On r-wise t-intersecting uniform families

Peter Frankl¹, Jian Wang²

¹Rényi Institute, Budapest, Hungary

²Department of Mathematics Taiyuan University of Technology Taiyuan 030024, P. R. China

E-mail: ¹frankl.peter@renyi.hu, ²wangjian01@tyut.edu.cn

Abstract

We consider families, \mathcal{F} of k-subsets of an n-set. For integers $r \geq 2$, $t \geq 1$, \mathcal{F} is called r-wise t-intersecting if any r of its members have at least t elements in common. The most natural construction of such a family is the full t-star, consisting of all k-sets containing a fixed t-set. In the case r=2 the Exact Erdős-Ko-Rado Theorem shows that the full t-star is largest if $n \geq (t+1)(k-t+1)$. In the present paper, we prove that for $n \geq (2.5t)^{1/(r-1)}(k-t)+k$, the full t-star is largest in case of $r \geq 3$. Examples show that the exponent $\frac{1}{r-1}$ is best possible. This represents a considerable improvement on a recent result of Balogh and Linz.

1 Introduction

Let $[n] = \{1, ..., n\}$ be the standard *n*-element set. Let $2^{[n]}$ denote the power set of [n] and let $\binom{[n]}{k}$ denote the collection of all *k*-subsets of [n]. A subset $\mathcal{F} \subset \binom{[n]}{k}$ is called a *k-uniform family*.

The central notion of this paper is that of r-wise t-intersecting.

Definition 1.1. For positive integers $r, t, r \geq 2$, a family $\mathcal{F} \subset 2^{[n]}$ is called r-wise t-intersecting if $|F_1 \cap F_2 \cap \ldots \cap F_r| \geq t$ for all $F_1, F_2, \ldots, F_r \in \mathcal{F}$.

Let us define

$$\begin{split} &m(n,r,t) = \max\left\{|\mathcal{F}|\colon \mathcal{F} \subset 2^{[n]} \text{ is } r\text{-wise } t\text{-intersecting}\right\},\\ &m(n,k,r,t) = \max\left\{|\mathcal{F}|\colon \mathcal{F} \subset \binom{[n]}{k} \text{ is } r\text{-wise } t\text{-intersecting}\right\}. \end{split}$$

Let us define the so-called Frankl families (cf. [7])

$$\mathcal{A}_{i}(n,r,t) = \{ A \subset [n] \colon A \cap [t+ri] \ge t + (r-1)i \}, \ 0 \le i \le \frac{k-t}{r},$$

$$\mathcal{A}_{i}(n,k,r,t) = \mathcal{A}_{i}(n,t) \cap {n \choose k}.$$

Since $A_i(n, r, t)$ consists of the sets A satisfying $|[t+ri] \setminus A| \leq i$, that is, sets that leave out at most i elements out of the first t+ri, $|A_1 \cap \ldots \cap A_r \cap [t+ri]| \geq t+ri-ri \geq t$ for all $A_1, \ldots, A_r \in A_i(n, r, t)$.

Conjecture 1.2 ([7]).

(1.1)
$$m(n,r,t) = \max_{i} |\mathcal{A}_i(n,r,t)|;$$

(1.2)
$$m(n,k,r,t) = \max_{i} |\mathcal{A}_i(n,k,r,t)|.$$

Let us note that for r = 2 the statement (1.1) is a consequence of the classical Katona Theorem [21].

Theorem 1.3 (The Katona Theorem [21]).

$$m(n,2,t) = |\mathcal{A}_{|\frac{n-t}{2}|}(n,2,t)|.$$

The case r = 2 of (1.2) was a longstanding conjecture. It was proved in [15] for a wide range and it was completely established by the celebrated Complete Intersection Theorem of Ahlswede and Khachatrain [2].

A family $\mathcal{F} \subset {[n] \choose k}$ is called a *t-star* if there exists $T \subset [n]$ with |T| = t such that $T \subset F$ for all $F \in \mathcal{F}$. The family $\{F \in {[n] \choose k} : T \subset F\}$ with some $T \in {[n] \choose t}$ is called a *full t-star*.

Let us recall a part of it that was proved earlier.

Theorem 1.4 (Exact Erdős-Ko-Rado Theorem [5], [9], [25]). Let $\mathcal{F} \subset \binom{[n]}{k}$ be a 2-wise t-intersecting family. Then for $n \geq (t+1)(k-t+1)$,

$$|\mathcal{F}| \le \binom{n-t}{k-t}.$$

Moreover, for n > (t+1)(k-t+1) equality holds if and only if \mathcal{F} is the full t-star.

Theorem 1.4 motivates the following question that is the central problem of the present paper: determine or estimate $n_0(k,r,t)$, the minimal integer n_0 such that for all $n \geq n_0$ and all r-wise t-intersecting families $\mathcal{F} \subset {[n] \choose k}$, $|\mathcal{F}| \leq |\mathcal{A}_0(n,k,r,t)| = {n-t \choose k-t}$. Theorem 1.4 shows $n_0(k,2,t) = (t+1)(k-t+1)$.

Since the value $\binom{n-t}{k-t}$ is independent of r, it should be clear that $n_0(k,r,t)$ is a monotone decreasing function of r. Thus $n_0(k,r,t) \leq n_0(k,2,t) = (t+1)(k-t+1)$. For t=1 the exact value of m(n,k,r,t) and thereby $n_0(k,r,t)$ is known (cf. [6]):

(1.3)
$$m(n, k, r, 1) = \begin{cases} \binom{n-1}{k-1}, & \text{if } n \ge \frac{r}{r-1}k \\ \binom{n}{k}, & \text{if } n < \frac{r}{r-1}k. \end{cases}$$

Recently, Balogh and Linz [3] showed that

$$n_0(k,r,t) < (t+r-1)(k-t-r+3).$$

The main result of the present paper is

Theorem 1.5. For r = 3, 4,

(1.4)
$$n_0(k,r,t) \le (2.5t)^{\frac{1}{r-1}} (k-t) + k.$$

For $r \geq 5$,

(1.5)
$$n_0(k, r, t) \le (2t)^{\frac{1}{r-1}} (k - t) + k.$$

Let us show that (1.5) is essentially best possible for $t \ge 2^r - r$ and r sufficiently large. Precisely, for $t \ge 2^r - r$ we have

$$\left(\frac{t+r}{2}\right)^{\frac{1}{r-1}}(k-t) < n_0(k,r,t) \le (2t)^{\frac{1}{r-1}}(k-t) + k.$$

Let us prove the lower bound by showing that $|\mathcal{A}_1(n,k,r,t)| > \binom{n-t}{k-t}$ for $n = \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (k-t)$ for $n = \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}}$

$$|\mathcal{A}_1(n,k,r,t)| = \binom{n-t-r}{k-t-r} + (t+r) \binom{n-t-r}{k-t-r+1} = \binom{n-t-r}{k-t-r} \left(1 + \frac{(t+r)(n-k)}{k-t-r+1}\right)$$

and

$$\begin{aligned} \frac{|\mathcal{A}_1(n,k,r,t)|}{\binom{n-t}{k-t}} &= \frac{(k-t)(k-t-1)\dots(k-t-r+1)}{(n-t)(n-t-1)\dots(n-t-r+1)} \left(1 + \frac{(t+r)(n-k)}{k-t-r+1}\right) \\ &= \frac{(k-t)(k-t-1)\dots(k-t-r+2)}{(n-t)(n-t-1)\dots(n-t-r+2)} \frac{(t+r)n - (k+1)(t+r-1)}{n-t-r+1} \\ &> \left(\frac{k-t-r+2}{n-t-r+2}\right)^{r-1} \frac{(t+r)n - (k+1)(t+r-1)}{n-t-r+1}.\end{aligned}$$

If $t \ge 2^r - r$ then $n = \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (k-t-r+2) + t + r - 2 \ge 2k - t - r + 2$. Let us assume $k \ge t + r$ (this is no real restriction, cf. Proposition 1.9 below). It follows that

$$\frac{(t+r)n - (k+1)(t+r-1)}{n-t-r+1} \ge (t+r)\frac{n-k-1 + \frac{k+1}{t+r}}{n-t-r+1} > \frac{(t+r)(n-k)}{n-t-r+1} > \frac{t+r}{2}.$$

Thus,

$$\frac{|\mathcal{A}_1(n, k, r, t)|}{\binom{n-t}{k-t}} > \left(\frac{k-t-r+2}{n-t-r+2}\right)^{r-1} \frac{t+r}{2} = 1.$$

Therefore for $t \geq 2^r - r$ we obtain that

$$n_{0}(k,r,t) > \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (k-t-r+2) + t + r - 2$$

$$> \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (k-t) + \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} \left(2\left(\frac{t+r}{2}\right)^{\frac{r-2}{r-1}} - r\right)$$

$$> \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (k-t) + \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (2^{r-1} - r)$$

$$> \left(\frac{t+r}{2}\right)^{\frac{1}{r-1}} (k-t).$$

Our next result determines m(n, k, 3, 2) for $n > 2k \ge 4$.

Theorem 1.6. For $n > 2k \ge 4$,

(1.6)
$$m(n,k,3,2) = \binom{n-2}{k-2}.$$

Moreover, in case of equality \mathcal{F} is the full 2-star.

Let us note that Balogh and Linz [3] proved this for $n \ge 4(k-2)$ and in the much older paper [16] the weaker result $m(n, k, 3, 2) = (1 + o(1)) \binom{n-2}{k-2}$ was established for k < 0.501n. Let us give two more numerical examples.

Proposition 1.7. For $n \geq 2k$,

$$m(n, k, 4, 3) = \binom{n-3}{k-3}$$
 and $m(n, k, 4, 4) = \binom{n-4}{k-4}$.

The next result establishes the analogue of (1.6) for a wide range of the pair (r,t).

Theorem 1.8. Let $n \ge \max \left\{ 2k, \frac{t(t-1)}{2\log 2} + 2t - 1 \right\}$ and $t \le 2^{r-2} \log 2 - 2$. Then

(1.7)
$$m(n,k,r,t) = \binom{n-t}{k-t}.$$

Moreover, in case of equality \mathcal{F} is the full t-star.

Let us show that for $k \le t + r - 2$ the only r-wise t-intersecting family is the t-star.

Proposition 1.9. Suppose that \mathcal{G} is an r-wise t-intersecting k-graph that is not a t-star $(|\cap \mathcal{G}| < t)$. Then $k \ge t + r$ or k = t + r - 1 and $\mathcal{G} \subset {Y \choose k}$ for some (k+1)-element set Y.

Proof. We distinguish two cases.

