Seminar Numerische Verfahren: Nichtlineare Ausgleichsprobleme

Kazimir Menzel Markus Pawellek

17. Mai 2016

Gliederung

Mathematische Grundlagen

Idee des Ausgleichsproblems Das etwas allgemeinere Ausgleichsproblem

Lösungsverfahren

Gauss-Newton-Verfahren Levenberg-Marquardt-Verfahren Simulated Annealing

Fazit und Zusammenfassung

Referenzen

Idee des Ausgleichsproblems

Das etwas allgemeinere Ausgleichsproblem

Ausgleichsproblem mit Methode der kleinsten Quadrate

Für $n,m\in\mathbb{N},m\leq n$, eine gegebene Parametermenge $U\subset\mathbb{R}^m$ und eine gegebene Residuen-Funktion $r:U\longrightarrow\mathbb{R}^n$ ist das Ausgleichsproblem definiert durch

$$\min \left\{ \left\| r(\lambda) \right\|_2^2 \ \middle| \ \lambda \in U \right\}$$

Gauß-Newton-Verfahren

Bedingungen für Minimum

$$\nabla s(\lambda^{\star}) = 0$$

 $D(\nabla s)(\lambda^*)$ ist positiv definit

Eingabe:
$$r: \mathbb{R}^m \longrightarrow \mathbb{R}^n, \quad \lambda^{(0)} \in \mathbb{R}^m$$

- (1) Setze k = 0.
- (2) Berechne $r(\lambda^{(k)})$, $Dr(\lambda^{(k)})$.
- (3) Bestimme den Korrekturvektor $\xi^{(k)}$ gemäß

$$\left[(\mathbf{D} \, r)^{\mathrm{T}} \, \mathbf{D} \, r \right] \left(\lambda^{(k)} \right) \xi^{(k)} = - \left[(\mathbf{D} \, r)^{\mathrm{T}} r \right] \left(\lambda^{(k)} \right)$$

- (4) Setze $\lambda^{(k+1)} = \lambda^{(k)} + \xi^{(k)}$.
- (5) Setze k = k + 1.
- (6) Gehe zu Schritt (2), wenn

$$k < k_{\text{max}} \wedge \left\| \xi^{(k)} \right\|_{2}^{2} > \delta_{\text{min}}$$

Levenberg-Marquardt-Verfahren

korrigierte Normalengleichung

$$\left[(\mathbf{D} \, r)^{\mathrm{T}} \, \mathbf{D} \, r + \mu^{2} \mathbf{I} \right] \left(\lambda^{(k)} \right) \xi^{(k)} = - \left[(\mathbf{D} \, r)^{\mathrm{T}} r \right] \left(\lambda^{(k)} \right)$$

- $\circ~\mu$ soll hier adaptiv gewählt werden
- \circ obere und untere Schranken β_0, β_1 werden benötigt

Levenberg-Marquardt-Verfahren

relative Residualänderung

$$\varepsilon_{\mu} = \frac{\left\| r\left(\lambda^{(k)}\right) \right\|_{2}^{2} - \left\| r\left(\lambda^{(k)} + \xi^{(k)}\right) \right\|_{2}^{2}}{\left\| r\left(\lambda^{(k)}\right) \right\|_{2}^{2} - \left\| r\left(\lambda^{(k)}\right) + D r\left(\lambda^{(k)}\right) \xi^{(k)} \right\|_{2}^{2}}$$

Algorithmus: Levenberg-Marquardt-Verfahren Teil 1

Eingabe: $r: \mathbb{R}^m \longrightarrow \mathbb{R}^n$, $\lambda^{(0)} \in \mathbb{R}^m$

- (1) Setze k = 0.
- (2) Berechne $r(\lambda^{(k)})$, $Dr(\lambda^{(k)})$.
- (3) Bestimme den Korrekturvektor $\xi^{(k)}$ gemäß

$$\left[(\mathbf{D} \, r)^{\mathrm{T}} \, \mathbf{D} \, r + \mu^{2} \mathbf{I} \right] \left(\lambda^{(k)} \right) \xi^{(k)} = - \left[(\mathbf{D} \, r)^{\mathrm{T}} r \right] \left(\lambda^{(k)} \right)$$

Algorithmus: Levenberg-Marquardt-Verfahren Teil 2

(1) Berechne ε_{μ} und teste, ob die Korrektur akzeptabel ist.

$$\varepsilon_{\mu} = \frac{\left\| r\left(\lambda^{(k)}\right) \right\|_{2}^{2} - \left\| r\left(\lambda^{(k)} + \xi^{(k)}\right) \right\|_{2}^{2}}{\left\| r\left(\lambda^{(k)}\right) \right\|_{2}^{2} - \left\| r\left(\lambda^{(k)}\right) + D r\left(\lambda^{(k)}\right) \xi^{(k)} \right\|_{2}^{2}}$$

- (i) Fall $\varepsilon_{\mu} \leq \beta_0$: Setze $\mu = 2\mu$ und gehe zu (3).
- (ii) Fall $\varepsilon_{\mu} \geq \beta_1$: Setze $\mu = \frac{\mu}{2}$.
- (2) Setze $\lambda^{(k+1)} = \lambda^{(k)} + \xi^{(k)}$.
- (3) Setze k = k + 1.
- (4) Gehe zu Schritt (2), wenn

$$k < k_{\max} \wedge \left\| \xi^{(k)} \right\|_2^2 > \delta_{\min}$$

Simulated Annealing

Algorithmus: Simulated Annealing

Eingabe: $r: \mathbb{R}^m \longrightarrow \mathbb{R}^n, \quad \lambda_0 \in \mathbb{R}^m$

- (1) Berechne $c_0 = ||r(\lambda_0)||_2^2$.
- (2) Setze $T = T_0$ und i = 0.
- (3) Bestimme einen zufälligen Parameter λ_1 .
- (4) Berechne $c_1 = ||r(\lambda_1)||_2^2$.
- (5) Fall $c_1 < c_2$: Setze $\lambda_0 = \lambda_1$. Fall $c_1 \geq c_2$: Berechne

$$p = \exp\left(\frac{c_0 - c_1}{T}\right)$$

und setze $\lambda_0 = \lambda_1$ mit Wahrscheinlichkeit p.

- (6) Setze i = i + 1 und gehe zu Schritt (3), wenn $i < i_{max}$.
- (7) Setze $T = \alpha T$ und gehe zu Schritt (3), wenn $T > T_{\min}$.

Fazit und Zusammenfassung

o es gibt selte eine geschlossene Form der Problemstellung

⇒ iterative Verfahren werden benötigt

o nichtlineare Ausgleichsprobleme erfordern je nach gewählter Parameterfunktion spezifische Verfahren

⇒ adaptive Steuerung gewählter Parameter nötig

- o viele Verfahren finden nur lokale Minima
- Startwertproblem

Referenzen

- Hermann, Numerische Mathematik, 3. Auflage
- o http://en.wikipedia.org/wiki/Gauss-Newton_algorithm
- o http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
- o http://en.wikipedia.org/wiki/Simulated_annealing
- Funken, Numerik III, Skript Universität Ulm, 2012/2013
- katrinaeg.com/simulated-annealing.html
- o Kincaid und Cheney, Numerical Analysis, 3. Edition