# Part III-B: Analysis Chemistry

### Lecture by 王敏 Note by THF

### 2024年11月26日

# 目录

| 1 | 概论  |                     | 2          |
|---|-----|---------------------|------------|
| 2 | 误差  | 和分析数据处理             | 3          |
|   | 2.1 | 准确度和精密度             | 3          |
|   |     | 2.1.1 准确度和误差        | 3          |
|   |     | 2.1.2 精密度和偏差        | 5          |
|   |     | 2.1.3 误差            | 6          |
|   | 2.2 | 如何提高分析结果的准确度        | 6          |
|   | 2.3 | 有效数字                | 7          |
|   |     | 2.3.1 修约规则          | 7          |
|   |     | 2.3.2 运算规则          | 8          |
|   | 2.4 | 有限量分析数据的统计处理        | 8          |
|   |     | 2.4.1 偶然误差的正态分布     | 8          |
|   |     | 2.4.2 t 分布          | 9          |
|   |     | 2.4.3 平均值的精密度和置信区间  | 10         |
|   |     | 2.4.4 可疑数据的取舍和显著性检验 | 11         |
|   |     | 2.4.5 相关和回归         | 12         |
| 3 | 酸碱  | 滴定法 1               | <b>1</b> 2 |
|   | 3.1 | 概述                  | 12         |
|   | 3.2 | 基本原理                | 12         |
|   |     | 3.2.1 酸碱定义          | 12         |
|   |     | 3.2.2 酸碱的强度         | 13         |
|   |     | 3.2.3 分布系数          | 13         |
|   |     |                     | 14         |
|   | 3.3 | 酸碱指示剂               | 15         |
|   |     |                     |            |

|   |     | 3.3.1 指示剂的特点         |
|---|-----|----------------------|
|   |     | 3.3.2 指示剂变色范围的影响     |
|   |     | 3.3.3 混合指示剂          |
|   | 3.4 | 酸碱滴定曲线               |
|   |     | 3.4.1 强酸碱的滴定         |
|   |     | 3.4.2 弱酸碱 (一元) 的滴定   |
|   |     | 3.4.3 多元酸/碱的滴定       |
|   | 3.5 | 滴定应用 19              |
|   |     | 3.5.1 酸碱标准溶液的配置      |
|   |     | 3.5.2 常用酸碱标准溶液的配置与标定 |
|   |     | 3.5.3 酸碱滴定分析中的计算     |
|   |     | 3.5.4 滴定方式           |
| 4 | 配份  | 滴定法                  |
| - | 4.1 | 概述                   |
|   | 4.2 | 配位滴定法的基本原理           |
|   | 4.3 | 配位滴定曲线               |
|   | 4.4 | 金属指示剂                |
|   | 4.5 | 配位滴定误差               |
|   | 4.6 | 配位滴定条件选择 28          |
|   | 4.7 | 配位滴定法的应用 22          |
| _ |     |                      |
| 5 |     | 还原滴定法 29             |
|   | 5.1 | 配位滴定法基本原理            |
|   | 5.2 | 氧还反应进行的程度和速度 3:      |
|   | 5.3 | 氧化还原滴定曲线             |
|   | 5.4 | 滴定突越范围的影响            |

#### Lecture 1

### 1 概论

20 世纪 20-30 年代: 分析化学出现四大反应平衡理论的建立

20 世纪 40-50 年代: 光电色谱仪器设备出现

Notation. Bloch F and Purcell E M 建立核磁共振测定

Martin A J P and Synge R L M 建立气相色谱

Heyrovsky J 建立极谱分析法

20 世纪 70 年代以来: 计算机参与自动化

Notation. 分析化学分析方法: 3S+2A

3S: Sensitivity, Selectivity, Speediness

2A: Accuracy, Automatics

分析化学主要发展趋势:

在线分析 原位分析 实时分析 活体分析

Notation. 分析过程的步骤:

- 1. 分析方法选择
- 2. 取样 (Sampling, 具代表性的样本)
- 3. 制备试样(适合与选定的分析方法,消除可能的干扰)
- 4. 分析测定(优化条件,仪器校正,方法验证)
- 5. 结果处理和表达(统计学分析,测量结果的可靠性分析,书面报告)

Notation. 制备试样首先需要进行样品前处理

方法验证:线性性,灵敏性等

#### Lecture 2

### 2 误差和分析数据处理

Notation. "挑数据": 做标准曲线

标品浓度 (0,1,2,3,4,5,6,7)

吸光度 (0,0.1,0.2,0.3,0.4,0.001,0.6,0.7)

对于可疑数据,需要通过其他方法进行确认(至少3次试验)

#### 2.1 准确度和精密度

#### 2.1.1 准确度和误差

Definition. 准确度 (Accuracy): 测量值和真值的接近程度,准确度的高低用误差大小衡量

Definition. 误差 (error): 测量结果和真值的差值

误差具有客观性和普遍性

实验结果都有误差,测量值只能尽可能接近真实值

Definition. 约定真值:由国际计量大会定义的单位及我国的法定计量单位

Example. 国际单位制基本单位"米"、"克"等

Notation. 约定真值是有一个量的真值的近似值,误差可以忽略不计

**Definition.** 标准值:采用可靠的分析方法、在不同实验室、由不同的分析人员、对同一个试样反复多次测定后将大量数据用数理统计求得的测量值

误差的表示方法:

$$\delta = x - \mu.$$

**Definition.** 绝对误差:  $\delta$ 

测量值: *x* 真值: *μ* 

相对误差: RE%

绝对误差 (Absolute Error) 可正可负,单位为测量值的单位

绝对误差的绝对值越小, 准确度越高

相对误差 (Relative Error, RE):

$$RE\% = \frac{\delta}{\mu} \times 100\%.$$

或:

$$RE\% = \frac{\delta}{x} \times 100\%.$$

相对误差无单位, 可正可负

**Example.** 有真实值为 0.0020g 和 0.5000g 的两个样品, 称量结果分别为 0.0021g 和 0.5001g, 计 算相对误差和绝对误差

$$\delta_1 = 0.0021 - 0.0020 = 0.0001, \ \delta_2 = 0.5001 - 0.5000 = 0.0001 = \delta_1$$

$$\begin{split} RE_1\% &= \frac{0.0001}{0.0020} \times 100\% = 5\% \\ RE_2\% &= \frac{0.0001}{0.5000} \times 100\% = 0.02\%. \end{split}$$

Notation. RE 要求: 测高含量组分, RE 可小; 测低含量组分, RE 可大高含量组分对应化学分析法; 低含量组分对应仪器分析法

#### 2.1.2 精密度和偏差

**Definition.** 精密度:在规定的测定条件下,多次平行测定结果相互吻合的程度,精密度高低用偏差衡量

偏差: 单个测量值和测量平均值的差距

Definition. 绝对偏差: d

相对偏差: d% 平均偏差: ā 标准偏差: SD

相对标准偏差: RSD

绝对偏差:

$$d = x_i - \bar{x}.$$

相对偏差:

$$d\% = \frac{d}{\bar{x}}.$$

平均偏差:

$$\bar{d} = \frac{\sum |x_i - \bar{x}|}{n}.$$

相对平均偏差:

$$\frac{\bar{d}}{\bar{x}} \times 100\% = \frac{\sum |x_i - \bar{x}|}{n \cdot \bar{x}} \times 100\%.$$

标准偏差:

$$S_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} (n \le 20).$$

n-1 称为自由度

相对标准偏差 (RSD, 变异系数):

$$RSD = \frac{S_x}{\bar{x}} \times 100\%.$$

RSD 越小,数据越集中,精密度越高

Notation. 方法的精密度考察:

- 1. 重复性 (repeatability): 同一实验室,较短时间间隔,同一分析人员对同一试样测定所得结果的接近程度
  - 2. 中间精密度 (intermediate precision): 改变某些试验条件对同一试样测定结果的接近程度
  - 3. 重现性 (reproducibility): 不同实验室,不同人员对同一试样测试结果的接近程度

Notation. 精密度和准确度的关系:

- 1. 精密度高是准确度高的前提
- 2. 精密度高,准确度不一定高
- 3. 只有精密度和准确度都高的数据才可取

Notation. 准确度体现结果的正确性,精密度体现结果的重现性

#### 2.1.3 误差

Notation. 误差分类:系统误差、偶然误差(随机误差)

