

GATE | PSUs

Text Book:

Theory with worked out Examples and Practice Questions

Analog Circuits

(Solutions for Text Book Practice Questions)

01. Sol:

 \Rightarrow D₁, D₂ are reverse biased and D₃ is forward biased.

i.e., D₃ only conducts.

:.
$$I_0 = 3/5K = 0.6mA$$

02. Sol:

 \Rightarrow D₂ & D₃ are reverse biased and 'D₁' is forward biased.

i.e., D₁ only conduct

$$I_0 = \frac{5-1}{5K} = 0.8 \text{mA}$$

03.

Sol: Let diodes D₁ & D₂ are forward biased.

$$\Rightarrow V_0 = 0 \text{ volt}$$

$$10 - 0$$

$$I_2 = \frac{10 - 0}{5K} = 2mA$$

$$I_3 = \frac{0 - (-10)}{10K} = 1mA$$

Apply KVL at nodes 'V₀':

$$-I_1 + I_3 - I_2 = 0$$

199
$$\Rightarrow I_1 = -(I_2 - I_3) = -1 \text{ mA}$$

So, D_1 is reverse biased & D_2 is forward biased

 \Rightarrow 'D₁' act as an open circuit & D₂ is act as short circuit.

Then circuit becomes

$$\Rightarrow V_0 = 10k \times \left(\frac{20}{15k}\right) - 10$$

$$\therefore V_0 = 3.33V$$

04. Sol:

Apply KVL to the loop:

$$V_{in}-2-V_{x}=0$$

$$\Rightarrow$$
 $V_x = V_{in}-2$ ---- (1)

Given, V_{in} range = -5V to 5V

$$\Rightarrow$$
 V_x range = -7V to 3V [: from eq (1)]

Diode ON for $V_x > 0V$

$$\Rightarrow$$
 $V_0 = V_x$

Diode OFF for $V_x < 0V$

$$\Rightarrow$$
 V₀ = 0 V

$$\therefore$$
 V₀ range = 0 to 3V

Output wave form:

Transfer characteristics:

05.

Sol:

For $V_i \le -2Volt$, Diode ON

$$\Rightarrow$$
 V₀ = -2Volt

For $V_i > -2$ Volt, Diode OFF

$$\Rightarrow V_0 = V_i$$

06. Ans: (a & c)

Sol: In positive half, of input \rightarrow

Capacitor C_1 is charging so, $T_{Char} = R_{F_1}C_1 = 0$

For $\theta \to \text{Range from } 0 \to \frac{\pi}{2}$,

$$\begin{vmatrix}
D_1 \to Short \\
D_2 \to Open
\end{vmatrix} \to \begin{vmatrix}
C_1 \\
+ V_{C_1}
\end{vmatrix}$$

Now at $\theta = \frac{\pi}{2}$, $V_{C_1} = V_m$

D₁ & D₂ both are OFF

So, C_1 has no discharging path \Rightarrow steady state,

So, at steady state $V_{C_1} = +V_m = +5V$.

Since in ANALOG circuit, for either clampers (or) for Ripple removal shunt capacitor filter,

 $T_{discharge} >>> T$, where $T \rightarrow Time$ period.

Now for
$$\theta > \frac{\pi}{2}$$
, $V_{C_1} = V_m > V_i$

$$\Rightarrow$$
 Due to V_{C_1} , D_1 is OFF D_2 is ON

Now circuit is \rightarrow

Now,
$$V_i = V_{C_1} - V_{C_2} \Rightarrow V_{C_2} = V_{C_1} - V_i$$

Now, at $\theta = \frac{3\pi}{2}$, $V_i = -V_m$
 $\Rightarrow V_{C_2} = 2V_m = 10V$

Now, at $\theta = \frac{3\pi}{2}$, $V_{C_1} = 5V$ from the circuit such that, $V_{C_2} = 10V$

Due to V_{C_2} , D_2 act as open circuit

So, at $\theta = \frac{3\pi}{2}$, the circuit looks like \rightarrow

Now, as no discharge path for $C_1 & C_2$

 \Rightarrow Steady state So, at steady state, $V_{C_2} = 10V$, but form circuit V_{C_3} polarity is opposite

$$\Rightarrow V_{C_2} = -10V$$

So, options (a) & (c) are correct.

07.

Since

Sol: For positive half cycle diode Forward biased and Capacitor start charging towards peak value.

$$\Rightarrow V_{C} = V_{m} = 5V$$

$$\Rightarrow V_{0} = V_{in} - V_{C} = V_{in} - 5$$

$$V_{in} \text{ range} = -5V \text{ to } +5V$$

$$\therefore V_0 \text{ range} = -10V \text{ to } 0V$$

08.

Sol: For +ve cycle, diode 'ON', then capacitor starts charging

$$\Rightarrow$$
 $V_C = V_m - 7 = 10 - 7 = 3V$

Now diode OFF for rest of cycle

$$\Rightarrow V_0 = -V_C + V_{in}$$
$$= V_{in} - 3$$

 V_{in} range : -10V to +10V

 \therefore V₀ range: -13V to 7V

09.

Sol: Always start the analysis of clamping circuit with that part of the cycle that will forward bias the diodes this diode is forward bias during negative cycle.

For negative cycle diode ON, then capacitor starts charging

$$\Rightarrow V_C = V_P + 9$$
$$= 12 + 9 = 21V$$

Now diode OFF for rest of cycle.

$$\Rightarrow V_0 = V_C + V_{in}$$
$$= 21 + V_{in}$$

 V_{in} range: -12 to +12V

V₀ range: 9V to 33V

10.

Sol: During positive cycle,

D₁ forward biased & D₂ Reverse biased.

