

Departamento de Matemática e Aplicações

Cálculo

Algumas propriedades das funções trigonométricas

1.
$$\forall x \in \mathbb{R}$$
 $\operatorname{sen}^2 x + \cos^2 x = 1$

2.
$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$$
 $1 + \operatorname{tg}^2 x = \sec^2 x$

3.
$$\forall x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$$
 $1 + \cot^2 x = \csc^2 x$

4.
$$\forall x \in \mathbb{R}$$
 $\operatorname{sen}(-x) = -\operatorname{sen} x$ (sen é ímpar)

5.
$$\forall x \in \mathbb{R}$$
 $\cos(-x) = \cos x$ (cos é par)

6.
$$\forall x \in \mathbb{R}$$
 $\cos(\frac{\pi}{2} - x) = \sin x$ e $\sin(\frac{\pi}{2} - x) = \cos x$

7.
$$\forall x \in \mathbb{R} \quad \text{sen}(x+2\pi) = \text{sen } x \quad \text{(sen tem periodo } 2\pi\text{)}$$

8.
$$\forall x \in \mathbb{R}$$
 $\cos(x+2\pi) = \cos x$ (cos tem período 2π)

9.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \operatorname{sen} y \cos x$

10.
$$\forall x, y \in \mathbb{R}$$
 $\cos(x+y) = \cos x \cos y - \sin y \sin x$

11.
$$\forall x, y \in \mathbb{R}$$
 $\cos x - \cos y = -2 \sin \frac{x-y}{2} \sin \frac{x+y}{2}$

12.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{sen} x - \operatorname{sen} y = 2 \operatorname{sen} \frac{x-y}{2} \cos \frac{x+y}{2}$

Recorde-se que

Algumas propriedades das funções hiperbólicas

1.
$$\forall x \in \mathbb{R}$$
 $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$

2.
$$\forall x \in \mathbb{R}$$
 $th^2 x + sech^2 x = 1$

3.
$$\forall x \in \mathbb{R} \setminus \{0\}$$
 $\coth^2 x - \operatorname{cosech}^2 x = 1$

4.
$$\forall \, x \in \mathbb{R} \qquad \operatorname{sh}(-x) = -\operatorname{sh} x$$
 (a função sh é ímpar)

5.
$$\forall x \in \mathbb{R}$$
 $\operatorname{ch}(-x) = \operatorname{ch} x$ (a função ch é par)

6.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{sh} y \operatorname{ch} x$

7.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} y \operatorname{sh} x$

8.
$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R}$$
 $(\operatorname{ch} x + \operatorname{sh} x)^n = \operatorname{ch}(nx) + \operatorname{sh}(nx)$