# Perfect Epidemics Seminar at University College Dublin

W S Kendall S B Connor

Warwick, York

20 October 2025





#### Introduction

Homage to Dublin (Book of Kells, 9th century)



Work on perfect simulation (CFTP) for epidemics, now being written up. WSK acknowledges the support of UK EPSRC grant EP/R022100.



Handout is on the web: use the QR-code or visit wilfridskendall.github.io/talks/PerfectEpidemics.

#### Plan of talk

*Gregory:* Is there any other point to which you would wish to draw my attention?

Holmes: To the curious incident of the dog in the night-time.

*Gregory:* The dog did nothing in the night-time.

Holmes: That was the curious incident.

from "The Adventure of Silver Blaze", Sir Arthur Conan Doyle (1892).

- Introduction to perfect simulation:
- A little theory about CFTP;
- $\odot$  Epidemics and the R-number;
- "Contact tracing" (inferring infection pattern if removals observed);
- Example with real data.

#### 1. A Visual Introduction to Perfect Simulation

- Propp & Wilson (1996) invented exact simulation / Coupling from the Past (CFTP) / perfect simulation;
- The term "perfect simulation" (WSK, 1998) was chosen to encourage you to be suspicious: perfection is never achieved!
- **3** Key ideas of "classic CFTP":
  - extend simulation backwards through time not forwards;
  - exploit monotonicity (couple maximal and minimal processes);
  - seek coalescence.
- Simplest possible example: random-walk-CFTP (can boost to use Ising model to do simple image reconstruction).

#### Classic CFTP for a simple random walk (I)

- Consider a simple random walk on  $0:9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ .
  - ${\mathbb P}\left[+1\ {\rm jump}\ \right]=p\in(0,1), \ {\rm while}\ {\mathbb P}\left[-1\ {\rm jump}\ \right]=1-p, \ {\rm except\ that}$
  - at state 9 replace the +1 jump by "staying still", **and**
  - at state 0 replace the -1 jump by "staying still".
- Onventional MCMC picks a starting point, then runs the simple random walk for long time till approximate equilibrium.



- **3** How long? One way to *estimate* this is to run two (or several?) coupled copies till they meet. If probability of meeting by time T is high, then deviation of  $X_T$  from equilibrium is statistically small;
- Generally not true that location at coupling is a draw from equilibrium.

#### Classic CFTP for a simple random walk (II)

• Start at top (9) and bottom (0) at negative time -T, run to time 0.



- If not coupled by time 0, than back-off to time -2T and repeat. NB: re-use randomness!
- May need to iterate back-off doubling several times.
- When coupled, top and bottom yield a common value at time 0.
- The common value (golden thread) is an exact draw from equilibrium!

# Some more CFTP theory

- What if monotonicity fails? or there isn't a sensible "maximal" process? Ideas (WSK, 1998):
  - cross-couple upper and lower envelope processes,
  - or dominate by amenable "dominating process" (time-reversible, can draw from equilibrium, can couple target processes below dominating process).
- Theoretical limits: in principle
  - ► Classical CFTP equivalent to uniform ergodicity (Foss & Tweedie, 1998);
  - ▶ *Dominated CFTP* achievable under geometric ergodicity (WSK, 2004);
  - ▶ Dominated CFTP can work in some **non**-geometrically ergodicity cases (SBC & WSK, 2007a; *nb* corrigendum SBC & WSK, 2007b).
- Dominated CFTP delivers perfect simulation for stable point processes (WSK & Møller, 2000);
- Detailed expositions: WSK (2005), Huber (2015). (Want to implement CFTP in R? see WSK, 2015.)

# 2. Perfect Epidemics: a challenge problem for CFTP

S-I-R deterministic epidemic: differential equation system for (s, i, r)

Susceptible:  $s' = -\alpha s i$ ,

Infected:  $i' = (\alpha s - \beta) i,$ 

**Removed:**  $r' = \beta i$ .

Constant total population s + i + r = n.

S-I-R stochastic epidemic: Markov chain (S, I, R) with transitions

**Infection:**  $S \to S - 1$ ,  $I \to I + 1$  at rate  $\alpha SI$ ,

**Removal:**  $I \rightarrow I-1$ ,  $R \rightarrow R+1$  at rate  $\beta I$ .

Both models share an unrealistic assumption: homogeneous mixing.

In contrast, Fraser et al (2023) deploy a UK model with  $N=10^6$  agents!

There are many important inferential questions (Cori & Kucharski, 2024).

