Mushroom Edibility Classification

Anieesh Saravanan and Pranav Akiri

"All mushrooms are edible; but some only once."

Croatian Proverb

Table of contents

01

Project Overview

Relevance and Dataset
Characteristics

03

Manipulation

Eliminating attributes and classification

02

Preprocessing

Preparing the Dataset for Manipulation

 $\mathbf{04}$

Conclusion

Results and Future Work

OOIntroduction

Project Goal

- Develop a binary classification model for mushrooms
- Predict if mushrooms are edible or poisonous based on physical attributes
- Ensure public safety through accurate classification

Mushroom Overview

- Mushrooms are a section of a fungus
- Toxins used to prevent consumption
- No simple guidelines to identify mushrooms as poisonous
- Difference between edible and poisonous mushrooms are extremely slight
- Experienced mycologists make mistakes

Common Myths

Folklore has created many false truths about mushrooms:

Myth: Poisonous mushrooms always have bright and flashy colors

Myth: Snails, insects, or other animals won't eat poisonous mushrooms

Myth: Toxic mushrooms smell and taste horrible

Myth: Any mushroom becomes safe if cooked/processed enough

Impact

There are around **7,428** cases of exposure to toxic mushrooms, mostly by ingestion, each year.

O1 Project Overview

Dataset Overview

- Categorical dataset with 8,124 instances and 21 attributes
- Class attribute is the edibility of the mushroom
- Sourced from **The Audubon Society Field Guide to North American Mushrooms**
- Missing values: 2,480 instances in the stalk-root attribute
- <u>Class distribution</u>: 52% edible, 48% poisonous (includes unknown classifications)

Attributes

```
class: edible = e, poisonous = p
<u>cap-shape</u>: bell = b, conical = c, convex = x, flat = f, knobbed = k, sunken = s
<u>cap-surface</u>: fibrous = f, grooves = g, scaly = y, smooth = s
<u>cap-color</u>: brown = n, buff = b, cinnamon = c, gray = g, green = r, pink = p, purple = u, red = e, white = w, yellow = y
<u>bruises</u>: true = t, false = f
<u>odor</u>: almond = a, anise = l, creosote = c, fishy = y, foul = f, musty = m, none = n, pungent = p, spicy = s
gill-attachment: attached = a, descending = d, free = f, notched = n
gill-spacing: close = c, crowded = w, distant = d
gill-size: broad = b, narrow = n
gill-color: black = k, brown = n, buff = b, chocolate = h, gray = g, green = r, orange = o, pink = p, purple = u, red = e,
white = w, yellow = y
stalk-shape: enlarging = e, tapering = t
<u>stalk-root</u>: bulbous = b, club = c, cup = u, equal = e, rhizomorphs = z, rooted = r
\underline{\text{stalk-surface-above-ring}}: fibrous = f, \underline{\text{scaly}} = y, \underline{\text{silky}} = k, \underline{\text{smooth}} = s
stalk-surface-below-ring: fibrous = f, scaly = y, silky = k, smooth = s
stalk-color-above-ring: brown = n, buff = b, cinnamon = c, gray = g, orange = o, pink = p, red = e, white = w, yellow = y
stalk-color-below-ring: brown = n, buff = b, cinnamon = c, gray = g, orange = o, pink = p, red = e, white = w, yellow = y
<u>veil-type</u>: partial = p, universal = u
veil-color: brown = n, orange = o, white = w, yellow = y
<u>ring-number</u>: none = n, one = o, two = t
ring-type: cobwebby = c, evanescent = e, flaring = f, large = l, none = n, pendant = p, sheathing = s, zone = z
spore-print-color: black = k, brown = n, buff = b, chocolate = h, green = r, orange = o, purple = u, white = w, yellow = y
population: abundant = a, clustered = c, numerous = n, scattered = s, several = v, solitary = y
<u>habitat</u>: grasses = g, leaves = l, meadows = m, paths = p, urban = u, waste = w, woods = d
```


