AFHAL-TR-88-3102

AD-A208 108

HEAT-TRANSFER AND FRICTION FACTOR DESIGN DATA FOR ALL-METAL COMPACT HEAT EXCHANGERS

CHRISTINA L. CAIN

VEHICLE SUBSYSTEMS DIVISION ENVIRONMENTAL CONTROL BRANCH ADVANCED THERMAL MANAGEMENT GROUP

MARCH 1989

SUMMARY REPORT FOR PERIOD JAN 85 - NOV 87

Approved for public release; distribution unlimited.

S ELECTE D H

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-6553

REPORT DOCUMENTATION PAGE					pproved o. 0704-0188	
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION AVAILABILITY OF REPORT				
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.				
B. PERFORMING ORGANIZATION REPORT NUMBE	ER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)				
AFWAL-TR-88-3102		· ·				
. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORG	ANIZATION		
Air Force Wright Aeronautica	AFWAL/FIEE					
ic ADDRESS (City, State, and ZIP Code) Wright-Patterson AFB OH 4543		7b. ADDRESS (Cit	ty, State, and Zi	P Code)		
Ba. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)			BER		
8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10. SOURCE OF	UNDING NUMB	ERS		
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.		WORK UNIT
		62201F	2402	04		68
6. SUPPLEMENTARY NOTATION	an 85 to Nov 87	March 198			110	
17. COSATI CODES FIELD GROUP SUB-GROUP	18. CUBJECT TERMS (-			
TIELD GROUP JUB-GROUP	Heat Exchange		Uaat Paata			
20 13	Exchangers, C	rs, Compact Cryogenics, T	neat excna hermodynam	ngers, A	LL-met	al Heat
22 02	Exchangers, C	Cryogenics, T	hermodynam	ics, Hea	at Tran	sfer . (")
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted	Exchangers, C and identify by block ned under Rotary	This Reciprocatin	hermodynam report co	ics, Heavers and	at Tran	sfer ()
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an efficiency of the conducted to improve system life, and the conducted to improve syst	Exchangers, Co and identify by block ned under Rotary fort was underta	This Reciprocatin	hermodynam report co g Refriger op all-met	ics, Heavers and	at Tran alysis velopmen	and testint Progra
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases systems.)	Exchangers, Control of the design of the des	Tryogenics, This Reciprocatin ken to devel s which continues outgassin	report co g Refriger op all-met ain organi	ics, Heavers and ator Deval compact materi	alysis velopment heals.	sfer (") and testi nt Progra t Eliminati
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducte To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reduced to the system of the system	Exchangers, Control of the desired and the exchanger of the desired and the exchanger of th	This Reciprocatin ken to devel s which cont se outgassin Perforated	report co g Refriger op all-met ain organi g organics	ics, Heavers and ator Deval compact material compact can can compact can can compact can can compact can can compact can	at Tran alysis velopmen act hea als. atamina	sfer . (**) and testi nt Progra t Eliminati te the
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reductioned to have inherently low as	Exchangers, Condition and identify by block of the desired under Rotary fort was undertag heat exchanger extem life because system life.	ryogenics, This Reciprocatin ken to devel s which cont se outgassin Perforated and are the	report cog Refriger op all-met ain organics plate heat	vers and ator Deval compact material compact can can compact can can compact can can compact can	at Tran alysis velopment act hea als. atamina gers ha	sfer . (**) and testi nt Progra t Eliminati te the ve been
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reduction to have inherently low a cryogenic applications where a were tested; 2 were chemically	Exchangers, Control of the control o	ryogenics, This Reciprocatin ken to devel s which cont se outgassin Perforated and are the ign is requi-	report cog Refriger op all-met ain organics plate heat refore excred. A to punched.	vers and ator Deval compact materifican con exchangellent cotal of land 8 weeks	at Tran alysis velopmen act hea als. atamina gers ha andida al plate	and testint Prograte Eliminatite the ve been tes for e cores
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reduction found to have inherently low a cryogenic applications where a were tested; 2 were chemically using electron beam drilling.	Exchangers, Co and identify by block of ed under Rotary fort was underta g heat exchanger ystem life because system life. exial conduction in all-metal des y etched, I was Hole size, per	ryogenics, This Reciprocatin ken to devel s which cont se outgassin Perforated and are the ign is requi- mechanically cent open ar	report cog Refriger op all-met ain organics plate heat refore excred. A to punched, ea. and nleate and nleate and nleate and nleate and nleate area.	vers and ator Deval compact materican con exchangellent contal of land 8 we are thick	at Tran alysis velopmen act hea als. atamina gers har andida al plate	and testint Prograte Eliminatite the ve been tes for e cores
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symplication working fluid and reduct found to have inherently low a cryogenic applications where a were tested; 2 were chemically using electron beam drilling, were varied among the plates, and found to differ significant.	Exchangers, Control of the control o	ryogenics, T Reciprocatin ken to devel s which cont se outgassin Perforated and are the ign is requirechanically cent open are esults were	report cog Refriger op all-met ain organics plate heat refore excred. A to punched, ea, and placempared test	vers and ator Deval compact materican con exchangellent contal of land 8 we ate thick contally to each in the contally the contally to each in the contally the cont	at Tran Alysis yelopment at hea als. atamina yers har andidat l plate tre man kness p	and testint Prograte Eliminatite the ve been tes for e cores ufactured parameter rojection
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reduct found to have inherently low a cryogenic applications where a were tested; 2 were chemically using electron beam drilling, were varied among the plates, and found to differ significant determine the heat transfer construction.	Exchangers, Control and identify by block of the defender Rotary fort was undertaged to the second the second to the second the seco	ryogenics, This Reciprocatin ken to devel s which cont se outgassin Perforated and are the ign is requi mechanically cent open are esults were e-blow trans the isotherm	report cog Refriger op all-met ain organics plate heat refore excred. A to punched, ea, and placempared to the state of th	vers and ator Deval compact materican con exchangellent contal of land 8 we ate thick contally to each in the contally the contally to each in the contally the cont	at Tran Alysis yelopment at hea als. atamina yers har andidat l plate tre man kness p	and testint Prograte Eliminatite the ve been tes for e cores ufactured parameter rojection
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reduction found to have inherently low a cryogenic applications where a were tested; 2 were chemically using electron beam drilling, were varied among the plates, and found to differ significant determine the heat transfer condetermine friction factors, as	Exchangers, Control of the desired and identify by block of the desired and identify by block of the desired and identify by block of the desired and identified and identi	This Reciprocatin ken to devel s which cont is e outgassin Perforated and are the ign is requirechanically cent open are esults were e-blow transithe isotherma Reynolds numbers 121. ABSTRACT SE	report cog Refriger op all-met ain organics plate heat refore excred. A to punched, ea, and placompared to the compared to the	vers and ator Deval compact materic can compact exchange ellent of the cand 8 we ate thic compact can alytic echnique drop to	at Tran Alysis yelopment at hea als. atamina yers har andidat l plate tre man kness p	and testint Prograte Eliminatite the ve been tes for e cores ufactured parameter rojection
22 02 19. ABSTRACT (Continue on reverse if necessary Arthur D. Little, Inc conducted To improve system life, an effect exchangers to replace existing organic materials increases symbolium working fluid and reduct found to have inherently low a cryogenic applications where a were tested; 2 were chemically using electron beam drilling, were varied among the plates, and found to differ significant determine the heat transfer condetermine friction factors, as	Exchangers, Control of the desired and identify by block of the desired and identify by block of the desired and identify by block of the desired and identified and identi	This Reciprocatin ken to devel s which cont is e outgassin Perforated and are the ign is requirechanically cent open are esults were e-blow transithe isotherma Reynolds numbers 121. ABSTRACT SE	report cog Refriger op all-met ain organics plate heat refore excred. A to punched, ea, and placompared to ient test al pressure ber. CURITY CLASSIFIED	vers and ator Deval compact materican con exchange ellent of the contract of t	alysis velopment heads. Itaminal taminal tamin	and testint Prograte Eliminating the the verbeen tes for ecores ufactured parameter rojection used to a used to

ABSTRACT

This report covers analysis and testing Arthur D. Little, Inc conducted under Rotary Reciprocating Refrigerator Development Programs. To improve system life, an effort was undertaken to develop all-metal compact heat exchangers to replace existing heat exchangers which contain organic materials. Eliminating organic materials increases system life because outgassing organics can contaminate the helium working fluid and reduce system life. Perforated plate heat exchangers have been found to have inherently low axial conduction and are therefore excellent candidates for cryogenic applications where an all-metal design is required. A total of 11 plate cores were tested; 2 were chemically etched, 1 was mechanically punched, and 8 were manufactured using electron beam drilling. Hole size, percent open area, and plate thickness parameters were varied among the plates. Experimental results were compared to analytical projections and found to differ significantly. The single-blow transient test technique was used to determine the heat transfer coefficients and an isothermal pressure drop test was used to determine friction factors, as a function of Reynolds number.

Acce	ssion For	
NTIS DTIC	GRA&I	
Unan	nounced ification_	
ByDist:	ribution/	
1	lability C	odes
Dist	Avail and, Special	

TABLE OF CONTENTS

SECTION	PAGE
I Introduction	1
II Test Setup	8
1 Nata	8
2 Description of Apparatus	9
3 Test Procedure	10
4 Theoretical Assumptions	11
III Evaluation of Test Apparatus	13
1 Comparison of Preliminary Results with Theory	13
2 Review of Test Procedure	16
3 Modification of Test Apparatus	19
IV Test Results	22
V Conclusions	30
VI Recommendations	31
Appendix A Data Reduction	32
Appendix B Accuracy	55
Appendix C Modeling the Plate	56
Appendix D Insulation Requirements	97
References	103

LIST OF FIGURES

FIGURE		PAGE
1	Schematic of two-expander reverse Brayton cycle	1
2	Side view of sample heat-exchanger with six plates and five e-seal spacers	2
3	Top view of plate and e-seal spacer	3
4	E-seal geometry and hole misalignment	3
5	Configuration of test core	4
6	Assembled test section, e-seal spacer, and three plate types	5
7	Schematic of test apparatus (Dummy core in place)	9
ጸ	Schematic of switch box operation	10
9	Comparison of predicted (punched plate) heat-transfer values with unmodified test results	15
10	Test section control volume	18
11	Comparison of measured and predicted heat leaks	20
12	Test section control volume	20
13a	Photograph of punched and etched plate cross sections	23
13b	Photograph of EBD plate cross section	24
14	Comparison of theoretical and actual friction factor data	25
15	Friction factor as a function of Reynolds number	26
16	Comparison of theoretical and actual heat-transfer characteristics	27
17	Effect of plate orientation on N _{tu} /Plate	28
18	Comparison of helium and air heat-transfer data	29
A1	E-seal dimensions	37
A2	Temp of air downstream from test section	54
C1	Model of staggered hole pattern	56
C2	Two pass heat exchanger	57
C3	Model of circular fin (High pressure flow path)	58
C4	Fin temperature properties	59

AFWAL-TR-88-3102

FIGU	FIGURE	
C5	Model of a single hole	65
С6	Model of two holes	67
C7	Model of a sixth of a hole	69
C8	Plot of effective thermal conductivity ratio vs plate open area ratio	71
C9	Plot of pressure drop across one plate	7?
nı	Schematic of test section	97
D2	Plot of heat leak rate vs insulation thickness (steady state analysis)	98
D3	Model of the insulated test section	99
<u>04</u>	Transient analysis of heat loss with an infinite thickness of insulation	102

LIST OF TABLES

TABLE	<u>Title</u>	PAGE
1	Comparison of calculated and measured time to the maximum cooling rate	14
2	Comparison of actual and predicted apparent heat leak and time to maximum slope	21
A1	Friction factor data - punched and etched Plates (40 Plates/Core)	41-42
A2	Friction factor data - EBD plates	43-47
А3	Heat-transfer data - punched and etched plates (40 plates/core)	48-49
A4	Heat-transfer data - EBD plates	50-52
A5	Heat-transfer data - punched plate tested with air; original apparatus	53
R1	Maximum uncertainty of physical constants and measurements	55
C1	Theoretical friction factor for punched and etched plates	82
C2	Theoretical friction factor for ERD plates 20% open area	83-84
C3	$N_{\rm tu}/{\rm plate}$ vs hole Reynolds number for the punched and etched plates	92
C4	Theoretical N _{tu} /plate assuming a parabolic velocity profile	93-96
D1	Comparison of different insulation requirements	100

SECTION I

INTRODUCTION

This report discusses testing and analysis Arthur D Little, Inc (ADL) conducted under the Rotary Reciprocating Refrigerator (RCUBE) Development Program [1]. The RCUBE cooler operates on a reverse-Brayton cycle to provide cooling at $60 \, \text{K}$ and $12 \, \text{K}$. A schematic of the cycle is shown in Figure 1.

Figure 1. Schematic of two-expander reverse-Brayton cycle

The counterflow heat exchangers are vital cooler components — typically each is required to have an effectiveness on the order of 0.98. Because of the large required effectiveness, the heat exchangers make up a significant portion of the cooler mass and volume. In order to reduce heat exchanger mass and volume, compact heat exchangers composed of perforated plates separated by G-10 spacers were developed. Unfortunately, the organic materials in the heat exchangers can outgas and contaminate the working fluid which reduces system life.

Since system life is a primary concern, an effort was undertaken to develop all-metal compact heat exchangers to replace the PCUBE heat exchangers which contained organic materials. The heat exchangers would be composed of copper perforated plates separated by stainless steel e-seal spacers. They would still be a two-pass counterflow design with the high pressure stream in the circular center section and the low pressure stream in the outer annular section (see Figures 2 and 3).

Note that the e-seal spacer has two functions. It both separates the two flow paths, and inhibits longitudinal conduction between adjacent plates. Because of the e-seal geometry, the physical plate separation is 0.087" while the conduction path length is 0.156" (see Figure 4).

Figure 2. Side view of sample heat-exchanger with six plates and five e-seal spacers

Figure 3. Top view of plate and e-seal spacer

Figure 4. E-seal geometry and hole misalignment

Although the all-metal heat exchanger reduces contamination and therefore increases system life, it also results in a larger heat exchanger for a given effectiveness because it doesn't provide as much thermal isolation between the plates. Because system life is considered so important, the increase in system mass and volume is acceptable.

RCUBE system requirements dictate the minimum heat exchanger effectiveness and the maximum acceptable pressure drop across the heat exchangers. In order to design the heat exchangers, heat-transfer and pressure drop data had to be gathered for various plate geometries and flow conditions. The required effectiveness of the balanced, counterflow heat exchangers dictates the number of heat-transfer units (N_{tu}) for the entire heat exchanger. Consequently, N_{tu}/plate was chosen to compare the heat-transfer characteristics of various plate geometries. The friction factor was chosen to compare the pressure drop characteristics. Knowing the N_{tu}/plate and friction factor, the number of plates needed to achieve the required effectiveness and the associated heat exchanger pressure drop can be determined.

