Foundations of Data Science

1. Bayesian

$$Pr[H|D] = \frac{Pr[D|H]Pr[H]}{Pr[D]}$$
, and $Pr[D] > 0$, or ...

a.

b.

posterior \propto likelihood \times prior.

- c. Likelihood $\rightarrow Pr[D|H]$
- d. Assume a coin gives [HHHT]
 - i. $Pr[Heads] = \frac{3}{4}$
 - ii. What is the probability of [HHHT] given probability of heads is p?
 - 1. $Pr[HHHT] = p^3 * (1-p)$
 - 2. Find the maximum p \rightarrow derivative of p³(1-p) \rightarrow 3p² 4p³ = p²(3-4p)
 - 3. To find the maximum, $p^2(3-4p) = 0 \rightarrow p = \frac{3}{4}$
- e. Why not maximize likelihood and why posterior (includes prior)?
 - i. When you maximize the likelihood, it is trivial (it will output the input)
 - ii. When considering posterior, you include prior variable, which is important
- 2. Problem: Given b, can we infer a? In other words, can we restore the image from its corrupted-by-noise version?

GREIG, PORTEOUS AND SEHEULT

a.

- i. $x = (x_1,...,x_n)$ the original image \rightarrow output
- ii. $y = (y_1,...,y_n)$ the observed corrupted image \rightarrow input
- iii. Assumption: the records $y_1,...,y_n$ are conditionally independent given x, and each has known conditional density $f(y_i|x_i)$ that depends only on x_i .
- iv. Pr(the event that pixel flips) = p
 - 1. Example)
 - 2. $Pr([1,1,1,0,0,0,0,0,0] | [1,1,0,1,0,0,0,0,0]) = p^2*(1-p)^7$

- 3. There are total of 2⁹ possible xs given y
- 4. If we let p (the probability that pixel changes) = 0.1, likelihood is trivial in this case, because it is easier to to have more (1-p)= 0.9, which is the proportion of not flipped pixels → prior plays an important role
- v. By Bayes' theorem,

$$p(x|y) \propto \underbrace{p(y|x)}_{\text{likelihood:how do we compute it?}} \times \underbrace{p(x)}_{\text{prior:what is a good prior?}}$$

- vi. Three questions that arise
 - 1. How do you compute likelihood
 - 2. How do you calculate prior
 - 3. How to optimize the x value

$$x^* = \arg\max p(x|y)$$

- vii. Goal: output
 - 1. To compute the maximum x, we need to compute all possible xs given $y \rightarrow$ not necessary in this case
- b. Likelihood and prior
 - i. Likelihood function:

$$p(y|x) = \prod_{i=1}^n f(y_i|1)^{x_i} f(y_i|0)^{1-x_i}.$$

If
$$y_i = x_i$$
, then 1-p

If
$$y_i != x_i$$
, then p

ii. Prior function:

$$ho(x) \propto \exp \left\{ rac{1}{2} \sum_{i
eq j} eta_{ij} ig(x_i x_j + (1-x_i)(1-x_j) ig)
ight\}$$

i and j are neighbors

The expression is expressing homogeneousness.

$\mathbf{X}i$	$\mathbf{X}_{\mathbf{j}}$	Value
0	0	1
0	1	0
1	0	0
1	1	1

- Prior gives a higher probability to the image that is very homogeneous (the image given in A has a pattern that is very homogeneous → the pixel next to a pixel has the same color (two neighboring pixel are likely to be the same color (not discontinuous))
- 2. Pr(x) is proportional to exp $\{\sum (x_i = x_j)\} \rightarrow \text{if } x_i \text{ is equal } x_j, \text{ it means that the neighboring pixel has the same color}$
- 3. For an edge (u,v) where val(u) = val(v)

$$x_u x_v + (1 - x_v)(1 - x_u) = x_u^2 + (1 - x_u)^2 = 1.$$

4. On the contrary for an edge where val(u) does not equal val(v)

$$x_u(1-x_u)+(1-x_u)x_u=0.$$

- 5. Likelihood: trying to fit the data
- 6. Prior: find homogeneous (neighbor pixels)
- iii. Remark: Since are considering the max posterior Pr(x|y) (or equivalently $\log p(x|y)$)
 - 1. Log (p(x|y)) is proportional to log(p(x)) + log p(y|x)
 - 2. log(p(x)) is the term that is pushing x to be homogeneous
 - 3. $\log p(y|x)$ is fit data y