

Goal: Efficiently mergeable heaps with efficient decreaseKey

Goal: Efficiently mergeable heaps with efficient decreaseKey

Fibonacci Heap is a set of trees with min-heap property,

Goal: Efficiently mergeable heaps with efficient decreaseKey

Fibonacci Heap is a set of trees with min-heap property, in it

• each node has four pointers, one each to parent, child, left sibling, right sibling

as well as two attributes: degree and mark

roots of all trees are stored in a doubly linked list

pointer to minRoot in list

Idea: like binomial heaps, but more flexible structure; link trees of equal degree

Goal: Efficiently mergeable heaps with efficient decreaseKey

Fibonacci Heap is a set of trees with min-heap property,

We will use the potential method for the amortized analysis with potential function

 $\Phi(H) = t(H) + 2m(H)$ # trees # marks

Goal: Efficiently mergeable heaps with efficient decreaseKey

Fibonacci Heap is a set of trees with min-heap property,

We will use the potential method for the amortized analysis with potential

function $\Phi(H) = t(H) \\ \text{\# trees} \\ + 2m(H) \\ \text{\# marks} \\ \text{ignore for now,} \\ \text{happens in} \\ \text{decreaseKey} \\$

Goal: Efficiently mergeable heaps with efficient decreaseKey

Fibonacci Heap is a set of trees with min-heap property,

We will use the potential method for the amortized analysis with potential

function $\Phi(H) = t(H) \\ \text{$\#$ trees} \\ \text{$\#$ marks} \\ \text{$\#$ marks} \\ \text{$decreaseKey} \\ \text{$decreaseKey} \\ \text{$\#$ marks} \\ \text{$\#$ marks} \\ \text{$\#$ and $\#$ and $\#$ are suppressed in $\#$ and $\#$ are suppressed in $\#$ are suppre$

an empty fib-heap has $\Phi(H)=0$ and any fib-heap has $\Phi(H)\geq 0$ \Rightarrow amortised cost upper bound the actual costs

Goal: Efficiently mergeable heaps with efficient decreaseKey

Fibonacci Heap is a set of trees with min-heap property,

We will use the potential method for the amortized analysis with potential

function

$$\Phi(H) = t(H) \\ \text{\# trees} + 2m(H) \\ \text{\# marks}$$
 ignore for now, happens in decreaseKey

an empty fib-heap has $\Phi(H)=0$ and any fib-heap has $\Phi(H)\geq 0$ \Rightarrow amortised cost upper bound the actual costs

We will analyze the amortized cost with respect to D(n), which is the maximum degree of a node in a Fibonacci heap on n nodes. Afterwards we will bound

$$D(n) = O(\log n).$$

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\Phi(H) = t(H) + 2m(H)$$
 # trees # marks

make-0: generate empty heap

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$ * make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$ * make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

min: return key of minRoot

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$
• make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

• min: return key of minRoot $\hat{c}_i = O(1) + 0 = O(1)$

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$ • make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

- min: return key of minRoot $\hat{c}_i = O(1) + 0 = O(1)$
- union:
 - concatenate the two lists
 - update minRoot (by comparing the two minRoots before)

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$ • make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

- min: return key of minRoot $\hat{c}_i = O(1) + 0 = O(1)$
- union:
 - concatenate the two lists $\hat{c}_i = O(1) + 0 = O(1)$
 - update minRoot (by comparing the two minRoots before)

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$
• make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

- min: return key of minRoot $\hat{c}_i = O(1) + 0 = O(1)$
- union:
 - concatenate the two lists $\hat{c}_i = O(1) + 0 = O(1)$
 - update minRoot (by comparing the two minRoots before)
- insert:
 - make-1 and add to list
 - update minRoot

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$
• make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

- min: return key of minRoot $\hat{c_i} = O(1) + 0 = O(1)$
- union:
 - concatenate the two lists $\hat{c}_i = O(1) + 0 = O(1)$
 - update minRoot (by comparing the two minRoots before)
- insert:
 - make-1 and add to list

$$\hat{c_i} = O(1) + 1 = O(1)$$

update minRoot

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$
 $\Phi(H)=t(H)+2m(H)$
• make-0: generate empty heap $\hat{c_i}=O(1)+0=O(1)$ # trees # marks

- min: return key of minRoot $\hat{c}_i = O(1) + 0 = O(1)$
- union:
 - concatenate the two lists $\hat{c}_i = O(1) + 0 = O(1)$
 - update minRoot (by comparing the two minRoots before)
- insert:
 - make-1 and add to list $\hat{c}_i = O(1) + 1 = O(1)$
 - update minRoot

Q: what does a Fibonacci heap look like after n inserts?

