Building recommendation system

Mohit Gupta, Runzhi Yang

Why recommendation system

Goal

Goal: Guessing 's rating on the movie

Naive Approaches

$$r = \mu + b_i + b_u$$

Prediction = Avg Rating of all movies + how Magic Mike is rated overall + how Yexiang rates movies

= 3.6

=

Cooler approaches

Neighborhood Models

Latent factor Models

Neighborhood method

Users

Movies

Observation - Yexiang and Mohit have similar tastes.

Problem Statement - Figure out Yexiang's rating for an unseen movie (say Inception!)

Method - Take weighted average of rating given by top K similar users.

Similarity Measure - Cosine Distance etc.

Latent Factor Method

We want to capture more information about both the item and user.

Funk SVD

SVD++

Implicit information

$$r_{ui} = \mu + b_i + b_u + q_i^T (p_u + |N(u)|^{-rac{1}{2}} \sum_{j \in N(u)} y_j)$$

R(u)	The Notebook	Magic Mike	Lion King
Yexiang	4	?	2

N(u)	The Notebook	Magic Mike	Lion King
Yexiang	1	0	1

Not very practical

Asymmetric SVD

R(u)	The Notebook	Magic Mike	Lion King
Yexiang	4	?	2

+

Asymmetric SVD Cont.

$$egin{aligned} r_{ui} &= b_{ui} + q_i^T \Big(|R(u)|^{-rac{1}{2}} \sum_{j \in R(u)} (r_{uj} - b_{uj}) x_j \Big) + |N(u)|^{-rac{1}{2}} \sum_{j \in N(u)} y_j \Big) \ b_{ui} &= \mu + b_i + b_u \end{aligned}$$

But how do you get the weights?

What are the results?

MSE	10 Iterations	50 Iterations	100 Iterations	Best Result
Funk SVD	1.01832	0.95265	0.93090	0.90125
SVD++	0.95797	0.90997	0.88431	0.88317
Asymmetric SVD	0.95293	0.91231	0.89169	0.88789

Thank you!