Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -

F.O

2^a Análise -

2º Análise -Coeficientes das Restrições

3^a Análise -Limites das Disponibilidades

Referências

Programação Linear Análise de Sensibilidade

Prof. Dorirley Rodrigo Alves dorirley@pucminas.br

Pontifícia Universidade Católica de Minas Gerais - PUC Minas Instituto de Ciências Exatas e Informática - ICEI Otimização de Sistemas

Prof. Dorirley Rodrigo Alves

Introdução

Modelo

- 1^a Análise -Parâmetros da F.O
- 2ª Análise -Coeficientes das Restricõ
- 3ª Análise -Limites das Disponibilidades

Referências

Prof. Dorirley Rodrigo Alves

Introdução Modelo

Análise 1^a Análise -

Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõe

3^a Análise -Limites das Disponibilidades

Referências Dúvidas?!

Observe o modelo matemático e suas respectivas soluções utilizando o Método Gráfico e o Método Simplex

 $FO \mapsto \max z = 4x_1 + 5x_2$

Sujeito a: R_1 : $x_1 + 2x_2 + x_3 = 21$

 $R_2: \quad 3x_1+x_2+ \quad x_4=18$

 $x_1; x_2; x_3; x_4 \ge 0$

Tabela Inicial					
	ML	<i>x</i> ₁	<i>x</i> ₂		
f(x)	0	4	<i>x</i> ₂ 5		
<i>x</i> ₃	21	1	2		
<i>X</i> 4	18	3	1		

Tabela Final					
	ML	<i>X</i> 3	<i>X</i> ₄		
f(x)	-57	-11/5	-3/5		
<i>x</i> ₂	9	3/5	-1/5		
<i>x</i> ₁	3	-1/5	2/5		

Prof. Dorirley Rodrigo Alves

Introduçã Modelo Análise

1^a Análise -Parâmetros d F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências

Análise de Sensibilidade

Há, inicialmente, algumas análises a serem realizadas para uma melhor tomada de decisão.

- 1 Análise dos parâmetros da Função Objetivo;
- 2 Analise dos coeficientes das restrições. Ou seja, alterar o valor das variáveis não básicas (VNB);
- 3 Análise dos limites das disponibilidades.

Prof. Dorirley Rodrigo Alves

Introdução Modelo Análise

1^a Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõe

3^a Análise -Limites das Disponibilidades

Referências

Analisando os parâmetros da Função Objetivo

Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -

1ª Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõ

3ª Análise -Limites das Disponibilidades

Referências

Se a reta $\mathbb Z$ for girada no sentido horário ou anti-horário sobre o vértice que representa o Ponto Ótimo, esse ponto permanecerá enquanto $\mathbb Z$ estiver entre as faixas das Restricões 1 e 2.

De um modo geral, a expressão da $\mathsf{F.O}$ pode ser representada da seguinte forma:

$$\max z = c_1 x_1 + c_2 x_2 \quad \mathsf{Coeficiente\ angular}(\alpha) = \frac{c_1}{c_2}$$

Matematicamente, temos:

Declividade da Rs₁ Declividade da FO Declividade da Rs₂

 $x_1 + 2x_2 = 21$ $\alpha = \frac{1}{2}$ $\leq \frac{4}{5}$ $\leq 3x_1 + x_2 = 18$ $\alpha = 3$

Significa que para sabermos quais alterações podemos realizar na FO, a razão entre c_1/c_2 deve estar sobre esse intervalo.

Prof. Dorirley Rodrigo Alves

Modelo Análise 1a Análise -

Parâmetros da F O

3ª Análise -

primeiro exemplo

Suponha que no cenário de exemplo $(z = 4x_1 + 5x_2)$ houve uma modificação nos lucros dos itens que compõem a função objetivo, alterando seus valores para $(z = 7x_1 + 8x_2)$. A condição continuaria sendo atendida?

$$\max z = 7x_1 + 8x_2$$
 Coeficiente angular $(\alpha) = \frac{7}{8}$

Matematicamente, temos:

Declividade da Rs₁

Declividade da FO

Declividade da Rso

$$\alpha = 0,5$$

$$\leq \frac{7}{8} = 0,875 \leq$$

$$\leq$$

$$\alpha = 3$$

Portanto, as alterações ainda seriam válidas e o valor final de z passaria a ser z = 7(3) + 8(9) : z = 93

