

A 6

₹

davidcorzo@ufm.edu (sign out)

Home My Assignments Grades
Communication Calendar
My eBooks

← MC 113, section A, Spring 2020

INSTRUCTOR
Christiaan Ketelaar
Universidad Francisco Marroquin

14.1 Funciones Varias Variables (Homework)

	14.11 unionics varias variables - Wo 110, security, opining 2020 Web/assign				
1.	SCALCET8 14.1.003.		My Notes	Ask Your Teacher 🗸	
A manufacturer has m function	odeled its yearly production function P (the m	onetary value of its entire produ	ction in millions of dol	lars) as a Cobb-Douglas	
P(L, K) = 1.47 where L is the number your answers to one d	of labor hours (in thousands) and K is the inv	ested capital (in millions of dolla	ars). Find <i>P</i> (125, 45)	and interpret it. (Round	
<i>P</i> (125, 45) = labor are com	, so when the manufacturer in pleted yearly, the monetary value of the produ		n capital and million.	thousand hours of	
2/1.5 points 🗸	SCALCET8 14.1.009.		My Notes	Ask Your Teacher 🗸	
	$g(5, -1)$. Domain of g . $\leq 5, -1 \leq y \leq 1$ $+5y \leq \frac{\pi}{2}$				

(c) Find the range of g. (Enter your answer using interval notation.)

SCALCET8 14.1.015.

My Notes

Ask Your Teacher 🗸

$$f(x, y) = \ln(4 - x^2 - 4y^2)$$

SCALCET8 14.1.017.

My Notes

Ask Your Teacher 🗸

$$g(x,\,y)=\frac{x-y}{x+y}$$

5. -/1 points V SCALCET8 14.1.019.MI.

My Notes

Ask Your Teacher 🗸

Find and sketch the domain of the function.

$$f(x, y) = \frac{\sqrt{y - x^2}}{49 - x^2}$$

SCALCET8 14.1.019.MI.SA.

My Notes

Ask Your Teacher 💙

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

$$f(x, y) = \frac{\sqrt{y - x^2}}{16 - x^2}$$

SCALCET8 14.1.024.

My Notes

Ask Your Teacher 🗸

Sketch the graph of the function.

$$f(x,\,y)=x^2$$

 \bigcirc

SCALCET8 14.1.025.

My Notes

Ask Your Teacher 🗸

Sketch the graph of the function.

$$f(x, y) = 12 - 4x - 5y$$

 \bigcirc

SCALCET8 14.1.028.

My Notes

Ask Your Teacher 🗸

Sketch the graph of the function.

$$f(x, y) = 3 - x^2 - y^2$$

 \bigcirc

SCALCET8 14.1.031.

My Notes

Ask Your Teacher 🗸

Sketch the graph of the function.

$$f(x, y) = \sqrt{9 - 9x^2 - y^2}$$

SCALCET8 14.1.036.MI.

My Notes

Ask Your Teacher 🗸

Two contour maps are shown. One is for a function f whose graph is a cone. The other is for a function g whose graph is a paraboloid. Which is which, and why?

- Map II is the paraboloid. Map I is the cone. The cone's z-values change at a constant rate.
- igcup Map I is the paraboloid. Map II is the cone. The paraboloid's z-values change at a constant rate.
- Map II is the paraboloid. Map I is the cone. The paraboloid's z-values change at a constant rate.
- Map I is the paraboloid. Map II is the cone. The cone's z-values change at a constant rate.

A contour map of a function is shown. Use it to make a rough sketch of the graph of f.

A contour map of a function is shown. Use it to make a rough sketch of the graph of f.

SCALCET8 14.1.045.

My Notes

Ask Your Teacher 🗸

Draw a contour map of the function showing several level curves.

$$f(x, y) = x^2 - y^2$$

SCALCET8 14.1.053.

My Notes

Ask Your Teacher 🗸

Sketch a contour map of the function.

$$f(x, y) = x^2 + 9y^2$$

Sketch a graph of the function and compare it to the contour map.

SCALCET8 14.1.067.

My Notes

Ask Your Teacher 💊

Describe the level surfaces of the function.

$$f(x, y, z) = x + 4y + 2z$$

- The level surfaces are a family of parallel planes.
- The level surfaces are a family of ellipsoids.
- The level surfaces are a family of hyperboloids.
- The level surfaces are a family of hyperbolic cylinders.

SCALCET8 14.1.068.

