AutoML: Neural Architecture Search Part 2: One-shot Neural Architecture Search

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ► This allows weights sharing across architectures
 - One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ▶ This allows weights sharing across architectures
 - One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures
- The first type of one-shot models: convolutional neural fabrics

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ▶ This allows weights sharing across architectures
 - One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures
- The first type of one-shot models: convolutional neural fabrics

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ▶ This allows weights sharing across architectures
 - One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures
- The first type of one-shot models: convolutional neural fabrics

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ▶ This allows weights sharing across architectures
 - One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures
- The first type of one-shot models: convolutional neural fabrics

- A one-shot model is a big model that has all architectures in a search space as submodels
 - ▶ This allows weights sharing across architectures
 - ► One only needs to train the single one-shot model, and implicitly trains an exponential number of individual architectures
- The first type of one-shot models: convolutional neural fabrics

One-shot models for cell search spaces

- Directed acyclic multigraph to capture all (exponentially many) cell architectures
 - ► The nodes represent tensors
 - ► The edges represent computations (e.g., 3x3 conv, 5x5 conv, max pool, ...)
 - ► The results of operations on multiple edges between two nodes are combined (addition/concatenation)

One-shot models for cell search spaces

- Directed acyclic multigraph to capture all (exponentially many) cell architectures
 - ► The nodes represent tensors
 - ► The edges represent computations (e.g., 3x3 conv, 5x5 conv, max pool, ...)
 - ► The results of operations on multiple edges between two nodes are combined (addition/concatenation)
- Individual architectures are subgraphs of this multigraph
 - ► Weights for the operation on an edge are shared across all (exponentially many) architectures that have that edge

Training the one-shot model – standard SGD [Saxena and Verbeek. 2017]

- One-shot model is an acyclic graph; thus, backpropagation applies
 - Simplest method: standard training with SGD
 - ► This implicitly trains an exponential number of architectures

Training the one-shot model – standard SGD [Saxena and Verbeek. 2017]

- One-shot model is an acyclic graph; thus, backpropagation applies
 - Simplest method: standard training with SGD
 - ► This implicitly trains an exponential number of architectures
- Potential issue: co-adaptation of weights
 - Weights are implicitly optimized to work well on average across all architectures
 - ▶ They are not optimized specifically for the top-performing architecture

Training the one-shot model – DropPath [Bender et al. 2018]

 To avoid coadaptation of weights, we can use DropPath, a technique analogous to Dropout [Srivastava et al., 2014]:

One-shot model

Training the one-shot model – DropPath [Bender et al. 2018]

- To avoid coadaptation of weights, we can use DropPath, a technique analogous to Dropout [Srivastava et al., 2014]:
 - At each mini-batch iteration: for each operation connecting 2 nodes, zero it out with probability p

One-shot model

Architecture for batch 1

Architecture for batch 2

Training the one-shot model – DropPath [Bender et al. 2018]

- To avoid coadaptation of weights, we can use DropPath, a technique analogous to Dropout [Srivastava et al., 2014]:
 - At each mini-batch iteration: for each operation connecting 2 nodes, zero it out with probability p
 - ScheduledDropPath: starts with p=0 and increases p linearly to p_{\max} at the end of training

One-shot model

Architecture for batch 1

Architecture for batch 2

Training the one-shot model – Sampling

• At each mini-batch iteration during the training of the one-shot model sample a single architecture from the search space

Training the one-shot model – Sampling

 At each mini-batch iteration during the training of the one-shot model sample a single architecture from the search space

• Update the parameters of the one-shot model corresponding to only that architecture

One-shot model

Architecture for batch 1

Architecture for batch 2

Training the one-shot model – Sampling

- At each mini-batch iteration during the training of the one-shot model sample a single architecture from the search space
 - Random Search with Weight Sharing [Li and Talwalkar. 2020] → sample from uniform distribution
 - **ENAS** [Pham et al. 2018] → sample from the learned policy of a RNN controller
- Update the parameters of the one-shot model corresponding to only that architecture

One-shot model

Architecture for batch 1

Architecture for batch 2

- After training the one-shot model we have to select the best individual architecture from it
- There are multiple ways one can approach this. Some of these are:

- After training the one-shot model we have to select the best individual architecture from it
- There are multiple ways one can approach this. Some of these are:
 - 1. Sample uniformly at random M architectures and rank them based on their validation error using the one-shot model parameters

- After training the one-shot model we have to select the best individual architecture from it
- There are multiple ways one can approach this. Some of these are:
 - 1. Sample uniformly at random M architectures and rank them based on their validation error using the one-shot model parameters
 - 1b. (Optional) Select top K (K < M) and retrain them from scratch for a couple of epochs

- After training the one-shot model we have to select the best individual architecture from it
- There are multiple ways one can approach this. Some of these are:
 - 1. Sample uniformly at random M architectures and rank them based on their validation error using the one-shot model parameters
 - 1b. (Optional) Select top K (K < M) and retrain them from scratch for a couple of epochs
 - 2. Return the top performing architecture to retrain from scratch for longer

- After training the one-shot model we have to select the best individual architecture from it
- There are multiple ways one can approach this. Some of these are:
 - 1. Sample uniformly at random M architectures and rank them based on their validation error using the one-shot model parameters
 - 1b. (Optional) Select top K (K < M) and retrain them from scratch for a couple of epochs
 - 2. Return the top performing architecture to retrain from scratch for longer
 - Pitfall: the correlation between architectures evaluated with the one-shot weights and retrained from scratch (stand-alone models) should be high
 - If not, selecting the best architecture based on the one-shot weights is sub-optimal.

