Lecture 7

Lecturer: Assoc. Prof. M. Mert Ankarali

7.1 Discrete-Time Linear Time Varying State Space Models

State-space representation of a (causal & finite dimensional) LTV DT system is given by

Let
$$x[k] \in \mathbb{R}^n$$
, $y[k] \in \mathbb{R}^m$, $u[k] \in \mathbb{R}^r$,
$$x[k+1] = A[k]x[k] + B[k]u[k],$$

$$y[k] = C[l]x[k] + Du[k],$$
 where $A[k] \in \mathbb{R}^{n \times n}$, $B[k] \in \mathbb{R}^{n \times r}$, $C[k] \in \mathbb{R}^{m \times n}$, $D[d] \in \mathbb{R}^{m \times r}$

Let's first assume that u[k] = 0, and find un-driven response.

$$x[k+1] = A[k]x[k]$$
$$y[k] = C[k]x[k]$$

Unlike LTV-CT systems we easily can compute the response iteratively

$$\begin{split} x[0] &= Ix[0] \quad, \quad y[0] = C[0]x[0] \\ x[1] &= A[0]x[0] \quad, \quad y[1] = C[1]x[1] \\ x[2] &= A[0]x[1] = A[1]A[0]x[0] \quad, \quad y[2] = C[2]x[2] \\ x[3] &= A[2]x[2] = A[3]A[1]A[0]x[0] \quad, \quad y[3] = C[3]x[3] \\ &\vdots \\ x[k] &= A[k-1]x[k-1] = A[k-1]A[k-2] \cdots A[1]A[0]x[0] \quad, \quad y[k] = \quad, \quad y[k] = C[k]x[k] \\ x[k] &= \prod_{i=0}^{k-1} A[k-1-i] \end{split}$$

Motivated by the LTI case, we define the **state transition matrix**, which relates the state of the undriven system at time k to the state at an earlier time m

$$x[k]=\Phi[k,m]x[m]$$
 , $k\geq m$, where
$$\Phi[k,m]=\left\{\begin{array}{ll}\prod_{i=0}^{k-1}A[k-1-i]~,~k>m\\I&~,~k=m\end{array}\right.$$

Note that state-transition matrix satisfies following important properties undriven system at time k to the state at an earlier time m

$$\Phi[k, k] = I$$

$$x[k] = \Phi[k, 0]x[0]$$

$$\Phi[k+1, m] = A[k]\Phi[k, m]$$

7-2 Lecture 7

as you can see, the state-transition matrix satisfies the discrete dynamical state equations. Now let's consider input-only state response (i.e. x[0] = 0).

$$\begin{split} x[k+1] &= A[k]x[k] + B[k]u[k] \\ x[1] &= B[0]u[0] = \Phi[1,1]B[0]u[0] \\ x[2] &= A[1]x[1] + B[1]u[1] = A[1]B[0]u[0] + B[1]u[1] = \Phi[2,1]B[0]u[0] + \Phi[2,2]B[1]u[1] \\ x[3] &= A[2]x[2] + B[2]u[2] = A[2]A[1]B[0]u[0] + A[2]B[1]u[1] + B[2]u[2] \\ &= \Phi[3,1]B[0]u[0] + \Phi[3,2]B[1]u[1] + \Phi[3,3]B[2]u[2] \\ x[4] &= A[3]x[3] + B[3]u[3] = A[3]A[2]A[1]B[0]u[0] + A[3]A[2]B[1]u[1] + A[3]B[2]u[2] + B[3]u[3] \\ &= \Phi[4,1]B[0]u[0] + \Phi[4,2]B[1]u[1] + \Phi[4,3]B[2]u[2] + \Phi[4,4]B[3]u[3] \\ &\vdots \\ x[k] &= \Phi[k,1]B[0]u[0] + \Phi[k,2]B[1]u[1] + \dots + \Phi[k,k-1]B[k-2]u[k-2] + \Phi[k,k]B[k-1]u[k-1] \\ &= \left[\begin{array}{c} u[0] \\ u[1] \\ \vdots \\ u[k-2] \\ u[k-1] \end{array}\right] \\ &= \sum_{j=0}^{k-1} \Phi[k,j+1]B[j]u[j] \\ &= \sum_{j=0}^{k-1} \Phi[k,j+1]B[j]u[j] \\ &= \Gamma[k,0]U[k,0] \end{split}$$

where

$$\Gamma[k,0] = \left[\begin{array}{c} \Phi[k,1]B[0] \mid \Phi[k,2]B[1] \mid \cdots \mid \Phi[k,k-1]B[k-2] \mid \Phi[k,k]B[k-1] \end{array} \right]$$

$$\mathcal{U}[k,0] = \left[\begin{array}{c} u[0] \\ u[1] \\ \vdots \\ u[k-2] \\ u[k-1] \end{array} \right]$$

