Aufgabe 1. Lösen Sie mit Hilfe der Gaußelimination das Gleichungssystem Ax = b mit

Ø

$$A = \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 2 & 1 & 0 & 0 \\ 0 & 4 & 4 & 0 \end{pmatrix}$$

für

(a)
$$b = (6, 2, 4, 12)^T$$

(b)
$$b = (8, 7, 1, 12)^T$$

Bitte nutzen Sie stets für Ihre Implementierungen das python-Paket numpy und verwenden Sie für Arrays und Matrizen die darin enthaltenen Datentypen!

Aufgabe 2. Implementieren Sie die in der Vorlesung besprochene Gaußelimination als Python-Funktion mit Schnittstelle

$$x = gauss(A,b).$$

Testen Sie ihren Algorithmus mit den Gleichungssystemen aus Aufgabe 1. Wenden Sie Ihre Routine anschließend auf das System Ax = b mit

$$A = (a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,n}}, \quad a_{ij} = \frac{1}{i+j-1}, \qquad \qquad b = (b_i)_{i=1,\dots,n}, \quad b_i = \frac{1}{i+1}$$

für verschiedene Dimensionen $n \leq 20$ an. Vergleichen Sie die numerischen Resultate mit der exakten Lösung $x = (0,1,0,\ldots,0)^T$.

Ermitteln Sie (von Hand) die Anzahl der Fließkommaoperationen, die beim Eliminationsschritt bzw. beim rückwärts Einsetzen ausgeführt werden.

Aufgabe 3. Ein horizontal gespanntes elastisches Stromkabel hängt aufgrund der Gravitation durch. Die Höhe z(x) des Stromkabels am Punkt x kann vereinfacht durch folgendes Randwertproblem beschrieben werden:

$$z''(x) = 1$$
 für $x \in [0, 1],$ $z(0) = z(1) = 0$

Die Diskretisierung dieses Problems mit Hilfe finiter Differenzen führt auf ein Gleichungssystem der Form Ax=b mit

$$A = \begin{pmatrix} -2 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & -2 & 1 & 0 & & & \vdots \\ 0 & 1 & -2 & 1 & 0 & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & 1 & -2 & 1 & 0 \\ \vdots & & 0 & 1 & -2 & 1 & 0 \\ \vdots & & & 0 & 1 & -2 & 1 \\ 0 & \cdots & \cdots & 0 & 1 & -2 \end{pmatrix} \in \mathbb{R}^{n \times n}, \qquad b = \frac{1}{(n+1)^2} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$$

(a) Führen Sie für n=4 die Gaußelimination für $A\tilde{x}=\tilde{b},\ \tilde{b}=(1,1,1,1)^T,$ durch und bestimmen Sie die Lösung des Systems. Beachten Sie dabei, welche Matrixeinträge von A verändert werden.

(b) Implementieren Sie in Python eine Variante der Routinen aus Aufgabe 2, die die spezielle Tridiagonalgestalt von A ausnutzt. Speichern Sie dazu die drei wesentlichen Matrixdiagonalen in Vektoren ab.

Ermitteln Sie (von Hand) die Anzahl der Fließkomma
operationen im Eliminationsschritt bzw. beim rückwärts Einsetzen.

Ø

Lösen Sie das angegebene Gleichungssystem für n=100/1000/10000.

Aufgabe 4. Berechnen Sie die Cholesky-Zerlegung der Matrix

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 5 & -5 & 5 \\ 1 & -5 & 4 & -4 \\ -1 & 5 & -4 & 30 \end{pmatrix} .$$