Inferência Estatística

Correlação e Regressão

Coeficiente de Correlação

Regressão Linear Simples

Regressão Linear Simples

- Em muitos problemas há duas ou mais variáveis que são relacionadas, e pode ser importante modelar essa relação.
- Por exemplo, pode-se ter interesse em predizer
 - as vendas futuras de um produto em função do seu preço,
 - ➤ a perda de peso de uma pessoa em decorrência do número de dias que se submete a uma determinada dieta,
 - > a produção de uma determinada cultura em função da quantidade de nutriente aplicada no solo.

- ➤ Outro exemplo, as vendas de um produto podem estar relacionadas ao valor gasto em marketing com esse produto. Assim, é possível construir um modelo relacionando vendas a gastos com marketing, e então pode-se usar esse modelo para fins previsão de vendas.
- Em geral vamos supor que há uma variável dependente (ou variável de resposta) Y que depende de uma variável preditora (ou variável explicativa) X.
- A regressão linear simples estima uma equação matemática (ou modelo) que, dado o valor de X (variável preditora), prevê o valor de Y (variável dependente).
- È dito regressão <u>linear</u> <u>simples</u>, pois supõe-se tendência linear entre as variáveis e simples por ser uma única variável preditora.

Modelo de regressão linear simples

$$Y = \beta_0 + \beta_1 X + \epsilon$$
 erro aleatório

- > O coeficiente β_0 é a *interseção* (valor de Y para X = 0).
- >O coeficiente β_1 é a *inclinação* da reta, que pode ser positiva, negativa ou nula.
- > Se há n pares de dados $(y_1, x_1), ..., (y_n, x_n)$ é possível estimar os parâmetros β_0 e β_1 usando o Método dos Mínimos Quadrados.
- > Temos então b_0 e b_1 , estimativas amostrais de β_0 e β_1 .

$$b_1 = \frac{\sum x_i y_i - \left(\sum x_i\right) \left(\sum y_i\right) / n}{\sum x_i^2 - \left(\sum x_i\right)^2 / n}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

Exemplo: Após uma regulagem eletrônica um veículo apresenta um rendimento ideal no que tange a consumo de combustível. Contudo, com o passar do tempo esse rendimento vai se degradando. Os dados a seguir representam o rendimento medido mês a mês após a regulagem. Ajuste um modelo linear a esses dados.

X:meses após a regulagem	1	2	3	4	5	6
Y: rendimento	10,7	10,9	10,8	9,3	9,5	10,4
X:meses após a regulagem	7	8	9	10	11	12
Y: rendimento	9,0	9,3	7,6	7,6	7,9	7,7

Rendimento de combustível

Cálculos iniciais

Meses(X)	Rendimento(Y)	X^2	Y^2	Х*Ү
1	10,7	1	114,49	10,7
2	10,9	4	118,81	21,8
3	10,8	9	116,64	32,4
4	9,3	16	86,49	37,2
5	9,5	25	90,25	47,5
6	10,4	36	108,16	62,4
7	9	49	81	63
8	9,3	64	86,49	74,4
9	7,6	81	57,76	68,4
10	7,6	100	57,76	76
11	7,9	121	62,41	86,9
12	7,7	144	59,29	92,4
78	110,7	650	1039,55	673,1
6,5	9,225			

$$\Sigma x = 78$$

 $\Sigma y = 110,7$
 $\Sigma x y = 673,1$

$$\overline{X} = 6.50$$

$$\overline{Y} = 9,225$$

$$\overline{X} = 6,50$$
 $\Sigma X^2 = 650$

$$\overline{Y} = 9,225$$
 $\Sigma y^2 = 1039,55$

Cálculos

$$\Sigma x = 78$$

 $\Sigma y = 110,7$

$$\overline{X} = 6,50$$

$$\Sigma x^2 = 650$$

$$\overline{Y} = 9,225$$

$$\Sigma x y = 637,1$$

$$S_{XY} = \sum x_i y_i - (\sum x_i)(\sum y_i)/n = 673,1 - (78 \times 110,70)/12 = -46,45$$

$$S_{xx} = \sum x_i^2 - (\sum x_i)^2 / n = 650 - (78)^2 / 12 = 143$$

Estimativa dos parâmetros:

$$b_1 = -46,45 / 143,00 = -0,325$$

$$b_0 = 9,225 - (-0,325) 6,50 = 11,34$$

$$b_{1} = \frac{\sum x_{i}y_{i} - (\sum x_{i})(\sum y_{i})/n}{\sum x_{i}^{2} - (\sum x_{i})^{2}/n}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

Equação de regressão Y = 11,34 - 0,325 X

Interpretar e utilizar!!!

Coeficiente de Determinação

 r^2 é conhecido como Coeficiente de Determinação r^2 = quadrado do coeficiente de correlação r

r² equivale a proporção da variância dos valores de Y que pode ser atribuída à regressão com a variável X.

> Para o exemplo, resultou $r^2 = (-0.907)^2 = 0.82$, ou seja, 82% da variabilidade nos resultados de rendimento de combustível pode ser devida ao tempo decorrido após a regulagem.

18% da variabilidade total é devido a outros fatores que não foram investigados.

Intervalos de Confiança e Testes de Hipótese

Como os resíduos de Y supostamente seguem a distribuição normal, e como os valores de b_0 e b_1 são funções lineares de Y:

$$b_0 \to N(\beta_0, \sigma_{b0}^2)$$
 $b_1 \to N(\beta_1, \sigma_{b1}^2)$

Esses resultados podem ser usados em testes de hipótese. Por exemplo, se a hipótese é:

$$H_0: \beta_1 = 0$$

então calcula-se:

$$H_A: \beta_1 \neq 0$$

$$t = b_1 / S_{b1}$$

$$\Rightarrow$$
 H_0 é rejeitada se $|t| > t_{\alpha/2,n-2}$.

O intervalo de confiança para β_1 virá dado por

$$b_1 - t_{\alpha/2} S_{b1} < \beta_1 < b_1 + t_{\alpha/2} S_{b1}$$

> Usando os dados do problema do consumo de combustível, vamos construir um intervalo de confiança para a inclinação b_1 e verificar a hipótese.

$$S_{xx} = 143$$

$$S_{vv} = 18,34$$

$$S_{xy} = -46,45$$

$$SQR = S_{yy} - b_1 S_{xy} = 3,24$$

$$S^2 = \frac{SQR}{n-2} = 0,324$$

$$S_{b1}^2 = \frac{S^2}{S_{xx}} = 0,00227 \Rightarrow S_{b1} = 0,0476$$

Intervalo de confiança para β_1

$$b_1 - t_{\alpha/2} S_{b1} < \beta_1 < b_1 + t_{\alpha/2} S_{b1}$$

$$t_{0,025;10} = 2,228$$

$$-0.325 - 2.228 (0.0476) < \beta_1 < -0.325 + 2.228 (0.0476) < -0.431 < \beta_1 < -0.219$$

Como esse intervalo não inclui o zero, a hipótese $\beta_1 = 0$ é rejeitada, ou seja, existe uma relação entre o consumo de combustível e o tempo decorrido após a regulagem.