RANGE PLANT COMMUNITY TYPES AND CARRYING CAPACITY FOR THE

PEACE RIVER PARKLAND SUBREGION OF ALBERTA

Canadä

GUIDE TO RANGE PLANT COMMUNITY TYPES AND CARRYING CAPACITY FOR THE PEACE RIVER PARKLAND SUBREGION IN ALBERTA

First approximation

Pub. No. T/143

2007

Prepared by

Colin Stone, Michael Willoughby

and

Annette Rosendal

Edmonton 2007 Sustainable Resource Development Agriculture and Agri-Food Canada Pub. No.: T/143

ISBN: 978-0-7785-6499-7(Printed edition)
ISBN: 978-0-7785-6500-7(Online edition)

For copies of this report contact:

Colin Stone Peace River (780) 624-6116

E-mail: colin.stone@.gov.ab.ca

Michael Willoughby 9920 108 Street, 4th Floor Edmonton (780) 422-4598

E-mail: mike.willoughby@gov.ab.ca

This guide is also available on-line at: http://www.srd.gov.ab.ca/lands/managingpublicland/rangemanagement/classificationecology.aspx

Introduction	1.0
Climate	2.0
Approach and Methods of Classification	3.0
Correlation of Soils and Ecological Sites	4.0
Guidelines for Determining Ecological Sites	5.0
How to use the Guide	6.0
Plant Community Key	6.1
Results	7.0
General Ecological Site Description	8.0
Plant Community Table	9.0
Range Plant Community Table	9.1
Forested Plant Community Table (Beckingham & Archibald)	9.2
a - juniper (xeric/poor)	10.0
a1 - juniper	10.1
PPA1 - Juniper-Rose	10.1.1
b - grassland slopes (subxeric/medium)	11.0
b1 - western porcupine grass	11.1
PPA2 - Western porcupine grass-Sedge	11.1.1
PPC1 - Sedge-Wheat grass-June grass	11.1.2
PPC2 - June grass-Sedge/Pasture sagewort	11.1.3
PPC5 - Dandelion/Sedge	11.1.4
b2 - northern wheat grass	11.2
PPA3 - Northern wheat grass-June grass-Sedge/Fringed sage	11.2.1
c - northern rice grass (submesic/poor)	12.0
c1 - northern rice grass-bearberry	12.1
PPA4 - Saskatoon/Bearberry/Northern rice grass	12.1.1
d - blueberry (submesic/medium)	13.0
d1 - blueberry Pj-Aw	13.1
PPE1 - Pj-Aw/Bearberry	13.1.1
d2 - blueberry Aw (Bw)	13.2
PPD4 - Aw/Dwarf bilberry-Bearberry/Mountain rice grass	13.2.1
PPD5 - Aw/Blueberry	13.2.2
d3 - blueberry Tame	13.3
PPF7 - Wheat grass-Creeping red fescue-Timothy	13.3.1
PPF8 - Rose/Dandelion/Hairy wild rye	13.3.2

•••••••••••••••••••••••

PPF9 - Aw-Pb/Rose/Hairy wild rye	13.3.3
e - upland solonetzic/grassland slope (mesic)	14.0
e1 - western porcupine grass	14.1
PPA8 - Sedge-Western porcupinegrass-Intermediate oatgrass	14.1.1
PPC6 - Sedge-Low forb	14.1.2
PPC8 - Kentucky bluegrass/Low Forb	14.1.3
e2 - intermediate oat grass-slender wheat grass	14.2
PPA15 - Purple oat grass-Sedge-Intermediate oat grass	14.2.1
PPA16 - Veiny meadow rue/Slender wheat grass-F. brome	14.2.2
e3 - shrubland	14.3
PPA10 - Shrub/Western porcupine grass-Sedge	14.3.1
PPA5 - Snowberry-Saskatoon/Sedge	14.3.2
PPA6 - Saskatoon-Rose/Sedge	14.3.3
PPA7 - Silverberry-Saskatoon/Sedge	14.3.4
PPC10 - Snowberry/Kentucky bluegrass	14.3.5
PPC4 - Rose-Saskatoon/Kentucky bluegrass	14.3.6
e4 - salt grass	14.4
PPA9 - Sedge-Salt grass	14.4.1
f - low-bush cranberry (mesic/medium)	15.0
f1 - low-bush cranberry Aw	15.1
PPD11 - Aw/Rose/Low forb	15.1.1
PPD12 - Aw-Pb/Dandelion/Kentucky bluegrass	15.1.2
PPD13 - Deciduous cutblocks and unseeded clearings	15.1.3
PPD16 - Pb-Aw/Willow	15.1.4
PPD6 - Aw/Canada buffaloberry	15.1.5
PPD7 - Aw/Saskatoon	15.1.6
PPD8 - Aw-Pb/HazeInut	15.1.7
PPD9 - Aw/Rose/Tall forb	15.1.8
f2 - low-bush cranberry Aw-Sw	15.2
PPE2 - Aw-Sw/Rose/Marsh reed grass	15.2.1
PPE4 - Sw-Aw/Low bush cranberry	15.2.2
f3 - low-bush cranberry Sw	15.3
PPE5 - Sw/Moss	15.3.1
f4 - low-bush cranberry Tame	15.4
PPF1 - Brome-Timothy	15.4.1

PPF2 - Creeping red fescue-Brome-Timothy	15.4.2
PPF3 - Creeping red fescue-Kentucky bluegrass/Dandelion	15.4.3
PPF4 - Strawberry-Dandelion-Weeds	15.4.4
PPF5 - Rose/Creeping red fescue-Sedge	15.4.5
PPF6 - Aw/Rose/Strawberry	15.4.6
g - dogwood (subhygric/rich)	16.0
g1 - shrubland	16.1
PPB1 - Red-osier dogwood-Shining willow	16.1.1
PPB2 - Bebb willow-Red-osier dogwood	16.1.2
PPB3 - Scoulers willow-Red-osier dogwood	16.1.3
g2 - dogwood pb-aw	16.2
PPD10 - Pb-Aw/Red osier dogwood	16.2.1
PPD14 - Pb-Bw/Kentucky bluegrass	16.2.2
PPD15 - Pb/Smooth brome	16.2.3
g3 - dogwood Pb-Sw	16.3
PPE6 - Sw-Pb/Red-osier dogwood	16.3.1
g4 - dogwood Tame	16.4
PPF10 - Reed canary grass-Meadow foxtail-S. brome-Timothy	16.4.1
PPF11 - Brome-Creeping red fescue-K. bluegrass/Dandelion	16.4.2
PPF12 - Foxtail barley/Weeds	16.4.3
PPF13 - Willow/Timothy	16.4.4
h - horsetail (hygric/rich)	17.0
h1 - shrubland	17.1
PPB4 - Willow/Horsetail/Marsh reed grass	17.1.1
PPB5 - Bebb willow/Marsh reed grass	17.1.2
h2 - horsetail Sw	17.2
PPE7 - Sw/Horsetail	17.2.1
hh - bog (subhygric/very poor)	18.0
hh1 - treed bog	18.1
PPE3 - Sb-Lt/Labrador tea/Moss	18.1.1
i - solonetzic (subhydric)	19.0
i1 - rush	19.1
PPA17 - Nuttalls salt grass	19.1.1
PPA18 - Rush meadow	19.1.2
j - rich fen (subhydric/rich)	20.0

•••••••••••••••••••••••

j1 - graminoid rich fen	20.1
PPA11 - Sedge meadow	20.1.1
PPA14 - Marsh reed grass meadow	20.1.2
PPC11 - Kentucky bluegrass/Dandelion	20.1.3
j2 - shrubby rich fen	20.2
PPB6 - Willow/Marsh reed grass	20.2.1
PPB7 - Willow/Kentucky bluegrass/Dandelion	20.2.2
PPB8 - Willow/Marsh reed grass-Kentucky bluegrass	20.2.3
PPB9 - Willow/Sedge	20.2.4
k - marsh (hydric/rich)	21.0
k1 - marsh	
PPA12 - Bulrush-Cattail	21.1.1
PPA13 - Swamp horsetail	21.1.2
Literature Cited	22.0
List of Tables	
Table 1. Range Plant Community Table	20
List of Figures and Photos	
Figure 1. Location of Peace River Parkland in Alberta	3
Figure 2. Classification hierarchy for the Province of Alberta.	18
Figure 3. Successional sequences of tame pasture communities on 3 moisture River Parkland subregion.	e regimes in the Peace

Figure 4. Edatopic grid and ecological sites for the Peace River Parkland subregion.

19

Executive Summary

The Peace River Parkland Natural Subregion accounts for only 0.5 percent of the province and is characterised by gently rolling cultivated plains and steep south-facing grassy and forested slopes along the Peace River and its tributaries. Vegetation is a mosaic and dominated by forests of aspen and white spruce, wetlands and small remnant grasslands on the uplands, dry grasslands and aspen forests on valley slopes. The vegetative communities in this subregion are important because they provide summer range for livestock, prime habitat for many species of wildlife, productive watersheds, recreational areas and timber harvesting. Despite the importance of these vegetation types there is little information on their ecology. The lack of information makes it very difficult to develop sustainable management prescriptions for multiple uses. As a result guides like this and "Ecosites of Northern Alberta" (Beckingham and Archibald 1996) are being developed to provide a framework that will easily group the vegetative community types. It is hoped these classification systems can be used by field staff to assess the ecology of the sites and develop management prescriptions on lands within each region.

This guide represents the analysis of 756 plots described in the Peace River Parkland subregion. These 756 plots represent 66 plant community types. These are split into:

- A. Upland/Slope grasslands and shrubland plant community types (16 types)
- B. Moist shrubland community types (9 types)
- C. Grazing successional grassland and shrubland community types (8 types)
- D. Deciduous community types (13 types)
- E. Conifer/Mixedwood community types (7 types)
- F. Tame community types (13 types)

Acknowledgements

In January 1999 the Rangeland Health Assessment Project was initiated. Its purpose was to coordinate the development of rangeland health assessment methods and ecological site descriptions for both forested and grassland dominated rangelands in the province and transfer the new technology (awareness, information and tools) to livestock producers, staff and other stakeholders. This document "Guide to range plant communities and carrying capacity for the Peace River Parkland subregion in Alberta, First Approximation" is an effort to organize existing range plant community information for the natural subregion into an ecological framework, with the ultimate goal of developing ecological site descriptions as outlined in the Alberta Rangeland Health Task Group, Terms of Reference (1999). This guide builds on the Dry Mixedwood Guide (Willoughby et al. 2006) and has additional information about shrublands and grasslands which are located on the uplands and slopes of the region. It also tries to incorporate the work done by Beckingham and Archibald (1996) on the forested ecosites of the Boreal Mixedwood and work done by Thompson and Hansen (2003) on the lotic and lentic communities of the Mixedwood subregions. We would also like to acknowledge the PFRA's (Prairie Farm Rehabilitation Administration) Green Cover Program within Agriculture and Agri-Food Canada for their support in publishing digital copies of this guide.

As we collect new research information, the first approximation will evolve into a range ecological site field guide. One major outcome of the project will be to produce ecological base information, which will be used to develop management tools for northern livestock producers, resource managers and other stakeholders of the region. This new knowledge will aid in the sustainable grazing of plant communities, and maintain the good health and proper functioning of these ecosystems.

1.0 Introduction

The province of Alberta is covered by a broad spectrum of ecological regions from prairie in the South, to alpine vegetation in the mountains and dense forests in the Central and Northern parts of the province. These broad ecological regions have been classified into 6 regions and 21 subregions (Natural Regions Committee 2006). Within each subregion, there are groups of plant communities, which exist under similar, localized, environmental conditions and can be further influenced by human impacts. Sustainable management of these subregions requires an understanding of the ecology of the site coupled with the ability to recognize the vegetative communities that have similar productivity and response to disturbance.

Vegetative communities in the province of Alberta are highly regarded by most resource managers for their ability to provide a wide variety of benefits. They are a classic example of multiple use land, providing summer range for livestock, prime habitat for many species of wildlife, productive watersheds and recreational areas. Despite the importance of these vegetation types there is little information on their ecology. The lack of information makes it very difficult to development sustainable management prescriptions for multiple use.

The purpose of this guide was to develop a framework that would easily group the plant community types utilized by livestock in the Peace River Parkland subregion of the province. Plant communities are grouped into a hierarchal system based on ecology. These groupings include successional communities, which occur under natural succession, or disturbance such as fire, timber or grazing operations. All of the known relationships among communities are described within this guide in table format and/or schematically. Additionally, each known plant community is described in detail.

It is hoped this classification system can be used by field staff to assess the ecology and sustainable stocking rate of sites in order to develop management prescriptions on lands within each subregion. This guide supplements the work done by Beckingham and Archibald (1996) on the forested community types in the Boreal Mixedwood of northern Alberta. Their guide is a good description of the forested community types found within the subregions, but it does not include forage production values or grazing management information. It also does not provide a description of the native grassland and shrubland communities, which are utilized extensively by livestock in this subregion. This guide also builds on the Dry Mixedwood Guide (Willoughby et al. 2006) and has additional information about shrublands and grasslands which are located on the uplands and slopes of the region.

2.0 Climate

•••••••••

••••••••••

The location of the Peace River Parkland subregion is shown on Figure 1 and is best defined by the Natural Regions and Subregions of Alberta (Natural Regions Committee 2006) as:

"the smallest subregion in Alberta which accounts for only 0.5 percent of the province's total area. It is mapped as three small sub-areas in northwestern Alberta. The northernmost sub-area runs parallel to the Peace River from the town of Peace River to Dunvegan, and includes the south-facing steep Peace River valley slopes and glaciolacustrine plains on the north side of the river to a distance of about 20km back from the river break. The second sub-area includes a small level to gently undulating glaciolacustrine plain centered on Spirit River. The third and most southerly sub-area is an undulating to rolling glaciolacustrine plain and includes Grande Prairie. There are other known areas of Parkland, but they are generally too small to map at the provincial scale. The Dry Mixedwood subregion surrounds all three subareas. Elevations range from 300m along the Peace River near Peace River townsite to 800m in the Grande Prairie area. Almost all of the upland plains have been cultivated. The remaining upland forested areas are mainly aspen stands on Dark Gray Chernozems or Luvisols. The Peace River Parkland subregion is defined by parent material and soil criteria; climate is of secondary importance. The core conditions for this Natural Subregion are represented by the occurrence of Black Chernozemic and Solonetzic soils; soil maps were used to delineate the current boundaries."

The Peace River Parkland subregion is similar in climate to the Dry Mixedwood subregion, which surrounds it, although it has milder winters and lower precipitation. The mean temperature of the warmest summer month is 15.9 oC and the mean temperature of the coldest winter month is -15.9 oC. Annual average precipitation is 450 mm

The vegetation cover of the Peace River Parkland is a complex of closed aspen stands, grasslands, shrublands and low lying wet areas.

•••••••••••••••••••••••

Figure 1. Location of Peace River Parkland in Alberta

3.0 Approach and Methods of Classification

APPROACH: ECOLOGICAL CLASSIFICATION HIERARCHY AND METHODOLOGY

The system of classification in this guide was initially based on the community type approach of Mueggler (1988). Mueggler's system was chosen over the habitat type approach (Daubenmire 1952) or ecosystem association approach (Corns and Annas 1986) because it could classify plant communities irregardless of their successional status. However, as the philosophy of rangeland health and proper functioning condition of a site evolved, it became apparent (through data analysis) that there was a need to also organize the various plant communities based on their response to disturbance (i.e. disturbance vs. natural succession) within an area under similar environmental influences.

It was determined that the ecosystem classification system developed by Corns and Annas (1986) and Beckingham and Archibald (1996) could accommodate this additional requirement. Thus, the new system developed for rangelands is a combination of Mueggler (1988) and Beckingham and Archibald (1996). Consequently, this guide adopts a similar ecological unit classification hierarchy (ecosite, ecosite phase, plant community). In an effort to first, link the hierarchical system with the historic rangeland system, and second, to create a provincially standardized rangeland approach, slightly different classification terminology was developed. The new terms ecological site and ecological site phase (replacing Beckingham and Archibald [1996] ecosite and ecosite phase terms respectively), provide subtle distinction to recognize the blending of the old systems and still be recognizable to readers familiar with the original terminology. See figure 2 for a flow chart of both classification and general presentation of information.

METHODS: PLANT COMMUNITY CLASSIFICATION

Sampling for this guide occurred within the Peace River Parkland subregion. This guide outlines the classification of 756 plots described in the Peace River Parkland. The procedure for inventory of plots followed the Range Survey Manual (1992) and uses the MF5 form. A plot consisted of a 10 m x 10 m macroplot and ten randomly selected 1 m x 1 m microplots to record the canopy cover of shrubs and ten nested 20 cm x 50 cm microplots to record the canopy cover of forbs and grass. For a description of the methodology for riparian plots done in the Mixedwood subregions, which includes some sites located in the Peace River Parkland, see (Thompson and Hansen 2003). The data for each site was analyzed using the multivariate analysis techniques of classification and ordination. Classification is the assignment of samples to classes or groups based on the similarity of species. A polythetic agglomerative approach was used to group the samples. This technique assigns each sample to a cluster, which has a single measure. It then agglomerates these clusters into a hierarchy of larger and larger clusters until finally a single cluster contains all the samples (Gauch 1982). Cluster analysis was performed in SAS and Euclidean distance was used as the Cluster Distance Measure and Ward's method was used in the Group Linkage Method. The groupings generated in cluster analysis were overlain on the site ordination to determine final groupings.

•••••••••••••••••••••••••

Ordination was used to find relationships among species, communities and environmental variables. Ordination reduces the dimensionality of the data to 1-3 most important axes to which environmental gradients can be assigned. The ordination technique used in the analysis of the data was DECORANA (Detrended Correspondence Analysis). DECORANA detrends and rescales the axes thereby reducing the arching and compression of axes problems associated with other ordination techniques (Reciprocal averaging, Principle Components Analysis). Once final groupings were determined on the ordination, specific environmental variables can be assigned to the variation outlined on the ordination axes.

Plant community type summaries were generated in SAS, by averaging plant species composition, range in composition, and percent constancy of occurrence, among vegetation inventory plots, which were part of a community type. Environmental data was subsequently sorted into the same plant community groupings to create the plant community descriptions outlined in this guide. The number of sample plots on which the description was based is also provided (e.g. n=16).

ECOLOGICALLY SUSTAINABLE STOCKING RATES

Ecologically sustainable stocking rates (ESSR) values are suggested for each plant community. These values reflect the maximum number of livestock (e.g. hectares (ha)/animal unit month (AUM)) that can be supported by the plant community given inherent biophysical constraints and the ecological goal of sustainable health and proper functioning of the plant community. When the ESSR is multiplied by the area (e.g. ha) of a plant community polygon, the result is termed ecologically sustainable carrying capacity (ESCC), and is expressed as AUMs. Often the ESCC must be adjusted for management factors (e.g. reduced livestock distribution), management goals (e.g. improve rangeland health, multiple use and values, etc.), drought conditions, and other natural phenomena impacting the site (e.g. forage quality, fire, pests, etc.). This adjusted/reduced value is the ecologically sustainable grazing capacity (ESGC). The ESGC values are not provided in the plant community guide because the necessary adjustments are determined by the rangeland resource manager.

Suggested ESSR values were determined from a combination of clipping studies, long-term rangeland reference area data, estimated production, and historical grazing experience. In order to sustain ecological health and function of the plant community, the ESSR was based on the allocation of 25 % of total production for forested plant community types, 50 % of total production for grass and shrub land types within the Peace River Parkland subregion and the forage requirements one animal unit (i.e. 455 kg of dry matter per month). The remaining biomass production (carry over), is allocated for the maintenance of ecological functions (e.g. nutrient cycling, viable diverse plant communities, hydrological function, and soil protection, etc.) and plant community services (forage production, habitat maintenance, etc.). The allocation of biomass production in this manor is well established, and supported, by the scientific community and the amount required, varies with Natural Subregion (Holechek et al. 1995).

RANGELAND HEALTH

Range Health is determined by comparing the functioning of ecological processes on an area (e.g. plant community polygon) of rangeland to a standard (i.e. reference range plant community (RPC)) described within an ecological site description. An ecological site is similar to the concept of range site, but a broader list of characteristics are described. An ecological site is defined by the Task Group on Unity and Concepts (1995) as, "a distinctive kind of land with specific physical characteristics that differs from other kinds of land in its ability to produce a distinctive kind and amount of vegetation". This guide can be used to determine the appropriate reference range plant community, within an ecological site, for a rangeland health assessment.

Rangeland health assessments are utilized to make a rapid determination of the ecological status of rangeland. We use range health terminology (healthy, healthy with problems, or unhealthy), to rank the ability of rangeland to perform certain ecological functions. These functions include: net primary production, maintenance of soil/site stability, capture and beneficial release of water, nutrient and energy cycling and plant species functional diversity. For a detailed description on how to assess rangeland health for various plant communities please refer to "Range Health Assessment for Grassland, Forest and Tame Pasture" (Adams et al. 2005).

An ecological status score [i.e. the integrity of the plant community composition compared to the reference plant community] has been added to each community type description. These values are based on what is currently known about how a reference plant community (RPC) responds to various kinds and levels of disturbance or successional processes. The values indicate how a particular plant community fits in the state and transition model relative to the RPC. If an experienced observer wishes to estimate the health of a plant community without completing a health form, (e.g. a small riparian area), these values can be used as a guide.

Occasionally there are 2 options provided for the ecological status score. This was done for two reasons: 1) to express the range of divergence from the RPC possible for a particular plant community; or 2) to allow for different health forms to be used in communities with variable shrub or tree cover (e.g. on sites with high woody cover and/or an obvious LFH layer use the forest rangeland health form and the corresponding ecological status score; on sites dominated by herbaceous cover and/or an obvious herbaceous litter layer use the native grassland form). [Note: For riparian plant communities the riparian health assessment form should be used].

Range management objectives tend to favor the later stages of plant succession (late-seral to potential natural community (PNC) or good to excellent range condition) (Adams et al. 2005). Late seral plant communities tend to be superior in the efficient capture of solar energy, in cycling of organic matter and nutrients, in retaining moisture, in supporting wildlife habitat values and in providing the highest potential productivity for the site. In contrast, early seral stages represent plant communities with diminished ecological processes, which are less stable and more vulnerable to erosion and invasion by weeds and non-native species. They also have diminished resource values for livestock forage production, wildlife habitat and watershed protection (Adams et al. 2005). Healthy rangelands perform important ecological functions and provide a broader suite of goods and services. In most cases these late seral plant communities are used as reference range plant community (RPC), but sometimes management goals influence the choice of RPC (e.g. a cut block to be maintained as untimbered rangeland).

4.0 Correlation of Soils and Ecological Sites

5.0 Guidelines for Determining Ecological Sites

ORGANIZATION OF THE CUIDE

This guide is an expansion of the "Ecosites of Northern Alberta" guide (Beckingham and Archibald 1996). It contains new information and it is recommended that the reader have access to relevant information from both guides. The community types in this guide are closely related to the ecosites and ecosite phases outlined in "Ecosites of Northern Alberta" (Beckingham and Archibald 1996), and are similarly arranged (e.g. Table 1). Table 1 is a reproduction of Figure 11 in "Ecosites of Northern Alberta" with community types in this guide further separated into reference range plant communities, successional communities and harvesting and fire communities. The "Successional community types" or "Harvesting and Fire succession" categories outline the successional sequence the community types undergo with heavy grazing pressure, harvesting or fire disturbance.

Due to the crossover between vegetation communities located in the Peace River Parkland and the surrounding Dry Mixedwood subregion, many of the plant communities described for the Dry Mixedwood subregion (Willoughby et al. 2006) are also described here and have been cross referenced to help the reader.

The majority of ecological site and ecological site phase summary tables as well as the plant community descriptions are recorded in "Ecosites of Northern Alberta" (Beckingham and Archibald 1996). Any new ecological sites and ecological site phases reported in this guide are summarized before the community type descriptions. The bulk of this guide is community descriptions, which include information on the dominant plant species, canopy cover, environmental conditions, response to grazing, forage production and suggested ESSRs. When available, we have included plant community successional information to help us determine rangeland health and the successional relationships on an ecological site.

Generally, in both guides, ecological units within a subregion are classified by their position on the edatopic grid [a specific combination of soil moisture and soil nutrient regime]. The edatopic grid is a two-dimensional table with soil moisture regime on one axis and soil nutrient regime on the other. Soil moisture regime (SMR) is defined as the average amount of soil water available annually for evapotranspiration by vascular plants (Meidinger and Pojar 1991). The SMR uses nine classes to define the available soil moisture, which range from the driest (very xeric) to the wettest (hydric). Soil nutrient regime (SNR) is defined as the amount of essential soil nutrients that are available to vascular plants over a period of several years (Meidinger and Pojar 1991). SNR is broken down into five classes that range from A (very poor) to E (very rich). Generally ecological sites are named from low moisture/low nutrient to high moisture/high nutrient.

The unique combination of moisture and nutrients creates conditions for a particular ecological site within a subregion. For example a subxeric, medium nutrient regime site is characterized by the b [grass slopes(subxeric/medium)] ecological site. A manager can review the indicator plant species of the ecological site and range plant community types to see if the plant community in question fits the general descriptions.

The information in this guide is presented and named by:

- 1. Subregion/Ecological area = Peace River Parkland [PP]
- 2. Dominant cover type
- A. Upland/Slope grasslands and shrubland plant community types
- B. Moist shrubland community types
- C. Grazing successional grassland and shrubland community types
- D. Deciduous community types
- E. Conifer/Mixedwood community types
- F. Tame community types

NOTE: Each dominant cover type may overlay several ecological sites and ecological site phases.

- 3. Community types are presented and named by:
- a. Subregion/Ecological area and dominant cover type [e.g. PPA].
- b. Position on the edatopic grid. Generally, communities are named/numbered from low moisture /nutrient status to high moisture/nutrient status.

6.0 How to Use the Guide

IDENTIFYING PLANT COMMUNITY TYPES

There are two methods to identify plant community types in this guide. The first method uses a key within the dominant cover categories of native grass and shrubland, tame forage, deciduous, or mixedwood and conifer. The second method involves using soil moisture and nutrient information and indicator species to identify plant community types.

METHOD 1. Use dichotomous key within dominant cover categories

Step 1. Pick the appropriate category the community type is in within each subregion.

- a. The area has been cleared of frees, broken, and seeded down to tame forage species such as timothy or creeping red fescue; the community will be in the TAME PASTURE category.
- b. The area does not have an overstory tree canopy, has not been cleared and broken, and is dominated by native grass or shrub species; the community will fall under the NATIVE SHRUB and GRASSLANDS category.
- c. The DECIDUOUS category includes all plant communities that are dominated, [i.e.>70% of the overstory], by deciduous tree species (AW, Pb, Bw). Deciduous cutblocks are included here.
- d. Communities which have begun to undergo succession from a deciduous to a conifer overstory may fall into the MIXEDWOOD category. The following is a general rule of thumb. The site is a mixedwood community if the conifer and the deciduous overstories each range between 30-70% of the total overstory cover. For example a deciduous cover of 40% and a conifer cover of 60% is a mixedwood community. If in doubt, try to determine if the understory is responding more to a deciduous or coniferous influence [e.g. loss of production due to conifer shading]. Communities dominated [i.e. > 70% of the overstory] by conifers are classified in the CONIFER category.
- Step 2. Turn to the appropriate section and work through the key provided to determine the closest matching community type for the site you are evaluating. At times, the community in question does not seem to match any of the known / reported types. When this happens, consider the following information in the detailed community type descriptions.

1. In the general description text.

- a. The number of plots utilized to describe the community [n=number of plots]. The greater the number of plots [i.e. information available], the greater the level of confidence in the clarity and accuracy of the description including the suggested ESSR.
- b. Information about where the community is found on the landscape, response to disturbance, and natural succession. Use this information together with your field experience to determine the likely hood of a similar situation occurring on the site in question.

2. Under Plant Composition heading.

- a. The range of a plant species canopy cover. For example, a species with a range of 0-25% may not always be visible on the site, having 0% canopy cover or it may have up to 25% cover.
- b. The consistency value. This indicates the percentage of the plots that the species was actually present. So if n=16 and consistency was 75% then the species occurred in 12 of the plots and not in 4 of them.
- c. Note that tree species in the shrub LAYER are listed in the shrub section.
- 3. Try to use the other method to see if you can determine the plant community.
- Step 3. This step is necessary only if you are completing a rangeland health assessment. In order to determine the health status of the site in question, you must decide the appropriate reference range plant community [RPC] to compare it to. Depending on the type of disturbance [grazing, timber operations, etc.] successional pathways may differ. The RPC would usually be the plant community that is at the start of the pathway. Management goals can influence the choice of RPC.

METHOD 2. Use edatope and indicator species (Figure 2)

Step 1. Pick the appropriate subregion

Step 2. Determine the appropriate ecological site based on position on the edatopic grid for the subregion. First decide soil moisture status, then soil nutrient status of the site in question. Use any available soils information to assist [e.g. AGRASID, or PLC]. [e.g. mesic/medium is the "f" low-bush cranberry ecological site.

Step 3. Look up the possible ecological site phases within the selected ecological site on Table 1 [e.g. has "f1" low-bush cranberry aspen, "f2" low-bush cranberry aspen-white spruce etc.

Step 4. Select the appropriate ecological site phase by first determining the dominant overstory [i.e the highest layer of vegetation which can be either a tree, shrub, or grass species]. [e.g. For a site dominated by aspen, the appropriate ecological site phase is "f1" low-bush cranberry aspen.]

Step 5. Select the appropriate community type. Within the selected ecological site phase, use indicator understory species to choose the closest matching community type. This information is shown in table 1. It is also detailed in the specific community type descriptions [i.e. species with the highest average canopy cover and consistency]. At times, the community in question does not seem to match any of the known / reported types. When this happens, consider the following information in the detailed community type descriptions.

1. In general description text.

a. The number of plots utilized to describe the community [n=number of plots]. The greater the number of plots [i.e. information available], the greater the level of confidence in the clarity and accuracy of the description including the suggested ESSR.

- b. Information about where the community is found on the landscape, response to disturbance, and natural succession. Use this information together with your field experience to determine the likely hood of a similar situation occurring on the site in question.
- 2. Under Plant Composition heading.
- a. The range of a plant species canopy cover. For example, a species with a range of 0-25% may not always be visible on the site, having 0% canopy cover or it may have up to 25% cover.
- b. The consistency value. This indicates the percentage of the plots that the species was actually present. So if n=16 and consistency was 75% then the species occurred in 12 of the plots and not in 4 of them.
- c. Note that tree species in the shrub LAYER are listed in the shrub section.
- 3. Try to use the other method to see if you can determine the plant community.

Step 6. This step is the same as step 4 in method 1 and is necessary only if you are completing a rangeland health assessment. In order to determine the health status of the site in question, you must decide the appropriate reference range plant community [RPC] to compare it to. Depending on the type of disturbance [grazing, timber operations, etc.] successional pathways may differ. The RPC would usually be the plant community that is at the start of the pathway. Management goals can influence the choice of RPC.

6.1 Key to Plant Community Types for Peace River Parkland subregion

1	Site cultivated and seeded to tame forage species	Tame Pastures
	Native trees, shrubs, forbs and grasses dominate the site	2
2	Native shrub or grass species dominate the site, few trees present	Native shrub and grasslands
	Trees dominate the site	3
3	Overstory consists of deciduous species (Aw, Bw, Pb)	Deciduous types
	Overstory dominated by conifer trees or a mixture of conifer and deciduous species	Conifer and Mixedwood types
Co	mmunity Key to Tame Pastures	
1	Tame forage stand dominated by tall productive species, grazing has not caused an increase of grazing resistant or weedy species	2
	Tame forage stand modified by overgrazing with grazing resistant species a —ast co-dominant in the plant community; or the site has aspen or shrub invasion	3
2	Subhygric sites dominated by productive, moisture loving tame forage species seeded on the site [e.g. reed canary grass, meadow foxtail or timothy]	PPF10 Reed canary grass-Meadow foxtall-S. brome-Timothy
	Mesic or submesic sites dominated by productive tame forage species suited to normal or dry moisture conditions[e.g. smooth brome, meadow brome, timothy, wheat grass, etc.]	4
3	Tame pasture invaded by aspen, balsam poplar or shrub species	5
	Species composition modified by moderate to heavy grazing	6
4	Submesic sites with wheat grass and creeping red fescue	PPF7 Wheat grass-Creeping red feacue-Timothy
	Mesic sites dominated by other tall, productive tame forage species [e.g. smooth brome, meadow brome, limothy, etc.]	PPF1 Brome-Timothy
5	Old tame pastures with Aspen and Balsam Poplar invasion	7
	Newer tame pastures with shrub invasion, little free growth	
6	Pasture moderately to heavily grazed; tall, productive and grazing resistant species co-dominate the site	PPF2 Creeping red fescue-Brome-Timothy
	Pasture heavily to very heavily grazed; grazing resistant and / or weedy species dominate the site	•
7	Submesic sites with hairy wild rye	PPF9 Aw-Pb/Rose/Hairy wild rye
	Mesic sites with strawberry	PPF6 Aw/Rose/Strawberry
8	Submesic sites dominated by hairy wild rye and rose	PPF8 Rose/Dandelion/Hairy wild rye
	Mesic to subhygric sites	12
9	Pasture heavily grazed; grazing resistant spp dominate the site, dandelion, strawberry common	10
	Pasture very heavily grazed, weedy invaders dominate the site	11
10	Mesic sites; dominated by grazing resistant species	PPF3 Creeping red fescue-Kentucky bluegrass/Dandelion
	Subhygric sites; dominated by grazing resistant species	PPF11 Brome-Creeping red fescue-K. bluegrass/Dandelion
11	Mesic or submesic sites dominated by strawwberry, dandelion, Canada thistle and other weedy species	PPF4 Strawberry-Dandelion-Weeds

Community Key to Tame Pastures

	• • • • • • • • • • • • • • • • • • • •	
11	Subhygric sites dominated by foxtail barley, Canada thistle or other weedy species	PPF12 Foxtail barley/Weeds
12	Mesic sites with marsh reed grass and sedge	PPF5 Rose/Creeping red fescue-Sedge
	Subhygric sites with willow invading	PPF13 Willow/Timothy
Co	mmunity Key to Native shrub and grasslands	
1	Medium (mesic) to dry (xeric) upland or river valley slope site	2
	Riparian or wetland site (subhygric to hydric)	3
2	Grass or grass-likes dominate site (< 20% cover from shrubs)	4
	Shrub dominated site	5
3	Grass or grass-likes dominate (<20% cover from shrubs)	18
	Shrub dominated sites with willow or red osier dogwood	19
4	Dry (subxeric) site located on the slopes of major river valleys	6
	Mesic site associated with solonetzic soils on upland areas or moister draws and flatter areas of slopes (benches, terraces and valley bottoms)	7
5	Dry to very dry, nutrient poor site	13
	Moister (mesic), richer site	14
6	Steep, south facing slopes (45 - 95% or 24 - 40 degrees), dominated by northern wheat grass, June grass and sedge	PPA3 Northern wheat grass-June grass-Sedge/Fringed sage
	Gentle to moderate slopes (5 - 45% or 3 - 24 degrees)	1
7	Upland site dominated by western porcupine grass or sedge	11
	Site on uplands or on lower slope positions and moist draws in river valleys dominated by purple oat grass, slender wheat grass, veiny meadow rue or Kentucky bluegrass	12
8	Light to moderately grazed sites with a significant component of western porcupine grass	,
	Moderate to very heavily grazed sites with very little western porcupine grass	10
9	Site has been altered through moderate grazing or other disturbance. Dominated by sedges. Western porcupine grass present but is not dominant	PPC1 Sedge-Wheat grass-June grass
	Light to moderately grazed sites dominated by western porcupine grass and sedge	PPA2 Western porcupine grass-Sedge
10	Site has been impacted by long term heavy to very heavy grazing pressure. Vegetation is dominated by low growing or grazing resistant species.	PPC5 Dandelion/Sedge
	Site has been aftered through moderate to heavy grazing or other disturbance	PPC2 June grass-Sedge/Pasture sagewort
11	Moderately grazed or disturbed site. Sedge dominates. High diversity of forbs. Northern bedstraw and yarrow are common	PPC6 Sedge-Low forb
	Upland site co-dominated by sedge and western porcupine grass. Intermediate out grass is often present	PPA8 Sedge-Western porcupinegrass-Intermediate oatgrass
12	Moderate to heavily grazed site on uplands or on lower slope positions and moist draws in river valleys. Kentucky bluegrass dominates. Disturbance induced species present	PPC8 Kentucky bluegrass/Low Forb
	Upland sites or grassland-shrub transition zones in river valleys dominated by purple oat grass, stender wheat grass and Kentucky bluegrass	PPA15 Purple out grass-Sedge-Intermediate out grass

