III Advanced Probability

Ishan Nath, Michaelmas 2024

Based on Lectures by Prof. Jason Miller

October 21, 2024

Page 1 CONTENTS

Contents

0	Intr	roduction	2
1	Conditional Expectation		3
	1.1	Discrete Case	4
	1.2	Existence and Uniqueness	5
	1.3	Properties of Expectation	7
	1.4	Examples of Conditional Expectation	11
2	Discrete Time Martingales		14
	2.1	Stopping Times	15
Index			19

0 Introduction

We will be following the lecture notes by Perla Sousi.

This course is divided into seven main topics:

- Chapter 1. Conditional expectation. We have seen how to define $\mathbb{E}[Y|X=x]$ for X a discrete-valued random variable, or one with continuous density wrt. the Lebesgue measure. We will define more generally $\mathbb{E}[Y|\mathcal{G}]$, for \mathcal{G} a σ -algebra.
- Chapter 2. Discrete-time martingales. A martingale is a sequence (X_n) of integrable random variables such that $\mathbb{E}[X_{n+1} \mid X_1, \dots, X_n] = X_n$, for all n. A basic example is a simple symmetric random walk. We will be looking at properties, bounds and computations.
- Chapter 3. Continuous time processes. Examples are
 - Martingales in continuous time.
 - Some continuous continuous-time processes.
- Chapter 4. Weak convergence. This is a notion of convergence which extends convergence in distribution, and is related to other notions of convergence.
- Chapter 5. Large deviations. Here we estimate how unlikely rare events are. An example if the sample mean for (ξ_j) iid, with mean μ , which converges to μ by SLLN. We can ask what the probability is that the sample mean deviates from μ by ε , which can be answered by Cramer's theorem.
- Chapter 6. Brownian motion. This is a fundamental object, which is a continuous time stochastic process. We will look at the definition, Markov processes, and its relationship with PDEs.
- Chapter 7. Poisson random measures. This is the generalization of the standard Poisson process on \mathbb{R}_+ .

1 Conditional Expectation

Recall that a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consists of a set Ω , a σ -algebra on Ω , meaning:

- $\Omega \in \mathcal{F}$,
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$,
- if (A_n) is in \mathcal{F} , then $\bigcup A_n \in \mathcal{F}$,

and \mathbb{P} is a probability measure on (Ω, \mathcal{F}) , meaning:

- $\mathbb{P}: \mathcal{F} \to [0,1]$ such that
- $\mathbb{P}(\Omega) = 1$, $\mathbb{P}(\emptyset) = 0$,
- if (A_n) are pairwise disjoint in \mathcal{F} , then $\mathbb{P}(\bigcup A_n) = \sum \mathbb{P}(A_n)$.

An important σ -algebra is the Borel σ -algebra \mathcal{B} , which for \mathbb{R} is the intersection of all σ -algebra on \mathbb{R} which contain the open sets in \mathbb{R} .

Recall that $X : \Omega \to \mathbb{R}$ is a random variable if $X^{-1}(U) \in \mathcal{F}$ for all $U \subseteq \mathbb{R}^n$ open. This is equivalent to $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$.

Definition 1.1. Suppose that A is a collection of sets in Ω . Then

$$\sigma(\mathcal{A}) = \bigcap \{ \mathcal{E} \mid \mathcal{E} \text{ is a } \sigma\text{-algebra containing } \mathcal{A} \}.$$

If (X_i) is a collection of random variables, then

$$\sigma(X_i \mid i \in I) = \sigma(\{\omega \in \Omega \mid X_i(\omega) \in B\}, i \in I, B \in \mathcal{B}).$$

This is the smallest σ -algebra which makes X_i measurable for all $i \in I$.

Let $A \in \mathcal{F}$. Set

$$\mathbb{1}_A(x) = \mathbb{1}(x \in A) = \begin{cases} 1 & x \in A, \\ 0 & \text{else.} \end{cases}$$

We can define expectation as follows:

• For $C_i \geq 0$, $A_i \in \mathcal{F}$, set

$$\mathbb{E}\left[\sum_{i=1}^n C_i \mathbb{1}_{A_i}\right] = \sum_{i=1}^n C_i \mathbb{P}(A_i).$$

• For $X \geq 0$, set $X_n = (2^{-n} \lfloor 2^n X \rfloor) \wedge n$, so that $X_n \uparrow X$ as $n \to \infty$. Set

$$\mathbb{E}[X] = \lim_{n \to \infty} \mathbb{E}[X_n].$$

• If X is a general random variable, write $X = X^+ - X^-$, where $X^+ = \max(X, 0), X^- = \max(-X, 0)$. If $\mathbb{E}[X^+]$ or $\mathbb{E}[X^-]$ is finite, set

$$\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-].$$

Call X integrable if $\mathbb{E}[|X|] < \infty$.

