Quickselect and Median of Medians: Improving Quicksort

CS 4102: Algorithms

Spring 2021

Mark Floryan and Tom Horton

Readings

- CLRS:
 - Chapter 9
- Wikipedia articles on Quickselect and Median of Medians

Review: Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

Goal: All elements < p on left, all > p on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

Then we shorten by 1 each time

$$T(n) = T(n-1) + n$$

$$T(n) = O(n^2)$$

Can we Pick a Good Pivot for Quicksort?

- What makes a good Pivot for Quicksort?
 - Roughly even split between left and right
 - Ideally: the median
- Can we find a list's median in linear time?
 - Quickselect (https://en.wikipedia.org/wiki/Quickselect)
 - Finds the median
 - Works a lot like Quicksort: needs to do a Partition
 - We need a good pivot for Quickselect for it to have good time-complexity
 - Median of Medians (https://en.wikipedia.org/wiki/Median of medians)
 - Can be used to find "pretty good" pivot for QS, or with Quickselect

Quickselect

- Finds i^{th} order statistic
 - \circ i^{th} smallest element in the list
 - 1st order statistic: minimum
 - \circ n^{th} order statistic: maximum
 - $\circ \frac{n_{\text{th}}}{2}$ order statistic: median
- CLRS, Section 9.1
 - Selection problem: Give list of distinct numbers and value i, find value x in list that is larger than exactly i-1 list elements

Quickselect[®]

Idea: pick a pivot element, partition, then recurse on the sublist containing index *i*

- Divide: select an element p, Partition(p)
- Conquer: if i = index of p, done!
 - if i < index of p recurse left. Else recurse right
- Combine: Nothing!

(Note: just one recursive call, unlike Quicksort.)

Partition (Divide step)

Given: a list, a pivot value x

Note: now using "x" to refer to pivot value. We called it "p" in previous slides.

Start: unordered list

Goal: All elements < x on left, all > x on right

Conquer

Remember: we're looking for the i^{th} order statistic

- If the split-point (8) is *i* we're done! The value stored at the split-point is the result.
- If i < split-point, look in left sub-list (using same value i)
- If i > split-point, look in right sub-list (using an adjusted value of i)
 - For example, if we wanted the 10th order statistic in the entire list,
 here that would be the 2nd order statistic in the right sub-list

CLRS Pseudocode for Quickselect

A – the list

```
p – index of first item
RANDOMIZED-SELECT (A, p, r, i)
                                                           r – index of last item
   if p == r
                                                           i – find ith smallest item
        return A[p]
                                                           q – pivot location
                                                           k – number on left + 1
  q = \text{RANDOMIZED-PARTITION}(A, p, r)
4 k = q - p + 1 // number of elements in left sub-list + 1
5 if i == k
                      // the pivot value is the answer
        return A[q]
   elseif i < k
        return RANDOMIZED-SELECT (A, p, q - 1, i)
   else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
                         // note adjustment to i when recursing on right side
```

Note: In CLRS, they're using a partition that randomly chooses the pivot element. That's why you see "Randomized" in the names here. Ignore that for the moment.

Work These Examples!

- For each of the following calls, show
 - The value of q after each partition,
 - Which recursive calls made
 - 1. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=2)
 - 2. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=5)
 - 3. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=7)

Quickselect Run Time

If the pivot is always the median:

Then we divide in half each time

$$S(n) = S\left(\frac{n}{2}\right) + n$$
$$S(n) = O(n)$$

Quickselect Run Time

If the partition is always unbalanced:

Then we shorten by 1 each time

$$S(n) = S(n-1) + n$$

$$S(n) = O(n^2)$$

Good Pivot for Quickselect

- What makes a good Pivot for Quickselect?
 - Roughly even split between left and right
 - Ideally: median

- Here's what's next:
 - First, median of medians algorithm
 - Finds something close to the median in $\Theta(n)$ time
 - Second, we can prove that when its result used with Quickselect's partition, then Quickselect is guaranteed $\Theta(n)$
 - Because we now have a $\Theta(n)$ way to find the median, this guarantees Quicksort will be $\Theta(n \lg n)$
 - Notes:
 - We have to do all this for every call to Partition in Quicksort
 - We could just use the value returned by median of medians for Quicksort's Partition

Pretty Good Pivot

- What makes a "pretty good" Pivot?
 - Both sides of Pivot >30%

Median of Medians

- Fast way to select a "pretty good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements
 - I.e. it's in the middle 40% (±20% of the true median)
- Idea: break list into chunks, find the median of each chunk, use the median of those medians

- CLRS, pp. 220-221
- https://en.wikipedia.org/wiki/Median of medians

Median of Medians

1. Break list into chunks of size 5

List could be long, many more than 5 chunks!

2. Find the median of each chunk (using insertion sort: n=5, 20 comparisons)

3. Return median of medians (using Quickselect, this algorithm, called recursively, on list of medians)

Why is this good?

Imagine each chunk sorted, chunks ordered by their medians MedianofMedians is Greater than all of these List could be long, so not a small number!

20

Why is this good?

