CORDIC-Based Trigonometric Functions

CH3 Computer Arithmetic Programming Assignment

Prof. Ren-Shuo Liu NTHU EE Fall 2023

Basic Concept

 CORDIC is a binary approximation algorithm to calculate sin(β) and cos(β) using only integer arithmetic

Background

- $(x + y i) \times (a + b i) = (ax by) + (bx + ay) i$
 - Rotate the point by $\tan^{-1}(\frac{b}{a})$
 - Increase the distance by $\sqrt{1+\left(\frac{b}{a}\right)^2}$

CORDIC

•
$$b = 2^{-k}$$

Only shift and addition

•
$$(\mathbf{x} + \mathbf{y} i) \times (\mathbf{a} + \mathbf{b} i)$$

= $(\mathbf{ax} - \mathbf{by}) + (\mathbf{bx} + \mathbf{ay}) i$
= $(\mathbf{x} - (\mathbf{y} >> \mathbf{k})) + ((\mathbf{x} >> \mathbf{k}) + \mathbf{y})$

• tan⁻¹(b/a) is precomputed and stored in a table

а	b	tan ⁻¹ (b/a)
1	1	45°
1	0.5	26.5651°
1	2-2	14.0362°
1		
1	2 ^{-(N-1)}	

Software Implementation


```
x = initial x;
y = 0;
N = # iterations, 20 (fixed);
th = the angle to compute;
for k = 0 ... (N - 1)
   if th >= 0
     (x, y) *= (1, 2^{-k});
     th = th - tan^{-1}(2^{-k});
   else
     (x, y) *= (1, -2^{-k});
     th = th + tan^{-1}(2^{-k});
return x as cos(th)
   and y as sin(th);
```

а	b	tan ⁻¹ (b/a)
1	1	45°
1	0.5	26.5651°
1	2-2	14.0362°
1	•••	
1	2 ^{-(N-1)}	

Example Input and Output

0.48987247389941186327276529331087

0.87179410373990832743087455343634

cosd(60.6678)

sind(60.6678)

Input

 $\frac{\text{dms } \cosh \cos x^{y} \sqrt[y]{x}}{\pi \tanh \tan x^{3} \sqrt[y]{x}} = \frac{1}{2} \frac{1}{3} - \frac{1}{2} \frac{1}$

0.4898724738

Output

```
5 4 606678 4898750 8717926 4 457006 6984117 7156964 4 -837565 1087524 -9940686 4 -835975 1115127 -9937628 4 395400 7711808 6366160 4
```

Note: use **scanf/printf** or **cin/cout** to handle the input/output

檢視(V) 編輯(E) 說明(H)

檢視(<u>V</u>) 編輯(<u>E</u>) 說明(<u>H</u>)

Parameters for this Assignment

k	tan ⁻¹ (2 ^{-k})
0	450000
1	265651
2	140362
3	71250
4	35763
5	17899
6	8952
7	4476
8	2238
9	1119

k	tan ⁻¹ (2 ^{-k})
10	560
11	280
12	140
13	70
14	35
15	17
16	9
17	4
18	2
19	1

initial_x = **6072529**;

Template

 Template is provided at: https://github.com/JerryWang0520/ee3450_pa2

 Please refer to README.md to check he correctness.

 Example input and output with 100 testcases are provided as reference.

Delivery

- Rename your main.c (main.cpp) as
 - PA2_<student_ID>.c (PA2_<student_ID>.cpp)
 For example: PA2_109061585.c (PA2_109061585.cpp)
- You can choose either C or C++ to finish.

Send your code through eeclass.

Hardware (Just for Reference)

