

Modeling Decentralized Electricity Markets

Solving Multi-Period Optimal Power Flow using Alternating Direction Method of Multipliers

Eric Rockstädt | Master Thesis

Agenda

- 1. Introduction
 - 1.1 Motivation
 - 1.2 Research Questions
 - 1.3 Current State of Research
- 2. Application
 - 2.1 Modeling Framework
 - 2.2 Mathematical Formulations
 - 2.3 Implementation of the Algorithm
- 3. Results
- 4. Conclusion

Sharing of sensible information

Trend towards decentralized systems

Utilizing new algorithms and computational advantages

Alternating Direction Method of Multipliers (ADMM)

Solves distributed convex optimization problems

Decomposes main problem into multiple subproblems

Enables decentralization and parallelisation

Fine-tuning of algorithm depends on one parameter

Introduced by Gabay et al. in mid-1970s

Alternating Direction Method of Multipliers (ADMM)

Typically, ADMM solves the following problem:

$$\min (x,z) \quad f(x) + g(z)$$
 s.t. $\mathbf{A}x + \mathbf{B}z = c$ Complicating constraint

The corresponding augmented Lagrangian yields:

$$L_p(x,y,\lambda) = f(x) + g(z) + \lambda^T (\mathbf{A}x + \mathbf{B}z - c) + \frac{\gamma}{2} \left\| \mathbf{A}x + \mathbf{B}z - c \right\|_2^2$$

Alternating Direction Method of Multipliers (ADMM)

The corresponding augmented Lagrangian yields:

$$L_p(x,y,\lambda) = f(x) + g(z) + \lambda^T (\mathbf{A}x + \mathbf{B}z - c) + rac{\gamma}{2} \left\| \mathbf{A}x + \mathbf{B}z - c
ight\|_2^2$$

The single iterations are:

$$x^{v+1} := \min(x) \quad f(x) + g(z^{v}) + (\lambda^{v})^{T} (\mathbf{A}x + \mathbf{B}z^{v} - c) + \frac{\gamma}{2} \|\mathbf{A}x + \mathbf{B}z^{v} - c\|_{2}^{2}$$

$$z^{v+1} := \min(z) \quad f(x^{v}) + g(z) + (\lambda^{v})^{T} (\mathbf{A}x^{v} + \mathbf{B}z - c) + \frac{\gamma}{2} \|\mathbf{A}x^{v} + \mathbf{B}z - c\|_{2}^{2}$$

$$\lambda^{v+1} := \lambda^{v} + \gamma (\mathbf{A}x^{v+1} + \mathbf{B}z^{v+1} - c)$$

1.2 Research Questions

Is it possible to implement a decentralized algorithm with the help of ADMM that can optimize an OPF?

2 Can the algorithm be extended by energy storage resources?

Are the results the same as for a centralized problem?

1.3 Current State of Research

Fundamentals

Conejo et al. (2006)

Decomposition techniques in mathematical programming: engineering and science applications

Boyd (2010)

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

Application

Xing et al. (2017)

Distributed algorithm for dynamic economic power dispatch with energy storage in smart grids

- ADMM is utilized
- + Communication network is established
- + Storages are included
- Transmission network is neglected
- Software implementation is not published

Yang et al. (2019)

A Fully Decentralized Distribution Market Mechanism Using ADMM

- Algorithm for a decentralized OPF
- ADMM is utilized
- No storages are included
- Software implementation is not published
- Equations are not explained in detail

2.1 Modeling Framework

Centralized Problem

$$\min \quad \sum_{t \in \mathcal{T}} \quad \sum_{g \in \mathcal{G}} mc_g \cdot P_{g,t} + \sum_{s \in \mathcal{S}} mc_s \cdot (D_{s,t} + C_{s,t})$$

s.t.
$$0 \le P_{g,t} \le \overline{p_g}$$

$$0 \leq D_{s,t} \leq \overline{p_s}$$

$$0 \leq C_{s,t} \leq \overline{p_s}$$

$$0 \le E_{s,t} \le \overline{e_s}$$

$$E_{s,t} - E_{s,t-1} - C_{s,t} + D_{s,t} = 0$$

$$\sum_{n,t} I_{n,t} = 0$$

$$-\overline{f_l} \le PTDF_{l,n} \cdot I_{n,t} \le \overline{f_l}$$

$$I_{n,t} = \sum_{g \in \mathcal{G}_n} P_{g,t} + \sum_{s \in \mathcal{S}_n} (D_{s,t} - C_{s,t}) - d_{n,t}$$

