

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 0.73$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 12.72 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf	_	-1 100	applied away from the durade.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

SCHLETTER

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>135.52</u>	<u>5258.31</u>	k
Compressive Load =	3479.92	4392.69	k
Lateral Load =	<u>17.34</u>	3308.84	k
Moment (Weak Axis) =	0.03	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 133843.2 \text{ in-lbs}$ Resisting Force Required = 2027.93 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3379.88 lbs to resist overturning. Minimum Width = <u>27 in</u> in Weight Provided = 5383.13 lbs Sliding 795.02 lbs Force = Friction = Use a 132in long x 27in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1987.54 lbs Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 795.02 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{27 \text{ in}} = \frac{28 \text{ in}}{29 \text{ in}} = \frac{30 \text{ in}}{5981 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) = \frac{5383 \text{ lbs}}{5583 \text{ lbs}} = \frac{5782 \text{ lbs}}{5782 \text{ lbs}} = \frac{5981 \text{ lbs}}{5981 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D +	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	- 1.0W	
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1317 lbs	1317 lbs	1317 lbs	1317 lbs	1132 lbs	1132 lbs	1132 lbs	1132 lbs	1697 lbs	1697 lbs	1697 lbs	1697 lbs	-58 lbs	-58 lbs	-58 lbs	-58 lbs
F _B	1256 lbs	1256 lbs	1256 lbs	1256 lbs	1868 lbs	1868 lbs	1868 lbs	1868 lbs	2211 lbs	2211 lbs	2211 lbs	2211 lbs	-2522 lbs	-2522 lbs	-2522 lbs	-2522 lbs
F_V	202 lbs	202 lbs	202 lbs	202 lbs	1456 lbs	1456 lbs	1456 lbs	1456 lbs	1223 lbs	1223 lbs	1223 lbs	1223 lbs	-1590 lbs	-1590 lbs	-1590 lbs	-1590 lbs
P _{total}	7956 lbs	8155 lbs	8355 lbs	8554 lbs	8383 lbs	8583 lbs	8782 lbs	8981 lbs	9291 lbs	9491 lbs	9690 lbs	9889 lbs	649 lbs	769 lbs	889 lbs	1008 lbs
M	3687 lbs-ft	3687 lbs-ft	3687 lbs-ft	3687 lbs-ft	3216 lbs-ft	3216 lbs-ft	3216 lbs-ft	3216 lbs-ft	4788 lbs-ft	4788 lbs-ft	4788 lbs-ft	4788 lbs-ft	3344 lbs-ft	3344 lbs-ft	3344 lbs-ft	3344 lbs-ft
е	0.46 ft	0.45 ft	0.44 ft	0.43 ft	0.38 ft	0.37 ft	0.37 ft	0.36 ft	0.52 ft	0.50 ft	0.49 ft	0.48 ft	5.15 ft	4.35 ft	3.76 ft	3.32 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	240.2 psf	239.4 psf	238.6 psf	237.9 psf	267.9 psf	266.1 psf	264.4 psf	262.8 psf	269.9 psf	268.0 psf	266.3 psf	264.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	402.7 psf	396.1 psf	389.9 psf	384.2 psf	409.6 psf	402.7 psf	396.3 psf	390.4 psf	480.9 psf	471.5 psf	462.7 psf	454.6 psf	549.9 psf	190.9 psf	141.2 psf	123.2 psf

Maximum Bearing Pressure = 550 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 849.8 \text{ ft-lbs}$

Resisting Force Required = 755.36 lbs

S.F. = 1.67

Weight Required = 1258.93 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		27 in			27 in			27 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	264 lbs	673 lbs	264 lbs	775 lbs	2163 lbs	775 lbs	77 lbs	197 lbs	77 lbs		
F _V	2 lbs	0 lbs	2 lbs	7 lbs	0 lbs	7 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	6929 lbs	5383 lbs	6929 lbs	7119 lbs	5383 lbs	7119 lbs	2026 lbs	5383 lbs	2026 lbs		
М	7 lbs-ft	0 lbs-ft	7 lbs-ft	23 lbs-ft	0 lbs-ft	23 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft		
f _{min}	279.2 psf	217.5 psf	279.2 psf	285.2 psf	217.5 psf	285.2 psf	81.7 psf	217.5 psf	81.7 psf		
f _{max}	280.7 psf	217.5 psf	280.7 psf	290.1 psf	217.5 psf	290.1 psf	82.1 psf	217.5 psf	82.1 psf		

Maximum Bearing Pressure = 290 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.677 k 12.808 k 7.421 k <u>36%</u>	Rear Strut Maximum Axial Load = 3.501 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 47%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.141 k 12.808 k 7.421 k <u>29%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.074 \text{ in} \\ \end{array}$

<u>N/A</u>

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 129 \text{ in}$$

$$J = 0.432$$

$$356.874$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

Not Used

$$\phi F_L = 27.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 129$$

$$J = 0.432$$

$$226.951$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.4$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} F_{Cy}}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

 $m = 0.65$

$$m = 0.65$$
 $C_0 = 40.985$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_1 = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $lx = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$
 $Sx = 1.335 \text{ in}^3$

2.788 k-ft

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

 $M_{max}St =$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

Weak Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Bc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

29.2

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$\phi F_L =$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$D/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.0Dp$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.1 & 1.$$

$$S2 = C_t$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 43.2 \text{ ksi}$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_{L}St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^{4}$$

$$2.366 \text{ in}^{4}$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^{3}$$

$$M_{max}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ y = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L}_b = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \phi \mathsf{F}_\mathsf{L} = & \phi b [\mathsf{Bc-1.6Dc} *\sqrt{((\mathsf{LbSc})/(\mathsf{Cb} *\sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_\mathsf{L} = & 31.4 \text{ ksi} \\ \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 24.8 \\ J &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 28.0279 \text{ ksi}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$))] $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\phi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $Ix = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{\text{max}}St = 1.460 \text{ k-ft}$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.0 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

$$\theta_{y}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L St =$

3.4.7 $\lambda = 1.63853$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.80939$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 10.5516 \text{ ksi}$

