Prueba de Caja Blanca

"Título proyecto sistema de automatización de mensajes e ingreso de datos para fechas importantes"

Integrantes:

Alejandro De La Cruz Santiago Nogales Ian Escobar

Prueba caja blanca de describa el requisito funcional

1. CÓDIGO FUENTE

Pegar el trozo de código fuente que se requiere para el caso de prueba

```
□ programa final > □ src > □ main > □ java > □ com > □ example > ♠ Main.java
 1
 2
     package com.example;
 3
 4 import org.springframework.boot.SpringApplication;
 5
     import org.springframework.boot.autoconfigure.SpringBootApplication;
 6
    import org.springframework.context.annotation.ComponentScan;
 8 @SpringBootApplication
     @ComponentScan(basePackages = {"com.example", "controllers", "services", "models"})
 9
10
     public class Main {
11
         public static void main(String[] args) {
12
             SpringApplication.run(Main.class, args);
13
14
     }
15
```

2. DIAGRAMA DE FLUJO (DF)

Realizar un DF del código fuente del numeral 1

3. GRAFO DE FLUJO (GF)

Realizar un GF en base al DF del numeral 2

4. IDENTIFIACCIÒN DE LAS RUTAS (Camino basico)

Determinar en base al GF del numeral 4

Rutas Independientes:

R1: $1 \rightarrow 2 \rightarrow 6$ (Login fallido).

R2: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ (Login exitoso \rightarrow Salir).

R3: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 9/10/11/12 \rightarrow 3...$ (Bucle de opciones).

5. COMPLEJIDAD CICLOMÁTICA

Se puede calcular de las siguientes formas:

- V(G) = número de nodos predicados(decisiones)+1
- V(G)=P+1=3+1=4
- V(G) = A N + 2
 V(G)=A-N+2=14

DONDE:

P: Número de nodos predicado

A: Número de aristas N: Número de nodos

Prueba de Caja Blanca

"Título proyecto sistema de automatización de mensajes e ingreso de datos para fechas importantes"

Integrantes:

Alejandro De La Cruz Santiago Nogales Ian Escobar

Prueba caja blanca de describa el requisito funcional

1. CÓDIGO FUENTE

Pegar el trozo de código fuente que se requiere para el caso de prueba

```
□ programa final > □ src > □ main > □ java > □ com > □ example > ♠ Main.java
 1
 2
     package com.example;
 3
 4 import org.springframework.boot.SpringApplication;
 5
     import org.springframework.boot.autoconfigure.SpringBootApplication;
 6
    import org.springframework.context.annotation.ComponentScan;
 8 @SpringBootApplication
     @ComponentScan(basePackages = {"com.example", "controllers", "services", "models"})
 9
10
     public class Main {
11
         public static void main(String[] args) {
12
             SpringApplication.run(Main.class, args);
13
14
     }
15
```

2. DIAGRAMA DE FLUJO (DF)

Realizar un DF del código fuente del numeral 1

3. GRAFO DE FLUJO (GF)

Realizar un GF en base al DF del numeral 2

4. IDENTIFIACCIÒN DE LAS RUTAS (Camino basico)

Determinar en base al GF del numeral 4

Rutas Independientes:

R1: $1 \rightarrow 2 \rightarrow 6$ (Login fallido).

R2: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ (Login exitoso \rightarrow Salir).

R3: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 9/10/11/12 \rightarrow 3...$ (Bucle de opciones).

5. COMPLEJIDAD CICLOMÁTICA

Se puede calcular de las siguientes formas:

- V(G) = número de nodos predicados(decisiones)+1
- V(G)=P+1=3+1=4
- V(G) = A N + 2
 V(G)=A-N+2=14

DONDE:

P: Número de nodos predicado

A: Número de aristas N: Número de nodos

Prueba de Caja Blanca

"Título proyecto sistema de automatización de mensajes e ingreso de datos para fechas importantes"

Integrantes:

Alejandro De La Cruz Santiago Nogales Ian Escobar

Prueba caja blanca de describa el requisito funcional

1. CÓDIGO FUENTE

Pegar el trozo de código fuente que se requiere para el caso de prueba

```
public void cargarClientesDesdeCSV() {
       File file = new File(CSV_FILE);
        if (!file.exists()) {
           crearArchivoCSVVacio();
           return:
        try (CSVReader reader = new CSVReader(new FileReader(file))) {
           List<String[]> records = reader.readAll();
            // Skip header row if it exists
            for (int i = (records.size() > 0 \& records.get(0)[0].equals("id")) ? 1 : 0; i < records.size(); i++) {
                String[] record = records.get(i);
                if (record.length >= 6 && !record[0].trim().isEmpty()) {
                   Cliente cliente = new Cliente();
                   cliente.setId(Integer.parseInt(record[0]));
                    cliente.setNombre(record[1]);
                    cliente.setCedula(record[2]);
                    cliente.setTelefono(record[3]);
                    cliente.setEmail(record[4]);
                    cliente.setEstado(record[5]);
                    clientes.add(cliente);
                   if (cliente.getId() >= proximoId.get()) {
                       proximoId.set(cliente.getId() + 1);
               }
           }
       }
   } catch (Exception e) {
       System.err.println("Error cargando clientes: " + e.getMessage());
}
private void crearArchivoCSVVacio() {
   try (CSVWriter writer = new CSVWriter(new FileWriter(CSV_FILE))) {
       String[] header = {"ID", "Nombre", "Cedula", "Telefono", "Email", "Estado", "Fecha_Registro"};
       writer.writeNext(header);
   } catch (Exception e) {
       System.err.println("Error creating archivo CSV: " + e.getMessage());
}
```

2. DIAGRAMA DE FLUJO (DF)

Realizar un DF del código fuente del numeral 1

3. GRAFO DE FLUJO (GF) Realizar un GF en base al DF del numeral 2

4. IDENTIFIACCIÒN DE LAS RUTAS (Camino basico)

Determinar en base al GF del numeral 4

RUTAS

- 1. **R1:** N5 \rightarrow N14
 - o Camino: Seleccionar opción 0 (Salir) → Terminar programa.
- 2. **R2:** $N5 \rightarrow N15$
 - o Camino: Ingresar opción inválida → Mostrar error → Volver al menú.
- 3. **R3:** N5 \rightarrow N6 \rightarrow N16 \rightarrow N17 \rightarrow N5
 - o Camino: Opción 1 (Agregar cliente) \rightarrow Ejecutar función \rightarrow Pausa \rightarrow Volver al menú.
- 4. **R4:** N5 \rightarrow N7 \rightarrow N18 \rightarrow N5
 - o Camino: Opción 2 (Listar clientes) → Ejecutar → Volver al menú.
- 5. **R5:** N5 \rightarrow N9 \rightarrow N20 \rightarrow N21 \rightarrow N5
 - o Camino: Opción 4 (Mensaje individual) → Enviar → Pausa → Volver al menú.

Se puede calcular de las siguientes formas:

$$N = 18$$

• V(G) = número de nodos predicados(decisiones)+1

$$V(G) = P = 8 + 1 = 9$$

•
$$V(G) = A - N + 2$$

$$V(G) = 21 - 18 + 2 = 5.$$

DONDE:

P: Número de nodos predicado

A: Número de aristas

N: Número de nodos