Introduction to Machine Learning

Maximum Margin Methods

Varun Chandola

March 2, 2020

Outline

Contents

1	Training vs. Generalization Error	
2	Maximum Margin Classifiers 2.1 Linear Classification via Hyperplanes 2.2 Concept of Margin	
3	Support Vector Machines 3.1 SVM Learning	
4	Constrained Optimization and Lagrange Multipliers 4.1 Toy SVM Example	1
5	The Bias-Variance Tradeoff	L

1 Training vs. Generalization Error

Training vs. Generalization Error

- Difference between training error and generalization error
- We can train a model to minimize the training error
- What we really want is a model that can minimize the generalization error
- But we do not have the *unseen* data to compute the generalization error
- What do we do?
 - 1. Focus on the training error and hope that generalization error is automatically minimized
 - 2. Incorporate some way to hedge (insure) against possible unseen issues

2 Maximum Margin Classifiers

$$y = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

- Remember the Perceptron!
- If data is linearly separable
 - Perceptron training guarantees learning the decision boundary
- There can be other boundaries
 - Depends on initial value for ${\bf w}$
- But what is the best boundary?

2

2.1 Linear Classification via Hyperplanes

- Separates a *D*-dimensional space into two half-spaces
- Defined by $\mathbf{w} \in \Re^D$
 - Orthogonal to the hyperplane
 - This w goes through the origin
 - How do you check if a point lies "above" or "below" w?
 - What happens for points **on w**?

For a hyperplane that passes through the origin, a point \mathbf{x} will lie above the hyperplane if $\mathbf{w}^{\top}\mathbf{x} > 0$ and will lie below the plane if $\mathbf{w}^{\top}\mathbf{x} < 0$, otherwise. This can be further understood by understanding that $bf\mathbf{w}^{\top}\mathbf{x}$ is essentially equal to $|\mathbf{w}||\mathbf{x}|\cos\theta$, where θ is the angle between \mathbf{w} and \mathbf{x} .

- \bullet Add a bias b
 - -b>0 move along **w**
 - -b < 0 move opposite to **w**
- \bullet How to check if point lies above or below **w**?
 - If $\mathbf{w}^{\top}\mathbf{x} + b > 0$ then \mathbf{x} is above
 - Else, below
- \bullet Decision boundary represented by the hyperplane ${\bf w}$
- For binary classification, w points towards the positive class

Decision Rule

$$y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$$

- $\mathbf{w}^{\top}\mathbf{x} + b > 0 \Rightarrow y = +1$
- $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b < 0 \Rightarrow y = -1$
- Perceptron can find a hyperplane that separates the data
 - ... if the data is linearly separable
- But there can be many choices!
- Find the one with best separability (largest margin)
- Gives better generalization performance
 - 1. Intuitive reason
 - 2. Theoretical foundations

2.2 Concept of Margin

- Margin is the distance between an example and the decision line
- Denoted by γ
- For a positive point:

$$\gamma = \frac{\mathbf{w}^{\top} \mathbf{x} + b}{\|\mathbf{w}\|}$$

• For a negative point:

$$\gamma = -\frac{\mathbf{w}^{\top} \mathbf{x} + b}{\|\mathbf{w}\|}$$

To understand the margin from a geometric perspective, consider the projection of the vector connecting the origin to a point \mathbf{x} on the decision line. Let the point be denoted as \mathbf{x}' . Obviously the vector \mathbf{r} connecting \mathbf{x}' and \mathbf{x} is given by:

$$\mathbf{r} = \gamma \widehat{\mathbf{w}} = \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

if \mathbf{x} lies on the positive side of \mathbf{w} . But the same vector can be computed as:

$$\mathbf{r} = \mathbf{x} - \mathbf{x}'$$

Equating above two gives us \mathbf{x}' as:

$$\mathbf{x}' = \mathbf{x} - \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

Noting that, since \mathbf{x}' lies on the hyperplane and hence:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}' + b = 0$$

Substituting \mathbf{x}' from above:

$$\mathbf{w}^{\top}\mathbf{x} - \gamma \frac{\mathbf{w}^{\top}\mathbf{w}}{\|\mathbf{w}\|} + b = 0$$

5

Noting that $\frac{\mathbf{w}^{\top}\mathbf{w}}{\|\mathbf{w}\|} = \|\mathbf{w}\|$, we get γ as:

$$\gamma = \frac{\mathbf{w}^{\top} \mathbf{x} + b}{\|\mathbf{w}\|} \tag{1}$$

Similar analysis can be done for points on the negative side of \mathbf{x} . In general, one can write the expression for the margin as:

$$\gamma = y \frac{\mathbf{w}^{\top} \mathbf{x} + b}{\|\mathbf{w}\|} \tag{2}$$

where $y \in \{-1, +1\}$.

