Transfer learning in Reinforcement learning tasks - learning the task correspondence SDZ

Marko Ruman

supervisor: Ing. Tatiana Valentine Guy, Ph.D.

Outline

- Neural network definition
- 2 Assumptions
- 3 Bits of theory
- 4 Activation functions
- 5 Backpropagation Algorithm
- 6 CNNs

Definition of fully connected NN

A fully connected neural network is a tuple

$$(\mathbf{G}, \mathbf{\Phi}, \Theta_0, \mathcal{L})$$

- **G** is a directed graph defining the architecture of the network,
 - $G = \{V, E\}$, where

■
$$\mathbf{V} = \left\{ \left\{ n_i^k \right\}_{i=1}^{r_k}, k \in \{1, 2, ..., m\} \right\}$$
 is a set of neurons, the set $\left\{ n_i^k \right\}_{i=1}^{r_k}$ is k -th layer,

- m is the number of layers,
- $ightharpoonup r_k$ is the number of neurons in the k-th layer,
- **E** is the set of edges, **E** = $\left\{ \left(n_i^k, n_j^{k+1} \right), i \in \{1, 2, ..., r_k\}, j \in \{1, 2, ..., r_{k+1}\}, k \in \{1, 2, ..., m\} \right\}$ and
 - to each edge of the network (n_i^k, n_j^{k+1}) , there is a corresponding weight $\theta_{ii}^k \in \mathbb{R}$
 - the weights can be organized into matrices Θ^k , where θ^k_{ij} is its (i,j)-th entry, $\Theta = \left\{\Theta^k\right\}_{k=1}^m$

Definition of fully connected NN

A fully connected neural network is a tuple

$$(\mathbf{G}, \mathbf{\Phi}, \Theta_0, \mathcal{L})$$

- **Φ** is a set of activation functions, $\mathbf{\Phi} = \left\{\phi^k\right\}_{k=1}^m$, where $\phi^k : \mathbb{R} \mapsto \mathbb{R}$ is activation function at layer k
- ullet Θ_0 is an initial value of weights, $\Theta_0 = \left\{\Theta_0^k\right\}_{k=1}^m$

Definition of fully connected NN

A fully connected neural network is a tuple

$$(\mathbf{G}, \mathbf{\Phi}, \Theta_0, \mathcal{L})$$

 $\mathcal{L} = \mathcal{L}(\mathbf{X}, \Theta)$ is the loss function, that has the following form

$$\mathcal{L}(\mathbf{X},\Theta) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{p}(x_{i}, y_{i}, \Theta) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{i}, \qquad (1)$$

where:

- \mathcal{L}_p is chosen usually as squared L2 norm or L1 norm,
- $\mathbf{X} = \{(x_i, y_i)\}_{i=1}^N$ is *dataset*, i.e. set of input-output pairs of the size $N \in \mathbb{N}$,

The functional form that NN constructs

$$f(x|\Theta) = \phi^m \left(\Theta^m \phi^{m-1} \left(\Theta^{m-1} ... \phi^1 \left(\Theta^1 x\right) ...\right)\right)$$

NN example

$$m = 2, r_1 = 2, r_2 = 1$$

$$f(x|\Theta) = \Theta_2 \mathrm{max}(0,\Theta_1 x)$$

Backpropagation algorithm

Gradient descent

$$\Theta_{t+1} = \Theta_t - \alpha \frac{\partial \mathcal{L}(\mathbf{X}, \Theta_t)}{\partial \Theta}, \qquad \text{i.e.} \qquad \theta_{t+1;ij}^k = \theta_{t;ij}^k - \alpha \frac{1}{N} \sum_{l=1}^N \frac{\partial \mathcal{L}_l}{\partial \theta_{ij}^k}$$

Backpropagation formula

$$\frac{\partial \mathcal{L}_i}{\partial \theta_{ii}^k} = \delta_i^k o_j^{k-1} = \frac{d}{de_i^k} \phi^k(e_i^k) o_j^{k-1} \sum_{l=1}^{r_k} \delta_l^{k+1} \theta_{li}^k$$

- $e^k = \Theta^{k-1}o^{k-1}$ activation of k-th layer
- $lackbox{o}^k = \phi^k(e^k)$ output of k-th layer
- $\delta_i^k = \frac{\partial \mathcal{L}_i}{\partial e_i^k}$

Backpropagation algorithm

Backpropagation algorithm

- I Calculate the forward phase for each input-output pair (x_i, y_i) from a mini-batch and store the results $f(x_i)$ (??), e_j^k and o_j^k by proceeding from layer k = 0, the input layer, to layer k = m, the output layer.
- **2** Calculate the backward phase for each input-output pair (x_i, y_i) from a mini-batch and store the results $\frac{\partial \mathcal{L}_i}{\partial \theta_i^k}$.
 - Evaluate the loss term for the final layer $\delta_j^m = \frac{\partial \mathcal{L}_i}{\partial e_j^m}$ for each node.
 - Backpropagate the loss terms for the other layers δ_j^k , working backwards from the layer k = m 1.
 - lacksquare Evaluate the partial derivatives of the individual loss $rac{\partial \mathcal{L}_i}{\partial heta_k^a}$:
- 3 Update the weights by gradient descent equation.

Convolutional NN

$$[\Theta * x]_{i_1,i_2,...,i_n} = \sum_{j_1} \sum_{j_2} ... \sum_{j_n} x_{i_1-j_1,i_2-j_2,...,i_n-j_n} \Theta_{j_1,j_2,...,j_n}$$

Convolution layer

A 2-D convolutional layer input channels C_{in} , output channels C_{out} and kernel size k contains:

- C_{out} parameter matrices $\Theta_1,...\Theta_{C_{out}}$. Each $h_i \in \mathbb{R}^{k,k,C_{in}}$.
- \blacksquare activation function ϕ .

It takes $x \in \mathbb{R}^{C_{in},n,n}$ as an input and gives the following output o:

- $e = [\Theta_1 * x, \Theta_2 * x, ..., \Theta_{C_{out}} * x] \in \mathbb{R}^{C_{out}, n_{out}, n_{out}}$ is the activation,
- $o = \phi(e)$ is *output* of the layer.