

# North South University

Department of Electrical & Computer Engineering

# Project: 20 bit Single Cycle CPU

Submitted To: Ms. Tanjila Farah &

Mr. Sheikh Shadab Towqir

Project Prepared By: Kazi Sakib Ahmad (1510702042) &

Syed Sadman Sakib (1511172042)

Course: CSE332

Section: 02

Semester: Spring 2018

### R-type Format:

| OPCode         | RD             | RS             | RT           | Shamt        | Function     |
|----------------|----------------|----------------|--------------|--------------|--------------|
| 2 bits (18-19) | 4 bits (14-17) | 4 bits (10-13) | 4 bits (6-9) | 3 bits (3-5) | 3 bits (0-2) |

### I-type Format:

| OPCode         | RD             | RS             | Address/Immediate | Function     |
|----------------|----------------|----------------|-------------------|--------------|
| 2 bits (18-19) | 4 bits (14-17) | 4 bits (10-13) | 7 bits (3-9)      | 3 bits (0-2) |

### J-type Format:

| OPCode         | Jump           |
|----------------|----------------|
| 2 bits (18-19) | 18 bits (0-17) |

## Table: 1: MIPS INSTRUCTION DIAGRAM:

| Instruction | Туре   | Instruction Code(Bin)     |
|-------------|--------|---------------------------|
| ADD         | R-type | 00 0000 0001 0010 XXX 000 |
| SUB         | R-type | 00 0011 0100 0101 XXX 001 |
| AND         | R-type | 00 0100 0101 0110 XXX 010 |
| AND         | R-type | 00 0111 1000 1001 XXX 011 |
| OR          | R-type | 00 1010 1011 1100 XXX 100 |
| NOR         | R-type | 00 0011 0100 0101 XXX 100 |
| SLL         | R-type | 00 0100 0101 XXXX 010 101 |
| SRL         | R-type | 00 0101 0110 XXXX 011 110 |
| SLT         | R-type | 00 0011 0100 0101 XXX 111 |
| LW          | I-type | 01 1001 0001 0001011 000  |
| SW          | I-type | 01 0001 0001 0001001      |
| BEQ         | I-type | 01 0010 0011 0000101 010  |
| BNE         | I-type | 01 0011 0010 1000110 011  |
| J           | J-type | 10 XXXXXXXXXXXXXXXX       |

## Table: 2: OPCODE TABLE:

| Instruction Type | Opcode |
|------------------|--------|
| R-type           | 00     |
| I-type           | 01     |
| J-type           | 10     |

## Table: 3: Control Unit Table:

| Instruction | Opcode | ALU Enable | <b>Function Code</b> |
|-------------|--------|------------|----------------------|
| ADD         | 00     | 01         | XXX                  |
| SUB         | 00     | 01         | XXX                  |
| AND         | 00     | 01         | XXX                  |
| AND         | 00     | 01         | XXX                  |
| OR          | 00     | 01         | XXX                  |
| NOR         | 00     | 01         | XXX                  |
| SLL         | 00     | 01         | XXX                  |
| SRL         | 00     | 01         | XXX                  |
| SLT         | 00     | 01         | XXX                  |
| LW          | 01     | XX         | 000                  |
| SW          | 01     | XX         | 001                  |
| BEQ         | 01     | XX         | 010                  |
| BNE         | 01     | XX         | 011                  |
| J           | 10     | XX         | XXX                  |

### Table: 4: ALU Table:

| Instruction | ALU OPCode |
|-------------|------------|
| ADD         | 000        |
| SUB         | 001        |
| AND         | 010        |
| OR          | 011        |
| NOR         | 100        |
| SLL         | 101        |
| SRL         | 110        |
| SLT         | 111        |

#### How it works:

For R-type instruction: At first when the control unit receives the OPCode as '00' it recognizes the instruction as an R-type instruction and sets the 'ALU Enable' key as '1' for executing the further ALU operation(s). In ALU there are specific function defined (stated at Table: 4). Those functions can be achieved using instruction of bit no. 0, 1 & 3 which is actually the function codes defined for each operation.





For I-type instruction: When the control unit receives the Opcode as '01' it recognizes it as an I-type instruction. Then it looks for further instruction code(s). As like R-type instruction in the control unit we have pre-defined the function codes (stated at table: 3) to carry out 4 I-type operation. The control unit sends signals for LW, SW, BEQ or BNE operations. The RegWrite & MemWrite signals are used here for executing LW and SW operation accordingly.

<u>For J-type instruction:</u> Here when the control unit gets opcode as '10' it recognized the operation as J-type operation and jumps as per the given address.

#### **Screenshots:**

#### 20 BIT SINGLE CYCLE CPU DATAPATH





#### ARITHMATIC LOGIC UNIT



