Convex Functions

Nipun Batra

February 6, 2024

IIT Gandhinagar

Definition

- ullet Convexity is defined on an interval $[\alpha, \beta]$
- The line segment joining (a, f(a)) and (b, f(b)) should be above or on the function f for all points in interval $[\alpha, \beta]$.

Convex on the entire real line i.e. $(-\infty, \infty)$

Convex on the entire real line i.e. $(-\infty, \infty)$

Convex on the entire real line i.e. $(-\infty, \infty)$

Example: $y = log_e x$

Not convex on the entire real line i.e. $(-\infty, \infty)$

It is convex for the interval $[0,\infty)$

It is concave for the interval $(-\infty,0]$

But, it is not convex for the interval $(-\infty, \infty)$

Mathematical Formulation

Function f is convex on set X, if $\forall x_1, x_2 \in X$ and $\forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

To prove:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

To prove:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

LHS =
$$f(tx_1 + (1 - t)x_2)$$
 = $t^2x_1^2 + (1 - t)^2x_2^2 + 2t(1 - t)x_1x_2$
RHS = $tf(x_1) + (1 - t)f(x_2) = tx_1^2 + (1 - t)x_2^2$

To prove:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

LHS =
$$f(tx_1 + (1 - t)x_2)$$
 = $t^2x_1^2 + (1 - t)^2x_2^2 + 2t(1 - t)x_1x_2$
RHS = $tf(x_1) + (1 - t)f(x_2) = tx_1^2 + (1 - t)x_2^2$

Here,

LHS - RHS =
$$(t^2 - t)x_1^2 + [(1 - t)^2 - (1 - t)]x_2^2 + 2t(1 - t)x_1x_2$$

= $(t^2 - t)x_1^2 + (t^2 - t)x_2^2 - 2(t^2 - t)x_1x_2$
= $(t^2 - t)(x_1 - x_2)^2$

To prove:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

LHS =
$$f(tx_1 + (1 - t)x_2)$$
 = $t^2x_1^2 + (1 - t)^2x_2^2 + 2t(1 - t)x_1x_2$
RHS = $tf(x_1) + (1 - t)f(x_2) = tx_1^2 + (1 - t)x_2^2$

Here,

LHS - RHS =
$$(t^2 - t)x_1^2 + [(1 - t)^2 - (1 - t)]x_2^2 + 2t(1 - t)x_1x_2$$

= $(t^2 - t)x_1^2 + (t^2 - t)x_2^2 - 2(t^2 - t)x_1x_2$
= $(t^2 - t)(x_1 - x_2)^2$

Here, $(t^2-t)\leq 0$ since $t\in [0,1]$ and $(x_1-x_2)^2\geq 0$ Hence, LHS -RHS ≤ 0 Hence LHS \leq RHS

Hence proved.

The Double-Derivative Test

If f''(x) > 0, the function is convex.

For example,

$$\frac{\partial^2(x^2)}{\partial x^2} = 2 > 0 \Rightarrow x^2$$
 is a Convex function.

The double derivate test for multi-parameter function is equal to using the Hessian Matrix

A function $f(x_1, x_2, ..., x_n)$ is convex iff its $n \times n$ Hessian Matrix is positive semidefinite for all posible values of $(x_1, x_2, ..., x_n)$

$$\mathsf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Show that
$$f(x_1, x_2) = x_1^2 + x_2^2$$
 is convex.

Show that $f(x_1, x_2) = x_1^2 + x_2^2$ is convex.

$$H = \begin{bmatrix} \frac{\partial^{2}(x_{1}^{2} + x_{2}^{2})}{\partial x_{1}^{2}} & \frac{\partial^{2}(x_{1}^{2} + x_{2}^{2})}{\partial x_{1}\partial x_{2}} \\ \frac{\partial^{2}(x_{1}^{2} + x_{2}^{2})}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}(x_{1}^{2} + x_{2}^{2})}{\partial x_{2}^{2}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Show that $f(x_1, x_2) = x_1^2 + x_2^2$ is convex.

$$H = \begin{bmatrix} \frac{\partial^2(x_1^2 + x_2^2)}{\partial x_1^2} & \frac{\partial^2(x_1^2 + x_2^2)}{\partial x_1 \partial x_2} \\ \frac{\partial^2(x_1^2 + x_2^2)}{\partial x_2 \partial x_1} & \frac{\partial^2(x_1^2 + x_2^2)}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Eigen Values of H are 2 and $2 > 0 \Rightarrow$ H is positive semi-definite. Hence, $f(x_1, x_2) = x_1^2 + x_2^2$ is convex.

Prove the convexity of linear least squares i.e. $f(\theta) = ||y - X\theta||^2$

Prove the convexity of linear least squares i.e. $f(\theta) = ||y - X\theta||^2$

We will use the double derivate (Hessian)

Prove the convexity of linear least squares i.e. $f(\theta) = ||y - X\theta||^2$

We will use the double derivate (Hessian)

$$\frac{df}{d\theta} = \frac{d(||y^2|| - 2y^T X \theta + ||X\theta||^2)}{d\theta} = -2y^T X + 2(X\theta)^T X$$

Prove the convexity of linear least squares i.e. $f(\theta) = ||y - X\theta||^2$

We will use the double derivate (Hessian)

$$\frac{df}{d\theta} = \frac{d(||y^2|| - 2y^TX\theta + ||X\theta||^2)}{d\theta} = -2y^TX + 2(X\theta)^TX$$

$$\frac{d^2f}{d\theta^2} = H = 2X^T X$$

Prove the convexity of linear least squares i.e. $f(\theta) = ||y - X\theta||^2$

We will use the double derivate (Hessian)

$$\frac{df}{d\theta} = \frac{d(||y^2|| - 2y^T X \theta + ||X\theta||^2)}{d\theta} = -2y^T X + 2(X\theta)^T X$$

$$\frac{d^2f}{d\theta^2} = H = 2X^T X$$

 X^TX is positive semi-definite for any $X \in \mathbb{R}^{m \times n}$. Hence, linear least squares function is convex.

Properties of Convex Functions

• If f(x) is convex, then kf(x) is also convex, for some constant k

Properties of Convex Functions

- If f(x) is convex, then kf(x) is also convex, for some constant k
- If f(x) and g(x) are convex, then f(x) + g(x) is also convex.

Properties of Convex Functions

- If f(x) is convex, then kf(x) is also convex, for some constant k
- If f(x) and g(x) are convex, then f(x) + g(x) is also convex.

Using this we can say that,

- $(y x\theta)^T (y x\theta) + \theta^T \theta$ is convex
- $(y x\theta)^T (y x\theta) + |\theta|$ is convex