Seminar 8

- 1. Prove that for any $x, y \in \mathbb{R}^n$ the following hold:
 - (a) $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ (the parallelogram identity).
 - (b) $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 \|x y\|^2).$
- 2. \bigstar For $x, y \in \mathbb{R}^n$ prove that the following statements are equivalent:
 - (a) $\langle x, y \rangle = 0$.
 - (b) ||x + y|| = ||x y||.
 - (c) $||x + y||^2 = ||x||^2 + ||y||^2$.
- 3. For $x, y \in \mathbb{R}^n$ prove the Cauchy-Schwarz inequality $\langle x, y \rangle \leq ||x|| ||y||$.
- 4. Find the orthogonal projection of a vector v onto a vector a in \mathbb{R}^2 .
- 5. \bigstar Using the dot product, show that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is a rotation matrix with angle θ in \mathbb{R}^2 . What is the inverse of this matrix?
- 6. Consider the *p*-norm $||x||_p := (|x_1|^p + \ldots + |x_n|^p)^{\frac{1}{p}}, p \ge 1 \text{ and } ||x||_{\infty} := \max\{|x_1|, \ldots, |x_n|\}.$ Represent the unit ball in \mathbb{R}^2 for the *p*-norm with $p \in \{1, 2, \infty\}$.
 - \bigstar [Python] Represent the unit ball in \mathbb{R}^2 for the p-norm with $p \in \{1.25, 1.5, 3, 8\}$.
- 7. Find the interior, the closure and the boundary for each of the following sets:
 - (a) $[0,1) \times (1,2]$.

(c) $\{(x,y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}.$

(b) $\{(x,y) \in \mathbb{R}^2 \mid |x| < |y|\}.$

- (d) $\{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 < 1, x < 1\}.$
- 8. Study the convergence of the sequence (x^k) in \mathbb{R}^2 for:
 - (a) $x^k = (\frac{1}{k}, \frac{2^k}{k!}).$
- (b) $x^k = ((-1)^k, -(\frac{1}{2})^k).$ (c) $x^k = (e^{-k}\cos k, k).$

Homework questions are marked with \bigstar .

Solutions should be handed in at the beginning of next week's lecture.