Análise de agrupamento

Patrícia de Siqueira Ramos

UNIFAL-MG, campus Varginha

9 de Junho de 2016

Técnicas hierárquicas e seleção de variáveis

- Os métodos hierárquicos aglomerativos de análise de agrupamento também podem ser úteis na seleção das variáveis mais importantes para caracterizar uma situação
- Assim, se o interesse do pesquisador for agrupar as variáveis que forem mais similares entre si e separar aquelas que tenham informações diferenciadas, deve-se escolher uma matriz inicial que represente o relacionamento dessas variáveis

Técnicas hierárquicas e seleção de variáveis

- Os métodos hierárquicos aglomerativos de análise de agrupamento também podem ser úteis na seleção das variáveis mais importantes para caracterizar uma situação
- Assim, se o interesse do pesquisador for agrupar as variáveis que forem mais similares entre si e separar aquelas que tenham informações diferenciadas, deve-se escolher uma matriz inicial que represente o relacionamento dessas variáveis
- Para variáveis quantitativas, a medida de relacionamento mais natural é o coeficiente de correlação
- A matriz de correlação, por si só, não é uma matriz de distâncias, mas transformações podem ser feitas. Uma delas é

$$\mathbf{D}_{p \times p} = \mathbf{1}_{p \times p} - abs(\mathbf{R}_{p \times p}).$$

Técnicas hierárquicas e seleção de variáveis

- A matriz D caracteriza a proximidade entre as variáveis e serviria para implementar os métodos de agrupamento
- Assim, as variáveis em um mesmo grupo seriam altamente correlacionadas entre si e, as de grupos diferentes, seriam pouco correlacionadas entre si
- Para a seleção final de variáveis que seriam usadas, poderiam ser escolhidas, dentro de cada grupo formado, algumas variáveis

Ex.: Dados de decatlon. Matriz de correlações:

	100 <i>m</i>	Long.j	Shot.p	High.j	400 <i>m</i>	110m.h	Discus	Pole.v	Jav	1500m
100 <i>m</i>	1,00	-0,60	-0,36	-0, 25	0,52	0, 58	-0, 22	-0,08	-0, 16	-0,06
Long.j	-0,60	1,00	0, 18	0, 29	-0,60	-0,51	0, 19	0, 20	0, 12	-0,03
Shot.p	-0,36	0, 18	1,00	0, 49	-0, 14	-0, 25	0, 62	0,06	0, 37	0, 12
High.j	-0,25	0, 29	0,49	1,00	-0, 19	-0,28	0, 37	-0, 16	0, 17	-0,04
400 <i>m</i>	0, 52	-0,60	-0, 14	-0, 19	1,00	0, 55	-0, 12	-0,08	0,00	0,41
110m.h	0, 58	-0,51	-0, 25	-0,28	0, 55	1,00	-0,33	0,00	0, 01	0,04
Discus	-0, 22	0, 19	0,62	0, 37	-0, 12	-0,33	1,00	-0, 15	0, 16	0, 26
Pole.v	-0,08	0, 20	0,06	-0, 16	-0,08	0,00	-0, 15	1,00	-0,03	0, 25
Jav	-0, 16	0, 12	0, 37	0, 17	0,00	0,01	0, 16	-0,03	1,00	-0, 18
1500 <i>m</i>	-0,06	-0,03	0, 12	-0,04	0,41	0, 04	0, 26	0, 25	-0, 18	1,00

Outra forma de representar as correlações (pacote corrplot do R)

Agrupamento das variáveis dos dados de decatlon

- Objetivo: particionar n observações em k grupos de modo que haja homogeneidade dentro dos grupos e heterogeneidade entre os grupos formados
- O número k de grupos deve ser escolhido a priori

- Objetivo: particionar n observações em k grupos de modo que haja homogeneidade dentro dos grupos e heterogeneidade entre os grupos formados
- O número k de grupos deve ser escolhido a priori
- Para encontrar a "melhor" partição, algum critério de qualidade da partição deve ser empregado
- Impossível obter e avaliar todas as partições possíveis de ordem k e, por isso, avaliam-se apenas algumas para obter a "quase ótima"

- Nos métodos hierárquicos, o processo é aplicado à matriz de distâncias e, nos métodos não hierárquicos, o processo é aplicado à matriz de dados
- Não é possível construir dendrogramas pois observações podem entrar e sair de grupos em qualquer passo

- Nos métodos hierárquicos, o processo é aplicado à matriz de distâncias e, nos métodos não hierárquicos, o processo é aplicado à matriz de dados
- Não é possível construir dendrogramas pois observações podem entrar e sair de grupos em qualquer passo
- Métodos comuns:
 - k-médias
 - Redes neurais aplicadas à análise de agrupamento
 - Fuzzy c-médias

i) Método das k-médias

- É um dos métodos mais conhecidos e utilizados em problemas práticos
- Basicamente, cada observação é alocada àquele grupo cujo centróide (vetor de médias amostral) é o mais próximo do vetor de valores observados para o respectivo elemento

i) Método das k-médias

- É um dos métodos mais conhecidos e utilizados em problemas práticos
- Basicamente, cada observação é alocada àquele grupo cujo centróide (vetor de médias amostral) é o mais próximo do vetor de valores observados para o respectivo elemento
- A implementação mais utilizada é a que procura a partição das n observações em k grupos que minimize a soma de quadrados dentro dos grupos (SQDG):

$$SQDG = \sum_{j=1}^{p} \sum_{l=1}^{k} \sum_{i \in G_{l}} (X_{ij} - \bar{X}_{j}^{(l)})^{2},$$

em que $ar{X}_j^{(I)}=rac{1}{n_i}\sum_{i\in G_l}X_{ij}$ é a média das observações do grupo G_l na variável j.

