

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

Dept. of Civil Engineering
1st Internal Assessment
2nd Sem.

Sub. Name: Introduction to Civil Engineering(BESCK204A)

Schedule: 07/05/2024 and 2.15 pm - 3.30 pm

Total Marks: 30

Instructions to students

- 1. Answer ONE full question from each part
 - 2. Assume any missing data suitably

Q) #	Question Description	M	BTL	COs			
	PART A							
1	a	Mention the disciplines of civil engineering and explain any two.	7	2	1			
1	b	Summarize the chemicals which are used in the field of construction.		2	1			
2	a	Summarize cement and its types.	7	2	1			
2	ь	Summarize the different types of foundation.	8	2	1			
	PART B							
	a	Summarize the classification of force system.	8	3	2			
3	ь	Identify the system of forces and determine the horizontal and vertical components of the given system of forces as shown in Fig. 3b. 200N 30° 30° 45° 180N Fig 3b	7	3	2			

	a	State and prove the parallelogram law of forces.	8	3	2
		Identify the system of forces and determine the horizontal and vertical components of the given system of forces as shown in Fig.4b.			
4	b	15kN 40° 10kN	7	3	2
		65° 70° 25kN			2.5
		Fig. 4b			

1

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

Department of Civil Engineering

2nd Internal Assessment

2nd Semester

Sub. Name: Introduction to Civil

Engineering (BESCK204A)

Schedule: 11 / 06 /2024 and

2.15 pm - 3.30 pm

Total Marks: 30

Instructions to students

- 1. Answer ONE full question from each part
 - 2. Assume any missing data suitably

	0.11	7 2 1844			
. (Q #	Question Description	M	BTL	COs
		PART A	1	<i>i</i> .	
1	a	Define Sustainable Development Goals. List and Summarize the various goals of sustainable development set by United Nations	18	2	1
	b	Summarize the factors to be considered for identification of landfill sites.	7	2	1
2	a	Summarize the sources of urban air pollution and strategies to manage air pollution.	8	2	1
	b	Summarize the "Smart buildings" with their major benefits.	7	2	1
		PART B			
	a	Calculate the magnitude, direction and position of the resultant force for the force system shown in Fig.3(a). Locate the resultant force with respect to point A.	8	3	2
		Fig.3(a)		N.,	

	-b.	State and prove Varignon's theorem of moments.	7	3	2
		Calculate the tension in different parts of the strings and the load W ₁ and W ₂ to keep the system in equilibrium with BC horizontal and Pulley is frictionless.		217	
	2	A were frictionless pully			
4	a	B 136 C 100N	8	3	2
		W ₁ W ₂			
		Fig.4(a)			
	b	Summarize Couple and its Characteristics.	7	3	2

MYSORE

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

Dept. of Civil Engineering

Introduction to Civil Engineering (M23BESCK204A)
Schedule: 16/07/2024 and 02:15pm - 03:30pm

3rd Internal Assessment

2nd Sem.

Total Marks: 30

CV

Instructions to students 1 Answer ONE full question from each par

	1. Answer ONE full question from each part						
	2#	Question Description	M	BTL	COs		
		PART A					
	a	Derive the equation to locate the centroid of Rectangular lamina from first principle	7	3 .	3		
1	6	Locate the centroid of lamina shown in figure 1.b 80 mm 240 mm Figure 1.b	8	3	3		
	a	Derive the equation to locate the centroid of triangular lamina from first principle	7	3	3		
2	b	Locate the centroid of lamina shown in figure 2.b 100mm 20mm 60mm 60mm Figure 2 b	8	3	3		
		Figure 2.b					
				- 75			

AMMAL -

		PART B			
~	a	betermine an expression to find the moment of inertia of a rectangle about the centroidal X- axis using first Principle or by the method of integration.	7	3	4
3	Ь	Determine the radius of gyration of the T section about the co-ordinate axes shown in the Figure 3(b).	8	3	4
	a	Determine an expression to find the moment of inertia of a Triangle about the centroidal X- axis using first Principle or by the method of integration.	7	3	4
4	ь	Determine the moment of inertia and also the radius of gyration of the shaded area about the x-x axis shown in Figure. 4(b). All dimensions are in mm.	8	3	4
		Figure. 4(b)			