LaPIS Diagnostic Test Workbook - Mathematics

Name : Anjanapriya D

Class: 7

Section : B

School : AKV Public School

Login ID : AKV153

Anjanapriya D's Performance Report

Score: 19/40 Percentage: 47.5%

Anjanapriya D's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved			
Types of angles	Identification of types of angles		

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $_{---}^{\circ}$.

The straight line measures ____°.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$Question: \ 3$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + =
It is called as angle.

Data handling

	Topics to be Improved
Arithmetic mean, mode and median	Mean, Median and Mode
Chance of probability	Sample space in probability

Hi, here in this video you will learn Mean, Median, Mode

Question: 4

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 5

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ and it is the _____ of a data.

$\underline{Question: 6}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}} , Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}}.$

4	nswer	
71	.iiswei .	•

 $Mean = \frac{\text{ of all observation}}{\text{number of observation}}.$

Here s sum of all observation = $___$, number of observation = $___$

Therefore, mean = _____

Arrange the data in ascending order:

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

.....

Impossible events

Answer:

Probability is the measure of _____ (chance /number) of an events happenings.

Sample space consists of _____ (possible/ impossible) outcomes.

Sure events always _____ (occurs/don't occurs).

Impossible events _____ (occurs/ don't occurs).

Therefore, _____ contains list of possible outcomes.

Question: 8

Write the possible outcomes while spinning the given wheel.

Answer:

Outcomes are (possible/im	ipossible) results of a	an experiment.	
The possible outcomes while spinning whee	el are ₹0, ₹10,		
Question: 9			
A bag contains three balss of colour blue, $\mathfrak g$ are taken out.	green and red. Write	the possible outcomes if two	balls
Answer:			
A bag contains,	and	balls.	
If one of the ball is blue in colour, then oth	ner ball can be	or	_
If one of the ball is green in colour, then of	ther ball can be	or	·
If one of the ball is red in colour, then other	er ball can be	or	
Therefore, if two balls are taken out then p	possible outcomes are	e blue + ,	
	1		

Geometry

Topics to be Improved				
Related angles	Complementary angles			
Faces vertex and edges	Idenfication of faces, edges and vertices			
Transversal angle made by transversal	Basics of Transversal angle			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			
Right angle triangle and pythagoras property	Basics of Pythagoras property			

Hi.	here	in	this	video	vou	will	learn	Related	Angles
,	11010	111	OIII	VIGCO	\mathcal{I}	* * * * * * * * * * * * * * * * * * * *	100111	iciaca	7 111 6 100

Question: 10

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example : 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180° , they are called as _____ angle. Example : 90° and 90° , _____, and ____.

Question: 11

Shade the complementary angles.

......

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

 $85^{\circ} + 95^{\circ} =$ and this is _______ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ and this is ______ angles. $6^{\circ} + 84^{\circ} =$ and this is ______ angles. $73^{\circ} + 107^{\circ} =$ and this is ______ angles. $36^{\circ} + 64^{\circ} =$ and this is ______ angles. $90^{\circ} + 90^{\circ} =$ and this is ______ angles.

......

Question: 12

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $15^{\circ} = \underline{\hspace{1cm}}$, Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Basics of 3D model

Question: 13

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______ is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 14	
Mark and find the number of vertices, edges and faces in a cube.	
Answer:	
Mark the vertex, edges and faces in a cube.	
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.	
Question: 15	
How many vertices, edges and faces does dices have?	
Answer:	
The shape of dice is	
Dices have vertices, edges and faces.	

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are ____

......

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	$\angle a$ and $\angle e$, $\angle b$ and $\angle f$,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to $Side AC = \underline{\hspace{1cm}}$ Side AB + BC = _____ + ____ = ____ Therefore, the greatest distance to reach C from A in the given diagram is ______. Question: 20 ____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side. Answer: There are ______ sides in a triangle. The sum of the two sides of a triangle is _____ than the other side of the triangle. The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ, Χ 70mXY + YZ XZ (<,>,=) XZ (<,>,=) $30 \mathrm{m}$ 60m Question: 21 The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall? Answer: 1. The sum of the two sides of a triangle is _____ than the third side of the triangle. Therefore, the third side should be ______(less/greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____ 2. The difference of the two sides of a triangle is _____ than the third side of the triangle. Therefore, the third side should be _____(less/greater) than sum of other two sides. Here, difference of the two sides = _____ - ___ = ____ Therefore, the length of the third side is greater than _____ Therefore, length of the third side is greater than ______ but less than _____