Next, test methods to determine N_{tu}/p ate and friction factor were chosen. An isothermal pressure drop test was used to find friction factors while the single-blow transient test method [2] was used to gather heat-transfer data.

The single-blow transient test method allows a core of plates separated by e-seals to be tested using only one flow path (see Figure 5). The room temperature core is placed into a heated air flow and the air temperature downstream from the core is recored until a steady state is reached. The core N_{tu} can be determined from the maximum slope of the time-temperature plot and the longitudinal heat conduction in the core.

Figure 5. Configuration of test core

Since each plate in the core is isothermal at any given time during this test the N_{tu} /plate data reported is for 100% fin effectiveness. In order to use the data to design actual counterflow heat exchangers, the fin effectiveness must be considered (see Appendix C).

Eleven different plate geometries were tested and compared. The plate geometries that provided the best heat transfer and friction factors were identified. All the perforated plate test sections had 3" diameter copper plates separated by stainless steel e-seal spacers and were designed for a helium working fluid. Two test sections had plates with etched holes (9% and 24.5% open area), one had plates with punched holes (23.6% open area), and eight had plates manufactured using electron beam drilling (20% open area).

Originally the punched and etched plates were tested and the testing indicated that plates with smaller hole diameter to plate thickness (d/t) ratio had better heat-transfer characteristics. Consequently, ADL searched for a manufacturing method which could produce plates with smaller d/t ratios. They found the electron beam drilling process, so eight more cores $(0.154 \le d/t \le 0.750)$ were manufactured and tested. The three original test cores had 40 plates separated by 39 e-seals. As thicker plates were manufactured, the cores had to have fewer plates to fit in the switching box -- the last 8 cores had 24 to 32 plates. Figure 6 shows an assembled test section, an e-seal spacer, and the three original plates.

Figure 6. Assembled test section, e-seal spacer, and three plate types

Throughout the tests, the holes in the test cores were misaligned (see Figure 4). If the distance between the plates is small enough the alignment or misalignment of the holes is expected to affect both heat-transfer and pressure drop characteristics. Misaligning the holes is expected to enhance heat transfer while increasing pressure drop and aligning the holes is expected to minimize pressure drop at the expense of heat transfer. There is an indication [1] that if the ratio of plate separation to plate thickness is greater than one, the plates won't be influenced by adjacent plates. The ratio of plate separation to plate thickness ranged from 4.70 to 1.34 in the test cores. Consequently, the hole misalignment shouldn't affect the pressure drop through the cores. Furthermore, as long as total exchanger pressure drop remains acceptably small, it's desirable to enhance heat transfer at the expense of pressure drop.

This report describes the test methods and apparatus used to evaluate and compare the plates. Evaluations, and resulting modifications, of the test method and apparatus are also discussed. Data gathered using the final method were considered accurate enough for design purposes and were compared to theoretical results.

Section II discusses the characteristics chosen to compare the test sections and specifies the measurements necessary to calculate the plate characteristics. Next, this section describes the test apparatus and procedure. Finally, the assumptions of the single blow transient-test and the test conditions that closely approximate these assumptions are presented.

Section III shows the poor agreement between the test and theoretical results. The review of the test procedure and the subsequent modifications of the test apparatus are then discussed. Next, Section III verifies the accuracy of results obtained using the modified test apparatus. Section IV then presents the results. Sections V and VI cover conclusions and recommendations.

Appendix A presents the equations used to perform data reduction. The data, including a time-temperature trace from the modified apparatus and results are presented here and Appendix B describes the accuracy of the results.

The theoretical equations used to check the experimental data are derived in Appendix C. Appendix D compares the steady state and transient analysis to determine the insulation requirements.

The theory behind the single-blow transient test method is clearly presented by Pucci et al [2].

This report is based on a summary report [1] documenting tests performed by Mr Richard Hubbell. The tests were conducted at ADL under a contract to develop a two-stage rotary reciprocating refrigerator. Dr Fowle, a consultant to ADL, did the necessary analytical work to support the tests.

SECTION II

TEST SETUP

1. DATA

Since the objective of the tests was to compare test sections composed of different plates, a method of comparison had to be chosen. Since the number of heat-transfer units (N_{tu}) per plate will dictate the size of the heat exchanger for any required heat exchanger effectiveness, the N_{tu} /plate was selected to compare heat-transfer data. The friction factor (f) was selected for the pressure drop comparison and data were gathered for Reynolds numbers ranging from 4 to 666. The Reynolds number used for all calculations (hole Reynolds number) was calculated using a hole diameter as the representative length, and the mass flow rate was based on the minimum free flow area. The following properties were measured and used to calculate N_{tu} and f: the mass flow rate, the pressure drop across the test section, the temperature upstream and downstream from the test section as a function of time.

The N_{tu} is a function of the longitudinal heat conduction (thermal conduction in the solid, parallel to the flow direction) and the maximum slope of the temperature downstream from the test section vs time plot. The relationship between the longitudinal heat conduction, the maximum rate of change of temperature with time and the N_{tu} is presented in tabular and graphic form by Pucci [2]. Note that the Colburn modulus can be calculated given the heat-transfer number (N_{tu}), the Prandtl number (N_{pr}), and the plate geometry (N_{c} /A) using the following relationship:

$$i = N_{tu} (A_c/A) N_{Pr}^2/3$$
 (1)

where

j = Colburn modulus.

 A_{C} = Minimum free flow area.

A = Total heat-transfer surface area.

 N_{tu} = Number of heat-transfer units.

 N_{pr} = Prandtl number.

The friction factor per plate can be calculated given the mass flow rate and pressure drop across the test section during steady state operation.

$$f = \frac{D_h \Delta P \rho A_c^2 g_c}{2 n t h^2}$$
 (2)

where

f = Friction factor.

D_h = Hydraulic diameter.

 ΔP = Pressure change across the test section.

 ρ = Density of working fluid.

 A_{C} = Minimum free flow area.

n = Number of plates.

t = Plate thickness.

m = Mass flow rate.

 g_c = Proportionality factor in Newton's second law.

in Account is a physical property of the test section, and the temperature, pressure change, and volumetric flow rate were measured.

2. DESCRIPTION OF APPARATUS Switching Box Dummy Resistance Straightening Heater Section T,P Compressed rotometer (Air or He)

Figure 7. Schematic of test apparatus (dummy core in place)

Figure 8. Schematic of switch box operation

The test apparatus (Figure 7) consists of a source of compressed air (or helium), a resistance heater followed by a flow straightening section and the test section. The test section is in a switching box (Figure 8) which allows it to be moved quickly into the stream of heated fluid. When the test section is not in the system, a dummy core, which causes the same pressure drop as the test section, is in place. Temperature and pressure readings are taken downstream from the straightening section, and the volumetric flow rate is measured upstream from the straightening section using a rotometer. The outlet temperature is measured after the switching box, and the outlet pressure tap is far enough downstream from the test section (~ 3 in) to allow for pressure recovery.

3. TEST PROCEDURE

The test procedure used to collect the data follows:

- a. Number of Heat-Transfer Units (N_{tu})
- (1) Establish a uniform temperature in the test core by blowing room-temperature compressed air, or helium, through the test apparatus with the test section in place. A uniform temperature $(\pm 0.1^{\circ}F)$ is necessary through the entire test core volume to ensure repeatable results.

AFWAL-TR-88-3102

- (2) Move the dummy section into the flow to allow the fluid to bypass the test section.
- (3) Use the resistance heater to increase the fluid temperature about $20^{\circ}\text{F}_{\odot}$
- (4) Maintain the heated airflow until all the apparatus components reach a stable temperature. The time-temperature plot should vary less than 1.0°F/hr once this steady-state condition is achieved.
- (5) Next, move the room-temperature test section into the hot air stream, and record the air temperature leaving the test section as a function of time. The pressure drop across the test section and the dummy section must be within 0.1" $\rm H_2O$ of each other to maintain a constant flow rate through the apparatus before and after the test section is moved into the stream.
 - (6) Repeat the procedure for various mass flow rates.

b. Friction Factor (f)

Record the pressure drop across the test section for steady-state, room-temperature fluid as a function of the flow rate.

4. THEORETICAL ASSUMPTIONS

The transient-test technique is based on assumptions which the test method and apparatus must insure. The assumptions and the test conditions that closely approximate each assumption follow:

a. The fluid temperature and velocity profiles are uniform across the cross-sectional area of the test section. The flow straighteners insure a uniform velocity profile, and the time-temperature plot shows when a steady-state, uniform temperature is reached.

- b. The fluid flow rate is steady. This is assured by keeping a large reservoir of fluid and insuring that the pressure drop is the same across the test and dummy sections.
- c. Longitudinal heat conduction is minimal. This is a design characteristic of perforated-plate heat exchangers.
- d. Heat conduction across the core holder is negligible. An insulated balsa wood holder, which has low thermal capacity and conductivity, meets this requirement.
- e. The matrix (core) heat-transfer coefficient is independent of position and time. The plate construction is uniform, and heat-transfer and fluid flow effects are distributed uniformly through the core.
- f. The thermal properties of the test fluid are independent of temperature. A 20°F temperature change assures that the properties do not change substantially. This condition was tested by comparing the N_{tu}/p ate for 20, 30, and 40°F changes in air. The results were within 4% of each other for the same Reynolds number.
- g. The gas acts as a perfect gas. At ambient temperature and pressure (test conditions) air and helium can be considered perfect gases. Also, using air as a test gas to gather data on helium heat exchangers is appropriate because the Prandtl numbers of air and helium are very close $(N_{pr}(air) = 0.72, N_{pr}(He) = 0.68)$.
- h. The thermal capacity of the gas in the matrix is small compared to the thermal capacity of the matrix. A core of 24 40 plates was used for the test assuring good thermal capacity.
- i. Heat conduction in the gas is negligible in the flow direction. The convective heat transfer is much greater than any gas conduction effects.

SECTION III

EVALUATION OF TEST APPARATUS

1. COMPARISON WITH THEORY

The N $_{tu}$ /plate can be determined as a function of plate geometry and hole Reynolds number. The equations used to calculate the N $_{tu}$ /plate assume that

$$1 \le N_{Re} \le 1000$$

 $N_{pr} = 0.7$

and the section has a uniform wall temperature. Two laminar flow cases were considered. One case assumed a developing velocity profile in each hole and the other assumed a fully developed parabolic velocity profile. The results of the calculations in Appendix C follow.

FOR A DEVELOPING VELOCITY PROFILE

$$N_{tu}/PLATE = \frac{\frac{-0.232}{(1-\sigma)\sigma} \frac{0.520 \cdot 0.121}{(2.554+2.011 \cdot N_{Re} \cdot \sigma)} + \frac{20.9 \cdot t}{N_{Re}} + \frac{0.417}{1+0.012[(d/t)N_{Re}]^{0.8}} (3)}{N_{Re}}$$

FOR A PARABOLIC VELOCITY PROFILE

$$N_{tu}/PLATE = \frac{(1-\sigma)\sigma^{-0.232}(2.554+2.011 N_{Re}^{0.52} \frac{0.121}{\sigma^{-0.121}})20.9^{-t}/_{d}}{N_{Re}} + \frac{0.269}{1+0.032\Gamma(d/t)N_{Re}} \frac{10.667}{(4)}$$

where

 N_{til} = Heat-transfer number.

 σ = Ratio of plate open area to frontal area.

t = Plate thickness.

d = Hole diameter.

 N_{Re} = Hole Reynolds number.

Comparing the predicted values with the test results (Figure 9) showed that the predicted N_{tu} /plate are 2.3 to 4.7 times the test results. The actual and predicted times to maximum slope of the temperature vs time curve were also compared. The time to maximum slope (0*) is based on the mass flow rate and the fluid and heat exchanger properties.

$$\theta^* = \frac{\frac{m_m c_c}{\dot{m} c_p}}{\dot{m} c_p(air)}$$
 (5)

Where:

m = Mass flow rate of the fluid.

 $m_m = Mass of plates.$

 c_m = Specific heat of plates.

 c_{pair} = Specific heat of air (or helium).

Table 1 compares the calculated and measured time to maximum slope for runs 3 and 5.

	θ* (sec)		
RUN	ACTUAL	PREDICTED	
3	169	151	
5	87.5	74.1	

Table 1. Comparison of calculated and measured time to the maximum cooling rate

The actual values were read from the time temperature traces. The difference in the values indicates a fluid loss; however, it is very difficult to determine the time to maximum slope accurately from the traces.

Since there were large differences between the actual and predicted values of both the $\rm N_{tu}/\rm plate$ and time to maximum slope, the test method and apparatus was suspect.

15

Figure 9.

2. REVIEW OF TEST PROCEDURE

Because of the discrepancy between predicted and measured values of $N_{tu}/plate$ vs N_{Re} and time to maximum slope, the test procedure was reviewed. The following aspects of the test were checked:

ASSUMPTIONS. Were the assumptions used to model the heat exchanger and predict the results met during the test?

INSTRUMENTATION. Was the instrumentation accurate enough to provide reliable data?

CALCULATIONS. Were the methods and calculations used to manipulate the data correct?

The instrumentation and calculations were fine; however, there was a large apparent heat leak that could have been due to either heat leaks, fluid leaks, or some combination of the two. The test apparatus model assumed that mass flow remained constant (no flow leakage) and that heat conduction across the core holder is negligible (no heat leakage). The assumptions upon which the transient-test technique is based were not met.

a. Heat Leaks

A heat leak was suspected when a temperature difference was noticed across the core once the system reached steady state. The instrumentation was checked -- it provided accurate sensing. The apparent heat leak was then estimated based on the following core information:

 $T_i = 98^{\circ}F$ = Inlet temperature. $T_0 = 95.3^{\circ}F$ = Outlet temperature. $\Delta T = 20^{\circ}F$ = Initial temperature step applied to the core. m = 0.22 lbm/min = Mass flow rate. $\Delta \theta = 340 \text{ s}$ = Time to reach steady state.

$$m_s$$
 = 1.287 lbm = Mass of plates.
 c_s = 0.09 BTU/lbm R = Specific heat of plate.
 $c_p(air)$ = 0.24 BTU/lbm R = Specific heat of air.

