SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> Ameliorative agent for low vasopressin concentration

<130> PH-944-PCT

<150> JP 11-189322

<151> 1999-07-02

<160> 75

<170> Patent In Ver. 2.0

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 1

aaatagccct tgaccaggca

20

<210> 2

<211> 38

<400> 4

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 2	
ctggttcggc ccacctctga aggttccaga atcgatag	Ç
⟨210⟩ 3	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
Z400\\ 2	
<400> 3	
ggatcccggg ccagtggata gacagatg	28
<210> 4	
⟨211⟩ 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	

38

2/48

<210> 5

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 5

gttttcccag tcacgac

17

<210> 6

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 6

caggaaacag ctatgac

17

<210> 7

<211> 31

<212> DNA

<213> Artificial Sequence

<220>	
<223> Synthetic DNA	
<400> 7	
gtctaagctt ccaccatgaa acttcgggct c	31
Z010\ 0	
<210> 8	
<211> 30	
<212> DNA (012) A (113) A (113	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 8	
tgttggatcc ctgcagagac agtgaccaga	30
Z010\ 0	
<210> 9	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 9	
gtctgaattc aagcttccac catggggttt gggctg	36
<210> 10	

```
<211> 41
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic DNA
  <400> 10
  tttcccgggc ccttggtgga ggctgaggag acggtgacca g
                                                                     41
 <210> 11
 <211> 109
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic DNA
 <400> 11
gtctgaattc aagcttagta cttggccagc ccaaggccaa ccccacggtc accctgttcc 60
cgccctcctc tgaggagctc caagccaaca aggccacact agtgtgtct
                                                                  109
<210> 12
<211> 110
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
```

<400> 12
ggtttggtgg tctccactcc cgccttgacg gggctgccat ctgccttcca ggccactgtc 60
acageteceg ggtagaagte actgateaga cacactagtg tggcettgtt 116
<210> 13
<211> 98
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 13
ggagtggaga ccaccaaacc ctccaaacag agcaacaaca agtacgcggc cagcagctac 60
ctgagcctga cgcccgagca gtggaagtcc cacagaag 98
(0.10) 1.1
<210> 14
<211> 106
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 14
tgttgaattc ttactatgaa cattctgtag gggccactgt cttctccacg gtgctccctt 60
catgogtgac ctggcagctg tagcttctgt gggacttcca ctgctc 106
ourbobibae eibbeabeib iabelietbi 555aetillea eibeil 100

<210> 15	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
Z400\\ 15	
<400> 15	
gtctgaattc aagcttagta cttggccagc ccaaggccaa ccc	43
<210> 16	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Synthetic DNA	
<400> 16	
tgttgaattc ttactatgaa	20
<210> 17	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
Z000)	
<220>	
<223> Synthetic DNA	

⟨400⟩ 17	
caacaagtac gcggccagca gctacctgag cctgacgcc	39
⟨210⟩ 18	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 18	
gtagctgctg gccgcgtact tgttgttgct ctgtttgga	39
<210> 19	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Synthetic DNA	
<400> 19	
gtctgaattc aagcttagtc ctaggtcgaa ctgtggctgc accatc	46
<210> 20	
<211> 34	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 20	
tgttgaattc ttactaacac tctcccctgt tgaa	34
<210> 21	
⟨211⟩ 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 21	
gtctaagett ceaceatgge etggaeteet etett	35
<210> 22	
<211> 48	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 22	
tgttgaattc agatctaact acttacctag gacagtgacc ttggtccc	48
rorroaditio agarerader derracerad bacabibace ribbicce	40

<210> 23 <211> 128 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 23 gtctaagctt ccaccatggg gtttgggctg agctgggttt tcctcgttgc tcttttaaga 60 ggtgtccagt gtcaggtgca gctggtggag tctgggggag gcgtggtcca gcctgggagg 120 tccctgag 128 <210> 24 <211> 125 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 24 accattagta gtggtggtag ttacacctac tatccagaca gtgtgaaggg gcgattcacc 60 atctccagag acaattccaa gaacacgctg tatctgcaaa tgaacagcct gagagctgag 120 gacac 125

