

AD A 055417

AD No.
DDC FILE COPY

Ims document has been approved for public release and sale; its distribution is unlimited.

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

78 06 15 066

PITCH RATE FLIGHT CONTROL FOR THE F-16 ALRCRAFT TO IMPROVE AIR-TO-AIR COMBAT

THESIS

AFIT/GGC/EE/77-7 Michael A. Marchand Capt USAF

PITCH RATE FLIGHT CONTROL

FOR THE F-16 AIRCRAFT TO

IMPROVE AIR-TO-AIR COMBAT

THESIS (Master's thesis,

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

(12)79 p.

Michael A. Marchand
Capt USAF

Graduate Electrical Engineering

December 1977

Approved for public release; distribution unlimited.

0738225 15 066

Preface

The objective of this study was to determine the feasibility of implementing a pitch rate control system for the F-16 aircraft to improve air-to-air combat.

The thesis was sponsored by the Air Force Flight Dynamics Laboratory. I would like to express my appreciation to Lt. Col. E. Frank Moore for his overall support. Also, my thanks to Dr. Robert Huber for his technical advice, to Maj. Percy Gros, Jr. for his assistance in developing realistic models, to Lt. Rick Holdridge and Mr. J. Edgar Houtz for their help in the TAWDS programming, and to Mr. Frank George and Mr. Brian Van Vliet for assistance with the EASY program.

Because of the interest of Mr. Dick Quinlivan of General Electric Company, I was invited to participate in the F-16 manned simulation in Binghamton, New York. My thanks to him for his personal contribution.

Much credit must be given to my AFIT advisor, Capt. Jim
Negro, for his untiring support and technical advice. Because
of his genuine interest, many points were further investigated
and analyzed, making this report more complete.

Finally, to my wife, Annette, a very special thanks for her personal interest, understanding, and secretarial skills in completing this thesis.

Contents

Preface	ii
List of Figures	v
List of Tables vi	lii
List of Symbols	ix
Abstract	civ
I. Introduction	1
Flight Control System Background	2 4 6 7
II. Aircraft Selection	9
Selection Criteria	9 10
III. Pilot Model Development	13
Basic F-4 Aircraft Pilot Model Description F-16 Aircraft Pilot Model Description	13 16
IV. Development of the Analysis Model	18
EASY Program Discussion F-16 EASY Model F-16 EASY Analysis F-16 Aircraft Model Validation EASY System Analysis Pilot Model Study EASY Analysis Summary	18 19 26 28 47 61 66
V. Development of a Simulation Program	67
TAWDS Program Discussion TAWDS Programming Techniques Air-to-Air Scenarios	67 68 77

Contents

VI. Resul	ts	80
	WDS Simulation Techniques	80 81
VII. Conclu	sions and Recommendations	86
	commendations	86 88
Bibliograph	у	92
Appendix A:	EASY Model Program Description and Computer Generated Schematic	94
Appendix B:	Baseline Data for the F-16 Aircraft Simulation	102
Appendix C:	TAWDS Programming Details	105
Appendix D:	EASY Analysis Program Data	155
Vita		159

List of Figures

Figure		Page
1	Multi-Axis Pilot Model for Air-to-Air Aerial Gunnery (Longitudinal and Lateral-Directional Axes)	15
2	Present F-16 Flight Control System Diagram	20
3	EASY F-16 Aircraft Flight Control System Model Schematic	21
4	EASY F-16 Longitudinal Pilot Model Schematic	25
5	Axes System Diagram	29
6	Simulation Sign Convention Diagram	30
7	EASY Program Steady State Output (States, Rates, & Variables)	34
8	EASY Program Steady State Output (Parameters) .	35
9	EASY Model Simplified Diagram	37
10	EASY Transfer Function Diagram	38
11	Alpha/Delta Elevator Transfer Function of the Griffin Program Data	41
12	EASY Generated Magnitude Plot of Alpha/Delta Elevator Transfer Function	42
13	EASY Generated Phase Plot of Alpha/Delta Elevator Transfer Function	43
14	Pitch Rate/Delta Elevator Transfer Function of the Griffin Program Data	44
15	EASY Generated Magnitude Plot of Pitch Rate/ Delta Elevator Transfer Function	45
16	EASY Generated Phase Plot of Pitch Rate/Delta Elevator Transfer Function	46

Figure		Page
17	F-16 Aircraft Response to 1° Angle-of-Attack Pertubation	48
18	EASY Closed Loop System Schematic Diagram	49
19	Normal Acceleration Configuration Closed Loop Bode Magnitude Plot	50
20	Normal Acceleration Configuration Closed Loop Bode Phase Plot	51
21	Normal Acceleration Configuration Open Loop Bode Magnitude Plot	53
22	Normal Acceleration Configuration Open Loop Bode Phase Plot	54
23	Normal Acceleration Configuration Time Response to Step Input Tracking Error	55
24	Pitch Rate Configuration Closed Loop Bode Magnitude Plot	57
25	Pitch Rate Configuration Closed Loop Bode Phase Plot	58
26	Pitch Rate Configuration Open Loop Bode Magnitude Plot	59
27	Pitch Rate Configuration Open Loop Bode Phase Plot	60
28	Pitch Rate Configuration Time Response to Step Input Tracking Error	62
29	Pilot Model Loop Open Loop Transfer Function Bode Plot	65
30	Longitudinal Flight Control System Schematic for TAWDS Program	71
31	Lateral-Directional Flight Control Schematic for TAWDS Program	73

Figure		Page
32	RMS Elevation Aiming Errors of the Eight TAWDS Simulation Encounters	83
33	RMS Traverse Aiming Errors of the Eight TAWDS Simulation Encounters	84

<u>List of Tables</u>

Table		Page
I	F-16 Aircraft Model Characteristics	12
11	Parameter Values of the F-16 Pilot Model Implementing Director Sight	17
111	Longitudinal Stability Axis Stability Derivatives (Non-Dimensional)	31
IV	Roots of the F-16 Characteristic Equation (Longitudinal Dynamics)	38
v	Quantities of Interest Normal Acceleration vs Pitch Rate Feedback	63
VI	TAWDS Air-to-Air Target Maneuvers	79
VII	Summary of TAWDS Simulation Tracking Aim Error with Director Sight Implementation	82

List of Symbols

Symbol	Meaning	
A _n	Normal acceleration	3
C*	Flight control design method	3
c.g.,cg	Center of gravity	3
c_{D}	Drag coefficient	29
c_{D_o}	Drag coefficient for trim	31
$c_{D_{\alpha}}$	Drag coefficient/angle of attack	31
c _{Du}	Drag coefficient/forward velocity	31
$^{\mathrm{C}_{\mathrm{D}}}_{\delta_{\mathbf{e}}}$	Drag coefficient/elevator deflection	31
c_{1_B}	Rolling moment coefficient (body axis)	29
c_{1_S}	Rolling moment coefficient (stability axis)	29
c_L	Lift coefficient	29
c^{Γ^o}	Lift bias coefficient for trim	31
C _L	Lift coefficient/angle of attack	31
C _L	Lift coefficient/angle of attack rate	. 31
C _L a	Lift coefficient/pitch rate	31

Symbol	Meaning	Page
c _{Lu}	Lift coefficient/forward velocity	32
c _L _{δe}	Lift coefficient/elevator deflection	32
c _{mB}	Pitching moment coefficient (body axis)	29
c _{ms}	Pitching moment coefficient (stability axis)	29
C _{mo}	Pitching moment coefficient for trim	32
C _m a	Pitching moment coefficient/angle of attack	32
C _{m à}	Pitching moment coef/angle of attack rate	32
C _{mq}	Pitching moment coefficient/pitch rate	32
C _{mu}	Pitching moment coefficient/forward velocity	32
C _{m δ} e	Pitching moment coefficient/elevator deflection	32
c_{n_B}	Yawing moment coefficient (body axis)	29
c _n s	Yawing moment coefficient (stability axis)	29
c^N	Yaw coefficient	29
CY	Pitch coefficient	29
DB	Pilot model deadband	17

Symbol	Meaning	Page
EASY	Environmental Analysis System	18
g	Gravity coefficient	3
K	Pilot model gain parameter	17
k ₁	Normal acceleration gain parameter	3
k ₂	Pitch rate gain parameter	3
k ₃	Pitch acceleration gain parameter	3
L	Distance between linear accelerometer and center of gravity	. 4
L	Rolling moment	30
LCOSS	Lead Computing Optical Sight System	5
M	Pitching moment	30
MAC	Mean aerodynamic chord	12
mr	Milliradian (angular measurement)	17
M m	Max peak of time response	49
Mo	Peak overshoot of time response	63
MSL	Mean sea level	10
N	Yawing moment	30
n _z	Normal acceleration	30
P	Angular roll velocity	30
Ps	Static pressure	21
Q	Angular pitch velocity	30
q	Pitch rate	21
q	Dynamic pressure	21

Symbol	Meaning		Page
q _c	Dynamic pressure	e adjusted for compressibility	21
R	Angular yaw velo	ocity	30
RMS	Root mean square		81
TAWDS	Terminal Aerial	Weapon Delivery Simulation	67
T _p	Peak time of time	ne response	63
T _r	Rise time of time	ne response	63
Ts	Settling time of	time response	63
Uco	Cross-over veloc	rity	4
u	Aircraft forward	d velocity pertubation	29
V	Relative wind		29
v	Aircraft lateral	velocity pertubation	29
w	Aircraft vertica	al velocity pertubation	29
x, x _{Body}	STADILITY	Aircraft axis (positive- opposite air flow)	29
Y, Y _{Body}	STADILITY	Aircraft axis (positive- out right wing)	29
z, z _{Body}	Stability	Aircraft axis (positive- lown)	29
α	Angle of attack		39
å	Angle of attack	rate	39
β	Sideslip angle		29
6 e	Elevator deflect	ion	39
•FL	Flaperon deflect	cion (left)	30

Symbol	Meaning	Page
⁶ F _R	Flaperon deflection (right)	30
$^{\delta}_{\mathrm{H_{L}}}$	Horizontal stabilator deflection (left)	30
$^{\delta}_{H_{\overline{R}}}$	Horizontal stabilator deflection (right)	30
$\delta_{ m LEF}$	Leading edge flap deflection	30
^δ R	Rudder deflection	30
ф	Aircraft bank angle	17
Ф _С	Phase margin angle (crossover)	63
6	Aircraft pitch angle	49
ė	Aircraft pitch angle rate	3
ë	Aircraft pitch angle acceleration	3
ω	Frequency	17
w _c	Phase margin crossover frequency	63
ωm	Peak frequency	63
τ	Time delay	17
r	Damping ratio	17

Abstract

Digital simulations were developed to implement a pitch rate control system for the F-16 aircraft engaged in aerial gunnery. First, the EASY Modelling and Analysis Program by Boeing Computer Services was adapted to implement a longitudinal axis F-16 aircraft, flight control system, and pilot model. Comparison of closed loop system responses indicated a proposed pitch rate flight control configuration would improve target tracking performance. The Terminal Aerial Weapon Delivery Simulation (TAWDS) program by McDonnell Douglas Corporation was adapted for the F-16 aircraft. A non-linear, six-degree-of-freedom aircraft model, multiaxis flight control system, and multi-axis pilot model were developed to demonstrate target tracking capabilities. Eight different air-to-air scenarios were developed to simulate evasive encounters with an F-4 target aircraft. Time history target tracking errors indicated the improved tracking performance of the proposed pitch rate flight control configuration over the present normal acceleration configuration of the F-16 aircraft.

FOR THE F-16 AIRCRAFT TO

IMPROVE AIR-TO-AIR COMBAT

I. Introduction

One of the most challenging tasks facing today's tactical fighter pilot is that of air-to-air gunnery. When engaged in aerial combat with an enemy aircraft, today's fighter pilot must maintain an offensive role by tracking his target. To be successful, he must achieve a target tracking solution that allows him to deliver his weapons quickly and accurately. All too often, this task requires more skill and control precision than the pilot is able to provide.

During recent years, considerable USAF and industrial efforts have been directed to developing advanced tactical aircraft flight control systems to improve weapon delivery accuracy. The most promising of these engineering efforts involves integration of aircraft flight and fire control systems. The benefits of automatic flight control, coupled with automatic weapon delivery, will allow a fighter pilot, while engaged in air-to-air aerial combat, to select a degree of automation to assist him in both flying his

aircraft and firing his weapons more effectively. This could range from a manual system to a fully automatic mode of operation. Preliminary investigations have shown that weapon delivery accuracy can be improved by coupling aircraft flight control and weapon delivery fire control systems to relieve the fighter pilot of his ever increasing workload (Ref 1). However, the possibility also exists of improving weapon delivery effectiveness by conditioning flight control systems without removing the pilot from his primary tasks. Manual flight control investigations of improving aerial gunnery will be considered in this study.

Flight Control System Background

The performance of air superiority aircraft such as the McDonnell Douglas F-15 or the General Dynamics F-16 in air combat maneuvers places unusual and heavy demands on the flight control system. This is true because today's high performance aircraft are operated over extremely wide flight envelopes. In addition to using the total altitude and Mach range, the pilot exercises the aircraft through its full angle of attack capabilities during air combat (Ref 2).

To aid the pilot in his primary task, handling quality specifications have been designed using a weighted combination of pitch rate, normal acceleration, and pitching

acceleration criteria (Ref 3). Aircraft flight test performance ratings have indicated a pilot preference of this blended system for normal cruise maneuvers. As a consequence, several systems have been built which combine pitch rate and normal acceleration as the feedback variables.

One method for mechanizing the flight control system feel/response is the C* approach that was first proposed by Boeing aircraft design engineers (Ref 3). This approach uses a linear blend of normal acceleration, pitch rate, and pitch acceleration. The weighted control combination can be described as follows:

$$C^* = k_1 A_n + k_2 \dot{\theta} + k_3 \ddot{\theta}$$
 (1)

where

 A_n = normal acceleration at c.g.

ė = pitch rate

8 = pitch acceleration

The C* equation can also be defined in g's where the units of k_2 are equivalent to a velocity divided by gravity (g) and k_3 is equivalent to the distance between the linear accelerometer and the center of gravity of the aircraft divided by g. Using $k_1 = 1$, Equation (1) can be written as:

$$C^* = A_n + \frac{U_{CO}\dot{\theta}}{g} + \frac{L\ddot{\theta}}{g}$$
 (2)

where

U_co = the cross-over velocity (approximately 400 ft/sec)

L = distance between linear accelerometer and the
 center of gravity of the aircraft.

Selection of the cross-over velocity specifies the operating point at which the control contributions of pitch rate and normal acceleration feedback are equal. At lower airspeeds, such as in landing approaches where the control surfaces are relatively less responsive than at cruise flight, the pitch rate feedback is predominant. At airspeeds above the cross-over velocity, in flight regions where the aircraft control surfaces are relatively more responsive than at lower airspeeds, the normal acceleration feedback is predominant. The C* approach is convenient for the mechanization of a feel system because of the ease by which the pitch rate, pitch acceleration, and normal accelerations can be measured (Ref 3).

Gunsight Technology

Although present technology has developed very advanced flight control systems that could be used in the integration of flight and fire control systems, a key limiting factor in advancing air-to-air combat is target tracking systems. The aircraft gunsight is mechanized to compute and display to the pilot the lead angle required to hit the target. This is generally done by displacing an aiming reticle for the required lead angle from some gunsight reference line to the target. Essentially, if the pilot flies his aircraft so as to keep the reticle on the target, he then is maintaining the proper lead angle to achieve a target hit (Ref 2).

0

For many years, target tracking has been accomplished using a disturbed reticle sight. The most popular of these sights and the one that is used on most present day fighter aircraft is the Lead Computing Optical Sight System (LCOSS). The LCOSS generates a gunsight lead angle based on the attacker aircraft's own dynamics. The attacker aircraft's own body rates, load factor, angle of attack, and airspeed are used to determine a gunsight lead angle solution. To achieve a continuous target tracking solution with the LCOSS sight, the pilot must fly his aircraft to remain in the same plane of motion as the target aircraft.

In contrast to the LCOSS, a new director gunsight is presently being developed and demonstration flight test programs are scheduled to begin in the near future. Generally, the director sight incorporates actual measurements

Line of sight angle rate and position measurements are used in the director sight instead of own-ship body rates as in the LCOSS. The director system employs a tracking device such as an angle tracking radar or an electro-optical tracker to measure target motion. With actual target measurements, the director system incorporates a Kalman filter to determine the expected future target position (Ref 4).

Objective

The primary objective of this study will be to compare the target tracking performance of a director gunsight implementation for manual flight control involving two aircraft flight control configurations. Present handling qualities specifications, supported by Cooper-Harper pilot ratings have indicated that normal acceleration feedback may be effective for most flight conditions. However, a pitch rate flight control scheme will be investigated to improve aerial gunnery during air-to-air combat. Since the director gunsight incorporates actual target measurements of angular error and angular error rate, it seems appropriate that a pitch rate control feedback scheme could be employed to provide improvements in manual target tracking systems.

Plan of Attack

To begin the investigation of pitch rate control, it was necessary to select an aircraft whose flight control system incorporates the C* concept. Selection of the F-16 flight control system as a candidate system is discussed in Chapter II. Considerations of a flight condition and aircraft characteristics are also included in Chapter II.

Implementation of a representative F-16 pilot model is discussed in Chapter III. This analytical representation allowed a closed loop system to be established for man-in-the-loop simulations necessary for manual flight control evaluation.

A digital simulation of the F-16 aircraft dynamics, flight control system, and pilot model is developed in Chapter IV. Analysis of the present F-16 flight control system is described along with the investigation of a predominately pitch rate control configuration.

A second digital simulation program is discussed in Chapter V. A non-linear six-degree-of-freedom aircraft, flight control model, and multi-axis pilot model is developed to provide a closed loop simulation. To provide realistic target tracking encounters, a series of eight different air-to-air combat scenarios is developed.

The results of the air-to-air encounters using a director gunsight implementation is included in Chapter V. Time history simulation data is generated to measure the target tracking performance of both the present normal acceleration flight control configuration of the F-16 aircraft and the new proposed pitch rate flight control system.

II. Aircraft Selection

Selection Criteria

The F-16 fighter aircraft built by General Dynamics Corporation was selected as the baseline aircraft simulation model. The F-16 was chosen because it represents the present state of the art in fighter aircraft design. fly-by-wire flight control system enabled design engineers to harness a basically unstable aircraft and obtain unprecedented flight performance. The design of this flight control system incorporates the C* concept discussed in Chapter I (Ref 3). The F-16 flight control system incorporates angle of attack, pitch rate, and normal acceleration feedback. As the C* concept implies, normal acceleration feedback is predominant at cruise airspeeds. A blending of normal acceleration and pitch rate feedback is employed in the longitudinal axis control system. In addition, angle of attack (i.e. alpha) is fed back to the flight control system to aid stability and achieve alpha limiting at high angles of attack. This unique configuration makes the F-16 aircraft a very likely candidate to examine various flight control configurations and incorporate these into a manual flight/fire control system evaluation (Ref 5).

In addition to this interesting flight control configuration, the F-16 was selected because of the ongoing joint programs between the Air Force Flight Dynamics Laboratory and General Electric Company. Their continuing investigations of integrating flight and fire control systems has recently included a manned simulation program using the F-16 as a baseline aircraft model (Ref 1).

Aircraft Model Description

To complement the efforts of the Air Force Flight

Dynamics Laboratory and General Electric Company, realistic scenarios were developed for the simulation. The air-to-air encounters were set with the F-16 aircraft in its clean configuration at a cruise airspeed of .8 Mach and altitude of 20,000 feet MSL. It was from this cruising flight condition that the attacker aircraft would engage the enemy target. Assuming that the pilot had fired his two available Sidewinder missiles, he was equipped with only his 20-millimeter M-61 conventional cannon with which to continue the engagement.

To validate the aircraft dynamics of the modelling programs, F-16 aircraft dynamic simulation data obtained from the Air Force Flight Dynamics Laboratory LAMARS facility was selected as the desired test case. A digital

program by John Griffin (Ref 6) provided aerodynamic data for computer validation of selected aircraft configurations and flight conditions for the F-16 manned simulations in the LAMARS facility. This data serves as a basis for the F-16 digital simulations to be developed. Table I describes the F-16 aircraft model characteristics of the test case selected. A more complete aircraft model description and detailed listing of the flight condition stability derivatives are shown in Appendix B.

Table I F-16 Aircraft Model Characteristics (Ref 6)

Flight Condition			
Altitude Airspeed Dynamic pressure Air Density	- 20,000 ft 8 Mach (829.5 ft/sec_@ 20,000 ft) - 436.06 lbs/ft ² 001267 slug-ft ³		
Aircraft			
Clean configuration Gross weight Mass c.g. location Chordlength Wing span Wing area Moments of Inertia XX-axis YY-axis ZZ-axis XZ-axis	- 19,000 lbs - 590.5 slugs - 33.92% mean aerodynamic chord (MAC) - 11.32 ft - 30 ft - 300 ft - 9007.5 slugs-ft 2 49956. slugs-ft 2 56770. slugs-ft 2 198.0 slugs-ft		
Trim Flight Condition Pa Load factor Flight path angle Angle of attack Stabilator (elevator)	- 1 g (32.174 ft/sec ²)		
Armament			
M-61 gun	- 20 mm ammunition - 3400 ft/sec muzzle velocity - 6000 rounds/minute		

III. Pilot Model Development

Basic F-4 Aircraft Pilot Model Description

In order to implement a closed loop system performance analysis, an F-16 multi-axis pilot model was required.

Manned simulation efforts by McDonnell Douglas Corporation have been instrumental in the development of an analytical pilot model for the F-4E aircraft. Their mathematical model was developed from target tracking data produced by two USAF pilots flying in the MCAIR flight simulator (Ref 7). In simulating air-to-air weapon delivery, a data base was provided by measuring aircraft tracking time histories, pilot tracking task responses, statistical tracking performance and weapon delivery performance. The pilots were required to track a target aircraft through programmed maneuvers while their tracking performance responses were documented.

Although efforts of McDonnell Douglas were directed to developing an F-4E aircraft pilot model, they determined from time history data that pilot elevation and traverse tracking error characteristics were similar regardless of the pilot, the weapon delivery task, aircraft flying qualities, or sight system characteristics. The results of the McDonnell Douglas study indicated that elevation tracking error contained two predominant modal components. This was

due to the pilot's interaction with the aircraft's short period dynamics and the sight dynamics. Both frequency components were observed to exhibit a limited or lightly damped response. Their study of pilot responses indicates that the longitudinal pilot model treats the pilot as a proportional-plus-derivative observer of the tracking error. The pilot threshold limit of error rate is indicated by use of a dead zone in the error rate channel. This proportionalplus-derivative observer of elevation angular error results in a tracking error projected a time interval into the future. This projected error is then coupled with the output of a low pass filter to determine the pilot's rate input to the control stick. Integrating this control stick rate provides the control stick position or stick force that determines the pilot model response to the flight control The pilot model schematic is shown in Figure 1.

