(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 November 2001 (22.11.2001)

PCT

(10) International Publication Number WO 01/88186 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/IB01/01155

(22) International Filing Date: 21 May 2001 (21.05.2001)

(25) Filing Language:

English

C12Q 1/68

(26) Publication Language:

English

(30) Priority Data: 60/205,237

19 May 2000 (19.05.2000) US

• •

- (71) Applicants (for all designated States except US): IN-STITUT PASTEUR [FR/FR]; 28, rue du Docteur Roux, F-75015 Paris (FR). INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (IN-SERM) [FR/FR]; 101, rue de Tolbiac, F-75013 Paris (FR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TRIEU-CUOT, Patrick [FR/FR]; 20 Rue Léon Blum, F-92260 Fontenay-aux-Roses (FR). POYART, Claire [FR/FR]; 20 Rue Léon Blum, F-92260 Fontenay-aux-Roses (FR).

- (74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/88186 A2

(54) Title: METHODS FOR DETECTING AND IDENTIFYING A GRAM POSITIVE BACTERIA IN A SAMPLE

(57) Abstract: The present invention provides fragments of a sodA gene from gram positive bacteria, methods of using these fragments as probes to detect and identify microorganisms in a sample and kits containing suitable reagents to perform the method.

. 5

10

15

20

1

METHODS FOR DETECTING AND IDENTIFYING A GRAM POSITIVE BACTERIA IN A SAMPLE

FIELD OF THE INVENTION

The invention relates to probes and methods of detecting and identifying microorganisms, particularly gram-positive bacteria, in test samples.

BACKGROUND OF THE INVENTION

Enterococci, although not highly virulent microorganisms, have emerged worldwide in the last decade as one of the leading causes of nosocomial bacteremia, surgical wound infections, and urinary tract infections (9, 10, 13, 24). This evolution is mainly due to the appearance of multiresistant strains of enterococci that can be resistant to most antibiotics used for the treatment (ampicillin, aminoglycosides, and glycopeptides). Most human enterococcal infections (90%) are caused by Enterococcus faecalis and Enterococcus faecium, however, the incidence of other species, such as Enterococcus casseliflavus and Enterococcus gallinarum, could be underestimated because of bacterial mis-identification. In clinical laboratories, accurate identification of enterococcal species is required to carry out a proper epidemiologic surveillance and may help in the management of infected patients in case of relapse. This is usually done by testing tolerance to bile esculine and tellurite, growth in 6.5% NaCl broth, specific carbohydrate utilization (2, 6), by characterizing bacterial motility and pigment production (1), and by using commercial biochemical test systems, such as the API-20 STREP or rapid ID 32 Strep. However, these phenotypic methods are often not reliable and the automated systems, such as the

Vitek and MicroScan systems, do not properly identify enterococci other than E. faecalis and E. faecium in absence of additional tests (11). Consequently, several genotypic methods based on the analysis of PCR products derived from selected target DNA have been developed for species identification of enterococci (3, 14, 22). This includes the determination of the 16S rDNA sequence (18), a strategy which is now greatly facilitated by the use of universal 16S PCR primers associated with the development of simplified, partially automated, and cost effective sequencing technologies. However, the interpretation of these data may be complicated by the fact that divergent 16S rDNA sequences may exist within a single organism (23) or, alternatively, that closely related species may have identical 16S rDNA sequences (8), as recently shown in the genera Enterococcus for E. casseliflavus and E. gallinarum (18). To solve this problem, it is possible to use alternative monocopy target sequences which exhibit a higher divergence than that of the 16S rDNA. The sodA gene of the gram positive cocci which encodes the manganese-dependent superoxide dismutase fulfills these criteria and we recently reported that sequencing of the sodA PCR product with the use of a single pair of degenerate primers constitutes a valuable approach to the genotypic identification of the 29 streptococcal species (20). In this work, the same universal primers (19) were used to construct a sodA database of 19 enterococcal species including E. casseliflavus and E. gallinarum.

20

10

15

SUMMARY OF THE INVENTION

The present invention provides polynucleotides capable of hybridizing specifically to nucleic acids of the sodA gene from gram positive bacteria, methods of

10

15

20

using these polynucleotides as probes to detect and identify microorganisms in a sample, and kits containing suitable reagents to perform the methods.

In particular, the invention provides methods for accurate identification of the species of a gram positive bacteria in a sample comprising providing a sample suspected of containing said gram positive bacteria; hybridizing a specific probe for a sodA gene or a fragment thereof to nucleic acids from said microorganism; and detecting the presence or absence of hybridization. In preferred embodiments, said microorganism is selected from the group consisting of Enterococci, Abiotrophia, Streptococci and Staphylococci. Probes and methods of the invention may preferably relate to the detection of a Enterococci selected from the group consisting of E. avium, E. casseliflavus, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E. pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, and E. sulfureus. In other preferred embodiments, probes and methods of the invention may preferably relate to the detection of a Staphyloccus selected from the group consisting of S. arlettae, S. auricularis, S. capitis subspecies capitis, S. capitis subspecies ureolyticus, S. caprae, S. carnosus subspecies carnosus, S. carnosus subspecies utilis, S. chromogenes, S cohnii subspecies cohnii, S. cohnii subspecies urealyticum, S. condimenti, S. delphini, S epidermidis, S. equorum, S felis, S. gallinarum, S. haemolyticus, S. hominis subspecies hominis, S. hominis subspecies novobiosepticus, S. hyicus, S. intermedius, S. kloosii, S. lentus, S. lugdunensis, S. luntae, S. muscae, S. pasterui, S. piscifermentans, S. pulvereri, S. saccharolyticus, S. saprophyticus subspecies bovis, S. saprophyticus subspecies saprophyticus, S schleiferi subspecies

coagulans, S. schleiferi subspecies schleiferi, S. sciuri subspecies carnaticus, S. sciuri subspecies sciuri, S. simulans, S vitulinus, S. warneri, and S. xylosus.

The present invention also provides polynucleotides specific for a sodA gene for use in hybridization assays for the detection of the presence or absence of gram-5 positive bacteria. In preferred embodiments, the invention provides polynucleotides specific for the sodA_{int} region of the sodA gene, including the polynucleotide probes of SEQ ID NOS 1 to 94, or the complements thereto, or fragments or derivatives thereof. Further provided are DNA chips comprising at least one polynucleotide of the invention. Provided are also polynucleotides or fragments thereof specifically 10 hybridizing to an Enterococcus microorganism, wherein SEQ ID NO:1 is specific for E. avium, SEQ ID NO:2 is specific for E. casseliflavus, SEQ ID NO:3 is specific for E. cecorum, SEQ ID NO:4 is specific for E. columbae, SEQ ID NO:5 is specific for E. dispar, SEQ ID NO:6 is specific for E. durans, SEQ ID NO:7 is specific for E. faecalis, SEQ ID NO:8 is specific for E. faecium, SEQ ID NO:9 is specific for E. flavescens, 15 SEQ ID NO:10 is specific for E. gallinarum, SEQ ID NO:11 is specific for E. hirae, SEQ ID NO:12 is specific for E. malodoratus, SEQ ID NO:13 is specific for E. mundtii, SEQ ID NO:14 is specific for E. pseudoavium, SEQ ID NO:17 is specific for E. raffinosus, SEQ ID NO:15 is specific for E. saccharolyticus, SEQ ID NO:18 is specific for E. seriolicida, SEQ ID NO:16 is specific for E. solitarius, and SEQ ID NO:19 is specific for E. sulfureus. Provided are polynucleotides or fragments thereof 20 specifically hybridizing to a microorganism of the genus Enterococci, wherein SEQ ID NOS:21-36 are specific for species in the *Enterococci*; polynucleotides or fragments thereof specifically hybridizing to a microorganism of the genus Lactococcus garvieae, wherein said polynucleotide is SEQ ID NO: 20; polynucleotides or fragments thereof

15

20

specifically hybridizing to a microorganism of the genus *Streptococcus*, wherein SEQ ID NOS:37-50 are specific for species in the *Streptococci*; polynucleotides or fragments thereof specifically hybridizing to a microorganism of the genus *Abiotrophia*, wherein SEQ ID NOS:51-53 are specific for species in the *Abiotrophia*; and polynucleotides or fragments thereof specifically hybridizing to a microorganism of the genus *Staphlococcus*, wherein SEQ ID NOS:54-93 are specific for species in the *Staphlococcus*.

In particularly preferred embodiments, the invention encompasses methods for the identification of a gram positive bacterial species selected from the group consisting of *Streptococci*, *Staphylococci*, *Abiotrophia* and *Enterococci* comprising (a) selecting a polynucleotide of about 425 to 445 bp comprised between two conservéd domains of SOD gene said polynucleotide having flanking regions consisting in two oligonucleotidic sequences and being specific for the genus or the species to be detected; (b) hybridizing the DNA of the sample with the polynucleotide; (c) washing the hybridized sample; and (d) visualizing the reaction of hybridization with an electric or electronic or calorimetric system.

In preferred embodiments, the methods of the invention comprise hybridizing a probe specific to the $sodA_{int}$ fragment of the sodA gene.

In further preferred embodiments, methods of the invention may comprise amplifying said sodA gene from the microorganism prior to said hybridizing.

Also provided are isolated or purified polynucleotides comprising, consisting essentially of, of consisting of the nucleotide sequence of SEQ ID NOS 1 to 94, and the complements thereof, or fragments thereof. Said polynucleotides may comprise at

10

15

20

least 12, 18, 20, 30, 50, 75, 100, 200, 300, 400, 450 or 500 contiguous nucleotides, to the extent the length of said span in consistent with the length of the SEQ ID, of a nucleotide sequence selected from the group consisting of SEQ ID NOS 1 to 94. Envisioned also are polynucleotides having at least 90% and preferably at least 95%, 97%, 98%, 99%, 99.8% or 99.9% sequence identity with a polynucleotide of SEQ ID NOS 1 to 94, or a fragment thereof. Percent identity can be determined for example electronically, e.g., by using the MegAlign.TM. program (DNASTAR, Inc., Madison Wis.), or default parameters for nucleic acid comparisons in the "gap" program from Genetics Computer Group, Madison Wis. (algorithm of Needleman and Wunsch, J. Mol Biol. 48: 443-453 (1970)). The invention also relates to a kit for the detection of a gram positive bacteria present in a sample containing at least a polynucleotide of SEQ ID NOS 1 to 94. Also encompassed is a 400 bp polynucleotide sequence obtained after amplification of a DNA template from a sample by using a pair of primers SEQ ID NOS:95 and 96, wherein said pair of primers is specific for the SOD gene of a gram positive bacteria. In further embodiments, the polynucleotide is a polynucleotide of about 429bp and specific for a Staphylococi species; a polynucleotide of about 435 and specific for Streptococci species; a polynucleotide of about 438 bp and specific for Enterococci species; or a polynucleotide of about 438 to 441 bp and specific for Abiotrophia species.

The present invention is directed to polynucleotide probes specific for nucleotide sequences of the sodA gene for use in diagnostic methods, preferably hybridization-based assays, for the detection of specific strains of gram positive bacteria in a biological sample. Detection of specific sodA polynucleotides in a eukaryote, particularly a mammal, and especially a human, provides a diagnostic

15

20

method for diagnosis of disease, staging of disease or response of an infectious organism to drugs. In some embodiments, one or multiple probes, or panels of probes comprising probes specific for one or more species of gram positive bacteria, particularly species of *Enterococci*, *Abiotrophia*, *Streptococci* and *Staphylococci*, may be used in assays to detect the presence or absence of said bacteria in samples suspected to be contained in a biological sample.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: Phylogenetic unrooted tree showing the relationships among the sodA_{int} fragments from various enterococcal type strains. The tree was established from an analysis of the sequences listed in Table 1 by using the neighbor-joining method. The sodA_{int} sequences of *L. lactis*, *L. garvieae*, *S. bovis*, *S. pyogenes* type strains were included in this work. The value on each branch is the estimated confidence limit (expressed as a percentage) for the position of the branch as determined by bootstrap analysis. Only the bootstrap values superior to 95%, which were considered as significant, are indicated. The scale bar (NJ distance) represents 10% differences in nucleotide sequences.

Figure 2: An identity matrix based on pairwise comparisons of *sodAint* fragments of enterococcal type strains. The main characteristics of each of the strains listed in Fig. 2 are listed in Table 1.

DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms and any acronyms used herein have the same meanings as commonly understood by one of ordinary skill

10

15

20

in the art in the field of the invention. Although any methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred methods, devices, and materials are described herein.

All patents and publications mentioned herein are incorporated herein by reference to the extent allowed by law for the purpose of describing and disclosing the proteins, enzymes, vectors, host cells, and methodologies reported therein that might be used with the present invention. However, nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

Fragments from sodA genes from a number of Enterococcus species are shown in SEQ ID NOS:1-19 and 21-36, from Lactococcus garvieae is shown in SEQ ID NO:20, from a number of Streptococcus species are shown in SEQ ID NOS:37-50, from a number of Abiotrophia species are shown in SEQ ID NOS:51-53, from a number of Staphlococcus species are shown in SEQ ID NOS:54-93 and from Macrococcus caseolyticus is shown in SEQ ID NO:94.

Microbial specimens for use in this invention can be obtained from any source suspected of harbouring bacteria. The samples are generally dispersed in a measured amount of buffer, though dispersal may be optimal if lysis is immediately possible. This dispersal buffer generally provides a biologically compatible solution. Samples may be frozen or used directly after obtaining.

Prior to analysis, samples suspected of containing bacteria are preferably subjected to a lysing solution to release cellular nucleic acids. Dispersal of the sample prior to lysis is optional. Lysing buffers are known in the art (Ausubel et al (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., 2000). Generally,

10

15

20

these buffers are between pH 7.0 and 8.0, and contain both chelating agents and surfactants. Typically, a lysing solution is a buffered detergent solution having a divalent metal chelator or a buffered chaotrophic salt solution containing a detergent (such as SDS), a reducing agent and a divalent metal chelator (EDTA). The use of enzymes such as N-acetyl-muramidase (lysozyme) or proteases (such as Protease K) will facilitate lysis and offer high quality results.

The sample may be directly immobilized to a support or further processed to extract nucleic acids prior to immobilization. Released or extracted bacterial nucleic acid (including target nucleic acid) are fixed to a solid support, such as cellulose, nylon, nitrocellulose, diazobenzyloxymethyl cellulose, and the like. The immobilized nucleic acid can then be subjected to hybridization conditions.

Alternatively, samples may be collected and dispersed in a lysing solution that also functions as a hybridization solution, such as 3M guanidinium thiocyanate (GuSCN), 50 mM Tris (pH 7.6), 10 mM EDTA, 0.1% sodium dodecylsulfate (SDS), and 1% mercaptoethanol (Maniatis, T. et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1982).

Alternatively, the nucleic acid probes may be immobilized onto solid phase microchips according to methods known in the art and subsequently hybridization with sample nucleic acids can be identified with a microchip reader. This and other solid phase microchip methods are disclosed in Ausebel et al (supra). Detection systems comprising a high-density array library of probes immobilized on a substrate are also known, described in PCT Application No. WO 97 02357 (Affymetrix Inc.), U.S. Patent No. 5,202,231 (Drmanac), U.S. Patent No. 6,228,575 (Affymetrix). Essentially any desired number of probes can be used in said array or microchip; for example at

least 1, 2, 10, 100, 1000 or more nucleic acid probes may be immobilized. Arrays or microchips may also include sets of nucleic acid probes comprising at least 1, 2, 5, 10, 20 or 50 nucleotide sequences of SEQ ID NOS 1 to 94, or fragments, complements and/or derivatives thereof.

Various degrees of stringency of hybridization can be employed. As the conditions for hybridization become more stringent, there must be a greater degree of complementarity between the probe and the target for duplex formation to occur. Stringency conditions for hybridization is a term of art which refers to the conditions of temperature and buffer concentration which permit hybridization of a particular nucleic acid to a second nucleic acid in which the first nucleic acid may be perfectly complementary to the second, or the first and second may share some degree of complementarity which is less than perfect. For example, certain high stringency conditions can be used which distinguish perfectly complementary nucleic acids from those of less complementarity. "High stringency conditions" and "moderate stringency conditions" for nucleic acid hybridizations are explained on pages 2.10.1-2.10.16 (see particularly 2.10.8-11) and pages 6.3.1-6 in Current Protocols in Molecular Biology (Ausubel, F. M. et al., eds., Vol. 1, containing supplements up through Supplement 29, 1995). Hybridization techniques are also generally described in Hames, et al. (eds.), "Nucleic Acid Hybridization, A Practical Approach", IRL Press, New York, 1985. The degree of stringency can be controlled by temperature, ionic strength, pH and the presence of a partially denaturing solvent such as formamide. For example, the stringency of hybridization is conveniently varied by changing the polarity of the reactant solution through manipulation of the concentration of formamide within the range of 0% to 50%. Stringency also depends on factors such as the length of the

5

10

15

10

15

20

nucleic acid sequence, base composition, percent mismatch between hybridizing sequences and the frequency of occurrence of subsets of that sequence within other non-identical sequences. Thus, high or moderate stringency conditions can be determined empirically.

By varying hybridization conditions from a level of stringency at which no hybridization occurs to a level at which hybridization is first observed, conditions which will allow a given sequence to hybridize with the most similar sequences in the sample can be determined. Exemplary conditions are described in Ausubel et al in Current Protocols in Molecular Biology (supra), including descriptions regarding how to determine washing conditions at page 2.10.11. Washing is the step in which conditions are usually set so as to determine a minimum level of complementarity of the hybrids and to eliminate non-hybridizing labelled probe as well as background and non-specific weak interactions. Generally, starting from the lowest temperature at which only homologous hybridization occurs, each degree C by which the final wash temperature is reduced (holding SSC concentration constant) allows an increase by 1% in the maximum extent of mismatching among the sequences that hybridize. Generally, doubling the concentration of SSC results in an increase in $T_{
m m}$ of about 17 C. Using these guidelines, the washing temperature can be determined empirically for high, moderate or low stringency, depending on the level of mismatch sought. For example, conditions may be determined such that hybridization occurs only if there is at least 90% and preferably at least 95%, 97%, 98%, 99%, 99.8% or 99.9% identity between the sequences.

In practicing the present invention, amplification of either the nucleic acid probe or a sodA gene from the microorganism sample may be performed prior to the

10

15

20

hybridization. Examples of amplification techniques include Strand Displacement
Amplification (i.e., SDA, also described in Walker G. T. et al., 1992, Nucleic Acids
Res., 20:1691-1696), the Polymerase Chain Reaction (i.e., PCR), Reverse
Transcription Polymerase Chain Reaction (i.e., RT-PCR), Nucleic Acid SequenceBased Amplification (i.e., NASBA), Self-Sustained Sequence Replication (i.e., 3SR),
and the Ligase Chain Reaction (i.e., LCR). (see, e.g. Innis et al., PCR Protocols, a
Guide to Methods and Applications, eds., Academic Press (1990)).

The primers used to amplify the sample nucleic acids are oligonucleotides of defined sequence selected to hybridize selectively with particular portions of the sodA gene, in particular those that amplify the sodA internal fragment (sodA_{int}). A primer or primer pair may be coupled to a detectable moiety.

Polynucleotides including probes and primers and primer pairs may comprise any suitable detectable moiety. Examples of detectable moieties or labels include fluorescein, which is a standard label used in nucleic acid sequencing systems using laser light as a detection system. Other detectable labels can also be employed, including enzymes, cofactors, enzyme substrates, other fluorophores, chemiluminescent molecules, radio-labels (32P, 35S, 3H, 125I), chemical couplers such as biotin which can be detected with streptavidin-linked enzymes, and epitope tags such as digoxigenin detected using antibodies. Other examples are described in French Patent No. FR-7810975 or by Urdea M. S. et al., 1991, Nucleic Acids Symp. Ser., 24:197-200.or Sanchez-Pescador R., 1988, J. Clin. Microbiol., 26(10):1934-1938. Probes can also be prepared as "capture probes", and are for this purpose immobilized on a substrate in order to capture the target nucleic acid contained in a biological sample. The captured target nucleic acid is subsequently detected with a

10

15

20

second probe, which recognizes a sequence of the target nucleic acid that is different from the sequence recognized by the capture probe.

