Содержание

1	Цель работы	2
2	Введение	2
3	Измерительные приборы	3
4	Результаты прямых измерений	3
5	Обработка результатов измерений 5.1 Задание 1 5.1.1 Вывод 5.2 Задание 2 5.2.1 Вывод	E 0
6	Результаты лабораторной работы	7

1 Цель работы

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения g.

2 Введение

Как известно, при поступательном равноускоренном движении тела вдоль оси O зависимость проекции его скорости v_x от времени t определяется выражением:

$$v_x(t) = v_{0x} + a_x t \tag{1}$$

где v_{0x} - проекция скорости на ось O в момент времени $t=0, a_x$ – ускорение тела. Зависимость координаты тела x от времени t имеет вид:

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2} (2)$$

3десь x_0 – начальная координата. Если начальная скорость тела равна нулю, то из (2) следует:

$$x_2 - x_1 = \frac{a}{2}(t_2^2 - t_1^2) \tag{3}$$

Таким образом, существует линейная зависимость между пе- ремещением $\Delta x = x_2 - x_1$ и полуразностью квадратов значений времени $\frac{t_2^2 - t_1^2}{2}$ Коэффициент пропорциональности этой зависимости равен ускорению тела. Если экспериментальный график этой зависимости будет представлять собой прямую линию, то это будет доказательством движения с постоянным ускорением. В качестве объекта совершающего равнопеременное поступательное движение рассмотрим тележку, скользящую по наклонной плоскости (см. рис.(1). Второй закон Ньютона, описывающий ее движение, имеет вид:

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F} \tag{4}$$

где \vec{a} — ускорение тележки, \vec{N} — сила реакции опоры, а сила трения, возникающая при скольжения, по модулю равна произведению коэффициента трения на силу нормальной реакции: $F = \mu N$. Проекции уравнения (4) на координатные оси:

$$\begin{cases} O_y : N - mg\cos\alpha \\ O_x : ma = mg\sin\alpha - \mu mg\cos\alpha \end{cases}$$
 (5)

где α — угол между наклонной плоскостью и горизонталью. Из (5) следует выражение для модуля ускорения:

$$a = g\sin\alpha - \mu\cos\alpha\tag{6}$$

Поскольку в лабораторной установке коэффициент трения μ и угол α достаточно малы, то

Рис. 1: Векторная диаграмма сил, действующих на тело,расположенное на наклонной плоскости

 $cos \alpha$ в формуле(6) можно заменить единицей. С учетом этого выражение для ускорения будет иметь вид:

$$a = g(\sin \alpha - \mu) \tag{7}$$

Таким образом, теоретическая зависимость ускорения a от $\sin \alpha$ является линейной и угловой коэффициент этой зависимо- сти равен ускорению свободного падения g.

3 Измерительные приборы

Таблица 1: Измерительные приборы

Наименование	Предел измерений	Цена деления	Класс точности	$\Delta_{\scriptscriptstyle m M}$
Линейка на рельсе	1,3 м	1 c м $/$ d eл	_	5 мм
Линейка на угольнике	250 мм	1 мм/дел	_	0,5 мм
ПКЦ-3 в режиме секундомера	100 c	0,1 c	_	0,1 c

4 Результаты прямых измерений

Настоящий протокол с измерений с подписью приводится как Приложение 1 (один лист, заполненный от руки с двух сторон).

Таблица 2

х, м	x', м	h_0 , мм	h_0' , мм
$0,22 \pm 0,005$	$1,0 \pm 0,005$	$196 \pm 0, 5$	$194 \pm 0, 5$

Таблица 3: Результаты прямых измерений (Задание 1)

Nº	Измеренные величины				Рассчитанные величины		
١١٠	x_1, M	x_2, M	t_1, c	t_2, c	x_2-x_1, M	$\frac{t_2^2 - t_1^2}{2}, c^2$	
1	$0,15 \pm 0,005$	$0,40 \pm 0,005$	$1, 3 \pm 0, 1$	$2,6 \pm 0,1$	$0,25 \pm 0,005$	$2,54 \pm 0,005$	
2	$0,15 \pm 0,005$	$0,50 \pm 0,005$	$1,2 \pm 0,1$	$2,9 \pm 0,1$	$0,35 \pm 0,005$	$3,49 \pm 0,005$	
3	$0,15 \pm 0,005$	$0,70 \pm 0,005$	$1,3 \pm 0,1$	$3,6 \pm 0,1$	$0,55 \pm 0,005$	$5,64 \pm 0,005$	
4	$0,15 \pm 0,005$	$0,90 \pm 0,005$	$1,3 \pm 0,1$	$4,1 \pm 0,1$	$0,75 \pm 0,005$	$7,56 \pm 0,005$	
5	$0,15 \pm 0,005$	$1,10 \pm 0,005$	$1,2 \pm 0,1$	$4,6 \pm 0,1$	$0,95 \pm 0,005$	$9,86 \pm 0,005$	

