Wavelength micrometers Diffraction Angle degrees Diffraction Angle degrees Diffraction Angle degrees Directional Reflectance of an Unpolarized Incident Beam Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance dimensionless Directional Reflectance steradians Directional Reflectance steradians Directional Reflectance degrees Directional	θ,	=	Reflected Polar Angle	degrees
Du = Upper Value of Wavelength micrometers P = Diffraction Angle degrees II = Parallel Polarized Light dimensionless Du = Directional Reflectance of an Unpolarized Incident Beam dimensionless Du = Directional Reflectance Uncorrected for Instrumentation Polarization dimensionless Do' = Bidirectional Reflectance steradians'1 Do' = Bidirectional Reflectance degrees Do' = Reflected Azimuth Angle steradians'1 Do' = Reflected Solid Angle steradians Do' = Soattered Train sittance dimensi	λ	=	Wavelength	micrometers
### = Diffraction Angle degrees	λι	=	Lower Value of Wavelength	micrometers
Parallel Polarized Light Perpendicular Polarized Light Pod	λ ս	=	Upper Value of Wavelength	micrometers
Directional Reflectance of an Unpolarized Incident Beam Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance Uncorrected dimensionless for Instrumentation Polarization Directional Reflectance Uncorrected Grand Before Instrumentation Polarization Directional Reflectance Uncorrected Grand Before Instrumentation Directional Reflectance Uncorrected Grand Before Instrumentation Directional Reflectance Uncorrected Grand Before Instrumentation Directional Reflectance Uncorrected Grand Before Instrumenta	Ψ	=	Diffraction Angle	degrees
Directional Reflectance of an Unpolarized Incident Beam Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance Uncorrected for Instrumentation Polarization Directional Reflectance Uncorrected dimensionless for Instrumentation Polarization Directional Reflectance Uncorrected dimensionless for Instrumentation Polarization Directional Reflectance Uncorrected dimensionless degrees Directional Reflectance Uncorrected dimensionless degrees September 1	П	=	Parallel Polarized Light	
Unpolarized Incident Beam pd = Directional Reflectance Uncorrected for Instrumentation Polarization p' = Bidirectional Reflectance steradians' p' = Incident Azimuth Angle degrees p' = Reflected Azimuth Angle degrees p' = Reflected Azimuth Angle degrees p' = Temperature degrees p' = Source Solid Angle steradians p' = Reflected Solid Angle steradians p' = Collimated Transmittance dimensionless p' = Scattered Transmittance dimensionless p' = Speed of Light m.sec' p' = Speed of Light m.sec'	1	=	Perpendicular Polarized Light	
for Instrumentation Polarization p' = Bidirectional Reflectance steradians' p _i = Incident Azimuth Angle degrees p _r = Reflected Azimuth Angle degrees T = Temperature degrees dω _i = Source Solid Angle steradians dω _r = Reflected Solid Angle steradians T _c = Collimated Transmittance dimensionless th = Planck's Constant joule.sec Speed of Light m.sec' steradians teradians teradians teradians teradians teradians teradians teradians	ρ_d	=		dimensionless
o _i = Incident Azimuth Angle degrees o _r = Reflected Azimuth Angle degrees T = Temperature degrees dω _i = Source Solid Angle steradians dω _r = Reflected Solid Angle steradians T _c = Collimated Transmittance dimensionless T _s = Scattered Transmittance dimensionless h = Planck's Constant joule.sec c = Speed of Light m.sec ⁻¹	ρď	=		dimensionless
φ _r = Reflected Azimuth Angle degrees Γ = Temperature degrees dω _i = Source Solid Angle steradians dω _r = Reflected Solid Angle steradians Γ _c = Collimated Transmittance dimensionless Γ _s = Scattered Transmittance dimensionless h = Planck's Constant joule.sec c = Speed of Light m.sec ⁻¹	ρ'	=	Bidirectional Reflectance	steradians ^{.1}
$T = Temperature$ degrees $d\omega_i = Source Solid Angle$ steradians $d\omega_r = Reflected Solid Angle$ steradians $T_c = Collimated Transmittance$ dimensionless $T_s = Scattered Transmittance$ dimensionless $T_s = Planck's Constant$ joule.sec $T_s = Speed of Light$ m.sec ⁻¹	o _i	=	Incident Azimuth Angle	degrees
$d\omega_i = \text{Source Solid Angle}$ steradians $d\omega_r = \text{Reflected Solid Angle}$ steradians $T_c = \text{Collimated Transmittance}$ dimensionless $T_s = \text{Scattered Transmittance}$ dimensionless $T_s = \text{Planck's Constant}$ joule.sec $T_s = \text{Speed of Light}$ m.sec ⁻¹	o,	=	Reflected Azimuth Angle	degrees
$d\omega_r = Reflected Solid Angle$ steradians $\Gamma_c = Collimated Transmittance$ dimensionless $\Gamma_s = Scattered Transmittance$ dimensionless $\Gamma_s = Planck's Constant$ joule.sec $\Gamma_s = Speed of Light$ m.sec ⁻¹	T	=	Temperature	degrees
T _c = Collimated Transmittance dimensionless T _s = Scattered Transmittance dimensionless th = Planck's Constant joule.sec to = Speed of Light m.sec ⁻¹	$d\omega_i$	=	Source Solid Angle	steradians
T _s = Scattered Train littance dimensionless h = Planck's Constant joule.sec c = Speed of Light m.sec ⁻¹	dω,	=	Reflected Solid Angle	steradians
h = Planck's Constant joule.sec c = Speed of Light m.sec ⁻¹	T_c	=	Collimated Transmittance	dimensionless
c = Speed of Light m.sec ⁻¹	T,	=	Scattered Train littance	dimensionless
	h	=	Planck's Constant	joule-sec
k = Boltzman's Constant joule kelvin ⁻¹	С	=	Speed of Light	m.sec ⁻¹
	k	=	Boltzman's Constant	joule.kelvin ⁻¹

 $\phi_{\mathbf{i}}$ read counterclockwise with zero at x axis

Figure 2. Definition of Striae Orientation.

3.3 Polarization Convention

When reflectance measurements are made with polarized light, the directions of polarization are defined relative to the plane formed by the incident beam and the normal to the sample face. For an unpolarized incident beam, the reflected light (electric field vector) vibrating in the plane of incidence is called parallel polarized. The reflected light vibrating normal to the plane of incidence is said to be perpendicularly polarized (Figure 3).

Figure 3. Convention Describing the Polarization of Reflected Light.

4.0 REFLECTANCE PROPERTIES

4.1 Directional Reflectance

The directional reflectance (DR) of a surface is defined as the ratio of the total energy reflected into the subtending hemisphere to the energy incident on the surface from the direction $\theta_{ij}\phi_{i}$ (Figure 4).

Figure 4. Diagram Illustrating Concept of Directional Reflectance.

Following the notation of Nicodemus' the directional reflectance may be expressed in terms of primary quantities as

$$\rho_{d}(\theta_{i},\phi_{i}) = \frac{\int_{o}^{2\pi} \int_{o}^{\pi/2} N_{r} \sin \theta_{r} \cos \theta_{r} d\theta_{r} d\phi_{r}}{N_{i} \sin \theta_{i} \cos \theta_{i} d\theta_{i} d\phi_{i}} . \tag{1}$$

The relation between directional and bidirectional reflectance (BDR) is given by the integral of the latter over the viewing hemisphere

$$\rho_{\rm d} = (\theta_{\rm i}, \phi_{\rm i}) = \int_0^{2\pi} \int_0^{\pi/2} \rho'(\theta_{\rm i}, \phi_{\rm i}; \theta_{\rm r}, \phi_{\rm r}) \sin \theta_{\rm r} \cos \theta_{\rm r} d\theta_{\rm r} d\phi_{\rm r} . \tag{2}$$

³ Nicodemus, F., "Directional Reflectance and Emissivity of an Opaque Surface", Applied Optics, Vol. 4, No. 7 (July 1965).

For a perfectly diffuse isotropic reflector $(\rho'(\theta_i,\phi_i;\theta_r,\phi_r) = \text{constant})$, integration of (2) gives

$$\rho_{\rm d} = \pi \rho' \quad . \tag{3}$$

4.2 Quantities Derived from Directional Reflectance

The measured directional reflectance of a surface may be used to compute two important properties required for radiative heat transfer analysis, viz. the directional emittance and the solar absorptance.

4.2.1 Emittance

By reasons of conservation of energy, the directional emittance of an opaque surface at a given wavelength and angle of incidence may be expressed by

$$\varepsilon_{d}(\theta_{i},\phi_{i},\lambda) = 1 - \rho_{d}(\theta_{i},\phi_{i},\lambda)$$
 , (4)

where $\rho_d(\theta_i, \phi_i, \lambda)$ is the measured directional reflectance. From this relation, the total directional emittance of the surface at a given temperature may be found by

$$\varepsilon_{t} = 1 - \frac{\int_{0}^{\infty} \rho_{d}(\lambda) P(\lambda, T) d\lambda}{\int_{0}^{\infty} P(\lambda, T) d\lambda} , \qquad (5)$$

where

$$P(\lambda,T) = \frac{8\pi hc}{\lambda^5 (e^{hc}/\lambda Tk - 1)} , \qquad (6)$$

is Planck's Function for the given wavelength and temperature. Substituting values for the constants h, c and k and providing the appropriate unit conversion so λ can be expressed in microns we have

$$P(\lambda,T) = \begin{cases} 0.000119088 \\ \lambda^{5} [e^{143889\lambda T} - 1] \end{cases}$$
 (7)

SOC software has been implemented to provide emittance data of three types, depending on the angular coverage present in the reflectance measurements:

- (a) directional, near-normal emittance, when reflectance has been measured at near-normal incidence ($\theta = 20^{\circ}$);
- (b) directional angular emittance, when reflectance has been measured at any incidence angle other than near-normal;
- (c) total hemispherical emittance, when reflectance has been measured over a sufficiently wide range of incidence angles to permit integration over the hemisphere, viz.

$$\varepsilon_{\rm H} = 2 \int_0^{\pi/2} \varepsilon_{\rm d}(\theta)_{\rm T} \sin\theta \, \cos\theta \, d\theta$$
 (8)

4.2.2 Solar Absorptance

'n

According to Kirchhoff's Law, the absorptance of a surface at any wavelength is equal to its emittance

$$\alpha_{\lambda} = \varepsilon_{\lambda}$$
 (9)

The solar absorptance of the surface may therefore be written as

$$\varepsilon_{s} = \frac{\int_{\lambda_{1}}^{\lambda_{2}} \varepsilon_{d}(\lambda) J(\lambda) d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} J(\lambda) d\lambda} , \qquad (10)$$

where J(\(\lambda\) is the solar irradiance function. SOC program SOLARAB calculates the exoatmospheric solar absorptance of a surface from the measured directional reflectance and the NASA solar spectrum SP-8005, modified to give a solar constant of 1368 (watts/M²). The computational procedure selects points of the solar irradiance function which match the wavelengths of the measured reflectances, using interpolation where necessary. The program is capable of utilizing directional reflectance data obtained over the full range of angles of incidence.

4.3 Transmittance

A transmissive material may transmit electromagnetic radiation in one of the following two ways. First, as a collimated beam of light propagates through the material it may be scattered into a hemisphere of 2π steradians upon exiting the material. Material that exhibits this type of property (scattered transmittance, T_s) is called translucent.

Secondly, if the transmitted beam is parallel to the incident beam across the width of the entire beam, the transmittance is referred to as collimated transmittance, T_c. Materials of this type are called transparent.

These distinctions are important since they determine how both the absorptance of a transmissive material is calculated and how the transmittance is measured.

$$\alpha = 1 - \rho_d - T_s$$
 (translucent material) , (11)

$$\alpha = 1 - \rho_d - T_c$$
 (transparent material) . (12)

Figure 5. Transmittance of Transparent and Translucent Materials.

4.4 Bidirectional Reflectance

The bidirectional reflectance (BDR) of a surface is defined as the ratio of the luminous radiance reflected into a unit solid angle to the total radiance incident. As illustrated by the diagram of Figure 6

$$\rho'(\theta_i, \phi_i, \theta_r, \phi_r) = dN_r/(N_i \cos \theta_i d\omega_i) , \qquad (13)$$

where $d\omega_i = \sin \theta_i d\theta_i$, and dN_r is the reflected portion of radiance in the direction (θ_r, ϕ_r) due to a source of radiance N_i in the direction (θ_i, ϕ_i) .

The dimension of BDR is reciprocal steradians. Note that its value may be larger than unity.

Figure 6. Diagram Illustrating Concept of Bidirectional Reflectance.

This page intentionally left blank.

5.0 EXPERIMENTAL MEASUREMENTS

<u>5.1</u> <u>Directional Reflectance</u>

The directional units which covers the wavelength band from 0.3 to $1.6~\mu m$ is called the Cary-Integrating Sphere Reflectometer and the device which covers the band from 1.6 to $25.0~\mu m$ (and beyond if required) is called the Infrared Reflectometer.

There are two methods which may be employed in directional reflectometer design. The "direct method", wherein the sample is illuminated from a specified direction and the scattered (reflected) radiation is collected and detected. Alternatively, using the "reciprocal", the sample may be uniformly illuminated by a hemisphere which the sample subtends and the scattered radiation from the sample at a specified direction is collected and detected. Both the directional reflectometers described here use the latter method.

5.1.1 Cary-Integrating Sphere Reflectometer

This instrument is designed for directional reflectance measurements in the near ultraviolet, visible and near infrared region. As illustrated in Figure 7 the sample is located at the center of a hollow 9" diameter sphere which is coated with a thick layer of Halon (G-80 tetrafluoretheylene).

The source illumination for the sample is provided by a 55 watt halogen bulb mounted behind the sample in the center of the integrating sphere. A diffuse reflector physically blocks the region between the sample and the bulb such that light from the halogen bulb must bounce off the integrating sphere a minimum of two times before reflecting off the sample surface. Thus, the sample views a uniformly illuminated hemisphere of 2π steradiancy. The angle of incidence θ_i at which the DR is measured may be varied by rotating the sample about an axis in the plane of the sample, the axis being perpendicular to the spectrophotometer beam. The azimuthal angle ϕ_i of the sample may be varied by rotation of the sample about the axis perpendicular to and through the sample center.

The beam reflected by the sample and a reference beam reflected by the illuminating hemisphere enter the collection optics of a Cary Model 14 Spectrophotometer. Here a rotating chopper alternately selects energy from the sample and reference beams, which is focussed onto a dispersing prism. The resulting monochromatic signals are directed to the appropriate detectors, a photomultiplier tube for the region from 0.3 to 0.8 µm, and a lead sulphide cell for that from 0.8 to 1.6 µm when measuring polarized data. The detector circuits automatically form the difference

Figure 7. Schematic of Cary-Integrating Sphere Reflectometer.

of the two signals which is directly proportional to the directional reflectance (DR), and which is displayed as function of wavelength on a stripchart recorder. For internal calibration, the instrument is operated in the 100% or verification mode in which the two branches of the spectrophotometer collection optics view the same spot on the illuminating hemisphere. The principal features, components and performance characteristics of the instrument are shown in Table 3.

5.1.2 Infrared Reflectometer

From 1.6 to 25.0 μ m and beyond, directional reflectance is experimentally measured using a hemi-ellipsoidal reflectometer. The features of this instrument are outlined in Table 4.

The characteristics of a hemi-ellipsoid are such that a point source of light emanating from one focus is imaged at the other focus. The geometrical arrangement, in this case, of the source and sample at the foci in the plane of the ellipse, is shown in Figure 8. The source illuminates the sample uniformly over 2π steradians. The reflected radiation from the sample is viewed by a small spherical "overhead" mirror which directs the illumination in sequence to a plane mirror, a torroidal mirror, a plane mirror, thence to the monochromator slit, through the monochromator and to the detector, see Figure 8.

In the alignment process, the detector is replaced by a mercury arc source, and the Hg green line traverses the reflectometer optical path in the "reverse" direction. The monochromator entrance slit is imaged by the collection optics on a 1" diameter sample disc. The specularly and/or diffusely resected slit image is in turn imaged by the hemi-ellipsoid into the IR source opening. The slit image on the sample (about 1/8" x 1/2") when reimaged by the ellipsoid on the source cavity, must fall completely within the confines of the IR cavity entrance. Given a uniform radiance from the cavity, uniform illumination of the slit image on the sample over 2π steradians is provided. The large diameter (12") and closely spaced foci (2" separation) of the hemi-ellipsoid used make the geometric deviation from a hemisphere minimal, but this deviation is all important in minimizing the size of the diffusely reflected sit image at the cavity entrance, see reference 2.

To allow performance of required functions, it is necessary to rotate the overhead mirror, together with the collection optics, monochromator, and detector, in relation to the source, chopper, and sample system. The rotation is performed about an axis through the sample center, in the

W. M. Brandenberg, "Focusing Properties of Hemispherical and Ellipsoidal Mirror Reflectometers", Number DGA63-1111, ERR-AN-352, General Dynamics Astronautics Report, November 1963.

⁵ Ibid.

Table 3 Cary-Integrating Sphere Reflectometer

Function Determination of directional reflectance as a function of wavelength, angle

of incidence, and light polarization in the near-ultraviolet, visible and

near-infrared region.

Wavelength 0.2 to 1.6 μm .

Type Integrating sphere coupled to Cary Model 14 dual beam prism-grating

spectrophotometer.

Radiation Source 55 watt quartz halogen lamp, 3400° for 0.3 to 2.0 µm, and 30 watt

Deuterium lamp for 0.2 to 0.3 μ m.

Mode of Operation Reciprocal: Uniform hemispherical illumination of sample. Sample

viewing as a function of angle. Records traces for light polarized parallel (11) and perpendicular (1). The 11 and 1 traces are averaged to obtain reflectance for unpolarized light with effects of instrumentation

polarization eliminated.

Sample Holder Located in center of integrating sphere.

100% Value Absolute measurement device, comparison to standard not required.

Transfer Optics Custom design by Cary.

Polarizer Lual Glan Thompson prisms (one in each beam) manufactured by Karl

Lamprecht Corporation for ~ 0.3 to 2.0 µm, and UV dichroic sheet

polarizer for 0.2 to 0.3 µm.

Viewing Angle Sear-normal (20°) to grazing (80°), with intermediate angles as required.

Detectors Broadband response, phototube for 0.3 to 0.8 µm, lead sulfide for 0.8 to

1.6 µm, and PMT optimized for solarband region of spectrum, 0.2 to 0.3

um.

Recording Strip chart recorder.

Data Presentation Graphical as a function of wavelength and incidence angle, tabular in

ERAS format. Parallel and perpendicular polarized traces can be provided, with computed values of index of refraction (n) and extinction coefficient

(k).

Table 4 Infrared Reflectometer

Function Determination of directional reflectance as a function of wavelength, angle

of incidence, and light polarization in the infrared region.

Wavelength 1.6 to 40 µm, coverage to 600 µm possible if required.

Type Hemi-ellipsoidal: Ellipse cleavage plane contains semi-major and

semi-minor axis. Infrared source at one focus, sample at other.

Infrared Source High-purity, copper cavity with aerorod heater silver-soldered to outside,

interior flame sprayed with a corrosion resistant alloy.

Chopper Twin bladed, located between source and sample. Frequency, 20 Hz.

Mode of Operation Reciprocal. Uniform illumination of sample, sample viewing as a function of angle. Records traces as $f(\lambda)$ for light polarized perpendicular (\bot) and

parallel (II). Average (L) and (II) traces to obtain reflectance for unpolarized radiation, i.e. with effects of instrumentation polarization

eliminated.

Sample Holder Water cooled carousel holds eight samples, individually positionable in

sample measurement position.

100% Value Absolute, or in comparison to high-reflectance evaporated gold reference

sample.

Transfer Optics Toroidal mirror $2\theta = 60^{\circ}$, FL = 125 mm, used at 1 to 1 magnification.

Polarizers Perkin-Elmer wiregrid and thin film (over ZnSe) infrared polarizers.

Monochromator Perkin-Elmer model 210 grating. Available gratings: 1800, 640, 240, 101,

40, 20, 10, 5, and 1.25 lines/mm.

Viewing Angle Near-normal (20°) to grazing (80°), with intermediate angles as required.

Detectors PbS detector, 1.6 to 2.2 µm; pyroelectric detector, 2.2 to 40.0 µm.

Signal Processing EG&G (PAR) #124 amplifier.

Recording Digital voltmeter.

Data Presentation Graphical, as a function of wavelength and incidence angle, tabular in ERAS format. If required, parallel and perpendicular polarized traces and

computed n and k values.

22

Schematic of Infrared Reflectometer. Figure 8.

SIDE VIEW

plane of the sample and parallel to the ellipse semi-minor axis. This rotation is required (1) to allow positioning the mirror directly above the sample to measure the directional reflectance with the specular component eliminated, (2) to allow reflectance measurements as a function of angle 20 to 80°, and (3) to make a 100% measurement without use of a reference standard. The scattering or zero incidence angle measurement (specular component eliminated) is discussed below in Section 5.1.3. With this mechanism, angular measurements are routinely made for near-normal (20°), to grazing at 80° or greater.

Directional reflectance is, by definition, the ratio of the total reflected radiation to the radiation incident at a specified angle. Energy recorded when the sample is viewed by the overhead mirror gives the reflected datum. The incident datum may be measured (1) directly (so-called absolute method) or (2) derived by a replacement of the sample with a standard of known reflectance, such as evaporated gold on a smooth fused silica substrate.

The absolute 100% measurement requires removing the sample from the measurement position and rotating the overhead mirror to a location below the plane of the ellipse, see Figure 8. In this location, the overhead mirror receives the light which falls on the sample position, thus allowing measurement of the 100% datum.

The positioning of the overhead mirror in relation to the sample location is an important feature of the reflectometer. It cannot be accomplished by simply rotating the overhead mirror alone. The entire optical train, overhead mirror, torroid, monochromator and detector must remain fixed in relationship to each other; if the overhead mirror rotates, the entire train has to be rotated. This is now actually feasible with design changes recently accomplished. But for solid (non-fluid samples), the source-sample holder-chopper system is rotated, as shown in Figure 8.

5.1.3 Directional Reflectance Error Analysis

The principal problem in directional reflectance measurements is the availability of suitable standards. Directional reflectometers should provide a correct reflectance value for a specularly reflecting sample, a diffusely reflecting (scattering) sample, or a sample which reflects part of the light into a specular lobe and scatters the remainder. Calibration standards which may be correlated with theory are generally specular reflectors. The problem of standards has been discussed in some detail in a SAMSO report by R.J. Champetier and G.J. Friese. The report compiles work done to resolve discrepancies in directional reflectance (or directional emittance)

⁶ Champetier, R.J., and Friese, G.J., "Use of Polished Fused Silica to Standardize Directional Polished Emittance and Reflectance Measurements in the Infrared", SAMSO Report TR-74-202, SAMSO, Los Angeles Air Force Station, Los Angeles, CA, 90054 (9 August 1974).

obtained on the same sample by three different laboratories. The preferred standard for the IR region is pure, highly polished (and therefore specular) fused silica. A second choice is evaporated gold on a polished glass substrate.

As already noted, SOC uses two instruments to cover the full spectral region from 0.2 to $40.0 \, \mu m$. For both instruments, the error is estimated by comparison of measured reflectance with values established by the National Bureau of Standards (NBS) or with theoretical values calculated from n and k data in the literature.

The alternate method of error determination, viz, the summation of individual errors, is reasonably straightforward except for evaluation of the uniformity of the radiant intensity in the 2π steradians region subtended by the sample. This problem is common to both the Cary-sphere and the ellipsoid.

5.1.3.1 Cary-Sphere

Five samples which are mixtures of Halon and carbon black sintered to a solid mass were prepared and standardized by the NBS. These samples were diffuse reflectors. The reflectance ranges in the wavelength band between 0.25 and 2.5 μ m for each sample are as follows:

- Sample #2 0.031 to 0.018;
- Sample #7 0.241 to 0.170;
- Sample #10 0.512 to 0.462;
- Sample #13 0.755 to 0.727;
- Sample #17 0.913 to 0.982.

The same five samples were measured by SOC in the region from 0.3 to 2.0 μm on the Cary-sphere. The deviation of the measured reflectance from the NBS values was in general less than 1%, excepting for sample #2, which showed values 1.3% higher than the NBS data. In operation the instrument is routinely checked against a specular gold standard. In the region from 1.0 to 2.0 μm , the standard shows reflectances of 98.5% to 99.5%, in good agreement with theoretical values.

5.1.3.2 Ellipsoidal Reflectometer

Beyond 2.5 µm, no diffuse standards exist. In this region, SOC uses a fused silica standard, i.e. a specular reflector. Reflectances at selected wavelengths between 4.0 and 25.0 µm are

measured as a function of angle. Incident angles are 20, 30, 40, 50, 60, 70, 75 and 80°. The results are compared to values calculated from n and k (Reference 6). Examples of the experimental fused silica reflectance values are shown in Figure 9. The curves are labeled parallel (11) and perpendicular (\perp) according to the usual polarization convention. Agreement between measured and theoretical data is seen to be good. The instrument is routinely checked against the fused silica sample after adjustments are made, after a new source is installed, or if no measurements have been made for more than two weeks. At 16 μ m, the standard is measured at eight angles and in both perpendicular and parallel polarization modes and checked against theoretical values in Reference 6. The agreement in the average \perp and 11 values is generally within 1% for angles from 20 to 70°; the 75 and 80° values may be in error by as much as 3%.

5.2 Bidirectional Reflectance

5.2.1 Bidirectional Goniometric Reflectometer

This instrument is designed to measure the fraction of incident light reflected by a sample into incremental solid angles over its field of view. It uses illumination from incoherent sources ranging from visible UV (0.3 µm) to far I.R. (25.0 µm), and permits measurements for any combination of incident and reflected angles over a hemispherical field of view, excepting for a small solid angle in which source and detector mirrors interfere. Because of this limitation, the measurements are confined to bistatic configurations. The principal components and operating features of the system are listed in Table 5.

Light from the source is interrupted by a chopper and directed toward the sample by a folded beam system which terminates in an off-axis parabolcidal mirror. This mirror projects a beam of parallel light onto the sample surface. The incident beam diameter is somewhat larger than the sample diameter and thus provides a certain degree of "over-illumination". The sample is viewed by a movable off-axis paraboloid which projects the light reflected by the sample onto the detector via a folded beam transfer system similar to that used for the incident light. Figure 10 shows a schematic of the instrument with its essential components.

The bidirectional reflectance of a surface is a function of four independent variables: incident azimuth angle ϕ_i and polar angle θ_r , and reflected azimuth angle ϕ_r and polar angle θ_r . To generate the desired values of these variables in a measurement, the instrument must provide four angular degrees of freedom. As illustrated by the partial schematic of Figure 11 the incident azimuth angle ϕ_i is established by rotation of the sample about an axis through its center and normal to its surface, while the incident polar angle θ_i is set by rotation of the incident beam paraboloid about an axis through the sample plane. The reflected azimuth angle ϕ_r is generated by rotation of the yoke mounting the detector assembly about the vertical sample axis, the reflected polar angle θ_r by tilting the detector assembly about an axis containing the sample plane.

Figure 9. Directional Reflectance of Fused Silica Standard at 16 μm -Perpendicular (1), Parallel (11), and Average.

Table 5 Bidirectional Reflectometer

Function Determination of bidirectional reflectance at selected wavelengths in the

ultraviolet, visible and infrared regions.

Wavelength 0.3 to 25.0 μ m.

Type Goniometer. Parallel beam illumination and detection. Incident polar

angle variable 0 to 88°; reflected polar angle variable 0 to 88°, incident

and reflected azimuth variable 0 to 360°.

Sources UV to visible: mercury or xenon short arcs. IR: 2000 K blackbody.

Chopper Brower, variable frequency.

Mode of Operation At a given wavelength illuminate sample from 0 to 88° with parallel beam,

detect with parallel beam in 2π steradians hemisphere over the sample. Determine BDR by (a) comparing detector signal of sample to that of a diffuse gold standard, or (b) by summing all relative BDR values and equating the sum to the independently determined DR of the sample.

Sample Holder Stem-mount.

Transfer Optics Two off-axis parabola mirrors used at 1 to 1 magnification. Sample beam

rendered parallel using parabola from Perkin-Elmer spectrometer.

Light Dispersion Thin film interference filters.

Detectors Phototube. Thermoelectrically, helium and LN2 cooled detectors: ZnGe,

PbS, PbSe, InSb, HgGe, CuGe, MCT.

Signal Processing Detector preamplifiers and EG&G (PAR) #124 amplifier.

Recording Digital volt meter.

Data Presentation Graphical as a function of angles, tabular in ERAS format.

Figure 10. Schematic of Bidirectional Goniometric Reflectometer.

Figure 11. Goniometric Structure of Bidirectional Reflectometer.

The relative bidirectional reflectance is measured at closely spaced angular positions over a range of incident θ_i angles. For samples with isotropy about the normal, it is not necessary to vary ϕ_i . However, if the sample has surface structure which exhibits a preferred (as opposed to random) direction, then the BDR may vary significantly as a function of ϕ_i , in this case, BDR measurements at several incident azimuth angles are required.

All measurements are made in the relative mode, either by comparison with a diffuse gold standard, or by summation of all relative BDR values and comparing the total to the measured DR value. In the second method, the first step is to form the ratio of the light reflected in a given direction to that reflected at a reference angle, e.g. the specular angle. This relative reflectance is mapped at a large number of individual angles over the entire 2π steradiancy subtended by the sample. Next the sum of the relative bidirectional reflectances is set equal to the total directional reflectance measured previously (see section 4.1) The individual bidirectional reflectances are then obtained by algebraic manipulation.

The various bidirectional reflectance determination methods may conveniently be divided into two categories: complete mapping and selective mapping.

5.2.1.1 Complete Mapping

Complete mapping may be provided by methods which equate a full set (full mapping of the hemisphere) of relative bidirectional reflectance values to the directional reflectance of the sample. By relative bidirectional reflectance is meant the ratio of the light reflected in a given direction to light reflected at a reference angle such as the specular angle. This complete bidirectional reflectance mapping method is useful in predicting vehicle signatures from faceted models. The mapping of the reflectance into a hemisphere may be done entirely experimentally to provide the most accurate representation or using the SYNTHET method which computes the full mapping from limited experimental data. The former method is referred to as complete experimental mapping, the latter as SYNTHET.

5.2.1.2 Selective Mapping

There are a variety of selective mapping methods which have been devised for particular requirements. These methods all have in common the use of a diffuse bidirectional reflectance standard which was experimentally standardized by <u>complete experimental mapping</u> as defined above. In this project, the "in-plane, cross-plane, ring" method was selected by SSI.

Using this method, polar scans at 20, 40, and 60° are performed at azimuthal angles $\phi_r = 180$, 90 and 0°. In addition, a ring scan is also made by holding $\theta_r = \theta_t$ and varying ϕ_r from 180°

to as close to 0° as possible. Physical limitations of the instrument make the ring measurement at $\phi_r = 0$ ° impossible. Figures 12 (a), 12 (b) and 12 (c) illustrate these scans. For each scan, a standard is measured to allow conversion of the relative values to absolute Sr^{-1} values.

Figure 12 (a). In-Plane Scan.

Figure 12 (b). Cross-Plane Scan.

Figure 12 (c). Principal Ring Scan.

5.2.2 Bidirectional Reflectance Error Analysis

The principal error sources in BDR measurements have been defined as follows:7

- (1) Spectral bandwidth of interference filter.
- (2) Finite solid angle of source and detector.
- (3) Uncertainty in angle measurement.
- (4) Variation in source intensity and detector response.
- (5) Polarization of incident energy.
- (6) Energy scattered from surroundings.
- (7) Energy scattered from sample edge.
- (8) Uncertainty in directional reflectance.

The contributions of these errors to the overall error in the BDR measurements are estimated as follows:

(a) The interference filters employed cover a variety of spectral bandwidths. Since no measurements are made near an absorption edge, the BDR value taken within this spectral

⁷ Brandenberg, W.M., and Neu, J.T., "Unidirectional Reflectance of Imperfectly Diffuse Surfaces", J.O.S.A., Vol. 56, No. 1, 97-103 (January 1966).

band may be considered to be constant, and the contribution due to this effect is essentially negligible.

(b) The variation of BDR within the solid angle aperture of either source or detector is primarily dependent on the nature of the surface. For most imperfectly diffuse surfaces the BDR changes negligibly within small increments in solid angle. For smooth surfaces a more rapid change is apparent around the specular angle. Measurements of the angular divergence of the detector beam as a function of source aperture width show that the angular divergence can be limited to 0.1° (see Figure 13).

Figure 13. Angular Divergence of Detector Beam as a Function of Source Aperture.

Reflectance measurements on a polished aluminum sample have shown the angular halfwidth of the BDR around the specular peak to be in the order of 1.3° (Figure 14), i.e. more than ten times larger than the limiting angular divergence. The error due to uncertainty in reflected and incident angles is negligible, except for highly specular surfaces and can be held to 0.02° with proper care in angular measurement.

Figure 14. Relative Bidirectional Reflectance of Dull and Polished Aluminum as a Function of the Reflected Angle θ_r at $\lambda = 0.507 \ \mu m$.

The effects of source intensity fluctuation and random detector variations are minimized by statistical sampling procedures. for the source, an RMS error is calculated from the maxima and minima of readings taken over a given time period at each wavelength. Typically the maximum error occurring at $10.6~\mu m$ is 1.4% of the average. Similarly, the RMS error in detector response is calculated from maxima and minima BDR readings taken over a given time interval at the specular angle and at each wavelength.

The effect of polarization of the incident beam is generally small for bidirectional reflectance of most surfaces. Hence, the bidirectional reflectance may usually be measured without separate measurements of the two polarizing components. As an example, it was found that, at a wavelength of $0.507~\mu m$, the intensity of the source in the two polarizing modes differs by about 1.5%. But if the bidirectional reflectances measured separately for each mode differ by, say, 10%, the difference between the mean of the two values and the directly determined BDR is less than 0.15%. Hence the error due to polarization in the incident energy is negligible.

Errors due to energy scattered into the detector by the surroundings are minimized by overillumination of the sample and are negligible in all cases. This very procedure, however, can produce scattering by the sample edge. If the incident polar angle is small, the projected area of the sample edge is small compared to that of the sample surface. At larger incidence angles and with thick samples a black shield around the edge is necessary to eliminate the scattering effect.

To estimate the relative error of the bidirectional reflectance ρ' due to uncertainty in directional reflectance ρ_d and uncertainty in the recorder reading ΔV , the general relation between DR and BDR is expressed in the form

$$\rho_{\rm d} = (\theta_{\rm i}, \phi_{\rm i}) = \int_{0}^{2\pi} \int_{0}^{\pi/2} \rho'(\theta_{\rm i}, \phi_{\rm i}; \theta_{\rm r}, \phi_{\rm r}) \sin \theta_{\rm r} \cos \theta_{\rm r} d\theta_{\rm r} d\phi_{\rm r} , \qquad (14)$$

where ρ_d is the DR, ρ' the BDR, θ_i and ϕ_i are the incident polar and azimuth angles, and θ_r and ϕ_r are the reflected polar and azimuth angles. In a measurement, the BDR is proportional to a voltage signal V, viz.

$$\rho'(\theta_{i},\phi_{i};\theta_{r},\phi_{r}) = \frac{kV(\theta_{i},\phi_{i};\theta_{r},\phi_{r})}{\cos\theta_{r}} , \qquad (15)$$

ž

and the DR can then be written in the form

$$\rho_{\rm d} = \int_0^{2\pi} \int_0^{\pi/2} kV(\theta_i, \phi_i; \theta_r, \phi_r) \sin \theta_r \, d\theta_r \, d\phi_r \quad . \tag{16}$$

Dividing equation (15) by equation (16) gives

$$\rho'(\theta_{i},\phi_{i};\theta_{r},\phi_{r}) = \frac{\rho_{d} V(\theta_{i},\phi_{i};\theta_{r},\phi_{r})}{\cos \theta_{r} \int_{0}^{2\pi} \int_{0}^{\pi/2} V(\theta_{i},\phi_{i};\theta_{r},\phi_{r}) \sin \theta_{r} d\theta_{r} d\phi_{r}}$$
(17)

It must be noted that in a measurement the voltage signal is measured at discrete angular increments, and that the BDR is assumed to remain constant over the incremental solid angle of the reading. Equation (17) may then be written in the form

$$\rho' = \frac{\rho_d \ V(\theta_i, \phi_i; \theta_r, \phi_r)}{\cos \theta_{rn} \ \Sigma \ \Sigma \ V(\theta_i, \phi_i; \theta_r, \phi_r) \ \sin \theta_{rn} \ \Delta \theta_{rn} \ \Delta \phi_{rm}} \ , \tag{18}$$

where r and n are the angular increments of incident polar and azimuth angles, m and n the angular increments in reflected azimuth and polar angles, and M and N are the limits of integration over the hemisphere, 2π and $\pi/2$, respectively. The choice of angular increments depends upon the type of surface, they must be taken small near the specular peak of a smooth surface where the return signal V changes rapidly with the polar angle. For diffuse surfaces, the angular increments may be made larger without affecting the accuracy.

From equations (17) and (18) the relative error in BDR has been calculated as

$$\frac{\Delta \rho'}{\rho'} = \pm \left\{ \left(1 + \frac{2}{\pi} - \frac{\rho'}{\rho_d} \cos \theta_r \right) \frac{\Delta V}{V} + \frac{\Delta \rho_d}{\rho_d} \right\} . \tag{19}$$

In this relation the accuracy in recorder reading is estimated as 0.015 of full scale deflection. The relative accuracy in directional reflectance is in the order of 0.03 for the instruments currently in use at SOC.

This page intentionally left blank.

6.0 DATA REDUCTION AND PRESENTATION

Data reduction is by interactive means, using a Sun 3/260 computer with a CRT terminal (CIT-101) and laser printer within the SOC laboratory facility. Current working sets of data are stored entirely within the computer where they are immediately available to the terminal display, either as print-out in report-ready format or graphical presentation. This procedure has eliminated the use of keypunch formats. Another advantage is the speed with which data on new materials can be acquired, processed and transferred. If required, the system provides computer-to-computer transfer between the SOC site and a client's facility via telephone lines.

6.1 Codes for Data Reduction

Data obtained with all incoherent source instrumentation (Cary-Integrating Sphere, Infrared Reflectometer, Bidirectional Reflectometer) are processed by an interactive prompting system which eliminates the use of keypunch formats. For the directional reflectance measurements, the programs automatically merge the data collected by the Cary-Integrating Sphere and the Infrared Reflectometer. The flow for processing is shown below.

6.1.1 <u>Directional Reflectance Codes</u>

Cary data (directional reflectance 0.3 to 1.6 μ m) are read from the instrument charts and entered into the computer by means of a prompting system. Infrared data (DR 1.2 to 40.0 μ m) are read from digital voltmeter printer tape and entered by prompting at each wavelength of interest. The raw data are processed into reflectance data and formatted to the standard ERAS form. Two different classes of data are recognized. These are:

- 1. near-normal, unpolarized data (used largely for thermal analysis calculations),
- angular data collected in both polarizations (used as a data base for signature calculations).
 - The following types of data may be generated, depending on requirements:

⁸ Earing, Dianne, "Support Information for Target System Measurements", Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, December 1967.

- 1. solar absorptance as a function of polar incidence angle;
- 2. integrated directional emittance as a function of temperature and angle, and total hemispherical emittance;
- directional reflectance as a function of wavelength and angle (including perpendicular and parallel polarization branches and their average);
- 4. "bestfit" values of index of refraction and extinction coefficient;
- 5. "bestfit" Brewster angle.

Figures 15 and 16 show the data reduction program entities involved in the two classes of reduction.

6.1.2 Directional Transmittance Codes

Directional transmittance data obtained with the Cary and infrared reflectometer in either the scattered or collimated mode are processed in the same manner as unpolarized directional reflectance data, Figure 17.

6.1.3 Bidirectional Reflectance Codes

Raw bidirectional reflectance data are entered into the computer from a digital voltmeter printer tape in a standard format using the terminal tabs for spacing. Bidirectional reflectance data collected as relative values over the hemisphere above the sample are normalized to BDR (L'ster) by integration using a measured value of directional reflectance at each incident angle and wavelength. Gaps in the data caused by goniometer arm interference are filled by interpolation. Checks are performed to assure that scattered energy over the hemisphere integrates to the measured directional reflectance. Figure 18 shows the steps in the reduction.

Figure 15. Directional Reflectance Data Processing for Thermal Analysis Calculations.

CARY REFLECTOMETER DATA

- Angular 20 to 80 degrees
- Polarized or unpolarized ($\theta_i = 20^\circ$)
- Prompted input 0.3 to ~ 1.6 microns

INFRARED REFLECTOMETER DATA

- Angular 20 to 80 degrees
- Polarized or unpolarized ($\theta_i = 20^\circ$)
- Prompted input 1.6 to ~ 40.0 microns

DATA REDUCED

- Merged to ERAS format Perpendicular
 - Parallel
 - Average of both branches
- · Index of refraction and extinction coefficient
- · Brewster angle
- Directional emittance vs. temperture

COMPUTER GRAPHICS

- · Log plots
 - 0.3 to 100 microns
- · Linear plots
 - 0.3 to 2.0 microns
 - 2.0 to 40.0 microns
- · Cross plots vs. angle at each wavelength

Figure 16. Directional Reflectance Data Processing for Signature Calculations.

Figure 17. Directional Transmittance Data Processing.

Figure 18. Bidirectional Reflectance Data Processing.

6.2 Data Presentation

Data is presented in both graphical and tabular form. In both cases special software is used. The tabular data is compiled in accordance with the ERAS format. In addition, all ERAS formatted data can be provided on tape.

This page intentionally left blank.

7.0 ANALYSIS

7.1 Introduction

Twenty-four (24) separate samples were measured by Surface Optics Corporation (SOC) for Spectral Sciences, Inc. (SSI). The measurements were broken up into two separate phases. In the first phase two tree bark samples and a leaf sample, both top and bottom, were fully characterized with directional reflectance (DR) and bidirectional reflectance (BDR) measurements. The samples for the first phase arrived on 12 September 1990; measurements commenced on the 13th of September and were completed on 1 October 1990. The leaf samples for the first phase were shipped in "rose bud" holders which kept the base of the stems immersed in water at all times. This allowed the leaves to stay fairly fresh over the course of the two and one-half week period when measurements were performed.

In the second phase a large number of leaf samples were received by SOC on 19 October 1990 and sixteen (16) samples, eight from the top of the leaf and eight from the bottom, were cut and mounted for DR measurements from 0.3 to 26.0 µm at 20° incidence. These scans were performed on 19 October 1990 when the leaves were fresh and again on the 22nd of October after the leaves were allowed to dry for three days at room temperature. In addition to the DR measurements, four additional samples were cut from this second set of leaves and the scattered transmittance at 0° incidence was measured from 0.3 to 26.0 µm on the 23rd of October. The leaf samples for the second phase were shipped with wet paper towels wrapped around the stems and not the "rose bud" holders received with the first set of leaves. For this reason the second batch of leaves deteriorated at a much faster rate than the leaves from the first shipment.

7.2 Sample Flounting

Due to the rigidity of the two bark materials, these samples did not have to be mounted on a substrate. The bark samples were made by cutting a one inch square from the raw material.

The leaf samples were mounted over a one inch diameter metal substrate. The substrate consisted of a brass disk covered with an opaque adhesive coating composed of a mixture of Mikron™ black paint and epoxy. The leaf was then placed on top of the Mikron black and epoxy mixture and allowed to dry over a period of one hour. The reasons for mounting the leaves on this substrate are twofold. First, the leaves are not rigid enough to place directly into the instrument, and secondly, the combination of Mikron black and epoxy yields very low reflectance values from 0.3 to 26.0 µm thus reducing errors in the DR due to reflections off the substrate. This low reflectance substrate minimizes the amount of transmitted energy that reflects off the backing

which is then transmitted through the sample face contributing to the overall reflectance of the sample. This net contribution always increases the observed reflectance and is thus considered an error. Section 7.7 discusses this concept in greater detail.

7.3 Sample Orientation

After mounting the samples, it was necessary to define and record the incident azimuthal orientations (ϕ_i) for the sample. For the bark samples, 0° incident azimuth was chosen to correspond with the vertical direction of the bark as it exists on the tree. This choice was aided by the fact that the bark had noticeable striae on the back side in the vertical direction and further confirmed by the fact that the individual responsible for cutting the samples cut them such that the longest dimension remained parallel to the vertical direction.

For the leaf samples the 0° incident azimuth was chosen to lie along the main vain of each leaf. It should be noted that the leaf samples were not always chosen with the main vain running through them. Figures 19 and 20 illustrate the azimuthal orientation defined for the bark and leaf samples.

Figure 19. Schematic Showing Orientation of Bark Sample.

Figure 20. Schematic Showing Orientation of Leaf Sample.

For the second phase of the program, the 16 leaf samples (8 top and 8 bottom) were chosen randomly off the leaves and were all oriented with the 0° incident azimuth aligned along the main vain (as in Phase I). (For a more detailed discussion see Section 7.6.)

7.4 Dependence of Reflectance on Orientation

For the first phase of this program both the bark and the leaf sam, les were scanned at 20° from 0.3 to 10.0 μ m (bark), and from 0.3 to 25.0 μ m (leaves) at incident azimuths of 0 and 90°. This was done to determine if there was any significant difference between the DR at these two orientations for a particular sample. Figures 21 through 28 show the results of these scans. It can be seen that there is no appreciable difference in DR between the two orientations except in the case of FS4833 (bark sample #1). These differences occur in the band from ~ 0.75 μ m to ~ 1.80 μ m, with the maximum difference around 1.275 μ m (~ 5.5% difference). Sample FS4833 did not appear very homogeneous but rather somewhat spotted due to fungi growths. Since the reflectometers measure the reflectance over a narrow rectangular area centered on the sample, when the samples are rotated the rectangular area falls on a different region of the sample. If the sample is not homogeneous then one can expect differences in the directional reflectance that are a result of the nonhomogeneous nature of the sample. It is believed that this is the case for FS4833. As a result there appears to be no noticeable DR dependence on the incident azimuthal direction for the near-normal data.

Figure 21. FS4833: Bark Sample #1 Directional Reflectance vs. Wavelength ϕ_i = 0 and 90° Bandwidth 0.3 to 2.0 μ m

Figure 22.

FS4833: Bark Sample #1 Directional Reflectance vs. Wavelength $\phi_i=0$ and 90° Bandwidth 2.2 to 10.0 μm

Figure 23.

