

主讲人 :正点原子团队

硬件平台:正点原子ATK-DLRV1126开发板

版权所有:广州市星翼电子科技有限公司

资料下载: www.openedv.com/docs/index.html

教学平台: www.yuanzige.com

天猫店铺: zhengdianyuanzi.tmall.com

技术论坛: www.openedv.com/forum.php

公众平台:正点原子

■ 开源软件Netron的基本使用

- 1,初识Netron
- 2,Netron的安装
- 3,Netron可视化模型

1、初识Netron

Netron是微软推出的一款可视化模型结构神器,可用于查看各种经典的卷积神经网络结构。Netron支持查看多种深度学习框

架导出的模型(包括RKNN模型),它是轻量化的,操作起来非常简单快捷,功能非常强大!Netron支持的深度学习框架下

的网络模型如下表:

深度学习框架	网络模型文件
ONNX	onnx、.pb、.pbtxt
TensorFlow Lite	.tflite
Caffe	.caffemodelprototxt
Keras	.h5 .keras
Darknet	.cfg
PaddlePaddle	model
nenn	.param、.bin
MNN	.mnn
Core ML	.mlmodel
RKNN	.rknn
MXNet	.model - symbol.json.json
MindSpore Lite	.ms、.mindir
TNN	.tnnproto
Barracuda	.nn
Tengine	.tmfile
CNTK	.model .cntk
TensorFlow.js	.pb、.json
Caffe2	.pb、.pbtxt
UFF	.uff

Netron稳定支持的网络模型

1、初识Netron

深度学习框架	网络模型文件
PyTorch	.pt、.pth
TensorFlow	.pb, .meta, .pbtxt, .ckpt, .index
TorchScript	.pt、.pth
OpenVINO	.xml
Torch	.t7
Vitis AI	.pb
kmodel	. kmodel
Arm NN	.armnn
BigDL	.bigdl、.model
Chainer	.npz, .h5
Deeplearning4j	.zip
MediaPipe	.pbtxt
MegEngine	.mge
ML.NET	.zip
scikit-learn	.pkl

Netron实验性支持的网络模型

注意:

随着时间的推移以及Netron的更新,实验性支持的网络模型可能会变成稳定支持的模型,Netron可能会继续支持更多的网络模型。

2、Netron的安装

Netron的github官网可参考: https://github.com/lutzroeder/Netron

- ①访问在线网页版本(需要PC联网)
- ② 安装Windows版本Netron: 下载和安装Netron-Setup-7.2.5.exe(推荐选择该方式)
- ③ 安装Linux版本Netron(推荐选择该方式):

```
// 在线安装Netron的方法(不推荐)
sudo apt update
                                  // 更新源
sudo apt install snapd
                                  // 安装snapd
sudo snap install netron
                                  // 安装Netron
                                  // 打开Netron
netron
// 离线安装/打开Netron的方法(推荐)
// 先把Netron-7.2.5.AppImage文件下载下来,拷贝到Ubuntu目录下,执行如下命令即可打开Netron
chmod a+x Netron-7.2.5.AppImage
                                  // 设置文件为可执行权限
./Netron-7.2.5.AppImage
                                  // 打开Netron
```


2、Netron的安装

Netron的github官网可参考: https://github.com/lutzroeder/Netron

④ Python服务版本(需要PC联网):

```
# 安装Netron(注意是在哪个虚拟环境下安装的!)
python -m pip install netron
# 或者使用如下命令安装Netron(可以指定清华源来安装,注意是在哪个虚拟环境下安装的!)
pip install netron -i https://pypi.tuna.tsinghua.edu.cn/simple

# 然后编写如下Python代码即可使用Netron打开网络模型文件(./ssd_mobilenet_v1_coco_2017_11_17.pb就是要打开的模型文件的路径)
import netron
model_path = "./ssd_mobilenet_v1_coco_2017_11_17.pb"
netron.start(model_path)
```


3、Netron可视化模型

- ①简单使用Netron来查看各种深度学习框架下导出的模型(包括RKNN模型)
- ② 注意, Netron无法查看通过RKNN Toolkit加密后的模型

版权所有: 广州市星翼电子科技有限公司

天猫店铺: https://zhengdianyuanzi.tmall.com