Hi, here in this video you will learn Pythagoras property

Question: 22

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is ______ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____

Question: 23

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the $\underline{\hspace{1cm}}$ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 24

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the $\underline{\hspace{1cm}}$ = sum of the squares on
Is Pythagoras theorem applicable in rectangle? (yes/ no). Given: breadth =, length of diagonal =
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, diagonal of the rectangle is

Number system

Topics to be Improved		
Integers	Basics of integers	
Exponents	Solving exponents	
Positive and negative rational numbers	Identification of positive rational numbers	
Fractions	Multiplication of fractions, Division of fraction	
Properties of integers	Associative property	

Hi, here in this video you will learn Basics of integers

Question: 25

Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 26

Colour the frame of the box which contains the number $1,\,4$ and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

Answer:
Whole number consists of $0,1,2,3,4,$ Negative number consists of
Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 27
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Exponents and power
Question: 28
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $
10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$
Question: 29 Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

Question: 30

- (i) Tenth power of 100 is ____ ($(10)^{100}$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}$ $((k)^5 \text{ or } (5)^k)$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ___

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 31

Segregate positive and negative rational number.

......

Answer:

- If both the numerator and the denominator of a rational number are _____ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

..... Question: 32

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \boxed{\ }$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)
Question: 33 The product of a positive rational number and a negative rational number is rational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Multiplication on fractions
Question: 34
Fill the boxes
$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$
Answer:
The whole number can be expressed in fraction with denominator equal to (zero/one). Therefore, 2 can be written as in fraction. 4 can be written as in fraction.
$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \frac{2}{\square} = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$
Question: 35
There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.
Answer:
Total number of students = Fraction of students who are girls =
Number of girls $=$ \times $=$ $=$ $=$
Question: 36

Solve : $2\frac{7}{4} \times \frac{2}{3}$

 $\underline{Answer:}$

$2\frac{7}{4}$ is a (proper / mixed) fraction. Here, 2 is, 7 is and 4 is
To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$
$2\frac{7}{4} \times \frac{2}{3} = \boxed{} \times \frac{2}{3} = \boxed{}$
Hi, here in this video you will learn Properties of integers
Question: 37
Match the following based on the properties of integers
$\underline{Answer:}$
(i) Closure property: The sum of integers is always (integer / not a integer). Therefore, + =
From the given option satisfies the closure property.
(ii) Associative property : Rearranging the parentheses (brackets) (does not/ does) change the sum. Therefore, $(a + b) + c =$
From the given option satisfies the Associative property.
(iii) Commutative property : Changing the order of the addends (does not/ does) change the sum. Therefore, $a + b = \underline{\qquad} + \underline{\qquad}$
From the given option satisfies the Commutative property.
(iv) Identity property : The sum of and any number always returns same number. Therefore, $a + \underline{\hspace{1cm}} = a$
From the given option satisfies the Identity property.
Question: 38 Mark the operations in which commutative property holds true for any two integers.

Answer:

In commutative property, changing the ______ (order/ brackets) of the operands _____ (does not/ does) change the result.

For any two integers, commutative property holds true for _____.

The commutative property for addition is _____.

The commutative property for multiplication is _____.

Question: 39

Are additive identity and multiplicative identity the same? (Yes or No)

Answer:

Identity property holds only for _______, _____ and additive identity is ______.

The Identity property for addition is ______ and additive identity is ______.

The Identity property for multiplication is ______ and multiplicative identity is ______.

Therefore, additive identity is ______ (equal / not equal) to multiplicative identity.

Hi, here in this video you will learn **Division on fractions**

Question: 40

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

$$\frac{32}{7}$$

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + -----}{7} = \frac{\square}{\square}$$

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \underline{1}_{3} \times \boxed{\square} = \boxed{\square}$$

Question: 42

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{\underline{}} = \underline{\underline{}}$$

Then the answer is _____

Comparing Quantities

Topics to be Improved		
Equivalent ratios Basic of proportion		
Conversion of fraction into percentage	Conversion of fraction into percentage	

Hi, here in this video you will learn Basics of proportion	
<u>Question: 43</u>	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent ratio Standard form to express proportion is	s.
Question: 44	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

$\underline{Answer:}$

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 45

If a: b:: c: d is proportion, shade the correct expression

a =	$\frac{bc}{d}$	

$$c = \frac{ad}{b}$$

Answer:

Two equivalent ratio which are proportion, it can be written as a: b:: c: d or $\underline{\hspace{1cm}}$ (in fraction). First and fourth term are called _____ and second and third term are called _____. In proportion, product of extreme terms is _____ (equal to/ not equal to) product of middle Therefore, $a \times d = \underline{\hspace{1cm}}$ then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Converting fraction into percentage

Question: 46

Complete the box in the given equation.

$$5\% = \frac{5}{\Box}$$

Answer:

Percentage are the fraction with the denominator ______.