If the temperature difference was due only to a heat leak, the heat loss rate (\dot{q}_1) can be found from the following relationship:

$$\phi_1 = \text{ft c}_p(\text{air}) (T_i - T_0)$$

$$= (0.22 \text{ 1bm/min}) (0.24 \text{ BTU/1bm R}) (98 - 95.3) \text{F } (60\text{min/hr})$$

$$= 8.55 \text{ BTU/hr}$$

To find the percent heat leak, the rate of heat storage must be estimated. The heat absorbed by the heat exchanger from the start of the test to steady state (Q) is calculated using the following equation:

$$0 = {m_S} c_S \Delta T$$
= (1.287 lbm) (0.09 BTU/lbm R) (20°F)
= 2.316 BTU

The average rate of heat storage (q_s) can now be approximated:

$$\dot{q}_{s} = \frac{0}{\dot{\Delta}\dot{\theta}} = \frac{2.316 \text{ BTU}}{340 \text{ s}} (3600 \text{ s/hr})$$

= 24.52 BTU/hr

The resulting apparent heat loss rate (\hat{q}_1 = 8.55 BTU/hr) is 35% of the heat storage rate (\hat{q}_s = 24.55 BTU/hr) -- this is an unacceptable loss.

h. Fluid Leaks

The apparent heat leak may be partially due to fluid leaks. A reasonable estimate of the heat leak is 4.5 BTU/hr. If the heat leak was actually only 4.5 BTU/hr, the fluid leak can be estimated by performing an energy balance on the system.

Figure 10. Test section control volume

The fluid loss at Section 1 is the critical loss; any loss at Section 2 should not significantly affect the test.

$$\int_{q_1 dt} dt = \int_{dt}^{dE} dt + \int_{dt$$

where

 m_1 = Mass flow into test section.

 m_{11} = Mass flow leaking out of test section at the entrance.

 m_2 = Mass flow out of the test section.

 m_{21} = Mass flow leaking out of the test section at the exit.

t = Time.

E = Internal energy.

$$\Delta \hat{m}_1 = \frac{\hat{m}_{11}}{\hat{m}_1}$$
 (100%) = Percent fluid loss.

The following relationship results from the continuity equation:

$$m_2 + m_{21} = m_1 - m_{11}$$

Now, assuming all the flows are constant, for the steady-state condition the percent fluid loss can be found directly from the following relationship:

$$\Delta \hat{m}_{11} = 1 - \frac{\hat{q}_{1}}{m_{1}c_{p}(T_{1}-T_{2})}$$

$$= 1 - \frac{4.5 \text{ BTU/hr}}{(0.22 \text{ lbm/min}) (0.24 \text{ BTU/lbm R})(2.7F) 60 \text{ min}}$$

$$= 47\%$$

The calculations indicated the need to modify the apparatus to reduce both heat and fluid leaks.

3. MODIFICATION OF TEST APPARATUS

The test apparatus was modified using a seal tight design to reduce fluid leaks and more effective insulation to reduce heat leaks. The transient behavior of the insulation, not the steady state behavior, determined how much insulation was needed. Figure 8 compares the estimated total heat loss vs time calculated using steady state and transient analysis. Measured values of the apparent heat leak are also presented. Runs 25 and 30 were performed using the modified apparatus. Before the modification, the discrepancy between the measured and predicted values (using both steady state and transient analysis) of the heat leak were large. After the modification the heat leak for long runs had decreased considerably and the measured and predicted values (using transient analysis) were much closer.

Figure 11. Comparison of measured and predicted heat leaks

The modified apparatus reduced heat and flow leaks, producing results accurate enough for design evaluations. The accuracy of the apparatus can be demonstrated by comparing the actual and theoretical apparent heat leaks and time to the maximum temperature slope for various runs.

The heat loss from the system was found using an energy balance assuming no fluid leakage.

Figure 12. Test section control volume

$$\eta_{oss} = \int_{0}^{\tau} dt = \int_{0}^{\tau} \frac{de}{dt} dt + \int_{0}^{\tau} mc_{p}T_{2} dt - \int_{0}^{\tau} mc_{p}T_{1}dt$$

$$= -m_{m}c_{m} \left(t_{f} - t_{i}\right) + mc_{p} \int_{0}^{\tau} (T_{1} - T_{2})dt$$

where

 $m_m = Mass of core.$

 c_m = Specific heat of core.

 t_f = Temperature of core at final steady state.

t; = Temperature of core before heating.

 $f_0^{\tau}(T_1 - T_2)dt = Area under the temperature vs time plot.$

 τ = Time for the run to reach steady state.

The test generates data to calculate the actual heat leak. The predicted heat loss for infinite insulation can be estimated using tabulated values of heat loss as a function of insulation properties and the time needed to reach the steady-state condition. The actual time to maximum slope can be read from the time-temperature plot and equation (5) generates the predicted time to maximum slope.

The results of the comparisons for test runs 25 and 30 are presented in Table 2. The runs show excellent agreement between the predicted and measured values and indicate minimal heat and fluid losses.

RUN	τ (sec)	O (BTU)		θ (sec)	
		Measured	Predicted	Measured	Predicted
25	117	0.25	0.17	38.0	38.9
30	420	0.45	0.35	293	298

Table 2. Comparison of actual and predicted apparent heat leak and time to maximum slope

SECTION IV

TEST RESULTS

The three heat exchanger core types (punched, etched, and electron beam drilled (EBD)) were tested four ways. The punched and EBD plates have a breakout caused by manufacturing (See Figure 13). Tests were run with the breakout facing both upstream and downstream. The orientation of the core affected the N_{tu} /plate but did not affect the friction factor. Since the etched plates do not have breakouts, orientation was not considered. The etched plates were tested with both helium and air to insure there was not a significant Prandtl number effect—there wasn't.

Figure 14 presents both the theoretical and measured friction factors as a function of hole Reynolds number. The theoretical results were calculated using equation (C44) and are presented in Tables C1 and C2. The theoretical results show that the friction factor decreases as the percent open area increases and as the hole diameter to plate thickness ratio decreases. The experimental results indicate that the friction factor is more sensitive to the hole diameter to plate thickness ratio than the percent open area. As the hole diameter to plate thickness ratio decreases, the friction factor also decreases.

Figure 15 shows that the friction factor data didn't depend on the test gas (air or helium) or the core orientation.

Figure 16 presents the theoretical and measured heat-transfer data. The theoretical results presented assume a parabolic velocity profile in the holes, were calculated using equations in appendix C, and are tabulated in Tables C3 and C4. The theoretical results indicate that N_{tu}/plate increases with decreasing d/t ratio. The experimental results indicate that for hole Reynolds numbers above 30, the N_{tu}/plate increases as d/t decreases. Also, the slope of the N_{tu}/plate vs N_{Re} decreases as d/t increases.

Figure 17 demonstrates the dependence of the heat-transfer data on plate orientation (or hole shape). Both the punched and EBD plates were oriented in the core with all the hole breakouts facing the same direction. When the core was

Figure 13a. Photograph of punched and etched plate cross section

Figure 13b. Photograph of EBD plate cross section (t = .065", d = .010")

Comparison of theoretical and actual friction factor data Figure 14.

Figure 15. Friction factor as a function of Reynolds number

Comparison of theoretical and actual heat-transfer characteristics Figure 16.

Figure 17. Effect of plate orientation on Ntu/plate

oriented so the fluid in the holes followed a converging path, the $N_{tu}/plate$ for a given N_{Re} was higher than for a core oriented so the fluid followed a diverging path. This small, but measurable, increase in $N_{tu}/plate$ is probably due to less flow separation in the holes.

The heat-transfer data didn't depend on the test gas (Figure 18).

Note that the theoretical heat-transfer predictions are not accurate. Both the predicted slope and intercepts are off resulting in predictions that are too high (by as much as a factor of 20 for low N_{Re} and low d/t). Also, the model failed to predict that larger d/t ratios result in larger drops in N_{tu}/plate as N_{Re} increases. The discrepancies are probably due to uncertainty over actual fluid flow in the holes. Clearly hole shape affects the heat-transfer data and the model assumes cylindrical holes with no flow separation. Actually the holes are not cylindrical and there may be flow separation which accounts for the lower measured N_{tu}/plate values.

Figure 18. Comparison of helium and air heat-transfer data

SECTION V

CONCLUSIONS

- 1. The modified apparatus using the single blow transient test method to determine the heat-transfer characteristics of perforated-plate heat exchangers produces results accurate enough for design evaluations.
- 2. The transient test method is somewhat insensitive to heat leaks when used to determine the average heat-transfer characteristics of perforated-plate heat exchangers. The test technique is; however, very sensitive to heat leaks (and all assumptions) on an individual basis. If the assumptions aren't insured by the test method, the individual results aren't repeatable.
- 3. Transient behavior dictates the amount of insulation needed for the test section, not steady-state conditions.
- 4. Air can be used to test heat exchangers designed for helium systems.
- 5. Hole shape affects the heat-transfer characteristics. The increase in $N_{tu}/plate$ when the punched and EBD plates were tested with the breakout facing upstream indicates that a converging-diverging hole may provide better heat-transfer characteristics.
- 6. Heat-transfer characteristics depend strongly on the hole diameter to plate thickness ratio. For hole Reynolds numbers greater than 30, the N_{tu} /plate increases as d/t decreases. Also, the N_{tu} /plate doesn't decrease as quickly with increasing N_{Re} for smaller d/t ratios.
- 7. The model used to determine the N_{tu}/p ate doesn't completely describe the system. The correlation between the theoretical and experimental results is poor, but is better assuming a parabolic velocity profile instead of a developing velocity profile in the holes. The difference between the predicted and actual values is probably due to uncertainty over actual flow conditions in the holes.

SECTION VI

RECOMMENDATIONS

- 1. Further investigation should be conducted to determine the effect of hole shape on $N_{tu}/plate$. Also, manufacturing techniques should be investigated to find ways to manufacture plates with a smaller d/t ratio.
- 2. Use an analog to digital converter and a minicomputer to record the temperature downstream from the test section. This will reduce the possible error in reading the slope and will reduce the corresponding error in the $N_{\pm u}$ /plate vs hole Reynolds number from \pm 6% (low N_{Re}) or \pm 3% (higher N_{Re}) to less than \pm 1%.

APPENDIX A - DATA REDUCTION

The test sections that were tested are shown in Figure 1. Temperature, pressure, volumetric flowrate, and the time-temperature history were recorded for each run. This data was reduced using the following method to calculate the Colburn modulus and friction factor vs hole Reynolds number. The calculations are presented in the following order: mass flow, hole Reynolds number, number of heat-transfer units, Colburn modulus, and friction factor.

1. MASS FLOW

Start with the definition of mass flow:

$$\dot{m} = \dot{\rho} A_{c} V$$

$$= V_{f} \dot{\rho}$$

$$= V_{f} \sqrt{\rho^{2}}$$

$$= V_{f} \sqrt{\rho^{2}}$$
(A1)

Assume: Perfect Gas

$$\dot{\rho} = \frac{p^{4}}{RT}$$

$$\dot{m} = \sqrt{\frac{\rho P}{RT}}$$

$$\dot{m} = \sqrt{\frac{\rho P}{RT}}$$
(A2)

AFWAL-TR-88-3102

Where:

V = Velocity of fluid entering test section.

 $A_c = Open area of plate.$

M = Mass flow rate. $V_f = VA_c = Volumetric flow rate.$

= Gas constant.

ιρ = Density.

= Pressure.

T = Temperature.

The volumetric flow rate is available as a percentage of a full-scale reading.

Let:

 G_{r} = Flow meter full-scale flow.

 S_D = Scale reading.

$$R_{Air} = 53.34 \frac{\text{ft lbf}}{\text{lbm R}}$$

$$R_{He} = 386.0 \frac{\text{ft 1bf}}{\text{Tbm R}}$$

$$m = \frac{S_R(G_F)}{\sqrt{R}} \sqrt{\frac{\rho P}{T}}$$

$$\dot{m} = \frac{S_R \left[G_F \left(ft^3/min\right)\right]}{\sqrt{\frac{ft \ lbf}{lbm \ R}}} \sqrt{\frac{\left(\frac{lbm}{ft^3}\right) \left(\frac{lbf}{in}\right)}{T \left(R\right)}} \left(\frac{12in}{ft}\right)$$

AFWAL-TR-88-310?

For helium:

$$m (1bm/min) = 0.611 S_R G_F(ft^3/min) \sqrt{\frac{(1bm)}{p ft^3} \frac{(1bf)}{ft^3}}$$

$$T (R)$$
(A4)

NOTE: Use upstream fluid properties.

2. HOLE REYNOLDS NUMBER

Again, start with the definition of the hole Reynolds number:

$$N_{Re} = \frac{\rho V D_{h}}{\mu}$$

$$= \frac{\dot{m} D_{h}}{A_{c} \mu}$$
(A5)

FROM THE DEFINITION OF A.:

$$A_{C} = \frac{\sigma(\pi D^{2})}{4}$$

$$= \sigma \pi \left(\frac{9}{4}\right) in^2$$

$$N_{Re} = \frac{\frac{4mD_h}{9\sigma\pi\mu}}{\frac{4m(1bm/min)}{\sigma\pi(9in^2)} \frac{D_h}{\mu} \frac{(in)}{\frac{1bm}{5ec}} \frac{min}{60sec} \frac{12in}{ft}$$

$$N_{Re} = \frac{2.829 \times 10^{-2} \text{ fm (1bm/min)} D_{h} \text{ (in)}}{\sigma \mu \text{ (1bm/s ft)}}$$

Where:

m = Mass flow rate.

 N_h = Hydraulic diameter of hole.

D = Plate diameter.

d = Hole diameter.

 σ = Ratio of the plate open area to frontal area.

u = Fluid viscosity.

The Reynolds number is based on the charateristics of one hole. Note that the hydraulic diameter of any cylindrical pipe is the pipe's diameter. Consequently, the equation for Reynolds number can be rewritten as follows.

$$N_{Re} = \frac{2.829 \times 10^{-2} \cdot (1bm/min) \cdot d(in)}{\sigma \cdot \mu \cdot (1bm/s \ ft)}$$
 (A6)

3. NUMBER OF HEAT-TRANSFER UNITS

Pucci [2] presents the N_{tu} as a function of the maximum slope and longitudinal conduction parameters both graphically (Figure 3[2]) and tabularly (Table 1[2]). To find the N_{tu} , the maximum slope and longitudinal conduction parameters must be calculated.

a. MAXIMUM SLOPE PARAMETER

The maximum slope parameter is defined as follows:

MAX. SLOPE PAR =
$$\frac{dt_{f2}/d\theta \mid max}{\frac{m \cdot c_{p\Delta}t_{f1}}{M_s \cdot c_s}}$$
 (A7)

Where:

The mass of the core can be determined from the plate geometry and the number of plates.

$$M_{s} = (\frac{\pi D^{2}}{4})(1-\sigma) tn\rho$$
 (A8)

where

D = Plate diameter.

 σ = Ratio of plate open area to frontal area.