3.4.9

b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Y	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-40.786	-40.786	0	0
2	M14	٧	-40.786	-40.786	0	0
3	M15	V	-65.613	-65.613	0	0
4	M16	V	-65.613	-65.613	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	92.212	92.212	0	0
2	M14	V	70.932	70.932	0	0
3	M15	V	39.013	39.013	0	0
4	M16	V	39 013	39 013	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	633.549	2	1026.387	2	.756	1	.003	1	Ó	1	Ó	1
2		min	-801.391	3	-1231.747	3	.041	15	0	15	0	1	0	1
3	N7	max	.041	9	1049.967	1	651	15	001	15	0	1	0	1
4		min	134	2	925	3	-13.338	1	026	1	0	1	0	1
5	N15	max	.034	9	2676.859	1	0	11	0	11	0	1	0	1
6		min	-1.546	2	-104.248	3	0	14	0	14	0	1	0	1
7	N16	max	2394.843	2	3378.99	2	0	3	0	3	0	1	0	1
8		min	-2545.259	3	-4044.857	3	0	2	0	2	0	1	0	1
9	N23	max	.041	9	1049.967	1	13.338	1	.026	1	0	1	0	1
10		min	134	2	925	3	.651	15	.001	15	0	1	0	1
11	N24	max	633.549	2	1026.387	2	041	15	0	15	0	1	0	1
12		min	-801.391	3	-1231.747	3	756	1	003	1	0	1	0	1
13	Totals:	max	3660.126	2	9815.673	1	0	11					·	
14		min	-4148.124	3	-6614.45	3	0	14						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	130.033	1	391.827	1	-9.265	15	0	3	.311	1_	0	1
2			min	6.18	15	-576.175	3	-195.652	1	012	2	.015	15	0	3
3		2	max	130.033	1	274.671	1	-7.131	15	0	3	.104	1	.586	3
4			min	6.18	15	-405.491	3	-150.513	1	012	2	.005	15	398	1
5		3	max	130.033	1	157.516	1	-4.997	15	0	3	0	12	.969	3
6			min	6.18	15	-234.807	3	-105.375	1	012	2	049	1	656	1
7		4	max	130.033	1	40.36	1	-2.863	15	0	3	006	12	1.147	3
8			min	6.18	15	-64.123	3	-60.236	1	012	2	147	1	774	1
9		5	max	130.033	1	106.561	3	729	15	0	3	009	12	1.122	3
10			min	6.18	15	-76.796	1	-15.098	1	012	2	192	1	753	1
11		6	max	130.033	1	277.246	3	30.041	1	0	3	009	15	.893	3
12			min	6.18	15	-193.952	1	.876	12	012	2	183	1	591	1
13		7	max	130.033	1	447.93	3	75.18	1	0	3	006	15	.46	3
14			min	6.18	15	-311.107	1	3.01	12	012	2	121	1	289	1
15		8	max	130.033	1	618.614	3	120.318	1	0	3	0	10	.152	1
16			min	6.18	15	-428.263	1	5.144	12	012	2	004	1	177	3
17		9	max	130.033	1	789.298	3	165.457	1	0	3	.167	1	.734	1
18			min	6.18	15	-545.419	1	7.277	12	012	2	.005	12	-1.018	3
19		10	max	130.033	1	959.983	3	210.596	1	0	3	.391	1	1.455	1
20			min	6.18	15	-662.574	1	9.411	12	012	2	.015	12	-2.063	3
21		11	max	130.033	1	545.419	1	-7.277	12	.012	2	.167	1	.734	1
22			min	6.18	15	-789.298	3	-165.457	1	0	3	.005	12	-1.018	3
23		12	max	130.033	1	428.263	1	-5.144	12	.012	2	0	10	.152	1
24			min	6.18	15	-618.614	3	-120.318	1	0	3	004	1	177	3
25		13	max	130.033	1	311.107	1	-3.01	12	.012	2	006	15	.46	3
26			min	6.18	15	-447.93	3	-75.18	1	0	3	121	1	289	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
27		14	max	130.033	1	193.952	1	876	12	.012	2	009	15	.893	3
28			min	6.18	15	-277.246	3	-30.041	1	0	3	183	1	591	1
29		15	max	130.033	1	76.796	1	15.098	1	.012	2	009	12	1.122	3
30			min	6.18	15	-106.561	3	.729	15	0	3	192	1	753	1
31		16	max	130.033	1	64.123	3	60.236	1	.012	2	006	12	1.147	3
32			min	6.18	15	-40.36	1	2.863	15	0	3	147	1	774	1
33		17	max	130.033	1	234.807	3	105.375	1	.012	2	0	12	.969	3
34			min	6.18	15	-157.516	1	4.997	15	0	3	049	1	656	1
35		18	max	130.033	1	405.491	3	150.513	1	.012	2	.104	1	.586	3
36			min	6.18	15	-274.671	1	7.131	15	0	3	.005	15	398	1
37		19	max	130.033	1	576.175	3	195.652	1	.012	2	.311	1	0	1
38		-10	min	6.18	15	-391.827	1	9.265	15	0	3	.015	15	0	3
39	M14	1	max	57.718	1	411.188	1	-9.535	15	.007	3	.352	1	0	1
40	IVIT		min	2.748	15	-449.762	3	-201.367	1	009	2	.017	15	0	3
41		2	max	57.718	1	294.032	1	-7.401	15	.007	3	.138	1	.46	3
42			min	2.748	15	-319.747	3	-156.228	1	009	2	.007	15	421	1
43		3	max	57.718	1	176.876	1	-5.267	15	.007	3	.007	3	.764	3
44			min	2.748	15	-189.731	3	-111.089	1	009	2	021	1	702	1
45		4		57.718	1	59.721	<u> </u>	-3.133	15	.007	3	005	12	.913	3
		4	max	2.748	15	-59.715	3	-65.951	1		2		1		1
46 47		5	min	57.718	1 1	70.301	3	999	15	009 .007	3	127 008	12	844 .906	3
48		3	max min	2.748	15	-57.435	1	-20.812	1	009	2	179	1	845	1
		6		57.718				24.327			3				_
49		6	max	2.748	1 15	200.316 -174.591	<u>3</u>	.617	1 12	.007 009	2	008 177	15	.745 707	3
50		7	min			330.332				.009					
51 52			max	57.718 2.748	1 15	-291.746	<u>3</u>	69.465 2.75	12		2	006 121	15	.428	3
		0	min			460.348	3			009	3		_	428 0	-
53 54		8	max	57.718	1		1	114.604	1 12	.007	2	011	10	044	3
		9	min	2.748 57.718	<u>15</u> 1	-408.902 590.364		4.884 159.743		009	3	.153	1	044 .549	1
55		9	max		15	-526.058	<u>3</u>	7.018	12	.007	2		12	672	3
56 57		10	min	2.748 57.718	1 1	720.379	3	204.881	1	009 .007	3	.005 .371	1	1.247	1
58		10	max	2.748	15	-643.213	1	9.151	12	009	2	.015	12	-1.455	3
59		11	min	57.718	1	526.058	1	-7.018	12	.009	2	.153	1	.549	1
60		11	max min	2.748	15	-590.364	3	-159.743	1	007	3	.005	12	672	3
61		12		57.718	1	408.902	1	-4.884	12	.009	2	0	10	<u>072</u> 0	9
62		12	max min	2.748	15	-460.348	3	-114.604	1	007	3	011	1	044	3
63		13	max	57.718	1	291.746	1	-2.75	12	.009	2	006	15	.428	3
64		13	min	2.748	15	-330.332	3	-69.465	1	007	3	121	1	428	1
65		14	max	57.718	1	174.591	<u> </u>	617	12	.009	2	008	15	.745	3
66		14	min	2.748	15	-200.316	3	-24.327	1	007	3	177	1	707	1
67		15	max		1	57.435	1	20.812	1	.009	2	008	12	.906	3
68		13	min	2.748	15	-70.301	3	.999	15	007	3	179	1	845	1
69		16	max	57.718	1	59.715	3	65.951	1	.009	2	005	12	.913	3
70		10	min	2.748	15	-59.721	1	3.133	15	007	3	127	1	844	1
71		17	max	57.718	1	189.731	3	111.089	1	.007	2	.001	3	044 .764	3
72		17	min	2.748	15	-176.876	1	5.267	15	007	3	021	1	702	1
73		18	max	57.718	1	319.747	3	156.228	1	.009	2	.138	1	.46	3
74		10	min	2.748	15	-294.032	1	7.401	15	007	3	.007	15	421	1
75		19	max	57.718	1	449.762	3	201.367	1	.009	2	.352	1	0	1
76		13	min	2.748	15	-411.188	1	9.535	15	007	3	.017	15	0	3
77	M15	1	max	-2.898	15	550.35	2	-9.532	15	.009	2	.352	1	0	2
78	IVIIO		min	-60.856	1	-244.007	3	-201.333	1	006	3	.017	15	0	12
79		2	max	-2.898	15	392.102	2	-7.398	15	.009	2	.138	1	.25	3
80		_	min	-60.856	1	-174.992	3	-156.194	1	006	3	.007	15	563	2
81		3	max	-2.898	15	233.853	2	-5.265	15	.009	2	0	3	.418	3
82			min	-60.856	1	-105.976	3	-111.056	1	006	3	021	1	937	2
83		4	max	-2.898	15	75.604	2	-3.131	15	.009	2	005	12	.503	3
			πιαλ	2.000	יט	, J.UUT		0.101	-iO	.000			114	.000	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC				LC		LC
84			min	-60.856	1_	-36.961	3	-65.917	1	006	3	127	1	-1.121	2
85		5	max	-2.898	<u> 15</u>	32.054	3	997	15	.009	2	008	12	.506	3
86			min	-60.856	1	-82.645	2	-20.779	1	006	3	179	1	-1.117	2
87		6	max	-2.898	15	101.069	3	24.36	1	.009	2	008	15	.427	3
88			min	-60.856	1	-240.894	2	.659	12	006	3	177	1	924	2
89		7	max	-2.898	15	170.084	3	69.499	1	.009	2	006	15	.265	3
90			min	-60.856	1	-399.143	2	2.793	12	006	3	121	1	542	2
91		8	max	-2.898	15	239.099	3	114.637	1	.009	2	0	10	.029	2
92			min	-60.856	1	-557.392	2	4.927	12	006	3	011	1	0	15
93		9	max	-2.898	15	308.114	3	159.776	1	.009	2	.153	1	.79	2
94			min	-60.856	1	-715.641	2	7.06	12	006	3	.005	12	306	3
95		10	max	-2.898	15	377.129	3	204.915	1	.009	2	.371	1	1.739	2
96			min	-60.856	1	-873.889	2	9.194	12	006	3	.015	12	716	3
97		11	max	-2.898	15	715.641	2	-7.06	12	.006	3	.153	1	.79	2
