Lecture hours 9-11

This Tutorial is a review for the midterm.

Definitions

Definition (Subspace - Span version). A subspace of \mathbb{R}^n is a set of vectors in \mathbb{R}^n that can be described as a span of vectors.

Definition (Subspace - Standard version). A subspace of \mathbb{R}^n subset V of \mathbb{R}^n with the following properties:

- (i) V is a non-empty set.
- (ii) If \vec{u} is in V , \vec{u} is also in V for any scalar $k \in \mathbb{R}$ (We say V is closed under scalar multiplication.)
- (iii) If \vec{u} and \vec{w} are in V, their sum $\vec{u} + \vec{w}$ is also in V. (We say V is closed under addition.)

Definition (Basis). The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ are a basis of a subspace V if they span V and are linearly independent. In other words, a basis of a subspace V is the minimal set of vectors needed to span all of V.

Definition (Dimension of a subspace). The dimension of the subspace V is the number of vectors in a basis of V.

Definition (Linear Transformations). We define a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ as a function with two properties:

- 1. $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ (we say T preserves vector addition)
- 2. $T(\vec{x}) = cT(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$ and $c \in \mathbb{R}$ (we say T preserves scalar multiplication)

Problem 21 (Subspace). Suppose that V is the set of all solutions of the homogeneous system

$$\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 - x_5 = 0, \\ x_1 + 2x_2 - x_3 + 3x_4 - 2x_5 = 0, \\ 2x_1 + 4x_2 - 7x_3 + x_4 + x_5 = 0. \end{cases}$$
(5.1)

Show that V is a subspace of \mathbb{R}^5 .

Problem 22 (Basis of a subspace). Let U be a subspace of \mathbb{R}^5 defined by $U=\{(x_1,x_2,x_3,x_4,x_5)\in\mathbb{R}^5:x_1=3x_2,x_3=7x_4\}$. Find a basis for U.

Problem 23 (Basis of a subspace). Suppose $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is a basis of \mathbb{R}^4 . Prove that

$$\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \vec{v}_3 + \vec{v}_4, \vec{v}_4\}$$

is also a basis of \mathbb{R}^4 .

Problem 24 (Linear Transformations). Find $a,b\in\mathbb{R}$ such that $T:\mathbb{R}^3\to\mathbb{R}^2$ defined by

$$T(x, y, z) = (2x - 4y + 3z + b, 6x + axyz)$$

is a linear transformation.

Problem 25 (Linear Transformations). Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let $\vec{v_1}, \dots, \vec{v_k}$ be vectors in \mathbb{R}^n . True or false? If false, give a counter-example. If true, explain why.

- a) If the vectors $T(\vec{v_1}), \dots, T(\vec{v_k})$ are linear independent, then $\vec{v_1}, \dots, \vec{v_k}$ are also linear independent.
- b) If the vectors $\vec{v_1}, \dots, v_k$ are linear independent, then $T(\vec{v_1}), \dots, T(\vec{v_k})$ are also linear independent.