Chapter 2 Marginal Models for Continuous Data

2.1 Simple Methods

- The reason why classical statistical techniques fail in the context of longitudinal data is that observations within subjects are correlated
 - > often the correlation between two repeated measurements decreases as the time span between those measurements increases
- The paired t-test accounts for this by considering subject-specific differences $\Delta_i = Y_{i1} Y_{i2}$
 - by this reduces the number of measurements to just one per subject, which implies that classical techniques can be applied again

- In the case of more than 2 measurements per subject, similar simple techniques are often applied to reduce the number of measurements for the ith subject, from n_i to 1
 - > Analysis at each time point separately

 - > Analysis of endpoints
 - > Analysis of increments

- Analysis at each time point separately
 - ▶ General idea: The data are analyzed at each occasion separately

> Advantages:

- * simple to interpret
- * uses all available data

Disadvantages:

- * does not consider 'overall' differences
- * does not allow to study the evolution of differences
- * problem of multiple testing
- * possible problems with missing data

- Analysis of area under the curve (AUC)
 - ▶ General idea: For each subject, the area under her curve is calculated

$$AUC_i = (t_{i2} - t_{i1}) \times (y_{i2} + y_{i1})/2 + (t_{i3} - t_{i2}) \times (y_{i3} + y_{i2})/2 + \dots$$

Afterwards, these AUCs are analyzed

> Advantages:

- * no problems of multiple testing
- * does not explicitly assume balanced data
- * compares 'overall' differences

- Analysis of area under the curve (AUC)
 - **Disadvantages:**
 - * uses only partial information
 - * possible problems with missing data

Analysis of endpoints

▶ General idea: Assess differences only on the last time point

> Advantages:

- * no problems of multiple testing
- * does not explicitly assume balanced data

Disadvantages:

- * applicable only in randomized trials
- * does not consider 'overall' differences
- * possible problems with missing data

Analysis of increments

 \triangleright General idea: A simple method to compare evolutions between subjects, correcting for differences at baseline, is to analyze the subject-specific changes $y_{in_i}-y_{i1}$

> Advantages:

- * no problems of multiple testing
- * does not explicitly assume balanced data

Disadvantages:

- * uses partial information
- * possible problems with missing data

- The AUC, endpoints and increments are examples of summary statistics
 - > such summary statistics summarize the vector of repeated measurements for each subject separately
- This leads to the following general procedure:
 - > **Step 1:** Summarize the data of each subject into one statistic
 - ▶ **Step 2:** Analyze the summary statistics, e.g. analysis of covariance to compare groups after correction for important covariates
- This way, the analysis of longitudinal data is reduced to the analysis of independent observations, for which classical statistical procedures are available

• However, all these methods have the disadvantage that (lots of) information is lost

This has led to the development of statistical techniques that overcome these disadvantages

2.2 Review of Linear Regression

- ullet Suppose we have a continuous outcome Y measured cross-sectionally
 - \triangleright Example: The serum bilirubin levels from the PBC dataset at baseline (i.e., time t=0)
- We are interested in making statistical inferences for this outcome, e.g.,
 - ▷ is there any difference between placebo and D-penicil corrected for the age and sex of the patients?
 - ▶ which factors best predict serum bilirubin levels?

• Definition of the linear regression model

$$\begin{cases} y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i \\ \\ \varepsilon_i \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

where

 $\triangleright y_i$ denotes the outcome for subject i

 $\triangleright x_{i1}, \ldots, x_{ip}$ denote the p covariates for subject i

 $\triangleright \beta_0, \beta_1, \dots, \beta_p$ the regression coefficients

 $\triangleright \varepsilon_i$ the error term for subject i

• Example: For the PBC patients we postulate the linear regression model

$$\log(\mathtt{serBilir}_i) = eta_0 + eta_1 \mathtt{Age}_i + eta_2 \mathtt{D-penicil}_i + arepsilon_i, \quad arepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

where

- \triangleright serBilir_i denotes the serum bilirubin of patient i at baseline
- \triangleright Age_i and D-penicil_i denote the Age and whether patient i received D-penicil or placebo
- $\triangleright \beta_0$, β_1 , and β_2 are the regression coefficients
- $\triangleright \varepsilon_i$ are the error terms

- Behind this model there are several assumptions, some obvious, some hidden. In particular:
 - > serum bilirubin is assumed to be only related to Age and treatment
 - by the relation between serum bilirubin and Age is linear
 - by the effect of Age is the same whatever the treatment the patient took, and vice versa
 - b the error terms are normally distributed
 - > the variance of the error terms does not depend on neither Age nor D-penicil
 - > measurements are independent with each other

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.5395	0.2824	1.91	0.0570
age	0.0015	0.0056	0.28	0.7817
drugD-penicil	-0.0933	0.1174	-0.79	0.4274

Interpretation

- $\triangleright \beta_0 = 0.5$ average log(Ser. Bilir.) for Age = 0 and placebo patients
- $\triangleright \beta_1 = 0.0015$ increase in average log(Ser. Bilir.) for every year increase for patient with the same treatment
- $\triangleright \beta_2 = -0.1$ decrease in average log(Ser. Bilir.) when receiving D-penicil versus placebo for patients of the same age