98			min	-60.856	1	-308.114	3	-159.776	1	009	2	.005	12	306	3
99		12	max	-2.898	15	557.392	2	-4.927	12	.006	3	0	10	.029	2
100		12	min	-60.856	1	-239.099	3	-114.637	1	009	2	011	1	0	15
101		13	max	-2.898	15	399.143	2	-2.793	12	.006	3	006	15	.265	3
102		10	min	-60.856	1	-170.084	3	-69.499	1	009	2	121	1	542	2
103		14	max	-2.898	15	240.894	2	659	12	.006	3	008	15	.427	3
104		14	min	-60.856	1	-101.069	3	-24.36	1	009	2	177	1	924	2
105		15	max	-2.898	15	82.645	2	20.779	1	.006	3	008	12	.506	3
106		13	min	-60.856	1	-32.054	3	.997	15	009	2	179	1	-1.117	2
107		16	max	-2.898	15	36.961	3	65.917	1	.006	3	005	12	.503	3
108		10	min	-60.856	1	-75.604	2	3.131	15	009	2	127	1	-1.121	2
109		17	max	-2.898	15	105.976	3	111.056	1	.006	3	0	3	.418	3
		17							15				1		
110		10	min	-60.856	1_	-233.853	2	5.265		009	2	021	_	937	2
111		18	max	-2.898	<u>15</u>	174.992	3	156.194	1_	.006	3	.138	1	.25	3
112		40	min	-60.856	1_	-392.102	2	7.398	15	009	2	.007	15	563	2
113		19	max	-2.898	15	244.007	2	201.333	1_	.006	3	.352	1	0	12
114	MAG	1	min	-60.856	1_	-550.35		9.532	15	009	2	.017	15	0	_
115	M16	1	max	-6.639	<u>15</u>	530.923	3	-9.273	15	.009	3	.313	1 15	0	3
116		2	min	-139.477	1_	-229.883		-195.888 -7.139	1_	009	1	.015	1	_	3
			max	-6.639 -139.477	<u>15</u> 1	372.674	3		15	.009	3	.106 .005	15	.233	2
118		3	min	-6.639	_	<u>-160.868</u> 214.425	2	-150.75	<u>1</u> 15	009 .009	1	001	12	54	3
		3	max		<u>15</u>			-5.005			_		1	.384	
120		4	min	-139.477	1_	-91.853	3	-105.611	1_	009	1	048	12	89	2
121 122		4	max	-6.639	<u>15</u>	56.176	2	-2.871	<u>15</u> 1	.009	3	006	1	.453	3
		_		-139.477	1_	-22.838	3	-60.472		009		147		-1.052	2
123		5	max	-6.639	15	46.177	3	737	15	.009	1	009	12	.439	3
124				-139.477	1_	-102.073		-15.334	1_	009	3	192	1_	-1.024	2
125		6	max	-6.639	<u>15</u>	115.192	3	29.805	1	.009	1	009	15	.342	3
126		-		-139.477	1_	-260.321	2	1.014	12	009	3	183	1_	808	2
127		7	max		<u>15</u>	184.207	3	74.943	1	.009	1	006	15	.164	3
128		0		-139.477	1_	-418.57	2	3.147	12	009	3	121	10	403	2
129		8	max	-6.639	<u>15</u>	253.222	3	120.082	1	.009	1	0	10	.192	2
130				-139.477	1_	-576.819	2	5.281	12	009	3	004	1_	098	3
131		9	max		<u>15</u>	322.237	3	165.221	1	.009	1	.166	1	.975	2
132		40		-139.477	1_	-735.068	2	7.414	12	009	3	.006	12	441	3
133		10	max		<u>15</u>	391.252	3	210.359	1	.009	1	.39	1	1.948	2
134		4.4		-139.477	1_	-893.317	2	9.548	12	009	3	.016	12	867	3
135		11	max	-6.639	<u>15</u>	735.068	2	-7.414	12	.009	3	.166	1	.975	2
136		40		-139.477	1_	-322.237	3	-165.221	1	009	1	.006	12	441	3
137		12	max		15	576.819	2	-5.281	12	.009	3	0	10	.192	2
138		40		-139.477	1_	-253.222	3	-120.082	1	009	1	004	1_	098	3
139		13	max		<u>15</u>	418.57	2	-3.147	12	.009	3	006	15	.164	3
140			mın	-139.477	_1_	-184.207	3	-74.943	1	009	1	121	1	403	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-6.639	15	260.321	2	-1.014	12	.009	3	009	15	.342	3
142			min	-139.477	1	-115.192	3	-29.805	1	009	1	183	1	808	2
143		15	max	-6.639	15	102.073	2	15.334	1	.009	3	009	12	.439	3
144			min	-139.477	1	-46.177	3	.737	15	009	1	192	1	-1.024	2
145		16	max	-6.639	15	22.838	3	60.472	1	.009	3	006	12	.453	3
146			min	-139.477	1	-56.176	2	2.871	15	009	1	147	1	-1.052	2
147		17	max	-6.639	15	91.853	3	105.611	1	.009	3	001	12	.384	3
148			min	-139.477	1	-214.425	2	5.005	15	009	1	048	1	89	2
149		18	max	-6.639	15	160.868	3	150.75	1	.009	3	.106	1	.233	3
150			min	-139.477	1	-372.674	2	7.139	15	009	1	.005	15	54	2
151		19	max	-6.639	15	229.883	3	195.888	1	.009	3	.313	1	0	2
152			min	-139.477	1	-530.923	2	9.273	15	009	1	.015	15	0	3
153	M2	1	max	899.693	1	1.928	4	.599	1	0	5	0	3	0	1
154			min	-1065.937	3	.454	15	.028	15	0	1	0	1	0	1
155		2	max	900.169	1	1.843	4	.599	1	0	5	0	1	0	15
156			min	-1065.58	3	.434	15	.028	15	0	1	0	15	0	4
157		3	max	900.645	1	1.757	4	.599	1	0	5	0	1	0	15
158			min	-1065.223	3	.414	15	.028	15	0	1	0	15	001	4
159		4	max	901.121	1	1.671	4	.599	1	0	5	0	1	0	15
160			min	-1064.866	3	.393	15	.028	15	0	1	0	15	002	4
161		5	max	901.596	1	1.586	4	.599	1	0	5	0	1	0	15
162			min	-1064.51	3	.373	15	.028	15	0	1	0	15	002	4
163		6	max	902.072	1	1.5	4	.599	1	0	5	0	1	0	15
164			min	-1064.153	3	.353	15	.028	15	0	1	0	15	003	4
165		7	max	902.548	1	1.415	4	.599	1	0	5	.001	1	0	15
166			min	-1063.796	3	.333	15	.028	15	0	1	0	15	003	4
167		8	max	903.024	1	1.329	4	.599	1	0	5	.001	1	0	15
168			min	-1063.439	3	.313	15	.028	15	0	1	0	15	004	4
169		9	max	903.499	1	1.243	4	.599	1	0	5	.002	1	0	15
170		9	min	-1063.082	3	.293	15	.028	15	0	1	0	15	004	4
171		10	max	903.975	1	1.158	4	.599	1	0	5	.002	1	004	15
172		10	min	-1062.725	3	.273	15	.028	15	0	1	0	15	004	4
173		11		904.451	1	1.072	4	.599	1		5	.002	1	004	15
174			max	-1062.369		.253	15	.028	15	0	1	.002	15	001	
		40	min		3							_			4
175		12	max	904.927	1	.987	4	.599	1	0	5	.002	1	001	15
176		40	min		3	.233	15	.028	15	0		0	15	005	4
177		13	max	905.402	1	.901	4	.599	1	0	5	.002	1_	001	15
178		4.4	min		3	.2	12	.028	15	0	1	0	15	005	4
179		14	max	905.878	1	.816	4	.599	1	0	5	.003	1_	001	15
180		4.5	min	-1061.298	3	.167	12	.028	15	0	1_	0	15	006	4
181		15		906.354	1	.746	2	.599	1	0	5	.003	1	001	15
182		40	min	-1060.941	3	.133	12	.028	15	0	1	0	15	006	4
183		16		906.83	1	.679	2	.599	1	0	5	.003	1_	001	15
184		4-	min	-1060.585	3	.1	12	.028	15	0	1	0	15	006	4
185		17	max		1	.612	2	.599	1_	0	5	.003	1	002	15
186		4.0	min	-1060.228	3	.067	12	.028	15	0	1_	0	15	006	4
187		18	max		1	.546	2	.599	1	0	5	.003	1	002	15
188			min	-1059.871	3	.033	12	.028	15	0	1	0	15	007	4
189		19		908.257	1	.479	2	.599	1	0	5	.003	1	002	15
190			min	-1059.514	3	016	3	.028	15	0	1	0	15	007	4
191	M3	1	max	532.878	2	7.778	4	.279	1	0	12		1	.007	4
192			min	-679.099	3	1.829	15	.013	15	0	1	0	15	.002	15
193		2	max		2	7.013	4	.279	1	0	12		1	.004	2
194			min		3	1.649	15	.013	15	0	1	0	15	0	12
195		3	max		2	6.249	4	.279	1	0	12	0	1	.002	2
196			min		3	1.469	15	.013	15	0	1	0	15	0	3
197		4	max	532.367	2	5.484	4	.279	1	0	12	0	1	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-679.483	3	1.29	15	.013	15	0	1	0	15	002	3
199		5	max	532.196	2	4.72	4	.279	1	0	12	0	1	0	15
200			min	-679.61	3	1.11	15	.013	15	0	1	0	15	004	4
201		6	max	532.026	2	3.956	4	.279	1	0	12	.001	1	001	15
202			min	-679.738	3	.93	15	.013	15	0	1	0	15	006	4
203		7	max		2	3.191	4	.279	1	0	12	.001	1	002	15
204			min	-679.866	3	.751	15	.013	15	0	1	0	15	007	4
205		8	max	531.685	2	2.427	4	.279	1	0	12	.001	1	002	15
206		Ŭ	min	-679.994	3	.571	15	.013	15	0	1	0	15	008	4
207		9	max	531.515	2	1.662	4	.279	1	0	12	.001	1	002	15
208		<u> </u>	min	-680.121	3	.391	15	.013	15	0	1	0	15	009	4
209		10	max		2	.898	4	.279	1	0	12	.002	1	002	15
210		10	min	-680.249	3	.212	15	.013	15	0	1	0	15	01	4
211		11	max		2	.241	2	.279	1	0	12	.002	1	002	15
212		- ' '	min	-680.377	3	11	3	.013	15	0	1	0	15	002	4
213		12	max		2	148	15	.279	1	0	12	.002	1	002	15
214		12					4	.013	15	0	1	0	15	002	4
		12	min	-680.505	3	631									15
215		13	max	530.834	2	328	15	.279	1	0	12	.002	1_	002	
216		4.4	min	-680.632	3	-1.396	4	.013	15	0	1	0	15	009	4
217		14	max	530.663	2	507	15	.279	1	0	12	.002	1	002	15
218		4.5	min	-680.76	3	-2.16	4	.013	15	0	1	0	15	009	4
