LCC 2022/2023

	Teste — 12 de janeiro de 2023 —————	Duração: 120 minutos —
	reste 12 de janeiro de 2025	Duração. 120 minutos
Nome:		Número:

Grupo I

Responda a cada uma das 8 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

1. Dê exemplo de uma fórmula φ do Cálculo Proposicional que tenha exatamente três subfórmulas e tal que $var((p_0 \vee p_1)[\varphi/p_1]) = \{p_0, p_1\}.$

Resposta:

2. Dê exemplo de uma fórmula φ do Cálculo Proposicional cujos conetivos estejam no conjunto $\{\neg, \land\}$ e tal que $\varphi \land (p_0 \lor p_1)$ seja uma contradição.

Resposta:

3. Dê exemplo de uma valoração v_0 que mostre que: $p_0 \to p_1, p_1 \to p_2 \not\models p_0 \lor p_2$.

Resposta:

4. Indique um conjunto de fórmulas proposicionais Γ que seja maximalmente consistente e tal que $\{p_1 \leftrightarrow p_2, \neg p_1\} \subset \Gamma$.

Resposta:

5. Considere o tipo de linguagem $L = (\{c, f\}, \{P, =\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 2$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(=) = 2$, e considere a L-estrutura $E = (\mathbb{Z}, \overline{})$ tal que:

$$\begin{split} \overline{\mathsf{c}} &= 1 \\ \overline{\mathsf{P}} &= \{z \in \mathbb{Z} \mid z = 2z', \, \text{para algum} \, z' \in \mathbb{Z} \} \end{split} \quad \begin{aligned} \overline{\mathsf{f}} &: \mathbb{Z}^2 \to \mathbb{Z} \, \text{tal que} \, \overline{\mathsf{f}}(z_1, z_2) = z_1 + z_2 \\ &\equiv = \{(z_1, z_2) \in \mathbb{Z}^2 \mid z_1 = z_2 \} \end{aligned}$$

Dê exemplo de uma atribuição a_0 em E tal que $f(c, x_0)[a_0]_E = f(x_1, f(c, c))[a_0]_E$.

Resposta:

6. Considere de novo o tipo de linguagem $L=(\{\mathsf{c},\mathsf{f}\},\{\mathsf{P},=\},\mathcal{N})$ definido na Questão 5. Indique o número de L-estruturas cujo domínio é $\{0,1\}$.

Resposta:

7. Considere o tipo de linguagem $L = L_{Arit}$. Seja $\psi = \forall x_1 \exists x_2 \neg (x_0 + x_1 < x_2)$. Dê exemplo de um L-termo t tal que x_0 não seja substituível sem captura de variáveis por t em ψ .

Resposta:

8. Considere o tipo de linguagem $L = L_{Arit}$. Dê exemplo de uma L-fórmula φ que seja uma forma normal prenexa tal que $\varphi \Leftrightarrow (x_0 = 0 \land \neg \exists x_0 \, x_0 < 0)$.

Resposta:

Grupo II

Responda às 6 questões deste grupo na folha de teste, **justificando** convenientemente as respostas.

- 1. Sejam v_1 a valoração tal que $v_1(p_i) = 1$, para todo $i \in \mathbb{N}_0$, e $BIN = \{\land, \lor, \to, \leftrightarrow\}$. Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, se os conetivos de φ pertencem a BIN, então $v_1(\varphi) = 1$.
- 2. Indique, justificando, uma forma normal disjuntiva logicamente equivalente à fórmula $(p_0 \leftrightarrow p_1) \lor \neg p_1$.
- 3. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que: se $\Gamma \cup \{\varphi\}$ é consistente e $\Gamma \models \varphi \to \psi$, então ψ não é contradição.
- 4. Apresente uma demonstração em DNP de $(\neg p_0 \lor (p_1 \to \bot)) \to (p_0 \to \neg p_1)$.
- 5. Considere de novo o tipo de linguagem $L = (\{\mathsf{c},\mathsf{f}\},\{\mathsf{P},=\},\mathcal{N})$ e a L-estrutura $E = (\mathbb{Z},\overline{\ })$ definidas na Questão 5 do Grupo I. Seja φ a L-fórmula: $\forall x_1 \, (\, (\mathsf{P}(x_1) \land \mathsf{P}(x_2)) \to \mathsf{P}(\mathsf{f}(x_1,x_2)) \,)$. Mostre que φ é válida em E.
- 6. Sejam L um tipo de linguagem, φ, ψ, σ fórmulas de tipo L e x uma variável tal que $x \notin LIV(\varphi)$. Mostre que: $(\exists x \, \sigma) \land \varphi, \exists x \psi \vdash \exists x (\varphi \land \psi)$.

Cotações	I (8 valores)	II (12 valores)
Cotações	1+1+1+1+1+1+1+1	2+2+2+2+2+2