

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2018-1

[Cod: CM334 Curso: Análisis Numérico I]

[Prof: L. Paredes.]

Solucionario del Examen Final

1a El sistema lineal es:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

1b Por el método de Househoder, se tiene:

- 1	1,7320508	0,5773503	0,5773503	0,5773503	0,5773503	0	0,5773503	0	0,5773503	
	0	1,9148542	0,3481553	0,3481553	0,3481553	0,5222330	-0,1740777	0,5222330	-0,1740777	
	0	0	1,5954481	-0,2849014	0,3418817	0,5128226	0,4558423	-0,1139606	0,4558423	
	0	0	0	1,8612592	0,3453883	0,5180825	0,4605177	0,4221412	-0,0767530	
	0	0	0	0	1,8191422	0,2550199	0,2266844	0,3910306	0,3286924	
R =	0	0	0	0	0	1,7694183	-0,2482467	0,2640923	0,4595206	
n =	0	0	0	0	0	0	1,4503388	0,6380393	0,3471482	
	0	0	0	0	0	0	0	1,7047987	0,412881	
	0	0	0	0	0	0	0	0	1,3462912	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	L o	0	0	0	0	0	0	0	0	

y la matriz Q es:

0,5773503	0	0	0,5773503	0,5773503	0	0	0	0	0	0	oj	
0,3481553	0,5222330	0	-0,1740777	-0,1740777	0,5222330	0	0	0	0	0,5222330	О	
0,3418817	-0,1139606	0,6267832	-0,1709409	-0,1709409	-0,1139606	0,6267832	0	0	0	-0,1139606	О	
-0,1918824	-0,1151295	0,0959412	0,3645765	-0,1726941	-0,1151294	0,0959412	0	0	0,5372707	0,4221413	0,5372707	
-0,2776884	0,4930385	-0,1360106	-0,1870146	0,4647030	-0,0566711	0,413699	0	0	0,4477017	-0,1586791	-0,102008	
-0,1056369	-0,1584553	0,3750110	0,0211274	0,0845095	0,4859298	-0,2693741	0,5651575	0	0,343320	-0,2218375	-0,1426098	
-0,2092494	0,0308729	-0,1420152	0,4095801	-0,2003307	0,2270871	0,3512646	0,096735	0,6894941	-0,1818069	-0,0487106	-0,1790626	
0,1220885	0,3473971	0,0443958	-0,1620447	0,0399562	-0,2863529	-0,1664842	0,4628262	0,3285289	-0,2208691	-0,1831326	0,5660465	
-0,2089073	-0,0812417	0,4642383	-0,2089072	0,4178145	-0,0232119	-0,2553311	-0,3597847	0,4642384	-0,0812417	0,3133609	-0,023212	
0,3929006	0,0458534	0,1003979	-0,1003980	-0,2925026	-0,1587747	-0,2925027	-0,2799794	0,3929006	0,539152	-0,2799793	-0,1587746	
-0,0377138	0,2187918	0,1584325	0,1584325	-0,1207187	-0,547878	-0,1207187	0,366800	-0,0377139	0,0226455	0,366800	-0,547878	
_0,2129699	0,5046041	0,4073927	0,4073927	-0,1944228	0,046974	-0,1944228	-0,3386083	-0,2129699	-0,1157585	-0,3386082	0,046971	

Luego

$$Q*b = \begin{bmatrix} 25,980762\\ 16,189222\\ 15,270717\\ 22,411863\\ 14,513469\\ 5,8786943\\ 9,4498422\\ 14,410877\\ 8,0777467\\ 0\\ 0\\ 0 \end{bmatrix} y x = \begin{bmatrix} 3,9999836\\ 3,0000095\\ 7,9999937\\ 9,0000093\\ 4,9999968\\ 0,9999891\\ 1,9999989\\ 6,9999896\\ 6,0000442 \end{bmatrix} \Box$$

2a Sean $\boldsymbol{x},\,\boldsymbol{y}$: números enteros. Donde:

$$x+y = 40 \Rightarrow x+y-40 = 0$$

 $xy = 256 \Rightarrow xy-256 = 0$

2b Sea

$$J(x,y) = \left[egin{array}{cc} 1 & 1 \ y & x \end{array}
ight]$$

Luego

$$\begin{bmatrix} 1 & 0 \\ -y & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ y & x \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & x - y \end{bmatrix}$$

$$\begin{bmatrix} 1 & -\frac{1}{x-y} \\ 0 & \frac{1}{x-y} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & x - y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Donde:

$$J(x,y)^{-1} = \begin{bmatrix} 1 & -\frac{1}{x-y} \\ 0 & \frac{1}{x-y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -y & 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{x-y} & -\frac{1}{x-y} \\ -\frac{y}{x-y} & \frac{1}{x-y} \end{bmatrix}$$

2c Por el método de Jacobi:

$$x_{k+1} = x_k - D_k^{-1} f(x_k)$$

Simplificando se tiene:

$$\left[\begin{array}{c} x_{k+1} \\ y_{k+1} \end{array}\right] = \left[\begin{array}{c} 40 - y_k \\ \frac{256}{x_k} \end{array}\right]$$

La tabla es:

\boldsymbol{k}	x1(k)	x2(k)
0	1	0
1	40	256
2	-216	6,4
3	33,6	-1,1851851
4	41,185185	7,6190476
5	32,380953	6,2158273
	:	
25	32,000001	7,9999982

