# 2A: Det bestemte integralet



# 2A: Nedre trappesum, N



Link til GeoGerba-fil

# 2A: Øvre trappesum, Ø



Link til GeoGerba-fil

# 2A: Arealet må ligge mellom nedre og øvre trappesum. $N \leq A \leq \emptyset$



Link til GeoGerba-fil

### 2A: Det bestemte integralet

La  $\{N_n\}$  være tallfølgen av nedre trappesummer.

La  $\{\emptyset_n\}$  være tallfølgen av nedre trappesummer .

Ideen bak definisjonen av det bestemte integralet, er at trappesummene blir bedre og bedre tilnærminger for arealet når antall rektangler går mot uendelig.

#### Definisjonen av det bestemte integralet

Det bestemte integralet som en grenseverdi til en følge av summer

$$\lim_{n\to\infty} N_n = \lim_{n\to\infty} \emptyset_n = \int_a^b f(x) \ dx$$

Dersom grenseverdiene er forskjellige, er f ikke integrerbar.

### 2A: Integrerbare funksjoner

Hvis f er en **kontinuerlig funksjon** på et intervall [a, b] på x-aksen, så kan vi alltid regne ut **integralet** av f på dette intervallet.

$$\int_a^b f(x) \, dx$$

- Integral = "arealet" mellom grafen til f og x-aksen i intervallet fra x = a til x = b.
- "Areal" over x-aksen er positivt, og "arealet" under x-aksen er negativt.

### 2A: Integraler i GeoGebra: integral(funksjon, start, slutt)



Figur: integral (0.5x-1, 0, 2)

### 2A: Integraler i GeoGebra: integral(funksjon, start, slutt)



Figur: integral (0.5x-1, 2, 4)

#### 2A: Integraler i GeoGebra: integral(funksjon, start, slutt)



Figur: integral (0.5x-1, 0, 4)

# 2A: Integraler i kombinasjon med *Dersom* i CAS

$$f(x) := Dersom(0 \le x \le 4, 0.5 \times -1)$$

$$\rightarrow f(x) := Dersom(0 \le x \le 4, \frac{1}{2} \times -1)$$

$$a := \int_{0}^{2} Dersom(0 \le x \le 4, 0.5 \times -1) dx$$

$$\rightarrow a := -1$$

$$0 = 0.5$$

$$-0.5$$

$$-0.5$$

$$-0.5$$

# 2A: Integraler i kombinasjon med Løs i CAS



# 2A: Integraler i Python hvis dere vil

# ▲ Ikke pensum

```
1 from pylab import *
   2 \times = linspace(0,2,num=300)
   3 print(trapezoid(0.5*x-1,x))
-1.0
   1 import sympy as sp
   2 x = sp.symbols("x")
   3 f = 0.5 \times x - 1
   4 sp.integrate(f, (x,0,2))
-1.0
```

# 2A: Uttrykk for nedre trappesum, $N_n$ , for en strengt voksende funksjon

Bredden av rektanglene på figuren er

$$\Delta x = \frac{b-a}{n}.$$

Høyden i rektanglene er

$$f(x_0), f(x_1), f(x_2), \ldots, f(x_{n-1}).$$



$$N_n = f(x_0) \cdot \Delta x + f(x_1) \cdot \Delta x + f(x_2) \cdot \Delta x \cdots + f(x_{n-1}) \cdot \Delta x$$
$$= \sum_{i=1}^n f(x_{i-1}) \cdot \Delta x$$

# 2A: Uttrykk for øvre trappesum $\mathcal{O}_n$ , for en strengt voksende funksjon

Bredden av rektanglene på figuren er

$$\Delta x = \frac{b-a}{n}.$$

Høyden i rektanglene er

$$f(x_1), f(x_2), f(x_3), \ldots, f(x_n).$$



$$\emptyset_n = f(x_1) \cdot \Delta x + f(x_2) \cdot \Delta x + f(x_3) \cdot \Delta x \cdots + f(x_n) \cdot \Delta x 
= \sum_{i=1}^n f(x_i) \cdot \Delta x$$

# 2A: Nedre trappesum til en funksjon som ikke er strengt voksende

#### Merk at generelt tar

- nedre trappesum utgangspunkt i den minste høyden til rektanglet.
- og øvre trappesum tar utgangspunkt i den største høyden til rektanglet.



