vat_compete_2024_x_y.dfw

#1: CaseMode := Sensitive

#2: InputMode := Word

degree of market power (transp cost)

#3: μ :∈ Real (0, ∞)

rate of sales tax

#4: τ :∈ Real (0, ∞)

total consumer population

#5: n :∈ Real (0, ∞)

Unit costs

#6: ca :∈ Real [0, ∞)

#7: cb :∈ Real [0, ∞)

prices

#8: pa :∈ Real (0, ∞)

#9: pb :∈ Real (0, ∞)

#10: qa :∈ Real (0, ∞)

#11: qb :∈ Real (0, ∞)

A's market share

#12: xhat : Real (0, 1)

basic valuations

- #13: va :∈ Real (0, ∞)
- #14: vb :∈ Real (0, ∞)
- #15: Δv :∈ Real [0, ∞)

*** Section 2: Price embedded into the price (benchmark model)

eq (1)

- #16: $qa = pa \cdot (1 + \tau)$
- #17: $qb = pb \cdot (1 + \tau)$
- #18: SOLVE(qa = $pa \cdot (1 + \tau)$, pa)
- #20: SOLVE(qb = $pb \cdot (1 + \tau)$, pb)
- #21: $pb = \frac{qb}{----}$

eq (2) Utility functions

- #22: $va pa \cdot (1 + \tau) \mu \cdot x$
- #23: $va qa \mu \cdot x$
- #24: $vb pb \cdot (1 + \tau) \mu \cdot (1 x)$
- #25: $vb qb \mu \cdot (1 x)$
- #26: $va pa \cdot (1 + \tau) \mu \cdot x = vb pb \cdot (1 + \tau) \mu \cdot (1 x)$
- #27: SOLVE(va pa·(1 + τ) μ ·x = vb pb·(1 + τ) μ ·(1 x), x)

eq (3)

#28:
$$xhat = -\frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - va + vb - \mu}{2 \cdot \mu}$$

#29: xhat =
$$-\frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu}$$

#30: xhat =
$$-\frac{\text{qa - qb - }\Delta \text{V - }\mu}{2 \cdot \mu}$$

eq (4) Profit max w.r.t. qa and qb (tax inclusive)

#31: profita =
$$(pa - ca) \cdot n \cdot xhat$$

#32: profitb = (pb - cb)
$$\cdot$$
 n \cdot (1 - xhat)

#33: profita =
$$\left(\frac{qa}{\tau + 1} - ca\right) \cdot n \cdot \left(-\frac{qa - qb - \Delta v - \mu}{2 \cdot \mu}\right)$$

#34: profitb =
$$\left(\frac{qb}{\tau + 1} - cb\right) \cdot n \cdot \left(1 - - \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu}\right)$$

Appendix A. eq (A.1)

#35:
$$\frac{d}{d \ qa} \left(\text{profita} = \left(\frac{qa}{\tau + 1} - ca \right) \cdot n \cdot \left(- \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#36:
$$0 = \frac{n \cdot (ca \cdot (\tau + 1) - 2 \cdot qa + qb + \Delta v + \mu)}{2 \cdot \mu \cdot (\tau + 1)}$$

#37:
$$\frac{d}{d \text{ qa}} \frac{d}{d \text{ qa}} \left(\text{profita} = \left(\frac{\text{qa}}{\tau + 1} - \text{ca} \right) \cdot n \cdot \left(-\frac{\text{qa - qb - } \Delta \text{v} - \mu}{2 \cdot \mu} \right) \right)$$

#38:
$$0 > -\frac{\pi}{\mu \cdot (\tau + 1)}$$

#39:
$$\frac{d}{d \ qb} \left(profitb = \left(\frac{qb}{\tau + 1} - cb \right) \cdot n \cdot \left(1 - - \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#40:
$$0 = \frac{n \cdot (cb \cdot (\tau + 1) + qa - 2 \cdot qb - \Delta v + \mu)}{2 \cdot u \cdot (\tau + 1)}$$

#41:
$$\frac{d}{d \ qb} \frac{d}{d \ qb} \left(profitb = \left(\frac{qb}{\tau + 1} - cb \right) \cdot n \cdot \left(1 - - \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#42:
$$0 > -\frac{n}{u \cdot (\tau + 1)}$$

eq (5)

#43: SOLVE
$$\left[0 = \frac{n \cdot (ca \cdot (\tau + 1) - 2 \cdot qa + qb + \Delta v + \mu)}{2 \cdot \mu \cdot (\tau + 1)}, \quad 0 = \frac{n \cdot (cb \cdot (\tau + 1) + qa - 2 \cdot qb - \Delta v + \mu)}{2 \cdot \mu \cdot (\tau + 1)} \right], \quad [qa, qb]$$

#44:
$$\left[qaI = \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3} \wedge qbI = \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3} \right]$$

#45:
$$\left[pa \cdot (1 + \tau) = \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3} \wedge pb \cdot (1 + \tau) = \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3}\right]$$

#47:
$$\left[paI = \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} \wedge pbI = \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} \right]$$

Define $\Delta c = ca - cb$

eq (6)

#48:
$$xhatI = -\frac{\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu}{6 \cdot \mu}$$

#49:
$$\operatorname{profitaI} = \frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)}$$

#50:
$$\operatorname{profitbI} = \frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)}$$

Result 1a

#51:
$$\frac{d}{d\tau} \left(qaI = \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3} \right)$$

$$0 < \frac{2 \cdot ca + cb}{3}$$

#53:
$$\frac{d}{d\tau} \left(qbI = \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3} \right)$$

