РАСЧЕТ ПАРАМЕТРОВ ФОТОЭЛЕКТРОННОГО УМНОЖИТЕЛЯ

Фотоэлектронный умножитель (ФЭУ) относится к фотоэлектрическим приемникам оптического излучения, в которых энергия поглощенного фотона переходит в энергию электронов. ФЭУ представляет собой совокупность помещенных в вакуумную камеру фотокатода, системы динодов и анода.

Фотокатод, по сути, является приемником фотонов и преобразователем потока фотонов в поток электронов. Такое преобразование основано на явлении фотоэффекта. Фотокатод представляет собой слой фоточувствительного материала, нанесенного на непрозрачную или прозрачную подложку. Толстые непрозрачные слои освещаются со стороны вакуума, а тонкие полупрозрачные пленки, нанесенные на прозрачную подложку, могут освещаться как со стороны вакуума, так и со стороны подложки. Фотокатоды для видимой, ИК- и ближней УФ-областей спектра имеют в своем составе (или на поверхности) щелочные металлы, вступающие в реакцию с атмосферным воздухом. Поэтому фотокатоды работают только в условиях вакуума.

Основными параметрами фотокатодов являются

- спектральная чувствительность (S);
- длинноволновая граница фотоэлектронной эмиссии (λ_0);
- квантовый выход фотоэлектронной эмиссии ($Y(\lambda)$);
- интегральная чувствительность (S_i) ;
- плотность темнового тока (j_T).

Длинноволновая граница фотоэлектронной эмиссии (порог чувствительности фотокатода) – длина волны, при которой $S_{\lambda_0} = 0.01 \cdot S$.

Спектральная чувствительность — отношение фотоэлектронного тока в режиме насыщения (в мА) к мощности падающего на фотокатод монохроматического излучения с длиной волны λ (в Вт).

Квантовый выход фотоэлектронной эмиссии — отношение числа эмитированных электронов к числу падающих на фотокатод фотонов:

$$Y(\lambda) = 1,24 \left[\frac{B_T \cdot HM}{MA} \right] \cdot \frac{S_{\lambda}}{\lambda \left[HM \right]}.$$

Квантовый выход часто выражается в процентах.

Интегральная чувствительность фотокатода — отношение фототока в режиме насыщения (в мкА) к величине падающего светового потока (в лм) от стандартного источника излучения (лампа накаливания с вольфрамовой нитью при $T=2850~{\rm K}$). S_i и S связаны соотношением:

$$S_{i} = 10^{3} \cdot \frac{\int_{0}^{\lambda_{0}} S \cdot F_{\lambda} d\lambda}{F_{0} \int_{\lambda_{1}}^{\lambda_{2}} F_{\lambda} K_{\lambda} d\lambda},$$

где F_{λ} — интенсивность излучения на длине волны λ ; K_{λ} — относительная спектральная чувствительность человеческого глаза (кривая видности — см. рисунок); λ_0 — порог чувствительности фотокатода; λ_1 и λ_2 — границы видимого диапазона длин волн электромагнитного излучения ($\lambda_1 = 350$ нм; $\lambda_2 = 750$ мкм); $F_0 = 683$ лм/Вт — световой поток (в лм), соответствующий потоку в 1 Вт мнохроматіческого излучения с $\lambda = 554$ нм.

Кривая видимости человеческого глаза

Темновой ток фотокатода — ток в отсутствие излучения, определяемый термоэлектронной эмиссией. Она зависит от состояния поверхности фотокатода (работы выхода фотокатода) и его температуры. Темновой ток является основным источником электрического шума в ФЭУ. Среднеквадратичный электрический шум ($i_{\rm m}$) в отсутствие излучения равен $i_{\phi} = 2 \cdot e \cdot j_T \cdot q \cdot \Delta f$, где e — заряд электрона; j_T — плотность темнового тока; q — площадь фотокатода; Δf — ширина полосы частот регистрирующего устройства.

Фотокатод также характеризуется стабильностью его чувствительности во времени и термостойкостью, т. е. диапазоном рабочих температур, в границах которого чувствительность фотокатода сохраняется в заданных пределах.

Указанные параметры зависят от материалов поверхностного слоя фотокатода (см. таблицу 1).

