AM II.1 zestaw 11

Zadanie 1 Znajdź wszystkie σ -ciała podzbiorów zbioru $\{1, 2, 3\}$

Zadanie 2 Znajdź σ -ciało rodziny podzbiorów $\{1,2,3,4\}$ generowane przez $\{\{1,2\},\{2,3\}\}$

Zadanie 3 Załóżmy, że \mathcal{F} jest σ -ciałem. Wykaż, że

- a) jeżeli $A, B \in \mathcal{F}$ to $A \cap B$, $A \setminus B \in \mathcal{F}$
- b) $je\dot{z}eli\ \{A_i\}_{i=1}^{\infty} \in \mathcal{F} \ to \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

Zadanie 4 Wykaż, że przecięcie dowolnej rodziny σ -ciał jest σ -ciałem. Znajdź przykład pokazujący że suma σ -ciał nie musi być σ -ciałem.

Zadanie 5 Wykaż, że rodzina zbiorów symetrycznych względem 0 (tzn. takich, że $x \in A \Rightarrow -x \in A$ jest σ -ciałem w \mathbb{R}^n .

Zadanie 6 Niech X będzie dowolnym zbiorem oraz $x \in X$ pewnym jego elementem. Wykaż, że

$$\mu(A) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

jest miarą na 2^X .

Zadanie 7 Niech Ω będzie dowolnym zbiorem oraz Ω_0 pewnym jego przeliczalnym podzbiorem. Wykaż, że

$$\mu(A) = \#(A \cap \Omega_0)$$

jest miarą na 2^{Ω} .

Zadanie 8 Wykaż, że

$$\mu(A) = \begin{cases} 0, & A - przeliczalny \\ 1, & A - nieprzeliczalny \end{cases}$$

Jest miarą zewnętrzną na $2^{\mathbb{R}}$, ale nie jest miarą na $2^{\mathbb{R}}$.

Zadanie 9 Znaleźć przykład miary na σ ciele \mathcal{F} podzbiorów X oraz zstępującą rodziną zbiorów $\{A_i\}_{i\in\mathbb{N}}\in\mathcal{F}$ takiej, że $\mu(A_1)=\infty$ oraz $\mu(A_n)\nrightarrow\mu(\cap_{n\in\mathbb{N}}A_n)$.

Zadanie 10 Wykaż, że przeliczalny podzbiór \mathbb{R}^n jest miary λ_n -zero.

Zadanie 11 Niech $A = \{x \in [0,1]\}$: w rozwinięciu dziesiętnym x nie występuje cyfra 7. Znajdź $\lambda_1(A)$. Wskazówka: $[0,1] \setminus A = \bigcup_{n=1}^{\infty} B_n$ gdzie $B_n = \{x \in [0,1] : w$ rozwinięciu dziesiętnym x cyfra 7 występuje po raz pierwszy na n-tym miejscu.}