219		15	max		2	687	15	.279	1_	0	12	.002	1	002	15
220			min	-680.888	3_	-2.924	4	.013	15	0	1	0	15	007	4
221		16	max		2	867	15	.279	1	0	12	.002	1	001	15
222			min	-681.016	3	-3.689	4	.013	15	0	1	0	15	006	4
223		17	max	530.152	2	-1.046	15	.279	1_	0	12	.002	1_	001	15
224			min	-681.144	3	-4.453	4	.013	15	0	1	0	15	004	4
225		18	max	529.982	2	-1.226	15	.279	1	0	12	.002	1	0	15
226			min	-681.271	3	-5.218	4	.013	15	0	1	0	15	002	4
227		19	max	529.812	2	-1.406	15	.279	1	0	12	.003	1_	00	1
228			min	-681.399	3	-5.982	4	.013	15	0	1	0	15	0	1
229	<u>M4</u>	1	max	1046.9	_1_	0	1	652	15	0	1	.002	1_	0	1
230			min	-3.225	3	0	1	-13.741	1	0	1	0	15	0	1
231		2		1047.071	_1_	0	1	652	15	0	1	0	1	0	1
232			min	-3.097	3	0	1	-13.741	1	0	1	0	15	0	1
233		3	max	1047.241	_1_	0	1	652	15	0	1	0	12	0	1
234			min	-2.97	3	0	1	-13.741	1	0	1	001	1	0	1
235		4	max	1047.411	1	0	1	652	15	0	1	0	15	0	1
236			min	-2.842	3	0	1	-13.741	1	0	1	003	1	0	1
237		5	max	1047.582	1	0	1	652	15	0	1	0	15	0	1
238			min	0 = 4 4	3	0	1	-13.741	1	0	1	004	1	0	1
239		6		1047.752	1	0	1	652	15	0	1	0	15	0	1
240			min	-2.586	3	0	1	-13.741	1	0	1	006	1	0	1
241		7		1047.922	1	0	1	652	15	0	1	0	15	0	1
242			min	-2.459	3	0	1	-13.741	1	0	1	007	1	0	1
243		8		1048.093	1	0	1	652	15	0	1	0	15	0	1
244			min	-2.331	3	0	1	-13.741	1	0	1	009	1	0	1
245		9		1048.263	1	0	1	652	15	0	1	0	15	0	1
246			min		3	0	1	-13.741	1	0	1	01	1	0	1
247		10		1048.433	1	0	1	652	15	0	1	0	15	0	1
248		'	min		3	0	1	-13.741	1	0	1	012	1	0	1
249		11		1048.604	1	0	1	652	15	0	1	0	15	0	1
250			min		3	0	1	-13.741	1	0	1	014	1	0	1
251		12		1048.774	<u> </u>	0	1	652	15	0	1	0	15	0	1
252		14	min	-1.82	3	0	1	-13.741	1	0	1	015	1	0	1
253		13		1048.944	<u> </u>	0	1	652	15	0	1	015 0	15	0	1
254		13	min		3	0	1	-13.741	1	0	1	017	1	0	1
204			1111111	-1.032	J	U		-10.741		U		017		U	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
255		14		1049.115 -1.564	<u>1</u>	0	1	652	15	0	<u>1</u> 1	0	<u>15</u>	0	1
256 257		15	min	1049.285	<u>3</u>	0	1	-13.741 652	1 15	0	1	018 0	15	0	1
258		15	min	-1.436	3	0	1	-13.741	1	0	1	02	1	0	1
259		16		1049.455	_ <u></u>	0	1	652	15	0	1	001	15	0	1
260		10	min	-1.309	3	0	1	-13.741	1	0	1	022	1	0	1
261		17		1049.626	1	0	1	652	15	0	1	001	15	0	1
262		- '	min	-1.181	3	0	1	-13.741	1	0	1	023	1	0	1
263		18		1049.796	1	0	1	652	15	0	1	001	15	0	1
264			min	-1.053	3	0	1	-13.741	1	0	1	025	1	0	1
265		19		1049.967	1	0	1	652	15	Ö	1	001	15	0	1
266			min	925	3	0	1	-13.741	1	0	1	026	1	0	1
267	M6	1	max	2904.857	1	2.149	2	0	1	0	1	0	1	0	1
268			min	-3501.162	3	.263	12	0	1	0	1	0	1	0	1
269		2	max	2905.333	1	2.082	2	0	1	0	1	0	1	0	12
270			min	-3500.805	3	.23	12	0	1	0	1	0	1	0	2
271		3	max	2905.809	1	2.016	2	0	1	0	1	0	1	0	12
272			min	-3500.448	3	.196	12	0	1	0	1	0	1	001	2
273		4	max	2906.284	1_	1.949	2	0	1	0	1	0	1	0	12
274			min	-3500.092	3	.163	12	0	1	0	1	0	1	002	2
275		5	max		_1_	1.882	2	0	1	0	_1_	0	1	0	12
276			min	-3499.735	3	.129	12	0	1	0	1	0	1	003	2
277		6		2907.236	_1_	1.816	2	0	1	0	_1_	0	1	0	12
278			min	-3499.378	3	.095	3	0	1	0	1	0	1	003	2
279		7		2907.712	1_	1.749	2	0	1	0	1	0	1	0	12
280			min	-3499.021	3	.045	3	0	1_	0	1	0	1	004	2
281		8		2908.187	_1_	1.682	2	0	1	0	1	0	1	0	12
282				-3498.664	3	005	3	0	1_	0	1	0	1	004	2
283		9		2908.663	1_	1.615	2	0	1	0	1_	0	1	0	12
284		40	min	-3498.308	3	055	3	0	1	0	<u>1</u> 1	0	1	005	2
285		10		2909.139 -3497.951	<u>1</u>	1.549	3	0	1	0	1	0	1	0	12
286 287		11	min	2909.615	<u>3</u> 1	105 1.482	2	0	1	0	1	0	1	005 0	3
288			min		3	155	3	0	1	0	1	0	1	006	2
289		12	max		<u></u>	1.415	2	0	1	0	1	0	1	000 0	3
290		12	min	-3497.237	3	205	3	0	1	0	1	0	1	006	2
291		13		2910.566	1	1.349	2	0	1	0	1	0	1	0	3
292		10		-3496.88	3	255	3	0	1	0	1	0	1	007	2
293		14		2911.042	1	1.282	2	0	1	0	1	0	1	0	3
294				-3496.523	3	305	3	0	1	0	1	0	1	007	2
295		15		2911.518	1	1.215	2	0	1	0	1	0	1	0	3
296			min	-3496.167	3	355	3	0	1	0	1	0	1	008	2
297		16		2911.993	1	1.149	2	0	1	0	1	0	1	0	3
298				-3495.81	3	405	3	0	1	0	1	0	1	008	2
299		17	max	2912.469	1	1.082	2	0	1	0	1	0	1	0	3
300				-3495.453	3	455	3	0	1	0	1	0	1	008	2
301		18	max	2912.945	1	1.015	2	0	1	0	1	0	1	0	3
302				-3495.096	3	505	3	0	1	0	1	0	1	009	2
303		19		2913.421	1_	.949	2	0	1	0	1	0	1	0	3
304				-3494.739	3	555	3	0	1	0	1	0	1	009	2
305	M7	1		2084.589	2	7.813	4	0	1	0	1	0	1	.009	2
306				-2139.19	3	1.834	15	0	1	0	1	0	1	0	3
307		2		2084.418	2	7.049	4	0	1	0	1	0	1	.006	2
308				-2139.318	3	1.654	15	0	1	0	1	0	1	002	3
309		3		2084.248	2	6.284	4	0	1	0	1	0	1	.004	2
310				-2139.446	3	1.475	15	0	1	0	1	0	1	004	3
311		4	max	2084.078	2	5.52	4	0	1	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-2139.574	3	1.295	15	0	1	0	1	0	1	005	3
313		5	max	2083.907	2	4.755	4	0	1	0	1	0	1	0	2
314			min	-2139.702	3	1.115	15	0	1	0	1	0	1	006	3
315		6	max	2083.737	2	3.991	4	0	1	0	_1_	0	1	001	15
316			min	-2139.829	3	.936	15	0	1	0	1	0	1	007	3
317		7	max	2083.567	2	3.226	4	0	1	0	_1_	0	1	002	15
318			min	-2139.957	3	.756	15	0	1	0	1	0	1	007	3
319		8		2083.396	2	2.462	4	0	1	0	1	0	1	002	15
320			min	-2140.085	3	.567	12	0	1	0	1	0	1	008	4
321		9_		2083.226	2	1.797	2	0	1	0	1	0	1	002	15
322		10	min	-2140.213	3	.269	12	0	1	0	1	0	1	009	4
323		10		2083.055	2	1.201	2	0	1	0	1	0	1	002	15
324		4.4	min	-2140.34	3	082	3	0	1	0	1	0	1	009	4
325		11		2082.885 -2140.468	2	.605	3	0	1	0	1	0	1	002 01	15
326 327		12	min	2082.715	2	<u>528</u> .01	2	0	1	0	1	0	1	002	15
328		12	min	-2140.596	3	975	3	0	1	0	1	0	1	002	4
329		13		2082.544	2	322	15	0	1	0	1	0	1	002	15
330		13	min	-2140.724	3	-1.422	3	0	1	0	1	0	1	002	4
331		14		2082.374	2	502	15	0	1	0	1	0	1	002	15
332		14	min	-2140.851	3	-2.125	4	0	1	0	1	0	1	002	4
333		15	_	2082.204	2	682	15	0	1	0	1	0	1	002	15
334			min	-2140.979	3	-2.889	4	0	1	0	1	0	1	007	4
335		16		2082.033	2	861	15	0	1	0	1	0	1	001	15
336			min	-2141.107	3	-3.654	4	0	1	0	1	0	1	006	4
337		17		2081.863	2	-1.041	15	0	1	0	1	0	1	001	15
338			min	-2141.235	3	-4.418	4	0	1	0	1	0	1	004	4
339		18	max	2081.693	2	-1.221	15	0	1	0	1	0	1	0	15
340			min	-2141.362	3	-5.182	4	0	1	0	1	0	1	002	4
341		19	max	2081.522	2	-1.4	15	0	1	0	1	0	1	0	1
342			min	-2141.49	3	-5.947	4	0	1	0	1	0	1	0	1
343	M8	1	max	2673.792	1	0	1	0	1	0	1	0	1	0	1
344			min		3	0	1	0	1	0	1	0	1	0	1
345		2	max	2673.963	1	0	1	0	1	0	1	0	1	0	1
346			min	-106.42	3	0	1	0	1	0	1	0	1	0	1
347		3	max	2674.133	1	0	1_	0	1	0	_1_	0	1	0	1
348		_	min		3	0	1	0	1	0	1_	0	1	0	1
349		4	_	2674.303	1	0	1	0	1	0	1	0	1	0	1
350			min	-106.164	3	0	1	0	1	0	1	0	1	0	1
351		5		2674.474	1	0	1	0	1	0	1	0	1	0	1
352				-106.037	3	0	1	0	1	0	1	0	1	0	1
353		6	1	2674.644	1	0	1	0	1	0	1	0	1	0	1
354		7		-105.909		0	1	0	1	0	1	0	1	0	1
355 356		7		2674.814 -105.781	3	0	1	0	1	0	1	0	1	0	1
357		8		2674.985	1	0	1	0	1	0	1	0	1	0	1
358		0		-105.653	_	0	1	0	1	0	1	0	1	0	1
359		9	_	2675.155	1	0	1	0	1	0	1	0	1	0	1
360		9	min		3	0	1	0	1	0	1	0	1	0	1
361		10		2675.325	1	0	1	0	1	0	1	0	1	0	1
362		10		-105.398	3	0	1	0	1	0	1	0	1	0	1
363		11		2675.496		0	1	0	1	0	1	0	1	0	1
364				-105.27	3	0	1	0	1	0	1	0	1	0	1
365		12		2675.666	1	0	1	0	1	0	1	0	1	0	1
366		12		-105.142	3	0	1	0	1	0	1	0	1	0	1
367		13		2675.836		0	1	0	1	0	1	0	1	0	1
368				-105.015		0	1	0	1	0	1	0	1	0	1
000			1111111	100.010				J							