3ª Análise -

segundo exemplo

Lembrando que $(z = 4x_1 + 5x_2)$, quais possíveis variações em c_2 que manteriam a solução básica do modelo original? Obs.: os demais parâmetros permanecem os mesmo

Substituindo $c_1^0 = 4$ (valor original de c_1) na condição

$$0,5 \le \frac{c_1}{c_2} = \frac{4}{5} = 0,8 \le 3$$

tem-se que:

$$\begin{cases}
0.5 \times c_2 \le 4 \Rightarrow c_2 \le 8 \\
3 \times c_2 > 4 \Rightarrow c_2 > 1.33
\end{cases} \tag{2}$$

$$3 \times c_2 \ge 4 \Rightarrow c_2 \ge 1{,}33 \tag{2}$$

$$1,33 \le c_2 \le 8$$

Portanto, enquanto c_2 atender o intervalo especificado, a solução básica ótima do modelo original ($x_1 = 3$ e $x_2 = 9$), permanecerá inalterada.

2ª Análise -Coeficientes das Restriçõ

3ª Análise -Limites das Disponibilidades

Referências

terceiro exemplo

Lembrando que $(z=4x_1+5x_2)$, quais possíveis variações em c_1 que manteriam a solução básica do modelo original? Obs.: os demais parâmetros permanecem os mesmo.

Substituindo $c_2^0 = 5$ (valor original de c_2) na condição

$$0,5 \le \frac{c_1}{c_2} = \frac{4}{5} = 0,8 \le 3$$

tem-se que:

$$0,5 \times 5 < c_1 < 3 \times 5 \Rightarrow 2,5 < c_1 < 15$$

$$2,5 \le c_1 \le 15$$

Portanto, enquanto c_1 atender o intervalo especificado, a solução básica ótima do modelo original ($x_1=3$ e $x_2=9$), permanecerá inalterada.

Prof. Dorirley Rodrigo Alves

Modelo Análise

1^a Análise -Parâmetros d F.O

2ª Análise -Coeficientes das Restrições

3ª Análise -Limites das Disponibilidades

Referência: Dúvidas?!

Análise dos coeficientes das restrições

A partir de alterações no valor dos coeficientes das restrições podemos realizar a análise de sensibilidade. Este estudo é baseado no conceito de preço sombra (shadow price), que pode ser definido como o acréscimo (ou decréscimo) no valor da função objetivo caso seja adicionada (ou retirada) uma unidade na quantidade atual de recursos disponíveis. Ou seja, alterando os valores das variáveis não básicas (variáveis de folga ou de excesso das restrições).

2ª Análise -Coeficientes das Restrições

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?! Os acréscimos e decréscimos são calculados por meio das variações de Δx_1 e Δx_2 ?

As variações estão contidas na própria tabela de solução do Método Simplex

Quando
$$x_3 = 1$$

$$\Delta x_1 = -\frac{1}{5}$$
 $\Delta x_2 = \frac{3}{5}$ $\Delta z = \frac{11}{5}$

Quando
$$x_4 = 1$$

$$\Delta x_1 = \frac{2}{5}$$
 $\Delta x_2 = -\frac{1}{5}$ $\Delta z = \frac{3}{5}$

Tabela Final					
	ML	<i>X</i> 3	<i>X</i> ₄		
f(x)	-57	-11/5	-3/5		
<i>x</i> ₂	9	3/5	-1/5		
<i>x</i> ₁	3	-1/5	2/5		

Observe que para f(x), os valores devem ser multiplicados por -1 pois a F.O. foi transformada em min ao utilizar o Método Simplex pela tabela de Ventsel [?]

Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -

2ª Análise -Coeficientes das Restrições

3^a Análise -Limites das Disponibilida-

Referências

Prof. Dorirley Rodrigo Alves

Modelo Análise

1a Análise -

2ª Análise -Coeficientes das Restrições

3ª Análise -

Interpretando a Análise de Sensibilidade para x_3 e x_4

 $FO \mapsto MAX \mathbb{Z} = 4x_1 + 5x_2$

Sujeito a: R_1 : $x_1 + 2x_2 + x_3 = 21$

 $R_2: 3x_1+x_2+x_4=18$

 $x_1; x_2; x_3; x_4 > 0$

		Variações			
	Valores Originais	<i>x</i> ₃	Resultado	<i>x</i> ₄	Resultado
<i>x</i> ₁	3	-1/5	2,8	2/5	3,4
<i>x</i> ₂	9	3/5	9,6	-1/5	8,8
<i>X</i> 3	0	1	1	0	0
<i>X</i> ₄	0	0	0	1	1
Z	57	11/5	59,2	3/5	57,6

Comparando, percebemos que se aumentarmos em uma unidade a variável de folga x_3 reduzirá a quantidade de x_1 em 1/5 e aumentará a disponibilidade de x_2 em 3/5, obtendo um lucro de 59,2 em z.

2^d Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?!

Analisando o limite da Disponibilidade de R_1

Suponha que seja necessário alterar uma disponibilidade. Neste caso, quais seriam os valores máximo e mínimo que a disponibilidade apresentada em R_1 poderia alcançar?

Neste caso, o limite da R_1 é dado em função da variação de x_3 em x_1 , sendo:

$$\alpha_a : x_1 - \frac{1}{5}x_3 = 0 : 3 - \frac{1}{5}x_3 = 0 : -\frac{1}{5}x_3 = -3(-1) : x_3 = \frac{3}{1/5} = 15$$

e para x_2 , o limite seria:

$$\alpha_b \therefore x_2 + \frac{3}{5}x_3 = 0 \therefore 9 + \frac{3}{5}x_3 = 0 \therefore \frac{3}{5}x_3 = -9 \therefore x_3 = -\frac{9}{3/5} = -15$$

Matematicamente, o máximo decréscimo em x_3 para x_1 será 15 e o máximo acréscimo em x_3 para x_2 também será de -15 (mera coincidência!).

Isso significa que a disponibilidade de 21 pode variar de 21 - 15 = 6 ou 21 + 15 = 36 sem sair da região permissiva.

Prof. Dorirley Rodrigo Alves

Modelo Análise

Parâmetros d F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências

Observe o gráfico

2ª Análise -Coeficientes das Restriçõ

3ª Análise -Limites das Disponibilidades

Referência: Dúvidas?!

Analisando o limite da Disponibilidade de R₂

Suponha que seja necessário alterar uma disponibilidade. Neste caso, quais seriam os valores máximo e mínimo que a disponibilidade apresentada em R_2 poderia alcançar?

Neste caso, o limite da R_2 é dado em função da variação de x_4 em x_1 , sendo:

$$\alpha_c : x_1 + \frac{2}{5}x_4 = 0 : 3 + \frac{2}{5}x_4 = 0 : \frac{2}{5}x_3 = -3 : x_4 = -\frac{3}{2/5} = -7, 5$$

e para x_2 , o limite seria:

$$\alpha_d \therefore x_2 - \frac{1}{5}x_4 = 0 \therefore 9 - \frac{1}{5}x_4 = 0 \therefore -\frac{1}{5}x_4 = -9(-1) \therefore x_4 = \frac{9}{1/5} = 45$$

Matematicamente, o máximo decréscimo em x_4 para x_2 será 7,5 e o máximo acréscimo em x_4 para x_2 será 45.

Isso significa que a disponibilidade de 18 pode variar de 18-7, 5=10, 5 ou 18+45=63 sem sair da região permissiva.

Prof. Dorirley Rodrigo Alves

Introduçã Modelo

1^a Análise -Parâmetros o F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências

Observe o gráfico

1^a Análise -Parâmetros d F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?!

Analisando o limite da Disponibilidade de R_1

Ainda sobre os limites de R_1 , uma vez que o limite superior da R_1 devido a variação de x_3 em x_1 é igual a 15

$$\alpha_a = x_1 + \Delta x_3 :: \alpha_a = \frac{x_1}{\Delta x_3} = \frac{3}{1/5} = 15$$

$$FO\mapsto \mathsf{MAX}\ \mathbb{Z} = 4x_1 + 5x_2$$

Sujeito a:
$$R_1$$
: $x_1 + 2x_2 + x_3 = (21 + 15)$ ou 36

$$R_2: \quad 3x_1 + x_2 + \quad x_4 = 18$$

$$x_1; x_2; x_3; x_4 \ge 0$$

$$x_1 = 3 : x_1 + \alpha_a \times \Delta x_3 = x_1^{novo} = 3 + \left(15 \times -\frac{1}{5}\right) = 0 \Rightarrow x_1^{novo} = 0$$