Ex 7.1 Let's consider following SISO LTP system

$$x[k+1] = A[k]x[k] + B[k]u[k]$$
, $y[k] = C[k]x[k]$, where $A[k] = A[k+4]$, $B[k] = B[k+4]$, $C[k] = C[k+4]$

convert this SISO LTP system into a MISO LTI system

Solution: Let's derive x[4] in terms of x[0], u[0], u[1], u[2], u[3]

Lecture 7 7-3

$$x[4] = A[3]A[2]A[1]A[0]x[0] + A[3]A[2]A[1]B[0]u[0] + A[3]A[2]B[1]u[1] + A[3]B[2]u[2] + B[3]u[3]$$

$$= \begin{bmatrix} A[3]A[2]A[1]A[0] \end{bmatrix} x[0] + \begin{bmatrix} A[3]A[2]A[1]B[0] & A[3]A[2]B[1] & A[3]B[2] & B[3] \end{bmatrix} \begin{bmatrix} u[0] \\ u[1] \\ u[2] \\ u[3] \end{bmatrix}$$

Now let's find x[8] in terms of x[4], u[4], u[5], u[6], u[7]

$$x[8] = \begin{bmatrix} A[3]A[2]A[1]A[0] \end{bmatrix} x[4] + \begin{bmatrix} A[3]A[2]A[1]B[0] & A[3]A[2]B[1] & A[3]B[2] & B[3] \end{bmatrix} \begin{bmatrix} u[4] \\ u[5] \\ u[6] \\ u[7] \end{bmatrix}$$

Let
$$\mathcal{X}[m] = x[4k]$$
, $\mathcal{U}[m] = \begin{bmatrix} u[4k] & u[4k+1] & u[4k+2] & u[4k+3] \end{bmatrix}^T$, and $\mathcal{Y}[m] = y[4k]$, then we have
$$\mathcal{X}[m+1] = \begin{bmatrix} A[3]A[2]A[1]A[0] \end{bmatrix} \mathcal{X}[m] + \begin{bmatrix} A[3]A[2]A[1]B[0] & A[3]A[2]B[1] & A[3]B[2] & B[3] \end{bmatrix} \mathcal{U}[m]$$

$$= \mathcal{A}\mathcal{X}[m] + \mathcal{B}\mathcal{U}[m]$$

$$\mathcal{Y}[m] = [C[0]] \mathcal{X}[m]$$

$$= \mathcal{C}\mathcal{X}[m]$$

which is a multi input single output LTI state-space representation. Note that in this representation we technically perform periodic sampling and analyze the mapping between two sampling instants. However, in this representation we technically loose some information, e.g. measurements/outputs between to sampling instants at i.e. y[4k+1], y[4k+2] y[4k+3] k>0.

Ex 7.2 Obtain a new state-space representation (still LTI) such that it also includes these measurements, i.e. y[4k+1], y[4k+2] y[4k+3] k>0.

7-4 Lecture 7

7.2 Continuous-Time Linear Time Varying State Space Models

State-space representation of a (causal & finite dimensional) LTV CT system is given by

Let
$$x(t) \in \mathbb{R}^n$$
, $y(t) \in \mathbb{R}^q$, $u(t) \in \mathbb{R}^r$,

$$\dot{x}(t) = A(t)x(t) + B(t)u(t),$$

$$y(t) = C(t)x(t) + D(t)u(t),$$

If we assume that the mapping, $t \mapsto A(t)$ is sufficiently well behaved (if $\forall (i,j)$, $a_{ij}(t)$ is piecewise continuous, with a fnite number of discontinuities in any nite interval) there exist a unique solution for the differential equation. In such a case we can describe the solution of the system of equations via a matrix function, $\Phi(t,\tau)$, that ha the following two fundamental properties

$$\frac{d}{dt}\Phi(t,\tau) = A(t)\Phi(t,\tau),$$
$$\Phi(\tau,\tau) = I$$

First let's show that $x(t) = \Phi(t, t_0)x_0$ for the solution of zero-input response with $x(t_0) = x_0$

$$x(t_0) = \Phi(t_0, t_0) x_0 = I x_0 = x_0 \checkmark$$

$$\frac{d}{dt} x(t) = \frac{d}{dt} \left[\Phi(t, t_0) x_0 \right] = A(t) \Phi(t, t_0) x_0 = A(t) x(t), \checkmark$$

