1. (6 points) Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ k^2 \end{pmatrix}$ and $\mathbf{v}_4 = \begin{pmatrix} 2 \\ 4 \\ k \end{pmatrix}$.

- (a) For what values of k is \mathbf{v}_4 in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- (b) For what values of k is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly independent?
- **2.** Let A be a 3×5 and set $\mathbf{a}_j = \operatorname{col}_j(A)$ for $j = 1, \dots, 5$. Suppose that

$$A \sim \begin{pmatrix} 1 & 0 & -1 & 0 & -2 \\ 0 & 1 & 3 & 0 & 6 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

- (a) (3 points) Give a basis for Nul(A).
- (b) (3 points) Given that $\mathbf{a}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\mathbf{a}_3 = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}$, find the entries of \mathbf{a}_1 .
- (c) (8 points) Indicate each statement as either true or false. (No explanations needed.)

 - iv. $\operatorname{Col}(A) = \mathbb{R}^5$ (True or False)
 - v. $\operatorname{Span}\{\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3\}=\operatorname{Span}\{\mathbf{a}_1,\mathbf{a}_2\}$ (True or False)
 - vi. $\operatorname{Span}\{\mathbf{a}_3,\mathbf{a}_4,\mathbf{a}_5\}=\operatorname{Span}\{\mathbf{a}_3,\mathbf{a}_5\}$ (True or False)
 - vii. $\operatorname{rank}(A^T) = 2$ (True of False)
 - viii. $row_1(A^TA) \in Col(A^T)$ (True or False)
- **3.** (4 points) Find the point on the line given by $(x, y, z) = (1, -1, -1) + t(5, 2, 2), t \in \mathbb{R}$, that is closest to the point (10, 20, 5).
- **4.** (4 points) Find the distance between the plane 3x + y 5z = 30 and the point (10, -20, 10).
- ${f 5.}$ Consider the two lines given by the parametric vector equations

$$\mathbf{x} = s \begin{pmatrix} 1 \\ 4 \\ 8 \end{pmatrix}, s \in \mathbb{R} \quad \text{and} \quad \mathbf{x} = \begin{pmatrix} 7 \\ 8 \\ 31 \end{pmatrix} + t \begin{pmatrix} 4 \\ -4 \\ 7 \end{pmatrix}, t \in \mathbb{R}$$

- (a) (4 points) Find the point of intersection between the lines.
- (b) (2 points) Find the $\cos(\alpha)$, where α is the acute angle between the lines.

- **6.** (6 points) Find numbers a, b, and c such that the function $f(x) = a(x-1)^2 + bx^2 + c(x+1)^2$ satisfies f(-1) = 24, f(0) = 4, and f(2) = 12.
- 7. (6 points) Let A, B, and X be 5×5 invertible matrices such that $A^T X^{-1} B = 7I$. Given that

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 25 & 70 \end{pmatrix},$$

find the (3,4)-entry of X.

- **8.** (6 points) Find the inverse of the matrix $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 4 \\ 1 & 1 & 2 \end{pmatrix}$.
- 9. (6 points) Use Cramer's rule to solve for x in the linear system $\begin{cases} x + y + z = 1 \\ x + y z = 0. \\ 2x 3y 3z = 0 \end{cases}$
- **10.** Consider the subset W of \mathbb{R}^3 given by $W = \{(x, y, z) \in \mathbb{R}^3 : x^3 + y^3 + z^3 = 0\}$.
 - (a) (3 points) List three vectors from W which form a linearly independent set.
 - (b) (3 points) Is W closed under vector addition? Justify your answer.
 - (c) (3 points) Is W closed under scalar multiplication? Justify your answer.
- 11. Consider the given directed graph.
 - (a) (2 points) Find the adjacency matrix A for this directed graph.

- $\begin{pmatrix} 0 & 2 & 1 & 0 & 2 \end{pmatrix}$ i. (1 point) The number of closed walks of length 6.
- ii. (1 point) The number of walks of length 7 that end at v_4 .
- iii. (2 points) The number of walks of length 12 that start at v_4 and end at v_5 .

- **12.** Consider the points A(2,2,3), B(1,0,0) and C(2,2,2).
 - (a) (4 points) Find an equation, in normal form, of the plane that contains the points A, B, and C.
 - (b) (3 points) Find area of the triangle whose vertices are A, B, and C.
 - (c) (5 points) Find the point between B and C that is 1 unit away from B.

(d) (5 points) Let $\mathbf{t} = (2, -3, 6)$. A polyhedron with two parallel triangular faces is shown below. Find its volume.

- **13.** Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection in the line y = x, and let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the horizontal shear such that S(2,3) = (4,3).
 - (a) (4 points) Find the standard matrices for R, S, and $R \circ S$.
 - (b) (3 points) Give an equation, in normal form, for the image of y = 2x + 3 under S
 - (c) (3 points) Give an equation, in normal form, for the image of y = 5 under $R \circ S$.

Answers

- 1. (a) $k \in \mathbb{R} \setminus \{-2\}$
 - (b) $k \in \mathbb{R} \setminus \{-2, 2\}$
- $\mathbf{2.} \quad \text{(a)} \quad \left\{ \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -6 \\ 0 \\ 2 \\ 1 \end{pmatrix} \right\}$
 - (b) $\begin{pmatrix} 2\\3\\2 \end{pmatrix}$
 - (c) i. True
 - ii. False
 - iii. True
 - iv. False
 - v. True
 - vi. True

vii. False

viii. True

- **3.** (16, 5, 5).
- **4.** $2\sqrt{35}$.
- **5.** (a) (3, 12, 24)
 - (b) $\frac{44}{81}$
- **6.** a = 5, b = 4, c = -1
- **7.** 5
- 8. $\frac{1}{2} \begin{pmatrix} 0 & -1 & 2 \\ -4 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$.
- 9. $\frac{3}{5}$
- **10.** (a) (1,-1,0), (0,1,-1), (1,0,-1)
 - (b) No. Justification omitted.
 - (c) Yes. Justification omitted.
- **11.** (a) $\begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$
 - (b) i. 12 ii. 5
 - iii. 8
- **12.** (a) 2x y = 2
 - (b) $\frac{\sqrt{5}}{2}$
 - (c) (4/3, 2/3, 2/3)
 - (d) 7/2
- **13.** (a) $(R) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $(S) = \begin{pmatrix} 1 & 2/3 \\ 0 & 1 \end{pmatrix}$, $(R \circ S) = \begin{pmatrix} 0 & 1 \\ 1 & 2/3 \end{pmatrix}$
 - (b) 6x 7y = -9
 - (c) x = 5