Aplicación de tests no paramétricos

Caso: Distribucion de notas de estudiantes de la academia Trilce en los ultimos 4 años

> Alvarez, Sandro Bautista, Walter Burga, Ever Casanova, Italo Cuyate, Brayan

> > Facultad de Ingenieria Industrial y de Sistemas Estadística Aplicada - PC2 Universidad Nacional de Ingenieria

> > > Diciembre 2022

PC3 Estadística Aplicada

Objetivos del trabajo

General

Determinar si el ciclo de repaso ha sido útil para los postulantes a la Universidad Nacional de Ingenieria en la academia Trilce tomando en cuenta sus sedes y el efecto de la pandemia.

La distribución de las notas de los estudiantes de la academia Trilce de acuerdo a sede es la siguiente:

Con un gráfico de cajas se puede observar que la distribución de Villa el Salvador tiene una mediana muestral que es distinta a las demás.

- Sea la hipótesis nula H_0 es que las distribuciones de las notas de los estudiantes de la academia Trilce de acuerdo a sede son iguales.
- La hipótesis alternativa H_1 es que al menos una de las distribuciones es distinta.
- La prueba de Kruskal-Wallis arroja los siguientes resulados:

 Se rechaza H₀ y se concluye que al menos alguna distribución de notas de los estudiantes de la academia Trilce de acuerdo a sede difiere con un nivel de significancia del 5 %

Al comparar las cuatro distribuciones el p-value es 0.000445.

Sin embargo, un detalle que resalta es que al excluir la distribución de Villa el Salvador, el p-value es 0.0186. Este valor sería significativo para un nivel de confianza del $1\,\%$ y señala una posible diferencia que consideramos que es susceptible de futura investigación.

Prueba de aleatoriedad de rachas

Se realiza una prueba de rachas para determinar si los rankings de estudiantes de acuerdo a género son aleatorios

Prueba de aleatoriedad de rachas

Ho= El orden de merito por genero ha ocurrido de forma aleatoria H1= El orden de merito por genero han ocurrido de forma no aleatoria

n1=58 n2=14 R=25

La distribución de probabilidad para R tiende hacia la normalidad cuando n1 y n2 se hacen grandes. La aproximación es buena cuando n1 y n2 sean ambos mayores que 10. Por esta razón, podemos usar el estadístico Z como estadístico de prueba con muestras grandes, donde

$$z = \frac{R - E(R)}{\sqrt{V(R)}}$$

$$E(R) = \frac{2n1n2}{n1 + n2} + 1 = 23.56$$

$$V(R) = \frac{2n1n2(2n1n2 - n1 - n2)}{(n1 + n2)^2(n1 + n2 - 1)} = 6.85$$

$$Z = \frac{25 - 23.56}{\sqrt{6.85}} = 0.55$$

La region de rechazo para una prueba de dos colas, con un nivel de suficiencia del 5%. |z|>1.96.

Z no pertenece a la región de rechazo, entonces se acepta la hipotesis nula.

Test U de Mann-Whitney

Se ha comparado los resultados pre-pandemia y post-pandemia de los estudiantes de la academia Trilce.

TEST U MANN-WHITNEY

Ejemplo: Se han recolectado las muestras de los puntos obtenidos por alumnos en simulacros tipo examen de admisión UNI de la academia TRILCE en los años 2018 y 2022. Se quiere saber si los resultado de puntos obtenidos en simulacros en 2018 (pre-pandemia) y en 2022 (postpandemia) son diferentes.

Dande.

n₁: tamaño de la muestra de 2018 n: tamaño de la muestra de 2022 R1: sumatoria de los rangos de 2018 R: sumatoria de los rangos de 2022

Estadistico de Prueba

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

U2= 5037

$$U \, = \, \min\{U_{_{1}}, \, U_{_{2}}\}$$

$$Z = rac{U - rac{n_1 n_2}{2}}{\sqrt{rac{n_1 n_2 (n_1 + n_2 + 1)}{12}}} \sim N(0, 1)$$

NOTA: para muestras mayores a 10 se puede aproximar a una distibucion

Valor critico:

Decisión: Se Rechaza la hipotesis nula

 (H_0)

Conclusión: Con un NS de 0.05 sobre los datos, existen evidencias sufienciente para decir que los resultados en los simulacros post-pandemia y pre-pandemia son diferentes.

