

Phase Définir

- > Un problème sans solution est un problème mal posé (défini)
- > Tous problème a une solution ou tu fais partie du problème

Albert Einstein

Méthodologie Six Sigma: DMAIC

- 1. Quel est le scope du projet?
- 2. Quel est le défaut et que veut le client?

- 3. Que mesurer? Comment?
- 4. Quelle est la performance de base?
- 5. Quel est l'objectif d'amélioration?

- 6. Quelles sont les causes possibles de la variation?
- 7. Quelles sont les causes premières? (Vital Few X's)
- I MPROVE
- 8. Quelles sont les solutions? Quelle est la configuration optimale?
- Tester la solution
- CONTROL
- 10. Comment garantir et analyser le système de mesure?
- 11. Quelle est la nouvelle performance du processus?
- 12. Documentation du projet et transfert

Eléments d'entrée d'un bon projet

Sélection d'un projet

VOB : voice of business Finance & stratégie

VOP: Voice of process

(Cpk, PPM)

VOC: Voice of customer

(retours, reclamation)

Identifier les éléments de l'organisation qui déterminent la valeur Identifier les opportunités et les possibilités

 Examiner la liste des possibilités

Voice of the customer (VOC)

Permet de comprendre qui sont nos clients, ce qu'ils attendent de nous et ce qu'ils perçoivent de nos produits et services.

- Permet de se focaliser sur les bons éléments de votre projet d'amélioration
- Fournit des données pour réaliser les bonnes mesures
- Identifier les propriétés critiques de vos produits ou services
- Identifier les aspects les plus importants de la satisfaction du client

Exemples

- "Nous avons besoin de livraisons fiables aux dates confirmées".
- "Je veux des délais plus courts pour certains produits spéciaux".
- "Je n'aime pas que les délais de livraison changent".
- "Nous avons besoin d'une réponse plus rapide a nos questions".
- "Le service clientèle a ete incapable de répondre a ma question".
- "La communication est essentielle, même quand il n'y a pas de problèmes".

Diagramme de Kano

Matrice de Déploiement Fonctionnel FDM

- FDM, est un approche systematique qui traduit les exigences client à des specifications produit (outputs) et des parameters processus (inputs)
- L'information est documentée en forme de matrice et prévoit les inputs au FMEA
- II y a 02 aspects de FDM:
 - Deploie qualité: Traduit les exigences client en specifications du design du produit
 - Deploie fonctionnel: traduit specifications du design en exigences processus et production

Le modèle FDM

- Un modèle simple de déploiement de la fonction qualité pour accentuer la bonne compréhension des besoins du client.
- Sert à décrire et à établir les priorités des X et Y pour le client par un classement en utilisant le schéma de processus comme principale source.
- Les Y sont notés par ordre d'importance pour le client
- Les X sont notés selon leur rapport avec les données d'arrivée
- Résultat: un pareto de X qui peut servir de point de départ dans l'évaluation des AMDEC des plans de contrôle.
- Cet outil permet à tous ceux qui participent à un processus de se mettre d'accord sur les données d'arrivée qui sont d'une importance critique pour le produit et/ou le client.
- Grâce à ce classement, ce modèle permettra à votre équipe d'attribuer un degré d'importance à chaque variable de produit
- Par association, le modèle permettra à une équipe de chiffrer l'effet de chaque X sur chaque Y
- C'est la première tentative de l'équipe de déterminer Y = f (x)

La méthode

- ETAPE 1 Faire la liste des variables d'arrivée (Y) dans la partie supérieure du modèle. Ce sont les données que l'équipe et/ou le client jugent importantes. Il peut s'agir d'un sous-ensemble de la liste des Y identifiés sur le schéma du processus.
- ETAPE 2 Classer chaque donnée d'arrivée à l'aide d'une échelle arbitraire de disons 1 à 10. La donnée la plus importante reçoit la note la plus élevée.
- ETAPE 3 Identifier toutes les données de départ (X) qui peuvent avoir un impact sur les diverses Y et en faire la liste sur le côté gauche du modèle.
- ETAPE 4 Noter l'effet de chaque X sur chaque Y à l'intérieur du modèle. Ceci se base sur l'expérience de l'équipe.
- ETAPE 5 A l'aide des totaux, analyser et classer par priorité sur quoi doivent porter vos efforts lors de l'analyse préliminaire AMDEC.

