一次 load 或 store 操作访问 Cache 的命中时间都要增加一个时钟周期,32KB 的指令 Cache 的失效率为 0.39%,32KB 的数据 Cache 的失效率为 4.82%,64KB 的混合 Cache 的失效率为 1.35%。又假设采用写直达策略,且有一个写缓冲器,并且忽略写缓冲器引起的等待。试问指令 Cache 和数据 Cache 容量均为 32KB 的分离 Cache 和容量为 64KB 的混合 Cache 相比,哪种 Cache 的失效率更低?两种情况下平均访存时间各是多少?

解: (1) 根据题意,约 75%的访存为取指令。

因此,分离 Cache 的总体失效率为:  $(75\% \times 0.15\%) + (25\% \times 3.77\%) = 1.055\%$ ; 容量为 128KB 的混合 Cache 的失效率略低一些,只有 0.95%。

(2) 平均访存时间公式可以分为指令访问和数据访问两部分:

平均访存时间=指令所占的百分比×(读命中时间+读失效率×失效开销)+数据所占的百分比×(数据命中时间+数据失效率×失效开销)

所以,两种结构的平均访存时间分别为:

分离 Cache 的平均访存时间=75%×(1+0.15%×50)+25%×(1+3.77%×50)

 $= (75\% \times 1.075) + (25\% \times 2.885) = 1.5275$ 

混合 Cache 的平均访存时间=75%×(1+0.95%×50)+25%×(1+1+0.95%×50)

 $= (75\% \times 1.475) + (25\% \times 2.475) = 1.725$ 

因此,尽管分离 Cache 的实际失效率比混合 Cache 的高,但其平均访存时间反而较低。 分离 Cache 提供了两个端口,消除了结构相关。

- 5.11 给定以下的假设,试计算直接映象 Cache 和两路组相联 Cache 的平均访问时间以及 CPU 的性能。由计算结果能得出什么结论?
  - (1) 理想 Cache 情况下的 CPI 为 2.0, 时钟周期为 2ns, 平均每条指令访存 1.2 次;
  - (2) 两者 Cache 容量均为 64KB, 块大小都是 32 字节;
  - (3) 组相联 Cache 中的多路选择器使 CPU 的时钟周期增加了 10%;
  - (4) 这两种 Cache 的失效开销都是 80ns;
  - (5) 命中时间为1个时钟周期;
  - (6) 64KB 直接映象 Cache 的失效率为 1.4%, 64KB 两路组相联 Cache 的失效率为 1.0%。

解: 平均访问时间=命中时间+失效率×失效开销

平均访问时间 1-18=2.0+1.4% \*80=3.12ns

平均访问时间 2-18=2.0\*(1+10%)+1.0% \*80=3.0ns

两路组相联的平均访问时间比较低

CPUtime=(CPU 执行+存储等待周期)\*时钟周期

CPU time=IC (CPI 共行+总失效次数/指令总数\*失效开销) \*时钟周期

=IC ((CPI 共行\*时钟周期) + (每条指令的访存次数\*失效率\*失效开销\*时钟周期))

CPU <sub>time 1-way</sub>=IC(2.0\*2+1.2\*0.014\*80)=5.344IC

CPU <sub>time 2-way</sub>=IC(2.2\*2+1.2\*0.01\*80)=5.36IC

相对性能比: 
$$\frac{\text{CPU}_{\text{time-2way}}}{\text{CPU}_{\text{time-1way}}} = 5.36/5.344 = 1.003$$

直接映象 cache 的访问速度比两路组相联 cache 要快 1.04 倍, 而两路组相联 Cache 的平均性能比直接映象 cache 要高 1.003 倍。因此这里选择两路组相联。

5.12 假设一台计算机具有以下特性:

- (1) 95%的访存在 Cache 中命中;
- (2) 块大小为两个字, 且失效时整个块被调入;
- (3) CPU 发出访存请求的速率为 109字/s;
- (4) 25%的访存为写访问;
- (5) 存储器的最大流量为 10°字/s (包括读和写);
- (6) 主存每次只能读或写一个字;
- (7) 在任何时候, Cache 中有 30%的块被修改过;
- (8) 写失效时, Cache 采用按写分配法。

