Espace affine

Barycentre et repères

Sous-espaces affines

Applications affine

M53 - Cours 1

septembre 2015

pace anni

Définition

Opération

Premières propr

Barycentre et repèr

Sous-espaces affine

Applications affin

Convexe

Définition (heuristique)

«Un espace affine est un espace vectoriel dont on a oublié l'origine.»

Espace affine

Définition

Exemples

Opérations

Barycentre et repère

Sous-espaces affi

Applications affine

Convexes

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} imes \mathcal{E} \longrightarrow \vec{\mathcal{E}}$$

$$(A, B) \mapsto \overrightarrow{AB}$$

qui satisfait les deux conditions

 \blacksquare AB + BC = AC (relation de Chasles)

Espace affine

Définition

Exemples

Opérations

Premières propriétés

Barycentre et repèr

Sous-espaces affi

Applications affine

Convexes

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$(A,B) \mapsto \overrightarrow{AB}$$

qui satisfait les deux conditions

AB + BC = AC (relation de Chasles) AB + BC = AC (relation de Chasles) AB + BC = AC (relation de Chasles)

Espace affine

Définition

Exemples

Opérations

Premières propriétés

Barycentre et repère

Sous-espaces affi

Applications affine

Convexes

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$(A,B) \mapsto \overrightarrow{AB}$$

- $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)

Espace affine

Définition

Exemples

Opérations

Premières propriétés

Barycentre et repère

Sous-espaces affi

Applications affine

Convexes

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$(A,B) \mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \text{ (relation de Chasles)}$$

Espace affine

Définition

Exemples

Opérations

Premières propriétés

Barycentre et repère

Sous-espaces affi

Applications affines

Convexes

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$(A, B) \mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \text{ (relation de Chasles)}$$

$$\mathbf{Z} \quad \forall A \in \mathcal{E}, \vec{v} \in \overrightarrow{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \vec{v} \ (B = A + \vec{v})$$

Espace affine

Définition

Exemples

Opérations

Premières propriétés

Barycentre et repère

Sous-espaces affi

Applications affine

Convexes

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

$$\mathbf{Z} \ \forall A \in \mathcal{E}, \ \overrightarrow{v} \in \overrightarrow{\mathcal{E}}, \ \exists ! B \in \mathcal{E} \ \text{t.q.} \ \overrightarrow{AB} = \overrightarrow{v} \ (B = A + \overrightarrow{v})$$

La dimension d'un espace affine

pace affir

Définition

Opération

Premières propr

Barycentre et reper

Sous-espaces affin

Applications affin

Convexe

Définition

L'espace affine $\mathcal E$ est de dimension n si sa direction, l'espace vectoriel $\overline{\mathcal E}$, est de dimension n.

Les espaces vectoriels

Espace affine
Définition
Exemples
Opérations
Premières propriétés

Tout espace vectoriel $\overrightarrow{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui-même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Convention

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

Les espaces vectoriels

Espace affine
Définition
Exemples
Opérations
Premières propriétés

Tout espace vectoriel $\overrightarrow{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui-même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Convention

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

Les droites (sous-espaces) affines

space affine
Définition
Exemples
Opérations
Premières propriétés

Barycentre et repère

Sous-espaces affine

Le sous-ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x,y) \mid x+y=1\}$ est un espace affine de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$, via l'application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

Question

Comment peut-on généraliser cet exemple?

Les droites (sous-espaces) affines

Le sous-ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x, y) \mid x + y = 1\}$ est un espace affine de direction $\vec{\mathcal{E}} = \{(x, y) \mid x + y = 0\}$, via l'application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

Question

Comment peut-on généraliser cet exemple?

Les solutions des équations différentiels linéaires

L'ensemble des solutions S de l'équation différentielle y' + y = sin(x) est un espace affine avec direction S^* , l'ensemble des solutions de l'équation homogène (y' + y = 0) via :

$$S \times S \longrightarrow S^*$$

 $(f_1, f_2) \mapsto f_2 - f_1$

Les solutions des équations différentiels linéaires

L'ensemble des solutions S de l'équation différentielle y' + y = sin(x) est un espace affine avec direction S^* , l'ensemble des solutions de l'équation homogène (y' + y = 0) via :

$$S \times S \longrightarrow S^*$$

 $(f_1, f_2) \mapsto f_2 - f_1$

Question

Comment peut-on généraliser cet exemple?

Espace affine
Définition
Exemples
Opérations
Premières propriétés

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$B \mapsto \overrightarrow{\Omega B}$$

- \blacksquare L'origine de \mathcal{E}_{Ω} est le point Ω .
- \blacksquare Avec l'écriture $\Omega + \overline{V}$, les opérations sont
 - $= (\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$

Espace affine
Définition
Exemples
Opérations
Premières propriétés

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$R \mapsto \overrightarrow{OR}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \overrightarrow{v}) = \Omega + \lambda \overrightarrow{v}$

Espace affine
Définition
Exemples
Opérations
Premières propriétés

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \overline{V}) = \Omega + \lambda \overline{V}$

Espace affine
Définition
Exemples
Opérations
Premières propriétés

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

$$(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$$

Espace affine
Définition
Exemples
Opérations
Premières propriétés

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

$$\lambda(\Omega + \overrightarrow{v}) = \Omega + \lambda \overrightarrow{v}.$$

Espace affine
Définition
Exemples
Opérations
Premières propriétés

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

$$(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$$

$$\lambda(\Omega + \vec{v}) = \Omega + \lambda \vec{v}.$$

Produit d'espaces affines

Soient $\mathcal E$ et $\mathcal F$ deux espaces affines, sur le même corps, de directions respectives $\vec{\mathcal{E}}$ et $\vec{\mathcal{F}}$.

