

FCC TEST REPORT

For

SHENZHEN DOGCARE INNOVATION & TECHNOLOGY CO.,LTD.

DOG TRAINING COLLAR

Model No.: TC05

Prepared For : SHENZHEN DOGCARE INNOVATION & TECHNOLOGY CO.,LTD.

Address Room 201, Building A, No. 1 Qianwan Road, Qianhai Shenzhen-HK

Cooperation Zone, Shenzhen, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW181128003-01

Date of Receipt : Nov. 28, 2018

Date of Test : Nov. 28~Dec. 12, 2018

Date of Report : Dec. 12, 2018

Contents

1. General Information	Anbor			ion V	100	r work	4
1.1. Client Information	Kithotek.	Anbo		Hotek	popole.	Anv	4
1.2. Description of Device (EU	Γ)	v 4000	Vo. V		botek	Anbo.	4
1.3. Auxiliary Equipment Used	During Test	,,,	hotek	Anbo		e.k	4
1.4. Description of Test Modes.	ier Aup	······	wotek.	Anbore	Anv		5
 1.1. Client Information	otekp	upore.	Vu. Yek	ody,	er An	00.	6
1.6. Test Equipment List	, , , , , , , , , , , , , , , , , , ,	Kipoter.	Anbu		note ^k	Pupose.	7
1.7. Description of Test Facility	Anbe	toyek.	Anbo'	P.L.		botek	8
Summary of Test Results Conducted Emission Test	Anbor	b21	, y,	boter	Anbo		9
3. Conducted Emission Test	Anbote.	Anba		, otek	Aupore	P.II.	10
3.1. Test Standard and Limit	نوبی	yek Ar	por	bu.	th ody _a	Aut	10
3.2. Test Setup		otek	Ropoter.	Anb		ote ^k	10
3.1. Test Standard and Limit 3.2. Test Setup	oote, A	Up.	"potek	Anbo		- Nex	10
3.4. Test Data	boter	Anb		ok al	0010	71	10
4. Radiation Spurious Emission and 4.1. Test Standard and Limit 4.2. Test Setup	Band Edge	Aupote,	And		whotek	Anbor	13
4.1. Test Standard and Limit	Yun 10	, odi	ek An	00,	b.,.	Mahote	13
4.2. Test Setup	Anbo		olek	Pupo _{te} ,	Anv.	X	14
4.3. Test Procedure	N AMPC	ice. Vu		, botek	Anbox		15
4.4. Test Data		hotek	Anbo		y N	o _{fe} , b	15
5. 20DB Occupy Bandwidth Test) · · · · · · · · · · · · · · · · · · ·	motek	Anbore	Yar		npotek	21
5.1. Test Standard and Limit	Vupore	Vur.	² ody,	k Ant	, , , , , , , , , , , , , , , , , , ,	r, work	21
5.2. Test Setup	Mahotek	Anbo		,otek	upote.	Anv (e)	21
5.3. Test Procedure		Anbor	Vu.		botek	Anbo	21
5.4. Test Data	Pit.	to,, Yo,	otek	Anbo	wote,	idna A	21
6. Dwell Time Test	Anbe		zootek	Anbore	Y _U		23
5.4. Test Data 6. Dwell Time Test 6.1. Test Standard and Limit 6.2. Test Setup	otek Ar	porc	YII.	⁹⁴ odo _N	k. Aup.		23
6.2. Test Setup	Lek-	noboter	Anbe	ļ	otek p	nbote	23
6.3. Test Procedure	×	woten.	Anbe		VeV.	bole	23
6.4. Test Data	Anbor	Pr.	K 700	oter l	'upo	- Lotek	23
7. Antenna Requirement	popoter.	Ano		otek	Anbor	b21.	25
7.1. Test Standard and Requiren	nent	ek Anb	0- 1	r. Cotek	phote!	Anbe	25
7.2. Antenna Connected Constru	uction	otek .	apoter	Anto	ر الماريينية (tek A	25
APPENDIX I TEST SETUP PHO	TOGRAPH.		Motek	Anbore	bit.	- Nek	26
APPENDIX II EXTERNAL PHO	TOGRAPH.	Anbo	Pr.	1000	ote. A	UD.	28
APPENDIX III INTERNAL PHO	TOGRAPH						31

TEST REPORT

Applicant : SHENZHEN DOGCARE INNOVATION & TECHNOLOGY CO.,LTD.