My Notes

Ask Your Teacher 🗸

Describe the level surfaces of the function.

$$f(x, y, z) = x^2 + 4y^2 + 5z^2$$

- The level surfaces are a family of parallel planes.
- The level surfaces are a family of ellipsoids.
- The level surfaces are a family of hyperboloids.
- The level surfaces are a family of hyperbolic cylinders.

$$f(x, y) = \sqrt{\frac{3xy}{3xy}}$$

 \bigcirc

SCALCET8 14.1.503.XP.

My Notes

Ask Your Teacher 🗸

$$f(x, y) = \sqrt{1 - x^2} - \sqrt{16 - y^2}$$

 \bigcirc

SCALCET8 14.1.506.XP.

My Notes

Ask Your Teacher 🗸

$$f(x, y, z) = \sqrt{4 - x^2 - y^2 - z^2}$$

SCALCET8 14.1.505.XP.

My Notes

Ask Your Teacher 🗸

$$f(x, y) = \arcsin(x^2 + y^2 - 4)$$

−/1 points ∨ 22.

SCALCET8 14.1.510.XP.

My Notes

Ask Your Teacher

Draw a contour map of the function showing several level curves.

$$f(x, y) = x^3 - 4y$$

23. -/1 points ✓

SCALCET8 14.1.513.XP.

My Notes

Ask Your Teacher

Consider the function below.

$$f(x, y) = \ln(x + y - 3)$$

- (a) Evaluate f(1, 3).
- (b) Evaluate f(e, 3).
- (c) Find the domain of f.
 - 0 x > 3
 - y > 3
 - $\bigcirc x + y > 3$
 - x + y 3 > 1
 - x > 3, y > 3
- (d) Find the range of f. (Enter your answer using interval notation.)

24.

SCALCET8 14.1.514.XP.

- Ta	Mv	Notes
	iviy	Mores

Ask Your Teacher

Consider the function below.

$$f(x, y) = x^2 e^{3xy}$$

- (a) Evaluate f(6, 0).
- (b) Find the domain of f.
 - \bigcirc $(0, \infty) \times (0, \infty)$
 - □ IR × (0, ∞)
 - (0, ∞) × IR
 - \bigcirc $(0, \infty) \times (1/3, \infty)$
 - IR × IR
- (c) Find the range of f. (Enter your answer using interval notation.)

SCALCET8 14.1.515.XP.

Ask Your Teacher

Consider the function below.

$$f(x, y) = \sqrt{5 + x - y^2}$$

- (a) Find the domain of f.
 - $y^2 \ge x$
 - $x \ge y^2 5$
 - 0 x + 5
 - $|x-y^2| \ge 0$
 - $x \ge y^2$
- (b) Find the range of f. (Enter your answer using interval notation.)

My Notes

Ask Your Teacher

26.	-/	1.5 points SCALCET8 12.6.001 .
(a)		at does the equation $y = x^2$ represent as a curve in \mathbb{R}^2 ? hyperbola
	0	circle
	0	parabola
	0	ellipse
		line
(b)		at does it represent as a surface in R ³ ? parabolic cylinder
	0	ellipsoid
	0	cone
	0	elliptic paraboloid
		hyperboloid
(c)	_	at does the equation $z = y^2$ represent? cone
	0	ellipsoid
	0	elliptic paraboloid
		hyperboloid
		parabolic cylinder

SCALCET8 12.6.003.

My Notes

Ask Your Teacher 🗸

Describe the surface.

$$x^2 + z^2 = 7$$

- sphere
- ellipsoid
- hyperboloid
- circular cylinder
- elliptic cylinder
- hyperbolic cylinder
- parabolic cylinder
- elliptic paraboloid

Sketch the surface.

SCALCET8 12.6.005.

My Notes

Ask Your Teacher 🗸

Describe the surface.

$$z = 3 - y^2$$

- cone
- ellipsoid
- hyperboloid
- elliptic cylinder
- hyperbolic cylinder
- parabolic cylinder
- elliptic paraboloid
- hyperbolic paraboloid

Sketch the surface.

SCALCET8 12.6.011.

My Notes

Ask Your Teacher 🗸

Use traces to sketch the surface.

$$x = y^2 + 3z^2$$

Identify the surface.

- elliptic cylinder
- parabolic cylinder
- elliptic cone
- hyperboloid of one sheet
- ellipsoid
- elliptic paraboloid
- hyperboloid of two sheets
- hyperbolic paraboloid

30. –/1 points

SCALCET8 12.6.013.

My Notes

Ask Your Teacher 🗸

Use traces to sketch the surface.

$$x^2 = 4y^2 + z^2$$

Identify the surface.