From [Bender et al. 2018]

Questions to Answer for Yourself / Discuss with Friends

• Repetition:

How are the weights shared in the one-shot model?

• Repetition:

What is the difference between Random Search with Weight Sharing and ENAS?

Discussion:

What migth be some downsides of using the one-shot model for NAS?

AutoML: Neural Architecture Search (NAS)

Part 1: Search Spaces, Blackbox Methods, Speedup Techniques, and Best Practices

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Outline

- Overview
- 2 Search Spaces
- Blackbox Optimization Methods
- Speedup Techniques
- 5 Issues and Best Practices in NAS Research

AutoML: Neural Architecture Search (NAS) Overview

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Neural Architecture Search (NAS)

- Goal: automatically find neural architectures with strong performance
 - Optionally, subject to a resource constraint

Neural Architecture Search (NAS)

- Goal: automatically find neural architectures with strong performance
 - Optionally, subject to a resource constraint
- A decade-old problem, but main stream since 2017 and now intensely researched
- One of the main problems AutoML is known for

Neural Architecture Search (NAS)

- Goal: automatically find neural architectures with strong performance
 - Optionally, subject to a resource constraint
- A decade-old problem, but main stream since 2017 and now intensely researched
- One of the main problems AutoML is known for
- Initially extremely expensive
- By now several methods promise low overhead over a single model training

Motivation for NAS

- Performance improvements on various tasks due to novel architectures
- Can we automate this design process, potentially discovering new components/topologies?

[Canziani et al. 2017]

Motivation for NAS

- Manual design of architectures is time consuming
- Complex state-of-the-art architectures are a result of years of trial and errors by experts

Motivation for NAS

- Manual design of architectures is time consuming
- Complex state-of-the-art architectures are a result of years of trial and errors by experts
 - Main pattern: Repeated blocks with same structure (topology)

ResNet/ResNeXt blocks [He et al. 2016; Xie et al. 2016]

Inception-v4 blocks [Szegedy et al. 2016]

NAS components [Elsken et al. 2019]

- Search Space: the types of architectures we consider; micro, macro, hierarchical, etc.
- Search Strategy: Reinforcement learning, evolutionary strategies, Bayesian optimization, gradient-based, etc.
- Performance Estimation Strategy: validation performance, lower fidelity estimates, one-shot model performance, etc.

Questions to Answer for Yourself / Discuss with Friends

- Repetition:
 List three major components of NAS methods.
- Discussion:
 Is there a problem for which you would like to apply NAS yourself?

Outline

- Overview
- 2 Search Spaces
- Blackbox Optimization Methods
- 4 Speedup Techniques
- 5 Issues and Best Practices in NAS Research

AutoML: Neural Architecture Search (NAS) Search Spaces

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Basic Neural Architecture Search Spaces

Chain-structured space (different colours: different layer types)

More complex space with multiple branches and skip connections

Cell Search Spaces [Zoph et al. 2018]

Details on Cell Search Spaces [Zoph et al. 2018]

- 2 types of cells: normal and reduction cells
- For each type of cell: B blocks, each with 5 choices
 - Choose two previous feature maps (from this cell)
 - For each of these, choose an operation (3×3 conv, max-pool, etc.)
 - Choose a merge operation to combine the two results (concat or add)

Example of an architecture sample with B=5

Source: [Zoph et al. 2018]

Pros and Cons of Cell Search Space

What are some pros and cons of the cell search space compared to the basic one?

Please think about this for a few minutes before continuing.

Pros and Cons of Cell Search Space

Pros:

- Reduced search space size; speed-ups in terms of search time.
- Transferability to other datasets (e.g., cells found on CIFAR-10 transfer to ImageNet)
- Stacking repeating patterns is proven to be a useful design principle (ResNet, Inception, etc.)

Pros and Cons of Cell Search Space

Pros:

- Reduced search space size; speed-ups in terms of search time.
- Transferability to other datasets (e.g., cells found on CIFAR-10 transfer to ImageNet)
- Stacking repeating patterns is proven to be a useful design principle (ResNet, Inception, etc.)

