

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

General Description

The MAX4638/MAX4639 are single 8:1 and dual 4:1 CMOS analog multiplexers/demultiplexers (muxes/demuxes). Each mux operates from a single +1.8V to +5V supply or dual ± 2.5 V supplies. These devices feature 3.5 Ω on-resistance (RON) when powered with a single +5V supply and have -75dB off-isolation and -85dB crosstalk from the output to each off channel. The switching times are 18ns ton and 7ns toff. They feature a -3dB 85MHz bandwidth and a guaranteed 0.25nA leakage current at +25°C.

A +1.8V to +5.5V operating range makes the MAX4638/ MAX4639 ideal for battery-powered, portable instruments. All channels guarantee break-before-make switching. These parts feature bidirectional operation and can handle Rail-to-Rail® analog signals. All control inputs are TTL/CMOS-logic compatible. Decoding is in standard BCD format, and an enable input is provided to simplify cascading of devices. These devices are available in small 16-pin TQFN, TSSOP, and SO packages, as well as a 20-pin TQFN package.

Applications

Automatic Test Equipment
Low-Voltage Data-Acquisition Systems
Audio and Video Signal Routing
Medical Equipment
Battery-Powered Equipment
Relay Replacement

_____Features

- Guaranteed R_{ON}
 3.5Ω (+5V or ±2.5V Supplies)
 6Ω (+3V Supply)
- ♦ Guaranteed 0.4Ω R_{ON} Match Between Channels
- ♦ Guaranteed 1Ω Ron Flatness Over Signal Range
- ♦ Guaranteed Low Leakage Currents 0.25nA at +25°C
- ♦ Switching Times: toN = 18ns, toFF = 7ns
- ◆ +1.8V to +5.5V Single-Supply Operation
 ±2.5V Dual-Supply Operation
- ♦ Rail-to-Rail Signal Handling
- **♦ TTL/CMOS-Logic Compatible**
- ♦ Crosstalk: -80dB (1MHz)
- ♦ Off-Isolation: -60dB (10MHz)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4638ETE+T	-40°C to +85°C	16 TQFN-EP* (4 × 4)
MAX4638EUE+T	-40°C to +85°C	16 TSSOP
MAX4638ESE+T	-40°C to +85°C	16 SO
MAX4638ETP+T	-40°C to +85°C	20 TQFN-EP* (4 × 4)

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Ordering Information continued at end of data sheet.

Pin Configurations/Functional Diagrams

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

T = Tape and reel.

^{*}EP = Exposed pad.

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	Continuous Power Dissipation ($T_A = +70$ °C)
V+ to V+6V	TQFN (derate 16.9mW/°C above +70°C)1349mW
V+, A_, EN0.3V to +6V	TSSOP (derate 9.4mW/°C above +70°C)754.7mW
V+0.3V to -6V	SO (derate 8.70mW/°C above +70°C)696mW
NO_, COM_ (Note 1)0.3V to (V+ + 0.3V)	Operating Temperature Range
Continuous Current A_, EN ±30mA	MAX463_E_ E40°C to +85°C
Continuous Current NO_, COM ±100mA	Junction Temperature+150°C
Peak Current (NO_, COM_)	Storage Temperature Range65°C to +150°C
(pulsed at 1ms, 10% duty cycle) ±200mA	Lead Temperature (soldering, 10s)+300°C
	Soldering Temperature (reflow)+260°C

Note 1: Signals on COM_, NO_ exceeding V+ or V- are clamped by internal diodes. A_ and EN are clamped only to V- and can exceed V+ up to their maximum ratings. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—+5V Single Supply