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$

- make-0: generate empty heap $\hat{c}_i = O(1) + 0 = O(1)$
- min: return key of minRoot $\hat{c}_i = O(1) + 0 = O(1)$
- union:
 - concatenate the two lists $\hat{c}_i = O(1) + 0 = O(1)$
 - update minRoot (by comparing the two minRoots before)
- insert:
 - make-1 and add to list $\hat{c}_i = O(1) + 1 = O(1)$
 - update minRoot

Q: what does a Fibonacci heap look like after n inserts?

$$(7)$$
 - - - - (4) - - - - (2) - - - - (5) - - - - - (3)

```
Amortised costs: \hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1}) \Phi(H) = t(H) + 2m(H)
• deleteMin: # trees # marks
```

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree
- create linked list of roots from array

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree
- create linked list of roots from array

actual costs: O(D(n) + t(H)) max # children of minRoot # trees before

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$
• deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree
- create linked list of roots from array

actual costs:
$$O(D(n) + t(H))$$
 max $\#$ children of minRoot $\#$ trees before

change in potential:

$$\leq (D(n)+1+2m(H))-(t(H)+2m(H))=D(n)+1-t(H)$$
 potential after potential before

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$
• deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree
- create linked list of roots from array

actual costs:
$$O(D(n) + t(H))$$
 max # children of minRoot # trees before

change in potential:

$$\leq (D(n) + 1 + 2m(H)) - (t(H) + 2m(H)) = D(n) + 1 - t(H)$$

hence amortised cost $\hat{c}_i = O(D(n) + t(H)) + D(n) + 1 - t(H)$

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$
• deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array, always linking roots of equal degree
- create linked list of roots from array

actual costs:
$$O(D(n) + t(H))$$
 max $\#$ children of minRoot $\#$ trees before

"assuming we sufficently scale up the potential"

change in potential:

$$\leq (D(n) + 1 + 2m(H)) - (t(H) + 2m(H)) = D(n) + 1 - t(H)$$

hence amortised cost $\hat{c_i} = O(D(n) + t(H)) + D(n) + 1 - t(H) = O(D(n))$

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = c(t(H) + 2m(H))$

trees # marks

- deleteMin:
 - delete node minRoot
 - create array of size D(n) + 1
 - insert all roots (including children of deleted minRoot) in array, always linking roots of equal degree
 - create linked list of roots from array
- actual costs: O(D(n) + t(H))max # children of minRoot * # trees before

"assuming we sufficently scale up the potential"

change in potential:

$$\leq (D(n) + 1 + 2m(H)) - (t(H) + 2m(H)) = D(n) + 1 - t(H)$$

hence amortised cost $\hat{c_i} = O(D(n) + t(H)) + D(n) + 1 - t(H) =$

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$
• deleteMin: # trees # marks

were marked

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree

 Note: so far, no nodes
- create linked list of roots from array

actual costs:
$$O(D(n) + t(H))$$
 max $\#$ children of minRoot $\#$ trees before

change in potential:

$$\leq (D(n) + 1 + 2m(H)) - (t(H) + 2m(H)) = D(n) + 1 - t(H)$$

hence amortised cost $\hat{c_i} = O(D(n) + t(H)) + D(n) + 1 - t(H) = O(D(n))$

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree

 Note: so far, no nodes
- create linked list of roots from array

Q: after n inserts, then one deleteMin, is a fib-heap a binomial heap?

short for Fibonacci heap

were marked

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree

 Note: so far, no nodes
- create linked list of roots from array

Q: after n inserts, then one deleteMin, is a fib-heap a binomial heap? Yes!

