Česká zemědělská univerzita v Praze Technická fakulta

Laboratorní práce

Speciální senzorika

Ultrazvukový snímač

Autor: Josef Kořínek

27. prosince 2022

1.Zadání

- Změřte vyzařovací charakteristiku ultrazvukového senzoru
- Zjistěte minimální velikost detekovaného objektu
- Vypracujte protokol dle vzoru, který naleznete v kurzu předmětu na moodle.czu.cz

2. Princip fungování senzoru

Ultrazvukový senzor měří vzdálenost k objektu pomocí ultrazvukových zvukových vln. Ultrazvukový senzor odesílá a přijímá ultrazvukové impulsy, které předávají na informaci o blízkosti objektu, to se na senzoru projeví změnou napětí. Vysokofrekvenční zvukové vlny se odrážejí od objektu a vytvářejí zřetelné ozvěny (echa).[1]

3. Postup měření

Po zapojení senzoru dle schématu a připojení na zdroj byl po 100 mm oddalován objekt od senzoru. Následně bylo zaznamenané napětí a zjištěn maximální úhel pootočení objektu a maximální posun objektu od osy senzoru.

4. Schéma zapojení

Obr. 1 Schéma zapojení ultrazvukového snímače

5. Použité přístroje

Číslo	Název	Тур	Sériové číslo
1.	Laboratorní zdroj LW LONGWEI	LW-K3010D	211102133
2.	Multimetr METEX	ME-31	952351

Tab. 1 Seznam použitých přístrojů

6. Použité senzory

Číslo	Název	Тур	Sériové číslo
1.	Ultrazvukový senzor	UK1C-E1-OE	DHM:00040018

Tab. 2 Seznam použitých senzorů

7. Zpracování dat

Vzdálenost [mm]	Měřené napětí [mV]	Maximální detekční uhel [°]	Maximální detekční posun [mm]
100	214,8	20	956
200	765	20	115
300	1594	20	124
400	2401	18	105
500	3233	10	100
600	4030	9	100
700	4870	8	75
800	5679	5	70
900	6530	5	65

Tab. 3 Měřené napětí, maximální detekční uhel a maximální detekční posun

Graf 1 Závislost maximálního detekčního úhlu a posunu na vzdálenosti objektu od senzoru

Vyzařovací charakteristika se značí jako plocha ve které došlo k zaznamenání objektu senzorem. Za předpokladu že se choval, že se senzor choval symetricky se dá z naměřený dat charakteristika vytvořit. Bylo cloněno objektem který bohužel nebyl změřen. Jeho přibližný tvar je vidět na Obr. 2.

Obr. 2 Měřený objekt

Obr. 3 Změřená vyzařovací charakteristika objektu

8.Závěr

Při vzdálenosti větší než 900 mm již nebyla zaznamenána změna napětí. Se vzrůstající vzdáleností napětí na senzoru roste a klesá tolerance k natočení měřeného objektu. Za zmínku stojí, že úhel pootočení nijak neovlivňuje měřené napětí.

9.Zdroje

[1] Understanding How Ultrasonic Sensors Work | MaxBotix Inc. [online]. [vid. 2022-12-27]. Dostupné z: https://www.maxbotix.com/articles/how-ultrasonic-sensors-work.htm