Functional Interpretation

Margin positive if prediction is correct; negative if prediction is incorrect

From the figure one can note that the size of the margin is $\frac{2}{\|\mathbf{w}\|}$. We can show this as follows. Since the data is separable, we can get two parallel lines represented by $\mathbf{w}^{\top}\mathbf{x} + b = +1$ and $\mathbf{w}^{\top}\mathbf{x} + b = -1$. Using result from (1) and (2), the distance between the two lines is given by $2\gamma = \frac{2}{\|\mathbf{w}\|}$.

3 Support Vector Machines

- \bullet A hyperplane based classifier defined by **w** and b
- Like perceptron
- Find hyperplane with maximum separation margin on the training data
- Assume that data is linearly separable (will relax this later)
 - Zero training error (loss)

6

SVM Prediction Rule

$$y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$$

SVM Learning

- Input: Training data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$
- ullet Objective: Learn w and b that maximizes the margin

3.1 SVM Learning

- SVM learning task as an optimization problem
- \bullet Find **w** and b that gives zero training error
- Maximizes the margin $\left(=\frac{2}{\|\mathbf{w}\|}\right)$
- Same as minimizing $\|\mathbf{w}\|$

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) > 1, i = 1, ..., N.$

• Optimization with N linear inequality constraints

3.2 Solving SVM Optimization Problem

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1, i = 1, ..., N.$

or

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $1 - [y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b)] \le 0, i = 1, \dots, N.$

 There is an quadratic objective function to minimize with N inequality constraints

• "Off-the-shelf" packages - quadprog (MATLAB), CVXOPT

• Is that the best way?

4 Constrained Optimization and Lagrange Multipliers

minimize
$$f(x,y) = x^2 + 2y^2 - 2$$

minimize
$$f(x,y) = x^2 + 2y^2 - 2$$

subject to $h(x,y) = x + y - 1 = 0$.

 Tool for solving constrained optimization problems of differentiable functions

minimize
$$f(x,y) = x^2 + 2y^2 - 2$$

subject to $h(x,y): x+y-1=0$.

• A Lagrangian multiplier (β) lets you combine the two equations into

$$\underset{x,y,\beta}{\text{minimize}} L(x,y,\beta) = f(x,y) + \beta h(x,y)$$

Solution 1. Writing the objective as Lagrangian.

$$L(x, y, \beta) = x^2 + 2y^2 - 2 + \beta(x + y - 1)$$

Setting the gradient to 0 with respect to x,y and β will give us the optimal values.

$$\frac{\partial L}{\partial x} = 2x + \beta = 0$$

$$\frac{\partial L}{\partial y} = 4y + \beta = 0$$

$$\frac{\partial L}{\partial \beta} = x + y - 1 = 0$$

Multiple Constraints

minimize
$$f(x, y, z) = x^2 + 4y^2 + 2z^2 + 6y + z$$

subject to $h_1(x, y, z)$: $x + z^2 - 1 = 0$
 $h_2(x, y, z)$: $x^2 + y^2 - 1 = 0$.

$$L(x, y, z, \boldsymbol{\beta}) = f(x, y, z) + \sum_{i} \beta_{i} h_{i}(x, y, z)$$

Handling Inequality Constraints

minimize
$$f(x,y) = x^3 + y^2$$

subject to $g(x): x^2 - 1 \le 0$.

