

Análisis Avanzado - Espacios Normados 4

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno $y x, y \in H$. Decimos que x e y son ortogonales si $\langle x, y \rangle = 0$.

$$\left(\mathbb{R}^{2}, \langle \langle \rangle \right) \left\langle \langle \langle \chi_{3} \rangle_{1} | Z_{3} \omega \rangle \right\rangle = \times Z + y \omega = 0$$

$$\left(\mathbb{R}^{2}, \langle \langle \rangle \right) \left\langle \langle \chi_{3} \rangle_{1} | Z_{3} \omega \rangle \right\rangle = \left(\mathbb{R}^{2}, \langle \langle \rangle \right) \left\langle \langle \chi_{3} \rangle_{1} | Z_{3} \omega \rangle \right\rangle = \times Z + y \omega = 0$$

$$\frac{1}{2}(x_iy) = arcos(\frac{\langle x_iy \rangle}{||x_i|||y_i||}) \in [0,T]$$

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $x, y \in H$. Decimos que x e y son ortogonales si $\langle x, y \rangle = 0$.

Definición

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno $(X) \subseteq H$ un conjunto. Definimos el complemento ortogonal de X como

$$X^{\perp} = \{ y \in H : \langle x, y \rangle = 0, \, \forall \, x \in X \}.$$

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $X \subseteq H$ un conjunto. Entonces:

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $X \subseteq H$ un conjunto. Entonces:

1. X^{\perp} es un subespacio cerrado de H;

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $X \subseteq H$ un conjunto. Entonces:

- 1. X^{\perp} es un subespacio cerrado de H;
- 2. $X\subseteq (X^{\perp})^{\perp}$;

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $X \subseteq H$ un conjunto. Entonces:

1. X^{\perp} es un subespacio cerrado de H;

2.
$$X \subseteq (X^{\perp})^{\perp}$$
;
 $X \cap X^{\perp} = \begin{cases} 0 & \text{si } 0 \in X \\ \emptyset & \text{si } 0 \notin X. \end{cases}$

$$X \cap X^{\perp} = \begin{cases} 0 & \text{si } 0 \notin X \\ 0 & \text{si } 0 \notin X. \end{cases}$$

Dan: 1) x es subes: prop du (,). Sop. (yw) n CX / yu - n y. grag yex.

dads xeX, (y,x)=0

(gu,x)=0 yn [x(yu) -2 xx(y)]

Sean X, Y subespacios de un espacio vectorial V. Decimos que V es la suma directa de X e Y si

$$V = X + Y$$

$$V = X + Y$$
 y $X \cap Y = \{0\}.$

En este caso, escribimos $V = X \oplus Y$.

Sean X, Y subespacios de un espacio vectorial Y. Decimos que V es la suma directa de X e Y si

$$V = X + Y$$
 y $X \cap Y = \{o\}.$

En este caso, escribimos $V = X \oplus Y$.

¿Es cierto que suX es un subespacio de \underline{H} entonces $H = X \oplus X^{\perp}$?

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $X \subseteq H$ un subespacio. Fijemos $y \in H$ y $x \in X$. Entonces son equivalentes:

- 1. $y x \in X^{\perp}$;
- 2. $||y-x|| \le ||y-v||$ para todo $v \in X$.

$$(2)$$
 $\|y-x\|=d(y_1X)$

Reescuitimes (Z):

vex, y-v= y-x-(v-x) 11y-x11 & 11y-r11 trex es equiv.] v-x -x1 trex . Ny-x11 & Ny-x-Wh trex llaus Z=y-x . 117115117-WIL YUEX es equi 117 = (2-2,2-2) = 11717 + 11211 - 2/8,2 es equi. (1) = (2): domo: (y-x) ∈ X = (y-x, w) = o facx.

(2) => (1) (2) 2(y-x, 2) 5 112112 +26X n=tw, tell wex 3 2t(y-x,w) & t2 11w12 HERR HWEX. Tomo t= 5 (y-x,w) 9>0, weX =0(2.5. (y-x,w)2 (32(y-x,w)211w112. + 570, +wex) S: y-x & X] J wo EX / (y-x wo) #0 => 25 (y-x, mot & 62 (y-x, wo) 11 w/12 +6>0 → 2 6 hugh 45>0 ABS! → y-x €X (1).

