M.Sioli's Thermodynamics

Pocket reference for 1st year course - BSc Physics, Unibo

2023

Contents

1	Fluidostatica e fluidodinamica	1
2	Sistemi termodinamici	1
3	Teoria Cinetica	2
4	Primo principio	3
5	Costanti fisiche e proprietà termodinamiche 5 1 Costanti	3

1 Fluidostatica e fluidodinamica

Sforzo di Taglio
$$\vec{T} = \frac{\mathrm{d} \, \vec{F_t}}{\mathrm{d} S}$$

Equazione della statica (1D) $\frac{\mathrm{d}p}{\mathrm{d}z} = -\rho(z)g$

Equazione generalizzata della statica $\nabla p=\rho \vec{H}=-\rho \nabla \Phi$ ove \vec{H} indica forza di volume (f. che agisce tramite il v. del corpo)

Legge di Stevino $p = p_0 + \rho g h$

Tensione superficiale $\tau=\frac{\mathrm{d}F}{\mathrm{d}l}=\frac{\mathrm{d}L}{\mathrm{d}S}$ (alternativamente indicata con γ)

Equazione di continuità $\rho Av = cost$

Resistenza del mezzo (per corpo sferico) $F=6\pi R\eta v$ a piccole velocità, $F=\frac{1}{2}\rho v^2\cdot S\cdot C$ a grandi v.

2 Sistemi termodinamici

Regola delle Fasi di Gibbs $\nu=C+2-F$ ove ν sono i d.o.f. termodinamici (var. intensive indipendenti), C le componenti e F le fasi

Scala Celsius
$$\theta(x) = 100 \frac{x - x_0}{x_{100} - x_0} C$$

Coefficiente di dilatazione termica lineare $\alpha_L=\frac{1}{l}\big(\frac{\partial l}{\partial T}\big)_p$ indicato anche con α (per un filo è a τ , tensione ai capi costante) $\Delta l \approx l \cdot (1+\alpha_L \Delta T)$

Coefficiente di dilatazione termica volumetrico $\alpha=\frac{1}{V}(\frac{\partial V}{\partial T})_p$ indicato anche con β

$$\Delta V \approx V \cdot (1 + \alpha \Delta T)$$

Per $\Delta T \rightarrow 0 \ \beta \approx 3\alpha_l$

Coefficiente di comprimibilità isoterma $\frac{1}{k} = -\frac{1}{V} \big(\frac{\partial V}{\partial p}\big)_T$

Potenziale di Lennard-Jones $U(r) = \varepsilon \left[\left(\frac{r_{min}}{r} \right)^{12} - 2 \left(\frac{r_m in}{r} \right)^6 \right]$

Termometro a GP $\; \theta(p) = 273.16 \frac{p}{p_3} \; {\rm ove} \; p_3 = {\rm punto} \; {\rm triplo}$

LEGGI DEI GAS PERFETTI

I Legge di Gay-Lussac a p cost $V = V_0 \beta \theta$ ($V \propto \theta$)

II Legge di Gay-Lussac a V cost $p=p_0\beta\theta$ $(p\propto\theta)$

Legge di Boyle a n, θ cost $V = \frac{cost}{p} (V \propto \frac{1}{p})$

Legge di Avogadro a p, θ cost $V = cost' \cdot n$ $(V \propto n)$

Equazione di stato dei GP $pV = nR\theta$

Dilatazione volumica e comprimibilità $\alpha = \frac{1}{\theta}$ — k = p

Dipendenza pressione dalla quota (θ cost) $p(z)=p_0\,e^{-z/h_0}$ con $h_0=\frac{R\theta}{g{
m M}}$ (massa molecolare media)

Sviluppo del viriale $z=\frac{pV}{nR\theta}$ fattore di compressione

$$z(p) \approx 1 + Ap + Bp^2 + Cp^3 + \dots$$

Equazione di stato di Van der Waals $\bigg[\Big(p + a \frac{n^2}{V^2} \Big) (V - bn) = nR \theta \bigg]$

oppure $(p + \frac{a}{v^2})(v - b) = R\theta$ con volume molare v

 $\text{Pressione per GR } p(\theta,V) = \frac{nR\theta}{V-bn} - \frac{an^2}{V^2} = \frac{R\theta}{\mathbf{v}-b} - \frac{a}{\mathbf{v}^2} = p(\theta,\mathbf{v})$

Temperatura e volume molare critici (flesso orizzontale isoterma piano pv) con coeff. compressione

$$v_C = 3b$$
 $\theta_C = \frac{8a}{27Rb}$ $z_C = \frac{p_C v_C}{R\theta_C} = \frac{3}{8} = 0.375$

Vapore saturo $\frac{n_L}{n_G} = \frac{\mathbf{v}_G - \mathbf{v}}{\mathbf{v} - \mathbf{v}_L}$

3 Teoria Cinetica

Pressione
$$p = \frac{1}{3}(p_x + p_y + p_z) = \frac{m}{3V} \sum_{i=1}^{N} (v_{ix}^2 + v_{iy}^2 + v_{iz}^2) = \frac{m}{3V} \sum_{i=1}^{N} v_i^2$$

Energia cinetica media $\boxed{\langle arepsilon
angle = rac{3}{2} k_B heta}$

Teorema di equipartizione dell'energia definizione Kelvin $\theta=\frac{2\langle \varepsilon \rangle}{k_B \nu}$ con $\nu=n\,d.o.f.$ e cost. di Boltzmann definita come valore esatto

Legge di Dalton (pressioni parziali) $(p_1+p_2)V=(n_1+n_2)R\theta$ ove $p_1,\,p_2$ sono pressioni esercitate in assenza dell'altro gas

2

Gas sulla bilancia $|\Delta v_{iy}| = \frac{gL}{|\vec{v}_{iy}|}$ da cui $\Delta p = \frac{Mg}{S}$

$$\mathbf{Moda} \ \frac{\mathrm{d}\,\rho}{\mathrm{d}v} = 0 \to \sqrt{\frac{2R\theta}{M}} = \sqrt{\frac{2k_B\theta}{m}}$$

$$\mbox{Velocità media } \langle v \rangle = \int_0^{+\infty} v \, \rho(v) \mathrm{d}v = \sqrt{\frac{8R\theta}{\pi M}} = \sqrt{\frac{8k_B\theta}{\pi m}}$$

$$\mbox{Velocità quadratica media } \langle v^2 \rangle = \int_0^{+\infty} v^2 \, \rho(v) \mathrm{d}v = \sqrt{\frac{3R\theta}{M}} = \sqrt{\frac{3k_B\theta}{m}}$$

Selettore di velocità
$$\Delta l(v) = \frac{2R^2\omega}{v}$$

Atmosfere planetarie raggio limite (posta
$$v_f=\sqrt{\langle v^2\rangle}$$
) $r=\sqrt{\frac{9R\theta}{8G\pi M\rho_{pianeta}}}$ a θ,ρ unif

Libero cammino medio - Mean free path $\lambda=\frac{k_B\theta}{\sigma p\sqrt{2}}$ con σ cross section particelle

4 Primo principio

5 Costanti fisiche e proprietà termodinamiche

5.1 Costanti

Costante di Boltzmann
$$k_B \equiv \frac{R}{N_A} \approx 1.380649 \times 10^{23} \mathrm{J/K}$$