Потоковый анализ

(Data-flow analysis)

Потоковый анализ

Потоковый анализ

- Статический
- Глобальный (весь CFG)
- Зависит от потока управления
- Вычисление свойств исполнения программы
- Единая формальная модель и теория

Применение

- Reaching definitions (use-def links)
- Live-variable analysis
- Constant propagation
- Constant subexpression elimination
- Dead code elimination

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}: L \to L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge \rangle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}: L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow,\uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}: L o L$
- ullet Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- ullet Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$ огр. сверху • Преобразователи свойств $f_{n \in V}: L \to L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow,\uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge \rangle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}$: L o L
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow,\uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge \rangle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D \in \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$ огр. сверху • Преобразователи свойств $f_{n \in V}: L \to L$
- Начальная разметка $in_0(v) = out_0(v) = \top$

Полурешетка свойств

Бинарная операция \land (meet)

- $x \wedge x = x$ (идемпотентность)
- $x \wedge y = y \wedge x$ (коммутативность)
- $(x \land y) \land z = x \land (y \land z)$ (ассоциативность)

Частичный порядок ≤

- $x \le x$ (рефлексивность)
- $x \le y \& y \le z \Rightarrow x \le z$ (транзитивность)
- $x \le y \& y \le x \Rightarrow x = y$ (антисимметричность)

Полурешетка $\langle L, \wedge \rangle$ ^{1 2}

- $x \le y \Leftrightarrow_{def} x \land y = x$
- $x < y \Leftrightarrow_{def} x \land y = x \& x \neq y$

 $^{^1}$ Выполняются ли свойства частичного порядка при таком определении \leq через \wedge ?

 $^{^2}$ Можно ли восстановить полурешетку $\langle L, \wedge
angle$ имея только частичный порядок $\langle L, \leq
angle$?

Полурешетка свойств

Бинарная операция \land (*meet*)

- $x \wedge x = x$ (идемпотентность)
- $x \wedge y = y \wedge x$ (коммутативность)
- $(x \land y) \land z = x \land (y \land z)$ (ассоциативность)

Частичный порядок ≤

- $x \le x$ (рефлексивность)
- $x \le y \& y \le z \Rightarrow x \le z$ (транзитивность)
- $x \le y \& y \le x \Rightarrow x = y$ (антисимметричность)

Полурешетка $\langle L, \wedge \rangle$ ¹²

- $x \le y \Leftrightarrow_{def} x \land y = x$
- $x < y \Leftrightarrow_{def} x \land y = x \& x \neq y$

Свойства полурешеток

Ограниченность снизу

$$\exists \bot \in L : \forall x \in L : \bot \land x = \bot (\bot \le x)$$

Ограниченность сверху

$$\exists \top \in L : \forall x \in L : \top \land x = x \ (x \le \top)$$

Высота полурешетки

$$H_L = \max\{|x_1 > x_2 > \dots \in L|\}$$

Обрыв убывающих цепей

$$\forall x_1 > x_2 > \dots \in L : \exists k : \nexists y \in L : x_k > y$$

Произведение полурешеток

$$\langle A, \wedge_A \rangle \times \langle B, \wedge_B \rangle = \langle A \times B, \wedge \rangle,$$

$$(a, b) \wedge (a', b') = (a \wedge_A a', b \wedge_B b')$$

 $^{^{1}}$ Выполняются ли свойства частичного порядка при таком определении \leq через \wedge ?

 $^{^2}$ Можно ли восстановить полурешетку $\langle L, \wedge
angle$ имея только частичный порядок $\langle L, \leq
angle$?

• Множество подмножеств S $L = 2^S, \land = \cap (\mathsf{или} \cup)$

- Натуральные числа $L = \mathbb{N}, x \wedge y = min(x, y)$
- Константые целочисленные значения $L=\mathbb{Z}\cup\{\mathsf{T},\bot\},\bot<\mathbb{Z}<\mathsf{T}$
- Иерархия типов в программе $L = Types, x \le y = x <: y \text{ (subtype)}$

Задача потокового анализа

- ullet Потоковый граф $G = \langle V, E, v_{\it entry}, v_{\it exit} \rangle$
- Направление анализа $D \in \{\downarrow,\uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L o L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

Задача потокового анализа

Окружение потокового анализа

- Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V}: L \to L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

Система потоковых уравнений

$$D = \downarrow D = \uparrow$$

$$in_0(v) = out_0(v) = \top$$

$$in_i(v) = \bigwedge_{x \in pred_v} out_i(x)$$

$$out_i(v) = f_v(in_i(v))$$

$$in_i(v) = f_v(out_i(v))$$

$$in_i(v) = f_v(out_i(v))$$

Maximum Fixed Point (MFP)

Наибольшее решение среди всех решений S $out_S(v) \leq out_{MFP}(v)$ $in_S(v) \leq in_{MFP}(v)$

Условия сходимости

- ullet Монотонность преобразователей f_v
- ullet Полурешетка $\langle L, \wedge
 angle$ с обрывом цепей

