

Formula

Refer to the Temperature Correction Factor table

27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688

Do remember that final reporting unit for numerator is in Ω

Material's specifc temperature correction factor x Result from machine

Do take note of the its units

Because the final reporting unit for length is in km

7029m drum

9m

100m coil

How to Find Temperature Correction Factor?

Lets say that during your experiment, the temperature shown is 26.2°C, by referring to the Temperature Correction Factor table, should you round down to 26.0°C or 26.5°C?

For number between .1 to .4:

- If number is .1 or .2, round down to .0
- if number is .3 or .4, round up to .5

For number between .6 to .9:

- If number is .6 or .7, round down to .5
- if number is .8 or .9, round up to .0

							TCF
		TEMPE	RATURE C	ORRECTIO	N FACTOR		
Temperature	P	vc					
remperature	In water	In air	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium
°c	PVC Flex.	in air	20000				
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861
24.0	1.270	1.550	/	0.9845	0.9850	0.9823	0.9841
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726
27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688

Material's specifc temperature correction factor x Result from machine Length

How to Find Temperature Correction Factor?

Lets say that during your experiment, the temperature shown is 26.2°C, by referring to the Temperature Correction Factor table, should you round down to 26.0°C or 26.5°C?

Therefore, for this example of 26.2°C, we round down to 26.0°C and refer to this row

		TEMPE	RATURE C	ORRECTIO	N FACTOR		
Temperature	P	vc					
remperature	In water	In air	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium
°c	PVC Flex.	III air					
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861
24.0	1.270	1.550	/	0.9845	0.9850	0.9823	0.9841
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726
27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688

Know which material you are testing, **taking soft copper as example**, the correction factor = 0.9770

Material's specifc temperature correction factor x Result from machine

Length

Example 1

A 100m soft copper is being test for CR, the result shown from the CR machine is 0.7127Ω , meanwhile the temperature during the experiment is 26.2°C, what is the final reporting result in the units of $\frac{\Omega}{km}$?

		TEMPE	RATURE C	ORRECTION	FACTOR		TC
	PV	/C					
Temperature	In water	In all	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium
°c	PVC Flex.	In air	55 555				
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861
24.0	1.270	1.550	1	0.9845	0.9850	0.9823	0.9841
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726
27.5	1.595	55.550 <u></u>	1.600	0.9714	0.9722	0.9674	0.9707
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688

Round down to 26.0°C, refer to the Temperature Correction Factor table, and take 0.9770 as the corrected factor.

$$\frac{2}{100m \div 1000} = 6.96 \frac{\Omega}{km}$$

Remember?

As mention, since the final reporting unit for length is in km, to make m to km, we have to divide by 1000, because 1km = 1000m

Practice 1

Let's say that your material is a 9500m Aluminum and the temperature shown during the experiment is 25.4°C, if the CR machine showed a value of 0.7001 Ω , what is your final result you should report in the units of $\frac{\Omega}{km}$?

							TCI	
		TEMPE	RATURE C	ORRECTION	V FACTOR			
Temperature	P	vc						
emperature	In water	In air	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium	
°c	PVC Flex.	in air						
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881	
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861	
24.0	1.270	1.270 1.550		0.9845	0.9850	0.9823	0.9841	
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822	
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802	
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783	
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764	
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745	
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726	
27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707	
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688	

PREFIX	T tera	B giga	W mega	kilo	m (meter)	p deci	o centi	m milli	# micro	u nano	d pico
NUMBER	1012	10°	10^{6}	10^3	10^0	10-1	10-2	10-3	10-6	10-9	10-12

 $\frac{\text{Material's specifc temperature correction factor } x \text{ Result from machine}}{\text{Length}}$

TRY THIS QUESTION NOW!

Practice 1 Answer

Let's say that your material is a 9500m Aluminum and the temperature shown during the experiment is 25.4°C, if the CR machine showed a value of 0.7001 Ω , what is your final result you should report in the units of $\frac{\Omega}{km}$?

		TEMPE	DATURE C	ORRECTION	LEACTOR		TCF	
	PI		HATURE C	ORRECTION	TACTOR			
Temperature	In water		EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium	
°c	PVC Flex.	In air	BS 6500					
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881	
23.5	1.235	1.235 1.470		0.9864	0.9868	0.9845	0.9861	
24.0	1.270	1.550	1	0.9845	0.9850	0.9823	0.9841	
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822	
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802	
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783	
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764	
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745	
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726	
27.5	1.595	1.595 2.370		0.9714	0.9722	0.9674	0.9707	
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688	

The difference between kilom to m is 1000

$$\frac{0.9783 \times 0.7001\Omega}{9500 \text{m} \div 1000} = 0.0721 \frac{\Omega}{\text{km}}$$

Practice 2

Let's say that your material is a 200m soft copper and the temperature shown during the experiment is 25.7°C, if the CR machine showed a value of 931 $\frac{\Omega}{km}$?

