| 問題用紙      | 教科目 電気回路 I | 指示事項 電 |
|-----------|------------|--------|
| No. 1 / 1 | 担当教官 薮 木 登 | 必要な用紙類 |

以下の問題で必要があれば、次の値を使用せよ。

真空中の誘電率  $\epsilon_0 = 8.85 \times 10^{-12} \text{F/m}$ 、  $1/(4\pi \epsilon_0) = 9 \times 10^9$ 

- 1. 2つの  $Q_1[C]$ 、 $Q_2[C]$ の点電荷が、 r[m]離れたところにある。以下の問いに答えよ。
- (1) この 2 つの電荷の間に働く静電力の関係を表わす法則はなんと呼ばれているか。
- (2) (1)の静電力 Fを表わす式を示せ。なお、誘電率は $\epsilon$ とする。
- (3) 真空中で、 $Q1=-4\,\mu$  C、 $Q2=+6\,\mu$  C とし、 r=3m とするとき、両電荷間に働く静電力 F の大きさと向きを示せ。



$$(1) 7 - 0 = 0.321$$

$$(2) F = \frac{1}{4\pi\epsilon} \cdot \frac{0.02}{\Gamma^2}$$

$$(3) F = 9 \times 10^9 \times \frac{4 \times 10^6 \times 6 \times 10^6}{(3)^2}$$

$$= -0.024 \text{ N}$$

- 2. 以下の問いに答えよ。
- (1) 10 µ F の静電容量をもつ球状導体の表面の電位が 5 V であった。球状導体の表面の電荷 Q を求めよ。
- (2) 真空中に、電界の大きさ 100 V/m の平等電界がある。その中に電荷を置いたとき、これに働く静電力 F は  $500 \, \mu$  N であった。この電荷の容量はいくらであったか。
- (3) 2 枚の平行金属板間の距離を 2 cm、電位差を 20V とすると、この両板間の電界の大きさ E[V/m]はいくらか。
- (4) 真空中にある  $40 \mu$  C の点電荷から 5m離れた点の電位 V[V]はいくらか。
- (5) 真空中において半径 10 c m の球状導体がある。この静電容量 C はいくらか。

$$(1)Q = 15 \times 10 = 50 \mu C$$

$$(2) V = 100 \times 500 \times 10^{-6} = 5.0 \times 10^{-2} \text{ V}$$

$$\frac{10^{-12} V - \frac{20}{10^{-12}}}{(3) E - \frac{1}{4} = \frac{20}{2}} = \frac{10 \text{ V/m}}{2} = \frac{10$$

$$(5) C = 4\pi (8.6) = 4\pi \times 8.85 \times 10^{-12} \times 0.1$$

$$Z = 354 \times 10^{-12} F$$

| ⋛                                | 平成2.8年12月19日                                                                                                                                     | 情報工学科 C-2 3 番                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| なし                               | 14:40 ~15:30                                                                                                                                     | (氏名) 稍垣佑都 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                  | 答えよ。<br>10μF のコンデンサを直列および並列に打<br>合成容量を求めよ。                                                                                                       | $2\mu$ F $2\mu$ F $2\mu$ F 接続したと $a \hookrightarrow \downarrow \uparrow \downarrow \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (3) 図 1 で端子 a<br>を求めよ。<br>(1) 並列 | 、端子 $a - b$ 間の合成静電容量を求めよ。<br>$- b$ に $100$ V の電圧を加えたとき $c - \frac{30 + 30 + 30 = \frac{30 \times \frac{3}{2}}{30 + \frac{3}{2}} = \frac{45}{45}$ | 。<br>d間の電圧 図 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 直列<br>(2) IMF<br>(3) 25V         | $\frac{30+30}{2} = \frac{1}{2}$                                                                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 4. 図2の回路に                        | おいて、以下の問いに答えよ。<br>チSをa側に関じてコンデンサC・をナ                                                                                                             | TSOTSOV  O 150V 1 5V  O 150V 1 5V  O 150V 725V  O 150V 72 |  |

のときの $C_1$ に蓄えられた電荷はいくらとなるか。なお、V=100V、 

(2) 次にスイッチ S を b 側に閉じて、 $C_2 = 160 \mu$  F とし、まったく充電され ていない状態から十分時間がたった。C,の端子電圧はいくらとなるか。

(1) 
$$GV = 100 \times 40 \times 10^{-6}$$
  $I = 100000$   
= 0.004<sub>M</sub>C.

$$\frac{40.160 - 160}{C_2} = 16000000$$

図3の回路において  $R1=4\Omega$ 、 $R2=6\Omega$ 、 $R3=2\Omega$ 、E=14Vの場

合、キルヒホッフの法則を用いて、I1、I2、I3をそれぞれ求めよ。  $\begin{cases} I | + I3 = -J_2 \\ 4I_1 - 6J_2 = 14 \end{cases} 30I_1 + 18I_3 = 42 \text{ R1}$   $2 I_3 - 6I_2 = 14$   $22I_3 = 28$ 4I,+6I,+6I3=14 2 12 + 6 1, + 6 1, = 14 61, +813=14 21,=



