Der Satz von Rolle

Jendrik Stelzner

21. Dezember 2014

Wir wollen hier den Satz von Rolle angeben und beweisen. Als Vorbereitung hierdrauf wollen wir das Verhalten von differenzierbaren Funktionen an Extremstellen betrachten.

1 Extremstellen

Definition 1. Es sei $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}$ und $x \in X$. f heißt lokal maximal an x, falls es eine Umgebung V von x gibt, so dass

$$f(x) \ge f(y)$$
 für alle $y \in V \cap X$.

f heißt lokal minimal an x, falls es eine Umgebung V von x gibt, so dass

$$f(x) < f(y)$$
 für alle $y \in V \cap X$.

Ist f lokal maximal oder lokal minimal an x, so heißt f lokal extremal an x; dann heißt x eine lokale Extremstelle von f.

Im Eindimensionalen differenzierbare Funktionen lässt sich mithilfe der Ableitung eine notwendige Bedingungen für das Vorhandensein einer lokalen Extremstelle angeben.

Lemma 2. Es sei $V \subseteq \mathbb{R}$ eine Umgebung von x und $f: V \to \mathbb{R}$ lokal extremal an x. Dann ist f'(x) = 0.

Beweis. Wir zeigen, dass f nicht extremal an x ist, wenn $f'(x) \neq 0$. Wir beschränken uns dabei auf den Fall f'(x) > 0, der Fall f'(x) < 0 verläuft analog.

Da
$$f'(x) > 0$$
 ist

$$\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h} > 0.$$

Es gibt daher ein $\varepsilon > 0$, so dass

$$\frac{f(x+h)-f(x)}{h}>0\quad \text{für alle }h\neq 0 \text{ mit }|h|<\varepsilon.$$

Für alle $0 < h < \varepsilon$ ist daher

$$\frac{f(x+h)-f(x)}{h}>0 \Leftrightarrow f(x+h)-f(x)>0 \Leftrightarrow f(x+h)>f(x),$$

und für alle $-\varepsilon < h < 0$ ist

$$\frac{f(x+h) - f(x)}{h} > 0 \Leftrightarrow f(x+h) - f(x) < 0 \Leftrightarrow f(x+h) < f(x).$$

Es ist daher

$$f(x) < f(y) \quad \text{für alle } y \in (x, x + \varepsilon)$$

und

$$f(x) > f(y)$$
 für alle $y \in (x - \varepsilon, x)$.

Es kann also f an x nicht extremal sein.

Wir können nun den Satz von Rolle beweisen.

Theorem 3 (Rolle). Es seien $a,b \in \mathbb{R}$ mit a < b. Die Funktion $f:[a,b] \to \mathbb{R}$ sei stetig und auf (a,b) differenzierbar. Es sei f(a) = f(b). Dann gibt es ein $\xi \in (a,b)$ mit $f'(\xi) = 0$.

Beweis. Wir können o.B.d.A. davon ausgehen, dass f(a)=f(b)=0. Ist f konstant, so ist die Aussage klar. Ist f nicht konstant, so nutzen wir, dass das Intervall [a,b] kompakt ist, und f auf [a,b] sein Maximum und Minimum annimmt; da f nicht konstant ist, muss eines von beiden verschieden von Null sein. Es sei $\xi \in [a,b]$ eine Extremstelle von f mit $f(\xi) \neq 0$. Offenbar ist $\xi \in (a,b)$. Da ξ eine Extremstelle von f ist, ist $f'(\xi)=0$.