Cons:

- Still need to (manually) determine the *macro* architecture, i.e., the way in which cells are connected.
- Limiting if different cells work better in different parts of the network
 - E.g., different spatial resolutions may favour different convolutions

- Directed Acyclic Graph (DAG) representation of architectures
 - Each node is a latent representation; each edge is an operation/motif

- Directed Acyclic Graph (DAG) representation of architectures
 - Each node is a latent representation; each edge is an operation/motif
- There are different levels of motivs
 - ► Level-1 primitives: standard operators; e.g., 3x3 conv, max pooling, . . .

- Directed Acyclic Graph (DAG) representation of architectures
 - Each node is a latent representation; each edge is an operation/motif
- There are different levels of motivs.
 - ► Level-1 primitives: standard operators; e.g., 3x3 conv, max pooling, . . .
 - ► Level-2 motivs: combinations of level-1 primitives

- Directed Acyclic Graph (DAG) representation of architectures
 - Each node is a latent representation; each edge is an operation/motif
- There are different levels of motivs
 - ▶ Level-1 primitives: standard operators; e.g., 3x3 conv, max pooling, . . .
 - ► Level-2 motivs: combinations of level-1 primitives

► Level-3 motivs: combinations of level-2 motivs

What are some pros and cons of a hierarchical search space compared to the cell search space?

Please think about this for a few minutes before continuing.

Pros and Cons of Hierarchical Search Space

Pros:

- Flexibility of constructing building blocks and reusing them many times
 - ► like a cell search space
- Flexibility of using different building blocks in different parts of the network
 - like a basic search space
- Ability to reuse building blocks at various levels of abstraction
 - ▶ again, this pattern has been used in manual design, e.g., in Inception nets

Pros and Cons of Hierarchical Search Space

Pros:

- Flexibility of constructing building blocks and reusing them many times
 - ► like a cell search space
- Flexibility of using different building blocks in different parts of the network
 - ▶ like a basic search space
- Ability to reuse building blocks at various levels of abstraction
 - ▶ again, this pattern has been used in manual design, e.g., in Inception nets

Cons:

- Larger than cell search space
- ullet Vastly more expressive than cell search space o potentially much harder to search

Questions to Answer for Yourself / Discuss with Friends

• Repetition:

What are some pros and cons of the cell search space compared to the basic one?

Repetition:

Explain the way in which level-3 motivs in the hierarchical search space use level-2 motivs.

• Repetition:

What are some pros and cons of the hierarchical search space compared to the other ones?

Outline

- Overview
- 2 Search Spaces
- 3 Blackbox Optimization Methods
- 4 Speedup Techniques
- 5 Issues and Best Practices in NAS Research

AutoML: Neural Architecture Search (NAS) Blackbox Optimization Methods

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

NAS as Hyperparameter Optimization

• NAS can be formulated as a HPO problem

NAS as Hyperparameter Optimization

- NAS can be formulated as a HPO problem
- E.g., cell search space by [Zoph et al. 2018] has 5 categorical choices per block
 - 2 categorical choices of hidden states
 - * For block N, the domain of these categorical variables is $\{h_i, h_{i-1}, \text{output of block } 1, ..., \text{output of block } N-1\}$
 - 2 categorical variables choosing between operations
 - ▶ 1 categorical variable choosing the combination method
 - ► Total number of hyperparameters for the cell: 5B (with B=5 by default)

Reduction Cell

NAS as Hyperparameter Optimization

- NAS can be formulated as a HPO problem
- E.g., cell search space by [Zoph et al. 2018] has 5 categorical choices per block
 - 2 categorical choices of hidden states
 - * For block N, the domain of these categorical variables is $\{h_i, h_{i-1}, \text{output of block } 1, ..., \text{output of block } N-1\}$
 - 2 categorical variables choosing between operations
 - ▶ 1 categorical variable choosing the combination method
 - ▶ Total number of hyperparameters for the cell: 5B (with B=5 by default)
- In general: one may require conditional hyperparameters
 - ► E.g., chain-structured search space
 - ★ Top-level hyperparameter: number of layers L
 - \star Hyperparameters of layer k conditional on L \geq k

Reduction Cell

Early Work on Neuroevolution (already since the 1990s)

[Kitano. 1990; Angeline et al. 1994; Stanley and Miikkulainen. 2002; Bayer et al. 2009; Floreano et al. 2008]

Evolves architectures & often also their weights

Early Work on Neuroevolution (already since the 1990s)

[Kitano. 1990; Angeline et al. 1994; Stanley and Miikkulainen. 2002; Bayer et al. 2009; Floreano et al. 2008]

- Evolves architectures & often also their weights
- Typical approach:
 - lacktriangle Initialize a population of N random architectures
 - Sample N individuals from that population (with replacement) according to their fitness
 - lacktriangle Apply mutations to those N individuals to produce the next generation's population
 - Optionally: elitism to keep best individuals in the population

Early Work on Neuroevolution (already since the 1990s)

[Kitano. 1990; Angeline et al. 1994; Stanley and Miikkulainen. 2002; Bayer et al. 2009; Floreano et al. 2008]