<210> 25

<211> 132

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 25	
ctaccaccac tactaatggt tgccacccac tccagcccct tgcctggagc ctggcggacc	
caagacatge catagetact gaaggtgaat ecagaggetg cacaggagag teteagggae etcecagget gg	120
Creecagger gg	132
<210> 26	
<211> 110	
<212> DNA	
<213> Artificial Sequence	
\cdot	
<220>	
<223> Synthetic DNA	
(100)	
<400> 26	
tgttggatcc ctgaggagac ggtgaccagg gttccctggc cccagtaagc aaagtaagtc 60)
atagtagtet gtetegeaca gtaatacaca geegtgteet eageteteag 11	0
<210> 27	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	

cggtcaagct cac

<223> Synthetic DNA	
<400> 27	
gtctaagctt ccaccatggg gtttgggctg	30
<210> 28	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 28	
tgttggatcc ctgaggagac ggtgaccagg	30
<210> 29	
<211> 133	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 29	
acaaagcttc caccatggcc tggactcctc tcttcttctt ctttgttctt cattgctca	ag 60
gttctttctc ccagcttgtg ctgactcaat cgccctctgc ctctgcctcc ctgggagcc	et 120

<210> 30 <211> 118 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 30 agcaagatgg aagccacagc acaggtgatg ggattcctga tcgcttctca ggctccagct 60 ctggggctga gcgctacctc accatctcca gcctccagtc tgaggatgag gctgacta <210> 31 <211> 128 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 31 $\verb|ctgtggcttc|| catcttgctt|| aagtttcatc|| aagtaccgag|| ggcccttctc|| tggctgctgc|| 60$ tgatgccatt caatggtgta cgtactgtgc tgactactca aggtgcaggt gagcttgacc 120 gaggctcc 128 <210> 32 <211> 114 <212> DNA <213> Artificial Sequence

cttggatccg ggctgacct

```
<220>
   <223> Synthetic DNA
  <400> 32
  cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca ccctcacaaa 60
  ttgttcctta attgtatcac ccacaccaca gtaatagtca gcctcatcct caga
                                                                     114
  <210> 33
  <211> 17
  <212> DNA
  <213> Artificial Sequence
 <220>
 <223> Synthetic DNA
 <400> 33
 acaaagcttc caccatg
                                                                17
 <210> 34
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 34
```

<210> 35	
<211> 75	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
(400) 05	
<400> 35	
cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca cgtacacaaa	
ttgttcctta attgt	75
<210> 36	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
Z400\\ 0.0	
<400> 36	
aaaggateet taagateeat caagtaeega gggggettet etg 43	}
<210> 37	
<211> 46	
<212> DNA	
<213> Artificial Sequence	

```
<220>
   <223> Synthetic DNA
   <400> 37
   acaaagctta gcgctacctc accatctcca gcctccagcc tgagga
                                                                      46
   <210> 38
  <211> 111
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic DNA
 <400> 38
 cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca cgtacacaaa 60
 ttgttcctta attgtatcac ccacaccaca gatatagtca gcctcatcct c
                                                                    111
 <210> 39
 <211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 39
cttctctggc tgctgctgat accattcaat ggtgtacgta ct
                                                                  42
```

<210> 40	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 40	
cgagggccct tctctggctg ctgctg	26
Z010\ A1	
<210> 41	
<211> 35	
<212> DNA <212> Artificial Seguence	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 41	
gagaagggcc ctargtacst gatgrawctt aagca	35
<210> 42	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	

<400> 42	
cacgaattca ctatcgattc tggaaccttc agagg	35
<210> 43	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 43.	
ggcttggagc tcctcaga	18
<210> 44	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 44	
gacagtggtt caaagttttt	20
<210> 45	
<211> 118	
<212> PRT	

