Memorizando

Problema 3

MI – Circuitos Digitais

Tutora: Márcia Lisandra

Problema

- Montar um dispositivo capaz de acender 8 coordenadas na matriz de LEDs simultaneamente;
- Uso de Comparadores e Memórias;
- Auxilio de um botão;
- Novo DSS para endereço de memória.

Fundamentação teórica

- Adaptação do problema 2 "Qual a coordenada?";
- Contadores;
- Comparadores;
- Memórias:
 - ROM;
 - RAM.
- Bouncer;
- Botão;

Contadores

- Síncrono vs. Assíncrono;
- Contagem Regular vs. Contagem Irregular.

Comparador

Circuitos lógicos que comparam valores binários;

Portas XNOR.

			XNOR	T:::::::::::::::::::::::::::::::::::::
A1	INPUT VCC INPUT		7/	
B1	INPUT			
	vcc		COMP1	
			XNOR	
A2	- INEUT		11	
B2	INPUT VCC		12	
			COMP2	
A3	INPUT		XNOR	- - -
B3	INPUT VEC		1)) >0-	
כט	INPUT VCC		COMPS	
			сомрз	-
			XNOR	
A4	INPUT VCC		XIVOR	
B4	INPUT)) >>>-	
	VCC		COMP4	
			XNOR	······································
A5	INPUT VCC		1/	
B5	INPUT			
I	V.Q.Q		COMP5	
				· · · · · · · · · · · · · · · · · ·
A6			XNOR	Comparador
	INPLIT VCC INPLIT		11	
B6	- INPUT		12	
			COMP6	
A7	INPUT		XNOR	
B7	INPUT VCC INPUT		→ → → → → → → → → → → → → → → → → → →	
וט	VÇÇ		COMP7	
			COMP	
			XNOR	
A8	INPUT		1	
A8	INPUT VCC INPUT VCC	<u> </u>)) >>-	
	VÇÇ		COMP8	
				•••

Α	В	Q				
0	0	1				
0	1	0				
1	0	0				
1	1	1				
XNOR						

Memória ROM

- Read-Only Memories;
- Memória fixa (Não volátil);
- Circuito lógico simples.

Memória RAM

- Randon-Access Memory;
- Biestável (volátil);
- Pode ser sobrescrita;
- Escrita e Leitura;
- Flip-Flops para armazenar os bits.

Bouncer

- Instabilidade de Nível;
- Componentes reais não trabalham com 0 e 5 Volts;
- Atraso na normalização nos níveis.

Botão

- Componente físico usado para controle de bit manual;
- Usado como pulso em memórias biestáveis;
- Auxiliado por um bouncer e um pulldown.

Metodologia

- Quartus;
- Implementação;
- Desenvolvimento.

Circuito Lógico

Circuito Físico

Resultados e Discussões

- Montagem do Circuito Físico;
- **■** Testes:
 - Lógico;
 - Físico.

Montagem Circuito Físico

- Reaproveitamento do circuito do problema anterior;
- Adição de botão;
- ightharpoonup Resistor de 1K Ω para pulldown;
- Display de 7 segmentos para endereço de memória
- Pinagem da FPGA reaproveitada com adição de novos pinos:
 - Botão;
 - DSS.

Teste Lógico

Teste Físico

■ Teste de todas as coordenadas inseridas manualmente.

Conclusão

- O protótipo agregou os anteriores;
- O Sistema alcançou o sucesso graças aos testes feito pela equipe tanto no lógico quanto no físico;
- O circuito ganhou nova funcionalidade ao agregar uma memória Ram;
- Melhor ergonomia em quesito de funcionalidade.

Referências

- http://macao.communications.museum/images/exhibits/2_18_3_4. png
- http://homepages.inf.ed.ac.uk/rbf/HIPR2/figs/ttabxor.gif
- WAKERLY, J. F. Digital design: principles and practices. 3rd ed. Prentice Hall,2001.
- GAJSKI, D. D. Principles of Digital Design, Prentice Hall, 1997.
- TOCCI, R. J. Sistemas Digitais: Princípios e Aplicações.11th ed. Pearson Prentice Hall, 2011.