Package 'sparsevar'

October 14, 2022

Version 0.1.0
Date 2021-04-16
Title Sparse VAR/VECM Models Estimation
Maintainer Simone Vazzoler <svazzole@gmail.com></svazzole@gmail.com>
Imports Matrix, nevreg, parallel, doParallel, glmnet, ggplot2, reshape2, grid, mvtnorm, picasso, corpcor,
Suggests knitr, rmarkdown, testthat,
Depends R (>= $3.5.0$)
Description A wrapper for sparse VAR/VECM time series models estimation using penalties like ENET (Elastic Net), SCAD (Smoothly Clipped Absolute Deviation) and MCP (Minimax Concave Penalty). Based on the work of Sumanta Basu and George Michailidis <doi:10.1214 15-aos1315="">.</doi:10.1214>
License GPL-2
<pre>URL https://github.com/svazzole/sparsevar</pre>
<pre>BugReports https://github.com/svazzole/sparsevar</pre>
VignetteBuilder knitr
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation no
Author Simone Vazzoler [aut, cre]
Repository CRAN
Date/Publication 2021-04-18 04:50:02 UTC
R topics documented:
accuracy

2 accuracy

	racy Accuracy metric
ex	
	varSCAD
	varMCP
	varENET
	transformData
	testGranger
	spectralRadius
	spectralNorm
	sparsevar
	simulateVARX
	simulateVAR
	plotVECM
	plotVAR
	plotMatrix
	plotIRF
	multiplot
	mcSimulations
	maxNorm
	lInftyNorm
	12norm
	11norm
	informCrit
	impulseResponse
	frobNorm
	fitVECM
	fitVARX
	fitVAR
	errorBandsIRF
	decomposePi
	createSparseMatrix
	computeForecasts
	companionVAR

Description

Compute the accuracy of a fit

Usage

accuracy(referenceM, A)

bootstrappedVAR 3

Arguments

referenceM the matrix to use as reference
A the matrix obtained from a fit

bootstrappedVAR Bootstrap VAR

Description

Build the bootstrapped series from the original var

Usage

bootstrappedVAR(v)

Arguments

v the VAR object as from fitVAR or simulateVAR

checkImpulseZero CheckImpulseZero

Description

A function to find which entries of the impulse response function are zero.

Usage

```
checkImpulseZero(irf)
```

Arguments

irf irf output from impulseResponse function

Value

a matrix containing the indices of the impulse response function that are 0.

4 computeForecasts

checkIsVar

Check is var

Description

Check if the input is a var object

Usage

```
checkIsVar(v)
```

Arguments

W

the object to test

companionVAR

Companion VAR

Description

Build the VAR(1) representation of a VAR(p) process

Usage

```
companionVAR(v)
```

Arguments

v

the VAR object as from fitVAR or simulateVAR

computeForecasts

Computes forecasts for VARs

Description

This function computes forecasts for a given VAR.

Usage

```
computeForecasts(v, num\_steps)
```

Arguments

v a VAR object as from fitVAR.

num_steps the number of forecasts to produce.

createSparseMatrix 5

createSparseMatrix Creat

Create Sparse Matrix

Description

Creates a sparse square matrix with a given sparsity and distribution.

Usage

```
createSparseMatrix(
   N,
   sparsity,
   method = "normal",
   stationary = FALSE,
   p = 1,
   ...
)
```

Arguments

N	the dimension of the square matrix
sparsity	the density of non zero elements
method	the method used to generate the entries of the matrix. Possible values are "normal" (default) or "bimodal".
stationary	should the spectral radius of the matrix be smaller than 1? Possible values are TRUE or FALSE. Default is FALSE.
р	normalization constant (used for VAR of order greater than 1, default = 1)
• • •	other options for the matrix (you can specify the mean mu_mat and the standard deviation sd_mat).

Value

An NxN sparse matrix.

Examples

```
M <- createSparseMatrix(
  N = 30, sparsity = 0.05, method = "normal",
  stationary = TRUE
)</pre>
```

6 errorBandsIRF

docomposoDi	Dagamnaga Pi
decomposePi	Decompose Pi

Description

A function to estimate a (possibly big) multivariate VECM time series using penalized least squares methods, such as ENET, SCAD or MC+.

VECM matrix

Usage

```
decomposePi(vecm, rk, ...)
```

Arguments

vecm the VECM object

rk rank

... options for the function (TODO: specify)

Value

alpha beta

errorBandsIRF

Error bands for IRF

Description

A function to estimate the confidence intervals for irf and oirf.

