Équations différentielles en sciences physiques

I | Introduction

Définition

Une équation différentielle 1 sur la fonction y(t) est une équation liant y(t) à ses **dérivées**. Elle est dite linéaire 2 (on ne verra pas le cas non-linéaire cette année) si elle peut s'écrire comme :

$$f_0(t) \cdot y(t) + f_1(t) \cdot \frac{\mathrm{d}y(t)}{\mathrm{d}t} + \ldots + f_N(t) \cdot \frac{\mathrm{d}^N y(t)}{\mathrm{d}t^N} = g(t) \Leftrightarrow \sum_{i=0}^N f_i(t) \frac{\mathrm{d}^i y(t)}{\mathrm{d}t^i} = g(t)$$

Avec $f_{i \in [1,N]}(t)$ et g(t) des fonctions dépendantes de la variable t^3 .

Exemples -

Exemple

$$\Leftrightarrow f_0(t) = t, f_1(t) = 1 \text{ et } f_{i \ge 2}(t) = 0;$$

$$\diamond y(t)$$
 à résoudre;

$$\diamond \ g(t) = A;$$

On a

$$t \cdot y(t) + \frac{\mathrm{d}y(t)}{\mathrm{d}t} = A$$

Contre-exemple

$$4y^2(t) + \frac{\mathrm{d}y(t)}{\mathrm{d}t} = 0$$

nc

$$4y(t) + y(t) \cdot \frac{\mathrm{d}y(t)}{\mathrm{d}t} = 0$$

Dans la pratique, on rencontrera des équations différentielles très particulières en sciences physiques. On les caractérise par :

ou

- \diamond Leur ordre : c'est le rang maximum de la dérivation portant sur y(t). Cette année, on s'intéresse à des équations d'ordre 1 et 2 seulement.
- \diamond Leurs coefficients : les $f_i(t)$ sont des fonctions, mais la plupart du temps ce seront des constantes. On dit alors que l'équation différentielle est à coefficients constants⁴.
- \diamond Leur second membre : dans l'écriture d'une ED, on met tous les termes qui dépendent de y à gauche du signe $\ll = \gg$, et tout le reste à droite, c'est le g(t) de la définition. On l'appelle second membre.

Équation homogène ——

On appelle **équation homogène** une équation différentielle sans second membre : g(t) = 0

$$\sum_{i} f_i(t) \frac{\mathrm{d}^i y(t)}{\mathrm{d}t^i} = \boxed{0}$$

- 1. Notée ED dans la suite.
- 2. Notée donc EDL dans la suite.
- 3. Attention, cette variable n'est pas que le temps. Ca peut être une dimension d'espace, par exemple x.
- 4. Notée EDC dans la suite.

Propriété 7.1 : Linéarité pour une EDL homogène -

Soient y_1 et y_2 deux solutions d'une même EDL homogène ⁵. Alors, toute combinaison de ces deux solutions est également solution de l'EDLH :

 $\forall (y_1, y_2)$ solutions d'une EDLH $\Rightarrow \forall (\alpha_1, \alpha_2) \in \mathbb{R}^2$, $\alpha_1 y_1(t) + \alpha_2 y_2(t)$ est solution de l'EDLH

Solution générale avec second membre -

Pour une EDL avec second membre (non homogène), une solution générale s'obtient par somme de la solution homogène y_h et d'une solution particulière y_p :

$$y(t) = y_h(t) + y_p(t)$$

Attention

- 1) Ici, c'est bien la **somme** de y_h et y_p qui est solution, et pas toute autre combinaison $\alpha_1 y_h + \alpha_2 y_p$.
- 2) Avec ceci, on obtient **une** solution de l'EDL, pas **la** solution. Pour obtenir l'**unique** solution, on aura besoin de **condition initiales**.

Solution particulière pour une EDLC à second membre constant -

Dans le cas où $f_i(t) = a_i$ et g(t) = b avec a_i et b des constantes, on cherche $y_p(t) = \lambda$ également une constante. Ainsi,

$$\sum_{i} f_{i}(t) \frac{d^{i} y_{p}(t)}{dt^{i}} = b$$

$$\Leftrightarrow a_{0} \lambda + \sum_{i \geq 1} f_{i}(t) \frac{d^{i} \lambda}{dt^{i}} = b$$

$$\Leftrightarrow y_{p}(t) = \lambda = \frac{b}{a_{0}}$$

Une autre manière de tenir compte d'un second membre constant est de réaliser un changement de variable pour se ramener à une EDLH.

