4 Fig. 4.1 shows the variation with extension *x* of the tensile force *F* for two wires, G and H, made from the same material.

Fig. 4.1

The elastic limit has not been exceeded for G or H.

- (a) For the lines in Fig. 4.1:
 - (i) state what is represented by the gradient

(ii) explain why the area under the line represents the elastic potential energy of the wire.

......[2]

(b) Wires G and H are joined together end-to-end to form a composite wire of negligible weight.

The composite wire hangs vertically from a fixed support.

A block of weight of 2.0 N is attached to the end of the wire, as shown in Fig. 4.2.

Fig. 4.2

(i)	Use Fig	j. 4.1	to	determine	:
-----	---------	--------	----	-----------	---

• the extension x_G of wire G

$$x_{G}$$
 = mm

• the extension x_H of wire H.

$$x_{\rm H}$$
 = mm [1]

(ii) Calculate the total elastic potential energy E_P of the composite wire due to the weight of the block.

$$E_{p} =J$$
 [2]

(iii) The original length of wire G is L and the original length of wire H is 1.5 L.

Calculate the ratio

cross-sectional area of wire G cross-sectional area of wire H

4.5		•
ratia -	1.5	
ratio =	 1.)	п