Fast and Stable Evaluation of Box-Splines via the BB-Form

Minho Kim and Jörg Peters

http://www.cise.ufl.edu/research/SurfLab

University of Florida

10th SIAM Conference on Geometric Design & Computing

Box-splines for generating continuous field from discrete data.

- Box-splines for generating continuous field from discrete data.
- Recursive evaluation (de Boor '93 and Kobbelt '97) can evaluate arbitrary box-splines

- Box-splines for generating continuous field from discrete data.
- ▶ Recursive evaluation (de Boor '93 and Kobbelt '97) can evaluate arbitrary box-splines but are too slow.

- Box-splines for generating continuous field from discrete data.
- Recursive evaluation (de Boor '93 and Kobbelt '97) can evaluate arbitrary box-splines but are too slow.
- Error in tri-variate box-splines.

- Box-splines for generating continuous field from discrete data.
- ► Recursive evaluation (de Boor '93 and Kobbelt '97) can evaluate arbitrary box-splines but are too slow.
- ► Error in tri-variate box-splines.

- Box-splines for generating continuous field from discrete data.
- Recursive evaluation (de Boor '93 and Kobbelt '97) can evaluate arbitrary box-splines but are too slow.
- Error in tri-variate box-splines.

Existing methods via BB-form (Chui et al. '91 and Casciola et al. '06) evaluate only specific box-splines.

Box-spline

 M_{Ξ}

Box-spline

Example

$$\Xi = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

 M_{Ξ}

Example

 M_{Ξ}

$$\Xi = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Support

$$\Xi = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

 M_{Ξ}

Knot planes

 M_{Ξ}

$$\Xi = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Piecewise polynomial

$$\Xi = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

 M_{Ξ}

Spline

$$\begin{array}{ccc}
M_{\Xi} \\
* & \longrightarrow & \sum_{j \in \mathbb{Z}^{S}} a(j) M_{\Xi}(\cdot - j)
\end{array}$$

approximate

exact

 M_{Ξ}

approximate

exact

subdivision

 M_{Ξ}

approximate

exact

subdivision

 M_{Ξ}

sampling & interpolation

approximate

exact

▶ subdivisionM → sampling &

 M_{Ξ}

- sampling & interpolation
- inverse FFT

approximate

exact

subdivision

 M_{Ξ}

sampling & interpolation

▶ inverse FFT

de Boor '93

	approximate	exact
	subdivision	
M_{Ξ}	sampling & interpolation	de Boor '93 Kobbelt '97
	▶ inverse FFT	

approximate

exact

 M_{Ξ}

- subdivision
- sampling & interpolation
- inverse FFT

recursive de Boor '93 Kobbelt '97

approximate

subdivision

 M_{Ξ}

- sampling & interpolation
- inverse FFT

exact

- recursive de Boor '93 Kobbelt '97
- ► BB-form

$$M_{\Xi} = \sum c_{\alpha} b_{\alpha} \left(\beta_{\sigma} \left(\cdot \right) \right)$$

$$M_{\Xi} = \sum c_{\alpha} b_{\alpha} \left(\beta_{\sigma}(\cdot) \right)$$

barycentric coordinate function w.r.t. the domain simplex σ

$$M_{\Xi} = \sum c_{\alpha} b_{\alpha} (\beta_{\sigma} (\cdot))$$
Bernstein basis polynomial

$$M_{\Xi} = \sum_{\sigma} c_{\alpha} b_{\alpha} \left(\beta_{\sigma} \left(\cdot \right) \right)$$
How to compute the coefficients?

$$M_{\Xi} = \sum c_{\alpha} b_{\alpha} \left(\beta_{\sigma}(\cdot) \right)$$
How to index a polynomial piece (domain simplex σ)?

Computing coefficients

 M_{Ξ}

 c_{α}

Computing coefficients

$$M_{\Xi}(x_i) = \sum c_{\alpha} b_{\alpha} \left(\beta_{\sigma}(x_i)\right)$$
 sample points

Computing coefficients

$$M_{\Xi}(x_i) = \sum_{\alpha} c_{\alpha} b_{\alpha} (\beta_{\sigma} (x_i))$$

Theorem

Let $\Xi \in \mathbb{Z}^{s \times n}$ and $\operatorname{rank}(\Xi) = s$. Then the polynomial pieces of M_{Ξ} can be represented in BB-form with coefficients in \mathbb{Q} .