$$x_2 = 9 : x_2 + \alpha_a \times \Delta x_3 = x_2^{novo} = 9 + \left(15 \times \frac{3}{5}\right) = 18 \Rightarrow x_2^{novo} = 18$$

$$z = 57$$
 : $z + \alpha_{a} \times \Delta x_{3} = z^{novo} = 57 + \left(15 \times \frac{11}{5}\right) = 90 \Rightarrow z^{novo} = 90$

1^a Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?!

Analisando o limite da Disponibilidade de R_1

Ainda sobre os limites de R_1 , uma vez que o limite inferior da R_1 devido a variação de x_3 em x_2 é igual a - 15

$$\alpha_b = x_2 - \Delta x_3 : \alpha_b = -\frac{x_1}{\Delta x_3} = -\frac{9}{3/5} = -15$$

$$FO \mapsto \mathsf{MAX} \ \mathbb{Z} = 4x_1 + 5x_2$$

Sujeito a:
$$R_1$$
: $x_1 + 2x_2 + x_3 = (21 - 15)$ ou 6

$$R_2: \quad 3x_1 + x_2 + \quad x_4 = 18$$

$$x_1; x_2; x_3; x_4 \ge 0$$

$$x_1 = 3 : x_1 - \alpha_b \times \Delta x_3 = x_1^{novo} = 3 - \left(15 \times -\frac{1}{5}\right) = 6 \Rightarrow x_1^{novo} = 6$$

 $x_2 = 9 : x_2 - \alpha_b \times \Delta x_3 = x_2^{novo} = 9 - \left(15 \times \frac{3}{5}\right) = 0 \Rightarrow x_2^{novo} = 0$

$$z = 57$$
 : $z - \alpha_b \times \Delta x_3 = z^{novo} = 57 - \left(15 \times \frac{11}{5}\right) = 24 \Rightarrow z^{novo} = 24$

2ª Análise -Coeficientes das Restriçõ

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?!

Analisando o limite da Disponibilidade de R_2

Para os limites de R_2 , uma vez que o limite inferior da R_2 devido a variação de x_4 em x_1 é igual a - 7,5

$$\alpha_c = x_1 - \Delta x_4 :: \alpha_c = -\frac{x_1}{\Delta x_4} = -\frac{3}{2/5} = -7, 5$$

$$\begin{array}{lcl} \textit{FO} \mapsto \mathsf{MAX} \ \mathbb{Z} & = & 4x_1 + 5x_2 \\ & \mathsf{Sujeito} \ \mathsf{a:} & R_1: & x_1 + 2x_2 + x_3 & = 21 \\ & R_2: & 3x_1 + x_2 + & x_4 = (18 - 7, 5) \ \mathsf{ou} \ 10, 5 \\ & x_1; x_2; x_3; x_4 \geq 0 \end{array}$$

$$x_{1} = 3 : x_{1} - \alpha_{c} \times \Delta x_{4} = x_{1}^{novo} = 3 - \left(\frac{15}{2} \times \frac{2}{5}\right) = 0 \Rightarrow x_{1}^{novo} = 0$$

$$x_{2} = 9 : x_{2} - \alpha_{c} \times \Delta x_{4} = x_{2}^{novo} = 9 - \left(\frac{15}{2} \times -\frac{1}{5}\right) = 10, 5 \Rightarrow x_{2}^{novo} = 10, 5$$

$$z = 57 : z - \alpha_{c} \times \Delta x_{4} = z^{novo} = 57 - \left(\frac{15}{2} \times \frac{3}{5}\right) = 53, 5 \Rightarrow z^{novo} = 53, 5$$

Prof. Dorirley Rodrigo Alves

Introdução Modelo Análise

1^a Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?!

