Using Fault Data to Predict Vehicle Derates

Big-G Express

Smokey and the Bandits: Maria, Andrew, Jeff

Presentation Outline

- Research Objective
- Data Challenges
- Classifying Target Variable
- Feature Engineering
- Model Selection and Results

Research Objective

Predict when a full derate is imminent with enough time to get the truck off the road (2+ hours)

- → Caught Full Derate (True Positive)
 - +\$4,000
- → False Derate Prediction (False Positive)
 - -\$ 500
- **→** Evaluating Results

False Positive Cost = False Positives * \$500

True Positive Savings = True Positives * \$4,000

Net Savings - True Positive Savings - False Positive Cost

Results

Random Forest -\$99k / Logistic Regression: -\$83k / YDF GBL: \$0

Data Challenges

Diagnostics Data (Long to Wide)

IgnStatus	IntakeManifoldTemperature	LampStatus	Speed	ParkingBrake
False	78.8	1023	0	True
True	NaN	1279	NaN	NaN
NaN	NaN	1279	NaN	NaN
True	NaN	1279	NaN	NaN
NaN	NaN	16639	NaN	NaN

Removing Service Stations

threshold_miles = 0.5 threshold_meters = threshold_miles * 1609.34 IsServiceStation False 0.889795 True 0.110205

Identifying Derate Rows

	IsFullDerate	Count
0	False	111288
1	True	43

faults['IsFullDerate'] = (faults['spn'] == 5246)

Full Dataset

Test Data

There is no baseline / 'normal' truck operation indicator - everything is some kind of fault.

There were instances of multiple derate events for a specific vehicle in a very short period of time.

Classifying Target Variable

MH Note: in its raw form, the data does not have "labels", so you must define what labels you are going to use and create those labels in your dataset. Also, you will likely need to perform some significant feature engineering in order to build an accurate predictor.

- Identified valid vehicle derates
 Kept only the first derate for a given 24-hour window
- → Identified a derate window

 Up to x hours prior to a valid derate (most of our models used a 2-hour window)

```
Sample rows where derate window is True:
                        EventTimeStamp
                                               next trigger time derate window
       EquipmentID
         105349576 2018-07-06 09:42:48 5246 2018-07-06 09:42:48
996835
                                                                           True
972882
         105427203 2018-04-27 06:07:55 5246 2018-04-27 06:07:55
                                                                           True
5712
              1329 2015-02-25 13:53:08 4344 2015-02-25 13:53:08
                                                                           True
5713
              1329 2015-02-25 13:53:08 5246 2015-02-25 13:53:08
                                                                           True
83425
              1339 2015-06-12 15:35:22 5246 2015-06-12 15:35:22
                                                                           True
```

Feature Engineering

Converting data to usable types

- Used string substitution to make some object type features numeric.
- Some features were numerically represented discrete variables ('spn', 'fmi'), so we left those alone.
- Had some boolean, float, int, and datetime cols which were converted to seconds

Imputing NaNs

- Since time series data, NaNs filled with .ffill() and .bfill() methods
- EXCEPT found better results imputing using mean for logreg model

Additional Features

 fault_frequency, time_since_last_fault, derate_window, SeverityLevelFeature

Model Selection

- → Logistic Regression
 - ♦ Basic, dip-your-toes-in-the-water, logreg model
 - Target was a five-hour derate window (tried multiple, and this provided the best results)
 - Results were overall...not great (raw matrix pictured)
 - After filtering out duplicates, there were 22 TP and... 3925 FP
 - -\$1,874,500 in "savings"
 - BUT this improved to
 -\$82,500 after raising decision threshold to 90%
 (20 TP and 325 FP)

Model Selection

→ Random Forest

- n_estimators=50,
- max_depth=15

Model Net Savings

True Negatives: 56,113

False Positives: 318

False Negatives: 111

True Positives: 15

Money "Saved": **-\$99,000**

Top	10 Important Features:	
	Feature	Importance
12	SeverityLevelFeature	0.214966
0	DistanceLtd	0.127416
10	FuelTemperature	0.108458
1	EngineOilTemperature	0.077515
9	IntakeManifoldTemperature	0.071135
5	EngineOilPressure	0.067984
8	EngineRpm	0.066278
7	BarometricPressure	0.055489
6	EngineCoolantTemperature	0.052904
4	EngineLoad	0.045936

Model Selection

→ YDF Gradient Boosted Learner

- ♦ A set of shallow decision trees that attempt to correct for the error in previous trees.
- We used 500 trees with max depth of 10 and applied ridge regularization.
- ◆ Target was derate_window, which was the 2 hours before a derate occurred at least 24 hours after the last derate occurred (or the first derate)
- We extracted predicted probabilities and converted to boolean with threshold of 0.9 (increased precision) to identify predicted class (the target)

→ YDF Gradient Boosted Learner

Classification Report (sklearn): precision recall f1-score support								
μı	ecision	recatt	T1-2001.6	support				
0	1 00	1 00	1 00	E/E07				
0	1.00	1.00	1.00	56523				
1	1.00	0.61	0.76	88				
accuracy			1.00	56611				
macro avg	1.00	0.81	0.88	56611				
weighted avg	1.00	1.00	1.00	56611				

→ YDF Gradient Boosted Learner

Random sample of 500 values ordered by importance

→ YDF Gradient Boosted Learner

→ YDF Gradient Boosted Learner

Standard Confusion Matrix: True Negatives (TN): 56523 False Positives (FP): 0 False Negatives (FN): 34 True Positives (TP): 54

- → YDF Gradient Boosted Learner
 - "Valuable TPs" were true positives that were correctly predicted at least 2 hours before the next derate and at least 24 hours after the previous derate event.
 - "Costly FPs" were false positives that occurred in isolation (were lonely) and at least 24 hours after the previous derate and at least 24 hours before the next derate.

--- Final Cost/Savings Analysis ---

→ YDF Gradient Boosted Learner

Valuable True Positives (Savings): 0

Costly False Positives (Costs): 0

Total Savings: \$0

Total Costs: \$0

Net Savings (Custom Definition): \$0

--- Conclusion ---

→ It's all pointless...

Questions

Maria, Andrew, Jeff