

Ensemble Learning

马锦华

数据科学与计算机学院 中山大学

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of test records by combining the predictions made by multiple classifiers

Why Ensemble Methods work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume errors made by classifiers are uncorrelated
 - Probability that the ensemble classifier makes a wrong prediction:

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1 - \varepsilon)^{25 - i} = 0.06$$

General Approach

Types of Ensemble Methods

- Manipulate data distribution
 - -Example: bagging, boosting
- Manipulate input features
 - Example: random forests
- Manipulate class labels
 - Example: error-correcting output coding

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalizat ion factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification: $C * (x) = \arg \max_{y} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

- 1: $\mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}$. {Initialize the weights for all n instances.}
- 2: Let k be the number of boosting rounds.
- 3: for i = 1 to k do
- 4: Create training set D_i by sampling (with replacement) from D according to w.
- 5: Train a base classifier C_i on D_i .
- Apply C_i to all instances in the original training set, D.
- 7: $\epsilon_i = \frac{1}{n} \left[\sum_j w_j \, \delta \left(C_i(x_j) \neq y_j \right) \right]$ {Calculate the weighted error}
- 8: if $\epsilon_i > 0.5$ then
- 9: $\mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}.$ {Reset the weights for all n instances.}
- Go back to Step 4.
- 11: end if
- 12: $\alpha_i = \frac{1}{2} \ln \frac{1 \epsilon_i}{\epsilon_i}$.
- Update the weight of each instance according to equation (5.88).
- 14: end for
- 15: $C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y)$.

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	7	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - -Split point k is chosen based on entropy

AdaBoost Example

Training sets for the first 3 boosting rounds:

Boostin										
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1
у	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostin	ng Roui	nd 2:								
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
у	1	1	1	1	1	1	1	1	1	1
Boostin	ng Roui	nd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
у	1	1	-1	-1	-1	-1	-1	-1	-1	-1

Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x = 0.8	x = 0.9	x = 1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Other Boosting Methods

LPBoost

 Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. "Linear programming boosting via column generation." *Machine Learning* 46.1-3 (2002): 225-254.

eXtreme Gradient Boosting

- Tianqi Chen, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016.
- https://github.com/dmlc/xgboost

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Build classifier on each bootstrap sample

 Each sample has probability (1 – 1/n)ⁿ of being selected

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- 1: Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i.
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \arg \max_y \sum_i \delta(C_i(x) = y)$, $\{\delta(\cdot) = 1 \text{ if its argument is true, and } 0 \text{ otherwise.}\}$

Consider 1-dimensional data set:
 Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Baggir	ig Roun	nd 1:								
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Baggir	ng Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x <= 0.35 \implies y = 1$
у	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour	nd 2:									
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x <= 0.7 \implies y = 1$
У	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \implies y = 1$
Baggir	ng Rour	nd 3:									
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	$x <= 0.35 \Rightarrow y = 1$
у	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour	nd 4:									
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \implies y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$
Baggir	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x <= 0.35 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$

Baggir	ng Rour	nd 6:									
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	8.0	0.9	1	$x <= 0.75 \implies y = -1$
У	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 7:									
X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x <= 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 8:									
X	0.1	0.2	0.5	0.5	0.5	0.7	0.7	8.0	0.9	1	$x <= 0.75 \Rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 9:									_
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	8.0	1	1	$x <= 0.75 \Rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Baggir	ıg Rour	nd 10 [.]									
X	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.8	0.9	0.9	$x <= 0.05 \Rightarrow y = 1$
V	1	1	1	1	1	1	1	1	1	1	$x > 0.05 \implies y = 1$

Summary of Training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Random Forest

Algorithm 1 Random Forest

```
Precondition: A training set S := (x_1, y_1), \dots, (x_n, y_n), features F, and number
   of trees in forest B.
   function RANDOMFOREST(S, F)
       H \leftarrow \emptyset
       for i \in 1, \ldots, B do
           S^{(i)} \leftarrow A bootstrap sample from S
           h_i \leftarrow \text{RANDOMIZEDTREELEARN}(S^{(i)}, F)
           H \leftarrow H \cup \{h_i\}
       end for
       return H
   end function
   function RANDOMIZEDTREELEARN(S, F)
       At each node:
11
           f \leftarrow \text{very small subset of } F
12
           Split on best feature in f
13
       return The learned tree
15 end function
```


Why Do Random Forests Work?

- Bagging can reduce the variance
- Advantages of choosing features from random subsets
 - Individual decision trees learnt from random feature sets are more uncorrelated
 - More decision trees can be learnt in a given amount of time due to small scale of features
- More details can be referred to
 - Breiman, Leo. "Random forests." *Machine learning* 45.1 (2001): 5-32.

References

 P.-N. Tan, M. Steinbach, V. Kumar: Introduction to data mining, Second Edition, https://www-users.cs.umn.edu/~kumar001/dmbook/index.ph