Examen partiel 2 - Vendredi 5 mai 2017 - Durée : 60 min

Aucun document, pas de téléphone, pas de calculatrice.

Nom:	Prénom	:	Signature :					
	Exercice 1:	Exercice 2 :	Total /20:					
Exercice 1 (ARMA(1,1), \simeq 10 pts) On considère le processus ARMA(1,1) suivant :								
$X_t = aX_{t-1} + Z_t + bZ_{t-1}$								
où $ a < 1$, $ b < 1$, $a + b \ne 0$ et Z_t est un bruit blanc de moyenne nulle et de variance σ^2 .								
On note B l'opérateur retard tel que $X_{t-j} = B^j X_t$ pour tout $j \ge 0$.								
1. Rappeler la	définition du bruit	blanc Z_t .						
2. Montrer qu'	il existe deux polyn	sômes $\phi(B)$ et $\theta(B)$ to	el que $\phi(B)X_t = \theta(B)Z_t$	Z_t .				
	1 0		X 7					

5 0 1 1 E(Y)	
5. Calculer $E(X_t)$ pour tout t	à partir du développement en moyenne mobile infinie.
6. Montrer, en utilisant la rep processus est	résentation en moyenne mobile infinie, que la variance γ_0 d
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$
processus est	$\gamma_0 = \sigma^2 \frac{1 + b^2 + 2ab}{1 - a^2}.$

Polytech Nice Sophia/MAM4/SI4/EIT Digital	Data Valorization
Exercice 2 (Régression logistique, ~ 10 pts)	
Un sondage international réalisé en 2004 rapportait le faible taux d'app	
du Président des États-Unis d'Amérique, George W. Bush, dans les pay liés des États-Unis : 40% au Canada, 30% au Royaume-Uni, 20% en E	
magne (les chiffres réels ont été modifiés pour faciliter les calculs).	1 0
Notons <i>Y</i> la variable aléatoire binaire indiquant l'approbation d'une	norconno à la nolitique
de G. W. Bush (1=approuve, 0=désapprouve), X_1 la variable indiquan	
nadienne (1=Canadienne, 0=autre), X_2 la variable indiquant si la pe	rsonne est Britannique
(1=Britannique, 0=autre), X_3 la variable indiquant si la personne est E 0=autre). On note $X=(X_1,X_2,X_3)$ le vecteur décrivant la nationalité d'u	
0-autre). On note $X = (X_1, X_2, X_3)$ ie vecteur decrivant la nationalité d't	me personne.
Nous voulons utiliser un modèle de régression logistique pour modélise	er le lien entre la variable
Y et la nationalité X d'une personne.	
1. Donner toutes les valeurs possibles du vecteur X .	

UNS/LF 4/6 2016/2017

2. Notons $P(X) = Pr(Y = 1 X)$ la probabilité d'approuver la politique de G. W. Bush pour
une personne de nationalité décrite par X . Décrire le modèle mathématique entre $P(X)$ et X sous la forme $logit(P(X)) = \cdots$ où vous définirez la fonction "logit".
3. Quelle est l'inverse de la fonction "logit(u)" pour $u \in]0,1[$? Prouver le résultat annoncé.
4. Calculer $logit(P(X))$ pour chaque valeur de X identifiée à la question 1.

UNS/LF 5/6 2016/2017

5. En utilisant les résultats du sondage, calculer les valeurs des paramètres inconnus, puis écrire le modèle de régression logistique final. Pour vous aider dans vos calculs, nous vous rappelons certaines valeurs (approchées) du logarithme :

х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
ln(x)	-2.3	-1.6	-1.2	-0.9	-0.7	-0.5	-0.4	-0.2	-0.1

UNS/LF 6/6 2016/2017