1.6 Téléportation quantique

A veut envoyer $|\psi\rangle$ à B

FIGURE 1 – Téléportation quantique 2

$$\begin{split} |\Psi\rangle\otimes\left|\Phi^{+}\right\rangle &=\left(\alpha\left|0\right\rangle+\beta\left|1\right\rangle\right)\otimes\left(\frac{\left|00\right\rangle+\left|11\right\rangle}{\sqrt{2}}\right) \\ &=\frac{1}{\sqrt{2}}\left[\alpha\left|000\right\rangle+\alpha\left|011\right\rangle+\beta\left|100\right\rangle+\beta\left|111\right\rangle\right] \\ &=\frac{1}{2}\left[\alpha\left(\left|\Phi^{+}\right\rangle+\left|\Phi^{-}\right\rangle\right)\left|0\right\rangle+\alpha\left(\left|\Psi^{+}\right\rangle+\left|\Psi^{-}\right\rangle\right)\left|1\right\rangle+\beta\left(\left|\Psi^{+}\right\rangle-\left|\Psi^{-}\right\rangle\right)\left|0\right\rangle+\beta\left(\left|\Phi^{+}\right\rangle-\left|\Phi^{-}\right\rangle\right)\left|2\right\rangle\right] \\ &=\frac{1}{2}\left[\left|\Phi^{-}\right\rangle\left(\alpha\left|0\right\rangle+\beta\left|1\right\rangle\right)+\cdots\right] \\ &=\frac{1}{2}\left[\left|\Phi^{+}\right\rangle\left|\Psi\right\rangle+\left|\Phi^{-}\right\rangle Z\left|\Psi\right\rangle+\left|\Psi\right\rangle X\left|\Psi\right\rangle+\left|\Psi^{-}\right\rangle ZX\left|\Psi\right\rangle\right] \end{split}$$

Alice mesure $\{\ket{\psi^{\pm}},\ket{\psi^{\pm}}\}$ avec 25% chaque.

$$|\Psi^{+}\rangle:\mathbb{1}\quad |\Psi^{-}\rangle: \text{applique Z}\cdots$$

Aparté notation tensorielle vecteur -0-Matrice -[]état à deux qbits : 0== $\Psi = \sum_{ij} c_{ij} |e_i\rangle \otimes |e_j\rangle$ ket : 0bra:-0Produit tensoriel: \otimes Contraction : $(\langle \psi | \phi \rangle)$ (\psi)--(\phi) Produit matrice-vecteur $\texttt{(\psi)--[u]-}=u\left|\psi\right>$ Matrice-Matrice -[A]-[B]-=BA=-[BA]-Trace:L[M]J

2 Calcul Quantique

2.1 Calcul classique

ordinateur classique

$$\rho: \{0,1\}^n \to \{0,1\}^n$$

Portes universelles NAND

COPY:

EX: NOT

${\tt COPY}$ est impossible en quantique

Complexité

Difficulté de ρ : Nombre de portes universelle requisent pour le plus petit circuit réalisant ρ

Famille de Problème ou la taille varie

La circuit ne doit pas être adapté à la taille

P: Temps polynomial (facile)

$$|c_n| = n^{\alpha}$$

u

NP: Temps non-polynomial

NP-difficile : Au moins aussi difficile que le problème le plus dur de NP (Pas forcément dans NP)

 $\underline{\text{NP-comlet}}: \text{NP difficile } \mathbf{et} \text{ dans NP}$

clairement

$$P\subseteq NP$$

$$P = NP$$

2.2 Calcul quantique

Mécanique quantique : Opérateur d'évolution unitaire

$$U^{\dagger}U=\mathbb{1}$$

FIGURE 2 – La complexité

La porte NAND n'est pas réversible (2bits \rightarrow 1bit)

Il existe des porte réversibles classiqus

Note	
ON peut toujours exprimer une fonction	
	$ ho: \mathbb{Z}_2^n \mapsto \mathbb{Z}_2^m$
sous la forme	$\sigma n + m$, $\sigma n + m$
	$g: \mathbb{Z}_2^{n+m} \mapsto \mathbb{Z}_2^{n+m}$
	$g(x,0) \mapsto g(x,f(x))$
	9(4, 7) - 1 9(4))

2.3 Circuits Quantiques

- a) état initial ($|0\rangle^{\otimes n}$) : Ce choix est arbitraire. Important de commencer dans un état non-intriqué
- b) Transformation unitaire U : On décompose u en un ensemble de portes universelles agissant sur 1-3 qubits. Les U possibles $(U \in SU(2^n))$ forment un groupe continu. On peut générer U à partir d'un circuit fini C La complexité quantique est définie à partir de |C|
 - c) Mesure : Résultat non-détérministe On choisit de mesurer dans la base $Z\{|0\rangle, |1\rangle\}$ On peut mesurer différentes bases

a b	CNOT
0 0	0 0
0 1	0 1
1 0	11
11	1 0

CNOT

Figure 3 – CNOT

en chageant U. On évite de cacher la complexité dans la mesure. On aurait pu choisir de mesurer durant le circuit.

2.4 Complexité quantique

BQP (bounded-error quantum polynomial time) : Esemble des Problèmes faciles pour un ordinateur quantique (Problèmes tel que $|C| \le n^{\infty}$)

L'ordinateur quantique doit donner la bonne réponse la plupart du temps ($\geq \frac{2}{3}$) (pas deterministe). On moyenne sur un grand nombre de calculs

FIGURE 4 – Anatomie d'un circuit quantique

 ${\tt FIGURE} \ 5 - Complexit\'e \ quantique$