INTERROGATION N. 2

NOM : PRÉNOM :

Exercice 1 - Soit H un sous-groupe de $(\mathbb{Z}, +)$. On suppose que $H \neq \{0\}$. Démontrer qu'il existe $n\mathbb{Z}$ tel que $H = n\mathbb{Z}$.

Exercice 2 - Démontrer que $2\mathbb{Z} \cap (3\mathbb{Z} + 5\mathbb{Z})$ est un sous-groupe de $(\mathbb{Z}, +)$ et en déterminer un générateur.

1) Soit x e H: joj. Si x <0 along -x e H et -x >0.

Donc { y ∈ H | y > 0 } est une partie non vide de IN.

Soit m son plus petit élément.

· Om démontre que m ZI CH

Soit p ∈ ZL, m mp ∈ H alors | mp + m ∈ H car H < Z.

Puisque $0 \in \mathbb{Z}$ on déduit par une récurrence ascendante sur $p \in \mathbb{N}$ puis descendante sur $p \in \mathbb{N}$ que $(\forall p \in \mathbb{Z})$ sur $p \in \mathbb{H}$.

. On démontre que H c m Z

Soit $m \in H$. It exists $g \in \mathbb{Z}$ et $n \in \mathbb{Z}$ tels que $\int_{0 \leq n \leq m-1}^{m = mq+n} Gn + C\mathbb{Z}$ et $m \in H$, donc $mq \in H$.

Toujours jarce que H < Z, on en déduit que n=m-mg & H.

 ${\it Date} \colon {\it Mardi}$ 29 septembre 2015.

Par minimalité de m on a $H \cap \{0, 1, 2, ..., m-1\} = \{0\}$. Ponc R = 0, puis $m = mq \in m \mathbb{Z}$. Ainsi, $H = m \mathbb{Z}$.

2) 37/4572 est le sous-groupe de 72 engendré par {3,5}.

Donc 27 n (37+57) est um sous-groupe de 7, comme inter-- Metion de sous-groupes de 7.

On a $1 = 3 \times 2 + 5 \times (-1) \in 3 \mathbb{Z} + 5 \mathbb{Z}$.

Ronc Z= <1> = 3Z+5Z.

Donc Z = 3Z + 5Z.

27 n(32 + 52) = 22.