Community Key to Native shrub and grasslands

13	Dry (submesic) site with bearberry strongly dominant under saskatoon. Morthern rice grass is also present	PPA4 Saskatoon/Bearberry/Northern rice grass
	Very dry (xeric), nutrient poor site dominated by juniper and rose	PPA1 Juniper-Rose
14	Site dominated by shrubs, native grasses and forbs	15
	Grazing impacted site dominated by shrubs and forbs. Kentucky bluegrass is a dominant or co-dominant grass	16
15	Site dominated by silverberry or codominated by silverberry and Saskatoon	PPA7 Silverberry-Saskatoon/Sedge
	Shrub encroached grassland. Relatively equal proportions of saskatoon, rose and snowberry with northern bedstraw, western porcupine grass and sedge occurring in significant amounts	PPA10 Shrub/Western porcupine grass-Sedge
16	Grazing impacted site with considerable amounts of grazing resistant species like Kentucky bluegrass, dandelion and strawberry. Shrub cover is dominated by saskation or rose	PPC4 Rose-Saskatoon/Kentucky bluegrass
	Grazing impacted site codominated by snowberry and a diverse mixture of forbs and grasses. Kentucky bluegrass is present but not dominant	PPC10 Snowberry/Kentucky bluegrass
18	Sites dominated by invasive species	PPC11 Kentucky bluegrass/Dandelion
	Sites dominated by native species	20
19	Willow dominated community types; sedge, marsh reed grass, horsetail dominate the herbacoous layer	24
	Red osier dogwood dominates or co-dominates with willow	25
20	Wet sites, dominated by sedge, baltic rush or Nuttalks saltgrass or marsh reed grass	21
	Very wet sites with standing water, cattails, bulrush, swamp horsetail present	22
21	Drier sites dominated by marsh reed grass	PPA14 Marsh reed grass meadow
	Fresh water sites dominated by beaked, water or awned sedge or saline seepages dominated by Nuttalls saltgrass or baltic rush	23
22	Swamp horsetail dominated	PPA13 Swamp horsetail
	Common great bulrush or cattail dominated site	PPA12 Bulrush-Cattail
23	Nutrient rich seepage areas dominated by sedge species	PPA11 Sedge meadow
	Saline seepage areas dominated by Nuttalls saligrass or baltic rush	28
24	Heavily grazed sites; dominated by grazing resistant species in the herbaceous layer	PPB7 Willow/Kentucky bluegrass/Dandelion
	Lightly or moderately grazed sites, with the herbaceous layer dominated by native species	26
25	Scouler's willow dominates	PPB3 Scoulers willow-Red-osier dogwood
	Bebb willow dominates	PPB2 Bebb willow-Red-osier dogwood
26	Wetland sedge species dominates the herbaceous layer	PPB9 Willow/Sedge
	Horsetall dominates the herbaceous layer	PPB4 Willow/Horsetail/Marsh reed grass
28	Area very wet and dominated by baltic rush	PPA18 Rush meadow
	Area dominated by Nuttalls saltgrass	PPA17 Nuitalis salt grass

Community Key to Deciduous types

1	Sites where plant community succession is in the early stages (i.e. recently reset by logging or fire)	PPD13 Deciduous cutblocks and unseeded clearings
	Mid to late successional plant communities	2
2	Tree canopy dominated by Aspen	3
	Tree canopy dominated by Balsam poptar and paper birch	4
3	Dry sites with sandy soil texture, blueberry and bearberry dominate understory	5
	Sites with mesic or better moisture, blueberry or bearberry may be present but do not dominate the understory	6
4	Heavily grazed birch or balsam poplar dominated sites	7
	Moderately or lightly grazed birch or balsam poplar dominated sites	8
5	Sandy sites dominated by blueberry	PPD5 Aw/Blueberry
	Loamy sand sites dominated by dwarf bilberry, bearberry and mountain rice grass	PPD4 Aw/Dwarf bilberry-Bearberry/Mountain rice grass
6	Heavily grazed sites dominated by dandelion. Kentucky bluegrass or clover	PPD12 Aw-Pb/Dandelion/Kentucky bluegrass
	Moderately or lightly grazed sites dominated by shrubs	9
7	Smooth brome dominates understory	PPD15 Pb/Smooth brome
	Kentucky bluegrass and dandelion dominated	PPD14 Pb-Bw/Kentucky bluegrass
8	Willow dominates the understory	PPD16 Pb-Aw/Willow
	Riverine forests dominated by red osier dogwood in understory	PPD10 Pb-Aw/Red osier dogwood
9	Beaked hazelnut dominates the understory	PPD8 Aw-Pb/Hazeinut
	Sites dominated by other shrubs	10
10	Slope communities dominated by saskatoon	PPD7 Aw/Saskatoon
	Sites dominated by other shrubs	11
11	Buffaloberry dominates the understory	PPD6 Aw/Canada buffaloberry
	Rose, forb dominated understory	12
12	Tall forb dominated (fireweed, showy aster, yellow peavine, wild sarsaprilla)	PPD9 Aw/Rose/Tall forb
	Low forb dominated (bunchberry, twinflower, strawberry, wintergreen)	PPD11 Aw/Rose/Low forb
	Rose, forb dominated understory Tall forb dominated (fireweed, showy aster, yellow peavine, wild sarsaprilla)	12 PPD9 Aw/Rose/Tall forb

Community Key to Conifer and Mixedwood types

2	Dry, sandy sites dominated by jack pine; bearberry dominant in understory	PPE1 Pj-Aw/Bearberry	
	Moist, mesic or dry sandy sites dominated by white spruce, aspen, balsam poplar or jack pine	2	
1	Wet, nutrient poor sites dominated by black spruce, larch and Labrador tea present	PPE3 Sb-Lt/Labrador tea/Moss	

Community Key to Conifer and Mixedwood types

Mesic or subhygric sites dominated by spruce, aspen or balsam poplar 3 White spruce dominated (ie greater than or equal to 70% spruce overstory cover or deciduous 3 species with less than 30% cover), or the understory is strongly influenced by conifer shading Mixedwood types dominated by a mixture of deciduous and conifer trees; a structurally diverse 5 understory present PPE5 Sw/Moss Moss dominates the understory. little shrub cover PPE4 Sw-Aw/Low bush cranberry Low bush cranberry predominant or present in the understory PPE2 Aw-Sw/Rose/Marsh reed grass Typical mesic site, dominated by aspen and spruce, with rose and marsh reed grass in the 5 Balsam poplar present, moister, richer sites; understory dominated by red osier dogwood or horsetail PPE7 Sw/Horsetail Horsetail dominates understory PPE6 Sw-Pb/Red-osier dogwood Red osier dogwood dominates understory

7.0 Results

This guide represents the analysis of 756 plots described in the Peace River Parkland subregion. These 756 plots represent 66 plant community types. These are split into:

- A. Upland/Slope grasslands and shrubland plant community types (16 types)
- B. Moist shrubland community types (9 types)
- C. Grazing successional grassland and shrubland community types (8 types)
- D. Deciduous community types (13 types)
- E. Conifer/Mixedwood community types (7 types)
- F. Tame community types (13 types)

The dominant plant species, canopy cover, environmental conditions, response to grazing, forage production and ecologically sustainable stocking rate are outlined for each type.

8.0 General Ecological Site Descriptions

NATIVE GRASS AND SHRUB COMMUNITIES (Plant community codes A and B)(Grazing modified code C)

Aspen Parkland-like vegetation can develop where site conditions or drought conditions occur in combination with the driest climatic conditions (Strong 1992). The Grande Prairie area is an example where a number of these conditions occur. It is within this area that a number of native upland grassland community types have been described. On steep, south-facing slopes of the Smoky, Wapiti and Peace Rivers with subxeric moisture regimes and medium nutrient regimes the Western porcupine grass-Sedge/Fringed sage and Northern wheatgrass/Fringed sage community types are common. The Sedge-Western porcupine grass-Intermediate oatgrass community type is found on more upland sites with mesic moisture and rich nutrient regimes. This community appears to similar to the Sedge-Intermediate oatgrass-Western porcupine grass community described by Wilkinson and Johnston (1983) on Solonetzic soils in the Grande Prairie area. Adams (1981) also found that the Western porcupine grass, Sedge and Northern wheatgrass dominated communities of the Peace River slopes were often associated with Dark Gray Solods and Solonetzic Gray Luvisols. It appears that the Sedge-Slender wheatgrass-Western porcupine grass, Sedge-Kentucky bluegrass-Intermediate oatgrass and Kentucky bluegrass-Sedge dominated communities are all grazing disclimaxes of the Sedge-Western porcupine grass-Intermediate oatgrass community described in this guide and in Wilkinson and Johnston's (1983) study.

On coarse textured, sandy soil, with submesic moisture and poor nutrient regimes which lack tree cover is found the Saskatoon/Bearberry/Northern ricegrass community type. These community types are usually found in association with Jack pine dominated community types.

Wetter (subhydric/rich) sites are associated with sedge and marsh reedgrass dominated meadows. Sedge species are usually associated with the areas of free standing water and marsh reedgrass dominates the drier edges. Willow will invade into these meadows to form the Willow/Sedge and Willow/Marsh reedgrass community types. On wetter saline seepage areas baltic rush and Nuttalls saltgrass community types tend to dominate.

DECIDUOUS FOREST COMMUNITIES (Plant community code D)

The deciduous community types described in the Peace River Parkland subregion are very similar to the Dry Mixedwood subregion. Consequently, the 16 deciduous community types described in this guide are also described in the Dry Mixedwood subregion guide.

The Aw/Blueberry type is found on well-drained, sandy sites in association with jack pine stands and the Aw/Dwarf bilberry/Bearberry/Mountain ricegrass community is found on slightly moister sites with loamy sand textures. The Aspen/Rose(Aw/Rose/Tall forb, Aw/Rose/Low forb, Aw/Rose-Hazelnut, Aw/Buffaloberry-Rose and Aw/Saskatoon-Rose) site types are moderately well-drained, with mesic moisture and mesotrophic nutrient regimes. Beckingham (1994), felt the Aspen/Buffaloberry type occurred on somewhat nutrient-poor soils. The Aspen/Rose/Tall and Low forb community types occupy similar site conditions. The difference between these two types may be related to grazing pressure. The Aspen/Rose/Low forb type has a low total cover of forbs (48%), whereas the Aspen/Rose/Tall forb type has a high total cover of forbs (81%). The increased grazing pressure in the Aspen/Rose/Low forb type may have caused a reduction in forb cover. The Aspen/Hazelnut type is found on mesic, well-drained sites. The presence of hazelnut appears to be indicative of warmer sites (Beckingham 1994) and have some fire history (Downing and Karpuk 1992).

A number of balsam poplar-dominated community types were described. These communities are typical of forests situated along the flood plains of rivers and seepage areas in lower slope positions. The Balsam poplar-Aspen/Horsetail and Balsam poplar-Aspen/Willow type are found on moist poorly drained sites adjacent to some willow shrublands.

CONIFEROUS AND MIXEDWOOD FORESTS (Plant community code E)

Conifer and mixedwood dominated plant communities are not common in the Peace River Parkland subregion. The drier site conditions and high frequency of disturbance (fire, cultivation) in this subregion tends to limit the growth of conifer trees.

Currently, only seven mixedwood and conifer plant communities have been described in the Peace River Parkland. On coarse textured sandy soils Jack pine tends to dominate the forest canopy to form the Jack pine, aspen dominated community types.

The mesic/medium sites will generally succeed to white spruce (Sw) to form the Sw/Moss and mixedwood communities of aspen and spruce (Aw-Sw/Rose/Marsh reed grass, Sw-Aw/Low bush cranberry). These communities represent the reference ecological site for the Boreal Mixedwood subregion (Beckingham and Archibald 1996). In the absence of disturbance on moister sites with subhygric moisture and rich nutrient regimes white spruce will invade into balsam poplar (Pb), red osier dogwood and horsetail dominated community types to form the Sw-Pb/Red osier dogwood and Sw/Horsetail dominated communities.

Black spruce and larch communities generally dominate on wetter sites with subhygric to subhydric moisture regimes and poor to medium nutrient regimes to form Sb-Lt/Labrador tea/Moss community types. Larch is more tolerant of excessive moisture and is indicative of an enriched nutrient status, while black spruce is typical in areas of stagnating groundwater with poor nutrient status (Hay et al. 1985). Generally, these community types are considered non-use for domestic livestock. Beckingham and Archibald (1996), provide a good description on how the conifer and mixedwood community types are arranged in the landscape.

TAME FORAGE COMMUNITIES (Plant community code F) (Cleared areas that have been broken and seeded to tame forage)

Throughout the Peace Parkland subregion there are sites that have been deforested, broken, and seeded to tame forage. Usually these areas are mesic and moderately well to well drained with good nutrient levels. Because most of these tame forage stands are established on similar sites, the most influential factors affecting plant species composition are stand establishment and grazing regime.

Stand establishment is important because it determines what the initial plant species composition is going to be. Seed bed preparation and the type of seed sown are the two most important factors influencing stand establishment. Seed bed preparation is important because it helps to determine how well the sown seed germinates and establishes. If the seed bed is not well prepared, the tame forage species may have reduced seedling vigour and/or density allowing native or weedy species to become a dominant component of the plant community.

After the stand is established, the grazing regime applied to the stand will influence the plant species composition. Generally, a light to moderate level of grazing allows the stand to maintain itself while sustained heavy grazing causes the stand to degrade. Damage to a stand due to overgrazing occurs more readily while the stand is establishing than it does when the stand is established. This is because the forage plants in an establishing stand have not had time to develop energy reserves or substantial root systems and are therefore more susceptible to grazing induced stress.

.....

•

•

Figure 3 is a successional diagram for tame pastures in the Peace River Parkland and Dry Mixedwood subregion. Tame pasture communities are organized horizontally by moisture gradient [e.g. dry (submesic) to moist (subhygric)] and vertically by successional factors like the grazing disturbance gradient [e.g. moderate or very heavily grazed] or stand establishment. A light to moderate grazing regime will normally maintain a forage stand similar to what was seeded on the site. These stands are generally the most productive and provide the best grazing opportunities for livestock. In figure 3, these plant communities are indicated by the bolded boxes and represent various seed mixes sown on submesic to subhygric sites (not just those species in the plant community name). They are considered to be in the healthy category for range health.

The plant communities represented by the boxes above the bolded boxes may be the result of a number of different factors. For example, when the site is under-grazed, the stand becomes dominated by species that are the most competitive in the absence of grazing disturbance. In this case, trees and shrubs growth is unchecked and they can out-compete seeded plants for light and other resources. Poor forage establishment is another factor that can result in stands that are dominated by native or weedy species. Although shrubs and trees can occur on all tame pasture community types, the extent to which invasion occurs is influenced by site preparation, forage establishment, moisture conditions, age of stand and grazing history.

Plant community changes which occur under heavy grazing are dependent on the grazing history (level of use, season of use and duration of the grazing regime). Overgrazed community types [plant communities at bottom of Figure 3] develop over a long period of repeated overgrazing. If weedy species such as tall buttercup or Canada thistle, become established on overgrazed sites, they can quickly become a dominant species.

Ecological classification of Alberta

The Rangeland Ecological Site Description database is based on the ecological classification system of Alberta. This hierarchial classification structure for Alberta is outlined below starting at the larger scale natural subregions map and going down in scale to the plant community type.

Figure 2. Classification hierarchy for the Province of Alberta.

Figure 3. Successional sequences of tame pasture communities on 3 moisture regimes in the Peace River Parkland subregion.

EDATOPIC GRID

Ecological sites for the Peace Parkland subregion

a juniper g dogwood (xeric/poor) (subhygric/rich) b grassland slopes h horsetail (subxeric/medium) (hygric/rich) c northern ricegrass hh bog (submesic/poor) (subhygric/very poor) i solonetzic d blueberry (submesic/medium) (subhygric) e upland solonetzic/grass slopes j rich fen (mesic/medium-rich) (subhydric/rich) f low bush cranberry k marsh (mesic/medium) (hydric/rich)

Figure 4. Edatopic grid and ecological sites for the Peace River Parkland subregion.

Ecological Site	Ecosite Phase	nt Community Tal Reference Range Plant Community		Modified Community Types	Harvesting Succession
a juniper	a1 juniper	PPA1 Juniper-Rose			
xeric/poor) grassland lopes	b1 western porcupine grass	PPA2 Western porcupine grass-Sedge	PPC1 Sedge-Wheat grass-June grass		
subxeric/medium)			PPC2 June grass-Sedge/Pasture sagewort PPC5 Dandelion/Sedge		
	b2 northern wheat grass	PPA3 Northern wheat grass-June grass-Sedge/Fringed sage			
northern rice grass submesic/poor)	c1 northern rice grass-bearberry	PPA4 Saskatoon/Bearberry/Nort rice grass			
blueberry submesic/medium	d1 blueberry Pi-Aw	PPE1 Pj-Aw/Bearberry			
		PPD4 Aw/Dwarf bilberry-Bearberry/Mounta rice grass			
		PPD5 Aw/Blueberry			
	d3 blueberry Tame	PPF7 Wheat grass-Creeping red fescue-Timothy		PPF8 Rose/Dandelion/Hairy wild rye	
		Toolage Timothy		PPF9 Aw-Pb/Rose/Hairy wild rye	
e upland colonetzic/grasslar slope (mesic)	e1 western ar porcupine grass		PPC6 Sedge-Low forb		
			PPC8 Kentucky bluegrass/Low Forb		
	e2 intermediate oat grass-slender wheat grass	PPA15 Purple oat grass-Sedge-Intermediate oat grass			
		PPA16 Veiny meadow rue/Slender wheat grass-F. brome			
	e3 shrubland	PPA10 Shrub/Western porcupine grass-Sedge			
		PPA5 Snowberry-Saskatoon/Sec	PPC10 Snowberry/Kentucky bluegrass		
		PPA6 Saskatoon-Rose/Sedge	PPC4 Rose-Saskatoon/Kentucky bluegrass		
		PPA7 Silverberry-Saskatoon/Sec			
	e4 salt grass	PPA9 Sedge-Salt grass			
low-bush cranberry mesic/medium)	f1 low-bush cranberry Aw	PPD16 Pb-Aw/Willow			
		PPD6 Aw/Canada buffaloberry			
		PPD7 Aw/Saskatoon	**************************************		
		PPD8 Aw-Pb/Hazeinut			

Ecological Site	Ecosite Phase		Successional Community	Modified Community Types	Harvesting Succession
		Community	Types		
low-bush ranberry mesic/medium)	f1 low-bush cranberry Aw	PPD9 Aw/Rose/Tall forb	PPD11 Aw/Rose/Low forb		
residiffediality			PPD12 Aw-Pb/Dandelion/Kentucky		
		PPE2 Aw-Sw/Rose/Marsh	bluegrass		
	cranberry Aw-Sw	reed grass			
		PPE4 Sw-Aw/Low bush cranberry			
	f3 low-bush cranberry Sw	PPE5 Sw/Moss			
	f4 low-bush cranberry Tame	PPF1 Brome-Timothy	PPF2 Creeping red fescue-Brome-Timothy	PPF5 Rose/Creeping red fescue-Sedge	
			PPF3 Creeping red fescue-Kentucky	PPF6 Aw/Rose/Strawberry	
			bluegrass/Dandelion PPF4		
			Strawberry-Dandelion-Weeds		
dogwood subhygric/rich)	g1 shrubland	PPB1 Red-osier dogwood-Shining willow			
subnygnc/ncn)		PPB2 Bebb			
		willow-Red-osier dogwood PPB3 Scoulers			
		willow-Red-osier dogwood			
	g2 dogwood pb-aw	PPD10 Pb-Aw/Red osier dogwood	PPD14 Pb-Bw/Kentucky bluegrass PPD15 Pb/Smooth brome		
			PPD 13 PD/3/1100th brome		
	g3 dogwood Pb-Sw	PPE6 Sw-Pb/Red-osier dogwood			
	g4 dogwood Tame	PPF10 Reed canary grass-Meadow foxtail-S brome-Timothy	PPF11 Brome-Creeping red fescue-K. bluegrass/Dandelion	PPF13 Willow/Timothy	
			PPF12 Foxtail barley/Weeds		
h horsetail (hygric/rich)	h1 shrubland	PPB4 Willow/Horsetail/Marsh reed grass			
		PPB5 Bebb willow/Marsh reed grass			
	h2 horsetail Sw	PPE7 Sw/Horsetail			
nh bog subhygric/very boor)	hh1 treed bog	PPE3 Sb-Lt/Labrador tea/Moss			
solonetzic subhydric)	i1 rush	PPA17 Nuttalls salt grass			
, , ,		PPA18 Rush meadow			
rich fen subhydric/rich)	j1 graminoid rich fen	PPA11 Sedge meadow			
- Januarion y		PPA14 Marsh reed grass meadow	PPC11 Kentucky bluegrass/Dandelion		
	j2 shrubby rich fen		PPB8 Willow/Marsh reed grass-Kentucky bluegrass		
			PPB7 Willow/Kentucky bluegrass/Dandelion		
		PPB9 Willow/Sedge			
k marsh (hydric/rich)	k1 marsh	PPA12 Bulrush-Cattail			
yononony		PPA13 Swamp horsetail			

10.0 a juniper (xeric/poor) (n=2)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This ecological site has dry site conditions and is often associated with coarse textured fluvial or eolian over lacustrine parent materials. These sites can occupy steep upper slope positions on the major river valleys or may occupy small coarse textured openings in the forest. These sites tend to have little forb and grass cover and are dominated by juniper, snowberry and silverberry.

Successional Relationships

Due to the nature of the site there is often little growth of trees and the juniper phase often remains the climax vegetation.

Indicator Species

Snowberry (buckbrush)

slender wheat grass sedge species
silverberry creeping juniper
prickly rose Canada buffaloberry

Site Characteristics

Moisture Regime: XERIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Poistion: Crest(), Upper slope()

Slope: 6 - 9(), 10 - 15(), 16 - 30()

Aspect: Variable()

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture: S(), SL()

Effective Texture: S()

Depth to Mottles/Gley: Not Applicable()

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	tion (kg/ha)		Stocking Rate
a juniper (xeric/poor)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
a1 juniper				450	4.05(0.10)
PPA1 Juniper-Rose				450	4.05(0.10)

10.1 a1 juniper (n=2)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: juniper (xeric/poor)

Characteristic Species

Shrub

- [48] creeping juniper
- [41] prickly rose
- [16] silverberry
- [16] Snowberry (buckbrush)
- [6] Canada buffaloberry

Forb

- 4] Undifferentiated Erigeron
- 4] Undifferentiated milk vetch
- [3] three-flowered avens
- 2] northern bedstraw
- [2] low goldenrod

Grass

- 5 | sedge species
- [2] beautiful sedge
- [1] slender wheat grass

Site Characteristics

Moisture Regime: XERIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA1 Juniper-Rose (2)

^{*} Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

10.1.1

PPA1. Juniper-Rose

(Juniperus horizontalis-Rosa acicularis)

n=2 A shrub community found on nutrient poor, dry soils. Creeping juniper and prickly rose are codominant. Silverberry and buckbrush are generally less abundant. Forbs are found in low cover amounts, and apart from sedge, graminoids are also found in low quantities.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: a juniper (xeric/poor)
Ecosite Phase: a1 juniper

Plant Composition	Cano	py Cove	r (%)	Environmental Variables					
	Mean	Range	Const.	Moisture Regime: XERIC()					
Shrub									
CANADA BUFFALOBERRY				Nutrient Regime: SUBMESOTRO	PHIC()				
(Shepherdia canadensis)	6	1-10	100	Elevation (range): (-) M					
CREEPING JUNIPER									
(Juniperus horizontalis)	48	15-80	100	Slope:					
PRICKLY ROSE				Aspect:					
(Rosa acicularis)	41	7-75	100	Азресі.					
SILVERBERRY				Soil Drainage: Well drained()					
(Elaeagnus commutata)	16	2-30	100	· ·					
SNOWBERRY (BUCKBRUSH)				Soil Subgroup:					
(Symphoricarpos occidentalis)	16	7-25	100						
Forb				Soil Series:					
EARLY BLUE VIOLET				Soil Correlation:					
(Viola adunca)	1	1-2	100	Gon Gon Collins					
FIELD MOUSE-EAR CHICKWI	EED			Range Site Category:					
(Cerastium arvense)	1	1-1	100						
LOW GOLDENROD				Ecological Status Score: 24					
(Solidago missouriensis)	2	0-3	50	Soil Exposure	Mean	Min	Max		
NORTHERN BEDSTRAW				%:	1110011		1710.0		
(Galium boreale)	2	1-3	100						
PASTURE SAGEWORT				Comment:					
(Artemisia frigida)	1	1-1	100	Farmer Desidential (bullet)					
PRAIRIE CROCUS				Forage Production (kg/ha	,				
(Anemone patens)	1	1-1	100		Mean	Min	Max		
THREE-FLOWERED AVENS				Forb					
(Geum triflorum)	3	1-5	100	Grass					
UNDIFFERENTIATED ERIGER	RON			Shrub					
(Erigeron)	4	2-5	100	Tree					
UNDIFFERENTIATED MILK VI	ETCH			Undifferentiated	450				
(Astragalus)	4	0-8	50	Total	450	0	0		
WILD STRAWBERRY	•		-						
(Fragaria virginiana)	1	0-1	50	Ecologically Sustainable	Stocking R	ate			
Grass			20						
BEAUTIFUL SEDGE				4.05 (8.09-4.05) HA/AUM or 0.10	(0.05-0.10) AU	MAC			
(Carex concinna)	2	0-3	50						
SEDGE SPECIES	~	0-3	30						
	5	1-7	100						
(Carex spp.)	3	1-1	100						
SLENDER WHEAT GRASS		4.2	100						
(Agropyron trachycaulum)	1	1-2	100						

11.0 b grassland slopes (subxeric/medium) (n=89)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This ecosite is associated with the south and west facing slopes of major river valleys like those of the Peace, Smoky and Wapiti rivers and their tributaries. Sites are dry with rapidly drained, nutrient rich soils. The parent materials are generally glacio lacustrine, morainal, colluvial and fluvial in origin. The high insolation and dry site conditions favour the growth of grassland species. These include western porcupine grass, northern wheat grass, June grass, sedge and pasture sagewort. In the moister draws aspen and shrubs (buckbrush, Saskatoon, chokecherry) are quite common.

Taken and stapped from Range cordegy and the impact of lovestick graving on the Pepas River stepes, Alberta (Americ 1981)

Successional Relationships

Due to the nature of the site, grasslands often remain the climax vegetation on these sites. In the moister draws and lower slope positions shrubs and then aspen and spruce can succeed onto these grasslands. Frequent fire will often control the succession to trees in the moist areas. Heavy grazing pressure on the grasslands can often lead to a degraded site that is dominated by pasture sagewort, upland sedge and June grass, with Kentucky blue grass in the moister draws and lower slopes. Refer to the "e-solonetzic uplands/grassland slopes" ecosite for the plant communities found in these moister areas.

Indicator Species

northern wheat grass	western wheat grass
slender wheat grass	saskatoon
pasture sagewort	blunt sedge
June grass	brittle prickly-pear
western porcupine grass	green needle grass
Snowberry (buckbrush)	

Site Characteristics

Moisture Regime: XERIC(), SUBXERIC(), SUBMESIC()

Nutrient Regime: SUBMESOTROPHIC(), MESOTROPHIC()

Topographic Poistion: Crest(), Lower slope(), Midslope(), Upper slope(), Toe()

Slope: 3 - 5(), 6 - 9(), 10 - 15(), 16 - 30(), 31 - 45(), 46 - 70(), 71 -

Aspect: Level(), Easterly(), Southerly(), Westerly()

Soil Characteristics

Organic Thickness: 0 - 5 cm()

Humus Form: MULL()

Surface Texture: L()

Effective Texture: LS(), SL()

Depth to Mottles/Gley: None()

Soil Drainage: Rapidly drained(), Well drained()

Parent Material: F(), GL()

Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Forage Production (kg/ha)				Stocking Rate	
b grassland slopes (subxeric/medium)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)	
b1 western porcupine grass	989	254	5	737	2.11(0.19)	
PPA2 Western porcupine grass-Sedge	989	254	5	1248	1.01(0.40)	
PPC1 Sedge-Wheat grass-June grass				750	1.35(0.30)	

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Forage Production (kg/ha)				Stocking Rate
b grassland slopes (subxeric/medium)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
b1 western porcupine grass	989	254	5	737	2.11(0.19)
PPC2 June grass-Sedge/Pasture sagewort				550	2.02(0.20)
PPC5 Dandelion/Sedge				400	4.05(0.10)
b2 northern wheat grass	600	183	309	1092	1.35(0.30)
PPA3 Northern wheat grass-June grass-Sedge/Fringed sage	600	183	309	1092	1.35(0.30)

11.1 b1 western porcupine grass (n=61)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: grassland slopes (subxeric/medium)

Characteristic Species

Shrub

[1] saskatoon

1] Snowberry (buckbrush)

Forb

5] pasture sagewort

3 | prairie crocus

[1] small-leaved everlasting

[1] brittle prickly-pear

Grass

[15] sedge species

7] western porcupine grass

5] June grass

3 green needle grass

3 western wheat grass

3] northern wheat grass

Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBXERIC(), SUBMESIC()

Nutrient Regime: SUBMESOTROPHIC(), MESOTROPHIC()

Topographic Position: Lower slope(), Midslope(), Toe()

Slope: 3 - 5(), 6 - 9(), 10 - 15(), 16 - 30(), 31 - 45()

Aspect: Southerly(), Westerly()

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA2 Western porcupine grass-Sedge (19)
PPC1 Sedge-Wheat grass-June grass (15)
PPC2 June grass-Sedge/Pasture sagewort (10)

PPC5 Dandelion/Sedge (17)

11.1.1 PPA2. Western porcupine grass-Sedge

(Stipa curtiseta-Carex spp.)

n=19 This community is similar to DMA5-Western porcupine grass-Sedge/Fringed sage in the Dry Mixedwood Guide (Willoughby et al. 2006). It is characteristic of the submesic, gentle to moderate slopes (5-45% or 3-24 degrees) and hillcrests of the river slopes throughout the Peace region (S1 and S4 slope site positions from Adams 1981). Wilkinson and Johnson (1983) described western porcupine grass-sedge/pasture sagewort communities on steeper south facing slopes. The site characteristics and species composition make this community type attractive to livestock and as such can be degraded through inappropriate management. Adams (1981) found this community type as being a major source of spring forage for livestock in the Peace River area. He found that with increased grazing pressure sedge, June grass, northern and western wheat grass would increase as western porcupine grass declines. It appears that heavy grazing of this community type causes western porcupine grass to decline and allows sedge and wheat grass species to increase forming the sedge-northern wheat grass/June grass dominated community. Continued heavy grazing appears to allow Kentucky bluegrass to invade into the moister draws, lower slope positions and flatter areas. In the absence of disturbance, litter accumulation results in a moister site, which favours the growth of green needle grass and shrubs. The Western porcupine grass-Sedge community has very low shrub common. A diversity of forb and grass species occur but are usually only in small amounts.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: b grassland slopes (subxeric/medium) Ecosite Phase: b1 western porcupine grass

Plant Composition	Canopy Cover (%)			Environmental Variables					
Shrub	Mean	Range	Const.	Moisture Regime: SUBXERIC(), SUBMESIC()					
				Mutriant Panima: SURMESOTRO	BUICA MESOT	POPUIC()			
PRICKLY ROSE	1	0-5	22	Nutrient Regime: SUBMESOTROR	PHIC(), MESUI	KOPHIC()			
(Rosa acicularis)	1	0-5	32	Elevation (range): (-) M					
SASKATOON	1	0-11	26	Slope: 6 - 9(), 10 - 15(), 16 - 30(),	24 45/				
(Amelanchier alnifolia)		0-11	20	Slope: 6 - 9(), 10 - 13(), 16 - 30(),	31 - 43()				
SNOWBERRY (BUCKBRUSH)		0.42	53	Aspect: Southerly(), Westerly()					
(Symphoricarpos occidentalis)	2	0-13	53						
Forb				Soil Drainage: Well drained()					
BASTARD TOADFLAX				Sail Subanana					
(Comandra umbellata)	1	0-6	58	Soil Subgroup:					
BRITTLE PRICKLY-PEAR				Spil Series:					
(Opuntia fragilis)	1	0-2	26						
LOW GOLDENROD				Soil Correlation:					
(Solidago missouriensis)	1	0-3	37						
PASTURE SAGEWORT				Range Site Category:					
(Artemisia frigida)	7	0-30	79	Ecological Status Score: 24					
PRAIRIE CROCUS									
(Anemone patens)	6	0-23	79	Soil Exposure	Mean	Min	Max		
SMALL-LEAVED EVERLASTIN				%:					
(Antennaria parvifolia)	1	0-4	53	Comment:					
Grass									
GREEN NEEDLE GRASS				Forage Production (kg/ha) n=				
(Stipa viridula)	3	0-30	47		Mean	Min	Max		
JUNE GRASS				Forb	254	******	531		
(Koeleria macrantha)	6	0-17	95	Grass	989	700	945		
KENTUCKY BLUEGRASS				Shrub	5		20		
(Poa pratensis)	1	0-8	16	Tree					
NORTHERN WHEAT GRASS				Total	1248	700	1496		
(Agropyron dasystachyum)	2	0-10	32		12.0				
SEDGE SPECIES									
(Carex spp.)	26	6-58	100	Ecologically Sustainable	Stocking Ra	ate			
WESTERN PORCUPINE GRAS	SS			1.01 (1.35-0.58) HA/AUM or 0.40	(0.30-0.70) AU	IM/AC			
(Stipa curtiseta)	23	9-46	100						
WESTERN WHEAT GRASS									
(Agropyron smithii)	4	0-20	63						

11.1.2 PPC1. Sedge-Wheat grass-June grass

(Carex spp.-Agropyron spp.-Koeleria macrantha)

n=15 This community is found on gentle to moderate slopes of about 5-45% or 3-24 degrees (S1 and S4 slopes from Adams 1981). This community appears to represent a western porcupine grass dominated community (PPA2) that has undergone some alteration due to grazing or other disturbances. There is very little shrub cover as part of this community. Sedge moderately dominates with western porcupine grass, pasture sagewort, prairie crocus, green needle grass, western wheat grass, northern wheat grass and June grass are also common. A diversity of forbs is usually present, however individually they are not in very large amounts. Low goldenrod, small-leaved everlasting and wild vetch are often present.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: b grassland slopes (subxeric/medium) Ecosite Phase: b1 western porcupine grass

Canopy Cover (%)			Environmental Variables			
Mean	Range	Const.	Moisture Regime: SUBXERIC()			
			Nutrient Regime: MESOTROPHIC()			
1	0-8	27	Elevation (sange): () M			
			Elevation (range): (-) M			
			Slope: 6 - 9(), 10 - 15(), 16 - 30(), 31	- 45()		
1	0-1	47	Asmost: Couthorly() Mostorly()			
			Aspect. Southerly(), Westerly()			
1	0-8	53	Soil Drainage: Well drained()			
1	0-4	40	Soil Subgroup:			
			Soil Series			
2	0-11	67	Con Corres.			
			Soil Correlation:			
7	0-29	93				
			Range Site Category:			
6	0-21	73	Ecological Status Score: 16			
G			•			
1	0-5	67	Soil Exposure	Mean	Min	Max
			%:			
			Comment:			
6	0-25	47				
			Forage Production (kg/ha)	n=		
8	1-17	100		Mean	Min	Max
			Forb			
1	0-5	13	Grass			
	0.04	4.77	Shrub			
4	0-21	47	Tree			
			Undifferentiated	750		
	0-43	67	Total	750	0	0
	0.45	00				
0	0-15	93	Ecologically Sustainable St	ocking R	ate	
4	0-16	80	1.35 (2.02-0.81) HA/AUM or 0.30 (0			
	Mean 1 1 1 1 2 7 6 G 1 4 18 SS 6	Mean Range 1 0-8 1 0-1 1 0-8 1 0-1 1 0-8 1 0-4 2 0-11 7 0-29 6 0-21 G 1 0-5 6 0-25 8 1-17 1 0-5 4 0-21 18 0-43 SS 6 0-15	Mean Range Const. 1 0-8 27 1 0-1 47 1 0-8 53 1 0-4 40 2 0-11 67 7 0-29 93 6 0-21 73 G 1 0-5 67 8 1-17 100 1 0-5 13 4 0-21 47 18 0-43 67 65 0-15 93	Mean Range Const. Moisture Regime: SUBXERIC()	Mean Range Const. Moisture Regime: SUBXERIC()	Mean Range Const. Moisture Regime: SUBXERIC() Nutrient Regime: MESOTROPHIC()

11.1.3 PPC2. June grass-Sedge/Pasture sagewort

(Koeleria macrantha-Carex Spp./Artemisia frigida)

n=10 A community type found on drier, moderately to heavily grazed and disturbed sites with a slope of 5-45% or 3-24 degrees (S1 and S4 slope positions from Adams 1981). Sedge moderately dominates with June grass and pasture sagewort also common. Brittle prickly-pear is usually present. There is a little shrub coverage of buckbrush and Saskatoon. Porcupine grass has decreased and brittle prickly pear cactus has increased with grazing pressure. Species diversity within this community is generally quite low. There is also low moss and lichen coverage and increased amounts of bare soil due to grazing pressure.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: b grassland slopes (subxeric/medium) Ecosite Phase: b1 western porcupine grass

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBXERIC()			
Shrub							
SASKATOON				Nutrient Regime: MESOTROPHIC()			
(Amelanchier alnifolia)	2	0-16	10	Florestine (see and 1) 1 24			
SNOWBERRY (BUCKBRUSH)				Elevation (range): (-) M			
(Symphoricarpos occidentalis)	2	0-10	70	Slope: 6 - 9(), 10 - 15(), 16 - 30(), 31	1 - 45()		
Forb				Assess Courtes to O Marie to to O			
BASTARD TOADFLAX				Aspect: Southerly(), Westerly()			
(Comandra umbellata)	1	0-1	30	Soil Drainage: Well drained()			
BRITTLE PRICKLY-PEAR				(
(Opuntia fragilis)	3	0-8	60	Soil Subgroup:			
COMMON DANDELION				0-10-1			
(Taraxacum officinale)	1	0-1	60	Soil Series:			
PASTURE SAGEWORT				Soil Correlation:			
(Artemisia frigida)	10	0-20	100				
PRAIRIE CROCUS				Range Site Category:			
(Anemone patens)	3	0-15	50	F11-101-1-0			
SMALL-LEAVED EVERLASTIN	IG			Ecological Status Score: 9			
(Antennaria parvifolia)	3	0-19	70	Soil Exposure	Mean	Min	Max
Grass				%:			
GREEN NEEDLE GRASS				***			
(Stipa viridula)	5	0-14	60	Comment:			
JUNE GRASS				Forage Production (kg/ha)	n=		
(Koeleria macrantha)	9	2-18	100	rotage Production (kg/lla)	Mean	Min	Max
SEDGE SPECIES				Forb	mean	MILL	max
(Carex spp.)	19	8-25	100	Grass			
WESTERN PORCUPINE GRAS	SS			Shrub			
(Stipa curtiseta)	3	0-5	80	Tree			
WESTERN WHEAT GRASS				Undifferentiated	550		
(Agropyron smithii)	4	0-16	80	Total	550	0	0
				Total	550	U	U

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

11.1.4

PPC5. Dandelion/Sedge

(Taraxacum officinale/Carex Spp.)

n=17 This community type occurs as a result of long term heavy to very heavy grazing pressure or disturbance. Preferential livestock grazing and loafing areas such as the tops of rolling hills and knolls, benches and river terraces or flats are especially vulnerable to the type of pressure that can lead to this community type. Dandelion and sedges dominate with other species only occurring in minor or trace amounts. Litter is sparse; bare ground is prevalent. Mat multy can be found where saline seeps occur in these areas. Found on S5, S1 and S4 slope positions (Adams 1981).

