Median for Grouped Data

The median for grouped data can be found either by interpolation or by using a formula.

The formula is

Median =
$$LB + w \left(\frac{\frac{1}{2}n - \sum f_b}{f_m} \right)$$

where

LB is the lower boundary or limit of the class containing the median

w is the width of the median class interval

n is the total frequency, or the number of values

 $\sum f_b$ is the number of values below *LB*

 f_{m} is the number of values containing the median

Example 1

In the table below, the median is the 75th value, so it lies in the 5 to 9 class interval.

	Time (min)	Frequency	Cumulative frequency	
	0 - 4	32	32 ←	$\sum f_b = 32$
The median	5 - 9	71 ←	103	
lies in this	10 - 14	20	123	$f_m = 71$
interval,	15 - 19	14	137	
4.5 to 9.5	20 - 24	10	147	
	25 - 29	3	150 <	n = 150

LB = the lower boundary of the class interval 5 to 9, which is 4.5

$$w = 9.5 - 4.5 = 5$$

So, using the formula:

Median =
$$4.5 + 5\left(\frac{\left(\frac{1}{2} \times 150\right) - 32}{71}\right) = 7.53$$
 minutes

Example 2

	Heights (cm)	Frequency	Cumulative frequency	
The median	175 - 225	4	4	$\sum f_b = 4 + 8 + 18$
lies in this	226 - 300	8 -	12	
interval,	301 - 350	18 _	30	$f_m = 28$
350.5 to	351 - 400	28 🕌	58	
400.5	401 - 500	7	65 <	n = 65

Using the formula:

Median =
$$350.5 + 50 \left(\frac{\left(\frac{1}{2} \times 65\right) - (4+8+18)}{28} \right) = 354.964 \dots \approx 355 \text{ cm}$$

Lower and Upper Quartiles for Grouped Data

Take the same formula as above, but change the $\frac{1}{2}$ into $\frac{1}{4}$ for the lower quartile, and into $\frac{3}{4}$ for the upper quartile :

Lower quartile =
$$LB + w \left(\frac{\frac{1}{4}n - \sum f_b}{f_m}\right)$$
 and Upper quartile = $LB + w \left(\frac{\frac{3}{4}n - \sum f_b}{f_m}\right)$

where the variables refer to the class interval containing the quartile.

For Example 1 above:

Lower quartile =
$$4.5 + 5\left(\frac{\left(\frac{1}{4} \times 150\right) - 32}{71}\right)$$
 and
$$= 4.89$$
 Upper quartile = $9.5 + 5\left(\frac{\left(\frac{1}{4} \times 150\right) - 103}{20}\right)$ = 11.875

For **Example 2** above:

Try the calculations yourself, and check that you get

Lower Quartile = 312.3 and Upper Quartile = 383.982... ≈ 384