Just as in the longitudinal pilot model, the lateral-directional model is based on the assumption that the pilot acts as a proportional-plus-derivative observer of the traverse tracking error with the dead zone on the error rate. However, additional visual ques that the pilot may perceive in traverse tracking are incorporated in the lateral-directional pilot model. This includes feedback of attacker

Multi-Axis Pilot Model for Air-to-Air Aerial Gunnery Figure 1.

aircraft bank angle relative to the target aircraft. This additional input, which incorporates a dead band for threshold limits, is used to modify the lateral stick commands based on traverse tracking error.

The schematic diagram of the longitudinal and lateral-directional multi-axis pilot model developed by McDonnell Douglas is shown in Figure 1. A root locus stability analysis of the pilot model transfer function was used to determine how the parameters of the pilot model affect closed loop system stability and control during weapon delivery. Both the director sight and the lead computing optical sight system were used in the air-to-air gunnery investigation and pilot model validation. Tracking performance time histories and frequency responses of the pilot model performing weapon delivery tasks closely represented those of the human pilot in the manned simulations (Ref 7).

F-16 Aircraft Pilot Model Description

Unfortunately, the gain parameters of the pilot model developed by McDonnell Douglas for the F-4 aircraft configuration was not sufficient for an F-16 simulation. Since this basic model was not compatible with the F-16 aerodynamic and flight control characteristics, an effort was made by General Dynamics to adapt this basic F-4 pilot model to the

aircraft bank angle relative to the target aircraft. This additional input, which incorporates a dead band for threshold limits, is used to modify the lateral stick commands based on traverse tracking error.

The schematic diagram of the longitudinal and lateral-directional multi-axis pilot model developed by McDonnell Douglas is shown in Figure 1. A root locus stability analysis of the pilot model transfer function was used to determine how the parameters of the pilot model affect closed loop system stability and control during weapon delivery. Both the director sight and the lead computing optical sight system were used in the air-to-air gunnery investigation and pilot model validation. Tracking performance time histories and frequency responses of the pilot model performing weapon delivery tasks closely represented those of the human pilot in the manned simulations (Ref 7).

F-16 Aircraft Pilot Model Description

Unfortunately, the gain parameters of the pilot model developed by McDonnell Douglas for the F-4 aircraft configuration was not sufficient for an F-16 simulation. Since this basic model was not compatible with the F-16 aerodynamic and flight control characteristics, an effort was made by General Dynamics to adapt this basic F-4 pilot model to the

F-16 aerodynamic and flight control characteristics. Their approach was first a pilot model gain study followed by a comparison of flight test data with manned simulation results. Their study provided a multi-axis pilot model that produced fairly adequate tracking performance for a stabilized 5 g target aircraft model. Table II indicates the parameter gain values of the multi-axis pilot model adapted for this simulation. The parameters of the pilot model shown are for employing the director sight system. Pilot performance variations while employing the LCOS system are included by the gain changes as indicated by the asterisk (Ref 8).

Table II

Parameter Values of the F-16 Pilot Model
Implementing Director Sight (Ref 8)

.05	ω 1.0	0.6	к _R .125	K _L .125	K * p .25	К • 0573	
KAIL*	K _{RTR}	K _{RUD}	DB-1 lmr/sec		1-2 deg	DB-3 2.5mr/sec	
	ment the	LCOS,	the above	parame	ters r	emain the sa	ame
except:			K _{AIL} = .1 K _p = .2				

IV. Development of the Analysis Model

EASY Program Discussion

To aid in the analysis of the present flight control configuration and implementation of a pitch rate controller, the EASY Modelling and Analysis Program by Boeing Computer Service was adapted (Ref 9). The EASY program package consists of two programs which allow the modelling and analysis of dynamic aircraft systems in both steady state and dynamic behavior. The first of these is the EASY Model Generation program. This pre-compiler program accepts model description instructions from the programmer and from these instructions generates a FORTRAN model of the aircraft system. The output of the EASY model program is a complete system model description including a computer generated schematic diagram showing inter-connections between the components of the constructed model. Standard EASY components used include aircraft modelling components and control system components. The computerized model was analyzed using the linear, non-linear, steady state, and dynamic techniques available in the EASY Analysis program. FORTRAN statements, referred to as "program commands", allowed the analysis to include non-linear simulation, steady state calculations, linear model generation from the original non-linear model,

eigenvalue calculation, root locus analysis, transfer function calculation and several other dynamic analysis techniques.

F-16 EASY Model

The EASY Model Generation program was begun by developing a schematic diagram of the longitudinal axis of the F-16 flight control system. The fold-out of Figure 2 indicates the present F-16 aircraft control configuration. Simplifications of the pitch axis system (upper left of Figure 2) were made for the EASY model program. The aircraft flight condition chosen was .8 Mach at 20,000 feet and the aircraft model configuration was that for cruise flight with no pitch trim nor pitch autopilot included. Trailing edge flaps were not implemented and because very little control blending occurs at cruise airspeeds, the differential tail deflection of the F-16 aircraft was also not modelled. Instead, it was assumed that the aircraft exhibits conventional elevator deflections. Assuming rigid body dynamics, the high frequency structural filters were also omitted. The resulting F-16 longitudinal flight control system modelled for the EASY analysis program is shown in the schematic diagram of Figure 3 (Ref 10).

IGHT CONTROL SYSTEM FUNCTIONAL BLOCK DIAGRAM Figure 2. Present F-16 Flight Control System Diagram (Ref 11)

2

EASY F-16 Aircraft Flight Control System Model Schematic Figure 3.

Only standard components of the EASY program were necessary to complete the flight control system modelling. The dash boxes around the elements in the control system diagram of Figure 3 indicate each standard component used. For example, the FU components indicate table look-up functions. These include both the pitch command gradient and gain scheduled variables that are functions of dynamic and static pressure. The LA and LG components were used to model first order lag transfer functions. First order leadlag transfer functions were modelled with the LE component. The multiply and add components, MA and MC, were used to model the summing junctions. Second order transfer functions such as in the elevator actuator were modelled using the TF component. Limiting functions or saturation function components, SA, were used to regulate the pilot commanded maximum g forces, angle of attack, actuator rates, and elevator deflection.

In addition to specifying the F-16 flight control system components, the aircraft dynamic modelling was necessary. Description of the aircraft motion centered around the standard components AV, LO, and SD. The AV component uses the aircraft states to compute aerodynamic variables such as angle of attack, airspeed, body rates, etc.

The longitudinal aerodynamic component, LO, computes the longitudinal aerodynamic forces and moments. The six-degree-of-freedom equations of motion component, SD, contains the rigid body dynamic equations for integrating the aircraft states and is driven by the aerodynamic variables generated in LO.

In addition to the aircraft and flight control system model, the longitudinal pilot model described in Chapter III was also implemented into the EASY program. Again, standard components were used to complete the pilot model description as shown in the schematic diagram of Figure 4. This pilot model implementation incorporates parameter requirements for the director sight. Although the description appears different from that of Figure 1, p. 16, a mathematically equivalent model is shown. The time delay component of Figure 1 has been incorporated in both the proportional and derivative channels of the longitudinal pilot model. In addition, Figure 4 indicates the pseudo target tracking task of the pilot model for the EASY analysis. A closed loop system was achieved by feeding back the attacker aircraft pitch angle. This pitch angle was compared to a reference angle to allow performance evaluations of system response to step inputs. The aircraft pitch angle was chosen since

Figure 4. EASY F-16 Longitudinal Pilot Model Schematic

it is angular target measure that is observed by the pilot in his target tracking task. Unit measurement changes are also reflected in the diagram of Figure 4.

To complete the requirements of the EASY modelling program, a component block diagram with interconnections was specified. The output of the EASY Modelling Generation program provided a schematic of the overall system indicating input, output, and parameter requirements of the flight control system aircraft model and pilot model. A listing of the model description statements along with a computer generated schematic diagram of the total system modelled is included in Appendix A.

F-16 EASY Analysis

Parameter requirements of the analysis program for the flight control system and pilot model were specified by the input list generated by the model program. This data is in two parts; first, data necessary to generate the table look-up functions of the flight control system; and secondly, parameter values of the standard components. The gain scheduling blocks indicated in Figure 2 were built using the table function components, FU. This tabular data was loaded by describing both the independent and dependent variables. Additional parameters were loaded in the analysis

program to specify either linear interpolation or extrapolation of the table look-up functions. Following the tabular data, parameter values were loaded to specify all requirements of the standard components shown in Figure 3 and Figure 4.

Additional data requirements included stability derivative information necessary to satisfy the longitudinal equations of motion. Inconsistencies were found in stability derivative definitions, sign conventions, and unit measurements. It was therefore necessary to develop an axis system and sign convention to be consistent throughout the simulations. The most convenient system was a set of mutually perpendicular reference axes intersecting at the center of gravity of the aircraft. About this point, the aircraft motion, moments and forces were measured. The positive directions for these axes were selected as: forward or opposite the direction of airflow for the X axis; to the right for the Y axis; and downward for the Z axis. Reference data provided by the aircraft manufacturer and the test case from the Griffin program was selected using the stability axes as reference. The stability axes are established with the X axis parallel to the undisturbed airflow with respect to the aircraft body. The axis system selected is described

in Figure 5. The sign convention established, although not universally used, is consistent with both the data presented by General Dynamics and that of the test case selected. A graphic description of the sign convention used is shown in Figure 6 (Ref 11).

Data preparation for the constant coefficient aero model of the EASY analysis program included external forces, torques, and aerodynamic stability derivatives. The non-dimensional stability derivatives were obtained from test data derived from a test program used by the Air Force Flight Dynamics Laboratory LAMARS simulation program. Run #43 of this Griffin program was used as a data base and is listed in Appendix B. It should be noted that the dynamic stability derivatives (e.g. functions of control surface deflections) are listed in per degree units while static stability derivatives are listed in radian measure. The non-dimensional derivatives used to satisfy the longitudinal equations of motion of the EASY program are shown in Table III along with their respective EASY program names (Ref 6).

F-16 Aircraft Model Validation

With the tabular data, parameter values, and stability derivative requirements satisfied, the EASY analysis program was used to verify the aircraft dynamics. The first check

Figure 5. Axes System Diagram (Ref 11)

Figure 6. Simulation Sign Convention Diagram (Ref 11)

Table III
Longitudinal Stability Axis
Stability Derivatives
(Non-Dimensional)
(Refs 6, 12, 13)

	(2012 0)		
Drag <u>Coefficient</u>	Definition	Value	EASY Parameter Name
-c _{Do}	<u>-D</u> ਕੂਤ	0250	X0 LO
-C _D	$\frac{-\partial C_{D}}{\partial \alpha}$	1644	XA LO
-c _{Du}	$\frac{-M}{2}^{C}_{D_{M}}$	0746	XU LO-
-C _{Du} -C _{Dδ}	-∂C _D ∂δ _e	+ .0525	XDELO
Lift Coefficient			
-c _r °	<u>-L</u> qS	1443	ZO LO
-C _L _a	-9C _L	-4.8159	ZA LO
-C _L å	-9C ^T	+ .6600	ZADLO
-c ^r d	$\frac{-\partial C_{L}}{\partial (\frac{Q\overline{C}}{2U_{O}})}$	-2.5965	ZQ LO

Table III (Continued)

Lift Coefficient	Definition	Value	EASY Parameter Name
-C _L	$\frac{-M}{2}^{C_{L_{M}}}$	0607	ZU LO
-C _L _{δe}	-9C _L	4986	ZDELO
Pitching Moment Coefficient			
C _m o	<u>-</u>	0182	MO LO
C _{ma}	$\frac{\partial C_{m}}{\partial \alpha}$	+ .0943	MALLO
C _m å	∂ C _m	9550	MADLO
C _m q	ə C _m	-2.3187	MQ LO
C _{mu}	$\frac{M}{2}$ C_{m}	0145	MU LO
C _m δe	aC _m a6 _e	6669	MDELO

of the system was to trim the aircraft in straight and level flight at an altitude of 20,000 feet and airspeed of .8 Mach, or an equivalent 829.5 feet per second. In order to trim the aircraft, two additional integrators were added to the system model. The input of the first trim integrator was the difference in reference altitude of 20,000 feet and the actual calculated altitude of the SD component during the trim iterations. This difference error was then integrated and the output fed into the system as a stick input to help achieve a steady state at 20,000 feet. This trim integrator is shown in the upper left hand corner of Figure 3. Likewise, a second trim integrator was used to compare actual velocity calculated in the SD component to the reference velocity of 829.5 feet per second. This velocity difference was integrated and the error was used to help achieve the desired trim condition.

Through the use of program commands, a steady state system solution was determined. Following trim iterations of the EASY program, the computer output shown in Figures 7 and 8 verify the aircraft trim condition. The system states, as defined by the EASY program, are those quantities described by first order differential equations. As shown in Figure 7, the system modelled consists of 25 states. The

		209146-10 20010- 7.072 .272315-18	.17656E-07 .17287E-08 .56144F-13	99433 6.99433 78.169 13.269 6.269
		0 80 ALTSO X2 FFR X2 LGF1		446522 446524 665324 66533
		94222	8 6 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		2322	2555	**************************************
		6.4842 6.4842 2.7598 1.4427	000.0	0.000 0.000
		550 1771		250222
			25.25	PP
		- 5155 - 5155	30 30 3	
				9000E E G G G G F F F
•	(nsc)	32.722 2.2593 7.0707 10331F-03		32.722 0.1513 1.2553 1.2553 1.2553 0.3015 0.3015 14.140 14.140 14.140 1.27316-09
		n 222		2 -004W-
	HALVSES TONS EAN	3 M 50- 3 W 50- 4 D I 50- 13 X 2 LAPL 23 X 3 T FFE 23 X 3 T FFE	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	STEADY STATE AMALYSIS /0/0/0	0. 0. -1131.2 20662E-03		10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.00
	. 5	255		**************************************
	# # # # # # # # # # # # # # # # # # #	V SD ROLSD YI LEPL X2 LGET X2 ITE1		102 AV 102 AV 102 AV 100 AV 10
	::		2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		27272		0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
		623.49 6.379.4 5.703.6-03	.17233E-08 6. 479.19 23772E-08	23.50 23.50
		5 240	****	
		2222	22 22 2	
		222	75222	**********

Figure 7. EASY Program Steady State Output (States, Rates, & Variables)

		S0-30	E2500E-01						-31110E-01		10-26	1.77.3		6		.103035-05		10000E-05		0		.10000E-05		10000E-05	0	162425-02						
		100000	6250	1215	-2.3187			-1.0300	.2119	5. 4000	. 6030	1.77	1.7363	.25309	•	.1636	8.3350	.1039	.0	1.0000		.1960	•	.1090	1.7700	.162			-25.000	72.90	20.33	
1	• •			*			*	*			1	"	-				2 .	*	2 =				*	5 =		2 .	. 9	. 5		1		
	UN AV	SAFZ	10	70 13	9	-		MAN	4071		1991	1000	1FPL	1351	LGET	5455	LGF2	2457		WC F1			MOE 3	SAFS	43 CM	MA EZ	93 CH		-	TFF1	SAF1	
		5	5						ដ		2	u.		7.0						C3				-	Z			C3		10	3	
		2 5	20	25	30	35	0,	45	50	55	6	5.3	70	75	00	85	6	95	100	109	110	115	123	125	1 40	135	149	145	153	153	160	
			-01	;								-05																				
	6	000	OOE	965	000	320		0		000	.1.15	3000	1.5300		000	000	000	000	. 3033	110	000	000	000	000	000	0000		000	000		. 3000	
	301.99	1.3063	7.460E	2.59	03966.	11.320		199.20		1.0000	2.1		::		.13000	.50000	6.3300	1.0000	1:5	1.3070	1.3330	1.3030	.50100	1.0000	12.330	1.0		5.930	25,000	2734.0	3.3	
						*			u			,	,	**	*						*	*	**						Ħ			
	> :	AF2		. 0	0	0	_	0	1204	MAPL	1961	Tavs	Tast	JASH	LGET	AE2	LGE2	SAFI	FE2	4CE1	230-	SAFA	4043	SAFS	LEE3	FUF	930	HOF5	1	TFF1	SAFI	LGF1
	S AV	CA SAF	XG LO			07 0	Tx SJ		X3 X	£ 10	GAIL	5 50	1 00	7 70				V 10		22	C3 .				P) L	ANF	C3 w		•	1 00	C3 S	
	40		× 61						× 65	24 5	53 6	999			1 61			0 16			0 60			5.4							159 0	
								_	_		_					_	50			-	-	37 1	-	37 1	-	-	-	-	-	_		
	•	_	.20106E-01		E-01	-				_	•					_			_			•		+					9		50-30	
	2.1039	25.000	010	65006	.9439EE	590.50		56779		.0000	20.000			. 9000	20003.	.0000	10000E	\$0.00	10.010	20.400	. 5030	13330F	16.090	10000E	.0000				600.0		10000E	0000
_	å			9		. 59		26	•	:	20		0	.;	20	:		30	7	-20	-	-	:	:	;	0	•	6	5	0	-	-
DARAMETER					*		**	*	# Z	=	-	- 1	" "	"	"	. 2	2 =			-	2 =	11	"		"	4	9	2 2		-	"	
346	2	3 4 5	12	20	1110	10	S	12730	LSEN	4071	7037	TARE	Tebl	13PL	TARK	230=	SAE	SAF3	LGE1	4CE1	5	345	43E3	SAE	LFE3	4366	43E6	4355	1771.	1:51	3451	LSF1
0 4	ALSAV		, ×						c	3	6		:	.3	C		0			2	5				2		×		1.75			
	m •	-	18	23	28	33	38	43	4	53	5.0	6.3	6.3	73	7.8	83	88	93	96	103	108	113	113	123	12	133	138	143	148	151	158	163
		- 0.	-01	:	-01													-05				-05		-05								
	20	10000-05	.250C0E-01	59	OCE	969		. 95	.000			0010.	.0300	300	.0000	. 3300	0000	10000E	000	300	5.000	10300E	16100	w	000	000	000	000	100	0.	000	000
	829.50		.25	-4.8159	1620GE	66590	:	.99667	10.	:			1.0	1	1.0	1.3	.50	.10	10,300	1.0000	15.	.10	.16	.1.	3.3000	1.0000	1.0000	1.0000	E.0300	2764.0	20.000	3.000
					**					n	u		**	11					**	*	H	u		**					11	*	n	
	> :	452	. 0	7A LO	0	0	0	-	SEN	671	LFOL	Jut.	1771	MCFL	MAFT	MAE1	5362	AF3	LSEI	FUE3	230	SAEG	CE3	SAES	EE3	HOEA	FUES	4H FUES	1:1	1561	SAF1	SAFI
	VS V	10	100	ZAL	PO LO	POELO	TYTE	IVYS	7 22	C3 MC71	70 C		1 32	C2 Y	2	-		C 2 S	7 CZ	ANA	X3 H		1 50		GATLEE3	C3 H	ANF	4 11 6	6711	10 1		
	~ •	- 6	17	22	27	35	37	24	14	25	21	23	13	12	11	82	18	26		25	27	112		22					1.7		57	
						17				31		50								-	-	-	1	-	-	_	-	_	_	7	-	1 50
		-				36-		S	0	3E-		-36		0			c		0	0		0		1		0		0				-36
•	.6990		25.030	-14439	\$664.	.1452		9007.5	823.53	31133	49.94	196		.000		.963	.903	1.003.1	.600	1.00.1		. 693		6003		.000		.503		653	.003	16033
	• •	5 -	-2-	:	:	:	0	0.	a'	:	3	•	٢	-	0	-	•	-	-5	-	0	-	u	•	0	-	٠	-		7	7	•
	• •			. "				*	-	11	7	1	- 7	7.	1	-	2 .		3	2	1.			.5	.5	*	2	33	5			
	147	: :	:	S	50	S	6711.3	LLAAI	ç	ç	11.	:	1011	÷	S	-	:	E	2	1:1	÷	2	5	5	11	4	7	÷			÷	23
	£ 3	: :	3	73	2 3	5	13.	1	5 C2	2		2	50 5	2	Sa S	-	5	2	5 6	6	2	13	5 5	5	50 5	5	5.	12	3	1 21	5	53
	4		: =	. 2	2	5	36	7		u.	3		3	ř	7			6	6	101	1:5	=	115	121	126	171	175	3	3	-	156	9

Figure 8. EASY Program Steady State Output (Parameters)

value of each state is given for the trim condition. Output variables are shown that correspond to the component outputs of Figure 3, p. 21. The parameter values for each standard component are listed in Figure 8. To achieve the desired trim condition, the pilot model was isolated from the aircraft and flight control models. Program commands were then used to generate steady state iterations. In doing this, the dynamic equations of motion were perturbed after each iteration step until the trim condition specified by altitude and airspeed initial conditions was achieved. The state variables indicate the quantities that result from integrating the set of first order differential equations that comprise the dynamic system model.

Once that an operating point was established, all initial conditions of integrator states were transferred to the system through a program command. With the two additional trim integrators for altitude and airspeed turned off (i.e. integrator states "frozen") verification of the F-16 aircraft characteristics continued.

The model developed by the EASY program which includes the F-16 aircraft characteristics, longitudinal flight control system, and longitudinal pilot model, is described by the simplified block diagram of Figure 9.

Figure 9. EASY Model Simplified Diagram

By selecting summing junction parameters to open all flight control system feedback loops and freezing integrators in the pilot model and flight control system, transfer functions of the aerodynamic variables for elevator deflection could be obtained. With the above provisions completed through program commands, the total system was effectively reduced to the aircraft dynamic model shown in the simplified diagram of Figure 10. The basic aircraft dynamics of the Griffin program were compared with EASY Analysis program calculations. A comparison of the computer generated

Figure 10. EASY Transfer Function Diagram characteristic equation roots with the Griffin program data is listed in Table IV.

Table IV
Roots of the F-16 Characteristic Equation (Longitudinal Dynamics)

	Griffin Data	Easy Analysis Data
Short Period	+.8282	+.8168
	-2.745	-2.746
Phugoid	0262 + j.1528	0288 + j.1245
	0262 - j.1528	0288 - j.1245

At the flight condition selected for this simulation, flight data indicates that the basic F-16 airframe is unstable. The relaxed static stability is demonstrated by the real positive eigenvalue. As shown above, the short period mode of the F-16 aircraft has two real roots. One of these in the right half plane brings about the airframe instability. The phugoid mode is indicated by the pair of dominant complex poles near the origin.