Polynucleotides may be synthesized by any of several well known methods, including automated solid-phase chemical synthesis using cyano-ethylphosphoramidite precursors. Barone, A. D. et al., Nucleic Acids Research 12, 4051-4060 (1984). Methods of preparing probes and determing the quality of probe compositions is generally well known (see for example U.S. Patent No. 5,994,059). Probes or primers also can be prepared by cleavage of the polynucleotides by restriction enzymes, as described in Sambrook et al. in 1989.

The present invention concerns methods for identification of species by a method which comprises providing a sample suspected of containing a gram positive bacteria, hybridizing a specific probe for a sodA gene or fragment thereof to nucleic acids from the microorganism, and detecting the presence or absence of hybridization. More specifically, the present invention concerns a method for the identification of a gram positive bacterial species selected from the group consisting of *Streptococci*, *Staphlococci*, *Abiotrophia*, and *Enterococci*, wherein the method has the steps of selecting a polynucleotide of 400 to 500 bp comprised between two conserved domains of SOD gene said polynucleotide having flanking regions consisting in two oligonucleotidic sequences and being specific for the genus or the species to be detected; hybridizing the DNA of the sample with the polynucleotide; washing the hybridized sample; visualizing the reaction of hybridization with an electric or electronic or calorimetric system. A polynucleotide of about 425 to 445 bp is particularly preferred.

10

15

20

The present invention also includes diagnostic kits for performing the analysis. These kits can be used to facilitate detection and identification of specific bacterial species in a clinical laboratories. Such kits would include instruction cards and vials containing the various solutions necessary to conduct a nucleic acid hybridization assay. These solutions would include lysing solutions, hybridization solutions, combination lysing and hybridization solutions, and wash solutions. The kits would also include labeled probes. The UP9A probe could be either unlabeled or labeled depending on the assay format. Standard references for comparison of results would also be necessary to provide an easy estimate of bacterial numbers in a given solution. Depending upon the label used additional components may be needed for the kit, e.g. enzyme labels require substrates.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only, and are not intended to be limiting unless otherwise specified.

EXAMPLES

The main characteristics of the bacterial strains used in this study, including the type strains, are listed in Table 1 and 2. Rapid extraction of bacterial genomic DNA was carried out by using the InstaGeneTm Matrix (Bio-Rad, Hercules, CA) on cells collected from 2 ml of an overnight culture. The *sodA* degenerate primers *dl* (5'-CCITAYICITAYGAYGCIYTIGARCC-3') (SEQ ID NO:95) and *d2* (5'-ARRTARTAIGCRTGYTCCCAIACRTC-3') (SEQ ID NO:96) were used to amplify an internal fragment designated sodA_{int} representing approximately 85% of their *sodA* genes. PCRs were performed on a Gene Amp System 9600 instrument (Perkin Elmer

10

15

20

Cetus, Roissy, France) in a final volume of 50 μl containing 250 ng of DNA as template, 0.5 μM of each primer, 200 μM of each dNTP, and 1 U of AmpliTaq Gold DNA polymerase (Perkin Elmer) in a 1X amplification buffer (10 mM Tris-HCI [pH 8.3), 50 mM KCl, 1.5 mM MgCl₂). The PCR mixtures were denatured (3 min at 95 C), then subjected to 30 cycles of amplification (60 s of annealing at 37 C, 60 s of elongation at 72 C, and 30 s of denaturation at 95 C), and 72 C for 7 min for the last elongation cycle. A single DNA fragment corresponding to the expected 480-bp amplification product, sodA_{inb}, was observed in all cases following agarose gel electrophoresis and ethidium bromide staining (data not shown). PCR products were purified on a S-400 Sephadex column (Pharmacia, Uppsala, Sweden) and directly sequenced on both strands with the oligos d1 and d2 by using the ABI-PRISM® big dye terminator sequencing kit on a Genetic ABI-PRISM® 310 Sequencer Analyzer (Perkin Elmer). The cycle sequencing protocol was optimized as follows: the sequencing mixtures were subjected to 40 cycles of amplification consisting of 10 s of denaturation at 96 C, 5 s of annealing at 40 C, and 4 min of elongation at 60 C.

The nucleotide sequences of the $sodA_{int}$ fragments from the type strains of E.

avium, E. casseliflavus, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E.

faecium, E. flavescens, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E.

pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, E.

sulfureus, and Lactococcus garvieae were determined (Table 1). We assumed that the PCR products sequenced were actual $sodA_{int}$ fragments since the corresponding deduced polypeptides all contained the amino acids characteristic of the manganese-dependent superoxide dismutase (16, 17) at the expected positions (data not shown).

Multiple alignment of these $sodA_{int}$ DNA sequences plus those from E. garvieae (Table

1), Lactococcus lactis (19), Streptococcus bovis (20) and Streptococcus pyogenes (20) was carried out by the Clustal X program (12) and an unrooted phylogenetic tree was constructed by the neighbor-joining (NJ) method (21). The sequence of the degenerate oligonucleotides d1 and d2 and alignment gaps were not taken into consideration for calculations. The reliability of the tree nodes was evaluated by calculating the percentage of 1,000 bootstrap resamplings that support each topological element. Only the nodes having a bootstrap value greater than 95% are indicated in Fig. 1 since this critical value could be used to define the monophyly of a clade of related organisms (7). This analysis revealed that, as expected, the members of the genus *Enterococcus*. with the exception of E. seriolicida were clustered within a clade supported by 99.5% of the bootstrap replicates. The sodA_{int} sequences of E. seriolicida and of L. garvieae were almost identical (99.5% of sequence identity) and were clustered with that of L. lactis within a clade supported by 96.3% of the bootstrap confidence (Fig 2 and Fig. 1). These results are consistent with the redesignation of E. seriolicida as L. garvieae (4). The phylogenetic tree representing the enterococcal sodA_{int} sequences (Fig. 1) has the same topology as the NJ tree constructed from the analysis of their 16S rDNA sequences (18). It is worth noting that the $sodA_{int}$ sequences of E. casseliflavus and E. gallinarum type strains displayed 16.9% of sequence divergence, a value similar to the 19.7% of sequence divergence observed between the ddl genes encoding the D-Ala-D-Ala ligases in these species (5). These results do not support the suggestion that E. casseliflavus and E. gallinarum comprise a single species (18). By contrast, the fact that the 16S rDNA (18), the ddl (15), the vanC (3), and the $sodA_{int}$ (Fig. 2) genes of E. casseliflavus and E. flavescens type strains were almost identical (99.9, 99.5%, 96%,

15

10

and 98% of sequence identity, respectively) suggest that they should be associated in a single species.

The phylogenetic tree showed in Fig. 1 revealed the presence of two major clusters within the enterococcal species which we have designated the *faecium* group (E. faecium, E. durans, E. hirae, and E. mundtii) and the avium group (E. avium, E. malodoratus, E. pseudoavium, and E. raffinosus). Within each group, the 16S rDNA sequences exhibited more than 99% of sequence identity (18) whereas the highest percentage of similarity found between two sodA_{int} sequences was 87.9% (Fig. 2). These results confirm that the gene sodA constitutes a more discriminative target sequence than the 16S RNA to differentiate closely related bacterial species.

Fifteen enterococcal isolates were identified by using conventional microbiological tests, ID 32 Strep, and the sodA_{int} systems (Table 2). In all cases, the sodA_{int} sequences of the isolates displayed less than 1.5% of divergence with that of the corresponding type strain. For ten strains (NEM1616, NEM1617, NEM1621, NEM1623, NEM1624, NEM1625, NEM1626, NEM1627, NEM1628, and NEM1630), the two methods gave the same results. Four isolates (NEM1618, NEM1620, NEM1622, AND NEM1629) were identified at the species level with the sodA_{int} system but not with the conventional microbiological tests and the ID 32 Strep system. The remaining isolate NEM1619 was identified with the ID 32 Strep system as E.

hirae but was identified with the sodA_{int} system as E. durans (Table 2). The reliability of the molecular identification of NEM1164 was based on the fact that its sodA_{int} fragment displays 99.5% and 85% of sequence identity with those of the type strains of E. durans and E. hirae, respectively.

18

In conclusion, we have determined the sodA_{int} sequences of the type strains of E. avium, E. casseliflavus/E. flavescens, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E. faecium, E. gallinarum, E. hirae, E. malodoratus, E mundtii, E. pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, and E. sulfureus and demonstrated the usefulness of this database for the species identification of enterococcal isolates. The identification method presented in this study is not accessible to routine clinical microbiology laboratories but it may become the gold-standard technique in reference and large research hospital laboratories for epidemiologic purposes and/or to identify problematic strains.

Other polynucleotide sequences specific for species of *Staphlococci*,

Streptococci and Abiotrophia have also been identified by using the same method.

These sequences correspond to SEQ ID NOS:54-59, SEQ ID NOS:37-58 and SEQ ID NOS:51-53, respectively. Corresponding strains and culture collection designations are set forth in the sequence listing.

TABLE 1. Enterococcal type strains used in this study

		
Strain ^a	Other designation ^b	sodA _{int}
E. avium CIP 103019 T	ATCC 14025	AJ387906
E. casseliflavus CIP 103018 T	ATCC 25788	AJ387907
E. cecorum CIP 103676 T	ATCC 43198	AJ387908
E. columbae CIP 103675 T	ATCC 51263	AJ387909
E. dispar CIP 103646 T	ATCC 51266	AJ387910
E. durans CIP 55.125 T	ATCC 19432	AJ387911
E. faecalis CIP 103015 T	ATCC 19433	AJ387912
E. faecium CIP 103014 T	ATCC 19434	AJ387913
E. flavescens CIP 103525 T	ATCC 49996	AJ387914
E. gallinarum CIP 103013 T	ATCC 49573	AJ387915
E. hirae CIP 53.48 T	ATCC 8043	AJ387916
E. malodoratus CIP 103012 T	ATCC 43197	AJ387917
E. mundtii CIP 103010 T	ATCC 43186	AJ387918
E. pseudoavium CIP 103647 T	ATCC 49372	AJ387919
E. saccharolyticus CIP 103246 T	ATCC 43076	AJ387920
E. solitarius CIP 103330 T	NCTC 12193	AJ387921
E. raffinosus CIP 103329 T	ATCC 49427	AJ387922
E. seriolicida CIP 104369 T	ATCC 49156	AJ387923
E. sulfureus CIP 104373 T	DSM 6905	AJ387924
L. garvieae CIP 102507 T	DSM20684	AJ387925

a CIP, Collection de l'Institut Pasteur.

b ATCC, American Type Culture Collection; DSM, Deutsche Sammlung Von Mikrooganismen; NCTC, National Collection of Type Cultures.

TABLE 2. Identification of various enterococcal strains by sequencing the sodA_{int}

fragment. Relevant characteristics a Bacterial species b Strain . Accession number NEM1616 E. faecalis; vanA E. faecalis (99.5) AJ387927 NEM1617 E. faecalis; vanA E. faecalis (98.6) AJ387928 NEM1618 Enterococcus sp. E. durans (99.3) · AJ387929 NEM1619 E. hirae E. durans (99.5) AJ387930 NEM1620 Enterococcus sp. E. durans (99.1) AJ387931 NEM1621 E. hirae E. hirae (99.8) AJ387932 NEM1622 Enterococcus sp. E. hirae (99.5) AJ387933 NEM1623 E. casseliflavus E. casseliflavus (99.1) AJ387934 NEM1624 E. faecium; vanB E. faecium (99.5) AJ387935 NEM1625 E. faecium; vanA E. faecium (100) AJ387936 NEM1626 E. faecium; vanB E. faecium (99.8) AJ387937 NEM1627 E. faecium; multiply E. faecium (99.8) AJ387938 resistant strain NEM1628 E. faecium; multiply E. faecium (99.8) AJ387939 resistant strain NEM1629 Enterococcus sp. E. gallinarum (98.6) AJ387940 NEM1630 E. avium E. avium (100) AJ387941

Bacterial strains were all clinical isolates from our collection which were identified by using conventional microbiological tests and the ID 32 Strep System (API-bio-Mérieux). Presence of vanA (NEM1616, NEM1617, and NEM1625) and vanB (NEM1624 and NEM1626) was determined by PCR with specific primers (3).

b The species identification was based on the phylogenic position of the $sodA_{int}$ fragment of the strain studied relative to those of the type strains, as shown in Fig.1. The number in parentheses indicates the percentage of identity of the $sodA_{int}$ fragment with that of the corresponding type strains.

REFERENCES

The following references are referred to by number in the specification of the present application. Other references are included in the body of the specification.

- Cartwright, C. P., F. Stock, G. A. Fable, and V. J. Gill. 1995. Comparison of pigment production and motility tests with PCR for reliable identification of intrinsically vancomycin-resistant enterococci. J. Clin. Microbiol. 33:1931-.1933.
- Devriese, L. A., B. Pot, K. Kersters, S. Lauwers, and F. Haesebrouck.
 1996. Acidification of methyl-alpha-D-glucopyranoside: a useful test to differentiate Enterococcus casseliflavus and Enterococcus gallinarum from Enterococcus faecium species group and from Enterococcus faecalis. J. Clin. Microbiol. 34:2607-2608.
- Dutka-Malen, S., S. Evers, and P. Courvalin. 1995. Detection of
 glycopeptide resistance genotypes and identification to the species level of
 clinically relevant enterococci by PCR. J. Clin. Microbiol. 33:1434.
 - Eldar, A., C. Ghittino, L. Asanta, E. Bozzetta, M. Goria, M. Prearo, and
 H. Bercovier. 1996. Enterococcus seriolicida is a junior synonym of
 Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis
 in fish. Curr. Microbiol. 32:85-88.
 - Evers, S., B. Casadewall, M. Charles, S. Dutka-Malen, M. Galimand, and
 P. Courvalin. 1996. Evolution of structure and substrate specificity in Dalanine: D-alanine ligases and related enzymes. J. Mol. Evol. 42:706-712.

- Facklam, R. R., and M. D. Collins. 1989. Identification of Enterococcus
 species isolated from human infections by a conventional test scheme. J. Clin.
 Microbiol. 27:731-734.
- 7. Felsenstein, J. 1985. Confidence limits on phylogeny and approach using the boostrap. Evolution 39:783-791,
 - 8. Fox, G. E., J. D. Wisotzkey, and P. Jurtshuk, Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166-170.
- 9. **Hunt, C. P.** 1998. The emergence of enterococci as a cause of nosocomial infection. Br. J. Biomed. Sci. 55:149-156.
 - 10. Huycke, M. M., D. F. Sahm, and M. S. Gilmore. 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future.

 Emerg. Infect. Dis. 4:239-249.
- Iwen, P. C., D. M. Kelly, J. Linder, and S. H. Hinrichs. 1996. Revised
 approach for identification and detection of ampicillin and vancomycin resistance in *Enterococcus* species by using MicroScan panels. J. Clin. Microbiol. 34:1779-1783.
 - Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins, and T. J.
 Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem.
 Sci. 23:403-405.
 - Moellering, R. C., Jr. 1998. Vancomycin-resistant enterococci. Clin. Infect.
 Dis. 26:1196-1199.

18.

- 14. Monstein, H. J., M. Quednau, A. Samuelsson, S. Ahrne, B. Isaksson, and J. Jonasson. 1998. Division of the genus Enterococcus into species groups using PCR-based molecular typing methods. Microbiology 144:1171-1179.
- 15. Navarro, F., and P. Courvalin. 1994. Analysis of genes encoding D-alanine-5 D-alanine ligase-related enzymes in Enterococcus casseliflavas and Enterococcus flavescens. Antimicrob. Agents Chemother. 38:1788-1793.
 - Parker, M. W., and C. C. F. Balke. 1988. Crystal structure of manganese 16. superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution, J. Mol. Biol. 199:649-661.
- 10 17. Parker, M. W., and C. C. F. Blake. 1988. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229:377-382.
- Patel, R., K. E. Piper, M. S. Rouse, J. M. Steckelberg, J. R. Uhl, P. Kohnerg M. K. Hopkins, F. R. Cockerill, 3rd, and B. C. Kline. 1998. 15 Determination of 16S rRNA sequences of enterococci and application to species identification of nonmotile Enterococcus gallinarum isolates. J. Clin. Microbiol. 36:3399-3407.
- 19. Poyart, C., P. Berche, and P. Trieu-Cuot. 1995. Characterization of superoxide dismutase genes from Gram-positive bacteria by polymerase chain 20 reaction using degenerate primers, FEMS Microbiol. Lett. 131:41-45.
 - 20. Poyart, C., G. Quesne, S. Coulon, P. Berche, and P. Trieu-Cuot. 1998. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J. Clin. Microbiol. 36:41-47.

- 21. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
- 22. Tyrrell, G. J., R. N. Bethune, B. Willey, and D. E. Low. 1997. Species identification of enterococci via intergenic ribosomal PCR. J. Clin. Microbiol. 35:1054-1060.
- Ueda, K., T. Seki, T. Kudo, T. Yoshida, and M. Kataoka. 1999. Two
 distinct mechanisms cause heterogeneity of 16S rRNA. J. Bacteriol. 181:78 82.
- Woodford, N. 1998. Glycopeptide-resistant enterococci: a decade of experience. J. Med. Microbiol. 47:849-862.

CLAIMS

1. A method for accurate identification of the species of a gram positive bacteria in a sample comprising

providing a sample suspected of containing said gram positive bacteria;

hybridizing a specific probe for a *sodA* gene or a fragment thereof to nucleic acids from said microorganism; and

detecting the presence or absence of hybridization.

- The method according to claim 1, further comprising amplification of said
 sodA gene from the microorganism prior to said hybridizing.
 - 3. The method according to claim 1, wherein said microorganism is selected from the group consisting of *Enterococci*, *Abiotrophia*, *Streptococci* and *Staphylococci*.

15

20

4. The method according to claim 3, wherein said microorganism is an Enterococci and is selected from the group consisting of E. avium, E. casseliflavus, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E. pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, and E. sulfureus

- 5. The method of claim 1, wherein said specific probe is selected from the group consisting of SEQ ID NOS:1-94.
- The method according to claim 3, wherein said microorganisms is a
 Staphyloccus and is selected from the group consisting of S. arlettae, S. auricularis, S. capitis subspecies capitis, S. capitis subspecies ureolyticus, S. caprae, S. carnosus subspecies carnosus, S. carnosus subspecies utilis, S. chromogenes, S cohnii subspecies cohnii, S. cohnii subspecies urealyticum, S. condimenti, S. delphini, S epidermidis, S. equorum, S felis, S. gallinarum, S. haemolyticus, S. hominis subspecies hominis, S. hominis subspecies novobiosepticus, S. hyicus, S. intermedius, S. kloosii, S. lentus, S. lugdunensis, S. luntae, S. muscae, S. pasterui, S. piscifermentans, S. pulvereri, S. saccharolyticus, S. saprophyticus subspecies bovis, S. saprophyticus subspecies saprophyticus, S schleiferi subspecies coagulans, S. schleiferi subspecies schleiferi, S. sciuri subspecies carnaticus, S. sciuri subspecies sciuri, S. simulans, S
 vitulinus, S. warneri, and S. xylosus.
- A polynucleotide specifically hybridizing to an Enterococcus microorganism, wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of: SEQ ID NO:1 specific for E. avium, SEQ ID NO:2
 specific for E. casseliflavus, SEQ ID NO:3 specific for E. cecorum, SEQ ID NO:4 specific for E. columbae, SEQ ID NO:5 specific for E. dispar, SEQ ID NO:6 specific for E. durans, SEQ ID NO:7 specific for E. faecalis, SEQ ID NO:8 specific for E. faecium, SEQ ID NO:9 specific for E. flavescens, SEQ ID NO:10 specific for E.

gallinarum, SEQ ID NO:11 specific for E. hirae, SEQ ID NO:12 specific for E. malodoratus, SEQ ID NO:13 specific for E. mundtii, SEQ ID NO:14 specific for E. pseudoavium, SEQ ID NO:17 specific for E. raffinosus, SEQ ID NO:15 specific for E. saccharolyticus, SEQ ID NO:18 specific for E. seriolicida, SEQ ID NO:16 specific for E. solitarius, and SEQ ID NO:19 specific for E. sulfureus, and fragments thereof.