O2 Preprocessing

Missing Value Handling

- Implemented the K-Nearest-Neighbors (KNN) algorithm
- Estimates missing values by analyzing the closest neighbors based on features
- Surpasses mode/deletion (reflects underlying patterns in the data)

```
knn_imputer = KNNImputer(n_neighbors = 5)
x_imputed = knn_imputer.fit_transform(x_encoded)
x = pd.DataFrame(x_imputed, columns = x.columns)
```

KNN Imputer implementation using scikit-learn method and depth 5 consideration

Feature Encoding

All of the data in the mushrooms dataset are categorical variables

Cap shape: bell (b) \rightarrow 0, conical (c) \rightarrow 1, flat (f) \rightarrow 2

Odor: almond (a) \rightarrow 0, fishy (y) \rightarrow 8

```
for column in x.columns:
    le = LabelEncoder()
    x[column] = le.fit_transform(x[column].round().astype(int))
    label_encoders[column] = le
```

Encodings using scikit-learn functionality

Dataset Splitting

- Training Set: 80% of data for model training
- Validation Set: 10% for hyperparameter tuning
- Testing Set: 10% for unbiased evaluation of model performance

```
x_train, x_temp_split, y_train, y_temp_split = train_test_split(
    x_temp, y, test_size = 0.2, random_state = 42, stratify = y
)

x_val, x_test, y_val, y_test = train_test_split(
    x_temp_split, y_temp_split, test_size = 0.5, random_state = 42, stratify = y_temp_split
)
```

Split with stratified distribution using scikit-learn functionality

03 Manipulation

Attribute Selection Algorithms

Selection Algorithm	Strengths	Weaknesses
Intuition	Simple to perform, takes the least amount of time	Prone to bias, can't be reproduced
Correlation Attribute Evaluation	Computationally efficient calculation in a straightforward way	Can only detect linear relationships, skewed by outliers
Gain Ratio Attribute Evaluation	Reduces overfitting, useful for Decision Trees	Ineffective with attributes that have only a few unique values
Information Gain Attribute Evaluation	Works with both categorical and discrete data	Biased toward attributes with many categories
Wrapper Subset Evaluation	Selection based on the specific model	Risks overfitting, especially when dataset is small

Intuition-Based Selection

- Basic selection based on personal consideration of the influence of attributes
- We watched National Geographic as kids (unofficial experts)

Correlation Attribute Evaluation

 Measures the linear correlation between attributes and class labels

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

```
Attribute Evaluator (supervised, Class (nominal): 23 class):
       Correlation Ranking Filter
Ranked attributes:
0.5792
       5 odor
         8 gill-size
       4 bruises
       12 stalk-surface-above-ring
       13 stalk-surface-below-ring
0.4131 19 ring-type
        20 spore-print-color
         7 gill-spacing
       11 stalk-root
                                           Cutoff value: 0.25
       21 population
        9 gill-color
       14 stalk-color-above-ring
        15 stalk-color-below-ring
       18 ring-number
       22 habitat
0.1396 17 veil-color
        6 gill-attachment
        2 cap-surface
        10 stalk-shape
         3 cap-color
0.0464
       1 cap-shape
        16 veil-type
Selected attributes: 5,8,4,12,13,19,20,7,11,21,9,14,15,18,22,17,6,2,10,3,1,16 : 22
```

