

1/24

FIG. 1

FIG. 2

FIG. 3

3/24

FIG. 4

PDE Specification/ht	
<input type="checkbox"/> PDE Specification/ht Equation: $p \cdot C \cdot T' - V \cdot (kV) = Q + h(T_{ext} \cdot T) + C_{trans} \cdot (T^4 - T_{ambtrans}^4)$. T = temperature	
Subdomain selection —	
<input type="checkbox"/> Subdomain 1	
PDE coefficients —	
Coefficient	Value
p	<input type="text" value="8930"/>
C	<input type="text" value="340"/>
k	<input type="text" value="384"/>
Q	<input type="text" value="1.//0*(1+alpha*(T-T0)))*1"/>
h_{trans}	<input type="text" value="0"/>
T_{ext}	<input type="text" value="0"/>
C_{trans}	<input type="text" value="0"/>
$T_{ambtrans}$	<input type="text" value="0"/>
<input type="checkbox"/> Active in the subdomain	
Description	
p	Heat capacity
C	Density
k	Coeff. of heat conduction
Q	Heat source
h_{trans}	Convect. heat transf. coeff.
T_{ext}	External temperature
C_{trans}	User defined constant
$T_{ambtrans}$	Ambient temperature
<input type="checkbox"/> On top	
<input type="button" value="OK"/> <input type="button" value="Cancel"/> <input type="button" value="Apply"/>	

60

62

62a

66

64a

64

4/24

FIG. 5

70

72a

72b

74a

74b

Boundary Conditions/ht

Equation: $T = T_0$

Boundary selection

Boundary coefficients Unlock

Quantity	Value	Description
<input type="radio"/> q	0	Heat flux
<input type="radio"/> h	0	Heat transfer coefficient
<input type="radio"/> T_{inf}	0	External temperature
<input type="radio"/> C	0	Problem-dependent constant
<input type="radio"/> T_{amb}	0	Ambient temperature
<input type="radio"/> $n \cdot (k \cdot \text{grad}T) = 0$		Insulation/symmetry
<input type="radio"/> T	300	Temperature
<input type="radio"/> $T=0$		Zero temperature

Name:

Enable borders

On top OK Cancel Apply

5/24

FIG. 6

6/24

FIG. 6A

7/24

FIG. 7

8/24

FIG. 8

$$\left. \begin{array}{l}
 \left. \begin{array}{l}
 d_a l k \frac{\partial u_k}{\partial t} - \frac{\partial}{\partial x_j} \left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k - \gamma_{lj} \right) + \beta_{lki} \frac{\partial u_k}{\partial x_i} + a_{lk} u_k = f_l \\
 n_j \left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k - \gamma_{lj} \right) + q_{lk} u_k = g_l - h_{ml} \lambda_m \\
 h_{ml} u_l = r_m
 \end{array} \right\} \Omega^{142} \\
 \\
 \left. \begin{array}{l}
 \partial \Omega^{146a} \\
 \partial \Omega^{146b}
 \end{array} \right\} \Omega^{146}
 \end{array} \right\} 140$$

FIG. 9

$$\left. \begin{array}{l}
 \left. \begin{array}{l}
 d_a l k \frac{\partial u_k}{\partial t} + \frac{\partial \Gamma_{lj}}{\partial x_j} = F_l \\
 -n_j \Gamma_{lj} = G_l + \frac{\partial R_m}{\partial u_l} \lambda_m \\
 0 = R_m
 \end{array} \right\} \Omega^{152} \\
 \\
 \left. \begin{array}{l}
 \partial \Omega^{154a} \\
 \partial \Omega^{154b}
 \end{array} \right\} \Omega^{154}
 \end{array} \right\} 150$$

