การทดลองที่ 7

การไทเทรตที่เกี่ยวข้องกับปฏิกิริยารีดอกซ์ของโพแทสเซียมเปอร์แมงกาเนต

ทำการทดลอง วันพฤหัสบดี ที่ 6 เดือน ตุลาคม พ.ศ. 2559 เวลา เช้า / <u>บ่าย</u> ชื่อ ปวินท์ เปี่ยมไทย เลขประจำตัว 5931037621 กลุ่มที่ 2 ลำดับที่ 38

ตอนที่ 1 การแสตนดาร์ไดซ์สารละลาย KMnO₄

ความเข้มข้นของสารละลาย $Na_2C_2O_4 = 0.0500 M$

ปริมาตรของสารละลาย $Na_2C_2O_4$ = 10 mL

. º !	สเกลบนบิวเรต (mL)		ปริมาตรของสารละลาย KMnO₄
การไทเทรตครั้งที่	ก่อนการไทเทรต	ที่จุดยุติ	์ ที่ใช้ในการไทเทรต (mL)
1	14.00 24.70		10.70
2	33.00 43.60		10.60
		เฉลี่ย	10.65

สมการของปฏิกิริยา

$$2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{-2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$
 วิถีคำนวณ

จากสมการเคมี จะได้อัตราส่วนโมนระหว่าง $\mathit{MnO_4}^-$ และ $\mathit{C_2O_4}$ ดังนี้: $\dfrac{2mol_{{}_{\mathit{MnO_4}^-}}}{5mol_{\mathit{C_2O_4}}}$

หาความเข้มค่น MnO_s^{-1}

$$M_{_{MnO_4^-}} = \frac{0.0500 mol_{_{C_2O_4}}}{1L} \cdot \frac{1L}{1000 mL} \cdot 10.00 mL \cdot \frac{2 mol_{_{MnO_4^-}}}{5 mol_{_{C_2O_4}}} \cdot \frac{1}{10.65 mL} \cdot \frac{1000 mL}{1L} = 0.0188 M_{_{MnO_4^-}} \cdot \frac{1}{10.65 mL} \cdot \frac{1}{10.65 mL} \cdot \frac{1}{10.65 mL} \cdot \frac{1}{10.00 mL} = 0.0188 M_{_{MnO_4^-}} \cdot \frac{1}{10.00 mL} \cdot \frac{1}{1$$

ตอนที่ 2 การหาปริมาณของ Fe²⁺ ในสารละลายตัวอย่าง

ความเข้มข้นสารละลาย KMnO₄ = 0.0188 M

ปริมาตรของสารละลายตัวอย่าง = 10 mL

ب ع ا	สเกลบนบิวเรต (mL)		ปริมาตรของสารละลาย KMnO₄
การไทเทรตครั้งที่	ก่อนการไทเทรต	ที่จุดยุติ	ที่ใช้ในการไทเทรต (mL)
1	27.00 37.90		10.90
		เฉลี่ย	10.90

สมการของปฏิกิริยา

$$MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l) + 5Fe^{3+}(aq)$$

วิธีคำนวณ

จากสมการเคมี จะได้อัตราส่วนโมนระหว่าง MnO_4^- และ Fe^{2^+} ดังนี้: $\dfrac{5\mathit{mol}_{\mathit{Fe}^{2^+}}}{1\mathit{mol}_{\mathit{MnO}_4^-}}$

หาความเข้มค่น
$$Fe^{2+} : \frac{0.0188 mol_{MnO_4^-}}{1L} \cdot \frac{1L}{1000 mL} \cdot 10.90 mL \cdot \frac{5 mol_{Fe^{2+}}}{1 mol_{MnO_4^-}} \cdot \frac{1}{10.00 mL} \cdot \frac{1000 mL}{1L} = 0.102 M_{Fe^{2+}}$$

ตอนที่ 3 การหาปริมาณของ H₂O₂ ในสารละลายตัวอย่าง ปริมาตรของสารละลายตัวอย่าง =mL

การไทเทรตครั้งที่	สเกลบนบิวเรต (mL)		ปริมาตรของสารละลาย KMnO₄	
	ก่อนการไทเทรต	ที่จุดยุติ	ที่ใช้ในการไทเทรต (mL)	

	เฉลี่ย	

สมการของปฏิกิริยา		
วิธีคำนวณ	 	

การทดลคงที่ 8 การไทเทรตที่เกี่ยวข้องกับปฏิกิริยารีดอกซ์ของไอโอดีน

ทำการทดลอง วันพฤหัสบดี ที่ 6 เดือน ตุลาคม พ.ศ. 2559 เวลา เช้า / <u>บ่าย</u> ชื่อ ปวินท์ เปี่ยมไทย เลขประจำตัว 5931037621 กลุ่มที่ 2 ลำดับที่ 38

