0.1 H20 数学選択

 $\boxed{\mathbf{A}}$ $(1)F(\beta)/F$ が 2 次拡大であり, β が F 上分離的であるから β の最小多項式は $(x-\beta)(x-\gamma)$ ($\beta\neq\gamma\in F(\beta)$)である。 $(x-\beta)(x-\gamma)=x^2-(\beta+\gamma)x+\beta\gamma$ であり $\beta+\gamma=0$ ⇔ $\beta=-\gamma=\gamma$ (∵ $\mathrm{ch} F=2$)より $\beta+\gamma\neq0$ である.

 $\beta^2 + a\beta + b = 0$ より $(\frac{\beta}{a})^2 + (\frac{\beta}{a}) + \frac{b}{a^2} = 0$ である. したがって $x^2 + x + \frac{b}{a^2}$ が α を根にもつ二次方程式.

(2)K/F が 2 次拡大であるから $K=F(\beta)$ なる β が存在する. 非自明な自己同型 σ によって $\sigma(\beta)\neq\beta$ となるから β は F 上分離的. したがって (1) から $x^2+x+\frac{b}{a^2}$ の根 $\alpha\in F$ が存在する. $(\frac{\beta}{a}+1)^2+(\frac{\beta}{a}+1)+\frac{b}{a^2}=\frac{1}{a^2}(\beta^2+a\beta+1+2a\beta+a^2+a^2)=0$ より $\alpha+1$ は α の F 上の共役である.

よって $\sigma(\alpha) = \alpha + 1$.

- $\boxed{\mathbf{B}}\ (1)x^4-(t^2+\frac{1}{t^2})x^2+1$ について $t,\frac{1}{t}$ は根である.したがて $t,\frac{1}{t}$ は共に S 上整である.S 上整な元全体は環をなすから $S[t,\frac{1}{t}]=R$ は S 上整である.
- (2)R の商体は $L=\mathbb{C}(t)$,S の商体は $K=\mathbb{C}(t^2+\frac{1}{t^2})$ である.t の K 上の最小多項式は $x^4-(t^2+\frac{1}{t^2})x^2+1$ の因数である.よって根は $\pm t,\pm \frac{1}{t}$ のいずれかに限る.全て $\mathbb{C}(t)$ の元であるから L/K は正規拡大. \mathbb{C} は完全体であるから L/K は Galois 拡大である.
- $(3)\sigma(t)=-t, au(t)=rac{1}{t}$ が共に L の K 上の自己同型となるから [L:K]=4 であり,また σ, au の位数が 2 であるから $\mathrm{Gal}(L/K)=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}$ である.

 σ で固定される体は $\mathbb{C}(t^2)$, τ で固定される体は $\mathbb{C}(t+\frac{1}{t})$, $\sigma \circ \tau$ で固定される体は $\mathbb{C}(t-\frac{1}{t})$ である.これに自明な中間体 L,K を加えた 5 つ全ての中間体.

(4)R は $\mathbb{C}[t]$ の $\{t^i \mid i=0,1,2,\cdots\}$ による局所化である. UFD の局所化は UFD であるから R は UFD.

L に対して R が S 上整であり,L は R の商体である.R は UFD であるから R は正規環.すなわち L の元で R 上整な元は R の元である.R 上整な元は S 上整であるから $T_L = R$ である.

K は S の商体であり、S は PID であるから正規環. よって $T_K = S$ である.

 $\mathbb{C}(t^2)$ は $S \subset \mathbb{C}[t^2, \frac{1}{t^2}]$ の商体である. $\mathbb{C}[t^2, \frac{1}{t^2}]$ は UFD であるから同様にして $T_{\mathbb{C}(t^2)} = \mathbb{C}[t^2, \frac{1}{t^2}]$ である.

 $\mathbb{C}(t+\frac{1}{t})$ は $S\subset\mathbb{C}[t+\frac{1}{t}]$ の商体である.上と同様に $T_{\mathbb{C}(t+\frac{1}{t})}=\mathbb{C}[t+\frac{1}{t}]$ である.

 $\mathbb{C}(t-\frac{1}{t})$ は $S\subset\mathbb{C}[t-\frac{1}{t}]$ の商体である.上と同様に $T_{\mathbb{C}(t-\frac{1}{t})}=\mathbb{C}[t-\frac{1}{t}]$ である.