#54:
$$0 < \frac{\operatorname{ca} + 2 \cdot \operatorname{cb}}{3}$$

#55:
$$\frac{d}{d\tau} \left(paI = \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} \right)$$

#56:
$$0 > -\frac{\Delta v + 3 \cdot \mu}{2}$$

#57:
$$\frac{d}{d\tau} \left(pbI = \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} \right)$$

#58:
$$0 > \frac{\Delta V - 3 \cdot \mu}{2}$$

by Assumption 2.

restriction xhat > 0 if

#59:
$$-\frac{\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu}{6 \cdot \mu} > 0$$

#60: SOLVE
$$\left(-\frac{\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu}{6 \cdot \mu} > 0, \mu\right)$$

#61:
$$\left(\mu < \frac{\Delta c \cdot (\tau + 1) - \Delta v}{3} \wedge \mu < 0\right) \vee \left(\mu > \frac{\Delta c \cdot (\tau + 1) - \Delta v}{3} \wedge \mu > 0\right)$$

#62:
$$\mu > \frac{\Delta c \cdot (\tau + 1) - \Delta v}{3}$$

restriction xhat < 1 if

#63:
$$-\frac{\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu}{6 \cdot \mu} < 1$$

#64: SOLVE
$$\left(-\frac{\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu}{6 \cdot \mu} < 1, \mu\right)$$

#65:
$$\left(\mu < \frac{\Delta v - \Delta c \cdot (\tau + 1)}{3} \wedge \mu < 0\right) \vee \left(\mu > \frac{\Delta v - \Delta c \cdot (\tau + 1)}{3} \wedge \mu > 0\right)$$

#66:
$$\mu > \frac{\Delta v - \Delta c \cdot (\tau + 1)}{3}$$

xhatI > 0 if

#67:
$$\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu < 0$$

#68: SOLVE(
$$\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu < 0, \mu$$
)

#69:
$$\mu > \frac{\Delta c \cdot (\tau + 1) - \Delta v}{3}$$

*** Section 3: Price competition with sales tax separated from price ** Subsection 3.1: Fast-computing consumers: An equivalence result

eq (7)

#70: profita =
$$(pa - ca) \cdot n \cdot xhat$$

#71: profitb = (pb - cb)
$$\cdot$$
n \cdot (1 - xhat)

#72: profita =
$$(pa - ca) \cdot n \cdot \left(-\frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - va + vb - \mu}{2 \cdot \mu}\right)$$

#73: profitb = (pb - cb)·n·
$$\left(1 - \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - va + vb - \mu}{2 \cdot \mu}\right)$$

Appendix B, eq (B.1), and Result 2

#74:
$$\frac{d}{d pa} \left(profita = (pa - ca) \cdot n \cdot \left(- \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - va + vb - \mu}{2 \cdot \mu} \right) \right)$$

#75:
$$0 = \frac{n \cdot (ca \cdot (\tau + 1) - 2 \cdot pa \cdot (\tau + 1) + pb \cdot (\tau + 1) + va - vb + \mu)}{2 \cdot \mu}$$

#76:
$$\frac{d}{d pa} \left(0 = \frac{n \cdot (ca \cdot (\tau + 1) - 2 \cdot pa \cdot (\tau + 1) + pb \cdot (\tau + 1) + va - vb + \mu)}{2 \cdot \mu} \right)$$

$$0 > -\frac{n \cdot (\tau + 1)}{1}$$

File: vat_2024_10_15.dfw Date: 10/15/2024 Time: 3:36:43 PM

#78:
$$\frac{d}{d \ pb} \left(profitb = (pb - cb) \cdot n \cdot \left(1 - - \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - va + vb - \mu}{2 \cdot \mu} \right) \right)$$

#79:
$$0 = \frac{n \cdot (cb \cdot (\tau + 1) + pa \cdot (\tau + 1) - 2 \cdot pb \cdot (\tau + 1) - va + vb + \mu)}{2 \cdot \mu}$$

#80:
$$\frac{d}{d \text{ pb}} \frac{d}{d \text{ pb}} \left(\text{profitb} = (\text{pb - cb}) \cdot n \cdot \left(1 - - \frac{\text{pa} \cdot (\tau + 1) - \text{pb} \cdot (\tau + 1) - \text{va + vb - } \mu}{2 \cdot \mu} \right) \right)$$

#81:
$$0 > -\frac{n \cdot (\tau + 1)}{u}$$

#82: SOLVE
$$= \frac{n \cdot (ca \cdot (\tau + 1) - 2 \cdot pa \cdot (\tau + 1) + pb \cdot (\tau + 1) + va - vb + \mu)}{2 \cdot \mu}, 0 = \frac{1}{2 \cdot \mu}$$

$$\frac{n \cdot (\mathsf{cb} \cdot (\tau + 1) + \mathsf{pa} \cdot (\tau + 1) - 2 \cdot \mathsf{pb} \cdot (\tau + 1) - \mathsf{va} + \mathsf{vb} + \mu)}{2 \cdot \mu} \bigg], \; [\mathsf{pa}, \; \mathsf{pb}] \bigg)$$

$$\frac{\mathsf{ca}\cdot(\tau+1)+2\cdot\mathsf{cb}\cdot(\tau+1)-\mathsf{va}+\mathsf{vb}+3\cdot\mu}{3\cdot(\tau+1)} \bigg]$$

#84:
$$\left[pa = \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} \wedge pb = \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)}\right]$$

compare with paI

File: vat_2024_10_15.dfw Date: 10/15/2024 Time: 3:36:43 PM

#85:
$$\frac{2 \cdot \text{ca} \cdot (\tau + 1) + \text{cb} \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} - \frac{2 \cdot \text{ca} \cdot (\tau + 1) + \text{cb} \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#86:

Compare with pbI

#87:
$$\frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} - \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#88:

** Subsection3.2: Slow-computing consumers (nonequivalence result)

eq (8)

#89:
$$va - pa - vata - \mu \cdot x$$

#90:
$$vb - pb - vatb - \mu \cdot (1 - x)$$

#91:
$$va - pa - vata - \mu \cdot xhat = vb - pb - vatb - \mu \cdot (1 - xhat)$$

eq (9)

#92: SOLVE(va - pa - vata -
$$\mu$$
·xhat = vb - pb - vatb - μ ·(1 - xhat), xhat)

#93:
$$xhat = -\frac{pa - pb - va + vata - vatb + vb - \mu}{2 \cdot \mu}$$

#94:
$$xhat = -$$

$$pa - pb - \Delta v + vata - vatb - \mu$$

$$2 \cdot \mu$$

eq (10)

#95: profita = $(pa - ca) \cdot n \cdot xhat$

#96: profitb = (pb - cb)
$$\cdot$$
n \cdot (1 - xhat)

#97: profita =
$$(pa - ca) \cdot n \cdot \left(-\frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right)$$

#98: profitb =
$$(pb - cb) \cdot n \cdot \left(1 - \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu}\right)$$

Appendix C

#99:
$$\frac{d}{d pa} \left(profita = (pa - ca) \cdot n \cdot \left(- \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

#100:
$$0 = \frac{n \cdot (ca - 2 \cdot pa + pb - vata + vatb + \Delta v + \mu)}{2 \cdot \mu}$$

#101:
$$\frac{d}{d \text{ pa}} \frac{d}{d \text{ pa}} \left(\text{profita} = (\text{pa} - \text{ca}) \cdot \text{n} \cdot \left(-\frac{\text{pa} - \text{pb} - \Delta \text{v} + \text{vata} - \text{vatb} - \mu}{2 \cdot \mu} \right) \right)$$

#102:
$$0 > -\frac{n}{-}$$

#103:
$$\frac{d}{d pb} \left(profitb = (pb - cb) \cdot n \cdot \left(1 - - \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

#104:
$$0 = \frac{n \cdot (cb + pa - 2 \cdot pb + vata - vatb - \Delta v + \mu)}{2 \cdot \mu}$$

#105:
$$\frac{d}{d \ pb} \frac{d}{d \ pb} \left(profitb = (pb - cb) \cdot n \cdot \left(1 - - \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

File: vat_2024_10_15.dfw Date: 10/15/2024 Time: 3:36:43 PM

0 > - —

#106:

#107: SOLVE $\left[0 = \frac{n \cdot (ca - 2 \cdot pa + pb - vata + vatb + \Delta v + \mu)}{2 \cdot \mu}, 0 = \frac{n \cdot (ca - 2 \cdot pa + pb - vata + vatb + \Delta v + \mu)}{2 \cdot \mu} \right]$

$$\frac{n \cdot (cb + pa - 2 \cdot pb + vata - vatb - \Delta v + \mu)}{2 \cdot \mu}, [pa, pb]$$

eq (11)

#108: $\left[pa = \frac{2 \cdot ca + cb - vata + vatb + \Delta v + 3 \cdot \mu}{3} \wedge pb = \frac{ca + 2 \cdot cb + vata - vatb - \Delta v + 3 \cdot \mu}{3}\right]$

eq (12)

#109: vata = τ⋅pa

#110: vatb = τ·pb

#111: $\left[pa = \frac{2 \cdot ca + cb - \tau \cdot pa + \tau \cdot pb + \Delta v + 3 \cdot \mu}{3} \wedge pb = \frac{ca + 2 \cdot cb + \tau \cdot pa - \tau \cdot pb - \Delta v + 3 \cdot \mu}{3} \right]$

#112:

#113: $SOLVE \left(pa = \frac{2 \cdot ca + cb - \tau \cdot pa + \tau \cdot pb + \Delta v + 3 \cdot \mu}{3}, pb = \frac{ca + 2 \cdot cb + \tau \cdot pa - \tau \cdot pb - \Delta v + 3 \cdot \mu}{3} \right), [pa, pb] \right)$

File: vat_2024_10_15.dfw Date: 10/15/2024 Time: 3:36:43 PM

#114:
$$\left[paII = \frac{ca \cdot (\tau + 2) + cb \cdot (\tau + 1) + \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \wedge pbII = \frac{ca \cdot (\tau + 1) + cb \cdot (\tau + 2) - \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \right]$$

#115: qaII =
$$(1 + \tau) \cdot \frac{ca \cdot (\tau + 2) + cb \cdot (\tau + 1) + \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3}$$

#116: qbII =
$$(1 + \tau)$$
·
$$\frac{ca \cdot (\tau + 1) + cb \cdot (\tau + 2) - \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3}$$

Result 3a Appendix C, eq (C.2)

#117:
$$\frac{d}{d\tau} \left(qaII = (1 + \tau) \cdot \frac{ca \cdot (\tau + 2) + cb \cdot (\tau + 1) + \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \right)$$

#118:
$$0 < \frac{\frac{2}{\text{ca} \cdot (2 \cdot \tau + 6 \cdot \tau + 5) + 2 \cdot \text{cb} \cdot (\tau + 3 \cdot \tau + 2) + \Delta v + \mu \cdot (4 \cdot \tau + 12 \cdot \tau + 9)}{2}}{(2 \cdot \tau + 3)}$$

#119:
$$\frac{d}{d\tau} \left(qbII = (1 + \tau) \cdot \frac{ca \cdot (\tau + 1) + cb \cdot (\tau + 2) - \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \right)$$

#120:
$$0 < \frac{2 \cdot \text{ca} \cdot (\tau + 3 \cdot \tau + 2) + \text{cb} \cdot (2 \cdot \tau + 6 \cdot \tau + 5) - \Delta v + \mu \cdot (4 \cdot \tau + 12 \cdot \tau + 9)}{2}$$

by Assumption 2.