Recall that if $A, B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, then

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

If X is integrable and $A \in \mathcal{F}$ with $\mathbb{P}(A) > 0$, then

$$\mathbb{E}[X|A] = \mathbb{E}[X\mathbb{1}_A]/\mathbb{P}(A).$$

Our goal is to extend this definition to

$$\mathbb{E}[X|\mathcal{G}],$$

where \mathcal{G} is a σ -algebra in \mathcal{F} . The main idea is that $\mathbb{E}[X|\mathcal{G}]$ is the best prediction of X given \mathcal{G} .

Hence it should be a \mathcal{G} -measurable random variable Y, which minimizes

$$\mathbb{E}[(X-Y)^2].$$

1.1 Discrete Case

As a warm-up, we consider the discrete case.

Suppose that X is integrable, (B_i) is countable and disjoint with $\Omega = \bigcup B_i$, and $\mathcal{G} = (B_i, i \in I)$. Set $X' = \mathbb{E}[X|\mathcal{G}]$ by

$$X' = \sum_{i \in I} \mathbb{E}[X|B_i] \mathbb{1}_{B_i},$$

with the convention that $\mathbb{E}[X|B_i] = 0$ if $\mathbb{P}(B_i) = 0$. If $\omega \in \Omega$, then

$$X'(\omega) = \sum_{i} \mathbb{E}[X|B_i] \mathbb{1}(\omega \in B_i).$$

We look at some important properties of X'.

- 1. X' is \mathcal{G} -measurable, as it is a linear combination of the \mathcal{G} -measurable random variables $\mathbb{1}_{B_i}$.
- 2. X' is integrable, as

$$\mathbb{E}[|X'|] \le \sum_{i \in I} \mathbb{E}[|X|\mathbb{1}_{B_i}] = \mathbb{E}[|X|] < \infty.$$

3. If $G \in \mathcal{G}$, then

$$\mathbb{E}[X\mathbb{1}_G] = \mathbb{E}[X'\mathbb{1}_G].$$

1.2 Existence and Uniqueness

We need a couple of important facts from measure theory:

Theorem 1.1 (Monotone Convergence Theorem). If (X_n) is a sequence of random variables with $X_n \geq 0$ for all n and $X_n \uparrow X$ almost-surely, then $\mathbb{E}[X_n] \uparrow \mathbb{E}[X]$.

Theorem 1.2 (Dominated Convergence Theorem). Suppose that (X_n) is a sequence of random variables with $X_n \to X$ almost-surely and $|X_n| \le Y$ for all n where Y is an integrable random variable, then $\mathbb{E}[X_n] \to \mathbb{E}[X]$ as $n \to \infty$.

The construction of $\mathbb{E}[X|\mathcal{G}]$ requires a few steps; in the case that $X \in L^2$, then this can be defined by orthogonal projection.

We need to recall a few things about L^p spaces. Suppose that $p \in [1, \infty)$, and X is a random variables in (Ω, \mathcal{F}) . Then,

$$||X||_p = \mathbb{E}[|X|^p]^{1/p}.$$

Now

$$L^p = L^p(\Omega, \mathcal{F}, \mathbb{P}) = \{X \text{ with } ||X||_p < \infty\}.$$

For $p = \infty$,

$$||X||_{\infty} = \inf\{\lambda \mid |X| \le \lambda \text{ almost surely}\},\$$

and

$$L^{\infty} = L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) = \{X \text{ with } ||X||_{\infty} < \infty\}.$$

Two random variables in L^p are equivalent if they agree almost-surely. Then \mathcal{L}^p is the set of equivalence classes under this equivalence relation.

Theorem 1.3. The space $(\mathcal{L}^2, \|\cdot\|_2)$ is a Hilbert space with inner product

$$\langle X, Y \rangle = \mathbb{E}[XY].$$

If \mathcal{H} is a closed subspace of \mathcal{L}^2 , then for all $X \in \mathcal{L}^2$, there exists $Y \in \mathcal{H}$ such that

$$||X - Y||_2 = \inf_{Z \in \mathcal{H}} ||X - Z||_2,$$

and $\langle X-Y,Z\rangle=0$ for all $Z\in\mathcal{H}$. Y is the orthogonal projection of X onto \mathcal{H} .