On définit la structure d'espace affine *produit* sur $\mathcal{E} \times \mathcal{F}$ de direction $\overrightarrow{\mathcal{E}} imes \overrightarrow{\mathcal{F}}$ par :

$$\overrightarrow{(A,B)(C,D)} := (\overrightarrow{AC},\overrightarrow{BD}).$$

Espace affine
Définition
Exemples
Opérations
Premières propriétés

barycentre et repere

Sous-espaces affine

Applications affines

Convexe

$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie $(AB = B - A)$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 1$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie

Espace affine
Définition
Exemples
Opérations
Premières propriétés

Barvcentre et renère

_ - - · *y* - - · · - *p* - · ·

Applications affines

Convexe

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$$

$$\blacksquare A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 0$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie $(AB = B - A)$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 1$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie

Expace affine
Définition
Exemples
Opérations

Premières propriétés

Barycentre et repere

Sous-espaces affir

Applications affines

Convexe

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 0$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie $(AB = B - A)$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 1$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie

Espace affine
Définition
Exemples
Opérations
Premières propriétés

Pariscontro et renàre

Applications affines

Convexe

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$$

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 0$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie $(AB = B - A)$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 1$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie

Espace affine
Définition
Exemples
Opérations
Premières propriétés

Trainicies proprietes

Barycentre et repere

Sous-espaces affine

.

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$\blacksquare$$
 $A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}$.

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 0$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie $(AB = B - A)$.

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i = 1$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie

Espace affine
Définition
Exemples
Opérations
Premières propriétés

D.....

Dai ycentre et repere

applications affines

Convexe

Soit $\mathcal E$ un $\mathbb K$ -espace affine de direction $\overrightarrow{\mathcal E}$.

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$\blacksquare$$
 $A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

Si $\sum_{i=1}^{\kappa} \lambda_i = 0$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B - A).

lacksquare Si $\sum_{i=1}^n \lambda_i = 1$ alors $\sum_{i=1}^n \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie

Espace affine
Définition
Exemples
Opérations
Premières propriétés

Barvoentre et repère

Applications affines

Convexe

Soit $\mathcal E$ un $\mathbb K$ -espace affine de direction $\overrightarrow{\mathcal E}$.

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$\blacksquare$$
 $A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(A + \overrightarrow{v})(B + \overrightarrow{w}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B - A).

 \blacksquare Si $\sum_{i=1}^{n} \lambda_i = 1$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien definite

■ Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie.

Espace affine
Définition
Exemples
Opérations

Barvcentre et repère

Sous-espaces affines

Applications affines

Convexe

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$\blacksquare$$
 $A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}$.

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

■
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B - A)$.

■ Si
$$\sum_{i=1}^k \lambda_i = 1$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.

■ Si
$$\sum_{i=1}^k \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

Espace affine
Définition
Exemples
Opérations

Barvcentre et repères

Sous-espaces affine

Convexes

■
$$A \in \mathcal{E}$$
 \Rightarrow $\overrightarrow{AA} = \overrightarrow{0}$ et $A + \overrightarrow{0} = A$.

$$\blacksquare$$
 $A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}$.

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

■
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B - A)$.

■ Si
$$\sum_{i=1}^{k} \lambda_i = 1$$
 alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie.

■ Si
$$\sum_{i=1}^k \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

Espace affine Définition Exemples Opérations

Premières propriétés

Barycentre et repère

Sous-espaces affines

Convexes

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$\blacksquare$$
 $A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}$.

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B - A)$.

■ Si
$$\sum_{i=1}^{k} \lambda_i = 1$$
 alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie.

■ Si
$$\sum_{i=1}^k \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

Espace affine
Définition
Exemples
Opérations

remieres proprietes

C.....

Applications affine

Convexe

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B - A)$.

■ Si
$$\sum_{i=1}^k \lambda_i = 1$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.

■ Si
$$\sum_{i=1}^k \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

Espace affine
Définition
Exemples
Opérations

remieres proprietes

C.....

Applications affine

Convexe

$$\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

$$(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

■ Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B - A)$.

■ Si
$$\sum_{i=1}^k \lambda_i = 1$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.

■ Si
$$\sum_{i=1}^k \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

Définition du barycentre

Espace affine

Barycentre et repères Barycentre

Sous espaces affine

Applications affine

Convexes

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}$$

$$\sum_{i=1}^{\kappa} \mu_i GA_i = 0$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{L}$, ou à 1).