FS4834: Bark Sample #2 Directional Reflectance vs. Wavelength ϕ_i = 0 and 90° Bandwidth 0.3 to 2.0 μ m

Figure 24. FS4834: Bark Sample #2 Directional Reflectance vs. Wavelength $$\phi_i=0$$ and 90° Bandwidth 2.2 to 10.0 μm

Figure 25.

FS4835: Leaf Sample - Top Side Directional Reflectance vs. Wavelength ϕ_i = 0 and 90° Bandwidth 0.3 to 2.0 μ m

Figure 26.

FS4835: Leaf Sample - Top Side Directional Reflectance vs. Wavelength ϕ_i = 0 and 90° Bandwidth 2.2 to 25.0 μm

Figure 27.

FS4836: Leaf Sample - Bottom Side Directional Reflectance vs. Wavelength ϕ_i = 0 and 90° Bandwidth 0.3 to 2.0 μm

Figure 28.

FS4836: Leaf Sample - Bottom Side Directional Reflectance vs. Wavelength $\phi_i=0$ and 90° Bandwidth 2.2 to 25.0 μm

7.5 Angular Reflectance Problems of Leaves

The first phase of the measurement program involved making angular DR measurements. This meant that the samples, the leaf samples in particular, were exposed for extended periods of time to high temperature radiation sources (approximately two hours in each instrument). In the ellipsoidal reflectometer (measuring data from 1.6 to 25.0 µm) the combination of forced nitrogen cooling and a highly conductive copper mount allow the sample to remain in place for 2 to 3 hours without any noticeable loss of moisture and freshness. The Cary reflectometer (measuring data from 0.3 to 1.6 µm), however, does not have such an efficient cooling apparatus. Even with cool nitrogen blowing directly onto the sample surface, the proximity of the sample to the 55 watt quartz-halogen bulb in the Cary means that the sample starts to suffer a noticeable loss of moisture after about 15 minutes. In terms of the measurements, this means that the sample will stay fresh for only about two or three scans, where sixteen scans are necessary to complete the measurement in the spectral band from 0.3 to 1.6 µm.

In order to remain as consistent as possible, the angular DR data for the leaves was collected in both instruments using the same sample (i.e. one top leaf sample and one bottom leaf sample). This resulted in a mismatch at 1.6 µm in the data where the two instruments overlap. The resulting mismatch was greater for FS4835 (leaf - top side) where the data from the Cary reflectometer was measured after the data from the ellipsoidal reflectometer. Since the data from the ellipsoidal reflectometer was measured first for FS4835 the sample had not undergone severe moisture loss before measurement in the Cary where it did suffer from moisture loss. In fact the sample began to dry while measuring the DR in the Cary. The result was that reflectance was continuously changing during the measurement as the sample dried. Since this did not occur in the ellipsoidal reflectometer, the spectral region where the two instruments overlap show considerable disagreement for sample FS4835 (leaf - top side). Since the effect of drying the top side of the leaf causes greater changes in the reflectance in the near infrared spectral band (see Section 7.6), the resulting data at 1.6 µm from the Cary reflectometer for FS4835 (leaf - top side) is significantly higher than the reflectance at 1.6 µm from the ellipsoidal reflectometer. The loss of moisture introduced an uncertainty in the measurements (for FS4835 only) of upwards of 12% reflectance. The error is always positive so that the reported reflectance spectra is higher than the actual reflectance of a fresh leaf. This error is strongly wavelength dependent since the effects of drying the leaves on the reflectance is also wavelength dependent.

For sample FS4836 (leaf bottom side) the data from the Cary was measured first. Then the sample, which had already suffered severe moisture loss, was measured in the ellipsoidal reflectometer where it essentially remained unchanged. Since changes due to the drying of the leaves are not as pronounced for the bottom side of the leaf as they are for the top side (see Section 7.6), the data at 1.6 µm from the ellipsoidal reflectometer matches more closely the data at 1.6 µm from the Cary for sample FS4836 (leaf - bottom side). Tables 6 and 7 show the reflectance from both instruments at 1.6 µm for FS4835 (leaf - top side) and FS4836 (leaf - bottom

side). The error introduced due to the drying of the bottom side of the leaf during the measurement cycle amounts to an uncertainty of only 5% at most for FS4836.

Table 6

FS4835: Leaf Sample - Top Side Comparison of Directional Reflectance at 1.6 µm for Cary Reflectometer and Ellipsoidal Reflectometer

ANGLE OF INCIDENCE	FS4835 PERCENT REFLECTANCE AT 1.6 MICROMETERS	
	CARY REFLECTOMETER	ELLIPSE REFLECTOMETER
20 *	36.7	23.2
30 *	39.0	24.8
40 *	42.0	26.9
50 °	44.3	29.3
60 °	46.8	32.8
70 *	50.3	37.9
75 *	51.9	41.1
80 *	54.1	44.5

Table 7
FS4836: Leaf Sample - Bottom Side
Comparison of Directional Reflectance at 1.6 μm
for Cary Reflectometer and Ellipsoidal Reflectometer

ANGLE OF INCIDENCE	FS4836 PERCENT REFLECTANCE AT 1.6 MICROMETERS	
	CARY REFLECTOMETER	ELLIPSE REFLECTOMETER
20 °	37.9	40.7
30 •	40.7	43.1
40 *	49.4	45.0
50 *	52.2	48.6
-60 *	53.9	52.1
70 *	56.6	57.1
75 *	57.8	59.9
80 *	59.4	63.9

The lark samples did not exhibit such dramatic changes in reflectance as they dried as were observed in the leaves. The uncertainty in the measurements of the bark and all other measurements reported (other than FS4835 and FS4836) are the same as those reported earlier in the error analysis section of this report.

7.6 Fresh and Dry Leaf Measurements

Sixteen separate leaf samples (8 from the top of the leaf and 8 from the bottom) were prepared in Phare 2 for reflectance tests. The samples were cut from random positions on the leaves and oriented such that 0° incident azimuth was in the direction of the main vain (see Section 7.3). Directional reflectance (DR) was measured for all 16 samples from 0.3 to 26.0 µm at 20° incidence on 19 October 1990 when the leaves were fresh and again on the 22nd of October after the leaves had dried at room temperature for three days. The main conclusion drawn from these tests is that the top side of the leaves are subject to greater change in reflectance during the drying process than are the bottom side. In particular, the reflectance for the top side of the leaves (dry) resembles that of the bottom side (fresh or dry). When moist, the reflectance for the top side

of the leaf is fairly flat from 3.0 to 26.0 μ m, averaging about 3.0%. After drying, the reflectance for the top side shows a rise starting at 3.5 μ m and ending at 6.0 μ m with a peak at 4.5 to 5.0 μ m of about 8 to 10%. This peak is also observed on the bottom side of the leaf (fresh or dry).

In the wavelength range from 0.5 to 2.0 µm, the reflectance for the top side (dry) is about 8 to 12% greater than the reflectance for the top side (fresh). This higher reflectance in the visible and near infrared wavelength is also seen in the data from the bottom side (fresh or dry). Figures 29 through 36 are intended as a summary of the reflectance tests for the second phase of this study. For the reflectance results of an individual sample from Phase 2 see Appendices E through T.

In summary, the reflectance spectra for the top and bottom halves of the leaves are noticeably different in the visible and near infrared bands when the leaves are fresh. These differences vanish when the leaves dry with the top half of the leaf changing, becoming similar to the bottom half.

7.7 Transmittance (Leaves)

In addition to the reflectance tests in Phase 2, four more leaf samples were randomly selected for scattered transmittance tests from 0.3 to 26.0 µm at 0° incidence. These transmittance tests were conducted on 22 October 1990 after the reflectance tests were completed. Despite the fact that the leaves from which the transmittance samples were taken were refrigerated and kept wrapped in the moist towels they were shipped in, these leaves still showed visible signs of drying (i.e. they were nore brittle than a fresh leaf). However, these leaves were not as dry as the leaf samples that had been left out at room temperature for three days. Figures 37 and 38 show the results of the transmittance tests for these four samples.

Due to the high depletion rate of the leaves in Phase 1 of the measurements, a full set of transmittance data for a fresh leaf could not be collected. However, transmittance data for a fresh leaf from 0.3 to 2.0 μ m was collected and is shown in Figures C-23 (FS4835) and D-23 (FS4836) of the appendices.

Since the leaf samples transmit, Equation (4) in Section 4.2.1 needs to be expressed as

$$\varepsilon_{d}(\theta_{i},\phi_{i},\lambda) = 1 - \rho(\theta_{i},\phi_{i},\lambda) - \tau(\theta_{i},\phi_{i},\lambda) , \qquad (20)$$

where τ is the transmittance of the material. Because it is possible for SOC to only measure transmittance at 0° incidence, the evaluation of the above equation is limited to θ_1 = 20° only, the transmittance at 0° being used to model that at 20°. For the purposes of calculating solar absorptance for FS4835 (leaf - top side) and FS4836 (leaf - bottom side) the transmittance data from 0.3 to 2.0 μ m for the fresh leaf was sufficient since the solar irradiance function, J(λ), drops off quickly after 2.0 μ m (see Section 4.2.2, Equation (10)).

Figure 29. Comparison of Directional Reflectance for Eight Leaf Samples (Top, Fresh)

Bandwidth 0.3 to 2.0

µm

Figure 30. Comparison of Directional Reflectance for Eight Leaf Samples (Top, Fresh)

Bandwidth 2.2 to 26.0 µm

Figure 31. Comparison of Directional Reflectance for Eight Leaf Samples (Top, Dry)

Bandwidth 0.3 to 2.0

µm

Figure 32. Comparison of Directional Reflectance for Eight Leaf Samples (Top, Dry)

Bandwidth 2.2 to 26.0 µm

Figure 33. Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Fresh)

Bandwidth 0.3 to 2.0 µm

Figure 34. Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Fresh)

Bandwidth 2.2 to 26.0 µm

Figure 35. Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Dry)

Bandwidth 0.3 to 2.0 µm

Figure 36. Comparison of Directional Reflectance for Eight Leaf Samples (Bottom, Dry)

Bandwidth 2.2 to 26.0 µm

TRANSMITTANCE VERSUS WAVELENGTH

Figure 37. Comparison of Scattered Transmittance for Four Leaf Samples
Bandwidth 0.3 to 2.0 µm

TRANSMITTANCE VERSUS WAVELENGTH

Figure 38. Comparison of Scattered Transmittance for Four Leaf Samples

Bandwidth 2.2 to 26.0

µm

Figure 39.

FS4835: Leaf Sample - Top Side
Comparison of Observed Reflectance (Curve 1)
to True Reflectance (Curve 2)
Bandwidth 0.3 to 2.0 µm

For thermal emittance calculation, a model was needed to simulate the transmittance of a fresh leaf from 2.5 to 25.0 μ m. In particular, transmittance data around 10.0 μ m was needed to correctly calculate the thermal emittance at 300°K, since this is close to where Planck's Function, P(λ ,T), peaks for 300°K (see Section 4.2.1, Equation (5)). Since the transmittance for the four leaves measured in Phase 2 is very close to 0% at and around 10.0 μ m, and these four leaf samples were not completely dry, the data from 2.5 to 25.0 μ m for FS4882 was combined with the transmission data from 0.3 to 2.0 μ m for a fresh leaf (FS4835 and FS4836) for purposes of calculating emittance. This data is presented in Appendix U and also in Figures C-24 and D-24. The value of thermal emittance at 300°K using the above transmittance model is 0.968 while the same value using just the transmittance data from 0.3 to 2.0 μ m from FS4835, and assuming the transmittance from 2.5 to 25.0 μ m is 0%, is 0.975. The error due to approximating the transmittance in the spectral band from 2.0 to 25.0 μ m is on the order of 1%.

In addition to affecting the calculation of emittance and solar absorptance data, the transmittance also influences the directional reflectance of a sample. This occurs when an incident beam is partially transmitted through the sample material and strikes the substrate. Some of this energy is then reflected off the substrate and transmitted back through the sample surface thus contributing to the overall reflectance of the material. For all reflectance tests in both phases of this study, a low reflectance substrate was used to back the leaf samples (see Section 7.2). Figure 39 illustrates the difference between the observed reflectance, which includes the reflectance of the material in addition to any transmitted energy that reflects off the substrate and is transmitted back through the sample, and the true reflectance after subtracting the contribution from the substrate for FS4835 (leaf \cdot top side) from 0.3 to 2.0 µm. Essentially, the error between the observed reflectance and the true reflectance can be approximated by $\Delta \rho_b \equiv \tau^2 \rho_b$, where ρ_b is the reflectance of the substrate ($\rho_b \equiv 3.0\%$). The maximum transmittance for FS4835 is 51.0% at 1.1 µm, therefore the maximum error is approximately $\Delta \rho_b \equiv (0.51)^2 \times (0.03) = 0.0078$ or 0.78%. Since this error is small, all reflectance data reported in the appendices is the observed reflectance.

7.8 Bidirectional Reflectance

In Phase 1 bidirectional reflectance (BDR) was measured for the two bark and two leaf (top and bottom) samples at 1.307, 4.601 and 10.0 μ m at incident angles of 20, 40 and 60°. All samples were very diffuse at 1.307 μ m, therefore the approximation $\rho_d = \pi \rho'$, where ρ' is the average BDR at that wavelength and incident angle, is fairly accurate. At the other wavelengths the samples were diffuse but using the above approximation is not as good because the out-of-plane BDR is much lower than the in-plane BDR.

It should also be noted that the BDR results for FS4835 (leaf - top side) were measured using a fresh leaf and since measuring BDR does not cause the leaf to dry out, the sample stayed fresh throughout the entire measurement. In Section 7.6 it was shown that a peak in the DR

occurs at about 4.5 to 5.0 μ m when the top side of a leaf dries out, therefore it can be expected that the BDR at 4.6 μ m for the top side of a leaf (dry) will be higher than when the top side ϵ the leaf is fresh. The extent of this difference will depend on the magnitude of the change in the DR when the leaf dries. An increase of 4 to 5 times in the bidire all reflectance in certain bands would not be unexpected given the data presented in the appendices.

SPECTRAL SCIENCES INC. BARK SAMPLE #1, 2 PM, WEST SIDE, 55 INCHES UP. FS4833:

INDEX TO APPENDIX A

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE A-1.	Directional Reflectance vs. Wavelength, Bandwidth 1.3 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE A-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE A-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE A-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE A-4.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees
FIGURE A-5.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees
FIGURE A-6.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees
TABLE A-2.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees

INDEX TO APPENDIX A (continued)

	PAGE NO								
	DIRECTIONAL REFLECTANCE								
FIGURE A-7.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees								
FIGURE A-8.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees								
FIGURE A-9.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees								
TABLE A-3.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization Incident Azimuth 0 degrees								
TABLE A-4.	Directional and Hemispherical Emittance as a Function of Temperature, Data Corrected for Instrumentation Polarization								
TABLE A-5.	Solar Absorptance as a Function of Polar Incidence Angle								
	BIDIRECTIONAL REFLECTANCE								
FIGURE A-10.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 20 degrees								
FIGURE A-11.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 40 degrees								

INDEX TO APPENDIX A (continued)

		PAGE NO.
	BIDIRECTIONAL REFLECTANCE	
FIGURE A-12.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 69 degrees	A-23
FIGURE A-13.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 1.307 micrometers, Incident Polar Angles 20,40,60 degrees	A-24
FIGURE A-14.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 20 degrees	A-25
FIGURE A-15.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 40 degrees	A-26
FIGURE A-16.	Bidirectional Reflectance vs. Reflected Folar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 60 degrees	A-27
FIGURE A-17.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 4.601 micrometers, Incident Polar Angles 20,40,60 degrees	A-28
FIGURE A-18.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 20 degrees	A-29
FIGURE A-19.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 40 degrees	A-30

INDEX TO APPENDIX A (continued)

PAGE NO.

	BIDIRECTIONAL REFLECTANCE	
FIGURE A-20.	Bidirectional Reflectance vs. Reflected Polar Angle,	
	Wavelength 10.0 micrometers, Incident Polar Angle	
	60 degrees	A-31
FIGURE A-21.	Bidirectional Reflectance vs. Reflected Azimuth Angle,	
	Principal Ring. Wavelength 10.0 micrometers, Incident	
	Polar Angles 20,40,60 degrees	A-32
TABLE A-6.	Bidirectional Reflectance vs. Reflected Polar Angle -	
	ERAS Data, Wavelengths 1.307, 4.601 and 10.0	
	micrometers Incident Polar Angles 20, 40, 60 degrees	A-33

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-1.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 10.0 MICROMETERS DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-2.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-3.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 10.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE A-1.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. PHI = 0 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48330015001		1	1	Ĺ							
FS48330015101		SPECTRA	L SCIE	ENCES:	BARK S	SAMPLE	#1, 21	PM, WES	T SIDE	5, 55"	UP.
FS48330015102		PHI = 0									
FS48330015103		UNCORRE	CTED E	FOR INS	TRUME	MITATION	N POLA	RIZATIO	N EFFE	ECTS	
FS48330017001		092090									
FS48330019001	1	0	01 1	.3	10.	58				20.	0.
FS48330019201	1	.3	4.4	.35	4.7	.4	6.2	.45	7.7	.5	9.7
FS48330019202	1	.55	16.2	.575	17.4	.6	17.4	.625	17.4	. 675	14.4
FS48330019203	1	.7	24.4	.725	54.4	.75	65.0	.775	68.5	.8	70.3
FS48330019204	1	.9	74.5	. 925	75.6	. 975	71.0	1.	72.7	1.05	76.1
FS48330019205	1	1.1	76.3	1.125	76.4	1.175	62.8	1.2	61.5	1.25	66.8
FS48330019206	1	1.3	66.0	1.35	50.6	1.4	31.1	1.425	21.4	1.475	21.7
FS48330019207	1	1.5	34.4	1.6	39.1	1.65	41.5	1.7	35.8	1.725	33.0
F\$48330019208	1	1.8	32.6	1.825	32.5	1.875	24.6	1.9	17.1	1.925	9.5
FS48330019209	1	2.	15.2	2.2	22.2	2.5	7.3	3.	2.3	3.5	2.5
FS48330019210	1	4.	3.6	4.5	3.3	5.	4.1	5.5	3.3	6.	2.0
FS48330019211	1	6.5	2.5	7.	2.0	7.5	1.7	8.	1.5	8.5	2.2
FS48330019212	1	9.	2.4	9.5	2.3	10.	1.9				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-4.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2 PM, WEST SIDE, 55" UP.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 10.0 MICROMETERS. PHI = 90
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-5.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2 PM, WEST SIDE, 55" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS. PHI = 90 DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-6.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2 PM. WEST SIDE. 55" UP.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 10.0 MICROMETERS. PHI = 90
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE A-2.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2 PM, WEST SIDE, 55" UP. PHI = 90 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48339015001		1	3	L							
FS48339015101		SPECTRA	L SCIE	ENCES:	BARK S	AMPLE	₹ 1, 2	PM, WE	ST SIE	E, 55"	UP.
FS48339015102		PHI =	90								
FS48339015103		UNCORRE	CTED F	OR INS	TRUMEN	ITATION	POLA	RIZATIO	N EFFE	CTS	
FS48339017001		092090									
FS48339019001	1	0	01 1	.3	10.	58				20.	90.
FS48339019201	1	.3	4.4	.375	5.5	. 4	6.4	.475	9.1	.5	11.2
FS48339019202	1	.55	15.4	.6	17.4	.625	17.3	.675	15.1	.7	32.9
FS48339019203	1	.725	50.5	.75	57.8	.8	63.2	.9	74.0	. 95	74.5
FS48339019204	3	. 975	73.0	1.	74.4	1.075	78.6	1.1	79.5	1.125	78.4
FS48339019205	1	1.175	66.9	1.2	65.0	1.275	72.3	1.3		1.325	68.8
FS48339019206	3	1.375	47.0	1.4	36.0	1.425	24.9	1.475	26.5	1.5	29.6
FS48339019207	1	1.575	38.9	1.6	40.9	1.65	44.9	1.7	40.9	1.725	35.7
FS48339019208	1	1.8	35.5	1.825	35.5	1.875	28.1	1.9	19.6	1.925	11.1
FS48339019209	1	2.	14.1	2.2	19.7	2.5	9.7	3.	3.3	3.5	2.9
FS48339019210	1	4.	6.1	4.5	6.6	5.	5.6	5.5	4.6	6.	3.4
FS48339019211	1	6.5	3.3	7.	2.9	7.5	2.9	8.	2.3	8.5	2.8
FS48339019212	1	9.	3.3	9.5	3.3	10.	3.3				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-7.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-8.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE A-9.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE A-3.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2 PM, WEST SIDE, 55" UP. PHI = 0 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DC 4 0 2 2 0 2 1 E 0 0 1		٥	1							
FS48330215001 FS48330215101	cne	8 ~~~~ c.c	1 CIENCES:	שמממ	ים זכוא הי	#1 2DA	a meer	n cine	E E # 1	(TD)
FS48330215101	PHI:		TENCES:	DARK 3	WILL PE	#1, ZP	I, WES.	י פורפי	, 55	OF.
FS48330215102		-	OD TNOM	````	mTON D	AT 3 D T 77	MT011		^	
FS48330217001	091		OR INST	KUMBNTF	TITON P	ODWKIAN	ATTOM 1	SP PECT	5	
· ·		001		25	30				^^	0
FS48330219001	1		1 .3	25.	70	E 1	4	6.3	20.	0.
FS48330219201	1	.3 2.		4.2	.375	5.4	. 4		.5	10.2 23.6
FS48330219202	1	.6 16.		18.0	. 65	17.8	.675	16.2	.7	
FS48330219203		725 32		37.3	.8	45.8	. 9	61.7	.925	64.8
FS48330219204		.95 66.		68.8	1.1	76.6		76.2		66.7
FS48330219205		1.2 64		65.1	1.25	68.1		69.7	1.3	70.3
FS48330219206		325 66		54.7	1.4		1.425	27.2	1.45	27.0
FS48330219207		1.5 30		36.9	1.6	41.4	1.7	43.3	1.8	41.7
FS48330219208		1.9 24		26.2	2.2	27.5	2.5	11.3	3.	2.2
FS48330219209		3.5 2		4.2	4.5	5.6	5.	5.4	5.5	3.6
FS48330219210	1		.2 6.5	1.6	7.	2.0	7.5	2.0	8.	2.0
FS48330219211			.2 9.	2.5	9.5	2.6	10.	2.6	10.5	2.7
FS48330219212			.4 12.	1.8	13.	0.7	14.	2.4	15.	1.9
FS48330219213			.9 17.	1.7	18.	2.2	19.	2.0	20.	2.6
FS48330219214			.5 22.	3.0	23.	1.9	24.	3.2	25.	3.1
FS48330219001	2	001	1 .3	25.	54				30.	0.
FS48330219201	2		.8 .325	4.5	.35	5.0	.375	5.8	. 4	6.7
FS48330219202	2 .		.7 .45	8.8	.5	11.3	.525	12.8	.6	18.5
FS48330219203		625 19		19.8	.675	18.3	.7	26.1	.725	34.6
FS48330219204	2	.8 48		64.1	.95	68.1	1.	69.8	1.1	77.4
FS48330219205			.2 1.175	66.8	1.2	65.1		65.9	1.25	69.1
FS48330219206		275 70	.5 1.3	70.7	1.325	65.4	1.375	53.5	1.4	40.7
FS48330219207			.8 1.475	27.4	1.5	30.8	1.55	37.6	1.6	42.0
FS48330219208		1.8 42	.9 2.	27.2	2.5	11.8	3.	2.4	4.	4.5
FS48330219209	2	5. 5.	.6 6.	2.3	7.	2.2	8.	2.0	9.	2.7
FS48330219210	2		.7 12.	2.1	14.	2.3	16.	1.9	18.	2.4
FS48330219211		20. 2	.6 22.	2.7	24.	3.3	25.	2.9		
FS48330219001	3	001	1 .3	25.	55				40.	0.
FS48330219201	3	.3 2	.5 .325	4.5	.375	5.8	. 4	7.1	.475	11.0
FS48330219202	3	.5 12	.7 .55	16.0	.575	19.4	.6	20.9	.625	22.3
FS48330219203	3	.65 22			.7	27.1	.725	35.7	.75	40.8
FS48330219204	3	.8 49	.4 .9	64.5	.925	67.6	.95	69.2	1.	70.8
FS48330219205			.5 1.125		1.175	69.2	1.2		1.225	65.8
FS48330219206		275 71	.9 1.3		1.325	69.9	1.375	59.0	1.4	46.9
F\$48330219207		425 34	.8 1.45		1.475	30.4	1.5	32.5	1.55	39.4
FS48330219208		1.6 43				28.6	2.5		3.	2.8
FS48330219209			.2 5.		6.	2.8	7.	2.5	8.	2.4
FS48330219210	3 3		.1 10.		12.	2.3	14.	2.9	16.	2.3
FS48330219211			.7 20.		22.	3.4	24.	3.4	25.	3.9
FS48330219001	4	001	1 .3		55			- · -	50.	0.
FS48330219201	4		.4 .325		.35	5.9	.375	6.7	.4	8.0
FS48330219202	4	.5 14			.55	18.7	.575	21.5	. 6	22.7
FS48330219203	4	.65 24			.7	29.8	.725	37.6	.75	42.7
	-				• •					

TABLE A-3. (CONTINUED)

```
FS48330219204
                             .8
                                  50.9
                                                65.0
                                                               70.3
                    4
                                            .9
                                                         .95
                                                                        1.
                                                                             71.8
                                                                                    1.05
                                                                                            76.0
                                  79.6
                                       1.125
                                                79.2
                                                      1.175
                                                                       1.2
FS48330219205
                            1.1
                                                               70.4
                                                                             68.9
                                                                                   1,225
                                                                                            67.4
                    4
                         1.275
                                  73.2
                                          1.3
                                                73.4
                                                                    1.375
FS48330219206
                    4
                                                       1.35
                                                               66.4
                                                                             59.6
                                                                                      1.4
                                                                                            48.5
FS48330219207
                    4
                         1.425
                                  37.4
                                         1.45
                                                33.1 1.475
                                                               34.1
                                                                             36.8
                                                                       1.5
                                                                                    1.55
                                                                                            43.0
FS48330219208
                    4
                            1.6
                                  46.7
                                          1.8
                                                45.3
                                                          2.
                                                               30.2
                                                                       2.5
                                                                             14.0
                                                                                       3.
                                                                                             3.3
                                                                        7.
FS48330219209
                    4
                             4.
                                   6.1
                                           5.
                                                 7.6
                                                          6.
                                                                3.5
                                                                              3.3
                                                                                       8.
                                                                                             3.1
FS48330219210
                    4
                             9.
                                   3.7
                                          10.
                                                 3.9
                                                         12.
                                                                3.2
                                                                       14.
                                                                              3.8
                                                                                      16.
                                                                                             3.6
                                                                                             6.0
FS48330219211
                    4
                            18.
                                   3.9
                                          20.
                                                 4.2
                                                         22.
                                                                5.2
                                                                       24.
                                                                              6.5
                                                                                      25.
                                                 25.
FS48330219001
                    5
                                           .3
                               001
                                                       56
                                                                                    60.
                                                                                              0.
FS48330219201
                                   5.0
                                         .325
                                                 6.0
                                                                                             9.5
                    5
                             .3
                                                         .35
                                                                6.8
                                                                              8.0
                                                                      .375
                                                                                       . 4
                    5
                                                                       .55
FS48330219202
                           .475
                                            .5
                                                16.9
                                                        .525
                                                               19.2
                                                                                       .6
                                  14.7
                                                                             21.9
                                                                                            24.6
                    5
FS48330219203
                            .65
                                         .675
                                                26.0
                                                                      .725
                                  27.3
                                                          .7
                                                               33.0
                                                                             40.4
                                                                                            53.4
                                                                                       . 8
                    5
                                          .95
                             .9
                                  67.8
                                                               73.5
                                                                    1.025
                                                                             75.6
FS48330219204
                                                71.7
                                                          1.
                                                                                    1.05
                                                                                            77.9
                    5
                                                      1.175
FS48330219205
                           1.1
                                  79.9
                                       1.125
                                                80.2
                                                                             69.3
                                                                                   1.225
                                                               71.7
                                                                       1.2
                                                                                            69.7
FS48330219206
                    5
                                  73.5
                                       1.275
                                                                                   1.375
                          1.25
                                                74.8
                                                         1.3
                                                               74.4
                                                                    1.325
                                                                             71.9
                                                                                            59.7
FS48330219207
                    5
                                  50.5
                                       1.425
                                                41.4
                                                       1.45
                                                               36.5
                                                                    1.475
                                                                             38.3
                           1.4
                                                                                      1.5
                                                                                            40.4
                                                50.0
FS48330219208
                    5
                          1.55
                                  45.5
                                          1.6
                                                         1.8
                                                               46.1
                                                                        2.
                                                                             31.9
                                                                                      2.5
                                                                                            16.3
FS48330219209
                    5
                             3.
                                   4.5
                                           4.
                                                 8.4
                                                          5.
                                                               10.1
                                                                        6.
                                                                              5.2
                                                                                       7.
                                                                                             4.9
                    5
FS48330219210
                             8.
                                   4.7
                                           9.
                                                 5.3
                                                         10.
                                                                5.8
                                                                       12.
                                                                              5.5
                                                                                      14.
                                                                                             6.3
                    5
                                                 6.5
                            16.
                                          18.
                                                         20.
                                                                       22.
                                                                              7.6
                                                                                      24.
FS48330219211
                                   5.9
                                                                6.9
                                                                                             8.1
                    5
FS48330219212
                            25.
                                   7.3
                                           .3
FS48330219001
                    6
                               001
                                                 25.
                                                       58
                                                                                    70.
                                                                                              0.
                                     1
                             .3
                                                         .35
                                                                      .375
FS48330219201
                    6
                                   5.6
                                         .325
                                                 7.9
                                                                8.8
                                                                                       . 4
                                                                             10.0
                                                                                            11.6
FS48330219202
                           .425
                                                          .5
                    6
                                  13.6
                                         .413
                                                i9.3
                                                               20.8
                                                                      .525
                                                                             23.4
                                                                                      .55
                                                                                            25.1
FS48330219203
                    6
                           .575
                                  27.2
                                                28.8
                                                        . 625
                                                                       .65
                                            .6
                                                               30.4
                                                                             31.3
                                                                                     .675
                                                                                            30.2
FS48330219204
                    6
                             .7
                                  38.6
                                         .725
                                                44.7
                                                        .775
                                                                             56.8
                                                                                            64.0
                                                               52.7
                                                                                      .85
                                                                         . 8
                             .9
                                          .95
FS48330219205
                    6
                                  70.4
                                                73.5
                                                          1.
                                                               75.7 1.075
                                                                             80.4
                                                                                      1.1
                                                                                            81.3
                         1.125
                                       1.175
FS48330219206
                    6
                                  81.1
                                                73.1
                                                         1.2
                                                               71.4
                                                                    1.225
                                                                             72.1
                                                                                     1.25
                                                                                            76.2
                    6
                                  76.5
                                       1.375
                                                64.5
                                                               53.0
                                                                    1.425
FS48330219207
                            1.3
                                                         1.4
                                                                              41.6
                                                                                   1.475
                                                                                            43.4
FS48330219208
                    6
                            1.5
                                  45.4
                                         1.55
                                                49.8
                                                      1.575
                                                               51.8
                                                                             53.7
                                                                                      1.8
                                                                                            48.4
                                                                       1.6
                                          2.5
                                                19.5
                                                                         4.
                                                                             12.3
FS48330219209
                    6
                             2.
                                  35.3
                                                          3.
                                                                6.8
                                                                                       5.
                                                                                            14.0
                             6.
                                           7.
                                                          8.
                                                                        9.
FS48330219210
                    6
                                   8.6
                                                 8.2
                                                                8.0
                                                                               9.2
                                                                                      10.
                                                                                             9.6
FS48330219211
                    6
                            12.
                                   9.7
                                          14.
                                                10.9
                                                         16.
                                                               10.7
                                                                       18.
                                                                             12.3
                                                                                      20.
                                                                                            12.6
                                                         25.
                            22.
                                                12.7
FS48330219212
                    6
                                  13.6
                                          24.
                                                               13.0
FS48330219001
                    7
                                                 25.
                               001
                                     1
                                            . 3
                                                        56
                                                                                    75.
                                                                                              0.
                    7
                             .3
                                   7.9
                                         .325
FS48330219201
                                                  9.5
                                                         .35
                                                               10.3
                                                                      .375
                                                                              11.4
                                                                                            13.2
                                                                                       . 4
                    7
FS48330219202
                           .425
                                  15.7
                                           .45
                                                18.9
                                                        .475
                                                               21.5
                                                                         . 5
                                                                              22.9
                                                                                     .525
                                                                                            24.8
                           .575
FS48330219203
                    7
                                  29.7
                                                31.5
                                                                              33.0
                                                                                       .7
                                                                                            39.6
                                            . 6
                                                         . 65
                                                               34.1
                                                                       . 675
FS48330219204
                    7
                           .725
                                  45.7
                                         .775
                                                53.0
                                                          . 8
                                                               56.3
                                                                         .9
                                                                              69.8
                                                                                      .95
                                                                                            73.1
FS48330219205
                    7
                             1.
                                  75.1
                                          1.1
                                                81.3 1.125
                                                               81.1 1.175
                                                                              74.7
                                                                                      1.2
                                                                                            72.9
                                         1.25
                    7
                         1.225
                                                      1.275
                                                               76.9
                                                                              77.6
FS48330219206
                                  72.8
                                                75.3
                                                                       1.3
                                                                                   1.375
                                                                                            67.2
                    7
                                        1.425
                                                49.6
                                                                                      1.5
FS48330219207
                            1.4
                                  58.4
                                                        1.45
                                                               46.3
                                                                     1.475
                                                                              47.0
                                                                                            48.6
                    7
                           1.55
                                                56.7
FS48330219208
                                  53.1
                                          1.6
                                                         1.8
                                                               49.5
                                                                         2.
                                                                              36.7
                                                                                      2.5
                                                                                            22.0
                    7
FS48330219209
                             3.
                                   8.3
                                            4.
                                                15.7
                                                          5.
                                                               18.0
                                                                         6.
                                                                              11.2
                                                                                       7.
                                                                                            10.8
                                           9.
                    7
FS48330219210
                             8.
                                  10.9
                                                12.2
                                                         10.
                                                               13.2
                                                                       12.
                                                                              14.1
                                                                                            14.5
                                                                                      14.
                    7
                                  14.2
                                          18.
                                                16.0
                                                         20.
                                                               17.3
                                                                       22.
                                                                             18.4
                                                                                            18.3
FS48330219211
                            16.
                                                                                      24.
                    7
FS48330219212
                            25.
                                  19.9
FS48330219001
                    8
                               001
                                     1
                                            .3
                                                  25.
                                                        56
                                                                                    80.
                                                                                              0.
```

TABLE A-3. (CONTINUED)

FS48330219201	8	.3	10.5	.325	11.6	.35	11.9	.375	12.9	. 4	15.3
FS48330219202	8	.425	17.8	.475	22.6	.5	24.4	.55	28.4	.6	32.7
FS48330219203	8	.65	35.0	.675	34.3	.7	39.1	.725	46.0	.775	52.4
FS48330219204	8	.8	55.8	.9	68.7	.95	72.0	1.	74.2	1.05	77.3
FS48330219205	8	1.1	79.9	1.125	80.5	1.175	75.5	1.2	74.1	1.225	72.7
FS48330219206	8	1.25	76.4	1.275	77.9	1.3	78.7	1.325	77.6	1.375	70.2
FS48330219207	8	1.4	62.5	1.425	54.8	1.45	51.8	1.5	54.3	1.525	56.6
FS48330219208	8	1.55	58.5	1.6	61.0	1.8	47.4	2.	37.6	2.5	19.3
FS48330219209	8	3.	7.4	4.	13.9	5.	16.4	6.	10.3	7.	10.5
FS48330219210	8	8.	11.4	9.	13.3	10.	15.7	12.	18.3	14.	14.4
FS48330219211	8	16.	15.2	18.	18.2	20.	19.5	22.	19.8	24.	21.2
FS48330219212	8	25.	22.0								

TABLE A-4.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. PHI = 0 DIRECTIONAL AND HEMISPHERICAL EMITTANCE AS A FUNCTION OF INCIDENT ANGLE AND TEMPERATURE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS4833021: SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. PHI=0

Emittance tabulated as a function of zenith angle and temperature:

2	Senith angle (degrees)	Wavelength range (microns)	Tempe	erature 200	e (degi 300	cees Ke 400	elvin) 500	600
	20	0.300 - 25.000	0.976	0.978	0.978	0.976	0.973	0.968
	30	0.300 - 25.000	0.973	0.976	0.976	0.974	0.970	0.966
	40	0.300 - 25.000	0.969	0.972	0.971	0.969	0.966	0.961
	50	0.300 - 25.000	0.952	0.959	0.961	0.960	0.957	0.952
	60	0.300 - 25.000	0.929	0.936	0.940	0.939	0.937	0.932
	70	0.300 - 25.000	0.875	0.888	0.896	0.898	0.897	0.894
	75	0.300 - 25.000	0.828	0.847	0.859	0.863	0.864	0.862
	80	0.300 - 25.000	0.809	0.829	0.844	0.854	0.859	0.862
F	demispherical	emittance:	0.928	0.934	0.937	0.936	0.934	0.930

TABLE A-5.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. PHI = 0 SOLAR ABSORBPTANCE AS A FUNCTION OF INCIDENT ANGLE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

Surface Optics Corp.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. PHI=0

20 degrees: The exoatmospheric solar absorptance is 0.691.
30 degrees: The exoatmospheric solar absorptance is 0.680.
40 degrees: The exoatmospheric solar absorptance is 0.666.
50 degrees: The exoatmospheric solar absorptance is 0.651.
60 degrees: The exoatmospheric solar absorptance is 0.630.
70 degrees: The exoatmospheric solar absorptance is 0.599.
75 degrees: The exoatmospheric solar absorptance is 0.584.
80 degrees: The exoatmospheric solar absorptance is 0.577.

FIGURE A-10.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM. WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

×

က

ო

Ø

4

ഗ

FIGURE A-11. SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE A-12.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE A-13.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP. PHI = 0
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 1.307 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE A-14.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM. WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE A-15.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE A-16.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE A-17.

SPECTRAL SCIENCES: BARK SAMPLE #1,

2PM, WEST SIDE, 55" UP. PHI = 0

BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE

PRINCIPAL RING AT 4.601 MICROMETERS

INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE A-18.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE A-19.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM, WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE A-20.

SPECTRAL SCIENCES: BARK SAMPLE #1,
2PM. WEST SIDE, 55" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE A-21.

SPECTRAL SCIENCES: BARK SAMPLE #1,

2PM, WEST SIDE, 55" UP. PHI = 0

BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE

PRINCIPAL RING AT 10.00 MICROMETERS

INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

TABLE A-6.

SPECTRAL SCIENCES: BARK SAMPLE #1, 2PM, WEST SIDE, 55" UP. PHI = 0 BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE ERAS DATA WAVELENGTH 1.307, 4.661, 10 MICROMETERS INCIDENT POLAR ANGLES 20, 40, 60 DEGREEL

FS48330X25001		36	013	3							
FS48330X25101		SPECTRA			BARK S	RAMPT.F.	#1. 21	OM. WI	T STDE	. 55"	ITP
FS48330X27004		02 20214				760.	4-,		, 0101	3, 33	02
FS48330X29001	1		4 10	0.0		14	1.307	20 ·	0.0		180.0
FS48330X29201	ī	0.0	.1774	5.0		10.0		20 15.	. 1789	20.0	.1803
FS48330X29202	1		.1801	30.0	.1776	35.0	.1768	40.	.1752		.1742
FS48330X29202	1		.1716	70.0	.166	80.0		85.6		33.0	.1/42
FS48337X29001	2	00.0	4 10	10.0	85.0	8	1.307	20.0	0.0		0.0
FS48330X29201	2 2 2	10.0	.1785	30.0		40.0		50.0		co o	.1669
FS48330X29201	2		.1613		.1665	85.0	.17 ₁ .2083	50.0	.1694	60.0	.1009
	3	70.0		80.0				00 0			00 0
FS48330X29001	3	10.0	4 10	10.0	85.0	9	1.307	20.0	0.0	Γ Λ Λ	90.0
FS48330X29201	3		.1455	20.0	.1828	30.0	.1825	40.0		50.0	.1813
FS48330X29202		60.0	.1765	70.0	.1806	80.0		85.0	.2103		
FS48330X29001	4	64.0	5 10		180.0	11	1.307	20.0	0.0	20.0	15106
FS48330X29201	4		.1841	72.0	.1833	90.0		108.0		126.0	
FS48330X29202	4	144.0		153.0	.1718	162.0	.1746	169.2	.1769	176.4	.1759
FS48330X29203	4	180.0			0						
FS48330X29001	5		4 10	0.0	85.0	14	1.307	40.0	0.0		180.0
FS48330X29201	5		.1714	10.0	.1749		.1803	25.0	.1348	30.0	.187
FS48330X29202	5		.1914	40.0	.1944	45.0		50.0		55.0	.2055
FS48330X29203	5	60.0	.2131	70.0	.2189	80.0		85.0	.1628		
FS48330X29001	6		4 10	10.0	85.0	3	1.307	40.0	0.0		0.0
FS48330X29201	6		.1687	20.0	.1691	30.0		50.0	.1651	60.0	.1594
FS48330X29202	6	70.0	.1653	80.0	.176	85.0					
FS48330X29001	7		4 10	15.0	85.0	9	1.307	40.0	0.0		90.0
FS48330X29201	7-	15.0	.1747	20.0	.1735	30.0		40.0		50.0	.1742
FS48330X29202	7	60.0	.1716	70.0	.1781	80.0		85.0	.2355		
FS48330X29001	8		5 10	46.8	180.0	12	1.307	40.0	0.0	40.0	
F\$48330X29201	8	46.8	.1741	54.0	.1787	72.0	.1744	90.0		108.0	
FS48330X29202	8	126.0	.1684	144.0	.1744	153.0	.1787	162.0	.183	169.2	.1837
FS48330X29203	8	176.4	.1946	180.0	.1938						
FS48330X29001	9		4 10	0.0	85.0	14	1.307	60.0	0.0		180.0
FS48330X29201	9	0.0	.1579	10.0	.163	20.0	.173	30.0	.1846	40.0	.2056
FS48330X29202	9	45.0	.2162	50.0	.231	55.0	.2443	60.0	.2743	65.0	.2825
FS48330X29203	9	70.0	.2953	75.0	.3037	80.0	.2966	85.0	.2187		
FS48330X29001	10		4 10	10.0	85.0	8	1.307	60.0	0.0		0.0
FS48330X29201	10	10.0	.1552	20.0	.1545	30.0	.1549	40.0	.1594	50.0	.1691
FS48330X29202	10	70.0	.1799	80.0	.2273	85.0	.3108				
FS48330X29001	11		4 10	20.0		8	1.307	60.0	0.0		90.0
FS48330X29201	11	20.0	.1434	30.0	.1464	40.0		50.0	.1488	60.0	.1472
FS48330X29202	11		.1428		.1618		.1804			-	
FS48330X29001	12		5 10		180.0	12	1.307	60.0	0.0	60.0	
FS48330X29201	12	46.8	.1545		.1692		.1579			108.0	.1425
FS48330X29202	12				.1612			162.0		169.2	
F'S48330X29203	12			180.0							3 • •
FS48330X29001	13		4 10	0.0		14	4.601	20.0	0.0		180.0
FS48330X29201	13	0.0	.0326		.0336	10.0			.0357	20.0	
FS48330X29202	13		.0368	30.0		35.0		40.0	.0382	50.0	.0384
201000000000000000000000000000000000000	~~	-0.0		23.0							

TABLE A-6. (CONTINUED)

FS48330X29203	13	60.0	.0395	70.0	.041		.0387		.0268		
FS48330X29001	14	_	4 10	10.0	85.0	8	4.601	20.0	0.0		0.0
FS48330X29201	14		.031,		.0235	40.0		50.0	.0225	60.0	.0225
FS48330X29202	14	70.0	.0218	80.0	.021	85.0	.J218				
F\$48330X29001	15		4 10	10.0	85.0	9	4.601	20.0	0.0		90.′
1.548330X29201	? o	10.0	.0315	20.0	.0305	30.0	.0306		.0313	50.0	.0334
F948330X29202	15	60.0	.0345	70.0	.035	80.0	.0362	85.0	.0386		
FS48330X29001	16		5 10	72.0	180.0	9	4.601	20.0	0.0	20.0	
FS48330X29201	16	72.0	.0306	90.0	.0324	108.0	.0339	126.0	.0348	144.0	.0356
F\$48330X29202	16	162.0	.0364	169.2	.0366	176.4			.0373		
ES48330X29001	17		4 10	0.0	85.0	14	4.601	40.0	0.0		180.0
FS48330X29201	17	0.0	.0269	10.0	.0322	20.0		25.0	.0457	30.0	.0522
FS48330X29202	17	35.0	.0578	40.0	.0653	45.0	.07		.0759	55.0	.0807
FS48330X29203	17		.0853	70.0	.0954	80.0			.0741	22.0	
FS48330X29001	18	00.0	4 10	10.0	85 0	8	4.601	40.0	0.0		0.0
FS48330X29201	18	10.0	.024	20.0	.0235	30.0			.0229	60.0	.0233
FS48330X29201	18	70.0	.0252	80.0	.0268	85.0		20.0	.0223	80.0	.0233
		70.0						40.0	0 0		00 0
FS48330X29001	19	15.0	4 10	15.0	85.0	9	4.601	40.0	0.0	~ ^ ^	90.0
FS48330X29201	19	15.0	.0271	20.0	.0273	30.0			.0309	50.0	.0329
FS48330X29202	19	60.0	.0348	70.0	.0357	80.0		85.0	.0329		
FS48330X29001	20		5 10	46.8	180.0	12	4. 1	40.0	0.0	40.0	0000
FS48330X29201	20	46.8	.0243	54.0	.0243	72.0		90.0	.0302		.0375
ES48330X29202	20	126.0	.0456		.0543	153.0	.0585	162.0	.0616	169.2	.0637
FC48330X29203	20	176.4	.0653		.066						
FS48330X29001	21		4 10	0.0	85.0	14	4.601	60.0	0.0		180.0
FS48330X29201	21	0.0	.0247	10.0	.0318	20.0			.0615	40.0	
FS48330X29202	21	45.0	.115	50.0	.141	55.0	.1724	60.0	.206	65.0	.247
FS48330X29203	21	70.0	.2843	75.0	.312	80.0	.3164	85.0	.312		
FS48330X29001	22		4 10	10.0	85.0	8	4.601	60.0	0.0		0.0
FS48330X29201	22	10.0	.0223	20.0	.0196	30.0	.0222	40.0	.0237	50.0	.0274
FS48330X29202	22	70.0	.037.3	80.0	.0396	85.0	.0441				
FS48330X29001	23		4 16	20.0	85.0	8	4.601	60.0	0.0		90.0
FS48330X29201	23	20.0	.0266	30.0	.0292	40.0			.0342	60.0	.0379
FS48330X29202	23	70.0	.0386	80.0	.0396	85.0				•••	
F\$48330X29001	24		5 10	46.8		12	4.601	60.0	0.0	60.0	
FS48330X29201	24	46.8	.0264	54.0		72.0			.0385		.05
FS48330X29202	24	126.0		144.0			.1406				.1917
FS48330X29203	24	176.4	.206	180.0		133.0	.1100	102.0		102.2	
FS48330X29001	25	2,0.1	4 10	0.0		15	10.000	20.0	0.0		180.0
FS48330X29201	25	0 0	.0179	5.0			.0213		.0224	20 0	.0228
FS48330X29202	25		.0213				.0213				
			.0132				.0178				
FS48330X29203	25 26	50.0		60.0					.0078	85.0	.0044
FS48330X29001	26	10.0	4 10	10.0			10.000	20.0		CO 0	0.0
PS48330X29201	25		.0152	30.0			.0075	50.0	.0061	60.0	.0065
FS48330X29202	26	70.0	.0061	80.0			.0034				00.0
FS48330X29001	27		4 10	10.0			10.000	20.0	0.0		90.0
FS48330X29201	27		.0185	20.0			.0154	40.0		50.0	.0148
FS48330X29202	27	60.0	.0133	70.0	.0127	80.0	.012	85.0	.0059		

TABLE A-6. (CONTINUED)

```
F$48330X29001
                                                 11 10.000 20.0
                                                                     0.0 20.0
                 28
                             5 10
                                    61.2 180.0
                 28
                       61.2 .0131
                                    72.0 .0135
                                                 90.0 .0161 108.0 .0172 126.0 .0198
FS48330X29201
                                          .021 162.0 .0213 169.2 .0218 176.4 .0223
                 28
                      144.0 .0204 153.0
F$48330X29202
                      180.0 .0223
FS48330X29203
                 28
                 29
                                          85.0
                                                 16 10.000
                                                              40.0
                                                                     0.0
                                                                                180.0
FS48330X29001
                              4 10
                                     0.0
FS48330X29201
                 29
                        0.0 .0115
                                    10.0 .0148
                                                 15.0
                                                      .018
                                                              20.0 .0215
                                                                           25.0 .0255
                                                              45.0 .0342
                                                                           50.0 .034
FS48330X29202
                 29
                       30.0 .0284
                                    35.0 .0316
                                                 40.0 .0342
                                                                           80.0 .0336
FS48330X29203
                 29
                       55.0 .0337
                                    60.0 .0321
                                                 65.0 .0313
                                                              70.0 .0313
FS48330X29204
                 29
                       85.0 .0233
                                                  8 10,000
                                                              40.0
                                                                     0.0
                                                                                  0.0
FS48330X29001
                 30
                              4 10
                                    10.0
                                          85.0
                                                                           60.0 .0051
                                    20.0 .0079
                                                 30.0 .0078
                                                              30.0 .0057
FS48330X29201
                 30
                       10.0 .0079
                 30
FS48330X29202
                       70.0 .0072
                                    80.0 .0057
                                                 85.0 .0054
                                                                                 90.0
                                                              40.0
                                                                     0.0
FS48330X29001
                 31
                              4 10
                                    15.0
                                         85.0
                                                  9 10.000
                                                 30.0 .0099
                                                              40.0 .0093
                                                                           50.0 .0089
FS48330X29201
                 31
                       15.0 .0108
                                    20.0 .0103
FS48330X29202
                 31
                       60.0 .0087
                                    70.0 .0073
                                                 80.0 .003
                                                              85.0 .0048
ES48330X29001
                 32
                              5 10
                                    46.8 180.0
                                                 12 10.000
                                                              40.0
                                                                     0.0
                                                                           40.0
                       46.8 .0054
                                                 72.0 .0077
                                                              90.0 .0084 108.0 .0118
ES48330X29201
                 32
                                    54.0 .0072
                      126.0 .0173 144.0 .0224 153.0 .0245 162.0 .0287 1-9.2 .0308
FS48330X29202
                 32
FS48330X29203
                 32
                      176.4 .0334 180.0 .0333
                                                                     0.0
                                                 14 10.000
                                                              60.0
                                                                                180.0
                 33
                                           85.0
FS48330X29001
                              4 10
                                     0.0
                                                              30.0 .0253
                                                                           40.0 .0486
                                                 20.0 .0162
FS48330X29201
                 33
                         0.0 .0075
                                    10.0
                                         .0102
                                                                     .177
                                                                           65.0
FS48330X29202
                 33
                       45.0 .0694
                                    50.0
                                           .098
                                                 55.0 .1399
                                                              60.0
                                                                                 .216
                                           .229
                                                 80.0 .2415
                                                              85.0 .2282
FS48330X29203
                 33
                       70.0 .2258
                                    75.0
                                           85.0
                                                  8 10.000
                                                              60.0
                                                                      0.0
FS48330X29001
                 34
                              4 10
                                    10.0
                                    20.0 .0043
                                                 30.0 .0034
                                                              40.0 .0052
                                                                           50.0 .0046
                 34
                       10.0
                              .005
FS48330X29201
                                                 85.0 .0064
                       70.0
                              .007
                                    80.0 .0074
FS48330X29202
                 34
                                                              60.0
                                                                      0.0
                                                                                  90.0
                                    20.0
                                           85.0
                                                  8 10.000
FS48330X29001
                 35
                              4 10
                                                              50.0 .0042
                                                                           60.0
                                                                                 .005
FS48330X29201
                 35
                       20.0
                            .0072
                                    30.0 .0063
                                                 40.0
                                                       .005
FS48330X29202
                 35
                       70.0
                              .007
                                    80.0 .0051
                                                 85.0 .0037
                                    46.8 180.0
                                                 12 10,000
                                                              60.0
                                                                      0.0
                                                                           60.0
FS48330X29001
                 36
                              5 10
                                    54.0 .0022
                                                 72.0 .005
                                                              90.0 .0051 108.0 .0086
FS48330X29201
                 36
                        46.8 .0016
                                          .035 153.0 .0462 162.0
                                                                   .066 169.2 .0965
                       126.0 .0177 144.0
FS48330X29202
                 36
                 36
                       176.4 .1577 180.0 .1738
FS48330X29203
```

This page intentionally left blank.

