WHAT IS CLAIMED IS:

1	1.	An isolated nucleic acid encoding an SSG polypeptide, said
2	polypeptide comprisi	ng an amino acid sequence that is at least about 70% identical to ar
3	amino acid sequence	as set forth in SEQ ID NO:1 or 3.

- The nucleic acid of claim 1, wherein said polypeptide specifically binds to polyclonal antibodies generated against a polypeptide that comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 and SEQ ID NO:6.
- The nucleic acid of claim 1, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEO ID NO:5 and SEQ ID NO:6.
- 1 4. The nucleic acid of claim 1, wherein said polypeptide forms a 2 dimer with a second ABC polypeptide, and wherein said dimer exhibits sterol transport 3 activity.
- The nucleic acid of claim 4, wherein said dimer is a heterodimer.
- 1 6. The nucleic acid of claim 4, wherein said sterol is cholesterol.
- The nucleic acid of claim 5, wherein said second ABC polypeptide is ABC8.
- 1 8. The nucleic acid of claim 1, wherein said nucleic acid hybridizes 2 under moderately stringent hybridization conditions to a nucleic acid comprising a 3 nucleotide sequence as set forth in SEQ ID NO:2 or 4.
- 9. The nucleic acid of claim 8, wherein said nucleic acid hybridizes under stringent hybridization conditions to a nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:2 or 4.
- 1 10. The nucleic acid of claim 1, wherein said nucleic acid comprises a nucleotide sequence at least about 70% identical to a sequence as set forth in SEQ ID NO:2 or 4.

1	11.	The nucleic acid of claim 1, wherein said nucleic acid comprises a
2	nucleotide sequence as set forth in SEQ ID NO:2 or 4.	
1	12	The pueleic acid of claim 1, wherein said nucleic acid is greater

- 1 12. The nucleic acid of claim 1, wherein said nucleic acid is greater 2 than 502 nucleotides in length.
- 1 13. The nucleic acid of claim 1, wherein said nucleic acid is from a 2 mouse or a human.
- 1 14. The nucleic acid of claim 1, wherein said nucleic acid is expressed 2 in the intestine or in the liver in the presence of an LXR agonist.
- 1 15. The nucleic acid of claim 1, wherein said nucleic acid is expressed 2 in a tissue selected from the group consisting of liver, jejunum, ileum, and duodenum.
- 1 16. An isolated nucleic acid encoding an SSG polypeptide, said 2 polypeptide comprising an amino acid sequence selected from the group consisting of 3 SEQ ID NO:5 and SEQ ID NO:6.
- 1 17. An expression cassette comprising the nucleic acid of claim 1 2 operably linked to a promoter.
- 1 18. An isolated cell comprising the expression cassette of claim 17.
- 1 19. An isolated SSG polypeptide, said polypeptide comprising an amino acid sequence that is at least about 70% identical to an amino acid sequence as set forth in SEQ ID NO:1 or 3.
- 1 20. The isolated polypeptide of claim 19, wherein said polypeptide 2 selectively binds to polyclonal antibodies generated against a polypeptide comprising an 3 amino acid sequence as set forth in SEQ ID NO:1 or 3.
- 1 21. The isolated polypeptide of claim 19, wherein said polypeptide 2 comprises an amino acid sequence as set forth in SEQ ID NO:1 or 3.
- The isolated polypeptide of claim 19, wherein said polypeptide forms a dimer with a second ABC polypeptide, and wherein said dimer exhibits sterol transport activity.