- Evolves architectures & often also their weights
- Typical approach:
 - ▶ Initialize a population of N random architectures
 - Sample N individuals from that population (with replacement) according to their fitness
 - ightharpoonup Apply mutations to those N individuals to produce the next generation's population
 - ▶ Optionally: elitism to keep best individuals in the population
- Mutations include adding, changing or removing a layer

- With TPE [Bergstra et al. 2011]:
 - ▶ Joint optimization of a vision architecture with 238 hyperparameters [Bergstra et al. 2013]
 - ▶ State-of-the-art performance on 3 disparate problems:
 - ★ Face matching, face identification, and object recognition

- With TPE [Bergstra et al. 2011]:
 - ▶ Joint optimization of a vision architecture with 238 hyperparameters [Bergstra et al. 2013]
 - ► State-of-the-art performance on 3 disparate problems:
 - ★ Face matching, face identification, and object recognition
- With SMAC [Hutter et al. 2011]:
 - ► New state-of-the-art performance on CIFAR-10 w/o data augmentation [Domhan et al. 2015]
 - ▶ Joint architecture and hyperparameter search, yielding Auto-Net [Mendoza et al. 2016]

- With TPE [Bergstra et al. 2011]:
 - ▶ Joint optimization of a vision architecture with 238 hyperparameters [Bergstra et al. 2013]
 - State-of-the-art performance on 3 disparate problems:
 - ★ Face matching, face identification, and object recognition
- With SMAC [Hutter et al. 2011]:
 - ► New state-of-the-art performance on CIFAR-10 w/o data augmentation [Domhan et al. 2015]
 - ▶ Joint architecture and hyperparameter search, yielding Auto-Net [Mendoza et al. 2016]
 - ▶ In 2015, Auto-Net already had several successes in ML competitions
 - ★ E.g., human action recognition: 54491 data points, 5000 features, 18 classes
 - * First automated deep learning (Auto-DL) method to win a machine learning competition dataset against human experts

- With TPE [Bergstra et al. 2011]:
 - ▶ Joint optimization of a vision architecture with 238 hyperparameters [Bergstra et al. 2013]
 - State-of-the-art performance on 3 disparate problems:
 - ★ Face matching, face identification, and object recognition
- With SMAC [Hutter et al. 2011]:
 - ► New state-of-the-art performance on CIFAR-10 w/o data augmentation [Domhan et al. 2015]
 - ▶ Joint architecture and hyperparameter search, yielding Auto-Net [Mendoza et al. 2016]
 - ▶ In 2015, Auto-Net already had several successes in ML competitions
 - ★ E.g., human action recognition: 54491 data points, 5000 features, 18 classes
 - * First automated deep learning (Auto-DL) method to win a machine learning competition dataset against human experts
- With Gaussian processes:
 - ► Arc kernel [Swersky et al. 2013]

Reinforcement Learning [Zoph and Le. 2016]

- Use RNN ("Controller") to generate a NN architecture piece-by-piece
- Train this NN ("Child Network") and evaluate it on a validation set
- Use Reinforcement Learning (RL) to update the parameters of the Controller RNN to optimize the performance of the child models

Learning CNNs with RL [Zoph and Le. 2016]

- For a fixed number of layers, select:
 - Filter width/height, stride width/height, number of filters

Learning CNNs with RL [Zoph and Le. 2016]

- For a fixed number of layers, select:
 - Filter width/height, stride width/height, number of filters
- Large computational demands (800 GPUs for 2 weeks, 12.800 architectures evaluated)

Learning CNNs with RL [Zoph and Le. 2016]

- For a fixed number of layers, select:
 - Filter width/height, stride width/height, number of filters
- Large computational demands (800 GPUs for 2 weeks, 12.800 architectures evaluated)
- State-of-the-art results for CIFAR-10 & Penn Treebank architecture
 - → Brought NAS into the limelight

Learning CNN cells with RL [Zoph et al. 2018]

- 2 types of cells: normal and reduction cells
- ullet For each type of cell: B blocks, each with 5 choices
 - Choose two previous feature maps (from this cell)
 - For each of these, choose an operation (3×3 conv, max-pool, etc.)
 - Choose a merge operation to combine the two results (concat or add)

Learning CNN cells with evolution [Real et al. 2018]

- 2 types of cells: normal and reduction cells
- ullet For each type of cell: B blocks, each with 5 choices
 - Choose two previous feature maps (from this cell)
 - For each of these, choose an operation (3×3 conv, max-pool, etc.)
 - Choose a merge operation to combine the two results (concat or add)
- Evolution simply tackles this as a HPO problem with $2\times5\times B$ variables:

Select second hidden state

Select operation for first hidden state

Select operation for second hidden state

Select method to combine hidden state

Regularized/Aging Evolution [Real et al. 2018]

- Quite standard evolutionary algorithm
 - ▶ But oldest solutions are dropped from population, instead of the worst

