Question 3

Without rounding w, the public key is $(A, \mathbf{t} = A\mathbf{s} + \mathbf{e})$ the signature contains three components:

$$\mathbf{z} = \mathbf{y} + c\mathbf{s}$$
$$c = H(\mathbf{w}, m)$$
$$\mathbf{w} = A\mathbf{y}$$

Multiply **z** by A:

$$A\mathbf{z} = A\mathbf{y} + cA\mathbf{s}$$
$$= \mathbf{w} + c \cdot (\mathbf{t} - \mathbf{e})$$

Assuming that c is invertible, re-arranging the equation above allows us to recover \mathbf{e} from the publis key A, \mathbf{t} and a single pair of message and signature $(m, (\mathbf{w}, c, \mathbf{z}))$:

$$\mathbf{e} = \mathbf{t} - c^{-1}(A\mathbf{z} - \mathbf{w})$$

From here we can attempt to recover the secret key \mathbf{s} by solving $A\mathbf{s} = \mathbf{t} - \mathbf{e}$. While this is a non-trivial instance of inhomogeneous SIS, with proto-Dilithium A is a wide matrix, which makes SIS easier to solve. In the lecture notes, we simply assume that for the choice of parameters in proto-Dilithium, such wide ISIS is "too easy".