- 8. A polynucleotide specifically hybridizing to a microorganism of the genus *Enterococci*, wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS:21-36 specific for species in the *Enterococci*, and fragments thereof.
- 9. A polynucleotide specifically hybridizing to a microorganism of the genus Lactococcus garvieae, wherein said polynucleotide comprises a nucleotide sequence of SEQ ID NO: 20, or a fragment thereof.

15

10

10. A polynucleotide specifically hybridizing to a microorganism of the genus *Streptococcus*, wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS:37-50 specific for species in the *Streptococci*, and fragments thereof.

20

11. A polynucleotide specifically hybridizing to a microorganism of the genus Abiotrophia, wherein said polynucleotide comprises a nucleotide sequence selected

from the group consisting of SEQ ID NOS:51-53 specific for species in the *Abiotrophia*, and fragments thereof.

- 12. A polynucleotide specifically hybridizing to a microorganism of the genus
 Staphlococcus, wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS:54-93 specific for species in the
 Staphlococcus, and fragments thereof.
- 13. A DNA chip comprising at least one polynucleotide or a fragment thereof according to claims 7, 8, 9, 10, 11, or 12.
 - 14. The method according to claim 1, wherein said fragment of sodA is $sodA_{int}$.
- 15. A method for the identification of a gram positive bacterial species selected from the group consisting of *Streptococci*, *Staphylococci*, *Abiotrophia* and *Enterococci* comprising

selecting a polynucleotide of about 425 to 445 bp comprised between two conserved domains of SOD gene said polynucleotide having flanking regions consisting in two oligonucleotidic sequences and being specific for the genus or the species to be detected;

hybridizing the DNA of the sample with the polynucleotide;

washing the hybridized sample;

visualizing the reaction of hybridization with an electric or electronic or calorimetric system.

- 16. A kit for the detection of a gram positive bacteria present in a sample containing at least a polynucleotide of SEQ ID NOS: 1-94.
 - 17. A 400 bp polynucleotide sequence obtained after amplification of a DNA template from a sample by using a pair of primers SEQ ID NOS:95 and 96, wherein said pair of primers is specific for the SOD gene of a gram positive bacteria.
 - 18. The method of Claim 15, wherein the polynucleotide is about 429bp and is specific for a *Staphylococi* species.
- 19. The method of Claim 15, wherein the polynucleotide is about 435 and is specific for *Streptococci* species.
 - 20. The method of Claim 15, wherein the polynucleotide is about 438 bp and is specific for *Enterococci* species.
 - 21. The method of Claim 15, wherein the polynucleotide is about 438 to 441 bp and is specific for Abiotrophia species.

1/2

FIGURE 1

0.1

2/2

FIGURE 2

E. cavium							·		%	of ide	% of identity with:	ith:	•						
74.0 67.4 71.9 70.3 70.3 73.7 69.9 74.2 75.1 75.6 71.0 80.1 72.6 74.0 85.4 87.9 60.7 85.4 70.8 72.6 72.4 77.9 72.4 99.5 83.1 78.5 77.4 71.5 73.5 74.0 76.7 76.7 66.4 78.8 72.6 65.9 67.4 70.3 64.2 65.5 71.7 65.8 67.6 66.0 62.8 69.4 68.9 71.7 69.2 70.8 72.6 73.1 68.7 69.6 72.1 72.8 73.3 71.9 67.1 70.3 77.4 68.7 72.8 72.1 73.5 72.8 70.5 71.0 69.4 72.1 70.3 62.6 73.1 81.3 72.4 76.3 84.9 80.1 69.6 72.8 70.5 71.5 73.3 62.1 72.6 78.3 77.6 77.9 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 71.9 62.1 83.1 72.4 77.2 83.1 81.7 67.4 77.2 72.1 72.8 74.4 77.2 76.9 65.8 10.9 71.0 72.4 72.1 72.8 72.1 72.1 72.8 72.1 72.1 72.8 72.1 72.1 72.1 72.1 72.1 72.1 72.1 72.1	Strain	2	3	4	5	9	7	∞	6	51		12	13	1. 14	15	16	17	18	19
158	1 E. avium	74.0	67.4		70.3	70.3	73.7	6.69	74.2	75.1	75.6	71.0	80.1	72.6	74.0	85.4	87.9	60.7	67.1
78.8 72.4 6\$\text{6}\to 68.7 66.2 66.9 67.4 70.3 \$44.2 65.5 71.7 65.8 67.6 66.0 62.8 69.4 68.9 71.7 69.2 70.8 72.6 73.1 68.7 69.6 72.1 72.8 73.3 71.9 67.1 70.3 77.4 68.7 72.8 72.1 73.5 72.8 70.5 71.0 69.4 72.1 70.3 62.6 73.1 81.3 72.4 76.3 84.9 80.1 69.6 72.8 70.5 71.5 73.3 62.1 72.6 78.3 77.6 77.9 72.4 71.2 78.8 73.5 77.9 75.1 67.1 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 71.9 62.1 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 99.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 99.1 78.3 77.2 72.1 72.8 77.4 75.1 65.2 65.8 99.1 78.3 77.4 75.1 65.2 87.8 78.8 78.5 77.4 75.1 65.2 87.8 78.8 78.8 78.8 78.8 78.8 78.8 78	2 E. casseliflavus		66.4		72.6	72.4	77.9	72.4	99.5	83.1	78.5	77.4	71.5	73.5	74.0	76.7	76.7	66.4	75.6
69.4 68.9 71.7 69.2 70.8 72.6 73.1 68.7 69.6 72.1 72.8 73.3 71.9 67.1 70.3 77.4 68.7 72.8 72.1 73.5 72.8 70.5 71.0 69.4 72.1 70.3 62.6 73.1 81.3 72.4 76.3 84.9 80.1 69.6 72.8 70.5 71.5 73.3 62.1 72.6 78.3 77.6 77.9 72.4 71.2 78.8 73.5 77.9 75.1 67.1 72.6 78.3 77.2 77.2 72.1 72.8 73.3 77.2 77.9 75.1 67.1 72.4 77.2 83.1 81.7 67.4 72.2 83.1 81.7 67.4 72.6 69.4 77.2 76.9 65.8 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 84.8 73.3 76.0 73.5 77.4 75.1 62.2 87.8 64.8 74.8 74.8 74.8 74.8 74.8 74.8 74.8 7	3 E. cecorum			78.8	72.4	$6\dot{6}.0$	68.7	66.2	6.99	67.4	70.3	64.2	65.5	711.7	65.8	9.79	0.99	62.8	68.7
70.3 77.4 68.7 72.8 72.1 73.5 72.8 70.5 71.0 694 72.1 70.3 62.6 73.8 70.5 71.5 73.3 62.1 72.6 78.3 77.6 77.9 72.4 71.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 83.1 78.3 77.2 72.1 72.8 74.4 77.2 75.9 65.8 83.1 78.5 73.3 76.0 73.5 77.4 75.1 66.2 83.6 71.5 73.3 73.5 77.4 75.1 66.2 83.6 71.5 73.3 73.5 77.4 75.1 66.2 83.6 71.5 73.3 73.5 77.4 75.1 66.2 83.6 71.5 73.3 73.5 77.4 75.1 62.3 70.8 69.4 69.6 71.9 73.5 63.5 70.8 69.4 69.6 71.9 73.5 63.5 70.8 69.4 69.6 71.9 73.5 63.5 70.8 63.8 69.4 69.6 71.9 73.5 63.5 70.8 63.8 63.8 69.4 69.6 71.9 73.5 63.5 70.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63	4 E. colombae				69.4	689	71.7	69.2	70.8	72.6	73.1	68.7	9.69	72.1	72.8	73.3	71.9	67.1	69.2
73.1 81.3 72.4 76.3 84.9 80.1 69.6 72.8 70.5 71.5 73.3 62.1 72.6 78.3 77.6 77.9 72.4 71.2 78.8 73.5 77.9 75.1 67.1 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 83.1 mm 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 83.1 78.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 66.2 83.5 77.4 75.1 70.8 69.4 69.6 71.9 73.5 63.5 77.4 75.1 70.8 69.4 69.6 71.9 73.5 63.5 77.4 75.1 77.0 62.1 77.0 75.0 75.0 75.1 77.0 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.1 75.1 75.1 75.1 75.1 75.1 75.1	5 E. dispar					70.3	77.4	68.7	72.8	72.1	73.5	72.8	70.5	71.0	69.4	72.1	70.3	62.6	74.9
72.6 78.3 77.6 77.9 72.4 71.2 78.8 73.5 77.9 75.1 67.1 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 80.8 78.5 73.3 76.0 73.5 77.4 75.1 66.2 81.6 71.5 73.3 73.5 77.4 75.1 66.2 81.6 71.5 73.3 73.5 77.4 75.1 65.2 81.6 81.6 71.5 73.3 73.5 77.4 75.1 65.2 81.6 81.6 73.5 77.4 75.1 75.1 62.8 9ticus um um um um viiicus us us us 42.4 75.1 71.0 62.1 72.8 64.8 64.8 64.8 75.1 71.0 62.1 72.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64	6 E. durans						73.1	81.3	72.4	76.3	84.9	80.1	9.69	72.8	70.5	71.5	73.3	62.1	73.7
72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 83.1 78.5 73.3 76.0 73.5 77.4 75.1 66.2 83.6 71.5 73.3 73.5 77.4 75.1 66.2 83.6 71.5 73.3 73.5 77.4 75.1 65.2 81.6 83.6 71.5 73.3 73.5 77.4 75.1 63.5 70.8 69.4 69.6 71.9 73.5 63.9 70.8 69.4 69.6 71.9 73.5 63.9 70.8 69.4 69.6 71.9 73.5 63.9 70.8 69.4 69.6 71.9 73.5 63.9 70.8 63.8 70.8 70.8 70.8 69.2 81.7 80.4 62.8 70.8 70.8 69.8 70.8 70.8 63.8 70.8 70.8 70.8 63.8 70.8 70.8 70.8 63.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70	7 E. faecalis							72.6	78.3	77.6	77.9	72.4	71.2	78.8	73.5	77.9	75.1	67.1	76.5
83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 80.8 78.5 73.3 76.0 73.5 77.4 75.1 66.2. 83.6 71.5 73.3 73.5 77.4 76.7 63.5 70.8 69.4 69.6 71.9 73.5 63.9 vticus vticus tus 83.1 78.3 77.2 72.1 75.1 66.2. 83.6 71.5 73.3 73.5 77.4 76.7 63.5 70.8 69.4 69.6 71.9 73.5 63.9 70.8 69.2 81.7 80.4 62.8 72.4 75.1 71.0 62.1 74.2 72.8 64.8 81.9 63.5	8 E. faecium								72.4	77.2	83.1	81.7	67.4	72.6	69.4	71.9	71.9	62.1	72.1
80.8 78.5 73.3 76.0 73.5 77.4 75.1 66.2. 83.6 71.5 73.3 73.5 77.4 76.7 63.5 70.8 69.4 69.6 71.9 73.5 63.9 71.0 69.2 81.7 80.4 62.8 71.0 62.1 72.4 75.1 71.0 62.1 72.4 75.1 71.0 62.1 72.4 75.1 71.0 62.1 72.4 75.1 71.0 62.1 72.4 75.1 71.0 62.1 72.4 75.1 71.0 62.1	9 E. flavescens									83.1	78.3	77.2	72.1	72.8	74.4	77.2	76.9	65.8	74.9
83.6 71.5 73.3 73.5 77.4 76.7 63.5 1011 1012 1018 1019 1019 1028 1039 1040 105 105 1062 119 110 1062 11 110 1062 11 110 110	10 E. gallinarum									•	80.8	78.5	73.3	76.0	73.5	77.4	75.1	66.2	7.97
10.8 69.4 69.6 71.9 73.5 63.9 71.0 mm 70.5 69.2 81.7 80.4 62.8 71.0 62.1 72.4 75.1 71.0 62.1 74.2 72.8 64.8 87.9 63.5 87.9 63.5 87.9 63.5	11 E. hirae											83.6	71.5	73.3	73.5	77.4	76.7	63.5	75.3
um 70.5 69.2 81.7 80.4 62.8 72.4 75.1 71.0 62.1 74.2 72.8 64.8 87.9 63.5	12 E. mundtii												70.8	69,4	9.69	71.9	73.5	63.9	74.4
72.4 75.1 71.0 62.1 74.2 72.8 64.8 tus 47.2 72.8 64.8 64.6	13 E. pseudoavium													70.5	69.2	81.7	80.4	62.8	65.3
74.2 72.8 64.8 87.9 63.5 87.9 63.5 84.6	14 E. saccharolyticu	5												-	72.4	75.1	71.0	62.1	7.97
tus 87.9 63.5 64.6	15 E. solitarius															74.2	72.8	64.8	72.1
1	16 E. malodoratus																87.9	63.5	70.5
	17 E. raffinosus																	64.6	67.6
	18 E. seriolicida																		61.6
	19 E. sulfureus	į																	•

SEQUENCE LISTING

<110> Institut PASTEUR Institut National de la Santé et de la Recherche Medicale INSERM	
<120> Method for detecting and identifying a gram positive bacteria in a sam	pl
<130> D19553	
<150> US 60/205,237 <151> 2000-05-19	
<160> 96	
<170> PatentIn version 3.0	
<210> 1 <211> 438 <212> DNA <213> Enterococcus avium	
<220> <223> CIP 103019 T (ATCC 14025)	
<400> 1 tatatcgatg ttgaaacgat gcatttgcat catgacaaac accataacac ttatgtaaca 60	
aatttaaatg ctgcgattga aaaatatccg gaattagaag aacagtcaat tgaagagcta 120	
atgaaaaact taaatgaagt tootgaggac attogtacgg otgtacgtaa taacggogge 180	
ggacatgcta accacagctt cttctggaaa attatggctc caaatgctgg tggtgaacct 240	
acaggcgcga ttaaggacgc aattgatcaa gcatttggca gctttgaaaa aatgaaggaa 300	
gaattcaaga ctgcagcaac tggtcgtttt ggttctggct gggcatggtt agtattgaac 360	
aatggaaaat tagaaattac ttctactgca aatcaagaca gcccattaac tgatggaaaa 420	
acaccgatca ttggctta . 438	
<210> 2 <211> 438 <212> DNA <213> Enterococcus casseliflavus	
<220> <223> CIP 103018 T (ATCC 25788)	
<400> 2 tatattgatg aagaaacgat gcatttgcat catgataaac accacaacac ttatgtaaca 60	
aacttaaatg cagcgattga aaaacatcct gaattaggtg aaaaaacagt tgaagaatta 120	
ttagcagact tttcttctgt acctgaagat attcaaacag cggttcgcaa caatggcggc 180	
ggccatgcta accacacgtt cttctgggaa atcttaggcc caaatgctgg tggcgaacct 240	
actggggcaa tcaaagaggc aattgaagaa acattcggca gctttgaaga ctttaaagaa 300	

	gaatttaaaa	ctgctgcaac tgga	cgtttt	ggttcaggtt	gggcatggtt	agtcgttaaa	360
	gacggtaaac	tagcagtcac ttca	acagcg	aatcaagatt	caccattgat	ggatggtcaa	420
	acacctgttt	taggttta					438
	<210> 3 <211> 438						
	<212> DNA						
	<213> Ent	erococcus. Cecor	um				
	<220> <223> CIP	103676 T (ATCC	43198)				
	<400> 3	aagaaagaat goat	at sast	00+00-00-			
		aagaaacaat gcat					60
		cggctttaga aaaa					120
	ttagctggta	tcaatgaagt gcct	gctgat	attcgccaag	ctgttattaa	taatggtggt	180
	ggacacgcaa	accattcatt cttc	tggaaa	attatgacgc	caaacggtca	aggtgcgcct	240
	gtgggtgaat	taaaagctgc tatto	gacgaa	acttttggta	gcttcgatga	attcaaggca	300
	caatttaaag	ctgctgcggc tagto	cgtttt	ggttcaggtt	gggcttggtt	agttgtcgac	360
	aatggtaaat	tagctattat ttcta	actgcg	aaccaagatt	caccattaat	ggaaggcaaa	420
i	acaccagttg	ttgggctt					438
	<210> 4						
	<211> 438 <212> DNA						
<	<213> Ente	rococcus columba	ae				
	<220> <223> CIP	103675 T (ATCC 5	51263)				
	<400> 4						
		aagaaacaat gcato					60
ā	aatttaaatg	ctgcaattga aaaac	atcca (gaatttggta	ccaagacagt	tgaagaatta	120
Č	gtggctgcaa	ttaatgaagt gccto	gaagat a	attcgtacgg	ctgtccgtaa	caatggtggt	180
ç	gtcatgcga	accattcatt cttct	ggaaa a	attatgtctc	caaatggtgg	cggtgaacca	240
Ċ	gttggtgaat	taaaagctgc cattg	raagaa q	gcttttggta	gctttgatga	atttaaggct	300
C	aatttaaag	cagcagcagc agctc	gcttt g	ggctctggct	gggcatggtt	agtagtcgat	360
а	acggtaaat	tagcaattat ttcaa	cagca a	aaccaagata	atccattaat	ggaaggtaaa	420
9	tacctgtcg	ttggctta					438

<210> <211> <212> <213>	5 438 DNA Ent	erococcus d	ienar				
1220			ropur				
<220> <223>	CIP	103646 Т (2	ATCC 51266)	. *			
<400> tatatoo	5 jacg	tggagacaat	gcacttacac	cacgataaac	atcacaacac	atatgtaaca	60
aatttaa	acg	ctgctttgga	aaaatatcct	gaactagcag	aaaaaagtgt	ggaagaatta	120
attgcct	ata	tggatgaaat	tcctgctgat	attcgtactg	ctgttcaaaa	taatggtggt	180
ggacato	gcaa	accatacatt	cttttgggaa	attatggcac	caaatgctgg	tggaacgcca	240
actggag	ctt	taaaggatgc	tattgacgaa	acattiggti	cttttgaaga	tttcaaaagt	300
gaatttä	aaa	ctgctgcgac	aggacgtttc	ggttctggtt	gggcatggtt	agtggtaaat	360
aacġgta	aat	tatctatcat	gťcaactgcg	aaccaagatt	caccattaat	ggaaggcaaa	420
actccca	tta	tcggttta					438
			:				
<210> <211> <212> <213>	6 438 DNA	·		•			
<220>	Ente	erococcus di	ırans				
<223>		2rococcus du 55.125 T (1					
<400>	CIP	55.125 T (A	ATCC 19432)	catgacaaac	accataatac	ttatgttaca	60
<400> tatatco	CIP 6 jatg	55.125 T (?	ATCC 19432) gcacttgcat			ttatgttaca ggaagaattg	60 120
<400> tatatcg	CIP 6 gatg	55.125 T (Page 12 aagaaacgat cagctattga	ATCC 19432) gcacttgcat aaagtatcca		aaaaatcagt	ggaagaattg	
<400> tatatco aatttaa ctttcto	CIP 6 satg sacg	55.125 T (A	ATCC 19432) gcacttgcat aaagtatcca tcctactgat	gaattaggcg	aaaaatcagt	ggaagaattg caatggcggt	120
<400> tatatcg aatttaa ctttctg ggacatg	CIP 6 satg acg ata	55.125 T (Aaagaaacgat cagctattga tggacgcgat accattcatt	ATCC 19432) gcacttgcat aaagtatcca tcctactgat tttctggaaa	gaattaggcg attaagacag	aaaaatcagt cggtacaaaa ctaatgcagg	ggaagaattg caatggcggt tggcgaacca	120 180
<400> tatatcg aatttaa ctttctg ggacatg acaggcg	CIP 6 gatg acg gata gcaa	55.125 T (An aagaaacgat cagctattga tggacgcgat accattcatt tcaaagaagc	ATCC 19432) gcacttgcat aaagtatcca tcctactgat tttctggaaa gattgatgaa	gaattaggcg attaagacag atcatggcac	aaaaatcagt cggtacaaaa ctaatgcagg atttcgcaac	ggaagaattg caatggcggt tggcgaacca attcaaagaa	120 180 240
<400> tatatcg aatttaa ctttctg ggacatg acaggcg gagttca	CIP 6 satg acg ata caa aaa	55.125 T (An aagaaacgat cagctattga tggacgcgat accattcatt tcaaagaagc aagcggctgc	qcacttgcat aaagtatcca tcctactgat tttctggaaa gattgatgaa cggacgcttt	gaattaggcg attaagacag atcatggcac gcttttggtg	aaaaatcagt cggtacaaaa ctaatgcagg atttcgcaac gggcatggtt	ggaagaattg caatggcggt tggcgaacca attcaaagaa agtattggaa	120 180 240 300

