Constructing response models

P(response | stimulus) \rightarrow r(t) given a stimulus s

P(response | stimulus)

Basic coding model: linear response

Basic coding model: temporal filtering

Linear filter:

$$r(t) = \sum_{k=0}^{n} s_{t-k} f_k$$

$$r(t) = \int_{-\infty}^{t} d\tau \, s(t - \tau) f(\tau)$$

Example I: running average

Example II: leaky average

Basic coding model: spatial filtering

Basic coding model: spatial filtering

Basic coding model: spatial filtering

$$r(t) = \sum_{k=0}^{n} s_{t-k} f_k$$
 Temporal filter

$$r(x,y) = \sum_{x'=-n,y'=-n}^{n} s_{x-x',y-y'} f_{x',y'}$$

$$= \int_{-\infty}^{\infty} dx' dy' \, s(x-x',y-y') f(x',y')$$

Spatial filtering and retinal receptive fields

Spatial filtering and receptive fields

Spatial filtering and receptive fields

Spatial filtering

http://docs.gimp.org/2.6/en/plug-in-dog.html

Basic coding model: spatiotemporal filtering

$$r_{x,y}(t) = \iiint dx' dy' d\tau f(x',y',\tau) s(x-x',y-y',t-\tau)$$

Basic coding model: temporal filtering

Can firing rates be negative? Can they increase indefinitely as the input increases? Both of those are a possible result from a linear filtering operation like this.

...shortcomings?

Next most basic coding model

Linear filter & nonlinearity: $r(t) = g(\int s(t-\tau) f(\tau) d\tau)$

How to find the components of this model

How to find the components of this model

P(response | stimulus)

Our problem is one of dimensionality!

Time points × pixels = 非常多的维度 导致没法sample出整个distribution 所以我们只能降维

We want to sample the responses of the system to many stimuli so we can characterize what it is about the input that triggers responses.

P(response | stimulus) \rightarrow P(response | s_1)

Dimensionality reduction

Start with a very high dimensional description (eg. an image or a time-varying waveform) and pick out a small set of relevant dimensions.

这里对不同时间的刺激s进行采样,得到了的刺激在不同时间的特征。

We discretize a stimulus waveform in time, we can represent it as a vector in some vector space.
The dimensionality of this vector space is the number of points used in the discretization.
我们想知道s是什么。我们可以用s随着时间的概率分布来刻画它。但是我们不知道s随着时间的概率分布,所以我们通过采样不同时间的刺激,来刻画这个刺激s。

What is the right stimulus to use?

We want to sample the responses of the system to a variety of stimuli so we can characterize what it is about the input that triggers responses.

P(response | stimulus) \rightarrow P(response | s_{1} , s_{2} , ..., s_{n})

One common and useful method is to use white noise

Determining multiple features from white noise

Determining linear features from white noise

Reverse correlation: the spike-triggered average

Dayan and Abbott, Theoretical Neuroscience

The spike-triggered average

Linear filtering

Stimulus feature f is a vector in a high-dimensional stimulus space

Linear filtering = convolution = projection

How to find the components of this model

Determining the nonlinear input/output function

The input/output function is:

$$P(\text{spike}|\text{stimulus}) \longrightarrow P(\text{spike}|s_1)$$

This can be found from data using Bayes' rule:

$$P(\text{spike}|s_1) = \frac{P(s_1|\text{spike})P(\text{spike})}{P(s_1)}$$

 $P(s_1)$

 $P(s_1|\text{spike})$

Nonlinear input/output function

$$P(\text{spike} | s_1) = P(s_1 | \text{spike}) P(\text{spike}) / P(s_1)$$

Linear/nonlinear models

Linear filter & nonlinearity: $r(t) = g(\int f(t-\tau) s(\tau) dt)$

High-dimensional feature selection

Featured Members

Auntie_Sassy

Age: 35 Location: Greenwood

Woman seeking
• Man for Dating
• Man for Friendship

Worst Haiku Ever

This is my first dip into the online dating pool and quite frankly, I have no idea what I'm doing.... learn more about me »

JohnnyX

Age: 47 Location: Capitol Hill

Man seeking

- · Woman for Dating
- · Woman for Friendship

Sex, Love and Rock-n-Roll

If you don't see how it possible for an older guy to be sexy and exciting, stop reading now because... Learn more about me >>

Less basic coding models

Linear filters & nonlinearity: $r(t) = g(f_1*s, f_2*s, ..., f_n*s)$

Determining multiple features from white noise

Determining multiple features from white noise

Principal component analysis

Principal component analysis: eigenfaces

ATT Labs, Cambridge (via Wikipedia)

Principal component analysis: spike sorting

Koepsell et al., Front. Syst. Neurosci., 2009

Finding interesting features in the retina

