Tutorial Solutions of Chapter 2 Lecture 2

Tutorial 2.1.1(2)

(a) Prove that if $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} |a_n| = |L|$.

Hint: Use (and prove) the inequality

$$||x| - |y|| \le |x - y|$$
.

Use Tutorial 1.1.2,2(d) to prove this inequality.

Proof: For all $x, y \in \mathbb{R}$ we know by Tutorial 1.1.2,2(d) that

$$|x| = |(x - y) + y| \le |x - y| + |y|.$$

Hence

$$|x| - |y| \le |x - y|.$$

Interchanging x and y we have

$$|y| - |x| \le |x - y|$$
.

Hence, by definition of the absolute value,

$$||x| - |y|| \le |x - y|.$$

Now let $\epsilon > 0$. Since $\lim_{n \to \infty} a_n = L$, there is K suc that $a_n - L \mid < \epsilon$ for n > K. But then

$$||a_n| - |L|| \le |a_n - L| < \epsilon$$

for these n which proves $\lim_{n\to\infty} |a_n| = |L|$

(b) Give an example to show that the converse to part (a) is not true. Hint: Use $a_n = (-1)^n$.

Proof: Let $a_n = (-1)^n$. From question Tutorial 2.1.1(1)(b), the sequence (a_n) does not converge. But $|a_n| = 1$, and therefore $|(a_n)|$ is a constant sequence, which converges by Theorem 2.3 (a).