CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 1

EXERCICE 1

1. Notons I l'un des intervalles] -1, 0[ou]0, 1[. Sur I, l'équaion (E) équivaut à l'équation $y' + \frac{1}{x}y = \frac{2}{\sqrt{1-x^4}}$. Les deux fonctions $x \mapsto \frac{1}{x}$ et $x \mapsto \frac{2}{\sqrt{1-x^4}}$ sont continues sur I et donc les solutions de (E) sur I constituent un \mathbb{R} -espace affine de dimension 1.

Soit f une fonction dérivable sur I.

$$\begin{split} \text{f solution de (E) sur I} &\Leftrightarrow \forall x \in I, \ (xf)'(x) = \frac{2x}{\sqrt{1-x^4}} \\ &\Leftrightarrow \exists C \in \mathbb{R}/\ \forall x \in I, \ xf(x) = \operatorname{Arcsin}(x^2) + C \Leftrightarrow \exists C \in \mathbb{R}/\ \forall x \in I, \ f(x) = \frac{\operatorname{Arcsin}(x^2) + C}{x}. \\ &S_I = \left\{ x \mapsto \frac{\operatorname{Arcsin}(x^2) + C}{x}, \ C \in \mathbb{R} \right\}. \end{split}$$

2. Soit f une éventuelle solution de (E) sur] -1, 1[. Nécessairement, 0f'(0) + f(0) = 0 et donc f(0) = 0 puis $f_{/]-1,0[}$ et $f_{/]0,1[}$ étant solutions de (E) sur] -1, 0[et]0, 1[respectivement,

$$\exists (C_1,C_2) \in \mathbb{R}^2 / \ \forall x \in]-1,1[,\ f(x) = \left\{ \begin{array}{l} \frac{\operatorname{Arcsin}(x^2) + C_1}{x} \operatorname{si} \ x \in]-1,0[\\ 0 \operatorname{si} \ x = 0 \\ \frac{\operatorname{Arcsin}(x^2) + C_2}{x} \operatorname{si} \ x \in]0,1[\end{array} \right..$$

Réciproquement, une telle fonction f est solution de (E) sur]-1,0[et sur]0,1[et vérifie l'égalité en x=0 si de plus elle est dérivable en [0,1]. Donc, une telle fonction f est solution de [E] sur]-1,1[si et seulement si elle est dérivable en [0,1].

Si $C_1 \neq 0$ ou $C_2 \neq 0$, f ne tend pas vers 0 = f(0) quand x tend vers 0 et n'est donc pas solution de (E) sur] -1, 1[. Si $C_1 = C_2 = 0$, on a

$$f(x) = \underset{x \to 0, \ x \neq 0}{=} \frac{x^2 + o(x^2)}{x} = x + o(x) = f(0) + x + o(x).$$

Dans ce cas, f admet un développement limité d'ordre 1 en 0 et est donc dérivable en 0. f est alors solution de (E) sur]-1,1[.

$$\text{L'\'equation (E) admet une et une seule solution sur }]-1,1[\text{ \`a savoir la fonction } x \mapsto \left\{ \begin{array}{l} \frac{\operatorname{Arcsin}(x^2)}{x} \operatorname{si} x \neq 0 \\ 0 \operatorname{si} x \neq 0 \end{array} \right. .$$

EXERCICE 2

1. La fonction $t\mapsto e^{-t^2}$ est continue sur $[0,+\infty[$ et négligeable en $+\infty$ devant $\frac{1}{t^2}$ d'après un théorème de croissances comparées. Donc

La fonction
$$t\mapsto e^{-t^2}$$
 est intégrable sur $\mathbb{R}^+.$

2. (a) • La fonction $t \mapsto e^{-t^2}$ est continue sur \mathbb{R}^+ et donc f est définie et de classe C^1 sur \mathbb{R}^+ et pour tout réel x, $f'(x) = e^{-x^2}$.

Pour chaque $x \in \mathbb{R}^+$, la fonction $t \mapsto G(x,t)$ est continue par morceaux sur le segment [0,1] et donc intégrable sur ce segment.