# The first question asked about a new epidemic

"What is the R-number?"

The R-number is  $\alpha s_0/\beta$ : mean number of new infectives produced per infective at *start* of epidemic with initially  $s_0$  susceptibles.

Whittle (1955)'s threshold theorem: R-number  $\gg 1$  implies strongly positive chance of epidemic infecting significant proportion of the population.

*Wikipedia:* "The British-registered *Diamond Princess* was the first cruise ship to have a major [covid-19] outbreak on board, with the ship quarantined at Yokohama from 4 February 2020 for about a month. Of 3711 passengers and crew, around 700 people became infected and 9 people died."

Evidently  $\alpha \ s_0/\beta \gg 1$  – as was sadly later confirmed, a sorrow for us all.



#### Inference on the R-number

Important, because the R-number controls severity of epidemic. However:

- Modelling is tough. Either massive assumptions (homogeneous mixing)
   or very many parameters;
- Inference is really tough: hard to get information about infection times;
- It is all especially tough in early stages. Answers are most needed when hardly any information is available (a simplified example for a Warwick UG second-year statistics module shows how tough this can be);
- Markov chain Monte Carlo (MCMC) can be used (see next slide) but what about burn-in?
- Can we use perfect simulation?

# An easier question: "Contact Tracing"

The simplest possible variant of contact tracing: "When did the infections occur, supposing we only observe removals?" (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999; Gibson & Renshaw, 2001)

Important first step: think about generation of an unconditioned epidemic.

- Suppose n,  $\alpha$ ,  $\beta$  are known. Eventually removal times are observed, but unobserved infection times must be inferred.
- ② Visualize n timelines, along which incidents are scattered:
  - potential removals, activated if timeline is infected;
  - ▶ potential infections, activated if timeline is infected *and* if designated target timeline is lowest uninfected timeline.
- Opinion point processes of appropriate rates yield an S-I-R epidemic.
- First step: evolve whole S-I-R trajectory in *algorithmic time* (alter potential infections and removals using immigration-death in discrete algorithmic time).
- **Seric :** Result: *trajectory-valued chain*, unconditioned S-I-R as equilibrium.

#### From incidents to unconditioned epidemic trajectories (1/3)



Figure 1: Light-orange circles denote potential infections (arrows point upwards to targets); light-brown circles denote potential removals.

#### From incidents to unconditioned epidemic trajectories (2/3)



Figure 2: (a) *Infections* activate if on infected timeline and pointing to lowest uninfected timeline; (b) *Removals* activate if on infected timeline; remove lowest infected (purple disk).

#### From incidents to unconditioned epidemic trajectories (3/3)



Figure 3: A step in algorithmic time for the unconditioned epidemic simply involves replacing all original incidents by an entirely new set of incidents.

# Crucial technical point

- Updates in algorithmic time  $\tau$  are then (algorithmic-)time-reversible: so restriction to a subset S of state-space (activated / conditioned removals must occur precisely at the specified set of times) implies a new equilibrium which is the old equilibrium conditioned to lie in S.
- For later purposes it is convenient to stage the replacement as follows:
  - Replace removals ( $\mathcal{R}$ s);
  - 2 Re-sample timelines (though not times) of  $\mathcal{R}$ s;
  - **3** Replace infections ( $\mathcal{I}$ s).
- Re-express using continuously varying  $\tau$ . Process time runs over [0, T].
  - $\bullet \ \, \text{For}\, 2nT < \tau < (2n+1)T \text{, update old}\,\, \mathcal{R}\text{s with times in}\,\, (0,\tau-2nT);$
  - ② For  $\tau = (2n+1)T$ , resample timelines (not times) of  $\Re$ s;
  - $\textbf{ § For } (2n+1)T < \tau < (2n+2)T, \text{ update old } \mathcal{I}\text{s in } ((2n+2)T \tau, T).$
- Thus the original update is expressible as a (continuous) composition of updates, each of which satisfies detailed balance in equilibrium.
- The connection "restriction=conditioning" still holds.
- Crucially, re-sampling step 2 ensures composite evolution is irreducible over S! (So equilibrium under conditioning is unique.)

