Integrais Duplas sobre Regiões Gerais

Márcio Antônio de Andrade Bortoloti

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia

Cálculo III

Seja D a região abaixo.

Seja D a região abaixo.

Vamos calcular
$$\iint_D f(x, y) dA$$
.

Seja D a região abaixo.

Vamos calcular $\iint_D f(x, y) dA$. A ideia é definir

$$F(x,y) = \begin{cases} f(x,y) & \text{se } (x,y) \in D \\ 0, & \text{se } (x,y) \in R \setminus D, \end{cases}$$

onde R é retângulo, como na figura abaixo.

Seja D a região abaixo.

Vamos calcular
$$\iint_D f(x, y) dA$$
.
A ideia é definir

$$F(x,y) = \begin{cases} f(x,y) & \text{se } (x,y) \in D \\ 0, & \text{se } (x,y) \in R \backslash D, \end{cases} \qquad \iint_D f(x,y) \, dA = \iint_R F(x,y) \, dA.$$

onde R é retângulo, como na figura abaixo.

E observar

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA$$

Dessa forma, podemos pensar no seguinte

Os cálculos de integrais duplas sobre regiões gerais serão considerados em tipos de regiões para D. Vamos começar com regiões do tipo I:

$$\iint_D f(x,y) \, dA$$

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA$$

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA = \int_a^b \int_c^d F(x,y) dy dx$$

Considerando uma região do tipo I, temos:

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA = \int_a^b \int_c^d F(x,y) dy dx$$

Agora, nota-se que

$$\int_{c}^{d} F(x, y) \, dy = \int_{g_{1}(x)}^{g_{2}(x)} F(x, y) \, dy$$

Considerando uma região do tipo I, temos:

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA = \int_a^b \int_c^d F(x,y) dy dx$$

Agora, nota-se que

$$\int_{c}^{d} F(x,y) \, dy = \int_{g_{1}(x)}^{g_{2}(x)} F(x,y) \, dy = \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy$$

Agora vamos considerar regiões do tipo II:

Neste caso.

$$\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dxdy.$$

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$.

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$. **Solução:** Notemos que D é uma região do tipo I e

$$D = \{(x, y); 0 \le x \le 2, x^2 \le y \le 2x\}.$$

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$. **Solução:** Notemos que D é uma região do tipo I e

$$D = \{(x, y); 0 \le x \le 2, x^2 \le y \le 2x\}.$$

$$V = \iint_D x^2 + y^2 \, dA$$

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$. **Solução:** Notemos que D é uma região do tipo I e

$$D = \{(x, y); 0 \le x \le 2, x^2 \le y \le 2x\}.$$

$$V = \iint_D x^2 + y^2 dA = \int_0^2 \int_{x^2}^{2x} x^2 + y^2 dy dx$$

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$. **Solução:** Notemos que D é uma região do tipo I e

$$D = \{(x, y); 0 \le x \le 2, x^2 \le y \le 2x\}.$$

$$V = \iint_D x^2 + y^2 dA = \int_0^2 \int_{x^2}^{2x} x^2 + y^2 dy dx = \int_0^2 \left[x^2 y + \frac{y^3}{3} \right]_{y=x^2}^{y=2x} dx$$

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$. **Solução:** Notemos que D é uma região do tipo I e

$$D = \{(x, y); 0 \le x \le 2, x^2 \le y \le 2x\}.$$

$$V = \iint_{D} x^{2} + y^{2} dA = \int_{0}^{2} \int_{x^{2}}^{2x} x^{2} + y^{2} dy dx = \int_{0}^{2} \left[x^{2}y + \frac{y^{3}}{3} \right]_{y=x^{2}}^{y=2x} dx$$
$$= \int_{0}^{2} \left(-\frac{x^{6}}{3} - x^{4} + \frac{14x^{3}}{3} \right) dx$$

Determine o volume do sólido que está contido abaixo do parabolóide

$$z = x^2 + y^2$$

e acima da região D do plano xy limitada pela reta y=2x e pela parábola $y=x^2$. **Solução:** Notemos que D é uma região do tipo I e

$$D = \{(x,y); 0 \le x \le 2, x^2 \le y \le 2x\}.$$

$$V = \iint_{D} x^{2} + y^{2} dA = \int_{0}^{2} \int_{x^{2}}^{2x} x^{2} + y^{2} dy dx = \int_{0}^{2} \left[x^{2}y + \frac{y^{3}}{3} \right]_{y=x^{2}}^{y=2x} dx$$
$$= \int_{0}^{2} \left(-\frac{x^{6}}{3} - x^{4} + \frac{14x^{3}}{3} \right) dx = \left[-\frac{x^{7}}{21} - \frac{x^{5}}{5} + \frac{7x^{4}}{6} \right]_{0}^{2} = \frac{216}{35}$$

Calcule a integral

$$\int_0^1 \int_x^1 \operatorname{sen}(y^2) \, dy dx.$$

Calcule a integral

$$\int_0^1 \int_x^1 \operatorname{sen}(y^2) \, dy dx.$$

Solução: Essa integral é complicada se for resolvida na ordem que se apresenta.