 $(V+ = +5V \pm 10\%, V- = 0, V_{IH} = +2.4V, V_{IL} = +0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
ANALOG SWITCH	-1							
Analog Signal Range	V _{COM_} , V _{NO_}			0		V+	V	
On-Resistance	Ron	$V+ = +4.5V$, $I_{COM} = 10mA$, $V_{NO} = +3.5V$	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		2.5	3.5 4.5	Ω	
On-Resistance Match Between Channels (Notes 4, 5)	ΔR _{ON}	V+ = +4.5V, I _{COM} _ = 10mA, V _{NO} _ = +3.5V	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}		0.1	0.4	Ω	
On-Resistance Flatness (Note 6)	RFLAT(ON)	V+ = +4.5V; I _{COM} _ = 10mA; V _{NO} _ = +1V, +2V, +3.5V	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}		0.75	1 1.2	Ω	
NO_ Off-Leakage Current (Note 7)	I _{NO_(OFF)}	V+ = +5.5V; V _{COM} = +1V, +4.5V; V _{NO} = +4.5V, +1V	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}	-0.25 -0.35	±0.01	0.25 0.35	nA	
COM_ Off-Leakage Current (Note 7)	ICOM_(OFF)	V+ = +5.5V; V _{COM} = +1V, +4.5V; V _{NO} = +4.5V, +1V	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}	-0.25 -0.75	±0.01	0.25 0.75	nA	
COM_ On-Leakage Current (Note 7)	ICOM_(ON)	V+ = +5.5V; V _{COM} = +1V, +4.5V; V _{NO} = +1V, +4.5V, or unconnected	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}	-0.25 -0.75	±0.01	0.25 0.75	nA	
DIGITAL I/O		or anconnected	· A · IVIII (CO · IVIA)				1	
Input Logic High	VIH			2.4			V	
Input Logic Low	VIL					0.8	V	
Input Leakage Current	I _{IH} , I _{IL}	$V_{IN} = 0$ or $V+$		-0.1	0.005	0.1	μΑ	
Digital Input Capacitance	CIN				2		рF	
DYNAMIC								
Transition Time (Note 7)	ttrans	$R_L = 100\Omega$, $C_L = 35pF$, $V_{NO1} = +3V$ or 0.	T _A = +25°C		14	18	ns	
, ,	$V_{NO8} = 0 \text{ or } +3V, \text{ Figure}$		$T_A = T_{MIN}$ to T_{MAX}			20		

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS—+5V Single Supply (continued)

 $(V+ = +5V \pm 10\%, V- = 0, V_{IH} = +2.4V, V_{IL} = +0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Notes 2, 3)

PARAMETER	SYMBOL		CONDITIO	ONS	MIN	TYP (Note 2)	MAX	UNITS
Break-Before-Make (Note 7)	tooM	$R_L = 100\Omega$, C_I	_ = 35pF,	T _A = +25°C		8		ns
Dieak-Deloie-Wake (Note 1)	tBBM	$V_{NO} = +3V, F$	igure 3	$T_A = T_{MIN}$ to T_{MAX}	1			115
			$R_L = 100\Omega$, $C_L = 35pF$,			14	18	
Enable Turn-On Time (Note 7)	tON(EN)	$V_{NO1} = +3V$, $V_{NO8} = 0$, Fig		TA = TMIN to TMAX			20	ns
Enable Turn Off Time (Note 7)	to==(=\)	$R_L = 100\Omega$, C_I		T _A = +25°C		5	7	20
Enable Turn-Off Time (Note 7)	tOFF(EN)	$V_{NO1} = +3V$, $V_{NO8} = 0$, Fig		$T_A = T_{MIN}$ to T_{MAX}			8	ns
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, C _L = 5pF,	MAX4638	T _A = +25°C		50		MHz
en channel oub bandwan	DVV	50Ω in and out, Figure 6	MAX4639	T _A = +25°C		85		1011 12
Charge Injection	Q	$V_{GEN} = +2.5V$, $R_{GEN} = 0$, $C_L = 1.0$ nF, Figure 5		T _A = +25°C		13		рС
NO_ Off-Capacitance	C _{NO_(OFF)}	V _{NO} _ = 0V, f = Figure 8	= 1MHz,	T _A = +25°C		9		pF
0014 011 0		$V_{COM} = 0V$, MA		T _A = +25°C		40	nE	
COM_ Off-Capacitance	CCOM_(OFF)	f = 1MHz, Figure 8	MAX4639	T _A = +25°C		20		i pF
Switch On-Capacitance	C _(ON)	V _{COM} _ = V _{NO} _ = 0V,	MAX4638	T _A = +25°C		54		рF
omion on capacitance	0(014)	f = 1MHz, Figure 8	MAX4639	$T_A = +25$ °C		34		Pi
Off leadation (News 0)	V	$C_L = 5pF, R_L = f = 1MHz, V_{NO} = 1V_{RMS}, Figure$	_=	T _A = +25°C		-55		-10
Off-Isolation (Note 8)	VISO	$C_L = 5pF, R_L = f = 10MHz, V_{NO}$ 1 V_{RMS} , Figure	D_ =	T _A = +25°C		-75		dB
Croostally (Nata O)	Voz	$C_L = 5pF, R_L = f = 10MHz, V_{NG}$ $1V_{RMS}$, Figure	D_=	T _A = +25°C		-65		٩D
Crosstalk (Note 9)	Vст	$C_L = 5pF$, $R_L = 50\Omega$, $f = 1MHz$, $V_{NO_} = 1V_{RMS}$, Figure 7		T _A = +25°C		-85		dB
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $R_{FLAT(ON)}/R_L$		T _A = +25°C		0.5		%
SUPPLY	1	,						1
Positive Supply Current	l+	V+ = +5.5V, V	' _{IN} = 0 or V+	-		0.001	1.0	μΑ