Theorem 1.4. Let X be an integrable random variable, and $\mathcal{G} \subseteq \mathcal{F}$ a σ -algebra. Then there exists a random variable Y such that:

- (i) Y is \mathcal{G} -measurable.
- (ii) Y is integrable, with

$$\mathbb{E}[X\mathbb{1}_A] = \mathbb{E}[Y\mathbb{1}_A]$$

for all $A \in \mathcal{G}$.

If Y' satisfies these two properties, then Y = Y' almost surely. Y is called (a version of) the conditional expectation of X given \mathcal{G} , and we write

$$Y = \mathbb{E}[X|\mathcal{G}].$$

If $\mathcal{G} = \sigma(G)$ for a random variable G, we write $Y = \mathbb{E}[X|G]$.

Proof: We begin by proving uniqueness. Suppose Y,Y' are two conditional expectation. Then

$$A = \{Y > Y'\} \in \mathcal{G},$$

so by (ii),

$$\mathbb{E}[(Y - Y')\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A] - \mathbb{E}[X\mathbb{1}_A] = 0,$$

but the LHS is non-negative, so the only way this can hold is if $Y \leq Y'$ almost surely. Similarly, $Y \geq Y'$ almost surely, so Y = Y' almost surely.

Now we are ready to tackle existence. The first step is by restricting to \mathcal{L}^2 function.

Take $X \in \mathcal{L}^2$. Note that $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.

Set $Y = \mathbb{E}[X|\mathcal{G}]$ to be the orthogonal projections of X onto $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$.

It is automatically true that (i) holds. Suppose $A \in \mathcal{G}$. Then

$$\mathbb{E}[(X-Y)\mathbb{1}_A] = 0,$$

by orthogonality, since $\mathbb{1}_A$ is \mathcal{G} -measurable. So

$$\mathbb{E}[X\mathbb{1}_A] = \mathbb{E}[Y\mathbb{1}_A],$$

so (ii) holds. Finally Y is integrable as it is specified to be in \mathcal{L}^2 .

As an aside, notice if $X \ge 0$, then $Y = \mathbb{E}[X|\mathcal{G}] \ge 0$ almost-surely. Since $\{Y < 0\} \in \mathcal{G}$ and

$$\mathbb{E}[Y\mathbbm{1}_{\{Y<0\}}] = \mathbb{E}[X\mathbbm{1}_{\{Y<0\}}] \geq 0,$$

which can only happen if $\mathbb{P}(Y < 0) = 0$.

Our second step is to prove this for $X \geq 0$. In this case, let $X_n = X \wedge n$. Then $X_n \in \mathcal{L}^2$ for all n, so there exists \mathcal{G} -measurable random variables Y_n so that

$$\mathbb{E}[Y_n \mathbb{1}_A] = \mathbb{E}[(X \wedge n) \mathbb{1}_A],$$

for all $A \in \mathcal{G}$. Now (X_n) is increasing in n, so (Y_n) are also increasing by the above aside. Set

$$Y = \limsup Y_n.$$

We now have to check the definitions. Note Y is \mathcal{G} -measurable as it is a limsup of \mathcal{G} -measurable functions. So we check the second definition.

For $A \in \mathcal{G}$,

$$\mathbb{E}[Y\mathbbm{1}_A] \stackrel{MCT}{=} \lim_n \mathbb{E}[Y_n\mathbbm{1}_A] = \lim_n \mathbb{E}[(X \wedge n)\mathbbm{1}_A] \stackrel{MCT}{=} \mathbb{E}[X\mathbbm{1}_A].$$

We did not check integrability, but notice that setting A = G, $\mathbb{E}[Y] = \mathbb{E}[X]$, and X is non-negative, hence so is Y. Thus Y is integrable.

Finally we prove the result for $X \in \mathcal{L}^1$. We can apply step 2 to X^+ and X^- , and so can set

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X^+|\mathcal{G}] - \mathbb{E}[X^-|\mathcal{G}].$$

This is \mathcal{G} -measurable and integrable as it is the difference of two \mathcal{G} -measurable and integrable random variables, and satisfies (ii) since both of the random variables satisfy (ii).

