Chapitre 16 - Analyse asymptotique

1 Comparaison des suites

1.1 Relations de comparaison

Uniquement pour les suites réelles : on se place dans $\mathbb{R}^{\mathbb{N}}$.

Définition 1.1. Soit (v_n) une suite de réels non nuls à partir d'un certain rang N_0 et (u_n) une suite de réels. On dit que :

- (u_n) est dominée par (v_n) si à partir du rang $N_0\left(\frac{u_n}{v_n}\right)$ est bornée. On note alors $u_n = O(v_n)$.
- (u_n) est négligeable devant (v_n) si $\left(\frac{u_n}{v_n}\right)$ tend vers 0. On note alors $u_n = o(v_n)$.
- (u_n) est <u>équivalente</u> à (v_n) si $\left(\frac{u_n}{v_n}\right)$ tend vers 1. On note alors $u_n \underset{+\infty}{\sim} v_n$.

Théorème 1.1. Soit (v_n) une suite de réels non nuls à partir d'un certain rang N_0 et (u_n) une suite de réels.

 (u_n) est négligeable devant (v_n) si et seulement si il existe une suite (ε_n) qui tend vers 0 telle que $u_n =$ $\nu_n.\varepsilon_n.$

Propriétés des relations de comparaison

Proposition 1.2. Soit $(u_n), (v_n), (w_n)$ des suites réelles.

Si $u_n \sim v_n$ alors $v_n \sim u_n$. Dy metrice Si $u_n \sim v_n$ et $v_n \sim w_n$ alors $u_n \sim w_n$. Enange Avite

Si u_n et v_n ne s'annulent pas, alors $u_n \underset{+\infty}{\sim} v_n \iff u_n - v_n = o(v_n)$.

Si $u_n \sim v_n$ alors $u_n = O(v_n)$ et $v_n = O(u_n)$.

700	et lla	(un me s'annule jas à jalin d'un certain mas VM > 1 Un m + 2
4 Un =	UM VM VM VM	$\frac{\sqrt{n}}{\sqrt{n}} \xrightarrow{n \to +\infty} \sqrt{n}$
alos un	l_m , alos $u_m - v_m = u_m$ $-v_m = 0$ danc $u_m - v_m$	in = o(Vi)
danc	Um 1 soit Um V V V V V V V V V V V V V V V V V V	Vm = Vm + 1
	Jalas (Im) est messe d'anc elle e	
	$Um : m^2 - \sqrt{m} \qquad \sqrt{m} = \sqrt{m}$ $m - cos(n) = o(m^2 + cos(n))$	
Coenaple: F	7 y si Un = 0 (vm) alas 1 alas un = 0 danc (um) vm	un = 6 (vn) estim soute lornée doi Un: 6/vn

Suites de référence

Remarque ex = (ex) " xuite géométrique

Proposition 1.3. *Pour tous* $\alpha > 0$, $\beta > 0$, $\gamma > 0$, *on a*

$$\ln^{\beta}(n) = o(n^{\alpha}) \text{ et } n^{\alpha} = o(e^{\gamma n}) \qquad \text{et pour } q > 1, \text{ on a } n^{\alpha} = o(q^{n}).$$

lim ln (m) = 0 | ru d>0, B>0 d'où ln B(m) = 0 (m d) $\lim_{M\to +\infty} \frac{n^{\alpha}}{(e^{m})^{\alpha}} = 0 \quad |a_{m} \propto 0, 80 \quad olon \quad |a_{m} \propto 0 \quad (e^{8m})$ On a equilement: $b^{m} = o(m!)$ $m! = o(m^{m})$ $m^{n} = o(b^{m})$ four b > 1lemme: Soit (un) me suite à termes strictement jositifs telle que l'in Mat 2 = A avec 0 < A < 1 alors fins un = 0 Sut BEJA,1 [. Comme Un+1 _ A, a joutin olim certain nouy N None 1 3 => Unix E B. un on montre ja récurence VM>N, Un & B. UN cist vai four n= N: UN= BN, UN . S. Cist vai jour un raig M >N alors Un+1 & B. Un & B'B. B. UN = Bn+1 UN: Short directione elimitatione. Danc 05 lln \(\left(\frac{\pi_N}{B^N} \right) \) On reconnact une mute géométrique qui tend vas o de raisono 2B2

due par hierème d'en cadrement el ma-20

Examples de référence:

* $Um = \frac{m}{am}$ are d>0 a>1. En utilisant le lemme, and um = 0 $m^{d} = o(a^{m})$ $m^{d} = o(a^{m})$ $m^{d} = o(a^{m})$ $m^{d} = o(a^{m})$ $m^{d} = o(a^{m})$

Car up not al continue on h 1. lim (1+m) = 1

$e^{\lambda} < \frac{1}{a} < \lambda$	dare d	da près le	lemme	Un -	> O.
$\ell ll = \frac{b^{n}}{n!} d'a$	présle	lenne	m → 0	dar [$ \begin{array}{c} M = O(M) \\ N \rightarrow + \infty \end{array} $
1 Un = M!	d'aprè >	le lenne	Un -> 0	deve	M = O(Mm)
Prenver Un+1 =	m +1)!	M = = 1+1) M + L	(n+1) 1	1	h
om culcule:	M) M = (1	1 +1\m		1+1)	
ch on sait que	car (ln (1+4	$\begin{vmatrix} 1 + 1 \\ m \end{vmatrix} = $ $\begin{vmatrix} 1 + 1 \\ m \end{vmatrix} = $ $u \to 0$	e c'est un	· Cimite	unelle.
Ona Unel	-> 1 e	anc O	2 <u>1</u> 21	donc 1	
famile de Sti	aling	M. V +00	m ^m e-m J	2π m	

1.4 Opérations sur les équivalents

elles. et c'A TOUT!

Proposition 1.4. Soit $(u_n), (v_n), (w_n), (x_n)$ des suites réelles.

Si $u_n \sim v_n$ et $w_n \sim x_n$ alors $u_n w_n \sim v_n x_n$.

Si $u_n \sim v_n$ et $w_n \sim x_n$ et si w_n et x_n ne s'annulent pas alors $\frac{u_n}{w_n} \sim \frac{v_n}{x_n}$.

Si $u_n \underset{+\infty}{\sim} v_n$ et si p est un entier $p \in \mathbb{N}$ alors $u_n^p \underset{+\infty}{\sim} v_n^p$.

on a $m^2 \ln \left(2 - \cos\left(\frac{1}{m}\right)\right)$ $m^2 \ln \left(1 + \left(1 - \cos\left(\frac{1}{m}\right)\right)\right)$ m = e $m^2 \ln \left(1 + \left(1 - \cos\left(\frac{1}{m}\right)\right)\right)$ m = e $m^2 \ln \left(1 + \left(1 - \cos\left(\frac{1}{m}\right)\right)\right)$ m = e $m^2 \ln \left(1 + \left(1 - \cos\left(\frac{1}{m}\right)\right)\right)$ m = e m

Relations de comparaison et limites

Théorème 1.5. Soit (u_n) et (v_n) deux suites réelles telles que $u_n \sim v_n$.

Alors, pour tout $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$, on a $u_n \xrightarrow[+\infty]{} \ell \iff v_n \xrightarrow[+\infty]{} \ell$

En particulier, (u_n) est convergente si et seulement si (v_n) est convergente. v_n et dans ce can elles **Proposition 1.6.** Soit (u_n) et (v_n) deux suites réelles.

