COMP 2610/6261: Information Theory

Week 12 Tutorial Questions

Question 1: Suppose X and Y are random variables with the following joint distribution p(x, y):

X	0	1	2
0	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{6}$
1	$\frac{1}{4}$	$\frac{1}{3}$	0

Answer the following questions.

- (i) Are X and Y independent? Explain your answer.
- (ii) Compute the expected value of X and Y, i.e., $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- (iii) Compute the expected value of XY, i.e., $\mathbb{E}[XY]$.

Solution:

(i). No, they are not independent, as can be seen from the fact that $p(X = 1, Y = 1) = \frac{1}{3} \neq \frac{7}{12} \times \frac{5}{12} = p(X = 1)p(Y = 1)$.

(ii).
$$\mathbb{E}[X] = \sum_{x,y} p(x,y)x = \frac{7}{12}$$
 and $\mathbb{E}[Y] = \sum_{x,y} p(x,y)y = \frac{3}{4}$.

(iii).
$$\mathbb{E}[XY] = \sum_{x,y} p(x,y)xy = \frac{1}{3}$$
.

Question 2: Three random variables X, Y, Z are given,

- (i) Comparing the term H(Y) + H(X, Y, Z) with the term H(X, Y) + H(Y, Z) in general and determine which terms is greater than or equal to the other.
- (ii) What is the condition for random variables X, Y, Z that these two terms are equal to each other, i.e., H(Y) + H(X,Y,Z) = H(X,Y) + H(Y,Z)

Solution:

(i). Since conditioning cannot increase entropy, we have

$$H(Y) + H(X,Y,Z) - H(X,Y) - H(Y,Z) = H(X,Y,Z) - H(X,Y) - (H(Y,Z) - H(Y))$$

= $H(Z|X,Y) - H(Z|Y) \le 0$.

Thus,
$$H(Y) + H(X, Y, Z) \le H(X, Y) + H(Y, Z)$$
.

(ii). If H(Y) + H(X,Y,Z) = H(X,Y) + H(Y,Z), we have H(Z|X,Y) = H(Z|Y), which means Z is independent with X given Y. Thus, we obtain $X \to Y \to Z$ forms a Markov chain.

Question 3: Consider the Random Variable X and answer the following questions.

X	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅
$p(x_i)$	0.4	0.25	0.15	0.1	0.1

- (a) What is the entropy H(X)?
- (b) Find the binary Huffman code for X.
- (c) Find the Shannon-Fano-Elias code for X.

Solution:

(a). The entropy is calculated as

$$H(X) = -\sum_{x_i} p(x_i) \log p(x_i)$$

$$= -0.4 \log 0.4 - 0.25 \log 0.25 - 0.15 \log 0.15 - 0.1 \log 0.1 - 0.1 \log 0.1$$

$$= 2.1037 \text{bits.}$$

(b). For the Huffman code, the code constructed by the standard Huffman procedure

(c). For the Shannon-Fano-Elias code, the code is constructed as follows

X_i	p_i	I_i	$\sum p_j + \frac{p_i}{2}$	$\sum p_j + \frac{p_i}{2}$ in binary	Code word
x_1	0.4	3	0.2	0.001	001
x_2	0.25	3	0.525	0.100	100
<i>x</i> ₃	0.15	4	0.725	0.1011	1011
<i>x</i> ₄	0.1	5	0.85	0.11011	11011
<i>X</i> 5	0.1	5	0.95	0.11110	11110