<213> Mus musculus

<400> 45 Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser Leu Gly Ala 1 5 10 15 Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr 20 25 30 Ile Glu Trp Tyr Gln Gln Gln Pro Leu Lys Pro Pro Lys Tyr Val Met 35 40 45 Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp 50 55 60 Arg Phe Ser Gly Ser Ser Ser Gly Ala Asp Arg Tyr Leu Ser Ile Ser 65 70 75 80 Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr Ile Cys Gly Val Gly Asp 85 90 95 Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Val 100 105 110 Thr Val Leu Gly Gln Pro 115

<210> 46

<211> 118

<212> PRT

<213> Mus musculus

<400> 46

Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Gly

1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

20											2	25			30					
G)	lу	Me	t S	er	Trp	H	e Ar	g G	ln	Thr	Pr	о А	sp	Ly	s A:	rg	Leu			Val
				35						40							45		•	
Al	a	Thi	· 1	le	Ser	Sei	Gl	y G	ly	Ser	Ту	r T	hr	Туі	r Ty	r i	Pro	Asp	Ser	Val
		50							55							60				
Ly	S	Gly	' Aı	g	Phe	Thr	· Ile	e Se	er i	Arg	As	рA	sn	Ala	Ly	'S I	Asn	Thr	Leu	Tyr
6	5						70)						75						80
Le	u	Gln	Me	et :	Ser	Ser	Let	ı Ly	s S	Ser	Gl	ı A	sp	Thr	Al	a N	<i>l</i> le t	Phe	Tyr	Cys
						85						(90						95	
Ala	a A	Arg	Gl	n I	Thr	Thr	Met	Th	r 1	yr	Phe	e Al	la	Tyr	Tr	р (Gly	Gln	Gly	Thr
					100						105)						110		
Lei	1 /	/al			/al	Ser	Ala													
			11.	5																
/ 9.1	^	. 45	7																	
<21																				
<21 <21																				
				çai	pier	10														
(21	07	110	шо	Su,	PICI	13														
<40	0>	47																		
Gln	L	eu	Val	Le	eu T	hr	Gln	Ser	Pr	ro S	Ser	Ala	a S	er	Ala	Se	r I	eu G	lv A	la
1						5						10						ou c	15	ia
Ser	Va	al]	Lys	Le	eu T	hr (Cys	Thr	Le	eu S	er	Ser	. G	ln I	lis	Se	r T	hr T		hr
					20						25							30	· -	
He	G]	u I	Γrp	Hi	s G	ln (Gln	Gln	Pr	o G	lu	Lys	G	ly F	ro	Ar		yr L	eu M	et
			35						4							4				
Lys	Le	u I	уs	Gl	n A	sp (Gly	Ser	Hi	s Se	er	Thr	G	ly A	sp	Gly	y I	le P	ro As	sp
		0						55							60					
Arg	Ph	e S	er	Gl	y Se	er S	Ser S	Ser	Gl	y A	la	Glu	Ar	g T	yr	Leı	ı Ti	nr II	le Se	er