- Linear regression model with *matrix notation*
 - \triangleright the linear regression model for the n subjects

$$y_1 = \beta_0 + \beta_1 x_{11} + \ldots + \beta_p x_{1p} + \varepsilon_1$$

$$y_2 = \beta_0 + \beta_1 x_{11} + \ldots + \beta_p x_{1p} + \varepsilon_2$$

:

$$y_n = \beta_0 + \beta_1 x_{n1} + \ldots + \beta_p x_{np} + \varepsilon_n$$

- Linear regression model with *matrix notation*
 - \triangleright the linear regression model for the n subjects

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & & & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \\
\mathbf{y} = \mathbf{X} \qquad \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

- Linear regression model with *matrix notation*

 - $\triangleright \beta$: parameter vector
 - ▷ *E*: measurement error vector

Maximum likelihood estimators

$$\begin{cases} \widehat{\beta} &= (X^{\top}X)^{-1}X^{\top}y \\ \\ \widehat{\sigma}^2 &= \frac{1}{n}(y - X\widehat{\beta})^{\top}(y - X\widehat{\beta}) \end{cases}$$

where

 $\triangleright X^{\top} \text{ denotes the } \textit{transpose} \text{ of matrix } X$

 $\triangleright X^{\top}X$ denotes the *matrix product* of matrices X^{\top} and X

 $\rhd (X^\top X)^{-1} \text{ denotes the } \textit{matrix inverse} \text{ of matrix } (X^\top X)$

2.3 Marginal Models

- Let's go back to the independence assumption
 - by the first five rows of the data are:

id	serBilir	age	drug
1	14.50	58.77	D-penicil
2	1.10	56.45	D-penicil
3	1.40	70.07	D-penicil
4	1.80	54.74	D-penicil
5	3.40	38.11	placebo

Each row represents a different patient, and patients are **independent** of each other

• When we have repeated measurements data, we have the form

id	serBilir	year	age	drug
1	14.50	0.00	58.77	D-penicil
1	21.30	0.53	58.77	D-penicil
2	1.10	0.00	56.45	D-penicil
2	0.80	0.50	56.45	D-penicil
2	1.00	1.00	56.45	D-penicil
2	1.90	2.10	56.45	D-penicil
2	2.60	4.90	56.45	D-penicil

Multiple rows per subject, rows belonging to the same subject are **correlated**

- Note: Long vs Wide format
 - > wide format can only be used when all subjects are measured at the same time points

 - > (almost) all software accept repeated measurements data in long format

- How correlation affects modeling of the data?
- Say we are interested in the effect of time on serum bilirubin while also correcting for the age of the patients
 - > the corresponding regression equation is

$$\log(\mathtt{serBilir}_{ij}) = \beta_0 + \beta_1 \mathtt{Time}_{ij} + \beta_2 \mathtt{Age}_i + \varepsilon_{ij}$$

where

- * serBilir $_{ij}$ denotes the level of serum bilirubin of patient i at time point $Time_{ij}$
- * ε_{ij} is the corresponding error term

- The fact that the responses of each patient are correlated translates to error terms that are correlated
 - ⊳ based on the data of the first two patients (see pp.47) we have

$\boxed{14.5}$		$\lceil 1 \rceil$	0.0	58.8			$oxedsymbol{arepsilon}_{11}$
21.3		1	0.5	58.8			$arepsilon_{12}$
1.1		1	0.0	56.5	β_0		$arepsilon_{21}$
0.8	=	1	0.5	56.5	β_1	+	$arepsilon_{22}$
1.0		1	1.0	56.5	$oxed{eta_2}$		$arepsilon_{23}$
1.9		1	1.9	56.5			$arepsilon_{24}$
2.6		$\lfloor 1$	2.6	56.5			$arepsilon_{25}$

ullet The direct approach to account for correlated data \Rightarrow multivariate regression

$$y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i),$$

where

- $\triangleright y_i$ the vector of responses for the *i*-th subject
- $\triangleright X_i$ design matrix describing structural component
- $\triangleright V_i$ covariance matrix describing the correlation structure

The covariance matrix V_i explicitly accounts for the correlations

2.4 Interpretation

- Interpretation of β
 - $\triangleright \beta_j$ denotes the change in the average y_i when x_j is increased by one unit and all other covariates are fixed
- Example: In the AIDS dataset we are interested in the effect of treatment on the average longitudinal evolutions we fit a marginal model with
 - \triangleright different average longitudinal evolutions per treatment group $(X\beta)$ part
 - \triangleright compound symmetry covariance matrix $(V_i \text{ part})$

$$\left\{ \begin{array}{l} \sqrt{\mathtt{CD4}_{ij}} = \beta_0 + \beta_1 \mathtt{Time}_{ij} + \beta_2 \{\mathtt{ddI}_i \times \mathtt{Time}_{ij}\} + \varepsilon_{ij}, \\ \\ \varepsilon_i \sim \mathcal{N}(0, V_i) \end{array} \right.$$

	Value	Std.Err.	t-value	p-value
β_0	7.189	0.221	32.593	< 0.001
β_1	-0.156	0.017	-9.247	< 0.001
β_2	0.016	0.024	0.662	0.508

