Universidade de Coimbra Faculdade de Ciências e Tecnologia Departamento de Engenharia Informática Mestrado em Engenharia Biomédica

Informática Médica

Trabalho Prático 5 Ritmo Cardíaco

Elaborado por:

Edite Figueiras João Duarte Ricardo Martins

I. OBJECTIVO

Com este trabalho pretende-se desenvolver e implementar em MatLab um algoritmo que permita efectuar a detecção automática do ritmo cardíaco, a partir de um electrocardiograma (ECG).

Para isso, efectua-se a detecção dos complexos QRS, mais precisamente o pico R para depois, a partir da detecção dos vários picos R se detectarem os intervalos R-R para assim se poder determinar o ritmo cardíaco.

Optámos por resolver o problema a partir de duas abordagens. Na primeira é calculada a média do ritmo cardíaco dos dados do ECG completos e na segunda faz-se a detecção do ritmo cardíaco à medida que o sinal é desenhado no ecrã, sendo que o ritmo cardíaco é a média dos últimos 7 picos desenhados.

A explicação do código que implementa a detecção do ritmo cardíaco encontra-se explicada em baixo.

II. IMPLEMENTAÇÃO

De forma a implementar uma aplicação com as características pretendidas, construiu-se utilizando a ferramenta *guide* do Matlab um interface cuja apresentação se mostra na seguinte figura.

Figura 1- Interface da aplicação desenvolvida.

Através do interface, o utilizador tem a possibilidade de abrir um ficheiro (*.dat) onde estão contidos os dados do ECG a analisar, podendo depois efectuar ambas ou uma das duas opções disponíveis: determinar o ritmo cardíaco (através da duração do ECG e do número de picos R detectados) e/ou apresentar de forma dinâmica os dados do ECG.

Para este efeito construíram-se duas funções, offline e online, as quais são invocadas quando se pressiona o botão *Determinar* e *Visualizar* respectivamente. Em ambas as funções utilizaram-se os valores dos parâmetros *threshold*, *backSearch*, *delay* definidos no enunciado fornecido.

Função offline

A função *offline* tem como objectivo determinar a duração, número de batimentos e ritmo cardíaco de um ECG.

Para isso é implementado o código sugerido pelo professor, com algumas alterações que serão explicadas a seguir, para a obtenção da onda de energia do ECG e determinação dos parâmetros pretendidos.

No cálculo da potenciação (e4 no nosso código), esta não é multiplicada por 50 pois esse factor só é utilizado para melhorar a visualização não sendo relevante para o nosso objectivo de medição. Outras alterações foram efectuadas no cálculo do *delay* e do *backSearch*, pois o resultado dessas duas variáveis tem de ser um número inteiro, uma vez que são utilizadas para definir um número de pontos que corresponde a um intervalo de tempo. Para isso utilizámos a função *fix* do MatLab.

Após a determinação das variáveis threshold, backSearch e delay é criada a variável marcador onde os instantes (pontos) em que o valor de threshold é ultrapassado tomam o valor de 1 enquanto os outros instantes tomam o valor 0. Quando o valor de threshold é ultrapassado num determinado instante, decorre um intervalo de pontos, correspondente a um período de tempo definido pelo delay, durante o qual não são considerados os instantes que hipoteticamente possam ter valores superiores ao valor threshold. Noutra variável, instantes, são guardados os instantes onde foi ultrapassado o valor de threshold.

Seguidamente, para cada um dos instantes obtidos na variável *instantes*, é pesquisado o pico R no sinal ECG que lhe corresponde. Essa pesquisa é efectuada no ECG num número de pontos anterior ao instante em que se detectou o valor acima do *threshold* no sinal de

energia. Este número de pontos é definido pela variável *backSearch*. Os instantes em que ocorrem os picos R no sinal ECG são guardados na variável *marcador2*.

Uma vez detectados o número de picos R e determinando-se a duração do ECG, é então calculado o número de batimentos (igual ao número de picos R) e o ritmo cardíaco (número de batimentos a dividir pela duração do ECG).

Função online

A função online tem como objectivo apresentar de forma dinâmica o ECG seleccionado sendo que à medida que aparece o ECG no ecrã se faz a média dos 7 picos R anteriores para o cálculo do ritmo cardíaco.

A primeira parte do código é idêntica ao implementado na função *offline* (até à parte onde são determinados os instantes onde ocorrem os picos R no ECG e estes são guardados na variável *marcador2*).

Para mostrar a evolução temporal do ECG definiu-se que esta evolução seria exibida numa janela que abrange 2000 pontos do sinal. O sinal é exibido no ecrã de acordo com a taxa de amostragem que foi definida, isto é, a exibição de pontos sucessivos está separada por um intervalo de tempo de 1/fs (fs: frequência de amostragem). O eixo dos xx tem sempre a extensão de 2000 pontos e foi convertido para a escala temporal (segundos). O eixo dos yy adapta-se à gama de valores que serão exibidos na janela tomando como máximo e mínimo os valores máximos e mínimos do ECG no intervalo que se irá mostrar.

