Table of Contents

Project Design Data and Summary

Roof Design Details

Top Member Design

Shell Design

Bottom Design

Wind Moment

Seismic Design

Anchor Bolt Design

Anchor Chair Design

Appurtenances Design

Normal and Emergency Venting

Capacities and Weights

Reactions on Foundation

Disclaimer and Special Notes

Page: 2/78

Warnings!!

Shell Nozzles

SUCTION

1.- Start Elevation is less than min elevation per table 5.6.

Project Design Data and Summary

Back

Project Data

Job : 2024-08-23-00-09 Date of Calcs. : 26-Aug-2024

Mfg. or Insp. Date : Designer : Melior

Project:

Tag ID: Q9003

Plant:

Plant Location:

Site:

Design Basis: API-650 13th Edition Errata 1, 2021

Annexes Used: E, J, S

Design Parameters and Operating Conditions Design Parameters

Design Internal Pressure = 0 psi or 0 inh2o Design External Pressure = -0 psi or -0 inh2o

D of Tank = 10 ft

OD of Tank = 10.0313 ft

ID of Tank = 10 ft

 $CL ext{ of } Tank = 10.0156 ext{ ft}$

Shell Height = 17 ft

S.G of Contents = 1

S.G of Hydrotest = 1

Hydrotest Liquid Level = 17 ft

Max Design Liq. Level = 17 ft

Max Operating Liq. Level = 17 ft

Min Liq. Level = 1 ft

Design Temperature = 100 °F

MDMT (Minimum Design Metal Temperature) = -20 °F

Tank Joint Efficiency = 0.7

Ground Snow Load = 0 psf

Roof Live Load = 20 psf

Additional Roof Dead Load = 0 psf

Wind Load Basis: ASCE 7-05

3 Second Gust Wind Speed (entered), Vg = 109 mph

Page: 3/78

Wind Importance Factor, Iw = 1
Design Wind Speed, V = Vg * SQRT(Iw) = 109 mph

Seismic Method: API-650 - ASCE7 Mapped(Ss & S1)

Seismic Use Group = II

Site Class = C

 $T_L (sec) = 12$

Ss(g) = 0.121

S1(g) = 0.049

Av(g) = 0.0452

Q = 0.6667

Importance Factor = 1.25

Design Remarks

Summary Results

Shell

Shell #	Width (in)	Material	CA (in)	JE	Min Yield Strength (psi)	Tensile Strength (psi)	Sd (psi)	St (psi)	Weight (lbf)
1	60	A240- 304	0	0.7000	30,000	75,000	22,500	27,000	1,228
2	48	A240- 304	0	0.7000	30,000	75,000	22,500	27,000	982
3	48	A240- 304	0	0.7000	30,000	75,000	22,500	27,000	982
4	48	A240- 304	0	0.7000	30,000	75,000	22,500	27,000	982

(continued)

Shell #	Weight CA (lbf)	t-min Erection (in)	t-Des (in)	t-Test (in)	t-min Seismic (in)	t-min Ext- Pe (in)	t-min (in)	t-Actual (in)	Status
1	1,228	0.1875	0.0264	0.022	0.0239	NA	0.1875	0.1875	OK
2	982	0.1875	0.0182	0.0151	0.0169	NA	0.1875	0.1875	OK
3	982	0.1875	0.0116	0.0096	0.0113	NA	0.1875	0.1875	OK
4	982	0.1875	0.005	0.0041	0.0057	NA	0.1875	0.1875	OK

Total Weight of Shell = 4,188.308 lbf

Roof

Type = Self Supported Conical Roof Plates Material = A240-304 t.required = 0.1875 in t.actual = 0.1875 in Roof corrosion allowance = 0 in Roof Joint Efficiency = 0.7 Plates Overlap Weight = 7.1487 lbf

Page: 4/78

Bottom

Type: Flat Bottom Non Annular
Bottom Material = A240-304
t.required = 0.1875 in
t.actual = 0.1875 in
Bottom corrosion allowance = 0 in
Bottom Joint Efficiency = 0.7
Total Weight of Bottom = 639.55 lbf

