

Claims 15 and 17-35 are amended. Claim 16 is cancelled.

Claims 1-15 and 17-35 remain in the Application as follows:

1. (Original) A method, comprising:

approximating at least one non-power-of-2 element of a matrix as a power-of-2 element such that all elements of a resultant matrix are power-of-2 elements; and
encoding video data using the resultant matrix.

2. (Original) A method according to Claim 1, wherein the matrix is a DCT (discrete cosine transform) matrix.

3. (Original) A method according to Claim 1, wherein the approximating includes manipulating an order of the one or more elements in a particular row of the matrix.

4. (Original) A method according to Claim 1, wherein the approximating includes manipulating the signs of the one or more elements in a particular row of the matrix.

5. (Original) A method according to Claim 1, wherein the approximating includes manipulating an order and the signs of the one or more elements in a particular row of the matrix.

6. **(Original)** A method according to Claim 1, wherein the approximating includes approximating floating point coefficients as power-of-2 coefficients to preserve a threshold relationship between among the floating point coefficients.

7. **(Original)** A method according to Claim 1, wherein the approximating includes approximating floating point coefficients as power-of-2 coefficients to preserve a relative ratio among the floating point coefficients.

8. **(Original)** A method according to Claim 1, wherein V_i ($i = 0-7$) are row vectors or basis with unity magnitude, s_i are scaling factors, and the resultant matrix is $T = [s_i V_i]^T$, wherein further V_i are orthogonal to each other and $s_i=1$.

9. **(Original)** A method according to Claim 1, wherein the row vectors of the resultant matrix are orthogonal.

10. **(Original)** A method according to Claim 1, wherein the resultant matrix is

$$T_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & -d & -c & -b & -a \\ e & f & -f & -e & -e & -f & f & e \\ c & d & -a & -b & b & a & -d & -c \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ b & -a & -d & c & -c & d & a & -b \\ f & -e & e & -f & -f & e & -e & f \\ d & -c & b & -a & a & -b & c & -d \end{pmatrix}$$

11. (Original) A method according to Claim 1, wherein the resultant matrix is

$$T_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & -d & -c & -b & -a \\ e & f & -f & -e & -e & -f & f & e \\ c & d & -a & -b & b & a & -d & -c \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ b & -a & -d & c & -c & d & a & -b \\ f & -e & e & -f & -f & e & -e & f \\ d & -c & b & -a & a & -b & c & -d \end{pmatrix}$$

wherein further, for floating point coefficients a, b, c, d, e , and f :

$$a \geq b \geq c \geq d \text{ and } e \geq f,$$

$$ab = ac + cd + bd, \text{ and}$$

a, b, c, d, e , and f are power-of-2.

12. (Original) A method according to Claim 11, wherein the resultant matrix is further expressed as the power-of-2 transform matrix:

$$T_3 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 2^{-2} & -2^{-2} & -1 & -2 & -2 \\ 2 & 1 & -1 & -2 & -2 & -1 & 1 & 2 \\ 1 & 2^{-2} & -2 & -2 & 2 & 2 & -2^{-2} & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 2 & -2 & -2^{-2} & 1 & -1 & 2^{-2} & 2 & -2 \\ 1 & -2 & 2 & -1 & -1 & 2 & -2 & 1 \\ 2^{-2} & -1 & 2 & -2 & 2 & -2 & 1 & -2^{-2} \end{pmatrix}$$

13. (Original) A method according to Claim 11, wherein floating point coefficients $a = b = 2, c = 1, d = 1/4, e = 2, f = 1$, and wherein further multiplication for non-integer d is implemented by a two-bit right shift.

14. (Original) A method according to Claim 11, wherein floating point coefficients $a=2$, $b=2$, $c=1$, $d=\frac{1}{2}$, $e=2$, $f=1$, and wherein further multiplication for non-integer d is implemented by a two-bit right shift.

15. (Currently Amended) An image data encoding apparatus, comprising:
a transformer to perform a 2-power transform on an incoming array of pixels, the transformer to perform the 2-power transform using a symmetrical matrix in which all elements are expressed as power-of-2 elements;
a quantizer to quantize the transformer result; and
an inverse transformer to perform an inverse 2-power transform on the quantizer result.

16. (Cancelled).

17. (Currently Amended) An apparatus according to Claim 16 15, wherein an order of two or more elements in a particular row of the matrix have been changed.

18. (Currently Amended) An apparatus according to Claim 16 15, wherein the signs of one or more elements in a particular row of the matrix have been changed.

19. (Currently Amended) An apparatus according to Claim 16 15, wherein the symmetrical matrix is a DCT matrix template.

20. (Currently Amended) An apparatus according to Claim 46 15,

wherein a template of the matrix is

$$T_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & -d & -c & -b & -a \\ e & f & -f & -e & -e & -f & f & e \\ c & d & -a & -b & b & a & -d & -c \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ b & -a & -d & c & -c & d & a & -b \\ f & -e & e & -f & -f & e & -e & f \\ d & -c & b & -a & a & -b & c & -d \end{pmatrix}$$

21. (Currently Amended) An apparatus according to Claim 46 15,

wherein a template of the matrix is

$$T_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & -d & -c & -b & -a \\ e & f & -f & -e & -e & -f & f & e \\ c & d & -a & -b & b & a & -d & -c \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ b & -a & -d & c & -c & d & a & -b \\ f & -e & e & -f & -f & e & -e & f \\ d & -c & b & -a & a & -b & c & -d \end{pmatrix}$$

wherein further, for floating point coefficients a, b, c, d, e , and f :

$a \geq b \geq c \geq d$ and $e \geq f$,

$ab = ac + cd + bd$, and

a, b, c, d, e , and f are power-of-2 coefficients.