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	2676.007	_1_	0	1	0	1	0	_1_	0	1	0	1
370			min	-104.887	3	0	1	0	1	0	1_	0	1	0	1
371		15		2676.177	<u>1</u>	0	1_	0	1_	0	_1_	0	1	0	1
372				-104.759	3	0	1	0	1	0	1	0	1	0	1
373		16		2676.348	_1_	0	1	0	1_	0	_1_	0	1	0	1
374				-104.631	3	0	1	0	1	0	1	0	1	0	1
375		17		2676.518	_1_	0	1	0	1	0	_1_	0	1	0	1
376				-104.504	3	0	1	0	1	0	1_	0	1	0	1
377		18		2676.688	_1_	0	1_	0	1	0	_1_	0	1_	0	1
378				-104.376	3	0	1	0	1	0	1_	0	1	0	1
379		19		2676.859	_1_	0	1	0	1	0	1_	0	1	0	1
380				-104.248	3	0	1	0	1_	0	1_	0	1	0	1
381	M10	1	max		1_	1.928	4	028	15	0	1_	0	1	0	1
382			min	-1065.937	3	.454	15	599	1_	0	5	0	3	0	1
383		2		900.169	1_	1.843	4	028	15	0	1_	0	15	0	15
384			min	-1065.58	3	.434	15	599	1_	0	5	0	1	0	4
385		3	max		1_	1.757	4	028	15	0	1_	0	15	0	15
386		_	min	-1065.223	3	.414	15	599	1_	0	5	0	1	001	4
387		4	max	901.121	1_	1.671	4	028	15	0	1_	0	15	0	15
388		_	min	-1064.866	3	.393	15	599	1_	0	5	0	1	002	4
389		5	max		1	1.586	4	028	15	0	1_	0	15	0	15
390		_		-1064.51	3_	.373	15	599	1_	0	5_	0	1_	002	4
391		6	max		1	1.5	4	028	15	0	1_	0	15	0	15
392		_	min	-1064.153	3	.353	15	599	1_	0	5	0	1	003	4
393		7	max	902.548	<u>1</u> 3	1.415	4	028	15	0	1_	0	15	0	15
394		0	min			.333	15	599	1_	0	5	001	1	003	4
395		8	max	903.024	<u>1</u> 3	1.329	<u>4</u> 15	028	<u>15</u> 1	0	<u>1</u> 5	001	1 <u>5</u>	004	15
396		9	min	903.499	<u>ာ</u> 1	.313 1.243	4	599	15	0	<u> </u>	001 0	15	004 0	15
397		9	max	-1063.082	3	.293	15	028	1	0			1	_	
398 399		10	max	903.975	<u>ာ</u> 1	1.158	4	<u>599</u> 028	15	0	<u>5</u> 1	002 0	15	004 001	15
400		10	min	-1062.725	3	.273	15	599	1	0	5	002	1	004	4
401		11	max		<u> </u>	1.072	4	028	15	0	1	002	15	004 001	15
402		11	min	-1062.369	3	.253	15	599	1	0	5	002	1	005	4
403		12	max		_ <u></u>	.987	4	028	15	0	1	0	15	003	15
404		12	min	-1062.012	3	.233	15	599	1	0	5	002	1	005	4
405		13	max		1	.901	4	028	15	0	1	0	15	001	15
406		10	min	-1061.655	3	.2	12	599	1	0	5	002	1	005	4
407		14	max	905.878	1	.816	4	028	15	0	1	0	15	001	15
408				-1061.298	3	.167	12	599	1	0	5	003	1	006	4
409		15		906.354	1	.746	2	028	15	0	1	0	15	001	15
410			min	-1060.941	3	.133	12	599	1	0	5	003	1	006	4
411		16	max		1	.679	2	028	15	0	1	0	15	001	15
412			min		3	.1	12	599	1	0	5	003	1	006	4
413		17	max		1	.612	2	028	15	0	1	0	15	002	15
414			min	-1060.228	3	.067	12	599	1	0	5	003	1	006	4
415		18		907.781	1	.546	2	028	15	0	1	0	15	002	15
416			min	-1059.871	3	.033	12	599	1	0	5	003	1	007	4
417		19		908.257	1	.479	2	028	15	0	1	0	15	002	15
418				-1059.514	3	016	3	599	1	0	5	003	1	007	4
419	M11	1		532.878	2	7.778	4	013	15	0	1	0	15	.007	4
420				-679.099	3	1.829	15	279	1	0	12	0	1	.002	15
421		2		532.708	2	7.013	4	013	15	0	1	0	15	.004	2
422				-679.227	3	1.649	15	279	1	0	12	0	1	0	12
423		3	max		2	6.249	4	013	15	0	1	0	15	.002	2
424			min	-679.355	3	1.469	15	279	1	0	12	0	1	0	3
425		4	max	532.367	2	5.484	4	013	15	0	1	0	15	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-679.483	3	1.29	15	279	1	0	12	0	1	002	3
427		5	max	532.196	2	4.72	4	013	15	0	1	0	15	0	15
428			min	-679.61	3	1.11	15	279	1	0	12	0	1	004	4
429		6	max		2	3.956	4	013	15	0	1	0	15	001	15
430			min	-679.738	3	.93	15	279	1	0	12	001	1	006	4
431		7	max	531.856	2	3.191	4	013	15	0	1	0	15	002	15
432			min	-679.866	3	.751	15	279	1	0	12	001	1	007	4
433		8	max	531.685	2	2.427	4	013	15	0	1	0	15	002	15
434			min	-679.994	3	.571	15	279	1	0	12	001	1	008	4
435		9	max	531.515	2	1.662	4	013	15	0	1	0	15	002	15
436			min	-680.121	3	.391	15	279	1	0	12	001	1	009	4
437		10	max	531.345	2	.898	4	013	15	0	1	0	15	002	15
438			min	-680.249	3	.212	15	279	1	0	12	002	1	01	4
439		11	max	531.174	2	.241	2	013	15	0	1	0	15	002	15
440			min	-680.377	3	11	3	279	1	0	12	002	1	01	4
441		12	max	531.004	2	148	15	013	15	0	1	0	15	002	15
442			min	-680.505	3	631	4	279	1	0	12	002	1	01	4
443		13	max	530.834	2	328	15	013	15	0	1	0	15	002	15
444			min	-680.632	3	-1.396	4	279	1	0	12	002	1	009	4
445		14	max	530.663	2	507	15	013	15	0	1	0	15	002	15
446			min	-680.76	3	-2.16	4	279	1	0	12	002	1	009	4
447		15	max	530.493	2	687	15	013	15	0	1	0	15	002	15
448			min	-680.888	3	-2.924	4	279	1	0	12	002	1	007	4
449		16	max	530.323	2	867	15	013	15	0	1	0	15	001	15
450			min	-681.016	3	-3.689	4	279	1	0	12	002	1	006	4
451		17	max	530.152	2	-1.046	15	013	15	0	1	0	15	001	15
452			min	-681.144	3	-4.453	4	279	1	0	12	002	1	004	4
453		18	max	529.982	2	-1.226	15	013	15	0	1	0	15	0	15
454		1	min	-681.271	3	-5.218	4	279	1	0	12	002	1	002	4
455		19	max	529.812	2	-1.406	15	013	15	0	1	0	15	0	1
456		1.0	min	-681.399	3	-5.982	4	279	1	0	12	003	1	0	1
457	M12	1	max	1046.9	1	0	1	13.741	1	0	1	0	15	0	1
458			min	-3.225	3	0	1	.652	15	0	1	002	1	0	1
459		2		1047.071	1	0	1	13.741	1	0	1	0	15	0	1
460		_	min	-3.097	3	0	1	.652	15	0	1	0	1	0	1
461		3	max		1	0	1	13.741	1	0	1	.001	1	0	1
462			min	-2.97	3	0	1	.652	15	0	1	0	12	0	1
463		4	max		1	0	1	13.741	1	0	1	.003	1	0	1
464			min	-2.842	3	0	1	.652	15	0	1	0	15	0	1
465		5		1047.582	1	0	1	13.741	1	0	1	.004	1	0	1
466			min	0 = 4 4	3	0	1	.652	15	0	1	0	15	0	1
467		6		1047.752	1	0	1	13.741	1	0	1	.006	1	0	1
468			min	-2.586	3	0	1	.652	15	0	1	0	15	0	1
469		7		1047.922	1	0	1	13.741	1	0	1	.007	1	0	1
470			min	-2.459	3	0	1	.652	15	0	1	0	15	0	1
471		8		1048.093	1	0	1	13.741	1	0	1	.009	1	0	1
472			min	-2.331	3	0	1	.652	15	0	1	0	15	0	1
473		9		1048.263	1	0	1	13.741	1	0	1	.01	1	0	1
474		 	min		3	0	1	.652	15	0	1	0	15	0	1
475		10		1048.433		0	1	13.741	1	0	1	.012	1	0	1
476		10	min		3	0	1	.652	15	0	1	0	15	0	1
477		11		1048.604	<u> </u>	0	1	13.741	1	0	1	.014	1	0	1
477			min	-1.947	3	0	1	.652	15	0	1	.014	15	0	1
479		12		1048.774	<u>ာ</u> 1	0	1	13.741	1	0	1	.015	1 <u>1</u>	0	1
480		12	min	-1.82	3	0	1	.652	15	0	1	.015	15	0	1
481		13		1048.944	<u> </u>		1	13.741	1		1	.017	1		1
		13				0	1			0	1			0	1
482			min	-1.692	3	0		.652	15	0		0	15	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1049.115	_1_	0	1	13.741	1	0	_1_	.018	_1_	0	1
484			min	-1.564	3	0	1	.652	15	0	1	0	15	0	1
485		15		1049.285	1	0	1	13.741	1	0	1	.02	1	0	1
486			min	-1.436	3	0	1	.652	15	0	1	0	15	0	1
487		16	max	1049.455	1	0	1	13.741	1	0	1	.022	1	0	1
488			min	-1.309	3	0	1	.652	15	0	1	.001	15	0	1
489		17	max	1049.626	1	0	1	13.741	1	0	1	.023	1	0	1
490			min	-1.181	3	0	1	.652	15	0	1	.001	15	0	1
491		18	max	1049.796	1	0	1	13.741	1	0	1	.025	1	0	1
492			min	-1.053	3	0	1	.652	15	0	1	.001	15	0	1
493		19	max		1	0	1	13.741	1	0	1	.026	1	0	1
494			min	925	3	0	1	.652	15	0	1	.001	15	0	1
495	M1	1	max	195.658	1	576.148	3	-6.179	15	0	1	.311	1	0	3
496			min	9.265	15	-390.504	1	-129.855	1	0	3	.015	15	012	2
497		2	max	196.375	1	575.218	3	-6.179	15	0	1	.243	1	.196	1
498			min	9.481	15	-391.744	1	-129.855	1	0	3	.012	15	303	3
499		3	max		3	439.107	1	-6.151	15	0	3	.174	1	.393	1
500		<u> </u>	min	-243.038	2	-415.63	3	-129.521	1	0	1	.008	15	594	3
501		4	max		3	437.866	1	-6.151	15	0	3	.106	1	.161	1
502		7	min	-242.322	2	-416.561	3	-129.521	1	0	1	.005	15	375	3
503		5	max		3	436.626	1	-6.151	15	0	3	.003	1	003	15
504		-	min	-241.606	2	-417.491	3	-129.521	1	0	1	.002	15	155	3
505		6	max	417.747	3	435.385	1	-6.151	15	0	3	001	15	.066	3
506		0	min	-240.89	2	-418.422	3	-129.521	1	0	1	031	1	317	2
507		7	max	418.284	3	434.144	1	-6.151	15	0	3	005	15	.287	3
508		-	min	-240.173	2	-419.352	3	-129.521	1	0	1	099	1	545	2
509		8		418.822		432.904	1	-6.151	15		3	008	15	.508	3
510		-	max min	-239.457	<u>3</u> 2	-420.282	3	-129.521	1	0	1	168	1	772	2
511		9	max		3	40.588	2	-8.9	15	0	9	.098	1	.594	3
512		9	min	-154.631	2	.379	15		1	0	3	.005	15	885	2
513		10	max		3	39.347	2	-8.9	15	0	9	0	15	.578	3
514		10	min	-153.915	2	.004	15	-187.278	1	0	3	001	1	906	2
515		11		435.56	3	38.107	2	-8.9	15	0	9	005	15	.563	3
516		- ' '	max min	-153.199	2	-1.503	4	-187.278		0	3	1	1	926	2
517		12		451.158	3	274.156	3	-6.002	15		2	.166	1	.49	3
518		12	max min	-92.161	10	-513.026	2	-126.506	1	0	3	.008	15	821	2
519		13	max		3	273.226	3	-6.002	15	0	2	.099	1	.346	3
520		13	min	-91.564	10	-514.267	2	-126.506	1	0	3	.005	15	55	2
521		14			3	272.295	3	-6.002	15	0	2	.032	1	.202	3
522		14	max min	-90.967	10	-515.507	2	-126.506	1	0	3	.002	15	28	1
523		15		452.769	3	271.365	3	-6.002	15	0	2	002	15	.058	3
		15		-90.37				-126.506		0	3	002	1	027	
524 525		16	min		<u>10</u> 3	<u>-516.748</u> 270.434	3	-6.002	15	0	2	005	15	.267	2
526		10	max		10	-517.988		-126.506		0	3	101	1	085	3
527		17	min	453.843			3		15					.541	
		17			3	269.504 -519.229		-6.002		0	2	008	<u>15</u>		3
528		10	min		10			-126.506		0	3	168	1_	227	
529		18	max		<u>15</u>	532.673	2	-6.64	1 <u>5</u>	0	3	011 239	<u>15</u>	.272	2
530		40	min		1_	-229.017	3	-139.649 -6.64		0	2		1_	113	3
531		19	max		<u>15</u>	531.433	2		15 1	0	3	015	<u>15</u>	.009	3
532	NAE	1	min		1	-229.948	3	-139.649		0	2	313		009	
533	<u>M5</u>	1		421.179	1	1919.856		0	1	0	1	0	1	.023	2
534		2	min	18.823	<u>12</u>	-1317.137	1	0	1	0	1	0	1	002	3
535		2		421.895	1	1918.926	3	0	1	0	1	0	<u>1</u> 1	.717	1
536		3	min		12	-1318.378 1351.062	1	0	•	0		0		-1.014	3
537 538		3		1340.638 -876.175	<u>3</u> 2	-1347.708	3	0	1	0	<u>1</u> 1	0	<u>1</u> 1	1.38 -1.987	3
		1						0		0	1	0	•		-
539		4	шах	1341.175	3_	1349.821	1	0	1	0		0	<u>1</u>	.668	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