Top Member

Type = Detail B Size = L2x2x1/4 Material = A240-304 Weight = 100.397 lbf

Anchors

Quantity = 4 Size = 1 in Material = A36 Bolt Hole Circle Radius = 5.1822 ft

Nameplate Information

Pressure Combination Factor	0.4
Design Standard	API-650 13th Edition Errata 1, 2021
Appendices Used	E, J, S
Roof	A240-304 : 0.1875 in
Shell (1)	A240-304 : 0.1875 in
Shell (2)	A240-304 : 0.1875 in
Shell (3)	A240-304 : 0.1875 in
Shell (4)	A240-304 : 0.1875 in
Bottom	A240-304 : 0.1875 in

Page: 5/78

Anchor Chair Design Back

Anchor Chair Design per AISI T-192 Part V

a = Top Plate Width Along Shell (in) b = Top Plate Length (in) bmin = Top Plate Minimum Length (in) c = Top Plate Thickness (in)CA = Chair Corrosion Allowance (in) c_corr = Top Plate Corroded Thickness (in) D = Tank Nominal Diameter (ft) d = Anchor Bolt Diameter (in) e = Anchor Bolt Eccentricity (in) Earthquakes-Considered = Earthquakes Considered emin = Minimum Calculated Eccentricity (in) emin-btm = Minimum Eccentricity Based on Bolt Clearance From Bottom Plates per API-650 5.12.4 (in) emin-req = Minimum Required Eccentricity (in) Et = Bottom Plates Thermal Expansion Coefficient per API-650 Table P.1b (in/in.fdeg) f = Top Plate Outside To Hole Edge Distance (in) f min = Distance from Outside of Top Plate to Edge of Hole per AISI T-192 Part V, Notation g = Vertical Plates Distance (in) g min = Minimum Distance Between Vertical Plates per AISI T-192, PartV, Notation (in) h = Chair Height (in) h-eff = Effective Chair Height (in) hmax = Chair Maximum Height (in) j = Vertical Plate Thickness (in) i corr = Vertical Plate Corroded Thickness (in) i_min = Vertical Plate Minimum Thickness per AISI T-192 Part V, Vertical Side Plates (in) k = Vertical Plates Average Width (in) m = Base or Bottom Plate Thickness (in) Ma-chair = Chair Material outside-projection = Bottom Outside Projection (in) R = Nominal Shell Radius (in) Ssw-chair = Chair Allowable Stress for Seismic or Wind Design per API-650 5.12.9 (psi) T = Difference between ambient and design temperature per API 650 5.12.4 (°F) t = Shell Thickness (in)T ambient = Ambient Temperature ($^{\circ}$ F) T_design = Design Temperature (°F) V = Wind Velocity (mph) Y-bolt = Anchor Bolt Yield Load (lbf) a = 6 inb = 8 in

Page: 49/78

c = 0.375 in

```
CA = 0 in
d = 1 in
D = 10 \text{ ft}
e = 2 in
Earthquakes-Considered = ASCE7-MAPPED-SS-AND-S1
Et = 6.67E-6 \text{ in/in.fdeg}
f = 4.0 in
g = 3 in
h = 12 in
j = 0.5 \text{ in}
k = 4.4124 \text{ in}
m = 0.1875 in
Ma-chair = A240-304
outside-projection = 1 in
R = 60.0 \text{ in}
t = 0.1875 in
T ambient = 0 \, ^{\circ}F
T_design = 100 \, ^{\circ}F
V = 109.0 \text{ mph}
Y-bolt = 19,831.7945 lbf
```

Anchor Chair Material Properties

Material = A240-304 Minimum Tensile Strength (Sut-chair) = 75,000 psi As per API-650 S.5.b, Minimum Yield Strength (Sy-chair) = 30,000 psi As per API-650 S.2b, Allowable Design Stress (Sd-chair) = 22,500 psi As per API-650 S.2b, Allowable Hydrostatic Test Stress (St-chair) = 27,000 psi