During negative cycle,

D₁ reverse biased & D₂ forward biased.

$$V_{C2} = -6 - 6 = -12V$$

Capacitor C₂ will charge to negative voltage of magnitude 12V

11. Sol:

Let transisotr in active region

 $\Rightarrow I_E = \frac{3.3}{3.3 \text{ KO}} = 1 \text{ mA}$

$$\Rightarrow$$
 $I_{C}=\beta/(\beta+1)$. $I_{E}=0.99mA$

$$I_B = I_C/\beta = 9.9 \mu A$$

$$V_C = 10 - 4.7 \times 10^3 \times 0.99 \times 10^{-3} = 5.347 V_C$$

$$\Rightarrow V_C > V_B$$

:. Transistor in the active region.

$$V_E = V_B - V_{BE} = 6 - 0.7 = 5.3V$$

$$I_E = \frac{5.3}{3.3K} = 1.6mA$$

Let transistor is active region

$$\Rightarrow I_{\rm C} = \frac{\beta}{\left(1+\beta\right)} I_{\rm E}$$

$$I_C = 1.59 \text{mA}$$

$$V_C = 2.55V$$

$$\Rightarrow$$
 $V_C < V_B$

:. Transistor in saturation region

$$\Rightarrow$$
 V_{CE}(sat) = 0.2V

$$V_C\!-V_E\!=0.2$$

$$V_C = 5.3 + 0.2$$

$$\Rightarrow$$
 V_C = 5.5V

$$\Rightarrow I_{\rm C} = \frac{10 - 5.5}{4.7 \text{K}} = 0.957 \text{mA}$$

$$I_B = 1.6 - 0.957 = 0.643 \text{mA}$$

$$\beta = \frac{I_C}{I_B} = \frac{0.957 \text{ mA}}{0.643 \text{ mA}} = 1.483$$

$$\beta_{forced} < \beta_{active}$$

13. Sol:

$$I_C = I_B = I_E = 0A$$

$$V_{CE} = 10V$$
$$V_{E} = 0V$$

 $V_E = -0.7V$

$$V_E = 0V$$

$$V_C = 10V$$

$$V_B = 0V$$

14. Sol:

$$V_{\rm E} = 0.7 \text{V} \left[\because V_{\rm B} = 0 \text{V} \right]$$

$$\Rightarrow I_{E} = \frac{10 - 0.7}{5K} = 1.86 \text{mA}$$

Let transistor in active region.

$$\Rightarrow I_{C} = \frac{\beta}{(\beta+1)} I_{E} = 1.84 \text{mA}$$

$$\Rightarrow V_C = -10 + 1K \times 1.84m$$
$$V_C = -8.16V$$

$$V_C = -8.16V$$

$$V_{EC} = V_E - V_C = 8.86V$$

$$V_{EC}\!>V_{EB}$$

:. Transistor in active region

7

15. Sol:

Let transistor in active region

$$V_E = 0.7V$$

$$V_E = 0.7V$$
 $[\because V_B = 0V]$

$$I_{E} = \frac{10 - 0.7}{1k} = 9.3 \text{mA}$$

$$I_{\rm C} = \frac{\beta}{\beta + 1} . I_{\rm E} = 9.2 \text{mA}$$

$$\Rightarrow$$
 V_C = $-10 + 5K \times 9.2m$

$$V_C = 36V$$

$$V_{EC} < V_{ER}$$

Transistor in saturation region

$$\Rightarrow$$
 V_{EC} = 0.2

$$V_E - V_C = 0.2 \Rightarrow V_C = 0.5V$$

$$\Rightarrow$$
 I_C = $\frac{0.5+10}{5K}$ = 2.1mA

$$I_B = I_E - I_C = 7.2 \text{mA}$$

$$\beta_{\text{forced}} = \frac{I_{\text{c(sat)}}}{I_{\text{p}}} = \frac{2.1}{7.2} = 0.29$$

 $\beta_{\text{forced}} < \beta_{\text{active}}$ i.e., saturation region

16. Sol:

$$I_E = I_C + I_B$$

$$\Rightarrow \frac{5 - (V_B + 0.7)}{1k} = \frac{(V_B + 0.5) + 5}{10k} + \frac{V_B}{10k}$$

$$10(5 - V_B - 0.7) = V_B + 0.5 + 5 + V_B$$

$$43 - 10V_{\rm B} = 2V_{\rm B} + 5.5$$

$$V_{\rm B} = \frac{43 - 5.5}{12} = 3.125 \text{V}$$

$$I_{B} = \frac{3.125}{10K} = 0.3125 \text{mA}$$

$$V_{C} = V_{B} + 0.5 = 3.625 \text{V}$$

$$V_C = V_B + 0.5 = 3.625V$$

$$V_E = 3.825V$$

$$\therefore$$
 I_E = 1.175mA

$$\therefore$$
 I_C = 0.862mA

17.

Sol: Here the lower transistor (PNP) is in cut off

Apply KVL to the base emitter loop:

$$5-10K.\;I_B-0.7-1K.\;(1+\beta)I_B=0$$

$$\Rightarrow I_{B} = \frac{4.3}{(101)K + 10K}$$
$$= 38.73 \mu A$$

$$I_{\rm C} = 3.87 \, \rm mA$$

$$I_E = 3.91 \text{mA}$$

$$\Rightarrow$$
 V_E = V₀ = I_E(1k) = 3.91 V

$$V_C = 5V$$

$$V_B = 5 - 10 \text{ k} (I_B) = 4.61 \text{ V}$$

18. Sol:

$$I_{C_1} = I_{\varepsilon_1} = \frac{2.3V}{2.3k} = 1 \text{m Amp}$$

$$V_{C_1} = 12V - 4 \times 10^3 \times 1 \times 10^{-3} = 8V$$

$$V_{\epsilon_2} = 8 + 0.7V = 8.7V$$

$$I_{\epsilon_2} = \frac{12V - V_{\epsilon 2}}{3.3k} = \frac{12V - 8.7}{3.3k} = 1 \text{m Amp}$$