- Inequality constraints are transferred as constraints on the generalized Lagrangian, using the multiplier, α
- \bullet Technically, α is a Kahrun-Kuhn-Tucker (KKT) multiplier
- Lagrangian formulation is a special case of KKT formulation with no inequality constraints
- \bullet We will use the term $generalized\ Lagrangian$ instead

The Lagrangian in the above example becomes:

$$L(x, y, \alpha) = f(x, y) + \alpha g(x, y)$$

= $x^3 + y^2 + \alpha (x^2 - 1)$

Solving for the gradient of the Lagrangian gives us:

$$\frac{\partial}{\partial x}L(x, y, \alpha) = 3x^2 + 2\alpha x = 0$$
$$\frac{\partial}{\partial y}L(x, y, \alpha) = 2y = 0$$
$$\frac{\partial}{\partial \alpha_1}L(x, y, \alpha) = x^2 - 1 = 0$$

Furthermore we require that:

$$\alpha > 0$$

From above equations we get $y=0, x=\pm 1$ and $\alpha=\pm \frac{3}{2}$. But since $\alpha\geq 0$, hence $\alpha=\frac{3}{2}$. This gives x=1, y=0, and f=1.

Handling Both Types of Constraints

minimize
$$f(\mathbf{w})$$

subject to $g_i(\mathbf{w}) \le 0$ $i = 1, ..., k$
and $h_i(\mathbf{w}) = 0$ $i = 1, ..., l$.

Generalized Lagrangian

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\boldsymbol{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{i=1}^{l} \beta_i h_i(\mathbf{w})$$

subject to, $\alpha_i > 0, \forall i$

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $1 - [y_i(\mathbf{w}^{\top}\mathbf{x}_i + b)] \le 0, i = 1, \dots, N.$

A Toy Example

- $\mathbf{x} \in \Re^2$
- Two training points:

$$\mathbf{x}_1, y_1 = (1, 1), -1$$

 $\mathbf{x}_2, y_2 = (2, 2), +1$

• Find the best hyperplane $\mathbf{w} = (w_1, w_2)$

4.1 Toy SVM Example

Optimization problem for a toy example

minimize
$$f(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2$$

subject to $g_1(\mathbf{w}, b) = 1 - y_1(\mathbf{w}^{\mathsf{T}} \mathbf{x}_1 + b) \le 0$
 $g_2(\mathbf{w}, b) = 1 - y_2(\mathbf{w}^{\mathsf{T}} \mathbf{x}_2 + b) \le 0.$

• Substituting actual values for \mathbf{x}_1, y_1 and \mathbf{x}_2, y_2 .

minimize
$$f(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2$$

subject to $g_1(\mathbf{w}, b) = 1 + (\mathbf{w}^{\mathsf{T}} \mathbf{x}_1 + b) \le 0$
 $g_2(\mathbf{w}, b) = 1 - (\mathbf{w}^{\mathsf{T}} \mathbf{x}_2 + b) \le 0.$

The above problem can be also written as:

minimize
$$f(w_1, w_2) = \frac{1}{2}(w_1^2 + w_2^2)$$

subject to $g_1(w_1, w_2, b) = 1 + (w_1 + w_2 + b) \le 0$
 $g_2(w_1, w_2, b) = 1 - (2w_1 + 2w_2 + b) \le 0$.

To solve the toy optimization problem, we rewrite it in the Lagrangian form:

$$L(w_1, w_2, b, \alpha) = \frac{1}{2}(w_1^2 + w_2^2) + \alpha_1(1 + w_1 + w_2 + b) + \alpha_2(1 - (2w_1 + 2w_2 + b))$$

Setting $\nabla L = 0$, we get:

$$\begin{split} \frac{\partial}{\partial w_1} L(w_1, w_2, b, \alpha) &= w_1 + \alpha_1 - 2\alpha_2 = 0 \\ \frac{\partial}{\partial w_2} L(w_1, w_2, b, \alpha) &= w_2 + \alpha_1 - 2\alpha_2 = 0 \\ \frac{\partial}{\partial b} L(w_1, w_2, b, \alpha) &= \alpha_1 - \alpha_2 = 0 \\ \frac{\partial}{\partial \alpha_1} L(w_1, w_2, b, \alpha) &= w_1 + w_2 + b + 1 = 0 \\ \frac{\partial}{\partial \alpha_2} L(w_1, w_2, b, \alpha) &= 2w_1 + 2w_2 + b - 1 = 0 \end{split}$$

Solving the above equations, we get, $w_1 = w_2 = 1$ and b = -3.