1 2	heterodimer.	23.	The isolated polypeptide of claim 22, wherein said dimer is a
1 2	2 polypeptide is A		The isolated polypeptide of claim 23, wherein said second ABC
1 2			The isolated polypeptide of claim 22, wherein said sterol is
1 2	2		The isolated polypeptide of claim 19, wherein said polypeptide is ine or in the liver in the presence of an LXR agonist.
1 2 3			The isolated polypeptide of claim 19, wherein said polypeptide is elected from the group consisting of the liver, jejunum, ileum, and
1 2	from a mouse or		The isolated polypeptide of claim 19, wherein said polypeptide is nan.
1	2	29.	An antibody generated against the isolated polypeptide of claim 19
1 2 3			An isolated SSG polypeptide, said polypeptide comprising an elected from the group consisting of SEQ ID NO:5 and SEQ ID
1 2 3	3		A method of making an SSG polypeptide, the method comprising: educing a nucleic acid of claim 1 into a host cell or cellular extract;
4 5	`		ubating said host cell or cellular extract under conditions such that is expressed in the host cell or cellular extract.
1 2			The method of claim 31, further comprising recovering the SSG nost cell or cellular extract.
1 2			A method of identifying a compound useful in the treatment or related disorder, said method comprising contacting an SSG

polypeptide with a test agent, and determining the functional effect of said test agent upon

2

- 4 said polypeptide, wherein a functional effect exerted on said polypeptide by said test
- 5 agent indicates that said test agent is a compound useful in the treatment or prevention of
- 6 said sterol-related disorder.
- The method of claim 33, wherein said sterol is cholesterol.
- 1 35. The method of claim 33, wherein said polypeptide comprises an amino acid sequence that is at least about 70% identical to an amino acid sequence as set forth in SEQ ID NO:1 or 3.
- 1 36. The method of claim 33, wherein said polypeptide is present in a cell or cell membrane.
- 1 37. The method of claim 33, wherein said polypeptide is bound to a heterologous ABC polypeptide, forming a heterodimer.
 - 38. The method of claim 33, wherein said functional effect comprises an increase in the sterol transport activity of said polypeptide.
- 1 39. The method of claim 33, wherein said functional effect comprises a 2 physical interaction between said test agent and said polypeptide.
- 1 40. The method of claim 39, wherein said physical interaction is 2 detected using a direct binding assay.
- 1 41. The method of claim 33, wherein said sterol-related disorder is sitosterolemia.
- 1 42. The method of claim 33, wherein said sterol-related disorder is 2 selected from the group consisting of hypercholesterolemia, hyperlipidemia, gall stones,
- 3 HDL deficiency, atherosclerosis, and nutritional deficiencies.
- 1 43. A method of identifying a compound useful in the treatment or 2 prevention of a sterol-related disorder, said method comprising contacting with a test 3 agent a cell that expresses or is capable of expressing an SSG polypeptide, and 4 determining the functional effect of said test agent upon said cell;

5		wherei	n a functional effect exerted on said cell by said test agent indicates
6	that said test a	igent is	a compound useful in the treatment or prevention of said sterol-
7	related disord	er.	
1		44.	The method of claim 43, wherein said sterol is cholesterol.
1		45.	The method of claim 43, wherein said SSG polypeptide comprises
2			ce that is at least about 70% identical to an amino acid sequence as
3	set forth in SI	EQ ID N	O:1 or 3.
1		46.	The method of claim 43, wherein said compound produces an
2	increase in the	e expres	ssion of an SSG gene that encodes said SSG polypeptide.
1		47.	The method of claim 46, wherein said increase in the expression of
2	said SSG gen	e is dete	ected by detecting the level of SSG mRNA in said cell.
1		48.	The method of claim 46, wherein said increase in the expression of
2	said SSG gen	e is dete	ected by detecting the level of SSG polypeptide in said cell.
1		49.	The method of claim 46, wherein said increase in the expression of
2	said SSG gen	e is dete	ected by detecting the level of SSG protein activity in said cell.
1		50.	The method of claim 43, wherein said compound modulates the
2	level of sterol transport activity in said cell.		
1		51.	The method of claim 50, wherein said sterol transport activity in
2	said cell is detected by detecting the rate of sterol efflux in said cell.		
1		52.	The method of claim 51, wherein said sterol is cholesterol.
1		53.	The method of claim 46, wherein said increase in the expression of
2	said SSG gene is mediated by LXR or RXR.		
1		54.	The method of claim 43, wherein said sterol-related disorder is
2	sitosterolemi	a.	

