Inpainting Detection Using Wavelet-Based Features

SHARVARI DESHMUKH, NIKHIL GANDUDI SURESH, AVANTI BHANDARKAR

Overview of the Field

Prior Work: Implementation by Barglazan and Brad [1][3]

Challenges & Shortcomings

Image Segmentation – Hierarchical Feature Selection

Selection of correct wavelet bands

Choice of optimal filter

Selection of clusters based on noise variance

Morphological operations to get the final mask

Our Dataset

Image Properties	Blurred Image	Smooth Background	Textured Background	Patterns	Natural Scenes
Sample Image					
Mask					773

Inpainting Methods

Original Image	MAT	LAMA	Samsung Al

Primer on Wavelets - Haar

Introducing DTCWT

Dual-Tree Complex Wavelet Transform

Dual-Tree

Introducing DTCWT

Dual-Tree Complex Wavelet Transform

Dual-Tree Complex Wavelet

$$\psi(x) = \psi_h(x) + j\psi_g(x)$$

$$\psi(y) = \psi_h(y) + j\psi_g(y)$$

$$\phi(x) = \phi_h(x) + j\phi_g(x)$$

$$\phi(y) = \phi_h(y) + j\phi_g(y)$$

$$\psi_i(x,y) = \frac{1}{\sqrt{2}} \left[\psi_{1,i}(x,y) - \psi_{2,i}(x,y) \right]$$

$$\psi_{i+3}(x,y) = \frac{1}{\sqrt{2}} \left[\psi_{1,i}(x,y) + \psi_{2,i}(x,y) \right]$$

$$\psi_{1,1} = \phi_h(x)\psi_h(y)$$
 $\psi_{2,1} = \phi_g(x)\psi_g(y)$

$$\psi_{1,2} = \psi_h(x)\phi_h(y)$$
 $\psi_{2,2} = \psi_g(x)\phi_g(y)$

$$\psi_{1,3} = \psi_h(x)\psi_h(y)$$
 $\psi_{2,3} = \psi_g(x)\psi_g(y)$

12

Experiments – Wavelet Transforms

Experiments – Wavelet Transforms

Haar

Db2

Experiments – Wavelet Transforms

Coif2

Higher Order Wavelets – Not Very Different Results

Choosing the Relevant Bands

Choosing the Relevant Bands

Choosing the Relevant Bands

1 2 / 3 / 2 0 2 4

19

Processing the Relevant Bands

Experiments – Image Segmentation

Quantitative Metrics

Experiments – Image Properties

Experiments – Inpainting Methods

Original Image	MAT	LAMA	Samsung Al
	Real, Band3	Real, Band3	Real, Band3
	IOU: 0.04% Dice score: 0.88%	IOU: 65.31% Dice score: 79.02%	IOU: 31.95% Dice score: 48.43%

Concluding Thoughts

Strengths

- Achieves (reasonably) good results without deep learning.
- Adaptable to various wavelets and segmentation methods.
- Simple, lightweight implementation.

Limitations

- Relies on manual parameter tuning, which can be time-consuming and less scalable.
- Produces partial masks that highlight the inpainted region but lack object-specific accuracy.
- · Fails if the inpainted region is not detectable in at least one band

Future Scope

- Test whether iterative inpainting can be detected by our pipeline.
- Design custom wavelets tailored for specific detection applications.
- Test robustness to additive noise.
- Integrate machine learning techniques for automated and optimal parameter tuning.

References and Resources

Papers and Websites:

- [1] Barglazan, Adrian-Alin, and Remus Brad. "Wavelet based inpainting detection." Advances in Artificial Intelligence and Machine Learning, vol. 04, no. 03, (2024), pp. 2783–2809
- [2] Chen, Guangyong, Fengyuan Zhu, and Pheng Ann Heng. "An efficient statistical method for image noise level estimation." Proceedings of the IEEE International Conference on Computer Vision. 2015.
- [3] Adrian-Alin, Barglazan, and Brad Remus. "Enhanced Wavelet Scattering Network for image inpainting detection." arXiv preprint arXiv:2409.17023 (2024).
- [4] Kingsbury, Nick. "Image processing with complex wavelets." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357.1760 (1999): 2543-2560.
- [5] Selesnick, Ivan W., Richard G. Baraniuk, and Nick C. Kingsbury. "The dual-tree complex wavelet transform." IEEE signal processing magazine 22.6 (2005): 123-151.
- [6] http://research.google/blog/making-visible-watermarks-more-effective/

Our Code: https://github.com/GSNikhil/inpainting-detection

