Problem Set 9: Due Wednesday, February 28

Problem 1: Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by letting $T(\vec{v})$ be the result of first projecting \vec{v} onto the line y = 3x, and then projecting the result onto the line y = 4x. Explain why T is a linear transformation, and then calculate [T].

Problem 2: Let

$$A = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{pmatrix}$$

- a. Show that $A \cdot A = A$ by simply computing it.
- b. Find an example of $\vec{w} \in \mathbb{R}^2$ such that $A = [P_{\vec{w}}]$.
- c. By interpreting the action of A geometrically, explain why you should expect that $A \cdot A = A$.

Problem 3: Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by letting $T(\vec{v})$ be the point on the line y = x + 1 that is closest to \vec{v} . Is T is a linear transformation? Explain.

Problem 4: Let $\vec{w} \in \mathbb{R}^2$ be nonzero, and let $W = \operatorname{Span}(\vec{w})$. Define $F_{\vec{w}} \colon \mathbb{R}^2 \to \mathbb{R}^2$ by letting $F_{\vec{w}}(\vec{v})$ be the result of reflecting \vec{v} across the line W. Show that $F_{\vec{w}}$ is a linear transformation and determine the standard matrix $[F_{\vec{w}}]$.

Hint: Make use of projections. How can you determine $F_{\vec{w}}(\vec{v})$ using \vec{v} and $P_{\vec{w}}(\vec{v})$?

Problem 5: Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by letting $T(\vec{v})$ be the result of first reflecting \vec{v} across the x-axis, and then reflecting the result across the y-axis.

- a. Compute [T].
- b. The action of T is the same as a certain rotation. Explain which rotation it is.

Problem 6: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation, and let $r \in \mathbb{R}$. We know from Proposition 2.4.8 that $r \cdot T$ is a linear transformation. Show that if

$$[T] = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

then

$$[r\cdot T] = \begin{pmatrix} ra & rb \\ rc & rd \end{pmatrix}.$$

In other words, if we define the multiplication of a matrix by a scalar as in Definition 3.1.14, then the standard matrix of $r \cdot T$ is obtained by multiplying every element of [T] by r.