- \triangleright Coefficient $\beta_1:$ For patients in the ddC group, every month the average $\sqrt{\text{CD4}}$ changes by -0.156
- \triangleright Coefficient β_2 :
 - * Is the difference of the time effect between ddl and ddC
 - * For patients in the ddl group, every month the average $\sqrt{\text{CD4}}$ changes by $\left(\text{-0.156} + \text{0.016}\right)$

ullet The estimated covariance matrix V_i is

$$> \operatorname{corr}(CD4_{t=0}, CD4_{t=2}) = \frac{\operatorname{cov}(CD4_{t=0}, CD4_{t=2})}{\sqrt{\operatorname{var}(CD4_{t=0})}\sqrt{\operatorname{var}(CD4_{t=2})}} = \frac{20.3}{24.15} = 0.84$$

- Note: Interaction terms for longitudinal data
 - Consider the model

$$y_{ij} = \beta_0 + \beta_1 \mathtt{Time}_{ij} + \beta_2 \mathtt{Sex}_i + \varepsilon_{ij}, \quad \varepsilon_i \sim \mathcal{N}(0, V_i)$$

- * we include the time effect and we also control for sex
- * the model assumes that the effect of time is the same for the two sexes (parallel lines)

Interaction Terms

- Note: Interaction terms for longitudinal data
 - if we would like different longitudinal evolutions for the two sexes we need to include the interaction term

$$y_{ij} = \beta_0 + \beta_1 \mathtt{Time}_{ij} + \beta_2 \mathtt{Sex}_i + \beta_3 \{\mathtt{Sex}_i \times \mathtt{Time}_{ij}\} + \varepsilon_{ij}, \quad \varepsilon_i \sim \mathcal{N}(0, V_i)$$

Interaction Terms

- Communicating a model with complex terms: Due to the elaborate structure of repeated measurements data it is often required to include complex terms in a model

 - ▷ nonlinear terms (e.g., nonlinear evolutions in times modeled with polynomials or splines)
- ullet In such cases the regression coefficients eta we obtain in the output do not often have a straightforward interpretation

- To overcome this issue we can use **effect plots**
 - ▶ this is a figure that depicts the average outcome along with 95% confidence intervals for specific combinations of the predictors levels
- Example: We have fitted the following model to the PBC dataset:

$$\begin{cases} \log(\text{serBilir}_{ij}) = \beta_0 + \beta_1 N(\text{Time}_{ij})_1 + \beta_2 N(\text{Time}_{ij})_2 + \beta_3 \text{Female}_i + \beta_4 \text{Age}_i + \\ \beta_5 \{\text{Female}_i \times N(\text{Time}_{ij})_1\} + \beta_6 \{\text{Female}_i \times N(\text{Time}_{ij})_2\} + \\ \beta_7 \{\text{Female}_i \times \text{Age}_i\} + \varepsilon_{ij} \end{cases}$$

$$\varepsilon_i \sim \mathcal{N}(0, V_i) \qquad V_i \text{ has a continuous AR1 structure}$$

- The terms $N(\text{Time}_{ij})_1$ and $N(\text{Time}_{ij})_2$ denote the basis for a natural spline with two degrees of freedom to model possible nonlinearities in the time effect
- In this model not all coefficients have a direct interpretation in isolation
- Hence to understand the model we depict
 - > how the average longitudinal profiles evolve over time time,
 - > separately for males and females, and
 - be for the average age of 49 years old (in the app different ages can be selected).
 - ▷ including also the corresponding 95% pointwise confidence intervals

2.5 Estimation

- Estimation of model parameters
 - \triangleright For known covariance matrix V_i , the regression coefficients are estimated using generalized least squares

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_i^{\top} V_i^{-1} X_i\right)^{-1} \sum_{i=1}^{n} X_i^{\top} V_i^{-1} y_i$$

- \triangleright Variance Components matrix V_i :
 - * Maximum Likelihood (ML)
 - * restricted maximum likelihood (REML)

- What's the difference between ML and REML?
 - > ML estimates of variances are known to be biased in small samples
 - b the simplest case: Sample variance

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

* to obtain an unbiased estimate we need to divide by n-1

The REML estimation is a generalization of this idea

- ullet It provides unbiased estimates of the parameters in the covariance matrix V_i in small samples
- Example: To illustrate the difference between REML and ML we consider fitting the same model for the AIDS dataset we have seen before but using only the first 50 rows

▶ REML Estimation

	t = 0	t=2	t = 6	t = 12	t = 18
t = 0	16.03	13.48	13.48	13.48	13.48
t = 2	13.48	16.03	13.48	13.48	13.48
t = 6	13.48	13.48	16.03	13.48	13.48
t = 12	13.48	13.48	13.48	16.03	13.48
t = 18	13.48	13.48	13.48	13.48	16.03

▶ ML Estimation

	t = 0	t=2	t = 6	t = 12	t = 18
t = 0	14.97	12.56	12.56	12.56	12.56
t = 2	12.56	14.97	12.56	12.56	12.56
t = 6	12.56	12.56	14.97	12.56	12.56
t = 12	12.56	12.56	12.56	14.97	12.56
t = 18	12.56	12.56	12.56	12.56	14.97

