Caleb Logemann MATH 561 Numerical Analysis I Homework 1

- 1. Let $f(x) = \sqrt{1+x^2} 1$
 - (a) For small values of x, f(x) can be difficult to compute because $x^2 \approx 0$ and $\sqrt{1+x^2} \approx 1$. This causes f(x) to be taking the difference to two numbers that are approximately equal, which can cause a loss of accuracy. This can be circumvented by noting that f(x) can be expressed as follows. $f(x) = \sqrt{1+x^2}-1$ $= \sqrt{1+x^2}-1 \times \frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}+1}$ $= \frac{x^2}{\sqrt{1+x^2}+1}$
 - (b) The condition number of f(x) can be determined as follows (cond f)(x) = $x f'(x) \frac{x^2}{f(x) = \frac{x^2}{\sqrt{1+x^2}\sqrt{1+x^2}-1}} = \frac{x^2}{1+x^2-\sqrt{1+x^2}}$ As $x \to 0$, the use of L'Hopital's rule is necessary. $\lim x \to 0 \pmod{f(x)} = 0$
 - (c) The condition number of f(x) doesn't take into account taking the difference of two numbers that are approximately equal.
- 2. Let $f(x) = (1 \cos x)/x$, $x \neq 0$.
 - (a)
 - (b)
 - (c)
- 3. Let $f(x) = x^n + ax 1$, a > 0, $n \ge 2$
 - (a) Show that f(x) has exactly one positive root $\xi(a)$. First note that f(0) = -1 and f(1) = a > 0. Since f is a polynomial and is continuous, by the Intermediate Value Theorem, there must exist $c \in (0,1)$, such that f(c) = 0. Therefore f has at least on root in the interval (0,1). Also $f'(x) = nx^{n-1} + a$, for $x \ge 0$, f'(x) > 0, so f is a strictly increasing function on the interval $[0,\infty)$. Therefore there is only one positive root of f(x) and it is in the interval (0,1). Let $\xi(a)$ be this root.
 - (b) Obtain a formula for $(cond \, \xi)(a)$. The derivitive of $\xi(a)$ can be found by implicit differentiation of $f(\xi(a))$. $f(\xi(a)) = 0$ $\xi(a)^n + a\xi(a) 1 = 0 By differentiating with respect to an \xi(a)^{n-1} \xi'(a) + a\xi'(a) + \xi(a) = 0$ $\xi'(a) = \frac{-\xi(a)}{n\xi(a)^{n-1} + a}$ Also it can be noted that $\xi(a)^n + a\xi(a) 1 = 0$

$$\xi(a)^n = 1 - a\xi(a)$$

$$\xi(a)^{n-1} = \frac{1 - a\xi(a)}{\xi(a)} Then \xi'(a) \text{ can be expressed as } \xi'(a) = \frac{-\xi(a)}{n\frac{1 - a\xi(a)}{\xi(a)} + a}$$

$$\xi'(a) = \frac{-\xi(a)^2}{n - an\xi(a) + a\xi(a)}$$
The condition number of $\xi(a)$ can then be found $(\operatorname{cond} \xi)(a) = \frac{a\xi'(a)}{\xi(a)}$

$$= \frac{a\frac{-\xi(a)^2}{n - an\xi(a) + a\xi(a)}}{\xi(a)}$$

$$= \frac{-a\xi(a)}{n - an\xi(a) + a\xi(a)}$$

$$= \frac{a\xi(a)}{n + (1 - n)a\xi(a)}$$

- (c) Since $0<\xi(a)<1$, bounds for the condition number of $\xi(a)$ can be found. $\lim \xi(a)\to 0 \frac{a\xi(a)}{n+(1-n)a\xi(a)}=0$ $\lim \xi(a)\to 1 \frac{a\xi(a)}{n+(1-n)a\xi(a)}=\frac{a}{n+(1-n)a}$ Therefore $0<(cond\ \xi)(a)<\frac{a}{n+(1-n)a}$.
- 4. (a)
 - (b)
- 5. Let x_0, x_1, \ldots, x_n be pairwise distinct points in $a, b, -\infty < a < b < \infty$, and $f \in C^1a, b$. Show that given any $\epsilon > 0$, there exists a polynomial p such that $[\infty]f p < \epsilon$ and at the same time $p(x_i) = f(x_i)$, for $i = 0, 1, \ldots, n$. Let $p = p_n(f; \cdot) + \omega_n q$, where $p_n(f; \cdot)$ is the Lagrange interpolation of f at x_1, x_2, \ldots, x_n , $\omega_n = i = 0nx x_i$, and q is some polynomial. Firstly note that $p(x_i) = p_n(x_i) + 0q = f(x_i)$, so the condition of equality at the points x_i is met. Secondly note $[\infty]f p = [\infty]f p_n \omega_n q = [\infty]\omega_n [\infty] \frac{f p_n}{\omega_n} q$. Consider the function $g(x) = \frac{f(x) p_n(x)}{\omega_n(x)}$. Since g(x) is composed of continuous functions on a, b, g(x) is continuous on a, b everywhere $\omega_n(x) \neq 0$. The function $\omega_n(x) = 0$ at x_i for $i = 1, 2, \ldots, n$. Therefore the limit of g(x) as $x \to x_i$ needs to be considered. At $x = x_i, f(x) p_n(x) = 0$ and $\omega_n(x) = 0$, therefore L'Hopital's rule can be employed. Therefore $\lim x \to x_i g(x) = \lim x \to x_i \frac{f'(x) p'_n(x)}{w'_n(x)}$. Remember that $f \in C^1 a, b$, so f is differentiable, and p_n is trivially differentiable. Also ω_n is differentiable and $\omega'_n(x) = \sum i = 1nk = 1, k \neq inx x_k$ by repeated use of the product rule. Therefore $\omega'_n(x_i) = k = 1, k \neq inx_i x_k \neq 0$. Thus $\lim x \to x_i \frac{f'(x) p'_n(x)}{w'_n(x)}$ exists so g(x) is continuous at x_i . Then by the wierstrass Approximation Theorem there exists a polynomial q such that $[\infty] \frac{f p_n}{\omega_n} q < \epsilon/[\infty]\omega_n$. Thus $[\infty] f p < [\infty]\omega_n \epsilon/[\infty]\omega_n = \epsilon$.
- 6. (a) The normal equations are $\sum j = 1n\pi_i, \pi_j c_j = \pi_i, f$. $\pi_i, \pi_j = \int -\infty \infty \pi_i \pi_j d\lambda$ = $\int 0 \infty e^{-it} e^{-jt} dt$ = $\int 0 \infty e^{-t(i+j)} dt$

$$= -\frac{1}{i+j}e^{-t(i+j)}\Big|_{x=0}^{\infty}$$
 (b)