II | Résolution d'EDLHC

Premier ordre

On s'intéresse à une EDLHC 6 d'ordre 1. Elle peut se mettre sous la forme :

$$\frac{\mathrm{d}y_h(t)}{\mathrm{d}t} + \frac{1}{\tau}y_h(t) = 0 \tag{7.1}$$

avec $\tau \in \mathbb{R}$ une constante homogène à t.

- 5. notée EDLH dans la suite.
- 6. Équation Différentielle Linéaire Homogène à coefficients Constants.

Vocabulaire

Si t désigne bien le temps, comme souvent en physique, alors par rapide analyse d'homogénéité, τ s'exprime en secondes et s'appelle la **constante de temps**.

Solution d'EDLHC d'ordre 1 -

La solution **générale** de (7.1) s'écrit, avec $A \in \mathbb{R}$ la constante d'intégration :

$$y_h(t) = Ae^{-t/\tau}$$

On obtient la solution spécifique à l'aide des conditions initiales 7 du système étudié, qui fixera A.

Soit une EDLHC d'ordre 2. Elle peut se mettre sous la forme suivante, avec $(\omega_0, Q) \in \mathbb{R}^2$ des constantes :

$$\frac{d^2 y_h(t)}{dt^2} + \frac{\omega_0}{Q} \frac{dy_h(t)}{dt} + {\omega_0}^2 y_h(t) = 0$$
 (7.2)

Vocabulaire

Si t désigne bien le temps, alors :

- $\diamond \omega_0$ est l'inverse d'un temps et s'appelle la **pulsation propre**, exprimée en rad·s⁻¹;
- $\diamond Q$ est adimensionné et s'appelle le facteur de qualité.

Le fonctionnement complet derrière la résolution sera extensivement développé en mathématiques. Cependant, on peut retenir l'idée suivante : les fonction exponentielles sont des fonctions clés pour les ED, et on peut logiquement chercher $y_h(t) = Ke^{rt}$ avec $r \in \mathbb{C}$ à déterminer. C'est ce qu'on injecte dans (7.2):

Méthode pour EDLHC d'ordre 2 —

Pour résoudre (7.2), on introduit le polynôme caractéristique :

$$r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0 (7.3)$$

dont le discriminant Δ s'écrit

$$\Delta = \left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2 = \frac{{\omega_0}^2}{Q^2} \left(1 - 4Q^2\right)$$

La forme des solutions dépend donc des valeurs possibles de Δ , et on distinguera trois cas, tous à connaître.

7. Notées CI dans la suite.

II.B.1
$$\Delta > 0 \Leftrightarrow Q < 1/2$$

EDLHC d'ordre 2 avec $\Delta > 0 \Leftrightarrow Q < 1/2$ ___

Si $\Delta > 0 \Leftrightarrow Q < 1/2$, alors (7.3) a deux racines :

$$r_{\pm} = -\frac{\omega_0}{2Q} \pm \frac{\omega_0}{2Q} \sqrt{1 - 4Q^2}$$

et la solution **générale** de (7.2) s'écrit, avec $(A,B) \in \mathbb{R}^2$ les constantes d'intégrations :

$$y_h(t) = Ae^{r_+t} + Be^{r_-t}$$

par linéarité (propriété 7.1).

II.B.2
$$\Delta = 0 \Leftrightarrow Q = 1/2$$

EDLHC d'ordre 2 avec $\Delta = 0 \Leftrightarrow Q = 1/2$ ___

Si $\Delta = 0 \Leftrightarrow Q = 1/2$, alors (7.3) a une racine double :

$$r = -\frac{\omega_0}{2Q} = -\omega_0$$

et la solution **générale** de (7.2) s'écrit, avec $(A,B) \in \mathbb{R}^2$ les constantes d'intégrations :

$$y_h(t) = (At + B)e^{-\omega_0 t}$$

II.B.3
$$\Delta < 0 \Leftrightarrow Q > 1/2$$

EDLHC d'ordre 2 avec $\Delta < 0 \Leftrightarrow Q > 1/2$

Si $\Delta < 0 \Leftrightarrow Q > 1/2,$ alors (7.3) a deux racines complexes conjugées :

$$r_{\pm} = -\frac{\omega_0}{2Q} \pm j \frac{w_0}{2Q} \sqrt{4Q^2 - 1} = -\frac{\omega_0}{2Q} \pm j\Omega$$

et la solution **générale** de (7.2) s'écrit, avec $(A,B) \in \mathbb{R}^2$ les constantes d'intégrations :

$$y_h(t) = \exp\left(-\frac{\omega_0}{2Q}t\right) \left[A\cos(\Omega t) + B\sin(\Omega t)\right]$$

par linéarité (propriété 7.1).

