2024/02/25 회의록

팀명 : 무를계획

회의 참석자 : 서태원, 최승렬, 신재환

회의 일자: 2024-02-25(15:30 ~ 22:00)

회의 장소 : 취창업 라운지

회의 내용

주제 신청서 내용을 추가 및 보완함

- 인천 연수 경찰서 교통 안전계(032-453-0352)에 전화를 하여 실선 차선 변경 위반 단속이 제대로 이행되고 있지 않는 상황인지에 대한 여부와 이에 대한 이유가 어떤 것이 있을지에 대한 인터뷰를 진행하고 이에 대한 답변을 게시함.
- 기존 스마트 국민제보 신고 과정 플로우를 제작하여 게시함.

• 실제 차량을 이용하여 녹화된 1시간 동안의 주행 기록 영상을 분석하여 일어난 실선 차선 변경 위반과 중앙선 침범 그리고 신호위반 결과와 건수를 비교하여 표로 나타내고, 주행했던 코스를 첨부함.

일	1	2	3	4	5	6	7	8	9	10	11	12	13	14	계	평균
실선 위반	22	25	14	19	33	16	22	37	33	17	21	25	30	29	343	24.5
중앙선 침범	1	0	0	1	4	0	0	1	1	2	0	0	1	0	11	0.78
신호 위반	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.07

자료 - 주행 기록 영상 분석 결과표

• 기술 구현 관련 사전 조사 부분에서 차량 인식 기술과 번호판 인식 기술, 그리고 차선 인식 기술 부분 조사 내용을 간략하게 서술함. 차량 인식 기술

2024/02/25 회의록

YOLO(You Only Look Once): 이미지를 한번만 보고 바로 물체를 검출하는 딥러닝 모델, 이미지에 대해 빠른 속도로 Object Detection을 수행할 수 있다는 장점이 있음

SSD(Single Shot MultiBox Detector): YOLO와 유사한 방식으로 실시간 객체 탐지를 수행, YOLO v1을 개선

RetinaNet: YOLO와 같은 One-Stage 모델로서 YOLO 만큼의 Detection 속도를 최대한 유지하되 Detection 성능을 Faster RCNN을 따라잡고자 개발한 모델, YOLO v2보다 속도는 느리지만 성능은 더 좋음

이 외에도 여러가지 모델(EfficientDet, Faster-RCNN, CenterNet 등)들이 있지만 가장 자료가 많고 성능이 좋다고 평가받는 YOLO 를 채택

YOLO의 여러가지 버전 중 '객체탐지모델 YOLO의 버전별 특성 비교 연구' 논문을 참고하여 v7, v8이 메모리 및 컴퓨팅 성능에 제약이 있는 경우 주로 적용이 가능한 것으로 파악함.

https://www.youtube.com/watch?v=ZebczOt90mU에서 Raspberry Pi 5에서 YOLOv8n이 작동하는 것을 확인함

번호판 인식 기술

Tesseract: 다양한 운영 체제를 위한 광학 문자 인식 엔진, Apache License, 버전 2.0에 따라 배포되는 무료 소프트웨어이며 2006년 부터 Google에서 개발을 후원

EasyOCR: 문자 영역 인식(Detection) + 문자 인식(Recognition)기능을 모두 하는 프레임워크, 2020년에 나타난 비교적 최신 OCR

여러 논문에서 사용하고 있고 속도가 더 빠른 Tesseract를 채택

Tesseract로 인식을 잘 해내지 못할 경우 EasyOCR을 사용할 수 있음

차선 인식 기술

Canny + Hough: 선을 감지하기 위한 전통적인 알고리즘으로, 이미지 공간에서 직선을 검출하는데 사용 Perspective Transform(Bird Eye View): 카메라를 통해 촬영된 이미지를 3차원에서 내려다보는 이미지의 형태로 구성 두 방법 모두 구현한 뒤 테스트를 통해 직접 비교 후 선택

- 차선 위반 기준을 차량 전폭 반 이상을 선정한 이유 부분을 여러 경찰 교통계에 전화하여 문의해본 답변 내용을 토대로 하여 확실한 진로 변경 의사가 표출되는 차량 전폭 반 이상을 차선 위반 기준으로 판단함을 제시함(추후에 차선 위반 기준 범위가 확대 또는 축소될 수 있음을 또한 명시하였음)
- 라즈베리파이와 젯슨나노의 성능을 비교한 내용을 표로 정리하고 그 중에서 GPU와 CPU의 비교 내용을 서술하여 게시함.

