TEA010 Matemática Aplicada II

Curso de Engenharia Ambiental

Departamento de Engenharia Ambiental, UFPR

P04A, 17 nov 2023

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [40] Considere o problema de Sturm-Liouville

$$\frac{d}{dx} \left[e^{-x} \frac{dy}{dx} \right] + e^{-x} y(x) + \lambda e^{-x} y(x) = 0, \qquad y(0) = 0, \ y(1) = 0.$$

- a) [10] Qual é o intervalo dos valores possíveis de λ ?
- b) [10] Obtenha os autovalores λ_n .
- c) [10] Obtenha as autofunções y_n .
- d) [10] Prove que $\langle y_m(x), y_n(x) \rangle = 0$, $m \neq n$, ou seja: que as autofunções são ortogonais. **Observação:** você vai precisar de

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b),$$

$$\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b).$$

SOLUÇÃO DA QUESTÃO:

a) Inicialmente, note que $p(x) = e^{-x}$, $q(x) = e^{-x}$ e $w(x) = e^{-x}$. A EDO é

$$e^{-x} \frac{d^{2}y}{dx^{2}} - e^{-x} \frac{dy}{dx} + e^{-x} (1 + \lambda) y(x) = 0;$$
$$\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} + (1 + \lambda) y(x) = 0.$$

A equação característica é

$$r^2-r+(1+\lambda)=0;$$

$$r=\frac{1\pm\sqrt{1-4(1+\lambda)}}{2}$$

Inicialmente, suponha $r \in \mathbb{R}$; então,

$$1 - 4(1 + \lambda) \ge 0,$$

$$4(1 + \lambda) \le 1,$$

$$1 + \lambda \le \frac{1}{4},$$

$$\lambda \le -\frac{3}{4}.$$

Se $\lambda = -3/4$, temos 2 raízes repetidas r = 1/2, e

$$y(x) = c_1 e^{x/2} + c_2 x e^{x/2}$$
.

com

$$y(0) = 0 \implies c_1 = 0;$$

 $y(1) = 0 \implies c_2 = 0.$

Logo, $y(x) \equiv 0$, e $\lambda = -3/4$ não pode ser autovalor. Se $\lambda < -3/4$, faça

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{1 - 4(1 + \lambda)}}{2} > 0;$$

$$y(x) = e^{x/2} [A \cosh(\beta x) + B \sinh(\beta x)];$$

$$y(0) = 0 \implies A = 0;$$

$$y(1) = 0 \implies e^{1/2} B \sinh(\beta) = 0 \implies B = 0,$$

$$y(x) \equiv 0.$$

e novamente λ não pode ser autovalor.

Finalmente, suponha $\lambda > -3/4$; então as raízes são complexas:

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{-\left[1 - 4(1 + \lambda)\right]}}{2} > 0;$$

$$r = \alpha \pm i\beta;$$

$$y(x) = e^{x/2} \left[A\cos(\beta x) + B\sin(\beta x) \right];$$

$$y(0) = 0 \implies A = 0;$$

$$y(1) = 0 \implies e^{1/2} B\sin(\beta) = 0 \implies \sin(\beta) = 0.$$

Portanto, o intervalo de valores possíveis de λ é

$$\lambda > -3/4$$
.

b) Como nós supusemos $\beta > 0$, devemos ter

$$\beta_n = \frac{\sqrt{-\left[1 - 4(1 + \lambda_n)\right]}}{2} = n\pi, \qquad n = 1, 2, 3, \dots$$

$$\frac{-\left[1 - 4(1 + \lambda_n)\right]}{4} = n^2 \pi^2,$$

$$-\left[1 - 4(1 + \lambda_n)\right] = 4n^2 \pi^2,$$

$$1 - 4(1 + \lambda_n) = -4n^2 \pi^2,$$

$$-4(1 + \lambda_n) = -1 - 4n^2 \pi^2,$$

$$(1 + \lambda_n) = \frac{1 + 4n^2 \pi^2}{4},$$

$$\lambda_n = \frac{-3 + 4n^2 \pi^2}{4}, \qquad n = 1, 2, 3, \dots$$

c) As autofunções correspondentes são

$$y_n = e^{x/2} \operatorname{sen}(n\pi x) \blacksquare$$

d) Dadas duas autofunções $y_m(x)$ e $y_n(x)$, o produto interno com $w(x) = e^{-x}$ é

