Normalization & Functional Dependencies

Some questions during last 3 weeks

- Does a primary key have to the unique?
- Is a primary key only numeric?
- Can not key attributes repeat in a relation?

- you should know the answer, as it is Databases I material!!!

A simplified COMPANY Relational Database Schema

Figure 14.1 A simplified COMPANY relational database schema.

When information is stored redundantly

- Information is stored redundantly
 - > Wastes storage
 - Causes problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

Update Anomaly

- Consider the relation:
 - » EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Update Anomaly:
 - Changing the name of project number P1 from "Billing" to "Customer-Accounting" may cause this update to be made for all 100 employees working on project P1.

Insert Anomaly

- Consider the relation:
 - » EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Insert Anomaly:
 - Cannot insert a project unless an employee is assigned to it.
- Conversely
 - Cannot insert an employee unless an he/she is assigned to a project.

Delete Anomaly

- Consider the relation:
 - » EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Delete Anomaly:
 - When a project is deleted, it will result in deleting all the employees who work on that project.
 - Alternately, if an employee is the sole employee on a project, deleting that employee would result in deleting the corresponding project.

Two relation schemas suffering from update anomalies

DB of Customer Orders

EmployeeID	EmployeeName	ManagerID	DepartmentID
1	John Smith	3	1
2	Jane Doe	3	1
3	Bob Johnson	4	2
4	Mary Williams	NULL	2

Primary Key: EmployeeID

Foreign Keys: ManagerID, DepartmentID

- ManagerID is dependent on the EmployeeID, because it determines the employee's manager.
- DepartmentID is dependent on the ManagerID, because it determines the department the employee works in.
- This table is in 2NF: it is in 1NF and does not have any partial dependencies, but it is not in 3NF

DepartmentID is dependent on ManagerID, which is **not** the Primary Key.

DB of Customer Orders

- To eliminate this **transitive dependency**, we can create a *separate table* for departments and store the DepartmentID and DepartmentName in that table.
- We can then update the employees table to store the DepartmentID as a foreign key.

EmployeeID	EmployeeName	ManagerID	DepartmentID
1	John Smith	3	1
2	Jane Doe	3	1
3	Bob Johnson	4	2
4	Mary Williams	NULL	2

DepartmentID	DepartmentName
1	Sales
2	Marketing

Functional Dependencies

- A set of attributes X functionally determines a set of attributes Y, if the value of X determines a unique value for Y.
- Written as $X \rightarrow Y$
 - X → Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
 - X → Y in R specifies a constraint on all relation instances r(R)
 - FDs are derived from the real-world constraints on the attributes

Inference Rules for FDs (1/3)

Definition: An FD X → Y is inferred from or implied by a set of dependencies F specified on R if X → Y holds in every legal relation state r of R; that is, whenever r satisfies all the dependencies in F, X → Y also holds in r.

 Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold

Inference Rules for FDs (2/3)

- Armstrong's inference rules:
 - >> IR1. (**Reflexive**) If Y subset-of X, then $X \rightarrow Y$
 - >> IR2. (Augmentation) If $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - (Notation: XZ stands for X U Z)
 - >> IR3. (**Transitive**) If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- IR1, IR2, IR3 form a sound and complete set of inference rules
 - These are rules hold and all other rules that hold can be deduced from these

Inference Rules for FDs (3/3)

- Some additional inference rules that are useful:
 - Decomposition: If X → YZ, then X → Y and X → Z
 - **>> Union:** If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - **>> Psuedotransitivity:** If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

Completeness Property

Last 3 inference rules and any other inference rules, can be deduced from IR1, IR2, and IR3

Closure

 Closure of a set F of FDs is the set F+ of all FDs that can be inferred from F

 Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X

 X⁺ can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F