Beamer Slides using Pandoc and Markdown

Wai-Shing Luk

Fudan University

June 5, 2018

Introduction

pandoc

pandoc-crossref filter

 ${\tt pandoc-citeproc}\ filter$

Introduction

Why and Why not

Why Markup Language?

► Separate "content" with "style".

Why Pandoc and Beamer?

- ► For professional presentation.
- ► Tikz diagrams.
- ► Cross reference

A simple example intro.md

```
title: Beamer Slides using Pandoc and Markdown
author: Wai-Shing Luk
bibliography: papers.bib
. . .
# Introduction {#sec:intro}
## Why and Why not
### Why Markup Language?
   Separate "content" with "style".
### Why Beamer?
   For professional presentation.
   Tikz diagrams.
```


pandoc

pandoc

Pandoc is a Haskell library for converting from one markup format to another¹, and a command-line tool that uses this library. It can read Markdown and write LATEX or Beamer.

To compile:

- \$ pandoc -s -t beamer beamer.yaml intro.md -o intro.tex
 or directly to a pdf file:
- \$ pandoc -t beamer beamer.yaml intro.md -o intro.pdf

¹This is a footnote.

A simple header beamer.yaml

```
fontsize: 10pt
classoption:
  - serif, onlymath
institute: Fudan University
date: \today
link-citations: true
colorlinks: true
header-includes:
  - \usetheme{default}
  - \usepackage{tikz,pgf,pgfplots}
  - \usetikzlibrary{arrows}
  - \definecolor{qqqqff}{rgb}{0.,0.,1.}
  - \newcommand{\columnsbegin}{\begin{columns}}
  - \newcommand{\columnsend}{\end{columns}}
  - \newcommand{\col}[1]{\column{#1}}
  - \pgfdeclareimage[height=0.5cm]{fudan-logo}{fudan-logo.jpg}
  - \logo{\pgfuseimage{fudan-logo}}
```


Render Mathematical Equations using LaTeX

Consider the following problem:

```
$$\begin{array}{11}
\text{minimize} & f_0(x), \\
\text{subject to} & F(x) \succeq 0,
\end{array}$$ {#eq:semidef}
```

- \$F(x)\$: a matrix-valued function
- \$A \succeq 0\$ denotes \$A\$ is positive semidefinite.

Consider the following problem:

minimize
$$f_0(x)$$
,
subject to $F(x) \succeq 0$, (1)

- ightharpoonup F(x): a matrix-valued function
- $ightharpoonup A \succeq 0$ denotes A is positive semidefinite.

How to make a two-column slide

```
\columnsbegin
\col{0.5\textwidth}
Left-hand side
\col{0.5\textwidth}
Right-hand side
\columnsend
```


Figures

An image occurring by itself in a paragraph will be rendered as a figure with a caption.

Figure 1: This is the caption

```
(source)
![This is the caption] (media/image2.jpeg) {#fig:figure0}
```


Figures (cont'd)

If you just want a regular inline image, just make sure it is not the only thing in the paragraph. One way to do this is to insert a nonbreaking space after the image:

(source)

![No caption](media/image2.jpeg)\

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point


```
\begin{figure}[hp]
\centering
\input{pole2polar.tikz}
\caption{Example of constructing
the polar of a point}%
\label{fig:pole2polar}
\end{figure}
```


Figure 2: Example of constructing the polar of a point


```
\begin{figure}[hp]
\centering
\input{pole2polar.tikz}
\caption{Example of constructing
the polar of a point}%
\label{fig:pole2polar}
\end{figure}
```


Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Figure 2: Example of constructing the polar of a point

Table

Simple tables can be generated using Markdown.

Costs 	28nm	20nm
Fab Costs Process R&D	3B 1.2B 2M - 3M	4B - 7B 2.1B - 3B 5M - 8M 120M - 500M

[:] Fab, process, mask, and design
 costs {#tbl:fab}

Table 1: Fab, process, mask, and design costs

Costs	$28\mathrm{nm}$	$20 \mathrm{nm}$
Fab Costs Process R&D	3B 1.2B	4B - 7B 2.1B - 3B
Mask Costs	1.2B 2M - 3M	5M - 8M
Design Costs	50M - 90M	120M - 500M

pandoc-crossref filter

pandoc-crossref filter

With this filter, you can cross-reference figures (see Fig. 1 and Fig. 2), display equations (see Eq. 1), tables (see Table 1) and sections (\S 1, 2.1)

There is also support for code blocks, for example, Listing 1, 2.

To compile:

\$ pandoc -F pandoc-crossref -t beamer beamer.yaml \
crossref.yaml beamer.md -o intro.pdf

A sample crossref.yaml

```
cref: True
codeBlockCaptions: True
lofTitle: "## List of Figures"
lotTitle: "## List of Tables"
autoSectionLabels: True
figureTemplate: $$t$$
tableTemplate: $$t$$
figPrefix:
 - "Fig."
eqnPrefix:
  - "Eq."
tblPrefix:
 - "Table"
lstPrefix:
 - "Listing"
secPrefix:
 - "8"
```


Code blocks

There are a couple options for code block labels. Those work only if code block id starts with lst:, e.g. {#lst:label}

caption attribute

caption attribute will be treated as code block caption. If code block has both id and caption attributes, it will be treated as numbered code block.

```
Listing 1: Listing caption A
main :: IO ()
main = putStrLn "Hello World!"
(source)
{#lst:captionAttr .haskell caption="Listing caption A"}
```


Table-style captions

Enabled with codeBlockCaptions metadata option. If code block is immediately adjacent to paragraph, starting with Listing: or:, said paragraph will be treated as code block caption.

Listing 2: Listing caption B

main :: **IO** ()

main = putStrLn "Hello World!"

pandoc-citeproc filter

Bibliography

- ightharpoonup See Aalst, Weijters, and Maruster (2004), or
- ► See (Baldi et al. 2008; Canfora and Cerulo 2005).

(source)

- See @Aalst-etal 2004, or
- See [@Baldi-etal_2008;@Canfora-Cerulo_2005a].

To compile:

\$ pandoc -F pandoc-crossref -F pandoc-citeproc -t beamer \
beamer.yaml crossref.yaml beamer.md -o intro.pdf

References I

Aalst, W. van der, T. Weijters, and L. Maruster. 2004. "Workflow Mining: Discovering Process Models from Event Logs." *IEEE Transactions on Knowledge and Data Engineering* 16 (9). Los Alamitos, CA, USA: IEEE Computer Society:1128–42. https://doi.org/10.1109/TKDE.2004.47.

Baldi, Pierre F, Cristina V Lopes, Erik J Linstead, and Sushil K Bajracharya. 2008. "A Theory of Aspects as Latent Topics." In *ACM Sigplan Notices*, 43:543–62. 10. ACM. https://doi.org/10.1145/1449955.1449807.

Canfora, G., and L. Cerulo. 2005. "Impact Analysis by Mining Software and Change Request Repositories." In 11th Ieee International Software Metrics Symposium (Metrics'05), 29. Como, Italy: IEEE. https://doi.org/10.1109/METRICS.2005.28.

