2 Расчет статических характеристик электропривода постоянного тока независимого возбуждения

2.4 Характеристика при ослабленном магнитном потоке возбуждения

Ослабление и последующее усиление магнитного потока возбуждения двигателя осуществляется согласно схеме, приведенной на рисунке 1.

Рисунок 1 – Схема для изменения магнитного потока возбуждения двигателя

Введя дополнительное сопротивление в цепь ОВД, мы уменьшили по закону Ома ток $I_{\text{вн}}$. Из — за этого произойдет уменьшение магнитного потока $\Phi_{\text{ов}}$, что в свою очередь приведет к росту угловой скорости ω . Так как $I_{\text{с}} = M_{\text{c}}/\text{k}\Phi$, то ток статический также увеличится. ω_{c} и точка холостого хода также будут иметь большие значения. Значение α для моего двигателя из исходных данных — 0,88.

Характеристика (рисунок 2) строится по двум точкам:

1) I = 0, $\omega = \omega_0$

$$\omega_{_{0}}^{'} = \frac{U_{_{H}}}{\alpha \cdot C_{_{H}}} = \frac{220}{0,88 \cdot 1,3029} = 191,88 \text{ (рад/с)}.$$

$$2) \ I = I_{_{c}}^{'}, \ \omega = \omega_{_{c}}^{'}$$

$$I_{_{c}}^{'} = \frac{M_{_{c}}}{\alpha \cdot C_{_{H}}} = \frac{25,684}{0,88 \cdot 1,3029} = 22,4 \text{ (A)},$$

$$\omega_{_{c}}^{'} = \frac{U_{_{H}} - I_{_{c}}^{'} R_{_{R}}}{\alpha \cdot C_{_{H}}} = \frac{220 - 22,4 \cdot 0,258}{0,88 \cdot 1,3029} = 186,84 \text{ (рад/с)}.$$

Рисунок 2 – Характеристика при ослабленном магнитном потоке