Regularized/Aging Evolution [Real et al. 2018]

- Quite standard evolutionary algorithm
 - ▶ But oldest solutions are dropped from population, instead of the worst
- Standard SGD for training weights (optimizing the same blackbox as RL)
- Same fixed-length (HPO) search space as used for RL [Zoph et al. 2018]

Different types of mutations in cell search space

Regularized/Aging Evolution [Real et al. 2018]

- Quite standard evolutionary algorithm
 - ▶ But oldest solutions are dropped from population, instead of the worst
- Standard SGD for training weights (optimizing the same blackbox as RL)
- Same fixed-length (HPO) search space as used for RL [Zoph et al. 2018]

Different types of mutations in cell search space

State-of-the-art performance in apples-to-apples comparison

→ AmoebaNet

- Encode the architecture space by categorical hyperparameters (like regularized evolution)
- Strong performance with tree-based models
 - ► TPE [Bergstra et al. 2013]
 - ▶ SMAC [Domhan et al. 2015; Mendoza et al. 2016; Zela et al. 2018]

- Encode the architecture space by categorical hyperparameters (like regularized evolution)
- Strong performance with tree-based models
 - ► TPE [Bergstra et al. 2013]
 - ► SMAC [Domhan et al. 2015; Mendoza et al. 2016; Zela et al. 2018]
- Kernels for GP-based NAS
 - Arc kernel [Swersky et al. 2013]
 - NASBOT [Kandasamy et al. 2018]

- Encode the architecture space by categorical hyperparameters (like regularized evolution)
- Strong performance with tree-based models
 - ► TPE [Bergstra et al. 2013]
 - ▶ SMAC [Domhan et al. 2015; Mendoza et al. 2016; Zela et al. 2018]
- Kernels for GP-based NAS
 - Arc kernel [Swersky et al. 2013]
 - NASBOT [Kandasamy et al. 2018]
- There are also several recent promising BO approaches based on neural networks
 - BANANAS [White et al. 2019]

- Encode the architecture space by categorical hyperparameters (like regularized evolution)
- Strong performance with tree-based models
 - ► TPE [Bergstra et al. 2013]
 - ▶ SMAC [Domhan et al. 2015; Mendoza et al. 2016; Zela et al. 2018]
- Kernels for GP-based NAS
 - Arc kernel [Swersky et al. 2013]
 - NASBOT [Kandasamy et al. 2018]
- There are also several recent promising BO approaches based on neural networks
 - BANANAS [White et al. 2019]
- BO is very competitive, has been shown to outperform RL [Ying et al. 2019]

Current State of the Art: Differential Evolution

• Comprehensive experiments on a wide range of 12 different NAS benchmarks [Awad et al. 2020]

Current State of the Art: Differential Evolution

 Comprehensive experiments on a wide range of 12 different NAS benchmarks [Awad et al. 2020]

Results:

- Regularized evolution is very robust, typically amongst best of the methods discussed so far
- ▶ Evolution variant of differential evolution is yet better; most efficient and robust method

Questions to Answer for Yourself / Discuss with Friends

• Repetition:

What are some pros and cons of using black-box optimizers for NAS?

Repetition:

How can NAS be modelled as a HPO problem?

• Discussion:

Given enough resources, will blackbox NAS approaches always improve performance?

Discussion:

Why does discarding the oldest individual (rather than the worst) help in regularized/aging evolution?

• Transfer:

How would you write NAS with the hierarchical search space as a HPO problem?

Outline

- Overview
- 2 Search Spaces
- 3 Blackbox Optimization Methods
- Speedup Techniques
- 5 Issues and Best Practices in NAS Research

AutoML: Neural Architecture Search (NAS) Speedup Techniques

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Overview of NAS Speedup Methods

- Multi-fidelity optimization
- Learning curve prediction
- Meta-learning across datasets
- Network morphisms & weight inheritance
- Weight sharing & the one-shot model

NAS Speedup Technique 1: Multi-fidelity optimization

- Analogous to multi-fidelity optimization in HPO
 - Many evaluations for cheaper fidelities (less epochs, smaller datasets, down-sampled images, shallower networks, etc)
 - Fewer evaluations necessary for more expensive fidelities

NAS Speedup Technique 1: Multi-fidelity optimization

- Analogous to multi-fidelity optimization in HPO
 - Many evaluations for cheaper fidelities (less epochs, smaller datasets, down-sampled images, shallower networks, etc)
 - Fewer evaluations necessary for more expensive fidelities
- Compatible with any blackbox optimization method
 - Using random search: ASHA [Li and Talwalkar. 2019]
 - Using Bayesian optimization: BOHB [Zela et al. 2018]
 - Using differential evolution: DEHB [Awad et al. under review]
 - Using regularized evolution: progressive dynamic hurdles [So et al. 2019]