La fonction G est pourvue d'une dérivée partielle par rapport à sa première variable x sur $[0, +\infty[\times[0, 1]$ et

$$\forall (x,t) \in [0,+\infty[\times[0,1],\ \frac{\partial G}{\partial x}(x,t) = -2xe^{-x^2(1+t^2)} = -2xe^{-x^2}e^{-x^2t^2}$$

De plus, pour chaque $x \in \mathbb{R}^+$, la fonction $t \mapsto \frac{\partial G}{\partial x}(x,t)$ est continue par morceaux sur [0,1] et pour chaque $t \in [0,1]$, la fonction $x \mapsto \frac{\partial G}{\partial x}(x,t)$ est continue sur $[0,+\infty[$.

Enfin, la fonction $x\mapsto -2xe^{-x^2}$ est continue sur \mathbb{R}^+ et admet une limite réelle en $+\infty$ à savoir 0. Cette fonction est donc bornée sur \mathbb{R}^+ . Soit M un majorant de sa valeur absolue sur \mathbb{R}^+ . Alors,

$$\forall (x,t) \in [0,+\infty[\times \mathbb{R}, \, \left| \frac{\partial G}{\partial x}(x,t) \right| \leqslant M = \phi_1(t)$$

(hypothèse de domination) où φ_1 est continue et intégrable sur [0,1].

D'après le théorème de dérivation des intégrales à paramètres (théorème de Leibniz), g est de classe C^1 sur \mathbb{R}^+ et

$$\forall x \in [0, +\infty[, g'(x) = \int_0^1 \frac{\partial G}{\partial x}(x, t) dt = -2xe^{-x^2} \int_0^1 e^{x^2 t^2} dt.$$

$$f \text{ et } g \text{ sont de classe } C^1 \text{ sur } \mathbb{R}^+ \text{ et } \forall x \geqslant 0, \ f'(x) = e^{-x^2} \text{ et } g'(x) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} \ dt.$$

(b) Le résultat est immédiat si x=0 et si x>0, en posant t=ux ou encore $u=\frac{t}{x}$ puis dt=x du, on obtient $f(x)=\int_0^1 e^{-x^2u^2}x\ du$.

La fonction φ est de classe C^1 sur l'intervalle $[0, +\infty[$ et pour $x \ge 0,$

$$\varphi'(x) = g'(x) + 2f'(x)f(x) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt + 2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt = 0.$$

Donc la fonction φ est constante sur $[0, +\infty[$ et $\forall x \geqslant 0, \ \varphi(x) = \varphi(0) = \int_0^1 \frac{1}{1+t^2} \ dt + 0 = \frac{\pi}{4}.$

$$\forall x \in [0, +\infty[, g(x) + (f(x))^2 = \frac{\pi}{4}.$$

(c) Soit $x \in \mathbb{R}^+$. Par positivité de l'intégrale, $g(x) \ge 0$ et d'autre part, la fonction $t \mapsto \frac{e^{-x^2(1+t^2)}}{1+t^2} = e^{-x^2(1+t^2)} \times \frac{1}{1+t^2}$ étant décroissante sur [0,1] en tant que produit de deux fonctions positives et décroissantes sur [0,1], on a

$$g(x) \leqslant \int_0^1 \frac{e^{-x^2(1+0)}}{1+0} dt = \int_0^1 e^{-x^2} dt = e^{-x^2}.$$

$$\forall x \geqslant 0, \, 0 \leqslant g(x) \leqslant e^{-x^2}.$$

(d) Pour $x \ge$, on a $(f(x))^2 = \frac{\pi}{4} - g(x)$ et puisque $f(x) \ge 0$, on a encore $f(x) = \sqrt{\frac{\pi}{4} - g(x)}$. Mais la question précédente et le théorème des gendarmes montre que $\lim_{x\to +\infty} g(x)=0$. On en déduit que $\lim_{x\to +\infty} f(x)=\sqrt{\frac{\pi}{4}}=\frac{\sqrt{\pi}}{2}$ et donc que

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

Problème: Théorème du point fixe et applications

Partie I : Le théorème du point fixe de Picard

1. (a) Soit $n \in \mathbb{N}$.

$$\|\mathbf{u}_{n+1}\| = \|\mathbf{x}_{n+2} - \mathbf{x}_{n+1}\| = \|\mathbf{f}(\mathbf{x}_{n+1}) - \mathbf{f}(\mathbf{x}_n)\| \leqslant \mathbf{k}\|\mathbf{x}_{n+1} - \mathbf{x}_n\| = \mathbf{k}\|\mathbf{u}_n\|.$$