Natural Subregion: PEACE RIVER PARKLAND Ecosite: b grassland slopes (subxeric/medium) Ecosite Phase: b1 western porcupine grass

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBXERIC()			
Shrub				months to game to be to a control of			
SNOWBERRY (BUCKBRUSH)				Nutrient Regime: MESOTROPHIC()		
(Symphoricarpos occidentalis)	2	0-7	59	Floreties (seese) () M			
Forb				Elevation (range): (-) M			
COMMON DANDELION				Slope: 3 - 5(), 6 - 9(), 10 - 15(), 16 -	30(), 31 - 45()		
(Taraxacum officinale)	21	0-57	94	A A M - 2 - 6 (- 4)			
COMMON YARROW				Aspect: Variable()			
(Achillea millefolium)	2	0-7	88	Soil Drainage: Well drained()			
NORTHERN BEDSTRAW							
(Galium boreale)	3	0-30	71	Soil Subgroup:			
Grass				0.10.			
GREEN NEEDLE GRASS				Soil Series:			
(Stipa viridula)	1	0-11	29	Soil Correlation:			
JUNE GRASS				Jon Jon Janes.			
(Koeleria macrantha)	4	0-13	77	Range Site Category:			
KENTUCKY BLUEGRASS				F-t-i-1 Status Samuel			
(Poa pratensis)	1	0-2	6	Ecological Status Score: 0			
MAT MUHLY				Soil Exposure	Mean	Min	Max
(Muhlenbergia richardsonis)	7	0-53	18	%:			
NORTHERN WHEAT GRASS				***			
(Agropyron dasystachyum)	2	0-8	35	Comment:			
PLAINS MUHLY				Forage Production (kg/ha)	n=		
(Muhlenbergia cuspidata)	4	0-63	12	Totage Froduction (kg/na)	Mean	Min	Max
ROUGH HAIR GRASS				Forb	mean	191(1)	IVIDA
(Agrostis scabra)	1	0-12	24	Grass			
SEDGE SPECIES				Shrub			
(Carex spp.)	10	0-33	94	Tree			
WESTERN PORCUPINE GRA	SS			Undifferentiated	400		
(Stipa curtiseta)	1	0-7	24	Total	400	0	0
WESTERN WHEAT GRASS				rotal	400	U	0
(Agropyron smithii)	1	0-5	18				
				Ecologically Sustainable S	Stocking Ra	ite	

11.2 b2 northern wheat grass (n=28)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: grassland slopes (subxeric/medium)

Characteristic Species

Shrub

- [4] saskatoon
 - 2] Snowberry (buckbrush)
- [1] prickly rose

Forb

- [11] pasture sagewort
 - 1] common dandelion
- 1] brittle prickly-pear
- 1] wild blue flax

Grass

- [8] June grass
- [7] sedge species
- 7] northern wheat grass
- [2] green needle grass
- 2] western wheat grass
- 1] slender wheat grass
- 1] western porcupine grass

Site Characteristics

Moisture Regime: XERIC(), SUBXERIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Position: Crest(), Midslope(), Upper slope()

Slope: 46 - 70(), 71 - 100()

Aspect: Easterly(), Southerly(), Westerly()

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA3 Northern wheat grass-June grass-Sedge/Fringed sage (28)

^{*}Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

11.2.1 PPA3. Northern wheat grass-June grass-Sedge/Fringed sage

(Agropyron dasystachyum-Koeleria macrantha-Carex Spp./Artemisia frigida)

n=28 This community is similar to the DMA6-Northern wheat grass-June grass/Fringed sage community in the Dry Mixedwood Guide (Willoughby et al. 2006). This community type is found on dry, steep (45-95% or 24-40 degrees), south facing slopes along major river valleys like those of the Peace, Smoky and Wapiti rivers and their tributaries (S2 slope positions from Adams 1981). Adams (1981) felt this community type would form when the western porcupine grass community was heavily to moderately grazed, but a number of plots were described in an area that had little grazing pressure. This community was located on a much steeper slope (76% vs 35%) than the previously described western porcupine grass community type (PPA2). It is likely that the drier site conditions and shallower and poorer nutrient soils favours the growth of northern and western wheat grass over western porcupine grass. In the absence of disturbance western porcupine grass cover will increase, but it does not seem to dominate the site. The community has very little shrub cover with only occasional Saskatoon. Pasture sagewort, northern wheat grass, June grass and sedge all codominate but aren't always found at every site. A diversity of forb and grass species is present but individually not usually in very large amounts. These sites can easily become degraded with lots of bare soil and potential for erosion.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: b grassland slopes (subxeric/medium) Ecosite Phase: b2 northern wheat grass

Plant Composition	Canopy Cover (%)			Environmental Variables			
Shrub	Mean	Range	Const.	Moisture Regime: XERIC(), SUBXE	RIC()		
				N. delect Booline, SUBMESOTBOD	HICO		
PRICKLY ROSE		0.0	0.4	Nutrient Regime: SUBMESOTROP	HIC()		
(Rosa acicularis)	1	0-8	21	Elevation (range): 475(345-606) M			
SASKATOON	4	0.07					
(Amelanchier alnifolia)	4	0-27	50	Slope: 46 - 70(), 71 - 100()			
SNOWBERRY (BUCKBRUSH)		0.00	0.4	Aspect: Southerly(), Westerly()			
(Symphoricarpos occidentalis)	2	0-22	21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Forb				Soil Drainage: Well drained()			
BASTARD TOADFLAX				0.104			
(Comandra umbellata)	1	0-5	46	Soil Subgroup:			
BRITTLE PRICKLY-PEAR				Soil Series:			
(Opuntia fragilis)	1	0-3	29	Con Conce.			
COMMON DANDELION				Soil Correlation:			
(Taraxacum officinale)	1	0-2	54				
PASTURE SAGEWORT				Range Site Category:			
(Artemisia frigida)	11	0-25	96	Ecological Status Score: 24			
WILD BLUE FLAX				Ecologica: Status Score. 24			
(Linum lewisii)	1	0-4	18	Soil Exposure	Mean	Min	Max
Grass				%:			
GREEN NEEDLE GRASS				Comment:			
(Stipa viridula)	2	0-20	29	Comment.			
JUNE GRASS				Forage Production (kg/ha)	n=		
(Koeleria macrantha)	8	0-27	93	Totage Froduction (kg/na)	Mean	Min	Max
NEEDLE-AND-THREAD				Forb	183	50	400
(Stipa comata)	1	0-5	14	Grass	600	500	798
NORTHERN WHEAT GRASS				Shrub	309	220	450
(Agropyron dasystachyum)	7	0-70	61	Tree	303	220	400
SEDGE SPECIES				Total	1092	770	1648
(Carex spp.)	7	0-38	82	Total	1092	770	1040
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	1	0-30	7	Ecologically Sustainable S	tocking Ra	ite	
WESTERN PORCUPINE GRAS	SS			1.35 (2.02-1.01) HA/AUM or 0.30 (0 20-0 40) AL	M/AC	
(Stipa curtiseta)	1	0-5	25	1.00 (2.02 1.01) 11001011 01 0.00 (0.10, 70		
WESTERN WHEAT GRASS							
(Agropyron smithii)	2	0-17	40				

12.0 c northern rice grass (submesic/poor) (n=5)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This ecosite is associated with small grassy openings within the Jack pine and aspen forests. This site has dry conditions, with well drained, nutrient poor soils. The parent materials are generally course textured eolian, glacialfluvial or fluvial eolian in origin. The high insolation and dry site conditions favour the growth of grassland species. These include Northern rice grass, slender wheat grass, sedge, bearberry and plains wormwood. In the moister sites (lower slope positions) aspen and shrubs (Saskatoon, rose) are quite common.

d2 blueberry Aw

d2 blueberry Aw

Successional Relationships

Due to the nature of the site, grasslands often remain the climax vegetation on these sites. In the moister lower slope positions shrubs often dominate the site with succession to aspen and spruce. On the drier hilltops and midslopes grasslands dominated by plains wormwood and northern rice grass usually represent the climax vegetation. Heavy grazing pressure on the grasslands can often lead to a degraded site that is dominated by Kentucky bluegrass on the moister sites.

Indicator Species

slender wheat grass saskatoon
common bearberry plains wormwood
sedge species Rocky Mountain fescue
wild strawberry northern bedstraw
northern rice grass prickly rose
Snowberry (buckbrush)

Site Characteristics

Moisture Regime: SUBMESIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Poistion: Crest()

Slope: 6 - 9(), 10 - 15()

Aspect: Variable()

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture: LS()

Effective Texture:

Depth to Mottles/Gley: None()

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	tion (kg/ha)		Stocking Rate
c northern rice grass (submesic/poor)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
c1 northern rice grass-bearberry				677	2.70(0.15)
PPA4 Saskatoon/Bearberry/Northern rice grass				677	2.70(0.15)

12.1 c1 northern rice grass-bearberry (n=5)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: northern rice grass (submesic/poor)

Characteristic Species

Shrub

- [28] saskatoon
- [7] Snowberry (buckbrush)
- [4] prickly rose

Forb

- [75] common bearberry
- [12] northern bedstraw
- 9] wild strawberry
- 4 | mountain goldenrod
- 3 prairie crocus
- 3] cut-leaved anemone
- 2] common yarrow
- 2 | bastard toadflax
- [1] plains wormwood

Grass

- [23] northern rice grass
- [23] sedge species
- [10] western porcupine grass
- 3 slender wheat grass
- [2] June grass
- [2] Rocky Mountain fescue

Site Characteristics

Moisture Regime: SUBMESIC()

Nutrient Regime: MESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA4 Saskatoon/Bearberry/Northern rice grass (5)

Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

12.1.1 PPA4. Saskatoon/Bearberry/Northern rice grass

(Amelanchier alnifolia/Arctostaphylos uva-ursi/Oryzopsis pungens)

n=5 A shrub community found on submesic, nutrient poor soil. Common bearberry is strongly dominant. Saskatoon, northern rice grass and sedge are also found on these sites but are generally less abundant. There is very little forage produced on these sites and this community should be rated as non-use.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: c northern rice grass (submesic/poor) Ecosite Phase: c1 northern rice grass-bearberry

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBMESIC()			
Shrub				N	1104		
PRICKLY ROSE		0.45	00	Nutrient Regime: SUBMESOTROPH	IIC()		
(Rosa acicularis)	4	0-15	60	Elevation (range): 642(-) M			
SASKATOON		45.50	400				
(Amelanchier alnifolia)	28	15-50	100	Slope:			
SNOWBERRY (BUCKBRUSH)			00	Aspect:			
(Symphoricarpos occidentalis)	7	0-35	60				
Forb				Soil Drainage: Well drained()			
BASTARD TOADFLAX							
(Comandra umbellata)	2	0-3	80	Soil Subgroup:			
COMMON BEARBERRY				Soil Series:			
(Arctostaphylos uva-ursi)	75	75-75	100	Son Series.			
COMMON YARROW				Soil Correlation:			
(Achillea millefolium)	2	0-4	60				
CUT-LEAVED ANEMONE				Range Site Category:			
(Anemone multifida)	3	0-5	80	Ecological Status Score: 24			
MOUNTAIN GOLDENROD				Ecological Status Score. 24			
(Solidago spathulata)	4	0-10	60	Soil Exposure	Mean	Min	Max
NORTHERN BEDSTRAW				%:			
(Galium boreale)	12	3-24	100	Comment:			
PLAINS WORMWOOD				Comment:			
(Artemisia campestris)	1	0-4	40	Forage Production (kg/ha)	n=		
PRAIRIE CROCUS				Totage Froduction (kg/ma)	Mean	Min	Max
(Anemone patens)	3	0-10	60	Forb	mean	191111	max
WILD STRAWBERRY				Grass			
(Fragaria virginiana)	9	0-27	80	Shrub			
Grass				Tree			
JUNE GRASS				Undifferentiated	677		
(Koeleria macrantha)	2	0-6	40	Total	677	0	0
NORTHERN RICE GRASS				Total	0//	U	U
(Oryzopsis pungens)	23	3-42	100				
ROCKY MOUNTAIN FESCUE				Ecologically Sustainable St	ocking Ra	ate	
(Festuca saximontana)	2	0-3	60	2.70 (4.05-2.02) HA/AUM or 0.15 (0	10-0 20) AL	IM/AC	
SEDGE SPECIES				2.70 (4.00 2.02) 10010011 07 0.70 (0	0.20, /10		
(Carex spp.)	23	15-30	100				
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	3	0-6	80				
WESTERN PORCUPINE GRAS	SS						
(Stipa curtiseta)	10	0-32	40				

13.0 d blueberry (submesic/medium) (n=34)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This ecosite tends to be subxeric to submesic as a result of relatively coarse-textured glaciofluvial parent materials. Conditions are intermediate in both moisture and nutrient regime between the lichen ecosite and the low bush cranberry ecosite described by Beckingham and Archibald (1996) in the Boreal Mixedwood of Northern Alberta. Species characteristic of this ecological site include jack pine, aspen, blueberry, bearberry, white spruce, hairy wildrye, yellow pea vine.

Successional Relationships

The jack pine, aspen, and white birch-dominated phases of this ecosite may, in some cases, succeed to white spruce but the process is slow due to the dry nature of this ecosite.

Indicator Species

maiouto, opooioo	
common bearberry	hairy wild rye
cream-colored vetchling	wild lily-of-the-valley
northern rice grass	prickly rose
common blueberry	

Site Characteristics

Moisture Regime: SUBXERIC(), SUBMESIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Poistion:

Slope:

Aspect:

Soil Characteristics

Organic Thickness: 0 - 5 cm(60), 6 - 15 cm(40)

Humus Form: MOR(90)

Surface Texture: LS(20), S(50)

Effective Texture: LS(20), S(40)

Depth to Mottles/Gley: None(90)

Soil Drainage: Rapidly drained(40), Well drained(50), Moderate

well drain(10)

Parent Material: E(10), GF(40), M(10)

Soil Subgroup: O.EB(20), E.EB(40), E.DYB(10), O.GL(20)

Site Index at 50 Years

white birch: 11.5 m +/- 1.7 m; n=2 white spruce: 17.5 m +/- 0.7 m; n=28 jack pine: 14.3 m +/- 0.5 m; n=29 aspen: 15.8 m +/- 0.5 m; n=56

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

Fo	rage Produc	tion (kg/ha)		Stocking Rate
Grass	Forb	Shrub	Total	ha/aum(aum/ac)
141	325	110	576	8.09(0.05)
141	325	110	576	8.09(0.05)
339	263	145	749	2.70(0.15)
339	263	145	747	2.70(0.15)
			750	2.70(0.15)
600	233	167	1000	1.52(0.27)
500	300	200	1000	0.51(0.79)
500	300	200	1000	2.02(0.20)
800	100	100	1000	2.02(0.20)
	Grass 141 141 339 339 600 500	Grass Forb 141 325 141 325 339 263 339 263 600 233 500 300 500 300	141 325 110 141 325 110 339 263 145 339 263 145 600 233 167 500 300 200 500 300 200 500 300 200	Grass Forb Shrub Total 141 325 110 576 141 325 110 576 339 263 145 749 339 263 145 747 750 600 233 167 1000 500 300 200 1000 500 300 200 1000

13.1 d1 blueberry Pj-Aw (n=4)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: blueberry (submesic/medium)

Characteristic Species

Tree

[45] jack pine [13] aspen

Shrub

9 | saskatoon

7] common blueberry

[6] prickly rose

[[Forb

[15] common bearberry

7] cream-colored vetchling

2] wild lily-of-the-valley

[2] northern bedstraw

Grass

[10] hairy wild rye

Moss

[2] Undifferentiated moss - all Gener

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

Site Characteristics

Moisture Regime: SUBMESIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Position:

Slope: 0 - 0.5(), 0.5 - 2.5(), 3 - 5()

Aspect:

Soil Characteristics

Organic Thickness: 0 - 5 cm(60), 6 - 15 cm(40)

Humus Form: MOR(90)

Surface Texture: LS(20), S(50), SL(10)

Effective Texture: LS(10), S(40), SCL(10)

Depth to Mottles/Gley: None(90)

Soil Drainage: Rapidly drained(30), Well drained(50), Moderate well drain(20)

Parent Material: E(20), F(10), GF(30), M(10)

Soil Subgroup: O.EB(20), E.EB(30), O.GL(10)

Soil Type: SV1(30), SD2(20), SD4(10), SM4(10)

Plant Community Types (n)

PPE1 Pj-Aw/Bearberry (4)

PPE1. Pj-Aw/Bearberry

(Pinus banksiana-Populus tremuloides/Arctostaphylos uva-ursi)

n=4 This community is the same as DMD2 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents a Jack pine forest with a secondary canopy of aspen. It is found on slightly moister soils with better nutrient regimes than pure Jack pine dominated sites. These conditions favour the growth of aspen. Cattle will utilize these areas due to the easy access, however over-utilization will quickly deplete the forage supply.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: d blueberry (submesic/medium)
Ecosite Phase: d1 blueberry Pj-Aw

Plant Composition	Canopy Cover (%)						
	Mean	Range	Cons				
Tree							
ASPEN							
(Populus tremuloides)	13	10-20	100				
JACK PINE							
(Pinus banksiana)	45	30-45	100				
Shrub							
COMMON BLUEBERRY							
(Vaccinium myrtilloides)	7	0-2	75				
PRICKLY ROSE							
(Rosa acicularis)	6	4-8	100				
SASKATOON							
(Amelanchier alnifolia)	9	1-15	100				
Forb							
COMMON BEARBERRY							
(Arctostaphylos uva-ursi)	15	7-64	100				
CREAM-COLORED VETCHL	ING						
(Lathyrus ochroleucus)	7	3-7	100				
NORTHERN BEDSTRAW							
(Galium boreale)	2	1-3	100				
WILD LILY-OF-THE-VALLEY							
(Maianthemum canadense)	2	1-5	100				
Grass							
HAIRY WILD RYE							
(Elymus innovatus)	10	2-16	100				
Moss							
UNDIFFERENTIATED MOSS	- ALL GE	NERA					
(Moss spp)	2	0-7	25				

Moisture Regime: SUBMESIC()			
Nutrient Regime: SUBMESOTROP	HIC()		
Elevation (range): 606(-) M			
Slope: 0 - 0.5(), 0.5 - 2.5(), 3 - 5()			
Aspect:			
Soil Drainage: Rapidly drained()			
Soil Subgroup:			
Soil Series:			
Soil Correlation:			
Range Site Category:			
Ecological Status Score: 18			
Soil Exposure	Mean	Min	Max
%:			
Comment:			
Forage Production (kg/ha)	n=		
	Mean	Min	Max
Forb	325		
Forb Grass Shrub	325 141 110		

Ecologically Sustainable Stocking Rate

8.09 (8.09-4.05) HA/AUM or 0.05 (0.05-0.10) AUM/AC

576

Total

13.2 d2 blueberry Aw (Bw) (n=27)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: blueberry (submesic/medium)

Characteristic Species

Tree

[39] aspen

[1] white spruce*

Shrub

[21] common blueberry

[5] prickly rose

Forb

[17] twinflower

[14] common bearberry

[10] wild lily-of-the-valley

[5] wild strawberry

[4] cream-colored vetchling*

Grass

6 hairy wild rye

[3] northern rice grass

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBXERIC(), SUBMESIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage:

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPD4 Aw/Dwarf bilberry-Bearberry/Mountain rice grass (26)

PPD5 Aw/Blueberry (1)

13.2.1 PPD4. Aw/Dwarf bilberry-Bearberry/Mountain rice grass

(Populus tremuloides/Vaccinium caespitosum-Arctostaphylos uva-ursi/Oryzopsis asperifolia)

n=26 This community type is the same as DMC1 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found on dry, well-drained, sandy sites interspersed with stands of jack pine and is part of the blueberry ecosite outlined by Beckingham and Archibald (1996). The canopy cover of aspen is open allowing for easy access by livestock, but the dry site conditions and poorer nutrient status limit the amount of regrowth after grazing. If this community type is managed for one rotation a year, it can contribute significantly to the overall carrying capacity of a lease.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: d blueberry (submesic/medium)
Ecosite Phase: d2 blueberry Aw (Bw)

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBMESIC()			
Tree							
ASPEN				Nutrient Regime: SUBMESOTROPH	HC()		
(Populus tremuloides)	43	20-75	100	Elevation (range): 455(-) M			
WHITE SPRUCE				Elevation (range). 455(-) M			
(Picea glauca)	2	0-15	42	Slope:			
Shrub				Assest			
COMMON BLUEBERRY				Aspect:			
(Vaccinium myrtilloides)	2	0-13	50	Soil Drainage: Well drained()			
DWARF BILBERRY				(
(Vaccinium caespitosum)	4	0-9	81	Soil Subgroup:			
PRICKLY ROSE				0.10			
(Rosa acicularis)	8	0-21	92	Soil Series:			
SASKATOON				Soil Correlation:			
(Amelanchier alnifolia)	4	0-22	77				
Forb				Range Site Category:			
COMMON BEARBERRY							
(Arctostaphylos uva-ursi)	7	0-36	75	Ecological Status Score: 18			
CREAM-COLORED VETCHLI	NG			Soil Exposure	Mean	Min	Max
(Lathyrus ochroleucus)	7	3-31	100	%:			
LINDLEY'S ASTER							
(Aster ciliolatus)	2	0-6	89	Comment:			
TWINFLOWER				Forage Production (kg/ha)	n=		
(Linnaea borealis)	8	0-22	88	Polage Production (kg/lla)	Mean	Min	Max
WILD LILY-OF-THE-VALLEY				Forb	263	64	610
(Maianthemum canadense)	5	2-9	100	Grass	339	166	442
WILD STRAWBERRY				Shrub	145	56	266
(Fragaria virginiana)	5	0-12	96	Tree	143	30	200
Grass				Total	747	286	1318
HAIRY WILD RYE				TOtal	7 4 7	200	1310
(Elymus innovatus)	7	0-16	96				
NORTHERN RICE GRASS				Ecologically Sustainable S	tocking Ra	ite	
(Oryzopsis pungens)	1	0-10	35	2.70 (4.05-2.02) HA/AUM or 0.15 (6	0.10-0.20) AU	MAC	
PURPLE OAT GRASS					, ,,,,		
(Schizachne purpurascens)	3	0-10	81				
WHITE-GRAINED MOUNTAIN							
(Oryzopsis asperifolia)	7	0-22	81				

13.2.2

PPD5. Aw/Blueberry

(Populus tremuloides/Vaccinium myrtilloides)

n=1 This community type is the same as DMC1a in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found on dry, well-drained, sandy sites interspersed with stands of jack pine and is part of the blueberry ecosite outlined by Beckingham and Archibald (1996). The canopy cover of aspen is open allowing for easy access by livestock, but the dry site conditions and poorer nutrient status limit the amount of regrowth after grazing. If this community type is managed for one rotation a year, it can contribute significantly to the overall carrying capacity of a lease.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: d blueberry (submesic/medium)
Ecosite Phase: d2 blueberry Aw (Bw)

Plant Composition	Canopy Cover (%)		er (%)	Environmental Variable	es		
	Mean	Range	Const.	Moisture Regime: SUBXERIC	(), SUBMESIC()		
Tree							
ASPEN				Nutrient Regime: SUBMESOT	ROPHIC()		
(Populus tremuloides)	35		100	Elevation (range): 455(-) M			
Shrub							
COMMON BLUEBERRY				Slope:			
(Vaccinium myrtilloides)	40		100	Aspect:			
LOW-BUSH CRANBERRY				мэреси.			
(Vibumum edule)	2		100	Soil Drainage: Well drained()			
PRICKLY ROSE							
(Rosa acicularis)	2		100	Soil Subgroup:			
Forb				Soil Series:			
COMMON BEARBERRY				Gon Genes.			
(Arctostaphylos uva-ursi)	20		100	Soil Correlation:			
TWINFLOWER							
(Linnaea borealis)	5		100	Range Site Category:			
WILD LILY-OF-THE-VALLEY				Ecological Status Score: 18			
(Maianthemum canadense)	15		100	2001091041 014140 00010. 10			
WILD SARSAPARILLA				Soil Exposure	Mean	Min	Max
(Aralia nudicaulis)	7		100	%:			
WILD STRAWBERRY				Comment:			
(Fragaria virginiana)	5		100				
Grass				Forage Production (kg	/ha) n=		
HAIRY WILD RYE					Mean	Min	Max
(Elymus innovatus)	5		100	Forb			
NORTHERN RICE GRASS				Grass			
(Oryzopsis pungens)	4		100	Shrub			
Lichen				Tree			
REINDEER LICHEN				Undifferentiated	750		
(Cladina mitis)	1		100	Total	750	0	0

Ecologically Sustainable Stocking Rate

2.70 (4.05-2.02) HA/AUM or 0.15 (0.10-0.20) AUM/AC

The forage production amount listed is an estimate.

13.3 d3 blueberry Tame (n=3)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: blueberry (submesic/medium)

Characte	ristic	Spe	cies
----------	--------	-----	------

Tree

[12] balsam poplar

[5] aspen

Shrub

[4] prickly rose

[1] Snowberry (buckbrush)

Forb

[18] common dandelion

[2] Undifferentiated clover

Grass

[8] Creeping red fescue

4] crested wheat grass

3 | Kentucky bluegrass

2] timothy

* Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

Site Characteristics

Moisture Regime: SUBMESIC()

Nutrient Regime: MESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage:

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPF9 Aw-Pb/Rose/Hairy wild rye (1)

PPF7 Wheat grass-Creeping red fescue-Timothy (1)

PPF8 Rose/Dandelion/Hairy wild rye (1)

13.3.1 PPF7. Wheat grass-Creeping red fescue-Timothy

(Agropyron Spp.-Festuca rubra-Phleum pratense)

n=1 This community type is the same as DMB19 in the Dry Mixedwood Guide (Willoughby et al. 2006). It occurs on cleared pastures that were seeded on submesic (dry) sites in the eastern part of the subregion near St. Paul. These sites occur on very stoney well drained soils and it was thought crested wheat grass would grow well in these site conditions. These pastures were seeded in the late 1980's with a mixture of pubescent wheat grass, timothy, creeping red fescue, alfalfa, crested wheat grass and sweet clover. Crested wheat grass and creeping red fescue were found to dominate the dry hilltops and timothy was found on the moist lowland sites. There was little evidence of pubescent wheat grass, alfalfa or sweet clover surviving from the original mix. These pastures often undergo succession to a shrub dominated community and then a deciduous dominated community type.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: d blueberry (submesic/medium)
Ecosite Phase: d3 blueberry Tame

Plant Composition	Canopy Cover (%)			Environmental Variables					
	Mean	Range	Const.	Moisture Regime: SUBMESIC()					
Shrub				moistare riegime. Cobine City					
PRICKLY ROSE				Nutrient Regime: MESOTROPHIC()					
(Rosa acicularis)	1		100	Floration (conso): F70() 14					
Forb				Elevation (range): 579(-) M					
COMMON BEARBERRY				Slope:					
(Arctostaphylos uva-ursi)	1		100	Assest					
COMMON DANDELION				Aspect:					
(Taraxacum officinale)	29		100	Soil Drainage: Well drained()					
UNDIFFERENTIATED CLOVE	ER			,					
(Trifolium)	1		100	Soil Subgroup:					
Grass				Soil Series:					
CREEPING RED FESCUE				Soil Series:					
(Festuca rubra)	7		100	Soil Correlation:					
CRESTED WHEAT GRASS									
(Agropyron pectiniforme)	11		100	Range Site Category:					
KENTUCKY BLUEGRASS				Ecological Status Score: 8					
(Poa pratensis)	3		100	Ecological Status Score. 6					
TIMOTHY				Soil Exposure	Mean	Min	Max		
(Phleum pratense)	5		100	%:					
				Comment:					
				Forage Production (kg/ha)	n=				
					Mean	Min	Max		
				Forb	300				
				Grass	500				
				Shrub	200				
				Tree					

Total

Ecologically Sustainable Stocking Rate

0.51 (0.51-0.40) HA/AUM or 0.79 (0.79-1.01) AUM/AC

1000

0

PPF8. Rose/Dandelion/Hairy wild rye

(Rosa acicularis/Taraxacum officinale/Elymus innovatus)

n=1 This community is the same as DMB22 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents early invasion of shrubs onto drier (submesic) sites on pastures in the St. Paul area of the subregion. As seeded pastures undergo succession back to a deciduous dominated forest they are often invaded by rose and willow before the trees become dominant. This community represents an early successional community of PPF9. Burning, cultivation and spraying with herbicide are all options that can be considered in order to control shrub regrowth.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: d blueberry (submesic/medium)
Ecosite Phase: d3 blueberry Tame

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBMESIC()			
Tree				moistare regime. Sobineoro()			
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	1		100	Fi			
BALSAM POPLAR				Elevation (range). 600(-) M			
(Populus balsamifera)	1		100	Slope:			
Shrub				Accord			
BEAKED WILLOW				Aspect:			
(Salix bebbiana)	4		100	Soil Drainage: Well drained()			
PRICKLY ROSE							
(Rosa acicularis)	6		100	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				Sail Sarias			
(Symphonicarpos occidentalis)	2		100	Soil Series:			
Forb				Soil Correlation:			
COMMON DANDELION							
(Taraxacum officinale)	22		100	Range Site Category:			
UNDIFFERENTIATED CLOVE	R			Ecological Status Score: 0			
(Trifolium)	3		100	Ecological Status Score. 0			
WILD STRAWBERRY				Soil Exposure	Mean	Min	Max
(Fragaria virginiana)	3		100	%:			
Grass				Comment:			
CREEPING RED FESCUE				Comment.			
(Festuca rubra)	8		100	Forage Production (kg/ha)	n=		
CRESTED WHEAT GRASS				- Je (mg//la/)	Mean	Min	Max
(Agropyron pectiniforme)	1		100	Forb	300		
HAIRY WILD RYE				Grass	500		
(Elymus innovatus)	4		100	Shrub	200		
KENTUCKY BLUEGRASS				Tree			
(Poa pratensis)	4		100	Total	1000	0	0
TIMOTHY							
(Phleum pratense)	1		100	FIiIICt-it-ICt			
				Ecologically Sustainable St	ocking Ra	ate	

PPF9. Aw-Pb/Rose/Hairy wild rye

(Populus tremuloides-P.balsamifera/Rosa acicularis/Elymus innovatus)

n=1 This community is the same as DMB23 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents old pastures on dry sandy sites that were cleared of trees and aerial seeded with brome, timothy, crested wheat grass and creeping red fescue in the 1980's near St. Paul. In the absence of disturbance these sites have been slowly encroached by trees and the understory has been invaded by hairy wild rye. These sites are moderately productive and are easily accessible to livestock.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: d blueberry (submesic/medium)
Ecosite Phase: d3 blueberry Tame

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBMESIC()			
Tree							
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	15		100	Elevation (range): 600(-) M			
BALSAM POPLAR				Elevation (range), 600(-) ivi			
(Populus balsamifera)	35		100	Slope:			
Shrub				Aspect:			
BEAKED WILLOW				Aspect.			
(Salix bebbiana)	1		100	Soil Drainage: Well drained()			
PRICKLY ROSE							
(Rosa acicularis)	6		100	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				Sail Sarias			
(Symphoricarpos occidentalis)	1		100	Soil Series:			
Forb				Soil Correlation:			
COMMON DANDELION							
(Taraxacum officinale)	4		100	Range Site Category:			
UNDIFFERENTIATED CLOVER	2			Ecological Status Score: 0			
(Trifolium)	1		100	Ecological Status Score. 0			
WILD STRAWBERRY				Soil Exposure	Mean	Min	Max
(Fragaria virginiana)	1		100	%:			
Grass				Comment:			
CREEPING RED FESCUE				Comment:			
(Festuca rubra)	9		100	Forage Production (kg/ha)	n=		
CRESTED WHEAT GRASS				r orage r roduction (kg/ma)	Mean	Min	Max
(Agropyron pectiniforme)	1		100	Forb	100	******	THE
HAIRY WILD RYE				Grass	800		
(Elymus innovatus)	24		100	Shrub	100		
KENTUCKY BLUEGRASS				Tree			
(Poa pratensis)	1		100	Total	1000	0	0
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	1		100				
				Ecologically Sustainable St	ocking Ra	ate	

14.0 e upland solonetzic/grassland slope (mesic) (n=105)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This ecosite is associated with remnant prairies located on upland areas as well as with grassland slopes of the Peace River region of Alberta. On the upland areas, it is associated with dark colored solonetzic and chernomzic soils. The parent materials are generally fine textured, slightly saline, fluvial, lacustrine or lacustrine-till in origin. The hard impermeable B horizon and slightly saline conditions tend to favour the growth of grassland species (Wilkinson and Johnson 1983). These include western porcupine grass, slender wheat grass, sedge and intermediate oat grass. Trees are gradually moving into the old prairie remnants. Sites are typically moister than those found on much of the river slopes, and this favours northern bedstraw. This ecosite also occurs in the moister draws and flatter areas of river slopes such as benches, terraces and valley bottoms. On moister sites snowberry often can dominate the plant community.

Successional Relationships

Due to the nature of the site, grasslands often remain the climax vegetation, however human activities have greatly modified the original vegetation cover of the upland areas. Heavy grazing pressure on the remnant grasslands can often lead to a degraded site dominated by sedge. Kentucky bluegrass, dandelion and wild strawberry. Shrub encroachment and invasion by non-native species on many of these sites will likely prevent a return to vegetation similar to that of the reference plant community type.