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS—+3.0V Single Supply

 $(V+ = +2.7V \text{ to } +3.3V, V- = 0, V_{IH} = +2.0V, V_{IL} = +0.4V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at V+ = +3V and $T_A = +25$ °C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	мах	UNITS	
ANALOG SWITCH	1						ı	
Analog Signal Range	V _{COM_} , V _{NO_}			0		V+	V	
On-Resistance	Ron	I _{COM} _ = 10mA,	T _A = +25°C		4.5	6	Ω	
	11011	$V_{NO_{-}} = +1.7V$	$T_A = T_{MIN}$ to T_{MAX}			8	32	
On-Resistance Match	ΔRon	$I_{COM} = 10mA$,	$T_A = +25^{\circ}C$		0.25	0.6	Ω	
Between Channels (Notes 4, 5)	2.1014	$V_{NO_{-}} = +1.7V$	$T_A = T_{MIN}$ to T_{MAX}			0.8		
On Pagistance Flatness (Note 6)	DEL ATIONS	$I_{COM} = 10mA;$	T _A = +25°C		1	2	Ω	
On-Resistance Flatness (Note 6)	R _{FL} AT(ON)	V_{NO} = +1.5V, +1.7V, +1.9V	$T_A = T_{MIN}$ to T_{MAX}			2.5	\$2	
NO_ Off-Leakage Current		V+ = +3.3V;	T _A = +25°C	-0.25	±0.01	0.25		
(Note 7)	INO_(OFF)	$V_{COM} = +1V, +3V; V_{NO} = +3V, +1V$	TA = TMIN to TMAX	-0.35		0.35	nA	
COM_ Off-Leakage Current		COM (OFF) VCOM = +1V, +3V; VNO	T _A = +25°C	-0.25	±0.01	0.25		
(Note 7)	ICOM_(OFF)		TA = TMIN to TMAX	-0.35		0.35	nA	
COM_ On-Leakage Current		V+ = +3.3V; V _{COM} _ =	T _A = +25°C	-0.25	±0.01	0.25		
(Note 7)	ICOM_(ON)	+1V, +3V; V _{NO} _= +1V, +3V, or unconnected	TA = TMIN to TMAX	-0.35		0.35	nA	
DIGITAL I/O								
Input Logic High	VIH			2.0			V	
Input Logic Low	VIL					0.4	V	
Input Leakage Current	I _{IH} , I _{IL}	$V_{IN} = 0$ or $V+$		-0.1	0.005	0.1	μΑ	
Digital Input Capacitance	CIN				2		рF	
DYNAMIC								
Transition Time (Note 7)	±=======	$V_{NO} = +2V, C_L = 35pF,$	$T_A = +25^{\circ}C$		16	20	no	
Transition Time (Note 7)	ttrans	$R_L = 100\Omega$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			24	ns	
Break-Before-Make (Note 7)	tpp.4	$V_{NO} = +2V, C_L = 35pF,$	$T_A = +25^{\circ}C$		8		ns	
Bleak-Belore-Make (Note 1)	t _{BBM}	$R_L = 100\Omega$, Figure 3	$T_A = T_{MIN}$ to T_{MAX}	1			115	
Enable Turn-On Time (Note 7)	tON(EN)	$V_{NO_{-}} = +2V, C_{L} = 35pF,$	$T_A = +25^{\circ}C$		15	20	ns	
Enable falli on fillio (Note I)	ton(EN)	$R_L = 100\Omega$, Figure 4	$T_A = T_{MIN}$ to T_{MAX}			24	110	
Enable Turn-Off Time (Note 7)	toff(EN)	$V_{NO} = +2V, C_L = 35pF,$	T _A = +25°C		5	9	ns	
Enable fam on time (Note 1)	UFF(EN)	$R_L = 100\Omega$, Figure 4 $T_A = T_{MIN}$ to T_{MAX}				10	113	

