תרגיל 4- סדרות מתכנסות

חדו"א: סדרות וטורים

1

נתונה הסדרה המתכנסת

$$a_n = \frac{n+2}{2n-1}, \quad n \in \mathbb{N}$$

- $\left\{ a_{n}\right\} _{n=1}^{\infty}$ נחשו את גבול הסדרה .1
- לכל $|a_n-L|<\epsilon$ עבור כל אחד מערכי $n_0\in\mathbb{N}$ כאים, מצאו ערך ב־.L. עבור כל גבול גבול .ממן את גבול .ת. אחד מערכי .ת. $n>n_0$
 - $, \varepsilon = 0.1$ (א)
 - رد) $\epsilon = 0.05$
 - ε = 0.01 (x)

2

השתמשו בהגדרת הגבול כדי להוכיח כי $\frac{3}{2}=\frac{3}{2}$ כלומר־ בהינתן $\epsilon>0$ מצאו ערך ו $\lim_{n\to\infty}\frac{3n+5}{2n-1}=\frac{3}{2}$ כך שלכל השתמשו בהגדרת הגבול כדי להוכיח כי $\frac{3n+5}{2n-1}-\frac{3}{2}$

3

- תקיים $n>n_0$ כך שלכל n_0 כך אינדקס מתקיים מתקיים .L מתקיים לגבול חיובי $\{a_n\}_{n=1}^\infty$ המתכנסת לגבול היובי .an כי כי כי $a_n>0$
 - רמז: נסו לבחור את ערך ϵ בצורה מושכלת, והשתפשו בהגדרת הגבול.
- . T בה לכל $[b_n]_{n=1}^\infty$ נניח כי הסדרה מתכנסת לגבול הוכיחו כי $[b_n]_{n=1}^\infty$ מתקיים $[b_n]_{n=1}^\infty$ נעונה סדרה בשלילה כי מסקנת התרגיל שגויה, ולהשתמש בסעיף 1.
 - . בסעיף 2, האם ניתן להראות כי T>0? אם כן, הוכיחו זאת. אם לא, הציגו דוגמה נגדית.

4

 $.L^2$ אבול מתכנסת $\left\{\alpha_n^2\right\}_{n=1}^\infty$ הריבועים כי הוכיחו הוכיחו גבול המתכנסת המתכנסת $\left\{\alpha_n\right\}_{n=1}^\infty$

.... מול להכליל עובדה אה עבור הסדרה $\left\{\alpha_n^k\right\}_{n=1}^\infty$, כאשר $k\in\mathbb{N}$ הוא קבוע. רמא: ניתן לפתור את התרגיל ע"י (*) גסו להכליל עובדה אה עבור הסדרה $\left\{\alpha_n^k\right\}_{n=1}^\infty$, כאשר אויי $x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+\dots xy^{k-2}+y^{k-1})$ שימוש בנוסחה

* 5

. $T=\lim_{n\to\infty}b_n$ ור b_n ור $b_n=1$ וווא עם $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty$ נתונות סדרות מתכנסות מתכנסות $\{c_n\}_{n=1}^\infty$ לכל $\{c_n=\max\{L,T\}\}$ מתכנסת לגבול $\{c_n=\max\{a_n,b_n\}\}$