9/24

FIG. 10

$$324 \left\{ \begin{array}{ll} \gamma_{lj} = \Gamma_{lj} & f_l = F_l \\ c_{lkji} = - \frac{\partial \Gamma_{lj}}{\partial \left(\frac{\partial u_k}{\partial x_i} \right)} & \alpha_{lkj} = - \frac{\partial \Gamma_{lj}}{\partial u_k} \\ \beta_{lki} = - \frac{\partial F_l}{\partial \left(\frac{\partial u_k}{\partial x_i} \right)} & a_{lk} = - \frac{\partial F_l}{\partial u_k} \\ g_l = G_l & r_l = R_l \\ q_{lk} = - \frac{\partial G_l}{\partial u_k} & h_{lk} = - \frac{\partial R_l}{\partial u_k} \end{array} \right.$$

FIG. 11

$$240 \left\{ \begin{array}{l} \Gamma_{lj} = c_{lkji} \frac{\partial u_k}{\partial x_I} \alpha_{lkj} u_k + \gamma_{lj} \\ F_l = f_l - \beta_{lki} a_{lk} u_k \\ G_l = g_l - q_{lk} u_k \\ R_m = r_m - h_{ml} u_l \end{array} \right.$$

10/24

FIG. 12

300

$$\left\{ \begin{array}{l} \int_{\Omega} \left(\left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k \right) \frac{\partial v}{\partial x_j} + \left(d_{alik} \frac{\partial u_k}{\partial t} + \beta_{lki} \frac{\partial u_k}{\partial x_i} + a_{lk} u_k \right) v \right) dx + \\ \int_{\partial\Omega} q_{lk} u_k v ds = \int_{\Omega} \left(Y_{lj} \frac{\partial v}{\partial x_j} + f_l v \right) dx + \int_{\partial\Omega} (g_l - h_m l \lambda_m) v ds \\ \int_{\partial\Omega} \mu h_m k u_k ds = \int_{\partial\Omega} \mu r_m ds \end{array} \right.$$

FIG. 13

302

$$\left\{ \begin{array}{l} \int_{\Omega} \left(\Gamma_{lj} \frac{\partial v}{\partial x_j} + F_l v - d_{alik} \frac{\partial u_k}{\partial t} v \right) dx + \int_{\partial\Omega} \left(G_l + \frac{\partial R_m}{\partial u_l} \lambda_m \right) v ds = 0 \\ \int_{\partial\Omega} R_m \mu ds = 0 \end{array} \right.$$

FIG. 14

304

$$\left\{ \begin{array}{l} U_k(x) = \sum_{l=1}^{N_p} U_{l,k} \phi_l(x), \quad \Lambda_m(x) = \sum_{K=1}^N \sum_{L=1}^n \Lambda_{K,L,m} \Psi_{K,L}(x) \end{array} \right.$$

11/24

FIG. 15

$$306 \left\{ \begin{array}{l} \int_{\tau} \left(c_{lkji} U_{I,k} \frac{\partial \phi_I}{\partial x_i} + \alpha_{lkj} U_{I,k} \phi_I \right) \frac{\partial \phi_J}{\partial x_j} dx + \\ \int_{\tau} \left(d_{alik} \frac{\partial U_{I,k}}{\partial I} \phi_i + \beta_{lkj} U_{i,k} \frac{\partial \phi_I}{\partial x_I} + \alpha_{lk} U_{i,k} \phi_i \right) \phi_J dx + \\ \int_{\partial \tau} q_{lk} U_{l,k} \phi_I \phi_J ds = \int_{\tau} \left(\gamma_{Ij} \frac{\partial \phi_J}{\partial x_j} + f_I \phi_J \right) dx + \\ \int_{\partial \tau} (g_I - h_{mI} \Lambda_{K,L,m} \psi_{K,L}) \phi_J ds \end{array} \right.$$

FIG. 16

$$308 \left\{ \int_{\partial \tau} h_{mk} U_{J,k} \phi_I \psi_{K,L} ds = \int_{\partial \tau} r_m \psi_{K,L} ds \right.$$

