1. Să se determine $x \in \mathbb{R}$ astfel încât $\sqrt{x^2 + 5} = x + 1$. (5 pct.)

a)
$$x = -2$$
; b) $x = 4$; c) $x = 0$; d) $x = 2$; e) $x = 3$; f) $x = -1$.

Soluţie. Condiția de existență a radicalului $x^2+5\geq 0$ este totdeauna satisfăcută, deci nu conduce la limitarea domeniului necunoscutei x. În schimb, se observă că pozitivitatea membrului stâng al ecuației conduce la condiția $x+1\geq 0$, deci $x\in [-1,\infty)$. Ridicând ecuația la pătrat, obținem, după simplificări, 2x=4, deci $x=2\in [-1,\infty)$, și deci x=2, deci este unica soluție a ecuației. Notă. Se observă că subiectul fiind de tip grilă, răspunsul corect se putea evidenția prin simpla înlocuire a variantelor de răspuns în ecuație (x=2 fiind singura variantă care satisface ecuația).

- 2. Valoarea determinantului $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ este: (5 pct.)
 - a) 13; b) 18; c) 0; d) 11; e) 1; f) 14.

Soluţie. Calculul se poate face în multe moduri: aplicând regula Sarrus, regula (echivalentă) a triunghiului, dezvoltând după o linie sau după o colană sau efectuând în prealabil operaţii cu determinanţi care duc la simplificarea formei acestuia ("fabricare" de zerouri pe o linie sau pe o coloană). Spre exemplu, dezvoltând după regula Sarrus, obţinem:

$$1 \cdot 1 \cdot 1 + 2 \cdot 2 \cdot 2 + 3 \cdot 3 \cdot 3 - (1 \cdot 2 \cdot 3 + 1 \cdot 2 \cdot 3 + 1 \cdot 2 \cdot 3) = 1 + 8 + 27 - 3 \cdot 6 = 18.$$

- 3. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$. Să se calculeze f'(1). (5 pct.)
 - a) 1; b) 3e; c) e^2 ; d) 3 + e; e) 1 + e; f) 2e.

Soluție. Aplicăm regula derivării produsului de funcții $(g \cdot h)' = g' \cdot h + g \cdot h'$ pentru produsul $f(x) = x \cdot e^x$. Obținem $f'(x) = 1 \cdot e^x + x \cdot e^x = (x+1)e^x$. Deci f'(1) = 2e.

- 4. Să se calculeze $C_5^0 + C_5^2 + C_5^4$. (5 pct.)
 - a) 6; b) 8; c) 18; d) 16; e) 24; f) 20.

Soluție. Aplicăm regula de calcul a combinărilor $C_n^k = \frac{n!}{(n-k)!k!}$ și convenția 0! = 1. Obținem

$$C_5^0 + C_5^2 + C_5^4 = \frac{5!}{5!0!} + \frac{5!}{3!2!} + \frac{5!}{4!1!} = 1 + 10 + 5 = 16.$$

Notă. Subiectul se putea rezolva mult mai elegant dacă se cunoaște binomul lui Newton $(a+b)^n=\sum_{k=0}^n C_n^k a^{n-k}b^k$ (folosit pentru a=b=1, n=5) și proprietatea $C_n^k=C_n^{n-k}$ (utilizată pentru valorile $n=5, k\in\{0,2,4\}$). Se obține

$$2^5 = (1+1)^5 = C_5^0 + C_5^1 + C_5^2 + C_5^3 + C_5^4 + C_5^5 = (C_5^0 + C_5^2 + C_5^4) + (C_5^5 + C_5^3 + C_5^1) = 2(C_5^0 + C_5^2 + C_5^4),$$

de unde rezultă $C_5^0 + C_5^2 + C_5^4 = 2^5/2 = 16$.

5. Să se rezolve ecuația $2^{x+3} = 16$. (5 pct.)

a)
$$x = 1$$
; b) $x = -3$; c) $x = 5$; d) $x = -4$; e) $x = 11$; f) $x = -1$.

Soluție. Ecuația se rescrie $2^{x+3} = 2^4$ de unde (prin logaritmare în baza 2) rezultă x + 3 = 4, deci x = 1.

