

Lecture 6. Data structures

Functional Programming

Utrecht University

1

Goals

Practice our Haskell skills

- Operations on binary trees
 - Common operations
 - Search trees
- Key-value maps
 - Via lists and via functions

Binary search trees

Definition of Tree

Binary trees with data in the nodes

Example of tree

Other kinds of trees

• Binary trees with data in the leaves

- Binary trees with data in nodes and leaves
 - Potentially of different type

• Ternary trees with data in the nodes

Rose trees

Trees with an unbound number of branches at each node

We do not really need Leaf, we can make the list empty

```
data RoseTree a = Node a [Tree a]
```

In the practicals, we use an infix constructor

```
data RoseTree a = a :> [Tree a]
```

Cooking size

size t returns the number of (inner) nodes in t

1. Define the type

```
size :: Tree a -> Int
```

2. Enumerate the cases

- 3. Define the cases
 - Each recursive position leads to a recursive call

```
size Leaf = \emptyset
size (Node 1 \times r) = 1 + size 1 + size r
```

Cooking mirror

```
mirror t returns the "mirror" image of t
> mirror (Node (Node Leaf 3 Leaf) 2 Leaf)
(Node Leaf 2 (Node Leaf 3 Leaf))
  1. Define the type
    mirror :: Tree a -> Tree a
 2. Enumerate the cases
    mirror Leaf
    mirror (Node 1 \times r) = _
```

Cooking mirror

```
mirror t returns the "mirror" image of t
> mirror (Node (Node Leaf 3 Leaf) 2 Leaf)
(Node Leaf 2 (Node Leaf 3 Leaf))
 1. Define the type
    mirror :: Tree a -> Tree a
 2. Enumerate the cases
    mirror Leaf =
    mirror (Node 1 \times r) = _
 3. Define the cases
    mirror Leaf = Leaf
    mirror (Node 1 \times r) = Node (mirror r) \times (mirror 1)
```

Cooking enumInfix

enumInfix t returns the values of t in infix order

- From left-most to right-most
- The data in the node in between that of the subtrees
- > enumInfix (Node (Node Leaf 2 Leaf) 3 Leaf)
 [2,3]
 - 1. Define the type

```
enumInfix :: Tree a -> [a]
```

2. Enumerate the cases

Cooking enumInfix

3. Define the simple (base) cases

```
enumInfix Leaf = []
```

4. Define the other (recursive) cases

```
enumInfix (Node 1 x r) = enumInfix 1  ++ \ [x] \\ ++ \ enumInfix \ r
```

- Repeated calls to (++) are very expensive!
- Solution: use an accumulator

enumInfix with an accumulator

- 1. Introduce a local definition with an extra argument
- 2. Initialize the function in the main call

```
enumInfix t = enumInfix' t []
where enumInfix' t acc = _
```

- 3. Follow Hutton's recipe, but
 - Do not pattern match on the accumulator
 - · Return the accumulator in the base case
 - Update the accumulator in the recursive steps

Linear search is expensive

- · We check the elements one by one for equality
- If the element is not there, we make n comparisons!
 - where \boldsymbol{n} is the length of the list
- On average, we make $\frac{n}{2}$ comparisons

Technical note: we say that linear search has $\mathcal{O}(n)$ complexity

Linear search is expensive

Suppose that we guarantee that the input list is sorted

Can we make linear search better?

Linear search in ordered lists

If we guarantee that the list is sorted, we can stop earlier

Still, we look at all the elements before the one we search

• To do even better we need binary search

Search trees

Search trees are binary trees with a restriction over nodes

- All elements in the left subtree must be smaller than the data in the node
- Conversely, all elements in the right subtree must be *larger* than the data in the node

```
-- Not a search tree, 3 > 2

Node (Node Leaf 3 Leaf) 2 (Node Leaf 4 Leaf)

-- A search tree with the same data

Node (Node Leaf 2 Leaf) 3 (Node Leaf 4 Leaf)
```

Binary search

The ordering guides us on which subtree to consider

If the tree is "nicely built", we get $\mathcal{O}(\log n)$ complexity

Building a search tree

We build the tree by repeated insertion

• insert x t adds the element x to the search tree t, respecting all the restrictions

```
toSearchTree :: Ord a => [a] -> Tree a
toSearchTree [] = Leaf
toSearchTree (x:xs) = insert x (toSearchTree xs)
-- Even better with a fold
toSearchTree :: Ord a => [a] -> Tree a
toSearchTree = foldr insert Leaf
```

Cooking insert

1. Define the type

```
insert :: Ord a => a -> Tree a -> Tree a
```

Cooking insert

1. Define the type

```
insert :: Ord a => a -> Tree a -> Tree a
```

2. Enumerate the cases

- 3. Define the simple (base) cases
 - · If the tree is empty, we build one with the value

```
insert e Leaf = Node Leaf e Leaf
```

Cooking insert

- 4. Define the other (recursive) cases
 - We need to compare the value with the node to decide where to continue
 - We prevent duplicates by an additional equality check

sort for free!

