

Establishing Service Function Chaining Architecture on OpenStack for Internet VNF Use-case

A joint research & PoC activities among APAC(Asia-Pacific) Telco Service Provider

Ibrahim Zein Abdillah

(900058) - Eng. 2 Service Control

Restu Nursobah

Research Assistant

Lab Cloud & Node Platform Infrastructure Research & Standardization TELKOM – Divisi Digital Service (n.k.a Media & Digital Department)

About Us

Employment Record:

- (2014 Present) PT. Telekomunikasi Indonesia, Tbk.
 - Eng. 2 Service Control DDS/MDD (2017 Present)
 - Eng. 3 Service Control IDeC/DDS (2014 2017)
- (2012-2013) PT. Huawei Services
 - OSS Competence Center Engineer (2013)
 - NOC SLM Carrier And Roaming Engineer (2012 2013)

Education:

Bachelor of Engineering (B.Eng.), Telecommunication & Multimedia - Electrical Engineering [2018 - 2012]

Award:

- ASEAN Outstanding Engineering Award [2018]
- Top 5 Best Employee Telkom Group BP V [2019]

Certification:

(MikroTik Certified

Network Associate)

Associate-Routing &

Restu Nursobah 23 years old

restu.nursobah@gmail.com

Employment Record:

- (2019 Present) Lab. CNP (Cloud & Node Platform) Telkom DDS
 - Research Assistant (2019 Present)
- (2018) Telkom DDS Student Internship Program
 - Lab CNP-IRS Telkom DDS Intern (2019)

Education:

Bachelor of Engineering (B.Eng.), Telecommunication Telkam Engineering [2015 - 2019]

Certification:

Specialist Certification.

Switching) Cisco

Outline

1. Overview

A brief overview of NFV; Network acceleration technology; SFC; SPP; & ATII-WP4

2. Implementation

Network topology; SFC on OVS, OVS-DPDK & SPP

3. Progress & Results

Progress & results; Working Project timeline

1. Overview

A brief overview of:

- NFV (Network Function Virtualization),
- Network acceleration technology,
- SFC (Service Function Chaining),
- SPP (Soft Patch Panel),
- ATII-WP4 (APAC Telco Innovation Initiative -Working Project 4)

NFV (Network Function Virtualization)

NFV (Network function virtualization) is a concept or principle of separating network functions from the hardware they run on by using virtual hardware abstraction. This aims to transform the way that network operators architect networks by evolving standard IT virtualisation technology to consolidate many network equipment types onto industry standard high volume servers, switches and storage, which could be located in Datacentres, Network Nodes and in the end user premises.

- NEVI: Network Fuction Virtualization Infrastructure
- VNF: Virtualized Network Function
 - NFV-MANO: NFV Management & Orchestration

NFV Deployment Model

NFV Driver & Challenges

Network Acceleration Technology

SFC (Service Function Chaining)

Network service chaining, also known as service function chaining (SFC) is a capability that uses software-defined networking (SDN) capabilities to create a service chain of connected network services (such as L4-7 like firewalls, network address translation [NAT], intrusion protection) and connects them in a virtual chain.

Network service chaining capabilities mean that a large number of virtual network functions can be connected together in an NFV environment. Because it's done in software using virtual circuits, these connections can be set up and torn down as needed with service chain provisioning through the NFV orchestration layer.

Control Terminal

SPP (Soft Patch Panel)

Resource management in SPP

SPP

- Flexibility of configuration and Performance of processing are the key requirements for virtual switching function for service chaining. It's difficult to satisfy both of them.
- SPP(Soft Patch Panel) is a new technology to meet both of requirements with Intel DPDK.

VM

ATII - WP4

Asia Pacific Telecommunication Innovation Initiative

Working Project 4

- NTT and Telkom Indonesia established ATII in April 2017, to promote the creation of new network services considering social problems in the APAC region and to promote technical studies.
- ATII has extended to three operators structure with VNPT's joining.