# Free evolution evolving in continuous algorithmic time



GIF MP4

# 3. Conditioning on observed removals

- The trajectory-valued chain is *dynamically reversible*, in *continuous algorithmic time*.
- Irreducibility is *vital* (otherwise equilibrium depends on starting point). Consequently:
  - conditioned removals must be able to change timeline (but not time of occurrence);
- Forbidding removal of observed removals, and forbidding creation of new activated removals, yields a modified chain whose invariant probability measure conditions on observed pattern of removals.
   Implications:
  - ▶ a removal can be introduced only if it doesn't activate;
  - ▶ a conditioned removal timeline can be altered only if it doesn't de-activate;
  - ▶ an infection cannot be removed if that action loses a conditioned removal;
  - ▶ an infection can be introduced only if no new observed removals result.
- Does this produce a *feasible* and suitably *monotonic* algorithm?
- Housekeeping details used to establish that monotonicity still works: *laziest feasible epidemic* (LFE) and *no-fly zone* (NFZ).

## Initial conditioned epidemic



Figure 4: Initial conditioned epidemic, with conditioned removals indicated using purple circles (and purple disks when non-target timelines are infected).

#### Conditional epidemic update



Figure 5: Epidemic updated under restriction: all conditioned removals remain activated, no new removals are activated. Green infections have been "perpetuated".

#### Laziest feasible epidemic (LFE)



Figure 6: LFE computed recursively working right-to-left: slowest sequence of infections (and perpetuated infections) generating all conditioned removals. Can be used to identify perpetuated infections.

#### LFE: construction details



- Intrinsic definition of LFE over [0,T): Slowest/lowest epidemic activating all re-marked  $\mathcal{C}$ s, amongst epidemics (varying  $I_{0-}$ ) (satisfying conditioning) formed from *subsets* of
  - the union of the set of new potential  $\mathcal{I}$ s, and
  - be the set of  $\mathcal{I}$ s from the *old* epidemic history (converted to  $^{\text{old}}z_i$ 's as  $\mathcal{P}$ s).
- Equivalent recursive definition eases proof of monotonicity:

$$\begin{array}{ll} x_{\pmb{k}} \ = \ ^{\mathrm{old}}z_{\pmb{k}} \vee \sup \ \Pi_{\mathrm{avail}}^{\inf,[1:\pmb{k}-1]<\pmb{k}} \left[0,\inf \ \Pi_{\mathcal{C}}^{\mathrm{rem},\pmb{k}}\right] & \mathrm{total} \ \mathrm{infected} = \pmb{k} \\ x_j \ = \ ^{\mathrm{old}}z_j \vee \sup \ \Pi_{\mathrm{avail}}^{\inf,[1:j-1]< j} \left[0,x_{j+1} \wedge \inf \ \Pi_{\mathcal{C}}^{\mathrm{rem},j}\right] & \mathrm{for} \ r \leq j < k \,, \\ x_j \ = \ \sup \ \Pi_{\mathrm{avail}}^{\inf,[1:j-1]< j} \left[0,x_{j+1} \wedge \inf \ \Pi_{\mathcal{C}}^{\mathrm{rem},j}\right] & \mathrm{for} \ 2 \leq j < r \,. \end{array}$$

#### No-fly zone (NFZ)



Figure 7: NFZ computed recursively working right-to-left: it traces a region of timelines such that unobserved removals are not activated if region not infected.

#### NFZ: construction details



- NFZ is union of one *shard* per  $y = \mathcal{R}_t^i \in \Pi_{\mathcal{R} \text{ avail}}^{\text{rem}}$  surviving first sweep:
  - $([0,t],r) \text{ for } r = \mathbf{i}, \dots, N,$
  - Set  $y_i = y$ : for u < i, so long as right-hand side of following equation does not involve infimum over empty set,

$$y_u \quad = \quad \inf \, \Pi_{\text{avail}}^{\inf,[1:u-1] < u} \left[ 0, \, {}^{\text{old}} z_u \wedge y_{u+1} \right] \, .$$

Then include  $([0,t^{\prime}],u)$  in shard, where  $t^{\prime}$  is time of infection  $y_{u}.$ 

Use the above expression to prove that the shard, and thus the entire NFZ, depends monotonically on the old epidemic history.

# 4. CFTP monotonicity



Full monotonicity (hence CFTP) follows by showing *new* epidemic history depends monotonically on LFE and NFZ.

## Conditioned evolution evolving in continuous algorithmic time



JIF MP4

If a new  $\mathcal{I}_t^{i < j}$  has i, j in infected zone then LFE is relevant; if i in infected zone and j in susceptible zone then NFZ is relevant.

# 5. Example

 Smallpox outbreak in a closed community of 120 individuals in Abakaliki, Nigeria (much studied! see page 125 of Bailey, 1975).

