

(12) PATENT

(19) NO

(11) 320851

(13) B1

NORGE (51) Int Cl. G05D 13/02 (2006.01) B64C 25/42 (2006.01)

Patentstyret

(21)	Søknadsnr	20041541	(86)	Int.inng.dag og søknadsnr		
(22)	lnng.dag	2004.04.15	(85)	Videreføringsdag		
(24)	Løpedag	2004.04.15	(30)	Prioritet	Ingen	
(41)	Alm.tilgj	2005.10.17				
(45)	Meddelt	2006.02.06				
(73)	Innehaver	Oddvard Johnsen, Auvi Terrasse 6 C. 3400 LIER. NO				
(72)	Oppfinner	Oddvard Johnsen, Auvi Terrasse 6 C, 3400 LIER, NO				
(74)	Fullmektig					
(54)	Benevnelse	Kontrollerfunksjoner for brems basert på en styring etter variasjoner i akselerasjonsverdier i hiulets horisontale plan				
		njuncis nortsontate j	oran .			
(56)	Anførte					

(57) Sammendrag

En bremsekontroller funksjon for optimal nedbremsing av et hjul tilhernede et fartsy som et fly, hvor bremsetrykk styres og reguleres ut fra fartsyets akselensjon og forandringen av akselensjon over did horisontalplanet. På den måten kan man bestemme kulminasjon og vendepunkt for akselensjonen, hvor disse punktene angir maksimum bremseeven til enhver tid. Ved at man i sann tid her registrer akselensjon og bakke hastighet som referanse og knytter dette opp mot øking og reduksjon av bremstrykket til bremsen, vil man oppnå et bremsetrykk som fullstendig reflekter de totale krefter som påvirker et fartøy eller et fly i forhold til underlaget.

PATENTBESKRIVELSE

En bremse kontroll loop for optimal nedbremsing av et kjøretøy/fartøy eller fly i forhold til et hvert gitt underlag.

Oppfinnelsen har sitt primære anvendelses område på luftfartøy / fly som er avhengig av å komme til en rask stopp på en definert lengde etter landing eller et fly som må gjennomføre en "accelerate stop", sertifisert høysete bakkehastighet før stopp ved avgang. Det siste er en situasjon hvor flygeren må avbryte avgang i høy hastighet før fly har rukket å gå i luften, bli "airborne". Utforkjøring på bakken med fly viser store statistikk utslag. Ca 30 % av verdens flyulykker dreier seg om utforkjørsel enten ved avgang eller landing, og hvor årsaken kan være direkte eller indirekte knyttet til bremsenes funksjon i forhold til underlaget.

Dagens bremsesystemer for fly, herunder kalt anti-skid bremse logikk, overser en rekke forhold rundt både friksjonslover og fysiske naturlover, dette sett i forhold til en utbredt operasjon over varierende klimasoner i hele verden. Dette gjør innledningsvis godt utviklede bremser mindre effektive når de måtte trengs mest, når det er glattere enn på tørr baneoverstate.

Oppfinnelsen bygger på kunnskap om friksjonsadferd mellom et rullende hjul og underlag. Figur 1, "Prinsipp Friksjonskurve", illustrerer denne dagens aksepterte definisjoner knyttet til måling av friksjon på baner. Basis for friksjonskurven viser et økende bremsepådrag ved en konstant hastighet av måleapparat som fører målehjul. Påtegnet er det en rekke betegnelser. Disse er:

μ	My (engelsk Mu) betegnelse for friksjon. Forholdet mellom fritt rullende og nedbremset hjul.		
Slip			
PFN (peak friction number)	Toppunktet for friksjon mellom hjul og underlag.		

Tire Influence Curve	Stigende kurve, venstre side av PFN. Denne
----------------------	--

delen av friksjonskurven som beskriver

hjul/dekk material egenskaper.

Pavement Influence Curve Fallende kurve, høyre side av PFN angir

vegdekkets material beskaffenhet/ slitasje.

Beta vinkel (β), Tire Influence Curve vinkel, betegner graden av

egenskap til dekket.

Alfa vinkel (a), Pavement Influence Curve vinkel, betegner

graden av egenskap til underlaget.

PFN (2) Samme hjul ved annen hastighet og lavere

toppunkt for friksjon

Peak Friction Curve Hastighet varierende kurve for PFN.

Fig. 1 viser at assosiert friksjon, offisielt betegnet som My (µ), mellom et dekk og underlag vil variere, og at slipp tallet likeså vil variere med varierende grad av grensesjikt mellom dekk og underlag.

Adferdsmønstret i denne prosessen er at før oppbremsing vil ytre påførte krefter til et hjul i utgangspunktet kun registrere rullemotstand. Ved oppbremsing vil derfor etter hvert veigrepet forandre seg i pakt med brensepådraget til en økt friksjon - My. Friksjonen vil etter hvert med påført/ økt bremsepådrag nå et toppunkt av friksjon, intermasjonalt kalt PFN, (Peak Friction Number), og deretter vil friksjon avta ved ytterligere økt bremsepådrag. Slippet øker som et direkte resultat av økt bremse pådrag.

På tort underlag kan punktet for gummiens elastikk overskrides ved slipp forhold utover PFN, hvor gummideler rives av, kanskje også deler av underlagets tekstur. Punktet hvor slipp overstiger toppunktet for friksjon mellom hjul og bakken betegnes gjerne som å [begynne] å skli. Dette punktet kan gjerne betegnes som en situasjon av "overbremsing", dvs. at det øves for mye bremse pådrag i forhold til underlagets beskaffenhet og hva som er tilgjengelig av friksjon i underlaget.

Figur 2. "Hastighets variable friksjonskurver", illustrerer hvordan hastighet påvirker friksjonsfortøpet ved en hastighetsforandring, som for eksempel under en nedbremsing av et kjøretay/ farkost. Ingen farkoster bremser ned i kontant hastighet. De ulike kurvene er betegnet ved v₁, v₂ og v₃ og har anmerket de ulike hastigheter sitt oppunkt. Det man ser er at for en faxost vil maksimal friksjon og assosiert slipp variere med hastighet. Ved å trekke en kurve gjennom alle de hastighets variable toppunktene vil man få en slipp hastighetskurve. Vinkelen for denne kurven varierer med føreforhold. Ved godt føreforhold, som om sommeren, vil denne kurven være relativt bratt, mens ved regn, snø, is etc., vil kurven være flatere.