Prueba de signos

Se realiza una prueba de signos para evaluar el desempeño de los estudiantes post-repaso.

	PRUEBA D	SIGNUS		
CÓDIGO	NOTA SEMESTRAL	NOTA REPASO	DIFERENCIA	
60776567	26.00	134.00	-108.00	
70281430	73.00	57.00	16.00	
70362935	-11.00	37.00	-48.00	1.HIPOTESIS
70379032	184.00	166.00	18.00	H0: No hay cambio en las notas de ambos exámenes, p = 0
70399298	109.00	120.00	-11.00	H1: El repaso no ayudó a mejorar las notas, p < 0.5
70418454	58.00	59.00	-1.00	2.ESTADISTICO
70572968	146.00	135.00	11.00	Prueba de signos/muestras relacionadas
70800481	7.00	-1.00	8.00	Negativos 40
70844684	312.00	246.00	66.00	Positivos 69
70995029	153.00	64.00	89.00	Total:N 109
71121137	237.00	171.00	66.00	$Z = \frac{r^+ - 0.5n}{}$
71245348	-21.00	43.00	-64.00	$Z = \frac{7 - 0.5 \pi}{0.5 \sqrt{n}}$
71253302	238.00	262.00	-24.00	$Z = \frac{69 - 0.5(109)}{2} = 2.777$
71282841	185.00	115.00	70.00	$Z = \frac{1}{0.5\sqrt{109}} = 2.777$
71329406	314.00	223.00	91.00	
71387944	51.00	68.00	-17.00	Ho Región de
71425572	44.00	20.00	24.00	rechazo
71455383	93.00	240.00	-147.00	α=0.0
71530184	48.00	175.00	-127.00	Región de aceptación
71535597	232.00	283.00	-51.00	Z _L = 1.645
71535634	86.00	53.00	33.00	
71608886	218.00	228.00	-10.00	3.CONCLUSION
71660259	153.00	207.00	-54.00	Como 2,777 es mayor que 1,645 se rechaza H _a v se
71834363	198.00	259.00	-61.00	concluye con un nivel de significancia de 0.05 que
71900361	133.00	199.00	-66.00	el repaso no ayudó a mejorar los conocimientos.
71961932	71.00	5.00	66.00	
72048579	350.00	302.00	48.00	

Test de Wilcoxon

Si bien, el test de signos puede cumplir la misma funcion que el de **Wilcoxon**, este ultimo tiene mayor potencia al momento de detectar diferencia de medias.

Se realiza una prueba de Wilcoxon para 2 muestras relacionadas

 H_0 : Las distribuciones son semejantes

 H_1 : Las distribuciones se encuentran desplazadas

Dado que el estadistico de prueba:

$$Z = 2,991$$

es mayor al

$$Z_c rit = 1,645$$

se rechaza la hipotesis nula, por lo que se no se puede afirmar que ambas muestras sean identicas.

El repaso no ayudó a mejorar los conocimientos

estadistico de la prueba	2008	
tamaño	109	
T+ y T- suman 5995, como el estadístico de prueba		
2008 no es 2997.7, entonces si rechaza la hipotesis nula en favor a la hipotesis alternativa		

Conclusiones

- El ciclo de repaso no ha mejorado las notas de los estudiantes de la academia Trilce. Sin embargo esto podría deberse a que el examen después de repaso fue más complicado que el examen antes de repaso, cosa que no tenemos por seguro.
- La distribución de estudiantes de Villa el Salvador es diferente a la de los demás distritos como mínimo.
- Las mujeres y hombres tienen un desempeño similar en el examen de repaso.
- Existe diferencia en el desempeño pre-pandemia y post-pandemia de los estudiantes de la academia Trilce.