Analisando o limite da Disponibilidade de R_2

Para os limites de R_2 , uma vez que o limite superior da R_2 devido a variação de x_4 em x_2 é igual a 45

$$\alpha_d = x_2 + \Delta x_4 : \alpha_d = \frac{x_2}{\Delta x_4} = \frac{9}{1/5} = 45$$

$$\textit{FO} \mapsto \mathsf{MAX} \ \mathbb{Z} \quad \ = \quad \ 4x_1 + 5x_2$$

Sujeito a:
$$R_1: x_1 + 2x_2 + x_3 = 21$$

$$R_2: 3x_1 + x_2 + x_4 = (18 + 45)$$
 ou 63

$$x_1; x_2; x_3; x_4 \ge 0$$

$$x_{1} = 3 : x_{1} + \alpha_{d} \times \Delta x_{4} = x_{1}^{novo} = 3 + \left(45 \times \frac{2}{5}\right) = 21 \Rightarrow x_{1}^{novo} = 21$$

$$x_{2} = 9 : x_{2} + \alpha_{d} \times \Delta x_{4} = x_{2}^{novo} = 9 + \left(45 \times -\frac{1}{5}\right) = 0 \Rightarrow x_{2}^{novo} = 0$$

$$z = 57 : z + \alpha_{d} \times \Delta x_{4} = z^{novo} = 57 + \left(45 \times \frac{3}{5}\right) = 84 \Rightarrow z^{novo} = 84$$

Prof. Dorirley Rodrigo Alves

Introdução Modelo Análise

1^a Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências

primeiro exemplo

A partir daqui, podemos calcular qualquer variação. Por exemplo, supondo que seja desejável aumentar 10 unidades em x_4 , o cenário ainda seria possível? Ou seja, ainda existirá região permissiva?

$$x_1 = 3 : x_1 = 3 + \left(10 \times \frac{2}{5}\right) = 7$$

 $x_2 = 9 : x_2 = 9 + \left(10 \times -\frac{1}{5}\right) = 7$
 $z = 57 : z = 57 + \left(10 \times \frac{3}{5}\right) = 63$

Como os resultados foram positivos, então há região permissiva.

Prof. Dorirley Rodrigo Alves

Introdução Modelo Análise

1^a Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restrições

3ª Análise -Limites das Disponibilidades

Referências

segundo exemplo

e se aumentarmos 50 unidades em x_4 , o cenário ainda seria possível? Ou seja, ainda existirá região permissiva?

$$x_1 = 3 : x_1 = 3 + \left(50 \times \frac{2}{5}\right) = -1$$

 $x_2 = 9 : x_2 = 9 + \left(50 \times -\frac{1}{5}\right) = 23$
 $z = 57 : z = 57 + \left(50 \times \frac{3}{5}\right) = 87$

Como x_1 foi negativo, então não há região permissiva.

2ª Análise -Coeficientes das Restriçõ

3ª Análise -Limites das Disponibilidades

Referências Dúvidas?!

terceiro exemplo

e se aumentarmos 50 unidades em x_3 e x_4 , o cenário ainda seria possível? Ou seja, ainda existirá região permissiva?

$$x_1 = 3 : x_1 = 3 + \left(50 \times \frac{2}{5}\right) + \left(50 \times -\frac{1}{5}\right) = 13$$

$$x_2 = 9 : x_2 = 9 + \left(50 \times -\frac{1}{5}\right) + \left(50 \times \frac{3}{5}\right) = 29$$

$$z = 57 : z = 57 + \left(50 \times \frac{3}{5}\right) + \left(50 \times \frac{11}{5}\right) = 197$$

- para α_a , os limites para $x_1 = 0$ e $x_2 = 18$
- para α_h , os limites para $x_1 = 6$ e $x_2 = 0$
- para α_c , os limites para $x_1 = 0$ e $x_2 = 10, 5$
- para α_d , os limites para $x_1 = 21$ e $x_2 = 0$

Neste caso, o valor obtido em $x_2 = 29$ foi superior aos limites estabelecidos, então não há região permissiva.

Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -

1^a Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restriçõe

3ª Análise -Limites das Disponibilidades

Referências

Dúvidas?!

Petr lakovlevitch Ekel Notas de Aulas - PUC Minas- PPGEE 2008

Dorirley Rodrigo Alves Notas de aulas - PUC Minas - ICEI

2015

Prof. Dorirley Rodrigo Alves

Introdução Modelo

1ª Análise -Parâmetros da F.O

2ª Análise -Coeficientes das Restrições

3^d Análise -Limites das Disponibilidades

Referências

Dúvidas?!

Alguém com dúvida?!