# 2A: Venstre- og høyre-tilnærming





# 2B: Riemannsummer. Velger en vilkårlig x-verdi, $x^* \in [x_{i-1}, x_i]$

#### Venstretilnærming:

$$\sum_{i=1}^n f(x_{i-1}) \cdot \Delta x$$

#### Høyretilnærming:

$$\sum_{i=1}^n f(x_i) \cdot \Delta x$$

#### Riemansum:

$$\sum_{i=1}^n f(x_i^*) \cdot \Delta x$$



#### 2B: Det bestemte integralet

Det bestemte integralet kan uttrykkes som en grenseverdi til en følge av riemannsummer.

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \cdot \Delta x, \quad \text{der} \quad \Delta x = \frac{b-a}{n}$$

# 2B: Rektangelmetoden med venstretilnærming

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_{i-1}) \cdot \Delta x, \quad \text{der} \quad x_{i-1} = a + (i-1) \cdot \Delta x$$





#### Høyretilnærming



# 2B: Rektangelmetoden med høyretilnærming

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \cdot \Delta x, \quad \text{der} \quad x_i = a + i \cdot \Delta x$$

Venstretilnærming



Høyretilnærming



# 2B: Eksempel 5 side 106 (Venstretilnærming)



# 2B: Eksempel 5 side 106: Venstretilnærming og høyretilnærming i python

```
a. b = 1.5
                         # Nedre og øvre grense i intervallet [a, b]
                         # Antall rektangler
n = 10
def f(x):
 return x**2 - 2*x + 2
venstre_sum = 0
                         # Summen av arealene til venstre-tilnærming-rektangler
høyre_sum = 0
                         # Summen av arealene til høyre-tilnærming-rektangler
delta x = (b-a)/n
                         # Rektangelbredden
for i in range(1, n+1):
  venstre sum = venstre sum + f(a+(i-1)*delta x)*delta x
 høyre_sum = høyre_sum + f(a+i*delta_x)*delta_x
print(f"Venstresummen: {round(venstre_sum,2)}")
                                                   # Venstresummen: 22.24
print(f"Høyresummen: {round(høyre_sum,2)}")
                                                   # Høyresummen: 28.64
print(f"Gjennomsnitt: {(venstre_sum+høyre_sum)/2}")
                                                   # Giennomsnitt: 25.44
```

# 2B: Eksempel 6 side 108: Venstretilnærming

Funksjonen f har verditabellen

Lag et program som finner en tilnærmingsverdi for  $\int_0^4 f(x) \ dx$  med en venstretilnærming.

Venstretilnærming: 68.8



# 2B: Eksempel 6 side 108: Venstretilnærming

```
# lister med x-verdier og funksjonsverdier
x = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
f = [13.1, 16.3, 0, 8.2, 19.7, 24.8, 28.1, 27.3, 21.0]
delta_x = x[1] - x[0] # rektangelbredde
n = len(x)
                       # antall x-verdier i lista
summen = 0
# Legg merke til at n = len(x) = 9, og siden "i" i for-løkken
# starter på 0, må "i" qå til n-1=8. og at maks verdi for "i" er 7.
for i in range(n-1):
  summen = summen + f[i] * delta x
print(round(summen, 1)) # Output: 68.8
# Legg merke til at det står f[i], og ikke f[i-1], selv om dette er en
# venstretilnærming. Det er fordi "i" i for-løkken starter på null.
```

# 2B: Midtpunkttilnærming

$$\int_{a}^{b} f(x) \ dx \approx \sum_{i=1}^{n} f(m_{i}) \cdot \Delta x, \quad \text{der} \quad m_{i} = a + \left(i - \frac{1}{2}\right) \cdot \Delta x$$



# 2B: Eksempel 5 side 105: Midtpunkttilnærming. Fasit: 25,33

Funksjonen f er gitt ved  $f(x) = x^2 - 2x + 2$ . Lag et program som finner en tilnærmingsverdi for integralet ved å bruke midtpunkttilnærming med 10 kvadrater.

$$\int_{1}^{5} f(x) \ dx$$



# 2B: Eksempel 5 side 105: Midtpunkttilnærming. Fasit: 25,33

```
a, b = 1, 5  # Nedre og øvre grense i intervallet [a, b]
n = 10 # Antall rektangler
def f(x):
   return x**2 - 2*x + 2
delta x = (b - a) / n
summen = 0.0
for i in range(n):
   x_midt = a + (i + 0.5) * delta_x
    summen = summen + f(x midt) * delta x
print(f"Midtpunktsummen: {round(summen, 2)}") # Output: 25.28
```

# 2B: Eksempel 6 side 108: Midtpunkttilnærming

Funksjonen f har verditabellen

Lag et program som finner en tilnærmingsverdi for  $\int_0^4 f(x) dx$  med en midtpunkttilnærming.