			Fea	ature Cori	relation H	leatmap	(correlati	on)	a.		_	1.0	
bruises	1.00	-0.06	-0.30	-0.37		0.46	0.46		-0.28	0.09	١		
odor	-0.06	1.00	0.07	0.31	0.24	0.12	0.07	-0.28	0.47	-0.04	1	0.8	
gill-spacing	-0.30	0.07	1.00	-0.11	0.22	-0.20	-0.21	-0.20	0.05	-0.53	ı	0.6	
gill-size	-0.37	0.31	-0.11	1.00	0.37	0.05	0.01	-0.46	0.62	0.15	1	0.4	
stalk-root	-0.23	0.24	0.22	0.37	1.00	-0.06	0.00	-0.42	0.23	-0.34			
surface-above-ring	0.46	0.12	-0.20	0.05	-0.06	1.00	0.44	0.39	0.10	0.07		0.2	
surface-below-ring	0.46	0.07	-0.21	0.01	0.00	0.44	1.00	0.39	0.14	0.05		0.0	
ring-type	0.69	-0.28	-0.20	-0.46	-0.42	0.39	0.39	1.00	-0.48	0.21		-0.2	
spore-print-color	-0.28	0.47	0.05	0.62	0.23	0.10	0.14	-0.48	1.00	-0.13			
population	0.09	-0.04	-0.53	0.15	-0.34	0.07	0.05	0.21	-0.13	1.00		-0.4	
	bruises	odor	gill-spacing	gill-size	stalk-root	e-above-ring	e-below-ring	ring-type	re-print-color	population			

Gain Ratio Attribute Evaluation

- Ranks attributes based on their gain ratio with respect to the class
- Gain ratio reduces bias towards attributes that have many distinct values

```
Gain Ratio feature evaluator
Ranked attributes:
          12 stalk-surface-above-ring
          20 spore-print-color
          19 ring-type
          13 stalk-surface-below-ring
                                             Cutoff value: 0.15
           7 gill-spacing
          14 stalk-color-above-ring
          15 stalk-color-below-ring
          17 veil-color
          21 population
          11 stalk-root
          18 ring-number
           6 gill-attachment
           2 cap-surface
           3 cap-color
          10 stalk-shape
          16 veil-type
Selected attributes: 5,8,12,20,19,4,13,7,9,14,15,17,21,11,18,6,22,1,2,3,10,16: 22
```

	Feature Correlation Heatmap (gain-ratio)											
bruises	1.00	-0.06	-0.30	-0.37	0.46	0.46		-0.28	ı			
odor -	-0.06	1.00	0.07	0.31	0.12	0.07	-0.28	0.47		- 0.8		
gill-spacing	-0.30	0.07	1.00	-0.11	-0.20	-0.21		0.05		0.6		
gill-size	-0.37	0.31	-0.11	1.00	0.05	0.01	-0.46	0.62		0.4		
c-surface-above-ring	0.46	0.12	-0.20	0.05	1.00	0.44	0.39	0.10		0.2		
x-surface-below-ring	0.46	0.07		0.01	0.44	1.00	0.39	0.14		- 0.0		
ring-type	0.69	-0.28		-0.46	0.39	0.39	1.00	-0.48		0.2		
spore-print-color	-0.28	0.47	0.05	0.62	0.10	0.14	-0.48	1.00		-0.4		
	bruises	odor	gill-spacing	gill-size	ce-above-ring	ce-below-ring	ring-type	ore-print-color				

Information Gain Attribute Evaluation

- Ranks attributes based on their information gain with respect to the class
- Information gain = reduction in entropy about the class

```
Information Gain Ranking Filter
Ranked attributes:
          20 spore-print-color
           9 gill-color
          19 ring-type
          12 stalk-surface-above-ring
          13 stalk-surface-below-ring
          14 stalk-color-above-ring
          15 stalk-color-below-ring
           8 gill-size
                                             Cutoff value: 0.2
          22 habitat
           7 gill-spacing
          18 ring-number
           2 cap-surface
           6 gill-attachment
          10 stalk-shape
          16 veil-type
Selected attributes: 5,20,9,19,12,13,14,15,8,21,4,22,11,7,1,18,3,2,17,6,10,16 : 22
```