SPECTRAL SCIENCES INC. BARK SAMPLE #2, 2:16 PM, NORTH-EAST SIDE, 51 INCHES UP. FS4834:

INDEX TO APPENDIX B

PAGE NO.

DIRECTIONAL REFLECTANCE								
FIGURE B-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees							
FIGURE B-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees							
FIGURE B-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees							
TABLE B-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees							
FIGURE B-4.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees							
FIGURE B-5.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees							
FIGURE B-6.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 10.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees							
TABLE B-2.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees							

INDEX TO APPENDIX B (continued)

	PAGE NO.
	DIRECTIONAL REFLECTANCE
FIGURE B-7.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE B-8.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE B-9.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE B-3.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization Incident Azimuth 0 degrees
TABLE B-4.	Directional and Hemispherical Emittance as a Function of Temperature, Data Corrected for Instrumentation Polarization
TABLE B-5.	Solar Absorptance as a Function of Polar Incidence Angle
	BIDIRECTIONAL REFLECTANCE
FIGURE B-10.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 20 degrees
FIGURE B-11.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 40 degrees

INDEX TO APPENDIX B (continued)

		PAGE NO.
	BIDIRECTIONAL REFLECTANCE	
FIGURE B-12.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 60 degrees	B-23
FIGURE B-13.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 1.307 micrometers, Incident Polar Angles 20,40,60 degrees	B-24
FIGURE B-14.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 20 degrees	B-25
FIGURE B-15.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 40 degrees	B-26
FIGURE B-16.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 60 degrees	B-27
FIGURE B-17.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 4.601 micrometers, Incident Polar Angles 20,40,60 degrees	B-28
FIGURE B-18.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 20 degrees	B-29
FIGURE B-19.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 40 degrees	B-30

INDEX TO APPENDIX B (continued)

PAGE NO.

BIDIRECTIONAL REFLECTANCE									
FIGURE B-20.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle								
	60 degrees B-31								
FIGURE B-21.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 10.0 micrometers, Incident								
	Polar Angles 20,40,60 degrees B-32								
TABLE B-6.	Bidirectional Reflectance vs. Reflected Polar Angle -								
	ERAS Data, Wavelengths 1.307, 4.601 and 10.0								
	micrometers, Incident Polar Angles 20, 40, 60 degrees B-33								

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-1.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 10.0 MICROMETERS DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-2.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-3.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 10.0 MICROMETERS DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE B-1.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI = 0 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48340015001 FS48340015101 FS48340015102 FS48340015103 FS48340017001		SPECTRA 51" UP. UNCORRE 091390	PHI =	NCES:		AMPLE TATION	·	16PM, RIZATIO		-EAST S ECTS	IDE,
FS48340019001	1		01 1	.3	10.	54				20.	0.
FS48340019201	ī	.3	4.4	.35	5.7	.375	5.9	. 4	7.2	.45	12.3
FS48340019202	1	.5	14.6	.525	15.7	.55	18.9	.6	18.9	.675	18.9
FS48340019203	1	.7	19.8	.725	29.3	.75	32.9	. 8-	37.7	.9	47.2
FS48340019204	1	1.	51.8	1.075	57.1	1.1	57.8	1.125	58.4	1.15	56.1
FS48340019205	1	1.2	55.0	1.275	59.2	1.3	59.2	1.325	59.1	1.375	53.8
FS48340019206	1	1.4	51.0	1.45	45.4	1.5	48.5	1.6	51.8	1.65	53.5
FS48340019207	1	17	511	1.725	48.1	1.8	496	1.85	50.6	1.9	45.7
FS48340019208	1	1.925	43.3	2	40.3	2.2	34.3	2.5	23.7	3.	2.2
FS48340019209	1	3.5	3.0	4.	12.1	4.5	15.4	5.	15.0	5.5	11.4
FS48340019210	1	6.	2.3	6.5	2.7	7.	1.9	7.5	1.9	8.	1.4
FS48340019211	1	8.5	1.6	9.	1.6	9.5	2.0	10.	2.4		

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-4.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 10.0 MICROMETERS. PHI = 90 DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-5.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS. PHI = 90 DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-6.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 10.0 MICROMETERS. PHI = 90 DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE B-2.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI = 90 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48349015001		1	1	L							
FS48349015101		SPECTRA	L SCIE	ENCES:	BARK S	SAMPLE	#2, 2:	16PM,	NORTH-	EAST S	IDE,
FS48349015102		51" UP.	PHI =	= 90							
FS48349015103		UNCORRE	CTED E	OR INS	TRUME	NOLTATION	POLA	RIZATIO	N EFFE	ECTS	
FS48349017001		092090									
FS48349019001	1	0	01 1	.3	10.	57				20.	90.
FS48349019201	1	.3	4.1	.35	5.3	.375	5.2	. 4	6.4	.45	11.1
FS48349019202	1	.475	12.8	.5	13.9	.525	14.9	.55	17.4	.6	17.4
FS48349019203	1	.675	17.4	.7	18.5	.725	27.1	.775	33.0	.8	34.9
FS48349019204	1	.9	44.4	.95	49.2	1.	51.0	1.1	58.1	1.125	59.9
FS48349019205	1	1.175	55.3	1.2	55.2	1.225	55.1	1.275	59.1	1.3	59.4
FS48349019206	1	1.325	59.6	1.375	54.9	1.4	51.3	1.45	44.0	1.5	46.5
FS48349019207	1	1.55	49.1	1.6	51.0	1.65	52.9	1.7	51.1	1.725	47.5
F\$48349019208	1	1.8	48.8	1.85	49.6	1.9	45.1	1.925	42.9	2.	40.6
F\$48349019209	1	2.2	35.7	2.5	24.0	3.	2.1	3.5	3.2	4.	12.3
FS48349019210	1	4.5	16.0	5.	15.0	5.5	11.6	6.	2.2	6.5	1.9
FS48349019211	1	7.	1.5	7.5	1.7	8.	1.7	8.5	1.6	9.	1.3
FS48349019212	1	9.5	1.8	10.	2.2						

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-7.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-8.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE B-9.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE B-3.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI = 0 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

D040040015001		•									
FS48340215001		8	1		D3D44 A		70 0	1 CD11			
FS48340215101		SPECTRA:			BARK S	AMPLE	#2, 2:	16PM,	NORTH-	EAST S	IDE,
FS48340215102		51" UP.									
FS48340215103		CORRECT	ED FOR	INSTR	UMENTA	TION E	OLARIZ	CATION	EFFECT	:S	
FS48340217.001	_	091690		_	0.5					••	_
FS48340219001	1		01 1	.3	25.	71				20.	0.
FS48340219201	1	.3	1.7	.325	3.8	.35	4.1	.375	4.3	. 4	5.4
FS48340219202	1	.45	9.2	.5	11.5	.55	13.8	.575	14.4	.6	14.4
FS48340219203	1	. 65	14.6	.675	14.5	.7	18.5	.725	23.7	.775	27.8
FS48340219204	1	.8	30.7	. 9	40.8	.925	43.3	. 95	45.3	1.	48.6
FS48340219205	1	1.1		1.125		1.175	51.8	1.2		1.225	51.1
FS48340219206	1	1.275	55.8	1.3		1.325		1.375	50.7	1.4	46.7
FS48340219207	1	1.425	42.4	1.45	40.8	1.5	41.8	1.6	46.2	1.7	44.6
FS48340219208	1	1.8	44.3	1.9	35.7	2.	36.5	2.2	33.8	2.5	20.7
FS48340219209	1	3.	1.6	3.5	3.3	4.	12.8	4.5	16.6	5.	15.0
FS48340219210	1	5.5	11.9	6.	2.4	6.5	3.2	7.	1.7	7.5	1.9
FS48340219211	1	8.	1.3	8.5	0.8	9.	1.5	9.5	2.2	10.	2.6
FS48340219212	1	10.5	3.9	11.	3.7	12.	3.5	13.	1.6	14.	2.1
FS48340219213	1	15.	1.7	16.	2.2	17.	1.8	18.	2.5	19.	2.6
FS48340219214	1	20.	2.3	21.	2.4	22.	3.5	23.	2.4	24.	2.5
FS48340219215	1	25.	2.7								
FS48340219001	2	0	01 1	.3	25.	53				30.	0.
FS48340219201	2	.3	2.6	.325	4.1	.375	4.5	. 4	5.8	.45	9.7
FS48340219202	2	.475	11.2	.5	12.3	.55	14.7	. 6	15.0	. 65	15.3
FS48340219203	2	.675	14.9	.7	18.6	.725	24.1	.75	26.3	.775	28.3
FS48340219204	2	.8	30.6	. 9	40.9	.925	43.5	. 95	45.4	1.	48.6
FS48340219205	2	1.1		1.125	55.4	1.15		1.175	52.3	1.2	51.3
FS48340219206	2	1.275	56.5	1.3		1.325		1.375	51.1	1.4	46.8
FS48340219207	2	1.425	42.5	1.45	41.1	1.5	42.8	1.6	47.3	1.8	45.0
FS48340219208	2	2.	37.7	2.5	21.5	3.	1.7	4.	13.6	5.	16.2
FS48340219209	2	6.	2.6	7.	1.9	8.	1.3	9.	1.5	10.	2.6
FS48340219210	2	12.	3.5	14.	2.4	16.	2.0	18.	2.3	20.	2.3
FS48340219211	2	22.	2.3	24.	2.5	25.	1.9	~~.			0.0
FS48340219001	3		01 1	.3	25.	53	1.,			40.	0.
FS48340219201	3	.3	2.3	.325	4.3	.375	4.6	. 4	5.6	.45	9.9
FS48340219202	3	.475	11.5	.525	12.7	.525	13.9	.55	15.4	.6	15.8
FS48340219203	3	.65	16.2	.675	16.0	.7	19.0	.725	24.8	.75	27.3
FS48340219204	3	.775	29.4	.8	32.0	.9	42.1	.95	46.1	1.	49.4
FS48340219205	3	1.1		1.125		1.175	52.8	1.2		1.225	53.2
FS48340219206	3	1.25		1.275	57.2	1.3		1.325		1.375	50.9
					42.2	1.3		1.325			
FS48340219207 FS48340219208	3	1.4	38.6	1.425 2.5	22.5				48.1 14.7		46.1
	3	2.				3.	2.0	4.		5.	17.6
FS48340219209	3	6.	2.9	7.	2.2	8.	1.6	9.		10.	3.2
FS48340219210	3	12.	4.1	14.	2.9	16.	2.7	18.	2.8	20.	2.8
FS48340219211	3	22.	3.1	24.	3.3	25.	2.6			C 0	^
FS48340219001	4		01 1	.3	25.	54		~~~		50.	0.
FS48340219201	4	.3	2.6	.325	4.4	.35	4.8	.375		.4	6.1
FS48340219202	4	.45	11.3	. 5	13.8	.525	15.1	.55	16.7	.6	17.1

TABLE B-3. (CONTINUED)

```
.725
FS48340219203
                    4
                          .625
                                 17.4
                                          . 65
                                                17.4
                                                       .675
                                                              17.1
                                                                        .7
                                                                             20.2
                                                                                           26.4
                                         .775
                                                30.8
FS48340219204
                    4
                            .75
                                 28.8
                                                          . 8
                                                               33.5
                                                                        .9
                                                                             43.5
                                                                                      .95
                                                                                           47.4
                                                              57.0
FS48340219205
                    4
                             1.
                                  50.6
                                          1.1
                                                57.1
                                                      1.125
                                                                      1.15
                                                                             56.1 1.175
                                                                                           54.5
                                                                       1.3
FS48340219206
                    4
                           1.2
                                  53.8
                                       1.225
                                                53.9
                                                      1.275
                                                              58.6
                                                                             58.5
                                                                                   1.325
                                                                                           58.4
                         1.375
                                  53.5
                                                50.4
                                                       1.45
                                                                       1.5
                                                                             45.8
                                                                                      1.6
                                                                                           50.0
FS48340219207
                    4
                                          1.4
                                                               43.7
                                                                        3.
FS48340219208
                    4
                           1.8
                                  47.1
                                           2.
                                                40.5
                                                        2.5
                                                              23.8
                                                                              2.3
                                                                                       4.
                                                                                           16.3
                                                                        8.
F548340219209
                    4
                             5.
                                  19.5
                                           6.
                                                 3.7
                                                                2.8
                                                                              2.1
                                                                                       9.
                                                                                             2.2
                                                          7.
ES48340219210
                    4
                           10.
                                   3.6
                                          12.
                                                 4.9
                                                        14.
                                                                3.4
                                                                       16.
                                                                              3.1
                                                                                     18.
                                                                                             3.5
                            20.
                                   3.6
                                                        24.
                                                                              4.0
FS48340219211
                    4
                                          22.
                                                 3.4
                                                                3.6
                                                                       25.
FS48340219001
                    5
                               001
                                                 25.
                                                       49
                                                                                   60.
                                                                                              0.
                                     1
                                           .3
FS48340219201
                    5
                             .3
                                   3.7
                                         .325
                                                 5.2
                                                         .35
                                                                5.4
                                                                      .375
                                                                              5.8
                                                                                       .4
                                                                                             7.5
FS48340219202
                    5
                            .45
                                  12.9
                                           .5
                                                15.3
                                                         .55
                                                               18.3
                                                                      .575
                                                                             19.0
                                                                                       .6
                                                                                            19.0
                    5
                                  19.0
                                                                      .725
FS48340219203
                            . 65
                                         .675
                                                18.8
                                                          .7
                                                               23.1
                                                                             28.2
                                                                                     .775
                                                                                            32.7
ES48340219204
                    5
                             .8
                                  34.7
                                         .825
                                                36.8
                                                          .9
                                                               43.4
                                                                       .95
                                                                             47.7
                                                                                      1.
                                                                                            51.2
                    5
                                  58.2 1.125
FS48340219205
                            1.1
                                                58.2
                                                       1.15
                                                               57.6
                                                                       1.2
                                                                             55.0
                                                                                      1.3
                                                                                            60.5
                                                52.7
                                                              44.5
                                                                             47.9
                    5
                         1.375
                                  55.8
                                                                       1.5
                                                                                            52.2
FS48340219206
                                          1.4
                                                       1.45
                                                                                      1.6
                    5
                                                                        3.
FS48340219207
                            1.8
                                  48.5
                                           2.
                                                41.8
                                                        2.5
                                                               25.3
                                                                              2.7
                                                                                       4.
                                                                                            18.5
                             5.
                                                         7.
                                                                                       9.
FS48340219208
                    5
                                  22.1
                                                 4.7
                                                                3.6
                                                                              2.9
                                                                                             3.1
                                           6.
                                                                        8.
FS48340219209
                    5
                            10.
                                   4.9
                                                 5.7
                                                                                             4.5
                                          12.
                                                        14.
                                                                4.2
                                                                              4.4
                                                                                      18.
                                                                       16.
                           20.
                                                        24.
FS48340219210
                    5
                                   4.7
                                          22.
                                                 5.1
                                                                4.8
                                                                       25.
                                                                              4.9
                    6
                               001
                                                                                   70.
FS48340219001
                                           .3
                                                 25.
                                                       53
                                                                                              C.
                                     1
                             .3
                                                                                             8.3
FS48340219201
                    6
                                   4.3
                                         .325
                                                 6.0
                                                         .35
                                                                6.7
                                                                      .375
                                                                              6.7
FS48340219202
                    6
                                  14.0
                                           .5
                                                17.2
                                                        .525
                                                               18.8
                                                                       .55
                                                                             21.2
                                                                                       .6
                                                                                            21.5
                            .45
FS48340219203
                    6
                            . 65
                                  21.9
                                         .675
                                                21.4
                                                          .7
                                                               24.2
                                                                      .725
                                                                             30.3
                                                                                     .775
                                                                                            34.8
                                                         .95
FS48340219204
                    6
                             .8
                                  36.8
                                            .9
                                                45.6
                                                               49.5
                                                                        1.
                                                                             53.0
                                                                                      1.1
                                                                                            59.2
FS48340219205
                    6
                         1.125
                                  59.0
                                       1.175
                                                57.2
                                                               57.1 1.225
                                                                             58.1
                                                                                     1.25
                                                                                            59.6
                                                         1.2
FS48340219206
                    6
                            1.3
                                  61.5
                                       1.325
                                                61.0
                                                       1.35
                                                               59.3
                                                                    1.375
                                                                             57.4
                                                                                      1.4
                                                                                            54.5
                                                                                      1.8
FS48340219207
                    6
                          1.45
                                  48.9
                                          1.5
                                                51.1
                                                       1.55
                                                               53.2
                                                                       1.6
                                                                             55.3
                                                                                            50.4
                                                                                       5.
FS48340219208
                    6
                             2.
                                  44.0
                                          2.5
                                                27.4
                                                                3.5
                                                                        4.
                                                                             20.6
                                                                                            25.1
                                                          3.
                    6
                             6.
                                   6.0
                                                 5.0
                                                          8.
                                                                4.2
                                                                        9.
FS48340219209
                                           7.
                                                                               4.4
                                                                                      10.
                                                                                             6.3
                                                                               6.2
                    6
                            12.
                                   7.7
                                                 5.8
                                                                5.2
                                                                                      20.
                                                                                             6.5
FS48340219210
                                          14.
                                                         16.
                                                                       18.
                    6
                                   8.2
                            22.
                                          24.
                                                 5.9
FS48340219211
                                                         25.
                                                                5.7
                    7
FS48340219001
                               001
                                     1
                                            .3
                                                 25.
                                                        50
                                                                                   75.
                                                                                             9.2
                    7
                                                                               7.6
                                                                                       . 4
FS48340219201
                             .3
                                   4.8
                                         . 325
                                                 7.0
                                                         .35
                                                                7.5
                                                                      .375
                    7
                                                19.2
                                                               21.7
                                                                             22.3
                                                                                      .65
F$48340219202
                            .45
                                  15.4
                                            .5
                                                         .55
                                                                        . 6
                                                                                            22.2
FS48340219203
                    7
                           .675
                                  22.8
                                           .7
                                                25.9
                                                        .725
                                                               31.3
                                                                        .75
                                                                             33.6
                                                                                     .775
                                                                                            35.6
FS48340219204
                    7
                             . 8
                                  37.5
                                            .9
                                                46.9
                                                         .95
                                                               50.6
                                                                        1.
                                                                             53.9
                                                                                      1.1
                                                                                            60.5
                                                58.7
                                                                    1.275
FS48340219205
                    7
                         1.125
                                  60.5
                                       1.175
                                                         1.2
                                                               58.5
                                                                             63.2
                                                                                      1.3
                                                                                            63.4
FS48340219206
                    7
                         1.325
                                  62.9
                                       1.375
                                                60.1
                                                               56.9
                                                                      1.45
                                                                             50.6
                                                                                            51.8
                                                         1.4
                                                                                      1.5
                    7
FS48340219207
                            1.6
                                  54.4
                                          1.8
                                                51.5
                                                          2.
                                                               45.5
                                                                       2.5
                                                                             28.9
                                                                                       3.
                                                                                             4.1
                    7
FS48340219208
                                  22.3
                                           5.
                                                                        7.
                                                                                             5.5
                             4.
                                                26.9
                                                          6.
                                                                7.4
                                                                               6.3
                                                                                       8.
                    7
                                   5.8
                                                 7.8
                                                                               7.5
                                                                                      16.
                                                                                             7.5
FS48340219209
                             9.
                                          10.
                                                         12.
                                                                8.9
                                                                       14.
                    7
                                   7.8
                                                         22.
                                          20.
                                                                                      25.
                                                                                             8.4
FS48340219210
                            18.
                                                 8.3
                                                                8.8
                                                                       24.
                                                                               8.6
                    8
                               001
                                                 25.
                                                        51
                                                                                   80.
                                                                                              ٥.
FC48340219001
                                     1
                                            . 3
FS48340219201
                    8
                             . 3
                                   6.4
                                          325
                                                 7.8
                                                         .35
                                                                7.9
                                                                      .375
                                                                               8.3
                                                                                       . 4
                                                                                            10.1
FS48340219202
                    8
                            .45
                                  15.2
                                            .5
                                                18.1
                                                         .55
                                                               21.0
                                                                         .6
                                                                             23.0
                                                                                      .65
                                                                                            23.2
FS48340219203
                     8
                           . 675
                                  23.0
                                            .7
                                                26.4
                                                        -725
                                                               31.7
                                                                      .775
                                                                             35.6
                                                                                       8.
                                                                                            38.0
FS48340219204
                                          .95
                                                51.8
                             .9
                                  47.2
                                                               56.0
                                                                             63.3 1.125
                                                                       1.1
```

TABLE B-3. (CONTINUED)

T\$.83 10219205	8	1.2	62.1	1.225	62.7	1.25	65.0	1.275	66.6	1.3	67.0
FS48340219206	8	1.325	67.5	1.375	62.9	1.4	60.1	1.45	51.6	1.5	54.5
E\$48340219207	8	1.55	56.9	1.6	58.5	1.8	52.9	2.	47.7	2.5	30.7
FŚ48340219208	8	3.	5.3	4.	24.1	5.	28.7	6.	8.9	7.	7.9
FS48340219209	8	8.	7.3	9.	7.4	10.	9.7	12.	11.8	14.	9.7
FS48340219210	8	16.	9.6	18.	10.7	20.	10.8	22.	10.0	24.	11.9
FS48340219211	8	25.	10.6								

TABLE B-4.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI = 0 DIRECTIONAL AND HEMISPHERICAL EMITTANCE AS A FUNCTION OF INCIDENT ANGLE AND TEMPERATURE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS4834021: SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI=0

Emittance tabulated as a function of zenith angle and temperature:

Zenith angle	Wavelength	Temperature (degrees Kelvin)									
(degrees)	range (microns)	100 200 300 400 500 600									
_	_										
20	0.300 - 25.000	0.975 0.976 0.972 0.963 0.951 0.939	}								
30	0.300 - 25.000	0.977 0.976 0.973 0.964 0.951 0.938	3								
40	0.300 - 25.000	0.970 0.970 0.967 0.958 0.945 0.932	2								
50	0.300 - 25.000	0.965 0.964 0.962 0.951 0.937 0.923	3								
60	0.300 - 25.000	0.952 0.953 0.951 0.940 0.925 0.909)								
70	0.300 - 25.000	0.935 0.937 0.935 0.924 0.908 0.892	2								
75	0.300 - 25.000	0.917 0.920 0.919 0.909 0.893 0.877	7								
80	0.300 - 25.000	0.894 0.897 0.898 0.888 0.874 0.859	3								
Hemispherical	emittance:	0.947 0.947 0.945 0.935 0.922 0.908	3								

TABLE B-5.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI = 0 SOLAR ABSORBPTANCE AS A FUNCTION OF INCIDENT ANGLE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

i .

Surface Optics Corp.
SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM,
NORTH-EAST SIDE, 51" UP. PHI=0

20 degrees: The exoatmospheric solar absorptance is 0.743.
30 degrees: The exoatmospheric solar absorptance is 0.738.
40 degrees: The exoatmospheric solar absorptance is 0.732.
50 degrees: The exoatmospheric solar absorptance is 0.719.
60 degrees: The exoatmospheric solar absorptance is 0.705.
70 degrees: The exoatmospheric solar absorptance is 0.687.
75 degrees: The exoatmospheric solar absorptance is 0.675.
80 degrees: The exoatmospheric solar absorptance is 0.665.

FIGURE B-10. SPECTRAL SCIENCES: BARK SAMPLE #2,
2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE B-11. SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 1.307 MICROMETERS INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE B-12. SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 1.307 MICROMETERS INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE B-13. SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI = 0
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE PRINCIPAL RING AT 1.307 MICROMETERS INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE B-14. SPECTRAL SCIENCES: BARK SAMPLE #2,
2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE FIGURE B-15. WAVELENGTH 4.601 MICROMETERS INCIDENT POLAR ANGLE 40.0 DEGREES

B-26

× 0 ო ω 4

FIGURE B-16.

SPECTRAL SCIENCES: BARK SAMPLE #2,
2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE B-17.

SPECTRAL SCIENCES: BARK SAMPLE #2,
2:16PM, NORTH-EAST SIDE, 51" UP, PHI = 0
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 4.601 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE B-18.

SPECTRAL SCIENCES: BARK SAMPLE #2,
2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE B-19. SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE B-20. SPECTRAL SCIENCES: BARK SAMPLE #2,
2:16PM, NORTH-EAST SIDE, 51" UP
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE B-21. SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP, PHI = 0
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH/ANGLE PRINCIPAL RING AT 10.00 MICROMETERS INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

TABLE B-6.

SPECTRAL SCIENCES: BARK SAMPLE #2, 2:16PM, NORTH-EAST SIDE, 51" UP. PHI - 0 BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE ERAS DATA WAVELENGTH 1.307, 4.601, 10 MICROMETERS INCIDENT POLAR ANGLES 20, 40, 60 DEGREES

FS48340X25001 FS48340X25101		36 SPECTRA	013 L SCIE		BARK :	SAMPLE	#2, 2:	16 PM,	NORTH	-EAST	SIDE,
FS48340X25102		51 " U	P.								
FS48340X27004	_					760.		00 0			100 0
FS48340X29001	1		4 10	0.0	85.0		1.307	20.0	0.0	00 0	180.0
FS48340X29201	1		.1837		.1825		.1822		.1823		.1815
FS48340X29202 FS48340X29203	1 1	25.0 60.0		70.0	.1312	35.0 80.0	.181 .1645	85.0	.1806	50.0	.1013
FS48340X29203	2	60.0	4 10	10.0	85.0	8	1.307	20.0	0.0		0.0
FS48340X29201	2	10 0	.1832	30.0	.1832	40.0	.1827		.1792	60 O	.1746
FS48340X29202	2		.1752	80.0	.1675		.1888	30.0		00.0	
FS48340X29001	3	, 0.0	4 10	10.0	85.0	9	1.307	20.0	0.0		90.0
FS48340X29201	3	10.0	.1897		.1889		.19		.2132	50.0	.188
FS48340X29202	3	60.0	.194		.1747				.2285		
FS48340X29001	4		5 10	64.8	180.0		1.307	20.0	0.0	20.0	
FS48340X29201	4	64.8	.1871	72.0	.1894			108.0			
FS48340X29202	4	144.0	.1789	153.0	.1795	162.0	.1806	169.2	.1799	176.4	.1817
FS48340X29203	4	180.0	.1808								
FS48340X29001	5		4 10	0.0			1.307	40.0	0.0		180.0
FS48340X29201	5		.1806	10.0				25.0	.1824		.1832
FS48340X29202	5	35.0	.1854	40.0				50.0	.192	55.0	.193
FS48340X29203	5	60.0	.1963	70.0				85.0	.1877		
FS48340X29001	6		4 10	10.0	85.0		1.307	40.0	0.0	60 0	0.0
FS48340X29201	6		.1799	20.0			.1815	50.0	.1867	60.0	.1865
FS48340X29202	6 7	70.0	.1876	80.0 15.0	.1921 85.0		.1901 1.307	40.0	0.0		90.0
FS48340X29001 FS48340X29201	7	15 0	.1845	20.0			.1845		0.0	50.0	.19
FS48340X29202	7		.1869	70.0					.2242	50.0	.19
FS48340X29202 FS48340X29001	8	60.0	5 10		180.0		1.307	40.0	0.0	40.0	
FS48340X29201	8	54 0	.1902	72.0				108.0			.1791
FS48340X29202	8	144.0	.18	153.0		162.0		169.2		176.4	
FS48340X29203	8	180.0	.1841	100.0		102.0		100.2	. 200	2,011	007
FS48340X29001	9		4 10	0.0	85.0	14	1.307	60.0	0.0		180.0
FS48340X29201	9	0.0	.179	10.0				30.0	.1917	40.0	.2014
FS48340X29202	9		.2067	50.0	.2152	55.0	.2224	60.0	.2291	65.0	.2349
FS48340X29203	9	70.0	.2379	75.0	.2691	80.0	.2755	85.0	.2987		
F\$48340X29001	10		4 10	10.0			1.307	60.0	0.0		0.0
FS48340X29201	10		.1804	20.0				40.0	.1882	50.0	.1944
FS48340X29202	10	70.0	.1637	80.0							
FS48340X29001	11		4 10	20.0			1.307	60.0	0.0		90.0
FS48340X29201	11		.1337		.1345		.1394	50.0	.1428	60.0	.1478
FS48340X29202	11	70.0	.1437		.1631		.1419	<i>c</i>	^ ^	<i>c</i>	
FS48340X29001	12	54.0	5 10		180.0		1.307			60.0	1200
FS48340X29201	12		.1458		.1432			108.0 169.2			
FS48340X29202 FS48340X29203	12 12		.1634	122.0	.131	. 102.0	.1232	103.2	.1021	1/0.4	.100
FS48340X29203	13	100.0	4 10	0.0	85.0	14	4.601	20.0	0.0		180.0
FS48340X29201	13	0 0	.0369		.0368		.0369		.0373	20 0	.0379
E 240240V53501	13	0.0	.0509	5.0	.0500	, 10.0	.0509	10.0	.00,0	20.0	.00,5

TABLE B-6. (CONTINUED)

```
FS48340X29202
                  13
                        25.0 .0384
                                      30.0 .0394
                                                   35.0 .0409
                                                                40.0
                                                                      .0428
                                                                              50.0 .0457
                                           .0544
FS48340X29203
                 13
                        60.0 .0491
                                      70.0
                                                   80.0 .0581
                                                                85.0
                                                                       .057
FS48340X29001
                               4 10
                                      10.0
                                            85.0
                                                                20.0
                 14
                                                    R
                                                        4.601
                                                                        0.0
                                                                                      0.0
                        10.0 .0417
                                           .0367
                                                                      .0433
                                                                                     .044
FS48340X29201
                 14
                                      30.0
                                                   40.0 .0391
                                                                50.0
                                                                              60.0
                                           .0483
FS48340X29202
                  14
                        70.0
                             .0444
                                      80.0
                                                   85.0
                                                        .0505
                                                                20.0
                  15
                               4 10
                                      10.0
                                            85.0
                                                                        0.0
                                                                                     90.0
FS48340X29001
                                                    9
                                                         4.601
                        10.0 .0394
                                           .0394
                                                                      .0399
FS48340X29201
                  15
                                      20.0
                                                   30.0 .0395
                                                                40.0
                                                                              50.0 .0413
                  15
                        60.0 .0418
                                      70.0 .0419
                                                   80.0 .0442
                                                                      .0424
FS48340X29202
                                                                85.0
                  16
                                      61.2 180.0
                                                         4.601
FS48340X29001
                               5 10
                                                   11
                                                                20.0
                                                                        0.0
                                                                              20.0
                  16
                        61.2 .0404
                                      72.0 .0399
                                                   90.0 .0396 108.0 .0388 126.0 .0387
FS48340X29201
FS48340X29202
                  16
                       144.0
                               .039
                                     153.0 .0382 162.0 .0391 169.2 .0396 176.4 .0398
FS48340X29203
                  16
                       180.0
                             .0398
FS48340X29001
                  17
                               4 10
                                       0.0
                                            85.0
                                                   14
                                                         4.601
                                                                 40.0
                                                                        0.0
                                                                                   180.0
                                           .0412
                          0.0 .0397
                                      10.0
                                                   20.0 .0443
                                                                 25.0 .0473
FS48340X29201
                  17
                                                                              30.0 .0503
                               .053
                                      40.0
                                           .0571
                                                   45.0 .0609
                                                                 50.0 .0656
FS48340X29202
                  17
                        35.0
                                                                              55.0 .0711
                              .0763
                                                                      .1079
FS48340X29203
                  17
                        60.0
                                      70.0
                                           .0891
                                                   80.0 .1043
                                                                 85.0
                                                         4.601
                                      10.0
                                            85.0
                                                                 40.0
FS48340X29001
                  18
                               4 10
                                                    8
                                                                        0.0
                                                                                      0.0
FS48340X29201
                  18
                        10.0 .0403
                                      20.0
                                           .0421
                                                   30.0 .0475
                                                                 50.0 .0436
                                                                              60.0 .0495
                              .0494
FS48340X29202
                                      80.0
                                           .0582
                                                   85.0
                                                          .064
                  18
                        70.0
FS48340X29001
                  19
                               4 10
                                      15.0
                                            85.0
                                                    9
                                                         4.601
                                                                 40.0
                                                                        0.0
                                                                                     90.0
FS48340X29201
                  19
                        15.0 .0408
                                      20.0
                                           .0413
                                                   30.0 .0416
                                                                 40.0
                                                                       .043
                                                                              50.0 .0442
FS48340X29202
                  19
                        60.0
                              .0467
                                      70.0
                                           .0479
                                                   80.0
                                                         .0472
                                                                 85.0
                                                                       .046
FS48340X29001
                  20
                               5 10
                                      46.8 180.0
                                                   12
                                                         4.601
                                                                 40.0
                                                                        0.0
                                                                              40.0
                         46.8
                              .0432
                                      54.0
                                                   72.0
                                                         .0421
                                                                       .043 108.0 .0446
F$48340X29201
                  20
                                           .0425
                                                                 90.0
                                                  153.0
FS48340X29202
                  20
                       126.0
                               .048
                                     144.0 .0509
                                                          .053 162.0
                                                                     .0546 169.2 .0559
                                           .0564
FS48340X29203
                  20
                       176.4 .0569
                                     180.0
                                                                 60.0
                  21
                                       0.0
                                            85.0
                                                         4.601
                                                                                    180.0
FS48340X29001
                               4 10
                                                   14
                                                                        0.0
                               .039
FS48340X29201
                  21
                          0.0
                                      10.0 .0423
                                                   20.0 .0483
                                                                 30.0 .0567
                                                                              40.0 .0693
FS48340X29202
                  21
                         45.0 .0789
                                      50.0 .0901
                                                   55.0 .1042
                                                                 60.0
                                                                       .119
                                                                              65.0 .1402
FS48340X29203
                  21
                         70.0 .1646
                                      75.0
                                             .198
                                                   80.0 .2382
                                                                 85.0 .2909
FS48340X29001
                  22
                                      10.0
                                             85.0
                                                    8
                                                         4.601
                                                                                      0.0
                               4 10
                                                                 60.0
                                                                        0.0
                  22
                         10.0 .0393
                                      20.0 .0395
                                                   30.0 .0438
                                                                 40.0 .0474
                                                                              50.0 .0569
F$48340X29201
                  22
                         70.0 .0624
                                      80.0 .0738
                                                   85.0 .0857
FS48340X29202
FS48340X29001
                  23
                                4 10
                                      20.0
                                             85.0
                                                     8
                                                         4.601
                                                                 60.0
                                                                        0.0
                                                                                     90.0
                  23
FS48340X29201
                         20.0
                              .0415
                                      30.0
                                           .0431
                                                   40.0 .0456
                                                                 50.0
                                                                      .0482
                                                                              60.0 .0528
FS48340X29202
                  23
                         70.0 .0546
                                      80.0
                                           .0553
                                                   85.0
                                                        .0521
FS48340X29001
                  24
                                5 10
                                      46.8 180.0
                                                   12
                                                         4.601
                                                                 60.0
                                                                         0.0
                                                                              60.0
                                           .0475
                                                                 90.0
                         46.8 .0459
                                                   72.0 .0459
                                                                                   .0545
FS48340X29201
                  24
                                      54.0
                                                                      .0475 108.0
FS48340X29202
                  24
                        126.0 .0651
                                     144.0
                                           .0795
                                                  153.0 .0854
                                                                162.0
                                                                      .1004 169.2 .1105
FS48340X29203
                  24
                        176.4 .1169
                                     180.0
                                             .118
FS48340X29001
                  25
                                4 10
                                       0.0
                                             85.0
                                                   15
                                                        10.000
                                                                 20.0
                                                                                    180.0
                                                                         0.0
                  25
                          0.0 .0099
                                       5.0
                                           .0092
                                                   10.0 .0101
                                                                 15.0
                                                                              20.0 .0114
FS48340X29201
                                                                        .011
                  25
                         25.0 .0102
                                           .0098
                                                   35.0 .0094
                                                                 40.0
FS48340X29202
                                      30.0
                                                                      .0108
                                                                              45.0 .0102
                  25
                              .0097
                                      60.0
                                           .0115
FS48340X29203
                         50.0
                                                   70.0 .0105
                                                                 80.0
                                                                      .0067
                                                                              85.0
                                                                                    .0055
FS48340X29001
                  26
                                      10.0
                                             85.0
                                4 10
                                                     8
                                                        10.000
                                                                 20.0
                                                                         0.0
                                                                                      0.0
FS48340X29201
                  26
                         10.0 .0105
                                      30.0 .0067
                                                   40.0 .0082
                                                                 50.0
                                                                      .0058
                                                                              60.0 .0077
FS48340X29202
                  26
                         70.0
                                .005
                                      80.0 .0064
                                                   85.0 .0073
                  27
                                      10.0
                                             85.0
                                                                 20.0
FS48340X29001
                                4 10
                                                     9
                                                        10.000
                                                                         0.0
                                                                                     90.0
```

TABLE B-6. (CONTINUED)

```
.009
FS48340X29201
                 27
                       10.0 .0094
                                    20.0
                                                 30.0 .0077
                                                              40.0 .0083
                                                                           50.0 .0073
                 27
                        60.0 .0071
                                    70.0 .0061
                                                 80.0 .0034
                                                              85.0 .0046
FS48340X29292
                 28
                                    61.2 180.0
                                                              20.0
FS48340X29001
                              5 10
                                                 11
                                                     10.000
                                                                           20.0
                                                                      0.0
                 28
                        61.2 .0087
                                    72.0 .0089
                                                 90.0 .0089 108.0 .0094 126.0 .0086
FS48340X29201
                 28
                      144.0 .0098 153.0 .0103 162.0 .0103 169.2 .0106 176.4 .0111
FS48340X29202
                 28
                      180.0
                              .012
FS48340X29203
                 29
                              4 10
                                     0.0
                                           85.0
                                                 17
                                                     10,000
                                                              40.0
FS48340X29001
                                                                      0.0
                                                                                 180.0
                        0.0 .0088
                                    10.0 .0088
FS48340X29201
                 29
                                                 15.0 .0096
                                                              20.0 .0112
                                                                           25.0 .0113
FS48340X29202
                 29
                        30.0 .0128
                                     35.0 .0128
                                                  40.0 .0154
                                                               45.0 .0143
                                                                           50.0 .0173
FS48340X29203
                 29
                        55.0 .0193
                                     60.0 .0182
                                                  65.0 .0199
                                                              70.0 .0233
                                                                           75.0 .0262
                        80.0 .0279
                 29
                                     85.0 .0202
FS48340X29204
                                                               40.0
FS48340X29001
                 30
                              4 10
                                    10.0
                                          85.0
                                                   8
                                                     10.000
                                                                      0.0
                                                                                   0.0
FS48340X29201
                 30
                        10.0 .0085
                                    20.0 .0089
                                                  30.0 .0084
                                                              50.0 .0075
                                                                           60.0 .0105
                              .009
                                     80.0 .0104
                 30
                        70.0
                                                  85.0 .0207
FS48340X29202
                                    15.0
                                           85.0
                                                               40.0
                                                                      0.0
                                                                                  90.0
FS48340X29001
                 31
                              4 10
                                                   9
                                                    10.000
                        15.0 .0084
                                     20.0 .0093
FS48340X29201
                 31
                                                  30.0 .0086
                                                               40.0
                                                                     .009
                                                                            50.0 .0074
FS48340X29202
                 31
                        60.0 .0077
                                     70.0 .0073
                                                  80.0 .0098
                                                               85.0
                                                                     .005
                 32
                                     46.8 180.0
                                                     10.000
                                                               40.0
                                                                      0.0
FS48340X29001
                              5 10
                                                  12
                                                                           40.0
FS48340X29201
                 32
                        46.8 .0092
                                     54.0
                                           .008
                                                  72.0 .0068
                                                               90.0 .0091 108.0 .0088
                 32
                       126.0 .0098 144.0 .0118 153.0 .0123 162.0 .0135 169.2 .0154
FS48340X29202
                 32
                       176.4 .0142 180.0 .0147
FS48340X29203
                              4 10
                                      0.0
FS48340X29001
                 33
                                          85.0
                                                  15 10.000
                                                               60 0
                                                                      0.0
                                                                                 180.0
                         0.0 .0079
                                                               30.0 .0158
                                                                            35.0
                 33
                                     10.0 .0087
                                                  20.0 .011
                                                                                  .018
FS48340X29201
                        40.0 .0222
                 33
                                     45.0 .0281
                                                  50.0 .0359
                                                               55.0 .0459
                                                                            60.0 .0588
FS48340X29202
                 33
                                     70.0 .0884
                                                               80.0 .1202
                                                                            85.0 .1073
FS48340X29203
                        65.0 .0738
                                                  75.0 .1076
FS48340X29001
                 34
                              4 10
                                     10.0
                                          85.0
                                                    10.000
                                                               60.0
                                                                      0.0
                                                                                   0.0
                 34
                        10.0 .0071
                                     20.0 .0078
                                                  30.0 .0073
                                                               40.0 .0103
                                                                            50.0
                                                                                   .01
FS48340X29201
                                     80.0
                                          .0259
FS48340X29202
                 34
                        70.0 .0155
                                                  85.0 .0386
FS48340X29001
                 35
                              4 10
                                     20.0
                                           85.0
                                                   8
                                                     10.000
                                                               60.0
                                                                      0.0
                                                                                  90.0
FS48340X29201
                 35
                        20.0 .0072
                                     30.0 .0067
                                                  40.0 .0047
                                                               50.0 .0061
                                                                            60.0 .0078
                 35
                                          .0039
FS48340X29202
                        70.0
                              .009
                                     80.0
                                                  85.0 .0086
                 36
                              5 10
                                     46.8 180.0
                                                  12 10.000
                                                                      0.0
                                                                            60.0
FS48340X29001
                                                               60.0
                        46.8 .0052
                                     54.0 .0075
                                                  72.0 .0073
                                                               90.0 .0091 108.0 .0097
FS48340X29201
                 36
                                                 153.0 .0223 162.0 .0323 169.2 .0415
FS48340X29202
                 36
                       126.0 .0139
                                    144.0
                                          .0166
FS48340X29203
                 36
                       176.4 .0515 180.0
                                           .054
```

This page intentionally left blank.

