

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ <u>«Инф</u>	орматика и системы управления (ИУ)»	
иларира и	ммное обеспечение ЭВМ и информационные технологии (ИУ7)»	

ОТЧЕТ

по лабораторной работе № 7 по курсу «Моделирование»

на тему: «Моделирование работы системы массового обслуживания» Вариант N 2

Студент	ИУ7-73Б (Группа)	(Подпись, дата)	Р. Р. Хамзина (И. О. Фамилия)			
Преподава	атель	(Подпись, дата)	И. В. Рудаков (И. О. Фамилия)			

СОДЕРЖАНИЕ

1	Зад	ание	•
	1.1	Закон появления сообщений	
	1.2	Закон обработки сообщений	
2	Pea	лизация	ļ
	2.1	Детали реализации	١
	2.2	Полученный результат	(

1 Задание

Реализовать программу для моделирования работы системы массового обслуживания и определения максимальной длины очереди, при которой не будет потери сообщений, на языке имитационного моделирования GPSS. Моделируемая система состоит из генератора сообщений, очереди сообщений и обслуживающего аппарата. Для моделирования работы генератора сообщений использовать равномерный закон распределения, для моделирования работы обслуживающего аппарата — нормальный закон распределения. Предусмотреть возможность возврата в очередь части обработанных сообщений с заданной вероятностью.

1.1 Закон появления сообщений

Для моделирования работы генератора сообщений в лабораторной работе используется равномерный закон распределения. Случайная величина имеет равномерное распределение на отрезке [a,b], если её функция плотности p(x) имеет вид:

$$p(x) = \begin{cases} \frac{1}{b-a}, \text{ если } x \in [a, b], \\ 0, \text{ иначе.} \end{cases}$$
 (1.1)

Функция распределения F(x) равномерной случайной величины имеет вид:

$$F(x) = \begin{cases} 0, \text{ если } x \leq a, \\ \frac{x-a}{b-a}, \text{ если } a < x \leq b, \\ 1, \text{ если } x > b. \end{cases}$$
 (1.2)

1.2 Закон обработки сообщений

Для моделирования работы обслуживающего аппарата в лабораторной работе используется нормальный закон распределения. Случайная величина имеет нормальное распределение, если её функция плотности p(x) имеет вид:

$$p(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}, (-\infty < \mu < +\infty, \sigma > 0).$$
 (1.3)

Функция распределения F(x) нормальной случайной величины имеет вид:

$$F(x) = \frac{1}{2} \cdot (1 + erf(\frac{x - \mu}{\sqrt{2 \cdot \sigma^2}})). \tag{1.4}$$

2 Реализация

2.1 Детали реализации

На листинге 2.1 представлена реализация работы системы массового обслуживания.

Листинг 2.1 – Реализация работы системы массового обслуживания

```
GENERATE (UNIFORM(1,5,15)),,,1000
enqueue QUEUE qsystem_queue

SEIZE handler
DEPART qsystem_queue
ADVANCE (NORMAL(1,8,0.5))
RELEASE handler

TRANSFER 0.3,complete,enqueue
complete TERMINATE 1

START 1000
```

2.2 Полученный результат

На листинге 2.2 показан результат моделирования работы системы массового обслуживания. Максимальная длина очереди для вероятности возврата сообщения 0.3 равна 130 сообщениям.

Листинг 2.2 – Реализация работы системы массового обслуживания

	START TIME	END TIM	E BLOCKS	FACILITIES	S STORA	GES		
	0.000	11254.93	5 8	1	0			
	NAME		VALUE					
	COMPLETE		8.000					
	ENQUEUE		2.000					
	HANDLER		0001.000					
	QSYSTEM_QUEUE	1	0000.000					
LADEL	1.00	DIOCK TYPE	ENTRY COLL	IT CUDDENT	COUNT D	עמיים		
LABEL		BLOCK TYPE		NI CUKKENT	O COUNT R	0		
ENOUELLE	1	GENERATE	1000		0			
ENQUEUE	2	QUEUE				0		
	3	SEIZE	1403		0	0		
	4	DEPART	1403		0	0		
	5	ADVANCE			0	0		
	6	RELEASE			0	0		
GOWDI EEE	7	TRANSFER	1403		0	0		
COMPLETE	8	TERMINATE	1000		0	0		
FACILITY	ENTRIES	UTIL. AVE.	TIME AVATI	. OWNER PER	ND TNTER	RETRY	DELAY	
HANDLER		0.998			0 0	0	0	
HANDELIN	1403	0.330	0.000 1	v	0	J	O	
QUEUE	MAX C	ONT. ENTRY ENTR	Y(O) AVE.CO	ONT. AVE.T	IME AVI	E.(-0)	RETRY	
QSYSTEM_Q		0 1403		14 516.7		18.211		