1 Question 1

Show that, for any vector norm $\|:\|$ for \mathbb{R}^n and for any $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$,

$$||x|| - ||y|| \le ||x - y||$$

Let $\|:\|$ be any norm in \mathbb{R}^n .

Let $x, y \in \mathbb{R}^n$

$$||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

$$= \sqrt{\langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle}$$

$$= \sqrt{||x||^2 - 2\langle x, y \rangle + ||y||^2}$$

by property $||x|| = \sqrt{\langle x, x \rangle}$ where \langle , \rangle is the corresponding inner product

by property $\langle a+b,c\rangle=\langle a,c\rangle+\langle b,c\rangle$ and $\langle a,b\rangle=\langle b,a\rangle$

if $\langle x, y \rangle > 0$

$$= \sqrt{\|x\|^2 - 2|\langle x, y \rangle| + \|y\|^2}$$

$$\geq \sqrt{\|x\|^2 - 2\|x\| \|y\| + \|y\|^2}$$

$$= \sqrt{(\|x\| - \|y\|)^2}$$

$$= \|x\| - \|y\|$$

by Cauchy–Schwarz inequality, $|\langle x, y \rangle| \le ||x|| ||y||$ and $\sqrt{..}$ is incr func

if $\langle x, y \rangle \leq 0$

$$= \sqrt{\|x\|^2 - 2\langle x, y \rangle + \|y\|^2}$$

$$\geq \sqrt{\|x\|^2 + \|y\|^2}$$

$$= \sqrt{\|x\|^2 + \|y\|^2 - 2\|x\| \|y\| + 2\|x\| \|y\|}$$

$$= \sqrt{(\|x\| - \|y\|)^2 + 2\|x\| \|y\|}$$

$$\geq \sqrt{(\|x\| - \|y\|)^2}$$

$$= \|x\| - \|y\|$$

since $\langle x, y \rangle \le 0$, then $-2\langle x, y \rangle \ge 0$, $\sqrt{..}$ is an increasing function

since $||x|| \ge 0$, $||y|| \ge 0$, then $2||x|| ||y|| \ge 0$, $\sqrt{..}$ is an increasing function

2 Question 2

Show that

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\| = 1} \|Ax\|$$

Can write the right hand side,

$$\max_{\|x\|=1} \|Ax\| = \max_{\|x\|=1} \frac{\|Ax\|}{\|x\|}$$

Clearly,

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \ge \max_{\|x\|=1} \frac{\|Ax\|}{\|x\|}$$
 (1.1)

because the set of x over which the left max is taken, completely contains the set of x on the right max (for same function). The set of x's s.t ||x|| = 1 is contained in the set of x's s.t $x \neq 0$ or equivalently $||x|| \neq 0$

Let $y \neq 0 \in \mathbb{R}^n$ be some vector from the set on the left hand side max.

There exists a vector x with ||x|| = 1 such that it achieves the same for value for $\frac{||Ax||}{||x||}$ as y.

Let $x = \frac{y}{\|y\|}$, so $y = \|y\| x$ and clearly $\|x\| = 1$

$$\frac{\|Ay\|}{\|y\|} = \frac{\|A(\|y\| x)\|}{\|\|y\| x\|}$$
$$= \frac{\|\|y\| (Ax)\|}{\|\|y\| x\|}$$

||y|| is just a scalar that we can pull out of by properties of norms (for both \mathbb{R}^m on the top and \mathbb{R}^n on the bottom)

$$= \frac{\|y\| \|Ax\|}{\|y\| \|x\|}$$
$$= \frac{\|Ax\|}{\|x\|}$$

So for any vector from the set on the left ($x \neq 0$), there is a vector from the right set (||x|| = 1) that achieves the same value for the function $\frac{\|Ax\|}{\|x\|}$

Therefore, the max of the right side is at least as large as the max of the left.