À medida que é mostrada a evolução do sinal ao longo do tempo, quando ocorre a detecção de um pico R surge uma barra vertical vermelha a sinalizar instantaneamente o pico detectado. Em simultâneo é calculada a média dos batimentos utilizando-se para isso os últimos sete picos detectados e o intervalo de tempo que ocorre entre eles. No caso inicial em que não há 7 picos anteriores é feito o cálculo da média dos batimentos a partir dos picos já detectados, utilizando-se o intervalo de tempo entre a detecção do último pico e o instante inicial 0.

III. RESULTADOS

A título ilustrativo mostra-se no vídeo exemplo.wmv um exemplo da utilização da aplicação desenvolvida. Na utilização real da aplicação a representação da evolução temporal de um ECG é mais fluida do que aparenta no vídeo. Utilizando a funcionalidade da aplicação que permite determinar o ritmo cardíaco, chegaram-se aos valores apresentados na tabela I para cada um dos 6 ECG fornecidos.

Tabela I			
Duração, nº de batimentos e ritmo cardíaco dos diversos ficheiros de dados de ECG fornecidos			
Ficheiro	Duração (minutos)	Nº batimentos	Batimentos/minuto
ecg0.dat	43.43	2275	53
ecg1.dat	0.69	52	76
ecg2.dat	2.27	267	118
ecg3.dat	8.48	398	47
ecg4.dat	8.48	980	116
ecg5.dat	8.48	249	29

IV. DISCUSSÃO DOS RESULTADOS

Avaliando os resultados que se obtiveram, verifica-se que na generalidade dos ECG's o ritmo cardíaco médio registado está dentro dos valores considerados como padrão ou tem apenas ligeiros desvios. O ECG ecg5.dat é o único cujo valor determinado se afasta bastante dos valores considerados como padrão.

De forma a avaliar melhor a eficácia da detecção dos picos R nos ECG utilizados, procedeu-se à visualização de cada um deles na totalidade ou parcialmente através da funcionalidade da aplicação que permite acompanhar a evolução temporal de um ECG e identificar os picos R detectados pelo algoritmo.

Através desta análise visual verificou-se que o algoritmo identificava com sucesso a quase totalidade dos picos R nos ECGs ecg0.dat, ecg1.dat, ecg2.dat. Para o ECG ecg3.dat e

ecg4.dat a identificação dos picos R era feita com menor sucesso, sendo esta análise feita um pouco de forma intuitiva uma vez que por vezes o traçado tinha um comportamento muito irregular e distante daquele que é considerado como padrão num ECG humano. Para o ecg5.dat verificou-se que apesar de existir claramente um traçado com uma forma bastante aproximada dos ECGs tradicionais (com picos R bastante destacados e separados uns dos outros) a detecção destes não era efectuada com sucesso durante um largo período de tempo (logo desde os instantes iniciais). Procurou-se então a causa para tal ineficácia. Analisando na integra o sinal ecg5.dat verificou-se que os picos R nos últimos 20 mil pontos (aproximadamente) têm uma ordem de grandeza muito superior aos restantes picos R do sinal. Assim para validar a causa que pensávamos ter provocado o erro criou-se um ficheiro ecg5_1.dat contendo os primeiros 100 mil pontos do ficheiro ecg5.dat. Testando verificou-se que este tinha uma duração de 6.66 minutos tendo sido identificados 733 picos R provocando um ritmo cardíaco médio de 110 batimentos por minuto. Através da análise visual verifica-se que os picos R são quase na sua totalidade identificados.

Os picos R dos últimos pontos do ecg5.dat, por terem uma elevada amplitude relativamente aos picos R do restante ECG contribuíram para que o sinal de energia tenha uma média elevada, provocando com que o valor do parâmetro *threshold* fosse relativamente elevado e não fosse alcançado pelo sinal de energia nos instantes correspondentes aos picos R dos pontos iniciais do ECG. Um aspecto a melhorar seria implementação de um *threshold* local, isto é, cujo valor dependesse da ordem de grandeza dos pontos vizinhos.

V. CONCLUSÃO

O algoritmo implementado tem um desempenho quase perfeito para ECG's com um formato próximo daquele considerado como padrão, em que os picos R tenham uma amplitude que se destaque relativamente ao valor médio do sinal de ECG que o antecede e que lhe sucede. Noutras situações em que por exemplo, o sinal tem um formato pouco convencional ou que ocorrem alterações significativas na ordem de grandeza dos picos R no sinal ECG, o algoritmo revela-se menos eficaz.