INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR

PALAJ, GANDHINAGAR, GUJARAT 382 055

Digital Systems LAB -10

Question:

Implement a Moore and Mealy machine that can detect 10010. The FSM has one input and one output. Show the implemented designs on FPGA. The pattern should be given through a switch and the output should be shown on the LED (which can turn on when the pattern is detected).

Moore Machine Verilog Code

```
`timescale 1ns / 1ps
module Moore 10010(clk,rest,w,z);
input clk, rest, w;
output z;
reg [2:0]y,Y;
parameter [2:0]A=3'b000,B=3'b001,C=3'b010,D=3'b011,E=3'b100,F=3'b101;
//Define the next state combinational logic
always @(w or y)
   case(y)
       A: if(w) Y=B;
           else Y=A;
        B: if(w) Y=B;
           else Y=C;
        C: if(w) Y=B;
           else Y=D;
        D: if(w) Y=E;
           else Y=A;
        E: if(w) Y=B;
           else Y=F;
        F: if(w) Y=B;
           else Y=D;
        default: Y=2'bxx;
    endcase
//Define sequential block
always @(negedge rest or posedge clk)
    if(rest==0)
       y<=A;
    else
       y<=y;
    //Define output
    assign z=(y[0] && (\sim y[1]) && y[2]);
endmodule
```

Simulation of Moore Machine

FPGA Implementation:

Link to→<u>Video</u>

Reports:

On-Chip		-		Used			Utili	zation (%)
Slice Logic		0.053		48			i i	
LUT as Logic	1	0.019	1	4	I	20800	I	0.02
CARRY4	1	0.016	1	7	I	8150	L	0.09
Register	1	0.013	1	31	I	41600	L	0.07
BUFG	1	0.006	1	1	I	32	L	3.13
Others	1	0.000	1	3	I		L	
Signals	1	0.095	1	43	I		I	
I/O	1	0.905	1	5	I	106	L	4.72
Static Power	1	0.074	1		I		L	
Total	1	1.127	1		ī		I .	

	i	Used	i		İ	Available			
Slice LUTs	ï	4		0		20800		0.02	
LUT as Logic	1	4	I	0	I	20800	1	0.02	I
LUT as Memory	Ī	0	I	0	I	9600	1	0.00	I
Slice Registers	Ī	31	I	0	I	41600	1	0.07	I
Register as Flip Flop	Ī	31	I	0	I	41600	1	0.07	I
Register as Latch	Ī	0	I	0	I	41600	1	0.00	I
F7 Muxes	Ī	0	I	0	I	16300	1	0.00	I
F8 Muxes	ī	0	I	0	I	8150	ī	0.00	I

Mealy Machine Verilog Code

```
`timescale 1ns / 1ps
module Mealy_10010(clk,rest,w,z);
input clk,rest,w;
output req z;
reg [2:0]y,Y;
parameter [2:0]A=3'b000,B=3'b001,C=3'b010,D=3'b011,E=3'b100;
//Define the next state combinational logic
always @(w or y) begin
   case(y)
       A: if(w) begin
           Y=B; z=0;
         end
        else begin
           Y=A; z=0;
        B: if(w) begin
           Y=B; z=0;
         end
        else begin
           Y=C; z=0;
        end
        C: if(w) begin
         end
        else begin
           Y=D; z=0;
        D: if(w) begin
           Y=E; z=0;
         end
        else begin
            Y=A; z=0;
        end
```

```
E: if(w) begin

Y=B;z=0;
end
else begin

Y=C;z=1;
end
default:begin Y=2'bxx; z=0; end
endcase
end

//Define sequential block
always @(negedge rest or posedge clk)
if(rest==0) begin

y<=A;z=0; end
else

y<=Y;
endmodule
```

Simulation for Mealy Machine

FPGA Implementation:

Link to → Video

Reports

On-Chip	P	ower (W)	1	Used	1	Available	Utilization (%)
	+		+-		+		+
Slice Logic	1	0.064	1	48			
LUT as Logic	1	0.029	1	4	1	20800	0.02
CARRY4	1	0.016	1	7	I	8150	0.09
Register	1	0.013	1	31	I	41600	0.07
BUFG	1	0.006	1	1	I	32	3.13
Others	1	0.000	1	3	I		
Signals	1	0.095	ī	43	I		
I/O	1	0.850	ī	5	I	106	4.72
Static Power	1	0.074	ī		I		I
Total	1	1.083	ī		ī		I

1. Slice Logic								
Site Type	-+ -+	Used	-+ -+	Fixed	-+ -+	Available	1	Util%
Slice LUTs	i	4	i	0	i	20800	i	0.02
LUT as Logic	ı	4	ī	0	ı	20800	ī	0.02
LUT as Memory	Ī	0	ī	0	ı	9600	ī	0.00
Slice Registers	Ī	31	1	0	I	41600	1	0.07
Register as Flip Flop	1	31	1	0	1	41600	1	0.07
Register as Latch	1	0	1	0	1	41600	1	0.00
F7 Muxes	1	0	1	0	1	16300	1	0.00
F8 Muxes	I	0	1	0	I	8150	1	0.00
+	+		+		+		-+-	+

Test bench

For Moore Machine

```
timescale 1ns / 1ps
   module test_tb();
   wire z;
   reg w,clk,rest;
   Moore_10010 uut(clk,rest,w,z);
   initial
   begin
O |clk=0;
O forever #5 clk=~clk;
   end
   initial
  begin
O |rest=0;
O #2 rest=1;
O w=0;#10
O w=1;#10
O w=0;#10
O w=0;#10
O w=1;#10
O w=0;#10
O |w=0;#10
O w=1;#10
O w=0;#10
O w=1;#10
O⇒$finish();
   end
   endmodule
```

For Mealy Machine

```
timescale 1ns / 1ps
   module test_tb();
   wire z;
   reg w, clk, rest;
   Mealy 10010 uut(clk,rest,w,z);
   initial
   begin
O |clk=0;
O forever #5 clk=~clk;
   initial
   begin
O |rest=0;
0 #6 rest=1;
O w=0;#10
O w=1;#10
O w=0;#10
O |w=0;#10
O w=1;#10
O w=0;#10
O w=0;#10
O w=1;#10
O w=0;#10
O w=1;#10

○
$finish();

   end
   endmodule
```