MedianofMedians

is larger than all of these

Larger than 3 things in each (but one) list to the left
Similarly:

Worried about the details of this math? See CLRS p. 221

$$3\left(\frac{1}{2}\cdot\left\lceil\frac{n}{5}\right\rceil-2\right)\approx\frac{3n}{10}-6 \text{ elements } < \square$$

$$3\left(\frac{1}{2}\cdot\left\lceil\frac{n}{5}\right\rceil-2\right)\approx\frac{3n}{10}-6 \text{ elements } > \square$$

Run-time of Quickselect with Median of Medians

- What's the cost S(n) for Quickselect with Median of Medians?
- Divide: select an element p using Median of Medians, Partition(p) $M(n) + \Theta(n)$
- Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right $\leq S\left(\frac{7}{10}n\right)$
- Combine: Nothing!

$$S(n) \le S\left(\frac{7}{10}n\right) + M(n) + \Theta(n)$$

Run-time M(n) for Median of Medians

1. Break list into chunks of 5 $\Theta(n)$

2. Find the median of each chunk $\Theta(n)$

3. Return median of medians (using Quickselect)

$$S\left(\frac{n}{5}\right)$$

$$M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$

Quickselect

$$S(n) \le S\left(\frac{7n}{10}\right) + M(n) + \Theta(n) \qquad M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n)$$

We can show by proof by induction that:

$$S(n) = O(n)$$
 (next two slides)

$$S(n) = \Omega(n)$$

$$\therefore S(n) = \Theta(n)$$

Proof by Induction

$$T(n) = T(n/5) + T(7n/10) + c \cdot n$$

Prove T(n) = O(n)

Claim: $T(n) \leq 10cn$

Base Case: T(0) = 0

 $T(1) = c \le 10c$ which is true since $c \ge 1$

Strictly speaking, we can handle any c>0, but assuming $c\geq 1$ to simplify the analysis here

Proof by Induction

$$T(n) = T(n/5) + T(7n/10) + c \cdot n$$

Inductive hypothesis: $\forall n \leq x_0 : T(n) \leq 10cn$

Inductive step:

$$T(x_0 + 1) = T\left(\frac{1}{5}(x_0 + 1)\right) + T\left(\frac{7}{10}(x_0 + 1)\right) + c(x_0 + 1)$$

$$\leq \left(\frac{1}{5} + \frac{7}{10}\right) 10c(x_0 + 1) + c(x_0 + 1)$$

$$= 9c(x_0 + 1) + c(x_0 + 1) = 10c(x_0 + 1)$$

Compare to 'Obvious' Approach

- An "obvious" approach to Selection Problem:
 - Given list and value i: Sort list, then choose i-th item
 - We've only seen sorting algorithms that are $\Omega(n \log n)$
 - Later we'll show this really is a lower-bound
 - So this approach is $\Theta(n \log n)$
- Therefore Quickselect is asymptotically better than this sorting-based solution for Selection Problem!

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition, we're guaranteed to use true median, so:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$
$$T(n) = \Theta(n\log n)$$

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
- But, this approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Choose random pivot for Quicksort
 - Very small constant (random() is a fast algorithm)
 - Can prove the *expected runtime* is $\Theta(n \log n)$
 - Why? Unbalanced partitions are very unlikely

Sorting, so far

Sorting algorithms we have discussed:

```
- Insertionsort O(n^2)
```

- Mergesort $O(n \log n)$

- Quicksort $O(n \log n)$

Other sorting algorithms (next):

- Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

Mental Stretch

Show
$$\log(n!) = \Theta(n \log n)$$

Hint: show $n! \leq n^n$

Hint 2: show
$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$\log n! = O(n \log n)$

```
n! \le n^n

\Rightarrow \log(n!) \le \log(n^n)

\Rightarrow \log(n!) \le n \log n

\Rightarrow \log(n!) = O(n \log n)
```

$\log n! = \Omega(n \log n)$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2} - 1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\vee \qquad \vee \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \cdot \dots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2} \log \frac{n}{2}$$

$$\Rightarrow \log(n!) = \Omega(n \log n)$$

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
- Non-existence proof!
 - Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$

 There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Sorting, so far

Sorting algorithms we have discussed:

```
- Mergesort O(n \log n) Optimal!
```

- Quicksort $O(n \log n)$ Optimal!

Other sorting algorithms (will discuss):

```
- Bubblesort O(n^2)
```

- Insertionsort $O(n^2)$

- Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

- Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with many computers

Mergesort

- Divide:
 - Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?
No No Yes!
(usually)

Run Time? $\Theta(n \log n)$ Optimal!

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
 - -2 sorted lists (L_1, L_2)
 - -1 output list (L_{out})

```
While (L_1 and L_2 not empty):
```

```
If L_1[0] \le L_2[0]:

L_{out}.append(L_1.pop())
```

Else:

$$L_{out}$$
.append(L_2 .pop())

```
L_{out}.append(L_1)
```

 L_{out} .append(L_2)

Adaptive:

If elements are equal, leftmost comes first

Mergesort

- Divide:
 - Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

Run Time?

 $\Theta(n \log n)$ Optimal!

In Place? Adaptive?
No No

Stable?
Yes!
(usually)

Parallelizable?

Yes!

Mergesort

Divide:

- Break n-element list into two lists of n/2 elements

Parallelizable:
Allow different
machines to work
on each sublist

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

Mergesort (Sequential)

Run Time: $\Theta(n \log n)$

Mergesort (Parallel)

Run Time: $\Theta(\log n)$

Quicksort

- Idea: pick a partition element, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Run Time? $\Theta(n \log n)$ Optimal!
(almost always)

<u>In Place?</u> <u>Adaptive?</u>

Stable?

Parallelizable?

No...

No!

No

Yes!