Guía 1

- 1. Sea el conjunto $X = \{A \in \mathbb{R}^{3 \times 3} \mid A^T = A^{-1}\},$
 - a) Determinar si X con la operación suma de matrices en $\mathbb{R}^{3\times 3}$ define un grupo.
 - b) ¿Qué ocurre si reemplazamos la operación + por el producto interno de matrices? ¿Podría definir un espacio vectorial con esta operación?
- 2. Mostrar que la unión de subespacios no genera un subespacio.
- 3. ¿Cuales de los siguientes conjuntos son subespacios de \mathbb{R}^3 ?
 - a) $A = \{(\lambda^2, -\lambda^2, 0) \mid \lambda \in \mathbb{R}\}$
 - b) $B = \{(\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 | \xi_1, \xi_2, \xi_3 \in \mathbb{Z}\}$ (\mathbb{Z} es el conjunto de número enteros, positivos y negativos, y el cero)
- 4. Mostrar que $\langle x, y \rangle := x_1y_1 (x_1y_2 + x_2y_1) + 2x_2y_2$ define un producto interno en \mathbb{R}^2 .
- 5. Sea \mathbb{R}^n con cuerpo en \mathbb{R} . Mostrar que para cada $p \in \mathbb{N}$

$$||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}, \quad x \in \mathbb{R}^n,$$

 $||x||_p$ define una norma en \mathbb{R}^n

6. Mostrar que

$$\langle A, B \rangle = Tr(A^H B)$$

define un producto interno en $(C)^{n\times m}$. A este p.i. se lo conoce como producto interno de Frobenius. (La operación A^H representa A transpuesta y conjugada)

7. Mostrar que $\langle p,q\rangle=p(-1)q(-1)+p(0)q(0)+p(1)q(1)$ define un producto interno en $\mathcal{P}_2(\mathbb{R})$, los polinomios de grado dos con coeficientes reales.

1