Homework-4

Question 1

The following table consists of training data from an employee database.

						0					
dept 1	Salary	r ,		Stat	Sal	12/0-	department	status	age	salary	
		45 /3	-	ST	med	3/5	sales	senior	31-40	Medium	
Sales	med	2/3 1/2		/jr		1/2	sales	junior	21-30 ა	Low	
system mark		+31		Sr	low	To	sales	junior	31-40	Low	
mark	-	7/3 1/2		ا مز		1/2	systems	junior	21-300	Medium	
sec		2/2	1	-	high	2/5	systems	senior	31-40	High	
Sales	low	2/3		;		10	systems	junior	21-30	Medium	
			1				systems	senior	41-50	High	
system mark		O					marketing	senior	31-40	Medium	
		1/2					marketing	junior	31-40	Medium Medium	
Sec		0	-				secretary	senior	41-50		
Sales	high	1/2					secretary	iunior	21-30	Low	

Given an instance with the values: systems, senior, and 21-30 for the attributes department status and age, respectively, what would be a naive bayesian classification for the salary of the sample?

Question 2

You are given the following training data.

o given t	en me ionowing maining						dava.									. 10			
\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
label	Δ	Δ	Δ	- Δ	R	Δ	Δ	Δ	Α	R	B	R	R	Α	B	R	R	B	

1. What would be the classification of a test sample with x = 4.2 according to 1-NN?

Answer: A

2. What would be the classification of a test sample with x = 4.2 according to 2-NN?

Answer: A/B both/file

3. What would be the classification of a test sample with x = 4.2 according to 3-NN?

Answer: (A) / B

4 Use "leave-one-out" cross validation to estimate the error of 1-NN. If you need to choose between two or more examples of identical distance, make your choice so that the number of errors is maximized.

more examples of identical distance, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$ $\begin{cases} 3,4,5,8,9,12,13,14 \end{cases}$

5 Use "leave-one-out" cross validation to estimate the error of 2-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$ $\{3,4,5,8,9,12,13,14\}$ $\frac{8}{18}$

6 Use "leave-one-out" cross validation to estimate the error of 3-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized

Answer: $\frac{?}{18}$ $\{4, 8, 9, 13\}$ $\frac{4}{18}$

Answer:
$$\frac{?}{18}$$
 $\{4,8,9,13\}$ $\frac{4}{18}$

8 Use "leave-one-out" cross validation to estimate the error of 17-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized. 1 1 1/6 2 1 0 1 1 2 1/2 + 0 0 0 -1 0 -1/6 -2 0 -1/3 -3 0 -1/2 -0 3 1 -3 3 1/2 -

7 Use "leave-one-out" cross validation to estimate the error of 4-NN. Whenever you need to make a choice

Answer:
$$\frac{?}{18}$$

Question 3

Consider the following
$$P(+) = \frac{3}{4}$$

$$P(-) = \frac{6}{4}$$

Consider the following training data:
$$\begin{bmatrix}
x_1 & x_2 & y \\
\hline
1 & 1 & + \\
2 & 1 & +
\end{bmatrix}$$

$$\mathcal{M}_1 = \begin{pmatrix} 4/3 \\ 4/3 \end{pmatrix}$$

$$\mathcal{M}_2 = \begin{pmatrix} 9/6 \\ 4/3 \end{pmatrix}$$

 $b = \frac{1}{2} \left(-0.306 - 0.7 \sigma^2 \right)$

- 1. Assume Gaussian distribution where both covariance matrices are a multiple of the identity matrix (Case
- 1.). What is the discriminat function?

$$\frac{2X_2}{6} - \frac{X_1}{6} + 0$$

2. Assume Gaussian distribution where the covariance matrix is the same for both classes (Case 2.). What is the discriminat function?

the discriminat function?
$$\mu = \begin{pmatrix} 13/4 \\ 10/4 \end{pmatrix} = \begin{pmatrix} 1.44 \\ 1.11 \end{pmatrix} \begin{pmatrix} 1.56 \\ 1.11 \end{pmatrix} \begin{pmatrix} 1.56 \\ 1.11 \end{pmatrix} \begin{pmatrix} 1.56 \\ 1.84 \end{pmatrix} \begin{pmatrix} 1.56 \\ 1.$$

3. Assume equal priors and the most general Gaussian distribution (Case 3). What is the discriminat function?

$$\frac{1}{2.43} \frac{2.43}{-1.73} \frac{1.23}{4} \frac{2.07}{2.72} \frac{2.43}{3.57} \frac{2.95}{2.95} \frac{2.95}{3.57}$$

$$= \begin{bmatrix} 10.2 & -0.44 \\ -0.44 & 12.28 \end{bmatrix} = \begin{bmatrix} 1.13 & -0.05 \\ -0.05 & 1.43 \end{bmatrix} = \begin{bmatrix} 1.13 & -0.05 \\ -0.05 & 1.43 \end{bmatrix} = \begin{bmatrix} 0.88 & 0.03 \\ 0.5 & 1.13 \end{bmatrix} = \begin{bmatrix} 0.88 & 0.0$$