Noircissez sur la feuille-réponse toutes les bonnes réponses à chacune des questions.

Barème: +1 par case correctement cochée, $-\frac{1}{4}$ par case incorrectement cochée.

Calculatrice non programmable permise bien que peu utile.

Déterminez la nature des expressions suivantes.

41.
$$\int_0^1 \frac{1}{x^2} \, \mathrm{d}x$$

 $_{(1)}\square$ convergente $_{(2)}\blacksquare$ divergente

 $\int_0^\infty e^{-4x} \, \mathrm{d}x$

 $_{(3)}$ convergente $_{(4)}\square$ divergente

42. $\int_{1}^{\infty} \frac{x(x^2 - 4)}{(x^2 + 1)(x^2 + 2)} \, \mathrm{d}x$

 $_{(1)}\square$ convergente $_{(2)}\blacksquare$ divergente

 $\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x$

 $_{(3)}$ convergente $_{(4)}\square$ divergente

43. $\sum_{n=3}^{\infty} \frac{8}{3^n}$

 $_{(1)}\blacksquare$ convergente $_{(2)}\square$ divergente

 $\sum_{n=1}^{\infty} \left(\frac{e^{n+1}}{\sqrt{n+1}} - \frac{e^n}{\sqrt{n}} \right)$

 $_{(3)}\square$ convergente $_{(4)}\blacksquare$ divergente

44. $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^{n/2}}$

 $_{(1)}\blacksquare$ convergente $_{(2)}\Box$ divergente

 $\sum_{n=0}^{\infty} \frac{5^{n+1} + 3 \cdot 2^n}{4^n}$

 $_{(3)}\square$ convergente $_{(4)}\blacksquare$ divergente

45. $\sum_{n=0}^{\infty} \operatorname{Arctan} n$

 $_{(1)}\square$ convergente $_{(2)}\blacksquare$ divergente

 $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$

 $_{(3)}$ convergente $_{(4)}\square$ divergente

46.	Évaluez $\sum_{n=1}^{\infty} (-1)^n \frac{3 \cdot 2^{n-1}}{5^n}.$
	$_{(1)}$ = $-\frac{3}{7}$ $_{(2)}$ \square 1 $_{(3)}$ \square $-\frac{5}{2}$ $_{(4)}$ \square $\frac{15}{14}$ $_{(5)}$ \square la série diverge.
47.	Une série $\sum_{n=0}^{\infty} a_n$ avec $\lim_{n\to\infty} a_n = 1/2 \dots$
	$(1)^{\square}$ converge absolument $(2)^{\square}$ converge conditionnellement $(3)^{\blacksquare}$ diverge $(4)^{\square}$ ça dépend
48.	Considérons une suite $(a_n)_{n \in \mathbb{N}}$ de nombres réels et une deuxième suite définie par $b_n = (-1)^n a_n$.
	Si $\sum_{n=0}^{\infty} a_n$ converge, alors la série $\sum_{n=0}^{\infty} b_n \dots$
	$_{(1)}\square$ converge absolument $_{(2)}\square$ converge conditionnellement
	(3)□ diverge (3)□ ca dépend
49.	Même question, mais en supposant que la suite $(a_n)_{n \in \mathbb{N}}$ est positive. (1) converge absolument
	(2) converge conditionnellement (3) diverge
	$_{(4)}\square$ ça dépend
50.	La série $\sum_{n=1}^{\infty} (-1)^n / \operatorname{Arctan}(n) \dots$
	$_{(1)}\square$ converge absolument
	(2) converge conditionnellement (3) diverge
F 1	$\sum_{n=0}^{\infty} (n-\pi/4)^{n}$
91.	La série $\sum_{n=1}^{\infty} \cos(n\pi) \cdot n^{-\pi/4} \dots$
	(1) □ converge absolument (2) ■ converge conditionnellement
	$_{(3)}\square$ diverge
52.	La série géométrique $\sum_{n=0}^{\infty} a^n$ est convergente si et seulement si
	${}_{(1)}\blacksquare a <1 \qquad {}_{(2)}\square a =1 \qquad {}_{(3)}\square a >1 \qquad {}_{(4)}\square a \leqslant 1 \qquad {}_{(5)}\square a \geqslant 1$
53.	Lorsque la série géométrique $\sum_{n=0}^{\infty} a^n$ converge, sa somme est
	$_{(1)}\Box \frac{1}{1+a} \qquad _{(2)}\Box 1-a \qquad _{(3)}\Box 1+a \qquad _{(4)}\blacksquare \frac{1}{1-a}$
	$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.