Operações com transformações lineares Álgebra Linear – Videoaula 13

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Operações lineares sobre transformações

Sejam V, W dois espaços vetoriais. Vamos denotar

$$L(V, W) = \{T \colon V \to W \text{ linear}\},\$$

o conjunto das transformações lineares de V em W.

Consideramos as "operações pontuais": dadas $T, S: V \rightarrow W$ lineares,

$$T+S: V \to W, \qquad (T+S)(x)=T(x)+S(x)$$

e, dado $\lambda \in \mathbb{R}$,

$$(\lambda T)(x) = \lambda \cdot T(x).$$

Exercício: T + S e λT são lineares.

Operações lineares sobre transformações

Teorema

L(V, W) é um espaço vetorial com as operações pontuais.

• Comutatividade:
$$(T+S)(v) = T(v) + S(v)$$

 $= S(v) + T(v)$
 $= (S+T)(v),$
logo $T+S=S+T$ (para quaisquer S,T).

- . . .
- A transformação nula $0: V \to W$, $0(v) = 0_W$, serve como "vetor" nulo:

$$(T+0)(v) = T(v) + 0(v) = T(v) + 0_W = T(v),$$

portanto T + 0 = T.

Operações lineares e kernel

Se
$$T \in L(V, W)$$
 e $\alpha \in \mathbb{R}$,

$$\begin{aligned} \bullet & \ker(\alpha T) = \{x : (\alpha T)(x) = 0_W\} \\ &= \{x : \alpha T(x) = 0_W\} \\ &= \begin{cases} \{x : 0_W = 0_W\}, & \text{se } \alpha = 0 \\ \{x : T(x) = 0_W\}, & \text{se } \alpha \neq 0 \end{cases} \\ &= \begin{cases} V, & \text{se } \alpha = 0 \\ \ker(T), & \text{se } \alpha \neq 0 \end{cases}$$

•
$$\operatorname{im}(\alpha T) = \{\alpha T(x) : x \in V\}$$

= $\begin{cases} \{0_W\}, & \text{se } \alpha = 0\\ \operatorname{im}(T), & \text{se } \alpha \neq 0 \end{cases}$

Operações lineares e imagem

Se
$$T,S\in L(V,W)$$
,

•
$$\ker(T+S) = \{x : (T+S)(x) = 0_W\}$$

 $= \{x : T(x) + S(x) = 0_W\}$
 $\supseteq \{x : T(x) = 0\} \cap \{x : S(x) = 0\}$
 $= \ker(T) \cap \ker(S)$

•
$$\operatorname{im}(T+S) = \{T(x) + S(x) : x \in V\}$$

 $\subseteq \operatorname{im}(T) + \operatorname{im}(S)$

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Espaços de transformações lineares como subespaços de espaços de funções

- Já sabemos que se X é um conjunto, então \mathbb{R}^X , o conjunto das funções $f: X \to \mathbb{R}$, é um espaço vetorial.
- Mas podemos trocar $\mathbb R$ por um espaço vetorial W: Se W é um espaço vetorial e X é um conjunto, então W^X , o conjunto das funções $f: X \to W$, é um espaço vetorial com "operações pontuais":

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda \cdot f(x).$$

- Em particular, se V é um espaço vetorial, então W^V o conjunto das funções $V \to W$, é um espaço vetorial.
- O subconjunto L(V, W) é subespaço de W^V .

Composição de funções

Se
$$f: X \to Y$$
 e $g: Y \to Z$, então
$$(g \circ f): X \to Z, \qquad (g \circ f)(x) = g(f(x))$$

$$X \xrightarrow{\qquad \qquad f \qquad \qquad } Y \xrightarrow{\qquad \qquad } Z$$

Produto de transformações lineares

Notação

Se $T\colon U\to V$ e $S\colon V\to W$ são lineares, então denota-se composição como produto:

$$ST: U \to W, \qquad ST(u) = S(T(u))$$

Similarmente a produtos usuais, denotamos, para $T: V \to V$,

- $T^1 = T$
- $T^2 = TT$
- $T^3 = TTT$
- $\bullet T^n = TT \cdots T;$
- $T^0 = id_V$.

