Most - Often - Needed

1952

RADIO DIAGRAMS

and Servicing Information

Compiled by

M. N. BEITMAN

SUPREME PUBLICATIONS

Index

Always use this Index to find needed material in this Volume 12, 1952 RADIO Diagram manual. You will find the various makes of radios listed in alphabetical order by manufacturer's name. Under each make, models or chassis are listed in numerical order at the left of the column, while the corresponding pages are listed to the right.

Admiral Cor	p	Crosley Co:		Espey Mf	g. Co.
5A3	7	10-135	29	7-C	43
5A32	7	10-136E	29	511	41-42
5A33	7	10-137	29	511-C	41-42
5L2	9	10-138	29		
5L21	9	10-139	29	Esquire Ra	offe
5L22, 5L2		10-140	29	511	44
5M2	10	15-20E	30	27.7	77
5M21, 5M2		E15BE	30	The de Dead	
5Y2, 5Y22		E15CE		Fada Radio	
602	8		30	777	46
6022, 602		El5SL	30	790	48
		El 5TN	30	845	45
RC550	11-18	El 5WE	30	8 5 5	47
RC550A, -	GA 11	E2OGN	30		
		E20GY	30	Firestone	Tire
Andrea Radi	0	ESOMN	30	4-A-86	49
P-163	27	EZOTN	30	4-A-92	50
		30E	31-32	4-A-95	49
Arvin Indus	tries	30E-1	31-32	4-A-101	51
RE-292	19	E30BE	31-32	4-A-102	51
RE-297	20	E30GN	31-32	4-C-19	51
RE-306	20	E30MN	31-32	4-C-20	51
RE-307	22	E30TN	31-32		
RE-308		285, 285 -]		4-C-21	52
	21	200, 200=1	L 29		
RE-310	23-24	Delco		Ford	
RE-313	23-24	986516	2 8	FAC-1880	05 - A 90
551T	20	200010	20		
553	21	DoWell Dad	t - 160	Gamble-Sko	
554 CCB	20	DeWald Radi		15RA2-43	-8230A
554CCM	20	DE-517A	33		54
58 0TF M	23-24	F-523	34	15RA33-4	3-8365
582CFB	23-24				53
582CFM	23-24	Emerson Rad	_	94RA2-43	
650-P	19	653 B	35		54
657T	28	691 B	37		0.1
		69 5 B	36	General-E]	ectric
Capehart-		702B	35	409	55-56
Farnsworth	n	703 B	38	414	58
10	25	704	39	415	5 8
15	26	70 6 B	40	416	5 8
CR-48		707B	40	422	57
	26	710B	36	423	57
C-312	25	120097-B	3 8	430	
011		120136-B			5 8
Chevrolet		120136-B	35 37	607	59 50
98 651 6	28	120145-B	37 36	608	59
Coronado, se			36	741	62
Gamble-Sko		120154-B	39	754	60-61
ASHIDTO-DKC	Suro I	120156-B	40	756	60 -61

		10 1 au 9 a au 1
Hallicrafters	Motorola, Inc.	Motorola, cont.
5R3OA 63	WSIC 88	
5R31A 63	2A 91	L 62L2U 83
5R32A 63		
5R33A 63		-
5R34A 63	1	
5R 50 64-65		
5R 51 64 - 65	BT-2 9:	3 72XM21 79-80
5R 52 64 - 65		
S-82 66		
5-05	1	~
Monas		
Masco	GMT2M 9	
52,52C 105	1	
52CR 105	H J2M 9:	
52L 105		1 HS-310 84
52LR 105		
52R 105	.	
108		
	KR2M 9	
Montgomery-Ward	NH2AC 8	
15BR-1525D 67	' OE2A 9	
15BR-1526D 67		2 702 94
15BR-1531D 67		
		FAC-18805-A 90
15BR-1548A 68		1 V
15BR-1549A 68	1	2 Nash
15GCB-1583 68		1 AC-152 89
15GCB-1584 68	SR2M 9	2
15GHM-1067A 69		8 Philco Corp.
15GHM-1070A 70		4 52-540, -I 95
15GHM-1552A 71	· · · · · · · · · · · · · · · · · · ·	-
15GSE-1068A 72		
15GSE-1595A 73		4 52-542-I 95-96
15GSE-2764A 74	42B1 8	52-543 98
15GSL-1564A 75	5 52BlU 8	2 52-544 97
15GSL-1564B 78		52-544-I,-W 97
15GSL-1565A 78	· -	34 52-54 5 98
15GSL-156 5 B 75		
15GSL-1566A 78	i i	52-548 99
15GSL-1566B 75		52-55 0 98
15GSL-1567A 75	5 52H13U 8	35 52 - 640 100
15GSL-1567B 75		52-641 100
25BR-1548B 68		52-643 101
		52-940 102
25BR-1549B 68		
25GAA-934B 76		
25GSE-1555A 73		52-942 102
25GSE-1556A 73		52-944 103
25WG-1570B 77	52R16A, -U 8	37 52 - 1340 104
25WG-1570C 77		35
25WG-1571B 77	1	Privat-Ear Corp.
25WG-1572B 7	7 52X13U 8	35 DL-101 106

R.C.A. Victo	r	Sears, continued	
	7-110		Tele-Tone Radio
1X51	112		AH 131
1X52	112		AZ 131
1X53	112	1032 121	BL 131
1X54	112	1035, -A 121	BO 132
1X55	112	1040 121	185 131
1X56	112	1045 121	190 131
1X57	112	1058 122	200 131
1X591		1059 122	214 131
1X592	111	1062 122	228 131
	111	1063 122	230 132
2B400	113	101.860 122	
2B401	113	132.881 118	Trav-ler Radio
2B402	113	132.896 117	5170 133
2B403	113	478.238 120	5171 133
2B404	113	478.239 132	5172 134
2B405	113	528.194 121	5210 134
2ES3	114	528.195,-1 121	
2ES38	114	528.210 119	Truetone, see
2US7	114	110	Western Auto
45-EY-4	115	Silvertone, see	
45-EY-26	115	Sears, Roebuck	United Motors
RS-138L	115	boars, Rooback	986516 28
RS-140	115	Sentinel Radio	
RS-142	114		Vocaline Co.
PX600	116	1U338I,R,W 123	CC-1 128
RC-1017A	114	338-I,R,W 123	CC-2 128
RC-1079K	111	Champanh Wasses	00-2 120
RC-1079L	iii	Stewart-Warner	Webster-Chicago
RC-1102	107	9160-A to -E 125	100 135-141
RC-1102A	107	9161-A to -C 126	100-1 135
RC-1102B	107	9162-A, -B 124	100-1 133
RC-1102C	107	9164-A, -B 124	100-27 133
RC-1104	112		
RC-1104	112	Stromberg-Carlson	
RC-1104-1		C-1 127	100-64 135
	112		101 135-141
RC-1104A-1	112		210 142
RC-1104B	112		Western Auto
RC-1104B-1	112	Sylvania Electric	4Cll 147
RC-1104C	112	1-601-1 130	4P12-A 146
RC-1104D	112	1-602-1 129	
RC-1104E	112	511B,-H,-M 130	
RC-1110	116	512BR 130	
RC-1114	113	=======================================	
		=-	D-2108 143
Sears, Roebuc	k		D-2109 143
5	~ 118		D-2216A,-B 68
6	118	F.4.	D-2217A,-B 68
ĭo	117		D-2237A 144
ii	117		D-2263 145
13	132		D-3210A 146
14		542GR 129	D-4118 147
25	132	542RE 129	D-4142A 148
20	120	542YE 129	234031 145

Westinghouse	Elec.	Westinghouse	cont.	Zenith, conti	inued
H-331P4U	152	V-2156-1U	150	6J03	165
H-333P4U	152	V-2157-5	151	6J05	164
H-334T7UR	149	V-2157-6	151	7H02Z1	161
H-350T7	153	V-2157-7	151	7H02Z2	161
H-351T7	153	V-2157-8	151	7H04Z1	161
H-354C7	153	V-2157-9	151	7H04Z2	161
H-355T5	151	V-2164U	152	7J03	161
H-356T5	151	V-2180-1	153	7J20	168
H-357C10	153	V-2180-2	153	H401 158	3-159
H-359T5	151	V-2180-5	153	J402	162
H-360T5	151	V-2180-7	153	H503	160
H-361T6	156	V-2180-7S	153	K510	167
H-365T5	151	V-2180-8	153	K510W, -Y	167
H-366T5	151	V-2181-1	156	J514	163
H-367T5	151	V-2182-1	155	H615Z1	157
H-368P5	150	V-2102-1	100	J615	164
H-369P5	150			J616	165
H-370T7	153			J664	166
H-371T7	153	Zenith Radio	Comp.	J665E, -R	166
H-372P4	155		8-159	H723Z1	161
H-373P4	155	4J40	162	H723Z2	161
H-374T5	151	5H41	160	H724Z1	161
H-375T5	151	5J03	163	H724Z2	161
H-376P4	155	5K02	167	J 733, -G	161
H-377	155	6G05Z1	157	J733R, -Y	161
V-2136-5R	149	6J02	166	J2766	168
V-2100-01	U	0002			

TELEVISION MANUALS

New 1952 TV Manual

This new giant volume of 1952 television factory data will give you everything you need to repair and adjust all present-day TV sets. The television series manuals are amazing bargains and defy competition. The 1952 volume has circuit explanations, 192 pages of alignment facts, test patterns, response curves, waveforms, voltage charts, hints, and dozens of mammoth double-page work-bench diagrams. A virtual treatise on practical television repairs.

I 1950 TV Manual includes service data on all popular makes from Admiral to Zenith. Large size plus 10 \$3

Giant volume of 1949 practical television factory data covers every popular set of every make. Gives description of circuits, pages of test patterns, response curves, alignment, waveforms, voltage charts, service hintr, and many diagrams on extra large double-spread blueprints. Large size: 8½x11 inches, 192 pages, plus 9 blueprints 11x15 inches, manual style binding, flexible covers. Price, only.

I 1948 TV Manual similar to the volume above, but covering different popular sets. Includes 8 fold-out \$3

1947 TV & F.M. Covers popular F.M. and television sets of this period. Data on 192 pages, \$2/2x11 inches, sturdy binding. At your radio jobber or by mail..... 2

RADIO DIAGRAM MANUALS

DIAGRAMS FOR PREVIOUS YEARS

Speed up and simplify all radio repairs. Service radios faster, better, easier, save money and time, use these SUPREME most-often-needed diagram manuals to get ahead. At the low cost (only \$2 for most volumes) you are assured of having for every job needed diagrams and other essential repair data on 4 out of 5 sets you will ever service. Clearly printed circuits, parts lists, alignment data, and helpful service hints are the facts you need. Average volume has 192 pages, large size 8½x11 inches. Manual style binding.

	1950 Volume 10 \$2.50	1949 Volume 9 \$2.50	1948 Volume 8 \$2.00		1946 Volume 6 \$2.00
1942 Volume 5 \$2.00				Yolu	

NO-RISK	TRIAL	OPDER	CC	ΝЦР	ON

NO-KISK	IRIAL ORDER COUPON
SUPREME PUBL	ICATIONS, 3727 W. 13 SL, Chicage 23, ILL.
Radio Diagram Manuals	Send Radio Manuals checked X a, lett and TV Man- uals below. Satisfaction guaranteed or money back.
1951 Radio	1652 Television Manual, \$3. 1951 TV, \$3. 1950 Television Manual, \$3. 1649 TV, \$3. 1649 TV, \$3. 1947 TV & FM, ordy \$2. 1 am enclosing \$ Send postpaid.
1947 AT ONLY	Send C.O.D. 1 am enclosing \$ deposit.
1942 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 Name:
1 1026-1038 Manual \$2.50	Address:

Supreme Publications

3727 West 13th Street CHICAGO 23, ILL.

Admiral

CHASSIS 5A3 MODELS 5A32/12, 5A32/15, 5A32/16 5A33/12, 5A33/15, 5A33/16

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available, otherwise connect
 a.1 mfd. condenser in series with low side of signal generator
 and connect to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	2nd IF 1st IF	•A, B •C, D	Maximum output
2	250 mmfd. condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator	E	Maximum output

3	Loop of several turns of wire, or place genera- tor lead close to re- ceiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	F	Maximum output
					ļ.	l '	

•Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool #98A30.7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.

VOLTAGE DATA

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Measured on 117 Volt AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum Tube Voltmeter.

C9 AND CID TOTAL 250 NMFD. WHEN REPLACING WITH MIDIVIDIAL COMPONENTS, USE ANY COMBINATION TOTALING 250 NMFD ACROSS R6 IN PLASE OF C9 AND CID. R6 AND RT CAN BE 470 K. Adjustments A and C made from underside of chassis. L 1 IRON CORE ANTENNA 12BE6 12BA6 12AV6 50C5 CONVERTER DET. AVC & AF. AMP. AUDIO OUTPUT Т3 # 46V BLUE ₹_{R6} .005 R6 TC9 CIDT 500K SPM 22K VOLUME CONTROL /MEG C14* **₹RB ₹150** .Ó5 R 5 4.7 MEG MT HTV AC APPLIANCE OUTLET + CHASSIS GND. { .25 mfd, 200 volts, paper
 (in later sets)
 4 mfd, 150 volts, elect.
 (in early sets) COMMON GND. (B-) IF - 455 KC 12V AC 3 @ 12 BA6 3 (2 5005 SI RADIO ON- OFF SWITCH 12AV6

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

Admiral

CHASSIS 6C2 MODELS 6C22, 6C23

TUBE AND TRIMMER LOCATION

Adjustments A and C are made from underside of chassis.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.

Before installing the chassis in the cabinet, fully close the gang condenser. Slide the chassis in the cabinet and mount the dial pointer in a horizontal position (pointed at the dot and dash below 55 on the radio dial scale).

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generater (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Pin 8 of 12SA7 tube	455 K C	Gang fully open	2nd IF 1st IF	*A, B *C, D	Maximum Output
2	250 mmfd. condenser	Tuning condenser Antenna stator	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
3	Loop of several turns of wire, or place gen- erator lead close to re- ceiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	RF (on gang)	F	Maximum Output
4	,	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	G	Maximum Output

*Adjustments A and C are made from underside of chassis.

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-pcr-volt meter.

CHASSIS 5L2 MODELS 5L21, 5L22, 5L23

IGNMENT PROCEDURE

- Connect a wire jumper between contacts 1 and 4 on clock socket (M2) as shown in illustration below.
- Turn receiver volume control full on (fully clockwise).

signal pickup.

30 WA775

DOV AC DRLY

SOCKET INSIDE CHASSIS VIEW

PLUG PIN VIEW

- Use an isolation transformer if available, otherwise connect a .1 mfd. condenser in series with low side of signal generator and connect to chassis.
 - Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.

૽ૺૺૺૺૺ

Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	2nd lF lst IF	*A, B *C, D	Maximum output
2	250 mmfd. condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator	E	Maximum output
Mount an	d set dial pointer to horizont	al position with tuning c	ondenser tune	d to 1400 KC	generator sign	ıal; see illustr	ation below.
3	Loop of several turns of wire, or place genera- tor lead close to re- ceiver loop for adequate	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	F	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool #98A30-7 obtainable from your Admiral distributor.

SI AUTD-OFF-ON

*These readings will be either lower or practically zero if taken with a 1000 ohm-per volt meter.

SW17CH 13

M 4 CLOCK, HOVAC

Admiral

CHASSIS 5M2, 5Y2 MODELS 5M21, 5M22,5Y22

ALIGNMENT PROCEDURE

Stop	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High SIde)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	2nd IF 1st IF	*A, B *C, D	Maximum output
2	250 mmfd. condenser	Tuning condenser, antenna stator	1 620 K C	Gang fully open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustration below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts. The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to horizontal position with gang tuned to 1400 KC signal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutcheon mounting springs in holes of escutcheon tabs.

3	Loop of several turns of wire, or place genera- tor lead close to re- ceiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	†F	Maximum output
---	--	--	---------	--------------------------------	---------	----	-------------------

*Adjustments A and C made from the underside of the chassis, If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool #98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.
† Antenna Trimmer "F" should be sligned after chassis and antenna are mounted in cabinet.

Voltages given on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Switch S2 in "Radio" position.

*These readings will be either lower or practically sero if taken with a 1000 ohm-per-volt meter. A These readings will be zero on "Phono"; all other DC readings may be slightly higher.

CONNON GNO. (8-) CHASSIS CHO. 🔔

Admiral

RC550, RC550A, RC550GA RECORD CHANGERS

Record Changers RC550, RC550A and RC550GA are identical, except for differences in length of connecting leads and color of plastic trim.

Record Changers RC550X and RC550AX are used in export sets.

Figure 1. RC550 Record Changer, Top View.

OPERATING INSTRUCTIONS

SETTING THE SIZE AND SPEED SELECTOR KNOB: The available record sizes (7, 10, 12) are engraved under the three different speeds (33, STD, 45) on this knob. Rotate the knob until the size of record to be played (under the proper speed), lines up with the indicating dot on the changer pan. (Note that no size number is engraved under "45" since only 7-inch 45 RPM records are available.)

SETTING PUSH-OFF ASSEMBLY: Pivot the Push-off assembly toward the centerpost to play 10-inch records and away from the centerpost to play 12-inch records. For 7-inch records, place the Push-off assembly in the 10-inch position and move the extension arm toward the centerpost.

LOADING AND STARTING: Place a stack of records over the centerpost so that they rest on the record support (64) and the centerpost offset. Records must be the same size and speed. If 10 or 12-inch records are being played, place the record clip on the stack.

The record changer is turned on by placing the function switch on the radio, in the "Phono" position.

REJECTING A RECORD: If the record changer will not trip into change cycle at the end of a record, or if you wish to stop playing a record and start playing the next one, merely rotate the reject knob to the left momentarily.

STOPPING AND UNLOADING: Do not turn the record changer off during change cycle. Turn the phono motor off by turning the function switch on the radio to the center position.

45 RPM ADAPTER: An adapter must be inserted into the center hole of the 45 RPM records in order to play them with this changer.

CHANGE CYCLE

If at all possible, we recommend that you carefully observe the change cycle of a record changer which is operating properly. It is a good idea to rotate the turntable by hand and repeat the change cycle until the function of each part is understood.

The changer operates as follows: The turntable is driven by the motor idler wheel (48), riding against its inside rim. The speed of the turntable is determined by the diameter of the drive shaft (either 78 RPM, 45 RPM, or 33 RPM) which rides against the idler wheel rubber tire (48).

The 78 RPM drive shaft is part of the motor armature. The 33 RPM drive shaft (44) and the 45 RPM drive shaft (45) are moved in and out of position mechanically by the motor shift link (84), which is controlled by the selector cam (89). See figure 4.

Material on Admiral RC500 Changer continued on pages 12 to 18.

Admiral RC500, RC500A, RC500GA Record Changers, continued.

Figure 2A. Drive Gear Position Out of Change Cycle.