Friksjon er derfor ingen materialegenskap, men et samspill av krefter mellom hjul/dekk og underlag via et mellom liggende sjikt. Det vil påvirkes av type kontaminasjon (for eksempel medium som støv, pollen, vann, snø, is etc.), hastighet, trykk, temperatur etc., og vil derfor være en dynamisk funksjon. Dette forklarer også hvorfor friksjon kan oppleves forskjellig, til eksempel for ulike fly eller kjøretøyer, og på tross av at de objektive uavhengige forhold i utgangspunktet er de samme.

Ut fra denne bakgrunn må man forsøke å forstå de elementer og forhold som påvirker et fly når dette skal forsøkes bremset ned fra hastigheter mellom 200 - 300 km/t til full stopp.

Behov for anti-skid bremsekontroll funksjoner innen flyindustrien kom som resultat av teknologisk utvikling, økt størrelse og operative vekter for fly. Dette medførte igjen større dimensjonerte hjul og bremsesystemer, og dermed også behov for servoforsterkede bremser. Behovet var åpenbart å unngå å påføre slitasje og brennmerker på gummi, rettet mot risiko for eksploderte dekk hvis hjul stoppet delvis eller helt opp.

Tidlige anti-skid bremsesystemer benyttet direkte mekaniske løsninger som basis, for eksempel der individuelle hjul benyttet sentrifugalkraft teknikk som kontroll system for styring av bremsekontroll ventiler. Sentrifugalvekt styrte bremsekontroll ventiler forble slynget ut av hjulets omdreininger og holdt bremsetrykk ventil åpen for brems.
"Kollaps" ved uteblitt rotasjon var et signal til bremsetrykk ventilen om å slippe opp bremsetrykk. I fly anti-skid servo- forsterkede bremse systemer benyttes alltid overtrykk som utgangspunkt på trykk fødesiden før distribusjons ventiler fordeler mulighet for moderert bremsetrykk til de enkelte jul, men først etter å ha passert anti-skid ventiler hvor returmulighet for overflødig bremsetrykk befinner seg.

Mer moderne elektroniske funksjoner tok etter hvert over for mekaniske løsninger, videre fikk industrien etter hvert en utvidet kunnskap om friksjon, en tilstand som ikke nødvendigvis alltid er like homogent fordelt over en nullebane flate eller vei. Ved direkte å utnytte dette grunnlag ble anti-skid bremseteknikk utviklet til å sammenligne hjul mot hjul for ved så å identifisere forskjell i omdreininger å moderere bremsetrykk. Alt i alt forfølger bremseindustrien fortsatt dette spor. Innen fly industri betegnes dette gjerne som "anti-skid bremse logikk" (ikke ABS som i billindustrien). I dag identifiseres slike systemer i klasser av utvikling hvor "Mark I" og "II" for eks. dreier seg om tidlige systemer. "Mark II" kom senere i 60 årene, mens "Mark IV og Mark V" nå er de siste modeller på markedet. Det finnes imidlertid fortsatt svært mange fly i drift med "Mark III" systemer.

Erfaring fra raskere utviklet elektronikk har indikert at i den vide skala av bakkehastigheter et fly opererer, kan anti-skid bremselogikk med fordel stykkes opp. Senere modeller har derfor utvidet anti-skid systemet til også å identifisere uregelmessig omdreining for hvert enkelt hjul individuelt, og hvor hvert hjul vil få sitt eget individuelle justerte bremsetrykk system. "Hjul mot hjul" sammenligning slik det har vært til og med Mark III modeller har derfor senere blitt tilpasset lavere hjulhastigheter mens individuell hjulregistrering logikk er programment til å overta i høyere hjulhastigheter. Denne utvidede logikk spiller en fremtredende rolle i "Mark IV" og "V" modeller, hvor "hjul mot hjul" brukes for eksempel når fly treffer bakken og hvor hjulene vil stå stille før de spinner opp, mens når hjulene spinner opp til høyere hjulhastigheter registreres dette, og logikken vil forvandles. Man kan imidlerid med dette ikke se at hovedlogikk for anti-skid brems er forandret ut over en enkel - faktor løsning.

Et videre utvidet virkeområde i "Mark IV" og "V" anti-skid logikk modeller beregner også et bestemt fast optimalt slipp som da er definert i utgangspunkt. Ulike produsenter benytter ulike slipp tall, disse ligger i området 10 -13 prosent. Dette fordrer oppdatering av nøyaktig bakke hastighet som en referanse, hvilket er tilgjengelig gjennom elektronisk registrering fra navigasjon data/ informasjonskilder, for eksempel hvor det i luftfartøy finnes flere typer navigasjonsreferanser som i sann tid kan registrere bakkehastighet og akselerasjon. Pulsor signal fra fritt rullede nesehjul har forøvrig også vært benyttet til dette formål. Intensjonen er å unngå høye ukontrollerbare slipp tilstander og å snevre inn en algoritmisk styringssløyfe i tro på bedre bremse effektivitet. Med dette har industriutvikling forsøkt å bringe inn en dobbel - faktor løsning, om enn med en svak referanse da en slik computer algoritme løsning vil måtte bli for upresis. En oppbremsing begrenset til et definert snevert slipp tall vil måtte ha begrensinger, trolig tenkt ut fra tørt underlag. Logikken vil ikke kunne dekke pålitelig styring av bremsepådrag i forhold til hastighetsvarierende mønster på våt, delvis våt, eller frosset føreforhold. Bremsepådrag vil dermed måtte bli mindre optimal. Overbremsing kan fortsatt lett oppstå ved glattere tilstander, nemlig fordi anti-skid logikk har utgangspunkt i hjulrotasjon variasjoner alene. Individuell hjulregistrering logikk vil også ha vanskelig for å identifisere kontinuerlig glatt overflate. PFN slip varierer heller ikke bare med tilstand for én hastighet, men for alle hastigheter, og dermed er det slettes ikke sikkert at en bremsetilstand blir optimalt utnyttet med tilnærmet utgangspunkt i for eks. i 10 eller 13 prosent over en hel hastighetsskala. Det som passer på tørr bane, passer nødvendigvis ikke for våt bane, og langt mindre for frossen bane. Spesielt erfares dette i lavere hastigheter hvor det på våt bane blir bedre bremsegrep i lavere hastigheter enn i høye, vann får tid til å unnslippe fra under hjulet, mens på frossen bane vil det bli omvendt. Ved lavere hastighet vil hjuldekket her få tid til å tine opp og dermed ødelegge mikro teksturens forventede evne til bremsegrep. Dette er et vel kjent fenomen.

Tatt ut fra friksjonsmålinger kan det dokumenteres at slipp helt opp mot 35 - 40 prosent synes å være mest gunstig og optimale ved slike sistnevnte tilstander.