Indicator Species

common yarrow slender wheat grass saskatoon sedge species
Intermediate oat grass wild strawberry northern bedstraw Kentucky bluegrass prickly rose western porcupine grass
Snowberry (buckbrush) common dandelion

Site Characteristics

Moisture Regime: SUBMESIC(), MESIC()

Nutrient Regime: MESOTROPHIC(), PERMESOTROPHIC()

Topographic Poistion: Level(), Crest(), Lower slope()

Slope: 0.5 - 2.5(), 3 - 5(), 6 - 9(), 10 - 15()

Aspect: Variable()

Soil Characteristics

Organic Thickness: 0 - 5 cm(), 6 - 15 cm()

Humus Form: MULL()

Surface Texture: CL(), L()

Effective Texture: C(), CL()

Depth to Mottles/Gley: Not Applicable()

Soil Drainage: Well drained()

Parent Material: F(), GF()

Soil Subgroup: O.BL(), BL.SZ(), BL.SS(), BL.SO()

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	tion (kg/ha)		Stocking Rate
e upland solonetzic/grassland slope (mesic)	Grass	Forb	Shrub	Total	ha/aum(aum/ac
e1 western porcupine grass				950	1.01(0.40)
PPA8 Sedge-Western porcupinegrass-Intermediate oatgrass				1050	0.67(0.60)
PPC6 Sedge-Low forb				950	1.35(0.30)
PPC8 Kentucky bluegrass/Low Forb				850	1.01(0.40)
e2 intermediate oat grass-slender wheat grass	1463	818	227	2554	0.63(0.65)
PPA15 Purple oat grass-Sedge-Intermediate oat grass	1463	818	227	2508	0.58(0.70)
PPA16 Veiny meadow rue/Slender wheat grass-F. brome				2600	0.67(0.60)
e3 shrubland				1303	1.02(0.40)
PPA10 Shrub/Western porcupine grass-Sedge				1450	1.35(0.30)
PPA5 Snowberry-Saskatoon/Sedge				1250	1.35(0.30)
PPA6 Saskatoon-Rose/Sedge				670	1.35(0.30)
PPA7 Silverberry-Saskatoon/Sedge				1800	0.81(0.50)
PPC10 Snowberry/Kentucky bluegrass				2000	0.58(0.70)
PPC4 Rose-Saskatoon/Kentucky bluegrass				650	0.67(0.60)
e4 salt grass				950	2.02(0.20)
PPA9 Sedge-Salt grass				950	2.02(0.20)

14.1 e1 western porcupine grass (n=55)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: upland solonetzic/grassland slope (mesic)

Characteristic Species

Shrub

- [4] saskatoon
- [3] prickly rose
- 2 | Snowberry (buckbrush)

Forb

- [9] common yarrow
- 9] northern bedstraw
- 6] three-flowered avens
- 5 prairie crocus
- 5 | common dandelion

Grass

- [35] sedge species
- [20] western porcupine grass
- [13] Kentucky bluegrass
- 7] Intermediate oat grass
- 3] slender wheat grass
- [3] June grass
- [2] western wheat grass

Site Characteristics

Moisture Regime: MESIC()

Nutrient Regime: MESOTROPHIC(), PERMESOTROPHIC()

Topographic Position: Crest(), Midslope(), Upper slope()

Slope: 0.5 - 2.5(), 3 - 5()

Aspect: Variable()

Soil Characteristics

Organic Thickness:

Humus Form: MULL()

Surface Texture: L()

Effective Texture: CL(), L(), LS()

Depth to Mottles/Gley: Not Applicable()

Soil Drainage: Rapidly drained(), Well drained()

Parent Material: FL(), GF(), GL()

Soil Subgroup: O.MB(), BL.SZ(), BL.SS(), BL.SO()

Soil Type:

Plant Community Types (n)

PPA8 Sedge-Western porcupinegrass-Intermediate oatgrass (2)

PPC6 Sedge-Low forb (39)

PPC8 Kentucky bluegrass/Low Forb (14)

^{*}Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

14.1.1 PPA8. Sedge-Western porcupinegrass-Intermediate oatgrass

(Carex spp.-Stipa curtiseta-Danthonia intermedia)

n=2 A climax community of open grasslands of the uplands. Sedge and western porcupine grass are strongly codominate with intermediate oat grass often present. Northern bedstraw, smooth aster and common yarrow are also common. Some shrubs can be present but usually in small amounts. This community will shift to a PPA10 Shrub/Western porcupine grass-Sedge community with shrub encroachment through lack of grazing or fire. With grazing pressure it will succeed to a PPC6 community and with prolonged heavy grazing a PPC8 community. This community differs from PPA2 by site location (upland vs slopes) and the usual occurrence of intermediate oatgrass. This community also responds differently than PPA2 under grazing pressure, due to its moister soil conditions.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Ecosite Phase: e1 western porcupine grass

Mean 4	Range	Const.	Moisture Regime: MESIC()			
4						
4						
4			Nutrient Regime: MESOTROPHIC(),	PERMESO	rophic()	
	1-6	100	Elevation (range): 642(-) M			
7	5-8	100	Slope: 0 - 0.5(), 0.5 - 2.5()			
			Acnost: Variable()			
4	0-7	50	Aspect. Variable()			
			Soil Drainage: Well drained()			
			•			
2	0-3	50	Soil Subgroup:			
			Call Carles			
6	1-11	100	Soil Series:			
			Soil Correlation:			
8	3-11	100				
IG			Range Site Category:			
4	0-7	50				
			Ecological Status Score: 24			
10	9-11	100	Soil Exposure	Mean	Min	Max
4	0-7	50				
			Comment:			
7	0-13	50	Farmer Deadwation (Isa/ba)			
			Forage Production (kg/na)			
13	6-19	100		Mean	Min	Max
'S-SEAL						
8	0-15	50				
2	0-4	50		4050		
			Total	1050	0	0
4	0-8	50				
-	0.0	00	Ecologically Sustainable St	ocking Ra	ate	
11	0-21	50				
	0.21	50	0.67 (1.01-0.56) HAVAOM OF 0.60 (0	.40-0.70) AU	MAC	
2	0-4	50				
_	3-4	00				
65	37-92	100				
30	01.02	100				
2	1-3	100				
	1-0	100				
	35.72	100				
34	33-13	100				
2	0.6	E0.				
	2 6 8 8 6 4 10 4 7 13 8	4 0-7 2 0-3 6 1-11 8 3-11 NG 4 0-7 10 9-11 4 0-7 7 0-13 13 6-19 I'S-SEAL 8 0-15 2 0-4 4 0-8 11 0-21 2 0-4 65 37-92 2 1-3 SS 54 35-73	4 0-7 50 2 0-3 50 6 1-11 100 8 3-11 100 8 3-11 100 4 0-7 50 10 9-11 100 4 0-7 50 7 0-13 50 13 6-19 100 13 6-19 100 13 6-19 50 2 0-4 50 4 0-8 50 11 0-21 50 2 0-4 50 65 37-92 100 2 1-3 100 SS 54 35-73 100	Aspect: Variable() Soil Drainage: Well drained() 2 0-3 50 Soil Subgroup: Soil Series: Soil Correlation: Range Site Category: Ecological Status Score: 24 10 9-11 100 Soil Exposure %: Comment: Forage Production (kg/ha) 13 6-19 100 Forb Grass Shrub Tree Undifferentiated Total 4 0-8 50 Ecologically Sustainable St 11 0-21 50 0.67 (1.01-0.58) HA/AUM or 0.60 (0) 2 1-3 100 SS 54 35-73 100	Aspect: Variable() Soil Drainage: Well drained() 2 0-3 50 Soil Subgroup: Soil Series: Soil Correlation: Range Site Category: Ecological Status Score: 24 10 9-11 100 Soil Exposure Mean 4 0-7 50 Comment: 7 0-13 50 Forage Production (kg/ha) n= 13 6-19 100 Forb Grass Shrub Tree Undifferentiated 1050 Total 1050 4 0-8 50 Ecologically Sustainable Stocking Ra 11 0-21 50 0.67 (1.01-0.58) HA/AUM or 0.60 (0.40-0.70) AU 2 0-4 50 65 37-92 100 2 1-3 100 SS 54 35-73 100	Aspect: Variable() Soil Drainage: Well drained() 2

14.1.2

.........................

PPC6. Sedge-Low forb

(Carex spp.-Low Forb)

n=39 An upland grassland community that occurs under moderate grazing pressure, or where grazing was once heavy but then have undergone a period of prolonged rest. This community can be incredibly diverse in species. Western porcupine grass levels have decreased and sedge dominates. Forb diversity is still very high and northern bedstraw and yarrow are common. Intermediate oat grass cover decreases as grazing increases and soil moisture decreases with reduced litter coverage. Kentucky bluegrass, dandelion and wild strawberry cover has increased with increased grazing pressure. This community has developed from a PPA8 community type and will undergo further change to a PPC8 with continued heavy grazing. This is the plant community that is now found on most of the remnant upland native grasslands.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Ecosite Phase: e1 western porcupine grass

Plant Composition	Cano	y Cove	r (%)	Environmental Variables				
	Mean	Range	Const.	Moisture Regime: MESIC()				
Shrub								
PRICKLY ROSE				Nutrient Regime: MESOTROPHIC(),	PERMESOT	ROPHIC()		
(Rosa acicularis)	4	0-12	87	Elevation (range): 600(-) M				
SASKATOON								
(Amelanchier alnifolia)	3	0-8	72	Slope: 0.5 - 2.5(), 3 - 5()				
SNOWBERRY (BUCKBRUSH)				Aspect: Variable()				
(Symphoricarpos occidentalis)	2	0-10	49	Aspect. Variable()				
Forb				Soil Drainage: Well drained()				
BROAD-LEAVED EVERLASTIN	NG			V				
(Antennaria neglecta)	2	0-12	33	Soil Subgroup: B.SZ, B.SS, BL.SO				
COMMON DANDELION				0-11 0-1-1-1				
(Taraxacum officinale)	5	0-18	72	Soil Series:				
PASTURE SAGEWORT				Soil Correlation:				
(Artemisia frigida)	1	0-8	46					
PRAIRIE CROCUS				Range Site Category:				
(Anemone patens)	4	0-14	74	Facilities Status Same 0				
THREE-FLOWERED AVENS				Ecological Status Score: 9				
(Geum triflorum)	8	0-21	87	Soil Exposure	Mean	Min	Max	
WILD STRAWBERRY				%:				
(Fragaria virginiana)	3	0-20	36					
Grass				Comment:				
INTERMEDIATE OAT GRASS				Forage Production (kg/ha)	n=			
(Danthonia intermedia)	7	0-40	72	Totage Froduction (kg/na)	Mean	Min	Max	
JUNE GRASS				Forb	Wealt	141111	HIGA	
(Koeleria macrantha)	4	0-17	90	Grass				
KENTUCKY BLUEGRASS				Shrub				
(Poa pratensis)	4	0-13	85	Tree				
SEDGE SPECIES				Undifferentiated	950			
(Carex spp.)	27	3-59	100	Total	950	0	0	
SLENDER WHEAT GRASS				Total	330	U	0	
(Agropyron trachycaulum)	4	0-26	85					
WESTERN PORCUPINE GRAS	SS			Ecologically Sustainable St	ocking Ra	ate		
(Stipa curtiseta)	4	0-19	80	1.35 (2.02-1.01) HA/AUM or 0.30 (0	.20-0.40) AU	M/AC		
WESTERN WHEAT GRASS				,				
(Agropyron smithii)	3	0-18	74					

14.1.3

PPC8. Kentucky bluegrass/Low Forb

(Poa pratensis/Low Forb)

n=14 A grassland community that occurs under moderate to heavy grazing and can be found on the uplands or in moist draws and lower slope positions of the river slopes. Kentucky bluegrass dominates. Grazing resistant species like wild strawberry, common yarrow and dandelion have increased. Most palatable species like western porcupine grass and intermediate oat grass have decreased in abundance and cover due to heavy grazing. As grazing pressure increases, Kentucky bluegrass levels will decrease and dandelion and strawberry levels will increase. It is unexpected that this plant community will recover back to the reference grassland community (PPA8). This community may shift to PPC4 Rose-Saskatoon/Kentucky bluegrass with shrub encroachment and lack of fire.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Ecosite Phase: e1 western porcupine grass

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Shrub							
PRICKLY ROSE				Nutrient Regime: MESOTROPHIC(),	PERMESO1	ROPHIC()	
(Rosa acicularis)	2	0-8	79	Floreties (seems), 600() 44			
SASKATOON				Elevation (range): 600(-) M			
(Amelanchier alnifolia)	3	0-12	64	Slope: 0 - 0.5()			
Forb				A			
COMMON DANDELION				Aspect:			
(Taraxacum officinale)	11	0-27	93	Soil Drainage: Well drained()			
COMMON YARROW				on orange tron orange)			
(Achillea millefolium)	10	1-21	100	Soil Subgroup:			
FIELD MOUSE-EAR CHICKWE	EED			0.70			
(Cerastium arvense)	1	0-5	71	Soil Series:			
GRACEFUL CINQUEFOIL				Soil Correlation:			
(Potentilla gracilis)	2	0-12	57	con contration.			
NORTHERN BEDSTRAW				Range Site Category:			
(Galium boreale)	8	0-20	86	F1			
THREE-FLOWERED AVENS				Ecological Status Score: 0			
(Geum triflorum)	9	0-47	57	Soil Exposure	Mean	Min	Max
VEINY MEADOW RUE				%:	· · · · · · · · · · · · · · · · · · ·		******
(Thalictrum venulosum)	4	0-27	43				
WILD STRAWBERRY				Comment:			
(Fragaria virginiana)	7	0-35	71	Forage Production (kg/ha)	n=		
Grass				rorage Production (kg/na)		Min	Max
AWNLESS BROME				Forb	Mean	Min	Max
(Bromus inermis)	7	0-46	43	Grass			
NTERMEDIATE OAT GRASS				Shrub			
(Danthonia intermedia)	3	0-9	57	Tree			
KENTUCKY BLUEGRASS				Undifferentiated	850		
(Poa pratensis)	34	10-60	100	Total	850	0	0
SEDGE SPECIES				Total	630	U	0
(Carex spp.)	12	0-24	100				
SLENDER WHEAT GRASS				Ecologically Sustainable St	ocking Ra	nte	
Agropyron trachycaulum)	3	0-6	93	1.01 (1.35-0.81) HA/AUM or 0.40 (0	30-0 50) 41	MAC	
WESTERN PORCUPINE GRAS	SS				- v. v. v. v.		
Stipa curtiseta)	3	0-20	50				

14.2 e2 intermediate oat grass-slender wheat grass (n=7

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: upland solonetzic/grassland slope (mesic)

Characteristic Species

Shrub

5] Snowberry (buckbrush)

1 | saskatoon

1] prickly rose

Forb

[14] veiny meadow rue

7 wild strawberry

[4] common yarrow

3 | common dandelion

2 | wild vetch

1 | northern bedstraw

Grass

[14] slender wheat grass*

[13] sedge species*

11] purple oat grass*

5 | Kentucky bluegrass

4] Intermediate oat grass

[2] June grass

Site Characteristics

Moisture Regime: MESIC()

Nutrient Regime: MESOTROPHIC(), PERMESOTROPHIC()

Topographic Position:

Slope: 3 - 5()

Aspect:

Soil Characteristics

Organic Thickness: 0 - 5 cm(90)

Humus Form: MULL(90)

Surface Texture: L(70), SiCL(30)

Effective Texture: C(70), CL(30)

Depth to Mottles/Gley: None()

Soil Drainage: Well drained(70), Moderate well drain(30)

Parent Material: L(90)

Soil Subgroup: DB.SS(10), BL.SS(10), BL.SO(10), DG.SO(40)

Soil Type:

Plant Community Types (n)

PPA15 Purple oat grass-Sedge-Intermediate oat grass (5)

PPA16 Veiny meadow rue/Slender wheat grass-F. brome (2)

^{*}Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

14.2.1 PPA15. Purple oat grass-Sedge-Intermediate oat grass

(Schizachne purpurascens-Carex spp.-Danthonia intermedia)

n=5 This community type is the same as DMA4 in the Dry Mixedwood Guide (Willoughby et al. 2006). It appears to be characteristic of dry grassy meadows on dark colored Solonetzic soils and gentle to level areas throughout the Dry Mixedwood subregion. It also occurs in the transition zone from grassland to treed areas in river valleys. This community type is moister than the Sedge-Western porcupine grass PPA8 dominated community type. The presence of snowberry and veiny meadow rue distinguish this community type from the drier upslope community.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Ecosite Phase: e2 intermediate oat grass-slender wheat grass

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Shrub							
PRICKLY ROSE				Nutrient Regime: MESOTROPHIC()			
(Rosa acicularis)	2	0-10	60	Elevation (range): 584(576-606) M			
SASKATOON				, , , , , , , , , , , , , , , , , , , ,			
(Amelanchier alnifolia)	1	0-3	60	Slope: 0 - 0.5(), 0.5 - 2.5(), 3 - 5()			
SNOWBERRY (BUCKBRUSH)				Assert Fauthorid) Masterid)			
(Symphoricarpos occidentalis)	10	0-36	80	Aspect: Southerly(), Westerly()			
Forb				Soil Drainage: Well drained()			
COMMON DANDELION							
(Taraxacum officinale)	6	0-20	80	Soil Subgroup:			
COMMON YARROW				Sail Sarias			
(Achillea millefolium)	6	0-12	80	Soil Series:			
VEINY MEADOW RUE				Soil Correlation:			
(Thalictrum venulosum)	4	0-8	80				
WILD STRAWBERRY				Range Site Category:			
(Fragaria virginiana)	12	1-29	100	Francisco Status Sector 46			
WILD VETCH				Ecological Status Score: 16			
(Vicia americana)	4	0-9	80	Soil Exposure	Mean	Min	Max
Grass				%:			
INTERMEDIATE OAT GRASS							
(Danthonia intermedia)	8	0-28	60	Comment:			
JUNE GRASS				Forage Production (kg/ha)	n=		
(Koeleria macrantha)	4	0-6	80	rorage Production (kg/lla)	Mean	Min	Max
KENTUCKY BLUEGRASS				Forb	818	500	1192
(Poa pratensis)	10	1-40	100	Grass	1463	626	2578
PRAIRIE SEDGE				Shrub	227	ULU	606
(Carex prairea)	7	0-15	60	Tree	LLI		000
PURPLE OAT GRASS				Total	2508	1126	4376
(Schizachne purpurascens)	21	4-34	100	Total	4300	1120	43/0
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	10	2-18	100	Ecologically Sustainable St	ocking R	ato	

14.2.2 PPA16. Veiny meadow rue/Slender wneat grass-F. brome

(Thalictrum venulosum/Agropyron trachycaulum-Bromus ciliatus)

n=2 This community is the same as DMA4a in the Dry Mixedwood Guide (Willoughby et al. 2006). It appears to be characteristic of moist grassy meadows on dark colored Chernozemic soils and gentle to level areas throughout the region. This community type is likely associated with the large tracts of prairie vegetation described adjacent to rivers and creeks. This community type appears to be richer than the Sedge-California oat grass-Western porcupine grass PPA8 and does not likely have the saline influence of the purple oatgrass dominated community PPA15 previously described. The soils on this community are described as Chernozemic and the parent material is fluvial in origin. These sites are very productive.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Ecosite Phase: e2 intermediate oat grass-slender wheat grass

Plant Composition	Canopy Cover (%)			Environmental Variables					
	Mean	Range	Const.	Moisture Regime: MESIC()					
Tree				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
WHITE SPRUCE				Nutrient Regime: MESOTROPHIC(),	PERMESOT	ROPHIC()			
(Picea glauca)	1	0-1	50	Elevation (range): 530(472-587) M					
Forb				Elevation (range). 530(472-567) M					
CANADA GOLDENROD				Slope: 0 - 0.5()					
(Solidago canadensis)	15	0-30	50	Aspect:					
COMMON FIREWEED				Aspect.					
(Epilobium angustifolium)	2	1-2	100	Soil Drainage: Moderate well drain()					
COMMON YARROW									
(Achillea millefolium)	1	0-2	50	Soil Subgroup:					
NORTHERN BEDSTRAW				Soil Series:					
(Galium boreale)	2	0-3	50	Soli Series.					
TALL LUNGWORT				Soil Correlation:					
(Mertensia paniculata)	9	2-15	100						
VEINY MEADOW RUE				Range Site Category:					
(Thalictrum venulosum)	23	15-30	100	Ecological Status Score: 24					
WILD STRAWBERRY				Ecological Status Score. 24					
(Fragaria virginiana)	1	0-1	50	Soil Exposure	Mean	Min	Max		
YELLOW AVENS				%:					
(Geum aleppicum)	2	1-2	100	Comment:					
Grass				Comment.					
BLUEJOINT				Forage Production (kg/ha)	n=				
(Calamagrostis canadensis)	1	0-2	50	r orage r rodaction (kg/na)	Mean	Min	Max		
FRINGED BROME				Forb	mean	191111	TrielA		
(Bromus ciliatus)	15	10-20	100	Grass					
SLENDER WHEAT GRASS				Shrub					
(Agropyron trachycaulum)	18	15-20	100	Tree					
WHITE-SCALED SEDGE				Undifferentiated	2600				
(Carex xerantica)	10	10-10	100	Total	2600	0	0		

Ecologically Sustainable Stocking Rate

0.67 (0.81-0.58) HA/AUM or 0.60 (0.50-0.70) AUM/AC

14.3 e3 shrubland (n=42)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: upland solonetzic/grassland slope (mesic)

Characteristic Species

Tree

[1]aspen

Shrub

- [10] prickly rose
- [10] saskatoon
- [10] Snowberry (buckbrush)
- 3] silverberry
 - 1] Canada buffaloberry

Forb

- 9] northern bedstraw
- 7] common yarrow
- 5] wild strawberry
- [3] common dandelion

Grass

- [22] sedge species
- [7] Kentucky bluegrass
- 5 | slender wheat grass
- [2] western porcupine grass
- [2] purple oat grass
 - 2] June grass
- [1] hairy wild rye

Site Characteristics

Moisture Regime: MESIC()

Nutrient Regime: MESOTROPHIC(), PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA6	Saskatoon-Rose/Sedge (14)
PPA7	Silverberry-Saskatoon/Sedge (7)
PPA5	Snowberry-Saskatoon/Sedge (9)
PPA10	Shrub/Western porcupine grass-Sedge (2)
PPC4	Rose-Saskatoon/Kentucky bluegrass (6)
PPC10	Snowberry/Kentucky bluegrass (4)

^{*}Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

14.3.1 PPA10. Shrub/Western porcupine grass-Sedge

(Shrub/Stipa curtiseta-Carex Spp.)

n=2 An upland grassland community that has had limited disturbance and is converting to a shrubland with an increase in rose, Saskatoon and snowberry. Litter levels have built up and soil moisture increased. Northern bedstraw, sedge and western porcupine grass co-dominate. Grass species that require moister sites, like intermediate oat grass and slender wheat grass, have increased in cover. Periodic burning of this community type could allow it to shift back to the reference plant community of PPA8-sedge-western porcupine grass.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Plant Composition	Cano	py Cove	er (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Shrub							
COMMON BEARBERRY				Nutrient Regime: MESOTROPH	IC(), PERMESOT	ROPHIC()	
(Arctostaphylos uva-ursi)	4	2-5	100	Elevation (range): (-) M			
PRICKLY ROSE							
(Rosa acicularis)	20	20-20	100	Slope:			
SASKATOON				Aspect:			
(Amelanchier alnifolia)	18	15-20	100	парост.			
SILVERBERRY				Soil Drainage: Well drained()			
(Elaeagnus commutata)	4	1-7	100				
SNOWBERRY (BUCKBRUSH)				Soil Subgroup:			
(Symphoricarpos occidentalis)	15	10-20	100	Soil Series:			
WILD RED RASPBERRY				Son Series.			
(Rubus idaeus)	3	1-5	100	Soil Correlation:			
Forb							
COMMON YARROW				Range Site Category:			
(Achillea millefolium)	14	12-16	100	Ecological Status Score: 24			
NORTHERN BEDSTRAW				Loological Status Score. 24			
(Galium boreale)	35	33-36	100	Soil Exposure	Mean	Min	Max
SMOOTH ASTER				%:			
(Aster laevis)	15	8-21	100	Comment:			
WILD VETCH				Comment.			
(Vicia americana)	11	5-16	100	Forage Production (kg/h	na) n=		
Grass				· orago · rocason (ingi-	Mean	Min	Max
FRINGED BROME				Forb	***************************************	******	Make
(Bromus ciliatus)	6	3-9	100	Grass			
INTERMEDIATE OAT GRASS				Shrub			
(Danthonia intermedia)	23	14-31	100	Tree			
NORTHERN REED GRASS				Undifferentiated	1450		
(Calamagrostis inexpansa)	12	1-22	100	Total	1450	0	0
ROUGH HAIR GRASS				7 0 181	1400		
(Agrostis scabra)	11	5-16	100				
SEDGE SPECIES				Ecologically Sustainable	e Stocking Ra	ate	
(Carex spp.)	34	12-54	100	1.35 (2.02-1.01) HA/AUM or 0.3	30 (0.20-0.40) AU	IM/AC	
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	11	5-16	100				
WESTERN PORCUPINE GRAS	SS						
(Stipa curtiseta)	28	26-29	100				

PPA5. Snowberry-Saskatoon/Sedge

(Symphoricarpos occidentalis-Amelanchier alnifolia/Carex spp.)

n=9 A shrubby community with high species diversity dominated by snowberry and sedge. This community type can be found on upland sites as well as moister draws and lower slope positions of river valleys. Saskatoon and prickly rose are usually, but not always present and sometimes can occur in large amounts. Without grazing, litter buildup and shrub encroachment will lead to increased soil moisture and a further shift towards species that prefer moister sites (shrubs, northern bedstraw, slender wheat grass).

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
ree							
ASPEN				Nutrient Regime: MESOTROPHIC	(), PERMESO	ROPHIC()	
(Populus tremuloides)	2	0-10	33	Elevation (range): (-) M			
Shrub							
CANADA BUFFALOBERRY				Slope:			
(Shepherdia canadensis)	1	0-2	67	Aspect			
PRICKLY ROSE				rapoot			
(Rosa acicularis)	11	0-35	56	Soil Drainage: Well drained()			
SASKATOON							
(Amelanchier alnifolia)	17	0-35	78	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				Soil Series:			
(Symphoricarpos occidentalis)	30	15-74	100	Son Series.			
orb				Soil Correlation:			
COMMON YARROW							
(Achillea millefolium)	4	0-13	89	Range Site Category:			
NORTHERN BEDSTRAW				Ecological Status Score: 16			
(Galium boreale)	12	0-33	89	Ecological Status Score: 16			
PASTURE SAGEWORT				Soil Exposure	Mean	Min	Max
(Artemisia frigida)	2	0-9	44	%:			
SMALL-LEAVED EVERLASTIN	G						
(Antennana parvifolia)	11	0-43	67	Comment:			
SMOOTH ASTER				Forage Production (kg/ha) n=		
(Aster laevis)	3	0-24	44	rorage Froduction (kg/ma	Mean	Min	Max
THREE-FLOWERED AVENS				Forb	Mean	Milit	Max
(Geum triflorum)	5	0-24	44	Grass			
WILD STRAWBERRY				Shrub			
(Fragaria virginiana)	8	0-32	67	Tree			
WILD VETCH				Undifferentiated	1250		
(Vicia americana)	5	0-12	78	Total	1250	0	0
Grass				iotai	1250	U	U
JUNE GRASS							
(Koeleria macrantha)	2	0-4	78	Ecologically Sustainable	Stocking R	ate	
KENTUCKY BLUEGRASS	_		, -	1.35 (2.02-1.01) HA/AUM or 0.30	(0.20-0.40) AI	IMAC	
(Poa pratensis)	3	0-9	67	1.33 (2.02°1.01) TINAOW 01 0.30	(0.20-0.40) AC	IVIIAC	
ROCKY MOUNTAIN FESCUE		0 0					
(Festuca saximontana)	2	0-7	67				
SEDGE SPECIES	-	0.1	0,				
	35	10-62	100				
	00	10-02	100				
(Carex spp.)							
SLENDER WHEAT GRASS	6	0-19	89				
SLENDER WHEAT GRASS (Agropyron trachycaulum)	6	0-19	89				
SLENDER WHEAT GRASS (Agropyron trachycaulum) WESTERN PORCUPINE GRAS	SS						
SLENDER WHEAT GRASS (Agropyron trachycaulum)		0-19	33				

••••••••••••••••••••••

PPA6. Saskatoon-Rose/Sedge

(Amelanchier alnifolia-Rosa acicularis/Carex Spp.)

n=14 This community is similar to the DMA7-Saskatoon-Snowberry/Hairy wild rye community of the Dry Mixedwood Guide (Willoughby et al. 2006). It is typically found in small shrubby openings within aspen forests on southwest facing slopes and level areas. Aspen encroachment into these openings is common. These sites have well developed Luvisolic soils with colluvial, glacialfluvial and glacial lacustrine parent materials. It is likely these shrubby openings are drier than the surrounding forest, which favours the growth of shrubs over trees. Forage productivity on these sites is only moderate. These sites are also heavily utilized by wildlife. As a result caution should be used when managing these sites for domestic livestock grazing in order to prevent overutilization. Saskatoon, prickly rose and sedge are codominant species. Hairy wild rye, purple oat grass, western porcupine grass and slender wheat grass are usually found on these sites. Yarrow, wild strawberry and northern bedstraw are common forbs.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree							
ASPEN				Nutrient Regime: MESOTROPHIC	()		
(Populus tremuloides)	1	0-5	29	Elevation (range): 460(343-606) M			
Shrub							
CANADA BUFFALOBERRY				Slope: 0 - 0 5(), 0.5 - 2.5(), 3 - 5(),	6 - 9()		
(Shepherdia canadensis)	2	0-10	50	Aspect: Variable()			
PRICKLY ROSE				Aspect. Variable()			
(Rosa acicularis)	15	3-35	100	Soil Drainage: Well drained()			
SASKATOON							
(Amelanchier alnifolia)	17	2-50	100	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				Soil Series:			
(Symphoricarpos occidentalis)	3	0-15	57	Sui Series			
Forb				Soil Correlation:			
COMMON DANDELION							
(Taraxacum officinale)	6	0-28	71	Range Site Category:			
COMMON YARROW				Ecological Status Score: 24			
(Achillea millefolium)	11	1-27	100	Ecological Status Score. 24			
LINDLEY'S ASTER				Soil Exposure	Mean	Min	Max
(Aster ciliolatus)	5	0-17	71	%:			
NORTHERN BEDSTRAW				Comment:			
(Galium boreale)	16	1-40	100	Comment:			
VEINY MEADOW RUE				Forage Production (kg/ha)) n=		
(Thalictrum venulosum)	5	0-14	71	Torage Fredaction (kg/ma)	Mean	Min	Max
WILD STRAWBERRY				Forb	Wedit	min	Max
(Fragaria virginiana)	9	0-43	86	Grass			
Grass				Shrub			
HAIRY WILD RYE				Tree			
(Elymus innovatus)	6	0-20	43	Undifferentiated	670		
INTERMEDIATE OAT GRASS				Total	670	0	0
(Danthonia intermedia)	2	0-10	43	i otai	670	U	U
KENTUCKY BLUEGRASS							
(Poa pratensis)	2	0-7	64	Ecologically Sustainable S	Stocking Ra	ate	
PURPLE OAT GRASS				1.35 (4.05-1.01) HA/AUM or 0.30	(0 10-0 40) AL	MAC	
(Schizachne purpurascens)	5	0-26	43	(,	(0.10 0.10) 110		
SEDGE SPECIES							
(Carex spp.)	27	0-58	93				
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	4	0-19	93				
WESTERN PORCUPINE GRAS							
(Stipa curtiseta)	3	0-15	57				

PPA7. Silverberry-Saskatoon/Sedge

(Elaeagnus commutata-Amelanchier alnifolia/Carex spp.)

n=7 This community is found in the transition zone between aspen dominated communities and native grasslands. In the absence of disturbance, aspen will likely invade these sites. These sites can be found on the uplands or in moister draws and lower slope positions of the river slopes. Heavy grazing pressure on this community type can result in the invasion of smooth brome, Kentucky bluegrass and dandelion. Sites are typically moist as evidenced by the strong presence of northern bedstraw and slender wheat grass. Silverberry and Saskatoon dominate this community. Prickly rose and snowberry are other common shrubs.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Shrub				moistare regime m2010()			
PRICKLY ROSE				Nutrient Regime: MESOTROPHIC(),	PERMESO?	TROPHIC()	
(Rosa acicularis)	10	2-17	100	Etomolius (seemal) () A4			
SASKATOON				Elevation (range): (-) M			
(Amelanchier alnifolia)	15	0-50	86	Slope: 3 - 5()			
SILVERBERRY				Access Constitution ()			
(Elaeagnus commutata)	15	3-42	100	Aspect: Southerly()			
SNOWBERRY (BUCKBRUSH)				Soil Drainage: Well drained(), Moder	ate well drain	n()	
(Symphoricarpos occidentalis)	8	0-15	86	con bramage: from brames(), mode.	ate tron aran	.()	
Forb				Soil Subgroup:			
COMMON DANDELION				C-11 C-1			
(Taraxacum officinale)	4	0-11	71	Soil Series:			
COMMON YARROW				Soil Correlation:			
(Achillea millefolium)	9	0-16	86				
LINDLEY'S ASTER				Range Site Category:			
(Aster ciliolatus)	5	0-24	71	Foological Status Space, 24			
NORTHERN BEDSTRAW				Ecological Status Score: 24			
(Galium boreale)	12	1-27	100	Soil Exposure	Mean	Min	Max
THREE-FLOWERED AVENS				%:			
(Geum triflorum)	10	0-57	71				
WILD VETCH				Comment:			
(Vicia americana)	4	0-7	86	Forage Production (kg/ha)	n=		
Grass				rotage Production (kg/lla)	Mean	Min	Max
JUNE GRASS				Forb	mean	Willi	max
(Koelena macrantha)	1	0-3	71	Grass			
NORTHERN WHEAT GRASS				Shrub			
(Agropyron dasystachyum)	4	1-8	100	Tree			
SEDGE SPECIES				Undifferentiated	1800		
(Carex spp.)	35	7-73	100	Total	1800	0	0
SLENDER WHEAT GRASS				Total	1000	U	U
(Agropyron trachycaulum)	7	1-17	100				
WESTERN PORCUPINE GRAS	SS			Ecologically Sustainable St	ocking Ra	ate	
(Stipa curtiseta)	3	0-10	71	0.81 (1.01-0.58) HA/AUM or 0.50 (0	40-0 70) 41	IM/AC	

PPC10. Snowberry/Kentucky bluegrass

(Symphoricarpos occidentalis/Poa pratensis)

n=4 A grazing impacted shrub community that is codominated by snowberry and a diverse mixture of forbs and grasses. Western porcupine grass and intermediate oat grass are in small coverage. This community was described from an unusual site near Worsley in close proximity to a saline area.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
Phanh	Mean	Range	Const.	Moisture Regime: MESIC()			
Shrub				Number of Paris AMEROTEON HOO	DEDMESS	TROPUICO.	
PRICKLY ROSE	2	4.4	400	Nutrient Regime: MESOTROPHIC()), PERMESO	ROPHIC()	
(Rosa acicularis)	2	1-4	100	Elevation (range): (-) M			
SNOWBERRY (BUCKBRUSH)	16	8-25	100	Slope:			
(Symphoricarpos occidentalis) Forb	16	0-23	100	Slope.			
				Aspect:			
COMMON YARROW	40	0.44	400				
(Achillea millefolium)	10	9-11	100	Soil Drainage: Well drained()			
GRACEFUL CINQUEFOIL	5	27	100	Soil Subgroup:			
(Potentilla gracilis)	9	2-7	100	Son Subgroup.			
NORTHERN BEDSTRAW (Galium boreale)	5	2-6	100	Soil Series:			
,		2-0	100				
SLENDER BLUE BEARDTONG	2	4.2	100	Soil Correlation:			
(Penstemon procerus) SMOOTH ASTER	2	1-3	100	Range Site Category:			
(Aster laevis)	3	0-4	75	Range Site Category.			
THREE-FLOWERED AVENS	3	0-4	13	Ecological Status Score: 9			
(Geum triflorum)	2	1-2	100	Sail Evaceure		9.01	
VEINY MEADOW RUE	2	1-2	100	Soil Exposure	Mean	Min	Max
(Thalictrum venulosum)	4	3-6	100	%:			
WILD STRAWBERRY	4	3-0	100	Comment:			
(Fragaria virginiana)	3	1-5	100				
Grass	0	1-5	100	Forage Production (kg/ha)			
FRINGED BROME					Mean	Min	Max
(Bromus ciliatus)	3	1-6	100	Forb			
INTERMEDIATE OAT GRASS	9	1-0	.00	Grass			
(Danthonia intermedia)	4	2-4	100	Shrub			
JUNE GRASS	7	2	.00	Tree	0000		
(Koeleria macrantha)	3	0-8	75	Undifferentiated	2000		
KENTUCKY BLUEGRASS	9	3-0	. 0	Total	2000	0	0
(Poa pratensis)	7	2-12	100				
PURPLE OAT GRASS		4-14	.00	Ecologically Sustainable S	tocking R	ate	
(Schizachne purpurascens)	5	0-10	100	0.58 (0.81-0.50) HA/AUM or 0.70 (
SEDGE SPECIES	3	3-10	.00	0.30 (0.01-0.30) HAVAOM OF 0.70 (U.30-U.01) AL	INIMU	
(Carex spp.)	8	7-9	100				
SLENDER WHEAT GRASS			.00				
(Agropyron trachycaulum)	8	1-14	100				