Définition du barycentre

Espace affine

Barycentre et repères Barycentre

Propriétés Repère

Sous-espaces affin

Applications affine

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$\mathbf{I} \quad G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\sum_{i=1}^{\kappa} \mu_i GA_i = 0$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{L}$, ou à 1).

Définition du barycentre

Espace affine

Barycentre et repères Barycentre

Sous-espaces affine

Applications affine

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$\mathbf{I} G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{L}$, ou à 1).

Définition du barycentre

Espace affine

Barycentre et repères Barycentre

Sous-espaces affine

Applications affine

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$\mathbf{I} G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\sum_{i=1}^k \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{L}$, ou à 1).

Définition du barycentre

Espace affine

Barycentre et repères

Sous-espaces affin

Applications affine

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$\mathbf{I} G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\sum_{i=1}^k \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{k}$, ou à 1).

Espace affine

Barycentre et repères

Barycentre

Propriétés

Sous-espaces affin

Applications affine Convexes

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F}

Espace affine

Barycentre et repères Barycentre Propriétés

Sous-espaces affine

Applications affine Convexes

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F}

Espace affine

Barycentre et repères
Barycentre
Propriétés
Ranère

Sous-espaces affine

Applications affine

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F}

Espace affine

Barycentre et repères

Barycentre

Propriétés

Applications affines

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

Espace affine

Barycentre et repères Barycentre

Sous-espaces affine

Applications affine

Convexes

Propriétés

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Propriétés

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble 1.

Soit une partition $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in I_r} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

Propriétés

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble 1.

Soit une partition $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Propriétés

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble 1.

Soit une partition $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre $des \{(G_k, \nu_k)\}_{k \in \{1, \dots, r\}}$.

Espace affine

Barycentre et repères
Barycentre
Propriétés

Sous-espaces affine

Applications affine

Soit (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

Définition-Proposition

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

- $\blacksquare (A_0A_1,\ldots,A_0A_n)$ est une base de \mathcal{E}
- Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \dots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

Définition d'un repère

Espace affine

Barycentre et repères
Barycentre
Propriétés
Repère

Sous-espaces affine

Applications affin

Convexes

Soit (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

Définition-Proposition

On dit que (A_0, \ldots, A_n) est un repère affine de $\mathcal E$ s'il satisfait une des conditions équivalentes :

- \blacksquare $(\overrightarrow{A_0A_1},\ldots,\overrightarrow{A_0A_n})$ est une base de $\overrightarrow{\mathcal{E}}$
- Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \dots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

Définition d'un repère

Espace affine

Barycentre et repères
Barycentre
Propriétés
Repère

Sous-espaces affin

Applications affine

Convexes

Soit (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

Définition-Proposition

On dit que (A_0, \ldots, A_n) est un repère affine de $\mathcal E$ s'il satisfait une des conditions équivalentes :

- $(\overrightarrow{A_0A_1},\ldots,\overrightarrow{A_0A_n}) \text{ est une base de } \overrightarrow{\mathcal{E}}.$
- Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \ldots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

Définition d'un repère

Espace affine

Barycentre et repères
Barycentre
Propriétés
Proèm

Sous-espaces affine

Applications affin

Convovos

Soit (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

Définition-Proposition

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

- $(\overrightarrow{A_0A_1}, \dots, \overrightarrow{A_0A_n}) \text{ est une base de } \overrightarrow{\mathcal{E}}.$
- 2 Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \dots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

Espace affine

Barycentre et repères Barycentre Propriétés

Sous-espaces affine

Applications affine

Convexes

Soit $\mathcal{A} = (A_0, \dots, A_n)$ un repère affine de \mathcal{E} .

Définition

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_A$ sont les coordonnées cartésiennes de B dans le repère A, si $\overline{A_0B} = \sum_{i=1}^n x_i \overline{A_0A_i}$.

Définition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=0}^n \mu_i \mathcal{A}_i$.

La relation entre ces deux systèmes de coordonnées est

$$\mu_i = x_i, \forall i = 1, ..., n \text{ et } \mu_0 = 1 - \sum_{i=1}^n x_i$$

Espace affine

Barycentre et repères

Repère

Applications affir

Soit $A = (A_0, \ldots, A_n)$ un repère affine de \mathcal{E} .

Définition

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_A$ sont les coordonnées cartésiennes de B dans le repère A, si $\overrightarrow{A_0B} = \sum_{i=1}^n x_i \overrightarrow{A_0A_i}$.

Définition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=0}^n \mu_i A_i$.

La relation entre ces deux systèmes de coordonnées est $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n x_i$.

Espace affine

Barycentre et repères
Barycentre

Sous-espaces affine

Applications affin

Soit $A = (A_0, \ldots, A_n)$ un repère affine de \mathcal{E} .

Définition

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\mathcal{A}}$ sont les coordonnées cartésiennes de B dans le repère \mathcal{A} , si $\overrightarrow{A_0B} = \sum_{i=1}^n x_i \overrightarrow{A_0A_i}$.

Définition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=0}^n \mu_i A_i$.

La relation entre ces deux systèmes de coordonnées est $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n x_i$.