Result 3b Appendix C, eq (C.3)

#121:
$$\frac{d}{d\tau} \left(paII = \frac{ca \cdot (\tau + 2) + cb \cdot (\tau + 1) + \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \right)$$

#122: $0 > -\frac{ca - cb + 2 \cdot \Delta v}{2}$ $(2 \cdot \tau + 3)$

if $ca \ge cb$ (Assumption 1b).

#123:
$$\frac{d}{d\tau} \left(pbII = \frac{ca \cdot (\tau + 1) + cb \cdot (\tau + 2) - \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \right)$$

#124: $0 < \frac{ca - cb + 2 \cdot \Delta v}{2}$ $(2 \cdot \tau + 3)$

since (Assumption 1b) $ca \ge cb$

eq (13)

#125: vataII = τ⋅paII

#126: vataII = $\tau \cdot \frac{\text{ca} \cdot (\tau + 2) + \text{cb} \cdot (\tau + 1) + \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3}$

#127: vatbII = $\tau \cdot pbII$

#128: vatbII = $\tau \cdot \frac{\text{ca} \cdot (\tau + 1) + \text{cb} \cdot (\tau + 2) - \Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3}$

#129: xhat =
$$-\frac{pa - pb - \Delta v + \tau \cdot paII - \tau \cdot pbII - \mu}{2 \cdot \mu}$$

#131:
$$profitaII = \frac{n \cdot (ca \cdot (\tau + 1) - cb \cdot (\tau + 1) - \Delta v - \mu \cdot (2 \cdot \tau + 3))^{2}}{2}$$

$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#132:
$$profitbII = \frac{n \cdot (ca \cdot (\tau + 1) - cb \cdot (\tau + 1) - \Delta v + \mu \cdot (2 \cdot \tau + 3))}{2}$$

$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#133: profitaII =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - \mu \cdot (2 \cdot \tau + 3))}{2}$$

$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#134: profitbII =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + \mu \cdot (2 \cdot \tau + 3))}{2}$$

$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

*** Section 4: Cmparing market outcomes under the two pricing structures

eq (14) and Result 4

paII - paI =

#135:
$$\frac{\operatorname{ca}\cdot(\tau+2)+\operatorname{cb}\cdot(\tau+1)+\Delta v+\mu\cdot(2\cdot\tau+3)}{2\cdot\tau+3}-\frac{2\cdot\operatorname{ca}\cdot(\tau+1)+\operatorname{cb}\cdot(\tau+1)+\Delta v+3\cdot\mu}{3\cdot(\tau+1)}$$

#136:
$$-\frac{\tau \cdot (ca \cdot (\tau + 1) - cb \cdot (\tau + 1) - \Delta v - 3 \cdot \mu \cdot (2 \cdot \tau + 3))}{3 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)}$$

#137:
$$-\frac{\tau \cdot (\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu \cdot (2 \cdot \tau + 3))}{3 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} > 0$$

if $\Delta v > 2 \Delta c$ [Assumption 1c]

#138:
$$\frac{\mathsf{ca} \cdot (\tau + 1) + \mathsf{cb} \cdot (\tau + 2) - \Delta \mathsf{v} + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} - \frac{\mathsf{ca} \cdot (\tau + 1) + 2 \cdot \mathsf{cb} \cdot (\tau + 1) - \Delta \mathsf{v} + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#139:
$$\frac{\tau \cdot (ca \cdot (\tau + 1) - cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu \cdot (2 \cdot \tau + 3))}{3 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} > 0$$

#140:
$$\frac{\tau \cdot (\Delta c \cdot (\tau + 1) - \Delta v + 3 \cdot \mu \cdot (2 \cdot \tau + 3))}{3 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} > 0$$

by assumption 2

Result 4c

#141: profitaII =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - \mu \cdot (2 \cdot \tau + 3))}{2}$$

$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#142: profitbII =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + \mu \cdot (2 \cdot \tau + 3))^{2}}{2}$$

$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#143: profitaI =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu)}{18 \cdot \mu \cdot (\tau + 1)}$$

#144: profitbI =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + 3 \cdot \mu)}{18 \cdot \mu \cdot (\tau + 1)}$$

#145: profitaII - profitaI =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - \mu \cdot (2 \cdot \tau + 3))^{2}}{2} - \frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu)}{18 \cdot \mu \cdot (\tau + 1)}$$

#146: profitaII - profitaI = -

Date: 10/15/2024 Time: 3:36:43 PM

$$v \cdot \mu \cdot (2 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3)$$

try $\Delta v = \Delta c = 0$

#147:

$$\frac{n \cdot \mu \cdot \tau}{2 \cdot (\tau + 1)} > 0$$

#148: profitbII - profitbI = $\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + \mu \cdot (2 \cdot \tau + 3))^{2}}{2} - \frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)}$

#149: profitbII - profitbI = -

try $\Delta v = \Delta c = 0$

File: vat_2024_10_15.dfw Date: 10/15/2024

#150:
$$profitbII - profitbI = \frac{n \cdot \mu \cdot \tau}{2 \cdot (\tau + 1)} > 0$$

compare total profit for any Δv and Δc subject to Assumption 1c => no nice results. Ignore.

