Задача 10. Шоколадная палочка Фрикс

Источник: космической сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Мухи любят уединение. А ещё они очень любят шоколад, в особенности шоколадные палочки от известной фирмы "Фрикс". Когда новая муха хочет сесть на палочку, она старается выбрать себе место подальше от остальных мух, сидящих на ней.

Представим шоколадную палочку в виде отрезка [0, L] на координатной прямой. Будем считать, что каждая сидящая на палочке муха занимает некоторый интервал длины W. В любой момент времени все интервалы, занимаемые мухами, не пересекаются и не выходят за пределы палочки.

Допустим, на палочке уже сидит некоторое количество мух, и хочет сесть ещё одна. Если на палочке нет подходящего свободного места, то муха улетает. В противном случае она садится таким образом, чтобы расстояние от неё до других мух и концов палочки было наибольшим.

Формально говоря, место, на которое садится новая муха, определяется следующим образом. Пусть Y — множество, равное объединению всех интервалов, на которых уже сидят мухи, и концевых точек палочки $\{0,L\}$. Интервал, который занимает вновь прилетевшая муха, таков, что расстояние от его центра до множества Y максимально. Если на палочке есть несколько таких точек, то в качестве центра из них выбирается точка с минимальной координатой.

Изначально нужно разместить на палочке ровно N мух. Далее к палочке по одному будут подлетать мухи и садиться на неё по вышеописанным правилам. Это будет продолжаться до тех пор, пока на палочке не закончится свободное место.

В задаче требуется найти два варианта изначальной рассадки мух. В первом варианте окончательное количество сидящих на палочке должно быть минимально возможным, в во втором — максимально возможным.

Формат входных данных

В первой строке входного файла задано два целых числа N и W ($1 \le N \le 100\,000$, $1 \le W \le 10^9$). Во второй строке записано целое число L ($1 \le L \le 10^{17}$).

Гарантируется, что можно разместить N мух на палочке.

Формат выходных данных

В первую строку выходного файла нужно вывести два целых числа — минимально возможное количество уместившихся на палочке и максимально возможное количество. Далее необходимо вывести два варианта рассадки — рассадку, при которой достигается минимальное количество, а затем рассадку, при которой количество мух максимально.

Каждая рассадка должна занимать N строк, по одному числу в каждой. Каждое число — это координата центра интервала, занимаемого мухой. Все числа в одной рассадке должны идти в порядке возрастания. Разрешается выводить вещественные числа, но не более чем с 9-ю десятичными знаками после запятой. Гарантируется, что существуют оптимальные рассадки, которые можно представить таким образом.

Пример

input.txt	output.txt
3 2	3 6
13	2.75
	6.5
	10.25
	3
	8.0
	12.00

Комментарий

На картинке изображены обе рассадки из примера.

В минимальной рассадке на палочке есть четыре свободных отрезка, однако все они имеют длину 1.75, поэтому сесть больше никто не может.

В максимальной рассадке сначала сидят три мухи. Потом подлетают ещё три, их места обозначены буквами ${\bf A}(5.5),\,{\bf B}(1),\,{\bf C}(10)$ в порядке их появления.