$$\begin{split} \langle y_m, y_n \rangle &= \int_0^1 y_m(x) y_n(x) w(x) \, \mathrm{d}x \\ &= \int_0^1 \mathrm{e}^{x/2} \, \mathrm{sen}(m\pi x) \, \mathrm{e}^{x/2} \, \mathrm{sen}(n\pi x) \, \mathrm{e}^{-x} \, \mathrm{d}x \\ &= \int_0^1 \mathrm{sen}(m\pi x) \, \mathrm{sen}(n\pi x) \, \mathrm{d}x \\ &= \frac{1}{2} \int_0^1 \left[\cos((m-n)\pi x) - \cos((m+n)\pi x) \right] \, \mathrm{d}x \\ &= \frac{1}{2(m-n)} \int_0^1 \cos((m-n)\pi x) \, (m-n) \mathrm{d}x - \frac{1}{2(m+n)} \int_0^1 \cos((m+n)\pi x) \, (m+n) \mathrm{d}x \\ &= \frac{1}{2(m-n)} \, \mathrm{sen}((m-n)\pi x) \Big|_0^1 - \frac{1}{2(m+n)} \, \mathrm{sen}((m+n)\pi x) \Big|_0^1 \\ &= \frac{1}{2(m-n)} \, \mathrm{sen}((m-n)\pi) - \frac{1}{2(m+n)} \, \mathrm{sen}((m+n)\pi) = 0 \, \blacksquare \end{split}$$

2 [30] Calcule a transformada de Fourier de

$$f(x) = \begin{cases} 1 - |x|, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO:

$$\mathscr{F}{f(x)}(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-1}^{+1} f(x) [\cos(kx) - i \sin(kx)] dx$$

$$= \frac{1}{\pi} \int_{0}^{+1} f(x) \cos(kx) dx \qquad \text{(pois } f \notin \text{par)}$$

$$= \frac{1}{\pi} \int_{0}^{+1} [1 - x] \cos(kx) dx$$

$$= \frac{1}{\pi} \times \frac{1 - \cos(k)}{k^2} \blacksquare$$

3 [30] Utilizando o método das características, resolva

$$\frac{\partial \phi}{\partial t} + e^t \frac{\partial \phi}{\partial x} = x, \qquad \phi(x, 0) = f(x).$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi(x, t) = F(s)$ sobre x = X(s) e t = T(s):

$$\phi(X(s), T(s)) = F(s);$$

$$\frac{dF}{ds} = \frac{\partial \phi}{\partial t} \frac{dT}{ds} + \frac{\partial \phi}{\partial x} \frac{dX}{ds};$$

$$\frac{dT}{ds} = 1 \Rightarrow T(s) = \underbrace{T(0)}_{\equiv 0} + s,$$

$$\frac{dX}{ds} = e^t = e^s,$$

$$\int_{X(0)}^{X(s)} d\xi = \int_0^s e^\tau d\tau,$$

$$X(s) - X(0) = e^s - 1 \Rightarrow X(0) = X(s) + 1 - e^s.$$

Mas

$$\frac{\partial \phi}{\partial t} + e^{t} \frac{\partial \phi}{\partial x} = x,$$

$$\frac{dF}{ds} = X(0) + e^{s} - 1,$$

$$F(s) - F(0) = \int_{\tau=0}^{s} [X(0) + e^{\tau} - 1] d\tau$$

$$F(s) = F(0) + (X(0) - 1)s + (e^{s} - 1)$$

$$F(0) = f(X(0)) = f(x + 1 - e^{t});$$

$$\phi(x, t) = F(s) = f(x + 1 - e^{t}) + (x + 1 - e^{t} - 1)t + (e^{t} - 1)$$

$$\phi(x, t) = f(x + 1 - e^{t}) + (x - e^{t})t + (e^{t} - 1) \blacksquare$$