Complex FFT Accelerator :IP Generator Specification

Seok-Jun Lee (seokjun@ti.com)

Manish Goel (goel@ti.com) and Fernando Mujica (fmujica@ti.com)

Systems and Applications R&D Center

Texas Instruments

Input & Output Interfaces

Inputs

- clk_i: clock (all F/F is postive-edge)
- rst_n_i: reset ('0': reset)
- fft_size_i : 4-bit (Example: 1010: N=2^10=1024 point FFT).
- in_block_ready_i (pulse signal: '1' for 1-clock cycle)
- in_block_ptr_i (16-bit input block pointer pointing to the first complex sample of input block)
- out_block_ptr_i (16-bit output block pointer pointing to the first complex sample of output block)

Outputs

- busy_o (level signal: '1' while accelerator is in computation).
- Memory Bus Master Signals
 - ez_o (memory select: '0' is "selected"), wz_o (write enable: '0' is "enabled"), addr_o[15:0], rd_data_i[2W-1:0], wr_data_o[2W-1:0], and bus_busy_i
 - W: word-length for real or imaginary sample. If 16-bit is used, one complex number needs 32-bit, Data-In/Data-Out has 32-bit.
 - [2W-1:W]: Imaginary part, [W-1:0]: Real part.

How to interpret input/output pointer

- The very first complex input sample is located at main data memory[in_block_ptr_i].
- The very first complex FFT output sample should be written into main data memory[out_block_ptr_i].

Block Diagram

TEXAS INSTRUMENTS

Input & Output Signal Timing

FFT Core Generator Requirement

Parallelism

- Users should be able to specify the parallelism factor using the following parameters.
 - The required parallelism can be derived from FFT throughput requirement.
- Parameters
 - Radix-2, Radix-4
 - The number of Radix-2 or Radix-4 BFLY units/cycle
 - Radix-2 Programmable: 0.25, 0.5, 1.0, 2.0 and 4.0
 - Radix-4 Programmable: 0.5, 1.0, 2.0

Arithmetic

- Users should be able to chose the desired data-type out of the following choices.
 - · Fixed-point or floating point
 - In fixed-point arithmetic
 - Fixed scaling at each stage
 - Dynamic or Block scaling at each stage (at each FFT stage, only if overflow is detected, the scaling is applied).

Demonstrated Use-Case

- Demonstrated Used Case
 - Four-channel 1024-point input FFT
 - Timing budget: 25.6usec
 - FFT accelerator clock speed: 200MHz clock
 - 5120 clock cycles per 4 FFTs
- Architecture candidates
 - option1
 - Generate FFT accelerator where one Radix-2 Butterfly is computed per one cycle (Radix-2 programmable = 1.0 in the previous slide).
 - Make 4 copies of such generated FFT accelerators
 - option2
 - Generate FFT accelerator where four Radix-2 Butterflies are computed per one cycle (Radix-2 programmable = 4 in the previous slide).
 - option3
 - Generate FFT accelerator where one Radix-4 Butterfly is computed per one cycle (Radix-2 programmable = 1. 0 in the previous slide).

Example Architect

- One possible Radix-2 Architecture
 - The number of memory banks=M
 - The number of Twiddle LUTs=L
 - The number of Radix-2 data-path=R
- bus_busy_i can stall CORE
 - If memory access is not granted.

TI Information - Selective Disclosure

What is expected from GENESIS2 flow

- The generated IP quality should be ready for SoC integration.
 - Module Specification (documentation)
 - Module RTL and compile scripts
 - Makefiles for digital-backend (STA, DFT, FV, LINT, PowerTheater)
 - Testbench / Compile scripts
 - Etc....