- 6. Să se calculeze modulul numărului complex $z = \frac{3+4i}{6-8i}$. (5 pct.)
 - a) 3; b) 4; c) 6; d) $\frac{1}{2}$; e) 8; f) 11.

Soluție. Amplificăm fracția cu conjugata numitorului, apoi folosim formula $|a+ib|=\sqrt{a^2+b^2}$. Obținem

$$z = \frac{(3+4i)(6+8i)}{6^2+8^2} = \frac{-14+48i}{100} = \frac{-7+24i}{50} = -\frac{7}{50} + i\frac{24}{50}.$$

Rezultă

$$|z| = \sqrt{\frac{49}{2500} + \frac{576}{2500}} = \sqrt{\frac{625}{2500}} = \sqrt{\frac{1}{4}} = \frac{1}{2}.$$

Notă. Subjectul se putea rezolva mult mai rapid folosind proprietatea modulului: $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$. Se obține:

$$|z| = \left| \frac{3+4i}{6-8i} \right| = \frac{|3+4i|}{|6+8i|} = \frac{\sqrt{3^2+4^2}}{\sqrt{6^2+8^2}} = \frac{\sqrt{25}}{\sqrt{100}} = \frac{5}{10} = \frac{1}{2}.$$

- 7. Produsul soluțiilor reale ale ecuației |x+1|=2 este: (5 pct.)
 - a) 12; b) 0; c) -3; d) 1; e) 4; f) -5.

Soluţie. Folosind proprietatea " $|a| = b \Leftrightarrow (a = b \text{ sau } a = -b)$ ", obţinem $x + 1 \in \{\pm 2\}$, deci $x \in \{1, -3\}$. Produsul celor două soluţii este deci $1 \cdot (-3) = -3$.

- 8. Să se afle $m \in \mathbb{R}$ astfel încât x = 1 să fie soluție a ecuației 3x + m 2 = 0. (5 pct.)
 - a) m = 0; b) m = 7; c) m = -1; d) m = 4; e) m = 1; f) m = -5.

Soluție. Înlocuind soluția x = 1 în ecuație, obținem 3 + m - 2 = 0, deci m = -1.

- 9. Să se rezolve inecuația $x^2 3x + 2 \le 0$. (5 pct.)
 - a) $x \in [0,1]$; b) $x \in \emptyset$; c) $x \in [1,2]$; d) $x \ge 5$; e) $x \in [-4,1]$; f) $x \in [2,5]$.

Soluție. Folosind formula $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ care produce soluțiile ecuației de gradul doi $ax^2 + bx + c = 0$ $(a \neq 0)$, obținem $x \in \{\frac{3 \pm \sqrt{3^2 - 8}}{2}\} = \{\frac{3 \pm 1}{2}\} = \{1, 2\}$. Deoarece a = 1 > 0, valoarea expresiei polinomiale de gradul doi din enunț este negativă sau nulă (în cazul rădăcinilor reale distincte) d.n.d. $x \in [x_1, x_2]$, unde s-a presupus $x_1 < x_2$. Rezultă $x \in [1, 2]$.

- 10. Dacă x_1 și x_2 sunt soluțiile ecuației $2x^2 3x + 1 = 0$, atunci $x_1 + x_2$ este: (5 pct.)
 - a) $-\frac{1}{2}$; b) 1; c) $\frac{1}{2}$; d) $-\frac{2}{3}$; e) $\frac{3}{2}$; f) 0.

Soluţie. Din prima relaţie Viéte rezultă direct $x_1 + x_2 = -\frac{3}{2} = \frac{3}{2}$. Notă. Problema se poate rezolva şi determinând efectiv soluţiile ecuaţiei, $\{x_{1,2}\} = \{\frac{3\pm\sqrt{9-8}}{4}\} = \{\frac{1}{2},1\}$; prin urmare suma acestora este $\frac{3}{2}$.

- 11. Fie $(a_n)_n$ o progresie aritmetică astfel încât $a_1 + a_3 = 6$ și $a_3 a_1 = 4$. Să se calculeze a_5 . (5 pct.)
 - a) 15; b) 7; c) 10; d) 11; e) -5; f) 9.