14.3.6 PPC4. Rose-Saskatoon/Kentucky bluegrass

(Rosa acicularis-Amelanchier alnifolia/Poa pratensis)

n=6 This is a grazing impacted shrubland community as evidenced by the large presence of grazing esistant species like wild strawberry, dandelion and Kentucky bluegrass. This community can be found on the uplands and in the moiser draws and lower slope positions of the river slopes. Prickly rose, sedge and Kentucky bluegrass codominate this community and asper has started to encroach. With Kentucky bluegrass well established along with the shrubs, it is unlikely that this community will revert back to the reference plant community.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Plant Composition	Cano	py Cove	er (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree							
ASPEN				Nutrient Regime: MESOTROPHIC()	, PERMESO	ROPHIC()	
(Populus tremuloides)	2	0-7	50	Elevation (range): (-) M			
Shrub							
PRICKLY ROSE				Slope:			
(Rosa acicularis)	19	6-25	100	Aspect:			
SASKATOON				Aspect.			
(Amelanchier alnifolia)	12	1-22	100	Soil Drainage: Well drained(), Model	rate well drain	n()	
Forb							
BASTARD TOADFLAX				Soil Subgroup:			
(Comandra umbellata)	8	0-19	67	Soil Series:			
COMMON DANDELION				Juli Jelles.			
(Taraxacum officinale)	6	0-14	83	Soil Correlation:			
COMMON YARROW							
(Achillea millefolium)	7	0-12	83	Range Site Category:			
NORTHERN BEDSTRAW				Ecological Status Score: 0			
(Galium boreale)	9	0-29	83	Ecological Status Score. 0			
SMOOTH ASTER				Soil Exposure	Mean	Min	Max
(Aster laevis)	4	1-4	100	%:			
THREE-FLOWERED AVENS				Comment:			
(Geum triflorum)	8	0-31	83	Comment.			
WILD STRAWBERRY				Forage Production (kg/ha)	n=		
(Fragaria virginiana)	7	0-18	67	r orage r rousemen (ngme)	Mean	Min	Max
Grass				Forb	moan	******	77762.55
JUNE GRASS				Grass			
(Koeleria macrantha)	5	1-13	100	Shrub			
KENTUCKY BLUEGRASS				Tree			
(Poa pratensis)	31	13-57	100	Undifferentiated	650		
SEDGE SPECIES				Total	650	0	0
(Carex spp.)	26	3-35	100				
SLENDER WHEAT GRASS							
(Agropyron trachycaulum)	7	0-13	83	Ecologically Sustainable St	tocking Ra	ate	
WESTERN PORCUPINE GRA	SS			0.67 (1.01-0.50) HA/AUM or 0.60 (0	0.40-0.81) AL	IM/AC	
(Stipa curtiseta)	5	0-12	67				

14.4 e4 salt grass (n=1)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: upland solonetzic/grassland slope (mesic)

Characteristic Species

Forb

- 7] pasture sagewort
- 3 gumweed
- 3) bastard toadflax

Grass

•••••••••••••

- [17] June grass
- [15] blunt sedge
 - 9 | salt grass
- 8] western porcupine grass
 - 5] northern wheat grass
- *Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

Site Characteristics

Moisture Regime: MESIC(), SUBHYGRIC()

Nutrient Regime: SUBMESOTROPHIC(), MESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Moderate well drain()

Parent Material:

Soil Subgroup:

Soi! Type:

Plant Community Types (n)

PPA9 Sedge-Salt grass (1)

14.4.1

PPA9. Sedge-Salt grass

(Carex Spp.-Distichlis stricta)

n=1 Throughout the river valleys there are seepage areas that are slightly saline. Salt tolerant species such as salt grass are indicators of these sites. These areas are not as productive as the other grassland dominated communities. These areas should likely be rated as secondary or non-use rangeland. June grass and blunt sedge codominate with salt grass, western porcupine grass and pasture sagewort are also common. Shrubs are not generally present on these areas.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: e upland solonetzic/grassland slope (mesic)

Ecosite Phase: e4 salt grass

Canopy Cover (%)			Environmental Variables					
Mean	Range	Const.	Moisture Regime: MESIC(), SUBHYO	GRIC()				
			Nutrient Regime: SUBMESOTROPH	IC(), MESOT	ROPHIC()			
3		100	Elevation (range): 610() M					
			Elevation (range). 610(-) M					
3		100	Slope:					
			Assest					
7		100	Aspect					
			Soil Drainage: Moderate well drain()					
2		100	,					
IG			Soil Subgroup:					
2		100	0-10-1-1					
			Soil Series:					
2		100	Soil Correlation:					
			Range Site Category:					
15		100	5 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 1 - 1 - 1					
			Ecological Status Score: 16					
17		100	Soil Exposure	Mean	Min	Max		
					-			
2		100						
			Comment:					
5		100	Forage Production (kg/ha)	n=				
			rotage Froduction (kg/lla)		Min	Max		
9		100	Forh	mean	191111	Albert		
SS								
8		100						
				950				
			***************************************		0	0		
			TOtal	330	· ·	U		
	Mean 3 3 7 2 4G 2 15 17 2 5 9 SS	Mean Range 3 3 7 2 8G 2 15 17 2 5 9 SS	Mean Range Const. 3 100 7 100 2 100 4G 100 2 100 15 100 17 100 2 100 5 100 9 100 SS	Mean Range Const. Moisture Regime: MESIC(), SUBHYO Nutrient Regime: SUBMESOTROPH Solit Submession Su	Mean Range Const. Moisture Regime: MESIC(), SUBHYGRIC() 3 100 Slope: 7 100 Aspect: 2 100 Soil Drainage: Moderate well drain() 3G Soil Subgroup: 2 100 Soil Series: 2 100 Soil Correlation: Range Site Category: Ecological Status Score: 16 17 100 Soil Exposure Mean %: Comment: 5 100 Forage Production (kg/ha) n= 9 100 Forb SS Shrub Tree Undifferentiated 950	Mean Range Const. Moisture Regime: MESIC(), SUBHYGRIC()		

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

••••••••••••••••••••••••••••••

15.0 f low-bush cranberry (mesic/medium) (n=282)

Natural Subregion: PEACE RIVER PARKLAND

General Description

The plots described in this ecological site are from the Dry Mixedwood. This ecological site generally describes site conditions that dominate the aspen, mixedwood, spruce and tame pasture dominated communities of the Peace Parkland subregion. In the Boreal Mixedwood subregions (Beckingham and Archibald 1996) this is described as the reference ecological site, because it has mesic moisture and medium nutrient regime. Generally, these sites have moderately fine to fine textured till or glaciolacustrine parent materials.

low-bush cranberry Aw-Sw

Successional Relationships

Pioneer decidous tree species such as aspen, balsam poplar and white birch are replaced by white spruce and balsam fir as these sites develop successionally. Along with a change in canopy composition is a change in understory structure and understory species composition and abundance. This results in stands with low cover of shrub, forb and grass species and high moss cover. Increased grazing pressure on aspen dominated communities will result in a decline in tal growing species (fireweed, peavine, aster) and an increase in low growing forbs (strawberry, bunchberry, twinflower). Continued heavy grazing pressure will often lead to an increase Kentucky bluegrass, clover and dandelion.

Indicator Species

saskatoon wild sarsaparilla bluejoint sedge species heaked hazelnut hairy wild rye common fireweed cream-colored vetchling white spruce Kentucky bluegrass balsam poplar aspen choke cherry prickly rose wild red raspberry Canada buffaloberry Snowberry (buckbrush)

Site Characteristics

Moisture Regime: MESIC(), SUBHYGRIC()

Nutrient Regime: SUBMESOTROPHIC(), MESOTROPHIC(), PERMESOTROPHIC()

Topographic Poistion:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained(), Moderate well drain()

Parent Material:

Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	ction (kg/ha)		Stocking Rate
f low-bush ciranberry (mesic/medium)	Grass	Forb	Shrub	Total	ha/aum(aum/ac
f1 low-bush cranberry Aw	221	447	408	1090	2.61(0.15)
PPD11 Aw//Rose/Low forb	285	339	300	924	2.70(0.15)
PPD12 AwPb/Dandelion/Kentucky bluegrass				1178	4.05(0.10)
PPD13 Deciduous cutblocks and unseeded clearings	623	580	810	2013	2.02(0.20)
PPD16 PbAw/Willow	130	525	155	810	2.70(0.15)
PPD6 Aw/Canada buffaloberry	112	304	346	762	2.70(0.15)
PPD7 Aw/Saskatoon	153	419	524	1096	2.02(0.20)
PPD8 Aw-Pb/Hazelnut	77	457	441	975	2.70(0.15)
PPD9 Aw/Rose/Tall forb	169	507	282	958	2.02(0.20)
f2 low-bush cranberry Aw-Sw	468	534	440	1296	4.05(0.10)
PPE2 Aw-Sw/Rose/Marsh reed grass	468	534	440	1442	4.05(0.10)
PPE4 Sw-Aw/Low bush cranberry				1150	4.05(0.10)
f3 low-bush cranberry Sw				210	40.47(0.01)
PPE5 Sw/Moss				210	40.47(0.01)
f4 low-bush cranberry Tame				2281	1.07(0.38)
PPF1 Brome-Timothy				3884	0.40(1.01)
PPF2 Creeping red fescue-Brome-Timothy				2120	0.51(0.79)
PPF3 Creeping red fescue-Kentucky bluegrass/Dandelion				2120	0.67(0.60)
PPF4 Strawberry-Dandelion-Weeds				1500	2.02(0.20)
PPF5 Rose/Creeping red fescue-Sedge				2000	0.81(0.50)
PPF6 Aw/Rose/Strawberry				2060	2.02(0.20)

15.1 f1 low-bush cranberry Aw (n=206)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: low-bush cranberry (mesic/medium)

Characteristic Species

Tree

[42] aspen

[7] balsam poplar

Shrub

[12] prickly rose

[6] beaked hazelnut*

4] saskatoon

[4] Canada buffaloberry

4 | wild red raspberry

2] low-bush cranberry

1] Salix species

[Forb

[5] wild strawberry

[4] wild sarsaparilla

[3] cream-colored vetchling

[3] bunchberry

[3] dewberry

[1] common fireweed

[1] twinflower

[1] northern bedstraw

Grass

••••••••••••••

[5] bluejoint

[2] hairy wild rye

Site Characteristics

Moisture Regime: MESIC(), SUBHYGRIC()

Nutrient Regime: SUBMESOTROPHIC(), MESOTROPHIC(),

PERMESOTROPHIC()

Topographic Position:

Slope: 0 - 0.5(), 0.5 - 2.5(), 3 - 5(), 6 - 9(), 10 - 15(), 16 - 30()

Aspect:

Soil Characteristics

Organic Thickness: 0 - 5 cm(50), 6 - 15 cm(50)

Humus Form: RAW MODER(10), MOR(90)

Surface Texture: L(10), S(10), SiL(20), SL(20)

Effective Texture: C(30), CL(20), SCL(10), SiC(20), SiCL(10)

Depth to Mottles/Gley: None(70), 0 - 25(20)

Soil Drainage: Well drained(), Moderate well drain()

Parent Material: GF(10), GL(20), M(30)

Soil Subgroup: O.GL(30), BR.GL(10), GL.GL(10)

Soil Type: SM4()

Plant Community Types (n)

	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
PPD6	Aw/Canada buffaloberry (7)
PPD7	Aw/Saskatoon (10)
PPD8	Aw-Pb/HazeInut (45)
PPD9	Aw/Rose/Tall forb (69)
PPD11	Aw/Rose/Low forb (58)
PPD12	Aw-Pb/Dandelion/Kentucky bluegrass (6)
PPD13	Deciduous cutblocks and unseeded clearings (4)
PPD16	Pb-Aw/Willow (7)

^{*}Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

PPD11. Aw/Rose/Low forb

(Populus tremuloides/Rosa acicularis/Low forbs)

n=58 This community type is the same as DMC3 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is part of the low bush cranberry ecosite described by Beckingham and Archibald (1996) and is very similar to the Aw/Rose/Tall forb community type PPD12. The difference in the community types appears to be related to the grazing pressure. The grazing pressure on the Aw/Rose/Tall forb community type appears to cause a reduction in the cover of tall growing forbs (wild sarsaparilla, fireweed, peavine, showy aster) and favours the growth of low growing forbs (bunchberry, dewberry, wintergreen, strawberry). This community type is providing a moderate amount of forage for domestic livestock.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Canopy Cover (%)		r (%)	Environmental Variables					
Mean	Range	Const.	Moisture Regime: MESIC(). SUB	HYGRIC()				
			Nutrient Regime: SUBMESOTRO	OPHIC(), PERME	SOTROPH	IC()		
46	15-85	100	Flaustics (2000): 534(455 507)	M				
			Elevation (range): 524(455-697)	PM1				
3	0-15	33	Slope: 0 - 0.5(), 3 - 5()					
			Assess					
			Aspect:					
13	1-55	100	Soil Drainage: Well drained(), Mo	oderate well drain	n()			
					-17			
2	0-20	36	Soil Subgroup:					
			0.30					
1	0-11	48	Soil Series:					
			Soil Correlation					
4	0-38	85						
			Range Site Category:					
5	0-20	93	Factorial Status Second 42					
			Ecological Status Score: 12					
			Soil Exposure	Mean	Min	Max		
5	0-22	83						
1	0-11	42	Comment:					
EN			Formas Braduction (kg/h	-a (e)				
3	0-20	85	rorage Production (kg/m		8.85-	Max		
			Earth			842		
3	0-30	78				996		
			0.000		12	896		
2	0-12	82		300		030		
				024	402	2734		
1	0-30	53	otal	924	102	2/34		
1	0-9	38	Ecologically Sustainable	Stocking Ra	ate			
			2 70 (4 05-2 02) HA/ALIM or 0.1	15 (0 10-0 20) 41	IM/AC			
3	0-12	92	2.10 (4.00 £.02) (100000 01 0.1	- (0.10 0.20) AU				
2	0-20	77						
_	3 20							
3	0-22	73						
	Mean 46 3 13 2 1 4 5 1 EN 3 3 2 OOT 1 1 3	Mean Range 46 15-85 3 0-15 13 1-55 2 0-20 1 0-11 4 0-38 5 0-20 5 0-22 1 0-11 EN 3 0-20 3 0-30 2 0-12 20T 1 0-9 3 0-12 2 0-20	Mean Range Const. 46 15-85 100 3 0-15 33 13 1-55 100 2 0-20 36 1 0-11 48 4 0-38 85 5 0-20 93 5 0-22 83 1 0-11 42 EN 3 0-20 85 3 0-30 78 2 0-12 82 OOT 1 0-30 53 1 0-9 38 3 0-12 92 2 0-20 77	Mean Range Const. Moisture Regime: MESIC(), SUBMESOTR 46 15-85 100 Elevation (range): 524(455-697) 3 0-15 33 Slope: 0 - 0.5(), 3 - 5() Aspect: Aspect: 13 1-55 100 Soil Drainage: Well drained(), M 2 0-20 36 Soil Subgroup: 3 0-11 48 Soil Subgroup: 4 0-38 85 Soil Correlation: 8 Range Site Category: Ecological Status Score: 12 5 0-20 83 Soil Exposure %: Comment: Forage Production (kg/h 1 0-11 42 Forb Grass Shrub Tree 1 0-20 83 Ecologically Sustainable 2 0-12 82 Total 1 0-9 38 Ecologically Sustainable 2.70 (4.05-2.02) HA/AUM or 0.1 2.70 (4.05-2.02) HA/AUM or 0.1	Mean Range Const. Moisture Regime: MESIC(), SUBHYGRIC() 46 15-85 100 Elevation (range): 524(455-697) M 3 0-15 33 Slope: 0 - 0.5(), 3 - 5() Aspect: Aspect: 13 1-55 100 Soil Drainage: Well drained(), Moderate well drained 2 0-20 36 Soil Subgroup: 3 Soil Series: Soil Correlation: 4 0-38 85 85 Range Site Category: 5 0-20 93 Ecological Status Score: 12 Soil Exposure Mean %: Comment: Forage Production (kg/ha) n= Forb 339 Grass 285 Shrub 300 Tree Total 924 1 0-9 38 Ecologically Sustainable Stocking Region 2 0-12 92 2 0-20 77	Mean Range Const. Moisture Regime: MESIC(), SUBHYGRIC()		

15.1.2 PPD12. Aw-Pb/Dandelion/Kentucky bluegrass

(Populus tremuloides-P.balsamifera/Taraxacum officinale/Poa pratensis)

n=6 This community is the same as DMC3a in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents the Aw or Pb/Rose/Tall forb community that has recieved prolonged heavy grazing. This community type often occurs in relatively small isolated patches created by intensive grazing adjacent to water, salt or temporary holding areas. The species richness and diversity of native shrubs, forbs, and grass is reduced and replaced by grazing resistant clover, dandelion and Kentucky bluegrass.

Natural Subregion: PEACE RIVER PARKLAND
Ecosite: f low-bush cranberry (mesic/medium)
Fcosite Phase: f1 low-bush cranberry Aw

•••••••••••••••••••••••

Plant Composition	Cano	py Cove	r (%)	Environmental Variable	es		
	Mean	Range	Const.	Moisture Regime: MESIC(), S	UBHYGRIC()		
Tree							
ASPEN				Nutrient Regime: MESOTROF	PHIC(), PERMESOT	ROPHIC()	
(Populus tremuloides)	36	20-50	100	Flourism (same): F24(455 CD	7) 14		
BALSAM POPLAR				Elevation (range): 524(455-69	(7) IVI		
(Populus balsamifera)	32	20-40	100	Slope: 0 - 0.5(), 3 - 5()			
Shrub				Aspect:			
PRICKLY ROSE				Aspect.			
(Rosa acicularis)	15	3-30	100	Soil Drainage: Well drained(),	Moderate well drain	()	
SALIX SPECIES							
(Salix spp.)	2	1-3	100	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				Soil Series:			
(Symphoricarpos occidentalis)	7	0-20	80	our series.			
WILD RED RASPBERRY				Soil Correlation:			
(Rubus idaeus)	4	0-10	80				
Forb				Range Site Category:			
BUNCHBERRY				Ecological Status Score: 6			
(Comus canadensis)	1	0-1	50	Ecological Status Score. 0			
COMMON DANDELION				Soil Exposure	Mean	Min	Max
(Taraxacum officinale)	4	1-10	100	%:			
COMMON PINK WINTERGREE	EN			Comment:			
(Pyrola asarifolia)	2	0-10	33	Comment.			
DEWBERRY				Forage Production (kg	/ha) n=		
(Rubus pubescens)	2	0-10	83	rotage t rougeston (ng	Mean	Min	Max
SHOWY ASTER				Forb	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******
(Aster conspicuus)	4	3-10	100	Grass			
UNDIFFERENTIATED CLOVE	2			Shrub			
(Trifolium)	10	0-20	80	Tree			
WILD SARSAPARILLA				Undifferentiated	1178		
(Aralia nudicaulis)	1	0-1	20	Total	1178	0	0
WILD STRAWBERRY							
(Fragaria virginiana)	3	1-3	100				
Grass				Ecologically Sustainab	ole Stocking Ra	ite	
BLUEJOINT				4.05 (4.05-2.02) HA/AUM or	0.10 (0.10-0.20) AU	M/AC	
(Calamagrostis canadensis)	1	0-3	67	The forage production amoun	t listed is an estimat	e.	
HAIRY WILD RYE				and production divides			
(Elymus innovatus)	2	0-10	50				
KENTUCKY BLUEGRASS							
(Poa pratensis)	4	0-10	83				

15.1.3 PPD13. Deciduous cutblocks and unseeded clearings

(Populus tremuloides)

n=4 This community type is the same as DMC10 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents deciduous cutbiocks and clearings that have not been seeded to tame forage species. [Note: it is also the "best fit" for recently burnt areas that remain undescribed in the guide to date.] Marsh reed grass and strawberry initially dominated these areas. As succession occurs an understory of aspen and rose predominate. As the tree cover increases the understory species structure and diversity declines. Initially these clearings are very productive for domestic livestock until the trees grow back and limit accessibility. Care should be taken when grazing these cutblocks that the trees are not damaged and there is sufficient regrowth to regenerate the cutblock.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree				moistare regime. MEOIO()			
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	19	11-28	100	F1			
BALSAM POPLAR				Elevation (range): 636(455-727) M			
(Populus balsamifera)	1	0-1	25	Slope: 0 - 0.5()			
Shrub				A A			
LOW-BUSH CRANBERRY				Aspect:			
(Vibumum edule)	2	0-4	75	Soil Drainage: Well drained()			
PRICKLY ROSE							
(Rosa acicularis)	18	9-22	100	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				0.10			
(Symphoricarpos occidentalis)	3	0-11	75	Soil Series:			
WILD RED RASPBERRY				Soil Correlation:			
(Rubus idaeus)	5	0-16	50				
Forb				Range Site Category:			
DEWBERRY				Facilities Charles Consul 40			
(Rubus pubescens)	2	0-8	50	Ecological Status Score: 18			
LINDLEY'S ASTER				Soil Exposure	Mean	Min	Max
(Aster ciliolatus)	4	0-12	75	%:			
NORTHERN BEDSTRAW							
(Galium boreale)	4	0-14	75	Comment:			
PALMATE-LEAVED COLTSFO	ОТ			Forage Production (kg/ha)	n=		
(Petasites palmatus)	2	0-6	25	rorage Production (kg/ma)	Mean	Min	Max
WILD STRAWBERRY				Forb	580	PVIIII	Max
(Fragaria virginiana)	22	8-38	100	Grass	623		
Grass				Shrub	810		
BLUEJOINT				Tree	010		
(Calamagrostis canadensis)	17	0-45	75	Total		0	0

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

PPD16. Pb-Aw/Willow

(Populus balsamifera-P. tremuloides/Salix spp.)

n=7 This community type is the same as DMC8a in the Dry Mixedwood Guide (Willoughby et al. 2006). It is typical of aspen forests adjacent to sloughs and wet meadows. The edges of the sedge meadows tend to be willow dominated. This community type represents the transition from the meadow edge into the aspen and balsam poplar dominated forest. This community type is relatively moist and nutrient rich, but the high cover of willow limits the light reaching the forest floor inhibiting the growth of understory shrubs, forbs and grass. As a result there is little forage for domestic livestock.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()			
Tree							
ASPEN				Nutrient Regime: PERMESOTROF	PHIC()		
(Populus tremuloides)	13	0-50	57	51			
BALSAM POPLAR				Elevation (range): (455-606) M			
(Populus balsamifera)	29	0-60	86	Slope:			
WHITE BIRCH				A			
(Betula papyrifera)	6	0-20	43	Aspect:			
Shrub				Soil Drainage: Moderate well drain	()		
BRACTED HONEYSUCKLE							
(Lonicera involucrata)	2	0-3	71	Soil Subgroup:			
PRICKLY ROSE				0-10			
(Rosa acicularis)	3	0-10	86	Soil Series:			
SALIX SPECIES				Soil Correlation:			
(Salix spp.)	28	13-43	100				
WILD RED RASPBERRY				Range Site Category:			
(Rubus idaeus)	7	0-20	71	F11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
Forb				Ecological Status Score: 18			
COMMON HORSETAIL				Soil Exposure	Mean	Min	Max
(Equisetum arvense)	3	0-10	86	%:			
DEWBERRY				Comment:			
(Rubus pubescens)	2	0-4	86	Comment:			
LINDLEY'S ASTER				Forage Production (kg/ha) n=		
(Aster ciliolatus)	1	0-5	33	rollage rioduction (kg/lla	Mean	Min	Max
TALL LUNGWORT				Forb	525	350	700
(Mertensia paniculata)	4	0-20	86	Grass	130	000	260
WILD STRAWBERRY				Shrub	155	50	260
(Fragaria virginiana)	2	0-5	86	Tree	75	00	150
Grass				Total	885	400	1370
BLUEJOINT				1000	003	400	1370
(Calamagrostis canadensis)	4	1-20	100				
				Ecologically Sustainable S	Stocking Ra	ate	

Ecologically Sustainable Stocking Rate

2.70 (4.05-2.02) HA/AUM or 0.15 (0.10-0.20) AUM/AC

PPD6. Aw/Canada buffaloberry

(Populus tremuloides/Shepherdia canadensis)

n=7 This community type is the same s DMC5 in the Dry Mixedwood Guide (Willoughby et al. 2006). It was found on mesic sites at higher elevations in the Saddle and Birch hills. Beckingham (1993) felt the Aw/Buffaloberry type was slightly drier and had a slightly poorer nutrient regime than the model Aw/Rose community types. This type is providing a moderate amount of forage for domestic livestock, but the drier site conditions and poorer nutrient status will limit regrowth after grazing. Buffaloberry the predominant shrub species in this community type, is generally unpalatable to livestock.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Plant Composition	Cano	py Cove	er (%)	Environmental Variables				
_	Mean	Range	Const.	Moisture Regime: MESIC()				
Tree								
ASPEN				Nutrient Regime: MESOTROPHIC()				
(Populus tremuloides)	52	30-85	100	Elevation (range): 556(455-758) M				
Shrub				, , , , , , , , , , , , , , , , , , , ,				
BRACTED HONEYSUCKLE				Slope: 0 - 0.5(), 10 - 15()				
(Lonicera involucrata)	1	0-2	20	Aspect:				
CANADA BUFFALOBERRY				Aspect.				
(Shepherdia canadensis)	25	11-38	100	Soil Drainage: Well drained()				
LOW-BUSH CRANBERRY								
(Vibumum edule)	3	0-14	40	Soil Subgroup:				
PRICKLY ROSE				0.70				
(Rosa acicularis)	8	2-17	100	Soil Series:				
WILD RED RASPBERRY				Soil Correlation:				
(Rubus idaeus)	3	0-8	60					
Forb				Range Site Category:				
BUNCHBERRY				F-1-1-101 0 10				
(Comus canadensis)	8	0-21	80	Ecological Status Score: 18				
CREAM-COLORED VETCHLI	NG			Soil Exposure	Mean	Min	Max	
(Lathyrus ochroleucus)	8	1-18	100	%:			11740	
DEWBERRY				***				
(Rubus pubescens)	2	0-9	60	Comment:				
TWINFLOWER				Forage Production (kg/ha)	n=			
(Linnaea borealis)	3	0-8	60	rorage Production (kg/ha)		A4:-		
Grass				Forb	Mean 304	Min	Max	
BLUEJOINT				Grass	112			
(Calamagrostis canadensis)	2	1-7	80	Shrub				
HAIRY WILD RYE				Tree	346			
(Elymus innovatus)	5	1-15	100		700			
				Total	762	0	0	

Ecologically Sustainable Stocking Rate

2.70 (4.05-2.02) HA/AUM or 0.15 (0.10-0.20) AUM/AC

PPD7. Aw/Saskatoon

(Populus tremuloides/ Amelanchier alnifolia)

n=10 This community type is the same as DMC7 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found on mesic, well drained south facing slopes that overlook rivers and creeks. Generally, hazelnut, chokecherry, saskatoon and snowberry are indicative of the region and are usually found associated with each other. When saskatoon predominates it usually occurs on south and west facing slopes. Saskatoon provides important browse for wild unguiates. Livestock also find saskatoon palatable and in areas where there is extensive cattle grazing this species can be heavily browsed.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Plant Composition	Cano	py Cove	er (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree				mondary ringario. m.zoro()			
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	55	35-70	100				
BALSAM POPLAR				Elevation (range): 524(455-630) M			
(Popuius balsamifera)	4	0-20	44	Slope: 3 - 5()			
Shrub							
CHOKE CHERRY				Aspect: Southerly(), Westerly()			
(Prunus virginiana)	7	0-30	67	Soil Drainage: Well drained()			
PRICKLY ROSE				our brainego. From diamed()			
(Rosa acicularis)	12	1-31	100	Soil Subgroup:			
SASKATOON							
(Amelanchier alnifolia)	21	15-30	100	Soil Series:			
SNOWBERRY (BUCKBRUSH)			Soil Correlation:			
(Symphoricarpos occidentalis)		0-12	89	Son Correlation.			
WILD RED RASPBERRY				Range Site Category:			
(Rubus idaeus)	5	0-17	67				
Forb				Ecological Status Score: 18			
CREAM-COLORED VETCHLI	NG			Soil Exposure	Mean	Min	Max
(Lathyrus ochroleucus)	2	0-10	78	%:	mean		William
DEWBERRY							
(Rubus pubescens)	2	0-10	67	Comment:			
WILD SARSAPARILLA				Former Production (kg/ha)	n=		
(Aralia nudicaulis)	6	0-20	89	Forage Production (kg/ha)		9.91	
WILD STRAWBERRY				Forb	Mean	Min	Max 587
(Fragaria virginiana)	1	0-10	78	Grass	419 153	250 42	264
Grass				Shrub	524	514	534
BLUEJOINT				Tree	524	514	534
(Calamagrostis canadensis)	3	1-10	78		4000	900	4205
,				Total	1096	806	1385

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

PPD8. Aw-Pb/HazeInut

(Populus tremuloides-Populus balsamifera/Corylus cornuta)

n=45 This community is the same as DMC4 in the Dry Mixedwood Guide (Willoughby et al. 2006). Beaked hazelnut is a common component of many of the deciduous stands in the region. The presence of hazelnut appears to be indicative of warmer sites and have some fire history (Downing and Karpuk 1992). This community tends to occur on moderately to well drained, fine textured and gently sloping till deposits. The total forage productivity of this community type is only moderate, but the majority of the production is coming from hazelnut, which is largely unpalatable to livestock at proper stocking levels. The high cover of hazelnut also restricts access to livestock, limiting the forage availability.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Plant Composition	Cano	Canopy Cover (%)		Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC(), SUBHY	GRIC()		
Tree							
ASPEN				Nutrient Regime: MESOTROPHIC()	PERMESO	rophic()	
(Populus tremuloides)	38	3-75	100	Elevation (range): 455(-) M			
BALSAM POPLAR				, , , , , ,			
(Populus balsamifera)	5	0-60	38	Slope: 0 - 0.5(), 10 - 15()			
WHITE BIRCH				Aspect			
(Betula papyrifera)	2	0-70	4	Aspect			
Shrub				Soil Drainage: Well drained(), Model	rate well drain	1()	
BEAKED HAZELNUT						,	
(Corylus comuta)	39	12-70	100	Soil Subgroup:			
LOW-BUSH CRANBERRY				Sail Sarias			
(Vibumum edule)	3	0-16	71	Soil Series:			
PRICKLY ROSE				Soil Correlation:			
(Rosa acicularis)	9	0-25	82				
SASKATOON				Range Site Category:			
(Amelanchier alnifolia)	4	0-18	89	Englacian Status Seaso, 10			
SNOWBERRY				Ecological Status Score: 18			
(Symphonicarpos albus)	4	4-10	100	Soil Exposure	Mean	Min	Max
Forb				%:			
BUNCHBERRY				Comment:			
(Comus canadensis)	6	0-8	84	Comment.			
CREAM-COLORED VETCHLI	NG			Forage Production (kg/ha)	n=		
(Lathyrus ochroleucus)	5	1-10	100	rorage rroduction (kg/na)	Mean	Min	Max
DEWBERRY				Forb	457	398	520
(Rubus pubescens)	4	0-5	87	Grass	77	2	200
LINDLEY'S ASTER				Shrub	441	348	522
(Aster ciliolatus)	2	0-7	80	Tree	~~ *	040	022
WILD SARSAPARILLA				Total	975	748	1242
(Aralia nudicaulis)	11	0-25	93	Total	3,3	740	1272
WILD VETCH							
(Vicia americana)	1	0-2	67	Ecologically Sustainable St	tocking Ra	ate	
Grass				2.70 (4.05-1.62) HA/AUM or 0.15 (0).10-0.25) AU	M/AC	
BLUEJOINT				,	,		
(Calamagrostis canadensis)	4	0-10	87				

PPD9. Aw/Rose/Tall forb

(Populus tremuloides/Rosa acicularis/Tall forbs)

n=69 This community type is the same as DMC2 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is part of the low bush cranberry ecosite outlined by Beckingham and Archibald (1996). This community type is also very similar to the Aspen/Rose/Low forb community type, but the cover of forbs is much higher. This appears to be related to the grazing pressure. With higher grazing pressure on the Aw/Rose/Tall forb community type it appears to cause a reduction in the cover of tall growing forbs (wild sarsaparilla, fireweed, peavine, showy aster) and favours the growth of low growing forbs (bunchberry, dewberry, wintergreen, strawberry). This community type is providing a moderate amount of forage for domestic livestock.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f1 low-bush cranberry Aw

Plant Composition	Canopy Cover (%)		r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC(), SUBHY	/GRIC()		
Tree							
ASPEN				Nutrient Regime: MESOTROPHIC(). PERMESOT	ROPHIC()	
(Populus tremuloides)	51	15-70	100	Elevation (range): 496(455-606) M			
BALSAM POPLAR				, , , , , , , , , , , , , , , , , , , ,			
(Populus balsamifera)	4	0-10	58	Slope: 0 - 0.5(), 0.5 - 2.5(), 10 - 15()		
Shrub				Aspect:			
BEAKED HAZELNUT				Aspect.			
(Corylus comuta)	2	0-12	34	Soil Drainage: Well drained(), Mode	erate well drain	n()	
BRACTED HONEYSUCKLE							
(Lonicera involucrata)	2	0-32	45	Soil Subgroup:			
LOW-BUSH CRANBERRY				Soil Series:			
(Vibumum edule)	5	0-36	76	Soli Series.			
PRICKLY ROSE				Soil Correlation:			
(Rosa acicularis)	12	0-24	91				
WILD RED RASPBERRY				Range Site Category:			
(Rubus idaeus)	4	0-10	83	Ecological Status Score: 18			
Forb				Ecological Status Score. 10			
COMMON FIREWEED				Soil Exposure	Mean	Min	Max
(Epilobium angustifolium)	3	0-7	61	%:			
CREAM-COLORED VETCHLI	NG			Comment:			
(Lathyrus ochroleucus)	7	0-27	96	Comment.			
DEWBERRY				Forage Production (kg/ha)	n=		
(Rubus pubescens)	4	0-7	87	· orago · rocation (righter)	Mean	Min	Max
LINDLEY'S ASTER				Forb	507	72	988
(Aster ciliolatus)	1	0-4	76	Grass	169		444
PALMATE-LEAVED COLTSFO	TOC			Shrub	282	118	378
(Petasites palmatus)	2	0-10	78	Tree			
WILD SARSAPARILLA				Total	958	190	1810
(Aralia nudicaulis)	11	0-57	79				
WILD STRAWBERRY							
(Fragaria virginiana)	3	0-4	87	Ecologically Sustainable S	Stocking Ra	ate	
Grass				2.02 (4.05-1.35) HA/AUM or 0.20	(0.10-0.30) AU	M/AC	
BLUEJOINT							
(Calamagrostis canadensis)	5	0-65	93				
HAIRY WILD RYE							
(Elymus innovatus)	3	0-30	70				

15.2 f2 low-bush cranberry Aw-Sw (n=7)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: low-bush cranberry (mesic/medium)

Characteristic Species

Tree

- [42] white spruce
- [33] aspen

Shrub

- 9 prickly rose
- 8] low-bush cranberry
- 7] wild red raspberry
- 3] dewberry

Forb

- 8] wild sarsaparilla
- [4] bunchberry
 - 3 | tall lungwort
- 2] common horsetail
- [2] common fireweed

Grass

- [10] bluejoint
- *Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

Site Characteristics

Moisture Regime: MESIC(), SUBHYGRIC()

Nutrient Regime: MESOTROPHIC(), PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness: 0 - 5 cm(30), 6 - 15 cm(70)

Humus Form: MOR(90)

Surface Texture: CL(10), L(10), S(10), SiL(30), SL(10)