 $\begin{array}{l} \text{Montrons par r\'ecurrence que pour } n \in \mathbb{N}, \ \|u_n\| \leqslant k^n\|f(\alpha) - \alpha\|. \\ \text{C'est vrai pour } n = 0 \ \text{car} \ \|u_0\| = \|x_1 - x_0\| \leqslant k^0\|f(\alpha) - \alpha\| \ \text{et si pour } n \geqslant 0, \ \|u_n\| \leqslant k^n\|f(\alpha) - \alpha\| \ \text{alors} \end{array}$

$$\|u_{n+1}\|\leqslant k\|u_n\|\leqslant k\times k^n\|f(\alpha)-\alpha\|=k^{n+1}\|f(\alpha)-\alpha\|.$$

On a montré par récurrence que

$$\forall n \in \mathbb{N}, \ \|u_n\| \leqslant k^n \|f(a) - a\|.$$

Puisque $0 \le k < 1$, la série géométrique de terme général $k^n || f(a) - a ||$, $n \in \mathbb{N}$, converge. On en déduit que la série de terme général u_n est absolument convergente (c'est-à-dire $\sum \|u_n\|$ converge) et donc convergente puisque $(E, \|\ \|)$ est complet.

- (b) On sait que la suite de terme général x_n , $n \in \mathbb{N}$, et la série de terme général $x_{n+1} x_n$, $n \in \mathbb{N}$, sont de même nature (séries télescopiques). Donc la suite (x_n) converge vers un élément ℓ de E.
- (c) f est Lipschitzienne sur E et donc continue sur E et en particulier en ℓ . On en déduit que

$$\ell = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(\ell).$$

La suite $(x_n)_{n\in\mathbb{N}}$ converge vers un point fixe de f.

(d) f admet donc au moins un point fixe. Soient x et y deux points fixes de f (non nécessairement distincts).

$$||x - y|| = ||f(x) - f(y)|| \le k||x - y||.$$

On en déduit $(1-k)\|x-y\| \leqslant 0$ puis $\|x-y\| \leqslant$ puisque 1-k>0 et donc $\|x-y\|=0$ puis x=y.

Partie II : Exemples et contre-exemples

- 2. Sur la nécessité d'avoir une contraction stricte.
- (a) g est dérivable sur \mathbb{R} et pour $t \in \mathbb{R}$

$$g'(t) = 1 - \frac{1}{1 + t^2}$$

 $\mathrm{Donc}\ g'(t)<1-0=1\ \mathrm{et}\ g'(t)\geqslant 1-\frac{1}{1+0}=0.\ \mathrm{Par}\ \mathrm{suite},\ \mathrm{pour}\ \mathrm{tout}\ \mathrm{r\acute{e}el}\ t,\ |g'(t)|<1.$

Soient alors x et y deux réels tels que x < y. La fonction g est continue sur [x,y] et dérivable sur]x,y[. D'après l'égalité des accroissements finis, il existe $c \in]x,y[$ tel que

$$|g(y) - g(x)| = |g'(c)| \times |x - y| < |x - y|.$$

Pour tous réels distincts x et y, |g(x) - g(y)| < |x - y|.

(b) Soit $t \in \mathbb{R}$. $g(t) = t \Leftrightarrow \operatorname{Arctan} t = \frac{\pi}{2}$. Cette équation n'a pas de solution réelle et donc la fonction g n'a pas de point fixe. D'après le théorème de PICARD, la fonction g n'est pas une contraction stricte.

3. Un exemple. (a) Pour tout entier naturel n, on a $u_{n+1} = g(u_n)$. Mais pour tous réels x et y, on a $|g(x) - g(y)| = \frac{1}{5}|x-y| \le \frac{1}{5}|x-y|$. Donc la fonction g est une contraction stricte et d'après le théorème de PICARD, la suite (u_n) converge vers l'unique point fixe de g à savoir $\ell = \frac{5}{4}$.

La suite
$$(u_n)$$
 converge vers $\ell = \frac{5}{4}$.

