

Master CMB, 1ère année Mathematical tools for modelling, semestre 1

TP - Linear regression and image compression

Exercise 1 (Examples of linear regression problems).

We investigate for the two following examples the problem of linear regression. For both examples, we have m observations y_i at different times t_i and we want to find the best line $\bar{\alpha}_0 + t\bar{\alpha}_1$ such that

$$(\bar{\alpha}_0, \bar{\alpha}_1) = \operatorname{Argmin} J(\alpha_0, \alpha_1), \text{ with } J(\alpha_0, \alpha_1) = \sum_{i=1}^m |y_i - (\alpha_0 + \alpha_1 t)|^2 = ||AX - b||^2$$

with

$$A = \begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{pmatrix}, b = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Pharmacokinetics of a drug The table below gives the time evolution of the concentration $(y_i)_{i=1,...,m}$ in lipoamide after a drug injection of 10mg at different times $(t_i)_{i=1,...,m}$

	0											
y_i	23.8	22.1	20.5	19	17.6	15.2	11.3	7.82	5.39	2.57	1.22	0.68

This concentration is usually represented by an exponential model $c(t) = c_0 e^{-kt}$, in such a way that in the log-scaled should be well approximate by a line. Here, we look for two parameters

- c_0 the initial concentration, that is linked to what is called the specific volume of the central compartment,
- k the elimination rate of the drug.

These two parameters are deeply patient dependant.

The Gompertz model in population dynamics The table below gives the temporal evolution $(y_i)_{i=1,...,m}$ Of the size of a tumor in the logscale for a mouse at different times $(t_i)_{i=1,...,m}$

t_i	6	9	13	16	20	23	27	30	34	37	
y_i	18.76	19.84	21.44	22.19	22.78	22.92	23.43	23.85	24.04	24.38	24.84

The tumor can be seen as a population of cells, so that the time evolution of the tumor size x(t) can be represented thanks to a sigmoid model. The most common model used in this context is due to Benjamin Gompertz:

$$x(t) = K \left(\frac{x_0}{K}\right)^{e^{-at}},$$

in such a way that its logarithm is given by

$$y(t) = \ln(x(t)) = \ln(K) + (\ln(x_0) - \ln(K))e^{-at}$$
.

The model is driven by three parameters:

- x_0 the initial size of the tumor,
- K the maximal size reachable by the tumor,
- a the growth rate of the tumor

Denote by $y_0 = \ln(x_0)$ and $b = \ln(K)$, we try to approximate y by a line

$$y(t) = b + (y_0 - b)e^{-at} \underset{t \to 0}{\sim} b + (y_0 - b)(1 - at).$$

For small time it seems reasonable, but it is the case in reality?

Work to do

For both examples,

a. Solve the euler equations associated to this problem (also called in that case the normal equations)

```
import numpy as np
X=np.linalg.solve(?,?)
```

b. Use the function linregress of python

```
from scipy.stats import linregress (a,b,rho,p,stderr)=linregress(t,y)
```

The slope of the line is given by a, the origin by b.

c. Use the function lstsq

```
\begin{array}{c} \text{import numpy as np} \\ \text{x,res,r,s=np.linalg.lstsq} \left( A,b \right) \end{array}
```

The output of the function lstsq are:

- x the solutions of the problem,
- res the residual error ||Ax b||,
- r the rank of A,
- \mathfrak{s} the singular values of A.
- d. Use the method of gradient with constant step.
 - (a) Rewrite the algorithm as

$$X_{k+1} = C(t)X_k + \bar{b}$$

where C(t) and \bar{b} are a matrix and a vector to be explicited.

- (b) Identify the value of t for which the algorithm converges.
- (c) Identify the best value of t for which the speed of convergence is optimal.
- (d) Visualise the speed of convergence of the sequence.

Exercise 2 (Image compression).

A possible application for the lower rank approximation of a matrix is the data compression during the transmission of a large quantity of data for example during the transmission of a very large number of images taken by a satellite. To do this, we first digitize an image by applying a n grid made of n rows and n columns. We then assign to each square a of the grid a number that corresponds to its light level of luminosity according to a scale of 0 to 256 for example. Thus the image is translated into n^2 integers that it will be necessary thereafter to transmit on earth. By proceeding in this

way, the volume of data to transmit can quickly become prohibitive when a very large number of images is involved. One possibility then consists in applying to the matrix of luminosities a singular decomposition and to transmit only the 2k singular vectors as well as the k singular values which that allow a satisfactory approximation of the original matrix.

Let us illustrate this compression method on two images

Fichier: baboon-grayscale.jpg

For each of these image

a. Get on Ametice the file *.png or *.jpg and load on python the image (command imread from library numpy) and visualise it by using the command imshow of matplotlib.pyplot:

```
import numpy as np
import matplotlib.pyplot as plt
im1 = np.imread("lena512.png")
plt.imshow(im1,cmap=plt.cm.gray)
im2 = np.imread("baboon-grayscale.jpg")
plt.imshow(im2,cmap=plt.cm.hot)
```

Here im1 is a 512x512 matrix. Be carefull, the baboon image is a color image. More precesily, im2 is a (298,298,3) matrix. Each of the submatrix im2[:,:,i] corresponds to an intensity in RGB. You will have to convert im2 into a (298,298) matrix by taking the meanvalue of the three canal for example or taking only one of them.

- b. Compute the SVD decomposition of the obtained matrices (command svd).
- c. Give the best approximation of rank k of the matrixces and visualise the approximation.
- d. For which value of k do we have a reasonable representation of the image? What is the gain in terms of storage?