- Trimmed Offset Voltage:
 - TLC279 . . . 900 μ V Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically
 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V

- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Versions)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input Impedance . . . $10^{12} \Omega$ Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity

description

The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.

These devices use Texas Instruments silicongate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC274 (10 mV) to the high-precision TLC279 (900 μV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

D, J, N, OR PW PACKAGE (TOP VIEW)

FK PACKAGE (TOP VIEW)

NC - No internal connection

DISTRIBUTION OF TLC279

LinCMOS is a trademark of Texas Instruments.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

description (continued)

In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC274 and TLC279. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC274 and TLC279 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

AVAILABLE OPTIONS

			PA	CKAGED DEV	ICES		CUID
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	TSSOP (PW)	CHIP FORM (Y)
0°C to 70°C	900 μV 2 mV 5 mV 10 mV	TLC279CD TLC274BCD TLC274ACD TLC274CD	 - -	_ _ _ _	TLC279CN TLC274BCN TLC274ACN TLC274CN	 TLC274CPW	 TLC274Y
-40°C to 85°C	900 μV 2 mV 5 mV 10 mV	TLC279ID TLC274BID TLC274AID TLC274ID		_ _ _ _	TLC279IN TLC274BIN TLC274AIN TLC274IN	_ _ _ _	_ _ _ _
−55°C to 125°C	900 μV 10 mV	TLC279MD TLC274MD	TLC279MFK TLC274MFK	TLC279MJ TLC274MJ	TLC279MN TLC274MN	_ _	

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).

equivalent schematic (each amplifier)

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TLC274Y chip information

These chips, when properly assembled, display characteristics similar to the TLC274C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Input voltage range, V _I (any input)	–0.3 V to V _{DD}
Input current, I _I	±5 mA
Output current, I _O (each output)	±30 mA
Total current into V _{DD}	45 mA
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	0°C to 70°C
I suffix	40°C to 85°C
M suffix	–55°C to 125°C
Storage temperature range	–65°C to 150°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW p	package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package .	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
N	1575 mW	12.6 mW/°C	1008 mW	819 mW	_
PW	700 mW	5.6 mW/°C	448 mW	_	_

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SUFFIX		
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	.,
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	TLC274 TLC274			UNIT
						MIN	TYP	MAX	
		TI 00740	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	>/
		TI 007440	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
l.,	Lawret affant on the ma	TLC274AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TI 0074D0	V _O = 1.4 V,	V _{IC} = 0,	25°C		340	2000	
		TLC274BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	
		TI 00700	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		320	900	μV
		TLC279C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1500	
αΛΙΟ	Average temperature coeffice offset voltage	ient of input			25°C to 70°C		1.8		μV/°C
	long to effect as most foca blat	- 4\			25°C		0.1	60	A
liO	Input offset current (see Note	e 4)	V 05.V	V 05V	70°C		7	300	рA
		4)	$V_0 = 2.5 \text{ V},$	V _{IC} = 2.5 V	25°C		0.6	60	
IВ	Input bias current (see Note	4)			70°C		40	600	рA
						-0.2	-0.3		
					25°C	to 4	to		V
VICR	Common-mode input voltage range (see Note 5)	e range					4.2		
	(see Note 5)	,		Full range	-0.2 to			V	
					l am ramiga	3.5			-
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
AVD	Large-signal differential volta amplification	age	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	0°C	4	27		V/mV
	априновноп				70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection rati	io	V _{IC} = V _{ICR} min		0°C	60	84		dB
					70°C	60	85		
		_			25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	0	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	0°C	60	94		dB
	(¬, DD, ¬, IO)				70°C	60	96		
					25°C		2.7	6.4	
I _{DD}	Supply current (four amplifie	rs)	V _O = 2.5 V, No load	$V_{IC} = 2.5 V,$	0°C		3.1	7.2	mA
1			130 1000		70°C		2.3	5.2	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TLC274	C, TLC2 BC, TLC		UNIT
						MIN	TYP	MAX	
		TI 00740	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	
		TI 007440	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
.,		TLC274AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TI 0074D0	V _O = 1.4 V,	V _{IC} = 0,	25°C		390	2000	
		TLC274BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	
		TI 00700	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		TLC279C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1900	
ανιο	Average temperature coeff input offset voltage	icient of			25°C to 70°C		2		μV/°C
					25°C		0.1	60	
liO	Input offset current (see No	ote 4)	.,		70°C		7	300	pA
			V _O =.5 V,	VIC = 2 V	25°C		0.7	60	
I _{IB}	Input bias current (see Not	e 4)			70°C		50	600	рA
	Common-mode input volta	ae range			25°C	-0.2 to 9	-0.3 to 9.2		V
VICR	(see Note 5)	gorungo			Full range	-0.2 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential vo amplification	Itage	$V_0 = 1 \ V \ to 6 \ V,$	$R_L = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
	amplification				70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ra	atio	V _{IC} = V _{ICR} min		0°C	60	88		dB
					70°C	60	88		
					25°C	65	95		
ksvr	Supply-voltage rejection ra (ΔV _{DD} /ΔV _{IO})	tio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
	(7 A DD) (7 A IQ)				70°C	60	96		
					25°C		3.8	8	
I_{DD}	Supply current (four amplif	iers)	V _O = 5 V, No load	$V_{IC} = 5 V$	0°C		4.5	8.8	mA
			1.10 1000		70°C		3.2	6.8	

