7. 设 $V = \langle S, * \rangle$ 是可交换半群,若 $a,b \in S$ 是V 中的幂等元,证明a*b 也是V 中的幂等元.

$$(a*b)*(a*b) = a*b*a*b$$

= $(a*a)*(b*b)$
= $a*b$

11. V = (A, *) 是半群,其中 $A = \{a,b,c,d\}$, *运算由表 16. 4给定, ~ 为 A 上的同余关系,且同余类是

$$[a] = [c], [b] = [d].$$

试给出商代数V/~ 的运算表.

	表	16. 4		
*	a	ь	C	ď
а	а	ь	c	d
b	ь	C	d	a
c	c	d	a	Ь
d	d	а	b	c

*	[a]	[6]
[a]	[a]	[6]
[6]	[6]	[a]

12. $V=\langle S,\circ\rangle$ 是半群、I 是S 的非空子集、且满足 $IS\subseteq I$ 和 $SI\subseteq I$, 其中 $IS=\{a\circ x\mid a\in I\ \land\ x\in S\}$, $SI=\{x\circ a\mid x\in S\ \land\ a\in I\}$. 称 I 是V 的理想。在 S 上定义二元关系 R,

$$xRy \iff x = y \ \forall \ (x \in I \land y \in I).$$

- (1) 证明 $R \in V$ 上的同余的关系;
- (2) 描述商代数 (S/R, ō).

(i)
$$\forall x,y \in S$$
, $x \in Y \subseteq X = Y \setminus \{x \in I \land y \in I\}$
 $x_1 \in Y_1$, $x_2 \in Y_2 \subseteq X_1 = Y_1$, $\forall \{x_1 \in I \land y_1 \in I\}$
 $\{x_2 = y_1 \lor \{x_2 \in I \land y_2 \in I\}\}$

①
$$x_1 \in I \land y_1 \in I \in I$$

 $x_1 \circ x_1 \in S1 \subseteq I$
 $y_1 \circ y_2 \in S1 \subseteq I$
 $(x_1 \circ x_2) R(y_1 \circ y_2)$

即R是V上的同余关系

11. 设G是非交换群,则G中存在着非单位元a 和b, $a \neq b$ 且ab = ba.

若 ヤ a ≠ b ∈ G, a . b ≠ e, 有 a b ≠ b a

別 ∀ a ∈ G, a² = a (a²·a = a·a²)
由注律: a = e, G = {e}, 矛盾。
ty ∃ a ≠ b ∈ G, a · b ≠ e s.t. a b = b a