Final Project and Proposal

https://iu.instructure.com/courses/22166 27/assignments/15873434

Data Visualization

for interactive (e.g., Plotly) **and** static (e.g., Seaborn) visualizations

What is Data Visualization

"The use of computer-generated, interactive, visual representations of data to amplify cognition."

"The transformation of data into visual representations to aid people in the analysis, exploration, and communication of that data"

Data

What are we gathering?

Types of Data

- Healthcare
- Financial Markets
- Scientific Data
- Social Media
- etc.

How much data are we gathering

- Data on Wikipedia *alone* in 2023 = 439.17 TB
 - Over 100 million files.
- This is just one (relatively lightweight) server
- Extrapolate this to the whole of the internet ...
- 1000 "Wikipedias" would take up 420 petabytes
 - 420,... with 16 zeros ... bytes (e.g., an integer takes up ~4 bytes)

How to interpret it?

How to interpret it?

Sensory Bandwidth

From T. Norretranders, The User Illusion: *Cutting Consciousness Down to Size*, 1999

How many "X" letters are here?

3450JJDFG98C90U5ET09VBKK23490XIVBCIBJ0345T09U 2G84GDF09U34590IDFK90345I-09345K90FU90DF90JDF 34T09X90DFJG90J34T09J34509J3459DFG08JKLSTJP435 DFDFG45OJERPOTJ45OPIJFDGLKM34T5XJSCTYY7K456 POJ3450IJLGJKOPE390UVFHUDGH9345H9R4N97HWTIO MADSIOPEJDEGPJ4309UT509345PODEGX093490823JED PWDEIJ3408UDFMV984385Y0834N92384YU8DFB0H3T4N 345J09JDFG09J345X98U5Y09JGFB089H34509UJ45TM0IG P5JDGIOEGWJPIO345U345OPIJDTOPI3458345JPODFG09 45POJ34X09345J08EFJ825HJDFSJIPADOPQWIXERWNVF

3450IJDFG98C90U5FT09VBKK23490**X**IVBCIBJ0345T09U 2G84GDF09U34590IDFK90345I-09345K90FU90DF90JDF 34T09X90DEJG90J34T09J34509J3459DEG08JKLSTJP435 DEDEG450JERPOTJ450PIJEDGI KM34T5XJSCTYY7K456 POJ3450IJI GJKOPF390UVFHUDGH9345H9R4N97HWTIO MADSIOPEJDFGPJ4309UT509345PODFGX093490823JFD PWDFIJ3408UDFMV984385Y0834N92384YU8DFB0H3T4N 345J09JDFG09J345**X**98U5Y09JGFB089H34509UJ45TM0IG P5JDGIOFGWJPI0345U3450PIJDT0PI3458345JP0DFG09 45P0J34**X**09345J08FFJ825HJDFSJIPADOPQW**IX**FRWNVF

Visuals in our Culture

- "I see what you're saying"
- "Seeing is believing"
- "I now see the big picture"
- "A picture is worth a thousand words"

Computers vs. People

- Computers
 - Process large quantities of information quickly
 - Computing a specific task
 - Re-use of code for different datasets
- Humans
 - Devising questions when we don't know what to look for
 - We can use visuals to help with this

Building Visualizations

Spectrum of Visualization Use

Analysis

Better understand data

Communication

tell a story with data

Spectrum of Visualization Use

Profits Doubled on Treated Group within 6 Months

Analysis

ad hoc; for your eyes only

Communication

more presentable!

Visual Integrity: not to lie with data

The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the quantities represented.

Plot Types

Big Numbers

- Great to display simple information
- Tips:
 - Include a baseline for comparison (e.g., an average)

Page Views:

5,567

Daily Average: 3,625

Tables

- Conveys comparisons across categories
- Tips:
 - Too big is less effective
 - Use background color sparingly
 - Bold what's important (e.g., the data)
 - Keep to less than 3 x 3

	Likes Chocolate	Dislikes Chocolate
Children	65	5
Adults	40	30

Bar Charts

- Compare different groups or categories
- Tips:
 - Sort based on something meaningful (e.g. length, alphabetical)
 - Start scale at 0 (for all plots, really)
 - Horizontal, vertical and stacked bars are commonly used

Histograms

- Represents the distribution of data
- Tips:
 - Range of values must be binned
 - Can be normalized
 (sum of bar heights is 1)

Line Charts

- Track changes over time
- Height and slope lets us see trends

- Tips:
 - x-axis should be continuous data
 - Time is represented from left to right
 - Do not use if x-axis is not ordered

Scatter Plots

 Displays relationship between two measures

- Tips:
 - Best for continuous data
 - Avoid using with qualitative data

Bubble Charts

- Used for scatter plots with
 3 variables
- Tips:
 - Area causes confusion
 - Use diameter