			1	2	3	4	5	6	7	8	9	10		
		Customer CTQ Characteristic	Top Product Purity	Bottom Product Purity	Throughput	Operating Cost (steam)								
	RETURN TO MAIN MENU	ひしつ Customer	Tc Pt	86	1	ōŏ								
	MAIN MENU	Priority Rank #	10	8	10	5								
	Process	Halik #											<u>Rank</u>	% Rank
	Input Variable												<u>IXAIIK</u>	70 INGIIN
1	Feed Composition		2	2	2	2							66	2.99%
ž	Feed Impurities		4	4	2	2							102	4.62%
3	Feed Temperature		2	2	2	4							76	3.45%
ŀ	Feed Rate		7	7	10	8							266	12.06%
5	Reflux Rate		10	8	6	8							264	11.97%
3	Pressure - vacuum		8	8	6	5							229	10.38%
7	Team steam flow		8	10	6	8							260	11.79%
3	Column vertical		10	10	1	1							195	8.84%
3	Column packing type		5	5	5	5							165	7.48%
0	Feed/reflux distrib.		6	6	4	3							163	7.39%
1	Vanor Distribution		6	6	4	3							163	7 30%

Cartographie du processus: SIPOC

- Il s'agit de l'acronyme de Suppliers (Fournisseurs), Inputs (Entrées), Process (Processus), Outputs (Sorties), Customers (Clients).
- Cet outil de modélisation est destiné à dresser un tableau récapitulatif du fonctionnement du processus étudié.
- Le SIPOC, permet de déterminer les frontières du processus, de résumer quelles sont les entrées et les sorties, et d'identifier les fournisseurs et les clients.

Le SIPOC consiste à décrire:

- Toutes les étapes avec ou sans valeur ajoutée
- Les données de départ du processus (X)
- Les données d'arrivée du processus ou du produit (Y)
- Les points de collecte des données

Cartographie du processus: SIPOC

Supplier

Ceux qui fournissent les Inputs de votre process.

Input

Matériels, data, et autres ressources requises pour votre process.

Р Process

X étapes utilisant les Inputs pour créer de la valeur ajoutée pour le client.

O Output

Le produit ou service résultant du process.

Customer

Ceux qui utilisent les Output.

Fethi Derbeli . 2020

Cartographie SIPOC

Cartographie de processus:

- Une représentation graphique du processus tel qu'il se déroule. Un schéma détaillé comporte des renseignements qui sont susceptibles d'améliorer le processus (DPU, durée du cycle, coûts, données de départ et d'arrivée).
- > Etape à valeur ajoutée:
- Une opération qui transforme le produit d'une façon qui a des répercussions pour le client.

> Donnée d'arrivée (Y):

variable d'arrivée clé du processus, pour tout article ou attribut d'un produit considéré comme un critère par le client.

Donnée de départ (X):

- variable de départ clé du processus, pour tout article ayant un impact sur Y.
- X contrôlable variable ou donnée de départ qui peut facilement être modifiée pour mesurer l'effet d'une donnée d'arrivée (Y).
- X parasites données difficiles à contrôler.
- > PSE X procédure standard d'exploitation ou des instructions de travail clairement définies et appliquées à chaque étape du processus.

Valeur Ajoutée :

- Tout activité qui change physiquement le produit, est bon du premier coup et ou peut améliorer la qualité du produit et le client est prêt à payer
 - Ou il est rendue nécessaire par la législation, le règlement, le contrat, ou pour des raisons de santé, de sécurité et d'environnement.