Feature Correlation Heatmap (info-gain)												1.0
odor	1.00	0.31	-0.12	0.12	0.07	0.17	0.17	-0.28	0.47	-0.04		1.0
gill-size	0.31	1.00	-0.52	0.05	0.01	0.29	0.28	-0.46	0.62	0.15	ı	0.8
gill-color	-0.12	-0.52	1.00	0.23	0.25	-0.06	-0.08	0.63	-0.41	-0.03	ı	0.6
surface-above-ring	0.12	0.05	0.23	1.00	0.44	0.14	0.15	0.39	0.10	0.07		0.4
surface-below-ring	0.07	0.01	0.25	0.44	1.00	0.11	0.11	0.39	0.14	0.05	ı	5.7
k-color-above-ring	0.17	0.29	-0.06	0.14	0.11	1.00	0.49	-0.05	0.27	-0.25		0.2
lk-color-below-ring	0.17	0.28	-0.08	0.15	0.11	0.49	1.00	-0.03	0.25	-0.24		0.0
ring-type	-0.28	-0.46	0.63	0.39	0.39	-0.05	-0.03	1.00	-0.48	0.21		-0.2
spore-print-color	0.47	0.62	-0.41	0.10	0.14	0.27	0.25	-0.48	1.00	-0.13		
population	-0.04	0.15	-0.03	0.07	0.05	-0.25	-0.24	0.21	-0.13	1.00		-0.4
	odor	gill-size	gill-color	ice-above-ring	ace-below-ring	lor-above-ring	olor-below-ring	ring-type	ore-print-color	population		

Wrapper Subset Evaluation

- Evaluates the performance of a subset of attributes using J48
 Decision Tree classifier
- Direct measure of the impact of selected attributes on model performance

```
Search Method:
        Best first.
        Start set: no attributes
        Search direction: forward
        Stale search after 5 node expansions
        Total number of subsets evaluated: 182
        Merit of best subset found:
Attribute Subset Evaluator (supervised, Class (nominal): 23 class):
        Wrapper Subset Evaluator
        Learning scheme: weka.classifiers.trees.J48
        Scheme options: -C 0.25 -M 2
        Subset evaluation: classification accuracy
        Number of folds for accuracy estimation: 5
Selected attributes: 2,3,5,12,20 : 5
                     cap-surface
                     cap-color
                     stalk-surface-above-ring
                     spore-print-color
```


Classifier Models

- Decision Tree (J48): Uses rules to classify data by approximating a sine curve
- Quadratic Discriminant Analysis (QDA): Generates a quadratic boundary by fitting Gaussian densities to classes
- Logistic Regression: Utilizes a Bernoulli distribution to predicts probabilities for binary outcomes
- Support Vector Classifier (SVC): Finds optimal "hyperplane" for data (the decision boundary that maximizes the distance between the closest data points of two attributes)

Models were **trained using scikit-learn** and **stored with pickle** library serialization

Hyperplane

Comparison of Models

Model	Strengths	Weaknesses
J48 Decision Tree	Easy to use	Prone to overfitting
Logistic Regression	Good for binary classification	Struggles with non-linear relationships
SVC	Handles complex data well	Very slow
QDA	Works well with nonlinear relationships	Sensitive to dataset size

O4 Conclusion

Accuracy Results

	Decision Tree	QDA	Logistic Regression	SVC
Intuition Based Selection	94.9569%	93.6039%	88.9299%	98.2780%
CorrelationAttributeEval	98.0320%	97.1710%	95.2030%	99.0160%
GainRatioAttributeEval	98.0320%	94.7109%	94.7109%	98.8930%
InfoGainAttributeEval	95.4490%	96.0640%	89.7909%	97.0480%
WrapperSubsetEval	98.0320%	86.1009%	65.5597%	98.0320%