65		70		75	80
Ser Leu	Gln Ser Glu	Asp Glu Al	a Asp Tyr]	Cyr Cys Gly	Val Gly Asp
	85		90		95
Thr Ile	Lys Glu Gln 1	Phe Val Ty	r Val Phe G	Sly Gly Gly	Thr Lys Leu
	100		105		110
Thr Val 1	Leu Gly				
	115				
<210> 48					
<211> 118	3				
<212> PRT	•				
<213> Horn	o sapiens				
<400> 48					
Gln Leu V	al Leu Thr G	ln Ser Pro	Ser Ala Se	er Ala Ser L	eu Gly Ala
1	5		10		15
Ser Val L	ys Leu Thr C	s Thr Leu	Ser Ser Gl	n His Ser T	hr Tyr Thr
	20		25		30
Ile Glu T	rp Tyr Gln G	n Gln Pro	Glu Lys Gl	y Pro Lys T	yr Leu Met
4	35	40		45	
Asp Leu Ly	s Gln Asp Gl	y Ser His	Ser Thr Gl	y Asp Gly I	le Pro Asp
50		55		60	
Arg Phe Se	er Gly Ser Se	r Ser Gly	Ala Glu Arg	g Tyr Leu Th	nr Ile Ser
65	7	0	75	5	80
Ser Leu Gl	n Ser Glu As	p Glu Ala	Asp Tyr Tyi	r Cys Gly Va	ıl Gly Asp
	85		90		95
Thr Ile Ly	s Glu Gln Ph	e Val Tyr	Val Phe Gly	Gly Gly Th	ır Lys Leu
	100		105	11	0
Thr Val Le	u Gly Gln Pro)			

<210> 49
<211> 118
<212> PRT
<213> Homo sapiens

<400> 49

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala 1 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr 20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Val Met
35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp 50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser 65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp 85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu 100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 50

<211> 118

<212> PRT

<213> Homo sapiens

<40	0> 5	0													
Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	Gly	Ala
1				5					10					15	
Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
			20					25					30		
Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	Tyr	Leu	Met
		35					40					45			
Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	He	Pro	Asp
	50					55					60				
Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	Ile	Ser
65					70					75					80
Ser	Leu	Gln	Ser		Asp	Glu	Ala	Asp		Tyr	Cys	Gly	Val	Gly	Asp
				85			_		90					95	
Thr	He	Lys		Gln	Phe	Val	Tyr		Phe	Gly	Gly	Gly		Lys	Leu
T)	37 1	T	100	01	T)			105					110		
Inr	Val		GIY	GIn	Pro										
		115													
<210)> 51	Į													
<211	> 11	18													
<212	?> PF	RT													
<213	3> Ho	omo s	sapie	ens											
ረለበና)> 51														
			الم آ	Thr	Cln	Sar	Dro	Sor	Ala	Sor	Ala	Sor	Lou	Clv	11 0
1	LCu	141	LCU	5	OIII	OC I	110	OC I	10	Ser	nia	SCI.	ԻԸՈ	15	ита
	Val	Lvs	Len		Cvs	Thr	Leu	Ser		Gln	His	Ser	Thr		Thr

Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	Tyr	Val	Met
		35					40					45			
Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	Ile	Pro	Asp
	50					55					60				
Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	Ile	Ser
65					70					75					80
Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	Val	Gly	Asp
				85					90					95	
Thr	He	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu
			100					105					110		
Thr	Val	Leu	Gly	Gln	Pro										
		115													
<210	> 52)													
<211	> 11	8													
<212	> PF	T													
<213	> Hc	omo s	apie	ens											
<400	> 52	1													
Gln :	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	Gly	Ala
1				5					10					15	
Ser '	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
			20					25					30		
Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Lys	Tyr	Leu	Met
		35					40					45			
Asp 1	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	Ile	Pro	Asp
	50					55					60				
Arg 1	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	Ile	Ser
65					70					75					80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp
85 90 95
Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
100 105 110
Thr Val Leu Gly Gln Pro
115
<210> 53
<211> 118
<212> PRT
<213> Homo sapiens
<400> 53
Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala
1 5 10 15
Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
20 25 30
Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Leu Met
35 40 45
Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp
50 55 60
Arg Phe Ser Gly Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser
65 70 75 80
Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr lle Cys Gly Val Gly Asp
85 90 95
Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
100 105 110
Thr Val Leu Gly Gln Pro
115

```
<210> 54
  <211> 118
  <212> PRT
  <213> Homo sapiens
  <400> 54
 Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala
   1
                    5
                                       10
                                                            15
 Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
              20
                                   25
 Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Val Met
                               40
                                                   45
 Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp
      50
                          55
                                               60
 Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser
  65
                      70
                                           75
                                                               80
Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp
                  85
                                      90
                                                           95
Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
             100
                                 105
                                                      110
Thr Val Leu Gly Gln Pro
        115
<210> 55
<211> 118
<212> PRT
<213> Homo sapiens
```

