

Molecular Biology Primer

Selected Topics in Computer Intelligence - 2015

Bioinformatics Programming

Computer Engineering, Chiang Mai University

What is Life made of?

- All cells have a life cycle: born, eat, replicate, and die
 - Cells have no brain How to decide when to do something.?
 - Pathways complex networks of chemical reactions
- All life depends on 3 types of molecules:
 - DNA vast library describing how the cell works
 - RNA transfer certain short pieces of library to different places
 - Proteins form enzymes that perform various activity in body
- DNA and RNA are strings of 4 alphabets (nucleotides)
- Protein is strings of 20 letters (amino acids)

What is the Genetic Material?

- Genetic information was organized into genes (or traits) that resided on chromosomes
- Certain genes are inherited together
 - They are located closer on a chromosome
- Genetic map
 - order of genes on chromosomes

What Molecule Codes for Genes?

- DNA was discovered in 1869 by Johann Friedrich Miescher – isolated "nuclein" from the nuclei of white blood cells
- 4 bases: Adenine, Thymine, Guanine, and Cytosine
 - Originally found the 5th base Uracil
- □ Later on, nucleic acids ware grouped into 2 classes
 - DNA (Deoxyribonucleic acid)
 - Phosphate Group + Sugarring + Bases (A,T,C,G)
 - RNA (Ribonucleic acid)

What is the Structure of DNA?

□ The modern DNA era began in the 1953

 \bigcirc

■ James Watson & Francis Crick found out that the structure of DNA is "double helix strands"

■ Two strands were held together by hydrogen bond between

specific base paring - Chargaff rule

A-T and C-G

The two strands has complementary

relationship

What Carries Information between DNA and Protein?

- DNA content of a cell does not change over time, but the concentrations of different proteins do
- How DNA generates an enormous variety of different Proteins?
- What translate texts written in a 4-letter alphabet into text written in 20-letter alphabets? and How?
- Proteins could not be made directly from DNA
 - DNA resides within the nucleus
 - Protein synthesis had been observed to happen outside the nucleus
 - The Cytoplasm

What Carries Information between DNA and Protein?

- In 1960, biologist proved that RNA is complementary to the DNA segment (i.e., the gene) that codes for protein
- DNA serves as a template used to copy a gene into messenger RNA (mRNA) - transcription
- mRNA then carries the gene's genetic info to the ribosome to make a particular protein - translation
 - RNA is more active than DNA usually lives in single-strand form
- The transcription of a gene into mRNA is tightly controlled not all genes produce proteins at all time

What Carries Information between DNA and Protein?

- In eukaryote, a gene is typically broken into many pieces
 - Cut out intron and concatenate all the exons together
 - Happens before the mRNA entering the ribosome
 - Ribosomes are molecular factories where proteins are assembled

How are Proteins Made?

- The amino acids were linked together into linear chains to form proteins
 - Properties of proteins were defined by the composition and arrangement of their amino acids
- Triplets of consecutive letters in DNA (codons) were responsible for the amino acid sequence in a protein
 - Some different triplets of nucleotides may code for the same amino acid
- The 3D structure of protein determines what role a protein plays in the cell
- It is possible that one gene to code for many proteins
 - Results from alternative splicing

How are Protein Made?

RNA Codon Table

1st	2nd base								3rd
base	U		С		A		G		base
U	UUU	(Phe/F) Phenylalanine	UCU	(Ser/S) Serine	UAU	(Tyr/Y) Tyrosine	UGU	(Cys/C) Cysteine	U
	UUC		UCC		UAC		UGC	3C (Oysio) Oysionic	
	UUA	(Leu/L) Leucine	UCA		UAA	Stop (Ochre)	UGA	Stop (Opal)	A
	UUG		UCG		UAG	Stop (Amber)	UGG	(Trp/W) Tryptophan	G
С	CUU		CCU	(Pro/P) Proline	CAU	(His/H) Histidine	CGU		U
	CUC		CCC		CAC		CGC	(Arg/R) Arginine	С
	CUA		CCA		CAA	(Gln/Q) Glutamine	CGA		A
	CUG		CCG		CAG		CGG		G
A	AUU	(Ile/I) Isoleucine	ACU	(Thr/T) Threonine	AAU	(Asn/N) Asparagine	AGU	(Ser/S) Serine	U
	AUC		ACC		AAC		AGC		С
	AUA		ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	A
	AUG ^[A]	(Met/M) Methionine	ACG		AAG		AGG		G
G	GUU	(Val/V) Valine	GCU	(Ala/A) Alanine	GAU	(Asp/D) Aspartic acid	GGU	(Gly/G) Glycine	U
	GUC		GCC		GAC		GGC		С
	GUA		GCA		GAA	(Glu/E) Glutamic acid	GGA		A
	GUG		GCG		GAG		GGG		G

How are Proteins Made?

■ The DNA sequence of a gene encodes the amino acid sequence of protein

Protein Structure

- Most proteins fold into unique 3D structures
 - Many can fold unassisted, simply through the chemical properties of their amino acids, others require the aid of molecular chaperones
 - Primary structure: the amino acid sequence
 - Secondary structure: regularly repeating local structure
 - Alpha helix, beta sheet, turn
 - Tertiary structure: overall shape of a single protein molecule (aka. Fold)
 - Controls the basic function of the protein

How can we Analyze DNA?

Copying

- PCR Polymerase Chain Reaction
 - Repetitive process with exponential grow
 - Three operations:
 - denaturation,
 - priming,
 - extension

Cutting and Pasting DNA

- To study a gene of interest, sometimes necessary to cut it out of an organism's genome and reintroduce into some host organism that is easy to grow
 - We need some kind of "scissors" to do the task
- Restriction enzymes proteins that act as molecular scissor that cut
 DNA at every occurrence of a certain string (restriction site)
 - The enzymes cut DNA into restriction fragments
 - Blunt cut, or stick cut

Cutting and Pasting DNA

- Many ways to use two pieces of DNA together
- Hybridization based on complementary base-paring
- Ligation fixing bonds within single strands

Measuring DNA Length

- Gel Electrophoresis
 - Measuring size without actually finding the exact sequence
 - DNA is a negative charged molecule moving toward positive pole
 - The gel acts as a molecular brake
 - The speed of migration of a fragment is related to the size
 - The migration distance can be used to estimate the size of a fragment

Probing DNA

- Test whether a particular DNA fragment is present in a given DNA strand
 - Often done using hybridization
- Probes single-stranded DNA fragment

 \bigcirc

- 20-30 nucleotides long
- Known sequence
- Fluorescent tag
- DNA array composed of spots
 - Each spot are many copies of complement of one gene's mRNA transcript

How do Individuals of a Species Differ?

- Traits are caused by variations in gene
- □ Genome: the complete set of nucleic acid sequence for an organism
 - Protein-coding DNA genes
 - Noncoding DNA
- Only 0.1% of the 3 billion nucleotide human genome are different between any two individuals
- The master genome represent all the possible genomes that an individual of that species could have

How Do Different Species Differ?

- □ The genomes of different organisms may be vastly different and similar
 - Many genes in humans and flies are similar

- A species is a collection of individuals whose genomes are "compatible"
- What parts of the fruit fly genome are similar and dissimilar to human genome?
 - Bioinformatics helps answering these kinds of questions
 - Comparative Genomic
 - Alignment Algorithm BLAST