

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte 3 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- L'exercice1 se rapporte à l'analyse(12 pts)
- L'exercice2 se rapporte aux nombres complexes......(4 pts)
- L'exercice3 se rapporte à l'arithmétique(4 pts)

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge n'est pas autorisé

الصفحة		
	2	NS 25
1	< I	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة بالفرنسية)

EXERCICE1: (12 points)

Pour tout entier naturel n, on considère la fonction f_n définie sur $\mathbb R$ par :

$$f_n(x) = \frac{-2e^x}{1+e^x} + nx$$

Soit (C_n) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

(On prendra
$$\|\vec{i}\| = \|\vec{j}\| = 1cm$$
)

Partie I:

- 0.5 1-a) Calculer $\lim_{x\to+\infty} (f_n(x) nx + 2)$ puis interpréter graphiquement le résultat obtenu.
- b) Montrer que la courbe (C_n) admet, en $-\infty$, une asymptote (Δ_n) dont on déterminera une équation cartésienne.
- 0.5 2-a) Montrer que la fonction f_n est dérivable sur $\mathbb R$ et que :

$$(\forall x \in \mathbb{R})$$
; $f'_n(x) = \frac{-2e^x}{(1+e^x)^2} + n$

- 0.5 b) Montrer que : $(\forall x \in \mathbb{R})$; $\frac{4e^x}{(1+e^x)^2} \le 1$
- 0.5 c) En déduire le sens de variation de la fonction f_n sur \mathbb{R} (On distinguera les deux cas : n=0 et $n \ge 1$)
- 0.5 3-a) Déterminer l'équation de la tangente à la courbe (C_n) au point I d'abscisse 0
- 0.5 b) Montrer que le point I est le seul point d'inflexion de la courbe (C_n)
- 0.5 | 4- Représenter graphiquement dans le même repère, les deux courbes (C_0) et (C_2) .
 - 5- Pour tout réel t>0, on pose A(t) l'aire du domaine plan limité par (C_n) et les droites d'équations respectives : y=nx-2, x=0 et x=t
- 0.5 a) Calculer A(t) pour tout t > 0
- 0.5 b) Calculer $\lim_{t \to +\infty} A(t)$

Partie II:

On considère la suite $(u_n)_{n\geq 0}$ définie par :

$$u_0 = 0$$
 et $(\forall n \in \mathbb{N})$; $u_{n+1} = f_0(u_n)$

- 0.5 1-a) Montrer que l'équation $f_0(x) = x$ admet une unique solution α dans \mathbb{R}
- 0.5 b) Montrer que : $(\forall x \in \mathbb{R})$; $|f_0'(x)| \le \frac{1}{2}$
- 0.5 2-a) Montrer que : $(\forall n \in \mathbb{N})$; $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$

الصفحة 3 4	NS 25	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة بالفرنسية)		
0.5	b) En o	déduire que : $(\forall n \in \mathbb{N})$; $ u_n - \alpha \le \left(\frac{1}{2}\right)^n \alpha $		
0.5	c) Montrer que la suite $(u_n)_{n\geq 0}$ converge vers α			
	Partie III:			
	On supp	ose dans cette partie que $n \ge 2$		
0.5	1-a) Montrer que pour tout entier $n \ge 2$, il existe un unique réel x_n solution de			
	l'éq	uation $f_n(x) = 0$		
0.5	b) Mo	ntrer que pour tout entier $n \ge 2$, $0 < x_n < 1$		
		(On prendra $\frac{2e}{1+e} < 1.47$)		
0.5	2-a) Moi	ntrer que pour tout entier $n \ge 2$, $f_{n+1}(x_n) > 0$		
0.5	b) En o	léduire que la suite $(x_n)_{n\geq 2}$ est strictement décroissante.		
0.5	c) Mor	attrer que la suite $(x_n)_{n\geq 2}$ est convergente.		
0.5	3-a) Moi	ntrer que pour tout entier $n \ge 2$, $\frac{1}{n} < x_n < \frac{1}{n} \left(\frac{2e}{1+e} \right)$		
0.5	b) En o	déduire $\lim_{n\to+\infty} x_n$, puis montrer que $\lim_{n\to+\infty} nx_n = 1$		

0.5 | 3-a) Montrer que pour tout entier
$$n \ge 2$$
, $- < x_n < - \sqrt{1 + e}$
0.5 | b) En déduire $\lim_{n \to +\infty} x_n$, puis montrer que $\lim_{n \to +\infty} nx_n = 1$
0.5 | 4-a) Montrer que pour tout entier $n \ge 2$, on a : $x_n \le x_2$

0.5 b) En déduire
$$\lim_{n \to +\infty} (x_n)^n$$

0.5

0.5

EXERCICE2: (4 points)

Soient a, b et c trois nombres complexes non nuls tel que : $a+b\neq c$

1-a) Résoudre dans l'ensemble $\mathbb C$ l'équation d'inconnue z

$$(E)$$
: $z^2 - (a+b+c)z + c(a+b) = 0$

b) On suppose dans cette question que : a = i, $b = e^{i\frac{\pi}{3}}$ et c = a - bEcrire les deux solutions de l'équation (E) sous forme exponentielle.

2- Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On considère les trois points A(a), B(b) et C(c) qu'on suppose non alignés.

Soient P(p) le centre de la rotation d'angle $\frac{\pi}{2}$ qui transforme B en A

et Q(q) le centre de la rotation d'angle $\left(-\frac{\pi}{2}\right)$ qui transforme C en A

et D(d) le milieu du segment BC

الصفحة 4 4	NS 25	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة بالفرنسية)		
1	a) Montrer que : $2p = b + a + (a - b)i$ et $2q = c + a + (c - a)i$			
0.5	b) Calculer: $\frac{p-d}{q-d}$			
0.5	c) En déduire la nature du triangle <i>PDQ</i>			
	3- Soient E le symétrique de B par rapport à P et F le symétrique de C par rapport à Q et K le milieu du segment $[EF]$			
0.5	a) Montrer que l'affixe de K est $k = a + \frac{i}{2}(c - b)$			
0.5	b) Montrer que les points K , P , Q et D sont cocycliques.			
	EXERCICE3 : (4 points) Partie I : On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : $47x - 43y = 1$			
0.25	1- Vérifi	1- Vérifier que le couple $(11,12)$ est une solution particulière de l'équation (E)		
0.75	2- Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E)			
	Partie II : On considère dans \mathbb{Z} l'équation (F) : $x^{41} \equiv 4$ [43]			
	1- Soit $x \in \mathbb{Z}$ une solution de l'équation (F)			
0.5	a) Montrer que x et 43 sont premiers entre eux, en déduire que : $x^{42} \equiv 1$ [43]			
0.5	b) Montrer que : $4x \equiv 1$ [43], en déduire que : $x \equiv 11$ [43]			
0.5	2- Donne	er l'ensemble des solutions dans $\mathbb Z$ de l'équation (F)		
	Partie II	II: On considère dans \mathbb{Z} le système à deux équations suivant (S) : $\begin{cases} x^{41} \equiv 4 & [43] \\ x^{47} \equiv 10 & [47] \end{cases}$		
	1- Soit <i>x</i>	une solution du système (S)		
0.5	a) Mo	ntrer que x est solution du système (S') : $\begin{cases} x = 11 & [43] \\ x = 10 & [47] \end{cases}$		
0.5	b) En déduire que : $x = 527$ [2021] (On pourra utiliser la partie I)			
0.5	2- Donner l'ensemble des solutions dans $\mathbb Z$ du système (S)			

FIN