ECE 495 Autonomous Vehicles Tutorial 7 Overview

- Before starting
- . Goals
- . A7
 - Part 1
 - Part 1 Output
 - Part 2
 - Part 2 Output

Before starting

- We are implementing a kinematic bicycle model
 - Simple compared to dynamic vehicle model
 - Works at low speeds
 - CG (center of gravity) bicycle model
 - w10-1_vehicle_modeling
 - slides 25 & 26
 - Let's go through the derivation

Before starting – Rear bicycle model

- Theta: heading
- L: length between the two wheel axis
- Delta: steering angle measured from theta
- V: velocity pointing from wheel
- . ICR: Instantaneous center of rotation

Before starting – CG bicycle model

- Ir: distance from rear axle to cg
- . Beta: Vehicle slip angle

A7 Goals

- Implement step (update) function for the CG (center of gravity) bicycle kinematic model
- Find control inputs to the step function in order to steer the bicycle in a figure 8 loop

A7 – Part 1

- Bicycle class values
 - Max turn rate of 1.22 rad/sec (self.w_max)
 - . Wheel base length of 2 m (self.L)
 - Length from rear axle to center of mass is 1.2 (self.lr)
- Implement the step function within the Bicycle class
 - Arguments
 - v– bicycle velocity
 - w steering angle rate

A7 – Part 1

- Calculate values for:
 - xc_dot, yc_dot, theta_dot, delta_dot
 - ***Remember to properly clamp w***

$$\dot{x}_c = v \cos(\theta + \beta)$$

$$\dot{y}_c = v \sin(\theta + \beta)$$

$$\dot{\theta} = \frac{v \cos \beta \tan \delta}{L}$$

$$\dot{\delta} = \omega$$

A7 – Part 1

- Update variables
 - Use the calculated values and self.sample_time
 - self.xc, self.yc, self.delta, self.theta
 - Use Beta equation
 - self.beta

$$\beta = \tan^{-1}(\frac{l_r \tan \delta}{L})$$

A7 – Part 1 Output

- Uncomment different code blocks to test output
 - Square, spiral, wave pattern

A7 Part 2

- Program the control inputs to have the bicycle create a figure 8 trajectory
- Requirements:
 - Both circles have a radius of 8 m
 - Finish following the trajectory in 30 s

A7 Part 2 Hints

- I recommend reading over the code and math in the assignment to have the bicycle ride in a circle
- Calculating v
 - 2 circles, radius = 8 m, must traverse in 30 seconds
- . Calculate desired delta, set w to steer to it
- Three turns: left, right, left
 - Test angles for when to start next turn

A7 Part 2 Output

Example solution outputs

A7 tutorial

Finished