- $\overset{\frown}{\circ}$ Si $u_n = o(v_n)$ et (v_n) converge, alors (u_n) converge vers 0.
- $^{\bullet}$ Si $u_n = o(v_n)$ et (u_n) diverge vers $+\infty$, alors (v_n) diverge.
 - Si $u_n \sim v_n$, alors à partir d'un certain rang, u_n et v_n sont de même signe.

en fariculier si elm=0(1) alors un >0 ne gligeable devant 1 * Si Un = o (vm) et vn -> l EIR avec (vm) qui me s'annle jus alun $\lim_{V \to \infty} 0 \times 0 = 0$ un = - n2 -> - 2 mais un = 2 (em) Exercice: On définit une suite de riels (nn) par Jour new, xn est l'unique solution de x m + mx - 1 = 0 (Fn)
dans Jo, 1 E. Trouver un équivalent de nn. Soit nom * la faction fix - x" + mac 1 est cartinus sur R + et strictement convante sur IR + Alors, elle est bijection de Jans dans (n(30,15) =] fu(0), fu/1) [=]-1, m = [A Cors, elle s'ammel en un unique n'en E 30,16. O on a In EN, 0 × n m < 1 m car la fartien u m un est avinante sun R+ et $x_n + n \times n - 1 = 0$ = $2 - x_n$ = $3 - x_n$ = $3 - x_n$ Aars, par définition de la limite, en joi aut $E = \frac{3}{2}$, il exide celas Vm EN & San M & 1 danc farthéorème d'encâde curent $\lim_{n\to\infty} x_n = 0$ alors $\lim_{n\to\infty} x_n = 1 - x_n = 1$ = $\lim_{n\to\infty} x_n = 1$

2 Relations de comparaison appliquées aux fonctions

Soit *I* un intervalle de \mathbb{R} et $a \in \mathbb{R} \cup \{-\infty, +\infty\}$ élément ou extrémité de *I*.

2.1 Fonction dominée par une autre

Définition 2.1. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f est dominée par g au voisinage de a si la fonction $\frac{f}{g}$ est bornée au voisinage de a. On note f = O(g)

exemple $x^2 \sin(x) = 6(n^2)$ can $x^2 \sin(x) = 6\sin(x)$ et sin (x) est borné sun (x)on a aursi $x^2 \sin(x) = 6(n^2)$

2.2 Fonction négligeable devant une autre

Définition 2.2. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f est négligeable devant g au voisinage de a si la fonction $\frac{f}{g}$ tend vers 0 en a.

On note f = o(g) ou bien $f(x) = g(x) \cdot \varepsilon(x)$ avec $\lim_{x \to a} \varepsilon(x) = 0$

2.3 Fonctions équivalentes

Définition 2.3. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f et g sont équivalentes au voisinage de a si la fonction $\frac{f}{g}$ tend vers 1 en a. On note $f \sim g$

Proposition 2.1. Soit f une fonction dérivable en $a \in \mathbb{R}$.

Si
$$f'(a) \neq 0$$
, alors $f(x) - f(a) \sim f'(a)(x-a)$. juidéfinition de $f'(a)$

Proposition 2.2. Soit f et g définies sur I, ne s'annulant pas sur $I \setminus \{a\}$. On a:

$$f \sim g \iff f - g = o(g).$$

2.4 Opérations sur les équivalents **Proposition 2.3.** Si $f, g, h, f_1, g_1, f_2, g_2$ sont des fonctions définies au voisinage de a, on a:

| $f \sim g \implies g \sim f$ | $f \sim g \text{ et } g \sim h \implies f \sim h$ Proposition 2.3. St $J, g, n, J_1, \delta_1, J_2, \delta_2$ Symptone \bullet $f \sim g \Rightarrow g \sim f$ Which there \bullet $f \sim g$ et $g \sim h \Rightarrow f \sim h$ Produit \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 f_2 \sim g_1 g_2$ Therefore \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 f_2 \sim g_1 g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow f_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \Rightarrow g_1 \sim g_2$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \rightarrow g_2 \rightarrow g_1$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \rightarrow g_2 \rightarrow g_1$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \rightarrow g_2 \rightarrow g_1$ Further \bullet $f_1 \sim g_1$ et $f_2 \sim g_2 \rightarrow g_2 \rightarrow g_1$ Further \bullet $f_1 \sim g_1$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Further \bullet $f_1 \sim g_2$ Further \bullet $f_2 \sim g_2$ Furt

2.5 Utilisation des équivalents

Proposition 2.4. Étant donnés deux fonctions f et g équivalentes en $a: f \sim g$.

