Metody numeryczne zadanie 1

Bartosz Kucypera

19 listopada 2023

Niech $A \in \mathbb{R}^{N \times N}$ silnie diagonalnie dominującą macierzą w postaci Hessenberga Niech s.d.d. = silnie dominująca diagonalnie.

Algorytm wyznaczania rozkładu LU dla A

Implementacja algorytmu w pliku LUFH.m

Wykorzystam rekurencyjny algorytm rozkładu LU z wikipedi, skorzystam ze specyficznej formy A i wykonam go w $O(N^2)$.

$$A = \begin{pmatrix} a_{11} & w^T \\ v & A' \end{pmatrix}$$

Niech $c = \frac{1}{a_{11}}$ (z postaci A wiemy, że $a_{11} \neq 0$). Wiemy też, że $v = \begin{bmatrix} v_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, co znacznie ułatwia obliczenia.

Zachodzi

$$A = \begin{pmatrix} 1 & 0 \\ c \cdot v_1 & \\ 0 & \\ \vdots & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & w^T \\ 0 & A' - cvw^T \end{pmatrix}$$

Macierz $A' - cvw^T$ jest postaci Hessenberga (cvw^T to macierz mająca tylko pierwszy wiersz niezerowy). Załóżmy, że jest też s.d.d. (dowód na dole).

Możemy wtedy rekurencyjnie szukać rozkładu LU dla macieży kwadratowej rozmiaru o jeden mniejszczego.

Dla przypadku bazowego N=1

$$A = (a)$$

neich jej rozkład LU to

$$A = (a) = (1)(a)$$

Niech, więc L'U' będzie rekurencyjnie znalezionym rozkładem LU macierzy $A'-cvw^T$.

Wtedy rozkład LU macierzy A to:

$$A = \begin{pmatrix} 1 & 0 \\ c \cdot v_1 & \\ 0 & L' \\ \vdots & 0 \end{pmatrix} \begin{pmatrix} a_{11} & w^T \\ 0 & P' \end{pmatrix}$$

Wykonujemy O(N) kroków zmniejszając problem i w każdym z nich wykonujemy nie więcej niż O(N) operacji (bo koszt wyliczenia $A' - cvw^T$ w najgorszym wypadku to N). Czyli cały algorytm działa w $O(N^2)$.

Pokażmy jeszcze, że $A' - cvw^T$ jest s.d.d.

Niech n = N - 1.

Dla pierwszego wiersza chcemy by zachodziła nierówność, (dla reszty wierszy jest to oczywiste bo A jest s.d.d., więc i A' jest s.d.d.):

$$|a'_{11} - w_1 v_1 c| \ge \sum_{i=2}^n |a'_{1i} - w_i v_1 c|$$

mamy:

$$|a'_{11} - w_1 v_1 c| \ge |a'_{11}| - |w_1 v_1 c|$$

Ponieważ A jest s.d.d. mamy:

$$|a_{22}| > \sum_{i=1}^{N} |a'_{2i}| = |a_{21}| + \sum_{i=3}^{N} |a_{2i}|$$

$$|a_{11}| > \sum_{i=2}^{N} |a_{1i}| \text{ czyli } \left| \frac{\sum_{i=2}^{N} |a_{1i}|}{a_{11}} \right| < 1$$

zachodzi więc:

$$|a_{22}| > \left| \frac{\sum_{i=2}^{N} |a_{1i}|}{a_{11}} \right| |a_{21}| + \sum_{i=3}^{N} |a_{2i}|$$

przypominamy sobie, że $a_{21}=v_1, \ \frac{1}{a_{11}}=c, \ a_{1i}=w_{i-1}$ dla $i\geq 2$ i $a_{2i}=a'_{1i-1},$ dla $i\geq 2$, czyli powyższą nierównośc można zapisać jako:

$$|a'_{11}| > |w_1v_1c| + \sum_{i=2}^{n} |a'_{1i}| + |w_iv_1c|$$

i z nierówności trójkąta:

$$\sum_{i=2}^{n} |a'_{1i}| + |w_i v_1 c| \ge \sum_{i=2}^{n} |a'_{1i} - w_i v_1 c|$$

czyli zachodzi:

$$|a'_{11}| > |w_1v_1c| + \sum_{i=2}^{n} |a'_{1i} - w_iv_1c|$$

czyli:

$$|a'_{11} - w_1 v_1 c| \ge |a'_{11}| - |w_1 v_1 c| > \sum_{i=2}^n |a'_{1i} - w_i v_1 c|$$

więc macierz $A' - cvw^T$ jest silnie dominująca diagonalnie.

Algorytm rozwiązujący układ równań z macierzą A

Implementacja algorytmu w pliku LUFH_LES.m

Skoro mamy już maszynkę do rozkładu LU macierzy A, to rozwiązanie układu równań z tą macierzą jest bardzo proste.

Niech $b \in \mathbb{R}^N$ zadanym wektorem.

Szukamy takiego $x \in \mathbb{R}^N$, że Ax = b.

Niech, więc A = LU (wyznaczone kosztem $O(N^2)$).

Możemy najpierw rozwiązać równanie Ly = b i potem Ux = y.

Ldolnotrójkątna, więc równanie Ly=brozwiązujemy w $O(N^2)$ (podstawieniami).

Tak samo skoro U górnotrójkatna to Ux = y rozwiązujemy w $O(N^2)$.

Czyli cały algorytm zajmuje nam $O(N^2)$.