Exercise 1:

1.	Parmi	les	variables	suivantes,	lesquelles	peuvent	${\it rais} on nable ment$	$\hat{\mathrm{e}}\mathrm{tre}$	représentées	par	des
	fonctio	ns o	continues	du temps?							

 \Box La taille d'un enfant qui grandit.

 \square La vitesse d'un avion en vol.

 \square La distance parcourue par une voiture.

 $\hfill \square$ Le nombre d'habitants de Genève.

☐ Aucune des réponses ci-dessus.

2. Quelle est l'image de 2 par la fonction $f(x) = \begin{cases} x^2 - 1 & \text{si } x \leq 2 \\ -x^2 + 1 & \text{si } x > 2 \end{cases}$?

 \square 3

 \square 27

 \Box -3

 \Box -37

 \square Aucune des réponses ci-dessus.

3. On considère la fonction $f(x)=\left\{\begin{array}{ccc} x^3-5x, & \text{si} & x<4\\ 11x, & \text{si} & x>4 \end{array}\right.$. Cocher ce qui est vrai:

 \square La fonction est bien définie en 4.

 $\Box \lim_{x \to 4} f(x) = 44$

 $\Box \lim_{x \to 4} f(x) = f(4) = 44$

 $\hfill \square$ La fonction n'est pas définie en 4.

 $\hfill \square$ Aucune des réponses ci-dessus.

4. Un avion survole un relief. On note x la position à la verticale duquel il se trouve et y la distance de l'avion au sol en dessous de lui. La situation est illustrée dans la figure ci-dessous où le relief est représenté par la zone hachurée. Est-ce que y est une fonction continue de x?

□ Oui

 \square Non

5.	In foration f(m)	3x-2	\sin	x < 2
	La fonction $f(x) = \langle$	x+6	\sin	$x \geqslant 2$

- \square est continue sur \mathbb{R} ,
- \square est continue en x=3,
- \square est continue en x=2,
- \square est discontinue en x=2.
- ☐ Aucune des réponses ci-dessus.

6. La fonction
$$f(x) = \begin{cases} \frac{1}{x^2-1} & \text{si} \quad x < -1\\ \frac{1}{x^2+1} & \text{si} \quad x \geqslant -1 \end{cases}$$

- \square est continue sur] -1,1 [
- \square est discontinue sur] -2,1 [
- \square est discontinue sur [-1,1].
- □ Aucune des réponses ci-dessus.

7. On considère la fonction
$$f(x) = \begin{cases} x^2 - 1 & \text{si} \quad x < 2 \\ -x^2 + 1 & \text{si} \quad x \geqslant 2 \end{cases}$$
. Peut-on calculer $\lim_{x \to 2} f(x)$ en utilisant la continuité?

- □ Oui
- □ Non

8. On considère la fonction
$$f(x) = \begin{cases} x^2 - 1 & \text{si} & x < 2 \\ -x^2 + 1 & \text{si} & x \geqslant 2 \end{cases}$$
. Peut-on calculer $\lim_{x \to 4} f(x)$ en utilisant la continuité?

- □ Oui
- □ Non

9. Quelles valeurs faut-il attribuer à
$$c \in \mathbb{R}$$
 pour que la fonction suivante soit continue sur \mathbb{R} :

$$f(x) = \begin{cases} c^2 x + 1 & \text{si} \quad x \leqslant 2\\ 9x^2 + 1 & \text{si} \quad x > 2 \end{cases}$$

- □ 3 ou −3
- $\Box 9\sqrt{2}$ ou $-9\sqrt{2}$
- $\Box \sqrt{18}$ ou $-\sqrt{18}$
- $\square 3\sqrt{2}$ ou $-3\sqrt{2}$
- ☐ Aucune des réponses ci-dessus.

10. La fonction
$$f(x) = \begin{cases} x+1 & \text{si} & x \leq 1 \\ x^2+1 & \text{si} & x > 1 \end{cases}$$
 est-elle dérivable en $x = 1$?

- □ Oui
- □ Non

- 11. Est-il justifié d'utiliser la règle de l'Hospital pour calculer $\lim_{x\to a} \frac{a^2 + 2ax + x^2}{x^2 a^2}$ avec $a \neq 0$?
 - □ Oui
 - \square Non
- 12. Est-il justifié d'utiliser la règle de l'Hospital pour calculer $\lim_{x\to a} \frac{a^2 2ax + x^2}{x^2 a^2}$?
 - □ Oui
 - \square Non
- 13. On considère les fonctions $f(x) = x^2 + 1$ et $g(x) = e^x x^3$. Déterminer $(g \circ f)'(x)$.
 - $\Box \ 2(e^x x^3)(e^x 3x^2)$
 - $\Box 2xe^{x^2+1} 6x(x^2+1)^2$
 - $\Box e^{2x} + x^6 2x^3e^x + 1$
 - $\Box e^{x^2+1} (x^2+1)^3$
 - ☐ Aucune des réponses ci-dessus.
- 14. On considère les fonctions $f(x) = x^2 + 1$ et $g(x) = e^x x^3$. Déterminer $(g \cdot f)'(x)$.
 - $\Box (x^2+1)e^x-x^5-x^3$
 - $\Box \ 2(e^x x^3)(e^x 3x^2)$
 - $\Box 2xe^{x^2+1} 6x(x^2+1)^2$
 - $\Box (x+1)^2 e^x 5x^4 3x^2$
 - ☐ Aucune des réponses ci-dessus.
- 15. On considère les fonctions $f(x) = x^2 + 1$ et $g(x) = e^x x^3$. Déterminer $(\frac{g}{f})'(x)$.

 - $\frac{e^x 3x^2}{2x}$ $\frac{-(x-1)^2 e^x 5x^3 + x^5}{(x^2+1)^2}$ $\frac{(x-1)^2 e^x x^4 3x^2}{(x^2+1)^2}$

 - □ Aucune des réponses ci-dessus.

Exercise 2:

On voudrait déterminer la dérivée de la fonction $f(x) = x^x$, $\forall x \in \mathbb{R}_+^*$.

- 1. Considérer la fonction $g(x) = (\ln \circ f)(x) = \ln(x^x)$ et calculer g'(x) en utilisant la formule de la dérivée des fonction composée.
- 2. Utiliser la propriété du logarithme sur les puissances pour montrer que $g'(x) = \ln(x) + 1$.
- 3. Déduire des précédents points f'(x).

Exercise 3:

En utilisant la formule de l'Hôpital, calculer les limites :

1.
$$\lim_{x \to 1} \frac{e^{x^2 - 1}}{e^{x^2} - e^x}$$

$$2. \lim_{x \to +\infty} \frac{\ln(x)^2}{x}$$