Ssw-chair = 1.33 * Sd-chair Ssw-chair = 1.33 * 22,500 Ssw-chair = 29,925 psi

Size Requirements

c_corr = c - (2 * CA) c_corr = 0.375 - (2 * 0) c_corr = 0.375 in

j_corr = j - (2 * CA) j_corr = 0.5 - (2 * 0) j_corr = 0.5 in

Chair Minimum Height (hmin) = 12 in

h >= hmin ==> PASS

Page: 50/78

Appurtenances Design Back

Plan View

LABEL	MARK	CUST. MARK	DESCRIPTION	OUTSIDE PROJ (in)	INSIDE PROJ (in)	ORIENT	RADIUS (in)	REMARKS	REF DWG
Circular- Manway- 0001	RM01A	N11	24" ROOF MANWAY	8"	1"	60 '	2'-11"		Ì
FILL	RN02A	N5	3" ROOF NOZZLE	6"	1"	0 '	3'-9"		
LEVEL	RN02A	N8	3" ROOF NOZZLE	6"	1"	240 '	3'-9"		
LEVEL	RN02A	N12	3" ROOF NOZZLE	6"	1"	180 '	3'-9"		
PRESSURE	RN02A	N6	3" ROOF NOZZLE	6"	1"	120 '	3'-9"		
SPARE	RN01A	N4	3" ROOF NOZZLE	6"	1"	270 '	3'-9"	W/ BLIND	
VALVE	RN03A	N7	6" ROOF NOZZLE	6"	1"	0 '	0"		
VAPOR	RN02A	N10	3" ROOF NOZZLE	6"	1"	300 '	3'-9"		

Elevation View

LABEL	MARK	CUST. MARK	DESCRIPTION	OUTSIDE PROJ (in)		ORIENT	ELEVATION (in)	REMARKS	REF DWG
Anchor- Chair- Bolts	AC01A		ANCHOR CHAIRS			SEE TABLE			
Circular- Manway- 0001		N2	24" SHELL MANWAY	11"	0"	135 '	2'-6"	W/ DAVIT	
LEVEL	SN01A	N3	3" SHELL NOZZLE	7"	0"	180 '	1'-9 1/2"		
Name- Plate	NP01A		STD API			0 '	3'-4"		

Page: 54/78

SPARE	SN02A	N14	3" SHELL NOZZLE	7"	0"	180 '	8"	W/ BLIND	
SPARE	SN02A	N9	3" SHELL NOZZLE	7"	0"	270 '	8"	W/ BLIND	
SUCTION	SN01A	N1	3" SHELL NOZZLE	7"	0"	0 '	1 9/16"		
TEMP	SN03A	N13	3" SHELL NOZZLE	7"	0"	342 '	8"		

Warnings!!

Shell Nozzles

SUCTION

1.- Start Elevation is less than min elevation per table 5.6.

Shell Nozzle: SUCTION

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 0.1302 ft

COURSE PARAMETERS:

t-calc = 0.0264 in

t_cr = 0.0264 in (Course t-calc less C.A)

c = 0.1875 in (Course t less C.A.)

t Basis = 0.0264 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D

Required Area = 0.0264 * 3.5

Required Area = 0.0924 in2

Available Shell Area = (t_c - t_Basis) * D

Available Shell Area = (0.1875 - 0.0264) * 3.5

Page: 55/78

Available Shell Area = 0.5638 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4542 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.0924 - 0.5638 - 0.4542 A-rpr = 0 in2

Since A-rpr ≤ 0 , $t_rpr = 0$

No Reinforcement Pad required.

