Określenie pułapu tlenowego VO₂max, czyli ile *ml* tlenu *kg* naszego ciała może pobrać w ciągu *min*

$$VO_{2\max} = 15 \frac{HR_{\max}}{HR_{sp}}$$

HR_{sp} – ilość uderzeń serca w ciągu 60 s.

$$HR_{sp} = 70 \pm 1 \text{ min}^{-1}$$

Wyznaczenie wielkości rzeczywistej M. Pomiar – uzyskujemy wiele wyników m_1 , m_2 , m_3 , m_4 , ... m_{n-2} , m_{n-1} , m_n

Jaka jest więc wartość **M**? Średnia arytmetyczna z uzyskanych wyników:

$$M_s = \frac{m_1 + m_2 + m_3 + \dots + m_n}{n} = \frac{1}{n} \sum_{i=1}^n m_i$$

Proszę wyznaczyć HR_{sp} osiem razy wykonując pomiar jednominutowy i wyznaczyć średnią.

Jeżeli teraz odejmiemy od M poszczególne wyniki pomiaru:

$$M - m_1 = \Delta m_1$$

$$M - m_2 = \Delta m_2$$

$$M - m_3 = \Delta m_3$$

$$\vdots$$

$$M - m_n = \Delta m_n$$

Uzyskamy błędy bezwzględne poszczególnych pomiarów Δm_i

Znamy błąd poszczególnych pomiarów ale jaka jest niepewność wartości średniej?

$$\Delta m_s = \sqrt{\frac{\sum_{i=1}^{n} (\Delta m_i)^2}{n(n-1)}}$$

Jest to odchylenie standardowe wartości średniej.

Wartość M znajduje się w przedziale $(M_s - \Delta m_s, M_s + \Delta m_s)$ z prawdopodobieństwem 0.67.

Dla $(\mathbf{M}_{s} - 3\Delta \mathbf{m}_{s}, \mathbf{M}_{s} + 3\Delta \mathbf{m}_{s})$ już **0,997**

Proszę wyznaczyć odchylenie standardowe HR_{sp}

Znamy ilość uderzeń serca w 60 s. Ile wyjdzie w 120 s? A ile w 240? Opierając się na definicji HR_{sp}

$$HR_{sp} = \frac{ilo\acute{s}l \ uderze\acute{n}}{czas} = \frac{N}{t}$$

Proszę zmierzyć ilość uderzeń przez 9 minut, zliczając co 60s. Następnie wykonać wykres,

$$\sum_{i=1}^{n} \frac{\left[y_i - (ax_i + b)\right]^2}{\sigma_i^2} = \min$$

$$b = \overline{y} - a\overline{x} \qquad a = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\overline{xy} = \frac{\sum_{i=1}^{n} x_i y_i}{n}$$

$$\overline{x^2} = \frac{\sum_{i=1}^n x_i^2}{n}$$

Uzyskujemy r-nie prostej y = ax + b

W oparciu o wyniki i wykres wyznaczyć wsp. kierunkowy prostej mający sens fizyczny HR_{sp}

Przygotowując wykres wykonali Państwo tabelę:

Czas t (min) {x _i }	Ilość N {y _i }
1	70
2	145
3	220
4	290
5	365
6	430
7	500
8	570
9	640

Dodajmy do tego:

$\{\mathbf{x_i}\mathbf{y_i}\}$	$\{x_i^2\}$
70	1
290	4
660	9
1160	16
1825	25
2580	36
3500	49
4560	64
5760	81

Pozostaje jeszcze kwestia niepewności uzyskanych stałych a i b:

$$S_a^2 = \frac{1}{n-2} \frac{\overline{y^2} - axy - by}{\overline{x^2} - x^2} \qquad S_b^2 = S_a^2 \overline{x^2}$$
$$= \frac{1}{n-2} \frac{\overline{y^2} - axy - by}{\overline{x^2} - x^2}$$
$$= \frac{\sum_{i=1}^{n} y_i^2}{y^2 = \frac{i=1}{n}}$$

Wzory obowiązują gdy niepewność wszystkich punktów pomiarowych jest taka sama – wszystkie zmierzono tyle samo razy! W innym wypadku należy zastosować średnie ważone.

Wracamy do pułapu tlenowego. Znamy już HR_{sp} wraz z niepewnościami.

$$VO_{2\max} = 15 \frac{HR_{\max}}{HR_{sp}}$$

HR_{max} dla mężczyzn dany jest wzorem:

$$HR_{\text{max}} = 210 - 0.5 \times wiek - 0.022 \times masa + 4$$

 $HR_{\text{max}} = 210 - 0.5 \times W - 0.022 \times C + 4$

Kobiety nie dodają ostatniej 4. Proszę ustalić swój pułap tlenowy.

Jaka jest niepewność tej wielkości? Co na nią wpływa?