<210> 7 <211> 438 <212> DNA <213> Enterococcus faecalis

<220> <223> CIP 103015 T (ATCC 19433)	
<400> 7	
tacattgacg tggaaacaat gcacttacac catgataaac accacaacac ttatgtgact	60
aacttaaacg cagcgattga aaaacatcca gaattaggcg aaaaatctgt agaagaccta	120
atttcagata tgaatgctat tcctgaagat atccgtacag ccgttcgtaa caatggtggc	180
ggtcacgcaa accaaacatt cttctgggaa attatggcac caaatgctgg tggacaacca	240
actggcgcta ttaaagaagc aatcgatgaa acatttggta gctttgatga aatgaaagct	300
gctttcaaaa cagctgcaac tggccgcttt ggttcaggtt gggcttggtt agttgtgaat	360
aacggtaaat tagaaatcac ttcaacacca aaccaagatt caccattaat ggatggccaa	420
acacctgttt taggtctt	438
<210> 8	
<211> 438 <212> DNA	
<213> Enterococcus faecium	
<220>	
<223> CIP 103014 T (ATCC 19434)	
<400> 8	
tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg	60
aatttaaatt cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta	120
ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc	180
ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct	240
acaggagaaa taaaagaagc gattaatgaa gcttttggtg atttttcttc ttttaaagaa	300
gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa	360
aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag	420
acaccaattc taggtttg	438
<210> 9	
<211> 438	
(212) DNA	
(213) Enterococcus flavescens	
220> 223> CIP 103525 T (ATCC 49996)	
3400> 9	
atattgatg aagaaacgat gcatttgcat catgataaac accacaacac ttatgtaaca	60
acttaaatg cagcgattga aaaacatcct gaattaggtg aaaaaaaagt tgaagaatta	120

ttagcagact	tttcttctgt	acctgaagat	attcaaacag	cggttcgcaa	caatggcggc	180
ggccatgcta	a accacacgtt	cttctgggaa	atcttaggcc	caaatgctgg	tggcgaacct	240
actggggcaa	tcaaagaggc	aattgaagaa	acattcggca	gctttgaaga	ctttaaagaa	300
gaatttaaaa	ctgctgcaac	tggacgtttt	ggttcaggtt	gggcatggtt	agtcgttaaa	360
gacggtaaad	tagcaatcac	ttcaacagcg	aatcaagatt	caccattgat	ggatggtcaa	420
acacctgttt	: taggttta					438
<210> 10 <211> 438 <212> DNA <213> Ent		allinarum				
<220>		,		•		•
	9 103013 Т (2	ATCC 49573)		•		
<400> 10 tacattgato	aagaaacgat	gcatttgcat	catgacaagc	atcacaatac	ttacgtcaca	60
aatttgaatg	cagcaattga	aaaacatcct	gaattaggtg	aaaaatcagt	tgaagaatta	120
cttgctgatt	ttgattcggt	tcctgaagac	atcaaaacag	ctgtccgtaa	taacggtggt	180
ggtcatgcaa	atcacagett	tttctgggaa	atcttggcac	caaatgctgg	tggtgaacca	240
acaggagcca	tcaaagaagc	catcgaagaa	acatttggca	gctttgctga	tttcaaagaa	300
gaattcaaaa	cagcagcaac	tggccgcttt	ggttctggct	gggcttggtt	agtcatcaaa	360
gatggtaaat	tagcgatcac	ttccactgcg	aaccaagatt	caccattaat	ggatggtcaa	420
acgccagttt	taggttta					438
<210> 11 <211> 438 <212> DNA <213> Ent		.rae				
<220>					•	
<223> CIP	53.48 T (AT	CC 8043)	•			
<400> 11 tatatcgatg	aagaaacgat	gcacttgcat	catgacaaac	accataatac	ttatgtaaca	60
aatttaaatg	cagcgattga	aaaacatcca	gaactaggtg.	aaaaaacaat	cgaagaacta	120
ctttctgata	tggatgctgt	ccctacagat	atcaagactg	ctgtacgtaa	taatggtggc	180
ggacatgcaa	accattcttt	cttctggaaa	atcatggcac	caaatgctgg	tgġcgaacca	240
actogtocaa	ttaaagaagc	gattgatgaa	acctttaata	attttgcaac	atttaaggaa	300

gaatttaaaa aagctgcagc tggccgtttt ggttcaggtt gggcttggtt agtgatggaa	360
aatggtaaat tagcgatcac ttcaacagcc aatcaagatt caccattaat ggaaggcaaa	420
acacctattt taggttta	438
<210> 12 <211> 438 <212> DNA <213> Enterococcus malodoratus	
<220>	
<223> CIP 103012 T (ATCC 43197)	
<400> 12 tatatcgatg ttgaaacgat gcatttgcat catgacaagc accataacac ttatgtaacc	60
aatttaaatg ctgcgattga aaaatatcca gaattagcag aacaatcagt ggaagaatta	120
gtaacgaact tgaatgaagt gccagaagat attcgtacgg ctgttcgcaa caatggcgga	180
ggtcatgcaa atcatagttt cttctggaaa atcatggcgc caaatgctgg cggaaaacca	240
acaggtgcga tcaaagatgc aattgatgaa gcattcggca gctttgaaaa aatgaaagaa	300
gaattcaaaa cagctgcaac tggccgcttt ggttctggct gggcttggct agtcttgaac	360
aatggtaaat tagaaattac ttcaacacca aatcaagata acccattaac agatggtaaa	420
acaccaatta ttggttta	438
<210> 13 <211> 438	
<212> DNA <213> Enterococcus mundtii	
<220>	
<223> CIP 103010 T (ATCC 43186)	
<400> 13	
tatattgacg aagaaacgat gcatttgcat catgacaaac atcacaatac ttatgtgaca	60
aacttaaatg cagcgatcga aaaatatcct gaactaggtg gaaaaacaat agaagaattg	120
gtttcagaca tggatgctat tccatctgac attcaaactg ctgtacgtaa taatggtggt	180
ggacatgcga accattcatt cttctggaaa atcatggcac caaatgctgg tggcgaacca	240
acaggagcaa tcaaagacgc aattaatgaa acattcggcg attttgcaac attcaaagaa	300
gaattcaaaa aagcagcagc aggacgtttc ggttctggct gggcttggtt agtacttgaa	360
gatggcaaac ttgccatcac ttctactgcc aaccaagatt caccattgat ggaaggcaag	420
aaacctgttc taggttta	438

<210> <211> <212> <213>	14 438 DNA Ente	erococcus p	seudoavium				
<220> <223>	CIP	103647 Т (.	ATCC 49372)				
<400>	14						
tacatto	gatg	ttgaaacgat	gcacttgcat	catgataaac	accacaatac	ttatgttact	. 60
aatttga	atg	tagcaattga	aaaatatcct	gaactagcgg	agcaatctgt	tgaggattta	120
gttgcaa	act	taaatgagtt	gcctgaagat	attcagacgg	ctgttcgtaa	caatggcggt	180
ggtcatg	jċga	accatagett	tttctggaag	atcatggcac	caaacgcggg	tggtgcgcca	240
actggtg	ıcga	tcaaagacgc	cattgacgaa	gctttcggcg	gctttgaaaa	aatgaaagaa	300
gaattca	aac	ttgctgcgac	aggacgtttt	ggttctggtt	gggcttggtt	agtttggaac	360
aatggca	agt	tggaaattac	gtcaactgct	aatcaagaca	atccattgac	tgacgggaaa	420
acaccaa	tca	ttggctta					438
					•		
<211> <212>	15 438 DNA Ente	erococcus s	accharolytic	cus			
<220>			3				
	CIP	103246 Т (2	ATCC 43076)			·	
	15	·	·	antananna			
cacattg	15 atg	ttgaaacaat	gcatttacat		accataacac		60
cacattg	15 atg	ttgaaacaat	gcatttacat		accataacac aaaaatctgt		60 120
cacattg aacttaa	15 atg atg	ttgaaacaat	gcatttacat	gaattaggcg		agaagattta	
cacattg acttaa atttctg	15 atg atg	ttgaaacaat cagcagttga tagcagcagt	gcatttacat aaaatatcct tcctgaagat	gaattaggcg attcgcacag	aaaaatctgt	agaagattta caatggtggt	120
cacattg aacttaa atttctg ggacatg	15 atg atg att caa	ttgaaacaat cagcagttga tagcagcagt accatacatt	gcatttacat aaaatatcct tcctgaagat cttttgggaa	gaattaggcg attcgcacag attatggcac	aaaaatctgt ccgtacgcaa	agaagattta caatggtggt tggcgaacct	120
cacattg acttaa atttctg ggacatg gtaggcg	15 atg atg att caa agc	ttgaaacaat cagcagttga tagcagcagt accatacatt taaaagcagc	gcatttacat aaaatatcct tcctgaagat cttttgggaa gattgacgaa	gaattaggcg attcgcacag attatggcac aaatttggta	aaaaatctgt ccgtacgcaa caaacgctgg	agaagattta caatggtggt tggcgaacct attcaaagca	120 180 240
cacattg acttaa atttctg ggacatg gtaggcg gaattta	atg atg att caa agc aag	ttgaaacaat cagcagttga tagcagcagt accatacatt taaaagcagc	gcatttacat aaaatatcct tcctgaagat cttttgggaa gattgacgaa tagccgattt	gaattaggcg attcgcacag attatggcac aaatttggta ggttctggtt	aaaaatctgt ccgtacgcaa caaacgctgg gctttgatgc	agaagatta caatggtggt tggcgaacct attcaaagca agctttaaat	120 180 240 300
cacattg acttaa atttctg ggacatg gtaggcg gaattta aatgggt	15 atg atg att caa agc aag	ttgaaacaat cagcagttga tagcagcagt accatacatt taaaagcagc	gcatttacat aaaatatcct tcctgaagat cttttgggaa gattgacgaa tagccgattt	gaattaggcg attcgcacag attatggcac aaatttggta ggttctggtt	aaaaatctgt ccgtacgcaa caaacgctgg gctttgatgc gggcttggtt	agaagatta caatggtggt tggcgaacct attcaaagca agctttaaat	120 180 240 300 360

<210> 16

<211> 438

<212> DNA

<213> Enterococcus solitarius

<220> <223> CIP	103330 T (NO	CTC 12193)				
<400> 16						
tattttgacg	aagagaccat q	gcatttgcat	catgataaac	accataacac	ttatgtgacg	60
aacttaaatg	cagcgattga a	aaacatcct	gaattaggcg	aaaaatcagt	ggaagaccta	120
atggcagatc	ttgatagtgt o	cctgaagat	atttttacag	cagtacgtaa	taacggcggt	. 180
ggacatgtaa	atcattcttt c	cttctggaag	attttatctc	cagatggagg	cggtgaacca	240
accggtgcat	taaaagatgc g	gattgatcaa	gaatttggca	gttttgatgc	ttttaaagat	300
gaatttaagg	cagctgccac c	ggtcgtttt	ggttctggct	gggcttggtt	agttttagat	360
aacggcaaat	taaaaattac t	tcgacgcca	aaccaagatt	ctccattgac	agatggacaa	420
attcctatta	ttggctta					438
<210> 17						
<211> 438 <212> DNA					•	
<213> Ente	rococcus raf	finosus				
<220> <223> CIP	103329 T (AT	CC 49427)				
<400> 17						
	ttgaaacgat g					60
aacttgaatg	ctgcgattga a	aaatatcca	gaattaggcg	aacaatcaat	cgaagaatta	120
gtgacgaact	tgaatgaagt t	cctgaagac	attcgtacag	cggtacgtaa	taatggcggc	180
ggacatgcga	accacagett c	ttctggaaa	atcatggcgc	ctaatgctgg	cggcgaacca	240
acaggtgcga	tcaaagaagc a	attgatcaa	gctttcggca	gctttgagaa	aatgaaggaa	300
gaattcaaga	cagcggcaac a	ggacgtttt	ggttctggtt	gggcatggtt	ggtattgaac	360
aacggtaaat	tagaaattac a	tcaaccgcg	aatcaagata	gcccattgac	tgatggcaaa	420
acaccaatta	ttggttta					438
<210> 18						
(211> 438 (212> DNA						
· · · -	rococcus seri	iolicida				
(220>						
(223> CIP	104369 T (ATC	CC 49156)				
(400> 18						
ctttgatg a	aagaaacaat go	cacttgcac (catgacaaac	atcaccaaac	atacgtaaat	60
atcttaato (cagogattga aa	aacaccca (raattotto	ataaaactet :	+ ~ ~ ~ ~ ~ + + ~	120

gtggcttatt	tggaccgttt	gccagaagac	attcgtgttg	cggtacgtaa	caacggtgga	180
ggacacttga	accacacaat	gttctgggaa	tggctcgctc	caaatgcagg	tggtgcacca	240
acaggtgata	tegetgeage	aatcgatgaa	gcttttggtt	catttgacga	cttcaaagct	300
gaatttaaag	cagctgctac	aggacgtttc	ggttcaggtt	gggcttggtt	agttcttgat	360
tacggtaaac	ttaaggttgt	ttccacagca	aaccaagata	acccaatttc	tgatggccaa	420
attccagtgc	ttggtctt					438
<210> 19 <211> 438 <212> DNA <213> Ent	erococcus su	_				
<220> <223> CIP	104373 T (E	DSM 6905)				
<400> 19 caaatcgatg	tggaaacaat	gcatttacat	cacgataaac	atcacaatac	ttatgtgacg	60
aacttaaatg	cagcggttga	aaaatatcct	gaattagcag	aaaaatcagt	ggaagactta	120
atcgcagata	tggatgcaat	cccaagtgat	attcaaacag	cagtacgtaa	taatggtggt	180
ggccatgcca	atcatagttt	cttctgggaa	atcttgacac	caaatgctac	tgaagaacca	240
gtaggcgaat	taaaaacagc	gatcgaagat	acatttggat	ctttagatgc	attaaaagaa	300
gaatttaaaa	aagcagcaac	tggccgtttt	ggttcaggtt	gggcttggtt	agtagtaaaa	360
gacggtaaat	tagccgtaac	gtctacagca	aaccaagatt	caccattaat	agaaggccaa	420
actcctgttt	taggttta					438
<210> 20 <211> 438 <212> DNA <213> Lact	ococcus gar	vieae	·			
<220> <223> CIP	102507 T (D	SM20684)				
<400> 20 ttctttgatg	aagaaacaat	gcacttgcac	catgacaaac	atcaccaaac	atacgtaaat	60
aatcttaatg	cagegattga	aaaacaccca	gaattctttg	ataaaactgt	tgaagaatta	120
gtggcttatt	tggaccgttt (gccagaagac	attcgtgttg	cagtacgtaa	caacggtgga	180
ggacacttga	accacacaat	gttctgggaa	tggctcgctc	caaatgcagg	tggtgcacca	240
acaggtgata	tcactacaac :	aatcoatoaa	acttttaatt	catttgacga	cttcaaacct	300

gaatttaaa	g cagctgctac	aggacgtttc	ggttcaggtt	gggcttggtt	agttcttgat	360
tacggtaaa	ttaaagttgt	ttccacagca	aaccaagata	acccaattto	: tgatggccaa	420
attccagtg	ttggtctt					438
<210> 21 <211> 438)					
<212> DN2	7					
<213> Ent	erococcus fa	ecalis				
<220> <223> CII	105042					
<400> 21					-	
tacattgaco	tggaaacaat (gcacttacac	catgataaac	accacaacac	ttatgtgact	60
aacttaaaco	cagcgattga a	aaaacatcca	gaattaggcg	aaaaatctgt	agaagaccta	.120
atttcagata	tgaatgctat t	tcctgaagat	atccgcacag	ccgttcgtaa	caatggtggc	180
gggcacgcaa	accatacatt o	cttctgggaa	attatggcac	caaatgctgg	tggacaacca	240
actggcgcta	ttaaagaagc a	aatcgatgaa	acatttggca	gctttgatga	aatgaaagct	300
gctttcaaaa	cagctgcaac t	ggccgcttt	ggttcaggtt	gggcttggtt	agttgtgaat	360
aacggtaaat	tagaaatcac t	tctacacca	aaccaagatt	caccattaat	ggatggccaa	420
acacctgttt	taggtctt					438
<210> 22						
<211> 438 <212> DNA						
<213> Ent	erococcus fae	calis				
<220> <223> NEM	1616 (Clinica	1 :1-+-1				
	roio (ciinica	il isolate)				
<400> 22 tacattgacg	tggaaacaat g	cacttacac	catgataaac	accacaacac	ttatgtgact	60
aacttaaacg	cagcgattga a	aaacatcca	gaattaggcg	aaaaatctgt	agaagaccta	120
atttcagata	tgaatgctat t	cctgaagat	atccgtacag	ccgttcgtaa	caatggtggc	180
ggtcacgcaa	accatacatt c	ttctgggaa	attatggcac	caaatgctgg	tggacaacca	240
actggcgcta	ttaaagaagc a	atcgatgaa	acatttggta	gctttgatga	aatgaaagct	300
gctttcaaaa	cagctgcaac t	ggccgcttt	ggttcaggtt	gggcttggtt	agttgtgaat	360
aacggtaaat	tagaaatcac c	tcaacacca	aaccaagatt	caccattaat	ggatggccaa	420
acacctgttt	taggtctt					438

PCT/IB01/01155 WO 01/88186

<210> <211> <212> <213>	23 438 DNA Ent	erococcus f	aecalis				
<220> <223>	NEM	1617 (Clini	cal isolate)			
<400>	23						
tacattg	jacg	tggaaacaat	gcacttacác	catgataaac	accacaacac	ttatgtgact	60
aacttaa	acg	cagcgattga	aaaacatcca	gaattaggcg	aaaaatctgt	agaagaccta	120 .
atttcag	gata	tgaatgctat	tcctgaagat	atccgcacag	ccgttcgtaa	caatggtggc	180
gggcacg	caa	accatacatt	cttctgggaa	attatggcac	caaatgctgg	cggacaacca	240
actggcg	ıcta	ttaaagaagc	aatcgatgaa	acatttggca	gctttgatga	aatgaaagct	300
gctttca	aaa	cagctgcaac	tggccgcttt	ggttcaggtt	gggcttggtt	agttgtgaat	360
aacggta	aat	tagaaatcac	ttctacacca	aaccaagatt	caccattaat	ggatggccaa	420
acacctg	ttt	taggtctt			•		. 438
<211> <212>	24 438 DNA Ente	erococcus du	ırans				
<220>							
<223>	NEM]	618 (Clinio	cal isolate				
	24 atg	aagaaacgat	gcacttgcat	catgacaaac	accataatac	ttatgttaca	60
aatttaa	acg	cagctattga	aaagtatcca	gaattaggcg	aaaaatcagt	ggaagaattg	120
ctttctg	ata	tggacgcgat	tcctactgat	attaagacag	cggtacaaaa	caatggtggt	180
ggacatg	caa	accattcatt	tttctggaaa	atcatggcac	ctaatgcagg	tggcgaacca	240
acagggg	aaa	tcaaagaagc	gattgatgaa	gcttttggtg	atttcgcaac	atttaaagaa	300
gagttca	aga	aagcggctgc	cggacgcttt	ggatcaggtt	gggcatggtt	agtattggaa	360
gatggtaa	aat	tggcaatcac	ttctacagca	aaccaagatt	ctccattgat	gacaggccaa	420
acacctat	tct	taggatta					438

<210> 25 `<211> 438 .