Definition. 系统误差 (可定误差): 分析中由某些确定原因造成的误差

特点:

- 1. 重现性
- 2. 单向性
- 3. 可以校正消除
- 4. 影响准确度

#### Notation. 系统误差分类:

方法误差: 方法不完善

仪器误差: 仪器本身缺陷

试剂误差: 试剂有杂质

操作误差、主观误差

Definition. 偶然误差 (随机误差): 由偶然因素影响

特点:

- 1. 无单向性(方向大小不确定)
- 2. 符合统计学规律(大误差出现的概率小,随机误差的正态分布)
- 3. 可以通过增加平行测定次数减小
- 4. 影响精密度

Definition. 过失:由分析工作者粗心大意造成,可以避免

#### Lecture 3

#### 2.2 如何提高分析结果的准确度

1. 选择合适的分析方法:

Notation. 对于化学分析法:适用于常量组分(>1%)的分析

对于仪器分析法: 适用于微量组分 (0.01~1%) 或痕量组分 (<0.01%) 的分析

- 2. 减少相对误差: 增大取样量
- 3. 减少偶然误差:增加平行测试次数 ( $\geq 3$ ,活体测试  $\geq 6$ )
- 4. 消除系统误差:

#### Notation. 常用方法:

- 1. 与经典方法比较: (用其他方法测试该方法)
- 2. 对照试验 (control test): (用其他样本对比)

3. 回收试验/标准加入法: 测量原样本  $x_1$  ,加入某标准量  $x_2$  ,测量加入后的样本  $x_3$  ,计算回收率:

Recovery% = 
$$\frac{x_3 - x_1}{x_2} \times 100\% \approx 95\% \sim 105\%$$
.

- 4. 空白试验:不加试样测试,得到并扣去空白值,用于检验由试剂、容器等引入杂质导致的系统误差
  - 5. 仪器校正

#### 2.3 有效数字

Definition. 有效数字: 分析工作中实际上能测量到的数字

原则上:

- 1. 在记录测量数据时, 只允许保留一位可疑数字(欠准数字)
- 2. 误差是末尾数的 ±1 个单位

**Example.** 在分析天平上称出 m = 21.5370g , 则真值为  $21.5370 \pm 0.0001g$ 

Notation. 有效数字的末尾 0 不可省略: 反映相对误差

Question. 如何判断有效数字的位数?

- 1. 在数据中 1~9 均为有效数字(0 待定)
- 2. 算式中的倍数、分数及某些常数 (π,e等) 可看为无数位有效数字
- 3. 变化单位时有效数字的位数必须保持不变,如 0.0015g = 1.5mg
- 4. pH 和 pK<sub>a</sub> 等对数值,有效数字仅取决于小数部分,例: pH = 4.23,有效数字 2 位

Notation. 0 的位置和有效数字:

- 1. 小数前的 0 起定位作用,后面的 0 为有效数字
- 2. 整数后的 0 不一定是有效数字

**Example.**  $36000 \Rightarrow 3.60 \times 10^{4}$ : 3 位有效数字

#### 2.3.1 修约规则

- 1. 四舍六入五留双, 五后有数需进位
- 2. 修约标准偏差: 只进不舍, 降低精密度, 提高可信度
- 2.1. 可多保留一位有效数字进行计算
- 2.2. 与标准限度值比较不应修约

| 表 1: 修约为两位 | Ϋ́. |
|------------|-----|
|------------|-----|

|       | 12 - 17 | 31.31 |
|-------|---------|-------|
| 原值    | 修约值     | 原因    |
| 3.249 | 3.2     | 四舍    |
| 8.361 | 8.4     | 六人    |
| 6.550 | 6.6     | 五留双   |
| 6.250 | 6.2     | 五留双   |
| 6.252 | 6.3     | 五后有数  |

#### 2.3.2 运算规则

1. 加减法: 结果的小数位数以小数点后位数最少的为标准

#### Example.

$$0.0121 + 25.64 + 1.057 = 26.7091 \approx 26.71.$$

2. 乘除法: 取相对误差最大的为标准

#### Example.

$$\frac{0.0325 \times 5.10 \times 60.1}{139.8} \approx 0.0712.$$

Notation. 对于高含量组分 (w > 10%),分析结果一般保留 4 位有效数字对于中等含量组分 (1% < w < 10%),保留 3 位对于微量组分 (w < 1%),保留 2 位

#### 2.4 有限量分析数据的统计处理

#### 2.4.1 偶然误差的正态分布

正态分布的概率密度函数:

$$y = f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}.$$

Notation. x: 测量值

 $\mu$ : 无限次测量的总体平均值

σ: 总体偏差

#### 特点:

- 1. 当  $x = \mu$  时, y 最大: 大部分测量值集中在算术平均值附近
- 2. 函数图像以  $x = \mu$  的直线对称: 正负误差出现的概率相同
- $3. x \rightarrow -\infty$  或  $x \rightarrow +\infty$  时: 无限趋近 x 轴

4. μ 越大,数据越分散,函数图像矮小、坡度较缓

5

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1.$$

Notation. 若令

$$u = \frac{x - \mu}{\sigma}.$$

则:

$$y = f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-u^2/2}.$$

称为标准正态分布曲线

Notation.  $3\sigma$  标准: 测量结果需要有 99.7% 以上的数据在真值范围内,即:

$$\int_{\mu-3\sigma}^{\mu+3\sigma} f(x) \, \mathrm{d}x \approx 99.7\%.$$

#### 2.4.2 t 分布

**Definition.** t 分布为有限量数据 n 平均值的概率误差分布

$$t = \frac{|\bar{x} - \mu|}{S} \sqrt{n}.$$

x: 样本平均值

S: 样品标准偏差

t 值随自由度 f(f=n-1) 而变

当  $f \to +\infty$  时为正态分布

**Notation.** t 分布和正态分布的异同:

相同:形状相似,积分面积表示概率

不同: t 不同时概率不同

Notation. t 分布相关概念:

- 1. 自由度 f
- 2. 置信区间: 以测定区间为中心,包括总体平均值在内的可信范围

$$\bar{x} \pm \frac{tS}{\sqrt{n}}$$
.

3. 置信水平 (置信度 P): 样本平均值落在置信区间的概率

$$P = \mu \pm \frac{tS}{\sqrt{n}}.$$

- 4. 显著性水平  $\alpha = 1 P$
- t 值的表达: 一定 P 下,  $t \to t_{\alpha,f}$

#### 2.4.3 平均值的精密度和置信区间

**Example.** 有一个样品,m 个人各测量 n 次,计算出每个人测得的平均值,平均值的分布符合 正态分布

平均值的标准偏差/平均值的精密度:

$$S_{\bar{x}} = \frac{S_x}{\sqrt{n}}.$$

即:增加平行测定次数 n 可以减小平均值的标准偏差  $S_{\bar{x}}$ 

**Notation.** 增加测定次数,平均值的标准偏差呈反比变化,一般 3 到 4 次已经可以达到目标,继续增加效果不显著

Lecture 4

Notation. 常用估计法:点估计

求 x 和 x 进行比较

平均值的置信区间:

1. 单次

$$\mu = x \pm u\sigma$$
.