Si g a une limite finie ou infinie en a alors f aussi et $\lim_{a} f = \lim_{a} g$.

Proposition 2.5. Étant donnés deux fonctions f et g définies sur I et équivalentes en $a: f \sim g$.

Si g est positive sur I alors f est positive au voisinage de a.

Si g ne s'annule pas sur I, alors f ne s'annule pas au voisinage de a.

Si g ne s'annule pas sur $I \setminus \{a\}$, alors la restriction de $f \ \grave{a} \ I \setminus \{a\}$ ne s'annule pas au voisinage de a.

Développements limités 3

3.1 Définition

Définition 3.1. On dit qu'une fonction f de I dans \mathbb{R} ou \mathbb{C} admet un développement limité d'ordre $n \in \mathbb{N}$ au voisinage de $a \in \mathbb{R}$ élément ou extrémité de I si il existe un polynôme P de degré inférieur $f(a+h) = P(h) + o(h^n)$ au voisinage de 0 (pour h). ou éga<u>l à *n*</u> tel que

 $f(a+h) = a_0 + a_1h + a_2h^2 + \dots + a_{n-1}h^{n-1} + a_nh^n + o(h^n)$ $h = \kappa - \infty$ C'est à dire

 $f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_{n-1}(x-a)^{n-1} + a_n(x-a)^n + o((x-a)^n)$

On le note $DL_n(a)$ de f.

(m) = 1+ n2+ 23 sin(x) $2^3 \sin(n) = x \sin(n) \longrightarrow 0$ alors $2^3 \sin(n) = o(n^2)$ Oma donc / (n)= 1+ x2 + o(n2) ce qui prouve que sa un DL à l'ordre 2 on a = 0 Once egalement, $f(n) = 1 + 0 \cdot x + (x^2 + x^3 \sin(n))$ arec $x^2 + x^3 \sin(n) = 0$ (a) also flauni in DL_1 end Peufécuire $f(n) = 1 + 0.x + x \mathcal{E}_{x}(n)$ avec $\mathcal{E}_{x} = 0$ et auni $f(n) = 1 + 0.x + 1.\mathcal{E}_{z}(x)$ avec $\mathcal{E}_{z} = 0$ qui cot en D L à l'ordre 0 en 0.

Du sait que comme sin est démable en 0, sin au De and $Sin(x) = Sin(0) + Sin(0)(n-0) + 2E_2(n)$ and U=0

 $Sim(n) = x + o(n) = n + x \in \mathcal{Z}(n)$

 $\begin{cases} (n) = 1 + x^2 + x^3 (x + o(n)) \\ f(x) = 1 + x^2 + x^4 + o(x^4) \end{cases}$ 130(x) =0(x4)

danc Jaun DL4 (O) (DLdade 4 en o

(n) = 1+n2+ x3sim (n) Si an veut calculer un DL en a = 1. On cherche $\int (n) = bo + b_L (x-1) + \dots + b_M (n-1)^M + o((n-1)^M)$ On change de variables an Jose n=1+6=>h=x-1 Alas f(1+h) = 1+(1+h)2+(1+h)3 sim(1+h) = 1 + 1 + 2 h + h 2 + (1+3 h + 3 h 2 + h 3) Dim (1+h) $\begin{cases} (1+h) = 2 + 2h + h^2 + (1+3h+3h^2 + h^3) (sin(1) ces(h)) \\ poly = 5L & poly = 5L + cox(1) lin(h)) \end{cases}$ mutilise poin(h) = h-h3 + o(h3) déprés eure france on cal alle arbitrainement in bix 2 / (1+h) = 2+2h+h2+ (1+3h+3h2+h3) (sin/a) 1 - sin(1) \frac{h2}{h}+ o(h2) 7 cos(1) h-ces(1) R3+0(h3) 2+ sin(1) + (2+3sin(1)+ Cos(1) h + (1+3ccs(1)+3in(1)-sin(1)) & 2 + (Din 41 h 3 + 3 cos 41 h 3 + 3 sin(1) h 4 + 0 (h2) + 0 (h3) + ...) (-ous certermes sont night earles guard h > 0. (1+h)=2+sim(1)+(2+3=in(1)+cu(n))h+(1+3cu(n)+\frac{5}{2}sin(1))h2+ (\frac{1}{2})
c ed un DL à l'adre 2 en 1 de (1) 2+ mm/1)+ (2+35m/1) tor(1)(x-1) + (1+3cm(1)+ = s(n/1) (Y-1) $+ O(((1-1)^2)$

