Problem Set 8 Solutions

Enrique Rivera Jr

March 27, 2025

Question 1(a): Ground State and First Excited State of the 3D Isotropic Harmonic Oscillator

Hamiltonian and Separation of Variables

The Hamiltonian for the 3D isotropic harmonic oscillator is:

$$\hat{H} = \frac{\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2}{2m} + \frac{1}{2}m\omega^2(x^2 + y^2 + z^2). \tag{1}$$

Because it *separates* into a sum of three identical 1D harmonic oscillators, the wavefunction can be written as a product:

$$\Psi_{n_x,n_y,n_z}(x,y,z) = \psi_{n_x}(x)\,\psi_{n_y}(y)\,\psi_{n_z}(z),\tag{2}$$

where each $\psi_n(x)$ is the standard 1D harmonic oscillator solution.

1D Review

1D ground state:

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left[-\frac{m\omega}{2\hbar} x^2\right]. \tag{3}$$

1D first excited state:

$$\psi_1(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \sqrt{2} \alpha x \exp\left[-\frac{m\omega}{2\hbar} x^2\right] \text{ where } \alpha = \left(\frac{m\omega}{\hbar}\right)^{1/2}.$$
(4)

Ground State in 3D

For $n_x = n_y = n_z = 0$, the 3D ground state is:

$$\Psi_{0,0,0}(x,y,z) = \psi_0(x)\,\psi_0(y)\,\psi_0(z) = \left(\frac{m\omega}{\pi\hbar}\right)^{3/4} \exp\left[-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)\right]. \tag{5}$$

First Excited States in 3D

The energy in 3D is $\hbar\omega$ $(n_x+n_y+n_z+\frac{3}{2})$. The first excited level occurs when $n_x+n_y+n_z=1$. That yields three possible combinations:

$$(n_x, n_y, n_z) = (1, 0, 0),$$

 $(n_x, n_y, n_z) = (0, 1, 0),$
 $(n_x, n_y, n_z) = (0, 0, 1).$

Thus we have three degenerate first-excited states:

$$\Psi_{1,0,0}(x,y,z) = \psi_1(x) \, \psi_0(y) \, \psi_0(z),
\Psi_{0,1,0}(x,y,z) = \psi_0(x) \, \psi_1(y) \, \psi_0(z),
\Psi_{0,0,1}(x,y,z) = \psi_0(x) \, \psi_0(y) \, \psi_1(z),$$

all with energy $E = \frac{5}{2}\hbar\omega$.

Final Results

• Ground State:

$$\Psi_{0,0,0}(x,y,z) = \left(\frac{m\omega}{\pi\hbar}\right)^{3/4} \exp\left[-\frac{m\omega}{2\hbar}(x^2 + y^2 + z^2)\right].$$
 (6)

• First-Excited States (3-fold degenerate):

$$\Psi_{1,0,0}(x,y,z) = \psi_1(x) \, \psi_0(y) \, \psi_0(z),$$

$$\Psi_{0,1,0}(x,y,z) = \psi_0(x) \, \psi_1(y) \, \psi_0(z),$$

$$\Psi_{0,0,1}(x,y,z) = \psi_0(x) \, \psi_0(y) \, \psi_1(z),$$

• Energy at first-excited level: $E = \frac{5}{2}\hbar\omega$.

Question 1(b): Energy and Degeneracy of the 3D Isotropic Harmonic Oscillator

Energy of the n-th Excited State

For a 1D harmonic oscillator, the energy levels are

$$E_n^{(1D)} = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$
 (7)

In 3D, we have three independent 1D oscillators, so the total energy is

$$E_{n_x,n_y,n_z} = \hbar\omega \left(n_x + n_y + n_z + \frac{3}{2}\right). \tag{8}$$

Defining $n = n_x + n_y + n_z$, the *n*-th excited level has energy

$$E_n = \hbar\omega \left(n + \frac{3}{2}\right). \tag{9}$$

Degeneracy of the n-th Excited State

The states with $n_x + n_y + n_z = n$ share the same energy E_n . The number of nonnegative integer solutions to $n_x + n_y + n_z = n$ is

$$\binom{n+3-1}{3-1} = \binom{n+2}{2} = \frac{(n+1)(n+2)}{2}.$$
 (10)

Hence, the degeneracy is

$$g_n = \frac{(n+1)(n+2)}{2}.$$
 (11)

Construction Using Raising Operators

Let a_i, a_i^{\dagger} be the annihilation and creation operators for each Cartesian direction i = 1, 2, 3. The 3D ground state $|\psi_0\rangle$ satisfies

$$a_i |\psi_0\rangle = 0, \quad i = 1, 2, 3.$$
 (12)

Then any excited state with quantum numbers (n_x, n_y, n_z) can be built by applying the appropriate creation operators:

$$|n_x, n_y, n_z\rangle \propto (a_1^{\dagger})^{n_x} (a_2^{\dagger})^{n_y} (a_3^{\dagger})^{n_z} |\psi_0\rangle.$$
 (13)

Hence, the n-th excited state $(n = n_x + n_y + n_z)$ can be written in the form

$$(a_1^{\dagger})^{n_1}(a_2^{\dagger})^{n_2}(a_3^{\dagger})^{n_3} |\psi_0\rangle \quad \text{with} \quad n_1 + n_2 + n_3 = n.$$
 (14)

Summary for Part (b)

- Energy: $E_n = \hbar\omega(n + \frac{3}{2})$.
- Degeneracy: $g_n = \frac{(n+1)(n+2)}{2}$.
- Raising-Operator Representation: states in the *n*-th manifold are generated by distributing *n* creation-operator actions among the three coordinates.

