Inducción en grafos Algoritmos y Estructuras de Datos III

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Inducción básica

- Quiero probar que para todo entero positivo n, se cumple P(n). Basta con ver que
 - (1) P(1) se cumple
 - (2) Si P(n-1) se cumple, entonces P(n) se cumple
- Decimos que (1) es el caso base y (2) es el paso inductivo.
- Recordar efecto domino

Inducción fuerte

- Quiero probar que para todo entero positivo n, se cumple P(n) (nuevamente)
- Necesitamos asumir algo más fuerte:
 - (1) P(1) se cumple
 - (2) Si $\forall k < n \ P(k)$ se cumple, entonces P(n) se cumple
- Decimos que (1) es el caso base y (2) es el paso inductivo.

Probando cosas falsas...

Enunciado

Si todos los vértices tienen grado mayor a cero, el grafo es conexo

 Recordemos que un grafo es conexo si existe un camino entre cualquier par de vértices

Contraejemplos

Demostración

- P(n): Si cada vértice de un grafo con n vértices tiene grado mayor a cero, luego el grafo es conexo.
- ► Caso Base (n ≤ 2):
 - 1. P(1): No puede tener grado positivo, Cumple.
 - 2. P(2): Solo un grafo que cumple tener grados positivos, K_2 . Es un grafo conexo. Cumple.

Demostración: Paso Inductivo

- ▶ Debemos mostrar que $P(n) \Rightarrow P(n+1)$ para todo $n \ge 2$.
- ▶ Considerar G_n tal que $\forall v \in V(G_n), d(v) > 0$ (vértices con grado mayor a cero).
- ▶ Por H.I. G_n está conectado. Agregamos el vértice x para obtener G_{n+1}.
- ▶ Para ver que G_{n+1} está conectado debemos ver que existe camino entre x a cualquier otro vértice z.

Ejemplo

- ▶ Para ver que G_{n+1} está conectado debemos ver que existe camino entre x a cualquier otro vértice z.
- ▶ Como x tiene grado positivo, existe una arista (x, y).
- Para llegar de x a z podemos usar la arista (x, y) y el camino y − z.
- ▶ Por lo tanto vale P(n+1).

Errores

- Cada paso es correcto, el problema es que esto no prueba P(n+1).
- Para probar P(n+1) debo probar que todo grafo de n+1 vértices debe ser conexo.
- Lo que muestro es que todo grafo de n + 1 vértices que puede ser construido agregando vértices de grado positivo a grafos conexos, es conexo.
- Hay grafos de n + 1 vértices que no pueden ser construidos de ese modo. (Ver contraejemplos)
- ▶ El error esta en suponer que todos los grafos de n + 1 vértices pueden ser construidos usando todos los grafos de n vértices que cumplen la propiedad P(n).
- Para algunas propiedades puede ser cierto, pero para otras no lo es.

Evitar Errores

- Cómo evitar caer en este error?
- Comenzar con un grafo arbitrario de n + 1 vértices, remover un vértice, y aplicar H.I. P(n) al nuevo grafo.
- Agregar nuevamente el vértice y ver que efectivamente se cumple P(n+1).
- Probemos...

Evitar Errores

- ▶ Consideremos un grafo arbitrario G_{n+1} , con todos los vértices de grado positivo.
- Removemos un vértice arbitrario v
- Ahora tenemos un grafo G_n donde cada vértice tiene grado... depende los vecinos de v.
- El G_n podría tener vértices de grado 0, por lo que no podemos aplicar P(n).
- Y ahora? No podemos seguir, y no hay problema con eso porque la propiedad no vale.

Problema

Enunciado

Todo G_n ($n \ge 2$) conexo tiene al menos dos vértices distintos v_1 , v_2 tal que $G \setminus \{v_1\}$ y $G \setminus \{v_2\}$ son conexos.

- ▶ Recordar que si un grafo *G* no es conexo, entonces tiene al menos 2 componentes conexas.
- Vamos a usar Inducción en |V(G)| = n

Caso Base

- ▶ Si n = 2, y el grafo es conexo, es un K_2 .
- Ver que cumple es trivial.

- ▶ Sea G_{n+1} un grafo conexo con $n \ge 2$. Asumimos por H.I. que vale la propiedad para G_k , $(k \le n)$.
- ▶ Si: $\forall v \in V(G_{n+1})$, ocurre que $G \setminus \{v\}$ es conexo. Entonces, se cumple la propiedad para G_{n+1} .
- ▶ Sino: $\exists v \in V(G_{n+1})$ tal que $G \setminus \{v\}$ NO es conexo.
- ▶ Entonces $G \setminus \{v\}$ tiene las siguientes componentes conexas: $C_1, C_2, \ldots, C_k, (k \ge 2)$.

► Entonces $G \setminus \{v\}$ tiene las siguientes componentes conexas: $C_1, C_2, \ldots, C_k, (k \ge 2)$.

▶ Definimos C'_i : $C_i \cup \{v\}$:

▶ Definimos C'_i : $C_i \cup \{v\}$:

► Cada C'_i es un grafo conexo con al menos dos vértices y $|V(C'_i)| < n+1$

- ► Cada C'_i es un grafo conexo con al menos dos vértices, y $|V(C'_i)| < n+1$
- Por H.I. C'_i tiene dos vértices distintos v₁, v₂ tales que C'_i \ {v₁} y C'_i \ {v₂} son conexos.
- Alguno de {v₁, v₂} es distinto de v. Supongamos sin perdida de generalidad, v₁ ≠ v:
- ► G_{n+1} \ {v₁} es conexo. Y cada componente C'_i contiene a 'su propio v₁'.
- ▶ Tengo al menos dos componentes conexas $(k \ge 2)$. Por lo tanto, tengo al menos dos vértices (los v_1 de cada C'_i) que al sacarlos me dejan el grafo conexo.
- ► Fin.

Fin

DUDAS