## Ejercicio 4

Determinar si las siguientes sentencias son verdaderas o falsas, justificando la respuesta utilizando notación Big-Oh.

- a. 3<sup>n</sup> es de O(2<sup>n</sup>)
- b.  $n + log_2(n)$  es de O(n)
- c.  $n^{1/2} + 10^{20}$  es de O ( $n^{1/2}$ )

$$\int 3n + 17, n < 100$$

- d.  $317, n \ge 100$ 
  - tiene orden lineal
- e. Mostrar que  $p(n)=3n^5 + 8n^4 + 2n + 1$  es  $O(n^5)$
- f. Si p(n) es un polinomio de grado k, entonces p(n) es  $O(n^k)$ .

## 4a. 3<sup>n</sup> es de O(2<sup>n</sup>)

$$3^n \le c * 2^n$$
 para todo  $n \ge n_0$ 

$$c=1 y n_0=1$$

Falso. Porque al ser una función exponencial, a mayor base crece más rápido, por lo tanto, el orden al tener una base más baja, nunca va a poder acotarla.

4b. 
$$n + log_2(n)$$
 es de  $O(n)$ 

Regla de la suma: 1. T1 (n)+T2 (n)=max(O(f(n)),O(g(n)))

Verdadero. Porque n es una función lineal y crece más rápido que una función logarítmica.

n

 $log_2(n)$ 



4c. 
$$n^{1/2} + 10^{20}$$
 es de  $O(n^{1/2})$ 

Falso. Debido que el máximo orden es  $10^{20}\,\mathrm{y}$  no se puede acotar ese máximo al orden de  $n^{1/2}$ 

Regla de la suma: 1 (n)+T2 (n)=max(O(f(n)),O(g(n)))

4d. Para n < 100 tiene orden lineal, pero para los n  $\geq$  100 tiene orden constante. Consultar.

4e. Mostrar que p(n)=
$$3n^5 + 8n^4 + 2n + 1$$
 es  $O(n^5)$   
Verdadero. Por la regla  $\rightarrow$  •  $T(n)$  es un polinomio de grado k  $T(n) = O(n^k)$   
De forma analitica:

- 1)  $3n^5 \le c_1 * n^5$  $c_1 = 3 y n_0 = 1$
- 2)  $8n^4 \le c_2 * n^5$  $c_2 = 4 y n_0 = 2$
- 3)  $2n \le c_3 * n^5$  $c_3=1 y n_0=2$
- 4)  $1 \le c_4 * n^5$  $c_4 = 1 \ y \ n_0 = 1$

$$3n^5 + 8n^4 + 2n + 1 \le c_1 * n^5 + c_2 * n^5 + c_3 * n^5 + c_4 * n^5$$
 para todo  $n \ge n_0$   $T(n) = (c_1 + c_2 + c_3 + c_4) * n^5$  para todo  $n \ge n_0$   $T(n) = c * n^5$  para todo  $n \ge n_0$   $c = (c_1 + c_2 + c_3 + c_4) = 3 + 4 + 1 + 1 = 9$   $n_0 = 2$  (tomamos el mayor de todos los  $n_0$ ) Por lo tanto,  $T(n)$  es de  $O(n^5)$ .

- 4f. Si p(n) es un polinomio de grado k, entonces p(n) es  $O(n^k)$ . Verdadero. Por la regla.
- T(n) es un polinomio de grado k  $T(n) = O(n^k)$