Misura indiretta della velocità della luce

C.d.L. in Fisica, a.a. 2022-2023 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi

1 Introduzione

Lo scopo di questa esperienza è la misurazione della velocità della luce utilizzando il metodo di Focault. Questa grandezza, infatti, svolge un ruolo cruciale come costante fisica universale e la sua determinazione è stata di fondamentale importanza per la definizione delle unità di misura nel Sistema Internazionale.

1.1 Metodo

La determinazione della velocità della luce viene effettuata utilizzando il metodo di Focault: viene diretto un fascio luminoso, proveniente da una sorgente, verso uno specchio rotante che ne causa la riflessione con spostamento angolare $\Delta\omega$.

Il raggio di luce, dopo aver colpito lo specchio rotante, viene riflesso nella direzione opposta lungo la stessa traiettoria che aveva compito nel viaggio di andata. Poiché lo specchio è in rotazione, la posizione in cui il raggio colpisce lo specchio è in costante cambiamento: questo causa uno spostamento angolare tra il punto di arrivo del raggio riflesso e la posizione iniziale - misurata con specchio fermo -.

Misurando con precisione la posizione iniziale δ_i - con specchio fermo - e la finale δ_f - con specchio in movimento - si riesce a dedurre lo spostamento angolare $\Delta \delta = \delta_f - \delta_i$: questo rende possibile determinare la velocità della luce

$$c = 4f_2 D^2 \frac{(\omega - \omega_0)}{(D + a - f_2)\Delta\delta}$$

$$\tag{1.1.1}$$

dove c è la velocità della luce, f_2 è la lunghezza focale della seconda lente posta nell'apparato, D è la lunghezza del percorso compituto dal facio luminoso, ω_0 e ω sono rispettivamente la velocità angolare iniziale e finale dello specchio rotante, a è la distanza tra la seconda lente dell'apparato e lo specchio rotante e $\Delta \delta$ è lo spostamento dell'immagine nel punto di osservazione, quando la velocità angolare dello specchio rotante passa da ω_0 a ω .

2 Analisi dati

2.1 Stima degli errori

L'errore sulla stima del valore di c è frutto di due componenti: una sistematica - calcolata mediante propagazione degli errori - e una statistica - data dalla deviazione standard della media di c ottenuta per ogni coppia $\Delta\omega$ e $\Delta\delta$.