Support Vector Classifier (SVC) with CorrelationAttributeEval performed the best

ROC Area Results

	Decision Tree	QDA	Logistic Regression	SVC
Intuition Based Selection	0.980328	0.962359	0.924372	0.998764
CorrelationAttributeEval	0.990184	0.979822	0.980125	0.999727
GainRatioAttributeEval	0.990184	0.969218	0.957814	0.999952
InfoGainAttributeEval	0.979798	0.974835	0.947125	0.997225
WrapperSubsetEval	0.996801	0.938454	0.753908	0.999436

Support Vector Classifier (SVC) with GainRatioAttributeEval performed the best

Metrics for Chosen Model (SVC + Correlation)

```
Accuracy: 99.0160%
Correctly Classified Instances: 805
Incorrectly Classified Instances: 8
Kappa Statistic: 0.9803
Mean Absolute Error (MAE): 0.0098
Root Mean Squared Error (RMSE): 0.0992
Relative Absolute Error (RAE): 0.0197
Root Relative Squared Error (RRSE): 0.1985
Total Number of Instances: 813
              TP Rate
                        FP Rate Precision
                                             Recall F-Measure
                                                                    MCC ROC Area PRC Area
             1.000000 0.018648
                               0.981352 1.000000
                                                     0.990588
                                                               0.980472 0.999727
                                                                                  0.999711
             0.979592 0.000000 1.000000
                                           0.979592 0.989691 0.980472 0.999727 0.999711
Weighted Avg 0.989796 0.009324 0.990343
                                           0.990160
                                                     0.990155 0.980472 0.999727 0.999711
Confusion Matrix:
          Predicted 0
                       Predicted 1
Actual 0
                421
Actual 1
                             384
```

Future Work

- Using Correlation as a selection algorithm could overlook attributes that might have high correlation when combined with other attributes
- Exploring alternative attribute selection algorithms
- Experimenting with different classifier models (e.g.
 Random Forest, Gradient Boosting)

Sources

Blythe, V. (n.d.). Mushrooms [Image]. Dribbble. https://dribbble.com/shots/14323122-Mushrooms

Brandenburg, W. E., & Ward, K. J. (2018, July 31). *Mushroom poisoning epidemiology in the United States*. National Library of Medicine. Retrieved October 23, 2024, from https://doi.org/10.1080/00275514.2018.1479561

Colors, C. (n.d.). Glowing Mushrooms [Image]. Dribbble. https://dribbble.com/shots/22519055-Glowing-Mushrooms

DecisionTreeClassifier. (n.d.). scikit-learn. Retrieved October 22, 2024, from

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

1.4. Support Vector Machines. (n.d.). scikit-learn. Retrieved October 22, 2024, from https://scikit-learn.org/1.5/modules/svm.html

Lillo, W. (n.d.). Isometric Mushrooms [Image]. Dribbble. https://dribbble.com/shots/20837558-Isometric-Mushrooms

LogisticRegression. (n.d.). scikit-learn. Retrieved October 22, 2024, from

https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html

Sources

Miminoshvili, A. (n.d.). Mushrooms [Image]. Dribbble. https://dribbble.com/shots/3641736-Mushrooms

MKL47. (n.d.). Mushrooms set [Image]. Dribbble. https://dribbble.com/shots/23206484-Mushrooms-set

Package weka.attributeSelection. (n.d.). Weka Documentation. Retrieved October 22, 2024, from

https://weka.sourceforge.io/doc.dev/weka/attributeSelection/package-summary.html

QuadraticDiscriminantAnalysis. (n.d.). scikit-learn. Retrieved October 22, 2024, from

 $https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis. Quadratic Discriminant Analysis. html \\$

Schultz, P. (n.d.). *Mushroom Pattern* [Image]. Dribbble. https://dribbble.com/shots/5709006-Mushroom-Pattern

Wild Mushrooms. (n.d.). The Blue Ridge Poison Center. Retrieved October 23, 2024, from

https://med.virginia.edu/brpc/wp-content/uploads/sites/274/2015/10/Mushrooms.pdf

Thank you!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**