<212> DNA

<213> Enterococcus durans

<220> <223> NEM1619 (Clinical isolate)	
<400> 25 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac tta	3+~++>
aatttaaacg cagctattga aaagtatcca gaattaggcg aaaaatcagt gga	
ctttctgata tggacgcgat tcccactgat attaagacag cggtacaaaa caa	atggtggt 180
ggacatgcaa accattcatt tttctggaaa atcatggcac ctaatgcagg tgg	gegaacca 240
acaggcgaaa tcaaagaagc gattgatgaa gcttttggtg atttcgcaac att	taaagaa 300
gagttcaaga aagcggctgc cggacgcttt ggatcaggtt gggcatggtt agt	attggaa 360
gatggtaaat tggcaatcac ttctacagca aaccaagatt ctccattgat gac	aggccaa 420
acacctatct taggatta	438
<210> 26	
<211> 438 ·	
<213> Enterococcus durans	
<220>	
<223> NEM1620 (Clinical isolate)	
<400> 26	
tatategatg aagaaaegat geaettgeat eatgacaaae accataatae tta	tgttaca 60
aatttaaacg cagctattga aaagtatcca aaattaggcg aaaaatcagt gga	agaattg 120
ctttctgata tggacgcgat tcctactgat attaagacag cggtacaaaa caa	tggtggt 180
ggacatgcaa accattcatt tttctggaaa atcatggcac ctaatgcagg tgg	cgaacca 240
acaggcgaaa tcaaagaagc gattgatgaa gcttttggtg atttcgcaac att	taaagaa 300
gagttcaaga aagcggctgc cggacgcttt ggatcaggtt gggcatggtt agt	attggaa 360
gatggtaaat cggcaatcac ttctacagca aaccaagatt ctccattgat gac	aggccaa 420
acacctatct taggatta	438
<210> 27 <211> 438	
<211> 436 <212> DNA	
<213> Enterococcus hirae	
<220>	
<223> NEM1621 (Clinical isolate)	
<400> 27	
catategatg aagaaaegat geaettgeat catgacaaac accataatae tta	tgtaaca 60

aatttaaatg cagcgattga aaaacatcca gaactaggtg aaaaaacaat cgaagaacta	120
ctttctgata tggatgctgt ccctacagat atcaagactg ctgtacgtaa taatggtggc	180
ggacatgcaa accattettt ettetggaaa ateatggeae caaatgetgg tggegaaeca	240
actggtgcaa ttaaagaagc gattgatgaa gcctttggtg attttgcaac atttaaggaa	300
gaatttaaaa aagctgcagc tggccgtttt ggttcaggtt gggcttggtt agtgatggaa	360
aatggtaaat tagcgatcac ttcaacagcc aaccaagatt caccattaat ggaaggcaaa	420
acacctattt taggttta	438
<210> 28 <211> 438 <212> DNA <213> Enterococcus hirae <220> <223> NEM1622 (Clinical isolate)	
<400> 28 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgtaaca	60
aatttaaatg cagcgattga aaaacatcca gaactaggtg aaaaaacaat cgaagaacta	120
ctttctgata tggatgctgt ccctacagat atcaagactg ctgtacgtaa taatggtggc	180
ggacatgcaa accattcttt cttctggaaa atcatggcac caaatgctgg tggcgaacca	240
actggtgcaa ttaaagaagc gattgatgaa gcctttggtg attttgcaac atttaaggaa	300
gaatttaaaa aagctgcggc tggccgtttt ggttcaggtt gggcttggtt agtgatggaa	360
aatggtaaat tagcgatcac ttcaacagcc aaccaagatt caccattaat ggaaggcaaa	420
acacctattt taggttta	438
<210> 29 <211> 438 <212> DNA <213> Enterococcus casseliflavus/Enterococcus flavescens	
<220> <223> NEM1623 (Clinical isolate)	
<400> 29 tatattgatg aagaaacgat gcatttgcat catgataaac accacaacac ttatgtaaca	60
aacttaaatg cagcgattga aaaacatcct gaattaggtg aaaaaacagt tgaagaatta	120
ttagcagact tttcttctgt acctgaagat attcaaacag cggttcgcaa caatggcggc	180
ggccatgcta accacacatt cttctgggaa atcttaggcc caaatgctgg tggcgaacct	240
actggggcaa tcaaagaggc aattgaagaa acattcggca gctttgaaga ctttaaagaa	300

gaatttaaaa cto	gctgcaac	tggacgtttt	ggttcaggtt	gggcatggtt	agtcgttaaa	360
gacggtaaac tag	gcaatcac	ttcaaccgcg	aatcaagatt	caccattgat	ggatggtcaa	420
acacctgtat tag	gttta					438
<210> 30 <211> 438 <212> DNA <213> Enteroc	occus fa	ecium				
<220> <223> NEM1624	(Clinic	al isolate)			
<400> 30						
tatattgacg aag	aaacgat	gcatctgcat	catgataagc	atcacaatac	ttatgtgacg	60
aatttaaatg cag	caattga	gaaataccca	gaattaggcg	aaaaaacaat	agaagaatta	120
ttatctgata tgg	acgctat	tccaacagat	atcaagacag	ctgtacgtaa	caatggtggc	180
ggacatgcta acc	attcatt ·	tttctgggaa	atcatggca <i>c</i>	caaatgctgg	tggcgaacct	240
acaggagaaa taa	aagaagc	gattaaagaa	gcttttggtg	atttttcttc	ttttaaagaa	300
gaattcaaaa aag	cageege f	tggacgattt	ggttctggat	gggcttggct	tgtaatggaa	360
aatggaaaat tag	ctattac (ctctactgca	aatcaagatt	ctccattgat	ggaaggaaag	420
acaccaattc tag	gtttg					438
<210> 31 <211> 438 <212> DNA <213> Enteroco	occus fae	ecium				
<220> <223> NEM1625	(Clinica	al isolate)				
<400> 31 tatattgacg aaga	aaacgat ç	gcatctgcat	catgataagc	atcacaatac	ttatgtgacg	60
aatttaaatt cago	caattga ç	gaaataccca	gaattaggcg	aaaaaacaat	agaagaatta	120
ttatctgata tgga	acgctat t	ccaacagat	atcaagacag	ctgtacgtaa	caatggtggc	180
ggacatgcta acca	attcatt t	ttctgggaa	atcatggcac	caaatgctgg	tggcgaacct	240
acaggagaaa taaa	aagaagc g	gattaatgaa	gcttttggtg	atttttcttc	ttttaaagaa	300
gaattcaaaa aagc	cageege t	ggacgattt	ggttctggat	gggcttggct	tgtaatggaa	360
aatggaaaat tagc	tattac c	tctactgca	aatcaagatt	ctccattgat	ggaaggaaag	420
acaccaattc tagg	ıtttg					438

PCT/IB01/01155 WO 01/88186

<210> <211> <212> <213>	32 438 DNA Ent	erococcus fa	aecium				
<220> <223>	NEM:	1626 (Clinio	cal isolate)			
<400>	32						
tatattg	acg	aagaaacgat	gcatctgcat	catgataagc	atcacaatac	ttatgtgacg	60
aatttaa	atg	cagcaattga	gaaataccca	gaattaggcg	aaaaaacaat	agaagaatta	120
ttatctg	ata	tggacgctat	tccaacagat	atcaagacag	ctgtacgtaa	caatggtggc	180
ggacatg	cta	accattcatt	tttctgggaa	atcatggcac	caaatgctgg	tggcgaacct	240
acaggag	aaa	taaaagaagc	gattaatgaa	gcttttggtg	atttttcttc	ttttaaagaa	300
gaattca	aaa	aagcagccgc	tggàcgattt	ggttctggat	gggcttggct	tgtaatggaa	360
aatggaa	aat	tagctattac	ctctactgca	aatcaagatt	ctccattgat	ggaaggaaag	420
acaccaa	ttc	taggtttg					438
<211> <212> <213> <220>		erococcus fa	·				
<400>	2.2	•					
	33 acg	aagaaacgat	gcatctgcat	catgataagc	atcacaatac	ttatgtgacg	60
aatttaa	atg	cagcaattga	gaaataccca	gaattaggcg	aaaaaacaat	agaagaatta	120
ttatctg	ata	tggacgctat	tccaacagat	atcaagacag	ctgtacgtaa	caatggtggc	180
ggacatg	cta	accattcatt	tttctgggaa	atcatggcac	caaatgctgg	tggcgaacct	. 240
acaggag	aaa	taaaagaagc	gattaatgaa	gcttttggtg	atttttcttc	ttttaaagaa	300
gaattca	aaa	aagcagccgc	tggacgattt	ggttctggat	gggcttggct	tgtaatggaa	360
aatggaa	aat	tagctattac	ctctactgca	aatcaagatt	ctccattgat	ggaaggaaag	420
acaccaa	ttc	taggtttg					438
				•			

<210> 34

<211> 438 <212> DNA

<213> Enterococcus faecium

<220> <223> NEM1628 (Clinical isolate)	
<400> 34	
tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg	60
aatttaaatt cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta	120
ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc	180
ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct	240
acaggagaaa taaaagaagc gattaatgaa gctttttgtg attttcttc ttttaaagaa	300
gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa	360
aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag	420
acaccaattc taggtttg	438
<210> 35 <211> 438 <212> DNA <213> Enterococcus gallinarum	
<220>	
<223> NEM1629 (Clinical isolate)	
<400> 35	
tgcattgatg aagaaacgat gcatttgcat catgacaagc atcacaatac ttacgtcaca	60
aatttgaatg cagcaattga aaaacatcct gaattaggtg aaaaatcagt tgaagaatta	120
cttgctgatt ttgattcggt gcctgaagac atcaaaacag ctgtccgtaa taacggtggt	180
ggtcatgcaa atcacagctt tttctgggaa atcttggcac caaatgctgg tggtgaacca	240
acaggagcca tcaaagaagc catcgaagaa acatttggca gctttgctga tttcaaagaa	300
gaattcaaaa cagcagcaac tggccgcttt ggttctggct gggcttggtt agtcatcaaa	360
gatggtaaat tagcgatcac ttcaactgcg aaccaagatt caccattaat ggacggtcaa	420
acgccagttt taggctta	438
<210> 36 <211> 438 <212> DNA <213> Enterococcus avium	
<pre>220> 223> NEM1630 (Clinical isolate)</pre>	
400> 36	
atatcgatg ttgaaacgat gcatttgcat catgacaaac accataacac ttatgtaaca	60
atttaaatg ctgcgattga aaaatatccg gaattagaag aacagtcaat tgaagagcta	120

atgaaaaact	taaatgaagt	tcctgaggac	attcgtacgg	ctgtacgtaa	taacggcggc	180
ggacatgcta	accacagett	cttctggaaa	attatggctc	caaatgctgg	tggtgaacct	240
acaggcgcga	ttaaggacgc	aattgatcaa	gcatttggca	gctttgaaaa	aatgaaggaa	300
gaattcaaga	ctgcagcaac	tggtcgtttt	ggttctggct	gggcatggtt	agtattgaac	360
aatggaaaat	tagaaattac	ttctactgca	aatcaagaca	gcccattaac	tgatggaaaa	420
acaccgatca	ttggctta				٠	. 438
<210> 37 <211> 435 <212> DNA <213> Stre	eptococcus c	difficilis				
<220>	•				•	
	103768 T (F	ATCC 51487)	• -	•		
<400> 37 catattgatg	ctgagacaat	gacactacat	catgataagc	accatgcaac	ttatgttgct	60
aatgcaaatg	ctgctcttga	gaaacatcct	gaaattggag	aagacttaga	ggcgctctta	120
gctgatgttt	ctcaaattcc	agaagatatt	cgtcaggcag	tcatcaataa	cggtggtgga	180
catcttaacc	acgctctttt	ctgggaattg	atgtcaccag	aagaaactca	aatttcaaaa	240
gagttatctg	aagacattga	tgcaactttt	ggttcatttg	aagactttaa	agctgctttc	300
acagcagcag	caacaggacg	ttttggttca	ggttgggctt	ggcttgttgt	taatgctgaa	360
ggcaaacttg	aagtgctttc	aactgccaat	caagatactc	caattatgga	aggtaagaaa	420
ccaattttag	ggctt					435
<210> 38 <211> 435						
(212> DNA						
<213> Stre	eptococcus f	erus				
(220> (223> CIP	103225 T (A	TCC 33477)				
(400> 38	000000000					
	cggagacaat					60
	cagcccttga					120
•	agtctattcc					180
atctgaatc	atgcgctttt	ctgggagttg	ctgtcaccag	aaaaaacaac	catttcagct	240
aactgaagg	ctgatattga	agctagtttt	aattettta	accantttaa	agaggeettt	300

acaacggctg ctacaacacg ctttggttca ggctgggctt ggctcgttgt caatcaagaa	360
ggacagttag aggtggtttc aacagctaat caagacacac caatttcaca aggtttgaaa	420
cccatcttgg ttcta	435
<210> 39	
<212> DNA	
<220> <223> CIP 105428 T (JCM 10005)	
<400> 39	
tatattgata cagaaacaat gacaattcac catgataaac atcacgctac ttatgtggca	60
aatgtaaatg cagcgcttga aaaacatcca gaaattggag aggatttgga agctttgttg	120
gcagatgttg acagtattcc agcagatatc cgtcaagcgg tgattaataa cggtggtggg	180
catttgaatc acgccctttt ctgggaattg ttatcgcctg aaaaacaaga accaacagcg	240
caagtgttgg ctgcgattga ggaagatttt ggctcatttg acgaattcaa agctgctttc	300
acgcaagctg cgacaactcg ctttgggtca gggtgggctt ggcttgtggt gaatgaaaat	360
ggcaaacttg aagtgctctc aacagctaat caagacacac caatttcaca aggaaaagca	420
ccaattttgg cactt	435
<210> 40 <211> 435	
<212> DNA	
<213> Streptococcus hyointestinalis	
<220> <223> CIP 103372 T (ATCC 49169)	
<400> 40	
tatatcgatg ctgagacaat gactctccac catgacaaac accatgcgac ttatgtggca	60
aatgtcaatg cggcccttga aaaacacact gaaatcggtg aagacttggt ggcacttttg	120
tctgacgtgg aaaaaatccc tgctgacatc cgtcaagccg ttatcaacaa cggcggagga	180
catctcaacc acgctctttt ctgggaattg atgacaccag aaaagacaga ggtttcagca	240
gaattgttag cagatattga agctactttt ggctcatttg acgctttcaa agacgctttc	300
tcagcagcag ctgcgactcg ctttggctca ggttgggctt ggcttgtcgt gaatgctgaa	360
ggaaaactcg aaattctctc aacagctaac caagacaacc ctatcatgga tggcaaacaa	420
cctatccttg gacta	435

<210> <211> <212> <213>	41 435 DNA Stre	eptococcus :	hyovaginali	s			
<220> <223>	CIP	105517 т					
<400>	41						
caaattg	gatg	cagaaacaat	gacccttcat	cacgacaagc	accacgctac	ttatgtagca	60
aatgcta	atg	ccgctttgga	aaaacacccc	gaacttggag	atgacgttgc	agcactctta	120
tcggatg	rttg	acagcattcc	agaagatatt	cgccaagccc ·	tcatcaataa	tggcggtggt	180
cacctta	acc	acgcattgtt	ctgggaactt	ctttcaccag	aaaagacaga	aatcacagaa	240
gatgtca	agg	ctgctattga	tgacgctttt	ggttcatttg	acgccttcaa	agaggccttt	300
acggcgg	cag	caacaacacg	ttttggttca	['] ggttgggcat	ggttagttgt	taatgcagaa	360
ggaaaac	ttg	aggtgacatc	aactccaaac	caagatactc	cacttatgga	tggtaacacg	420
ccaatcc	ttg	gttta					435
<211> <212>	42 435 DNA Stre	eptococcus i	infantarius				
<220> <223>	CIP	103233 Т					
	42 atq						
aatgcaa	_	cagaaacaat	gacattgcat	catgacaaac	atcacgctac	ttacgtagca	60
				catgacaaac gaacttggag			60 120
gcagagc	atg	ctgctcttga	aaaacaccct		atgatttaga	agttatcttg	
	atg ttg	ctgctcttga acaagattcc	aaaacaccct	gaacttggag	atgatttaga tgattaacaa	agttatcttg cggtggtggt	120
gctctta	atg ttg acc	ctgctcttga acaagattcc actcactttt	aaaacaccct agcagatatt ctgggaattg	gaacttggag cgtcaagcgg	atgatttaga tgattaacaa aaaaacaaga	agttatcttg cggtggtggt accaacagca	120 180
gctctta	atg ttg acc ttg	ctgctcttga acaagattcc actcactttt cggcaattga	aaaacaccct agcagatatt ctgggaattg agaagcattt	gaacttggag cgtcaagcgg ctatctcctg	atgatttaga tgattaacaa aaaaacaaga aagatttcaa	agttatcttg cggtggtggt accaacagca aacagctttc	120 180 240
gctctta gatgtac acgcaag	atg ttg acc ttg cag	ctgctcttga acaagattcc actcactttt cggcaattga cgacaactcg	aaaacaccct agcagatatt ctgggaattg agaagcattt ctttggttca	gaacttggag cgtcaagcgg ctatctcctg ggctcatttg	atgatttaga tgattaacaa aaaaacaaga aagatttcaa ggcttgtcgt	agttatcttg cggtggtggt accaacagca aacagctttc taacaaagat	120 180 240 300
gctctta gatgtac acgcaag	atg ttg acc ttg cag ttg	ctgctcttga acaagattcc actcactttt cggcaattga cgacaactcg aagtaacctc	aaaacaccct agcagatatt ctgggaattg agaagcattt ctttggttca	gaacttggag cgtcaagcgg ctatctcctg ggctcatttg ggttgggctt	atgatttaga tgattaacaa aaaaacaaga aagatttcaa ggcttgtcgt	agttatcttg cggtggtggt accaacagca aacagctttc taacaaagat	120 180 240 300 360