<400> 5	5											
Gln Leu	Val Le	u Thr	Gln S	er Pr	o Sei	Ala	Ser	Ala	Ser	Leu	Gly	Ala
1		5				10					15	
Ser Val	Lys Lei	ı Thr	Cys T	hr Lei	ı Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
	20				25					30		
Ile Glu	Trp Tyr	Gln	Gln G	ln Pro	Glu	Lys	Gly	Pro	Arg	Tyr	Val	Met
	35			40					45			
Asp Leu	Lys Gln	Asp (Gly Se	er His	Ser	Thr	Gly	Asp	Gly	Ile	Pro	Asp
50			ί	55				60				
Arg Phe	Ser Gly	Ser S	Ser Se	er Gly	Ala	Glu	Arg	Tyr	Leu	Thr	Ile	Ser
65			70				75					80
Ser Leu (Gln Ser	Glu A	sp Gl	u Ala	Asp	Tyr	Ile	Cys (Gly	Val	Gly	Asp
		85				90					95	
Thr Ile I	ys Glu	Gln P	he Va	l Tyr	Val	Phe	Gly (Gly (Gly 7	Thr	Lys	Leu
<i>m</i>	100				105					110		
Thr Val L		Gln P	ro									
I	.15											
∕210\ E¢												
<210> 56												
<211> 118 <212> PRT												
	o ganio	20										
<213> Hom	o gabiei	15										
<400> 56												
Gln Val Gl	ln Leu V	al Gl	u Ser	Gly (Gly G	ly Va	al Va	al Gi	n Pi	ro G	lv A	rg
1		5				10					15 15	• 0
Ser Leu Ar	g Leu S	er Cys	s Ala	Ala S	er G	ly Pl	ne Th	nr Ph	ie Se			vr
	20				25					10	- 4.	, -
Gly Met Se	r Trp V	al Arg	g Gln	Ala P	ro G	ly Ly	's Gl	у Le			p Va	ıl

35 40 45 Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser 115 <210> 57 <211> 411 <212> DNA <213> Mus musculus <220> <221> CDS <222> (1)... (411) <220> <221> mat_peptide <222> (58).. (411) <400> 57

