Problem Set 7

- For each of the following, draw an NFA and/or FO formula whenever possible:
 - (a) The set of strings over $x \in \{0,1\}^*$ such that $\#_0(x).\#_1(x)$ is even. The automaton can have no more than 4 states.
 - (b) the set of strings over $\{a,b\}$ containing at least 3 occurrences of two consecutive a's, overlapping allowed (for example, aaaa is accepted). While drawing the automaton, draw one which has 7 states.
 - (c) (0+1(01*0)*1)*
- 2. Let L_1, L_2 be FO-definable. Is $L_1.L_2$ FO-definable?
- 3. Let L_1, L_2 be two languages. Define the shuffle operation on two words $w_1 = a_1 a_2 \dots a_n$ and $w_2 = b_1 b_2 \dots b_m$ as follows. shuffle (w_1, w_2) contains words $x_1 y_1 \dots x_k y_k$ such that $x_1 \dots x_k = w_1, y_1 y_2 \dots y_k = w_2$, and x_i, y_i are strings (not necessarily symbols). Extend the definition of shuffle from words to languages in the obvious way by shuffling every pair of words in the two languages.
 - (a) If L_1 is finite and L_2 is FO definable, is shuffle(L_1, L_2) FO-definable?
 - (b) If L_1, L_2 are FO-definable, is shuffle(L_1, L_2) regular?
- 4. Let $h: \Sigma^* \to \Gamma^*$ be a mapping defined as follows. $h(\epsilon) = \epsilon$, h is defined on all symbols of Σ and h(a) is a unique word for each $a \in \Sigma$. Moreover, $h(w_1w_2) = h(w_1)h(w_2)$ for all words w_1w_2 . If $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\}$.
 - (a) If L is regular, is h(L) regular?
 - (b) If L is FO-definable, is h(L) FO-definable?
- 5. Which of the following formulae are valid? Which are satisfiable? In each case, answer your question by constructing equivalent automata.
 - $-\exists y [\neg first(y) \land Q_b(y) \land \forall x [x < y \to Q_a(x)]]$
 - $\forall x [Q_a(x) \to \exists y [(x < y) \land Q_b(y) \land \exists z_1 \exists z_2 (z_1 < z_2) \land x < z_1 \land \neg (Q_b(z_1) \land Q_b(z_2)))]]$
- 6. Write second order logic formulae to capture the following:
 - (a) There is a path from node s to node t in the graph. The signature is $\tau = \{E\}.$
 - (b) Every bounded non empty set has a least upper bound. The signature is $\tau = \{\leq\}$
- 7. Let Σ be a finite alphabet. The atomic formulae in MSO defined over Σ^* are x = y, x < y, S(x, y), X(x) and $Q_a(x), a \in \Sigma$. Consider the following logic called MSO₀ having atomic formulae of the following forms:

$$Sing(X), X \subseteq Y, X < Y, S(X, Y), Q_a(X)$$

where

- -Sing(X) means that X is a SO variable of cardinality 1;
- $-X \subseteq Y$ means that every element of the SO variable X is contained in the SO variable Y;
- -X < Y means that SO variables X, Y have cardinality 1, and that the element in Y is greater than the element in X;
- -S(X,Y) means that SO variables X,Y have cardinality 1, and Y contains the successor of the element in X; and,
- $-Q_a(X)$ means that all positions in X are decorated by $a \in \Sigma$.

If φ is an atomic formula in MSO, then $\varphi \wedge \varphi, \neg \varphi, \varphi \vee \varphi, \forall x \varphi$ and $\forall X \varphi$ are formulae in MSO. Similarly, if φ is an atomic formula in MSO₀, then, $\varphi \wedge \varphi, \neg \varphi, \varphi \vee \varphi$ and $\forall X \varphi$ are formulae in MSO₀. Compare the expressiveness of MSO and MSO_0 .

- 8. For the formula $\exists x \forall y (x < y \rightarrow Q_a(y))$ give an equivalent MSO₀ formula.
- 9. Write an MSO formula for x < y without using <. You can use S in your MSO formula.
- 10. Consider the following NFA $N = (\{0, 1, 2, 3\}, \{a, b\}, \Delta, \{0\}, \{1\})$ with $\Delta(0, b) = \{1\}$, $\Delta(1, a) = \{2\}$, $\Delta(2, a) = \{2\}$, $\Delta(2, b) = \{3\}$ and $\Delta(3, b) = \{0\}$. Write an MSO formula with two SO variables that characterizes L(N).