Although the numerator characteristics were calculated in the EASY Analysis program, it was not possible to have these printed to enable a comparison with the numerator dynamics of the Griffin program. However, transfer functions were calculated using the EASY program commands and the computer generated Bode diagrams were used to validate the numerator dynamics. From the Griffin program data, the following analytical transfer functions of angle of attack per elevator deflection and pitch rate per elevator deflection were derived:

$$\frac{\alpha}{\delta} = \frac{-.1329(s + 148.5)(s^2 + .0177s + .0040)}{(s - .8282)(s + 2.745)(s^2 + .0524s + .0240)}$$
(3)

$$\frac{\dot{6}}{\dot{6}} = \frac{-19.72s(s + .01741)(s + 1.312)}{(s - .8282)(s + 2.745)(s^2 + .0524s + .0240)}$$

The AFIT frequency response program (FREQR) was used to generate plots of the above transfer functions. Figure 11 shows the angle of attack per elevator deflection transfer function of the Griffin program data. This compares very favorably with the computer generated EASY magnitude and phase plots of alpha per delta elevator shown in Figures 12 and 13, respectively. A similar comparison of the pitch rate per delta elevator transfer functions was made and the results are shown in Figures 14-16. The above comparisons clearly serve to substantiate the validation of the F-16 aircraft model developed.

As mentioned earlier, the F-16 basic aircraft is unstable at the flight condition selected for this simulation. This instability is evidence of a positive static margin which is defined as the ratio of $C_{m_{\alpha}}$ to $C_{L_{\alpha}}$. The instability of the basic F-16 airframe was demonstrated by using the simulation program commands of the EASY Analysis program. With all integrator states in the flight control system frozen and also insuring that all feedback channels of the flight control system were opened, a time simulation was run to show the dynamics of the aircraft alone with no flight control system. An initial condition equivalent to a

EASY Generated Magnitude Plot of Alpha/Delta Elevator Transfer Function Figure 12.

WYCHILIDE

Figure 13. EASY Generated Phase Plot of Alpha/Delta Elevator Transfer Function

DHYZE YNCTE' DECKEES

EASY Generated Magnitude Plot of Pitch Rate/Delta Elevator Transfer Function Figure 15.

MAGNITUDE

Figure 16. EASY Generated Phase Plot of Pitch Rate/Delta Elevator Transfer Function

one degree angle of attack pertubation was input into the aircraft system and the resulting dynamic response is shown in Figure 17. It can be seen that the aircraft does not return to its equilibrium trim condition with even a slight angle of attack pertubation. The display shows the angle of attack, pitch angle, and altitude increasing while the aircraft airspeed decreases. This demonstrates the necessity of maintaining the flight control system to harness the inherent aerodynamic instability.

EASY System Analysis

The EASY Analysis program was further used to examine the present F-16 flight control system. Investigations continued to establish a measure of the system effectiveness. The present F-16 flight control system, which is predominantly normal acceleration feedback, was evaluated in terms of tracking performance. As shown in Figure 18, a closed loop system was established by having the pilot model respond to an angular error input. The command angle was the difference between the aircraft pitch angle and a prescribed reference angle. By establishing this pseudo tracking task, a first order approximation of the director sight implementation was achieved. The pilot model parameters were selected to be consistent with the director sight characteristics.

Figure 18. EASY Closed Loop System Schematic Diagram

Control of the pitch feedback summing junction of Figure 18 was gained through EASY program commands and by selecting the appropriate parameter, the $\theta/\theta_{\rm REF}$ transfer function was established for either closed or open loop analysis.

The magnitude and phase Bode plots of the normal acceleration configuration for the closed loop are shown in Figures 19 and 20, respectively. The magnitude plot indicates the transfer function is well behaved and the maximum peak, M_m, of 1.43 occurs at a frequency of .356 radians per second. As seen in Figure 19, the system bandwidth is

Bode Magnitude Plot Normal Acceleration Configuration Closed Loop Figure 19.

MAGNITUDE

C

Figure 20. Normal Acceleration Configuration Closed Loop Bode Phase Plot

approximately .7 radians per second. Next the open loop transfer function was investigated by opening the feedback loop at the summing junction. The Bode plots of the open loop normal acceleration transfer function are shown in Figures 21 and 22. As seen in Figure 21, the gain crossover occurs at approximately .5 radians per second and the phase margin (Figure 22) is 52 degrees. To evaluate the effectiveness of the pseudo tracking task of the pilot model, a time simulation was run to show the system response to a step input of 5.5 degrees pitch. The time response to this step input is shown in Figure 23.

The EASY Analysis program was also used to investigate the merits of a pitch rate command system. As discussed in Chapter I, the C* design concept for the F-16 flight control system employs a predominantly normal acceleration command system at cruise airspeeds. This is evidenced by the larger weighting of normal acceleration to pitch rate in the feedback channels of the longitudinal control system. For air combat tracking tasks, pitch rate feedback could be made predominant by adjusting this weighting relationship. One possible implementation would be the total weighting of pitch rate as the command signal with the elimination of normal acceleration feedback.

Normal Acceleration Configuration Open Loop Bode Magnitude Plot 21. Figure

WAGNITUDE

Figure 22. Normal Acceleration Configuration Open Loop Bode Phase Plot

PHASE ANGLE, DEGREES

Figure 23. Normal Acceleration Configuration Time Response to Step Input Tracking Error

PITCH RATE

PITCH ANGLE

DECKEES\SEC

This method was attempted and the EASY program was modified to incorporate a pitch rate control system. As shown in the model diagram of Figure 3, p. 21, the normal acceleration channel was eliminated as a feedback signal by setting the gain parameter equal to zero. The angle of attack feedback channel was maintained to aid stability. Because the primary feedback variable was to be pitch rate, the washout filter in the pitch rate channel was removed. The lead-lag transfer function 2(s + 15)/(s + 30) was implemented as the new LEE3 component to increase the system bandwidth. Additionally, a root locus analysis was used to determine that a pitch rate feedback system gain of .3 would provide an overall system damping factor of approximately .7. An improved system performance was indicated by evaluating the open and closed loop transfer functions. The system response with the pitch rate feedback system is indicated in Figures 24, 25, 26, and 27. The response of the pitch rate system is similar to that of the normal acceleration, however, certain points are noteworthy. For example, the maximum peak of the closed loop transfer function, shown in Figure 24, occurs at the same frequency as in the normal acceleration system, but reduced to 1.28. As noted also in Figure 24, the effective

Pitch Rate Configuration Closed Loop Bode Magnitude Plot 24. Figure

MAGNITUDE

PHASE ANGLE, DEGREES

Pitch Rate Configuration Open Loop Bode Magnitude Plot 26. Figure

MAGNITUDE

Figure 27. Pitch Rate Configuration Open Loop Bode Phase Plot

PHASE ANGLE, DEGREES

bandwidth of the system has been increased from .7 to 1.0 radians per second. Figure 26 indicates the gain cross-over of the open loop pitch rate transfer function occurs at approximately .75 radians per second.

The above observations imply that a pitch rate command system could be successfully implemented to achieve overall system performance improvement. To verify this, the time response of the pitch rate system to a step input tracking error is shown in Figure 28. The faster response with less overshoot is evidence of an improved system.

To summarize the results of the normal acceleration and pitch rate control system investigation, Table V lists a comparison of quantities of interest (Ref 14).

Pilot Model Study

The pilot model adapted for this investigation was developed by McDonnell Douglas Corporation with gain parameters adjusted by General Dynamics to meet the characteristics of the F-16 aircraft. It was beyond the scope of this thesis to extensively evaluate the pilot model and conduct an in-depth study to confirm that the pilot model used is adequate for the F-16 aircraft and gunsight characteristics. However, a brief examination of the pilot model loop was done to insure stability and adequate performance with

Table V
Quantities of Interest
Normal Acceleration vs Pitch Rate Feedback
(Ref 14)

	Normal Acceleration Feedback	Pitch Rate Feedback					
Max Peak Value M _m	1.43	1.28					
Peak Frequency ω _m (rps)	.356	.356					
Phase Margin	52	63					
Gain Margin Frequency ω (rps) c	.52	.75					
Gain Margin (dB)	22.2	18.4					
Bandwidth (rps)	.7	1.0					
Time Simulation Results							
Peak Overshoot M ₀ (%)	17.3	13.6					
Peak Time T _p (sec)	4.7	3.25					
Settling Time T _s (sec)	9.5	7.2					
Rise Time T _r (sec)	.5	.4					
		· ·					

the pitch rate control system. For the longitudinal axis, the pilot loop included the longitudinal pilot model as shown in Figure 1, p. 16, as well as the pitch command stick gradient and the stick conditioning lag filter. These three components represent the pilot loop and the open loop transfer function is as follows:

$$G(s) = \frac{159.1(s^3 + 1.325s^2 + 1.15s + 1.125)}{s(s + 8.3)(s + 20.)(s^2 + 1.2s + 1.)}$$
(5)

where the pitch command stick gradient gain was selected as the upper slope value of .3182 as shown in the foldout diagram of Figure 2, p. 20.

Again, the AFIT FREQR program was used to produce the Bode magnitude and phase plot of Figure 29. The quadratic low pass filter of the pilot model causes an extensive phase shift near a frequency of 1 radian per second. An acceptable phase margin is maintained up to frequencies near 10 radians per second. The magnitude plot, although well behaved throughout the operational region of the pilot model, indicates a desirable -20 dB per decade slope at the lower frequencies for the crossover type model representation of

Pilot Model Loop Open Loop Transfer Function Bode Plot Figure 29.

effects should be expected with the same pilot model implemented in the pitch rate system since the effective bandwidth of the system has been increased from .7 to 1.0 radian per second. In fact, an improvement may be attained since larger magnitude outputs may be achieved through operation at the slightly higher frequencies possible with the pitch rate control system.

EASY Analysis Summary

Verification of the F-16 aircraft dynamics indicated that the EASY model characteristics were consistent with the simulation test data. By implementing an analytical pilot model, closed loop simulation analysis was made possible.

A pseudo target tracking system was developed, and the performance of the present F-16 flight control configuration was examined. Investigation of a proposed pitch rate flight control configuration provided both frequency domain and time domain results that indicated target tracking improvements were possible by implementing a pitch rate control scheme. A listing of the EASY program statements used to generate the control system analysis is given in Appendix D.

V. Development of a Simulation Program

TAWDS Program Discussion

To evaluate the air-to-air tracking performance of the F-16 aircraft model, a simulation program was needed. The Terminal Aerial Weapon Delivery Simulation (TAWDS) program produced by McDonnell Douglas Corporation (Ref 15) was well suited to simulate the air-to-air encounters and provide an evaluation of the flight control systems employed. Although the program has provisions to simulate weapon delivery tasks for air-to-air gunnery, air-to-ground gunnery, and bombing, only the air-to-air, aerial gunnery programs were included in this study. The TAWDS digital simulation program was used to simulate both the present F-16 flight control configuration and the pitch rate configuration of Chapter IV. Implementing the pilot model discussed in Chapter II, a deterministic evaluation of the aircraft's tracking performance was completed. Provisions of the TAWDS program include many factors associated with aerial gunnery. For example, the program includes the modelling effects of aircraft dynamics, control system characteristics, gunsight characteristics, pilot control parameters, attacker to target geometry, target maneuvering, gun orientation, gun rate of fire and recoil forces, bullet trajectories, random windgusts, and

stationary source errors. The above considerations make the TAWDS digital simulation program a well suited analytical tool to evaluate the non-linear six-degree-of-freedom air-to-air terminal tracking task.

TAWDS Programming Techniques

The deterministic mode of the TAWDS air-to-air program uses non-linear time varying equations to simulate a six-degree-of-freedom attacking aircraft tracking and firing at a five-degree-of-freedom maneuvering target. The major subroutines of the TAWDS air-to-air program are called by the Executive subroutine to describe the air-to-air terminal weapon delivery task. These subroutines include Data Input, Initial Encounter, Initial Condition, Measurement Error, Airframe, Augmentation, Pilot, Target Initialization, Target Aircraft, Relative Geometry, Bullet Time of Flight, LCOS Sight, Director Sight, Bullet Integration, Performance, Runge-Kutta Integration, and Output Subroutines (Ref 15).

In preparation for using the TAWDS program, it was necessary to develop tabular data for the six-degree-of-freedom non-linear F-16 aircraft model. Extensive stability derivative data supplied by the aircraft manufacturer (Ref 16) was input into the program to provide table look-up parameters necessary to satisfy the six-degree-of-freedom

equations of motion. A flight condition of altitudes near 20,000 feet with airspeed varying from .8 to .9 Mach was considered. The aircraft model selected as the data base for the EASY programming was again used in the TAWDS program. Therefore, the aircraft characteristics of Table III, p. 31, were implemented. Additional simulation specifications were allowed and the reader is referred to Appendix C and Ref 15 if programming details are desired.

The generic design of the TAWDS Data Input subroutine allowed easy implementation of parameter values. Different aircraft characteristics, flight control or pilot model parameters, or gunsight selections could be made through data changes. Initially, use of the TAWDS program was to be limited to the longitudinal axis of the flight control system, however, since weapon system effectiveness was the overall objective of the study, it did not seem realistic to evaluate this system in only one plane of motion. It was hoped that air-to-air combat encounters could be developed to provide a tracking task that would realistically evaluate the candidate flight control systems. Therefore, it was decided to implement a full six-degree-of-freedom simulation.

After the aircraft data requirements were satisfied, the longitudinal flight control system was implemented. Since the F-16 has a very non-conventional flight control system, the generic flight control models of the TAWDS program were not adaptable for the F-16 aircraft. Therefore, FORTRAN statements were used instead to develop flight control signal processing. The same control system simplifications in the longitudinal axis as employed in the EASY programming were also considered in the TAWDS program. Since the primary objective was to evaluate longitudinal flight control tracking characteristics, the cross coupling of lateral and longitudinal control signalling was also eliminated. FORTRAN statements were used to generate the gain scheduling requirements of the flight control system. Functions such as dynamic pressure adjusted for compressibility, static pressure, and Mach number variables were developed within the logic of the flight control subroutine. The schematic diagram shown in Figure 30 shows the longitudinal flight control system implemented in the TAWDS program. The lateral-directional flight control system for the F-16 model is shown in Figure 31. The parameter names and transfer function names as indicated in the block diagram hold no significance except they were programmed parameters and transfer function

0

Longitudinal Flight Control System Schematic for TAWDS Program Figure 30.

0

Lateral-Directional Flight Control Schematic for TAWDS Program Figure 31.

Figure 31. Continued

names already used in the generic TAWDS program. These were again used in the FORTRAN programming. Using these pre-programmed names simplified programming efforts, but these names bear no relation to the generic TAWDS program.

An additional trim subroutine was also resed to replace the aircraft trimming techniques of the TAWDS program. This subroutine perturbed the six-degree-of-freedom equations by varying aircraft angle of attack, forces, and moments until a satisfactory trim solution was achieved about the desired flight condition. An added feature allows specification of the trim condition in terms of g's by reading in the parameter name GKMECH. For example, to achieve a trim condition of straight and level unaccelerated flight, GKMECH = 1.0.

After selecting a 1 g flight condition, the TAWDS program output of stability derivatives and trim values indicated only minor numerical variances when compared to the trim condition values of the EASY program.

Next it was necessary to initialize the flight control system. The values of the aircraft feedback variables were used to initialize the transfer functions of the flight control system. The first pass through the flight control subprogram (AUTSII) initialized the transfer functions and set control conditions to satisfy the trim condition. A stick

trim bias as shown in the pilot channel of Figure 30 was calculated to provide the nominal stick forces necessary to balance the control surface deflection.

The pilot model and gain parameters as discussed in Chapter III were also included in the TAWDS programming model. Since a full six-degree-of-freedom simulation was to be developed, the multi-axis F-16 pilot model was adapted which included not only the longitudinal axis, but also the lateral-directional axis.

The generic quality of the TAWDS programming ability was very helpful in implementing the pitch rate control system of Chapter IV. It was not necessary to extensively change the flight control model as in the EASY program. Parameter value changes read in as data could effectively modify the normal acceleration system to incorporate the pitch rate control. For example, setting the parameter GKNZ2 shown in Figure 30 equal to zero eliminated normal acceleration feedback. The transfer function CBQQ/CCQQ was set to unity and the transfer function CBCOML/CCCOML was changed to the desired filter 2(s + 15)/(s + 30). By setting the parameter GKF = .3 as determined by the root locus analysis mentioned in Chapter IV, and adjusting the pilot loop gain to command degrees per second instead of g's,

(e.g. CBSE = 10.00), the pitch rate system implementation for the TAWDS program was completed.

Data parameters would also allow the selection of either the LCOS or director sight to be implemented into the simulation program for each run. By implementing either of the above sights, the system developed to this point could be considered as a manual director system or a manual LCOS system. Variations of the multi-axis pilot parameters would be necessary to operate the different gunsight systems.

Air-to-Air Scenarios

A series of air-to-air gunnery encounters were developed to evaluate the flight control systems. The Initial Condition subroutine was programmed to set the attacker aircraft at the flight condition to begin eight air-to-air engagements. For each target scenario, the attacker aircraft was initialized near straight and level unaccelerated flight at 20,000 feet and airspeed of .8 Mach. A target range of 5,000 feet was selected for the first four target maneuvers and a range of 7,000 feet for the last four maneuvers. Varying range rates (i.e. attacker to target closure rate) from -50 to -200 feet per second were programmed also. This established the initial target aircraft airspeed for each scenario.

In addition to initializing the attacker aircraft, target aircraft maneuvers were developed. To be consistent with terminal tracking environments, evasive maneuvers were programmed for an F-4 aircraft target model. Specifications for the target model included time intervals to begin and end each maneuver, bank angle rate, angle-ofattack rate, and thrust rate. A three digit code of a selected bank angle rate, angle-of-attack rate, and thrust rate was developed for specific target maneuvers at selected time intervals during the tracking scenario. Table VI describes the maneuvers developed and the corresponding NIC number used to select each encounter. Generally, the target maneuvered during the first two seconds of the program into a right or left 90° bank turn for a specified g and then completed either a split S or jink maneuver at a specified time as the scenario reached the terminal time of fifteen seconds. These eight air-to-air encounter scenarios were used as a basis to evaluate the director sight implementation under both the normal acceleration and pitch rate flight control configurations. With the deterministic mode selected, the program would complete one pass through each case and generate time history data to measure the attacker aircraft performance while tracking

the target aircraft through the selected maneuvers. Both mean and RMS elevation and traverse tracking error information was to be used to measure the tracking effectiveness. The TAWDS program information is shown in Appendix C.

Table VI
TAWDS Air-to-Air Target Maneuvers

	TAWD ATT-10-ATT Target Maneuvers							
NIC	Max g	Closure (ft/sec)	Time (sec)	Range (ft)	Maneuver Description			
1	3.6	-100	0-2 15	5000 1000	Roll 90° left			
2	4.2	- 50	0-2 10-11 15	5000 2600 1200	Roll 90° left Roll 30° left			
3	3,2	-150	0-2 12-13 15	5000 1500 800	Roll 90° left Roll 30° right			
4	3.4	-150	0-2 8-10 15	5000 2500 800	Roll 90° right Roll 45° right			
5	3.2	-150	0-2 8-10 15	7000 4000 1400	Roll 90° right Roll 30° right			
6	3.5	-200	0-2 8-10 15	7000 4000 1400	Roll 90° left Roll 45° left			
7	3.3	-150	0-2 6-8 15	7000 5000 1400	Roll 90° left Roll 45° left			
8	4.3	-200	0-2 6-8 15	7000 5000 1500	Roll 90° right Roll 90° right			

VI. Results

TAWDS Simulation Techniques

The results of the EASY Analysis of Chapter IV indicated an improved target tracking system could be achieved by implementing a pitch rate flight control system for the F-16 aircraft. To verify these results, each of the eight air-to-air target encounters was run using the TAWDS program model. This digital simulation included the full six-degree-of-freedom aircraft model, multi-axis pilot model, and lateral-directional as well as longitudinal flight control system. Both the present F-16 flight control configuration and the proposed pitch rate control system were evaluated using the director sight implementation.

Runge-Kutta integration was used for the simulation using a .05 second iteration step size. Although a smaller step size would provide better numerical accuracy, it would also require greater computer time. The step size of .05 was determined to be the maximum size for the simulation components and this step size worked well for the normal acceleration configuration. However, for the proposed pitch rate configuration, this step size was not sufficient. Modelling of a time constant of 1/30 seconds could not be accomplished with a step size of .05 seconds. It was

necessary to reduce the step increment size to less than the largest time constant of the system. Test runs were made using step sizes of .01 and .001 seconds. Very little numerical differences were noted with the smaller step size and therefore the significant increase in computer operation time was not justified. Since the normal acceleration configuration system had already been completed with a step size of .05 second, it was desirable to use the same step size for the pitch rate configuration also. To do this, it was necessary to slightly modify the lead-lag compensator that had been implemented for the pitch rate system. The transfer function CBCOML/CCCOML was adjusted from a value of 2(s + 15)/(s + 30) to 2(s + 7.5)/(s + 15). This allowed the .05 step size to be maintained and provided significant computer cost savings.

TAWDS Simulation Results

The tracking performance of the F-16 attacker aircraft for each of the eight encounters is summarized in Table VII. The mean, RMS, and standard deviation of both the elevation and traverse aiming error is shown for both systems. The bar graphs of Figure 32 and 33 compare the RMS elevation and traverse aiming errors, respectively. Improvements in elevation tracking can be seen while the traverse errors remain

Table VII
Summary of TAWDS Simulation Tracking Aim Error
with Director Sight Implementation
(measured in mils)

Present F-16 Normal Acceleration Configuration								
	Mean		RMS		Standard Deviation			
NIC	Elevation	Traverse	Elevation	Traverse	Elevation	Traverse		
1	-22.2	-17.8	24.1	19.8	9.4	8.7		
2	-21.8	9.3	24.3	14.0	10.7	10.4		
3	-21.2	7.7	23.3	13.7	9.6	11.4		
4	-24.0	-24.8	26.2	27.9	10.4	12.8		
5	-20.8	-16.7	25.7	25.1	15.0	18.8		
6	-21.6	14.9	26.8	20.2	15.9	13.6		
7	-20.6	11.1	26.3	20.1	16.3	16.8		
8	-21.4	-28.1	27.5	35.4	17.3	21.5		
Pitch Rate Configuration————————————————————————————————————								
1	-15.8	-17.1	18.8	19.4	10.2	9.2		
2	-15.8	8.9	19.1	14.5	10.8	11.5		
3	-15.3	7.3	17.7	14.0	9.1	11.9		
4	-19.0	-23.9	24.0	27.2	14.6	12.9		
5	-13.2	-13.7	17.8	27.8	12.0	24.2		
6	-13.2	13.4	17.1	22.4	10.8	18.0		
7	-12.9	9.2	17.1	22.5	11.2	20.5		
8	-13.0	-25.7	16.8	36.3	10.7	25.5		

RMS Elevation Aiming Errors of the Eight TAWDS Simulation Encounters Figure 32.

