

Introdução ao Aprendizado de Máquina

Profa: Solange Oliveira Rezende

Aprendizado de Máquina

 Quantidade de conhecimento disponível pode ser muito grande para ser descrito (e portanto programado) por humanos.

 Ser humano não é capaz de executar algumas tarefas que demandam quantidades grandes de cálculos complexos, passíveis apenas de execução em computador:

Aprendizado de Máquina

• Definição formal (Mitchell, 1997):

É dito que um programa de computador

" aprende" a partir de experiências E com respeito

a alguma classe de tarefas T e medida de

desempenho P,

se seu desempenho em tarefas de T, medido por P,
melhora com a experiência E

Aplicações

- Algoritmos de AM têm sido bem sucedidos, por exemplo para:
 - Identificar genes associados a determinadas doenças
 - Discriminar tecidos (saudáveis e doentes), objetos celestiais, ...
 - Identificar nichos de mercado
 - Prever a vazão de rios e nível de represas
 - Detectar uso fraudulento de cartões de crédito
 - Otimizar ações de controle em processos de produção
 - Reconhecimento de faces, de voz, de assinaturas ...
 - ...

Características

- Três características devem ser identificadas para um problema ser bem definido:
 - A classe de tarefas
 - A medida de desempenho a ser melhorada
 - A origem da experiência
- Problema de Aprender Xadrez:
 - Tarefa T: jogar xadrez
 - Medida de desempenho P: porcentagem dos jogos vencidos contra adversários
 - Experiência de treinamento E: praticar jogando contra si próprio ou contra adversários humanos (p.ex. internet)

Sistema de Aprendizado

Modos de Aprendizado	Paradigmas de Aprendizado (Modelos representação)	Linguagens de Descrição	Formas de Aprendizado
Supervisionado	Simbólico	■ Instâncias ou	Incremental
Não Supervisionado	Estatístico	Exemplos	 Não Incremental
Semi Supervisionado	■ Baseado em	Conceitos	
	Exemplos	Aprendidos ou	
	(Instance-Based)	Hipóteses	
	Conexionista	■ Teoria de	
	Genético	Domínio ou	
		Conhecimento de	
		Fundo	

Aprendizado SUPERVISIONADO

- Guiado por um "professor" externo
- "Professor" possui conhecimento sobre o ambiente
- Representado por conjunto de pares (x, d)
- Modelo procura reproduzir comportamento do "professor"

Aprendizado por REFORÇO

- Guiado por um "crítico" externo
- Processo de tentativa e erro
- Procura maximizar sinal de reforço
- Se ação tomada por sistema é seguida por estado satisfatório, sistema é fortalecido, caso contrário, sistema é enfraquecido
- Tipos de reforço
 - Positivo = recompensa
 - Negativo = punição
 - Nulo

Aprendizado NÃO-SUPERVISIONADO

- Não tem crítico ou professor externo
- Extração de propriedades estatisticamente relevantes
- Exemplos:
 - Clustering: descobre categorias automaticamente
 - Associação
 - Sumarização

Aprendizado SEMI-SUPERVISIONADO

- Tem um professor externo apenas para parte dos exemplos de treinamento
- Exemplo:
 - Web mining: usuários podem fornecer alguns exemplos de páginas similares, pertencentes a uma determinada categoria, mas uma parcela ínfima de web pages teria essa informação associada

Modelos de Representação

Modelos Matemáticos

- Regressão linear,
- Redes neurais (paradigma conexionista / bioinspirado),
- Máquinas de vetores de suporte, ...

Modelos Simbólicos

- Árvores de decisão,
- Regras em lógica proposicional ou de 1ª ordem,
- Redes semânticas, ...

Modelos de Representação

- Modelos "Lazy" (paradigma baseado em instâncias)
 - K-NN,
 - Raciocínio Baseado em Casos (CBR), ...
- Modelos Probabilísticos (paradigma probabilístico)
 - Naive Bayes,
 - Redes Bayesianas,
 - Misturas de Gaussianas,
 - Modelos de Markov Escondidos (HMMs), ...

Aprendizado de Máquina

- Representatividade dos exemplos
 - Aprendizado é mais confiável quando exemplos de treinamento seguem uma distribuição representativa (semelhante) à da população

Aprendizado de Máquina

- Um sistema de AM deve ter:
 - -Tipo exato de conhecimento a ser aprendido
 - Função alvo

- Uma representação para o conhecimento adquirido
 - Modelo

- Um mecanismo de aprendizado
 - Técnica de aprendizado

Função ALVO

- Estabelece qual conhecimento será aprendido e permite verificar quão bem ele foi aprendido
- Exemplos:
 - Função discriminante entre classes
 - Função de similaridade intra grupos
 - ...