其中  $u = (x - \mu)/\sigma$  (见标准正态分布曲线)

2. 多次: 使用  $\sigma_{\bar{x}}$  代替  $\sigma$ 

$$\mu = \bar{x} \pm u \sigma_{\bar{x}} = \bar{x} \pm u \cdot \frac{\sigma}{\sqrt{n}}.$$

3. 少量: t 分布

$$\mu = \bar{x} \pm t S_{\bar{x}} = \bar{x} \pm \frac{tS}{\sqrt{n}}.$$

可以用  $X_U$  表示上限,  $X_L$  表示下限

Notation. 置信水平越高, 置信区间越宽

通常置信水平取 P=0.95 或  $\alpha=0.05$ 

置信区间反映估计的精密度

置信水平说明估计的把握程度

Notation. 1.  $\mu$  为一个定值, 无随机性

2. 单侧检验大于或小于总体均值,双侧检验同时大于和小于总体均值

#### 2.4.4 可疑数据的取舍和显著性检验

主要使用 G 检验 (可疑数据取舍)  $\rightarrow F$  检验 (精密度检验)  $\rightarrow t$  检验 (准确度检验)

**Notation.** F 检验和 t 检验合称显著性检验

#### Notation. G 检验

在一组平行测量数据中有过高或过低的数据,称为可疑数据/异常值/逸出值

- 1. 确定可疑值  $x_q$  , 求出包括可疑值在内的平均值  $\bar{x}$
- 2. 求出可疑值与平均值之差的绝对值  $|x_q \bar{x}|$
- 3. 计算包括可疑值在内的标准偏差 S

$$G = \frac{|x_q - \bar{x}|}{S}.$$

4. 根据置信度 P 得到  $\alpha$  ,查表得 G 的临界值  $G_{\alpha,n}$  ,若  $G>G_{\alpha,n}$  ,则数据应当舍弃

#### Notation. F 检验

判断两组数据间存在偶然误差是否有显著不同

$$F = \frac{S_1^2}{S_2^2}, (S_1 > S_2).$$

 $f_1, f_2$  为  $S_1, S_2$  的自由度

P 一定时, 查表得  $F_{\alpha,f_1,f_2}$ , 比较  $F < F_{\alpha,f_1,f_2}$  则无显著性差异

#### Notation. t 检验

判断某一分析方法或操作过程中是否存在较大的系统误差

1. 使用  $\bar{x}$  和  $\mu$  的比较: 已知真值的 t 检验

$$t = \frac{|\bar{x} - \mu|}{s} \sqrt{n}.$$

2. 两组样本平均值比较:未知真值的 t 检验 两组数据:

$$\begin{cases} n_1, s_1, \bar{x_1} \\ n_2, s_2, \bar{x_2} \end{cases} .$$

当  $s_1 \approx s_2$ , 今合并标准偏差:

$$\begin{split} s_R &= \sqrt{\frac{偏差平方和}{总自由度}} = \sqrt{\frac{s_1^2 \left(n_1 - 1\right) + s_2^2 \left(n_2 - 1\right)}{n_1 - 1 + n_2 - 1}}.\\ \implies t &= \frac{|\bar{x_1} - \bar{x_2}|}{s_R} \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}. \end{split}$$

查表得  $t_{\alpha,f}$  (若无真值使用总自由度  $f = f_1 + f_2$ ), 比较  $t, t_{\alpha,f}$ 

**Notation.** 更常用的数据组比较准确度方法: ANOVA 分析 通过比较 p 值判断,用 \* 号个数表示差异的大小

#### 2.4.5 相关和回归

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \times \sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$

作业: P25, 8、9 题

#### 3 酸碱滴定法

#### 3.1 概述

滴定分析法(titrimetry)是一种定量分析方法

Notation. 将已知准确浓度的试剂溶液低价到待测物质的溶液中,通过滴加试剂的浓度和体积, 定量计算待测物质的含量

滴定分析法又称容量分析法

特点:

- 1. 准确度高、适于常量组分分析(组分含量 > 1%,取样量 > 0.1g)
- 2. 易于操作
- 3. 快速

Notation. 基本术语:

滴定剂:浓度准确已知的试样溶液

滴定: 将滴定剂通过滴定管逐滴滴加到被测物质溶液中的过程

化学计量点: 滴定剂与待测溶液按化学计量关系完全反应的点, 用 sp 表示

指示剂:发生颜色改变指示终点的物质

滴定终点: 指示剂发生颜色改变的点, 用 ep 表示

滴定误差:滴定终点和化学计量点的差距,用 TE 表示

#### 3.2 基本原理

#### 3.2.1 酸碱定义

1. 电离理论

 $egin{cases} egin{pmatrix} \egn{pmatrix} \egn{p$ 

2. 质子理论

 Br∅nster 酸:能给出质子的物质 Brønster 碱:能接受质子的物质

**Notation.** 共轭酸碱对: 酸  $\leftrightarrow$  碱 (质子)

两性物质:能给出和接受质子的物质(例:水)

Lecture 4

#### 3.2.2 酸碱的强度

1. 酸 HA 的解离常数:

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{A}^-]}{[\text{HA}]}.$$

2. 碱 BOH 的解离常数:

$$K_b = \frac{[\text{OH}^-][\text{B}^+]}{[\text{BOH}]}.$$

Lecture 5

#### 3.2.3 分布系数

**Definition.** 分布系数:  $\delta$ 

用  $\delta_0, \delta_1, \delta_2 \dots$  来表示电荷数为  $0, 1, 2 \dots$  的组分的分布系数

一元弱酸的浓度(分析浓度)为 c,解离平衡后:

$$\begin{split} \delta_{\rm HA} &= \frac{[{\rm HA}]}{c} = \frac{[{\rm HA}]}{[{\rm HA}] + [{\rm A}^-]} \\ &= \frac{1}{1 + K_a/[{\rm H}^+]} = \frac{[{\rm H}^+]}{[{\rm H}^+] + K_a} \\ \delta_{\rm A^-} &= \frac{K_a}{[{\rm H}^+] + K_a}. \end{split}$$

易得  $\delta_{HA} + \delta_{A^-} = 1$ 

**Example.** 计算 pH=5 是 0.10mol/L HAc 溶液中各组分 (HAc,Ac^-,H^+) 的分布系数  $\delta$  和平衡浓度 c

解:  $[H^+] = 10^{-5} \text{mol/L}, K_a = 1.7 \times 10^{-5}$ 

计算  $\delta$ :

$$\delta_0 = \delta_{\rm HAc} = \frac{[{\rm H}^+]}{[{\rm H}^+] + K_a} = 0.37.$$
 
$$\delta_1 = \delta_{\rm Ac^-} = 1 - \delta_{\rm HAc} = 1 - 0.37 = 0.63.$$

. . . .

Notation. 一元强酸 H<sup>+</sup> 的浓度(精确式)

$$[H^+] = \frac{c_a + \sqrt{c_a^2 + 4K_w}}{2}.$$

Lecture 5

忽略水的解离  $(c_a \ge 20[OH^-])$ , 可以近似为下式 (最简式):

$$\begin{cases} [H^+] = [A^-] = c_a \\ pH = -\lg[H^+] = -\lg c_a \end{cases}.$$

Notation. 一元弱酸的 pH 计算:

精确式:

$$[\mathbf{H}^{+}]^{2} = K_{a} \left( c_{a} - [\mathbf{H}^{+}] \right).$$
$$[\mathbf{H}^{+}] = \frac{-K_{a} + \sqrt{K_{a}^{2} + 4c_{a} \cdot K_{a}}}{2}.$$

近似式  $(c_a K_a < 20 K_w, c_a / K_w \ge 500)$ 

$$[H^+] = \sqrt{c_a K_a + K_w}.$$

最简式  $(c_a K_a \ge 20 K_w, c_a / K_w \ge 500)$ 

$$[H^+] = \sqrt{K_a \cdot c_a}.$$

Notation. 两性物质 pH 计算

精确式:

$$[\mathrm{H}^{+}] = \sqrt{\frac{K_{a_1} (K_{a_2} [\mathrm{HB}] + K_w)}{K_{a_1} + [\mathrm{HB}]}}.$$

近似式:

$$[\mathbf{H}^{+}] = \sqrt{\frac{K_{a_1} (K_{a_2} c + K_w)}{K_{a_1} + c}}.$$

最简式:

$$[H^+] = \sqrt{K_{a_1} K_{a_2}}.$$
  
 $pH = \frac{1}{2} (pK_{a_1} + pK_{a_2}).$ 

#### 3.2.4 缓冲溶液的 pH

Notation. 缓冲溶液的种类:

- 1. 共轭酸碱对
- 2. 两性物质,如 H<sub>2</sub>PO<sub>4</sub> ~ HPO<sub>4</sub><sup>2+</sup>(PBS, 磷酸缓冲盐)
- 3. 高浓度的强酸/强碱

Notation. 缓冲溶液有缓冲能力/缓冲容量  $\beta$ ,与缓冲溶液的总浓度与组分有关

- 1. 总浓度  $\propto \beta$
- 2. 缓冲组分的浓度比  $\rightarrow 1 \propto \beta$
- 3.