RMS Traverse Aiming Errors of the Eight TAWDS Simulation Encounters Figure 33.

approximately the same. The results indicate that the elevation aiming error has been improved by an average of 20% for the first four encounters that were initialized at a range of 5000 feet. The improvement is increased to an average of 35% for the last four encounters that were initialized at a range of 7000 feet. The least improvement of all is shown in encounter 4. This is attributed to the target maneuvering at the most critical range for air-toair combat of 2500 feet. It is interesting to note that the tracking performance of the pitch rate system shows the greatest improvement in encounter 8. This was considered the most difficult encounter of all since the F-4 target aircraft completed a split-S maneuver during the 15 second terminal chase. This result indicates that the pitch rate system of the longitudinal axis provides a greater improvement over the normal acceleration configuration as the difficulty of the tracking task increases.

VII. Conclusions and Recommendations

Conclusions

From the previous analysis and simulation results, it is concluded that improvements in target tracking are possible by tailoring the flight control system of fighter aircraft. Both the EASY Analysis and the TAWDS simulation results indicate improvements in the system response of a pitch rate feedback implementation as compared to the normal acceleration implementation presently employed in the F-16 aircraft.

EASY Analysis. The EASY Analysis program allowed investigations of system responses with both the normal acceleration and pitch rate flight control configurations. By eliminating the normal acceleration feedback and compensating the pitch rate feedback, it was shown using the EASY program that a very similar overall closed loop system was maintained, with certain noted improvements. A better damped system was achieved with an increased phase margin and bandwidth as shown by Table V, p. 63. The time simulation results of the EASY program verified the improved system response to a pseudo tracking task in the longitudinal axis. The aircraft model response to a pitch angle step input to the pilot model indicated improvements with

the pitch rate implementation. As shown in Table V, p. 63, the pitch rate system provides better damping, faster response, and quicker settling to the step input signal than the normal acceleration system.

TAWDS Simulation. Similarly, the results of the TAWDS simulation air-to-air combat encounters substantiated the results of the EASY program analysis. The tracking aiming error quantities of the eight air-to-air encounters as shown in Table VII, p. 82, clearly indicate the improvements of the pitch rate flight control system. Elevation tracking error, both mean and RMS, was reduced in each of the target tracking scenarios. These air-to-air encounters provided a realistic environment to test the performance of both the normal acceleration and pitch rate flight control configurations. The different target airspeeds, target load factors, and target rolling maneuvers of each scenario allowed the evaluation of each system throughout a variety of flight conditions. The full six-degree-of-freedom non-linear simulation developed for the TAWDS program enabled a realistic performance evaluation for the terminal phase of air-toair combat.

<u>Aircraft Model Validation</u>. Techniques for verifying the aircraft flight dynamics were shown using the EASY

Analysis program. The roots of the characteristic equation for the longitudinal dynamics very closely matched those of the LAMARS test case used to model the F-16 aircraft as shown in Table IV, p. 38. In addition, the transfer functions of alpha/elevator deflection and theta dot/elevator deflection were completed to verify the numerator dynamics of the model.

Pilot Model Performance. The satisfactory performance of the analytical F-16 pilot model clearly demonstrated the usefulness of such a model for closed loop system investigations. It is concluded that the gain sensitivity parameters of the pilot model are sufficient to allow a qualitative comparison of the flight control configurations examined. The pilot model control stick responses of the TAWDS program (see Appendix C) indicated reasonable responses to tracking error signals.

Recommendations

It is my recommendation that extensive digital simulation be continued to investigate flight and fire control systems for fighter aircraft. The specific recommendations from this study include the following:

Refine Pitch Rate Control. The mechanization of the flight control system using the C* concept considered only one extreme implementation, that of eliminating the normal acceleration and conditioning the pitch rate feedback. Since the C* approach implies a linear blend of normal acceleration, pitch rate, and pitch acceleration, it is recommended that other possible combinations of feedback variables be investigated.

Flight Envelope Expansion. The end game problem of air-to-air combat was simulated in the TAWDS program. The excursions of the attacker aircraft did not effectively cover the operational flight envelope of the F-16 aircraft during the 15 second encounters. It is therefore recommended that more extensive flight envelopes be considered.

Pilot Model Validation. The analytical pursuit pilot model used in this thesis was based on actual pilot performance data during target tracking tasks. It was not the objective of this study to verify that the pilot model used closely matched that of the actual F-16 pilot. Instead, it was used to complete a closed loop study and provide consistent tracking performance for the different flight control configurations and target maneuvers. If it is required to closely match the actual pilot responses for future F-16

simulations, a detailed study of the pilot model is recommended. Radical departures from the present configuration would indicate the need for a pilot adaptation study.

Improve Software Programs. In this study, the EASY Model Generation and Analysis program was used to model and analyze the present flight control configuration of the F-16 aircraft and develop a pitch rate implementation to improve target tracking. The TAWDS program was used extensively as a simulation evaluation tool. However, it was necessary to master the programming techniques and terminology of both programs. Although both programs provided beneficial results, it would be very convenient for portions of each program to be combined in one compact program. The EASY program allowed extensive analysis techniques to be employed by simply manipulating parameter values and state conditions through program commands. Both frequency domain and time domain analysis was readily available. The many subroutines of the TAWDS program allowed implementation of many of the considerations for air-to-air combat. The generic quality of the TAWDS Input subroutine allowed configuration changes and system specifications by simply manipulating data values. By combining the benefits of each of these programs, a very large reduction in the time and

be achieved. This would also enable the user to develop a greater expertise by using only one program. In particular, it is my recommendation that the frequency response and time response techniques be included in the TAWDS programming. In this manner, a complete program package could be maintained so that the programmer could readily analyze his implemented system and complete time simulations to determine system effectiveness. A reduction in computer memory presently required to run both the EASY and TAWDS programs would significantly reduce the operating costs and improve program turnaround time.

Apply Techniques. The programming techniques of this thesis in implementing a pitch rate control system for the F-16 aircraft clearly indicate that digital simulations can provide a very cost effective approach for designing, developing, and optimizing advanced aircraft weapon delivery systems. Used in conjunction with manned simulation efforts, the digital simulation approach can provide invaluable information. It is therefore my final recommendation that both the EASY and TAWDS programming techniques be considered to aid in the design of fighter aircraft handling qualitites specifications as set forth by MIL-F-8785B.

Bibliography

- 1. General Electric Aircraft Equipment Division. <u>Definition</u>
 and <u>Preliminary Evaluation of Integrated Automatic Flight</u>
 and <u>Fire Control Systems (Fire Fly I & II)</u>. Binghamton,
 New York: March 1975.
- 2. Quinlivan, R.P. <u>Multimode Flight Control Definition</u>
 Study. AFFDL-TR-72-55. Wright-Patterson Air Force
 Base, Ohio: Air Force Flight Dynamics Laboratory, May
 1972.
- 3. Sutherland, Major J.P. (CAF) "Fly-by-Wire Flight Control Systems." Technical Paper Prepared for Agard Meeting, Oslo, Norway. Wright-Patterson Air Force Base, Ohio: Air Force Flight Dynamics Laboratory, September 1968.
- 4. Berger, J.B.; R.P. Meyer; and D.B. Groll. Flight

 Control Requirements for Weapon Delivery Volume I
 Development of the Terminal Aerial Weapon Delivery

 Simulation (TAWDS) Programs and Their Use in Formulating

 Flying Qualities Guidelines for Manually Coupled Air
 craft Weapon Delivery Systems. AFFDL-TR-76-35, Volume

 I. Wright-Patterson Air Force Base, Ohio: Air Force

 Flight Dynamics Laboratory, March 1976.
- 5. General Dynamics Fort Worth Division. F-16 Flight Control System Analysis Report. CDRL Seq #A02H. Fort Worth, Texas: January 1976.
- 6. Griffin, John M. <u>Digital Computer Solution of Aircraft Longitudinal and Lateral-Directional Dynamic Characteristics</u>. SEG-TR-66-52. Wright-Patterson Air Force Base, Ohio: Aeronautical Systems Division, December 1967.
- 7. Berger, J.B. and R.P. Meyer. Flight Control Requirements for Weapon Delivery Volume II Background Information on Development of Pilot Models for Use in Evaluating Manually Coupled Aircraft Weapon Delivery Systems.

 AFFDL-TR-76-35, Volume II. Wright-Patterson Air Force Base, Ohio: Air Force Flight Dynamics Laboratory, March 1976.

8. Komechak, G.J.; R.E. Stanfield; J.W. Wilson; and J.H. Watson. Integrated Fire/Flight Control Candidate System Definition and Evaluation. ERR-FW-1758. Fort Worth, Texas: General Dynamics Fort Worth Division, December 1976.

- 9. Burroughs, J.D. Application of the EASY Dynamic Analysis Program to Aircraft Modelling User's Manual. Seattle, Washington: Boeing Computer Services, Inc., November 1976.
- 10. General Dynamics Fort Worth Division. F-16 Flight
 Control Design Analysis Report. CDRL Seq #A01W. Fort
 Worth, Texas: July 1976.
- 11. ---- F-16 Flying Qualities Report. CDRL Seq #A02H. Fort Worth, Texas: March 1976.
- 12. Etkin, Bernard. Dynamics of Flight: Stability and Control. New York: John Wiley and Sons, Inc., 1959.
- 13. McRuer, Duane; Irving Ashkenas; and Dunstan Graham.

 <u>Aircraft Dynamics and Automatic Control</u>. Princeton,

 New Jersey: The Princeton University Press, 1973.
- 14. D'Azzo, John J. and Constantine H. Houpis. <u>Linear Control System Analysis and Design: Conventional and Modern.</u> New York: McGraw-Hill Book Company, 1975.
- 15. Berger, J.B. Flight Control Requirements for Weapon
 Delivery User's Manual: Volume II Air-to-Air Terminal
 Aerial Weapon Delivery Simulation Computer Program.
 MDC-A4089, Vol. II. Saint Louis, Missouri: McDonnell
 Aircraft Company, March 1976.
- 16. General Dynamics Fort Worth Division. F-16 Stability and Control Substantiation Report. CDRL Seq #A025. Fort Worth, Texas: January 1976 and August 1976.

Appendix A EASY Model Program Description and Computer Generated Schematic

Included in Appendix A is a description of the EASY model program developed to simulate the F-16 control system, pilot model, and aircraft equations of motion.

The model description is shown on page 95. The block diagram location of each standard component of the model description is specified along with the EASY name of each component. Also shown are the inputs of each component to specify the system interconnections.

The computer generated block diagram is shown on pages 96 through 101. The block diagram verifies the component locations and interconnections of the system as specified by the model description commands.

AFE INDUTE = LGF1 1901TT = LG 1901TT 1901TT = LG 1901TT	a c a a a a a	5+0		- CONT	. 23
100 022 10	****	,	4	= SINCNI	
1001 1029 53 140 17 10 10 11 10 11 10 11 11 12 10 11 11	44444	022	C	I STUCKI	AV, SA: 2(4=51, E)
1001 112 4071 170015 = AV (EM=K), LO 1701 110 112 440 110 113 440 110 113 440 110 113 440 110 113 440 110	444	600		= 51,1041	10
112	et at al	***0	()	= Stricks	V (FW=K),LO
114 LEPL INDUT	ef of	112	10 FM	= JinchI	(>It=X)
1004		114	القها	Tilbille =	2
117 SEPL INDUT		1.43	1077	= STHORT	HAD!
147 155 150 140 17 = 140 147 167 170 147 140 177 147		1117	1615	- Lifelil	ונטו
147 4091	LOCATION.	155	TEPL	= _lilchI	1401
	:	1.1		I though	-!
TO 212 First Typure = LGPL	117	6+1.	7657	Inonia =	1d5H
TON 246		212	13112	I ashire =	1951
100 215 5852 140 175 5862 145 17	1.4	5:5	2:113	= SinchI	47 (7C=X)
100 213 1572 149UTS = SAE2	111	215	2=42	= STUCHI	FUE1, FUE2 (4=C6)
1704 470 4623 140417 5 A63 1704 430 1651 140417 5 A63 1704 362 1662 140417 5 A63 1704 362 1662 140417 5 A63 1662 1704 362 1662 140417 5 A64 1662 1662 1704 362 36		213	15:2	Inpure =	
MITON 430 LG-1 INPUTE 50 C = X)	1.1	6.7	8273	= STUCHT	-
### 1901 302 LEE2 INPUTS = \$0 (0=x) #### 1901 323 MC=1 INPUTS = \$0 (0=x) ###################################	111	450	1651	# STUCKI	3
1001 345 FUET IMPUTS	11.	30.2	1 552	I voute =	C
100 322 MC1	111	345	12112	I .IPUTS =	V=20
104 323 . 4052	11.	322	HFF1	Inpulle =	3,LEF?
100 323 SAF4 INDUTE = MOSZ 1100 303 4063 INDUTE = MOSZ 1100 310 LEG3 INDUTE = MOSZ 1100 450 MOSZ 1100 650 MOSZ 1100 MOSZ 110	1	125	2336	TypuTs =	233 -
1001 303 4053 142015 = SAE4, LEE2, MCZ1 1101 310 LEG3 182015 = MO51 1101 462 FUE4 182017 = SAE5, EE3, LGE2 1101 410 HAS2 182017 = MAS3, LGE2 1101 420 HAS2 182017 = MAS3, LGE3 1101 420 HAS3 182017 = HAS3, GS1 (*=C1) 1101 422 HAS3 182017 = HAS3, GS1 (*=C1) 1101 423 HAS3 182017 = HAS3, GS1 (*=C1) 1101 423 HAS3 182017 = HAS3, GS1 (*=C2) 1101 423 HAS3 182017 = HAS3, TEF1 (*=C2) 1101 423 HAS3 182017 = HAS3, TEF1 (*=C2) 1101 523 LGF1 182017 = HAS3, TEF1 (*=C2) 1101 523 LGF1 182015 = SAF1	4-1	324	サニマン	I STUCKI	
101 352 5473 140117 = 4051 1701 310 LFG3 140177 = 4073 1701 462 17017 = 5455, EE3, LGE2 17014 470 470 17014 470 17014 470 17014 470 470 17017 17014 470 17017 17014 470 17017 17014 470 17017 17014 470 17017 17014 470 17017 17014 470 17017 17014 470 17017 17014 470 17017 17	1.1	303	4053	= SalichI	L EE2, 4CZ
1001 313 LFG3 INDUTT = SAG5, EE3, LGE2 1001 462 FIE4 INDUTT = SAG5, EE3, LGE2 1101 462 FIE4 INDUTT = MAE2 1101 472 FIE7 INDUTT = FIE5, GG1 (x=C1) 1101 472 FIE7 INDUTT = FIE5, GG1 (x=C1) 1101 472 FIE7 INDUTT = FIE6, GG2 (x=C2) 1101 473 HAG3 INDUTT = FIE6, GG5 (x=C2) 1101 473 HAG3 INDUTT = FIE6, GG5 (x=C2) 1101 473 HAG4 INDUTT = FIE6, GG2 (x=C2) 1101 473 HAG4 INDUTT = FIE6, GG2 (x=C2) 1101 473 HAG4 INDUTT = HAG5 1101 473 HAG4 INDUTT = HAG5 1101 573 LGF1 LGF1 LGF1 1101 573 LGF1 1101 573 LGF1 LGF1 1101 573	111	385	6752	= StrickI	MOE1
100		313	1653	Inout: =	.3
TION 462 FUEL INDUTS = AV (DC=X) TION 423 FUET INDUTS = PAEC TION 453 MCS INDUT = FUES, GEI (X=C1) TION 454 MACS INDUT = FUES, GEI (X=C2) TION 455 FUES INDUT = FUE, YCES (X=C2) TION 435 YAC INDUTC = HAES TION 435 YAC INDUTC = HAES TION 512 FEEL INDUTC = HAES TION 513 HAES INDUTS = LGS1, FFI (X=C2) TION 529 LGFI INDUTS = LGS1, TFFI (X=C2) TON 529 LGFI INDUTS = SAFI	-	37.0	1:01	I solite =	55, EE3, LGE
TION 410 HASE INVOITS = AV (NC=X) TION 420 ENT INVOITS = PAEE TION 464 MAE INVOITS = FUEE, CES (X=C1) TION 464 MAE INVOITS = FUE4, VCE3 (X=C1) TION 435 MAE INVOITS = FUE4, VCE3 (X=C1) TION 435 MAE INVOITS = HAE INCES TION 512 FEFT INVOITS = HAE INCES TION 513 MAE INVOITS = HAE INCES TON 529 LGFT INPUTS = AAF INCES TON 529 LGFT INPUTS = AAF INCES TON 529 LGFT INPUTS = SAF1	111	462	43113	= SINCAI	X=0C
104 423 = HT	111	410	MAFZ	I STUCKI	(1C=X)
TION 439 MCF5 INDUTT = FUF5, 651 (x=C1) TION 464 MAE3 INDUTT = ITE1, 9CE5 (x=C2) TION 472 MCF5 INDUTT = MAF3 TION 435 MAF4 INDUTT = HTE1, 4CE7 (x=C1) TION 512 HAF4 INDUTT = HAF4 TION 512 HAF4 INDUTT = HAF4 TION 513 MAF3 INDUTS = LSE1, FF1 (x=C2) TION 529 LGF1 INDUTS = MAF3 TON 579 LGF1 INDUTS = SAF1		423	2112	I STUCKI	
TON 464 MASS INPUTS = ITE1, Y TON 452 FUTS INPUTS = MASS TON 434 ITE1 INPUTS = MOES TON 435 MASS INPUTS = MASS TON 518 MASS INPUTS = MASS TON 528 SAFI INPUTS = MASS TON 529 LGFI INPUTS = SAFI	•	627	5227	I work I	, 651 (X=C1)
701 472 FUTS INTUTT = MAES 101 472 MC55 INTUTT = FUT4, 701 435 MAES INTUTT = FUT4, 100 512 FFFI INTUTT = MAEG 100 513 MAES INTUTT = MAEG 100 529 LGFI INPUTT = MAES F 490EL	17.	464	254	I SINGAL	- CES (X=C
IOU 472 MC55 IYOUTS = FUE4,4 TOU 434 ITE1 IYOUTS = MCE5 IOW 512 TFF1 IYOUTS = ME54 IOW 513 MAG3 IYOUTS = MAS4 IOW 513 SAF1 IYOUTS = MAG4 IOW 578 LGF1 IYOUTS = SAF1 F MODEL	:	0:1	5:113	= LifchI	
TOU 434 ITE1 INPUTS = MOES ION 435 4454 INPUTS = ITE1 INPUTS = ITE1 ION 512 HAP3 INPUTS = LS51 INPUTS = LS51 INPUTS = SAF1 INPUTS = SAF1 INPUTS = SAF1	1.1	727	MCF5	Inputs =	7
104 435 4454 140UTG = 17E1 104 512 1FF1 140UTG = 4454 104 513 4463 140UTG = 1651 104 529 24F1 140UTG = 44F3 104 579 24F1	277	434	ITF1	I STUCKI	
ION 512 TEF1 INDUTE = MASS ION 513 MART INPUTS = LSS1, ION 519 SAF1 INPUTS = MART ION 579 LGF1 INPUTS = SAF1 F WODEL	0471	435	+ 1.45	Inputs =	ITE1,4055 (x=C2)
TOW 515 MART INPUTS = LGE1, TOW 519 SAFI INPUTS = MART TOW 579 LGF1 INPUTS = SAFI F WODEL	1127	**	TFF1	INOUIT =	4254
104 528 LGF1 INPUTS = 104 578 LGF1 INPUTS = 14005L	27.		L	= Studit	-
104 578 LGF1 INPUTS = 5AF F 4995L	11.		4	= SINchI	Fact.
C(+ 4	177		4	INDUTE =	4
	CC+ 30	1			

3544	1	. 8	8	3	161	3	•	•
	. 8	•	8	. 6	. 55	55 1	169	8
	=	1		22	104 1	85.	3	£ .
	h	\$ 11 11		117 117 1 72 SAPL	15 LAP1 16P1 167 167 167 167 167 167 167 167 167 16	25.	31	
	106	75 CF.	921	. 88	X2 LAPL		. 31	176
MalSas Toca	103		8	138			165	175
F-16 CONTROL FLT CONTROL SYSTEM	4	54	. 22	á		154 X2 L47L	1	**
64.076 SV-3		į	P) P	-	3 3	83	3	1713
	192		. 22	261	24	182	2	221
	=	ä	Ì:la	#	4			r

PAGE	2	. 82	82	2	52	3		
	662	2 1052	528	82	. 2		592	· .
		2348 5X .	. 22	82			268	5.2
	207		. 222	£	2	252	292	
	. 962	SAE2 216	X2 FUEZ I		I I FUE2	952	. 992	818
TONL SYSTEM	502	x2 FUE1	x x 222	\$62	\$2	***************************************	592	8/2
F-16 LONGTUNINAL FLT CONTONL SYSTEM	102		. *22	2		452	\$92	ŧ
F-16 LONGT TUT	203		. 522		542	253	263	
	202	EUE1 .	. 222	212	24	Ē	5.	212
	E	ä	1 200	. 182	ž	Ē	ž	ž.