Задача потокового анализа

Окружение потокового анализа

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D \in \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$ огр. сверху
- ullet Преобразователи свойств $f_{v \in V} : L \to L$
- Начальная разметка $in_0(v) = out_0(v) = \mathsf{T}$

Преобразователи свойств

Монотонная функция f на $\langle L, \leq \rangle$ $x < y \Rightarrow f(x) < f(y)$

Монотонная функция f на $\langle L, \wedge \rangle$ ³ $f(x \wedge y) \leq f(x) \wedge f(y)$

Дистрибутивная функция f на $\langle L, \wedge \rangle$ $f(x \wedge y) = f(x) \wedge f(y)$

Система потоковых уравнений

$$D = \downarrow D = \uparrow$$

$$in_0(v) = out_0(v) = \top$$

$$in_i(v) = \bigwedge_{x \in pred_v} out_i(x)$$

$$out_i(v) = f_v(in_i(v))$$

$$D = \uparrow$$

$$in_0(v) = out_0(v) = \top$$

$$out_i(v) = \bigwedge_{x \in succ_v} in_i(x)$$

$$in_i(v) = f_v(out_i(v))$$

Maximum Fixed Point (MFP)

Наибольшее решение среди всех решений S $out_S(v) \leq out_{MFP}(v)$ $in_S(v) \leq in_{MFP}(v)$

Условия сходимости

- ullet Монотонность преобразователей f_v
- ullet Полурешетка $\langle L, \wedge
 angle$ с обрывом цепей

 $^{^3}$ Докажите эквивалентность определений монотонной функции на $\langle L, \leq
angle$ и на $\langle L, \wedge
angle$.

Примеры не сходящегося анализа

Монотонность преобразователей

$$L = \{T, F\}, F \le T$$
$$f_{entry} = f_{exit} = id$$
$$f_{loop}(x) = \neg x$$

Обрыв убывающих цепей

$$L = \mathbb{R}_0^+ \cup \{\top\}, \land = min$$

$$f_{entry}(x) = 1$$

$$f_{loop}(x) = x/2$$

$$f_{exit} = id$$

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{entry} \to \cdots \to v} f_v(\dots(f_{v_{entry}}(\mathsf{T}))\dots)$$

$$out_{MFP}(v) \le out_{MOP}(v)$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{entry} \to \cdots \to v} f_v(\dots(f_{v_{entry}}(\top))\dots)$$

Безопасность MFP

 $out_{MFP}(v) \le out_{MOP}(v)$

$$out_{MOP}(p) = x$$
 q $out_{MOP}(q) = y$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{entry} \to \cdots \to v} f_v(\dots(f_{v_{entry}}(\top))\dots)$$

$$out_{MFP}(v) \le out_{MOP}(v)$$

$$out_{MOP}(p) = x \underbrace{p}_{v} \quad q \quad out_{MOP}(q) = y$$

$$\underbrace{f_{v}(x \wedge y)}_{out_{MFP}(v)}$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{entry} \to \cdots \to v} f_v(\dots(f_{v_{entry}}(\top))\dots)$$

$$out_{MFP}(v) \le out_{MOP}(v)$$

$$out_{MOP}(p) = x \qquad p \qquad q \quad out_{MOP}(q) = y$$

$$\underbrace{f_v(x \land y)}_{out_{MFP}(v)} \qquad \underbrace{f_v(x) \land f_v(x)}_{out_{MOP}(v)}$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{entry} \to \cdots \to v} f_v(\dots(f_{v_{entry}}(\top))\dots)$$

$$out_{MFP}(v) \le out_{MOP}(v)$$

$$out_{MOP}(p) = x \qquad p \qquad q \quad out_{MOP}(q) = y$$

$$\underbrace{f_v(x \land y)}_{out_{MFP}(v)} \leq \underbrace{f_v(x) \land f_v(x)}_{out_{MOP}(v)}$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{\mathit{entry}} \to \cdots \to v} f_v(\dots(f_{v_{\mathit{entry}}}(\top))\dots)$$

Безопасность MFP 5

$$out_{MFP}(v) \le out_{MOP}(v)$$

$$out_{MOP}(p) = x \qquad p \qquad q \quad out_{MOP}(q) = y$$

$$\underbrace{f_v(x \land y)}_{out_{MFP}(v)} \leq \underbrace{f_v(x) \land f_v(x)}_{out_{MOP}(v)}$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

 $^{^{5}}$ В случае дистрибутивных преобразователей МFP всегда точно — $out_{MFP}(v) = out_{MOP}(v)$.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{\mathit{entry}} \rightarrow \cdots \rightarrow v} f_v(\dots(f_{v_{\mathit{entry}}}(\top))\dots)$$

Безопасность MFP ⁵

$$out_{MFP}(v) \le out_{MOP}(v)$$

$$out_{MOP}(p) = x \quad p \qquad q \quad out_{MOP}(q) = y$$

$$\underbrace{f_v(x \land y)}_{out_{MFP}(v)} \leq \underbrace{f_v(x) \land f_v(x)}_{out_{MOP}(v)}$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

 $^{^{5}}$ В случае дистрибутивных преобразователей МFP всегда точно — $out_{MFP}(v) = out_{MOP}(v)$.

