Đáp án của Kiểm tra giữa HK 182 – Đề số 2 (nhóm A02) Môn: Điện tử Y sinh học (MSMH: EE3037)

Ngày kiểm tra: 25/03/2019 – Thời gian làm bài: 60 phút (SV KHÔNG được sử dụng tài liệu, ĐTDĐ, Laptop, và máy tính bảng)

Câu 1: (2 đ) (mỗi câu nhỏ: 0.5 đ)

- a) Hãy ghi tên quốc gia đầu tiên thực hiện những việc sau:
 - (i) Trích máu (cắt lễ), chi giả (ii) Đầu tiên xem xét sức khỏe và vệ sinh cộng đồng
- b) Các lý thuyết/chuyên đề sau do (những) ai khởi xướng:
 - (i) Sư tuần hoàn máu trong cơ thể.
 - (ii) Thầy thuốc được xem là nhà khoa học.
- c) Hãy cho biết ý nghĩa tên viết tắt và công dụng của ENG và EKG?
- d) Sự khác biệt chính giữa điện sinh học và điện thông thường là gì?

BG.

a)

Hạng mục công việc	Quốc gia
(i) Trích máu (cắt lễ), chi giả	Ai cập cổ đại
(ii) Đầu tiên xem xét sức khỏe và vệ sinh cộng đồng	La mã cổ đại

b)

Lý thuyết/Chuyên đề	Người khởi xướng
(i) Sự tuần hoàn máu trong cơ thể	William Harvey
(ii) Thầy thuốc được xem là nhà khoa học	Hippocrates

c)

- ENG = Điện thần kinh đồ: giám sát hoạt động điện của các tế bào thần kinh trong hệ thần kinh.
- ECG hay EKG = Điện tâm đồ : giám sát các điện thế được sinh ra trong tim.
- d) Sư khác biệt chính giữa điện sinh học và điện thông thường là gì?

HT điện nhân tạo	Các hạt dẫn điện là các điện tử trong vật dẫn điện	Dòng điện chạy trong vật dẫn điện (có bọc cách điện)
HT điện sinh học	Các hạt dẫn điện là các ion trong chất điện giải	Dòng điện bên trong và bên ngoài các màng tế bào (có cách điện 1 phần)

Câu 2: (2 đ)

- a) (0.5 đ) So sánh RTD và thermistor về hệ số nhiệt điện trở và độ nhạy.
- b) (0.5 d) Tai sao đo nhiệt bức xa thường được dùng để đo nhiệt đô trong kỹ thuật y sinh?
- c) (1 đ) Xét cảm biến RTD là R_T trong mạch hình 1, RTD này có $R_T = R_0(1 + \alpha T)$ với $\alpha = 0.005$ /°C và R_0 = 350 Ω ứng với T = 0 °C. Giả sử mạch đo có V_S = 5 V và R_1 = R_2 = R_3 = 350 Ω . Nếu ban đầu T = 25°C thì Vo = ? Hãy tìm $S = \Delta Vo/\Delta T$ và áp dụng vào để tìm Vo ứng với trường hợp nhiệt độ tăng 15 °C (lúc $nay T = 40 \, ^{\circ}C)$?

Hình 2

Đáp án của BME-182 KTGHK Đề 2 Nhóm A02 – trang 1/5

a) (0.5 d) So sánh RTD và thermistor về hệ số nhiệt điện trở và đô nhay.

	RTD	Thermistor
Hệ số nhiệt	Dương (PTC)	Âm (NTC)
Độ nhạy	Trung bình	Tốt nhất

- b) (0.5 đ) Tại sao đo nhiệt bức xạ thường được dùng để đo nhiệt độ trong kỹ thuật y sinh? Bởi vì các lý do sau: không cần tiếp xúc để đặt nhiệt độ của cảm biến; thời gian đáp ứng nhanh có độ chính xác tốt; và độc lập của kỹ thuật sử dụng hoặc hoạt động của bệnh nhân.
- c) (1 đ) Xét cảm biến RTD là R_T trong mạch hình 1
 - (0.25 đ) Theo đề bài ta công thức điện trở theo T như sau: $R_3 = R_T = R_0(1 + \alpha T)$ (vì $T_0 = 0$ °C) Điện áp ra của cầu đo là:

```
Vo = (R2/(R1 + R2) - R3/(RT + R3))Vs
        Vo = Vs(0.5 - 1/(2 + \alpha T)) (vì R1 = R2 = R3 = R0)
Nếu T = 25^{\circ}C thì Vo = 5 \times (0.5 - 1/(2 + 0.005 \times 25)) = 0.1471 \text{ V}
```