3 Appendice

$\nu_0[\mathbf{Hz}]$	$\omega_0[{ m rad/s}]$	$\delta_0[{f m}]$	$\nu[\mathbf{Hz}]$	$\omega[\mathbf{H}\mathbf{z}]$	$\delta[{f m}]$	Delta	Omega	c
-1395	-8765.043504	8.93	1387	8714.778021	9.69	0.76	17479.82152	3.02818E+08
-1400	-8796.459430	8.92	1406	8834.158542	9.69	0.77	17630.61797	3.01464E+08
-1300	-8168.140899	8.93	1407	8840.441727	9.70	0.77	17008.58263	2.90828E+08
-1413	-8878.140839	8.91	1391	8739.910762	9.70	0.79	17618.05160	2.93623E+08
-1360	-8545.132018	8.92	1382	8683.362095	9.69	0.77	17228.49411	2.94588E+08
-1346	-8457.167423	8.92	1402	8809.025801	9.70	0.78	17266.19322	2.91448E+08
-1358	-8532.565647	8.91	1394	8758.760318	9.69	0.78	17291.32597	2.91872E+08
-1393	-8752.477133	8.91	1419	8915.839951	9.70	0.79	17668.31708	2.94460E+08
-1390	-8733.627577	8.92	1369	8601.680686	9.69	0.77	17335.30826	2.96414E+08
-1416	-8896.990395	8.91	1419	8915.839951	9.70	0.79	17812.83035	2.96869E+08
-1394	-8758.760318	8.93	1424	8947.255877	9.69	0.76	17706.01620	3.06737E+08
-1366	-8582.831130	8.91	1419	8915.839951	9.69	0.78	17498.67108	2.95372E+08
-1417	-8903.273580	8.91	1404	8821.592171	9.70	0.79	17724.86575	2.95403E+08
-1322	-8306.370976	8.92	1312	8243.539123	9.66	0.74	16549.91010	2.94457E+08
-1378	-8658.229353	8.93	1409	8853.008098	9.69	0.76	17511.23745	3.03362E+08
-1300	-8168.140899	8.92	1394	8758.760318	9.68	0.76	16926.90122	2.93239E+08
-1378	-8658.229353	8.92	1315	8262.388679	9.66	0.74	16920.61803	3.01053E+08
-1372	-8620.530241	8.92	1369	8601.680686	9.66	0.74	17222.21093	3.06419E+08
-1385	-8702.211650	8.93	1384	8695.928465	9.70	0.77	17398.14012	2.97489E+08
-1362	-8557.698388	8.93	1329	8350.353273	9.63	0.70	16908.05166	3.18020E+08
-1309	-8224.689567	8.93	1349	8476.016979	9.69	0.76	16700.70655	2.89321E+08
-1365	-8576.547944	8.92	1383	8689.645280	9.69	0.77	17266.19322	2.95233E+08
-1389	-8727.344392	8.92	1317	8274.955050	9.65	0.73	17002.29944	3.06650E+08
-1342	-8432.034682	8.92	1314	8256.105494	9.66	0.74	16688.14018	2.96917E+08
-1398	-8783.893059	8.92	1331	8362.919644	9.66	0.74	17146.81270	3.05078E+08
-1364	-8570.264759	8.92	1381	8677.078909	9.69	0.77	17247.34367	2.94910E+08
-1374	-8633.096612	8.92	1385	8702.211650	9.70	0.78	17335.30826	2.92614E+08
-1372	-8620.530241	8.93	1375	8639.379797	9.67	0.74	17259.91004	3.07090E+08
-1375	-8639.379797	8.91	1310	8230.972752	9.67	0.76	16870.35255	2.92260E+08
-1347	-8463.450609	8.93	1325	8325.220532	9.68	0.75	16788.67114	2.94723E+08

Tab. 1: da frequenze massime clockwise a frequenze massime counterclockwise

0	Colonna 2	Colonna 3
-1390	-8733.627577	8.93
-1317	-8274.955050	8.93
-1355	-8513.716091	8.94
-1404	-8821.592171	8.93
-1359	-8538.848832	8.94
-1409	-8853.008098	8.92
-1374	-8633.096612	8.95
-1386	-8708.494836	8.94
-1386	-8708.494836	8.92
-1409	-8853.008098	8.92
-1363	-8563.981574	8.94
-1143	-7181.680806	8.96
-1441	-9054.070028	8.97
-1450	-9110.618695	8.92
-1414	-8884.424024	8.94
-1401	-8802.742615	8.95
-1410	-8859.291283	8.93
-1431	-8991.238175	8.93
-1444	-9072.919584	8.93
-1424	-8947.255877	8.94
-1395	-8765.043504	8.92
-1455	-9142.034622	8.92
-1456	-9148.317807	8.94
-1469	-9229.999216	8.91
-1426	-8959.822248	8.92
-1446	-9085.485954	8.92
-1418	-8909.556766	8.92
-1446	-9085.485954	8.90
-1455	-9142.034622	8.91
-1446	-9085.485954	8.93

Tab. 2: clockwise da frequenze basse a frequenze massime.

0	0	0	
-684	-4297.698750	9.11	
-811	-5095.663284	9.08	
-739	-4643.273942	9.08	
-860	-5403.539364	9.06	
-867	-5447.521661	9.05	
-841	-5284.158843	9.06	
-865	-5434.955291	9.05	
-856	-5378.406623	9.05	
-839	-5271.592473	9.06	
-892	-5604.601294	9.04	
-840	-5277.875658	9.06	
-844	-5303.008399	9.07	
-874	-5491.503958	9.06	
-889	-5585.751738	9.05	
-885	-5560.618997	9.06	

Tab. 3: clockwise da frequenze basse a frequenze medie.