SPECTRAL SCIENCES INC. LEAF SAMPLE, TOP SIDE FS4835:

INDEX TO APPENDIX C

PAGE NO.

	DIRECTIONAL REFLECTANCE
FIGURE C-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE C-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE C-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE C-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE C-4.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees
FIGURE C-5.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees
FIGURE C-6.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees
TABLE C-2.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 90 degrees

INDEX TO APPENDIX C (continued)

	<u>PAGE NO</u>
	DIRECTIONAL REFLECTANCE
FIGURE C-7.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE C-8.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE C-9.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE C-3.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization Incident Azimuth 0 degrees
TABLE C-4.	Directional Emittance as a Function of Temperature, Data Corrected for Instrumentation Polarization and Material Transmission
TABLE C-5.	Solar Absorptance, Data Corrected for Material Transmission
	BIDIRECTIONAL REFLECTANCE
FIGURE C-10.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 20 degrees
FIGURE C-11.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 40 degrees

INDEX TO APPENDIX C (continued)

		PAGE NO
	BIDIRECTIONAL REFLECTANCE	
FIGURE C-12.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 60 degrees	C-22
FIGURE C-13.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 1.307 micrometers, Incident Polar Angles 20,40,60 degrees	C-23
FIGURE C-14.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 20 degrees	C-24
FIGURE C-15.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 40 degrees	C-25
FIGURE C-16.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 60 degrees	C-26
FIGURE C-17.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 4.601 micrometers, Incident Polar Angles 20,40,60 degrees	C-27
FIGURE C-18.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 20 degrees	C-28
FIGURE C-19.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 40 degrees	C-29

INDEX TO APPENDIX C (continued)

PAGE NO.

	BIDIRECTIONAL REFLECTANCE
FIGURE C-20.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 60 degrees
FIGURE C-21.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 10.0 micrometers, Incident Polar Angles 20,40,60 degrees
TABLE C-6.	Bidirectional Reflectance vs. Reflected Polar Angle - ERAS Data, Wavelengths 1.307, 4.601 and 10.0 micrometers, Incident Polar Angles 20, 40, 60 degrees
	SCATTERED TRANSMITTANCE
FIGURE C-22.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers
FIGURE C-23.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers
FIGURE C-24.	Scattered Transmittance vs. Wavelength, Bandwidth 2.5 to 25.0 micrometers
TABLE C-7.	Scattered Transmittance vs. Wavelength - ERAS data, C-38

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-1.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-2.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-3.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 25.0 MICROMETERS DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE C-1.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE. PHI = 0
DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48350015001		1	1										
FS48350015101		SPECTRA	L SCIE	NCES:	LEAF S	AMPLE,	TOP S	IDE					
FS48350015102		UNCORRE	INCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS										
FS48350017001		101090	.01090										
FS48350019001	1	0	01 1	.3	25.	64				20.	0.		
FS48350019201	1	.3	3.8	.375	3.5	. 4	3.5	.5	5.8	.575	12.4		
FS48350019202	1	.6	13.4	. 625	12.6	. 65	12.8	.675	8.5	.7	15.5		
FS48350019203	1	.725	30.1	.75	34.5	.8	39.8	.85	42.7	.9	47.0		
FS48350019204	1	1.	48.3	1.05	49.0	1.1	48.9	1.2	48.7	1.3	48.5		
FS48350019205	1	1.4	48.3	1.45	43.4	1.5	43.8	1.6	44.6	1.7	45.4		
FS48350019206	1	1.725	42.1	1.8	42.3	1.85	42.4	1.9	40.9	1.925	33.9		
FS48350019207	1	2.	34.2	2.2	27.7	2.5	20.1	3.	2.1	3.5	2.3		
FS48350019208	1	4.	6.0	4.5	9.5	5.	10.0	5.5	9.0	6.	2.3		
FS48350019209	1	6.5	2.3	7.	2.7	7.5	2.4	8.	2.8	8.5	2.8		
FS48350019210	1	9.	3.3	9.5	3.8	10.	4.3	10.5	4.3	11.	3.8		
FS48350019211	1	12.	2.7	13.	3.0	14.	3.7	15.	3.4	16.	3.0		
FS48350019212	1	17.	3.0	18.	2.5	19.	2.0	20.	2.0	21.	1.6		
FS48350019213	1	22.	2.3	23.	2.1	24.	2.0	25.	2.1				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-4.

SPECTRAL SCIENCES: LEAF SAMPLE,
TOP SIDE. PHI=90
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-5.

SPECTRAL SCIENCES: LEAF SAMPLE,
TOP SIDE. PHI=90
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-6.

SPECTRAL SCIENCES: LEAF SAMPLE,
TOP SIDE. PHI=90
DIRECTIONAL REFLECTANCE VS. 'VA 'ELENGTH
BANDWIDTH 2.2 TO 25.0 MICHOML FRS
DATA UNCORRECTED FOR INSTRUMENT AT 12% POLARIZATION

TABLE C-2.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE. PHI=90 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48359015001		1	1								
FS48359015101		SPECTRA	L SCIE	NCES:	LEAF S	AMPLE,	TOP S	IDE. P	HI=90		
FS48359015102		UNCORRE	CTED F	OR INS	TRUMEN	TATION	POLAF	RIZATIO	N EFFE	CTS	
FS48359017001		101090									
FS48359019001	1	0	01 1	.3	25.	63				20.	90.
FS48359019201	1	.3	3.9	. 4	3.5	.5	5.7	.575	12.2	.6	13.0
FS48359019202	1	.625	12.2	.65	11.8	.675	7.1	.7	17.9	.725	30.1
FS48359019203	1	.75	35.0	.8	39.5	.825	41.7	.9	46.5	1.	48.1
FS48359019204	1	1.1	48.0	1.2	48.0	1.3	47.9	1.4	46.2	1.45	43.1
FS48359019205	1	1.5	43.1	1.6	43.1	1.65	43.1	1.7	41.8	1.75	40.5
FS48359019206	1	1.8	41.0	1.85	41.5	1.9	40.9	1.925	35.4	2.	35.4
FS48359019207	1	2.2	29.3	2.5	21.5	3.	2.4	3.5	2.9	4.	5.9
FS48359019208	1	4.5	10.1	5.	11.2	5.5	9.3	6.	2.4	6.5	1.6
FS48359019209	1	7.	2.2	7.5	2.6	8.	3.1	8.5	3.1	9.	4.0
FS48359019210	1	9.5	4.8	10.	4.6	10.5	4.4	11.	4.1	12.	2.9
FS48359019211	1	13.	2.5	14.	3.6	15.	3.5	16.	3.1	17.	2.7
FS48359019212	1	18.	2.5	19.	2.0	20.	1.9	21.	1.8	22.	1.9
FS48359019213	1	23.	2.2	24.	2.2	25.	2.3				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-7.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE DIRECTIONAL REFLECTANCE VS. WAVELE GITH BANDWIDTH 0.3 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED AFTER DATA FROM 1.6 TO 25.0 MICROMETERS

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-8.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED AFTER DATA FROM 1.6 TO 25.0 MICROMETERS

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE C-9.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED AFTER DATA FROM 1.6 TO 25.0 MICROMETERS

TABLE C-3.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE. PHI = 0
DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION
DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED
AFTER DATA FROM 1.6 TO 25.0 MICROMETERS

FS48350215001		8	1								
FS48350215101				MODO.		7 1 T CY 1 T	mon c	TDM			
		SPECTRA								^	
FS48350215102		CORRECT	ED FOR	INSTR	UMENTA	TION P	OPAKIZ	ATION	EFFECT	5	
FS48350217001	_	092890		_							
FS48350219001	1		01 1	.3	25.	64				20.	0.
FS48350219201	1	.3	1.2	.325	3.2	.35	3.4	. 4	3.5	.5	5.0
FS48350219202	1	.575	11.0	.6	11.8	.625	10.8	. 65	10.1	. 675	6.9
FS48350219203	1	.7	11.7	.725	25.1	.75	30.0	.8	33.5	.825	35.0
FS48350219204	1	.9	39.8	.925	40.8	1.	41.7	1.05	42.0	1.1	41.8
FS48350219205	1	1.2	41.5	1.3	40.9	1.35	40.6	1.4	39.3	1.45	34.9
FS48350219206	1	1.5	35.5	1.6	36.7	1.7	23.1	1.8	22.1	1.9	11.2
FS48350219207	ī	2.	11.2	2.2	17.1	2.5	8.7	3.	2.0	3.5	2.5
FS48350219208	ī	4.	4.0	4.5	3.4	5.	3.3	5.5	3.3	6.	2.4
FS48350219209	î	6.5	2.4	7.	2.0	7.5	2.2	8.	1.9	8.5	2.5
FS48350219209	i	9.	3.1	9.5	2.9	10.	2.6	10.5	2.8	11.	2.4
FS48350219211											
	1	12.	2.3	13.	2.2	14.	3.6	15.	3.0	16.	2.7
FS48350219212	1	17.	2.6	18.	2.3	19.	2.0	20.	1.5	21.	1.6
FS48350219213	1	22.	1.6	23.	1.1	24.	1.8	25.	1.3		_
FS48350219001	2		01 1	.3	25.	49				30.	0.
FS48350219201	2	.3	1.1	.325	3.2	.35	3.7	.375	3.7	. 4	3.7
FS48350219202	2	.425	4.0	.5	5.6	.575	12.1	.6	12.4	. 625	11.7
FS48350219203	2	. 65	9.6	.675	7.2	.7	19.0	.725	28.7	.75	33.2
FS48350219204	2	.8	37.1	.85	40.7	.875	41.8	. 9	42.6	.95	44.1
FS48350219205	2	1.	44.1	1.1	44.2	1.2	43.9	1.3	43.5	1.35	42.9
FS48350219206	2	1.375	42.2	1.4	40.9	1.45	37.8	1.5	38.0	1.6	39.0
FS48350219207	2	1.8	23.4	2.	12.4	2.5	9.3	3.	2.1	4.	4.0
FS48350219208	2	5.	3.6	6.	2.4	7.	2.2	8.	2.1	9.	3.0
FS48350219209	2	10.	2.5	12.	2.5	14.	3.6	16.	2.9	18.	2.4
FS48350219210	2 2 2	20.	1.8	22.	2.2	24.	2.4	25.	1.5	10.	2.1
FS48350219001	3		01 1	.3	25.	50	2.7	25.	1.5	40.	0.
FS48350219201	3	.3	1.5	.325	3.6	.35	3.9	.375	3.9	.4	4.1
FS48350219201	3	.45	4.9	.475	5.5	.5	6.5	.575	13.4	.6	13.7
	3										
FS48350219203	3 3 3	.625	12.8	. 65	11.5	.675	8.3	.7	21.8	.725	32.1
FS48350219204		.75	35.3	.8	40.4	.85	43.6	.9	45.6	. 95	46.6
FS48350219205	3 3	1.	47.1	1.1	47.1	1.15	47.1	1.2	46.7	1.3	46.0
FS48350219206	3	1.325	45.8	1.35	45.3	1.4	43.5	1.45	40.7	1.5	41.1
FS48350219207	3	1.6	42.0	1.8	25.2	2.	13.8	2.5	10.1	3.	2.4
FS48350219208	3	4.	4.5	5.	4.0	6.	2.6	7.	2.6	8.	2.4
FS48350219209	3	9.	3.4	10.	2.8	12.	2.8	14.	4.1	16.	3.1
FS48350219210	3	18.	2.9	20.	2.2	22.	2.0	24.	1.7	25.	2.8
FS48350219001	4		01 1	.3	25.	51				50.	0.
FS48350219201	4	.3	2.4	.325	4.4	. 35	4.5	.375	4.4	. 4	4.6
FS48350219202	4	.425	5.0	.45	5.6	.5	6.6	.55	12.1	.575	14.4
FS48350219203	4	.6	15.0	.625	14.2	. 65	13.2	.675	9.4	.7	19.9
FS48350219204	4	.725	32.7	.75	36.5	.8	40.7	.875	46.4	.9	47.7
FS48350219205	4	.95	48.9	1.	49.3	1.1	49.4	1.15	49.4	1.2	49.2
FS48350219206	4	1.3	48.8	1.35	48.1	1.4	47.0	1.45	43.1	1.5	43.5
FS48350219207	4										
1 076720717771	4	1.55	44.2	1.6	44.3	1.8	27.7	2.	15.7	2.5	11.4

TABLE C-3. (CONTINUED)

FS48350219208	4	3.	2.9	4.	5.2	5.	4.9	6.	3.2	7.	3.2
FS48350219209	4	8.	3.1	9.	4.1	10.	3.5	12.	3.4	14.	4.8
FS48350219210	4	16.	4.2	18.	3.7	20.	3.2	22.	2.8	24.	2.6
FS48350219211	4	25.	3.8		• • •			•			
FS48350219001	5		01 1	.3	25.	47				60.	0.
FS48350219201	5	.3	3.8	.325	5.3	.375	5.5	. 4	5.7	.425	5.9
FS48350219202	5	.45	6.4	.5	8.2	.575	16.3	.6	16.6	. 625	15.9
FS48350219203	5	. 65	14.7	. 675	10.8	.7	23.5	.725	35.6	.75	39.6
FS48350219204	5	.8	44.3	.85	47.6	.9	49.7	.95	51.8	1.	51.9
FS48350219205	5	1.1	51.9	1.15	51.9	1.2	51.8	1.3	51.4	1.4	49.5
FS48350219206	5	1.45	45.7	1.5	46.1	1.6	46.8	1.8	31.3	2.	18.2
FS48350219207	5	2.5	13.4	3.	4.0	4.	6.7	5.	6.4	6.	4.6
FS48350219207	5	7.	5.0	8.	5.0	9.	6.0	10.	5.4	12.	5.4
FS48350219209	5	14.	6.7	16.	6.2	18.	5.3	20.	4.3	22.	5.1
	5 5	24.	4.8	25.	4.8	10.	5.3	20.	4.5	22.	J.1
FS48350219210						50				70.	0.
FS48350219001	6		01 1	.3	25.		7.7	275	7.4		7.6
FS48350219201	6	.3	5.5	.325	7.6	.35		.375		. 4	
FS48350219202	6	.425	8.2	.5	10.3	.525	13.4	.575	18.6	.6	18.8
FS48350219203	6	.625	18.3	. 65	16.1	.675	12.9	.7	27.5	.725	37.5
FS48350219204	6	.75	42.0	.8	47.0	.85	50.9	.9	53.3	. 95	54.1
FS48350219205	6	1.	54.3	1.1		1.125	54.8	1.2	54.3	1.3	54.2
FS48350219206	6	1.375	52.7	1.4	51.1	1.45	49.1	1.5	49.5	1.55	50.0
FS48350219207	6	1.6	50.3	1.8	35.9	2.	21.7	2.5	16.4	3.	6.3
FS48350219208	6	4.	9.2	5.	9.7	6.	7.8	7.	8.7	8.	8.6
FS48350219209	6	9.	9.5	10.	8.9	12.	8.9	14.	10.2	16.	9.0
FS48350219210	6	18.	9.0	20.	8.6	22.	8.7	24.	8.7	25.	8.1
FS48350219001	7	0	01 1	.3	25.	50				75.	0.
FS48350219201	7	.3	7.7	.325	9.6	. 35	8.9	.375	8.8	. 4	8.9
FS48350219202	7	.475	10.8	.5	11.8	.525	15.3	.55	18.2	.575	20.2
FS48350219203	7	.6	20.3	.625	20.0	. 65	17.9	.675	14.5	.7	29.4
FS48350219204	7	.725	39.0	.75	43.7	.8	48.5	.85	53.2	.9	54.4
FS48350219205	7	.95	55.7	1.	56.1	1.1	56.4	1.15	56.5	1.2	56.4
FS48350219206	7	1.3	56.2	1.35	55.4	1.4	53.8	1.45	51.0	1.5	51.1
F\$48350219207	7	1.6	51.9	1.8	39.0	2.	24.0	2.5	18.7	3.	8.5
F\$48350219208	7	4.	11.7	5.	12.5	6.	11.0	7.	11.7	8.	11.4
FS48350219209	7	9.	12.6	10.	12.0	12.	11.8	14.	13.7	16.	12.2
FS48350219210	7	18.	11.8	20.	10.8	22.	11.4	24.	10.7	25.	10.1
FS48350219001	8		01 1	.3	25.	50				80.	0.
FS48350219201	8	.3	12.5	.325	14.1	.35	11.0	. 4	11.0	.45	12.3
FS48350219202	8	.475	13.1	.525	15.2	.525	18.1	.575	22.8	.6	22.8
FS48350219202	8	.625	22.4	. 65	21.6	.675	17.9	.7	29.1	.725	41.4
		.75	45.9	.8	50.8	.85	54.3	.9	56.0	.95	57.7
FS48350219204 FS48350219205	8 8			1.025	58.4	1.1	58.5	1.2	58.1	1.3	57.8
	8	1. 1.35		1.025	57.0	1.1	55.8	1.45	53.3	1.5	53.5
FS48350219206						2.	27.7	2.5	22.1	3.	11.7
FS48350219207	8	1.6	54.1	1.8	42.1		14.7	7.	15.6	3. 8.	15.5
FS48350219208	8	4.	15.0	5.	16.5	6.					17.2
FS48350219209	8	9.	16.6	10.	15.8	12.	16.1	14.	18.1	16.	
FS48350219210	8	18.	16.7	20.	15.4	22.	15.8	24.	15.0	25.	16.6

TABLE C-4.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE DIRECTIONAL EMITTANCE AS A FUNCTION OF TEMPERATURE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA CORRECTED FOR MATERIAL TRANSMISSION

FS4835021: SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE CORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of temperature:

Zenith angle Wavelength Temperature (degrees Kelvin) (degrees) range (microns) 100 200 300 400 500 600

20 0.300 - 25.000 0.981 0.975 0.968 0.955 0.941 0.927

DATA CORRECTED FOR MATERIAL TRANSMISSION

TABLE C-5.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE SOLAR ABSORPTANCE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA CORRECTED FOR MATERIAL TRANSMISSION

FS4835021 Surface Optics Corp. SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE

SEBOTRAD SOLDRODS. DEAL SAME DD, TOL SIDD

20 degrees: The exoatmospheric solar absorptance is 0.544.

DATA CORRECTED FOR MATERIAL TRANSMISSION

FIGURE C-10. SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 1.307 MICROMETERS INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE C-11. SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 1.307 MICROMETERS INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE C-12. SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 1.307 MICROMETERS INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE C-13.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 1.307 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 4.601 MICROMETERS INCIDENT POLAR ANGLE 20.0 DEGREES

C-24

FS48350X2

FIGURE C-15.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE C-16.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE C-17. SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE PRINCIPAL RING AT 4.601 MICROMETERS INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE C-18.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE C-19. SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE WAVELENGTH 10.000 MICROMETERS INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE C-20.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE C-21.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 10.00 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

TABLE C-6.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE. PHI = 0 BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE ERAS DATA WAVELENGTH 1.307, 4.601, 10 MICROMETERS INCIDENT POLAR ANGLES 20, 40, 60 DEGREES

FS48350X25001		36	013		77377 6		mon o	~~~			
FS48350X25101		SPECTRA	T SCIE	NCES:			TOP S	SIDE			
FS48350X27004	-		4 10			760.	1 207	00 0			1 0000
FS48350X29001	1	.0 0	4 10	9.0	85.0	14	1.307	20.0	0.0	00 0	180.0
FS48350Y29201	1		.0992		.0995		.1014		.1014		.1043
FS48350X29202	1		.1063				.1078	40.0	.1073	50.0	.1077
FS48350X29203	1	60.0	.1121	70.0	.115		.1234				
FS48350X29001	2		4 10	10.0	85.0	8	1.307	20.0	0.0		0.0
FS48350X29201	2		.0993		.1001		.1008	50.0	.0986	60.0	.0801
FS48350X29202	2	70.0	.0882		.0841		.0622				
FS48350X29001	3		4 10	10.0	85.0	9	1.307	20.0	0.0	50.0	90.0
FS48350X29201	3		.0995		.1025		.1042		.1048	50.0	.1077
FS48350X29202	3	60.0	.1112		.1095		.1221		.1324		
FS48350X29001	4	50.0	5 10		180.0	10	1.307	20.0	0.0	20.0	
FS48350X29201	4		.1005		.1013				.1015		
FS48350X29202	4	153.0	.1025						.1033	180.0	.1028
FS48350X29001	5		4 10	0.0		14	1.307	40.0			180.0
FS48350X29201	5		.0956	10.0			.1005	25.0	.103	30.0	.1064
FS48350X29202	5		.1086		.1131		.1197		.1232	55.0	.1254
FS48350X29203	5	60.0	.1294		.1402		.1714	85.0	.179		
FS48350X29001	6		4 10	10.0		8	1.307	40.0	0.0		0.0
FS48350X29201	6		.0954	20.0		30.0	.0984	50.0	.1002	60.0	.104
FS48350X29202	6	70.0	.1031	80.0	.0965	85.0	.053				
FS48350X29001	7		4 10	15.0		9	1.307	40.0	0.0		90.0
FS48350X29201	7		.0999	20.0		30.0	.1031		.1086	50.0	.1115
FS48350X29202	7	60.0	.1179	70.0	.12	80.0	.1231	85.0	.126		
FS48350X29001	8		5 10	54.0	180.0	10	1.307	40.0	0.0	40.0	
FS48350X29201	8	54.0	.106	72.0		90.0		108.0		126.0	.1071
FS48350X29202	8	144.0	.1086	162.0	.1101	169.2		176.4	.1139	180.0	.1154
FS48350X29001	9		4 10	0.0	85.0	14	1.307	60.0	0.0		180.0
FS48350X29201	9	0.0	.108	10.0	.1106	20.0	.1187	30.0	.1273	40.0	.1422
FS48350X29202	9	45.0	.1559	50.0	.1694	55.0	.1906	60.0	.2178	65.0	.2556
FS48350X29203	9	70.0	.3029	75.0	.354	80.0	.4487	85.0	.5892		
FS48350X29001	10		4 10	10.0	85.0	8	1.307	60.0	0.0		0.0
FS48350X29201	10	10.0	.1083	20.0	.1102	30.0	.1119	40.0	.1167	50.0	.1274
FS48350X29202	10	70.0	.1333	80.0	.1529	85.0	.0914				
FS48350X29001	11		4 10	20.0		8	1.307	60.0	0.0		90.0
FS48350X29201	11	20.0	.1126	30.0			.1208		.1274	60.0	.1346
FS48350X29202	11	70.0	.1553	80.0			.1778				
ES48350X29001	12		5 10		180.0	11	1.307	60.0	0.0	60.0	
FS48350X29201	12	54.0							.1372		.1452
FS48350X29202	12		.1611						.2027		
FS48350X29203	12										•==-•
FS48350X29001	13	20070	4 10	0.0	85.0	14	4.601	20.0	0.0		180.0
FS48350X29201	13	0.0	.0298	5.0			.0324			20 0	.0354
FS48350X29202	13	25.0	.0354	30.0			.0347				.0333
F\$48350X29203	13		.0331	70.0			.0314			20.0	
FS48350X29001	14	30.0	4 10	10.0		8	4.601	20.0			0.0
-0-10000WED00X	47			10.0	55.0	•	1.001	~∪.∪	0.0		V. V

TABLE C-6. (CONTINUED)

```
10.0 .0284
                                                  40.0 .0213
FS48350X29201
                                     30.0 .0216
                                                               50.0 .0233
                                                                             60.0 .0218
                 14
                        70.0 .0193
FS48350X29202
                                     80.0 .0146
                                                  85.0 .0089
                 14
                                     10.0 85.0
                                                               20.0
                                                                       0.0
                                                                                   90.0
                 15
                               4 10
                                                   q
                                                        4.601
FS48350X29001
                        10.0 .0274
                 15
                                     20.0 .0281
                                                  30.0 .0272
                                                               40.0 .0264
                                                                             50.0
                                                                                   .026
FS48350X29201
                                                                    .0223
                                     70.0 .0239
                                                  80.0 .0224
                                                               85.0
                 15
                        60.0 .0261
FS48350X29202
                                     61.2 180.0
FS48350X29001
                 16
                               5 10
                                                  10
                                                        4.601
                                                               20.0
                                                                       0.0
                                                                            20.0
                        61.2 .0277
                                                         .029 108.0 .0298 126.0
FS48350X29201
                 16
                                     72.0 .0269
                                                  90.0
                                                                                  .0319
                       144.0 .0339 162.0
                                            .035 169.2
                                                         .036 176.4 .0362 180.0
FS48350X29202
                 16
                                            85.0
                                                                40.0
                 17
                               4 10
                                      0.0
                                                  14
                                                        4.601
                                                                       0.0
                                                                                  180.0
FS48350X29001
                         0.0 .0253
                                     10.0 .0286
                                                  20.0 .0345
                                                               25.0 .0384
                                                                             30.0 .0427
FS48350X29201
                 17
                                                                             55.0 .0582
                 17
                        35.0 .0457
                                     40.0 .0517
                                                  45.0 .0543
                                                               50.0 .0571
FS48350X29202
                                                                     .0903
                                     70.0
                                            .067
                                                  80.0
                                                        .081
                                                                85.0
FS48350X29203
                 17
                        60.0 .0587
                                                                40.0
                                            85.0
                                                                                    0.0
                                     10.0
                                                   8
                                                        4.601
                                                                       0.0
FS48350X29001
                 18
                               4 10
                                                                             60.0 .0205
                        10.0 .0233
                                     20.0 .0236
                                                   30.0 .0226
                                                                50.0 .0212
FS48350X29201
                  18
                        70.0 .0181
                                     80.0 .0124
FS48350X29202
                  18
                                                   85.0
                                                        .011
FS48350X29001
                  19
                               4 10
                                     15.0
                                            85.0
                                                    9
                                                        4.601
                                                                40.0
                                                                       0.0
                                                                                   90.0
FS48350X29201
                  19
                        15.0 .0249
                                     20.0 .0254
                                                   30.0 .0262
                                                                40.0 .0268
                                                                             50.0 .0275
                        60.0 .0267
                  19
                                     70.0 .0258
                                                   80.0 .0247
                                                                85.0 .0192
FS48350X29202
FS48350X29001
                                     46.8 180.0
                                                                40.0
                                                                             40.0
                  20
                               5 10
                                                  11
                                                        4.601
                                                                       0.0
                  20
                        46.8
                               .024
                                     54.0 .0234
                                                   72.0 .0249
                                                                90.0 .0262 108.0 .0299
FS48350X29201
FS48350X29202
                  20
                       126.0 .0333 153.0 .0417 162.0 .0492 169.2 .0514 176.4 .0532
                  20
                       180.0 .0529
F348350X29203
                  21
                                                        4.601
                                                                60.0
                                                                       0.0
                                                                                  180.0
                               4 10
                                       0.0
                                            85.0
                                                   13
FS48350X29001
                                                                     .0414
                                           .0256
                                                   20.0 .0319
                                                                             40.0 .0592
                         0.0 .0223
                                     10.0
                                                                30.0
                  21
FS48350X29201
                                     55.0
                                                   60.0 .1527
                                                                65.0 .1764
                                                                             70.0 .2083
FS48350X29202
                  21
                        50.0 .0898
                                            .121
                  21
                        75.0 .2626
                                     80.0
                                           .3514
                                                   85.0 .6583
FS48350X29203
                                                                                     0.0
                                                                60.0
FS48350X29001
                  22
                               4 10
                                     10.0
                                            85.0
                                                    8
                                                        4.601
                                                                       0.0
                                          .0214
                                                                       .021
                                                   30.0 .0203
                                                                40.0
                                                                             50.0 .0205
FS48350X29201
                  22
                        10.0 .0212
                                     20.0
                                          .0168
                                                   85.0 .0126
                  22
                        70.0 .0171
                                     80.0
FS48350X29202
                                     20.0
                                            85.0
                                                    8
                                                        4.601
                                                                60.0
                                                                       0.0
                                                                                    90.0
                  23
                               4 10
FS48350X29001
                                                                     .0233
                  23
                        20.0 .0233
                                     30.0 .0236
                                                   40.0 .0258
                                                                50.0
                                                                             60.0 .0241
FS48350X29201
                  23
                        70.0 .0224
                                     80.0 .0189
                                                   85.0 .0126
FS48350X29202
                                                                             60.0
                  24
                               5 10
                                     46.8 180.0
                                                   12
                                                        4.601
                                                                60.0
                                                                       0.0
FS48350X29001
                        46.8 .0175
                                                                     .0241 108.0 .0292
                                                   72.0
                                                        .0219
                                                                90.0
FS48350X29201
                  24
                                     54.0 .0212
                       126.0 .0387 144.0
                                           .0599
                                                 153.0
                                                         .076 162.0 .0965 169.2 .1133
FS48350X29202
                  24
                       176.4 .1432 180.0
                                           .1527
FS48350X29203
                  24
                  25
                               4 10
                                       0.0
                                            85.0
                                                   15
                                                      10.000
                                                                20.0
                                                                       0.0
                                                                                   180.0
FS48350X29001
                         0.0 .0144
                                                                     .0305
                                                                             20.0 .0357
                  25
                                       5.0
                                            .016
                                                   10.0 .0232
                                                                15.0
FS48350X29201
                                                                     .0168
                  25
                               .031
                                      30.0
                                           .0249
                                                   35.0 .0199
                                                                40.0
                                                                             45.0 .0179
                        25.0
FS48350X29202
                                      60.0
                                           .0202
                                                   70.0 .0144
                                                                     .0121
                                                                             85.0 .0053
                  25
                                                                80.0
                        50.0
                               .018
FS4835(X29203
                                      10.0
                                            85.0
                                                      10.000
                                                                20.0
                                                                                     0.0
                  26
                               4 10
                                                    8
                                                                       0.0
FS48350X29001
                                      30.0
                                           .0077
                                                   40.0 .0092
                                                                50.0 .0053
                                                                             60.0 .0065
FS48350X29201
                  26
                        10.0
                               .011
                              .0045
                                      0.08
FS48350X29202
                  26
                        70.0
                                           .0038
                                                   85.0 .0053
                                      10.0
                                                                20.0
                                                                       0.0
                                                                                    90.0
                                            85.0
                                                    9
                                                       10.000
FS48350X29001
                  27
                               4 10
                                                                             50.0 .0099
                                      20.0
                                                                40.0 .0104
                  27
                         10.0 .0125
                                             .012
                                                   30.0 .0115
FS48350X29201
                                      70.0
                  27
                         60.0 .0082
                                             .007
                                                   80.0 .0056
                                                                85.0 .0047
FS48350X29202
FS48350X29001
                  28
                               5 10
                                      63.0 180.0
                                                   11
                                                       10.000
                                                                20.0
                                                                        0.0
                                                                             20.0
                         63.0 .0118
                                      72.0 .0119
                                                   90.0
                                                         .012 108.0 .0123 126.0 .0147
FS48350X29201
                  28
```

TABLE C-6. (CONTINUED)

F\$48350X29202 28 144.0 0.0205 153.0 0.0249 162.0 0.0295 169.2 0.0339 176.4 0.0346 F\$48350X29201 29											
F\$48350X29001 29 4 10 0.0 85.0 16 10.000 40.0 0.0 180.0 F\$48350X29202 29 0.0 .0105 10.0 .0124 15.0 .0129 20.0 .0165 25.0 .0214 F\$48350X29203 29 55.0 .0322 60.0 .0314 65.0 .0328 70.0 .0352 80.0 .0286 F\$48350X29204 29 85.0 .0137 10.0 .0094 30.0 .0066 50.0 .003 60.0 .003 F\$48350X29201 30 10.0 .0101 20.0 .0094 30.0 .0066 50.0 .003 60.0 .003 F\$48350X29201 31 4.0 15.0 .0116 20.0 .0044 80.0 .0025 85.0 .0014 90.0 .0093 50.0 .007 90.0 .0093 50.0 .007 90.0 .0093 50.0 .0077 7548350X29201 31 40.0	FS48350X29202		144.0		153.0	.0249	162.0 .0295	169.2	.0339	176.4	.0346
FS48350X29201 29 0.0 .0105 10.0 .0124 15.0 .0129 20.0 .0165 25.0 .0214 FS48350X29202 29 30.0 .0309 35.0 .0336 40.0 .0433 45.0 .04 50.0 .0341 FS48350X29204 29 85.0 .0137 .000 <t< td=""><td>FS48350X29203</td><td>28</td><td>180.0</td><td>.035</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	FS48350X29203	28	180.0	.035							
F\$48350X29202 29	FS48350X29001	29		4 10	0.0	85.0	16 10.000	40.0	0.0		180.0
F548350X29203 29 55.0 .0322 60.0 .0314 65.0 .0328 70.0 .0352 80.0 .0286 F548350X29201 30 4 10 10.0 85.0 8 10.000 40.0 0.0 0.0 F548350X29202 30 10.0 .0101 20.0 .0094 30.0 .0066 50.0 .003 60.0 .003 F548350X29201 31 4 10 15.0 85.0 9 10.000 40.0 0.0 90.0 F548350X29201 31 15.0 .0116 20.0 .0114 30.0 .0029 85.0 .0022 F548350X29201 32 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 F548350X29201 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 F548350X29201 32 16.4 .0419 180.0 .0425 .0071 90.0	FS48350X29201	29	0.0	.0105	10.0	.0124	15.0 .0129	20.0	.0165	25.0	.0214
F\$48350X29201 30	FS48350X29202	29	30.0	.0309	35.0	.0396	40.0 .0433	45.0	.04	50.0	.0341
F\$48350X29201 30	FS48350X29203	29	55.0	.0322	60.0	.0314	65.0 .0328	70.0	.0352	80.0	.0286
FS48350X29201 30 10.0 .0101 20.0 .0094 30.0 .0066 50.0 .003 60.0 .003 FS48350X29202 30 70.0 .0044 80.0 .0025 85.0 .0014 .00 .00 90.0 FS48350X29201 31 4 10 15.0 .85.0 9 10.000 40.0 .0093 50.0 .0077 FS48350X29202 31 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 FS48350X29201 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 FS48350X29203 32 126.0 .0165 144.0 .0202 153.0 .023 162.0 .0261 169.2 .0323 FS48350X29203 32 176.4 .0419 180.0 .0425 180.0 .0249 35.0 .0298 .0261 169.2 .0323 .0323 .0320 .0249					,-						
FS48350X29201 30 10.0 .0101 20.0 .0094 30.0 .0066 50.0 .003 60.0 .003 FS48350X29202 30 70.0 .0044 80.0 .0025 85.0 .0014 .00 90.0 FS48350X29201 31 4 10 15.0 .0114 20.0 .0114 30.0 .0106 40.0 .0093 50.0 .0077 FS48350X29202 31 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 FS48350X29201 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 FS48350X29202 32 126.0 .0165 144.0 .0022 153.0 .023 162.0 .0261 169.2 .0323 FS48350X29203 32 176.4 .0419 180.0 .0425 183.0 .0249 35.0 .0298 FS48350X29203 33 40.0	FS48350X29001	30		4 10	10.0	85.0	8 10.000	40.0	0.0		0.0
FS48350X29202 30 70.0 .0044 80.0 .0025 85.0 .0014 FS48350X29201 31 4 10 15.0 85.0 9 10.000 40.0 0.0 90.0 FS48350X29202 31 15.0 .00116 20.0 .0114 30.0 .0106 40.0 .0093 50.0 .0077 FS48350X29202 31 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 FS48350X29201 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 FS48350X29203 32 176.4 .0419 180.0 .0425 .023 162.0 .0261 169.2 .0323 FS48350X29201 33 4 10 0.0 85.0 23 10.000 60.0 0.0 180.0 FS48350X29201 33 40.0 .0379 45.0 .0718 48.0 .1069 50.0 .1514 <t< td=""><td></td><td>30</td><td>10.0</td><td>.0101</td><td>20.0</td><td>.0094</td><td>30.0 .0066</td><td>50.0</td><td>.003</td><td>60.0</td><td>.003</td></t<>		30	10.0	.0101	20.0	.0094	30.0 .0066	50.0	.003	60.0	.003
FS48350X29001 31 4 10 15.0 85.0 9 10.000 40.0 0.0 90.0 FS48350X29202 31 15.0 .0116 20.0 .0114 30.0 .0106 40.0 .0093 50.0 .0077 FS48350X29202 31 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 FS48350X29201 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 FS48350X29203 32 176.4 .0419 180.0 .0425 .023 162.0 .0261 169.2 .0323 FS48350X29203 32 176.4 .0419 180.0 .0425 .023 162.0 .0261 169.2 .0323 FS48350X29201 33 0.0 .0094 10.0 .0437 20.0 .0176 30.0 .0249 35.0 .0298 FS48350X29201 33 54.0 .2728 56.0	FS48350X29202		70.0	.0044	80.0	.0025	85.0 .0014				
FS48350X29201 31 15.0 .0116 20.0 .0114 30.0 .0106 40.0 .0093 50.0 .0077 FS48350X29202 31 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 .0078 .0078 .0078 .0078 .0078 .0077 .0079 .0003 108.0 .0129 .0129 .0078 .0083 .0093 .0083 .0083 .0083 .0083 .0083 .0083 .0083 .0083 .0083 .0084 .0084 .0084 .0084 .0083 .0083 .0084 .0084 .0084 .0083 .0084 .0084 .0084 .0084 .0084 .0084 .0084 .0084 .0084 .0					•			40.0	0.0		90.0
F548350X29202 31 60.0 .0051 70.0 .0053 80.0 .0029 85.0 .0022 F548350X29001 32 5 10 46.8 180.0 12 10.000 40.0 0.0 40.0 F548350X29202 32 16.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 F548350X29203 32 176.4 .0419 180.0 .0425 .023 162.0 .0261 169.2 .0323 F548350X29201 33 4 10 0.0 85.0 23 10.000 60.0 0.0 180.0 F548350X29201 33 4 0.0 .0379 45.0 .0718 48.0 .1069 50.0 .1514 52.0 .2065 F548350X29203 33 54.0 .2728 56.0 .3349 58.0 .3941 60.0 .4354 62.0 .4563 F548350X29201 34 10.0 .007 20.0 .0052 <			15.0							50.0	
FS48350X29001 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 FS48350X29202 32 126.0 .0165 144.0 .0202 153.0 .023 162.0 .0261 169.2 .0323 FS48350X29201 33 4 10 0.0 85.0 23 10.000 60.0 0.0 180.0 FS48350X29201 33 0.0 .0094 10.0 .0137 20.0 .0176 30.0 .0249 35.0 .0298 FS48350X29202 33 40.0 .0379 45.0 .0718 48.0 .1069 50.0 .1514 52.0 .2065 FS48350X29203 33 54.0 .2728 56.0 .3349 58.0 .3941 60.0 .4354 62.0 .4563 FS48350X29203 33 75.0 .3863 80.0 .3776 85.0 .1611 FS48350X29201 34 10.0 .007			60.0								
FS48350X29201 32 46.8 .0061 54.0 .0078 72.0 .007 90.0 .0093 108.0 .0129 FS48350X29203 32 126.0 .0165 144.0 .0202 153.0 .023 162.0 .0261 169.2 .0323 FS48350X29201 33 4 10 0.0 85.0 23 10.000 60.0 0.0 180.0 FS48350X29202 33 4 0.0 .0094 10.0 .0137 20.0 .0176 30.0 .0249 35.0 .0298 FS48350X29202 33 4 0.0 .0379 45.0 .0718 48.0 .1069 50.0 .1514 52.0 .2065 FS48350X29203 33 54.0 .2728 56.0 .3349 58.0 .3941 60.0 .4354 62.0 .4563 FS48350X29204 33 64.0 .4509 66.0 .4619 68.0 .4415 70.0 .4369 72.0 .4064 FS48350X29201 34 10.0 .007 20.0 .0052 30.0 .0028	FS48350X29001				46.8			40.0		40.0	
FS48350X29202 32 126.0 .0165 144.0 .0202 153.0 .023 162.0 .0261 169.2 .0323 FS48350X29203 32 176.4 .0419 180.0 .0425 .0419 .0419 .0419 .0419 .0425 .0419 .0419 .0425 .0419 .0419 .0425 .0419			46.8	.0061		.0078			.0093	108.0	.0129
F\$48350X29201 33	FS48350X29202		126.0	.0165	144.0	.0202	153.0 .023	162.0	.0261	169.2	.0323
FS48350X29001 33 4 10 0 :0 85.0 23 10.000 60.0 0.0 180.0 FS48350X29201 33 0.0 .0094 10.0 .0137 20.0 .0176 30.0 .0249 35.0 .0298 FS48350X29202 33 40.0 .0379 45.0 .0718 48.0 .1069 50.0 .1514 52.0 .2065 FS48350X29203 33 54.0 .2728 56.0 .3349 58.0 .3941 60.0 .4354 62.0 .4563 FS48350X29204 33 64.0 .4509 66.0 .4619 68.0 .4415 70.0 .4369 72.0 .4064 FS48350X29205 33 75.0 .3863 80.0 .3776 85.0 .1611 FS48350X29201 34 10.0 .007 20.0 .0052 30.0 .0028 50.0 .0039 FS48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022 .0064 60.0 .00 90.0 FS48350X29201 35 <td></td> <td></td> <td>176.4</td> <td>.0419</td> <td>180.0</td> <td>.0425</td> <td></td> <td></td> <td></td> <td></td> <td></td>			176.4	.0419	180.0	.0425					
F\$48350X29202 33 40.0 .0379 45.0 .0718 48.0 .1069 50.0 .1514 52.0 .2065 F\$48350X29203 33 54.0 .2728 56.0 .3349 58.0 .3941 60.0 .4354 62.0 .4563 F\$48350X29204 33 64.0 .4509 66.0 .4619 68.0 .4415 70.0 .4369 72.0 .4064 F\$48350X29205 33 75.0 .3863 80.0 .3776 85.0 .1611 F\$48350X29201 34 10.0 .007 20.0 .0052 30.0 .0028 40.0 .0028 50.0 .0039 F\$48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022<	FS48350X29001			4 10	0.0	85.0	23 10.000	60.0	0.0		180.0
FS48350X29203 33 54.0 .2728 56.0 .3349 58.0 .3941 60.0 .4354 62.0 .4563 FS48350X29204 33 64.0 .4509 66.0 .4619 68.0 .4415 70.0 .4369 72.0 .4064 FS48350X29205 33 75.0 .3863 80.0 .3776 85.0 .1611 FS48350X29201 34 10.0 .007 20.0 .0052 30.0 .0028 40.0 .0028 50.0 .0039 FS48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022 .002	FS48350X29201	33	0.0	.0094	10.0	.0137	20.0 .0176	30.0	.0249	35.0	.0298
F\$48350X29204 33 64.0 .4509 66.0 .4619 68.0 .4415 70.0 .4369 72.0 .4064 F\$48350X29205 33 75.0 .3863 80.0 .3776 85.0 .1611 F\$48350X29201 34 10.0 .007 20.0 .0052 30.0 .0028 40.0 .0028 50.0 .0039 F\$48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022 .0022 .0052 .0022 .0022 .0002 .0	FS48350X29202	33	40.0	.0379	45.0	.0718	48.0 .1069	50.0	.1514	52.0	.2065
F\$48350X29201 34	F\$48350X29203	33	54.0	.2728	56.0	.3349	58.0 .3941	60.0	.4354	62.0	.4563
F\$48350X29001 34 4 10 10.0 85.0 8 10.000 60.0 0.0 0.0 0.0 F\$48350X29201 34 10.0 .007 20.0 .0052 30.0 .0028 40.0 .0028 50.0 .0039 F\$48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022 F\$48350X29001 35 4 10 20.0 80.0 7 10.000 60.0 0.0 90.0 F\$48350X29201 35 20.0 .0086 30.0 .0076 40.0 .0055 50.0 .0064 60.0 .0037 F\$48350X29202 35 70.0 .0011 80.0 .0011 F\$48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 F\$48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 F\$48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29204	33	64.0	.4509	66.0	.4619	68.0 .4415	70.0	.4369	72.0	.4064
F\$48350X29202 34 70.0 .007 20.0 .0052 30.0 .0028 40.0 .0028 50.0 .0039 F\$48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022 F\$48350X29201 35 4 10 20.0 80.0 7 10.000 60.0 0.0 90.0 F\$48350X29201 35 20.0 .0086 30.0 .0076 40.0 .0055 50.0 .0064 60.0 .0037 F\$48350X29202 35 70.0 .0011 80.0 .0011 F\$48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 F\$48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 F\$48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29205	33	75.0	.3863	80.0	.3776	85.0 .1611				
F\$48350X29202 34 70.0 .0053 80.0 .0066 85.0 .0022 F\$48350X29001 35 4 10 20.0 80.0 7 10.000 60.0 0.0 90.0 F\$48350X29201 35 20.0 .0086 30.0 .0076 40.0 .0055 50.0 .0064 60.0 .0037 F\$48350X29202 35 70.0 .0011 80.0 .0011 F\$48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 F\$48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 F\$48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29001	34		4 10	10.0	85.0	8 10.000	60.0	0.0		0.0
FS48350X29001 35 4 10 20.0 80.0 7 10.000 60.0 0.0 90.0 FS48350X29201 35 20.0 .0086 30.0 .0076 40.0 .0055 50.0 .0064 60.0 .0037 FS48350X29202 35 70.0 .0011 80.0 .0011 FS48350X29001 36 5 10 54.0 180.0 17 10.000 60.0 0.0 60.0 FS48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 FS48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 FS48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	F348350X29201	34	10.0	.007	20.0	.0052	30.0 .0028	40.0	.0028	50.0	.0039
F\$48350X29201 35 20.0 .0086 30.0 .0076 40.0 .0055 50.0 .0064 60.0 .0037 F\$48350X29202 35 70.0 .0011 80.0 .0011 F\$48350X29201 36 5 10 54.0 180.0 17 10.000 60.0 0.0 60.0 F\$48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 F\$48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 F\$48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	F\$48350X29202	34	70.0	.0053	80.0	.0066	85.0 .0022				
F\$48350X29202 35 70.0 .0011 80.0 .0011 F\$48350X29001 36 5 10 54.0 180.0 17 10.000 60.0 0.0 60.0 F\$48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 F\$48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 F\$48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29001	35		4 10	20.0	80.0	7 10.000	60.0	0.0		90.0
FS48350X29201 36 5 10 54.0 180.0 17 10.000 60.0 0.0 60.0 FS48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 FS48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 FS48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29201	35	20.0	.0086	30.0	.0076	40.0 .0055	50.0	.0064	60.0	.0037
FS48350X29201 36 54.0 0. 72.0 .0008 90.0 .0035 108.0 .0038 126.0 .0115 FS48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 FS48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29202	35	70.0	.0011	80.0	.0011					
FS48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 FS48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29001	36		5 10	54.0	180.0	17 10.000	60.0	0.0	60.0	
FS48350X29202 36 144.0 .0308 154.8 .0792 162.0 .0835 165.6 .0754 169.2 .0831 FS48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738	FS48350X29201	36	54.0	0.	72.0	.0008	90.0 .0035	108.0	.0038	126.0	.0115
FS48350X29203 36 172.8 .1285 174.6 .1854 176.4 .2727 177.8 .3384 178.6 .3738			144.0	.0308							.0831
		36		.1285	174.6	.1854					
	FS48350X29204	36	179.3	.3965	180.0	.4077	-				

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE C-22.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE SCATTERED TRANSMITTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 25.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE C-23.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE SCATTERED TRANSMITTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE C-24.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE SCATTERED TRANSMITTANCE VS. WAVELENGTH BANDWIDTH 2.5 TO 25.0 MICROMETERS

TABLE C-7.