 ρ = Density of plate.

t = Plate thickness.

n = number of plates in the core.

b. Longitudinal Conduction Parameter

The longitudinal conduction parameter is defined by the following ratio:

$$\lambda$$
 =
$$\frac{\text{longitudinal heat transport by solid conduction}}{\text{heat transport to flowing gas}}$$

The longitudinal heat transport by solid conduction can be broken into two components: conduction in the e-seals and conduction in the shell.

$$\frac{k_k A_k}{l_k} + \frac{k_{e-seal} A_{e-seal}}{l_{e-seal}}$$

$$\lambda' = \frac{h_{c_p}}{l_{e-seal}}$$
(A9)

$$k_k = 9$$
 BTU/hr ft R (stainless steel)
 $A_k = 0.015$ in²
 $L_k = 4.2$ in

Figure Al. E-seal dimensions

$$k_{eseal} = 7 \text{ BTU/hr ft R}$$
 (Incone1)
 $A_{eseal} = 2.25" (0.008") \pi$
 $L_{eseal} = (0.156" in/e-seal) (39 e-seal)$

$$\frac{k_k A_k}{L_k} = \frac{(9 \text{ BTU/hr ft R}) (0.015 \text{in}^2)}{4.2 \text{in}} \frac{\text{ft}}{12 \text{in}} \frac{\text{hr}}{60 \text{min}}$$
$$= 4.464 \times 10^{-5} \text{ BTU/min R}$$

$$\frac{K_{\text{eseal}} A_{\text{eseal}}}{L_{\text{eseal}}} = \frac{(7 \text{ BTU/hr ft R}) (2.25 \text{in}) (0.008) \pi \text{ ft}}{(0.156 \text{ in/e-seal}) (39 \text{ e-seal})} \frac{\text{ft}}{12 \text{in}} \frac{\text{hr}}{60 \text{min}}$$
$$= 9.036 \times 10^{-5} \text{ BTU/min R}$$

$$\lambda = \frac{(4.464 + 9.036) \times 10^{-5} \text{ BTU/min R}}{\text{ft (1bm/min) (0.24 BTU/1bm R)}}$$

$$\lambda = \frac{5.63 \times 10^{-4}}{\text{(For air)}}$$

$$\lambda = \frac{1.09 \times 10^{-4}}{\text{fh (1bm/min)}}$$

$$= \frac{1.09 \times 10^{-4}}{\text{fh (1bm/min)}}$$
(For helium)

4. COLBURN MODULUS (j-factor)

The definition of the Colburn modulus follows:

$$j = N_{ST} N_{Pr}^{2/3}$$

$$= \frac{h}{G c_p} N_{Pr}^{2/3}$$
(A10)

AFWAL-TR-88-3102

But
$$N_{tu} = \frac{hA}{mc_p}$$

$$h = \frac{N_{tu m} c_p}{A}$$

$$j = \frac{N_{tu m} c_{\mu}}{G c_{p} A} N_{pr}$$

$$i = N_{tu} \frac{A_C}{A} N_{pr}$$

(A11)

Where:

 N_{tu} = Heat-transfer units.

 A_c = Minimum free flow area.

A = Total heat-transfer surface area.

 N_{pr} = Prandtl number.

j = Colburn modulus.

5. FRICTION FACTOR

$$f = \frac{D_h \Delta Pg_c}{nt2\rho V^2}$$

But
$$\dot{m} = \dot{\rho} A_c V$$

$$f = \frac{D_h \Delta P_0 A_c^2 g_c}{2nt m^2}$$
 (A12)

Where:

f = Friction factor.

 ΔP = Pressure change across the test section.

n = Number of plates.

t = Plate thickness.

g_c = Proportionality factor in Newton's second law.

Tables A1-A5 present the reduced data. Tables A1 and A2 present the friction factor data, Tables A3 and A4 present the heat-transfer data collected using the modified apparatus, and Table A5 presents the heat-transfer data collected using the unmodified apparatus. The EBD and punched core tests were run with different plate orientations. The core descriptions in Tables A1-A5 refer to the following plate orientations:

Figure Al is a sample time/temperature plot for one run.

Run	m(1bm/min)	Δ̄P("H ₂ O)	^t fluid(°F)	N _{Re}	f	GAS	Core Description
1 2 3 4 5	0.025 0.049 0.099 0.173 0.247	0.09 0.13 0.19 0.38 0.59	76.0 76.0 76.0 76.0 76.0	4.29 8.57 17.15 29.99 42.85	9.52 3.44 1.26 0.82 0.63	Air	Punched Plate Breakout facing
6 7 8 9	0.119 0.237 0.356 0.474 0.911		76.0 76.0 76.0 76.0 76.0	20.57 41.13 61.70 82.25 158.11	1.10 0.66 0.53 0.49 0.36		upstream d=0.081" t=0.021" -σ=0.236
11 12 13 14 15 16	0.075 0.100 0.120 0.239 0.335 0.479	0.23 0.55	75.0 75.0 75.0 75.0 75.0 75.0	13.0 17.34 20.80 41.61 58.24 83.20	1.39 1.04 1.04 0.62 0.52 0.47		Breakout facing downstream
19 20 21 22 23	0.018 0.072 0.108 0.126 0.162	1.75 3.20	70.0 70.0 70.0 70.0 70.0	25.60 51.21 76.80 89.60 115.21	1.43 0.81 0.66 0.65 0.60	Helium	Etched Plate d=0.0285" t=0.0185" v=0.09
24 25 26 27 28	0.025 0.050 0.075 0.100 0.125	0.25	75.0 75.0 75.0 75.0 75.0	18.04 36.06 54.12 72.16 90.27	1.81 1.08 0.77 0.68 0.61	Air	
29 30 31 32 33	0.150 0.175 0.183 0.192 0.240	0.93 0.99	75.0 75.0 75.0 75.0 75.0	108.31 126.35 131.76 138.62 173.25	0.56 0.52 0.51 0.55 0.51		
34 35 36 37	0.360 0.432 0.480 0.923	5.08 6.31	75.0 75.0 75.0 75.0	259.92 311.87 346.51 666.1	0.48 0.47 0.48 0.37		

Table A1. Friction factor data - punched and etched plates (40 plates/core)

Run	ሐ(<mark>16m</mark>)	ΔΡ("H ₂ O)	^t fluid(°F)	^N Re	f	GAS	Core Description
1 2 3 4 5 6 7 8 9 10	0.0508 0.1016 0.1523 0.2031 0.2539 0.0487 0.0975 0.1949 0.2924 0.3898 0.4873	0.07 0.14 0.24 0.34 0.45 0.07 0.14 0.33 0.56 0.85 1.21	69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0	16.1 32.21 48.31 64.41 80.52 15.46 30.91 61.82 92.73 123.60 154.60	2.727 1.364 1.039 0.828 0.701 2.961 1.480 0.872 0.658 0.562 0.512	Air	Etched Plate d=0.0295" t=0.0185" σ=0.245

Table A1. Concluded

Run	m(^{1bm})	ΔP("H ₂ 0)	^t fluid(°F)	N _{Re}	f	GAS	Core Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 72 73 74 75 76 77 78 79 80 81 82 83 84 85	0.929 0.742 0.481 0.433 0.385 0.336 0.288 0.240 0.192 0.144 0.096 0.048 0.125 0.100 0.075 0.050 0.025 0.940 0.749 0.486 0.437 0.389 0.340 0.291 0.242 0.194 0.145 0.097 0.048 0.126 0.101 0.076 0.075 0.050	6.14 4.12 2.67 2.3 1.94 1.63 1.34 1.07 0.82 0.60 0.39 0.21 0.50 0.04 0.30 0.20 0.12 8.42 5.60 3.73 3.22 2.74 2.30 1.88 1.50 1.16 0.83 0.55 0.29 0.70 0.25 0.40 0.29 0.12	70.0 70.0	117.3 93.6 60.7 54.6 48.5 42.5 36.4 30.3 24.2 18.1 15.8 12.6 9.5 6.1 15.8 12.6 9.5 6.3 30.5 48.7 36.6 30.5 48.3 12.1 15.9 12.7 9.5 6.3 30.3 30.5	0.081 0.085 0.131 0.140 0.149 0.164 0.183 0.211 0.252 0.328 0.480 1.03 0.363 0.442 0.605 0.908 2.2 0.121 0.126 0.199 0.213 0.229 0.251 0.280 0.322 0.389 0.495 0.738 1.557 0.554 0.680 0.879 1.384 2.770	Air	24 Plates d=0.010" t=0.065" σ=0.20 Alternating Pattern 32 Plates d=0.010" t=0.045" σ=0.20 Not Enhanced

Table A2. Friction factor data - EBD plates

Run	ሐ(<mark>lbm</mark>)	ΔΡ("H ₂ 0)	^t fluid(°F)	N _{Re}	f	GAS	Core Description
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	0.837 0.742 0.481 0.433 0.384 0.240 0.192 0.144 0.096 0.048 0.125 0.100 0.075 0.050 0.075 0.381 0.333 0.286 0.238 0.190 0.143 0.095 0.048 0.124 0.100 0.074 0.050 0.025	1.06 0.75 0.47 0.24 0.61 0.47 0.34 0.25 0.12 8.58 5.48 3.52 2.98 2.46 2.0 1.6 1.24 0.92 0.65 0.41 0.20 0.52 0.30	75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	157.3 139.4 90.4 81.3 72.3 63.2 54.1 45.1 27.0 18.0 9.0 23.5 18.8 14.1 9.4 4.7 231.3 119.6 107.5 95.5 83.5 71.6 59.6 47.7 35.7 23.8 11.9 31.0 24.8 12.4 6.20	0.176 0.164 0.243 0.256 0.271 0.292 0.324 0.368 0.439 0.533 0.779 1.592 0.596 0.718 0.923 1.527 2.933 0.203 0.204 0.310 0.324 0.339 0.360 0.392 0.438 0.508 0.639 0.907 1.77 0.678 0.815 1.086 1.630 3.260	Air	27 Plates d=0.015" t=0.065" σ=0.20 Not Enhanced 27 Plates d=0.020" t=0.065" σ=0.20 Enhanced

Table A2. Continued

Run	か(<mark>1bm</mark>)	ል ₽("H₂೧)	^t fluid(°F)	N _{Re}	f	GAS	Core Description
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	0.922 0.735 0.477 0.429 0.381 0.333 0.286 0.238 0.190 0.143 0.095 0.048 0.124 0.099 0.074 0.50 0.245	8.28 5.26 3.17 2.66 2.21 1.79 1.44 1.12 0.84 0.59 0.37 0.19 0.48 0.38 0.19 0.10	75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	231.2 184.3 119.5 107.5 95.5 83.5 71.6 59.6 47.7 35.7 23.8 11.9 31.0 24.8 18.6 12.4 6.2	0.196 0.196 0.279 0.290 0.305 0.323 0.353 0.396 0.464 0.580 0.818 1.681 0.626 0.774 1.014 1.548 3.260	Air	27 Plates d=0.020" t=0.065" σ=0.20 Not Enhanced
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102	0.930 0.742 0.482 0.433 0.385 0.387 0.288 0.240 0.192 0.144 0.096 0.048 0.125 0.100 0.075 0.050 0.025	6.32 4.14 2.61 2.20 1.85 1.53 1.23 0.97 0.73 0.54 0.34 0.18 0.42 0.34 0.25 0.18	77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0	174.3 139.1 90.3 81.2 72.2 63.1 54.1 45.1 36.0 27.0 18.0 9.0 23.5 18.8 14.1 9.4 4.7	0.138 0.141 0.211 0.220 0.234 0.253 0.277 0.315 0.370 0.487 0.690 1.461 0.502 0.635 0.831 1.346 2.991		32 Plates d=0.015" t=0.045" σ=0.20 Alternating Patterns

Table A2. Continued

Run	ሐ(<u>lbm</u>)	ΔΡ("H ₂ 0)	^t fluid(°F)	N _{Re}	f	GAS	Core Description
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	0.926 0.739 0.480 0.432 0.383 0.335 0.287 0.239 0.191 0.144 0.096 0.048 0.125 0.100 0.075 0.050 0.025		77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0	231.5 184.7 119.9 107.9 95.8 83.8 71.8 59.8 47.9 35.9 23.9 12.0 31.2 24.9 18.7 12.5 6.2	0.174 0.180 0.256 0.265 0.277 0.293 0.315 0.350 0.406 0.493 0.704 1.407 0.542 0.648 0.842 1.296 2.792	Air	32 Plates d=0.020" t=0.045" σ=0.20 Alternating Patterns
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	0.941 0.751 0.487 0.438 0.389 0.341 0.292 0.243 0.146 0.097 0.049 0.253 0.203 0.177 0.152 0.101 0.076 0.051 0.025	2.12 1.68 1.44 1.15 0.88 0.63 0.42 0.21 1.18 1.0 0.9 0.78	68.0 68.0 68.0 68.0 68.0 68.0 68.0 68.0	119.1 95.1 61.7 55.5 49.3 43.1 36.9 30.8 24.6 18.4 12.3 6.1 32.1 28.8 25.6 22.4 19.2 16.0 12.8 9.6 6.4 3.2	0.223 0.269 0.366 0.386 0.408 0.423 0.493 0.563 0.679 0.864 1.296 2.594 0.536 0.578 0.639 0.724 0.808 0.964 1.137 1.567 2.389 5.006		31 Plates d=0.010" t=0.020" σ=0.20 Alternating Patterns

Table A2. Continued

Run	π(<mark>1bm</mark>)	ΔΡ("H ₂ O)	^t fluid(°F)	N _{Re}	f	GAS	Core Description
142	0.933	6.63	70.0	176.6	0.354	Air	29 Plates
143	0.744		70.0	140.8	0.332		}
144	0.483	1	70.0	91.4	0.472		d=0.015"
145	0.434		70.0	82.2	0.487		t=0.020"
146	0.386	1.64	70.0	73.1	0.509		σ=0.20
147	0.338		70.0	63.9	0.535		
148	0.289		70.0	54.8	0.579		Alternating
149	0.241		70.0	45.6	0.652		Patterns
150	0.193		70.0	36.5	0.758		
151	0.145		70.0	27.4	0.928	}]
152	0.096		70.0	18.2	1.342		
153	0.048		70.0	9.1	2.783	1	į į
1,54	0.251		70.0	47.5	0.622		!
155	0.226		70.0	42.8	0.669	ł	
156	0.201		70.0	38.0	0.709		1
157	0.176		70.0	33.3	0.777		[
158	0.151		70.0	28.5	0.875]
159	0.125		70.0	23.8	0.996		
160	0.100		70.0	19.0	1.190		
161	0.075	1	70.0	14.2	1.546	1	
162	0.050		70.0	9.5	2.381	1	
163	0.025	0.07	70.0	4.7	5.128		