atg aac ttc ggg ctc agc ttg att ttc ctt gcc ctc att tta aaa ggt

Met Asn Phe Gly Leu Ser Leu Ile Phe Leu Ala Leu Ile Leu Lys Gly

-10

-15

48

-5

gt	c ca	g tg	t gag	g gte	ca:	a cte	ggtg	g gag	g tci	t ggs	g gg	a gao	: tta	gt	g aa	g 96
Va	l Gl	n Cy	s Glı	ı Val	Glı	ı Let	ı Val	Glı	ı Sei	r Gly	y Gly	y Asr	Lei	ı Va	l Ly:	S
		-	1 1	l			5)				10)			
cci	gg	a gg	g tco	ctg	aaa	ctc	tcc	tgt:	gca	gco	tct:	gga	tto	ac	t tto	c 144
Pro	Gl	y Gl	y Sei	Leu	Lys	Leu	Ser	Cys	. Ala	Ala	Ser	Gly	Phe	Thi	r Phe	9
	18	5				20					25					
agt	ago	c tai	ggc	atg	tct	tgg	att	cgc	cag	act	cca	gac	aag	agg	g cte	s 192
Ser	Sei	Туі	Gly	Met	Ser	Trp	Ile	Arg	Gln	Thr	Pro	Asp	Lys	Arg	Leu	ľ
30	 				35					40					45	
gag	tgg	gto	gca	acc	att	agt	agt	ggt	ggt	agt	tac	acc	tac	tat	cca	240
Glu	Trp	Val	Ala	Thr	Ile	Ser	Ser	Gly	Gly	Ser	Tyr	Thr	Tyr	Tyr	Pro	
				50					55					60		
gac	agt	gtg	aag	ggg	cga	ttc	acc	atc	tcc	aga	gac	aat	gcc	aag	aac	288
Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn	
			65					70					75			
acc	cta	tac	ctg	caa	atg	agc	agt	ctg	aag	tct	gag	gac	aca	gcc	atg	336
Thr	Leu	Tyr	Leu	Gln	Met	Ser	Ser	Leu	Lys	Ser	Glu	Asp	Thr	Ala	Met	
		80					85					90				
ttt	tac	tgt	gca	aga	cag	act	ac t	atg	act	tac	ttt	gct	tac	tgg	ggc	384
Phe	Tyr	Cys	Ala	Arg	Gln	Thr	Thr	Met	Thr	Tyr	Phe	Ala	Tyr	Trp	Gly	
	95					100					105					
caa	ggg	act	ctg	gtc	ac t	gtc	tct	gca								411
Gln	Gly	Thr	Leu	Val	Thr	Val	Ser .	Ala								
110					115											
<210	> 58	}														
<211	> 41	1														
<212	> DN	A														
<213	> Ho	mo s	ap i ei	ns												

<220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411) <400> 58 atg ggg ttt ggg ctg agc tgg gtt ttc ctc gtt gct ctt tta aga ggt 48 Met Gly Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly -15-10-5gtc cag tgt cag gtg cag ctg gtg gag tct ggg gga ggc gtg gtc cag 96 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln -11 5 10 cct ggg agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc 144 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 15 20 25 agt agc tat ggc atg tct tgg gtc cgc cag gct cca ggc aag ggg ctg 192 Ser Ser Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 30 35 40 45 gag tgg gtg gca acc att agt agt ggt ggt agt tac acc tac tat cca 240 Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro 50 55 60 gac agt gtg aag ggg cga ttc acc atc tcc aga gac aat tcc aag aac 288 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn

75

336

70

acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg

<211> 9

```
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
           80
                                85
                                                    90
  tat tac tgt gcg aga cag act act atg act tac ttt gct tac tgg ggc
                                                                      384
  Tyr Tyr Cys Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly
       95
                          100
                                               105
 cag gga acc ctg gtc acc gtc tcc tca
                                                                      411
 Gln Gly Thr Leu Val Thr Val Ser Ser
 110
                      115
 <210> 59
 <211> 11
 <212> PRT
 <213> Homo sapiens
 <400> 59
Lys Ala Ser Gln Asp Val Asn Thr Ala Val Ala
   1
                   5
                                      10
<210> 60
<211> 7
<212> PRT
<213> Homo sapiens
<400> 60
Ser Ala Ser Asn Arg Tyr Thr
  1
                  5
<210> 61
```

<213> Homo sapiens

```
<212> PRT
  <213> Homo sapiens
 ⟨400⟩ 61
 Gln Gln His Tyr Ser Thr Pro Phe Thr
   1
                    5
 <210> 62
 <211> 5
 <212> PRT
 <213> Homo sapiens
 <400> 62
 Pro Tyr Trp Met Gln
  1
                   5
<210> 63
<211> 16
<212> PRT
<213> Homo sapiens
<400> 63
Ser Ile Phe Gly Asp Gly Asp Thr Arg Tyr Ser Gln Lys Phe Lys Gly
  1
                  5
                                     10
                                                          15
<210> 64
<211> 11
<212> PRT
```

<400> 64

Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr

1

5

10

<210> 65

<211> 411

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1)... (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 65

