角速度 ω の正弦波交流に対する LC 並列回路の (複素) アドミタンスは

$$\dot{Y} = j(\omega C - \frac{1}{\omega L}).$$

(LC 並列回路の) 共振周波数 f_0 とは、サセプタンスが 0 になるような (この場合は $\dot{Y}=0$ になるような) 周波数 [Hz] をいう. この条件を数式 で表すと、

$$\dot{Y} = 0 \iff \omega C = \frac{1}{\omega L} \Leftrightarrow 2\pi f_0 C = \frac{1}{2\pi f_0 L} \Leftrightarrow f_0 = \frac{1}{2\pi \sqrt{LC}}$$

 $\Leftrightarrow L = \frac{1}{C(2\pi f_0)^2}$

となる.

C が 0 から 260×10^{-12} [F] まで変化するとき、 f_0 の動く範囲に 535×10^3 [Hz] から 1605×10^3 [Hz] までの範囲が含まれるようにしたい.そのためには、C が最大値の 260×10^{-12} [F] をとるときに $f_0=500\times10^3$ [Hz] となるように L の値を定めれば十分である.すなわち,

$$L = \frac{1}{260 \times 10^{-12} \times (2\pi \times 500 \times 10^3)^2} = 0.4 \times 10^{-3} \text{ [H]} = 0.4 \text{ [mH]}.$$