现欲给该计算机增添一台外设,为此首先想知道主存的频带已用了多少。试对于以下两种情况计算主存频带的平均使用比例。

- (1) 写直达 Cache;
- (2) 写回法 Cache。

## 解: 采用按写分配

(1) 写直达 cache 访问命中, 有两种情况:

读命中,不访问主存;

写命中,更新 cache 和主存,访问主存一次。

访问失效,有两种情况:

读失效,将主存中的块调入 cache 中,访问主存两次;

写失效,将要写的块调入 cache,访问主存两次,再将修改的数据写入 cache 和主存,访问主存一次,共三次。上述分析如下表所示。

| 访问命中 | 访问类型 | 频率            | 访存次数 |
|------|------|---------------|------|
| Y    | 读    | 95%*75%=71.3% | 0    |
| Y    | 写    | 95%*25%=23.8% | 1    |
| N    | 读    | 5%*75%=3.8%   | 2    |
| N    | 写    | 5%*25%=1.3%   | 3    |

- 一次访存请求最后真正的平均访存次数=(71.3%\*0)+(23.8%\*1)+(3.8%\*2)+(1.3%\*3)=0.35 已用带宽= $0.35 \times 10^9/10^9 = 35.0\%$ 
  - (2) 写回法 cache 访问命中,有两种情况:

读命中,不访问主存;

写命中,不访问主存。采用写回法,只有当修改的 cache 块被换出时,才写入主存;

访问失效,有一个块将被换出,这也有两种情况:

如果被替换的块没有修改过,将主存中的块调入 cache 块中,访问主存两次;如果被替换的块修改过,则首先将修改的块写入主存,需要访问主存两次;然后将主存中的块调入 cache 块中,需要访问主存两次,共四次访问主存。

| 访问命中 | 块为脏 | 频率            | 访存次数 |
|------|-----|---------------|------|
| Y    | N   | 95%*70%=66.5% | 0    |
| Y    | Y   | 95%*30%=28.5% | 0    |
| N    | N   | 5%*70%=3.5%   | 2    |
| N    | Y   | 5%*30%=1.5%   | 4    |

所以:

一次访存请求最后真正的平均访存次数=66.5%\*0+28.5%\*0+3.5%\*2+1.5%\*4=0.13

## 已用带宽=0.13×10<sup>9</sup>/10<sup>9</sup>=13%

- 5.13 在伪相联中,假设在直接映象位置没有发现匹配,而在另一个位置才找到数据(伪命中)时,不对这两个位置的数据进行交换。这时只需要 1 个额外的周期。假设失效开销为50 个时钟周期,2KB 直接映象 Cache 的失效率为 9.8%, 2 路组相联的失效率为 7.6%; 128KB 直接映象 Cache 的失效率为 1.0%, 2 路组相联的失效率为 0.7%。
  - (1) 推导出平均访存时间的公式。
  - (2) 利用(1) 中得到的公式,对于 2KBCache 和 128KBCache, 计算伪相联的平均访存时间。

解:

不管作了何种改进,失效开销相同。不管是否交换内容,在同一"伪相联"组中的两块都是用同一个索引得到的,因此失效率相同,即:失效率份据 = 失效率 2 章。

伪相联 cache 的命中时间等于直接映象 cache 的命中时间加上伪相联查找过程中的命中时间\*该命中所需的额外开销。

命中时间<sub>份相联</sub>=命中时间<sub>1路</sub>+伪命中率<sub>份相联</sub>×1

交换或不交换内容, 伪相联的命中率都是由于在第一次失效时, 将地址取反, 再在第二次查找带来的。

因此 伪命中率<sub>伪相联</sub>=命中率 2<sup>路</sup>一命中率 1<sup>路</sup>= (1一失效率 2<sup>路</sup>) 一 (1一失效率 1<sup>路</sup>) = 失效率 1<sup>B</sup>一失效率 2<sup>B</sup>。交换内容需要增加伪相联的额外开销。

