

Since, it is an absolute function. So, it is continuous function. The graph of the function is as below:-

Chapter 10 Differentiability Ex 10.2 Q10

$$f(x) = e^{|x|}$$

$$f(x) = \begin{cases} e^{-x} & , x < 0 \\ e^{x} & , x \ge 0 \end{cases}$$

For continuity at x = 0

RHL =
$$\lim_{x \to 0^{+}} f(x)$$

= $\lim_{h \to 0} f(0+h)$
= $\lim_{h \to 0} e^{(0+h)}$
= $\lim_{h \to 0} e^{h}$
= e^{0}
RHL = 1
LHL = $\lim_{x \to 0^{-}} f(x)$
= $\lim_{h \to 0} f(0-h)$
= $\lim_{h \to 0} e^{-(0-h)}$
= $\lim_{h \to 0} e^{h}$
LHL = 1
 $f(0) = e^{0}$
= 1

Now,

$$LHL = f(0) = RHL$$

So, f(x) is continuous at x = 0

For differentiablility at x = 0

LHD
$$= \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{h \to 0} \frac{f(0 - h) - e^{0}}{(0 - h) - 0}$$

$$= \lim_{h \to 0} \frac{e^{-(0 - h)} - 1}{-h}$$

$$= \lim_{h \to 0} \frac{e^{h} - 1}{-h}$$

$$= 1$$

Since
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

RHD
$$= \lim_{h \to 0^+} \frac{f(x) - f(0)}{x - 0}$$
$$= \lim_{h \to 0} \frac{f(0 + h) - f(0)}{(0 + h) - 0}$$
$$= \lim_{h \to 0} \frac{e^x - e^0}{h}$$
$$= \lim_{h \to 0} \frac{e^h - 1}{h}$$
$$= 1$$

Since
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

Clearly,

So,

$$f(x)$$
 is not differentiable at $x = 0$.

Differentiability Ex 10.2 Q11

$$f\left(x\right) = \begin{cases} \left(x-c\right)\cos\frac{1}{\left(x-c\right)} & , x \neq c \\ 0 & , x = c \end{cases}$$

(LHL at
$$x = c$$
) = $\lim_{x \to c} f(x)$

$$\begin{aligned} & \underset{h \to 0}{\text{lim } f(-h)} \\ & = \underset{h \to 0}{\text{lim } (c - h - c) \cos \left(\frac{1}{c - h - c}\right)} \\ & = \underset{h \to 0}{\text{lim } - h \cos \left(-\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } - h \cos \left(\frac{1}{h}\right)} \\ & = 0 \\ \text{(RHL at } x = c) = \underset{h \to 0}{\text{lim } f(x)} \\ & = \underset{h \to 0}{\text{lim } f(c + h)} \\ & = \underset{h \to 0}{\text{lim } f(c + h)} \\ & = \underset{h \to 0}{\text{lim } f(c + h)} \\ & = \underset{h \to 0}{\text{lim } h \cos \left(\frac{1}{h}\right)} \\ & = 0 \\ \text{Since, LHL} = f(x) = \text{RHL at } x = c \\ \Rightarrow f(x) \text{ is continuous at } x = c \\ \text{(LHD at } x = c) = \underset{h \to 0}{\text{lim } \frac{f(c - h) - f(c)}{-h}} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h \to 0}{\text{lim } \cos \left(\frac{1}{h}\right)} \\ & = \underset{h$$

f(x) is differentiable and continuous at x = c. Differentiability Ex 10.2 Q12

$$f(x) = |\sin x| = \begin{cases} -\sin x , & x < n\pi \\ \sin x , & x \ge n\pi \end{cases}$$
For $x = m\pi$ (n even)

$$(LHD at $x = n\pi$) = $\lim_{x \to m^{-1}} \frac{f(x) - f(m\pi)}{x - n\pi}$

$$= \lim_{h \to 0} \frac{-\sin(n\pi - h) - \sin n\pi}{n\pi - h - n\pi}$$

$$= \lim_{h \to 0} \frac{\sinh - 0}{-h}$$

$$= -1$$

$$(RHD at $x = n\pi$) = $\lim_{h \to 0} \frac{\sin(n\pi + h) - \sin n\pi}{h}$

$$= \lim_{h \to 0} \frac{\sinh - h}{h}$$

$$= 1$$

$$(LHD at $x = n\pi$) \neq (n is odd)
$$(LHD at $x = n\pi$) = $\lim_{h \to 0} \frac{-\sin(n\pi - h) - \sin n\pi}{-h}$

$$= \lim_{h \to 0} \frac{-\sinh - h}{-h}$$

$$= 1$$

$$(RHD at $x = n\pi$) = $\lim_{h \to 0} \frac{\sin(n\pi + h) - \sin n\pi}{-h}$

$$= \lim_{h \to 0} \frac{-\sinh - 0}{h}$$

$$= \lim_{h \to 0} \frac{-\sinh - 0}{h}$$

$$= -1$$

$$(LHD at $x = n\pi$) \neq (n is not differentiable at n and n and n and n and n and n and n are n and n and n and n are n and n and n are n and n and n are n are n are n are n and n are $n$$$$$$$$$$$$$

$$f(x) = |\sin x|$$
 is not differentiable at $x = n\pi$

Since, cos(-x) = cos x

$$\Rightarrow$$
 $f(x) = \cos x$

$$\Rightarrow$$
 $f(x) = \cos |x|$ is differnetiable everywhere.

******* END ******