Combining Depth Fusion and Photometric Stereo for Fine-Detailed 3D Models

Erik Bylow^{1,3} Robert Maier³ Fredrik Kahl² Carl Olsson^{1,2}

> ¹Lund University ²Chalmers University of Technology ³Technische Universität München

Outline

- Motivation / Goal
- Method
- Results
- Conclusion

Motivation / Goal

3D Model standard approach

Fusion of depth images:

- Noisy and low resolution depth images
- Smooth surfaces from weighted average
- Lack of details!

Motivation / Goal

How can we achieve this?

Grayscale Image

3D Model (Spoiler)

Grayscale Image

Method

Photometric stereo - Capture Details

Same object, looks different - Look at the illumination

Method Lambertian Model

Depth Fusion

$$D = \frac{\sum_{k=1}^{K} w^{k} d^{k}}{\sum_{k=1}^{K} w^{k}}$$

TSDF:s

Error Functions

$$E_{Lamb}(\mathbf{d},\rho,s^1,\ldots,s^K) = \sum_{k=1}^K \sum_{V \in \mathcal{V}^k} \sum_{x \in V \cap \mathcal{S}} (I^k(\pi(x)) - \rho(x,\rho_V) \tilde{n}^T(x,d_V) \tilde{s}^k)^2$$

$$E_{depth} = \sum_{k=1}^{K} \sum_{v \in \mathcal{V}^k} (D^k(x_v) - d_v)^2$$

$$E_{albedo} = \sum_{V \in \mathcal{V}} \sum_{v_i \neq v_j \in V} (\rho_{v_i} - \rho_{v_j})^2$$

 $\tilde{n}, \tilde{s} \in \mathbb{R}^9$ – Spherical Harmonics

Results

Results

Results

Quantitative Results

Conclusion

- Promising result
- Hard to separate albedo and shading
- Non-uniform albedo is a challenge