Architecture de la matière – chapitres 1 et 2

TD: structures chimiques et propriétés macro

I | Structures de LEWIS

1) Donner le schéma de LEWIS des espèces suivantes :

 CH_2Cl_2

 O_2

 C_2H_4

 HO^-

 H_2CO

 SiO_2

 CH_3NH_2

- 2) L'ozone O_3 est une molécule non cyclique. Proposer une structure.
- 3) Formule de Lewis de l'acide sulfurique
 - a Donner le schéma de LEWIS de l'acide sulfurique H₂SO₄. Dans cette molécule, les quatre atomes d'oxygène sont reliés à l'atome de soufre.
 - b En déduire celles des ions HSO_4^- et SO_4^{2-} .
- 4) Donner le schéma de Lewis des ions hydrogénocarbonate HCO_3^- et carbonate CO_3^{2-} .

 H_3O^+

5) Donner le schéma de LEWIS du benzène C₆H₆, qui est une molécule cyclique.

II | Le phosphore

- 1) Donner le nombre d'électrons de valence du phosphore P.
- 2) Donner la représentation de LEWIS de la molécule PCl₃.
- 3) Le phosphore peut aussi former PCl₅, pourquoi? Préciser sa structure de LEWIS.

Caractéristiques de quelques solvants

On s'intéresse aux solvants suivants :

Nom	Eau	Méthanol	Hexane	$\mathrm{DMF^1}$	Acétonitrile
Représentation	Н	$CH_3 - \overline{\underline{O}} - H$	$\mathrm{CH_3} - (\mathrm{CH_2})_4 - \mathrm{CH_3}$	СН ₃ N—С—Н СН ₃ О	$CH_3-C \equiv N$
Moment dipolaire	1,8 D	1,65 D	0 D	$3.8\mathrm{D}$	3,9 D
Permittivité relative (ε_r)	78,5	32,6	2,0	36,7	37,5

¹ DMF est l'abréviation de diméthylformamide.

- 1) Identifier les solvants polaires et apolaires.
- 2) Identifier les solvants protiques et aprotiques.
- 3) Identifier les solvants peu dispersifs, dispersifs, fortement dispersifs.
- 4) Tous ces solvant sont miscibles entre eux, à l'exception de l'hexane. Expliquer pourquoi.

IV Températures de changements d'état

On indique ci-après les valeurs de température d'ébullition de composés apolaires :

1) Interpréter l'évolution constatée.

Corps	H_2	N_2	O_2	F_2	Cl_2	Br_2
$T_{\rm eb}({ m K})$	20	77	90	85	238	331

On indique ci-après les valeurs de température d'ébullition de composés **polaires** de taille comparable :

Composé	PH_3	H_2S
Moment dipolaire (D)	0,55	0,97
$T_{\rm eb}({ m K})$	185	212

- 2) Interpréter l'évolution constatée.
- 3) Identifier les substances possédant la température de fusion la plus basse et la plus haute parmi la liste suivante : hélium He, argon Ar, méthane CH₄, acide éthanoïque CH₃COOH. Justifier de manière précise et concise.
- 4) Justifier la différence de température de fusion T_{fus} entre les deux molécules suivantes :

\mathbf{V}

Moment dipolaire et charges partielles

- 1) Pour la molécule HF, le moment dipolaire vaut $p=1,83\,\mathrm{D}$, et la longueur de liaison est de 92 pm. Calculer les charges partielles portées par chaque atome.
- 2) Pour la molécule LiF, la longueur de liaison vaut 152 pm. La charge partielle positive est $\delta = 0.9 \times e$. Calculer le moment dipolaire de cette molécule p et préciser son orientation.

Données : $e = 1.6 \times 10^{-19} \,\mathrm{C}$, et $1 \,\mathrm{D} = \frac{1}{3} \times 10^{-29} \,\mathrm{C} \,\mathrm{m}$

VI

II Monoxyde de carbone

La molécule de monoxyde de carbone est constituée d'un atome d'oxygène (Z=8) et d'un atome de carbone (Z=6).

- 1) Donner le nombre d'électrons de valence des atomes d'oxygène et de carbone.
- 2) Expliquer pourquoi le carbone est tétravalent (susceptible de former 4 liaisons covalentes).
- 3) Proposer une représentation de Lewis de monoxyde de carbone.
- 4) La formule de LEWIS proposée est-elle alors en accord avec les électronégativités du carbone et de l'oxygène?

$[_{ m VII}]$

Températures d'ébullition

Les températures d'ébullition sous 1 bar des composés hydrogénés de la 14^e colonne et de la 17^e colonne du tableau périodique sont indiquées sur le graphique ci-dessous :

1) La représentation de CRAM de la molécule de méthane est représentée ci-dessous :

- a En déduire le moment dipolaire de la molécule de méthane.
- b En déduire la géométrie et le moment dipolaire des autres composés hydrogénés de la colonne 14.
- 2) Pourquoi les composés hydrogénés des éléments de la colonne 14 ont-ils des température d'ébullition plus basses que celles des composés hydrogénés de la colonne 17?
- 3) Expliquer l'augmentation observée entre HCl et HI.
- 4) Proposer une explication à l'anomalie observée pour HF.