Drag Prediction Project

Aircraft #1 – Bell P-63 D-1 Kingcobra

Only one P-63D was built with a bubble canopy. It was the fastest version of the P-63.

Despite being heavier, the P-63D was the fastest version of the P-63 reaching 437 mph at 30,000 feet. The wing was lengthened by 10 inches and it was powered by an Allison V-1710-109 engine producing 1,425 hp. A major change was the removal of the automobile-type doors and the installation of a bubble canopy. The performance of the P-63D put it on par with the P-51 Mustang and P-47 Thunderbolt, but it was destroyed during diving tests.

Wing span:	Length:	Height:	Empty:	Max T/O:	Maximum Speed:	Service Ceiling:	Normal Range:	Max. Range:	Powerplant
			7,076 lb (3,210 kg)	11,100 lb (5,035 kg)	(702	39,000 ft (11,887 m)	950 miles (1,529 km)	2,000 miles (3,219 km)	One Allis 1,425 hp liquid cooled 1710-109 kW) V-12, liquid cooled engine.

Using the data above and the drawings provided, estimate the C_{Do} of the aircraft for the following configurations: (scale drawings according to published lengths)

- a) Clean
- b) with just gear down for takeoff, and
- c) with gear and flaps (at 30°) for landing

Assume the cruise altitude is 25,000 feet and the cruise velocity is 370 mph. Neglect all guns, gun pods and antennas. Include the cooling drag of the radiators.

P-63 D			GW =	11,000	ESHP =	1,425	Allison '	V-1710-109A			
Item	Planform	(A _{wet net/}	717-2	Interference							
Lifting Surfaces	Area (ft²)	-	C _D	factor (%)	δf _e	Δf_e		Misc	Δf_e	(coo comp	onent calcs)
Wing	250.8	0.929	0.008		1.864	2.237		Main Gear	6.237	(see comp	Julient Galcs,
Wing/Fuse fair int		0.020	0.000	10	0.186	2.201		Nose Gear	3.802		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3D & roughness				5	0.093			Flaps @ 30°	3.010		
cntrl surf,gaps etc.				5	0.093						
								SUMMARY		(ft²)	
Horz Tail	52.5	0.967	0.010		0.508			Components		4.652	
Vert Tail int 3D & roughness				10	0.051	0.610		Protuberances	10	0.465	
cntrl surf,gaps etc.	11-11-0		-	5	0.025 0.025			Trim		0.30	
criti suri,gaps etc.				5	0.025			Momentum Airplane cruise	mada	0.23 5.645	
Vert Tail	35.13	1.000	0.010		0.351			Airpiane cruise	mode	5.645	
Horz Tail int				5	0.018	0.422		Airplana arui		FCF	(ft ²)
Fuse int		-				0.422		Airplane cruis	se mode	5.65	(π)
				5	0.018	-					
3D & roughness				5	0.018			Airplane T/O	mode	15.68	(ft ²)
cntrl surf,gaps etc.				5	0.018						
								Airplane LND	G mode	18.69	(ft ²)
Bodies of Rev	Aw net/Af	C _d /C _f		Interference				•			(-)
Fuselage	(ft²)	(N/D)	δf _e '	factor (%)	δf _e						
skin friction	270.26	0.002287	0.618		0.681	Δf_e		C _{do} =	0.0225		
frontal	9.52				0.001	0.852		O _{do} –	0.0223		
		0.078153	0.744			0.852					
Wing/fuse fairing int				10	0.068			C _{do} =	0.0625		
Vert tail int				5	0.034						
3D & roughness		2		5	0.034			C _{do} =	0.0745		
doors,gaps etc.				5	0.034						
Canopy	(ft²)	(N/D)	δf _e '	factor (%)	δf _e						
skin friction	26.32	0.005805	0.153		0.156	Δf_e					
frontal	4.06	0.039211	0.159			0.326					
canopy/fuse Vert tail int				10	0.068					40,1	
3D & roughness				5	0.034						
doors,gaps etc.				5	0.034						
					0.007						
Carb Inlet	(ft²)	(N/D)	δf _e '	factor (%)	δf_e						
skin friction	4.19	0.007109	0.030		0.070	Δf_e				774	
frontal	2.48	0.044550	0.111		0.0.0	0.206					
carb/fuse				10	0.068		1000	1-2		X	
3D & roughness				5	0.034						
doors,gaps etc.				5	0.034	-					
			Comp	onent sub	total	1.050		- Innellium			
						4.652					
						-					
									-		
27.20	100										

