

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2017/2018

EEL2216 – CONTROL THEORY

(All sections / Groups)

4 JUNE 2018 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of SIX pages including cover page with FOUR questions only.
- 2. Answer ALL questions and print all your answers in the answer booklet provided.
- 3. All questions carry equal marks and the distribution of the marks for each question is given.

Question 1

(a) Consider the unity feedback system shown in Figure Q1(a).

- (i) Find the zeros and poles of $F(s) = \frac{10s + 18}{4s^2 + 12s + 9}$. [2 marks]
- (ii) Determine the values of A and B, when F(s) is written in form of $F(s) = \frac{A}{2s+3} + \frac{B}{(2s+3)^2}.$ [6 marks]
- (iii) Using inverse Laplace transform, determine f(t). [3 marks]
- (b) Derive the closed-loop transfer function Y(s)/R(s) for the block diagram shown in Figure Q1(b) by using the block diagram reduction method. Show your method step by step. [5 marks]

(c) Derive the transfer function y_5/y_1 for the signal flow graph as shown in Figure Q1(c) by using Mason's rule. [9 marks]

Figure Q1(c)

Question 2

- (a) Briefly explain the Routh-Hurwitz (RH) criterion for the determination of system stability. [3 marks]
- (b) The closed-loop transfer function of a second order system is given below, where Y(s) is the output while R(s) is the input:

$$\frac{Y(s)}{R(s)} = \frac{K}{(s+0.5)(s+\beta)+K}.$$

Find K and β such that the delay time, t_d , is 5s and rise time, t_r , is 8s. (Given that $t_d = \frac{1+0.7\zeta}{\omega_n}$ and $t_r = \frac{0.60+2.16\zeta}{\omega_n}$. ζ and ω_n are the damping ratio and natural undamped frequency, respectively). [8 marks]

(c) A negative unity feedback amplifier system has the following loop transfer function:

$$KG(s)H(s) = \frac{K(s+2)}{(s+1)(s+5)(s+8)}.$$

Determine the following:

(i) The starting and ending points.

[2 marks]

(ii) The number of branches.

[1 mark]

(iii) Behaviour at infinity.

[2 marks]

(iv) Root loci on the real axis.

[1 mark]

Given that the break-away point on the real axis is -6.45, sketch the root locus of the system. What is the range of K for stability? Give your reason. Predict the effect of adding a pole to G(s)H(s) on the root locus of the system above. [4+4 marks]

Question 3

(a) The forward path transfer function of a unity-feedback control system is given as:

$$G(s) = \frac{24}{\left(s+2\right)\left(s+6\right)}.$$

- (i) Analytically calculate the resonance peak, M_r and its resonant frequency, ω_r of the closed-loop system. [5 marks]
- (ii) What is the relationship between M_r and damping ratio, ξ ? [2 marks]

(b) Consider the following transfer function:

$$G(s)H(s) = \frac{5}{s(s+3)}.$$

- (i) List out all the basic factors and their corresponding corner frequencies, magnitudes/slopes and phases. [10 marks]
- (ii) Sketch the Bode asymptotic magnitude and asymptotic phase plots accurately on a semi-log paper. [6 marks]
- (iii) Based on part(b)(ii), estimate the phase margin (PM) and its corresponding gain crossover frequency (ω_{gc}). [2 marks]

Question 4

- (a) There are various controller/compensator configurations in control system compensation such as cascade compensation and feedback compensation.
 - (i) Draw the configurations for cascade compensation and feedback compensation. [4 marks]
 - (ii) State one advantage of feedback compensation over cascade compensation. [2 marks]
- (b) The unity feedback system shown in Figure Q4 has a controller K(s) and a plant transfer function G(s) given by:

$$G(s) = \frac{1}{(s+3)(s+7)}$$

Figure Q4(b)

Design the following:

- (i) A Proportional Derivative (PD) controller, $K(s) = K_P + K_D s$ such that the damping ratio is 0.85 and the steady-state error of the cascaded system is 5% for a unit step input. [8 marks]
- (ii) A lead compensator controller, $K(s) = \frac{B(s+z)}{(s+p)}$ if the system have dominant poles at $s = -7 \pm j20$ and a compensator pole at s = -10 (i.e. p = 10).

 [11 marks]

Appendix - Laplace Transform Pairs

f(t)	F(s)
Unit impulse $\delta(t)$	1
Unit step 1(t)	1
* **	<u></u>
t	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$ $\frac{1}{s^n}$
$\frac{t^{n-1}}{(n-1)!} \qquad (n=1, 2, 3, \ldots)$ $t^{n} (n=1, 2, 3, \ldots)$	
t'' $(n = 1, 2, 3,)$	$\frac{n!}{s^{n+1}}$
e^{-at}	$\frac{1}{s+a}$
te ^{-at}	$\frac{1}{(s+a)^2}$
$\frac{t^{n-1}}{(n-1)!}e^{-at} (n=1,2,3,\ldots)$ $t^{n}e^{-at} (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$
$t^n e^{-at} \ (n=1,2,3,\ldots)$	$\frac{n!}{(s+a)^{n+1}}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cos at	$\frac{s}{s^2+\omega^2}$
sinh <i>wt</i>	$\frac{\omega}{s^2 - \omega^2}$ $\frac{s}{s^2 - \omega^2}$
$\cosh \omega t$	$\frac{s}{s^2-\omega^2}$
$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
$\frac{1}{ab}\left[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\right]$	$\frac{1}{s(s+a)(s+b)}$

Appendix - Laplace Transform Pairs (continued)

	
$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega t$	
$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{s+a}{(s+a)^2 + \omega^2}$ $\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$ $-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	
$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$ $1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	
$1-\cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
$\omega t - \sin \omega t$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
$\sin \omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
$\frac{1}{2\omega}t\sin\omega t$	$\frac{s}{(s^2+\omega^2)^2}$
$t\cos\omega t$	$\frac{(s^2 + \omega^2)^2}{s^2 - \omega^2}$ $\frac{(s^2 + \omega^2)^2}{(s^2 + \omega^2)^2}$
$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$ $\frac{s^2}{(s^2 + \omega^2)^2}$
$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	$\frac{s^2}{(s^2+\omega^2)^2}$

End of Paper