short for Fibonacci heap

were marked

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • deleteMin: # trees # marks

were marked

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree

 Note: so far, no nodes
- create linked list of roots from array

Example: (7) - - - - (4) - - - - - (5) - - - - - (3)

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$
• deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree

 Note: so form
- create linked list of roots from array

Note: so far, no nodes

were marked

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\Phi(H) = t(H) + 2m(H)$$
• deleteMin: # trees # marks

were marked

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree

 Note: so far, no nodes
- create linked list of roots from array

delMin

4

5

union

9

8, insert(2), delMin

10

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\Phi(H) = t(H) + 2m(H)$
• deleteMin: # trees # marks

- delete node minRoot
- create array of size D(n) + 1
- insert all roots (including children of deleted minRoot) in array,
 always linking roots of equal degree
- create linked list of roots from array

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\Phi(H) = t(H) + 2m(H)$$
• decKey: # trees # marks

- if key too small, cut subtree at node and add node to list of roots
- if parent was unmarked, mark it (unless it is a root)

Amortised costs:
$$\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\Phi(H) = t(H) + 2m(H)$$
• decKey: # trees # marks

- if key too small, cut subtree at node and add node to list of roots
- if parent was unmarked, mark it (unless it is a root)

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • decKey: # trees # marks

- if key too small, cut subtree at node and add node to list of roots
- if parent was unmarked, mark it (unless it is a root)

Example:

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • decKey: # trees # marks

- if key too small, cut subtree at node and add node to list of roots
- if parent was unmarked, mark it (unless it is a root)
- if parent was marked, cut its subtree, unmark it, and recurse

Example:

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\Phi(H) = t(H) + 2m(H)$ • deckey: # trees # marks

- if key too small, cut subtree at node and add node to list of roots
- if parent was unmarked, mark it (unless it is a root)
- if parent was marked, cut its subtree, unmark it, and recurse

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$ $\Phi(H)=t(H)+2m(H)$ • decKey: # trees # marks

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$

$$\Phi(H)=t(H)+2m(H)$$
 # trees # marks

actual cost: O(1+k) for k-1 cascading cuts (= k cuts with first)

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs: $\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$ $\Phi(H)=t(H)+2m(H)$ # trees # marks

actual cost: O(1+k) for k-1 cascading cuts (= k cuts with first)

change in potential:

$$\leq t(H) + k + 2(m(H) - k + 2) - (t(H) + 2m(H)) = 4 - k$$
 potential after potential before
$$-(k-1) \text{ for }$$
 cascading cuts,
$$+1 \text{ new mark}$$

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$

$$\Phi(H)=t(H)+2m(H)$$
 * decKey: # trees # marks

actual cost: O(1+k) for k-1 cascading cuts (= k cuts with first)

change in potential:

$$\leq t(H) + k + 2(m(H) - k + 2) - (t(H) + 2m(H)) = 4 - k$$
 potential after potential before

hence amortised cost
$$\hat{c_i} = O(k) + 4 - k = O(1)$$
 again by appropriate scaling of the potential

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$

$$\Phi(H)=t(H)+2m(H)$$
 * decKey: # trees # marks

actual cost: O(1+k) for k-1 cascading cuts (= k cuts with first)

change in potential:

$$\leq t(H) + k + 2(m(H) - k + 2) - (t(H) + 2m(H)) = 4 - k$$
 potential after potential before

hence amortised cost
$$\hat{c_i} = O(k) + 4 - k = O(1)$$
 again by appropriate scaling of the potential

Q: Why did we need the factor 2 for m(H) in the potential?

Idea: Operations (except for decreaseKey) like Binomial Heap with lazy union

Amortised costs:
$$\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})$$

$$\Phi(H)=t(H)+2m(H)$$
 * decKey: # trees # marks

actual cost: O(1+k) for k-1 cascading cuts (= k cuts with first)

change in potential:

$$\leq t(H) + k + 2(m(H) - k + 2) - (t(H) + 2m(H)) = 4 - k$$
 potential after potential before

hence amortised cost
$$\hat{c_i} = O(k) + 4 - k = O(1)$$
 again by appropriate scaling of the potential

Q: Why did we need the factor 2 for m(H) in the potential? one for paying for a cut, one for paying for the new tree

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)?