Time: 3:36:43 PM

#151: totalprofitII - totalprofitI =
$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - \mu \cdot (2 \cdot \tau + 3))^{2}}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} + \frac{2}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}$$

$$\frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + \mu \cdot (2 \cdot \tau + 3))^{2}}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} = \frac{n \cdot (\Delta c \cdot (\tau + 1) - \Delta v - 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)}$$

$$n \cdot (\Delta c \cdot (\tau + 1) - \Delta v + 3 \cdot \mu)^{2}$$

#152: totalprofitII - totalprofitI = -

 $18 \cdot \mu \cdot (\tau + 1)$

> 0 if

#153:
$$\Delta c \cdot (\tau + 1) \cdot (4 \cdot \tau + 3) - 2 \cdot \Delta c \cdot \Delta v \cdot (\tau + 1) \cdot (4 \cdot \tau + 3) + \Delta v \cdot (4 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3)^{2} > 0$$

#154: $SOLVE(\Delta c \cdot (\tau + 1) \cdot (4 \cdot \tau + 3) - 2 \cdot \Delta c \cdot \Delta v \cdot (\tau + 1) \cdot (4 \cdot \tau + 3) + \Delta v \cdot (4 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3)^{2} > 0$, μ)

#155:
$$\left(\left(\mu < \frac{\sqrt{(4 \cdot \tau + 3) \cdot (\Delta v - \Delta c \cdot (\tau + 1))}}{3 \cdot (2 \cdot \tau + 3)} \wedge \Delta c \cdot (\tau + 1) - \Delta v \le 0 \wedge \mu > \frac{\sqrt{(4 \cdot \tau + 3) \cdot (\Delta c \cdot (\tau + 1) - \Delta v)}}{3 \cdot (2 \cdot \tau + 3)} \right) v \right)$$

$$\left(\mu < \frac{\sqrt{(4 \cdot \tau + 3) \cdot (\Delta c \cdot (\tau + 1) - \Delta v)}}{3 \cdot (2 \cdot \tau + 3)} \wedge \mu > \frac{\sqrt{(4 \cdot \tau + 3) \cdot (\Delta v - \Delta c \cdot (\tau + 1))}}{3 \cdot (2 \cdot \tau + 3)} \wedge \Delta c \cdot (\tau + 1) - \Delta v \ge 0 \right) \right)$$

$$\wedge \Delta c \cdot (\tau + 1)^{2} - 2 \cdot \Delta c \cdot \Delta v \cdot (\tau + 1) + \Delta v > 0$$

*** Section 5: 2-stage with (no) regret

eq (15): First-stage utility

#156: ua1 = $va - pa - \mu \cdot x$

#157: $ub1 = vb - pb - \mu \cdot (1 - x)$

eq (16): Second-stage utility

#158: uaa = va - qa

#159: $uab = vb - qb - \mu \cdot 1$

#160: ubb = vb - qb

#161: uba = $va - qa - \mu \cdot 1$

eq (17): First stage xhat

#162:
$$va - pa - \mu \cdot x = vb - pb - \mu \cdot (1 - x)$$

#163: SOLVE(va - pa -
$$\mu \cdot x = vb - pb - \mu \cdot (1 - x), x$$
)

#164:
$$xhat1 = -\frac{pa - pb - va + vb - \mu}{2 \cdot \mu}$$

#165: xhat1 =
$$-\frac{pa - pb - \Delta v - \mu}{2 \cdot \mu}$$

eq (18) copy from (11) special case with vata = vatb =0

#166:
$$\left[pa = \frac{2 \cdot ca + cb - 0 + 0 + \Delta v + 3 \cdot \mu}{3} \wedge pb = \frac{ca + 2 \cdot cb + 0 - 0 - \Delta v + 3 \cdot \mu}{3} \right]$$

#167:
$$\left[paIII = \frac{2 \cdot ca + cb + \Delta v + 3 \cdot \mu}{3} \wedge pbIII = \frac{ca + 2 \cdot cb - \Delta v + 3 \cdot \mu}{3} \right]$$

Result 5: proof and Appendix D

#168: qbIII =
$$(1 + \tau) \cdot \frac{ca + 2 \cdot cb - \Delta v + 3 \cdot \mu}{3}$$

#169: qaIII =
$$(1 + \tau) \cdot \frac{2 \cdot ca + cb + \Delta v + 3 \cdot \mu}{3}$$

eq (D.1) uaa \geq uab if

#170:
$$va - \frac{(1 + \tau) \cdot (2 \cdot ca + cb + \Delta v + 3 \cdot \mu)}{3} \ge vb - \frac{(1 + \tau) \cdot (ca + 2 \cdot cb - \Delta v + 3 \cdot \mu)}{3} - \mu \cdot 1$$

#171: SOLVE
$$\left(va - \frac{(1+\tau) \cdot (2 \cdot ca + cb + \Delta v + 3 \cdot \mu)}{3} \ge vb - \frac{(1+\tau) \cdot (ca + 2 \cdot cb - \Delta v + 3 \cdot \mu)}{3} - \mu \cdot 1, \mu \right)$$

$$\mu \geq \frac{\mathsf{ca} \cdot (\tau + 1) - \mathsf{cb} \cdot (\tau + 1) - 3 \cdot \mathsf{va} + 3 \cdot \mathsf{vb} + 2 \cdot \Delta \mathsf{v} \cdot (\tau + 1)}{3}$$

#173:
$$\mu \ge \frac{\Delta c \cdot (\tau + 1) - 3 \cdot \Delta v + 2 \cdot \Delta v \cdot (\tau + 1)}{3}$$

eq (D.2) if

#174:

$$\mu \geq \frac{\Delta c \cdot (\tau + 1) + \Delta v \cdot (2 \cdot \tau - 1)}{3}$$

now by Assumption 2: $\mu > \Delta v$, so it is sufficient to show

eq (D.3)