Tr ~ 1	1	\sim		1	
Таблица	_		папаметп	ы фотокатодо:	R
таолица	L	Collobilbic	napamerp	лы фотокатодо.	D

№ п/п	Материал фотокатода	S, мк A /лм	$Y(\lambda)$	j_T , A/cm ²
1.	Cs_3Sb	40–80	0,15-0,25	$10^{-16} - 10^{-15}$
2.	Na_2KSb	30–60	0,25-0,3	10^{-17}
3.	Cs	200–700	0,3-0,35	10^{-16}
4.	K ₂ CsSb	100–200	0,3-0,35	10^{-17}
5.	Ag-O-Cs	20–70	0,005	$10^{-12} - 10^{-11}$
6.	Bi–Ag–O–Cs	30–80	0,1	10^{-14}
7.	GaAsP-Cs-O	200–300	0,5	$10^{-16} - 10^{-14}$
8.	GaAs-Cs-O	1000-2000	0,3	$10^{-12} - 10^{-11}$
9.	InGaAsP-Cs-O	200–1000	0,2	10^{-15}
10.	InGaAs-InP-Ag-Cs-O	400–1000	0,01-0,08	10^{-16}

В системе динодов выполняется умножение электронов. Работа динода основана на эффекте вторичной электронной эмиссии — явления, когда первичный электрон, попадая на динод, выбивает несколько электронов (называемых вторичными). Сколько в среднем появляется вторичных электронов, зависит и от энергии первичного электрона и от материала динода. Эта величина называется коэффициентом вторичной эмиссии (δ) .

Чтобы вылетевший из фотокатода фотоэлектрон пришел на 1-ый динод, имея достаточную энергию, потенциал динода должен быть в среднем на 150 В выше

потенциала фотокатода. Аналогично, чтобы появившиеся с 1-ого динода примерно δ вторичных электронов достигли следующего 2-ого динода, обладая достаточной энергией, потенциал 2-ого динода также должен превышать потенциал 1-ого в среднем на 150 В. В результате, со 2-ого динода выходит электронное облако из примерно δ^2 электронов. Процесс умножения происходит лавинообразно и с последнего динода на анод (или электрод-коллектор) приходит уже $G = \delta^m$ электронов, где m — число динодов.

Согласно ГОСТ 11612.0–75, для стабилизации напряжения между динодами ФЭУ используются конденсаторы, шунтирующие последние диноды ФЭУ. Значения емкости таких конденсаторов рассчитывают по формуле:

$$C_i = 100 \cdot \frac{Q}{\delta^{n-i}U_i},$$

где Q — заряд анодного тока, Кл; n — общее число каскадов; U_i — напряжение на i-м каскаде (между i-м и (i-1)-м динодами); 100 — коэффициент, вводимый в предположении допустимого изменения междинодного напряжения не более 1 %.

Задача 1. Сила тока на выходе ФЭУ составляет I мА. Определить количество фотонов, поступивших на его фотокатод в течение t с, если материал фотокатода -M, количество динодов ФЭУ -n, а величина их коэффициента вторичной эмиссии $-\delta$.

Задача 2. Определить потенциал на n-м диноде ФЭУ, если потенциал на его фотокатоде равен U В.

Задача 3. Определить длинноволновую границу фотоэлектронной эмиссии фотокатода, изготовленного из материала M.

Задача 4. Определить интегральную чувствительность фотокатода на длине волны $1,5\cdot\lambda_0$, изготовленного из материала M.

Задача 5. Определить величину среднеквадратического электрического шума Φ ЭУ, если площадь фотокатода q, см²

Задача 6. Рассчитать для условий задачи 1 интенсивность воздействующего на фотокатод излучения, значение длины волны которого равно рассчитанному в задаче 3 значению длинноволновой границы фотоэлектронной эмиссии фотокатода, изготовленного из материала M *.

Задача 7. Рассчитать значения емкости конденсаторов, шунтирующих предпоследний динод ФЭУ из задачи 1.

Таблица 2 – Исходные данные для расчета

№ варианта**	I	t	М	n	δ	U	q
0	9	0,5	1	9	10	50	2
1	10	1	2	10	11	55	2,5
2	11	1,5	3	11	12	60	3
3	12	2	4	12	13	65	3,5
4	13	2,5	5	13	14	70	4
5	14	3	6	14	15	75	4,5
6	15	3,5	7	15	16	80	5
7	16	4	8	16	17	85	5,5
8	17	4,5	9	17	18	90	6
9	18	5	10	18	19	95	6,5

^{*} Энергия одного фотона равна $h \cdot c/\lambda$, где $h = 6.62 \cdot 10^{-34} \, \text{Дж/c} - \text{постоянная Планка};$ с – скорость света в вакууме.

^{** №} варианта = (Последние 2 цифры в номере зачетной книжки) mod 10