Produto de transformações lineares

Teorema

Se $T:U \to V$ e $S:V \to W$ são lineares, então $ST:U \to W$ é linear

Se
$$u_1, u_2 \in U, \lambda \in \mathbb{R}$$
,

$$ST(u_1 + \lambda u_2) = S(T(u_1 + \lambda u_2))$$

$$= S(T(u_1) + \lambda T(u_2))$$

$$= S(T(u_1)) + \lambda S(T(u_2))$$

$$= ST(u_1) + \lambda ST(u_2)$$

UNIVERSIDADE FEDERAL DE SANTA CATARINA

A função identidade

A função identidade de um espaço vetorial V,

$$id_V : V \to V, \quad id_V(v) = v$$

satisfaz

$$id_V T = T$$
 e $Sid_V = S$

para quaisquer $T: U \rightarrow V$ e $S: V \rightarrow W$ lineares.

- $\bullet \ (\mathsf{id}_V \ T)(u) = \mathsf{id}_V(T(u)) = T(u)$
- $\bullet (S \operatorname{id}_V)(v) = S(\operatorname{id}_V(v)) = S(v)$

Notações alternativas

Às vezes se denota

$$id_V = I_V = 1_V$$

Funções nulas

A transformação nula de um espaço vetorial V a um espaço vetorial W é

$$\mathbf{0}_{V\to W}\colon V\to W, \qquad \mathbf{0}_{V\to W}(v)=\mathbf{0}_W.$$

Essas funções satisfazem

$$\mathbf{0}_{V \to W} T = \mathbf{0}_{U \to W}$$
 e $S\mathbf{0}_{U \to V} = \mathbf{0}_{U \to W}$

para quaisquer $T: U \rightarrow V$ e $S: V \rightarrow W$ lineares.

- $(\mathbf{0}_{V \to W} T)(u) = \mathbf{0}_{V \to W} (T(u)) = \mathbf{0}_{W} = \mathbf{0}_{U \to W} (u)$
 - $(S\mathbf{0}_{U\to V})(u) = S(\mathbf{0}_{U\to V}(u)) = S(\mathbf{0}_{V}) = \mathbf{0}_{W} = \mathbf{0}_{U\to W}(u)$

Mais propriedades de operações com transformações lineares

Teorema

Além dos axiomas de espaços vetoriais, valem as seguintes propriedades: se $T, T_1, T_2, \in L(V, W), \ Q \in L(U, V)$ e $S \in L(W, Z)$ e $\alpha \in \mathbb{R}$, então

- S(TQ) = (ST)Q
- $\bullet (T_1 + T_2)Q = (T_1Q) + (T_2Q)$
- $S(T_1 + T_2) = (ST_1) + (ST_2)$
- $\alpha(ST) = (\alpha S)T = S(\alpha T)$.

$$[(T_1 + T_2)Q](u) = (T_1 + T_2)(Q(u))$$

$$= T_1(Q(u)) + T_2(Q(u))$$

$$= (T_1Q)(u) + (T_2Q)(u)$$

$$= (T_1Q + T_2Q)(u)$$

portanto $(T_1 + T_2)Q = (T_1Q) + (T_2Q)$

Mais propriedades de operações com transformações lineares

$$[S(T_1 + T_2)](u) = S((T_1 + T_2)(u))$$

$$= S(T_1(u)) + S(T_2(u))$$

$$= (ST_1)(u) + (ST_2)(u)$$

$$= (ST_1 + ST_2)(u)$$

portanto $S(T_1 + T_2) = (ST_1) + (ST_2)$.

A terceira propriedade é exercício.

Mais propriedades de operações com transformações lineares

Se
$$T: V \rightarrow V$$
 linear, vale que

$$T^n T^m = T^{n+m}, \qquad (T^n)^m = T^{(nm)}.$$

Mas com $S: V \rightarrow V$,

$$(ST)^n$$
 e

podem ser diferentes!

Também,

$$(S+T)^2$$
 e $S^2 + 2ST + T^2$

podem ser diferentes!

Nem todas as operações são tão boas

Tome as transformações de \mathbb{R}^2 a \mathbb{R}^2 :

$$S(x,y) = (0,x), T(x,y) = (y,x)$$

Então

- $(ST)^2(x,y) = (0,y).$
- $(S^2T^2)(x,y) = (0,0).$
- $(S+T)^2(x,y)=(2x,2y)$.
- $(S^2 + 2ST + T^2)(x, y) = (x, 3y)$.

Inversas laterais

Definição

Sejam $f: X \to Y$ e $g: Y \to X$ funções

Dizemos que g é

- inversa à esquerda de f se $g \circ f = id_X$;
- inversa à direita de f se $f \circ g = id_Y$.

Fato

Uma função f é injetiva se, e somente se, admite inversa à esquerda; f é sobrejetiva se, e somente se, admite inversa à direita.