Exemple fondamental

 $u \mapsto \frac{1}{1-u}$ admet des développements limités à l'ordre n, **Proposition 3.1.** *La fonction* f : pour tout entier n, au voisinage de 0 :

 $\frac{1}{1-u} = 1 + u + u^2 + \dots + u^n + o(u^n)$

On utilise la famule four u \$1 21 + M + M = 1 - M =ar calcule u^{m+1} 1-u $u \to 0$ 1-u $u \to 0$ 1-u $u \to 0$ alan an a le D/m (0) de un 1 There is a pose x = -u for other x = -u for other x = -u for other x = -u for x = -u Encere wicus on out integrales equivalents: any animage deb x + n > 0P [$\ln (1+x) = \ln (1+0) + n - x^2 + \frac{x^3}{3} - \frac{n^4}{4} + \dots + (-1)\frac{n}{n+1} + o(x^{m+1})$ (vointh 4.1) autre exemple $1 = 1 + u + u^2 + ... + u^m + o(u^m)$ et oupore $u = -x^2 alors$ $1 = 1 - x^2 + x^4 - x^6 + ... + (-1)^m x^2 + o(x^2)^m$ qui donne par intégration:

Anctau(n) = Ancton(o) + x - $\frac{x^3}{3}$ + $\frac{x^5}{3}$ - $\frac{x^7}{4}$ + $\frac{x^{-1}}{3}$ + $\frac{$

3.3 Unicité du développement limité

Proposition 3.2. Si f est une fonction admettant deux développements limités à l'ordre n au voisinage de $a \in \mathbb{R}$, alors ces développements sont égaux.

Si
$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$$
 et $f(x) = \sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n)$, alors $\forall k \in [[0,n]]$, $a_k = b_k$.

On appelera le polynôme $P(x) = \sum_{k=0}^{n} a_k (x-a)^k$ la partie régulière du DL de f à l'ordre n en a .

Corollaire 3.3. Si f admet un développement limité à l'ordre n en a, alors pour tout entier $p \leq n$, fadmet un développement limité à l'ordre p obtenu en tronquant le développement d'ordre n.

Corollaire 3.4. Soit f admettant un développement limité en 0 de partie régulière P. Si f est paire, alors P est pair. Si f est impaire, alors P est impair.

3.4 Forme normalisée d'un développement limité

Définition 3.2. Soit f une application admettant un développement limité l'ordre n+p au voisinage de a. On appelle forme normalisée du développement limité de f, l'écriture :

$$f(a+h) = h^p (a_0 + a_1 h + \dots + a_n h^n + o(h^n))$$
 où $a_0 \neq 0$.

Proposition 3.5. Si f a un développement limité normalisé $f(a+h) = h^p(a_0 + a_1h + \cdots + a_nh^n + o(h^n))$ où $a_0 \neq 0$, alors $f(a+h) \underset{h\to 0}{\sim} a_0h^p$ et f est de même signe que a_0h^p .

3.5 Translation d'un développement limité

Proposition 3.6. Si f est une fonction vérifiant f(a+h) = g(h) pour tout h dans l'intervalle I contenant 0, et si g admet un développement limité à l'ordre n en 0 : $g(x) = P(x) + o(x^n)$. Alors f admet un développement limité à l'ordre n en a : $f(x) = P(x-a) + o((x-a)^n)$.

3.6 Développement limité au voisinage de l'infini

Définition 3.3. Soit f une fonction définie sur un intervalle I.