The changer mechanism is driven during its change cycle by the drive gear (30), which in turn is driven by the geared hub of the turntable. During normal record play, the "dead spot" on the drive gear is held next to the turntable hub by the gear indexing arm (41) and spring (39).

This changer employs a velocity trip, which consists primarily of two parts: the trip motion arm (32), and the gear engagement pawl (33). These parts are mounted near the "dead spot" on the drive gear. See Figure 2A.

During normal record play, the trip slider (36) is moved slowly by the stud on the arm control lever (23) which moves with the tone arm. The stud on the trip slider (36) rides against the trip motion arm (32), moving it very slightly. Since the gear engagement pawl (33) is held against the trip motion arm (32) by the trip friction washer (34), the gear engagement pawl (33) is also moved slightly toward the turntable hub. Since

Figure 2B. Drive Gear Pasition During Change Cycle.

this movement is only slight, the vertical catch on the gear engagement pawl (33) is just touched and "kicked away" by the lug on the turntable hub. This occurs with each revolution of the turntable until the gear engagement pawl is moved in rapidly enough to be positioned in front of the lug before the next turntable cycle.

This rapid movement only occurs when the trip slider (36) is moved rapidly, by the tone arm, as the needle enters the trip grooves of the record. The gear engagement pawl (33) then moves in front of and engages the lug on the turntable hub. This causes the drive gear (30) to be rotated far enough so that the teeth on the drive gear will engage the teeth on the turntable hub, starting the change cycle. See figure 2B.

The changer can also be tripped by rotating the reject knob to the left momentarily. The stud on the end of the reject arm (88) moves the gear engagement pawl (33) into position to engage the lug on turntable hub.

Fig. 3. RC550 Record Changer with Turntable Removed.

For Individual parts detail, see Figure 9, "RC550 Recard Changer, Expladed View."

12

Admiral RC500, RC500A, RC500GA Record Changers, continued.

As the drive gear begins to rotate, the control cam (90) also rotates, since both parts are mounted on the same shaft. See fig. 4. As the control cam rotates clockwise, drive link roller (109) riding against the cam moves the drive link (107), which in turn rotates the control plate (102). As the control plate rotates, the incline tab (102A) rides across the tone arm lift rod (12), lifting the tone arm from the record. The stud on the arm control lever (23) then is engaged by the safety arm (105) (which rotates with the control plate), moving the tone arm away from the centerpost.

When the tone arm is almost clear of the record, the stud on the push-off link (86) (which is pivoted by the control cam), pivots the push-off arm (79) counterclockwise. Since the push-off arm is held to the push-off plate and shaft (60) by two Allen screws, the push-off plate is also pivoted. Just before the control cam reaches half rotation, the tone arm will be positioned as far as possible from the centerpost, and the push-off plate (60) will "push-off" the record to the turntable.

As the control cam (90) rotates through the second half of the change cycle, the push-off plate is returned by the push-off arm return spring (78) and the remainder of the stack of records drops to the record support (64). See figure 1.

At the same time, the tone arm is returned by the set-down spring (98) which causes the setdown indexing stud on the size change plate (99) to ride against the indexing portion of the arm control lever (23).

The tone arm will move toward the record until the set-down indexing stud on the size change plate has reached the indexing point (end of cut-away section) on the arm control lever. After the arm stops moving inward, the lift rod will ride down the control plate incline (102A), and the tone arm will move toward the record.

Just before the tone arm touches the record, the safety arm engages the stud on the set-down change plate (99) and pivots it away from the arm control lever (23); releasing the tone arm.

The set-down point is determined by the position of the set-down change plate (99), which can be set for either 7-inch, 10-inch, or 12-inch.

Fig. 4. RC550 Record Changer, Bottom View, Changer Out of Cycle.

ADJUSTMENTS

When making the following adjustments, keep in mind that the Pushoff, Trip, and Set-Down mechanisms function independently. One of these units may become inoperative without affecting the other two.

VELOCITY TRIP MECHANISM

This record changer uses a velocity type trip, which depends upon a rapid movement of the tone arm toward the centerpost in any area between 2 7/8" to 7/8" from the center of the record. This trip requires no adjustment. However, in order for the changer to trip properly, there must be sufficient friction between the trip motion arm (32) and the gear engagement pawl (33). If the friction is lost, a small amount of lubricant (such

as lubriplate #110) should be placed between these parts. If this does not help, it may be necessary to replace the trip friction washer (34). See Figure 2A.

SET-DOWN ADJUSTMENT

Adjustment of the set-down point, is made by adjusting the set-down adjusting screw (6). See Figure 5. The tone arm will automatically set-

Admiral RC500, RC500A, RC500GA Record Changers, continued.

Figure 5. Set-Down and Height Adjustments.

down properly on 7-inch or 12-inch records if the set-down adjustment is made properly on a 10-inch record. The set-down adjusting screw is accessible through the hole in the right side of the tone arm. Turning this screw in moves the set-down point of the tone arm closer to the centerpost, and turning this screw out moves it away from the centerpost. Make this adjustment as follows:

- 1. Place the size and speed selector knob (26) in the "78-10" position.
- 2. Rotate the reject knob to the left momentarily. Then start to rotate the turntable clockwise by hand.
- 3. As the change cycle is almost completed, and the tone arm just starts to move down towards the turntable, place a ruler against the centerpost and check the distance between the near side of the centerpost and the needle. This distance should be between 4 10/16" and 4 11/16".
- 4. If the 10-inch adjustment is correct, the needle should set-down between 5 19/32" and 5 22/32" from the near side of the centerpost on 12-inch records, and between 3 1/4" to 3 5/32" on 7-inch records.

ADJUSTING THE TONE ARM HEIGHT

This record changer is so designed that the tone arm will clear the bottom record of a stack to be played if the needle is \(^1/4\)" above the changer pan when the changer is not in change cycle and \(^1/3\)\" above the turntable during change cycle. See Figure 6. With proper tone arm height setting, the tone arm will lift high enough during change cycle to clear a complete stack of records of any type on the turntable. This stack may consist of as many records as specified on page 1. Make this adjustment by placing the size and speed selector knob (26) in the "78-10" position, check

Figure 6. Checking Tone Arm Height.

the distance between the needle and the changer pan with the changer out of change cycle. If the needle is more than ½" above the pan, turn the lift adjustment screw (14, Figure 5) counterclockwise; if less, turn clockwise.

POSITIONING RECORD SUPPORT (64)

If the record support is not positioned evenly under the bottom record of a stack to be played, one side of the record may drop to the turntable before the other. With the push-off assembly in the 10-inch position, place a 10-inch record over the upper portion of the centerpost so that the edge of the record fits against the edge of the record support (64). See figures 4 and 7. The contour of the record SHOULD follow the contour of the record support. If these contours do not match, position the push-off assembly as follows:

CAUTION: Be sure that the "testing" record has an even edge. For best results, try more than one record.

- 1. Loosen the screw (124) that holds the pushoff positioning arm assembly (75) stationary.
- 2. Grip the push-off assembly and pivot it to the point where the edge of the record support "lines up" with the edge of the record.
- 3. Remove the record and tighten the screw (124).
- 4. Load the changer with a stack of 10-inch records, and "reject" the entire stack to the turntable. Check to see that all records drop to the turntable evenly.

ADJUSTING DISTANCE BETWEEN RECORD SUPPORT (64) AND CENTERPOST (24)

If records do not push-off satisfactorily, or more than one record drops to the turntable during change cycle, it may be necessary to adjust the distance between the centerpost and the record support. See Figures 4 and 8. Make this adjustment as follows:

- 1. Place the push-off assembly in the 10-inch position.
- 2. Hold the centerpost as far away from the push-off assembly as possible.
- 3. Measure the distance from the edge of the record support (64) to the inside edge of the offset shelf on the centerpost. This distance should be between 4 29/32" and 4 31/32".
- If it is necessary to adjust for this distance, loosen the three screws (71) holding the plastic push-off housing (68) to the changer pan.
- 5. Tighten the three screws, and recheck the distance. Place a stack of records (any size) on the changer, and "reject" each record in the stack to the turntable. Check to see that each record is pushed off satisfactorily. If one side of the record drops to the turntable before the other, it may be necessary to make the "Positioning Record Support (64)" adjustment.

Admiral RC500, RC500A, RC500GA Record Changers, continued.

Figure 7. Positioning Record Support with 10-inch Record.

SERVICE AND REPAIR

LUBRICATION

DO NOT apply grease or oil to the trip slider (36). Also, under normal operating conditions, the motor should never require oiling.

Friction can sometimes be increased between the gear engagement pawl (33) and the trip motion arm (32), by placing a small amount of Lubriplate #110 between these two parts. Ordinary Vaseline can generally be used as a substitute for Lubriplate #110.

The rest of the changer should be lubricated with grease (such as Lubriplate #107) whenever it comes into the shop for repair or adjustment. A good automobile chassis grease can be used for this purpose. All pivot and friction points should be greased.

The powdered iron roller (109) and oilite bearings (used in the turntable hub and tone arm base) may be lubricated with SAE No. 20 oil.

REMOVING AND REPLACING TURNTABLE

To remove the turntable, first remove the turntable retaining clip (51). Be sure that the changer is not in change cycle, and then, grasp the turntable by its edges and lift up. Before replacing the turntable, make sure that the changer is not in change cycle. The pickup arm should be positioned away from the turntable. In replacing the turntable, force is not needed to seat it. Make certain, however, that the idler wheel of the motor has been pushed in towards the centerpost and that the idler wheel is making contact with the inner side of the turntable flange. The idler wheel should be pushed in with a screwdriver or similar flat tool. Do NOT push toward the rear of the changer.

Figure 8. Checking Distance from Centerpost to Record Support.

REPLACING THE PUSH-OFF INDEX PLATE (77)

Position the push-off index plate (77) as shown in figure 10. Be sure that the Allen screw which is called out "falls into" the milled slot.

Figure 10. Installing Push-Off Index Plate.

REPLACING SELECTOR CAM (89)

When replacing the selector cam (89), place the size and speed selector knob (26) so "STD-10" lines up with the indicating dot, hold the selector cam in the position shown in Figure 4, and install.

REPLACING CONTROL CAM (90)

Before replacing the control cam (90), be sure that the changer is out of change cycle. Place the control cam in the position shown in Figure 4, and install.

REPLACING THE PUSH-OFF ARM (79)

Place push-off arm (79) over the push-off shaft so that the Allen screw which is called out below fits against the "flat section" of shaft.

Figure 11. Installing Push-Off Arm.

Admiral RC500, RC500A, RC500GA Record Changers, continued.

	Ad	imiral RC500, RC500A, RC50	OGA	Record	Changers, continued.
Na.	Part No.	Description	Ref. N	lo. Part No.	Description
1	∫403C51	Tone Arm (Moroon)	61	402A250	Spocer Wosher
' '	(403C51 G	Tone Arm (Gold)	63	402A262	Screw, #4-40x5/16 8H MS (includes lockwosher)
2	∫409A13-1	Pickup Cortridge with needle (push-in type)	64	G400A508	Record Support and Tube Assembly Screw, Shokeproof type 25 (# 4 x 5/16")
_	(409A13	Pickup Cortridge with needle ond knurled nut	65	1A72-2-20 405A136	Record Clomp Spring
	004540	Cortridges (with needle) ore interchangeable	67	4B1-15B-47	Wosher (.390 x 9/10 x 1/32)
	98A54-2	Knurled Nut (for 409A13 Cortridge)		∫403C50	Push-off Housing (Moroon)
3	∫98A15-18	Needle for 409A13-1 Cortridge	68	₹403 C50 G	Push-off Housing (Gold)
	(98A15-19	Needle for 409A13 Cortridge	69	401 A346	Housing Bottom Plote
5	1A72-1-20 G400A529	Cortridge Mtg. Screw Shokeproof type 25 (2 req.) Tone Arm Leod and Pin Jock Assembly	71	402A263	Plostiscrew, #6x5/8 R.H. (includes lock wosher) "Hold Down" Screw, #10-32 x 1½" (for shipping only)
6	45-750-C2-47	Set-Down Adjusting Screw, #4-40x3/4 BH MS	72 73	402A258 AA210	Mounting Screw and Washer (table models only)
7	405A137	Set-Down Adjusting Lock Spring	74	405A139	Floot Spring (3 req.)
8	G400A526	Tone Arm Mtg. and Pivot Plate Assembly	75	G400A565	Push-off Positioning Arm Assembly
9	2B10-5-59	Speed Nut (2 req.)	76	414A40	Push-off Indexing Spring
10	404A31	Tone Arm Counterweight	77	G400A514	Push-off Index Plote and Hub Assembly
11	1A70-6-20 G400A520	Counterweight Retaining Screws, #4 x %" (2 req.)			See "Replacing The Push-Off Index Plate (77)" on
13	405A120	Lift Rod and Plate Assembly Lift Adjusting Spring	78	405A133	page 8. Push-off Return Spring
14	402A245	Lift Adjusting Screw	79	G400A517	Push-off Arm and Hub Assembly (includes Allen screw)
15	414A43	Pivot Shoft	'	- 110	See "Replacing The Push-Off Arm (79)" on page 15.
16	G460A525	Tone Arm Support and Hub (includes set screws)	80	*407B19	*3-Speed Motor Complete, 60 cycle, 117 volts
17	1A43-14	Allen Set Screw, #8-32x3/16" (3 req.)	81	406A19	Motor Mounting Grommet (3 req.)
18 19	402A247	Allen Set Screw, #8-32x¼" (3 req.)	82	401A355-4	Motor Mtg. Retaining Ring (3 req.)
l ' [*]	401A355-3	Retoining Ring	83	88A8-1 G400A580	Phono Motor Plug Motor Shift Link (includes rubber grommet)
20	∫403A52 }403A52 G	Tone Arm Plostic Bose (Moroon) Tone Arm Plostic Bose (Gald)	84	G400A580 406A24	Speed Chonge Link Grommet
21	401A358		86	G400A562	Push-off Link and Stud Assembly
22	401A336	Spocer Wosher Bronze Wosher (,316 x 15/32 x ,005)	87	405A140	Reject Return Spring
23	G400A542	Arm Control Lever and Shoft Assembly	88	G400A581	Reject Arm and Stud Assembly
24	G400B505-1	Centerpost	89	401B359	Selector Com, When replocing, see "Replocing Selector
25	13A2-8-57	Snop-in Buttons		0.4004.540	Com (89)"
26	∫403A59	Size and Speed Selector Knob (Maroon)	90	G400A548	Control Com and Stud Assembly See "Replacing Control Com (90)" on page 15.
	₹403A59G	Size and Speed Selector Knob (Gold)	91	401A145	Control Com Wosher
27	∫G400A582	Reject Knob (Moroon)	93		Screw, #8/32x%" BH (includes lock wosher)
1	(G400A582G	Reject Knob (God)	94	4B1-78-47	Wosher (.196x1/16)
28	415A11	Thrust Beoring	95		Selector Com Stud
29 30	401A355-1 G400A532	Retaining Ring Drive Geor and Stud Assembly	96		Centerpost Retaining Ring
31	402A229	Trip Pivot Stud	97 9B		Set-Down Chonge Lever Set-Down Spring
32	401A351-1	Trip Motion Arm	99		Set-Down Chonge Plote and Arm Assembly
33	401 A 352	Geor Engogement Powl	100		Spocer
34	401 A 353	Trip Friction Wosher	101	1 A 70-1 1-20	Plostiscrew, #6×7/16"
35	4B1-68-47 G400A575	Wosher (5 req.)	102		Control Plote Assembly
36 37	4B1-67-47	Trip Slider Wosher (.196 x 5/16 x 1/32)	103		Wosher
38	4B2-178-0	Wosher (.196 x % x 1/64)	104		Retoining Ring Sofety Arm
39	405A134	Geor Indexing Spring	105		Sofety Spring
40	405A22	Spring Wosher	107		Drive Link and Stud Assembly
41	G400A549	Geor Indexing Arm and Stud Assembly	108	405A132	Control Plote Return Spring
42	98A15-9	Oil Retaining Felt Washer (2 req.)	109		Drive Link Roller
43 44	406A20 98A15-11	Drive Belt (2 req.) 45 RPM Drive Shoft (60 cycles)	110		Plostic Trim (2 req.)
45	98A15-10	33 RPM Drive Shoft (60 cycles)	111		Antenno Leod Support Speed Nut (4 req.)
46	405A15	Idler Wheel Retaining Clip	112		Bottom Cover Bushing (4 req.)
47	412A30	Fibre Wosher (2 req.)	114		Bottom cover
48	G400A279	Idler Wheel Assembly	115		Shielded Coble (includes plug, 15")
49	98A15-21	Idler Wheel Tie Lug	116	88A2-3	Plug (for lead-in coble)
50	98A15-20	Idler Wheel Spring	117		Terminol Boord
51 52	414A36 G400B507	Turntoble Retaining Clip Turntoble	118		Chonger Pon Roll Rearing (5/32 diameter)
٦	∫G400A511	Record Clomp and Shoft and Rubber Tips (Maroon)	119		Boll Seoring (5/32 diometer) Fibre Wosher (.196 x %" x .005)
53	G400A511 G	Record Clomp and Shoft and Rubber Tips (Malaba)	121		Tone Arm Weight
54	406A25	Record Clomp Rubber Tip (2 req.)	122		Wosher (.125 x ¼ x 1/32 Steel)
1	√403B53	Push-off Plostic Cop (Moroon)	123	412A38	Motor Mounting Wosher
55	1403B53 G	Push-off Plostic Cop (Gold)	124	402A264	Screw, #6-32 x 3/16" BH
56	402A249	Push-off Plote Nut		DARTE FAS	CONVERTING 407B19 MOTOR TO 50 CYCLE
57	401A326	7" Record Support Detent Spring			
58	G400A510	7" Record Support			(50 cycles) 98A15-15
59	415A28-1	Boll Bearing (1/4" diameter) Push-off Plate and Shoft Assembly	78	RPM Drive Shot	t Spring (50 cycles)
60	G400A509	1 User-Oil Flore Only Short Assembly	33	RPM Drive Shoft	Spring (50 cycles)
11	*407	B19 motor is not used on "Conodion Admirol" chang-	∫60 c	ycle, 105 to 125	5 volts407X19-60

16

Admiral RC500, RC500A, RC500GA Record Changers, continued.

RECORD CHANGER TROUBLE SHOOTING

GROOVE SKIPPING

Anything that may cause a drag on the tone arm will contribute to groove skipping. For example, a worn needle will tend to skip grooves. Another possibility is that the Lubriplate (lubricant) between the gear engagement pawl (33) and the trip motion arm (32) may have become excessively tacky after the changer has been in use for some time.

RECORD SLIPPING (45 RPM RECORDS)

Slipping of 45 RPM records may be due to any of the following causes:

- 1. The 45 RPM adapter nibs may be deformed, may not fit tight enough in the record, or may be cocked. Be sure that the records are not warped. If records have the fibre type 45 RPM adapter, replace them with the plastic type. The plastic type adapter (supplied with later production sets) will fit in the record better and will have sharper nibs. Only the plastic type adapters will be supplied as service replacements. An envelope containing 12 adapters is available under part number 48A8-1.
- 2. Needle pressure may be too great for this type of record. Try removing a tone arm weight (121), part number 414A45. Two of these weights were used with the 409A13-1 cartridge, and one weight was used with the 409A13 cartridge.

