En el cálculo de una variable, se estudia el concepto de $\lim_{x\to x_0} f(x) = l$ para una función $f\colon A\subset\mathbb{R}\to\mathbb{R}$ de un subconjunto A de los números reales en los números reales. Intuitivamente, esto significa que cuando x se acerca más y más a x_0 , los valores de f(x) se acerca más y más a (el valor límite) l. Para fundamentar matemáticamente esta idea intuitiva normalmente se utiliza el "método de los épsilon (ε) y delta (δ) " o el "método de los entornos". Esto mismo también se aplica para las funciones de varias variables. A continuación vamos a desarrollar el método de los entornos para definir los límites. El método épsilon-delta se deja como estudio opcional al final de la sección.

Definición Límite Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, donde A es un conjunto abierto. Sea \mathbf{x}_0 un punto de A o un punto frontera de A, y sea N un entorno de $\mathbf{b} \in \mathbb{R}^m$. Decimos que f **finaliza en** N **cuando** \mathbf{x} **tiende** a \mathbf{x}_0 si existe un entorno U de \mathbf{x}_0 tal que $\mathbf{x} \neq \mathbf{x}_0, \mathbf{x} \in U$ y $\mathbf{x} \in A$ implican $f(\mathbf{x}) \in N$. [El significado geométrico de esta definición se ilustra en la Figura 2.2.8; obsérvese que no es necesario que \mathbf{x}_0 pertenezca a A, de forma que $f(\mathbf{x}_0)$ no está necesariamente definido]. Decimos que $f(\mathbf{x})$ **tiende** a b cuando \mathbf{x} tiende a \mathbf{x}_0 , o simbólicamente,

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = \mathbf{b} \quad \text{o} \quad f(\mathbf{x})\to\mathbf{b} \quad \text{cuando} \quad \mathbf{x}\to\mathbf{x}_0,$$

si, dado *cualquier* entorno N de \mathbf{b} , f finaliza en N cuando \mathbf{x} tiende a \mathbf{x}_0 [es decir, " $f(\mathbf{x})$ está cerca de \mathbf{b} si \mathbf{x} está cerca de \mathbf{x}_0 "]. Puede ocurrir que cuando \mathbf{x} tiende a \mathbf{x}_0 , los valores de $f(\mathbf{x})$ no se acercan a ningún valor concreto. En este caso, decimos que $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x})$ no existe.

Figura 2.2.8 Límites en términos de entornos: si $\mathbf x$ pertenece a U, entonces $f(\mathbf x)$ pertenecer á a N. (El pequeño círculo blanco denota que el punto no está sobre la gráfica.) En la figura, $f: A = \{(x,y) \mid x^2 + y^2 < 1\} \to \mathbb{R}$. (La línea discontinua no está en la gráfica de f.)