540	Member	Sec	min	Axial[lb]	LC 2	y Shear[lb] -1348.638	LC 3	z Shear[lb]	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 3
541		5	max	1341.713	3	1348.581	1	0	1	0	1	0	1	.003	9
542			min	-874.742	2	-1349.569	3	0	1	0	1	0	1	564	3
543		6	max	1342.25	3	1347.34	1	0	1	0	1	0	1	.148	3
544			min	-874.026	2	-1350.499	3	0	1	0	1	0	1	799	2
545		7	max	1342.787	3	1346.1	_1_	0	1	0	1	0	1	.861	3
546			min	-873.31	2	-1351.43	3	0	1	0	1	0	1	-1.502	2
547		8		1343.324	3_	1344.859	_1_	0	1_	0	_1_	0	1	1.574	3
548				-872.594	2	-1352.36	3	0	1	0	1_	0	1	-2.204	2
549		9	max	1371.213	3	135.038	2	0	1	0	1	0	1	1.812	3
550			min	-698.657	2	.376	<u>15</u>	0	1_	0	1_	0	1_	-2.51	2
551		10		1371.751	3_	133.797	2	0	1	0	1	0	1	1.756	3
552		4.4	min	-697.94	2	.002	15	0	1_	0	1_	0	1	-2.581	2
553		11		1372.288	3	132.557	2	0	1	0	1	0	1	1.701	3
554		40	min	-697.224	2	-1.335	4	0	1_	0	1_	0	1_	-2.651	2
555		12	max	1400.311	3_	880.272	3	0	1	0	1	0	1	1.494	3
556		40	min	-523.307	2	-1603.986	2	0	1_	0	1_	0	1	-2.374	2
557		13		1400.848	3_	879.341	3_	0	1	0	1_	0	1	1.03	3
558		4.4		-522.591	2	-1605.226	2	0	1_	0	1_	0	1	-1.527	2
559		14		1401.385	3	878.411 -1606.467	3	0	1	0	1	0	1	.566	3
560		1 E	min	-521.875 1401.922	2		2	0		0		0		693	1
561 562		15		-521.159	<u>3</u> 2	877.481 -1607.708	<u>3</u>	0	1	0	1	0	1	.168 004	13
563		16	min	1402.459	3	876.55	3	0	1	0	1	0	1	1.017	
564		10	min	-520.442	2	-1608.948	2	0	1	0	1	0	1	36	3
565		17	max		3	875.62	3	0	1	0	1	0	1	1.866	2
566		17	min	-519.726	2	-1610.189	2	0	1	0	1	0	1	822	3
567		18	max	-19.453	12	1790.864	2	0	1	0	1	0	1	.962	2
568		10		-421.445	1	-781.988	3	0	1	0	1	0	1	43	3
569		19	max	-19.095	12	1789.624	2	0	1	0	1	0	1	.019	1
570		19	min	-420.729	1	-782.918	3	0	1	0	1	0	1	017	3
571	M9	1	max	195.658	1	576.148	3	129.855	1	0	3	015	15	0	3
572	IVIO		min	9.265	15	-390.504	1	6.179	15	0	1	311	1	012	2
573		2	max	196.375	1	575.218	3	129.855	1	0	3	012	15	.196	1
574			min	9.481	15	-391.744	1	6.179	15	0	1	243	1	303	3
575		3	max	416.136	3	439.107	1	129.521	1	0	1	008	15	.393	1
576			min	-243.038	2	-415.63	3	6.151	15	0	3	174	1	594	3
577		4	max	416.673	3	437.866	1	129.521	1	0	1	005	15	.161	1
578			min	-242.322	2	-416.561	3	6.151	15	0	3	106	1	375	3
579		5	max	417.21	3	436.626	1	129.521	1	0	1	002	15	003	15
580				-241.606	2	-417.491	3	6.151	15	Ö	3	037	1	155	3
581		6	max		3	435.385	1	129.521	1	0	1	.031	1	.066	3
582			1	-240.89	2	-418.422	3	6.151	15	0	3	.001	15	317	2
583		7		418.284	3	434.144	1	129.521	1	0	1	.099	1	.287	3
584		-		-240.173	2	-419.352	3	6.151	15	0	3	.005	15	545	2
585		8		418.822	3	432.904	1	129.521	1	0	1	.168	1	.508	3
586				-239.457	2	-420.282	3	6.151	15	0	3	.008	15	772	2
587		9		434.486	3	40.588	2	187.278	1	0	3	005	15	.594	3
588				-154.631	2	.379	15	8.9	15	0	9	098	1	885	2
589		10		435.023	3	39.347	2	187.278	1	0	3	.001	1	.578	3
590				-153.915	2	.004	15	8.9	15	0	9	0	15	906	2
591		11	max		3	38.107	2	187.278	1	0	3	.1	1	.563	3
592				-153.199	2	-1.503	4	8.9	15	0	9	.005	15	926	2
593		12		451.158	3	274.156	3	126.506	1	0	3	008	15	.49	3
594			min	-92.161	10	-513.026	2	6.002	15	0	2	166	1	821	2
595		13	max		3	273.226	3	126.506	1	0	3	005	15	.346	3
596			min	-91.564	10	-514.267	2	6.002	15	0	2	099	1	55	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	452.232	3	272.295	3	126.506	1	0	3	002	15	.202	3
598			min	-90.967	10	-515.507	2	6.002	15	0	2	032	1	28	1
599		15	max	452.769	3	271.365	3	126.506	1	0	3	.035	1	.058	3
600			min	-90.37	10	-516.748	2	6.002	15	0	2	.002	15	027	1
601		16	max	453.306	3	270.434	3	126.506	1	0	3	.101	1	.267	2
602			min	-89.774	10	-517.988	2	6.002	15	0	2	.005	15	085	3
603		17	max	453.843	3	269.504	3	126.506	1	0	3	.168	1	.541	2
604			min	-89.177	10	-519.229	2	6.002	15	0	2	.008	15	227	3
605		18	max	-9.489	15	532.673	2	139.649	1	0	2	.239	1	.272	2
606			min	-196.599	1	-229.017	3	6.64	15	0	3	.011	15	113	3
607		19	max	-9.273	15	531.433	2	139.649	1	0	2	.313	1	.009	3
608			min	-195.883	1	-229.948	3	6.64	15	0	3	.015	15	009	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.09	2	.007	3 7.536e-3	2	NC	1_	NC	1
2			min	0	15	011	3	003	2 -1.226e-3	3	NC	1	NC	1
3		2	max	.001	1	.327	3	.055	1 8.746e-3	2	NC	5	NC	2
4			min	0	15	126	1	.003	15 -1.31e-3	3	762.032	3	4862.342	1
5		3	max	.001	1	.601	3	.133	1 9.956e-3	2	NC	5	NC	3
6			min	0	15	295	1	.006	15 -1.394e-3	3	421.096	3	1971.392	1
7		4	max	0	1	.768	3	.2	1 1.117e-2	2	NC	5	NC	3
8			min	0	15	391	1	.01	15 -1.479e-3	3	331.168	3	1298.646	1
9		5	max	0	1	.806	3	.236	1 1.238e-2	2	NC	5	NC	3
10			min	0	15	4	1	.011	15 -1.563e-3	3	315.604	3	1102.797	1
11		6	max	0	1	.719	3	.228	1 1.359e-2	2	NC	5	NC	5
12			min	0	15	326	1	.011	15 -1.647e-3	3	353.031	3	1139.157	1
13		7	max	0	1	.534	3	.18	1 1.48e-2	2	NC	5	NC	3
14			min	0	15	186	1	.009	15 -1.731e-3	3	473.384	3	1447.023	1
15		8	max	0	1	.298	3	.105	1 1.601e-2	2	NC	4	NC	3
16			min	0	15	015	9	.005	10 -1.815e-3	3	834.663	3	2488.256	1
17		9	max	0	1	.155	2	.031	1 1.722e-2	2	NC	4	NC	2
18			min	0	15	.004	15	005	10 -1.9e-3	3	2709.692	3	8831.496	1
19		10	max	0	1	.22	2	.023	3 1.843e-2	2	NC	3	NC	1
20			min	0	1	013	3	015	2 -1.984e-3	3	1998.721	2	NC	1
21		11	max	0	15	.155	2	.031	1 1.722e-2	2	NC	4	NC	2
22			min	0	1	.004	15	005	10 -1.9e-3	3	2709.692	3	8831.496	1
23		12	max	0	15	.298	3	.105	1 1.601e-2	2	NC	4	NC	3
24			min	0	1	015	9	.005	10 -1.815e-3	3	834.663	3	2488.256	1
25		13	max	0	15	.534	3	.18	1 1.48e-2	2	NC	5	NC	3
26			min	0	1	186	1	.009	15 -1.731e-3	3	473.384	3	1447.023	1
27		14	max	0	15	.719	3	.228	1 1.359e-2	2	NC	5	NC	5
28			min	0	1	326	1	.011	15 -1.647e-3	3	353.031	3	1139.157	1
29		15	max	0	15	.806	3	.236	1 1.238e-2	2	NC	5	NC	3
30			min	0	1	4	1	.011	15 -1.563e-3	3	315.604	3	1102.797	1
31		16	max	0	15	.768	3	.2	1 1.117e-2	2	NC	5	NC	3
32			min	0	1	391	1	.01	15 -1.479e-3	3	331.168	3	1298.646	1
33		17	max	0	15	.601	3	.133	1 9.956e-3	2	NC	5	NC	3
34			min	001	1	295	1	.006	15 -1.394e-3	3	421.096	3	1971.392	1
35		18	max	0	15	.327	3	.055	1 8.746e-3	2	NC	5	NC	2
36			min	001	1	126	1	.003	15 -1.31e-3	3	762.032	3	4862.342	1
37		19	max	0	15	.09	2	.007	3 7.536e-3	2	NC	1	NC	1
38			min	001	1	011	3	003	2 -1.226e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.178	3	.007	3 4.474e-3	2	NC	1	NC	1
40			min	0	15	296	2	003	2 -3.135e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
41		2	max	0	1	.495	3	.039	1	5.391e-3	2	NC	5_	NC	2
42			min	0	15	604	2	.002	15	-3.842e-3	3	811.024	1_	7039.298	
43		3	max	0	1	.762	3	.108	1	6.309e-3	2	NC	<u>15</u>	NC	3
44			min	0	15	875	1	.005		-4.548e-3	3_	437.385	_1_	2438.547	1
45		4	max	0	1	.944	3	.173	1	7.227e-3	2	NC	<u>15</u>	NC	3
46			min	0	15	-1.068	1	.008	15	-5.255e-3	3	329.325	1_	1507.623	
47		5	max	0	1	1.023	3	.21	1	8.145e-3	2	9556.326	15	NC	3
48			min	0	15	-1.168	1	.01		-5.961e-3	3	292.262	_1_	1236.889	
49		6	max	0	1	1.002	3	.208	1	9.063e-3	2	9560.959	<u>15</u>	NC	3
50		_	min	0	15	<u>-1.173</u>	1	.01	15	-6.668e-3	3	290.617	1_	1250.088	
51		7	max	0	1	.898	3	.167	1	9.98e-3	2	NC	<u>15</u>	NC 1700 000	3
52			min	0	15	<u>-1.103</u>	2	.008	15	-7.374e-3	3	316.916	1_	1563.629	
53		8	max	0	1	<u>.747</u>	3	.099	1	1.09e-2	2	NC	<u>15</u>	NC	3
54			min	0	15	992	2	.005		-8.081e-3	3	370.677	2	2654.965	
55		9_	max	0	1	.602	3	.03	1	1.182e-2	2	NC	<u>15</u>	NC 2010 711	2
56		40	min	0	15	88	2	005	10	-8.787e-3	3	441.633	2	9240.711	1
57		10	max	0	1	.535	3	.021	3	1.273e-2	2	NC 405.045	5_	NC NC	1
58		4.4	min	0	1	827	2	014	2	-9.494e-3	3	485.915	2	NC NC	1
59		11	max	0	15	.602	3	.03	1	1.182e-2	2	NC	15	NC	2
60		40	min	0	1	88	2	005	10	-8.787e-3	3	441.633		9240.711	1
61		12	max	0	15	.747	3	.099	1	1.09e-2	2	NC 070.077	<u>15</u>	NC OCE 4 OCE	3
62		40	min	0	1	992	2	.005	10	-8.081e-3	3	370.677	2	<u>2654.965</u>	
63		13	max	0	15	.898	3	.167	1	9.98e-3	2	NC 240.040	<u>15</u>	NC 4500 coo	3
64		4.4	min	0	1	-1.103	2	.008		-7.374e-3	3	316.916	1_	1563.629	
65		14	max	0	15	1.002	3	.208	1	9.063e-3	2	9560.959	<u>15</u>	NC	3
66		4.5	min	0	1	-1.173	1	.01	15		3	290.617	1_	1250.088	
67		15	max	0	15	1.023	3	.21	1	8.145e-3	2	9556.326	15	NC 4000 000	3
68		4.0	min	0	1	<u>-1.168</u>	1	.01		-5.961e-3	3	292.262	1_	1236.889	
69		16	max	0	15	.944	3	.173	1	7.227e-3	2	NC 220 225	<u>15</u>	NC	3
70 71		17	min	0	15	<u>-1.068</u> .762	3	.008 .108	15	-5.255e-3	2	329.325 NC	<u>1</u> 15	1507.623 NC	3
72		17	max	0	1	875	1	.005	15	6.309e-3 -4.548e-3	3	437.385	1	2438.547	1
73		18	min	0	15	<u>675</u> .495	3	.039	1	5.391e-3		NC	<u> </u>	NC	2
74		10	max	0	1	604	2	.002	15	-3.842e-3	3	811.024	1	7039.298	
75		19		0	15	.178	3	.002	3	4.474e-3	2	NC	1	NC	1
76		19	max	0	1	296	2	003	2	-3.135e-3	3	NC NC	1	NC NC	1
77	M15	1	max	0	15	.182	3	.006	3	2.705e-3	3	NC	1	NC	1
78	IVITO		min	0	1	295	2	003	2	-4.671e-3	2	NC	1	NC	1
79		2	max	0	15	.379	3	.039	1	3.321e-3	3	NC	5	NC	2
80			min	0	1	697	2	.002	15	-5.633e-3	2	641.7	2	7007.155	
81		3	max		15	.548	3	.108	1	3.936e-3		NC	15		3
82			min	0	1	-1.037	2	.005		-6.595e-3		347.627		2432.054	
83		4	max	0	15	.671	3	.173	1	4.552e-3	3	NC	15	NC	3
84			min	0	1	-1.273	2	.008		-7.557e-3	2	263.796		1504.527	
85		5	max	0	15	.738	3	.211	1	5.167e-3	3	9571.639	15	NC	3
86			min	0	1	-1.384	2	.01	15		2	236.981	2	1234.605	
87		6	max	0	15	.748	3	.209	1	5.783e-3	3	9579.366	15	NC	3
88			min	0	1	-1.37	2	.01		-9.482e-3	2	240.077	2	1247.71	1
89		7	max	0	15	.711	3	.167	1	6.398e-3	3	NC	15	NC	3
90			min	0	1	-1.253	2	.008		-1.044e-2	2	269.374	2	1560.005	
91		8	max	0	15	.645	3	.099	1	7.013e-3	3	NC	15	NC	3
92			min	0	1	-1.077	2	.005		-1.141e-2	2	330.203	2	2645.033	
93		9	max	0	15	.576	3	.03	1	7.629e-3	3	NC	5	NC	2
94			min	0	1	905	2	004		-1.237e-2	2	422.938	2	9127.239	
95		10	max	0	1	.544	3	.019	3	8.244e-3	3	NC	5	NC	1
96			min	0	1	825	2	013	2	-1.333e-2	2	486.893	2	NC	1
97		11	max	0	1	.576	3	.03	1	7.629e-3	3	NC	5	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