10.22

缓冲溶液的 Henderson 缓冲公式:

$$[\mathbf{H}^+] = K_a \frac{c_a}{c_b}.$$
 
$$\mathbf{pH} = \mathbf{p}K_a + \lg \frac{c_b}{c_a}.$$

Notation. 生物上常用的缓冲溶液:

- 1. 三 (羟甲基) 氨基甲胺 +HCl (tris-HCL)
- 2. HEPES

Lecture 6

3.3

#### 3.3.1 指示剂的特点

指示剂 (Indicator, In)

1. 弱的有机酸/碱

酸碱指示剂

- 2. 共轭酸碱对的颜色明显不同
- 3. 在不同 pH 下结构变化

$$HI \Longrightarrow H^+ + In^-.$$

Notation. 指示剂的作用原理: 指示剂的分子结构变化

Example. 常用指示剂:

- 1. 甲基橙 (MO):  $pK_a = 3.4$ , 碱性呈黄色, 酸性下质子化呈红色
- 2. 酚酞 (PP):  $pK_a = 9.1$ , 酸性下呈无色, 碱性呈红色

Notation. 不同指示剂变色点和变色范围不同

对于解离平衡:

$$\mathrm{HI} \Longrightarrow \mathrm{H}^+ + \mathrm{In}^- \quad K_{\mathrm{HIn}} = \frac{[\mathrm{H}^+][\mathrm{In}^-]}{[\mathrm{HIn}]}.$$

$$\Longrightarrow \frac{K_{\mathrm{HIn}}}{[\mathrm{H}^+]} = \frac{[\mathrm{In}^-]}{[\mathrm{HIn}]}.$$

当 pH  $\geq$  p $K_{\rm HIn}$  + 1 或 [In $^-$ ]/[HIn]  $\geq$  10 时看到的是碱式色 当 pH  $\leq$  p $K_{\rm HIn}$  - 1 或 [In $^-$ ]/[HIn]  $\leq$   $\frac{1}{10}$  时看到的是碱式色

Notation. 理论变色范围:  $pH=pK_{HIn}\pm 1$ 

理论变色点:  $pH = pK_{HIn}$  或  $[In^-]/[HIn] = 1$ 

甲基橙的理论变色点:  $4.4 \sim 2.4$  甲基橙的实际变色点:  $4.4 \sim 3.1$ 

Notation. 指示剂的变色范围越窄, 变色越敏锐

#### 3.3.2 指示剂变色范围的影响

1. 温度:  $T \to K_{HIn} \to$  变色范围变化

Example. 甲基橙 (  $18^{\circ}C$ ):  $3.1 \sim 4.4$ 

甲基橙  $(100^{\circ}C)$ :  $2.5 \sim 3.7$ 

- 2. 电解质:  $c_{\mathrm{g}\to\mathrm{k}\mathrm{g}}\to K_{\mathrm{HIn}}\to$  变色范围变化
- 3. 滴定次序: 无色 → 有色, 浅色 → 深色
- 4. 指示剂用量:

#### Example. 单色指示剂:

设指示剂浓度为  $C_{\text{HIn}}$ ,当  $[\text{In}^-]=a$  达到一定浓度时观察到颜色发生变化

$$\frac{K_{\rm HIn}}{[{\rm H}^+]} = \frac{a}{C - a}.$$

当  $C_{\text{HIn}}$  变化时 pH 也变化,导致变色点偏移,即浓度可影响变色范围

双色指示剂: 与 CHIn 无关

#### 3.3.3 混合指示剂

Notation. 混合指示剂: 变色更敏锐、范围更窄

1. 指示剂 + 惰性染料

**Example.** 甲基橙 + 靛蓝: 变色范围  $4.4 \sim 3.1$  , 变化颜色: 绿色  $\rightarrow$  无色  $\rightarrow$  紫色

2. 混合两种或两种以上的指示剂

**Example.** 溴甲酚绿 + 甲基红: 变色范围  $4.9 \sim 5.1 \, (\pm 0.1)$  , 变色: 橙红  $\rightarrow$  灰色  $\rightarrow$  绿色

#### 3.4 酸碱滴定曲线

**Notation.** *x* 轴的两种:

- 1. 滴定体积  $V_T$  or  $V_t$
- 2. 滴定分数  $\frac{V_T}{V_{\text{Total}}}$

#### 3.4.1 强酸碱的滴定

滴定常数:

$$K_t = \frac{1}{[\text{H}^+][\text{OH}^-]} = \frac{1}{K_w} = 10^{14}.$$



图 1: 酸碱滴定曲线

Example. 使用  $NaOH(V_b)$  滴定  $HCl(V_a, c_a = 0.1 mol/L)$ 

1. 滴定开始前  $(V_b = 0)$ : 溶液组成: HCl

2. 滴定至化学计量点前 (before sp.):溶液: HCl+NaCl

$$[\mathrm{H}^+] = c_a \frac{V_a - V_b}{V_a + V_b}.$$

**Notation.** 化学剂量点前 0.1%: pH=4.3

3. 化学计量点 (sp.): 溶液: NaCl, pH=7

4. 化学计量点后 (after sp.):溶液: NaCl+NaOH

**Notation.** 化学剂量点后 0.1%: pH=9.7, 滴定剂仅多加 0.2mL

Notation. 化学计量点前后滴定分数 0.1% 为滴定突越范围 ( $\Delta pH$ )

**Notation.** 被滴定试剂  $H^+/OH^-$  浓度越大,可选指示剂越多(突越范围越大) 浓度每增加 10 倍,突越范围 ( $\Delta pH$ ) 增大 2 个单位

Notation. 指示剂选择原则: 指示剂的变色范围部分或全部落在  $\Delta pH$  内

#### 3.4.2 弱酸碱 (一元) 的滴定

Example. NaOH0.1000mol/L 滴定醋酸 (HAc)0.1000mol/L

滴定常数:

$$K_t = \frac{1}{K_b} = \frac{K_a}{K_w}.$$

1. 滴定开始前 (起点较高):

$$[\mathrm{H}^+] = \sqrt{K_a c_a} \implies \mathrm{pH} \approx 2.88.$$

2. 化学计量点前(存在缓冲作用, pH 增加速率减缓):

$$\begin{aligned} [\mathrm{Ac}^-] &= \frac{c_b V_b}{V_a + V_b} \\ [\mathrm{HAc}] &= \frac{c_a V_a - c_b V_b}{V_a + V_b} \\ \mathrm{pH} &= \mathrm{p} K_a + \lg \frac{[\mathrm{Ac}^-]}{[\mathrm{HAc}]} \approx 7.76. \end{aligned}$$

3. 化学计量点(滴定突越范围减小)

$$[\mathrm{OH}^-] = \sqrt{K_b c_b} = \sqrt{\frac{K_a}{K_w} c_b}$$
 $\mathrm{pOH} \approx 5.28 \quad \mathrm{pH} \approx 8.72.$ 

4. 化学计量点后与强酸碱滴定一样

指示剂选择: 酚酞

Notation. 强酸滴定弱碱:

$$H_3O^+A^- \rightleftharpoons HA^+H_2O$$
.

指示剂选择: 甲基橙、甲基红

#### Lecture 7

10.29

Notation.  $K_a < 10^{-9}$  的弱酸无法准确滴定 判断弱酸/弱碱能否被准确滴定:

$$c_a K_a \ge 10^{-8}$$
  $c_b K_b \ge 10^{-8}$ .

**Example.** 酸的浓度为 0.1000 mol/L, 则其  $K_a \geq 10^{-7}$  才能被准确滴定

Lecture 7

#### 3.4.3 多元酸/碱的滴定

Notation. 首先解决:

- 1. 能准确滴定至第几级解离产物
- 2. 是否能准确滴定、能形成几个 pH 突越
- 3. 选择什么指示剂

#### 准确滴定

$$c_a K_a \ge 10^{-8}$$
  $c_b K_b \ge 10^{-8}$ .