#175:
$$\Delta v - \frac{\Delta c \cdot (\tau + 1) + \Delta v \cdot (2 \cdot \tau - 1)}{3}$$

#176:

$$-\frac{\Delta c \cdot (\tau + 1) + 2 \cdot \Delta v \cdot (\tau - 2)}{3}$$

> 0 if

#177:
$$\Delta c \cdot (\tau + 1) + 2 \cdot \Delta v \cdot (\tau - 2) < 0$$

#178: SOLVE(
$$\Delta c \cdot (\tau + 1) + 2 \cdot \Delta v \cdot (\tau - 2) < 0$$
, Δv)

#179:
$$IF\left(\tau < 2, \ \Delta v > \frac{\Delta c \cdot (\tau + 1)}{2 \cdot (2 - \tau)}\right) \vee IF\left(\tau > 2, \ \Delta v < \frac{\Delta c \cdot (\tau + 1)}{2 \cdot (2 - \tau)}\right)$$

#180:
$$\Delta v > \frac{\Delta c \cdot (\tau + 1)}{2 \cdot (2 - \tau)}$$

holds since $\tau < 1$ and Assumption 1c in which $\Delta v > \Delta c$ (1+ τ).

eq (D.4) $ubb \ge uba$ if

#181:
$$vb - (1 + \tau) \cdot \frac{ca + 2 \cdot cb - \Delta v + 3 \cdot \mu}{3} \ge va - (1 + \tau) \cdot \frac{2 \cdot ca + cb + \Delta v + 3 \cdot \mu}{3} - \mu \cdot 1$$

eq (D.5) if

#182: SOLVE
$$\left(vb - (1 + \tau) \cdot \frac{ca + 2 \cdot cb - \Delta v + 3 \cdot \mu}{3} \right) \geq va - (1 + \tau) \cdot \frac{2 \cdot ca + cb + \Delta v + 3 \cdot \mu}{3} - \mu \cdot 1, \mu$$

#183:
$$\mu \geq -\frac{\text{ca}\cdot(\tau+1) - \text{cb}\cdot(\tau+1) - 3\cdot\text{va} + 3\cdot\text{vb} + 2\cdot\Delta\text{v}\cdot(\tau+1)}{3}$$

#184:
$$\mu \ge -\frac{\Delta c \cdot (\tau + 1) - 3 \cdot \Delta v + 2 \cdot \Delta v \cdot (\tau + 1)}{3}$$

#185:
$$\mu \geq -\frac{\Delta c \cdot (\tau + 1) + \Delta v \cdot (2 \cdot \tau - 1)}{3}$$

by Assumption 2, $\mu > \Delta v$, so it is sufficient to show

#186:
$$\Delta V - - \frac{\Delta C \cdot (T + 1) - 3 \cdot \Delta V + 2 \cdot \Delta V \cdot (T + 1)}{3}$$

#187:
$$\frac{(\Delta C + 2 \cdot \Delta V) \cdot (T + 1)}{3} > 0$$

eq (19)

#188: paIII - paI =
$$\frac{2 \cdot ca + cb + \Delta v + 3 \cdot \mu}{3} - \frac{2 \cdot ca \cdot (\tau + 1) + cb \cdot (\tau + 1) + \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#189:
$$paIII - paI = \frac{\tau \cdot (\Delta v + 3 \cdot \mu)}{3 \cdot (\tau + 1)} > 0$$

#190: pbIII - pbI =
$$\frac{ca + 2 \cdot cb - \Delta v + 3 \cdot \mu}{3} - \frac{ca \cdot (\tau + 1) + 2 \cdot cb \cdot (\tau + 1) - \Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#191:
$$pbIII - pbI = \frac{\tau \cdot (3 \cdot \mu - \Delta v)}{3 \cdot (\tau + 1)}$$

*** New Section 6: Local monopolies

Recall eq (2), now adding reservation utility eq (20)

#192:
$$va - pa \cdot (1 + \tau) - \mu \cdot x$$

#193:
$$va - qa - \mu \cdot x$$

#194: vb - pb·(1 +
$$\tau$$
) - μ ·(1 - x)

#195:
$$vb - qb - \mu \cdot (1 - x)$$

consumer indiff between buying A and not buying any brand

#196:
$$va - pa \cdot (1 + \tau) - \mu \cdot x = 0$$

#197: SOLVE(va - pa·(1 +
$$\tau$$
) - μ ·x = 0, x)

eq (21)

Date: 10/15/2024 Time: 3:36:43 PM

#198:

consumer indiff between buying B and not buying any brand

#200: SOLVE(vb - pb·(1 +
$$\tau$$
) - μ ·(1 - x), x)

#201:

$$xb = \frac{pb \cdot (\tau + 1) - vb + \mu}{u}$$

#202:
$$xb = \frac{qb - vb + \mu}{\mu}$$

** Subsection 6.1 Tax-inclusive monopoly pricing

eq (22) profits

#203: profita = $n \cdot (pa - ca) \cdot xa$

#204: profita =
$$n \cdot \left(\frac{qa}{1 + \tau} - ca \right) \cdot \frac{va - qa}{\mu}$$

#205: profitb = $n \cdot (pb - cb) \cdot (1 - xb)$

#206: profitb =
$$n \cdot \left(\frac{qb}{1 + \tau} - cb \right) \cdot \left(1 - \frac{qb - vb + \mu}{\mu} \right)$$