Primal and Dual Formulations

Generalized Lagrangian

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\boldsymbol{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{i=1}^{l} \beta_i h_i(\mathbf{w})$$

subject to, $\alpha_i \geq 0, \forall i$

Primal Optimization

• Let θ_P be defined as:

$$\theta_P(\mathbf{w}) = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

 One can prove that the optimal value for the original constrained problem is same as:

$$p^* = \min_{\mathbf{w}} \theta_P(\mathbf{w}) = \min_{\mathbf{w}} \max_{\alpha, \beta: \alpha_i \ge 0} L(\mathbf{w}, \alpha, \beta)$$

Consider

$$\theta_{P}(\mathbf{w}) = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w}) + \sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{w})$$

It is easy to show that if any constraints are not satisfied, i.e., if either $g_i(\mathbf{w}) > 0$ or $h_i(\mathbf{w}) \neq 0$, then $\theta_P(\mathbf{w}) = \infty$. Which means that:

$$\theta_P(\mathbf{w}) = \begin{cases} f(\mathbf{w}) & \text{if primal constraints are satisfied} \\ \infty & \text{otherwise,} \end{cases}$$

Primal and Dual Formulations (II)

Dual Optimization

• Consider θ_D , defined as:

$$\theta_D(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\mathbf{w}} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• The dual optimization problem can be posed as:

$$d^* = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \ge 0} \theta_D(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \ge 0} \min_{\mathbf{w}} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

 $d^* == p^*$?

- Note that $d^* \leq p^*$
- "Max min" of a function is always less than or equal to "Min max"
- When will they be equal?
 - $f(\mathbf{w})$ is convex
 - Constraints are affine
 - $-\exists \mathbf{w}, s.t., g_i(\mathbf{w}) < 0, \forall i$
- For SVM optimization the equality holds

Kahrun-Kuhn-Tucker (KKT) Conditions

- First derivative tests to check if a solution for a non-linear optimization problem is optimal
- For $d^* = p^* = L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$:

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0$$

$$\frac{\partial}{\partial \beta_i} L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0, \quad i = 1, \dots, l$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0, \quad i = 1, \dots, k$$

$$g_i(\mathbf{w}^*) \leq 0, \quad i = 1, \dots, k$$

$$\alpha_i^* \geq 0, \quad i = 1, \dots, k$$

Back to SVM Optimization

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1, i = 1, ..., N.$

• Introducing Lagrange Multipliers, α_i , i = 1, ..., N

Rewriting as a (primal) Lagrangian

minimize
$$L_P(\mathbf{w}, b, \alpha) = \frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^N \alpha_i \{1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b)\}$$

subject to $\alpha_i \ge 0$ $i = 1, ..., N$.

Solving the Lagrangian

• Set gradient of L_P to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_i y_i = 0$$

• Substituting in L_P to get the dual L_D

Dual Lagrangian Formulation

maximize
$$L_D(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_i y_m y_i(\mathbf{x}_m^{\top} \mathbf{x}_i)$$

subject to $\sum_{i=1}^{N} \alpha_i y_i = 0, \alpha_i \geq 0 \ i = 1, \dots, N.$

• Dual Lagrangian is a quadratic programming problem in α_i 's

- Use "off-the-shelf" solvers
- Having found α_i 's

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

• What will be the bias term b?

Investigating Kahrun Kuhn Tucker Conditions

- For the primal and dual formulations
- We can optimize the dual formulation (as shown earlier)
- Solution should satisfy the Karush-Kuhn-Tucker (KKT) Conditions

4.2 Kahrun-Kuhn-Tucker Conditions

$$\frac{\partial}{\partial \mathbf{w}} L_P(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i = 0$$
 (1)

$$\frac{\partial}{\partial b} L_P(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{N} \alpha_i y_i = 0$$
 (2)

$$1 - y_i \{ \mathbf{w}^\top \mathbf{x}_i + b \} \le 0 \tag{3}$$

$$\alpha_i \geq 0$$
 (4)

$$\alpha_i \ge 0 \tag{4}$$

$$\alpha_i (1 - y_i \{ \mathbf{w}^\top \mathbf{x}_i + b \}) = 0 \tag{5}$$

- Use KKT condition #5
- For $\alpha_i > 0$

$$(y_i\{\mathbf{w}^{\top}\mathbf{x}_i + b\} - 1) = 0$$

• Which means that:

$$b = -\frac{\underset{n:y_i = -1}{max} \mathbf{w}^{\top} \mathbf{x}_i + \underset{n:y_i = 1}{min} \mathbf{w}^{\top} \mathbf{x}_i}{2}$$

