AYUDANTÍA 1

1. Divisibilidad

En \mathbb{N} , si a, b son elementos de \mathbb{Z} , con $b \neq 0$, entonces b se dice *que divide* a a si existe $c \in \mathbb{Z}$ tal que a = bc. Se denotará como $b \mid a$.

Ejercicio 1: Sea n un entero positivo par y sea a, b enteros coprimos positivos. Encuentre a y b si $a + b \mid a^n + b^n$. (2002 Romanian Mathematical Olympiad)

Ejercicio 2: Pruebe que $1+1/2+\cdots+1/n$ no es un entero para n>1.

Ejercicio 3: Un primo de Fermat es un primo de la forma $2^{2^n} + 1$. Muestre que, si $2^n + 1$ es un primo, entonces es de Fermat.

Ejercicio 4 (Propuesto): Sean a, b naturales tales que

$$\frac{a+1}{b} + \frac{b+1}{a}$$

es un entero. Muestre que el máximo común divisor de a y b no es más grande que $\sqrt{a+b}$.

2. Funciones multiplicativas

Recuerde que una función multiplicativa f es una función aritmética no nula tal que f(mn) = f(m)f(n) cuando (m,n) = 1. Se dirá que es completamente multiplicativa si f(mn) = f(m)f(n) para todo m, n.

Ejercicio 5: Muestre que μ , τ , σ son multiplicativas, sin embargo, ω no.

Ahora, definamos

$$\Omega(n) := \sum_{\substack{p \text{ primo, } k \geq 1 \\ p^k \mid n}} = \#\{\text{distintas potencias de primos que dividen a } n\}$$

Por ejemplo, $\Omega(12) = \#\{2^1, 2^2, 3^1\} = 3$, o bien, $\Omega(27) = \{3^1, 3^2, 3^3\} = 3$.

Éste último nos sirve para definir una interesante función multiplicativa: la función de Lioville definido como $\lambda(n) = (-1)^{\Omega(n)}$ así que, por ejemplo, $\lambda(12) = (-1)^3 = -1$, véase Granville [3, §4.7].

Ejercicio 6: (a) Muestre que la función λ es completamente multiplicativa

(b) Pruebe que

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{si } n \text{ es un cuadrado,} \\ 0 & \text{en otro caso.} \end{cases}$$

Además, $\lambda^{-1}(n) = |\mu(n)|$ para todo n.

3. Problemas mencionados

El problema de Frobenius es el siguiente: Dado enteros positivos x_1, x_2, \ldots, x_n con $\gcd(x_1, \ldots, x_n) = 1$, denotemos por $g(x_1, \ldots, x_n)$ al número más grande que no se puede escribir como $g = \sum_{i=1}^n r_i x_i$, donde cada $r_i \geq 0$. Un caso particular es el conocido Chicken McNuggets Problem.

Además, con las definiciones vistas anteriormente, se puede enunciar la siguiente conjetura:

Conjetura 1 (Chowla (1965)):
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n \le N} \lambda(n+a_1) \cdot \ldots \cdot \lambda(n+a_k) = 0$$
 para cada $k \ge 1$ y $0 \le a_1 < \ldots < a_k$.

REFERENCIAS

- 1. Andreescu, T. y Andrica, D. Number Theory: Structures, examples, and problems (Birkhäuser Boston, Springer Science+Business Media, 2009).
- 2. Apostol, T. M. Introduction to Analytic Number Theory (Springer-Verlag, 1976).
- 3. Granville, A. Number Theory Revealed: A Masterclass (American Mathematical Society, 2019).

Correo electrónico: rseplveda@uc.cl