Notes:

- As per API-650 J.3.6.6, the provisions for stress relief specified in API-650 5.7.4 and 5.7.8.3 are not required

Nozzle Neck Material Properties

Material = A312-TP304

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Shell Nozzle: LEVEL

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 1.7917 ft

COURSE PARAMETERS:

t-calc = 0.0264 in

t_cr = 0.0264 in (Course t-calc less C.A)

 $t_c = 0.1875$ in (Course t less C.A.)

t Basis = 0.0264 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D Required Area = 0.0264 * 3.5 Required Area = 0.0924 in2

Available Shell Area = (t_c - t_Basis) * D

Page: 56/78

```
Available Shell Area = (0.1875 - 0.0264) * 3.5

Available Shell Area = 0.5638 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)

Available Nozzle Neck Area = 0.4542 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

A-rpr = 0.0924 - 0.5638 - 0.4542

A-rpr = 0 in2

Since A-rpr <= 0, t_rpr = 0
```

No Reinforcement Pad required.

Nozzle Neck Material Properties

Material = A312-TP304 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Shell Nozzle: SPARE

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1 : Elevation = 0.6667 ft

COURSE PARAMETERS:

t-calc = 0.0264 in t_cr = 0.0264 in (Course t-calc less C.A) t_c = 0.1875 in (Course t less C.A.) t_Basis = 0.0264 in Repad Type: Dog House Repad Size (Do): = 10.5 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D Required Area = 0.0264 * 3.5 Required Area = 0.0924 in2

Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.1875 - 0.0264) * 3.5

Page: 57/78

Available Shell Area = 0.5638 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4542 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.0924 - 0.5638 - 0.4542 A-rpr = 0 in2

Since A-rpr ≤ 0 , t rpr = 0

No Reinforcement Pad required.

Nozzle Neck Material Properties

Material = A312-TP304 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Nozzle Repad Material Properties

Material = A240-304

Shell Nozzle: TEMP

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 0.6667 ft

COURSE PARAMETERS:

t-calc = 0.0264 in

t cr = 0.0264 in (Course t-calc less C.A)

t = 0.1875 in (Course t less C.A.)

t Basis = 0.0264 in

Repad Type: Dog House

Repad Size (Do): = 10.5 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D Required Area = 0.0264 * 3.5

Required Area = 0.0924 in2

Page: 58/78

```
Available Shell Area = (t_c - t_basis) * D

Available Shell Area = (0.1875 - 0.0264) * 3.5

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)

Available Nozzle Neck Area = 0.4542 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

A-rpr = 0.0924 - 0.5638 - 0.4542

A-rpr = 0.0924 - 0.5638 - 0.4542

Since A-rpr <= 0, t_rpr = 0
```

No Reinforcement Pad required.

Nozzle Neck Material Properties

Material = A312-TP304 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Nozzle Repad Material Properties

Material = A240-304

Shell Nozzle: SPARE

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 0.6667 ft

COURSE PARAMETERS:

t-calc = 0.0264 in t_cr = 0.0264 in (Course t-calc less C.A) t_c = 0.1875 in (Course t less C.A.) t_Basis = 0.0264 in Repad Type: Dog House Repad Size (Do): = 10.5 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D Required Area = 0.0264 * 3.5

Page: 59/78

```
Required Area = 0.0924 in2
```

Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.1875 - 0.0264) * 3.5 Available Shell Area = 0.5638 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4542 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.0924 - 0.5638 - 0.4542 A-rpr = 0 in2

Since A-rpr ≤ 0 , $t_rpr = 0$

No Reinforcement Pad required.

Nozzle Neck Material Properties

Material = A312-TP304 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Nozzle Repad Material Properties

Material = A240-304

Shell Manway: Circular-Manway-0001

Repad Design

MANWAY Description: 24 in Neck Thickness 0.25

Material: A240-304

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 2.5 ft

COURSE PARAMETERS:

t-calc = 0.0264 in

t_cr = 0.0264 in (Course t-calc less C.A)

t = 0.1875 in (Course t less C.A.)