Remark.

- The proof also works for $X \geq 0$, and not necessarily integrable. Then $\mathbb{E}[X|\mathcal{G}]$ is not necessarily integrable.
- The property

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A]$$

for all $A \in \mathcal{G}$, is equivalent to

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]Y] = \mathbb{E}[XY],$$

for all Y bounded and \mathcal{G} -measurable.

1.3 Properties of Expectation

Definition 1.2. A collection of σ -algebras (\mathcal{G}_i) in \mathcal{G} is *independent* if whenever $G_i \in \mathcal{G}_i$ and i_1, \ldots, i_n distinct, then

$$\mathbb{P}(G_{i_1} \cap \dots \cap G_{i_n}) = \prod_{k=1}^n \mathbb{P}(G_{ik}).$$

We say that a random variable X is independent of a σ -algebra \mathcal{G} if $\sigma(X)$ is independent of \mathcal{G} .

Proposition 1.1. Let $X, Y \in \mathcal{L}^2$, and $\mathcal{G} \subseteq \mathcal{F}$ a σ -algebra. Then:

- (i) $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$.
- (ii) If X is \mathcal{G} -measurable, then $\mathbb{E}[X|\mathcal{G}] = X$ almost surely.
- (iii) If X is independent of \mathcal{G} , then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.
- (iv) If $X \geq 0$ almost surely, then $\mathbb{E}[X|\mathcal{G}] \geq 0$ almost surely.
- (v) For any $\alpha, \beta \in \mathbb{R}$, $\mathbb{E}[\alpha X + \beta Y \mid \mathcal{G}] = \alpha \mathbb{E}[X \mid \mathcal{G}] + \beta \mathbb{E}[Y \mid \mathcal{G}]$.
- (vi) $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$ almost-surely.

Theorem 1.5 (Fatou's Lemma). If (X_n) is a sequence of random variables with $X_n \geq 0$, then

$$\mathbb{E}[\liminf_n X_n] \le \liminf_n \mathbb{E}[X_n].$$

Theorem 1.6 (Jensen's Inequality). Let $X \in \mathcal{L}^2$ and let $\phi : \mathbb{R} \to (-\infty, \infty]$ be a convex function. Then,

$$\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[X]).$$

Proposition 1.2. Let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra.

1. If (X_n) is an increasing sequence of random variables with $X_n \geq 0$ for all n and $X_n \uparrow X$, then

$$\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}],$$

almost-surely (conditional MCT).

2. If $X_n \geq 0$, then

$$\mathbb{E}[\liminf_{n} X_{n} | \mathcal{G}] \leq \liminf_{n} \mathbb{E}[X_{n} | \mathcal{G}]$$

(conditional Fatou's lemma).

3. If $X_n \to X$ and $|X_n| \le Y$ almost-surely for all n and $Y \in \mathcal{L}^1$, then

$$\lim_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}],$$

almost-surely (conditional DCT).

4. If $X \in \mathcal{L}^{\infty}$ and $\phi : \mathbb{R} \to (-\infty, \infty]$ is convex such that either $\phi(X) \in \mathcal{L}^1$ or $\phi(X) \geq 0$, then:

$$\mathbb{E}[\phi(X)|\mathcal{G}] \ge \phi(\mathbb{E}[X|\mathcal{G}])$$

almost surely (convex Jensen's). In particular, for all $1 \le p < \infty$,

$$\|\mathbb{E}[X|\mathcal{G}]\|_p \le \|X\|_p.$$

Proof:

1. Let Y_n be a version of of $\mathbb{E}[X_n|\mathcal{G}]$. Since $0 \leq X_n \uparrow X$ as $n \to \infty$, we have that $Y_n \geq 0$ and are increasing.

Define $Y = \limsup_{n \to \infty} Y_n$. We will show that $= \mathbb{E}[X|\mathcal{G}]$.