Soit $\mathcal{A} = (A_0, \dots, A_n)$ un repère affine de \mathcal{E} .

Définition

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_A$ sont les coordonnées cartésiennes de B dans le repère A, si $\overrightarrow{A_0B} = \sum_{i=1}^n x_i \overrightarrow{A_0A_i}$.

Définition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_A$ sont les coordonnées barycentriques de B dans le repère A, si $\sum_{i=0}^{n} \mu_i = 1$ et $B = \sum_{i=0}^{n} \mu_i A_i$.

La relation entre ces deux systèmes de coordonnées est :

$$\mu_i = x_i, \forall i = 1, \dots, n \text{ et } \mu_0 = 1 - \sum_{i=1}^n x_i.$$

Espace affine

Barvcentre et repères

Sous-espaces affine
Définition

Applications affin

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F}\subset\mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- I II existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- ${f 3}$ ${\cal F}$ est stable par barycentres.

Espace affine

Barycentre et repères

Sous-espaces affine

Définition

Exemples

Applications affine

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F}\subset\mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1 Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- ${f 3}$ ${\cal F}$ est stable par barycentres.

Espace affine

Barvcentre et repères

Sous-espaces affine

Définition

Exemples

Applications affine

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F}\subset\mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1 Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- ${f 3}$ ${f \mathcal{F}}$ est stable par barycentres

Espace affine

Barvcentre et repères

Sous-espaces affine
Définition
Exemples

Applications affine

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F}\subset\mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1 Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- ${f 3}$ ${\cal F}$ est stable par barycentres.

Espace affine

Barycentre et repères

Sous-espaces affine Définition Exemples

Applications affine

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F}\subset\mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1 Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- ${f 3}$ ${\cal F}$ est stable par barycentres.

Espace affine

Barycentre et repères

Sous-espaces affine

Exemples

Applications affin

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Espace affine

Barycentre et repères

Sous-espaces affine

Exemples Propriétés

Applications affin

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Espace affine

Barycentre et repères

Sous-espaces affine

Exemples

Applications affine

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Espace affine

Barycentre et repères

Sous-espaces affine

Exemples

Applications affin

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Barycentre et repé

Sous-espaces affine Définition Exemples

Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Sarycentre et repère Sous-espaces affines Définition Exemples

Applications affine Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Espace affine

Barycentre et repères

Sous-espaces affine

Définition

Exemples

Applications affine Convexes Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ une application linéaire.

Alors pour tout $\overrightarrow{v} \in \text{Im } \overrightarrow{\phi} \subset \overrightarrow{\mathcal{F}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\text{Ker } \overrightarrow{\phi}$.

- En particulier, en prenant $\phi(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overline{v} = 1$ on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overline{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

Espace affine

Barycentre et repère

Sous-espaces affine

Applications affine Convexes

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ une application linéaire.

Alors pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{F}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- En particulier, en prenant $\phi(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

Espace affine

Barycentre et repères

Sous-espaces affine
Définition
Exemples

Applications affine Convexes

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ une application linéaire.

Alors pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{F}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- En particulier, en prenant $\overrightarrow{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

Barycentre et repè

Sous-espaces affines
Définition
Exemples

Applications affine Convexes

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ une application linéaire.

Alors pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{F}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- En particulier, en prenant $\overrightarrow{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble \mathcal{S} des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble \mathcal{S}^* des solutions homogènes AX = 0. Et $\mathcal{S} = X_0 + \mathcal{S}'$, où X_0 est une solution particulière.

Espace affine

Barvcentre et repères

Sous-espaces affine

Exemples Propriétés

Applications affine

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- \blacksquare \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Espace affine

Barvcentre et repères

Sous-espaces affine
Définition
Exemples

Applications affine

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- lacksquare est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Les sous-espaces affines d'un espace vectoriel

Espace affine

Barvcentre et repères

Sous-espaces affine
Définition
Exemples

Applications affine Convexes Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- lacksquare est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Les sous-espaces affines d'un espace vectoriel

Espace affine

Barvcentre et repères

Sous-espaces affine
Définition
Exemples

Applications affine

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- lacksquare est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Espace affine

Barycentre et repères

Sous-espaces affine

Exemple

Propriétés

Applications affine
Convexes

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

- Deux sous-espaces parallèles sont disjoints ou confondus
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Espace affine

Barycentre et repères

Sous-espaces affine

Propriétés

Applications affine

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

- Deux sous-espaces parallèles sont disjoints ou confondus
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Espace affine

Barycentre et repères

Sous-espaces affine

Propriétés

Applications affines
Convexes

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

- Deux sous-espaces parallèles sont disjoints ou confondussions
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affine Convexes

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affine Convexes

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» \Rightarrow «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affines Convexes

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Espace affine

Barycentre et repères

Sous-espaces affine

Exemple

Propriétés

Applications affine

Proposition

L'intersection de deux sous-espaces affines $\mathcal F$ et $\mathcal G$ est :

- vide, ou
- lacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$

Espace affine

Barycentre et repères

Sous-espaces affine

Exemple

Propriétés

Applications affine

Proposition

L'intersection de deux sous-espaces affines $\mathcal F$ et $\mathcal G$ est :