		TEMPE	RATURE C	ORRECTION	V FACTOR		TCI
	P	vc			TACTON		
Temperature	In water	- In air	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium
°c	PVC Flex.	in air					
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861
24.0	1.270	1.550	/	0.9845	0.9850	0.9823	0.9841
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726
27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688

PREFIX	tera	giga	mega	kilo		deci	centi	milli	micro	nano	pico
SYMBOL	T	G	M	k		d	c	m	μ	n	p
NUMBER	1012	10 ⁹	10^6	10^3	10^0	10-1	10-2	10-3	10-6	10-9	10-12

 $\frac{\text{Material's specifc temperature correction factor } \textbf{x} \text{ Result from machine}}{\text{Length}}$

TRY THIS QUESTION NOW!

Practice 2 Answer

Let's say that your material is a 200m soft copper and the temperature shown during the experiment is 25.7°C, if the CR machine showed a value of 931 $\frac{\Omega}{km}$?

		TEMPE	RATURE C	ORRECTION	N FACTOR		TCF	
	PI	/C						
Temperature	In water		EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium	
°c	PVC Flex.	In air	83 6300					
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881	
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861	
24.0	1.270	1.550	1	0.9845	0.9850	0.9823	0.9841	
24.5	1.310	1.645	/	0.9826	0.9831	0.9802	0.9822	
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802	
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783	
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764	
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745	
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726	
27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707	
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688	

$$\frac{0.9788 \times (931 \text{m}\Omega \div 1000)}{200 \text{m} \div 1000} = 4.56 \frac{\Omega}{\text{km}}$$

Practice 3

Let's say that your material is a 200 yard soft copper and the temperature shown during the experiment is 25.7°C, if the CR machine showed a value of 931 m Ω , what is your final result you should report in the units of $\frac{\Omega}{kvd}$?

							TCF	
		TEMPE	RATURE C	ORRECTIO	V FACTOR			
Temperature	P	vc	62220					
remperature	In water	In air	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium	
°c	PVC Flex.	in air						
23.0	1.200	1.390	1	0.9883	0.9887	0.9867	0.9881	
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861	
24.0	1.270	1.270 1.550		0.9845	0.9850	0.9823	0.9841	
24.5	1.310	1.645	1	0.9826	0.9831	0.9802	0.9822	
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802	
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783	
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764	
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745	
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726	
27.5	1.595	95 2.370	1.600	0.9714	0.9722	0.9674	0.9707	
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688	

PREFIX	tera	giga	mega	kilo		deci	centi	milli	micro	nano	pico
SYMBOL	T	G	M	k		d	c	m	μ	n	p
NUMBER	1012	10 ⁹	10^{6}	10 ³	10^0	10-1	10-2	10-3	10 ⁻⁶	10-9	10-12

 $\frac{\text{Material's specifc temperature correction factor } x \text{ Result from machine}}{\text{Length}}$

TRY THIS QUESTION NOW!

Clue: Since the final units are in kiloyards, how can we convert yards to kiloyards?

Practice 3 Answer

Let's say that your material is a 200 yard soft copper and the temperature shown during the experiment is 25.7°C, if the CR machine showed a value of 931 m Ω , what is your final result you should report in the units of $\frac{\Omega}{kvd}$?

							TCF
		TEMPE	RATURE C	ORRECTION	N FACTOR		
Temperature -	PVC						
	In water PVC Flex.	- In air	EPR (in air,water) BS 6500	Soft copper	Hard copper	Steel wire	Aluminium
23.5	1.235	1.470	/	0.9864	0.9868	0.9845	0.9861
24.0	1.270	1.550	1	0.9845	0.9850	0.9823	0.9841
24.5	1.310	1.645	1	0.9826	0.9831	0.9802	0.9822
25.0	1.350	1.740	1.35	0.9807	0.9813	0.9780	0.9802
25.5	1.395	1.850	1.400	0.9788	0.9795	0.9758	0.9783
26.0	1.440	1.960	1.44	0.9770	0.9777	0.9737	0.9764
26.5	1.490	2.090	1.490	0.9751	0.9758	0.9716	0.9745
27.0	1.540	2.220	1.54	0.9732	0.9740	0.9695	0.9726
27.5	1.595	2.370	1.600	0.9714	0.9722	0.9674	0.9707
28.0	1.650	2.520	1.65	0.9695	0.9704	0.9653	0.9688

The difference between mili Ω to Ω is 1000

$$\frac{0.9788 \times (931 \text{m}\Omega \div 1000)}{200 \text{ yd} \div 1000} = 4.56 \frac{\Omega}{\text{kyd}}$$

Occasionally, if you see yard (yd) in your sample, simply convert it using the same calculation, to kiloyard (kyd) by dividing by 1000.