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

Intuition

if we would never cut ightarrow Binomial heap

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

Intuition

if we would never cut \rightarrow Binomial heap

then: for any node x of degree k in a binomial tree:

 $size(x) = 2^k$ (by induction).

size of subtree with x as root

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

if we would never cut \rightarrow Binomial heap

then: for any node x of degree k in a binomial tree:

 $size(x) = 2^k$ (by induction).

size of subtree with x as root

for binomial heaps this showed: $D(n) = O(\log n)$

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

Intuition

if we would never cut \rightarrow Binomial heap

then: for any node x of degree k in a binomial tree:

 $size(x) = 2^k$ (by induction).

size of subtree with x as root

for binomial heaps this showed: $D(n) = O(\log n)$

if we cut, we can cut at most one child per node

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

Intuition

if we would never cut \rightarrow Binomial heap

then: for any node x of degree k in a binomial tree:

 $size(x) = 2^k$ (by induction).

size of subtree with x as root

for binomial heaps this showed: $D(n) = O(\log n)$

if we cut, we can cut at most one child per node then: degree of any node decreases by at most 1, inductive argument still works for $\operatorname{size}(x) \geq \phi^k$.

(golden ratio)

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

Q: Could we still bound D(n) if we were allowed to cut more than 1 child per node?

	amortised
make	O(1)
min	O(1)
insert	O(1)
union	O(1)
deleteMin	O(D(n))
decKey	O(1)

Can we bound D(n)? yes!

Q: Could we still bound D(n) if we were allowed to cut more than 1 child per node? no!

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

For this we show $\operatorname{size}(x) \geq F_{k+2} \geq \phi^k$ for a node x in a Fib-heap of degree k.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

For this we show $\operatorname{size}(x) \geq F_{k+2} \geq \phi^k$ for a node x in a Fib-heap of degree k.

(k+2)-nd Fibonacci number

Recall: $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, ... F_{k+2} = F_k + F_{k+1}$

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

For this we show $\operatorname{size}(x) \geq F_{k+2} \geq \phi^k$ for a node x in a Fib-heap of degree k.

(k+2)-nd Fibonacci number

Recall:
$$F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, ... F_{k+2} = F_k + F_{k+1}$$

This implies $n \geq \operatorname{size}(x) \geq \phi^{D(n)}$ and thus $D(n) \leq \lfloor \log_{\phi} n \rfloor$.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Goal: show $D(n) \leq \lfloor \log_{\phi} n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age. \blacksquare time when y_i got linked to x

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age. \blacktriangleleft time when y_i got Then $\text{degree}[y_1] \geq 0$ and $\text{degree}[y_i] \geq i-2$ for $i=2,\ldots,k$.

Proof: The first statement is trivial.

For the second, observe that when y_i was linked to x, it was degree $[y_i]$ = degree $[x] \ge i-1$. Then at most one child was deleted.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Lemma 2: For $k \ge 0$ holds $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i - 2$ for i = 2, ..., k.

Lemma 2: For $k \ge 0$ holds $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$.

Proof: by Induction(k)

$$k=0: F_2=1+0=1+F_0 \\ k>0: F_{k+2}=F_k+F_{k+1}=F_k+1+\sum_{i=0}^{k-1}F_i=1+\sum_{i=0}^kF_i.$$
 ind. hyp.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Lemma 2: For $k \ge 0$ holds $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$.

Lemma 3: For $k \geq 0$ holds $F_{k+2} \geq \phi^k$.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Recall: $\begin{vmatrix} a & b \\ \phi = \frac{a}{b} = \frac{a+b}{a} = 1 + \frac{1}{\phi} \\ \Rightarrow \phi^2 = 1 + \phi \end{vmatrix}$

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Lemma 2: For $k \ge 0$ holds $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$.

Lemma 3: For $k \geq 0$ holds $F_{k+2} \geq \phi^k$.

