

On considère la fonction suivante définie sur] – $\frac{2}{19}$; + ∞ [:

$$f(x) = \ln(19x + 2) - 3x + 2$$

- 1. Calculer la limite de f en $-\frac{2}{19}$
- 2. Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** En déduire le nombre de solutions de f(x) = 0 et un encadrement d'amplitude 10^{-2} de cette solution.

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to -\frac{2}{19}^+} \ln(19x + 2) = -\infty$$

$$\lim_{x \to -\frac{2}{19}^+} -3x + 2 = \frac{2}{19} \times 3 + 2$$

$$\dim \lim_{x \to -\frac{2}{19}^+} \ln(19x + 2) + 3x + 2 = -\infty$$

2.

$$\lim_{x \to +\infty} \ln(19x + 2) = +\infty$$

$$\lim_{x \to +\infty} -3x + 2 = -\infty$$
donc
$$\lim_{x \to +\infty} \ln(19x + 2) - 3x + 2 = -\infty \quad \text{par dominance de } x$$

3.

$$f'(x) = \frac{19}{19x + 2} - 3$$

$$= \frac{19 - 3 - (19x + 2)}{19x + 2}$$

$$= \frac{19 - 57x - 6}{19x + 2}$$

$$= \frac{13 - 57x}{19x + 2}$$

$$= \frac{13 - 57x}{19x + 2}$$

4.

$$f'(x) > 0 \Leftrightarrow \frac{13 - 57x}{19x + 2} > 0$$
$$\Leftrightarrow 13 - 57x > 0 \text{ car } 19x + 2 > 0$$
$$\Leftrightarrow x < \frac{13}{57}$$

5. On a:

х	$-\frac{2}{19}$ $\frac{13}{57}$	+∞
g'(x)	+ 0 -	
g(x)	3.1616161641825 -∞	$-\infty$

6. Comme la fonction g est continue, croissante de $-\infty$ à 3.1616161641825 > 0, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_1 \in]-\frac{2}{19}; \frac{13}{57}[$ tel que $g(\alpha_1)=0$.

Comme la fonctiong est continue, croissante de 3.1616161641825 > 0 à $-\infty$

Logarithme TG

, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_2 \in]-\frac{2}{19};+\infty[$ tel que $g(\alpha_2)=0.$

```
f(-0.10526315789474) < 0 f(-0.095263157894737) > 0 donc -0.10526315789474 < \alpha_1 < -0.095263157894737 f(1.87) > 0 f(1.88) < 0 donc 1.87 < \alpha_2 < 1.88
```