LATEX Template

Jan Hartstra

2019/09/09

${\bf Abstract}$

This is a simple \LaTeX template for the $\mathit{article}$ template.

Contents

1	Inti	coduction	1
2	Me	thods	2
	2.1	Equation	
	2.2	Figure	2
	2.3	Table	2
	2.4	Lists	
		2.4.1 Enumerate	
		2.4.2 Itemize	
		2.4.3 Description	
		2.4.4 Listing	3
A	App	pendix A	4
В	Ind	ex	4
\mathbf{L}	ist	of Figures	
	1	This is a figure	2
L	ist	of Tables	
	1	Outcome matrix	2
	2	Geboortecijfers van België	3

1 Introduction

This document was created using the \LaTeX type setting system.

See https://nl.wikibooks.org/wiki/LaTeX

https://en.wikibooks.org/wiki/LaTeX

This text is italic.

This text is bold.

This text in a monospace font.

This text should be red.

2 Methods

2.1 Equation

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{1}$$

2.2 Figure

LATEX can be used to create tables.

Figure 1: This is a figure

2.3 Table

 $\ensuremath{\mathbb{E}} \ensuremath{\text{T}} \ensuremath{\text{E}} \ensuremath{\text{X}} \ensuremath{\text{can}}$ be used to create tables.

Table 1: Outcome matrix

		Unknown truth		
		H_0	H_1	
	H_0	correct	type II error	
Decission		$Pr = 1 - \alpha$	$Pr = \beta$	
		significance level	(false negative)	
		Type I error	Correct	
	$\mid H_0 \mid$	$Pr = \alpha$	$Pr = 1 - \beta$	
		(false positive)	power of the test	

2.4 Lists 3

Jaar	Jongens	Meisjes	Totaal
1850	67.240	64.176	131.416
1900	99.026	94.204	193.230
1950	73.354	69.616	142.970
2000	58.790	56.093	114.883

Table 2: Geboortecijfers van België
http://statbel.fgov.be/nl/statistieken/cijfers/bevolking/geboorten_vruchtbaarheid/

2.4 Lists

2.4.1 Enumerate

- 1. First
- 2. Second
- 3. Third

2.4.2 Itemize

- \bullet First
- Second
- Third

2.4.3 Descrioption

- A First
- B Second
- C Third

2.4.4 Listing

Listing like programming code can be included using the verbatim environment.

```
x<-seq(0,10,0.1)
y<-log(x)
plot(x,y)</pre>
```

Using the lstlisting environment from the listings package programming code can be displayed in a more fancy way.

```
\begin{array}{ll}
1 & \mathbf{x} < -\mathbf{seq} (0, 10, 0.1) \\
2 & \mathbf{y} < -\mathbf{log} (\mathbf{x}) \\
3 & \mathbf{plot} (\mathbf{x}, \mathbf{y})
\end{array}
```

A Appendix A

This is appendix A.

B Index