Program Structure and Algorithms

Sid Nath

Lecture 3

Agenda

- Administrative
 - Please email me any time you need extra help!!!
- Lecture

Administrative

- Quiz 1 today
 - 30min (in-class)
 - Topic: Growth of functions, basic data structure operations
- Any qs on HW1?
- Lecture
 - More on sorting
 - Recurrences
 - Divide and Conquer
 - Binary search

QuickSort

- Pick a pivot element
- Create two subproblems
 - Elements smaller than the pivot is the first subproblem
 - Elements larger than the pivot is the second subproblem
- Sort each subproblem
- Merge

QuickSort

- Pick a pivot element
- Create two subproblems
 - Elements smaller than the pivot is the first subproblem
 - Elements larger than the pivot is the second subproblem
- Sort each subproblem
- Merge

```
QUICKSORT(A, p, r)

if p < r

then q \leftarrow \text{PARTITION}(A, p, r)

QUICKSORT(A, p, q-1)

QUICKSORT(A, q+1, r)

p: The starting index r: The ending index q: The pivot index
```

Initial call: QUICKSORT(A, 1, n)

QuickSort

- Pick a pivot element
- Create two subproblems
 - Elements smaller than the pivot is the first subproblem
 - Elements larger than the pivot is the second subproblem
- Sort each subproblem
- Merge

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, q+1, r)
```

```
Initial call: QUICKSORT(A, 1, n)
```

```
\begin{aligned} & \operatorname{Partition}(A,p,r) \\ & x = A[r] \\ & i = p-1 \\ & \operatorname{FOR}\ j = p \ \operatorname{TO}\ r - 1 \ \operatorname{DO} \\ & \operatorname{IF}\ A[j] \leq x \ \operatorname{THEN} \\ & i = i+1 \\ & \operatorname{Exchange}\ A[i] \ \operatorname{and}\ A[j] \\ & \operatorname{FI} \end{aligned} OD

 & \operatorname{Exchange}\ A[i+1] \ \operatorname{and}\ A[r] \\ & \operatorname{RETURN}\ i+1 \end{aligned}
```

Step1: Select a Pivot

7 2 1 6 8 5 3 4

- At random
- First element
- Last element (let's use this, so 4 is the pivot)
- Middle element

Step2: Create Two Subproblems

- Starting from the first element, compare each element to the pivot
 - Create a pointer pointing to the index of array when it is larger than the pivot
 - If element is smaller than the pivot, swap the indices of elements,
 pointer points to the index after swap
- When pointer is at (n-1) index, change it to the last index

Partitioning Step

Step3: Sort Subproblems (Recursively)

Running Time Analysis

- T(n) = T(k) + T(n-k-1) + O(n) (to partition)
- Best-case: 2T(n/2) + O(n) (pivot ~ middle)
- Avg-case: T(n/9) + T(9n/10) + O(n)
- Avg and best-case: O(n log n)
- Worst-case: $T(1) + T(n-1) + O(n) = O(n^2)$
 - Typically when pivot is the largest/smallest element
 - Array is sorted / reverse sorted
 - All elements are the same

Python Implementation

