# A Helpful Chart

Differentiate

#### The Derivative

$$x(t) = \frac{1}{2}t^3 - \frac{5}{2}t^2$$



#### The Derivative

$$x(t) = \frac{1}{2}t^3 - \frac{5}{2}t^2$$



$$v(t) = \frac{3}{2}t^2 - 5t$$







$$v(t) \rightarrow x(t)$$

Draw the position-versus-time plot corresponding to the velocity-time graph shown (at t=0 the x=0).



$$v(t) \rightarrow x(t)$$

Draw the position-versus-time plot corresponding to the velocity-time graph shown (at t=0 the x=0).





# velocity → position exercise



The object represented by the velocity-time graph above is at x=7 at t=0. Does the object ever reach x=0? If so, at what time does this happen?

- a) The object never reaches the origin.
- b) The object reaches the origin at t = 3.
- c) The object reaches the origin at t = 7.
- d) The object reaches the origin at t = 6.
- e) I have no idea.

The velocity of a particle is given by the expression

$$v(t) = 2t^3 - 5t^2$$

If the object's position at t=1 is x=5, what is it's position when t=3?



The velocity of a particle is given by the expression

$$v(t) = 2t^3 - 5t^2$$

If the object's position at t=1 is x=5, what is it's position when t=3?



The velocity of a particle is given by the expression

$$v(t) = 2t^3 - 5t^2$$

If the object's position at t=1 is x=5, what is it's position when t=3?



The velocity of a particle is given by the expression

$$v(t) = 2t^3 - 5t^2$$

If the object's position at  $\,t=0\,$  is  $\,x=5\,$ , what is the object's position function  $\,x(t)\,$ ?



The velocity of a particle is given by the expression

$$v(t) = 2t^3 - 5t^2$$

If the object's position at t=0 is x=5, what is the object's position function x(t)?

A cart slows down while moving away from the origin. What do the position and velocity  $\frac{1}{6}$  graphs look like?





A cart slows down while moving away from the origin. What do the position and velocity  $\frac{1}{0}$  graphs look like?





A cart speeds up while moving away from the origin. What do the velocity and acceleration graphs look like?







A cart speeds up while moving away from the origin. What do the velocity and acceleration graphs look like?





A cart slows down while moving away from the origin. What do the velocity and acceleration graphs look like?



















A cart slows down while moving away from the origin. What do the velocity and acceleration graphs look like?





Which velocity-versus-time graph goes with this acceleration graph?





Which velocity-versus-time graph goes with this acceleration graph?









- A.Write down the function shown at the left for the acceleration.
- B. Integrate the function once to get the velocity function.
- C. Integrate the velocity function to get the position function.
- D. What do these functions look like?





- A.Write down the function shown at the left for the acceleration.
- B. Integrate the function once to get the velocity function.
- C. Integrate the velocity function to get the position function.
- D. What do these functions look like?

The initial velocity is 20 m/s and the initial position is 10 m.





- A.Write down the function shown at the left for the acceleration.
- B. Integrate the function once to get the velocity function.
- C. Integrate the velocity function to get the position function.
- D. What do these functions look like?

The initial velocity is 20 m/s and the initial position is 10 m.

### Kinematic Equations for constant acceleration

$$v_f = v_i + a\Delta t$$

$$x_f = x_i + v_i \Delta t + \frac{1}{2} a(\Delta t)^2$$

$$v_f^2 = v_i^2 + 2a\Delta x$$



Displacement  $\Delta s$  is the area under the curve. The area can be divided into a rectangle of height  $v_{is}$  and a triangle of height  $a_s \Delta t$ .



#### The Kinematic Equation of Constant Acceleration

Motion with constant velocity and constant acceleration. These graphs assume  $s_i = 0$ ,  $v_{is} > 0$ , and (for constant acceleration)  $a_s > 0$ .

(a) Motion at constant velocity



(b) Motion at constant acceleration











## Let's do a problem!

You are driving to the grocery store at 20 m/s. You are 110 m from an intersection when the traffic light turns red. Your reaction time is 0.5 s and your car brakes at constant acceleration.

- How far are you from the intersection when you begin to brake?
- What acceleration will bring you to rest right at the intersection?
- How long does it take you to stop after the light turns red?

## Now you try one..

A porsche challenges a Honda to a 400 m race. Because the Porsche's acceleration of  $3.5\frac{m}{s^2}$  is larger than the Honda's  $3.0\frac{m}{s^2}$ , the Honda gets a 1.0 s head start. Who wins the race?

You are driving your new Lamborgini diablo down the road at a modest speed when you decide to step on the gas. You accelerate at a rate of  $4.3\frac{m}{s^2}$ , and after traveling 1000 meters your speedometer says that you are going 100 m/s. What was your speed before you started accelerating?

# Free fall (acceleration due to gravity)





$$v_y$$
 (m/s)

0

1

2

3

 $t$  (s)

-9.8

-19.6

-29.4

 $a_{\text{free fall}} = \text{slope}$ 
= -9.80 m/s<sup>2</sup>

 $\vec{a}_{\text{free fall}} = (9.80 \text{ m/s}^2, \text{ vertically downward})$ 

Galileo was right

# Springbok leap

The springbok, an antelope found in Africa, gets its name from its remarkable jumping ability. When startled, a springbok will leap straight up into the air - a maneuver called a "pronk". A spingbok goes into a crouch to perform a pronk. It then extends its legs forcefully, accelerating at 35 m/s² for 0.7 m as its legs straighten. Legs fully extended, it leaves the ground and rises in the air. How high does it go?

# Springbok leap

The springbok, an antelope found in Africa, gets its name from its remarkable jumping ability. When startled, a springbok will leap straight up into the air - a maneuver called a "pronk". A spingbok goes into a crouch to perform a pronk. It then extends its legs forcefully, accelerating at 35 m/s² for 0.7 m as its legs straighten. Legs fully extended, it leaves the ground and rises in the air. How high does it go?



#### Your turn...

You are standing on top of the empire state building, which is 443 meters tall, and you decide to throw a penny straight down towards the street. Your throw gives the penny an initial speed of 15 m/s. How fast is the penny going when it reaches the ground?

You throw a baseball straight up into the air as hard as you can, giving it an initial speed of 25 m/s. How long before the ball hits the ground?