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \le \max_{\|x\|=1} \frac{\|Ax\|}{\|x\|}$$
 (2.1)

So by 1.1 and 2.1 we get

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \|Ax\|$$

Let
$$B = \{x \in \mathbb{R}^n | \|x\| = 1\}$$
 and let $f : B \to \mathbb{R}$ defined by $f(x) = \|Ax\|$

Will show B is compact and that f(x) is continuous. Then once we have that, by theorem covered in class we can conclude that there does exist a vector y that achieves the maximum value for f(x) on B, ie ||A|| = ||Ay||

• B is closed \iff for any sequence $\{x_k\} \subset B$ that converges to x^* , $(x_k \to x^*)$ we have that $x^* \in B$ Like we showed in class,

Let $\{x_k\} \subset B$ be some sequence that converges to x^* , $x_k \to x^*$ ($||x_k|| = 1$)

So $\forall \epsilon > 0 \exists N > 0 \forall k \geq N \|x_k - x^*\| < \epsilon$

Let $\epsilon > 0$ be arbitrary, so $\exists N > 0$ s.t $||x_N - x^*|| < \epsilon$ $(x_N \in B \text{ so } ||x_N|| = 1)$

 $||x^*|| - 1| = ||x^*|| - ||x_N||| \le ||x^* - x_N|| < \epsilon$ So $\forall \epsilon > 0$ we have $||x^*|| - 1| < \epsilon$ the \leq is by Question 1

Therefore $||x^*|| - 1| = 0$, so $||x^*|| = 1$ and hence $x^* \in B$

Proving B is a closed set.

• B is bounded $\iff \exists M > 0 \text{ s.t. } ||x|| \leq M \text{ for all } x \in B$

Clearly there exists such an M, set M = 1, by def of B $x \in B \rightarrow ||x|| = 1 \le M$

Proving B is bounded

So since B is closed and bounded, it is compact

• f(x) = ||Ax|| is continuous on B if $\forall x \in B \forall \epsilon > 0 \exists \delta > 0 \forall y \in B \ ||y - x|| < \delta \implies |f(y) - f(x)| < \epsilon$ Let $x \in B$, $A \in \mathbb{R}^{mxn}$ and $\epsilon > 0$. Write A in terms of its columns $A = [a_1, a_2, ...a_n]$, $a_i \in \mathbb{R}^m$ $\|\|$ is the norm in \mathbb{R}^n we are using. By norm equivalences $\exists 0 < c_1 \le c_2 \in \mathbb{R}$ such that $\forall z \in \mathbb{R}^n \ c_1 \|z\| \le \|z\|_1 \le c_2 \|z\|$ Let

$$\delta = \frac{\epsilon}{\|a_t\|_{C_2}}$$
 where $\|a_t\|$ is the max of $\|a_1\|$, $\|a_2\|$, ... $\|a_n\|$

Let
$$y \in B$$
 s.t $||y - x|| < \delta$
By norm equivalences $c_1 ||y - x|| \le ||y - x||_1 \le c_2 ||y - x||$

$$\begin{split} |f(y)-f(x)| &= \Big| \; \|Ay\| - \|Ax\| \; \Big| \\ &\leq \|Ay-Ax\| & \text{by Question 1} \\ &= \|A(y-x)\| \\ &= \|A[(y_1-x_1)e_1 + (y_2-x_2)e_2 + \ldots + (y_n-x_n)e_n]\| & \text{wrote } x - y \text{ in terms of the standard basis, } x_i, y_i \in \mathbb{R} \\ &= \|(y_1-x_1)Ae_1 + (y_2-x_2)Ae_2 + \ldots + (y_n-x_n)Ae_n\| \\ &= \|(y_1-x_1)a_1 + (y_2-x_2)a_2 + \ldots + (y_n-x_n)a_n\| \\ &\leq \|(y_1-x_1)a_1\| + \|(y_2-x_2)a_2\| + \ldots + \|(y_n-x_n)a_n\| & \text{by triangle inequality} \\ &= |y_1-x_1|\|a_1\| + |y_2-x_2|\|a_2\| + \ldots + |y_n-x_n|\|a_n\| & \text{by prop of norm} \\ &\leq |y_1-x_1|\|a_1\| + |y_2-x_2|\|a_1\| + \ldots + |y_n-x_n|\|a_1\| & a_t \text{ is the max of } \|a_1\|, \|a_2\|, \ldots \|a_n\| \\ &= \|a_t\| \left(|y_1-x_1| + |y_2-x_2| + \ldots + |y_n-x_n| \right) \\ &= \|a_t\| \|y-x\|_1 & \text{by def of norm 1} \\ &\leq \|a_t\| c_2\|y-x\| & \text{by above norm equivalence} \\ &< \|a_t\| c_2\delta \\ &= \epsilon \end{split}$$

So f(x) = ||Ax|| is continuous on B

Finally we can conclude by the theorem seen in class that there does exists a vector y that maximizes f(x) on B.