22. (Currently Amended) An apparatus according to Claim 16 15,

wherein the matrix is the following power-of-2 transform matrix:

$$T_3 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 2^{-2} & -2^{-2} & -1 & -2 & -2 \\ 2 & 1 & -1 & -2 & -2 & -1 & 1 & 2 \\ 1 & 2^{-2} & -2 & -2 & 2 & 2 & -2^{-2} & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 2 & -2 & -2^{-2} & 1 & -1 & 2^{-2} & 2 & -2 \\ 1 & -2 & 2 & -1 & -1 & 2 & -2 & 1 \\ 2^{-2} & -1 & 2 & -2 & 2 & -2 & 1 & -2^{-2} \end{pmatrix}$$

23. (Currently Amended) An apparatus according to Claim 16 15,

wherein V_i ($i = 0-7$) are row vectors or basis with unity magnitude, s_i are scaling factors, and the matrix is $T = [s_i V_i]^T$, wherein further V_i are orthogonal to each other and $s_i=1$.

24. (Currently Amended) An apparatus according to Claim 16 15,

wherein the row vectors of the matrix are orthogonal.

25. (Currently Amended) A computer-readable storage medium encoded with one or more instructions, the one more instructions configured to cause having one or more instructions causing one or more processors to:

create a matrix such that all elements in the matrix are expressed as power-of-2 coefficients; and

encode video data using the resultant matrix.

26. (Currently Amended) A computer-readable storage medium according to Claim 25, wherein to create the matrix is to change at least one of an order of one or more elements in a particular row of a template matrix.

27. (Currently Amended) A computer-readable storage medium according to Claim 25, wherein to create the matrix is to change the sign of at least one element in a particular row of a template matrix.

28. (Currently Amended) A computer-readable storage medium according to Claim 25, wherein to create the matrix is to approximate floating point coefficients a , b , c , d , e , and f of a template matrix such that:

$a \geq b \geq c \geq d$ and $e \geq f$,

$ab = ac + cd + bd$, and

a , b , c , d , e , and f are power-of-2 coefficients.

29. (Currently Amended) A computer-readable storage medium according to Claim 28, wherein a template of the matrix

$$T_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & -d & -c & -b & -a \\ e & f & -f & -e & -e & -f & f & e \\ c & d & -a & -b & b & a & -d & -c \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ b & -a & -d & c & -c & d & a & -b \\ f & -e & e & -f & -f & e & -e & f \\ d & -c & b & -a & a & -b & c & -d \end{pmatrix}$$

floating point coefficients $a = b = 2$, $c = 1$, $d = \frac{1}{4}$, $e = 2$, $f = 1$, multiplication for non-integer d is implemented by a two-bit right shift, and

wherein the matrix is expressed as the power-of-2 transform matrix:

$$T_3 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 2^{-2} & -2^{-2} & -1 & -2 & -2 \\ 2 & 1 & -1 & -2 & -2 & -1 & 1 & 2 \\ 1 & 2^{-2} & -2 & -2 & 2 & 2 & -2^{-2} & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 2 & -2 & -2^{-2} & 1 & -1 & 2^{-2} & 2 & -2 \\ 1 & -2 & 2 & -1 & -1 & 2 & -2 & 1 \\ 2^{-2} & -1 & 2 & -2 & 2 & -2 & 1 & -2^{-2} \end{pmatrix}$$

30. (Currently Amended) A computer-readable storage medium according to Claim 28, wherein a template of the matrix is

$$T_2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & -d & -c & -b & -a \\ e & f & -f & -e & -e & -f & f & e \\ c & d & -a & -b & b & a & -d & -c \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ b & -a & -d & c & -c & d & a & -b \\ f & -e & e & -f & -f & e & -e & f \\ d & -c & b & -a & a & -b & c & -d \end{pmatrix}$$

floating point coefficients $a=2$, $b=2$, $c=1$, $d=\frac{1}{2}$, $e=2$, $f=1$, multiplication for non-integer d is implemented by a two-bit right shift, and

wherein the matrix is expressed as the power-of-2 transform matrix:

$$T_3 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 2^{-2} & -2^{-2} & -1 & -2 & -2 \\ 2 & 1 & -1 & -2 & -2 & -1 & 1 & 2 \\ 1 & 2^{-2} & -2 & -2 & 2 & 2 & -2^{-2} & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 2 & -2 & -2^{-2} & 1 & -1 & 2^{-2} & 2 & -2 \\ 1 & -2 & 2 & -1 & -1 & 2 & -2 & 1 \\ 2^{-2} & -1 & 2 & -2 & 2 & -2 & 1 & -2^{-2} \end{pmatrix}$$

31. (Currently Amended) A computer-readable storage medium according to Claim 26, wherein the template matrix is a DCT matrix.

32. (Currently Amended) A computer-readable storage medium according to Claim 27, wherein the template matrix is a DCT matrix.

33. (Currently Amended) A computer-readable storage medium according to Claim 25, wherein V_i ($i = 0-7$) are row vectors or basis with unity magnitude, s_i are scaling factors, and the resultant matrix is $T = [s_i V_i]^T$, wherein further V_i are orthogonal to each other and $s_i=1$.

34. (Currently Amended) A computer-readable storage medium according to Claim 25, wherein the row vectors of the resultant matrix are orthogonal.

35. (Currently Amended) An image data encoding apparatus, comprising:
means for performing a 2-power transform on an incoming array of pixels,
wherein all elements of the 2-power transform are equal to power-of-2 elements;
means for quantizing the transformer result; and
means for performing an inverse 2-power transform on the quantizer result.