La solución es $\boldsymbol{x} = [32,000001\ 7,9999982]^T$. \boxdot

3a La matriz es:

$$A = \left[\begin{array}{cccc} 0.80 & 0.20 & 0.10 \\ 0.10 & 0.70 & 0.30 \\ 0.10 & 0.10 & 0.60 \end{array} \right]$$

3b Sea

$$y = \left[\begin{array}{c} 1000000 \\ 0 \\ 0 \end{array} \right]$$

Luego $A^3y + b_1A^2y + b_2Ay + b_3yI = 0$. Donde:

$$587000 + 670000b_1 + 800000b_2 + 10000000b_3 = 0$$

 $238000 + 180000b_1 + 1000000b_2 = 0$
 $175000 + 150000b_1 + 1000000b_2 = 0$

Resolviendo se tiene: $b_1=-2,1,\ b_2=1,4$ y $b_3=-0,3$

El polinomio característico es:

$$p(\lambda) = \lambda^3 - 2.1\lambda^2 + 1.4\lambda - 0.3. \ \Box$$

3c Por el método de potencia, se tiene la tabla siguiente:

\boldsymbol{k}	x1(k)	x2(k)	x3(k)	$\lambda_1(k)$
0	400000	300000	300000	
1	1	0,8292683	0,6097561	410000
2	1	0,8408551	0,5344418	410000
3	1	0,8309695	0,4940711	1,0268293
4	1	0,8171516	0,4721733	1,0216152
5	1	0,8060858	0,4601199	1,015601
	:			
23	1	0,7777824	0,4444456	1,0000017

Donde el valor y vector propios son $\lambda_1=1,0000017$ y $x_1=[1\ 0,7777824\ 0,4444456]^T$. \Box

Por el método de potencia inversa, se tiene la tabla siguiente:

\boldsymbol{k}	x1(k)	x2(k)	x3(k)	$\lambda_3(k)$
0	400000	300000	300000	
1	1	0,5	1	1
2	0,7222222	-0,0555556	1	0,6666667
3	0,555556	-0,5555556	1	0,6000000
4	0,4958848	-0,9403292	1	0,555556
5	0,4176153	-1	0,8250449	0,4367885
	:			
49	0,4999505	-1	0,5000445	0,49999901

Donde el valor y vector propios son $\lambda_3=0.4999901$ y $x_3=[0.4999505\ -1\ 0.5000495]^T$. \Box

Por el método de potencia inversa desplazada con $\overline{\lambda}=1,3333334$, se tiene la tabla siguiente:

\boldsymbol{k}	x1(k)	x2(k)	x3(k)	$\lambda_2(k)$
0	400000	300000	300000	
1	-1	-0,8017241	-0,5689655	0,5463578
2	1	0,8022646	0,4965423	0,5680286
3	-1	-0,7942052	-0,466638	0,5823971
4	1	0,7873539	0,4540108	0,5907591
5	-1	-0,7829771	-0,4986007	0,5978839
	:			
18	1	0,7777781	0,444446	0,6000000

Donde el valor y vector propios son $\lambda_2=0,6000000$ y $x_2=[1\ 0,7777781\ 0,4444446]^T$. \Box

4a Sea la interpolación de Lagrange de orden cuatro.

$$f(x) \approx f(x_0) L_{4,0}(x) + f(x_1) L_{4,1}(x) + f(x_2) L_{4,2}(x) + f(x_3) L_{4,3}(x) + f(x_4) L_{4,4}(x)$$

Donde consideramos $x_0=8,\,x_1=10,\,x_2=12,\,x_3=14$ y $x_4=16$:

$$f(x) = 0.0236 \frac{(x-10)(x-12)(x-14)(x-16)}{(8-10)(8-12)(8-14)(8-16)} + 0.0475 \frac{(x-8)(x-12)(x-14)(x-16)}{(10-8)(10-12)(10-14)(10-16)} + 0.0830 \frac{(x-8)(x-10)(x-14)(x-16)}{(12-8)(12-10)(12-14)(12-16)} + 0.1736 \frac{(x-8)(x-10)(x-12)(x-16)}{(14-8)(14-10)(14-12)(14-16)} + 0.2020 \frac{(x-8)(x-10)(x-12)(x-14)}{(16-8)(16-10)(16-12)(16-14)}$$

$$= 0.0236 \frac{(x^4-52x^3+1004x^2-8528x+26880)}{384} + 0.0475 \frac{(x^4-50x^3+920x^2-7360x+21504)}{-96} + 0.0830 \frac{(x^4-48x^3+844x^2-6432x+17920)}{64} + 0.01736 \frac{(x^4-46x^3+876x^2-7496x+34560)}{-96} + 0.2020 \frac{(x^4-44x^3+716x^2-5104x+13440)}{384}$$

$$= -6.454 + x(2.3914 + x[-0.3255625 + x[0.01933125 - 0.00041875x]])$$

- 4b Evaluando cuando x=13, tenemos f(13)=0,124975. \Box
- 4c Sea la tabla de la interpolación de Newton

x_k	y_k	D.D. Orden 1	D.D. Orden 2	D.D. Orden 3	D.D. Orden 4
8	0,0236				
10	0,0475	0,01195			
12	0,0830	0,01775	0,0014500		
14	0,1736	0,04530	0,0068875	0,00090625	
16	0,2020	0,01420	-0,0077750	-0,00244375	-0,00041875

El polinomio de grado 4 es:

$$f(x) = 0.0236 + (x-8)[0.01195 + (x-10)\{0.00145 + (x-12)[0.00090625 - (x-14)0.00041875]\}]$$

4d Evaluando cuando x = 13, tenemos f(13) = 0,124975.

28 de Junio del 2018