Table A2. Concluded

Core Description	Punched Plate breakout upstream d=0.018" t=0.021" o=0.236 Ntu=3.60 NRE breakout facing downstream Ntu=3.32 NRE	Etched plate d=0.0285" t=0.0185" \sigma = 0.372 Tium Ntu = 2.10 NRE Air
Test. Gas	Air	Helium
N _{tu} per plate	0.454 0.800 0.407 0.298 1.151 0.766 0.712 1.040 0.706 0.441 0.369 0.457 0.478	0.275 0.471 0.257 0.254 0.494 0.199 0.423 0.633 0.753
N _{tu} (total)	18.170 31.99 16.29 11.88 39.98 30.63 30.63 17.65 14.77 10.27 19.12	11.00 18.82 10.28 10.16 19.77 18.80 7.98 7.98 16.94 25.31
NRE	55.74 19.91 80.76 154.55 12.88 16.82 16.76 19.89 56.70 80.89 39.20 38.94	166.1 82.95 231.5 332.8 51.82 70.16 650.83 646.8 85.58 32.69
Max Slope Parameter	1.218 1.533 1.160 1.005 1.716 1.492 1.447 1.651 1.108 0.939 1.242 1.343	0.965 1.218 0.933 1.226 1.212 0.837 0.839 1.183 1.414
tf1 (°F)	100.8 104.1 92.78 96.0 97.48 99.91 105.52 95.57 96.55 93.83	102.65 103.61 104.13 98.26 98.35 95.39 92.04 100.25 99.74 90.13
t, (°F)	81.65 77.96 77.27 78.26 76.96 77.91 78.09 78.01 77.55 77.55 77.55	79.48 79.26 79.65 76.48 78.65 70.16 74.35 77.27 77.27 77.27 76.26
m 1bm min	0.322 0.119 0.476 0.976 0.100 0.075 0.119 0.226 0.226 0.234	0.2390 0.120 0.334 0.476 0.074 0.924 0.919 0.125 0.048 0.018
Run	23 24 24 25 27 27 28 33 33 33 33 34	44440 4444 5554 5554 5554 5554 5554 555

Table A3. Heat-transfer data - punched and etched plates (40 plates/core)

Core Description	Etched plate d=0.0295" t=0.0185" σ=0.245 N _{tu} =4.13 N _{RE}
Test, Gas	Air
N _{tu} per plate	0.508 0.494 0.279 0.275 0.271
N _{tu} (total)	21.13 20.53 11.15 8.18 11.08 19.12
NRF	30.99 37.04 110.3 148.0 73.16 51.44
Max Slope Parameter	1.279 1.263 0.976 0.848 0.962 1.224
#1 (°F)	93.7 96.7 94.1 92.4 97.1
t; (°F)	73.0 72.7 72.3 72.5 72.3 75.4
m lbm min	0.101 0.121 0.360 0.482 0.240
Run	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table A3. Concluded

	ա <u>lbm</u> min	t, (°F)	(4°)	Max Slope Parameter	Z RE	N _{tu} (total)	Ntu per plate	Test Gas	Core Description
1	1	0.14.6.1.5. 6.8	7 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.193 1.088 1.245 1.297 1.297 1.231 1.190	11.8 91.8 47.6 29.7 61.3 36.0 20.5	17.52 14.0 18.83 18.73 20.49 18.40 17.24	0.730 0.582 0.785 0.780 0.854 0.767 0.767	Air	24 plates t=0.065" d=0.010" o=0.20 Alternating pattern N _{tu} =0.993 N _{RE} 32 plates t=0.045"
	0.094 0.290 0.244 0.166 0.34	78.3 78.7 79.9 78.6 82.1	106.3 104.9 109.0 110.3 94.4	1.280 1.280 1.167 1.247 1.011 1.055	11.3 34.9 29.3 19.8 114.0	18.45 20.01 16.47 19.06 12.05 13.15	0.577 0.625 0.515 0.596 0.377		d=0.010" σ=0.20 Not enhanced N _{tu} =0.989 N _{RE}
1	0.169 0.247 0.286 0.381 0.488 0.096 0.738 0.829	77.3 77.6 76.5 76.9 78.5 77.6 81.2 81.3	114.7 106.2 100.6 95.8 93.0 103.9 98.9	1.107 1.101 1.031 1.153 1.069 1.281 0.963	30.2 43.5 51.9 69.5 89.5 17.4 134.3	14.75 14.54 12.6 16.0 13.60 20.48 10.84 9.05	0.546 0.539 0.467 0.593 0.504 0.401 0.335		27 plates t=0.065" d=0.015" o=0.20 Not enhanced N _{tu} =1.66 N _{RE}

Table A4. Heat-transfer data - EBN plates

Core Description	27 plates Enhanced t=0.065" d=0.020"	
Test Gas	Air	
N _{tu} per plate	0.654 0.537 0.537 0.693 0.511 0.693 0.373 0.373 0.375 0.607 0.607 0.607 0.607 0.542 0.317 0.542 0.767 0.601 0.601 0.777	•
N _{tu} (total)		18.10
N RE	39.7 67.9 116.6 223.9 40.1 57.8 69.7 119.3 179.7 179.6 179.6 179.6 179.6 179.6 179.6 179.6 179.6 179.6 179.6 179.6 179.7 179.6 179.7	c./c
Max Slope Parameter	1.204 1.152 1.152 1.103 1.050 0.996 0.936 1.254 1.254 1.254 1.254 1.338 1.056 1.338 1.056 1.338 1.056	
t _{f1} (°F)	113.6 107.5 95.0 91.3 104.0 104.0 104.7 99.5 99.5 99.6 101.1 110.5 110.5 101.3 1110.5 101.3	<u> </u>
t, (°F)	81.6 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9	Σ [*]
m 1bm min	0.167 0.283 0.914 0.9168 0.168 0.736 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.739 0.167 0.167 0.167	•
Run	116 117 118 119 119 119 119 119 119 119 119 119	10

Run	m lbm min	t, (°F)	‡₁ (°F)	Max Slope Parameter	NRE	N _{tu} (total)	N _{tu} per plate	Test Gas	Core Description
552 553 554 557 557 557 557 557 557 557 557 557	0.939 0.750 0.101 0.486 0.288 0.241 0.093 0.242 0.169 0.242 0.243	78.6 73.1 72.5 73.2 72.5 72.5 72.0 72.0 74.3	97.6 93.0 99.7 88.5 98.4 100.1 98.7 91.6 102.2 94.2 94.2	0.930 0.975 0.406 1.095 1.163 1.387 1.377 1.076 1.350 0.859 1.117 0.873	114.1 91.7 12.2 59.8 35.0 29.2 17.3 87.7 30.7 171.8 43.9 136.1	10.04 11.13 25.04 14.33 16.35 23.93 18.47 13.79 13.79 13.79 8.43 15.00 8.73	0.324 0.359 0.808 0.462 0.527 0.772 0.596 0.475 0.779 0.291 0.517 0.301	Air	31 plates t=0.020" d=0.010" o=0.20 Alternating patterns N _{tu} =2.52 N _R 29 plates t=0.020" d=0.015" o=0.20 Alternating patterns N _{tu} =3.36 N _R

Table A4. Concluded

Run	m lbm min	t, (°F)	t _f 1 (°F)	Max Słope Parameteń	N RE	N _{tu} (total)	N _{tu} per plate	Core Description
	0.3327 0.326 0.2366 0.1201 0.4774 0.333 0.0247 0.0247 0.0247 0.03368 0.3368 0.3368 0.3368	76.043 75.454 83.435 75.409 80.955 80.545 77.909 77.455 77	133.917 132.917 107.667 99.783 129.958 107.208 130.083 123.667 101.609 108.435 109.5 93.652 87.348 112.739 118.563 117.565 118.563	1.2165 1.087 1.126 1.224 1.173 1.504 1.436 1.241 1.241 1.243 1.202 0.966 1.102 1.102 1.102 1.102	53.68 51.69 39.37 10.18 77.88 16.63 77.37 54.42 19.98 39.53 16.454 8.64 8.64 8.64 8.65 39.53 55.38 55.38	17.806 14.041 15.143 18.462 16.507 22.421 26.144 18.800 24.314 27.443 61.051 11.241 11.241 11.360 10.902 14.486 15.943 17.881	0.445 0.351 0.351 0.462 0.413 0.722 0.405 0.608 0.608 0.281 0.281 0.281 0.273 0.362 0.399	$N_{tu} = 2.02 N_{RE}$ $d = 0.018$ $t = 0.021$ $\sigma = 0.236$

Table A5. Heat-transfer data - punched plate tested with air; original apparatus

Figure A2. Temperature of air downstream from test section as a function of time (run #21)

1.0 mv = Pull Scale

Temperature Downstream From Test Section

APPENDIX B - ACCURACY

Both the experimental errors inherent to the single blow transient test method and the inaccuracies particular to the experimental set up have been considered [1] to estimate the following uncertainties:

Ouantity	Maximum Uncertainty	(percent)
NPr cp air p air Cp copper Nh FRe Ntu	Prandtl Number Specific heat Dynamic viscosity Specific heat Hydraulic diameter Hole Reynolds number friction factor Number of heat-transfer units	± 5.0 ± 0.5 ± 1.0 ± 4.0 ± 2.0 ± 10.0 ±20.0

Table B1. Maximum uncertainty of physical constants and measurements

With reguard to equipment inaccuracies, some verification of actual performance was made where possible. Thermocouples were checked and found to give accuracies of $\pm~0.1~\rm ^oF$. Three Fisher-Porter rotometers were used to determine mass flows. The smallest meter was checked with a wet-test meter and found to be accurate to within 5 percent. The estimation of maximum slope itself has an error which varies according to the range of Reynolds number under consideration. At low Reynolds numbers (N $_{\rm Re} \sim~20$) the possible error in reading maximum slope means a $\pm~6$ percent variation in N $_{\rm tu}$ per plate. At higher Reynolds numbers this reduces to $\pm~3$ percent Ry digitizing the time-temperature profile through the use of a minicomputer this error could be reduced to less than $\pm~1$ percent. This was done for the eight electron beam drilled plates.

APPENDIX C - MODELING THE PLATE

An analytical model of the plate was developed to evaluate the experimental data. The fin effectiveness for a circular fin, the effective thermal conductivity, the friction factor vs hole Reynolds number, and the number of heat-transfer units per plate vs hole Reynolds number were determined analytically.

At first the plate was modeled as a "matrix," similar to a porous media, but the correlation parameters generated didn't describe the system correctly. Finally, the plate was modeled using the staggered (hexagonal) hole pattern shown in Figure C1. This model adequately describes the heat exchanger's behavior.

Figure C1. Model of staggered hole pattern

1. DETERMINE FIN EFFECTIVENESS FOR A CIRCULAR FIN

The single-blow transient-test method generates the N_{tu} for a plate with 100% fin effectiveness (n_f) because each plate is at a constant temperature at any given time during the test. The fin effectiveness must be considered to determine the actual N_{tu} /plate when designing heat exchangers.

$$\frac{1}{N_{tu_{eff}}} = \frac{1}{N_{tu_{LP}}} + \frac{1}{N_{tu_{HP}}}$$

$$(C1)$$

The two pass counterflow heat exchanger (see Figure 2 and C2) will be designed with a high pressure central core and a low pressure stream in the annular section surrounding the center.

Figure C2. Two pass heat exchanger

Kays and London [3] have evaluated and presented the fin effectiveness for annual flow in Figure 2-11. The fin effectiveness is also needed for the circular center section (high-pressure stream in RCUBE application). The analysis follows.

Figure C3. Model of circular fin (high-pressure flow path)

Start with the differential equation describing temperature profile of the fin shown in Figure C3.

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} + \frac{1}{kt}\left[q(r)\right] = 0 \tag{C2}$$

where

T = Temperature at radial location r. k = Coefficient of thermal conductivity. h = Convective heat transfer coefficient q(r) = Absorbed heat flux. $= h \lceil T_g - T \rceil.$ $T_g = Temperature of the gas.$ $Let T = Tg + \theta \text{ and transform eq (C2) to}$ $\frac{d^2\theta}{dr^2} + \frac{1}{r} \frac{d\theta}{dr} + \frac{h\theta}{kt} = 0$ (C3)

At r = 0

To solve the differential equation, the boundary conditions must be determined. Figure C4 shows the temperature profiles for both T $_{\rm g}$ < T and T > T $_{\rm g}$.

Figure C4. Fin temperature properties

From Figure C4, the following boundary conditions can be seen.

$$\frac{d\theta}{dr} = 0; \ \theta \text{ is finite}$$
At $r = r_0$

First, find $\frac{d\theta}{dr} \Big|_{r_0}$

$$q_{r0} = -k(2\pi)r_0 t \frac{dT}{dr}|_{r_0}$$

$$= -k(2\pi r_0 t) \frac{d\theta}{dr}|_{r_0}$$
(C4)

But, the following relation for q_{ro} is based on the definition of q_{ro} :

$$q_{ro} = \int_{0}^{r_{o}} h(T_{g}-T) 2\pi r dr$$

$$= -2\pi h \int \theta r dr$$
0 (C5)

Substituting equation (C5) into equation (C4):

$$\frac{r_0}{2\pi h \int_0^{\infty} \theta r dr}$$

$$\frac{d\theta}{dr} r_0 = \frac{0}{k(2\pi r_0 t)}$$

$$\frac{d\theta}{dr} \begin{vmatrix} r & = \frac{h}{r} & \int_{0}^{r} \theta r dr \\ 0 & kr_{0}t & 0 \end{vmatrix}$$
 (C6)

Since the fin effectiveness is defined as the ratio of the actual heat transferred to the heat that would be transferred if the entire fin was at the base temperature,

$$\eta_{f} = \frac{0}{r_{o}} (T-T_{g}) 2\pi r dr$$

$$\eta_{f} = \frac{0}{r_{o}} (T_{o}-T_{g}) 2\pi r dr$$

$$0$$

AFWAL-TR-88-3102

$$r_0$$

$$2\pi \int \theta \, r dr$$

$$= \frac{0}{\pi r_0^2 (T_0 - T_g)}$$

$$r_{0}$$

$$2 \int \theta r dr$$

$$r_{0} = \frac{0}{r_{0}^{2} \theta_{0}}$$
(C7)

Combine equations (C6) and (C7):

$$\frac{2 \frac{d\theta}{dr} | r_0 \frac{kr_0t}{h}}{r_0^2 \theta_0}$$

$$\eta_{f} = \frac{2k + d\theta}{hr_{0}\theta_{0}} \text{ fro}$$

$$hr_{0}\theta_{0} + dr$$
(C8)

Define u² as follows:

$$u^{2} = \frac{hr^{2}}{kt}$$

$$u^{2} = \frac{hr^{2}}{0}$$
(C9)