(i) There exist $G_1, G_2 \in \mathcal{G}$ with $|G_1 \cap G_2| \leq k - 2$.

Since \mathcal{G} is 2-wise t-intersecting, we infer that $|G_1 \cap G_2| \geq t$. Choose a t-subset T of $G_1 \cap G_2$. Since \mathcal{G} is not a t-star, there exist $G_3 \in \mathcal{G}$ and $x \in T$ such that $x \notin G_3$. Then $|G_1 \cap G_2 \cap G_3| \leq |(G_1 \cap G_2) \setminus \{x\}| = k - 3$. Similarly, we can choose successively G_4, \ldots, G_r to satisfy $|G_1 \cap \ldots \cap G_r| \leq k - r$. This proves $k - r \geq t$, i.e., $k \geq r + t$.

(ii) \mathcal{G} is 2-wise (k-1)-intersecting.

Pick arbitrary $G_1, G_2 \in \mathcal{G}$ and set $Y = G_1 \cup G_2$, $Z = G_1 \cap G_2$. Then |Y| = k + 1 and |Z| = k - 1. Since \mathcal{G} is 2-wise t-intersecting and |Z| = k - 1 > t, there exists $G_3 \in \mathcal{G}$ with $Z \not\subset G_3$. Since \mathcal{G} is 2-wise (k-1)-intersecting, $|G_i \cap G_3| \geq k - 1$, i = 1, 2. It follows that $G_3 \subset Y$. Without loss of generality, assume that Y = [k+1] and $G_i = [k+1] \setminus \{i\}$, i = 1, 2, 3. If there exists $G \in \mathcal{G}$ with $|G \cap [k+1]| \leq k - 1$. Then there exist $x, y \in [k+1]$ such that $G \subset [k+1] \setminus \{x,y\}$. Let $i \in [3] \setminus \{x,y\}$. Then $|G \cap G_i| \leq k + 1 - 3 = k - 2$, contradicting the assumption that \mathcal{G} is 2-wise (k-1)-intersecting. Thus $\mathcal{G} \subset {Y \choose k}$.

Based on Proposition 1.9 in the sequel we always assume that $n \ge k \ge t + r$.

As to the corresponding problem for the non-uniform case, Erdős-Ko-Rado [5] proved $m(n,2,1) = 2^{n-1}$. Then the first author [8] established $m(n,3,2) = 2^{n-2}$. After several partial results the proof of the following result was concluded in [14]:

(1.8)
$$m(n, r, t) = 2^{n-t}$$
 if and only if $t \le 2^r - r - 1$.

We call a family $\mathcal{F} \subset {[n] \choose k}$ non-trivial if $\cap \{F \colon F \in \mathcal{F}\} = \emptyset$. Define

$$m^*(n,r,t) = \max\left\{|\mathcal{F}|\colon \mathcal{F} \subset 2^{[n]} \text{ is non-trivial } r\text{-wise } t\text{-intersecting}\right\},$$

$$m^*(n,k,r,t) = \max\left\{|\mathcal{F}| \colon \mathcal{F} \subset \binom{[n]}{k} \text{ is non-trivial r-wise t-intersecting}\right\}.$$

Theorem 1.10 (Brace-Daykin-Frankl Theorem (cf. [4] for t = 1 and [12] for $t \ge 2$)). For $t + r \le n$ and $t < 2^r - r - 1$,

(1.9)
$$m^*(n,r,t) = |\mathcal{A}_1(n,r,t)| = (t+r+1)2^{n-t-r}.$$

Let us recall some notations and useful results. For $i \in [n]$, define

$$\mathcal{F}(i) = \{ F \setminus \{i\} \colon i \in F \in \mathcal{F} \} \,, \,\, \mathcal{F}(\bar{i}) = \{ F \colon i \notin F \in \mathcal{F} \} \,.$$

For $P \subset Q \subset [n]$, define

$$\mathcal{F}(Q) = \{ F \setminus Q \colon Q \subset F \} , \ \mathcal{F}(P,Q) = \{ F \setminus Q \colon F \cap Q = P \} .$$

Let X be a finite set. For any $\mathcal{F} \subset {X \choose k}$ and $1 \leq b < k$, define the bth shadow $\partial^{(b)}\mathcal{F}$ as

$$\partial^{(b)}\mathcal{F} = \left\{ E \in \binom{X}{k-b} \colon \text{there exists } F \in \mathcal{F} \text{ such that } E \subset F \right\}.$$

If b=1 then we simply write $\partial \mathcal{F}$ and call it the shadow of \mathcal{F} . Define the up shadow $\partial^+ \mathcal{F}$ as

$$\partial^+ \mathcal{F} = \left\{ G \in \begin{pmatrix} X \\ k+1 \end{pmatrix} : \text{ there exists } F \in \mathcal{F} \text{ such that } F \subset G \right\}.$$

Sperner [24] proved the following result.

Theorem 1.11 ([24]). For $\mathcal{F} \subset \binom{[n]}{k}$,

$$(1.10) \qquad \frac{|\partial^{+} \mathcal{F}|}{\binom{n}{k+1}} \ge \frac{|\mathcal{F}|}{\binom{n}{k}}.$$

For $\mathcal{A}, \mathcal{B} \subset {[n] \choose k}$, we say that \mathcal{A}, \mathcal{B} are *cross-intersecting* if $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Theorem 1.12 ([18]). Let $\mathcal{A}, \mathcal{B} \subset \binom{[n]}{k}$ be cross-intersecting. Then for $n \geq 2k$,

$$(1.11) |\mathcal{A}| + |\mathcal{B}| \le \binom{n}{k}.$$

We need the following version of the Kruskal-Katona Theorem.

Theorem 1.13 ([23, 22]). Let n, k, m be positive integers with $k \leq m \leq n$ and let $\mathcal{F} \subset \binom{[n]}{k}$ and. If $|\mathcal{F}| > \binom{m}{k}$ then

$$|\partial \mathcal{F}| > \binom{m}{k-1}.$$

We also need an inequality concerning the bth shadow of an r-wise t-intersecting family.

Theorem 1.14 ([13]). Let $\mathcal{F} \subset {[n] \choose k}$ be an r-wise t-intersecting family. Then for $0 < b \le t$ we have

(1.12)
$$|\partial^{(b)}\mathcal{F}| \ge |\mathcal{F}| \min_{\substack{0 \le i \le \frac{k-t}{n-1} \\ i}} \frac{\binom{ri+t}{i+b}}{\binom{ri+t}{i}}.$$

2 Shifting and lattice paths

In [5], Erdős, Ko and Rado introduced a very powerful tool in extremal set theory, called shifting. For $\mathcal{F} \subset \binom{[n]}{k}$ and $1 \leq i < j \leq n$, define the shifting operator

$$S_{ij}(\mathcal{F}) = \{ S_{ij}(F) \colon F \in \mathcal{F} \},$$

where

$$S_{ij}(F) = \begin{cases} F' := (F \setminus \{j\}) \cup \{i\}, & \text{if } j \in F, i \notin F \text{ and } F' \notin \mathcal{F}; \\ F, & \text{otherwise.} \end{cases}$$

It is well known (cf. [11]) that the shifting operator preserves the size of \mathcal{F} and the r-wise t-intersecting property. Thus one can apply the shifting operator to \mathcal{F} when considering m(n, k, r, t).

A family $\mathcal{F} \subset {[n] \choose k}$ is called *shifted* if $S_{ij}(\mathcal{F}) = \mathcal{F}$ for all $1 \leq i < j \leq n$. It is easy to show (cf. [11]) that every family can be transformed into a shifted family by applying the shifting operator repeatedly. Thus we can always assume that the family \mathcal{F} is shifted when determining m(n, k, r, t).

Let us define the shifting partial order. Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_k\}$ be two distinct k-sets with $a_1 < a_2 < \dots < a_k$ and $b_1 < b_2 < \dots < b_k$. We say that A precedes B in shifting partial order, denoted by $A \prec B$ if $a_i \leq b_i$ for $i = 1, 2, \dots, k$.

Let us recall two properties of shifted families:

Lemma 2.1 (cf. [11]). If $\mathcal{F} \subset {[n] \choose k}$ is a shifted family, then $A \prec B$ and $B \in \mathcal{F}$ always imply $A \in \mathcal{F}$.

Lemma 2.2 ([11]). Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted family. Then \mathcal{F} is r-wise t-intersecting if and only if for every $F_1, \ldots, F_r \in \mathcal{F}$ there exists s such that

(2.1)
$$\sum_{1 \le i \le r} |F_i \cap [s]| \ge (r-1)s + t.$$

Note that $\sum_{1 \le i \le r} |F_i \cap [s]| \le rs$ implies $s \ge t$ if such an s exists. For completeness let us include the proof.

Proof. First we show that if \mathcal{F} is r-wise t-intersecting then for every $F_1, \ldots, F_r \in \mathcal{F}$ there exists s such that (2.1) holds. Argue indirectly and suppose F_1, F_2, \ldots, F_r is counterexample with $\sum_{1 \le i \le r} \sum_{j \in F_i} j$ minimal.

Let x be the t-th common vertex of F_1, \ldots, F_r . By our assumption,

(2.2)
$$\sum_{1 \le i \le r} |F_i \cap [x]| < (r-1)x + t = rt + (r-1)(x-t).$$

Note that

$$|(F_1 \cap [x]) \cap (F_2 \cap [x]) \cap \ldots \cap (F_r \cap [x])| = t.$$

By (2.2), there exists y < x such that y is contained in at most r-2 of $F_1 \cap [x], F_2 \cap [x], \ldots, F_r \cap [x]$. Since \mathcal{F} is shifted, $F_1' := (F_1 \setminus \{x\}) \cup \{y\} \in \mathcal{F}$. Then F_1', F_2, \ldots, F_r is also a counter-example, contradicting the minimality of $\sum_{1 \le i \le r} \sum_{j \in F_i} j$.

Next we show that if (2.2) holds for every $F_1, \ldots, F_r \in \mathcal{F}$ then \mathcal{F} is r-wise t-intersecting. Indeed, suppose that there exist $F_1, \ldots, F_r \in \mathcal{F}$ with $|F_1 \cap F_2 \cap \ldots \cap F_r| < t$. Then for any $s \geq t$ at most t-1 elements in [s] are contained in r of F_1, F_2, \ldots, F_r . It follows that

$$\sum_{1 \le i \le r} |F_i \cap [s]| \le r(t-1) + (r-1)(s-t+1) \le (r-1)s + t - 1,$$

a contradiction. Thus the lemma holds.

Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted r-wise t-intersecting family. For any $F_1, \ldots, F_r \in \mathcal{F}$, define $s(F_1, \ldots, F_r)$ to be the minimum s such that

$$\sum_{1 \le i \le r} |F_i \cap [s]| \ge (r-1)s + t.$$

Set $s := s(F_1, \ldots, F_r)$. Then we must have

$$\sum_{1 \le i \le r} |F_i \cap [s]| = (r-1)s + t.$$

Indeed, if $\sum_{1 \le i \le r} |F_i \cap [s]| \ge (r-1)s + t + 1$ then

$$\sum_{1 \le i \le r} |F_i \cap [s-1]| \ge (r-1)s + t + 1 - r \ge (r-1)(s-1) + t,$$

contradicting the minimality of s. Set $F_1 = F_2 = \ldots = F_r = F$ for $F \in \mathcal{F}$, we obtain $r|F \cap [s]| = (r-1)s + t$. It follows that $\frac{s-t}{r} =: i$ is an integer. Then s = t + ri and

$$\frac{(r-1)s+t}{r} = t + \frac{(r-1)(s-t)}{r} = t + (r-1)i.$$

Thus $|F \cap [t+ri]| \ge t + (r-1)i$ holds and we get the following corollary.

Corollary 2.3 ([11]). Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted r-wise t-intersecting family. Then for every $F \in \mathcal{F}$, there exists $i \geq 0$ so that $|F \cap [t+ri]| \geq t + (r-1)i$.

In [9] a bijection between subsets and certain lattice paths was established. For $F \in \binom{[n]}{k}$, define P(F) to be the lattice path in the two-dimensional integer grid \mathbb{Z}^2 starting at origin as follows. In the *i*th step for $i=1,2,\ldots,n$, from the current point (x,y) the path P(F) goes to (x,y+1) if $i \in F$ and goes to (x+1,y) if $i \notin F$. Since |F|=k, there are exactly k vertical steps. Thus the end point of P(F) is (n-k,k).

Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted r-wise t-intersecting family. By Corollary 2.3 we infer that P(F) hits y = (r-1)x + t for every $F \in \mathcal{F}$. For $F \in \mathcal{F}$, define i(F) to be the minimum integer i such that $|F \cap [t+ri]| = t + (r-1)i$. Define

$$\mathcal{F}_i = \{ F \in \mathcal{F} : i(F) = i \}, i = 0, 1, 2, \dots, \left| \frac{k-t}{r-1} \right|.$$

By Corollary 2.3, $\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_{\lfloor \frac{k-t}{r-1} \rfloor}$ form a partition of \mathcal{F} .

The next lemma gives a universal bound ont the size of an r-wise t-intersecting family for $n \ge 2k - t$.

Figure 1: The lattice path P goes through (i, t - i) and hits the line y = (r - 1)x + t.

Lemma 2.4. Let $\mathcal{F} \subset {[n] \choose k}$ be an r-wise t-intersecting family with $r \geq 3$ and $n \geq 2k - t$. Then

(2.3)
$$|\mathcal{F}| \le \sum_{0 \le i \le t} {t \choose i} {n-t \choose k-t-(r-1)i}.$$

Moreover,

(2.4)
$$\sum_{i>1} |\mathcal{F}_i| \le \sum_{1 \le i \le t} {t \choose i} {n-t \choose k-t-(r-1)i}.$$

Proof. Without loss of generality, we may assume that \mathcal{F} is shifted. For each $F \in \mathcal{F}$, by Corollary 2.3 we infer that P(F) hits the line y = (r-1)x + t. Note that the number of lattice paths that go through (0,t) is exactly $\binom{n-t}{k-t}$. Let us count the number of lattice paths P that do not pass (0,t). Then P has to go through exactly one of $(1,t-1),(2,t-2),\ldots,(t,0)$. Since $r \geq 3$, the paths that start at (i,t-i) and hit the line y = (r-1)x + t have to hit the line y = x + (r-2)i + t (as shown in Figure 1). Note that the number of lattice paths from (0,0) to (i,t-i) is $\binom{t}{i}$. By the reflection principle (cf. e.g. [9]), the number of paths from (i,t-i) to (n-k,k) hitting y = x + (r-2)i + t equals the the number of paths from (-(r-1)i,(r-1)i+t) to (n-k,k), which is $\binom{n-t}{k-t-(r-1)i}$. Thus,

$$\sum_{i>1} |\mathcal{F}_i| \le \sum_{1 \le i \le t} {t \choose i} {n-t \choose k-t-(r-1)i}.$$

Since $|\mathcal{F}_0| \leq {n-t \choose k-t}$, (2.3) follows.

Fact 2.5. Suppose $\mathcal{F} \subset 2^{[n]}$ is r-wise t-intersecting but \mathcal{F} is not a t-star. Then for $2 \leq s < r$, \mathcal{F} is s-wise (t + r - s)-intersecting.

Proof. Set $Y = \cap \{F : F \in \mathcal{F}\}$. Then |Y| < t and by definition $\mathcal{F}(Y)$ is r-wise (t - |Y|)-intersecting and non-trivial. We need to show that $\mathcal{F}(Y)$ is s-wise (t - |Y| + r - s)-intersecting. Suppose the contrary and fix $G_1, G_2, \ldots, G_s \in \mathcal{F}(Y)$ satisfy $|G_1 \cap \ldots \cap G_s| < t - |Y| + r - s$.

Using non-triviality we may choose successively G_{s+1}, \ldots, G_r to satisfy $|G_1 \cap \ldots \cap G_s \cap G_{s+1} \cap \ldots \cap G_r| < t - |Y|$, i.e., $|(G_1 \cup Y) \cap \ldots \cap (G_r \cap Y)| < t$, a contradiction.

Corollary 2.6. Let $\mathcal{F} \subset {[n] \choose k}$ be an r-wise t-intersecting family with $r \geq 3$. If \mathcal{F} is not a t-star, then

$$|\mathcal{F}| \le \sum_{0 \le i \le t} {t \choose i} {n-t \choose k-t-(r-1)i} - {n-t-1 \choose k-t}.$$

Proof. In the proof of (2.3) we counted $\binom{n-t}{k-t}$ for the paths through (0,t). Since \mathcal{F} is not a t-star, by Fact 2.5 we infer that \mathcal{F} is (r-1)-wise (t+1)-intersecting. It follows that $\mathcal{F}([t])$ is (r-1)-wise intersecting. By (1.3) we have $|\mathcal{F}([t])| \leq \binom{n-t-1}{k-t-1}$. Now $\binom{n-t}{k-t} - \binom{n-t-1}{k-t-1} = \binom{n-t-1}{k-t}$ proves (2.5).

3 Proof of Theorem 1.5

Proof of Theorem 1.5. Let $\mathcal{F} \subset {[n] \choose k}$ be an r-wise t-intersecting family with $n \geq (ct)^{\frac{1}{r-1}}(k-t) + k$ ($c \geq 1$ to be specified later). Without loss of generality, assume that \mathcal{F} is shifted and is not a t-star. By Fact 2.5, \mathcal{F} is (r-1)-wise (t+1)-intersecting and (r-2)-wise (t+2)-intersecting. It follows that $\mathcal{F}([t])$ is (r-1)-wise intersecting and (r-2)-wise 2-intersecting.

Since $n \ge (ct)^{\frac{1}{r-1}}(k-t) + k > 2k-t, n-t > 2(k-t)$ follows. By (1.3) we have

$$(3.1) |\mathcal{F}_0| = |\mathcal{F}([t])| \le \binom{n-t-1}{k-t-1} = \frac{k-t}{n-t} \binom{n-t}{k-t} < \frac{1}{2} \binom{n-t}{k-t}.$$

If $r \geq 5$, then $\mathcal{F}([t])$ is 3-wise 2-intersecting. By Theorem 1.6,

$$(3.2) |\mathcal{F}_0| = |\mathcal{F}([t])| \le \binom{n-t-2}{k-t-2} = \frac{(k-t)(k-t-1)}{(n-t)(n-t-1)} \binom{n-t}{k-t} < \frac{1}{4} \binom{n-t}{k-t}.$$

Using (2.4) we have

$$|\mathcal{F}| \le |\mathcal{F}_0| + \sum_{1 \le i \le t} {t \choose i} {n-t \choose k-t-(r-1)i}.$$

Note that if k-t-(r-1)i < 0 then $\binom{n-t}{k-t-(r-1)i} = 0$. Let

$$f(n,k,r,t,i) := \binom{t}{i} \binom{n-t}{k-t-(r-1)i}.$$

Then for $1 \le i \le t - 1$ and $n - k \ge (ct)^{\frac{1}{r-1}} (k - t)$,

$$\frac{f(n,k,r,t,i+1)}{f(n,k,r,t,i)} \le \frac{t-i}{i+1} \cdot \left(\frac{k-t-(r-1)i}{n-k+(r-1)(i+1)}\right)^{r-1}
< \frac{t}{i+1} \cdot \left(\frac{k-t}{n-k}\right)^{r-1}
\le \frac{1}{c(i+1)}.$$

It follows that for i > 1,

$$f(n, k, r, t, i) < \frac{1}{ci} f(n, k, r, t, i - 1) < \frac{1}{c^{i-1}i!} f(n, k, r, t, 1).$$

By
$$\sum_{1 \le i \le t} \frac{1}{c^i i!} < e^{1/c} - 1$$
,

$$\sum_{1 \le i \le t} f(n, k, r, t, i) \le f(n, k, r, t, 1) \sum_{1 \le i \le t} \frac{1}{c^{i-1}i!} < t \binom{n-t}{k-t-r+1} c(e^{1/c} - 1).$$

Note that $n - k \ge (ct)^{\frac{1}{r-1}}(k-t)$ implies

$$\frac{\binom{n-t}{k-t-r+1}}{\binom{n-t}{k-t}} < \left(\frac{k-t}{n-k}\right)^{r-1} \le \frac{1}{ct}.$$

It follows that

(3.3)
$$\sum_{1 \le i \le t} {t \choose i} {n-t \choose k-t-(r-1)i} = \sum_{1 \le i \le t} f(n,k,r,t,i) < (e^{1/c}-1) {n-t \choose k-t}.$$

Note that $e^{1/2.5} - 1 < \frac{1}{2}$ and $e^{1/2} - 1 < \frac{3}{4}$. For r = 3, 4 and c = 2.5, adding (3.1) and (3.3) we get

$$|\mathcal{F}| < \frac{1}{2} \binom{n-t}{k-t} + \sum_{1 \le i \le t} \binom{t}{i} \binom{n-t}{k-t-(r-1)i} < \frac{1}{2} \binom{n-t}{k-t} + \frac{1}{2} \binom{n-t}{k-t} = \binom{n-t}{k-t}.$$

For $r \geq 5$ and c = 2, adding (3.2) and (3.3) we conclude that

$$|\mathcal{F}| < \frac{1}{4} \binom{n-t}{k-t} + \sum_{1 \le i \le t} \binom{t}{i} \binom{n-t}{k-t-(r-1)i} < \frac{1}{4} \binom{n-t}{k-t} + \frac{3}{4} \binom{n-t}{k-t} = \binom{n-t}{k-t}.$$

4 The probability of hitting the line, uniform vs non-uniform

We need the following version of the Chernoff bound for the binomial distribution.