$$V_{C_2} = 4k \times 1mA = 4V$$

$$V_{\epsilon_3} = 4V - 0.7 = 3.3V$$

$$V_{E_4} = 3.3 - 0.7 = 2.6V$$

$$V_0 = 2.6 \text{ V}$$

$$Z_{eq} = \frac{1}{sC + \frac{1}{r + sL}}$$

$$= \frac{r + sL}{srC + s^2LC + 1}$$

$$= \frac{r + j\omega L}{(1 - \omega^2LC) + j\omega rC}$$

$$Z_{eq} = \frac{(r + j\omega L)[1 - \omega^2LC - j\omega rC]}{(1 - \omega^2LC)^2 + (\omega rC)^2}$$

$$\omega^2 rLC + r - \omega^2 rLC + j\omega L[1 - \omega^2LC] - \omega^2 LC$$

$$= \frac{\omega^2 r L C + r - \omega^2 r L C + j \omega L [1 - \omega^2 L C] - j \omega r^2 C}{\left(1 - \omega^2 L C\right)^2 + \left(\omega r C\right)^2}$$

Equate Imaginary terms:

$$\omega L - \omega^3 L^2 C - \omega r^2 C = 0$$

$$L - \omega^2 L^2 C - r^2 C = 0$$

$$\omega^2 L^2 C \equiv L - r^2 C$$

$$\omega = \sqrt{\frac{1}{L C} - \frac{r^2 C}{L^2 C}}$$

$$\omega = \sqrt{\frac{1}{LC} - \left(\frac{r}{L}\right)^2}$$

20. Ans: (a & b)

Sol: Step-1: KCL at collector node of Q₁ i.e., at C₁

$$I = I_{C_1} + I_x = I_{C_2} + 2I_{B_2} \dots (1)$$

$$= I_{C_2} + 2\frac{I_{C_2}}{\beta} \dots (2)$$

$$= I_{C_2} \left[1 + \frac{2}{100} \right] \dots (3)$$

$$\Rightarrow I_{C_2} = I \left[\frac{100}{102} \right] = 0.98I \dots (4)$$

Step-2: KVL foe C-E loop of Q₁ $I = \frac{10V - 0.7V}{4.65K\Omega} = 2\text{mA} \dots (5)$

$$\Rightarrow I_{C_2} = 1.96 \text{mA} \dots (6)$$

Step-3: KVL for loop of Q₂

$$V_{C_2} = 10V - 3K\Omega(1.96mA) = 4.12V(7)$$

Step-4: KVL for C-loop of Q₁

$$V_{C_1} = 10V - I_{BIAS} \times 4.65K \dots (8)$$

= $10V - 2mA \times 4.65K\Omega \dots (9)$

$$V_{C_1} = 0.7V \dots (10)$$

21. Sol:

9

For D.C Analysis:

$$V_B = 4 V$$

$$V_B - V_E = 0.7 \Rightarrow V_E = 4 - 0.7 = 3.3 \text{ V}$$

$$I_E = \frac{3.3}{3.3k} = 1mA$$

$$r_e = \frac{V_T}{I_E} = \frac{25 \,\text{mV}}{1 \,\text{mA}} = 25 \,\Omega$$

To apply small signal analysis set D.C source equal to zero.

$$V_{in} = i_b r_\pi = i_b \beta r_e = i_c r_e$$

$$\therefore A_{V} = \frac{V_{0}}{V_{i}}$$

$$= \frac{-i_{c}R_{c}}{i_{c}r_{e}} = \frac{-R_{c}}{r_{e}} = \frac{-4.7 \text{ k}}{25}$$

$$= -188$$

Sol: D.C calculation is same as previous question

$$I_E = 1 \text{ mA}$$

$$r_e = 25 \Omega$$

Apply small signal analysis:

$$\frac{V_0}{V_i} = \frac{-R_c}{r_e + R_E} = \frac{-4700}{25 + 3300}$$

$$\therefore A_{V} = \frac{V_{0}}{V_{i}} = -1.413$$

23.Sol: To calculate r_e value apply D.C analysis

$$\boldsymbol{I}_{E} = \frac{\boldsymbol{V}_{th} - \boldsymbol{V}_{BE}}{\boldsymbol{R}_{E} + \frac{\boldsymbol{R}_{th}}{\beta + 1}}$$

$$=\frac{3-0.7}{2.3k+\frac{2k}{101}}=0.991mA$$

$$r_e = \frac{V_T}{I_E} = \frac{25}{0.991} = 25.22\Omega$$

Now apply small signal analysis:

$$A_{V} = \frac{V_{0}}{V_{i}} = \frac{-R_{C}}{r_{e}} = \frac{-(2k \parallel 2k)}{25.22} = -39.65$$

$$R_i = R_B || \beta r_e$$

$$R_i = 1.116k\Omega$$

$$A_{I} = \frac{i_{0}}{i_{i}} = \frac{V_{0}}{R_{L}} \times \frac{R_{i}}{V_{i}} = A_{V} \times \frac{R_{i}}{R_{L}}$$

$$= \frac{-39.5 \times 1.116 \times 10^{3}}{2 \times 10^{3}}$$

$$= -22.322$$

$$R_o = R_C = 2k\Omega$$

24. Sol:

Since

Apply KVL at input Loop:

$$6 - 10k (I_B) - 0.7 - 8 k(1+\beta)I_B = 0$$

$$I_B = \frac{6 - 0.7}{10k + 8k \times 101} = 6.47 \,\mu A$$

$$I_E = 0.65 \text{ mA}$$

$$r_e = \frac{V_{_T}}{I_{_E}} = \frac{25}{0.65} = 38.5\,\Omega$$

Apply small signal analysis

$$A_{v} = \frac{V_{0}}{V_{i}} = \frac{R_{E}}{r_{e} + R_{E}}$$
$$= 0.995$$

$$R_i = R_B \parallel \beta R_{E_{Total}}$$

$$R_{E_{Total}} = (R_E + r_e)$$

$$R_i = 10 \text{ k} \parallel 803.85 \text{k}$$

= 9.87 k Ω

$$R_0 = R_E || r_e = 38.3 \Omega$$

25.

