Programa para calcular la multiplicación de una matriz y un vector usando threads:

a_{00}	<i>a</i> ₀₁	• • •	$a_{0,n-1}$		Уо
a_{10}	a_{11}	• • • •	$a_{1,n-1}$	x_0	<i>y</i> ₁
:	i		÷	x_1	:
a_{i0}	a _{i1}		$a_{i,n-1}$: =	$y_i = a_{i0}x_0 + a_{i1}x_1 + \cdots + a_{i,n-1}x_{n-1}$
÷	:		:	x_{n-1}	<u>:</u>
$a_{m-1,0}$	$a_{m-1,1}$		$a_{m-1,n-1}$		y_{m-1}

Se puede paralelizar sin la necesidad de preocuparse por alguna sección crítica. Si a cada thread se le asigna una cantidad determinada de filas (sin repetirse una fila en dos o más threads) de la matriz A para

multiplicarlas por el vector "x" y que el resultado sea guardado en la posición correspondiente del vector de salida "y", no hay problemas de posibles datos erróneos, ya que una misma fila no va a ser modificada por dos o más threads a la vez.

Ejecución: Se probó un pequeño ejemplo para verificar que la función esté correcta

- 1. 4384*1531 + 887*2863 + 2778*124 + 1916*4068 + 2794*3136 = 6711904 + 2539481 + 344472 + 7794288 + 8761984 = 26152129
- 2. 3336*1531 + 387*2863 + 493*124 + 1650*4068 + 1422*3136 = 5107416 + 1107981 + 61132 + 6712200 + 4459392 = 17448121
- 3. etc..

El supercomputador manatí posee 56 procesadores para usar en la ejecución de la tarea. Este número proviene de **get_nprocs_conf()**, **get_nprocs()** de la librería **<sys/sysinfo.h>**

Tiempo: para tomar el tiempo de ejecución se usó una función clock gettime()

Matriz 50000x50000

threads	time
---------	------

1	6.54334
2	3.372900
4	1.895528
8	1.048688
16	0.677323
32	0.695419
64	0.493647
128	0.455451