^{*} We observe some visible differences because of small n

^{*} In the full dataset the differences are negligible

- Features of REML estimation:
 - > Available in all software that fit marginal and mixed effects models
 - \triangleright The way it works is by applying a transformation in the longitudinal outcome y based on the chosen structure of the design matrix X (i.e., which predictors you have included in the model)
 - ▶ Hence, we <u>cannot</u> compare the likelihoods of models fitted with REML and have different $X\beta$ part

2.6 Fitting Marginal Models in R

- R> Marginal models can be fitted using function gls() from the **nlme** package
- R> It has four basic arguments
 - ▷ model: a formula specifying the response vector and the covariates to include in the model

 - > correlation: an object describing the assumed correlation structure
 - ▷ weights: an object describing the assumed describing the within-group heteroscedasticity structure

2.6 Fitting Marginal Models in R (cont'd)

R> The data frame that contains all variables should be in the *long format*

Subject	У	time	gender	age
1	5.1	0.0	male	45
1	6.3	1.1	male	45
2	5.9	0.1	female	38
2	6.9	0.9	female	38
2	7.1	1.2	female	38
2	7.3	1.5	female	38
ŧ	i	i	:	:

2.6 Fitting Marginal Models in R (cont'd)

R> Using formulas in R

R> Note: the intercept term is included by default

2.6 Fitting Marginal Models in R (cont'd)

R> The following code fits a marginal model for CD4 cell count with an AR1 correlation structure

2.7 Covariance Matrix

• Reminder: What is a variance-covariance matrix?

b we have the dataset:

Subject	Y_1	Y_2	Y_3	Y_4
1	2.1	3.2	2.9	3.3
2	1.8	3.1	4.2	5.1
3	3.1	3.2	3.5	3.3
÷	÷	÷	÷	÷

• The variance-covariance matrix is the matrix whose element in the i, j-th position is the covariance between Y_i and Y_j , e.g.,

$$\begin{bmatrix} \mathsf{var}(Y_1) & \mathsf{cov}(Y_1,Y_2) & \mathsf{cov}(Y_1,Y_3) & \mathsf{cov}(Y_1,Y_4) \\ \mathsf{cov}(Y_2,Y_1) & \mathsf{var}(Y_2) & \mathsf{cov}(Y_2,Y_3) & \mathsf{cov}(Y_2,Y_4) \\ \mathsf{cov}(Y_3,Y_1) & \mathsf{cov}(Y_3,Y_2) & \mathsf{var}(Y_3) & \mathsf{cov}(Y_3,Y_4) \\ \mathsf{cov}(Y_4,Y_1) & \mathsf{cov}(Y_4,Y_2) & \mathsf{cov}(Y_4,Y_3) & \mathsf{var}(Y_4) \end{bmatrix}$$

Properties

> on the diagonal the variances, of diagonal covariances

$$\triangleright$$
 symmetric \Rightarrow cov $(Y_1, Y_2) = \text{cov}(Y_2, Y_1)$

- Variances, covariances and correlations
 - > variance measures how far a set of numbers is spread out (always positive)
 - covariance is a measure of how much two random variables change together (positive or negative)
 - \triangleright correlation a measure of the linear correlation (dependence) between two variables (between -1 and 1; 0 no correlation)

$$\operatorname{corr}(Y_1,Y_2) = \frac{\operatorname{cov}(Y_1,Y_2)}{\sqrt{\operatorname{var}(Y_1)}\sqrt{\operatorname{var}(Y_2)}}$$

ullet Due to the fact that the magnitude of the covariance between Y_1 and Y_2 depends on their variability, we translate the covariance matrix to a correlation matrix

Coming back to our model

$$y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i)$$

- ullet We need an appropriate choice for V_i in order to appropriately describe the correlations between the repeated measurements

> autoregressive process

- ▷ exponential spatial correlation
- ▷ ...

- Let's see some of those
 - □ General/Unstructured

$$\begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

Diagonal

$$\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$

$$egin{bmatrix} \sigma^2 &
ho\sigma^2 &
ho^2\sigma^2 \
ho\sigma^2 & \sigma^2 &
ho\sigma^2 \
ho^2\sigma^2 &
ho\sigma^2 & \sigma^2 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_1^2 & \rho_1 \sigma_1 \sigma_2 & \rho_2 \sigma_1 \sigma_3 \\ \rho_1 \sigma_1 \sigma_2 & \sigma_2^2 & \rho_1 \sigma_2 \sigma_3 \\ \rho_2 \sigma_1 \sigma_3 & \rho_1 \sigma_2 \sigma_3 & \sigma_3^2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \sigma^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma^2 & \sigma_{12} \\ \sigma_{13} & \sigma_{12} & \sigma^2 \end{bmatrix}$$

- The aforementioned structure for the covariance matrix are applicable in cases we have discrete and equally spaced time points
- For continuous time and unbalanced data, alternative options are:

 - ▷ exponential serial correlation

- These serial correlation structures are defined using the semi-variogram
 - by which we are not going to cover here because it is a bit technical (more info in any standard text for mixed models / longitudinal data analysis)
- the basic assumption is that correlations decay with the time lag $|t_i t_j| \Rightarrow$ measurements at closer time points are more strongly correlated than measurements at more distant time points
 - > each of these structure how one parameter that controls how correlation decay in time

- Notes: on building covariance matrices
 - ► variance function: in some cases, and especially for longitudinal data quite often, it may not be reasonable to assume that the variance of the outcome remains constant in time
 - * we have seen versions of heteroscedastic covariance matrices, but these are only applicable when we have balanced data and few time points
 - * for unbalanced designs we can specify other variance functions, e.g., that variances increase linearly or exponentially with time
 - *correlation at the same point:* is it **always** reasonable that the correlation of the outcome at the same point is set to 1?