- vide, ou
- lacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$

Espace affine

Barvcentre et repères

Sous-espaces affines

Exemples

Propriétés

Applications affine Convexes

Proposition

L'intersection de deux sous-espaces affines ${\mathcal F}$ et ${\mathcal G}$ est :

- vide, ou
- lacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$

Espace affine

Barvcentre et repères

Sous-espaces affines

Exemples

Propriétés

Applications affine Convexes

Proposition

L'intersection de deux sous-espaces affines $\mathcal F$ et $\mathcal G$ est :

- vide, ou
- lacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Espace affine

Barycentre et repère

Sous-espaces affine

Propriétés

Applications affin

Définition-Proposition

- lacksquare $\langle \mathcal{A}
 angle$ est le plus petit sous-espace affine contenant \mathcal{A}
- $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Espace affine

Barycentre et repère

Sous-espaces affine

Propriétés

Applications affine Convexes

Définition-Proposition

- $lacktriangledown \langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Espace affine

Barycentre et repère

Sous-espaces affine

Propriétés

Applications affin

Définition-Proposition

- $lacktriangledown \langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Espace affine

Barycentre et repères

Sous-espaces affine
Définition

Propriétés

Applications affine Convexes

Définition-Proposition

- lacktriangledown $\langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- $\langle \mathcal{A} \rangle$ est l'ensemble des barycentres de points de \mathcal{A} .
- $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affin Convexes

Définition-Proposition

- lacktriangledown $\langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- $\langle \mathcal{A} \rangle$ est l'ensemble des barycentres de points de \mathcal{A} .
- **4** $\forall (\exists) \Omega \in \mathcal{A}$, $\langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Espace affine

Barvcentre et repères

Sous-espaces affines

Propriétés

Applications affine Convexes

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

lacksquare Si $\mathcal{F}\cap\mathcal{G}
eq\emptyset$, alors $\langle\mathcal{F},\mathcal{G}\,
angle$ est de direction $\overrightarrow{\mathcal{F}}+\overrightarrow{\mathcal{G}}$, et

 $\dim \langle \mathcal{F}, \mathcal{G}
angle = \dim \left(\mathcal{F} + \mathcal{G}
ight)$

■ Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\mathcal{F} + \mathcal{G} + \mathcal{D}$, où \mathcal{D} est

 $\mathsf{dim}\left\langle \mathcal{F},\mathcal{G}
ight.
ight
angle =\mathsf{dim}\left(\left.\mathcal{F}+\mathcal{G}
ight.
ight)+1.$

Espace affine

Barvcentre et repères

Sous-espaces affines

Propriétés

Applications affines

Convexes

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

lacksquare Si $\mathcal{F}\cap\mathcal{G}
eq\emptyset$, alors $\langle\mathcal{F},\mathcal{G}\,
angle$ est de direction $\overrightarrow{\mathcal{F}}+\overrightarrow{\mathcal{G}}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right).$$

■ Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overline{\mathcal{F}} + \overline{\mathcal{G}} + \overline{\mathcal{D}}$, où $\overline{\mathcal{D}}$ est une droite engendrée par \overline{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim (\mathcal{F} + \mathcal{G}) + 1.$$

Espace affine

Barycentre et repères

Sous-espaces affines

Propriétés

Applications affine Convexes

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

- Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et dim $\langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

 $\operatorname{\mathsf{dim}}\left\langle \mathcal{F},\mathcal{G} \right.
angle = \operatorname{\mathsf{dim}}\left(\left.\mathcal{F}+\mathcal{G} \right.
ight) + 1.$

Espace affine

Barvoentre et renères

Sous-espaces affines

Définition

Propriétés

Applications affine Convexes

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

- Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et dim $\langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$$

Espace affine

Barycentre et renères

Sous-espaces affines

Définition

Propriétés

Applications affine Convexes

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

- Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et dim $\langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$

Familles affinement libres et génératrices

Espace affine

Barvcentre et repères

Sous-espaces affine

Exemples

Propriétés

Applications affine

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}$.

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $(A_0, \ldots, A_k) = k$.

Familles affinement libres et génératrices

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affin

Applications affine Convexes

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $(A_0, \ldots, A_k) = k$.

Familles affinement libres et génératrices

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affine

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $(A_0, \ldots, A_k) = k$.

Espace affine

Barycentre et repères

Sous-espaces affine

Propriétés

Applications affines

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- $\blacksquare \{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F}

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affine

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- **1** $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F} .

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affine Convexes Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- **1** $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F}

Espace affine

Barvcentre et repères

Sous-espaces affine

Propriétés

Applications affine Convexes Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- **1** $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F} .

