Exercício

✓ Construa uma Rede de Petri para um semáforo e depois elabore as matrizes de entrada, de saída e de incidência para as transições, além de indicar a marcação inicial, considerando que o semáforo está no vermelho.

amar

verm •

amar (

verd

	verm	amar	verd
$M_0 = $	1	0	0

	verm	amar	verd	
$M_0 = 1$	1	0	0	

Representação matricial

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

Representação matricial

amar verd

$$\begin{vmatrix} t_1 \\ t_2 \\ t_3 \end{vmatrix}$$

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

Representação matricial

amar verd $\begin{array}{c|cccc}
0 & 1 & t_1 \\
1 & 0 & t_2 \\
0 & 0 & t_3
\end{array}$

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

Representação matricial

m amar verd 0 1 | t₁ 1 0 | t₂ verm amar verd | |

Representação matricial

amar	verd		•	verm	amar	verd	
0	1	t_1		0	1	0	t ₁
1	0	t_2	D+ =	1	0	0	t_2
0	0	t_3		0	0	1	t_3

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

Representação matricial

Matriz de trabalho

verm amar verd
$$D = \begin{vmatrix} t_1 \\ t_2 \\ t_3 \end{vmatrix}$$

Introdução à Ciência da Computação

verm amar verd
$$M_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Representação matricial

Matriz de trabalho

$$D = \begin{vmatrix} 0 & 1 & -1 & | t_1 \\ 1 & -1 & 0 & | t_2 \\ -1 & 0 & 1 & | t_3 \end{vmatrix}$$

Desafio

✓ Construir uma Rede de Petri para um semáforo localizado em um cruzamento

S'verm	S"verm
S'amar O	S"amar
S'verd	S"verd

 Verificar se uma transição específica pode ser disparada, uma ou mais vezes, a partir de uma marcação qualquer

Marcação ≥ e[t_i].D-

e[t_i] é o número de vezes que quero executar a transição

Identificar na matriz D- a quantidade de tokens necessários para disparar a transição

Sendo todos os elementos da marcação desejada maiores ou iguais aos elementos correspondentes em e[t_i].D-, a transição pode disparar o número de vezes desejado

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$M_0 \ge e[t_2].$$
 D-

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$D- = \begin{vmatrix} 0 & 0 & 1 & | t_1 \\ 0 & 1 & 0 & | t_2 \\ 1 & 0 & 0 & | t_3 \end{vmatrix}$$

$$M_0 \ge e[t_2].$$
 D-

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$M_0 \ge e[t_2].$$
 D-

$$1 \quad 0 \quad 0 \geq 1. \quad 0 \quad 1 \quad 0$$

$$1 \quad 0 \quad 0 \quad \geq \quad 0 \quad 1 \quad 0$$

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$e[t_2] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 1 & 0 \end{vmatrix}$$

$$M_0 \ge e[t_2].$$
 D-

$$1 \quad 0 \quad 0 \geq 1. \quad 0 \quad 1 \quad 0$$

$$1 \quad 0 \quad 0 \geq 0 \quad 1 \quad 0$$

FALSO, portanto não pode disparar

2) Verificar se uma sequência de transições pode ser executada concorrentemente

Marcação ≥ $(e[t_i].D-) + (e[t_j].D-)$

Calcula e[ti].D- para cada elemento considerado na sequência de transições a serem disparadas e soma os valores dos vetores obtidos

Compara o vetor resultante da soma, de forma que todos os elementos do vetor marcação devem ser maiores ou iguais aos elementos correspondentes ao vetor soma, para que a sequência de transição possa disparar de forma simultânea

verm amar verd
$$M_0 = | 1 0 0 |$$

$$e[t_3] = \begin{bmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_0 \ge (e[t_1]. D-) + (e[t_3]. D-)$$

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$e[t_1] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] \stackrel{t_1}{=} 0 \quad 0 \quad 1$$

verm amar verd
$$D = \begin{vmatrix} 0 & 0 & 1 & | & t_1 \\ 0 & 1 & 0 & | & t_2 \\ 1 & 0 & 0 & | & t_3 \end{vmatrix}$$

$$M_0 \ge (e[t_1]. D-) + (e[t_3]. D-)$$

$$1 \quad 0 \quad 0 \quad \geq (1. \quad 0 \quad 0 \quad 1) + (1. \quad 1 \quad 0 \quad 0)$$

verm amar verd
$$M_0 = | 1 0 0 |$$

$$e[t_1] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] = \begin{bmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_0 \ge (e[t_1]. D-) + (e[t_3]. D-)$$

$$1 \quad 0 \quad 0 \quad \geq (1. \quad 0 \quad 0 \quad 1) + (1. \quad 1 \quad 0 \quad 0)$$

$$1 \quad 0 \quad 0 \geq (0 \quad 0 \quad 1) + (1 \quad 0 \quad 0)$$

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$e[t_1] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] \stackrel{t_1}{=} 0 \quad 0 \quad 1$$

$$M_0 \ge (e[t_1]. D-) + (e[t_3]. D-)$$

$$1 \quad 0 \quad 0 \quad \geq (1. \quad 0 \quad 0 \quad 1) + (1. \quad 1 \quad 0 \quad 0)$$