• Let's try the app...

2.8 Model Building

- We have seen that marginal models consist of two parts:
 - \triangleright Mean part $X\beta$: that describes how covariates we have put in the model explain the average of the repeated measurements
 - \triangleright Covariance part V_i : assumed covariance structure between the repeated measurements

• In the majority of the cases scientific interest focuses on the mean part

However, to obtain valid and efficient inferences for this part, the covariance part need to be adequately specified

2.8 Model Building (cont'd)

- Hence, the general strategy for building models for repeated measurements data proceeds as follows:
 - 1. Put all the covariates of interest in the mean part, considering possible interactions between them do NOT remove the ones that are not significant
 - 2. Then select an appropriate covariance matrix V_i that adequately describes the correlations in the repeated measurements
 - * in this step you should be a bit conservative, i.e., do not favor a simpler covariance matrix if the p-value is just non-significant
 - 3. Finally, return to the mean part and exclude non significant covariates
 - * first start by testing the interaction terms

2.8 Model Building (cont'd)

- How many covariates we can put in the mean part?
- It depends on how strong are the correlation between the repeated measurements
 - \triangleright weak correlations $\Rightarrow N/10$ (N total number of measurements)
 - \triangleright strong correlations $\Rightarrow n/10$ (n number of subjects)

2.9 Hypothesis Testing

- Having fitted a marginal model using maximum likelihood we can use standard inferential tools for performing hypothesis testing

 - ▷ Likelihood ratio tests

- Following the model building strategy described above, we will

 - > and following focus on hypothesis testing for the mean part of the model

- Hypothesis testing for V_i : Assuming the same mean structure we can fit a series of model and choose the that best describes the covariances
- In general, we distinguish between two cases
 - > comparing two models with *nested* covariance matrices
 - > comparing two models with *non-nested* covariance matrices
- Note: Model A is nested in Model B, when Model A is a special case of Model B, i.e.,
 - by setting some of the parameters of Model B at some specific value we then obtain Model A

• For **nested** models the preferable test for selecting V_i is the likelihood ratio test (LRT):

$$LRT = -2 \times \{\ell(\hat{\theta}_0) - \ell(\hat{\theta}_a)\} \sim \chi_p^2$$

where

- $\triangleright \ell(\hat{\theta}_0)$ the value of the log-likelihood function under the null hypothesis, i.e., the special case model
- $\triangleright \ell(\hat{\theta}_1)$ the value of the log-likelihood function under the alternative hypothesis, i.e., the general model
- $\triangleright p$ denotes the number of parameters being tested
- Note: Provided that the mean structure in the two models is the same, we can either compare the REML of ML likelihoods of the models (preferable is REML)

- Example: In the model we fitted for the AIDS dataset (see pp.52) we had assumed a compound symmetry covariance matrix we would like to see if this option was sufficient
 - ▷ we will compare the compound symmetry model:

$$H_0: V_i = \begin{bmatrix} t = 0 & t = 2 & t = 6 & t = 12 & t = 18 \\ \sigma^2 & \tilde{\sigma} & \tilde{\sigma} & \tilde{\sigma} & \tilde{\sigma} \\ & \sigma^2 & \tilde{\sigma} & \tilde{\sigma} & \tilde{\sigma} \\ & & \sigma^2 & \tilde{\sigma} & \tilde{\sigma} \\ & & & \sigma^2 & \tilde{\sigma} & \tilde{\sigma} \\ & & & & \sigma^2 & \tilde{\sigma} \\ & & & & & \sigma^2 \end{bmatrix}$$

> versus the unstructured model

$$H_a: V_i = \begin{bmatrix} t = 0 & t = 2 & t = 6 & t = 12 & t = 18 \\ \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} & \sigma_{15} \\ & \sigma_2^2 & \sigma_{23} & \sigma_{24} & \sigma_{25} \\ & & \sigma_3^2 & \sigma_{34} & \sigma_{35} \\ & & & \sigma_4^2 & \sigma_{45} \\ & & & & \sigma_5^2 \end{bmatrix}$$

We can rewrite the two hypothesis as

$$H_0: \begin{cases} \sigma_1^2 = \sigma_2^2 = \dots = \sigma_5^2 = \sigma^2 \\ \sigma_{12} = \sigma_{13} = \dots = \sigma_{45} = \tilde{\sigma} \end{cases}$$

 H_a : at least one variance of covariance is not equal to the others

• The likelihood ratio test gives:

	df	logLik	LRT	p-value
Comp Symm	5	-3586.91		NA
General	18	-3547.72	78.39	< 0.0001