t Basis = 0.0264 in

(SHELL MANWAY REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D

Page: 60/78

```
Required Area = 0.0264 * 24
Required Area = 0.6339 in 2
Available Shell Area = (t_c - t_Basis) * D
Available Shell Area = (0.1875 - 0.0264) * 24
Available Shell Area = 3.8661 in 2
Available Manway Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)
Available Manway Neck Area = 2 * [(4 * (0.25 - 0)) + 0.1875] * (0.25 - 0) * MIN((22,500/22,500) 1)
Available Manway Neck Area = 0.5938 in2
A-rpr = (Required Area - Available Shell Area - Available Manway Neck Area)
A-rpr = 0.6339 - 3.8661 - 0.5938
A-rpr = 0 in2
Since A rpr \leq 0, t rpr = 0
No Reinforcement Pad required.
Manway Neck Material Properties
Material = A240-304
As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi
Cover Plate and Bolting Flange Design
CA-cover = Cover Plate and Bolting Flange Corrosion Allowance (in)
Db = Bolt Circle Diameter (in)
H = Design Liquid Level (ft)
M = Bolting Flange Thickness Multiplication Factor per API-650 S.3.3.3
M = Cover Plate Thickness Multiplication Factor per API-650 S.3.3.3
Ma-cover = Cover Plate Material
Ma-flange = Bolting Flange Material
Sd = Allowable Stress per API-650 5.7.5.6 (psi)
SG = Product Specific Gravity
tc = Cover Plate Thickness (in)
tc-design = Cover Plate Required Thickness per API-650 5.7.5.6 (in)
tc-reg = Cover Plate Minimum Required Thickness (in)
tf = Bolting Flange Thickness (in)
tf-design = Cover Plate Required Thickness per API-650 5.7.5.6 (in)
tf-req = Bolting Flange Minimum Required Thickness (in)
CA-cover = 0 in
Db = 30.25 in
H = 17.0 \text{ ft}
Ma-cover = A240-304
Ma-flange = A240-304
SG = 1
tc = 0.625 in
tf = 0.625 in
Water Density (Y) = 0.433 \text{ psi/ft}
As per API-650 5.7.5.6, Coefficient For Circular Plate (C) = 0.3
```

Material = A240-304

Cover Plate Material Properties and Required Thickness

Page: 61/78

```
As per API-650 S.5.b, Minimum Yield Strength at Ambient Temperature (Sy-ambient-cover) = 30,000 psi
As per API-650 S.5.b, Minimum Yield Strength (Sy-cover) = 30,000 psi
Sd = MIN(Sy-ambient-cover, 30000) / 2 = 15,000 psi
M = MAX(SQRT((Sy-ambient-cover / Sy-cover)), SQRT((30000 / Sy-cover)), 1) = 1.0
As per API-650 5.7.5.6, Cover Plate Erection Thickness (tc-erec) = 0.3125 in
tc-design = ((Db * SQRT(((C * Y * H * MAX(SG , 1)) / Sd))) + CA-cover) * M
tc-design = ((30.25 * SQRT(((0.3 * 0.433 * 17.0 * MAX(1, 1)) / 15,000))) + 0) * 1.0)
tc-design = 0.367 in
tc-req = MAX(tc-erec, tc-design)
tc\text{-req} = MAX(0.3125, 0.367)
tc\text{-req} = 0.367 in
t-cover >= tc-req ==> PASS
Bolting Flange Material Properties and Required Thickness
Material = A240-304
As per API-650 S.5.b, Minimum Yield Strength at Ambient Temperature (Sy-ambient-flange) = 30,000 psi
As per API-650 S.5.b, Minimum Yield Strength (Sy-flange) = 30,000 psi
M = MAX(SQRT((Sy-ambient-flange / Sy-flange)), SQRT((30000 / Sy-flange)), 1) = 1.0
As per API-650 5.7.5.6, Bolting Flange Erection Thickness (tf-erec) = 0.25 in
tf-design = tc-design - 0.125
tf-design = 0.367 - 0.125
tf-design = 0.242 in
tf-reg = MAX(tf-erec, tf-design)
tf\text{-req} = MAX(0.25, 0.242)
tf-req = 0.25 in
```

