

# Signaux analogiques

# K. Boudjelaba

# Thématique :

Signal

### Table des Matières Signaux usuels 2 1.2 Signal carré ....... 4 **Exercices** 8 2.1 Exercice 1 .....8 2.3 Exercice 3 2.4 Exercice 4 2.5 Exercice 5

### 1. Signaux usuels

### 1.1 Signal sinusoïdal



Figure 1. Signal sinusoïdal de valeur moyenne nulle

$$s(t) = A_m \cdot \sin(2\pi \cdot f \cdot t - \varphi)$$

- $\bullet \ T$ : Période du signal [s]
- f : avec  $f = \frac{1}{T}$  Fréquence du signal [Hz]
- $A_{cc}$  : avec  $A_{cc}=2A_m$  Amplitude crête à crête
- $\bullet \ \varphi$ : Déphasage du signal [rad, °]
- $S_{max} = |A_m|$  et  $S_{min} = -|A_m| \implies S_{min} = -S_{max}$



Figure 2. Signal sinusoïdal de valeur moyenne non nulle

$$s(t) = S_{moy} + A_m \cdot \sin(2\pi \cdot f \cdot t - \varphi)$$

- $S_{moy}$ : Valeur moyenne (DC) du signal [V, A . . . ]
- $\bullet$  T : Période du signal [s]
- f : avec  $f = \frac{1}{T}$  Fréquence du signal [Hz]
- $A_{cc}$ : avec  $A_{cc} = 2A_m$  Amplitude crête à crête [V, A . . . ]
- $\bullet \ \varphi$ : Déphasage du signal [rad, °]
- $S_{max} = |A_m| + S_{moy}$  et  $S_{min} = -|A_m| + S_{moy}$

### 1.2 Signal carré



Figure 3. Signal carré

 ${\bf Mod\`ele~de~signal:}~{\rm math\'ematiquement,~le~signal~s\'exprime~sur~une~p\'eriode~sous~la~forme:$ 

$$s(t) = \left\{ \begin{array}{ll} A & \text{si } 0 \leq t < \frac{T_0}{2} \\ 0 & \text{si } \frac{T_0}{2} \leq t < T_0 \end{array} \right.$$

### 1.3 Signal triangulaire



Figure 4. Signal triangulaire

Modèle de signal : mathématiquement, le signal s'exprime sur une période sous la forme :

$$s(t) = \begin{cases} \frac{2A}{T_0}t & \text{si } 0 \le t < \frac{T_0}{2} \\ \frac{2A}{T_0}(T_0 - t) & \text{si } \frac{T_0}{2} \le t < T_0 \end{cases}$$

### 1.4 Echelon unité



Figure 5. Echelon unité

 $\bf Mod\`ele~de~signal:$  mathématiquement, le signal s'exprime sous la forme :

$$u(t) = \left\{ \begin{array}{ll} 1 & \text{si } t \ge 0 \\ 0 & \text{ailleurs.} \end{array} \right.$$

### 1.5 Rampe unité



Figure 6. Rampe unité

$$r(t) = \left\{ \begin{array}{ll} t & \text{si } t \ge 0 \\ 0 & \text{ailleurs.} \end{array} \right.$$

### 1.6 Fenêtre rectangulaire (signal porte)



Figure 7. Fenêtre rectangulaire

Modèle de signal : mathématiquement, le signal s'exprime sous la forme :

$$\Pi_L(t) = \begin{cases} 1 & \text{si } -\frac{L}{2} \le t < \frac{l}{2} \\ 0 & \text{ailleurs.} \end{cases}$$

### 1.7 Fenêtre triangulaire



Figure 8. Fenêtre triangulaire

$$\Delta_L(t) = \begin{cases} 1 - \frac{|t|}{L} & \text{si } -L \le t < L \\ 0 & \text{ailleurs.} \end{cases}$$

### 1.8 Impulsion de Dirac



Figure 9. Impulsion de Dirac

Modèle de signal : mathématiquement, le signal s'exprime sous la forme :

$$\delta(t) = \left\{ \begin{array}{cc} +\infty & \text{si } t = 0 \\ 0 & \text{ailleurs.} \end{array} \right.$$

sous la contrainte

$$\int_{-\infty}^{\infty} \delta(t)dt = 1.$$

# 2. Exercices

### 2.1 Exercice 1

Determiner les paramètres du signal de la figure 10.

Voir document réponse : Lien 2.6.



Figure 10. Signal 1

### 2.2 Exercice 2

Determiner les paramètres du signal de la figure 11.

Voir document réponse : Lien 2.6.



Figure 11. Signal 2

### 2.3 Exercice 3

Determiner les paramètres du signal de la figure 12.

Voir document réponse : Lien 2.6.



Figure 12. Signal 3

### 2.4 Exercice 4

- A l'aide d'un GBF (générateur basse fréquence), générer le signal de l'exercice 3.
- Visualiser ce signal à l'aide de l'oscilloscope.
- Relever ce signal sur le document fourni (Fig. 15).
- Visualiser le spectre (FFT) de ce signal.
- Relever cette FFT sur le document fourni (Fig. 16).

### 2.5 Exercice 5

- A l'aide d'un GBF (générateur basse fréquence), générer le signal de la figure 13.
- Visualiser ce signal à l'aide de l'oscilloscope.
- Relever ce signal sur le document fourni (Fig. 17).
- Visualiser le spectre (FFT) de ce signal.
- Relever cette FFT sur le document fourni (Fig. 18).



### 2.6 Exercice 6

- A l'aide d'un GBF (générateur basse fréquence), générer le signal de la figure 14.
- Visualiser ce signal à l'aide de l'oscilloscope.



Figure 14. Signal 6



$$f = \dots$$
 Hz,

$$T = \dots$$
 s,  $f = \dots$  Hz,  $V_{moy} = \dots$  V,  $\varphi = \dots$  rad

$$\varphi = \dots \text{rad}$$

$$V_m = \dots V$$
,

$$V_{cc} = \dots V,$$

$$V_m = \dots V, \qquad V_{cc} = \dots V, \qquad V_{max} = \dots V, \qquad V_{min} = \dots V.$$

$$V_{min} = \dots V.$$

$$\Longrightarrow v_1(t) = \dots \dots \dots$$



$$f = \dots$$
 Hz.

$$T = \dots \text{ s, } \qquad f = \dots \text{ Hz, } \qquad V_{moy} = \dots \text{ V, } \qquad \varphi = \dots \text{ rad}$$

$$\rho = \dots$$
rad

$$V_{cc} = \dots V$$
.

$$V_m = \dots V, \qquad V_{cc} = \dots V, \qquad V_{max} = \dots V, \qquad V_{min} = \dots V.$$

$$V_{min} = \dots V$$
.

$$\Longrightarrow v_2(t) = \dots$$



$$T=\dots$$
 s,  $f=\dots$  Hz,  $I_{moy}=\dots$  A,  $\varphi=\dots$  rad  $I_m=\dots$  A,  $I_{cc}=\dots$  A,  $I_{max}=\dots$  A,  $I_{min}=\dots$  A. 
$$\implies i(t)=\dots$$



Figure 15. Représentation temporelle





Figure 17. Représentation temporelle

