Manual de uso do HighFrame

Artêmio Oliveira de Andrade Junior Felipe Oliveira Carvalho Saulo Eduardo Galilleo Souza dos Santos Tarcísio da Rocha Victor Machado Pasquialino

Sumário

Li	Lista de Figuras			
1	Mai	nual de Uso	1	
	1.1	Requisitos para instalação	1	
	1.2	Download e Configuração	1	
	1.3	Iniciando os serviços	1	
	1.4	Utilização	2	
	1.5	Comanche WebServer	8	

Lista de Figuras

1.1	Tela inicial do HighFrame Designer
1.2	Menu File
1.3	Submenu New
1.4	Submenu Open
1.5	Caixa para procura de arquivos
1.6	Menu Edit
1.7	Tela de criação de uma Arquitetura
1.8	Elementos de um componente
1.9	Tela de criação de uma Subarquitetura
1.10	Bind entre componentes
1.11	Bind entre subarquiteturas
1.12	Arquitetura distribuída do Comanche WebServer montada no HighFrame
	Designer

Capítulo 1

Manual de Uso

Nesta seção será demonstrada a correta configuração inicial para o uso do HighFrame Designer e um tutorial para sua utilização.

1.1 Requisitos para instalação

Para utilizar o HighFrame é preciso ter instalado o JDK do Java SE versão 1.7.0 ou superior. Caso não possua o JDK no seu equipamento ou não esteja atualizado efetue o download do instalador do JDK no site da Oracle http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk7-downloads-1880260.html. O HighFrame designer pode ser executado nas plataformas Linux e Windows. Necessário apontar a variável de ambiente JAVA HOME para o diretório de instalação do JDK.

Recomenda-se o uso de Processador Dual Core ou superior com no mínimo de 2 GB de memória RAM, disco rígido de 100 GB e sistema operacional Windows 7 ou 8 ou Linux.

1.2 Download e Configuração

O download do HighFrame Designer, HighFrame Client e HighFrame Server podem ser obtidos no seguinte endereço: https://github.com/saulogalilleo/HighFrame/wiki/HighFrame

1.3 Iniciando os serviços

Primeiramente é necessário executar o HighFrame Server. Para isso, abra o console de comandos (prompt ou shell) e entre no diretório onde os arquivos foram descompactados.

1.4 UTILIZAÇÃO 2

Em seguida digite o seguinte comando: java -jar HighFrameServer.jar

O próximo módulo distribuído a ser executado é o HighFrame Client. Abra um novo console de comandos (prompt ou shell) e de dentro do diretório onde os arquivos do HighFrame Client foram descompactados execute o seguinte comando: java -jar HighFrameServer.jar

Agora iremos iniciar o HighFrame Designer, após descompactar é necessário realizar a configuração do arquivo properties.xml o código 1.1 apresenta este arquivo.

Código Fonte 1.1: Properties.xml

Neste arquivo será preciso informar os valores referente aos seguintes parâmetros de configuração:

- subArchPath: Caminho do diretório para armazenamento das subarquiteturas;
- deployPath: Caminho onde serão gerados os arquivos para o deployment;
- componentServerAddress: Endereço do servidor remoto de onde o HighFrame Designer irá obter a lista de componentes genéricos.
- componentsPath: Caminho do diretório onde o HighFrame Designer realizará o download dos componentes genéricos no formato XML.

Para os parâmetros subArchPath e DeployPath podem ser criadas novas pastas vazias. Após a configuração do arquivo properties.xml abra uma nova janela do console (prompt ou shell) e digite o seguinte comando: java -jar HighFrameDesigner.jar

1.4 Utilização

Serão demonstradas nesta seção algumas funcionalidades da IDE e suas respectivas telas e os significados dos elementos nelas contidas.

Ao abrir o HighFrame Designer a primeira tela que será mostrada é a tela contida na figura 1.1.

 $_{
m UTILIZAÇ\~{AO}}$

Figura 1.1: Tela inicial do HighFrame Designer

Figura 1.2: Menu File

- Menu **File** (Figura 1.2)
- 1. Novo projeto
- 2. Abrir projetos salvos
- 3. Executar o deployment do projeto atual
- 4. Fechar o projeto atual
- 5. Salvar o projeto atual
- 6. Sair do programa
- Opção **New** (Figura 1.3)
- 1. Criar nova arquitetura
- 2. Criar nova subarquitetura

 $_{
m UTILIZA}$ ÇÃO $_{
m 4}$

Figura 1.3: Submenu New

Figura 1.4: Submenu Open

- Opção **Open** (Figura 1.4)
- 1. Abrir arquitetura pré-existente
- 2. Abrir subarquitetura pré-existente

Ao escolher qualquer uma das opções acima o usuário deverá selecionar numa caixa igual a da figura 1.5 o arquivo de deseja abrir para trabalhar.