Usage

```
errorBandsIRF(v, irf, alpha, M, resampling, ...)
```

Arguments

V	a var object as from fitVAR or simulateVAR
irf	irf output from impulseResponse function
alpha	level of confidence (default alpha = 0.01)
М	number of bootstrapped series (default M = 100)
resampling	type of resampling: "bootstrap" or "jackknife"

... some options for the estimation: verbose = TRUE or FALSE, mode = "fast" or

"slow", threshold = TRUE or FALSE.

fitVAR 7

Value

a matrix containing the indices of the impulse response function that are 0.

fitVAR

Multivariate VAR estimation

Description

A function to estimate a (possibly high-dimensional) multivariate VAR time series using penalized least squares methods, such as ENET, SCAD or MC+.

Usage

```
fitVAR(data, p = 1, penalty = "ENET", method = "cv", ...)
```

Arguments

data the data from the time series: variables in columns and observations in rows

p order of the VAR model

penalty the penalty function to use. Possible values are "ENET", "SCAD" or "MCP"

method possible values are "cv" or "timeSlice"

. . .

the options for the estimation. Global options are: threshold: if TRUE all the entries smaller than the oracle threshold are set to zero; scale: scale the data (default = FALSE)? nfolds: the number of folds used for cross validation (default = 10); parallel: if TRUE use multicore backend (default = FALSE); ncores: if parallel is TRUE, specify the number of cores to use for parallel evaluation. Options for ENET estimation: alpha: the value of alpha to use in elastic net (0 is Ridge regression, 1 is LASSO (default)); type.measure: the measure to use for error evaluation ("mse" or "mae"); nlambda: the number of lambdas to use in the cross validation (default = 100); leaveOut: in the time slice validation leave out the last leaveOutLast observations (default = 15); horizon: the horizon to use for estimating mse/mae (default = 1); picasso: use picasso package for estimation (only available for penalty = "SCAD" and method = "timeSlice").

Value

A the list (of length p) of the estimated matrices of the process fit the results of the penalized LS estimation mse the mean square error of the cross validation time elapsed time for the estimation residuals the time series of the residuals

8 fitVARX

fitVARX

Multivariate VARX estimation

Description

A function to estimate a (possibly high-dimensional) multivariate VARX time series using penalized least squares methods, such as ENET, SCAD or MC+.

Usage

```
fitVARX(data, p = 1, Xt, m = 1, penalty = "ENET", method = "cv", ...)
```

Arguments

data the data from the time series: variables in columns and observations in rows

p order of the VAR model
Xt the exogenous variables

m order of the exogenous variables

penalty the penalty function to use. Possible values are "ENET", "SCAD" or "MCP"

method possible values are "cv" or "timeSlice"

... the options for the estimation. Global options are: threshold: if TRUE all the en-

tries smaller than the oracle threshold are set to zero; scale: scale the data (default = FALSE)? nfolds: the number of folds used for cross validation (default = 10); parallel: if TRUE use multicore backend (default = FALSE); ncores: if parallel is TRUE, specify the number of cores to use for parallel evaluation. Options for ENET estimation: alpha: the value of alpha to use in elastic net (0 is Ridge regression, 1 is LASSO (default)); type.measure: the measure to use for error evaluation ("mse" or "mae"); nlambda: the number of lambdas to use in the cross validation (default = 100); leaveOut: in the time slice validation leave out the last leaveOutLast observations (default = 15); horizon: the horizon to use for estimating mse/mae (default = 1); picasso: use picasso package for estimation (only available for penalty = "SCAD" and method = "timeSlice").

Value

A the list (of length p) of the estimated matrices of the process

fit the results of the penalized LS estimation

mse the mean square error of the cross validation

time elapsed time for the estimation

residuals the time series of the residuals

fitVECM 9

fitVECM	Multivariate VECM estimation

Description

A function to estimate a (possibly big) multivariate VECM time series using penalized least squares methods, such as ENET, SCAD or MC+.

Usage

```
fitVECM(data, p, penalty, method, logScale, ...)
```

Arguments

data	the data from the time series: variables in columns and observations in rows
р	order of the VECM model
penalty	the penalty function to use. Possible values are "ENET", "SCAD" or "MCP"
method	"cv" or "timeSlice"
logScale	should the function consider the \log of the inputs? By default this is set to TRUE
	options for the function (TODO: specify)

Value

Pi the matrix Pi for the VECM model
G the list (of length p-1) of the estimated matrices of the process
fit the results of the penalized LS estimation
mse the mean square error of the cross validation
time elapsed time for the estimation

frobNorm	Froebenius norm of a matrix

Description

Compute the Froebenius norm of M

Usage

frobNorm(M)

Arguments

M the matrix (real or complex valued)

10 informCrit

impulseResponse

Impulse Response Function

Description

A function to estimate the Impulse Response Function of a given VAR.

Usage

```
impulseResponse(v, len = 20)
```

Arguments

v the data in the for of a VAR

len length of the impulse response function

Value

irf a 3d array containing the impulse response function.

informCrit

Computes information criteria for VARs

Description

This function computes information criteria (AIC, Schwartz and Hannan-Quinn) for VARs.