(b) Soit $x \in \mathbb{R}$. Montrons par récurrence que $\forall n \in \mathbb{N}$, $f(g^n(x)) = f(x)$. C'est vrai pour n = 0 puisque $g^0 = Id_E$ et si pour $n \ge 0$, $f(g^n(x)) = f(x)$ alors $f(g^{n+1}(x)) = f(g(g^n(x))) = f(g^n(x)) = f(x)$. On a montré par récurrence que

$$\forall x \in \mathbb{R}, \, \forall n \in \mathbb{N}, \, f(g^n(x)) = f(x).$$

(c) Soit $x \in \mathbb{R}$, f est continue sur \mathbb{R} et donc en $\ell = \frac{5}{4}$. On fait tendre \mathfrak{n} tend vers $+\infty$ dans l'égalité précédente et on obtient

$$f(x) = \lim_{n \to +\infty} f(g^n(x)) = f(\lim_{n \to +\infty} g^n(x)) = f\left(\frac{5}{4}\right).$$

Ainsi, $\forall x \in \mathbb{R}$, $f(x) = f\left(\frac{5}{4}\right)$ et donc f est constante. Réciproquement, les fonctions constantes conviennent.

4. Un système non linéaire dans \mathbb{R}^2 . (a) L'espace vectoriel normé $(\mathbb{R}^2, \| \|_1)$ est complet car l'espace vectoriel \mathbb{R}^2 est de dimension finie sur \mathbb{R} .

(b) L'inégalité $|\sin x| \leq |x|$, valable pour tout réel x est connue. Mais alors pour $(a,b) \in \mathbb{R}^2$,

$$|\sin b - \sin a| = \left|2\sin\left(\frac{b-a}{2}\right)\cos\left(\frac{b+a}{2}\right)\right| \leqslant 2 \times \left|\frac{b-a}{2}\right| \times 1 = |b-a|.$$

La fonction Arctan est dérivable sur \mathbb{R} et pour tout réel t, $0 \le \operatorname{Arctan}'(t) = \frac{1}{1+t^2} \le 1$. D'après l'inégalité des accroissements finis, pour tous réels \mathfrak{a} et \mathfrak{b} ,

 $|\operatorname{Arctan} b - \operatorname{Arctan} \alpha| \leqslant |b-\alpha| \times \sup\{|\operatorname{Arctan}'(t)|,\ t \in \mathbb{R}\} \leqslant |b-\alpha| \times 1 = |b-\alpha|.$

$$\forall (\alpha,b) \in \mathbb{R}^2, \, |\sin b - \sin \alpha| \leqslant |b-\alpha| \; \mathrm{et} \; |\operatorname{Arctan} b - \operatorname{Arctan} \alpha| \leqslant |b-\alpha|.$$

(c) Soit $((x_1, y_1), (x_2, y_2)) \in (\mathbb{R}^2)^2$.

$$\begin{split} \|\psi((x_2,y_2)) - \psi((x_1,y_1))\|_1 &= \left\| \left(\frac{1}{4} (\sin(x_2 + y_2) - \sin(x_1 + y_1)), \frac{2}{3} (\operatorname{Arctan}(x_2 - y_2) - \operatorname{Arctan}(x_1 - y_1)) \right) \right\|_1 \\ &= \frac{1}{4} |\sin(x_2 + y_2) - \sin(x_1 + y_1)| + \frac{2}{3} |\operatorname{Arctan}(x_2 - y_2) - \operatorname{Arctan}(x_1 - y_1)| \\ &\leqslant \frac{1}{4} |(x_2 + y_2) - (x_1 + y_1)| + \frac{2}{3} |(x_2 - y_2) - (x_1 - y_1)| \\ &= \frac{1}{4} |(x_2 - x_1) + (y_2 - y_1)| + \frac{2}{3} |(x_2 - x_1) - (y_2 - y_1)| \\ &\leqslant \left(\frac{1}{4} + \frac{2}{3} \right) (|x_2 - x_1| + |y_2 - y_1|) = \frac{11}{12} \|(x_2, y_2) - (x_1, y_1)\|_1 \end{split}$$

Comme $0 \leqslant \frac{11}{12} < 1$,

ψ est une contraction stricte de $(\mathbb{R}^2, \| \|_1)$ dans $(\mathbb{R}^2, \| \|_1)$.