Таблица 4: Результаты прямых измерений (Задание 2)

Νπл	h, мм	h', мм	№	t_1, c	t_2, c
	187	193	1	1, 2	4, 5
			2	1,3	4,6
1			3	1, 2	4,5
			4	1,3	4,6
			5	1,4	4, 7
			1	0,9	3, 2
			2	0,9	3, 2
2	178	193	3	0,8	3, 1
			4	0,9	3, 2
			5	0,9	3, 2
		193	1	0,7	2,6
			2	0,7	2,6
3	169		3	0,7	2,5
			4	0, 7	2,5
			5	0,7	2,5
	160	192	1	0, 7	2, 2
			2	0,6	2, 1
4			3	0,7	2, 1
			4	0,7	2, 2
			5	0,7	2, 2
		192	1	0,7	2,0
	151		2	0,7	2,0
5			3	0,7	2,0
			4	0,7	2,0
			5	0,7	2,0

5 Обработка результатов измерений

5.1 Задание 1

- 1. Величины $Y=x_2-x_1$ и $Z=\frac{t_2^2-t_1^2}{2}$ и их погрешности записаны в Табл. 3 .
- 2. График теоритической зависимости Y=aZ с угловым коэффициентом равным ускорению приведён в Приложении 2 как График 1.
- 3. Вычислим коэффициент aего среднеквадратическое отклонение (СКО) $\sigma_{\langle a \rangle}$:

$$\frac{\sum_{i=1}^{N} Z_{i} Y_{i}}{\sum_{i=1}^{N} Z_{i}^{2}}; \quad \sigma_{\langle a \rangle} = \sqrt{\frac{\sum_{i=1}^{N} (Y_{i} - a Z_{i})^{2}}{(N-1) \sum_{i=1}^{N} Z_{i}^{2}}}$$
(8)

где N- количество экспериментальных точек, в данной серии измерений N=5. Угловой коэффициент a=0,1 и $\sigma_{\langle a\rangle}=2,73\cdot 10^{-3}$

Абсолютную погрешность коэффициента a для доверительной вероятности $\alpha=0,95$ вычислим по формуле:

$$\Delta_a = t_{\alpha, N-1} \cdot \sigma_a, \tag{9}$$

где - $t_{\alpha,N-1}$ коэффициент Стьюдента для доверительной вероятности α и количества измерений N. $t_{\alpha,N-1}=2,78$ соотствественно $\Delta_a=7,59\cdot 10^{-3}$. Вычислим относительную погрешность ускорения по формуле:

$$\varepsilon_a = \frac{\Delta_a}{a} \cdot 100\% \tag{10}$$

 $\varepsilon_a = 7,59$

4. Зависимость Y(Z) = aZ построена на Графике 1.

5.1.1 Вывод

Так как зависимость Y(Z) = aZ линейна, то движение тележки равноускоренное.

5.2 Задание 2

1. Для каждой серии измерений из Таблицы 4 вычислим значение синуса угла наклона рельса к горизонту по формуле:

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x} \tag{11}$$

2. Вычислим средние значения времени t_1 и t_2 каждой серии и их погрешности по формулам:

$$\langle t \rangle = \frac{1}{N} \sum_{i=1}^{N} t_i \tag{12}$$

CKO:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{\sum_{i=1}^{N} (t_i - \langle t \rangle)^2}{N(N-1)}}$$
(13)

Случайная погрешность:

$$\Delta_{\langle t \rangle} = t_{\alpha, N} \cdot \sigma_{\langle t \rangle} \tag{14}$$

Абсолютная погрешность:

$$\Delta_t = \sqrt{\Delta_{\langle t \rangle}^2 + \left(\frac{2}{3} \cdot \Delta_{\text{\tiny H}}\right)^2} \tag{15}$$

3. Вычислим значение ускорения и его погрешность для каждой серии измерений по формулам:

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} \tag{16}$$

$$\Delta_a = \langle a \rangle \cdot \sqrt{\frac{(\Delta_{x \bowtie 2})^2 + (\Delta_{x \bowtie 1})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta_{t_1})^2 + (\langle t_2 \rangle \Delta_{t_2})^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$
(17)

где $\Delta_{xи1}$ и Δ_{xu2} – приборные погрешности измерения координат и x_1 и x_2 ; Δ_{t_1} и Δ_{t_2} – абсолютные погрешности значений времен t_1 и t_2 .

