PYCOEVOL:

A Python workflow to study protein-protein coevolution

Fábio Madeira and Ludwig Krippahl

CENTRIA-DI, Universidade Nova de Lisboa, Caparica, Portugal

Outline

- I. Background
- 2. Motivation
- 3. Implementation
- 4. Results
- 5. Conclusions
- 6. Future work

Primary structure

Secondary structure

Tertiary/quaternary structure

Co-adaptation or correlated mutations

- Co-adaptation or correlated mutations
- Change of a biological object triggered by the change of a related object

- Co-adaptation or correlated mutations
- Change of a biological object triggered by the change of a related object
- Accumulation of structural and functional changes throughout lineages, imposed by evolutionary constraints

- Co-adaptation or correlated mutations
- Change of a biological object triggered by the change of a related object
- Accumulation of structural and functional changes throughout lineages, imposed by evolutionary constraints
- Proposed to aid:
 - Protein folding and fold recognition
 - Prediction of protein-protein interactions [Pazos et al, 1997]

. . .

Interacting proteins have a key role in every biological process, and they have evolved performing mutual interactions

- Interacting proteins have a key role in every biological process, and they have evolved performing mutual interactions
- The sequence of an interacting protein must reflect the process of adaptation

The "classic" coevolution workflow

I. Search for homologous sequences

VEGMIKLALSTASGLAHLHMEI

VEGMIKLALSTASGLAHLHMEI

2. MSA computation

----EPRPDSGRDWSVELQEL------KPGPDLGRDWSVELQEL------EPESDSGRDWSAELPEL--

----EPEPGSGGDCSEELPEL--

----DPEPGSGGDCSEELPEL--

PEPEQEPEPDSGGDCSAELPEL--

RKQGLHSMNMMEAACSEPSLDL--

2. MSA computation

VEGMIKLALSTASGLAHLHMEI

WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSTTRGLAYLHTRR

----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL-RKOGLHSMNMMEAACSEPSLDL--

2. MSA computation

VEGMIKLALSTASGLAHLHMEI

WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSTTRGLAYLHTRR

3. Coevolution analysis

I. Search for homologous sequences

DPSLDRPFISEGTTIKDLIYDMTT

----EPRPDSGRDWSVELQEL-- i ----KPGPDLGRDWSVELQEL-- j ----EPESDSGRDWSAELPEL--

----EPEPGSGGDCSEELPEL--

----DPEPGSGGDCSEELPEL--

PEPEQEPEPDSGGDCSAELPEL--

RKQGLHSMNMMEAACSEPSLDL--

2. MSA computation

VEGMIKLALSTASGLAHLHMEI

WGSSLRMALSLAQGLAFLHEER J
WGSSLRMALSLAQGLAFLHEER J
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHERR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSITRGLAYLHTRR

3. Coevolution analysis

- Matrix-based
 - CLM, CPVN, VOL, etc.
- Correlation-based
 - Pearson, Spearman, McBASC, Quartets, OMES, etc.
- Perturbation-based
 - MI, SCA, ELSC, etc.
- > Phylogenetic dependent
 - Mirrortree, etc.

Large number of scoring functions

Pycoevol

- Large number of scoring functions
- > There is no benchmark or survey on the accuracy of each method

Pycoevol

- Large number of scoring functions
- > There is no benchmark or survey on the accuracy of each method
- Most of these methods are not available to the community

Matching of taxa

Organism1	DPSLDRPFISEGTTLKDLIYDMTT
Organism2	EPRPDSGRDWSVELQEL
Organism3	KPGPDLGRDWSVELQEL
Organism4	EPESDSGRDWSAELPEL
Organism5	EPEPGSGGDCSEELPEL
Organism6	DPEPGSGGDCSEELPEL
Organism7	PEPEQEPEPDSGGDCSAELPEL
Organism8	RKQGLHSMNMMEAACSEPSLDL