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15

-10

-5

tet tte tee caa ett gtg ete aet eag tea tet tea gee tet tte tee 96

Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser

-1 1

5

10

ctg gga gcc tca gca aaa ctc acg tgc acc ttg agt agt cag cac agt 144

Leu Gly Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15

20

25

acg tac acc att gaa tgg tat cag caa cag cca ctc aag cct cct aag

Thr Tyr Thr	lle Glu Trp Tv	r Gln Gln Gli	n Pro Leu Lys Pr	o Pro Ivo
30	35		40	45
tat gtg atg		a gat gga ago	c cac agc aca gg	
			His Ser Thr Gl	
	50	55		60
att cct gat			ggt gct gat cgo	
			Gly Ala Asp Are	
	65	70	75 75	
agc att tcc	aac atc cag cca		gca atg tac atc	
			Ala Met Tyr Ile	
80		85	90	oys dry
gtg ggt gat a	aca att aag gaa	caa ttt gtg	tat gtt ttc ggc	ggt ggg 384
			Tyr Val Phe Gly	
95	100		105	
acc aag gtc a	act gtc cta ggt	cag ccc		411
Thr Lys Val T	Thr Val Leu Gly	Gln Pro		
110	115			
<210> 66				
<211> 411				
<212> DNA				
<213> Homo saj	piens			
<220>				
<221> CDS				
<222> (1) (41	1)			
<220>				
<221> mat_pept	ide			

<400> 66 atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5 tet tie tee eag ett gig etg act eaa teg eee tet gee tet gee tee 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser -11 5 10 ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser 15 20 25 acg tac acc att gaa tgg cat cag cag cag cca gag aag ggc cct cgg 192 Thr Tyr Thr Ile Glu Trp His Gln Gln Gln Pro Glu Lys Gly Pro Arg 30 35 40 45 tac ttg atg aaa ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Lys Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggt cag ccc

Thr Lys Leu Thr Val Leu Gly Gln Pro

<210> 67

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_pept ide

<222> (58).. (411)

<400> 67

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15 -10 -5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192
Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys
30 35 40 45

tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240

Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336 Thr lle Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115 <210> 68 <211> 411 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411)

<400> 68

at	g gc	c te	gg a	ct c	ct	ctc	tto	c tt	c tt	c tt	t gt	t ct	t ca	t tg	c to	ca	ggt	48
Me	t Al	a Ti	rp T	hr P	ro	Leu	Phe	e Ph	e Ph	e Ph	e Va	l Le	u Hi	s Cy	s Se	er	Gly	
				-	15					-1	0				_	-5		
tc	t tt	c to	c ca	ag c	t t	gtg	cte	ac	t ca	a tc	g cc	c tc	t gc	c tc	t go	c	tcc	96
Se	r Ph	e Se	er G	ln L	eu	Val	Leu	Th	r Gla	n Sei	r Pr	o Se	r Ala	a Se	r Al	a S	Ser	
		_	1	1				5	5				1()				
cts	g gg	a gc	c to	g g	tc	aag	ctc	acc	t go	c acc	e ttį	g ag	t agt	t cas	g ca	c a	agt	144
Leı	ı Gly	v Al	a Se	r Va	al	Lys	Leu	Thr	Cys	S Thi	Lei	ı Se	r Sei	Glr	ı Hi	s S	Ser	
	15	5					20					25	5					
ace	tac	ac	c at	t ga	aa	tgg	tat	cag	cae	cag	cca	a gag	g aag	ggc	cc	t a	ag	192
Thr	Tyr	Th	r II	e Gi	lu '	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	o L	уs	
30)					35					40)					45	
tac	gtg	ate	g ga	t ct	t a	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	g	gg	240
Tyr	Val	Met	As:	p Le	u I	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asr	G	ly	
				5	0					55					60	ì		
att	cct	gat	cg	e tt	c t	ca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	c	tc	288
Ile	Pro	Asp	Ar	g Ph	e S	Ser (Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Le	eu	
			65	5					70					75				
													tat					336
Thr	He	Ser	Sei	Le	u G	dln S	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	GI	ly	
		80						85					90					
gtg	ggt	gat	aca	at	t a	ag g	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	gg	g	384
Val	Gly	Asp	Thr	He	e L	ys (Glu (Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gl	У	
	95					1	.00					105						
acc	aaa	ctg	acc	gto	c	ta g	gc (cag	ссс									411
Thr	Lys	Leu	Thr	Val	Le	eu G	ly (Gln 1	Pro									
110					1.	15												

