1 Ordinary Differential Equations

1.1 Euler integration method

The Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest RungeKutta method.

Question

Consider the following ODE

$$\frac{df(t)}{dt} = tf(t),$$

with $f(t_0) = f_0$, and suppose you use Euler integration with time step ΔT , so that $t_n = t_0 + n\Delta T$. What is the value of the approximation at time t_n ?

- (a) $f(t_n) \approx f_0 \prod_{k=1}^{n} (1 + t_k \Delta T)$
- (b) $f(t_n) \approx f_0 \prod_{k=0}^{n_1} (1 + t_k \Delta T)$
- (c) $f(t_n) \approx f_0 + f_0 \sum_{k=0}^{n} t_k \Delta T$
- (d) $f(t_n) \approx f_0 + f_0 \sum_{k=1}^{n} t_k \Delta T$

1.2 Reversion to the Mean

Consider the following ODE for $\sigma(t)$,

$$\frac{d\sigma(t)}{dt} = -0.5(\sigma - 0.20)$$

with $\sigma(0) = 0.30$. How will $\sigma(t)$ evolve with time?

- (a) It will increase.
- (b) It will oscillate around the value 0.30.
- (c) It will decrease, reaching the value 0.20 in a finite time.
- (d) It will decrease, approaching the value 0.20, but never reaching it.(correct)