#### Assume

- first observed removal is also the first removal: under a plausible improper prior we can deduce the distribution of infectives  $I_{0-}$  at time 0;
- all removals are recorded;
- ▶ no further removals after last observed removal (makes life easier).
- Coding in *julia* (Bezanson *et al.*, 2017), animates (GIF or MP4) a perfect simulation of a draw from unobserved pattern of infections.





#### So what?

- What about accept-reject methods? (Simulations: CFTP is much better.)
- Why this emphasis on unobserved infections given fixed  $\alpha$  and  $\beta$ , when we need inference on R-number  $\alpha$   $n/\beta$  for *unknown*  $\alpha$  and  $\beta$ ?
- Good question. But a re-weighting argument allows us to get (unbiased) estimates based on *different*  $\alpha$  and  $\beta$ . The perfect simulation provides exact simulation-based computation to integrate out pattern of unobserved infections.
- So (next steps after SBC & WSK, 2025)
  - estimate likelihood test statistic for specified  $\alpha$  and  $\beta$ ;
  - ▶ Rao-Blackwell-ize: re-sample infection times given *I* at removals;
  - construct steepest ascent algorithm (in effect, variant of Robbins-Monro stochastic optimization) to find *maximum a posterior* estimates of  $\alpha$  and  $\beta$ ;
  - or even, with some computational effort, compute an approximation to the entire posterior joint density for  $\alpha$  and  $\beta$ !
- **Finally:** generalize to other suitable compartment models?



#### Conclusion

- If MCMC burn-in is a concern, try to build a perfect simulation!
- CFTP works even for significantly complex and relevant models of real-life phenomena.
- *Of course* detailed models resist perfect simulation (but it will be helpful to compare with a simpler model using fewer parameters).
- Experiments suggest CFTP out-competes non-naïve accept-reject.
- Still to be done: seek faster CFTP; statistical estimation of parameters, generalization to other compartment models.
- Thank you for your attention! **QUESTIONS?**



#### References I

- Bailey, N.T.J. (1975) The mathematical theory of infectious diseases and its applications, 2nd Ed. ed. Griffin.
- Ball, F.G. & Neal, P. (2023) The size of a Markovian SIR epidemic given only removal data. *Advances in Applied Probability*, **55**, 895–926.
- Ball, F.G. & Neal, P. (2025a) Fast likelihood calculations for emerging epidemics. Statistical Inference for Stochastic Processes, 28, 5.
- Ball, F.G. & Neal, P. (2025b) The number of individuals alive in a branching process given only times of deaths. *Advances in Applied Probability*, 1–36.
- Bensoussane, H. (2025) Bayesian Individual-level Epidemic Models: Accounting for Missing Data and Utilising Covariate Information (PhD No. January).
- Bezanson, J., Edelman, A., Karpinski, S., & Shah, V.B. (2017) Julia: A Fresh Approach to Numerical Computing. *SIAM Review*, **59**, 65–98.
- Cori, A. & Kucharski, A. (2024) Inference of epidemic dynamics in the COVID-19 era and beyond. Epidemics, 48, 100784.
- Diaconis, P. (2009) The Markov Chain Monte Carlo Revolution. *Bulletin of the American Mathematical Society*, **46**, 179–205.
- Donnelly, P. & Kurtz, T.G. (1996) A countable representation of the Fleming-Viot measure-valued diffusion. *The Annals of Probability*, **24**, 698–742.



#### References II

- Doyle, Sir Arthur Conan (1892) The Adventure of Silver Blaze. The Strand Magazine, pp. 645ff.
- Foss, S.G. & Tweedie, R.L. (1998) Perfect simulation and backward coupling. Stochastic Models, 14, 187–203.
- Fraser, C. & Others (2023) OpenABM-Covid19: Agent-based model for modelling the Covid-19 and Contact-Tracing.
- Gibson, G.J. & Renshaw, E. (1998) Estimating parameters in stochastic compartmental models using Markov chain methods. *Mathematical and Medical Biology*, 15, 19–40.
- Gibson, G.J. & Renshaw, E. (2001) Likelihood estimation for stochastic compartmental models using Markov chain methods. *Statistics and Computing*, 11, 347–358.
- Huber, M.L. (2015) Perfect Simulation. Boca Raton: Chapman; Hall/CRC.
- Johnson, V.E. (1996) Studying convergence of Markov chain Monte Carlo algorithms using coupled sample paths. *Journal of the American Statistical Association*, 91, 154–166.
- Liggett, T.M. (1985) Interacting Particle Systems, Grundlehren der mathematischen wissenschaften. Berlin, Heidelberg: Springer Berlin.
- O'Neill, P.D. & Roberts, G.O. (1999) Bayesian Inference for Partially Observed Stochastic Epidemics. Journal of the Royal Statistical Society Series A: Statistics in Society, 162, 121–129.
- Propp, J.G. & Wilson, D.B. (1996) Exact sampling with coupled Markov chains and applications to statistical mechanics. *Random Structures and Algorithms*, 9, 223–252.