[†]Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †		4I, TLC2 4BI, TL0		UNIT
						MIN	TYP	MAX	
		TI 00741	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	
		TI 007441	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
1/	lanut effect veltere	TLC274AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TLC274BI	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		340	2000	
		TLG2/4BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	μV
		TLC279I	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		320	900	μν
		11.02791	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2000	
ανιο	Average temperature coeffice offset voltage	cient of input			25°C to 85°C		1.8		μV/°C
	lanut effect compat (one black	·- 4\			25°C		0.1	60	A
lio	Input offset current (see Not	(e 4)	V- 05V	V 0.5.V	85°C		24	1000	pA
1	lancet bing assument (and Nata	4)	$V_0 = 2.5 \text{ V},$	VIC = 2.5 V	25°C		0.6	60	A
I _{IB}	Input bias current (see Note	4)			85°C		200	2000	pA
.,	Common-mode input voltag	e range			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	J			Full range	-0.2 to 3.5			٧
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	3	3.8		V
					85°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−40°C		0	50	mV
					85°C		0	50	
	l anno airmal differential cale				25°C	5	23		
AVD	Large-signal differential volt amplification	age	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
					85°C	3.5	19		
					25°C	65	80		
CMRR	Common-mode rejection rate	tio	$V_{IC} = V_{ICR}min$		−40°C	60	81		dB
					85°C	60	86		
	Cumply voltage releasing and	_			25°C	65	95		
ksvr	Supply-voltage rejection rati (ΔVDD/ΔVIO)	U	$V_{DD} = 5 V \text{ to } 10 V,$	$V_0 = 1.4 V$	−40°C	60	92		dB
	· DD: 10/				85°C	60	96		
			V- 25V	\/ 0.E.\/	25°C		2.7	6.4	
I_{DD}	Supply current (four amplifie	ers)	$V_O = 2.5 \text{ V},$ No load	$V_{IC} = 2.5 V,$	−40°C		3.8	8.8	mA
					85°C		2.1	4.8	

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †		4I, TLC2 4BI, TL0		UNIT
						MIN	TYP	MAX	
		TI C0741	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	>/
		TI 007441	$V_0 = 1.4 V$	$V_{IC} = 0$,	25°C		0.9	5	mV
,,	Land offertualtens	TLC274AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TI 0074DI	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		390	2000	
		TLC274BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	
		TLC279I	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		370	1200	μV
		1LC2/91	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2900	
ανιο	Average temperature coefficie offset voltage	ent of input			25°C to 85°C		2		μV/°C
	Land offert comment (see Note	4)			25°C		0.1	60	A
lio	Input offset current (see Note	4)	., 5,,		85°C		26	1000	pΑ
			$V_0 = 5 V$,	$V_{IC} = 5 V$	25°C		0.7	60	
lΒ	Input bias current (see Note 4	·)			85°C		220	2000	рА
						-0.2	-0.3		
	Common-mode input voltage range CR (see Note 5)				25°C	to 9	to 9.2		V
VICR		range				-0.2	9.2		
		Full range	-0.2 to			V			
						8.5			
					25°C	8	8.5		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	7.8	8.5		V
					85°C	7.8	8.5		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−40°C		0	50	mV
					85°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage amplification	ge	$V_0 = 1 \ V \ to 6 \ V,$	$R_L = 10 \text{ k}\Omega$	-40°C	7	47		V/mV
	аттриноалогі				85°C	7	31		
					25°C	65	85		
CMRR	Common-mode rejection ratio)	V _{IC} = V _{ICR} min		-40°C	60	87		dB
<u> </u>					85°C	60	88		
	0 1 11 11 11				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	-40°C	60	92		dB
<u> </u>	(A * DD/A * IO/				85°C	60	96		
				.,	25°C		3.8	8	
I_{DD}	Supply current (four amplifiers	s)	$V_O = 5 V$, No load	$V_{IC} = 5 V$	-40°C		5.5	10	mA
			1.10 1000		85°C		2.9	6.4	

