Notizen zu Algorithmen II

Jens Ochsenmeier

16. Februar 2018

Inhaltsverzeichnis

- 1 Anwendungen von DFS 5
 - 1.1 Starke Zusammenhangskomponenten 5

1

Anwendungen von DFS

1.1 Starke Zusammenhangskomponenten

Zusammenhangskomponenten in einem ungerichteten Graph sind Teilgraphen, in denen es zwischen je zwei beliebigen Knoten einen Pfad gibt.

In gerichteten Graphen sind starke Zusammenhangskomponenten Teilgraphen $G \subseteq H$, in denen ebenfalls gilt: für jedes Knotenpaar $u, v \in G$ gibt es einen u-v-Pfad und einen v-u-Pfad.

Insbesondere werden starke Zusammenhangskomponenten durch Zyklen erzeugt (dann kann man einfach im Kreis laufen von einem Knoten zum anderen). Das bedeutet im Umkehrschluss, dass der **Schrumpfgraph** — das ist der Graph, den man erhält, indem man jede starke Zusammenhangskomponente als einen Knoten zusammenfasst — zyklenfrei ist.

Abbildung 1.1. Gerichteter Graph G und zugehöriger Schrumpfgraph G_S .

Tiefensuchschema

Um später SCCs ermitteln zu können konstruieren wir ein Tiefensuchschema:

```
unmark all nodes
init()
foreach s \in V do
  {f if} s is not marked {f then}
    mark s
    root(s)
    DFS(s,s)
DFS(u, v : Node)
  foreach (v, w) \in E do
    {f if} w is marked then
      traverseNonTreeEdge(v, w)
    e1se
      traverseTreeEdge(v, w)
      mark w
      DFS(v, w)
  backtrack(u, v)
```

Dieses Tiefensuchschema kann auf unterschiedliche Graphtraversierungsprobleme angepasst werden.

Wir verwenden nun zwei Arrays zum Zwischenspeichern unserer Resultate:

- oNodes speichert die bereits besuchten Knoten,
- oReps speichert die Repräsentanten der einzelnen SCCs.

Beim Durchlaufen des Graphen werden die Knoten mit dfsNum inkrementell durchnummeriert.

Außerdem gibt es drei Invarianten, die wir im Folgenden nicht verletzen dürfen:

- 1. Kanten von abgeschlossenen Knoten gehen zu abgeschlossenen Knoten
- 2. Offene Komponenten S_1, \ldots, S_k bilden einen Pfad in G_C^s .
- 3. Repräsentanten partitionieren die offenen Komponenten bezüglich ihrer dfs Num.

Für das Finden von SCCs brauchen wir folgende Implementierungen für die rot gekennzeichneten Prozesuren:

• root(s):

```
oReps.push(s) oNodes.push(s)
```

Hierdurch wird eine neue offene Komponente gebildet und s als besucht gekennzeichnet.

• traverseTreeEdge(v,w):

```
\begin{aligned} & \text{oReps.push}(w) \\ & \text{oNodes.push}(w) \end{aligned}
```

Hier wird $\{w\}$ als neue offene Komponente angelegt.

traverseNonTreeEdge(v,w):

```
if w \in \mathsf{oNodes} then \mathbf{while} \ w.\mathsf{dfsNum} < \mathsf{oReps.top.dfsNum} \ \mathbf{do} \ \mathsf{oReps.pop}
```

Ist $w \notin \text{oNodes}$ ist w abgeschlossen und die Kante somit uninteressant. Ist w allerdings in oNodes, so werden die auf dem Kreis befindlichen SCCs kollabiert.

backtrack(u,v):

```
\begin{array}{l} \textbf{if} \ v \equiv \mathsf{oReps.top} \ \textbf{then} \\ \mathsf{oReps.pop} \\ \textbf{repeat} \\ w \coloneqq \mathsf{oNodes.pop} \\ \mathsf{component}[w] \coloneqq v \\ \textbf{until} \ w = v \end{array}
```

Damit haben wir alles was wir brauchen, um die Suche nach SCCs durchführen zu können. Wir kriegen sie sogar in O(m + n), also in Linearzeit, hin!

Abbildung 1.2. Kompletter Durchlauf des Algorithmus.