Técnicas de Aprendizado

- Dado um tipo de modelo, uma função alvo e um conjunto de exemplos de treinamento, é preciso algum mecanismo para obter, a partir dos exemplos, um modelo específico daquele tipo que represente bem a função alvo.
- Esse mecanismo, denominado mecanismo de aprendizado, consiste fundamentalmente de uma técnica de busca.
- Busca-se no espaço dos modelos plausíveis por aquele modelo específico que melhor represente a função alvo.

Técnicas de Aprendizado

- Cada tipo de modelo é mais apropriado para uma determinada classe de problemas
- Assim como cada técnica de aprendizado é mais apropriada para um tipo de modelo
- É parte importante do estudo de AM
 aprender a identificar os cenários mais
 apropriados para cada modelo e técnica de
 aprendizado

Avaliação de AM

- Uma vez obtido um modelo a partir de exemplos de treinamento e de uma técnica de aprendizado, é preciso avaliar a eficácia / eficiência deste modelo / técnica para resolver a tarefa em questão
 - Em outras palavras, é preciso validar ou não o modelo obtido

Avaliação de AM

Avaliação Experimental

- Conduzir experimentos controlados
- Dados reais representativos em aplicações práticas
- Dados benchmark em estudos acadêmicos e comparações
- Extrair resultados de desempenho
 - Ex.: Acurácia de teste, tempos de treinamento e teste, etc.
- Analisar resultados e diferenças com rigor estatístico

Avaliação de AM

Avaliação Teórica

- Analisar algoritmos matematicamente e provar:
 - Complexidade computacional
 - Habilidade para ajustar dados de treinamento
 - Habilidade para generalizar dados de treinamento
 - Complexidade da amostra
 - Ordem de grandeza do no. de exemplos de treinamento necessários para aprender uma função com dada acurácia

Áreas de Aplicação de AM

- Predição
 - Classificação de Padrões
 - Regressão
 - Detecção de Anomalias
- Descrição
 - Análise de Agrupamentos
 - Análise de Associação
 - Indução de Regras
- Otimização
- Automação e Processamento de Sinais

Classificação

- Saudável
- Doente

Regressão

Agrupamento

Regras de Associação

- Técnica descobre relações simétricas ou assimétricas entre conjuntos de padrões
- Exemplos de regras de associação
 - {Fraldas} ⇒ {Leite} (útil, porém previsível)
 - {Fraldas, Leite} ⇒ {Cerveja} (útil e inovadora)

Conceitos Básicos de Aprendizado de Máquina Supervisionado

Erro e Precisão

Recordando a notação adotada

- Exemplo (x, y) = (x, f(x))
- Atributos: x
- Classe (rotulada): y = f(x)
- Classe (classificada): h(x)
- *n* é o número de exemplos

Erro e Precisão

Classificação

$$ce(h) = \frac{1}{n} \sum_{i=1}^{n} ||y_i| \neq h(x_i)||$$
 (erro)

$$ca(h) = 1 - ce(h)$$
 (precisão)

Erro e Precisão

 Regressão: Erro quadrático médio (MSE) e distância absoluta média (MAD)

pe - mse(h) =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - h(x_i))^2$$

pe - mad(h) =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - h(x_i)|$$

Overfitting

- Ocorre quando a hipótese extraída a partir dos dados é muito específica para o conjunto de treinamento
 - A hipótese apresenta uma boa performance para o conjunto de treinamento, mas uma performance ruim para os casos fora desse conjunto

Overfitting - Exemplo

Casos fora do conjunto de treinamento

Underfitting

- A hipótese induzida apresenta um desempenho ruim tanto no conjunto de treinamento como de teste. Por quê?
 - poucas exemplos representativos foram dadas ao sistema de aprendizado
 - o usuário pré-definiu um tamanho muito pequeno para o classificador, por exemplo, o usuário definiu um alto valor de poda para árvores de decisão

Relação entre o tamanho do previsor e o erro

Consistência e Completude

- Depois de induzida, uma hipótese pode ser avaliada sobre
 - –consistência, se classificacorretamente todos os exemplos
 - –completude, se classifica todos os exemplos

Relação entre Completude e Consistência

Relação entre Completude e Consistência

Relação entre Completude e Consistência

Relação entre Completude e Consistência

Relação entre Completude e Consistência

Matriz de Confusão

 Oferece uma medida da eficácia do modelo de classificação, mostrando o número de classificações corretas versus o número de classificação prevista para cada classe

$$M(C_i, C_j) = \sum_{\{\forall (x,y) \in T: y = C_i\}} ||h(x)| = C_j||$$

Class Label	predicted C_1	predicted C_2	•••	predicted C_1
true C_1		$M(C_1,C_2)$		
true C_2	$M(C_2,C_1)$	$M(C_2,C_2)$	•••	$M(C_2,C_k)$
:	:	:	٠.	\vdots
true C_k	$M(C_k,C_1)$	$M(C_k, C_2)$	•••	$M(C_k, C_k)$