ERRATIC TRIP ACTION

Erratic trip action may be caused by failure of the trip slider return spring (102B) to return the trip slider (36) to its proper position as the changer goes through cycle.

Check the trip slider return spring (102B) for proper tension. Check the trip slider (36) for sticking or binding.

CHANGE IN DRIVE GEAR AND STUD ASSEMBLY (30) Run 5

Early production record changers (below Run 5) used a drive gear and stud assembly (30) with a removable pivot stud (31), see figure 9.

Later production record changers (stamped Run 5 or higher) use a drive gear and stud assembly (30) with the pivot stud riveted to the drive gear.

The early drive gear and stud assembly, part number G400A532 can be replaced with the later drive gear and stud assembly, part number G400A587. However, note that it will be necessary to order a trip pivot hub (128), part number 402A292, and a retaining ring for a 1/8" stud (129), part number 401A355-6.

Changer Will Not Trip.

- 1. Check to see that the trip slider (36) moves freely.
- 2. Apply small amount of grease between the trip motion arm (32) and the gear engagement pawl (33).
- 3. Check tension on trip friction washer (34). If necessary, replace with new washer.
- 4. Check for grease or oil on trip slider.
- Check for broken, loose, or misplaced trip slider return spring (102B, Figure 4). It may have slipped over the stud on the slider.

Changer Repeatedly Trips into Change Cycle.

- Check tension of gear indexing spring (39).
 Check for bent trip slider return spring
- 2. Check for bent trip slider return spring (102B, Figure 4).
- 3. Check for bent trip slider (36).

Tone Arm Does Not Set-Down Properly.

- 1. Check set-down adjustment. See "Set-Down Adjustment" on page 13.
- 2. Check to see that size and speed selector knob (26) has locked into position.
- 3. Check for broken, weak, or missing control plate return spring (108).

Tone Arm Skips Across Records.

- 1. Check to see that the cabinet is level.
- Check for worn needle.
- 3. Check height adjustment.

Changer Causes Rumble or Noise.

- 1. BE SURE that the shipping screws (72) on each side of changer pan have been removed.
- 2. Check for any mechanical rub near the 3-speed motor.
- 3. Check for broken float spring (74).

Records Do Not Push Off or More Than One Record Drops to the Turntable.

- 1. See "Adjusting Distance Between Record Support and Centerpost" on page 14.
- 2. Check for broken, missing, or weak push-off return spring (78). The push-off plate (60) may not be returning correctly.
- 3. Check to see that the push-off assembly is properly locked into position.
- 4. Check to see that no foreign material is between record support (64) and push-off plate (60).

Changer Trips Into Change Cycle Before Finishing Record.

- 1. Check for foreign material between trip motion arm (32) and engagement pawl (33).
- 2. Check for bent trip slider return spring (102B, Figure 4).
- 3. Check for bent trip slider (36).

Changer Stalls in Change Cycle.

- 1. Idler wheel (48) rubber tire may have foreign material on it. Try cleaning it with carbon tetrachloride solution.
- 2. Motor drive belts (43) may be slipping. If necessary, replace with new belts.
- 3. Be sure push-off assembly locks in position.

ARVIN RADIO, MODEL 580TFM

ARVIN RADIO

CHASSIS RE-313, 8 TUBE AC, AM-FM

while Chassis RE-310, used in Models 582CFB and 582CFM, has an extra Alignment information for all these models is given on the next page. position on SW.1 for phono switching and required additional wiring. The circuit on this page is exact for Model 580TFM, Chassis RE-313,

TECHNICAL INFORMATION

Tuning range — 540 Kc. to 1600 Kc. Intermediate Frequency 455 Kc. I. F. and R. F. measurements made at 500 milliwatts output — approximatelyal.27 volts on a receiver type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv; R. F. with standard loop: at 600 Kc. 1200 uv/m; at 1600 Kc. 900 uv/m; at 1400 Kc. 800 uv/m; AM FM

Tuning range — 88 megacycles to 108 megacycles. Intermediate frequency 10.7 megacycles .I.F. and R.F. measurements made at 500 milliwatts output — approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I.F. 300 uv; R.F. "Absolute Measurements": 91 megacycles 100 uv; 105 megacycles, 100 uv.

RADIO DIAGRAMS 582CFB, and 582CFM, MANUAL OF 1952 MOST-OFTEN-NEEDED ARVIN RADIO

PROCEDURE ALIGNMENT

Set dial pointer Horizontal, variable condenser closed Set band switch To left for AM alignment, right for FM alignment Output meter connection Across speaker voice coil
Output meter reading to indicate 500 MW 1.27 volts
Generator Modulation 50%, 400 cycles
Position of volume control Fully clockwise

continued and RE-313, Models 580TFM, Chassis RE-310

:			(,	Adjust	
Position			Generator	Generator	Trimmers	
of	Generator	Dummy	Connection	Connection	In Order	Trimmer
Variable	Frequency	Ant.	(high)	Ground Lead	Shown For	Function
					Max. Output	
Open	455 Kc	.05 mfd.	Mixer Grid	Chassis	A1, A2, A3, A4,	I. F.
Open	1650 Kc		*Test Loop	Test Loop	A5	Oscillator
1400 Kc	1400 Kc		*Test Loop	Test Loop	A6	Antenna
**600 Kc	600 Kc		*Test Loop	Test Loop	Check Point	Antenna

three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis.

**With a generator signal of 600 Kc, tune the set to the point where maximum output is obtained, which shoul be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. The alignment procedure should be repeated in the original order for greatest accuracy.

Always keep the output from the signal generator at its lowest possible value to make the A. V. C. action of the receiver ineffective,

ALIGNMENT

FM

- Turn band switch to FM, (right).
- Connect (FM) I. F. generator to the second 6BA6 I. F. amp. grid, (lug No. I) through a oll uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs A7-A8 for the characteristic "S" curve (See Fig. I), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment. 4
- Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc, adjust cafor maximum output. Maximum output may be indicated by maximum vertical height on the scope or maximum voltage on a standard output meter across the voice coil of the receiver. After the two I.F. transformers have been aligned the bottom slug A8 of the ratio detector should also be peaked. The characteristic. "S" curve of the complete I. F. channel should be checked by applying a 10.7 Mc signal with 150 Kc deviation to the mixer grid and observing the "S" curve on the scope. It should not be very much different from that observed in step 2. સં

Connect R. F. (FM) generator (88 to 108Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).

BAND SWITCH

- Use R. F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer A12 (small ceramic trimmer) for maximum reading on output meter.

 - Then tune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc. If the receiver does not tune to this frequency the FM conscillator coil L4 will either have to be squeezed to gether or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the hand.

۷.

- With the same Signal Generator connections as per paragraph 4 tune Signal Generator and set to 105 Mc. Tune R. F. trimmer Al3 for maximum output at the same time rock variable back and forth through the frequency, (Rocking is necessary because slight oscil-Tune Signal Generator and set to 90 Mc. Adjust R.F. coil L3 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Mc by the R.F. trimmer A13. ator pulling causes erroneous maximum readings).
- if set is off calibration. Band coverage should be Aiter Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated Sensitivity should be approximatchy 100 uv at 105 Mc, 98 Mc and 90 Mc. 87.5 Mc to 108.5 Mc.

છ

ANDREA RADIO CORP. Model P-163, Three-Way, Three-Band Portable.

tion of gang condenser. Ground side of generator to chassis. Connect a 0-1 volt copper oxide rectifier meter across voice coil of speaker. I.F. ALIGNMENT Set signal generator to 455 KC. Turn band selector switch of receiver to band 1. Connect high side of generator through a .1 mfd. condenser to stator side of antenna sec-Align two trimmers on top of each I.F. transformer for maximum output. This completes the I.F. alignment.

Adjust band 1 antenna shunt trimmer on loop (see location on diagram), maximum output. While this adjustment is being made, rotate the tuning control slightly back and forth for each small adjustment of the oscillator condenser, otherwise the alignment will not be accurate. Set the signal generator back to 1500 KC and retouch antenna shunt trimmer band 1. This completes band 1 alignment. Set signal generator at 600 KC and dial pointer on set at 600 KC. Ad just band 1 series oscillator trimmer (see diagram for location) for Connect copper oxide type rectifier meter across speaker voice coil. Connect high side of generator through a 200 mmf. condenser to antenna post "A" on lcop. Ground side of generator to chassis. Set generator to 1500 KC, the dial pointer to 1500 KC, Band switch to Band 1, and adjust Band 1. R.F. ALIGNMENT

BAND 2 Replace 200 mmf. condenser with 400 ohm resistor. Set sig-ALIGNMENT nal generator to 6.0 megacycles and dial to 6.0 mc. Turn waveband switch to band 2.

Adjust Band 2 oscillator shunt trimmer for maximum output. Adjust Band 2 antenna shunt trimmer on loop at 6.0 mc. for maximum output.

Adjust Band 3 antenna shunt trimmer on loop for maximum output. During Set signal generator 18 mc. and dial to 18 mc. Turn band switch to Band 3. Use 400 ohm antenna dummy. Adjust Band 3 oscillator shunt trimmer for maximum output, noting that the setting is not the image frequency. BAND 3 AL IGNMENT

this adjustment, rotate the gang condenser back and forth slowly for each trimmer setting or poor alignment will result. After alignment, check to see that the setting is not on the image frequency.

CHASSIS, TOP VIEW

ALIGNMENT CHART

Alicament	Signal Generator Output			Position of	Adjust for	
Alignment Sequence	Frequency in kc.	In Series with	То	Dial Pointer	Maximum Outr	
1	455	200 mmf.	External Ant. Screw	1620	* A, B, C & D	
2	1620	200 mmf.	External Ant. Screw	1620	E	
3	1400	200 mmf.	External Ant. Screw	1400	F	

* Repeat adjustments until maximum output is obtained.

25

CROSLEY

Models: E30BE, E30GN, E30MN, E30TN, Chassis 30E, 30E-1 (Continued from previous page)

CHASSIS TOP VIEW SHOWING ALIGNMENT ADJUSTMENTS

Emerson Radio

Models 653B and 702B, Chassis 120136-B. See next page for circuit diagram.

ALIGNMENT

To set pointer, turn variable condenser fully closed and set pointer at mark near left end of dial backplate. Use isolation transformer if available. If not, connect a 0.1 mfd. condenser in series with low side of signal generator and chassis. Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated alignment screwdriver for adjusting.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	METER OUTPUT	ADJUST	REMARKS
1	0.1 mfd.	High side to stator of rear section of tun- ing condenser. Low side to chassis.	455 kc	Varíable con- denser fully open.	Across voice coil.	A1, A2, A3, A4	Adjust for maximum output. If isolation transformer is not used, reduce dummy antenna to 0.001 mfd. to reduce hum modulation.
2	200 mmfd.	High side to external an- tenna lead. Low side to ex- ternal ground lead.	1620 kc	Variable con- denser fully open.	Across voice coil.	A 5	Adjust for maximum output.
3	200 mmfd.	High side to external antenna lead. Low side to external ground lead.	1400 kc	Tune for maximum output.	Across voice coil.	A6	Adjust for maximum output.

Emerson Radio

MODEL - 706B - 707B

CHASSIS - 120156-B

AM-FM RECEIVER **MODEL 7C**

See lower part of previous page for a drawing of Model 7-C chassis top view showing tube and parts placement and trimmer locations.

A.M.—535 Kc. to 1720 Kc. F.M.—88 Mc. to 108 Mc.

FIRESTONE TIRE

Stock No 4-A-92

Tuning Range - 540 to 1600 KC

Intermediate Freq. - 455 KC

Loud Speaker - 3-1/2" P.M.

VOLTAGE TABLE

ALIGNMENT PROCEDURE

		TEST	OSCILLATOR		
Steps	Set Receiver dial to:	Adjust test oscillator frequency to:	Attach output of test oscillator to:	DUMMY AN TERN A	Refer to parts layout diagram for lo- cation of trimmers mentioned below:
ì	Any point where no interfering signal is received.	EXACTLY 455 KC	High side to grid of con-, verter Tube. Low side to common negative.	1. MFD CONDENSER	Adjust 2nd I.F. (T2) and then each of the slugs of the 1st I.F. (T1) for maximum output.
2	Exactly 1620 KC	Exactly 1620 KC	DUMMY ANTENNA	2 turns of Hookup Wire 6"in Diam.	Adjust 1620 KC oscillator trimmer for maximum output.
3	Approx. 1400 KC	Approx. 1400 KC	DUMMY ANTENNA	(Placa approx. ona foot from & parallel to loop.)	Adjust 1400 KC antenna trimmer for maximum output.

TOP VIEW OF CHASSIS

BOTTOM VIEW OF CHASSIS

NOTES:

NOTAGE READINGS TAKEN WITH A 1000-CHM-PER-VOLT VOLTMETER ON THE 250 VOLT SCALE BETWEEN POINTS SHOWN AND CHASSIS. READ ON THE ID VOLT SCALE OF THE VOLTMETER 光 0-10 LINE VOLTAGE 117 Y A.C. ANTENNA <u>\$</u>67 1764 AC - DC V855 CI-A ~** 220 x \$ \$ ₹ \$ 2 58.4 58.4 NOTE: Capacitor C2 may be either .18 mf. or .09 mf. 12BE6 (ON VOLUME CONTROL) 35Z5 8+ 8 8 C 4 **世で9** 3₹ COUPLATE 12846 GREEN T3 - Z 82 11 **₹3.3 MEG** . 000 1000 1000 12AV6 or 12AT6 2nd DET A.V.C. 2nd 1st AUDIO SS NG TH CIO-A R R R -8≹8 : ≘ 윤부 \$ R6 ₩ 8 ²7 50C5 0000 2200 0000

Gamble-Skogmo Inc.

RADIO MODEL 15RA2-43-8230A CORONADO

Minneapolis, Minn.

similar employs 35W4 Ls but and 94RA2-43-8230A to 15RA2-43-8230A, I.F. Amp. the rectifier. 12BD6 as Model

SELECTIVITY......At 1000 Kc,, 60 Kc. at 1000 x signal.

SENSITIVITY......150 u. v. per meter.

POWER SUPPLY......115 volts, DC or 50-60 cycle AC,

24 watts.

FREQUENCY RANGE......540 to 1600 Kc.

INTERMEDIATE FREQ... 455 Kc.

Finish 4 Turns to extreme left, then set point-LINE UP LEFT EDGE OF POINTER WITH LAST DOT. er at last marker shown. Secure After stringing.turn tuning shaft pointer to string with glue.

ALIGNMENT PROCEDURE

	SIGNAL	L GENERATOR		THINEB	4DHIST EOD	INPUT FOR
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection	SETTING	MAXIMUM OUTPUT	50 MILLIWAII OUTPUT
455 kc.	.1 mf.	12BE6, Pin 7	esis Ckoss	Capacitor full open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans	65 microvolts
1620 kc.	.1 mf.	12BE6, Pin 7	CHV?	Capacitor full open (plates out of mesh)	Oscillator trimmer C1-D on gang	70 microvolts
535 kc.	.1 mf.	12BE6, Pin 7	OE PS TE	Capacitor fully closed	Check for adequate range	70 microvolts
1400 kc.		Lay Generator lead near back of cabinet	AK BUS	Tune in 1400 kc. signal	Antenna trimmer C1-C on gang	200 to 400 microvolts
400 cycles	.1 mf.	12AT6, Pin 1	C HEV			.06 volts

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS GENERAL (28) ELECTRIC

Model 409, continued.

A.M. METER ALIGNMENT NOTES

1. Connect an output meter across the speaker leads to indicate maximum output during A.M. alignment.

Turn the volume control to maximum clockwise position

and reduce signal input so that output meter does not indicate more than ½ watt output during A.M. alignment.

3. For alignment of the antenna trimmer C2 it is necessary to inductively couple the signal generator output to the loop antenna by connecting a four turn, six inch diameter loop of wire across the generator output terminals and locating the loop about one foot from the radio loop. The position of loop should not be changed during alignment to prevent possible errors in peak readings.

4. Set the band switch in A.M. position.

F.M. METER ALIGNMENT NOTES

5. Connect a vacuum tube voltmeter between the test point on the rear of the chassis and chassis to read the d-c voltage developed at the limiter grid during F.M.-I.F. and R.F. alignment. Dress the V.T.V.M. leads away from the r-f end of the chassis to prevent regeneration. Reduce the signal input so that the V.T.V.M. reads approximately 1 volt d-c.

6. Connect a vacuum tube voltmeter across the volume control to read the discriminator output.
7. To align the primary of T6 (discriminator) detune the signal generator slightly either side of 10.7 mc until maximum d-c volts is read across the volume control then adjust the primary of T6 for max.

8. For F.M.-R.F. alignment the output impedance of the signal generator should be 300 ohms to properly match the

input impedance of this receiver.

The cover on the F.M. tuner must be in place during F.M.-R.F. alignment.

10. Set the band switch to the F.M. position.

BOTTOM VIEW

		MLIER A	LIGHMENT CHART		
STEP No.	SIGNAL GENERATOR FREQUENCY	SIGNAL INPUT POINT BETWEEN	TUNING CAPACITOR SETTING	ADJUST	SEE NOTE NO.
		A.M	-I.F. ALIGNMENT		
1	455 kc, 30% mod.	Pin 1 of V4 (12BA6) thru .02 mf. and chassis	Fully closed	Primary and secondary cores of T5 for maximum output meter reading	
2	with 400 cycles	Pin 1 of V3 (12AU6) thru .02 mf. and chassis	2 dify closed	Primary and secondary cores of T4 for maximum output meter reading	1, 2, 4
		A.M.—	R.F. ALIGNMENT		
3	1620 kc, 30% mod. with 400 cycles		Fully open (min. cap.)	(C4) oscillator trimmer for maximum output meter reading	
4	1500 kc, 30% mod. with 400 cycles	Pin 1 of V1 (6BJ6)	For maximum output	R-f trimmer (C-3) for maximum output meter reading while rocking gang condenser	1, 2, 4
5	wan soo eyeles	Inductively coupled to the loop. See note 3	meter reading	Adjust antenna trimmer (C2) on loop for maximum	1, 2, 3, 4
		F.M.—	I.F. ALIGNMENT		
6		Pin 1 of V4 (12BA6) thru 100 mmf. and chassis		Core of L3 for maximum d-c reading at test point on rear of chassis	•••
7	10.7 mc unmodulated	Pin 1 of V3 (12AU6) thru 100 mmf. and chassis	Fully closed	Cores of T3 for maximum d-c volts at test point on rear of chassis	5, 10
8		Stator of C2001 thru .02 mf. thru hole in bottom of F.M. tuner cover		Cores of T2 for maximum d-c volts at test point on rear of chassis	
		F.M. DISCRIMI	NATOR (T6) ALIGNMENT	r	
9	10.7 mc unmodulated	Pin 1 of V4 (12BA6) thru		T6 secondary core for zero output across volume control (R16)	6, 10
10	Detune for maximum d-c at R16. See note 7	100 mmf. and chassis	Fully closed	T6 primary core for maximum d-c volts across the volume control (R16)	6, 7, 10
		F.M.—	R.F. ALIGNMENT		
11		At F.M. antenna ter-		F.M. oscillator trimmer C2004 for maximum d-c volts at test point on rear of chassis	
12 6	108.5 mc	minals with built-in F.M. antenna disconnected	Fully open (min. cap.)	F.MR.F. trimmer C2002 for maximum d-c volts at test point on rear of chassis while rocking signal generator frequency	5, 8, 9, 10

METER ALIGNMENT CHART

GENERAL 🍪 ELECTRIC

FOR MODELS 607 AND 608

ALIGNMENT CHART

Always have volume control full on and reduce signal input so A-V-C will not affect output.