Manufacturer : Suzhou Wudao Smart Technologies Co.,Ltd

Product Name : DOG TRAINING COLLAR

Model No. : TC05

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 500mA(with DC 3.7V, 450 mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.231

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test			NOV. 26~DCC. 1		
	MBOTE		Dollar	W Anbotek	
Amboten	Anbotek		botek Anbe	LW Ambotek	
Prepared by		Anbore	And OK	botek Anbor	b.,
	TFIC	rek Anbotek	(Engineer / Dol	lly Mo)	
Anbotek Anbotek				abotek A	
			Snavy 1	Meng,	
Reviewer			CAROLO	Amb	
* 1012			rek abo		
Reviewer		Anbotek	(Supervisor / Snov	wy Meng)	tek Anbo
			Ans	wy weng)	
			Sally Zh	ang olek	
			× S	Charles tok	
Approved & Authorized	Signer		otek subotek	Aupo	
	stek Annatek	Anboten Ant	(Manager / Sally	Zhang)	Annabotek

1. General Information

1.1. Client Information

A	pplicant	:	SHENZHEN DOGCARE INNOVATION & TECHNOLOGY CO.,LTD.
A	ddress		Room 201, Building A, No. 1 Qianwan Road, Qianhai Shenzhen-HK Cooperation Zone, Shenzhen, China
M	Ianufacturer	:	Suzhou Wudao Smart Technologies Co.,Ltd
A	ddress		2F Building E,No.9,Shenghong Road,Wuzhong District,Suzhou,China
Fa	actory		Suzhou Wudao Smart Technologies Co.,Ltd
A	ddress	•••	2F Building E,No.9,Shenghong Road,Wuzhong District,Suzhou,China

1.2. Description of Device (EUT)

Product Name	:	DOG TRAINING COLLAR	k Anbotek Anbotek Anbotek An
Model No.	:	TC05	nbotek Anbotek Anbotek Anbotek
Trade Mark	:	N.A.	Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V, 60Hz for adapter DC 3.7V Battery inside	K Anbotek Anbotek Anbotek Anbotek Anbotek
Test Sample No.	:	S1(Normal Sample), S2(Engineer	ring Sample)
Product Description		Operation Frequency:	433.92 MHz
		Modulation Type:	FSK hotek Anbotek Anbotek Anbotek
	tion Antenna Type:	Antenna Type:	Spring Antenna
		Antenna Gain(Peak):	-1.5 dBi
	Model No. Trade Mark Test Power Supply Test Sample No.	Model No. : Trade Mark : Test Power Supply : Test Sample No. :	Model No. : TC05 Trade Mark : N.A. Test Power Supply : AC 120V, 60Hz for adapter DC 3.7V Battery inside Test Sample No. : S1(Normal Sample), S2(Engineer Operation Frequency: Modulation Type: Antenna Type:

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

	Adapter	:	Manufacturer: ZTE	
			M/N: STC-A2050I1000USBA-C	
			S/N: 201202102100876	
			Input: 100-240V~50/60Hz 0.3A	8,4
15			Output: DC 5V, 1000mA	ac

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Pretest Mode	Description					
hbotek	Mode 1	otek	Anbotek	Charging + TX I	Mode	Anbore.	Vur
Anbotek	Mode 2	abotek	Anbotek	TX Mode	anbotek	Anbore	P

	For Conducted Emission								
	Final Test Mode	Description							
botek	Mode 1	Charging + TX Mod	de Anbote	Vu					

0.00,7	20		For Ra	adiated Er	nission			- 110	
Final 7	Test Mode				Descrip	otion			
M	ode 2	nboter	Anb	.e.k	TX M	ode	Vue	atek.	onb)

Note: During the test, the EUT was keeping continuous transmission.

