ÁREA O CARRERA: Ingeniería Electrónica

CURSO: BIOINGENIERIA

TEMA: Sensores y biosensores químicos: Electroquímicos

Dra. Carmen Mayorga

Logro

Al finalizar el clase el estudiante tendrá un entendimiento de los principios fundamentales de los sensores y biosensores electroquímicos, así como los métodos de transducción utilizados para detectar los analitos de interés.

¿Que son los sensores y biosensores electroquímicos?

Transductor que detecta la interacción electroquímica entre el analito y el electrodo dando lugar a una señal eléctrica útil..

iugal a una senal electrica util...

El efecto electroquímico puede necesitar estimulación eléctrica externa o ser el resultado de una interacción espontánea.

una interacción espontanea

Partes de los sensores y biosensores electroquímicos

Tipos de sensores y biosensores

Sensores Potenciométricos

Al poner en contacto un metal con una disolución conteniendo sus iones

$$\mathbf{M}^{\mathbf{n}_{\bullet}} + \mathbf{n}_{\bullet}^{-} \neq \mathbf{M}(s)$$

Se establece un potencial de electrodo en la interfase metal/disolución, que se define como:

$$E = E^{o} - \frac{RT}{nF} \ln \frac{a_{m}}{a_{M^{n+}}} = E^{o} - \frac{RT}{nF} \ln \frac{1}{a_{M^{n+}}} = E^{o} + \frac{RT}{nF} \ln a_{M^{n+}}$$

$$E = E^{o} + \frac{0,05916}{n} \log a_{M^{n+}}$$

E°= Potencial estándar de electrodo

R = constante de los gases, 8.31 J/°mol.

T = temperatura absoluta en °K, 298 °K

F = constante de Faraday, 23,062 cal/V ó 96,406

J/V.

Celda Potenciométrica

- Miden la diferencia de potencial entre dos electrodos inmersos en una solución.
- El potencial de uno de los electrodos es independiente de su ambiente.(ER)
- El potencial del otro electrodo cambia con la concentración de la sustancia a medir.(ET)

Electrodo de Referencia

 $E_{1/2}$ = cte a pesar de cambios en la muestra a medir.

El $E_{1/2}$ debe ser reproducible.

No cambia significativamente su $E_{1/2}$ con la temperatura.

Deben ser baratos.

Fáciles de armar.

Electrodo de trabajo ET o Electrodos indicadores

La respuesta depende de la concentración del analito.

Debe responder de forma rápida y reproducible a los cambios de actividad del ion analito.

Los electrodos indicadores para las medidas potenciométricas son de dos tipos fundamentales:

- Metálicos
- De *membrana*. denominados también electrodos *específicos* o *selectivos para iones*.

Electrodo de Vidrio para medir pH

- Cada electrodo tiene un potencial constante e independiente del pH.
- La membrana delgada en el extremo del electrodo es la que responde a los cambios de pH.
- El electrodo de vidrio es iónespecífico. Con ellos se puede medir el ión hidrógeno o cationes monovalentes (NH₄+,Li+, Na+, K+).

Sensores Amperométricos

Definición: Mide la corriente que cruza una celda electroquímica con un potencial aplicado constante.

- La corriente es resultado de la oxidación o reducción del analito electroactivo en el electrodo de trabajo.
- La respuesta de corriente esta directamente relacionada con la concentración del analito

I=nFADC/δ

 $n=N^{\circ}$ de electrones F=Cte Faraday

A=Área del electrodo D=coeficiente de difusión

C=concentración δ =espesor de capa de difusión

• Si la medida se lleva a cabo en condiciones controladas(Temperatura y condiciones de agitación):

Celda Electroquímica

- Contiene tres electrodos, uno donde la especie analizada está siendo oxidada o reducida (electrodo activo), y otro empleado como referencia.
- El electrodo activo es de Platino (Pt) normalmente, pero también puede ser Au y C.
- Electrodo referencia de Ag/AgCI.
- Electrode auxiliar. Permite la circulación de la corriente hacia el electrode activo

Electrodo de O₂ (Clark)

■Membrana: Teflon, silicona o polietileno

■Catodo: Pt, Au o Ag

■Anodo: (Referencia) Ag/AgCl

■Electrolito: Buffer +KCl a pH fijo(mantiene cte el E del ER)

Biosensores electroquímicos

Dispositivo analítico compacto

Esta compuesto de un elemento de detección biológico (Bioreceptor)

Transductor químico que convierte la señal biológica en una señal electrónica

Biosensores enzimáticos

Partes y etapas del censado de un biosensor enzimático

ENZIMA	REACCION
Transferasas	Catalizan la transferencia de un grupo químico, de un sustrato
	a otro.
Hidrolasas	Catalizan reacciones de hidrólisis.
Liasas	Catalizan adiciones de grupos a dobles enlaces o formaciones
	de dobles enlaces por eliminación de grupos
Isomerasas	Catalizan la interconversión de isómeros
Ligasas	Catalizan la formación de enlaces C-C, C-S, C-O y C-N por
	reacciones de condensaciones acopladas a la hidrólisis de ATP
Óxido-	Catalizan reacciones de óxido-reducción, es decir,
reductasas	transferencia de hidrógeno o de electrones de un sustrato a
	otro

Generaciones de los biosensores enzimaticos

Inmunosensores Electroquimicos

Diagrama de bloques de un inmunosensor electroquímico

Preparación de inmunosensores electroquímicos

Inmuno ensayo tipo ELISA

http://www.saber.ula.ve/bitstream/handle/123456789/44617/capitulo3.pdf?sequence=1&isAllowed=y

Genosensores Electroquímicos

Esquema de funcionamiento de un sensor de ADN

Apertura de la sonda de captura estructurada

Ensayo de hibridación tipo sandwich

Rol de los nanomateriales en el desarrollo de biosensores más sensibles, selectivos y miniaturizados

ARTICLE NEXT> RETURN TO ISSUE Binary Phosphorene Redox Behavior in Oxidoreductase Enzymatic Systems Carmen C. Mayorga-Martinez, Zdeněk Sofer, and Martin Pumera* Cite this: ACS Nano 2019, 13, 11, 13217-13224 Article Views Altmetric Citations Publication Date: October 17, 2019 V 1342 https://doi.org/10.1021/acsnano.9b06230 Copyright © 2019 American Chemical Society LEARN ABOUT THESE METRICS Request reuse permissions 命 **Access Through Your Institution** Other access options

ADVANCED FUNCTIONAL MATERIALS

Full Paper

Bipolar Electrochemical Synthesis of WS₂ Nanoparticles and Their Application in Magneto-Immunosandwich Assay

First published: 23 April 2016 | https://doi.org/10.1002/adfm.201600961 | Citations: 43

RETURN TO ISSUE < PREV ARTICLE NEXT >

Label-Free Impedimetric Aptasensor for Ochratoxin-A Detection Using Iridium Oxide Nanoparticles

Lourdes Rivas^{†‡}, Carmen C. Mayorga-Martinez[†], Daniel Quesada-González[†], Alejandro Zamora-Gálvez[†], Alfredo de la Escosura-Muñiz[†], and Arben Merkoçi*†§

View Author Information >

Cite this: Anal. Chem. 2015, 87, 10, 5167-5172 Publication Date: April 22, 2015 > https://doi.org/10.1021/acs.analchem.5b00890 Copyright © 2015 American Chemical Society

Article Views Altmetric Citations 202 2931 LEARN ABOUT THESE METRICS

Share Add to Export

Request reuse permissions

Repaso de la clase 07

https://kahoot.it/