- Y is \mathcal{G} -measurable as it is a lim sup of \mathcal{G} -measurable random variables.
- For $A \in \mathcal{G}$,

$$\mathbb{E}[X\mathbb{1}_A] \stackrel{MCT}{=} \lim_{n \to \infty} \mathbb{E}[X_n\mathbb{1}_A] = \lim_{n \to \infty} \mathbb{E}[Y_n\mathbb{1}_A] \stackrel{MCT}{=} \mathbb{E}[Y\mathbb{1}_A].$$

2. The sequence $\inf_{k>n} X_k$ is increasing in n. Moreover,

$$\lim_{n\to\infty} \inf_{k\geq n} X_k = \liminf_{n\to\infty} X_n.$$

By 1,

$$\lim_{n\to\infty} \mathbb{E}[\inf_{k>n} X_k | \mathcal{G}] = \mathbb{E}[\liminf_{n\to\infty} X_n | \mathcal{G}].$$

But also,

$$\mathbb{E}[\inf_{k \ge n} X_k | \mathcal{G}] \le \inf_{k \ge n} \mathbb{E}[X_k | \mathcal{G}]$$

almost-surely, by monotonicity. Hence taking limits, we get Fatou's lemma.

3. Since $X_n + Y$, $Y - X_n$ give a sequence of random variables which are non-negative,

$$\mathbb{E}[X+Y|\mathcal{G}] = \mathbb{E}[\liminf_{n} (X_n+Y)|\mathcal{G}] \le \liminf_{n\to\infty} \mathbb{E}[X_n+Y|\mathcal{G}]$$

almost-surely, and similarly

$$\mathbb{E}[Y - X | \mathcal{G}] = \mathbb{E}[\liminf_{n \to \infty} (Y - X_n) | \mathcal{G}] \le \liminf_{n \to \infty} \mathbb{E}[Y - X_n | \mathcal{G}]$$

almost-surely. Combining these inequalities,

$$\limsup_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \le \mathbb{E}[X|\mathcal{G}] \le \liminf_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}].$$

This can only hold if $\lim_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}]$, almost-surely.

4. We use the fact that a convex function can be written as a supremum of countably many affine functions:

$$\phi(x) = \sup_{i} (a_i x + b_i).$$

Hence we get

$$\mathbb{E}[\phi(X)|\mathcal{G}] \ge a_i \mathbb{E}[X|\mathcal{G}] + b_i$$

for all i almost-surely, hence

$$\mathbb{E}[\phi(X)|\mathcal{G}] \ge \sup_{i} (a_i \mathbb{E}[X|\mathcal{G}] + b_i) = \phi(\mathbb{E}[X|\mathcal{G}]),$$

almost-surely.

In particular, for $1 \le p < \infty$,

$$\begin{aligned} \|\mathbb{E}[X|\mathcal{G}]\|_p^p &= \mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|^p] \le \mathbb{E}[\mathbb{E}[|X|^p|\mathcal{G}]] \\ &= \mathbb{E}[|X|^p] = \|X\|_p^p. \end{aligned}$$

Proposition 1.3 (Tower Property). Let $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ be σ -algebras, and $X \in \mathcal{L}^1$. Then,

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$

almost-surely.

Proof: Note that $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}]$ is \mathcal{H} -measurable. For $A \in \mathcal{H}$, we have

$$\mathbb{E}[\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}]\mathbb{1}_A] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_A]$$
$$= \mathbb{E}[X\mathbb{1}_A] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbb{1}_A],$$

since $A \in \mathcal{G}$.

Proposition 1.4 (Taking out what is known). Let $X \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$ a σ -algebra. If Y is bounded and \mathcal{G} -measurable, then

$$\mathbb{E}[XY|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}]Y$$
 a.s.

Proof: Y is \mathcal{G} -measurable, so $\mathbb{E}[X|\mathcal{G}]Y$ is \mathcal{G} -measurable.

For $A \in \mathcal{G}$,

$$\mathbb{E}[(\mathbb{E}[X|\mathcal{G}]Y)\mathbb{1}_A] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}](Y\mathbb{1}_A)] = \mathbb{E}[XY\mathbb{1}_A].$$

Definition 1.3. Let \mathcal{A} be a collection of subsets of Ω . Then \mathcal{A} is a π -system if for all $A, B \in \mathcal{A}$, $A \cap B \in \mathcal{A}$, and $\emptyset \in \mathcal{A}$.

Theorem 1.7. Let μ_1, μ_2 be measures on (E, \mathcal{E}) . Suppose that \mathcal{A} is a π -system which generates \mathcal{E} , and

$$\mu_1(A) = \mu_2(A)$$

for all $A \in \mathcal{A}$, and $\mu_1(E) = \mu_2(E)$ is finite.

Then $\mu_1 = \mu_2$.

