Data Challenge: Exploratory Data Analysis

Aldo Iturrios

3/27/2021

NA's in the Data

Question: What percentage of patients have at least one record for a particular variable (ie. 60% of patients have at least 1 blood pressure reading)

##		measures	patients_atleast_one
##	1	Bilirubin	37.61
##	2	Cholesterol	7.08
##	3	Creatinine	98.90
##	4	DiasABP	98.58
##	5	FiO2	65.29
##	6	GCS	98.58
##	7	Glucose	96.81
##	8	HC03	98.36
##	9	HCT	98.99
##	10	HR	98.58
##	11	K	97.70
##	12	Lactate	49.82
##	13	MAP	98.58
##	14	MechVent	61.47
##	15	Mg	97.10
##	16	NIDiasABP	86.64
##	17	NIMAP	86.37
##	18	NISysABP	86.87
##	19	Na	98.22
##	20	PaCO2	72.29
##	21	Pa02	72.09
##	22	Platelets	98.50
##	23	${\tt RespRate}$	29.73
##	24	Sa02	42.77
##	25	SysABP	98.58
##	26	Temp	98.57
##	27	${\tt TroponinI}$	3.90
##	28	${\tt TroponinT}$	19.02
##	29	Urine	97.61
##	30	WBC	98.41
##	31	рН	72.81
##	32	ALP	36.80
##	33	ALT	37.48
##	34	AST	37.73
##	35	Albumin	34.35
##	36	BUN	98.86

37 SAPS 5.77

Question: Distribution of patient data at each time point (ie. 98% of patients have data at $00:30,\,80\%$ of patients have data at $06:30,\,etc...$)

```
data.frame(timestamps, patients_atleast_one = round(times_vec * 100, 2))
```

##		timostamos	nationts atleast one
##	1	00.00	patients_atleast_one 2.07
##	2	00.30	50.18
##	3	01.00	55.99
##	4		
##	5	01.30	63.32
##	6	02.00 02.30	66.25 68.65
	7	02.30	68.04
##	8	03.30	69.82
##	9	04.00	67.99
##	10	04.30	69.22
##	11	05.00	67.73
##	12	05.30	68.84
##	13	06.00	67.19
##	14	06.30	67.75
##	15	07.00	65.79
##	16	07.30	66.68
##	17	08.00	64.94
##	18	08.30	65.73
##	19	09.00	63.85
##	20	09.30	63.80
##	21	10.00	62.51
##	22	10.30	63.27
##	23	11.00	61.80
##	24	11.30	62.56
##	25	12.00	61.65
##	26	12.30	62.40
##	27	13.00	60.72
##	28	13.30	59.99
##	29	14.00	59.82
##	30	14.30	60.38
##	31	15.00	60.15
##	32	15.30	60.42
##	33	16.00	59.38
##	34	16.30	60.40
##	35	17.00	59.24
##	36	17.30	60.50
##	37	18.00	59.19
##	38	18.30	59.85
##	39	19.00	59.30
##	40	19.30	58.80
##	41	20.00	59.17
##	42	20.30	59.06
##	43	21.00	58.15
##	44	21.30	59.12

##	45	22.00	57.29
##	46	22.30	58.86
##	47	23.00	58.41
##	48	23.30	58.89
##	49	24.00	97.97
##	50	24.30	59.11
##	51	25.00	56.99
##	52	25.30	58.10
##	53	26.00	56.55
##	54	26.30	57.65
##	55	27.00	56.99
##	56	27.30	57.69
##	57	28.00	56.59
##	58	28.30	57.45
##	59	29.00	55.80
##	60	29.30	57.27
##	61	30.00	55.88
##	62	30.30	57.13
##	63	31.00	55.77
##	64	31.30	56.81
##	65	32.00	55.02
##	66	32.30	56.18
##	67	33.00	55.10
##	68	33.30	55.53
##	69	34.00	55.03
##	70	34.30	55.99
##	71	35.00	54.78
##	72	35.30	55.81
##	73	36.00	54.98
##	74	36.30	55.92
##	75 76	37.00	54.97
##	76 77	37.30	55.40
##	77	38.00	54.27
##	78	38.30	55.00
##	79	39.00	54.70
##	80	39.30	54.90
##	81	40.00	54.73
##		40.30	55.66
##	83	41.00	55.59 56.19
##	84 85	41.30 42.00	
##		42.30	54.94
##	86		55.30 54.31
##	87 88	43.00 43.30	55.08
##	89	44.00	53.18
##	90	44.30	54.06
	91	45.00	53.79
##	92	45.30	54.31
##	93	46.00	53.68
##	93	46.30	53.70
##	95 95	47.00	53.43
	96	47.30	53.43
##	97	48.00	52.71
π#	<i>3</i> i	10.00	02.11

EDA on Training Data (Looking at variables in relation to Outcome)

Outcome:

```
# Training Data
table(train_data$outcome)

##
## 0 1
## 2395 4694
```

Recovery by Admission Type

```
counts <- table(train_data$outcome, train_data$AdmissionType)
barplot(counts, main="Recovery by Admission Type", xlab="Admission Type", ylab = "Number of Patients",</pre>
```

Recovery by Admission Type


```
## 0 492 614 843 446 2395
## 1 567 1086 1492 1549 4694
## Sum 1059 1700 2335 1995 7089
```

Recovery by Gender

```
gender_counts <- table(train_data$outcome, train_data$Gender)
barplot(gender_counts, main="Recovery by Gender", xlab="Gender", ylab = "Number of Patients", col=c("data")</pre>
```

Recovery by Gender

addmargins(gender_counts)

summary(train_data\$Age)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 53.00 66.00 63.87 78.00 90.00
```


Look at a few measure summary variables

Histogram of train_data\$Glucose_median

Histogram of train_data\$Cholesterol_mean

Histogram of train_data\$Cholesterol_median

Histogram of train_data\$Urine_mean

Histogram of train_data\$Urine_median

