

DATA PREPROCESSING AND HYPOTHESIS TESTING

BY ANGELA OGADA

PREPROCESSING

What is Data Preprocessing?

DATA PREPROCESSING

Steps involved in preparation of data for another process, usually data analysis

DATA PREPROCESSING

<u>Importance</u>

- Improve accuracy
- Quality
- Consistency

DATA PREPROCESSING

Concepts

- Data acquisition
- Import Libraries
- Import Data
- Cleaning data
- Encoding
- Feature Selection
- Feature Scaling

Data acquisition

Get data from a source

- Online
- Collect Data
- Client
- Web Scraping

Importing Libraries

Library – Reusable code that helps optimize tasks

 Choice of libraries to import depends on programming language and tasks to be performed

R Programming – ggplot2, tidyr

Python – pandas, numpy

Importing Libraries

import pandas as pd

Importing Libraries

Pandas

An open source python library used for data manipulation and analysis

- Pandas represents data in 2 forms;
 - 1. Series One dimensional
 - 2. <u>Data Frame</u> Two Dimensional (Table-like with rows and columns)

Loading Data

Data can be in different file formats

json - pd.read_json()

excel - pd.read_excel()

csv - pd.read_csv()

Cleaning Data

- Duplicates
- Outliers

- Data Types
- Missing Values

Cleaning Data: Duplicates

Checking for number of Duplicates

df.duplicated().sum()

Show duplicated rows

df[df.duplicated()]

Drop Duplicates

df.drop_duplicates()

Cleaning Data: Data Types

Object

Text or mixed numeric and non-numeric values

Int64

Whole numbers

Float64

Numbers with Decimals

Datetime64

Date and time values

Bool

True/False values

```
Check DataType
df.dtypes
df.info()
```

Type conversion df['Variable'].astype(' ')

There are pandas inbuilt functions to convert to numeric and date

```
to_numeric()
to_datetime()
```

Cleaning Data: Outliers

Outliers are values that fall more than three standard deviations from the mean.

Depending on the data being worked on, they can be natural variations in the data or errors during entry or sampling.

Checking for Outliers

BoxPlot

Visualizing distribution of data based on a five number summary ("minimum", first quartile [QI], median, third quartile [Q3] and "maximum")

Histogram

Distibution of a numerical variable

ScatterPlot

Relationship between two numeric variables

Z Score

Relationship between standard deviation of a point and mean of the group

Dropping Outliers

- Find the IQR score (Q3 –Q1) to identify the points to drop
- Drop points that fall outside the not in the range of (QI - I.5 IQR) and (Q3 + I.5 IQR)

$$df[\sim((df < (QI - I.5 * IQR)) | (df > (Q3 + I.5 IQR))).any(axis=I)]$$

Cleaning Data: Missing values

Drop/Fill with a value

- Checking for missing values df.isnull()df.isna()
- Drop missing observations df.dropna()
- Drop rows with missing valuesdf.dropna(how = 'all')
- Drop columns with missing valuesdf.dropna(axis = 1)

- Fill missing values with zeros or a value df.fillna(0)
- Fill missing values forward df.fillna(method = 'ffill')
- Fill missing values backward df.fillna(method = 'bfill')
- Fill missing values with average value df.fillna(df.mean()) df['coll'].fillna(df['coll'].mean())
- Fill missing values median df.fillna(df.median()) df['coll'].fillna(df['coll'].median())
- Fill missing values mode

 df['coll'].fillna(df['coll'].mode()[0])

Encoding

Categorical data encoding is conversion of categorical variables to numerical dummies.

Most useful before using machine learning algorithms

One hot Encoding

onehotencoder() scikitlearn method

Numerical Dummies

getdummies() scikitlearn method

Feature Selection

This is reducing the number of input variables.

It helps reduce cost, time spent and improve accuracy of a model

Feature Selection Methods

- Wrapper methodsForward, backward, and stepwise selection
- Filter methods
 ANOVA, Pearson correlation, Variance thresholding
- Embedded methodsLasso, Ridge, Decision Tree

Feature Scaling

Feature scaling is a method used to normalize the range of independent variables or features of data so they can be in the same range.

Common Feature Scaling Techniques

- Absolute Maximum Scaling
- Min-Max Scaling
- Normalization
- Standardization
- Robust Scaling

HYPOTHESIS TESTING

HYPOTHESIS TESTING Testing Statistical Significance of the possibility of an event occurring(Null Hypothesis)

Importance

HYPOTHESIS TESTING

Prove causation between 2 variables

Null Hypothesis

Statement that is believed to be true or is used to put forth an argument unless it can be shown to be incorrect by Hypothesis testing.

Alternative Hypothesis

Claim that is contradictory to the null hypothesis.

Example

Null Hypothesis

 Marital Situation does not affect Education at Elimu University

Alternative Hypothesis

 Marital Situation affects Education at Elimu University

Steps involved in Hypothesis testing

Errors in Hypothesis Testing

Type I Error α

- Probability of rejecting null hypothesis when it is true.
- False Positive

Type II error β

- Probability of falling to reject the null when it is false.
- False Negative

Hypothesis Test

Assuming normality, the choice of the test depends on;

- number of variables
- type of variable

Goal/Number Of Variables	Type of Variable	
	Numerical	Categorical
Compare one group to a Hypothetical value	One sample t test	Chi square
Compare two independent groups	Unpaired t test	Fisher's test
Compare two dependent groups	Paired t test	McNemar's test
Compare three or more unmatched groups	One way ANOVA	Chi square

THANK YOU;

Angela Ogada

Email: angieogada@gmail.com

Linkedin: Angie Ogada