Sea V un espacio vectorial. Un subconjunto $K \subseteq V$ se dice convexo si para todos $x, y \in K$ y todo $t \in [0, 1]$ se tiene

$$\operatorname{geg} \operatorname{g}' \operatorname{ue} \times \operatorname{g}' = (1-t)x + ty \in K.$$

Sea V un espacio vectorial. Un subconjunto $K \subseteq V$ se dice convexo si para todos $x,y \in K$ y todo $t \in [0,1]$ se tiene

$$(1-t)x+ty\in K.$$

Proposición

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y $K \subseteq H$ un conjunto cerrado y convexo. Entonces, para cada $y \in H$ existe un único $x \in K$ tal que

$$||y - x|| = \inf\{||y - u|| : u \in K\} = d(y, K).$$

Den: r= dly, K)= inf? ||y-w|1: WE K? >0 geguro que para codo ne IN, > me K/ 82 | 11y-2m11 x 82+ 1 _____ Veamos (mi) CK es de Carchy. 112u-2m/2=112w-y-(2m-7)112 ley del pare = 2(112m-7112+112m-7112) - 112m-7+(2m-7)112
paralelograno = 2(112m-7112+112m-7112) - 112m-7+2m-7112 <2(72+ 1 + 72+ 1)-1/2m-y+ 2m-y1/2 =24m+1)+ 172-112m-7+2m-713 62(1+1)/ || \lu-7+ \lu-7|\frac{2}{2} 4 |\frac{1}{2} - 4 |\frac{1}{

Como ff Hilbert, $\exists x \in H / 2m \rightarrow x \in H$ y como K canodo, $x \in K$.

In $[12m - y] = \infty$ $[1x - y] = \gamma$.

Para ver $g \in S$ $[2y + y] \times [2x \in K]$ [1x - y] = 1]

Para verg eo! Sup q' X, XEK / 11x-711=11x-711=r. Cours autes $\|x - \overline{x}\|^2 = \|x - y - (\overline{x} - \overline{y})\|^2 = 2(1|x - y||^2 + ||\overline{x} - y||^2 - 4||x + \overline{x} - y||^2$

Análisis Avanzado D. Carando - V. Paternostro

Teorema

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado. Entonces,

$$H = X \oplus X^{\perp}$$
.

Dem: Si y
$$\in$$
 H = ρ como \times es subespectuado
A) \times es correxo y cenado \Rightarrow \exists ! $\times \in \times$ /
 $||y-x|| = d(y, \times) = \rho$ $y-x \in \times$
 \Rightarrow $y = y-x+x \in \times$

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado. Dado $y \in H$, llamamos proyección ortogonal de y sobre X al único $x \in X$ tal que $y \neq X + z$ para algún $z \in X^{\perp}$.

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado. Dado $y \in H$, llamamos proyección ortogonal de y sobre X al único $x \in X$ tal que y = x + z para algún $z \in X^{\perp}$.

Notamos $P_X(y) = x$.

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado. Dado $y \in H$, llamamos proyección ortogonal de y sobre X al único $x \in X$ tal que y = x + z para algún $z \in X^{\perp}$. Notamos $P_X(y) = x$.

Teorema

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq \underline{H}$ un subespacio cerrado. Entonces, para todo $(y \in H)$ existe un único $x \in X$ tal que ||y - x|| = d(y, X).

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado. Dado $y \in H$, llamamos proyección ortogonal de y sobre X al único $x \in X$ tal que y = x + z para algún $z \in X^{\perp}$. Notamos $P_X(y) = x$.

Teorema

Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado. Entonces, para todo $y \in H$, existe un único $x \in X$ tal que ||y - x|| = d(y, X).

De hecho, $x = P_X(y)$ y por lo tanto

$$||y-P_X(y)||=d(y,X).$$