Project	Theme	Member
WP1	High value-added network services	NTT Telkom
WP2	Server platform virtualization	Telkom NTT
WP3	Flexible access network virtualization	NTT Telkom VNPT
WP4	vSwitch for service function chaining	NTT Telkom VNPT
WP5	Ensuring the reliability of ICT equipment by reducing lightning malfunction	NTT Telkom

2. Implementation

- SFC research topology (virtualized internet access service use case)
- SFC implementation on OpenStack with OVS
- SFC implementation on OpenStack with OVS-DPDK
- SFC implementation on OpenStack with SPP

SFC research topology (virtualized internet access service use case)

Instances/ VM in Openstack:

0	Instance Name 🔺	lmage Name	IP Address	Flavor	ntopng	ntop-ubuntu1	internal-atii-1 192.168.0.99 management- atii	92.168.0.99 nanagement-			400 400 0 404	m1.small
	client	-	192.168.0.97	m1.medium	1 F	172.16.0.19 Floating IPs: 10.14.36.194	clier	nt	: Ubuntu Server 16.04 + LXDE, iperf, traceroute			
0	client-2	client-sfc	192.168.0.28	m1.medium		ntop-ubuntu1	management- atii 172.16.0.34		server ntopng	: Ubuntu Server 16.04, iperf, traceroute, nginx : Ubuntu Server 18.04, ntopng		
	client-3	client-sfc	192.168.0.31	m1.medium	10.14 inter	Floating IPs: 10.14.36.195 internal-atii-1 192.168.0.100	m1.small	πυμ	niy			

SFC Implementation on Openstack with OVS

Neutron Port

Source: https://docs.openstack.org/newton/networking-guide/config-sfc.html

SFC Implementation on Openstack with OVS (2)

SFC Instalation in Openstack - Using local.conf

enable_plugin networking-sfc <GITURL> [GITREF]

Example:

enable_plugin networking-sfc https://opendev.org/openstack/networking-sfc stable/queens NETWORKING_SFC_DIR="\$DEST/networking-sfc" NEUTRON_FLOWCLASSIFIER_PLUGIN="networking_sfc.services.flowclassifier.plugin.FlowClassifierPlugin" NEUTRON_SFC_PLUGIN="networking_sfc.services.sfc.plugin.SfcPlugin" NEUTRON FLOWCLASSIFIER DRIVERS="ovs" NFUTRON SFC DRIVERS="ovs"

Source: https://opendev.org/openstack/networking-sfc/src/branch/master/devstack

SFC Implementation on Openstack with OVS (3)

SFC Instalation in Openstack - Manual

1. Install python-networking-sfc

First Step install python-networking-sfc, use command:

\$ pip install -c --user https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt?h=stable/queens networking-sfc==6.0.0

Make sure the networking sfc version matches the openstack version used, for example here we use the version 6 (Queens)

2. Configure neutron.conf

Enable the service plugins in neutron-server by adding them in neutron.conf

\$ sudo nano /etc/neutron/neutron.conf

add syntax flow_classifier and sfc on service_plugins

service_plugins = flow_classifier,sfc

[sfc] drivers = ovs

[flowclassifier] drivers = ovs

Source: https://docs.openstack.org/networking-sfc/queens/install/index.html

SFC Implementation on Openstack with OVS (4)

SFC Instalation in Openstack - Manual

3. Configure ml2_conf.ini

enable the networking-sfc extension in the Open vSwitch agent. The configuration file name can change, the default one is /etc/neutron/plugins/ml2_conf.ini

[agent] extensions = sfc

4. Restart and update database setup

After all done, you can run some command

\$ systemctl restart devstack@g-svc

or

\$ systemctl restart neutron-server

\$ systemctl restart devstack@g-agt

\$ systemctl restart neutron-openvswitch-agent

\$ neutron-db-manage --subproject networking-sfc upgrade head

Source: https://docs.openstack.org/networking-sfc/queens/install/index.html

SFC Implementation on Openstack with OVS (5)

SFC Implementation on Openstack with OVS (6)

Create Port Pair

tack@stack:~\$ openstack sfc port pair create \ --ingress ntopng \ --egress ntopng ppntopng Value Description Egress Logical Port e2edb029-96c0-4241-a791-2efc5f1b5a81 7cf39a21-aeb7-462a-8665-c8bd6e2029f8 Ingress Logical Port e2edb029-96c0-4241-a791-2efc5f1b5a81 ppntopng 9801f70ff6b546049ba423ebc2cbf881 Project Service Function Parameters {u'weight': 1, u'correlation': None} tenant id

#port pair

\$ openstack sfc port pair create --ingress (port) --egress (port) name_port_pair

SFC Implementation on Openstack with OVS (7)

Create Port Pair Group


```
stack@stack:~$ openstack sfc port pair group create \
                                    cddccec2-6f1f-4fb4-ac15-f09cda66580a
 Loadbalance ID
                                    ppgntopng
[u'7cf39a21-aeb7-462a-8665-c8bd6e2029f8']
{u'lb_fields': [], u'ppg_n_tuple_mapping': {u'ingress_n_tuple': {}}, u'egress_n_tuple': {}}}
 Port Pair Group Parameters
 Project
 Tap Enabled
 tenant id
```


