Math 323 HW6

Minh Bui

May 23, 2017

Problem 4.6: Prove that addition in \mathbb{Q} is well-defined.

Proof. We will prove the following statement: If $\frac{m}{n}, \frac{p}{q}, \frac{r}{s}, \frac{t}{u} \in \mathbb{Q}$ such that

 $\frac{m}{n} = \frac{r}{s} \text{ and } \frac{p}{q} = \frac{t}{u}, \text{ then } \frac{m}{n} + \frac{p}{q} = \frac{r}{s} + \frac{t}{u}.$ Assume $\frac{m}{n}, \frac{p}{q}, \frac{r}{s}, \frac{t}{u} \in \mathbb{Q}$ such that $\frac{m}{n} = \frac{r}{s}$ and $\frac{p}{q} = \frac{t}{u}$. So ms = rn and pu = qt. Consider ms = rn when we multiply both sides by the natural number qu.

$$ms = rn$$
 (1)

$$ms(qu) = rn(qu) \tag{2}$$

Similarly, consider pu = qt when we multiply both sides by the natural number sn.

$$pu = qt (3)$$

$$pu(sn) = qt(sn) \tag{4}$$

Revisiting equation (2) again

$$ms(qu) = rn(qu)$$

$$ms(qu) + pu(sn) = rn(qu) + pu(sn)$$

$$ms(qu) + pu(sn) = rn(qu) + qt(sn)$$
by (4)

sumq + supn = nqru + nqst by commutativity and associativity

$$su(mq + pn) = nq(ru + st)$$
$$\frac{(mq + pn)}{nq} = \frac{(ru + st)}{su}$$
$$\frac{m}{n} + \frac{p}{q} = \frac{r}{s} + \frac{t}{u}$$

And so we have proved that addition in \mathbb{Q} is well-defined.

Problem 4.12: Prove that multiplication in \mathbb{Q} is commutative.

Proof. We need to prove: If $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$, then $\frac{m}{n} \cdot \frac{p}{q} = \frac{p}{q} \cdot \frac{m}{n}$. Assume $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$, consider the expression

$$\begin{split} \frac{m}{n} \cdot \frac{p}{q} &= \frac{mp}{nq} \\ &= \frac{pm}{nq} \text{ multiplication is commutative in } \mathbb{Z} \\ &= \frac{pm}{qn} \text{ multiplication is commutative in } \mathbb{N} \\ &= \frac{p}{q} \cdot \frac{m}{n} \end{split}$$

So multiplication is commutative in \mathbb{Q} .

Problem 4.17: Prove that there is no $r \in \mathbb{Q}$ so that $r^2 = 6$.

Proof. Assume by way of contradiction, $\exists r \in \mathbb{Q}$ so that $r^2 = 6$. Since $r \in \mathbb{Q}$, $\exists i \in \mathbb{Z}$ and $\exists j \in \mathbb{N}$ so that $r = \frac{i}{j}$. Let D be a set of natural numbers such that

$$D = \{k \in \mathbb{N} \mid \exists l \in \mathbb{Z} \text{ so that } r = \frac{l}{k}\}$$
 (5)

Since $r = \frac{i}{j}$, we know $j \in D$ and so $D \neq \emptyset$. By the Well Ordering principle, D has a minimum. Call it m_D . So $\exists m_N \in \mathbb{Z}$ so that $r = \frac{m_N}{m_D}$. Consider $r = \frac{m_N}{m_D}$.

$$r^{2} = \frac{m_{N}^{2}}{m_{D}^{2}} = 6$$
$$m_{N}^{2} = 6m_{D}^{2}$$
$$m_{N}^{2} = 2.3.m_{D}^{2}$$

This means m_N^2 is even. And so is m_N , which means $\exists n \in \mathbb{Z}$ so that $m_N = 2n$. We have

$$m_N^2 = 6m_D^2$$

 $(2n)^2 = 6m_D^2$
 $4n^2 = 6m_D^2$
 $2n^2 = 3m_D^2$

This means $3m_D^2$ is even. And so is m_D . And so is m_D , which means $\exists m \in \mathbb{Z}$ so that $m_D = 2m$. So now we can rewrite r as $r = \frac{m_N}{m_D} = \frac{2n}{2m} = \frac{n}{m}$. And so $m \in D$.

But our assumption says that m_D is the minimum of D. And now we have $m_D = 2m$ and $m \in D$. This contradicts our assumption that m_D is the minimum of D. $\Longrightarrow \Leftarrow$

So
$$\nexists r \in \mathbb{Q}$$
 such that $r^2 = 6$.