24-25-1《线性代数》练习题

一、单项选择题

1.	设矩阵 A 为 3 阶可逆矩阵, $Tr(A)$ 表示 A 的主对角线元素之和, k 为非零常数,则()
	(A) $ kA = k A $ (B) $Tr(kA) = kTr(A)$
	(C) $R(kA) = kR(A)$ (D) $(kA)^{-1} = kA^{-1}$
2.	设 n 阶矩阵 A 、 B 、 C 满足 $ABC=E$,则 $B^{-1}=($).
	(A) $A^{-1}C^{-1}$ (B) $C^{-1}A^{-1}$ (C) AC (D) CA
3.	已知 A 为 $m \times n$ 矩阵. 下列说法正确的是 ().
	(A) 若 $R(A) < m$,则 A 中必有一行全为 0 ;
	(B) 若 $R(A) < m$,则非齐次线性方程组 $Ax = b$ 无解;
	(C) 若 $R(A) < n$,则非齐次线性方程组 $Ax = b$ 有无穷多解;
	(D) 若 $R(A) < n$,则 A 的列向量组线性相关.
4.	设 α_1,α_2 是齐次线性方程组 $Ax=0$ 的解, β_1,β_2 是非齐次线性方程组 $Ax=b$ 的解,则
	().
	(A) $\alpha_2 + \beta_2 \not\in Ax = 0$ 的解; (B) $\beta_1 - \beta_2 \not\in Ax = b$ 的解;
	(C) $\alpha_1 + \alpha_2 \not\equiv Ax = 0$ 的解; (D) $\beta_1 + \beta_2 \not\equiv Ax = b$ 的解.
5.	已知 3 元非齐次线性方程组 $AX=oldsymbol{eta}$ 的两个解向量 $oldsymbol{\eta}_1, oldsymbol{\eta}_2$ 满足 $oldsymbol{\eta}_1-oldsymbol{\eta}_2=(1,0,0)^T$,
	$\eta_1 + \eta_2 = (2,4,6)^T$. 若秩 $R(A) = 2$,则 $AX = \beta$ 的通解为(),其中 k 为任意常数.
	(A) $(2,4,6)^T + k(1,0,0)^T$ (B) $(1,2,3)^T + k(1,0,0)^T$
	(c) $(1,0,0)^T + k(1,4,6)^T$ (D) $(1,0,0)^T + k(1,2,3)^T$
6.	设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 经过初等行变换可化为 $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$,则必有().
	$(A) \ \alpha_3 = 2\alpha_1 + \alpha_2; \qquad \qquad (B) \ \alpha_1, \alpha_2, \alpha_3$ 线性相关,但 α_3 不能由 α_1, α_2 表示;

(C) $\alpha_1, \alpha_2, \alpha_3$ 线性无关; (D) $\alpha_3 = \alpha_1 + \alpha_2$.

- 7. 下列向量组中能构成 R^3 的一个基的是(). (A) $\{(1,1,1)^T\};$ (B) $\{(1,0,0)^T, (0,0,1)^T\};$ (c) $\{(1,2,1)^T, (2,0,-1)^T, (4,0,-2)^T\};$ (d) $\{(1,2,1)^T, (2,0,-1)^T, (4,4,0)^T\}.$ 8. 若 n 阶矩阵 A 与 B 相似,则必有 (). (A) 存在 n 阶可逆矩阵 P 使得 $P^{T}AP = B$; (B) AB = BA; (C) 存在 n 阶可逆矩阵 Q 使得 $Q^{-1}AQ = B$; (D) A = B 均可对角化. 9. 设 A 是 3 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 是 3 维非零列向量,如果 $A\alpha_i=i\alpha_i$ (i=1,2,3) ,则下列结 论正确的是(). (A) 若 $P = (\alpha_1, 2\alpha_2, 3\alpha_3)$, 则有 $P^{-1}AP = \text{diag}(1,1,1)$; (B) 若 $P = (\alpha_1, \alpha_1 + \alpha_2, 3\alpha_3)$,则有 $P^{-1}AP = \text{diag}(1, 2, 3)$; (C) 若 $P = (2\alpha_1, -\alpha_2, 5\alpha_3)$,则有 $P^{-1}AP = \text{diag}(1, 2, 3)$; (D) 若 $P = (\alpha_3, \alpha_2, \alpha_1)$,则有 $P^{-1}AP = \text{diag}(1, 2, 3)$. **10**. 下列矩阵**不可以**对角化的是(). $(A) \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}; \quad (B) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad (C) \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad (D) \begin{pmatrix} -1 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ 11. 设 3 阶矩阵 A 与 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似,则 $\left|A^2 + 3A - E\right| = ($). (A) 81; (C) 57; (B) 2; **12**. 已知 n 元正定二次型 f 的矩阵为 A , $n \ge 2$, A^* 为 A 的伴随矩阵,则(
- 13. 已知 n 阶矩阵 A 是正交矩阵, $n \ge 2$, A^* 为 A 的伴随矩阵,则必有().

