

Abdul Haseeb BS(AI)-III

- K-Nearest Neighbors
- Lazy Learning Algorithm

- Classroom with a strength of 9 students
- But at present 7 students enrolled

Interested in Studying Books, Novels etc

Interested in Sports etc

New Student, chooses to sit on the right most available desk

Principal wants to know interest of every student, but hasn't enough time to interact with each one

From the group he sits, means from his neighbors, principal can infer that the student is one who loves study

This is known as the lazy learning approach; we just inferred the output by observing the behaviors of nearest neighbors

Plot the training dataset

• Locate new "test" point/instance

Calculate distance from all training data points

• Sort the list in ascending order

• Choose first k distances from the sorted list

- Now if you use k=5 what can we infer from the graph?
- Should we assign green(1=survive) or blue (0=Not Survived)
- We take mode(frequency of occurrence) of the k data points to calculate the answer
- Green Data Points are in abundance, so we will assign green to new data point

Classification

1 1 0 0 0 1 0 ...

New Instance = Mode

Regression

1 99 22 53 97 ...

New Instance = Mean

Determine the Right value of K

• Elbow Method:

Determine the Right value of K

- Elbow Method:
 - Choose a range of k values:
 - Min 1 and Max number of data points in dataset
 - For each value of k we implement a KNN Model
 - Calculate error corresponding to each value of k and plot the error

Determine the Right value of K

• Elbow Method:

The Graph has a shape similar to the elbow, so we call it elbow method

We choose k=10, as it returns the minimum error

How to calculate Distance

 Now after calculating the value of k, how to determine which points are the nearest

How to calculate Distance

- Manhattan Distance
- Euclidean Distance
- Minkowiski Distance
- Hamming Distance

Manhattan Distance

 Sum of absolute differences between the two points, across all the dimensions

Manhattan Distance

Two Dimensions: $d = |p_1 - q_1| + |p_2 - q_2|$

Let's say p1=5 and p2=5 Let's say q1=8 and q2=9 d=|5-8|+|5-9| d=3+4 d=7

Euclidean Distance

Two Dimensions: $d = ((p_1 - q_1)^2 + (p_2 - q_2)^2)^{1/2}$

Let's say p1=5 and p2=5 Let's say q1=8 and q2=9 $d=((5-8)^{2+}(5-9^2))^{1/2}$ $d=(9+16)^{1/2}$ d=5

Sepal Length	Sepal Width	Species	
5.3	3.7	Setosa	
5.1	3.8	Setosa	
7.2	3.0	Virginica	
5.4	3.4	Setosa	
5.1	3.3	Setosa	
5.4	3.9	Setosa	
7.4	2.8	Virginica	
6.1	2.8	Verscicolor	
7.3	2.9	Virginica	
6.0	2.7	Verscicolor	
5.8	2.8	Virginica	
6.3	2.3	Verscicolor	
5.1	2.5	Verscicolor	
6.3	2.5	Verscicolor	
5.5	2.4	Verscicolor	

Given the value of k, classify the new example

Sepal Length	Sepal Width	Species
5.2	3.1	?

Sepal Length	Sepal Width	Species	
5.3	3.7	Setosa	
5.1	3.8	Setosa	
7.2	3.0	Virginica	
5.4	3.4	Setosa	
5.1	3.3	Setosa	
5.4	3.9	Setosa	
7.4	2.8	Virginica	
6.1	2.8	Verscicolor	
7.3	2.9	Virginica	
6.0	2.7	Verscicolor	
5.8	2.8	Virginica	
6.3	2.3	Verscicolor	
5.1	2.5	Verscicolor	
6.3	2.5	Verscicolor	
5.5	2.4	Verscicolor	

Step 01: Calculate the distance of this new data point with all the data points.

Sepal Length	Sepal Width	Species
5.2	3.1	?