Step	Sig. Gen. Connected to B-and	Sig. Gen. Frequency	Dial Setting	Adjust For Max. Output
1	1T4 Grid Pin 6 thru .05 Cap	455 kc	550kc	Cores of I-F Trans. T3
2	IR5 Grid Pin 6 thru 05 Cap	455 kc	550 kc	Cores of I-F Trans. T2
3	IR5 Grid Pin 6 thru .05 Cap	455 kc	550 kc	Re-adjust T2 and T3
4	Inductively Coupled to Loop	1620 kc	1620 kc	Osc. trimmer C2B
5	Inductively Coupled to Loop	1500 kc	Tune for maximum	R-F trimmer C1B

Make the final ANT, trimmer adjustment with the chassis installed in the cabinet and an "A" battery in position and connected, since the battery affects the tuning of the antenna.

CHASSIS REMOVAL:

- A. Remove two control knobs
- B. Remove two hex head screws from cabinet bosses just under each side of dial scale
- C. Remove two speed nuts (turn 90°) from cabinet bosses at each side of speaker

BOTTOM SHIELD REMOVAL:

- A. Remove chassis
- B. Unsolder one loop lead from stator of R-F section of gang condenser
- C. Remove six trimount studs:
 - 3 across back of chassis
 - 3 across front of chassis (2 under speaker grille)
- D. Slide bottom down one inch and pull out

CAUTION: One side of the power line is connected to B-. Avoid any direct connections to ground. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

CONTINUED

METER ALIGNMENT CHART

Step No.	Signal Generator Frequency	Signal Input Paint Between	Funing Gang Capacitar	Adjust
		AM-IF	ALIGNMENT	
-	755 AUC 04 327	- 1		Primary and secondary cores of T7 for max. output meter reading
2	with 400 cycles	Pin 1 of V3 (6BA6) thru .02 mf. and chassis	Closed	Primary and secondary cores of T6 for max, output meter reading. Recheck adjustment of T7 cores
		AM-RF	ALIGNMENT	
ယ	with 400 cycles	Dis 1 of W1 (6D 16) the co	AM gang cap. fully open. (Min. cap.)	Adjust oscillator trimmer (C36) for maximum output meter reading.
4	1500 KC 30% mod. with 400 cycles	mf. and chassis		Adjust r-f trimmer (C7) for maximum output meter reading while rocking gang condenser.
vı	580 KC 30% mod. with 400 cycles	AM antenna terminals thru	for max. output meter reading.	Core of T1 for maximum
6	1500 KC 30% mod. with 400 cycles	I. R. E. dummy antenna		Adjust antenna trimmer C5 for maximum
		FM-IF ALIG	ALIGNMENT CHART	
7		Pin 1 of V4 (6AU6) thru 100 mmf. and chassis		Core of L3 for max. d-c voltage at test point on rear of chassis
∞	10.7 mc unmodu- lated	Pin 1 of V3 (6BA6) thru 100 mmf. and chassis	Closed	Cores of T5 for max. d-c volts at limiter test point
٥		Stator of C2001 thru 100 mmf. thru hole in bottom of tuner cover		Cores of T4 for max. d-c volts at limiter test point
		FM DISCRIM	FM DISCRIMINATOR ALIGNMENT	
10	10.7 mc unmodu- lated	Pin 1 of V4 thru 100 mmf.	2	T8 secondary core for zero output across the volume control R28 at 10.7 mc
=	Detune for max. d.c. at R28. See Note 7.	Man ()	Closed	T8 primary core for max. d-c volts across the volume control R28
		FM-RF	ALIGNMENT	
12	108.5 mc	A+ EW attack territoria	Tuning capaci- tor fully open	Oscillator trimmer C2004 for maximum d-c voltage at limiter grid test point.
13	108 mc	De Erm ancomma comminats	Tune for maxi-	FM-RF trimmer C2002 for max. output at limiter grid test point while rocking signal generator

GENERAL (SE ELECTRIC

MODELS 754 & 756

METER ALIGNMENT NOTES

- 1. Connect an output meter across the speaker leads to indicate maximum output.
- 2. Turn volume control to maximum clockwise position and reduce signal input so that output meter does not indicate more than ½ watt output.
 - 3. Band switch set in AM position.
- 4. Connect an 18 microhenry choke across the loop terminals to assimilate the loop during alignment.
- 5. Connect a vacuum tube voltmeter from the limiter grid test point to chassis to read the d-c voltage developed at the limiter grid during FM-IF and RF alignment. Dress the leads to the vacuum tube voltmeter leads away from the r-f end of the seed assis to prevent regeneration. Reduce signal input so that to V.T.V.M. reads approximately 1 volt d-c at limiter grid test point.
 - 6. Connect a vacuum tube voltmeter across the volume control and align the secondary of T8 for zero output at 10.7 mc.
- 7. Detune the signal generator either side of 10.7 mc until maximum d-c volts across the volume control is read—then peak the primary core of T8
- peak the primary core of T8.

 8. For FM-RF alignment the output impedance of the signal generator cable should be 300 ohms to properly match the input impedance of this receiver.
 - 9. The cover over the FM-RF tuner must be in place during FM-RF alignment.

737 220K

1(||||

₩.22 ₩.22

3

4

2

- 10. Band switch in FM position.
- 11. Make the chassis connection as close to the signal input point as possible.

 EQUIPMENT REQUIRED

OSC. TRANSF. CONNECTIONS

TO FM ANT.

ž

833

125 V

830

6.50

RECTIFIER 5 Y 3 GT

VOLUME

1 C38 D02 MF

9

#26 4 MEG. A 28 2 MEB

- 1. Signal generator
- 2. Vacuum tube voltmeter
- 3. Output meter
- 4. One 18 microhenry choke
 - 5. .02 mf capacitor
- 6. 100 mmf capacitor

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE DESIGNATED
ALL CAPACITANCES GIVEN IN MICRO-MICROFARADS
UNLESS OTHERWISE DESIGNATED
VOLTAGES ARE PLUS OR MINUS 20 % TOLERANCE
VOLTAGES AREAURED WITH A V.T.V.M. OR 20,000 OHM
PER VOLT METER

PHONO MOTOR

> \ \ \

#28 47 T CONTINUED

hallicrafters

5R50 5R51 & 5R52 Continued from proceding page, adjacent at left.

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Set volume control at maximum.
- Use a non-metaflic alignment tool.
- Signal generator must have a modulated output and cover 455 KC, 600 KC, 1300 KC and 14 MC.
- Keep the generator output as low as possible to avoid AVC action.
- Refer to Figs. 5 and 6 for location of alignment adjustments.

Fig. 7. RTMA Dummy Antenna

	<u> </u>				
STEP	SIGNAL GENERATOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	SWITCH	RECEIVER DIAL SETTING	ADJUST FOR MAXIMUM OUTPUT
1	High side to stator plates of rear section of tuning capacitor through a .01 mfd. capacitor. Low side to chassis.	455 KC	BROADCAST	1000 KC	A,B, C,D
2	High side to A1 on antenna terminal strip on rear of chassis through a standard RTMA dummy antenna (Fig.7). Low side to chassis. Connect the jumper between A2 and G.	14 MC	SHORTWAVE	14 MC	E,F
3	Same as STEP 2.	1300 KC	BROADCAST	1300 KC	G,H
4	Same as STEP 2.	600 KC	BROADCAST	600 KC	¹ 65

 \simeq 4 W 0 9 N W

5BR-1526D

5BR-1531D

5BR-1525D

MODEL NO. RADIO

5BR-1532D

	JUNAL	SIGNAL GENERALUK			
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection	TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT
455 kc.	Ju l.	12BE6, Pin 7	CROSS	Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans
1620 kc.	- m	128E6, Pin 7	CHY2 YD YO	Capacitor fully open	Oscillator trimmer
535 kc.	.1 mf.	128E6, Pin 7	B OE 122 FE	Capacitor fully	Chall for
			J8 У ЭТИ:	pesolo	adequate range
1400 kc.		Lay generator lead near back of cabinet	CE HE Y A	Tune in 1400 kc. signal	Antenna trimmer C-1C on gang

-B, D-2217A, -B, For alignment Model 15BR-1525 material under preced-25BR-1549B information see 25BR-1548B TRUETONE Models D-2216A, MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS Also Western Auto are the same. CLOCK RADIO MODEL NOS. 5BR-1549A 15BR-1548A ing page. on the 0000 0000 50C5 £8 ₩ **₩** 5 # ¥8° - CIO - P 12AV6 OF 12AT6 Em DET AVG R 3 2.2 MEG SELENIUM 45 5 m COUPLATE ep € 5 CLANOSTAT IZBA6 () () 11 Oct 11 TS CHEEN VOLTAGE READINGS TAKEN WITH A 1000-OMM-PER-VOLT VOLTMETER ON THE 250 VOLT SCALE BETWEEN PWHTS SHOWN AND CHASSIS # READ ON THE 10 VOLT SCALE OF THE VOLTMETER. LINE VOLTAGE 117 V A C. _{င်}ရှိ 12BE6 CONVENTER iii iiii **~%**₫ ₹8 %% %¥ CI-CI CI-A III. A.C. ig i

MONTGOMERY WARD

MODEL 15-GHM-1067A

ALIGNMENT PROCEDURE

Volume Control-Maximum All Adjustments.

The equipment in column at right is required for aligning:

Signal Generator which will provide an accurately calibrated signal at the test frequencies as listed. Output Indicating Meter: Non-Metallic Screwdriver.

Dummy Antenna —. I mf.

	SIGI	NAL GENERATOR		Variable	ADJUST TRIMMERS
Frequency Setting	Coupling Capacitor	Connection to Radio	Ground Connection	Condenser Setting	TO MAXIMUM See Trimmer Illustration
455 KC	.1	CONTROL GRID OF IR5	TO CHASSIS	CLOSED	Ist AND 2nd I.F. A1 - A2 - A3 - A4
540 KC	.1	CONTROL GRID OF IR5	TO CHASSIS	CLOSED	OSCILLATOR COIL SCREW
1640 KC	.1	CONTROL GRID OF IR5	TO CHASSIS	WIDE OPEN	OSCILLATOR TRIMMER AS
1400 KC	.1	CONTROL GRID OF IR5	TO CHASSIS	TO 1400 KC SIGNAL	ANTENNA TRIMMER A6
1	TURE AND TO	NAMED CONDENSED LAYOUT	(J	REPEAT	PROCEDURE

TUBE AND TRIMMER CONDENSER LAYOUT

- ! 11/2 Volt "A" Airline \$62-23 Eveready size "D", Burgess \$ 2, Ray-O-Vac size "D"
- 1 67½ Volt ''B'' Airline \$62-43 Eveready \$467, Burgess type XXD, Ray-O-Vac type \$4367 or equivalent.

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS E M 0 Z G 0 M R W T Y A R D D.P.S.T. SWITCH ON VOL. CONTRO **PORTABLE** RADIO 000000 MODEL NO. 15GSE-1068A 31-9 3M 200. 3V4 2.2 MEG.∽ OVER SWIT TUNING CORO ASSEMBLY WITH DIAL PLATE REMOVED AND GANG CONDENSER FULLY IN MESH CHANGE ZE S TURNS OF No. ALL COMMON GROUND POINTS ARE COMMETCE TO TOGETHER, AND ISOLATED FROM CHASSIS BY A R.T. CHOKE & CANGITOR ASSEMBLY (G-1) ISOLATING CONDENSER. () () () DENOTES COMMON NFGATIVE MINITED DENOTES CHASSIS GROUND LE-455 KC. 47 MEGA 2 % 1. DISCONNECT ANTENNA LEADS FROM CABINET BACK. 2. DISCONNECT BATTEN LEADS AND REBOVE BATTENES 3. MC CABROAND SETMAN ON REBOVE THE FOUR 3. MC CABROAND LEACE CONNA AND REBOVE THE FOUR 4. THE REAS OF CAASSIS UPWARD AND PUL BACK 5. LGHT WITH CAASSIS CLEARS LOCATING PINS MC CABINET THE LOCATING PRINTE CARSIS LUTTL RINGS CLEAR TOP OF CABRIET AND REBOVE. 00000 CAPACITY O VOLTAGE TABLE CONVERT 3 GANG IRS CONVERTER -00000 + £ £ I 3." R-22 2NO IF TRIMMER RF SEC. TRIMMER #-20 #-20 #€¢ √ ŝ **d** ₹-2 6 þ -0. 2ND 1 F TRIMMER 455 KG Ü R · 9 RF TRANSFORMER NO ADJUSTMENT

output of test oscillator across the 1 megohm resistor. the loop connection wires from the loop. Attach a 1 megohm resistor across these connections and feed THE 1400 KC LOOP ANTENNA TRIMMER should be adjusted only after all other adjustments have been

ALIGNMENT PROCEDURE

してつ ノザーコウウァ

Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration.

the trimmers, or the loop and chassis may be removed from the cabinet and the loop placed in the same position and plane it will be in when both are mounted in cabinet. THE LOOP MAY BE LEFT IN THE CABINET and the chassis pulled out of the cabinet just far erough for adjustment of Use an accurately calibrated test oscillator with some type of output measuring device.

Couple test oscillator to receiver loop by: (1) make loop consisting of 5 to 10 turns of No. 20 to No. 30 size wire, wound on a 2" or 3" form; (2) connect this loop across ouput of test oscillator; (3) place test oscillator loop near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.

INT. L.E. TRIMMER 455 KG 123Q7 ET. AXC ÷ FENSION SPRING ON BANG CONDENSER PULLEY. 3 5

M O N T G O M E R Y W A R D

Radio Models 15GSL-1564B, 15GSL-1565B, 15GSL-1566B, and 15GSL-1567B

VOLTAGE TABLE

These models with a suffix "A" in place of "B", use the identical circuit.

SIGNAL GENERATOR					
FREQUENCY	COUPLING CAPACITOR	CONNECTION TO RADIO	GROUND CONNECTION	TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT
455 Kc	.05 Mfd.	Rear stator plates of tuning conden- ser.	Buss Lead	Any point near center where no interfering signal is received.	Slugs at top and bottom of I.F. Coil T-1
1620 Kc	.05 Mfd.	Rear stator plates of tuning conden- ser.	Buss Lead	Exactly 1620 Kc.	Oscillator trimmer of Gang. (C6)
1400 Kc	• •	Lay Generator lead near back of cab- inet	Buss Lead	Exactly 1400 Kc.	Antenna trimmer of Gang. (C3)

RADIO DIAGRAMS MOST-OFTEN-NEEDED 1952 MANUAL OF

LOCATION OF TUBES

RADIO-PHONO

MODEL NO. 256AA-934B

ALIGNMENT PROCEDURE

THE FOLLOWING EQUIPMENT IS REQUIRED FOR ALIGNING:
A signal generator which will provide an accurately calibrated signal at the indicated test frequencies; an output indicating meter; a non-metallic screwdriver.

Radiation Loop: 2-turn loop, 6 inches in diameter.

CONDITIONS FOR ALIGNMENT:

Tone-Treble

Volume - Maximum

Selector Switch - "Radio" position

Test loop coupled loosely to receiver by spacing receiver loop in same position as it will be with chassis in cabinet.

c-8, c-7,	ヤ-こ	6-3
Across Voice	1	
Low End of Band	High End of Band	1400 KC
455 KC	1620 KC	1400 KC
LOOP	LOOP	LOOP
	455 KC Low End Across of Band Voice	455 KC Low End Across C-8, of Band Voice C-6, Coil 1620 KC High End of Band C-4

MONTGOMERY WARD Models 25WG-1570B & C, 25WG-1571B, 25WG-1572B, continued

ALIGNMENT PROCEDURES AM STAGES

The following is required for aligning:

An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed. Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas — .1 mf, and 50 mmf.

Volume Control Maximum all Adjustments.

Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.

Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

	SIGNAL GENE	RATOR				
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	CONNECT GROUND TO	GANG CONDENSER SETTING	ADJUST	ADJUST FOR
455 KC	Control Grid 1st 6BA6 Pin No. I	.1 mf	Chassis Base	Ratar Fully Open	2nd l.F. Pri, (1) and Sec. (2)	Maximum Output
455 KC	Cantrol Grid 6BE6 Pin No. 7 1st Det.	.1 mf	Chassis Base	Ratar Fully Open	1st l.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7	.ī mf	Chassis Base	Rator Fully Open	2nd I-F Pri. (1) and Sec. (2)	Maximum Output
1620 KC	Cantrol Grid 6BE6 Pin No. 7	.1 mf	Chassis Base	Ratar Fully Open	Oscillator C-41	Maximum Output
1400 KC	External Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output, Set Painter to 1400 KC See Note A	Antenna C-2	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.

FM STAGES

The following is required for aligning:

An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.

Dummy Antennas and I-F Loading Resistor—2500 mmf, 300 ohms

Zero center scale DC vacuum tube voltmeter having a range of appraximately 3 volts.

(If a zero center scale meter is not available, a standard scale vacuum tube valtmeter may be used by reversing the meter cannections far negative readings).

Allaw chassis and signal generator to "Heat Up" for several minutes.

	SIGNAL GE	NERATOR		1			
	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANG CONDENSER SETTING	ADJUST	ADJUST FOR
Discriminator	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC	6BA6 2nd I-F Pln 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Nate B	
I-F	10.7 MC Note C	6BA6 1st I-F Pin 1 and Chassis	2500 mmf	FM	Ratar Fully Open	2nd I-F Pri. (7) Sec. (8) Note D	Maximum Deflection
Discriminator	10.7 MC	6BA6 list I-F Pin 1 and Chassis	2500 mmf	FM	Rator Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
i-F	10.7 MC	Junctian C-32A & B (Dual 100 mmf cond.) And chassis	2500 mmf	FM	Rotor Fully Open	ist I-F Pri. (9) & Sec. (10) 2nd I-F Pri. (7) & Sec. (8) Disc. Pri. (5) In Order Shown Note D	Maximum Deflection
	10.7 MC	Same as above	2500 mmf	FM	Ratar Fully Open	Disc. Sec. (6) Note B	
		RECHECK	I-F ADJUSTMENTS	IN ORDER G	IVEN		
Oscillator	108.5	Disconnect the honk anten- na and connect generator to dipole terminals with re- sistor in series.	300 ohms	FM	Ratar Fully Open	Osc. C-25	Deflection Maximum
Antenna	104.5	Same as above	300 chms	FM	Tune rotor for max. AVC voltage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA & OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zera center scale DC vacuum tube voltmeter is to be connected between chassis graund and the AVC line. A signal of .1 volt must be fed into the receiver for this adjustment.