 $(D) A^*$ 是正定的.

(A) $AA^* = E$; (B) $A^* = A^T$;

(A) $AA^* = E$;

(c) *f* 的秩小于 *n*;

(C) A^* 是正交矩阵; (D) A是正定的.

(B) 二次型 $X^T A^* X$ 的矩阵是 $\frac{1}{2} A^*$;

二、填空题

1. 设 4 阶行列式
$$D = \begin{bmatrix} a & b & c & d \\ c & b & d & a \\ d & b & c & a \\ a & b & d & c \end{bmatrix}$$
, A_{ij} 是 D 中元素 a_{ij} 的代数余子式,则

$$A_{14} + A_{24} + A_{34} + A_{44} = \underline{\hspace{1cm}}.$$

- 2. 设矩阵 $A = \begin{pmatrix} 0 & 1 & 0 \\ a & 0 & c \\ b & -1 & 0 \end{pmatrix}$, 且 $A = -A^T$, 则 $a = __$, $b = __$, $c = __$.
- 3. 设 n 阶矩阵 X 满足 $AX + \frac{1}{2}B = X$,其中 B 为 n 阶可逆矩阵,则 $X = _____$
- 4. 设矩阵 $A = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$, 则 $(A-2E)^{-1} =$ _____.

5.
$$\begin{pmatrix} 1 & & \\ & 1 & \\ 2 & & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}^{-1} = \underline{\qquad}.$$

- 6. 若向量组 $(1, \lambda 2, 1)^T$, $(2, \lambda, 4)^T$, $(0, 0, 1)^T$ 线性相关,则 $\lambda = ____$.
- 7. 设矩阵 $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} = (p_1, p_2, p_3)$,则向量 $(1, 1, 1)^T$ 在基 p_1, p_2, p_3 下的坐标

为_____

8. 己知
$$A = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} \frac{-\sqrt{2}}{2} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
 是正交矩阵, $\xi = (1, 0, 1)^T$,则 ξ 在基

 η_1, η_2, η_3 下的坐标为_____

- 9. 已知矩阵 $A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$ 的特征值为 1, 2, 3, 则 $x = \underline{\hspace{1cm}}$.
- 10. 已知 3 阶矩阵 A 的特征值为 1, -1, 2, E 是单位矩阵, 则行列式 $2A^* + A + E =$.
- 11. 已知二次型 $f = (x_1, x_2, x_3) \begin{pmatrix} 1 & 4 & -6 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$,则该二次型的矩阵是_____.
- **12**. 设 **3** 阶实对称矩阵 *A* 的特征值分别为 **1**, **2**, **3**, 则当 t___ 时, tE-A为正定矩阵,其中 E 为单位矩阵.
- 13. 当t满足_____时,实二次型 $f(x_1,x_2,x_3)=x_1^2+5x_2^2+4x_1x_2+2tx_2x_3+x_3^2$ 是正定二次型.
- 三、 解答题 (要求写出证明过程或演算步骤)

1. 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & 5 \\ 3 & 4 & 1 \end{pmatrix}$, 求

- (1) $A^T B 2A$; (2) $A^{-1}B$.
- 2. 已知向量组

$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 5 \\ 8 \\ 7 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}, \ \beta_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}, \ \beta_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

- (1)证明: 向量组 $\alpha_1, \alpha_2, \alpha_3$ 与向量组 β_1, β_2 等价.
- (2) 求出向量组 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 的一个最大无关组,并把其余的向量用该最大无关组线性表示.