Soluție. Sumând cele două condiții rezultă $2a_3=10\Rightarrow a_3=5$; scăzându-le, rezultă $2a_1=2\Rightarrow a_1=1$. Dar $a_3=\frac{a_1+a_5}{2}$, deci $a_5=2a_3-a_1=2\cdot 5-1=9$. Altă soluție. Aplicăm formula $a_k=a_1+(k-1)r$. Notând $a=a_1$, cele două condiții formează un sistem liniar în necunoscutele a,r, compatibil determinat, $\begin{cases} 2a+2r=6\\ 2r=4 \end{cases}$, deci a=1,r=2. Prin urmare, $a_5=a+4r=1+4\cdot 2=9$.

- 12. Să se rezolve inecuația $2x 3 \le 4x$. (5 pct.)
 - a) $x \in (0, \infty)$; b) $x \in \emptyset$; c) $x \in (-1, 2)$; d) $x \in [-\frac{3}{2}, +\infty)$; e) $x \in (\frac{4}{3}, +\infty)$; f) $x \in (0, 1)$.

Soluție. Inecuația se rescrie succesiv: $2x - 3 \le 4x \Leftrightarrow 2x \ge -3 \Leftrightarrow x \ge -\frac{3}{2} \Leftrightarrow x \in [-\frac{3}{2}, \infty)$.

13. Fie $f: \mathbb{R} \to \mathbb{R}, f(x) = \arccos \frac{1-x^2}{1+x^2} + \arcsin \frac{2x}{1+x^2}$

Să se calculeze $S = f(-\sqrt{3}) + f(-\ln 2) + f(1) + f(\ln 3)$. (5 pct.)

a) $\frac{9\pi}{4}$; b) $\frac{8\pi}{3}$; c) $\frac{13\pi}{6}$; d) $\frac{7\pi}{3}$; e) $\frac{11\pi}{4}$; f) $\frac{13\pi}{4}$.

Soluţie. Se poate verifica folosind tabloul de variaţie al funcţiilor corespunzătoare, că expresiile $\frac{1-x^2}{1+x^2}$ şi $\frac{2x}{1+x^2}$ iau valori în intervalul [-1,1], deci funcţia f este bine definită pe toată axa reală. Fiind compunere de funcţii continue, f este funcţie continuă. Mai mult, se observă că $f = f_1 + f_2$, unde $f_{1,2} : \mathbb{R} \to \mathbb{R}$, $f_1(x) = \arccos\frac{1-x^2}{1+x^2}$ şi $f_2(x) = \arcsin\frac{2x}{1+x^2}$. Se constată că ambele funcţii sunt continue. Derivatele $f'_{1,2}$ ale acestora coincid în domeniul $D = (-\infty, -1) \cup (0, 1)$, deci pe fiecare din cele două intervale ale reuniunii, cele două funcţii diferă printr-o constantă. Mai exact, pe intervalul $(-\infty, -1)$ avem $f_1(-2) = \arccos\frac{-3}{5} = \pi - \arccos\frac{3}{5} = \pi - \arcsin\frac{4}{5} = \pi + \arcsin\frac{-4}{5} = \pi + f_2(-2)$, deci $f_1 = \pi + f_2$ şi $f(x) = 2f_1(x) - \pi$. Pe intervalul (0,1) avem $f_1(\frac{1}{2}) = \arccos\frac{3}{5} = \arcsin\frac{4}{5} = f_2(x)$, deci $f_1(x) = f_2(x)$ şi $f(x) = 2f_1(x)$.

Pentru $x \in (-1,0) \cup (1,\infty)$ avem $f_1'(x) = -f_2'(x) \Rightarrow f'(x) = 0$, deci pe $\mathbb{R} \setminus D = [-1,0] \cup [1,\infty) = \overline{(-1,0)} \cup (1,\infty)$, funcția continuă f este constantă pe fiecare interval al reuniunii. Mai exact, pe intervalul [-1,0] funcția f are valoarea $f(-1) = \arccos(1) + \arcsin(0) = 0$ iar pe intervalul $[1,\infty)$ f are valoarea $f(1) = \arccos(0) + \arcsin(1) = \pi$. Prin urmare,

$$f(x) = \begin{cases} 2 \arccos \frac{1-x^2}{1+x^2} - \pi, & \text{pentru } x \in (-\infty, -1) \\ 0, & \text{pentru } x \in [-1, 0] \\ 2 \arccos \frac{1-x^2}{1+x^2}, & \text{pentru } x \in (0, 1) \\ \pi, & \text{pentru } x \in [1, \infty). \end{cases}$$

