Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики \mathbb{N} 4.3.2

Дифракция света на ультразвуковой волне в жидкости

Автор:

Филиппенко Павел Б01-001

Долгопрудный, 2021

Аннотация

Цель и оборудование

- 1. **Цель работы:** изучение дифракция света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.
- 2. В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультрозвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Теоретическое введние

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции $n\ (m\ll 1).$

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin\theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Эксперементальная установка

Схема установки. Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива F=30 см, одно деление винта микроскопа составляет 20 мкм, полоса пропускания фильтра $\lambda=6400\pm200$ Å.

Для определения скорости ультразвука методом темного поля будем использовать следующую установку.

Рис. 3: Схема для определения скорости ультразвука методом темного поля

Ход работы

Определение скорости ультразвука по дифракционной картине

Проводить эксперимент будем с использованием установки рис 2. Запишем параметры установки.

Фокусные расстояние объективов: $F_1=F_2=30~{\rm cm}$ Длина волны и полоса пропускания для зеленого света: $\lambda_{\rm зел}=546~\pm~495~{\rm km}$ Длина волны и полоса пропускания для красного света: $\lambda_{\rm крас}=640~\pm~20~{\rm km}$

Исследуем изменение дифракционной картины в зеленом и красном свете. **Полученные выводы:**

- 1. При уменьшении мощности УЗ число дифракционных полос уменьшается.
- 2. При замене светофильтра с зеленого на красный качество дифракционной картины улучшается.
- 3. При наблюдении дифракционной картины в немонохроматическом свете качество дифракционной картины ухудшается. Это связано с временной когерентностью.

Измерим положение x дифракционных максимумов на разных частотах, по полученным данным построим графики зависимости x(n).

Экспериментальные данные приведены в таблицах 1, 2, 3 и 4.

n	-3	-2	-1	0	1	2	3
х, дел	-102	-72	-36	0	33	67	108
x, MKM	-408	-288	-144	0	132	268	432

Таблица 1: Положение максимумов при $f = 1.03678 \ \mathrm{M}\Gamma\mathrm{ц}$

По наклону каждого графика можно определить среднее расстояние между двумя максимумами, а зная длину волны найдем длину ультразвуковой волны по формуле:

$$\alpha = \frac{l_m}{m} = f \frac{\lambda}{\Lambda}$$

где l_m – среднее расстояние между максимумами, α – наклон графика, Λ – длина УЗ волны. Зная величину Λ можем вычислить скорость УЗ по формуле

n	-3	-2	-1	0	1	2	3
х, дел	-104	-72	-36	0	35	70	110
x, MKM	-416	-288	-144	0	140	280	440

Таблица 2: Положение максимумов при $f = 1.07482 \ \mathrm{M}\Gamma$ ц

n	-3	-2	-1	0	1	2	3
х, дел	-107	-74	-36	0	37	72	111
x, MKM	-428	-296	-144	0	148	288	444

Таблица 3: Положение максимумов при $f = 1.10083 \ \mathrm{M}\Gamma\mathrm{ц}$

n	-3	-2	-1	0	1	2	3
х, дел	-120	-74	-31	0	39	80	121
x, MKM	-480	-296	-124	0	156	320	484

Таблица 4: Положение максимумов при $f = 1.22206 \ \mathrm{M}\Gamma$ ц

$$v = \Lambda \nu$$

Расчет погрешностей

$$\frac{\sigma_{\Lambda}}{\Lambda} = \frac{\sigma_{\alpha}}{\alpha} \Rightarrow \sigma_{\Lambda} = \frac{\sigma_{\alpha}}{\alpha} \Lambda$$

$$\sigma_v = \sqrt{\varepsilon_\Lambda^2 + \varepsilon_\nu^2} v$$

где ν – частота УЗ. Результаты вычислений приведены в таблице 5.

f , М Γ ц	α , MKM	σ_{α} , mkm	Λ , mkm	σ_{Λ} , MKM	v, м/с	σ_v , м/с
1,037	139,57	2,00	1 375,65	19,71	1 426,55	20,44
1,075	142,43	1,49	1 348,03	14,10	1 449,13	15,16
1,101	145,57	1,04	1 318,95	9,42	1 452,17	10,38
1,222	157,29	2,91	1 220,68	22,58	1 491,67	27,60

Таблица 5: Результаты вычислений

Определение скорости ультразвука методом темного поля

Для данного эксперимента будем использовать установку 3. Установим цену деления окулярной шкалы в условиях опыта. В нашем случае цена деления 0.5 мм.

Получим изображение УЗ решетки, с помощью окулярной шкалы найдем расстояние между двумя удаленными минимумами и посчитаем количество полос между ними.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазовомодулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x I(x) = m^2\cos^2\Omega x = m^2\frac{1+\cos^22\Omega x}{2}$$
 (6)

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

ν , Мгц	Количество делений N	Количество темных полос n	Λ , mm	<i>v</i> , м/с
1,220	150	15	1,29	1570
1,259	150	16	1,20	1510
1,271	175	18	1,24	1570

Рис. 4: фазовая решетка закрыт нулевой максимум

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы.

Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{7}$$

Качественные наблюдения

Если последовательно закрывать нулевой, первый и второй максимумы дифракционной картины, то качество наблюдаемой УЗ решетки будет ухудшаться (см. рис 4, 6, ??).

Рис. 5: фазовая решетка закрыт первый максимум

Рис. 6: фазовая решетка закрыт второй максимум