Propositional Logic

Dr. Abhijit Debnath

February 19, 2025

What is a Proposition?

A proposition (or statement) is a declarative sentence that is either True (T) or False (F), but not both.

Logical Connectives

The main logical connectives are:

- Conjunction (AND): $A \wedge B$
- **Disjunction (OR)**: $A \vee B$
- Negation (NOT): $\neg A$
- Implication (IF-THEN): $A \rightarrow B$
- Biconditional (IF AND ONLY IF): A ↔ B

Truth Tables for Logical Connectives

Α	В	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Implication, Converse, Contrapositive, Inverse

- **Implication**: If A then B, written as $A \rightarrow B$.
- Converse: $B \rightarrow A$
- Contrapositive: $\neg B \rightarrow \neg A$
- Inverse: $\neg A \rightarrow \neg B$

Example and Truth Table for Implication Variants

Α	В	$A \rightarrow B$	$B \rightarrow A$	$\neg B \rightarrow \neg A$
Т	Т	Т	Т	Т
Т	F	F	T	Т
F	Т	Т	F	F
F	F	Т	Т	T

Biconditional Statement

ullet A \leftrightarrow B is true when both A and B have the same truth value.

Α	В	$A \leftrightarrow B$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Problems on Propositional Logic

Solve the following:

- ① Prove that $(P \vee \neg P)$ is a tautology.
- ② Show that $(P \land \neg P)$ is a contradiction.
- 3 Verify whether $(A \rightarrow B) \lor (B \rightarrow A)$ is always true.
- 4 Show that $((P \to Q) \land (Q \to R)) \to (P \to R)$ is always true.

Solutions to the Problems

- ① Truth table for $(P \lor \neg P)$ shows it is always true.
- ② Truth table for $(P \land \neg P)$ shows it is always false.
- **3** Constructing the truth table verifies $(A \to B) \lor (B \to A)$ is always true.
- \P Truth table proves $((P \to Q) \land (Q \to R)) \to (P \to R)$ is always true.