12 max		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n) L/v Ratio LC (n) L/	
100	98		4.0	min	0	15	905	2	004		
101			12								
102			40								
103			13			-					
104			4.4								
105			14								
106			4.5								
108			15								
108			40								
109			16								
110			4-7								
111			1/								
1112			4.0								
113			18			-					
114			4.0								
115			19								
116											
117		<u>M16</u>	1								
118				min							
119			2								
120											
121			3								
122				min	<u>001</u>						
123			4	max	0	15					
124				min							
125			5	max	0						
126				min	0						
127			6	max	0	15					
128				min	0						
129			7								
130				min							
131			8		0						
132				min				2			
133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 134 min 0 1 16 3 012 2 -1.519e-2 1 2210.705 1 NC 2 135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 0 15 12 3 003 10 -1.421e-2 1 4209.482 3 8432.541 1 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 2 138 min 0 15 105 2 .005 15 -1.324e-2 1 1384.919 2 2461.841 139 13 max 0 1 .076 3 .18 1 1.011e-2 3<			9		0	15					
134				min							
135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 0 15 12 3 003 10 -1.421e-2 1 4209.482 3 8432.541 1 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 0 15 105 2 .005 15 -1.324e-2 1 1384.919 2 2461.841 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 0 15 333 2 .009 15 -1.227e-2 1 623.819 2 1441.024 141 14 max 0 1 .161 3			10								
136 min 0 15 12 3 003 10 -1.421e-2 1 4209.482 3 8432.541 1 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 0 15 105 2 .005 15 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 0 15 333 2 .009 15 -1.227e-2 1 623.819 2 1441.024 14 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 0 15 516				min							
137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 0 15 105 2 .005 15 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 0 15 333 2 .009 15 -1.227e-2 1 623.819 2 1441.024 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 0 15 516 2 .011 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.3			11	max	0						
138 min 0 15 105 2 .005 15 -1.324e-2 1 1384.919 2 2461.841 7 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 0 15 333 2 .009 15 -1.227e-2 1 623.819 2 1441.024 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 0 15 516 2 .011 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 0 15 61 2				min	0	15					
139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 0 15 333 2 .009 15 -1.227e-2 1 623.819 2 1441.024 144										1 1.101e-2 3 NC 4 N	VC 3
140 min 0 15 333 2 .009 15 -1.227e-2 1 623.819 2 1441.024 7 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 0 15 516 2 .011 15 -1.129e-2 1 432.107 2 1137.473 7 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 0 15 61 2 .011 15 -1.032e-2 1 373.442 2 1103.004 7 145 16 max 0 1 .208 3 .2 1 7.407e-3 3 NC 5 NC 3 146 min 0 15 59											
141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 0 15 516 2 .011 15 -1.129e-2 1 432.107 2 1137.473 7 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 0 15 61 2 .011 15 -1.032e-2 1 373.442 2 1103.004 1 145 16 max 0 1 .208 3 .2 1 7.407e-3 3 NC 5 NC 3 146 min 0 15 59 2 .01 15 -9.347e-3 1 384.809 2 1300.815 1 147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 <td></td> <td></td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			13								
142 min 0 15 516 2 .011 15 -1.129e-2 1 432.107 2 1137.473 7 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 0 15 61 2 .011 15 -1.032e-2 1 373.442 2 1103.004 7 145 16 max 0 1 .208 3 .2 1 7.407e-3 3 NC 5 NC 3 146 min 0 15 59 2 .01 15 -9.347e-3 1 384.809 2 1300.815 7 147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 148 min 0 15 452				min		15					
143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 0 15 61 2 .011 15 -1.032e-2 1 373.442 2 1103.004 1 145 16 max 0 1 .208 3 .2 1 7.407e-3 3 NC 5 NC 3 146 min 0 15 59 2 .01 15 -9.347e-3 1 384.809 2 1300.815 7 147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 148 min 0 15 452 2 .006 15 -8.374e-3 1 484.278 2 1978.385 7 149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 3			14		0						
144 min 0 15 61 2 .011 15 -1.032e-2 1 373.442 2 1103.004 7 145 16 max 0 1 .208 3 .2 1 7.407e-3 3 NC 5 NC 3 146 min 0 15 59 2 .01 15 -9.347e-3 1 384.809 2 1300.815 7 147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 148 min 0 15 452 2 .006 15 -8.374e-3 1 484.278 2 1978.385 7 149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 2 150 min 0 15 215				min		15					
145 16 max 0 1 .208 3 .2 1 7.407e-3 3 NC 5 NC 3 146 min 0 15 59 2 .01 15 -9.347e-3 1 384.809 2 1300.815 3 147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 148 min 0 15 452 2 .006 15 -8.374e-3 1 484.278 2 1978.385 3 149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 2 150 min 0 15 215 2 .003 15 -7.401e-3 1 871.529 2 4896.814 3 151 19 max .001 1 .084 1 .005 3 4.706e-3 3 NC 1 NC			15	max							
146 min 0 15 59 2 .01 15 -9.347e-3 1 384.809 2 1300.815 7 147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 148 min 0 15 452 2 .006 15 -8.374e-3 1 484.278 2 1978.385 7 149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 2 150 min 0 15 215 2 .003 15 -7.401e-3 1 871.529 2 4896.814 7 151 19 max .001 1 .005 3 4.706e-3 3 NC 1 NC				min	0						
147 17 max .001 1 .156 3 .132 1 6.507e-3 3 NC 5 NC 3 148 min 0 15 452 2 .006 15 -8.374e-3 1 484.278 2 1978.385 3 149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 2 150 min 0 15 215 2 .003 15 -7.401e-3 1 871.529 2 4896.814 3 151 19 max .001 1 .084 1 .005 3 4.706e-3 3 NC 1 NC			16		0				.2		
148 min 0 15 452 2 .006 15 -8.374e-3 1 484.278 2 1978.385 7 149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 2 150 min 0 15 215 2 .003 15 -7.401e-3 1 871.529 2 4896.814 7 151 19 max .001 1 .084 1 .005 3 4.706e-3 3 NC 1 NC	146			min	0	15	59		.01		0.815 1
149 18 max .001 1 .062 3 .054 1 5.606e-3 3 NC 5 NC 2 150 min 0 15215 2 .003 15 -7.401e-3 1 871.529 2 4896.814 1 151 19 max .001 1 .084 1 .005 3 4.706e-3 3 NC 1 NC			17	max	.001	-					
150 min 0 15215 2 .003 15 -7.401e-3 1 871.529 2 4896.814 1 151 19 max .001 1 .084 1 .005 3 4.706e-3 3 NC 1 NC				min		15					
151 19 max .001 1 .084 1 .005 3 4.706e-3 3 NC 1 NC	149		18	max	.001		.062		.054		
151	150			min	0	15	215	2	.003	15 -7.401e-3 1 871.529 2 489	6.814 1
			19	max	.001	1	.084	1	.005		NC 1
	152			min		15	058	3	003		
		M2	1	1	.006						
					007	3	011	3	0		3.229 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
155		2	max	.006	1	.005	2	.009	1_	-1.289e-5	<u>15</u>	NC	_1_	NC	2
156			min	007	3	011	3	0	15	-2.717e-4	<u>1</u>	NC	1_	7593.892	1
157		3	max	.005	1	.004	2	.008	1_	-1.211e-5		NC	_1_	NC	2
158			min	006	3	01	3	0	15	-2.55e-4	1_	NC	1_	8345.414	
159		4	max	.005	1	.003	2	.008	1	-1.132e-5	<u>15</u>	NC	_1_	NC	2
160			min	006	3	01	3	0	15	-2.384e-4	1_	NC	1_	9249.809	
161		5	max	.005	1	.002	2	.007	1_	-1.053e-5	15	NC	_1_	NC	1
162			min	006	3	01	3	0	15	-2.218e-4	1_	NC	1_	NC	1
163		6	max	.004	1	.001	2	.006	1	-9.743e-6	15	NC	1_	NC	1
164			min	005	3	009	3	0	15	-2.052e-4	1_	NC	1	NC	1
165		7	max	.004	1	0	2	.005	1	-8.955e-6	<u>15</u>	NC	_1_	NC	1
166			min	005	3	009	3	0	15	-1.886e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.004	1	-8.167e-6	15	NC	_1_	NC	1
168			min	004	3	008	3	0	15	-1.72e-4	1	NC	1	NC	1
169		9	max	.003	1	0	2	.004	1	-7.379e-6	15	NC	1_	NC	1
170			min	004	3	008	3	0	15	-1.554e-4	1	NC	1	NC	1
171		10	max	.003	1	001	2	.003	1	-6.591e-6	15	NC	1	NC	1
172			min	004	3	007	3	0	15	-1.388e-4	1	NC	1_	NC	1
173		11	max	.003	1	001	15	.003	1	-5.804e-6	15	NC	1	NC	1
174			min	003	3	007	3	0	15	-1.222e-4	1	NC	1	NC	1
175		12	max	.002	1	001	15	.002	1	-5.016e-6	15	NC	1	NC	1
176			min	003	3	006	3	0	15	-1.056e-4	1	NC	1	NC	1
177		13	max	.002	1	001	15	.001	1	-4.228e-6	15	NC	1	NC	1
178			min	002	3	005	3	0	15	-8.899e-5	1	NC	1	NC	1
179		14	max	.002	1	001	15	.001	1	-3.44e-6	15	NC	1	NC	1
180			min	002	3	005	3	0	15	-7.238e-5	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	-2.652e-6	15	NC	1	NC	1
182			min	002	3	004	3	0	15	-5.577e-5	1	NC	1	NC	1
183		16	max	.001	1	0	15	0	1	-1.865e-6	15	NC	1	NC	1
184			min	001	3	003	4	0	15	-3.917e-5	1	NC	1	NC	1
185		17	max	0	1	0	15	0	1	-1.077e-6	15	NC	1	NC	1
186			min	0	3	002	4	0	15	-2.256e-5	1	NC	1	NC	1
187		18	max	0	1	0	15	0	1	-2.889e-7	15	NC	1	NC	1
188			min	0	3	001	4	0	15	-5.956e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	1.065e-5	1	NC	1	NC	1
190		10	min	0	1	0	1	0	1	4.546e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-2.008e-7	12	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-4.323e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	2.316e-5	+	NC	1	NC	1
194			min	0	2	002	4	0	12	1.098e-6	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	5.063e-5		NC	1	NC NC	1
196			min	0	2	004	4	0	12	2.4e-6	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	7.811e-5	1	NC	1	NC	1
198		_	min	0	2	006	4	0	15		15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	1.056e-4	1	NC	1	NC	1
200		-	min	001	2	002	4	0	15	5.004e-6	15	NC	1	NC	1
201		6	max	.002	3	002	15	0	1	1.331e-4	1	NC	1	NC	1
202		0		002	2	002 01	4	0	15	6.305e-6		9625.224	4	NC	1
		7	min				15						1		1
203			max min	.002 002	3	003 011	4	0	1 15	1.605e-4	<u>1</u> 15	NC 8290.912	4	NC NC	1
205		8		002 .002	3	011	15	.001	1	7.607e-6	<u>15</u> 1	NC	2	NC NC	1
		0	max		2					1.88e-4		7468.572		NC NC	1
206		0	min	002		012	4	0	15				4		
207		9	max	.003	3	003	15	.002	1	2.155e-4	1_	NC COSE 200	3	NC NC	1
208		40	min	002	2	013	4	0	15			6985.398	4_	NC NC	1
209		10	max	.003	3	003	15	.002	1	2.43e-4	1_	NC 6757 934	5_4	NC NC	1
210		4.4	min	002	2	014	4	0	15	1.151e-5		6757.831	4_	NC NC	1
211		11	max	.003	3	003	15	.002	1_	2.705e-4	1	NC	3	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
212			min	003	2	014	4	0	15	1.281e-5	15	6752.532	4	NC	1
213		12	max	.004	3	003	15	.003	1	2.979e-4	1_	NC	3	NC	1
214			min	003	2	013	4	0	15	1.412e-5	15	6973.607	4	NC	1
215		13	max	.004	3	003	15	.004	1	3.254e-4	1_	NC	2	NC	1_
216			min	003	2	013	4	0	15	1.542e-5	15	7465.839	4	NC	1
217		14	max	.004	3	003	15	.004	1	3.529e-4	1	NC	1	NC	1
218			min	003	2	011	4	0	15	1.672e-5	15	8337.614	4	NC	1
219		15	max	.005	3	002	15	.005	1	3.804e-4	1	NC	1	NC	1
220			min	004	2	01	4	0	15	1.802e-5	15	9828.082	4	NC	1
221		16	max	.005	3	002	15	.006	1	4.079e-4	1	NC	1_	NC	1
222			min	004	2	008	4	0	15	1.932e-5	15	NC	1	NC	1
223		17	max	.005	3	001	15	.007	1	4.353e-4	1	NC	1	NC	1
224			min	004	2	006	1	0	15	2.062e-5	15	NC	1_	NC	1
225		18	max	.006	3	0	15	.008	1	4.628e-4	1	NC	1	NC	1
226			min	004	2	004	1	0	15	2.193e-5	15	NC	1	NC	1
227		19	max	.006	3	0	10	.01	1	4.903e-4	1	NC	1	NC	2
228			min	005	2	002	1	0	15	2.323e-5	15	NC	1	9455.187	1
229	M4	1	max	.003	1	.004	2	0	15	1.131e-4	1	NC	1	NC	3
230			min	0	3	006	3	01	1	5.373e-6	15	NC	1	2599.72	1
231		2	max	.002	1	.004	2	0	15	1.131e-4	1	NC	1	NC	3
232			min	0	3	006	3	009	1	5.373e-6	15	NC	1	2823.073	1
233		3	max	.002	1	.004	2	0	15	1.131e-4	1	NC	1	NC	3
234			min	0	3	005	3	008	1	5.373e-6	15	NC	1	3089.139	1
235		4	max	.002	1	.004	2	0	15	1.131e-4	1	NC	1	NC	3
236			min	0	3	005	3	007	1	5.373e-6	15	NC	1	3408.97	1
237		5	max	.002	1	.003	2	0	15	1.131e-4	1	NC	1	NC	3
238			min	0	3	005	3	007	1	5.373e-6	15	NC	1	3797.589	1
239		6	max	.002	1	.003	2	0	15	1.131e-4	1	NC	1	NC	2
240			min	0	3	004	3	006	1	5.373e-6	15	NC	1	4275.832	1
241		7	max	.002	1	.003	2	0	15	1.131e-4	1	NC	1	NC	2
242			min	0	3	004	3	005	1	5.373e-6	15	NC	1	4873.274	1
243		8	max	.002	1	.003	2	0	15	1.131e-4	1	NC	1	NC	2
244			min	0	3	004	3	004	1	5.373e-6	15	NC	1	5633.042	1
245		9	max	.001	1	.002	2	0	15	1.131e-4	1	NC	1	NC	2
246			min	0	3	003	3	004	1	5.373e-6	15	NC	1	6620.055	
247		10	max	.001	1	.002	2	0	15	1.131e-4	1	NC	1	NC	2
248			min	0	3	003	3	003	1	5.373e-6	15	NC	1	7935.779	
249		11	max	.001	1	.002	2	0	15	1.131e-4	1	NC	1	NC	2
250			min	0	3	003	3	003	1	5.373e-6	15	NC	1	9746.167	1
251		12	max	0	1	.002	2	0	15	1.131e-4	1	NC	1	NC	1
252		1	min	0	3	002	3	002		5.373e-6		NC	1	NC	1
253		13	max	0	1	.001	2	0	15		1	NC	1	NC	1
254		T.	min	0	3	002	3	002	1	5.373e-6	15	NC	1	NC	1
255		14	max	0	1	.001	2	0	15	1.131e-4	1	NC	1	NC	1
256			min	0	3	002	3	001	1	5.373e-6	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	1.131e-4	1	NC	1	NC	1
258		1	min	0	3	001	3	0	1	5.373e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	1.131e-4	1	NC	1	NC	1
260		1.0	min	0	3	001	3	0	1	5.373e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.131e-4	1	NC	1	NC	1
262			min	0	3	0	3	0	1	5.373e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.131e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	5.373e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.131e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	5.373e-6	15	NC NC	1	NC NC	1
267	M6	1	max	.02	1	.025	2	0	1	0	1 <u>1</u>	NC NC	3	NC	1
268	IVIO		min	024	3	034	3	0	1	0	1	2854.669	2	NC NC	1
200			1111111	024	J	034	J	U		U		2004.009		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
269		2	max	.018	1	.022	2	0	1	0	1	NC	3	NC	1
270			min	022	3	032	3	0	1	0	1	3139.639	2	NC	1
271		3	max	.017	1	.02	2	0	1	0	1	NC	3	NC	1
272			min	021	3	031	3	0	1	0	1	3484.634	2	NC	1
273		4	max	.016	1	.018	2	0	1	0	1	NC	3	NC	1
274			min	02	3	029	3	0	1	0	1	3906.92	2	NC	1
275		5	max	.015	1	.016	2	0	1	0	1	NC	3	NC	1
276			min	018	3	027	3	0	1	0	1	4430.672	2	NC	1
277		6	max	.014	1	.014	2	0	1	0	1	NC	1	NC	1
278			min	017	3	025	3	0	1	0	1	5090.573	2	NC	1
279		7	max	.013	1	.012	2	0	1	0	1	NC	1	NC	1
280			min	016	3	023	3	0	1	0	1	5937.825	2	NC	1
281		8	max	.012	1	.01	2	0	1	0	1	NC	1	NC	1
282			min	014	3	021	3	0	1	0	1	7050.635	2	NC	1
283		9	max	.011	1	.008	2	0	1	0	1	NC	1	NC	1
284			min	013	3	019	3	0	1	0	1	8553.418	2	NC	1
285		10	max	.01	1	.007	2	0	1	0	1	NC	1	NC	1
286		10	min	012	3	017	3	0	1	0	1	NC	1	NC	1
287		11	max	.009	1	.005	2	0	1	0	1	NC	1	NC	1
288			min	01	3	015	3	0	1	0	1	NC	1	NC	1
289		12	max	.008	1	.004	2	0	1	0	1	NC	1	NC	1
290		12	min	009	3	014	3	0	1	0	1	NC	1	NC	1
291		13	max	.007	1	.003	2	0	1	0	1	NC	1	NC	1
292		13	min	008	3	012	3	0	1	0	1	NC NC	1	NC	1
293		14	max	.005	1	.002	2	0	1	0	1	NC NC	1	NC	1
294		14	min	007	3	01	3	0	1	0	1	NC NC	1	NC NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC NC	1	NC	1
296		10	min	005	3	008	3	0	1	0	1	NC NC	1	NC NC	1
297		16		.003	1	_ 008	2	0	1	0	1	NC NC	1	NC	1
298		10	max	004	3	006	3	0	1		1	NC NC	1	NC NC	1
299		17	min	.002	1	<u>006</u> 0	2	0	1	0	1	NC NC	1	NC NC	1
300		17	max	003	3	004	3	0	1	0	1	NC NC	1	NC NC	1
301		18	min	.003	1	004 0	2		1		1	NC NC	1	NC NC	1
302		10	max		3	002		0	1	0	1	NC NC	1	NC NC	1
		10	min	001	1		1		1	0	1		1		
303		19	max	0	1	0 0	1	0	1	0	1	NC NC	1	NC NC	1
304	N / 7	1	min	0			•	0	•	0			_		•
305	<u>M7</u>	1_	max	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
306		2	min	0	1	0		0		0	1_	NC NC	1_	NC NC	
307		2	max	.001	3	0	15	0	1	0	1	NC NC	1_	NC NC	1
308		2	min	001	2	002	3	0	1	0	1	NC NC	1	NC NC	1
309		3	max		3	0	15	0	1	0	4	NC NC	1	NC NC	1
310		4	min	002	2	005	3	0	1	0	1	NC NC	1	NC NC	1
311		4	max	.003	3	001	15	0	1	0	1_	NC NC	1_	NC NC	1
312		-	min	003	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5	max	.004	3	002	15	0	1	0	1_	NC NC	1_	NC NC	1
314			min	004	2	009	3	0	1	0	1_	NC NC	1_	NC NC	1
315		6	max	.005	3	002	15	0	1	0	1	NC 0700.050	1_	NC NC	1
316		-	min	005	2	011	3	0	1	0	1	9736.356	3	NC NC	1
317		7	max	.006	3	003	15	0	1	0	1	NC	1_	NC NC	1
318			min	006	2	012	3	0	1	0	1_	8474.869	4_	NC	1
319		8	max	.007	3	003	15	0	1	0	_1_	NC	1_	NC	1
320			min	007	2	013	3	0	1	0	1_	7622.656	4	NC	1
321		9	max	.008	3	003	15	0	1	0	1	NC	1_	NC	1
322			min	008	2	014	3	0	1	0	1_	7120.441	4	NC	1
323		10	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
324			min	009	2	014	3	0	1	0	1_	6881.096	4	NC	1
325		11	max	.01	3	003	15	0	1	0	_1_	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

