Certamen 1 Cálculo Integral

12 de abril de 2017

Profesores Patricio Cumsille - Juan Espinoza

P1. [1 punto].

- a) Demuestre que [0,1) no tiene máximo.
- b) Demuestre usando la definición de convergencia de sucesiones que

$$\lim_{n \to \infty} \frac{2n+1}{n+1} = 2.$$

P2. [1,5 puntos]. Calcule, si es que existen, los siguientes límites:

(a)
$$\lim_{n \to \infty} \frac{3n^2 + 2n + 1}{n^2 + n}$$
; (b) $\lim_{n \to \infty} n \left(\sqrt{n^4 + 6n + 7} - n^2 \right)$; (c) $\lim_{n \to \infty} \frac{\sin n}{\sqrt{n}}$.

P3. [1,5 puntos]. Determine si las siguientes sucesiones son: (i) monótonas, (ii) acotadas, (iii) convergentes.

(a)
$$\frac{1+(-1)^n}{n}$$
; (b) $\cos\left(\frac{n\pi}{2}\right)$.

P4. [2 puntos]. Una sucesión que surge en ecología como un modelo para el crecimiento de una población está dado por la sucesión logística

$$p_{n+1} = kp_n(1 - p_n)$$

donde p_n es el tamaño de la población de la n-ésima generación de una especie, suponiendo que no está en interacción con el medioambiente. Los valores de (p_n) corresponden a la proporción del tamaño máximo de la población, de modo que $0 \le p_n \le 1$.

El objetivo de este problema consiste en analizar el comportamiento de esta especie modelada por esta sucesión. Suponga que $k \in (1, 2)$. Se pide:

- a) [0,75 puntos]. Demuestre que si la proporción de la población inicial está entre 0 y 1-1/k entonces la proporción de la n-ésima generación también estará entre dichos valores. O sea, pruebe que si $p_0 \in (0,1-1/k)$, entonces para todo $n \ge 1$ se cumple que $p_n \in (0,1-1/k)$. Indicación: Notando que 0 < 1-1/k < 1/2 para $k \in (1,2)$, grafique la función f(x) = kx(1-x) para $x \in [0,1]$ y pruebe que para todo $x \in (0,1-1/k)$, se verifica que $f(x) \in (0,1-1/k)$.
- b) [0,5 puntos]. Demuestre que la sucesión (p_n) es creciente.
- c) [0,75 puntos]. Concluya que la sucesión (p_n) es convergente y calcule el valor del límite de (p_n) . Interprete sus resultados en términos de lo que ocurre con la especie.