NAS Speedup Technique 1: Multi-fidelity optimization

- Analogous to multi-fidelity optimization in HPO
 - Many evaluations for cheaper fidelities (less epochs, smaller datasets, down-sampled images, shallower networks, etc)
 - Fewer evaluations necessary for more expensive fidelities
- Compatible with any blackbox optimization method
 - Using random search: ASHA [Li and Talwalkar. 2019]
 - Using Bayesian optimization: BOHB [Zela et al. 2018]
 - Using differential evolution: DEHB [Awad et al. under review]
 - Using regularized evolution: progressive dynamic hurdles [So et al. 2019]
- Often used for joint optimization of architecture & hyperparameters
 - Auto-Pytorch [Mendoza et al. 2019; Zimmer et al. 2020]
 - "Auto-RL" [Runge et al. 2019]

NAS Speedup Technique 2: Learning Curve Prediction

- Analogous to learning curve prediction in HPO
 - Observe initial learning curve and predict performance at the end
 - Can use features of the architecture as input (just like hyperparameters as inputs)

NAS Speedup Technique 2: Learning Curve Prediction

- Analogous to learning curve prediction in HPO
 - Observe initial learning curve and predict performance at the end
 - Can use features of the architecture as input (just like hyperparameters as inputs)
- Often used for joint optimization of architecture & hyperparameters
- Compatible with any blackbox optimization method
 - Using random search and Bayesian optimization: [Domhan et al. 2015]
 - Using reinforcement learning: [Baker et al. 2018]

NAS Speedup Technique 3: Meta-Learning

- Lots of work on meta-learning for HPO
- Only little work on meta-learning for NAS
 - Find a set of good architectures to initialize BOHB in Auto-Pytorch [Zimmer et al. 2020]
 - Learn RL agent's policy network on previous datasets [Wong et al. 2018]
 - Learn neural architecture that can be quickly adapted [Lian et al. 2019; Elsken et al. 2019]

NAS Speedup Technique 4: Network Morphisms

- Network Morphisms [Chen et al. 2016; Wei et al. 2016; Cai et al. 2017]
 - Change the network structure, but not the modelled function
 - I.e., for every input the network yields the same output as before applying the network morphisms operations
 - Examples: "Net2DeeperNet", "Net2WiderNet", etc.

Weight inheritance avoids expensive retraining from scratch

[Real et al. 2017; Cai et al. 2018; Elsken et al. 2017; Cortes et al. 2017; Cai et al. 2018; Elsken et al. 2019]

Network Morphisms for Multi-objective NAS [Elsken et al. 2019]

- To trade off error vs. resource consumption (e.g, #parameters):
 - Maintain a Pareto front of the two objectives
 - ▶ Evolve a population of Pareto-optimal architectures over time

Network Morphisms for Multi-objective NAS [Elsken et al. 2019]

- To trade off error vs. resource consumption (e.g, #parameters):
 - Maintain a Pareto front of the two objectives
 - ▶ Evolve a population of Pareto-optimal architectures over time

Network Morphisms for Multi-objective NAS [Elsken et al. 2019]

- LEMONADE: Lamarckian Evolution for Multi-Objective Neural Architecture Design
- Weight inheritance through approximate morphisms (ANMs)
 - ▶ Dropping layers, dropping units within a layer, etc (function not preserved perfectly)

[Pham et al. 2018; Bender et al. 2018]

• All possible architectures are subgraphs of a large supergraph: the one-shot model

[Pham et al. 2018; Bender et al. 2018]

- All possible architectures are subgraphs of a large supergraph: the one-shot model
- Weights are shared between different architectures with common edges in the supergraph

[Pham et al. 2018; Bender et al. 2018]

- All possible architectures are subgraphs of a large supergraph: the one-shot model
- Weights are shared between different architectures with common edges in the supergraph
- Search costs are reduced drastically since one only has to train a single model (the one-shot model).

[Pham et al. 2018; Bender et al. 2018]

- The one-shot model can be seen as a directed acyclic multigraph
 - ⇒ Nodes latent representations.
 - ⇒ Edges (dashed) operations.

• Architecture optimization problem: Find optimal path from the input to the output

Questions to Answer for Yourself / Discuss with Friends

- Repetition:
 List five methods to speed up NAS over blackbox approaches
- Repetition:
 Which speedup techniques directly carry over from HPO to NAS?
- Discussion:
 Why do network morphisms and the one-shot model only apply to NAS, and not to HPO?