Effective Texture: C(20), CL(20), SCL(10), SiC(20), SiCL(10)

Depth to Mottles/Gley: None(70), 0 - 25(20)

Soil Drainage: Well drained(), Moderate well drain()

Parent Material: GF(10), GL(10), L(10), M(30)

Soil Subgroup: E.EB(10), O.GL(30), BR.GL(10), GL.GL(10)

Soil Type: SM4(70)

Plant Community Types (n)

PPE4 Sw-Aw/Low bush cranberry (5)

PPE2 Aw-Sw/Rose/Marsh reed grass (2)

15.2.1 PPE2. Aw-Sw/Rose/Marsh reed grass

(Populus tremuloides-Picea glauca/Rosa acicularis/Calamagrostis canadensis)

n=2 This community is the same as DMD5 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents a highly productive aspen community that is succeeding to white spruce. The presence of the tall forbs wild sarsaparilla and fireweed, indicate a high nutrient regime and a light grazing regime. At present this community type has a good level of forage for domestic livestock.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f2 low-bush cranberry Aw-Sw

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC(), SUBHY	GRIC()		
Tree					()		
ASPEN				Nutrient Regime: MESOTROPHIC()	PERMESOT	ROPHIC()	
(Populus tremuloides)	53	35-70	100	Elevation (range): 527(455-600) M			
WHITE SPRUCE							
(Picea glauca)	55	50-60	100	Slope:			
Shrub				Aspect:			
BRISTLY BLACK CURRANT				napeut.			
(Ribes lacustre)	5	0-10	50	Soil Drainage: Well drained(), Mode	rate well drain	n()	
LOW-BUSH CRANBERRY							
(Vibumum edule)	8	6-10	100	Soil Subgroup:			
PRICKLY ROSE				Soil Series:			
(Rosa acicularis)	13	3-23	100	Gon Gones.			
WILD RED RASPBERRY	_			Soil Correlation:			
(Rubus idaeus)	8	0-15	50				
Forb				Range Site Category:			
BUNCHBERRY				Ecological Status Score: 18			
(Comus canadensis)	4	0-8	50				
COMMON FIREWEED				Soil Exposure	Mean	Min	Max
(Epilobium angustifolium)	2	1-3	100	%:			
COMMON HORSETAIL		0.0		Comment:			
(Equisetum arvense)	2	0-3	50				
DEWEERRY	0	0.5	50	Forage Production (kg/ha)	n=		
(Rubus pubescens)	3	0-5	50		Mean	Min	Max
TALL LUNGWORT	4	4.7	100	Forb	534		
(Mertensia paniculata)	4	1-7	100	Grass	468		
WILD SARSAPARILLA	4	3-4	100	Shrub	440		
(Aralia nudicaulis)	4	3-4	100	Tree			
Grass				Total	1442	0	0
BLUEJOINT (Calamagnatic apparatus)	47	2 20	100				
(Calamagrostis canadensis)	17	3-30	100	Ecologically Sustainable St	tocking Ra	ate	

^{4.05 (4.05-2.02)} HA/AUM or 0.10 (0.10-0.20) AUM/AC

PPE4. Sw-Aw/Low bush cranberry

(Picea glauca-Populus tremuloides/Viburnum edule)

n=5 This community is the same as DMD10 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is similar to PPE2 but is successionally more advanced. As succession continues in the absence of disturbance on these sites there will be a corresponding drop in forage production. A spruce dominated forest generally produces about 1/3 of an undisturbed deciduous dominated community.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f2 low-bush cranberry Aw-Sw

Plant Composition	Cano	py Cove	er (%)	Environmental Variables		
	Mean	Range	Const.	Moisture Regime: MESIC(), SUBHY(GRIC()	
Tree						
ASPEN				Nutrient Regime: MESOTROPHIC(),	PERMESOT	ROPHIC()
(Populus tremuloides)	14	1-30	100	Elevation (range): 527(455-600) M		
WHITE SPRUCE						
(Picea glauca)	28	20-40	100	Slope:		
Shrub				Aspect:		
LOW-BUSH CRANBERRY				Aspect		
(Vibumum edule)	8	1-10	100	Soil Drainage: Well drained(), Moder	ate well drain	n()
PRICKLY ROSE						
(Rosa aciculans)	4	3-10	100	Soil Subgroup:		
RED-OSIER DOGWOOD				Soil Series:		
(Comus stolonifera)	9	0-30	80	Soil Series;		
WILD RED RASPBERRY				Soil Correlation:		
(Rubus idaeus)	5	0-10	80			
Forb				Range Site Category:		
BUNCHBERRY				Ecological Status Score: 18		
(Comus canadensis)	3	0-10	80	Ecological Status Score, 16		
COMMON FIREWEED				Soil Exposure	Mean	Min
(Epilobium angustifolium)	2	0-3	80	%:		
COMMON HORSETAIL				Comment:		
(Equisetum arvense)	1	0-3	60	Comment.		
DEWBERRY				Forage Production (kg/ha)	n=	
(Rubus pubescens)	2	1-3	100	rotago i rosacción (ngma)	Mean	Min
TALL LUNGWORT				Forb	moun	******
(Mertensia paniculata)	1	1-3	100	Grass		
WILD SARSAPARILLA				Shrub		
(Aralia nudicaulis)	11	0-30	80	Tree		
Grass				Undifferentiated	1150	
BLUEJOINT				Total	1150	0
(Calamagrostis canadensis)	3	0-10	80	1 0 001	1100	0

Ecologically Sustainable Stocking Rate

4.05 (4.05-2.02) HA/AUM or 0.10 (0.10-0.20) AUM/AC

Max

Max

0

The forage production amount listed is an estimate.

15.3 f3 low-bush cranberry Sw (n=1)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: low-bush cranberry (mesic/medium)

Characteristic Species

Tree

[60] white spruce

Shrub

3 | bracted honeysuckle

[1] low-bush cranberry

Forb

[10] twinflower

3 | common horsetail

1] dewberry

[1] bunchberry

Grass

[3] purple oat grass

Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: MESIC(), SUBHYGRIC()

Nutrient Regime: MESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness: 0 - 5 cm(10), 6 - 15 cm(80)

Humus Form: MOR(90)

Surface Texture: C(10), CL(10), L(10), Si(10), SiL(20), SL(20)

Effective Texture: C(30), CL(20), SiC(10)

Depth to Mottles/Gley: None(60), 0 - 25(30)

Soil Drainage: Well drained(), Moderate well drain()

Parent Material: GL(10), M(30)

Soil Subgroup: O.GL(40), D.GL(10), BR.GL(10), GL.GL(10)

Soil Type: SM4(80)

Plant Community Types (n)

PPE5 Sw/Moss (1)

15.3.1

PPE5. Sw/Moss

(Picea glauca/Moss)

n=1 This committy is the same as DMD11 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is similar to community PPE4 Sw-Aw/Low bush cranberry, but is successionally more advanced. As succession continues in the absence of disturbance on these sites there will be a corresponding drop in forage production. A spruce dominated forest generally produces 1/3 of an undisturbed deciduous and mixed wood dominated community type.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f3 low-bush cranberry Sw

Plant Composition	Cano	py Cove	r (%)	Environm
	Mean	Range	Const.	Moisture Re
Tree				
WHITE SPRUCE				Nutrient Reg
(Picea glauca)	60		100	Elevation (ra
Shrub				Cleagion (19
BRACTED HONEYSUCKLE				Slope:
(Lonicera involucrata)	3		100	Aspect
LOW-BUSH CRANBERRY				Aspect
(Vibumum edule)	1		100	Soil Drainag
PRICKLY ROSE				
(Rosa aciculans)	1		100	Soil Subgrou
RED-OSIER DOGWOOD				Soil Series:
(Comus stolonifera)	3		100	Son Senes.
Forb				Soil Correlat
BUNCHBERRY				
(Comus canadensis)	1		100	Range Site
COMMON HORSETAIL				Ecological S
(Equisetum arvense)	3		100	Ecological
DEWBERRY				Soil Expo
(Rubus pubescens)	1		100	%:
TWINFLOWER				Comment:
(Linnaea borealis)	10		100	Comment.
Grass				Forage P
PURPLE OAT GRASS				
(Schizachne purpurascens)	3		100	Forb

Moisture Regime: MESIC(), SU	JBHYGRIC()		
Nutrient Regime: MESOTROP	HIC(), PERMESOT	ROPHIC()	
Elevation (range): 600(-) M			
Slope			
Aspect			
Soil Drainage: Well drained(), I	Moderate well drain	n()	
Soil Subgroup:			
Soil Series			
Soil Correlation:			
Range Site Category			
Ecological Status Score: 18			
Soil Exposure	Mean	Min	Max
%:			
Comment:			
Forage Production (kg	/ha) n=		
	/ha) n= Mean	Min	Max
Forb		Min	Max
Forb Grass		Min	Max
Forb Grass Shrub		Min	Max
Forb Grass Shrub Tree	Mean	Min	Max
Forb Grass Shrub		Min	Ma

Ecologically Sustainable Stocking Rate

40.47 (40.47-40.47) HA/AUM or 0.01 (0.01-0.01) AUM/AC

Generally this community type would be rated as non-use in the calculation of carrying capacity for a grazing disposition, but in some cases it may be used. The forage production amount listed is an estimate.

15.4 f4 low-bush cranberry Tame (n=68)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: low-bush cranberry (mesic/medium)

Characteristic Species

Tree

[4] aspen

Shrub

[3] prickly rose

Forb

[17] common dandelion

[8] Undifferentiated clover

[7] wild strawberry

Grass

[14] Creeping red fescue

[11] awnless brome

8] Kentucky bluegrass

[5] timothy

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: MESIC(), SUBHYGRIC()

Nutrient Regime: MESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley

Soil Drainage: Well drained(), Moderate well drain()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPF6	Aw/Rose/Strawberry (5)	
PPF1	Brome-Timothy (9)	
PPF2	Creeping red fescue-Brome-Timothy (12)	
PPF3	Creeping red fescue-Kentucky bluegrass/Dandelion (31)	
PPF5	Rose/Creeping red fescue-Sedge (5)	
PPF4	Strawberry-Dandelion-Weeds (6)	

PPF1. Brome-Timothy

(Bromus inermis-Phleum pratense)

n≈9 This community type is the same as DMB12 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents healthy condition tame pasture on mesic sites that were seeded with a timothy, smooth brome, meadow brome, creeping red fescue, alfalfa, clover mixture. Timothy establishes much quicker than creeping red fescue or smooth brome on pastures that have been recently seeded. Eventually creeping red fescue and smooth brome will outcompete timothy and this community will likely become dominated by creeping red fescue and smooth brome. Heavy to moderate grazing pressure will cause the tall growing grass species (Brome, timothy) to decline and allows low growing Kentucky bluegrass and dandelion to increase to form communities PPF2 and PPF3. Continued heavy grazing pressure will eventually lead to a community dominated by dandelion and weeds (PPF4). Light or no grazing or poor seed establishment will allow native trees, shrubs, forbs and grass to invade onto these sites (PPF5 and PPF6).

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/med:um) Ecosite Phase: 14 low-bush cranberry Tame

Plant Composition	Canopy Cover (%)		er (%)	Environmental Variable	s		
Shrub	Mean	Range	Const.	Moisture Regime: MESIC(), SU	BHYGRIC()		
PRICKLY ROSE				Nutrient Regime: MESOTROPH	HIC()		
(Rosa aciculans)	1	0-4	22	Elevation (compa): 597/457 606	. 4.4		
Forb				Elevation (range): 587(457-606) 101		
COMMON DANDELION				Slope:			
(Taraxacum officinale) UNDIFFERENTIATED CLOVE	10 ER	0-45	67	Aspect			
(Trifolium) WILD STRAWBERRY	4	0-30	44	Soil Drainage: Well drained(), M	foderate well drain	n()	
(Fragana virginiana)	15	0-47	78	Soil Subgroup:			
Grass							
AWNLESS BROME				Soil Series:			
(Bromus inermis)	49	25-77	100	Soil Correlation:			
CREEPING RED FESCUE							
(Festuca rubra)	7	0-35	78	Range Site Category			
KENTUCKY BLUEGRASS				Facines Status Same 9			
(Poa pratensis)	1	0-3	33	Ecological Status Score: 8			
MEADOW BROME				Soil Exposure	Mean	Min	Max
(Bromus biebersteinii)	10	0-56	44	%:			*******
TIMOTHY				Comment:			
(Phleum pratense)	8	0-60	46				
				Farmer Dead and and and			

Forage Production ((kg/ha)	n=
---------------------	---------	----

	Mean	Min	Max	
Forb				
Grass				
Shrub				
Tree				
Undifferentiated	3884			
Total	3884	0	0	

Ecologically Sustainable Stocking Rate

0.40 (0.40-0.31) HA/AUM or 1.01 (1.01-1.31) AUM/AC

15.4.2 PPF2. Creeping red fescue-Brome-Timothy

(Festuca rubra -Bromus spp.-Phleum pratense)

n=12 This community type is the same as DMB13 in the Dry Mixedwood Guide (Willoughby et al. 2006). It develops on mesic sites that were seeded to a mixture of brome, timothy or other productive species with some grazing resistant species like creeping red fescue. A history of moderate to heavy grazing pressure results in a decline in the proportions of tall, productive species and an increase in the grazing resistant species. Heavy continuous grazing will allow Kentucky bluegrass and dandelion to invade into the stand to form a Kentucky bluegrass or Quackgrass/Dandelion dominated community type.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: flow-bush cranberry (mesic/medium) Ecosite Phase: f4 low-bush cranberry Tame

•••••••••••••

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree				, , , , , , , , , , , , , , , , , , ,			
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	2	0-10	33	F1			
Shrub				Elevation (range): 609(-) M			
PRICKLY ROSE				Slope:			
(Rosa acicularis)	2	0-5	75				
Forb				Aspect:			
COMMON DANDELION				Soil Drainage: Well drained()			
(Taraxacum officinale)	10	0-31	83	()			
UNDIFFERENTIATED CLOV	ER			Soil Subgroup:			
(Trifolium)	19	0-72	83	0.10			
WILD STRAWBERRY				Soil Series:			
(Fragana virginiana)	8	0-35	50	Soil Correlation:			
Grass							
AWNLESS BROME				Range Site Category:			
(Bromus inermis)	15	0-75	50	Ecological Status Score: 4			
CREEPING RED FESCUE				Ecological Status Score. 4			
(Festuca rubra)	41	9-78	100	Soil Exposure	Mean	Min	Max
KENTUCKY BLUEGRASS				%:			
(Poa pratensis)	5	0-23	67	Comment:			
TIMOTHY				Comment.			
(Phleum pratense)	9	0-25	83	Forage Production (kg/ha)	n=		
					Mean	Min	Max
				Forb			
				Grass			
				Shrub			
				Tree			
				Undifferentiated	2120		

Total

Ecologically Sustainable Stocking Rate

0.51 (0.58-0.40) HA/AUM or 0.79 (0.70-1.01) AUM/AC

2120

15.4.3 PPF3. Creeping red fescue-Kentucky bluegrass/Dandelion

(Festuca rubra-Poa pratensis/Taraxacum officinale)

n=31 This community is the same as DMB14 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is representative of heavily grazed mesic sites and is dominated by grazing resistant species like Kentucky bluegrass, creeping red fescue or quackgrass. Heavy grazing tends to favour the growth of these low-growing or rhizomatuous species and that of weedy or disturbance induced species such as dandelion. These sites have poor health ratings and lower production than community types dominated by species like timothy and brome.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f4 low-bush cranberry Tame

Plant Composition	Cano	py Cove	er (%)	Environmental Variables			
- L	Mean	Range	Const.	Moisture Regime: MESIC()			
Shrub WILD RED RASPBERRY				Nutrient Regime: MESOTROPHIC()			
(Rubus idaeus)	1	0-30	25				
Forb				Elevation (range): 658(576-701) M			
COMMON DANDELION				Slope:			
(Taraxacum officinale)	21	0-42	91	Assest			
UNDIFFERENTIATED CLOV	ER			Aspect:			
(Trifolium)	13	0-45	100	Soil Drainage: Well drained()			
WILD STRAWBERRY							
(Fragaria virginiana)	2	0-4	72	Soil Subgroup:			
Grass				Soil Series:			
AWNLESS BROME				Soli Series.			
(Bromus inermis)	2	0-3	25	Soil Correlation:			
CREEPING RED FESCUE							
(Festuca rubra)	15	0-75	40	Range Site Category:			
KENTUCKY BLUEGRASS				Ecological Status Score: 0			
(Poa pratensis)	15	0-36	78	Loological Status Source, S			
QUACK GRASS				Soil Exposure	Mean	Min	Max
(Agropyron repens)	5	0-45	20	%:			
TIMOTHY				Comment:			
(Phleum pratense)	3	0-13	53				
				Forage Production (kg/ha)	n=		

Forage	Prod	luction	(kg/ha	n=
--------	------	---------	--------	----

	Mean	Min	Max	
Forb				
Grass				
Shrub				
Tree				
Undifferentiated	2120			
Total	2120	0	0	

Ecologically Sustainable Stocking Rate

0.67 (1.35-0.40) HA/AUM or 0.60 (0.30-1.01) AUM/AC

15.4.4

PPF4. Strawberry-Dandelion-Weeds

(Fragaria virginiana-Taraxacum officinale-Cirsium arvense)

n=6 This community is the same as DMB15 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents extremely heavily grazed mesic pasture sites. Generally, all that is left growing on these areas is dandelion. There also tends to be a lot of bare soil, which provides a place for noxious weeds (Canada thistle) to become established.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f4 low-bush cranberry Tame

Plant Composition	Cano	Canopy Cover (%)				
	Mean	Range	Const			
Forb						
CANADA THISTLE						
(Cirsium arvense)	5	0-29	33			
COMMON DANDELION						
(Taraxacum officinale)	44	19-75	100			
UNDIFFERENTIATED CLO	OVER					
(Trifolium)	1	0-6	50			
WILD STRAWBERRY						
(Fragaria virginiana)	2	0-8	50			
Grass						
CREEPING RED FESCUE						
(Festuca rubra)	1	0-1	67			
KENTUCKY BLUEGRASS						
(Poa pratensis)	17	3-74	100			
TIMOTHY						
(Phieum pratense)	2	0-7	67			

En	vironmental Variables
Mo	sture Regime: MESIC()
Nut	rient Regime: MESOTROPHIC()
Ele	vation (range): 455(-) M
Slo	oe:
Asp	ect:
Soi	Drainage: Well drained()
Soi	Subgroup:
Soi	Series:
Soi	Correlation:
Rai	ge Site Category:

Soil Exposure	Mean	Min	Max
%:			

Comment:

Forage Production (kg/ha) n=

Ecological Status Score: 0

	Mean	Min	Мах
Forb			
Grass			
Shrub			
Tree			
Undifferentiated	1500		
Total	1500	0	0

Ecologically Sustainable Stocking Rate

2.02 (40.47-1.35) HA/AUM or 0.20 (0.01-0.30) AUM/AC

15.4.5 PPF5. Rose/Creeping red fescue-Sedge

(Rosa acicularis/Festuca rubra-Carex spp.)

n=5 This community is the same as DMB20 in the Dry Mixedwood Guide (Willoughby et al. 2006). As seeded pastures undergo succession back to a deciduous dominated forest they are often invaded by rose and willow before the trees become dominant. This community represents an early successional community of PPF6. Burning, cultivation and spraying with herbicide are all options that can be considered in order to control shrub regrowth. On mesic sites marsh reed grass tends to be the native grass that invades. In contrast hairy will invade on drier sites.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f4 low-bush cranberry Tame

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree							
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	6	0-15	40	Elevation (range): 603(600-606) M			
Shrub				, , , , ,			
PRICKLY ROSE				Slope:			
(Rosa acicularis)	12	1-25	100	Aspect:			
Forb				Aspect.			
COMMON DANDELION				Soil Drainage: Well drained()			
(Taraxacum officinale)	2	1-7	100				
UNDIFFERENTIATED CLOVE	ER			Soil Subgroup:			
(Trifolium)	7	0-14	80	Soil Series:			
WILD STRAWBERRY				Sui Series.			
(Fragaria virginiana)	8	1-23	100	Soil Correlation:			
Grass							
BLUEJOINT				Range Site Category:			
(Calamagrostis canadensis)	3	0-13	20	Ecological Status Score: 0			
CREEPING RED FESCUE				Ecological Status Score. C			
(Festuca rubra)	19	0-64	80	Soil Exposure	Mean	Min	Max
HAIRY WILD RYE				%:			
(Elymus innovatus)	1	0-3	40	Comment:			
KENTUCKY BLUEGRASS				Comment.			
(Poa pratensis)	2	0-7	60	Forage Production (kg/ha)	n=		
SEDGE SPECIES					Mean	Min	Max
(Carex spp.)	7	0-24	80	Forb			
TIMOTHY				Grass			
(Phleum pratense)	4	0-12	60	Shrub			
				Tree			
				Undifferentiated	2000		
				Total	2000	0	0

Ecologically Sustainable Stocking Rate

0.81 (1.35-0.51) HA/AUM or 0.50 (0.30-0.79) AUM/AC

15.4.6

PPF6. Aw/Rose/Strawberry

(Populus tremuloides/Rosa acicularis/Fragaria virginiana)

n=5 This community type is the same as DMB21 in the Dry Mixedwood guide (Willoughby et al. 2006). It occurs in mesic cultivated pastures that are being invaded by aspen. No grazing pressure or only light grazing pressure allows aspen to recolonize these cultivated pastures. Burning, cultivation and spraying with herbicide are all options that can be considered in order to control aspen regrowth.

Natural Subregion: PEACE RIVER PARKLAND Ecosite: f low-bush cranberry (mesic/medium) Ecosite Phase: f4 low-bush cranberry Tame

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: MESIC()			
Tree				module (tegine, medic)			
ASPEN				Nutrient Regime: MESOTROPHIC()			
(Populus tremuloides)	14	8-20	100	Figure (
BALSAM POPLAR				Elevation (range): 600(-) M			
(Populus balsamifera)	1	0-1	40	Slope:			
Shrub							
BEAKED WILLOW				Aspect:			
(Salix bebbiana)	1	0-4	20	Soil Drainage: Well drained()			
PRICKLY ROSE							
(Rosa acicularis)	3	1-4	100	Soil Subgroup:			
SNOWBERRY (BUCKBRUSH)				0.10			
(Symphoricarpos occidentalis)	1	0-2	60	Soil Series:			
Forb				Soil Correlation:			
COMMON DANDELION							
(Taraxacum officinale)	15	0-40	80	Range Site Category:			
UNDIFFERENTIATED CLOVE	R			F-1-1-1011-0-10			
(Trifolium)	2	0-5	60	Ecological Status Score: 0			
WILD STRAWBERRY				Soil Exposure	Mean	Min	Max
(Fragaria virginiana)	5	2-12	100	%:			
Grass				141			
BLUEJOINT				Comment:			
(Calamagrostis canadensis)	1	0-4	40	Forage Production (kg/ha)	n=		
CREEPING RED FESCUE				r crage r roduction (kg/ma)	Mean	Min	Max
(Festuca rubra)	2	0-5	40	Forb	mean	Milli	Appear
HAIRY WILD RYE				Grass			
(Elymus innovatus)	6	1-15	100	Shrub			
KENTUCKY BLUEGRASS				Tree			
(Poa pratensis)	5	0-8	60	Undifferentiated	2060		
TIMOTHY				Total	2060	0	0
(Phleum pratense)	1	0-4	20	1000	2000	9	

Ecologically Sustainable Stocking Rate

2.02 (4.05-0.51) HA/AUM or 0.20 (0.10-0.79) AUM/AC

16.0 g dogwood (subhygric/rich)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This description was taken from Beckingham and Archibald (1996) for the Boreal Mixedwood. The dogwood ecosite is subhygric and nutrient rich. These sites are commonly found in mid or lower slope topographic positions or near water courses where they receive nutrient-rich seepage or flood waters for a portion of the growing season. Fine-textured glaciolacustrine and till parent materials are common and plant communities tend to be high in species richness, cover and diversity. The dogwood ecosite tends to be the most productive in the Boreal Mixedwood.

dogwood Pb-Aw low-bush cramberry Aw-Sw

Successional Relationships

Succession proceeds slowly after disturbance due to the profileration of understory plant species. This explosion of vegetation can make tree establishment difficult. Once spruce becomes established, high growth rates can be expected. When these sites are cleared for tame pasture they are very productive.

Indicator Species

river alder bluejoint
red-osier dogwood common horsetail
balsam poplar prickly rose
Scouler's willow Undifferentiated willow

Site Characteristics

(n=76)

Moisture Regime: SUBHYGRIC(), HYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Poistion: Level(), Lower slope(), Midslope()

Slope: 0 - 0.5(), 3 - 5()

Aspect: Variable()

Soil Characteristics

Organic Thickness: 0 - 5 cm(), 6 - 15 cm(), 16 - 25 cm()

Humus Form: RAW MODER(), MOR()

Surface Texture: CL(), L(), SiCL(), SiL(), SL()

Effective Texture: C(), CL(), S(), SiC(), SiCL()

Depth to Mottles/Gley: None(), 0 - 25(), 26 - 50()

Soil Drainage: Well drained(), Moderate well drain(), Imperfectly

drained()

Parent Material: F(), GL(), M()

Soil Subgroup: O.G(), O.LG(), O.GL(), GL.GL()

Site Index at 50 Years

balsam fir: 16.6 m +/- 1.6 m; n=7 white birch: 13.9 m +/- 2.9 m; n=3 white spruce: 17.8 m +/- 0.3 m; n=175 balsam poplar: 19.7 m +/- 0.6 m; n=38

aspen: 21.4 m +/- 0.4 m; n=58

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	Stocking Ra		
g dogwood (subhygric/rich)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
g2 dogwood pb-aw	13	213	713	1113	3.37(0.12)
PPD10 Pb-Aw/Red osier dogwood	13	213	713	939	2.02(0.20)
PPD14 Pb-Bw/Kentucky bluegrass				1150	4.05(0.10)
PPD15 Pb/Smooth brome				1250	4.05(0.10)
g3 dogwood Pb-Sw				620	8.09(0.05)
PPE6 Sw-Pb/Red-osier dogwood				620	8.09(0.05)
g4 dogwood Tame	1225	775		2250	0.94(0.43)
PPF10 Reed canary grass-Meadow foxtail-S. brome-Timothy				2500	0.34(1.19)
PPF11 Brome-Creeping red fescue-K. bluegrass/Dandelion				2500	0.40(1.01)

Forage Production Summary (kg/ha)

••••••••••••••••••••••••

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	Stocking Rate			
g dogwood (subhygric/rich)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
g4 dogwood Tame	1225	775		2250	0.94(0.43)
PPF12 Foxtail barley/Weeds	1200	300		1500	2.02(0.20)
PPF13 Willow/Timothy	1250	1250		2500	1.01(0.40)

16.1 g1 shrubland (n=3)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: dogwood (subhygric/rich)

Characteristic Species

Tree

[1] balsam poplar

Shrub

[40] red-osier dogwood

[27] Scouler's willow

[23] beaked willow

17 | shining willow

3 1 river alder

Forb

4] common horsetail

2 common dandelion

2] wild vetch

Grass

8 | bluejoint

1] awned sedge

 Species characteristic of the phase but occurring in <70% for the sample plots with a prominence value <20.

Site Characteristics

Moisture Regime: SUBHYGRIC(), HYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Moderate well drain(), Imperfectly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPB1 Red-osier dogwood-Shining willow (1)
PPB2 Bebb willow-Red-osier dogwood (1)
PPB3 Scoulers willow-Red-osier dogwood (1)

16.1.1 PPB1. Red-osier dogwood-Shining willow

(Cornus stolonifera-Salix lucida)

n=1 Red-osier dogwood and shining willow are codminant. Marsh reed grass, horsetail, and river alder occur in lesser amounts.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g1 shrubland

Plant Composition	Cano	py Cove	r (%)
	Mean	Range	Const
Shrub			
RED-OSIER DOGWOOD			
(Cornus stolonifera)	60		100
RIVER ALDER			
(Alnus tenuifolia)	10		100
SHINING WILLOW			
(Salix lucida)	50		100
Forb			
COMMON DANDELION			
(Taraxacum officinale)	3		100
COMMON HORSETAIL			
(Equisetum arvense)	10		100
WILD VETCH			
(Vicia americana)	3		100
Grass			
BLUEJOINT			
(Calamagrostis canadensis)	20		100

				20.			
Env	IFOR	mai	ntal	V a	FIR	nı	20

-	
1	Moisture Regime: SUBHYGRIC(), HYGRIC()
1	Nutrient Regime: PERMESOTROPHIC()
-	Elevation (range): (-) M
**	Slope:
6	Aspect:
	Soil Drainage:
**	Soil Subgroup:
0.0	Soil Series:
	Soil Correlation:
1	Range Site Category:
1	Ecological Status Score: 18

Soil Exposure	Mean	Min	Max
44			

Comment:

Commone

Forage Production (kg/ha) n=

				_
	Mean	Min	Max	
Forb				
Grass				
Shrub				
Tree				
Total	0	0	0	

Ecologically Sustainable Stocking Rate

2.02 (1.35-1.01) HA/AUM or 0.20 (0.30-0.40) AUM/AC

16.1.2 PPB2. Bebb willow-Red-osier dogwood

(Salix bebbiana-Cornus stolonifera)

n=1 This community is described by (Thompson and Hansen 2003) and occupies moist areas on alluvial terraces, around lakes and sloughs and near springs and seeps such as Saskatoon Lake near Grande Prairie. Bebb's willow and red-osier dogwood are strongly codominate. Marsh reed grass, sedge and Kentucky bluegrass are common grasses, though of low coverage. Wild strawberry, dandelion and wild vetch are common forbs but also of low coverage. With increased grazing pressure red-osier dogwood will be replaced by less palatable shrubs and forbs and grasses like smooth brome, Kentucky bluegrass, timothy, Canada thistle and perennial sow-thistle. With continued heavy grazing, this community will be dominated by Bebb's willow, which is resistant to grazing. Grazing impacts can be evaluated by looking at the browse on red-osier dogwood, which is an "ice cream" plant.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g1 shrubland

Plant Composition	Canopy Cover (%)			Environmental Variables				
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC(), H	YGRIC()			
Shrub				modulo regime. Cobirr or rio(), re				
BEAKED WILLOW				Nutrient Regime: PERMESOTROPH	HC()			
(Salix bebbiana)	70		100	Elevation (range): (-) M				
RED-OSIER DOGWOOD				1-0,1,				
(Cornus stolonifera)	40		100	Slope:				
orb				Aspect:				
COMMON DANDELION				Aspect.				
(Taraxacum officinale)	3		100	Soil Drainage: Moderate well drain()	, Imperfectly	drained()		
WILD STRAWBERRY				,				
(Fragaria virginiana)	3		100	Soil Subgroup:				
WILD VETCH				Soil Series:				
(Vicia americana)	3		100	Soil Series:				
Grass				Soil Correlation:				
AWNED SEDGE								
(Carex atherodes)	3		100	Range Site Category:				
BLUEJOINT				Ecological Status Score: 24				
(Calamagrostis canadensis)	3		100	Ecological Status Score. 24				
GRACEFUL SEDGE				Soil Exposure	Mean	Min	Max	
(Carex praegracilis)	3		100	%:	_			
ENTUCKY BLUEGRASS				Comment:				
Poa pratensis)	3		100	Comment:				
WATER SEDGE				Forage Production (kg/ha)	n=			
(Carex aquatilis)	3		100	rotage rioddetton (kg/na)	Mean	Min	Max	
				Forb	mean	*******	HIGA	
				Grass				
				Shrub				
				Tree				
				Total	0	0	0	

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

16.1.3 PPB3. Scoulers willow-Red-osier dogwood

(Salix scouleriana-Cornus stolonifera)

n=1 This community is similar to the CMA14-Scouler willow-red osier dogwood community of the Central Mixedwood Guide (Willoughby et al. 2006). This community occurs on low sites with high water tables (within 1 m of the soil surface throughout the summer) that are adjacent to forested lakes such as Saskatoon Lake near Grande Prairie. Scouler's willow has greater coverage, however both it and red-osier dogwood are strongly dominate. There is some cover of balsam poplar. There are very few species of forbs or grasses present. Disturbance from grazing will decrease the cover of red-osier dogwood and willow in favour of honeysuckle and currants, decrease marsh reed grass in favour of common nettle, and increase the number of forb species gresent (Thompson and Hansen, 2003). Although this community type provides moderate amounts of forage, it occurs on sites that may be too wet for livestock to access. It is generally considered secondary or non-use range.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g1 shrubland

Plant Composition	Canopy Cover (%)			Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC(),	HYGRIC()		
Tree				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
BALSAM POPLAR				Nutrient Regime: PERMESOTRO	PHIC()		
(Populus balsamifera)	3		100	Elevation (range): (-) M			
Shrub							
RED-OSIER DOGWOOD				Slope:			
(Comus stolonifera)	20		100	Aspect:			
SCOULER'S WILLOW				паресс.			
(Salix scouleriana)	80		100	Soil Drainage: Moderate well drain	n(), Imperfectly	drained()	
Forb							
COMMON HORSETAIL				Soil Subgroup:			
(Equisetum arvense)	1		100	Soil Series:			
COMMON NETTLE				Soil Series.			
(Urtica dioica)	1		100	Soil Correlation:			
DEWBERRY							
(Rubus pubescens)	1		100	Range Site Category:			
STAR-FLOWERED SOLOM	ON'S-SEA	L		Ecological Status Score: 24			
(Smilacina stellata)	1		100	Leological Otalus Score. 24			
VEINY MEADOW RUE				Soil Exposure	Mean	Min	Max
(Thalictrum venulosum)	1		100	%:			
WILD MINT				Comment:			
(Mentha arvensis)	1		100	Comment.			
YELLOW AVENS				Forage Production (kg/ha	a) n=		
(Geum aleppicum)	1		100		Mean	Min	Max
Grass				Forb	····cu··		
AWNED SEDGE				Grass			
(Carex atherodes)	1		100	Shrub			
DEWEY'S SEDGE				Tree			
(Carex deweyana)	1		100	Total	0	0	0

Ecologically Sustainable Stocking Rate

4.05 (40.47-2.02) HA/AUM or 0.10 (0.01-0.20) AUM/AC

16.2 g2 dogwood pb-aw (n=59)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: dogwood (subhygric/rich)

Characteristic Species

Tree

[54] balsam poplar

Shrub

- [11] red-osier dogwood
- [5] prickly rose
- [3] Undifferentiated willow

Forb

- 3 common horsetail
- [2] common dandelion

Grass

- 5 | Kentucky bluegrass
- 3] awnless brome
- [2] bluejoint
- *Species characteristic of the phase but occurring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBHYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained(), Moderate well drain()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPD10 Pb-Aw/Red.osier dogwood (52)

PPD15 Pb/Smooth brome (2)

PPD14 Pb-Bw/Kentucky bluegrass (5)

PPD10. Pb-Aw/Red osier dogwood

(Populus balsamifera-P.tremuloides/Cornus stolonifera)

n≈52 This community type is the same as DMC8 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is typical of river floodplains throughout the region. This community type tends to have a subhygric moisture and rich nutrient regime. Beckingham and Archibald (1996) found this community type on mid to lower slope topographic positions or near water courses where they recieve nutrient-rich seepage or flood waters for a portion of the growing season. This community type is one of the most productive in the region, but the high cover of shrubs limits access to livestock.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g2 dogwood pb-aw

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()			
Tree							
ASPEN				Nutrient Regime: PERMESOTROPHI	C()		
(Populus tremuloides)	20	0-60	69	Florest (524/455 000) 14			
BALSAM POPLAR				Elevation (range): 524(455-606) M			
(Populus balsamifera)	37	0-80	84	Slope:			
WHITE BIRCH				Annual			
(Betula papyrifera)	4	0-50	41	Aspect			
Shrub				Soil Drainage: Moderate well drain()			
LOW-BUSH CRANBERRY				,			
(Viburnum edule)	7	0-30	78	Soil Subgroup:			
PRICKLY ROSE				Call Carloss			
(Rosa acicularis)	9	0-18	78	Soil Series:			
RED-OSIER DOGWOOD				Soil Correlation:			
(Cornus stolonifera)	23	8-70	100				
WILD RED RASPBERRY				Range Site Category:			
(Rubus idaeus)	4	0-18	60	Ecological Status Score: 18			
Forb				Ecological Status Score. 18			
COMMON FIREWEED				Soil Exposure	Mean	Min	
(Epilobium angustifolium)	3	0-20	61	%:			
COMMON HORSETAIL				Comment:			
(Equisetum arvense)	4	0-10	73	Comment:			
CREAM-COLORED VETCHLI	ING			Forage Production (kg/ha)	n=		
(Lathyrus ochroleucus)	1	0-4	57	r or age r roduction (kg/ma)	Mean	Min	
WILD SARSAPARILLA				Forb	213	150	
(Aralia nudicaulis)	7	0-40	80	Grass	13		
Grass				Shrub	713	400	
BLUEJOINT				Tree	13		
(Calamagrostis canadensis)	4	0-50	75	Total	952	550	

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

Generally this community type would be rated as non-use in the calculation of carrying capacity for a grazing disposition, but in some cases it may be used.