[†]Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER					_ +	TLC27	4M, TLC	279M	
	PARAMETER		TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNIT
		TI 007414	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	>/
\ \ \ \ -	land offertualte se	TLC274M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
VIO	Input offset voltage	TI 0070M	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	
		TLC279M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μV
ανιο	Average temperature coefficie offset voltage	nt of input			25°C to 125°C		2.1		μV/°C
	lanut effect comment (a.e. blate	4)			25°C		0.1	60	pА
lio	Input offset current (see Note	4)	0.5.V	V 0.5.V	125°C		1.4	15	nA
	lament biogramment (one blots 4		$V_0 = 2.5 V$,	AIC = 5.2 A	25°C		0.6	60	рА
IB	Input bias current (see Note 4)			125°C		9	35	nA
	Common-mode input voltage	range			25°C	0 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	Č			Full range	0 to 3.5			V
					25°C	3.2	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
V_{OL}	Low-level output voltage		$V_{1D} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage amplification	е	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
	ap.iiioatioii				125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
					125°C	60	84		
	O mark confirmanciant of				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \ V$	−55°C	60	90		dB
	(= · UU/ = · IU/				125°C	60	97		
			V 0.5.V		25°C		2.7	6.4	
IDD	Supply current (four amplifiers)	V _O = 2.5 V, No load	$V_{IC} = 2.5 V$,	−55°C		4	10	mA
					125°C		1.9	4.4	

[†] Full range is -55° C to 125° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless) otherwise noted)

	PARAMETER TLC274				_ +	TLC27	4M, TLC	279M	
	PARAMETER		TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNIT
		TI 007414	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	>/
,	land offers wellen	TLC274M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
VIO	Input offset voltage	TI 0070M	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	
		TLC279M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μV
αΝΙΟ	Average temperature coefficie offset voltage	ent of input			25°C to 125°C		2.2		μV/°C
1	Innut offeet ourrent (one Note	4)			25°C		0.1	60	pА
lio	Input offset current (see Note	4)	V _O = 5 V,	V:- 5.V	125°C		1.8	15	nA
lin.	Input bigg ourrent (age Note 4	١	VO = 2V	$V_{IC} = 5 V$	25°C		0.7	60	рА
IB	Input bias current (see Note 4)			125°C		10	35	nA
.,	Common-mode input voltage	range			25°C	0 to 9	-0.3 to 9.2		V
VICR	(see Note 5)	Ü			Full range	0 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
A_{VD}	Large-signal differential voltage amplification	je	$V_{O} = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	атриноалогі				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		VIC = VICRmin		−55°C	60	87		dB
					125°C	60	86		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(-· UU/ IU/				125°C	60	97		
			.,	.,	25°C		3.8	8	
IDD	Supply current (four amplifiers	s)	V _O = 5 V, No load	$V_{IC} = 5 V$	−55°C		6.0	12	mA
					125°C		2.5	5.6	

[†]Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TLC274 TL TLC274	C274AC	; ,	UNIT	
					MIN	TYP	MAX		
				25°C		3.6			
			V _{IPP} = 1 V	0°C		4			
	Class and a structure and a	$R_L = 10 \Omega$,		70°C		3		\//··•	
SR	Slew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C		2.9		V/μs	
		3	V _{IPP} = 2.5 V	0°C		3.1			
				70°C		2.5			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz	
				25°C		320			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 1	0°C		340		kHz	
		TC TO K22,	oco i iguio i	70°C		260			
		.,,		25°C		1.7			
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 PF$,	0°C		2		MHz	
		Occ rigare o		70°C		1.3			
				25°C		46°			
φm	m Phase margin	V _I = 10 mV, 1 C _L = 20 pF,	$f = B_1$,	$f = B_1$,	0°C		47°		
		оц – 20 рг,		70°C		44°			