Therefore, 5% can be expressed as _____

.....

Question: 47

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of _____ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

Question: 48

Find the percentage of shaded part of square.

|--|

The square shape is divided into	parts.
Number of shaded part of square is	
Shaded part of square in fraction is	

To Convert	into percentage,	x 100

Algebra

Topics to be Improved		
Basics of simple equation	Solving of simple equation, Formating of simple equation	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
Terms of an expression	Identification of terms in an expression	

Hi, here in this video you will learn Solving an equation

Question: 49	

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____. Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.

Question: 50

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

7 + 3 = -4

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ____+3= ____

 $7 \times$ ____+3 = ____

 $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$

 $7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$

 $7 \times __+3 = __$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 51

Arrange the terms in the descending order when the value of x is 2.

Answer:

The given expression are ______

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\qquad} = \underline{\qquad}$$

$$x + 3 = \underline{\qquad} = \underline{\qquad}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

5x >	× 1	=5	< ×	1 =
0.0 /	· T	_ 0 /	\ ^	1 —

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn Subtraction on expression

O_{2}	estion:	59
ωu	estion.	02

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are _____ and ____.

The two terms will get added only if they are _____(Like/ Unlike) terms.

The sum of two expressions = $_$ + $_$.

The answer is _____

Question: 53

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

.....

.....

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school A = _____,

Number of boys in school B = _____.

Total number of boys in school A and school B is $___$ + $___$ = $___$.

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 54

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

.....

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
\hline
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Hi, here in this video you will learn Addition on expression

Question: 55

Shade the like terms.

Answer:

Given terms are ______.

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______

Question: 56

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7 + _ -2})_{r^2} = _$$

......

Question: 57					
Sam have 3a chocolat	tes and 9y icecream	a. Ram have 7a	a chocolates and	l 5y icecream	
(i) Total chocolates	s Ram and Sam ha	ve :			
(ii) How many icecr	reams Sam have mo	ore than Ram	:	_ ·	
Answer:					
		Chocolates	Icecream		
	Sam				
	Ram				
Ram (ii) How many icecr	s Ram and Sam ha 's chocolate + Sam reams Sam have mo icecream	a's chocolates = ore than Ram	:		
Hi, here in this v	rideo you will lea				
Separate the variables					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$54c^4$ 12 x	$-4mn$ z^2 ab	4	
<i>Answer:</i> In algebraic expressio	on, variables are rep	presented by $_$	a	and Constant	is a
	Terms	Constants	Variables		

0 11 50		
Question: 59 Mark the expression the $3x + 5$ $12a$ $4x$	at contains two terms. $y 12a + b + 1 7m + 0$	
Answer:		
The terms in the express that the express the terms in the express that the	ssion $3x + 5$ is/are ssion $12a$ is/are ssion $4xy$ is/are ssion $12a + b + 1$ is/are ssion $7m + 0$ is/are	
Question: 60		
Shade the outline of cir	cle that contains the term of the given expression.	
	$6m^2-7mn+nl$	
m^2	$7 \mathrm{mn}$ $6 \mathrm{m}^2$ $-7 \mathrm{mn}$ mn nl	-mn
Answer:		
In algebraic expression, of addition.	(variables/ terms) are connected together v, are the terms of the given ϵ	
	deo you will learn Solving an equation using	
Question: 61		
	Box A Box B	
Box B contains	times the number of chocolates in Box A	
Answer:		
Box A contains	chocolates.	

Question: 62

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Write the equation for the following statement. Subtracting four times of m from 4 is n
$\underline{Answer:}$
Four times of $m = \underline{\hspace{1cm}}$
Subtracting four times of m from $4 = \underline{\hspace{1cm}}$
The equation is
Question: 63
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 Add 9 to the product of a and 2