Calculăm termenii sumei cerute:

$$\begin{cases} \sqrt{3} \in (1,2) \Rightarrow -\sqrt{3} \in (-2,-1) \subset (-\infty,-1) & \Rightarrow f(-\sqrt{3}) = 2\arccos\left(-\frac{1}{2}\right) - \pi \\ & = 2 \cdot \frac{2\pi}{3} - \pi = \frac{\pi}{3} \end{cases}$$

$$\ln 1 < \ln 2 < \ln e \Rightarrow -\ln 2 \in (-\ln e, -\ln 1) \subset [-1,0] \Rightarrow f(-\ln 2) = 0$$

$$1 \in [1,\infty) & \Rightarrow f(1) = \pi$$

$$\ln e < \ln 3 < \ln e^2 \Rightarrow \ln 3 \in (1,2) \subset [1,\infty) & \Rightarrow f(\ln e) = \pi.$$

deci $S = \frac{\pi}{3} + 0 + \pi + \pi = \frac{7\pi}{3}$

14. Fie polinomul $f = X^3 - 5X^2 + 4X$ și fie T suma pătratelor rădăcinilor sale. Atunci: (5 pct.) a) T = 15; b) T = 17; c) T = 14; d) T = 0; e) T = -11; f) T = 11.

Soluție. Notăm cu $x_{1,2,3}$ cele trei rădăcini ale polinomului. Folosind egalitatea

$$(x_1^2 + x_2^2 + x_3^2) = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1)$$

și primele două relații Viéte

$$\begin{cases} x_1 + x_2 + x_3 = -\frac{-5}{1} \\ x_1 x_2 + x_2 x_3 + x_3 x_1 = \frac{4}{1} \end{cases}$$

rezultă

$$T = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1) = 5^2 - 2 \cdot 4 = 17.$$

 $Not\Breve{a}$. Subiectul se putea rezolva și altfel, aflând efectiv rădăcinile polinomului f. Dând factor comun X și aflând rădăcinile factorului de grad 2, obținem succesiv $f=X(X^2-5X+4)=(X-0)(X-1)(X-4)$. Deci cele trei rădăcini ale polinomului f sunt 0,1,4, iar suma pătratelor lor este $T=0^2+1^2+4^2=17$.

15. Să se calculeze $E = \lg^3 5 + \lg^3 20 + \lg 8 \cdot \lg 0, 25$. (5 pct.)

a)
$$E = \frac{1}{4}$$
; b) $E = 7$; c) $E = 13$; d) $E = 2$; e) $E = \frac{1}{5}$; f) $E = 5$.

Soluţie. Notăm $a = \lg 5$, $b = \lg 2$. Observăm că $a + b = \lg 5 + \lg 2 = \lg 10 = 1$. Folosind proprietățile logaritmilor și relația $u^3 + v^3 = (u + v)(u^2 - uv + v^2)$ pentru u = a și v = a + 2b, obținem succesiv

$$E = a^3 + (a+2b)^3 + (3b) \cdot (-2b) = [a + (a+2b)] \cdot [a^2 - a(a+2b) + (a+2b)^2] - 6b^2$$
$$= [2(a+b)] \cdot [(a+b)^2 + 3b^2] - 6b^2 = 2(1+3b^2) - 6b^2 = 2.$$

16. Să se calculeze $\ell = \lim_{t \to \infty} \int_1^t \frac{1}{x(x^2 + 1)} dx$. (5 pct.)

a)
$$\ell = 1$$
; b) $\ell = 1 + \ln 2$; c) $\ell = \frac{1}{4}$; d) $\ell = 3 \ln 2$; e) $\ell = \frac{11}{4}$; f) $\ell = \ln \sqrt{2}$.