$$\forall g \in \mathcal{G}, t \in \mathcal{T}$$

$$\forall s \in \mathcal{S}, t \in \mathcal{T}$$

$$\forall t \in \mathcal{T}$$

$$\forall l \in \mathcal{L}, t \in \mathcal{T}, n \in \mathcal{N}$$

Complicating constraint

1. Remove inequality constraints

$$\min \quad \sum_{t \in \mathcal{T}} \quad \sum_{g \in \mathcal{G}} mc_g \cdot P_{g,t} + \sum_{s \in \mathcal{S}} mc_s \cdot (D_{s,t} + C_{s,t})$$

s.t.
$$0 \le P_{g,t} \le \overline{p_g}$$
 $\forall g \in \mathcal{G}, t \in \mathcal{T}$

$$0 \le D_{s,t} \le \overline{p_s}$$
 $\forall s \in \mathcal{S}, t \in \mathcal{T}$

$$0 \le C_{s,t} \le \overline{p_s}$$
 $\forall s \in \mathcal{S}, t \in \mathcal{T}$

$$0 \le E_{s,t} \le \overline{e_s} \qquad \forall s \in \mathcal{S}, t \in \mathcal{T}$$

$$E_{s,t} - E_{s,t-1} - C_{s,t} + D_{s,t} = 0 \qquad \forall s \in \mathcal{S}, t \in \mathcal{T}$$

$$\sum_{n \in \mathcal{N}} I_{n,t} = 0 \qquad \forall t \in \mathcal{T}$$

$$\sum_{l} PTDF_{l,n} \cdot I_{n,t} + U_{l,t} - \overline{f_l} = 0 \qquad \forall l \in \mathcal{L}, t \in \mathcal{T}$$

$$\sum_{l} K_{l,t} - PTDF_{l,n} \cdot I_{n,t} - \overline{f_l} = 0 \qquad \forall l \in \mathcal{L}, t \in \mathcal{T}$$

Introduction slack variables

 $I_{n,t} = \sum_{g \in \mathcal{G}_n} P_{g,t} + \sum_{s \in \mathcal{S}_n} (D_{s,t} - C_{s,t}) - d_{n,t}$

2. Apply Augmented Lagrangian Relaxation

$$\begin{split} & \min \quad \sum_{t \in \mathcal{T}} \quad \sum_{g \in \mathcal{G}} mc_g \cdot P_{g,t} + \sum_{s \in \mathcal{S}} mc_s \cdot \left(D_{s,t} + C_{s,t}\right) \\ & \quad + \lambda_t \cdot \sum_{n \in \mathcal{N}} I_{n,t} \\ & \quad + \frac{\gamma}{2} \cdot \big\| \sum_{n \in \mathcal{N}} I_{n,t} \big\|_2^2 \\ & \quad + \sum_{l \in \mathcal{L}} \quad \mu_{l,t} \cdot \left(\sum_{n \in \mathcal{N}} PTDF_{l,n} \cdot I_{n,t} + U_{l,t} - \overline{f_l}\right) \\ & \quad + \frac{\gamma}{2} \cdot \big\| \sum_{n \in \mathcal{N}} PTDF_{l,n} \cdot I_{n,t} + U_{l,t} - \overline{f_l} \big\|_2^2 \\ & \quad + \rho_{l,t} \cdot \left(\sum_{n \in \mathcal{N}} K_{l,t} - PTDF_{l,n} \cdot I_{n,t} - \overline{f_l}\right) \\ & \quad + \frac{\gamma}{2} \cdot \big\| \sum_{n \in \mathcal{N}} K_{l,t} - PTDF_{l,n} \cdot I_{n,t} - \overline{f_l} \big\|_2^2 \end{split}$$

$$\begin{array}{lll} \text{s.t.} & 0 \leq P_{g,t} \leq \overline{p_g} & \forall g \in \mathcal{G}, t \in \mathcal{T} \\ & 0 \leq D_{s,t} \leq \overline{p_s} & \forall s \in \mathcal{S}, t \in \mathcal{T} \\ & 0 \leq C_{s,t} \leq \overline{p_s} & \forall s \in \mathcal{S}, t \in \mathcal{T} \\ & 0 \leq E_{s,t} \leq \overline{e_s} & \forall s \in \mathcal{S}, t \in \mathcal{T} \\ & E_{s,t} - E_{s,t-1} - C_{s,t} + D_{s,t} = 0 & \forall s \in \mathcal{S}, t \in \mathcal{T} \end{array}$$

$$I_{n,t} = \sum_{g \in G_n} P_{g,t} + \sum_{s \in S_n} (D_{s,t} - C_{s,t}) - d_{n,t}$$