Noen Mark III, men alle Mark IV og V anti-skid bremsesystemer har i tillegg til vanlig fotbremsing en automatisk bremse funksjon. "Auto Brake" som den heter, og fungerer vet at flygeren kan velge en automatisk computerstyrt nedbremsing, som er utrykt i "Auto Brake" grad av nivåer brems, 1, 2, 3, Max og RTO. Siste funksjon gjelder kun avgang. Hvert av disse nivåene bestemmes av en valgt / ønsket retardasjon. Innen flybransjen benytter man for eks fot/sek² som basis for et retardasjons tall, fremfor m/s² eller "g". Hvert av disse retardasjonsnivå har tilisvarende definert et maksimum bremsetrykk frem til proporsjonal bremsetrykk reguleringsventiler som sitter før anti-skid bremseventilene nær hjulbremsene. Intensjonen bak graderinger er at man også kan velge et lavere fot/sek² retardasjons tall der det finnes lang bremsedistanse tilgjengelig. Imidertid ser man at flyprodusenter anbefaler å velge et høyt fot/ sek² retardasjons tall (høyt begrenset bremsetrykk) hvis det eksisterer risiko for glatte tilstander, men uten å ta hensyn til varierende bakkehastighet.

Problemet med denne logikk ligger imidlertid allerede i at man i utgangspunkt ikke kan oppnå en høyere retardasjon enn hva hjuled underflaten er i stand til å gi av bremse evne og da er man like langt. Det er vanskelig å forstå definisjon på valgte maksimale bremsetrykk, sett ut fra et hastighetsvarierende bremsemønster, da valgt logikk forsvares med å frigi det høye bremsetrykk på fødesiden via anti-skid reguleringsteknikk som i grunnen i utgangspunkt har en annen oppgave. Samtidig skal anti-skid logikk søke å tilnærme et ca 10 % slipp forhold, som tidligere nevnt er mest passende til tørre baneforhold, uten å ha fullgod referanse for det.

I utgangspunkt synes det å være å enske noe man ikke kan oppnå, og informasjon til en ensket optimal nedbremsing hentes dessuten ut fra en ensidig feil kilde, en definert akselerasjon. Dette påførte misforhold skal således rettes opp via en ganske separert anti-skid reguleringsteknikk. På fødetrykk siden vil det oppstå etter forholdene et alt for høyt bremsetrykk, likesom når man trå en bremsepedal helt inn, og skulle ikke enti-skid reguleringslogikk umiddelbart registrere ujevne føreforhold, vil man kunne oppleve tilstander med mange motstridende signaler fra anti-skid computer logikk, noe som gjeme blant flygere oppfattes som "hysterisk" bremseregulering. Rullebaner har gjerne mer homogene baneforhold enn veier, og med noe nedslitt banedekke i tillegg kan virkelig skremmende situasjoner lett oppstå. Ytterligere, ved forhold med sterk sidevind oppstår betydelig påvirkning av laterale krefter fartøyet, noe som igjen

påvirker bremsevne og stoppdistanse tilsvarende negativt. Flere rullebane utforkjøringer tyder på det.

Det er nødvendig å se nærmere på anti-skid proporsjonal ventiler sin virkemåte. Primærhensikten er å pulsere/ porsjonere ut redusert bremsetrykk på gitt differensial komparativ kommando. Anti-skid proporsjonal ventiler pulser i meget raskt tempo (en frekvens på ca 50 millisekunder). Overordnet har moderne anti-skid bremse logikk 4 hovedoppgaver,

- 1. Reagere på registrert forskjell i omdreininger mellom to hjul,
- 2. Reagere på omdreiningsforstyrrelse i enkeltvise hjul,
- 3. Mildne ut resonans vibrasjoner i understellet,
- Søke å holde et inntil maksimalt slipp (av prosent bestemt, 10 til 13 %) sett i forhold til høy bakkehastighet ved sertifisering.

Prinsippet er innledningsvis utarbeidet fra å fungere ved høy bakkehastighet, høy friksjonsverdi og steil friksjonskurve. Under lavere friksjonsforhold, der hvor friksjonskurver opptrer mye flatere kan grensesnittet i forhold til PFN bli mer upresis. Tilbakemeldinger fra flygere tyder imidlertid på svikt under begge ytterkant forhold. Videre, når bane kontaminasjonen har en frossen konsistens vil varmeutvikling i dekk, grunnet friksjon og Normalkraft - Fn innflytelse, utvikle så mye varmeenergi i hjuldekk/ grensesjikt/ baneflate at mikro teksturen som er beregnet å gi bremsegrep kan smelte helt og gå over til vann, eventuelt til vann på is. Da får man vannplaning på is og grensesjiktet vil bli enda mer upresis. Et slikt punkt betegnes som aggregat forandring, og risiko for tap av bremse/ retningskontroll øker betraktelig med reduserende hastighet. Det burde derfor i utgangspunkt være mer hensiktsmessig å definere computer styringsmodeller for varierende hastigheter og varierende My verdier enn fra tørr banetilstand. Bilder fra virkeligheten viser et utvalg av svært foranderlige og komplekse bremseforhold. Industrien synes hittil å ha oversett dette, da interesseområdet ikke er primært rettet mot glatte tilstander, men tørr underflate hvor man skal utarbeide sertifiserte maksimalvekter. Siden friksjonsmåling er

tidligere nevnt defineres dynamisk friksjon lik - My = Fh / Fn, (horisontal kraft over normalkraft). Tradisjonelt er My angitt og definert på en lineser skala fra 0 til 1. Fn er således en betydning komponent, sammen med Fh i identifikasjon av My. Imidlertid når det gjelder flyindustrien benytter de seg av en "prøve - feile" og empirisk data innsamling ved en øvelse av dynamisk akselerasjon for å gjennomføre en estimeringsmetode for å komme frem til et Fh/ Fn (airplane My) punkt for maksimal avgangsvekt. Dette punkt vil stemme med en dokumentert naturlov:

 $F = M \times A$.

hvor

F: Kraft

M: Masse

A: Akselerasjon

men bare der. Denne naturlov kan også betegnes som en hastighets varierende naturlov (Newtons 2de lov). Under et innledningsvis nevnt bremsemenster vil det aller første som forandrer seg være A, og da må F forandres uansett om M er konstant. Skulle også M forandres (bli mindre enn maksimalt som under dynamiske akselerasjons tester) må også regnestykket gjøres om. Det er her design og logikk svikter flygeren fullstendig når han måtte trenge det aller beste, en totalt godt tilpasset hastighetsvarierende regulert anti-skid bremselogikk som åpner for både varierende F og M.

