§3 二重結合と三重結合

各C原子の混成軌道のひとつをもうひとつのC原子の方向に向けると、C原子間の σ 型の重なりによってCC σ 結合ができる。

C原子の残り2つのsp²混成軌道は、CC結合軸に対して120°の方向になる。

それぞれの方向からのH原子を近づけるとσ型の重なりになり、CHσ結合ができる。

C原子に1つずつあるp軌道どうしの重なりは CH_2 ユニットが同一平面に並んだときに最大になり、 π 型の重なりによるCC結合が追加される、CC原子間には sp^2 混成軌道どうしのCC σ 結合が1個、p軌道どうしのCC π 結号が1個でき、CC二重結合となる。

π結合の拘束力により6個の原子はすべて同一平面上にならび、分子の骨格は、平面状になる。

π結合を結びつけるエネルギーは、σ結合より弱い。

アセチレンは、炭素を結ぶ軸上にできる σ 結合のほか、2本の π 結合ができて、結果として三重結合になる。

	結合エネルギー (kJ/mol)	結合距離 (Å)
с—с	368	1.56
c==c	703	1.32
c≡c	962	1.20

エチレンやアセチレンの π 結合においても、低エネルギーの結合性 π 軌道と高エネルギーの反結合性 π *軌道ができる。

反結合性π*軌道

エチレンのC=C結合は、σ、σ*、π、π*の4つの分子軌道 からなっている。σ軌道からσ*軌道へ電子を励起させるより も、π軌道からπ*軌道に励起させるのに要するエネルギーは 小さい。

共役二重結合

試験の際には、

学生証、電卓

を忘れないこと!!