$$f(y) = \max_{\|x\|=1} f(x) = \max_{\|x\|=1} \|Ax\| = \max_{\|x\|=1} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|\neq 0} \frac{\|Ax\|}{\|x\|} = \|A\|$$

3 Question 3

Show that, for any matrix $A \in \mathbb{R}^{mxn}$ and any vector $x \in \mathbb{R}^n$,

$$||Ax|| \le ||A|| ||x||$$

Let $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{mxn}$. Also let $y \neq 0 \in \mathbb{R}^n$ be the vector that maximizes the quantity $\frac{\|Ax\|}{\|x\|}$, ie $\|A\| = \frac{\|Ay\|}{\|y\|}$

If x = 0

then Ax = 0 and by properties of norms ||Ax|| = 0 as well as ||x|| = 0

We have ||Ax|| = ||A|| ||x|| so $||Ax|| \le ||A|| ||x||$

Else (if $x \neq 0$)

then by prop. of norms $||x|| \neq 0$ and so we can write

$$||Ax|| = \frac{||Ax||}{||x||} ||x|| \le \frac{||Ay||}{||y||} ||x|| = ||A|| ||x||$$

4 Question 4

Show that there is always an $x^* \neq 0$ such that

$$||Ax^*|| = ||A|| ||x^*||$$

Let $A \in \mathbb{R}^{mxn}$ be some matrix. And let $y \neq 0 \in \mathbb{R}^n$ be the vector that maximizes the quantity $\frac{\|Ax\|}{\|x\|}$, ie $\|A\| = \frac{\|Ay\|}{\|y\|}$

Let $x^* = y$

then since $y \neq 0$ and so $x^* \neq 0$, we have $||x^*|| \neq 0$

$$||Ax^*|| = \frac{||Ax^*||}{||x^*||} ||x^*|| = \frac{||Ay||}{||y||} ||x^*|| = ||A|| ||x^*||$$

Moreover, show that, if x^* satisfies $||Ax^*|| = ||A|| ||x^*||$, then $\hat{x} = \alpha x^*$, for all $\alpha \in \mathbb{R}$, satisfies

$$||A\hat{x}|| = ||A|| ||\hat{x}||$$

```
Let x^* \in \mathbb{R}^n satisfy ||Ax^*|| = ||A|| ||x^*||

Let \alpha \in \mathbb{R} and \hat{x} = \alpha x^*

||A\hat{x}|| = ||A(\alpha x^*)|| = ||\alpha(Ax^*)|| = |\alpha|||Ax^*|| = |\alpha|||A|||x^*|| = ||A||||\hat{x}||

by prop of vector scalar mult, prop of norms and by assumption on x^*
```

5 Question 5

Show that an isolated local minimizer of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a strict local minimizer of f

Let $f: \mathbb{R}^n \to \mathbb{R}$ be some function.

Assume x^* is an isolated local minimizer of f.

So there is a neighborhood N_1 of x^* such that x^* is the only local minimizer in N_1 .

In other words $\exists r_1 > 0$ s.t x^* is the only local minimizer in $B(x^*, r_1)$.

WTP that x^* is a strict local minimizer of f.

That there exists a neighborhood N_2 of x^* s.t. $f(x^*) < f(x)$ for all $x \in N_2$ with $x \neq x^*$

In other words $\exists r_2 > 0$ s.t $f(x^*) < f(x)$ for all $x \in B(x^*, r_2)$ with $x \neq x^*$.

Let $r_2 = r_1$, (x^* is a strict minimizer in the same neigborhood)

Claim: $\forall x \in B(x^*, r_1), x \neq x^* \implies f(x^*) < f(x)$

Suppose for a contradiction that $\exists y \in B(x^*, r_1), y \neq x^*$ and $f(x^*) \geq f(y)$

Since x^* is a local minimizer in $B(x^*, r_1)$, $\forall x \in B(x^*, r_1)$, $f(x^*) \leq f(x)$ and it follows that

 $\forall x \in B(x^*, r_1), f(y) \le f(x) \text{ since } f(x^*) \ge f(y)$

This implies that y is a local minimizer in $B(x^*, r_1)$

But since $y \neq x^*$ this contradicts that fact that x^* is the **only** local minimizer in $B(x^*, r_1)$.

Therefore the claim is true and so x^* is a strict local minimizer of f.