<210> 43 <211> 435 <212> DNA

<213> Streptococcus macacae

<220> <223> CIP	102912 Т (ATCC 35911)				
<400> 43						
tattttgata	aagaaacaat	gacgcttcac	catgataaac	atcatgccac	ttatgttgct	60
aatgctaatg	ctgcattgga	aaaacaccca	gaaataggtg	aagatttaga	aggcttactg	120
gcagatgttg	agaagattcc	tgaggatatt	cgtcaggctt	tgattaataa	tggcggcggt	180
catcttaacc	actctcttt	ttgggaattg	ctttccccag	aaaaaacaga	aatcactgaa	240
gaagtggctg	cagctattaa	tgattcttt	ggctcttttg	acgcttttaa	agaagcattt	300
acaactgctg	cgacgactcg	ctttggttct	ggctgggctt	ggctggttgt	caaccgccaa	360
gggaagcttg	aagtgatttc	aacggctaat	caagatacgc	caatttcaca	agggctaaag	420
ccaatcctag	cgctt					435
<210> 44 <211> 435	·					
<212> DNA						
	eptococcus m	nacedonicus				
<220> <223> CIP	105683 Т					
<400> 44						
	cagaaacaat					60
aatgtaaatg	cagcgcttga	aaaacatcca	gaaattggag	aggatttgga	aactttgttg	120
gcagatgttg	acagtattcc	agcagatatc	cgtcaagcgg	tgattaataa	cggtggtggg	180
catttgaatc	acgccctttt	ctgggaattg	ttatcgcctg	aaaaacaaga	accaacagcg	240
caagtgctgg	ctgcgattga	ggaagctttt	ggctcatttg	acgaattcaa	agctactttc	300
acgcaagctg	cgacaactcg	ttttgggtca	ggttgggctt	ggcttgtggt	gaatgaaaat	360
ggcaaacttg	aagtgctctc	aacagctaat	caagatacac	caatttcaca	aggaaaagca	420
ccaattttgg	cactt					435
			-			
<210> 45 <211> 435 <212> DNA	·					
<213> Stre	ptococcus pa	arauberis				
<220> <223> CIP	103956 T (D	SM 6631)				
(400> 45	22222					
	aagaaacaat q					60
ataccaata (ctoctttaga a	aaacaccca	assstraata	3292494292		120

gcagacgtgg	aatctattcc	ttcagatatt	cgtcaagccc	taattaataa	tggtggtgga	180
catttgaatc	acgcactatt	ttgggaatta	ttatctcctg	agaatactga	aatttcttca	240
gaagttgcat	ctgcaattga	tgaagcattt	ggttcatttg	atgcctttaa	agaacaattc	300
acagctgcag	caacaggacg	ttttggttct	ggatgggcat	ggctagttgt	aaataaagaa	360
ggtaaacttg	aaattatgtc	aactgctaat	caagatacac	caatttcatc	aggattaaaa	420
ccaattttag	gattg					435
				•		
<210> 46 <211> 435 <212> DNA			•			·
	eptococcus p	onocae	::1			
<220> <223> CIP	104665 T	• • • • • • • • • • • • • • • • • • • •	\$ # 1 to 1			
<400> 46 tattttgata	tggagacaat	gactctgcat	catgacaagc	accatgcaac	atatgttgca	60
aacactaatg	ctgctttgga	aaaacaccct	gaaatcggtg	aggaccttga	agcattgtta	120
gcagatgttg	atgcgatacc	agcagatatt	cgtcaagctg	tgataaataa	cggtggtggg	180
catttgaatc	atagcttgtt	ctgggaatta	ctgtctccag	aaaagcaaga	ggttactgct	240
gacgttgccg	cagccattga	cgaagcattt	ggttcgtttg	atgcttttaa	agaacaattc	300
actgcagcag	caacaggtcg	ctttggatca	ggttgggcat	ggttagttgt	caataaagaa	360
ggcaagcttg	aaatcacgtc	aactgctaac	caagacacac	caatctcaga	tggtaaaaag	420
cctattttaa	cgctt					435
<210> 47 <211> 435 <212> DNA <213> Stre	eptococcus r	atti				
<220>						
<223> CIP	102509 T (A	TCC 19645)				
<400> 47 tatattgatg	cagaaacaat	gaccetteat	catgataaac	accatgctac	ctatgtggca	60
aatgctaatg	cagctctcga	aaaacatcca	gaaattggtg.	aaaatttaga	agttctcttg	120
gctgatgttc	agcaaattcc	ggaagatatc	cgtcaggctc	ttgttaacaa	cggcggcggt	180
caccttaacc	acgcactttt	ctgggaactt	ctgtcaccag	aaaaacaga	gattactaaa	240
gaagtggctg	cagcaattga	cgaagetttt	ageteattta	aggettttaa	gacagettte	300

actcaggcag	cagcaacacg	ctttggttca	ggctgggctt	ggctagttgt	caacgcagaa	360
ggtaagcttg	aagtaatgtc	aacagccaac	caagatacac	cgatttcgca	aggtttaaaa	420
ccaatcttgg	ccctt					435
<210> 48						
<211> 435 <212> DNA						
<213> Str	eptococcus f	thoraltensi	S			
<220>						
<223> CIP	105518 Т		•			
<400> 48		~~~	***			
	cggagacaat				•	60
aacgcaaatg	ctgctttgga	aaaacaccct	ġaaatcggtg	aagaccttga	agctcttttg	120
tcagatgtca	acagcattcc	tgaagaćatt	cgtcaagcgc	ttatcaacaa	tggcggtgga	. 180
catcttaacc	atgccctttt	ctgggaactt	ctttcaccag	aaaaaacaga	aattacagaa	240
gatgtgaaag	cagccattga	tgaagctttc	ggttcatttg	aagccttcca	agaaaaattc	300
actacagcag	ctacaacacg	ctttqgttca	ggttgggctt	ggttagttgt	taacgctgaa	360
ggtaaactcg	aggtcacatc	aacaccaaac	caagacactc	cacttatgga	aggtaaaaaa	420
ccaatccttg	gactt					435
<210> 49						
<211> 435 <212> DNA						
	eptococcus u	beris			÷	
<220>						•
<223> CIP	103219 T (A	TCC 19436)				
<400> 49	222222					
	aagaaacaat					60
aatgccaatg	ctgcgcttga	aaaacatcca	gaaattggtg	aagatttggt	ggcgttatta	120
tctgatgtgt	catcaattcc	agaagatatt	cgtcaagctc	ttatcaataa	tggaggcgga	180
catcttaacc	atgcactttt	ttgggaactt	ctttcacctg	agaaaacaga	aatcacttcg	240
gaagtagctt	ctgctattga	tgaagcattt	ggttcttttg	atgcatttaa	agaaaaattt	300
acagcagcag	caacgggacg	ttttggatct	ggttgggctt	ggttagttgt	caataaagaa	360
ggagaacttg	aagtaacttc	aactgcaaac	caagatacac	caatttctga	aggtaaacag	420
ctattttgg	gtctt					435

:.

<210> 50 <211> 435					
<211> 433					
<213> Str	eptococcus waius				
<220>					
<223> CIP	106079 Т				
<400> 50					
tatattgatg	cagaaacaat gacaattcat	: catgataaac	atcacgctac	ttatgtggca	60
aatgtaaatg	cagogottga aaaacatoo	gaaattggag	aggatttgga	aactttgttg	120
gcagatgttg	acagtattcc agcagatate	cgtcaagcgg	tgattaataa	cggtggtggg	180
catttgaatc	acgccctttt ctgggaatt	ttatcgcctg	aaaaacaaga	accaacagcg	240
caagtgctgg	ctgcgattga ggaagctttt	ggctcatttg	acgaattcaa	agctactttc	300
acgcaagctg	cgacaactcg ttttgggtca	ggttgggctt	ggcttgtggt	gaatgaaaat	360
ggcaaacttg	aagtgctctc aacagctaat	caagatacac	caatttcaca	aggaaaagca	420
ccaattttgg	cactt				435
			,		
<210> 51					
<211> 438					
<212> DNA <213> Abi	otrophia adjacens				
	· · · · · · · · · · · · · · · · · · ·				
<220> <223> CIP	103243 T (ATCC 49175)				
<400> 51	•				
cattttgatg	cacgtacaat ggaaatccac	catgacaaac	atcacaatgc	atatgttaca	60
aatttaaacg	cagcggtaga aaaacaccct	gaattattcg	aaaaaacagt	tgaagaatta	120
gttagcgatt	taaacgctgt tccagaagat	atccgtgtag	ctgttcgcaa	caatggtggt	180
gggcatgcaa	accatagett attetggaet	caattatctc	ttgatggtgc	aaaagctcca	240
gaaggtgctt	tattagcage tatcaacgaa	gcattcggaa	gcttcgacga	attcaaagca	300
gcattcgcac	aagcagcagc aactcgtttt	gggtctggtt	gggcttggtt	agttctttct	360
acggaaaat	tagaagtcgt ttctactcca	aaccaagata	accctctatc	agaaggcaaa	420
actccattat	taggatta				438

<210> 52 <211> 441 <212> DNA <213> Abiotrophia defectives

<220> <223> CIP	103242 Т (ATCC 49176)				
<400> 52						
gcttttgacg	cgcgcaccat	ggaaattcac	cacaccaagc	accaccaaac	ccacgttaac	60
aacttgaatg	ccgccttaga	aggtcacgca	gacttggcag	ctaagtctat	cgaagactta	120
gtcgctaacc	ttaaggattt	acctgaaagc	attcaaacag	ctgtccgtaa	caatggtggg	180
ggtcacttca	accatagctt	cttctgggaa	agcctacaag	cgccaagtgc	agaagcagct	240
attcctgctg	gcctcaagtc	tcgcttagaa	gcagactttg	gttctgttga	agccttcaaa	300
gaagcttttg	ctaaggcagc	tgcgactcgc	tttggttctg	gttgggcttg	gctcgtagac	360
cgtgacggtc	acttagaagt	cttatctact	gctaaccaag	acacaccttt	agaattaggg	420
cttaagccac	ttttaggttt	a				441
<210> 53						
<211> 438 <212> DNA						
<213> Abio	otrophia ele	egans				
<220> <223> CIP	105512 m /r	NOM 11(02)				
	105513 T _. (E)SM 11693)				
<400> 53 catgtggatg	ctttaacaat	ggaaatccat	catgacagac	atcataacac	ttatgtaaca	60
	cagcagtaga					120
	tagcatctgt					180
	accacagett					240
	tagcagcagc					300
		•		•		
	aagcagcagc					360
	tagaagtagt	ttctactcca	aaccaagata	acccattaac	agatggtaaa	420
actccaattt	taggatta					438
<210> 54 <211> 429						
<212> DNA						
<213> Stap	hylococcus	arlettae				
<220> <223> CIP	103501 T (A	TCC 43959)				
<400> 54						
cacattgata	aagaaacaat	ggaaattcat	catgacaagc	accacaacac	atatgttaca	60
aaattaaatg	cagcagtaga	aggtactgat	ttagaatcta	aatcaattga	agaaatcgtc	120

•			•			
gctaacttag	atagcgtacc	tgaagatatt	caaacagctg	tgcgtaacaa	tggtggagga	180
catatcaacc	attcattgtt	ctgggaatta	ttaactccta	actctgaaga	aaaaggtact	240
gtagttgata	aaattaaaga	acaatggggt	tctttagatg	catttaaaga	agaatttgca	300
aataaagctg	cagcacgttt	tggttcaggt	tgggcatggt	tagtagtaaa	taacggtaac	360
ttagaaatcg	ttactacacc	taaccaagac	aacccattaa	ctgaaggtaa	aacacctatt	420
ttäggttta						429
<210> 55 <211> 432 <212> DNA <213> Stapl	hylococcus	auriculari	s			
<220>	100500	d	•			
	103587 T ()	ATCC 33753)		• .		
<400> 55 tatattgata a	aagaaactat	ggaaatccac	catgacaaac	accacaacac	atatgtaact	60
aaattaaatt d	cagcagttga	aggtacagat	ttagaaaata	aatctatcga	agaaattgtt	120
gctaatttag a	atagcgtacc	tgaagatatt	caaacagctg	tacgaaataa	tggtggtgga	180
cacttaaatc a	actcattatt	ctgggaatta	ttaactccta	actctgaaga	aaaaggtaca	240
gtcgtagata a	aattaaaga	acaatggggt	tctttagacg	atttcaaaaa	agaatttgct	300
gacgctgcag d	cagctcgctt	tggttcagac	tggggttggc	tcgttgtaaa	tgctgaaggt	360
aaattagaaa t	cactactac	acctaaccaa	gataacccaa	ttacagaagg	taaaacacct	420
attttaggta t	t					432
<210> 56 <211> 429 <212> DNA <213> Staph	nylococcus	capitis sub	Osp. Capitis	3		
<220> <223> CIP 8	31.53 T (AI	°CC 27840)				
<400> 56 cacattgata a	acaaactat	qqaaattcac	catgacaaac	accataacac	atatotaact	60
aaattaaact c			•			120
gctaatttag a						180
cacttaaacc a						240
gtagtagaca a						300
_		2,255			-5	500

garaaagcrg	ctgcacgctt	tggatctggt	tgggcatggt	tagtagtaaa	taacggtcaa	360
ttagaaatcg	ttactactcc	aaaccaagat	aacccattaa	ctgaaggtaa	aactccaatc	420
ttaggttta						429
<210> 57 <211> 429 <212> DNA <213> Stap	hylococcus	capitis su	bsp. Ureoly	ticus		
<220> <223> CIP	104192 T (ATCC 49326)				
<400> 57 cacattgata	aacaaactat	ggaaattcac	cacgacaaac	accataacac	atatgtaact	60
aaattaaact	cagcagttga	aggaacagat	ttagaagcta	aatcaatcga	agaaattgtt	120
gctaatttag	atagcgtacc	ttcagatatt	caaactgcag	tacgtaataa	tggtggcggt	180
cacttaaacc	actcattatt	ctgggaatta	ttatcaccaa	attctgaaga	aaaaggtgaa	240
gtagtagaca	aaattaaaga	acaatggggt	tctttagatg	aattcaaaaa	agaatttgca	300
gataaagctg	ctgcacgctt	tggatctggt	tgggcatggt	tagtagtaaa	taacggtcaa	360
ttagaaatcg	ttactactcc	aaaccaagat	aacccattaa	ctgaaggtaa	aactccaatc	420
ttaggttta					c	429
<210> 58 <211> 429 <212> DNA <213> Stapl	hylococcus	caprae				
<220> <223> CIP 3	104000 T (A	ATCC 35538.)				•
<400> 58 cacatcgata a	aacaaactat	ggagattcat	cacgacaaac	accataacac	atatgtaact	60
aaattaaact o	cagcagttga	aggaacagat	ttagaagcta	aatcaatcga	agaaattgtt	120
gcaaatttag a	atagcgtacc	ttctgatatt	caaacagcag	tacgtaacaa	tggtggcggt	180
cacttaaacc a	actcattatt	ctgggaatta	ttatcaccta	attctgaaga	aaaaggtgaa	240
gttgtagaca a	aaatcaaaga	acaatggggc	tctttagatg	aattcaaaaa	agaattcgct	300
gacaaagcag o	cagctcgttt	cggttcaggt	tgggcttggt	tagtagtaaa	caacggtcaa	360
tagaaatcg t	caactacacc	aaaccaagat	aacccattaa	ctgaaggtaa	aacaccaatc	420
taggttta						429

```
59
<210>
       432
<211>
<212>
       DNA
<213>
       Staphylococcus carnosus subsp. Carnosus
<220>
<223>
      CIP 103274 T (ATCC 51365)
<400>
      59
tatatcgata aagaaacaat ggaaatccat catgacaaac atcataatac ttatgtaaca
                                                                       60
aaattaaatg cagcaatcga aggtactgat ttagaaaata aatctatcga agagatcgtt
                                                                     . 120
gctaatttag acagcgtacc atctgacatc caaactgcag ttcgtaataa cggtggtgga
                                                                      180
catttaaacc attcattatt ctggcaactt ctaacaccta attctgaaga aaaaggtaca
                                                                      240
gtaattgata aaatcaaaga agaatggggt tetttagaca aatttaaaga tgaatttget
                                                                      300
aaaaaaagctg ctggacaatt tggttcaggt tgggcatggc tagttgtaga taaagacggt
                                                                      360
aaactagaaa tcgtttctac tcctaaccaa gacaatccaa tcacagaagg caaaactcct
                                                                      420
attttaggac tt
                                                                      432
<210>
       60
<211>
      432
<212>
      DNA
<213> Staphylococcus carnosus subsp. Utilis
<220>
<223> CIP 105758 T (DSM 11676)
<400>
tatatcgata aagaaacaat ggaaatccat catgacaaac atcataacac ttatgtaata
                                                                       60
aaattaaatg cagcaatcga aggtactgat ttagaaaata aatctatcga agagatcgtt
                                                                      120
gctaatttag acagcgtacc atctgacatc caaactgcag ttcgtaataa cggtggtgga
                                                                      180
catttaaacc attcattatt ctggcaactt ctaacaccta attctgaaga aaaaggtaca
                                                                      240
gtaattgata aaatcaaaga agaatggggt totttagaca aatttaaaga tgaatttgot
                                                                      300
aaaaaagctg ctggacaatt tggttcaggt tgggcatggc tagttgtaga taaagacggt
                                                                      360
aaactagaaa tegtttetae teetaaecaa gacaatecaa teacagaagg caaaaeteet
                                                                     420
attttaggac tt
                                                                      432
```

<210> 61

<211> 429

<212> DNA

<213> Staphylococcus choromogenes

<220> <223> CI	P 81.59 T (DSM 20454)	
<400> 61 catattgat	a aagaaacgat ggaaatccat catagtaaac accataacac atacgtgact	60
	g atgcagttaa aggtactgat ttagagaaca aatcaatcga agaaattatt	120
gctaactta	a atagcgtacc agaagataaa caaactcctg tacgtaataa tggtggcggt	180
cacttaaac	c actctttatt ctggcaatta ctttcaccac aatcagaaga aaaaggtgaa	240
gtcgtagata	a aaattaaaga gcaatggggc tctttagatg atttcaaaaa agaatttgca	300
gacaaagca	g cagctcgttt tggttctggt tgggcatggc tcgttgtaaa taatggtcaa	360
ttagaaatc	g ttactacacc aaaccaagac aacccaattt ctgaaggtaa aactcctatc	420
ttaggatta		429
<210> 62	•	
<211> 429 <212> DNA		
	aphylococcus cohnii subsp. Cohnii	
<220>		
	P 81.54 T (ATCC 29974)	
<400> 62		
catattgatc	aacaaacaat ggaaattcat cacgacaaac atcataacac ttatgttact	60
aaattaaatg	g cagcaattga aggtactgat ttagagtcta aatcaattga agaaattatt	120
gcaaatttag	g acagtgtacc agaagatatt caaacagctg ttagaaataa tggcggtgga	180
cacttaaacc	actcattatt ctgggaatta ttaactccaa actctgaaga aaaaggaact	240
gtagttgata	aaattaaaga acaatggggt tetttagatg catttaaaga agaatttgca	300
gataaagctg	cagetegttt tggtteagga tgggettgge tagttgttaa taatggtaat	360
ttagaaattg	ttacaactcc aaaccaagat aacccactta cagaaggtaa aacaccaatc	420
ctaggctta		429
<210> 63		
<211> 429		
<212> DNA		
<213> Sta	phylococcus cohnii subsp. Urealyticum	
<220> <223> CIP	104024 T (ATCC 49330)	
<400> 63		•
catattgatc	aacaaacaat ggaaatccac catgacaaac atcataacac ttatgttact	60
aaattaaatg	Cagcaattga aggtactgat ttagaatcta aatcaattga agaaattgta	120

gcaaat	ttag	acagtgtacc	agaaaatatt	caaacagctg	ttagaaataa	tggtggtgga	180
cactta	aacc	attcattatt	ctgggaatta	ttaactccaa	actctgaaga	aaaaggaact	240
gtagtt	gata	aaattaagga	acaatggggt	tctttagatg	catttaaaga	agaatttgca	300
gataaa	gctg	cagctcgttt	tggttcaggt	tgggcttggc	tagttgttaa	taatggcaat	360
ttagaa	attg	ttacaactcc	aaaccaagat	aacccattaa	ctgaaggtaa	aacacctatc	420
ttaggc	tta						429
<210> <211> <212> <213>	64 432 DNA Stap	phylococcus	condimenti				
<220>							
<223>	CIP	105760 т (DSM 11674)				
<400>	64 gata	aagaaacaat	ggaaatccat	catgacaaac	atcacaacac	ttatgtaaca	60
aaattaa	aatg	cagcaatcga	aggtactgat	ttagaaaata	aatctatcga	agaaatcgtt	120
gcaaatt	tag	acagcgtacc	atctgacatc	caaactgcag	ttcgtaataa	tggtggtgga	180
catctaa	aacc	attcattatt	ctggcaactt	ctaacaccta	attctgaaga	aaaaggtaca	240
gtaatto	gata	aaatcaaaga	agaatggggt	tctttagaca	aattcaaaga	tgaatttgct	300
aaaaaa	gctg	ctggacaatt	tggttcaggt	tgggcttggc	tagttgtaga	taaaaacggt	360
aacttag	gaaa	tcgtttctac	tccaaaccaa	gacaacccaa	ttacagaagg	caaaactcct.	420
attttag	ggac	tt					432
<210> <211> <212> <213>	65 429 DNA Stap	phylococcus	delphini				
<220> <223>	CIP	103732 T					
<400> cacatto	65 Jata	aagaaactat	ggaaatccat	cacagcaagc	atcataacac	ttatgtaaca	60
aaattaa	atg	ctgctgttga	aggtactgaa	tttgaaaata .	aatcattaga	agatttaatt	120
gcaaact	tag	acagegtace	agaaaactta	cgtacagcag	ttcgtaataa	tggtggcggt	180
cacttaa	atc	actctatttt	ctggcaaatc	ttaacaccta	actcagaaga	aaaaggtgaa	240
attatca	ata	aaattaaaca	acaataaaat	tctttagata	***	ogantttgga	300

gacaaagcag ctggccgttt cggttcaggt tgggcttggc ttgttgttaa caacggtaaa	360
ttagaaatcg ttacaactgc aaaccaagat agtccattaa ctgatggttt aacaccaatt	420
ttagcgtta	429
<210> 66	
<211> 429 <212> DNA	
<213> Staphylococcus epidermidis	
<220>	
<223> CIP 81.55 T (ATCC 14990)	
<400> 66	
cacatogaca aacaaactat ggaaattcat catgacaaac atcataacac atatgttaca	60
aaattaaatt cagcagttga agggacagat ttagaagcta aatcaatcga agaaattgtt	120
gctaatttag atagtgtgcc atctaatatt caaacagctg ttcgtaataa tggcggtggt	180
caccttaacc attcattgtt ctgggaacta ttatcaccaa attctgaaga aaaaggtgaa	240
gtagtagata aaattaaaga acaatggggt tetttagatg aatttaaaaa agaatttgea	300
gataaagctg cagcacgctt tggttcagga tgggcttggt tagttgtaaa caatggacaa	360
ttagaaattg ttacaacacc aaatcaagat aatccaatta ctgaaggaaa aacaccaatt	420
ttaggttta	429
<210> 67	
<211> 429 <212> DNA	
<213> Staphylococcus equorum	
<220>	
<223> CIP 103502 T (ATCC 43958)	
<400> 67 cacattgate aacaaacaat ggagatteae catgacaaac accataacae ttatgtaact	60
aaattaaacg cagcagttga aggaactgat ttagaatcta aatcaatcga agaaattgtt	120
gcaaacttag acagtgtacc agaaaacatt caaacagctg ttcgcaataa tggtggagga	180
cacttaaacc attcattatt ctgggaatta ttaactccaa actctgaaga aaaaggtact	
	240
gttgttgata aaattaaaga acaatggggt tctttagatg cattcaaaga agagtttgct	300
aaccaagetg cagcacgttt cggttcaggt tgggcatggc tagttgtaaa cgatggtaaa	360
ttggaaatcg ttactacacc taatcaagat aacccattaa ctgaaggtaa aacacctatc	420
ctaggctta	429

