第16讲 QPSK

- 1 QPSK信号的产生
- 2 QPSK信号的平均功率谱密度
- 3 QPSK信号的接收及其平均误比特率
- 4差分四相移相键控

Quadrature phase-shift keying (QPSK)

1 OPSK信号的产生

$$s_i(t) = A\cos(2\pi f_c t + \theta_i), \qquad i = 1, 2, 3, 4 \qquad 0 \le t \le T_s$$

$$i = 1, 2, 3, 4$$
 $0 \le t \le T$

1 QPSK信号的产生

$$s_i(t) = A\cos(\omega_c t + \theta_i) = A(\cos\theta_i \cos\omega_c t - \sin\theta_i \sin\omega_c t)$$

$$\theta_i = (i-1) \cdot \frac{\pi}{2}$$

$$\theta_i = (i-1) \cdot \frac{\pi}{2}$$
 $s_i(t) = A [I(t) \cos \omega_c t - Q(t) \sin \omega_c t]$

$$I(t) = \cos \theta_i; Q(t) = \sin \theta_i \qquad 0 \le t \le T_s$$

$$0 \le t \le T_s$$

Data bits		phase	
d_{2i+1}	d_{2i}	$ heta_{i}$	
0	0	90°	
0	1	00	
1	0	180°	
1	1	270°	

1 QPSK信号的产生

$$s_i(t) = A\cos(\omega_c t + \theta_i) = A(\cos\theta_i\cos\omega_c t - \sin\theta_i\sin\omega_c t)$$

$$\theta_i = (2i-1) \cdot \frac{\pi}{4}$$
 $s_i(t) = \frac{A}{\sqrt{2}} [I(t)\cos\omega_c t - Q(t)\sin\omega_c t]$

$$I(t) = \sqrt{2}\cos\theta_i = \pm 1; Q(t) = \sqrt{2}\sin\theta_i = \pm 1 \qquad 0 \le t \le T_s$$

Data bits		phase	In-phase component	Quadrature component
d_{2i+1}	d_{2i}	$ heta_{i}$	I(t)	Q(t)
0	0	45°	1	1
1	0	135°	-1	1
1	1	225°	-1	-1
0	1	315°	1	-1

$\pi/4$ QPSK modulator

2 QPSK信号功率谱密度

■ 2PSK信号功率谱密度

$$P_{2PSK}(f) = \frac{A^2 T_b}{4} \left\{ Sa^2 [\pi (f - f_c) T_b] + Sa^2 [\pi (f + f_c) T_b] \right\}$$

■ QPSK信号功率谱密度

$$P_{QPSK}(f) = 2\left\{\frac{(A/\sqrt{2})^{2}T_{s}}{4}\left\{Sa^{2}[\pi(f-f_{c})T_{s}] + Sa^{2}[\pi(f+f_{c})T_{s}]\right\}$$

$$= \frac{A^{2}T_{b}}{2}\left\{Sa^{2}[2\pi(f-f_{c})T_{b}] + Sa^{2}[2\pi(f+f_{c})T_{b}]\right\}$$

2 QPSK信号功率谱密度

3 QPSK信号接收

3 QPSK信号接收

4 差分QPSK

DQPSK利用前后码元的相对相位变化来表示数字信息

4 差分QPSK

$\left\{ b_{I,n} ight\} \ \left\{$	$\left\{ b_{Q,n} ight\}$	$\Delta \phi_{ m n}$	$\{a_{I,n-1}\}\{a_{Q,n-1}\}$	θ_{n-1}	$\{a_{I,n}\}\{a_{Q,n}\}$	θ_{n}
0	0	0°	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \end{array}$	3π/4 5π/4 7π/4 π/4	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \end{array}$	3π/4 5π/4 7π/4 π/4
0	1	90°	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \end{array}$	3π/4 5π/4 7π/4 π/4	$egin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ \end{bmatrix}$	5π/4 7π/4 π/4 3π/4
1	1	180°	$egin{array}{ccc} 0 & 0 & & & & & & & & & & & & & & & & $	3π/4 5π/4 7π/4 π/4	$egin{array}{cccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	7π/4 π/4 3π/4 5π/4
1	0	270°	$egin{array}{ccc} 0 & 0 & \ 0 & 1 & \ 1 & 1 & \ 1 & 0 & \ \end{array}$	3π/4 5π/4 7π/4 π/4	$egin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{array}$	π/4 3π/4 5π/4 7π/4

4 差分QPSK

$a_n b_n$	$\Delta\phi_{\mathrm{n}}$	c_{n-1} d_{n-1}	θ_{n-1}	$c_n d_n$	θ_{n}
0 0	0°	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \end{array}$	$3\pi/4 \ 5\pi/4 \ 7\pi/4 \ \pi/4$	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \end{array}$	$3\pi/4 \ 5\pi/4 \ 7\pi/4 \ \pi/4$
0 1	90°	$egin{array}{cccc} 0 & 0 & \ 0 & 1 & \ 1 & 1 & \ 1 & 0 & \ \end{array}$	$3\pi/4 \ 5\pi/4 \ 7\pi/4 \ \pi/4$	$egin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ \end{bmatrix}$	$5\pi/4 \ 7\pi/4 \ \pi/4 \ 3\pi/4$
1 1	180°	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \end{array}$	$3\pi/4 \ 5\pi/4 \ 7\pi/4 \ \pi/4$	1 1 1 0 0 0 0 1	$7\pi/4 \pi/4$ $3\pi/4 5\pi/4$
1 0	270°	$egin{array}{ccc} 0 & 0 & \ 0 & 1 & \ 1 & 1 & \ 1 & 0 & \ \end{array}$	$3\pi/4 \ 5\pi/4 \ 7\pi/4 \ \pi/4$	1 0 0 0 0 1 1 1	$\pi/4 \ 3\pi/4 \ 5\pi/4 \ 7\pi/4$

下列二进制频带传输系统中,误码性能最好的是

- A 2ASK非相干解调
- B 2PSK相干解调
- C 2FSK相干解调
- D 2DPSK非相干解调

某2ASK传输系统,若符号传输速率为10kHz,则下列说法中正确的是

- A 该2ASK信号的最小带宽为10kHz
- 该2ASK信号的最小带宽为20kHz
- 若基带信号采用不归零方波,则该2ASK信号第一过零点带宽为10kHz
- 若基带信号采用不归零方波,则该2ASK信号第一过零点带宽为20kHz

提交

若要求信息传输速率r_b=10kbps,分别采用BPSK和QPSK传输,所需要的最小带宽分别为:

- A 5kHz, 10kHz
- B 10kHz, 20kHz
- 10kHz, 5kHz
- 20kHz, 10kHz