MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Naor commitments with extended message space). The main drawback of the Naor commitment scheme is message expansion – to commit one bit one must send n bits. One possibility is to increase the size of the message space. Let the message space \mathcal{M} be a subset of a finite field $(\mathbb{F}_{2^n}; +, \times)$ such that we can treat all n-bit strings as elements of \mathbb{F}_{2^n} . Then we can define modified commitment scheme:

Establish the corresponding security guarantees under the assumption that $f: \{0,1\}^k \to \{0,1\}^n$ is a (t_1, ε_1) -pseudorandom generator. How big must be the message space $\mathcal{M} \subseteq \mathbb{F}_{2^n}$ to achieve reasonable security guarantees against double openings?

Solution.

BINDING. The outcome c, d_1, d_2 of an adversary \mathcal{A} can be double opening only if pk is a solution to equation As this equation can have at most ... solutions the number of public keys that can lead to a double opening is bounded by Consequently, ...

HIDDING. Recall that commitment scheme is (t, ε) -hiding if any t-time adversary ... Recall that a function f is a (t, ε) -pseudorandom generator if ...

QUALITATIVE ANALYSIS OF THE BINDING BOUND.... as a result the size of the message space \mathcal{M} is bounded by ...