- When we have **non-nested** models we **cannot** use standard tests anymore
- As an alternative for this case we use information criteria the two standard ones are:

$$\begin{aligned} \mathsf{AIC} &= -2\ell(\hat{\theta}) + 2n_{par} \\ \mathsf{BIC} &= -2\ell(\hat{\theta}) + n_{par}\log(n) \end{aligned}$$

where

- $riangleright \ell(\hat{ heta})$ is the value of the log-likelihood function
- $\triangleright n_{par}$ the number of parameters in the model
- $\triangleright n$ the number of subjects (independent units)

When we compare two **non-nested** models we choose the model that has the **lowest** AIC/BIC value

• Example: For the Prothrobin data we compare the exponential and Gaussian serial correlation structures – the model are:

$$\begin{cases} \textit{M_1: $\operatorname{pro}_{ij} = \beta_0 + \beta_1 \operatorname{Time}_{ij} + \beta_2 \{\operatorname{predn}_i \times \operatorname{Time}_{ij}\} + \varepsilon_{ij}, & \varepsilon_i \sim \mathcal{N}(0, V_i^{Exp}) \\ \\ \textit{M_2: $\operatorname{pro}_{ij} = \beta_0 + \beta_1 \operatorname{Time}_{ij} + \beta_2 \{\operatorname{predn}_i \times \operatorname{Time}_{ij}\} + \varepsilon_{ij}, & \varepsilon_i \sim \mathcal{N}(0, V_i^{Gauss}) \end{cases}$$

• The AIC and BIC values for the two models are:

	df	logLik	AIC	BIC
Exp	5	-13468.84	26947.67	26977.65
Gauss	5	-13750.88	27511.76	27541.73

▶ Both AIC and BIC suggest that the model with the exponential correlation structure is better

- The models we have assumed for the Prothrobin data assumed constant variance in time as we have mentioned (see pp. 82), this assumption is not often justified for longitudinal data
- We extend models M_1 and M_2 by assuming that the variances are an exponential function of time, i.e.,

$$\mathsf{var}(arepsilon_{ij}) = \sigma^2 \exp ig(\delta \mathtt{Time}_{ij} ig)$$

where

 $hd \delta$ is a parameter that controls how fast the variance changes with time

- * if $\delta < 0$, the variance decreases with time
- * if $\delta = 0$, the variance remains constant
- * if $\delta > 0$, the variance increases with time

ullet This means that models M_1 and M_2 are nested within their heteroscedastic cousins, i.e.,

 $H_0: \delta = 0$ homoscedastic model

 $H_a: \delta \neq 0$ heteroscedastic model

• This implies that we can perform a likelihood ratio test

	df	logLik	AIC	BIC	LRT	p-value
Exp - homoscedastic	5	-13468.84	26947.67	26977.65		NA
Exp - heteroscedastic	6	-13459.99	26931.97	26967.94	17.70	< 0.0001
Gauss - homoscedastic	5	-13750.88	27511.76	27541.73		NA
Gauss - heteroscedastic	6	-13748.10	27508.21	27544.18	17.70	0.0185

- ullet Notes: Hypothesis testing for the covariance matrix V_i
 - > The unstructured covariance matrix is the most general matrix we can assume:
 - * all other covariance matrices are a special case of the unstructured matrix
 - * **but** realistically it can only be fitted when we have balanced data and relatively few time points
 - ▷ The AIC and BIC do not always select the same model when they disagree
 - * AIC typically selects the more elaborate model, whereas
 - * BIC the more parsimonious model

- Hypothesis testing for the regression coefficients β : We assume that first a suitable choice for the covariance matrix has been made
- In the majority of the cases we compare nested models, and hence the standard test can be used
- We distinguish between two cases
 - > tests for individual coefficients
 - bets for groups of coefficients

- Tests for individual coefficients are based on the Wald-type statistic but assume the t distribution for calculating p-values
 - betto the betto t

$$H_0: \beta = 0$$

$$H_a:\beta\neq 0$$

 \triangleright and we use the t test statistic

$$\frac{\hat{eta}}{s.e.(\hat{eta})} \sim t_{df}$$

where $\hat{\beta}$ is the MLE, $s.e.(\hat{\beta})$ is the standard error of the MLE, and df are specified according to the number of subjects and number of repeated measurements per subject

- Tests for groups of coefficients are based on the F-test
 - b the set of hypotheses is:

$$H_0: L\beta = 0$$

$$H_a: L\beta \neq 0$$

where L is the contrasts matrix

 \triangleright the F test statistic is

$$\frac{\hat{\beta}^{\top}L^{\top}\bigg\{L\bigg(\sum\limits_{i=1}^{n}X_{i}^{\top}V_{i}^{-1}X_{i}\bigg)^{-1}L^{\top}\bigg\}^{-1}L\hat{\beta}}{\operatorname{rank}(L)}\sim F_{d\!f_{1},d\!f_{2}}$$

- Tests for groups of coefficients are based on the F-test
 - \triangleright The numerator degrees of freedom are always equal to the rank of the contrast matrix L
 - Denominator degrees of freedom need to be estimated from the data:
 - * Containment method
 - * Satterthwaite approximation
 - * Kenward and Roger approximation

• Example: We have fitted the following model to the PBC dataset:

$$\begin{cases} \log(\texttt{serBilir}_{ij}) = \beta_0 + \beta_1 \texttt{Time}_{ij} + \beta_2 \texttt{Female}_i + \beta_3 \texttt{Age}_i + \\ \beta_4 \{\texttt{D-penicil}_i \times \texttt{Time}_{ij}\} + \beta_5 \{\texttt{Female}_i \times \texttt{Time}_{ij}\} + \varepsilon_{ij} \end{cases}$$

$$\varepsilon_i \sim \mathcal{N}(0, V_i)$$

where V_i has a continuous AR1 structure

- We are interested in
 - b the effect of Age, and
 - b the overall effect of Sex

• For the effect of Age we set the hypotheses:

$$H_0: \beta_3 = 0$$

$$H_a: \beta_3 \neq 0$$

• The output of the model gives: ...