Espace affine

Barycentre et repères

Sous-espaces affines

Applications of

Définiti

Proprié

GA

Convexe

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \vec{\phi} \in \mathcal{L}(\vec{\mathcal{E}}, \vec{\mathcal{F}}) \text{ telle que } \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}$$

 $(\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)

 ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=1}^{n} \mu_i = 1$

$$\phi(\sum_{i=1}^n \mu_i A_i) = \sum_{i=1}^n \mu_i \phi(A_i).$$

Espace affine

Barycentre et repères

Sous-espaces affine

Applications at

Définiti

Proprié

C

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}}) \text{ telle que } \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}$$

 $(\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)

 ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=1}^{n} \mu_i = 1$

$$\phi(\sum_{i=1}^n \mu_i A_i) = \sum_{i=1}^n \mu_i \phi(A_i).$$

Espace affine

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemple

Proprié GA

Convexe

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}}) \text{ telle que } \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

 $(\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)

 ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=1}^{n} \mu_i = 1$

$$\phi(\sum_{i=1}^n \mu_i A_i) = \sum_{i=1}^n \mu_i \phi(A_i).$$

Espace affine

Barycentre et repères

Sous-espaces affines

Applications af

Définition Exemple

Proprié GA

Convexe

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}}) \text{ telle que } \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

 $(\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)

3 ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=1}^{n} \mu_i = 1$

$$\phi(\sum_{i=1}^n \mu_i A_i) = \sum_{i=1}^n \mu_i \phi(A_i).$$

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overline{\mathcal{E}}$ et $\overline{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \vec{\phi} \in \mathcal{L}(\vec{\mathcal{E}}, \vec{\mathcal{F}}) \text{ telle que } \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

 $(\phi$ est unique et est appelée partie linéaire de ϕ .)

 \bullet préserve les barycentres, c.-à.-d. pour $\sum_{i=1}^n \mu_i = 1$

$$\phi(\sum_{i=1}^n \mu_i A_i) = \sum_{i=1}^n \mu_i \phi(A_i).$$

Exemples d'applications affines

Espace affine

Barycentre et repères

Sous-espaces affin

Définit

Exemple

CA

Convexe

- Les applications constantes sont affines, de partie vectorielle 0
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in E$) sont des automorphismes affines de E.
- Soient \mathcal{E} et \mathcal{F} deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = \mathcal{T}_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire

Exemples d'applications affines

Espace affine

Barycentre et repères

Sous-espaces affine

Définition

Exemple

GA

Convexe

- **1** Les applications constantes sont affines, de partie vectorielle 0.
- 2 Les applications affines de $\mathbb R$ dans $\mathbb R$ sont de la forme $x\mapsto ax+b$
- Is Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in E$) sont des automorphismes affines de E.
- Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = T_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire.

Espace affine

Barycentre et repères

Sous-espaces affine

Définiti Exempl

Propriét

- **1** Les applications constantes sont affines, de partie vectorielle 0.
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 5 Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = \mathcal{T}_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire

Espace affine

Barvcentre et repères

Sous-espaces affine

A 11 ... CC

Définitio

Propriéte

- **1** Les applications constantes sont affines, de partie vectorielle 0.
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in E$) sont des automorphismes affines de E.
- Soient \mathcal{E} et \mathcal{F} deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = \mathcal{T}_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire

Espace affine

Barvcentre et repères

Sous-espaces affine

Définitio Exemple

Propriéte

- \blacksquare Les applications constantes sont affines, de partie vectorielle 0.
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- Soient \mathcal{E} et \mathcal{F} deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = \mathcal{T}_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire

Espace affine

Barvoentre et renères

Sous-espaces affine

Définition Exemples Propriété

- **1** Les applications constantes sont affines, de partie vectorielle 0.
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- Les translations $T_{\vec{v}}: M \mapsto M + \vec{v}$ (où $\vec{v} \in \vec{E}$) sont des automorphismes affines de E.
- 5 Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = T_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affin

Définiti Exemp

Propriét

GA

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner

- la partie linéaire et l'image d'un point
- ou l'image d'un repère.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affir

Définitio Exemple

Propriét

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner

la partie linéaire et l'image d'un point

ou l'image d'un repère.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affine

Exemples
Propriétés

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\psi \circ \phi$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner

🔳 la partie linéaire et l'image d'un point

ou l'image d'un repère.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affine

Définition

Exemples

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{G})$ et a pour partie linéaire $\psi \circ \phi$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affin
Définition
Exemples

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\psi \circ \phi$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affin
Définition
Exemples
Propriétés

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{G})$ et a pour partie linéaire $\psi \circ \phi$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère.

Barycentre et repères

Sous-espaces affine

Applications affin

Définition Exemple

Propriét

Convexe

Définition

- Une translation qui fixe un point est l'identité.
- Une application $\phi \in \mathsf{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $\mathrm{Id} \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Barycentre et repères

Sous-espaces affine

Applications affin

Définitio

Proprié

Convexe

Définition

- 1 Une translation qui fixe un point est l'identité.
- 2 Une application $\phi \in \mathsf{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $\mathrm{Id} \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Barycentre et repères

Sous-espaces affine

Applications af

Définitio

Propriét

Convexe

Définition

- 1 Une translation qui fixe un point est l'identité.
- 2 Une application $\phi \in \mathsf{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $\mathrm{Id} \in \mathcal{L}(\mathcal{E})$.
- $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{v}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemple

Propriét

Convexe

Définition

- 1 Une translation qui fixe un point est l'identité.
- 2 Une application $\phi \in \mathsf{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $\mathrm{Id} \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{v}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Barvcentre et renères