Injetividade e inversa à esquerda

Teorema

Uma transformação linear $T: V \to W$ é injetiva se, e somente se, existe $S: W \to V$ linear tal que $ST = \mathrm{id}_V$ (inversa à esquerda de T).

Se S é inversa à esquerda de T e T(x) = T(y), então

$$x = ST(x) = ST(y) = y$$
.

Portanto T é injetiva.

Injetividade e inversa à esquerda

Suponha T injetiva.

Seja $\mathfrak B$ uma base de V.

Como T é injetiva e \mathcal{B} é LI, então $T(\mathcal{B}) \subseteq W$ é LI.

Considere uma base \mathcal{C} de W com $T(\mathcal{B}) \subseteq \mathcal{C}$.

Defina $S \colon W \to V$ na base ${\mathfrak C}$ como

$$\begin{cases} S(T(b)) = b & \text{para} \quad b \in \mathbb{B} \\ S(c) = 0_V & \text{para} \quad c \notin T(\mathbb{B}). \end{cases}$$

Então para todo $b \in \mathcal{B}$, $ST(b) = b = \mathrm{id}_V(b)$, i.e., ST coincide com id $_V$ numa base, e portanto $ST = \mathrm{id}_V$.

Sobrejetividade e inversa à direita

Teorema

Uma transformação linear $T: V \to W$ é sobrejetiva se, e somente se, existe $Q: W \to V$ linear tal que $TQ = id_W$ (inversa à direita de T).

Se Q é inversa à direita de T, então para todo $w \in W$ temos que

$$w = id_W(w) = TQ(w) = T(Q(w)) \in im(T),$$

e portanto T é sobrejetiva.

Sobrejetividade e inversa à direita

Suponha que T é sobrejetiva.

Seja ${\mathbb C}$ uma base de W.

Para cada $c \in \mathcal{C}$, escolha um vetor $x_c \in V$ tal que $T(x_c) = c$.

Defina $Q: W \to V$ na base \mathcal{C} por $Q(c) = x_c$.

Então para todo $c \in \mathcal{C}$

$$TQ(c) = T(x_c) = c = id_W(c)$$

 $\mathsf{logo}\ \mathit{TQ} = \mathsf{id}_{\mathit{W}}\ \mathsf{numa}\ \mathsf{base},\ \mathsf{e}\ \mathsf{portanto}\ \mathsf{em}\ \mathsf{todo}\ \mathsf{o}\ \mathit{W}.$

Teorema

Sejam $T: U \rightarrow V \ e \ S: V \rightarrow W \ lineares.$

- Para $A \subseteq V$, vale que (ST)(A) = S(T(A));
- **2** Para $B \subseteq W$, vale que $(ST)^{-1}(B) = T^{-1}(S^{-1}(B))$

Se $A \subseteq V$,

$$(ST)(A) = \{(ST)(a) : a \in A\}$$

= $\{S(T(a)) : a \in A\}$
= $\{S(x) : x \in T(A)\}$ = $S(T(A))$.

Se
$$B \subseteq W$$
, denotemos $C = S^{-1}(B)$

$$(ST)^{-1}(B) = \{v \in V : (ST)(v) \in B\}$$

$$= \{v \in V : S(T(v)) \in B\}$$

$$= \{v \in V : T(v) \in S^{-1}(B)\}$$

$$= \{v \in V : T(v) \in C\}$$

$$= T^{-1}(C) = T^{-1}(S^{-1}(B))$$

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Em \mathbb{R}^2 , considere

$$A(x, y) = (y, x)$$
 $B(x, y) = (x, 0)$

Então

$$(AB)^{-1}(\{(0,0)\}) = \{(x,y) : AB(x,y) = (0,0)\}$$

$$= \{(x,y) : A(x,0) = (0,0)\}$$

$$= \{(x,y) : (0,x) = (0,0)\}$$

$$= \{(x,y) : x = 0\}$$

$$= \{(0,y) : y \in \mathbb{R}\}$$

$$A(x,y) = (y,x) \qquad B(x,y) = (x,0)$$

$$(AB)^{-1}(\{(0,0)\}) = \{(0,y) : y \in \mathbb{R}\}$$

$$A^{-1}(B^{-1}(\{(0,0)\})) = \{(x,y) : A(x,y) \in B^{-1}(\{(0,0)\})\}$$

$$= \{(x,y) : (y,x) \in B^{-1}(\{(0,0)\})\}$$

$$= \{(x,y) : B(y,x) = (0,0)\}$$

$$= \{(x,y) : (y,0) = (0,0)\}$$

$$= \{(x,y) : y = 0\}$$

$$= \{(x,0) : x \in \mathbb{R}\}.$$