SPECTRAL SCIENCES: LEAF SAMPLE, TOP SIDE SCATTERED TRANSMITTANCE VS. WAVELENGTH - ERAS DATA DATA FROM 0.3 TO 2.0 MICROMETERS MEASURED ON A FRESH, MOIST LEAF

FS48350135001		1	31								
FS48350135101		SPECTRA	L SCIE	ENCES:	LEAF S	SAMPLE,	TOP S	IDE			
FS48350135102		SCATTER	ED TRA	NSMITI	ANCE						
FS48350137001		092790									
FS48350139001	1	0	01 31	.3	25.	68				0.	0.
FS48350139201	1	.3	0.0	. 4	0.0	.5	4.5	.525	12.0	.55	19.2
FS48350139202	1	.575	19.3	. 6	16.6	.625	14.9	. 65	12.2	.675	7.7
FS48350139203	1	.7	21.0	.725	39.1	.75	45.4	.8	46.8	.9	49.5
FS48350139204	1	1.	50.3	1.1	51.0	1.2	49.4	1.3	50.7	1.375	45.6
FS48350139205	1	1.4	36.0	1.425	37.1	1.475	38.8	1.5	38.2	1.525	37.5
FS48350139206	1	1.6	42.8	1.65	44.3	1.7	40.2	1.75	36.2	1.8	40.6
FS48350139207	1	1.825	41.0	1.85	37.4	1.875	29.2	1.9	6.7	1.95	6.9
FS48350139208	1	2.	16.6	2.5	19.6	3.	0.0	3.5	0.0	4.	5.8
FS48350139209	1	4.5	15.1	5.	17.9	5.5	16.6	6.	0.0	6.5	0.0
FS48350139210	1	7.	0.0	7.5	0.0	8.	0.0	8.5	0.0	9.	0.0
FS48350139211	1	9.5	0.0	10.	0.0	10.5	0.7	11.	1.5	12.	0.8
FS48350139212	1	13.	0.8	14.	0.0	15.	0.0	16.	0.0	17.	0.0
FS48350139213	1	18.	0.0	19.	0.0	20.	0.0	21.	0.0	22.	0.0
FS48350139214	1	23.	0.0	24.	0.0	25.	0.0				

SPECTRAL SCIENCES INC. LEAF SAMPLE, BOTTOM SIDE FS4836:

INDEX TO APPENDIX D

PAGE NO.

DIRECTIONAL REFLECTANCE FIGURE D-1. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Uncorrected for Instrumentation FIGURE D-2. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation FIGURE D-3. Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Uncorrected for Instrumentation TABLE D-1. Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. FIGURE D-4. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Uncorrected for Instrumentation FIGURE D-5. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Directional Reflectance vs. Wavelength, Bandwidth FIGURE D-6. 2.2 to 25.0 micrometers, Data Uncorrected for Instrumentation TABLE D-2. Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization.

INDEX TO APPENDIX D (continued)

	PAGE NO
	DIRECTIONAL REFLECTANCE
FIGURE D-7.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE D-8.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE D-9.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE D-3.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization Incident Azimuth 0 degrees
TABLE D-4.	Directional Emittance as a Function of Temperature, Data Corrected for Instrumentation Polarization and Material Transmission
TABLE D-5.	Solar Absorptance, Data Corrected for Material Transmission
	BIDIRECTIONAL REFLECTANCE
FIGURE D-10.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 20 degrees
FIGURE D-11.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 40 degrees

INDEX TO APPENDIX D (continued)

		PAGE NO
	BIDIRECTIONAL REFLECTANCE	
FIGURE D-12.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 1.307 micrometers, Incident Polar Angle 60 degrees	D-23
FIGURE D-13.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 1.307 micrometers, Incident Polar Angles 20,40,60 degrees	D-24
FIGURE D-14.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 20 degrees	D-25
FIGURE D-15.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 40 degrees	D-26
FIGURE D-16.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 4.601 micrometers, Incident Polar Angle 60 degrees	D-27
FIGURE D-17.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 4.601 micrometers, Incident Polar Angles 20,40,60 degrees	D-28
FIGURE D-18.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 20 degrees	D-29
FIGURE D-19.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 40 degrees	D-30

INDEX TO APPENDIX D (continued)

PAGE NO.

	BIDIRECTIONAL REFLECTANCE
FIGURE D-20.	Bidirectional Reflectance vs. Reflected Polar Angle, Wavelength 10.0 micrometers, Incident Polar Angle 60 degrees
FIGURE D-21.	Bidirectional Reflectance vs. Reflected Azimuth Angle, Principal Ring. Wavelength 10.0 micrometers, Incident Polar Angles 20,40,60 degrees
TABLE D-6.	Bidirectional Reflectance vs. Reflected Polar Angle - ERAS Data, Wavelengths 1.307, 4.601 and 10.0 micrometers, Incident Polar Angles 20, 40, 60 degrees
	SCATTERED TRANSMITTANCE
FIGURE D-22.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers
FIGURE D-23.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers
FIGURE D-24.	Scattered Transmittance vs. Wavelength, Bandwidth 2.5 to 25.0 micrometers
TABLE D-7.	Scattered Transmittance vs. Wavelength - ERAS data D-39

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-1.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-2.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-3.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE D-1.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE. PHI = 0 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48360015001		1	1								
FS48360015101		SPECTRA	L SCIE	NCES:	LEAF S	AMPLE,	BOTTO	M SIDE			
FS48360015102		UNCORRE	CTED F	OR INS	TRUMEN	TATION	POLAR	IZATIO	N EFFE	CTS	
FS48360017GC1		101090									
FS48360019002	1	0	01 1	.3	25.	67				20.	0.
FS48360019201	1	.3	3.9	. 4	6.3	.425	8.8	.45	13.4	.475	15.2
FS48360019202	1	.5	18.5	.525	24.4	.55	32.9	.575	33.7	.6	30.6
FS48360019203	1	.625	29.3	. 65	26.4	.675	20.8	.7	31.8	.725	50.8
FS48360019204	1	.75	54.5	.8	54.4	.9	54.1	1.	53.8	1.1	52.8
FS48360019205	1	1.2	51.7	1.3	51.4	1.35	51.2	1.4	49.0	1.45	46.8
FS48360019206	1	1.5	46.8	1.6	46.7	1.7	46.7	1.75	43.8	1.8	44.0
ĘS48360019207	1	1.85	44.3	1.9	42.9	1.925	38.0	2.	37.0	2.2	31.5
FS48360019208	1	2.5	24.2	3.	1.4	3.5	1.5	4.	9.0	4.5	13.6
FS48360019209	1	5.	13.7	5.5	11.6	6.	2.2	6.5	2.2	7.	1.4
FS48360019210	1	7.5	1.6	8.	2.1	8.5	2.0	9.	1.8	9.5	1.7
FS48360019211	1	10.	2.5	10.5	3.3	11.	3.6	12.	3.2	13.	2.5
FS48360019212	1	14.	1.9	15.	1.7	16.	1.4	17.	1.1	18.	1.1
FS48360019213	1	19.	0.8	20.	0.6	21.	1.5	22.	1.2	23.	1.2
FS48360019214	1	24.	0.2	25.	0.4						

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-4.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE. PHI=90
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-5.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE. PHI=90
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-6.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE. PHI=90
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE D-2.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE. PHI = 90 DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS48369015001		1	1								
FS48369015101		SPECTRA	L SCIE	NCES:	LEAF S	AMPLE,	вотто	M SIDE	. PHI=	90	
FS48369015102		UNCORRE				TATION					
FS48369017001		101090									
F\$48369019001	1	0	01 1	.3	25.	68				20.	90.
FS48369019201	1	.3	4.2	.375	5.4	. 4	6.7	.45	14.2	.475	16.3
FS48369019202	1	.5	19.3	.525	26.4	.55	32.5	.575	32.9	. 6	30.5
FS48369019203	1	.625	28.2	. 65	25.3	.675	20.7	.7	37.6	.725	50.8
FS48369019204	1	.75	53.9	.8	53.7	.9	53.4	1.	53.1	1.1	52.3
FS48369019205	1	1.2	51.4	1.3	51.2	1.325	51.1	1.4	48.8	1.45	47.3
FS48369019206	1	1.5	47.2	1.6	46.8	1.65	46.7	1.7	45.6	1.75	44.5
FS48369019207	1	1.8	44.5	1.85	44.6	1.9	41.7	1.925	40.3	2.	37.8
FS48369019208	1	2.2	31.4	2.5	23.7	3.	1.7	3.5	1.9	4.	8.4
FS48369019209	1	4.5	13.2	5.	13.6	5.5	11.4	6.	1.7	6.5	1.6
FS48369019210	1	7.	1.9	7.5	2.1	8.	1.9	8.5	1.2	9.	2.0
FS48369019211	1	9.5	2.0	10.	2.0	10.5	2.4	11.	3.1	12.	0.9
FS48369019212	1	13.	2.1	14.	2.4	15.	1.2	16.	1.1	17.	0.7
FS48369019213	1	18.	0.4	1.9.	0.6	20.	0.0	21.	1.3	22.	1.3
FS48369019214	1	23.	1.5	24.	0.8	25.	0.7				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-7.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED BEFORE DATA FROM 1.6 TO 25.0 MICROMETERS

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-8.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED BEFORE DATA FROM 1.6 TO 25.0 MICROMETERS

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE D-9.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 25.0 MICROMETERS DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED BEFORE DATA FROM 1.6 TO 25.0 MICROMETERS

TABLE D-3.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE. PHI = 0
DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION
DATA FROM 0.3 TO 1.6 MICROMETERS MEASURED
BEFORE DATA FROM 1.6 TO 25.0 MICROMETERS

FS48360215001 FS48360215101		8 SPECTRA	1 L SCIE		LEAF Š	AMPIÆ.	BOTTO	M STDE			
FS48360215102		CORRECT								s	
FS48360217001		092890									
FS48360219001	1		01 1	.3	25.	68				20.	0.
FS48360219201	1	.3	2.3	.325	4.5	.375	5.4	. 4	6.5	. 45	12.4
FS48360219202	1	.475	13.6	.5	16.3	.525	26.2	.55	29.2	.575	26.9
FS48360219203	1	. 6	24.9	.625	22.9	. 675	16.6	.7	30.9	.725	44.0
FS48360219204	1	.75	46.4	. 8	45.9	.825	45.7	.9	45.2	1.	44.9
FS48360219205	1	1.05	44.7	1.1	44.3	1.2	43.5	1.25	43.3	1.3	42.7
FS48360219206 FS48360219207	1 1	1.375	41.7 37.9	$\frac{1.4}{1.7}$	39.6 39.5	1.45 1.8	35.8 38.8	1.5 1.9	36.4 37.0	1.55 2.	37.6 35.6
FS48360219207	1	1.6 2.2	31.7	2.5	25.1	3.	1.8	3.5	2.0	2. 4.	9.1
FS48360219209	1	4.5	14.0	5.	14.2	5.5	12.1	6.	1.9	6.5	2.7
FS48360219209	1	7.	2.1	7.5	2.2	8.	1.8	8.5	1.4	9.	2.4
FS48360219211	1	9.5	2.3	10.	2.3	10.5	3.8	11.	4.1	12.	3.3
FS48360219212	ī	13.	2.4	14.	2.2	15.	2.1	16.	2.1	17.	1.2
FS48360219213	ī	18.	1.8	19.	1.5	20.	1.7	21.	1.9	22.	2.1
FS48360219214	ī	23.	2.1	24.	3.1	25.	1.5		5	~~.	
FS48360219001	$\bar{2}$		01 1	.3	25.	51				30.	0.
FS48360219201	2	.3	2.4	.325	4.8	.375	5.7	. 4	6.7	.425	9.7
FS48360219202	2 2	.45	13.2	.475	15.1	.5	17.0	.525	25.3	.55	31.2
FS48360219203	2	.575	30.1	.6	27.6	.625	25.5	.65	22.1	.675	18.1
FS48360219204	2	.7	33.7	.725	46.5	.75	49.4	.8	49.1	.85	48.8
FS48360219205	2	. 9	48.6	1.	47.9	1.1		1.125	46.8	1.2	46.3
FS48360219206	2	1.3		1.375	43.9	1.4	40.4	1.45	38.9	1.5	39.7
FS48360219207	2	1.55	40.5	1.6	40.7	1.8	40.8	2.	37.4	2.5	26.6
FS48360219208	2	3.	1.7	4.	9.1	5.	15.0	6.	1.9	7.	2.0
FS48360219209	2	8.	1.8	9.	2.2	10.	2.2	12.	3.5	14.	2.5
FS48360219210	2	16.	1.7	18.	1.6	20.	1.8	22.	2.5	24.	2.0
FS48360219211	2	25.	2.7	2	٥٢	r 1				40	^
FS48360219001	3		01 1	.3	25.	51	~ ~	225		40.	0.
FS48360219201	3	.3	1.3	.325	4.7	.35	5.6	.375	6.2	.4	7.1
FS48360219202	3	.425	10.5	.45	14.9	.475	17.7	.5	20.7	.525	29.6 27.1
FS48360219203 FS48360219204	3	.55 .675	35.8 22.3	.575 .7	35.2 39.0	.6 .725	32.7 53.2	.625 .75	30.2 56.1	.65 .8	56.2
FS48360219204 FS48360219205	3	.85	56.2	.9	56.1	1.	55.8	1.1	55.3	1.15	55.1
FS48360219205	3	1.2	54.7	1.3	53.7	1.35	53.3	1.4	52.1	1.45	49.7
FS48360219207	3	1.5	49.6	1.6	49.4	1.8	43.3	2.	40.2	2.5	28.3
FS48360219208	3	3.	2.1	4.	9.8	5.	16.2	6.	2.3	7.	2.2
FS48360219209	3	8.	1.9	9.	2.8	10.	2.3	12.	3.6		2.5
FS48360219210	3	16.	2.0	18.	1.9	20.	2.1	22.	2.1	24.	3.8
FS48360219211	3	25.	2.3								
FS48360219001	4		01 1	.3	25.	52				50.	0.
FS48360219201	4	.3	2.3	.325	5.4	. 35	6.3	. 4	7.8		11.7
F\$48360219202	4	.45	16.8	.475	19.6	.5	21.6	.525	30.3	.55	37.5
FS48360219203	4	.575	37.9	.6	34.7	.625	33.3	. 65	30.0	.675	25.0
FS48360219204	4	.7	40.3	.725	55.9	.75	59.0	.8	58.9	.85	58.9

TABLE D-3. (CONTINUED)

FS48360219205	4	.9	58.6	1.	58.0	1.075	57.5	1.1	57.3	1.2	56.6
FS48360219206	4	1.225	56.4	1.3	56.0	1.35	55.7	1.375	55.3	1.4	54.5
FS48360219207	4	1.45	52.8	1.5	52.2	1.6	52.2	1.8	46.4	2.	42.9
FS48360219208	4	2.5	30.5	3.	2.6	4.	10.7	5.	17.6	6.	2.8
FS48360219209	4	7.	2.9	8.	2.6	9.	3.5	10.	3.0	12.	4.0
FS48360219210	4	14.	3.3	16.	2.8	18.	3.0	20.	3.0	22.	3.2
FS48360219211	4	24.	3.3	25.	3.8						
FS48360219001	5	0	01 1	.3	25.	53				60.	0.
FS48360219201	5	.3	4.4	.325	7.3	.35	8.3	.375	8.9	. 4	10.5
FS48360219202	5	.425	14.5	.45	20.0	.475	21.9	.5	25.3	.525	35.5
FS48360219203	5	.55	40.3	.575	38.8	.6	36.8	.625	35.3	.65	31.8
FS48360219204	5	.675	27.2	.7	46.8	.725	57.6	.75	60.2	.8	60.2
FS48360219205	5	.85	60.2	.9	60.0	.95	59.8	1.	59.5	1.1	58.9
	2										
FS48360219206	5	1.15	58.6	1.2	58.1	1.25	57.6	1.3	57.3	1.35	56.9
FS48360219207	5	1.4	55.3	1.45	53.7	1.5	53.8	1.6	53.9	1.8	50.3
FS48360219208	5	2.	46.9	2.5	33.3	3.	3.8	4.	12.3	5.	19.9
FS48360219209	5	6.	4.5	7.	4.7	8.	4.3	9.	5.3	10.	4.7
FS48360219210	5	12.	5.6	14.	5.1	16.	4.6	18.	4.9	20.	4.8
FS48360219211	5	22.	5.3	24.	5.6	25.	5.8	• •		-•-	
FS48360219001	6		01 1	.3	25.	52	5.0			70.	0.
							10 7	275			12.9
FS48360219201	6	.3	7.4	.325	9.3	.35	10.7	.375	11.6	. 4	
FS48360219202	6	.425	16.7	.45	22.1	.475	24.2	. 5	27.5	.525	37.7
FS48360219203	6	.55	42.5	.575	40.9	.6	39.4	.625	37.5	. 65	34.5
FS48360219204	6	. 675	30.1	.7	46.6	.725	58.9	.75	61.6	.775	61.5
FS48360219205	6	.8	61.6	.85	61.9	.9	61.9	1.	61.9	1.1	61.4
FS48360219206	6	1.15	61.1	1.2	60.6	1.3	60.0	1.35	59.8	1.4	58.1
FS48360219207	6	1.45	56.4	1.5	56.5	1.6	56.6	1.8	54.7	2.	50.6
FS48360219208	6	2.5	36.0	3.	6.6	4.	15.3	5.	23.2	6.	8.2
	6	7.	8.4	8.	8.0	9.	9.3	10.	8.4	12.	9.0
FS48360219209											
FS48360219210	6	14.	8.9	16.	8.2	18.	8.4	20.	8.7	22.	9.0
FS48360219211	6	24.	9.8	25.	10.7						_
FS48360219001	7		01 1	. 3	25.	52				75.	0.
FS48360219201	7	.3	8.7	. 325	11.2	.35	12.0	.375	13.0	. 4	14.5
FS48360219202	7	.425	18.4	.45	23.2	.475	25.8	.5	29.1	.525	39.4
FS48360219203	7	.55	43.7	.575	42.5	.6	40.8	.625	38.9	.65	36.2
FS48360219204	7	.675	32.0	.7	48.4	.725	59.8	.75	62.3	.775	62.4
FS48360219205	7	.8	62.6	.85	62.9	.723	62.9	1.	62.7	1.1	62.2
											60.5
FS48360219206	7	1.2	61.7	1.25	61.5	1.3			61.1	1.4	
FS48360219207	7	1.45	57.8	1.5	57.8	1.6	57.8	1.8	57.5	2.	53.3
FS48360219208	7	2.5	38.1	3.	9.2	4.	18.0	5.	26.0	6.	11.6
FS48360219209	7	7.	11.5	8.	11.2	9.	12.5	10.	11.5	12.	12.4
FS48360219210	7	14.	12.5	16.	11.7	18.	12.3	20.	12.5	22.	12.7
FS48360219211	7	24.	13.2	25.	11.6						
FS48360219001	8		001 1	.3	25.	52				80.	0.
FS48360219201	8	.3	13.6	.325	14.3	.35	13.9	.375	14.6	.4	16.2
										.55	44.5
FS48360219202	8	.45	24.5	. 475	27.5	.5	30.8	.525	39.7		
FS48360219203	8	.575	44.5	. 6	42.7	. 625	40.8	.65	38.4	. 675	33.9
FS48360219204	8	.7	47.7	.725	60.6	.75	63.3	.775	63.2	.8	63.4

TABLE D-3. (CONTINUED)

FS48360219205	8	.85	63.8	.9	63.9	.95	64.0	1.	63.9	1.1	63.6
FS48360219206	8	1.15	63.4	1.2	63.1	1.3	62.6	1.35	62.3	1.4	61.7
FS48360219207	8	1.45	59.6	1.5	59.1	1.6	59.4	1.8	61.0	2.	56.6
FS48360219208	8	2.5	40.4	3.	12.3	4.	20.8	5.	28.5	6.	14.8
FS48360219209	8	7.	15.3	8.	15.2	9.	16.7	10.	16.0	12.	17.1
FS48360219210	8	14.	17.9	16.	17.4	18.	18.5	20.	18.8	22.	19.5
FS48360219211	8	24.	19.7	25.	18.1						

TABLE D-4.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
DIRECTIONAL EMITTANCE AS A FUNCTION OF TEMPLES OF THE DATA CORRECTED FOR INSTRUMENTATION POLICES ON DATA CORRECTED FOR MATERIAL TRANSCORRECTED.

600

FS4836021: SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE CORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of temperature:

Temperature (degrees Ke vin) 100 200 300 400 500 Zenith angle Wavelength (degrees) range (microns)

0.979 0.975 0.965 ..944 0.922 0.900 20 0.300 - 25.000

DATA CORRECTED FOR MATERIAL TRANSMISSION

TABLE D-5.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE SOLAR ABSORPTANCE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION DATA CORRECTED FOR MATERIAL TRANSMISSION

FS4836021 Surface Optics Corp. SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE

20 degrees: The exoatmospheric solar absorptanc = is 0.453.

DATA CORRECTED FOR MATERIAL TRANSMISSION

FIGURE D-10.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOT: OM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE D-11. SPECTRAL SCIENCES: LEAF SAMI-LE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE D-12. SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 1.307 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE D-13: SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 1:307 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE D-14. SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE D-15.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4,601-MICROMETERS
INCIDENT POLAR ANGLE 40.0 DEGREES

FIGURE D-16. SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 4.601 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE D-17.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTFOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 4.601 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

FIGURE D-18. SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 20.0 DEGREES

FIGURE: D-19. SRECTRAL SCIENCES: LEAF:SAMPLE.

EDOTTOMISIDE

BIDIRECTIONAL REFLECTANGE VS. REFLECTED: POLAR ANGLE

WAVELENGTH: 10:000 MICPOMETERS

INCIDENT POLAR ANGLE: 40:00 DEGREES

FIGURE D-20. SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE
WAVELENGTH 10.000 MICROMETERS
INCIDENT POLAR ANGLE 60.0 DEGREES

FIGURE D-21.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
BIDIRECTIONAL REFLECTANCE VS. REFLECTED AZIMUTH ANGLE
PRINCIPAL RING AT 10:00 MICROMETERS
INCIDENT POLAR ANGLES 20, 40 AND 60 DEGREES

TABLE D-6.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE. PHI = 0 BIDIRECTIONAL REFLECTANCE VS. REFLECTED POLAR ANGLE ERAS DATA WAVELENGTH 1.307, 4.601, 10 MICROMETERS INCIDENT POLAR ANGLES 20, 40, 60 DEGREES

FS48360X250U1		36	013	1							
FS48360X25101		SPECTRA	L SCIE	NCES:	LEAF S	AMPLE,	BOTTO	M SIDE	;		
FS48360X27004						60.					
FS48360X29001	1		4 10	0.0	85.0	14	1.307	20.0	0.0		180.0
FS48360X29201	ī	0.0	.0968	5.0	.0986	10.0	.1007	15.0	.1038	20.0	.1062
FS48360X29202	1		.1081	30.0	.1083	35.0	.1117	40.0	.1113	50.0	.115
FS48360X29203	1	60.0		70.0	.1182	80.0	.1145	85.0	.0902		
FS48360X29001	2		4 10	10.0	85.0	8	1.307	20.0	0.0		0.0
FS48360X29201	2	10.0	.0838	30.0	.0947	40.0	.0944	50.0	.0938	60.0	.0924
FS48360X29202	2		.0919	80.0	.0892	85.0	.0504	• • • •		•	
FS48360X29001	3		4 10	10.0	85.0	9	1.307	20.0	0.0		90.0
FS48360X29201	3	10.0	.1007	20.0	.1016	-	.1019	40.0	.1056	50.0	.1071
FS48360X29202	3	60.0	.11	70.0	.1108	80.0	.1158	85.0	.1087		
FS48360X29001	4		5 10	72.0	180.0	10	1.307	20.0	0.0	20.0	
FS48360X29201	$\hat{4}$	72.0	.0996	90.0		108.0	.1021	126.0		144.0	.1038
FS48360X29202	4	153.0	.106	162.0	.1062	169.2		176.4	.1087	180.0	.1077
FS48360X29001	5	155.0	4 10	0.0	85.0	14	1.307	40.0	0.0	100.0	180.0
FS48360X29201	5	0.0	.0819	10.0	.0852	20.0	.0935	25.0	.0998	30.0	.1054
FS48360X29202	5		.1121	40.0	.1184	45.0	.1263	50.0	.1319	55.0	.1344
FS48360X29203	5		.1406	70.0	.15	80.0	.1502	85.0	.1171	55.0	.15.11
FS48360X29001	6	00.0	4 10	10.0	85.0	8	1.307	40.0	0.0		0.0
FS48360X29201	6	10.0	.0797	20.0	.0796	30.0	.0812	50.0	.0842	60.0	.0845
FS48360X29202	6		.0821	80.0	.0833	85.0	.0586	30.0	.0042	00.0	.00.15
FS48360X29202	7	70.0	4 10	15.0	85.0	9	1.307	40.0	0.0		90.0
FS48360X29201	7	15.0	.0836	20.0	.0842	30.0	.0874	40.0	.0896	50.0	.0926
FS48360X29201	7		.0953	70.0	.0962	80.0	.1045	85.0	.1008	50.0	.0720
FS48360X29202	8	00.0	5 10	54.0	180.0	11	1.307	40.0	0.0	40.0	
FS48360X29201	8	54.0	.0844	72.0	.0873	90.0		108.0		126.0	.0992
FS48360X29201	Š S		.1055	153.0	.111			169.2		176.4	.1203
FS48360X29203	8		.1195	133.0	* • * * *	102.0	.114/	105.2	.1100	170.4	.1203
FS48360X29203	9	100.0	4 10	0.0	85.0	14	1.307	60.0	0.0		180.0
FS48360X29001	9	0.0	.0747	10.0	.0798	20.0	.0887	30.0	.1048	40.0	.123
FS48360X29202	9	45.0	.1407	50.0	.1581	55.0	.1772	60.0	.2033	65.0	.2251
FS48360X29202	9		.2616	75.0	.2886	80.0	.3477	85.0	.3688	05.0	. 2231
FS48360X29203	10	70.0	4 10	10.0	85.0	8	1.307	60.0	0.0		0.0
FS48360X29201	10	10.0	.0745	20.0	.073	30.0	.0762	40.0	.076	50.0	.077
FS48360X29202	10		.0838	80.0	.0825	85.0	.0299	40.0	.070	50.0	.0,,
FS48360X29202	11	70.0	4 10	20.0	85.0	8	1.307	60.0	0.0		90.0
FS48360X29201	11	20.0	.0772	30.0	.0797	40.0	.0851	50.0	.0892	60.0	.093
FS48360X29202			.0772	80.0	.1276	85.0	.1345	50.0	.0092	00.0	.093
	11	70.0	5 10	54.0		11	1.307	60.0	0.0	60.0	
FS48360X29001 FS48360X29201	12 12	E4 0	.0834	72.0				108.0			1077
								169.2			
FS48360X29202	12	144.0		155.0	.1346	102.0	.10/0	109.2	.1015	1/0.4	.2041
FS48360X29203	12	180.0		^ ^	05 0	22	4.601	20.0	0.0		180.0
FS48360X29001	13	^ ^	4 10		85.0 .0393				.0406		.0411
FS48360X29201	13		.0379				.0397				.0411
FS48360X29202	13		.0435		.0463		.0493		.0506		.0472
FS48360X29203	13	22.0	.043	24.0	.0407	26.0	.0409	28.0	.0418	50.0	.0422

TABLE D-6. (CONTINUED)

```
FS48360X29204
                        35.0 .0429
                                      40.0 .0436
                                                   50.0 .0452
                                                                        .046
                                                                              70.0 .0483 4
                  13
                                                                 60.0
                        80.0 .0441
FS48360X29205
                  13
                                      85.0 .0338
FS48360X29001
                  14
                               4 10
                                      10.0
                                            85.0
                                                    8
                                                         4.601
                                                                 20.0
                                                                        0.0
                                                                                      0.0
                        10.0 .0401
                                                                              60.0 .0263
ES48360X29201
                  14
                                      30.0 .0327
                                                   40.0
                                                         .029
                                                                 50.0 .0294
FS48360X29202
                  14
                        70.0
                              .0264
                                      80.0 .0249
                                                   85.0 .0271
FS48360X29001
                  15
                               4 10
                                      10.0
                                            85.0
                                                    9
                                                                 20.0
                                                                                     90.0
                                                         4.601
                                                                         0.0
FS48360X29201
                  15
                        10.0 .0395
                                      20.0 .0385
                                                                      .0359
                                                   30.0 .0379
                                                                 40.0
                                                                              50.0 .0364
FS48360X29202
                  15
                        60.0
                               .035
                                      70.0 .0328
                                                   80.0
                                                         .026
                                                                 85.0
                                                                      .0203
FS48360X29001
                  16
                               5 10
                                      72.0 180.0
                                                   12
                                                         4.601
                                                                 20.0
                                                                              20.0
                                                                         0.0
FS48360X29201
                  16
                        72.0 .0301
                                      90.0 .0316 108.0 .0324 126.0 .0337 144.0 .0358
                       153.0 .0372 162.0 .0393 169.2 .0397 172.8 .0406 176.4
FS48360X29202
                  16
                       178.2 .0456 180.0 .0527
FS48360X29203
                  16
                  17
FS48360X29001
                               4 10
                                       0.0
                                             85.0
                                                   18
                                                         4.601
                                                                 40.0
                                                                         0.0
                                                                                    180.0
FS48360X29201
                  17
                          0.0 .0403
                                      10.0
                                           .0455
                                                   20.0 .0562
                                                                 25.0 .0617
                                                                              30.0 .0679
FS48360X29202
                  17
                        34.0 .0736
                                      36.0
                                             .079
                                                   38.0 .0884
                                                                 40.0 .0979
                                                                              42.0 .0889
FS48360X29203
                  17
                        44.0 .0855
                                      46.0 .0857
                                                   50.0 .0893
                                                                 55.0 .0933
                                                                              60.0 .0955
FS48360X29204
                  17
                        70.0 .1078
                                      80.0 .1124
                                                    85.0 .1079
FS48360X29001
                  18
                                      10.0
                                             85.0
                               4 10
                                                     8
                                                         4.601
                                                                 40.0
                                                                         0.0
                                                                                      0.0
FS48360X29201
                  18
                        10.0 .0382
                                      20.0 .0369
                                                    30.0 .0393
                                                                 50.0 .0323
                                                                              60.0 .0313
FS48360X29202
                  18
                        70.0 .0268
                                      80.0 .0264
                                                    85.0 .0332
FS48360X29001
                  19
                                4 10
                                      15.0
                                             85.0
                                                     9
                                                         4.601
                                                                 40.0
                                                                                     90.0
                                                                         0.0
FS48360X29201
                  19
                        15.0 .0409
                                      20.0 .0403
                                                    30.0 .0418
                                                                 40.0 .0437
                                                                              50.0 .0443
FS48360X29202
                  19
                         60.0
                              .0419
                                      70.0
                                           .0395
                                                   80.0 .0361
                                                                 85.0 .0304
                  20
FS48360X29001
                               5 10
                                      46.8 180.0
                                                   14
                                                         4.601
                                                                 40.0
                                                                              40.0
                                                                         0.0
                  20
FS48360X29201
                        46.8 .0161
                                      54.0 .0359
                                                   72.0 .0384
                                                                 90.0 .0422 108.0 .0481
                  20
FS48360X29202
                        126.0 .0551 144.0 .0645 153.0 .0705 162.0 .0736 169.2 .0824
                  20
FS48360X29203
                        172.8 .0862 176.4 .0881 178.2 .0913 180.0 .0972
FS48360X29001
                  21
                                4 10
                                       0.0
                                             85.0
                                                   18
                                                                         0.0
                                                         4.601
                                                                 60.0
                                                                                    180.0
FS48360X29201
                  21
                          0.0 .0358
                                      10.0
                                             .042
                                                   20.0 .0531
                                                                 30.0 .0682
                                                                              40.0 .0906
FS48360X29202
                  21
                         45.0 .1076
                                      50.0 .1275
                                                    54.0 .1546
                                                                 56.0 .1737
                                                                              58.0 .2035
FS48360X29203
                                           .2187
                  21
                         60.0 .2186
                                      62.0
                                                    64.0 .2393
                                                                 66.0 .2488
                                                                              70.0 .2915
                  21
                                      80.0
FS48360X29204
                                              .47
                                                    85.0 .5678
                         75.0 .3496
FS48360X29001
                  22
                                             85.0
                                4 10
                                      10.0
                                                     8
                                                         4.601
                                                                 60.0
                                                                         0.0
                                                                                      0.0
FS48360X29201
                  22
                         10.0 .0308
                                      20.0
                                            .0291
                                                    30.0 .0299
                                                                 40.0 .0294
                                                                              50.0 .0322
                  22
FS48360X29202
                         70.0 .0292
                                      80.0
                                           .0255
                                                    85.0 .0212
                  23
FS48360X29001
                                4 10
                                      20.0
                                             85.0
                                                     8
                                                         4.601
                                                                 60.0
                                                                         0.0
                                                                                     90.0
                  23
FS48360X29201
                         20.0
                                .035
                                      30.0 .0388
                                                    40.0 .0381
                                                                 50.0 .0431
                                                                              60.0 .0414
                  23
FS48360X29202
                                            .0255
                         70.0 .0367
                                      80.0
                                                    85.0
                                                          .017
                  24
                                      46.8 180.0
                                                                 60.0
FS48360X29001
                                5 10
                                                    14
                                                         4.601
                                                                         0.0
                                                                              60.0
                                     54.0 .0303 72.0 .0325 90.0 .0377 144.0 .0842 153.0 .1012 162.0 .1241 176.4 .1979 178.2 .2142 180.0 .2194
                  24
                         46.8 .0222
FS48360X29201
                                                                 90.0 .0377 108.0 .0443
                  24
FS48360X29202
                        126.0 .0598
                                                                162.0 .1241 169.2 .1492
                  24
FS48360X29203
                        172.8 .1669
FS48360X29001
                  25
                                4 10
                                       0.0
                                             85.0
                                                    14
                                                       10.000
                                                                 20.0
                                                                         0.0
                                                                                    180.0
                  25
FS48360X29201
                          0.0 .0109
                                       5.0
                                           .0119
                                                    10.0 .0136
                                                                 15.0 .0154
                                                                               20.0 .0175
                  25
F$48360X29202
                         25.0
                                .016
                                      30.0
                                             .014
                                                    35.0 .0126
                                                                 40.0
                                                                        .013
                                                                              50.0 .0115
                  25
FS48360X29203
                         60.0 .0114
                                      70.0 .0122
                                                    80.0 .0085
                                                                 85.0 .0155
FS48360X29001
                  26
                                      10.0
                                            85.0
                                                       10.000
                                4 10
                                                    8
                                                                 20.0
                                                                         0.0
                                                                                      0.0
FS48360X29201
                  26
                         10.0 .0096
                                      30.0 .0068
                                                    40.0 .0071
                                                                 50.0 .0052
                                                                               60.0 .0059
```

TABLE D-6. (CONTINUED)

```
FS48360X29202
                 26
                       70.0 .0059
                                    80.0 .0109
                                                 85.0 .0134
FS48360X29001
                 27
                              4 10
                                                              20.0
                                    10.0 85.0
                                                  9 10.000
                                                                      0.0
                                                                                  90.0
FS48360X29201
                              .011
                                                 30.0 .0093
                 27
                       10.0
                                    20.0 .0095
                                                              40.0
                                                                     .008
                                                                           50.0 .0063
:S48360X29202
                 27
                       60.0
                              .005
                                    70.0 .0068
                                                 80.0 .0071
                                                              85.0
                                                                   .0035
FS48360X29001
                 28
                              5 10
                                    54.0 180.0
                                                    10.000
                                                 11
                                                              20.0
                                                                      0.0
                                                                           20.0
FS48360X29201
                 28
                       54.0 .0093
                                    72.0 .0089
                                                 90.0 .0084 108.0
                                                                     .011 126.0 .0123
                      144.0 .0141 153.0 .0149 162.0 .0193 169.2 .0176 176.4 .0177
FS48360X29202
                 28
FS48360X29203
                 28
                      180.0 .0177
FS48360X29001
                 29
                              4 10
                                     0.0
                                           85.0
                                                              40.0
                                                 16 10.000
                                                                      0.0
                                                                                 180.0
FS48360X29201
                 29
                        0.0 .0095
                                                              25.0 .0189
                                    10.0 .0102
                                                 20.0 .0144
                                                                           30.0 .0256
FS48360X29202
                 29
                       35.0 .0354
                                                              42.0 .0434
                                    38.0 .0425
                                                 40.0 .0436
                                                                           45.0 .0371
                       50.0 .0349
                                    55.0 .0336
FS48360X29203
                 29
                                                 60.0 .0329
                                                              70.0 .0365
                                                                           80.0 .0338
FS48360X29204
                 29
                       85.0 .0414
FS48360X29001
                 30
                              4 10
                                    10.0 85.0
                                                  8 10.000
                                                              40.0
                                                                      0.0
                                                                                   0.0
                                    20.0 .0078
                                                 30.0 .0074
FS48360X29201
                 30
                       10.0 .0078
                                                              50.0 .0046
                                                                           60.0 .0053
FS48360X29202
                 30
                       70.0 .0062
                                    80.0 .0056
                                                 85.0 .0086
FS48360X29001
                 31
                              4 10
                                    15.0
                                          85.0
                                                  9
                                                    10.000
                                                              49.0
                                                                      0.0
                                                                                  90.0
                       15.0 .0085
FS48360X29201
                 31
                                    20.0 .0077
                                                 30.0 .0071
                                                              40.0 .0077
                                                                           50.0 .0049
FS48360X29202
                 31
                       60.0 .0035
                                    70.0
                                          .004
                                                 80.0 .0035
                                                              85.0 .0017
                              5 1.0
FS48360X29001
                 32
                                    46.8 180.0
                                                 14
                                                     10.000
                                                              40.0
                                                                      0.0
                                                                           40.0
FS48360X29201
                 32
                                    54.0
                                           .006
                                                                     .007 108.0 .0087
                       46.8 .0051
                                                 72.0 .0062
                                                              90.0
FS48360X29202
                 32
                      126.0 .0113 144.0 .0139
                                                                   .0176 165.6 .0202
                                                .54.8 .0171 162.0
                 32
FS48360X29203
                      169.2 .0269 172.8 .03q = 176.4 .0375 180.0
                                                                   .0431
FS48360X29001
                 33
                                     0.0
                                          85.0
                                                 23 10.000
                                                              60.0
                                                                      0.0
                                                                                180.0
                                                 20.0 .0169
FS48360X29201
                 33
                        0.0 .0062
                                    10.0 .0096
                                                              30.0
                                                                    .0196
                                                                           35.0 .0242
FS48360X29202
                 33
                       40.0 .0289
                                    45.0 .0645
                                                 50.0 .1448
                                                              52.0 .2059
                                                                           54.0 .3105
FS48360X29203
                 33
                       56.0 .4879
                                    57.0 ,5729
                                                 58.0 .6375
                                                              59.0 .6622
                                                                           60.0 .6517
FS48360X29204
                 33
                       61.0 .5894
                                    64.0 .5057
                                                 66.0 .4589
85.0 .3173
                                                              68.0 .4367
                                                                           70.0 .4514
FS48360X29205
                 33
                       75.0 .4932
                                    80.0 .5441
FS48360X29001
                 34
                              4 10
                                    10.0
                                          85.0
                                                  8
                                                    10.000
                                                              60.0
                                                                      0.0
                                                                                   0.0
FS48360X29201
                 34
                       10.0
                              .006
                                    20.0 .0047
                                                                           50.0 .0061
                                                 30.0 .0057
                                                              40.0 .0036
                                    80.0 .0119
FS48360X29202
                 34
                       70.0 .0104
                                                 85.0 .0132
FS48360X29001
                 35
                                    20.0
                              4 10
                                          85.0
                                                  8
                                                    10.000
                                                              60.0
                                                                      0.0
                                                                                  90.0
                                    30.0 .0057
FS48360X29201
                       20.0 .0075
                 35
                                                 40.0 .0054
                                                              50.0 .0052
                                                                           60.0 .0046
FS48360X29202
                 35
                       70.0 .0054
                                    80.0
                                           .006
                                                 85.0 .0053
FS48360X29001
                 36
                              5 10
                                    54.0 180.0
                                                 19 10.000
                                                              60.0
                                                                      0.0
                       54.0 .0041
FS48360X29201
                 36
                                    72.0 .0062
                                                 90.0 .0048 108.0 .0041 126.0 .0129
FS48360X29202
                 36
                      144.0 .0212 154.8 .0327 162.0 .0546 165.6 .0636 169.2
                                                                                 .094
FS48360X29203
                 36
                      172.8 .1484 174.6 .2028 175.7 .2507 176.4 .2857 177.1 .3585
FS48360X29204
                 36
                      177.8 .4175 178.6 .5051 179.3 .5871 180.0 .6434
```

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE D-22.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH: 0:3:TO: 25:0:MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE D-23.

SPECTRAL SCIENCES: LEAF SAMPLE,
BOTTOM SIDE
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE D-24.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE SCATTERED TRANSMITTANCE VS. WAVELENGTH BANDWIDTH 2.5 TO 25.0 MICROMETERS

TABLE D-7.

SPECTRAL SCIENCES: LEAF SAMPLE, BOTTOM SIDE SCATTERED TRANSMITTANCE VS. WAVELENGTH - ERAS DATA DATA FROM 0.3 TO 2.0 MICROMETERS MEASURED ON A FRESH, MOIST LEAF

FS48360135001		1	31	Ĺ							
FS48360135101		SPECTRA	L SCIE	ENCES:	LEAF	SAMPLE,	BOTTO	M SIDE			
FS48360135102		SCATTER		NSMITI		·					
FS48360137001		092790									
FS48360139001	1	0	01 31	.3	25.	68				0.	G.
FS48360139201	1	.3	0.0	. 4	0.0	.5	4.5	.525	12.0	.55	19.2
FS48360139202	1	.575	19.3	. 6	16.6	. 625	14.9	. 65	12.2	. 675	7.7
FS48360139203	1	.7	21.0	.725	39.1	.75	45.4	.8	46.8	.9	49.5
FS48360139204	1	1.	50.3	1.1	51.0	1.2	49.4	1.3	50.7	1.375	45.6
FS48360139205	1	1.4	36.0	1.425	37.1	1.475	38.8	1.5	38.2	1.525	37.5
FS48360139206	1	1.6	42.8	1.65	44.3	1.7	40.2	1.75	36.2	1.8	4G.6
FS48360139207	1	1.825	41.0	1.85	37.4	1.875	29.2	1.9	6.7	1.95	5.9
F\$48360139208	1	2.	16.6	2.5	19.6	3.	0.0	3.5	0.0	4.	5.8
FS48360139209	1	4.5	15.1	5.	17.9	5.5	16.6	6.	0.0	6.5	0.0
FS48360139210	1	7.	0.0	7.5	0.0	8.	0.0	8.5	0.0	9.	0.0
FS48360139211	1	9.5	0.0	10.	0.0		0.7	11.	1.5	12.	3.0
FS48360139212	1	13.	0.8	14.	0.0		0.0	16.	0.0	17.	6.3
FS48360139213	1	18.	0.0	19.	0.0		0.0	21.	0.0	22.	9.0
FS48360139214	1	23.	0.0	24.	0.0	25.	0.0				

This page intentionally left blank.

