USN

06IS764/06CS764

Seventh Semester B.E. Degree Examination, Dec.09/Jan.10

		Artificial Intelligence	10
Tim		hrs	. Marks:1
Time: 3 hrs		Note: Answer any FIVE full questions, selecting at least TWO questions from each part.	
		PART - A	•
1	a. b.	With examples, explain different types of task environments. Explain Breadth-First-Search (BFS) strategy.	(12 Ma (08 Ma
2	a.	Explain A* search strategy. Prove :	
		 i) A* using TREE-SEARCH is optimal if h(n) is admissible. ii) A* using GRAPH-SEARCH is optimal if h(n) is consistent. 	(12 Ma
	b.	Write the algorithm for online search agent that uses depth first exploration.	(08 Ma
3	a.	Write the syntax of propositional logic. Write BNF grammar for sentences in logic.	n propositi (10 Ma
	b.	Write the algorithm for Wumpus - world agent to find pits, wupuses and safe s	
			(10 M
4	a.	Write the syntax of first order logic using BNF.	(10 Ma
	b.	List and explain the steps involved in knowledge engineering projects.	(10 M
		A DADE D	
		<u>PART - B</u>	
5	a. b.	Write toward chaining algorithm. Explain aspects of prolog that fall outside standard logical inference.	(10 Ma
	0.	Explain aspects of protog that fair outside standard regreat interestee.	(10.11
6	a.	Explain with examples, how first order logic expresses facts about categories.	(10 Ma
	b.	Explain the ontology of situation calculus.	(10 Ma
7	a.	Compare how STRIPS and ADL programming languages represent planning p	problems.
Ÿ			(10 Ma
	b	What is Bayesian network? Explain how it is used to represent knowledge?	(10 Ma
8	a.	Write the decision tree learning algorithm.	(10 Ma
-		Explain how the applicability of decision trees is broadened.	(10 Ma