# 2B: Eksempel 6 side 108: Midtpunkttilnærming

```
# To lister med x-verdier og funksjonsverdier
x = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
\mathbf{f} = [13.1, 16.3, 0, 8.2, 19.7, 24.8, 28.1, 27.3, 21.0]
delta_x = x[1] - x[0] # rektangelbredde
n = len(x) # antall x-verdier i lista
summen = 0
# Midtpunktstilnærming
for i in range(n-1):
    # Bruk gjennomsnittet som approksimasjon av funksjonsverdi i midten
    midt f = (f[i] + f[i+1]) / 2
    summen = summen + midt_f * delta_x
print(round(summen, 1))
```

# 2B: Arealformelen til et trapes

$$A=\frac{h}{2}(a+b)$$

- a, b = parallelle sider
- h = høyden

Men i vårt tilfelle er det bedre å skrive arealformelen slik:

$$A = \frac{4-2}{2} \left( f(2) + f(4) \right)$$

Generelt får vi (hvis i starter på 1):

$$A = \frac{\Delta x}{2} \left( f(x_{i-1}) + f(x_i) \right)$$



### 2B: Trapesetoden

$$\int_a^b f(x) \; dx \approx \frac{\Delta x}{2} \left( f(a) + f(b) + 2 \cdot \sum_{i=1}^{n-1} f(x_i) \right), \quad \text{der } x_i = a + i \cdot \Delta x$$





(Beviset står på side 110)

# 2B: Eksempel 5 side 105: Trapesmetoden. Fasit: 25,33

Funksjonen f er gitt ved  $f(x) = x^2 - 2x + 2$ . Lag et program som finner en tilnærmingsverdi for integralet ved å bruke trapesmetoden med 10 kvadrater.

$$\int_1^5 f(x) \ dx$$





# 2B: Eksempel 5 side 105: Trapesmetoden. Fasit: 25,33

```
a, b = 1, 5 # Intervallet [a, b]
n = 10 # Antall delintervaller
delta_x = (b - a) / n
summen = 0.0
def f(x):
    return x**2 - 2*x + 2
# Bruker List comprehension til å lage lister med x- og y-verdier.
x_liste = [a + i*delta_x for i in range(n+1)]
v_liste = [f(x) for x in x_liste]
# Trapesmetoden. Utfordring: Forklar at denne koden
# stemmer med trapes-metode-formelen.
for i in range(n):
    summen = summen + (y_liste[i] + y_liste[i+1]) * delta_x / 2
print(f"Trapesmetoden: {round(summen, 2)}") # Output: 25.44
```

# 2B: Eksempel 6 side 108: Trapesmetoden

Funksjonen f har verditabellen

Lag et program som finner en tilnærmingsverdi for  $\int_0^4 f(x) dx$  med en trapesmetoden.



# 2B: Eksempel 6 side 108: Trapesmetoden

```
# Dataene fra tabellen
x = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
f = [13.1, 16.3, 0, 8.2, 19.7, 24.8, 28.1, 27.3, 21.0]
delta_x = x[1] - x[0] \# bredde
n = len(x) - 1 # antall delintervaller
summen = 0
# Trapesmetoden
for i in range(n):
    summen += (f[i] + f[i+1]) * delta x / 2
print(f"Trapesmetoden: {round(summen, 2)}") # Output: 70.73
```

# 2B: Generell pythonkode for å regne ut nedre trappesum (Utfordring)

print(f"Nedre trappesum: {N}")

```
def f(x):
   return 0.1*x*(x-4)*(x-8) # Funksjonen vi skal integrere tilnærmet
start, slutt = 0, 8 # Integrasjonsintervall [0, 8]
                    # Bredde på hvert rektangel
bredde = 0.1
antall = round((slutt-start)/bredde) # Antall rektangler i intervallet
N. \emptyset = 0, 0 # Startverdier for nedre og øvre trappesum
for i in range(antall):
   x venstre = start + i*bredde
                               # Venstre endepunkt for intervallet
   x_høyre = x_venstre + bredde
                                   # Høyre endepunkt for intervallet
   f_venstre = f(x_venstre) # Funksjonsverdi i venstre endepunkt
                        # Funksjonsverdi i høyre endepunkt
   f_h = f(x_h = f(x_h)
   N = N + bredde * min(f_venstre, f_høvre) # Areal med minste funksjonsverdi
print(f"Antall rektangler: {antall}")
print(f"Rektangelbredde: {bredde}")
```