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF A FS4866:

INDEX TO APPENDIX E

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE E-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	≧-3
FIGURE E-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	E-4
FIGURE E-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	∃- 5
TABLE E-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	E-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE E-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF A
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE E-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF A
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE E-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF A
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE E-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF A DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48660015001		2	1								ì	,
FS48660015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	BOTTOM	OF LE	AF A		
F\$48660015102		Curve 1										
FS48660015103		UNCORRE										
FS48660017001		101990					•			•		
FS48660019001	1		01 1	.3	26.	68				20.	0.	
FS48660019201	1	.3	6.3	.35	7.2	. 4	10.2	.45	19.0	.475	19.7	
FS48660019202	1	.5	22.1	.525	30.5	. 55	34.4	.575	32.5	.6	28.9	
FS48660019203	1	. 65	23.1	.675	19.7	.7	35.8	.725	51.8	.75	56.1	
FS48660019204	1	.8	55.6	. 9	54.7	1.	53.7	1.1	52.8	1.2	51.8	
FS48660019205	1	1,225	51.6	1.3	51.2	1.4	47.9	1.45	44.4	1.5	44.6	
FS48660019206	1	1.6	45.1	1.65	45.3	1.7	43.0	1.725	41.9	1.8	42.4	
FS48660019207	1	1.85	42.7	1.9	39.5	1.925	34.6	2.	35.0	2.2	30.0	
FS48660019208	1	2.5	20.8	3.	1.6	3.5	1.7	4.	9.6	4.5	12.6	
FS48660019209	1	5.	13.0	5.5	10.9	6.	2.4	6.5	2.3	7.	2.3	
FS48660019210	1	7.5	2.3	8.	2.1	8.5	2.2	9.	1.8	9.5	2.1	
FS48660019211	1	10.	2.1	10.5	2.8	11.	3.0	12.	2.4	13.	2.1	
FS48660019212	1	14.	2.1	15.	2.1	16.	2.1	17.	1.9	18.	1.7	
FS48660019213	1	19.	1.5	·20.	1.4	21.	1.6	22.	1.5	23.	1.2	
FS48660019214	1	24.	1.6	25.	0.9	26.	0.9					
FS48660019001	2	0	01 1	.3	26.	72				20.	0.	
FS48660019201	2	.3	6.1	.35	7.1	. 4	10.4	.425	15.4	.45	19.9	
FS48660019202	2	.475	21.4	.5	24.3	.525	33.5	.55	35.4	.575	32.1	
FS48660019203	2	. 6	30.5	.625	28.2	.675	21.2	.7	39.9	.725	54.2	
FS48660019204	2	.75	57.6	.8	57.3	.9	56.6	.95	56.3	1.	55.4	
FS48660019205	2	1.05	54.6	1.1	54.2	1.2	53.5	1.3	53.3	1.325	53.2	
FS48660019206	2	1.4	49.3	1.45	46.7	1.5	47.4	1.525	47.7	1.6	47.4	
FS48660019207	2	1.675	47.1	1.7	46.3	1.75	44.7	1.8	44.8	1.85	44.9	
FS48660019208	2	1.9	40.1	1.925	37.7	2.	37.8	2.2	31.9	2.5	22.3	
FS48660019209	2	3.	1.8	3.5	1.7	4.	9.4	4.5	13.9	5.	13.7	-
FS48660019210	2	5.5	11.4	6.	2.0	6.5	2.6	7.	2.2	7.5	1.8	
FS48660019211	2	8.	2.2	8.5	2.0	9.	1.8	9.5	1.4	10.	2.1	
FS48660019212	2	10.5	2.8	11.	3.1	12.	1.9	13.	2.4	14.	2.1	
FS48660019213	2	15.	2.0	16.	2.0	17.	1.8	18.	1.7	19.	1.5	>
F\$48660019214	2	20.	1.2	21.	1.6	22.	1.2	23.	1.3	24.	1.3	
FS48660019215	2	25.	1.3	26.	1.0							

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF A FS4867:

INDEX TO APPENDIX F

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE F-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	F-3
FIGURE F-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	F-4
FIGURE F-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	
TABLE F-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	F-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE F-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF A
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE F-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF A
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TC 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE F-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF A
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE F-1.

SPECTPAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF A DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48670015001		2	1									
FS48670015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	TOP OF	LEAF .	A		•
FS48670015102		Curve 1	measu	red 10	-19-90), Curv	e 2 ma	asured	10-22	-90		
FS48670015103		UNCORRE										
FS48670017001		101990										
FS48670019001	1		01 1	.3	26.	69				20.	0.	¥
FS48670019201	ī	.3	4.4	.4	4.2	.425	4.6	.45	5.8	.5	6.9	
FS48670019202	ī	.525	13.7	.55	17.1	.575	16.2	.6	12.5	.65	8.9	
FS48670019203	ī	.675	6.1	.7	14.3	.725	32.7	.75	37.6	.8	37.4	
FS48670019204	ī	.075	36.9	.95	36.7	1.	36.0	1.1	34.7	1.2	33.4	
FS48670019205	ĩ	1.275	33.6	1.3		1.375	31.1	1.4		1.425	21.9	
FS48670019206	ī	1.5	25.1	1.525	26.1	1.6		1.625	27.6	1.7	26.8	
FS48670019207	ī	1.8	25.7	1.85	25.1	1.9		1.925	8.4	2.	13.1	
FS48670019208	ī	2.2	14.9	2.5	6.9	3.	1.2	3.5	1.2	4.	1.9	
FS48670019209	ī	4.5	1.6	5.	2.7	5.5	2.7	6.	1.7	6.5	0.0	
FS48670019210	ī	7.	1.2	7.5	1.0	8.	1.6	8.5	1.8	9.	2.9	
FS48670019211	ī	9.5	3.7	10.	3.0	10.5	2.2	11.	2.0	12.	1.8	
FS48670019212	ī	13.	2.2	14.	3.8	15.	3.5	16.	2.9	17.	2.4	
FS48670019213	ī	18.	1.8	19.	1.3	20.	1.4	21.	1.2	22.	1.1	
FS48670019214	ī	23.	0.7	24.	0.8	25.	0.9	26.	1.1			
FS48670019001	2		01 1	.3	26.	68	• • •			20.	0.	
FS48670019201	2	.3	5.3	. 4	5.1	.425	7.3	.45	10.4	.475	11.7	
FS48670019202	2	.5	13.3	.525	20.6	.55	24.7	.6	21.1	.625	18.5	
FS48670019203	2	. 675	12.2	.7	31.4	.725	48.5	.75	52.8	.8	53.0	
FS48670019204	2	.9	51.9	1.	51.0	1.1	49.7	1.125	49.4	1.2	49.0	
FS48670019205	2	1.3	48.5	1.4	46.0	1.475	40.4	1.5	40.8	1.55	41.7	
FS48670019206	2	1.6	41.8	1.65	41.8	1.7	40.8	1.75	39.8	1.8	40.3	
FS48670019207	2	1.85	40.7	1.9		1.925	30.2	2.	32.2	2.2	26.4	
F348670019208	2	2.5	16.5	3.	1.2	3.5	1.3	4.	5.0	4.5	8.7	
FS48670019209	2	5.	9.0	5.5	7.2	6.	2.4	6.5	1.8	7.	1.2	
FS48670019210	2	7.5	1.3	8.	1.9	8.5	2.2	9.	3.8	9.5	5.0	•
FS48670019211	2	10.	4.2	10.5	3.5	11.	2.9	12.	3.0	13.	2.9	
FS48670019212	2	14.	3.5	15.	2.9	16.	2.3	17.	1.9	18.	1.4	
FS48670019213	2	19.	1.3	20.	1.2	21.	1.2	22.	1.0	23.	1.2	
FS48670019214	2	24.	1.8	25.	1.5	26.	1.5					•
	_		•	•								

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF B FS4868:

INDEX TO APPENDIX G

PAGE NO.

DIRECTIONAL REFLECTANCE FIGURE G-1. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days FIGURE G-2. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers. Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room temperature) G-4 FIGURE G-3. Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days TABLE G-1. Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE G-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF B
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE G-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF B
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE G-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF B
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE G-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF B DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48680015001 2 1 FS48680015101 SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF B FS48680015102 Curve 1 measured 10-19-90, Curve 2 measured 10-22-90 FS48680015103 UNCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS	
FS48680015102 Curve 1 measured 10-19-90, Curve 2 measured 10-22-90 UNCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS	
FS48680015103 UNCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS	
FS48680017001 101990 and 102290	
FS48680019001 1 001 1 .3 26. 69 20. 0	5
FS48680019201 1 .3 6.9 .35 7.6 .4 10.2 .45 18.9 .475 19.	
FS48680019202 1 .5 21.6 .525 30.5 .55 34.4 .575 33.3 .6 29.	3
F\$48680019203 1 .65 24.8 .675 20.0 .7 33.5 .725 52.7 .75 57.	3
FS48680019204 1 .8 57.6 .9 57.3 .975 57.1 1. 56.8 1.1 55.	5
FS48680019205 1 1.2 54.2 1.25 53.5 1.3 53.5 1.325 53.5 1.4 51.	3
FS48680019206 1 1.45 46.4 1.5 47.0 1.6 48.3 1.7 45.5 1.725 44.	8
FS48680019207 1 1.8 45.2 1.85 45.4 1.9 38.4 1.925 34.9 2. 36.	0
FS48680019208 1 2.2 30.5 2.5 20.6 3. 1.9 3.5 1.8 4. 8.	7
FS48680019209 1 4.5 12.5 5. 12.5 5.5 10.5 6. 1.7 6.5 2.	
FS48680019210 1 7. 2.3 7.5 1.5 8. 2.0 8.5 2.0 9. 1.	9
FS48680019211 1 9.5 1.6 10. 2.1 10.5 2.5 11. 3.0 12. 1.	
FS48680019212 1 13. 2.0 14. 1.9 15. 2.2 16. 2.1 17. 2.	2
FS48680019213 1 18. 2.0 19. 2.1 20. 1.9 21. 2.3 22. 1.	8
FS48680019214 1 23. 1.5 24. 1.6 25. 1.6 26. 1.5	
FS48680019001 2 001 1 .3 26. 70 20. 0	
FS48680019201 2 .3 6.9 .35 8.0 .4 11.3 .45 20.7 .475 21.	8
FS48680019202 2 .5 25.4 .525 34.7 .55 36.8 .575 33.8 .6 32.	3
FS48680019203 2 .625 30.7 .65 26.7 .675 22.8 .7 42.1 .725 56.	2
F\$48680019204 2 .75 60.6 .8 60.5 .9 60.3 .95 60.2 1. 59.	6
FS48680019205 2 1.1 58.3 1.2 57.0 1.3 56.7 1.4 54.4 1.45 51.	
FS48680019206 2 1.5 52.5 1.55 53.1 1.6 53.1 1.675 53.2 1.7 50.	
FS48680019207 2 1.725 48.0 1.8 48.5 1.85 48.9 1.9 46.2 1.925 44.	
FS48680019208 2 2. 40.7 2.2 32.2 2.5 22.0 3. 1.7 3.5 1.	
FS48680019209 2 4. 8.8 4.5 12.9 5. 13.8 5.5 11.4 6. 1.	7
FS48680019210 2 6.5 1.0 7. 1.4 7.5 1.5 8. 1.0 8.5 0.	
FS48680019211 2 9. 0.6 9.5 0.9 10. 0.7 10.5 1.0 11. 3.	
FS48680019212 2 12. 1.9 13. 0.9 14. 1.9 15. 0.8 16. 0.	
FS48680019213 2 17. 2.1 18. 1.9 19. 2.8 20. 1.6 21. 1.	
FS48680019214 2 22. 0.4 23. 0.5 24. 0.8 25. 0.5 26. 0.	7

APPENDIX H

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF C FS4869:

INDEX TO APPENDIX H

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE H-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE H-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE H-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
TABLE H-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE H-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF C
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE H-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF C
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE H-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF C
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE H-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF C DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48690015001		2	1									
FS48690015101		SPECTRA										
FS48690015102		Curve 1										
FS48690015103		UNCORRE			TRUMEN	TATION	POLAF	RIZATIO	n effe	CTS		
FS48690017001		101990		2290								
FS48690019001	1		01 1	.3	26.	73				20.	0.	
FS48690019201	1	.3	5.4	. 4	4.8	.425	5.0	.45	5.7	.475	6.0	
FS48690019202	1	.5	6.6	.525	13.3	.55	16.7	.575	15.5	.6	12.4	
FS48690019203	1	. 65	8.4	.675	5.6	.7	11.6	.725	33.3	.75	39.0	
FS48690019204	1	.775	39.6	.8	39.4	.9	38.6	1.	37.9	1.05	37.5	
FS48690019205	1	1.1	37.6	1.2	35.5	1.3	35.7	1.325		1.375	33.2	
FS48690019206	1	1.4	29.6	1.425	21.7	1.475	22.1	1.5	23.7	1.55	26.8	
FS48690019207	1	1.6	28.3	1.65	29.8	1.7	28.5	1.75	27.2	1.8	27.2	
FS48690019208	1	1.85	27.1	1.9	13.7	1.925	7.3	2.	11.5	2.2	17.0	
FS48690019209	1	2.5	6.1	3.	1.3	3.5	1.4	4.	2.4	4.5	2.2	
FS48690019210	1	5.	2.3	5.5	2.4	6.	2.0	6.5	2.0	7.	1.7	
F\$48690019211	· 1	7.5	1.5	8.	1.6	8.5	1.5	9.	2.3	9.5	3.8	
FS48690019212	1	10.	3.4	10.5	2.6	11.	2.0	12.	2.4	13.	3.0	
FS48690019213	1	14.	4.4	15.	4.1	16.	3.8	17.	3.3	18.	2.7	
FS48690019214	1	19.	2.2	20.	2.0	21.	1.4	22.	1.1	23.	0.9	
FS48690019215	1	24.	1.0	25.	1.1	26.	0.9					
FS48690019001	2	0	01 1	.3	26.	69				20.	0.	
FS48690019201	2	.3	5.8	. 4	5.6	.45	6.7	.475	7.8	.5	9.6	
FS48690019202	2	.525	16.5	.55	19.4	.575	17.5	. 6	16.1	. 625	14.8	
FS48690019203	2	.675	9.5	.7	31.7	.725	45.0	.75	47.9	.8	48.8	
FS48690019204	2	.9	50.7	1.	50.4	1.1	50.2	1.2	49.9	1.25	49.8	
FS48690019205	2	1.3	49.0	1.35	48.3	1.4	44.5	1.45	40.6	1.5	41.5	
FS48690019206	2	1.6	43.3	1.625	43.7	1.7	41.4		40.6	1.8	41.6	
FS48690019207	2	1.825	42.0	1.875	40.5	1.9	34.9	1.925	29.2	2.	33.1	
FS48690019208	2	2.2	27.0	2.5	16.1	3.	1.3	3.5	1.3	4.	4.2	
FS48690019209	2	4.5	7.7	5.	8.3	5.5	7.1	6.	2.0	6.5	1.0	
FS48690019210	2	7.	1.7	7.5	1.5	8.	1.6	8.5	1.5	9.	2.4	
FS48690019211	2	9.5	4.2	10.	4.1	10.5	3.6	11.	2.9	12.	2.8	
FS48690019212	2	13.	3.3	14.	4.1	15.	3.5	16.	3.1	17.	2.5	
FS48690019213	2.	18.	2.0	19.	1.5	20.	1.2	21.	1.2	22.	1.4	
FS48690019214	2.	23.	1.3	24.	1.0	25.	1.4	26.	0.9	٠	4.4	
= 240030013614	_	٤٥.	1.0	47.	1.0	20.	7.4	20.	0.9			

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF C FS4870:

INDEX TO APPENDIX I

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE I-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	-3
FIGURE I-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	-4
FIGURE I-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	-5
TABLE I-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE 1-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF C
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE 1-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF C
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTALION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE 1-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.

BOTTOM OF LEAF C

DIRECTIONAL REFLECTANCE VS. WAVELENGTH

BANDWIDTH 2.2 T.J. 26. MICROMETERS

DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE I-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF C DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48700015001		2	1								•	
FS48700015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	воттом	OF LE	AF C		4
FS48700015102		Curve 1										
FS48700015103		UNCORRE										
FS48700017001		101990										
FS48700019001	1		01 1	.3	26.	68				20.	0.	¥
FS48700019201	ī	.3	6.3	.35	6.6	. 4	8.5	.45	14.4	.475	15.2	
FS48700019202	1	.5	17.6	.525	26.3	.55	30.9	.575	30.1	. 6	25.6	
FS48700019203	ī	. 65	20.7	.675	15.5	.7	26.7	.725	47.0	.75	53.4	
FS48700019204	ī	.8	53.3	. 9	53.0	1.	52.8	1.1	52.5	1.2	53.0	
FS48700019205	1	1.3	53.5	1.4	49.3	1.45	45.0	1.5	45.8	1.55	46.7	
FS48700019206	ī	1.6	46.7	1.675	46.8	1.7	46.3	1.75	45.2	1.8	45.6	
FS48700019207	1	1.85	46.0	1.9	42.7	1.925	36.6	2.	36.8	2.2	31.6	
FS48700019208	1	2.5	20.9	`3.	1.7	3.5	1.8	4.	8.7	4.5	12.7	
FS48700019209	1	5.	13.1	5.5	11.0	6.	1.8	6.5	2.4	7.	2.3	
FS48700019210	1	7.5	1.7	8.	2.1	8.5	2.0	9.	1.7	9.5	1.6	
FS48700019211	1	10.	2.0	10.5	2.7	11.	3.1	12.	1.9	13.	2.2	
FS48700019212	1	14.	2.1	15.	2.3	16.	1.9	17.	2.0	18.	2.0	
FS48700019213	1	19.	1.7	20.	1.3	21.	1.0	22.	1.6	23.	1.2	
FS48700019214	1	24.	1.5	25.	1.1	26.	2.1					
FS48700019001	2	0	01 1	.3	26.	72				20.	0.	
FS48700019201	2	.3	6.4	.35	7.2	.375	8.0	. 4	9.4	.45	17.4	
FS48700019202	2	.475	17.4	.5	20.8	.525	30.6	.55	32.4	.575	29.1	
FS48700019203	2 2	. 6	26.7	.625	24.4	.675	17.9	.7	39.6	.725	52.3	
FS48700019204	2	.75	55.2	.8	55.1	. 9	54.9	1.	54.5	1.1	53.8	
FS48700019205	2	1.125	53.6	1.2	53.5	1.3	53.4	1.35	53.4	1.4	50.1	
FS48700019206	2	1.425	47.0	1.475	46.7	1.5	47.2	1.55	48.2	1.6	48.3	
FS48700019207	2	1.65	48.5	1.7	47.4	1.75	46.2	1.8	46.6	1.85	47.1	
FS48700019208	2	1.9		1.925	38.2	2.	38.7	2.2	32.4	2.5	21.8	
FS48700019209	2	3.	1.8	3.5	1.7	4.	9.7	4.5	13.3	5.	13.5	
FS48700019210	2	5.5	11.5	6.	2.0	6.5	2.4	7.	2.3	7.5	1.8	_
FS48700019211	2	8.	2.2	8.5	2.0	9.	2.0	9.5	1.6	10.	1.5	
FS48700019212	2	10.5	2.8	11.	3.1	12.	1.9	13.	2.1	14.	2.1	
FS48700019213	2	15.	1.9	16.	2.0	17.	1.9	18.	1.9	19.	1.7	
FS48700019214	2	20.	1.7	21.	1.7	22.	1.6	23.	1.4	24.	1.6	•
FS48700019215	2	25.	1.6	26.	1.2	,	,		-••			
	_	•		•								

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF B FS4871:

INDEX TO APPENDIX J

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE J-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	3
FIGURE J-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	.4
FIGURE J-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	.5
TABLE J-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE J-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF B
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF B
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION FIGURE J-2.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE J-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF B
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE J-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF B DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

7040710015001		•										
FS48710015001		2		l 						_		
FS48710015101		SPECTRA										
FS48710015102		Curve 1										
FS48710015103					TRUMEN	TATION POLARIZATION EFFECTS						
FS48710017001		101990										
FS48710019001	1		01 1	.3	26.	70				20.	0.	
FS48710019201	1	.3	5.7	. 4	5.4	.45	6.6	.475	6.7	.5	7.4	
FS48710019202	1	.525	14.5	.55	16.7	.575	14.1	.6	12.0	.675	6.4	
FS48710019203	1	.7	21.2	.725	35.6	.75	38.4	.8	38.0	.9	37.3	
FS48710019204	1	1.	36.6	1.05	36.2	1.1	35.7	1.2	34.7	1.225	34.5	
FS48710019205	1	1.3	34.2	1.375	31.4	1.4	24.8	1.425	22.2	1.475	22.7	
FS48710019206	1	1.5	24.3	1.55	27.6	1.6	28.1	1.625	28.3	1.7	26.7	
FS48710019207	1	1.75	25.7	1.8	25.6	1.85	25.5	1.9	14.6	1.925	9.1	
F\$48710019208	1	2.	13.2	2.2	15.2	2.5	6.5	3.	2.0	3.5	2.2	
FS48710019209	ī	4.	2.5	4.5	1.9	5.	2.9	5.5	3.0	6.	2.2	
FS48710019210	1	6.5	0.6	7.	3.0	7.5	2.0	8.	1.3	8.5	0.8	
FS48710019211	ī	9.	2.3	9.5	3.2	10.	2.5	10.5	3.0	11.	2.2	
FS48710019212	1	12.	1.2	13.	1.3	14.	3.7	15.	3.2	16.	3.0	
FS48710019213	ī	17.	2.7	18.	0.3	19.	2.9	20.	2.9	21.	1.3	
FS48710019214	ī	22.	0.5	23.	0.0	24.	0.8	25.	1.9	26.	0.5	
FS48710019001	2		01 1	.3	26.	70	0.0	25.	1.9	20.	0.5	
FS48710019201	2	.3	6.5	.4	6.6	.425	7.1	.45	10.6	.475	11.6	
FS48710019202	2	.5	13.4	.525	20.6	.55	23.9	.575			19.9	
FS48710019202	2	.625	17.9	.675	11.6	.33	35.0	.725	21.9	.6 .75	53.7	
FS48710019203	2	.8	53.8	.673					49.1			
FS48710019204 FS48710019205	2				53.9	.95	54.0	1.	53.7	1.1	53.0	
FS48710019205	2	1.2	52.3	1.225	52.1	1.3	50.2	1.375	48.3	1.4	45.8	
		1.45	40.7	1.5	42.5	1.6	43.5	1.625	43.7	1.7	41.4	
FS48710019207	2	1.725	40.6	1.8	41.6	1.85	41.4	1.9	34.1	1.925	30.4	
FS48710019208	2	2.	32.6	2.2	26.1	2.5	16.3	_3.	2.1	3.5	2.0	
FS48710019209	2	4.	4.5	4.5	7.9	5.	8.7	5.5	7.3	6.	2.4	
FS48710019210	2	6.5	2.6	7.	3.1	7.5	2.3	8.	2.5	8.5	2.2	
FS48710019211	2	9.	2.2	9.5	3.0	10.	3.6	10.5	3.6	11.	2.9	
FS48710019212	2	12.	1.9	13.	3.2	14.	4.0	15.	3.9	16.	3.6	
FS48710019213	2	17.	3.2	18.	2.9	19.	2.1	20.	2.1	21.	2.1	
FS48710019214	2	22.	1.4	23.	1.5	24.	1.2	25.	1.8	26.	1.8	

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF D FS4872:

INDEX TO APPENDIX K

DIRECTIONAL REFLECTANCE

PAGE NO.

FIGURE K-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth () degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	K-3
FIGURE K-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days	7 <i>7</i> . 4
	drying at room temperature)	K-4
FIGURE K-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	K-5
TABLE K-1.	Directional Reflectance vs. Wavelength - ERAS data,	

Data Uncorrected for Instrumentation Polarization.

(fresh) and 22-Oct.-1990 (3 days drying at room

Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990

temperature) K-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE K-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF D
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE K-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF D
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE K-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF D
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE K-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF D "IRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48720915001		2	1								
FS48720015101		SPECTRA	L SCIE	NCÉS:	GREEN	ASPEN	LEAF.	TOP OF	LEAF	D	
F548720015102		Curve 1	measu	red 10	-13 - 90	, Curv	e 2 me	asured	10-22	-90	
£\$48720015103		UNCORRE									
FS48720017001		101990	and 10	2290							
FS48720019001	1		01 1	. 3	26.	68				20.	0.
FS48720019201	1	.3	5.7	.4	5.3	.425	5.5	.45	7.1	.475	7.2
FS48720019202	1	.5	8.1	.525	15.0	.55	17.6	.575	16.0	. 6	12.6
FS48720019203	1	.675	7.2	,.7	18.6	.725	37.6	.75	41.7	. 8	41.5
FS48720019204	ī	.9	41.2	i.	40.8	1.1	39.5	1.2	38,2	1.275	38.9
FS48720019205	1	1.3	38.2	1.35	36.7	1.4	30.6	1.425	23.3	1.5	27.4
FS48720019206	1	1.55	30.1	1.6	31.2	1.65	32.2	1,7	31.3	1.8	29.6
FS48720019207	1	1.85	29.5	1.9	15.9	1.925	9.1	2.	13.9	2.2	18.1
FS48720019208	1	2.5	7.7	3.	1.5	3.5	1.6	4.	3.1	4.5	2.7
FS48720019209	ī	5.	2.9	5.5	3.0	6	2.0	6.5	1.9	7.	1.7
FS48720019210		7.5	1.5	8.	1.9	8.5	1.7	9.	2.1	9.5	2.4
FS48720019211	1	10.	3.0	10.5	2.4	11.	1.8	12.	2 1	13.	2.9
FS48720019212	1	14.	4.0	15.	3.8	16.	3.3	17.	2.9	18.	2.4
FS48720019213	ī	19.	2.0	20.	1.7	21.	1.7	22.	1.5	23.	1.4
FS48720019214	1	24.	1.4	25.	1.4	26.	1.2				
£\$48720019001	2		01 1	.3	26.	69				20.	0.
FS48720019201	2	.3	5.6	. 4	6.0	.425	6.7	.45	8.6	.5	11.5
FS48720019202	2	.525	18.3	. 53	21.3	.575	21.4	.6	19.3	.625	17.3
FS48720019203	2	.65	14.6	675	11.6	.7	24.2	.725	44.8	.75	50.8
FS4872001920.	2	.8	51.5	. 9	52.9	.95	53.6	1.	53.5	1.1	53.3
F\$48720019205	2	1.2	53.1	1.3	52.9	1.325	52.9	1.4	47.1	1.45	43.3
FS48720019206	2	1.5	45.3	1.6	45.8	1.65	46.0	1.7	44.7	1.725	44.0
FS48720019207	2	1.8	44.2	1.85	14.4	1.9		1.925	32.6	2.	34.6
FS48720019208	2	2.2	28.1	2.5	17.3	3.	1.4	3.5	1.5	4.	4.3
FS48720019209	2	4.5	7.8	5.	9.3	5.5	7.9	6.	2.0	6.5	1.1
FS48720019210	2	7.	2.3	7.5	1.5	8.	1.1	8.5	0.9	9.	2.2
FS48720019211	2	9.5	3.0	10.	2.9	10.5	3.4	11.	2.9	12.	2.2
FS48720019212	2	13.	1.8	14.	3.6	15.	2.3	16.	2.0	17.	1.6
FS48720019213	$\tilde{2}$	18.	1.0	19.	1.5	20.	1.4	21.	1.0	22.	0.5
£\$48720019214	2	23.	0.5	24.	0.0	25.	1.2	26.	1.9		0.0
		~~.		~	V	~~.	~ . ~	~ .			

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF D FS4873:

INDEX TO APPENDIX L

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE L-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE L-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE L-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
TABLE L-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE L-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF D
DIPECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE L-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF D
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE L-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF D
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE L-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF D DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48730015001		2	1									
FS48730015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	BOTTOM	OF LE	AF D		•
FS48730015102		Curve 1	measu	red 10	-19-90), Curv	e 2 me	asured	10-22	-90		
FS48730015103		UNCORRE				-						
FS48730017001		101990										
FS48730019001	1		01 1	.3	26.	69				20.	0.	-
FS48730019201	1	.3	6.7	.35	7.2	. 4	9.4	.45	14.6	.475	15.3	
FS48730019202	1	.5	18.6	.525	27.2	.55	30.3	.575	29.3	.6	26.4	
FS48730019203	1	.625	24.6	. 65	21.4	.675	18.3	.7	32.5	.725	50.8	
FS48730019204	1	.75	54.2	. 8	54.2	. 9	54.1	1.	54.1	1.1	52.6	
FS48730019205	1	1.2	52.3	1.3	52.0	1.325	51.9	1.4	49.6	1.45	45.2	
FS48730019206	1	1.5	47.0	1.6	46.9	1.675	46.8	1.7	46.0	1.75	44.4	
FS48730019207	1	1.8	45.5	1.85	46.5	1.9	41.0	1.925	38.3	2.	37.4	
FS48730019208	1	2.2	31.3	2.5	21.6	3.	2.5	3.5	2.6	4.	9.9	
FS48730019209	1	4.5	13.6	5.	13.7	5.5	11.5	6.	2.7	6.5	3.2	
FS48730019210	1	7.	3.0	7.5	2.5	8.	2.9	8.5	2.9	9.	2.5	
FS48730019211	1	9.5	2.1	10.	2.9	10.5	3.5	11.	3.9	12.	2.4	
FS48730019212	1	13.	2.9	14.	2.8	15.	2.9	16.	2.8	17.	2.8	
FS48730019213	1	18.	2.6	19.	2.3	20.	2.2	21.	2.3	22.	2.2	
FS48730019214	1	23.	1.8	24.	2.5	25.	1.9	26.	0.8			
FS48730019001	2		01 1	.3	26.	71				20.	0.	
FS48730019201	2	.3	3.8	.375	4.3	. 4	5.3	.425	6.3	.475	10.2	
FS48730019202	2	.5	14.3	.525	20.8	.55	23.4	.575	21.0	.6	19.6	
FS48730019203	2	.625	18.3	. 675	12.6	.7	31.0	.725	44.0	.75	47.8	
FS48730019204	2	.8	48.5	.825	48.9	.9	48.8	1.	48.7	1.1	48.6	
FS48730019205	2	1.2	48.5	1.3		1.325	49.5	1.375	48.8	1.4	47.4	
FS48730019206	2	1.45	44.6	1.5	45.8	1.55	46.9	1.6	46.8	1.65	46.8	
FS48730019207	2	1.7	45.8	1.75	44.9	1.8	45.3	1.85	45.8	1.9	39.6	
FS48730019208	2	1.925	36.5	2.	38.3	2.2	32.3	2.5	22.6	3.	2.4	
FS48730019209	2	3.5	2.4	4.	10.0	4.5	13.5	5.	14.9	5.5	12.2	
F\$48730019210	2	6.	2.7	6.5	3.3	7.	3.0	7.5	3.1	8.	2.8	
FS48730019211	2	8.5	2.7	9.	2.4	9.5	2.8	10.	2.8	10.5	3.4	
FS48730019212	2	11.	3.8	12.	2.5	13.	1.8	14.	2.9	15.	2.9	
FS48730019213	2	16.	2.8	17.	2.7	18.	2.7	19.	2.1	20.	2.3	
FS48730019214	2	21.	1.3	22.	1.3	23.	1.0	24.	0.0	25.	1.1	•
FS48730019215	2	26.	0.7									

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF E FS4874:

INDEX TO APPENDIX M

PAGE NO.

DIRECTIONAL REFLECTANCE FIGURE M-1. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days FIGURE M-2. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days FIGURE M-3. Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization, Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days TABLE M-1. Directional Reflectance vs. Wavelength - ERAS data. Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room temperature)...... M-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE M-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE M-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE M-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE M-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION
CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48740015001		2	3	Ļ								
FS48740015101		SPECTRA	L SCIE	ENCES:	GREEN	ASPEN .	LEAF.	TOP OF	LEAF	E		•
Fs48740015102		Curve 1	meast	red 10	-19-90	, Curv	e 2 me	asured	10-22	-90		
FS48740015103		UNCORRE	CTED F	OR INS	TRUMEN	TATION	POLAF	RIZATIO	r effe	CTS		
FS48740017001		101990	and 10	2290						=		
FS48740019001	1	0	01 1	.3	26.	68				20.	0.	-
FS48740019201	1	.3	5.2	. 4	4.6	.475	5.3	.5	5.9	.55	13.3	
FS48740019202	1	.575	14.1	.6	13.4	. 625	12.8	.675	7.0	.7	21.7	
FS48740019203	1	.725	35.4	.75	38.2	.8	38.6	.9	39.3	1.	39.0	
FS48740019204	1	1.1	38.8	1.2	37.5	1.3	37.9	1.375	35.5	1.4	28.4	
FS48740019205	1	1.425	21.3	1.475	22.3	1.5	24.7	1.525	27.1	1.6	31.0	
FS4874001_206	i	1.65	30.8	1.7	29.7	1.75	28.7	1.8	28.9	1.825	29.0	
FS48740019207	1	1.85	27.6	1.9	13.6	1.925	6.6	2.	11.1	2.2	16.8	
FS48740019208	1	2.5	5.2	3.	1.2	3.5	1.2	4.	2.0	4.5	1.7	
FS48740019209	1	5.	1.8	5.5	2.0	6.	1.5	6.5	1.7	7.	1.4	
FS48740019210	1	7.5	1.2	8.	1.8	8.5	1.7	9.	2.1	9.5	3.2	
FS48740019211	1	10.	2.8	10.5	2.2	11.	1.6	12.	2.2	13.	2.7	
FS48740019212	1	14.	3.8	15.	3.4	16.	3.2	17.	2.8	18.	2.3	
FS48740019213	1	19.	1.9	20.	1.5	21.	1.7	22.	1.1	23.	1.4	
FS48740019214	1	24.	1.2	25.	0.6	26.	1.2					
FS48740019001	2	0	01 1	.3	26.	69				20.	0.	
FS48740019201	2	.3	5.9	. 4	5.7	.425	5.9	.475	7.3	.5	8.2	
FS48740019202	2	.55	16.6	.575	19.4	. 6	20.4	.625	20.5	. 65	19.3	
FS48740019203	2	. 675	14.6	.7	32.4	.725	47.4	.75	52.9	.8	53.1	
FS48740019204	2	.9	53.6	.975	54.0	1.	53.9	1.1	53.6	1.2	53.4	
F\$48740019205	2	1.3		1.325	53.0	1.4	48.0	1.45	43.1	1.5	44.4	
FS48740019206	2	1.55	45.7	1.6	45.8	1.65	46.0	1.7	45.2	1.75	44.3	
FS48740019207	2	1.8	44.7	1.85	45.1	1.9			32.0	2.	34.5	
FS48740019208	2 2 2	2.2	27.6	2.5	15.5	3.	1.2	3.5	1.3	4.	3.3	
FS48740019209	2	4.5	7.4	5.	7.7	5.5	6.1	6.	1.8	6.5	1.9	
FS48740019210	2	7.	2.2	7.5	1.5	8.	1.6	8.5	1.9	9.	2.8	
FS48740019211	2	9.5	3.6	10.	3.8	10.5	3.3	11.	2.6	12.	1.9	
FS48740019212	2	13.	2.5		3.2	15.	2.9	16.	2.7	17.	2.4	
FS48740019213	2	18.	2.0	19.	1.5	20.	1.4	21.	1.1	22.	0.9	
FS48740019214	2	23.	1.0	24.	1.5	25.	1.3	26.	1.5			

APPENDIX N

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF E FS4875:

INDEX TO APPENDIX N

PAGE NO.

DIRECTIONAL REFLECTANCE FIGURE N-1. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room temperature) N-3 Directional Reflectance vs. Wavelength, Bandwidth FIGURE N-2. 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days FIGURE N-3. Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days TABLE N-1. Directional Reflectance vs. Wavelength - ERAS data. Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE N-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE N-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE N-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF E
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE N-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF E DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48750015001		2	1									
FS48750015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	BOTTOM	OF LE	AF E		
FS48750015102		Curve 1										
FS48750015103		UNCORRE										
FS48750017001		101990										
FS48750019001	1		01 1	.3	26.	69				20.	0.	_
FS48750019201	ī	.3	6.4	.375	8.0	. 4	9.1	.425	12.4	.45	18.2	
FS48750019202	1	.5	21.3	.525	31.2	.55	35.8	.575	34.5	. 6	30.7	
FS48750019203	1	.625	28.2	. 65	24.4	.675	19.5	.7	36.1	.725	53.3	
FS48750019204	1	.75	56.6	.775	56.7	.8	56.4	. 9	55.0	1.	54.7	
FS48750019205	1	1.1	54.3	1.2	54.0	1.3	53.7	1.35	53.5	1.4	50.1	
FS48750019206	1	1.45	46.6	1.5	46.1	1.6		1.625	47.2	1.7	46.1	
FS48750019207	1	1.8	44.7	1.85	45.6	1.9	38.9	1.925	35.6	2.	36.5	
FS48750019208	1	2.2	30.6	2.5	20.5	3.	1.4	3.5	1.4	4.	8.4	
FS48750019209	1	4.5	12.1	5.	12.3	5.5	10.3	6.	1.4	6.5	2.1	
FS48750019210	1	7.	2.0	7.5	1.5	8.	1.9	8.5	1.9	9.	1.8	
FS48750019211	1	9.5	1.3	10.	1.8	10.5	2.4	11.	2.7	12.	1.6	
FS48750019212	1	13.	2.0	1.4.	1.8	15.	1.8	16.	1.8	17.	1.8	
FS48750019213	1	18.	1.6	19.	1.5	20.	1.5	21.	1.6	22.	1.2	
FS48750019214	1	23.	1.3	24.	1.0	25.	1.3	26.	1.2			
FS48750019001	2	0	01 1	.3	26.	71				20.	0.	
FS48750019201	2	.3	6.5	.325	6.6	.375	8.3	. 4	9.9	.45	19.7	
FS48750019202	2	.475	21.6	.5	24.2	.525	34.3	.55	37.8	.6	33.2	
FS48750019203	2	.625	30.7	. 65	27.3	. 675	21.9	.7	40.9	.725	54.3	
FS48750019204	2	.75	58.6	.8	58.4	.85	57.3	.9	57.2	1.	56.9	
FS48750019205	2	1.1	55.7	1.2	54.6	1.25	54.0	1.3	53.8	1.375	53.4	
FS48750019206	2	1.4	50.8	1.425	48.2	1.5	48.5	1.6	48.8	1.65	49.0	
FS48750019207	2	1.7	47.1	1.725	46.2	1.8	47.0	1.85	47.5	1.9	42.1	
FS48750019208	2	1.925	39.4	2.	39.7	2.2	33.3	2.5	22.0	3.	1.5	
FS48750019209	2	3.5	1.4	4.	8.6	4.5	13.2	5.	13.2	5.5	10.8	
FS48750019210	2	6.	1.5	6.5	2.2	7.	1.9	7.5	1.5	8.	1.8	4
FS48750019211	2	8.5	1.8	9.	1.8	9.5	1.4	10.	1.9	10.5	2.5	
FS48750019212	2	11.	2.8	12.	1.9	13.	2.2	14.	1.9	15.	1.9	
FS48750019213	2	16.	1.8	17.	1.6	18.	1.5	19.	1.5	20.	1.2	
FS48750019214	2	21.	1.4	22.	1.7	23.	1.5	24.	1.3	25.	1.5	^
FS48750019215	2	26.	1.7									

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF F FS4876:

INDEX TO APPENDIX O

PAGE NO.

	DIRECTIONAL REFLECTANCE
FIGURE O-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days
	drying at room temperature)
FIGURE O-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE O-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
TABLE O-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth () degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE 0-1.

SPEC 3AL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF F
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE 0-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF F
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE 0-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF F
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE 0-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF F DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48760015001		2	1								•
FS48760015101		SPECTRA			GREEN	ASPEN	LEAF.	TOP OF	LEAF 1	F	
FS48760015102		Curve 1									
FS48760015103		UNCORRE				•	_				
FS48760017001		101990									
FS48760019001	1	-	01 1	.3	26.	69				20.	0.
FS48760019201	1	.3	4.6	. 4	4.4	.425	4.4	.45	5.8	.5	7.0
FS48760019202	1	.525	12.7	.55	18.8	.575	19.3	.6	15.3	.65	10.6
FS48760019203	1	.675	6.2	.7	16.0	.725	34.5	.75	39.0	.8	39.1
FS48760019204	1	.9	38.3	1.	37.5	1.05	37.1	1.1	37.4	1.2	35.5
FS48760019205	1	1.3	35.3	1.375	32.8	1.4	26.6	1.425	20.3	1.5	23.5
FS48760019206	1	1.55	27.2	1.6	28.7	1.625	29.4	1.7	28.6	1.8	27.5
FS48760019207	1	1.85	27.0	1.875	20.6	1.9	13.8	1.925	7.0	2.	10.8
FS48760019208	1	2.2	15.2	2.5	4.8	3.	1.3	3.5	1.4	4.	2.2
FS48760019209	1	4.5	1.9	5.	1.9	5.5	2.0	6.	2.7	6.5	1.9
FS48760019210	1	7.	2.3	7.5	1.9	8.	1.6	8.5	1.5	9.	2.4
FS48760019211	1	9.5	3.6	10.	3.1	10.5	2.5	11.	1.8	12.	2.7
FS48760019212	1	13.	3.2	14.	4.6	15.	4.2	16.	3.7	17.	3.1
FS48760019213	1	18.	2.6	19.	2.1	20.	1.5	21.	1.4	22.	1.4
FS48760019214	1	23.	0.9	24.	0.7	25.	0.8	26.	0.5		
FS48760019001	2		01 1	.3	26.	69				20.	0.
FS48760019201	2	.3	4.6	. 4	5.2	.425	5.3	.45	9.1	.475	11.1
FS48760019202	2	.5	12.6	.525	20.5	.55	26.1	.6	23.6	.625	21.5
FS48760019203	2	. 65	18.6	.675	12.8	.7	31.3	.725	49.4	.75	53.4
FS48760019204	2	.8	53.3	. 9	53.1	1.	52.9	1.075	52.8	1.1	52.6
FS48760019205	2	1.2	51.7	1.3	50.8	1.4	46.9	1.45	41.5	1.5	42.6
FS48760019206	2	1.55	43.8	1.6	43.9	1.65	43.9	1.7	42.2		41.4
FS48760019207	2	1.8	42.4	1.85	43.0	1.9			30.4	2.	34.4
F\$48760019208	2	2.2	27.2	2.5	16.3	3.	1.7	3.5	1.7	4.	4.5
FS48760019209	2	4.5	8.1	5.	8.2	5.5	6.8	6.	2.3	6.5	1.0
FS48760019210	2	7.	1.7	7.5	1.5	8.	1.8	8.5	1.9	9.	3.6
FS48760019211	2	9.5	5.2	10.	4.6	10.5	3.8	11.	3.1	12.	3.2
F\$48760019212	2	13.	3.2	14.	4.3	15.	3.6	16.	3.0	17.	2.4
FS48760019213	2	18.	2.0	19.	1.5	20.	1.2	21.	1.2	22.	0.7
FS48760019214	2	23.	1.2	24.	0.8	25.	1.7	26.	1.2		

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF F FS4877:

INDEX TO APPENDIX P

PAGE NO.

DIRECTIONAL REFLECTANCE FIGURE P-1. Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room temperature) P-3 Directional Reflectance vs. Wavelength, Bandwidth FIGURE P-2. 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room temperature) P-4 FIGURE P-3. Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days TABLE P-1. Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct.-1990 (fresh) and 22-Oct.-1990 (3 days drying at room temperature)......P-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE P-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF F.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE P-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF F.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE P-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF F.
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE P-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF F. DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48770015001		2	1									
FS48770015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	BOTTOM	OF LE	AF F.		•
FS48770015102		Curve 1	measu	red on	10-19	-90, C	urve 2	measu	red on	10-22	-90	
FS48770015103		UNCORREC	CTED F	OR INS	TRUMEN	TATION	POLAR	RIZATIO	N EFFE	CTS	,	
FS48770017001		101990	and 10	2290								
FS48770019001	1	0.0	01 1	.3	26.	70				20.	0.	,
FS48770019201	1	.3	6.3	.35	6.8	. 4	8.6	.425	11.9	.45	18.6	
FS48770019202	1	.475	20.3	.5	21.5	.525	31.2	.55	36.9	.575	35.5	
FS48770019203	1	.6	32.0	.625	29.4	.65	25.4	.675	20.6	.7	38.6	
FS48770019204	1	.725	53.8	.75	57.5	.8	57.2	.9	56.5	1.	55.9	
FS48770019205	1	1.1	55.2	1.2	54.5	1.25	54.2	1.3	54.1	1.4	54.0	
FS48770019206	1	1.45	47.5	1.5	47.9	1.6	48.6	1.675	48.1	1.7	47.5	
FS48770019207	1	1.725	47.0	1.8	47.2	1.875	47.4	1.9	42.9	1.925	38.5	
FS48770019208	1	2.	38.0	2.2	31.4	2.5	21.4	3.	1.5	3.5	1.6	
FS48770019209	1	4.	9.6	4.5	13.2	5.	13.2	5.5	10.7	6.	1.5	
FS48770019210	1	6.5	2.2	7.	2.0	7.5	1.5	8.	2.0	8.5	2.0	
FS48770019211	1	9.	1.7	9.5	1.3	10.	1.9	10.5	2.8	11.	3.1	
FS48770019212	1	12.	2.1	13.	2.2	14.	2.1	15.	2.1	16.	2.0	
FS48770019213	1	17.	1.9	18.	1.7	19.	1.5	20.	1.3	21.	0.9	
FS48770019214	1	22.	1.3	23.	1.4	24.	1.7	25.	1.7	26.	1.2	
FS48770019001	2		01 1	.3	26.	71				20.	0.	
FS48770019201	2	.3	6.4	.35	7.3	. 4	9.6	.45	20.4	.475	21.8	
FS48770019202	2 2	.5	26.1	.525	36.1	.55	38.1	.575	34.1	.6	32.3	
FS48770019203	2	.625	30.5	.675	22.4	.7	50.3	.725	57.2	.75	59.1	
FS48770019204	2	.8	58.9	.9	58.4	.925	58.3	1.	57.4	1.1	56.3	
FS48770019205	2	1.2	55.1	1.3	55.1		55.1	1.375	53.4	1.4	51.1	
FS48770019206	2	1.425	48.8	1.5	49.3	1.6	50.0	1.625	50.2	1.7	47.9	
FS48770019207	2	1.725	47.1	1.8	48.2	1.85	49.0	1.875	46.6	1.9	42.9	
FS48770019208	2	1.925	39.3	2.	40.2	2.2	33.3	2.5	22.8	3.	1.4	
FS48770019209	2	3.5	1.5	4.	9.9	4.5	13.9	5.	14.1	5.5	11.3	
FS48770019210	2	6.	1.8	6.5	2.4	7.	1.4	7.5	1.5	8.	1.9	•
FS48770019211	2	8.5	1.9	9.	1.6	9.5	1.9	10.	2.0	10.5	2.8	
FS48770019212	2	11.	3.1	12.	2.6	13.	2.2	14.	1.9	15.	1.9	
FS48770019213	2	16.	1.9	17.	1.9	18.	1.7	19.	1.3	20.	1.2	
FS48770019214	2	21.	1.8	22.	1.7	23.	1.2	24.	0.8	25.	1.2	•
FS48770019215	2	26.	1.2									

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF G FS4878:

INDEX TO APPENDIX Q

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE Q-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	3
FIGURE Q-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	1
FIGURE Q-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	
TABLE Q-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth () degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Q-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF G
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Q-2. SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF G
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Q-3.

