Figure 4.1 DPCM principles: (a) encoder/decoder schematic; (b) encoder timing.

Figure 4.2 Third-order predictive DPCM signal encoder and decoder schematic.

Figure 4.3 ADPCM subband encoder and decoder schematic.

Figure 4.4 Linear predictive coding (LPC) signal encoder and decoder schematic.

Figure 4.5 Perceptual properties of the human ear: (a) sensitivity as a function of frequency; (b) frequency masking.

Figure 4.6 Variation with frequency of effect of frequency masking.

Figure 4.7 Temporal masking caused by a loud signal.

Figure 4.8 MPEG perceptual coder schematic: (a) encoder/decoder implementation schematic (b) example frame format.

Figure 4.9 Perceptual coder schematics: (a) forward adaptive bit allocation (MPEG); (b) fixed bit allocation (Dolby AC-1).

AFB = analysis filter bank SFB = synthesis filter bank SMRs = signal-to-mask ratios QB = quantization blocks DQ = dequantization blocks PM = psychacoustic model FF = frame formatter

Figure 4.10 Perceptual coder schematic: (a) backward adaptive bit allocation (Dolby AC-2); (b) hybrid backward/forward adaptive bit allocation (Dolby AC-s).

AFB = analysis filter bank

SFB = synthesis filter bank

 PM_F

SEE = spectral envelope encoder

QB = quantization blocks

Modification information

DQ = dequantization blocks

SED = spectral envelope decoder

Encoded

bitstream

PM = psychoacoustic model

FF = frame formatter

Figure 4.11 Example frame sequences with: (a) I- and P-frames only; (b) I-, P- and B-frames; (c) PB-frames.

Figure 4.12 P-frame encoding: (a) macroblock structure; (b) encoding procedure.

(b) Search region in target frame:

Figure 4.13 B-frame encoding procedure.

Figure 4.14 Implementation schematics: (a) I-frames; (b) P-frames; (c) B-frames; (d) example macroblock encoded bitstream format.

Figure 4.15 H.261 encoding formats: (a) macroblock format; (b) frame/picture format; (c) GOB structure.

Figure 4.16 H.261 video encoder principles: (a) implementation schematic; (b) FIFO buffer operation.

Figure 4.17 H.263 error tracking scheme: (a) example error propagation; (b) same example with error tracking applied.

Figure 4.18 Independent segment decoding: (a) effect of a GOB being corrupted; (b) when used with error tracking.

Figure 4.19 Reference picture selection with independent segment decoding: (a) NAK mode; (b) ACK mode.

Figure 4.20 MPEG-1 example frame sequence.

Figure 4.21 MPEG-1 video bitstream structure: (a) composition; (b) format.

Figure 4.22 MPEG-2 DCT block derivation with I-frames: (a) effect of interlaced scanning; (b) field mode; (c) frame mode.

Figure 4.23 Content-based video coding principles showing how a frame/scene is defined in the form of multiple video object planes.

Figure 4.24 MPEG-4 coding principles: (a) encoder/decoder schematics; (b) VOP encoder schematic.

Figure 4.25 MPEG-4 decoder schematic.

Figure 4.26 MPEG-4 encoding: (a) conventional GOB approach; (b) using fixed-length video packets; (c) video packet format.

Figure 4.27 Reversible VLCs: (a) example codeword set; (b) effect of transmission errors on decoding procedure.

(a)

VLC	RVLC
1	111
01	1011
001	10011
0001	100011

Maximum codeword length = 6 bits

An MPEG-1 system uses the frame sequence shown in Figure 4.20.

- (i) Define the terms M and N and hence determine their values for the sequence shown in the figure.
- (ii) Derive a suitable reordered sequence that ensures firstly, only two frames must be stored in the decoder, and secondly, the required I-and/or P-frames are available to decode each P- and B-frame as they are received.

Answer:

- (i) As we described earlier in Section 4.3.1 under the subheading of "Frame types", M is the distance (in frames) between a P-frame and the immediately preceding I- or P- frame, and N is the number of frames between two successive I-frames. The latter is known as a group of pictures or GOP. Hence for the frame sequence shown in Figure 4.20, M = 3 and N = 12.
- (ii) A suitable reordered frame sequence that meets the defined requirements is:

IPBBPBBPBBIBBPBB ...

A digitized video is to be compressed using the MPEG-1 standard. Assuming a frame sequence of:

IBBPBBPBBPBBI...

and average compression ratios of 10:1 (I), 20:1 (P) and 50:1 (B), derive the average bit rate that is generated by the encoder for both the NTSC and PAL digitization formats.

Answer:

Frame sequence = IBBPBBPBBI...

Hence: 1/12 of frames are I-frames, 3/12 are P-frames, and 8/12 are B-frames.

and Average compression ratio =
$$(1 \times 0.1 + 3 \times 0.05 + 8 \times 0.02)/12$$

= 0.0342 or $29.24:1$

NTSC frame size:

Without compression = $352 \times 240 \times 8 + 2 (176 \times 120 \times 8)$

= 1.013760 Mbits per frame

With compression = $1.01376 \times 1/29.24$

= 34.670 kbits per frame

Hence bit rate generated at $30 \, \text{fps} = 1.040 \, \text{Mbps}$

PAL frame size:

Without compression = $352 \times 288 \times 8 + 2 (176 \times 144 \times 8)$

= 1.216512 Mbits per frame

With compression = $1.216512 \times 1/29.24$

= 41.604 kbits per frame

Hence bit rate generated at 25 fps = 1.040 Mbps

Normally, allowing for packetization and multiplexing overheads, a bandwidth of 1.2 Mbps is allocated for the video. Hence, assuming a maximum bit rate of 1.5 Mbps, this leaves 300 kbps for the compressed audio stream.