GR 11 MATHS

MEASUREMENT FORMULAE:

Total Surface Area & Volume

CONTENTS:

Right Prisms vs Right Pyramids Page 1

Cylinders vs Cones Page 1

Spheres and Hemispheres (Half-spheres) Page 2

Compliments of

Right Prisms vs Right Pyramids

Compare right prisms to right pyramids

Right Prisms

base

base

base

triangular

Right Pyramids

square base

triangular base

Surface Area

▶ Practically speaking, the total surface area (TSA) of any 3D solid is equal to the sum of the areas of all the faces

e.g.

A Prism

with a square base

TSA of the prism (6 faces)

$$= x^2 + x^2 + xh + xh + xh + xh$$

$$= 2x^2 + 4xh$$

A Pyramid with

a square base

TSA of the pyramid (5 faces)

$$= x^2 + 4\left(\frac{xs}{2}\right) \qquad \dots \frac{xs}{2} = \frac{1}{2} \times x \times s$$

$$= x^2 + 2xs$$

▶ Using the formulae for prisms and pyramids in general:

TSA = 2(area of the base) + (perimeter of base \times height) Prism:

 $= 2(x^2) + (4x)(h)$... same as above

Pyramid: TSA = area of the base + $\frac{1}{2}$ perimeter of base × slant height

$$= x^2 + \frac{1}{2}(4x).s \qquad \dots same as above$$

$$= x^2 + 2xs$$

Volume

A Prism

with a square base

Volume of the prism

= area of base × height

 $= x^2 h$

A Pyramid

with

a square base

Volume of the pyramid

= $\frac{1}{2}$ area of base × perpendicular height

 $=\frac{1}{3}x^2.h$

Cylinders vs Cones

Cylinders

Surface Area

Cylinder

TSA = 2(area of base) + circumf. of base × height

=
$$2(\pi r^2) + (2\pi r)h$$

= $2\pi r(r + h)$

same idea as for prisms

Cone

TSA = area of base + $\frac{1}{2}$ circumf. of base × slant height

$$= \pi r^2 + \frac{1}{2}(2\pi r).s$$

same idea as for pyramids

Volume

Cylinder

Volume = area of base \times height

$$= \pi r^2.h$$

Cone

Volume = $\frac{1}{2}$ area of base × perpendicular height

$$=\frac{1}{3}\pi r^2.h$$

Spheres and Hemispheres (Half-Spheres)

Surface Area

TSA of a sphere = $4 \times \pi r^2$ $= 4\pi r^2$

 \dots 4 × the area of a circle (also with radius, r)

TSA of a hemisphere = $\frac{1}{2}$ (TSA of a sphere) + the area of a circle $=\frac{1}{2}(4\pi r^2) + \pi r^2$

$$= 3\pi r^2$$

If a hemisphere is attached to a cylinder (see alongside),

then TSA of this object = area of base of cylinder (πr^2)

+ area of hemisphere $(2\pi r^2)$

$$= 3\pi r^2 + 2\pi rh$$

Note: The area of the base of the hemisphere is ignored.

Volume of a sphere . . . $=\frac{4}{2}\pi r^3$

Volume of a hemisphere

$$= \frac{1}{2} \times \frac{4}{3} (\pi r^3) = \frac{2}{3} \pi r^3$$

SUMMARY OF FORMULAE: Pyramids/Cones/(Half)Spheres

• Total Surface Area (TSA)

A right pyramid: TSA = area of base + $\frac{1}{2}$ perimeter of base × slant height

TSA = area of base + $\frac{1}{2}$ circumference of base × slant height A right cone:

TSA = $4\pi r^2$... $4 \times the area of a circle$ A sphere:

TSA = area of base (πr^2) + curved surface area $(2\pi r^2)$ = $3\pi r^2$ A hemisphere:

Volume

A right pyramid: Volume = $\frac{1}{2}$ area of base × perpendicular height

Volume = $\frac{1}{2}$ area of base × perpendicular height A cone:

Volume = $\frac{4}{2} \pi r^3$ A sphere:

Volume = $\frac{2}{3}\pi r^3$ A hemisphere:

The effect on surface area and volume of a prism when multiplying the dimensions by a constant factor k.

Observe the effect on the total surface area (TSA) and volume of a cube of multiplying the dimensions by 2, and then, by 3.

A Cube:

TSA =
$$6(x \times x)$$
 Vol = $x \times 6x^2$ = x^3

$$Vol = x \times x \times x$$
$$= x^3$$

All dimensions x2:

TSA =
$$6(2x \times 2x)$$
 Vol = $2x \times 2$
= $6.2^2.x^2$ = $2^3.x^3$
= $24x^2$ = $8x^3$

TSA =
$$6(2x \times 2x)$$
 Vol = $2x \times 2x \times 2x$
= $6.2^2.x^2$ = $2^3.x^3$
= $24x^2$ = $8x^3$

Or, all dimensions x3:

TSA =
$$6(3x \times 3x)$$
 Vol = $3x \times 3x \times 3x$
= $6.3^2.x^2$ = $3^3.x^3$
= $54x^2$ = $27x^3$

Summary of the effects of scale factors 2, 3 and k:

All dimensions × 2 TSA × 4 Volume × 8

All dimensions \times 3 $TSA \times 9$ Volume × 27

In general:

 $TSA \times k^2 \Rightarrow Volume \times k^3$ All dimensions \times k