TABLE Q-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF G DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48780015001		2	1									
FS48780015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	TOP OF	LEAF	G		ě
FS48780015102		Cur 1	measu	ired on	10-19	9-90, C	urve 2	measu	red on	10-22	-90	
FS48780015103		UNCOLLE										
FS48780017001		101990										
FS48780019001	1		01 1	.3	26.	68				20.	0.	h
FS48780019201	ī	.3	4.6	. 4	4.2	.475	5.4	.5	5.6	.525	9.6	•
FS48780019202	1	.55	15.1	.575	15.1	. 6	10.9	.675	5.2	.7	9.5	
FS48780019203	1	.725	29.0	.75	33.8	.775	34.0	.8	33.8	. 9	33.0	
FS48780019204	ī	.925	32.8	1.	32.5	1.075	32.1	1.1	31.8	1.2	30.7	
FS48780019205	1	1.3	30.7	1.375	28.4	1.4	22.9	1.425	17.5	1.5	19.7	
FS48780019206	ī	1.6	24.7	1.675	25.4	1.7	24.8	1.75	23.5	1.8	23.5	
FS48780019207	1	1.85	23.4	1.9	11.4		6.0	2.	8.6	2.2	14.3	
FS48780019208	1	2.5	4.9	3.	1.8	3.5	1.8	4.	1.8	4.5	2.2	
FS48780019209	1	5.	2.4	5.5	2.6	6.	2.3	6.5	2.0	7.	2.2	
FS48780019210	1	7.5	1.5	8.	2.0	8.5	1.8	9.	3.1	9.5	3.1	
FS48780019211	1	10.	3.2	10.5	2.4	11.	2.0	12.	2.1	13.	3.3	
FS48780019212	1	14.	4.6	15.	3.9	16.	3.1	17.	2.6	18.	2.0	
F\$48780019213	ī	19.	1.5	20.	1.3	21.	0.6	22.	0.4	23.	0.5	
FS48780019214	1	24.	1.4	25.	0.9	26.	0.5		-			
FS48780019001	2		01 1	.3	26.	70				20.	0.	
FS48780019201	2	.3	5.5	.35	6.5	. 4	6.8	.425	8.0	.45	10.9	
FS48780019202	2	.475	12.2	.5	14.3	.525	22.6	.55	25.0	.575	21.8	
FS48780019203	2	.6	20.0	. 625	18.3	.675	11.8	.7	35.5	.725	47.2	
FS48780019204	2	.75	49.5	.8	49.5	.9	49.4	.975	49.3	1.	49.1	
FS48780019205	2	1.1	48.2	1.2	47.3	1.3		1.375	45.0	1.4	43.6	
FS48780019206	2	1.45	40.9	1.5	41.4	1.6	42.3	1.625	42.5	1.7	40.6	
FS48780019207	2	1.725	40.0	1.8	40.6	1.85	41.0	1.9	36.7	1.925	31.6	
FS48780019208	2	2.	33.5	2.2	27.9	2.5	18.1	3.	1.8	3.5	1.7	
FS48780019209	2	4.	6.1	4.5	10.1	5.	10.3	5.5	8.7	6.	2.3	
FS48780019210	2	6.5	2.4	7.	1.7	7.5	1.5	8.	2.2	8.5	2.2	*
FS48780019211	2	9.	3.8	9.5	5.3	10.	4.7	10.5	3.8	11.	3.3	
FS48780019212	2	12.	3.1	13.	2.9	14.	3.6	15.	2.9	16.	2.6	
FS48780019213	2	17.	2.2	18.	1.6	19.	1.3	20.	1.4	21.	1.3	
FS48780019214	2	22.	1.6	23.	1.5	24.	1.6	25.	1.8	26.	1.5	
1040100017214	4	٠.,	1.0	20.	1.5	47.	1.0	20.	2.0	20.	5	

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF G FS4879:

INDEX TO APPENDIX R

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE R-1.	Directional Reflectance vs. Wavelength, Bandwidth ().3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth () degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	R-3
FIGURE R-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days	
	drying at room temperature)	R-4
FIGURE R-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	R-5
TABLE R-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)	R-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE R-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF G
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE R-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF G
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH-0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLE (ANCE VERSUS WAVELENGTH

FIGURE R-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF G
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE R-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF G DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48790015001		2	1									
FS48790015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN :	LEAF.	BOTTOM	OF LE	AF G		4
FS48790015102		Curve 1	measu	red on	10-19	-90, C	urve 2	measu	red on	10-22	~30	
FS48790015103		UNCORRE										
FS48790017001		101990					- •					
FS48790019001	1	0	01 1	.3	26.	68				20.	0.	æ
FS48790019201	1	.3	5.7	.375	7.6	. 4	8.7	.45	17.2	.475	19.0	
FS48790019202	1	.5	20.1	.525	29.5	.55	33.9	.575	33.3	.6	28.8	
FS48790019203	1	.65	23.8	.675	18.8	.7	26.9	.725	50.1	.75	55.0	
FS48790019204	1	.8	54.9	. 9	54.7	i.	54.5	1.025	54.5	1.1	53.8	
FS48790019205	1	1.2	53.0	1.3	52.1	1.4	51.2	1.45	46.9	1.5	47.2	
FS48790019206	1	1.6		1.625	48.1	1.7		1.725	46.0	1.8	46.2	
FS48790019207	1	1.875	46.4	1.9		1.925	37.9	2.	39.2	2.2	32.9	
FS48790019208	1	2.5	22.9	3.	1.7	3.5	1.8	4.	10.2	4.5	14.1	
FS48790019209	1	5.	14.3	5.5	11.8	6.	1.8	6.5	2.5	7.	1.7	
FS48790019210	1	7.5	1.7	8.	2.1	8.5	2.1	9.	1.7	9.5	1.9	
FS48790019211	1	10.	2.0	10.5	2.8	11.	3.2	12.	2.8	13.	2.2	
FS48790019212	1	14.	2.1	15.	1.9	16.	1.8	17.	1.6	18.	1.4	
FS48790019213	1	19.	1.0	20.	1.1	21.	1.4	22.	1.3	23.	1.6	
FS48790019214	1	24.	1.0	25.	1.3	26.	0.7					
FS48790019001	2	0	01 1	.3	26.	69				20.	0.	
FS48790019201	2	.3	6.0	.375	8.0	. 4	9.4	.45	19.0	.5	22.3	
FS48790019202	2	.525	33.6	.55	35.6	.575	32.6	.6	30.5	.625	28.4	
FS48790019203	2	.675	20.7	.7	33.8	.725	52.6	.75	56.6	.775	57.0	
FS48790019204	2	.8	56.7	.85	56.1	.9	56.1	1.	56.0	1.1	54.8	
FS48790019205	2 2	1.2	53.5	1.3	53.4	1.375	53.4	1.4	51.7	1.45	48.3	
FS48790019206	2	1.5	48.6	1.6	49.4	1.65	49.7	1.7	48.3	1.75	47.0	
FS48790019207	2	1.8	47.5	1.875	48.2	1.9	45.3	1.925	41.0	2.	40.9	
FS48790019208	2	2.2	34.2	2.5	24.0	3.	1.6	3.5	1.7	4.	10.6	
FS48790019209	2	4.5	14.8	5.	15.0	5.5	12.2	6.	1.8	6.5	1.6	4
FS48790019210	2	7.	1.7	7.5	1.8	8.	2.2	8.5	2.0	9.	1.8	7
FS48790019211	2	9.5	2.0	10.	2.1	10.5	2.9	11.	3.3	12.	2.8	
FS48790019212	2	13.	2.4	14.	2.1	15.	2.1	16.	1.8	17.	1.7	
FS48790019213	2	18.	1.4	19.	1.3	20.	0.9	21.	$\frac{1.4}{1.4}$	22.	1.5	
FS48790019214	2	23.	1.0	24.	2.1	25.	1.3	26.	1.5			

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TOP OF LEAF H FS4880:

INDEX TO APPENDIX S

PAGE NO.

	DIRECTIONAL REFLECTANCE
FIGURE S-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE S-2.	Directional Reflectance vs. Wavelength, Bandwidth ().3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
FIGURE S-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)
TABLE S-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees. Data measured on 19-Oct1990 (fresh) and 22-Oct1990 (3 days drying at room temperature)

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE S-1. SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF H
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE S-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF H
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE S-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TOP OF LEAF H
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE S-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TOP OF LEAF H DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48800015001		2	1									
FS48800015101		SPECTRA										1
FS48800015102		Curve 1	measu	red on	10-19	-90, C	urve 2	measu	red on	10-22	-90	
FS48800015103		UNCORRE	CTED F	OR INS	TRUMEN	TATION	POLAF	RIZATIO	n effe	CTS		
FS48800017001		101990	and 10	2290								
FS48800019001	1		01 1	.3	26.	69				20.	0.	۳
FS48800019201	1	.3	4.8	. 4	4.4	.425	4.8	.45	5.6	.5	6.6	
FS48800019202	1	.525	13.3	.55	17.0	.575	15.7	.6	12.4	.675	5.8	
FS48800019203	1	• ""	16.5	.725	32.8	.75	36.1	.8	36.0	.9	35.8	
FS48800019204	1	.925	35.8	1.	35.2	1.1	34.5	1.15	34.1	1.2	32.6	
FS48800019205	1	1.3	32.6	1.375	30.8	1.4	25.2	1.425	19.6	1.5	22.0	
FS48800019206	1	1.575	26.4	1.6	26.8	1.65	27.7	1.7	26.9	1.8	25.3	
FS48800019207	1	1.85	25.6	1.875	21.0	1.9	13.9	1.925	6.7	2.	9.7	
FS48800019208	1	2.2	14.8	2.5	5.7	3.	1.7	3.5	1.8	4.	1.8	
FS48800019209	1	4.5	2.2	5.	2.4	5.5	2.5	6.	2.4	6.5	2.0	
FS48800019210	1	7.	2.5	7.5	1.5	8.	1.7	8.5	1.9	9.	2.9	
FS48800019211	1	9.5	3.2	10.	3.2	10.5	2.6	11.	1.9	12.	1.9	
FS48800019212	1	13.	2.8	14.	4.1	15.	3.8	16.	3.4	17.	2.9	
FS48800019213	1	18.	2.6	19.	1.9	20.	1.7	21.	1.0	22.	0.9	
FS48800019214	1	23.	0.9	24.	0.7	25.	1.3	26.	0.9			
FS48800019001	2		01 1	.3	26.	71				20.	0.	
FS48800019201	2	.3	6.5	. 4	7.5	.425	9.2	.45	11.8	.475	13.1	
FS48800019202	2	.5	15.3	.525	23.6	.55	26.7	.575	24.0	. 6	22.1	
FS48800019203	2	.625	20.3	.675	13.1	.7	36.6	.725	51.1	.75	53.9	
FS48800019204	2 2	.8	53.5	.85	53.1	.9	53.2	1.	53.4	1.1	52.9	
FS48800019205	2	1.175	52.6	1.2	52.0	1.3	49.7	1.325	49.1	1.4	44.9	
FS48800019206	2	1.45	42.1	1.5	43.0	1.55	44.0	1.6	43.9	1.675	43.8	
FS48800019207	2	1.7	43.2	1.75	42.1	1.8	42.6	1.85	43.1	1.9	36.0	
FS48800019208	2	1.925	32.5	2.	34.3	2.2	27.4	2.5	17.4	3.	1.6	
FS48800019209	2	3.5	1.7	4.	5.3	4.5	9.2	5.	9.4	5.5	7.8	
FS48800019210	2	6.	2.2	6.5	2.2	7.	1.7	7.5	1.5	8.	1.7	1
FS48800019211	2 2	8.5	1.8	9.	3.4	9.5	4.9	10.	4.1	10.5	3.6	
FS48800019212	2	11.	2.9	12.	2.8	13.	3.1	14.	3.7	15.	3.2	
FS48800019213	2	16.	2.6	17.	2.2	18.	1.7	19.	1.4	20.	1.1	_
FS48800019214	2	21.	0.8	22.	1.1	23.	1.3	24.	2.0	25.	1.7	^
FS48800019215	2	26.	1.3									

APPENDIX T

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, BOTTOM OF LEAF H FS4881:

INDEX TO APPENDIX T

PAGE NO.

DIRECTIONAL REFLECTANCE

FIGURE T-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers, Data Uncorrected for Instrumentation	
	Polarization. Incident Azimuth () degrees. Data measured	
	on 19-Oct1990 (fresh) and 22-Oct1990 (3 days	
	drying at room temperature)	Т-3
	drying at 100m temperature/	1-3
FIGURE T-2.	Directional Reflectance vs. Wavelength, Bandwidth	
	0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation	
	Polarization. Incident Azimuth 0 degrees. Data measured	
	on 19-Oct1990 (fresh) and 22-Oct1990 (3 days	
	drying at room temperature)	T-4
FIGURE T-3.	Directional Reflectance vs. Wavelength, Bandwidth	
	2.2 to 26.0 micrometers, Data Uncorrected for Instrumentation	
	Polarization, Incident As imuth 0 degrees. Data measured	
	on 19-Oct1990 (fresh) and 22-Oct1990 (3 days	
	drying at room tempesature)	Т-5
TABLE T-1.	Directional Reflectance vs. Wavelength - ERAS data,	
	Data Uncorrected for Instrumentation Polarization.	
	Incident Azimuth 0 degrees. Data measured on 19-Oct1990	
	(fresh) and 22-Oct1990 (3 days drying at room	
	temperature)	Т-6

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE T-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF H
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE T-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF H
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE T-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
BOTTOM OF LEAF H
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE T-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. BOTTOM OF LEAF HDIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION CURVE 1 - FRESH LEAF, CURVE 2 - DRY LEAF

FS48810015001		2	1								
FS48810015101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	BOTTOM	OF LE	AF H	
FS48810015102		Curve 1	measu	red on	10-19	-90, C	urve 2	measu	red on	10-22	-90
FS48810015103		UNCORRE	CTED F	OR INS	TRUMEN	TATION	POLAR	IZATIO	N EFFE	CTS	
FS48810017001		101990	and 10	2290							ì
FS48810019001	1	0	01 1	.3	26.	71				20.	0.
FS48810019201	1	.3	5.9	.35	6.6	. 4	8.9	.425	12.2	.45	17.4
FS48810019202	1	.475	19.4	.5	20.7	.525	30.5	.55	35.1	.575	34.7
FS48810019203	1	.6	30.1	. 65	25.1	.675	19.6	.7	31.9	.725	52.1
FS48810019204	1	.75	56.1	.8	55.4	.85	54.8	.9	54.6	1.	54.1
FS48810019205	1	1.1	53.7	1.2	53.2	1.225	53.1	1.3		1.325	49.3
FS48810019206	1	1.4	48.0	1.45	45.1	1.5	45.2	1.6		1.675	45.4
FS48810019207	1	1.7	44.3	1.75	42.2	1.8	42.9	1.85	43.6	1.9	40.9
FS48810019208	1	1.925	35.5	2.	35.6	2.2	30.9	2.5	21.5	3.	1.5
FS48810019209	1	3.5	1.6	4.	9.6	4.5	12.9	5.	13.3	5.5	10.9
FS48&±0019210	1	6.	2.2	6.5	2.2	7.	1.2	7.5	1.5	8.	1.9
FS48810019211	1	8.5	1.7	9.	1.6	9.5	1.9	10.	1.9	10.5	2.6
FS48810019212	1	11.	2.9	12.	2.4	13.	2.1	14.	1.8	15.	1.8
FS48810019213	1	16.	1.8	17.	1.8	18.	1.6	19.	1.2	20.	1.1
FS48810019214	1	21.	1.3	22.	1.6	23.	1.7	24.	2.2	25.	0.6
FS48810019215	1	26.	1.0	_							_
FS48810019001	2	-	01 1	.3	26.	71		_	_	20.	0.
FS48810019201	2	.3	6.2	.375	8.3	. 4	10.5	.425	15.7	.45	20.2
FS48810019202	2	.475	21.3	.5	24.7	.525	34.6	.55	36.6	.575	32.5
FS48810019203	2	. 6	30.7	.625	28.9	. 675	21.2	.7	42.1	.725	53.1
FS48810019204	2	.75	57.2	.775	57.4	. 8	57.0	.85	56.3	.9	56.1
FS48810019205	2	1.	55.6	1.1	54.5	1.15	53.9	1.2	53.7	1.3	53.3
FS48810019206	2	1.325	53.2	1.4	49.2	1.45	46.6	1.5	46.6	1.6	46.7
FS48810019207	2	1.65	46.7	1.7	46.0	1.8	44.5	1.85	44.9	1.9	40.0
FS48810019208	2	1.925	37.5	2.	37.5	2.2	32.0	2.5	22.4	3.	1.5
FS48810019209	2	3.5	1.5	4.	9.9	4.5	13.6	_5.	13.7	5.5	11.4
FS48810019210	2	6.	1.8	6.5	2.3	7.	2.1	7.5	1.5	8.	1.9
FS48810019211	2	8.5	1.8	9.	1.6	9.5	1.4	10.	1.8	10.5	2.8
FS48810019212	2	11.	3.1	12.	1.9	13.	2.1	14.	2.0	15.	1.8
FS48810019213	2	16.	1.7	17.	1.7	18.	1.4	19.	1.3	20.	1.2
FS48810019214	2	21.	1.5	22.	1.2	23.	1.5	24.	1.6	25.	1.6
FS48810019215	2	26.	1.4								

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TRANSMITTANCE #1 FS4882:

INDEX TO APPENDIX U

PAGE NO.

	SCATTERED TRANSMITTANCE
FIGURE U-1.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers
FIGURE U-2.	Scattered Transmittance vs. Wavelength, Bandwidth ().3 to 2.0 micrometers
FIGURE U-3.	Scattered Transmittance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers
TABLE U-1.	Scattered Transmittance vs. Wavelength - ERAS data

This page intentionally left blank.

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE U-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #1
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE U-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #1
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE U-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #1
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS

TABLE U-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TRANSMITTANCE SAMPLE #1 SCATTERED TRANSMITTANCE VS. WAVELENGTH - ERAS DATA

FS48820135001		1	31								
FS48820135101		SPECTRA	L SCIE	ENCES:	GREEN	ASPEN	LEAF.	TRANSM	ITTANC	E SAMP	LE #1
FS48820135102		SCATTER	ED TRA	LTIMSUL	ANCE						
FS48820137001		102390		•							
FS48820139001	1	0	01 31	.3	26.	67				0.	0.
FS48820139201	1	.3	0.3	. 4	0.3	.5	1.2	.525	3.6	.55	7.3
FS48820139202	1	.575	7.0	.6	4.8	. 65	2.9	.675	1.7	.7	4.6
FS48820139203	1	.725	24.2	.75	32.6	.775	33.5	.8	33.7	.9	34.6
FS48820139204	1	1.	35.4	1.1	36.3	1.15	36.7	1.2	36.5	1.3	37.7
FS48820139205	1	1.375	37.2	1.4	35.3	1.45	31.6	1.5	33.5	1.6	34.7
FS48820139206	1	1.65	35.3	1.7	34.2	1.725	33.7	1.8	34.9	1.875	36.0
FS48820139207	1	1.9	32.6	1.925	24.4	2.	31.4	2.2	28.6	2.5	19.6
FS48820139208	1	3.	0.0	3.5	0.0	4.	5.8	4.5	15.1	5.	17.9
FS48820139209	1	5.5	16.6	6.	0.0	6.5	0.0	7.	0.0	7.5	0.0
FS48820139210	1	8.	0.0	8.5	0.0	9.	0.0	9.5	0.0	10.	0.0
FS48820139211	1	10.5	0.7	11.	1.5	12.	0.8	13.	0.8	14.	0.0
FS48820139212	1	15.	0.0	16.	0.0	17.	0.0	18.	0.0	19.	0.0
FS48820139213	1	20.	0.0	21.	0.0	22.	0.0	23.	0.0	24.	0.0
FS48820139214	1	25.	0.0	26.	0.0						

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TRANSMITTANCE #2 FS4883:

INDEX TO APPENDIX V

PAGE NO.

	SCATTERED TRANSMITTANCE	
FIGURE V-1.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers	V-3
FIGURE V-2.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers	V-4
FIGURE V-3.	Scattered Transmittance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers	V-5
TABLE V-1.	Scattered Transmittance vs. Wavelength - ERAS data	V-6

This page intentionally left blank.

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE V-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #2
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE V-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #2
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE V-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TRANSMITTANCE SAMPLE #2 SCATTERED TRANSMITTANCE VS. WAVELENGTH BANDWIDTH 2.2 TO 26.0 MICROMETERS

TABLE V-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TRANSMITTANCE SAMPLE #2 SCATTERED TRANSMITTANCE VS. WAVELENGTH - ERAS DATA

FS48830135001		1	31	L								
FS48830135101		SPECTRA	L SCIE	ENCES:	GREEN	ASPEN	LEAF.	TRANSM	ITTANC	E SAMP	LE #2	À
FS48830135102		SCATTERI	ED TRA	NSMITI	ANCE							
FS48830137001		102390										
FS48830139001	1	0	01 31	.3	26.	71				0.	0.	
FS48830139201	1	.3	0.2	. 4	0.5	.475	0.7	.5	1.3	.525	4.1	-
FS48830139202	1	.55	6.6	.575	5.8	.6	4.3	.625	3.6	.675	1.5	
FS48830139203	1	.7	10.9	.725	27.1	.75	31.2	.775	32.0	.8	32.1	
FS48830139204	1	.85	32.3	.9	33.4	.925	34.0	1.	34.4	1.1	34.9	
F\$48830139205	1	1.15	35.1	1.2	35.2	1.3	35.4	1.35	35.5	1.4	34.5	
FS48830139206	1	1.425	29.9	1.5	31.6	1.55	32.8	1.6	32.8	1.675	32.9	
FS48830139207	1	1.7	32.0	1.725	31.2	1.8	32.4	1.875	33.6	1.9	31.2	
FS48830139208	1	1.925	28.8	2.	28.0	2.2	23.2	2.5	13.6	3.	0.0	
FS48830139209	1	3.5	0.0	4.	3.5	4.5	9.9	5.	11.5	5.5	10.3	
FS48830139210	1	6.	0.0	6.5	0.0	7.	0.0	7.5	0.0	8.	0.0	
FS48830139211	1	8.5	0.0	9.	0.0	9.5	0.0	10.	0.0	10.5	0.0	
FS48830139212	1	11.	0.0	12.	0.0	13.	0.0	14.	0.0	15.	0.0	
FS48830139213	1	16.	0.0	17.	0.0	18.	0.0	19.	0.0	20.	0.0	
FS48830139214	1	21.	0.0	22.	0.0	23.	0.0	24.	0.0	25.	0.0	
FS48830139215	1	26.	0.0									

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TRANSMITTANCE #3 FS4884:

INDEX TO APPENDIX W

	PAGE NO	<u>)</u>
	SCATTERED TRANSMITTANCE	
FIGURE W-1.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers	
FIGURE W-2.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers	
FIGURE W-3.	Scattered Transmittance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers	
TABLE W-1.	Scattered Transmittance vs. Wavelength - ERAS data W-6	

This page intentionally left blank.

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE W-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #3
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE W-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #3
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE W-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #3
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS

TABLE W-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TRANSMITTANCE SAMPLE #3 SCATTERED TRANSMITTANCE VS. WAVELENGTH - ERAS DATA

FS48840135001		1	31	L							
FS48840135101		SPECTRA	L SCIE	ENCES:	GREEN	ASPEN	LEAF.	TRANSM	ITTANC	E SAMP	LE #3
FS48840135102		SCATTER	ED TRA	NSMITT	ANCE						
FS48840137001		102390									
FS48840139001	1	0	01 31	.3	26.	67				0.	0.
FS48840139201	1	.3	0.1	. 4	0.2	.475	0.9	.5	1.6	.525	5.8
FS48840139202	1	.55	8.5	.575	8.1	.6	5.8	.625	4.9	.675	1.8
FS48840139203	1	.7	11.2	.725	29.0	.75	35.5	.8	36.1	.9	37.2
FS48840139204	1	1.	38.4	1.1	39.5	1.2	39.5	1.3	39.4	1.4	39.4
FS48840139205	1	1.45	34.7	1.5	36.1	1.525	36.8	1.6	37.3	1.675	37.7
FS48840139206	1	1.7	36.8	1.725	36.0	1.8	37.3	1.85	38.1	1.875	37.7
FS48840139207	1	1.9	32.5	1.925	27.3	2.	30.2	2.2	28.2	2.5	17.5
FS48840139208	1	3.	0.0	3.5	0.0	4.	4.9	4.5	12.4	5.	15.2
FS48840139209	1	5.5	14.6	6.	0.0	6.5	0.0	7.	0.0	7.5	0.0
FS48840139210	1	8.	0.0	8.5	0.0	9.	0.0	9.5	0.0	10.	0.0
FS48840139211	1	10.5	0.0	11.	0.9	12.	0.0	13.	0.5	14.	0.0
FS48840139212	1	15.	0.0	16.	0.0	17.	0.0	18.	0.0	19.	0.0
FS48840139213	1	20.	0.0	21.	0.0	22.	0.0	23.	0.0	24.	0.0
FS48840139214	1	25.	0.0	26.	0.0						

SPECTRAL SCIENCES INC. GREEN ASPEN LEAF, TRANSMITTANCE #4 FS4885:

, INDEX TO APPENDIX X

PAGE NO.

	SCATTERED TRANSMITTANCE	
FIGURE X-1.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 26.0 micrometers	
FIGURE X-2.	Scattered Transmittance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers	
FIGURE X-3.	Scattered Transmittance vs. Wavelength, Bandwidth 2.2 to 26.0 micrometers	
TARLE X-1	Scattered Transmittance vs. Wavelength - FRAS data	

This page intentionally left blank.

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE X-1,

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #4
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 26.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE X-2.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #4
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS

TRANSMITTANCE VERSUS WAVELENGTH

FIGURE X-3.

SPECTRAL SCIENCES: GREEN ASPEN LEAF.
TRANSMITTANCE SAMPLE #4
SCATTERED TRANSMITTANCE VS. WAVELENGTH
BANDWIDTH 2.2 TO 26.0 MICROMETERS

TABLE X-1.

SPECTRAL SCIENCES: GREEN ASPEN LEAF. TRANSMITTANCE SAMPLE #4 SCATTERED TRANSMITTANCE VS. WAVELENGTH - ERAS DATA

FS48850135001		1	31								
FS48850135101		SPECTRA	L SCIE	NCES:	GREEN	ASPEN	LEAF.	TRANSM	ITTANC:	E SAMP	LE #4
FS48850135102		SCATTER	ED TRA	nsmiti	ANCE						
FS48850137001		102390									
FS48850139001	1	0	01 31	.3	26.	68				0.	0.
FS48850139201	1	.3	0.5	. 4	0.6	.425	0.6	.5	1.4	.525	5.2
FS48850139202	1	55	7.8	.575	6.6	.6	5.6	.625	4.7	.675	1.8
FS48850139203	1	.7	10.0	.725	27.5	.75	32.6	.8	33.1	.9	34.3
FS48850139204	1	1.	35.4	1.1	36.5	1.15	37.0	1.2	36.6	1.3	38.2
FS48850139205	1	1.375	37.6	1.4	35.6	1.45	31.7	1.5	32.6	1.6	34.5
FS48850139206	1	1.65	35.4	1.7	34.7	1.725	33.3	1.8	34.7	1.85	35.7
FS48850139207	1	1.875	33.8	1.9	29.1	1.925	24.4	2.	29.4	2.2	25.3
FS48850139208	1	2.5	16.4	3.	0.0	3.5	0.0	4.	4.9	45	12.9
FS48850139209	1	5.	15.6	5.5	13.9	6.	0.0	6.5	0.0	7.	0.0
FS48850139210	1	7.5	0.0	8.	0.0	8.5	0.0	9.	0.0	9.5	0.0
FS48850139211	1	10.	0.1	10.5	0.2	11.	0.8	12.	0.0	13.	0.0
FS48850139212	1	14.	0.0	15.	0.0	16.	0.0	17.	0.0	18.	0.0
FS48850139213	1	19.	0.0	20.	0.0	21.	0.0	22.	0.0	23.	0.0
FS48850139214	1	24.	0.0	25.	0.0	26.	0.0				

ADDITIONAL BACKGROUND MATERIALS

INDEX TO APPENDIX Y

	PAGE NO
	<u>DIRECTIONAL REFLECTANCE ON GREEN</u> <u>ARMY TANK PAINT FS4052: Y-1</u>
FIGURE Y-1-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 38.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-1-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-1-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.5 to 38.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-1-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-1-4.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-1-5.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-1-6.	Directional Reflectance vs. Wavelength, Bandwidth 2.5 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-1-2.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees

	PAG	E NC
DIR	ECTIONAL REFLECTANCE FS4052: Y-1 (continued)	
TABLE Y-1-3.	Directional and Hemispherical Emittance as a Function of Temperature, Data Corrected for Instrumentation Polarization	Y-17
TABLE Y-1-4.	Solar Absorptance as a Function of Polar Incidence Angle	Y-18
	DIRECTIONAL REFLECTANCE ON BROAD BLADE GRASS FS4053: Y-2	
FIGURE Y-2-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 39.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees	Y-19
FIGURE Y-2-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees	Y-20
FIGURE Y-2-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.5 to 39.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees	Y-21
TABLE Y-2-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees	Y-22
TABLE Y-2-2.	Directional Emittance as a Function of Temperature, Data Uncorrected for Instrumentation Polarization	Y-23
TABLE Y-2-3.	Solar Absorptance	Y-24

	PAGE NO
DI	RECTIONAL REFLECTANCE FS4053: Y-2 (continued)
FIGURE Y-2-4.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 1.6 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-2-4.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees
	DIRECTIONAL REFLECTANCE ON FINE BLADE GRASS AND OTHER FLORA FS4054: Y-3
FIGURE Y-3-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 39.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-3-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-3-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.5 to 39.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-3-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-3-2.	Directional Emittance as a Function of Temperature, Data Uncorrected for Instrumentation Polarization
TABLE Y-3-3.	Solar Absorptance

	PAGE NO
	DIRECTIONAL REFLECTANCE ON DRY EARTH TYPICAL OF THE AREA FS4055: Y-4
FIGURE Y-4-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 39.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-4-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
FIGURE Y-4-3.	Directional Reflectance vs. Wavelength, Bandwidth 2.5 to 39.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-4-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-4-2.	Directional Emittance as a Function of Temperature, Data Uncorrected for Instrumentation Polarization
TABLE Y-4-3.	Solar Absorptance
	DIRECTIONAL REFLECTANCE ON FINISHED CEMENT FS4056: Y-5
FIGURE Y-5-1.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees
TABLE Y-5-1.	Directional Reflectance vs. Wavelength - ERAS data, Data Uncorrected for Instrumentation Polarization. Incident Azimuth 0 degrees

	PAGE NO.	
DIRECTIONAL REFLECTANCE FS4056: Y-5 (continued)		
FIGURE Y-5-2.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees	
FIGURE Y-5-3.	Directional Reflectance vs. Wavelength, Bandwidth 0.3 to 2.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees	
FIGURE Y-5-4.	Directional Reflectance vs. Wavelength, Bandwidth 2.5 to 25.0 micrometers, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees	
TABLE Y-5-2.	Directional Reflectance vs. Wavelength - ERAS data, Data Corrected for Instrumentation Polarization. Incident Azimuth 0 degrees	
TABLE Y-5-3.	Directional and Hemispherical Emittance as a Function of Temperature, Data Corrected for Instrumentation Polarization	
TABLE Y-5-4.	Solar Absorptance as a Function of Polar Incidence Angle	

This page intentionally left blank.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-1-1.

AFSC: GREEN PAINT ON ARMY TANK
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 38.0 MIC. OMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-1-2.

AFSC: GREEN PAINT ON ARMY TANK
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-1-3.

AFSC: GREEN PAINT ON ARMY TANK
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.5 TO 38.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-1-1.

AFSC: GREEN PAINT ON ARMY TANK DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS40520015001		1	1								
FS40520015101		AFSC: G	REEN P	AINT O	N ARMY	TANK					
FS40520015102		UNCORRE	CTED F	OR INS	TRUMEN	TATION	POLAR	RIZATIO	N EFFE	CTS	
FS40520017001		082886									
FS40520019001	1	0	01 1	.3	38.	79				20.	0.
FS40520019201	1	.3	5.7	.325	6.0	.35	7.6	. 4	7.9	.425	11.1
FS40520019202	1	.45	9.5	.475	9.6	.5	10.7	.525	14.3	.55	13.7
FS40520019203	1	.575	11.7	. 6	10.0	.675	14.0	.7	19.3	.725	24.6
FS40520019204	1	.775	43.7	.8	46.8	.85	48.2	.9	48.7	1.	48.3
FS40520019205	1	1.1	46.0	1.15	41.9	1.2	36.3	1.25		1.275	27.7
F\$40520019206	1	1.3	28.6	1.325	25.2	1.4	20.6	1.475	23.6	1.5	23.3
FS40520019207	1	1.6	21.9	1.625	21.6	1.65	22.2	1.675	23.6	1.7	27.3
FS40520019208	1	1.775	38.5	1.8	39.6	1.9	40.5	2.	41.5	2.5	33.1
FS40520019209	1	3.	10.7	3.5	8.1	4.	21.5	4.5	22.9	5.	15.9
FS40520019210	1	5.5	11.0	6.	4.6	6.5	7.1	7.	4.8	7.5	4.0
F\$40520019211	1	8.	3.4	8.5	3.6	9.	6.6	9.5	6.0	10.	6.0
FS40520019212	1	10.5	6.2	11.	4.8	12.	2.9	13.	3.1	14.	2.6
FS40520019213	1	15.	4.2	116.	5.5	17.	4.2	18.	6.1	19.	7.1
FS40520019214	1	20.	8.2	21.	10.4	22.	9.8	23.	8.2	24.	7.1
FS40520019215	1	25.	8.7	27.	5.7	29.	8.5	31.	6.5	32.	6.7
FS40520019216	1	34.	6.5	35.	10.5	37.	8.7	38.	5.6		

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-1-4.

AFSC: GREEN PAINT ON ARMY TANK
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-1-5.

AFSC: GREEN PAINT ON ARMY TANK
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-1-6.

AFSC: GREEN PAINT ON ARMY TANK
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.5 TO 25.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-1-2.

AFSC: GREEN PAINT ON ARMY TANK DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

		_	_								
FS40520215001		8	1								
FS40520215101		AFSC: G	REEN P	AINT O	n army	TANK					
FS40520215102		CORRECT	ED FOR	INSTR	UMENTA	TION P	OLARIZ	ATION	EFFECT	'S	
FS40520217001		081886						-			
FS40520219001	1		01 1	.3	25.	67				20.	0.
							0 1		Λ ε		
FS40520219201	1	.3	1.5	.325	6.2	.375	8.1	. 4	9.5	.425	11.3
FS40520219202	1	.45	9.7	.475	9.9	. 5	11.5	.525	15.1	.55	13.7
FS40520219203	1	.575	11.1	. 6	11.0	.625	10.9	.675	15.4	.7	23.1
FS40520219204	1	.775	46.4	.8	46.9	.825	47.5	.85	47.7	.9	48.4
FS40520219205	1	.925	48.4	1.	47.7	1.075	46.2	1.1	44.2	1.15	40.2
FS40520219206	1	1.2	34.6	1.25		1.275	28.1	1.3	26.1	1.375	23.8
FS40520219207	ī	1.4	23.4	1.45	23.8	1.5	23.0	1.55	22.3	1.6	21.9
FS40520219207	ī	1.8	38.6	2.	40.9	2.5	33.8	3.	11.8	3.5	9.1
FS40520219209	1	4.	22.4	4.5	23.0	_5.	16.3	5.5	11.5	6.	5.5
FS40520219210	1	6.5	7.9	7.	4.9	7.5	3.9	8.	3.4	8.5	3.8
FS40520219211	1	9.	6.3	9.5	6.6	10.	6.8	10.5	5.6		. 4.8
FS40520219212	1	12.	3.5	13.	2.5	14.	2.9	15.	4.4	16.	5.9
FS40520219213	1	17.	4.9	18.	6.3	19.	6.6	20.	7.6	22.	8.5
FS40520219214	ī	24.	6.1	25.	6.7		• • • • • • • • • • • • • • • • • • • •				
FS40520219001	2		01 1	.3	25.	55				30.	0.
FS40520219201	2	.3	1.7	.325	6.8	.35	7.8	.375	8.3		10.1
	2									.4	
FS40520219202	2	.425	11.8	.45	10.2	.475	10.4	.5	11.9	.525	15.9
FS40520219203	2	.55	14.6	.575	12.4	. 6	11.5	. 65	12.6	.675	17.5
FS40520219204	2	.7	24.7	.775	46.0	.8	47.4	.825	48.7	.85	48.1
FS40520219205	2	. 9	48.6	.925	48.9	.95	48.9	.975	48.2	1.	48.9
FS40520219206	2	1.075	46.9	1.1	45.7	1.15	41.6	1.2	35.4	1.25	29.2
FS40520219207	2	1.275	29.0	1.3		1.375	25.3	1.4		1.475	24.4
FS40520219208	2	1.5		1.525	23.7	1.6	22.3	1.8	39.0	2.	41.2
FS40520219209	2	2.5	34.5	3.	12.3	4.	22.8	5.	16.8	6.	5.7
FS40520219210	2	7.	5.1	8.	3.7	9.5	7.2	10.	7.0	12.	3.5
FS40520219211	2	14.	3.3	16.	6.4	18.	6.9	20.	8.6	25.	7.7
FS40520219001	3		01 1	.3	25.	55				40.	0.
FS40520219201	3	.3	1.8	.325	7.0	. 35	7.9	.375	8.9	. 4	10.7
FS40520219202	3	.425	12.5	.45	10.9	.475	10.9	. 5	12.4	.525	16.6
FS40520219203	3	.55	15.5	.575	13.9	. 6	12.5	.625	12.0	.675	16.8
FS40520219204	3	.7	22.6	.775	43.9	.8	48.3	.825	49.9	.85	49.7
FS40520219205	3	.9	49.7	.95	49.7	.975	49.0	1.		1.075	48.0
	2		46.9					1.2	37.3	1.25	31.0
FS40520219206	3	1.1		1.15		1.175	40.4				
FS40520219207		1.275	30.4	1.3		1.375	25.0	1.4		1.425	25.2
FS40520219208	3	1.475	24.9	1.5	24.6	1.6	23.4	1.8	40.5	2.	42.1
FS40520219209	3	2.5	35.4	3.	13.0	4.	23.8	5.	17.7	6.	6.1
FS40520219210	3	7.	5.5	8.	4.0	9.5	7.7	10.	7.3	12.	3.7
FS40520219211	3	14.	3.5	16.	7.1	18.	7.8	20.	9.0	25.	9.9
FS40520219001	4		01 1	.3	25.	57			2.0	50.	0.
FS40520219001	4	.3	2.4	.325	7.4		ΩΛ	.375	8.9	.4	11.2
						.35	8.4				
FS40520219202	4	.425	13.5	.45	11.7	.475	12.1	.5	13.6	.525	17.9
FS40520219203	4	. 55	16.6	.575	14.2	. 6	13.7	. 625	13.1	.675	17.2
FS40520219204	4	.7	24.9	.775	47.9	.8	48.8	.825	49.7	.85	50.2

TABLE Y-1-2. (CONTINUED)

```
FS40520219205
                          .875
                                               50.6
                                                      .925
                    4
                                 50.3
                                          .9
                                                             51.0
                                                                      .95
                                                                           50.5
                                                                                     1.
                                                                                         50.0
                                                             47.9 1.125
FS40520219206
                        1.025
                                 49.8
                                               49.3
                                                                           46.4
                                                                                          43.7
                    4
                                        1.05
                                                       1.1
                                                                                  1.15
                                               32.2 1.275
                                                                           30.2 1.325
                                                                                         28.9
FS40520219207
                           1.2
                                 38.0
                                        1.25
                                                                     1.3
                    4
                                                             31.5
FS40520219208
                    4
                           1.4
                                 26.4
                                        1.45
                                               26.5 1.475
                                                             26.4
                                                                     1.5
                                                                           26.1
                                                                                    1.6
                                                                                         25.0
FS40520219209
                    4
                           1.8
                                 41.6
                                          2.
                                               43.2
                                                       2.5
                                                             36.7
                                                                      3.
                                                                           14.2
                                                                                          25.4
                                                                                     4.
FS40520219210
                                 19.1
                                                6.7
                                                              6.3
                                                                             4.9
                                                                                    9.5
                                                                                           9.0
                    4
                            5.
                                          6.
                                                        7.
                                                                      8.
FS40520219211
                    4
                                  8.3
                                                                            8.5
                                                                                    18.
                                                                                           9.2
                           10.
                                         12.
                                                4.8
                                                       14.
                                                              4.4
                                                                     16.
FS40520219212
                    4
                           20.
                                 10.9
                                         25.
                                                9.3
FS40520219001
                    5
                              001 1
                                          .3
                                                25.
                                                      53
                                                                                 60.
                                                                                            0.
                            .3
                                                                     .375
                                                                                     . 4
                                                       .35
                                                                                         12.9
FS40520219201
                    5
                                  4.0
                                        .325
                                                8.4
                                                              9.1
                                                                           10.8
FS40520219202
                                                      .475
                                                             13.7
                                                                       .5
                                                                           15.7
                                                                                   .525
                    5
                          .425
                                 15.0
                                               13.2
                                                                                         19.5
                                         .45
                                                             14.7
                                                                     .625
                                                                                         19.5
FS40520219203
                    5
                           .55
                                        .575
                                                                           14.8
                                                                                   .675
                                 17.7
                                               15.2
                                                         .6
FS40520219204
                                                                                     .9
                    5
                                                        .8
                                                             49.9
                                                                     .825
                            .7
                                 26.8
                                        .775
                                               48.6
                                                                           51.3
                                                                                         51.8
                    5
                          .925
                                                                     1.1
FS40520219205
                                 52.0
                                                             50.7
                                                                           49.4 1.125
                                                                                          47.9
                                               51.5
                                                      1.05
                                          1.
FS40520219206
                    5
                           1.2
                                 40.4
                                        1.25
                                               33.9 1.275
                                                             33.1
                                                                     1.3
                                                                           31.7 1.325
                                                                                         30.3
                    5
                                                                           26.3
                                                                                         25.9
FS40520219207
                         1.375
                                 27.3
                                         1.4
                                               26.4
                                                      1.45
                                                             26.4 1.475
                                                                                    1.5
F$40520219208
                    5
                           1.6
                                 24.6
                                         1.8
                                               42.6
                                                        2.
                                                             44.1
                                                                     2.5
                                                                           37.9
                                                                                     3.
                                                                                          15.4
                                          5.
FS40520219209
                    5
                            4.
                                 26.2
                                               20.0
                                                        6.
                                                              7.8
                                                                      7.
                                                                            7.1
                                                                                     8.
                                                                                           6.1
FS40520219210
                    5
                                         10.
                           9.5
                                 10.6
                                                9.7
                                                       12.
                                                              5.5
                                                                     14.
                                                                             5.5
                                                                                    16.
                                                                                          10.5
FS40520219211
                    5
                           18.
                                 11.4
                                         20.
                                               14.0
                                                       25.
                                                             11.6
FS40520219001
                    6
                              001 1
                                                25.
                                                                                 70.
                                                                                            0.
                                          .3
                                                      56
                            .3
                                                       .35
FS40520219201
                                  5.0
                                        .325
                                                9.6
                                                                     .375
                                                                           12.3
                                                                                     . 4
                                                                                         14.4
                    6
                                                             11.1
FS40520219202
                    6
                          .425
                                 16.6
                                         .45
                                               15.1
                                                      .475
                                                             15.1
                                                                      . 5
                                                                           17.0
                                                                                   .525
                                                                                          21.4
FS40520219203
                                 19.8
                                               16.9
                                                                           16.4
                                                                                         20.4
                    6
                           .55
                                        .575
                                                         . 6
                                                             16.7
                                                                     .625
                                                                                   .675
FS40520219204
                    6
                            .7
                                        .775
                                                                     .825
                                                                                          53.3
                                 28.0
                                               50.6
                                                         . 8
                                                             51.8
                                                                           53.0
                                                                                   .875
FS40520219205
                    6
                                 53.4
                                        .925
                                                      .975
                                                                           53.4 1.025
                                                                                          52.9
                            . 9
                                               53.5
                                                             53.0
                                                                      1.
F$40520219206
                    6
                           1.1
                                 50.8
                                      1.125
                                               50.1
                                                      1.15
                                                             47.6
                                                                     1.2
                                                                           41.9
                                                                                  1.25
                                                                                          36.2
                                                                           32.2 1.375
                                                                                          30.9
FS40520219207
                    6
                         1.275
                                 35.1
                                         1.3
                                               33.9
                                                    1.325
                                                             32.7
                                                                    1.35
                                                                     1.6
FS40520219208
                    6
                           1.4
                                 30.7 1.475
                                               30.2
                                                       1.5
                                                             29.9
                                                                           28.7
                                                                                    1.8
                                                                                          44.2
                                                                           28.4
                                                                                     5.
FS40520219209
                    6
                            2.
                                 45.7
                                         2.5
                                               39.7
                                                        3.
                                                             17.5
                                                                      4.
                                                                                          22.4
FS40520219210
                            6.
                                          7.
                    6
                                 10.0
                                                9.4
                                                        8.
                                                              9.4
                                                                     9.5
                                                                           15.3
                                                                                    10.
                                                                                          13.9
FS40520219211
                    6
                           12.
                                  8.8
                                                9.2
                                                       16.
                                                             15.9
                                                                     18.
                                                                           17.3
                                                                                    20.
                                                                                          19.9
                                         14.
FS40520219212
                    6
                           25.
                                 17.8
FS40520219001
                    7
                              001
                                                25.
                                                                                 75.
                                                                                            0.
                                   1
                                          .3
                                                      55
FS40520219201
                    7
                            .3
                                  5.7
                                        .325
                                               10.6
                                                      .375
                                                             14.2
                                                                       . 4
                                                                           16.1
                                                                                   .425
                                                                                         18.0
                                                                           23.0
FS40520219202
                    7
                           .45
                                 16.3
                                        .475
                                               16.5
                                                         . 5
                                                             18.5
                                                                     .525
                                                                                   .575
                                                                                         18.7
                    7
                            .6
FS40520219203
                                 18.2
                                        .625
                                               17.7
                                                      .675
                                                             21.5
                                                                       .7
                                                                           29.2
                                                                                   .775
                                                                                          52.1
                    7
                                                                     .925
FS40520219204
                            . 8
                                 52.7
                                         .85
                                               53.9
                                                         . 9
                                                             54.0
                                                                           54.1
                                                                                    . 95
                                                                                          54.1
                    7
                          .975
                                               54.3 1.025
                                                                           51.7 1.125
FS40520219205
                                 53.7
                                          1.
                                                             54.0
                                                                     1.1
                                                                                          51.0
                    7
FS40520219206
                                 46.4
                                               43.4
                                                             37.4 1.275
                                                                           36.3
                                                                                          35.2
                         1.175
                                         1.2
                                                      1.25
                                                                                    1.3
                    7
                         1.325
                                               33.6 1.375
                                                                           32.5 1.425
FS40520219207
                                 34.2
                                        1.35
                                                             32.1
                                                                     1.4
                                                                                          32.0
                    7
FS40520219208
                          1.45
                                 32.1
                                               31.5
                                                             30.3
                                                                     1.8
                                                                           45.1
                                                                                     2.
                                                                                          46.5
                                         1.5
                                                       1.6
FS40520219209
                    7
                           2.5
                                 41.0
                                          3.
                                               19.2
                                                        4.
                                                             30.0
                                                                       5.
                                                                           24.7
                                                                                     6.
                                                                                          12.3
FS40520219210
                    7
                            7.
                                 11.9
                                          8.
                                               12.8
                                                       9.5
                                                             19.7
                                                                     10.
                                                                           18.2
                                                                                    12.
                                                                                          13.1
FS40520219211
                    7
                                 13.1
                                         16.
                                               21.1
                                                             23.2
                                                                     20.
                                                                           26.0
                                                                                    25.
                                                                                          23.6
                           14.
                                                       18.
F$40520219001
                    8
                              001
                                   1
                                          . 3
                                                25.
                                                      55
                                                                                 80.
                                                                                            0.
                            .3
FS40520219201
                    8
                                  8.4
                                        .325
                                               13.5
                                                       .35
                                                             14.8
                                                                     .375
                                                                           16.1
                                                                                     . 4
                                                                                          17.9
                                                                                   .525
FS40520219202
                    8
                                               18.2
                                                                       . 5
                                                                           19.8
                                                                                          24.4
                          .425
                                 19.8
                                         .45
                                                      .475
                                                             18.0
```

TABLE Y-1-2. (CONTINUED)

FS40520219203	8	.55	23.3	.575	21.3	.6	20.4	.625	20.7	.675	23.4
FS40520219204	8	.7	28.9	.775	52.4	.8	53.8	.825	55.2	.85	55.6
FS40520219205	8	.9	55.7	.925	55.7	1.	55.8	1.075	54.1	1.1	53.0
FS40520219206	8	1.125	52.0	1.175	48.6	1.2	45.1	1.25	38.3	1.275	38.3
FS40520219207	8	1.3	37.3	1.325	36.4	1.375	35.4	1.4	34.5	1.45	34.8
FS40520219208	8	1.5	34.5	1.525	34.4	1.6	33.6	1.8	46.4	2.	47.7
FS40520219209	8	2.5	43.1	3.	22.0	4.	33.1	5.	28.2	6.	16.5
FS40520219210	8	7.	16.4	8.	18.2	9.5	26.7	10.	24.7	12.	18.8
FS40520219211	8	14.	19.8	16.	28.7	18.	31.0	20.	34.2	25.	31.9

TABLE Y-1-3.

