

Data

 Dataset had no missing values and consists of:

> 30 features Diagnosis Label: M or B 569 samples

- Uneven Dataset:
 357 Benign Samples
 212 Malignant Samples
- Feature Engineering: Malignant Tumours = 1

EDA: Outliers I

Top boxplot: all features

- Highlights the importance of scaling
- 'area_mean' and 'area worst': values vary greatly between malignant and benign tumours

Bottom boxplot: omission of radius, perimeter and texture features

- Quite a few outliers for all features
- Range of values for malignant tumours are greater than the benign counterpart

Boxplot of features excluding the radii, perimeter, daignosis, and texture features

EDA: Outliers II

Top boxplot: perimeter

- Echoes greater range for malignant tumours than benign
- Malignant tumours have higher number of outliers

Bottom boxplot: radius and texture

- Mean texture and 'texture worst' have similar values for both malignant and benign tumours
- Values for the radius of tumours have more pronounced difference between the two diagnosis

Boxplot of perimeter details of tumours

Boxplot of radii and texture of tumours

EDA: Area, Concavity, and Compactness

- Area, concavity, and the compactness measures all the samples are positively skewed (right skewed).
- This means that at least 9 out of the 30 features show skewness:
 - ☐ logarithmic scaling is a possible option because of the skewness
- They have a long tail which illustrates the large range of values we observed in the boxplots.
- The maximum y values range from 200 to 400 confirming again the need to scale these values before modelling.

EDA: Perimeter, Fractal Dimensions, and Radius

- Perimeter, fractal dimensions, and the radius shows somewhat symmetrical distributions
- The same observations are notes in terms of the large range of values
- As these 9 features don't shows significant skew, standardization is a good scaling option

EDA: Symmetry, Smoothness, and Texture

- Symmetry, smoothness and texture show very similar distributions to the perimeter, fractal dimensions, and radius: symmetrical spreads
- The same observations are notes in terms of the large range of values
- As 18 of the 30 features show symmetrical spreads, the StandardScaler is used predominantly for scaling.

EDA: Correlation I

- The following features were dropped as they had low correlations
 - 1. Fractal Dimensions
 - 2. Smoothness
 - 3. Texture
- The linear correlations between features in the hopes of reducing the number of features
- Aim: identify two or more features that are perfectly correlated and drop one or more of these

Heatmap of the correlation between the different features.																		
area_mean	1	0.8	0.96	0.5	0.21	0.39	0.82	0.37	0.72		0.21	0.51	0.99	0.73	0.96	0.99	0.73	0.96
area_se		1	0.81	0.46	0.28	0.28		0.42	0.54	0.62	0.27	0.39		0.94			0.95	0.76
area_worst	0.96		1	0.51	0.2	0.44		0.34	0.75		0.19	0.54	0.94		0.98	0.94	0.75	0.98
compactness_mean	0.5	0.46	0.51	1	0.74	0.87	0.83	0.64	0.82	0.88	0.57	0.82	0.56	0.55	0.59	0.51	0.5	0.54
compactness_se	0.21	0.28	0.2	0.74	1	0.68	0.49		0.48			0.64	0.25	0.42	0.26	0.21	0.36	0.2
compactness_worst	0.39	0.28	0.44	0.87		1	0.67	0.45	0.8		0.48	0.89	0.46	0.34	0.53	0.41	0.29	0.48
concave points_mean	0.82		0.81	0.83	0.49		1	0.62	0.91	0.92	0.44		0.85		0.86	0.82		0.83
concave points_se	0.37	0.42	0.34	0.64	0.74	0.45	0.62	1	0.6	0.68	0.77	0.55	0.41	0.56	0.39	0.38	0.51	0.36
concave points_worst		0.54	0.75	0.82	0.48		0.91	0.6	1	0.86	0.44	0.86		0.55	0.82		0.53	0.79
concavity_mean		0.62		0.88	0.67		0.92	0.68	0.86	1		0.88		0.66		0.68	0.63	0.69
concavity_se	0.21	0.27	0.19	0.57		0.48	0.44	0.77	0.44		1	0.66	0.23	0.36	0.23	0.19	0.33	0.19
concavity_worst	0.51	0.39	0.54	0.82	0.64	0.89		0.55	0.86	0.88	0.66	1	0.56	0.42	0.62	0.53	0.38	0.57
perimeter_mean	0.99		0.94	0.56	0.25	0.46	0.85	0.41	0.77		0.23	0.56	1		0.97	1		0.97
perimeter_se		0.94	0.73	0.55	0.42	0.34		0.56	0.55	0.66	0.36	0.42		1			0.97	0.7
perimeter_worst	0.96		0.98	0.59	0.26	0.53	0.86	0.39	0.82		0.23	0.62	0.97		1	0.97		0.99
radius_mean	0.99	0.74	0.94	0.51	0.21	0.41	0.82	0.38	0.74		0.19	0.53	1	0.67	0.97	1	0.68	0.97
radius_se		0.95	0.75	0.5	0.36	0.29		0.51	0.53	0.63	0.33	0.38		0.97			1	0.72
radius_worst	0.96	0.76	0.98	0.54	0.2	0.48	0.83	0.36	0.79		0.19	0.57	0.97	0.7	0.99	0.97	0.72	1
	area_mean	area_se	area_worst	compactness_mean	compactness_se	compactness_worst	concave points_mean	concave points_se	concave points_worst	concavity_mean	concavity_se	concavity_worst	perimeter_mean	perimeter_se	perimeter_worst	radius_mean	radius_se	radius_worst

