Exam Questions/Data Analysis for Risk and Security Management Prof. Dr. Dirk Drechsler

#12 (Total 22 Points)

The linearization

$$y = \beta_0 * x^{\beta_1} * e^{\varepsilon}$$

Applying the ln on both sides, we get

$$\ln y = \ln(\beta_0 * x^{\beta_1} * e^{\varepsilon})$$

$$\Leftrightarrow \ln y = \ln \beta_0 + \ln x^{\beta_1} + \ln e^{\varepsilon}$$

$$\Leftrightarrow \ln y = \ln \beta_0 + \beta_1 * \ln x + \varepsilon$$

y	x		ln y	ln x	ln x * ln y	(ln x)^2
28	2,3		3,33	0,83	2,78	0,69
29	2,4		3,37	0,88	2,95	0,77
26	2,2		3,26	0,79	2,57	0,62
30	2,5		3,40	0,92	3,12	0,84
31	2,6		3,43	0,96	3,28	0,91
27	2,3		3,30	0,83	2,75	0,69
29	2,4		3,37	0,88	2,95	0,77
30	2,4		3,40	0,88	2,98	0,77
		Total	26,86	6,95	23,36	6,06
		Mean	3,36	0,87		

$$b_1 = \frac{n * \sum lnx_i * lny_i - \sum lnx_i * \sum lny_i}{n * \sum (lnx_i^2) - (\sum lnx_i)^2} = 1,07$$
$$lnb_0 = \overline{lny} - b_1 * \overline{lnx} = 2,43 \Longrightarrow b_0 = 11,36$$