113 314 115 316 317 319 113 314 115 316 317 319 114 115 318 316 416 317 319 115 318 317 318 116 318 317 318 117 318 318 318 318 118 318 318 318 318 119 318 318 318 318 119 318 318 318 318 110 11 318 318 318 318 110 110 110 110 110 110 110 110 110 11	11		•	10 10461	-ום רחשפו וחוושר גרו מחוומר אונים בים רחשפו וחוושר גרו מחוומר אונים						********
1 1	112							X2 LEEZ	-	X4 MCE3	•
112	X X X X X X X X X X									***************************************	٠.
12 13 13 14 15 15 15 15 15 15 15	250 2X					****					
1 K2 LEF7	12 13 134										
	1	•						**	2464 1		
12 15 15 15 15 15 15 15								1	1		1.
								.DAGE 0.			
	X2 LEF7 X2 LEF7 X4 LEF2 X4 MOZE A454 12 12 12 13 13 13 13 13		112	313	114	145	316	*****	316	319	310
1	1 x 2 LEE?					-		X4 MC71			
323 324 1052	FUET 322 324 725 X4 MCE2 424 329 FUET X K FUET 1 1 336 337 339 339 FUET 333 344 345 346 347 346 349 343 344 345 356 357 358 359 TO AV 375 376 377 378 378 276 27		I X2 LEE?		1 2x	1 233					
1	1								***************************************		
1	11					•		X MCES			
1	1					. 4062			•		
1	1		. 422	323	324	125 .	************	***************************************	» 329 ·	329	310
11	11		•		•						1
1	1		**********			********			********		1
			/ 1A			4					
	111 333	•	II YZ EUET			FIJES I					
11	11		::								
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			***		316	116	111	114	319	310
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				X2 LGF1			•		•	
343 344 345 346 347 348 349 353 ***********************************	343 344 356 357 356 389 353 70 AV 355 356 357 356 359 ***********************************		11							,	
343 344 345 346 347 346 349 353	343 344 346 346 347 346 349 353		11								
343 344 355 356 357 358 369 349 359 353 353 354 359 359 353 354 355 356 357 358 359 359 375 375 376 377 376 2000000000000000000000000000000000000	343 344 359 356 357 358 359 359 379 378 378 378 378 378 378 378 378 378 378		. :								
353 344 355 356 357 358 369 369 369 375 375 376 377 376 20 377 376 20 377 376 20 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 20 377 376 377 376 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 377 376 20 377 376 377 376 377 376 20 377 376 377 376 20 377 376 377 377	353 344 355 356 357 358 348 349 349 359 353 358 358 359 358 359 358 358 358 358 358 358 358 358 358 358		[<====================================	*********							-
353	353 956 357 358 359 359 359 359 359 358 358 358 358 358 358 358 358 358 358		211	343	344	345	346	347	348	349	310
353 355 356 357 358 359 40E! ***********************************	353, 70° AV 355 356 357 358 359 x2 SAE5					•					
353 355 356 357 358 359 x2 3kg	353,					,					
353 .00.00	353 355 356 357 358 359 359 x2 SAE5		•		•						
353 355 356 357 358 359 359 x2 SAE5 x2 SA	353 70 AV 355 356 357 398 359 359 359 359 378 378 378 LGE2										
TO AV X2 SAE5 ** *** *** *** *** *** *** ***	x2 SAE5 x75 376 377 378 x2 LGE2		112	353		355	356	357	358	359	310
X2 SAE5 X2 SAE5 *** *** *** *** *** *** ***	x2 SAE5 xx xx 375 376 377 378 475 575		-		JC AV						1
x2 SAE5 ** ** ** ** ** ** ** ** ** ** ** ** **	x2 5AE5 *** *** *** *** *** *** *** **		ו גף אננו								X 1:13
x 2 SAE 9	373 374 375 376 377 376 CE2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								:
373 374 375 371 378 ***********************************	374 376 377 376 377 376 CE2									X2 SAE	•
374 375 376 377 378 STEELER ST	373 376 375 377 378 x2 LGE2		. 5455 .								
374 376 377 378 *****/	375 376 377 378 *******************************		252 .		************					***************************************	
373 374 375 376 377 378 000000	373 374 375 376 377 378 *******************************										
373 374 375 376 377 378 *******************************	373 374 375 376 377 378 *******************************										,
373 374 375 376 377 378	373 374 375 376 377 378 ****** *******									,	
373 374 375 376 377 378 378	373 374 375 376 377 378 ******* X2 LGE2									/	
219 2X	213 214 215 216 216 216 X2 FGES		:	:	***	***	***			2 35 400	***
			215	373	37.6	37.3	37.8	31.6	8.5	X2 1652	

101		F-16 LOWGITUDINAL FLY CONTROL SYSTEM							
THE RELIEF AND THE TOTAL				504	904		•	***	410
22 413 414 415 416 417 110 0.0 M 23 423 425 425 427 120 120 429 24 25 423 425 425 427 120 120 429 25 423 425 425 426 426 429 26 425 425 426 426 426 429 27 210 21 21 21 21 21 21 21 21 21 21 21 21 21							-		1
								, ,	- 1-
								. DAGE 0.	1 7
X VEST VES	717	413	414	+15	416	*17	110	OC AV	; - -
XZ FUEL XX FUEL XZ TTE1 XX FUEL XZ F									X2 MAE2
					•				•
XZ FUEL XZ F									63613 .
x x rue, x ree, x x ree, x rue,	-		767	101	426	427	128	624	. 430
T X2 FUEL X4 FUES X	21.	636			:				•
THE	1 x2 FU	186				X2 FUE			
CCF							^		
THE TABLE THE TA	***********			****			•	Y2 FIIFS	
11		X* #2.65		1311 2X		•			******
1	. 5357		1111		436	****************	-	439	677
1						•	•		
11	***********				•	X4 HCE6		,	
112 443 416 446 746 446 443 11	, ,			•		•		661	
443 475 476 37 1 4 49 47 479 478 679 679 679 679 679 679 679 679 679 679	1 936.3 /3					/	1 1 1	•	
453 474 475 446 447 478 478 478 478 478 478 478 478 478						.PAGE 3.	I ceres		
453 414 455 456 457 158 459 1	.1.	143	71,	***	944	•••••	148	644	. 153
453 414 459 456 457 158 459 1 x2 ITE1 1 x2 IT	1 +354		••			X4 HCF4			
453 41 455 456 457 158 459 458 451 158 459 455 466 467 468 469 469 467 468 467 467 467 467 467 467 467 467 467 467									•
453 41								xz	SAF3 I
453 416 459 456 457 156 459 459 1									
1 x2 17£1 y x4 y2£5 1 1 1 x2 17£1 y x4 y2£5 1 1 1 x2 17£1 y x4 y2£5 1 1 1 x2 17£1 y x4 y2£5 y x4 y2£5 y x4 y2£5 y x4 y2£5 y x4 y2£6 y x4 y56 y x4 y56 y x76 y x77 y x78 y x8 y x8 y x8 y x8 y x8 y	1,	453	,1,	455	456	155	158	654	2,
1 X2 ITE1 1 X2 ITE1 1									
473 475 475 475 477 476 91 469 467 467 469 469 467 467 468 467 468 467 468 467 468 468 467 468 468 468 468 468 468 468 468 468 468			1 2x 1	131					
xc MEE3									
X4 42E5 X2 HAE3 473 474 475 475 476 477 476 477 478 478 478 478	*********								•
473 474 475 476 467 469 469 469 469 469 469 469 469 469 469				44 H3E5		***************************************	,		. 5453
**** *********************************	. 536.3	-	134 ·		466	467	468	659	. 470
473 474 475 477 479 AL AV	. 244 .								
473 474 475 477 477 478 AL AV									,
473 474 475 477 479 *****								,,,,,,,	
473 A/4 AV		į		14.7	7.74		.78		**
	214	473		214	•			AL AV	

. 3544		9.	630	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9	•		
1		. 850			550	98	878	980
		. 616	529 11 X2 LGF1		675	828	896	573
	209	SAF1 519	518 1 X 2 SAF1	539	875	60 10 10		878
	201	X2 M&53	. 28	585	2	**	56	. 118
	906		926		9 5 5	925	. 998	976
TEOL SYSTEM	202	HAF3	252	535	\$ 75	55	\$9	575
F-16 LONGITUDINAL FLT SONTROL SYSTEM	204	X2 ffe1	32.	53.	***	3.	30	472
F-16 LONGETE	203			533	5 5 6	253	563	. 573
	205		. 225	535	245	255	295	572
		,	*	ē.	;	;	3	

Appendix B Baseline Data for the F-16 Aircraft Simulation

A portion of the computer output of Run #43 of the Griffin program is shown as Appendix B. The stability axis derivatives were used as the test case for the F-16 aircraft simulation.

Units of the stability derivatives are given as per degree. However, it should be noted that this applies only to the dynamic derivatives that are functions of primary control surface deflections. Static derivatives were determined to be given in radian measure.

Roots of the longitudinal characteristic equation are shown along with the elevator numerator characteristics that were used to validate the dynamics of the F-16 aircraft model.

	17 - 4.90ESE D4	27 - 0.0000. 03	0.0000	TDT - 0.0000E 00	
	(CLAD = -1.1518E-32	CL0 - 4.5314E-02	CLDE - A.7012E-03	CLM = 1.5184E-01
2.10.00 CO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.6647		CHDE1.1639E-02	?
PIVEY SIBNAL STABILI	L STABILITY DEPINATIVES	9			
ZU. = -0.17:75-91	74C. 1997E DS	"y 10.10305-02			
	C.1340	0.33			
CC 3.555.5	20 = 0.1:921-52	NO 0.23275-63			
VD - 7,1155 C2	-0.11025	MD = -0.19745 02			
	P. 1210F	6444 . 0.000 00		•	
. 5.510.5					
COTY ANIS DESIVATIV	PEGIVATIVES				
U . of.144.61	107.42765-01	HU 0.11575-02			
13-3-713-0		" . 0.1170 - 02			
10-31-37 C 6.	0.1198	Why = -0.232F:-03	•		
ġ.	10	00 4400			
. C 20 . E	9.32106	0.000			
2 . 3.50475 n3	. 0.12435	. 0.331EE	•		/
			•		/
	Tue Cuartraleties AF	FRISTICS OF THE LANGITUDINAL DENAMINATOR ARE	MINATOR ARE		
401 ST48				•	
-0.26521-01	0				
10-36-36-3-	-0.1524F OF				
-0.2745" 01	6				
150 - 0.1730A3F CO	0 WEB = 0.155142F OF	-01 FYGLES/SEC 1/TP1	1 = 0.62A249E 00	1/TP2 = =0.274503E	01
30. Jole5, 18 "s					
	9.411naF C2 TI-F	19 MALE AMD	4130F n2	TIME TO ONE TENTH	AHP 0.
		TO HALF ASP.	0.633705 00	CYCLES TO PNE TENTH	21117
	Salla	TA TANK		CICLES . ON.	ATT

#416,401 Lens	מפודה פופעבורק			
-0.17479-01	0.000000			
0	1/172 1312:98 0:	10		-
(1 = -0, 1971ses no	8T = -0.242[43F 02	00 33070E070 00	+	\ \
Leg 7 gev Tai	VELACITY OF DELTA FLEVATOR	L.) *****		-
	(1,004)			
-0.39512 00	0.7577 01			
	6 01	1/TV0.121348F 01		-
AU - 0.115012E 22	BU . 2.2700578 92	CU . 0.6955938 03 RU .	04830504E 03	
2	4 4			
20 1357-01	0,0000 00			
:/Tul0.142564E-01	50 3FTT. 0.134771E 02	02 1/TH30.140298E 02	. 62	
KM - 9-110275F 03	84 - 0.147537E G2	CH = -0.214565F 05 DH =	DH0.308043E 03	
V PROTICAL V	FIRST PER DELTA ELEVATAR	Tre (w) = 0/10		
X310-13 10-0-	F99#1			
-0.14.50 03	-3.24361-12			-
W . 0.119450F 00	16-30011114.0 - 44	1/TH0.148559E 03		
N5.110205E 03	PW0.193740F 05	CM0,290051E 03	PH = -0.656698E 02	

Appendix C TAWDS Programming Details

Included as Appendix C is the Terminal Aerial Weapon

Delivery Simulation program data, program output, and additional program statements.

The extensive data list required for the program operation is shown on pages 106 through 114. Pages 106 through 108 lists the input data required. The stability derivative requirements for the non-linear, six-degree-of-freedom simulation are shown on pages 109 through 114.

The TAWDS output of encounter 8 for the present F-16 flight control system is shown on pages 115 through 129. Pages 130 through 145 show the program output of the same encounter with the pitch rate control configuration.

The Appendix is concluded with a listing of the program statements required to adapt the generic TAWDS program for an F-16 aircraft simulation, pages 146 through 154. The programmed target rates are shown on page 146 along with the target maneuvers of page 147. The control statements added to program the F-16 flight control system begin on page 147. Included are the logic statements for the gain scheduled parameters of the flight control system that are functions of static and dynamic pressure.

```
FEGIN *** ICHTRL
PERSE
ENDSET **
REGINA ** VAMINE
INITTIME 1
                    10.
                 1
FINTINE
                     115.1
                           1.E-4
CUTTOL
              1
                 1
                    1
(DE SOUB
              1
                 1
                    1
                           1.E-4-
                           1.E-€
COE 3603
                 1 1
              1
MAXCTED
              1
                 1 1.05
STEPYIR
STEDEACT
ENDSET
PEGIN***NAMCN1
ACC DEGVY
                      32.174
MASS
                      590.5
COPPLETH
                      11.32
                      829.
PACHONST
WINGAPEA ...
                      300.
XXDYADIO
                      9007.5
DICAYOSK
                      198.
 CICKADAA
                      +9956.
72071717
                      56770.
NACCAXIS
                      0.
MATERANG
                      0 .
                      . 333
PATHONIT
WINGSTAY
                      31.
 THATE
                      0.
 METTH
                      25000.
XLATACRY .
                      12.58
 PETATAT
                      0.
                      . 5
7LATACRY
 *SY POPOS
                      18.24
 ACA SULUS
                      0 .
ZGYPOPOS
                      -.95
YHO HACRY
                      12.3
 4:10 44 CB4
                      0 .
                      . 42
THOTACPY
 SCHOEGVY
                      . 35
 CENDEGVY
                      . 35
                      15.
                                            +3.75
 PILOTLO?
                                 0.
                      0 .
 GYR 32413
 MANT JCO.1
                     . 0 .
 IMST13
                      1.
 NIC
                      3 .
 ATTERVEL
                      829.5
 ALTITUDE
                      20000.
 YPOSTTA
                      0.0
 ATTORIA
                      0.0
 ATTONST
                      -23300.
 RLS:
                      5000.
 RIGHT
                      -101.
 ELVERR
                      10.0
```

```
TPAFOR
                        10.0
LUCOAIAJ
                        1.
                        .00614
BULSON
SGHTFACT
                        . 4
PHHT
                        0.
DAMP
                        0.
SM47 H
                        0 .
DHE
                        2250.
WTLEVEL
                        3400.
                   3
064134
                        5.58
                                     -2.21
                                                0.
               1
                                                0 .
CGTARA
                        10.8
                                     -2.21
               1
                        .5
GN1 EL ANG
GH1 17 474
                        0 .
                                                             .05
                                                0.
                                    0.
                                                                         1500.
                        0 .
                   5
FTGUY
               1
                        . 1
                                                 . 3
                                                             2800.
                                                                         .5
FTG'IN
               5 10
                                    2800.
endeusi
                        1500.
20120388
                        2500.
PTTYRUN
                        .05
UPA-IKL 4
                        100.
                        -100.
FOBUKL 4
                        500.
שבבפכון
                        -500.
LOYFOG
DZEDOT
                        . 001
אוינפגח
                        0.0
                        3.283
GKP4!
                        0.
SCO.IA
                   2
                                     1.
CAEL!
                        0.
CCFL1
                1
                   2 2 2
                                     . 05
                        1.
                1
                        .125
CBEL2
                                     0 .
                                     . 05
CCELS
                        1.
                                     0.
                                                 0.
CRELE
                1
                   3
                        1.
                1
                                     1.2
CCEL3
                   3
                                                 1.
                        1.
CHAIK
                   2
                        0.
                                     1.
                1
                   2
                                     . 05
CCAAK
                        1.
                        1.5
CAPAN
                                     0 .
CCAAN
                1
                   2
                                     . 05
                        1.
                                     . 250
                        . 250
SCONT
                1
                   2
                        0 .
ARANGE
                   2
                                     1000000.
                1
NPLS
                        2.
                    2
                                     . 1
BCONT
                        . 1
SELVERS
                    2
                         -100.
                                     100.
                1
                        2.
NEL 11
                    2
                                     0.0
DZT-DOTT
                        0.0
                1
                    2
                                     100.
BELVEDD
                1
                         -100 .
                        2 .
MEL V2
Ibede
                        1.
1...
                        3.
                         0.
Ibácco
VRUN
                         1.
 DIF
                         . 05
IRA VOUCE
                         11.
 340
                         6.
 243
                         6.
                         1750.
LGST
```

```
4.7
SOV
                      .003
 SDALF
 509ET
                       . 304
 EUH
                      100.
 SOPLS
                      30.
 502 707
                      0.
 PVOS
                      50.
                      .0015
 SOTAL
 SOEGL
                      .0015
 CHIUS
                      .001
                     .001
 CHECE
 SOLSPT
                      .01
                      . 01
 SOL SOE
 ELVORI
                      100.
 TRACPI
                      100.
 PATCHI
                      100.
 CASTINES
PRINTING .
 EEGIN*+* VAMONS
 GKNL2
                      30.1
 CKNL 1
                       2.175
 CKMECH
                      1.0
                 2
 CBSE
                      1.25
                                  0.0
 CCSE
               1 2
                                 0.12.
                       1.0
 CK5
                       5.0
 TREACTOR
                       0.5
 CKF
                       0.3
 (BO )ML
                                 0.1333
                                            0.0
               1
                       1.3
 CCC THL
                                            0.0
                  3
                                  0.0667
               1
                       1.0
 CSL'I
                       25.0
 CSLL
                       -25.0
               1 2
                      1.0
 CBSTAR
                                  0.0
               1 2
 COSTAR
                       1.0
                                  0.05
 CKN.5
                       0.0
 EKN?3
                       0.5
 CKN71
                       0.5075
 (0117
               1 2
                                  0.0
                       1.0
                 2
                      1.0
 CCNS
               1
                                  0.1
 (827
               1
                       1.0
                                  0.0
 con
                  2
                                  0.0
                       1.0
 CKES
                       0.161
 DSHI
                       25.0
                       -25.0
 OSLO
              1 2
 CUSE
                       1.0
                                  0.0
 CCPE
                       1.0
                                  0.1
 THET
                       20.0
 CJAIJ
                       -23.0
 CINY
               1 2
                       0.0
                                  1.5
               1 2
 CCNY
                                  1.0
                       1.0
                       1.0
                                  . 20
 CHYS
               1 2
 (CA5
                       1.0
                                  . 0657
FUDUI
                       36.3
 FUTLO
                       -30.0
```

THIS PAGE IS BEST QUALITY PRACTICABLE

FHITSET								
956TN+++VA	HT91							
NADRAGSS	10							
4024650	1	5	0.0	4.	8.	10.	12.	
1034660	6	10	14.	16.	20.	24.	28.	
HIMUS DE CO	2	-		• • • • • • • • • • • • • • • • • • • •				
MD5 7000	1	2	. 9	.9				100
DEAGSC	ī	5	.0194	.0207	.0313	.0362	.0725	
355360	6	10	. 0918	.1077	.1286	.1517	.1677	
200 350	11	15	. 2029	.2209	.2619	.2755	.4116	
ps435C	13	16	.4309	.5852	.6654	.7049	.8150	
NALFTSTA	10					• • • • • • • • • • • • • • • • • • • •		
ALFTSTO	1	5	0.	4.	8.	. 10.	12.	
ALFTSTO	5	10	14.	16.	20.	24.	28.	
NMLFTSTA	2							
HLFTSTR	1	2	. 8	.9				
LETSTASS	1	5	02	3005	. 3285	.3715	.6803	
LFTSTASS	5	10	.7471	.8223	.8638	.9458	. 9845	
LETSTROO	11	15	1.0721	1.0838	1.1632	1.1797	1.3322	
LETSTASC	15	20	1.3939	1.5652	1.6103	1.7166	1.7644	
MADCHAUA	19							
POCHAJA .	1	5	0.	4.	- 8.	10.	12.	
. SPCHAUA	5	10	14.	16.	20.	24	28.	
MADCHAUA .	2							
HPCHMOM	1	2	. 8	.9				
DCH404C	1	5	0235	0302	0183	0244	0199	
ECHAUAC	5	10	0425	0233	0454	03	0592	
SCH 464C	11	15	0+07	0355	0537	0975	0365	
OCH HOME	15	23	1419	1132	1743	1152	1957	
42264V	. 5						•	
APSSA	1	. 6	0.	4.	19,	25.	27.	30.
MUSSA	2							
MD334	1	2	. 5	.9				
NBD 221	2	•						
90554	1	2	0.	4.				
USSTOTHE	1	6	0. •	072	0.	074	0.	068
DESTOVAS	7	12	0.	066	G.	064	0.	064
USSLDANG	13	18	0.	05	0.	044	0.	05
DSSLPANS	19	24	0.	044	0.	058	0.	054
NADYSA -	5			•				
ADY 34	1	6	0.	10.	16.	20.	25.	30.
NHUAST	2							
HOYSA	1	2	. 8	• 9				
NEDAZZ	2							
45AC6	1	2	0.	4.				
JACFERNIS	1	6	0.	.6138	0.	.011	. 0 .	.0124
JASTEVHE		12	0.	.0112	0.	.0124	0.	.0096
DYSLPANG		18	0.	.C108	0.	.0108	0.	.0062
DAZTEVIL	13	24	0.	.0044	0.	.0012	0.	.0016
NACISA	9							
10020	. 1	4	0.	3.	6.	11.		
10627	5	8	15.	20.	26.	30.		
443567	2							
HORSA	1	2	. 8	.9				

	125014	2							
	£3054	1	2	0.	4.				
	DISEFOUNCE	. 1	6	0.	0368	0.	0068	0.	0084
	Liber Divide	7.	12	0.	009	0.	0072	0.	0098
	COSTOINS	13	18	0	006	0.	0080	0.	0034
	CHELL SHE	19	24	1.	0674	0.	0090	0.	0076
	8625 57 AZ	25	30	0.	005	0.	0136	0.	007
	DOSFORMS	31	32	0.	014				
	Lescai	5							
	10520	1	6	0.	3.	5.	17.	24.	30.
	L'HUCD'J	2							
	6.U2 5U	1	2	. 8	.9				
	Nadesa	2							•
	EUZ Śu	1	2	0.	1.		140		
	USOIJUEL	1	5	. 2033	.0033	.0029	.0029	.0032	.0032
	USSHOUEL	7	12	.0029	.0029	.00285	.00285	.00295	.00295
	('SRII)?FL	13	18	.0021	.0021	.0012	.0012	.0031	.0031
	(SPII) TEL	19	24	.0022	.0022	.0025	.0026	.0024	.0024
	COACT	5							
	LOADU	1	5	0.	6.	20.	25.	30.	
	F:RUYRU	2							
	FDYZ7	1	2	-30.	30.				
1	CFYCP:1	2							
	# JA 2J	1	2	. 8	.9 .				
	Lobbo.	2							
	E DY ZO	1	2	-30.	30.				
	UNGILLER	1	5	00165	00165	0015	0015	00165	
	UASILJAEF	5	10	00165	0015	0015	0016	0015	
	[ADIIJJET	11	15	0015	0015	0016	0016	0015	
	UASILIAEL	15	23	0015	00155	00155	00125	00125	
	שיררויקאין	21	25	03155	00155	00125	00125	0015	
	נואסטיטבו	25	30	0316	00115	00115	0016	0015	
	עוסיון ארנ	31	35	00115	00115	001	001	00095	
	ניעפיוזחדנ	36	40	01095	001	001	00095	00C95	
	1.47227	5							
	VOS50	1	6	0.	4.	10.	20.	25.	30.
	1 50 550	2							
	ED530	1	2	-30.	.30.				•
	MADSOD	2							
	F0550 "	1	.5	. 8	.9		7 - 1 - 1		
	Ladobu	2							
	BUSSU	1	2	-30.	30.				
	ひさる、リコロトト	1	5	.0036	.0006	.0006	.0006	. 6006	.0006
	והסווזטבר	7	12	.0006	.0006	.00035	.00035	.00035	.00035
	しろうりょうと「	13	18	.00335	.00035	.00035	.00035	.0002	.0002
	CRRUINFL	19	24	0.	0.	.6032	.0002	0.	0.
	שורנו אפת	25	30	0301	0001	00305	00005	0001	0001
	חשפיווחיינ	31	36	00005	00005	0394	0004	00045	06045
	חשביוויבנו.	37	42	0004	0004	60045	00045	0063	0003
	חשפייורב	43	48	11035	66335	003	0003	00035	00035
	NADSAD	4							
	10540	1	4	0	5.	27.	30.		
	HSDSAT	2		2.8 1					
	<05 1n	1	2	-30.	30.	•			