#### References III

- Rocklöv, J., Sjödin, H., & Wilder-Smith, A. (2020) COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. *Journal of Travel Medicine*, **27**, 7 pp.
- SBC (2020) Omnithermal Perfect Simulation for Multi-server Queues. ACM Transactions on Modeling and Computer Simulation, 30, 1–15.
- SBC & WSK (2007b) Perfect simulation for a class of positive recurrent Markov chains (corrigendum). *Annals of Applied Probability*, **17**, 1808–1810.
- SBC & WSK (2007a) Perfect simulation for a class of positive recurrent Markov chains. *Annals of Applied Probability*, **17**, 781–808.
- SBC & WSK (2015) Perfect simulation of M/G/c queues. Advances in Applied Probability, 47, 1039–1063.
- SBC & WSK (2025) Perfect Epidemics.
- Sigman, K. (2011) Exact simulation of the stationary distribution of the FIFO M/G/c queue. Journal of Applied Probability, 48, 209–213.
- Whittle, P. (1955) The outcome of a stochastic epidemic—a note on Bailey's paper. *Biometrika*, **42**, 116–122.
- WSK (1998) Perfect Simulation for the Area-Interaction Point Process. *Probability towards 2000* (Accardi, L. & Heyde, C.C. eds). Springer-Verlag, pp. 218–234.



#### References IV

- WSK (2004) Geometric ergodicity and perfect simulation. *Electronic Communications in Probability*, **9**, 140–151.
- WSK (2005) Notes on Perfect Simulation. Singapore: World Scientific, pp. 93–146.
- WSK (2015) Introduction to CFTP using R. Stochastic geometry, spatial statistics and random fields, Lecture notes in mathematics. Springer, pp. 405–439.
- WSK & Møller, J. (2000) Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. *Advances in Applied Probability*, **32**, 844–865.



# Image information

| Image                                               | Attribution                                    |              |
|-----------------------------------------------------|------------------------------------------------|--------------|
| Book of Kells Classic CFTP for a simple random walk | Huber Gerhard<br>Result of code written by WSK | CC BY 4.0    |
| Diamond Princess Epidemic CFTP images and animation | Alpsdake<br>Result of code written by WSK      | CC BY-SA 4.0 |

#### Previous instances of this talk

| Date     | Title                   |                                   |      | Location     |
|----------|-------------------------|-----------------------------------|------|--------------|
| 19/04/24 | Perfect Epidemics       | Short Research Talk               | 12mn | Warwick      |
| 15/05/24 | McMC+Perfect Simulation | Graduate Seminar, Aristotle Univ. | 50mn | Thessaloniki |
| 17/01/25 | Perfect Epidemics       | Applied Probability Seminar       | 50mn | Warwick      |
| 27/06/25 | Perfect Epidemics       | UK Research Network Stochastics   | 45mn | Liverpool    |
| 20/10/25 | Perfect Epidemics       | Seminar                           | 50mn | Dublin       |

#### Other technical information

#### Software used in computations

| Software            | Version   | Branch                        | Last commit                    |
|---------------------|-----------|-------------------------------|--------------------------------|
| quarto              | 1.6.39    | _                             |                                |
| Running under julia | 1.12.0    | _                             |                                |
| EpidemicsCFTP       | 2.2.532   | develop                       | Tue Jul 8 17:13:42 2025 +0100  |
| EpidemicsUtilities  | 0.1.2.177 | main                          | Fri Sep 26 15:35:26 2025 +0100 |
| This quarto script  | 0.2.2.725 | 2025-10-09-Dublin-preparation | Tue Oct 14 18:01:39 2025 +0100 |

# **Project information**

| Version: | 0.2.2.733 (develop)                                                     |  |
|----------|-------------------------------------------------------------------------|--|
| Author:  | Wilfrid Kendall <w.s.kendall@warwick.ac.uk></w.s.kendall@warwick.ac.uk> |  |
| Date:    | Fri Oct 24 17:43:38 2025 +0100                                          |  |

#### Comment:

Minor tweaks.