Roof Nozzle: SPARE

Repad Design

t-flange >= tf-req ==> PASS

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

Page: 62/78

t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.2505 ft

ROOF PARAMETERS:

t-calc = 0.1875 in t_cr = 0.1875 in (Roof t-act less C.A) t_c = 0.1875 in t_Basis = 0.1875 in

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

Required Area = t_Basis * D Required Area = 0.1875 * 3.5 Required Area = 0.6563 in2

Available Roof Area = (t_c - t_Basis) * D Available Roof Area = (0.1875 - 0.1875) * 3.5 Available Roof Area = 0 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4542 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area) A_rpr = 0.6563 - 0 - 0.4542 A_rpr = 0.202 in2

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: FILL

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd n = (Stress of Neck Material)

Sd s = (Stress of Roof Material)

Page: 63/78

CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.2505 ft

ROOF PARAMETERS:

t-calc = 0.1875 in

 $t_cr = 0.1875$ in (Roof t-act less C.A)

 $t_c = 0.1875$ in

 $t_Basis = 0.1875 in$

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

Required Area = t_Basis * D

Required Area = 0.1875 * 3.5

Required Area = 0.6563 in2

Available Roof Area = (t_c - t_Basis) * D

Available Roof Area = (0.1875 - 0.1875) * 3.5

Available Roof Area = 0 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)

Available Nozzle Neck Area = 0.4542 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)

A rpr = 0.6563 - 0 - 0.4542

 $A_{rpr} = 0.202 \text{ in } 2$

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: PRESSURE

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t n = (Thickness of Neck)

Sd n = (Stress of Neck Material)

Sd_s = (Stress of Roof Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.2505 ft

Page: 64/78

ROOF PARAMETERS:

t-calc = 0.1875 in t_cr = 0.1875 in (Roof t-act less C.A) t_c = 0.1875 in t_Basis = 0.1875 in

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

Required Area = t_Basis * D Required Area = 0.1875 * 3.5 Required Area = 0.6563 in2

Available Roof Area = (t_c - t_Basis) * D Available Roof Area = (0.1875 - 0.1875) * 3.5 Available Roof Area = 0 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4542 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A_rpr = 0.6563 - 0 - 0.4542
A_rpr = 0.202 in2

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: VALVE

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 6 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.8753 ft

ROOF PARAMETERS:

t-calc = 0.1875 in

Page: 65/78

```
t_cr = 0.1875 in (Roof t-act less C.A)
t_c = 0.1875 in
t Basis = 0.1875 in
```

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

```
Required Area = t_Basis * D
Required Area = 0.1875 * 6.625
Required Area = 1.2422 in2

Available Roof Area = (t_c - t_Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 6.625
Available Roof Area = 0 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.7322 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
```

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

 $A_rpr = 1.2422 - 0 - 0.7322$

A rpr = 0.51 in 2

Roof Nozzle: LEVEL

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.2505 ft

ROOF PARAMETERS:

t-calc = 0.1875 in t_cr = 0.1875 in (Roof t-act less C.A) t_c = 0.1875 in t_Basis = 0.1875 in

Page: 66/78

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

Required Area = t_Basis * D
Required Area = 0.1875 * 3.5
Required Area = 0.6563 in2

Available Roof Area = (t_c - t_Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 3.5
Available Roof Area = 0 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.4542 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A_rpr = 0.6563 - 0 - 0.4542
A_rpr = 0.202 in2

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: VAPOR

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.2505 ft

ROOF PARAMETERS: t-calc = 0.1875 in $t\text{_cr} = 0.1875$ in (Roof t-act less C.A) $t\text{_c} = 0.1875$ in $t\text{_Basis} = 0.1875$ in

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

Page: 67/78

```
Required Area = t_Basis * D
Required Area = 0.1875 * 3.5
Required Area = 0.6563 in2

Available Roof Area = (t_c - t_Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 3.5
Available Roof Area = 0 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.4542 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A_rpr = 0.6563 - 0 - 0.4542
A_rpr = 0.202 in2
```

