smallRNA-Seq for Not-Annotated Species Analysis Report

TBD180101

December 11, 2018

Contents

ieneral Information	2
Sample Information	2
Reference Information	2
nalysis Method	3
Pipeline Descriptions	3
nalysis Result	4
Preprocessing	4
Reference mapping	4
Extract consensus	4
Candidate of smallRNAs	5

GENERAL INFORMATION TBD180101

General Information

In traditional small RNA analysis methods using small RNA-Seq data, a small RNA database such as miRBase is essential. Therefore, there was a difficulty in analyzing the small RNA of a species that does not have a database. The species that do not have such a small RNA database will be called non-annotated species. So, we had developed small RNA analysis methods using small RNA-Seq data in these species. This method uses the genome sequence and gene coordination information to identify the loci of small RNAs and calculate their expression levels. It also provides information on which genes can be biologically affected using genomic location information of identified small RNAs. This data is expected to provide insight into newly studied species.

Sample Information

Table 1: Sample Informations

SampleName	No.Segs	Residues	GC
OE348GFP-2_1	18,071,398	903,569,900	54.7
R7491 3 1		915,143,750	53.6

SampleName: Sample ID provided by customer
No.Seqs: Number of sequences (reads or contigs)

• Residues: Total number of base-pairs

• GC: Ratio of GC

Reference Information

• Species name: Fusarium graminearum

• Reference source: BioMax

ANALYSIS METHOD TBD180101

Figure 1: analysis pipeline.

Analysis Method

Pipeline Descriptions

- 1. Preprocessing: Low quality reads were filtered according to the following criteria
 - Sequencing quality ⟨ Q20
 - minimum read length < 17bp
 - trim 4bp from 5' and 3'
- 2. Reference mapping: Map on to the genome
- 3. Extract consensus: Extract consensus sequence based on alignment information of all samples.
- 4. Estimate Abundant: Align the extracted consensus sequence once again for each sample. Thereafter, RPKM is calculated based on the alignment information.
- 5. Annotate neighbor genes: Based on the alignment information, annotation is made of which genes are present around the confirmed small rna locus.

ANALYSIS RESULT TBD180101

Analysis Result

Preprocessing

Table 2: Preprocessing Results

SampleName	No.Seqs	Residues	GC
OE348GFP-2		363,544,054	53.2
R7491_3	18,123,364	414,788,514	51.6

• No. Segs: Number of reads remaining after preprocessing

• Residues: The remaining base pairs after preprocessing

• GC: GC ratio after preprocessing

Reference mapping

Table 3: Mapping Statistics

Sample	TotalReads	MappedReads	MappedRate
OE348GFP-2	17677404	14507939	82.07
R7491_3	18123364	16347680	90.20

• TotalReads: The total number of reads used in the reference mapping

• MappedReads: Number of reads aligned to reference genome

• MappedRate: (MappedReads/TotalReads) * 100

Extract consensus

Table 4: Extract consensus sequence result

SampleName	No.Seqs	Residues	Average	Minimum	Maximum	N50	Npct	GC
merged	314,346	14,012,677	44.58	17	300	52	0.5	51.6

- No.Seqs: The number of consensus extracted from the alignment information in all samples. This means the entire candidate smRNA locus.
- Residues: The number of consensus base-pairs
- Average/Minimum/Maximum/N50: The average/min/max/N50 length of the consensus sequence (candidate smRNA locus).
- Npct: ratio of N base in consensus sequence

ANALYSIS RESULT TBD180101

• GC: ratio of GC base in consensus sequence

Candidate of smallRNAs

$smRNA_candidate$	contig	start	end	length	
supercontig_3.10_100074-100096	supercontig_3.10	100074	100096	23	
supercontig_3.10_10019-10035	supercontig_3.10	10019	10035	17	•••
supercontig_3.10_100305-100328	supercontig_3.10	100305	100328	24	•••
supercontig_3.10_100331-100359	supercontig_3.10	100331	100359	29	•••
supercontig_3.10_100362-100383	supercontig_3.10	100362	100383	22	•••

- smRNA_candidate: The ID of the candidate small RNA locus, consisting of [contig] _ [start] [end].
- contig: The contig ID where the candidate small RNA locus is located.
- start/end: The genomic location where the candidate small RNA locus is located.
- length: Length(bp) of candidate small RNA locus
- ReadCnt:[SampleName]: The mapped read count on the candidate small RNA locus
- type: The relationship between the locus of the candidate small RNA and the location of the gene.
- gap: the distance between genes involved in the candidate small RNA
- gene: genes involved in the candidate small RNA
- conseq: consensus sequence of smRNA locus