Usage

```
informCrit(v)
```

Arguments

v a list of VAR objects as from fitVAR.

11norm 11

11norm

L1 matrix norm

Description

Compute the L1 matrix norm of M

Usage

11norm(M)

Arguments

М

the matrix (real or complex valued)

12norm

L2 matrix norm

Description

Compute the L2 matrix norm of M

Usage

12norm(M)

Arguments

Μ

the matrix (real or complex valued)

lInftyNorm

L-infinity matrix norm

Description

Compute the L-infinity matrix norm of M

Usage

1InftyNorm(M)

Arguments

М

the matrix (real or complex valued)

12 mcSimulations

 ${\tt maxNorm}$

Max-norm of a matrix

Description

Compute the max-norm of M

Usage

```
maxNorm(M)
```

Arguments

М

the matrix (real or complex valued)

mcSimulations

Monte Carlo simulations

Description

This function generates Monte Carlo simulations of sparse VAR and its estimation (at the moment only for VAR(1) processes).

Usage

```
mcSimulations(
   N,
   nobs = 250,
   nMC = 100,
   rho = 0.5,
   sparsity = 0.05,
   penalty = "ENET",
   covariance = "Toeplitz",
   method = "normal",
   modelSel = "cv",
   ...
)
```

Arguments

N dimension of the multivariate time series.

nobs number of observations to be generated.

nMC number of Monte Carlo simulations.

rho base value for the covariance.

multiplot 13

sparsity	density of non zero entries of the VAR matrices.
penalty	penalty function to use for LS estimation. Possible values are "ENET", "SCAD" or "MCP".
covariance	type of covariance matrix to be used in the generation of the sparse VAR model.
method	which type of distribution to use in the generation of the entries of the matrices.
modelSel	select which model selection criteria to use ("cv" or "timeslice").
	(TODO: complete)

Value

a nMcx5 matrix with the results of the Monte Carlo estimation

|--|

Description

Multiple plot function. ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)

Usage

```
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
```

Arguments

a sequence of ggplots to be plotted in the grid.

plotlist a list containing ggplots as elements.

cols number of columns in layout

layout a matrix specifying the layout. If present, 'cols' is ignored. If the layout is

something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in the upper left, 2 will go in the upper right, and 3 will go all the way across the

bottom. Taken from R Cookbook

Value

A ggplot containing the plots passed as arguments

14 plotIRFGrid

plotIRF	IRF plot
---------	----------

Description

Plot a IRF object

Usage

```
plotIRF(irf, eb, i, j, type, bands)
```

Arguments

irf	the irf object to plot
eb	the errorbands to plot
i	the first index
j	the second index
type	<pre>type = "irf" or type = "oirf"</pre>
bands	"quantiles" or "sd"

Value

An image plot relative to the impulse response function.

|--|--|

Description

Plot a IRF grid object

Usage

```
plotIRFGrid(irf, eb, indexes, type, bands)
```

Arguments

irf the irf object computed using impulseResponse eb the error bands estimated using errorBands

indexes a vector containing the indices that you want to plot

type plot the irf (type = "irf" by default) or the orthogonal irf (type = "oirf")

bands which type of bands to plot ("quantiles" (default) or "sd")

Value

An image plot relative to the impulse response function.

plotMatrix 15

plotMatrix

Matrix plot

Description

Plot a sparse matrix

Usage

```
plotMatrix(M, colors)
```

Arguments

M the matrix to plot colors dark or light

Value

An image plot with a particular color palette (black zero entries, red for the negative ones and green for the positive)

plotVAR

Plot VARs

Description

Plot all the matrices of a VAR model

Usage

```
plotVAR(..., colors)
```

Arguments

a sequence of VAR objects (one or more than one, as from simulateVAR or

fitVAR)

colors the gradient used to plot the matrix. It can be "light" (low = red – mid = white –

high = blue) or "dark" (low = red - mid = black - high = green)

Value

An image plot with a specific color palette

16 simulate VAR

plotVECM	Plot VECMs	

Description

Plot all the matrices of a VECM model

Usage

```
plotVECM(v)
```

Arguments

v a VECM object (as from fitVECM)

Value

An image plot with a specific color palette (black zero entries, red for the negative ones and green for the positive)

simulateVAR $VAR\ simulation$

Description

This function generates a simulated multivariate VAR time series.