Modelo de classificação de duas classes

- Por exemplo, dada uma regra, um exemplo e uma classe, podemos ter 4 casos:
 - true positive: o exemplo <u>satisfaz</u> todas as condições da regra e a classe do exemplo <u>é a</u> mesma prevista na regra
 - false positive: o exemplo <u>satisfaz</u> todas as condições da regra e a classe do exemplo <u>não é</u> <u>mesma</u> prevista na regra
 - false negative: o exemplo não satisfaz todas as condições da regra e a classe do exemplo é a mesma prevista na regra
 - true negative: o exemplo <u>não satisfaz</u> todas as condições da regra e a classe do exemplo <u>não é</u> <u>a mesma</u> prevista na regra

Matriz de Confusão para 2 Classes

Class label	predicted $C_{\scriptscriptstyle +}$	predicted C	Class error rate	Total error rate
$\operatorname{true} C_{\scriptscriptstyle +}$	$T_{\scriptscriptstyle \mathcal{P}}$	$F_{\scriptscriptstyle N}$	$\frac{F_{\scriptscriptstyle N}}{T_{\scriptscriptstyle P}+F_{\scriptscriptstyle N}}$	$\frac{F_P + F_N}{n}$
true C_	$F_{_{P}}$	T_N	$\frac{F_{_{P}}}{F_{_{P}}+T_{_{N}}}$	71

 T_P = True Positive

 F_N = False Negative

 F_P = False Positive

 $T_N = True Negative$

 $n = (T_P + F_N + F_P + T_N)$

Matriz de Confusão para 2 Classes

Outras métricas derivadas da tabela anterior:

$$C_{+}$$
PredictiveValue = $\frac{T_{P}}{T_{P} + F_{P}}$

$$C_{\text{-}}$$
PredictiveValue = $\frac{T_N}{T_N + F_N}$

True
$$C_+$$
 Rate ou Sensitivity ou Recal = $\frac{T_P}{T_P + F_N}$

True
$$C_{-}$$
 Rate ou Specifity = $\frac{T_{N}}{F_{P} + T_{N}}$

$$\frac{\text{Precisão}}{n} = \frac{T_P + T_N}{n}$$

Resampling

- Para se estimar o erro verdadeiro de um classificador a amostra para teste deve ser aleatoriamente escolhida
- Amostras não devem ser pré-selecionadas de nenhuma maneira
- Para problemas reais, tem-se uma amostra de uma única população, de tamanho n, e a tarefa é estimar o erro verdadeiro para essa população

Métodos para estimar o erro verdadeiro de um classificador

- Resubstitution
- Holdout
- Random
- r-fold cross-validation
- r-fold stratified cross-validation
- Leave-one-out
- Bootstrap

Resubustituition

- Gera o classificador e testa a sua performance com o mesmo conjunto de dados
 - os desempenhos computados com este método são otimistas e tendenciosos

Holdout (Validação simples)

 Divide os dados em uma porcentagem fixa p para treinamento e (1-p) para teste

- -geralmente p=2/3 e (1-p)=1/3
- para que os resultados não dependam da divisão dos dados (exemplos), pode-se calcular a média de vários resultados de holdout

Random

- I classificadores, I<<n, são induzidos de cada conjunto de treinamento
- O erro é a média dos erros dos classificadores medidos por conjuntos de treinamentos gerados aleatória e independentemente
- Pode produzir estimativas melhores que o holdout

r-fold cross-validation

- Os exemplos são aleatoriamente divididas em r partições (folds) de tamanho aproximadamente igual (n/r)
- Os exemplos de (r-1) folds são independentemente usados no treinamento e os classificadores obtidos são testados com o fold remanescente
- O processo é repetido r vezes, e a cada repetição um fold diferente é usado para teste. O erro do cross-validation é a média dos erros dos r folds

r-fold stratified cross-validation

- É similar ao cross-validation mas no processo de geração dos folds a distribuição das classes no conjunto de exemplos é levada em consideração durante a amostragem
- Por exemplo, se o conjunto de exemplos tiver duas classes com uma distribuição de 80% para uma classe e 20% para outra, cada fold também terá essa proporção

Leave-one-out

- Para um exemplo de tamanho n, um classificador é gerado usando n-1 exemplos, e testado no exemplo remanescente
- O processo é repetido n vezes, utilizando cada um dos n exemplos para teste. O erro é a soma dos erros dos testes para cada exemplo divido por n
- Caso especial de cross-validation
- Computacionalmente caro e usado apenas quando o conjunto de exemplos é pequeno