平均访存时间<sub>仍相联</sub>=命中时间<sub>1路</sub>+(失效率<sub>1路</sub>一失效率<sub>2路</sub>)×1

+失效率 2 路×失效开销 1 路

将题设中的数据带入计算,得到:

平均访存时间 $_{2Kb}$ =1+(0.098-0.076)\*1+(0.076 \*50 ) =4.822 平均访存时间 $_{128Kb}$ =1+(0.010-0.007)\*1+(0.007 \*50 ) =1.353 显然是 128KB 的伪相联 Cache 要快一些。

- 5.14 假设采用理想存储器系统时的基本 CPI 是 1.5, 主存延迟是 40 个时钟周期; 传输速率为 4 字节/时钟周期, 且 Cache 中 50%的块是修改过的。每个块中有 32 字节, 20%的指令是数据传送指令。并假设没有写缓存,在 TLB 失效的情况下需要 20 时钟周期, TLB 不会降低 Cache 命中率。CPU 产生指令地址或 Cache 失效时产生的地址有 0.2%没有在 TLB 中找到。
- (1) 在理想 TLB 情况下, 计算均采用写回法 16KB 直接映象统一 Cache、16KB 两路组相联统一 Cache 和 32KB 直接映象统一 Cache 机器的实际 CPI;
- (2) 在实际 TLB 情况下,用(1)的结果,计算均采用写回法 16KB 直接映象统一 Cache、16KB 两路组相联统一 Cache 和 32KB 直接映象统一 Cache 机器的实际 CPI;

其中假设 16KB 直接映象统一 Cache、16KB 两路组相联统一 Cache 和 32KB 直接映象统一 Cache 的失效率分别为 2.9%、2.2%和 2.0%; 25%的访存为写访问。

解: CPI=CPI 执行+存储停顿周期数/指令数

存储停顿由下列原因引起:

- 从主存中取指令
- load 和 store 指令访问数据
- 由 TLB 引起

(1) 对于理想 TLB, TLB 失效开销为 0。而对于统一 Cache, R <sup>指令</sup>=R <sup>数据</sup>
P <sup>指令</sup>=主存延迟+传输一个块需要使用的时间=40+32/4=48(拍)
若为读失效, P <sup>数据</sup>=主存延迟+传输一个块需要使用的时间=40+32/4=48(拍)
若为写失效,且块是干净的,

 $P_{\text{数} =}$  主存延迟+传输一个块需要使用的时间=40+32/4=48(拍)若为写失效,且块是脏的,

P 数据=主存延迟+传输两个块需要使用的时间=40+64/4=56(拍)

CPI=1.5+[RP+(RP\*20%)+0]

指令访存全是读,而数据传输指令 Load 或 Store 指令,

代入上述公式计算出结果为:

| 配置          | 失效率   | CPI |
|-------------|-------|-----|
| 16KB 直接统一映象 | 0.029 | 4.4 |
| 16KB 两路统一映象 | 0.022 | 3.4 |
| 32KB 直接统一映象 | 0.020 | 3.2 |

(2) 
$$\frac{TLB$$
停顿 =  $(\frac{\text{存储访问次数}}{\text{指令数}} \times \frac{TLB$ 访问  $) \times TLB$ 失效率  $\times TLB$ 失效开销

将  $f_{\text{数据}}$ (数据访问指令频率),  $R_t$ 和  $P_t$ (分别是 TLB 的失效率和失效开销),  $R_c$ 和  $P_w$ (分别是 Cache 的失效率和写回的频率)代入公式得:

TLB 停顿/指令数={ $[1+f_{数据}]*[R_c(1+R_w)]$ } $R_tP_t$ 

其中, $1+f_{数/8}$ : 每条指令的访问内存次数;  $R_c(1+R_w)$ : 每次内存访问需要的 TLB 访问次数。由条件得: TLB 停顿/指令数={ $[1+20\%]*[R_c(1+25\%)]$ }0.2%×20

| 配置          | 失效率   | 理想 TLB 的 CPI |
|-------------|-------|--------------|
| 16KB 直接统一映象 | 0.029 | 4.0          |
| 16KB 两路统一映象 | 0.022 | 3.4          |
| 32KB 直接统一映象 | 0.020 | 3.2          |