II.B.4 Cas particulier : $Q \to +\infty$

Si $Q \to +\infty$, alors l'Équation (7.2) se simplifie en :

$$\frac{\mathrm{d}^2 y_h(t)}{\mathrm{d}t^2} + \omega_0^2 y_h(t) = 0$$

Et la solution est celle pour $\Delta < 0 \Leftrightarrow Q > 1/2$ avec $Q \to +\infty,$ soit

$$y_h(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

III Résolution d'EDLC (avec second membre)

Comme introduit dans la première section, une EDL se résout en prenant la somme de $y_h(t)$ et de $y_p(t)$. Ça n'en donne cependant pas **la** solution, mais une famille de solutions. Pour que la solution représente le système étudiée, il faut trouver les valeurs des constantes d'intégrations. On s'intéresse ici aux EDLC avec second membre constant.

Important

Rien de cette section n'est à retenir par cœur! Seule la **méthode** est à comprendre.

Attention

La détermination des constantes d'intégrations se fait bien sur la solution générale, pas uniquement sur l'équation homogène!

A EDLC d'ordre 1

Soit une EDLC dont le second membre vaut K, une constante connue.

$$\frac{\mathrm{d}y_h(t)}{\mathrm{d}t} + \frac{1}{\tau}y_h(t) = \frac{1}{\tau}K\tag{7.4}$$

On obtient $y_p = K$ une solution particulière constante, et donc la solution générale de (7.4):

$$y(t) = y_h(t) + y_p \Leftrightarrow y(t) = Ae^{-t/\tau} + K$$

La solution s'obtient en étudiant cette forme de solution à un temps donné, où l'on connaît la valeur que doit prendre la solution : c'est une condition initiale. Typiquement, on suppose que $y(0) = y_0$ une valeur connue. Alors, la solution est telle que

$$y(0) = y_0 = Ae^0 + K \Leftrightarrow A = y_0 - K$$

ainsi,

$$y(t) = (y_0 - K)e^{-t/\tau} + K = K(1 - e^{-t/\tau}) + y_0e^{-t/\tau}$$

B EDLC d'ordre 2

Soit une EDLC dont le second membre vaut K, une constante connue.

$$\frac{\mathrm{d}^2 y_h(t)}{\mathrm{d}t^2} + \frac{\omega_0}{O} \frac{\mathrm{d}y_h(t)}{\mathrm{d}t} + {\omega_0}^2 y_h(t) = {\omega_0}^2 K \tag{7.5}$$

On obtient $y_p = K$ une solution particulière constante. Supposons $Q > 1/2 \Leftrightarrow \Delta < 0$: la solution générale de (7.5) s'écrit

$$y(t) = y_h(t) + y_p \Leftrightarrow y(t) = K + \exp\left(-\frac{\omega_0}{2Q}t\right) \left[A\cos(\Omega t) + B\sin(\Omega t)\right]$$

Les deux valeurs à déterminer pour connaître la solution sont A et B, les constantes d'intégrations. Il faut **2 conditions** initiales pour connaître les deux constantes; soit $y(0) = y_0$ et $\frac{dy}{dt}(0) = v_0$. On obtient

$$y(0) = y_0 = K + A$$
 et $\frac{dy}{dt}(0) = v_0 = -\frac{\omega_0}{2Q}A + B\Omega$

$$\Leftrightarrow A = y_0 - K \quad \text{et} \quad B = \frac{v_0}{\Omega} + \frac{\omega_0}{2Q} \frac{y_0 - K}{\Omega}$$

D'où la solution

$$y(t) = K + \exp\left(-\frac{\omega_0}{2Q}\right) \left[(y_0 - K)\cos(\Omega t) + \left(\frac{v_0}{\Omega} + \frac{\omega_0}{2Q}\frac{y_0 - K}{\Omega}\right)\sin(\Omega t) \right]$$

Pas d'inquiétude face à cette solution, encore une fois seule la **méthode** est à comprendre. Dans la pratique, les systèmes ont des propriétés élégantes et simples $y_0 = 0$, $v_0 = 0$ par exemple.