(0.5 d) Từ công thức Vo ta có: $dVo/dT = \alpha Vs/(2 + \alpha T)^2$ Xét S từ T = 25° C thì S = $0.005 \times 5/(2 + 0.005 \times 25)^{2} = 0.0055 \text{ V/}^{\circ}$ C

(0.25 đ) Như vậy khi $\Delta T = 15^{\circ}C \Rightarrow \Delta Vo = S \times \Delta T = 0.0055 \times 15 = 0.0825 V$ \Rightarrow Vo mới = Vo (ở 25°C) + \triangle Vo = 0.1471 + 0.0825 = 0.2296 V

Câu 3: (2 đ)

- a) (1 đ) Một cảm biến đo biến dang (strain gage) R_S có hệ số biến dang $G = (\Delta R/R)/(\Delta L/L) = 4$, được dùng để đo tỉ số của sự thay đổi tương đối của R theo sự thay đổi tương đối của chiều dài L trong hình 2. Chiều dài nghỉ L = L0 = 2 m và điện trở nghỉ là 250 Ω . Giả sử $V_S = 5$ V, nếu ta muốn có ban đầu $V_O = 0$ thì phải chọn R1, R2, và R3 là bao nhiều? Hãy tìm $(\Delta V_0/\Delta L)$ và áp dụng để tìm chiều dài L mới khi có biến dạng làm cho $\Delta V_0 = 0.02 \text{ V}$?
- b) (1 đ) Thiết kế mạch (có 3 ngõ vào và 1 ngõ ra) chỉ dùng 1 opamp và một số điện trở để tính:

$$V_0 = -3V_1 + V_2 + 3V_3$$

Hãy vẽ mạch thực hiện các yêu cầu trên và giải thích cách tính các giá trị của các điện trở trong mạch (nếu chỉ có 1 phương trình cho 2 ẩn số thì cho phép chon giá tri 1 ẩn số). Giả sử giá tri của điện nhỏ nhất $> 10 \text{ k}\Omega$. BG.

- a) (1 d) Strain gage
 - (0.25 d) Ta có:

```
Vo = Vs(R2/(R1 + R2) - R3/(Rs + R3))
Muốn có ban đầu Vo = 0 thì chọn R1 = R2 = R3 = điện trở nghỉ (ở Rs) = R0 = 250 \Omega.
```

(0.5 đ) Lấy đạo hàm Vo theo Rs với (*), ta có:

$$dVo/dRs = \Delta Vo/\Delta R = V_sR3/(Rs + R3)^2$$

```
S = \Delta Vo/\Delta L = (\Delta Vo/\Delta R) \times (\Delta R/\Delta L) = V_s R3/(Rs + R3)^2 \times G \times R0/L0 \text{ (do } G = (\Delta R/\Delta L) \times L0/R0)
                       = 0.25 \text{ V}_{\text{s}}\text{G/L0} (vì R3 = Rs [khi chưa biến dạng] = R0 = 250 \Omega.)
                       = 0.25 \times 5 \times 4 / 2 = 2.5 \text{ V/m}
```

- $(0.25 \text{ d}) \text{ Từ S} = \Delta \text{Vo}/\Delta \text{L} \Rightarrow \Delta \text{L} = \Delta \text{Vo}/\text{S} = 0.02 \text{V}/(2.5 \text{ V/m}) = 0.008 \text{ m}$ Suy ra chiều dài mới L = L0 + Δ L = 2 + 0.008 = 2.008 m
- b) (1 đ) Thiết kế mạch (có 3 ngõ vào và 1 ngõ ra) chỉ dùng 1 opamp: $V_0 = -3V_1 + V_2 + 3V_3$ Mạch cần thiết kế có sơ đồ mạch sau:

Với mạch trên, áp dụng định lý xếp chồng ta tìm được:

Vo = -(RF/R1)V1 + (1 + RF/R1) (R3V2 + R2V3)/(R2 + R3) (1)

So sánh (1) với đê bài:

Vo = -3V1 + V2 + 3V3

Suy ra:

 $RF/R_1 = 3 \qquad (2)$

(1 + RF/R1)R3/(R2 + R3) = 1 (3)

(1 + RF/R1)R2/(R2 + R3) = 3 (4)

 $T\dot{w}$ (3) $v\dot{a}$ (4), ta $c\dot{o}$: R3/R2 = 1/3 hay R2 = 3R3

Chọn R1 = 10 k $\Omega \Rightarrow$ RF = 3R1 = 30 k Ω

Chọn R3 = 10 k $\Omega \Rightarrow$ R2 = 3R3 = 30 k Ω

Tóm lại, 1 bộ nghiệm thỏa đề bài là

 $R_F = 30 \text{ k}\Omega$, $R1 = 10 \text{ k}\Omega$, $R2 = 30 \text{ k}\Omega$. $var{a}R3 = 10 \text{ k}\Omega$.

Câu 4: (2 đ)

Xét mạch ở hình 3, hãy tìm

- a) (0.75 đ) Biểu thức của Vo theo V1 và V2 và các điện trở.
- b) (0.75 d) Độ lợi vi sai Gd $(= V_0/(V_2 V_1))$ và độ lợi cách chung Gc.
- c) (0.25 đ) Điều kiện để cho mạch này thành mạch khuếch đại vi sai.
- d) $(0.25 \text{ d}) \text{ CMRR (dB) n\'eu R1} = \text{R5} = \text{R6} = 10 \text{ k}\Omega, \text{R2} = 11 \text{ k}\Omega, \text{R3} = 100 \text{ k}\Omega.\text{v\'a R4} = 101 \text{ k}\Omega.$

BG.

a) (0.75 đ) Biểu thức của Vo theo V1 và V2 và các điện trở.

Gọi điện thế tại điểm chung của R2 và R6 là V3, ta có V3 = (1 + R6/R5)Vo

Điện thể tại ngõ vào đảo: v- = (V1R2 + V3R1)/(R1 + R2)

Điện thể tại ngõ vào không đảo: v+ = V2R4/(R3 + R4)

Ngoài ra ta có v- = v+, suy ra

(V1R2 + (1 + R6/R5)VoR1)/(R1 + R2) = V2R4/(R3 + R4)

Hay

Vo = G1V1 + G2V2

 $V\acute{o}i G1 = - R2/R1(1 + R6/R5)$

G2 = R4(1 + R2/R1)/(1 + R6/R5)(R3 + R4)

b) (0.75 d) Độ lợi vi sai Gd $(= V_0/(V_2 - V_1))$ và độ lợi cách chung Gc.

```
Biểu diễn Vo theo Gc và Gd là
Vo = Gd(V2-V1) + Gc(V2+V1)/2
Đồng nhất thức biểu thức này biểu thức theo G1 và G2, ta có
G1 = -Gd + Gc/2
G2 = Gd + Gc/2
\Rightarrow Gd = (G2-G1)/2 = 0.5/(1 + R6/R5) x (R4(1 + R2/R1)/(R3 + R4) + R2/R1)
   Gc = G2 + G1 = 1/(1 + R6/R5) \times (R4(1 + R2/R1)/(R3 + R4) - R2/R1)
c) (0.25 đ) Điều kiện để cho mạch này thành mạch khuếch đại vi sai.
Muốn có KĐVS thì Gc = 0, suy ra
       1/(1 + R6/R5) \times (R4(1 + R2/R1)/(R3 + R4) - R2/R1) = 0
Hay
       R4(1 + R2/R1)/(R3 + R4) - R2/R1 = 0
       \Rightarrow 1+ R1/R2 = 1 + R3/R4
       \Rightarrow R1/R2 = R3/R4 hoăc R1R4 = R2R3
d) (0.25 đ) CMRR (dB) nêu R1 = R5 = R6 = 10 kΩ, R2 = 11 kΩ, R3 = 100 kΩ.và R4 = 101 kΩ
Theo b), ta tìm được:
Gd = 0.5/(1 + 10/10) \times (101(1 + 11/10)/(100 + 101) + 11/10) = 0.5386
Gc = 1/(1 + 10/10) \times (101(1 + 11/10)/(100 + 101) - 11/10) = -0.0224
\Rightarrow CMRR = 20 lg(|Gc/Gd|) = 20 lg (0.5386/0.0224) = 27.62 dB
```

