

SPRING 2025

Butterfly Image Classification With ResNet50

By Juana Wong CSc 44700 P
Introduction to Machine Learning

Agenda

Problem & Dataset

- Data Pipeline & Augmentation
- Model Development & Training
- o4 Results, Evaluation & Discussion

Identify, Classify, Conserve, Support — Butterfly Populations

- approx. 17,500 to 20,000 butterfly species worldwide
- population crash!
 - U.S.A.: "107 species declined by more than 50%, and 22 species declined by more than 90%" from 2000-2020

Edwards, Collin B., et al. "Rapid Butterfly Declines across the United States during the 21st Century." *Science*, vol. 387, no. 6738, 7 Mar. 2025, pp. 1090 – 1094, https://doi.org/10.1126/science.adp4671.

Rapidly and accurately identify butterflies to support large-scale **monitoring** of population trends & **conservation** initiatives.

"Butterfly Image Classification" (Version 2) Dataset

DePie phucthaiv02 (he/him)

Data Explorer

Version 2 (237.31 MB)

- test 🖭
- train
 - Testing_set.csv
 - Training_set.csv

Thái Văn, Phúc (2024). Butterfly Image Classification (Version 2) [Dataset]. Kaggle.

https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification/data

Description

- 9,000+ sample images
- 75 predefined classes/labels
- 'train' set labeled (.csv)
- 'test' set unlabeled

original 'train' dataset:

('train', 'val'): 80-20 split

train: 5,199 images

val: 1,300 images

test: 2,786 images

02

Data Pipeline Augmentation

Sample Augmented Training Images

ORANGE TIP

CLOUDED SULPHUR

Data Loading Raw **Images** (JPG) read filepaths, csv split to train/val/test ImageNet mean/std

Data Augmentation Data Preprocessing Resize (128x128)

Normalize using

RandomResizedCrop

RandomHorizontalFlip

(Train)

RandomRotation (15°)

ColorJitter

Batch, shuffle, load

DataLoader

Butterfly CNN

ResNet50

Simple

Model

Training

To increase data diversity, improve generalization. To overcome limitations of a small dataset.

Data Pipeline & Augmentation

0

SimpleButterflyCNN

- CNN (4 conv layers, ReLU, max pooling), achieved ~73% val accuracy at 16/20 epochs
- <u>Limitation</u>: plateau from limited model
 capacity, underfitting

--- Final Metrics (SimpleButterflyCNN) ---

Final Training Loss: 0.8904 Final Validation Loss: 0.9954 Final Training Accuracy: 72.88% Final Validation Accuracy: 73.54%

Best Validation Accuracy: 73.54% at epoch 19

ResNet50

- Pretrained model on ImageNet (50 layers, 16 residual blocks)
- Final layer adapted for 75 classes
- Train/validation gap is small (96.7% vs. 91.2%), indicating strong generalization and minimal overfitting

--- Final Metrics (ResNet50) --Final Training Loss: 0.0926
Final Validation Loss: 0.4293
Final Training Accuracy: 96.69%
Final Validation Accuracy: 91.15%
Best Validation Accuracy: 91.77% at epoch 18
Best Validation Loss: 0.4074 at epoch 10

=== Training Summary (ResNet50) === Model: ResNet50 (pretrained on ImageNet,

final layer for 75 classes)

Epochs: 20 Optimizer: Adam Batch size: 32

Learning Rate Scheduler: StepLR

(step_size=7, gamma=0.1)
Initial Learning rate: 0.001

Final Learning rate after 20 epochs: 0.00001

(1e-05)

Loss function: CrossEntropyLoss

Data augmentation: RandomResizedCrop,

Flip, Rotation, ColorJitter

Device: CPU

C

04 Baseline Model vs. ResNet50 - Training and Validation Progress

Accuracy & Loss

The SimpleButterflyCNN (baseline model) plateaued around 72% accuracy at epoch 20.

The ResNet50 model's accuracy and loss improved rapidly during the first 8–10 epochs, reaching over a 90% validation accuracy by epoch 10.

After that, both training and validation performance plateaued. Training beyond 10 epochs offered little benefit, so stopping earlier can be done to prevent overfitting.

04 Normalized Confusion Matrix (Recall)

Normalized Confusion Matrix

Most butterfly classes show high recall (0.9+) – the model correctly identifies the majority of samples for most classes.

Several classes achieved perfect recall (1.0) – no misclassifications for those categories.

A few low-performing classes (<0.8) – the model struggles to distinguish these classes from others (misclassification).

04 Per-Class Performance Metrics - Precision, Recall, F1-Score

ResNet50 Per-Metric Comparison (F1-Score) Overall Accuracy: 0.91 (91%)

Highest Performing Classes (8): 1.0 (100%) Lowest Performing Class (1): 0.6 (60%)

Average Classes: Between 0.85 and 0.97 - indicates strong and

consistent performance across most categories.

Top 10 & Bottom 10

Train: avg. 86 images per class

Validation: avg. 17 images per class

Some classes had perfect 100% classification accuracy.

Some classes had moderate accuracy when classifying species.

One class, the **Great Eggfly**, noticeably performed the worst.

Great Eggfly

Precision: 0.64 – 64% of images predicted as Great Eggfly was correct

Recall: 0.56 - of all Great Eggfly images, 56% were correctly predicted

F1-Score: 0.60 – harmonic mean of precision and recall; moderate/average score - can be improved

Support: 16 – small sample size, 16 true images in the set

Example Worst Batch #3 (Accuracy: 78.1%)

Great Eggfly

Precision: 0.64 Recall: 0.56 F1-Score: 0.60 Support: 16

Incorrect Prediction

Sootywing

True: GREAT EGGFLY Pred: COPPER TAIL True: GREAT EGGFLY Pred: BLUE SPOTTED CP True: GREAT EGGFLY Pred: BLUE MORPHO

Great Eggfly

Recall: 0.56 **F1-Score**: 0.60 Precision: 0.64 Support: 16

Incorrect Prediction

Blue Spotted Crow

Example Worst Batch #3 (Accuracy: 78.1%)

Great Eggfly

Precision: 0.64 Recall: 0.56 F1-Score: 0.60 Support: 16

Incorrect Prediction

Iphiclus Sister

04 Discussion

Collect more data

Increase support, more diverse examples reduces false positives and false negatives

Adjust model values

Eg. adjust model to favor precision over recall, or vice versa

Data augmentation

Apply different transformations and adjustments to sample images, improve generalization

Improve model architecture

Adjust depth and width of CNN or try different architectures, eg. custom CNN, ResNet50, etc.

Hyperparameter tuning

Change learning rate, batch size, optimizer, number of epochs, etc.

- Edwards, Collin B., et al. "Rapid Butterfly Declines across the United States during the 21st Century." *Science*, vol. 387, no. 6738, 7 Mar. 2025, pp. 1090 1094, https://doi.org/10.1126/science.adp4671.
- Kawahara, Akito Y., et al. "A Global Phylogeny of Butterflies Reveals Their Evolutionary History, Ancestral Hosts and Biogeographic Origins." *Nature Ecology & Evolution*, vol. 7, no. 7, 15 May 2023, pp. 1–11, https://doi.org/10.1038/s41559-023-02041-9.
- Thái Văn, Phúc (2024). Butterfly Image Classification (Version 2) [Dataset]. Kaggle. https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification/data