BRSU

Neural Networks Assignment 7

Bastian Lang

November 22, 2015

1 OUTLINE

- Output Representation and Decision Rule
- Computer Experiment
 - Bayesian Decision Boundary
 - Experimental Determination of Optimal Multilayer Perceptron
 - * Optimal Number of Hidden Neurons
 - * Optimal Learning and Momentum Constants
 - * Evaluation of Optimal Network Design
- Feature Detection
 - Relation to Fisher's Linear Discriminent
- Back-Propagation and Differentation
 - Jacobian Matrix
- · Hessian Matrix
- Generalization
 - Sufficient Training Set Size for a Valid Generalization
- Approximation of Functions
 - Universal Approximation Theorem
 - Bounds on Approximation Errors
 - Curse of Dimensionality
 - Practical Considerations
- Cross-Validation
 - Model Selection
 - Early Stopping Method of Training
 - Variants of Cross-Validation
- Network Pruning Techniques
 - Complexity-Regularization
 - Weight Decay
 - Weight Elimination
 - Approximate Smoother
 - Hessian-based Network Pruning
 - Computing the inverse Hessian matrix

- Virtues and Limitations of Back-Propagation Learning
 - Connectionism
 - Feature Detection
 - Function Approximation
 - Computational Efficiency
 - Sensitivity Analysis
 - Robustness
 - Convergence
 - Local Minima
 - Scaling
- Accelerated Convergence of Back-Propagation Learning
 - 4 Heuristics
- Supervised Learning viewed as an Optimization Problem
 - Conjugate-Gradient Method
 - Example
 - Summary of the Nonlinear Conjugate Gradient Algorithm
 - Quasi-Newton Methods
 - Comparison of Quasi-Newton Methods with Conjugate-Gradient Methods
- Convolutional Networks
- Summary and Discussion

2 PCA & ICA

2.1 OUTPUT

2.2 CODE

-*- coding: utf-8 -*-

Created on Sat Nov 21 12:41:57 2015

@author: bastian

" " "

 $from \ matplotlib.mlab\ import\ PCA\ as\ mlabPCA\\ import\ matplotlib.pyplot\ as\ plt$

Figure 2.1: Both datasets in new coordinate system after performing PCA.

```
import numpy as np
from sklearn.decomposition import FastICA as ICA
from sklearn.cluster import KMeans
import neurolab as nl

def cluster_data(data,class_label):
    result = KMeans(n_clusters=2, random_state=170).fit_predict(data)

    plt.scatter(data[:,0],data[:,1], c=result)

    plt.xlabel('x_values')
    plt.ylabel('y_values')
    plt.xlim([-4,4])
    plt.ylim([-4,4])
    plt.legend()
    plt.title('Transformed samples versus original data')

    plt.show()
```


Figure 2.2: Both datasets in new coordinate system after performing ICA.

```
mlab_pca = mlabPCA(wall13_data)
    print ('PC axes in terms of the measurement axes scaled by the standard deviations:\n
    plt.plot(mlab_pca.Y[:,0],mlab_pca.Y[:,1],
             'o', markersize=7, color='blue', alpha=0.5, label=class_label)
    plt.plot(wall13_data[:,0], wall13_data[:,1],'^', markersize=7, color='red', alpha=0.
    plt.xlabel('x_values')
    plt.ylabel('y_values')
    plt.xlim([-4,40])
    plt.ylim([-4,10])
    plt.legend()
    plt.title('Transformed samples versus original data')
    plt.show()
    return mlab_pca.Y
def split_pca(combined_data, label_1, label_2):
    mlab_pca = mlabPCA(combined_data)
    print ('PC axes in terms of the measurement axes scaled by the standard deviations:\n
    plt.plot(mlab_pca.Y[0:100,0],mlab_pca.Y[0:100,1],
             'o', markersize=7, color='blue', alpha=0.5, label=label_1)
    plt.plot(mlab_pca.Y[100:200,0], mlab_pca.Y[100:200,1],
             '^', markersize=7, color='red', alpha=0.5, label=label_2)
    plt.xlabel('x_values')
    plt.ylabel('y_values')
    plt.xlim([-4,4])
    plt.ylim([-4,4])
    plt.legend()
    #plt.title('Transformed samples with class labels from matplotlib.mlab.PCA()')
    plt.show()
```

```
return mlab_pca.Y
```

```
def split_ica(combined_data, label_1, label_2):
    ica = ICA()
    result = ica.fit(combined_data).transform(combined_data)
    plt.plot(result[0:100,0],result[0:100,1],
             'o', markersize=7, color='blue', alpha=0.5, label=label_1)
    plt.plot(result[100:200,0], result[100:200,1],
             '^', markersize=7, color='red', alpha=0.5, label=label_2)
    plt.xlabel('x_values')
    plt.ylabel('y_values')
    plt.xlim([-0.3,0.3])
    plt.ylim([-0.3,0.3])
    plt.legend()
   #plt.title('Transformed samples with class labels from matplotlib.mlab.PCA()')
    plt.show()
    return result
wall13_data = np.genfromtxt('wall13.csv', delimiter=',')
do_pca(wall13_data, 'wall13')
#o_ica(wall13_data, 'wall13')
wall73_data = np.genfromtxt('wall73.csv', delimiter=',')
do_pca(wall73_data, 'wall73')
do_ica(wall73_data, 'wall73')
mixed_data = np.concatenate((wall13_data, wall73_data), axis=0)
Y = split_pca(mixed_data, 'wall13', 'wall73')
split_ica(mixed_data, 'wall13', 'wall73')
#cluster_data(Y, 'mixed')
```