PCT/IB01/01155 WO 01/88186

<210> <211> <212> <213>	68 429 DNA Stap	phylococcus	felis				
<220> <223>	CIP	103366 Т (ATCC 49168)				
<400>	68			,			
			ggaaattcac				60
aaattaa	acg	ctacagtaga	aggttcagat	ttagaaaata	aatctcttga	agatcttatt	120
gccaatg	tag	atagtcttcc	agaagacaag	aaaacagctg	tacgtaataa	tggtggcggt	180
catctta	acc	actcattctt	ctgggcactt	ttaacaccta	attctgaaga	aaaaggtgaa	240
gtagttg	ata	aaatcaatga	aaaatggggc	tcattagacg	cattcaaaaa	agaatttggc _.	300
gatgcgg	ċtg	ctggtcgatt	tggttcaggc	tgggcatggt	tagttgtgaa	caatggtgaa	360
ttagaaa	ttg	tttcaacacc	taaccaagac	aatccattgt	ctgaaggtaa	aacgccaatt	420
ttagctc	tt						429
<211> <212>	69 429 DNA Stap	Dhylococcus	gallinarum				
<220> <223>	CIP	103504 T (A	ATCC 35539)				
	69 aca	aagaaactat	ggaaatccac	catggtaaac	accacaacac	ttatgtaact	60
aaattaa	at·g	ctgcagttga	aggtactgat	ttagaatcta	aatcaatcga	agaaattgtt	120
gcaaact	tag	acagtgtacc	agaaaatatt	caaacagctg	ttagaaataa	tggtggtgga	180
cacttaa	acc	actcattatt	ctgggaatta	ttaactccta	actctgaaga	aaaaggtact	240
gtagttg	ata	aaattaaaga	acaatggggt	tctttagatg	catttaaaga	agaatttgca	300
gataaag	ctg ·	cagcacgctt	tggttcaggt	tgggcatggc	tagttgtaaa	taacggtaac	360
ttagaaat	tcg	ttactacacc	taaccaagac	aaccctatta	ctgaaggtaa	aacacctatc	420
ttaggtti	ta						429

<21.0> 70

<211> 429

<212> DNA <213> Staphylococcus haemolyticus

```
<220>
 <223> CIP 81.56 T (ATCC 29970)
 cacattgaca aacaaactat ggaaatccat catgacaaac accacaacac gtatgttacc
                                                                        60
 aaattaaatt ctgcagttga gggaacagat cttgaatcta aatcaattga agaaattgtt
                                                                       120
 gctaatttag atagtgtacc tgaagatatt caaacagctg ttcgtaataa tggtggcgga
                                                                       180
 cacttaaatc actcattatt ctgggaatta ttaactccta attctgaaga aaaaggtact
                                                                       240
 gttgttgata aaatcaaaga acaatggggc tctttagatg aattcaaaaa agaattcgct
                                                                      300
 gacaaagcag cagctcgttt cggttcaggt tgggcatggt tagtagttaa caatggtcag
                                                                      360
 ttagaaattg ttactacacc taaccaagat aacccattaa cggaaggtaa aacacctatc
                                                                      420
 ttaggttta
                                                                      429
 <210>
       71
 <211> 429
 <212> DNA
<213> Staphylococcus hominis subsp. Hominis
<220>
<223> CIP 81.57 T (ATCC 27844)
catategaca aagaaacaat ggaaatteat catgacaaac atcataacae ttatgttaca
                                                                       60
aaattaaact ctgcagttga aggtactgat ttagaatcta aatcaattga agaaattgtt
                                                                      120
gcaaatttag atagtgtatc tgaaaatatt caaacagcag tacgtaataa tggtggaggt
                                                                      180
catttaaatc actcattatt ctgggaatta ttaactccta attctgaaga aaaaggtact
                                                                      240
gtagttgata aaattaaaga acaatggggt tctttagatg agtttaaaaa agaattcgct
                                                                      300
gataaagctg cagcacgttt tggttcaggt tgggcttggt tagtagtaaa taatggaaaa
                                                                      360
ttagaaattg ttactactcc aaatcaagat aaccctatta ctgaaggaaa aactccaatt
                                                                      420
ttaggctta
                                                                      429
<210> 72
<211>
      429
<212>
<213> Staphylococcus hominis subsp. Novobiosepticus
<220>
<223> CIP 105719 T (ATCC 700236)
<400> 72
catatcgaca aagaaacaat ggaaattcat catgacaaac atcataacac ttatgttaca
                                                                       60
aaattaaatt ctgcagttga aggtactgat ttagaatcta aatcaattga agaaattgtt
                                                                     120
```

gcaaatttag	atagtgtacc	tgaaaatatt	caaacagcag	tacgtaataa	tggtggaggt	180
catttaaatc	actcattatt	ctgggaatta	ttaactccta	attctgaaga	aaaaggtact	240
gtaattgata	aaattaaaga	acaatggggt	tctttagatg	agtttaaaaa	agaattcgct	300
gataaagctg	cagcacgttt	tggttcaggt	tgggcttggt	tagtagtaaa	taatggaaaa	360
ttagaaattg	ttactactcc	aaatcaagat	aaccctatta	ctgaaggaaa	aactccaatt	420
ttaggctta	•					429
					•	
<210> 73 <211> 429 <212> DNA <213> Sta	phylococcus	hyicus				
<220> <223> CIP	81.58 T (A	FCC 11249)				
<400> 73 catattgaca	aagaaactat	ggaaatccac	catagcaaac	atcataacac	ttatgtaaca	60
aaattaaacg	acgctgtaaa	aggtacagag	ttagaagata	aatctattga	agagcttatc	120
gcgaatgttg	accaattacc	tgaggataaa	aagactgcgg	ttcgtaacaa	tggtggcggt	180
cactttaacc	attctttatt	ctggcaattt	ttatccccag	aatctgaaga	aaaaggtgaa	240
gttgttgaca	aaattaaaga	acaatggggt	tctttagacg	catttaaaaa	agaattctca	300
gataaagcag	cagcacgatt	tggatctggc	tgggcttggc	ttgtagtaaa	taatggtcaa	360
ttagaaattg	ttacaacage	aaaccaagat	agcccattat	cagaaggtaa	gacaccaata	420
ctcgctcta						429
•						
<210> 74 <211> 429 <212> DNA <213> Staj	phylococcus	intermedius	5			
<220> . <223> CIP	81.60 T (A)	rCC 29663)				
<400> 74		•		<u>.</u>		
	aagaaactat				-	60.
	ctgctgttga					120
	atagtgtacc			-		180
cacttaaatc	actctatttt	ctggcaactt	ttaacaccta	actcagaaga	aaaaggtgaa	240

300

gttgtagata aaatcaaaga acaatggggt tctttagatg aatttaaaaa cgaatttgcg

gataaagcag	cagcacgttt	cggttcaggt	tgggcttggc	: ttgttgtcaa	taacggcaaa	360
ttagaaatcg	ttacaacagc	aaaccaagac	agtocattaa	ctgacggatt	atcaccaatc	420
ttagcatta						429
<210> 75 <211> 429 <212> DNA <213> Star	phylococcus	kloosii				
<220> <223> CIP	103503 T (2	ATCC 43959)				
<400> 75 cacatcgata	aagaaactat	ggaaattcac	cacgataaac	accataacac	ttatgtaaca	60
aaattaaacg	cagcagttga	aggaactgaa	ttagaatcta	agtcaattga	agaaattatt	120
gcaaacttag	acagtgttcc	tgaaaacatt	caaacagctg	ttcgtaataa	tggtggggga	180
catattaacc	attcattatt	ctgggaatta	ttaactccta	actctgaaga	aaaaggtact	240
gtagtagata	aaattaaaga	acaatggggt	tctttagatg	catttaaaga	agaatttgct	300
gataaagctg	caggccgttt	cggttcaggt	tgggcatggt	tagtagtaaa	taacggtaac	360
ttagaaatcg	ttactacacc	taaccaagac	aatccattaa	ctgaaggtaa	aacacctatc	420
ttaggttta						429
<210> 76 <211> 432 <212> DNA <213> Stapl	hylococcus	lentus .				
<220> <223> CIP 8	8163 T (ATC	C 29070)				
<400> 76 cacatcgata a	aagagacaat	ggagattcat	catacgaaac	accataacac	ttatgtaaca	60
aaactaaatg a	atgcagttaa	aggtactgac	ttagaaagta	aatctattga	agatattatt	120
aaaaacttaa a	attctgtacc	agatgatatc	cgtactgcag	ttcaaaacaa	tggtggcgga	180
cattacaatc a	actcattatt (ctgggagatg	ttaactccaa	atgcttctga	accatcaggc	240
gaagtagtag a	atgcaatcag	ttctactttc	ggttcattag	acaaatttaa	agaagagttt	300
gcagcagcag c	cagctggacg (cttcggttca	ggttgggcat	ggttagttgt	agataacggt	360
gaattatcaa t	cgtttcaac t	ccaaaccaa	gataacccat	tatctgaagg ·	taaaattcct	420
gtattaggat t	.a					432

<210> <211> <212> <213>	77 429 DNA Stap	phylococcus	lugdunensi	s			
<220> <223>	CIP	103642 Т (ATCC 43809)				
<400>	7 7						
catattg	gata	aagaaacaat	ggaaatccat	catgataaac	atcataatac	gtatgtgact	60
aaattaa	att	ctgcagttga	aggtacagac	ttagagtcta	aatctattga	ggaaattatt	120
gccaatt	tạg	atagcgttcc	tgaaaacatt	caaacagctg	tacgtaataa	tggtggtgga	180
cacttaa	acc	attcactatt	ctgggaattt	ttaactccta	attctgaaga	aaaaggtact	240
gtagttg	rata	aaattaaaga	acaatggggt	tctttagatg	aattcaagaa	agaattcgct	300
gacaaag	ctg	caggtcgttt	tggttcaggt	tgggcatggt	tagttgtaaa	taacggtaaa	360
ttagaaa	ttg	ttacaacgcc	taaccaagac	aacccattaa	ctgaaggaaa	aacacctatc	420
ttatgta	ta		•				429
				•			
<211>	78 429 DNA						
<213>	Stap	phylococcus	lutrae				
<220> <223>	CIP	105399 T (2	ATCC 700373)			
<400>	78						
catatcg	ata	aagaaacaat	ggagctccat	cacggtaaac	atcataacac	atacgttact	60
aaattaa	atg	ctgctgttga	aggcacagaa	ttggaaaata	aatcacttga	agatttaatc	120
acacatt	tag	atcgcgtacc	tgaaaatgta	cgtactgctg	tgcgtaacaa	tggtggcggt	180
catttaa	atc	actcattttt	ctggcaactg	cttacaccaa	actctgaaga	aaaaggtgaa	240
gtagtgg	ata	aaattaaaga	acaatgggga	tcattagacg	cattcaaaga	agaatttgca	300
gataaag	cag	cgggtcgttt	cggttctggt	tgggcttggc	ttgttttaaa	taatggaaaa	360
ttagaaa	tta	ttacaacacc	taaccaagac	agtccgttaa	ctgaaggttt	aacaccgctt	420
ttaactt	ta					•	429

<210> 79 <211> 429 <212> DNA <213> Staphylococcus muscae

```
<220>
 <223>
        CIP 103641 T (ATCC 49910)
 <400>
 catttegaca aagaaacaat ggagatteat cataegaage ateataacae ttatgttaca
                                                                        60
 aagttaaacg gtgcagttga aggaacagaa tttgaaaaca aatcaattga agatcttgtt
                                                                       120
 gcaaacttaa atgatgtacc tgaagaaaaa cgcacagctg tacgtaataa tggtggcggc
                                                                       180
 cacttaaacc actcattatt ctggcagtta ttaacaccta attcagaaga aaaaggtaca
                                                                       240
 gtggttgaaa aaatcactga aaaatggggt agcttagata gtttcaaaca agaatttgcc
                                                                       300
 gataaagcag cagctcgatt cggttcaggt tgggcatggt tagttgtaga caatggcgag
                                                                      360
 ttagcgattg tgacaactcc aaatcaagac aatccaatca cagatggaaa aactccacta
                                                                      420
ttaggtctt
                                                                      429
<210>
       80
<211>
       429
<212>
       DNA
<213> Staphylococcus pasteuri
<220>
       CIP 103540 T (ATCC 51129)
<223>
<400>
       80
cacatcgata aagaaactat ggagattcac catgataaac accataacac ttatgtaaca
                                                                       60
aaattaaacg ctgcagttga aggtactgat ttagaagcta aatcaatcga agaaattgta
                                                                      120
gctaatttag acagtgtacc ttctgatatc caaactgctg ttagaaataa tggtggcgga
                                                                      180
cacttaaacc actcattatt ctgggaatta ctaacaccta actcagaaga aaaaggtgaa
                                                                      240
gtagtagata aaattaaaga. acaatggggt tctttagatg aattcaaaaa agaatttgct
                                                                      300
gacaaagcag cagctcgttt tggttcaggt tgggcttggt tagtagtaaa taacgggcaa
                                                                      360
ttagaaatcg ttacaactcc aaaccaagat aatccattaa ctgaaggtaa aacacctatc
                                                                      420
ttaggttta
                                                                      429
<210>
       81
<211>
       432
<212>
       DNA
<213>
       Staphylococcus piscifermentans
<220>
<223> CIP 103958 T (DSM 7373)
<400>
       81
tatatcgaca aagaaacaat ggaaatccat catgacaaac accataacac ttatgtaaca
                                                                       60
aaattaaatg cagcaatcga aggtactgat ttagaaaata aatcaatcga agaaatcgtt
```

120

gctaatttag	acagcgtacc	atcagacatc	caaactgcag	ttcgtaataa	tggtgggga	180
cacttaaacc	actcattatt	ctggcaactt	cttacaccta	attctgaaga	aaaaggtact	240
gtaattgata	aaattaaaga	agaatggggc	tctttagata	aattcaaaga	tgaatttgct	300
aaaaaagctg	ctggacaatt	tggttcaggt	tgggcatggc	tagttgtaga	taaaaacggt	360
aaattagaaa	tcgtttctac	accaaaccaa	gacaacccta	ttacagaagg	caaaactcct	420
attttaggct	ta					432
		·				•
<210> 82 <211> 432 <212> DNA <213> Sta		pulvereri				
<220> <223> CIP	104364 T (DSM 9930)				
<400> 82 cacatcgata	aagaaactat	ggagattcac	catacgaaac	accataacac	ttatgtaaca	60
aaattaaatg	acgcagttaa	aggtacagat	ttagaaagta	aatctattga	agatatcatt	120
aaaaatttaa	attctgttcc	tgaaaatatt	cgtactgcag	ttcaaaacaa	tągtggcgga	180
cattataatc	actcattatt	ctgggaacta	ttaacaccaa	atgcttctga	accttcagga	240
gaagttgtgg	atgcaattag	ttctacattc	ggttcattag	acaaattcaa	agaagaattt	300
gcagctgcag	cagctggccg	tttcggttca	ggttgggcat	ggttagttgt	agataacggt	360
gaattagcga	tcgtttcaac	tccaaaccaa	ggtaacccta	tttcagaagg	taaacttcca	420
gtattaggct	ta					432
<210> 83 <211> 429 <212> DNA <213> Stay	phylococcus	saccharolyt	icus			
<220> <223> CIP	103275 T (A	ATCC 14953)				
<400> 83 cacatcgata	aacaaactat	ggaattacat	catgacaaac	atcacaacac	atatgtaact	60
aaattaaact	cagcagttga	aggaacagat	ttagaagçta	aatcaatcga	agaaattgtt	120
gctaatttag	acaatgtccc	atcaaatatt	caaacagctg	ttcgtaacaa	tggcggtgga	.180
catttaaacc	attcattatt	ctgggaatta	ttatcaccta	actcagaaga	aaaaggtgaa	240
gttgtagata	aaattaaaga	acaatggggt	tctttagatg	aatttaaaaa	agaatttgcg	300

gataaagcta cagctcgttt tggttcaggt tgggcatggt tagtagtaga taatggccaa	360
ttagagattg taacaacact taatcaagac aatccattaa ctgaagggaa aactccaatt	420
ctagcttta	429
<210> 84 <211> 429	
<212> DNA	
<213> Staphylococcus saprophyticus subsp.bovis	-
<220> <223> CIP 105260 T	
<400> 84	
cacattgata aacaaacaat ggaaattcac catgacaaac accataacac ttatgtaact	60
aaattaaatg cagcagtaga aggaactgat ttagaatcta aatcaatcga agaaattgtt	120
gcaaacttag acagtgttcc agaaaatatt caaacagctg ttcgaaataa tggtggtgga	180
cacttaaacc actcactatt ctgggaatta ttaactccaa actcagaaga aaaaggtact	240
gttgttgata aaattaaaga acaatggggc tetttagatg catttaaaga agaatttget	300
gacaaagcag cagctcgttt cggttcaggt tgggcatggc tagttgtgaa taacggtaac	360
ttagaaatcg ttacaacacc taaccaagat aacccattaa ctgaaggtaa aacaccaatc	420
ttaggatta	429
<210> 85	
<211> 429 <212> DNA	
<213> Staphylococcus saprophyticus subsp. Saprophyticus	
<220> <223> CIP 76.125 T (ATCC 15305)	
<400> 85	
cacattgata aacaaacaat ggaaattcac catgacaaac accataacac ttatgtaact	60
aaattaaatg cagcagtaga aggaactgat ttagaatcta aatcaatcga agaaattgtt	120
gcaaacttag acagtgttcc agaaaatatt caaacagctg ttcgaaataa tggtggtgga	180
cacttaaacc actcactatt ctgggaatta ttaactccaa actcagaaga aaaaggtact	240
gttgttgata aaattaaaga acaatggggc tctttagatg catttaaaga agaatttgct	300
gacaaagcag cagctcgttt cggttcaggt tgggcatggc tagttgtgaa taacggtaac	360
ttagaaatcg ttacaacacc taaccaagat aacccattaa ctgaaggtaa aacaccaatc	420
ttaggatta	429

```
<210>
       86
<211>
       429
<212>
       DNA
<213>
       Staphylococcus scheiferi subsp. Coaqulans
<220>
<223> CIP 104370 T (ATCC 49545)
<400> 86
cacattgaca aagaaacaat ggtgctacat catgacaaac atcataatac gtatgtaaca
                                                                       60
aagttaaacg cagcagttga aggtacagat ttagaaaata aatctattga agatttaatt.
                                                                      120
gctaatttag acagtgtgcc tgaagataaa cgtactgcag ttcgtaataa tggtggtgga
                                                                      180
cacttaaacc actcatttt ctggcaaatt atttcaccta actcagaaga aaaaggtgaa
                                                                      240
gttgtagata aaattaaaga acaatggggt totttagatg cattoaaaaa agaatttgot
                                                                      300
gataaagctg caggtcaatt tggttcaggt tgggcatggt tagtagtgaa taatggtcaa
                                                                      360
ttagaaatcg taacgactcc taaccaagat agtccactta ctaatggcca aactccaatt
                                                                      420
ttaaactta
                                                                      429
<210> 87
<211> 429
<212> DNA
<213> Staphylococcus scheiferi subsp. Schleiferi
<220>
<223> CIP 103643 T (ATCC 43808)
<400> 87
cacattgata aagaaacaat ggtgctacat catgacaaac atcataatac gtatgtaaca
                                                                       60
aagttaaacg cagcagttga aggtacagat ttagaagata aatctattga agatttaatt
                                                                     120
gctaatttag atagtgtacc tgaagataaa cgtactgcag ttcgtaataa tggtggtgga
                                                                     180 .
cacttaaacc actcattttt ctggcaaatt atttcaccta actcagaaga aaaaggtgaa
                                                                     240
gttgtagata aaattaaaga acaatggggt tctttagatg cattcaaaaa agaatttgct
                                                                     300
gaaaaagctg caggtcaatt tggttcaggt tgggcatggt tagtagtgaa taatggtcaa
                                                                     360
ttagaaatcg taacgactcc taaccaagat agtccactta ctaatggcca aactccaatt
                                                                     420
ttaaactta
                                                                     429 .
```