Organism3
Organism1
Organism9
Organism8
Organism5
Organism10
Organism2
Organism11

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSITRGLAYLHTRR

Matching of taxa

PEPEOEPEPDSGGDCSAELPEL--

RKOGLHSMNMMEAACSEPSLDL--

Organism3
Organism1
Organism8
Organism5
Organism10
Organism2
Organism11

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHGRR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHER--SSCRLAHSITRGLAYLHTRR

Organism7

Organism8

Matching of taxa

Organism1
Organism2
Organism3
Organism4
Organism5
Organism6
Organism7
Organism8

DPSLDRPFISEGTTLKDLIYDMTT
----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL--

RKOGLHSMNMMEAACSEPSLDL--

Organism3
Organism1
Organism9
Organism8
Organism5
Organism10
Organism10
Organism2

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHERR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHERR
--SSCRLAHSITRGLAYLHTRR

Organism1
Organism2
Organism3
Organism4
Organism5
Organism6
Organism7
Organism8

----EPRPDSGRDWSVELQEL-----KPGPDLGRDWSVELQEL-----EPESDSGRDWSAELPEL-----EPEPGSGGDCSEELPEL-PEPEQEPEPDSGGDCSAELPEL-RKQGLHSMNMMEAACSEPSLDL--

DPSLDRPFISEGTTLKDLIYDMTT

Organism3
Organism1
Organism8
Organism5
Organism10
Organism2
Organism11

VEGMIKLALSTASGLAHLHMEI
WGSSLRMALSLAQGLAFLHEER
WGSSLRMALSLAQGLAFLHEER
WGSSLSMALSLAEGLAFLHERR
WGSSLSMALSLAEGLAFLHERR
--SSMSMALSLAQGLAFLHER--SSCRLAHSITRGLAYLHTRR

Organism1 DPSLDRPFISEGTTLKDLIYDMTT
Organism3 -----KPGPDLGRDWSVELQEL-Organism2 -----EPRPDSGRDWSVELQEL-Organism5 -----EPEPGSGGDCSEELPEL-Organism8 RKQGLHSMNMMEAACSEPSLDL--

Organism1
Organism3
Organism2
Organism5
Organism8

WGSSLRMALSLAQGLAFLHEER
VEGMIKLALSTASGLAHLHMEI
--SSMSMALSLAQGLAFLHERWGSSLSMALSLAEGLAFLHGRR
WGSSLRMALSLAQGLAFLHEER

> p-distance [Jukes and Cantor, 1969]

$$d = p = \frac{N_{dif}}{N_{total}}$$

Jukes-Cantor [Jukes and Cantor, 1969]

$$d = -\frac{19}{20}log(1 - p * \frac{20}{19})$$

Kimura distance [Kimura, 1983]

$$d = -ln(1 - p - 0.2^2)$$

Pairwise score using Dayhoff matrices

$$d = \sum \frac{1 - S_{ij}}{S_{ii}} * \frac{1 - S_{ij}}{S_{jj}}$$

Median m of the slopes $(y_j - y_i)/(x_j - x_i)$ determined by all pairs of sample points $\in (x,y)$, which have distinct x-coordinates [Theil, 1950] and [Sen, 1968]

- Contact Preferences, Volume Normalized (CPVN) [Glaser et al, 2001]
- Contact PDB-derived Likelihood Matrix (CLM) [Singer et al, 2002]
- Residue-residue Volume Normalized (VOL) [Esque et al, 2010]

$$CM_{x,y} = \sum_{i}^{n} \sum_{j}^{n} \frac{S_{ij}}{n}$$

- Pearson's correlation (Pearson) [Göbel et al, 1994]
- Spearman's rank correlation (Spearman) [Pazos et al, 1997]
- McLachlan Based Substitution Correlation (McBASC) [Fodor and Aldrich, 2004]
- Quartets [Galitsky, 2002]

$$CM_{x,y} = \frac{1}{N^2} \sum_{i} \sum_{j} \frac{W_{ij}(S_{xij} - \langle S_x \rangle)(S_{yij} - \langle S_y \rangle)}{\sigma_x \sigma_y}$$