Decentralized Problem – Generator subproblem

$$\begin{aligned} & \min \quad \sum_{t \in \mathcal{T}} \quad mc_g \cdot P_{g,t}^v \\ & + P_{g,t}^v \cdot (\lambda_t + \sum_{l \in \mathcal{L}} \sum_{n \in \mathcal{N}} (\mu_{l,t} - \rho_{l,t}) \cdot PTDF_{l,n}) \\ & + \frac{\gamma}{2} \cdot \left\| P_{g,t}^v + \Theta_{\check{n},t} - P_{g,t}^{v-1} + \Phi_{\check{n},t} - \Psi_{\check{n},t} - d_{\check{n},t} \right. \\ & + \sum_{n \in \mathcal{N} \setminus \check{n}} \Theta_{n,t} + \Phi_{n,t} - \Psi_{n,t} - d_{n,t} \right\|_2^2 \\ & + \sum_{l \in \mathcal{L}} \quad \frac{\gamma}{2} \cdot \left\| \sum_{n \in \mathcal{N}} PTDF_{l,n} \cdot I_{n,t} + U_{l,t}^v - \overline{f_l} \right\|_2^2 \\ & + \frac{\gamma}{2} \cdot \left\| \sum_{n \in \mathcal{N}} K_{l,t}^v - PTDF_{l,n} \cdot I_{n,t} - \overline{f_l} \right\|_2^2 \\ & + \frac{\gamma}{2} \cdot \left\| U_{l,t}^v - \Upsilon_{l,t} \right\|_2^2 \\ & + \frac{\gamma}{2} \cdot \left\| K_{l,t}^v - \Gamma_{l,t} \right\|_2^2 \\ & + \frac{\gamma}{2} \cdot \left(P_{g,t}^v - P_{g,t}^{v-1} \right)^2 \end{aligned}$$

s.t.
$$0 \le P_{g,t}^v \le \overline{p_g} \quad \forall t \in \mathcal{T}$$

$$I_{n,t} = \sum_{g \in \mathcal{G}_n} P_{g,t} + \sum_{s \in \mathcal{S}_n} (D_{s,t} - C_{s,t}) - d_{n,t}$$

^{*} See thesis for a detailed nomenclature

Decentralized Problem – Storage subproblem

s.t.
$$0 \le D_{s,t}^v \le \overline{p_s}$$
 $\forall t \in \mathcal{T}$
 $0 \le C_{s,t}^v \le \overline{p_s}$ $\forall t \in \mathcal{T}$
 $0 \le E_{s,t}^v \le \overline{e_s}$ $\forall t \in \mathcal{T}$
 $E_{s,t}^v - E_{s,t-1}^v - C_{s,t}^v + D_{s,t}^v = 0$ $\forall t \in \mathcal{T}$
 $I_{n,t} = \sum_{g \in \mathcal{G}_n} P_{g,t} + \sum_{s \in \mathcal{S}_n} (D_{s,t} - C_{s,t}) - d_{n,t}$

2.3 Implementation of the Algorithm

Published on github with MIT license

Divided into several units for better maintenance

Code well documented in thesis

Can be easily extended

2.3 Implementation of the Algorithm

Three Node System

Centralized Problem for t=1

Convergence of Lambda (System Balance) for t=1

Convergence of Mu (Upper Flow) for t=1

Convergence of Rho (Lower Flow) for t=1

Convergence of Generators for t=1

Convergence problem – wrong weight for flow penalty terms

$$\frac{\gamma}{2} \longrightarrow 10$$

4. Conclusion

Implementation of decentralized OPF is possible

Identical results between central and decentral approach

Damping parameter *γ* influences convergence very strongly

Contributions

Open-source package

Well-documented derivation

Detailed description of findings

Algorithm can be further extended

Outlook

Automate selection of damping parameter γ

Investigate implementation of regulations

Create financial incentives to increase network security

Include a more sophisticated case study

Thanks for your attention!

<u>Decentralized Problem – Update Duals</u>

$$\lambda_t^{v+1} = \lambda_t^v + \gamma \cdot (\sum_{g \in \mathcal{G}} P_{g,t}^v + \sum_{s \in \mathcal{S}} D_{s,t}^v - \sum_{s \in \mathcal{S}} D_{s,t}^v - d_{n,t})$$

$$\rho_{l,t}^{v+1} = \rho_{l,t}^{v} + \gamma \cdot (\sum_{n \in \mathcal{N}} PTDF_{l,n} \cdot I_{n,t}^{v} + \Upsilon_{l,t}^{v} - \overline{f_l})$$

$$\mu_{l,t}^{v+1} = \mu_{l,t}^{v} + \gamma \cdot (\Gamma_{l,t}^{v} - \sum_{n \in \mathcal{N}} PTDF_{l,n} \cdot I_{n,t}^{v} - \overline{f_l})$$

<u>Convergence problem – big damping parameter</u>

$$\gamma=0.5~(0.3)$$