Outline

- Overview
- 2 Search Spaces
- 3 Blackbox Optimization Methods
- 4 Speedup Techniques
- 5 Issues and Best Practices in NAS Research

AutoML: Neural Architecture Search (NAS)

Issues and Best Practices in NAS Research

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Issues in NAS Research & Evaluations

- Most NAS methods are extremely difficult to reproduce and compare [Li and Talwalkar. 2019]
- For benchmarks used in almost all NAS papers:
 - Training pipeline matters much more than neural architecture

[Yang et al. 2020]

Issues in NAS Research & Evaluations

- Most NAS methods are extremely difficult to reproduce and compare [Li and Talwalkar. 2019]
- For benchmarks used in almost all NAS papers:
 - Training pipeline matters much more than neural architecture
- The final benchmark results reported in different papers are typically incomparable
 - Different training code (often unavailable)
 - Different search spaces
 - Different evaluation schemes

[Yang et al. 2020]

Issues in NAS Research & Evaluations

- Most NAS methods are extremely difficult to reproduce and compare [Li and Talwalkar. 2019]
- For benchmarks used in almost all NAS papers:
 - Training pipeline matters much more than neural architecture
- The final benchmark results reported in different papers are typically incomparable
 - Different training code (often unavailable)
 - Different search spaces
 - Different evaluation schemes
- → We emphasize concepts, not published performance numbers

[Yang et al. 2020]

Building a Scientific Community for NAS

Benchmarks

- NAS-Bench-101 [Ying et al. 2019]
- NAS-Bench-201 [Dong and Yang. 2020]
- NAS-Bench-1Shot1 [Zela et al. 2020]

Building a Scientific Community for NAS

- Benchmarks
 - NAS-Bench-101 [Ying et al. 2019]
 - NAS-Bench-201 [Dong and Yang. 2020]
 - NAS-Bench-1Shot1 [Zela et al. 2020]
- Best Practice Checklist for Scientific Research in NAS [Lindauer and Hutter. 2020]

Building a Scientific Community for NAS

- Benchmarks
 - NAS-Bench-101 [Ying et al. 2019]
 - NAS-Bench-201 [Dong and Yang. 2020]
 - NAS-Bench-1Shot1 [Zela et al. 2020]
- Best Practice Checklist for Scientific Research in NAS [Lindauer and Hutter. 2020]
- Unifying open-source implementation of modern NAS algorithms
 [Zela et al. 2020]
 - Finally enables empirical comparisons without confounding factors

Building a Scientific Community for NAS

- Benchmarks
 - NAS-Bench-101 [Ying et al. 2019]
 - NAS-Bench-201 [Dong and Yang. 2020]
 - NAS-Bench-1Shot1 [Zela et al. 2020]
- Best Practice Checklist for Scientific Research in NAS [Lindauer and Hutter. 2020]
- Unifying open-source implementation of modern NAS algorithms
 [Zela et al. 2020]
 - Finally enables empirical comparisons without confounding factors
- First NAS workshop at ICLR 2020

- Best practices for releasing code
 - Code for the training pipeline used to evaluate the final architectures
 - ▶ Hyperparameters used for the final evaluation pipeline, as well as random seeds
 - Code for the search space

- Best practices for releasing code
 - Code for the training pipeline used to evaluate the final architectures
 - ▶ Hyperparameters used for the final evaluation pipeline, as well as random seeds
 - Code for the search space
 - Code for your NAS method
 - ▶ Hyperparameters for your NAS method, as well as random seeds

- Best practices for releasing code
 - Code for the training pipeline used to evaluate the final architectures
 - ▶ Hyperparameters used for the final evaluation pipeline, as well as random seeds
 - Code for the search space
 - Code for your NAS method
 - Hyperparameters for your NAS method, as well as random seeds
- Note that the easiest way to satisfy the first three is to use existing NAS benchmarks

Definition: NAS Benchmark [Lindauer and Hutter. 2020]

A NAS benchmark consists of a dataset (with a predifiend training-test split), a search space, and available runnable code with pre-defined hyperparameters for training the architectures.

- Best practices for comparing NAS methods
 - ► For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?

- Best practices for comparing NAS methods
 - ▶ For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?

- Best practices for comparing NAS methods
 - ▶ For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
 - Did you run ablation studies?

- Best practices for comparing NAS methods
 - ▶ For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
 - Did you run ablation studies?
 - Did you use the same evaluation protocol for the methods being compared?

- Best practices for comparing NAS methods
 - ► For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
 - Did you run ablation studies?
 - Did you use the same evaluation protocol for the methods being compared?
 - Did you compare performance over time?

- Best practices for comparing NAS methods
 - ► For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
 - Did you run ablation studies?
 - Did you use the same evaluation protocol for the methods being compared?
 - Did you compare performance over time?
 - Did you compare to random search?

- Best practices for comparing NAS methods
 - ► For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
 - Did you run ablation studies?
 - Did you use the same evaluation protocol for the methods being compared?
 - Did you compare performance over time?
 - Did you compare to random search?
 - Did you perform multiple runs of your experiments and report seeds?

- Best practices for comparing NAS methods
 - ► For all NAS methods you compare, did you use exactly the same NAS benchmark, including the same dataset (with the same training-test split), search space and code for training the architectures and hyperparameters for that code?
 - ▶ Did you control for confounding factors (different hardware, versions of DL libraries, different runtimes for the different methods)?
 - Did you run ablation studies?
 - Did you use the same evaluation protocol for the methods being compared?
 - ▶ Did you compare performance over time?
 - Did you compare to random search?
 - Did you perform multiple runs of your experiments and report seeds?
 - Did you use tabular or surrogate benchmarks for in-depth evaluations?