Theorem 4.1 ([20]). Let $X \in Bi(n,p)$ and $\lambda = np$. Then

$$(4.1) Pr(X < \lambda - a) \le e^{-\frac{a^2}{2\lambda}}.$$

We call P(n) a p-random walk of length n if it starts at origin and goes up a unit with probability p and goes right a unit with probability 1-p at each step. Let f(n,r,t,p) be the probability that a p-random walk P(n) hits the line y=(r-1)x+t. Set $f(r,t,p)=\lim_{n\to\infty}f(n,r,t,p)$. That is, f(r,t,p) is the probability that an infinite p-random walk hits the line y=(r-1)x+t.

Lemma 4.2 ([11],[12]). (i) $f(n,r,t,p) \leq f(n+1,r,t,p)$

(ii)
$$f(n+1,r,t,p) = pf(n,r,t-1,p) + (1-p)f(n,r,t+r-1,p)$$
.

(iii)

$$f(r,t,p) = \gamma^t$$

where γ is the unique root of $x = p + (1-p)x^r$ in the open interval (0,1).

(iv) Let α_r be the unique root of $x = \frac{1}{2} + \frac{1}{2}x^r$. Then

$$\alpha_3 = \frac{\sqrt{5} - 1}{2}, \ \frac{1}{2} < \alpha_r < \frac{1}{2} + \frac{1}{2^r} \ for \ r \ge 4.$$

Moreover,

(4.2)
$$\frac{1}{2^r - r} < \alpha_r^r \le \frac{1}{2^r - r - 1} \text{ for } r \ge 3.$$

Let us define another type of random walk. We call Q(n,i) a uniform random walk if it is chosen uniformly from all lattice paths from (0,0) to (n-i,i). Let g(n,i,r,t) be the probability that a uniform random walk Q(n,i) hits the line y=(r-1)x+t.

Proposition 4.3. (i) $g(n, i, r, t) \le g(n, i + 1, r, t)$.

- (ii) $g(n+1, k, r, t) \le g(n, k, r, t)$.
- (iii) For $r \ge 3$ and $t \ge 2$, $g(2k, k, r, t) \le g(2k + 2, k + 1, r, t)$.
- (iv) $\lim_{k \to \infty} g(2k, k, r, t) \le f(r, t, \frac{1}{2}).$

Proof. First we prove (i). Let $\mathcal{G}_i \subset {[n] \choose i}$ be the collection of all *i*-sets F such that P(F) hits the line y = (r-1)x + t. Let $E \in {[n] \choose i}$. If P(E) hits y = (r-1)x + t then so does P(F) for every F with $E \subset F$. Thus $\partial^+ \mathcal{G}_i \subset \mathcal{G}_{i+1}$. Note that $g(n, i, r, t) = \frac{|\mathcal{G}_i|}{{n \choose i}}$. By (1.10), we conclude that

$$g(n, i+1, r, t) = \frac{|\mathcal{G}_{i+1}|}{\binom{n}{i+1}} \ge \frac{|\partial^+ \mathcal{G}_i|}{\binom{n}{i+1}} \ge \frac{|\mathcal{G}_i|}{\binom{n}{i}} = g(n, i, r, t).$$

Next we prove (ii). Note that a lattice path from (0,0) to (n+1-k,k) goes through either (n-k,k) or (n-(k-1),k-1). It follows that

$$g(n+1,k,r,t) \binom{n+1}{k} = g(n,k,r,t) \binom{n}{k} + g(n,k-1,r,t) \binom{n}{k-1}.$$

By (i) we have $g(n, k, r, t) \ge g(n, k - 1, r, t)$. Thus,

$$g(n+1,k,r,t)\binom{n+1}{k} \le g(n,k,r,t)\binom{n}{k} + g(n,k,r,t)\binom{n}{k-1} = g(n,k,r,t)\binom{n+1}{k}$$

and (ii) follows.

Thirdly we prove (iii). Let $\ell(t,i)$ be the number of lattice paths from (0,0) to (i,(r-1)i+t) that hit y=(r-1)x+t first at x=i. Note that the number of lattice paths from (i,(r-1)i+t) to (k,k) is $\binom{2k-ri-t}{k-(r-1)i-t}$. Thus,

$$g(2k,k,r,t) = \sum_{0 \le i \le \frac{k-t}{r-1}} \ell(t,i) \frac{\binom{2k-ri-t}{k-(r-1)i-t}}{\binom{2k}{k}}.$$

Let $c_r(k,t,i) = \frac{\binom{2k-ri-t}{k-(r-1)i-t}}{\binom{2k}{k}}$. Then, using $\binom{2k}{k}/\binom{2k+2}{k+1} = \frac{k+1}{4k+2}$,

$$\begin{split} \frac{c_r(k+1,t,i)}{c_r(k,t,i)} &= \frac{\binom{2k+2-ri-t}{k+1-(r-1)i-t}}{\binom{2k-ri-t}{k-(r-1)i-t}} \cdot \frac{\binom{2k}{k}}{\binom{2k+2}{k+1}} \\ &= \frac{(2k+2-ri-t)(2k+1-ri-t)}{(k+1-(r-1)i-t)(k+1-i)} \cdot \frac{k+1}{4k+2}. \end{split}$$

Note that for $r \geq 3$ and $t \geq 2$ we have

$$(2k+2-ri-t)(2k+1-ri-t)(k+1)-(k+1-(r-1)i-t)(k+1-i)(4k+2)$$

$$= (t(t-1)+2i(r-2)t+i(i(r-2)^2-r))k+t(t-1)+2i(r-1)t+i(i(r-1)^2-r)+i^2>0.$$

It follows that $c_r(k+1,t,i) > c_r(k,t,i)$ for all $0 \le i \le \frac{k-t}{r-1}$. Thus,

$$g(2k, k, r, t) = \sum_{0 \le i \le \frac{k-t}{r-1}} \ell(t, i) c_r(k, t, i)$$

$$< \sum_{0 \le i \le \frac{k-t}{r-1}} \ell(t, i) c_r(k+1, t, i) + \sum_{\frac{k-t}{r-1} < i \le \frac{k+1-t}{r-1}} \ell(t, i) c_r(k+1, t, i)$$

$$= g(2k+2, k+1, r, t).$$

Lastly we prove (iv). Let $k > 4 \log k$ and let P be a p-random walk of length 2k with $p = \frac{1}{2} + \sqrt{\frac{\log k}{k}}$. Let X be the number of vertical steps on P. Then

$$\mathbb{E}X = (2k)p = k + 2\sqrt{k\log k}.$$

Since $k \ge 4 \log k$ implies $2k \ge k + 2\sqrt{k \log k}$, by (4.1) we have

$$(4.3) Pr(X < k) \le e^{-\frac{2k \log k}{k + 2\sqrt{k \log k}}} \le e^{-\log k} = \frac{1}{k}.$$

Note that

$$\begin{split} f(2k,r,t,p) &= \sum_{t \leq i \leq 2k} Pr(X=i) Pr[P \text{ hits } y = (r-1)x + t | X=i] \\ &= \sum_{t \leq i \leq 2k} Pr(X=i) g(2k,i,r,t) \\ &\geq \sum_{k \leq i \leq 2k} Pr(X=i) g(2k,i,r,t). \end{split}$$

By Proposition 4.3 (i) we have $g(2k, i, r, t) \ge g(2k, k, r, t)$ for all $i \ge k$. It follows that

$$f(2k,r,t,p) \geq g(2k,k,r,t) \sum_{k \leq i \leq 2k} Pr(X=i) = g(2k,k,r,t) Pr(X \geq k).$$

By (4.3), we obtain that

$$f\left(2k,r,t,\frac{1}{2}+\sqrt{\frac{\log k}{k}}\right) \ge g(2k,k,r,t)\frac{k-1}{k}.$$

Letting k go to infinity on both sides, we obtain that

$$f\left(r,t,\frac{1}{2}\right) \ge \lim_{k \to \infty} g(2k,k,r,t).$$

Proposition 4.4. For $n \geq 2k$,

(4.4)
$$m(n,k,r,t) \le \alpha_r^t \binom{n}{k},$$

where α_r is the unique root of $x = \frac{1}{2} + \frac{1}{2}x^r$ in the interval (0,1).

Proof. Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted r-wise t-intersecting family with $|\mathcal{F}| = m(n, k, r, t)$. By Corollary 2.3, we infer that $|\mathcal{F}|$ is at most the number of lattice paths from (0,0) to (n-k,k) hitting y=(r-1)x+t. By $n \geq 2k$ and Proposition 4.3 (ii) (iii) (iv), it follows that

$$|\mathcal{F}| = m(n, k, r, t) \le g(n, k, r, t) \binom{n}{k} \le g(2k, k, r, t) \binom{n}{k} \le f\left(r, t, \frac{1}{2}\right) \binom{n}{k} = \alpha_r^t \binom{n}{k}.$$

5 Proof of Theorem 1.6

Let us prove a useful corollary of Theorem 1.14.

Corollary 5.1. Let $\mathcal{F} \subset \binom{[n]}{k}$ be a 3-wise t-intersecting family. If $t \geq 4$ then $|\partial^{(2)}\mathcal{F}| > 4|\mathcal{F}|$. If $t \geq 7$ then $|\partial^{(4)}\mathcal{F}| > 16|\mathcal{F}|$.