$$1 \quad 0 \quad 0 \geq (0 \quad 0 \quad 1) + (1 \quad 0 \quad 0)$$

$$1 \quad 0 \quad 0 \geq (1 \quad 0 \quad 1)$$

$$e[t_1] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] \stackrel{t_1}{=} 0 \quad 0 \quad 1$$

$$M_0 \ge (e[t_1]. D-) + (e[t_3]. D-)$$

$$1 \quad 0 \quad 0 \quad \geq (1. \quad 0 \quad 0 \quad 1) + (1. \quad 1 \quad 0 \quad 0)$$

$$1 \quad 0 \quad 0 \quad \geq (0 \quad 0 \quad 1) + (1 \quad 0 \quad 0)$$

1 0 0 ≥ (1 0 1) FALSO, portanto não pode disparar simultaneamente

3) Identificar um novo estado para o sistema

$$M'' = M' + e[t_i].D$$

EXEMPLO

verm

t₁ □

verm amar verd
$$M_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$e[t_3] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{vmatrix}$$

$$D = \begin{vmatrix} verm & amar & verd \\ 0 & 1 & -1 & t_1 \\ 1 & -1 & 0 & t_2 \\ -1 & 0 & 1 & t_3 \end{vmatrix}$$

3) Identificar um novo estado para o sistema

$$M'' = M' + e[t_i].D$$

EXEMPLO

$$M_1 = M_0 + e[t_3]$$
. D

verm amar verd
$$M_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$e[t_3] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{vmatrix}$$

$$D = \begin{vmatrix} verm & amar & verd \\ 0 & 1 & -1 & t_1 \\ 1 & -1 & 0 & t_2 \\ -1 & 0 & 1 & t_3 \end{vmatrix}$$

3) Identificar um novo estado para o sistema

$$M'' = M' + e[t_i].D$$

EXEMPLO

verm amar verd
$$M_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$e[t_3] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{vmatrix}$$

$$D = \begin{vmatrix} verm & amar & verd \\ 0 & 1 & -1 & t_1 \\ 1 & -1 & 0 & t_2 \\ -1 & 0 & 1 & t_3 \end{vmatrix}$$

$$M_1 = M_0 + e[t_3]$$
. D

$$M_1 = 1 \ 0 \ 0 + 1 \ . \ -1 \ 0 \ 1$$

3) Identificar um novo estado para o sistema

$$M'' = M' + e[t_i].D$$

EXEMPLO

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{vmatrix}$$

$$D = \begin{vmatrix} 0 & 1 & -1 & | & t_1 \\ 1 & -1 & 0 & | & t_2 \\ -1 & 0 & 1 & | & t_3 \end{vmatrix}$$

$$M_1 = M_0 + e[t_3]$$
. D

$$M_1 = 1 \ 0 \ 0 + 1 \ . -1 \ 0 \ 1$$

$$M_1 = 1 \ 0 \ 0 + -1 \ 0 \ 1$$

3) Identificar um novo estado para o sistema

$$M'' = M' + e[t_i].D$$

EXEMPLO

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{vmatrix}$$

$$D = \begin{vmatrix} verm & amar & verd \\ 0 & 1 & -1 & t_1 \\ 1 & -1 & 0 & t_2 \\ -1 & 0 & 1 & t_3 \end{vmatrix}$$

$$M_1 = M_0 + e[t_3]$$
. D

$$M_1 = 1 \ 0 \ 0 + 1 \ . -1 \ 0 \ 1$$

$$M_1 = 1 \ 0 \ 0 + -1 \ 0 \ 1$$

$$M_1 = 0 \ 0 \ 1$$

3) Identificar um novo estado para o sistema

$$M'' = M' + e[t_i].D$$

EXEMPLO

verm amar verd
$$M_0 = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$$

$$e[t_3] = \begin{vmatrix} t_1 & t_2 & t_3 \\ 0 & 0 & 1 \end{vmatrix}$$

verm amar verd
$$D = \begin{vmatrix} 0 & 1 & -1 & t_1 \\ 1 & -1 & 0 & t_2 \\ -1 & 0 & 1 & t_3 \end{vmatrix}$$

$$M_1 = M_0 + e[t_3]$$
. D

$$M_1 = 1 \ 0 \ 0 + 1 \ . -1 \ 0 \ 1$$

$$M_1 = 1 \ 0 \ 0 + -1 \ 0 \ 1$$

$$M_1 = 0 \ 0 \ 1$$

verm amar verd
$$M_1 = \begin{vmatrix} 0 & 0 & 1 \end{vmatrix}$$

Considerações finais

- Aplicação de Álgebra Linear na Computação:
- Uso na modelagem e verificação de sistemas, principalmente aqueles que envolvem problemas de concorrência por recursos
- Uso em fluxo de redes para aplicação de técnicas de otimização vindas da Álgebra Linear

Referência

Cap.5 e 6 – Fundamentos Matemáticos para a Ciência da Computação (seção 5.1 e 6.3); Gersting, J.L.