Oppfinnelsen tar utgangspunkt i å selvregulere et bremsepådrag for optimal nedbremsing av et hjul i forhold til et gitt underlag, et underlag hvis tilstand kan variere betydelig over distansen det skal bremses over. Som basis for styringen av bremsetrykk til en nedbremsing benytter man de reelle kreftene som påvirker fartøyet i kombinasjon med dets referanser. Et fartøys akselerasjon på bakken gir det totale bildet av alle krefter som til enhver påvirker et fartøy / fly, dette inkludert luftmotstand, mllemotstand, bremsemotstand og motstand påvirket av reversert

motorkraft. Akselerasjonen vil til en hver tid angi fartøyets friksjon, oppadgående eller nedadgående. Derfor, ved å benytte akselerasjonenes forandring over tid i en gitt situasjon vil man finne kulminasjon eller vendepunkt, dette som et maksimalt punkt for friksjon, eller fartøyets bremseevne, PFN.

Oppfinnelsen oppnås ved system og metode som angitt i søknadens selvstendige krav 1 og 2.

Oppfinnelsen krever ingen fysiske installasjoner eller montasje. For et moderne fly kan oppfinnelsen implementeres som en ren tilleggs algoritme i bremsekontroll enheten, "brake control unit". Oppfinnelsen vil kun fordre tilgang på data fra eksiterende flysystemer, hvor disse så rutes til bremsekontroller enheten.

For å illustrere hvordan oppfinnelsen virker tar man utgangspunkt i figur 3, illustrasjon, hvor man ser for seg et system som består av:

- Ett eller flere akslinger med hjul/felger og dekk montert på et understell eller oppheng som er installert i et kjøretøy eller fly. Illustrasjonen tar utgangspunkt i en aksel og en felg/hjul.
- Akslinger med felger er utstyrt med standard type hydraulisk brems med bremseskiver og klosser.
- Bremsepådrag skjer gjennom et bremsetrykk som er et resultat av kjøretøyets hydrauliske bremse system som betegnes som system hydraulisk trykk, også kalt "system hydraulic pressure".
- Bremsen funksjon er således videre fysisk regulert av en bremsetrykksregulator også kalt "brake metering valve".
- Bremsetrykket før bremsetrykk regulatoren, som er bremsesystemets "system hydraulic pressure" er også kalt "upstream" trykk, mens trykket mellom bremsetrykk regulator og bremsen er også kalt "downstream" trykk.
- Bremsetrykk regulatoren er styrt eller regulert av en kontroll sløyfe, heretter kalt "bremsekontroll loop" som mottar referanse signaler som angir kjøretøyets/flyets (bakke) hastighet og dets akselerasjon.

- Fly har i dag nøyaktige hastighetsmålere som måler hastighet i luften, også kalt "air speed" og bakkehastighet, også kalt "ground speed". Systemet for denne oppfinnelsen benytter den registrerte bakkehastighet som referanse.
- Som akselerasjonsreferanse kan benyttes et flys treghets navigasjons instrumentering, også kalt Inertia Reference System (IRS), GPS baserte systemer eller andre systemer som kan registrere et fly / fartøys akselerasjon i ulike olan.
- Moderne kommersielle fly registrer akslerasjonen i tre plan, horisontalt, også kalt "longitudinal", sideveis, også kalt "lateral" og vertikalt gjennom IRS systemet. For denne oppfinnelsen kan man som akselerasjonsreferanse benytte kun longitudinal akselerasjon, eller den vektor baserte akselerasjonen som er en resultant av longitudinal og lateral, heretter kalt "netto akselerasjon". Netto akselerasjonen er altså en funksjon av longitudinal og lateral akselerasjon regnet ut fra Pythagoras bergning av lengden på hypotenusen i en retivinklet trekant, altså:

$$A_{netto}^2 = A_{long}^2 + A_{lat}^2$$

Hvor

Anetto : Netto akselerasjon

Along: Longitudinal akselerasjon

Alat: Lateral akselerasjon

Netto akselerasjon vil derfor være:

$$A_{\text{netto}} = 1 / (A_{\text{long}}^2 + A_{\text{lat}}^2)^{-1/2}$$

I en bremsekontroll loop kan man derfor benytte enten netto akselerasjon eller kun longitudinal akselerasjon. I illustrasjonsberegning vil man for enkelhets skyld benytte ordet akselerasjon for begge disse tilfeller, da disse ikke er vesentlig for selve grunnprinsippet i logikken.

Illustrasjonen angir oppfinnelsen i et tradisjonelt hydraulisk bremsesystem.
 Samme prinsippet kan også relateres og overføres til elektriske styrte bremser.

Figur 4, "flow chart", illustrerer hvordan oppfinnelsens bremsekontroll loop kan virke. Her er

"h": Hastighet, denominert i km/t, miles/t knop eller annen hastighets referanse bergning

g: Akselerasjon i sann tid denominert i m/s², ft/s² eller annen

referanse for akselerasjonsberegning.

gi-1 Akselerasjon i forrige tidsenhet. Dette kan være et sekund eller

fraksjon av et sekund.

BP: Målt i "psi" eller annen enhet for trykk som er tilført

bremsesystemet via "system hydraulic pressure".

Boks 1.

HVIS h > 0

Her vil man definere om kjøretøyet har en hastighet i forhold til bakken gjennom en kontroll mot hastighets referanse.

Hvis "NEI" refereres det til Boks 2

Hvis "JA" refereres det til Boks 3

Boks 2.

SLUTT

Kjøretøyet har ingen hastighet, derfor ingen handling

Boks 3.

Gjennom Boks 1 er det etablert at kjøretøyet har hastighet.

Det påføres et bremsetrykk inkrement. Størrelsen på dette inkrementet må utarbeides gjennom erfaring, men antas å måtte ligge i området 10 - 25 psi.

Boks 4.

HVIS $g_t \ge 0$

Man vil deretter teste på hva slags akselerasjonsnivå kjøretøyet befinner seg (hvor negativ akselerasjon er lik retardasjon) ved å etablere sanntids akselerasjon (gjennom en akselerasjons referanse).

Hvis "JA" som betyr at kjøretøyet har en konstant hastighet eller reel akselerasjon påfører man ytterligere et bremsetrykk, hvor så neste funksjon utføres ved at man har en loop tilbake til Boks 3.

Hvis "NEI" betyr dette en "negativ" akselerasjon eller "retardasjon og man refererer videre til Boks 5.

