BIOS 755: Linear Mixed Models I

Alexander McLain

February 11, 2025

Framingham study Cholesterol Data

- ▶ In the Framingham study, each of 2634 participants was examined every 2 years for a 10 year period for his/her cholesterol level.
- Study objectives:
 - ▶ How does cholesterol level change over time on average as people get older?
 - ▶ How is the change of cholesterol level associated with sex and baseline age?
- ▶ A subset of 200 subjects' data is used for illustrative purpose.

Introduction to Linear Mixed Models

- ▶ In the General Linear Model, we focused our conceptual model on the covariance and correlation of the error terms.
- In linear mixed models, the conceptual model is based on thinking about individual behavior first.
- ► The possibilities for how this is represented and how the variation in the population is represented are very flexible.
- As we'll see, linear mixed models can incorporate heterogeneity and different correlation structures (even though we don't think about them that way).

Linear Mixed (Effects) Models

The linear mixed model can be expressed as

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i$$

where

- \triangleright $X_i n_i \times p$ matrix of fixed effect covariates
- ightharpoonup eta k imes 1 vector of regression coefficients (fixed effects).
- $ightharpoonup Z_i n_i \times q$ matrix of random effect covariates.
- ▶ $\boldsymbol{b}_i q \times 1$ vector of random effects, $\boldsymbol{b}_i \sim N(0, \boldsymbol{G})$,
- ▶ $e_i n_i \times 1$ vector of errors and $e_i \sim N(0, R_i)$.

► Consider a sleep deprivation study where the sleeping time of 18 individuals was restricted, and their reaction to a series of tests was measured over 10 days.

Random intercept and slope model

The random intercept and slope model:

$$\mathbf{Y}_i = \beta_0 + b_{0i} + (\beta_1 + b_{1i})\mathbf{t}_i + \mathbf{e}_i$$

where $t'_{i} = \{t_{i1}, t_{i2}, \dots, t_{in_{i}}\}$

- \triangleright β_0 is the average intercept and b_{0i} are the deviations from the average intercept.
- \triangleright β_1 is the average slope and b_{1i} are the deviations from the average slope.
- We could add other fixed effects to this model (sex, smoking, etc.).

Random intercept and slope model

The random intercept and slope model:

$$\mathbf{Y}_i = \beta_0 + b_{0i} + (\beta_1 + b_{1i})\mathbf{t}_i + \mathbf{e}_i$$

- $ightharpoonup R_i = var(e_i)$ describes the covariance of the residuals
- In the models we've been running in the previous weeks, this is the covariance of the *i*th subject's deviations from $\beta_0 + \beta_1 t_i$ (i.e., the overall trend)
- Now it's the covariance of the *i*th subject's deviations from $\beta_0 + b_{0i} + (\beta_1 + b_{1i})\mathbf{t}_i$ (i.e., their individual trend)
 - ▶ Usually, it is assumed that $\mathbf{R}_i = \sigma^2 \mathbf{I}$, which is the "conditional independence assumption."

Linear Mixed (Effects) Models

$$\boldsymbol{Y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{e}_i$$

The vector of regression parameters β are the fixed effects, which are assumed to be the same for all individuals.

- Fixed effects are constant across individuals, and random effects vary.
- For example, in a growth study, a model with random intercepts $\beta_0 + b_{0i}$ and fixed slope β_1 corresponds to parallel lines for different individuals i, or the model $Y_{ij} = \beta_0 + b_{0i} + \beta_1 t_{ij} + e_{ij}$

Decomposing the Variation

▶ In the linear mixed-effects model

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i + \mathbf{e}_i,$$

the error term e_{ii} is decomposed as

$$e_{ij}=e_{ij1}+e_{ij2}$$

where e_{ij1} represents the deviations due to within-subject fluctuations and e_{ij2} those due to measurement error, where

$$e_i = e_{i1} + e_{i2}.$$

Decomposing Variation

Decomposing Variation

Within-unit Variation

- ightharpoonup Some typical scenarios; considerations involved in identifying an appropriate R_i .
- ► There may be biological fluctuations over time, but commonly, the observation times are not close enough to catch these variations.
- ▶ Then correlation due to within-subject sources among the Y_{ij} may be considered negligible.
- ► If we furthermore believe that the magnitude of fluctuations is similar across time and units, we may represent this variance as

$$var(\boldsymbol{e}_{i1}) = \sigma_1^2 \boldsymbol{I}$$

Within-unit Variation

It's probably reasonable to assume that errors in measurement are uncorrelated over time. Thus,

$$var(\boldsymbol{e}_{i2}) = \sigma_2^2 \boldsymbol{I}.$$

▶ We then have

$$\mathbf{R}_i = var(\mathbf{e}_i) = var(\mathbf{e}_{1i}) + var(\mathbf{e}_{2i}) = \sigma_1^2 \mathbf{I}_{n_i} + \sigma_2^2 \mathbf{I}_{n_i} = \sigma^2 \mathbf{I}_{n_i},$$

where σ^2 is the aggregate variance reflecting variation due to both within-unit sources.