Sol:
$$V_0 = -i_c R_C$$

$$i_{e} \approx i_{c} = \frac{-V_{i}}{r_{e}}$$

$$V_{0} = \left(\frac{V_{i}}{r_{e}}\right)R_{C}$$

$$\frac{V_{0}}{V_{i}} = \frac{R_{C}}{r_{e}}$$

$$Given I_{E} = 1mA$$

$$\Rightarrow r_{e} = \frac{25mV}{1mA} = 25\Omega$$

$$A_{V} = \frac{R_{C}}{r_{e}}$$

$$V_{i}$$

$$A_{V} = \frac{10k // 10k}{25} = \frac{5000}{25} = 200$$

$$R_{0} = R_{C} = 10k\Omega$$

$$R_i = r_e = 25\Omega$$

$$A_{I} = \frac{i_{0}}{i_{i}} = \frac{v_{0}}{R_{L}} \times \frac{R_{i}}{v_{i}}$$
$$= A_{V} \times \frac{R_{i}}{R_{L}} = \frac{200 \times 25}{10^{4}} = 0.5$$

26.

Sol: For the given differential amplifier,

$$I_E = 1 \text{mA}$$

$$r_e = \frac{V_T}{I_T} = 25 \Omega$$

$$r_{\rm e} = \frac{V_{\rm T}}{I_{\rm E}} = 25\Omega$$

$$A_d = \frac{V_0}{V_i} = \frac{-R_c}{r_e} = \frac{-3000}{25}$$
 (or) $-g_m R_c$

$$A_d = -120$$

$$I_{1} = \frac{0 - (-12)}{12k} = 1 \text{mA}$$

$$I_{1} = \frac{0 - V_{B}}{3K}$$

$$V_{B} = -3V$$

$$V_{B} - V_{E} = 0.7$$

$$V_{E} = V_{B} - 0.7$$

$$V_{E} = -3.7 \text{ Volt}$$

$$I_{0} = \frac{-3.7 + 12}{8.3k}$$

$$I_0 = \frac{-3.7 + 12}{8.3k}$$

$$I_0 = 1 \text{mA}$$

$$I_E = 0.5 \text{mA}$$

$$r_e = \frac{25mV}{0.5mA} = 50\Omega$$

$$A_d = \frac{-R_C}{r_e} = \frac{-2000}{50}$$

$$A_d = -40$$

Sol: Voltage shunt feedback amplifier and

$$\frac{V_0}{V_{in}} = \frac{-R_f}{R_s} = \frac{-10k}{1k} \approx -10$$

29.

Sol: Current - series feedback amplifier and

$$A_{\rm V} \approx \frac{R_{\rm C}}{R_{\rm E}} = \frac{4.7k}{3.3k} = 1.4242$$

30. Sol:

Using millers effect,

$$R_{eq} = \frac{1k}{1 + 100} = 9.9\Omega$$

$$L_{\rm eq} = \frac{1mH}{1+1000} \approx 1 \mu H$$

31. **Sol:**

32.

Sol:
$$V_0 = \left(1 + \frac{R_f}{R_1}\right) V_i$$

$$V_0 = \left(1 + \frac{2k}{3k}\right) 2$$

$$V_0 = \frac{10}{3} \text{volt} = 3.33 \text{ V}$$

$$I_1 = \frac{V_0}{1k} = \frac{10}{3} \text{ mA } \&$$

$$I_2 = \frac{V_0 - 2}{2k} = \frac{\frac{10}{3} - 2}{2k} = \frac{2}{3} \text{ mA}$$

$$\therefore I_0 = I_1 + I_2 = 4mA$$

33.

Since

Sol:
$$V_0 = \frac{-R_2}{R_1} V_{in}$$

Sol: $I_{in} \xrightarrow{I_{k\Omega}} V_{0}$ $V_{0} = -I_{in} \times 1K$ $I_{L} = \frac{I_{i} \times 1K}{2K} = \frac{I_{in}}{2}$

$$I_0 + I_{in} + I_L = 0$$

$$I_0 + I_{in} + \frac{I_{in}}{2} = 0$$

$$2I_0 + 2I_{in} + I_{in} = 0$$

$$2I_0 = -3I_{in}$$

$$\frac{I_0}{I} = \frac{-3}{2} = -1.5$$

$$V_{01} = -I_1$$

Apply KCL:

$$I_{x} + I_{2} = \frac{0 - V_{0_{2}}}{1}$$

$$\frac{\mathbf{V}_{01}}{1} + \mathbf{I}_2 = -\mathbf{V}_{02}$$

$$V_{01} + I_2 = -V_{02}$$

$$-I_1 + I_2 = -V_{02}$$

$$V_{02} = (I_1 - I_2) \text{volt}$$

$$I_{01} + I_1 = I_x$$

$$\mathbf{I}_{01} + \mathbf{I}_{1} = \mathbf{V}_{01} \qquad \left[\because \mathbf{I}_{x} = \frac{\mathbf{V}_{01}}{1} \right]$$

