Spatial Inefficiencies in Africa's Trade Network

Tilman Graff

Busara Center for Behavioral Economics & Princeton University

1st March 2019

Figure: Road Network Guinea

Figure: Road Network Guinea

Figure: Optimal Road Network Guinea

- Are African roads where they should be?
- Which country has the most efficient trade network?
- ▶ Why do some regions have *too* many roads?

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Network Nodes

Figure: 10,167 grid cells $(0.5 \times 0.5 \text{ degrees})$

Network Nodes

- Population
- ► Output (night lights)
- Geography

Network Edges

- Average Speed
- Distance
- Topography

Steps

- 1. Network representation for all African countries
 - ► Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

- Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{urban, rural\}$

- Node i houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{\text{urban}, \text{rural}\}$
- ► Consumers in i consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$

- Node i houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{\text{urban}, \text{rural}\}$
- ► Consumers in i consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ightharpoonup Can trade with neighbouring nodes N(i)
- ▶ Incur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{I_{i,k}^{\gamma}}$
 - ightharpoonup costs fall with $I_{i,k}$ (infrastructure)
 - ightharpoonup costs rise with $Q_{i,k}^n$ (congestion)

Steps

- 1. Network representation for all African countries
 - ► Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patters of reshuffling

- ▶ Social planner can reallocate infrastructure $l_{i,k}$
- Keeping total infrastructure cost fixed
 - $\triangleright \sum_{i} \sum_{k \in N(i)} \delta_{i,k}^{I} I_{i,k} \leq K$
 - where K = total cost of building the current network

Full Planner's Problem

Network Reallocation

Network Reallocation

Network Reallocation

Welfare gains for entire countries

Figure: Percentage welfare gains for all countries in the sample

Local Infrastructure Discrimination Index Λ_i

Figure: Λ_i for sample countries

 $\Lambda_i = \frac{\text{Welfare under the optimal Infrastructure}_i}{\text{Welfare under the current Infrastructure}_i}$

Λ_i for entire sample

Figure: 10,158 grid cells by Λ_i

Steps

- 1. Network representation for all African countries
 - ► Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Why do some areas have too few roads while others have too many?

Lasting impact of Colonial Railroads

Figure: Colonial Rails (red) and Placebo Rails (blue)

Source: Jedwab & Moradi (2016) and own digitisations

Lasting impact of Colonial Railroads

Table: Colonial Railroads and Local Infrastructure Discrimination Index

	Dependent variable:									
	Local Infrastructure Discrimination Index Λ_i									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
KM of Colonial Railroads	-0.0002*** (0.0001)	-0.0001*** (0.0001)	-0.0002*** (0.0001)	-0.0002*** (0.0001)						
KM of Colonial Placebo Railroads					0.00004 (0.0003)	-0.0002 (0.0003)	-0.0002 (0.0003)	-0.0003 (0.0003)		
Country FE Geographic controls Simulation controls		Yes	Yes Yes	Yes Yes Yes		Yes	Yes Yes	Yes Yes Yes		
Observations R ²	10,158 0.001	10,158 0.099	10,158 0.124	10,158 0.126	10,158 0.00000	10,158 0.098	10,158 0.122	10,158 0.124		
Note:						*p<0.1	l; **p<0.05;	***p<0.01		

Regional Favoritism

Figure: Birthplaces of African heads of state since 1970

Regional Favoritism

	Dependent variable: Local Infrastructure Discrimination Index Λ									
			Excluding Capitals							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Years in Power	-0.001*** (0.0003)	-0.001*** (0.0002)	-0.001*** (0.0004)			-0.001*** (0.0003)	-0.001** (0.0004)			
Years in Power × Democracy			-0.0001 (0.001)				-0.0002 (0.001)			
In Power Dummy				-0.024*** (0.006)	-0.025*** (0.006)			-0.026*** (0.007)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Geographic controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Simulation controls		Yes	Yes		Yes	Yes	Yes	Yes		
Observations	10,066	10,066	10,066	10,066	10,066	10,019	10,019	10,019		
R ²	0.124	0.125	0.125	0.124	0.126	0.128	0.128	0.128		

*p<0.1; **p<0.05; ***p<0.01 Note:

Ethnic Relations

Figure: Λ_h over ethnic homelands

Ethnic Relations

Table: Null Effect of Ethnic Discrimination

	Dependent variable: Local Infrastructure Discrimination Index Λ_h							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Ethnicity discriminated against 1960–2010	-0.001 (0.008)	-0.001 (0.007)						
Ethnicity excluded from the central government 1960–2010			-0.006 (0.005)	-0.005 (0.005)				
Ethnicity involved in an ethnic war 1960–2010					0.002 (0.008)	0.002 (0.008)		
Ethnicity split by colonial borders							-0.002 (0.004)	-0.002 (0.004)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Geographic controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Simulation controls		Yes		Yes		Yes		Yes
Observations	496	496	496	496	496	496	932	932
R ²	0.156	0.166	0.158	0.168	0.156	0.167	0.164	0.167
Note:						*p<0.1;	**p<0.05; *	**p<0.01

Does Aid go into the right locations?

Figure: Spatial Distribution of Development Aid Projects

Does Aid go into the right locations?

Dependent variable: Local Infrastructure Discrimination Index Λ									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
-0.0003*** (0.0001)	-0.0004*** (0.0001)								
		-0.001*** (0.0002)	-0.001*** (0.0002)						
				-0.002*** (0.0004)	-0.003*** (0.0004)				
						-0.003*** (0.001)	-0.004*** (0.001)		
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes		
10,158 0.125	10,158 0.128	10,158 0.125	10,158 0.127	10,158 0.127	10,158 0.131	10,158 0.126	10,158 0.129		
	-0.0003*** (0.0001) Yes Yes 10,158	(1) (2) -0.0003*** -0.0004*** (0.0001) (0.0001) Yes Yes Yes Yes Yes 10.158 10.158	(1) (2) (3) -0.0003*** -0.0004*** (0.0001) -0.001*** (0.0002) Yes Yes Yes Yes Yes Yes Yes Yes Yes 10,158 10,158 10,158	(1) (2) (3) (4) -0.0003*** -0.0004*** (0.0001) -0.001*** -0.001*** (0.0002) -0.001*** -0.001*** (0.0002) Yes	(1) (2) (3) (4) (5) -0.0003*** -0.0004*** (0.0001) (0.0001) -0.001*** -0.001*** (0.0002) (0.0002) -0.002*** (0.0004) Yes	(1) (2) (3) (4) (5) (6) -0.0003*** -0.0004*** (0.0001) (0.0001) -0.001*** -0.001*** (0.0002) (0.0002) -0.002*** -0.002*** (0.0004) (0.0004) Yes	(1) (2) (3) (4) (5) (6) (7) -0.0003*** -0.0004*** (0.0001) (0.0001) -0.001*** -0.001*** (0.0002) (0.0002) -0.002*** -0.003*** (0.0004) (0.0004) -0.003*** (0.001) Yes		

Recap

- Inefficiently designed road networks bear significant welfare costs for many African countries
- Substantial variation of network efficiency over space
- Potential causes for suboptimal network design
 - Colonial legacies
 - Regional favouritism
 - · ...?

Backup: full planner's problem

$$\begin{aligned} \max_{\left\{C_{i}^{n}, \left\{Q_{i,k}^{n}\right\}_{k \in N(i)}\right\}_{n}} & \sum_{i} L_{i}u(c_{i}) \\ c_{i}, \left\{I_{i,k}\right\}_{k \in N(i)} & \\ \text{subject to} & L_{i}c_{i} \leq \left(\sum_{n=1}^{N} (C_{i}^{n})^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \\ & C_{i}^{n} + \sum_{k \in N(i)} Q_{i,k}^{n}(1 + \tau_{i,k}^{n}(Q_{i,k}^{n}, I_{i,k})) \leq Y_{i}^{n} + \sum_{j \in N(i)} Q_{j,i}^{n} \\ & \sum_{i} \sum_{k \in N(i)} \delta_{i,k}^{i} I_{i,k} \leq K \\ & I_{i,k} = I_{k,i} \text{ for all } i \in \mathcal{I}, k \in N(i) \\ & C_{i}^{n}, c_{i}, Q_{i,k}^{n} \geq 0 \text{ for all } i \in \mathcal{I}, n \in \mathcal{N}, k \in N(i). \end{aligned}$$