Indexing polynomial piece (domain simplex)

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

 $u \leftarrow \mathsf{ComputeBarycentric}(i_{\triangle}, x - \lfloor x \rfloor)$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U\left(N_{\Xi}\left(x - \lfloor x \rfloor\right) - \eta_{\Xi}\right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(\mathbf{i}_{\vartriangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U\left(N_{\Xi}\left(x - \lfloor x \rfloor\right) - \eta_{\Xi}\right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(i_{\triangle}, x - \lfloor x \rfloor)$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(\mathbf{i}_{\triangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATESPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

$$u \leftarrow \mathsf{ComputeBarycentric}(i_{\triangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(i_{\triangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

$$u \leftarrow \mathsf{ComputeBarycentric}(i_{\triangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATESPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U\left(N_{\Xi}\left(x - \lfloor x \rfloor\right) - \eta_{\Xi}\right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(i_{\vartriangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATE SPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U\left(N_{\Xi}\left(x - \lfloor x \rfloor\right) - \eta_{\Xi}\right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(i_{\triangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATESPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(i_{\vartriangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATESPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U\left(N_{\Xi}\left(x - \lfloor x \rfloor\right) - \eta_{\Xi}\right)$$

$$u \leftarrow \mathsf{COMPUTEBARYCENTRIC}(i_{\vartriangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

$$\Xi = \left[\begin{array}{cccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

EVALUATESPLINE $\Xi(a,x)$

$$\mathbf{i}_{\triangle} \leftarrow U \left(N_{\Xi} \left(x - \lfloor x \rfloor \right) - \eta_{\Xi} \right)$$

$$u \leftarrow \mathsf{ComputeBarycentric}(i_{\vartriangle}, x - \lfloor x \rfloor)$$

$$P \leftarrow \sum_{\mathbf{i}_{\square} \in \mathbf{I}_{\Xi}} a(\lfloor x \rfloor - \mathbf{i}_{\square}) C_{\Xi}(\mathbf{i}_{\square}, \mathbf{i}_{\triangle})$$

defined by the direction matrix

$$\Xi_6 := \left[\begin{array}{ccccccc} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array} \right]$$

defined by the direction matrix

$$\Xi_6 := \left[\begin{array}{ccccccc} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array} \right]$$

▶ piecewise polynomial of degree ≤ 3

defined by the direction matrix

$$\Xi_6 := \left[\begin{array}{ccccccc} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array} \right]$$

- ▶ piecewise polynomial of degree ≤ 3
- equivalent to $M_{\tilde{\Xi}_6}$ on the Cartesian lattice with

$$\tilde{\Xi}_6 := \left[\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right]$$

▶ knot planes of $M_{\tilde{\Xi}_6}$ of in $[0..1)^3$

▶ knot planes of $M_{\tilde{\Xi}_6}$ of in $[0..1)^3$

▶ polynomial pieces (domain tetrahedra) of $M_{\tilde{\Xi}_6}$ in $[0..1)^3$

defined by the direction matrix

defined by the direction matrix

▶ piecewise polynomial of degree ≤ 4

▶ knot planes in [0..1)³

▶ knot planes in [0..1)³

▶ polynomial pieces (domain tetrahedra) in [0..1)³

Performance

algorithm	spline	resolution		
		21^{3}	31^{3}	41^{3}
de Boor	M_{Ξ_7}	20.273238	75.297004	187.711522
		×144	×154	×153
	M_{Ξ_6}	1.860688	7.087524	18.147211
		×34	× 39	×41
Kobbelt	M_{Ξ_7}	52.727976	207.840594	550.422698
		×375	×424	×450
	M_{Ξ_6}	3.644995	14.034635	37.232097
		×66	× 78	×84
via BB-form	M_{Ξ_7}	0.140722	0.489674	1.223360
	M_{Ξ_6}	0.055346	0.180976	0.444804
	(evaluation of vectorized input by $MATLAB^{\textcircled{R}}$)			

- time measured in secs
- ▶ BB-form method is xratio times faster

High-quality image generation using ray-tracer

Thank you!

► The MATLAB®package can be downloaded at http://www.cise.ufl.edu/research/SurfLab/tribox

References

- Carl de Boor, *On the evaluation of box splines*, Numerical Algorithms **5** (1993), no. 1–4, 5–23.
- Carl de Boor, Klaus Höllig, and Sherman Riemenschneider, Box splines, Springer-Verlag New York, Inc., New York, NY, USA, 1993.
- Minho Kim and Jörg Peters, Fast and stable evaluation of box-splines via the Bézier form, Tech. Report REP-2007-422, University of Florida, 2007.
- Leif Kobbelt, *Stable evaluation of box-splines*, Numerical Algorithms **14** (1997), no. 4, 377–382.
- Hartmut Prautzsch and Wolfgang Boehm, *The handbook of computer aided geometric design*, 3rd ed., ch. Box Splines, pp. 255–282, Elsevier, Amsterdam, 2002.

Spline on non-Cartesian lattice

A spline can also be generated on the non-Cartesian lattice $X^{-1}\mathbb{Z}^s$ spanned by M_{Ξ} with the coefficients $b:X^{-1}\mathbb{Z}^s\to\mathbb{R}$ (change of variables):

$$\sum_{j \in X^{-1}\mathbb{Z}^s} M_{\Xi}(\cdot - j) b(j) = |\det X| \sum_{j \in \mathbb{Z}^s} M_{X\Xi}(X \cdot - j) b(X^{-1}j).$$

