CB041 Química y Electroquímica

Departamento de Química

T11A. Reacciones Químicas II

Autora: María Andrea Ureña

Contenido de esta presentación:

Símbolos en las ecuaciones químicas

Distintas clasificaciones de reacciones Químicas

Algunas reacciones de interés:

Reacciones de neutralización

Reacciones redox

Reacciones de combustión

Símbolos utilizados en las ecuaciones químicas

Una **reacción química** es un proceso mediante el cual una o más sustancias se transforman en otras

Una ecuación química es la descripción simbólica de una reacción química

$$aA(ac) + bB(ac) \rightarrow cC(s) + dD(ac)$$

Símbolo	Significado
+	Signo de suma, indica que se combinan varias sustancias o elementos.
\rightleftharpoons	Reacción reversible.
→	Indica el sentido de la reacción.
†	Indica que se desprende un gas.
↓	Indica que se forma un precipitado.
	Indica que la reacción requiere calor para ocurrir.
<i>h</i> →	Indica que la reacción requiere corriente eléctrica para ocurrir.
Pt,Pd,enzima	Indica que la reacción requiere alguna sustancia (catalizadores, enzimas, entre otras) para ocurrir.
(I),(s),(g),(ac)	Estados líquido, sólido, gaseoso, disolución acuosa.

Clasificación de las reacciones químicas

Criterio energético

Criterio energético:

Todas las reacciones químicas están acompañadas de un cambio de energía. Esto es debido a que toda sustancia tiene su energía interna. Cuando una sustancia se transforma en otra, u otras, mediante una reacción química se rompen enlaces y se forman nuevos, de modo que se libera o se absorbe energía.

Las reacciones que absorben energía del entorno reacciones endergónicas.

Las reacciones que liberan energía al entorno reacciones exergónicas.

Según la forma de energía intercambiada

ejemplos: fotosíntesis, oxidación del Mg

$$6CO_2 + 6H_2O + LUZ \rightarrow C_6H_{12}O_6 + 6O_2$$

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s) + LUZ$$

-Intercambio en forma de **calor** (endotérmicas-exotérmicas) $NH_4NO_3(ac) + calor \rightarrow NH_4^+(ac) + NO_3^-(ac)$

ej: disol. de nitrato de amonio en agua, combustión $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g) + calor$

-Intercambio en forma de energía eléctrica (endoeléctricas-exoeléctricas)

$$2H_2O(l) \xrightarrow{electricidad} O_2(g) + 2H_2(g)$$

Según el reagrupamiento de átomos o grupos de átomos

Reagrupamiento de átomos

A+B→AB

SÍNTESIS

DESCOMPOSICIÓN

AB → A+B

dos o más reactivos sencillos forman <u>un solo producto</u>

$$2Mg(s) + O_2(g) \rightarrow 2MgO_2(s)$$

<u>un reactivo</u> forma dos o más productos

$$2H_2O_2(l) \to 2H_2O(l) + O_2(g)$$

AB+C → AC+B

SUSTITUCIÓN O DESPLAZAMIENTO SIMPLE

SUSTITUCIÓN O DESPLAZAMIENTO DOBLE

AB+CD → AD+CB

reaccionan un elemento y un compuesto y el elemento reemplaza en su posición a uno de los átomos del compuesto

$$HCl(ac) + Mg(s) \rightarrow MgCl_2(ac) + H_2(g)$$

cuando reaccionan dos compuestos y se produce el intercambio mutuo entre alguno de los átomos de dichas sustancias

PRECIPITACIÓN

 $AgNO_2(ac) + NaCl(ac) \rightarrow AgCl(s) + NaNO_2(ac)$

NEUTRALIZACIÓN

Según partícula intercambiada

La partícula intercambiada son **electrones**

En las reacciones redox debemos fijarnos en el **número de oxidación** de los elementos involucrados. Si <u>el nº de oxidación de un elemento aumenta</u>, este cede electrones, por lo tanto se **oxida**, si <u>disminuye el nº de oxidación</u>, toma electrones por lo tanto, este se **reduce.**

Se transfirió 1 electrón del Fe²⁺ al Co³⁺

Siempre que una especie cede electrones (se oxida) otra especie los toma (se reduce). El número total electrones cedidos debe ser igua los ganados

Reacciones redox

Disociamos las especies solución acuosa (elec fuertes: ac. Bases y sales).