Uma das implementações do método das k-médias tem os seguintes passos:

Alocar arbitrariamente os n objetos aos k grupos e calcular os seus centróides. Pode-se gerar os centróides de cada grupo por um processo aleatório qualquer

- Alocar arbitrariamente os n objetos aos k grupos e calcular os seus centróides. Pode-se gerar os centróides de cada grupo por um processo aleatório qualquer
- Alocar cada um dos n objetos aos grupos que apresentem a menor distância (geralmente euclidiana) com o respectivo objeto (minimização da SQDG)

- Alocar arbitrariamente os n objetos aos k grupos e calcular os seus centróides. Pode-se gerar os centróides de cada grupo por um processo aleatório qualquer
- Alocar cada um dos n objetos aos grupos que apresentem a menor distância (geralmente euclidiana) com o respectivo objeto (minimização da SQDG)
- Recalcular os centróides de cada grupo

- Alocar arbitrariamente os n objetos aos k grupos e calcular os seus centróides. Pode-se gerar os centróides de cada grupo por um processo aleatório qualquer
- Alocar cada um dos n objetos aos grupos que apresentem a menor distância (geralmente euclidiana) com o respectivo objeto (minimização da SQDG)
- Recalcular os centróides de cada grupo
- Realocar o primeiro objeto de seu grupo para um outro grupo em que a distância for mínima e menor do que a distância desse objeto para seu próprio grupo de origem

- Alocar arbitrariamente os n objetos aos k grupos e calcular os seus centróides. Pode-se gerar os centróides de cada grupo por um processo aleatório qualquer
- Alocar cada um dos n objetos aos grupos que apresentem a menor distância (geralmente euclidiana) com o respectivo objeto (minimização da SQDG)
- Recalcular os centróides de cada grupo
- Realocar o primeiro objeto de seu grupo para um outro grupo em que a distância for mínima e menor do que a distância desse objeto para seu próprio grupo de origem
- Repetir os passos 3 e 4 até que não ocorram mais mudanças de objetos de um grupo para outro (é realizada apenas uma transferência por iteração)

Opções para inicialização do procedimento das k-médias

- Alocar arbitrariamente os n objetos aos k grupos
- Utilizar sementes aleatórias para representar o centróide dos k grupos
- Amostrar k objetos entre os n originais para representar inicialmente as sementes ou centróides dos grupos

Opções para inicialização do procedimento das k-médias

- Alocar arbitrariamente os n objetos aos k grupos
- Utilizar sementes aleatórias para representar o centróide dos k grupos
- Amostrar k objetos entre os n originais para representar inicialmente as sementes ou centróides dos grupos

Observações

- O método é sensível à escolha inicial dos grupos ou de seus centróides
- Aconselhável repetir o processo todo com escolhas diferentes das sementes iniciais
- Se as diferentes escolhas levarem a a grupos finais muito diferentes ou se a convergência for muito lenta, pode não haver grupos naturais no conjunto de dados

O mercado de uma marca será separado de acordo com duas variáveis: X - consciência sobre preço e Y - fidelidade à marca.

Valor de k definido como 2 (2 grupos de clientes).

O algoritmo seleciona aleatoriamente um centro para cada grupo - CC1 e CC2.

Distâncias euclidianas são calculadas dos centros para cada obs. Cada obs. ficará associada ao centro para o qual a distância é menor (A, B, C: 1/ D, E, F, G: 2).

Baseando-se na partição realizada, cada centróide é calculado (valores médios das obs. em cada grupo). CC1 e CC2 mudam de lugar.

Distâncias das obs. para os novos centros são calculadas e as obs. são atribuídas aos grupos para os quais a distância para o centro é menor.

Resumo

- Os passos 3 e 4 são repetidos até atingir um número predefinido de iterações ou até a convergência ser atingida (não haver mais diferenças entre os grupos obtidos)
- Geralmente, o método das k-médias apresenta desempenho superior aos métodos hierárquicos e é menos afetado por outliers
- Pode ser aplicado a conjuntos de dados grandes (n > 500) e custa menos computacionalmente

Resumo

- Desvantagem: decidir o valor de k antes
- Solução 1: utilizar uma técnica hierárquica antes para definir o número k e, em seguida, aplicar o k-médias
- Solução 2: utilizar um gráfico da SQDG com a solução do método para cada número de grupos. Procura-se o "cotovelo" que poderá ajudar na decisão do valor de k
- Obs. (solução 2): à medida que k cresce, SQDG sempre decresce

Gráfico SQDG $\times k$

