Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 1: lista M 5 22 listopada 2018 r.

M5.1. 1 punkt Rozważyć uogólnienie metody siecznych, w którym do wyznaczenia przybliżenia x_{k+1} korzysta się z trzech poprzednich przybliżeń x_k, x_{k-1}, x_{k-2} . Wyprowadzić wzory na metodę iteracyjną korzystającą z odwrotnej interpolacji (wielomianem st. ≤ 2).

 $Wskaz \acute{o}wka$: odwrotna interpolacja oznacza tyle, że zmienia się znaczenie osi $Ox \leftrightarrow Oy$.

M5.2. 1 punkt Wielomian interpolujący funkcję f w parami różnych n+1 węzłach x_0,\ldots,x_n można podać wzorem

(1)
$$L_n(x) = \sum_{k=0}^n f(x_k) \lambda_k(x),$$

gdzie

(2)
$$\lambda_k(x) := \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j} \qquad (k = 0, 1, ..., n).$$

Wykazać, że wielomiany (2) spełniają równości

a) $\sum_{k=0}^{n} \lambda_k(x) \equiv 1$

b)
$$\sum_{k=0}^{n} \lambda_k(0) x_k^j = \begin{cases} 1 & (j=0), \\ 0 & (j=1,2,\ldots,n). \end{cases}$$

M5.3. 1 punkt Wykazać, że zachodzi wzór rekurencyjny

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0} \qquad (k = 1, 2, \dots),$$

przy czym $f[x_j] = f(x_j)$.

- **M5.4.** 1 punkt Dowieść, że jeśli p jest wielomianem stopnia n, to $q(x) := p[x, x_1, \dots, x_k]$ jest wielomianem stopnia n k, z takim współczynnikiem przy x^{n-k} , jaki stoi w p przy x^n .
- M5.5. 1 punkt Wyznaczyć wielomian p o następujących wartościach:

Korzystając z tego wyniku podać wielomian q, który ma następujące wartości:

M5.6. I punkt Załóżmy, że $x_i=a+ih$ dla $i=0,1,\ldots,n$ i że h=(b-a)/n>0. Wykazać, że dla każdego $x\in[a,b]$ zachodzi nierówność

$$\prod_{i=0}^{n} |x - x_i| \leqslant \frac{1}{4} n! h^{n+1}.$$

M5.7. I punkt Niech dla $n \in \mathbb{N}$ dane będą punkty $x_0 < x_1 < \ldots < x_{n+1}$ oraz taka funkcja f, że pochodna $f^{(n+1)}$ jest ciągła i ma stały znak w przedziale $[x_0, x_{n+1}]$. Niech L i M będą takimi wielomianami stopnia $\leq n$, że

$$L(x_i) = f(x_i)$$
 $(i = 0, 1, ..., n),$
 $M(x_j) = f(x_j)$ $(j = 1, 2, ..., n + 1).$

Wykazać, że dla dowolnego $x \in [x_0, x_{n+1}]$ wartość f(x) leży pomiędzy L(x) i M(x).

M5.8. 1 punkt Niech $L_1\in\Pi_1$ interpoluje funkcję f w puntach x_0 i x_1 . Wykazać, że dla każdego $x\in[x_0,x_1]$ zachodzi nierówność

$$|f(x) - L_1(x)| \le \frac{1}{8}(x_1 - x_0)^2 M_2,$$

gdzie
$$M_2 := \max_{x_0 \leqslant x \leqslant x_1} |f''(x)|.$$

M5.9. I punkt Niech L_n będzie wielomianem interpolującym funkcję $f(x) = \exp x$ w zerach wielomianu Czebyszewa T_{n+1} . Jaka wartość n gwarantuje, że zachodzi nierówność

$$\max_{-1 \le x \le 1} |f(x) - L_n(x)| \le 10^{-5} ?$$