- 1. Take a list xs
- 2. Build a search tree to Search Tree xs
 - · The left-most element is the smallest
 - The right-most element is the largest
- 3. Turn it back into a list with enumInfix
- 4. The resulting list is sorted!

```
sort :: Ord a => [a] -> [a]
sort = enumInfix . toSearchTree
```

Unbalanced search trees

We win **nothing** by building this search tree

Balanced search trees

Self-balancing trees keep their height at a minimum

- Close to the optimal minimum of $\log_2 n$
- 2-3 trees, red-black trees, AVL trees, ...

Reference: Purely Functional Data Structures by Okasaki

delete e t returns the search tree t with e removed

- Respecting all the invariants from being a search tree
- 1. Define the type

```
delete :: Ord a => a -> Tree a -> Tree a
```

2. Enumerate the cases

```
delete e Leaf = \_ delete e (Node 1 x r) = \_
```

- 3. Define the simple (base) cases
 - There is nothing to remove from an empty tree

```
delete e Leaf = Leaf
```

- 4. Define the other (recursive) cases
 - We need to decide whether we have arrived to the node we want to remove

```
delete e (Node l x r)
  | e == x = _ -- perform the deletion
  | e < x = Node (delete e l) x r
  | otherwise = Node l x (delete e r)</pre>
```

- When the data in the node is the one to remove, we are left with two search trees we need to turn into one
 - 1. If one of them is empty, we just take the other
 - · case expr of performs further pattern matching
 - 2. In the other case, we need to find a new top value

In other words, topValue t

- Returns the right-most value in the tree
- · Rebuilds the tree without it

In other words, topValue t

- Returns the right-most value in the tree
- Rebuilds the tree without it

There is a nice combinator for tuples, among others:

```
(<$>) :: (a -> b) -> (c, a) -> (c, b)
```

which allows us to rewrite the last line in a nicer way:

```
topValue (Node 1 x r) = Node 1 x < topValue r
```

Key-value maps

Key-value maps

A **map** keeps a list of present *keys* and associates a *value* with each one of them

```
lookup :: k -> Map k v -> Maybe v
We can define some extra functions using lookup
-- is the key present in the map?
member :: k -> Map k v -> Bool
member k m = isJust (lookup k m)
-- get the value or return a default one
findWithDefault :: v -> k -> Map k v -> v
findWithDefault def k m = case lookup k m of
                            Nothing -> def
                            Just v -> v
```

Association lists

A simple way to implement maps is to use a list of tuples

```
type Map k v = [(k, v)]
```

- type defines an alias or type synonym
 - Everytime we write Map $\,k\,$ v, the compiler translates it to [(k, v)]
- Type synonyms are different from data declarations
 - data creates a completely new type
 - You need constructors to build or pattern match

lookup for association lists

```
lookup :: Eq k => k -> Map k v -> Maybe v
lookup _ [] = Nothing
lookup e ((k,v) : rest)
    | e == k = Just v
    | otherwise = lookup e rest
```

- The implementation follows the one for elem
- Suffers from the same bad characteristics
 - Linear cost for finding a key

lookup for ordered association lists

If we guarantee that the keys are ordered, we can do better

```
lookup :: Ord k => k -> Map k v -> Maybe v
lookup _ [] = Nothing
lookup e ((k,v) : rest)
    | e == k = Just v
    | e < k = Nothing
    | otherwise = lookup e rest</pre>
```

We can even go further and keep the map in a search tree

merge for ordered association lists

merge m1 m2 merges two given key-value maps:

- A key is present if it is present in any of both maps
- What should we do if the value is present in both maps?
 - 1. Choose arbitrarily the left or right element
 - 2. Provide a way to configure the behavior
- 1. Define the type

```
mergeWith :: Ord k
=> (v -> v -> v) -- how to combine
-> Map k v -> Map k v -> Map k v
```

Cooking merge

2. Enumerate all the cases

3. Define the simple (base) cases

```
mergeWith _ [] [] = []
mergeWith _ [] m2 = m2
mergeWith _ m1 [] = m1
```

Cooking merge

- 4. Define the other (recursive) cases
 - We have to distinguish whether the key is the same
 - · We need to output an ordered list

```
mergeWith f m1@((k1, v1) : r1) m2@((k2, v2) : r2)  | k1 == k2 = (k1, f v1 v2) : mergeWith f r1 r2 \\ | k1 < k2 = (k1, v1) : mergeWith f r1 m2 \\ | k1 > k2 = (k2, v2) : mergeWith f m1 r2
```

Merging with different bias

What should be the call to mergeWith to get?