$$I_{01} = V_{01} - I_{1}$$

$$I_{01} = -2I_1$$

$$I_{01} = -2I_1$$
 $[:: V_{01} = -I_1]$

$$I_{02} = -(I_2 + I_x)$$

$$I_{02} = -(I_2 + V_{01})$$

$$I_{02} = (I_1 - I_2)A$$

36. Sol:

Apply KCL at
$$V_a$$
:
$$1m = \frac{V_a - V_b}{2k} + \frac{V_a - V_b}{3K}$$

$$1m = \frac{3V_a - 3V_b + 2V_a - 2V_b}{6k}$$

$$6 = 5V_a - 5V_b$$

$$V_a - V_b = \frac{6}{5}$$

$$V_a - V_b = 1.2 \text{Volt}$$

$$I_1 = \frac{V_a - V_b}{2k} = \frac{1.2}{2k} = 0.6 \text{mA}$$

$$I_2 = \frac{1.2}{3k} = 0.4 \text{mA}$$

$$V_b = 0.4 \text{m} \times 1k = 0.4 \text{ Volt}$$

$$I_1 = \frac{V_b - V_0}{0.5k}$$

$$0.6 \text{m} = \frac{0.4 - V_0}{0.5k}$$

$$0.3 = 0.4 - V_0$$

$$\therefore V_0 = 0.1 \text{ Volt}$$

37.

Sol:
$$V_C = \frac{-I}{C}.t = \frac{-10 \times 10^{-3}}{10^{-6}} \times 0.5 \times 10^{-3}$$

 $V_C = -5 \text{Volt}$

38.

Sol: Given open loop gain = 10

$$\frac{V_0}{V_i} = \frac{\left(1 + \frac{R_f}{R_1}\right)}{1 + \left(1 + \frac{R_f}{R_1}\right) \times \frac{1}{A_{0L}}}$$

$$\frac{V_0}{V_i} = \frac{(1+3)}{1 + \frac{4}{10}}$$

$$V_0 = V_i \times \frac{4}{1 + \frac{4}{10}}$$

$$V_0 = \frac{2 \times 4}{1 + \frac{4}{10}} = 5.715 \text{Volt}$$

Sol:
$$\frac{V_0}{V_i} = \frac{\frac{-R_f}{R_1}}{1 + \frac{(1 + R_f/R_1)}{A_{OL}}}$$

$$\frac{V_0}{V_i} = \frac{-9}{1 + \frac{10}{10}}$$

$$\frac{V_0}{V_i} = \frac{-9}{2}$$

$$V_0 = -4.5V$$

40.

Sol: $SR = 2\pi f_{max} V_{0max}$

$$V_{0 \text{max}} = \frac{SR}{2\pi f_{\text{max}}} = \frac{10^6}{2\pi \times 20 \times 10^3} = 7.95 \text{Volt}$$

$$V_0 = A \times V_i \Longrightarrow V_i = \frac{V_0}{A} = 79.5 \text{mV}$$

41. Sol:

$$z_2 = R_2 || \frac{1}{sC} = \frac{R_2}{sCR_2 + 1}$$

$$z_1 = R_1 + {}_{S}L$$

$$\left| \frac{\mathbf{V}_0}{\mathbf{V}_i} \right| = \frac{\frac{\mathbf{R}_2}{\mathbf{sCR}_2 + 1}}{\frac{\mathbf{R}_1}{\mathbf{R}_1 + \mathbf{sL}}}$$

$$\left| \frac{V_0}{V_i} \right| = \frac{R_2}{(sCR_2 + 1)(R_1 + sL)}$$

It represent low pass filter with

D.C gain =
$$\frac{R_2}{R_1}$$

42.

Sol: (i)

Apply KCL at V_x:

$$\frac{V_x}{5k} = I_i + I_1$$

$$\frac{V_x}{5k} = \frac{V_i - V_x}{10k} + \frac{V_i - V_x}{20k}$$

$$\frac{V_x}{5} = \frac{3V_i - 3V_x}{20}$$

$$V_{x} = \frac{3}{7}V_{i}$$

$$I_{i} = \frac{V_{i} - V_{x}}{10k}$$

$$I_i = \frac{V_i - \frac{3}{7}V_i}{100c}$$

$$R_i = \frac{V_i}{I_i} = 17.5 \, k\Omega$$

(ii)

$$R_0 = \frac{1}{I_x}$$

$$V_p = \frac{R_s}{R_2 + R_s}$$

$$I_{x} = \frac{1 - V_{p}}{R_{2}} + \frac{1 - V_{p}}{R_{1}}$$

$$I_x = (1 - V_p) \left(\frac{1}{R_2} + \frac{1}{R_1} \right)$$

$$I_{x} = \left(1 - \frac{R_{s}}{R_{2} + R_{s}}\right) \left(\frac{R_{1} + R_{2}}{R_{1}R_{2}}\right)$$

$$I_{x} = \frac{R_{2}}{R_{2} + R_{s}} \left(\frac{R_{1} + R_{2}}{R_{1}R_{2}} \right)$$

$$\therefore R_0 = \frac{1}{I_x} = \left(\frac{R_s + R_2}{R_1 + R_2}\right) R_1$$

Sol: $V_E = V_{in}$

$$V_{CE} = V_C - V_E$$

$$V_{CE} = 15 - V_{in}$$

given V_{in} 0 to 5 Volt

⇒Transistor is in active region

$$I_E = I_0 = \frac{V_{in} + 15}{10} = \frac{17}{10} = 1.7 \text{ A} \quad [\because V_{in} = 2V]$$

$$I_B = \frac{I_0}{1+\beta} = \frac{1.7}{100} A$$

$$V_B = V_{in} + 0.7 = 2.7V$$

$$I_{B} = \frac{V_{op} - V_{B}}{100}$$

$$\frac{V_{op} - 2.7}{100} = \frac{1.7}{100}$$

$$V_{op} = 4.4 \text{ Volt}$$

44.

