Instructions: Complete each of the following exercises for practice.

- 1. Compute the (signed) Jacobian of the transformation.
 - (a) (x,y) = (2u + v, 4u v)

(c) $(x,y) = (s\cos(t), t\cos(s))$

(b) $(x,y) = (u^2 + uv, uv^2)$

- (d) $(x,y) = (pe^q, qe^p)$
- 2. Use the given transformation to evaluate the integral $\iint_{\mathbb{R}} f(x,y) dA$.
 - (a) f(x,y) = x 3y;

R is the triangular region with vertices (0,0), (2,1), and (1,2);

(x,y) = (2u + v, u + 2v)

(b) f(x,y) = 4x + 8y;

R is the parallelogram with vertices (-1,3), (1,-3), (3,-1), and (1,5);

 $(x,y) = (\frac{1}{4}(u+v), \frac{1}{4}(v-3u))$

(c) $f(x,y) = x^2$;

R is the region bounded by the ellipse $9x^2 + 4y^2 = 36$:

(x,y) = (2u,3v)

(d) $f(x,y) = x^2 - xy + y^2$; R is the region bounded by the ellipse $x^2 - xy + y^2 = 2$;

$$(x,y) = \left(\sqrt{2}u - \sqrt{\frac{2}{3}}v, \sqrt{2}u + \sqrt{\frac{2}{3}}v\right)$$

(e) f(x,y) = xy;

R is the region in the first quadrant bounded by y = x, y = 3x, xy = 1, and xy = 3;

$$(x,y) = \left(\frac{u}{v},v\right)$$

(f) $f(x,y) = y^2$;

R is the region bounded by xy = 1, xy = 2, $xy^2 = 1$, $xy^2 = 2$;

 $(u,v) = (xy, xy^2)$

- 3. Compute $\iint_{\mathcal{D}} f(x,y) dA$ by making an appropriate change of variables.
 - (a) $f(x,y) = \frac{x 2y}{3x y}$;

R is the parallelogram given by $0 \le x - 2y \le 2$ and $1 \le 3x - y \le 8$

(b) $f(x,y) = (x+y)\exp(x^2 - y^2);$

R is the rectangle given by $0 \le x - y \le 2$ and $0 \le x + y \le 3$

(c) $f(x,y) = \cos\left(\frac{y-x}{x+y}\right)$;

R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and (0,1)

(d) $f(x,y) = \sin(9x^2 + 4y^2)$;

R is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$

(e) $f(x,y) = \exp(x+y);$

R is the region satisfying inequality $|x| + |y| \le 1$

- 4. Prove $\iint_R f(x+y) dA = \int_{uf(u)=u}^0 1 du f(u)$ for every continuous function f on [0,1] and R the triangular region with vertices (0,0), (1,0), and (0,1).
- 5. Use a double integral to compute the area of the indicated region.
 - (a) One loop of the rose $r(\theta) = \cos(3\theta)$
 - (b) The region enclosed by both of the cardioids $r_1(\theta) = 1 + \cos(\theta)$ and $r_2(\theta) = 1 \cos(\theta)$
 - (c) The region inside the unit circle centered at (1,0) and outside the unit circle centered at the origin
 - (d) The region inside the cardioid $r_1(\theta) = 1 + \cos(\theta)$ and outside the circle $r_2(\theta) = 3\cos(\theta)$
- 6. Compute the double integral $\iint_{R} f(x,y) dA$ for function f(x,y) and region R.

(a)
$$\int_{x=0}^{2} \int_{y=0}^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx$$

(a)
$$\int_{x=0}^{2} \int_{y=0}^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx$$

(b)
$$\int_{y=0}^{a} \int_{x=-\sqrt{a^2-y^2}}^{\sqrt{a^2-y^2}} (2x+y) dx dy$$

(c)
$$\int_{y=0}^{\frac{1}{2}} \int_{x=\sqrt{3}y}^{\sqrt{1-y^2}} xy^2 dx dy$$

(c)
$$\int_{y=0}^{\frac{1}{2}} \int_{x=\sqrt{3}y}^{\sqrt{1-y^2}} xy^2 dx dy$$

(d)
$$\int_{x=0}^{2} \int_{y=0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$$