Note output voltage an the zera center DC vacuum tube valtmeter.

Disconnect zero center DC vacuum tube voltmeter from

27 K ohm resistor (R-10) and its junction with the terminal strip. Adjust for zero voltage Indication.

NOTE C-AM I-F coils must be aligned befare attempting to align the FM I-F coils.

NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.

AVC and connect it at the audia takeoff point at the

MOTOROIA Chassis HS-303, Model 72XM21, continued from preceding page.

BROADCAST BAND - IF & RF ALIGNMENT

Connect the AM signal generator as in chart below, with 400 cycle, 30% modulation.

Connect the output meter across the speaker voice coil. Throughout alignment reduce the genera-

tor output to a level which produces less than .40 volts across the voice coil, to avoid overloading the receiver.

Set the bandswitch to the AM position.

Turn the receiver volume control to maximum.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIC	SNMENT					
1.	.1 mf	Grid of conv. V-2 (pin 7, 12BA7)	455 Kc	Fully opened	1, 2, 3 & 4 (IF cores)	Adjust for maximum.
RF ALIC	SNMENT	-				
2.	.l mf	Grid of conv. V-2 (pin 7, 12BA7)	1620 Kc	Fully opened	(BC osc)	Adjust for maximum.*
3.		Across radia- tion loop**	1400 Kc	Tune in signal	8 (BC ant)	Adjust for maximum.

- 4. If, after the receiver has been aligned as above, it is found to be badly off calibration, it will be necessary to adjust oscillator core (7) as follows: connect the generator to the grid of the converter tube and, with the gang fully closed, adjust core (7) at 535 Kc. It is advisable to repeat the oscillator adjustments at 1620 Kc and 535 Kc several times until the tuning range is correct. Core (7) has been pre-set at the factory and normally should require no retuning.
 - * If difficulty is encountered in tuning trimmer (5), adjust trimmer (6) to ½ turn from tight.
 - **Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

FM BAND - IF & RF ALIGNMENT

Connect the signal generator as in chart below, with no modulation.

Set the bandswitch to the FM position.

Except in step 2 below, connect the electronic voltmeter across resistor R-23 (15K) in the ratio detector stage.

Throughout alignment reduce the signal generator output to a value which produces no more than a 5 volt rise above no signal voltage, to avoid overloading the receiver.

In step 2 below, connect two $100 \rm K$ ohm resistors in series across R-23. Connect the electronic voltmeter between the volume control side of resistor R-24 (33K) and the junction of the two $100 \rm K$ resistors, with the low side of the meter at the $100 \rm K$ resistors.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SETTING	ADJUST	REMARKS
IF ALIG	SNMENT 1000 mmf	Grid of conv. V-2 (pin 7, 12BA7)	10.7 Mc	Fully opened	9, 11, 12, 13 & 14 (IF cores)	Adjust for maximum.
2.	1000 mm f	Grid of conv. V-2 (pin 7, 12BA7)	10.7 Mc	Fully opened	10 (ratio det sec)	Adjust for zero. (Connect meter as in step 6 above).
RF ALIG	GNMENT 270 ohms	FM terminals on loop	87.5 Mc	Fully closed	15 (osc adj nut)	Adjust for maximum.
4.	_	-	-	Fully closed	16 (RF adj nut)	Turn counterclockwise until core is at bottom of pipe, then turn four turns clock-wise.
5.•	270 ohms	FM terminals on loop	90 Mc	Tune in signal	17 (RF tuning plug)	Adjust for maximum.
6.	270 ohms	FM terminals on loop	105 Mc	Tune in signal	16 (RF adj nut)	Adjust for maximum.
7.		-	-	-	-	Hepeat steps 5 & 6 until no further adjustment is ne-cessary.
80)	See 1	revious pa	ge for	trimmer loca	ation charts.

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS MOTOROLA, INC. **MODELS** 52C6 52C7 +RED 000 52C8 **CHASSIS** ₽₹ HS-310 220 220 5000 4 YOK 401 2000 10 MEG § END IDENTIFICATION 12AT6 DET-AVC-AF CONT 470D0 · WEG VOLTAGES TAKEN BETWEEN POINT INDICATED AND B-INPUT VOLTAGE ITVA AC. VOLTAGE TOLERANCE ±10% NO SIGNAL INPUT. * TRIMMERS ON GARD * MEASUREMENT MADE WITH GANG FULLY OPEN. VOLTAGE MEASUREMENTS MADE WITH ELECTRONIC TYPE VOLTMETER 2.2 MEG ALL RESISTORS INDICATED IN OHMS K* ONE THOUSAND (1000) OHMS ALL CAPACITORS INDICATED IN MANF UNLESS OTHERWISE SPECIFIED. 12BD6 TI B T2 CONNECTIONS (BOTTOM VIEW) 12 0\$C CD! L DRIVE CORD NOTE: WITH GANG FULLY CLOSED SET POINTER TO HORIZONTAL POSITION. . BACKGROUND PLATE POINTER FREG RANGE 535-1620 KC 2 GANG DIAL IF - 455 KC SHAFT FULLY CLOSED GANG 0

MOTOROLA, INC. CHASSIS 2A

MODELS BK2A, CT2A, GMT2A, HJ2A, HN2A, KR2A, OE2A, PC2A, PD2A, & SR2A

TO RECEIVER

ANTENNA RECEPTACLE

_ VOLUME AND

(F

⊚E Ø.

TONE CONTROL

12 3 TOP 4 BOT

AUDIO RECEPTACLI

MOTOROLA, INC. CHASSIS 2M MODELS BK2M, CT2M, GMT2M, HJ2M, HN2M, KR2M, OE2M, PC2M, PD2M, & SR2M

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO RADIO MODELS 52-540, 52-540-I, 52-541, 52-541-I, AND 52-542-I

RADIATING LOOP: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop antenna.

Drive-Cord Installation Details, Model 52-542-1

Drive-Cord Installation Details, 52-541 and 52-541-1 Circuit on previous

Showing Trimmer Locations Top View,

page

(Continued) Philco Models 52-540, 52-540-1, 52-541, 52-541-1 and 52-542-1

ALIGNMENT PROCEDURE

CONTROLS: Turn on radio and set volume control to maximum.

DIAL POINTER: Turn tuning condenser to full-mesh position. Set dial pointer to index

mark, located to left of "55."

OUTPUT METER: Connect across voice-coil terminals.

SIGNAL GENERATOR: Connect as indicated in chart. Use modulated output.

OUTPUT LEVEL: During alignment, attenuate signal-generator output to maintain outputmeter indication below 1.25 volts.

	SIGNAL GENERATOR	ror		RADIO	
STEP	CONNECTION TO RADIO	DIAL	DIAL	SPECIAL INSTRUCTIONS	ADJUST
					TC4-2nd l·f sec.
•	Ground lead to B; output lead through .1-uf. conden-		540 kc.	Adjust tuning cores, in order	TC3-2nd 1:f prh
-	ser to pin 6 of 7A8 converter.	455 KC.	(gang fully meshed)	given, for maximum output.	TC2—1st 1:f sec.
					TC1—1st i-1 pri.
61	Radiating loop: see note below.	1600 kc.	1600 kc.	Adjust trimmer for maximum output.	ClB—osc.
က	Same as step 2.	1500 kc.	1500 kc.	Adjust trimmer for maximum output.	C1A—αerial

RADIATING LOOP: Make up a 6-8 turn, 6-inch-diameter loop from insulated wire; connect to signal-generator leads and place near TCA 2ND TF SFC radio loop antenna.

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO RADIO-CLOCK MODELS 52-544, 52-544-1

ALICNMENT

	SIGNAL GENERATO	R			
STEP	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	ADJUST
1	Connect ground lead to B—; output lead through .1-µf. condenser to grid (pin 8) of 7A8.	455 kc.	Tuning con- denser fully meshed.	Adjust tuning cores, in order given, for maximum output.	TC4-2nd l-f sec. TC3-2nd l-f pri. TC2-1st l-f sec.
2	Radiating loop (see note below).	1600 kc.	1600 kc.	Adjust trimmer for maximum output.	CIB—Osc.
3	Same as step 2.	1500 kc.	1500 kc.	Adjust trimmer for maximum output.	C1A—Aerial

RADIATING LOOP: Make up a 6—8 turn. 8-inch-diameter loop, from insulated wire: connect to signal-generator leads and place near radio loop aerial.

97

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO RADIO-CLOCK MODELS 52-543, 52-545,

52-547, AND 52-550

Models 52-543, 52-545, 52-547, and 52-550 are electrically similar to Model 52-544, but they are housed in different style cabinets, and incorporate certain circuit refinements over Model 52-544.

The following diagrams and the Service Information are for Models 52-543, 52-545, 52-547, and 52-550 only.

See page 97 for material on Philco Model 52-544.

MODEL 52-547

Model 52-550, Base View, Showing Symbolized Chassis

Model 52-543, Power and Clock Circuits

Models 52-543, 52-545,-and 52-547, Output Circuit

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO RADIO MODEL 52-643

		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.	-,	
Fattor	10000	TC5—2nd 1-f sec. TC4—2nd 1-f pri. TC3—1st 1-f sec. TC2—1st 1-f pri.	C5-osc. series	C1B—osc. shunt	ClC—r·f ClA—aerial	C5—osc. series TC1—r-f core		Z2 Z2 CONCENTER C3
RADIO	SPECIAL INSTRUCTIONS	Adjust, in order given, for maximum output.	Preset ½ turn from right.	Adjust for maximum.	Adjust for maximum.	Adjust for maximum while rocking tuning control.		CIA 33 L G C C C C C C C C C C C C C C C C C C
	DIAL	Gang fully meshed		1620 kc.	1500 kc.	580 kc.		RTER RFAMPL TC!
OR	DIAL SETTING	455 kc.		1620 kc.	1500 kc.	580 kc.		TC3 COMPE
SIGNAL GENERATOR	CONNECTION TO RADIO	Through a .1-µl. condenser to stator of r-f section of gang. Ground lead to B-	Radiating loop.	Same as step 2.	Same as step 2.	Same as step 2.	Repeal steps 3 and 4.	AECTIFIER TC4 TC5 IF AMPL TC2 MANUAL TC2 MANUAL TC3 MANUAL TC3 MANUAL TC3 MANUAL TC3 MANUAL TC4 MANUAL TC4 MANUAL TC5 MANUAL TC4 MANUAL TC5 MANUAL TC5
	STEP	_	8	9	4	2	9	St. 661
								-

OUTPUT LEVEL: During alignment, attenuate signal-generator output to maintain an output-meter indication of 1.25 volts.

VOLUME CONTROL: Set to maximum.

CRITICAL DRESS: The green lead from the osc. section of C1 to C5 must be dressed away from the chassis, with all excess under the chassis.

Use

SIGNAL GENERATOR: Connect as indicated in chart.

modulated output.

coil.

Connect across speaker voice

OUTPUT METER:

DIAL POINTER: Turn tuning condenser to full-mesh position. Adjust pointer so that center of pointer carriage coincides with the first scribe line from the left.

STEP	SIGNAL GENERA	TOR		ADJUST	
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	TRIMMER
1	Through a .01- μ f. condenser to pin 6 of 7A8 converter tube.	455 kc.	Gang fully open.	Adjust, in order given, for maximum output. TC2 and TC4 are located at top of transformers.	TC4—2nd i-f sec. TC3—2nd i-f pri. TC2—1st i-f sec. TC1—1st i-f pri.
2	Radiating loop (see note below).	1600 kc.	1600 kc.	Adjust for maximum.	ClB-osc. trimmer
3	Same as step 2.	1500 kc.	1500 kc.	Adjust for maximum.	ClA—ant. trimmer

ALIGNMENT CHART

DIAL CORD

3 TURNS

104

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCA Victor Model 1R81, Chassis RC-1102, etc., continued. not both) may be used on "REAR" of a switch wafer. Either may be used on both "FRONT" and "REAR." This also applies to contacts #3, 4, 5, 8, 9, 10 " of a switch wafer. Either (but 7 Z and 11 have alternate positions des nated as "A" and "B" Either 2A 2B (but not both) may be used "Front" of a switch water. Either (k Switch contacts #1, 6, 7 and not have alternate positions. C356 VY S S Z Z and 11 390,4 00 K ├-||||-40 \$ × -Simplified Schematic Diagram—"AM"—Chassis Nos, RC-1102B, RC-1102C 4734 2 × × 6BA6 A.M. SOUND & A.V.C. C18 e z 88 ΞŘ > v z -4752 1007 2000000 T 2×2 2207 8200 SI-2 REAE 20°4 100°4 1111 VOLTABEE MEASURED TO COMMON WIRING WITH "VOLTDHRYST" AND SHOULD HOLD WITHIN \$ ERO ALL CAPACITANE VALUES LESS THAN 10 ARE IN MF. AND ABOVE 10 ARE IN MF. WHILESS OTHERWISE INDICATED. > N . 6CB6 5<u>\$</u> Z.2 MEG 222 APPROX. GAIN DATA USING CHANALYST WITH 3K FIXED BIAS. ANTENNA LINK OPEN.

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS FM Alignment

RCA Victor Model 1R81 (Continued)

Alignment Procedure

Alignment Indicators:

For measuring the developed devoltage across C29 during FM alignment an RCA VoltOhmyst or an equivalent meter should be used. An output meter connected across the voice coil is also needed to indicate minimum andro output during FM Ratio Detector alignment.

Oscilloscope Alignment:

It is preferable to use a sweep generator and oscilloscope for aligning I.F. and R.F. circuits to obtain a visual observation of curve shape during alignment.

With FM sweep generator connected between FM ant. (#3) terminal and chassis and oscilloscope connected between the junction of R28-C30 and chassis the overall FM response may be observed. There should be a peak to peak separation of not less than 180 kc, with 50,000 mv. input.

AM Alignment RANGE SWITCH IN AM POSITION

Steps	Connect high side of sig. gen. to—	Sig. gen. output	Turn radio dial to—	Adjust for peak output		
1	Pin 1 of V3 6BA6 in series with .01 mfd.	444	Quiet point	T4 bottom core (pri.). T4 top core (sec.).		
2	Pin 7 of V2 6X8 in series with .01 mfd.	455 kc.	freq. end.	T2 top core (sec.). T2 bottom core (pri.).		
3		1620 kc.	High freq. end of dial (min. cap.)	C1-5T		
4	No. 1 terminal on ant. input strip	1400 kc.	1400 kc. signal	C1-2T ant. C1-3T r.f.		
5		Shunt a 10,000 ohm resistor across the r.f. section of the gang.				
6		600 kc.	600 kc. signal	L6 osc.* (Rock gang.)		
7	1	Remove the 10,000 ohm resistor and peak L4 r.f.*				
8	Repeat 3, 4, 5, 6 and 7					

* The correct adjustment of the OSC. (L6) core is that peak obtained with core fartherest away from the coil mounting clips. R.F. (L4) core should be set to the peak obtained (2 peaks are seldom obtainable) with core closest to the mounting clips.

RANGE SWITCH IN FM POSITION — VOLUME CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to—	Sig. gen. output	Turn radio dial to—	Adjust for peak output			
1	Connect the d-c probe of a VoltOhmyst to the negative lead of the 2 mfd. capacitor C29 and the common lead to chassis.						
2	Pin 1 of V4 6AU6 in series with .01 mfd.	10.7 mc. modulated 30% 400 cycles AM		T5 top core for max. d-c voltage across C29. T5 bottom core for min. audio output.*			
3	Pin 1 of V3 6BA6 in series with .01 mfd.	Adjust to provide 3 to 4 volts indi- cation on	Quiet point at low freq. end.	†† T1 top core (sec.). T1 bottom core (pri.).			
4	Pin 7 of V2 6X8 in series with .01 mfd.	VoltOhmyst during alignment.		†† T2 top core (sec.). T2 bottom core (pri.).			
5	#3 ant. term. in	90 mc.	90 mc.	L7 osc.**			
6	series with a 300 ohm resistor.	106 mc.	106 mc. signal	C1-1T ant. C1-4T r.f.			
7	(Remove ant. lead from #3 term.)	Remove ant. lead from 90 mc.		L1 ant.** L2 r.f**			
8	Repeat Steps 5, 6 and 7 whill further adjustment does not improve calibration.						

^{*} Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.

Alternate loading involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 680 ohm resistor after T3 and T1 have heen aligned.

Oscillator frequency is above signal frequency on both AM and FM.

Extreme care should be used to avoid running the I.F. cores all the way through the winding and out the other end. Double peaks or serious overcoupling will result. The correct adjustment may be determined by starting the core all the way out (threads extended). The first peak obtained when tuning should be the correct peak.

** Note: FM antenna, mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The location of the tap on the antenna coil is ¾ turn ± ⅓ turn from the ground end.

^{††} Alternate loading may be necessary to provide accurate observa-

RCAVICTOR

Lead Dress

- 1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
- 2. Dress power cord against chassis base.
- 3. Dress capacitor C18 against back apron.
- 4. Dress capacitor C13 down to base alongside of shielded
- 5. Dress output transformer leads down to chassis.
- 6. Dress capacitors C9 and C15 as direct as possible.
- 7. Dress dial lamp leads on top of chassis between 12SQ7 and 50L6GT tubes; below chassis, as short as possible to rectifier socket.
- 8. Dress excess loop leads away from tubes and clear of tuning condenser.

Test-Oscillator.—For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the first score mark at the left-hand end of the dial back plate The four score marks represent: Мах сар. 600 kc 1400 kc

AC-DC Radio Receiver

Models 1X591, 1X592

Chassis No. RC 1079K, RC 1079L

Alignment Procedure

Steps	Connect the high side of test-oscillator to—	Tune test-osc. to	Turn radio dial to-	Adjust the following for max. output		
1	12SK7 I-F grid through 0.1 mfd. capacitor		Quiet-point	T2 (top and bottom) 2nd I-F trans.		
2	Stator of C1 through 0.1 mfd.	455 kc	1600 kc end of dial	*Tl (top and bottom) lst I-F trans.		
3		1620 kc	Min. cap.	C4 (osc.)		
4	Short wire placed near	1400 kc	1400 kc signal	†C2 (ant.)		
5	loop to radiate signal	600 kc	600 kc signal	L3 (osc.) Rock gang		
6		Repeat steps 3, 4 and 5.				

Do not readjust T2 when test oscillator is connected to C1.

† When adjusting C2 (ant. trimmer) it is necessary to have the speaker and loop in the same position and spacing as they will have when assembled in the cabinet.