Sous-espaces affine

Applications affir

Définition Exemple Propriét

Convexe

Définition

- 1 Une translation qui fixe un point est l'identité.
- 2 Une application $\phi \in \mathsf{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $\mathrm{Id} \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{v}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overline{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemples Propriétés

Convexe

Définition

- Une homothétie qui fixe deux points est l'identité.
- Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- - I Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - $ule{1}$ Une translation, si $\lambda\mu=1$
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemples Propriétés

Convexe

Définition

- Une homothétie qui fixe deux points est l'identité.
- Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - I Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - \square Une translation, si $\lambda \mu = 1$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemples Propriétés

Convexe

Définition

- Une homothétie qui fixe deux points est l'identité.
- Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - III Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, si $\lambda \mu = 1$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemples Propriétés

Convexe

Définition

- Une homothétie qui fixe deux points est l'identité.
- Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - 1 Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, si $\lambda \mu = 1$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemples Propriétés

Convexe

Définition

- Une homothétie qui fixe deux points est l'identité.
- Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - I Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, si $\lambda \mu = 1$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications a

Définition Exemples Propriétés

Convexe

Définition

- 1 Une homothétie qui fixe deux points est l'identité.
- Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- ${\bf 3}$ La composée de deux homothéties, l'une de rapport λ et l'autre de rapport $\mu,$ est :
 - **1** Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - **2** Une translation, si $\lambda \mu = 1$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Barycentre et repères

Sous-espaces affine

Applications a

Exemples Propriétés

Convexe

Définition

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- ${\bf 3}$ La composée de deux homothéties, l'une de rapport λ et l'autre de rapport $\mu,$ est :
 - I Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - **2** Une translation, si $\lambda \mu = 1$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affine

Définition Exemples

Propriété

Convexes

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ esti $\Omega + \overline{\mathcal{E}}_1$:
- \square si ϕ n'a pas de points fixes, en

$$\operatorname{Ker}(\phi - \operatorname{Id}) \oplus \operatorname{Im}(\phi - \operatorname{Id}) = \overline{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \mathcal{E}_1$ tel que $T_{\vec{v}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affin

Définition Exemples

Convexes

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- in si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \mathcal{E}_1$:
- si φ n'a pas de points fixes, et

$$\operatorname{Ker}(\phi - \operatorname{Id}) \oplus \operatorname{Im}(\phi - \operatorname{Id}) = \mathcal{E}$$

alors il existe un unique $\vec{v} \in \mathcal{E}_1$ tel que $T_{\vec{v}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affir

Définition Exemples

Propriéte

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi ϕ possède un unique point fixe (forcément $0 \in \vec{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\vec{\phi})$.

Proposition

Soit $\overrightarrow{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\overrightarrow{\phi}$, alors

- I si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes,

 $\operatorname{\mathsf{Ker}}(\phi-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\phi-\operatorname{Id})=\overline{\mathcal{E}}$

alors il existe un unique $\overrightarrow{V} \in \mathcal{E}_1$ tel que $T_{\overrightarrow{V}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\overrightarrow{V}} \circ \phi = \phi \circ T_{\overrightarrow{V}}$.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications aff

Définition Exemples

Propriét

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi ϕ possède un unique point fixe (forcément $0 \in \vec{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\vec{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes

 $\operatorname{Ker}(\varphi - \operatorname{Id}) \oplus \operatorname{Im}(\varphi - \operatorname{Id}) = \mathcal{E}$

alors il existe un unique $\overline{V} \in \mathcal{E}_1$ tel que $T_{\overline{V}} \circ \phi$ possède un point fixe Par ailleurs $T_{\overline{V}} \circ \phi = \phi \circ T_{\overline{V}}$.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications aff

Définition Exemples

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overline{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overline{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- $\mathbf{2}$ si ϕ n'a pas de points fixes, et

$$\mathsf{Ker}(\overrightarrow{\phi} - \mathrm{Id}) \oplus \mathsf{Im}(\overrightarrow{\phi} - \mathrm{Id}) = \overrightarrow{\mathcal{E}}$$
 alors il existe un unique $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}_1$ tel que $T_{\overrightarrow{v}} \circ \phi$ possède un point fixe Par ailleurs $T_{\overrightarrow{v}} \circ \phi = \phi \circ T_{\overrightarrow{v}}$.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications af

Définition Exemples

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- $\mathbf{2}$ si ϕ n'a pas de points fixes, et

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi}-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\overrightarrow{\phi}-\operatorname{Id})=\overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \mathcal{E}_1$ tel que $T_{\vec{v}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications a

Définition Exemples Propriétés

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- $\mathbf{2}$ si ϕ n'a pas de points fixes, et

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi}-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\overrightarrow{\phi}-\operatorname{Id})=\overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_{\vec{v}} \circ \phi$ possède un point fixe.

Espace affine

Barycentre et repères

Sous-espaces affines

Applications affin

Exemples
Propriétés

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi ϕ possède un unique point fixe (forcément $0 \in \vec{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\vec{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- $\mathbf{2}$ si ϕ n'a pas de points fixes, et

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi}-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\overrightarrow{\phi}-\operatorname{Id})=\overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_{\vec{v}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$.