젯슨 나노 : yolov8, yolov8n weight,640*480 입력 기준 0.06s~0.05s(15fps~20fps)의 성능을 보임

	Raspberry pi 5 8GB	Jetson Nano 2GB
СРИ	Broadcom BCM2712 2.4GHz quad-core 64-bit Arm Cortex-A76 CPU	Quad-core ARM A57 @ 1.43 GHz
GPU	VideoCore VII GPU	128-core Maxwell
Memory	LPDDR4X-4267 SDRAM (8GB)	2GB 64-bit LPDDR4 25.6 GB/s
Storage	microSD card slot, with support for high-speed SDR104 mode	microSD(not included)
Video Decode	4Kp60 HEVC decoder	4K@60 2×4K@30 8×1080p@30 18x 720p@30(H.264/H.265)
Power	5V/5A DC power via USB-C, with Power Delivery support	5V 3A /5W/10W
Camera	2 × 4-lane MIPI camera/display transceivers	2x MIPI CSI-2 DPHY lanes
Connectivity	Gigabit Ethernet, with PoE+ support (requires separate PoE+ HAT)	Gigabit Ethernet, M.2 Key E
Display	Dual 4Kp60 HDMI® display output with HDR support	HDMI 2.0 또는 DPI.2 eDP 1.4
USB	2 × USB 3.0 ports, supporting simultaneous 5Gbps operation	4x USB 3.0, USB 2.0 Micro-B
I/O	I2C, SPI, UART, I2S, GPIOs	I2C, SPI, UART, I2S, GPIOs
price	107000원	245000원

• CPU 비교:

2024/02/25 회의록

- Raspberry 5 : Arm Cortex-A76 CPU > Jetson Nano : ARM A57
- o but 딥러닝이나 AI의 경우 성능상 큰 이점이 없음.
- GPU 비교

- Maxwell은 전체 CUDA-X 스택도 지원함. 딥 러닝 처리가 Jetson 시리즈 또는 1050/1080과 같은 다른 Nvidia GPU로 거의 변경 없이 변환될 수 있음을 의미합니다.
- 。 Maxwell은 128개의 GPU 코어가 있음.
- Maxwell은 CUDA API의 도움을 받을 수 있음.
- Maxwell은 TensorFlow, PyTorch, Caffe 및 MXNet과 같은 많은 AI 프레임워크를 지원하므로 AI 기반 애플리케이션에 매우 적합함. 신경망에 대한 병렬 계산을 제공함.
- 。 따라서 Raspberry pi 5를 사용할 때 Yolo v8의 fps가 떨어지거나 delay가 길어지면 Jetson Nano로 대체하는 방향 검토
- 추진 계획 및 일정표를 수정하여 게시함.

업무 내용			작업일정													
			3월				4월				5월				6월	
			2	3	4	1	2	3	4	1	2	3	4	1	2	
구현 단계	Camera Module 기능 개발															
	GPS Module 기능 개발															
	Perception Module 기능 개발															
	Decision Module 기능 개발															
	Alarm Module 기능 개발															
	AP Module 기능 개발															
	Video Save Module 기능 개발															
	Report Module 기능 개발															
	하드웨어 통합															
	모델 통합															
테스트/이행 단계	단위 테스트															
	통합 테스트															
	시스템 테스트															
	인수 테스트															
최종 산출물 정리 단계	발표 자료 작성															
	시연 동영상 제작															

다음 회의 일정

- 2024/02/26 (19:00)에 취창업 라운지에서 회의를 진행하기로 함
- 주제 신청서 마무리 작업 진행