

Universidade Federal do Ceará Centro de Ciências Departamento de Estatística e Matemática Aplicada

PLANO DE ENSINO DE DISCIPLINA

DISCIPLINA	CÓDIGO	Nº CRÉDITOS	TURMA	ANO/SEMESTRE
Análise Multivariada	CC0293	06	01	2023/2

PROFESSOR RES	PONSÁVEL	TITULAÇÃO	REGIME DE TRABALHO	
Silvia Maria de	e Freitas	Doutorado	Dedicação Exclusiva	
CURSO (S)	NÍVEL	DEPARTAMENTO	UNIDADE CURRICULAR	
Estatística	Graduação	Estatística e Matemática Ap	olicada	

JUSTIFICATIVA

Permitir que os alunos compreendam os métodos de análises de dados multivariados enfocando os aspectos teóricos, computacionais e práticos.

OBJETIVO

Habilitar os alunos para a compreensão e utilização dos métodos de análise de dados multivariados.

EMENTA

Visão geral de análise multivariada de dados: objetivos das técnicas multivariadas; distribuição normal multivariada: definição e propriedades, formas quadráticas; testes de hipóteses para o vetor de médias e a matriz de covariâncias; análise de componentes principais; análise fatorial por componentes principais e por máxima verossimilhança; algumas técnicas de rotação de eixos; análise de agrupamento: métodos hierárquicos; análise discriminante: dois grupos e múltiplos grupos; análise de variância multivariada: um, dois e múltiplos fatores.

CONTEÚDO PROGRAMADO			
Introdução: visão geral sobre Análise Multivariada			
Revisão de Álgebra Matricial			
 Vetores aleatórios, valor esperado, matriz de variância-covariância e correlação 			
Transformação linear			
 Distribuição Normal Multivariada. Distribuição Wishart. Distribuição T² de Hotelling 			
 Distribuição de algumas formas quadráticas 			
 Teste de hipóteses para o vetor de médias e matriz de variância-covariância/correlação 			
Análise de Variância Multivariada MANOVA			
Análise de Componentes Principais			
Análise Fatorial (Análise de Fatores Ortogonais)			
Análise de Cluster (Agrupamento)			
Análise Discriminante			

METODOLOGIA:

A disciplina será ministrada através de aulas expositivas teóricas e aulas práticas, utilizando o R para a prática, de acordo com os recursos computacionais disponíveis.

SISTEMA DE AVALIAÇÃO:

A média(M) do aluno será composta pela soma das notas de, <u>pelo menos</u>, <u>dois AP's</u> mais a nota de <u>um seminário</u> (cujos temas serão definidos ao longo do semestre). Cada aluno deverá entregar um relatório técnico referente ao seu seminário antes da apresentação. Quando $M \ge 7$, o aluno é aprovado por média. Na situação de M < 7, o aluno deverá submeter-se a uma avaliação final (AF) e sua média final será dada por: MF = (M + AF)/2. O aluno será aprovado se $AF \ge 4$ e $MF \ge 5$. O aluno que não comparecer às avaliações terá direito à avaliação em segunda chamada, mediante preenchimento de requerimento enviado, por e-mail, ao Departamento de Estatística e Matemática Aplicada. A prova de segunda chamada será realizada fora do horário de aula.

As datas das provas serão definidas no decorrer do semestre e a apresentação dos seminários será realizada na última semana que antecede o final do semestre.

BIBLIOGRAFIA RECOMENDADA

Bibliografia Básica:

- 1. FERREIRA, D.F. Estatística Multivariada. Lavras: Editora UFLA, 2008.
- 2. HAIR ,J.F; BLACK, W.C.; BABIN, B.J.. ANDERSON, R.E.; TATHAM, R.L. **Análise Multivariada de Dados**. 6ª ed., Porto Alegre: Bookman, 2009.
- 3. JOHNSON, R.A.; WICHERORN, D.W. **Applied multivariate statistical analysis**. 6th ed., New Jersey: Prentice-Hall, 2007.
- 4. MANLY, B.J.F. Métodos Estatísticos Multivariados: Uma Introdução. 3ª ed., Porto Alegre: Bookman, 2008.
- 5. MINGOTI, S. A. **Análise de Dados através de métodos de Estatística Multivariada, Uma abordagem aplicada**. Belo Horizonte: Editora UFMG, 2005.

Bibliografia Complementar:

- 1. CORRAR, L.J.; PAULO, E.; DIAS FILHO, J.M. Análise Multivariada para cusrsos de Administração, Ciências Contábeis e Economia. São Paulo: Atlas, 2009.
- 2. DILLON, W. R.; GOLDSTEIN, M. Multivariate analysis methods and applications. Jonh Wiley and Sons, 1984.
- 3. MARDIA, K. V., KENT, J. T.; BIBBY, J. M. Multivariate analysis. Academic Press, NY, 1979.
- 4. MORRISON, D. F. Multivariate Statistical Methods. New York: McGraw Hill, 1978.
- 5. SEARLE, S. R. Matrix Algebra Useful for Statistics. New York: John Wiley, 1982.
- 6. SEARLE, S. R. Linear Models. New York: John Wiley, 1997.

DATA 10/09/2023

Profe Draw Silvia Monia de Frestas

CHEFE DO DEPARTAMENTO

Prof. Dr. Júlio Francisco Barros Neto