The assumption that e_{ij2} and e_{ij2} are independent is standard, as is the assumption that e_{i1} and e_{i2} (and hence e_i) are independent of b_i .

Within-unit Variation

The two special cases of within-unit variation:

- ▶ If there is no (or very little) measurement error (e.g. height and weight), $e_i = e_{i1}$ (all within-unit variation is due to things like "fluctuations").
- Similarly, we may have a rather "noisy" measuring device such that, relative to errors in measurement, deviations due to within-unit subjects are virtually negligible. In this case, $e_i = e_{i2}$ (all within-unit variation is solely the measurement error variance).

Among-unit Variation

- The random effects b_i have mean 0 and represent variation resulting from individual units' differences.
- ▶ Intercepts and slopes may tend to be large or small together, so subjects with steeper slopes tend to "start out" larger at the beginning.
- This suggests that it would not necessarily be smart to think of $var(\mathbf{b}_i)$ as a diagonal matrix (independence).

Among-unit Variation

▶ For this reason, we can also specify a covariance matrix for the random effects.

$$var(oldsymbol{b}_i) = oldsymbol{G}$$

ightharpoonup For $oldsymbol{b}_i = \{b_{0i}, b_{1i}\}'$, $oldsymbol{G}$ is a 2 imes 2 matrix

$$\boldsymbol{G} = \left(\begin{array}{cc} G_{11} & G_{12} \\ G_{11} & G_{22} \end{array}\right)$$

with

$$var(b_{0i}) = G_{11}, \quad var(b_{1i}) = G_{22}$$

 $cov(b_{0i}, b_{1i}) = G_{12}$

Among-unit Variation

ightharpoonup A standard assumption is that the b_i have a multivariate normal distribution

$$m{b}_i \sim MVN(m{0}, m{G})$$

It is usually assumed that e_i and b_i are independent. This says that the magnitude of variation within a unit does not depend on the magnitude of b_i for that unit.

Conditional vs marginal mean

▶ The **conditional** mean of Y_i , given b_i , is

$$E(\boldsymbol{Y}_i|\boldsymbol{b}_i) = \boldsymbol{X}_i\boldsymbol{\beta} + \boldsymbol{Z}_i\boldsymbol{b}_i$$

ightharpoonup The marginal or population-averaged mean of Y_i is

$$E(\mathbf{Y}_i) = \mathbf{X}_i \boldsymbol{\beta}$$

- ▶ In contrast to β , the vector \boldsymbol{b}_i is comprised of subject-specific regression coefficients.
- All covariates in **Z** will be in **X**, and it's rare to consider more than 2 variables in **Z**.

Conditional vs marginal variance

► In the mixed model

$$\boldsymbol{Y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{e}_i$$

We have the following conditional and marginal expectations

$$E(\boldsymbol{Y}_i|\boldsymbol{b}_i) = \boldsymbol{X}_i\boldsymbol{\beta} + \boldsymbol{Z}_i\boldsymbol{b}_i, \quad E(\boldsymbol{Y}_i) = \boldsymbol{X}_i\boldsymbol{\beta}$$

along with the following conditional and marginal variances

$$var(\mathbf{Y}_i|\mathbf{b}_i) = var(\mathbf{e}_i) = \mathbf{R}_i$$
, and
 $var(\mathbf{Y}_i) = var(\mathbf{Z}_i\mathbf{b}_i) + var(\mathbf{e}_i)$
 $= \mathbf{Z}_i\mathbf{G}\mathbf{Z}_i' + \mathbf{R}_i$

Linear Mixed (Effects) Models

- lacktriangle Introducing random effects induces correlation among the $oldsymbol{Y}_i$.
- $ightharpoonup Var(Y_i)$ is described in terms of a set of covariance parameters, some defining G and some defining R_i .
- It is difficult to disentangle the variance for \boldsymbol{G} and variance for \boldsymbol{R}_i , which is one reason why we usually assume $\boldsymbol{R}_i = \sigma^2 \boldsymbol{I}$
- ► Linear mixed models are just another type of covariance matrix, which can lead to strange results (as we'll see).

Linear Mixed (Effects) Models Summary

- ► LMMs account for correlation through random effects that are unique to each individual.
- ► LMMs offer flexibility in modeling different data types and can handle unbalanced designs much better than covariance pattern models.
- The interpretation of the fixed effects is similar to that in standard linear regression.
- ► LMMs come with assumptions such as normality of residuals, independence of errors, and homoscedasticity (constant variance of errors), which must be checked for valid inferences.
- LMMs are especially useful for hierarchical or multilevel data.