Distance (Sepal Length, Sepal Width) =
$$\sqrt{(x-a)^2 + (y-b)^2}$$

Distance (Sepal Length, Sepal Width) =
$$\sqrt{(5.2-5.3)^2 + (3.1-3.7)^2}$$

Distance (Sepal Length, Sepal Width) = 0.608

Sepal Length	Sepal Width	Species	Distance	
5.3	3.7	Setosa	0.608	

Sepal Length	Sepal Width	Species
5.3	3.7	Setosa
5.1	3.8	Setosa
7.2	3.0	Virginica
5.4	3.4	Setosa
5.1	3.3	Setosa
5.4	3.9	Setosa
7.4	2.8	Virginica
6.1	2.8	Verscicolor
7.3	2.9	Virginica
6.0	2.7	Verscicolor
5.8	2.8	Virginica
6.3	2.3	Verscicolor
5.1	2.5	Verscicolor
6.3	2.5	Verscicolor
5.5	2.4	Verscicolor

Calculate the distance with 5^{th} and 7^{th} example

Sepal Length	Sepal Width	Species
5.2	3.1	?

• All Distances:

Sepal Length	Sepal Width	Species	Distance
5.3	3.7 Setosa		0.608
5.1	3.8	Setosa	0.707
7.2	3.0	Virginica	2.002
5.4	3.4	Setosa	0.36
5.1	3.3	Setosa	0.22
5.4	3.9	Setosa	0.82
7.4	2.8	Virginica	2.22
6.1	2.8	Verscicolor	0.94
7.3	2.9	Virginica	2.1
6.0	2.7	Verscicolor	0.89
5.8	2.8	Virginica	0.67
6.3	2.3	Verscicolor	1.36
5.1	2.5	Verscicolor	0.60
6.3	2.5	Verscicolor	1.25
5.5	2.4	Verscicolor	0.75

Sepal Length	Sepal Width	Species	Distance	Rank
5.3	3.7	Setosa	0.608	3
5.1	3.8	Setosa	0.707	 6
7.2	3.0	Virginica	2.002	13
5.4	3.4	Setosa	0.36	7
5.1	3.3	Setosa	0.22	1
5.4	3.9	Setosa	0.82	8
7.4	2.8	Virginica	2.22	15
6.1	2.8	Verscicolor	0.94	10
7.3	2.9	Virginica	2.1	14
6.0	2.7	Verscicolor	0.89	9
5.8	2.8	Virginica	0.67	5
6.3	2.3	Verscicolor	1.36	12
5.1	2.5	Verscicolor	0.60	4
6.3	2.5	Verscicolor	1.25	11
5.5	2.4	Verscicolor	0.75	7

Assign Rank, smallest will be having the first rank and so on...

Sepal Length	Sepal Width	Species	Distance	Rank
5.3	3.7	Setosa	0.608	3
5.1	3.8	Setosa	0.707	6
7.2	3.0	Virginica	2.002	13
5.4	3.4	Setosa	0.36	7
5.1	3.3	Setosa	0.22	1
5.4	3.9	Setosa	0.82	8
7.4	2.8	Virginica	2.22	15
6.1	2.8	Verscicolor	0.94	10
7.3	2.9	Virginica	2.1	14
6.0	2.7	Verscicolor	0.89	9
5.8	2.8	Virginica	0.67	5
6.3	2.3	Verscicolor	1.36	12
5.1	2.5	Verscicolor	0.60	4
6.3	2.5	Verscicolor	1.25	11
5.5	2.4	Verscicolor	0.75	7

Step 03: Given the value of K, Find the nearest neighbor

If k=1, pick the element with Rank#01

Element with Rank#01 has specie: setosa, so assign setosa to new example

Sepal Length	Sepal Width	Species	Distance	Rank
5.3	3.7	Setosa	0.608	3
5.1	3.8	Setosa	0.707	6
7.2	3.0	Virginica	2.002	13
5.4	3.4	Setosa	0.36	7
5.1	3.3	Setosa	0.22	1
5.4	3.9	Setosa	0.82	8
7.4	2.8	Virginica	2.22	15
6.1	2.8	Verscicolor	0.94	10
7.3	2.9	Virginica	2.1	14
6.0	2.7	Verscicolor	0.89	9
5.8	2.8	Virginica	0.67	5
6.3	2.3	Verscicolor	1.36	12
5.1	2.5	Verscicolor	0.60	4
6.3	2.5	Verscicolor	1.25	11
5.5	2.4	Verscicolor	0.75	7

Step 03: Given the value of K, Find the nearest neighbor

What should be the label with K=5?

With K=15?