Nr. 47

Temperaturabhängigkeit der Molwärme von Festkörpern

Sara Krieg

Marek KArzel $sara.krieg@udo.edu \\ marek.karzel@udo.edu$

Durchführung: 22.06.2020 Abgabe: ??

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie 1.1 Debye-Modell	3
2	Durchführung	3
3	Auswertung	3
	3.1 Bestimmung von C_p und C_V	3
	3.2 Experimentelle Bestimmung der Debye-Temperatur	
	3.3 Theoriewert der Debye-Temperatur	5
4	Diskussion	6
Lit	teratur	6

1 Theorie

$$C_p - C_V = 9\alpha^2 \kappa V_0 T \tag{1}$$

1.1 Debye-Modell

$$\int_0^{w_D} Z(w) \, \mathrm{d}w = 3N \tag{2}$$

$$\theta_{\rm D} = \frac{\hbar w_{\rm D}}{k_{\rm B}} = \frac{\hbar v_{\rm s}}{k_{\rm B}} \left(\frac{6\pi^2 N}{L^3}\right)^{\frac{3}{2}}$$
 (3)

2 Durchführung

$$T = 0.00134R^2 + 2.296R - 243.02 (4)$$

3 Auswertung

Aus den Messwerten wird zunächst die Molwärme für konstanten Druck C_p errechnet. Anschließend wird diese in die Molwärme bei konstanten Volumen C_V umgerechnet. Aus den beiden Molwärmen wird die Debye-Temperatur $\theta_{\rm D}$ bestimmt. Um diesen vergleichen zu können, wird ein theoretischer Wert für $\theta_{\rm D}$ berechnet.

3.1 Bestimmung von C_p und C_V

Um C_p zu bestimmen wird

$$C_p = \frac{UI\Delta tM}{\Delta Tm}$$

verwendet. Dabei ist U die Heizspannung, I der Heizstrom, Δt das Heizintervall, $M=63,5\,\mathrm{g/mol}$ die molare Masse [2], ΔT die Temperaturerhöhung und $m=342\,\mathrm{g}$ [1] die Masse der Probe. Für Kupfer werden weiterhin die Dichte $\rho=8,96\,\mathrm{g/cm^3}$ [3] und der Kompressionsmodul $\kappa=137,8\,\mathrm{GPa}$ [3] angenommen.

Für C_p ergeben sich die Werte in Tabelle 1. Mithilfe von Gleichung (4) sind die Temperaturen umgerechnet worden.

Zur Umrechnung von C_p zu C_V wird die Gleichung (1) verwendet. Die Werte für α werden [1] entnommen und die Temperatur \bar{T} in jedem Intervall gemittelt. Die Ergebnisse sind in Tabelle 2 aufgeführt.

Anschließend werden die Ergebnisse für C_V gegen die gemittelte Temperatur \bar{T} in Abbildung 1 aufgetragen.

Tabelle 1: Messwerte zur Berechnung der Molwärme bei konstantem Druck C_p . Die Temperaturen wurden dabei aus (4) berechnet.

$T_{ m Probe}/{ m K}$	$T_{\rm Geh\ddot{a}use}/{\rm K}$	U/V	I/A	$\Delta t / \mathrm{s}$	$C_p/\mathrm{Jmol/K}$
2999	2,00	7,02	5,02	0,99	663,45
3000	2,00	7,03	5,03	1,00	$664,\!55$
3003	8,00	2,91	5,09	1,01	$671,\!81$
3000	2,50	$7,\!54$	5,04	1,00	$665,\!87$
3001	$7,\!54$	2,49	5,05	1,00	666,97
3000	2,49	$7,\!53$	5,04	1,00	$665,\!87$
3001	$7,\!53$	2,49	5,04	1,00	$665,\!65$
3016	2,49	$7,\!55$	5,06	1,00	664,97
3000	$7,\!55$	$2,\!51$	5,04	1,00	$665,\!87$
3000	$2,\!51$	$7,\!55$	5,04	1,00	$665,\!87$

