CSCI 463 – Midterm (Fall 2019)

Name: ______ Z-number: _____

Each question has one and only one correct answer. Choose the best possible/most accurate answer for each question.

All answers must be given in the context of the lectures and assignments used in the course.

1. What function does this symbol represent?

- (A) AND, (B) NAND, (C) OR, (D) NOT, (E) XOR
- 2. What function does this symbol represent?

- (A) AND, (B) NAND, (C) OR, (D) NOT, (E) XOR
- **3.** What function does this symbol represent?

- A AND, B NAND, C OR, D NOT, E $\overset{\textstyle \times}{\textstyle \times}$
- 4. What function does this symbol represent?

- (A) AND, (B) NAND, (C) OR, (D) NOT, (E) XOR
- **5.** What function does this symbol represent?

(A) AND, (B) NAND, (C) OR, (D) NOT, (E) XOR

6. What function does this symbol represent?

- (A) D-latch, (B) Demultiplexer, (C) ALU, (D) Multiplexer, (E) Register
- 7. What function does this symbol represent?

- (A) D-latch, (B) Demultiplexer, (C) ALU, (D) Multiplexer, (E) Register
- **8.** What function does this symbol represent?

- (A) D-latch, (B) Demultiplexer, (C) ALU, (D) Multiplexer, (E) Register
- **9.** What function does this symbol represent?

- (A) D-latch, (B) RS-latch, (C) ALU, (D) Full Adder, (E) Half adder
- 10. What is the following circuit?

(A) D-latch, (B) RS-latch, (C) ALU, (D) Full Adder, (E) Half adder

11. What is the following circuit?

- (A) D-latch, (B) RS-latch, (C) ALU, (D) Full Adder, (E) Half adder
- **12.** What is the following circuit?

- (A) D-latch, (B) RS-latch, (C) ALU, (D) Full Adder, (E) Half adder
- 13. What is the following circuit?

- (A) D-latch, (B) RS-latch, (C) ALU, (D) Full Adder, (E) Half adder
- 14. Which is the truth table for the XOR function?

	\bigcirc			$^{\odot}$			\bigcirc			\bigcirc			\odot	
A	В	Q	A	В	Q	A	В	Q	A	В	Q	A	В	Q
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	0	1	1	0	1	1	0	1	1	0	1	0
1	0	1	1	0	1	1	0	1	1	0	1	1	0	0
1	1	0	1	1	1	1	1	0	1	1	0	1	1	1

15. Which is the truth table for the OR function?

	\bigcirc			$lue{\mathbf{B}}$			\bigcirc			\bigcirc			\odot	
A	В	Q	A	В	Q	A	В	Q	A	В	Q	A	В	Q
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	0	1	1	0	1	1	0	1	1	0	1	0
1	0	1	1	0	1	1	0	1	1	0	1	1	0	0
1	1	0	1	1	1	1	1	0	1	1	0	1	1	1

16. Which is the truth table for the NAND function?

	lack			$^{\odot}$			\bigcirc			\bigcirc			\odot		
A	В	Q	A	В	Q	A	В	Q	A	В	Q	A	В	Q	
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	
0	1	1	0	1	1	0	1	1	0	1	1	0	1	0	
1	0	1	1	0	1	1	0	1	1	0	1	1	0	0	
1	1	0	1	1	1	1	1	0	1	1	0	1	1	1	

- 17. What is the clock input used for in those circuits that have one?
 - (A) To tell time,
 - B To determine when to change its state,
 - © To determine when to change its input,
 - (D) To disable the output,
 - (E) To store the demultiplexer output in the ALU

18. Which is the truth table for a full-adder?

		A				$^{\odot}$					\bigcirc					\bigcirc				$^{\circ}$			
A	В	Co	S	A	В	Ci	Со	S	A	В	Ci	Co	S	A	В	Ci	Co	S	A	В	Ci	Со	S
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	1	1
1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	1
1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0
				1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	1	1
				1	0	1	1	1	1	0	1	1	0	1	1	1	1	0	1	0	1	0	0
				1	1	0	1	1	1	1	0	1	0	1	1	1	1	0	1	1	0	0	0
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1

19. Which is the truth table for a half-adder?

	(A				$^{\odot}$					\bigcirc					\bigcirc				$^{\odot}$			
A	В	Co	S	A	В	Ci	Co	S	A	В	Ci	Co	S	A	В	Ci	Co	S	A	В	Ci	Co	S
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	1	1
1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	1
1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0
				1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	1	1
				1	0	1	1	1	1	0	1	1	0	1	1	1	1	0	1	0	1	0	0
				1	1	0	1	1	1	1	0	1	0	1	1	1	1	0	1	1	0	0	0
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1

- **20.** What is the LSB of the decimal number 1234?
 - **A** 0, **B** 1, **C** 2, **D** 3, **E** 4
- 21. What is the LSB of the decimal number 123?
 - (A) 0, (B) 1, (C) 2, (D) 3, (E) 4
- 22. What do the signals labeled I0-In do on a multiplexer?
 - (A) Data inputs, (B) Data outputs, (C) Address inputs, (D) Address outputs, (E) Clock signals
- 23. What are signals labeled A0-An called on a multiplexer?
 - (A) Data inputs, (B) Data outputs, (C) Address inputs, (D) Address outputs, (E) Clock signals