ตอนที่ 1 การแสตนดาร์ไดซ์สารละลาย Na₂S₂O₃

ความเข้มข้นของสารละลาย KIO₃ = 0.0167 M

ปริมาตรของสารละลาย KIO₃ = 10 mL

	สเกลบนบิวเรต (mL)		ปริมาตรของสารละลาย	
การไทเทรตครั้งที่	ก่อนการไทเทรต	ที่จุดยุติ	${\sf Na_2S_2O_3}$ ที่ใช้ในการไทเทรต	
			(mL)	
1	6.00 16.20		10.20	
		เฉลี่ย	10.20	

สมการของปฏิกิริยา

$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$$
 ตามด้วย $3I_2(aq) + 6S_2O_3^{2-}(aq) \rightarrow 6I^-(aq) + 3S_4O_6^{2-}(aq)$

วิธีคำนวณ

จากสมการ จะได้อัตราส่วนโมนของ $S_2O_3^{\;2-}$ กับ $IO_3^{\;-}$ เป็น: $\dfrac{6mol_{S_2O_3^{\;2-}}}{1mol_{IO_3^{\;-}}}$

หาความเข้มค่น

$$M_{S_2O_3^{2-}} = \frac{0.0167 mol_{IO_3^{-}}}{1L} \cdot \frac{1L}{1000 mL} \cdot 10.00 mL \cdot \frac{6 mol_{S_2O_3^{2-}}}{1 mol_{IO_3^{-}}} \cdot \frac{1}{10.20 mL} \cdot \frac{1000 mL}{1L} = 0.0982 M_{S_2O_3^{2-}}$$

ตอนที่ 2 การหาปริมาณของคอปเปอร์ (II) ไอออน

ความเข้มข้นสารละลาย Na₂S₂O₃ = 0.0982 M

ปริมาตรของสารละลายตัวอย่าง = 10 mL

v !	สเกลบนบิวเรต (mL)		ปริมาตรของสารละลาย	
การไทเทรตครั้งที่	ก่อนการไทเทรต	ที่จุดยุติ	์ ที่ใช้ในการไทเทรต (mL)	
1	17.00 27.10		10.10	
		เฉลี่ย	10.10	

สมการของปฏิกิริยา

$$2Cu^{2+}(aq) + 4I^-(aq) \rightarrow 2CuI(s) + I_2(aq)$$
 ตามตัวย $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$

วิธีคำนวณ

จากสมการ จะได้อัตราส่วนโมนของ $Cu^{^{2+}}$ กับ $S_2O_3^{^{2-}}$ เป็น: $rac{1mol_{Cu^{^{2+}}}}{1mol_{S_2O_3^{2-}}}$

$$M_{Cu^{2+}} = \frac{0.0982 mol_{S_2O_3^{2-}}}{1L} \cdot \frac{1L}{1000 mL} \cdot 10.10 mL \cdot \frac{1 mol_{Cu^{2+}}}{1 mol_{S_2O_3^{2-}}} \cdot \frac{1}{10.00 mL} \cdot \frac{1000 mL}{1L} = 0.0992 M_{Cu^{2+}} \cdot \frac{1}{10.00 mL} \cdot \frac{1000 mL}{1} = 0.0992 M_{Cu^{2+}} \cdot \frac{1}{10.00 mL} \cdot \frac{1000 mL}{1} = 0.0992 M_{Cu^{2+}} \cdot \frac{1}{10.00 mL} \cdot \frac{1000 mL}{1} = 0.0992 M_{Cu^{2+}} \cdot \frac{1}{10.00 mL} \cdot \frac{1000 mL}{1} = 0.0992 M_{Cu^{2+}} \cdot \frac{1}{10.00 mL} \cdot \frac{1}{1$$

ตอนที่ 3 การหาปริมาณของไฮโปคลอไรต์ไอออน (II)

ความเข้มข้นสารละลาย $Na_2S_2O_3 = \dots M$

ปริมาตรของสารละลายตัวอย่าง =mL

	สเกลบนบิวเรต (mL)		ปริมาตรของสารละลาย	
การไทเทรตครั้งที่	ก่อนการไทเทรต	ที่จุดยุติ	$\mathrm{Na_2S_2O_3}$ ที่ใช้ในการไทเทรต (mL)	
		เฉลี่ย		

สมการของปฏิกิริยา	1		
วิธีคำนวณ			