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNILSHAD TO DDC

PADSAD	2		,					
1.0540	1	2 .	8	.9				
DSAILDEL	1		0304	. 5004	.0004	.0004		
PSAILDEL	5	8 .	0003	.0003	.0003	.0003		
DSAILTEL	9 1	2 -	.0004	0004	0004	0004		
DSAILDFL	13 1	5 -	. 3012	0008	0012	0008		
PANYAN	5							
CFYCA	1	5 0		11.	15.	25.	30.	
NSOYAT	2							
COADO	1	2 -	30.	30.				
I:HUATU	2							
HOY 10	. 1	2 .	8	.9				
CYATLOFL	1	5 -	.00025	00025	00025	00025	.000245	
UYATLAFL	5 1	. 0	00015	.000245	.00015	.0003	.00015	
PYAILTEL	11 1		6963	.60015	.6007	.0005	.0007	
DYAILDEL	15 2	20 .	0036	.0007	.00035	.0007	.00035	
CASCAN	5							
10010	1	6 0		7.	16.	21.	25.	30.
URUSA	2							
1.06 a u	1	2 -	30.	30.				
HADSED								
1.0510	1	2 .	8	.9				
" DRAILDFL	1	5 -	. 90155	0014	00155	0014	0016	00145
DRAILTEL	7 1	12 -	.0016	00145	00105	0009	00105	0009
USTITUEL	13 1	15 -	.0312	00085	0012	00035	001	00065
DRATLOFL	19 2	-	.301	00065	0034	00015	0004	00015
HADSOFT	5							
IDSTET	1	5 9		4.	8.	18.	24.	30.
いるひょうしょ	2							
SOSDET	1	2 -	30.	30.				
HUDSOET	2					•		
13C SC4	1		8	.9				
(ISU LEEL	1	-	0019	.00165	.0019	.00165	.0019	.0017
USUICEL		-	0019	.0017	.0017	.0014	.0017	.0014
DEDIEEL	17.1		CC12	.3004'	.0012	.0004	.0308	.0005
Leitel	19 2	0	0008	.0005	.0007	.0002	.0007	.0002
HADADEL	4							
1 GA JEA	1	4 0	•	18.	24.	30.		
NSUAJEL	2							
SOY TET .	1	2 -	30.	30.				
KAUADEL	2							
HOYDET	1		8	.9				
じんしょうとしょ	1		.001	0009	001	0009		
DADIELL	5	-	.0,001	.0001	0301	. COO1		
UAUTELL			0002	.0003	.0002	.0003		
DADIELL		16 .	0035	.00055	.0005	.00055		
HADROFT	7							
ADRIFT	. 1			5.	10.	18.		
FDOJET	. 3	7 2	0.	23.	30.			
HEUGUEL	2							
SDODET	1	2 -	30.	30.				
NAUSUEL	2							
ויחַק וַדְּדַ	. 1	2		• 9				
CHOTEL	1 .	-	.0015	0314	0015	0014	1	

THIS PAGE IS BEST QUALITY PRACTICABLE

3.4								
Coultal	5	5	0016	00145	0016	00145		
DEDIELL	9	12	00135	00155	00135	00155		
DEDITE	13	15	00135	00105	00135	00105		
hodicel	17	50	00155	00105	00155	00105		
() PUTEFT	21	24	0312	0019	0012	0009		
DOULTEL	25	28	.001	.0006	.001	.0006		
MHUSCHE	2							
MOGCHO	-1	2	. 8	. 9				
CACABCH	1	2 .	-2.25 .	-2.3				
FHUDCHE	2							
MOPCHA	. 1	2	. 8	.9	. ,			
DPCHANG	1	5	94	-1.3				
PADRIL	5							
ADRIL	1	5	0.	6.	13.	19.	30.	
LIVECHIA	2							
MOPVL	1	2	. 8	.9				
CRROLVEL	1	5	23	35	295	345	225	
[RO TLYEL	5	10	225	245	315	15	215	
VYFOA .	5							
* DSAA	1	5	0.	6.	14.	24.	30.	
NADSAA	2							
VYPCM	. 1	2	. 8	.9				
DRYAWVEL	1	5	05	05	.1	.16	.175	
DRYAMVEL	5	10	.27	.4	.4	.42	.51	
NADYEL	5					• • •	• • • •	
ADYSL	1	6	0.	5.	8.	13.	22.	30.
NADABL	. 2	•		•	. ••			30.
POYPL	1	2	. 8	9				
CYROLVEL	1	6	.004	.002	024	02	024	013
CYPOLVEL.	7	12	.004	. 304	.06	.048	.055	.074
MADYYY	6	12	.004	. 304	• 60	.040	. 0 9 9	.074
ANYYY	1	6	0.	•	15.	20.	25.	30.
VYYCHA	2	0	0.	6.	10.	20.	23.	30.
PDYYV	. 1	2	. 8	. 9				
CAAJMAEF	1	5	12	1	18	225	26	22
CAATHAEF	7	12	255	26	275	26	15	
PWDSS5	2	12	299	20	215	20	15	185
		•	•					
MD220	1	S	. 6	• 9	*			
CSSTAJEL	1	2	43	43				
MADOCHE.	?	-						
MUDCHS	1	2	. 8	• 9				
CPCHSTR	1	2	659	659				
NAMSEV	7							
NESCA	1	5	-100000.0		6.0	12.0	16.0	
A-25-A	. 5	7	28.3	100000.0				
VASSEV	2							
MOSSA	1		. 8	• 9				
DSROLVEL	1	6	19	15	18	15	.18	•15
UCSULACE	7	12	. 15	•12	.67	•1	.07	.02
DSBOFACE	13	14	. 67	• 02				
NADSAA	2							
Ansyv	.1	2	-30.	30.0				
KAJEAA	2							
MISTY	1	2	0.0	20.0 .				

GLATHAEF	1	4	0.6 .	0.0	0.0	0.0		
MHJOEÓ	2							
MURFR	1	5	-30.0	30.0				
Drickby	1	2	0.0	0.0	**			
MAUALO	2							
MILACD	1	2	-30.0	30.0				
DYEXPAT	1	2	0.0	0.0				
Middes	2							
MISEE	1	2	-30.0 -	30.0				
DSFYOAT	1	2	0.0	0.0	• • • •			
NID STF	. 2							
HIRTE	1	2	-30.0	30.0				
NEUSIE	2							
SDRIF	1	2	-30.0	30.0		100		
NATOTE	2							
AUGIE	1	2	-30.0	30.0.				
DOTFLEX	1	5	1.0	0.0	0.0	0.0	0.0	0.0
DOTELEX	7	8	0.0	0.0			,	
- N'10Y -E	. 2							
MOYTE	1	2	-39.0	30.0			•	
NODYTE	5.							
SINTE	1	2	-30.0	30.0				
NADYTE	2							
ANYTE	1	2	-30.0	30.0			•	
DYTFLEX	1	6	0.0	0.0	0.0	0.0	0.0	0.0
DALCTCX	. 7	9	0.0	0.0				
NINGSTE	2					*		
MISTE	1	2	-30.0	30.0				
NISSTE	2							
STSTF .	1	2	-30.0	30.0				
N4D3TF	2							
ANSTE	1	2	-30.0	30.0				
DSTELEX	1	6	3.3	0.0	0.0	0.0	0:0	0.0
DITTELEY	. 7	5	0.0	0.0				
NIDLA	2	•	2					
MIL 1	1	2	-30.0	30.0				
DIFTANG	1	2	0.0	0.0				
Neuser	2	-	***					
CHRSA	1	2	-30.0	30.0 .		V.		
D'S1C411 .	1	2	0.0	0.0				
NOOYSA	2	•						
COYSA	1	2	-30.0	30.0				
DISACAN	ī	2	0.0	0.0				
NCDSSA	2	-		0.00				
02334	1	2	-33.0	30.0				
DESACAN	i	2	0.0	0.0				
NOLFT	2	c	3.3	0.0				*
C-FT	1	2	-30.0	30.0				
LETGAN	ī	2	0.0	0.0				
NCDRAG	2	-	0.0	0.00				
65570	1	2	-30.0	36.0				
DPAGCAN	i	2	0.0	0.0				
NOPOHY	5		0.0	0.0				
CaCda	1	2	-70.0	30.0 .				
6-64-			0.0	30.0 .				

HCBCHG HBCHHCVA	1 2	2	0.0	0.0				
CPC+C	. 1	2	-30.0	30.0				
DECHECAN	1	2	0.0	0.0		10.0	110-110-1	
NADSSJE	2							
HOSSUE	1	2	-30.0	30.0				
DRROFLEX	1	2	1.0	1.0				
KHUADUE	2							
MDASJE	1	2	-30.0 .	30.0				
UADJEFEX	1	2	1.0	1.0				
MADESTE	2							
HUSSUE	1	2	-30.0	36.0				
DSPCELEY	1	2	1.0	1.0				•
HIMDLD	2							
HUF 5	1	2	-30.	30.0				
UFELDUA	1	2	0.	0.				
MADALE								
HOYTE	2	2	-30.	30.				
HSOVE	. 5							
SDYTE	1	2	-30.	30.				
MADYTE	5							
VEALE	. 1	2	-30.	30.				
UALEFEA	1	7						
DYTELEX	7	8						
HAT PAL T	25							
MIPSET	. 1	5	0.	2000.	4000.	6000.	8000.	10000.
AIRALT	7	12	12000.	14000.	16000.	18000.	20000.	22000.
VICTEL	13	18	24000.	26000.	28000.	30000.	32000.	34000.
WIEST.	19	24	36000.	38000.	40000.	42000.	44000.	45000.
AIRALT	25	26	49000.	50000.			*	
MIGHTY	1	. 5	.0238	.00224	.00211	.00199	.00187	.00176
ATRIPLETA	7	12	.00165	.00155	.00145	·C0135	.00127	.30118
VIGURIA	13	18	.0011	.00103	.000957	.000839	.000825	.000756
YTHEST	19	24	. 000704	. 500540	.000582	.000529	.000481	.000437
ATHLAIT	25	25	.013397	.000361				
HALMAK	2							
HTHYM	1	2	.1	1.2				
THMX	1	5	12500.	12500.				
KHTLGTH	2							
HTLGTH	1	. 5	-30.	30.			*	
TLGTH	1	5	15.87	15.87				
ENDSET **								

Les a 1. FUEDINTED .

	•						****				*****		44000
_		""	2	050	DEGREES	7141-		2	DECREES	Ī	*		195
	. 00	03.3	-1.84	00.0	00.0	0.00	00.0	0.00	1.75	0.03	9.03	.80	3783.
	87	03.0	-1.67	0.00	90	00.0	90		1.30	72	95	. 80	3793
	1.91	0.00	-1.91	60.0	62	00.0	07	.01	.54	-1.03	34		3793
	3.3.	01.0	-1.97	00.0	-1.42	00.0	03	60.	85	.77	75	. 90	37.93
	20.5	9.0	-2.19	00.0	-4.28	00.0	14	.23	31	5.77	-1.13	. 60	3783
	65.	00.0	-1.32	00.0	+0·3-	0.00	11	.57	01	15.33	-1.45	. 80	3763
	3.37	03.0	-1.67	63.3	-2.75	00.0	52.	1.29	01.	31.37	-1.49	04.	1783
	7.50	0.10	-1.7%	00.0	-1.52	0.00	.77	2.2.	95.	467	-1.45		1783
	1.50	00	11.1-	9.00	13	00.0	\$c.	3.28	16.	52.49	-1.45	04.	3793
	5.64	0:0	-1.65	03.3	81	00.0	1.0%	4.63	.51	57.36	-1.52	06.	1793
	76.7	0.00	-1.62	00.0	63	00.0	.95	56.5	.28	60.25	-1.50	38.	17.83
	1. 99	0.00	-1.72	00.0	39	0.00	61.	6.91	12	52.33	-1.75	06.	1793
	3.11	0.00	-1.60	0.00	21	0.00	.62	7.93	55	63.95	-1.97	06.	17.93
	2.37	03.3	-1.78	00.0	11	07.0	64.	9.05	93	65.04	-2.23		1783
	1.79	0.00	-1.75	00.0	08	00.0	.33	10.13	*1.28	65.75	-2.51		7793
	1.75	03.3	-1.76	00.0	08	0.00	.3*	11.20	-1.61	66.22	-2.73	.91	37.93
	1.23	03.0	-1.83	0.00	09	00.0	. 32	12.25	-1.93	64.48	-3.03		37.93
	. 43	00.0	-1.81	00.0	13	0.00	.32	13.32	-2.22	66.63	-3.39	. 5.1	37.63
	1.50	0.00	-1.80	00.0	25	0.00	. 33	14.45	-2.50	66.77	-3.69	.91	37.93
	2.71	03.3	-1.76	00.00	32	6.03	. 35	15.51	-2.79	67.75	-3.95	.91	27.93
	4.12	01.0	-1.74	03.0	-1.29	00.0	.39	15.75	-3.18	66.69	-4.27	.81	3793
	3.51	03.3	-1.75	00.0	-2.90	00.0	64.	17.88	-3.70	73.00	-4.8'	. 61	1783
	5. 91	0.00	-1.73	37.5	-7.41	00.0	54.	10.00	99.91	83.48	-5.11	. 91	37.83
	67.	51.3	.1.1.	53.9	76.2.	9.00		23.15	-5.48	* 1	61.50	. 11	37.87
	200	03.7	-1.48	23.3	-1	9.00	.53	21.13	16.6-	33. 33	16.5%	. 61	11.03
	5.61	0.00	-1.63	00.9	-1.45	0.00	15.	22.73	-6.31	116.76	-7.54	. 31	1793
	5.28	03.3	-1.94	00.0	-1.23	00.0	.59	24.13	-9.53	112.56	-9.79	.92	37.93
	5.01	6:00	-1.85	00.0	-1.20	0.00	.61	25.50	-11.15	117.48	-10.02	. 32	1737
	5.40	03.0	-1.33	00.0	-1.13	00.0	. 63	25.84	-12.86	121.54	-11.47	.82	1793
	5.69	01.3	-1.91	00.0	-1.09	00.0	.63	28.21	-14.59	125.15	-13.04	-92	3793
	5: 32	03.0	-1.92	00.0	-1.09	00.0	59.	53.62	-15.45	128.47	-14.73	. 82	3767
	2.00	02.3	-1.95	00.0	-1.08	0.00	.71	31.15	-18.77	131.51	-16.55	. 63	1783
	4.77	0.0	-1.94	60.0	-1.07	0.00	. 7.9	32.72	-21.05	1321	-1.5.	. 93	3793
		0.00	-1.96	00.0	-1.11	00.0	. 85	34.39	-23.49	136.63	-52.69	. 63	3783
	4.41	0.0	-2.07	0.00	-1.14	0.00	96.	16.15	-25.12	136.67	-22.93	. 83	1797
	4.27	00.0	-2.19	00.0	-1.19	3.00	100	36.07	-29.95	140.40	-25.47	18.	3783
	19	0.0	-2.31	00.0	-1.24	00.0	1.15	40.20	-32.04	141.77	-28.17	16.	1783
	13	00.0	-2.45	00.0	-1.32	00.0	1.29	45.59	-35.38	145.74	-31.03	. 94	3783
	12.0	03.0	29.2-	0.00	-1.41	00.0	1.44	45.31	-39.00	143.27	-34.27	16.	3793
	4.43	6.79	-2.81	0.00	-1.50	00.0	1.51	48.47	-42.91	143.29	-37.73		3793
	21.15	3 14 0	21.12	0.00	-1.57	00.0	1.73	\$2.25	-47.13	142.54	-41.49	. 85	1783
	4.97	0.00	-3.22	00.0	-1.68	00.0	1.98	16.95	-51.64	140.93	55.54-	. 95	3783
	5.17	03.0	-3.24	0.00	11		1						
					61.7.	0000	****	26.30	-25.51	101.44	16.641	.03	200

)

)

:		~									,	2	_	6	•	٠.				~	٠.		•	0	m .			, ,		•		,	~	•	· ·				•			~	· ·
•	11 ALPHA1/1049/	FACTOR		1.9	7:			2.6	2.7	2.5	2.4	2.67	9.6	5.5	5.5	5.2	2.5	5.5	5.5		2	5.5	5.5	5.6	5.6	5.6	5.69	2.7		2.0	3.0	::	3.2					2.79	3.9	3.97		;	7.4
:	3	1	:									5			5		5				5	2	5			5	w 1			2	6	5					•			0			
	4	-	530	2.0				3.6	4.7	4.7				1	4.7			1.1			1.1		4.7	1.7		1.1					5.5	0. 2		3				0.0	0.0	3.0	0.0	0:0	20.00
:	=	•	2				•	-	-	**	-	**	-	•	**	-	-	••	-	-	-	**	-	-	-	•	-	•			**	••	**	2	~ "			. ~	~	2	~	~ (~
	:			33	22	20		11	6	91	6	50	20	86	5	9	00	0	63	20	P 1	20	9	0	9		*	25			11	11	53	6	9 :	2:	::	2	20	03	16	50	26
•		0		:	5.25	:	: :		2	2	2	2		2	2						-	:	.:	-			:	:.	: :	:	:		.;	:		: .	: .	: .:	-	:	•	•	• •
								•																-																			
•	53		2	20	6	3 .	200	17		3 6	30	11	14	72	10	5	19	9	3.5	99	2	5	34	0	2	0	16		2 0	5.3	16	::	11	1.5	60	5 6		3	16	36	36	93	10.92
:	3		2	•	ý.	. 0	-	12		1				-		٠,		- 1	-			•	σ	9		9	0		20	9	. 4.	12	13	=	::	::	::	0	0	6	50	9	100
•	ROOM PATES		DEGREESISED									•			_					10.5		200																					
:			36	.91			2	26	.76	.77	.7.	.7.	. 7.		6.		61.			. 91	9	. 5			. 95					.35	. 35		3	,	5.				.37	.36	. 35		
•				5	3 :		: 3		•	•	•	•	•	•	•	•	•	•	• !	1	2.	35	32	32	22	•	•	•	' '	•	•	•	•	•	•	•	•	•	•	•	•	•	
:	:		:	6					~	~		5		-		n .					r'.		· ·				۰.	~ .			•	,	m .					. 10			0	٠.	n #
-		033	35	3.5	627.57			9.6	3.5		4.5	1.0	7.3	1.	1.0	6				:	;		5.1				3,		66.508		7.6	3.2		614.75				664.95	1.0	677.17	683.20	689.0	
w	-	03365	-	29	35	000	2 2	5	61	50	00	9	6	66	63	2	6	2	2	2	0	4	53	2	5	2	66		2 0	61	51	52	62	0	6	5 4	3	9	67	13	6.9	9	200
0	1		:	6.	r.					0						* 1		0.1			9	,	•			5	3 .						0	-:		: •					•		
•		2		-19749.9	66	070	9815.	9912.	919	19322.0	226	616	916	902	3	0		43	-	230	600	3 3 6	200	121	* 3	\$20	9	2 0	100	806	111	253	5 3 4	160	123			17734.3	122	16906.	16688.	999	010
-	COODES			1.9	5	. 0		1.3	119	113	13	.19	5	.13	5	5			1.	1.3	0	1.3	7	6	61	-	61	2 0	0			1.3		0				11	-17	1.0	1.	1.	15
:												Ċ	Ċ		٠.		•							•	•								•	•	•								
	FARTH		1351	5.	-75.			6	-	7.		. 4	1.		,			2		:		15.0				:		•			12.	6					0		7.	33.	. 60		4169.6
:				•	•			•	•		-	-	'n	~	~	- 1	2	0		6	2	11			2	0	6	7	30	52	27	58	30	3	2		14	37		33	0 3	9	;;
:	POSITION			~	•				-		•	0	,	0							•	•								in		.+	· n		•		. "	~	u	•	•	(
•	51	*		12	7231.9			1		28	35	38	36	36		3		-		3			:	3	25	:				99	16	92	2	2		, ,	1	00	7.	20	7.3	2	147
	à			~			-		0	æ			0	0	0	5		0	0	0	0	10	7	101	=	=	11	::	::	-	11	:		=	:	::	::	::	11	:	11		111
•	•		•						_				100	_											1000													,					
:	•	1002	`		7		:::		4.2	9.1	3.5	7.3	3.1	6	5.0			2.1				5.5	2.							6		3.7	5.					460.2	4.0	1.6	96.9	;	735.1
:									1		-	-	~	~	., .	•	3	u, ,		. 0	40	ω.	0					3		-	-	2	2	vi		, 2	, ,	3	5	2	2	3	40
٠	EARTH CODENINA TES	-	0		0 .	v =		6		2	2	5	S		~			~		,	0	-	0	•	,,	٠,	٠.			0	.+	•	•					9	•	9		~	3 L
;	i	TOUY	12			•		2	0	16.2	31.	.7.	29	16.	6	2				23	:	0		23			•	::		35	23		;	3			2		17.	70.	69	29	428.5
•	8		2												•	-	-		-	•	-	-	N	N1 (~ (N (-	•		5.				3	.,	1			. 4
:	1	50	•	9		: ^	. 0	:		0	5		9.	6.								:	5.	٠.					. "	6.	7	•			? •			4		r.	0	٠.	
•	ART	DGX.		128	858	200	829	628	929	020	629	\$28	823	827	2	0	, ,	200	200	213			636	0	300	3	3.	0 1	172	762	752	133	327	2	576	, ,	8:3	583	675	335	154	60.5	266.4
	2		:																											-		-											
×	1		•		0.0		9.6	9.2	5.8	5.9	1.9	4.3	6.5	3			3.6					6.0								3.4	6.3	2.0	5.1					4.	5.1	1.3	1.2		
7	113	2		303	30	000	300	.66	000	000	000	666	106	265	5	-	2	,		10	0 0	200	2 1	10	-	216		3 0	35	256	736	126	220	2	30			150	930	021	3 6	777	-1731
-	VELOCITY			-2	2.	2 :		-	-	:	:	;	-	7	7					7		:	7	7				. :	: :	7	7	:			7		:	:	:	7		7	::
1	-		_	•			: ^		۳.		.31			•								2							2	:			c.	:			. 4			•		٠.	: 0
	7	-		•	•	• •	•		~	•	1,5	53	;		121				600	7	. 3.7	::	113	11		100	:		23	2.2	122	513	5 . 3	::				1.7	113			200	6. 513
·	POSITION																					•								•••	**	•	** .	-	4 6			~	•	~	P3 (
:	20	_							2.0			9.			2.	: :				:						:			::	.0								10	4.	. 3	:		3.0
	_				299.		: 5	.63.		2213.	2321.	35	2991.1	:3	5	1				76.	25.7	:	11	113		200			177	133	52	21	1	225		17.	35	117	133	23	215	200	1113.0
:	•						*	-	-																													••	•	••	•••	••••	
					::				::	5			. 4.3							. :					::				. "	:	::	2		. :	. 5		:	6		,	::	::	5.53
		1146	•	ü				-	2	~		.,					•		•			0							0	0	::	=		::	::	::		12			:		22

CASE . 1. ENCOUNTER .