Max

PPD14. Pb-Bw/Kentucky bluegrass

(Populus balsamifera-Betula papyrifera/Poa pratensis)

n=5 This community is the same as DMC18 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents a Pb or Bw/Red osier dogwood community that has recieved prolonged heavy grazing. This community type often occurs in relatively small isolated patches created by intensive grazing adjacent to water, salt or temporary holding areas. The species richness and diversity of native shrubs, forbs, and grass is reduced and replaced by grazing resistant species like clover, dandelion and Kentucky bluegrass.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g2 dogwood pb-aw

Plant Composition	Canopy Cover (%)			Environmental Variables				
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()				
Tree								
ASPEN				Nutrient Regime: PERMESOTROP	HIC()			
(Populus tremuloides)	4	0-10	80	Elevation (range): 524(455-697) M				
BALSAM POPLAR				, , , , , , , , , , , , , , , , , , , ,				
(Populus balsamifera)	54	30-80	100	Slope: 0 - 0.5(), 0.5 - 2.5(), 3 - 5()				
WHITE BIRCH				Aspect:				
(Betula papyrifera)	8	0-40	60	Азреи.				
Shrub				Soil Drainage: Moderate well drain()			
PRICKLY ROSE								
(Rosa acicularis)	6	3-10	100	Soil Subgroup:				
SALIX SPECIES				Cail Carios:				
(Salix spp.)	3	3-4	100	Soil Series:				
SNOWBERRY (BUCKBRUSH)				Soil Correlation:				
(Symphoricarpos occidentalis)	3	1-10	100					
WILD RED RASPBERRY				Range Site Category:				
(Rubus idaeus)	4	0-10	80	Ecological Status Score: 6				
Forb				Ecological Status Score: 6				
COMMON DANDELION				Soil Exposure	Mean	Min	Max	
(Taraxacum officinale)	4	1-10	100	%:				
COMMON FIREWEED				Comment:				
(Epilobium angustifolium)	1	0-1	60	Comment				
COMMON HORSETAIL				Forage Production (kg/ha)	n=			
(Equisetum arvense)	2	1-3	100	rorage Production (kg/na)	Mean	Min	Max	
DEWBERRY				Forb	mean	Willi	max	
(Rubus pubescens)	4	0-20	80	Grass				
SHOWY ASTER				Shrub				
(Aster conspicuus)	2	1-3	100	Tree				
UNDIFFERENTIATED CLOVER	3			Undifferentiated	1150			
(Trifolium)	2	0-10	60	Total	1150	0	0	
WILD STRAWBERRY				i Otal	1130	U	U	
(Fragaria virginiana)	3	1-3	100					
Grass				Ecologically Sustainable S	tocking Ra	ate		
BLUEJOINT				4.05 (4.05-2.02) HA/AUM or 0.10 (0.10-0.20) AL	IM/AC		
(Calamagrostis canadensis)	1	0-3	80	The forage production amount liste	*			
KENTUCKY BLUEGRASS				The lorage production amount liste	u is an estima	ie.		
(Poa pratensis)	9	1-20	100					
QUACK GRASS								
(Agropyron repens)	1	0-3	60					

PPD15. Pb/Smooth brome

(Populus balsamifera/Bromus inermis)

n=2 This community type is the same as DMC19 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is similar to red osier dogwood and balsam poplar dominated community types, but has a high cover of smooth brome in the understory. Smooth brome is an introduced grass that can increase with increased grazing pressure, but smooth brome is also highly invasive and can invade into ungrazed areas. The invasion of non-native invaders onto the site makes this community moderately productive for domestic livestock.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g2 dogwood pb-aw

Plant Composition	Canopy Cover (%)			Environmental Variables			
Tree	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()		
				Nutrice Berieve DEDMESOTE	2011104		
BALSAM POPLAR	70	60-80	100	Nutrient Regime: PERMESOTRO	JPHIC()		
(Populus balsamifera) Shrub	10	60-80	100	Elevation (range): 524(455-697)	М		
				Slope: 0 - 0.5(), 0.5 - 2.5(), 3 - 5(V		
RED-OSIER DOGWOOD	40	4.00	400	Siope. 0 - 0.5(), 0.5 - 2.5(), 3 - 5()		
(Cornus stolonifera)	10	1-20	100	Aspect:			
SALIX SPECIES	-	0.40	400				
(Salix spp.)	7	3-10	100	Soil Drainage: Well drained(), Mo	oderate well drain	n()	
SNOWBERRY (BUCKBRUSH)		0.40	100	Sad Subarray			
(Symphoricarpos occidentalis)	7	3-10	100	Soil Subgroup:			
WILD RED RASPBERRY	40		~~	Soil Series:			
(Rubus idaeus)	10	0-20	50				
Forb				Soil Correlation:			
COMMON DANDELION				D			
(Taraxacum officinale)	2	1-3	100	Range Site Category:			
COMMON HORSETAIL				Ecological Status Score: 6			
(Equisetum arvense)	5	1-10	100				
HEMP-NETTLE				Soil Exposure	Mean	Min	Max
(Galeopsis tetrahit)	5	0-10	50	%:			
SHOWY ASTER				Comment:			
(Aster conspicuus)	2	1-3	100				
STAR-FLOWERED SOLOMON	S-SEA			Forage Production (kg/h	a) n=		
(Smilacina stellata)	7	3-10	100		Mean	Min	Max
UNDIFFERENTIATED CLOVE	R			Forb		******	
(Trifolium)	1	0-1	50	Grass			
WILD WHITE GERANIUM				Shrub			
(Geranium richardsonii)	10	0-20	50	Tree			
Grass				Undifferentiated	1250		
AWNLESS BROME				Total	1250	0	0
(Bromus inermis)	10	1-20	100		12.00		
KENTUCKY BLUEGRASS					4		
(Poa pratensis)	5	0-10	50	Ecologically Sustainable	Stocking Ra	ite	
QUACK GRASS				4.05 (4.05-2.02) HA/AUM or 0.1	0 (0.10-0.20) AU	M/AC	
(Agropyron repens)	2	0-3	50	,			

16.3 g3 dogwood Pb-Sw (n=6)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: dogwood (subhygric/rich)

Characteristic Species

Tree

[30] balsam poplar [23] white spruce

Shrub

[14] red-osier dogwood

[11] river alder

7] prickly rose

[2] low-bush cranberry

Forb

8] bunchberry

3] common horsetail*

[2] wild sarsaparilla

Grass

[6] redtop

[3] Kentucky bluegrass

[2] bluejoint

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBHYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained(), Moderate well drain()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPE6 Sw-Pb/Red-osier dogwood (6)

16.3.1

PPE6. Sw-Pb/Red-osier dogwood

(Picea glauca-Populus balsamifera/Cornus stolonifera)

n=6 This community is the same as DMD13 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is similar to community PPD10 Pb-Aw/Red osier dogwood but is successionally more advanced. As succession continues in the absence of disturbance on these sites there will be a corresponding drop in forage production. A spruce dominated forest is generally produces about 1/3 of an undisturbed deciduous dominated community type.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g3 dogwood Pb-Sw

Plant Composition	Canopy Cover (%)				
	Mean	Range	Const.		
Tree					
BALSAM POPLAR					
(Populus balsamifera)	30	20-60	100		
WHITE SPRUCE					
(Picea glauca)	23	1-40	100		
Shrub					
LOW-BUSH CRANBERRY					
(Vibumum edule)	2	0-10	67		
PRICKLY ROSE					
(Rosa acicularis)	7	3-20	100		
RED-OSIER DOGWOOD					
(Comus stolonifera)	14	3-20	100		
RIVER ALDER					
(Alnus tenuifolia)	11	3-30	100		
Forb					
BUNCHBERRY					
(Comus canadensis)	8	0-30	83		
COMMON HORSETAIL					
(Equisetum arvense)	3	1-10	100		
STAR-FLOWERED SOLOMO	N'S-SEA	L			
(Smilacina stellata)	1	1-3	100		
WILD SARSAPARILLA					
(Aralia nudicaulis)	2	0-10	67		
Grass					
BLUEJOINT					
(Calamagrostis canadensis)	2	0-3	67		
KENTUCKY BLUEGRASS					
(Poa pratensis)	3	0-10	83		
REDTOP					
(Agrostis stolonifera)	6	0-20	83		

Environmental Variables	
Moisture Regime: SUBHYGRIC()	

Nutrient Regime: PERMESOTROPHIC()

Elevation (range): 600(-) M

Slope:

Soil Drainage: Well drained(), Moderate well drain()

Soil Subgroup:

Soil Series:

Soil Correlation:

Range Site Category:

Ecological Status Score: 18

Soil Exposure Mean Min Max

%:

Comment:

Forage Production (kg/ha) n=

	Mean	Min	Max
Forb			
Grass			
Shrub			
Tree			
Undifferentiated	620		
Total	620	0	0

Ecologically Sustainable Stocking Rate

8.09 (8.09-2.02) HA/AUM or 0.05 (0.05-0.20) AUM/AC

The forage production amount listed is an estimate

16.4 g4 dogwood Tame (n=8)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: dogwood (subhygric/rich)

Characteristic Species

Shrub

[5] beaked willow

Forb

[15] common dandelion

[11] Undifferentiated clover

5 I wild strawberry

[3] Undifferentiated medick

Grass

[18] timothy

[17] Creeping red fescue

6] awnless brome

5] Undifferentiated sedge

2 | Kentucky bluegrass

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBHYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Well drained(), Moderate well drain(), Imperfectly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPF11 Brome-Creeping red fescue-K. bluegrass/Dandelion (3)

PPF12 Foxtail barley/Weeds (1)

PPF10 Reed canary grass-Meadow foxtail-S. brome-Timothy (2)

PPF13 Willow/Timothy (2)

16.4.1 PPF10. Reed canary grass-Meadow foxtail-S. brome-Timothy

(Phalaris arundinacea-Alopecurus pratensis-Bromus inermis-Phleum pratense)

n=2 This community type is the same as DMB16 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents seeded areas on moist (subhygric) rich sites. Reed canary grass and meadow foxtail establish quickly in wet places that have been disturbed and will dominate very wet sites. Care should be taken when seeding reed canary grass. It appears that the commercial cultivars can be very invasive (Invasive plants of natural habitats 1992). In areas that have supported reed canary grass monocultures for extended periods many have seed banks devoid of other species. Meadow foxtail also seems particularly prone to increasing on moister grazed sites as it starts growth and heads out early. Meadow foxtail becomes unpalatable and is avoided by livestock if it is not grazed early enough in the spring.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g4 dogwood Tame

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()			
Forb							
COMMON DANDELION				Nutrient Regime: PERMESOTROPHIC	()		
(Taraxacum officinale)	3	2-3	100	Elevation (range): (579-606) M			
UNDIFFERENTIATED CLOV	/ER			Lievation (range). (375-000) in			
(Trifolium)	15	6-25	100	Slope:			
WILD STRAWBERRY				Accept			
(Fragaria virginiana)	13	0-26	50	Aspect:			
WILD VETCH				Soil Drainage: Well drained()			
(Vicia americana)	1	0-1	50	on brandge. Wen diamos()			
Grass				Soil Subgroup:			
AWNLESS BROME							
(Bromus inermis)	21	0-41	50	Soil Series:			
CREEPING RED FESCUE				Soil Correlation:			
(Festuca rubra)	6	1-11	100	Con Corrolation.			
MEADOW FOXTAIL				Range Site Category:			
(Alopecurus pratensis)	11	0-22	50	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
REED CANARY GRASS				Ecological Status Score: 8			
(Phalaris arundinacea)	28	0-55	50	Soil Exposure	Mean	Min	Max
TIMOTHY				%:			
(Phleum pratense)	5	2-7	100				
				Comment:			

Forage Production (kg/ha) n=

	Mean	Min	Max	
Forb				
Grass				
Shrub				
Tree				
Undifferentiated	2500			
Total	2500	0	0	

Ecologically Sustainable Stocking Rate

0.34 (0.40-0.27) HA/AUM or 1.19 (1.01-1.50) AUM/AC

16.4.2 PPF11. Brome-Creeping red fescue-K. bluegrass/Dandelion

(Bromus spp.-Festuca rubra-Poa pratensis/Taraxacum officinale)

n=3 This community is the same as DMB17 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents moderately grazed subhygric sites. Heavy continuous grazing will allow Kentucky bluegrass and dandelion to invade into the stand to form a Kentucky bluegrass or Quackgrass/Dandelion dominated community type. Continued heavy grazing pressure may eventually lead to a site dominated by disturbance induced species like foottail barley, dandelion and strawberry.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g4 dogwood Tame

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
Forb	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()			
COMMON DANDELION				Nutrient Regime: PERMESOTROPHI	C()		
(Taraxacum officinale)	29	15-38	100		- 17		
COMMON HORSETAIL				Elevation (range): 667(-) M			
(Equisetum arvense)	4	2-6	100	Slope:			
UNDIFFERENTIATED CLOV	ER						
(Trifolium)	19	6-31	100	Aspect:			
WILD STRAWBERRY				Soil Drainage: Moderate well drain()			
(Fragaria virginiana)	2	1-2	100	Son Dramage. Moderate wen dram()			
Grass				Soil Subgroup:			
CREEPING RED FESCUE							
(Festuca rubra)	62	40-80	100	Soil Series:			
KENTUCKY BLUEGRASS				Soil Correlation:			
(Poa pratensis)	5	1-10	100	Son Correlation.			
MEADOW BROME				Range Site Category:			
(Bromus biebersteinii)	21	17-23	100				
SEDGE SPECIES				Ecological Status Score: 4			
(Carex spp.)	16	1-45	100	Soil Exposure	Mean	Min	Max
TIMOTHY				%:			
(Phleum pratense)	3	2-4	100				
				Comment:			

Forage Production (kg/ha) n=

Ecologically Sustainable Stocking Rate

0.40 (0.51-0.34) HA/AUM or 1.01 (0.79-1.19) AUM/AC

16.4.3

PPF12. Foxtail barley/Weeds

(Hordeum jubatum/Weeds)

n=1 This community type is the same as DMB18 in the Dry Mixedwood Guide (Willoughby et al. 2006). It develops on heavily grazed subhygric moist sites. This community was found in depressional areas and on river flood plains. Foxtail barley is also well adapted to growing on saline soils (Bailey et al. 1992). It is likely that the soils of this site are slightly saline. This community type would be considered non-use because the principle forage species foxtail barley is generally unpalatable to livestock except in the Spring before it heads out. Foxtail barley can also cause injury to livestock. The sharp seeds and awns may work their way into tongues, gums, eyes, noses or skin of animals.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g4 dogwood Tame

Plant Composition	Cano	py Cove	r (%)
	Mean	Range	Const
Forb			
COMMON DANDELION			
(Taraxacum officinale)	1		100
UNDIFFERENTIATED CLOVE	ER		
(Trifolium)	5		100
UNDIFFERENTIATED MEDIC	K		
(Medicago)	11		100
YELLOW SWEET-CLOVER			
(Melilotus officinalis)	4		100
Grass			
AWNLESS BROME			
(Bromus inermis)	1		100
FOWL BLUEGRASS			
(Poa palustris)	1		100
FOXTAIL BARLEY			
(Hordeum jubatum)	69		100
TIMOTHY			
(Phleum pratense)	18		100

Environmental Variables

Moisture Regime: SUBHYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Elevation (range): 597(457-606) M

Slope:

Aspect:

Soil Drainage: Well drained()

Soil Subgroup:

Soil Series:

Soil Correlation:

Range Site Category:

Ecological Status Score: 0

Soil Exposure

%:

Comment:

Forage Production (kg/ha) n=

	Mean	Min	Max
Forb	300		
Grass	1200		
Shrub			
Tree			
Total	1500	0	0

Mean

Min

Max

Ecologically Sustainable Stocking Rate

2.02 (4.05-1.35) HA/AUM or 0.20 (0.10-0.30) AUM/AC

16.4.4

PPF13. Willow/Timothy

(Salix spp./Phleum pratense)

n=2 This community is the same as DMB24 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents invasion of shrubs and trees onto tame pasture on moister sites. Willow favours growing on these moist, richer sites and will often invade into the edges of the pasture. Burning, cultivation and spraying with herbicide are all options that can be considered in order to control shrub regrowth.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: g dogwood (subhygric/rich)
Ecosite Phase: g4 dogwood Tame

Plant Composition Canopy Cover (%) Envir		Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()	
Shrub					
BEAKED WILLOW				Nutrient Regime: PERMESOTROPHIC()	
(Salix bebbiana)	19	8-30	100	Flourism (mana): 600() M	
Forb				Elevation (range): 600(-) M	
COMMON DANDELION				Slope:	
(Taraxacum officinale)	27	4-49	100		
COMMON HORSETAIL				Aspect:	
(Equisetum arvense)	1	0-2	50	Soil Drainage: Well drained(), Imperfectly drained()	
UNDIFFERENTIATED CLOV	ER			con brainings: from aramosty, importacity aramosty	
(Trifolium)	3	2-3	100	Soil Subgroup:	
WILD STRAWBERRY					
(Fragaria virginiana)	6	0-12	100	Soil Series:	
Grass				Soil Correlation:	
AWNLESS BROME				Son Sontiation.	
(Bromus inermis)	2	0-3	50	Range Site Category:	
KENTUCKY BLUEGRASS					
(Poa pratensis)	1	0-1	50	Ecological Status Score: 8	
SEDGE SPECIES				Soil Exposure Mean	
(Carex spp.)	5	0-9	50	%:	_
TIMOTHY					
(Phleum pratense)	45	43-46	100	Comment:	
				F	

Forage Production (kg/ha) n=

	Mean	Min	Max
Forb	1250	750	1750
Grass	1250	700	1500
Shrub			
Tree			
Total	2500	1450	3250

Min

Max

Ecologically Sustainable Stocking Rate

1.01 (1.35-0.81) HA/AUM or 0.40 (0.30-0.50) AUM/AC

The forage production amounts listed are an estimate.

17.0 h horsetail (hygric/rich) (n=31)

Natural Subregion: PEACE RIVER PARKLAND

General Description

Beckingham and Archibald (1996) describe the horsetail ecosite in the Boreal Mixedwood as wet and nutrient rich. They found these sites on fluvial or glaciolacustrine parent materials where flooding or seepage enhances the substrate nutrient supply. The high water tables, wet soil conditions and Gleysolic soils tend to cause organic matter to accumulate. Horsetails tend to dominate the understory of this ecological site.

low-bush cramberry Sw

horsetail Sw

Successional Relationships

Succession on these sites is too white spruce which may take hundreds of years to develop.

Indicator Species

quack grass river alder
white birch bluejoint
red-osier dogwood common horsetail
white spruce balsam poplar
prickly rose sandbar willow
shining willow yellow willow
Canada goldenrod perennial sow-thistle

Site Characteristics

Moisture Regime: SUBHYGRIC(), HYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Poistion: Toe(), Depression()

Slope: 0.5 - 2.5()

Aspect: Level(), Northerly()

Soil Characteristics

Organic Thickness: 0 - 5 cm(), 6 - 15 cm(), 16 - 25 cm(), 26 - 39

cm(

Humus Form: RAW MODER(), MOR()

Surface Texture: CL(), Si(), SiC(), SiL()

Effective Texture: C(), CL(), Si(), SiC()

Depth to Mottles/Glev: 0 - 25(), 26 - 50()

Soil Drainage: Moderate well drain(), Imperfectly drained(), Poorly

- 47

Parent Material: F(), GL(), M()

Soil Subgroup: O.G(), O.LG(), CU.R(), GLCU.R()

Site Index at 50 Years

white spruce: 16.4 m +/- 0.3 m; n=175 balsam poplar: 17.8 m +/- 1.8 m; n=7 aspen: 19.8 m +/- 1.4 m; n=12

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	Stocking Rate			
h horsetail (hygric/rich)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
h1 shrubland	580	1272		1676	1.42(0.29)
PPB4 Willow/Horsetail/Marsh reed grass	580	1272		1852	2.02(0.20)
PPB5 Bebb willow/Marsh reed grass				1500	0.81(0.50)
h2 horsetail Sw	50	400	110	560	40.47(0.01)
PPE7 Sw/Horsetail	50	400	110	560	40.47(0.01)

17.1 h1 shrubland (n=26)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: horsetail (hygric/rich)

Characteristic Species

Tree

[1] balsam poplar

Shrub

27 | Scouler's willow

1 12 I beaked willow

[3] red-osier dogwood

Forb

[10] common horsetail

[1] Canada goldenrod

Grass

[17] bluejoint

5 | Undifferentiated sedge

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBHYGRIC(), HYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Moderate well drain(), Imperfectly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPB4 Willow/Horsetail/Marsh reed grass (13)

PPB5 Bebb willow/Marsh reed grass (13)

17.1.1 PPB4. Willow/Horsetail/Marsh reed grass

(Salix Spp./Equisetum arvensis/Calamagrostis canadensis)

n=13 This community is the same as the DMA12-Willow/Horsetail/Marsh reed grass community of the Dry Mixedwood Guide (Willoughby et al. 2006). This community is also similar to the Willow-Alder/Fern community described on moist, nutrient rich seepage areas in the Lower Foothills subregion (Lane et al. 2000). This community appears to be a transitional between the horsetail (hygric/rich) and shrubby fen (subhydric/rich) ecosites described by Beckingham and Archibald (1996). It has plant species characteristic of both ecosites. This community type is very productive but the high shrub cover and slope conditions make it difficult to graze. Horsetail, the principle forage species, is generally unpalatable to domestic livestock and can be poisonous to livestock in large amounts (Lodge et al. 1968).

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: h horsetail (hygric/rich)
Ecosite Phase: h1 shrubland

Canopy Cover (%)				
Mean	Range	Const.		
2	0-10	67		
5	0-30	83		
5	0-65	8		
53	0-90	92		
15	1-60	100		
9	0-60	58		
2	0-10	67		
/ENS				
1	0-3	58		
22	0-97	75		
	Mean 2 5 5 53 15 9 2 /ENS 1	Mean Range 2 0-10 5 0-30 5 0-65 53 0-90 15 1-60 9 0-60 2 0-10 /ENS 1 0-3		

Moisture Regime: SUBHYGR	IC()		
Nutrient Regime: PERMESOT	rrophic()		
Elevation (range): 667(-) M			
Slope:			
Aspect:			
Soil Drainage: Moderate well	drain(), Imperfectly	drained()	
Soil Subgroup:			
Soil Series:			
Soil Correlation:			
Range Site Category:			
Ecological Status Score: 24			
Soil Exposure	Mean	Min	Max

Forage	Production	(kg/ha)	n=

	Mean	Min	Max
Forb	1272		
Grass	580		
Shrub			
Tree			
Total	1852	0	0

Ecologically Sustainable Stocking Rate

2.02 (40.47-1.35) HA/AUM or 0.20 (0.01-0.30) AUM/AC

17.1.2 PPB5. Bebb willow/Marsh reed grass

(Salix bebbiana/Calamagrostis canadensis)

n=13 This community type is the same as DMA16 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found along the drier edges of marsh reed grass meadows and in moist depressions and represents the transition between the flat leaved willow and basket willow dominated shrublands and the upland forest. Bebb willow is an upland species that prefers well drained sites. This species of willow is often found in the understory of aspen and balsam poplar dominated community types. Increased flooding and prolonged waterlogging may result in the disappearance of Bebb willow and favour the growth of flat leaved willow. In contrast the continued drying of the site will favour the growth of balsam poplar. These sites are fairly productive but difficult to graze due to the moist ground conditions and heavy shrub cover which reduces access and mobility within the area.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: h horsetail (hygric/rich)
Ecosite Phase: h1 shrubland

Plant Composition	Cano	py Cove	r (%)	Environmental Variable	es		
	Mean	Range	Const.	Moisture Regime: SUBHYGRI	IC(), HYGRIC()		
Tree							
BALSAM POPLAR				Nutrient Regime: PERMESOT	ROPHIC()		
(Populus balsamifera)	2	0-10	23	Fig. 100 (100 (100 (100 (100 (100 (100 (100			
Shrub				Elevation (range): 600(-) M			
BEAKED WILLOW				Slope:			
(Salix bebbiana)	23	1-90	100				
PRICKLY ROSE				Aspect:			
(Rosa acicularis)	10	0-80	54	Soil Drainage: Moderate well of	drain()		
SNOWBERRY (BUCKBRUSH)				Co. Diamogo. moderate won t	()		
(Symphoricarpos occidentalis)	1	0-10	31	Soil Subgroup:			
WILD RED RASPBERRY							
(Rubus idaeus)	2	0-10	46	Soil Series:			
Forb				Soil Correlation:			
CANADA GOLDENROD				Son Correlation.			
(Solidago canadensis)	2	0-20	39	Range Site Category:			
COMMON DANDELION							
(Taraxacum officinale)	1	0-3	46	Ecological Status Score: 24			
COMMON HORSETAIL				Soil Exposure	Mean	Min	Max
(Equisetum arvense)	4	0-20	69	%:			
WILD STRAWBERRY							
(Fragaria virginiana)	3	0-30	62	Comment:			
Grass				Forage Production (kg	(ha) an		
AWNLESS BROME				rorage Production (kg		8.61-	88
(Bromus inermis)	1	0-10	23	Forb	Mean	Min	Max
BLUEJOINT				Grass			
(Calamagrostis canadensis)	12	0-60	62	Shrub			
KENTUCKY BLUEGRASS				Tree			
(Poa pratensis)	2	0-10	31	Undifferentiated	1500		
SEDGE SPECIES			-				
(Carex spp.)	10	1-40	100	Total	1500	0	0

Ecologically Sustainable Stocking Rate

0.81 (40.47-0.40) HA/AUM or 0.50 (0.01-1.01) AUM/AC

The forage production amount given is an estimate.

17.2 h2 horsetail Sw (n=5)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: horsetail (hygric/rich)

-	2 -			0 4		-		_ 0	
	na	rac	Tel	risi	nc.		ne	ac i	20

Tree

[44] white spruce

[9] white birch*

[3] balsam poplar*

Shrub

3 1 prickly rose

[3] red-osier dogwood

[1] low-bush cranberry

Forb

[32] common horsetail

[3] bunchberry

1 | bishop's-cap

[1] dewberry

Grass

[1] bluejoint

Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: HYGRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture

Depth to Mottles/Gley:

Soil Drainage: Imperfectly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPE7 Sw/Horsetail (5)

17.2.1

PPE7. Sw/Horsetail

(Picea glauca/Equisetum arvense)

n=5 This community type is the same as DMD14 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is wet and nutrient rich. These sites are commonly found on fluvial or glaciolacustrine parent materials where flooding or seepage enhances the substrate nutrient supply. With high water tables, wet soil conditions organic matter tends to accumulate which favours the growth of horsetail. Generally horsetail is unpalatable to livestock and the wet ground conditions limit access.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: h horsetail (hygric/rich)
Ecosite Phase: h2 horsetail Sw

Plant Composition	Cano	py Cove	er (%)	Environmental Variables
	Mean	Range	Const.	Moisture Regime: HYGRIC()
Tree				moistare regard. Tri Ortio()
BALSAM POPLAR				Nutrient Regime: PERMESOTRO
(Populus balsamifera)	3	0-10	60	F1
WHITE BIRCH				Elevation (range): 600(-) M
(Betula papyrifera)	9	0-40	80	Slope:
WHITE SPRUCE				A
(Picea glauca)	44	20-60	100	Aspect:
Shrub				Soil Drainage: Moderate well drain
BRACTED HONEYSUCKLE				
(Lonicera involucrata)	1	0-3	80	Soil Subgroup:
LOW-BUSH CRANBERRY				
(Viburnum edule)	1	0-3	60	Soil Series:
PRICKLY ROSE				Soil Correlation:
(Rosa acicularis)	3	1-10	100	
RED-OSIER DOGWOOD				Range Site Category:
(Comus stolonifera)	3	0-10	80	Factories Chatas Consum 40
Forb				Ecological Status Score: 18
BISHOP'S-CAP				Soil Exposure
(Mitella nuda)	1	0-3	80	%:
BUNCHBERRY				
(Comus canadensis)	3	0-10	80	Comment:
COMMON HORSETAIL				Forage Production (kg/ha
(Equisetum arvense)	32	30-40	100	rotage Production (kg/lia
DEWBERRY				Forb
(Rubus pubescens)	1	1-3	100	Grass
Grass				Shrub
BLUEJOINT				Tree
(Calamagrostis canadensis)	1	0-3	60	Total
DROOPING WOOD-REED				TOTAL
(Cinna latifolia)	1	0-3	40	

Moisture Regime: HYGRIC()			
Nutrient Regime: PERMESOT	ROPHIC()		
Elevation (range): 600(-) M			
Slope:			
Aspect:			
Soil Drainage: Moderate well d	rain(), Poorly drain	ned()	
Soil Subgroup:			
Soil Series:			
Soil Correlation:			
Range Site Category:			
Ecological Status Score: 18			
Soil Exposure	Mean	Min	Max
%:			
Comment:			
Forage Production (kg/	/ha) n=		
	Mean	Min	Max
Forb	400		
Grass	50		

Ecologically Sustainable Stocking Rate

40.47 (40.47-40.47) HA/AUM or 0.01 (0.01-0.01) AUM/AC

Generally this community type would be rated as non-use in the calculation of carrying capacity for a grazing disposition, but in some cases it may be used.

110 560

0

0

The forage production amount given is an estimate.

18.0 hh bog (subhygric/very poor) (n=3)

Natural Subregion: PEACE RIVER PARKLAND

General Description

The bog ecosite commonly has organic soils consisting of slowly decomposing peat moss. They are poor to very poorly drained and have a very poor to poor nutrient regime. This ecosite occupies level and depressional areas where water tends to be stagnant and impeded drainage or high water tables enhance the accumulation of organic matter. Stunted black spruce form a sparse canopy on the treed phase of the bog ecosite.

ireed boo

Successional Relationships

The bog ecosite is an edaphic climax that is maintained by water tables. The hydrarch succession to the bog ecosite is extremely slow.

Indicator Species

common Labrador tea

black spruce

cloudberry

peat moss

bog cranberry

Site Characteristics

Moisture Regime: SUBHYDRIC()

Nutrient Regime: OLIGOTROPHIC()

Topographic Poistion:

Slope:

Aspect:

Soil Characteristics

Organic Thickness: => 80 cm(90)

Humus Form: MOR(10), PEATYMOR(90)

Surface Texture:

Effective Texture:

Depth to Mottles/Gley: Not Applicable()

Soil Drainage: Poorly drained()

Parent Material: O(80)

Soil Subgroup: TY.F(30), T.M(10)

Site Index at 50 Years

black spruce: 9.8 m +/- 0.5 m; n=32

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	tion (kg/ha)		Stocking Rate
hh bog (subhygric/very poor)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
hh1 treed bog	10	40	50	100	40.47(0.01)
PPE3 Sb-Lt/Labrador tea/Moss	10	40	50	100	40.47(0.01)

18.1 hh1 treed bog (n=3)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: bog (subhygric/very poor)

Characteristic Species

Tree

[30] black spruce

[10] tamarack

Shrub

[24] bog birch

[23] common Labrador tea

[21] Undifferentiated willow

Forb

[21] common horsetail

Grass

[3] bluejoint

Moss

[95] Undifferentiated moss - all Gener

*Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

Site Characteristics

Moisture Regime: SUBHYDRIC()

Nutrient Regime: OLIGOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Poorly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPE3 Sb-Lt/Labrador tea/Moss (3)

18.1.1

PPE3. Sb-Lt/Labrador tea/Moss

(Picea mariana-Larix laricina/Ledum groenlandicum/Moss)

n=3 This community type is the same as DMD9 in the Dry Mixedwood Guide (Willoughby et al. 2006). This community type appears to be related to the bog ecosite described by Beckingham and Archibald (1996). The bog ecosite commonly has organic soils consisting of slowly decomposing peat moss. This community type has poor productivity and accessibility.

Soil Exposure

Environmental Variables

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: hh bog (subhygric/very poor)
Ecosite Phase: hh1 treed bog

Plant Composition	Cano	py Cove	r (%)
	Mean	Range	Const
Tree			
BLACK SPRUCE			
(Picea mariana)	30	10-60	100
TAMARACK			
(Larix laricina)	10	1-15	100
Shrub			
BOG BIRCH			
(Betula glandulosa)	24	0-39	100
COMMON LABRADOR TEA			
(Ledum groenlandicum)	23	10-35	100
SALIX SPECIES			
(Salix spp.)	21	8-35	100
Forb			
COMMON HORSETAIL			
(Equisetum arvense)	21	0-45	66
DWARF BRAMBLE			
(Rubus pedatus)	8	0-25	66
DWARF SCOURING-RUSH			
(Equisetum scirpoides)	8	0-25	33
Grass			
BEAKED SEDGE			
(Carex rostrata)	4	0-7	66
BLUEJOINT			
(Calamagrostis canadensis)	3	1-4	100
FOWL BLUEGRASS			
(Poa palustris)	1	0-2	33
GOLDEN SEDGE			
(Carex aurea)	5	0-15	33
Moss			
UNDIFFERENTIATED MOSS	- ALL GE	NERA	
(Moss spp)	95	10-60	100

Moisture Regime: SUBHYDRIC()
Nutrient Regime: OLIGOTROPHIC()
Elevation (range): 591(576-606) M
Slope:
Aspect:
Soil Drainage: Poorly drained()
Soil Subgroup:
Soil Series:
Soil Correlation:
Range Site Category:
Ecological Status Score: 18

%:	
Comment:	
Forage Production (kg/ha)	n=

Mean

Min

Max

	Mean	Min	Max
Forb	40		
Grass	10		
Shrub	50		
Tree			
Total	100	0	0

Ecologically Sustainable Stocking Rate

40.47 (40.47-40.47) HA/AUM or 0.01 (0.01-0.01) AUM/AC

Generally this community type would be rated as non-use in the calculation of carrying capacity for a grazing disposition, but in some cases it may be used.

19.0 i solonetzic (subhydric) (n=2)

Natural Subregion: PEACE RIVER PARKLAND

General Description

This ecological site represents saline seepage areas which are scattered throughout the Peace Parkland subregion. Saline tolerant plants like baltic rush, foxtail barley, Nuttails saltgrass and sea side arrowgrass often dominate the vegetation of this ecological site.

Successional Relationships

The high moisture and salinity of the soil generally limits tree and shrub growth on these sites and the site often remains dominated by graminoid plant species. Heavy grazing pressure on these sites will often lead to a plant community dominated by foxtail barley.

Indicator Species

sedge species

foxtail barley

wire rush

Nuttall's salt-meadow grass

seaside arrow-grass

Site Characteristics

Moisture Regime: SUBHYGRIC(), SUBHYDRIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Poistion: Depression()

Slope: 0 - 0.5(), 0.5 - 2.5()

Aspect: Variable()

Soil Characteristics

Organic Thickness: 0 - 5 cm(), 6 - 15 cm()

Humus Form: FIBRIMOR()

Surface Texture: C()

Effective Texture: C()

Depth to Mottles/Gley: 0 - 25()

Soil Drainage: Imperfectly drained(), Poorly drained()

Parent Material: FL(), L()

Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	For	Stocking Rate			
i solonetzic (subhydric)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
i1 rush	1050	200		1150	22.26(0.02)
PPA17 Nuttails salt grass	1100			1100	4.05(0.10)
PPA18 Rush meadow	1000	200		1200	40.47(0.01)

19.1

i1 rush

(n=2)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: solonetzic (subhydric)

Characteristic Species

Forb

[2] seaside arrow-grass*

Grass

[30] Nuttall's salt-meadow grass*

30 I wire rush*

[10] foxtail barley

7 | sedge species

2 | tufted hair grass

1] salt grass

Site Characteristics

Moisture Regime: SUBHYGRIC(), SUBHYDRIC()

Nutrient Regime: SUBMESOTROPHIC()

Topographic Position: Depression()

Slope: 0 - 0.5(), 0.5 - 2.5()

Aspect: Variable()

Soil Characteristics

Organic Thickness: 0 - 5 cm(), 6 - 15 cm()

Humus Form: FIBRIMOR()

Surface Texture: Fibric(), CL()

Effective Texture: C()

Depth to Mottles/Gley: 0 - 25()

Soil Drainage: Imperfectly drained(), Poorly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA18

Rush meadow (1)

PPA17

Nuttalls salt grass (1)

^{*}Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.