# 2B: Generell pythonkode for å regne ut øvre trappesum (Utfordring)

```
def f(x):
   return 0.1*x*(x-4)*(x-8) # Funksjonen vi skal integrere tilnærmet
start, slutt = 0, 8 # Integrasjonsintervall [0, 8]
                     # Bredde på hvert rektangel
bredde = 0.1
antall = round((slutt-start)/bredde) # Antall rektangler i intervallet
N. \emptyset = 0, 0 # Startverdier for nedre og øvre trappesum
for i in range(antall):
    x venstre = start + i*bredde
                                # Venstre endepunkt for intervallet
    x_høyre = x_venstre + bredde
                                    # Høyre endepunkt for intervallet
   f_venstre = f(x_venstre) # Funksjonsverdi i venstre endepunkt
                        # Funksjonsverdi i høyre endepunkt
   f_h = f(x_h = f(x_h)
   \emptyset = \emptyset + bredde * max(f_venstre, f_høyre) # Areal med største funksjonsverdi
print(f"Antall rektangler: {antall}")
print(f"Rektangelbredde: {bredde}")
print(f"Øvre trappesum: {Ø}")
```

#### 2C: Tolkning av integralet

Arealet av området mellom en graf og førsteaksen har samme enhet som produktet av enhetene på aksene



### 2C: Eksempel 7 side 114

Modellen beskriver hvor mange liter vann som renner ut av et akvarium per sekund.

$$V(t) = 3,8 \cdot e^{-0.05t}$$

Arealet under grafen har enheten liter.

Hvor mye vann renner ut i løpet av det første minuttet?



#### 2C: Arealet under førsteaksen

La A være arealet av området avgrenset av grafen til den kontinuerlige funksjonen f, x-aksen og linjene x = a og x = b.

Arealet 
$$A = \int_a^b f(x) \ dx$$
 hvis området ligger over x-aksen.  
Arealet  $A = -\int_a^b f(x) \ dx$  hvis området ligger under x-aksen.

Hvis området ligger delvis over og delvis under x-aksen, må vi dele det opp i flere deler og summere delarealene.

## 2C: Eksempel 8 side 117





#### 2C: Eksempel 10 side 122



## 2C: Eksempel 10 side 122



## 2C: Arealet mellom to grafer

### 2C: Eksempel 10 side 122



# 2C: Areal mellom funksjonene f og g i python (hvis dere vil)

```
from pylab import *
def f(x):
 return (x+4)**0.5 # f(x) = kvadratroten av (x+4)
def g(x):
 return x**2 - 1 # q(x) = x^2 - 1
# Skjæringspunktene mellom f og g (løst på forhånd)
a = -1.5969 # Nedre grense
b = 1.8489 # Øvre grense
# Lager en liste med 100 jeunt fordelte x-verdier mellom a og b
x = linspace(a, b, 100)
# Arealet mellom f og q finner vi ved å integrere (f(x) - q(x))
# Her bruker vi trapesmetoden (numerisk tilnærming)
svar = trapezoid(f(x) - g(x), x)
print(svar) # Oputput: 6.927568467295032
```

2C: Gjennomsnittsverdiern til en funksjon i intervallet [a, b]

2C: Buelengden til en graf i intervallet [a, b]. (Utforsk side 126)

## 2A: Ideen som forbinder integralet med den deriverte

La A(x) være arealet mellom grafen til f og x-aksen fra 0 til x:

$$A(x) = \int_0^x f(t) dt.$$

For en liten økning  $\Delta x$  er arealet fra x til  $x + \Delta x$  omtrent lik  $f(x) \cdot \Delta x$ 

$$A(x + \Delta x) - A(x) \approx f(x) \Delta x$$

$$\frac{A(x+\Delta x)-A(x)}{\Delta x}\approx f(x)$$

$$A'(x) \approx f(x)$$



# 2A: Sammenhengen mellom posisjon og fart

$$egin{split} s(t+\Delta t) - s(t) &pprox v(t) \, \Delta t \ & rac{s(t+\Delta t) - s(t)}{\Delta t} pprox v(t) \ & s'(t) pprox v(t) \end{split}$$

