Contents

1		est Setu																								-
	$\frac{1.1}{1.2}$	vimrc .																				٠	٠	 ٠		. :
	1.3	C++ ter	nplate		: :	: :	: :		: :	: :		: :	:					:	: :	:			:	 :	 :	
	1.4	Java ten	iplate.																			٠				. :
	ъ.																									
2	Rem	inder																								2
3	Usefi	ıl code																								:
	3.1	Fast Exp	onentia	tion	0(log	(exp	o))																		. :
	$\frac{3.2}{3.3}$	GCD Extended	l Euclie	lean	Als	rori	thm				•		•			•	•	•		٠					 •	
	3.4	Leap year	r																						 ÷	. ;
	$\frac{3.5}{3.6}$	Prime G STL qui																							 •	. :
	5.0	3.6.1	Map																							. ;
		3.6.2	${\bf Set}$. ;
		3.6.3	Algorit																							. ;
		3.6.4	String				٠.			٠.	٠	٠.	٠					•		٠		٠	٠	 ٠	 ٠	. 4
	_																									
4	Searce 4.1	c h Binary S	earch																							4
	4.1	4.1.1	Find k																					 :	 :	
		4.1.2	${\bf Upper}$	/ lov	ver	Bo	und																			. 4
	4.2	折半完全																								. 4
	4.3	Two-poir	iter Æ	丁法							•		•	 •	•	•	•	•		•	• •	•	•	 •	 ٠	. '
5	Racio	data st	ructure	3																						,
•	5.1	1D BIT																								. 4
	5.2	2D BIT																								. 4
	$\frac{5.3}{5.4}$	Union Fi	Tree		: :	: :	: :	:		: :	:	: :	:			: :		:		:		:	:	 :	 :	. 4
	D			ina																						_
6	Dyna	ımic Pro	gramm	iiiig																						
		ımic Pro	gramm	iiiig																						
7	Tree																									4
		LCA																								. 4
	Tree 7.1	LCA												 •								•	ē			. 4
7	Tree 7.1 Grap 8.1	LCA																								. 4
7	Tree 7.1 Grap 8.1 8.2	LCA h Articular	tion poi	nt /	edg	ge .																				. 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA h Articular	tion poi	nt /	edg	ge .																		 	 	. 4
7	Tree 7.1 Grap 8.1 8.2 8.3	LCA Articular BCC ver BCC edg SCC Shortest	tion poi tex ge	nt /	edg	ge . 								 									:	 :	 	. 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA	tion poi tex ge Path Dijkatı	nt /	edg	ge .																	:	 	 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA Articular BCC ver BCC edg SCC Shortest	cion poi tex ge Path Dijkati SPFA	nt /	edg	ge																	•	 	 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA	tion poi tex ge Path Dijkatı	nt / ra .n-Fo	edg	ge																		 		. 4
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4	LCA h Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow	cion poi tex ge Path Dijkatı SPFA Bellma Floyd-	nt / ra .n-Fo Wars	edg ord shal	ge																		 	 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1	ion poi tex ge Path Dijkatı SPFA Bellma Floyd-	nt / ra .n-Fo Wars	edg ord shal	ge																			 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA	cion poi tex ge Path Dijkati SPFA Bellma Floyd- Max F Min-Ci	nt / ra .n-Fo Wars llow	edg	ge																			 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3	cion poi tex ge Path Dijkatı SPFA Bellma Floyd- Max F Min-Cı Min Co	nt / ra n-Fo Wars llow ut set M	edg ord (Dir Max	ge																			 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA	cion poi tex ge Path Dijkati SPFA Bellma Floyd- Max F Min-Ci	nt / ra n-Fo Wars llow ut set M	edg ord (Dir Max	ge																			 	
7 8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4	cion poi tex ge Path Dijkatı SPFA Bellma Floyd- Max F Min-Cı Min Co	nt / ra n-Fo Wars llow ut set M	edg ord (Dir Max	ge																			 	
7	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA	cion poi tex ge Path Dijkatr SPFA Bellma Floyd- Max F Min-Ci Min Cc Maxim	nt / nt / nn-Fo Wars low nut	edg ord shal (Din Max Bip	gge		Gra																	 	
7 8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA h Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori	cion poi tex ge Path Dijkath SPFA Bellma Floyd-' Max F Min-Co Min Co Maxim	nt / nt / na n-Fc Wars low ut nost M um	edg ord shal (Dir Max Bip	gge																			 	
7 8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 Strin 9.1 9.2 9.3	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori Trie	cion poi tex ge Path Dijkatr SPFA Bellma Floyd-' Max F Min-Ci Min-Ci Maxim	nt / raaFcc wars low uutuum	edg ord shal (Din Max Bips	gge		Gra																	 	
7 8	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5	LCA h Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori	cion poi tex ge Path Dijkatr SPFA Bellma Floyd-' Max F Min-Ci Min-Ci Maxim	nt / raaFcc wars low uutuum	edg ord shal (Din Max Bips	gge		Gra																	 	
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6 Strin 9.1 9.2 9.3 9.4 Geom	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori Trie Suffix An	cion poi tex ge Path Dijkath SPFA Bellma Floyd- Max F Min-Co Min Co Maxim	nt / raaFcc wars low uutuum	edg ord shal (Din Max Bips	gge		Gra																	 	
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 Strin 9.1 9.2 9.3 9.4	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori Trie Suffix Ar	cion poi tex ge	nnt /	edg bhal (Din Max Bip:	ge		dra																	 	
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6 Strin 9.1 9.2 9.3 9.4 Geom	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori Trie Suffix An	cion poi tex pe Path Dijkatr SPFA Bellma Floyd- Max F Min-Co Min Co Maxim	nt / / ca	edg	ge		Gra																	 	
9	Tree 7.1 Grap 8.1 8.2 8.3 8.4 8.5 8.6 Strin 9.1 9.2 9.3 9.4 Geom	LCA Articular BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 8.5.4 Flow 8.6.1 8.6.2 8.6.3 8.6.4 g KMP Z Algori Trie Suffix Ar	rion poi tex ge Path Dijkatr SPFA Bellma Floyd- Min-Co Min-Co Min-Co Maxim	nt /	edg	ge		dra.																	 	