Deriving equilibrium I: eq (23) and Appendix E

#207:
$$\frac{d}{d \ qa} \left(profita = n \cdot \left(\frac{qa}{1 + \tau} - ca \right) \cdot \frac{va - qa}{\mu} \right)$$

#208:
$$0 = \frac{n \cdot (ca \cdot (\tau + 1) - 2 \cdot qa + va)}{u \cdot (\tau + 1)}$$

#209:
$$\frac{d}{d \operatorname{qa}} \frac{d}{\operatorname{qg}} \left(\operatorname{profita} = \operatorname{n} \cdot \left(\frac{\operatorname{qa}}{1 + \tau} - \operatorname{ca} \right) \cdot \frac{\operatorname{va} - \operatorname{qa}}{\operatorname{\mu}} \right)$$

#210:
$$0 > -\frac{2 \cdot n}{u \cdot (\tau + 1)}$$

#211:
$$\frac{d}{d \ qb} \left(\text{profitb} = n \cdot \left(\frac{qb}{1 + \tau} - cb \right) \cdot \left(1 - \frac{qb - vb + \mu}{\mu} \right) \right)$$

#212:
$$0 = \frac{n \cdot (cb \cdot (\tau + 1) - 2 \cdot qb + vb)}{\mu \cdot (\tau + 1)}$$

#213:
$$\frac{d}{d \ qb} \frac{d}{d \ qb} \left(\text{profitb} = n \cdot \left(\frac{qb}{1 + \tau} - cb \right) \cdot \left(1 - \frac{qb - vb + \mu}{\mu} \right) \right)$$

#214:
$$0 > -\frac{2 \cdot n}{1 \cdot (T + 1)}$$

$$\mbox{\#215: SOLVE} \Bigg[\Bigg[0 = \frac{ \mbox{$n \cdot (ca \cdot (\tau + 1) - 2 \cdot qa + va)} }{ \mbox{$\mu \cdot (\tau + 1)$}}, \ 0 = \frac{ \mbox{$n \cdot (cb \cdot (\tau + 1) - 2 \cdot qb + vb)$} }{ \mbox{$\mu \cdot (\tau + 1)$}} \Bigg], \ [qa, \ qb] \Bigg)$$

eq (23)

Date: 10/15/2024

#216:
$$\left[qaI = \frac{ca \cdot (\tau + 1) + va}{2} \wedge qbI = \frac{cb \cdot (\tau + 1) + vb}{2}\right]$$

#217:
$$\operatorname{profitaI} = \frac{n \cdot (\operatorname{ca} \cdot (\tau + 1) - \operatorname{va})}{4 \cdot \mu \cdot (\tau + 1)}$$

#218:
$$\operatorname{profitbI} = \frac{n \cdot (\operatorname{cb} \cdot (\tau + 1) - \operatorname{vb})^{2}}{4 \cdot \mu \cdot (\tau + 1)}$$

eq (E.2) market shares

#219:
$$xaI = \frac{va - ca \cdot (\tau + 1)}{2 \cdot \mu}$$

#220:
$$xbI = \frac{cb \cdot (\tau + 1) - vb + 2 \cdot \mu}{2 \cdot \mu}$$

eq (24) number of unserved consumers

#221:
$$nuI = n \cdot (xbI - xaI)$$

#222: nuI =
$$n \cdot \left(\frac{cb \cdot (\tau + 1) - vb + 2 \cdot \mu}{2 \cdot \mu} - \frac{va - ca \cdot (\tau + 1)}{2 \cdot \mu} \right)$$

#223:
$$nuI = \frac{n \cdot (ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb + 2 \cdot \mu)}{2 \cdot \mu}$$

nuI > 0 if [holds by Assumption 4b]

#224:
$$ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb + 2 \cdot \mu > 0$$

#225: SOLVE(ca·(
$$\tau$$
 + 1) + cb·(τ + 1) - va - vb + 2· μ > 0, μ)

#226:
$$\mu > -\frac{ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb}{2}$$

** Subsection 6.2 Monopoly pricing with sales tax separted from price and low computing consumers.

modify eq (8)

#227:
$$va - pa - vata - \mu \cdot xa = 0$$

#228:
$$vb - pb - vatb - \mu \cdot (1 - xb) = 0$$

eq (25)

#229: SOLVE(va - pa - vata -
$$\mu \cdot xa = 0$$
, xa)

#230:
$$xa = -\frac{pa - va + vata}{\mu}$$

#231: SOLVE(vb - pb - vatb -
$$\mu \cdot (1 - xb) = 0$$
, xb)

#232:
$$xb = \frac{pb + vacb - vb + \mu}{u}$$

eq (26) profit functions

#233: profita =
$$n \cdot (pa - ca) \cdot xa$$

#234: profitb =
$$n \cdot (pb - cb) \cdot (1 - xb)$$

#235: profita =
$$n \cdot (pa - ca) \cdot \left(- \frac{pa - va + vata}{\mu} \right)$$

#236: profitb =
$$n \cdot (pb - cb) \cdot \left(1 - \frac{pb + vatb - vb + \mu}{\mu}\right)$$

Appendix F, deriving eq (28)

#237:
$$\frac{d}{d pa} \left(profita = n \cdot (pa - ca) \cdot \left(- \frac{pa - va + vata}{\mu} \right) \right)$$

#238:
$$0 = \frac{n \cdot (ca - 2 \cdot pa + va - vata)}{u}$$

#239:
$$\frac{d}{d} \frac{d}{pa} \left(\text{profita} = n \cdot (pa - ca) \cdot \left(- \frac{pa - va + vata}{\mu} \right) \right)$$