Proof. For $t \geq 4$, we have

$$\frac{\binom{3i+t}{i+2}}{\binom{3i+t}{i}} = \frac{(2i+t-1)(2i+t)}{(i+1)(i+2)} > 2 \times 2 = 4$$

Applying Theorem 1.14 with b = 2, we obtain that

$$|\partial^{(2)}\mathcal{F}| \ge |\mathcal{F}| \min_{0 \le i \le \frac{k-t}{2}} \frac{\binom{3i+t}{i+2}}{\binom{3i+t}{i}} > 4|\mathcal{F}|.$$

Similarly, if $t \geq 7$ then

$$\frac{\binom{3i+t}{i+4}}{\binom{3i+t}{i}} = \frac{(2i+t)(2i+t-1)(2i+t-2)(2i+t-3)}{(i+4)(i+3)(i+2)(i+1)}$$

$$\geq \frac{(2i+7)(2i+6)(2i+5)(2i+4)}{(i+4)(i+3)(i+2)(i+1)}$$

$$= 4\frac{(2i+7)(2i+5)}{(i+4)(i+1)}.$$

Since

$$(2i+7)(2i+5) = 4\left(i^2+6i+\frac{35}{4}\right) > 4(i^2+5i+4) = 4(i+4)(i+1),$$

we infer that $\frac{\binom{3i+t}{i+4}}{\binom{3i+t}{i}} > 4 \times 4 = 16$. Applying Theorem 1.14 with b=4, we obtain that

$$|\partial^{(4)}\mathcal{F}| \ge |\mathcal{F}| \min_{0 \le i \le \frac{k-t}{2}} \frac{\binom{3i+t}{i+4}}{\binom{3i+t}{i}} > 16|\mathcal{F}|.$$

Fact 5.2. For $n \ge \frac{\sqrt{4t+9}-1}{2}k$, $|\mathcal{A}_1(n,k,3,t)| < \binom{n-t}{k-t}$. For $n = \left(\frac{\sqrt{4t+9}-1}{2} - \epsilon\right)k$ with some $0 < \epsilon < \frac{1}{10}$ and $k \ge \frac{t^2+2t}{2\epsilon}$, $|\mathcal{A}_1(n,k,3,t)| > \binom{n-t}{k-t}$.

Proof. By Proposition 1.9 we assume $k \ge t+3$. Note that $|\mathcal{A}_1(n,k,3,t)| = (t+3)\binom{n-t-3}{k-t-2} + \binom{n-t-3}{k-t-2} = \frac{(t+3)n-(t+2)(k+1)}{k-t-2}\binom{n-t-3}{k-t-3}$. Then

$$\frac{|\mathcal{A}_1(n,k,3,t)|}{\binom{n-t}{k-t}} = \frac{(k-t)(k-t-1)((t+3)n - (t+2)(k+1))}{(n-t)(n-t-1)(n-t-2)}.$$

Let n = xk and define

$$f(k,x) := (k-t)(k-t-1)((t+3)n - (t+2)(k+1)) - (n-t)(n-t-1)(n-t-2)$$
$$= (k-t)(k-t-1)(((t+3)x - (t+2))k - (t+2)) - (xk-t)(xk-t-1)(xk-t-2).$$

By simplification, we obtain that

$$f(k,x) = -(x-1)k\left((x^2+x-t-2)k^2+(2t^2+4t-3(t+1)x)k-(t+1)(t^2-t-1)\right).$$

Let

$$g(k,x) = (x^2 + x - t - 2)k^2 + (2t^2 + 4t - 3(t+1)x)k - (t+1)(t^2 - t - 1).$$

If $x \ge \frac{\sqrt{4t+9}-1}{2}$, then $x^2+x-t-2 \ge 0$. By $k \ge t+3$, it follows that

$$g(k,x) \ge (x^2 + x - t - 2)k(t+3) + (2t^2 + 4t - 3(t+1)x)k - (t+1)(t^2 - t - 1)$$
$$= (t^2 + 3(x^2 - 2) + t(x^2 - 2x - 1))k + 1 + 2t - t^3.$$

Since $x \ge \frac{\sqrt{4t+9}-1}{2} > 1.56$ and $t \ge 2$ imply $3(x^2-2) > 0$ and $t(x^2-2x-1)+t^2 > 0$,

$$g(k,x) \ge (t^2 + 3(x^2 - 2) + t(x^2 - 2x - 1))(t + 3) + 1 + 2t - t^3$$

$$\ge (x^2 - 2x + 2)t^2 + (6x^2 - 6x - 7)t + 9x^2 - 17$$

$$\ge t^2 + (6x^2 - 6x - 7)t + (9x^2 - 17)$$

$$\ge (6x^2 - 6x - 5)t + (9x^2 - 17)$$

$$> 0.$$

Thus f(k,x) < 0 for $x \ge \frac{\sqrt{4t+9}-1}{2}$. Therefore $|\mathcal{A}_1(n,k,3,t)| < \binom{n-t}{k-t}$ for $n \ge \frac{\sqrt{4t+9}-1}{2}k$. If $x = \frac{\sqrt{4t+9}-1}{2} - \epsilon$, then by $\epsilon < \frac{1}{10}$ and $t \ge 2$,

$$x^2 - x + 2 = -\epsilon(\sqrt{4t + 9} - \epsilon) \le -\epsilon(\sqrt{17} - \epsilon) < -4\epsilon.$$

It follows that for $k \ge \frac{t^2 + 2t}{2\epsilon}$,

$$(x^{2} + x - t - 2)k^{2} + (2t^{2} + 4t - 3(t+1)x)k - (t+1)(t^{2} - t - 1) < -4\epsilon k^{2} + (2t^{2} + 4t)k \le 0$$

Thus
$$|\mathcal{A}_1(n, k, 3, t)| > \binom{n-t}{k-t}$$
 for $k \ge \frac{t^2 + 2t}{2\epsilon}$ and $n = (\frac{\sqrt{4t + 9} - 1}{2} - \epsilon)k$.

Proof of Theorem 1.6. By Proposition 1.9, we assume $k \ge t + r = 5$. Let $\mathcal{F} \subset \binom{[n]}{k}$ be a shifted 3-wise 2-intersecting family that is not a 2-star. By Fact 5.2, $|\mathcal{A}_1(n,k,3,2)| < \binom{n-2}{k-2}$

for $n \geq 2k$. Thus we may assume as well $\mathcal{F} \not\subset \mathcal{A}_1(n,k,3,2)$. We partition \mathcal{F} according $F \cap [5]$. Define

$$\begin{split} \mathcal{F}_0 &= \left\{ F \in \mathcal{F} \colon \{1,2\} \subset F \right\}, \\ \mathcal{F}_i &= \left\{ F \in \mathcal{F} \colon F \cap [5] = [5] \setminus \{i\} \right\}, \ i = 1,2, \\ \mathcal{F}_3 &= \left\{ F \in \mathcal{F} \colon \{1,2\} \not\subset F \text{ and } |F \cap [5]| = 3 \right\}, \\ \mathcal{F}_4 &= \left\{ F \in \mathcal{F} \colon \{1,2\} \not\subset F \text{ and } |F \cap [5]| = 2 \right\}, \\ \mathcal{F}_5 &= \left\{ F \in \mathcal{F} \colon |F \cap [5]| = 1 \right\}, \\ \mathcal{F}_6 &= \left\{ F \in \mathcal{F} \colon F \cap [5] = \emptyset \right\}. \end{split}$$

Then

$$|\mathcal{F}| = \sum_{0 \le i \le 5} |\mathcal{F}_i|.$$

Since \mathcal{F} is 3-wise 2-intersecting and it is not a 2-star, by Fact 2.5 \mathcal{F} is 2-wise 3-intersecting. It follows that $\mathcal{F}(\{1,2\})$ is 2-wise intersecting. By (1.3) we have

(5.1)
$$|\mathcal{F}_0| = |\mathcal{F}(\{1, 2\})| \le \binom{n-3}{k-3}.$$

Set

$$A_i = \{F \setminus [5] : F \cap [5] = [5] \setminus \{i\}\}, i = 1, 2.$$

Claim 5.3. We may assume that A_1 and A_2 are cross-intersecting.

Proof. Indeed, otherwise there exist $F_1, F_2 \in \mathcal{F}$ with $F_1 \cap F_2 = \{3, 4, 5\}$. Using shiftedness and the 3-wise 2-intersecting property, $|F \cap [5]| \ge 4$ for all $F \in \mathcal{F}$. Then $\mathcal{F} \subset \mathcal{A}_1(n, k, 3, 2)$, contradicting our assumption.

Since $A_1, A_2 \subset {[6,n] \choose k-4}$ are cross-intersecting, n-5 > 2(k-4), by (1.11) we have

(5.2)
$$|\mathcal{F}_1| + |\mathcal{F}_2| = |\mathcal{A}_1| + |\mathcal{A}_2| \le \binom{n-5}{k-4}.$$

Note that P(F) goes through (2,3) and hits y=2x+2 for every $F \in \mathcal{F}_3$. Since $n-5 \geq 2(k-3)$, by Proposition 4.3 (ii) and (iv) the number of lattice paths from (2,3) to (n-k,k) hitting y=2x+2 is at most $\left(\frac{\sqrt{5}-1}{2}\right)^3 \binom{n-5}{k-3}$. The number of 3-sets $B \subset [5]$ with $[2] \not\subset B$ is $\binom{5}{3}-3=7$. Thus,

(5.3)
$$|\mathcal{F}_3| \le 7 \left(\frac{\sqrt{5}-1}{2}\right)^3 \binom{n-5}{k-3} < 1.66 \binom{n-5}{k-3}.$$

Similarly, P(F) goes through (3,2) and hits y = 2x+2 for every $F \in \mathcal{F}_4$ and the number of 2-sets $B \subset [5]$ with $[2] \not\subset B$ is $\binom{5}{2} - 1 = 9$. Since n > 2k implies $n - 5 \ge 2(k - 2)$, by Proposition 4.3 (ii) and (iv) we infer that

(5.4)
$$|\mathcal{F}_4| \le 9 \left(\frac{\sqrt{5} - 1}{2}\right)^6 \binom{n - 5}{k - 2} < 0.51 \binom{n - 5}{k - 2}.$$

Let $\mathcal{B}_i = \mathcal{F}(\{i\}, [5]) \subset {[6,n] \choose k-1}$, $i = 1, 2, \ldots, 5$. By shiftedness \mathcal{B}_i is 3-wise 9-intersecting. Let $\mathcal{D}_i = \partial^{(2)} \mathcal{B}_i$. Then it is easy to see that \mathcal{D}_i is 3-wise $9 - 2 \times 3 = 3$ -intersecting. Since n - 5 > 2(k - 3), by Proposition 4.4 we infer that

$$|\mathcal{D}_i| \le \left(\frac{\sqrt{5}-1}{2}\right)^3 \binom{n-5}{k-3}.$$

Since \mathcal{B}_i is 3-wise 9-intersecting, by Corollary 5.1 we get

$$|\mathcal{D}_i| > 4|\mathcal{B}_i|, i = 1, 2, 3, 4, 5.$$

Thus,

$$(5.5) |\mathcal{F}_5| = \sum_{1 \le i \le 5} |\mathcal{B}_i| \le \frac{1}{4} \sum_{1 \le i \le 5} |\mathcal{D}_i| < \frac{5}{4} \left(\frac{\sqrt{5} - 1}{2}\right)^3 \binom{n - 5}{k - 3} < 0.3 \binom{n - 5}{k - 3}.$$