Si la fonction g définie par $g(u) = f\left(\frac{1}{u}\right)$ admet un développement limité en 0 à l'ordre n sur l'intervalle $J_+ = \left\{\frac{1}{x} \middle| x \in I \cap \mathbb{R}_+^*\right\}$ (respectivement sur $J_- = \left\{\frac{1}{x} \middle| x \in I \cap \mathbb{R}_-^*\right\}$), alors on dit que f admet un développement limité à l'ordre n au voisinage de $+\infty$ (respectivement $-\infty$). Si $g(u) = P(u) + o(u^n)$, alors $f(x) = P(\frac{1}{x}) + o(\frac{1}{x^n})$.

4 Formule de Taylor-Young

4.1 Intégration terme à terme d'un DL

Théorème 4.1. Soit I un intervalle contenant a et $f:I \longrightarrow \mathbb{R}$, une fonction continue possédant un développement limité à l'ordre n en a qui est :

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o(x-a)^n.$$

Alors toute primitive F de f sur I possède un développement limité à l'ordre n+1 en a qui est :

$$F(x) = F(a) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x-a)^{k+1} + o((x-a)^{n+1}).$$

4.2 Formule de Taylor-Young

Théorème 4.2. Soit f une fonction de classe \mathscr{C}^n d'un intervalle I de \mathbb{R} dans \mathbb{K} avec $n \in \mathbb{N}$. f possède en tout point a de I un développement limité d'ordre n donné par :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + o((x - a)^{n}) \qquad ou$$

$$f(a + h) = \int_{0}^{n} f(a) + f'(a)h + \frac{f''(a)}{2!}h^{2} + \dots + \frac{f^{(n)}(a)}{n!}h^{n} + o(h^{n}).$$

5 Opérations sur les développement limités

5.1 Somme et produit

Proposition 5.1. Soit f et g deux fonctions réelles admettant en a des développements limités à l'ordre n:

$$f(x) = P(x-a) + o(x-a)^n$$
 et $g(x) = Q(x-a) + o(x-a)^n$

où Pet Q sont des pllynômes réels de degré au plus égal à n.

Alors les fonctions f + g et f g admettent des développements limités d'ordre n qui sont :

$$(f+g)(x) = P(x-a) + Q(x-a) + o((x-a)^n).$$

 $(fg)(x) = R(x-a) + o((x-a)^n)$

où R est le polynôme obtenu tronquant le produit PQ au degré n.

5.2 Dérivation d'un développement limité

Proposition 5.2. Soit f une fonction de classe \mathscr{C}^1 sur un intervalle I contenant a, admettant un développement limité d'ordre n au voisinage de a:

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o(x-a)^n.$$

Si f' admet un développement limité d'ordre n-1 en a, alors ce développement s'obtient en dérivant celui de f :

$$f'(x) = \sum_{k=1}^{n} ka_k(x-a)^{k-1} + o(x-a)^{n-1}.$$

5.3 Développement limité d'une fonction composée

Proposition 5.3. soit f une fonction définie sur I admettant un $Dl_n(a)$ en $a \in I$, telle que $f(I) \subset J$, avec $f(x) = P(x-a) + o(x-a)^n$.

Soit g une fonction définie sur J admettant un DL_n en b = f(a) avec $g(u) = Q(u-b) + o(u-b)^n$.

Alors $g \circ f$ possède un développement limité à l'ordre n en a obtenu en tronquant à l'ordre n le polynôme composé Q(P(X)):

$$g \circ f(x) = reste$$
 de la division de $Q(P(x-a))$ par $(x-a)^{n+1} + o((x-a)^n)$.

5.4 Développement limité d'un quotient

Proposition 5.4. Si u est une fonction telle que $\lim_a u = 0$ et si u a un développement limité à l'ordre n en a, alors la fonction $x \mapsto \frac{1}{1-u(x)}$ admet un $DL_n(a)$.