Barvcentre et repère

Sous-espaces affine

Applications affin

Définition

Proprié

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal{E}) \twoheadrightarrow GL(\overrightarrow{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

Le groupe affine

Espace affine

Barycentre et repères

Sous-espaces affine

Définition Exemples

Propriét

Convexe

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overline{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal{E}) \twoheadrightarrow GL(\overline{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

Barvcentre et repères

Sous-espaces affine

Applications offine

Définition

Exemple

Proprie

Convexes

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal{E}) \twoheadrightarrow GL(\overrightarrow{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

Barycentre et repères

Sous-espaces affine

Applications offine

Définition Exemples

Propriét

Convexes

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal{E}) \twoheadrightarrow GL(\overrightarrow{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

Définition d'un convexe

Espace affine

Barycentre et repères

Sous-espaces annie

Convexe Définition

Propriétés Enveloppe conv

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \,|\, \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que C est un ensemble *convexe*, si pour tous deux points $A, B \in C$ le segment [AB] est entièrement contenu dans C.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

Définition d'un convexe

espace affine Barycentre et repè

Sous-espaces affines

Définition
Propriétés
Enveloppe conve

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que C est un ensemble *convexe*, si pour tous deux points $A, B \in C$ le segment [AB] est entièrement contenu dans C.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

Définition d'un convexe

Espace affine
Barycentre et repères
Bous-espaces affines

Définition
Propriétés
Enveloppe conve

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que C est un ensemble *convexe*, si pour tous deux points $A, B \in C$ le segment [AB] est entièrement contenu dans C.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

Espace affine

Barvcentre et repères

Sous-espaces affin

Applications affine

Convex

Définition

Enveloppe cor

- L'intersection d'ensembles convexes est convexe
- 2 L'ensemble vide et les ensembles à un point sont convexes
- Un sous-espace affine est convexe.
- Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repères

Sous-espaces affin

Applications affine

Convexe Définition

Enveloppe con-

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes
- Un sous-espace affine est convexe.
- Les demi-espaces (ouverts, fermés) sont convexes.
- **5** L'image d'un convexe par une application affine est convexe
- L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affine

Convexe Définition

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes.
- Un sous-espace affine est convexe.
- Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- 6 L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affine

Convexes

Définition

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes.
- **3** Un sous-espace affine est convexe.
- 4 Les demi-espaces (ouverts, fermés) sont convexes.
- 5 L'image d'un convexe par une application affine est convexe
- 6 L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affine

Convexes

Définition

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes.
- **3** Un sous-espace affine est convexe.
- 4 Les demi-espaces (ouverts, fermés) sont convexes.
- 5 L'image d'un convexe par une application affine est convexe
- L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affine

Convexes

Définition

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes.
- **I** Un sous-espace affine est convexe.
- 4 Les demi-espaces (ouverts, fermés) sont convexes.
- **5** L'image d'un convexe par une application affine est convexe.
- 6 L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affine

Définition
Propriétés
Enveloppe conv

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes.
- **3** Un sous-espace affine est convexe.
- 4 Les demi-espaces (ouverts, fermés) sont convexes.
- **5** L'image d'un convexe par une application affine est convexe.
- **6** L'image réciproque d'un convexe par une application affine est convexe.

Espace affine

Barycentre et repère

Sous-espaces affine

Applications affine

Conve

Définition

Enveloppe convexe

Définition-Proposition

Soit A une partie d'un espace affine. L'enveloppe convexe, noté [A], est :

- **1** Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A.
- lacksquare L'ensemble de barycentres de points de $\mathcal A$ de poids positifs

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$

Espace affine

Barycentre et repère

Sous-espaces affin

Applications affine

Conve

Enveloppe convexe

Définition-Proposition

Soit A une partie d'un espace affine. L'enveloppe convexe, noté [A], est :

- **I** Le plus petit convexe contenant A.
- \blacksquare L'ensemble de barycentres de points de A de poids positifs.

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$.

Espace affine

Barycentre et repère

Sous-espaces affine

Applications affine

Conve

Enveloppe convexe

Définition-Proposition

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A]$, est :

- **11** Le plus petit convexe contenant A.
- **2** L'intersection de tous les convexes contenant A.
- \blacksquare L'ensemble de barycentres de points de A de poids positifs.

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$

Espace affine

Barycentre et repères

Sous-espaces affine

Applications affine

Convex

Enveloppe convexe

Définition-Proposition

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A]$, est :

- **11** Le plus petit convexe contenant A.
- **2** L'intersection de tous les convexes contenant A.
- **3** L'ensemble de barycentres de points de A de poids positifs.

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$.

Espace affine

Barvcentre et repères

Sous-espaces affine

Applications affine

Convexe

Enveloppe convexe

Définition-Proposition

Soit A une partie d'un espace affine. L'enveloppe convexe, noté [A], est :

- **11** Le plus petit convexe contenant A.
- **2** L'intersection de tous les convexes contenant A.
- $oxed{3}$ L'ensemble de barycentres de points de $\mathcal A$ de poids positifs.

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$.