- Best practices for reporting important details
 - ▶ Did you report how you tuned hyperparameters, and what time and resources this required?

- Best practices for reporting important details
 - ▶ Did you report how you tuned hyperparameters, and what time and resources this required?
 - ▶ Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the search phase)?

- Best practices for reporting important details
 - ▶ Did you report how you tuned hyperparameters, and what time and resources this required?
 - ▶ Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the search phase)?
 - Did you report all the details of your experimental setup?

- Best practices for reporting important details
 - ▶ Did you report how you tuned hyperparameters, and what time and resources this required?
 - ▶ Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the search phase)?
 - Did you report all the details of your experimental setup?
- It might not always be possible to satisfy all these best practices, but being aware of them is the first step . . .

- Best practices for reporting important details
 - ▶ Did you report how you tuned hyperparameters, and what time and resources this required?
 - ▶ Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the search phase)?
 - Did you report all the details of your experimental setup?
- It might not always be possible to satisfy all these best practices, but being aware of them is the first step . . .
- We believe the community would benefit a lot from:
 - Clean NAS benchmarks for new applications
 - ★ Including all details for the application. No need to also develop a new method.
 - ▶ Open-source library of NAS methods to compare methods without confounding factors
 - ★ First version already developed: NASIib [Zela et al, under review]

NAS-Bench-101: The First NAS Benchmark [Ying et al. 2019]

- Dataset: CIFAR-10, with the standard training/test split
- Runnable open-source code provided in Tensorflow
- ullet Cell-structured search space consisting of all directed acyclic graphs (DAGs) on V nodes, where each possible node has L operation choices.

NAS-Bench-101: The First NAS Benchmark [Ying et al. 2019]

- Dataset: CIFAR-10, with the standard training/test split
- Runnable open-source code provided in Tensorflow
- ullet Cell-structured search space consisting of all directed acyclic graphs (DAGs) on V nodes, where each possible node has L operation choices.
- To limit the number of architectures, NAS-Bench-101 has the following constraints:
 - ightharpoonup L = 3 operators:
 - 3×3 convolution
- 1×1 convolution

- 3×3 max-pooling

- ightharpoonup V < 7 nodes
- A maximum of 9 edges

NAS-Bench-101: The First Tabular NAS Benchmark [Ying et al. 2019]

- Tabular benchmark: we exhaustively trained and evaluated all possible models on CIFAR-10 to create a tabular (look-up table) benchmark
- Based on this table, anyone can now run NAS experiments in seconds without a GPU.

NAS-Bench-101: The First Tabular NAS Benchmark [Ying et al. 2019]

- Tabular benchmark: we exhaustively trained and evaluated all possible models on CIFAR-10 to create a tabular (look-up table) benchmark
- Based on this table, anyone can now run NAS experiments in seconds without a GPU.
- Around 423k unique cells
 - 4 epoch budgets: 4, 12, 36, 108
 - 3 repeats
 - around 5M trained and evaluated models
 - 120 TPU years of computation
 - the best architecture mean test accuracy: 94.32%

NAS-Bench-101: The First Tabular NAS Benchmark [Ying et al. 2019]

- Tabular benchmark: we exhaustively trained and evaluated all possible models on CIFAR-10 to create a tabular (look-up table) benchmark
- Based on this table, anyone can now run NAS experiments in seconds without a GPU.
- Around 423k unique cells
 - 4 epoch budgets: 4, 12, 36, 108
 - 3 repeats
 - around 5M trained and evaluated models
 - 120 TPU years of computation
 - the best architecture mean test accuracy: 94.32%
- Given an architecture encoding A, budget E_{stop} and trial number, one can query from NAS-Bench-101 the following quantities:
 - training/validation/test accuracy
 - training time in seconds
 - number of trainable model parameters

Evaluation of Blackbox NAS Methods on NAS-Bench-101 [Ying et al. 2019]

- RL outperforms random search
- BO and regularized evolution perform best, better than RL

Evaluation of Blackbox NAS Methods on NAS-Bench-101 [Ying et al. 2019]

- RL outperforms random search
- BO and regularized evolution perform best, better than RL

- Note that the BO method SMAC [Hutter et al. 2011] predated RL for NAS [Zoph and Le. 2017] by 6 years
 - Only now, benchmarks like NAS-Bench-101 allow for efficient comparisons

Questions to Answer for Yourself / Discuss with Friends

Repetition:

For the most common NAS search space, how important is the NAS component compared to the importance of the training pipeline used?

Repetition:

Why do we need proper benchmarking of NAS algorithms?

• Repetition:

What does a NAS benchmark consist of?

• Repetition:

List all best practices for NAS you remember.

Further Reading

Survey on NAS: [Elsken et al. 2019]