Hartslate Registre d'état

guestion 2

7-Dessiner la FSD 2-Coder les états 3-table de transitions 4-Table de vérité de Mext State 5-Touble de vérité de Output 6-Dessiner les circuits

E0 00 chauffage de l'eau E1 01 : attente de l'input user E2:10 : passage du café E3:11 : plus assez d'eao

Table de transition

Table de virite Hext State

Etat courant			Entrees			Ftat Suivent			
Etat	Qı	Q _o	HW	B	CD	EW	Etat	D	Do
EO	0	0	0	X	X	X	50	0	0
EØ	0	0	1	×	×	X	E1	0	1
E1	0	1	×	0	×	X	E1	0	1
E7	0	1	×	1	×	X	E2	7	0
EZ	1	0	×	×	0	×	EZ	7	0
EL	1	0	×	X	1	Ò	E3	7	7
E2	1	0	1	×	1	7	E7	0	1
EZ	1	0	6	×	1	1	GO	0	0
E3	1	1/	×	×	×	11	EO	0	0
E3	1	1 /	×	×	X	0	E3	7	1
T	1'	, به لم			V	, 1	.) (-11	Į.

Trop d'entre es pour Karnaugh, il faut refléchir

Do = EO HW + E1 B + E2 CD EW + E2 HW CD EW + E3 EW = E0 HW + E1 B + E2 CD (EW HW + EW)

D1= E1 B + E2 CD + E2 CD EW + E3 EW

Jable de virita de Output

Etat	Q,	Qo	HT	B4F	BZF	NB
EO	0	0	1	1	0	0
EI	O	7	0	0	0	1
EL	1	3	O	0	0	6
E3	1	7	0	1 0 0	1	0

 $HT = \overline{Q}_{1} \overline{Q}_{0}$ $B4F = \overline{Q}_{1} \overline{Q}_{0}$ $B2F = Q_{1} Q_{0}$ $MB = \overline{Q}_{1} Q_{0}$

Partie 2

Diviseur de fréquence

On utilise le mode toggle des bas cules JK

2	K	+1	Qn	
x	X	0,1,1	Q _{n-1}	
0	0	7	Q _{1.1}	Niemoire
0	1	^	0	Reset
1	O	4	1	Set
1	1	7	$\overline{\mathbb{Q}_{n-1}}$	Toggle

En reliant la sortie d'une bascule au port clock de la suivante on peut fair un compteur

Pour led Controllor, on suppose que les entrées sont mutuellement exclusives, 2 entrées lou plus) ne peuvent pas être à 1 en nême temps

B4F	B2F	MB	15
1	0	0	cladiv-4 cladiv-2
Ø	7	D	clkdiv_2
0	0	7	7
0	0	0	0

S=B4F. clhdiv4+B2F. clhdiv_2+NB