CS754 Assignment-3

Saksham Rathi, Ekansh Ravi Shankar, Kshitij Vaidya

Declaration: The work submitted is our own, and we have adhered to the principles of academic honesty while completing and submitting this work. We have not referred to any unauthorized sources, and we have not used generative AI tools for the work submitted here.

Question 2

Solution

1 Methodology

1.1 Problem Formulation

The coded snapshot E_u is obtained as:

$$E_u = \sum_{t=1}^T C_t \odot F_t + \eta$$

where:

- 1. C_t is a binary code modulating frame F_t ,
- 2. η is additive Gaussian noise with $\sigma = 2$.

Objective: Given E_u and $\{C_t\}_{t=1}^T$, recover $\{F_t\}_{t=1}^T$.

1.2 Linear System Representation

The problem is reformulated as Ax = b, where:

- 1. **x**: Vectorized form of all frames $\{F_t\}$,
- 2. **b**: Vectorized coded snapshot E_u ,
- 3. **A**: Block-row matrix where each block is $diag(vec(C_t))$.

$$A = [diag(C_1) \ diag(C_2) \cdots diag(C_T)] \tag{1}$$

For **patch-wise processing** (8×8 patches):

1. x: Sparse coefficients of patches in 2D-DCT basis,

2. A: Constructed as:

$$\mathbf{A} = \left[\operatorname{diag}(\operatorname{vec}(C_1)) \mathbf{\Psi} \quad \cdots \quad \operatorname{diag}(\operatorname{vec}(C_T)) \mathbf{\Psi} \right]$$

where Ψ is the 2D-DCT basis.

3. **b**: Vectorised patch vector

1.3 Reconstruction via OMP

1. Patch Extraction:

- (a) Divide E_u into overlapping 8×8 patches.
- (b) For each patch, solve:

$$\mathbf{A}_{\text{patch}}\mathbf{x}_{\text{patch}} = \mathbf{b}_{\text{patch}}$$

using OMP (sparsity constraint: k = 10).

2. Sparse Recovery:

(a) OMP iteratively selects the most correlated basis vectors and solves a least-squares problem.

3. Frame Reconstruction:

- (a) Reconstruct each patch via Ψx .
- (b) Average overlapping regions to suppress artifacts.

1.4 Results

To quantify the quality of the reconstruction we computed the RRMSE (Normalised Root Mean Squared Error). A trend that was observed was that the the RRMSE for frames increases on increasing the values of T. This can be explained by the fact that the total information available to us in the long exposure frame remains that same but we are inferring more number of frames from that leading to an increase in the error and decrease in reconstruction quality.

Image Identification	RMSE
Cars $T = 3$	0.7915
Cars $T = 5$	0.8056
Cars $T = 7$	0.8107
Flame $T = 5$	1.1015

Table 1: Mean RMSE Values for Frame Reconstruction

Figure 1: Original Frames for T = 3

Figure 2: Noisy coded snapshot for T = 3

Figure 3: Reconstructed Frames for T = 3

Figure 4: Original Frames for T = 5

Figure 5: Noisy coded snapshot for T = 5

Figure 6: Reconstructed Frames for T = 5

Figure 7: Original Frames for T = 7

Figure 8: Noisy coded snapshot for T = 7

Figure 9: Reconstructed Frames for T = 7

Figure 10: Original Frames for Flame Video

Figure 11: Noisy coded snapshot for Flames Video

Figure 12: Reconstructed Frames for Flames Video