Frequently Used Results from Measure Theory

Yan Zeng

Version 1.0, last revised on 2005-11-10.

Abstract

Results for the measure-theoretical foundations of stochastic processes, based on Shiryaev [1], Chapter 2.

1 Monotone Class Theorem

Definition 1. Let Ω be a set. A class \mathcal{P} of subsets of Ω is called a π -system if it's closed under intersection. A class \mathcal{L} of subsets of Ω is called a λ -system if it satisfies:

- (a) $\Omega \in \mathcal{L}$;
- (b) If $A, B \in \mathcal{L}$ and $A \subset B$, then $B \setminus A \in \mathcal{L}$;
- (c) If $A_n \in \mathcal{L}$ and $A_n \uparrow A$, then $A \in \mathcal{L}$.

Theorem 1. (Dynkin's $\pi - \lambda$ Theorem) If \mathcal{P} is a π -system and \mathcal{L} is a λ -system that contains \mathcal{P} , then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Theorem 2. (Monotone Class Theorem) Suppose \mathcal{P} is a π -system on Ω , and \mathcal{H} is a family of real-valued functions defined on Ω , such that

- (a) $1 \in \mathcal{H}$;
- (b) $\forall A \in \mathcal{P}, 1_A \in \mathcal{H};$
- (c) $f_n \in \mathcal{H}$, $0 \le f_n \uparrow f$, and f is finite (resp. bounded) $\Longrightarrow f \in \mathcal{H}$. Then \mathcal{H} contains all the $(\Omega, \sigma(\mathcal{P}))$ -measurable (resp. -bounded) functions.

2 Kolmogorov's Extension Theorem

Theorem 3. Suppose E is a Polish space (i.e. a complete separable metric space) and \mathcal{E} is the Borel σ -field on E. For any $t_1 < t_2 < \cdots < t_n$, let P_{t_1, \dots, t_n} be a probability measure on $(\prod_{i=1}^n E, \otimes_{i=1}^n \mathcal{E})$, then the following conditions are equivalent:

(a) there is a probability measure P on $(E^{\mathbb{R}_+}, \mathcal{E}^{\mathbb{R}_+})$ such that $\forall B \in \bigotimes_{i=1}^n \mathcal{E}$,

$$P(\omega \in E^{\mathbb{R}_+} : (\omega_{t_1}, \cdots, \omega_{t_n}) \in B) = P_{t_1, \cdots, t_n}(B);$$

(b) $(P_{t_1,\dots,t_n})_{t_1,\dots,t_n}$ satisfies the following consistency condition: for any two finite subsets T_1 , T_2 of \mathbb{R}_+ , if $T_1 \subset T_2$, then

$$P_{T_1}(A) = P_{T_2}(A \times \bigotimes_{i \in T_2 \setminus T_1} \mathcal{E}), \ \forall A \in \bigotimes_{i \in T_1} \mathcal{E}.$$

3 Regular Conditional Distribution

Definition 2. Let (Ω, \mathcal{F}, P) be a probability space, $X : (\Omega, \mathcal{F}) \to (E, \mathcal{E})$ a measurable map, and \mathcal{G} a sub σ -field of \mathcal{F} . $\mu : \Omega \times \mathcal{E} \to [0, 1]$ is said to be a regular conditional distribution for X given \mathcal{G} , if

- (a) for each $A \in \mathcal{E}$, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$;
- (b) for a.s. ω , $A \to \mu(\omega, A)$ is a probability measure on (E, \mathcal{E}) .

Definition 3. A measurable space (E, \mathcal{E}) is said to be a *Borel space*, if there is a one-to-one map ϕ from E into \mathbb{R} so that ϕ and ϕ^{-1} are both measurable.

Theorem 4. Every Borel subset of a Polish space is a Borel space.

Theorem 5. Regular conditional distributions exist if (E, \mathcal{E}) is a Borel space.

Theorem 6. Suppose X and Y are measurable functions from (Ω, \mathcal{F}) to a Borel space (E, \mathcal{E}) and $\mathcal{G} = \sigma(Y)$, then there is a function $\mu : E \times \mathcal{E} \to [0, 1]$ so that

(a) for each $A \in \mathcal{E}$, $\mu(\cdot, A)$ is \mathcal{E} -measurable and $\mu(Y(\omega), A)$ is a version of

$$P(X \in A|\mathcal{G}) = P(X \in A|Y);$$

(b) for a.s. ω , $A \to \mu(Y(\omega), A)$ is a probability measure on (E, \mathcal{E}) .

References

[1] A. N. Shiryaev. Probability, 2nd edition. Springer, New York, 1995. 1