operating characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$

	PARAMETER	TEST CO	т _А	TLC274 TL TLC274	UNIT			
					MIN	TYP	MAX	
				25°C		5.3		
			V _{IPP} = 1 V	0°C		5.9		
CD	Clausesta at units gain	$R_L = 10 \Omega$		70°C		4.3		\//v.o
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs
			V _{IPP} = 5.5 V	0°C		5.1		
				70°C		3.8		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		200		
Вом	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 1	0°C		220		kHz
		TC = 10 K22,	occ riguic i	70°C		140		
				25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C		2.5		MHz
		occ rigure 3		70°C		1.8		
	_			25°C		49°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	V , $f = B_1$, F , See Figure 3	0°C		50°		
		OL - 20 Pr,	occ i igaic o	70°C		46°		

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	TEST CONDITIONS			4I, TLC2 4BI, TL0		UNIT					
				TA	MIN	TYP	MAX						
				25°C		3.6							
			V _{IPP} = 1 V	-40°C		4.5							
CD.	Class note at smits, main	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 1			85°C		2.8		Mhia				
SR	Slew rate at unity gain			25°C		2.9		V/μs					
		3	V _{IPP} = 2.5 V	-40°C		3.5							
						85°C		2.3					
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz					
	Maximum output-swing bandwidth Vo = Vol			25°C		320							
ВОМ		$R_L = 10 \text{ k}\Omega$, See Figure 1	VO = VOH,	C _L = 20 pF, See Figure 1	-40°C		380		kHz				
			85°C		250								
				25°C		1.7							
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C		2.6		MHz					
		Occ riguic o			85°C		1.2						
									25°C		46°		
ϕ_{m}	Phase margin										-40°C		49°
		OL - 25 Pr,	CCC Figure 5	85°C		43°							

operating characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V

PARAMETER		PARAMETER TEST CONDITIONS		TA	TLC274I, TLC2 TLC274BI, TL		UNIT								
					MIN TYP	MAX									
				25°C	5.3										
			V _{IPP} = 1 V	-40°C	6.7										
CD.	Class note at smits, main	$R_L = 10 \Omega$,		85°C	4		\//··-								
SR	Slew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C	4.6		V/μs								
			V _{IPP} = 5.5 V	-40°C	5.8										
					85°C	85°C	3.5								
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C	25		nV/√ Hz								
		$\begin{array}{cccc} V_O = V_{OH}, & C_L = 20 \text{ pF}, \\ R_L = 10 \text{ k}\Omega, & \text{See Figure 1} & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$., .,		25°C	200									
Вом	Maximum output-swing bandwidth			-40°C	260		kHz								
			85°C	130											
				25°C	2.2										
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	-40°C	3.1		MHz								
		Gee rigule 3	Gee i igule 3		1.7										
				25°C	49°										
φm	Phase margin		$V_{ } = 10 \text{ mV},$				V _I = 10 mV, C _L = 20 pF,				f = B ₁ , See Figure 3	-40°C	52°		
		CL = 20 pr, See rigure 3		85°C	46°										

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DADAMETED			_	TLC274	TLC274M, TLC279M									
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT							
				25°C		3.6									
			V _{IPP} = 1 V	−55°C		4.7									
	Olements at write and	$R_L = 10 \text{ k}\Omega$,	125°C		2.3		\// -								
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs							
		3	V _{IPP} = 2.5 V	−55°C		3.7									
				125°C		2									
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz							
		VO = VOH, CL = 2				_	25°C		320						
ВОМ	Maximum output-swing bandwidth					$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		C _L = 20 _P F, See Figure 1	−55°C		400		kHz		
			See rigule i	125°C		230									
				25°C		1.7									
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		2.9		MHz							
		Occ rigure 3		125°C		1.1									
				25°C		46°									
ϕ_{m}	Phase margin		C _L = 20 pF, See Figure 3								−55°C		49°		
				125°C		41°									

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	DADAMETER		NETIONS	_	TLC274	IM, TLC	279M								
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT							
				25°C		5.3									
			V _{IPP} = 1 V	−55°C		7.1									
	Olemante et malte male	$R_L = 10 \Omega$,		125°C		3.1		\// -							
SR	Slew rate at unity gain	V _{IPP} = 5.5 V	25°C		4.6		V/μs								
			V _{IPP} = 5.5 V	−55°C		6.1									
			125°C		2.7										
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz							
		$R_{\perp} = 10 \text{ k}\Omega$, See Figure 1	$V_O = V_{OH}$, $C_L = 20 \text{ pF}$, $R_L = 10 \text{ k}\Omega$, See Figure 1	25°C		200									
Вом	Maximum output-swing bandwidth									C _L = 20 pF, See Figure 1	−55°C		280		kHz
				125°C		110									
				25°C		2.2									
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		3.4		MHz							
		Gee Figure 3		125°C		1.6									
				25°C		49°									
ϕ_{m}	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$							f = B ₁ , See Figure 3	−55°C		52°			
			occ rigule 3	125°C		44°									

