3.15 Pour tout $n \in \mathbb{N}$, on a les encadrements suivants :

$$-1 \leqslant \sin(n) \leqslant 1$$

$$-1 \sin(n) = 1$$

$$\frac{-1}{n} \leqslant \frac{\sin(n)}{n} \leqslant \frac{1}{n}$$

$$n$$
 n n n n Vu que d'une part $\lim_{n\to+\infty}\frac{-1}{n}=-\lim_{n\to+\infty}\frac{1}{n}=0$ et d'autre part $\lim_{n\to+\infty}\frac{1}{n}=0$, on conclut que $\lim_{n\to+\infty}\frac{\sin(n)}{n}=0$ grâce au théorème des gendarmes.

conclut que
$$\lim_{n \to +\infty} \frac{\sin(n)}{n} = 0$$
 grâce au théorème des gendarmes.