Квадратурная формула средних прямоугольников:

```
2 > rectangle > C rectangle.c
      #include <stdio.h>
      #include <mpi.h>
      int main(int argc, char *argv[]) {
          int n, myrank, nprocs, i;
          double h, local_sum = 0.0, total_sum = 0.0, x;
          MPI_Init(&argc, &argv);
          MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
          MPI Comm size(MPI COMM WORLD, &nprocs);
          if (myrank == 0) {
              printf("Enter the number of intervals (n): ");
              scanf("%d", &n);
          MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
          for (i = myrank + 1; i <= n; i += nprocs) {</pre>
              x = h * (i - 0.5);
          MPI Reduce(&local sum, &total sum, 1, MPI DOUBLE, MPI SUM, 0, MPI COMM WORLD);
          if (myrank == 0) {
              printf("Approximated value of pi: %.16f\n", total_sum);
          MPI Finalize();
```

```
    neo@stepan:~/Omsu/super_comp/2/rectangle$ mpicc -o rectangle rectangle.c
    neo@stepan:~/Omsu/super_comp/2/rectangle$ ./rectangle
    Enter the number of intervals (n): 4
    Approximated value of pi: 3.1468005183939427
    neo@stepan:~/Omsu/super_comp/2/rectangle$
```

Квадратурная формула трапеции:

```
#include <stdio.h>
     #include <mpi.h>
     double f(double x) {
         return 1.0 / (1.0 + x * x);
     int main(int argc, char *argv[]) {
  int n, myrank, nprocs, i;
         double h, local_sum = 0.0, total_sum = 0.0, x;
         MPI_Init(&argc, &argv);
        MPI Comm rank(MPI COMM WORLD, &myrank);
13
         MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
         if (myrank == 0) {
             printf("Enter the number of intervals (n): ");
             scanf("%d", &n);
         MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
         for (i = myrank; i < n; i += nprocs) {
         local sum *= h / 2.0; // Умножение на h/2 в формуле трапеции
         MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
         if (myrank == 0) {
             printf("Approximated value of pi: %.16f\n", total_sum);
         MPI Finalize();
```

```
neo@stepan:~/Omsu/super_comp/2/trapec$ ./trpec
Enter the number of intervals (n): 4
Approximated value of pi: 0.6402941176470588
neo@stepan:~/Omsu/super_comp/2/trapec$
```

Квадратурная формула Симпсона:

```
#include <stdio.h>
#include <mpi.h>
int main(int argc, char *argv[]) {
   int n, myrank, nprocs, i;
    double h, local_sum = 0.0, total_sum = 0.0, x;
    MPI_Init(&argc, &argv);
    MPI Comm rank(MPI COMM WORLD, &myrank);
    MPI Comm size(MPI COMM WORLD, &nprocs);
    if (myrank == 0) {
        printf("Enter the number of intervals (n, even only): ");
        scanf("%d", &n);
if (n % 2 != 0) {
            printf("Error: n must be an even number.\n");
            MPI_Abort(MPI_COMM_WORLD, 1);
    MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD);
    for (i = myrank; i <= n; i += nprocs) {
            local sum += f(x); // Границы добавляются без умножения
            local sum += 4 * f(x); // Узлы с нечётным индексом умножаются на 4
    local_sum *= h / 3.0; // Умножение на h/3 в формуле Симпсона
    MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
    if (myrank == 0) {
        printf("Approximated value of pi: %.16f\n", total_sum);
    MPI Finalize();
```

Квадратурная формула средних прямоугольников				
Значение п	Время вычислений (в сек.)	Точность вычислений	Относительное ускорение U_i	
	Количество пар	аллельных процессо	obsize 2	
10000	0,0006104	1,667 * 10 ^ -9	0,2785	
50000	0,0006906	6,667 * 10 ^ -11	0,9430	
100000	0,0011883	1,667 * 10 ^- 11	0,6324	
500000	0,0046835	7,491 * 10 ^ -13	0,7656	
1000000	0,0073919	1,643 * 10 ^ -13	1,0993	
	Количество параллельных процессов = 4			
10000	0,0011248	1,37721* 10 ^- 11	0,1511	
50000	0,0011979	6,66613* 10 ^- 11	0,5437	
100000	0,0014603	1,66747* 10 ^-11	0,5146	
500000	0,0028966	6,62581* 10 ^-13	1,2380	
1000000	0,0027612	2,08722* 10 ^-13	2,9431	
Количество параллельных процессов = 8				
10000	0,0014133	1,66667* 10 ^-9	0,1202	
50000	0,0015270	6,66667* 10 ^-11	0,4265	
100000	0,0016197	1,66613* 10 ^-11	0,4639	
500000	0,0021473	6,59917* 10 ^-13	1,6701	
1000000	0,0029030	1,71418* 10 ^-13	2,7993	

Квадратурная формула трапеций				
Значение п	Время вычислений (в сек.)	Точность вычислений	Относительное ускорение U_i	
	Количество параллельных процессов = 2			
10000	0,0006422	1,667 * 10 ^ -9	0,2612	
50000	0,0008811	6,667 * 10 ^ -11	0,7444	
100000	0,0013055	1,667 * 10 ^- 11	0,9523	
500000	0,0023229	7,491 * 10 ^ -13	1,6849	
1000000	0,0047626	1,643 * 10 ^ -13	2,0521	
Количество параллельных процессов = 4				
10000	0,0010885	1,66667* 10 ^- 9	0,1541	
50000	0,001117	6,66613* 10 ^- 11	0,5871	
100000	0,0014603	1,66747* 10 ^-11	0,8514	
500000	0,0023505	6,62581* 10 ^-13	1,6651	
1000000	0,0038342	2,08722* 10 ^-13	2,5490	
Количество параллельных процессов = 8				

Квадратурная формула трапеций			
Значение п	Время вычислений (в сек.)	Точность вычислений	Относительное ускорение U_i
10000	0,0012515	1,66667* 10 ^-9	0,1340
50000	0,0013748	6,66667* 10 ^-11	0,6795
100000	0,0015333	1,66613* 10 ^-11	0,8108
500000	0,0021650	6,59917* 10 ^-13	1,8078
1000000	0,0030954	1,71418* 10 ^-13	3,1574

Квадратурная формула Симпсона					
Значение п	Время вычислений (в сек,)	Точность вычислений	Относительное ускорение U _i		
	Количество параллельных процессов = 2				
10000	0,0005093	1,667 * 10 ^ -9	0,3139		
50000	0,0009652	6,667 * 10 ^ -11	0,6794		
100000	0,0011785	1,667 * 10 ^- 11	0,9806		
500000	0,0030027	7,491 * 10 ^ -13	1,5245		
1000000	0,0047616	1,643 * 10 ^ -13	1,7105		
	Количество параллельных процессов = 4				
10,000	0,0009968	1,66667* 10 ^- 9	0,1604		
50,000	0,0011069	6,66613* 10 ^- 11	0,5924		
100000	0,0013437	1,66747* 10 ^-11	0,8600		
500000	0,0029500	6,62581* 10 ^-13	1,5517		
1000000	0,0043784	2,08722* 10 ^-13	1,8602		
Количество параллельных процессов = 8					
10000	0,0013913	1,66667* 10 ^-9	0,1149		
50000	0,0014368	6,66667* 10 ^-11	0,4564		
100000	0,0013663	1,66613* 10 ^-11	0,8458		
500000	0,0025869	6,59917* 10 ^-13	1,76960		
1000000	0,0035856	1,71418* 10 ^-13	2,2715		