1.5. Description Of Test Setup

CE

RE

1.6. Test Equipment List

ber	-k "ofer	AND	rek hor	VII.	CFOR	vupo.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
otek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
2,00	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
Anbot 7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year

1.7. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209/15.231(b)	Spurious Emission	PASS
15.231(c)	20dB Occupied Bandwidth	PASS
15.231(a)	Dwell time	PASS
15.231(a) Remark: "N/A" is an abbreviation	Anbote And tek spotek Anbo	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	07 Anbore Ans botek	Anbotek Anbo tek		
	Engagemen	Maximum RF	Line Voltage (dBuV)		
	Frequency	Quasi-peak Level	Average Level		
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
	500kHz~5MHz	56	46		
	5MHz~30MHz	60	50 potes An		

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Charging + TX Mode

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 22.2°C Hum.: 60%

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Charging + TX Mode

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.2°C Hum.: 60%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.3	209, 15.205 and 15.23	31(b)	Anboten 1	rupo stek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	ibotek - Anbo	co Pur	300
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	poter Am	30
	1.705MHz-30MHz	30	Aupotek	Aupore b	30
Γest Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3,000
	216MHz~960MHz	200	46.0	Quasi-peak	3 pote
	960MHz~1000MHz	500	54.0	Quasi-peak	Jek 3
	Above 1000MHz	500	54.0	Average	3
	Above IUUUIVIHZ	botek - Anbot	74.0	Peak	3

Remark:

the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, $\mu V/m$ at 3 meters = 41.6667(F) - 7083.3333.

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level

Emission Level (dBuV/m)=20log Emission Level(uV/m)

The field strength of emission limits have been calculated in below table:

Fundamental Frequency	Field Strength of Fundamental			
(MHz)	(dBuV/m)@3m			
433.920	80.82 (AVG)			
433.920	100.82 (Peak)			

⁽¹⁾ The lower limit shall apply at the transition frequency.

^{(2) 15.35(}b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz and above 1735.68MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (Fundamental 433.920MHz)

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Duty cycle Factor	Results	Limits	Det.
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
433.92	Anbold H	94.85	1.52	12.64	31.45	h.	77.56	100.82	PK
433.92	Hoter	94.85	1.52	12.64	31.45	-7.74	69.82	80.82	AV
433.92	V	97.67	1.52	12.64	31.45	- Ant	80.38	100.82	PK
433.92	V	97.67	1.52	12.64	31.45	-7.74	72.64	80.82	AV

Remark:

- 1. Result = Reading + Cable Loss +Ant Factor –Amplifier + Duty cycle Factor
- 2. Pulse Desensitization Correction Factor

Pulse Width (PW)= 0.483ms

2/PW=2/0.362=4.14kHz

RBW(1000kHz)> 2/PW (4.14KHz)

Therefore PDCF is not needed.

3. Duty Cycle Factor

Calculate Formula:

AV=PEAK +Duty Cycle Factor

Duty Cycle Factor=20log(Duty Cycle)

Duty Cycle= on time/ period

Test Data:

T on time=0.483*1=0.483 ms

T period=1.18ms

Duty Cycle=41%

Duty Cycle Factor = 20log(Duty Cycle)=-7.74

T on time slot-1

Test Results (Spurious Emissions)

