Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_pedagogic* Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$-3 + \left(-\frac{1}{2}\right)^2 = -3 + \frac{1}{4} = -\frac{11}{4}$	3р
	$-\frac{11}{4}:\left(-\frac{11}{2}\right)=\frac{1}{2}$	2p
2.	$f(x) = 0 \Leftrightarrow -\frac{1}{3}x + \frac{2}{3} = 0$	3p
	x = 2 si y = 0	2p
3.	$2^{x^2 - 3x} = 2^{2x - 4} \Leftrightarrow x^2 - 5x + 4 = 0$	3 p
	$x_1 = 1$ şi $x_2 = 4$	2p
4.	$p+10\% \cdot p=594$, unde p este prețul obiectului înainte de scumpire	2p
	p = 540 de lei	3 p
5.	$x_M = 2$, $y_M = -2$, unde punctul M este mijlocul segmentului EF	3p
	$x_N = 2$, $y_N = 1$, unde punctul N este mijlocul medianei DM	2p
6.	$\operatorname{tg} B = \frac{3}{4} \Rightarrow AB = 12$	2p
	$BC = 15 \Rightarrow P_{\Delta ABC} = 36$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$4 \circ 2 = 4 \cdot 2 - 2 \cdot 4 - 2 \cdot 2 + 6 =$	3p
	= 2	2 p
2.	$y \circ x = yx - 2y - 2x + 6 =$	2p
	$= xy - 2x - 2y + 6 = x \circ y$, pentru orice numere reale $x \neq y$	3 p
3.	$x \circ y = xy - 2x - 2y + 4 + 2 =$	2p
	= x(y-2)-2(y-2)+2=(x-2)(y-2)+2, pentru orice numere reale x şi y	3 p
4.	$2 \circ x = (2-2)(x-2) + 2 =$	3p
	=0+2=2, pentru orice număr real x	2p
5.	$x \circ x \circ x = \left(x - 2\right)^3 + 2$	2p
	x = 4	3 p
6.	$m \circ n = 3 \Leftrightarrow (m-2)(n-2) = 1$	2p
	Cum m și n sunt numere întregi, obținem perechile $(m, n) = (1,1)$ și $(m, n) = (3,3)$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	Pentru $x = 0$, $A(0) = \begin{pmatrix} 1 - 0 & 0 \\ -2 \cdot 0 & 1 + 2 \cdot 0 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$	2p
2.	$A(1) = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 1 \\ -2 & 3 \end{vmatrix} =$	2p
	=2	3p
3.	$A(x^{2}) = \begin{pmatrix} 1 - x^{2} & x^{2} \\ -2x^{2} & 1 + 2x^{2} \end{pmatrix}, \ A(2x) = \begin{pmatrix} 1 - 2x & 2x \\ -4x & 1 + 4x \end{pmatrix}, \ A(x^{2}) - A(2x) = \begin{pmatrix} -x^{2} + 2x & x^{2} - 2x \\ -2x^{2} + 4x & 2x^{2} - 4x \end{pmatrix}$	3p
	$\begin{pmatrix} -x^2 + 2x & x^2 - 2x \\ -2x^2 + 4x & 2x^2 - 4x \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = 0 \text{ si } x_2 = 2$	2p
4.	$\det(A(x)) = \begin{vmatrix} 1-x & x \\ -2x & 1+2x \end{vmatrix} = 1+x$	3 p
	$1 + x \neq 0 \Leftrightarrow x \in \mathbb{R} \setminus \{-1\}$	2 p
5.	$A(x) \cdot A(y) = \begin{pmatrix} 1 - x - y - xy & x + y + xy \\ -2x - 2y - 2xy & 1 + 2x + 2y + 2xy \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (x + y + xy) & x + y + xy \\ -2(x + y + xy) & 1 + 2(x + y + xy) \end{pmatrix} = A(x + y + xy), \text{ pentru orice numere reale } x \text{ şi } y$	2p
6.		3р
	$=A\left(\left(x+1\right)^{4}-1\right)$	- 1
	$(x+1)^4 - 1 = 0 \Rightarrow x_1 = -2 \text{ si } x_2 = 0$	2p