AFWAL-TR-88-3102

$$\eta_{f} = \frac{2r_{0}}{u_{0}^{2\theta}} \frac{d\theta | r_{0}}{dr}$$

(C10)

To find $\frac{d\dot{\theta}}{du}$, use the chain rule

$$\frac{d\theta}{du} = \frac{d\theta}{dr} \frac{dr}{du}$$

and differentiate equation (C9) to find $\frac{d\mathbf{r}}{d\mathbf{u}}$:

$$2u \quad du = \frac{h}{kt} \quad 2r \quad dr$$

$$\frac{dr}{du} = \frac{u}{r} \frac{kt}{h}$$

$$\frac{d\theta}{du} | u = \frac{d\theta}{dr} | r = \frac{u}{h}$$

$$= \left(\frac{d\theta}{dr} | r_0\right) \left(\frac{u_0 r_0}{u_0^2}\right)$$

$$\frac{d\theta}{dr} | r_0 = \frac{u_0}{r_0} \frac{d\theta}{du} | u_0$$

(C11)

Substitute equation (C11) in equation (C10):

$$\eta_{f} = \frac{2r_{0}}{u_{0}^{2}\theta_{0}} \cdot \frac{u_{0}}{r_{0}} \cdot \frac{d\theta}{du} u_{0}$$

$$n_{f} = \frac{2}{u_{o}\theta_{o}} \frac{d\theta_{o}}{du} | u$$
 (C12)

Now, find equation (C2) in terms of u and θ :

First, multiply through by r²

$$\frac{d^2\theta}{dr^2} + \frac{rd\theta}{dr} - r^2 \frac{h}{kt} \theta = 0$$
(C13)

Rearrange and differentiate equation (C9).

$$u = \sqrt{\frac{h}{kt}} r$$

$$\frac{du}{dr} = \int_{kt}^{h}$$

$$\frac{d^2u}{dr^2} = 0$$

Use the chain rule to find $\frac{d\theta}{dt}$ and $\frac{d^2\theta}{dr^2}$:

$$\frac{d\theta}{dr} = \frac{d\theta}{du} \quad \frac{du}{dr} = \sqrt{\frac{h'}{kt}} \quad \frac{d\theta}{du}$$

$$\frac{d^2\theta}{dr^2} = \frac{d\theta}{du} \quad \frac{d^2u}{dr^2} + \frac{d^2\theta}{du^2} \quad \left(\frac{du}{dr}\right)^2 = \frac{h}{kt} \quad \frac{d^2\theta}{du^2}$$

Now, equation (C13) can be rewritten:

$$u^2 \frac{d^2\theta}{du^2} + u \frac{d\theta}{du} - u^2\theta = 0$$
 (C14)

Equation (C14) is the modified Bessel equation (n=0) and the solution follows:

$$\theta = c_1 I_0(u) + c_2 K_0(u)$$

Apply the boundary conditions to find the constants.

At
$$r = 0$$
, $u = 0$, $\theta = finite$

Since $K_0(0) = \infty$, $c_2 = 0$.

$$\theta = c_1 I_0(u) \tag{C15}$$

$$\frac{d\theta}{du} = \frac{c_1}{du} \frac{d[I_0(u)]}{du} = c_1 I_1(u)$$
 (C16)

Substitute equations (C15) and (C16) in equation (C12). Equation (C17) is a relationship for the fin effectiveness as a function of the fin (high-pressure center section) radius, the plate thickness, the heat-transfer coefficient, and the thermal conductivity of the plate.

$$\eta_{f} = \frac{2\tau_{1}(u_{0})}{u_{0}T_{0}(u_{0})}$$
where $u_{0} = r_{0} \sqrt{\frac{h}{kt}}$
(C17)

2. EVALUATION OF EFFECTIVE VALUES OF THER' AL CONDUCTIVITY

The effective thermal conductivity must be used to calculate fin effectiveness and other heat-transfer characteristics. The holes in the plate cause a lower thermal conductivity than the corresponding material thermal conductivity. The following analysis finds the effective thermal conductivity as a function of percent open area. Consider the flow of a constant amount of heat, q, through the distance 2b defined by planes at 1 and 2 (see Figure C2).

t = plate thickness.

b = one side of hexagon.

h = height of one
 equilateral triangle
 in the hexagon.

r = radius of hole.

q = heat flow.

Figure C5. Model of a single hole

The following assumptions were made:

- a. There is no heat flow across the boundaries defined by the hexagon (due to symmetry).
- b. The heat transfer by solid conduction is isotropic for the integrated effect of the flow area.

The rate of heat conduction for steady one-dimensional conduction follows:

$$q = k A(x) \frac{dT}{dx}$$
 (C18)

where

q = Rate of heat conduction.

k = Thermal conductivity of the material.

dT/dx = Temperature gradient at the section.

x = Distance along the heat flow lines; defined positive in the direction of the heat flow.

A(x) = Area the heat is flowing through measured perpendicular to the heat flow.

NOTE: The area is a function of x.

Rearrange equation (C18) and integrate:

$$\Delta T \qquad \Delta x$$

$$\int dT = \frac{q}{s} \int \frac{dx}{dx}$$

$$0 \qquad k_0 A(x)$$
(C19)

 $\Delta T = \frac{q\Delta x}{k} \frac{1}{A(x)|_{av}}$

where

 ΔT = The temperature change across the section from 1 to 2.

 Δx = The distance along the heat flow lines from section 1 to 2 (for one cell). $\frac{1}{A(x)}$ = Average value of the reciprocal of the heat flow area.

To determine the effective thermal conductivity,

let
$$\Delta x = 2b$$
.

Because the holes are staggered, the area of the two cells must be considered when Δx =2b (see Figure C6).

Figure C6. Model of two holes

The average area for the coupled system of holes is twice the area for one hole and the plate thickness is constant; therefore, equation (C19) can be written as follows:

$$\frac{\Delta T}{2b} = \frac{q}{2k} \frac{1}{A(x)|_{aV}} = \frac{q}{2kt} \frac{1}{v(x)|_{aV}}$$
(C20)

where

y(x) = The flow cross section as a function of x for both parallel flow paths (see Figures C5 and C7).

Equation (C20) uses the actual area and the actual thermal conductivity. The effective thermal conductivity is defined as the thermal conductivity that would be needed to give the same results as equation (C20) if there were no holes. If the effective thermal conductivity and the area assuming no holes are used in equation (C19), the following equation results:

$$\frac{\Delta T}{2b} = \frac{q}{3.5 \text{tbk'}}$$

(C21)

where

k' = effective thermal conductivity

Next, find the ratio of effective to actual thermal conductivity by combining equations (C17) and (C21).

$$\frac{k'}{k} = \frac{2}{3.5b \cdot 1}$$

$$y(x)|_{av}$$
(C22)

Now, if [y(x)]av is redefined to be the cross section for a single parallel flow path instead of both parallel flow paths as shown in Figure C2, equation (C5) will become

$$\frac{k'}{k} = \frac{4}{3.5b} \frac{1}{y(x)|_{av}}$$

(023)

The relationship of k'/k as needed as a function of a plate's open area ratio (σ). To find k'/k as a function of σ , $b_y(\frac{1}{x})|_{av}$ must be found as a function of σ . First, consider a sixth of a hole and the equilateral triangle associated with it (see Figure C7).

b = One side of the hexagon or equilateral triangle.

r = Radius of hole.

- y(x) = Distance along the radius
 from the outside of the hole
 to the edge of the hexagon.
 - θ = Angle to the radius measured from the height of the equilateral triangle.

Figure C7. Model of a sixth of a hole

The hole geometry determines $\cos\theta$.

$$\cos\theta = \frac{\sqrt{3^{1}}/2}{r + y(x)}$$
(C24)

AFWAL-TR-88-3102

$$y(x) = \frac{\sqrt{3^{1}}/2}{\cos^{\theta}} - r$$

$$\frac{b}{y(x)} = \sqrt{\frac{3/2}{\cos \theta}} - \frac{r}{b}$$
 (C25)

Now, r/b must be found as a function of $\dot{\sigma}$. $\dot{\sigma}$ is the ratio of plate open area to plate frontal area and is also the ratio of the area of one hole to the hexagon surrounding that hole.

$$\sigma = \frac{\pi r^2}{6[(1/2)b][\sqrt{3}/2)b]} = \frac{2\pi r^2}{3\sqrt{3}!b^2}$$

$$r/b = 0.9094 \sigma^{1/2}$$
(C26)

Substituting equation (C26) in equation (C25) results in the following relationship:

$$\frac{b}{y(x)} = (\frac{3/2}{\cos \theta} - 0.9094/\sigma^{2})^{-1}$$
 (C27)

For any given σ , $\frac{b}{v(x)}|_{av}$ can be found by taking the average value for $0 \le 0 \le 30$.

$$\frac{b}{|x|} = \frac{6^{\pi/6}}{-\int_{0.9094}^{\pi/6} (-0.9094)^{-1} d\theta}$$
 (C28)

Solving equation (C28) for various values of σ and plugging the result into equation (C22) will generate k'/k ($\check{\sigma}$). Figure C8 shows k'/k plotted vs $\check{\sigma}$.

Figure C8. Plot of effective thermal conductivity ratio vs plate open area ratio

As the open area approaches zero, k'/k approaches unity as it should; it doesn't go exactly to one because of the approximations involved in the system analysis.

This analysis was confirmed experimentally by using the following analogue between thermal conductivity and electricity:

$$\frac{k'}{k} = \frac{V_{\text{solid}}}{V} \tag{C29}$$

where:

V_{solid} = Voltage across solid material for a given current.

V = Voltage across perforated
 material for the same current.

3. DETERMINE FRICTION FACTOR VS HOLE REYNOLDS NUMBER

A single plate will be considered to find the friction factor for the entire core. Figure C9 shows the plate to be considered and the corresponding pressure drops.

Figure C9. Plot of pressure drop across one plate

The change in pressure across the plate is a combination of entrance static pressure losses, friction and acceleration losses, and exit static pressure recovery for each hole. Equation (C30) quantifies these pressure changes as presented by Kays & London [3].

$$\frac{\Delta P}{-} = \frac{G^2 v_1}{-} [(1 + K_c - \sigma^2) + 2(\frac{-}{-} - 1) + f - \frac{v_m}{-} - (1 - K_e - \sigma^2) -]$$

$$\frac{P_1}{P_1} = \frac{2g_c P_1}{-} v_1$$

where

 $^{\prime}\Delta P$ = Pressure drop across the plate.

 P_1 = Pressure.

G = Flow stream mass velocity.

v = Specific volume.

 g_c = Proportionality factor in Newton's second law.

K_c = Entrance coefficient as defined by Kays &
 London [3].

 K_p = Exit coefficient as defined by Kays & London [3].

 σ = Ratio of open area to frontal area.

A = Total heat-transfer area of one hole.

A_c = Minimum free flow area of one hole.

f = Mean friction factor in holes.

Subscripts

1 = Value at plane 1 (Figure C9).

2 = Value at plane 2 (Figure C9).

m = Average value.

The friction factor (f') is defined by the following relationship. This observed friction factor includes entrance and exit losses.

$$\Delta P = f' \frac{G^2}{2g_c \rho_m} \frac{L}{r_h}$$

where

 ρ = fluid density. L = Length of test section. r_h = A_cL/A = hydraulic radius.

Since only one plate is being considered, the total length of the exchanger is just the thickness of a plate (L = t).

$$\Delta P = \frac{G^2 v_m}{2g_c} f' \frac{A}{A_c}$$

$$\Delta P = \frac{G^2 v_1}{2g_c} f' \frac{A}{A_c} \frac{v_m}{v_1}$$
(C31)

Equating equations (C30) and (C31) results in a relationship for the observed friction factor per plate:

$$f' = \frac{[(1+K_c-\sigma^2) + 2(v_2/v_1 - 1) - f(A/A_c)_{hole}(v_m/v_1) - (1-\sigma^2-K_e)v_2/v_1]}{(A/A_c)_{plate} (v_m/v_1)}$$
(C32)

The hydraulic diameter is related to the hydraulic radius and $A_{\rm c}/A$:

$$\frac{n_h}{1} = \frac{4r_h}{1} = \frac{4}{\Lambda} \frac{\Lambda_c}{\Lambda}$$

Rearranging this results in the following relationship for A/A_c:

$$\frac{A}{A_c} = \frac{4L}{D_h} \tag{C33}$$

For any circular cylinder, the diameter of the cylinder is the hydraulic diameter, and L is the plate thickness when only one plate is considered. Substituting these values in equation (C33) and substituting equation (C33) in equation (C32) results in the following equation for the observed friction factor for one plate:

$$f' = \frac{[(1+K_c-\sigma^2) + 2(v_2/v_1 - 1) - 4f(t/d)(v_m/v_1) - (1-\sigma^2 - K_e)(v_2/v_1)]}{(A/A_c)_{plate} (v_m/v_1)}$$
(C34)

To determine the friction factor as a function of hole Reynolds number, the various components of equation (C34) must be determined. First, $(A/A_c)_{plate}$ will be determined using the plate model.

$$A/A_c = A/A_{fr}$$

where

Let

 $A_{fr} = Total frontal area.$

A = Total heat-transfer surface area.

D = Diameter of test section.

 A_{χ} = Area of hexagon around the hole.

 A_0 = Area of the hole. Total surface area of connected voids

Total volume of matrix

= area density (see Figure C1).

The area density definition is used to find the area density as a function of hole geometry and plate open area.

$$\alpha = \frac{2[A_{x} - A_{0}] + 2\pi rt}{A_{x} t}$$

$$= - [1 - \frac{A_0}{1} + \frac{4\pi rt}{4\pi rt}] + \frac{A_0}{1} +$$

$$= \frac{2}{t} (1-\sigma) + \frac{2\sigma}{r}$$

Let A' and A' be the areas corresponding to a single hole.

$$A' = \alpha A_{x} t = \alpha t^{A} o / \sigma$$

$$= \left[\frac{2}{t} (1 - \sigma) + \frac{2\sigma}{r} \right] (\frac{\pi r^{2}}{\sigma}) t$$

$$A_{C}' = \pi r^{2}$$

$$\frac{A}{A_{c}} = \frac{A'}{A_{c}} = 2\Gamma \frac{(1-\sigma)}{\sigma} + \frac{t}{\tau}$$

(035)

Next, find v_2/v_1

For a perfect gas $v = \frac{RT}{P}$.

$$\frac{v_2}{v_1} = \frac{T_2}{T_1} \frac{P_1}{P_2}$$

AFIIAL-TR-88-3102

Let

 ΔP = The pressure drop across a single plate.

n = Number of plates.

Then

 $\frac{\Sigma \Delta P}{R}$ = Average pressure drop/plate.