Calcule a integral

$$\int_0^1 \int_x^1 \operatorname{sen}(y^2) \, dy dx.$$

Solução: Essa integral é complicada se for resolvida na ordem que se apresenta. Contudo se alterarmos a ordem de integração, teremos uma integral mais acessível.

Calcule a integral

$$\int_0^1 \int_x^1 \operatorname{sen}(y^2) \, dy dx.$$

Solução: Essa integral é complicada se for resolvida na ordem que se apresenta. Contudo se alterarmos a ordem de integração, teremos uma integral mais acessível. De fato, notemos que

$$\int_0^1 \int_x^1 \operatorname{sen}(y^2) \, dy dx = \iint_D \operatorname{sen}(y^2) \, dA,$$

onde $D = \{(x, y); 0 \le x \le 1, x \le y \le 1\}.$

Por outro lado, podemos reinterpretar a figura anterior como

Por outro lado, podemos reinterpretar a figura anterior como

Por outro lado, podemos reinterpretar a figura anterior como

$$\int_0^1 \int_x^1 \sin(y^2) \, dy dx = \iint_D \sin(y^2) \, dA$$

Por outro lado, podemos reinterpretar a figura anterior como

$$\int_{0}^{1} \int_{x}^{1} \sin(y^{2}) \, dy dx = \iint_{D} \sin(y^{2}) \, dA = \int_{0}^{1} \int_{0}^{y} \sin(y^{2}) \, dx dy$$

Por outro lado, podemos reinterpretar a figura anterior como

$$\int_{0}^{1} \int_{x}^{1} \sin(y^{2}) \, dy dx = \iint_{D} \sin(y^{2}) \, dA = \int_{0}^{1} \int_{0}^{y} \sin(y^{2}) \, dx dy$$
$$= \int_{0}^{1} \left[x \sin(y^{2}) \right]_{x=0}^{x=y} dy$$

Por outro lado, podemos reinterpretar a figura anterior como

$$\int_{0}^{1} \int_{x}^{1} \operatorname{sen}(y^{2}) \, dy dx = \iint_{D} \operatorname{sen}(y^{2}) \, dA = \int_{0}^{1} \int_{0}^{y} \operatorname{sen}(y^{2}) \, dx dy$$
$$= \int_{0}^{1} \left[x \operatorname{sen}(y^{2}) \right]_{x=0}^{x=y} dy = \left[-\frac{1}{2} \cos(y^{2}) \right]_{0}^{1} = \frac{1}{2} (1 - \cos 1).$$

$$\bullet \iint_D f(x,y) + g(x,y) dA = \iint_D f(x,y) dA + \iint_D g(x,y) dA$$

•
$$\iint_{D} f(x,y) + g(x,y) dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA$$
•
$$\iint_{D} \alpha f(x,y) dA = \alpha \iint_{D} f(x,y) dA$$

•
$$\iint_D f(x,y) + g(x,y) dA = \iint_D f(x,y) dA + \iint_D g(x,y) dA$$

•
$$\iint_D \alpha f(x,y) dA = \alpha \iint_D f(x,y) dA$$

• Se
$$f(x,y) \ge g(x,y)$$
 para todo $(x,y) \in D$, $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$

$$\oint \iint_D f(x,y) + g(x,y) dA = \iint_D f(x,y) dA + \iint_D g(x,y) dA$$

•
$$\iint_D \alpha f(x,y) dA = \alpha \iint_D f(x,y) dA$$

- Se $f(x,y) \ge g(x,y)$ para todo $(x,y) \in D$, $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$
- Se $D = D_1 \cup D_2$ com $int(D_1) \cap int(D_2) = \check{\emptyset}$,

$$\iint_{D} f(x, y) dA = \iint_{D_{1}} f(x, y) dA + \iint_{D_{2}} f(x, y) dA$$

•
$$\iint_D f(x,y) + g(x,y) dA = \iint_D f(x,y) dA + \iint_D g(x,y) dA$$

•
$$\iint_D \alpha f(x,y) dA = \alpha \iint_D f(x,y) dA$$

• Se
$$f(x,y) \ge g(x,y)$$
 para todo $(x,y) \in D$, $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$

• Se
$$D = D_1 \cup D_2$$
 com $int(D_1) \cap int(D_2) = \mathring{\emptyset}$,

$$\iint_{D} f(x, y) dA = \iint_{D_{1}} f(x, y) dA + \iint_{D_{2}} f(x, y) dA$$

•
$$\iint_D dA = \text{Área}(D)$$

•
$$\iint_{D} f(x,y) + g(x,y) dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA$$

•
$$\iint_D \alpha f(x,y) dA = \alpha \iint_D f(x,y) dA$$

• Se
$$f(x,y) \ge g(x,y)$$
 para todo $(x,y) \in D$, $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$

• Se $D = D_1 \cup D_2$ com $int(D_1) \cap int(D_2) = \check{\emptyset}$,

$$\iint_{D} f(x, y) dA = \iint_{D_1} f(x, y) dA + \iint_{D_2} f(x, y) dA$$

- $\iint_D dA = \text{Área}(D)$
- Se $m \le f(x,y) \le M$ para todo $(x,y) \in D$, então

$$m$$
Área $(D) \leq \iint_D f(x, y) dA \leq M$ Área (D)

