

UNIVERSITY OF TORONTO INSTITUTE FOR AEROSPACE STUDIES 4925 Dufferin Street, Toronto, Ontario, Canada M3H 5T6 www.utias.utoronto.ca

ROBOTICS (AER 525F) Cours Schedule (Fall 2022)

Week	Date	Lecture	Subject	Laboratory	Tutorial
1	MON 09/12	1 & 2	Introduction Course Outline Goals and Objectives History of Robotics Applications Manipulator Degrees of Freedom Robotic System Components Robot Joint and Arm Structure Classification of Robots		
	WED 09/14	3 & 4	 Introduction ➤ Manipulator Wrist Mechanisms Kinematics ➤ Position and Orientation ➤ Rotation Matrix ➤ Cascade of Rotations ➤ Euler and RPY Representations 		Lecture (cntd.)
2	MON 09/19	5 & 6	 Kinematics ➤ Euler and RPY Representations ➤ Coordinate Transformation ➤ Homogeneous Transformation Operator ➤ Cascade of Transformations 		
	WED 09/21	7	Forward Kinematics ➤ Links & Joints: Numbers and Parameters ➤ Standard Denavit-Hartenberg Convention		Coordinate Transformation Examples
3	MON 09/26	8 & 9	Forward Kinematics ➤ Examples ➤ Forward Kinematics Formulation ➤ Modified Denavit-Hartenberg Convention ➤ Computational Algorithm		
	WED 09/28	10	Inverse Kinematics ➤ Manipulator Solvability		Forward Kinematics Examples
4	MON 10/03	11 & 12	 Inverse Kinematics ➤ Manipulator Workspace ➤ Algebraic Solution ➤ Example 	A: Lab #1	
	TUE 10/04			B: Lab #1	
	WED 10/05	13	 Inverse Kinematics: Geometric Solution Example Repeatability and Accuracy 		Inverse Kinematics Examples
5	MON 10/10		THANKSGIVING DAY		

UNIVERSITY OF TORONTO INSTITUTE FOR AEROSPACE STUDIES 4925 Dufferin Street, Toronto, Ontario, Canada M3H 5T6 www.utias.utoronto.ca

	TUE			D: Lab #1		
	10/11		Differential Kinematics	D. Lub III	Differential	
	WED 10/12	14	 Differentiation of Vectors and Matrices Differentiation of Rotation Matrix 		Kinematics	
			Differential Kinematics		Examples	
6	MON 10/17	15 & 16	Differentiation of Transformation MatrixJacobian	C: Lab #1		
			> Formulation of Manipulator Jacobian			
	TUE 10/18			B: Lab #2		
	WED 10/19	17	Differential Kinematics Formulation of Manipulator Jacobian		Differentiation Examples	
	MON 10/24	18 & 19	Differential Kinematics		Examples	
			SingularityRedundancy	A: Lab #2		
			Statics: ➤ Transformation of Forces and Moments	110 2402		
7	TUE		ransformation of Forces and Moments	D: Lab #2		
,	10/25			D. Lab #2	Manipulator	
	WED	20	Statics: ➤ Transformation of Forces and Moments		Jacobian and	
	10/26		> Manipulator Static Relationship		Singularity Examples	
		T	INTERIM COURSE SURVEY	1		
	MON	21 & 22	Statics ➤ Duality Concept	C: Lab #2		
8	10/31 TUE		> Manipulator Stiffness			
8	11/01			B: Lab #3		
	WED 11/02	MID-TERM TEST				
9	11/07-11	STUDY BREAK				
	MON 11/14	11/14	Dynamics Rigid Body Dynamics	A: Lab #3		
			Manipulator Inverse Dynamics	TI. Lub III		
10	TUE 11/15			D: Lab #3		
	WED 11/16	25	Dynamics ➤ Newton-Euler Formulation		Mid-term Solutions	
	11/10		<u>Dynamics</u>		Solutions	
11	MON 11/21	26 & 27	Newton-Euler FormulationExample	C: Lab #3		
			> Lagrangian Approach			
	TUE 11/22			B: Lab #4		
	WED 11/23	28	<u>Controls</u>		Manipulator Dynamics	
			> Motion Control		Examples	

UNIVERSITY OF TORONTO INSTITUTE FOR AEROSPACE STUDIES 4925 Dufferin Street, Toronto, Ontario, Canada M3H 5T6 www.utias.utoronto.ca

12	MON 11/28	29 & 30	Controls	A: Lab #4	
	TUE 11/29			D: Lab #4	
	WED 11/30	31	Controls		Controls Examples
13	MON 12/05	32 & 33	Controls Force Control	C: Lab #4	
	WED 12/07	34	 Design ➤ Workspace Attributes ➤ Actuation Schemes ➤ Sensor Specifications 		Course Review
		34	> Actuation Schemes		Course Re