#### 分布滴定

$$\frac{K_{a_1}}{K_{a_2}} \ge 10^4 \quad \frac{K_{b_1}}{K_{b_2}} \ge 10^4.$$

判断第二级解离的 H+ 是否影响第一步

Example. 用 0.1000mol/L NaOH 滴定 0.1000mol/L 磷酸:

磷酸:  $K_{a_1} = 10^{-2.16}$  ,  $K_{a_2} = 10^{-7.12}$  ,  $K_{a_3} = 10^{-12.32}$ 

判断是否能准确滴定:

第一步:  $c_a K_{a_1} = 10^{-1.16} > 10^{-8}$  且  $K_{a_1}/K_{a_2} = 10^{4.96} > 10^4$ 

第二步同理: 可以准确分步滴定

第三步:  $c_a K_{a_3} < 10^{-8}$  , 不能准确滴定

#### 指示剂选择

只看化学计量点的 pH

**Example.** 以磷酸为例:第一化学计量点 pH=4.68:甲基橙、甲基红、溴甲酚绿 + 甲基橙 第二化学计量点 pH=9.76:酚酞、百里酚酞、酚酞 + 百里酚酞

#### 3.5 滴定应用

#### 3.5.1 酸碱标准溶液的配置

**Definition**. 基准物质:用于直接配置或标定标准溶液的物质

Notation. 基准物质常用纯金属或纯化合物

对基准物质的要求:

- 1. 组成与化学式完全相符
- 2. 纯度足够高(主成分含量 >99.9%)

- 2.1. 杂质不能影响反应
- 3. 性质稳定
- 4. 有较大的摩尔质量
- 5. 按滴定反应式定量反应

Definition. 标准溶液:已知准确浓度的试剂溶液

标准溶液浓度: 物质的量浓度 c

**Notation.** 滴定度 (titer): 每**毫升**标准溶液相当于被测物质的**质量**,用  $T_{T/B}$  表示

$$T_{T/B} = \frac{m_B}{V_T}.$$

配置标准溶液:

Notation. 直接法: 称量  $\Rightarrow$  溶解  $\Rightarrow$  定容  $\Rightarrow$  标签

Notation. 标定法(非标准物质的标准溶液配置):

配置为近似于所需浓度的溶液后,使用标定后的标准溶液标定该溶液

Example. 配置 0.1 mol/L HCl 标准溶液:

- 1. 浓盐酸稀释为近似 0.1 mol/L
- 2. 用基准物质硼砂 Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10 H<sub>2</sub>O 标定

#### 3.5.2 常用酸碱标准溶液的配置与标定

Notation. 酸标准溶液: 最常用 0.1 mol/L

最常用 HCl, 配置方法: 浓盐酸间接法

标定使用的基准物质: 无水碳酸钠 (易吸湿), 硼砂 (易风化)

常用指示剂: 甲基橙、甲基红

**Notation.** 碱标准溶液: 最常用 NaOH, 配置方法: 浓碱间接法 (NaOH 易吸水和 CO<sub>2</sub>, KOH 较贵)

标定使用基准物质:邻苯二甲酸氢钾(纯净、易保存、摩尔质量大)、草酸

#### 3.5.3 酸碱滴定分析中的计算

计量关系:

$$tT + bB = cC + dD.$$

Notation. 标定法配置:

$$c_T = \frac{t}{b} \times \frac{m_b}{M_b V_T}.$$

Notation. 物质的量浓度和滴定度之间的关系:

$$\frac{n_b}{n_t} = \frac{c_T \cdot V_T}{T_{T/B} \cdot V_T/M_B} = \frac{c_b \times 10^{-3} \times M_B}{T_{T/B}}. \label{eq:nb}$$

Lecture 7

Notation. 被测组分百分含量:

$$\omega_B\% = \frac{m_B}{m} = \frac{n_B M_B}{m} = \frac{b}{t} \times \frac{c_t V_t M_B}{m} \times 100\%.$$

**Example.**  $T_{\text{K}_2\text{Cr}_2\text{O}_7/\text{Fe}} = 0.005022\text{g/mL}$ ,测定 0.5000g Fe,用去标准溶液 25.10 mL,计算  $T_{\text{K}_2\text{Cr}_2\text{O}_7/\text{Fe}_3\text{O}_4}$  和试样中 Fe 和 Fe<sub>3</sub>O<sub>4</sub> 的质量分数

#### 3.5.4 滴定方式

直接滴定 间接滴定 返滴定 置换滴定

Notation. 直接滴定要求 (重点):

- 1. 反应必须反应完全、定量进行
- 2. 反应必须较快
- 3. 反应必须有确定的化学计量关系
- 4. 必须有适当简便的方法确定终点

Example. 用 NaOH 滴定乙酰水杨酸

缺点: 乙酰基可能被碱水解

改进: 使用中性乙醇溶解, 使用已知滴定度计算

Notation. 返滴定:适用于反应较慢、难溶、无合适的指示剂

- 1. 准确加入定量且过量的标准溶液 A
- 2. 加入待测物质
- 3. 等待彻底反应完全
- 4. 使用另一种标准溶液 B 滴定剩余的标准溶液 A

Example. HCl 标定固体 ZnO (难溶)、HCl 标定 CaCO<sub>3</sub>, AgNO<sub>3</sub> 标定 Cl<sup>-</sup>

Notation. 置换滴定:适用于无明确定量关系、有副反应

- 1. 用适当试剂与待测物质反应, 定量置换出另一种物质
- 2. 用标准物质滴定置换出的物质

Notation. 间接滴定:适用于不能与滴定剂直接反应

**Example.**  $KMnO_4$  滴定  $Ca^{2+}$ : 先使用草酸沉淀,使用硫酸溶解,用高锰酸钾测定脱落的草酸根浓度

**Example.** 硼酸 (酸性极弱,不能直接滴定): 使用甘油结合生成甘油硼酸 ( $K_a = 4.26$ ) 后可以滴定

Lecture 8

Notation. 药物本身含有金属离子: 通过对金属离子定量分析控制药品质量

Example. 复方葡萄糖酸钙口服溶液:

葡萄糖酸钙 50g 乳酸钙 50g 辅料 适量 水 适量

**Example.** 重质碳酸镁:治疗胃溃疡,含杂质氧化钙药典规定该药品氧化钙杂质不得超过 0.60%

### 4 配位滴定法

- 概述
- 基本原理
- 条件选择
- 应用

#### 4.1 概述

Definition. 配位滴定法又称络合滴定法,以配位反应为基础的滴定方法

配合物的生成:中心元素(阳离子、原子,提供空轨道)+配体(阴离子、分子,提供电子对)

Notation. Review: 直接滴定的四大要求

- 明确的剂量比
- 反应完全
- 反应迅速
- 明确的指示终点的方式
- ⇒ 配位反应对反应的要求:
  - 配位比恒定
  - 生成的配合物足够稳定(可逆反应)
  - 反应迅速
  - 合适的方法判断终点

#### 配位剂种类:

。无机配位剂:逐级配位,速率较慢

Example. SCN-, CN-, CO 等

。 有机配位剂: 氨羧类配位剂

Example. EDTA: 乙二胺四乙酸,可用于数十种金属离子的滴定

EDTA 可以提供大量孤对电子: -NHR,-COOR

EDTA 为六齿配体,且由于其中的氨基可以结合质子,因此认为 EDTA 为六元酸

Notation. EDTA 难溶于水 (0.2g/L) 但 EDTA 可溶于碱,一般使用 EDTA 的二钠盐 (111g/L) EDTA 在水溶液中存在七种型体:  $H_iY^{i-4}, i \in [0,6]$ ,其中  $Y^{-4}$  为最佳型体

EDTA 的特点:

- 广泛
- 稳定
- 配位比简单(1:1)
- 配位反应速度快
- 反应完全, 水溶性好
- 与无色金属离子生成无色配合物,与有色金属离子生成颜色更深的配合物

其他氨羧类配位剂:

- a. EGTA
- b. NTA (氨三乙酸)
- c. EDTMP (乙二胺四甲叉膦酸)
- d. EDTP (乙二胺四丙酸)

#### 4.2 配位滴定法的基本原理

配位平衡

Notation. 配合物的稳定常数:

反应

$$M + Y \Longrightarrow MY$$
.

