Границы применения Iterative Refinement

Абрамов Семен КМБО-01-20

semenabramov2002@gmail.com

tg: @schlyapapole

Матрицы $A \in \mathbb{R}^{m \times n}$ является разложением по сингулярным значениям если выполнено соотношение

$$A = U\Sigma V^T, \tag{1}$$

где $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ — ортогональные матрицы, составленные из левых сингулярных векторов $u_{(i)} \in \mathbb{R}^m$, i = 1, ..., m и правых сингулярных векторов $v_{(i)} \in \mathbb{R}^n$, i = 1, ..., n соответственно, а $\Sigma \in \mathbb{R}^{m \times n}$ — прямоугольная диагональная матрица, составленная из сингулярных значений $\sigma_i \in \mathbb{R}$, i = 1, ..., n (полагается, что $m \geq n$).

Одним из способов быстрого разложения по сингулярным значениям является **Iterative Refinement.** Данный алгоритм позволяет уточнить сингулярные значения матриц при условии

$$\sigma_1 > \sigma_2 > \sigma_3 > \cdots > \sigma_n$$
,

а их приближённые значения $\tilde{\sigma}_i$ таковы, что $\tilde{\sigma}_i \neq \tilde{\sigma}_j$ для $i \neq j$.

Напомним, что на вход алгоритма поступает матрица $A \in \mathbb{R}^{m \times n}$ и матрицы приближённых сингулярных векторов $\widehat{U} \in \mathbb{R}^{m \times m}$, $\widehat{V} \in \mathbb{R}^{n \times n}$. На выходе ожидается получение матриц уточнённых сингулярных векторов $\widetilde{U} \in \mathbb{R}^{m \times m}$, $\widetilde{V} \in \mathbb{R}^{n \times n}$ и матрицы уточнённых сингулярных значений $\widetilde{\Sigma} \in \mathbb{R}^{m \times n}$.

Более подробно принцип работы Iterative Refinement изложен в файле Алгоритм_быстрого_итеративного_уточнения_разложения_матрицы.docx Сингулярные значения являются кластеризованными (находящимися близко друг к другу), если для них выполняется следующее неравенство:

$$\varepsilon \ge \frac{(\sigma_i - \sigma_{i+1})}{30m||A||_2}$$
$$\varepsilon := \max(||F||_2, ||G||_2)$$

где $F \in \mathbb{R}^{m \times m}$, $G \in \mathbb{R}^{n \times n}$ – матрицы ошибок и для них выполнены следующие соотношения:

$$U = \widehat{U}(I_m + F)$$
 и $V = \widehat{V}(I_n + G)$

 I_n и I_m — единичные матрицы размера $n \times n$ и $m \times m$ соответственно σ_i , σ_{i+1} — сингулярные значения

 $||A||_2 = \sum_{i=1}^n |a_{ij}|$ — 2-норма матрицы А.

m – размерность матрицы F

В описанным выше случае алгоритм Iterative Refinement не работает корректно, так как значения расположены близко друг к другу (являются кластеризованными)