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST SOME	TEST CONDITIONS		LC274Y		
	PARAMETER	TEST CONL			TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
IIO	Input offset current (see Note 4)	V 05V	V 25V		0.1		рА
I _{IB}	Input bias current (see Note 4)	$V_{O} = 2.5 \text{ V},$	$V_{IC} = 2.5 V$		0.6		рА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
ksvr	Supply-voltage rejection ratio ($\Delta V_{DD}/\Delta V_{IO}$)	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		2.7	6.4	mA

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

DADAMETED		TEST 6611	NITIONIO.	Т	LC274Y		
	PARAMETER	TEST CONL	TEST CONDITIONS		TYP	MAX	UNIT
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ RS = 50 Ω ,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
I _{IO}	Input offset current (see Note 4)	,, 5,,			0.1		pA
I _{IB}	Input bias current (see Note 4)	$V_O = 5 V$,	$V_{IC} = 5 V$		0.7		pA
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 1 \ V \ to \ 6 \ V,$	R _L = 10 kΩ	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,	·	3.8	8	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics, V_{DD} = 5 V, T_A = 25°C

PARAMETER		_	TEST COMPLIANC		TLC274Y			LINUT		
		'	TEST CONDITIONS			TYP	MAX	UNIT		
CD	Clause at waits are in	$R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		3.6		Miss		
SR	Slew rate at unity gain	See Figure 1		See Figure 1		$V_{IPP} = 2.5 V$		2.9		V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz		
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		320		kHz		
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	C _L = 20 pF,	See Figure 3		1.7		MHz		
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		46°				

operating characteristics, V_{DD} = 10 V, T_A = 25°C

PARAMETER		,	TEST COMPITIONS			TLC274Y		
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
SR	Clausesta at units sain			V _{IPP} = 1 V		5.3		Muo
SK	Slew rate at unity gain			V _{IPP} = 5.5 V		4.6		V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega$,		200		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 _P F,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	$C_L = 20 pF$,		49°		

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

Figure 1. Unity-Gain Amplifier

Figure 2. Noise-Test Circuit

Figure 3. Gain-of-100 Inverting Amplifier

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC274 and TLC279 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

Figure 4. Isolation Metal Around Device Inputs (J and N packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
liO	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
٧n	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

TYPICAL CHARACTERISTICS

Figure 6

DISTRIBUTION OF TLC274 AND TLC279

DISTRIBUTION OF TLC274

Figure 7

DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

Figure 9

Figure 10

HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

Figure 11

HIGH-LEVEL OUTPUT VOLTAGE vs

Figure 13

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 14

LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE

Figure 15

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 18

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION SUPPLY VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT

Figure 19

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION** FREE-AIR TEMPERATURE

Figure 21

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT

TYPICAL CHARACTERISTICS[†]

0

0

2

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

vs **SUPPLY VOLTAGE** 16 $T_A = 25^{\circ}C$ 14 V_{IC} - Common-Mode Input Voltage 12 10 8 6 2

Figure 22

Figure 23

6

8

V_{DD} - Supply Voltage - V

10

12

14

16

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 26

Figure 27

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

Figure 29

f - Frequency - kHz

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 32

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

Figure 33

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

Figure 36

Figure 37

APPLICATION INFORMATION

single-supply operation

While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require R_C decoupling.

Figure 38. Inverting Amplifier With Voltage Reference

Figure 39. Common Versus Separate Supply Rails

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

input characteristics

The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25^{\circ}$ C and at $V_{DD} - 1.5$ V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and TLC279 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

Figure 40. Guard-Ring Schemes

output characteristics

The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

output characteristics (continued)

(a) $C_L = 20 pF$, $R_L = NO LOAD$

(b) $C_L = 130 \text{ pF}$, $R_L = NO \text{ LOAD}$

(c) C_L = 150 pF, R_L = NO LOAD

Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately $60~\Omega$ and $180~\Omega$, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output occurs. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