Boks 5.

Her vil akselrasjons forandringer testes over tid, hvor sanntids akselerasjon vil bli sammenlignet mot akselerasjon i den forrige tidsenhet. Tidsenheten er avhengig av flere forhold, blant annet frekvensen på akselerasjonsreferanser. Man antar at foreløpig optimalt sammenligning kan finne sted flere ganger per sekund. Test og sammenligningsfunksjonen er basert på følgende:

HVIS $g_t < g_{t-1}$

Hvis "JA" betyr dette at kjøretøyet fremdels har en absolutt økning i retardasjon, hvor nytt / økt bremsetrykk er nødvendig. Derfor fører en loop tilbake til Boks 3 for denne betingelsen. Hvis "NEI" den absolutte akselerasjon er minket i en tidsperiode. Dette betyr at et toppunkt akkurat er passert, og man må redusere det påførte bremsetrykk. I form av en loop vil den påkrevde funksjonen gå tilbake til en tidligere funksjon som definert i flytdiagrammets Boks 1.

Boks 6.

Her vil man redusere det allerede etablerte bremsetrykket. Dette vil skje i inkrements form, og sannsynlig i inkrementer på 25 – 50 psi.

Etter denne funksjonen vil man via en loop gå tilbake til Boks 1. som en gjentagelses prosess / funksjon 30 – 40 ganger per sekund.

Denne loopen vil fortsette til kjøretøyet ikke lenger har noen hastighet.

På grunn av store masser i et fly, er det mulig at bremsekontroll loop algoritmen skal inneholde noen funksjoner som gjør systemet mindre mottaglig for små og brå forandringer i akselerasjonsreferanser.

PATENTKRAV

- Et bremsekontrollersystem for et hjul tilhørende et fartøy i fart karakterisert ved:
 - (a) en registrator for longitudinal akselerasjon;
 - (b) registrering av bremsetrykk til hjulbrems;
 - (c) en beregningsfunksjon som kontinuerlig sammenligner forandringer i akselerasjon og sender signaler til en regulator for bremsetrykket; og
 - (d) en regulator til å øke eller redusere bremsetrykket til hjulbrems.
- En metode for styring av bremsekontroller for et hjul tilhørende et fartøy i fart som endrer bremsetrykket i henhold til forandringen i longitudinal akselerasjon over tid karakterisert ved:
 - (a) trykk til hjulbrems initieres og økes jevnt;
 - (b) longitudinal akselerasjon sammenlignes fra et tidsvindu til neste;
 - (c) når akselerasjonens negative verdi fra et tidsvindu til neste tidsvindu øker, økes bremsetrykket;
 - (d) når akselerasjonens negative verdi i et tidsvindu minsker i forhold til forrige tids vindu reduseres bremsetrykket; deretter
 - (e) funksjonene i "b", "c" og "d" repeteres kontinuerlig helt til fartøyet har stoppet.
- En metode som beskrevet i krav 2, karakterisert ved at akselerasjonen som benyttes beregnes som en vektor lik hypotenusen i en rettvinklet trekant hvor longitudinal og lateral akselerasjon henholdsvis er kateter.
- 4. System og metode i henhold til krav 1-2 karakterisert ved at fartøyet er et fly.
- 5. System og metode i henhold til krav 1-2 karakterisert ved en automatisk brems.
- 6. System og metode i henhold til krav 1-2 karakterisert ved en manuell brems.

Figur 1. Prinsipp Friksjonskurve

Figure 2. Hastighets variable friksjonskurver

FIGUR 3. illustrasjon

FIGUR 4. flow chart

BRAKE FUNCTION BASED ON CONTROLLING ACCORDING TO ACCELERATION

Description of corresponding document: WQ2005100112 Translate this text

< Desc/Clms Page number 1>

Brake function based on controlling according to acceleration A brake function based on control in relation to acceleration, where a the brake control loop provides an optimal braking process of a vehicle or aircraft in respect of defined pavement surface.

This innovation has its primarily beneficial apply in the area aircraft dependable on an optimal stop on a defined landing stop way, or an aircraft performing an "accelerate stop", i.e., highest certification ground velocity during take-off before deciding stop before lift off. The later situation is where the pilot may decide aborted take-off during lift before the aircraft has become "aircraft". Rumany overruns edicate staticially high rigories. About 30 % of all the world accidents is being concerned or trunway overruns either attacking the contraction of the contraction of

State of art brake control systems for aircraft, hereby defined as anti-skid brake logic, do ignore serveral relations to cifeway of the control systems of relations of the control systems of the control s

This innovation bases knowledge on friction analysis behaviour between a rolling wheel and surface interface. Figure 7, Principile Friction Curve", on lustrate state—of-tar accepted definitions feel to friction analysis of pavement surface. Main basis of this friction curve define what is happening when increasing brake forque pressure at a uniform groundspeet, represented by a friction analysis whole queripped with a standardized friction-measuring wheel. On this Fig. 1 illustration several definitions are to be observed. These are as follows: Mu - definition of friction

<Desc/Clms Page number 2>

Slip Relationship between a free rolling wheel and a braked wheel.

PFN (peak friction number) Top (Peak) Point of Friction tire/ surface interface.

Tire Influence Curve Rising curve, left side of PFN. Segment of friction curve, which describe wheel/ tire material structure composition.

Pavement Influence Curve Falling curve, right side of PFN, which describe pavement material structure composition/ wear and tear.

Beta angle (ss;), Tire Influence Curve angle, define tire properties.

Alfa angle(@), Pavement Influence Curve angle, define pavement surface properties.

PFN (2) Same wheel/ tire at an other uniform speed including a lower Top Point of Friction.

Peak Friction Curve Velocity Variable Curve of PFN.

Fig. 1 indicate that associated friction, officially defined as Mu (), between a tire and pavement surface will vary, and that slip fagure will vary accordingly, including that slip also will vary with variations in contaminated boundary time' surface.

An overall behaviour pattern in this straightforward process is that before brakes will be applied outer forces applied to the associated wheel be limited to rolling resistance.

When, during the actual braking pattern in an ongoing process the braking action will vary according to brake torque application input to an increased friction - Mu.

Friction will further according to increased brake torque input reach a Top Point of Friction, by international definition - PFN. (Peak Friction Number), and from there on

< Desc/Clms Page number 3>

increased brake torque input will decrease friction tire/ surface interface.

Slip increases as a direct result of increased brake torque input.