Usage

```
simulateVAR(N, p, nobs, rho, sparsity, mu, method, covariance, ...)
```

Arguments

N	dimension of the time series.
р	number of lags of the VAR model.
nobs	number of observations to be generated.
rho	base value for the covariance matrix.
sparsity	density (in percentage) of the number of nonzero elements of the VAR matrices.
mu	a vector containing the mean of the simulated process.
method	which method to use to generate the VAR matrix. Possible values are "normal" or "bimodal".
covariance	type of covariance matrix to use in the simulation. Possible values: "toeplitz", "block1", "block2" or simply "diagonal".
• • •	the options for the simulation. These are: muMat: the mean of the entries of the VAR matrices: sdMat: the sd of the entries of the matrices:

simulateVARX 17

Value

A a list of NxN matrices ordered by lag

data a list with two elements: series the multivariate time series and noises the time series of errors

S the variance/covariance matrix of the process

simulateVARX	VARX simulation

Description

This function generates a simulated multivariate VAR time series.

Usage

Arguments

N	dimension of the time series.
K	TODO
р	number of lags of the VAR model.
m	TODO
nobs	number of observations to be generated.
rho	base value for the covariance matrix.
sparsityA1	density (in percentage) of the number of nonzero elements of the A1 block.
sparsityA2	density (in percentage) of the number of nonzero elements of the A2 block.
sparsityA3	density (in percentage) of the number of nonzero elements of the A3 block.
mu	a vector containing the mean of the simulated process.
method	which method to use to generate the VAR matrix. Possible values are "normal" or "bimodal".
covariance	type of covariance matrix to use in the simulation. Possible values: "toeplitz", "block1", "block2" or simply "diagonal".
•••	the options for the simulation. These are: muMat: the mean of the entries of the VAR matrices; sdMat: the sd of the entries of the matrices;

Value

A a list of NxN matrices ordered by lag

data a list with two elements: series the multivariate time series and noises the time series of errors

S the variance/covariance matrix of the process

spectralRadius

sparsevar	sparsevar: A package to estimate multivariate time series models (such as VAR and VECM), under the sparsity hypothesis.

Description

It performs the estimation of the matrices of the models using penalized least squares methods such as LASSO, SCAD and MCP.

sparsevar functions

fitVAR, fitVECM, simulateVAR, createSparseMatrix, plotMatrix, plotVAR, plotVECM l2norm, l1norm, lInftyNorm, maxNorm, frobNorm, spectralRadius, spectralNorm, impulseResponse

spectralNorm

Spectral norm

Description

Compute the spectral norm of M

Usage

spectralNorm(M)

Arguments

М

the matrix (real or complex valued)

spectralRadius

Spectral radius

Description

Compute the spectral radius of M

Usage

spectralRadius(M)

Arguments

М

the matrix (real or complex valued)

testGranger 19

+ /	1 c +	Gra	nna	or
Lt	= D L	טו כ	צוונ	eı

Test for Ganger Causality

Description

This function should retain only the coefficients of the matrices of the VAR that are statistically significative (from the bootstrap)

Usage

```
testGranger(v, eb)
```

Arguments

v the VAR object as from fitVAR or simulateVAR

eb the error bands as obtained from errorBands

transformData

Transorm data

Description

Transform the input data

Usage

```
transformData(data, p, opt)
```

Arguments

data the data

p the order of the VAR

opt a list containing the options

20 varMCP

varENET VAR ENET

Description

Estimate VAR using ENET penalty

Usage

```
varENET(data, p, lambdas, opt)
```

Arguments

data the data

p the order of the VAR

lambdas a vector containing the lambdas to be used in the fit

opt a list containing the options

varMCP VAR MCP

Description

Estimate VAR using MCP penalty

Usage

```
varMCP(data, p, lambdas, opt)
```

Arguments

data the data

p the order of the VAR

lambdas a vector containing the lambdas to be used in the fit

opt a list containing the options

varSCAD 21

	varSCAD	VAR SCAD		
--	---------	----------	--	--

Description

Estimate VAR using SCAD penalty

Usage

```
varSCAD(data, p, lambdas, opt, penalty)
```

Arguments

data the data

p the order of the VAR

lambdas a vector containing the lambdas to be used in the fit

opt a list containing the options

penalty a string "SCAD" or something else

Index

accuracy, 2	testGranger, 19 transformData, 19
bootstrappedVAR,3	
checkImpulseZero, 3 checkIsVar, 4 companionVAR, 4 computeForecasts, 4 createSparseMatrix, 5	varENET, 20 varMCP, 20 varSCAD, 21
decomposePi,6	
errorBandsIRF,6	
fitVAR,7 fitVARX,8 fitVECM,9 frobNorm,9	
impulseResponse, 10 informCrit, 10	
l1norm, 11 l2norm, 11 lInftyNorm, 11	
maxNorm, 12 mcSimulations, 12 multiplot, 13	
plotIRF, 14 plotIRFGrid, 14 plotMatrix, 15 plotVAR, 15 plotVECM, 16	
simulateVAR, 16 simulateVARX, 17 sparsevar, 18 spectralNorm, 18 spectralRadius, 18	