Automates et Langages Partie 2

Emmanuelle Grislin

INSA 3 FISE et FISA Informatique

Partie 2

Mars 2021

◆ロ ト ◆ 個 ト ◆ 重 ト ● 重 の Q ②

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

1/35

Objectifs du cours 2

Savoirs :

- connaissance de la hiérarchie de Chomsky
- connaissance du théorème de Kleene
- connaître les opérations sur les langages qui conservent et celles qui ne conservent pas la propriété de type "algébrique"

► Savoir-faire :

- établir si un mot m appartient à un langage L de type 3
- donner le langage reconnu par une grammaire de 3
- donner une grammaire engendrant un langage de type 3
- reconnaître le type d'un langage (principes)
- montrer qu'un langage est algébrique en utilisant les opérations sur les langages

Appartenance d'un mot à un langage

Problème

Un langage L étant fixé, comment savoir si un mot donné appartient à L?

Une solution

Décrire une grammaire engendrant L qui va permettre :

- ▶ de produire tous les mots de *L*
- de savoir si un mot donné appartient à L

Difficulté

Complexité de la grammaire?

Il existe différents "niveaux de complexité" de langage, et donc des grammaires engendrant ces langages : voir section suivante.

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

3 / 35

Hiérarchie de Chomsky

Noam Chomsky (années 50) :

- complexité d'une grammaire // complexité des algorithmes associés
- complexité d'une grammaire // forme des règles de production
- classification des grammaires formelles en 4 types :
 - $\bullet \ \ \mathsf{type} \ 3 \subset \mathsf{type} \ 2 \subset \mathsf{type} \ 1 \subset \mathsf{type} \ 0$
 - le type 3 est le plus simple

Figure - Types de grammaires

Un langage *L* est de type *i* ssi il existe une grammaire *G*

il existe une grammaire G de type *i* et telle que

$$L = L(G)$$

Grammaire de type 3 : régulière

Grammaire régulière (ou "rationnelle")

Grammaire définie par un quadruplet $G = < \Sigma, V, S, R >$ avec

- \triangleright Σ : ensemble fini de symboles terminaux
- ightharpoonup V: ensemble fini de variables (symboles non terminaux, $\notin \Sigma$)
- ightharpoonup S : symbole de V particulier appelé "axiome" ou "racine"
- ► R : ensemble fini de règles de production

Grammaire régulière à droite (resp. à gauche) :

toutes les règles sont de la forme :

$$X \rightarrow \omega Y$$
 (resp. $X \rightarrow Y\omega$)

$$X \rightarrow \omega$$
 avec $X, Y \in V$ et $\omega \in \Sigma^*$

langages <u>reconnus par les automates à états finis</u> et les expressions régulières (vus en Partie 1)

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Marc 2021

7 / 35

Théorème de Kleene

Théorème de Kleene

Equivalence : $\mathcal{L}_{RecAFD} = \mathcal{L}_{ExpReg} = \mathcal{L}_{GramReg}$ avec

- $ightharpoonup \mathcal{L}_{\textit{RecAFD}}$ la classe des langages reconnaissables par un automate fini
- $ightharpoonup \mathcal{L}_{ExpReg}$ la classe des langages qui peuvent être décrits par une expression régulière
- $ightharpoonup \mathcal{L}_{GramReg}$ la classe des langages engendrés par une grammaire régulière

Transformation automate fini en grammaire

Pour tout automate fini $\mathcal{A}=<\Sigma\cup\{\epsilon\}, Q, q_0, F, \Delta>$, il existe une grammaire régulière à droite qui génère L(A):

$$G = <\Sigma, V, S, R > avec$$

- V = Q (ensemble des variables = ensemble des états),
- \triangleright S =symbole de V associé à q_0 (axiome associé à l'état initial),
- $R = \{X \to \omega Y | (q_X, \omega, q_Y) \in \Delta\} \cup \{X \to \epsilon | X \in F\}$

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

9 / 35

Transformation grammaire régulière à droite en automate

Pour toute grammaire régulière à droite $G = <\Sigma, V, S, R>$, il existe un automate fini qui reconnaît L(G):

$$\mathcal{A}=<\Sigma\cup\{\epsilon\},Q,q_0,F,\Delta>$$
, avec

- \triangleright Q: un état q_X pour chaque symbole X non terminal (de V),
- ightharpoonup l'état initial q_0 correspond à l'axiome S,
- ▶ F : états dont les non terminaux X de G ont une règle du type $X \to \epsilon$

Grammaire de type 2 : algébrique (ou "hors contexte" ou "non contextuelle")

Grammaire algébrique

► Règles de production de la forme :

$$T
ightarrow u$$
 avec $T \in V$ et $u \in (\Sigma \cup V)^*$

- la partie gauche de la règle contient un unique non terminal
- le type de la plupart des langages de programmation ex. :
 - langage C: http://www.cs.man.ac.uk/~pjj/bnf/c_syntax.bnf
 - Prolog : http:

//cseweb.ucsd.edu/classes/fa09/cse130/misc/prolog/prolog_tutorial.pdf

- besoin d'automates à pile pour les reconnaître
- détaillé dans la section suivante du cours

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ○

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

12 / 35

Grammaire de type 1 : contextuelle

Grammaire contextuelle (ou "sensible au contexte")

► Règles de production de la forme :

$$\alpha \to \beta$$
 avec α et $\beta \in (\Sigma \cup V)^*$ et $|\beta| \ge |\alpha|$

- partie gauche de la règle est non vide
- et partie droite contient plus de symboles que la gauche avec une exception pour $X \to \epsilon$
- toute grammaire de type 1 peut aussi s'écrire :

$$\gamma X\delta o \gamma \beta \delta$$
 avec $\gamma, \beta, \delta \in (\Sigma \cup V)^*$, $|\beta| \geq 1$, $X \in V$

lacktriangle et δ sont appelés les **contextes** (gauche et droit) de la règle

Grammaire de type 0 : générale

Grammaire générale (ou "non contrainte")

Règles de production de la forme :

$$\alpha \to \beta$$
 avec α et $\beta \in (\Sigma \cup V)^*$

Pas de contrainte sur les parties gauches et droites des règles.

◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 ・ 夕久 ◎

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Type d'un langage

Comment connaître le type d'un langage L?

- > si il existe une expression régulière ou un automate à états fini qui reconnaît L. alors
 - L est de type 3 (régulier) par le théorème d'équivalence de Kleen
- si il existe une grammaire G de type i qui engendre L, alors L est au moins de type i (peut-être > i si G est d'une complexité plus grande que nécessaire)
 - on regarde la forme des règles des grammaires qui l'engendrent : existe-t-il une grammaire de type 3? sinon, de type 2? etc.
- par déduction en utilisant les propriétés sur les langages :

ex.:

- l'union de 2 langages algébriques est un langage algébrique
- le **lemme de l'Etoile** donne une condition que les mots d'un langage régulier doivent nécessairement satisfaire (Cf. cours Partie 1)

Type d'un langage

Comment connaître le type d'un langage L?

- si il existe une expression régulière ou un automate à états fini qui reconnaît L, alors
 - L est de type 3 (régulier) par le théorème d'équivalence de Kleen
- ▶ si il existe une grammaire G de type i qui engendre L, alors L est au moins de type i (peut-être > i si G est d'une complexité plus grande que nécessaire)
 - on regarde **la forme des règles** des grammaires qui l'engendrent : existe-t-il une grammaire de type 3 ? sinon, de type 2 ? etc.
- par déduction en utilisant les propriétés sur les langages :

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

19 / 35

Union de langages algébriques

Soient les langages L_1 et L_2 deux langages algébriques sur l'alphabet Σ ,

Union:

- ► $L_1 \cup L_2 = \{u \in \Sigma^* \mid u \in L_1 \text{ ou } u \in L_2\}$
- l'union de 2 langages algébriques est algébrique

Démonstration :

- ▶ $L_1 = L(G_1)$ avec $G_1 = \langle \Sigma, V_1, S_1, R_1 \rangle$ et $L_2 = L(G_2)$ avec $G_2 = \langle \Sigma, V_2, S_2, R_2 \rangle$ où $V_1 \cap V_2 = \emptyset$ (ensembles de variables disjoints),
- ▶ soit S une nouvelle variable, $L_1 \cup L_2$ est engendré par la grammaire algébrique : $G = \langle \Sigma, V_1 \cup V_2 \cup \{S\}, S, R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\} \rangle$
- ▶ la règle ajoutée est de la forme $T \to u$ avec $T \in V$ et $u \in (\Sigma \cup V)^*$

Union de langages algébriques

Exemple:

- ► $L = \{u \in \{a, b\}^* \mid u = a^n b^n \text{ ou } u = b^n a^n; n \ge 0\}$
- ► $L = \{u \in \{a, b\}^* \mid u = a^n b^n; n \ge 0\} \cup \{u \in \{a, b\}^* \mid u = b^n a^n; n \ge 0\}$
- ▶ $L_1 = L(G_1)$ avec $G_1 = \langle \{a, b\}, \{S_1\}, S_1, \{S_1 \to aS_1b \mid \epsilon \} \rangle$ et $L_2 = L(G_2)$ avec $G_2 = \langle \{a, b\}, \{S_2\}, S_2, \{S_2 \to bS_2a \mid \epsilon \} \rangle$
- L est engendré par la grammaire algébrique : $G = \langle \{a, b\}, \{S_1, S_2, S\}, S, R \rangle$ avec R :