#port pair group

\$ openstack sfc port pair group create --port-pair (port_pair_1) --port-pair (port_pair_n) name_port_pair_group

SFC Implementation on Openstack with OVS (8)

Create Flow Classifier for Service Chain 1

stack@stack:~\$ openstack sfc flow classifier show fcntopng					
Field +	Value				
Description Destination IP Destination IP Destination Port Range Max Destination Port Range Min Ethertype ID L7 Parameters Logical Destination Port Logical Source Port Name Project Protocol Source IP Source Port Range Max Source Port Range Min tenant_id	192.168.0.101/32 None				
+ <u>-</u>	++				

#flow classifier

\$ openstack sfc flow classifier create --ethertype IPv4 --source-ip-prefix 192.168.0.97/32 --destination-ip-prefix 192.168.0.101/32 --logical-source-port sfc-client --logical-destination-port sfc-server **fcntopng**

SFC Implementation on Openstack with OVS (9)

Create Flow Classifier for Service Chain 2

stack@stack:~\$ openstack sfc :	flow classifier show fcntopng-2
Field	Value
Description Destination IP Destination IP Destination Port Range Max Destination Port Range Min Ethertype ID L7 Parameters Logical Destination Port Logical Source Port Name Project Protocol Source IP Source Port Range Max Source Port Range Min tenant_id	192.168.0.101/32 None None IPv4 99b792fd-6d91-4caf-a8c0-25e2be78c01c {} 6efee653-866d-49d8-b59e-aef555f1c967 7ca5395f-0aad-43fd-b7a4-61a6516a96f0 fcntopng-2 9801f70ff6b546049ba423ebc2cbf881 None 192.168.0.28/32 None None 9801f70ff6b546049ba423ebc2cbf881

#flow classifier

\$ openstack sfc flow classifier create --ethertype IPv4 --source-ip-prefix 192.168.0.97/32 --destination-ip-prefix 192.168.0.101/32 --logical-source-port sfc-client-2 --logical-destination-port sfc-server **fcntopng-2**

SFC Implementation on Openstack with OVS (10)

Create Flow Classifier for Service Chain 3

stack@stack:~\$ openstack sfc flow classifier show fcntopng-3					
Field	Value				
Description Destination IP Destination IP Destination Port Range Max Destination Port Range Min Ethertype ID L7 Parameters Logical Destination Port Logical Source Port Name Project Protocol Source IP Source Port Range Max Source Port Range Min tenant_id	192.168.0.101/32 None None IPv4 b854659d-a6a6-4e50-8dae-6c12c1032d60 { {} 6efee653-866d-49d8-b59e-aef555f1c967 1ebba0c8-3cf1-4743-a369-009451a9911e fcntopng-3 9801f70ff6b546049ba423ebc2cbf881 None 192.168.0.31/32 None None 9801f70ff6b546049ba423ebc2cbf881				
	т				

#flow classifier

\$ openstack sfc flow classifier create --ethertype IPv4 --source-ip-prefix 192.168.0.97/32 --destination-ip-prefix 192.168.0.101/32 --logical-source-port sfc-client-3 --logical-destination-port sfc-server **fcntopng-3**

SFC Implementation on Openstack with OVS (11)

Create Port Chain for Service Chain 1

#port chaining

\$ openstack sfc port chain create --port-pair-group ppgntopng --flow-classifier fcntopng pcntopng

SFC Implementation on Openstack with OVS (12)

Create Port Chain for Service Chain 2

#port chaining

\$ openstack sfc port chain create --port-pair-group ppgntopng-2 --flow-classifier fcntopng pcntopng-2

SFC Implementation on Openstack with OVS (13)

Create Port Chain for Service Chain 3

#port chaining

\$ openstack sfc port chain create --port-pair-group ppgntopng --port-pair-group ppgntopng-2 --flowclassifier fcntopng pcntopng-3

vDPI Setup

SFC Implementation on Openstack with OVS-DPDK

Opendev respository ovs-dpdk

https://opendev.org/x/networking-ovs-dpdk

Installation :

https://opendev.org/x/networking-ovs-dpdk/src/branch/master/doc/source/installation.rst

Sample local.conf for deployment :

https://opendev.org/x/networking-ovs-dpdk/src/branch/master/doc/source/_downloads/

Getting started with Openstack and OVS-DPDK using Ubuntu :

https://opendev.org/x/networking-ovs-dpdk/src/branch/master/doc/source/getstarted/devstack/ubuntu.rst

README.rst

networking-ovs-dpdk

A Collection of Agents and Drivers to support managing DPDK accelerated Open vSwitch

