Problem Set 0 (Graded Questions 2, 3(e), 8, 10)

Warren Kim

April 9, 2023

Question 2

Complete the following truth table:

P	Q	$\neg Q$	$P \wedge Q$	$P \lor Q$	$P \implies Q$	$P \iff Q$

Response

P	Q	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \implies Q$	$P \iff Q$
T	T	F	T	T	T	T
T	F	T	F	T	F	F
F	T	F	F	T	T	F
F	F	T	F	F	T	T

Question 3 part (e)

Given any two statements P and Q, and using C to denote a contradiction (i.e., a statement that is always false), prove that the following statements are tautologies (i.e., they are always true):

(e)
$$((P \land \neg Q) \implies C) \implies (P \implies Q)$$

Response

Proof.

P	Q	C	$P \wedge \neg Q$	$(P \land \neg Q) \implies C$	$P \Longrightarrow Q$	$((P \land \neg Q) \implies C) \implies (P \implies Q)$
\overline{T}	T	F	F	T	T	\overline{T}
T	F	F	T	F	F	T
F	T	F	F	T	T	T
F	F	F	F	T	T	T

Since the statement is true regardless of the truth values of P, Q, and C, it is a tautology.

Question 8

Convert the following statements into plain English:

$$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : x + y = 0$$

$$\exists y \in \mathbb{Z} \ \forall x \in \mathbb{Z} : x + y = 0$$

Decide on the truth values of each statement and then provide a proof.

Response

$$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : x + y = 0$$

"For every integer x, there exists an integer y such that x + y = 0".

Proof. This statement is true. Let $x \in \mathbb{Z}$. By definition of \mathbb{Z} , since $x \in \mathbb{Z}$, there exists an additive inverse $-x \in \mathbb{Z}$ such that x + -x = 0. So, we have

$$x + y = 0$$
$$x + y = x + -x$$
$$y = -x$$

Substituting -x for y, we get x + y = x + -x = 0.

$$\exists y \in \mathbb{Z} \ \forall x \in \mathbb{Z} : x + y = 0$$

"There exists an integer y such that x + y = 0 for every integer x".

Proof. We will prove that this statement is false. Assume by contradiction that the above statement is true. Let x=2 and y=-1. Clearly, $x,y\in\mathbb{Z}$. Then, $x+y=2+-1=1\neq 0$ which is a contradiction to the statement that there exists an integer y such that for **every** integer x, x+y=0.

Question 10

- (a) Suppose $p \in \mathbb{N}$. Show that if p^2 is divisible by 5 then p is also divisible by 5.
- (b) Prove $\sqrt{5}$ is irrational.
- (c) Suppose you try the same argument to prove $\sqrt{4}$ is irrational. The proof must fail, but where exactly does it fail?

Response

(a) *Proof.* To prove the statement, it is equivalent to prove its contrapositive: If p is not divisible by 5, p^2 is not divisible by 5. Since p is not divisible by 5, p can be rewritten as p = 5s + r, where $s, r \in \mathbb{N}$. To prove p^2 is not divisible by 5,

$$p^{2} = (5s + r)^{2}$$
$$= 25s^{2} + 10sr + r^{2}$$
$$p^{2} = 5(5s^{2} + 2sr) + r(r)$$

Since $r \neq 0$, p^2 is not divisible by 5.

(b) *Proof.* Assume by contradiction that $\sqrt{5} \in \mathbb{Q}$. By definition, we can rewrite $\sqrt{5}$ as the fraction $\frac{p}{q}$, where p and q are coprime. Then we have

$$\sqrt{5} = \frac{p}{q} \tag{1}$$

$$5 = \frac{p^2}{a^2} \tag{2}$$

$$5q^2 = p^2 \tag{3}$$

$$q^2 = \frac{1}{5}p^2$$
 from (a), since p^2 is divisible by 5, p is also divisible by 5

$$q^2 = \frac{1}{5}(5r)^2$$
 $\exists r \in \mathbb{Q} : p = 5r \text{ since } p \text{ is divisible by 5}$ (5)

$$=\frac{1}{5}(25r^2)\tag{6}$$

$$q^2 = 5r^2 \tag{7}$$

$$\frac{1}{5}q^2 = r^2$$
 from (a), since q^2 is divisible by 5, q is also divisible by 5

which means that both p and q are divisible by 5, which is a contradiction to the statement that p, q are coprime. Therefore, $\sqrt{5}$ is irrational.

(c) The proof fails because the statement "if p^2 is divisible by 4, p is divisible by 4" does not always hold (e.g. If p=2, $\frac{p}{4}=\frac{1}{2} \notin \mathbb{Z}$ but $\frac{p^2}{4}=1 \in \mathbb{Z}$). Therefore, we cannot assume that p=4r in (4) and (8).