戴维南定理的研究

实验仪器与设备

实验线路

电流插座

接电流源(电流源先调到指定值)

或维南定理/诺顿定理

可以外接 电阻箱

接电压源(电压源先调指定值)

1、用开路电压、短路电流法测定被测有源二端网络的 R_{eq} 。

操作要点:

- 1)调节电压源输出电压值指定值。
- 2)调节电流源输出电流为指定值。
- 3) 把电压源与电流 源正确接入电路。
- 4)接入直流电压表与直流毫安表,选择适当量程,测量 开路电压值与短路电流值,并记录。

注: R_{eq}的值即被测有源 二端网络的最大功率点

测定被测有源线性二端网络的 $U_{\rm OC}$ 、 $I_{\rm SC}$ 和 $R_{\rm eq}$

$U_{ m OC}({ m V})$	$I_{SC}(mA)$	$R_{ m eq} = U_{ m OC}/I_{ m SC}(\Omega)$

2、 测量有源线性二端网络的外特性

操作要点:

- 1)接入电阻箱
- 2) 按要求数值调节电阻箱的电阻值。
- 3) 直流电压表和直流毫伏表选择适当的量程,测量电压电流值并记录。

测定被测有源线性外特性数据表

$R_{ m L}$ (Ω)	0	100	400	450	500	$R_{\rm eq}$	550	600	800	1k	2k	5k	∞
<i>U</i> (V)													
I (mA)													

3. 验证戴维南定理

操作要点:

- 1)调节直流电压源电压为开路电压值。
- 2) 调节电阻箱 R_5 的阻值为等效电阻 R_{eq} 之值
- 3) 按图接线。
- 4) 按数据表所列数值 调节电阻箱*R6*之值。
- 5)测量电阻R6的电压值与电流值并记录

验证戴维南等效电路的外特性数据表

$R_{ m L}$ (Ω)	0	100	400	450	500	$R_{\rm eq}$	550	600	800	1k	2k	5k	∞
(V)													
<i>I</i> (mA)													