对应的稳定常数:

$$K_{\mathrm{MY}} = \frac{[\mathrm{MY}]}{[\mathrm{M}][\mathrm{Y}]}.$$

Notation. 逐级配位常数:

$$\mathbf{M} + \mathbf{L} = \mathbf{ML} \Rightarrow K_1 = \frac{[\mathbf{ML}]}{[\mathbf{M}][\mathbf{L}]}$$

$$\mathbf{ML} + \mathbf{L} = \mathbf{ML}_2 \Rightarrow K_2 = \frac{[\mathbf{ML}_2]}{[\mathbf{ML}][\mathbf{L}]}.$$

累计稳定常数:

$$\beta_n = \prod_{i=1}^n K_i = \frac{[\mathrm{ML_n}]}{[\mathrm{M}][\mathrm{L}]^n}.$$

Notation. 配位反应的副反应系数:

a. 辅助配位效应: 与其他单齿配体配位

b. 羟基配位效应: 与羟基配位

c. 酸效应: 有氢离子存在时配体的型体发生变化

d. 共存离子效应: 配体与其他中心离子配位

e. 混合配位效应: 中心离子同时和目标配体和其他配体配位(利于主反应进行)

副反应系数  $\alpha$ :

$$\alpha = \frac{[\mathbf{X'}]}{[\mathbf{X}]}.$$

[X] 代表总平衡浓度, [X'] 代表参与反应的平衡浓度

Notation. 配位剂的副反应系数:

$$\begin{cases}
c_{\mathbf{Y}} \begin{cases}
[\mathbf{Y}'] \\
[\mathbf{H}\mathbf{Y}^{+}\mathbf{H}_{2}\mathbf{Y}^{+} \dots {}^{+}\mathbf{H}_{n}\mathbf{Y}^{+}\mathbf{N}\mathbf{Y}]
\end{cases}$$
[MY]

副反应系数

$$\alpha_{Y} = \frac{[Y']}{[Y]}.$$

副反应产物 HY,NY 等和游离态 Y 为 [Y'],只有 Y 为 [Y],所有包含 Y 的部分为  $c_{\rm Y}$  可再分为  $\alpha_{\rm Y(H)}$  和  $\alpha_{\rm Y(N)}$ 

酸效应系数  $\alpha_{Y(H)}$ :

$$\alpha_{Y(H)} = \frac{[Y']}{[Y]}$$

$$= 1 + \frac{[H^+]}{K_{a_6}} + \dots + \frac{[H^+]^6}{K_{a_6} K_{a_5} K_{a_4} \dots K_{a_1}}.$$

当 pH>12 时可以忽略酸效应

共存离子效应系数:

$$\alpha_{\mathrm{Y(N)}} = \frac{[\mathrm{Y'}]}{[\mathrm{Y}]} = \frac{[\mathrm{Y}] + [\mathrm{NY}]}{[\mathrm{Y}]}$$
$$= 1 + K_{\mathrm{NY}}[\mathrm{N}].$$

#### 金属离子的副反应系数

**Definition.**  $\alpha_{\mathrm{M}}$ : 未与 EDTA 配位的金属离子以各种形式存在的浓度与总浓度比

$$\alpha_{\mathbf{M}(\mathbf{L})} = 1 + \frac{[\mathbf{ML}]}{[\mathbf{M}]} + \dots + \frac{[\mathbf{ML}]_n}{[\mathbf{M}]}$$
$$= 1 + \sum_{i=1}^n \beta_i [\mathbf{L}]^i.$$

同理可得  $\alpha_{\text{M(OH)}} = 1 + \sum_{i=1}^{n} \beta_i [\text{OH}]^i$ 

lgα 均可以查表得知

若溶液中配位剂有 P 种:

$$\alpha_{\rm M} = \frac{[{\rm M}^+]}{[{\rm M}]} = \sum_{i=1}^n \alpha_{{\rm M}({\rm L})_i} + (1-P).$$

#### 配合物的副反应系数

配合物的副反应可以推动主反应的进行

$$\alpha_{\rm MY} = \frac{\rm [MY']}{\rm [MY]} \approx 1. \label{eq:amy}$$

即一般情况下生成的副产物稳定性非常低,该反应几乎不发生

Notation. 在酸性/碱性较强的条件下不能忽略:

$$\alpha_{\rm MY(H)} = 1 + K_{\rm MHY} \times [{\rm H}^+]$$
  
$$\alpha_{\rm MY(OH)} = 1 + K_{\rm M(OH)Y} \times [{\rm OH}^-].$$

重点题目: 例 5-3

#### Lecture 9

11.12

Review:

反应

$$M^+Y \Longrightarrow MY$$
.

有大量副反应存在,如  $M+L \longrightarrow ML, H^++Y \longrightarrow HY, MY+H^+ \longrightarrow MHY^+$ 

Notation. 条件稳定常数:

$$K'_{\mathrm{MY}} = \frac{[\mathrm{MY'}]}{[\mathrm{M'}][\mathrm{Y'}]}.$$

对比:稳定常数:

$$K_{\mathrm{MY}} = \frac{[\mathrm{MY}]}{[\mathrm{M}][\mathrm{Y}]}.$$

Lecture 9

由  $[M] = \alpha_M \cdot [M']$  等: 可得条件稳定常数和稳定常数的关系:  $\lg K'_{MY} = \lg K_{MY} - \lg \alpha_M - \lg \alpha_Y + \lg \alpha_{MY}$ ; 条件稳定常数在所有条件确定后是一个常数

在没有副反应时稳定常数为 1:  $\frac{\alpha_{\rm MY}}{\alpha_{\rm M}\alpha_{\rm Y}}=1, K'_{\rm MY}=K_{\rm MY}$ ,但只要有副反应条件稳定常数就小于 1:

$$K'_{\mathrm{MY}} = K_{\mathrm{MY}} \cdot \frac{\alpha_{\mathrm{MY}}}{\alpha_{\mathrm{M}} \alpha_{\mathrm{Y}}}.$$

**Notation.** 条件稳定常数  $K'_{MY}$  越大,所形成的配合物越稳定

**Example.** 求 pH = 2, pH = 5 时 ZnY 的条件稳定常数

解: 对比公式  $\lg K'_{\rm ZnY} = \lg K_{\rm ZnY} - \lg \alpha_{\rm Zn} - \lg \alpha_{\rm Y} + \lg \alpha_{\rm ZnY}$  可得: 不同 pH 下的  $\alpha_{\rm Y(H)}, \alpha_{\rm Zn(OH)}$  和  $K_{\rm ZnY}$  可查表,即原式变为  $\lg K'_{\rm ZnY} = \lg K_{\rm ZnY} - \lg \alpha_{\rm Y(H)}$ ,即可以计算出  $K'_{\rm ZnY}$ 

#### 4.3 配位滴定曲线

Notation. 滴定曲线的横坐标恒为滴定剂的体积  $V_Y$ 

建立对于 M 和 Y 的物料平衡:

$$\begin{cases} [M'] + [MY'] = \frac{V_M}{V_M + V_Y} \cdot c_M \\ [Y'] + [MY'] = \frac{V_Y}{V_M + V_Y} \cdot c_Y \end{cases}$$

结合条件稳定常数  $K'_{\mathrm{MY}} = \frac{[\mathrm{MY'}]}{[\mathrm{M'}][\mathrm{Y'}]}$  ,解该三元一次方程组即可算出不同滴定剂下的结合情况:

$$K_{\mathrm{MY}}'[\mathrm{M}']^2 + \left(\frac{V_{\mathrm{Y}}c_{\mathrm{Y}} - V_{\mathrm{M}}c_{\mathrm{M}}}{V_{\mathrm{M}} + V_{\mathrm{Y}}} \cdot K_{\mathrm{MY}} + 1\right) \cdot [\mathrm{M}'] - \frac{V_{\mathrm{M}}}{V_{\mathrm{M}} + V_{\mathrm{Y}}} \cdot c_{\mathrm{M}} = 0.$$

- 影响滴定突越上限:  $pM' = \lg K'_{MY} 3$
- 影响滴定突越下限:  $pM' = pC_M^{sp} + 3$

即:

- 金属离子浓度越大, 滴定突越前侧的滴定突越范围越大
- K'<sub>MV</sub> 越大,滴定突越后侧的突越范围越大

能影响  $K'_{MY}$  的因素: 酸效应、配位效应等

近似计量点时的情况:  $pM'_{sp} = \frac{1}{2} (lg K'_{MY} + pC^{sp}_{M})$ , 即两个影响因素的平均值

**Example.** pH=10 的氨性缓冲溶液  $[NH_3] = 0.2$  中用 0.02 mol/L 的 EDTA 滴定 0.02 mol/L 的  $Cu_2^+$ ,计算  $pCu'_{sn}$ 

#### 4.4 金属指示剂

Notation. 通过指示金属离子的含量确定终点

○ 铬黑 T (EBT): 本身为蓝色, Mg 和 EBT 可以配对而变为红色

Notation. 指示原理:

加入滴定剂前:金属离子和指示剂结合:M+In ← MIn

滴定开始时: 金属离子和滴定剂反应: M+Y ← MY

滴定结束时: 指示剂配合物消耗完后显示指示剂本身的颜色: MIn+Y ⇌ MY+In

**Notation.** 指示剂本身为弱酸,因此需要控制溶液 pH; EDTA 与有色金属离子结合生成颜色更深的配合物

#### 指示剂应具备的条件

Example. 以 EBT 为例:

$$H_2In^- \Longrightarrow HIn^{2-} \Longrightarrow In^{3-}$$
 紫红

- 。 显色反应灵敏、快速、具有良好的变色可逆性
- o MIn 稳定性要适当:

比滴定生成的配合物更不稳定,但需要在溶液中稳定存在:  $K'_{
m MIn}>10^{-4}$ 在滴定未到达终点时不被滴定剂置换,但到达终点时可以被置换:  $\frac{K'_{
m MIV}}{K'_{
m MIV}}>10^2$ 

Notation. 指示剂的封闭现象: 指示剂和金属离子结合太稳定,滴定剂无法将金属离子置换出来,无法观察到颜色的变化;在不更换指示剂的前提下,首先确定是由待测离子还是干扰离子引起的封闭

**Example.** 干扰离子  $Fe^{3+}$  和  $Al^{3+}$  可以封闭 EBT,解决方法是: 加入三乙醇胺(掩蔽剂)结合 这两个离子(更稳定的配合物),使这两个离子无法与 EBT 结合

Example. 如果要测 Al<sup>3+</sup>: 使用返滴定

先加入定量过量的 EDTA 与 Al 离子反应,反应完全后加 EBT: 此时 EBT 不会和 Al 反应 \* , 此时再用 Zn 离子滴定 EBT

常用掩蔽剂表格: P82

Notation. 指示剂的僵化现象:有些指示剂和金属离子结合后的配合物不溶于水,此时 EDTA 和该配合物反应速率非常慢,使终点延长;可以通过加热或加入其他溶剂提高溶解度解决

**Example.** PAN (1-(2-吡啶偶氮)-2-萘酚) 与金属离子形成的配合物难溶,通过加热或加入 EtOH 将其溶解

常用金属指示剂: EBT、二甲酚橙 (XO), 酸性铬蓝 K, 磺基水杨酸 (Ssal)、PAN 等

#### 4.5 配位滴定误差

$$TE\% = \frac{[{\rm Y'}]_{\rm sp} - [{\rm M'}]_{\rm sp}}{C_{\rm M}^{\rm sp}} \times 100\% = \frac{10^{\Delta {\rm pM'}} - 10^{-\Delta {\rm pM'}}}{\sqrt{K'_{\rm MY}C_{\rm M}^{\rm sp}}}.$$

#### 4.6 配位滴定条件选择

。酸度(单一离子测定的最高酸度和最低酸度):使  $\lg K'_{\rm MY} \ge 8$  当  $\lg K'_{\rm MY} = \lg K_{\rm MY} - \lg \alpha_{\rm Y(H)} = 8$  时的 pH 为单一金属滴定的最高酸度 通过金属离子和氢氧根形成的沉淀的  $K_{\rm sp}$  可以求得氢氧根浓度,为防止形成沉淀: $[{\rm OH}^-] \le \sqrt[a]{K_{\rm sp}/c_{\rm M}}$ 

○ 最佳酸度:  $pM'_{\text{指示剂变色}} = pM'_{sp}$ 

Notation. 可以通过缓冲溶液来保持滴定过程中的酸度基本不变

Lecture 10

Review: ○ 准确测定单一金属离子: 确定最高酸度等

#### 多种金属离子共同滴定

共存离子 M,N:能选择性滴定出 M 离子的条件: $\frac{c_{\rm M}K_{\rm MY}}{c_{\rm N}K_{\rm NY}} \ge 10^5$ 

当满足条件时可以使用控制酸度的方法分布滴定, 若不满足条件使用掩蔽法

**Notation.** 掩蔽法: 当  $c_N$  或  $K_{NY}$  较大: 用掩蔽剂降低  $\lg c_N K_{NY}$  (降低了  $c_N$ )

- 1. 常见掩蔽剂: 三乙醇胺 (TEA): 可以与  ${\rm Fe^{3+}}$  和  ${\rm Al^{3+}}$  形成更稳定的配合物,而不影响  ${\rm Ca^{2+}}$  和  ${\rm Mg^{2+}}$
- 2. 通过沉淀也可以掩蔽:测定  $\mathrm{Ca}^{2+}$  和  $\mathrm{Mg}^{2+}$  中钙离子的浓度:两种离子  $\mathrm{lg}\,K$  相似,无法通过 TEA 掩蔽,但  $K_{\mathrm{sp}}$  相差较大,可以将镁离子沉淀后滴定钙离子
  - 3. 通过氧化还原反应掩蔽: 使杂质离子转变价态

**Example.** 使用 EDTA 测定铋离子和铁 (II) 离子的浓度时,加入还原剂使铁 (III) 离子转为铁 (II) 离子,转换后  $\lg K$  降低

#### 4.7 配位滴定法的应用

常用标准溶液:

EDTA(0.05  $\operatorname{mol/L}$ ) 使用间接法配置,装在硬质玻璃瓶或塑料瓶中,使用  $\operatorname{ZnO}$  滴定,使用  $\operatorname{EBT/XO}$  指示

ZnSO<sub>4</sub> 仅了解

#### 配位滴定法滴定方式

- 直接滴定
- 间接滴定
- 置换滴定
- 返滴定

Notation. 直接滴定:条件和酸碱滴定法相似

Notation. 返滴定: 适用于金属离子和 EDTA 反应慢和指示剂的封闭现象

Notation. 间接滴定:不和 EDTA 反应的物质(磷酸根离子:生成磷酸铋沉淀后测定铋离子)

Notation. 置换滴定:形成的配合物不稳定,可以置换出金属离子和配体离子,使置换出的金属离子和 EDTA 稳定;也可以置换出 EDTA,再用更强的金属离子滴定 EDTA

Example. 设计方案滴定药用氢氧化铝中氢氧化铝中含量

在药典中的记载:使用盐酸溶解,加入**氨水**中和至恰好析出沉淀,在滴加盐酸至刚好溶解;加入醋酸-醋酸铵缓冲溶液(pH=6),使用乙二胺四醋酸二钠滴定,煮沸完全反应,最后使用锌离子标准溶液滴定

### 5 氧化还原滴定法

- 概述
- 氧化还原滴定法的基本原理
- 常用的氧化还原滴定法

#### 重点内容:

- 条件电位
- 条件平衡常数
- 指示剂的选择
- 碘量法
- 高锰酸钾法
- ...

Notation. 氧化还原滴定法和配位滴定法是药学中应用最多的滴定方法

最常用的滴定方法: 碘量法(使用硫代硫酸钠滴定)

目标滴定物质本身具有氧化还原性时可以使用氧化还原滴定法

Definition. 氧化还原滴定法: 以氧化还原反应为基础的滴定分析方法

氧化还原滴定的本质为电子的转移:还原剂 → 氧化剂 特点:

- 机理复杂,常常分布进行
- 反应慢
- 常伴有副反应 (无明确的计量关系)
- 可以滴定无机物和有机物

#### 分类:

- a. 碘量法
- b. 高锰酸钾法
- c. 重铬酸钾法
- d. 亚硝酸钠法

### 5.1 配位滴定法基本原理

条件电位:

**Definition.** Ox/Red 称为氧化还原电对,简称电对,其中 Ox 为氧化态,Red 为还原态 **Notation.** 电对可以分为可逆电对和不可逆电对:

a. 可逆电对: 电势使用能斯特方程计算

b. 不可逆: 无平衡, 不能使用能斯特方程计算

Example.

$$Ce^{4+} + Fe^{2+} \Longrightarrow Ce^{3+} + Fe^{3+}$$
.