IV

Conclusion : méthode de résolution

Résolution EDLC second membre constant

Pour résoudre une équation différentielle linéaire à coefficients constants et second membre constant :

- 1 On écrit l'**équation homogène** associée à l'équation différentielle obtenue.
- On écrit la forme générale de la solution de l'équation homogène $y_h(t)$.
- 3 On recherche une solution particulière constante de l'équation générale, de la forme $y_p(t) = \lambda$.
- 4 On écrit la solution générale, somme de la solution particulière et de la forme générale : $y(t) = y_h(t) + y_p$
- 5 On détermine la constante à l'aide des **conditions initiales**.

Toute tentative de détermination de CI d'une EDLC sur y_h et non sur y causera la mort instantanée d'un innocent et mignon petit chaton.

\mathbf{V}

Complément : démonstrations

Linéarité pour EDLH

Soit une EDLH

$$\sum_{i} f_i(t) \frac{\mathrm{d}^i y(t)}{\mathrm{d}t^i} = 0$$

Alors, si

$$\sum_{i} f_i(t) \frac{\mathrm{d}^i y_1(t)}{\mathrm{d}t^i} = 0 \qquad \text{et} \qquad \sum_{i} f_i(t) \frac{\mathrm{d}^i y_2(t)}{\mathrm{d}t^i} = 0$$

on a par linéarité de l'EDHL et de la dérivée

$$\sum_{i} f_{i}(t) \frac{d^{i}(y_{1}(t) + y_{2}(t))}{dt^{i}} = \sum_{i} f_{i}(t) \frac{d^{i}y_{1}(t)}{dt^{i}} + \sum_{i} f_{i}(t) \frac{d^{i}y_{2}(t)}{dt^{i}} = 0$$

B
$$y_h(t)$$
 pour $\Delta < 0 \Leftrightarrow Q > 1/2$

En effet, avec ces deux solutions on trouve

$$y_{+}(t) = e^{\left(-\frac{\omega_0}{2Q} + j\Omega\right)t}$$
 et $y_{-}(t) = e^{\left(-\frac{\omega_0}{2Q} - j\Omega\right)t}$

Pour avoir des solutions réelles, on utilise la formule d'EULER:

$$e^{\pm i\theta} = \cos(\theta) \pm i\sin(\theta)$$

Ainsi,

$$y_{+}(t) = e^{-\frac{\omega_0}{2Q}t} e^{j\Omega t} = e^{-\frac{\omega_0}{2Q}t} \left(\cos(\Omega t) + j\sin(\Omega t)\right)$$

et
$$y_{-}(t) = e^{-\frac{\omega_0}{2Q}t} e^{-j\Omega t} = e^{-\frac{\omega_0}{2Q}t} \left(\cos(\Omega t) - j\sin(\Omega t)\right)$$

Ce qui ne rend pas encore les solutions réelles, mais on peut les combiner par linéarité. Par exemple,

$$y_c = \frac{y_+ + y_-}{2} = \frac{e^{-\frac{\omega_0}{2Q}t}}{2} \left(\cos(\Omega t) + j\sin(\Omega t) + \cos(\Omega t) - j\sin(\Omega t)\right) = e^{-\frac{\omega_0}{2Q}t}\cos(\Omega t)$$
et
$$y_s = \frac{y_+ - y_-}{2j} = \frac{e^{-\frac{\omega_0}{2Q}t}}{2j} \left(\cos(\Omega t) + j\sin(\Omega t) - \cos(\Omega t) + j\sin(\Omega t)\right) = e^{-\frac{\omega_0}{2Q}t}\sin(\Omega t)$$

D'où une forme réelle et pratique pour $y_h(t) = Ay_c + By_s$, c'est-à-dire

$$y_h(t) = Ae^{-\frac{\omega_0}{2Q}t}\cos(\Omega t) + Be^{-\frac{\omega_0}{2Q}t}\sin(\Omega t)$$

$$\Leftrightarrow y_h(t) = \exp\left(-\frac{\omega_0}{2Q}t\right)\left[A\cos(\Omega t) + B\sin(\Omega t)\right]$$