55. The method of claim 43, wherein said sterol-related disorder is selected from the group consisting of hypercholesterolemia, hyperlipidemia, gall stones, HDL deficiency, atherosclerosis, and nutritional deficiencies.

1	56. A method of treating or preventing a sterol-related disorder in a		
2	mammal, said method comprising administering to said mammal a compound that		
3	increases the level of expression or activity of an SSG polypeptide in a plurality of cells		
4	of said mammal.		
1	57. The method of claim 56, wherein said sterol is cholesterol.		
1	58. The method of claim 56, wherein said sterol-related disorder is		
2	sitosterolemia.		
1	59. The method of claim 56, wherein said sterol-related disorder is		
2	selected from the group consisting of hypercholesterolemia, hyperlipidemia, gall stones,	,	
3	HDL deficiency, atherosclerosis, and nutritional deficiencies.		
1	60. The method of claim 56, wherein said compound produces a		
1	decrease in the amount of dietary sterol that is absorbed in said mammal.		
2	decrease in the amount of dictary steror that is absorbed in said manning.		
1	61. The method of claim 56, wherein said compound produces a		
2	decrease in the amount of sterol that is retained in the liver of said mammal.		
1	62. The method of claim 56, wherein said compound is identified usi	ng	
2	the method of claim 33 or 43.		
1	63. The method of claim 56, wherein said compound causes an		
2	increase in LXR or RXR activity within cells of said mammal.		
1	64. A method of prescreening to identify a candidate therapeutic ages	nt	
2	that modulates SSG activity in a mammal, the method comprising:		
3	providing a cell which comprises an SSG polypeptide; and		
4	a test compound; and		
5	determining whether the amount of sterol transport activity in said cell is	}	
6	increased or decreased in the presence of the test compound relative to the activity in the		
7	absence of the test compound;		
8	wherein a test compound that causes an increase or decrease in the amou		
9	of sterol transport activity is a candidate therapeutic agent for modulation of SSG activi-	.ty	
10	in a mammal.		

1

2

74.

at least one intron.

1	65	5.	The method of claim 64, further comprising a secondary step,
2	wherein said test	com	pound is administered to a mammal, and the absorption of dietary
3	sterol in said mar	mmal	is detected.
1	66	6.	A method of inducing the expression of an ABC gene in a
2	mammalian cell,	said	method comprising increasing the level of LXR or RXR activity in
3	said cell.		
		_	
1	67		The method of claim 66, wherein said ABC gene encodes a protein
2	that is involved in	n the	transport of a sterol.
1	68	R	The method of claim 67, wherein said ABC gene is selected from
2			of SSG, ABC1 and ABC8.
2	the group consist	ung o	1 55G, ADC1 and ADC6.
1	69	9.	The method of claim 67, wherein said sterol is cholesterol.
1	70	0.	The method of claim 66, wherein said LXR or RXR activity is
2	increased by adm	ninist	ering an LXR or RXR agonist to said cell.
1	71	1	The method of claim 66, wherein said cell is present in a mammal.
1	/ 1	1.	The method of claim 60, wherein said cen is present in a maintain.
1	72	2.	The method of claim 66, wherein said cell is a liver, intestinal, or
2	kidney cell.		
	·		
1	73	3.	An isolated nucleic acid comprising at least one nucleotide
2	sequence selected	d froi	n the group consisting of exon 1 (SEQ ID NO:7), exon 2 (SEQ ID
3	NO:8), exon 3 (S	SEQ I	D NO:9), exon 4 (SEQ ID NO:10), exon 5 (SEQ ID NO:11), exon 6
4	(SEQ ID NO:12)	, exo	n 7 (SEQ ID NO:13), exon 8 (SEQ ID NO:14), exon 9 (SEQ ID
5	NO:15), exon 10	(SEC	Q ID NO:16), exon 11 (SEQ ID NO:17), exon 12 (SEQ ID NO:18)
6	and exon 13 (SEC	Q ID	NO:19).

The isolated nucleic acid sequence of claim 73, further comprising