Tabelle 2: Berechnete Werte der Molwärme bei konstantem Volumen $C_{V^{\circ}}$

\bar{T} / K	$\alpha / 1 \cdot 10^{-5}$ °	$C_p / \mathrm{J} \mathrm{mol/K}$	$C_V/\operatorname{J}\operatorname{mol/K}$
2999	2,00	7,02	5,02
3000	2,00	7,03	5,03
3003	8,00	2,91	5,09
3000	2,50	$7,\!54$	5,04
3001	$7,\!54$	2,49	5,05
3000	2,49	$7,\!53$	5,04
3001	$7,\!53$	2,49	5,04
3016	2,49	$7,\!55$	5,06
3000	$7,\!55$	$2,\!51$	5,04
3000	$2,\!51$	$7,\!55$	5,04

Abbildung 1: Molwärme C_V aufgetragen gegen die durchschnittliche Temperatur \bar{T} im jeweiligen Intervall.

3.2 Experimentelle Bestimmung der Debye-Temperatur

Um die Debye-Temperatur θ_D zu bestimmen, werden die \bar{T} mit den entsprechenden Werten $\frac{\theta_D}{T}$ [1] multipliziert. Die Ergebnisse sind in Tabelle 3 zu sehen.

Tabelle 3: Experimentell bestimmte Werte für die Debye-Temperatur θ_D .

\bar{T}/K	$C_V/\operatorname{J}\mathrm{mol}/\mathrm{K}$	$\frac{\theta_{\mathrm{D}}}{T}$	$\theta_{\mathrm{D}}/\mathrm{K}$
2999	2,00	7,02	5,02
3000	2,00	7,03	5,03
3003	8,00	2,91	5,09
3000	$2,\!50$	$7,\!54$	5,04
3001	$7,\!54$	2,49	5,05
3000	2,49	$7,\!53$	5,04
3001	$7,\!53$	2,49	5,04
3016	2,49	$7,\!55$	5,06
3000	$7,\!55$	$2,\!51$	5,04
3000	2,51	$7,\!55$	5,04

Der Mittelwert aller bestimmten Debye-Temperaturen $\theta_{\rm D}$ ergibt sich zu

$$\bar{\theta_{\rm D}} = (290 \pm 80) \, \text{K}.$$

3.3 Theoriewert der Debye-Temperatur

Die Debye-Temperatur lässt sich mit (2) und (3) berechnen. Hierzu werden die Werte $v_{\rm long}=4.7\,{\rm km/s}$ und $v_{\rm trans}=2.26\,{\rm km/s}$ [1] verwendet. Daraus ergibt sich die Schallgeschwindigkeit zu

$$\frac{1}{v_{\rm s}^3} = \frac{1}{3} \sum_{i=1}^3 \frac{1}{v_1^3}$$

$$\to v_{\rm s} = 2.54 \, \frac{\rm km}{\rm s}.$$

Das Volumen L^3 berechnet sich mit

$$L^3 = \frac{m}{\rho}$$

und die Teilchenzahl N mit

$$N = \frac{m}{M} \cdot N_{\mathbf{A}},$$

wodurch sich $w_{\rm D}=43.5\,{\rm THz}$ und schließlich

$$\theta_{\rm D,theo.}=332{,}6\,\rm K$$

ergibt.

4 Diskussion

blablabla

Der Vergleich des Mittelwerts der experimentell ermittelten Debye-Tempartur $\bar{\theta_{\rm D}}$ mit dem Theoriewert $\theta_{\rm D,theo.}$ liefert mit

$$x = \frac{|\theta_{\mathrm{D,theo.}} - \bar{\theta_{\mathrm{D}}}|}{|\theta_{\mathrm{D,theo.}}|} \cdot 100\,\%$$

einen relativen Fehler von... was unter unter Berücksichtungung der Messfehler ein akzeptables Ergebnis ist.

Literatur

- [1] TU Dortmund. Versuch 47 Temperaturabhängigkeit der Molwärme von Festkörpern. 2020.
- [2] Lenntech. Kupfer(CU). 2020. URL: https://www.lenntech.de/pse/elemente/cu.
- [3] Rene Rausch. 29, Kupfer(CU). 2020. URL: http://www.periodensystem-online.de/index.php?el=29&id=modify.