

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Hausarbeit

Birger Kamp

Der wissende Aufzug

Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer Science Department of Computer Science

Birger Kamp

Der wissende Aufzug

Hausarbeit eingereicht im Rahmen des Moduls Modellierung Dynamischer Systeme

im Studiengang Master Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Betreuer: Prof. Dr. Wolfgang Fohl

Eingereicht am: XXXXXX

Birger Kamp

Thema der Arbeit

Der wissende Aufzug

Stichworte

Aufzug, Fahrstuhl, Warteschlange, Scheduling

Kurzzusammenfassung

Abstract

Inhaltsverzeichnis

1	Einl	eitung	
	1.1	These der Arbeit	
	1.2	Verwendete Metriken	
2	Grundlagen		
	2.1	Scheduling-Theorie	
		2.1.1 Online Probleme	
		2.1.2 Offline Probleme	

1 Einleitung

Man nimmt es als selbstverständlich an, dass ein Fahrstuhl kommt, wenn man auf den *Rufen*-Knopf gedrückt hat. Tut man dies in Gebäuden, in denen ein System mehrere Fahrstühle koordiniert, hat man mit dem bloßen Knopfdrücken einen komplexen Prozess gestartet. Die folgende Arbeit verschafft einen Einblick in die Ablaufplanung eines Fahrstuhls und was es dabei zu beachten gibt. Außerdem wird eine These gestellt und mit einem einfach gehaltenen Modell beantwortet.

1.1 These der Arbeit

Ein einfacher Aufzug setzt sich erst dann in Bewegung, wenn er eine Anfrage erhalten hat. Jemand der den *Rufen*-Knopf drückt, muss also warten bis der Fahrstuhl ihn abholt. Fahrstuhlsysteme sollten grundsätzlich bemüht sein, diese Wartezeit möglichst kurz zu halten.

Daraus leitet sich die These dieser Arbeit ab: "Wenn das Fahrstuhl-System wüsste, dass zum Zeitpunkt x in der Zukunft, eine Anfrage auf dem Stockwerk a gestellt wird, dann müsste der Anfragesteller kürzer warten". Ein Anwendungszenario wäre eine Hochschule bei der dem Fahrstuhlsystem bekannt ist, dass zur Pausenzeit um 9.30 Uhr auf Stockwerk 6 einige Personen zum Erdgeschoss fahren möchten.

1.2 Verwendete Metriken

Um die gestellte These anhand eines Modells evaluieren zu können, müssen einige Metriken bestimmt und verglichen werden.

Die These selbst nennt die *Wartezeit* in als Metrik. Um die Auswirkungen der veränderten Ablaufplanung beurteilen zu können, wird außerdem der *Anfragen-Durchsatz* und die *Fahrtzeit* gemessen. Mit Fahrtzeit wird die Zeit bezeichnet, die ein aufgenommer Fahrgast im Fahrstuhl verbringt bis er auf seinem Ziel-Stockwerk aussteigt.

2 Grundlagen

Hinter der Planung der Fahrstühle stecken Theorien und algorithmische Probleme, die im Folgenden erläutert werden.

2.1 Scheduling-Theorie

Die theoretische Grundlage für eine Fahrstuhlplanung ist die Scheduling-Theorie. In der Scheduling geht es laut Pinedo (2012) darum, dass der Zugriff auf eine Ressource zeitgesteuert auf die Anfragenden verteilt wird.

Ein Beispiel aus der Informatik sind Multi-Threading Prozessoren. Dabei sind die Threads diejenigen Objekte, die den Zugriff auf die Ressource Prozessor erfragen. Der Thread-Scheduler erlaubt jedem anfragenden Thread eine gewisse Zeitspanne den Prozessor zu benutzen. Anschließend erhält ein anderer Thread die Ressource für eine gewisse Zeit.

2.1.1 Online Probleme

Nach Manasse u. a. (1988) ist eine Fahrstuhlablaufplanung ein Problem, das in eine Unterart der Scheduling-Probleme einzuordnen ist, die *Online Probleme* genannt werden. Diese Probleme zeichnen sich dadurch aus, dass dem Scheduler zu einem Zeitpunkt nur eine Teilmenge aller anfallenden Anfragen bekannt ist. Zu jedem Zeitpunkt können weitere Anfragen dazu kommen. Daraus lässt sich folgern, dass der Scheduler nur bedingt optimal planen kann, da er nicht weiß welche Anfragen noch kommen werden.

2.1.2 Offline Probleme

Im Gegensatz zu den Online Problemen stehen die *Offline Probleme*. Diese sind ebenfalls eine Unterart der Scheduling-Probleme. Bei diesen Problemen sind dem Scheduler bereits alle anfallenden Anfragen bekannt, sodass der Scheduler optimal planen kann.

Ein Beispiel für diese Probleme sind Logistik-Unternehmen: Diese können bereits im Voraus die Fahrt der Lieferwagen für den nächsten Tag planen. Denn alle Lieferanfragen gehen bereits im Vortag ein.

3 Modellierung

Das folgende Kapitel beschreibt wie das Modell erstellt wurde und die getroffenen Annahmen und Vereinfachungen.

- 3.1 Verwendete Tools
- 3.2 Vereinfachungen und Annahmen
- 3.3 Das Modell

4 Auswertung der Ergebnisse

- 4.1 Fahrstuhl ohne Wissen
- 4.2 Fahrstuhl mit Wissen
- 4.3 Analyse

5 Fazit

Literaturverzeichnis

[Manasse u. a. 1988] Manasse, Mark; McGeoch, Lyle; Sleator, Daniel: Competitive algorithms for on-line problems. In: *Proceedings of the twentieth annual ACM symposium on Theory of computing* ACM (Veranst.), 1988, S. 322–333

[Pinedo 2012] PINEDO, Michael L.: Scheduling: theory, algorithms, and systems. Springer Science & Business Media, 2012