Minimum Spanning Trees

Problem: Laying Telephone Wire

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Minimum Spanning Tree (MST)

A **minimum spanning tree** is a subgraph of an undirected weighted graph *G*, such that

- it is a tree (i.e., it is acyclic)
- it covers all the vertices V
 - > contains /V/ 1 edges
- the total cost associated with tree edges is the minimum among all possible spanning trees
- not necessarily unique

Applications of MST

- Any time you want to visit all vertices in a graph at minimum cost (e.g., wire routing on printed circuit boards, sewer pipe layout, road planning...)
- Internet content distribution
 - \$\$\$, also a hot research topic
 - Idea: publisher produces web pages, content distribution network replicates web pages to many locations so consumers can access at higher speed
 - MST may not be good enough!
 - content distribution on minimum cost tree may take a long time!

How Can We Generate a MST?

- Let V ={1,2,..,n} and U be the set of vertices that makes the MST and T be the MST
- Initially : $U = \{1\}$ and $T = \phi$
- while $(U \neq V)$ let (u,v) be the lowest cost edge such that $u \in U$ and $v \in V-U$ $T = T \cup \{(u,v)\}$ $U = U \cup \{v\}$

Prim's Algorithm implementation

Initialization

- a. Pick a vertex *r* to be the root
- b. Set D(r) = 0, parent(r) = null
- c. For all vertices $v \in V$, $v \neq r$, set $D(v) = \infty$
- d. Insert all vertices into priority queue *P*, using distances as the keys

е	а	b	С	d
0	8	8	8	8

Vertex Parent
e -

u

While *P* is not empty:

- 1. Select the next vertex *u* to add to the tree u = P.deleteMin()
- 2. Update the weight of each vertex w adjacent to which is not in the tree (i.e., $w \in P$)

If weight(u,w) < D(w),

- a. parent(w) = u
- b. D(w) = weight(u, w)
- c. Update the priority queue to reflect new distance for **w**

d	b	С	а
4	5	5	8

<u>Vertex</u>	<u>Parent</u>
е	-
b	е
С	е
d	е

The MST initially consists of the vertex *e*, and we update the distances and parent for its adjacent vertices

а	С	b
2	4	5

<u>Vertex</u>	Parent
е	-
b	е
С	d
d	е
a	d

С	b
4	5

<u>Vertex</u>	<u>Parent</u>
е	-
b	е
С	d
d	е
a	d

<u>Vertex</u>	Parent	
е	-	
b	е	
С	d	
d	е	
а	d	

<u>Parent</u>
-
е
d
е
d

The final minimum spanning tree

Prim's Algorithm Invariant

- At each step, we add the edge (u,v) s.t. the weight of (u,v) is **minimum** among all edges where u is in the tree and v is not in the tree
- Each step maintains a minimum spanning tree of the vertices that have been included thus far
- When all vertices have been included, we have a MST for the graph!

Running time of Prim's algorithm

Initialization of priority queue (array): O(|*V*|)

Update loop: |V| calls

- Choosing vertex with minimum cost edge: O(|v|)
- Updating distance values of unconnected vertices: each edge is considered only once during entire execution, for a total of O(|E|) updates

Overall cost:

 $O(|E| + |V|^2)$

Another Approach – Kruskal's

- Create a forest of trees from the vertices
- Repeatedly merge trees by adding "safe edges" until only one tree remains
- A "safe edge" is an edge of minimum weight which does not create a cycle

forest: {a}, {b}, {c}, {d}, {e}

Kruskal's algorithm

Initialization

- a. Create a set for each vertex $v \in V$
- b. Initialize the set of "safe edges" **A** comprising the MST to the empty set
- c. Sort edges by increasing weight

{a}, {b}, {c}, {d}, {e}

$$A = \emptyset$$

 $E = \{(a,d), (c,d), (d,e), (a,c), (b,e), (c,e), (b,d), (a,b)\}$

Kruskal's algorithm

For each edge $(u,v) \in E$ in increasing order while more than one set remains:

```
If u and v, belong to different sets
a. A = A \cup \{(u,v)\}
b. merge the sets containing u and v
```

Return A

 Use Union-Find algorithm to efficiently determine if u and v belong to different sets

Kruskal's algorithm

$$E = \{(a,d), (c,d), (d,e), (a,c), (b,e), (c,e), (b,d), (a,b)\}$$

Forest

{a}, {b}, {c}, {d}, {e} {a,d}, {b}, {c}, {e} {a,d,c}, {b}, {e} {a,d,c,e}, {b} {a,d,c,e,b}

 $\{(a,d)\}$ $\{(a,d), (c,d)\}$ $\{(a,d), (c,d), (d,e)\}$ $\{(a,d), (c,d), (d,e), (b,e)\}$

Kruskal's Algorithm Invariant

 After each iteration, every tree in the forest is a MST of the vertices it connects

 Algorithm terminates when all vertices are connected into one tree

Greedy Approach

 Like Dijkstra's algorithm, both Prim's and Kruskal's algorithms are greedy algorithms

 The greedy approach works for the MST problem; however, it does not work for many other problems!