Câu 5: (2 đ)

- 5.1 (1 đ) Xét mạch ở hình 4, đây là mạch lọc thông dải dùng cho mạch ECG, hãy tìm
 - a) Biểu thức của tần số cắt dưới f_L, tần số cắt trên f_H, và độ lợi dải giữa.
- b) Các giá trị của R và C khi ta cần có f_L = 0.6 Hz, f_H = 110 Hz và độ lợi dải giữa là 5. Giả sử R1 = 10 k Ω . **BG**.
- a) (0.5 đ) Biểu thức của tần số cắt dưới f_L, tần số cắt trên f_H, và độ lợi dải giữa.
 - Loc thông cao do C1 và R1 \Rightarrow fL = 1/2 π R1C1
 - Loc thông thấp do C2 và R2 \Rightarrow fH = 1/2 π R2C2
 - Đô lợi dải giữa K = 1 + R2/R1
- b) (0.5 d) Các giá trị của R và C khi f_L = 0.6 Hz, f_H = 110 Hz và độ lợi dải giữa là 5. Giả sử R1 = 10 k Ω .
 - R1 = 10 k Ω và K = 5 = 1 + R2/R1 \Rightarrow R2 = 4R1 = 40 k Ω
 - R1 = 10 k Ω và fL = 1/2 π R1C1 = 0.6 Hz \Rightarrow C1 = 1/2 π R1fL = 2.6526 x 10⁻⁵ = 26.53 μ F
 - R2 = 40 k Ω và fH = 1/2 π R2C2 = 110 Hz \Rightarrow C2 = 1/2 π R2fH = 3.6172 x 10⁻⁸ = 36.17 nF

5.2 (1 d) Cho trước mạch hình 5

- a) (0.5 d) Mạch sẽ chuyển trạng thái khi Vi = ?
- b) (0.5 d) Hãy vẽ đặc tuyến truyền đạt với $V_{R1} = -1V$, $V_{R2} = 1V$, $R1 = 10 \text{ k}\Omega$, $R2 = 20 \text{ k}\Omega$, opamp có trị bão hòa dương là +10 V và bão hòa âm là -10 V.

a) (0.5 d) Mạch sẽ chuyển trạng thái khi Vi = ?

Mạch sẽ chuyển trạng thái tại v- = v+: Ta có

- v- = VR2
 - V+ = (R2Vi + R1VR1)/(R1 + R2)
 - V- = V+
 - ⇒ Vi = (1 + R1/R2) VR2 VR1R1/R2 = VA V+ - V- = (R2Vi + R1VR1)/(R1 + R2) - VR2

Vi	-∞	VA	+∞
V+ - V-	_	0	+
Opamp	Bãp hòa âm		Bão hòa dương

b) (0.5 d) Hãy vẽ đặc tuyến truyền đạt với $V_{R1} = -1V$, $V_{R2} = 1V$, $R1 = 10 \text{ k}\Omega$, $R2 = 20 \text{ k}\Omega$ VA = (1 + 10/20)(1) – (-1) 10/20 = 1.5 + 0.5 = 2V Đặc tuyến truyền đạt:

GV ra đề và soạn đáp án: Nguyễn Lý Thiên Trường