

Method 2:

Problem R-09S. The 200 MHz ¹H NMR spectrum of a mixture of two selenides (approx a 2:1 ratio) is shown below. The compounds are bis(phenylseleno)methane and bromo(phenylseleno)methane.

(a) Identify all of the peaks in the region δ 4 to δ 5. Give chemical shifts and any couplings you have identified.

Mixture:

2 δ 4.22, with Se satellites ${}^2J_{\text{H-Se}} = 12 \text{ Hz} - \text{CH}_2 \text{ of PhSeCH}_2\text{SePh}$ 2 δ 4.72, with Se satellites ${}^2J_{\text{H-Se}} = 14 \text{ Hz} - \text{CH}_2 \text{ of PhSeCH}_2\text{Br}$ 2 δ 4.72, with Se satellites ${}^2J_{\text{H-Se}} = 14 \text{ Hz} - \text{CH}_2 \text{ of PhSeCH}_2\text{Br}$

(b) Identify **two** distinct features of the spectrum which allow you to unambiguously assign which signal corresponds to which compound.

3 Method 1:

Size of the 77 Se satellites. The δ 4.22 signal has double-intensity 77 Se satellites, thus this signal must be PhSeCH $_2$ SePh

3 Method 2:

Integrations: Because the two ortho protons at δ 7.54 and δ 7.64 are present in a ca 1:1 ratio, the compounds must be present in a 2:1 ratio, with twice as much PhSeCH₂Br as PhSeCH₂SePh, thus the larger CH₂ peak must be PhSeCH₂Br

Method 3:

Method 4:

The integration of the aromatic vs the CH_2 protons defines which must be the major isomer: if Br is major then Ar = 5 + 10/2 = 10, $CH_2 = 2 + 2/2 = 3$, hence 3.33/1. If PhSe is major then ArH = 10 + 5/2 = 12.5, $CH_2 = 2 + 2/2 = 3$, hence 12.5/3 = 4.1. Observed is 100/33.66 = 3.06, much closer to Br being the major isomer.

Method 5:

The chemical shift of PhSeCH₂SePh is in the handouts!!