Wracamy do pułapu tlenowego. Znamy już HR_{sp} wraz z niepewnościami.

$$VO_{2\max} = 15 \frac{HR_{\max}}{HR_{sp}}$$

HR_{max} dla mężczyzn dany jest wzorem:

$$HR_{\text{max}} = 210 - 0.5 \times wiek - 0.022 \times masa + 4$$

 $HR_{\text{max}} = 210 - 0.5 \times W - 0.022 \times C + 4$

Kobiety nie dodają ostatniej 4. Proszę ustalić swój pułap tlenowy.

Jaka jest niepewność tej wielkości? Co na nią wpływa?

Niepewność HR_{sp} , czyli ΔHR_{sp} , niepewność ustalania wieku ΔW i masy ΔC .

Pułap tlenowy jest więc zależny od trzech wielkości, każdej obarczonej niepewnością.

W ogólności wielkość fizyczną może opisywać funkcja Y zależna od n zmiennych: $Y(x_1, x_2, x_3,..., x_n)$

Każdy z pomiarów $x_1, x_2, x_3, ..., x_n$ obarczony jest błędem $\Delta x_1, \Delta x_2, \Delta x_3, ..., \Delta x_n$

Maksymalny bezwzględny błąd wielkości Y będzie wtedy wynosił:

$$\Delta Y = \left| \frac{\partial Y}{\partial x_1} \right| \Delta x_1 + \left| \frac{\partial Y}{\partial x_2} \right| \Delta x_2 + \dots + \left| \frac{\partial Y}{\partial x_n} \right| \Delta x_n$$

Nasz pułap tlenowy:

$$VO_{2\max}(W, C, HR_{sp}) = 15 \frac{210 - 0.5 \times W - 0.022 \times C + 4}{HR_{sp}}$$

Pochodna cząstkowa VO_{2max}:

$$\Delta VO_{2\max} = \left| 15 \frac{-0.5}{HR_{sp}} \right| \Delta W + \dots$$

Nasz pułap tlenowy:

$$VO_{2\text{max}}(W, C, HR_{sp}) = 15 \frac{210 - 0.5 \times W - 0.022 \times C + 4}{HR_{sp}}$$

Pochodna cząstkowa VO_{2max}:

$$\Delta VO_{2\text{max}} = \left| 15 \frac{-0.5}{HR_{sp}} \right| \Delta W + \left| 15 \frac{-0.022}{HR_{sp}} \right| \Delta C +$$

Nasz pułap tlenowy:

$$VO_{2\text{max}}(W, C, HR_{sp}) = 15 \frac{210 - 0.5 \times W - 0.022 \times C + 4}{HR_{sp}}$$

Pochodna cząstkowa VO_{2max}:

$$\Delta VO_{2\max} = \left| 15 \frac{-0.5}{HR_{sp}} \right| \Delta W + \left| 15 \frac{-0.022}{HR_{sp}} \right| \Delta C + \left| -15 \frac{210 - 0.5W - 0.022C + 4}{HR_{sp}^2} \right| \Delta HR_{sp}$$

Uwagi co do przedstawiania wyników:

Y = 54,5759302

Pułap tlenowy VO2max = 54,5759302 ml kg⁻¹min⁻¹

Pułap tlenowy VO2max = $54,5759302 \pm 0,3416278 \text{ ml kg}^{-1}\text{min}^{-1}$

Pułap tlenowy VO2max = $54,5759302 \pm 0,34 \text{ ml kg}^{-1}\text{min}^{-1}$

Zaokrąglanie: 0,3466278 na 0,35 0,3446278 na 0,34

Pułap tlenowy VO2max = $54,58 \pm 0,34 \text{ ml kg}^{-1}\text{min}^{-1}$

Zaokrąglanie gdy 5: 54,5756302 na 54,58 54,5754302 na 54,57

Jeszcze kilka przykładów liczb znaczących i zaokrąglania:

 $I = 7,189726 \pm 0,002688$

Jeszcze kilka przykładów liczb znaczących i zaokrąglania:

 $I = 7,189726 \pm 0,002688$

 $I = 7,1897 \pm 0,0027$

 $\Omega = 1345,189726\pm78,792536$

Jeszcze kilka przykładów liczb znaczących i zaokrąglania:

$$I = 7,189726 \pm 0,002688$$

$$I = 7,1897 \pm 0,0027$$

$$\Omega = 1345,189726\pm78,792536$$

$$\Omega = 1345 \pm 79$$

$$n = 2786,1678\pm123,7890$$

Jeszcze kilka przykładów liczb znaczących i zaokrąglania:

$$I = 7,189726 \pm 0,002688$$

$$I = 7,1897 \pm 0,0027$$

$$\Omega = 1345,189726\pm78,792536$$

$$\Omega = 1345 \pm 79$$

$$n = 2786,1678\pm123,7890$$

$$n = 2790 \pm 120$$

Rys.1: Pomiar ilości uderzeń serca w funkcji czasu przy użyciu stopera. Niebieski trójkąt pokazuje ilość zliczeń w niezależnej serii pomiarowej.