On dry pavement condition the peak point of rubber elastics might be overextended at \$ip number extending PRN his where rubber material will be thorn of, and prutage very pieces of powerent material. When the very point of slip figure has extended PRN tirel surface interface is usually defined as the legaliming of skill. This point inglish are well be defined as a situation of "overbraking", it, as the very point of foo much brake torque input in relation to surface condition and what is achievable of braking coefficient from the contaminated surface leave.

Figure 2. "Velocity variable friction curves", illustrates how velocity influences friction value and variations during velocity variations. For instance when performing braking to a full stop of a vehicle/aircraft, When

braking, no vehicle maintains a constant speed throughout the braking process. These various illustrated curves are defined as v1, v2 and V3 and are all marked with various velocity at their individual PFN. As what might be seen is that for a defined vehicle maximum friction including associated slip will vary with velocity. Drawing a curve true all velocity variable PFN will define a slip velocity curve. The angle appearance of such curve will vary with varying of braking action. During good braking action, like in summer, this curve will act steep, while when raining, snow, ice etc. this curve will appear more flat.

Consequently, friction is not a material property, however the relationship and interactive forces continuously taking place between and in the interface of a contaminated layer between a wheel tire and pavement surface. Major sources of influence will depend on type of contamination (for instance medium like dust, pollen, water, snow iceetc), and will therefore become a dynamic function factor.

This explains why friction might be experienced different, like for instance various performances of various types of aircraft or vehicles, this in spite of contamination initial objective relation being the same.

Based on this background an understanding must be achieved of element influencing an aircraft when attempting a successful braking/ stopping from initial up to ground velocity of between 200 - 300 km/hr. to

<Desc/Clms Page number 4>

Need for anti-skid bake control logic functions within aviation industry came as result of technologic development, increased size and tonnage of aircraft. This again demanded more heavier solid dimensioned wheels, including power brake systems, and thereby also need for servo-controlled brakes. The need was obvious avoiding unforeseen wear and tear including burned marks on tire rubber, including risk of tire fatigue if wheel rotation partly or fully stopped rotating.

Early anti-skid brake systems drew the benefit of direct mechanic solutions like; where individual wheels during rotation used centrifugal principle of controlling brake pressure valve system open or closed. Centrifugal weights commanded brake pressure valves to be remained open when wheel rotation pattern forced weights to be slung out, "Collapse" of wheel rotation to be signal of bleeding brake pressure.

Within aircraft industry anti-skid servo- control brake system design always tap hydraulic energy from high pressure feed line system("upstream") where distribution valves modulate brake energy pressure to representative wheel brakes ("downstream"), then close to wheel brakes anti-skid valves enables further modulation of brake energy pressure via return lines to hydraulic reservoir.

Latest modern electronics functions has taken over for pure mechanical solutions, further related industry has further developed knowledge of tire/ surface friction, a state of condition not always necessarily a homorganic issue over a field of runway pavement surface, or road. By drawing direct benefit of such, antiskid brake logic has developed into basis of monitoring wheel-to-wheel rotation inconsistency comparison and thereby modulating brake energy pressure. All to all brake industry has continued this philosophy pattern. Within aviation industry this is usually defined as "anti-skid brake logic design" (not ABS as within automobile industry). As for state-of-art anti-skid brake systems in the market, identification will be like classification were "Mark I" and "II" for instance concern early systems. "Mark III" arrived in the 60ies, while "Mark IV and Mark V" now are the latest model available in the market. Very many aircraft in operation however do operate "Mark III" systems.

<Desc/Clms Page number 5>

Experience from ever-new development within electronics has indicated that due the aircraft wide spread of ground velocity operation validates, anti-skid brake logic would benefit from splitting even more up. Latest models have therefore developed an extended version of anti-skid logic to identify single wheel rotation irregularity and where each individual wheel will be issued a separate brake energy adjustment.

"Wheel to wheel" comparison as in Mark III models will then be coordinated service duty during lower ground velocity while individual wheel rotation irregularity logic will be precedence while higher ground velocity. This further development of logic play a major role in "Mark IV" and "V" models, where now "wheel to wheel" play the important role when for instance aircraft hit ground during landing ("anti lock") and where wheels will be at stand still before spinning up to much higher rotation speeds, and where logic transform again. However, as being observed, main logic for all anti-skid brake logic will be unchanged representing a single - factor solution.

A further developed principle from "Mark IV" and "V" anti-skid logic is a model, which also defines optimal slip number. Various manufacturers use various slip figures, like in the area of 10 -13 percent. Such practical solution demand a digital accurate velocity as reference, which is available true electronic registration from aircraft navigation data/ information sources, for instance where the aircraft is equipped with several types of navigational references in real time registration ground velocity and acceleration. Pulsar signals from free rolling nose wheel however have also been used for such purpose. The intention behind philosophy is avoiding high and uncontrolled slip condition of braked wheel and limit algorithmic control loop in benefit of better braking efficiency. Industrial development thereby have tried to introduce a double - factor solution, though based on a random reference which will be leading to a imprecise computer algorithm solution observed from a optimal braking pattern concern. Actual braking pattern will be limited to a narrowed gape of slip implemented from dry surface condition, including limited efficiency as such.

Further logic will not include reliable control of brake energy in relation to conditions like velocity variation on wet, partly wet, or frozen contamination. Brake energy will therefore initially become less optimal. Overbraking will still be possible due slippery conditions; namely, anti-skid logic is based on wheel rotation/

variation alone

<Dasc/Clms Page number 6>

Individual wheel irregulantly logic will also find difficulties of identification on continuous rather uniform signeys surface. First lisp will vary continuous, not only reterring to one single velocity still picture frame, but for all velocity still picture frame, but for all velocity still picture frames, thereby limiting defined braking logic limited to i. e. 10 or 13 percent over an entire scale of acceleration velocity. What if a day surface, does not necessary if a west surface and far from that a forzer contaminated auritics. As for the two last case by experience, during lower ground velocity or an est surface braking action increase, water under the size fortiginf have time for middle ground velocity or an est surface braking action increase, water under the size fortiginf have time for conditional velocity wheel temperature will have time for melting process and thereby vanish micro texture potential braking coefficiently braking action fractions.

Documented from dynamic friction analysis, slip number values all up to 35 - 40 percent have been observed as most favourable from a PFN point of concern during very slippery situations.