Let $\mathcal{A}_6 = \partial^{(4)} \mathcal{F}_6 \subset {[6,n] \choose k-4}$. Since \mathcal{F}_6 is 3-wise 12-intersecting, by Corollary 5.1 we get $|\mathcal{A}_6| > 16|\mathcal{F}_6|$. By shiftedness, $\mathcal{A}_6 \subset \mathcal{A}_i$ for i = 1, 2. By Claim 5.3, we infer that \mathcal{A}_6 is intersecting. Thus, by k - 2 < (n - 5) - (k - 5) we obtain that

$$|\mathcal{F}_6| < \frac{1}{16} |\mathcal{A}_6| \le \frac{1}{16} {n-6 \choose k-5} < \frac{1}{16} {n-5 \choose k-5} < \frac{1}{16} {n-5 \choose k-2}.$$

Adding (5.1), (5.2), (5.3), (5.4), (5.5) and (5.6), we conclude that

$$\begin{aligned} |\mathcal{F}| &= \sum_{0 \le i \le 6} |\mathcal{F}_i| \\ &\le \binom{n-3}{k-3} + \binom{n-5}{k-4} + 1.66 \binom{n-5}{k-3} + 0.51 \binom{n-5}{k-2} + 0.3 \binom{n-5}{k-3} + \frac{1}{16} \binom{n-5}{k-2} \\ &< \binom{n-5}{k-5} + 3 \binom{n-5}{k-4} + 3 \binom{n-5}{k-3} + \binom{n-5}{k-2} \\ &= \binom{n-2}{k-2}. \end{aligned}$$

6 Proof of Proposition 1.7 and Theorem 1.8

Let us prove a useful inequality.

Lemma 6.1. For $n > \frac{rk-t}{r-1}$,

(6.1)
$$m(n,k,r,t) \le m(n-1,k,r,t) + m(n-1,k-1,r,t).$$

Proof. Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted r-wise t-intersecting family with $|\mathcal{F}| = m(n, k, r, t)$. Clearly $\mathcal{F}(\bar{n})$ is r-wise t-intersecting. It follows that $|\mathcal{F}(\bar{n})| \leq m(n-1, k, r, t)$. We claim that $\mathcal{F}(n)$ is also r-wise t-intersecting. Indeed, otherwise there exist $G_1, G_2, \ldots, G_r \in \mathcal{F}(n)$ such that $|G_1 \cap G_2 \cap \ldots \cap G_r| = t-1$. If each $i \in [n-1]$ is contained in at least r-1 of G_1, G_2, \ldots, G_r , then

$$\sum_{1 \le i \le r} G_i = rk \ge (r-1)((n-1) - (t-1)) + rt = (r-1)n + t,$$

contradicting $n > \frac{rk-t}{r-1}$. Thus there exists $x \in [n-1]$ such that x is contained in at most r-2 of G_1, G_2, \ldots, G_r . Note that $G_i \cup \{n\} \in \mathcal{F}$. Since $G_1 \cup \{x\} \prec G_1 \cup \{n\}$, by shiftedness we have $G_1 \cup \{x\} \in \mathcal{F}$. However,

$$|(G_1 \cup \{x\}) \cap (G_2 \cup \{n\}) \cap \ldots \cap (G_r \cup \{n\})| = |G_1 \cap G_2 \cap \ldots \cap G_r| = t - 1,$$

contradicting the fact that \mathcal{F} is r-wise t-intersecting. Thus $\mathcal{F}(n)$ is r-wise t-intersecting, implying that $|\mathcal{F}(n)| \leq m(n-1,k-1,r,t)$. Therefore,

$$m(n, k, r, t) = |\mathcal{F}| = |\mathcal{F}(\bar{n})| + |\mathcal{F}(n)| \le m(n - 1, k, r, t) + m(n - 1, k - 1, r, t).$$

Lemma 6.2. Suppose that $m(n, k, r, t) = \binom{n-t}{k-t}$ then

$$m(n, k-1, r, t) = \binom{n-t}{k-1-t}.$$

Proof. Assume that $\mathcal{G} \subset \binom{[n]}{k-1}$ is an r-wise t-intersecting family and $|\mathcal{G}| > \binom{n-t}{k-1-t} = \binom{n-t}{n-k+1}$. Set

$$\mathcal{G}^c = \{ [n] \setminus G \colon G \in \mathcal{G} \} .$$

Note that $|\mathcal{G}^c| = |\mathcal{G}| > \binom{n-t}{n-k+1}$. By Theorem 1.13 we have $|\partial \mathcal{G}^c| > \binom{n-t}{n-k}$. Define

$$\mathcal{F} = \{ [n] \setminus G \colon G \in \partial \mathcal{G}^c \} .$$

It is easy to see that $\mathcal{F} = \partial^+(\mathcal{G})$. It follows that $\mathcal{F} \subset \binom{[n]}{k}$ is r-wise t-intersecting. Then

$$|\mathcal{F}| \le m(n, k, r, t) = \binom{n-t}{k-t},$$

contradicting $|\mathcal{F}| = |\partial \mathcal{G}^c| > \binom{n-t}{n-k} = \binom{n-t}{k-t}$.

Let $\mathcal{F} \subset {[n] \choose k}$ be an r-wise t-intersecting family. We say that \mathcal{F} is saturated if any addition of an extra k-set to \mathcal{F} would destroy the r-wise t-intersecting property. We say $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_r \subset {[n] \choose k}$ are cross t-intersecting if $|F_1 \cap F_2 \cap \ldots \cap F_r| \geq t$ for all $F_1 \in \mathcal{F}_1$, $F_2 \in \mathcal{F}_2, \ldots, F_r \in \mathcal{F}_r$.

Lemma 6.3. Let $\mathcal{F} \subset {[n] \choose k}$ be a shifted and saturated r-wise t-intersecting family. Let $\mathcal{G}_i = \mathcal{F}([t+1] \setminus \{i\}, [t+1]), i = 1, 2, 3, \dots, t$. If \mathcal{F} is not a t-star, then $\mathcal{G}_i = \mathcal{G}_j$ for all $1 \leq i < j \leq t$.

Proof. Since \mathcal{F} is not a t-star, there exists some $F_0 \in \mathcal{F}$ such that $|F_0 \cap [t]| \leq t - 1$. By shiftedness, we may assume that $F_0 \cap [t] = [t] \setminus \{t\}$. By shiftedness again,

$$\mathcal{G}_1 \subset \mathcal{G}_2 \subset \ldots \subset \mathcal{G}_t.$$

Since $F_0 \setminus [t+1] \in \mathcal{G}_t$, we have $\mathcal{G}_t \neq \emptyset$.

By (6.2) it suffices to show that $\mathcal{G}_1 = \mathcal{G}_t$. Suppose for contradiction that $\mathcal{G}_1 \subsetneq \mathcal{G}_t$. Then there exists some $G_t \in \mathcal{G}_t \setminus \mathcal{G}_1$. Then $F := G_t \cup ([t+r] \setminus \{t\}) \in \mathcal{F}$ and $F' := G_t \cup ([t+1] \setminus \{1\}) \notin \mathcal{F}$. By saturatedness and Lemma 2.2, we infer that there exist $F_1, F_2, \ldots, F_{r-1} \in \mathcal{F}$ such that for all $x \geq 0$,

$$|F' \cap [x]| + \sum_{1 \le i \le r-1} |F_i \cap [x]| \le (r-1)x + t - 1.$$

Since $F, F_1, F_2, \ldots, F_{r-1} \in \mathcal{F}$, by Lemma 2.2 there exists some $s \geq t$ such that

$$|F \cap [s]| + \sum_{1 \le i \le r-1} |F_i \cap [s]| \ge (r-1)s + t.$$

It follows that $|F' \cap [s]| < |F \cap [s]|$, contradicting the fact that $s \ge t$. Thus $\mathcal{G}_1 = \mathcal{G}_t$ and the lemma follows.

Lemma 6.4. *For* $k \ge 3$,

$$m(2k, k, 4, 3) = \binom{n-3}{k-3}.$$

Proof. Let n = 2k and let $\mathcal{F} \subset {[n] \choose k}$ be a shifted 4-wise 3-intersecting family. Without loss of generality, assume that \mathcal{F} is saturated and is not a 3-star. We distinguish two cases.

Case A. There exist $F_1, F_2, F_3 \in \mathcal{F}$ such that $|F_1 \cap F_2 \cap F_3| = 4$.

By shiftedness, we may assume $F_1 \cap F_2 \cap F_3 = [4]$. Then the 4-wise 3-intersecting property implies $|F \cap [4]| \geq 3$ for all $F \in \mathcal{F}$. Define $\mathcal{H}_i = \mathcal{F}([4] \setminus \{i\}, [4])$ for i = 1, 2, 3. By Lemma 6.3 these three families are identical. Set $\mathcal{H} = \mathcal{H}_1$. Since \mathcal{F} is 4-wise 3-intersecting, $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ are cross 3-intersecting. Thus \mathcal{H} is 3-wise 3-intersecting. As n - 4 > 2(k - 3), by Proposition 4.4,

(6.3)
$$|\mathcal{H}_1| + |\mathcal{H}_2| + |\mathcal{H}_3| = 3|\mathcal{H}| < 3\left(\frac{\sqrt{5} - 1}{2}\right)^3 \binom{n - 4}{k - 3} < \binom{n - 4}{k - 3}.$$

Since \mathcal{F} is not a 3-star, by Fact 2.5, $\mathcal{F}([3])$ is 3-wise intersecting. By (1.3),

$$|\mathcal{F}([3])| \le \binom{n-4}{k-4}.$$

Adding (6.3) and (6.4), $|\mathcal{F}| < \binom{n-3}{k-3}$ follows.

Case B. \mathcal{F} is 3-wise 5-intersecting.

By Proposition 4.4,

$$|\mathcal{F}| \le \left(\frac{\sqrt{5}-1}{2}\right)^5 {2k \choose k} < 0.0902 {2k \choose k}.$$

Note that

$$\frac{\binom{2k-3}{k-3}}{\binom{2k}{k}} = \frac{k(k-1)(k-2)}{2k(2k-1)(2k-2)} = \frac{1}{4} \times \frac{k-2}{2k-1}.$$

Since we may assume $k \ge 4 + 3 = 7$,

$$|\mathcal{F}| < 0.0902 \binom{2k}{k} \le 0.0902 \times 4 \times \frac{2k-1}{k-2} \binom{2k-3}{k-3} \le 0.0902 \times 4 \times \frac{13}{5} \binom{2k-3}{k-3} < \binom{2k-3}{k-3}.$$

Thus
$$m(2k, k, 4, 3) = {2k-3 \choose k-3}$$
.

