3. Implementing and simulating a system of ODEs in Matlab

Hande Bozkurt, Daria Semenova & Krist V. Gernaey

February 18th 2015

Course 28864: Introduction to Matlab programming

During the previous two exercises you have learned the difference between a Matlab script and a Matlab function. The purpose of this exercise is to get familiar with the functions of Matlab that allow you to simulate a process model consisting of a system of ordinary differential equations (ODEs) using m-files.

At the end of this exercise you should be able to implement and simulate a process model in Matlab using scripts and functions.

Reactions in a CSTR

Assume that you have a continuous stirred-tank reactor (CSTR) with constant volume. In the reactor a first order reaction converts a raw material A into an intermediate I. An undesired side reaction also takes place that converts A into B. The other component added to the system, D, will react with I to produce P, the desired product. Simultaneously, B will react with D to produce the undesired by-product S.

The four reactions taking place in the reactor together with their rate expressions are given below.

- $A \rightarrow I$ $A \rightarrow B$ $I + D \rightarrow P$ $R + D \rightarrow S$ $r_2 = k_2C_A$ $r_3 = k_3C_1C_D$ $r_4 = k_4C_DC_B^2$ $A \rightarrow I$ (1) $r_1 = k_1 C_A$ (2)
- (3)
- (4)

Where:

where;

$$k_1 = 1.25*10^{-2}$$
 (min⁻¹)
 $k_2 = 7.5*10^{-3}$ (min⁻¹)
 $k_3 = 0.265$ (m³ mol⁻¹ min⁻¹)
 $k_4 = 0.15$ (m⁶ mol⁻² min⁻¹)

The following assumptions are made: (1) the CSTR is perfectly mixed, (2) the mass densities of the feed and product streams are equal and constant, (3) the liquid volume, V is constant. The mass balance equation for a component *j* can be written as:

$$V.\frac{dC_{j}}{dt} = q\left(C_{j,in} - C_{j}\right) + Vr_{j}$$

Where:

 C_{i} the concentration of component j in the reactor

the concentration of component j in the inflow $C_{i,in}$

the flowrate of the inflow and outflow q

- r the net reaction rate of component j
- V the volume of the reactor

The parameters of the system are given in Table 1. The inflow only contains the components A and D.

Initial conditions were set to 1.252 mol m^{-3} for A, 3.131 mol m^{-3} for B and 6.52 mol m^{-3} for I. The initial concentrations of all other components are set to 0.

Table 1. Parameters for the model

Parameter	Value	Unit
Volume	800	L
Q	0.032	L sec ⁻¹
$\mathrm{C}_{\mathrm{A,in}}$	0.012	mol L ⁻¹
$C_{D.in}$	0.020	mol L ⁻¹

When calling the solver make sure to specify the relative tolerance in the options by writing the following statement:

options=odeset('RelTol',1e-4);

You can use the ode15s solver.

Simulate the system for 2000 minutes. Generate plots for each of the 6 state variables.

Your solution should look as follows – if you get different plots then your ODEs are not implemented correctly.

Handing in:

The script and the function (two Matlab m-files) of the model of the CSTR system for this assignment should be sent as e-mail attachments to kvg@kt.dtu.dk before Wednesday the 25th of February 2015 at 4 pm!

In the email, you clearly list the names and student numbers of the members of your group (maximum 2 persons per group).

To allow automatic sorting of the emails containing your solutions, the subject line of the email should be: 28864-F2015-E3.

For help or questions: <u>dsem@kt.dtu.dk</u> or <u>kvg@kt.dtu.dk</u>