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: LEVEL

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 17.2505 ft

ROOF PARAMETERS: t-calc = 0.1875 in

t_cr = 0.1875 in (Roof t-act less C.A) t c = 0.1875 in

 $t_{Basis} = 0.1875 \text{ in}$

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)

Required Area = t_Basis * D Required Area = 0.1875 * 3.5

Page: 68/78

```
Required Area = 0.6563 in2
Available Roof Area = (t_c - t_Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 3.5
Available Roof Area = 0 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.4542 in2
A rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A rpr = 0.6563 - 0 - 0.4542
A_{rpr} = 0.202 \text{ in } 2
As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.
No Reinforcement Pad required.
Roof Manway: Circular-Manway-0001
Repad Design
(Per API-650 Section 5.8.4 and other references below)
MANWAY Description: 24 in Neck Thickness 0.25
Material: A240-304
t_rpr = (Repad Required Thickness)
MOUNTED ON ROOF: Elevation = 17.3894 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t_cr = 0.1875 in (Roof t-act less C.A)
t_c = 0.1875 in
t Basis = 0.1875 in
(FOR ROOF MANWAY, REF. API-650 FIG 5-16, TABLE 5-13)
Required Area = t Basis * D
Required Area = 0.1875 * 24
Required Area = 4.5 \text{ in } 2
Available Roof Area = (t c - t Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 24
Available Roof Area = 0 in2
```

Available Manway Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)$ Available Manway Neck Area = 2 * [(4 * (0.25 - 0)) + 0.1875] * (0.25 - 0) * MIN((22,500/22,500) 1)

Page: 69/78

Available Manway Neck Area = 0.5938 in2

A-rpr = (Required Area - Available Roof Area - Available Manway Neck Area) A-rpr = 4.5 - 0 - 0.5938 A-rpr = 3.9063 in 2

As per API-650 J.3.6.3, since roof loads does not exceed 25 psf, t_rpr = 0

No Reinforcement Pad required.

Page: 70/78

Capacities and Weights Back

Capacity to Top of Shell (to Tank Height): 9,987 gal

Capacity to Design Liquid Level: 9,987 gal Capacity to Maximum Liquid Level: 9,987 gal

Working Capacity (to Normal Working Level): 9,987 gal

Net working Capacity (Working Capacity - Min Capacity): 9,400 gal

Minimum Capacity (to Min Liq Level): 587 gal

Component	New Condition (lbf)	Corroded (lbf)
SHELL	4,189	4,189
ROOF	647	647
RAFTERS	0	0
GIRDERS	0	0
FRAMING	0	0
COLUMNS	0	0
TRUSS	0	0
STRUCTURE COMPONENTS	0	0
воттом	639	639
STAIRWAYS	0	0
ACCESS	0	0
STIFFENERS	101	101
WIND GIRDERS	0	0
ANCHOR CHAIRS	59	59
SHELL APPURTENANCES	439	439
ROOF APPURTENANCES	262	262
BOTTOM APPURTENANCES	0	0
INSULATION	0	0
FLOATING ROOF	0	0
TOTAL	6,336.5188	6,336.5188

Weight of Tank, Empty: 6,336.5188 lbf

Weight of Tank, Full of Product (Design SG = 1): 89,688.5188 lbf

Weight of Tank, Full of Water: 89,688.8074 lbf

Net Working Weight, Full of Product (Design SG = 1): 84,785.7316 lbf

Net Working Weight Full of Water: 84,785.7316 lbf

Foundation Area Req'd: 81.6794 ft2

Foundation Loading, Empty: 77.5778 lbf/ft2

Foundation Loading, Full of Product Design: 1,098.0548 lbf/ft2

Foundation Loading, Full of Water: 1,098.0584 lbf/ft2

SURFACE AREAS Roof: 81.6893 ft2 Shell: 534.0707 ft2 Bottom: 81.6794 ft2

Page: 73/78