Ejemplo basado en una planta de primer orden más retraso

La respuesta escalón unitario de un modelo de función de transferencia de tiempo continuo

$$G(s) = \frac{0.5e^{-20s}}{30s + 1}$$

se muestra en una figura. En lugar de utilizar directamente el modelo de primer orden más retardo, encontraremos los parámetros del controlador PI utilizando los valores de τ_M , K_{SS} y retardo d.

Las coordenadas encontradas son $t_1=20$, $Y_0=0$ y $t_2=50.0250$, $Y_s=0.5$.

$$K_{ss} \frac{Y_s - Y_0}{U_s - U_0} = 0.5$$

$$d = t_1 = 20$$

$$\tau_{M}$$
 = $t_{2} - t_{1} = 50.0250 - 20 = 30.0250$

Controlador PI	K_c	τ_{M}	$K_{ss}=0$.5	d=20	$\tau_M = 30.0250$
	2.70225	60	Ziegler-Nichols tuning rules with a reaction curve.			
Ziegler–Nichols				K _c	$ au_{ m l}$	$ au_{D}$
			P	$\frac{ au_{ m M}}{K_{ m ss}d}$		
			PI	$0.9 \frac{\tau_{\rm M}}{K_{\rm ss} d}$	3 <i>d</i>	
			PII	$1.2 \frac{\tau_{\rm M}}{K_{\rm ss} d}$	2 <i>d</i>	0.5 <i>d</i>
Cohen–Coon	2.8689	28.6694	Cohen–Coon tuning rules with a reaction curve.			
				K _c	$ au_{ m l}$	$ au_D$
			P	$\frac{\tau_{\rm M}}{K_{\rm ss}d}\left(1+\frac{d}{3\tau_{\rm M}}\right)$		
			PI	$\frac{\tau_{\rm M}}{K_{\rm ss}d}\left(0.9 + \frac{d}{12\tau_{\rm M}}\right)$	$\frac{d(30\tau_{\rm M} + 3)}{9\tau_{\rm M} + 20a}$	$\frac{d}{l}$
			PID	$\frac{\tau_{\rm M}}{K_{\rm ss}d}\left(\frac{4}{3} + \frac{d}{4\tau_{\rm M}}\right)$	$\frac{d(32\tau_{\rm M}+6)}{13\tau_{\rm M}+8a}$	$\frac{d)}{d} \qquad \frac{4d\tau_{\rm M}}{11\tau_{\rm M} + 2d}$
Wang–Cluett	1.7912	34.6899	Wang–Cluett tuning rules with reaction curve (L = $\tau_{\rm M}/d$).			
			K _c	$ au_{I}$		$ au_D$
			P <u>0.1</u>	$\frac{13 + 0.51L}{K_{ss}}$		
			PI <u>0.1</u>	13 + 0.51L d	$\frac{(0.25 + 0.96L)}{0.93 + 0.03L}$	
			PID <u>0.1</u>		$\frac{(0.25 + 0.96L)}{0.93 + 0.03L}$	$\frac{d(-0.03 + 0.28L)}{0.25 + L}$


```
s = tf('s');
G= (0.5 \times exp(-20 \times s))/(30 \times s+1)
step(G);
hold on
dt = .05;
t=0:dt:400;
y=step(G,t);
dy=diff(y)/dt;
[m,p] = max(dy)
y1= y(p)
t1=t(p)
plot(t1,y1,'*g')
hold on
t2= 0:1:500;
y2=m*(t2-t1) + y1;
x2=0.5/m +20%se modifica en funcion al tiempo de asentamiento
hold on
plot(t2,y2,'r')
plot(y2,t1,'or')
```