""	MAN SCHAMOS
CANADO AIL DEGREES	CANAP
00.0	00.0
0.00	1.70 0.00
0.00	77 0.00
0.00	90 0.00
0.00	05.0 77
0.00	20.00
00.00	61 0.00
00.00	71 0.00
00.0	11. 6.00
00.0	55 0.00
00.0	97 0.00
99.0	39.00
00.0	34.00
60.00	69.00
0.00	75 0.66
0.00	00.00
0.90	76 0.90
0.00	70 0,00
0.00	A2 0.00
0.00	71
09.3	66 6.50
0.00	32 0.00
00.0	67 0.00
03.3	99 6.60
00.00	61 6.00
0.00	93 0.00
00.00	82 6.00
0.00	34. 0.00
0.00	97 6.00
0.00	90 0.00
0.00	94 0.00
03.0	00.0
0.00	95 0.00
0.00	03 0.00
07.0	19 6:00
09.0	29 62
00.00	00.00
06.0	59.0
9.00	76. 0.00
00.0	05.0
00.0	00.00
0.0	93
6.00	

132

	C sceai Shladea	C sceai	PECTOR	301167	WOLLET //	;	300.57	41.55	11	1 0737	MOLE !!	TARSET W	ON SUN	SA MSE	BONDO
	1			200		5, 5	4.2	1134	1314	1 0			25	61/55	
9.13	10.12	13.63	4.75	69.0	;	90.0	3.00			1.1	-51.1	-10.9	-61.1	-250.0	7636.
	10.33		23.4	1.95	5146.	•		949.	999.		-47.9	-11.2	-61.2	-200.5	69 23.
. 73	5.3.		45	1.95	5836.**	•		.666	.660	-4.6	2.6	-11.1	-59.8	-201.9	6863.
1.13	-7.11		4.36	1.95	5837.	*****		.066	.666	-12.6	-+3.3	6.6-	-54.5	-204.6	57 88.
1.43			*::*	1.95	5337	•	******	.666	6666	-22.7	-51.1	-5.9	-58.1	2.604-	6714.
1.7.			3.67	1.95	5 187		******	999.	.666	-33.3	6.65-	6.3	-57.2	-215.8	5542.
		-21.93	3.01	1.95	5 + 37		*******	.666	.666	-27.5	-75.5	14.1	-53.6	-224.5	6555
2.4		-31.41	3.53	1.95	5 337		******	.666	493.	-23.9	-37.3	15.0	-55.9	2.4.2-	5+45.
2.43		-13.33	3.5	1.95	5146.		******	.666	.666	-22	4. 10-	10.7	-76.1	-244.0	5401.
1.15	-24.47	-15.83	3.75	1.95	5136.			.666	933.	-25.2	-59.5	3.3	-85.4	-254.2	671.
	-50.03	-13.60	3.21	1.95	5335.	•	• • • • • • • • • • • • • • • • • • • •	.666	.666	-27.0	-103.7	6.9-	1-88-1	-264.9	5223.
1. 13	-11:3	-17.92	3.08	1.93	5115	:	• • • • • • • • • • • • • • • • • • • •	999.	.666	-20.6	-107.3	-18.5	6.66.	-276.2	5128.
6.33		-11.31	5.02	1.95	5934.	•		.666	.666	-33.1	-1111.3	-30.3	-93.2	-297.7	5.33.
.,		-14.84	2.13	1.95	5 143	:	• • • • • • • • • • • • • • • • • • • •	666	919.	-37.4	-113.6	-41.5	-98.8	-239.5	5927.
		-11.62	2.71	1.95	5343			.666	.666	-42.3	-115.0	-51.4	-101.3	-7111.4	5:21.
4.35		-11.76	6:-2	1.95	5 3 4 2		• • • • • • • • • • • • • • • • • • • •	.666	333.	-47.4	-115.7	-59.3	-102.0	5.22	5709.
6.43		-11.79	2.18	1.95	5612		*******	999.	.666	4.5.7	-115.6	-66.5	-114.7	-335.6	4504.
5.03		-3.90	2.37	1.95	5841.	•	• • • • • • • • • • • • • • • • • • • •	. 666	933.	-57.9	-115.7	-71.3	-104.9	-3-7.8	5.75
6.73		-1.23	2.27	1.95	5 191		******	644	.666	-63.	-115.0	-75.3	-105.6	-366.3	5:5:
63		56.6-	2.16	1.95	5130	*****	• • • • • • • • • • • • • • • • • • • •	.666	939.	6.8.9-	-114.1	-75.3	-107.1	-373.1	5225
7.19		9:::-	5.16	1.95	:	•	•	993.	434.	-73.5	-113.5	-73.3	-108.4	-345.7	.0608
7.75		65.5-	1.56	1.90		37.94	5.62	-213.	35.	-76.2	-114.4	-67.4	-108.8	-197.3	4953.
1.73		15.91	1001	1.82		47.43	2.69	-243.	15.	-74.0	-113.0	-56.3	-112.1	27.3	.312.
		-1.13	1.78	1.73		46.35	-3.67	-250.	-119.	-65.8	-126.3	-41.7	-118.0	-415.1	4553.
		-11.54	1.70	1.65		46.19	-10.30	-2-1.	- 54.	6 . 4 5 -	-135.1	-26.2	-127.6	-422.1	6522.
		-111.95	1.41	1:57		66.34	-13.54	-225.	-63-	6.44-	-141.2	-14.5	-129.2	-429.1	4773.
4.10	- 21 3.3	-11: 27	1.13	1.50		42.33	-14.69	-210.	-72.	-38.0	-145.5	-6.3	-174.3	-476.0	4222.
51.6		-13.13	15	1.42		.1.85	-16.64	-1961-	-77.	-33.2	-148.9		-176.7	-4-2.	+163.
		-13.45	1.37	1.35		41.91	-17.69	-132.	-13.	-30.2	-151.7	3.1	6. 67 1-	5.63.5	3912.
11		-12.63	1.73	1.57		05.14	-17.83	-177.	-76.	-27.8	-154.3	6.3	-141.7	6.554-	1754.
12.5	-16.23		1.72	1.20		64.34	-13.60	-:65.	-16.	-25.3	-156.7	10.7	-14.7.4	62.5	1593.
	60.00	-1 32	1 . 1 5	1.13		56. 14	-13.57	153	-75.	-23.4	1.631-	14.7	-144.7	0.647-	34 31.
11.29	-40.23	-1160	1.10	1.95		41.19	-50.04	-152.	-74.	-21.4	-161.2	18.9	-146.5	2.74.9	3265.
		17.51.	1.::	1.60		42.18	-23.68	-147.	-72.	-19.7	-163.1	23.0	-147.7	-486.1	3693.
11.00			*5.	.63		47.22	-21.49	-143.	-72.	-16.0	-164.9	27.1	-148.0	7.634-	2933.
12.3		-17.89	•	.87		44.63	19.22-	-139.	-10.	-15.5	-155.5	31.9	-1.6.6	2.65.2	2761.
13.6		-11.90		.81		35	-21.27	-136.	-68.	-15.0	-157.9	35.5	-1.9.0	-484.	2692
12.75		19.62-	.75	.75		46.30	-24.41	-132.	-67.	-13.7	-169.1	41.3	-15	3.644-	2.2.
13.13		-22.35	.79	69.		50.45	.23.53	-129.	-63.	-12.4	-179.0	46.2	-1.7.6	-473.7	2256.
86	-52.25	-263		.63		25.67	-25.47	-125.	-63.	-11:1	-170.5	51.2	-146.5	2.835-	2643.
		-25.05	6 .	.54		.54.76	-57.53	-121.	-61.	-9.6	-170.5	\$6.1	-144.6	-449.8	1977.
	-63.73	-29.21		.5.	2049.	-56.65	.26.55	-115.	-63.	-4.1	-170.1	60.5	-1+1.5	-430.3	17.90.
			6	64.		51.19	-31.27	-110.	-63-	-6.7	-169.9	64.5	-136.4	5. 70.2	1634.
13.57		. 37. 33	64.	.45		53.19	-74.31	-163.	-60.	-5.4	-167.1	67.3	-129.7	-380.0	1495.

ites . . curnintes


```
05100 CI.
. DELETE FOEXEG . 183
     IF (ITCCNT.LT.5000) GO TO 200
. DEL ETE FOEXEC . 186
 190 FORMATCINO, 30H ERROR --- ITGENT EXCEEDS 50001
englere polytical
     Mc3p = (5 )5=1998
.DELETE PRINT. 184
     RPRIZZ(3) = PHIC
*OSLETE PRINT. 262
.,2F8.1.F10.1,5F8.2,F6.2)
*DELETE FRINT.276
 $21 FORMAT(1X,F6.2,1X,F8.1,5F8.3,F8.1,7F8.2,2F6.2)
INSERT AIRFI1.366
     PAPAM (480) = RHO
.0 PILTI1.64
     TIME= -ERELTL 1000.
*n PILTI1.65
     DTHI = - ERTRIL - 1000.
*DELETE INDAC1.26
                   ( ERELTLO , DUM3( 13))
*DELETE INDAC1.27
                   ( ERTRILC , DUM3( 14))
.DELETE TARGET .92
         ALTOCO/-1.4,0.0,1.4,2.8,4.2,5.5,7.0,8.4,9.8,10.0 /
. DELETE TARGET .93
         .OTUYCO/-100..-80.,-60.,-45.,0.,30.,45.,60.,80.,100. /
*DELETE TARGET.94
         . DELETE TARGET .95
*DELETS ICHMER.91
         545003373,
*DELETE IGNMAR.91
         54540 3374,
* DELETE ICHMPP.92
         545403372.
. DELETE TONMER .93
         545403372.
*DELETS ICHMER.94
         5454 0 1392.
* DELETE ICHMER . 35
         545401391.
DELETE ICHMOP.96
         545-03392.
. DEL FTE ICHMPR.97
         545403391/
. DEL ETE ICHMER . 106
*DELETE IGNHCC-134
            *9 ..
                      40 ...
                               . 96 . .
                                        60 ..
                                                  70. /
```

```
*DELETE ICHMPR.146
      ITMX(1,1)=650
                     $ ITMX(1,2)=410
                                       $ ITMX(1,4)=410 $ ITMX(1,5)=410
*DELETE ICHMER.147
      ITMX(2,1)=370
                     $ ITMX(2,2)=410
                                       $ ITMX(2,5)=310 $ ITMX(2,7)=410
*DELETE ICHMPR.148
      ITMX(3,1)=370
                     $ ITMX(3,2)=410
                                       $ITMX(3,7)=610 $ITMX(3,8)=410
*DELETE ICHMER.149
      ITMY(4,1)=660
                     $ ITMX(4,2)=410
                                       $ ITMX (4,4)=610 $ ITMX (4,5)=410
*DELFTE ICHMER . 150
      TTMX(5,1)=670
                     $ ITMX(5,2)=410 $ ITMX(5,4)=610 $ ITMX(5,5)=410
. nelete tonnen.151
      ITMX(6.1)=351
                     $ ITMX(6,2)=410
                                       $ ITMX(6,4) = 310 $ ITMX(6,5) = 410
* DELETE ICHMOR . 152
      ITMX(7,1)=380 $ ITMX(7,2)=410 $ ITMX(7,3)=310 $ ITMX(7,4)=410
*DELETE ICHMER.153
      ITMX(8,1)=050 $ ITMX(8,2)=410 $ ITMX(8,3)=610 $ ITMX(8,4)=410
* DELETE ICHMFR . 171
   21 ITM(I)=410
*DELETF AUTSI1.2,365
      SUPROUTINE AUTSI1
               /CFDATA/
                          DUM(530), DUM1(270), DUM2(300)
      COMMON
      COPHON
                          IOUM1(200) , IOUM3(50)
               /IDATA/
      COMMON /INTVARY PARAM(480), TIME, INTOEX
      COMMON /CINT/ T, HMAX
      REAL MICH
      DIMENSION ALPHA(4), H(4), P(4), Q(4), R(4), INDOR(23)
      DIMENSION
     1 CPNZ(2), CCNZ(2), DVNZ(8), CBQQ(2), CCQQ(2), DVQQ(8)
     2,CB30ML(3), CCCOML(3), DVCOML(12), CBSE(2), CCSE(2),
                                                             OVSE(8)
     3, CBRE (2), CGRE(2), DVRE(8), CRYR(2), GGYR(2), DVYR(8)
     4,CBNY(2),CCNY(2), DVNY(8), DVER2(3), DVERS(8), DVPHX(8), DVFPS(8)
      EQUIVALENCE
                                                              ,DUM(119))
     A ( GKN72
                  , DUM(105)), ( GKFB
                                        ,7J4(117)), ( GKNZ1
     B, ( GKNL1
                  , DUM (120)), ( GKMECH
                                        ,DU4(125)), ( GKNL2
                                                              ,DUM(125))
     C, 1 GK6
                                        , DJM (152)) , ( GKNZ3
                                                              ,DUM(106))
                  ,DUM(143)),( GKF
      EQUIVALENCE
     A (CAN7(1)
                 , DUM(109)), (CGNZ(1)
                                        ,014(1111),(0800(1)
                                                              , DUM (113))
     9. (000011)
                 , DUM (115)), (CASE(1)
                                        ,DJ4(121)) , (CCSE(1)
                                                              ,DUM(123))
     C, (C7CO"L(1), DUM(153)), (CCCOML(1), 7JM(156))
                                      DUY( 3))
      EQUIVALENCE
                    ( DR
      EQUIVALENCE
                    ( MACH
                                       ((8E0)MUD
      EQUIVALENCE
                    ( GKQ
                                        004(191))
      EQUIVALENCE
                    ( GGNS
                                        004(425))
                                        DU4(+26))
      EQUIVALENCE
                    ( GGNA
      EQUIVALENCE
                                      DU41( 94))
                    ( DA
      EQUIVALENCE
                    ( DAHI
                                      DUM1 (112))
      FQUIVALENCE
                    ( DALO
                                      DU41 (113))
      FOUTVALENCE
                    ( DSLU
                                      0041(114))
      EQUIVALENCE
                    ( DSLL
                                      DUM1(115))
      EQUIVALENCE
                    ( DSHI
                                      DUM1(116))
```

```
EDUIVALENCE ( DSLO
                                     , DUY1(117))
                  ( PUDHI ,
                                DUM1(121)) , (RUDLO , DUM1(122))
    EQUIVALENCE
                                     , 0041(159))
    FOUTVALENCE
                   ( PHIC
                 ( OCOM
    EQUIVALENCE
                                     , DUY1(162))
    , (PUDCCM, TUM1 (165))
    EQUIVALENCE ( DOS
                                     , DUY1(156))
                    ( FP1, DUM(530))
    EQUIVALENCE
    EQUIVALENCE
   A ( CORE(1) , DUM2(041)), ( CORE(1) , JUM2(043)), ( CRYR(1) , DUM2(056))
   8. ( CCYF (1) , DUM2 (058)), ( CRNY (1) , DUM2 (062)), ( CCNY (1) , DUM2 (064))
FQUIVALENCE ( IRUNNO, IDUM3 (32))
    EQUIVALENCE (IPRNT, IDUM1(132))
    FOULVALENCE
   1 ( IDN7 , INDOR( 1)) , ( IDQQ , INDOR( 2)), ( IDSE ,INDOR( 3)) 
2, ( IDCCML, INDOR( 8)) , ( IDYR , INDOR(12)), ( IDNY ,INDOR(13))
    EQUIVALENCE
   A (DVER2(1),PARAM(129)),(DVERS(1),PARAM(137)),(DVPHX(1),PARAM(145))
   R, (DVFP5(1), PARAM (153))
    EQUIVALENCE ( ER2X , OVER2(5) ) , ( ER2I , OVER2(1) )
    EQUIVALENCE ( ERSX , OVEPS(5) ) , ( ERSI , OVERS(1) )
    EQUIVALENCE ( FPHX , DVPHX(5) ) , ( FPHI , DVPHX(1) )
    ENUIVALENCE ( FPSX , UVFPS(5) ) , ( FPSI , DVFPS(1) )
                         , PARAM (73)), (ALPHA (1), PARAM (17))
    EQUIVALENCE (H(1)
                , (P(1)
                                                 , PARAM(33))
                          ,PARAM (25)), (Q(1)
          ,(R(1) ,PARAM
PDR / 57.2957795131/
                           ,PARAM (41))
    DATA
              ERRAUT/ 8HAUTSI1 /
    PTAG
    RETURN
    ENTRY PUTSIZ
    CALL INUPD (129, ADMMXX, IDUMXX)
    CALL INUFO (133, ADUMXX, INUMXX)
    CALL INUPD (137, ADUMXX, IDUMXX)
    CALL ITUTO (141, ADUMXX, INUMXX)
    CALL. ITUPO (145, ADUMXX, ITUMXX)
    CALL INUFO (149, ADUMXX, IDUMXX)
    CALL INUPD (153, ADUMXX, IDUMXX)
    CALL INUPO (157, ADUMXX, IDUMXX)
    ISAVTR = 1
    90 160 I = 1, 23
100 INDOR(I) = -1
    NSWIT = 0
    PETURN
    ENTRY FUTS
    IF ( IS/VTR.NE.1 ) GO TO 110
    IF (GKNL2.LT.1.0) GO TO 2
    II=GKNL2
    DEL=HMAX*FLOAT(II)
    DELT=0.0
    GO TO A
```

C

```
2 DELT=10000CO.
    4 CONTINUE
      IF (IRUNNO.ST.1) GO TO 6
  RECONVERT LIMITS FROM RADIANS TO DEGREES (CONVERTED TO RADIANS IN
   SUSPOUTINE DATAIN)
      DSHI=DSHI*DOR
      DSLO=DSLO+DOR
      DSEU= DSEU+ DOR
      DSFF=U2FF+DDS
      200 TH 10 = IHAC
      DALO=D/LC+DOR
      RUDHI=FUCHI*30R
      RUDLO=FUDLO+7DR
      DSTAG=DDS*DDR
         INITIAL CONDITIONS
  .6 IF (DSTAP.GT.DSHI) DSTAR=DSHI
      IF (DSTAB.LT.DSLO) DSTAB=DSLO
      R5G1=ALPHA(1)*DDR
      C501=RF01*C9NZ(1)
      X5=C501
      R502=0(1)+00R
      C5 C2=RFC 2+CBQQ (1)
      X4=C50?
      AZ3=GGHA+GKN72+X4+GKF
C QB IS COMPLCT PRESSURE PS IS STATIC PRESSURE
      PS=PARAM(480) +1715.0+(518.7-0.003565+H(1))
      08-PS+(((G.2+MACH++2+1.0)++3.5)-1.0)
      IF (09.GT.3000.) GKNZ1=.083
      IF (09.LE.3000.) GKN71=-.0002+Q9+.683
      IF (0P.LE.800.) GKNZ1=-.30089*09+1.25
      IF (09.LE.233.) GKNZ1=1.0
      4x4=GK! 71+X4+ .7
      AUT= (-15.0 + AX4 + X5) +GKFB
      IF (AU7.LT.0.8) AU7=0.0
      TF (AU3.GT.999.0) AU3=999.0
      U3=423+4113
      R509=U7
      C5C8=CRCOML (1) +R508
   FIX TO SET PITCH INPUT TO ZERO PY BIASING TRIM
C
      X3=C5 C8.
C
      X1=X3
C
      C5 C3 = C! 08
      R503=0.0
300
      IF (CACE(1).NE.O.O) P503=C503/CASE(1)
      U1=3563
      OCOMO= (U1-.44)/0.318+7.25
      X1TRIM=-X3
      C503=0.0
```