Sol: Single stage:

Gain =
$$40dB = 100$$
, $f_T = 1MHz = Gain BW$
 $BW \rightarrow f_{3dB} = \frac{f_T}{Gain} = \frac{10^6}{100} = 10kHz$

Two stages:

$$f_{3dB} = \frac{1M}{10} = 100 \text{kHz} \,, \quad f_{3dB} = 100 \text{kHz} (\text{for single stage})$$

Two stages (Overall):

Overall BW =
$$f_{3dB} \sqrt{2^{1/2} - 1} = 100k (0.65)$$

= 65 kHz

Sol: (a)

Gain =
$$\frac{V_0}{V_{in}} = 1 + \frac{1M}{R_1} = 100 \Rightarrow R_1 = 10.1k\Omega$$

$$V_0 = I_B(1M)$$

= 100nA(1M)
= 0.1V

(b)

- → op-amp draws current
- → op-amp CKT the curve doesn't pass through '0' (transfer characteristics)

$$V_0 = \left|V_{0_{\text{Bios current}}}\right| + \left|V_{0_{\text{Offset Voltage}}}\right|$$

=
$$1M(I_B) + \left(1 + \frac{R_2}{R_1}\right)V_{os}$$

= $1M(100nA) + 100(1mV)$
= $0.2V$

(d)

$$\begin{split} V_0 &= \left| V_{0_{\text{Offset Voltage}}} \right| + \left| V_{0_{\text{Bios current}}} \right| \\ &= 0.1 + 0.01 \\ &= 0.11 = 110 \text{mV} \end{split}$$

Sol: Given

$$R_1 = R_3 = 10k\Omega$$

$$R_2 = R_4 = 1M\Omega$$

$$\begin{split} V_0 &= \frac{R_2}{R_1} \big(V_{\text{in}2} - V_{\text{in}1} \big) \\ &= \frac{1M}{10k} \big(V_{\text{in}2} - V_{\text{in}1} \big) \end{split}$$

Given
$$V_{os} = 4mV$$

 $I_B = 0.3 \mu A$

$$I_{os} = 50 \text{ nA}$$

$$V_0 = \left[1 + \frac{R_2}{R_1}\right] V_{os} + I_{os} R_2$$
$$= \left[1 + \frac{1M}{10k}\right] 4mV + 50nA[1M]$$
$$= 454mV$$

47. Ans: (b & d)

17

Sol: Step-1: Differential input resistance,

$$R_{id} = \frac{V_{id}}{I_1} \dots (1)$$

Consider virtual short circuit between V_1 & V_2 and writing a loop equation,

$$\begin{aligned} \mathbf{V}_{id} &= \mathbf{R}_1 \, \mathbf{I}_1 + \mathbf{0} + \mathbf{R}_1 \mathbf{I}_1 \dots \dots (2) \\ &= 2\mathbf{R}_1 \mathbf{I}_1 \dots \dots (3) \end{aligned}$$

$$\frac{V_{id}}{I_1} = R_{id} = 2R_1 \dots (4)$$

But
$$R_{id} = 20K = 2 R_1$$
.....(5) [Given]
 $\Rightarrow R_1 = 10K$(6)

Step-2: The given circuit is a differential amplifier,

$$V_{0} = \frac{R_{2}}{R_{1}} (V_{A} - V_{B}) \dots (7)$$

$$\Rightarrow A_{d} = \frac{V_{0}}{V_{A} - V_{B}} = \frac{R_{2}}{R_{1}} = 100 \dots (8)$$
[Given]

$$\Rightarrow$$
 R₂ = 100 R₁.....(9)
= 100×10K.....(10)
∴ R₂ = 1000K = 1MΩ.....(11)

48. **Sol:**

KCL

$$\frac{V_x - V_0}{(1/SC)} + \frac{V_x}{R} + \frac{V_x - V_f}{R} = 0 -----(1)$$

$$\frac{V_f - V_x}{R} + \frac{V_f}{(1/SC)} = 0$$
 -----(2)

From (1) and (2) eliminate V_x

$$\beta = \frac{V_f}{V_0} = \frac{SCR}{[S^2C^2R^2 + 3SCR + 1]}$$

$$\beta = \frac{1}{[3 + SCR + \frac{1}{SCR}]}$$

$$\beta = \frac{1}{3 + j \left(\omega RC - \frac{1}{\omega RC}\right)} (S = j\omega)$$

$$A = \frac{V_0}{V_f} = 1 + \frac{R_x}{R}$$

Loop gain =1 \rightarrow A = $1/\beta$

$$A\beta = 1$$

$$1 + \frac{R_x}{R} = 3 + j \left(\omega RC - \frac{1}{\omega RC} \right)$$

Equate imaginary parts

$$0 = \omega RC - \frac{1}{\omega RC}$$

$$\omega^2 = \frac{1}{R^2 C^2}$$

 $f = \frac{1}{2\pi RC}$ frequency of oscillation

Equate

$$1 + \frac{R_x}{R} = 3$$

$$R_x = 2R$$

49.

Sol:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\frac{V_F}{V_0} = \beta = \frac{0.5 \, k}{R_x + 0.5}$$

$$A = 1 + \frac{9k}{1k} = 10$$

 $A\beta = 1$ for sustained oscillations

$$\frac{0.5 \,\mathrm{k}}{\mathrm{R}_{\mathrm{x}} + 0.5 \,\mathrm{k}} \times 10 = 1$$

1995:
$$R_x = 4.5 \text{ k}\Omega$$

50.

