Dimensionality Reduction: Principal Component Analysis

Chris Haddad, Jeff Coady, Sanjay Roberts
COMP 3441 - University of Denver

Objective

Use Principal Component Analysis to reduce dimensionality and model execution time, relative to using all predictors, while maintaining prediction accuracy.

Dataset

Allscripts Pre-Diabetic to Diabetic Transition Data

- 150,000 pre-diabetic patients tracked over time.
- 44% develop diabetes
- Tracked factors predict transition to type II diabetes within 24 months

Features

Feature Columns

Blood Pressure BMI Age
Ethnicity Race Gender
Family History HbA1c

Experiment

Random Forest Ensemble Learning method as classification predictor

- Train model without PCA
- Record time and accuracy
- Replicate method using PCs that describe 95% of variance and less

PCA

Takes correlated predictor variables and creates set of uncorrelated components to be used instead.

- Center and scale data
- Calculate eigenvectors and eigenvalues
- 3 Principal components determined by which predictors contribute most to an eigenvector
- 4 Subset of PCs chosen in place of original

Variance

• Model uses 15 of 30 components which account for \approx 95% of variance

Factor Loadings

Factor	PC 1	PC 2	PC 3	PC 4	PC 5
Sys Avg	298	169	216	.009	.066
Sys Min	256	155	180	020	.013
Sys Max	250	139	186	.030	.096
Sys Last	261	158	197	.003	.060
Dias Avg	284	251	065	094	.030
Dias Min	227	207	059	105	014
Dias Max	249	217	055	058	.066
Dias Last	244	227	065	089	.031
BMI Avg	284	.096	.379	.042	070
BMI Min	283	.094	.372	.039	074
BMI Max	280	.096	.378	.043	066
BMI Last	283	.094	.377	.041	072
HbA1c Avg	180	.406	196	006	.064
HbA1c Min	177	.397	196	010	.070
HbA1c Max	177	.401	190	002	.058
HbA1c Last	178	.402	195	006	.064
Eth Hisp	.026	.032	.052	289	006
Eth Not Hisp	022	043	035	.528	.110
Eth Unkn	.005	.025	.001	397	126
White	001	047	.012	.433	106
Unknown	.015	.041	.013	435	085
Male	056	.011	165	.052	646
Female	.056	011	.165	052	.646
Hispanic	.001	.026	.013	146	.004
Other	.016	005	.016	112	.023
Black	053	.019	.015	037	.201
Abnorm BP	030	057	.003	.046	.030
Family	025	.053	.046	041	.106
Asian	.051	004	099	028	.068
Age	019	.048	208	.136	007

Execution Time

• Without PCA, model takes around 30 minutes to run. Execution Time by Range of Principal Components Used

Accuracy

Model accuracy stable after 3 PCs

Model accuracy stable after 43% variance

Final Thoughts

- Successfully used PCA to decrease execution time while maintaining accuracy
- Feature factoring loadings split nicely:
- Blood Pressure and BMI
- **2** HbA1c
- 3 BMI
- 4 Race and Ethnicity
- **5** Gender
- Inflection point at 84% accuracy and 43% total variance accounted for
- $\approx 10\%$ of execution time to reach 84% accuracy as compared to training model on original data
- PCA is an effective method for use in prediction model parameter tunning