Lemma 6.5. For k > 4,

$$m(2k, k, 4, 4) = \binom{n-4}{k-4}.$$

Proof. Let n = 2k and let $\mathcal{F} \subset \binom{[n]}{k}$ be a shifted 4-wise 4-intersecting family. Without loss of generality, assume that \mathcal{F} is saturated and is not a 4-star. We distinguish three cases.

Case A. \mathcal{F} is 3-wise 5-intersecting but not 3-wise 6-intersecting.

By shiftedness, we may assume $F_1 \cap F_2 \cap F_3 = [5]$ for some $F_1, F_2, F_3 \in \mathcal{F}$. Then $|F \cap [5]| \ge 4$ for all $F \in \mathcal{F}$. Define $\mathcal{H}_i = \mathcal{F}([5] \setminus \{i\}, [5])$ for i = 1, 2, 3, 4. By Lemma 6.3 these four families are identical. Since \mathcal{F} is 4-wise 4-intersecting, $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4$ are cross 4-intersecting. Thus \mathcal{H} is 4-wise 4-intersecting. As n - 5 > 2(k - 4), by Proposition 4.4,

(6.5)
$$\sum_{1 \le i \le 4} |\mathcal{H}_i| = 4|\mathcal{H}| < 4\alpha_4^4 \binom{n-5}{k-4} \stackrel{(4.2)}{<} \frac{4}{2^4 - 4 - 1} \binom{n-5}{k-4} < \binom{n-5}{k-4}.$$

Since \mathcal{F} is not a 4-star, by Fact 2.5, $\mathcal{F}([4])$ is 3-wise intersecting. By (1.3),

$$(6.6) |\mathcal{F}([4])| \le \binom{n-5}{k-5}.$$

Adding (6.5) and (6.6), $|\mathcal{F}| < \binom{n-4}{k-4}$ follows.

Case B. \mathcal{F} is 3-wise 6-intersecting but not 3-wise 7-intersecting.

Then $\mathcal{F}([4])$ is 3-wise 2-intersecting. Since n-4>2(k-4), by Theorem 1.6 we have $|\mathcal{F}[4]| \leq \binom{n-6}{k-6}$. Fix $H_1, H_2, H_3 \in \mathcal{F}$ with $H_1 \cap H_2 \cap H_3 = [6]$. Then the 4-wise 4-intersecting property implies $|F \cap [6]| \geq 4$ for all $F \in \mathcal{F}$. Let

$$\mathcal{F}_i = \{ F \in \mathcal{F} \colon [4] \not\subset F, |F \cap [6]| = i \}, i = 4, 5.$$

For $B \in {[6] \choose 4}$ with $B \neq [4]$ and $F \in \mathcal{F}(B, [6])$, P(F) is a lattice path from (0,0) to (n-k,k) that goes through (2,4) and hits y=3x+4. By Proposition 4.3 (ii) and (iv) we infer that

$$|\mathcal{F}_4| = \sum_{B \in \binom{[6]}{4}, \ B \neq [4]} |\mathcal{F}(B, [6])| < 14\alpha_4^6 \binom{n-6}{k-4} \stackrel{(4.2)}{<} \frac{14}{(2^4-4-1)^{3/2}} \binom{n-6}{k-4} < \binom{n-6}{k-4}.$$

Note that $\mathcal{F}_5 = \bigcup_{1 \leq i \leq 4} \mathcal{F}([6] \setminus \{i\}, [6])$. Let $\mathcal{G}_i = \mathcal{F}([6] \setminus \{i\}, [6])$, i = 1, 2, 3, 4. By Lemma 6.3, $\mathcal{G}_i = \mathcal{G}_j$ for $1 \leq i < j \leq 4$. Since $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \mathcal{G}_4$ are cross 2-intersecting, \mathcal{G}_1 is 4-wise 2-intersecting. Since n - 6 > 2(k - 5), by Theorem 1.6

$$|\mathcal{F}_5| = \sum_{1 \le i \le 4} |\mathcal{G}_i| \le 4 \binom{n-8}{k-7} = 4 \frac{(k-5)(k-6)}{(n-6)(n-7)} \binom{n-6}{k-5} < \binom{n-6}{k-5}.$$

Thus,

$$|\mathcal{F}| \le |\mathcal{F}([4])| + |\mathcal{F}_4| + |\mathcal{F}_5| < \binom{n-6}{k-6} + \binom{n-6}{k-4} + 2\binom{n-6}{k-5} = \binom{n-4}{k-4}.$$

Case C. \mathcal{F} is 3-wise 7-intersecting.

If \mathcal{F} is 3-wise 8-intersecting, then we may assume $k \geq 3+8=11$ and by Proposition 4.4,

$$|\mathcal{F}| \le \left(\frac{\sqrt{5} - 1}{2}\right)^8 \binom{n}{k} < \left(\frac{\sqrt{5} - 1}{2}\right)^8 \left(\frac{2k - 3}{k - 3}\right)^4 \binom{n - 4}{k - 4}$$

$$< \left(\frac{\sqrt{5} - 1}{2}\right)^8 \left(\frac{19}{8}\right)^4 \binom{n - 4}{k - 4} < \binom{n - 4}{k - 4}.$$

Thus there exist $F_1, F_2, F_3 \in \mathcal{F}$ such that $F_1 \cap F_2 \cap F_3 = [7]$. Then $|F \cap [7]| \ge 4$ for all $F \in \mathcal{F}$. Since $\mathcal{F}([4])$ is 3-wise 3-intersecting, by Proposition 4.4,

$$|\mathcal{F}([4])| < \left(\frac{\sqrt{5}-1}{2}\right)^3 \binom{n-4}{k-4} < 0.24 \binom{n-4}{k-4}.$$

Let

$$\mathcal{F}_i = \{ F \in \mathcal{F} : [4] \not\subset F, |F \cap [7]| = i \}, i = 4, 5, 6 \}$$

and let $\mathcal{G}_i = \mathcal{F}([7] \setminus \{i\}, [7])$. Then by Lemma 6.3, $\mathcal{G}_1 = \mathcal{G}_2 = \mathcal{G}_3 = \mathcal{G}_4 =: \mathcal{G}$. Moreover, \mathcal{G} is 4-wise intersecting. Thus,

$$|\mathcal{F}_6| = 4|\mathcal{G}| \le 4\binom{n-8}{k-7} < 3.4 \times \frac{k-6}{n-7} \binom{n-7}{k-6} + 0.6 \binom{n-7}{k-7} < 1.8 \binom{n-7}{k-6} + 0.6 \binom{n-7}{k-7}.$$

Note that P(F) goes though (7-i,i) and hits y=3x+4 for each $F \in \mathcal{F}_i$, i=4,5. Using Proposition 4.3 (ii) and (iv), we have

$$|\mathcal{F}_5| = 18\alpha_4^5 \binom{n-7}{k-5} < 18 \times \frac{1}{2^4 - 4 - 1}\alpha_4 \binom{n-7}{k-5} = 2\alpha_4 \binom{n-7}{k-5} < 1.8 \binom{n-7}{k-5}$$

and

$$|\mathcal{F}_4| \le 34 \times \alpha_4^9 \binom{n-7}{k-4} < \frac{34}{(2^4-4-1)^2} \times \left(\frac{1}{2} + \frac{1}{2^4}\right) \binom{n-7}{k-4} = \frac{17}{72} \binom{n-7}{k-4} < 0.6 \binom{n-7}{k-4}.$$

Thus,

$$|\mathcal{F}| = |\mathcal{F}([4])| + |\mathcal{F}_4| + |\mathcal{F}_5| + |\mathcal{F}_6|$$

$$< 0.24 \binom{n-4}{k-4} + 0.6 \left(\binom{n-7}{k-4} + 3\binom{n-7}{k-5} + 3\binom{n-7}{k-6} + \binom{n-7}{k-7} \right)$$

$$= 0.84 \binom{n-4}{k-4} < \binom{n-4}{k-4}.$$

Proof of Proposition 1.7. Let $(r,t) \in \{(4,3),(4,4)\}$. By Lemmas 6.4 and 6.5, we infer $m(2k,k,r,t) = \binom{n-t}{k-t}$. For $n \geq 2k$, if n is even then by $m(n,n/2,r,t) = \binom{n-t}{n/2-t}$ and Lemma 6.6 we have $m(n,k,r,t) = \binom{n-t}{k-t}$. If n is odd, then $n \geq 2k$ implies $n-1 \geq 2k$. Using (6.1) we conclude that

$$m(n, k, r, t) \le m(n - 1, k, r, t) + m(n - 1, k - 1, r, t) = \binom{n - t}{k - t}.$$

Lemma 6.6. If $k \ge \frac{t(t-1)}{4\log 2} + t - 1$ and $t \le 2^{r-2} \log 2 - 2$, then

(6.7)
$$m(2k, k, r, t) = \binom{n-t}{k-t}.$$

Moreover, in case of equality \mathcal{F} is the full t-star.

Proof. Let n=2k and let $\mathcal{F} \subset \binom{[n]}{k}$ be a shifted and saturated r-wise t-intersecting family. If there exist $F_1, F_2, \ldots, F_{r-1} \in \mathcal{F}$ with $|F_1 \cap F_2 \cap \ldots \cap F_{r-1}| = t$, then \mathcal{F} is a t-star and (6.7) follows. Thus we may assume that \mathcal{F} is and (r-1)-wise (t+1)-intersecting. We distinguish two cases.

Case 1. \mathcal{F} is (r-1)-wise (t+2)-intersecting.

Then by (4.4) we have

$$|\mathcal{F}| \le \alpha_{r-1}^{t+2} \binom{n}{k} < \left(\frac{1}{2} + \frac{1}{2^{r-1}}\right)^{t+2} \binom{n}{k} \le \left(\frac{1}{2} + \frac{1}{2^{r-1}}\right)^{t+2} \frac{n(n-1)\dots(n-t+1)}{k(k-1)\dots(k-t+1)} \binom{n-t}{k-t}.$$

Since n=2k, by $t \leq 2^{r-2} \log 2 - 2$ and $k \geq \frac{t(t-1)}{4 \log 2} + t - 1$ we infer that

$$\begin{split} \frac{1}{2^{t+1}} \left(1 + \frac{1}{2^{r-2}}\right)^{t+2} \frac{(2k-1)\dots(2k-t+1)}{(k-1)\dots(k-t+1)} &\leq \frac{1}{4} e^{\frac{t+2}{2^{r-2}}} \prod_{1 \leq i \leq t-1} \left(1 + \frac{i}{2(k-i)}\right) \\ &< \frac{1}{4} \exp\left(\frac{t+2}{2^{r-2}} + \sum_{1 \leq i \leq t-1} \frac{i}{2(k-t+1)}\right) \\ &\leq \frac{1}{4} \exp\left(\log 2 + \frac{t(t-1)}{4(k-t+1)}\right) \\ &\leq \frac{1}{4} \exp\left(\log 2 + \log 2\right) = 1. \end{split}$$

Thus $|\mathcal{F}| < \binom{n-t}{k-t}$.