1 Contest Setup

1.1 vimrc

```
1 set number
                    " Show line numbers
                     " Enable inaction via mouse
   set mouse=a
                      " Highlight matching brace
   set showmatch
   set cursorline
                     " Show underline
   set cursorcolumn "highlight vertical column
   filetype on "enable file detection
   syntax on "syntax highlight
                      " Auto-indent new lines
   set autoindent
   set shiftwidth=4 "Number of auto-indent spaces
set smartindent "Enable smart-indent
set smarttab "Enable smart-tabs
   set softtabstop=4 "Number of spaces per Tab
    " -----Optional-----
   set undolevels=10000 "Number of undo levels
   set scrolloff=5 "Auto scroll
   set hlsearch " Highlight all search results
   set smartcase "Enable smart-case search
   set ignorecase " Always case—insensitive set incsearch " Searches for strings incrementally
   highlight Comment ctermfg=cyan
   set showmode
   set encoding=utf-8
   set fileencoding=utf-8
31 scriptencoding=utf-8
```

1.2 bashrc

```
1 | alias g++="g++ -Wall -Wextra -std=c++11 -O2"
```

1.3 C++ template

```
#include <bits/stdc++.h>

using namespace std;

#define x first
#define y second

typedef long long int ll;
typedef pair<int, int> ii;

int main()
{
    return 0;
}
```

1.4 Java template

```
illimport java.io.*;
  import java.util.*;
  public class Main
       public static void main(String[] args)
           MyScanner sc = new MyScanner();
           out = new PrintWriter(new BufferedOutputStream(System.out));
           // Start writing your solution here.
           // Stop writing your solution here.
           out.close();
       public static PrintWriter out;
17
       public static class MyScanner
18
           BufferedReader br;
21
           StringTokenizer st;
           public MyScanner()
               br = new BufferedReader(new InputStreamReader(System.in));
           boolean hasNext()
               while (st == null || !st.hasMoreElements()) {
                       st = new StringTokenizer(br.readLine());
                   } catch (Exception e) {
                       return false;
               return true;
           String next()
               if (hasNext())
                   return st.nextToken();
               return null;
           int nextInt()
               return Integer.parseInt(next());
           long nextLong()
               return Long.parseLong(next());
```

```
double nextDouble()
58
59
                return Double.parseDouble(next());
           String nextLine()
63
               String str = "";
                try {
                    str = br.readLine();
66
               } catch (IOException e) {
67
                    e.printStackTrace();
68
69
                return str;
71
72
73 }
```