Proposition 1.5. Let $X \in \mathcal{L}^1$, and $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ be σ -algebras. If $\sigma(X, \mathcal{G})$ are independent of \mathcal{H} , then

$$\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathbb{E}[X|\mathcal{G}]$$
 a.s.

Proof: Without loss of generality, $X \ge 0$, since the general case comes from decomposing $X = X^+ - X^-$. Let $A \in \mathcal{G}$, $B \in \mathcal{H}$. Then,

$$\mathbb{E}[\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})]\mathbb{1}_{A\cap B}] = \mathbb{E}[X\mathbb{1}_{A\cap B}] = \mathbb{E}[X\mathbb{1}_A]\mathbb{P}(B) \text{ (independence)}$$
$$= \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_A]\mathbb{P}(B) = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_{A\cap B}].$$

Define two measures

$$\mu_1(F) = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_F],$$

$$\mu_2(F) = \mathbb{E}[\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})]\mathbb{1}_F].$$

These are measures on \mathcal{F} which agree on the π -system $\{A \cap B \mid A \in \mathcal{G}, B \in \mathcal{H}\}$, generating $\sigma(\mathcal{G}, \mathcal{H})$. Moreover since $X \in \mathcal{L}^1$,

$$\mu_1(F) = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X] = \mu_2(F) < \infty.$$

We can now use uniqueness of measures to see these two measures agree on $\sigma(\mathcal{G}, \mathcal{H})$, which can only occur if

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})]$$
 a.s.

1.4 Examples of Conditional Expectation

Example 1.1. (Gaussians)

Let (X,Y) be a Gaussian random vector in \mathbb{R}^2 . Our goal is to compute

$$X' = \mathbb{E}[X|\mathcal{G}],$$

where $\mathcal{G} = Y$. Since X' is a \mathcal{G} -measurable function, there exists a Borel

measurable function f so that X' = f(Y). We want to find f.

We guess that X' = aY + b, for $a, b \in \mathbb{R}$. Then,

$$a\mathbb{E}[Y] + b = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X],$$

and moreover

$$\mathbb{E}[(X - X')Y] = 0$$

$$\implies \operatorname{Cov}(X - X', Y) = 0$$

$$\implies \operatorname{Cov}(X, Y) = \operatorname{Cov}(X', Y) = a \operatorname{Var}(Y).$$

We can now take a to satisfy this equation, so Cov(X - X', Y) = 0.

But since (X - X', Y) is a Gaussian random variable with covariance 0, X - X' and Y are independent.

Suppose that Z is a $\sigma(Y)$ -measurable random variable. Then Z is independent of X-X', so

$$\mathbb{E}[(X - X')Z] = \mathbb{E}[X - X']\mathbb{E}[Z] = 0.$$

This shows the projection property. Hence

$$\mathbb{E}[X|\mathcal{G}] = aY + b,$$

where a, b are determined as before.

Example 1.2. (Conditional Density Functions)

Suppose that X, Y are random variables with a joint density function $f_{X,Y}$ on \mathbb{R}^2 . Let $h: \mathbb{R} \to \mathbb{R}$ be Borel measurable so that h(X) is integrable.

Our goal is to compute

$$\mathbb{E}[h(X)|Y] = \mathbb{E}[h(X)|\sigma(Y)].$$

The density for Y is given by

$$f_Y(y) = \int_{\mathbb{D}} f_{X,Y}(x,y) \, \mathrm{d}x.$$

Let g be a bounded, measurable function. Then,

$$\mathbb{E}[h(X)g(Y)] = \int h(x)g(y)f_{X,Y}(x,y) \,dx \,dy$$
$$= \int \left(\int h(x)\frac{f_{X,Y}(x,y)}{f_Y(y)} \,dx\right)g(y)f_Y(y) \,dy,$$

where if $f_Y(y) = 0$, the inner integral is 0. We set

$$\phi(y) = \begin{cases} \int h(x) f_{X,Y}(x,y) / f_Y(y) \, \mathrm{d}x & \text{if } f_Y(y) > 0, \\ 0 & \text{else.} \end{cases}$$

Then,

$$\mathbb{E}[h(X)|Y] = \phi(Y)$$
 a.s.

since $\phi(Y)$ is $\sigma(Y)$ -measurable and satisfies the property defining the conditional expectation.