FIG. 17

$$312 \left\{ \begin{array}{l} \int_{\tau} \left(\Gamma_{lj} \frac{\partial \phi_J}{\partial x_j} + F_l \phi_J - d_{alik} \frac{\partial u_k}{\partial I} \phi_J \right) dx + \int_{\partial \tau} \left(G_I + \frac{\partial R_m}{\partial u_l} \Lambda_{K,L,m} \psi_{K,L} \right) \phi_J ds = 0 \\ \int_{\partial \tau} R_m \psi_{K,L} ds = 0 \end{array} \right.$$

12/24

FIG. 18

$$\left. \begin{array}{l}
 DA(J, l), (I, k) = \int_{\tau} d_a lk \phi_I \phi_J dx \\
 C(J, l), (I, k) = \int_{\tau} c lk ji \frac{\partial \phi_I}{\partial x_i} ? \frac{\partial \phi_J}{\partial x_j} dx \\
 AL(J, l), (I, k) = \int_{\tau} \alpha lk j \phi_I ? \frac{\partial \phi_J}{\partial x_j} dx \\
 BE(J, l), (I, k) = \int_{\tau} \beta lk i \frac{\partial \phi_I}{\partial x_i} \phi_j dx \\
 A(J, l), (I, k) = \int_{\tau} a lk \phi_I \phi_J dx \\
 Q(J, l), (I, k) = \int_{\tau} q lk \phi_I \phi_J ds \\
 GA(J, l) = \int_{\tau} \gamma lj \frac{\partial \phi_J}{\partial x_j} dx \\
 F(J, l) = \int_{\tau} f_I \phi_J dx \\
 G(J, l) = \int_{\partial \tau} g_I \phi_J ds \\
 H(K, L, m), (I, k) = \int_{\partial \tau} h_{mk} \phi_l \psi_{K, L} ds \\
 R(K, L, m) = \int_{\partial \tau} r_m \psi_{K, L} ds
 \end{array} \right\} 310$$

FIG. 19

$$\left. \begin{array}{l}
 DA \frac{\partial U}{\partial t} + C + AL + BE + A + Q) U + H^T \Lambda = GA + F + G \\
 HU = R
 \end{array} \right\} 320$$

13/24

FIG. 20

$$322 \left\{ \begin{array}{l} DA \frac{\partial U}{\partial t} + H^T \Lambda = GA + F + G \\ R = 0 \end{array} \right.$$

FIG. 21

$$326 \left\{ \begin{array}{l} J(U^{(k)}) \Delta U^{(k)} = p(U^{(k)}) \\ U^{(k+1)} = U^{(k)} + \lambda_k \Delta U^{(k)} \end{array} \right.$$

14/24

FIG. 22

15/24

FIG. 23

FIG. 24

500

The Class Hierarchy of FEMLAB

17/24

FIG. 25

1-D Physics Application Modes		
Application mode	Class name	Parent class
Diffusion	f1pdedf1d	f1pdedf
Heat Transfer	f1pdeht1d	f1pdeht

1-D PDE Application Modes		
Application mode	Class name	Parent class
Coefficient PDE model, n variables	f1pdec1d (n)	f1pdec (n)
General PDE model, n variables	f1pdeg1d (n)	f1pdeg (n)

FIG. 26

2-D Physics Application Modes

Application Mode	Class name	Parent class
AC Power Electromagnetics	flpdec2d	
Conductive Media DC	flpdedc2d	
Diffusion	flpdef2d	
Electrostatics	flpdees2d	
Magnetostatics	flpdems2d	
Heat Transfer	flpdeht2d	
Incompressible Navier-Stokes	flpdens2d	
Structural Mechanics, Plane Stress	flpdeps	
Structural Mechanics, Plane Strain	flpdepn	
PDE Application Modes		
Application Mode	Class name	Parent class
Coefficient PDE model, n variables	flpdec2d (n)	flpdec (n)
General PDE model, n variables	flpdeg2d (n)	flpdeg (n)