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS—+3.0V Single Supply (continued)

 $(V+=+2.7V \text{ to } +3.3V, V-=0, V_{IH}=+2.0V, V_{IL}=+0.4V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at V+=+3V and $T_A=+25^{\circ}C.$) (Notes 2, 3)

PARAMETER	SYMBOL		CONDITIO	ONS	MIN	TYP (Note 2)	MAX	UNITS
Off-Isolation (Note 8)	V _{ISO}	f = 10MHz,	$C_L = 5pF$, $R_L = 50\Omega$, $T_A = 10MHz$, $T_A = 10MHz$, $T_A = 100MHz$,			55		dB
On-isolation (Note 6)	VISO	$C_L = 5pF, R_L = f = 1MHz, V_{NO}_L$ Figure 6		T _A = +25°C		-75		αь
Crosstalk (Note 9)	Vст	$C_L = 5pF, R_L = f = 10MHz, V_{NC}$ Figure 7		T _A = +25°C		-65		dB
Crossiaik (Note 9)	VCI	C _L = 5pF, R _L = 1 f = 1MHz, V _{NO} _ Figure 7		T _A = +25°C	-85			αь
On Channel 2dD Dandwidth	BW	Signal = $0dBm, 50\Omega$ in	MAX4638	T _A = +25°C		50		MHz
On-Channel -3dB Bandwidth	DVV	and out, Figure 6	MAX4639	T _A = +25°C		85		IVI⊓∠
NO_ Off-Capacitance	C _{NO_(OFF)}	V _{NO} _= 0V, f = Figure 8	: 1MHz,	T _A = +25°C		9		рF
COM_ Off-Capacitance	Cook (OFF)	$V_{COM} = 0V,$ f = 1MHz,	MAX4638	T _A = +25°C		40		рF
COM_On-Capacitance	CCOM_(OFF)	Figure 8	MAX4639	$T_A = +25^{\circ}C$		20		ρΓ
Switch On Conscitance	Curan	$V_{COM} = V_{NO}$ = 0V,	MAX4638	T _A = +25°C		54		۲
Switch On-Capacitance	C _(ON)	f = 1MHz, Figure 8	MAX4639	T _A = +25°C		34		рF
SUPPLY				-			•	
Positive Supply Current	l+	V+ = +3.3V, V	$IN_{-} = 0 \text{ or } V$	+		0.001	1	μΑ

ELECTRICAL CHARACTERISTICS—±2.5V Dual Supplies

 $(V+=+2.5\pm10\%,\ V-=-2.5V\pm10\%,\ V_{IH}=+2.0V,\ V_{IL}=+0.4V,\ T_A=T_{MIN}\ to\ T_{MAX},\ unless otherwise noted.$ Typical values are at $V\pm=\pm2.5V$ and $T_A=+25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} _, V _{NO} _			V-		V+	V
On-Resistance	Paul	I_{COM} = 10mA, V_{NO} = ±1.5V, V_{+} = +2.25V, V_{-} = -2.25V	T _A = +25°C		2.5	3.5	Ω
Oli-nesistalice	R _{ON}	V+ = +2.25V, V- = -2.25V	$T_A = T_{MIN}$ to T_{MAX}			4.5	52
On-Resistance Match	ΔRON	I_{COM} = 10mA, V_{NO} = ±1.5V, V_{+} = +2.25V, V_{-} = -2.25V	T _A = +25°C		0.2	0.4	Ω
Between Channels (Notes 4, 5)	ΔhON	V+ = +2.25V, V- = -2.25V	$T_A = T_{MIN}$ to T_{MAX}			0.5	52