Si $u(x) = P(x-a) + o(x-a)^n$, alors $\frac{1}{1-u(x)} = 1 + P(x-a) + P^2(x-a) + P^3(x-a) + \dots + P^n(x-a) + o(x-a)^n$: le développement limité s'obtient en tronquant à l'ordre n le polynôme $1 + P(X) + P^2(X) + \dots + P^n(X)$.

6 Formulaire

$$\frac{1}{1-x} = 1+x+x^2+\cdots+x^n+o(x^n)$$

$$(1+x)^{\alpha} = 1+\frac{\alpha}{1!}x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!}x^n+o(x^n)$$

$$\ln(1+x) = x-\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+(-1)^{n-1}\frac{1}{n}x^n+o(x^n)$$

$$\arctan x = x-\frac{1}{3}x^3+\frac{1}{5}x^5+\cdots+(-1)^p\frac{1}{2p+1}x^{2p+1}+o(x^{2p+1})$$

$$e^x = 1+\frac{1}{1!}x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^n+o(x^n)$$

$$\operatorname{ch} x = 1+\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+\frac{1}{(2p)!}x^{2p}+o(x^{2p})$$

$$\operatorname{sh} x = x+\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+\frac{1}{(2p+1)!}x^{2p+1}+o(x^{2p+1})$$

$$\cos x = 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+o(x^{2p+1})$$

$$\sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+o(x^{2p+1})$$

$$\tan x = x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+o(x^8)$$

7 Applications

7.1 Étude de limites

Proposition 7.1. Si une fonction f a un développement limité de la forme $f(x) = a_0 + o(1)$ au voisinage de $a \in \mathbb{R}$, alors f a une limite en a qui vaut a_0 .

7.2 Prolongement par continuité

Proposition 7.2. *Soit I un intervalle de* \mathbb{R} .

Si une fonction f définie sur $I \setminus \{a\}$, a un développement limité de la forme $f(x) = a_0 + o(1)$ au voisinage de $a \in \mathbb{R}$, alors f est prolongeable par continuité en a en posant $f(a) = a_0$.

7.3 Dérivabilité d'un prolongement par continuité

Proposition 7.3. *Soit I un intervalle de* \mathbb{R} *et a* \in *I.*

Si une fonction f définie sur $I \setminus \{a\}$, a un développement limité de la forme $f(x) = a_0 + a_1(x - a) + o(x - a)$, alors f est prolongeable par continuité en a en posant $\tilde{f}(a) = a_0$ et le prolongement \tilde{f} est dérivable en a avec $\tilde{f}'(a) = a_1$.

7.4 Position relative de la courbe et de la tangente

Proposition 7.4. *Soit I un intervalle de* \mathbb{R} *et a* \in *I.*

Si une fonction f définie sur I a un développement limité de la forme $f(x) = a_0 + a_1(x-a) + a_p(x-a)^p + o((x-a)^p)$ avec $p \ge 2$ et $a_p \ne 0$, alors la droite $y = a_0 + a_1(x-a)$ est tangente à la courbe représentative de f en a.

De plus, la position de la courbe par rapport à la tangente au voisinage du point a est donnée par le signe de $a_p(x-a)^p$: au-dessus si $a_p(x-a)^p \ge 0$.

7.5 Étude d'un extremum

Proposition 7.5. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur I a un développement limité de la forme $f(x) = a_0 + a_2(x-a)^2 + o((x-a)^2)$ avec $a_2 \neq 0$, alors la fonction f a un extremum local en a: maximum local si $a_2 < 0$ et minimum local si $a_2 > 0$.

7.6 Asymptotes

Proposition 7.6. Soit f une fonction définie au voisinage de $+\infty$ (ou $-\infty$).

Si il existe un réel k tel que
$$f(x) - kx = a_p + a_p + o\left(\frac{1}{x^p}\right)$$
 avec $a_p \neq 0$,

alors la droite $y = kx + a_0$ est asymptote à la courbe représentative de la fonction f en $+\infty$ (ou $-\infty$). De plus, la position de la courbe par rapport à l'asymptote est donnée par le signe de $\frac{a_p}{x^p}$ au voisinage $de +\infty$ (ou $-\infty$).