AFSC: GREEN PAINT ON ARMY TANK DIRECTIONAL AND HEMISPHERICAL EMITTANCE AS A FUNCTION OF INCIDENT ANGLE AND TEMPERATURE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS4052021: AFSC: GREEN PAINT ON ARMY TANK CORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of zenith angle and temperature:

Zenith angle	Wavelength		ture (deg			
(degrees)	range (microns)	100 2	200 300	400	500	600
20	0.300 - 25.000	0.934.0	945 0.944	0.934	0.918	0 901
30	0.300 - 25.000		938 0.940			
40	0.300 - 25.000	0.915 0.	932 0.935	0.926	0.910	0.891
50	0.300 - 25.000	0.906 0.	920 0.924	0.915	0.899	0.880
60	0.300 - 25.000	0.882 0.	902 0.909	0.902	0.887	0.869
70	0.300 - 25.000	0.824 0.	.853 0.866	0.865	0.854	0.838
75	0.300 - 25.000	0.767 0.	802 0.822	0.826	0.820	0.808
80	0.300 - 25.000	0.687 0.	.730 0.757	0.768	0.767	0.760
Hemispherical	emittance:	0.877 0.	.895 0.900	0.894	0.880	0.863

TABLE Y-1-4.

AFSC: GREEN PAINT ON ARMY TANK SO' AF ABSORBPTANCE AS A FUNCTION OF INCIDENT ANGLE DATE CORRECTED FOR INSTRUMENTATION POLARIZATION.

FS4052021 Surface Optics Corp.

AFSC: CREEN PAINT ON ARMY TANK

20 degrees: The exoatmospheric solar absorptance is 0.751. 30 degrees: The exoatmospheric solar absorptance is 0.743. 40 degrees: The exoatmospheric solar absorptance is 0.738. 50 degrees: The exoatmospheric solar absorptance is 0.727. 60 degrees: The exoatmospheric solar absorptance is 0.714. 70 degrees: The exoatmospheric solar absorptance is 0.695. 75 degrees: The exoatmospheric solar absorptance is 0.683. 80 degrees: The exoatmospheric solar absorptance is 0.665.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-2-1.

AFSC: BROAD BLADE GRASS
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 39.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-2-2.

AFSC: BROAD BLADE GRASS
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-2-3.

AFSC: BROAD BLADE GRASS
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.5 TO 39.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-2-1.

AFSC: BROAD BLADE GRASS DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS40530015001		1	1								
FS40530015101		AFSC: B	ROAD E	BLADE G	RASS						
FS40530015102		UNCORRE	CTED F	OR INS	TRUMEN	NOITATION	POLA	RIZATIO	N EFFE	ECTS	
FS40530017001		091186									
FS40530019001	1	0	01 1	.3	39.	78				20.	0.
FS40530019201	1	.3	4.6	.325	5.0	.35	5.1	.375	5.7	. 4	6.8
F\$40530019202	1	.425	8.0	.45	8.2	.5	9.9	.525	14.9	.55	16.4
FS40530019203	1	.575	15.3	.6	14.8	.625	14.3	. 65	10.3	.675	11.1
FS40530019204	1	.7	23.4	.725	35.8	.75	40.0	.8	43.1	.9	46.2
FS40530019205	1	.925	47.0	.975	46.9	1.	47.7	1.1	48.6	1.125	48.8
FS40530019206	1	1.15	46.9	1.2	46.9	1.225	46.9	1.25	47.4	1.275	45.7
FS40530019207	1	1.3	47.0	1.325	46.0	1.35	43.1	1.375	38.1	1.4	32.2
FS40530019208	1	1.425	26.3	1.45	25.6	1.475	27.3	1.5	30.9	1.575	36.8
FS40530019209	1	1.6	37.5	1.65	38.8	1.7	38.1	1.775	34.5	1.8	34.6
FS40530019210	1	1.825	34.8	1.85	31.7	1.875	21.7	1.9	10.6	1.925	11.3
FS40530019211	1	2.	10.2	2.5	10.2	3.	1.7	3.5	3.8	4.	5.8
FS40530019212	1	4.5	5.2	5.	4.1	7.	2.2	8.	2.3	10.	5.1
FS40530019213	1	11.	3.4	12.	3.4	14.	⊥. 6	15.	2.3	17.	2.7
FS40530019214	1	18.	3.3	20.	3.5	21.	3.5	23.	4.1	24.	3.5
FS40530019215	1	26.	3.5	27.	3.4	29.	5.7	31.	5.6	32.	3.9
FS40530019216	1	35.	7.0	37.	7.7	39.	10.2				

TABLE Y-2-2.

AFSC: BROAD BLADE GRASS DIRECTIONAL EMITTANCE AS A FUNCTION OF TEMPERATURE DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS4053001: AFSC: BROAD BLADE GRASS

UNCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of temperature:

TABLE Y-2-3.

AFSC: BROAD BLADE GRASS SOLAR ABORPTANCE

FS4053001

Surface Optics Corp. 20 degrees

AFSC: BROAD BLADE GRASS

The exoatmospheric solar absorptance is 0.751.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-2-4.

AFSC: BROAD BLADE GRASS
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-2-4.

AFSC: BROAD BLADE GRASS DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS40530215001		8	1	•							
FS40530215101		AFSC: B	ROAD E	SLADE G	RASS						
FS40530215102		CORRECT	ED FOR	INSTR	UMENT	TION P	OLARIZ	ZATION	EFFECT	rs	
FS40530217001		081586									
FS40530219001	1		01 1	.3	1.6	31				20.	0.
FS40530219201	1	.3	0.6	. 325	3.0	.375	5.2	.4	6.9	.425	8.3
FS40530219202	ī	.475	9.2	.5	10.4	.525	13.5	.55	15.1	.6	15.2
FS40530219203	ī	.625	14.6	. 675	11.3	.7	18.4	.75	32.6	.8	36.1
FS40530219204	ī	.9	41.6	.925	43.4	1.		1.075	46.8	1.1	47.2
F\$40530219205	ī	1.2	47.9	1.25		1.275	47.0	1.3		1.325	47.8
FS40530219206	ī	1.35		1.375	47.0	1.4	45.0	1.45	42.6	1.5	43.3
FS40530219207	ī	1.6	44.8	2.0.0	1		10.0	~			20.0
FS40530219001	ž		01 1	.3	1.6	35				30.	0.
FS40530219201	2 2 2	.3	0.6	.325	3.6	.375	5.2	. 4	7.9	.475	10.0
F\$40530219201	2	.5	11.1	.525	14.4	.55	15.5	.575	15.9	.6	16.0
FS40530219202	2	. 625	15.4	.675	12.2	.7	20.4	.725	28.7	.75	33.2
FS40530219203	2 2	.8	37.4	.825	39.5	.875	41.7	.723	43.6	.95	45.3
FS40530219205	2	.975	45.7	1.	45.9	1.05	47.8	1.1	48.5	1.15	49.1
FS40530219206	2	1.2	49.3	1.25		1.275	50.4	1.3	50.5	1.35	50.6
FS40530219207	2	1.375	50.2	1.4	49.1	1.425	48.0	1.5	47.7	1.6	47.3
FS40530219207	2		01 1	.3	1.6	32	40.0	1.5	47.7	40.	0.
F\$40530219001	3 3	.3	0.7	.325	4.3	.375	6.2	. 4	8.2	.425	9.6
FS40530219201	2	.475	11.0	.525	12.1	.525	15.1	.55	16.7	.575	17.2
FS40530219202	3 3	.475	17.0	. 625	16.8	.675	13.4	.33	23.2	.725	32.9
FS40530219203	3		38.0	. 023			46.7	.975	46.6	1.	47.9
FS40530219204 FS40530219205	3	.8	50.4	1.2	44.1 51.2	.95	51.6	1.275	51.1	1.3	51.9
	3	1.1 1.35	52.0	1.375	52.4	1.25	50.6		49.6	1.5	49.3
FS40530219206						1.4	30.0	1.45	49.0	1.5	49.3
FS40530219207	3	1.525	49.1	1.6	49.5	24				5 0	٥
FS40530219001	4		01 1	.3	1.6	34	~ 4		0 0	50.	0.
FS40530219201	4	.3	1.7	.325	6.1	.375	7.4	. 4	9.9	.425	11.0
FS40530219202	4	.475	12.3	.5	13.6	.525	17.2	.55	18.5	.575	19.0
FS40530219203	4	.6	18.8	. 625	18.6	.65	17.7	.675	15.4	.7	21.6
FS40530219204	4	.75	36.4	.8	40.5	.85	43.2	.875	44.2	.9	45.8
FS40530219205	4	.95	48.8	1.	50.4	1.05	51.7	1.1		1.175	53.2
FS40530219206	4	1.2		1.275	53.4	1.3	54.2	1.35		1.375	54.4
FS40530219207	4	1.4	51.7	1.45	49.9	1.5	50.2	1.6	50.8	C 0	^
FS40530219001	5		01 1	.3	1.6	39			10 1	60.	0.
FS40530219201	5	.3	3.2	. 325	6.7	.375	9.9	. 4	12.1	.425	13.6
F\$40530219202	5	.475	15.0	.5	16.9	.525	19.7	.55	21.4	.575	22.0
F\$40530219203	5	.6	21.8	. 625	21.1	. 675	17.8	.7	27.1	.725	36.3
FS40530219204	5	.75	38.7	.8	43.2	.825	45.2	.875	47.6	.9	49.3
F\$40530219205	5	.95	51.5	1.	52.1	1.025	53.0	1.1	54.6	1.15	55.7
FS40530219206	5	1.175	55.9	1.2	55.9	1.25		1.275	55.3	1.3	56.6
FS40530219207	5	1.35		1.375	57.1	1.4	54.8	1.45		1.475	53.5
F\$40530219208	5	1.5		1.525	54.1	1.55	54.3	1.6	53.7		_
FS40530219001	6		01 1	.3	1.6	39				70.	0.
FS40530219201	6	.3	5.9	. 325	9.9	.35	11.8	.375	13.5	. 4	15.6
FS40530219202	6	.425	17.6	.475	19.3	.5	20.8	.525	24.0	.55	25.6

TABLE Y-2-4. (CONTINUED)

FS40530219203	6	.575	25.9	.6	25.9	.625	25.4	.65	24.2	.675	22.1
FS40530219204	6	.7	31.3	.725	40.5	.75	42.0	.775	44.4	.8	46.7
FS40530219205	6	.875	51.0	.9	52.6	.925	53.8	1.	55.7	1.1	58.1
FS40530219206	6	1.125	58.5	1.175	58.7	1.2	58.7	1.225	59.3	1.25	58.5
FS40530219207	6	1.275	59.3	1.3	59.3	1.35	60.1	1.375	59.6	1.4	57.1
FS40530219208	6	1.45	56.3	1.5	56.5	1.55	56.4	1.6	57.5		
FS40530219001	7	0	01 1	.3	1.6	36				75.	0.
FS40530219201	7	.3	7.7	.325	11.6	.35	13.3	.375	15.2	. 4	17.7
FS40530219202	7	.425	19.7	.45	21.1	.475	21.7	.5	23.4	.525	26.1
FS40530219203	7	.55	27.7	.575	28.4	.6	28.4	.625	27.8	.675	25.0
FS40530219204	7	.7	32.5	.725	40.1	.75	43.9	.8	47.0	.825	48.6
FS40530219205	7	.9	52.3	. 95	54.7	1.	56.6	1.05	57.9	1.1	58.7
FS40530219206	7	1.2	59.8	1.225	60.1	1.25	60.2	1.275	59.7	1.3	60.8
FS40530219207	7	1.35	61.0	1.375	60.8	1.4	59.4	1.45	57.0	1.5	57.7
FS40530219208	7	1.6	58.4								
FS40530219001	8	0	01 1	.3	1.6	33				80.	0.
FS40530219201	8	.3	9.7	.325	13.4	.35	15.5	.375	16.8	. 4	19.4
FS40530219202	8	.425	22.0	.45	22.5	.475	23.6	.5	25.1	.525	27.1
FS40530219203	8	.55	28.8	.575	29.7	.6	30.0	.625	29.4	. 65	28.2
FS40530219204	8	. 675	26.8	.7	34.6	.725	42.4	.8	48.3	.9	53.1
FS40530219205	8	.925	54.8	1.	56.6	1.1	58.6	1.2		1.275	59.7
FS40530219206	8	1.3	60.4	1.35	60.8	1.375	61.3	1.4	59.7	1.425	59.1
FS40530219207	8	1.45	58.0	1.5	57.5	1.6	58.1				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-3-1.

AFSC: FINE BLADE GRASS AND OTHER FLORA
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 39.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-3-2.

AFSC: FINE BLADE GRASS AND OTHER FLORA
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-3-3.

AFSC: FINE BLADE GRASS AND OTHER FLORA
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.5 TO 39.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-3-1.

AFSC: FINE BLADE GRASS AND OTHER FLORA DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

	ES40540015001		1]	Ĺ							
	PS40540015101		AFSC: F	INE BI	LADE GR	ASS A	ND OTHE	R FLO	RA			
	FS40540015102		UNCORRE				NTATION			N EFFE	ECTS	
	FS40540017001		090186									
	FS40540019001	1		01 1	.3	39.	89				20.	0.
-	FS40540019201	1	.3	3.3	.325	3.7	.375	3.8	. 4	5.2	.425	9.3
	FS40540019202	1	.45	12.4	.475	13.5	.5	15.7	.525	27.7	.55	29.7
	FS40540019203	1	.575	26.5	.6	25.7	.625	24.5	.675	15.8	.7	34.3
	FS40540019204	1	.75	62.6	.775	65.9	.8	65.8	.9	65.6	.925	65.5
	FS40540019205	1	.975	60.8	1.	62.0	1.05		1.075	64.9	1.1	64.6
	FS40540019206	1	1.125	64.2	1.15	59.4	1.175	53.7	1.2	53.5	1.225	53.4
	FS40540019207	1	1.25	55.6	1.275	54.1	1.3		1.325	52.9	1.35	44.1
٠	FS40540019208	1	1.375	34.2	1.4	25.9	1.425	19.6	1.45	18.6	1.475	19.4
	FS40540019209	1	1.5	22.2	1.55	27.3	1.575	30.3	1.6	34.6	1.7	33.6
	P\$40540019210	1	1.8	32.6	1.9	25.5	2.	18.4	2.5	9.3	3.	2.1
	FS40540019211	1	3.5	3.3	4.	6.0	4.5	6.5	5.	6.1	5.5	5.9
	FS40540019212	1	6.	2.0	6.5	2.9	7.	2.0	7.5	1.7	8.	1.7
	FS40540019213	1	8.5	2.4	9.	4.6	9.5	5.6	10.	5.0	10.5	5.0
	FS40540019214	1	11.	4.3	12.	3.6	13.	3.8	14.	3.4	15.	3.2
	FS40540019215	1	16.	3.2	17.	3.5	18.	3.8	19.	4.1	20.	4.1
	FS40540019216	1	21.	5.3	22.	5.9	23.	5.8	24.	5.4	25.	5.1
	FS40540019217	1	27.	5.2	29.	4.5	31.	4.6	32.	5.6	34.	5.1
	FS40540019218	1	35.	9.0	37.	6.3	38.	6.9	39.	5.7		

TABLE Y-3-2.

AFSC: FINE BLADE GRASS AND OTHER FLORA DIRECTIONAL EMITTANCE AS A FUNCTION OF TEMPERATURE DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS4054001: AFSC: FINE BLADE GRASS AND OTHER FLORA UNCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of temperature:

Zenith angle	Wavelength	Temperature	(degr	ees Ke	elvin)	
(degrees)	range (microns)	100 200	300	400	500	600
				•		
20	0.300 - 39.000	0.947 0.955	0.959	0.961	0.960	0.958

TABLE Y-3-3.

AFSC: FINE BLADE GRASS AND OTHER FLORA SOLAR ABORPTANCE

FS4054001 Surface Optics Corp. 20 degrees

AFSC: FINE BLADE GRASS AND OTHER FLORA

The exoatmospheric solar absorptance is 0.667.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-4-1.

AFSC: EARTH (DRY) TYPICAL OF AREA
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 39.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

AFSC: EARTH (DRY) TYPICAL OF AREA DIRECTIONAL REFLECTANCE VS. WAVELENGTH BANDWIDTH 0.3 TO 2.0 MICROMETERS DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION FIGURE Y-4-2.

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-4-3.

AFSC: EARTH (DRY) TYPICAL OF AREA
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.5 TO 39.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-4-1.

AFSC: EARTH (DRY) TYPICAL OF AREA DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS40550015001		1	3	L							
FS40550015101		AFSC: E	ARTH	(DRY) I	YPICAL	OF AR	EA				
FS40550015102		UNCORRE	CTED E	OR INS	TRUMEN	TATION	POLAF	RIZATIO	N EFFE	ECTS	
FS40550017001		082886									
FS40550019001	1	0	01 1	.3	39.	73				20.	0.
FS40550019201	1	.3	4.6	.325	6.9	.375	8.0	. 4	9.6	.475	14.5
FS40550019202	1	.5	16.0	.525	18.4	.55	20.5	.575	22.4	. 6	23.1
FS40550019203	1	.7	28.6	.725	30.0	.75	30.3	.775	32.1	.8	32.5
FS40550019204	1	.9	34.0	.975	37.2	1.	37.8	1.025	38.4	1.1	40.0
FS40550019205	1	1.2	42.1	1.275	43.7	1.3	43.9	1.4	44.8	1.475	45.0
FS40550019206	1	1.5	45.2	1.575	45.9	1.6	47.6	1.7	45.6	1.8	43.6
FS40550019207	1	1.9	43.0	2.	42.5	2.5	37.0	3.	5.6	3.5	13.7
FS40550019208	1	4.	21.3	4.5	21.8	5.	10.9	5.5	6.1	6.	2.6
FS40550019209	1	6.5	6.6	7.	5.3	7.5	5.5	8.	9.0	8.5	11.4
FS40550019210	1	9.	12.4	9.5	10.5	10.	8.1	10.5	6.4	11.	5.6
FS40550019211	1	12.	4.0	13.	5.3	14.	3.4	15.	3.7	16.	3.2
FS40550019212	1	17.	3.6	18.	5.2	19.	7.2	20.	8.2	21.	11.5
FS40550019213	1	22.	10.6	23.	8.7	24.	7.7	25.	8.2	27.	8.8
FS40550019214	1	29.	5.1	31.	3.1	32.	7.7	34.	7.2	35.	8.2
FS40550019215	1	37.	3.8	38.	4.9	39.	3.8				

TABLE Y-4-2.

AFSC: EARTH (DRY) TYPICAL OF AREA DIRECTIONAL EMITTANCE AS A FUNCTION OF TEMPERATURE DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

FS4055001: AFSC: EARTH (DRY) TYPICAL OF AREA

UNCORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of temperature:

Zenith angle Wavelength Temperature (degrees Kelvin) (degrees) range (microns) 100 200 300 400 500 600

20 0.300 - 39.000 0.932 0.936 0.933 0.926 0.915 0.902

TABLE Y-4-3.

AFSC: EARTH (DRY) TYPICAL OF AREA SOLAR ABORPTANCE

FS4055001

1

Surface Optics Corp. 20 degrees

AFSC: EARTH (DRY) TYPICAL OF AREA

The exoatmospheric solar absorptance is 0.726.

Y-39

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-5-1.

AFSC: FINISHED CEMENT
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-5-1.

AFSC: FINISHED CEMENT DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA UNCORRECTED FOR INSTRUMENTATION POLARIZATION

	FS40560015001		1	3	<u>-</u>							
$\hat{\mathbf{x}}$	FS40560015101		AFSC: F	INISH	ED CEME	NT						
•	FS40560015102		UNCORRE	CTED E	FOR INS	TRUMEN	TATION	POLA	RIZATIO	N EFFE	CTS	
	F\$40560017001		090986									
	FS40560019001	1	0	01 1	.3	2.	28				20.	0.
3	FS40560019201	1	.3	10.7	.325	14.7	. 4	21.8	.475	28.9	.5	30.8
	FS40560019202	1	.55	35.9	.6	39.0	.7	40.9	.75	41.9	.8	41.6
	FS40560019203	1	.825	41.4	.9	41.5	1.	41.6	1.1	41.8	1.2	41.9
	FS40560019204	1	1.3	42.4	1.35	42.7	1.4	42.6	1.45	42.6	1.5	43.5
	FS40560019205	1	1.6	45.2	1.7	45.6	1.8	46.1	1.825	46.2	1.875	42.7
	FS40560019206	1	1.9	40.1	1.925	37.6	2.	41.8				

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-5-2.

AFSC: FINISHED CEMENT
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 25.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-5-3.

AFSC: FINISHED CEMENT
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 0.3 TO 2.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

DIRECTIONAL REFLECTANCE VERSUS WAVELENGTH

FIGURE Y-5-4.

AFSC: FINISHED CEMENT
DIRECTIONAL REFLECTANCE VS. WAVELENGTH
BANDWIDTH 2.5 TO 25.0 MICROMETERS
DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

TABLE Y-5-2.

AFSC: FINISHED CEMENT DIRECTIONAL REFLECTANCE VS. WAVELENGTH - ERAS DATA DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS40560215001 8 1 FS40560215101 AFSC: FINISHED CEMENT FS40560215102 CORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS FS40560217001 091086 FS40560219001 1 25. 001 1 .3. 59 20. 9.7 .325 15.5 . 4 .425 25.2 FS40560219201 1 .3 .35 18.2 22.8 FS40560219202 1 .475 29.7 .5 31.7 .575 38.5 . 6 39.5 .625 39.9 .7 .8 FS40560219203 1 41.6 41.9 .85 42.0 . 9 42.0 1. 42.0 1.25 FS40560219204 1 1.025 42.0 1.1 42.4 1.2 42.6 1.225 42.7 42.8 1.3 43.1 43.4 FS40560219205 1 1.275 42.5 1.325 1.4 42.8 1.425 42.7 FS40560219206 1 1.5 43.9 1.6 44.5 45.6 44.3 2.5 31.7 1.8 2. FS40560219207 1 3. 5.3 3.5 7.9 4. 7.3 4.5 10.8 5. 6.6 2.0 2.9 FS40560219208 1 5.5 3.6 6. 6.5 7. 4.6 7.5 6.0 FS40560219209 1 8. 7.6 8.5 11.1 9. 11.6 9.5 9.7 10. 8.8 FS40560219210 1 10.5 6.2 11. 5.0 12. 3.1 13. 4.5 14. 3.0 16. FS40560219211 1 15. 2.2 2.3 17. 3.3 18. 3.2 19. 5.5 FS40560219212 1 20. 8.9 22. 10.1 24. 7.5 25. 8.5 FS40560219001 2 001 1 .3 25. 46 30. 0. 9.5 FS40560219201 2 3 .325 13.4 .35 16.7 .375 19.4 . 4 22.3 .5 29.8 FS40560219202 2 .425 24.9 .45 27.5 .475 32.0 .525 34.2 40.6 39.5 FS40560219203 2 .575 38.9 . 7 41.9 .725 42.6 .6 .65 .825 .9 42.7 FS40560219204 2 42.3 42.2 42.6 42.6 . 8 .95 1. FS40560219205 2 42.7 1.225 1.05 42.6 1.2 42.8 42.9 1.3 43.4 1.1 FS40560219206 2 1.35 43.8 1.4 43.7 43.7 1.5 1.45 44.3 1.6 44.6 2 5.7 FS40560219207 45.5 2. 3. 7.6 5. 7.0 1.8 44.3 4. 2 7. 8. FS40560219208 6. 2.1 4.8 8.2 9. 12.1 10. 9.1 FS40560219209 2 12. 3.5 14. 3.2 16. 2.6 18. 3.7 20. 9.4 FS40560219210 2 25. 8.3 .3 FS40560219001 3 001 1 25. 43 40. 0. .3 .325 . 4 .45 3 23.4 FS40560219201 10.5 15.2 .35 18.3 28.5 FS40560219202 .5 .6 3 32.5 .525 34.5 .575 38.9 39.5 . 7 41.9 .9 .925 FS40560219203 3 .75 43.1 .8 42.8 .85 42.5 42.8 42.9 43.1 43.1 FS40560219204 3 .95 43.0 1. 1.05 1.1 43.2 43.5 1.2 FS40560219205 3 1.3 44.1 1.35 44.4 1.375 44.5 1.4 44.4 1.45 44.2 FS40560219206 3 1.5 44.9 44.9 1.8 46.0 44.9 3. 6.2 1.6 2. FS40560219207 3 8.1 2.5 7. 5.2 8. 9.3 4. 5. 7.6 6. FS40560219208 3 9. 12.4 10. 9.1 12. 3.5 14. 3.6 16. 2.7 3 3.9 FS40560219209 18. 20. 9.4 25. 8.6 25. FS40560219001 4 001 1 .3 42 50. 0. . 4 23.7 .425 FS40560219201 4 .3 11.0 .325 16.1 .35 19.0 26.1 FS40560219202 4 .475 30.7 . 5 32.8 .575 39.6 40.4 43.4 . 6 .975 .775 43.8 FS40560219203 4 43.3 . 8 43.5 .9 .925 43.8 43.3 43.6 44.0 44.6 FS40560219204 43.3 1.025 43.3 1.1 1.2 4 1. 1.3 FS40560219205 1.35 44.8 1.425 44.5 1.45 1.5 45.4 4 1.4 44.6 44.7 FS40560219206 45.7 46.9 2. 43.9 7.1 4. 9.2 4 1.8 3. 1.6 9. FS40560219207 8.8 3.0 7. 6.0 8. 13.8 4 5. 6. 11.0 FS40560219208 4 10. 10.5 12. 4.7 14. 4.1 16. 3.9 18. 5.4 25. FS40560219209 4 20. 11.1 9.1

TABLE Y-5-2. (CONTINUED)

FS40560219001	5	0	01 1	.3	25.	44				60.	0.
FS40560219201	5	.3	11.4	.35	18.6	.375	21.6	. 4	24.5	.475	31.4
FS40560219202	5	.5	33.4	.525	35.3	.575	40.1	.6	40.9	.675	43.7
FS40560219203	5	.7	44.1	.725	44.6	.75	44.7	.8	44.5	.825	44.5
FS40560219204	5	.875	45.1	.,23	45.1	1.	45.0	1.05	44.9	1.1	45.0
FS40560219205	5	1.2	45.2	1.3	45.4	1.35	46.1	1.4	45.8	1.425	45.6
FS40560219206	5	1.45	45.7	1.5	46.4	1.6	46.3	1.8	47.4	2.	46.7
FS40560219207	5	3.	8.1	4.	10.1	5.	9.8	6.	3.8	7.	7.1
FS40560219207	5	8.	11.9	9.	14.2	10.	11.3	12.	5.4	14.	5.1
FS40560219209	5	16.	4.6	18.	6.2	20.	11.3	25.	9.8	14.	J.1
FS40560219209	6		01 1	.3	25.	46	11.5	25.	9.0	70.	0.
FS40560219001	6	.3	13.1	.325	17,7	.35	20.7	4	26.0	.45	30.9
FS40560219201	6	.5	34.8	.525	36.7	.575	41.4	.4 .6	42.8		45.2
FS40560219202	6	.725	45.8	.75	46.0		45.7				
FS40560219203	6	.925	46.0	.75		.8 1.	45.7	.85 1.025	45.5	.9	45.9 45.6
					45.9				45.5	1.05	
FS40560219205	6	1.1	45.8	1.2	46.3	1.3	46.8	1.325	46.9	1.35	47.0
FS40560219206	6	1.4	46.9	1.425	46.9	1.45	47.1	1.5	47.8	1.6	47.3
FS40560219207	6	1.8	48:6	2.	47.7	3.	10.0	4.	12.0	5.	11.7
FS40560219208	6	6.	5.2	7.	9.0	8.	14.4	9.	17.0	10.	13.2
FS40560219209	6 6	12. 25.	7.2 13.0	14.	7.2	16.	6.7	18.	8.6	20.	14.1
FS40560219210	h	25	1 < 11								
				_	^-					~~	•
FS40560219001	7	0	01 1	.3	25.	47				75.	0.
FS40560219001 FS40560219201	7 7	.3	01 1 12.6	.325	17.8	.35	20.9	. 4	26.1	.425	28.7
FS40560219001 FS40560219201 FS40560219202	7 7 7	0 .3 .45	01 1 12.6 31.2	.325 .475	17.8 33.2	.35 .5	34.8	.575	41.1	.425 .6	28.7 42.3
FS40560219001 FS40560219201 FS40560219202 FS40560219203	7 7 7 7	0 .3 .45 .65	01 1 12.6 31.2 44.7	.325 .475 .7	17.8 33.2 45.4	.35 .5 .75	34.8 46.1	.575 .8	41.1 45.9	.425 .6 .85	28.7 42.3 45.7
FS40560219001 FS40560219201 FS40560219202 FS40560219203 FS40560219204	7 7 7 7 7	0 .3 .45 .65 .9	01 1 12.6 31.2 44.7 46.0	.325 .475 .7 .925	17.8 33.2 45.4 46.2	.35 .5 .75 .95	34.8 46.1 46.0	.575 .8 .975	41.1 45.9 45.7	.425 .6 .85	28.7 42.3 45.7 45.8
FS40560219001 FS40560219201 FS40560219202 FS40560219203 FS40560219204 FS40560219205	7 7 7 7 7	0 .3 .45 .65 .9 1.05	01 1 12.6 31.2 44.7 46.0 46.0	.325 .475 .7 .925	17.8 33.2 45.4 46.2 46.2	.35 .5 .75 .95	34.8 46.1 46.0 46.8	.575 .8 .975 1.3	41.1 45.9 45.7 47.3	.425 .6 .85 1.	28.7 42.3 45.7 45.8 47.4
F\$40560219001 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206	7 7 7 7 7 7	0 .3 .45 .65 .9 1.05 1.35	01 1 12.6 31.2 44.7 46.0 46.0 47.5	.325 .475 .7 .925 1.1	17.8 33.2 45.4 46.2 46.2 47.3	.35 .5 .75 .95 1.2	34.8 46.1 46.0 46.8 47.2	.575 .8 .975 1.3	41.1 45.9 45.7 47.3 47.3	.425 .6 .85 1. 1.325 1.5	28.7 42.3 45.7 45.8 47.4 47.9
F\$40560219001 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207	7 7 7 7 7 7 7	0 .45 .65 .9 1.05 1.35	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0	.325 .475 .7 .925 1.1 1.4 1.8	17.8 33.2 45.4 46.2 46.2 47.3 49.1	.35 .5 .75 .95 1.2 1.425 2.	34.8 46.1 46.0 46.8 47.2 48.2	.575 .8 .975 1.3 1.45 3.	41.1 45.9 45.7 47.3 47.3	.425 .6 .85 1. 1.325 1.5 4.	28.7 42.3 45.7 45.8 47.4 47.9 13.4
F\$40560219001 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208	7 7 7 7 7 7 7	0 .3 .45 .65 .9 1.05 1.35	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0	.325 .475 .7 .925 1.1 1.4 1.8	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3	.35 .5 .75 .95 1.2 1.425 2. 7.	34.8 46.1 46.0 46.8 47.2 48.2 10.4	.575 .8 .975 1.3	41.1 45.9 45.7 47.3 47.3 11.3 16.3	.425 .6 .85 1. 1.325 1.5	28.7 42.3 45.7 45.8 47.4 47.9 13.4 19.4
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208 F\$40560219209	7 7 7 7 7 7 7	0 .3 .45 .65 .9 1.05 1.35 1.6 .5.	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0 15.2	.325 .475 .7 .925 1.1 1.4 1.8 6.	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3 9.1	.35 .5 .75 .95 1.2 1.425 2.	34.8 46.1 46.0 46.8 47.2 48.2	.575 .8 .975 1.3 1.45 3.	41.1 45.9 45.7 47.3 47.3	.425 .6 .85 1. 1.325 1.5 4.	28.7 42.3 45.7 45.8 47.4 47.9 13.4
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208 F\$40560219209 F\$40560219210	7 7 7 7 7 7 7 7	0 .3 .45 .65 .9 1.05 1.35	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25.	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3 9.1 15.9	.35 .5 .75 .95 1.2 1.425 2. 7. 14.	34.8 46.1 46.0 46.8 47.2 48.2 10.4	.575 .8 .975 1.3 1.45 3.	41.1 45.9 45.7 47.3 47.3 11.3 16.3	.425 .6 .85 1. 1.325 1.5 4. 9. 18.	28.7 42.3 45.7 45.8 47.4 47.9 13.4 19.4
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208 F\$40560219209 F\$40560219210 F\$40560219001	7 7 7 7 7 7 7 7 7	0 .3 .45 .65 .9 1.05 1.35 1.6 .5.	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0 15.2 17.3	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25.	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3 9.1 15.9 25.	.35 .5 .75 .95 1.2 1.425 2. 7. 14.	34.8 46.1 46.0 46.8 47.2 48.2 10.4 9.1	.575 .8 .975 1.3 1.45 3.	41.1 45.9 45.7 47.3 47.3 11.3 16.3 8.9	.425 .6 .85 1. 1.325 1.5 4. 9. 18.	28.7 42.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219210 F\$40560219201	7 7 7 7 7 7 7 7 7 7 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 .5.	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0 15.2 17.3 01 1	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25.	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3 9.1 15.9	.35 .5 .75 .95 1.2 1.425 2. 7. 14.	34.8 46.1 46.0 46.8 47.2 48.2 10.4	.575 .8 .975 1.3 1.45 3. 8. 16.	41.1 45.9 45.7 47.3 11.3 16.3 8.9	.425 .6 .85 1. 1.325 1.5 4. 9. 18.	28.7 42.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219210 F\$40560219201 F\$40560219201	7 7 7 7 7 7 7 7 7 7 7 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 .5.	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0 15.2 17.3	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3 9.1 15.9 25.	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35	34.8 46.1 46.0 46.8 47.2 48.2 10.4 9.1	.575 .8 .975 1.3 1.45 3. 8.	41.1 45.9 45.7 47.3 47.3 11.3 16.3 8.9	.425 .6 .85 1. 1.325 1.5 4. 9. 18.	28.7 42.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219204 F\$40560219204 F\$40560219206 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219210 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219202	7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 5. 10. 20. 0	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .6	17.8 33.2 45.4 46.2 46.2 47.3 49.1 6.3 9.1 15.9 25. 19.2 44.1 46.7	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7	34.8 46.1 46.0 46.8 47.2 48.2 10.4 9.1 22.3 46.2 46.8	.575 .8 .975 1.3 1.45 3. 8. 16.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.7 46.8	.425 .6 .85 1. 1.325 1.5 4. 9. 18. 80. .425 .75	28.7 42.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9 0.29.8 46.9 46.8
F\$40560219001 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208 F\$40560219209 F\$40560219209 F\$40560219201 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219204	7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 5. 10. 20. 0	01 1 12.6 31.2 44.7 46.0 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8 46.8	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .6 .85 1.05	17.8 33.2 45.4 46.2 47.3 49.1 6.3 9.1 15.9 25. 19.2 44.1 46.7 46.8	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7 .875 1.1	34.8 46.1 46.0 46.8 47.2 48.2 10.4 9.1 22.3 46.8 46.9	.575 .8 .975 1.3 1.45 3. 8. 16.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.7 46.8 47.2	.425 .6 .85 1. 1.325 1.5 4. 9. 18. 80. .425 .75 .95	28.7 45.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9 0. 29.8 46.9 46.8 47.3
F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219205 F\$40560219206 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219201 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204	7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 5. 20. 3 .5	01 1 12.6 31.2 44.7 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8 48.0	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .85 1.05 1.35	17.8 33.2 45.4 46.2 47.3 49.1 6.3 9.1 15.9 25.1 9.2 44.1 46.7 46.8 48.4	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7 .875 1.1	34.8 46.1 46.8 47.2 48.2 10.4 9.1 22.3 46.8 46.9 48.0	.575 .8 .975 1.3 1.45 3. 8. 16.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.7 46.8 47.2 47.8	.425 .6 .85 1. 1.325 1.5 4. 9. 18. 80. .425 .75 .95 1.225 1.45	28.7 45.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9 0. 29.8 46.9 46.8 47.3 48.0
F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219205 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219201 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206	7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 5. 10. 20. 0	01 1 12.6 31.2 44.7 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8 48.0 48.8	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .85 1.05 1.35	17.8 33.2 45.4 46.2 47.3 49.1 6.3 9.1 15.9 25.2 44.1 46.7 46.8 48.4 47.9	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7 .875 1.1	34.8 46.1 46.8 47.2 48.2 10.4 9.1 22.3 46.9 48.0 49.0	.575 .8 .975 1.3 1.45 3. 8. 16. .4 .725 .9 1.2 1.425 2.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.7 46.8 47.2 47.8 48.2	.425 .6 .85 1. 1.325 1.5 4. 9. 18. 80. .425 .75 .95	28.7 45.3 45.7 45.8 47.4 47.9 13.4 10.9 0. 29.8 46.9 46.8 47.3 48.0 12.8
F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219205 F\$40560219206 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219201 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204	7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 5. 20. 3 .5	01 1 12.6 31.2 44.7 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8 48.0	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .85 1.05 1.6 5.	17.8 33.2 45.4 46.2 47.3 49.1 6.3 9.1 15.9 25.2 44.1 46.7 46.8 48.4 47.9 14.1	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7 .875 1.1 1.4 1.8	34.8 46.1 46.8 47.2 48.2 10.4 9.1 22.3 46.8 46.9 48.0	.575 .8 .975 1.3 1.45 3. 8. 16.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.7 46.8 47.2 47.8	.425 .6 .85 1. 1.325 1.5 4. 9. 18. 80. .425 .75 .95 1.225 1.45	28.7 45.3 45.7 45.8 47.4 47.9 13.4 19.4 10.9 0. 29.8 46.9 46.8 47.3 48.0
F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219205 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219209 F\$40560219209 F\$40560219201 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208	777777777888888888888888888888888888888	0 .3 .45 .65 .9 1.05 1.35 1.6 5. 20. 0 .3 .5 .8 1.3 1.5	01 1 12.6 31.2 44.7 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8 48.8 14.8 22.7	.325 .475 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .6 .85 1.05 1.35 1.6	17.8 33.2 45.4 46.2 47.3 49.1 6.3 9.1 15.9 19.2 44.1 46.8 48.4 47.9 14.1 17.4	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7 .875 1.1 1.4 1.8 6. 12.	34.8 46.1 46.8 47.2 48.2 10.4 9.1 22.3 46.8 46.9 48.0 49.0 7.8 11.3	.575 .8 .975 1.3 1.45 3. 8. 16. .4 .725 .9 1.2 1.425 2.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.7 46.8 47.2 47.8 48.2	.425 .6 .85 1. 1.325 1.5 4. 9. 18. 80. .425 .75 .95 1.225 1.45 3.	28.7 45.3 45.7 45.8 47.4 47.9 13.4 10.9 0. 29.8 46.9 46.8 47.3 48.0 12.8
F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219205 F\$40560219206 F\$40560219207 F\$40560219208 F\$40560219209 F\$40560219209 F\$40560219201 F\$40560219201 F\$40560219201 F\$40560219202 F\$40560219203 F\$40560219203 F\$40560219204 F\$40560219205 F\$40560219206 F\$40560219207	7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8	0 .3 .45 .65 .9 1.05 1.35 1.6 .5 .20. 0 .3 .5 .8 1.3 1.5	01 1 12.6 31.2 44.7 46.0 47.5 48.0 13.0 15.2 17.3 01 1 14.3 35.9 46.8 48.8 14.8	.325 .475 .7 .925 1.1 1.4 1.8 6. 12. 25. .3 .325 .85 1.05 1.6 5.	17.8 33.2 45.4 46.2 47.3 49.1 6.3 9.1 15.9 25.2 44.1 46.7 46.8 48.4 47.9 14.1	.35 .75 .95 1.2 1.425 2. 7. 14. 43 .35 .7 .875 1.1 1.4 1.8	34.8 46.1 46.8 47.2 48.2 10.4 9.1 22.3 46.8 46.9 48.0 7.8	.575 .8 .975 1.3 1.45 3. 8. 16. .4 .725 .9 1.2 1.425 2. 7.	41.1 45.9 45.7 47.3 11.3 16.3 8.9 27.4 46.8 47.2 47.8 47.8 41.9	.425 .6 .85 1.325 1.5 4. 9. 18. 80. .425 .95 1.225 1.45 3.	28.7 45.3 45.7 45.8 47.4 47.9 13.4 10.9 0. 29.8 46.9 46.8 47.3 48.0 12.8 18.9

TABLE Y-5-3.

J

AFSC: FINISHED CEMENT DIRECTIONAL / JD HEMISPHERICAL EMITTANCE AS A FUNCTION OF INCIDENT ANGLE AND TEMPERATURE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS4056021: AFSC: FINISHED CEMENT

CORRECTED FOR INSTRUMENTATION POLARIZATION EFFECTS

Emittance tabulated as a function of zenith angle and temperature:

Zenith angle (degrees)		Wavelength range (microns)			Temperature (degrees Kelvin) 100 200 300 400 500 600						
	20			25.000			0.942				
	30			25.000			0.939				
	40			25.000			0.937				
	50			25.000			0.925				
	60			25.000	0.911	0.921	0.918	0.916	0.914	0.911	
	70			25.000			0.896				
	75	0.300	- :	25.000	0.855	0.873	0.874	0.875	0.876	0.875	
	80	0.300	– :	25.000	0.825	0.846	0.849	0.853	0.856	0.856	
Hemi	.spherical	emitta	nce	:	0.900	0.913	0.911	0.910	0.909	0.906	

TABLE Y-5-4.

AFSC: FINISHED CEMENT SOLAR ABSORBPTANCE AS A FUNCTION OF INCIDENT ANGLE DATA CORRECTED FOR INSTRUMENTATION POLARIZATION

FS4056021 Surface Optics Corp.
AFSC: FINISHED CEMENT

20 degrees: The exoatmospheric solar absorptance is 0.641.

degrees: The exoatmospheric solar absorptance is 0.641. degrees: The exoatmospheric solar absorptance is 0.641. degrees: The exoatmospheric solar absorptance is 0.636. degrees: The exoatmospheric solar absorptance is 0.629. degrees: The exoatmospheric solar absorptance is 0.621. degrees: The exoatmospheric solar absorptance is 0.608. degrees: The exoatmospheric solar absorptance is 0.605. degrees: The exoatmospheric solar absorptance is 0.605. degrees: The exoatmospheric solar absorptance is 0.597.