- Free software: Apache license
- Source: http://git.openstack.org/cgit/openstack/networking-ovs-dpdk
- Installation:

http://git.openstack.org/cgit/openstack/networking-ovs-dpdk/tree/doc/sour

• All-in-one local.conf example:

http://git.openstack.org/cgit/openstack/networking-ovs-dpdk/tree/doc/sour

- Usage: http://git.openstack.org/cgit/openstack/networking-ovs-dpdk/tree/doc/source
- · Bugs: http://bugs.launchpad.net/networking-ovs-dpdk
- Code Reviews:

https://review.openstack.org/#/q/status:open+project:openstack/networking

Questions: E-mail the dev mailing list with the [networking-ovs-dpdk] tag
 mailto:openstack-discuss@lists.openstack.org?subject=[networking-ovs-dpd

SFC Implementation on Openstack with SPP

Opendev respository networking-spp:

https://opendev.org/x/networking-spp

Installation:

https://opendev.org/x/networking-spp/src/branch/master/doc/source/installation.rst

README.rst

networking-spp

Neutron ML2 mechanism driver for Soft Patch Panel

This provides ML2 mechanism driver and agent which makes high speed communication using Soft Patch Panel (SPP) possible in the OpenStack environment.

- Free software: Apache license
- Source: https://github.com/openstack/networking-spp
- Bugs: https://bugs.launchpad.net/networking-spp

3. Progress & Results

- Research progress report
- Working project timeline

Progress and Result : SFC on OVS

Target Test

Function Test:

- Traffic Flow for Service Chain 1: Client-1 \rightarrow vDPI-1 \rightarrow Server
- Traffic Flow for Service Chain 2: Client-2 \rightarrow vDPI-2 \rightarrow Server
- Traffic Flow for Service Chain 3: Client-3 \rightarrow vDPI-1 \rightarrow vDPI-2 \rightarrow Server

Througput Test:

- Throughput Test Without Service Chain : Client-1 → Server
- Throughput Test for Service Chain 1: Client-1 \rightarrow vDPI-1 \rightarrow Server
- Throughput Test for Service Chain 2: Client-2 \rightarrow vDPI-2 \rightarrow Server
- Throughput Test for Service Chain 3: Client-3 \rightarrow vDPI-1 \rightarrow vDPI-2 \rightarrow Server

Research Progress Report

Service Chain

Service Chain 1

Service Chain 2

Research Progress Report (2)

Without Service Chain


```
root@client-2:/home/client-sfc#
root@client-2:/home/client-sfc# iperf -c 192.168.0.101
Client connecting to 192.168.0.101, TCP port 5001
TCP window size: 45.0 KByte (default)

[ 3] local 192.168.0.28 port 35370 connected with 192.168.0.101 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0-10.0 sec 19.1 GBytes 16.4 Gbits/sec
```


Research Progress Report (3)

Research Progress Report (4)

Research Progress Report (5)

INDONESIA OpenInfra Days

Conclusion: SFC on OvS

Result

Function Test:

- Traffic Flow for Service Chain 1: Client-1 \rightarrow vDPI-1 \rightarrow Server = OK
- Traffic Flow for Service Chain 2: Client-2 \rightarrow vDPI-2 \rightarrow Server = OK
- Traffic Flow for Service Chain 3: Client-3 \rightarrow vDPI-1 \rightarrow vDPI-2 \rightarrow Server = OK

Througput Test:

- Throughput Test Without Service Chain : Client-1 → Server = 16,4 Gbps
- b) Throughput Test for Service Chain 1: Client-1 \rightarrow vDPI-1 \rightarrow Server = 2,75 Gbps
- Throughput Test for Service Chain 2: Client-2 \rightarrow vDPI-2 \rightarrow Server = 2,20 Gbps
- Throughput Test for Service Chain 3: Client-3 \rightarrow vDPI-1 \rightarrow vDPI-2 \rightarrow Server = 2.11 Gbps

Working Project Timeline

vSwitch & Network Acceleration Comparison

		SR-IOV	OVS	OVS-DPDK	SPP
Speed	Speed for packet processing	Good	Poor	OK	Good 10 Gbps to 12 Gbps or more
Flexibility	Hardware limitation	OK NIC limited	Good	Good DPDK is now common	Good DPDK is now common
	Live migration	Poor	Good	OK	OK (not yet verified)
Operability	Packet capture on host side	Poor pass through	OK duplicate: yes (less performance from 800Mbps) capture: no	OK duplicate: yes capture: no	Good duplicate: yes capture: yes (under test)

Thank you!