- **24.** What do the signals labeled A0-An do on a multiplexer? (A) Select which output to enable, (B) Select which input to propagate, © Select which output to disable, (D) Select which input to disable, (E) Select which boolean function to perform **25.** Which signals on a demultiplexer are its inputs? (A) A0-An (B) I0-In (C) Q0-Qn (D) Both A and B (E) Both A and C **26.** Which signals on a demultiplexer are its outputs? (A) A0-An (B) I0-In (C) Q0-Qn (D) Both A and B (E) Both A and C **27.** What do the signals labeled F0-Fn do on an ALU? (A) Select which output to enable, (B) Select which input to propagate, © Select which arithmetic operation to perform, (D) Select which logical operation to perform, **E** Both C and D 28. Which circuit can add these two binary numbers: 1101 1100 (A) RS-latch, (B) Demultiplexer, (C) ALU, (D) Full Adder, (E) Half adder 29. How many full adders are needed to add two signed 8 bit numbers? (A) 1, (B) 2, (C) 4, (D) 8, (E) 16 **30.** What types of clocks are used for registers? (A) RS, (B) Level, (C) Edge, (D) Boolean, (E) GPS **31.** What is an RS latch used for? (A) To reset the ALU, (B) To store one bit, (C) To store two bits, (D) To generate the overflow status, **(E)** To trigger the Multiplexer **32.** What is a bus? (A) A register, (B) To store one bit, (C) To store two bits, (D) A collection of related signals, (E) A collection of unrelated signals **33.** Which of the following is true? (A) High-level-sensitive latches will retain the input present during the falling edge of the
 - enable signal,
 - (B) High-level-sensitive latches allow the output to change multiple times when the enable signal is high,
 - © Falling-edge-triggered latches retain the input when the clock changes from 1 to 0,
 - (D) All of the above
 - (E) None of the above

The following waveform includes, among other things, the signals of an RS latch whose output is labeled Q:

Figure 1: A Timing Diagram

- **34.** Which signal labeled a-e in Figure 1 is the reset signal?c
- **35.** Which signal labeled a-e in Figure 1 is the set signal?
- **36.** What does overflow mean?
 - (A) A carry out of the LSB,
 - (B) A carry into the MSB,
 - (C) An operation can not fit into the destination register,
 - (D) A logical operation has no inputs,
 - **E** A collection of related signals
- **37.** What signifies that an *unsigned* overflow has taken place during an addition?
 - (A) A carry out of the LSB,
 - (B) A carry into the MSB,
 - (C) A carry out of the MSB,
 - (D) A carry into the LSB that is different from the carry out of the LSB,
 - (E) A carry into the MSB that is is different from the carry out of the MSB
- **38.** What signifies that a *signed* overflow has taken place during an addition?
 - (A) A carry out of the LSB,
 - (B) A carry into the MSB,
 - (C) A carry out of the MSB,
 - (D) A carry into the LSB that is is different from the carry out of the LSB,
 - (E) A carry into the MSB that is is different from the carry out of the MSB
- **39.** What the hexadecimal value of the binary number 10110001?
 - (A) 69, (B) C0, (C) 19, (D) C2, (E) B1
- **40.** What the hexadecimal value of the binary number 01101001?
 - (A) 69, (B) C0, (C) 19, (D) C2, (E) B1
- 41. What the binary value of the hexadecimal number 22?
 - (A) 10101010, (B) 11110000, (C) 00000000, (D) 10100101, (E) 00100010
- **42.** What the binary value of the hexadecimal number A5?
 - (A) 10101010, (B) 11110000, (C) 00000000, (D) 10100101, (E) 00100010

Given the following schematic symbol (that matches that discussed lecture), truth table and waveform diagram (labeled such that time t_0 appears at the far left edge and t_{16} appears at the right):

F0	F1	Q
0	0	Sum/Diff
0	1	$A \oplus B$
1	0	A+B
1	1	$A \cdot B$

Figure 2: A Timing Diagram

- **43.** What function is being performed between time t_0 and t_1 ?
 - (A) Add, (B) Subtract, (C) XOR, (D) OR, (E) AND
- **44.** What function is being performed between time t_3 and t_4 ?
 - (A) Add, (B) Subtract, (C) XOR, (D) OR, (E) AND
- **45.** What function is being performed between time t_4 and t_5 ?
 - (A) Add, (B) Subtract, (C) XOR, (D) OR, (E) AND
- **46.** What function is being performed between time t_8 and t_9 ?
 - (A) Add, (B) Subtract, (C) XOR, (D) OR, (E) AND
- **47.** What function is being performed between time t_{12} and t_{13} ?
 - (A) Add, (B) Subtract, (C) XOR, (D) OR, (E) AND
- **48.** What function is being performed between time t_{13} and t_{14} ?
 - (A) Add, (B) Subtract, (C) XOR, (D) OR, (E) AND
- **49.** What function is being performed between time t_5 and t_6 ?
 - $(A \cap B)$ $(B \cap A)$ $(B \cap A)$
- **50.** What function is being performed between time t_{14} and t_{15} ?
 - (A) $A \oplus B$, (B) $\overline{A} \cdot B$, (C) $A \cdot B$, (D) $\overline{A} \cdot \overline{B}$, (E) $A + \overline{B}$