- hyperbolic paraboloid
- ellipsoid
- hyperboloid of two sheets
- parabolic cylinder
- elliptic cone
- elliptic cylinder
- hyperboloid of one sheet
- elliptic paraboloid

SCALCET8 12.6.021.

Ask Your Teacher 🗸

Match the equation with its graph.

$$x^2 + 4y^2 + 9z^2 = 1$$

SCALCET8 12.6.023.

Ask Your Teacher >

Match the equation with its graph.

$$x^2 - y^2 + z^2 = 1$$

SCALCET8 12.6.025.

Ask Your Teacher 🗸

Match the equation with its graph.

$$y = 2x^2 + z^2$$

SCALCET8 12.6.026.

Ask Your Teacher N

Match the equation with its graph.

$$y^2 = x^2 + 2z^2$$

SCALCET8 12.6.028.

Ask Your Teacher 🗸

Match the equation with its graph.

$$y = x^2 - z^2$$

SCALCET8 12.6.034.

My Notes

Ask Your Teacher 🗸

Consider the equation below.

$$y^2 = x^2 + 5z^2 + 5$$

Reduce the equation to one of the standard forms.

Classify the surface.

- ellipsoid
- elliptic paraboloid
- hyperbolic paraboloid
- cone
- hyperboloid of one sheet
- hyperboloid of two sheets

Sketch the surface.

SCALCET8 12.6.507.XP.

My Notes

Ask Your Teacher 🗸

Use traces to sketch the surface.

$$6x^2 - 24y^2 + z^2 = 24$$

Identify the surface.

- ellipsoid
- elliptic paraboloid
- hyperboloid of two sheets
- hyperbolic paraboloid
- elliptic cylinder
- elliptic cone
- hyperboloid of one sheet
- parabolic cylinder

SCALCET8 12.6.508.XP.

My Notes

Ask Your Teacher 🗸

Consider the equation below.

$$9x^2 + y^2 + 9z^2 - 6y - 72z + 144 = 0$$

Reduce the equation to one of the standard forms.

Classify the surface.

- parabolic cylinder
- circular cone
- elliptic cylinder
- ellipsoid
- hyperboloid of two sheets
- hyperbolic paraboloid
- hyperboloid of one sheet
- elliptic paraboloid

Sketch the surface.

SCALCET8 12.6.509.XP.

	My Notes	5
--	----------	---

Ask Your Teacher 🗸

Consider the equation below.

$$3y^2 + z^2 - x - 12y - 4z + 16 = 0$$

Reduce the equation to one of the standard forms.

Classify the surface.

- ellipsoid
- elliptic paraboloid
- circular cone
- hyperboloid of two sheets
- hyperbolic paraboloid
- hyperboloid of one sheet
- parabolic cylinder
- elliptic cylinder

Sketch the surface.

SCALCET8 12.6.AE.005.

Ask Your Teacher 🗸

Figure 1
Video Example

SOLUTION The traces in the vertical planes x = k are the parabolas

which open upward. The traces in y=k are the parabolas =

= k, a family of hyperbolas. We draw the family of traces in Figure 2, and we show how the traces appear when placed in their correct planes in Figure 3. In Figure 1 we fit together the terms to form the surface $z = 5y^2 - 6x^2$, a **hyperbolic paraboloid**. Notice that the shape of the surface near the origin resembles that of a saddle. This surface will be investigated further in a later section when we discuss saddle points.

Figure 2

Figure 3

SCALCET8 12.6.AE.007.

Ask Your Teacher 🗸

EXAMPLE 7 Identify and sketch the surface $4x^2 - y^2 + 2z^2 + 4 = 0$.

SOLUTION Dividing by -4, we first put the equation into standard form:

$$-x^2 + \frac{y^2}{ } - \frac{z^2}{ } = 1.$$

Comparing this equation with equations of quadratic surfaces, we see that it represents a $\boxed{\text{---Select---}}$, the only difference being that in this case the axis of the hyperboloid is the $\boxed{\text{----Select---}}$. The traces in the xy and yz-planes are the hyperbolas

$$-x^2 + \frac{y^2}{} = 1 \quad z = 0$$

and

$$\frac{y^2}{2} - \frac{z^2}{2} = 1$$
 $x = 0$.

The surface has no trace in the xz-plane, but traces in the vertical planes y = k for |k| > 2 are the ellipses

$$x^2 + \frac{z^2}{2} =$$

$$-1 \quad y = k$$

which can be written as

Thus the traces are used to make the sketch in the figure.

Submit Assignment

Save Assignment Progress

Home My A

My Assignments

Request Extension

Copyright 2020 Cengage Learning, Inc. All Rights Reserved