Soluţie. Se observă că ridicarea la pătrat $\varphi:[1,\infty)\to[1,\infty),\ \varphi(x)=x^2$ este bijecție și că avem $\varphi(1)=1,$ $\lim_{x\to\infty}\varphi(x)=\infty$. Putem folosi prin urmare schimbarea de variabilă $u=x^2$. Integrala se rescrie succesiv

$$\int_{1}^{t} \frac{1}{x(x^{2}+1)} dx = \frac{1}{2} \int_{1}^{t} \frac{2x}{x^{2}(x^{2}+1)} dx = \frac{1}{2} \int_{1}^{t^{2}} \frac{1}{u(u+1)} du = \frac{1}{2} \ln \left| \frac{x}{x+1} \right| \Big|_{1}^{t^{2}}$$
$$= \frac{1}{2} \left(\ln \frac{t^{2}}{t^{2}+1} - \ln \frac{1}{2} \right) = \frac{1}{2} \ln \frac{2t^{2}}{t^{2}+1}.$$

Enunturi și soluții U.P.B. 2013 * M1A - 3

Atunci

$$\ell = \lim_{t \to \infty} \int_1^t \frac{1}{x(x^2 + 1)} dx = \lim_{t \to \infty} \frac{1}{2} \ln \frac{2t^2}{t^2 + 1} = \frac{1}{2} \ln 2 = \ln \sqrt{2}.$$

- 17. Fie $A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$; să se calculeze determinantul matricei A^2 . (5 pct.)
 - a) 1; b) 0; c) 3; d) 2; e) 4; f) -1.

Soluție. Obținem $A^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}$. Atunci det $A = 1 \cdot 1 - 0 \cdot (-4) = 1$. Notă. Rezolvarea se scurtează, evitând calculul produsului matriceal, dacă se folosește proprietatea det $(A_1 \cdot A_2) = \det A_1 \cdot \det A_2$ pentru $A_1 = A_2 = A$. Obținem det $(A^2) = (\det A)^2 = (1 \cdot 1 - 0 \cdot (-2))^2 = 1^2 = 1$.

- 18. Fie S mulțimea soluțiilor reale și strict pozitive ale ecuației $x + \frac{1}{x} = \int_0^x e^{t^2} dt$. Atunci: (5 pct.)
 - a) $S \subset \mathbb{N}$; b) $S = \emptyset$; c) $S \subset (2,3)$; d) $S \cap (0,1) \neq \emptyset$; e) $S \cap (1,2) \neq \emptyset$; f) $S \cap (2,\infty) \neq \emptyset$.

Soluție. Soluțiile ecuației date sunt punctele de anulare ale funcției $f:(0,\infty)\to\mathbb{R}$

$$f(x) = \int_0^x e^{t^2} dt - \left(x + \frac{1}{x}\right), \quad \forall x \in (0, \infty).$$

Se verifică relativ ușor că derivata $f'(x) = e^{x^2} - 1 + \frac{1}{x^2}$ este strict pozitivă pentru $x \in (0, \infty)$ și că $\lim_{x \searrow 0} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = +\infty$. Rezultă că ecuația f(x) = 0 are o singură soluție în intervalul $(0, \infty)$. Pentru a afla un subinterval care conține soluția, observăm că $t^2 \le t$, $\forall t \in [0, 1]$, deci

$$f(1) = \int_0^1 e^{t^2} dt - 2 \le \int_0^1 e^t dt - 2 = (e^1 - e^0) - 2 = e - 3 < 0,$$

deci f(1) < 0. Pe de altă parte, folosind monotonia integralei definite în raport cu intervalul de integrare pentru integranzi pozitivi și proprietatea $t^2 \ge t$, $\forall t \in [1, 2]$, avem

$$f(2) = \int_0^2 e^{t^2} dt - 2 - \frac{1}{2} \ge \int_1^2 e^{t^2} dt - 2.5 \ge \int_1^2 e^t dt - 2.5 = e^2 - e - 2.5 > (2.5)^2 - 3 - 2.5 = 0.75 > 0,$$

deci f(2) > 0. Prin urmare, funcția f fiind continuă, soluția căutată se află în intervalul (1,2). Rezultă $S \cap (1,2) \neq \emptyset$.