可以表示为:

$$Ox_1 + Red_2 \Longrightarrow Red_1 + Ox_2.$$

电对的电极电位 (potential):

$$\begin{cases} \varphi_{\rm Ox/Red} &= \varphi_{\rm Ox/Red}^{\theta} + \frac{2.303RT}{nF} \lg \frac{\alpha_{\rm Ox}}{\alpha_{\rm Red}} \\ \varphi_{\rm Ox/Red} &= \varphi_{\rm Ox/Red}^{\theta} + \frac{0.059}{n} \lg \frac{\alpha_{\rm Ox}}{\alpha_{\rm Red}} \end{cases}.$$

Notation. 高电位的氧化态和低电位的还原态反应, 电位差越大反应越完全

条件电位:

$$\varphi_{\rm Ox/Red}^{\ominus'} = \varphi_{\rm Ox/Red}^{\theta} + \frac{2.303RT}{nF} \lg \frac{\gamma_{\rm Ox} \alpha_{Red}}{\gamma_{\rm Red} \alpha_{\rm Ox}}.$$

其中:

$$\alpha_{\mathrm{Ox}} = \gamma_{\mathrm{Ox}}[\mathrm{Ox}] = \frac{\gamma_{\mathrm{Ox}} c_{\mathrm{Ox}}}{\alpha_{\mathrm{Ox}}}.$$

 $\alpha_{Red}$  同理,条件电位查表可得且条件电位不能通过计算获得

Notation. 条件电位的影响因素:

- a. 盐效应
- b. 生成沉淀
- c. 生成配合物
- d. 酸效应

当所有条件一定的时候,条件电位是一个常数

。盐效应:

离子强度的改变会改变活度系数  $\gamma$  ,由  $\varphi'=\varphi^\ominus+\frac{0.059}{n}$  lg  $\frac{\gamma_{\rm Ox}}{\gamma_{\rm Red}}$  改变  $\varphi'$  盐效应可以忽略

。 生成沉淀、配合物

Lecture 11

11.26

Notation. 氧化态发生副反应时条件电位降低

- 。酸效应:分两种情况:
  - a. H+或 OH-参与反应,直接影响
  - b. 氧化态或还原态为多元酸碱, 酸度变化改变型体的浓度

**Example.** 25 度时,酸性( $c_{\rm H^+}\approx 5~{\rm mol/L}$ )和碱性(pH  $\approx 8.0$ )下, $H_3{\rm AsO_4/HAsO_2}$  的条件电位,判断和  $I_2/I^-$  的反应方向

解: 半反应:

$$H_3AsO_4 + 2H^+ + 2e^- \Longrightarrow HAsO_2 + 2H_2O \quad \varphi^{\ominus} = 0.56V$$
  
 $I_2 + 2e^- \Longrightarrow 2I^- \quad \varphi^{\ominus'} \approx \varphi^{\ominus} = 0.54.$ 

计算条件电位:

$$\varphi_{\rm As} = \varphi_{\rm As}^{\ominus} + \frac{0.059}{2} \lg \frac{c_{\rm H_3AsO_4} c_{\rm H^+}}{c_{\rm HAsO_2}}.$$

. . .

Notation. 在酸性介质中铁的条件电位都会有所降低:

表 2: 不同介质中的条件电位

| 介质   | 高氯酸   | 稀盐酸 | 硫酸   | 稀磷酸  | 浓磷酸  |
|------|-------|-----|------|------|------|
| 条件电位 | 0.767 | 0.7 | 0.68 | 0.44 | 0.32 |

#### 5.2 氧还反应进行的程度和速度

使用平衡常数的大小衡量:

- 绝对平衡常数
- 相对平衡常数

Example. 写出两个半反应:

$$Ox_1 + n_1 e^- = Red_1$$
  $\varphi_1 = \varphi_1^{\ominus'} + \frac{0.059}{n_1} \lg \frac{c_{Ox_1}}{c_{Red_1}}$   
 $Ox_2 + n_2 e^- = Red_2$   $\varphi_2 = \varphi_2^{\ominus'} + \frac{0.059}{n_2} \lg \frac{c_{Ox_2}}{c_{Red_2}}$ .

当平衡时:  $\varphi_1 = \varphi_2$  即:

$$\varphi_1^{\ominus'} + \frac{0.059}{n_1} \lg \frac{c_{\text{Ox}_1}}{c_{\text{Red}_1}} = \varphi_2^{\ominus'} + \frac{0.059}{n_2} \lg \frac{c_{\text{Ox}_2}}{c_{\text{Red}_2}}.$$

两边同乘  $n = n_1 \cdot n_2$  整理后得:

$$\lg K' = \lg \frac{c_{\mathrm{Ox}_2}^b \cdot c_{\mathrm{Red}_1}^a}{c_{\mathrm{Ox}_1}^a \cdot c_{\mathrm{Red}_2}^b} = \frac{n \left( \varphi_1^{\ominus'} - \varphi_2^{\ominus'} \right)}{0.059} = \frac{n \Delta \varphi^{\ominus'}}{0.059}.$$

即电位差越大, 反应越完全

**Notation.** 一般根据滴定要求,反应的完全程度需要在 99.9% 以上,即: $\frac{c_{\text{Red}_1}}{c_{\text{Ox}_1}} \ge 10^3$  ,计算发现条件与电子转移数有关:

- n=1 时,  $\Delta \varphi' = 0.35V$
- n=2 时,  $\Delta \varphi'=0.18V$
- $n_1: n_2 = 2$  时,  $\Delta \varphi^{\ominus'} \geq 0.27V$

即只要满足  $\Delta \varphi^{\ominus'} \geq 0.4V$  即可完全反应

#### 氧化还原反应的速度

Notation. 部分反应理论上可行, 但反应速度极慢

**Example.** 水溶液中的溶解氧相较于 Sn:  $\Delta \varphi^{\ominus'} \approx 1.08 \gg 0.4$ ,理论上可以完全反应,但该反应太慢了,因此锡制品可以用于锅碗瓢盆等

Notation. 热力学只考虑反应程度, 反映了反应的可能性; 动力学考虑反应速度, 反映了反应的现实性

一般来说, 反应物浓度越大, 反应速度越快

**Example.**  $Cr_2O_7^{2-}+6I^-+14H^+ \Longrightarrow 2Cr^{3+}+3I_2+H_2O$  ,加入过量 KI ,置于暗处 10min 即可反应完全

Notation. 一般情况下: 温度每升高  $10^{\circ}$ C ,反应速度加快 2 到 3 倍

催化剂: 分为正催化和负催化

Notation. 自动催化反应: 反应中产生了能催化反应的物质

### 5.3 氧化还原滴定曲线

滴定反应:

$$n_2 Ox_1 + n_1 Red_2 \rightleftharpoons n_2 Red_1 + n_1 Ox_2$$
.

Notation. 滴定曲线的横坐标:滴定剂的体积或滴定百分数

酸碱滴定的纵坐标: pH; 络合滴定的纵坐标:  $pC_x$ 

氧还滴定的纵坐标:任意一个电对的电极电位(常用量大的/被滴定物质进行计算;随着滴定规律变化,动态平衡)

滴定时计算电极电势:

滴定前:溶液中只有被滴定物质,且不知道已经发生了什么副反应,因此**氧还滴定图像没有起点** 

滴定中: 使用大量物质(被滴定物质)计算:

计量点处: 完全反应,但仍有残留,把两个电对的电势相加:  $2\varphi_{\rm sp}=\varphi_{\rm A}^{\Theta'}+\varphi_{\rm B}^{\Theta'}$ 过量时使用滴定物质计算



图 2: 氧化还原反应滴定曲线

• 对称电对: 氧化态和还原态的系数相同

• 不对称电对: 系数不相同

对称电对的电位值计算:

$$\varphi_{\rm sp} = \frac{n_1 \varphi_1^{\ominus'} + n_2 \varphi_2^{\ominus'}}{n_1 + n_2}.$$

Lecture 11

## 5.4 滴定突越范围的影响

 $\Delta \varphi^{\ominus'}$  越大,滴定突越范围越大



图 3: 突越范围与电位差