No se disocian: los peroxidos los sólidos, los gases los electrolitos débiles no se disocian

$$FeCl_2(ac) + CoCl_3(ac) \rightarrow FeCl_3(ac) + CoCl_2(ac)$$
 Ec. Molecular

disminuye el nº de oxidación

reducción

$$+2$$
 -1 $+3$ -1 $+3$ -1 $+2$ -1
 $Fe^{2+}(ac) + 2 Cl^{-}(ac) + Co^{3+}(ac) + 3 Cl^{-}(ac) \rightarrow Fe^{3+}(ac) + 3 Cl^{-}(ac) + Co^{2+}(ac) + 2 Cl^{-}(ac)$
aumenta el nº de oxidación

oxidación

Podemos escribir las hemirreacciones de oxidación y reducción:

OX
$$Fe^{2+}(ac) \rightarrow Fe^{3+}(ac) + 1e -$$

Se transfirió 1 electrón del Fe^{2+} al Co^{3+}

$$Fe^{2+}(ac) + Co^{3+}(ac) \rightarrow Fe^{3+}(ac) + Co^{2+}(ac)$$

Ec. Iónica Neta
$$6 Cl^{-}(ac) \equiv 6Cl^{-}(ac) \quad \text{lones espectantes} \longrightarrow \angle^{A} \stackrel{\text{MiRAN Pol}}{\sim} \uparrow \forall$$

$$Fe^{2+}(ac) + 2 Cl^{-}(ac) + Co^{3+}(ac) + 3 Cl^{-}(ac) \rightarrow Fe^{3+}(ac) + 3 Cl^{-}(ac) + Co^{2+}(ac) + 2 Cl^{-}(ac)$$

Ec. Iónica Completa

Ec. Molecular

 $FeCl_2(ac) + CoCl_2(ac) \rightarrow FeCl_2(ac) + CoCl_2(ac)$

Reacciones redox

Las **reacciones químicas** suelen clasificarse de distinta manera y hay reacciones químicas que **pueden entrar en distintos tipos de clasificación**.

SÍNTESIS

$$0 0 +4 -2$$

 $2Mg(s) + O_2(g) \rightarrow 2MgO_2(s)$

REDOX

DESCOMPOSICIÓN

+1 -1 +1 -2 0
$$2H_2O_2(l) \rightarrow 2H_2O(l) +O_2(g)$$

REDOX

$$ca(OH)_2(s) \xrightarrow{a \ T > 500^{\circ}C} caO(s) + H_2O(g)$$

NO ES REDOX

SUSTITUCIÓN O DESPLAZAMIENTO SIMPLE

+1 -1 0 +2 -1 0

$$HCl(ac) + Mg(s) \rightarrow MgCl_2(ac) + H_2(g)$$

REDOX

SUSTITUCIÓN O DESPLAZAMIENTO DOBLE

NO SON REDOX

Reacciones de combustión:

- Son reacciones redox, donde se produce la oxidación de sustancias combustibles (que contienen H, C, y en algunos casos S), en presencia de oxígeno, que se encuentra en el comburente con gran desprendimiento de calor y generalmente luz. Suelen ser reacciones muy rápidas
- Reacciones REDOX Y EXOTÉRMICAS
- Las sustancias pueden estar todas en estado gaseoso o ser un sistema heterogéneo (gaslíquido o gas-sólido)

Combustión completa

Máxima oxidación del C

Combustión incompleta

Ocurre con poco oxígeno

$$CH_{4}(g) + \frac{3}{2}O_{2}(g) \rightarrow CO(g) + 2H_{2}O(g) + calor1$$

$$CO(g) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g) + calor2$$

 Para que la asegurarnos que ocurre la combustión completa debemos tener oxígeno en exceso

Balanceo de una reacción de combustión:

3) 1) 2)
$$C_2H_6(g) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$$
 etano

- 1) Dejando el combustible con coeficiente estequiométrico 1, colocamos el número de C del combustible como coeficiente del dióxido de carbono, en este caso 2
- 2) Balanceamos los H colocando el coeficiente estequiométrico en el H₂O
- 3) Balanceamos los 0 colocando el coeficiente estequiométrico en el ${\rm O_2}$

Ejemplo:

$$C_2H_6O(g) + 3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$$

etanol

Cuidado cuando teremos alcoholes, tener en cuenta el oxígeno del -OH

Bibliografia

Bibliografía:

☐ Di Risio, Cecilia D., and María Teresa Guasco. "Química General.«