Bubble Charts

- Used for scatter plots with
 3 variables
- Tips:
 - Area causes confusion
 - Use diameter

Pie Charts (think "slice")

- Compare parts of a whole
- Tips:
 - All parts must sum to 100%
 - Best for binary data
 - Only use if one is very small

Heat Maps

- Use color to visualize a matrix
- Tip:
 - Best when x and y variables are ordinal (E.g., weekday, low to high, distance)
 - Use sensible color maps!
 - Color by-column or by-row
- Very useful for binary data (e.g., missing)

Design

https://extremepresentation.typepad.com/files/choosing-a-good-chart-09.pdf

Visual Principles

- expressiveness principle
 - match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels

Cr: Tamara Munzner, https://www.cs.ubc.ca/~tmm/talks.html#vad21biomedvis

Text Orientation

Vertical text orientation requires some mental effort!

Text Orientation

```
Vertical text orientation requires mental effort!
```

Text Orientation

Font Size

Font Size

Labels

Always include all descriptive labels:

- Title of Plot
- Axis labels
- Legend (color, line, etc.)
- Highlights and Callouts

Population in a Fake Country During a Made-up Time Period

Leave nothing ambiguous or unclear!

Color

Color

Color

Sequential

Pick **one** hue; captures "amount"

Diverging

Middle point *must* hold **meaning** (e.g., 0)

Categorical

No color should stand out

Highlight

Communicate w/ color (e.g., red = bad)

Color Palette

• Limit categorical colors to 5

• 7 at the absolute most.

Color consistency across charts

No color should stand out more than any other.

RGB to grayscale

Grayscale conversion "equates" some hues ...

RGB to grayscale

Grayscale conversion "equates" some hues ...

Color blindness

0.5% 8.0%

Instead of red and green use blue and orange.

Consider color-blind color scale (e.g., "viridis")

Count the 2s

Count the 3s

Balance background and foreground

ACVLSIGBSLWUHKAJSLHV

ACVLSIGBSLWUHKAJSLHV

ACVLSIGBSLWUHKAJSLHV

Pre-attentive attributes

We perceive these differences unconsciously before we are aware of them

What is the main point?

What is the main point?

Highlight your conclusion

Non-critical information should be removed or put in the background

Gridlines

Keep when illustrating specific numeric values

Remove when the "message" is the trend itself

Increase Data-Ink Ratio

Aim for a high Data-to-Ink Ratio:

- Maximize visual elements related explicitly to data
- Minimize extra pixels not related to data (e.g., background color, grids)

30 second rule

A viewer should be able to interpret the message of a visualization within 30 seconds

Common Mistakes

Avoid 3D

Which is the biggest slice?

Sometimes pie charts work well

Keep to 2 slices, maximum

"Scale" requires a zero value

"Scale" requires a zero value

Start numerical axes at zero (or include a zero line)

Example

Example

Synchronize the scale of **both** axes

Example

Avoid inverted axes

Gun deaths in Florida

Number of murders committed using firearms

Source: Florida Department of Law Enforcement

C. Chan 16/02/2014 REUTERS

Bad Examples

- Readability
- Colors

- 3D
- Too many slices
- >100%

- Decimals
- y-axis

- 30-second rule
- ... What is happening?

Oh no ...

Tools

Visualization Tools

	Excel	Seaborn	Plotly	Tableau	D3
Interactivity	Static	Static	Interactive	Interactive	Interactive
Difficulty	Easy	Medium	Medium	Easy	Difficult
Pros	Popular	Python	Python	Beautiful	Custom
Cons	Basic	Python	Python	\$\$\$	Time Consuming

Visualization Tools

	Excel	Seaborn	Plotly	Tableau	D3
Interactivity	Static	Static	Interactive	Interactive	Interactive
Difficulty	Easy	Medium	Medium	Easy	Difficult
Pros	Popular	Python	Python	Beautiful	Custom
Cons	Basic	Python	Python	\$\$\$	Time Consuming

Visualization Makeover

Use line chart!

Remove background color!

Start axis at 0!

Decimal points!

Vertical "Profit" label!

Diagonal x-axis!

X-Label left justified!

Gridlines!

Color and dots! (this is a *binary* time series)

Legend, proximity and space

Axis background

Descriptive title and left!

Highlight!

Box!

Profits Doubled on Treated Group within 6 Months

Profits Doubled on Treated Group within 6 Months

Summary

- Keep design thinking in mind
 - Charts should be easy to understand
 - Visuals should be discoverable
- Use text, color, and highlighting techniques

- Avoid unnecessary ink
 - Avoid 3D
 - Pie charts with too many slices
- Don't lie with data
- Don't use defaults spend some time making over your visualizations

~ Tufte, 1983

"Above all else, show the data."