Cartographie SIPOC

Le schéma de processus - méthodologie en 7 étapes

- 1) Définir l'ampleur du processus que doit schématiser l'équipe. Fixer le début et la fin.
- 2) Indiquer toutes les tâches ou opérations nécessaires à la réalisation d'un "bon" produit ou service (y compris les DPU, la durée du cycle et le coût à chaque étape).
- 3) Indiquer pour chaque tâche ou opération s'il s'agit d'une valeur ajoutée ou non.
- 4) Indiquer à chaque étape les Y internes et externes.
- 5) Indiquer à chaque étape les X internes et externes.
- 6) Classer tous les X dans l'une des catégories suivantes:
 - Contrôlable; ce sont les paramètres que l'on peut ajuster ou réguler pendant le déroulement du processus (vitesse, cadences, température, pression, etc.), la valeur optimale du sortie est connue et documentée dans le SOP
 - Procédures standard d'exploitation (PSE)/ Expérimental: ce que l'on fait au nom du bon sens. Le but est de s'assurer que l'on décrit la vraie procédure (y compris le nettoyage, la sécurité, le chargement des composants, etc.), la valeur des paramètres ne sont pas bien connues
 - Les parasites/Noise: les choses qu'on ne peut pas maîtriser, pour des raisons pratiques ou de coût (température ou humidité ambiante, formation des opérateurs).
- 7) Désigner clairement tous les points de collecte des données.

	Α	В	С	D	Е	F	G	Н	
		Input	Input	Known Specifications					
	Process Step	(8)	Classification			Physical Limits	SOP in place?	Comments	
Ļ			(C, N, X)	USL	LSL				
_	Feed Stock Tanks	Distillate Feed Composition	N	None	None		No	Blend of various distillate stream	
-	Feed Stock Tanks	Distillate Feed Impurities	N	None	None		No	Impurities not characterised	
-	Feed Stock Tanks	Distillate Feed Quantity	С		None		No	Set by daily production rate	
Ļ	Feed Pre-heater	Feed stock material	N	None	None		No	Product quantity & composition	
	Feed Pre-heater	Temperature of heating medium (bottom product)	С	None	None	88.C	No	Operated at Physical limit	
	Distillation Unit	Feed Rate	С	None	None	13.5 tonnes/hour	Yes	Set by daily product production ra	
	Distillation Unit	Feed Temperature	С	None	None		Yes	Set by control system	
	Distillation Unit	Feed composition	N	85% Bottom Prod.	60% Bottom Prod		Yes	Specifications are wide!	
1	Distillation Unit	Reflux Rate	X	None	None	10 tonnes/hour	No	Set by control algorithm	
3	Distillation Unit	Operating Pressure (vacuum)	X	None	None	80mbar	No	Set at 125mbar - not optimised	
4	Distillation Unit	Operating Temperature (steam)	X	None	None	1.5barG (100% valve pos.)	No	Set by control algorithm	
5	Distillation Unit	Allechanical : Column Vertical	N	None	None		No	Not checked	
3	Distillation Unit	Allechanical : Column Packing	N	None	None		No	Annual Inspection	
7	Distillation Unit	Allechanical : Feed/Reflux Distribution	N	None	None		No	Annual Inspection	
3	Distillation Unit	Allechanical : Vapour Distribution	N	None	None		No	Annual Inspection	
)	Distillation Unit	Allechanical : General Fouling	N	None	None		No	Annual Inspection	
1									

Classification des entrées

Input (x)	Categorical or Continuous?	Response (y)	Attribute or Variable?	Current Input Level	Analysis Method	Is Input Vital (Y/N)	New Input Level

Nature Input & output

Entrée (Inputs)

$$Y = f(X_1, X_2,X_n)$$

Sortie (outputs)

Discrète

(Machine N°, Opérateur, Equipe, Usine, Matière, Lot, fournisseur ...)

Continue

Discrète

Continue

(Température, Ampérage, Tension, Pression, viscosité ...)

Continue

(Poids, cote, dureté, force, résistance, bruit, efficience, PPM...)

Continue

Discrète

Discrète

(Bon/Mauvais, Passe/ ne passe pas) Esthétique, Continuité, calibre 1-2-3-4 Barème, évaluation (A,B,C,D)

Choisir des techniques statistiques

Il existe des techniques statistiques pour couvrir toutes les combinaisons de types de données.

Voici quelques techniques statistiques que vous pouvez utiliser pour contribuer au Processus d'Amélioration

Project charter

Elément	Détails		
1. Nom du Projet			
2. chef de Projet			
3. Description du Projet			
4. Secteur			
5. Gains pour le client			
6. Problèmes Compétitivité			
7. Obstacles			
	Les dates de chaque phase)	Date	Situation
Définir			
Mesurer			
Analyser			
Améliorer			
Contrôler.			
9. Objectif			
10. Contraintes			
11. Délimitations (frontières)			
12. Supposition			
13. Supports &			
ressources			
14. Plan d'usage des outil	s	Date cible	Situaion
autre			

