WS 17/18

Dr. W. Spann

F. Hänle, M. Oelker

7. Tutorium zur Linearen Algebra für Informatiker und Statistiker

T25) Gegeben sei die reelle Matrix

$$A := \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

Zeigen Sie, dass A invertierbar ist und bestimmen Sie A^{-1} .

- T26) Sei K ein Körper, $m, n \in \mathbb{N}$. Für $l \in \mathbb{N}$ und $M \in K^{l \times l}$ sei spur $(M) := \sum_{i=1}^{l} m_{ii}$.
 - (a) Zeigen Sie: $A \in K^{m \times n} \Rightarrow \text{spur}(AA^T) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2$
 - (b) Zeigen Sie mit Hilfe von (a): $A \in K^{m \times n} \Rightarrow \operatorname{spur}(A^T A) = \operatorname{spur}(AA^T)$
 - (c) Für $n \ge 2$ gibt es $A, B, C \in K^{n \times n}$ mit spur $(ABC) \ne \text{spur}(BAC)$.
- T27) Sei K ein Körper, $n \in \mathbb{N}$ und $M \in GL(n, K)$. Zeigen Sie: $U_M := \{A \in K^{n \times n} : A^{\top}MA = M\}$ ist eine Untergruppe von GL(n, K).
- T28) Sei K ein Körper, $n \in \mathbb{N}$ mit $n \geq 2$, $a, b \in K^n \setminus \{0\}$ und $G := \{E_n + \delta ab^\top : \delta \in K\}$. Zeigen Sie:
 - (a) $ab^{\top} = (a_i b_j)_{i,j=1,...,n}$
 - (b) Die Matrixmultiplikation ist eine Verknüpfung auf G.
 - (c) $b^{\top}a = 0 \Rightarrow (G, \cdot)$ Gruppe
 - (d) $\forall \gamma, \delta \in K : \quad \gamma = 0 \lor \gamma + \delta b^{\top} a = 0 \Rightarrow \gamma E_n + \delta a b^{\top}$ nicht invertierbar