For a given plate the pressures can be related to the average pressure drop per plate.

$$P_2 = P_1 - \frac{\Sigma \Delta P}{n}$$

$$P_2/P_1 = 1 - \frac{\Sigma \Delta P}{nP_1}$$

Now, for any reasonable design, the pressure drop across the whole heat exchanger will be less than five percent, and there will be more than ten plates; so, for a reasonable design $P_2/P_1\cong 1$ because

$$\frac{\Sigma\Delta^{\mathrm{P}}}{\mathsf{nP}_1} \leq 0.005$$

Since

$$P_2/P_1 \cong 1$$

$$\frac{v_2}{v_1} = \frac{T_2}{T_1}$$

The same reasoning is used to find T_2/T_1 .

Let

 ΔT = Temperature drop across an exchanger having n plates.

$$T_2 = T_1 \pm \frac{\Delta T}{n}$$

$$T_2/T_1 = 1 \pm \frac{\Delta T}{nT_1}$$

If the stream is being heated $T_2/T_1 \ge 1$ and if it is being cooled $T_2/T_1 \le 1$ so, v_2/v_1 can have two valves:

$$v_2/v_1 = 1 \pm \frac{\Delta T}{nT_1}$$
 (C36)

 $\rm v_m$ is the mean specific volume. $\rm v_m/v_1$ can be found the same way $\rm v_2/v_1$ was found.

$$v_{m}/v_{1} = (T_{m}/T_{1}) (P_{1}/P_{m})$$

$$P_{1}/P_{m} \cong 1$$

$$T_{m} = T_{1} \pm \frac{\Delta T}{2n}$$

$$T_{m}/T_{1} = 1 \pm \frac{\Delta T}{2nT_{1}}$$

$$v_{m}/v_{1} = 1 \pm \frac{\Delta T}{2nT_{1}}$$
(C37)

Recause of temperature variations along the length of the exchanger, the value of $\mathbf{v}_2/\mathbf{v}_1$, and therefore f', will vary from plate to plate. Average values of $\mathbf{v}_2/\mathbf{v}_1$ and $\mathbf{v}_m/\mathbf{v}_1$ will be used. When these values are applied to one plate and multiplied by the number of plates in the exchanger, the resulting total pressure drop will be the pressure drop measured over the whole exchanger.

$$\frac{\Delta T}{m} = -\frac{T_{o?}}{T_{o1}}$$

$$r_{o1} = -\frac{T_{o2}}{T_{o1}}$$
(C38)

where

To₂ = Temperature exiting heat exchanger.

 T_{0} 1 = Temperature entering heat exchanger.

 $\Delta T = To_2 - To_1$

 T_1 = Temperature at the inlet of any given plate

The average values of v_2/v_1 and v_m/v_1 follow:

$$v_2/v_1 \mid av = 1 + \frac{1}{n} \ln \frac{T_{0_2}}{T_{0_1}}$$
 (C39)

$$v_m/v_1 | av = 1 + \frac{1}{2} ln \frac{To_2}{To_1}$$
 (C40)

Next, the relationship between the calculated friction factor and the theoretical friction factor must be found.

Let

f_e = Measured friction factor.
f' = Theoretical observed friction factor.

The measured friction factor calculated from the data is defined as follows:

$$f_e = \frac{D_h \Delta P \rho_m g_c}{2nt G^2}$$
 (C41)

Also, the following theoretical relationship exists for ΔP over one plate:

$$\Delta P = \frac{G^2 v_m}{2g_c} f' \frac{A}{A_c}$$
 (C42)

Substitute equation (C42) in equation (C41). Equation (C42) is the pressure change over one plate so n = 1 for equation (C41). The Reynolds number is based on the hole diameter so $D_h = d$.

$$f_{e} = \frac{d}{2t} \left(\frac{G^{2}v_{m}}{2g_{c}} \frac{f' A}{A_{c}} \right) \frac{g_{c}}{v_{m} G^{2}}$$

$$f_{e} = \frac{d}{4t} \frac{f' A}{A_{c}}$$
(C43)

Substituting equation (C34) into equation (C43) results in the following expression to theoretically estimate the measured friction factor:

$$f_{e} = (d/4t)(v_{1}/v_{m})\Gamma(1+K_{c}-\sigma^{2}) + 2(v_{2}/v_{1}-1) + 4f(t/d)(v_{m}/v_{1}) - (1-\sigma^{2}-K_{e})(v_{2}/v_{1})T$$
 (C44)

The test to determine the friction factor was performed at steady state room temperature. To compare the theoretical values with the experimental values, the following relationships will be used:

$$\tau_{02}/\tau_{01} = v_{m}/v_{1} = v_{2}/v_{1} = 1$$

For these conditions, equation (C44) becomes

$$f_e = \frac{d}{4t} (K_c + K_e) + f$$
.

The friction factor per plate is a function of plate geometry and entrance, exit, and flow conditions in the hole. Kays and London present K_c and K_e in Figure 5-2 [3] and f in Figure 6-22 [3]. In both Tables the Reynolds number (N_R) is based on the hole diameter so, the hole Reynolds number (N_{Re}) is the same as N_R .

Table C1 presents the friction factors per plate for both punched and etched plates calculated using equation (C44). Table C2 presents the theoretical friction factors for the EBD plates.

			*		**	**	
Plate Description	N _{Re}	N _{Re} (d/t)	^{fN} Re	4(t/d)/M _{Re}	К _с	Kę	fe
Punched Plates	10	8.571	16	0.467	0.97	0.45	1.9
d = 0.018"	20	17.14	18	0.233	0.97	0.46	1.2
t = 0.021"	50	42.86	21	0.093	0.91	0.46	0.71
$\sigma = 0.236$	100	85.71	25	0.047	0.78	0.47	0.52
	200	171.43	32	0.023	0.75	0.48	0.42
Etched Plates	10	15.83	17	0.253	1.2	0.76	2.5
d = 0.0285"	20	31.67	20	0.126	0.97	0.76	1.7
t = 0.018"	50	79.17	24	0.051	0.83	0.78	1.1
$\sigma = 0.09$	100	158.3	30	0.025	0.80	0.79	0.93
	200	316.7	38	0.013	0.73	0.79	0.79
Etched Plates	10	15.95	18	0.251	0.98	0.43	2.4
d = 0.0295"	20	31.89	21	0.125	0.97	0.43	1.6
t = 0.0185"	50	79.73	25	0.050	0.80	0.44	0.99
$\sigma = 0.245$	100	159.46	31	0.025	0.70	0.48	0.78
	200	318.92	38	0.013	0.65	0.48	0.64

^{*} Read from Kays and London, Table 6-22 [3].

Table C1. Theoretical friction factor for punched and etched plates

^{**} Read from Kays and London, Table 5-2 [3].

			*		**	**		
Plate Description	N _{Re}	N _{Re} (d/t)	fN _{Re}	4(t/d)/N _{Re}	K _c	K _e	f	
	10	1.54	16	2.6	0.99	0.50	1.66	
d = 0.010"	. 20	3.08	16	1.3	0.99	0.50	0.86	
t = 0.065"	50	7.69	17	0.52	0.99	0.50	0.40	
	100	15.38	19	0.26	0.99	0.50	0.25	
	200	30.77	20	0.13	0.93	0.50	0.16	
	10	2.22	16	1.8	0.99	0.50	1.68	
d = 0.010"	20	4.44	16	0.90	0.99	0.50	0.88	
t = 0.045"	50	11.11	18	0.36	0.99	0.50	0.44	
	100	22.22	19	0.18	0.98	0.50	0.27	
	200	44.44	2.2	0.09	0.93	0.50	0.19	
	10	2.31	16	1.73	0.99	0.50	1.69	
$d = 0.015^{H}$	20	4.62	16	0.867	0.99	0.50	0.89	
t = 0.065"	50	11.54	18	0.347	0.99	0.50	0.45	
	100	23.08	19	0.173	0.98	0.50	0.28	
	200	46.15	22	0.087	0.93	0.50	0.19	
	10	3.08	16	1.3	0.99	0.50	1.71	
d = 0.020"	20	6.15	17	0.65	0.99	0.50	0.96	
t = 0.065"	50	15.38	19	0.26	0.99	0.50	0.49	
	100	30.77	20	0.13	0.93	0.50	0.31	
	200	61.54	24	0.065	0.82	0.51	0.22	
	10	3.33	16	1.2	0.99	0.50	1.72	
d = 0.015"	20	6.67	17	0.60	0.99	0.50	0.97	
t = 0.045"	50	16.67	19	0.24	0.98	0.50	0.50	
	100	33.33	20	0.12	0.93	0.50	0.32	
	200	66.67	24	0.06	0.82	0.52	0.23	
•	10	4.44	16	0,90	0.99	0.50	1.77	
d = 0.020"	20	8.88	18	0.45	0.99	0.50	1.07	
t = 0.045"	50	22.22	19	0.18	0.98	0.50	0.54	
	100	44.44	22	0.09	0.93	0.50	0.38	
	200	88.89	26	0.045	0.80	0.53	0.28	
* Read from Kays and London, Table 6-22 [3]. ** Read from Kays and London, Table 5-2 [3].								

Table C2. Theoretical friction factor for EBD plates 20% open area

			*		**	**	
Plate Description	N _{Re}	N _{Re} (d/t)	^{fN} Re	4(t/d)/N _{Re}	К _с	К _е	fe
	10	5.00	17	0.80	0.99	0.50	1.89
d = 0.010"	20	10.00	18	0.40	0.99	0.50	1.09
t = 0.020"	50	25.00	20	0.16	0.96	0.50	0.58
	100	50.00	23	0.08	0.90	0.50	0.41
	200 ,	100.00	28	0.040	0.80	0.54	0.31
	10	7.50	17	0.533	0.99	0.50	1.98
d = 0.015"	20	15.00	19	0.267	0.98	0.50	1.23
t = 0.020"	50	37.50	21	0.107	0.93	0.50	0.69
	100	75.00	25	0.053	0.80	0.53	0.50
	200	150.00	30	0.027	0.75	0.54	0.39

Read from Kays and London, Table 6-22 [3].

Table C2. Concluded

4. DETERMINE $N_{tu}/Plate$ vs HOLE REYNOLDS NUMBER

Once the N_{tu} /plate is found as a function of Reynolds number, the Colburn modules can be calculated using equation (1). The N_{tu} /plate was used to compare the experimental and theoretical results.

$$N = \frac{UA}{mc_p}$$

(C45)

where

U = Overall thermal conductance.

A = Total heat-transfer area.

m = Mass flow rate.

 c_n = Specific heat of fluid.

^{**} Read from Kays and London, Table 5-2 [3].

To find UA, divide the total heat-transfer area into three parts: the front face, the cylindrical hole, and the back face. Once the area averaged heat-transfer coefficient is found for each area, UA can be found from the following relationship

$$UA = h_1A_1 + h_2A_2 + h_3A_3$$

Where h = Area averaged heat-transfer coefficient.

Subscripts

1 = Front face.

2 = Cylindrical hole.

3 = Back face.

UA can be approximated by assuming the front and back surfaces have the same heat-transfer characteristics.

$$UA = 2h_1A_1 + h_2A_2$$
 (C46)

 A_1 is the solid surface of the plate, which is the frontal area times the percent solid area.

$$A_1 = A_{fr} (1 - \sigma) \tag{C47}$$

The total heat-transfer area, A, can be found by manipulating equation (C35).

$$\frac{A}{A_c} = 2\Gamma \frac{1-\sigma}{\sigma} + \frac{t}{r}$$
(C35)

$$A = 2\Gamma \frac{1-\sigma}{\sigma} + \frac{2t}{d} \Lambda \left(\frac{\sigma^{A} fr}{\Lambda_{C}} \right)$$

$$A = 2A_{fr}^{\lceil 1 - \sigma + \frac{2t\sigma \rceil}{d}}$$
 (C48)

 ${\rm A_2}$ can be found from the following relationship:

$$A = 2A_1 + A_2$$

$$A_2 = A - 2A_1$$

$$= 2A_{fr}[1-\sigma] \frac{2t\sigma}{d} - 2A_{fr}(1-\sigma)$$
(C49)

$$A = \frac{4A_{fr}t\sigma}{d}$$
 (C50)

Next, find an expression for $\ensuremath{\text{mc}}_p$ as a function of hole Reynolds number.

$$\dot{m}_{c_{p}} = \dot{m}_{c_{p}} \frac{(\frac{N_{Re}^{\mu}}{\rho VD})(\frac{\rho A_{c}V}{\hbar})(\frac{\sigma \Lambda_{fr}}{A_{c}})}{\hbar}$$

$$\dot{m}_{c_{p}} = \frac{N_{Re}^{\mu \sigma A_{fr}c_{p}}}{d}$$
(C51)

where

 N_{Re} = Hole Reynolds number.

 μ = Viscosity.

 ρ = Fluid density.

V = Fluid velocity upstream of test section.

D = Diameter of tubing upstream of test section.

 A_{C} = Open area of plate.

 σ = Ratio of open area to plate frontal area.

 Λ_{fr} = Frontal area of plate.

d = Hole diameter.