#240:
$$0 > -\frac{2 \cdot n}{\mu}$$

#241:
$$\frac{d}{d pb} \left(profitb = n \cdot (pb - cb) \cdot \left(1 - \frac{pb + vatb - vb + \mu}{\mu} \right) \right)$$

#242:
$$0 = \frac{n \cdot (cb - 2 \cdot pb - vatb + vb)}{\mu}$$

#243:
$$\frac{d}{d pb} \frac{d}{d pb} \left(profitb = n \cdot (pb - cb) \cdot \left(1 - \frac{pb + vatb - vb + \mu}{\mu} \right) \right)$$

#244:
$$0 > -\frac{2 \cdot n}{11}$$

$$\#245 \colon SOLVE \left[\left[0 = \frac{n \cdot (ca - 2 \cdot pa + va - vata)}{\mu}, \ 0 = \frac{n \cdot (cb - 2 \cdot pb - vatb + vb)}{\mu} \right], \ [pa, \ pb] \right]$$

#246:

$$\left[pa = \frac{ca + va - vata}{2} \land pb = \frac{cb - vatb + vb}{2}\right]$$

#247:
$$\left[pa = \frac{ca + va - \tau \cdot pa}{2} \wedge pb = \frac{cb - \tau \cdot pb + vb}{2} \right]$$

#248: SOLVE
$$\left[pa = \frac{ca + va - \tau \cdot pa}{2} \land pb = \frac{cb - \tau \cdot pb + vb}{2}\right], [pa, pb]$$

eq (27)

#249:

$$\begin{bmatrix} paII = \frac{ca + va}{T + 2} \land pbII = \frac{cb + vb}{T + 2} \end{bmatrix}$$

eq (F.2)

#251:

$$xaII = \frac{va - ca \cdot (\tau + 1)}{\mu \cdot (\tau + 2)}$$

#252:
$$xb = \frac{-cb + vb}{\tau + 2} + \tau \cdot \frac{-cb + vb}{\tau + 2} - vb + \mu$$

#253:
$$xbII = \frac{cb \cdot (\tau + 1) - vb + \mu \cdot (\tau + 2)}{\mu \cdot (\tau + 2)}$$

xaII and xbII > 0 by Assumption 4a

profit part of eq (27)

#254:
$$profitaII = \frac{n \cdot (ca \cdot (\tau + 1) - va)^{2}}{2}$$

$$\mu \cdot (\tau + 2)$$

#255:
$$profitbII = \frac{n \cdot (cb \cdot (\tau + 1) - vb)^{2}}{2}$$

$$\mu \cdot (\tau + 2)$$

Deriving (28) unserved consumers

#256: nuII = n·(xbII - xaII) =
$$\frac{n \cdot (cb \cdot (\tau + 1) - vb + \mu \cdot (\tau + 2))}{\mu \cdot (\tau + 2)} - \frac{va - ca \cdot (\tau + 1)}{\mu \cdot (\tau + 2)}$$

#257:
$$nuII = \frac{n \cdot (ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb + \mu \cdot (\tau + 2))}{\mu \cdot (\tau + 2)}$$

> 0 if [holds by assumption 4b)

#258:
$$ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb + \mu \cdot (\tau + 2) > 0$$

#259: SOLVE(ca·(
$$\tau$$
 + 1) + cb·(τ + 1) - va - vb + μ ·(τ + 2) > 0, μ)

#260:
$$\mu > -\frac{ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb}{\tau + 2}$$

** Subsection 6.3: Comparing monoply outcomes under the 2 pricing structures: eq (29)

#261:
$$paII - paI = \frac{ca + va}{\tau + 2} - \frac{2}{1 + \tau}$$

#262:
$$paII - paI = \frac{\tau \cdot (va - ca \cdot (\tau + 1))}{2 \cdot (\tau + 1) \cdot (\tau + 2)}$$

> 0 by Assumption 4a

#264:
$$pbII - pbI = \frac{\tau \cdot (vb - cb \cdot (\tau + 1))}{2 \cdot (\tau + 1) \cdot (\tau + 2)}$$

> 0 by Assumption 4a

#265: profitaII - profitaI =
$$\frac{n \cdot (ca \cdot (\tau + 1) - va)}{2} - \frac{n \cdot (ca \cdot (\tau + 1) - va)}{4 \cdot \mu \cdot (\tau + 1)}$$

#266:
$$profitaII - profitaI = -\frac{2}{n \cdot \tau \cdot (ca \cdot (\tau + 1) - va)} < 0$$

$$4 \cdot \mu \cdot (\tau + 1) \cdot (\tau + 2)$$

#267: profitbII - profitbI =
$$\frac{n \cdot (cb \cdot (\tau + 1) - vb)}{2} - \frac{n \cdot (cb \cdot (\tau + 1) - vb)}{4 \cdot \mu \cdot (\tau + 1)}$$

Date: 10/15/2024

#268:
$$profitbII - profitbI = -\frac{2 \quad 2}{n \cdot \tau \cdot (cb \cdot (\tau + 1) - vb)} < 0$$

$$4 \cdot \mu \cdot (\tau + 1) \cdot (\tau + 2)$$

eq (31): comparing number of unserved consumers

#269: nuII - nuI =
$$\frac{n \cdot (ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb + \mu \cdot (\tau + 2))}{\mu \cdot (\tau + 2)} - \frac{n \cdot (ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb + 2 \cdot \mu)}{2 \cdot \mu}$$

#270:
$$nuII - nuI = -\frac{n \cdot \tau \cdot (ca \cdot (\tau + 1) + cb \cdot (\tau + 1) - va - vb)}{2 \cdot \mu \cdot (\tau + 2)}$$

> 0 by Assumption 4b.