3. 设向量组
$$A: \alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 5 \\ 8 \\ 7 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, B: \beta_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}, \ \beta_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

- (1) 求出向量组 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 的一个最大无关组,并把其余的向量用该最大无关组线性表示.
 - (2)证明: B组能由A组线性表示,但A组不能由B组线性表示.

4. 已知向量组

$$\alpha_{1} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}, \ \alpha_{2} = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}, \ \alpha_{3} = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 14 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix}, \ \alpha_{5} = \begin{pmatrix} 2 \\ 1 \\ 5 \\ 10 \end{pmatrix}.$$

- (1)证明: 矩阵方程 $AX = \alpha_5$ 有解, 其中矩阵 $A=(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$;
- (2) 求出向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的一个最大无关组,并把其余的向量用该最大无关组线性表示。
- 5. 已知 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = (2,0,1)^T$ 是 3 维实向量空间 \mathbf{R}^3 的一个基, $\beta_1 = (1,0,1)^T$, $\beta_2 = (0,1,-1)^T$, $\beta_3 = (1,2,0)^T$ 是 \mathbf{R}^3 的一组向量.
 - (1)证明:向量组 β_1,β_2,β_3 是 \mathbf{R}^3 的一个基;
 - (2)已知向量 α 在基 β_1,β_2,β_3 下的坐标为 $(1,1,1)^T$,求 α 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标.
- 6. 当a, b 为何值时, 线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

有唯一解、无解、无穷多解? 当方程组有无穷多解时求其用特解和导出组的基础解系表示的通解.

7. 己知矩阵

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \ b = \frac{t}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, X = \begin{pmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{pmatrix}.$$

- (1) 求出以 x_1, x_2, x_3 为变量的线性方程组 $XAb + Ax = \beta$ 的增广矩阵.
- (2) 当 t 取何值时,线性方程组 $XAb + Ax = \beta$ 有唯一解、无解或无穷多解?并在有无穷多解时,求出用其特解和导出组的基础解系表示的通解.
- 8. 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是齐次线性方程组Ax = 0的一个基础解系,证明:

$$\beta_1 = \alpha_1$$
, $\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = \alpha_1 + \alpha_2 + \alpha_3$, $\beta_4 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$

5

也是 Ax = 0 的一个基础解系.

- 9. 设 A 为 3 阶矩阵, α 是 3 维列向量. 已知向量组 α , $A\alpha$, $A^2\alpha$ 线性无关,且满足 $A^3\alpha=3A\alpha-A^2\alpha$,证明:
 - (1)矩阵 $B = (\alpha, A\alpha, A^4\alpha)$ 可逆;
 - (2) $B^T B$ 为正定矩阵.
- 10. 设实对称矩阵 $A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$,
 - (1) 求出 A 的所有特征值和特征向量;
 - (2) 求一个**正交**矩阵 Q 和对角矩阵 Λ 使得 $Q^{-1}AQ = \Lambda$;
 - (3)证明: 当实数k > -2时, 实对称矩阵A + kE为正定矩阵.
- 11. 已知二次型 $f=(x_1,\ x_2,\ x_3)egin{pmatrix} 1 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$,求该二次型的矩阵,并用正交变换法把

f 化为标准形. (要求写出所做的正交变换x = Qy及所化得的标准形.)

12. 用正交变换法化二次型 $f = x^T A x = x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$ 为标准形. (要求写出所做的正交变换 x = Qy 及所化得的标准形.)