19.1.1

PPA17. Nuttalls salt grass

(Puccinellia nuttalliana)

n=1 This community is characteristic of saline and alkaline alluvial deposits adjacent to ponds, lake margins or seepage areas. This community type is fairly productive and heavy grazing will often lead to a community type dominated by foxtail barley.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: i solonetzic (subhydric)
Ecosite Phase: i1 rush

Plant Composition	Canopy Cover (%)		r (%)	Environmental Variables				
	Mean	Range	Const.	Moisture Regime: SUBHYDRIG	C(100)			
Forb				•	, ,			
SEASIDE ARROW-GRASS				Nutrient Regime: SUBMESOT	ROPHIC()			
(Triglochin maritima)	1		100	Elevation (range): 717(-) M				
Grass				, , , , , ,				
FOXTAIL BARLEY				Slope: 0.5 - 2.5(100)				
(Hordeum jubatum)	12		100	Annast Wasterly()				
NUTTALL'S SALT-MEADOW	GRASS			Aspect: Westerly()				
(Puccinellia nuttalliana)	69		100	Soil Drainage: Imperfectly drain	ned(100)			
SALT GRASS				, , , , , , , , , , , , , , , , , , , ,				
(Distichlis stricta)	1		100	Soil Subgroup:				
SEDGE SPECIES				0.110				
(Carex spp.)	3		100	Soil Series:				
SLENDER WHEAT GRASS				Soil Correlation:				
(Agropyron trachycaulum)	1		100					
				Range Site Category:				
				Ecological Status Score: 24				
				Soil Exposure	Mean	Min	Max	
				%:				
				Comment:				
				Forage Production (kg/	/ha) n=			
					Mean	Min	Max	
				Forb				
				Grass	1100			
				Shrub				
				Tree				
				Total	1100	0	0	

Ecologically Sustainable Stocking Rate
4.05 (4.05-4.05) HA/AUM or 0.10 (0.10-0.10) AUM/AC

19.1.2

PPA18. Rush meadow

(Juncus balticus)

n=1 This community type was described on slightly saline seepage and was scattered amongst aspen and black spruce. The wetter saline edges of this community were dominated by Nuttall's salt grass and the drier uplands were dominated by a Purple oatgrass-Intermediate oatgrass dominated community. Bailey et al. (1992) described rush dominated meadows in a saline sequence in the Yukon and Thompson and Hansen (2002) felt that rush dominated meadows were indicative of heavy grazing pressure in Southern Alberta. Rush species are generally unpalatable to livestock.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: i solonetzic (subhydric)

Ecosite Phase: i1 rush

Plant Composition	Canopy Cover (%)				
	Mean	Range	Const		
Forb					
MARSH SPEEDWELL					
(Veronica scutellata)	2		100		
SEASIDE ARROW-GRASS					
(Triglochin maritima)	2		100		
WESTERN WILLOW ASTER					
(Aster hesperius)	1		100		
Grass					
FOXTAIL BARLEY					
(Hordeum jubatum)	8		100		
SEDGE SPECIES					
(Carex spp.)	13		100		
SLENDER WHEAT GRASS					
(Agropyron trachycaulum)	5		100		
TUFTED HAIR GRASS					
(Deschampsia cespitosa)	9		100		
WIRE RUSH					
(Juncus balticus)	60		100		

Environmental Variables

Moisture Regime: HYGRIC(100)

Nutrient Regime: SUBMESOTROPHIC(100)

Elevation (range): 717(-) M

Slope: 0.5 - 2.5(100)

Aspect: Westerly(100)

Soil Drainage: Imperfectly drained(100)

Soil Subgroup:

Soil Series:

Soil Correlation:

Range Site Category:

Ecological Status Score: 24

Soil Exposure

Mean Min

Max

%:

Comment:

Forage Production (kg/ha) n=

	Mean	Min	Max	
Forb	200			
Grass	1000			
Shrub				
Tree				
Total	1200	0	0	

Ecologically Sustainable Stocking Rate

40.47 (40.47-40.47) HA/AUM or 0.01 (0.01-0.01) AUM/AC

Generally this community type would be rated as non-use in the calculation of carrying capacity for a grazing disposition, but in some cases it may be used.

20.0 j rich fen (subhydric/rich) (n=108)

Natural Subregion: PEACE RIVER PARKLAND

General Description

The rich fen ecological site is characterized by flowing water and alkaline nutrient-rich conditions. This ecological site occupies level and depressional areas where the water table is at or near the surface for a portion of the growing season. Shrubs (bog birch, willow) form the canopy of the shrub phase and sedges and marsh reedgrass dominate the graminoid phase.

shrubby rich fen low-bush cramberry Aw

Successional Relationships

Thompson and Hansen, 2003 describe the successional relationships. If the site is heavily utilzed, such as during drought years, fowl bluegrass, spangletop, water-hemlock, wild mint, marsh skulicap and marsh hedge-nettle can invade the community. Severe disturbance can shift the community to a northern reed grass, spangletop or bluegrass dominated community, and occasionally alter the community to a Kentucky bluegrass community.

Indicator Species

bluejoint northern reed grass
water sedge awned sedge
beaked sedge wild mint
Kentucky bluegrass pale persicaria
flat-leaved willow Scouler's willow
common cattail

Site Characteristics

Moisture Regime: SUBHYGRIC(), HYGRIC(), SUBHYDRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Poistion:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Imperfectly drained(), Poorly drained(), Very poorly drained()

.....

Parent Material: Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	For	Stocking Rate			
j rich fen (subhydric/rich)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
j1 graminoid rich fen	2161	856	40	3030	0.58(0.69)
PPA11 Sedge meadow	3673	73	40	3786	0.54(0.75)
PPA14 Marsh reed grass meadow	1427	812		2239	0.40(1.01)
PPC11 Kentucky bluegrass/Dandelion	1382	1682		3064	0.81(0.50)
j2 shrubby rich fen	1240	604	8	1848	1.00(0.41)
PPB6 Willow/Marsh reed grass	1325	75		1400	0.81(0.50)
PPB7 Willow/Kentucky bluegrass/Dandelion	1100	1250		2350	1.35(0.30)

Forage Production Summary (kg/ha)

••••••••••••••••••••••••••••••••••

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	Stocking Rate			
j rich fen (subhydric/rich)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
j2 shrubby rich fen	1240	604	8	1848	1.00(0.41)
PPB8 Willow/Marsh reed grass-Kentucky bluegrass	1861	621	5	2487	1.01(0.40)
PPB9 Willow/Sedge	673	470	11	1154	0.81(0.50)

20.1 j1 graminoid rich fen (n=53)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: rich fen (subhydric/rich)

Characteristic Species

Shrub

[2] Salix species

Forb

1 1 curled dock

1] wild vetch

1] wild mint

1 | marsh skullcap

Grass

[19] Kentucky bluegrass

[15] bluejoint

[12] awned sedge

[8] beaked sedge

7] water sedge

Site Characteristics

Moisture Regime: SUBHYGRIC(), HYGRIC(), SUBHYDRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Imperfectly drained(), Poorly drained(), Very poorly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA11 Sedge meadow (39)

PPA14 Marsh reed grass meadow (12)
PPC11 Kentucky bluegrass/Dandelion (2)

^{*}Species characteristic of the phase but occurring in <70% for the sample plots with a prominence value <20.

20.1.1

• • • •

PPA11. Sedge meadow

(Carex aquatilis, C.rostrata, C.atherodes)

n=39 This community is the same as the DMA1-Sedge Meadow community of the Dry Mixedwood Guide (Willoughby et al. 2006). This wetland community type is found near fresh water and can be dominated by awned sedge, water sedge, or beaked sedge. The sedge meadow is a poorly drained community. As one moves to the drier edges, marsh reed grass becomes predominant. Willows will invade into both the sedge and marsh reed grass dominated meadows. The sedge meadow community is very productive, but the high water table, particualrly in the spring when the sedge species are most palatable, restricts livestock movement. One study done in the Yukon found that crude protein on these meadows declined from a high of 10% in May to less than 5% in September (Bailey et al. 1992). Beaked sedge found in abundance in this community is usually associated with nitrogen rich conditions and moving water (Brierly et al. 1985). Water sedge is often found in abundance in this community type and is associated with calcium rich stagnant water (MacKinnon et al. 1992).

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)
Ecosite Phase: j1 graminoid rich fen

Plant Composition	Canopy Cover (%)				
	Mean	Range	Const		
Shrub					
UNDIFFERENTIATED WILLO	W				
(Salix)	2	0-30	44		
Forb					
GREEN SORREL					
(Rumex acetosa)	1	0-2	12		
MARSH SKULLCAP					
(Scutellaria galericulata)	1	0-1	44		
MARSH WILLOWHERB					
(Epilobium palustre)	1	0-3	2		
WILD MINT					
(Mentha arvensis)	1	0-4	22		
Grass					
AWNED SEDGE					
(Carex atherodes)	35	0-97	65		
BEAKED SEDGE					
(Carex rostrata)	23	0-85	56		
BLUEJOINT					
(Calamagrostis canadensis)	3	0-11	17		
WATER SEDGE					
(Carex aquatilis)	21	0-90	51		

_				
		antal	Varia	hlas
EIIVI	romm	entar	varia	DIES

Moisture Regime: HYGRIC(), SUBHYDRIC()

Nutrient Regime: PERMESOTROPHIC()

Elevation (range): 586(579-600) M

Slope:

Aspect:

Soil Drainage: Poorly drained(), Very poorly drained()

Soil Subgroup:

Soil Series:

Soil Correlation:

Range Site Category:

Ecological Status Score: 24

Soil Exposure

%:

70.

Comment:

Forage Production (kg/ha) n=

	Mean	Min	Max
Forb	73		80
Grass	3673	1054	5028
Shrub	40		120
Tree			
Total	3786	1054	5228

Mean

Min

Max

Ecologically Sustainable Stocking Rate

0.54 (2.02-0.31) HA/AUM or 0.75 (0.20-1.31) AUM/AC

20.1.2 PPA14. Marsh reed grass meadow

(Calamagrostis canadensis, C.inexpansa, C.stricta)

n=12 This community type is the same as DMA2 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found on the edges of sedge meadows and moist draws where the water table is lower and can be dominated by any of these three species of reed grass. The lower water table makes this community accessible for most of the grazing season. Willow will invade onto these sites to form the Willow/Marsh reed grass community type (PPB6). Increased grazing pressure on these sites will cause marsh reed grass to decline and there will be an invasion of Kentucky bluegrass and dandelion. These sites are highly productive.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)

Ecosite Phase: j1 graminoid rich fen

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC(), HY	GRIC()		
Shrub							
SALIX SPECIES				Nutrient Regime: PERMESOTROPHI	C()		
(Salix spp.)	1	0-10	50	Elevation (range): 603(600-606) M			
Forb							
COMMON NETTLE				Slope:			
(Urtica dioica)	3	0-10	33	Annach			
WILD MINT				Aspect:			
(Mentha arvensis)	2	0-20	40	Soil Drainage: Poorly drained()			
Grass				,			
BLUEJOINT				Soil Subgroup:			
(Calamagrostis canadensis)	42	0-97	67	0-10			
NARROW REED GRASS				Soil Series:			
(Calamagrostis stricta)	15	0-70	25	Soil Correlation:			
NORTHERN REED GRASS							
(Calamagrostis inexpansa)	10	0-90	17	Range Site Category:			
WATER SEDGE				Factoriant Status Sansa 24			
(Carex aquatilis)	1	0-3	33	Ecological Status Score: 24			
WIRE RUSH				Soil Exposure	Mean	Min	Max
(Juncus balticus)	1	0-10	25	%:			
				Comment:			

_			
Forage	Production	n (kg/ha)	n=

812 1427	450	1174	
4422			
1427	1254	1600	
2239	1704	2774	

Ecologically Sustainable Stocking Rate

0.40 (0.81-0.34) HA/AUM or 1.01 (0.50-1.19) AUM/AC

20.1.3 PPC11. Kentucky bluegrass/Dandelion

(Poa pratensis/Taraxacum officinale)

n=2 This community type is the same as DMA9 in the Dry Mixedwood Guide (Willoughby et al. 2006). It represents a Marsh reed grass meadow that has undergone heavy prolonged grazing pressure and is now dominated by Kentucky bluegrass, rough hair grass and dandelion. This community is a fairly productive community type and the species are generally palatable to livestock when grazed in the vegetative state, but the extremely heavy grazing pressure which is needed to displace the native grass species indicates that there are livestock distribution problems that should be addressed. It is different from the PPC8 Kentucky bluegrass/Low forb community by having fewer forbs and is found on wetter sites.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)

Ecosite Phase: j1 graminoid rich fen

Plant Composition	Cano	y Cove	r (%)
	Mean	Range	Const
Forb			
COMMON DANDELION			
(Taraxacum officinale)	30	0-60	50
COMMON HORSETAIL			
(Equisetum arvense)	4	0-7	50
COMMON YARROW			
(Achillea millefolium)	6	0-11	50
CREAM-COLORED VETCHL	ING		
(Lathyrus ochroleucus)	6	0-12	50
WILD STRAWBERRY			
(Fragaria virginiana)	7	0-14	50
WILD VETCH			
(Vicia americana)	3	3-4	100
Grass			
FRINGED BROME			
(Bromus ciliatus)	2	0-4	50
KENTUCKY BLUEGRASS			
(Poa pratensis)	58	18-97	100
ROUGH HAIR GRASS			
(Agrostis scabra)	8	0-15	50
SLENDER WHEAT GRASS			
(Agropyron trachycaulum)	3	0-5	50

Soil Exposure	Mean	Min	Max
Ecological Status Score: 0			
Range Site Category:			
Soil Correlation:			
Soil Series:			
Soil Subgroup:			
Soil Drainage: Imperfectly drain	ned()		
Aspect:			
Slope:			
Elevation (range): 697(-) M			
Nutrient Regime: PERMESOT	ROPHIC()		
moistare regime. Godini orti	C(), HYGRIC()		

3064

0

Ecologically Sustainable Stocking Rate

0.81 (1.35-0.40) HA/AUM or 0.50 (0.30-1.01) AUM/AC

Tree

Total

20.2 j2 shrubby rich fen (n=55)

Natural Subregion: PEACE RIVER PARKLAND Ecological Site: rich fen (subhydric/rich)

Characteristic Species

Shrub

- [12] flat-leaved willow
- [6 | Salix species
- 3] basket willow
- 2 | beaked willow
- 2 | Scouler's willow

Forb

[13] common dandelion

Grass

- [14] bluejoint
- 4] awned sedge
- [4] Kentucky bluegrass
- 3 | beaked sedge
- [2] water sedge
- *Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: SUBHYGRIC(), SUBHYDRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Imperfectly drained(), Poorly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPB9 Willow/Sedge (26)

PPB6 Willow/Marsh reed grass (16)

PPB8 Willow/Marsh reed grass-Kentucky bluegrass (6)

PPB7 Willow/Kentucky bluegrass/Dandelion (7)

20.2.1

PPB6. Willow/Marsh reed grass

(Salix spp./Calamagrostis canadensis)

n=16 This community type is the same as DMA10a in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found along the edges of sedge and marsh reed grass meadows and in moist depressions. Predominantly flat leaved willow becomes established at the edges of these meadows due to the shorter duration of standing water. Increased flooding and prolonged waterlogging may result in the disappearance of willow and a transition to a marsh reed grass and water sedge meadow. These sites are fairly productive but difficult to graze due to the moist ground conditions and heavy shrub cover which reduces access and mobility within the area.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)
Ecosite Phase: j2 shrubby rich fen

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYDRIC()			
Shrub							
BASKET WILLOW				Nutrient Regime: PERMESOTROPH	HC()		
(Salix petiolaris)	3	0-20	38	Flouration (range): 606() \$4			
BEAKED WILLOW				Elevation (range): 606(-) M			
(Salix bebbiana)	3	0-20	44	Slope:			
FLAT-LEAVED WILLOW				A			
(Salix planifolia)	26	0-70	75	Aspect:			
Forb				Soil Drainage: Poorly drained()			
COMMON HORSETAIL							
(Equisetum arvense)	1	0-10	43	Soil Subgroup:			
COMMON NETTLE				0.110			
(Urtica dioica)	1	0-5	56	Soil Series:			
MARSH HEDGE-NETTLE				Soil Correlation:			
(Stachys palustris)	2	0-10	38	Con Corrolation.			
MARSH SKULLCAP				Range Site Category:			
(Scutellaria galericulata)	1	0-10	38	5 1 1 10 1 0 1			
WILD STRAWBERRY				Ecological Status Score: 24			
(Fragaria virginiana)	7	0-80	31	Soil Exposure	Mean	Min	Max
Grass				%:			*******
AWNED SEDGE				***			
(Carex atherodes)	2	0-20	44	Comment:			
BEAKED SEDGE				Forage Production (kg/ha)	n=		
(Carex rostrata)	2	0-10	38	rorage Production (kg/na)	Mean	Min	Mari
BLUEJOINT				Forb	mean 75	Min 50	Max 200
(Calamagrostis canadensis)	22	0-70	94	Grass	1325	900	1750
FOWL BLUEGRASS				Shrub	1325	900	1/50
(Poa palustris)	2	0-10	38	Tree			
				Total	4400	050	4051
				lotal	1400	950	1950

Ecologically Sustainable Stocking Rate

0.81 (40.47-0.40) HA/AUM or 0.50 (0.01-1.01) AUM/AC

20.2.2 PPB7. Willow/Kentucky bluegrass/Dandelion

(Salix spp./Poa pratensis/Taraxacum officinale)

n=7 This community type is the same as DMA14 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is very similar to the Willow/Marsh reed grass community type, but has been heavily grazed favouring the growth of Kentucky bluegrass and dandelion. Continued heavy grazing pressure eventually leads to an understory community that is dominated by Kentucky bluegrass and dandelion

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)
Ecosite Phase: j2 shrubby rich fen

Plant Composition	Cano	py Cove	er (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()			
Shrub				· · · · · · · · · · · · · · · · · · ·			
FLAT-LEAVED WILLOW				Nutrient Regime: PERMESOTROP	PHIC()		
(Salix planifolia)	11	0-40	29	Elevation (range): 603(600-606) M			
SALIX SPECIES							
(Salix spp.)	8	0-20	85	Slope:			
SCOULER'S WILLOW				Aspect:			
(Salix scouleriana)	9	0-50	29	Aspect.			
orb				Soil Drainage: Imperfectly drained()		
COMMON DANDELION							
(Taraxacum officinale)	32	0-80	71	Soil Subgroup:			
COMMON PLANTAIN				0.10			
(Plantago major)	1	0-5	21	Soil Series:			
WILD MINT				Soil Correlation:			
(Mentha arvensis)	2	0-10	57	Our Contolication.			
WILD STRAWBERRY				Range Site Category:			
Fragaria virginiana)	2	0-10	57				
Grass				Ecological Status Score: 8			
AWNLESS BROME				Soil Exposure	Mean	Min	Max
(Bromus inermis)	4	0-30	14	%:			
BLUEJOINT				Comment:			
Calamagrostis canadensis)	5	0-10	86	Comment.			
FOWL BLUEGRASS				Forage Production (kg/ha)	n=		
(Poa palustris)	4	0-10	71	. Crago i rocacción (ngma)	Mean	Min	Max
KENTUCKY BLUEGRASS				Forb	1250	750	1750
Poa pratensis)	10	0-40	43	Grass	1100	700	1500
				Shrub	, 100	. 00	.000
				Tree			
				Total	2350	1450	3250

Ecologically Sustainable Stocking Rate

^{1.35 (40.47-0.67)} HA/AUM or 0.30 (0.01-0.60) AUM/AC

20.2.3 PPB8. Willow/Marsh reed grass-Kentucky bluegrass

(Salix spp./Calamagrostis canadensis-Poa pratensis)

n=6 This community type is the same as DMA11 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is very similar to the Willow/Marsh reed grass community type (PPB6), but has been heavily grazed favouring the growth of Kentucky bluegrass and dandelion. Continued heavy grazing pressure will eventually lead to a understory community that is similar to the Willow/Kentucky bluegrass/dandelion dominated community type (PPB7).

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)
Ecosite Phase: j2 shrubby rich fen

Plant Composition	Cano	py Cove	er (%)	Environmental Variables
	Mean	Range	Const.	Moisture Regime: SUBHYGRIC()
Shrub				moistare regime. Sositi Strictly
SALIX SPECIES				Nutrient Regime: PERMESOTROPHIC()
(Salix spp.)	17	10-35	100	El
SNOWBERRY (BUCKBRUSH)				Elevation (range): 603(600-606) M
(Symphoricarpos occidentalis)	1	0-1	17	Slope:
Forb				Account.
BUSHY CINQUEFOIL				Aspect:
(Potentilla paradoxa)	1	0-2	67	Soil Drainage: Imperfectly drained()
COMMON DANDELION				
(Taraxacum officinale)	15	1-41	100	Soil Subgroup:
WILD MINT				0.410
(Mentha arvensis)	2	0-6	83	Soil Series:
Grass				Soil Correlation:
BLUEJOINT				
(Calamagrostis canadensis)	15	3-42	100	Range Site Category:
FOXTAIL BARLEY				Facionical Status Consul 46
(Hordeum jubatum)	1	0-3	83	Ecological Status Score: 16
KENTUCKY BLUEGRASS				Soil Exposure Mean Mir
(Poa pratensis)	17	4-32	100	%:
WIRE RUSH				Comment:
(Juncus balticus)	2	0-9	17	Comment.
				Forage Production (kg/ha) n=
				Mean Mir

	Mean	Min	Max
Forb	621	176	2450
Grass	1861	1800	1922
Shrub	5		28
Tree			
Total	2487	1976	4400

Max

Ecologically Sustainable Stocking Rate

1.01 (2.02-0.50) HA/AUM or 0.40 (0.20-0.81) AUM/AC

20.2.4

PPB9. Willow/Sedge

(Salix spp./Carex spp.)

n=26 This community type is the same as DMA10 in the Dry Mixedwood Guide (Willoughby et al. 2006). It is found along the edges of sedge meadows and in moist depressions. Generally flat leaved willow and basket willow become established at the edges of the sedge meadows due to the shorter duration of standing water. Increased flooding and prolonged waterlogging may result in the disappearance of willow and a transition to a water sedge meadow. These sites are fairly productive but difficult to graze due to the moist ground conditions and heavy shrub cover which reduces access and mobility within the area.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: j rich fen (subhydric/rich)
Ecosite Phase: j2 shrubby rich fen

Plant Composition	Cano	py Cove	r (%)	Environmental Variables			
	Mean	Range	Const.	Moisture Regime: SUBHYDRIC()			
Shrub				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
BASKET WILLOW				Nutrient Regime: PERMESOTROPH	HIC()		
(Salix petiolaris)	7	0-60	37	Fig. 15 () 500/570 000/14			
BEAKED WILLOW				Elevation (range): 588(576-606) M			
(Salix bebbiana)	5	0-65	47	Slope:			
FLAT-LEAVED WILLOW							
(Salix planifolia)	11	0-90	52	Aspect:			
Forb				Soil Drainage: Poorly drained()			
ARROW-LEAVED COLTSFO	ОТ			co. c.aago sorry dramod()			
(Petasites sagittatus)	2	0-30	41	Soil Subgroup:			
COMMON DANDELION							
(Taraxacum officinale)	3	0-22	30	Soil Series:			
MARSH SKULLCAP				Soil Correlation:			
(Scutellaria galericulata)	1	0-10	52	Son Correlation.			
WILD MINT				Range Site Category:			
(Mentha arvensis)	1	0-5	44				
WILD STRAWBERRY				Ecological Status Score: 24			
(Fragaria virginiana)	2	0-18	29	Soil Exposure	Mean	Min	Max
Grass				%:	Would	141111	IVIGA
AWNED SEDGE							
(Carex atherodes)	12	0-70	59	Comment:			
BEAKED SEDGE				Forms Draduction (kg/ha)			
(Carex rostrata)	11	1-42	70	Forage Production (kg/ha)			•••
BLUEJOINT				Forb	Mean 470	Min 52	Max
(Calamagrostis canadensis)	2	0-11	48	Grass			888
WATER SEDGE				Shrub	673	344	1002
(Carex aquatilis)	9	0-80	63	Tree	11		22
					4454	000	46.0
				Total	1154	396	1912

Ecologically Sustainable Stocking Rate

0.81 (40.47-0.40) HA/AUM or 0.50 (0.01-1.01) AUM/AC

21.0 k marsh (hydric/rich) (n=21)

Natural Subregion: PEACE RIVER PARKLAND

General Description

Very wet site usually with standing water, along margins of lakes, rivers, streams, ponds, or abandoned channels of rivers and streams. Soils are Gleysols with an accumulation of organic matter overlaying fine silt and clay deposits. Mottling or gleying in mineral horizons is common. Mineral soils are fine textured silt mud and have layers of organic accumulation. Soils are poorly to very poorly drained.

low-bush cranberry Aw marsh

Successional Relationships

As these sites dry out, sedge species often dominate. If disturbed when the site is dry, foxtail barley, pale persicaria, creeping spike-rush, slough grass and wild mint can invade the site.

Indicator Species

awned sedge swamp norsetail foxtail barley wild mint pale persicaria Scouler's willow common cattail

Site Characteristics

Moisture Regime: HYGRIC(), SUBHYDRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Poistion:

Slope:

Aspect

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Poorly drained(), Very poorly drained()

Parent Material:

Soil Subgroup:

Forage Production Summary (kg/ha)

(Refer to the Plant Community for detailed Stocking Rate Information)

	Fo	rage Produc	tion (kg/ha)		Stocking Rate
k marsh (hydric/rich)	Grass	Forb	Shrub	Total	ha/aum(aum/ac)
k1 marsh	4300			3150	40.47(0.01)
PPA12 Bulrush-Cattail	4300			4300	40.47(0.01)
PPA13 Swamp horsetail				2000	40.47(0.01)

21.1 k1 marsh (n=21)

Natural Subregion: PEACE RIVER PARKLAND

Ecological Site: marsh (hydric/rich)

Characteristic Species

Forb

- [39] swamp horsetail
- [7] willowherb
- [4] small bedstraw
- [2] marsh skullcap

Grass

- [15] great bulrush
- [14] common cattail
- [2] beaked sedge
- Species characteristic of the phase but occuring in <70% for the sample plots with a prominence value <20.</p>

Site Characteristics

Moisture Regime: HYGRIC(), SUBHYDRIC()

Nutrient Regime: PERMESOTROPHIC()

Topographic Position:

Slope:

Aspect:

Soil Characteristics

Organic Thickness:

Humus Form:

Surface Texture:

Effective Texture:

Depth to Mottles/Gley:

Soil Drainage: Poorly drained(), Very poorly drained()

Parent Material:

Soil Subgroup:

Soil Type:

Plant Community Types (n)

PPA12 Bulrush-Cattail (18)

PPA13 Swamp horsetail (3)

21.1.1

PPA12. Bulrush-Cattail

(Scirpus acutus-Typha latifolia)

n=18 This community is the same as the DMA1a-Bulrush-Cattail community of the Dry Mixedwood Guide (Willoughby et al. 2006). This wetland community type is associated with standing water and is an emergent community found in standing water of ponds and sloughs. As one moves away from the water to the drier edges, the sedge meadow communities are found. On the drier edges, the marsh reed grass community is found and willow are associated in the transition from the slough margin and the forest.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: k marsh (hydric/rich)
Ecosite Phase: k1 marsh

Plant Composition	Canopy Cover (%)					
Forb	Mean	Range	Cons			
ARUM-LEAVED ARROWHEA	0					
(Sagittaria cuneata)	1	0-3	17			
BULB-BEARING WATER-HEI	ALOCK.	0-3	17			
(Cicuta bulbifera)	4	0-3	11			
GIANT BUR-REED	'	0-3	11			
(Sparganium eurycarpum)	9	0-80	11			
Grass		0.00				
COMMON CATTAIL						
(Typha latifolia)	27	0-97	50			
COMMON GREAT BULRUSH	1					
(Scirpus validus)	6	0-60	11			
CREEPING SPIKE-RUSH						
(Eleocharis palustris)	3	0-4	22			
GREAT BULRUSH						
(Scirpus acutus)	29	0-90	44			
SPANGLETOP						
(Scolochioa festucacea)	5	0-97	5			

Environmental Variables	
Moisture Regime: HYGRIC(), SUBHYDRIC()	
Nutrient Regime: PERMESOTROPHIC()	
Elevation (range): 606(-) M	
Slope:	
Aspect:	
Soil Drainage: Very poorly drained()	
Soil Subgroup:	
Soil Series:	
Soil Correlation:	
Range Site Category:	
Ecological Status Score: 24	

%: Comment:

Soil Exposure

Forage Production (kg/ha) n=

	Mean	Min	Max
Forb			
Grass	4300		
Shrub			
Tree			
Total	4300	0	0

Mean

Min

Max

Ecologically Sustainable Stocking Rate

40.47 (40.47-40.47) HA/AUM or 0.01 (0.01-0.01) AUM/AC

The forage production amount listed is an estimate.

21.1.2

PPA13. Swamp horsetail

(Equisetum fluviatile)

n=3 This community is the same as the DMA20 - Swamp Horsetail community of the Dry Mixedwood Guide (Willoughby et al. 2006). It is a wetland community found near fresh water and is often associated with shallow water around lake shores or saturated wet spots in old river channels and sloughs. This community is often only found in small isolated spots or in narrow bands around the edge of lakes. As these areas dry, swamp horsetail is often replaced by sedge species. Swamp horsetail is generally unpalatable to livestock and the areas it grows in are often to wet for livestock to access.

Natural Subregion: PEACE RIVER PARKLAND

Ecosite: k marsh (hydric/rich)
Ecosite Phase: k1 marsh

Plant Composition	Canopy Cover (%)			Environmental Variables	
	Mean	Range	Const.	Moisture Regime: HYGRIC(), SUBHYDRIC()	
Forb					
MARSH SKULLCAP				Nutrient Regime: PERMESOTROPHIC()	
(Scutellaria galericulata)	3	0-10	33	Floories () 200/270 000\44	
SMALL BEDSTRAW				Elevation (range): 586(579-600) M	
(Galium trifidum)	7	0-20	33	Slope:	
SWAMP HORSETAIL					
(Equisetum fluviatile)	77	50-90	100	Aspect:	
WILLOWHERB				Soil Drainage: Poorly drained(), Very poorly drained()	
(Epilobium leptocarpum)	13	0-40	33	con brainings. I don'y drained(), very poorty drained()	
Grass				Soil Subgroup:	
BEAKED SEDGE					
(Carex rostrata)	3	0-10	33	Soil Series:	
COMMON CATTAIL				Soil Correlation:	
(Typha latifolia)	1	0-1	33	Son Son Glation.	
WATER SEDGE				Range Site Category:	
(Carex aquatilis)	8	0-20	66	Ecological Status Score: 24	

Soil Exposure	Mean	Mié	Max
0/.			

%:

Comment:

Forage Production (kg/ha) n=

	Mean	Mir	Max
Forb			
Grass			
Shrub			
Tree			
Undifferentiated	2000		
Total	2000	0	0

Ecologically Sustainable Stocking Rate

40.47 (40.47-40.47) HA/AUM or 0.01 (0.01-0.01) AUM/AC

Generally this community type would be rated as non-use in the calculation of carrying capacity for a grazing disposition, but in some cases it may be used.

The forage production amount listed is an estimate.

22.0 Literature Cited

• • •

•

•

...

•

•

•

•

•

•

•

•

•

•

.

Adams, B.W. 1981. Range ecology and the impact of livestock grazing on the Peace River slopes, Alberta. Public Lands Division, Grazing Land Management, Range Management Unit. Peace River, AB. 74pp.

Adams, B.W., G. Ehlert, C. Stone, M. Alexander, D. Lawrence, M. Willoughby, D. Moisey, C. Hincz, and A. Burkinshaw. 2005. Range health assessment for grassland, forest and tame pasture. Public Lands and Forests Division, Alberta Sustainable Resource Development. Edmonton. AB. Pub. No. T/044. 112pp.

Alberta Rangeland Health Task Group. 1999. Terms of reference. Alberta Agriculture Food and Rural Development (Public Lands Division), Alberta Environment (Forest Management Division). Edmonton, AB. 49pp.

Bailey, A.W., M.G. Willoughby, R. Johansen and S. Smith. Management of Yukon rangelands. Renewable Resources, Yukon Territorial Government. Whitehorse, Yukon. 55pp. ISBN-1-155018-138-6.

Beckingham, J.D. 1993. Field guide to the ecosystems of Northern Alberta. Environmental Protection, Land and Forest Services. Edmonton, Alta. 251pp.

Beckingham, J.D and J.H. Archibald. 1996. Field guide to ecosites of northern Alberta. Special Report 5. Canadian Forest Service, Northwest Region, Northern Forestry Centre. Edmonton, AB.

Brierly, D., D. Downing and D. O'Leary. 1985. An integrated resource inventory of the Keg River study area. Vol. 1 and 11, Vegetation classification, Alberta Energy and Natural Resources. Edmonton, AB.

Corns, I.G.W. and R.M. Annas. 1986. Field guide to forest ecosystems of West-Central Alberta. Northern Forestry Centre, Canadian Forestry Service, Edmonton, AB. 251pp.

Daubenmire, R. 1952. Forest vegetation of Northern Idaho and adjacent Washington and its bearing on concepts of vegetation classification. Ecological Monographs. 22: 301-330.

Downing, D. and E. Karpuk. 1992. Aspen vegetation types of the Low Boreal Mixedwood ecoregion, East-Central Alberta. Alberta Forestry, Lands and Wildlife. Resource Information Branch. Land Information Services. Edmonton. AB. 79pp.

Gauch, H.G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge, United Kingdom. 298pp.

Holechek, J.L., R.D. Pieper and C.H. Herbel. 1995. Range management principles and practices. 2nd Edition. Prentice-Hall Inc. Engewood Cliff. New Jersey. Chapter 8.

Invasive plants of natural habitats in Canada. 1992. Environmental Canada, Canadian Wildlife Service. Ottawa, Canada. 111pp.

Lane, C.T., M.G. Willoughby and M.J. Alexander. 2000. Range plant communities and carrying capacity for the lower foothills subregion. 3rd approximation. Alberta Environment. Land and Forest Service. Edmonton. AB. Pub. No T532. 232pp.

Lodge, R.W., A. McLean and A. Johnston. 1968. Stock-poisoning plants of Western Canada. Agriculture Canada. Publication # 1361. 35pp.

Mackinnon, A., J. Pojar and R. Coupe. 1992. Plants of northern British Columbia. Lone Pine Publishing, Edmonton, AB. 345pp.

Meidinger, D. and J. Pojar (compilers and editors). 1991. Ecosystems of British Columbia. BC Min. For. Special Report Series 6. Victoria, BC. 330 pp.

Mueggler, W.F. 1988. Aspen community types of the intermountain region. USDA Intermountain Research Station. INT-250. 133pp.

Natural Regions Committee. 2006. Natural regions and subregions of Alberta. Compiled by D.J. Downing and W.W. Pettapiece. Government of Alberta. Pub. No. T/852. 254pp.

Range Survey Manual. 1992. Range Management Section. Alberta Forest Service. Edmonton, AB. 39pp.

Strong, W.L. 1992. Ecoregions and Ecodistricts of Alberta, Forestry Lands and Wildlife. Edmonton. Alta. Pub. No. 7/244, 77pp.

••••••••••••••••••

Task Group on Unity in Concepts and Terminology. 1995. New concepts for assessment of rangeland condition. Journal of Range Management. 48: 271-282.

Thompson, W.H. and P.L. Hansen. 2003. Classification and management of riparian and wetland sites of the Alberta's parkland natural region and dry mixedwood natural subregion. Bitterroot Restoration Inc. Prepared for the Alberta Riparian Habitat Management Program-Cows and Fish, Lethbridge, Alberta. 340pp.

Thompson, W.H. and P.L. Hansen. 2002. Classification and management of riparian and wetland sites of the Alberta's Grassland Natural Region. Bitterroot Restoration Inc. Prepared for the Alberta Riparian Habitat Management Program-Cows and Fish. Lethbridge. Alberta. 416pp.

Wilkinson, K. and E.A. Johnson. 1983. Distribution of prairies and solonetzic soils in the Peace River district, Alberta. Canadian Journal of Botany 61: 1851-1860.

Willoughby, M.G., C. Stone, C. Hincz, D. Moisey, G.Ehlert and D. Lawrence. 2006. Guide to range plant community types and carrying capacity for the dry and central mixedwood subregions in Alberta. Sixth approximation. Alberta Sustainable Resource Development, Public Lands and Forests Division. Edmonton. AB. Pub. No. T/103. 240pp.