	Value	Std.Err.	t-value	p-value
β_0	0.940	0.395	2.382	0.017
β_1	0.154	0.034	4.546	< 0.001
β_2	-0.281	0.218	-1.291	0.197
β_3	-0.002	0.006	-0.361	0.718
β_4	-0.014	0.020	-0.670	0.503
β_5	-0.064	0.034	-1.862	0.063

• Hence, a non-significant Age effect

 \triangleright the t-value in the output is the estimated coefficient divided by its standard error

• For the overall effect of Sex we set the hypotheses:

$$H_0: \beta_2 = \beta_5 = 0$$

 H_a : either eta_2 or eta_5 are not equal to 0

- We cannot obtain the p-value for this test directly from the output
- ullet We have six parameters, the contrast matrix L is

$$L = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 & \beta_3 & \beta_4 & \beta_5 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• We obtain

$$\frac{F\text{-value}}{4.458} \ \frac{df_1}{2} \ \frac{df_2}{1939} \ \frac{p\text{-value}}{0.0117}$$

- Hence, a significant overall sex effect
- We could also test the same hypotheses using a likelihood ratio test
 - ▷ in this case we compare the models under the null and alternative hypothesis

• The two models are:

$$H_0: \log(\mathtt{serBilir}_{ij}) = \beta_0 + \beta_1 \mathtt{Time}_{ij} + \beta_3 \mathtt{Age}_i + \beta_4 \{\mathtt{D-penicil}_i \times \mathtt{Time}_{ij}\} + \varepsilon_{ij}$$

$$\begin{split} H_a: \log(\texttt{serBilir}_{ij}) &= \beta_0 + \beta_1 \texttt{Time}_{ij} + \beta_2 \texttt{Female}_i + \beta_3 \texttt{Age}_i + \\ & \beta_4 \{\texttt{D-penicil}_i \times \texttt{Time}_{ij}\} + \beta_5 \{\texttt{Female}_i \times \texttt{Time}_{ij}\} + \varepsilon_{ij} \end{split}$$

 \triangleright for both models V_i has a continuous AR1 structure

• If we compare the two models we again end up in the same hypotheses:

$$H_0: \beta_2 = \beta_5 = 0$$

 H_a : either eta_2 or eta_5 are not equal to 0

• The likelihood ratio test gives

	df	logLik	AIC	BIC	LRT	p-value
without Sex	6	-1618.23	3248.46	3281.90		NA
with Sex	8	-1613.76	3243.52	3288.10	8.94	0.0114

• Hence, again the same conclusion, i.e., a significant overall sex effect

- Notes: Hypothesis testing for the regression coefficients β
 - \triangleright The likelihood ratio test, and the classical univariate and multivariate Wald tests (i.e., using the χ^2 distribution instead of the t or F distributions) are 'liberal' * they give smaller p-values than the ones they should give, especially in small
 - $^{f k}$ they give smaller p-values than the ones they should give, especially in small samples
 - ▶ Important: The likelihood ratio test for comparing models with different $X\beta$ parts is only valid when the models have been fitted using maximum likelihood and <u>not</u> REML (see also pp. 64–68)

2.10 Confidence Intervals

• Confidence intervals for model parameters are obtained from the approximate distribution of the maximum likelihood estimates (MLEs)

$$\hat{\beta} \sim \mathcal{N}(\beta^*, \mathsf{var}(\hat{\beta}))$$

where

 $\triangleright \hat{\beta}$ are the MLEs

 $\triangleright \beta^*$ the true parameter values

$$> \mathrm{var}(\hat{\beta}) = \left(\sum_{i=1}^n X_i^\top V_i^{-1} X_i\right)^{-1} \text{ is the covariance matrix of the MLEs}$$

2.10 Confidence Intervals (cont'd)

• For example, for the k-th regression coefficient β_k , the 95% Cl is

$$\hat{\beta} \pm 1.96 \times \text{s.e.}(\hat{\beta})$$

ullet To obtain confidence intervals for the whole mean evolution we need to multiply with a corresponding design matrix X (see pp. 43–44), i.e.,

$$X \hat{\beta} \pm 1.96 \times \sqrt{\mathsf{diag} \big\{ X \mathsf{var}(\hat{\beta}) X^\top \big\}}$$

b this type of confidence intervals have been used in the effects plots we have seen earlier (see pp. 59−145)

2.11 Residuals

All statistical models are based on assumptions

• Hence, to extract meaningful conclusions we need to check whether these assumptions are (crudely) violated

