4. Regel von de l'Hospital

Zeigen	Sie, dass diese Grenzwerte auf unbestimmte Ausdrücke führen und wenden Sie de l'Hospital an.	Kontrolle
4.1	$\lim_{x \to \infty} \frac{\ln x}{2x^3 - 1}$	0
4.2	$\lim_{x\to 0} \frac{1-\cos x}{\ln(1+x^2)}$	$\frac{1}{2}$
4.3	$\lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x^2 + 2x}$	0
4.4 e	$\lim_{x\to 0+} \frac{\cos(ax)-1}{x(e^x-1)}$	$-\frac{a^2}{2}$
4.5	$\lim_{x\to 0} \sqrt{x} \ln(2x+1)$	
4.6	$\lim_{x \to 0+} \frac{1}{2x} - \frac{1}{1 - \cos(2x)}$	
4.7	$\lim_{x \to \pi} \frac{\sin(mx)}{\sin(nx)}$	$\frac{m}{n}(-1)^{m-n}$

5. Tangentensteigung und lineare Approximation

5.1	Unter welchem Winkel schneidet der Graph der Sinus-Funktion die x-Achse? Berechnen Sie dazu die Tangente an $\sin(x)$ im Punkt $x=0$, Stellen Sie die Tangentengleichung auf und berechnen den Steigungswinkel der Geraden.	π/4
5.2	Linearisieren Sie die Funktion $f(x) = e^x + \sin(x)$ an der Stelle $x = 0$ und geben Sie einen Näherungswert für $f(x = 0,001)$ an.	t(x) = 1 + 2x $1,002$

6. Geschwindigkeit, momentane Änderungsraten in Anwendungen

6.1	Entladestrom: Ein mit der Ladung Q_0 geladener Kondensator mit der Kapazität C wird ab dem Zeitpunkt $t=0$ s über einen Widerstand der Größe R entladen. Dann berechnet sich die zum Zeitpunkt t auf dem Kondensator befindliche Ladung $Q(t)$ über folgende Formel. Berechnen Sie daraus den von der Zeit abhängigen Entladestrom $I(t)$ als Momentanänderung der Ladung. $Q(t) = Q_0 \cdot e^{-\frac{t}{RC}} , I(t) = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \lim_{\Delta t \to 0} \frac{Q(t + \Delta t) - Q(t)}{\Delta t} = \frac{dQ}{dt}(t) = \dot{Q}(t)$	
6.2	Geschwindigkeit: Momentane Höhe eines vertikal hochgeworfenen Balls mit Anfangsgeschwindigkeit v_0 ist: $h(t) = v_0 t - \frac{1}{2} g t^2 \qquad \text{mit} g = 9.81 \frac{\text{m}}{\text{s}^2}$ (Momentan-)Geschwindigkeit zum Zeitpunkt $ t$:	
	Wann wird die maximale Höhe erreicht?	

7. Monotonie und Krümmung

In welchen Intervallen ist f(x) (streng) monoton fallend/wachsend (Argumentieren Sie mit der 1. Ableitung) und in welchen Intervallen ist die Krümmung konvex/konkav (Argumentieren Sie mit der 2. Ableitung)?

7.1	$f(x) = x^2 - 4x + 1$	
7.2	$f(x) = 16x^3 - 54x^2 + 2x + 3$	
7.3	$f(x) = xe^{-x}$	

8. Extremwertaufgaben

8.1	Abstand Parabel Ursprung: Welcher Punkt auf dem Parabelstück $y=-x^2+4, 0 \le x \le 2$, hat maximalen Abstand von Nullpunkt (0,0)	
8.2	Bestimmen Sie das globale Minimum und Maximum von $f(x) = xe^{-x}$ im Intervall [0, 8].	
8.3	Bestimmen Sie im Intervall [0, 4] das globale Maximum und Minimum von $f(x) = \begin{cases} x^2 - 4x + 4, & x \le 3 \\ x^2 - 8x + 16, & x > 3 \end{cases}$	
8.4	Tipps Weiterüben mit Lösungen: http://ne.lo-net2.de/selbstlernmaterial/m/a/ep/epindex.html	

9. Kosten-Optimierung

9.1	Gewinnmaximierung: Eine Unternehmung produziert (pro Monat) x Tsd Stück eines Produktes mit davon abhängigen Gesamtkosten $K(x) = x^3 - 12x^2 + 60x + 98 [€] (0 \le x \le 12 \text{ Tsd Stück} = \text{Kapazitätsgrenze})$ Zeigen Sie, dass die Gesamtkosten tatsächlich ansteigen, wenn man mehr produziert. Das Produkt wird zu einem konstanten Preis von $p = 60$ € pro Stück abgesetzt. Bestimmen Sie den damit erzielten maximalen Gewinn. Hinweis: Gewinn = Ertrag – Kosten.	$x_G=8$ Stück $p_G=186.25$ $G_{max}=158$ €
9.2	Lagerkosten Für ein Produkt ist der wöchentliche Bedarf gleich b Stück. Die Lagerkosten sind Fixkosten f plus variable Kosten l pro Stück und Woche. Eine Anlieferung verursacht Kosten in der Höhe a (unabhängig von der Stückzahl). Bestellt man x Stück pro Anlieferung, so benötigt man $n=b/x$ Lieferungen und die Transportkosten sind $n=b$ a/x . Verringert sich das Produkt kontinuierlich, so muss es im Mittel die halbe Zeit zwischen zwei Lieferungen gelagert werden, somit sind die Lagerkosten $b \cdot \frac{l}{2n} + f = l\frac{x}{2} + f$. Die Gesamtkosten für Transport und Lagerung sind somit $K(x) = \frac{ab}{x} + \frac{lx}{2} + f$. Bei welcher Bestellmenge x entstehen minimale Kosten?	

10. Marktgleichgewicht im Duopol