We interpret this computation as giving that

$$\mathbb{E}[h(X)|Y] = \int_{\mathbb{R}} h(x)\nu(Y, dx),$$

where

$$\nu(y, dx) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \mathbb{1}_{f_Y(y) \ge 0} dx$$
$$= f_{X|Y}(x|y) dx.$$

 $\nu(y, dx)$ gives the conditional distribution of X given Y = y, and $f_{X|Y}(x|y)$ is the conditional density function of X given Y = y.

In this case, the conditional expectation corresponds to an actual expectation. This corresponds to a regular conditional probability distribution.

Also note $f_{X|Y}(x|y)$ is only defined up to a set of measure 0.

2 Discrete Time Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and (E, \mathcal{E}) a measurable space.

A sequence of random variables $X = (X_n)$ with values in E is a (discrete time) stochastic process. A filtration (\mathcal{F}_n) is a sequence of σ -algebras with $\mathcal{F}_n \subseteq \mathcal{F}_{n+1} \subseteq \mathcal{F}$.

The natural filtration (\mathcal{F}_n^X) associated with X is

$$\mathcal{F}_n^X = \sigma(X_1, \dots, X_n).$$

We say that X is adapted to (\mathcal{F}_n) if X_n is \mathcal{F}_n -measurable for all n. X is always adapted to its natural filtration. Say that X is integrable if $X_n \in \mathcal{L}^1$ for all n.

Definition 2.1. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$ be a filtered probability space and let X be a stochastic process which is integrable, adapted and real valued.

• X is a martingale (MG) if

$$\mathbb{E}[X_n|\mathcal{F}_m] = X_m$$
 a.s.

whenever $n \geq m$.

• X is a supermartingale (sup MG) if

$$\mathbb{E}[X_n|\mathcal{F}_m] \le X_m$$
 a.s.

whenever $n \geq m$.

• X is a submartingale (sub MG) if

$$\mathbb{E}[X_n|\mathcal{F}_m] > X_m$$
 a.s.

whenever $n \geq m$.

If X is a MG/sup MG/sub MG, then it is also a MG/sup MG/sub MG with respect to its natural filtration.

Example 2.1.

1. Say

$$X_n = \sum_{i=1}^n \xi_i,$$

where (ξ_i) are IID, integrable and $\mathbb{E}[\xi_i] = 0$.

2. We could also have

$$X_n = \prod_{i=1}^n \xi_i,$$

where (ξ_i) are IID, integrable and $\mathbb{E}[\xi_i] = 1$.

3. Choosing

$$X_n = \mathbb{E}[Z|\mathcal{F}_n],$$

where $\mathcal{F} \in \mathcal{L}^1$ and (\mathcal{F}_n) is a filtration, this gives a martingale.

Martingales are very useful for:

- computations (optimal stopping theorem),
- bounds (Doob's inequalities),
- proving theorems (martingale convergence theorem).

2.1 Stopping Times

Definition 2.2. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$ be a filtered probability space. A *stopping time* is a random variable $T: \Omega \to \mathbb{Z}_+ \cup \{\infty\}$ with

$$\{T \leq n\} \in \mathcal{F}_n,$$

for all n.

This is equivalent to $\{T=n\}\in\mathcal{F}_n$, for discrete time.

Example 2.2.

- 1. Constant (deterministic) times.
- 2. First hitting times: if (X_n) is an adapted stochastic process with values in \mathbb{R} , and $A \in \mathcal{B}(\mathbb{R})$, then

$$T_A = \inf\{n \ge 0 \mid X_n \in \mathcal{A}\}.$$

3. Last exit times are not always stopping times.

Proposition 2.1. Suppose that $S, T, (T_n)$ are stopping times on $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$. Then:

 $S \wedge T$, $S \vee T$ inf T_n , sup T_n , lim sup T_n ,

are stopping times

Definition 2.3. Let T be a stopping time on $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$. Then

$$\mathcal{F}_T = \{ A \in \mathcal{F} \mid A \cap \{ T \le n \} \in \mathcal{F}_n \text{ for all } n \}$$

is called the stopped σ -algebra.

For T = n deterministic, $\mathcal{F}_T = \mathcal{F}_n$. For X a stochastic process, $X_T = X_{T(\omega)}(\omega)$, whenever $T(\omega) < \infty$.

The stopped process X^T is defined by

$$X_n^T = X_{n \wedge T}.$$

Proposition 2.2. Let S, T be stopping times and X an adapted process. Then,

- (i) If $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- (ii) $X_T \mathbb{1}_{\{T<\infty\}}$ is \mathcal{F}_T -measurable.
- (iii) X^T is adapted.
- (iv) If X is integrable, so is X^T .