APPLICATION INFORMATION

output characteristics (continued)

$$Rp = \frac{V_{DD} - V_{C}}{I_{E} + I_{I} + I_{E}}$$

Ip = Pullup current required by the operational amplifier (typically $500 \mu A$)

Figure 43. Compensation for Input Capacitance

Figure 42. Resistive Pullup to Increase VOH

feedback

Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection

The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and TLC279 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

NOTE A: d = damping factor, 1/Q

Figure 44. State-Variable Filter

Figure 45. Positive-Peak Detector

APPLICATION INFORMATION

NOTES: B. $V_I = 3.5 \text{ V to } 15 \text{ V}$ C. $V_O = 2 \text{ V}, 0 \text{ to } 1 \text{ A}$

Figure 46. Logic-Array Power Supply

NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

Figure 47. Single-Supply Function Generator

APPLICATION INFORMATION

NOTE C: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier

Figure 49. Single-Supply Twin-T Notch Filter

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC274ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	Level-1-260C-UNLIM	0 to 70	TLC274AC	Samples
TLC274ACDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	Call TI	Call TI Level-1-260C-UNLIM		TLC274AC	Samples
TLC274ACDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274AC	Samples
TLC274ACDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274AC	Samples
TLC274ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC274ACN	Samples
TLC274ACNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC274ACN	Samples
TLC274AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	Level-1-260C-UNLIM	-40 to 85	TLC274AI	Samples
TLC274AIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM	-40 to 85	TLC274AI	Samples
TLC274AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274AI	Samples
TLC274AIDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274AI	Samples
TLC274AIN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC274AIN	Samples
TLC274BCD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274BC	Samples
TLC274BCDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274BC	Samples
TLC274BCDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274BC	Samples
TLC274BCDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274BC	Samples
TLC274BCN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC274BCN	Samples
TLC274BCNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC274BCN	Samples

www.ti.com

17-Mar-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples	
TLC274BID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274BI	Samples	
TLC274BIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274BI	Samples	
TLC274BIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274BI	Samples	
TLC274BIDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274BI	Samples	
TLC274BIN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC274BIN	Samples	
TLC274BINE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC274BIN	Samples	
TLC274CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274C	Samples	
TLC274CDB	ACTIVE	SSOP	DB	14	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples	
TLC274CDBG4	ACTIVE	SSOP	DB	14	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples	
TLC274CDBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples	
TLC274CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274C	Samples	
TLC274CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274C	Samples	
TLC274CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274C	Samples	
TLC274CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC274CN	Samples	
TLC274CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC274CN	Samples	
TLC274CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC274	Samples	
TLC274CPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples	
TLC274CPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples	

www.ti.com

17-Mar-2017

Orderable Device	Status	Package Type		Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC274CPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples
TLC274CPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P274	Samples
TLC274ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274I	Samples
TLC274IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274I	Samples
TLC274IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274I	Samples
TLC274IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC274I	Samples
TLC274IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC274IN	Samples
TLC274INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC274IN	Samples
TLC274IPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P274	Samples
TLC274IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y274	Samples
TLC274IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y274	Samples
TLC274MD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	TLC274M	Samples
TLC274MDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	TLC274M	Samples
TLC274MDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	TLC274M	Samples
TLC279CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC279C	Samples
TLC279CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM 0 to 70		TLC279C	Samples
TLC279CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC279C	Samples
TLC279CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC279C	Samples

www.ti.com

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC279CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC279CN	Samples
TLC279CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC279CN	Samples
TLC279ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC279I	Samples
TLC279IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC279I	Samples
TLC279IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC279I	Samples
TLC279IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC279I	Samples
TLC279IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC279IN	Samples
TLC279INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC279IN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jul-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC274ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274AIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274BCDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274BIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274CDBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TLC274CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TLC274CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLC274IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC274IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLC274MDRG4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC279CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC279IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com 3-Jul-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC274ACDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC274AIDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC274BCDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC274BIDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC274CDBR	SSOP	DB	14	2000	367.0	367.0	38.0
TLC274CDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC274CDR	SOIC	D	14	2500	333.2	345.9	28.6
TLC274CNSR	SO	NS	14	2000	367.0	367.0	38.0
TLC274CPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TLC274IDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC274IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TLC274MDRG4	SOIC	D	14	2500	367.0	367.0	38.0
TLC279CDR	SOIC	D	14	2500	367.0	367.0	38.0
TLC279IDR	SOIC	D	14	2500	367.0	367.0	38.0

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.