4. Результаты расчетов для ускорения внесены в таблицу.

Таблица 5: Результаты расчетов (Задание 2)

$N_{\Pi \Pi}$	$\sin \alpha$	$\langle t_1 \rangle \pm \Delta t_1, \ c$	$\langle t_2 \rangle \pm \Delta t_2, \ c$	$\langle a \rangle \pm \Delta a, \frac{M}{c^2}$
1	0,010	$1,3 \pm 0,130$	$4,6 \pm 0,130$	0.098 ± 0.028
2	0,022	$0,9 \pm 0,087$	$3,2 \pm 0,087$	$0.201 \pm 0,038$
3	0,033	$0,7 \pm 0,067$	$2,5 \pm 0,107$	$0.330 \pm 0,075$
4	0,044	$0,7 \pm 0,087$	$2,2 \pm 0,107$	$0.437 \pm 0,102$
5	0,055	$0,7 \pm 0,067$	$2,0 \pm 0,067$	$0.541 \pm 0,082$

5. Теоритическая зависимость a от $\sin \alpha$ имеет линейный характер: $a = A + B \sin \alpha$, где $A = -\mu g$, B = g (следует из (7)). Вычислим g методом наименьших квадратов (МНК). Найдем среднее значение синуса и ускорения:

$$\langle \sin \alpha \rangle = \frac{1}{N} \sum_{i=1}^{N} \sin \alpha_i; \quad \langle a \rangle = \frac{1}{N} \sum_{i=1}^{N} a_i$$
 (18)

 $\langle \sin \alpha \rangle = 0,033; \quad \langle a \rangle = 0,321$ Найдём коэффициенты линейной зависимости по следующим формулам:

$$B = \frac{\sum_{i=1}^{N} (\sin \alpha_i - \langle \sin \alpha \rangle) (a_i - \langle a \rangle)}{\sum_{i=1}^{N} (\sin \alpha_i - \langle \sin \alpha_i \rangle)^2}; \quad A = \langle a \rangle - B \langle \sin \alpha \rangle$$
 (19)

B = 10,012 A = -0,009

Рассчитаем параметры d_i и D по формулам:

$$d_i = a_i - (A + B\sin\alpha_i),\tag{19}$$

$$D = \sum_{i=1}^{N} (\sin \alpha_i - \langle \sin \alpha_i \rangle)^2$$
 (20)

Вычислим СКО коэффициента В:

$$\sigma_B = \sqrt{\frac{\sum\limits_{i=1}^{N} d_i^2}{D(N-2)}} \tag{21}$$

 $\sigma_B=0.261$ Определим абсолютную погрешность коэффициента B для доверительной вероятности $\alpha=0,95$ по формуле:

$$\Delta B = t_{\alpha, N-2} \cdot \sigma_B \tag{22}$$

 $\Delta B = 1.122$

Рассчитаем относительную погрешность коэффициента B:

$$\varepsilon_B = \frac{\Delta B}{B} \cdot 100\% \tag{23}$$

 $\varepsilon_B = 11,207$

6. Найдем абсолютную и относительную погрешность полеченного g от его табличного значения по формулам:

$$\Delta g = g_{\text{эксп}} - g_{\text{табл}} \tag{24}$$

$$\varepsilon_g = \frac{\Delta g}{g_{\text{Ta6II}}} \tag{25}$$

$$\Delta g = 0,205 \quad \varepsilon_g = 2,090$$

7.
$$\Delta g = |g_{\text{эксп}} - g_{\text{табл}}|$$

5.2.1 Вывод

Получено g, близкое по значению к табличному с учётом погрешности

Зависимости $a(\sin\alpha)=a$ и $a=A+B\sin\alpha$ приведены на Графике 2 в Приложении 2

6 Результаты лабораторной работы

- 1. Графики приведены в Приложении 2.
- 2. Доверительный интервала для ускорения, полученный в первом задании, с относительной погрешностью:

$$\Delta_a = 7,59 \cdot 10^{-3}; \quad \varepsilon_a = 7,59$$

3. Значение ускорения свободного падения с абсолютной и относительной погрешностями:

$$g = 10,012; \quad \Delta g = 1,122; \quad \varepsilon_g = 11,207$$

4. Абсолютное и относительное отклонение измеренного ускорения свободного падения от его табличного значения:

$$\Delta g = 0,205 \quad \varepsilon_q = 2,090$$