VARIABLES ALÉATOIRES (LA SUITE) E03

EXERCICE N°1 Le savoir-faire minimal (Le corrigé)

- 1) La variable aléatoire X suit la loi binomiale de paramètres n=4 et p=0,3.
- **1.a)** Dresser l'arbre de probabilités associé à cette expérience aléatoire.

Notons *S* le succès à l'épreuve de bernoulli qui est ici répétée 4 fois pour obtenir le schéma de Bernoulli réprésenté ci-dessous :

1.b) Dresser et compléter le triangle de Pascal jusqu'à la ligne n=4.

Les cases ne sont qu'un repère visuel et ne sont pas nécessaire sur une copie.

1.c) En déduire les expressions de P(X=k) pour k entier variant de 0 à 4.

$$P(X=0) = 1 \times 0.3^{0} \times 0.7^{4}$$

 $P(X=1) = 4 \times 0.3^{1} \times 0.7^{3}$
 $P(X=2) = 6 \times 0.3^{2} \times 0.7^{2}$
 $P(X=3) = 4 \times 0.3^{3} \times 0.7^{1}$
 $P(X=4) = 1 \times 0.3^{4} \times 0.7^{0}$

Calculer $P(X \ge 2)$. Arrondir le résultat à 10^{-2} .

$$P(X \ge 2) = P(X=2) + P(X=3) + P(X=4) = 0,3483$$

 $P(X \ge 2) \approx 0,35$

2) On lance deux dés. On note X l'écart entre la plus grande et la plus petite des deux valeurs obtenues.

Quelles sont les valeurs possibles prises par X? 2.a)

Les valeurs possibles sont : $\begin{bmatrix} 0 \\ ; 1 \\ ; 2 \\ ; 3 \\ ; 4 \\ et 5 \end{bmatrix}$

Quelques exemples: 5 et 5:5-5=0; 6 et 5:6-5=1 ... 6 et 1:6-1=5

Déterminer la loi de probabilité de X.

Il s'agît de donner les valeurs possibles de X accompagnées de leur probabilité. Pour cela, on fait (en général) un tableau.

Avant cela, il nous faut déterminer ces probabilités...

On pourrait utiliser un arbre commençant par 6 branches donnant chacune naissance à 6 autres branches (vous pouvez le faire;)) mais ici, on va plutôt utiliser un tableau.

(Observez l'alignement des valeurs qui simplifie le comptage)

	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

On a 36 issues possibles (notre dénominateur avant simplication) et il suffit compter les issues favorables pour k (ce qui donnera notre numérateur avant simplication).

Il n'y a plus qu'à donner le tableau qui va décrire notre loi de probabilité.

0	1	2	3	4	5	total
1	5	2	<u>1</u>	<u>1</u>	1	1
6	18	9	6	9	18	1
$\frac{6}{26}$	$\frac{10}{26}$	8	$\frac{6}{26}$	$\frac{4}{26}$	$\frac{2}{26}$	$\frac{36}{36}$
	$ \begin{array}{c} 0 \\ \underline{1} \\ \underline{6} \\ \underline{6} \\ \underline{36} \end{array} $	$ \begin{array}{c cc} 0 & 1 \\ \hline \frac{1}{6} & \frac{5}{18} \\ \hline \frac{6}{36} & \frac{10}{26} \end{array} $	$ \begin{array}{c ccccc} 0 & 1 & 2 \\ \hline \frac{1}{6} & \frac{5}{18} & \frac{2}{9} \\ \hline \frac{6}{26} & \frac{10}{36} & \frac{8}{26} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(c) Déterminer l'espérance de
$$X$$
.
$$E(X) = 0 \times \frac{1}{6} + 1 \times \frac{5}{18} + 2 \times \frac{2}{9} + 3 \times \frac{1}{6} + 4 \times \frac{1}{9} + 5 \times \frac{1}{18} \approx 1,94$$

$$E(X) \approx 1.94$$