Dial Indicator and Drive Cord

Tube and Trimmer Locations

RCAVICTOR

1X51 Series

Chassis No. RC 1104, RC 1104A, RC 1104B

Chassis using different tubes:

CHASSIS NO. RC 1104-1, RC 1104A-1, RC 1104B-1

Same as above except rectifier is RCA 35W4 instead of RCA 35Z5GT.

CHASSIS NO. RC 1104C, RC 1104D, RC 1104E

			Converter
(1)	RCA	12BE6	Converter
(2)	RCA	12BA6	I.F. Amplifier
			DetA.V.CA.F. Amp.
(4)	RCA	50C5	Output
(5)	RCA	35W4	Rectifier

Test-Oscillator

For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Centering

If the mounting of the tuning condenser has been disturbed, it may be necessary to adjust its position after replacing the chassis in the cabinet. This may be done in the following manner:

- 1. Replace tuning knob.
- 2. Install chassis and tighten the mounting screws.
- Loosen the two screws which hold the tuning condenser mounting bracket to the chassis.
- Adjust the position of the tuning condenser mounting bracket so that the tuning knob may be rotated without binding on the cabinet.
- 5. The two screws should then be tightened to maintain this

1X51 SERIES:

1X51	1X52	1X53
(Maroon)	(Ivory)	(Green)
1X54 (Tan)	1X55 (Blue)	1X56 (Red)
()	1X57	,

Alignment Procedure

Steps	Connect the high side of test-oscillator to—	Tune lesi-osc. to—	Turn radio dial to—	Adjust the following for max. output	
1	12BA6 I-F grid through .01 mid. capacitor	455 kc	Quiet-point 1600 kc	*T2 (top and bottom) 2nd I-F trans.	
2	Stator of C1-2 through .01 mfd.	455 KC	end of dial	Tl (top and bottom) lst l-F trans.	
3		1620 kc	Min. cap.	osc. trimmer	
4	Short wire	1400 kc	1400 kc signal	tant. trimmer	
5	loop to radiate signal	600 kc	600 kc signal	L2 (osc.) Rock gang	
6		Repeat steps 3, 4 and 5.			

- * Do not readjust T2 when test oscillator is connected to C1-2.
- † When adjusting ant, trimmer it is necessary to have the loop in the same position and spacing as it will have when assembled in the cahinet. This spacing is 51/2" from dial hack plate to loop.

SCREWS

 \otimes

0

-"A"
BATTERY CLIPS

BATTERY SAVER SWITCH

ANT. ROD FLUSH WITH GROMMET

O OUTPUT

BATTERY CONNECTOR

455 KC 2ND, I.F. TRANS

Tube and Trimmer Locations

screws

0

105

QUITPUT

1R5

+**`A**"
BATTERY
CONNECTORS

1R5

Q Q

L.F.

1Ú4

TUNING CONDENSER

Ø

ports, until the top end of the back separates from the

2 B 402

Ivory 2 B 405

Red

РΜ

SPEAKER

10 ME

67½v "8"

BATT.

≥зэо

- the retaining lugs in the bottom of the main case.
- snap fasteners can best be removed by inserting a screwdriver under the snap fastener strip and prying upward.
- c. The "A" batteries can easily be removed by pulling up on the spring wire clips.

Note: The "A" and "B" batteries have approximately equal life and therefore it is advisable to replace all batteries at one time.

III. To Remove Chassis

- a. Remove dial knob by grasping with finger tips at two sides and pulling.
- b. Remove back cover.
- c. Remove batteries.
- d. Remove "A+" contacts by squeezing against case and sliding out of slots in case.
- e. Remove the four screws "A."
- f. Grasp the assembly by the speaker and pull the bottom end down and outward to clear the volume con-

IV. To Replace Chassis

- a. Observe the position of the battery save button extension in relation to the "battery-save" switch. This extension must engage with the center of the battery save switch.
- b. Replace in reverse order to that given for chassis removal.

MUTING SWITCH

PICKUP

2 MEG. TONE CONT.

3 TONE CONT.

4 TONE CONT.

5 TONE CONT.

5

Silvertone

Sears, Roebuck & Co.
Clock Receiver Nos. 10 & 11
Chassis 132.896

ALIGNMENT DATA

Tuning range 540 Kc. to 1600 Kc. Intermediate frequency—455 Kc. I-f and r-f measurements made at .5 watt output—approximately 1.26 volte on a rectifier type voltmeter connected across the volce coll.

Approximate inputs for .5 watt output: I-f 300 uv. R-f with standard loop: at 600 Kc 2600 uv/m; at 1000 Kc 2000 uv/m; at 1400 Kc 1600 uv/m. R-f at external antennn connection: at 600 Kc 1000 uv; at 1000 Kc 800 uv; at 1400 Kc 800 uv.

Position of Vorinhio Open 1400 Kc 600 Kc	Generator Frequency 455 Kc 1400 Kc 600 Kc	Ant05 mfd. 50 mmfd. 50 mmfd.	Generator Connection (high) Mixer Grid Ext. Ant. Conn. Ext. Ant. Conn.	Connection (low) Float. Gnd. Float. Gnd. Float. Gnd.	Adjust Trimmors (in order shown) A1, A2, A3, A4 Check Point	Trimmer Freshien I.F. Onc. Mixer
600 Ke	600 Kc	50 mmfd.				

TUBE LAYOUT OUTLINE

			SCHEHATIC		
SCHETATIC			LOCATION	PART NO.	DESCRIPTION
LOCATION	PART NO.	DESCRIPTION		N19132	Cord Dial Drive
1.1	N24019	Antenna Loop Assembly	CP	M24084	Couplate, Centraleb YA 401-002A
144	\$23994-1	Cabinet, Brown (Cat.No. 10)	FP	¥24103	Filpeo, Centralab YA 105-048
	N23994-2	Cabinet, Ivory (Cat.No. 11)	Rl		Resistor, 22k onms, \ \ \
	¥23999	Dial Scale	R2		Resistor, 330K ohms, 2 W
	£24001	Notal Grille	R3		Resistor, 47 ohms, 1 W
L2	N24020	Coil, Oscillator	R4		Resistor, 2.2 megonms, * W
Cla.ClB	\$24024	Condenser, Variable, 2-gang	R5		Resistor, 6.8 K ohms, 4 W
C2,C6		Condenser, P.T., .C6 uf, 400 V.	R6		Resistor, 100 K ohms, AW
c3		Condenser, P.T., .C6 uf, 200 V.	R7	24026	Resistor, 1 megohm, Volume Control
C4		Condenser, Csramio, 1.5 K uuf.	R6		Resistor, 6.8 megohn, 🖁 W
•-		500 V.	R 9		Resistor, 15 ohm, 1 W
C5		Condenser, Ceranio, 47 unf. 500 V.	RIO		Resistor, 120 ohm, 🖟 W
C7		Condenser, Diso, 5 K uuf, 500 V.	Rll		Resistor, 1200 ohm, 1 W
C8		Condenser, P.T., 02 uf, 400 V.	SPK	N24022	Speaker, 4" P.M.
C9A.C9B.C9C	¥24025	Condenser, Electrolytic, 80-30 uf.		N20381	Spring, Dial Cord
		150 V. 20 uf, 25 V.	Tl	121797-8	Transformer, I.F.
			T2	ii24021-1	Transformer . Cutput

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS Power Supply 105-125 V. D.C. or 105-125 V., 50-60 cycles A.C. Frequency Range AM—530 Kc. to 1630 Kc. FM— 87 Mc. to 109 Mc. Intermediate Frequency AM-455 Kc. FM-10.7 Mc. SUPERHETERODYNE Sets Nos. 25 and 27 478.238 AM-FM, Sears, Roebuck & Co. Chassis 7 TUBE AC-DC,

NOTE 1: Connected as shown in Model 1U338 only. Loop return connected to A.V.C. at point X in Model 338.

NOTE 2: Items with illustration numbers (21) and (22) used in 1U338 only. Loop and gang connected directly to pin #7 on 12BE6 in Model 338.

STEWART-WARNER

CLOCK - RADIO MODELS 9162-A & 9162-B

TRIMMER AND SLUG NUMBER

RECEIVER DIAL SETTING

SIGNAL GENERATOR FREQUENCY

SIGNAL GENERATOR CONNECTION 3-4

affect the

signal.

where

Any paint does not

455 KC 400 cycle Modulatian

COU

٥

Connect directly

pling turn as described in step 2 above.

40

ñ

ဒ္ဓ

1500 KC 400 cycle Madulatian

Connect directly to coupling turn as described in ø

Tune to 1500 KC generator signal

1500 KC 400 cycle

900

₽

step 2 above.

pling turn as described in step 2 above.

ALIGNMENT PROCEDURE

Lettered terminals in illustration correspond to similarly lettered terminals on the circuit diagram.

OSC. COIL 509832 During the alignment of this receiver, the Tuning and Painter knob will have to be set to a specific frequency. Since the dial scale is an cabinet for correct positioning of the gang condenser and pointer. Before removing chassis from cabinet it will first be necessary to take off Volume Contral knob, to pry off the two retaining clips at top (NOTE: Do not disturb the two externally mounted screws at bottom of cabinet back; these screws serve to mount loop and back to chassis frame.) Then turn the Tuning cnd Painter knob to the desired receiver chassis must be in the of cabinet back and to remove the two chassis maunting screws which are accessible through slot openings at each side of cabinet back. position for alignment and, taking care not ta change this setting, from gang condenser shaft. Now chassis can be withdrawn from cabinet without disturbing position integral part of the cabinet, the pull Tuning and Pointer knob condenser.

Couple the signal generator to the receiver by connecting its autout to several turns of wire formed in a circular shape so that it may be placed adjacent and parallel to the receiver loop antenna.

Connect an output meter across the speaker voice coil or from the
plate of the 50°C5 tube to chassis through a 0.1 Mfd. condenser.
 Set volume contro: at maximum volume position and use a weak signal from the signal generator.

125

- Output meter across voice coil (3.2 ohm).
- Volume control at maximum for all adjustments.

Align for maximum output. Reduce input as needed to keep output near 1.28 volts (0.5 watt).

	SIGN	IAL GENERATOR		TUNER	ADJUST TRIMMERS	
Frequency	Coupling Capacitor	Connections to Receiver	Ground Connection	SETTING	TO MAXIMUM OUTPUT (in order shown)	
455 kc	O.1 mfd,	12BE6 grid	В	Rotor full open (Plates out of mesh)	Input and output slugs of IF cans	
1650 kc	0.1 mfd,	12BE6 grid	В —	Rotor full mesh (Plates in mesh)	Oscillator trimmer A2	
1500 kc		Radiating Loop		1500 kc	Antenna trimmer A1	

150. (All 12 h	an one of the	C ₁	.0001 MFD MICA
R ₁	1 Megohm	C ₂	.002 MFD
R ₂	3300 Ohms	C₃ C₄	.01 MFD
R ₃	22000 Ohms	C ₅ C ₆	.05 MFD
R4 R5 R6	470,000 Ohms	C ₇	.1 MFD
R ₇	10 Megohms	C ₈	.002 MFD
R _B	270,000 Ohms	C ₉	.25 MFD (600-Volt Poper)
R ₉	150 Ohms	C ₁₀	40-40-40 (150-Volt Electrolytic)
R ₁₀	2200 Ohms	C ₁₁	.05 MFD
R ₁₁	470 Ohms (2 Watts)	•	
R ₁₂	82 Ohms (1 Watt)	VOLUME CONTROL:	
R ₁₃	150 Ohms	VC	500,000 Ohms with Spst Switch (S2)

Model CC-2 differs from CC-1 principally in that it includes an odditional tube and a special silencing circuit (as described generally above) for discriminating agoinst noise disturbances on the power line while standing by. With na signal, and hence no rectified voltage appearing acrass the valume control, the plate of T₁ draws a large current, and the screen of T₂ is maintained near zero potential, so that the audio amplifier is inoperative. With the appearance of a signal from another station, and the consequent development of a DC potential across the volume control greater than approximately 3 volts, tube T₁ is cut off, and the screen of T₂ allowed to rise to its normal operating level (about 25 volts). Then with the set conditioned for transmitting, T₁ operates as a triode preamplifier stage, the speaker being cannected directly to its grid. (This stage takes the place of the input transformer found in model CC-1).

128

TELE-TONE RADIO CORPORATION

Chassis BL, used in Model 228

Except for mechanical differences, <u>Chassis AH and AZ</u>, used in <u>Models 185</u>, <u>190</u>, <u>200</u>, and <u>214</u>, are similar to the chassis described on this page.

			# 51 OPST SW ON VOLUME CONTROL
SCHEMATIC LOCATION	PART NO.	DBCC NATIONAL	1
LOCATION	PART NO.	DESCRIPTION	NOTE
		7777777	ON SOME SETS, SECTIONS OF, OR
		RESISTORS	THE ENTIRE GERAMIC BLOCK MAY
R 1	RC 104-1	100 000 00 1/0 000 11 000	BE REPLACED BY INDIVIDUAL CONDENSERS C21
R 2	RC 104-1 RC 153-1	100,000 Ohms 1/2 Watt 20%	UNLESS OTHERWISE NOTED, RESISTORS DOOL OF DOOL DOZ
R 3	RC 155-1 RC 106-1	15,000 Ohms 1/2 Watt 20%	ARE CARBON, WATT 20%; ALL CAP-
R4	RC 222-2	10 Megohms 1/2 Watt 20%	ACITANCE VALUES LESS THAN I ARE
R7	VC 20	2,200 Ohms 1/2 Watt 10%	'N uf, ABOVE I IN guf.
K. I	V C 20	1 Megohm - Volume Control with	6 i i i i
R 8	RC 106-1	DPST Switch	W. MOLDED PAPER
R 9	RC 335-1	10 Megohms 1/2 Watt 20%	M. 1'000'000 AETTOM STORE
R 12	RC 335-1 RC 105-1	3.3 Megohms 1/2 Watt 20%	TELLOW YELLOW GREEN
R 13	RC 225-1	1 Megohm 1/2 Watt 20%	RED BLACK
R 14	RC 225-1 RC 681-2	2.2 Megohms 1/2 Watt 20%	
R 15	RC 152-2	680 Ohms 1/2 Watt 10%	SELECTOR VOLUME
R 16	RC 152-2 RC 391-2	1,500 Ohms 1/2 Watt 10%	
R 19	RC 191-2 RC 180-1	390 Ohms 1/2 Watt 10%	ALIGNMENT DATA
R 20	RC 180-1 RC 335-1	18 Ohms 1/2 Watt 20%	FREO. RANGE' 532.5 TO 1620 KG
R 21		3,3 Megohms 1/2 Watt 20%	(SSA) (NIC) ALIGN RF TRIMMER C2 AT 1400 KC
R 22	RC 622-5 RP 5	6,200 Ohms 1 Watt 10%	ALIGN OSC. TRIMMER CS AT 1820
R 23		2,550 Ohms 5% Candohm Recistor	JF • 455 KC
R 24	RC 390-2	39 Ohms 1/2 Watt 10%	(UA) (UZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
R 24	RC 270-2	27 Ohms 1/2 Watt 10%	
		CONDENSERS	INSERT LINE
C 1A.1B	CV 15	Variable Condenser	CORD PLUG HERE
C 2	CV 15		FOR BATTERY-OPERATION
C 3		RF Trimmer (Part of C 1A) Oscillator Trimmer (Part of C 1B)	
C 6	CM 470-1	47 Mmfd Mica	
C 7	CP 503-2	.05 Mfd 150 Volts Paper	
CB	CP 503-2	.05 Mfd 150 Volts Paper	
C 9	CP 103-2	.01 Mfd 150 Volts Paper	
C 13.14	OF 103-2	(Part of T 2)	
C 15	CP 103-2		
C 16	CP 503-2	.01 Mfd 150 Volts Paper .05 Mfd 150 Volts Paper	
C 19,20	CP 303+2	(Part of T 3)	Line cord plug shown in position
C 21B \		.0001 Mfd \	tor battery operatios, with line
C 21C)		01 Mfd	cord wropped ground line cord
C 21D }	CC 5-2	.0001 Mfd Ceramic Condenser Block	
C 21E)		.002 Mfd	For A.CD.C. opsration remove
C 21E /	CP 102-3	.002 Mrd 200 Volts Paper	PATTERY DIPLETERY plug from chossis unwrap cord ond bring out of notch m side
C 23	CP 502-2	.005 Mfd 400 Volts Paper	"A" BAT TERY ond bring out of notch in side of cover
C 27	CP 104-1	.1 Mfd 200 Volts Paper	
C 28	CP 104-1 CPM 503-1	.047 Mfd 400 Volts Molded Paper	
C 30A)	CPM 303-1	40 Mfd 150 Volts \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lasert two-prong ping Placs B BATTERY so that
C 30B	CE 17	40 Mfd 150 Volts Electrolytic Cond	aura lasas are accessed
C 30C	OE II	200 Mfd 10 Volts Electrolytic Cond	enser aura torga pin angages Snop fasteners oute battery.
0 300)		ron wird in Acits)	Excessive force is not req-
			uired to push plug into bolt-
			4 -17.

RADIO RECEIVER ERODYNE SUPERHET AC-DC TUBE, 5 **TELETONE MODEL NO. 230** - BO CHASSIS

antenna section plates of variable for maximum output. Model 1150, placed two feet from the set loop, or

5005

The alignment procedure should be done in the order given for greatest accuracy. Align for maximum output. Reduce input to keep output near 0.4 volts. **With a generator signal of 600 Kc, turn the set to the point where maximum output is obtained, which three turns of wire about six inches in diameter, placed about one foot from the set loop.

FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a .1 MFD condenser. The ground lead from the generator must be connected to the metal frame of the gang condenser. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455KC and adjust the trimmers of the 1st and 2nd I.F.

SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1650 KC. The OSC. trimmer is located on the front of the chassis between the volume and tuning controls. Adjust this trimmer until the 1650 KC signal is tuned in.

transformers until a maximum reading is noted

THIRD STEP: Remove the hot lead of the generator from the ANT section of the gang condenser. Adjust the Signal Generator to 1400 KC. Rotate the tuning control until this signal is tuned in. The ANT trimmer is located on the back of the loop antenna. Adjust this trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, as the coils and condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.

WEBSTER-CHICAGO

MODELS 100 AND 101 RECORD CHANGERS

NOTE: The mechanism of Models 100 and 101 are identical. The difference between them is one of styling and appearance.

The basic Model 100 Mechanism is used in the following models:

Model 100-1 is the basic record changer chassis with a Crystal pickup cartridge and replaceable needle. The needle and cartridge have high compliance so they will play both standard groove and microgroove records at low needle pressure.

Model 100-27 is the same basic mechanism as above with special pickup arm and interchangeable plug-in heads designed for the G. E. Variable Reluctance Cartridges.

Model 100-55, Model 100-557 are models 100-1 and 100-27 respectively mounted on an attractive metal base to fully enclose and protect the mechanism.