(Rejected take-off). Lates function concerns take-off only. Each and every mode of selection is based on a hose and set of decleration. Within aviation interests for instance feetbres. Is being used as expression on basis for retardation figures, preferable being used instand ofmetersface, or "g". Each one of the retardation level figures do have a corresponding defined maximum brake energy pressure being feet up to proportional brake pressure metering valves located shead of anti-skid brake valves close to the wheel brakes, Intention being grading of acceleration deceleration levels in shirt by choice to select a lower retardation being grading of acceleration deceleration levels in shirt by choice to select a lower retardation being deceleration selection of the selection selection and available. However to be not led at shall access the commend a high decleration rate selection, feetbree, fourter final himself-or the selection, feetbree, fourter final himself-or the selection, feetbree, fourter final himself-or the selection feetbree.

< Dasc/Clms Page number 7>

energy pressure) if there exists a risk of slippery conditions, though without taken into consideration the ever variation in ground velocity.

Key to such problem is to be found already in Initial basic logic. Fiction limited scenario, used brake pressure generates more barking torque than surface fiction can support. Thus in friction limited case an increase in brake pressure energy does not result in increased generated wheel friction. Retardation might even decrease or got o zero. It is therefore difficult to understand accept chosen logic of using maximum brake energy pressure, this observed from a point of velocity continuously vanation, surface since chosen placed to an applying right possed brake and progressive via metring valves depending on an anti-exid metering process logic which originally has an other depay restaut. In an the same time anti-action described the progressive via the same time anti-action controlled to the progressive via the same time and action of the progressive via the progressive via the same time anti-action of the progressive via the progressive via the same time anti-action of the progressive via the progressive via

Initially it seems that related industry do have wishes that are beyond reach and further basis information for optional optimum braining segment is collected from single and incorrect source, predetermined defined acceleration. This initial failed design is then supposed to be corrected for by a quite separate anti-skid acceleration. This mittal failed design is then supposed to be corrected for by a quite separate anti-skid properties of the separate anti-skid comparate of the separate anti-skid properties of the separate separate with subject to the separate se

Further, when influenced by strong crosswind component lateral forces (Lateral G) strongly act on aircraft body, something that again directly cause very bad influence on braking action; longitudinal direction stability and extended landing stop distance.

Many aircraft runway overruns have clear indication of such.

<Desc/Clms Page number 8>

It is an urgent need to take a closer look at anti-skid proportional valves performance.

Primarily service operation is pulsing/ proportional dilution of brake energy pressure based on command from differential comparative monitoring wheel-to-wheel etc.

Anti-skid proportional pulsing sequence is very rapid proportional (frequency of ca.

- 50 mille seconds). General overview modern anti-skid brake logic hava 4 main duties; 1. React prompt via comparing wheel rotation between two partner wheels,
- 2. React prompt on rotation irregularity on singla whaal,
- 3. Dampening resonance vibration in landing wheel undercarriage,
- 4. Attempt to keap within a maximum slip (determined by parcent figure, 10 13%) identified in relation to

maximum ground velocity during certification manoeuvre.

This principle will by initial evaluation of functioning in very high ground velocity, describe high friction coefficient value and thereby steep friction curve. When during lower friction coefficient values, were friction curves appear more flat - shallow, boundary layer in relation to PFN will become more rendom and unpredictable.

Based on notifications from pilots however indicate discrepancies are to be noticeable.

Further to be noticed, when runway contamination has a frozen consistence heat development in tire, this due as well friction as viscous movement in tire - Normal

Force influence, Fn, heat develop melting energy in tire? surface interface boundary layer causing micro durfur initially supporting praking action a melting process conversion to vester, eventually water on ice. Result might be aque planning on ice causing boundary layer becoming even more imprecise. Such process is defined as aggregate change, and risk of complete loss of trading control directions it stability ought to be designed bessed on variation in velocity, since a coelection is namely. Yelocity vertication over time*, including controlling variation.

<Desc/Clms Page number 9>

within Mu values, rather than based on dry condition. Illustrations from reality word can refer to extreme changeable and complex braking cation situations. Related industry so far seem to have overseen facts as such, since field of interest is to be identified not primarily in slippery conditions, however dry pavement surface where certification or missimum gross weights are to be found. Since field interest is to be identified and the fiction analysis business has surface where certification or missimum gross weights are to be found. Since fiction analysis business has Normal). Traditionally Mu by definition bases scale value in a linear scale from 0.1 to 1,0. Fin thereby being defined as a defined component, and including Fin to be an identification of Mu. In aviation includer of the definition of the component and including Fin to be an identification of Mu. In aviation including dynamic excelleration step collection of sets continues until being debt to reproduce an estimation model in district or the component of the value of

F = Force M = Mass

A = Acceleration. However only at this very point. Nature law referring to its by definition the velocity variation law, Newforn laws). Under the initial subject membrane phasma posarrane, first of all a mayor change will be A, and if so F will have to be corrected for since being changed by changing A, and F must then regardines be corrected for venue if M is constant. In the case of changing M (excending less than maximum take- off gross weight during certification dynamic tests) the total evaluation will have to be completely when needed most, during containiset arms is where degle design betty in the completely when needed most, during containiset arms.

<Desc/Clms Page number 10>

operation, where e well fit acceleration correspond design adjusted anti-skid brake logic open for natural verietion in F es well es M.

This innovation aim for a self-adjustable breking energy force application any time for optimal braking of a tire in direct real time relation to any defined pawement condition, a surface which also might very considerable over distance to go, which is usually the case during contaminated conditions, wet or winter contaminated.

Basis for dynamic brake controlling algorithm is by utilising real time information obtained from external reads forces applying to the aircraft in combination to aircraft own references. Vehicle aircraft acceleration during ground operation gives in real time continuous at cital pricture of all forces applied to evhicle aircraft, this including air drag resistance, when fulling resistance, when bellowing not influence from reviewed engine thrust energy. Acceleration will at any time describe vehicle/aircraft ground friction/ braking action grip, opion up. increasing or drown. decreasing.

Therefore by in real time monitoring/utilizing acceleration change over time, namely the forth dimension, in a given situation will identify the culmination turning point, which will be the top point of friction, or other vice defined as the vehicle/ elicreft breaking maximum performance, PFN.

This innovation is achieved by methods and system defined in self-contained patent claims no. 1 and no. 2.

This Innovation requires no physical additional installations or extra installations. For modern sizeraft ("nea generation") his innovation right be implemented as a pure additional control algorithm in existing trake control unit. This innovation will require admission to existing data flight management control system, where defined essential data will be tapped and rerouted to the brake control unit.

This innovation will in Figure 3 by graphic illustration describe logic sense of design, including system components in an artificial box arrangement:

< Desc/Cims Page number 11>

One or several exis including wheel/ rim and tire mounted on an undercarriage or any other arrangement installed in a vehicle or en eircraft. This illustration is based on a single axis and a singlerim/ /wheel.