Proof: by Induction(k)

$$k=0: F_2=1=\phi^0$$
, $k=1: F_3=2>\phi^1$

$$k > 2: F_{k+2} = F_{k+1} + F_k \ge \phi^{k-1} + \phi^{k-2} = \phi^{k-2}(\phi + 1) = \phi^k$$
 ind. hyp.
$$= \phi^2$$

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Lemma 2: For $k \ge 0$ holds $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$.

Lemma 3: For $k \geq 0$ holds $F_{k+2} \geq \phi^k$.

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H. Then the subtree at x has size at least F_{k+2} .

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Q: What is s_0 and s_1 ?

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Then $s_0 = 1$ and $s_1 = 2$ and s_k grows in k.

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Then $s_0 = 1$ and $s_1 = 2$ and s_k grows in k.

Now let z be a node of degree k and size s_k , and let y_1, \ldots, y_k be the ordered

children of
$$z$$
. Then $\text{size}(x) \ge s_k \ge 2 + \sum_{i=2}^k s_{\deg(y_i)} \ge 2 + \sum_{i=2}^k s_{i-2}$.

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Then $s_0 = 1$ and $s_1 = 2$ and s_k grows in k.

Now let z be a node of degree k and size s_k , and let y_1, \ldots, y_k be the ordered

children of z. Then size
$$(x) \ge s_k \ge 2 + \sum_{i=2}^k s_{deg(y_i)} \ge 2 + \sum_{i=2}^k s_{i-2}$$
.

By induction(k) we show: $s_k \ge F_{k+2}$.

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Then $s_0 = 1$ and $s_1 = 2$ and s_k grows in k.

Now let z be a node of degree k and size s_k , and let y_1, \ldots, y_k be the ordered children of z. Then $\operatorname{size}(x) \geq s_k \geq 2 + \sum_{i=2}^k s_{\deg(y_i)} \geq 2 + \sum_{i=2}^k s_{i-2}$.

By induction(k) we show: $s_k \ge F_{k+2}$.

$$s_0 = 1 = F_2$$
 and $s_1 = 2 = F_3$

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Then size(x), the size of the subtree at x, is at least F_{k+2} .

Proof: Let s_k be the minimal size of a node of degree k in a Fib-heap.

Then $s_0 = 1$ and $s_1 = 2$ and s_k grows in k.

Now let z be a node of degree k and size s_k , and let y_1, \ldots, y_k be the ordered children of z. Then $\operatorname{size}(x) \geq s_k \geq 2 + \sum_{i=2}^k s_{\deg(y_i)} \geq 2 + \sum_{i=2}^k s_{i-2}$.

By induction(k) we show: $s_k \ge F_{k+2}$.

$$s_0 = 1 = F_2$$
 and $s_1 = 2 = F_3$

For $k \geq 2$ we have

$$s_k = 2 + \sum_{i=2}^k s_{i-2} \ge 2 + \sum_{i=2}^k F_i = 1 + \sum_{i=0}^k F_i = F_{k+2}$$
 ind. hyp.

Goal: show $D(n) \leq \lfloor \log_\phi n \rfloor$ where $\phi = \frac{1+\sqrt{5}}{2}$ the golden ratio.

Lemma 1: Let x be an arbitrary node of degree k in a Fibonacci Heap H.

Let y_1, \ldots, y_k be the children of x in order of age.

Then $degree[y_1] \ge 0$ and $degree[y_i] \ge i-2$ for $i=2,\ldots,k$.

Lemma 2: For $k \ge 0$ holds $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$.

Lemma 3: For $k \geq 0$ holds $F_{k+2} \geq \phi^k$.

Lemma 4: Let x be an arbitrary node of degree k in a Fibonacci Heap H. Then the subtree at x has size at least F_{k+2} .

Corollary 5: $D(n) = O(\log n)$

Comparison of Runtimes

	Binary Heap	Binomial Heap lazy union	Fibonacci Heap
make	O(1)	O(1)	O(1)
min	O(1)	O(1)	O(1)
insert	$O(\log n)$	O(1)	O(1)
union	O(n)	O(1)	O(1)
deleteMin	$O(\log n)$	$O(\log n)^*$	$O(\log n)^*$
decKey	$O(\log n)$	$O(\log n)$	$O(1)^{*}$

^{*} amortised