3. Recall that the Farey sequence of order n, \mathbf{F}_n , is the sequence of reduced fractions $0 \le \frac{a}{b} \le 1$ arranged in increasing order. Prove that the number of terms in \mathbf{F}_n is $1 + \sum_{j=1}^n \phi(j)$ and that their sum is exactly half this value. Using this, come up with a recursive formula for $|\mathbf{F}_n|$.

$$|F_{n+1}| = |+ \underbrace{Z}_{j=1}^{n+1} \mathcal{L}(j)$$

$$= 1 + \frac{2}{3} + (5) + (0)$$

1. Show that if d is divisible by a prime congruent to 3 mod 4 then $x^2 - dy^2 = -1$ has no solutions in integers.

Say Pld,
$$P=3 \mod 9$$
.
Suppose $\chi^2 - dy^2 = -1$ has solution (x_0, y_0)
look mod $P \Rightarrow \chi_0^2 = -1$ mod P
 $\begin{pmatrix} -1 \\ P \end{pmatrix} = 1$ record $\begin{pmatrix} -1 \\ P \end{pmatrix} = 1$

2. Prove that there exist irrational numbers α and β such that α^{β} is rational.

we know
$$\sqrt{2} \notin \mathbb{Q}$$

Considur $\sqrt{2}$ if it's rational,

done!

considur $\sqrt{2} \neq \mathbb{Q}$
 $\sqrt{2} = \sqrt{2} = 2$
 $\notin \mathbb{Q}$
 $\notin \mathbb{Q}$

. Who see
$$\frac{1}{5}eFn$$

$$=\frac{1}{2}[1+\frac{2}{3}P(i)]$$

$$=\frac{1}{2}Fn$$

Define $\frac{1}{5}eFn$

consider $1-\frac{1}{6}=\frac{1}{5}e$

$$\frac{1}{5}eFn$$

consider $1-\frac{1}{6}=\frac{1}{5}e$

consider $1-\frac{1}{6}=\frac{1}{6}e$

consider $1-\frac{1}{6}=\frac{1}$

Herm corresponding to 1/2 1+ 2 (j) terms in total. 2 (G) Pails that som to 1. =) total Sum is 1 2 (lj) + 1 $=\frac{1}{2}\left(\frac{2}{5}+\left(\frac{1}{5}\right)+1\right)$ == | Fn | y idla: if $\frac{a}{b} < \frac{c}{d}$ are consecutive terms in Fn => bc-ad=1

Wbk+1 DIETIBE - 9k bk+1 <u>n-1</u>