(d) D'après le théorème de Picard, ψ admet un point fixe et un seul ou encore le système (S) admet un couple solution et un seul dans \mathbb{R}^2 .

$$\begin{aligned} \text{(e)} \ \left\| \psi \left(\frac{1}{2}, -\frac{1}{2} \right) - \psi(0,0) \right\|_{\infty} &= \left\| \left(0, \frac{\pi}{6} \right) \right\|_{\infty} = \frac{\pi}{6} \ \mathrm{et} \ \left\| \left(\frac{1}{2}, -\frac{1}{2} \right) - (0,0) \right\|_{\infty} \\ &= \frac{1}{2} < \frac{\pi}{6}. \end{aligned}$$

$$\mathrm{Donc}, \ \left\| \psi \left(\frac{1}{2}, -\frac{1}{2} \right) - \psi(0,0) \right\|_{\infty} &\geqslant \left\| \left(\frac{1}{2}, -\frac{1}{2} \right) - (0,0) \right\|_{\infty} \ \mathrm{avec} \ \left(\frac{1}{2}, -\frac{1}{2} \right) \neq (0,0). \ \mathrm{Ainsi}, \ l'application \ \psi \ n'est \ \mathrm{pas} \ \mathrm{une} \\ \mathrm{contraction \ stricte \ pour \ la \ norme} \ \| \ \|_{\infty}. \end{aligned}$$

Une application f peut donc être une contraction stricte pour une norme et pas pour une autre.

Partie III : Une équation intégrale

- **5.** (a) Montrons que $\| \|_{\infty}$ est une norme sur F.
- Soit $f \in F$. f est bornée sur [0,1]. Donc $||f||_{\infty}$ existe et appartient à \mathbb{R}^+ .
- $\bullet \text{ Soit } f \in F. \ \|f\|_{\infty} = 0 \Rightarrow \sup_{x \in [0,1]} |f(x)| = 0 \Rightarrow \forall x \in [0,1], \ |f(x)| \leqslant 0 \Rightarrow \forall x \in [0,1], \ f(x) = 0 \Rightarrow f = 0.$
- Soient $f \in F$ et $\lambda \in \mathbb{R}$. L'application $g : y \mapsto |\lambda|y$ est continue et croissante sur \mathbb{R} . Donc

$$\|\lambda f\|_{\infty} = \sup\{g(|f(x)|), \ x \in [0,1]\} = g(\sup\{|f(x)|, \ x \in [0,1]\}) = |\lambda| \|f\|_{\infty}$$

• Pour tout x de [0, 1],

$$|(f+g)(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}.$$

Donc $\|f\|_{\infty} + \|g\|_{\infty}$ est un majorant de $\{|(f+g)(x)|, x \in [0,1]\}$ et puisque $\|f+g\|_{\infty}$ est le plus petit de ces majorants, on a $\|f+g\|_{\infty} \le \|f\|_{\infty} + \|g\|_{\infty}$.

$$\| \|_{\infty}$$
 est une norme sur F.

- (b) Une application continue sur un segment est bornée sur ce segment et donc $E \subset F$.
- (c) Soient $x_0 \in G$ et $\epsilon > 0$. Il existe un entier n_0 tel que pour $n \geqslant n_0$, $\|g_n g\|_{\infty}$ existe dans \mathbb{R} et $\|g_n g\|_{\infty} < \frac{\epsilon}{3}$. Pour $x \in G$, on a alors

$$\begin{split} \|g(x) - g(x_0)\| &\leq \|g(x) - g_n(x)\| + \|g_{n_0}(x) - g_{n_0}(x_0)\| + \|g_{n_0}(x_0) - g(x_0)\| \\ &\leq \|g_{n_0}(x) - g_{n_0}(x_0)\| + 2\|g_{n_0} - g\|_{\infty} < \|g_{n_0}(x) - g_{n_0}(x_0)\| + \frac{2\varepsilon}{3}. \end{split}$$

 $\begin{aligned} & \text{Maintenant, } g_{\mathfrak{n}_0} \text{ est continue en } x_0 \text{ et donc } \exists \alpha > 0 / \ \forall x \in G, \ \Big(\|x - x_0\| < \alpha \Rightarrow \|g_{\mathfrak{n}_0}(x) - g_{\mathfrak{n}_0}(x_0)\| < \frac{\epsilon}{3} \Big). \text{ Mais alors pour } x \in G \text{ tel que } \|x - x_0\| < \alpha, \text{ on a } \|g(x) - g(x_0)\| < \frac{\epsilon}{3} + \frac{2\epsilon}{3} = \epsilon. \end{aligned}$

On a montré que $\forall x_0 \in G$, $\forall \varepsilon > 0$, $\exists \alpha > 0 / \ \forall x \in G$, $(\|x - x_0\| < \alpha \Rightarrow \|g(x) - g(x_0)\| < \varepsilon$ et donc g est continue sur G.