Meet Over Paths (MOP) 4

Точное решение по всем путям $v_{entry}
ightarrow \cdots
ightarrow v$

$$out_{MOP}(v) = \bigwedge_{v_{entry} \to \cdots \to v} f_v(\dots(f_{v_{entry}}(T))\dots)$$

Безопасность MFP ⁵

$$out_{MFP}(v) \leq out_{MOP}(v)$$

$$out_{MOP}(p) = x \qquad p \qquad q \quad out_{MOP}(q) = y$$

$$\underbrace{f_v(x \land y)}_{out_{MFP}(v)} \leq \underbrace{f_v(x) \land f_v(x)}_{out_{MOP}(v)}$$

 $^{^4}$ Рассмотрен случай нисходящего анализа $D=\downarrow$, для восходящего $D=\uparrow$ рассуждения аналогичны.

 $^{^{5}}$ В случае дистрибутивных преобразователей МFP всегда точно — $out_{MFP}(v) = out_{MOP}(v)$.

Control-flow graph

- $CFG = \langle B, E, entry, exit \rangle$
- ullet Каждый блок $b\in B$ содержит одну операцию
- ullet V множество переменных программы
- $def_v \subseteq B$ множество присваиваний в переменную $v \in V$ (напр. v = 3)
- $use_v \subseteq B$ множество использований переменной $v \in V$ (напр. x = y + v)

Control-flow graph

- $CFG = \langle B, E, entry, exit \rangle$
- ullet Каждый блок $b\in B$ содержит одну операцию
- ullet V множество переменных программы
- $def_v \subseteq B$ множество присваиваний в переменную $v \in V$ (напр. v = 3)
- $use_v \subseteq B$ множество использований переменной $v \in V$ (напр. x = y + v)

Gen-Kill формализм

- $L = 2^S, \land = \cup$ или \cap
- $f_b(x) = gen_b \cup (x \setminus kill_b)$
- ullet gen_b свойства порождаемые блоком b
- ullet $kill_b$ свойства убиваемые блоком b

Control-flow graph

- $CFG = \langle B, E, entry, exit \rangle$
- ullet Каждый блок $b \in B$ содержит одну операцию
- ullet V множество переменных программы
- $def_v \subseteq B$ множество присваиваний в переменную $v \in V$ (напр. v = 3)
- $use_v \subseteq B$ множество использований переменной $v \in V$ (напр. x = y + v)

Gen-Kill формализм

- $L=2^S, \land = \cup$ или \cap
- $f_b(x) = gen_b \cup (x \setminus kill_b)$
- ullet gen_b свойства порождаемые блоком b
- \bullet $kill_b$ свойства убиваемые блоком b

Следствия

- ullet $\langle L, \wedge
 angle$ конечная полурешетка
- ullet f_b дистрибутивные функции 6
- Анализ *всегда* сходится к точному решению

 $^{^6}$ Докажите дистрибутивность f_b в gen-kill форме.

Control-flow graph

- $CFG = \langle B, E, entry, exit \rangle$
- ullet Каждый блок $b\in B$ содержит одну операцию
- ullet V множество переменных программы
- $def_v \subseteq B$ множество присваиваний в переменную $v \in V$ (напр. v = 3)
- $use_v \subseteq B$ множество использований переменной $v \in V$ (напр. x = y + v)

Reaching definitions Live-

Live-variable analysis

$$L = 2^{B}, \land = \cup, D = \downarrow$$

$$\begin{array}{c|c} b & \in def_{v} \notin def_{v} \\ \hline gen_{b} & \{b\} & \varnothing \\ kill_{b} & def_{v} & \varnothing \end{array}$$

$$L = 2^{V}, \land = \cup, D = \uparrow$$

$$gen_b \mid \{v \mid b \in use_v\}$$

$$kill_b \mid \{v \mid b \in def_v\}$$

Gen-Kill формализм

- $L=2^S, \land = \cup$ или \cap
- $f_b(x) = gen_b \cup (x \setminus kill_b)$
- ullet gen_b свойства порождаемые блоком b
- ullet $kill_b$ свойства убиваемые блоком b

Следствия

- ullet $\langle L, \wedge
 angle$ конечная полурешетка
- ullet f_b дистрибутивные функции 6
- Анализ всегда сходится к точному решению

 $^{^6}$ Докажите дистрибутивность f_b в gen-kill форме.

Заключение

Достоинства

- Глобальный статический анализ
- Универсальная теоретическая модель
- Простота реализации
- gen-kill формализм гарантирует сходимость и точность

Недостатки

- Результат инвалидируется оптимизациями
- Анализы не комбинируются эффективно
- Не всегда удается гарантировать сходимость и точность