. Axis including rim is equipped with standard type of hydraulic brake, this including disk brake.

Breke energy epplication is brought into force by means of brake energy pressure applied as a result of vehicle/ aircreft hydraulic brake system defined as system of hydraulic pressure, usually nemed "system hydraulic pressure".

. Braking function is thereby physically controlled/ adjusted by a brake pressure regulator unit/ valve usually named "brake metering valve".

Brake pressure ahead/ in front of brake pressure regulator unit/ valve which is the tapped pressure from normal hydraulic system "system hydraulic pressure" is usually named "upstream" pressure, while pressure between brake pressure regulator unit/ valve and brake unit is usually named "downstream" pressure.

Brake pressure regulator unit/ valve is being controlled via a control loop, from here on named "brake control loop" which again obtain current reference signals which identify in real time vehicle/ aircraft (ground) velocity and acceleration.

. State-of-art aircraft are equipped with very eccurete airspeed indicators identifying velocity in eir "eir speed" including until lower limit ground velocity, "ground speed". System for this innovation will use ground velocity as reference.

As reference of acceleration this innovation will use aircraft own inertia nevigetional instrumentation, also named Inertia Reference System (IRS), further Global Positional System - GPS based systems or other systems which enable registration of vehicle/ aircraft acceleration in various planes.

Modem commercial aircraft identify and registrant acceleration in three, 3, planes, horizontal, also named "longitudinal", sideways, also named "lateral" and finally vertical true the IRS system. (Horizontal and lateral acceleration is also called Horizontal 6 and lateral G. As for this innovation and

acceleration reference only longitudinal acceleration, or a vector basis of acceleration as a result of lateral influence will be used, from hereby-named "net ecceleration". Net acceleration is a function of longitudinal and leteral acceleration besed on Pythagoras evaluation from "length of hypotenuse in a square angled triengle", thereby: FMI12.1

where Anet = Net acceleration
Along = Longitudinal acceleration
Alat = Lateral acceleration

Net acceleration will therefore be: EMI12.2

In a brake control unit loop one might therefore utilize either net acceleration information input, or longitudinal acceleration information input only. In purpose of illustration definition evaluation for easy sake the expression acceleration will be used in both cases, since these detail differences will not rock the basis principle in this new innovation lost.

Illustration will define this innovation based on traditional hydrautic brake system design, however same principle logic in an all-electronic brake control system might be transferred to as such.

Figure 4, "flow chert", illustrate how this innovation brake control logic elgorithm loop will work, where; "\" = \velocity, denominated in km/hr, milest knots or arty other velocity reference evaluation gt: Acceleration in real time denominated il m/s, t/s or any other reference for ecceleration evaluation.

<Desc/Clms Page number 13>

gt-1 Acceleration since last timeirctes-val. This could be a second or a fraction of a second.

BP: Brake pressure measured in "psi" or any other reference source for pressure, which is applied to brake system via "system hydraulic pressure".

Box 1.

Ifh>0 Here the system will define whether vehicle/ aircraft has ground speed a control function to a velocity reference.

If "NO" this will be referred to Box 2 If "YES" this will be referred to Box 3 Box 2.

END The vehicle/ eircraft has no ground speed or velocity, therefore no action.

Box 3.

Box 1 has established that the vehicle has ground speed.

Brake pressure is applied incrementally Energy validity of such increment will have to be evaluated based on empiric experience, however assumed to be in the area of 10 - 25 psi brake energy pressure.

<Desc/Clms Page number 14>

Box 4.

If gt # 0 Subsaquantly ona will test out vehicle/ aircraft acceleration level (were negative acceleration will ba equal to retardation) by establishing accalaration in real-time (through an acceleration reference).

If "YES" which means that vehicle/ aircraft maintain a constant groundspeed or in reality acceleration further brake pressure is applied, whereupon next function will be performed signal return via loop back to Box 3.

If "NO" which means a "negative" acceleration or rather "retardation" next function will be signal referring further to Box 5.

Day 6

Acceleration variation will be tested over time, where real-time acceleration data will be compared with acceleration data from previous time segment. Time segment depends on several times, among others frequency of acceleration references. One will assume an initial optimum identification will take place several times per second.

Test of such and merging data identification is based on following items:

If gt < gl.-If "YES" it means that vahicled aircraft in real time still identify an absolute increase in retardation, were a new added brake pressure will be needed. Therefore a loop lead signal back to Box 3 for this real time condition. If 'NO' the absolute acceleration has become less compared to previous time segment. This means Peak friction point has just been passed, and one will have to reduce applied brake pressure.

In a form of loop required function will return to earlier function described in Box 1,

<Desc/Clms Page number 15>

Box 6.

Here applied brake pressure will be reduced. This will take place in incremental reductions, probably in increments of 25 - 50 psi.

After this function one will via a loop go back to Box 1, which repeats the process/ function 30 - 40 ganger per second.

This loop will continue until the vehicle/ aircraft no longer has longitudinal velocity.

Due to great mass energy in aircraft, it is quite possible that a brake control unit loop algorithm will contain some functions that enables the system to become to much sensitive to small and sudden changes in acceleration reference data.

Data supplied from the esp@cenet database - Worldwide

BRAKE FUNCTION BASED ON CONTROLLING ACCORDING TO ACCELERATION

Claims of corresponding document: WO2005100112 Translate this text

PATENT CLAIMS 1. A brake control system for a wheel of a vehicle in motion comprising: (a) a registration unit for longitudinal acceleration; (b) registration unit for brake pressure to wheel brake; (c) a computation function which continuously compare changes in acceleration and transmits signals to a pressure guidator for brake pressure; and (d) a pressure regulator designed to increase or reduce brake pressure to wheel brake.

- 2. A metico of controlling he brake pressure controller for a wheel of a vehicle in motion which changes brake pressure is accordance to change in longitudinal acceleration over time characterized by: 6) brake pressure to wheel brake is set off and increased evenly; (6) longitudinal acceleration is compared from one the farme to the next (c) when the acceleration negative value in one time farme to the next increases, and the controlleration of the con
- 3. The method of Claim 2, characterized by that acceleration information used is computed as a vector equal the hypotenuse in a right-angled triangle where longitudinal and lateral acceleration are right-angle sides.
- 4. System and method of claims 1-2 characterized by that the vehicle is an aircraft.
- 5. System and method of claims 1 -2 characterized by being an automatic brake.
- 6. System and method of claims 1-2 characterized by being a manual/ pedal brake.

Data supplied from the esp@cenet database - Worldwide