FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování - 2. projekt Sazba dokumentů a matematických výrazů

2017 Martin Omacht

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice ... nebo definice ... na straně ...).

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu. Pro množinu V označuje $\operatorname{card}(V)$ kardinalitu V. Pro množinu V reprezentuje V^* volný monoid generovaný množinou V s operací konkatenace. Prvek identity ve volném monoidu V^* značíme symbolem ε . Nechť $V^+ = V^* - \{\varepsilon\}$. Algebraicky je tedy V^* volná pologrupa generovaná množinou V s operací konkatenace. Konečnou neprázdnou množinu V nazvěme abeceda. Pro $W \in V$ označuje occur(w,W) počet výskytů symbolů z W v řetězci W0 a sym(w,i)0 určuje W1 symbol řetězce W3, například W3 sym(abcd,3) = c4.

Nyní zkusíme sazbu definic a vět s využitím balíku amsthm.

Definice 1.1. Bezkontextová gramatika je čtveřice G=(V,T,P,S), kde V je totální abeceda, $T\subseteq V$ je abeceda terminálů, $S\in (V-T)$ je startující symbol a P je konečná množina pravidel tvaru $q:A\to\alpha$, kde $A\in (V-T), \alpha\in V^*$ a q je návěští tohoto pravidla. Nechť N=V-T značí abecedu neterminálů. Pokud $q:A\to\alpha\in P, \gamma, \delta\in V^*$, G provádí derivační krok z $\gamma A\delta$ do $\gamma \alpha\delta$ podle pravidla $q:A\to\alpha$, symbolicky píšeme $\gamma A\delta \Rightarrow \gamma \alpha\delta[q:A\to\alpha]$ nebo zjednodušeně $\gamma A\delta \Rightarrow \gamma \alpha\delta$. Standardním způsobem definujeme \Rightarrow^m , kde $m\geq 0$. Dále definujeme tranzitivní uzávěr \Rightarrow^+ a tranzitivně-reflexivní uzávěr \Rightarrow^* .

Algoritmus můžeme uvádět podobně jako definice textově, nebo využít pseudokódu vysázeného ve vhodném prostředí (například algorithm2e).

Algoritmus 1.1. Algoritmus pro ověření bezkontextovosti gramatiky. Mějme gramatiku G = (N, T, P, S).

- 1. Pro každé pravidlo $p \in P$ proveď test, zda p na levé straně obsahuje právě jeden symbol z N.
- 2. Pokud všechna pravidla splňují podmínku z kroku 1, tak je gramatika G bezkontextová.

Definice 1.2. Jazyk definovaný gramatikou G definujeme jako $L(G)=w\in T^*|S\Rightarrow^*w.$

1.1 Podsekce obsahující větu

Definice 1.3. Nechť L je libovolný jazyk. L je *bezkontextový jazyk*, když a jen když L=L(G), kde G je libovolná bezkontextová.

Definice 1.4. Množinu $\mathcal{L}_{CF} = \{L | L \text{ je bezkontextový} \}$ nazýváme *třídou bezkontextových jazyků*.

Věta 1. Nechť $L_{abc} = \{a^n b^n c^n | n \ge 0\}$. Platí, že $L_{abc} \notin \mathcal{L}_{CF}$.

Důkaz. Důkaz se provede pomocí Pumping lemma pro bezkontextové jazyky, kdy ukážeme, že není možné, aby platilo, což bude implikovat pravdivost věty 1. □