E Anbotek	Anbo'	er Anb	Cable	Ant	Anbo	Duty	nbotek	Anbotek	Anbor
Frequency	Antenna	Reading	Loss	Factor	Amplifier	cycle Factor	Results	Limits	Det
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
867.84	Hodan	74.39	1.92	12.71	31.72	An	57.30	80.82	PK
867.84	Hotek	74.39	1.92	12.71	31.72	-7.74	49.56	60.82	AV
867.84	V	76.04	1.92	12.71	31.72	sk - Aupc	58.95	80.82	PK
867.84	V	76.04	1.92	12.71	31.72	-7.74	51.21	60.82	AV
1301.76	H Mu	63.82	2.38	21.43	32.45	to.	55.18	74	PK
1301.76	o ^{tel} H	63.82	2.38	21.43	32.45	-7.74	47.44	54	AV
1301.76	V	65.56	2.38	18.56	32.45	Anbore	54.05	4 74	PK
1301.76	V vek	65.56	2.38	18.56	32.45	-7.74	46.31	54	AV
1735.68	PTH	*	rek	Aupore.	Anba	16 200	lek Aut	74	PK
1735.68	Hupot	* *	rek	abotek	Anbor	K bree	notek I	54	AV
1735.68	V V	otek * A	lpo-	not	ek Anb	Oze. Vi	tek.	74	PK
1735.68	V	wotek	Anboro	Num	atek .	nbotek	Aupo	54	AV
2169.60	Н	*tek	Anbore	V.	lok ,	botek	Anbore	74	» PK
2169.60	upolen.	Anna * Tek	/0	otek	Aupor	An worker	Anbote	54	AV
2169.60	Vien	*/00	OK Bri	notek	Anboten	And	ek ab	34 M	PK
2169.60	V	K * Anbo	, P	in stek	anbote	Anbo.	-K	54	AV

Remark:

- 1. Result = Reading + Cable Loss +Ant Factor –Amplifier + Duty cycle Factor
- 2. Pulse Desensitization Correction Factor

Pulse Width (PW)= 0.483ms

2/PW=2/0.362=4.14kHz

RBW(1000kHz)> 2/PW (4.14KHz)

Therefore PDCF is not needed.

- 3. Duty Cycle Factor=-7.74
- 4. Only the worst data was recorded in this report.

Test Results (30~1000MHz)

Job No.: SZAWW181128003-02 Temp.(°C)/Hum.(%RH): 24.6°C/53%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: TX Mode Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW181128003-02 Temp.(°C)/Hum.(%RH): 24.6°C/53%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: TX Mode Polarization: Vertical

Remark:

1. Results = Reading + Cable Loss +Ant Factor –Amplifier

5. 20DB Occupy Bandwidth Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.231 (c)
Test Limit	According to FCC Part 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier. So the emission bandwidth limits have been calculated in below table:
	Fundamental Frequency Limit of 20dB Bandwidth 433.920 MHz 433920 * 0.0025=1084.80 kHz
	ek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek

5.2. Test Setup

5.3. Test Procedure

- 1. Place the EUT on the table and set it in the continuously transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 30kHz, $VBW \ge 3*RBW = 100kHz$,

Span=1MHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

5.4. Test Data

Test Item : 20dB Bandwidth Test Mode : Continuously transmitting

Test Voltage : AC 120V, 60Hz for Temperature : 24°C

adapter

Test Result : PASS Humidity : 55%RH

30	Freq. (MHz)	Modulation Type	Bandwidth (kHz)	Limit (kHz)	Results	
>	433.920	FSK	189.7	<1084.80	PASS	

433.920MHz

6. Dwell Time Test

6.1. Test Standard and Limit

Test Standard	FCC Part 15.231(a)(1)
	According to FCC Part 15.231(a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in continuously transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- Set the spectrum analyzer as RBW=1000kHz, VBW= 1000 kHz, Span= 0Hz, Sweep Time= 80 Seconds.
- 3. Record the Delta mark time.

6.4. Test Data

Test Item	:	Dwell Time	Test Mode :	Continuously transmitting
Test Voltage	:	AC 120V, 60Hz for	Temperature :	24℃
		adapter		otek Anboten Anbo
Test Result	:	PASS	Humidity :	55%RH

Test Mode	Transmitting time(s)	Limit(s)	Result	
ASK mode	0.483	≤5 ≤5	PASS	

Please refer the following plot.

Dwell Time

7. Antenna Requirement

7.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203
Requirement	 1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna requirement must meet at least one of the following: 1) Antenna must be permanently attached to device. 2) The antenna must use a unique type of connector to attach to the device. 3) Device must be professionally installed. The installer shall be responsible for ensuring that the correct antenna is employed by the device.

7.2. Antenna Connected Construction

The antenna is a Spring Antenna which permanently attached, and the best case gain of the antenna is -1.5 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

---- End of Report -----