- Left bias: prefer from the first argument
- *Right bias*: prefer from the second argument

Questions

How do you define f for mergeWith to have those biases?

Is there any other notion which works well in this context?

Merging with different bias

What should be the call to mergeWith to get?

- *Left bias*: prefer from the first argument
- Right bias: prefer from the second argument

Questions

How do you define f for mergeWith to have those biases?

Is there any other notion which works well in this context?

```
mergeLeft = mergeWith (x - > x)
mergeRight = mergeWith (y - > y)
```

Monoids

Some types have an intrinsic notion of *combination*

- We already hinted at it when describing folds
- Monoids provide an associative binary operation with an identity element

class Monoid m where

Monoids

Some types have an intrinsic notion of *combination*

- We already hinted at it when describing folds
- Monoids provide an associative binary operation with an identity element

class Monoid m where

```
mempty :: m mappend :: m -> m -> m
```

Lists [T] are monoids regardless of their contained type T

```
instance Monoid [t] where
```

```
mempty = [] -- empty list
mappend = (++) -- concatenation
```

Monoids as values

Monoid provides sane defaults

Can we do better?

This is not part of the 2018/2019 course

- lookup and merge are expensive operations
 - We could enhance lookup with a search tree, but then merge becomes more expensive
- We impose at least an Eq constraint on the key

Nice but tricky code ahead!

Inspiration: sets

A **set** of T is a data structure with operations

```
member :: t -> Set t -> Bool
union :: Set t -> Set t -> Set t
```

Ordered lists provide a simple implementation

```
type Set t = [t]
member = elem
union = merge
```

with all the disadvantages described for association lists

Inspiration: sets

What if represent the set by its member function?

In mathematics, this representation is called an *indicator* or *characteristic* function for a set

Note that there is *no* Eq constraint over t

Operations with indicator functions

```
union :: Set t -> Set t -> Set t
-- (t -> Bool) -> (t -> Bool) -> t -> Bool
```

An element e is in the union of two sets s1 and s2 if it belongs to at least one of them

union s1 s2 =
$$e - s1 e | s2 e$$

Intersection of sets is easy to define with indicator functions

Operations with indicator functions

```
union :: Set t -> Set t -> Set t
-- (t -> Bool) -> (t -> Bool) -> t -> Bool
```

An element e is in the union of two sets s1 and s2 if it belongs to at least one of them

```
union s1 s2 = e - s1 e | s2 e
```

Intersection of sets is easy to define with indicator functions

```
intersect :: Set t -> Set t -> Set t
intersect s1 s2 = \e -> s1 e && s2 e
```

Key-value maps using functions

Let's apply the same idea and make maps equal to their lookup function

```
type Map k v = k -> Maybe v
```

```
lookup :: k \rightarrow Map \ k \ v \rightarrow Maybe \ v lookup k \ m = m \ k
```

mergeWith using functions

We look up the value in each of maps to be combined

• The only complex case is when the value is in both maps

Left-biased Maybe

Haskell's standard library comes with a left-biased Maybe

```
data First a = First (Maybe a)
getFirst :: First a -> Maybe a
getFirst (First m) = m
instance Monoid (First a) where
  mempty = First Nothing
  mappend (First Nothing) y = y
  mappend x (First Nothing) = x
  mappend (First (Just x)) (First (Just _))
    = First (Just x) -- prefer x over y
```

Left-biased merge

We can exploit First monoid in our implementation

- We need to call getFirst in lookup to get a Maybe v
- Merging just combines the outcome of each map

```
type Map k v = k -> First v

lookup :: k -> Map k v -> Maybe v
lookup k m = getFirst (m k)

merge :: Map k v -> Map k v -> Map k v
merge m1 m2 = \k -> m1 k `mappend` m2 k
```

Left-biased merge with even less code

In the previous definition we exploit the instance

```
instance Monoid (First a) where ...
```

Actually, the library defines yet another Monoid instance

```
instance Monoid b => Monoid (a -> b) where ...
```

We can go one step further in reducing code

```
merge m1 m2 = m1 `mappend` m2
merge = mappend -- eta-reduction
```

Disadvantages of functions

The implementation with functions is great, isn't it?

- · It takes more memory if the map is big
- Everytime we ask for an element, we need to perform all the work
 - · A lot if the maps were manipulated
 - Even when you intersect, the work becomes larger
- We cannot serialize a function easily
 - That is, transforming it to a format which we can write to disk or transmit via a network

Summary

In this lecture we have practiced two important aspects

- Defining functions over trees by recursion
- · Manipulate functions as data

We have also introduced the Monoid type class $% \left(\mathbf{k}\right) =\mathbf{k}^{2}$