Sol: Given
$$\beta = \frac{1}{6}$$

$$A = 1 + \frac{R_2}{R_1}$$

 $A\beta = 1$ for sustained oscillations

$$\left(1 + \frac{R_2}{R_1}\right) \cdot \frac{1}{6} = 1$$

$$\frac{R_2}{R_1} = 5$$

$$R_2 = 5 R_1$$

$$\begin{split} V_{th} &= \frac{2}{3} V_{CC} = \frac{2}{3} \times 9 = 6 \ V \\ V_{th} - V_{C} &= 2 \times 10^{3} \times I \qquad \left(I = \frac{9 - 6}{3k} \right) \\ V_{th} - V_{C} &= 2 \ V \\ V_{C} &= V_{th} - 2 = 4 \ V \\ V_{trigger} &= \frac{1}{3} V_{CC} = 3 \ V \\ V_{C} &= 3 \ V \ to \ 4 \ V \end{split}$$

52. Ans: (a & d)

Sol: Case-(i): Consider

 f_S = Series resonant frequency = $\frac{1}{2\pi \sqrt{I \cdot C}}$ (1)

 f_P = Parallel resonant frequency

$$=\frac{1}{2\pi\sqrt{L_{\rm S}C_{\rm eq}}}\dots(2)$$

$$\Rightarrow \frac{\text{Eq(2)}}{\text{Eq(1)}} = \frac{f_{P}}{f_{S}} = \frac{1.0025}{1} = \frac{\frac{1}{2\pi\sqrt{L_{S}C_{eq}}}}{\frac{1}{2\pi\sqrt{L_{S}C_{S}}}}....(3)$$

$$\Rightarrow (1.0025)^2 = \frac{L_s C_s}{L_s C_{eq}} \dots (4)$$

$$= \frac{C_s}{\left[\frac{C_s C_p}{C_s + C_p}\right]} \dots (5)$$

$$\Rightarrow \frac{C_{P}}{C_{S} + C_{P}} = \frac{1}{1.005} = 0.995 \dots (6)$$

$$\Rightarrow C_{S} + C_{P} = \frac{C_{P}}{0.995} = \frac{5PF}{0.995} = 5.025pF \dots (7)$$

$$\therefore C_{S} = 5.025pF - 5pF = 0.25pF \dots (8)$$

Case-(ii): Consider
$$f_S = \frac{1}{2\pi\sqrt{L_SC_S}}$$
......(9)
$$\Rightarrow \sqrt{L_SC_S} = \frac{1}{2\pi f_S} = \frac{1}{2\pi \times 1 MHz}(10)$$

$$\Rightarrow L_SC_S = \left(\frac{1}{2\pi \times 1 MHz}\right)^2$$

$$\Rightarrow L_S = \frac{1}{C_S} \times \frac{1}{\left(2\pi \times 1 MHz\right)^2}(12)$$

$$= \frac{1}{0.25 \text{pF}} \times \frac{1}{4\pi^2 \times 1 \times 10^{12} \text{Hz}}(13)$$

$$= \frac{1}{0.25 \times 10^{-12} \,\mathrm{F} \times 4\pi^2 \times 10^{12} \,\mathrm{Hz}} \dots (14)$$

 $L_S = 0.10142399H....(15)$

$$\begin{aligned} Q_{S} &= \frac{\omega_{S}L_{S}}{R_{S}}......(16) \\ &= \frac{2\pi f_{S}L_{S}}{R_{S}}......(17) \\ &= \frac{2\pi \times 1MHz \times 0.10142399H}{20\Omega}......(18) \\ &= 0.111464965 \times 10^{6}......(19) \\ \therefore \ Q_{S} &= 111464.965 = 1,11,465......(20) \end{aligned}$$

$$V_i = 8 \text{ sint } V$$

During –Ve cycle, Zener is Forward biased and act as short circuit.

$$\Rightarrow V_0 = V_i$$

During + Ve cycle,

For $0 < V_i < 4$, Zener OFF Since

Zener is not in break down

$$\Rightarrow$$
V₀ = 0

For $V_i > 4$, Zener is in break down.

$$\Rightarrow$$
V₀ = V_i - 4

54. Sol:

$$I_z = 1 \text{mA} \text{ to } 60 \text{mA}$$

$$I = \frac{V_s - V_z}{300}$$

$$I_{\min} = \frac{V_{\text{smin}} - 10}{300}$$
 (I)

$$I_{\text{max}} = \frac{V_{\text{smax}} - 10}{300}$$
 (II)

$$I_{min} = I_{zmin} + I_{L} \left[\because I_{L} + \frac{V_{z}}{1k} = 10 \text{mA} \right]$$

$$I_{\min} = 1mA + 10mA = 11mA$$

$$I_{max} = 60mA + 10mA = 70mA$$

From equation (1) and (2) required range of V_S is 13.3 to 31 volt.

55. Sol:

The current in the diode is minimum when the load current is maximum and v_s is minimum.

$$R_s = \frac{V_{s\,min} - V_z}{I_{z\,min} + I_{L\,max}}$$

$$R_s = \frac{20-10}{(10+100)mA}$$

$$R_s = 90.9\Omega$$

$$I_{z_{max}} = \frac{30-10}{90.9} = 0.22A [: I_{L_{min}} = 0A]$$

$$P_z = V_z I_{zmax}$$

$$P_z = 10 \times 0.22$$

$$P_z = 2.2W$$

$$V_B = 10 \text{volt}$$

$$V_E = 10 - 0.7 = 9.3 \text{volt}$$

$$I_E = 9.3 \text{mA}$$

$$I_{\rm B} = \frac{I_{\rm E}}{1+\beta} = \frac{9.3 \text{mA}}{101} = 92.07 \mu \text{A}$$

$$I_1 = \frac{18-10}{300} = 26.67 \text{ mA}$$

$$I_z = I_1 - I_B = 26.57 \text{mA}$$

57. Sol:

$$V_p = 10$$
volt

$$I_1 = \frac{10}{5k} = 2mA$$

$$\Rightarrow$$
V₀= (6k) I₁=12V = V_E

$$V_C = 30$$
volt

$$\Rightarrow$$
 V_{CE} = V_C - V_E = 18 volt.