Bootstrap

 Repetir diversas vezes o processo inteiro de classificação e cada experimento é baseado em um conjunto de treinamento novo, obtido por resampling com reposição do conjunto de dados original

–Existem muitos estimadores bootstrap

Avaliando Classificadores

- Não há um único bom algoritmo de AM para todas as tarefas
- É importante conhecer o poder a as limitações de indutores diferentes
- Na prática, devemos testar algoritmos diferentes, estimar sua acurácia e escolher entre os algoritmos aquele que apresentar maior acurácia, por exemplo, para um domínio específico

Metodologia de Avaliação (Russel e Norvig, 2003)

- 1 Coletar um conjunto de exemplos, de preferencia sem "ruido"
- 2 Dividir randomicamente o conjunto de exemplos em um conjunto de teste e um conjunto de treinamento.
- 3 Aplicar um ou mais indutores ao conjunto de treinamento, obtendo uma hipótese *h* para cada indutor
- 4 Medir a performance dos classificadores com o conjunto de teste
- 5 Estudar a eficiência e robustez de cada indutor, repetindo os passos 2 a 4 para diferentes conjuntos e tamanhos do conjunto de treinamento
- 6 Se estiver propondo um ajuste ao indutor, voltar ao passo 1

Calculando Média e Desvio Padrão usando Resampling

Usando cross-validation: Dado um algoritmo A, para cada fold i, calculamos o erro pe(h_i), i = 1, 2, ..., r, temos:

$$m\acute{e}dia(A) = \frac{1}{r} \sum_{i=1}^{r} pe(h_i)$$

$$variancia = \frac{1}{r} \left| \frac{1}{r-1} \sum_{i=1}^{r} (pe(h_i) - média(A))^2 \right|$$

$$desvio\ padrão = \sqrt{variância(A)}$$

Calculando Média e Desvio Padrão usando Resampling

 Exemplo: Considerando um exemplo de crossvalidation 10-fold (*r*=10), para um algoritmo A que apresente os erros 5.5, 11.4, 12.7, 5.2, 5.9, 11.30, 10.9, 11.2, 4.9 e 11.0, então:

$$m\acute{e}dia(A) = \frac{90.0}{10} = 9.0$$

desvio padrão =
$$\sqrt{\frac{1}{10(9)}}$$
90.3 = 1.0

Comparando dois Algoritmos

 $A_{\rm S} \Rightarrow$ algoritmo standart

 $Ap \Rightarrow$ algoritmo proposto

$$m\acute{e}dia(A_S - A_P) = m\acute{e}dia(A_S) - m\acute{e}dia(A_P)$$

$$sd(A_S - A_P) = \sqrt{\frac{sd(A_S)^2 + sd(A_p)^2}{2}}$$

$$ad(A_S - A_P) = \frac{m\acute{e}dia(A_S - A_P)}{sd(A_S - A_P)}$$

Ad - Diferença absoluta em Desvios Padrões

Comparando dois Algoritmos

- Se $ad(A_S-A_P) > 0$ A_P tem melhor performance que A_{S_i}
- Se $ad(A_S-A_P) >= 2 A_P$ tem melhor performance que A_S com um nível de confiança de 95%;
- Se $ad(A_s-A_p) \le 0$ A_s tem melhor performance que A_p
- Se $ad(A_s-A_p) <= -2 A_s$ tem melhor performance que A_p com um nível de confiança de 95%.

Comparando dois Algoritmos

• Ao comparara dois indutores no mesmo domínio Exemplo: considerando que A_S = 9.00±1.00 (alg. padrão) e A_P = 7.50±0.80 (alg. proposto)

$$m\acute{e}dia(A_S - A_P) = 9.00 - 7.50 = 1.50$$

$$sd(A_S - A_P) = \sqrt{\frac{1.00^2 + 0.80^2}{2}} = 0.91$$

$$ad(A_S - A_P) = \frac{1.50}{0.91} = 1.65$$

Como ad $(A_S-A_P) > 0$, A_P supera A_S

Sugestão de leitura

- Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.
- P.-N. Tan, Steinbach, M., and Kumar, V., Introduction to Data Mining, Addison-Wesley, 2006.
- Witten, I. H. & Frank, E., Data Mining Pratical Machine Learning Tools and Techniques, Elsevier, 2005.
- Rezende, S. O; Sistemas Inteligentes:

 Fundamentos e Aplicações; Ed Manole 2003 (cap 4 e 5).

Agradecimentos:

 Material desenvolvido com ajuda de Rafael Geraldeli Rossi, Ronaldo Prati