Figura 1.5: Caixa para procura de arquivos

 $_{
m UTILIZAÇ\~{AO}}$ 5

Para executar o deploy de um projeto é preciso que o projeto desejado esteja aberto no HighFrame Designer e a opção Execute Deploy (item 3 da figura 1.2) seja selecionado. A partir dessa ação uma mensagem de sucesso ou erro será mostrada ao usuário a depender se o deploy foi executado corretamente.

Figura 1.6: Menu Edit

- Menu **Edit** (Figura 1.6)
- 1. Selecionar pasta onde se encontram as subarquiteturas
- 2. Selecionar pasta onde será executado o deploy
- 3. Exportar modelo da arquitetura como imagem

Figura 1.7: Tela de criação de uma Arquitetura

- Elementos de uma Arquitetura (Figura 1.7)
- 1. Identificação da subarquitetura
- 2. Nome da subarquitetura
- 3. Endereço da subarquitetura

 $_{
m UTILIZAÇ\~{AO}}$ 0

- 4. Modelo de componente da subarquitetura
- 5. Remover subarquitetura
- 6. Lista de componentes pré-existentes
- 7. Lista de subarquiteturas pré-existentes

Figura 1.8: Elementos de um componente

- Elementos de um Componente (Figura 1.8)
- 1. Identificação do componente
- 2. Remover componente
- 3. Interface provida
- 4. Interface requerida

A criação de uma subarquitetura, como é mostrado na figura 1.9 segue os mesmos princípios da criação de uma arquitetura, com o diferencial de que apenas o menu de escolha de componentes fica habilitado.

Para adicionar uma ligação entre componentes é preciso clicar e manter pressionado o botão esquerdo do mouse na intreface provida (item 3 da figura 1.8) do componente desejado e arrastar o cursor até a interface requerida (item 4 da figura 1.8) do outro componente desejado e soltar o botão esquerdo do mouse.

A ligação entre subarquiteturas é feita de forma análoga as ligações entre componentes como vemos na figura 1.11.

1.5 UTILIZAÇÃO 7

Figura 1.9: Tela de criação de uma Subarquitetura

Figura 1.10: Bind entre componentes

- Elementos de um bind entre Componentes (Figura 1.10)
- 1. Identificação da interface
- 2. Desfazer bind para a interface selecionada
- 3. Representação gráfica do bind

Para desfazer uma ligação entre componentes ou subarquiteturas é preciso primeiramente selecionar a interface da ligação que se deseja remover, pode ser tanto a provida quanto a requerida, e depois clicar na opção *UnmakeBind* (item 2 da figura 1.10).

1.5 COMANCHE WEBSERVER 8

Figura 1.11: Bind entre subarquiteturas

1.5 Comanche WebServer

Apresentamos nesta seção um exemplo da composição de uma arquitetura distribuída com o HighFrame Designer. Este exemplo é baseado no *Comanche Web Server* e apresenta também componentes genéricos definidos com o HighFrame. O *Comanche Web Server* é um simples servidor web composto pelos seguintes componentes:

- Receiver Componente responsável pelo recebimento das requisições HTTP de entrada;
- Shceduler Componente responsável pelo escalonamento das requisições HTTP para análise;
- Analyzer Componente que efetua a análise da requisições HTTP;
- Logger Componente que registra as requisições de entrada;
- Dispatcher Componente responsável pela interpretação das requisições HTTP de entrada;
- FileHanler Componente que realiza a manipulação da solicitação de um arquivo;
- ErrorHandler Componente responsável pelo tratamento de erros.

O uso de anotações para definição de componentes genéricos que serão transformados em componentes específicos é realizado através do modelo de programação Fraclet. Um exemplo do uso de anotações referente as interfaces fornecidas em um nível independente de modelo de componentes é apresentada no código fonte 1.2.

```
1 @Component (provides = @Interface (name = "r", signature = Runnable. class)
 2 public class RequestReceiver implements Runnable {
 3
   private final Logger log = getLogger("comanche");
 4
5
 6
   private int port;
 7
8
   @Requires
9
   private Scheduler s;
10
11
    @Requires
|12|
   private RequestHandler rh;
13 . . .
```

Código Fonte 1.2: Definição de interfaces fornecidas

Neste código fonte o componente RequestReceiver foi definido através da anotação @Component. Este componente tem uma interface provida Runnable, demarcada através da anotação @Interface. Assim como, define duas interfaces requeridas através da anotação @Requires.

Com o HighFrame Designer foi possível montar uma arquitetura distribuído do Comanche WebServer comforme apresentado na figura.

Figura 1.12: Arquitetura distribuída do Comanche WebServer montada no HighFrame Designer

O usuário monta a arquitetura do sistema distribuídos baseado em componentes em alto nível, não preocupando-se com particularidades de comunicação entre objetos distribuídos, deployment distribuídos e interoperabilidade entre componentes heterogêneos. Para o modelo apresentado podemos ter transformações de componentes para o modelo OpenCom em um nó e para o modelo Fractal em outro nó.