R503=0.0

```
U1=G.C
      0.040=0.0
      X1=0.0
      1.0=1XA
      AX5= (X5 +AX4-20.4) + GKN73
      IF (AX* .LT.0.0)
                         AX5=0.0
      IF (AXT.GT.939.0) AX5=999.0
      GKNL1 IS FUNCTION OF DYNAMIC PRESSURE, QR
      GAIN FACTOR OF 3.0 IS INCLUDED IN FUNCTION
      IF (QB.GT.330J.) GKNL1=3.+(.083)
         (CP.LE.3000.) GKNL1=3.*(-.0002+39+.683)
      IF (03.LF.800.) GKNL1=3.*(-.00089*)3+1.25)
      IF (08.LE.230.) GKNL1=3.0
      AX6=(AX1+AX5)+GKNL1
      PATIO= CB/PS
      IF (RATIO.LE..53)
                          TRFAC=.5
        (PATIO.GT .. 53)
      IF
                          TRFAC=-1.19*RATID+1.13
      IF (RATIO.GT.1.79) TRFAC=-1.0
      X6=X5+TRFAC
      FREI=DETAB
      X2=ERST-X6-AX6
      EBSI=X5
      IF (GKE.NE.0.0) ER2I=X2/GK6
      1.0=5XA
      FPHI=0.0
      FPSI=0.0
      ISAVTR = 0
      IF (IRI'NNO.GT.1) GO TO 110
      CALL LINES (14)
      WRITE (IPRNT, 30)
   30 FOPMAT (1H1,1X,26HAUGMENTATION VARIABLE DUMP,//)
      WRITE (TPPNT, 31) R501, C501, R502, C502, R503, C503, R508, C508
   31 FORMATCHO, 5X, 64 PS01, 7X, 64 C501.7X, 6H R502, 7X, 6H C502, 7X,
       6H F503,7X,6H C503,7X,6H P503,7X,6H C508,/,1X,0E13.6,/)
      WRITE (IPRNT, 33) AZ3, AU3, AX1, AX5, 4Y5, X5, DSTA9, X2
                                              ,7X,6HAX1
   33 FOPMAT
                      (7X,6H4Z3 ,7X,6H4J3
                                                            ,7X,6H4X5
          7X,6HAX6 . ,7X,6HX6
                                   ,7X,6HOSTAB ,7X,6HX2
                                                            ,/,1X,8E13.6,/)
  110 CONTINUE
          AS OF THE DATA 15 AUGUST, 1975 , THIS PROGRAM USES
          36F LOCATIONS OF THE PARAM ARRAY. THE REAKDOWN IS
C
C
                       PILTI1
                                   52 LOCATIONS
                       AUTSI1
                                - 188 LOCATIONS
C
                       AIPFI1
                                   128 LOCATIONS
                   ALTERING THE PARAM ARRAY AND CONSEQUENT PROGRAM
C
          LOGIC, AN ADDITIONAL 14 INTEGRATION VARIABLES CAN BE ADDED.
C
          THESE VARIABLES CAN BE INTEGRATED BY EXECUTING THE CALL TO
          EITHER INTEG OR TRANFR. IF ONE CHOOSES TO CALL INTEG, THEN THE PAPAMETER INTOEX MUST BE INCREASED BY 8 FOR EACH
C
00
          ADDITIONAL CALL TO INTEG. THAT IS INCORPORATED IN THE PROGRAM.
          THE PAPAMETER INTOEX IS INITIALIZED IN THE AIRFI1 SUPROUTINE.
```

```
LONGITUDINAL
                          CHANNEL
                                    AUGMENTATION
      U5=ALPHA (1) +00R
      IF (U5.GT.30.0) U5=30.0
      IF (U5.LT.-5.0) U5=-5.0
      CALL TRANFRE 2, CBMZ, 2, CCNZ, 8, DVNZ, ERRAUT, 501, U5,
                IONZ, X5, 5501: 0:0; 5501; 0:0)
      114=01112007
      CALL TRANFAL 2, CBOO, 2, CCQO, 8, DVQQ, ERRAUT, 502, U4,
                1027, X4, 8502, 0.0, C502, 0.0)
      423=GG1'A+GKN72+X4+CKF
C 09 IS COMPLET PRESSURE PS IS STATIC PRESSURE
      PS=PARAM (480)*1715.0*(518.7-0.003565*H(1))
      OB=PS+(((C.2+MACH++2+1.0)++3.5)-1.0)
      IF (0P.GT.3000.) GKNZ1=.083
      IF (08.LE.30GG.) GKNZ1=-.9002*09+.683
      IF (09.LE.800.) GKNZ1=-.00089+Q9+1.25
      IF (08.LE.296.)
                        GKM71=1.0
      4X4=6K1'71+X4+.7
      AU3=(-15.0 + AX4 + X5)*GKF3
      IF (AU3.LT.0.0) AU3=0.0
      IF (AU3.GT.999.0) AU3=999.0
      113=AZ3+AU3
      CALL TFAMER( 3, CBCOML, 3, CCCOML, 12, DVCOML, ERRAUT, 508, U3,
             IDCO4L , X3, R508, 0.0, C508, 0.0)
      FP1=QCCM+QCOMO
      IF (FP1.GT. 7.25)
                         U1=.318+(FP1-7.25)+.44
   REMOVE DEADRAND BETWEEN -1.75 AND 1.75
      IF (FP1.LE. 7.25)
                         U1=.06069*FP1
      IF
         (FP1.LE. 7.25)
                          U1=.08* (FP1-1.75)
      IF (FP1.LE. 1.75)
                         U1=0.
     . IF (FP1.LE.-1.75) U1=.08*(FP1+1.75)
      IF (FP1.L5.-7.25) U1=.742*(FP1+7.25)-.44
      IF (U1.LT.-4.0) U1=-4.0
      IF (U1.57.8.0) U1=8.0
      CALL TEAMER( 2, CASE, 2, CCSE, 8, DVSE, ERRAUT, 503, U1,
               INSE , X1, P503, 0.0 , C503, 0.0)
      AX1=X3-X1+X1TRIM
      AX5= (X5 +AX4-20.4) + GKN73
      IF (AXF.LT.J.D)
                       AX5=C.0
      IF (AX1.GT.399.0) AX==999.0
      GKNL1 IS FUNCTION OF TYNAMIC PRESSURE, OR
      GAIN FICTOR OF 3.0 IS INCLUDED IN FUNCTION
      IF (08.GT.3000.) GKNL1=3.+(.C83)
      IF (09.LF.3000.) GKNL1=3.+(-.0002*Q3+.683)
       IF (09.LE.433.)
                       GKHL1= 3.* (-.00083*09+1.25)
      IF (08.L5.283.) GKNL1=3.0
      AX6= (AX1+AX5) +GKNL1
      RATIO= 09/PS
      IF (RATIO.LE..53) TRFAC=.5
```

```
IF (RATIO.GT..53) TPFAC=-1.19*RATIO+1.13
IF (RATIO.GT.1.79) TRFAC=-1.0
      X6=X5+TRFAC
      X7=AX6+X2
      X8=X6+X7
      IF (X8.GT. OSLU) GO TO 40
      IF (X8.LT.DSLL) GO TO 42
      x9=0.0
      50 TO 44
   40 Y9=GF6* (X8+DSLL)
       50 TO 54
   42 X9=GK6* (X8+DSLU)
   44 UZ=4X6-X9-AX2
      ER2X=U2
      CALL INTEG(ERZX, ERZI)
       X2=GK6+ER2I
      IF (X2.GT.DSLU) GO TO 46
       IF (X2.LT.DSLL) GO TO 48
      1.0 = 5xA
      60 TO 49
   45 4x2=2000.* (x2+DSLL)
       GO TO 19
   48 AX2=20(0.*(X2+DSLU)
   49 CONTINUE
       STACOM=X6+X7
       PST3=2(.G+(STACOM-FRSI)
      IF (RST9.GT. 60.0) RSTR= 60.0
      IF (RS"B.LT.-60.0) RSTB=-60.0
       ERSX=RSTB
       CALL INTEG(ERSX, ERSI)
       DST=ERSI
       IF (DST.GT.DSHI) DST=DSHI
       IF (DST.LT.DSLO) DST=DSLO
       DDS=DST/DDR
                 LATERAL - DIRECTIONAL AUGMENTATION
C-
   AILEPON CHANNEL COMMANDS
       EV=bHIC
       IF -(FA.LT.-11.0) PHIC1=34.0*FA+339.0
       IF (FA.GE.-11.0) PHIC1=12.0+FA+52.0
       IF (FA.GE. -6.0) PHIC1= 3.33333333337FA
IF (FA.GE. 6.0) PHIC1=12.0+FA-52.0
       IF (FA.GT. 11.0) PHIC1=38.0*FA-338.0
       CALL TFANFFI 2, CBPE, 2, CCRE, 8, DVRE, ERRAUT, 511, PHIC1,
       IDRE , PHIC2, 0., 0., 0., 0.)
PHIC3=C.12*(P(1)*DDR-PHIC2)
       FPHA=20.C*(PHIC3-FFHI)
       TF (FPHA.LT.-80.0) FPHA=-80.0
IF (FPHA.GT. 80.0) FPHA= 80.0
```

C

```
FPHX=FFHA
   CALL INTEG (FPHX, FPHI)
   DD4=FPUI
   IF (DD/:GT.DAHI) DDA=DAHI
   DIACEAGO (OJAC.TJ. 190) TE
   DA = DOA / DOG
RUTHER CHANNEL COMMANDS
   RUDC1=FUDCOM
   IF (RUCC1.GE. 15.0) RUCC2=0.316*RUDC1-64.75
   IF (RUCC1.LT. 15.0) RUCC2=0.0
   IF (RUPC1.LE.-15.0) RUPC2=0.316*RUJC1+64.76
   YAWF8=F (1) +DOR-X5+P(1)
   R1=R(1)
   P1=P(1)
   CALL TEANER(2 ,CBNY, 2, CCNY, 8 , DVNY , ERRAUT , 513 , YAWEB,
  IDNY , REP1, C., O., O., O.)
CALL TEAMER ( 2, CRYP, 2, CCYP, 8, DVYR , ERRAUT, 512, REB1,
            IDYR , RFB2, 0., 0., 0., 0.)
   F8=RF92+0.6*GGNS
   IF (RATIO.GT.3.3) AKF9=F8
   IF (FATIO.LE.3.3) AKF9=F8*(0.435*R4TIO-0.305)
   IF (RATIO.LE.2.0) AKF8=0.5+F8
   RUDDC=4KF8-RUDCZ
   FPSA=2: . C+ (RUDDC-FPSI)
   IF (FPSA.GT. 120.0) FPSA= 120.0
   IF (FPSA.LT.-120.0) FPSA=-120.0
   FPSX=FFSA
   CALL INTEG(FOSK, FPSI)
   Joe-chil
   IF (DEF. GT. RUDUI) DPR: PUDHI
   IF (DRF.LT.RUDLO) DRR= RUDLO
   DR=DRR/DCR
   IF (IRUNNO.ST.1) GO TO 80
   IF (DELT.GT.T) GO TO 30
60 IF (DELT.GT.G.G) GO TO 65
   WRITE (JFPNT, 51)
51 FORMAT(1H1,25H1AUGMENTATION TIME HISTORY,//,5X,6HTIME ,7X,6HU1
                               ,7X,64U5
      ,7x,6HGGVA ,7X,6HU4
                                            ,7X,5HAX6 ,7X,6HX6
       7X,64STACOM,7X,EHESSX
                               ,7X,6HERSI
   WRITE (JPRNT, 53)
53 FORMAT
                  (19X,6HPHIC1 ,7X,6HP1
                                             ,7x,6HPHIC2 ,7X,6HPHIC3 ,
       7X.EHEPHI
                  ,7X,6HR1
                                ,7X,6HYAWF9
                                            ,7X,5HRF91 ,7X,6HRF92
  WRITE (TPENT, 57)
                                ,7X,6H4<F3
57 FORMAT .
                  (18X,6HF8
                                             ,7X,6HRUDCOM,7X,6HRUDC2
       7 X , 6 4 X 5
                   ,7X,6HRUDDC ,7X,6HFPSA
                                             ,7X,5HPHSI ,7X,6HGGNS )
   WRITE (JPRNT,59)
                                ,7X,6HQ3
59 FORMAT
                  (18X,6HPS
                                             ,//)
65 DELT=DELT+DEL
70 WETTE (TPENT, 71) T, U1, GGNA, U4, U5, AX5, X6, STACOM, RSTB, DST
71 FORMAT(1X, 10E13.6)
```

THIS PAGE IS BEST QUALITY PRACTICABLE

WRITE(IPRNT,73) PHIC1,P1,PHIC2,PHIC3,DDA,R1,YAWFB,RFB1,RF92
73 FORMAT(14X,9513.6)
WRITE(IPRNT,73) F8,AKF8,RUDCOM,RUDC2,X5,RUDDC,FPSA,DRR,GGNS
WRITE(IPRNT,77) P5,CB
77 FORMAT(14X,2613.6)
80 CONTINUE
RETURN
END

Appendix D EASY Analysis Program Data

The program commands of the EASY Analysis program are included in Appendix D.

Table parameters specify the independent and dependent variables for the table look-up gain parameters of the system model. The parameter values which satisfy the input requirements of the standard components are listed following the tabular entries.

The longitudinal axis stability derivatives for the F-16 aircraft at the selected flight condition of .8 Mach and 20,000 feet are shown on page 157. In addition, page 157 shows the commands necessary for generating a steady state system solution and establishing the aircraft trim condition.

The frequency domain analysis is completed with program commands to establish a pseudo tracking task. Program commands for both closed loop and open loop analysis are completed on pages 157 and 158.

The EASY Analysis program data list is concluded with program commands to generate a closed loop system time response to a reference step input.

```
TARLE, FTAGUE1, 4
-17.59, -7.25,7.25,40.
-4., -. 44, . 64, 16.35
TABLE, FTAFUEZ, 4
0.,34.,184.,200.
-1 . , -1 . , -4 . , -4 .
TARLE, FTAFUEZ, 5
0.,280.,800.,3000.,6000.
.7,.7,.3731,.0581,.0581
TABLE, FTAFUEL, 5
0.,280.,800.,3003.,6000.
3.,3.,1.599,.249,.0581
TABLE, FTAFUES, 4
0.,.53,1.79,2.0
.5,.5,-1.0,-1.0
TABLE, FTAFUES, 4
-50.,-25.,25.,50.
-25.,0.,0.,25.
PARAMETER VALUES
AN FUE1=-1, AN FUE2=-1, AN FUE3=-1, AN FUE4=-1
AN FUE5 = -1, AM FUE6 = 1
C1 44=1=1.
01 SAE2=.5.07 SAE2=8.,04 SAE2=.5
03 SAE3=30., C6 SAE3=-5.
70 LGE1=10.,F0 LGE1=10.
GAILEE2=1., ZC LEE2=0., PO LEE2=1.
02 MOE1=1., 03 MCE1=1., 04 MCE1=0., X3 MCE1=-20.4
02 MCE2=1.,C3 MCE2=1.,C4 MCE2=0.,X3 MCE2=-15.
C5 S4E4=0.
C1 40F3=.161,02 MCE3=.16T,03 MCE3=0.5,C4 MCE3=0.
C1 SAET=.5, CF SAE5=3.
GATLEE3=3.0,70 LEE3=4.,P0 LEE3=12.
61 MCEH=1., C2 MCEH=1., C3 MCEH=-1., C4 MCEH=J.
C2 4CE5=-3.,C3 MCE5=0.,C4 MCF5=0.,X3 MCE5=0.
GKIITE1=5., GYLITE1=2000., AMAITE1=25., AMIITE1=-25.
C2 MAE2=0.
03 MCE6=0.,C4 MCES=0.,X3 MCE6=0.
01 MAE3=1.
C1 4A=4=1.
Z1 TFF1=C., ZE TFF1=2704., P1 TFF1=72.8, P) TFF1=2704.
C1 MAF3=-1.
C1 SAF1=20.,C3 SAF1=3.,C4 SAF1=20.,C6 SAF1=-3.
ZO LGF1=1., FC LGF1=0.
03 SAF2=25., CE SAF2=-25.
C1 MAE2=.0010292
```

6

```
PO LEPL=20.0
GAILEPL=349.[40
                     70 LEPL=0.0
3AILAPL=2.1815
                     TO LAPLE. 05
 C1 SAPL=1.0E-06,C2 SAPL=1.0,C3 SAPL=0.3,34 SAPL=1.0E-36
                   C6 SAPL=0.0
05 SAPL=1.0
                73 TFPL=1.0
                               P1 TFPL=1.2 P0 TFPL=1.0
71 TFPL=0.0
C1 4CPL=1.0
               C2 MGPL = 1 . 0
                               03 MCPL=1.0
                                              C4 4CPL=0.0
                  P0 LGPL=0.0
ZO LGPL= .25
                G2 MAPL=5.5
C1 1APL=-1.0
TX SD=0., VD SD=0., T7 3D=0.
TXXSD=9007.5
                IYYS0=49955.
                                   17750=55770 .
                                                     IXZSD=198.
ID14 V=3.
VS AV= 329.5
                 ALSAV=2.1039
                                    S AV=300.
XG LO=-. 6250
                                   XU LO=-.0746
                                                  XDEL0=.0525
                X4 L0= - . C201
70 LO=-.1443
                 7A LO=-4.8139
                                   ZADL0=.5500
                                                  79 LO=-2.5965
ZU LO=-.1215
                 ZDEL0=-.4985
                                   MG LO=-.0182
                                                   MALLO= . 39 . 3
MADL 0= - . 955 C
                MQ L0=-2.3137
                                  MU LO= - . 3145
                                                  40EL 0= - . 6659
MA1L 0=596.5
                C LO=11.32
XP1L0=0.0, F71L0=0, TY1L0=0
C1 MC71=.0311,C2 MCZ1=-.0311,C3 MCZ1=0.,C4 MCZ1=-1,X3 MCZ1=0.
C1 MAET =- 1., C2 MAET = 20000.
ZO LGET= . 1, PL LGET= 0.
01 MAEN=-1., C2 MAEN=829.F, Z3 LGEN=10., P3 LGEN=0.
70 LG52=8.3,F0 LG52=8.3
INT CONTROLS
V SD=J.,P SD=O.,R SD=O.,ROLSD=O.,YAWSD=0.
FRROR CONTROLS= U SD=.8,W SD=.06,Q SD=.1E-03
   X2 LGEN=4., X2 LGET=.2F-05, X2 LGE2=.9E-05, X2 L3E1=.4E-02
   X2 TFF1=.(01, X2 LGF1=.001, PITS0=.4E-02, ALTS0=20.
   XI LEE3= .2F-05, X2 ITE1= .304, XI TFF1= .1
   XI LEFL= . 8, X2 LAPL= . 005, XI TFPL= . 006, X2 TFPL= . 005
   X2 LGFL=.002,XI LEE2=.4E-05
INITIAL CONDITIONS
ALTSD=20036,U SD=829.5
PRINT CONTROL=3
PLOT ON
PRINTER FLOTS
INT CONTROL = X2 LGPL=0
STEADY STATE
XIC-X
INT CONTROL = X2 LGEN=0, X2 LGET=0
INT CONTPOL = X2 LGPL=1
LINEAR ANALYSIS
TITLE=THETA/THETAREF CLOSED LOOP NORMAL ACCEL
TE INPUT = C2 MAPL
TE OUTPUT= PITSD
```

TF MANUAL SCALES FRED MIN=. CO1 FREQ MAX=100. BODE, TRANSFER FUNCTION TITLE=THETA/THETAREF OPEN LOOP NORMAL ACCEL PARAMETER VALUES = C1 MAPL=0.0 TE INPUT = C2 MAPL TF OUTPUT= PITSD TE MANUAL SCALES FREO MIN=. L1 FRED MAX=100. BODE, TRANSFER FUNCTION PARAMETER VALUES= C1 MAPL=-1.0 TINC= . 05 TMAX=23.0 OUTRATE=1.0 PRATE=23 S=3COM TMI TITLE=CLOSED LOOP STEP RESPONSE : DISPLAY1 PITSD VS TIME 0 50 VS TIME ALTSD VS TIME X2 LGF1 TIME VS SIMULATE

Vita

Michael Marchand was born in Gonzales, Louisiana on April 6, 1948. He attended Gonzales High School there and graduated as valedictorian of his class in 1966. He entered undergraduate studies at Louisiana State University and received his B.S. degree in Electrical Engineering and his ROTC Air Force commission in 1971. Later that year, he began active duty in the Air Force as an Undergraduate Pilot Training student at Laughlin AFB, Texas. After receiving his wings, he attended Pilot Instructor Training at Randolph AFB and then spent the next two years at Laughlin as an instructor in the T-37 aircraft. From 1974-76, he enjoyed a tour at Mather AFB as an instructor pilot in Undergraduate Navigator Training, being a member of the first T-37 squadron. While at Mather, he accepted the additional duty of Functional Check Flight pilot for the T-37 maintenance squadron. In 1976, he entered the Air Force Institute of Technology at Wright-Patterson AFB to attain a Masters degree in Electrical Engineering, specializing in aircraft quidance and control. He is married and has two children.

Permanent address: Route 4 Box 245-M

Gonzales, Louisiana 70737

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM							
1. REPORT NUMBER 2. GOVT ACCESSION NO.	The second secon							
AFIT/GGC/EE/77-7								
4. TITLE (and Sublitte)	5. TYPE OF REPORT & PERIOD COVERED							
PITCH RATE FLIGHT CONTROL FOR THE F-16 AIRCRAFT TO	MS Thesis							
IMPROVE AIR-TO-AIR COMBAT	6. PERFORMING ORG. REPORT NUMBER							
7. AUTHOR(*)	B. CONTRACT OR GRANT NUMBER(s)							
Michael A. Marchand Capt USAF								
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS							
Air Force Institute of Technology(AFIT-EN) Wright-Patterson AFB, Ohio 45433	Project 7071-00-12							
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE							
Air Force Flight Dynamics Laboratory/FGLC Wright-Fatterson AFB OH 45433	December, 1977							
	173							
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)							
	Unclassified							
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE							
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from								
Jerral F. Guess, Captain, USAF Director of Information								
19. KEY WORDS (Centinue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)								
Digital simulations were developed to implement a pitch rate control system for the F-16 aircraft engaged in aerial gunnery.								

First, the EASY Modelling and Analysis Program by Boeing Computer Services was adapted to implement a longitudinal axis F-16 aireraft, flight control system, and pilot model. Comparison of closed loop system responses indicated a proposed pitch rate,

flight gentral configuration would improve target tracking

performance. The Terminal Aerial Weapon Delivery Simulation (TAWDS) program by McDonnell Douglas Corporation was adapted for the F-16 aircraft. A non-linear, six-degree-of-freedom aircraft model, multi-axis flight control system, and multi-axis pilot model were developed to demonstrate target tracking capabilities. Eight different air-to-air scenarios were developed to simulate evasive encounters with an F-4 target aircraft. Time history target tracking errors indicated the improved tracking performance of the proposed pitch rate flight control configuration over the present normal acceleration configuration of the F-16 aircraft.

- CITIF on Company of slouistan-SP STATE OF A SMALL SOLVEY, THE PARTY OF Town of the solution of the following the court United State State States of the and the states are stated as the states of the state of the state of the states o Re cayed for possing release; InW AFR 110-Jerol I. Suese, Cardesta, Cont AND THE COURT OF THE PROPERTY AND THE PROPERTY AND THE PROPERTY OF STREET, AND THE PROPERTY OF Stoffed sirulations were developed to implement a pitch com sated every for the delegate arrowed an action of the ivet the TASY Modelling and Analysis Program by Boning Compute erytoon was adapted to inches mit a templified and motor -rult, ii elt control syare sac plat moull. Com erison of end les ourses proportion of the second of the proportion of

UNCLASSIFIED