(d) Il s'agit de vérifier que toute suite de CAUCHY d'éléments de E converge dans E.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de E, de CAUCHY pour $\|\cdot\|_{\infty}$.

Puisque $E \subset F$ d'après (b), $(f_n)_{n \in \mathbb{N}}$ est aussi une suite de CAUCHY de l'espace vectoriel normé $(F, \| \|_{\infty})$. Puisque cet espace est un espace de BANACH, la suite $(f_n)_{n \in \mathbb{N}}$ converge dans $(F, \| \|_{\infty})$ vers un élément f de F.

Mais alors la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1] et d'après la question précédente, puisque chaque f_n est continue sur [0,1], f est continue sur [0,1] ou encore $f\in E$.

En résumé, la suite de Cauchy (f_n) converge dans E ce qu'il fallait démontrer.

 $(E, || ||_{\infty})$ est un espace de BANACH.

6. (a) Le pavé $[0,1]^2$ est un compact de \mathbb{R}^2 et l'application |K| est continue sur ce compact. On en déduit que |K| admet sur $[0,1]^2$ un minimum et un maximum.

(b) Soit $f \in E$.

Pour chaque $x \in [0, 1]$, l'application $y \mapsto K(x, y)f(y)$ est continue sur le segment [0, 1] et pour chaque $y \in [0, 1]$, l'application $x \mapsto K(x, y)f(y)$ est continue sur [0, 1]. Enfin, pour tout $(x, y) \in [0, 1]^2$

$$|K(x,y)f(y)| \leq M|f(y) = \varphi_0(y)$$
 (hypothèse de domination)

où ϕ_0 est continue et intégrable sur [0,1].

D'après le théorème de continuité des intégrales à paramètres, l'application $x \mapsto \int_0^1 K(x,y)f(y) dy$ est définie et continue sur [0,1]. Il en est de même de la fonction $\Phi(f)$ et on a donc montré que

$$\Phi \in E^{E}$$
.

(c) Supposons M>0. Soit $\lambda\in\left]-\frac{1}{M},\frac{1}{M}\right[$. Soit $(f_1,f_2)\in E^2$. Pour tout $x\in[0,1],$ on a

$$|\varphi(f_1)(x) - \varphi(f_2)(x)| \leqslant |\lambda| \int_0^1 |K(x,y)| \times |f_1(y) - f_2(y)| \ dy \leqslant |\lambda| M \|f_1 - f_2\|_{\infty},$$

et donc $\|\phi(f_1) - \phi(f_2)\|_{\infty} \le |\lambda| M \|f_1 - f_2\|_{\infty}$. Puisque $|\lambda| M < 1$, on a montré que ϕ est une contraction stricte de l'espace de Banach $(E, \|\ \|_{\infty})$.

D'après le théorème de Picard, φ admet un point fixe et un seul ou encore il existe une et une seule $f \in E$ telle que $\forall x \in [0,1], \ f(x) + \lambda \int_0^1 K(x,y) f(y) \ dy = g(x).$

Partie IV: Une application géométrique

7. (a) Les droites (MM') et (PP') sont parallèles et donc d'après le théorème de Thales $\frac{MM'}{MC} = \frac{PP'}{PC}$ et donc $\frac{PP'}{MM'} = \frac{PC}{MC}$. Ensuite, dans le triangle MPC, rectangle en C, $\frac{PC}{MC} = |\cos c|$.

(b) Mais alors, même si M=M' ou M=C, $P_MP_{M'}=|\cos c|MM'$. Mais alors, on a aussi $Q_MQ_{M'}=|\cos \alpha|P_MP_{M'}$ puis $R_MR_{M'}=|\cos b|Q_MQ_{M'}$ et donc

$$R_M R_{M'} = |\cos b| Q_M Q_{M'} = |\cos a \cos b| P_M P_{M'} = |\cos a \cos b \cos c| MM',$$

et donc pour tous points M et M' de l'axe des abscisses

$$|\varphi(x_{M'}) - \varphi(x_M)| = |\cos a \cos b \cos c| \times |x_{M'} - x_M|.$$

Comme le réel $|\cos a \cos b \cos c|$ est dans [0,1[, ϕ est une contraction stricte de l'espace de Banach $(\mathbb{R},|\cdot|)$. On en déduit qu'il existe un point M de la droite (BC) et un seul tel que $R_M = M$.