Observed Minus Expected Squared (OMES) [Kass and Horovitz, 2002]

$$CM_{x,y} = \sum_{l}^{L} \frac{(N_{obs} - \frac{C_{xi}C_{yj}}{N_{valid}})^2}{N_{valid}}$$

- Mutual Information (MI) [Gloor et al, 2005]
- ➤ MI by pair Entropy (MI/E) [Martin et al, 2005]
- Row and Column Weighed MI (RCW MI) [Gouveia-Oliveira et al, 2007]

$$MI_{x,y} = \sum_{i} \sum_{j} P(x_i y_j) log \frac{P(x_i y_j)}{P(x_i)P(y_j)}$$

Statistical Coupling Analysis (SCA) [Lockless and Ranganathan, 1999]

$$\Delta \Delta G_{x,y} = \sqrt{\sum_{i} (\ln P_{x|\delta y}^{i} - P_{x}^{i})^{2}}$$

Explicit Likelihood of Subset Covariation (ELSC) [Dekker et al, 2004]

$$\Lambda_x^y = \prod_{r}^{20} \frac{\binom{N_{r,y}}{n_{r,y}}}{\binom{N_{r,y}}{m_{r,y}}}$$

The workflow of Pycoevol

The workflow of Pycoevol

Output

Matrix of coevolution scores and lists with the most significant coevolving residues

	1	2	3	4	5	6	7	х
1	0.12	0.23	0.11	0.01	0.02	0.21	0.04	
2	0.09	0.14	0.34	0.09	0.09	0.05	0.05	•••
3	0.00	0.20	0.07	0.05	0.06	0.14	0.04	•••
4	0.23	0.13	0.07	0.03	0.13	0.23	0.02	•••
5	0.04	0.00	0.14	0.21	0.10	0.05	0.01	
6	0.05	0.23	0.02	0.45	0.12	0.12	0.04	
7	0.12	0.01	0.01	0.02	0.29	0.30	0.04	•••
у					•••	•••		

Protein A	Protein B	Score	
13	67	0.61	
14	187	0.59	
56	87	0.58	
79	34	0.56	
102	35	0.51	
178	35	0.50	
x	У		

Histograms and heatmaps

> Pymol scripts for rapid visualization of 3D structures

Protein complex TGF- β 3/TGF- β receptor type II (1ktz)

- Most residues were at the surface level
- 3 out of 23 residues were at the interface
- 8 residues from TGF-β3
- 15 residues from TGB-β receptor

- Possible pairs of contacts = 11772
- Tested contacts = 120
- Reduced the search space to 0.01 % of possible contact points

Difficult complex to model

- Possible pairs of contacts = 11772
- Tested contacts = 120
- Reduced the search space to 0.01 % of possible contact points

Difficult complex to model

➤ Given the complexity of protein-protein docking, finding even only one positive interface contact can help constraint the search space and improve the accuracy of constrained docking algorithms such as BiGGER [Palma et al, 2000]

> Set of tools for the study of inter-protein coevolution and interaction

Pycoevol

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities

Pycoevol

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications

Pycoevol

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results
- Implemented in Python and platform independent

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results
- Implemented in Python and platform independent
- Open source and public domain

- > Set of tools for the study of inter-protein coevolution and interaction
- Implements the classic workflow with extended capabilities
- Automates access to remote databases and third-party applications
- Simplifies the coevolution analysis and the interpretation of results
- Implemented in Python and platform independent
- Open source and public domain
- Source code at https://github.com/fmadeira/pycoevol

Survey which method is better suited for the identification of interface contact points using a large protein complex dataset > Thanks for your attention!

Fábio Madeira - fmadeira@campus.fct.unl.pt

CENTRIA-DI, Faculdade de Ciências e Tecnologia