Question 2: Hermiticity Conditions in Spherical Coordinates (Expanded Explanation)

We have the operator

$$\hat{A} = r \frac{\partial^2}{\partial r^2} + a \frac{\partial}{\partial r} + \frac{1}{r} \left(\frac{\partial^2}{\partial \theta^2} + b \cot(\theta) \frac{\partial}{\partial \theta} \right), \tag{15}$$

where $a, b \in \mathbb{C}$. We want to find for which values of a, b this operator is Hermitian in $L^2(\mathbb{R}^3)$ with the measure $r^2 \sin \theta \, dr \, d\theta \, d\phi$. The assumption is that wavefunctions vanish sufficiently fast as $r \to 0, r \to \infty$, and that everything is well-behaved at $\theta = 0, \theta = \pi$.

Why Hermiticity Requires Integration by Parts

To say \hat{A} is Hermitian, we require

$$\int (\phi^* \hat{A} \psi) d^3 x = \int ((\hat{A} \phi)^* \psi) d^3 x \quad \text{for all } \phi, \psi \in L^2(\mathbb{R}^3), \tag{16}$$

where $d^3x = r^2 \sin\theta \, dr \, d\theta \, d\phi$. If boundary terms from integration by parts fail to vanish or if the form of \hat{A} does not match its adjoint, Hermiticity fails.

Step 1: Radial Part in Detail

Consider the radial piece:

$$\hat{A}_r = r \frac{\partial^2}{\partial r^2} + a \frac{\partial}{\partial r}.$$
 (17)

Integration Setup: We look at the radial integral (suppressing angular variables for the moment):

$$\int_0^\infty dr \, r^2 \, \phi^*(r) \left(r \, \psi''(r) + a \, \psi'(r) \right),$$

where $\psi'(r) = \frac{d\psi}{dr}$. We assume boundary conditions such that $\phi, \psi \to 0$ as $r \to 0$ or ∞ , so that boundary terms vanish.

Integration by Parts: 1. First, note that $r \psi''(r)$ can produce terms of the form $\frac{d}{dr} (r \psi'(r))$ etc. Doing a full integration by parts carefully indicates that the operator becomes self-adjoint only if the coefficient in front of $\frac{\partial}{\partial r}$ is real. 2. Similarly, the usual radial part of the Laplacian in spherical coordinates is known to be self-adjoint if it looks like $\frac{1}{r^2} \frac{d}{dr} (r^2 \frac{d}{dr})$. Written out, that equates to certain terms that match \hat{A}_r only if a is real.

Conclusion from radial part: $a \in \mathbb{R}$.

Step 2: Angular Part in Detail

Now consider the angular part:

$$\frac{1}{r} \left(\frac{\partial^2}{\partial \theta^2} + b \cot(\theta) \frac{\partial}{\partial \theta} \right). \tag{18}$$

Focusing on integration over $\theta \in [0, \pi]$ with measure $\sin \theta \, d\theta$ (and also integrating over ϕ , but that part is trivial if \hat{A} does not depend on ϕ):

$$\int_0^{\pi} d\theta \sin \theta \, \phi^*(\theta) \Big(\psi_{\theta}''(\theta) + b \cot(\theta) \, \psi_{\theta}'(\theta) \Big),$$

where $\psi'_{\theta}(\theta) = \frac{\partial \psi}{\partial \theta}$. The standard angular part of the Laplacian is

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial}{\partial \theta} \right) = \frac{\partial^2}{\partial \theta^2} + \cot(\theta) \, \frac{\partial}{\partial \theta}. \tag{19}$$

Clearly, that forces the coefficient of $\cot(\theta) \frac{\partial}{\partial \theta}$ to be exactly 1. If $b \neq 1$, we get a mismatch that leads to leftover factors or boundary terms, breaking Hermiticity. Also, for it to be truly self-adjoint, we want b real as well.

Conclusion from angular part: b = 1 (and real).

Final Conclusion

Thus, the operator \hat{A} will be Hermitian exactly if

$$a \in \mathbb{R}, \quad b = 1. \tag{20}$$

That mirrors the known structure of the radial and angular parts of the Laplacian in spherical coordinates and ensures no boundary terms survive under integration by parts.