2 Reminder

- 1. Read the problem statements carefully. Input and output specifications are crucial!
- 2. Estimate the **time complexity** and **memory complexity** carefully.
- 3. Time penalty is 20 minutes per WA, don't rush!
- 4. Sample test cases must all be tested and passed before every submission!
- 5. Test the corner cases, such as 0, 1, -1. Test all edge cases of the input specification.

3 Useful code

3.1 Fast Exponentiation O(log(exp))

3.2 GCD

3.3 Extended Euclidean Algorithm

3.6.2 Set

```
set<T> s; // iterable
void clear();
size_t count(T val); // number of val in set
void erase(T val);
it find(T val); // = s.end() if not found
void insert(T val);
it lower_bound(T val); // = s.end() if not found, *it = <key, val>
it upper_bound(T val); // = s.end() if not found, *it = <key, val>
```

3.4 Leap year

```
| year % 400 == 0 | (year % 4 == 0 && year % 100 != 0)
```

3.5 Prime Generator

return qcd;

3.6 STL quick reference

3.6.1 Map

```
map<T1, T2> m; // iterable
void clear();
void erase(T1 key);
it find(T1 key); // <key, val>
void insert(pair<T1, T2> P);
T2& [](T1 key); // if key not in map, new key will be inserted with default val
it lower_bound(T1 key); // = m.end() if not found, *it = <key, val>
it upper_bound(T1 key); // = m.end() if not found, *it = <key, val>
```

3.6.3 Algorithm

```
// return if i is smaller than i
  comp = [&](const T& i, const T& j) -> bool;
  vector<T> v;
  bool any of(v.begin(), v.end(), [&](const T& i) -> bool);
  bool all of(v.begin(), v.end(), [&](const T& i) -> bool);
  void copy(inp.begin(), in.end(), out.begin());
  int count(v.begin(), v.end(), int val); // number of val in v
  it unique(v.begin(), v.end()); // it - v.begin() = size
  // after calling, v[nth] will be n-th smallest elem in v
  void nth element(v.begin(), nth it, bin comp);
  void merge(in1.begin(), in1.end(), in2.begin(), in2.end(), out.begin(),
  // include union, intersection, difference, symmetric difference(xor)
  void set union(in1.begin(), in1.end(), in2.begin(), in2.end(), out.
      begin(), comp):
  bool next permutation(v.begin(), v.end());
  // v1, v2 need sorted already, whether v1 includes v2
16 bool inclues(v1.begin(), v1.end(), v2.begin(), v2.end());
it find(v.begin(), v.end(), T val); // = v.end() if not found
it search(v1.begin(), v1.end(), v2.begin(), v2.end());
it lower_bound(v.begin(), v.end(), T val);
it upper bound(v.begin(), v.end(), T val);
21 bool binary search(v.begin(), v.end(), T val); // exist in v ?
void sort(v.begin(), v.end(), comp);
void stable sort(v.begin(), v.end(), comp);
```

- 3.6.4 String
- 4 Search
- 4.1 Binary Search
- **4.1.1** Find key
- 4.1.2 Upper / lower Bound
- 4.2 折半完全列舉
- 4.3 Two-pointer 爬行法
- 5 Basic data structure
- 5.1 1D BIT
- 5.2 2D BIT
- 5.3 Union Find
- 5.4 Segment Tree
- 6 Dynamic Programming
- 7 Tree
- 7.1 LCA
- 8 Graph
- 8.1 Articulation point / edge
- 8.2 BCC vertex
- 8.3 BCC edge
- 8.4 SCC
- 8.5 Shortest Path
- 8.5.1 Dijkatra
- 8.5.2 SPFA
- 8.5.3 Bellman-Ford
- 8.5.4 Floyd-Warshall
- 8.6 Flow
- 8.6.1 Max Flow (Dinic)
- 8.6.2 Min-Cut
- 8.6.3 Min Cost Max Flow
- 8.6.4 Maximum Bipartite Graph