Medio examen practico de prueba de Matemática DiscretaII

1): Hallar un flujo maximal en términos de x (x es un número real positivo) en el siguiente network usando Edmonds-Karp por 2 caminos y luego Dinic.

Dar tambien un corte minimal (el cual puede también depender de x) y mostrar que el valor del flujo maximal es igual a la capacidad del corte minimal en todos los casos.

sC:x	CG: x	Ft:4x	$KE: x\sqrt{x}$	$Qt: x\sqrt{x}$
$sH: x\sqrt{x}$	CE:4x	Gt:x	$LM: x\sqrt{x}$	
sN:4x	DG:4x	$HA: x\sqrt{x}$	$MB: x\sqrt{x}$	
$AI: x\sqrt{x}$	$DL: x\sqrt{x}$	$IJ: x\sqrt{x}$	ND:4x	
$BP: x\sqrt{x}$	EF:4x	$JK: x\sqrt{x}$	$PQ: x\sqrt{x}$	

2): Sea G=(V,E) un grafo con 1001 vertices con $\mathcal{X}(G)=500$. Sea \overline{G} el grafo cuyo conjunto de vertices es V y cuyo conjunto de lados son todos los conjuntos de dos elementos xy con $x,y\in V$ tal que $xy\not\in E$. Probar que \overline{G} no es bipartito.