506

508

19/24

FIG. 27

Application Object Properties

Property name	Description	Data type	
dim	Names of the dependent variables	Cell array of strings	
form	PDE form	String (coefficient/general)	
name	Application name	String	
parent	Parent class names	String, cell array of strings, or the empty matrix	514
sdim	Names of the independent variables (space dimensions)	Cell array of strings	
submode	Name of current submode	String (std/wave)	
tdiff	Time differentiation flag	String (on/off)	

FIG. 28

512 {

```

function obj = myapp()
%MYAPP Constructor for a FEMLAB application object.

obj.name = 'My first FEMLAB application';
obj.parent = 'flpdeht2d';

% MYAPP is a subclass of FLPDEHT2D:

p1 = "flpdeht2d;
obj = class (obj, 'myapp' , p1);
set (obj , 'dim' , default_dim (obj));

```

20/24

FIG. 29

Physics Modeling Methods

514

Function	Purpose
appspec	Return application specifications.
bnd_compute	Convert application-dependent boundary conditins to generic boundary coefficents.
default_bnd	Default boundary conditions.
default_dim	Default names of dependent variables
default_equ	Default PDE coefficients/Material parameters.
default_init	Default initial conditions.
default_sdim	Default space dimension variables.
default_var	Default application scalar variables.
dim_compute	Return dependent variables for an application.
equ_compute	Convert application-dependent material parameters to generic PDE coefficients.
form_compute	Return PDE form.
init_compute	Convert application-dependent initial conditions to generic initial conditions
posttable	Define assigned variable names and post-processing information.

FIG. 30

22/24

FIG. 31

$$530 \left\{ \Delta E_Z + (2\pi ik)^2 E_Z = 0 \right.$$

$$532 \left\{ k = \frac{1}{\lambda} = \frac{f}{c} \right.$$

$$534 \left\{ \bar{n} \cdot (\nabla E_Z) + 2\pi ik_X E_Z = 4\pi ik_X \sin\left(\frac{\pi}{d}(y - y_0)\right) \right.$$

$$536 \left\{ k^2 = k_x^2 + k_y^2 \right.$$

$$538 \left\{ k_x = \sqrt{\frac{1}{\lambda^2} \frac{1}{(2d)^2}} \right.$$

$$540 \left\{ n \cdot (\nabla E_Z) + 2\pi ik_X E_Z = 0 \right.$$

$$542 \left\{ E_Z = 0 \right.$$

$$544 \left\{ f_c \frac{c}{2d} \right.$$

23/24

FIG. 32

550 {
function obj = flwaveguid (varargin)
%FLWAVEGUIDE Constructor for a waveguide application object.

obj. name = 'In-Plane Waveguide';
obj. parent = 'flpdeac';

% FLWAVEGUIDE is a subclass of FLPDEAC:
p1 = flpdeac;
obj = class (obj), 'flwaveguide' ,p1);
set (obj), 'dim' , default_dim(obj));

FIG. 33

552 {
fem.user fields

Field	Description
geomparam	1-by-2 structure of geometry parameters.
entrybnd	Index to the entry boundary
exitbnd	Index to the exit boundary
freqs	Frequency vector

24/24

FIG. 34

fem.user fields	
Field	Description
startpt	Index of the lower left corner point of the waveguide.
type	Type of waveguide. (<i>straight</i> or <i>elbow</i>)

FIG. 35

geomparam fields

	Field	Description	Defaults for elbow	Defaults for straight
554	entrylength	Length of the entrance part of the waveguide.	0.1	0.1
	exitlength	Length of the exit part of the waveguide.	0.1	Not used
	radius	Outer radius of the waveguide bend.	0.05	Not used
556	width	Width of the waveguide.	0.025	0.025
	cavityflag	Turn resonance cavity <i>on</i> or <i>off</i>	0	0
	cavitywidth	Width of the resonance cavity	0.025	0.025
	postwidth	Width of the protruding posts.	0.005	0.005
	postdepth	Depth of the protruding posts.	0.005	0.005