Proof:

- (i) This is immediate from definition.
- (ii) Take $A \in \mathcal{E}$, then

$${X_T \mathbb{1}_{T<\infty} \in A} \cap {T \le n} = \bigcup_{k=0}^n ({X_k \in A} \cap {T = k}) \in \mathcal{F}_n.$$

Since X is adapted, $\{T = k\} \in \mathcal{F}_k$.

- (iii) For all n, $X_{T \wedge n}$ is $\mathcal{F}_{T \wedge n}$ -measurable by (ii), so they are \mathcal{F}_n -measurable by (i).
- (iv) Note

$$\mathbb{E}[|X_{T \wedge n}|] = \mathbb{E}\left[\sum_{k=0}^{n-1} |X_k| \mathbb{1}(T=k)\right] + \mathbb{E}\left[\sum_{k=n}^{\infty} |X_n| \mathbb{1}(T=k)\right]$$
$$\leq \sum_{k=0}^{n} \mathbb{E}[|X_k|] < \infty.$$

Theorem 2.1 (Optional Stopping Theorem). Let (X_n) be a MG. Then:

(i) If T is a stopping time, then X^T is a MG, hence

$$\mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_0]$$

for all n.

(ii) If $S \leq T$ are bounded stopping times, then

$$\mathbb{E}[X_T|\mathcal{F}_S] = X_S$$
 a.s.

(iii) If $S \leq T$ are bounded stopping times, then

$$\mathbb{E}[X_T] = \mathbb{E}[X_S].$$

(iv) If there exists an integrable random variable Y such that $|X_n| \leq Y$ for all n, then for all almost-surely finite stopping times T,

$$\mathbb{E}[X_T] = \mathbb{E}[X_0].$$

(v) If X has bounded increments, so $|X_{n+1} - X_n| \le M$, and T is a stopping time with finite expectation, then

$$\mathbb{E}[X_T] = \mathbb{E}[X_0].$$

Proof:

(i) By the tower property, we only need to show that

$$\mathbb{E}[X_{T \wedge n} | \mathcal{F}_{n-1}] = X_{T \wedge (n-1)} \quad \text{a.s.}$$

We have

$$\mathbb{E}[X_{T \wedge n} | \mathcal{F}_{n-1}] = \mathbb{E}\left[\sum_{k=0}^{n-1} X_k \mathbb{1}(T=k) \mid \mathcal{F}_{n-1}\right] + \mathbb{E}[X_n \mathbb{1}(T>n-1) | \mathcal{F}_{n-1}]$$
$$= X_T \mathbb{1}_{(T < n-1)} + X_{n-1} \mathbb{1}_{(T>n-1)} = X_{T \wedge (n-1)}.$$

Since
$$(T > n - 1) \in \mathcal{F}_{n-1}$$
, $\mathbb{E}[X_n | \mathcal{F}_{n-1}] = X_{n-1}$.

(ii) Suppose that $T \leq n$, and $S \leq T$. Then,

$$X_T = (X_T - X_{T-1}) + \dots + (X_{S+1} - X_S) + X_S$$
$$= X_S + \sum_{k=0}^{n} (X_{k+1} - X_k) \mathbb{1}_{S \le k < T}.$$

Let $A \in \mathcal{F}_S$. Then,

$$\mathbb{E}[X_T \mathbb{1}_A] = \mathbb{E}[X_S \mathbb{1}_A] + \mathbb{E}\left[\sum_{k=0}^n (X_{k+1} - X_k) \mathbb{1}_A \mathbb{1}(S \le k < T)\right]$$
$$= \mathbb{E}[X_S \mathbb{1}_A],$$

since $\{S \leq k < T\} \cap A \in \mathcal{F}_k$ for all k, and X is a MG.

- (iii) This follows from taking expectations in (ii).
- (iv) and (v) are on the example sheet.

Index

 π -system, 10

adapted, 14

conditional density function, 13 conditional distribution, 13 conditional expectation, 6

filtration, 14

independent, 7 integrable process, 14

martingale, 14

natural filtration, 14

orthogonal projection, 5

stochastic process, 14 stopped σ -algebra, 16 stopped process, 16 stopping time, 15 submartingale, 14 supermartingale, 14