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

23 / 35

Produit de langages algébriques

Soient les langages L_1 et L_2 deux langages algébriques sur l'alphabet Σ ,

Produit:

- ► $L = L_1 L_2 = \{ u \in \Sigma^* \mid \exists v_1 \in L_1 \text{ et } v_2 \in L_2, \ u = v_1 v_2 \}$
- le produit de 2 langages algébriques est algébrique

Démonstration :

- ▶ $L_1 = L(G_1)$ avec $G_1 = \langle \Sigma, V_1, S_1, R_1 \rangle$ et $L_2 = L(G_2)$ avec $G_2 = \langle \Sigma, V_2, S_2, R_2 \rangle$ où $V_1 \cap V_2 = \emptyset$ (ensembles de variables disjoints),
- ▶ soit S une nouvelle variable, $L_1 L_2$ est engendré par la grammaire algébrique : $G = \langle \Sigma, V_1 \cup V_2 \cup \{S\}, S, R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\} \rangle$
- lacktriangle la règle ajoutée est de la forme T o u avec $T\in V$ et $u\in (\Sigma\cup V)^*$

Produit de langages algébriques

Exemple:

- ► $L = \{u \in \{a, b\}^* \mid u = a^n b^n b^p c^p ; n \ge 0 \text{ et } p \ge 0\}$
- ▶ $L = L_1L_2$ avec $L_1 = \{u \in \{a, b\}^* \mid u = a^nb^n; n \ge 0\}$ et $L_2 = \{u \in \{a, b\}^* \mid u = b^pc^p; p \ge 0\}$
- ▶ $L_1 = L(G_1)$ avec $G_1 = \langle \{a, b\}, \{S_1\}, S_1, \{S_1 \to aS_1b \mid \epsilon\} \rangle$ et $L_2 = L(G_2)$ avec $G_2 = \langle \{a, b\}, \{S_2\}, S_2, \{S_2 \to bS_2c \mid \epsilon\} \rangle$
- L est engendré par la grammaire algébrique :

$$G = \langle \{a, b\}, \{S_1, S_2, S\}, S, R \rangle$$
 avec R :

Emmanuelle Grislin (INSA-UPHF) Automates et Langages

Mars 2021

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● り९◎

25 / 35

Etoile de langages algébriques

Soit le langage algébrique L sur l'alphabet Σ ,

Etoile:

- $L^* = \bigcup_{n>0} L^n = L^0 \cup L^1 \cup L^2 \cup \dots L^n$
- l'étoile d'un langage algébrique est algébrique

Démonstration :

- $ightharpoonup L^*$ est l'union de produits de langages algébriques \Rightarrow algébrique
- ▶ L engendré par $G = \langle \Sigma, V, S, R \rangle$ Soit S' une nouvelle variable, L^* est engendré par la grammaire algébrique : $G' = \langle \Sigma, V \cup \{S'\}, S', R\{S' \rightarrow S \ S' \mid \epsilon\} \rangle$
- ▶ la règle ajoutée est de la forme T o u avec $T \in V$ et $u \in (\Sigma \cup V)^*$

Etoile de langages algébriques

Exemple:

- ► Avec $L = \{u \in \{a, b\}^* \mid u = a^n b^n; n \ge 0\}$,
 - $L^0 = \emptyset$, $L^1 = L$
 - $L^2 = LL^1 = \{u \in \{a, b\}^* \mid u = a^n b^n a^p b^p ; n \ge 0 \text{ et } p \ge 0\}$ algébrique car produit de 2 algébriques
 - $L^3 = LL^2 = \{u \in \{a, b\}^* \mid u = a^n b^n a^p b^p a^q b^q ; n \ge 0, p \ge 0 \text{ et } a \ge 0\}$ algébrique car produit de 2 algébriques
 - . . .
 - $L^* = \bigcup_{n \ge 0} L^n$ algébrique car union d'algébriques
- L est engendré par la grammaire algébrique :

$$G = \langle \{a, b\}, \{S, S'\}, S', R \rangle$$
 avec R :

$$S' \rightarrow SS' \mid \epsilon S \rightarrow SSb \mid \epsilon S \rightarrow$$

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

◆□▶◆□▶◆■▶◆■▶ ■ かんで

Mars 2021 27 / 35

Intersection de langages algébriques

Soit le langage algébrique L sur l'alphabet Σ ,

Intersection:

- ▶ $L_1 \cap L_2 = \{u \in \Sigma^* \mid u \in L_1 \text{ et } u \in L_2\}$
- l'intersection de 2 langages algébriques n'est pas toujours algébrique

Intersection de langages algébriques

Un exemple de "conservation" du type algébrique :

► $L = \{u \in \{a, b\}^* \mid u = a^n b^p; p > n \ge 0\}$

L est algébrique, engendré par la grammaire algébrique :

 $G = \langle \{a, b\}, \{S, T\}, S, R \rangle$ avec R:

- $ightharpoonup L = L_1 \cap L_2$ avec :
- ► $L_1 = \{u \in \{a, b\}^* \mid u = a^n b^p ; p \ge n \ge 0\}$ et $L_2 = \{u \in \{a, b\}^* \mid u = a^n b^p ; p \ge 0, n \ge 0, n \ne p\}$
 - $L_1 = \{a^n b^n\}\{b^q\}$ produits d'algébriques
 - $L_2 = \{a^n b^p \mid p < n\} \cup \{a^n b^p \mid p > n\}$ même raisonnement que pour L_1
- L est donc algébrique et intersection de 2 langages algébriques

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

29 / 35

Intersection de langages algébriques

Un exemple de non "conservation" du type algébrique :

- ► $L_1 = \{u \in \{a, b\}^* \mid u = a^n b^p c^n ; p \ge 0, n \ge 0\}$ L_1 est algébrique
- ► $L_2 = \{u \in \{a, b\}^* \mid u = a^n b^p c^p ; p \ge 0, n \ge 0\}$ L_2 est algébrique
- ► $L_1 \cap L_2 = \{u \in \{a, b\}^* \mid u = a^n b^n c^n; n \ge 0\}$ $L_1 \cap L_2$ n'est pas algébrique (il est contextuel)
- l'intersection ne conserve pas nécessairement le type algébrique

Complémentaire de langage algébrique

Soit le langage algébrique L sur l'alphabet Σ ,

Complémentaire :

- le complémentaire d'un langage algébrique n'est pas toujours algébrique

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021

31 / 35

Complémentaire de langage algébrique

Exemple:

- ▶ Soient L_1 et L_2 , 2 langages algébriques avec $L_1 \cap L_2$ non algébrique.
- ▶ 3 cas possibles :
 - ① CL_1 et CL_2 sont algébriques : $CL_1 \cup CL_2 = \{u \in \Sigma^* \mid u \notin L_1 \text{ ou } u \notin L_2\}$ alg. car union de 2 alg. $C(CL_1 \cup CL_2) = \{u \in \Sigma^* \mid u \in L_1 \text{ et } u \in L_2\} = L_1 \cap L_2 \text{ non alg. par hyp.}$ Exemple où le C d'un algébrique est non algébrique.
 - ② CL_1 algébrique et CL_2 non algébrique : L_2 est algébrique et CL_2 non algébrique.
 - 3 CL_1 non algébrique et CL_2 algébrique : L_1 est algébrique et CL_1 non algébrique.
- le complémentaire ne conserve pas nécessairement le type algébrique

Conclusion du cours 2 : objectifs atteints?

Savoirs:

- connaissance de la hiérarchie de Chomsky :
 - Un langage L est de type i ssi il existe une grammaire G de type i telle que L = L(G)
 - 4 niveaux de complexité :
 - type 3 : régulier, il existe une expression régulière et règles de la forme $X \to \omega Y$ (resp. $X \to Y\omega$) ou $X \to \omega$ avec $X, Y \in V$ et $\omega \in \Sigma^*$
 - type 2 : algébrique (hors contexte), règles de la forme $X \to u$ avec $X \in V$ et $u \in (\Sigma \cup V)^*$
 - type 1 : contextuel, règles de la forme $\alpha \to \beta$ avec α et $\beta \in (\Sigma \cup V)^*$ et $|\beta| > |\alpha|$
 - type 0 : général (sans contrainte), règles de la forme $\alpha \to \beta$ avec α et $\beta \in (\Sigma \cup V)^*$
- lacktriangle connaissance du théorème de Kleene : $\mathcal{L}_{RecAFD} = \mathcal{L}_{ExpReg} = \mathcal{L}_{GramReg}$
- connaître les opérations sur les langages qui conservent et celles qui ne conservent pas le type"algébrique" :
 - l'union, le produit et l'étoile conservent le type "algébrique"
 - l'intersection et le complémentaire ne conservent pas nécessairement le type "algébrique" **◆□▶◆□▶◆■▶◆■● 9**00

Emmanuelle Grislin (INSA-UPHF)

Automates et Langages

Mars 2021 34 / 35

Conclusion du cours 2

Objectifs atteints?

Savoir-faire: Cf. TDs

- établir si un mot m appartient à un langage L de type 3 (régulier) : donner une grammaire pour L et une dérivation de S à m
- ▶ donner le langage reconnu par une grammaire de type 3 : sous forme d'expression régulière
- donner une grammaire engendrant un langage de type 3 : soit directement, soit à partir d'un automate à états finis
- reconnaître le type d'un langage (principes) :
 - par élimination en partant du type le plus contraint (type 3)
 - en produisant une grammaire engendrant ce langage
 - on le "décomposant" en tant que résultat d'opérations (union, produit ou étoile) sur des langages algébriques