EDA: Correlation II

- Pair plots and the heatmap helped identify linear correlations between features such as:
 - ı. Mean area
 - 2. Mean perimeter
 - 3. Mean concavity
 - 4. Mean radius
- We notice that even features with high Pearson correlation coefficients, when plotted they show polynomial or even an exponential regression:
 - ☐ Blue line illustrates a linear fit
 - ☐ Orange line shows a much better fit with a non-linear regression model
- The pair plots also highlight that the 'worst' features of the mean, radius, perimeter, concavity, and compactness didn't any clear linearity: they showed similar spread to area mean vs concavity mean
- Conclusion: Linear Regression Model for mean area gave R² = 0.439 so it was decided to not drop any features at this time.

Regression plot of mean area of tumours with change in the concavity

Modelling: Logistic Regression Model

- Two logistic regression models were created with and without scaling: scaled model performed best.
- Table (on the right) summarizes parameters of the best model
- Ridge Regression was determined most suitable through GridSearch: this implies that perhaps quite a few of the parameters have similar influence on the classification

Scaling	Parameters	MCC	AOC
Standardized	C = 0.01 Penalty = 12 Solver = liblinear	0.955	0.999

Modelling: K Nearest Neighbor

- 7 K Nearest Neighbor models were developed with varying number of neighbor values.
- StandardScaler was used to standardize the dataset
- GridSearch with 10 fold cross validation determined 3 as the best number of neighbors, and the optimal hyperparameters are stated in the table on the right.

Scaling	Parameters	MCC	AOC
Standardized	Leaf size = 1 N neighbors = 3 p = 2	0.97	0.999

Modelling: SVC

- 4 Support Vector Classifier models were developed with and without scaling.
- The best model was determined for non-scaled data using Grid Search with 10-fold cross validation.
- Logarithmic scaling and standardization was used but neither of them yielded a model with high area under the ROC.

Scaling	Parameters	MCC	AOC
none	C = 1 Gamma = 0.0001 Kernel = rbf	0.849	0.971

Modelling: Random Forest Classifier

- 6 different Random Forest Classifiers were developed, and hyperparameters were tuned using Grid Search and Bayesian Optimization
- Feature Importance were identified and the models were redone by dropping the features with less than 1% importance:
 - ☐ MCC improved from 0.940 to 0.954
 - AOC improved from 0.997 to 0.998
 - ☐ False positive rate fell below false negative rate
- All features were decided to be kept for the best model as it ensured higher false positive rate than false negative (details below)

Parameters	MCC	AOC
n estimators = 23 Max depth = 4	0.940	0.997

Modelling: Gradient Boosting Classifier

- Hyperparameter tuning had mixed results:
 - ☐ improved the MCC from 0.949 to 0.95
 - ☐ AOC dropped from 0.995 to 0.949
- Concave points 'worst' comes up as an important feature which concurs the findings from the random forest classifier
- Perimeter worst is also identified as an important feature

Parameters	MCC	AOC
learning_rate = 0.088, max_depth = 8, n_estimators = 471, subsample = 0.9533	0.956	0.949

Modelling: XGBoost

- Hyperparameter tuning had mixed results:
 - ☐ Reduced from 0.955 to 0.894
 - ☐ AOC dropped from 0.997 to 0.992
- Hyperparameter tuned model had 0.98 recall, and also had higher false positive than false negative rates, so deemed the best model (details below)
- Radius, concave points and perimeter are again identified as important features.

• Perimeter worst is also identified as an important feature

Parameters Parameters	MCC	AOC
reg lambda= 3, reg alpha = 0.5, objective =	0.894	0.992
'reg:squarederror',		
N estimators= 500, min child weight= 15, max		
depth= 10, learning rate = 0.1, gamma = 3,		
colsample_bytree= 0.8		

0.30 tsom string 0.25 0.05 0.00 0.00

Important Features

- Mean Concave Points are plotted the four other important features (four plots on the left)
- the bunched-up orange contours illustrate that benign tumours have clear range of 'safe' values
- from the blue, spreadout contour lines it can be inferred that malignant tumours can vary in sizes: the lower range of malignant values are higher than the means of benign values for each feature

Conclusions

- Best Model: KNN with StandardScaler
- Parameters: Leaf size = 1; N neighbors = 3; p = 2
- Confusion Matrix

$$\begin{bmatrix} 50 & 2 \\ 0 & 91 \end{bmatrix}$$

Classification Report	Precision	Recall	F1 Score	Support
Benign	1.0	0.96	0.98	52
Malignant	0.98	1	0.99	91
Accuracy			0.99	143
Macro Avg	0.99	0.98	0.98	143
Weighted Avg	0.99	0.99	0.99	143