

TECNOLOGÍA Y ARQUITECTURA ROBÓTICA

Tema 3. Arquitecturas para robots

Sesión 8

Arquitecturas deliberativas y reactivas

Arquitecturas de robots

- Organización de la generación de acciones a partir de las percepciones del robot
- Estrategias que permiten el control del robot
- Ejemplo: ir al destino evitando los obstáculos

Comportamientos

- Los comportamientos son las primitivas básicas de los sistemas de control de robots.
- Deben estar bien definidos, ser autocontenidos y ser independientes

Girar 90° a la derecha

Ir hacia adelante hasta encontrar obstáculo

Coger la pelota

Explorar el terreno

Comportamientos

 El objetivo fundamental es crear comportamientos que permitan cumplir la misión deseada.

Escala temporal en una arquitectura

- □ ¿A qué velocidad reacciona una arquitectura de control?

 ¿Tiene en cuenta acciones futuras?
- Arquitecturas deliberativas
 - □ Tienen en cuenta el futuro (plan) antes de ejecutar las acciones ⇒ escala temporal a largo plazo
- Arquitecturas reactivas
 - No consideran acciones futuras, simplemente reaccionan ⇒ escala temporal a corto plazo
- Arquitecturas híbridas
 - Tienen en cuenta el futuro (capa deliberativa) pero también son capaces de reaccionar con rapidez (capa reactiva)

Arquitecturas deliberativas

- Basada en el paradigma de sentir-planificar-actuar (SPA):
 - Se tiene un modelo completo (mapa) del entorno
 - Se construye un plan de acción basado en el mapa para realizar la tarea
 - Se ejecuta el plan

El robot utiliza sensores para crear un mapa local del mundo e identificar áreas sin explorar

El robot se mueve al punto medio del del área sin explorar

El robot realiza un segundo scan de los sensores y coteja los nuevos datos con el mapa global.

El robot sigue explorando

El robot debe reconocer cuándo está frente a áreas que ya ha explorado.

Arquitecturas deliberativas: Conclusiones

Ventajas:

 El tener un modelo del entorno permite optimizar las acciones para obtener el "mejor" plan

Limitaciones:

- Necesidad de un modelo preciso del entorno
- Altos requerimientos de cómputo y memoria
- Dificultad de operar en un mundo dinámico o desconocido
- Reacción "lenta" a situaciones imprevistas

Arquitecturas Reactivas

- En el enfoque reactivo hay una conexión directa de percepción a acción sin necesidad de un modelo del mundo
- Normalmente se considera una serie de comportamientos que realizan diferentes tareas en forma "paralela"
- Los sistemas puramente reactivos no usan ninguna representación interna del entorno y no tienen en cuenta acciones futuras
- Emplean muy poca (o ninguna) información de estados

Reglas

- Las arquitecturas reactivas consisten en una colección de reglas reactivas, que a partir de situaciones específicas generan acciones específicas.
- Similar a los reflejos
 - Al no intervenir el "cerebro", los reflejos actúan muy rápido
- Las reglas se ejecutan concurrentemente y en paralelo
- Las posibles situaciones se extraen directamente de la información de los sensores
- Las acciones son las respuestas del sistema (comportamientos)

Mapas incompletos

- En general, no se usan mapas del entorno completos en los sistemas reactivos
- Las situaciones más importantes hacen que se activen las reacciones más apropiadas
- Se usan respuestas por defecto para cubrir todos los casos posibles
- Ejemplo: controlador reactivo para navegación segura
 - □ Si el sensor de choque izquierdo activo → girar a la derecha
 - □ Si el sensor de choque derecho activo → girar a la izquierda
 - □ Si ambos activos → retroceder y girar a la izquierda
 - En otro caso, seguir la trayectoria

Ejemplo – Navegación segura

- Un robot con 1 2 sensores sónar, alrededor del robot
- Dividimos los rangos sónares en dos zonas
 - Zona de peligro: cosas demasiado cercanas
 - Zona segura: distancia razonable a los objetos

Si mínimo(sonares 1, 2, 3, 12) < zona de peligro \mathbf{Y} en movimiento \rightarrow stop

Si mínimo(sonares 1, 2, 3, 12) < zona de peligro **Y** parado \rightarrow retroceder

Si no

moverse hacia adelante

Ejemplo – Navegación segura

En entornos dinámicos, añadimos otra capa

```
Si sonar 11 o 12 < zona de peligro Y</li>
sonar 1 o 2 < zona de peligro</li>
entonces girar a la derecha
Si sonar 3 o 4 < zona de peligro</li>
entonces girar a la izquierda
```


- El robot se aleja de los obstáculos antes de tenerlos demasiado cerca.
- Combinando ambos controladores podemos obtener un comportamiento para que el robot se mueva sin colisión
- Debemos tener en cuenta que hay condiciones mutuamente exclusivas

Selección de acciones

- En la mayoría de los casos las normas que rigen los comportamientos son activadas por más de una regla al mismo tiempo
 - Se envían dos o más comandos a los actuadores
- Decidir qué acción realizar implica una selección
- Se necesita alguna estrategia para escoger o combinar comportamientos que entren en conflicto
- Arbitraje: decidir de entre múltiples acciones o comportamientos, cuál realizar
- Fusión: combinar múltiples acciones para generar una sola orden

Diseño de sistemas reactivos

- Descomponer el sistema de control en un conjunto de capas de comportamientos reactivos
- Cada comportamiento transforma la información de los sensores en órdenes para los motores
- Los comportamientos de bajo nivel (como evitar obstáculos) se pueden ejecutar en tiempo real al no necesitar mucha capacidad de cómputo
- Los comportamientos de alto nivel se invocan sólo cuando es necesario

Diseño de sistemas reactivos

 Se trata de intentar unir las múltiples reglas para producir comportamientos efectivos y que permitan cumplir los objetivos propuestos

- Los dos modelos más conocidos de arquitecturas reactivas son
 - Arquitectura "subsumida" (Subsumption architecture)
 - Campos potenciales

Arquitecturas "subsumidas"

- Subsumir significa "tener prioridad sobre".
- Comportamientos organizados jerárquicamente por niveles que se ejecutan concurrente y asíncronamente
 - Cada nivel tiene asignada una prioridad
 - Las respuestas de los niveles superiores subsumen
 (predominan sobre) las respuestas de los niveles inferiores
 - Los niveles altos deberían estar a cargo de comportamientos orientados a garantizar la supervivencia
 - Los niveles inferiores se encargan de las tareas más básicas
 - Los sistemas se construyen de abajo hacia arriba

Beneficios de la arquitectura subsumida

- Los sistemas se diseñan de manera incremental
 - Se evitan problemas por la complejidad de la tarea
 - Ayuda al diseño y al proceso de depuración
- Robustez
 - □ Si un nivel superior falla, los inferiores siguen funcionando
- Modularidad
 - Cada competencia se incluye en niveles distintos, por lo que el sistema es relativamente sencillo de diseñar y mantener
 - La reglas y niveles se pueden reutilizar en diferentes robots y para diferentes tareas.

Problemas

- No hay representación interna del mundo
 - Razonamientos complejos?
- No hay planificación estratégica
- □ ¿Cómo introducir aprendizaje?
- □ Número de niveles máximo posible

