GEOMETRY

(Unpublished)

A. Grothendieck

This edition is a collection of A. Grothendieck's unpublished works on geometry reunited by Mateo Carmona. Remarks, comments, and corrections are welcome.

https://agrothendieck.github.io/

Typeset with MEX and the *memoir* class. Composed with Bitstream Charter for the text type and Paul Pichaureau's mathdesign package for the math type. All diagrams and illustrations were made with Till Tantau's TikZ (TikZ ist *kein* Zeichenprogramm) and the tikz-cd package.

Contents

1968			1
Tapis de	Quillen 1		
1	Relation entre catégories et ensembles		
	semi-simpliciaux 1		
2	<i>n</i> -catégories, catégories <i>n</i> -uples, et Gr-catégories	2	
3	Point de vue "motivique" en théorie du cobordisme	2	

Tapis de Quillen

1 A toute catégorie C, on associe un ensemble semi-simplicial S(C), trouvant ainsi un foncteur pleinement fidèle

 $S: (Cat) \rightarrow Ssimpl.$

Les systèmes locaux d'ensemble sur SC correspondent aux foncteurs sur C qui transforment toute flèche en isomorphisme (i.e. qui se factorisent par le groupoïde associé à C). Les H^i sur SC d'un tel système local (H^0 pour ensembles, H^1 pour groupes, H^i quelconques pour groupes abéliens) s'interprètent en termes des foncteurs $\varprojlim_{C}^{(i)}$ dérivés de \varprojlim_{C} ou si on préfère, des H^i (du topos C). On voit ainsi à quelle condition un foncteur $C \to C'$ induit un homotopisme $SC \to SC'$: en vertu du critère cohomologique de Artin-Mazur, il f et s que pour tout système de coefficients F' sur C', l'homomorphisme naturel $\varprojlim_{C'}^{(i)} F' \to \varprojlim_{C}^{(i)} F$ soit un isomorphisme (pour les i pour lesquels cela a un sens).

A C on peut associer le topos \widetilde{C} , qui varie de façon *covariante* avec C. (NB le foncteur $C \mapsto \widetilde{C}$ n'a plus rien de pleinement fidèle, semble-t-il ??).

Les systèmes de coefficients ensemblistes sur C (les foncteurs $C^{\circ} \to E$ ns transformant isomorphismes en isomorphismes) correspondent aux faisceaux localement constants i.e. les objets localement constants de \widetilde{C} , définis intrinsèquement en termes de \widetilde{C} . Ainsi, le fait pour un foncteur $F:C\to C'$ d'induire une homotopisme $S(C)\to S(C')$ ne dépend que du morphisme de topos $\widetilde{F}:\widetilde{C}\to\widetilde{C'}$ induit, et signifie que pour tout faisceau localement constant F' sur C' i.e. sur $\widetilde{C'}$, les applications induites $H^i(\widetilde{C'},F')\to H^i(\widetilde{C},\widetilde{F}^*(F'))$ sont des isomorphismes (pour les i pour lesquels cela a un sens).

On a aussi un foncteur évident

$$T: Ssimpl \rightarrow (Cat),$$

en associant à tout ensemble semi-simplicial X la catégorie $T(X) = \Delta_{/X}$ des simplexes sur X, dont l'ensemble des objets est la réunion disjointe des X_n ... (c'est une catégorie fibrée sur la catégorie Δ des simplexes types, à fibres les catégories discrètes définies par les X_n). Ceci posé, Quillen prouve que pour tout X, ST(X) est isomorphe canoniquement à X dans la catégorie homotopique construite avec Ssimpl, et que pour toute C, la catégorie TS(C) est canoniquement "homotopiquement équivalente à C" i.e. canoniquement isomorphe a C dans la catégorie quotient de (Cat) obtenue en inversant les foncteurs qui sont des homotopismes. Ces isomorphismes sont fonctoriels en X. Il en résulte formellement qu'un morphisme $f: X \to Y$ dans Ssimpl est un homotopisme si et seulement si en est ainsi de $T(f): T(X) \to T(Y)$, d'où

Relation entre catégories et ensembles semi-simpliciaux

des foncteurs $S': (Cat)' \to Ssimpl'$ et $T': Ssimpl' \to (Cat)'$ entre les catégories "homotopiques", construites avec (Cat) resp Ssimpl, qui sont quasi-inverses l'un de l'autre.

De plus, Quillen contruit un isomorphisme canonique et fonctoriel dans (Cat)' entre C et la catégorie opposée C° , ou ce qui revient au même, un isomorphisme canonique et fonctoriel dans Ssimpl' entre S(C) et $S(C^{\circ})$. La définition est telle que le foncteur induit sur les systèmes locaux sur C transforme le foncteur contravariant F sur C, transformant toute flèche en flèche inversible, en le foncteur covariant (i.e. contravariant sur C°) ayant mêmes valeurs sur les objets, et obtenu sur les flèches en remplaçant F(u) par $F(u)^{-1}$; en d'autres termes, l'effet de l'homotopisme de Quillen sur les groupoïdes fondamentaux est l'isomorphisme évident entre les groupoïdes fondamentaux de C et de C°, compte tenu que le deuxième est l'opposé du premier. Comme application, Quillen obtient une interprétation faisceautique de la cohomologie d'un ensemble semi-simplicial à coefficients dans un système local covariant F (défini classiquement par le complexe cosimplicial des $C^n(F) = \coprod_{x \in X_n} F(x)$: on considère le système local contravariant défini par F, on l'interprète comme un faisceau sur T(X) i.e. objet de $Ssimpl_{/X}$, et on prend sa cohomologie. - Cependant, quand F est un système de coefficients covariant pas nécessairement local, on n'a toujours pas d'interprétation de ses groupes de cohomologie classiques en termes faisceautiques; ni, lorsque F est contravariant, de son homologie, ou inversement de sa cohomologie faisceautique en termes classiques.

A propos de la notion de foncteur qui est un homotopisme. Quillen montre qu'un tel foncteur $F:C\to C'$ induit une équivalence entre la sous-catégorie triangulée $\mathrm{D}^b_{lc}(C')$ de la catégorie dérivée bornée de celle des faisceaux abéliens sur C', dont les faisceaux de cohomologie sont des systèmes locaux, et la catégorie analogue pour C; et réciproquement. On peut dans cet énoncé introduire aussi n'importe quel anneau de base (à condition de le supposer $\neq 0$ dans le cas de la réciproque); la partie dire vaut aussi avec un anneau de coefficients par nécessairement constant, mains constant tordu. Je pense que ce résultat (facile) doit pouvoir se généraliser ainsi.

Soit $f: X \to X'$ un morphisme de topos qui soit tel que pour tout faisceau localement constant sur X', f induise un isomorphisme sur les cohomologies (avec cas non commutatif inclus). Supposons que X et X' soit localement homotopiquement trivial, i.e. que pour tout entier $n \ge 1$, tout objet U ait un recouvrement par des $U_i \to U$, tels que a) tout système local sur U devient constant sur U_i , et toute section sur U devient constant sur U_i et b) pour tout groupe abélien G, les $H^j(U,G) \to H^j(U_i,G)$ sont nuls pour $1 \le j \le n$. Alors le foncteur $D^b_{lc}(X') \to D^b_{lc}(X)$ induit par f est une équivalence. Même énoncé si on met dans le coup un système local d'anneaux sur X'. Enfin, f induit une équivalence entre la catégorie des coefficients locaux sur G et celle des coefficients locaux sur G'.

^{*}Attention, cette condition n'est typiquement pas satisfaite par les schémas sur []