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS—±2.5V Dual Supplies (continued)

 $(V+=+2.5\pm10\%, V-=-2.5V\pm10\%, V_{IH}=+2.0V, V_{IL}=+0.4V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $V\pm=\pm2.5V$ and $T_A=+25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
On-Resistance Flatness	RFLAT(ON)	I _{COM} _= 10mA; V _{NO} _= ±1.5V	$T_A = +25^{\circ}C$		0.75	1	Ω	
(Note 6)	nFLAT(ON)	0; V+ = +2.25V; V- = -2.25V	$T_A = T_{MIN}$ to T_{MAX}			1.2	22	
NO_Off-Leakage	luo (OFF)	V + = +2.75V; V - = -2.75V; $V_{COM} = +1V, +2.5V;$	T _A = +25°C	-0.25	±0.01	0.25	nA	
Current (Note 7)	INO_(OFF)	$V_{NO} = +2.5V, +2.5V,$	$T_A = T_{MIN}$ to T_{MAX}	-0.35		0.35	IIA	
COM_ Off-Leakage		V+ = +2.75V; V- = -2.75;	T _A = +25°C	-0.25	±0.01	0.25	nA	
Current (Note 7)	ICOM_ (OFF)	$V_{COM} = +1V, +2.5V;$ $V_{NO} = +2.5V, +1V$	$T_A = T_{MIN}$ to T_{MAX}	-0.35		0.35	TIA .	
COM_ On-Leakage	ICOM (ON)	V+ = +2.5V; V- = -2.5; V _{COM} _ = +1V, +2.5V;	T _A = +25°C	-0.25	±0.01	0.25	nA	
Current (Note 7)	ICOM_ (ON)	$V_{NO} = +1V, +2.5V,$ $V_{NO} = +1V, +2.5V,$ or unconnected	$T_A = T_{MIN}$ to T_{MAX}	-0.35		0.35	TIA	
DIGITAL I/O								
Input Logic High	VIH			2.0			V	
Input Logic Low	VIL					0.4	V	
Input Leakage Current	I _{IH} , I _{IL}	V _{IN} _= 0 or V+		-0.1	0.005	0.1	μΑ	
Digital Input Capacitance	CIN				2		pF	
DYNAMIC								
Transition Time (Note 7)	ttp.a.No	V _{NO} _= +1.2V, C _L = 35pF,	$T_A = +25^{\circ}C$		16	20	ns	
Transition filme (Note 1)	ttrans	$R_L = 100\Omega$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			24	115	
Enable Turn-On Time	tonyeni	V _{NO} _= +1.2V, C _L = 35pF,	T _A = +25°C		14	18	ns	
(Note 7)	tON(EN)	$R_L = 100\Omega$, Figure 4	$T_A = T_{MIN}$ to T_{MAX}			20	115	
Enable Turn-Off Time	torr/r:	V _{NO} _ = +1.2V, C _L = 35pF,	T _A = +25°C		5	7	ns	
(Note 7)	toff(EN)	$R_L = 100\Omega$, Figure 4	TA = TMIN to TMAX			8	115	
Break-Before-Make (Note 7)	topu	V _{NO} _ = +1.2V, C _L = 35pF,	T _A = +25°C		8		ne	
DIEAN-DEIOIE-IVIANE (INOIE 1)	tBBM	$R_L = 100\Omega$, Figure 3	$T_A = T_{MIN}$ to T_{MAX}	1			ns	

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Parts are tested at +85°C and guaranteed by design over the entire temperature range.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** ΔR_{ON} matching specifications for TQFN packaged parts are guaranteed by design.
- **Note 6:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Guaranteed by design.
- **Note 8:** Off-Isolation = $20log_{10}$ (V_{COM} / V_{NO}), $V_{COM} = output$, $V_{NO} = input$ to off switch.
- Note 9: Between any two switches.

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Typical Operating Characteristics

(V+ = +5V, V- = 0V, T_A = +25°C, unless otherwise noted.)

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Typical Operating Characteristics (continued)

(V+ = +5V, V- = 0V, T_A = +25°C, unless otherwise noted.)