<210> 88 <211> 432 <212> DNA

<213> Staphylococcus sciuri subsp. Carnaticus

<220> <223> CIP 105826 T (ATCC 700058)	
<400> 88	
cacatcgata aagaaactat ggagattcat catacgaaac accataacac ttatgtaaca	60
aaattaaatg atgcagtgaa aggtacagat ttagaaagca aatctattga agatattgtt	120
aaaaacttaa actctgttcc tgatgatatc cgtactgcag ttcaaaacaa tggtggcgga	180
cattataatc attcattatt ctgggaacta ttaactccaa atgcttctga gccttcagga	240
gaagttgtag atacaattag ttctacattt ggttcattag acaaattcaa agaagaattt	300
gcagctgcag cagctggccg ttttggttca ggatgggcat ggttagttgt agataatggc	360
gaattagcga ttgtttcaac tccaaaccaa gataacccaa tttcagaagg taaacttcca	420
attttaggtt ta	432
<210> 89	
<211> 432 <212> DNA	•
<213> Staphylococcus sciuri subsp. Sciuri	
<220>	
<223> CIP 81.62 T (ATCC 29062)	
<400> 89	
cacatcgata aagaaactat ggagattcat catacgaaac accataacac ttatgtaaca	60
aaattaaatg atgcagtgaa aggtacagat ttagaaagca aatctattga agatattgtt	120
aaaaacttaa actctgttcc tgatgatatc cgtactgcag ttcaaaacaa tggtggcgga	180
cattataatc attcattatt ctgggaacta ttaactccaa acgcttctga gccttcagga	240
gaagttgtag atgcaattag ttctacattt ggttcattag acaaattcaa agaagaattt	300
gcagctgcag cagctggccg ttttggttca ggatgggcat ggttagttgt agataatggc	360
caattagcga ttgtttcaac tccaaaccaa gataacccaa tttcagaagg taaacttcca	420
attttaggtt ta	432
<210> 90	
<211> 432	
<212> DNA <213> Staphylococcus simulans	
<220> <223> CIP 81.64 T (ATCC 27848)	
<400> 90	
cacatcgata aagaaacgat ggaaattcac catgacaaac accataacac ttatgttaca	60
aaattaaacg cagcaatcga aggaactgat ttagaaaaca aatcaatcga agaaattatt	100

WO 01/88186 PCT/IB01/01155

gctaacttag	, atagtgtaco	atctgacatc	: caaactgcag	tccgtaataa	tggtggtgga	180
cacttaaacc	actcattatt	ctggcaaatc	ctttcaccta	actctgaaga	gaaaggtaca	240
gtagttgata	aaattaaaga	acaatggggt	tctttagacg	aattcaaaga	cgaatttgct	300
aaaaaagctg	ctggacaatt	tggttcaggt	tgggcttggc	tagtagtaga	taaagacggt	360
aaattagaaa	tegttactac	: agcaaaccaa	gacaacccaa	ttactgaagg	caaaactcct	420
atcctaggct	ta					432
	•					
<210> 91 <211> 432 <212> DNA <213> Sta		vitulinus				
<220> <223> CIP	104850 T (ATCC 51145)				
<400> 91 cacatcgata	aagaaactat	ggagattcac	catacgaaac	accataacac	ttatgtaaca.	60
aaattaaatg	acgcagttaa	aggtacagat	ttagaaagta	aatctattga	agatatcatt	120
aaaaatttaa	attctgttcc	tgaaaatatt	cgtactgcag	ttcaaaacaa	tggtggcgga	180
cattataacc	actcattatt	ctgggaacta	ttaacaccaa	atgcttctga	acctțcagga	240
gaagttgtgg	atgcaattag	ttctacattc	ggttcattag	acaaattcaa	agaagaattt	300
gcagctgcag 	cagctggccg	tttcggttca	ggttgggcat	ggṭtagttgt	agataacggt	360
gaattagcga	tcgtttcaac	tccaaaccaa	gataacccta	tttcagaagg	taaacttcca	420
gtattaggct	ta					432
<210> 92 <211> 429						
<212> DNA	phylococcus	warneri				
<220> <223> CIP	81.65 T (A	rcc 27836)				
<400> 92 cacatcgata	aagaaactat	ggagattcac	catgataaac	accacaacac	ttatgtaaca	60
			ttagaagcta			120
			caaactgcag			180
			ttaacaccta			240
			tctttagatg			300

WO 01/88186 PCT/IB01/01155

gacaaagctg cagctcgttt tggttcaggt tgggcttggt tagttgttaa taatggtcaa	360
ttagaaatcg ttacaactcc aaaccaagat aacccattaa ctgaaggtaa aacacctatc	420
ctaggctta	429
<210> 93 <211> 429	
<212> DNA	
<213> Staphylococcus xylosus	
<220> <223> CIP 81.66 T (ATCC 29971)	
<400> 93	
cacattgatc aacaaacaat ggaaattcac catggcaaac accataacac ttatgtaact	60
aaattaaacg cagcagtaga aggaactgat ttagaatcta aatcaattga agaaattgtt	120
gcaaatctag acagtgttcc agaaaatatt caaacagctg ttcgcaataa tggcggtgga	180
catttaaacc actcattatt ctgggaatta ttaactccaa actcagaaga aaaaggtact	240
gttgttgata aaattaaaga acaatggggt tctttagatg catttaaaga agaatttgca	300
gacaaagcag cagcacgttt cggttcaggt tgggcctggt tagtagttaa taacggtaac	360
ttagaaatcg ttactacacc taaccaagac aatccaatta ctgaaggtaa aacacctatc	420
ttaggatta	429
<210> 94	
<211> 429 <212> DNA	
<213> Macrococcus caseolyticus	
<220> <223> CIP 100755 T (ATCC 13548)	
<400> 94	
cacatcgaca aagaaacgat ggagattcac catacaaaac atcataacac ttatgtaacg	60
aaattaaatg atgcagtggc tggtacggag tttgagaatg tatctatcga agatctgatg	120
aagagaattg atgaagttcc tgcagacaag aaaactgctg tagttaataa tggtggcggt	180
cattataacc actcattgtt ctggacattg cttgctccag gtaaagaagc gaaaggtgaa	240
gttgttgatg cgattgaatc aaaatttggt tctttagatg catttaaaca agaatttgct	300
gatgctgcag ctgggcgctt cggttcaggc tgggcatggt tagttgttaa taacggagag	360
cttgaagtaa cttcaacgcc aaaccaggaa aatccattaa tggaaggcaa aacaccaatc	420
ttaggatta	429

WO 01/88186 PCT/IB01/01155

```
<210> 95
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence : Primer
<220>
<223> n means inosine
<220>
<223> D1
<400> 95
centayment aygaygenyt ngaree
                                                                    26
<210> 96
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence : Primer
<220>
<223> n means inosine
<220>
<223> D2
<400> 96
arrtartang crtgytccca nacrtc
                                                                    26
```

This Page Blank (uspto)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 November 2001 (22.11.2001)

PCT.

C12Q 1/68

(10) International Publication Number WO 01/088186 A3

(51) International Patent Classification7:

(21) International Application Number: PCT/IB01/01155

(22) International Filing Date: 21 May 2001 (21.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/205,237 19 May 2000 (19.05.2000) US

(71) Applicants (for all designated States except US): IN-STITUT PASTEUR [FR/FR]; 28, rue du Docteur Roux, F-75015 Paris (FR). INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (IN-SERM) [FR/FR]; 101, rue de Tolbiac, F-75013 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TRIEU-CUOT, Patrick [FR/FR]; 20 Rue Léon Blum, F-92260 Fontenay-aux-Roses (FR). POYART, Claire [FR/FR]; 20 Rue Léon Blum, F-92260 Fontenay-aux-Roses (FR).

(74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report

(88) Date of publication of the international search report:
13 March 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/088186 A3

(54) Title: METHODS FOR DETECTING AND IDENTIFYING A GRAM POSITIVE BACTERIA IN A SAMPLE

(57) Abstract: The present invention provides fragments of a sodA gene from gram positive bacteria, methods of using these fragments as probes to detect and identify microorganisms in a sample and kits containing suitable reagents to perform the method.

INTERNATIONAL SEARCH REPORT

ational Application No

·		1.0	/IB 01/01155			
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/68						
1						
According	According to International Patent Classification (IPC) or to both national classification and IPC					
	S SEARCHED	Sallon Bild II C	······································			
	ocumentation searched (classification system followed by classificat	ion symbols)				
IPC 7	C120					
Documenta	ation searched other than minimum documentation to the extent that	such decuments on included in	Al- C-lda			
Documenta	anon searches offer main minimum documentation to the extent man		the fields searched			
Electronic	data base consulted during the international search (name of data ba	and where practical accret	A forme wood			
1	, EPO-Internal, MEDLINE, PAJ, WPI Da		rienns useu)			
510313	, ero internar, nebelite, rao, wil bi	aca				
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	- in the second				
Category *	Citation of document, with indication, where appropriate, of the re-	levant passages	Relevant to claim No.			
<u> </u>						
Х	POYART CLAIRE ET AL: "Sequencing		1-5,7,			
<u>.</u>	encoding manganese-dependent supe dismutase for rapid species ident		14-16,20			
	of enterococci."					
	JOURNAL OF CLINICAL MICROBIOLOGY, vol. 38, no. 1, January 2000 (200					
	pages 415-418, XP002205503	, o o o o o o o o o o o o o o o o o o o				
Y	ISSN: 0095-1137 the whole document	6 10 10				
	the whole document	6,12,13, 18				
	& DATABASE GENBANK 'Online!					
	NCBI; AJ387941, 7 January 2000 (2000-01	1-07)				
	POYART, C. ET AL.: "Enterococcus	avium				
	partial sodA gene for superoxide dismutase, strain NEM1630"					
	the whole document					
		-/				
		7	*			
Further documents are listed in the continuation of box C. Patent family members are listed in annex.						
A document defining the general state of the art which is not *A* document defining the general state of the art which is not			conflict with the application but			
consid	ered to be of particular relevance	invention	nciple or theory underlying the			
filing d		(* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
which i	ic cited to establish the publication date of another	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the				
other means of the combination o			h one or more other such docu- peing obvious to a person skilled			
P docume later th	ent published prior to the international filing date but an the priority date claimed	in the art. *&* document member of the sa				
Date of the a	actual completion of the international search	Date of mailing of the international search report				
7	October 2002	2 1 10. 2002				
Name and m	nailing address of the ISA	Authorized officer				
	European Palent Office, P.B. 5818 Palentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,					
	Fax: (+31-70) 340-3016	Botz, J				

Form PCT/ISA/210 (second sheet) (July 1992)

ntional Application No

RION) DOCUMENTS CONSIDERED TO BE RELEVANT	/IB 01/01155
·	Relevant to claim No.
POYART CLAIRE ET AL: "Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase." JOURNAL OF CLINICAL MICROBIOLOGY, vol. 36, no. 1, January 1998 (1998-01), pages 41-47, XP002205504 ISSN: 0095-1137	1-3,14, 15
the whole document	4-6,12, 16,18
KAWAMURA YOSHIAKI ET AL: "Genetic approaches to the identification of the mitis group within the genus Streptococcus." MICROBIOLOGY (READING), vol. 145, no. 9, 1999, pages 2605-2613, XP002205505	1-5,7, 13-16,20
ISSN: 1350-0872 figures 1-3; tables 1,2	
GAILLOT O ET AL: "Molecular characterization and expression analysis of the superoxide dismutase gene from Streptococcus agalactiae" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 204, no. 1-2, 19 December 1997 (1997-12-19), pages 213-218, XP004100715 ISSN: 0378-1119 the whole document	1-5,7, 13-16,20
POYART C ET AL: "Characterization of superoxide dismutase genes from gram-positive bacteria by polymerase chain reaction using degenerate primers." FEMS MICROBIOLOGY LETTERS. NETHERLANDS 15 AUG 1995, vol. 131, no. 1, 15 August 1995 (1995-08-15), pages 41-45, XP002215739	1-3
ISSN: 0378-1097 paragraphs '02.2!,'02.3!,'03.1!/	5,6,12, 14-16,18
	streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase." JOURNAL OF CLINICAL MICROBIOLOGY, vol. 36, no. 1, January 1998 (1998-01), pages 41-47, XP002205504 ISSN: 0095-1137 the whole document **CAWAMURA YOSHIAKI ET AL: "Genetic approaches to the identification of the mitis group within the genus Streptococcus." MICROBIOLOGY (READING), vol. 145, no. 9, 1999, pages 2605-2613, XP002205505 ISSN: 1350-0872 figures 1-3; tables 1,2 GAILLOT O ET AL: "Molecular characterization and expression analysis of the superoxide dismutase gene from Streptococcus agalactiae" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 204, no. 1-2, 19 December 1997 (1997-12-19), pages 213-218, XP004100715 ISSN: 0378-1119 the whole document POYART C ET AL: "Characterization of superoxide dismutase genes from gram-positive bacteria by polymerase chain reaction using degenerate primers." FEMS MICROBIOLOGY LETTERS. NETHERLANDS 15 AUG 1995, vol. 131, no. 1, 15 August 1995 (1995-08-15), pages 41-45, XP002215739 ISSN: 0378-1097 paragraphs '02.2!, '02.3!, '03.1!

ational Application No

		/IB 01/01155
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.:
х	DATABASE EBI 'Online! EMBL; 11 March 1999 (1999-03-11) CLEMENTS, M.O. ET AL.: "Staphylococcus aureus" retrieved from EBI, accession no. AF121672 Database accession no. AF121672 XP002215740	1-3,12
Y .	page 3898 -page 3899 & CLEMENTS ET AL.: "Characterization of the major Superoxide Dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity" JOURNAL OF BACTERIOLOGY, vol. 181, no. 13, July 1999 (1999-07), pages 3898-3903, the whole document	5,6, 13-16,18
Y	DATABASE EBI 'Online! EMBL; 16 March 1999 (1999-03-16) BARASH, SC ET AL.: "Staphylococcus aureus contig. SEQ. ID. #426" retrieved from EBI, accession no. AAV74737 Database accession no. AAV74737 XP002215741	1-3,12
Y	the whole document & CA 2 194 411 A (HUMAN GENOME SCI INC.) 6 July 1997 (1997-07-06) claims 15,16	5,6, 13-16,18
	SANDERS J W ET AL: "Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene." JOURNAL OF BACTERIOLOGY. UNITED STATES SEP 1995, vol. 177, no. 18, September 1995 (1995-09), pages 5254-5260, XP002205506 ISSN: 0021-9193 the whole document	1-7, 12-16, 18,20

ternational application No. PCT/IB 01/01155

INTERNATIONAL SEARCH REPORT

Box Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. X As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
1-7,12-16,18,20 (partially)	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-5,7,13-16,20 (partially)

Invention 1:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 1, specific for the sodA-gene of gram-positive bacteria, its use in a method for accurate identification of the species of gram-positive bacteria, in particular from the genus Enterococcus, in a sample, a DNA-chip comprising at least one polynucleotide specified by Sequence Identity Number 1 or a fragment thereof, a kit for the detection of a gram positive bacteria present in a sample containing at least Sequence Identity Number 1.

2. Claims: 1-5,7,8,13-16,20 (partially)

Inventions 2 - 35:

Idem for invention 2 to invention 35, inventions being specified by the Sequence Identities derived for the bacterial genus Enterococcus, namely Sequence Identity Number 2-19 and 21-36.

3. Claims: 1,2,5,13,14,16 (partially), 9 (completely)

Invention 36:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 20, specific for the sodA-gene of gram-positive bacteria, its use in a method for accurate identification of the species of gram-positive bacteria, in particular from the species Lactococcus garvieae, in a sample, a DNA-chip comprising at least one polynucleotide specified by Sequence Identity Number 20 or a fragment thereof, a kit for the detection of a gram positive bacteria present in a sample containing at least Sequence Identity Number 20.

4. Claims: 1-3,5,10,13-16,19 (partially)

Invention 37:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 37, specific for the sodA-gene of gram-positive bacteria, its use in a method for accurate identification of the species of gram-positive bacteria, in particular from the genus Streptococcus, in a sample, a DNA-chip comprising at least one polynucleotide specified by Sequence Identity Number 37 or a fragment thereof, a kit for

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

the detection of a gram positive bacteria present in a sample containing at least Sequence Identity Number 37.

5. Claims: 1-3,5,10,13-16,19 (partially)

Inventions 38 - 50:

Idem for invention 38 to invention 50, inventions being specified by the Sequence Identities derived for the bacterial genus Streptococcus, namely Sequence Identity Number 38 - 50.

The Control of Control

6. Claims: 1-3,5,11,13-16,21 (partially)

Invention 51:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 51, specific for the sodA-gene of gram-positive bacteria, its use in a method for accurate identification of the species of gram-positive bacteria, in particular from the genus Abiotrophia, in a sample, a DNA-chip comprising at least one polynucleotide specified by Sequence Identity Number 51 or a fragment thereof, a kit for the detection of a gram positive bacteria present in a sample containing at least Sequence Identity Number 51.

7. Claims: 1-3,5,11,13-16,21 (partially)

Invention 52 - 53:

Idem for invention 52 to invention 53, inventions being specified by the Sequence Identities derived for the bacterial genus Abiotrophia, namely Sequence Identity Number 52 - 53.

8. Claims: 1-3,5,6,12-16,18 (partially)

Invention 54:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 54, specific for the sodA-gene of gram-positive bacteria, its use in a method for accurate identification of the species of gram-positive bacteria, in particular from the genus Staphylococcus, in a sample, a DNA-chip comprising at least one polynucleotide specified by Sequence Identity Number 54 or a fragment thereof, a kit for the detection of a gram positive bacteria present in a sample containing at least Sequence Identity Number 54.

9. Claims: 1-3,5,6,12-16,18 (partially)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Invention 55 - 93:

Idem for invention 55 to invention 93, inventions being specified by the Sequence Identities derived for the bacterial genus Staphylococcus, namely Sequence Identity Number 55-93.

10. Claims: 1-6,14-16,18-21 (partially)

Invention 94:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 94, specific for the sodA-gene of gram-positive bacteria, its use in a method for accurate identification of the species of gram-positive bacteria in a sample, a kit for the detection of a gram positive bacteria present in a sample containing at least Sequence Identity Number 94.

11. Claim : 17 (completely)

Invention 95:

A polynucleotide-probe, in particular the one specified by Sequence Identity Number 95 and 96, specific for the sod-gene of gram-positive bacteria, their use in a method for accurate identification of the species of gram-positive bacteria in a sample.

INTERNATIONAL SEARCH REPORT

Information on patent family members

ational Application No
../IB 01/01155 *

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
CA 2194411	A	06-07-1997	CA EP JP US	2194411 A1 0786519 A2 9322781 A 2002103338 A1	06-07-1997 30-07-1997 16-12-1997 01-08-2002

Form PCT/ISA/210 (patent family annex) (July 1992)

This Page Blank (uspto)