```
def quickSort(arr, start, end):
    if start < end:</pre>
        # Pick the last element as pivot
        pivot = end
        i = start - 1
        for j in range(start, end):
            if arr[j] <= arr[pivot]:</pre>
                i += 1
                arr[i], arr[j] = arr[j], arr[i]
        arr[i + 1], arr[pivot] = arr[pivot], arr[i + 1]
        p = i + 1
        quickSort(arr, start, p - 1)
        quickSort(arr, p + 1, end)
arr = [5, 4, 3, 2, 1]
quickSort(arr, 0, len(arr) - 1)
for i in range(len(arr)):
    print(arr[i], end=" ")
```

Sorting so far...

- Comparison sorting
 - The only operation to decide the order of keys is comparison of pairs of keys.
 - Following are comparison sorts: *insertion sort*, selection sort,
 merge sort (next class), quicksort, heapsort (once we study binary trees).
- How fast can we sort?
 - Is there a lower bound?
 - Can we do it in linear time?
- $\Omega(n)$ to examine all the input
- $\Omega(n \log n)$ is a lower bound for comparison sorts

Sorting Algorithms

- Insertion sort: incremental
- Quick sort: recursive
- Non-comparison-based linear-time sorting
 - Counting sort
 - Radix sort

Counting Sort

- Sorts the elements of an array by counting the #occurrences of each unique element in the array
- E.g., {4, 2, 2, 8, 3, 3, 1}
- Steps
 - Find max; max = 8
 - Init an array "count" of length (max + 1) with all elements as 0
 - Store the count of each element at their respective index in the count array;

0 1 2 3 4 5 6 7 8

Store cumulative sum of elements of the count array

0

Counting Sort

Steps

Find the index of each element of input array in the count array.
 Place the element at the index calculated. Decrease count by 1 in the count array

 Runs in linear time O(n) // if we assume some value for MAX and true max <= MAX

Radix Sort

- Not a comparison-based sorting algorithm
- Uses digits (in some radix, e.g., base 10) of integer keys from least to most significant digits
- E.g., {121, 432, 564, 23, 1, 45, 788}

Sorted by units digit

Sorted by tens digit

Sorted by hundreds digit

Radix Sort

- Find the max element in the array. Let X be the #digits in it
 - E.g., max = 788 and has 3 digits
- Iterate over each significant digit from the least one
 - Use any sorting (e.g., counting) technique to sort the digits at each significant place

Solving Recurrences

• Why?

- Many algorithms use recursions (D/Q, DP)
- Non-trivial to analyse running time by unrolling the #times a recursive function is called
- Recurrences provide a general way to analyze running time of algorithms that use recursion

Recurrence--Overview

- A recurrence is a function and is defined terms of
 - one or more base cases, and
 - itself, with smaller arguments.
- A recurrence could have 0, 1 or more functions that satisfy it
 - Well-defined if at least one function satisfies
 - Ill-defined otherwise

$$T(n) = aT(f(n)) + \theta(g(n) + c) => \theta(f'(n))$$

 $T(n) \le aT(f(n)) + \theta(g(n) + c) => O(f'(n))$

- How to solve recurrence
 - substitution method
 - recursion tree method
 - Master method
 - Akra-Bazzi method → not covered

Examples of Recurrences

• An algo that breaks a problem of size n into one subproblem of size n/3 and another of size 2n/3, taking $\theta(n)$ to combine

-
$$T(n) = T(n/3) + T(2n/3) + \theta(n)$$

• An algo that creates one subproblem and it has one element less than the original problem

$$- T(n) = T(n-1) + \theta(1)$$

Substitution method

- Guess the solution.
- Use induction to show that the solution works.
- Example: Determine an asymptotic upper bound on $T(n) = 2T(|n/2|) + \Theta(n)$.
 - Floor function ensures that T(n) is defined over integers.

Guess:
$$T(n) = O(n \log n)$$

Inductive step: Assume that $T(n) \le cn \lg n$ for all numbers $\ge n_0$ and < n. If $n \ge 2n_0$, holds for $\lfloor n/2 \rfloor \Rightarrow T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor$. Substitute into the recurrence:

$$T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + \Theta(n)$$

$$\leq 2(c(n/2) \lg(n/2)) + \Theta(n)$$

$$= cn \lg(n/2) + \Theta(n)$$

$$= cn \lg n - cn \lg 2 + \Theta(n)$$

$$= cn \lg n - cn + \Theta(n)$$

$$\leq cn \lg n.$$

Recursion trees

- Original problem: root with size *n*
- Each non base node has a children with size n/b
- By summing across each level, the recursion tree shows the cost at each level of recursion
 - Total cost= sum of all levels
- Can be used to generate a guess. Then verify by substitution method.

Example

$$T(n) = 3T(n/4) + \Theta(n^2).$$

Draw out a recursion tree for $T(n) = 3T(n/4) + cn^2$:

For simplicity, assume that n is a power of 4 and the base case is $T(1) = \Theta(1)$.

Example Contd.

Recurrence Tree Analysis

- Subproblem size for nodes at depth i is $n/4^i$
 - Base case is when $n/4^i = 1 \rightarrow i = \log_4 n$
- Each node has 3x nodes as previous level, so depth i has 3^i nodes
- Each node at depth i has $\cot c \left(\frac{n}{4^i} \right)^2 \rightarrow 3^i c \left(\frac{n}{4^i} \right)^2 = \left(\frac{3}{16} \right)^i cn^2$ is the total cost at depth i
- Leaf level has depth $\log_4 n$, so #leaves is $3^{\log_4 n} = n^{\log_4 3}$
- Cost of each leaf node $\theta(1)$, so total cost of leaves is $\theta(n^{\log_4 3})$

$$T(n) = \sum_{i=0}^{\log_4 n} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2).$$

Master method -General

Consider
$$T(n) = aT(n/b) + f(n)$$

Theorem 4.1 Master theorem

Case 1:
$$f(n) = O(n^{\log_b a - \varepsilon}), \ \varepsilon > 0 \implies T(n) = \Theta(n^{\log_b a})$$

Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n), \ k \ge 0 \implies T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \varepsilon}), \ \varepsilon > 0 \implies T(n) = \Theta(f(n))$$

$$T(n) = 5T(n/2) + \Theta(n^2)$$

 $n^{\log_2 5}$ vs. n^2

Since $\log_2 5 - \epsilon = 2$ for some constant $\epsilon > 0$, use case $1 \Rightarrow T(n) = \Theta(n^{\lg 5})$

$$T(n) = 27T(n/3) + \Theta(n^3 \lg n)$$

 $n^{\log_3 27} = n^3 \text{ vs. } n^3 \lg n$
Use case 2 with $k = 1 \Rightarrow T(n) = \Theta(n^3 \lg^2 n)$

Example

$$T(n) = 5T(n/2) + \Theta(n^3)$$

 $n^{\log_2 5}$ vs. n^3
Now $\lg 5 + \epsilon = 3$ for some constant $\epsilon > 0$
Check regularity condition (don't really need to since $f(n)$ is a polynomial):
 $af(n/b) = 5(n/2)^3 = 5n^3/8 \le cn^3$ for $c = 5/8 < 1$
Use case $3 \Rightarrow T(n) = \Theta(n^3)$

$$T(n) = 27T(n/3) + \Theta(n^3/\lg n)$$

 $n^{\log_3 27} = n^3 \text{ vs. } n^3/\lg n = n^3 \lg^{-1} n \neq \Theta(n^3 \lg^k n) \text{ for any } k \geq 0.$
Cannot use the master method.

Master method – Another Way

This seems easier, but not general

If $T(n) = aT(\lceil n/b \rceil) + \mathcal{O}(n^d)$ for some constants a > 0, b > 1, and $d \ge 0$,

$$T(n) = \begin{cases} \mathcal{O}(n^d) & \text{if } d > \log_b a & \text{Case 3} \\ \mathcal{O}(n^d \log n) & \text{if } d = \log_b a & \text{Case 2} \\ \mathcal{O}(n^{\log_b a}) & \text{if } d < \log_b a & \text{Case 1} \end{cases}$$

Examples

•
$$T(n) = 3T\left(\frac{n}{3}\right) + \frac{n}{\log n}$$

•
$$T(n) = 2T\left(\frac{n}{4}\right) + \Theta(1)$$

•
$$T(n) = 3T\left(\frac{n}{4}\right) + n \log n$$

$$T(n) = 2T\left(\frac{n}{4}\right) + n^{0.51}$$

Divide and Conquer (D-Q)

- Basic idea
 - divide the problem into 2 or more sub problems
 - conquer the sub problems recursively
 - combine sub problems

- Binary search
- Merge sort
- Matrix multiplication
- Find Majority

Binary Search

Given a <u>sorted</u> array A[1:n] integers, find the position of x (another integer) if it exists in A[1:n]

Linear search?

- Scan through every element in A starting from index 1
- Return *i* if A[i] == x
- Return -1 if x cannot be found we index is n.

Running time is O(n)

Binary Search

Given a <u>sorted</u> array A[1:n] integers, find the position of x (another integer) if it exists in A[1:n]

Binary search

- Find middle element mid = lo + (hi lo)/2
- Return *i* if A[mid] == x
- If A[mid] < x, search A[mid + 1: hi] (subproblem)
- If A[mid] > x, search A[lo:mid-1] (subproblem)
- Return -1 if x cannot be found in subproblem.
- Initially, lo = 1, hi = n

Binary Search – Running time

- In each iteration, we discard one half of the subproblem
- So, the size of each successive subproblem is halved
 - Let, $n = 2^k$
 - Subproblem sizes: $2^k \rightarrow 2^{k-1} \rightarrow 2^{k-2} \rightarrow \cdots \rightarrow 2^{k-k} = 1$
- In each iteration we do a constant amount of work
 - Either check for equality or inequality of A[mid] with x
- We can write this down as a recurrence relation

$$-T(n) = T\left(\frac{n}{2}\right) + O(1)$$

• Using Master theorem, we can solve this as:

$$-a = 1, b = 2, d = 0, k = 0 \Rightarrow \log a / \log b = d \Rightarrow Case 2$$

- So,
$$\Theta(n^d \log^{k+1} n) = \Theta(\log n)$$

Binary Search -- Example

$$A = \{2, 5, 8, 12, 16, 23, 38, 56, 72, 91\}; x = 23$$

Iteration #1 (lo = 0, hi = 9, x = 23)

$$mid = 0 + (9 - 0)/2 = 4$$

 $A[4] = 16 < 23$, so look in upper half
that is, A[5:9]

Iteration #2 (lo = 5, hi = 9, x = 23)

$$mid = 5 + (9 - 5)/2 = 7$$

 $A[7] = 56 > 23$, so look in lower half
that is, A[5:6]

Lecture 3 summary

Sorting – Quicksort, Counting and Radix sorts

• Solving recurrences

• D/Q algorithms

Binary search