Pin Description

		Pl	N				
	MAX4638			MAX4639		NAME	FUNCTION
DID/OO	TQF	N-EP	DID/OO	TQF	N-EP	NAME	FUNCTION
DIP/SO	16-PIN	20-PIN	DIP/SO	16-PIN	20-PIN		
1, 15, 16	15, 13, 14	19, 18, 17		_	_	A0, A2, A1	Address Inputs
_	_	_	1, 16	15, 14	19, 17	A0, A1	Address Inputs
2	16	1	2	16	1	EN	Enable
3	1	2	3	1	2	V-	Negative-Supply Voltage Input
4–7	2–5	3–6	_	_	_	NO1-N04	Bidirectional Analog Inputs
_	_	_	4–7	2–5	3–6	NO1A-NO4A	Bidirectional Analog Inputs
8	6	7	_	_	_	COM	Bidirectional Analog outputs
_	_		8, 9	6, 7	7, 9	COMA, COMB	Bidirectional Analog outputs
9–12	7–10	10–13	_	_	_	NO8-NO5	Bidirectional Analog Inputs
_	_	_	10–13	8–11	10–13	NO4B-NO1B	Bidirectional Analog Inputs
13	11	14	14	12	14	V+	Positive-Supply Voltage Input
14	12	15	15	13	15	GND	Ground
_	_	8, 9, 16, 20	_		8, 16, 18, 20	N.C.	No Connection. Not internally connected.
_	_	_	_	_	_	EP	Exposed Pad (TQFN Only). Connect EP to V

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Detailed Description

The MAX4638/MAX4639 are low-voltage, CMOS analog muxes. The MAX4638 is an 8:1 mux that switches one of eight inputs (NO1–NO8) to a common output (COM) as determined by the 3-bit binary inputs A0, A1, and A2. The MAX4639 is a 4:1 dual mux that switches one of four differential inputs to a common differential output as determined by the 2-bit binary inputs A0 and A1. Both the MAX4638/MAX4639 have an EN input that can be used to enable or disable the device. When disabled, all channels are switched off. See Truth Tables.

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but

Figure 1. Overvoltage Protection Using External Blocking Diodes

does not affect the devices' low switch resistance. Device operation is unchanged, and the difference between V+ and V- should not exceed 6V. These protection diodes are not recommended when using a single supply. For single-supply operation, V- should be connected to GND as close to the device as possible.

Truth Tables

MAX4638 (Single 8-to-1 Mux)

A2	A 1	Α0	EN	ON SWITCH
Х	Χ	Χ	0	None
0	0	0	1	NO1
0	0	1	1	NO2
0	1	0	1	NO3
0	1	1	1	NO4
1	0	0	1	NO5
1	0	1	1	NO6
1	1	0	1	NO7
1	1	1	1	NO8

MAX4639 (Dual 4-to-1 Mux)

A1	A0	EN	СОМА	COMB
Х	Х	0	None	None
0	0	1	NO1A	NO1B
0	1	1	NO2A	NO2B
1	0	1	NO3A	NO3B
1	1	1	NO4A	NO4B

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. MAX4638 Break-Before-Make Interval

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 4. Enable Switching Time

Figure 5. Charge Injection

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 6. Off-Isolation/On-Channel Bandwidth

Figure 7. Crosstalk

Figure 8. Channel Off/On-Capacitance

3.5 Ω , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Pin Configurations (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4639ETE+T	-40°C to +85°C	16 TQFN-EP* (4 × 4)
MAX4639EUE+T	-40°C to +85°C	16 TSSOP
MAX4639ESE+T	-40°C to +85°C	16 SO
MAX4639ETP+T	-40°C to +85°C	20 TQFN-EP* (4 × 4)

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (foot-prints), go to www.maximintegrated.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TQFN	T1644+4	21-0139	90-0070
20 TQFN	T1644+3	21-0139	90-0069
16 TSSOP	U16+2	21-0066	90-0117
16 SO	S16+3	21-0041	90-0097

T = Tape and reel.

^{*}EP = Exposed pad.

3.5 Ω , Single 8:1 and Dual 4:1,Z Low-Voltage Analog Multiplexers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	9/10	_	_
3	10/12	Added RoHS ordering information throughout data sheet	1–16

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.