Module: Adv. Machine Learning

Live Session-5

Statistical clustering (Gaussian Mixture Model)

Clustering:

- Data are often given as points (or vectors) x^n in a Euclidean vector space and often form groups that are close to each other, so called clusters.
- In data analysis one is, of course, interested to discover such a structure, a process called clustering.

K-mean clustering

- 1. First we initialize k points, called means, randomly.
- 2. We categorize each item to its closest mean and we update the mean's coordinates, which are the averages of the items categorized in that mean so far.
- 3. We repeat the process for a given number of iterations and at the end, we have our clusters.

The idea is to represent each cluster k by a center point c_k and assign each data point x_n to one of the clusters k, which can be written in terms of index sets C_k .

The center points and the assignment are then chosen such that the distance between data points and center points

$$E := \sum_{k=1}^{K} \sum_{n \in \mathcal{C}_k} \|\mathbf{x}_n - \mathbf{c}_k\|^2$$

is minimized.

K Mean Algorithm

The K-means algorithm now consists of applying these two optimizations in turn until convergence.

The initial center locations could be chosen randomly from the data points. A drawback of this and many other clustering algorithms is that the number of clusters is not determined.

One has to decide on a proper K in advance, or one simply runs the algorithm with several different K-values and picks the best according to some criterion.

Given simple, well-separated data, *k*-means gives good clustering results.

Given simple, well-separated data, *k*-means gives good clustering results.

Given simple, well-separated data, *k*-means gives good clustering results.

Consider the following data:

K-Means Results:

Solution:

Gaussian Distribution Model:

$$N(x; | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Gaussian Distribution: Two Parameters

The mean of the Gaussian simply shifts the center of the Gaussian, i.e., the "bump" or top of the bell. In the image above, μ =0, so the largest value is at x=0.

The standard deviation is a measure of the *spread* of the Gaussian. It affects the "wideness" of the bell. Using a larger standard deviation means that the data are more spread out, rather than closer to the mean.

Gaussian Distribution: Two Parameters

Bivariate Gaussian Distribution:

$$G(X|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)|\Sigma|}} \exp\left(-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)\right)$$

Gaussian Distribution: Two Parameters

Gaussian Mixture Model:

The real dataset can be seen as a mixture of several Gaussian distributions.

Gaussian Mixture Model:

The real dataset can be seen as a mixture of several Gaussian distributions.

Suppose the dataset is formed with *k* clusters (suppose we knew it).

Then, we need to estimate mean and standard deviation for each cluster.

The probability density is defined as a linear function of densities of all these *k* distributions, i.e.

$$p(X) = \sum_{k=1}^{K} \pi_k G(X|\mu_k, \Sigma_k)$$

Gaussian Mixture Model: Theory

Gaussian Mixture Model: Theory

Gaussian Mixture Model: Theory

Gaussian Mixture Model: EM algorithm

Since the closed form solution is not available, the Expectation-Maximization (EM) algorithm is a **Two-Steps** iterative way to find maximum-likelihood estimates for model parameters

• Estimation step:

- initialize μ_k , Σ_k and π_k by some random values, or by K means clustering results or by hierarchical clustering results.
- ullet Then for those given parameter values, estimate the value of the latent variables (i.e γ_k)

Maximization Step:

• Update the value of the parameters (i.e. μ_k , Σ_k and π_k) calculated using ML method.

Gaussian Mixture Model: Implementation

class

sklearn.mixture.GaussianMixture(n_components=3, covariance_type='full', tol=0.001,
max_iter=100, init_params='kmeans', weights_init=None, means_init=None,
precisions_init=None, random_state=None, warm_start=False, verbose=0,
verbose_interval=10

n_components	The number of mixture components.
covariance_type	{'full', 'tied', 'diag', 'spherical'}, default='full' full: each component has its own general covariance matrix tied: all components share the same general covariance matrix diag: each component has its own diagonal covariance matrix spherical: each component has its own single variance
tol	default=.001 The convergence threshold. EM iterations will stop when the lower bound average gain is below this threshold.
max_iter	int, default=100 The number of EM iterations to perform
init_params	{'kmeans', 'random'}, default='kmeans' The method used to initialize the weights, the means, etc.

Gaussian Mixture Model: Implementation

class

sklearn.mixture.GaussianMixture(n_components=3, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None)

weights_init	array-like of shape (n_components,), default=None The user-provided initial weights. If it is None, weights are initialized using the init_params method.
means_init	The user-provided initial means, If it is None, means are initialized using the init_params method.
precisions_init	The user-provided initial precisions (inverse of the covariance matrices). If it is None, precisions are initialized using the 'init params' method.