Case 2. There exist $F_1, \ldots, F_{r-1} \in \mathcal{F}$ with $|F_1 \cap \ldots \cap F_{r-1}| = t+1$.

By shiftedness, we may assume $F_1 \cap \ldots \cap F_{r-1} = [t+1]$. Then the r-wise t-intersecting property implies $|F \cap [t+1]| \ge t$ for all $F \in \mathcal{F}$. Let $\mathcal{G}_i = \mathcal{F}([t+1] \setminus \{i\}, [t+1])$ for $i = 1, 2, \ldots, t+1$. By Lemma 6.3 we infer $\mathcal{G}_1 = \mathcal{G}_2 = \ldots = \mathcal{G}_t$. Let $\mathcal{G} = \mathcal{G}_i$, $i = 1, 2, \ldots, t$. Then

$$|\mathcal{F}| = |\mathcal{F}([t])| + t|\mathcal{G}|$$

By Fact 2.5, $\mathcal{F}([t])$ is (r-1)-wise intersecting. Using (1.3), we obtain that

$$|\mathcal{F}([t])| \le \binom{n-t-1}{k-t-1} < \frac{k-t}{2k-t} \binom{n-t}{k-t} < \frac{1}{2} \binom{n-t}{k-t}.$$

We are left to show $t|\mathcal{G}| \leq \frac{1}{2} \binom{n-t}{k-t}$.

If $t \geq r$, then $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_r$ is cross (r-1)-intersecting on [t+2, n]. Since $\mathcal{G}_1 = \mathcal{G}_2 = \ldots = \mathcal{G}_r$, \mathcal{G} is r-wise (r-1)-intersecting. Note that $t \leq 2^{r-2} \log 2 - 2 \leq \frac{2^{r-r-1}}{4}$ holds for all $r \geq 3$. By Proposition 4.4,

$$|\mathcal{G}| \le \alpha_r^{r-1} \binom{n-t-1}{k-t} \stackrel{(4.2)}{<} \frac{1}{\alpha_r(2^r-r-1)} \binom{n-t-1}{k-t} < \frac{1}{2t} \binom{n-t}{k-t}$$

and we are done.

By Fact 2.5, \mathcal{F} is t-wise r-intersecting. If r > t then $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_t$ is cross (r-1)-intersecting on [t+2, n]. Since $\mathcal{G}_1 = \mathcal{G}_2 = \ldots = \mathcal{G}_t$, \mathcal{G} is t-wise (r-1)-intersecting. By Theorem 1.6 we may assume $t \geq 3$. Then

$$|\mathcal{G}| \le \alpha_t^{r-1} \binom{n-t-1}{k-t} \le \alpha_t^t \binom{n-t-1}{k-t} \stackrel{(4.2)}{<} \frac{1}{2^t-t-1} \binom{n-t-1}{k-t} \le \frac{1}{2t} \binom{n-t}{k-t}.$$

Thus $t|\mathcal{G}| \leq \frac{1}{2} \binom{n-t}{k-t}$ and the lemma is proven.

Proof of Theorem 1.8. Note that $n \ge \frac{t(t-1)}{2\log 2} + 2t - 1$ implies

(6.8)
$$\frac{n}{2} > \frac{n-1}{2} \ge \frac{t(t-1)}{4\log 2} + t - 1.$$

If n is even, then by applying Lemma 6.6 we infer that

$$m\left(n,\frac{n}{2},r,t\right) = \binom{n-t}{\frac{n}{2}-t}.$$

Since $\frac{n}{2} \ge k$, by Lemma 6.2 we have

$$m(n, k, r, t) = \binom{n-t}{k-t}.$$

If n is odd, then $n \ge 2k$ implies $n \ge 2k + 1$. By (6.8) and applying Lemma 6.6,

$$m\left(n-1,\frac{n-1}{2},r,t\right) = \binom{n-1-t}{\frac{n-1}{2}-t}.$$

Since $\frac{n-1}{2} \ge k > k-1$, by Lemma 6.2

$$m(n-1,k,r,t) = \binom{n-1-t}{k-t}$$
 and $m(n-1,k-1,r,t) = \binom{n-1-t}{k-1-t}$.

Using (6.1) we conclude that

$$m(n, k, r, t) \le m(n - 1, k, r, t) + m(n - 1, k - 1, r, t) = \binom{n - t}{k - t}.$$

7 Concluding remarks

The area of research concerning r-wise t-intersecting non-uniform families is quite large and there are several results we could not even mention. The case of uniform families, that is, adding a new parameter k, increases this variety. In the present paper we stayed mostly in the range $k \leq \frac{1}{2}n$. However, it is completely legitimate to consider the range $k \sim cn$ for any fixed c < 1 as long as $c \leq \frac{r-1}{r}$.

If one wants to extend the results to such a range it seems to be essential to answer the following question.

Problem 7.1. Let $c < \frac{r-1}{r}$ and denote by p(n, k, r, t) the probability that a random lattice path from (0,0) to (n-k,k) hits the line y=(r-1)x+t. Let α be the unique root of $c-x+(1-c)x^r=0$ in (0,1). Does the inequality

(7.1)
$$p(n, k, r, t) < \alpha^t \text{ holds always if } k \le cn?$$

It seems to be rather difficult to determine the exact value of $n_0(k, r, t)$. Based on Fact 5.2, let us make the following:

Conjecture 7.2. For $n \ge \frac{\sqrt{4t+9}-1}{2}k$,

$$m(n,k,3,t) = \binom{n-t}{k-t}.$$

Another important problem would be to determine $m^*(n, k, r, 1)$, the uniform version of the Brace-Daykin Theorem (the case t = 1 of Theorem 1.10). In the case r = 2 the solution is given by the Hilton-Milner Theorem [19].

Let us recall the Hilton-Milner-Frankl Theorem. Define

$$\mathcal{B}(n, k, r, t) = \left\{ B \in \binom{[n]}{k} : [t + r - 2] \subset B, \ B \cap [t + r - 1, k + 1] \neq \emptyset \right\}$$
$$\cup \left\{ [k + 1] \setminus \{j\} : 1 \le j \le t + r - 2 \right\}.$$

Theorem 7.3 (Hilton-Milner-Frankl Theorem [19, 10, 1]). For $n \ge (k-t+1)(t+1)$,

(7.2)
$$m^*(n, k, 2, t) = \max\{|\mathcal{A}_1(n, k, 2, t)|, |\mathcal{B}(n, k, 2, t)|\}.$$

Note that both families $\mathcal{A}_1(n, k, 2, t)$ and $\mathcal{B}(n, k, 2, t)$ are r-wise (t+2-r)-intersecting, in particular, (t+1)-wise 1-intersecting. Thus in the range (k-t+1)(t+1) < n, i.e., $k < \frac{n}{t+1} + t - 1$,

$$m^*(n, k, r, t + 2 - r) = m^*(n, k, 2, t).$$

However the case $k \sim cn$ with $\frac{1}{t+1} < c < \frac{r-1}{r}$ appears to be much harder. In [17] the following was proved.

Theorem 7.4 ([17]). Let
$$0 < \varepsilon < \frac{1}{10}$$
. For $n \ge \frac{4}{\varepsilon^2} + 7$ and $(\frac{1}{2} + \varepsilon)$ $n \le k \le \frac{3n}{5} - 3$, $m^*(n, k, 3, 1) = |\mathcal{A}_1(n, k, 3, 1)|$.

References

- [1] R. Ahlswede, L.H. Khachatrian, The complete non-trivial intersection theorem for systems of finite sets, J. Comb. Theory, Ser. A, 76 (1996), 121–138.
- [2] R. Ahlswede, L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125–136.
- [3] J. Balogh, W. Linz, Short proofs of two results about intersecting set systems, Combinatorial Theory 4 (1)(2024), #4.
- [4] A. Brace, D.E. Daykin, A finite set covering theorem, Bull. Aust. Math. Soc., 5 (1971), 197–202.
- [5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313–320.
- [6] P. Frankl, On Sperner families satisfying an additional condition, J. Combinatorial Theory Ser. A 20 (1976), 1–11.
- [7] P. Frankl, Extremal set systems, Ph.D. Thesis, Hungarian Academy of Science, 1977, in Hungarian.
- [8] P. Frankl, On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17(1) (1977), 125–134.

- [9] P. Frankl, The Erdős-Ko-Rado theorem is true for n = ckt, Coll. Math. Soc. J. Bolyai 18 (1978), 365–375.
- [10] P. Frankl, On intersecting families of finite sets, J. Combin. Theory, Ser. A 24 (1978), 146–161.
- [11] P. Frankl, The shifting technique in extremal set theory, Surveys in Combinatorics 123 (1987), 81–110.
- [12] P. Frankl, Multiply intersecting families, J. Combin. Theory Ser. B, 53 (1991), 195– 234.
- [13] P. Frankl, Shadows and shifting, Graphs Combin. 7 (1991), 23–29.
- [14] P. Frankl, Some exact results for multiply intersecting families, J. Combin. Theory Ser. B 136(2019), 222–248.
- [15] P. Frankl, Z, Füredi, Beyond the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 56 (1991), 182–194.
- [16] P. Frankl, N. Tokushige, Weighted 3-wise 2-intersecting families, J. Combin. Theory Ser. A 100 (2002), 94–115.
- [17] P. Frankl, J. Wang, Non-trivial r-wise intersecting families, Acta Mathematica Hungarica 169 (2023), 510–523.
- [18] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. 2 (1977), 369–376.
- [19] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. 18 (1967), 369–384.
- [20] S. Janson, T. Luczak, A. Rucinski, Random graphs, John Wiley & Sons, 2011.
- [21] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hung. 15 (1964), 329–337.
- [22] G.O.H. Katona, A theorem on finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966, Akad. Kiadó, Budapest, 1968; Classic Papers in Combinatorics, 1987, pp. 381– 401.
- [23] J.B. Kruskal, The number of simplices in a complex, in: Math. Optimization Techniques, California Press, Berkeley, 1963, pp. 251–278.
- [24] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeitschrift 27 (1928), 544–548.
- [25] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247–257.