Análise de Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Quicksort
- 2 Análise

Sumário

Quicksort

Quicksort

O Quicksort se baseia na escolha de um pivô. Após escolhido este pivô, a sequência original é particionada em três partes:

- Elementos menores que o pivô;
- Pivô;
- Elementos maiores que o pivô;

O procedimento é aplicado recursivamente na primeira e última partes.

Exemplo

Quicksort Análise

Quicksort

Exemplo

Function Quicksort

```
Input: V[0, n-1], i, j
```

Output: $V, V[i] < V[i+1], 0 \le i < n-2$

- 1 if(i < j)
- $\mathbf{2} \quad p \leftarrow \text{Partition}(V, i, j)$
- 3 Quicksort(V, i, p-1)
- 4 Quicksort(V, p+1, j)

Function Partition

```
Input: V[0, n-1], i, j
```

Output: k, a posição do pivô após particionar V

- 10 return k

9 SWAP(A[k], A[pivot])

Sumário

2 Análise

Quicksort: Análise

Análise

A relação de recorrência do Mergesort, no pior caso, corresponde à:

$$T(n) = T(n-1) + O(n) \in \Theta(n^2)$$

Contanto, no caso médio, o Quicksort divide as partições de modo em que a primeira e a última partição tenham tamanhos similares, o que leva a uma relação de recorrência que se aproxima de:

$$T(n) = 2 \cdot T(n/2) + O(n) \in \Theta(n \lg n)$$

In-place	Estável
X	X

Pior Caso vs Melhor Caso

