Exercício:

Determine $V_P, V_{\sim P}, V_Q, V_{\sim Q}, V_{P \wedge Q}, V_{P \vee Q}, V_{P \to Q}, V_{P \leftrightarrow Q}, V_{\sim P \to Q}, V_{P \wedge \sim Q}$ em cada um dos exercícios abaixo:

- a) P(x): " x^2 -x é par" e Q(x): " $2x < x^2$ ", ambas sentenças abertas definidas no domínio $D = \{-1,1,2,3,5,6\}$
- b) P(x): " x^2 2 é primo" e Q(x): " $x^3 < x^2 + x$ ", ambas sentenças abertas definidas no domínio $D = \{-1,1,2,3,5,6\}$
- c) P(x,y): " $xy < x^2$ " e Q(x,y): "y < x + y", ambas sentenças abertas definidas em $A \times B$, onde $A = \{-2, -1, 0, 2\}$ e $B = \{-1, 3\}$
- d) P(y,x): "x<x²y" e Q(y,x): " $y \le 2x$ ", ambas sentenças abertas definidas em $A \times B$, onde $A = \{-3,0,2\}$ e $B = \{-1,4,5\}$
- e) P(x): " $3x^2$ x é par" e Q(x): " $x^3 x^2 + x$ não é primo", com as sentenças abertas definidas nos domínios $D_P = \{-1,1,2,3,5,6\}$ e $D_Q = \{1,2,3,4\}$, respectivamente

Respostas:

a)
$$V_P = D, V_{\sim P} = \emptyset, V_Q = \{-1,3,5,6\}, V_{\sim Q} = \{1,2\}, V_{P \wedge Q} = \{-1,3,5,6\}, V_{P \vee Q} = D, V_{P \to Q} = \{-1,3,5,6\}, V_{P \leftrightarrow Q} = \{-1,3,5,6\}, V_{\sim P \to Q} = D, V_{P \wedge \sim Q} = \{1,2\}, V_{\sim P \leftrightarrow \sim Q} = V_{P \leftrightarrow Q} = \{-1,3,5,6\}$$

b)
$$V_P = \{2,3,5\}, V_{\sim P} = \{-1,1,6\}, V_Q = \{-1,1\}, V_{\sim Q} = \{2,3,5,6\}, V_{P \wedge Q} = \emptyset, V_{P \vee Q} = \{-1,1,2,3,5\}, V_{P \to Q} = \{-1,1,6\}, V_{P \leftrightarrow Q} = \{6\}, V_{\sim P \to Q} = V_{P \vee Q}, V_{P \wedge \sim Q} = \{2,3,5\}, V_{\sim P \leftrightarrow \sim Q} = V_{P \leftrightarrow Q}$$

c)
$$V_P = \{(-2, -1), (-2, 3), (-1, 3), (2, -1)\},\ V_{\sim P} = \{(-1, -1), (0, -1), (0, 3), (2, 3)\}, V_Q = \{(2, -1), (2, 3)\},\ V_{\sim Q} = \{(-2, -1), (-2, 3), (-1, -1), (-1, 3), (0, -1), (0, 3)\},\ V_{P \wedge Q} = \{(2, -1)\}, V_{P \vee Q} = \{(-2, -1), (-2, 3), (-1, 3), (2, -1), (2, 3)\},\ V_{P \to Q} = \{(-1, -1), (0, -1), (0, 3), (2, -1), (2, 3)\},\ V_{P \leftrightarrow Q} = \{(2, -1), (-1, -1), (0, -1), (0, 3)\}, V_{\sim P \to Q} = V_{P \vee Q},\ V_{P \wedge \sim Q} = \{(-2, -1), (-2, 3), (-1, 3)\}, V_{\sim P \leftrightarrow \sim Q} = V_{P \leftrightarrow Q}$$

d)
$$V_P = \{(0,-1), (2,-1), (2,4), (2,5)\},\ V_{\sim P} = \{(-3,-1), (-3,4), (-3,5), (0,4), (0,5)\},\ V_Q = \{(-3,-1), (-3,4), (-3,5), (0,4), (0,5), (2,4), (2,5)\},\ V_{\sim Q} = \{(0,-1), (2,-1)\}, V_{P \wedge Q} = \{(2,4), (2,5)\}, V_{P \vee Q} = A \times B,\ V_{P \to Q} = \{(-3,-1), (-3,4), (-3,5), (0,4), (0,5), (2,4), (2,5)\},\ V_{P \leftrightarrow Q} = \{(2,4), (2,5)\}, V_{\sim P \to Q} = A \times B, V_{P \wedge \sim Q} = \{(0,-1), (2,-1)\},\ V_{\sim P \leftrightarrow \sim Q} = V_{P \leftrightarrow Q}$$

e)
$$V_P = D_P, V_{\sim P} = \emptyset, V_Q = D_Q, V_{\sim Q} = \emptyset, V_{P \wedge Q} = \{1, 2, 3\},$$
 $V_{P \vee Q} = \{-1, 1, 2, 3, 4, 5, 6\}, V_{P \to Q} = D_Q, V_{P \leftrightarrow Q} = \{1, 2, 3\}, V_{\sim P \to Q} = V_{P \vee Q},$ $V_{P \wedge \sim Q} = \emptyset, V_{\sim P \leftrightarrow \sim Q} = \{1, 2, 3\}$