		C _{Df} 0.078153 0.04455 0.039211				
		C _{D WET} 0.002287 0 0.005805 0				
		d/l 0.08779 0.47873 0.44412				
		1/d 11.39 2.09 2.25				
		Dia _{hyd} (ft) (178 1.78 3.21				
		Afront (ft²) 9.52 2.48 8.12				
v = 0.0003047		Awef _{net} (ft²) 270.26 4.19 26.32	0.000171	δf _e 0.018 0.021 0.005		
 		Awet gross (ft²) 312.45 7.46 26.32	N	Drag 0.793 0.928 0.212		
0.001065293		Maximum Perimeter (ft) 10.94 5.58 10.10	0.002175257	q 44.679 44.679 44.679		
d II	C _{FB} 0.0028274 0.0031140 0.0029732	C _{FB} 0.0021911 0.0031389 0.0028218	0	Awet 4.501 7.234 1.585		
25,000	log Re 7.1661 6.9028 7.0277	log Re 7.9104 6.8816 7.1716	3000	CFB 0.0039408 0.0028700 0.0029995	δf _e 4.204 2.016 2.619 1.163	
h _{alt} (ft) =	Ref L (ft) 7.15 3.90 5.20	Ref L (ft) 39.67 3.71 7.24	halt (ft) =	log Re 6.3007 7.1246 7.0038	C _{DF} 0.50 0.50 0.50 0.50	
370	Ref L (in) 85.8 46.8 62.4	Ref L (in) 476.0 44.5 86.9	120	Ref L (ft) 0.974 6.496 4.919	Afrontal 8.407 4.031 5.237 2.326 20.002	0.109 0.25 0.05 0.24 3.010
V _{dsgn cr} (ktas) =	Lifting Surfaces Wing Horz Tail	Bodies of Rev Fuselage Carb Inlet Canopy	Vdsgn gear speed (ktas) =	MISC main gear doors nose gear doors wing fairing	main gear oleos, etc. main gear wheels nose gear oleos, etc. nose gear wheels	flaps @ 30° flap/chord ratio $\delta\alpha_{o}/\Delta\delta$ ΔC_{D} b_{f}/b δf_{e}

Atmosphere		. Parame								
alt.press =	25,000	(ft)	(ft) (ST(\lambda^CC)		or T _{amb} (°F)		or assume STD Day	D Day		
	(Input either	8 or am	o temp value	, but not b	oth for non std	(Input either 8 or amb temp value, but not both for non std day. Input "0" in both for a std day calc.	both for a std	day calc	(:	
Atm data			STD		Ne Ne					
h _{press} =	25000	(ft)	25000	(ft)						
Tamb≡	-34.528	(၁ွ)	-30.150	(°F)	STS					
S	0.3711	(N/D)	0.3711	(N/D)	ď	2116.22	(Ib/ft²)	Ь	785.41	(Ib/ft²)
θ	0.8281	(N/D)	0.8281	(N/D)	°L	518.688	(deg R)	Н	429.539	(deg R)
'b	0.4482	(N/D)	0.4481	(N/D)	ρο	0.002377	(slugs/ft³)	ρ	0.0010653	(slugs/ft³
					°m	3.7846E-07	(slug/ft-sec)	n.	3.2459E-07	(slug/ft-se
					٧٥	1.5922E-04	(ft²/sec)	۸	3.0470E-04	(ft²/sec)
					With the same of t					

Dimensional data from drawings.

TOP/F	ROI	NT VI	EW	(scale fa	ctor=							
Wing				5.3872	mm/ft)							
T _W		mm	ft			MG		mm	ft]		COOLING mm ft
	C _R	48	8.910	area=	114.447	oleo-1	d	7	1.299	area=	2.412	INLETS
	C _T	25	4.641	cx=	3.548		1	10	1.856			Preston w 7 1.299 area= 2.412
	L	91	16.892	cy=	7.559					•		h 10 1.856 total = 4.824
E _{w1}	L.,	c =	0.087			oleo-2	d	7	1.299	area=	2.412	<u> </u>
	а	13	2.413	area=	5.277		1	10	1.856			oil w 10 1.856 area= 1.723
	b	15	2.784	cx=	5.517							h 10 1.856 total = 3.446
E _{w2}				cy=	6.366	fork-1	w	5	0.928	area=	0.689	
	a	14	2.599	area=	5.683		1	4	0.742			W fairing/w int
	b	15	2.784	cx=	5.942							c 46 8.539 area= 1.585
Λ_{LE}	5	degree	es	cy=	6.366	fork-2	w	2	0.371	area=	1.447	w 2 0.371
HT							1	21	3.898			
T _{HT}												W/F int
	C _R	28	5.197	area=	23.215	scissors	w	2	0.371	area=	1.447	c 46 8.539 area= 12.679
	C _T	10.5	1.949	cx=	2.059		I	21	3.898			w 16 2.970
	L	35	6.497	cy=	2.756							
E _{HT1}		c =	0.259			wheel	w	9	1.671	area=	4.031	F/HT int
	a	7.5	1.392	area=	1.522		d	13	2.413			c1 8 1.485 area= 3.721
	b	7.5	1.392	cx=	3.183							c2 4 0.742
E _{HT2}				cy=	3.183	NG		//				1 18 3.341
	а	7.5	1.392	area=	1.522	oleo	d	3	0.557	area=	2.067	
	b	7.5	1.392	cx=	3.183		1	20	3.712			
Λ_{LE}	15	degree	S	cy=	3.183							
UT/F	I					fork-1	w	2.5	0.464	area=	1.723	
HT/F int "c"	с	26.5	4.919	area=	2.741			20	3.712			
III C	t	3.8	0.705	area≃	2.741	aniana	w	2	0.371	area-	1 447	
CARB I			3.703			scissors	W	21	3.898	area=	1.447	
-, 1110 1	w	6	1.114				1	21	3.898			
						wheel	w	7.5	1.392	area=	2.326	
						WIICCI	d	9	1.671	area-	2.320	

