Adrianos Retalis • Filippos Tymvios • Dimitrios Katsanos • Silas Michaelides

Introduction:

· The main aim of this article is to propose a novel downscaling method in order to attain high resolution (1km x 1km) precipitation datasets, by correlating the CHIRPS dataset with altitude information and the normalized difference vegetation index from satellite images at 1km x 1km, utilizing artificial neural network models.

Data and methods:

- · CHIRPS is a high-resolution (0.05° x 0.05°) land-only climatic database of precipitation.
- · SPOT Vegetation NDVI data (the synthesized pre-processed S10 NDVI product, which is a geometrically and radiometrically corrected 10 day composite image).
- · Digital elevation model (50km).
- · Cyprus Department of Meteotology (136 meteorological stations).
- · MLP ANN. (It has been shown that ANNs with two input layers may sufficiently represent complex physical systems[Lippmann, 1987].)

· January 1999 to December 2012 (70% train, 15% validation, 15% test).

Figure 1. Multi-layer Perceptron for the ANN model 7. Nodes in each hidden layer are numbered in red. The weights are denoted by blue knots. The biases related to each node are exclusively defined. linear activation functions are graphically shown, accordingly

Table 1. Neural network architecture	es tested						
Neural network	1	2	3	4	5	6	7
Number of neurons of hidden layer 1	5	8	10	15	20	20	25

The simplest model, namely model 1, the actual subsets for training, validation and testing are small and the regression results are the worst.

For the months with high rainfall amounts, model 4 seems to perform better.

This supports the argument that no universal strategy exists for building ANNs and each paradigm should be investigated separately with all the possible variations under consideration.

able 3	. Performan	ce metrics	of annual	ANN estima	ations.									
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	201
IA	0.93	0.88	0.86	0.96	0.97	0.89	0.98	0.91	0.93	0.94	0.94	0.93	0.90	0.8
RMSE	106.19	106.40	131.52	110.29	89.83	209.90	79.06	97.12	117.65	84.05	210.44	132.41	138.52	235.4
ME	-64.59	41.05	-22.02	-44.93	11.30	-179.93	-34.81	-7.51	-27.17	8.38	-90.35	-102.51	74.18	80.7
MAE	86.21	79.32	98.18	91.59	70.94	184.11	65.43	78.61	96.32	69.91	160.35	111.46	109.88	192.

but are not shown. The linear activation in each node is denoted by Σ, whereas, the sigmoidal and Figure 2. Mean annual (1999–2012) ANN estimated (ANN) and station measured (ST) precipitation.

Figure 3. Regression analysis between mean annual (1999–2012) ANN estimated (ANN) and station measured (ST) precipitation.

Conclusions:

- Results indicated that the new product is able to capture the spatial precipitation varibility, especially in the mountainous areas.
- · Regarding the annual estimates, IA is relatively high, while RSME, ME and MAE values are also depicting a similar to IA trend. For monthly estimates, IA is very high for all months with the exception of January, while high RMSE, ME and MAE values are noticed for the rainy months, these could be attributed to the possible overestimation of CHIRPS precipitation.
- · The methodology can easily be applied to other geographical regions.

Report

2020.11.11 張慕琪

朗朗

	•
10	211
	aln

		Tmax		Tmin				
	obs	ccsm	ANN	obs	ccsm	ANN		
mean								
std								
r^2								
RMSE								

Validation

		Tmax			Tmin			
	obs	ccsm	ANN	obs	ccsm ANN			
mean								
std								
r^2								
RMSE								