Now, substitute equations (C47), (C41), and (C51) in equation (C46).

$$N_{tu} = \frac{\{h_1 | 2A_{fr}(1-\sigma) + h_2(A_{fr}\sigma t/d)\}d}{N_{Re}^{\mu\sigma A_{fr}c_p}}$$

$$N_{tu} = \frac{1}{N_{Re} \mu c_p} \frac{\left[2h_1 d(1-\sigma) + 4h_2 t\right]}{\sigma}$$
 (C52)

Now it's necessary to find h_1 and h_2 . h_1 can be found as a function of the upstream mass velocity (before the flow enters the plate), G', and the equivalent cylinder diameter, d'. Due to continuity, the upstream mass velocity is related to the mass velocity in the core as follows:

$$G' = G\sigma \tag{C53}$$

The equivalent cylinder diameter can be approximated by the following equation:

$$d' = 2y(x)|_{av}$$
 (C54)

Note that y(x) is shown on Figure C6.

$$\frac{d'}{d} = \frac{2y(x)|_{av}}{d} = \frac{y(x)|_{av}}{r}$$
 (C55)

Substitute equation (C24) for $y(x)|_{av}$ in equation (C55), then replace r/b with equation (C26):

$$\frac{d'}{d} = \left[\frac{\sqrt{3'/2}}{0.9094\sigma^{\frac{1}{2}}\cos\theta} - 1 \right]_{av}$$

Integrate over one 12th of a hole to find d'/d:

$$\frac{d'}{d} = \frac{6}{\pi} \int_{0}^{\pi/6} \frac{(0.95?)}{\sigma^{\frac{1}{2}} \cos \theta} - 1) d\theta$$
 (C56)

A relationship for d'/d as a function of σ can be approximated by correlating values evaluated using equation (C56). Equation (C57) is accurate to 10% of d'/d obtained by numerically integrating equation (C56) for $\sigma \le 0.3$.

$$d'/d = .358 \sigma^{-.768}$$
 (C57)

A relationship for h_1 (C58) is presented in McAdams' "Heat Transmission."[4] Although this relationship is based on data from air, it can be used for the helium heat exchangers because the Prandtl numbers are approximately equal. The relationship is also an approximation because equation (C58) is for flow normal to a single cylinder. This was used to approximate the flow normal to a flat plate because no reference could be found for low Reynolds number flow normal to a flat plate. Dr Fowle [1] believes this is a conservative estimate -- it will predict lower than actual $N_{\rm tu}/{\rm plate}$.

$$\frac{h_1 d'}{k} = 0.32 + 0.43 \left(\frac{d'G'}{\mu}\right)^{0.52}$$
for $0.1 \le \frac{d'G'}{\mu} \le 1000$

Note the following relationship for the Reynolds number:

$$\frac{dG}{u} = {}^{N}Re \tag{C59}$$

Substituting equations (C53), (C57), and (C59) in equation (C58) results in the following expression for h_1 :

$$h_1 = (k/d) 2.793 \sigma^{0.768} [0.32 + 0.252N_{Re}^{0.57} \sigma^{0.121}]$$
 (C60)

Two equations (C61 and C62) to calculate h₂ are shown in "Heat, Mass and Momentum Transfer" by Robsenow and Choi [5]. These functions are for heat transfer in a circular cylinder and are based on the following assumptions:

$$1 \leq N_{R} \leq 1000$$

 $N_{PR} = 0.7$

Uniform wall temperature

The first expression for h₂ assumes a developing velocity profile in laminar flow.

$$h_2 = k/d \ \lceil 3.66 + \frac{0.073 \ d/t \ N_{Re}}{1 + 0.012 \ (d/t \ N_{Re})^{0.8}}$$
 (C61)

The second expression for ${\rm h}_2$ assumes a parabolic velocity profile in laminar flow.

$$h_2 = k/d [3.66 + 0.047 (d/t N_{Re})]$$
 (C62)
 $1 + 0.032 (d/t N_{Re})^{0.667}$

Substituting equations (C60), (C61), and (C62) in equation (C52) and recognizing that

$$^{N}Pr = \frac{^{\mu C}p}{k} = 0.7$$

results in equations (C63) and (C67).

FOR A DEVELOPING VELOCITY PROFILE IN LAMINAR FLOW

$$N_{tu}/Plate =$$
 (C63)

For the punched plate ' = 0.18", t = 0.021", σ = 0.236)

$$N_{tu}/plate = 27.1 N_{Re}^{-1} + 1.803 N_{Re}^{-0.48} + \frac{0.416}{1 + 0.011 N_{Re}^{-0.8}}$$
 (C64)

For the etched plates (d = 0.0285", t = 0.0185", σ = 0.09)

$$N_{tu}/plate = 17.63 N_{Re}^{-1} + 2.391 N_{Re}^{-0.48} + \frac{0.417}{1 + 0.017N_{Re}^{-0.8}}$$
 (C65)

For the etched plates(d = 0.0295", t = 0.018", $\sigma = 0.245$)

$$N_{tu}/plate = 15.42 N_{Re}^{-1} + 1.775 N_{Re}^{-0.48} + \frac{0.417}{1 + 0.018N_{Re}^{-0.8}}$$
 (C66)

FOR A PARABOLIC VELOCITY PROFILE IN LAMINAR FLOW

$$N_{tu}/plate =$$
 (C67)

$$-0.232$$
 0.52 0.121 (1- σ) σ (2.554+2.011 N_{Re} σ) 20.9 ^t/_d 0.269 $-\frac{1}{N_{Re}}$ $\frac{1+0.032 (d/t^{N_{Re}})^{0.667}}{1+0.032 (d/t^{N_{Re}})^{0.667}}$

For the punched plate

$$N_{tu}/plate = 27.1 N_{Re}^{-1} + 1.803 N_{Re}^{-0.48} + \frac{0.269}{1 + 0.029 N_{Re}^{-0.667}}$$
 (C68)

For the etched plate (9% open area)

$$N_{tu}/plate = 17.63 N_{Re}^{-1} + 2.391 N_{Re}^{-0.48} + \frac{0.269}{1 + 0.043N_{Re}^{-0.667}}$$
 (C69)

For the etched plate (24.5% open area)

$$N_{tu}/nTate = 15.42 N_{Re}^{-1} + 1.775 N_{Re}^{-0.48} + \frac{0.269}{1 + 0.044 N_{Re}^{-0.667}}$$
 (C70)

Table C3 presents the predicted values of N_{tu} /plate vs hole Reynolds number for the developing and parabolic velocity profiles in the punched and etched plates.

		N _{tu} /plate								
	Developi	ng Velocit	y Profile	Parabolic	Velocity	Profile				
	Punched	Ε	tched	Punched	Et	ched				
N _{Re}	σ =0.236	o =0.09	o =0.245	o =0.236	o =0.09	o =0.245				
10 20 50 100 200 500	3.697 2.155 1.151 0.759 0.514 0.307	2.931 1.801 1.019 0.687 0.468 0.277	2.505 1.541 0.876 0.593 0.403 0.238	3.544 2.005 1.011 0.634 0.412 0.241	2.779 1.654 0.818 0.578 0.385 0.229	2.353 1.395 0.748 0.486 0.323 0.191				

Table C3. N_{tu} /plate vs hole Reynolds number for the punched and etched plates

The parabolic velocity profile generated N_{tu}/plate values closest to the experimental results. Consequently, a parabolic velocity profile was used to compare the theoretical and experimental results. Table C3 presents the N_{tu}/plate vs N_{Re} calculated using equations (C56), (C52), (C58), and (C62). Instead of using equation (C57) which estimates d'/d as a function of σ , equation (C56) was numerically integrated to find values for d'/d. The theoretical results were correlated and b and m were found to make the following equation fit the theoretical results:

$$N_{tu}/p^{1}$$
ate = $b(N_{Re})^{m}$

Type of Plate	d/t	σ	N _{Re}	N _{tu} /plate	b	m .
Electron	0.154	0.20	10	14.785	116.63	-0.907
Beam			20	7.654		
Drilled			30	5.253		
	<u> </u>		40,	4.043		
	Ì		50	3.311		
			60	2.820		
			70	2.467		
			80	2.201		
			90	1.992		
	! !		100	1.824		
	0.222	0.20	10	10,600	77.78	-0.878
			20	5.558		
			30	3.853		
			40	2.991		
	İ		50	2.467		
			60	2.115		
			70	1.861		
	}		80	1.669		
			90	1.518		•
			100	1.396		
	0.231	0.20	10	10.251	74.62	-0.875
	į		20	5.383		
			30	3.736		
			40	2.903		
	1		50	2.397		
			60	2.056		
			70	1.810		
	1		80	1.624		
			90	1.478		
			100	1.360		

Table C4. Theoretical $N_{tu}/plate$ assuming a parabolic velocity profile

Type of Plat	te d/t σ	N _{Re}	N _{tu} /plate	Ь	m
	0.308 0.20	10	7.982	54.39	-0.848
		20	4.246	•	•
		30	2.976		
		40	2.330		
		50	1.937		
		60	1.671		
		70	1.479		
		80	1.333		
		90	1.218		
		100	1.125		
Electron	0.333 0.20	10	7.458	49.86	-0.840
Beam		20	3.983		
Drilled		30	2.800		
		40	2.198		
		50	1.830		
		60	1.582		
		70	1.402		
		80	1.265		
		90	1.157		
		100	1.070		
	0.444 0.20	10	5.886	36.62	-0.810
		20	3.194		
		30	2.271		
		40	1.798		
		50	1.509		
		60	1.312		
		70	1.169		
		80	1.060		
		90	0.973		
	1	100	0.903		

Table C4. Continued

Type of Plate	d/t o	N _{Re}	N _{tu} /plate	b	m
	0.500 0.20	10	5.362	32.38	-0.798
		20	2,930		
: 		30	2.094		
		40	1.665		
		50	1.401		
		60	1.221		
		70	1.090		
		80	0.990		
		90	0.911		
		100	0.846		
	0.750 0.20	10	3.961	21.56	-0.754
		20	2.224		
		30	1.618		
		40	1.304		
		50	1.109		
		60	0.975		
		70	0.876		
		80	0.801		
		90	0.740		
		100	0.691		
Punched	0.857 0.236	10	3.56?	18.87	-0.742
		20	2.016		
		30	1.474		
		40	1.192		
	1	50	1.017		
	1	60	0.896		
		70	0.807		
[80	0.738		
		90	0.683		
		100	0.638		

Table 4. Continued

Type of Plate	d/t	σ.	N _{Re}	N _{tu} /plate	b	m
Etched	1,583	0.09	10	2.725	12.41	-0.674
			20	1.624		
	•		30	1.224		
			40	1.010		
	{		50	0.874		
			60	0.779		
	-		70	0.708		
			80	0.652		
			90	0.607		
			100	0.570		
	1.595	0.245	10	2.410	11.15	-0.682
			20	1.426		
			30	1.071		
			40	0.882		
			50	0.762		
			60	0.679		
			70	0.616		
			80	0.567		
			90	0.528		
			100	0.495		

Table C4. Concluded

APPENDIX D - INSULATION REQUIREMENTS

When a heat leak was discovered in the test section, the insulation had to be changed to reduce the heat leak. Although a steady-state analysis had shown the insulation was adequate, a transient analysis showed that more insulation was needed. A comparison of the steady state and transient analyses follow.

1. STEADY STATE

L = Length of test section.

r; = Radius of test section.

 r_0 = Radius of test section and insulation.

h_a = Natural convective heat-transfer coefficient.

k = Thermal conductivity of insulation.

 T_i = Temperature inside cylinder.

 $T_a = Temperature outside cylinder.$

Figure D1. Schematic of test section

The heat leak through the insulation can be calculated from the following equation:

$$\phi = 2\pi r_i L(T_i - T_a)/U$$
 (D1)

AFHAL-TR-88-3102

where

$$U = (1/h_a)(r_i/r_o) + (1/k)r_i \ln(r_o/r_i)$$

The following properties were used to generate a curve of $\hat{\mathbf{q}}$ vs insulation thickness.

$$r_i = 1.5 \text{ in}$$

 $L = 4.2 \text{ in}$
 $h_a = 1 \text{ BTII/hr ft}^2 \text{ F}$
 $\Delta T = (T_i - T_a) = 20^{0} \text{F}$
 $k = 0.025 \text{ BTU/ft hr F (polyurethane foam)}$

Applying these conditions to equation (D1) results in the relationship shown in Figure D2.

Insulation Thickness $(r_0 - r_i)$ in

Figure N2. Plot of heat leak rate vs insulation thickness (steady-state analysis)

If $h_a r_i/k \ge 1$ adding insulation always decreases the heat leak. If $h_a r_i/k \le 1$ there is an area where adding insulation increases the heat leak. In this case, the steady-state analysis shows that adding insulation would reduce the heat leak and that 1.5" of insulation was sufficient.

2. TRANSTENT THERMAL BEHAVIOR OF INSULATION

k = Thermal conductivity of insulation.

 ρ = Insulation density.

c - Specific heat of insulation.

 $\alpha = k/\rho c = thermal defussivity.$

s = Radius of test section.

L = Length of test section.

 O_s = Total heat loss in time τ .

0 s = Temperature difference
 between heated core and
 ambient temperature.

 τ = Time, measured from test start.

Figure D3. Model of the insulated test section

The test section is modeled by a circular cylinder surrounded by an infinitely thick layer of insulation (Figure D3). The temperature at the surface of the pipe is instantaneously increased (θ_S) when the test starts (τ =0). The dimensionless group $\alpha \theta_S/kLs^2\theta_S$ is tabulated as a function of $\alpha \tau/s^2$ by Jakob [6]: consequently, for a given time (τ) and insulator qualities (α), the total hear loss (θ_S) can be found.

The test section had the following properties:

$$s = 0.125 \text{ ft}$$

 $\theta_s = 20^{0} \text{F}$
 $L = 4.2/12 \text{ ft}$

Table D1 presents the three insulation cases that were evaluated.

	Case 1	Case 2	Case 3
k (BTH/hr ft F) p (1bm/f+3) c (BTH/1bm F)	n.n3	0.02	0.025
	6	2	2.34
	n.33	0.33	0.33
τ (sec)	<u>ατ</u> ⁰ s	ατ ^Ω ς	ατ ^Ω ς
	s² (BTU)	s ² (BTII)	ς² (βΤΙΙ)
20	0.00533	0.011 0.055	0.012 0.0667
40		0.021 0.079	0.023 0.0952
60		0.032 0.097	0.035 0.1177
80		0.043 0.114	0.046 0.1383
100		0.053 0.130	0.058 0.1567
200		0.107 0.190	0.115 0.2290
300		0.160 0.237	0.173 0.2883
400		0.213 0.282	0.230 0.3396
500		0.267 0.318	0.288 0.3855

Table D1. Comparison of different insulation requirements

Figure D4 compares insulation with various kpc products. The analysis indicates that total heat loss decreases as the kpc product decreases. Also, no insulation causes a smaller heat leak than an infinite amount of insulation for short runs. During most of the test runs the core reached steady state in 90 to 660 seconds; only one run was under 90 seconds. The modified apparatus used 3" of insulation with a kpc product of 0.019 BTU2/hr ft 4 F (case 3).

wi

102

∂

4

--

٦

Ó

4

Figure D4. Transient analysis of heat loss for an infinite thickness of insulation

REFERENCES

- 1. R.H. Hubbell, Summary Report on Task no. 31, Determination of f and i Data for Perforated Plates, Development of an Advanced Two-Stage Rotary Reciprocating Refrigerator, Air Force Uright Aeronautical Laboratories, Flight Dynamics Laboratory, Uright-Patterson Air Force Base, Ohio 45433-6553, Contract no. F33615-81-C-3419, Project no. 2126, June 1984.
- 2. P.F. Pucci, C.P. Howard, C.H. Piersall, dr., "The Single-Blow Transient Testing Technique for Compact Heat Exchanger Surfaces," Journal of Engineering for Power, January 1967, pp. 29-40.
- 3. W.M. Kays, and A.L. London, <u>Compact Heat Exchangers</u>, 2nd Edition, McGraw Hill, New York, 1964.
- 4. McAdams, Heat Transmision, 3rd Edition, McGraw-Hill, New York, 1954, p260.
- 5. Robsenow and Choi, <u>Heat, Mass, and Momentum Transfer</u>, Prentice Hall, 1961, p 166.
- 6. M. Jakob, Heat Transfer Vol I, Wiley and sons, Inc., New York, 1950, p267.