<210> 69

```
<211> 411
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)... (411)
```

<220>
<221> mat_peptide
<222> (58).. (411)

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96

Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144
Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg 192
Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg
30 35 40 45

tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240

Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly

50 55 60

att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288

Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115 <210> 70 <211> 411 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411) <400> 70 atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48

-5

-10

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15

```
tet tte tee eag ett gtg etg aet eaa teg eee tet gee tee
                                                                   96
Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser
                              5
                                                  10
         -1
              1
ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt
                                                                   144
Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser
                         20
                                             25
     15
acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg
                                                                   192
Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg
 30
                     35
                                         40
                                                              45
                                                                   240
tac gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg
Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly
                                     55
                                                          60
                 50
                                                                   288
att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc
Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu
             65
                                 70
                                                      75
acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt
                                                                   336
Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly
                             85
                                                 90
         80
gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg
                                                                   384
Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly
                                            105
     95
                        100
                                                                   411
acc aaa ctg acc gtc cta ggc cag ccc
Thr Lys Leu Thr Val Leu Gly Gln Pro
110
                    115
```

<210> 71

<211> 411

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411) <400> 71 atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5 tet tte tee eag ett gtg etg act eaa teg eec tet gee tet gee tee 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser -1 1 5 10 ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser 15 20 25 acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Pro Glu Lys Gly Pro Lys 30 35 40 45 tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att eet gat ege tte tea gge tee age tet ggg get gag ege tae ete 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu

75

336

70

acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt

65

Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115 <210> 72 <211> 411 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411) <400> 72 atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5 tet tte tee cag ett gtg etg act caa teg eec tet gee tet gee tee 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser -1 1 5 10

_ 4		_	,													
															c agt	
Le	u Gl	y Ala	a Se	r Va	l Lys	Lei	ı Thi	r Cys	Thi	Leu	ı Ser	Sei	Gli	n His	s Ser	
	1	5				20)				25					
ac.	g tao	c acc	ati	gaa	a tgg	tat	cag	cag	cae	cca	gag	aag	ggo	c cci	agg	192
Th	r Tyı	r Thr	Ile	Glu	ı Trp	Туг	Gln	Gln	Gln	Pro	Glu	Lys	Gly	7 Pro	Arg	
30					35					40					45	
ta	c cte	gatg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
															Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
He	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	atc	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	He	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
		Asp														
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ссс								411
Thr	Lys	Leu	Thr	Val	Leu (Gly	Gln :	Pro								
110					115											

<210> 73

<211> 411

<212> DNA

<213≻ Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 73

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5

tet tte tee eag ett gtg etg act eaa teg eec tet gee tet gee tee 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser -1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser 15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys 30 35 40 45

tac gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55

att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75

acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90

gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384

60

Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105

acc aaa ctg acc gtc cta ggc cag ccc

411

Thr Lys Leu Thr Val Leu Gly Gln Pro

110

115

<210> 74

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 74

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15

-10

-5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1

5

10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15

20

25

acg	tac	acc	att	gaa	t gg	tat	cag	cag	cag	cca	gag	g aag	ggc	cct	agg	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glı	ı Lys	Gly	Pro	Arg	
30					35					40					45	
tac	gtg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	ago	aca	ggt	gat	ggg	240
Tyr	Val	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	atc	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Ile	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	He	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											
<210	> 75	i														
<211	> 34															
<212	> PR	T														

<400> 75

<213> Homo sapiens

Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln

1 5 10 15

Asp Leu Arg Arg Arg Phe Phe Leu His His Leu Ile Ala Glu Ile His
20 25 30