		1	(scale fac	ctor=						
			5.3878	mm/ft)						
VT		mm	ft		5	HT/F int	mm ft			FUSELAGE MAX PERIMETER
T _{VT1}							c 26.5 4.919	area=	2.741	E _{F1}
	C _R	11	2.042	area=	11.368		t 3.8 0.705			a 8 1.485 area= 2.597
	C _T	9	1.670	cx=	0.931			•		b 12 2.227
	L	33	6.125	су=	2.960	VT/F int				E _{F2}
Λ_{LE}	35	degree	es				c 32 5.939	area=	2.177	a 8 1.485 area= 2.165
T _{VT2}							t 2.5 0.464			b 10 1.856
	C _R	32	5.939	area=	18.887					total area = 9.524
	C _T	11	2.042	cx=	2.154	CARB INL	ET/F int			$D_{HYD} = 3.482$
	_	25.5	4.733	cy=	0.807		L 20 3.712	area=	3.266	P _{MAX} = 10.940
$\Lambda_{ t LE}$	0	degree	es				w 6 1.114			
E _{VT1}										CANOPY MAX PERIMETER
	a	9	1.670	area=	2.679	CANOPY/	F int			E _{C1}
	b	11	2.042	cx=	3.820		L 39 7.239	area=	14.859	a 7.5 1.392 area= 2.029
E _{VT2}				cy=	4.669		w 14 2.598			b 10 1.856
	a	9	1.670	area=	2.192					total frontal area = 4.058
l	b	9	1.670	cx=	3.820	W fairing,				extended BofR frontal area = 8.117
CARRI	B.I. E.	_		cy=	3.820		c 26.5 4.919	area=	2.741	$D_{HYD} = 3.215$
CARB I	. T		2 742				t 3.8 0.705			$P_{MAX} = 10.100$
-	L	20	3.712			2002				
l	h	6	1.114			MG				CARB INLET MAX PERIMETER
CANOF	.					strut door	w 4.5 0.835	area=	0.735	E _{CI1}
CANOR	L	39	7.239				l 6 1.114			a 6 1.114 area= 1.240
8	h	10	1.856			wheel door	w 32 5.939	area=	2.177	b 6 1.114
	w	14	2.598			wheel door	I 2.5 0.464	area=	2.1//	total frontal area = 2.480 extended BofR frontal area = 2.480
		-					. 213 0.101			$D_{HYD} = 1.777$
W fairi	ng i	nt				NG				P _{MAX} = 5.583
ſ	С	26.5	4.919	area=	2.741	wheel door	w1 4 0.742	area=	3.617	IVIAX 3.303
	t	3.8	0.705				w2 2 0.371			
							1 35 6.496			

REFERENCE AREAS & CENTROIDS

Lifting Surfaces

Win	g					mm	(ft)	Gross Wetted Area=	541.757
	Area= Cy = Cx =	250.8135 7.455 3.739	(ft ²) (ft) (ft)	40.160	mgc=	38.5	7.147 85.758	Intersection areas = Net Wetted Area = $A_N/A_G =$	38.463 503.295 0.929
нт	Area= Cy = Cx =	52.519 2.806 2.189	(ft²) (ft) (ft)	15.115	mgc=	mm 21	(ft) 3.898 46.777	Gross Wetted Area= Intersection areas = Net Wetted Area = A_N/A_G =	113.441 3.721 109.720 0.967
VT	Area= Cy = Cx =	35.126 1.986 1.989	(ft²) (ft) (ft)	10.703	mgc=	mm 28	(ft) 5.197 62.364	Gross Wetted Area= Intersection areas = Net Wetted Area = A_N/A_G =	75.871 0.000 75.871 1.000

Bodies of Revolution

Fuselage

length =	39.667	(ft)	Gross Wetted Area=	312.446
max P =	10.940	(ft)	Intersection areas =	42.183
	476.004		Net Wetted Area =	270.262
			$A_N/A_G =$	0.865

CARB INLET

7.461	Gross Wetted Area=	(ft)	3.712	length =
3.266	Intersection areas =	(ft)	5.583	max P =
4.195	Net Wetted Area =		44.545	
0.562	$A_N/A_G =$			

Canopy

26.318	Gross Wetted Area=	(ft)	7.239	length =
0.000	Intersection areas =	(ft)	10.100	max P =
26.318	Net Wetted Area =		86.864	
1.000	$A_N/A_G =$			

main landing gear

Preston & oil cooler inlet

nose landing gear

scaled up by = 3x

notused

