Neural network theory and Applications

Homework Assignment 3

汪旭鸿

017032910027

April 4, 2018

目的

在这次作业中,卷积神经网络(CNN)将被用于解决多分类问题。卷积神经网络是一种深层前馈的人工神经网络,现已成功的应用在分析视觉图像。

本次作业的数据集是 Mnist 数据集,包括 60000 张训练图片和 10000 张测试图片。你需要用训练集去建立一个十类的分类模型,然后在测试集上验证。

Problem 1

1. 数据预处理

样本数据 normalize: 将每个样本的像素值都除以 255。

样本标签 one-hot: 利用 to_categorical 函数将数据标签变为 one-hot 的形式。

样本数据 flatten: 将28×28像素的图片展成 784 个数据点,作为神经网络的输入。

2. 建立神经网络

3. 神经网络训练

设置优化器为学习率等于 0.001 的 Adam 优化器,设置目标损失函数为交叉熵(categorical cross entropy)。设置 batch size 为 512。

图 1 三层神经网络的训练图

如图 1,经过约 50 个 epochs, accuracy 和 loss 基本保持平稳,下表是最终的网络训练结果:

	train set	validation set	Test set
accuracy	0.9806	0.9591	0.9612
loss	0.0680	0.1459	0.1297

Problem 2

1. 数据预处理

样本数据 normalize: 将每个样本的像素值都除以 255。

样本标签 one-hot: 利用 to_categorical 函数将数据标签变为 one-hot 的形式。

2. 建立神经网络

建立如下图所示的 CNN 神经网络

3. 神经网络训练

设置优化器为学习率等于 0.001 的 Adam 优化器,设置目标损失函数为交叉熵(categorical cross entropy)。设置 batch size 为 512。

图 2 LeNet 的训练图

如图 2,经过约 50 个 epochs, accuracy 和 loss 基本保持平稳,下表是最终的网络训练结果:

	train set	validation set	Test set
accuracy	0.9992	0.9890	0.9886
loss	0.0026	0.0567	0.0526

4. 模型比较

ANN 和 CNN 的在 mnist 数据集上的训练结果比较:

	items	train set	validation set	Test set	
ANN	accuracy	0.9806	0.9591	0.9612	
	loss	0.0680	0.1459	0.1297	
CNN	accuracy	0.9992	0.9890	0.9886	
	loss	0.0026	0.0567	0.0526	

分别对比每项指标,发现 CNN 的效果都比普通的 ANN 优越。

5. 可视化

(1) 卷积核可视化

首先,我选取了第一层卷积层的部分卷积核,做了可视化操作。

图 3 CNN 的卷积核

如图 3,我们可以发现 CNN 确实通过改变卷积核的权重,体现了每个卷积核确实在关注 图片的不同部分。每个卷积核通过不同的权重,可以实现提取图片不同部分的特征。而且第

一层卷积层提取的特征都比较浅层而且通用,这样我们就可以使用迁移学习的方式,将这些底层的卷积层保留,只改变高层的卷积核权重,这样可以节省训练网络的时长。

(2) 卷积结果可视化

将 mnist 的测试图片输入卷积网络,经过第一层的 32 个卷积核,得到如图 4 的 32 个图片输出。观察这些图片,可以得到结论,经过不同的卷积核的图片有些部分变得模糊,说明这个输出对应的卷积核不关系模糊部分的图像信息,更关心清晰部分的信息,32 个卷积核各自关注图像的不同部分,这样就可以完成图像特征提取的任务。

图 4 经过第一层卷积核的输出