Model 100-62 is a complete portable phonograph with the Model 100-1 record changer, an amplifier and speaker mounted in an attractive burgundy leatherette carrying case.

Model 100-64 is the basic Model 100 mechanism mounted in an attractive burgundy leatherette carrying case for portable use.

FOR "AUTOMATIC" RECORD CHANGE

- Lift the Record Ballast Arm and swing it away from the spindle until it "latches" with a light snap. The Automatic Index Finger will follow
- 2. Place up to a l-inch stack of any one size of records on the Spindle and swing the Record Ballast Arm back to the spindle allowing it to drop in position with the spindle in the hole. The Automatic Index Finger will remain away from the record until the change cycle starts.

It will then move in to feel the diameter of the record and automatically index the pickup needle to the proper playing position.

- Then turn Needle Tip Selector to correct position for records being played. Move the Speed Selector Lever to the correct speed for the records being played and push the START-RE-JECT control.
- 4. To reject any record while playing in the Automatic Position, push the Reject control.

After the last record has been played, the entire stack may be removed from the turntable at one time. The simplest procedure is as follows:

- a. Lift and turn the Record Ballast Arm weight out of position until it latches. Be sure the pickup arm is on the pickup arm rest.
- b. Place the fingers of both hands under opposite edges of the bottom record. Do not apply pressure to the top record but keep your thumbs free, and lift the stack of records straight up, following the contours of the spindle. This permits the stack of records to follow the curve of the spindle without binding.

FOR "MANUAL" RECORD CHANGE

 Lift the Record Ballast Arm and swing it and the Automatic Index Finger away from the spindle. The changer is then automatically in "manual" until the Record Ballast Arm is mov-

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS WEBSTER-CHICAGO MODEL 100 RECORD CHANGER SERVICE INSTRUCTIONS

ed in and placed over the spindle. The pickup arm can be moved in or out without tripping the Velocity Trip automatic mechanism so long as the Record Ballast Arm and Automatic Index Finger are left in this position.

2. Turn Needle Tip Selector to correct position for record being played. Place a record on the turntable. Move the Speed Control Lever to the correct speed for the record being played and then place the needle gently on the record. To stop the mechanism at any time turn the Speed Selector Lever to an "OFF" position.

SERVICE INFORMATION

The functions and most probable misadjustments of the main assemblies are as follows (reference numbers refer to the exploded views).

FAILS TO CHANGE RECORDS AUTOMATICALLY

The Main Cam Assembly (61) drives the mechanism associated with the action of the Pickup Arm (23) and the Record Selector assemblies. It, in turn is driven by the gear train (9) and the Turntable which is rim driven by the phonograph motor.

The Cam Drive Gear (56) is put in motion or "tripped" by means of the "Velocity Trip" (57) or by the manually operated "reject" trip (25). When the movement of the Pickup Arm toward the spindle is greater than 1/2" in 1/2 revolution of the turntable, the Velocity Trip Arm (76) trips the Velocity Trip (57). This releases the Actuating Pawl on the Main Cam Assembly (61), allowing it to engage the Cam Drive Gear (56) and driving it through the change cycle. The pressure from the Velocity Trip Arm required to actuate the trip mechanism is negligible.

The Velocity Trip Arm (76) follows the movement of the Pickup Arm through a weighted friction clutch (75). This clutch must be kept free of oil and grease. If the clutch does not cause the Velocity Trip Arm to trip the mechanism, clean the clutch parts with carbon tetrachloride. This clutch should operate the trip mechanism without placing undue drag on the movement of the pickup arm.

Also check for:

- 1. Velocity Trip (57) binding on its mounting Pin (J of 69).
- Slight burr on end of the Actuating Pawl or on the underside of the hook end of the Velocity Trip (57).
- Actuating Pawl stuck (part of Main Cam Assembly (61) engaged by the hook end of the Velocity Trip (57)).
- Velocity Trip Arm (76) bent and not hitting the Velocity Trip (57).
- Velocity Trip Arm (76) fails to touch the Velocity Trip.
- Velocity Trip (57) rubbing on the underside of the Cam Drive Gear (56).
- No velocity lead-in groove or eccentric groove in the center of record.
- 8. Foreign matter in record groove.
- 9. Badly worn record.
- 10. Badly bent or worn needle.
- 11. Spindle out of adjustment. (See "Does not push off records.")
- 12. Rubber bumper on Velocity Trip (57) damaged by sharp edges of reset points of gear (56). Replace bumper, Part No. 24P023. The bumper can be slipped off its stud and a new one forced on.

CHANGES RECORDS PREMATURELY

At the completion of the change cycle, the Actuating Pawl (part of 61), is disengaged from the Cam Drive Gear (56) by the hook end of the Velocity Trip (57), which has been returned to its normal position by the reset points on the Cam Drive Gear (56).

Fig. 2

136

Fig. 1

MODEL 100 RECORD CHANGER SERVICE INSTRUCTIONS

If the vertical clearance between the lip on the Velocity Trip Lever and the edge of the Main Cam is too small, it will prevent the hooked end of the Velocity Trip Lever from engaging the trigger. Adjust the clearance between the lip on the Velocity Trip Lever and the Main Cam to be within $\frac{1}{32}$ " and $\frac{1}{64}$ " when the roller is contacting the point of one of the reset points on the Cam Drive.

Also check for:

- 1. Velocity Trip (57) rubbing on Cam Drive Gear
- 2. Manual Trip Lever (67) binding.
- 3. "Disengage Roller" broken on the Velocity Trip (57).

PICKUP ARM DOES NOT CLEAR 1" RECORD STACK

The vertical movement of the pickup arm is controlled by the angle of the pickup arm raising lever (62 and Fig. 3). The needle should approach the top record of a full 1" stack of records on the turntable with approximately $\frac{1}{16}$ " clearance.

- 1. Put a full 1" stack of records ON THE TURN-TABLE.
- 2. Trip the "Reject" control and rotate the turntable clockwise until the pickup arm reaches its highest point.
- 3. Be sure the front or 10" notch in the pickup arm raising disc engages the pickup arm raising lever.
- 4. If the needle does not clear the top record or if it raises too high, adjust by holding the pickup arm raising lever (62) at point X and bending at Y as indicated in Fig. 3.

WEBSTER-CHICAGO ù/G

CAUTION: All adjusting bends should be made slowly, using slight but firm, easy pressure. Be careful to bend only up and down, not across the lever.

Be sure the set screws in the Pickup Arm Raising Disc (78A) are not loose and are properly positioned in the alignment holes.

NEEDLE SET DOWN POINT INCORRECT

The pickup arm should set the needle down at or just outside the "lead-in" groove of the record, regardless of the size of the record. It is advisable to follow a set routine when checking for the proper needle set down positioning. At the factory the following routine is followed:

7" ADJUSTMENT

1. Place a 7" Record on the spindle and permit the Automatic Index Finger to rest against the edge of the record. With the Speed Selector in the "OFF" position, press the Reject Button and revolve the turn table by hand thereby putting changer through its change cycle. Note action of the Raising Lever; when this lever

reaches its highest point and its farthest outward excursion, the edge of the lever should seat in the 7" notch of the Raising Disk. In this position of the Disk its positioning ear should touch the sub plate post. If necessary bend the ear so that the above action occurs each time changer is cycled with a 7" record on the spindle.

2. Continue the change cycle until the needle is just

above the 7" record. Nearly exact indexing can now be attained by means of the adjusting screws in the hub of the Raising Disk. These screws have pointed ends which fit into "off-center" holes in

the Tone Arm Shaft. By simultaneously loosening one screw and tightening the other the needle can be brought just over the lead-in groove of the record.

This adjustment requires the use of two No. 8 Bristol wrenches. After the adjustment has been made both set-screws should be tight.

3. A vernier adjustment of the index is made by means of the slotted screw beneath the hole at the back end and on top of the tone

Trip Arm Stop Plate Not Shown

4. Note that there is no mechanical connection between the Raising Disk and the Set Down Assembly. Also note that 7" indexing is determined by the Raising Disk independently of the Set Down Disk.

WHEN THE 7" INDEX ADJUSTMENT IS COMPLETED DO NOT ALTER ANY OF PARAGRAPH 1 AND 2 AD-JUSTMENTS WHEN ADJUSTING FOR 10" AND 12".

WEBSTER-CHICAGO

C

10" AND 12" INDEX ADJUSTMENTS

- Make certain 7" indexing is correct. If not adjustment must be made as described above.
- 6. 10" indexing is determined by the engagement of the 10"-12" Set Down Plate with the Set Down Plate Stop Ear because the Ear restricts the movement of the Raising Disk causing the Raising Lever to come out of the 7" notch and slide into the 10" notch.
- 7. Place a 10" record on the spindle and permit the Index Arm to rest against the edge of the record. With the Speed Selector in the "OFF" position, press the reject button and revolve the turntable by hand until the record drops and the needle is just above the level of the record. At this point the Raising Lever should be in

Trip Arm Stop Plate Not Shown

in the 10" notch and proper indexing will occur. If not, the Set Down Plate can be adjusted by loosening the Plate Lock Screw and moving the plate so that it permits the Raising Lever to "fall" into and stay in the 10" notch. Be sure to retighten the Lock Screw.

8. 12" indexing is the same as 10" except that the more inward position of the Set Down Plate Ear, restricting the movement of the Rais-

ing Disk causes the Raising Lever to come out of the $7^{\prime\prime}$ notch, pass through the $10^{\prime\prime}$ notch and "fall" into the $12^{\prime\prime}$ notch.

LOCK-OUT

- 9. When the last record of a stack is being played the Index Arm moves against the Over-Arm bringing the Lock-out Ear into a position shown below. At the end of the record the Raising Lever returns the Raising
 - Disk to the position shown to the right. But when it attempts to carry the Disk inward again, the Disk movement is completely restricted by the Lock-Out Ear causing the Tone Arm assembly to come to rest on the rest button.
- assembly to come to rest on the rest button.

 10. The Lock-Out Ear can be bent to properly adjust it for performing the above function.

11. IF A PERSON HOLDS OR MOVES THE INDEX ARM WHILE THE RECORD CHANGER IS GOING THROUGH ITS CHANGE CYCLE THE LOCK-OUT EAR MAY BECOME BENT OR THE SET DOWN PLATE MAY BE FORCED OUT OF POSITION THEREBY EFFECTING 10"-12" INDEXING.

If it is necessary to adjust the Lock-Out Ear make sure it is not positioned so low that it interferes with the free movement of the Set Down Plate during

change cycle when records are on the spindle.

MANUAL PLAY

12. For manual playing of records the Index Arm is swung away from the spindle as far back as it will go. This causes the

MODEL 100 RECORD CHANGER SERVICE INSTRUCTIONS

Trip Arm Stop Ear to engage the Velocity Trip Arm and prevent it from tripping and cycling the changer mechanism.

- 13. On early production of Model 100 some Pickup Arm Raising Disks (part No. 11X552) were produced with the 7" notch slightly out of location. If such a changer is adjusted for 7" indexing it is possible that reliable 10"-12" setdown cannot be attained. This condition requires that the Disk be replaced with one of later production in which the 7" notch has been corrected.
 - Record Changers bearing production tags (under the main plate) carrying the code number 375-023 or smaller may require replacement of the Disk. Those carrying the code number 375-024 or higher are equipped with the proper disk.

ERRATIC NEEDLE SETDOWN POSITIONING

If all adjustments to assure a correct needle set down seem all right and the needle still sets down at odd and wrong positions, check:

1. Lip (D of 73, Fig. 8) should engage G of 64A by only about $\frac{3}{32}$ ". If it is difficult for G to clear D, the movement of the pickup arm will not be properly controlled and erratic "Indexing" will result. Bend D, if necessary, to permit, smooth, easy separation of these two parts.

CANNOT "REJECT" RECORDS

Pushing the Reject button (25) causes the Trip Lever Arm (67) to contact the Velocity Trip mechanism (57), putting the change mechanism in cycle.

If you cannot "Reject" records, check the perpendicular ear of the Velocity Trip mechanism. It may be bent so the Trip Lever Arm cannot touch it.

CANNOT PLAY RECORDS "MANUALLY" OR ONE AT A TIME

The changer is automatically in "manual" whenever the Record Ballast Arm (1A) and the Index Finger (1C) are turned out as far as they will go, as the you were loading a stack of records. The finger D of (73) holds the finger G of (64A), causing finger A of (73) to hold the velocity trip arm away from the change mechanism as long as the Index Finger is "out" away from the spindle.

If the mechanism "trips" with the Index Finger in the Manual position check for:

- 1. No detent in end of finger D of (73).
- 2. Dirt in the detent 3. Finger A of (73) bent

138

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS MODEL 100 RECORD CHANGER WEBSTER-CHICAGO 7

SERVICE INSTRUCTIONS

DOES NOT PUSH OFF RECORDS

The action of the vertical cam of (64) on the bent lever plate (71) forces the actuating rod (A) up into the spindle (3) to move the record push off finger forward, pushing off the bottom record of the unplayed stack.

Fig. 6

If the push off finger fails to release the record:

- 1. Put a full 1" stack of 12" records on the spindle. turn on the A.C. power and trip the Reject button. If the bottom record is not pushed off:
- 2. Turn the Adjusting nut (A) 1/4 turn counterclockwise out of the spindle to make the actuating rod slightly longer.

If the bottom record still does not drop, continue turning the adjusting nut counter-clockwise, $\frac{1}{4}$ turn at a time, until the record is pushed off.

CAUTION: If the actuating rod is turned out too far, the cam of (64) will not be able to complete its motion and the changer will stall in cycle. When a change cycle has been completed there should be very slight play at both ends of the rocker lever (71).

MORE THAN ONE RECORD IS DROPPED DURING A CHANGE CYCLE

If more than one record is dropped at a time, it will be found to be due to:

- 1. Foreign matter in spindle recess causing the latch to stick.
- 2. Exceptionally thin records.
- Bent spindle.

INCORRECT TURNTABLE SPEED

The three speed mechanism and the motor are one assembly. The Drive Wheels (31, 32 and 33) are mounted on a movable metal plate (35) in such a way that moving the Speed Selector Lever (27) moves the correct wheel into position between the motor shaft and the Turntable drive idler (79). The tongue of the detent spring (53) fits into an indentation in the edge of the metal plate to, index the speed selector wheels and hold them firmly in the desired position.

"OFF" indentations between each speed position hold the drive wheels away from the motor shaft and the Turntable idler when the Speed Selector Lever is in an "off" position.

If the Turntable speed is incorrect, check for:

- 1. Turntable Idler (79) cocked at an angle. Bend the wheel and shaft to straighten wheel. CAUTION: Do not bend idler (79) toward the drive wheels (31, 32, 33). Bend only sideways or away from the wheels.
- 2. The drive wheel mounting assembly (part of motor assembly (44)) must not bind. There should be at least $\frac{1}{64}$ " play at point "A". Bend the raised metal stop if more clearance is needed.
- 3. The entire motor assembly (44 plus 35, etc.) should be free floating. There should be slight play of the Speed Control Lever (27) between the "78" and "33" positions and the stops at the end of the speed selector dial.
- 4. Defective drive wheels (31, 32, 33).

CHANGE CYCLE STARTS BEFORE END OF RECORD

If the Trip Assembly chatters while the changer is running or if the changer cycles before the entire record is played, there is probably insufficient clearance between the hook end of the Velocity Trip (57) and the actuating gear (56). This clearance should be adjusted to be within $\frac{1}{32}$ " to $\frac{1}{64}$ " by bending the lever.

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS MODEL 100 RECORD CHANGER SERVICE INSTRUCTIONS WEBSTER-CHICAGO

Exploded View below Main Plate

Exploded View above Main Plate

MANUAL OF 1952 MOST-OFTEN-NEEDED RADIO DIAGRAMS MODEL 100 RECORD CHANGER SERVICE INSTRUCTIONS RADIO DIAGRAMS WEBSTER-CHICAGO

MODEL No. 100-REPLACEMENT PARTS LIST

Figure numbers refer to the exploded views above.

List* Price	9		70	71	5.5	22	02		.12	78.	1.00	20	9.5	201	90:	8.5	20	9	6 6	. 	8.5	0.00	1.85	32	2.	22.	91.	2.8		2.2	8 8	2 2	8.8	1.50	2.8	01.	.02	1 25 1
Description	Retaining Clip	Felt Washer	Shoulder Screw - Switch Com	Drive Wheel Mounting Plate and Com	Speed Selector Arm	Felt Washer for 11X539	"C" Washer for 11X539	Fibre Washer	Shoulder Screw for IIX539	Motor and Ton Stides Assembly	A.C. Switch	Switch Cover	Tension Spring — Index Plate Tension Spring — Idler Tink	Motor Mount Grommet	Motor Mount Sleeve	Motor Mount Screw	Speed Selector Lock Lever	Tension Spring — Lock Lever	Main Actuating Gear	Velocity Trip	Washer — for 11X545	Washer - for 11X545	Main Cam Assembly	Tension Spring — Raising Lever	Tension Spring — Raising Lever	Cycle Stop Arm	Compression Spring	Tension Spring for 11X546	Rivet for Cam Lever Mounting	Tension Spring Trip Lever	Screw — Irip Lever Mounting Positioning Plots	Standoff Lug Assembly	Spindle Actuating Lever Rivet for Mounting 45P909	Set Down Disc Assembly	lension Spring — Set Down Disc Clutch Weight	Velecity Trip Arm	Fell Washer — Velocity Trip	THE PARTY OF THE P
Pari Number	S0P125	25P030	41P673	17X481	11X539	25P030										25P3b/ 26P110		46P187		11X320		25 P083		46P022	46P221	45P921	467218	46P017	2/PU/2 11 X542	46P219	45P926	70P045	27P217	11X547	40F223 41P576	45 P935	11755	11.4332
Figure Number	34	35	36	37	38	39	1	4 4	4.2	. 44	45	46	4. 4.8	49	8:	22.5	S.	¥ 5	;	57	5. 5.	9;	1 P	Z.	2 2	64A	046 746	200	67	67A	9 6 9	2.5	. 22	73	. K	3.5	78	?
List Price	\$2.80	1.87	01.	80:	1.75	8;	3.5	3.5	36	i 6	Si 8	5 5	7.8	=	K) E	3 23	70.	3:4	20.	8:	2 8	50.	3 5	50.0	06.7	9	1.25	ន	8 2	<u>.</u>		<u>.</u>	1.50	3 5	38	2 6	20.	-
Description	Record Ballast Arm and Index Finger Assembly - Complete \$2.80	Record Ballast Arm	Knurled Pin for 11X550	Index Finger Cushion	Index Finger Arm	Knurled Pin lor 11X549	Turnitable	Retainer for Turntable	Cup Washer - Spindle Mounting	Lock Washer - Spindle Mounting	Nut — Spindle Mounting	Shoulder Screw	Idler Gear — Large	Coupler — for 11X132	Months of the state of the stat	Lock Washer - for 11X132	Nut — for 11X132	Pickup Arm Rest	Washer	Speed Nut	Speed Indicator Dial	Rivet for Indicator Dial	Mounting Grommet	Mounting Spring	Pickup Arm Hinge	Pickup Arm Counter Balance		Housing Mounting Screw	The mounting brac	tridge used. Order exact replacement cattridges from your	stamped on the cartridge. The mounting bracket need not be	replaced when replacing the cartridge. Nor is the bracket usually included in the replacement cartridge professes	Pickup Cord and Lug	Reject Button Compression Spring — Reject Button	Speed Selector Lever	Reginer Clin	Fibre Washer	
Number	11X550	11X549	41P731	24P048	42X218	117558	111138	50P221	25P289	25P403	26P687	412333	47P024	45P342	25P284	25P222	26P046	49P099	25P388	26P554 24P004	78P508	27P205	24 P007	46P116	21 X 283	11X386 11X385	42P219	26P747					20X1363-1	45A133	42X217	50P034	25P406	
Number	-	¥.	9	ပ္သ	۵,	N 60	4	יח.	9	7	∞ σ	¥6	98	ပ္က မ	9 8	9F	ر ان و	:=	12	15	16	2 8	19	2 2	21 A	21B	22	22A	1	23.A	23B		24	9 93	2, 2	3 63	₽	=

The mechanism of Models 100 and 101 are identical. The difference

WESTERN AUTO SUPPLY COMPANY MODELS D-2108, D-2109

(FACTORY MODEL 237)

TRUETONE RADIO RECEIVER

ALIGNMENT PROCEDURE

Output meter connection	Across 3.2 ohm speaker voice voil
Output meter reading to indicate 0.05 watt across speaker voice coil	
Generator Modulation	
Position of volume control	
Position of pointer with Rotor full open (Plates out of mesh)	
	the 1620 kc calibration mark on the
	dial (pointer horizontal to light)

			SIGNAL (SENERATOR		Trimmer
	Position of Variable	Frequency	Dummy Antenna	Connection to Receiver	Ground Connection	Adjustments (in order shown)
iF	Rotor Full Open (Plates out of mesh)	455 kc.	.1 mfd	Grid of 12BE6 (Pin 7)	В-	Input and Output Trimmers on I.F Can T3 and T4
	Rotor Full Open (Plotes out of mesh)	1620 kc.	75 mmf	Antenna Hank	Chassis	Oscillator Trimmer T2
RF	1400 kc.	1400 kc.	75 mmf	Antenna Hank	Chassis	Antenna Trimmer T1
	600 kc.	600	75 mmf	Antenna Hank	Chassis	(Check Point)*

^{*}With a generator frequency of 600 Kc, tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial.

Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

The alignment procedure should be done in the order given for greatest accuracy.

Always keep the output from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

WESTERN AUTO SUPPLY COMPANY

IF Alignment:

Factory Model 4C11

- 1. Connect the high side of the signal generator through a .10 mfd capacitor to pin 1 of the IF amplifier (6BA6) tube. Apply a 400 cycle 30% modulated carrier of 455 KC at about 5,000 microvolts.
- 2. Set the volume control at maximum and adjust the top and bottom core of the second IF transformer for maximum output as indicated on the output meter.
- 3. Connect the high side of the generator to pin 7 of the 6BE6 converter tube. Set the generator output at about 100 microvolts.
- 4. Adjust the top and bottom core of the first IF transformer for maximum reading.

RF Alignment:

- 1. Set the signal generator to 1620 KC at about 100 microvolts.
- 2. Turn the tuning control fully clockwise. (Gang open).
- 3. Adjust the oscillator trimmer on gang for maximum reading. See chassis view.
- 4. Connect the generator lead to the antenna input jack through a 50 mmf capacitor.

6BE6

ANTENNA

ЭĤ

VOLTAGE READINGS TAKEN BETWEEN POINTS INDICATED AND CHASSIS. VOLTABE INPUT - 6.6 VOLTS

9000

0000

R4

0000

FUSE 14 AMP

PILOT LIGHT

BATTERY.

6.6 volts

MODEL D-4118

- 5. Set generator to 1400 KC. and tune in the receiver for maximum signal. Adjust the antenna trimmer for further increase in output level.
- 6. Tune receiver and generator to 600 KC. for maximum output and adjust antenna core (T-3) for further increase in output and best tracking. It may be necessary to repeat above procedure.

6AV6

4. ALL CARCITANCE WALLES IN MED AND ALL RESISTANCE VALLES IN OWNS UNLESS OTHERWISE SPECIFIED.

S. ALL NOTINGES MEASURED FROM ANSYST ISONOMY DISTRICT A 20,000 WHIT VOT METER. LINE VOLTAGE
S. ET AT IN Y A. C. READMINGS SHOULD BE AS SHOWN IL. 20 PER CERT. ECCTOR SWITCH SWELLS GOVERN HERTEREME CLOCKWISE POSITION OR AM BAND AS VIEWED FROM THE FRONT TO BE MESTALLED FOR ALIMMENT ONLY. SELECTOR SWITCH SWELL BY EXTREME OLD COUNTER CLOCKWISE POSITION OR BASS POSITION AS VIEWED FROM THE FRONT.

TION OR BASS POSITION AS VIEWED FROM THE FRONT. SET AT 117 V A.C. READINGS SHOULD BE AS SHOWN 1. 20 PER C

SCHEMATIC DIAGRAM OF V-2136-5R CHASSIS

Westinghouse RADIO TELEVISION

The V-2136-5R chassis used in Model H-334T/UR is similar to the V-2136-5U described in the 1951 volume, on pages 149 and 150. However, there are enough differences to warrant the inclusion of this diagram of V-2136-5R in this manual. For alignment you should refer to such material on the V-2136-5U, on page 150, in the 1951 Radio manual, volume 11.

149

Westinghouse

CHASSIS V-2180-1

AND Н.

other parts of the circuit are combina bination using Chassis V-2180 Model H-354C7 is a phono-com an AC power supply, but the circuit shown models used Chassis V-2180-7 or V-2180-7S, which are very with a 50L6GT output tube, similar to the circuit on In later production, tion employes Chassis Model H-357C10 similar to page. with

> selector switch (SW2) is changed to .005 mfd, C10 between the grid of the 12AT7 mixer stage and the connected from terminal #3 of the 2nd FM IF trans-To reduce hum modulation on strong signals, C36 located in the grid circuit of the 6BJ6 FM RF amplifier is changed to .005 mfd, C38 connected ormer (T3) to the selector switch (SW2) is changed to 800 mmf, and R29 connected between terminal #3 of the 2nd FM IF transformer (T3) and the AVC incorporated later production of the V-2180-1 chassis: ine is changed to 10,000 ohms. The following changes

> > CHASSIS NO.

MFO AND ALL RESISTANCE VALUES IN OHMS UNLESS OTHERWISE SPECIFIED.

M CHASSIS (GND.) USING A 20,000 OHM/VOLT METER LINE VOLTAGE 117 V A.C.

SWITCH SHOWN AS VIEWED FROM FROMT OF SET.
2 TO BE INSTALLED FOR ALCHMENT OMLY.
3. ALL CAPACITAMEE VALUES IN MFO AND ALL RESIS
ALL VOLTAGES MASSINED FROM CHASSIS (GND.) UNDIAGES SHOULG BE AS SHOWN \$ 20 PER CENT.

SELECTOR .

An 800 mmf capacitor (C62) is added between the shaft of the selector switch (SW2) and ground to reduce local oscillator radiation

V-2180-78 supply cir-

similar to the one shown on this

The alignment on the next is applicable to all these

page.

page sets

audio output and Differences in DOWer cuit

Westinghouse Electric, Models H-350T7 and H-351T7, Chassis V-2180-1

BROADCAST BAND ALIGNMENT

Connect an output meter across the speaker voice coil.

put attenuated to avoid AVC action. While making the following adjustments, keep the volume control set for maximum output and the signal generator out-

Check the dial pointer position by meshing the tuning capacitor plates completely and seeing that the dial pointer is set on the end mark of the dial scale.

NOTE: If the LE transformers are hadle miscalismed it may be impossible to obtain sufficient output using the above	now he impossi	is alimad it	NOTE: If the LE transformers are hadle w	
Pri. and sec. of T7 and T6 for max. output in order given	minimum capacity	455 kc.	Stator of tuning capacitor (A) through a 0.1 mfd capacitor	2
			Set the band switch to AM	-
Adjust	Radio Dial Setting	Signal Generator . Frequency	Connect Signal Generator to —	Step

work forward, connecting the signal generator to the control grid of the tube preceding the transformer under alignment. NOTE: If the I-Y transformers are hadly mis-digned, it may be impossible to obtain sufficient output using the above system. In this event, it will be necessary to align each transformer separately. Start with the last I-F transformer and

adjustment)	signal		tion)	
AM ant. trimmer (B) for max. output (rock-in	tune to	1400 kc.	Radiated signal (no actual connec-	4
	capacity		tion)	
1615 kc. minimum AM osc. trimmer (D) for max. output	munimum	1615 kc.	Radiated signal (no actual connec-	w

FM BAND

Do not align the FM circuits until all AM adjustments have been completed.

	C #40 margh			
Step	Connect Signal Generator to	Signal Generator Frequency	Radio Dial Setting	Adjust
	Set the band switch to FM			
2	Connect two 100,000 ohm resistors (the resistances must l 12AL5 tube and ground as shown on the schematic diagram.	resistances n schematic dia	nust be equal w	Connect two 100,000 ohm resistors (the resistances must be equal within 5 per cent) between pin No. 7 of the 12AL5 tube and ground as shown on the schematic diagram.
3	Connect a V.T.V.M. between points "X" and "Y" (see schematic diagram).	" and "Y" (se	e schematic di	agram).
4	Pin No. 2 of 12AT7 through a 0.1 mfd mica capacitor	10.7 mc.	minimum capacity	Sec. of T4 for zero (use medium strength signal)
5	Connect the V.T.V.M. between point "Z" and ground.	Z" and ground.		
6	Same as step 4	10.7 mc.	minimum capacity	Pri. of T4 and pri. and sec. of T3 and T2 for maximum voltage
7	Reconnect the V.T.V.M. between points "X" and "Y" and increase the signal strength 10 times.	Y' bna "X"	and increase	the signal strength 10 times.
8	Same as step 4	10.7 mc.	minimum capacity	Recheck sec. of T4 for zero voltage
9	Reconnect the V.T.V.M. between point "Z" and ground.	"Z" and groun	d.	
10	Same as step 4	10.7 mc.	min. cap.	Pri. of T4 for maximum voltage
11	Remove the two 100,000 ohm resistors that were inserted in step 2.	hat were inser	ted in step 2.	
12	FM ant. terminal through a 300 ohm non-inductive resistor	98 mc.	98 mc.	FM osc, core for maximum voltage
13	Same as step 12	98 mc.	98 mc.	FMR.F trimmer (C46) for maximum voltage
14	Same as step 12	105 mc.	tune to signal	FM R-F core for maximum voltage
15	Same as step 12	90 мс.	tune to signal	FM R-F trimmer (C46) for maximum voltage (rock-in)
16	Recheck steps 14 and 15 for tracking.			

Zenith Model H401, Chassis 4H40, continued from previous page.

The 4H40 chassis is an AC, DC or battery operated superheterodyne. The chassis is isolated from the DC circuit, and all measurements must be made from a common negative point. The most convenient place to reach this negative point is the negative side or container of the electrolytic. When the change-over Switch S1 is in AC position, the DC resistance from chassis to any circuit must be almost infinite. If any circuit becomes grounded a hum will result. Microphonic tubes will cause audio howl. Check the 1R5 and 1S5.

If the R.F. becomes weak or dead, check the DC resistance of the wavemagnet. This DC resistance should be approximately .9 ohm. If it is open check the wavemagnet.

IF Alignment: Remove the chassis from the cabinet and arrange the units so that the wavemagnet can be connected. All the connections and adjustments can be made from the top of the chassis. Connect a signal generator, through a .1 mfd. dummy antenna, to the converter grid and B-(common return). Connect an output meter across the voice coil of the speaker (two lugs provided). Set the signal generator to 455 Kc. and adjust L3, L4, L5 and L6 for the maximum indication on the output meter. Always keep the signal output from the generator just high enough to get an indication, otherwise excessive loading may result.

RF Alignment: Connect a two turn loop across the leads of the signal generator, loosely couple this loop to the wave-magnet. Set the signal generator and the dial pointer of the receiver to 1600 Kc. and adjust C3 oscillator trimmer to resonance. Set the signal generator and dial pointer to 1400 and adjust C2 antenna trimmer to resonance. These trimmers are on the top of gang condenser. Check operation and reinstall set in cabinet. Tune in a weak station near 1400 Kc. or use background noise and readjust antenna trimmer for maximum sensitivity.

ALTERNATE AUDIO CIRCUIT USED ON LATER RELEASES. **XIS5** 3V4 DET. AMP. PWR. AMP. OI ڡڡٛٛڡٛڡٛڡ \overline{w} 0000 3.3 MEG וויות ווויות GREE MEG R3 270 ±10% -VVV-470±10% LOMEG VOLUME CONTROL WHEN SP-2 IS USED C-18 AND C-19 MUST ALSO BE USED

The I.F. transformers incorporated in this receiver are of the new permeability tuned type. The advantage of an I.F. transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these I.F. transformers the tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect the adjustment of the other.

Input Signal	BANDSWITCH						•	£
1600 KG. 1600 KC.	08c i 1	nnect lator to	Dummy Antenna	Input Signal Frequency	Band	Set Dial	Adj. Trimmers	ZENITH Models:
1600 KC. 1400 KC. 1600 KC.	Pin 2 12A1	7 Converter	.05 Mfd.	455 Kc. Modulated	ည္ထ	600 Kc.	L8, 9,11,14,15	H723Z1, & H723Z2,
1400 KC. 1400 KC. 1400 KC. C2 Similar	2 turns lo to wavemad	oosely cpld. gnet		1600 Kc. Modulated	BC	1600 Kc.	63	Chassis:
6 .05 Mfd. Unmodulated 100 Primary discr. 5 .05 Mfd. Unmodulated 100 Primary discr. 6 .05 Mfd. Unmodulated 100 Sec. of discr. 7 .05 Mfd. Unmodulated 100 FM L12 and L13 Prim. are Mologolated 100 FM L10 Prim. of 2nd J733, 17	2 turns] to wavema	oosely cpld. ignet		1400 Kc. Modulated	BC	1400 KC.	C2	ಹ
6 .05 Mfd. Unmodulated 100 sec. of discr. 10.7 MC. FM and Sec. of discr. 10.7 MC. FM and Sec. of 3rd if 3753, trans. 10.7 MC FM L10 Prim. of 2rd 37733, 177333, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 177333, 177333, 177333, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 17733, 177333, 17733, 177333, 177333, 177333, 177333, 177333, 177333, 177333, 177333, 177333, 1	Pin 1 (g limiter.	rid) on 12AU6	.05 Mfd.	10.7 Mc. Unmodulated	FM 100		L16 coil slug Primary discr.	similar to circuit on
10.7 MC. FM and Sec. of 3rd IF Trans. 10.7 MC. FM L10 Prim. of 2nd 17733R, 10.7 MC FM L10 Prim. of 2nd 17733R, 17733R, 10.7 MC FM FM L6 and L7 Prim. Chassit. 10.7 MC FM and Sec. of 1st and C1 Prim. Chassit. 270 ohms Unmodulated 100 98 MC L4 OSC. Coil Slug SMC. FM 98 MC. L2 Det. Coil Slug FM L2 Det. Coil Slug	Pin 1 (9 limiter	rid) on 12AU6	.05 Mfd.	10.7 Mc. Unmodulated	FM 100		L17 coil slug sec. of discr.	this page. Also similar
10.7 Mc FM L10 Prim. of 2nd if transformer 10.7 Mc FM L6 and L7 Prim. and Sec. of 1st in it transformer 270 ohms Unmodulated Unmodulated Unmodulated In00 98 Mc. FM 98 Mc. Coil Slug 270 ohms Winmodulated Unmodulated Unmodulated Unmodulated Info 98 Mc. L4 Osc. Coil Slug	Pin 1 (g 2nd IF.	yrid) on 128A6	.05 Mfd.	10.7 Mc. Unmodulated	F.M 100		L12 and L13 Prim. and Sec. of 3rd IF trans.	are Models: J733, J733G,
10.7 Mc FM and Sec. of 1st and Sec. of 1st and Sec. of 1st Inmodulated 100 98 Mc Ltt Osc. Coil Slug 270 ohms Unmodulated 100 98 Mc Ltt Osc. Coil Slug 270 ohms Unmodulated 100 98 Mc Lt Osc. Coil Slug 270 ohms Unmodulated 100 98 Mc Lt Det. Coil Slug	Pin 1 (g 1st IF.	Jrid) on 6B J6	.05 Mfd.	10.7 Mc Unmodulated	FM 100		L10 Prim. of 2nd IF transformer	J733R, and J733Y, using
270 ohms Unmodulated 100 98 Mc 270 ohms Unmodulated 100 98 Mc	Pin 2 (convert	grid) on 12AT7 er tube socket.		10.7 MC Unmodulated	F.M 100		L6 and L7 Prim. and Sec. of 1st IF transformer	Chassis 7703 clock-radio.
270 ohms Unmodulated 100 98 Mc	Antenna	Post EM (Da_	270 ohms	98 Mc. Unmodulated	FM 100	98 MC	Lu Osc. Coil Slug	
	10 (c) (d) move li	ne ant.)	270 ohms	98 Mc. Unmodulated	FM 100	98 MC	L2 Det. Coil Slug	161

535 ---- 1620 KC. TUNING RANGE

DENOTES CHASSIS

- 1. Remove the three 6/32 hex nuts that fasten the rear clock To remove the clock from the cabinet proceed as follows:
 - cover to the clock.
- 2. Slide the rear clock cover off the time set control shaft. 3. Remove the three hex washer head screws which mount the clock in cabinet.
- and switch. Be certain not to tear out the solder terminals Next unsolder the three-wire cable from the clock motor from the clock motor or switch.

2/3- TURN ARDUND LARGE PULLEY PRI BOTTOM SEC TOP DENOTES COMMON RETURN -VOLUME CONTROL PRI BOTTOM SEC. TOP SWITCH LEADS

国
K
Þ
A
田
\overline{c}
Ö
K K
ቢ
H
Z
曰
Z
Z
כז
IG
H
K
•

--- DIAL CORD DRIVE

		İ	0
PURPOSE	For I. F. Alignment	Set Oscillator to Dial Scale	Align Antenna Stage
TRIMMERS	Adjust Primary & Secondary Slugs.	C-3	C-2
SET DIAL AT	600 Kc.	1600 Kc.	1400 Kc.
INPUT SIG. FREQUENCY	455 Kc.	1600 Kc.	1400 Kc.
DUMMY ANTENNA	.5 Mfd.	1	-
CONNECT OSCILLATOR TO	Converter Grid	One Turn Loop Coupled	Loosely to Wave Magnet
OPERATION	.1	7	3