$$I_E = I_1 + I_L$$

$$I_E = 2m + \frac{12}{100} = 122mA$$

$$\Rightarrow I_{C} = \frac{\beta}{1+\beta} I_{E}$$

$$\Rightarrow I_{C} = 0.120 \Delta$$

$$\Rightarrow$$
 I_C = 0.120Amp

$$\Rightarrow P_T = I_C \times V_{CE}$$

$$\therefore P_T = 2.17W$$

58. Sol:

21

$$I = \frac{20 - 5}{10k} = \frac{15}{10} \,\text{mA}$$

$$V_P = 10k \times I = 15volt$$

$$I_{\rm C} = \frac{20 - V_{\rm P}}{1k} = \frac{20 - 15}{1k} = 5$$
mA

$$\beta \text{ large } \Rightarrow I_B \approx 0A$$

$$\therefore I_{\rm C} = I_0 = 5 \, \text{mA}$$

59. Ans: (a, b & d)

Sol: Step-1: KCL at node (A)

$$I_{S} = I_{Z} + I_{L} \dots (1)$$

$$\Rightarrow I_z = I_S - I_L \dots (2)$$

$$\Rightarrow I_{Z_{min}} = I_S - I_{L_{max}} \dots (3)$$

 \therefore Zener diode is ideal, $I_{Z_{min}} = 0 \dots (4)$

$$I_{S} = I_{L_{max}} = 200 \text{ mA} \dots (5)$$

Step-2: KVL for input loop

$$R_{\rm S} = \frac{16V - 12V}{200 \text{mA}} = 20\Omega \dots (6)$$

Step-3: From equation (2),

$$I_{Z_{max}} = I_{S} - I_{L_{min}} = 200 \text{mA} \dots (7)$$

$$\implies P_{Z_{max}} = V_{Z} \ I_{Z_{max}} = 12 \times 200 mA$$

$$= 2.4 \text{ Watts}$$

... For satisfactory voltage regulation in the circuit, the power rating of zener diode should be more than 2.4 Watts.

60. Ans: (c)

Sol: The circuit given is the MOS cascode amplifier, Transistor M_1 is connected in common source configuration and provides its output to the input terminals (i.e., source) of transistor M_2 . Transistor M_2 has a constant dc voltage, V_{bias} applied at its gate. Thus the signal voltage at the gate of M_2 is zero and M_2 is operating as a CG amplifier. Which is current Buffer.

Overall transconductance

$$\begin{split} \boldsymbol{g}_{m} &= \frac{\boldsymbol{i}_{d}}{\boldsymbol{V}_{gs}} = \left[\frac{\partial \boldsymbol{i}_{D}}{\partial \boldsymbol{V}_{GS}}\right] = \frac{\boldsymbol{i}_{d_{1}}}{\boldsymbol{V}_{gs_{1}}} \\ &= \boldsymbol{g}_{m_{1}} \end{split}$$

The overall (approximate) transconductance of the cascode amplifier is equal to the transconductance of common source amplifier g_m .

AC model of MOSFET

Let us find the output resistance $R_0 = \frac{1V}{I}$

By KVL
$$V_{gs2} + I_x r_{01} = 0$$

 $V_{gs2} = -I_x r_{01}$ ----(1)

By KVL

$$-1+I_{x}r_{02}-g_{m}r_{02}V_{gs2}+I_{x}r_{01}=0$$

$$-1+I_{x}r_{02}+g_{x}r_{02}I_{x}r_{03}+I_{x}r_{04}=0$$

$$-1 + I_x r_{02} + g_{m2} r_{02} I_x r_{01} + I_x r_{01} = 0$$

$$\therefore I_{x} = \frac{1}{r_{01} + r_{02} + g_{m2}r_{02}r_{01}} \approx \frac{1}{g_{m2}r_{01}r_{02}}$$

$$R_0 = \frac{1}{I_{...}} = g_{m2} r_{01} r_{02}$$

61. Sol:

$$\left(\frac{\mathbf{W}}{\mathbf{L}}\right)_2 = 2\left(\frac{\mathbf{W}}{\mathbf{L}}\right)_1$$

 $V_{TH} = 1V$ for both M_1 and M_2

For M₂ to be in saturation:

$$V_D > V_G - V_{TH}$$

$$3.3 > 2-1$$

So M_2 will be in saturation if it is ON.

For M₁ to be in saturation:

$$V_D > V_G - V_{TH}$$

$$V_{\rm X} > 2-1$$

 $V_X > 1V$ but if V_X is more than 1V, V_{GS2} becomes less than 1V, Which means M_2 will be off so M_1 can not be in saturation.

Now, We can conclude that M_1 is in triode and M_2 is in saturation

$$V_{GS1}=2V$$

$$V_{DS1} = V_X$$

$$V_{GS2} = 2 - V_X$$

Now,
$$I_1 = I_2$$

$$\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{l}\left[\left(V_{GS1}-V_{TH}\right)V_{DS1}-\frac{1}{2}V_{DS1}^{2}\right]$$

$$=\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}\left(V_{GS2}-V_{TH}\right)^{2}$$

$$V_x - \frac{1}{2}V_x^2 = (1 - V_x)^2$$

$$3V_x^2 - 6V_x + 2 = 0$$

$$V_x = 0.42V, -1.58V$$

 V_x cannot be more than 1V, since M_2 will become off

So,
$$V_x = 0.42 \text{ V}$$

62. Ans: (a, b, d)

Sol: The given device is

- N-channel MOSFET with $V_T = 2.5V$
- Current due to only es and E-MOSFET does not have physical channel.
- 63. Ans: (a & c)