15

4.3 Support Vectors

Most α_i 's are 0

• KKT condition #5:

$$\alpha_i(1 - y_i\{\mathbf{w}^\top \mathbf{x}_i + b\}) = 0$$

• If \mathbf{x}_i not on margin

$$y_i\{\mathbf{w}^{\top}\mathbf{x}_i + b\} > 1$$

 $\Rightarrow \quad \alpha_i = 0$

- $\alpha_i \neq 0$ only for \mathbf{x}_i on margin
- These are the support vectors
- Only need these for prediction

One can see from the prediction equation

that:

$$y^* = sign(\sum_{i=1}^{N} \alpha_i y_i \left(\mathbf{x}_i^{\top} \mathbf{x}^* \right) \right)$$

In the summation, the entries for \mathbf{x}_i that do not lie on the margin will have no contribution to the sum because α_i for those \mathbf{x}_i 's will be 0. Hence we only need to the non-zero input examples to get the prediction.

- Cannot go for zero training error
- Still learn a maximum margin hyperplane

- 1. Allow some examples to be misclassified
- 2. Allow some examples to fall **inside** the margin
- How do you set up the optimization for SVM training

Introducing Slack Variables

• Separable Case: To ensure zero training loss, constraint was

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1 \quad \forall i = 1 \dots N$$

• Non-separable Case: Relax the constraint

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1 \dots N$$

- ξ_i is called slack variable $(\xi_i \ge 0)$
- For misclassification, $\xi_i > 1$

4.4 Optimization Constraints

- It is OK to have some misclassified training examples
 - Some ξ_i 's will be non-zero

• Minimize the number of such examples

• Optimization Problem for Non-Separable Case

minimize
$$f(\mathbf{w}, b) = \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

subject to $y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) \ge 1 - \xi_i, \xi_i \ge 0 \ i = 1, \dots, N.$

- Similar optimization procedure as for the separable case (QP for the dual)
- Weights have the same expression

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

- Support vectors are slightly different
 - 1. Points on the margin $(\xi_i = 0)$
 - 2. Inside the margin but on the correct side $(0 < \xi_i < 1)$
 - 3. On the wrong side of the hyperplane $(\xi_i > 1)$

It is straightforward to see why the support vectors also includes points that are on the wrong side of the margin. The KKT condition #5, in this case will be:

$$\alpha_i(1 - \xi_i - y_i\{\mathbf{w}^\top \mathbf{x}_i + b\}) = 0$$

For any point that is not on the margin, but is on the correct side of the margin, ξ_i will be 0, and $y_i\{\mathbf{w}^{\top}\mathbf{x}_i+b>1$. Thus to satisfy the above condition, α_i will be 0. However, for the points on the margin, both ξ_i and $y_i\{\mathbf{w}^{\top}\mathbf{x}_i+b$ will be 0, thus, α_i will be non-zero. Finally, for the points that are on the wrong side of the margin, ξ_i will be equal to $1-\{y_i\{\mathbf{w}^{\top}\mathbf{x}_i+b\}$, because that is how the slack is defined. Thus, α_i will have to be non-zero to satisfy the condition.

- \bullet $\,C$ dictates if we focus more on maximizing the margin or reducing the training error.
- Controls the bias-variance tradeoff

5 The Bias-Variance Tradeoff

- \bullet C allows the model to be a mule or a sheep or something in between
- Question: What do you want the model to be?
- Training time for SVM training is $O(N^3)$
- Many faster but approximate approaches exist
 - Approximate QP solvers
 - Online training
- SVMs can be extended in different ways
 - 1. Non-linear boundaries (kernel trick)
 - 2. Multi-class classification
 - 3. Probabilistic output
 - 4. Regression (Support Vector Regression)

References