Now let's show that $x(t) = \int_{t_0}^t \Phi(t,\tau)B(\tau)u(\tau)d\tau$ for the solution of zero-state response

$$\frac{d}{dt}x(t) = \frac{d}{dt} \left[\int_{t_0}^t \Phi(t,\tau)B(\tau)u(\tau)d\tau \right]$$

$$= \left[\int_{t_0}^t \frac{\partial}{\partial t} \Phi(t,\tau)B(\tau)u(\tau)d\tau \right] + \left[\Phi(t,\tau)B(\tau)u(\tau) \right]_{\tau=t}$$

$$= \left[\int_{t_0}^t A(t)\Phi(t,\tau)B(\tau)u(\tau)d\tau \right] + \Phi(t,t)B(t)u(t)$$

$$= A(t) \left[\int_{t_0}^t \Phi(t,\tau)B(\tau)u(\tau)d\tau \right] + IB(t)u(t)$$

$$\frac{d}{dt}x(t) = A(t)x(t) + B(t)u(t) \checkmark$$

It is relatively easy to show that

$$\Phi(t_2, t_0) = \Phi(t_2, t_1)\Phi(t_1, t_0) , t_2 \ge t_1 \ge t_0$$

7.2.1 Solution of Scalar LTV Models

State-evolution equation of a scalar LTV CT system is given by

$$\dot{x}(t) = a(t)x(t) + b(t)u(t), \ x(t) \in \mathbb{R}, \ y(t) \in \mathbb{R}, \ u(t) \in \mathbb{R},$$

Lecture 7 7-5

Let's try to find x(t) and $\Phi(t,\tau)$ for zero-input response

$$\dot{x}(t) = a(t)x(t) \rightarrow \frac{1}{x}dx = a(t)dt \rightarrow \int_{x(t_0)}^{x(t)} \frac{1}{x}dx = \int_{t_0}^{t} a(\gamma)d\gamma \rightarrow [\ln x]_{x_0}^{x(t)} = \int_{t_0}^{t} a(\gamma)d\gamma \rightarrow \ln(x/x_0) = \int_{t_0}^{t} a(\gamma)d\gamma$$

$$x(t) = e^{\int_{t_0}^{t} a(\gamma)d\gamma} x_0 \rightarrow \Phi(t,\tau) = e^{\int_{\tau}^{t} a(\gamma)d\gamma}$$

General solution then can be expressed as

$$x(t) = \Phi(t, t_0)x_0 + \int_{t_0}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau$$
$$= e^{\int_0^t a(\gamma)d\gamma} x_0 + \int_{t_0}^t \left(e^{\int_\tau^t a(\gamma)d\gamma}\right)B(\tau)u(\tau)d\tau$$

Ex 7.3 *Let*

$$\frac{d}{dt}x(t) = \begin{bmatrix} -t & 0\\ 0 & \cos t \end{bmatrix}x(t) + \begin{bmatrix} 1\\ 1 \end{bmatrix}u(t)$$

First find the state-transition matrix

Solution: Even though the system is not a scalar LTV system since it is in diagonal form, we can use the same derivation on the scalar case

Now let x(0) = 0 and u(t) = 1, find x(t)

$$x(t) = \int_{0}^{t} \Phi(t,\tau)B(\tau)u(\tau)d\tau = \int_{0}^{t} \begin{bmatrix} e^{\frac{\tau^{2}-t^{2}}{2}} & 0\\ 0 & e^{\sin(t)-\sin(\tau)} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} d\tau = \begin{bmatrix} \int_{0}^{t} e^{\frac{\tau^{2}-t^{2}}{2}} d\tau\\ \int_{0}^{t} e^{\sin(t)-\sin(\tau)} d\tau \end{bmatrix}$$
$$= \begin{bmatrix} e^{\frac{-t^{2}}{2}} \int_{0}^{t} e^{\frac{\tau^{2}}{2}} d\tau\\ e^{\sin(t)} \int_{0}^{t} e^{-\sin(\tau)} d\tau \end{bmatrix}$$

7.2.2 Solution of Vector LTV Models

Question: For the vector LTV systems, can we express the zero input solution and the state-transition matrix as

$$x(t) = e^{\int_0^t A(\gamma)d\gamma} x_0 , \ \Phi(t,\tau) = e^{\int_\tau^t A(\gamma)d\gamma}$$