• The marginal model for continuous data makes analogous assumptions as the linear regression model

$$y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i)$$

namely

- \triangleright the error terms ε_i follow the normal distribution $\mathcal{N}(0,V_i)$
- \triangleright the error terms are independent from the covariates X
- \triangleright the covariates act linearly on the average outcome (here 'linearly' means with respect to the parameters β)

- ullet To validate these assumptions we need an estimate of the error terms $arepsilon_{ij}$
- Based on the fitted model we obtain the estimate

$$r_{ij} = y_{ij} - x_{ij}^{\mathsf{T}} \hat{\beta}$$

- $\triangleright \hat{\beta}$ are the (restricted) maximum likelihood estimates
- \triangleright the r_{ij} are called *residuals*

When the model is correctly specified, we expect these residuals to have a $\mathcal{N}(0, V_i)$ distribution

- Hence, we expect these residuals to be correlated and possibly also heteroscedastic
 - ▷ 'heteroscedastic' means that they exhibit non-constant variance
- This feature complicates matters because it is not easy to assess if the residuals exhibit the assumed properties
- ullet To overcome this problem we need to transform r_{ij} to a scale that has easier to check properties

• To achieve this we multiply the residual with the inverse Choleski factor

$$r_i^{norm} = \widehat{H}_i^{-1} r_i = \widehat{H}_i^{-1} (y_i - X_i \hat{\beta})$$

where

- $\triangleright \widehat{H}_i$ is an upper-triangular matrix with the property $\widehat{H}_i^{\top}\widehat{H}_i = \widehat{V}_i$, with \widehat{V}_i denoting the estimated covariance matrix
- $ightharpoonup rate} rate rate rate rate and rate rate rate and when the covariance matrix is correctly specified, they should be approximately distributed as <math>\mathcal{N}(0,1)$ random variables

• When we have assumed a homoscedastic covariance matrix (i.e., variance remains constant), another transformation that it is often used is

$$r_i^{Pears} = \hat{\sigma}^{-1} r_i = \sigma^{-1} (y_i - X_i \hat{\beta})$$

where

- $\triangleright \hat{\sigma}$ denotes the estimated standard deviation of the error term, i.e., V_i has the structure $\sigma^2 R_i$, with R_i denoting a correlation matrix
- ightharpoonup residuals and when the covariance matrix is correctly specified, they should be approximately distributed as $\mathcal{N}(0,R_i)$ random variables

• Example: We evaluate the assumptions behind the following model fitted to the AIDS dataset:

$$\begin{cases} \sqrt{\text{CD4}_{ij}} = \beta_0 + \beta_1 \text{Time}_{ij} + \beta_2 \{\text{ddI}_i \times \text{Time}_{ij}\} + \varepsilon_{ij}, \\ \\ \varepsilon_i \sim \mathcal{N}(0, V_i), \quad V_i \text{ is unstructured} \end{cases}$$

by plotting

- b the standardized residuals versus fitted values
- > the normalized residuals versus fitted values per treatment group

Observations

- behavior with more positive residuals in the range of low fitted values
- b the QQ-plot is not perfect, but does not show a big discrepancy from normality

• Example: We continue by evaluating the assumptions of the model we have fitted to the PBC dataset:

$$\begin{cases} \log(\text{serBilir}_{ij}) = \beta_0 + \beta_1 \text{Time}_{ij} + \beta_2 \text{Female}_i + \beta_3 \text{Age}_i + \\ \beta_4 \{\text{D-penicil}_i \times \text{Time}_{ij}\} + \beta_5 \{\text{Female}_i \times \text{Time}_{ij}\} + \varepsilon_{ij} \end{cases}$$

$$\varepsilon_i \sim \mathcal{N}(0, V_i) \qquad V_i \text{ has a continuous AR1 structure}$$

by plotting again

- > the standardized residuals versus fitted values
- > the normalized residuals versus fitted values per gender
- ▷ QQ-plot of the standardized residuals

Observations

- by the plot of the standardized residuals versus fitted values shows a clear systematic trend with more negative residuals in the range of high fitted values
- b the plot of normalized residuals versus fitted values shows an outlying observation
 for female and some slight heteroscedasticity (higher spread of residuals for low
 fitted values than for high)
- by the QQ-plot suggests a good fit of the normal distribution

2.12 Review of Key Points

- Methods for analyzing grouped/correlated data
 - \triangleright naive approached working on parts or summaries of the data \Rightarrow loss of information
 - ▷ marginal models ⇒ extension of simple linear regression to the context of correlated data
- Marginal models: Features
 - \triangleright error terms are assumed correlated \Rightarrow we need to make an appropriate assumption
 - ▶ mean structure is build as in standard regression models however, need to account for potential nonlinear effects of time and/or interaction terms
 - ▶ model building: we start from a 'fully' specified mean structure, we select an
 appropriate covariance structure, and then the return to make inference for the
 mean

2.12 Review of Key Points (cont'd)

Hypothesis testing

- be for the covariance structure and for nested models likelihood ratio tests are most often used, for non-nested models AIC/BIC
- \triangleright for the mean structure t and F tests with appropriate degrees of freedom

Residuals

- > standard residuals plots are used to check the model assumptions
- > standardized and normalized residuals