127		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
328	326			min		2	015	3	0	1		1	6869.476	4	NC	1
329			12	max					0		0	1		1_		1
330																1
331			13								_					1
332			1.4											_		1
333			14													1
334			45													1
335			15													1
336			4.0									_		•		1
337			16													1
338			17									•		_		1
339			17													1
340			10									•		_		1
341			10													1
342			10									_				1
343 M8			13									_				1
344		M8	1			_										1
345		IVIO														1
346			2		_					1		•		1		1
347						-										1
348			3							1		1		1		1
349										1		1		1		1
350			4		.005	1			0	1	0	1		1		1
351						3			0	1	0	1		1		1
353 6 max .005 1 .012 2 0 1 0 1 NC 1 NC 354 min 0 3 014 3 0 1 0 1 NC 1 NC 355 7 max .004 1 .012 2 0 1 0 1 NC 1 NC 356 min 0 3 013 3 0 1 0 1 NC 1 NC 357 8 max .004 1 .011 2 0 1 0 1 NC 1 NC 358 min 0 3 012 3 0 1 0 1 NC 1 NC 359 9 max .004 1 .01 2 0 1 0 1 NC 1 NC 3 .01			5		.005	1			0	1	0	1	NC	1	NC	1
354	352			min	0	3	015	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
356	354			min	0	3	014	3	0	1	0	1	NC	1	NC	1
357			7		.004	-			0	1		1_		1_		1_
358				min								1		1_		1
359 9 max .004 1 .01 2 0 1 0 1 NC 1 NC 360 min 0 3 011 3 0 1 0 1 NC 1 NC 361 10 max .003 1 .009 2 0 1 0 1 NC 1 NC 362 min 0 3 01 3 0 1 0 1 NC 1 NC 363 11 max .003 1 .008 2 0 1 0 1 NC 1 NC 364 min 0 3 009 3 0 1 0 1 NC 1 NC 365 12 max .002 1 .007 2 0 1 0 1 NC 1 NC 366 min 0 3 007 3 0 1 0 1 NC 1 NC 366 min 0 3 007 3 0 1 0 1 NC 1 NC 367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 368 min 0 3 006 3 0 1 0 1 NC 1 NC 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 370 min 0 3 005 3 0 1 0 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 372 min 0 3 004 3 0 1 0 1 NC 1 NC 373 16 max .001 1 .004 2 0 1 0 1 NC 1 NC 374 min 0 3 004 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 377 38 max 0 1 0 2 0 1 0 1 NC 1 NC 377 38 max 0 1 0 2 0 1 0 1 NC 1 NC 377 38 max 0 1 0 2 0 1 0 1 NC 1 NC 377 38 max 0 1 0 2 0 1 0 1 NC 1 NC 377 38 max 0 1 0 2 0 1 0 1 NC 1 NC 377 38 max 0 1 0 2 0 1 0 1 NC 1 NC 377 377 38 38 38 38 38			8													1
360			_									•		•		1
361 10 max .003 1 .009 2 0 1 0 1 NC 1 NC 362 min 0 3 01 3 0 1 0 1 NC 1 NC 363 11 max .003 1 .008 2 0 1 0 1 NC 1 NC 364 min 0 3 009 3 0 1 0 1 NC 1 NC 365 12 max .002 1 .007 2 0 1 0 1 NC 1 NC 366 min 0 3 007 3 0 1 0 1 NC 1 NC 367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 NC </td <td></td> <td></td> <td>9</td> <td></td> <td>1</td>			9													1
362 min 0 3 01 3 0 1 0 1 NC 1 NC 363 11 max .003 1 .008 2 0 1 0 1 NC 1 NC 364 min 0 3 009 3 0 1 0 1 NC 1 NC 365 12 max .002 1 .007 2 0 1 0 1 NC 1 NC 366 min 0 3 007 3 0 1 0 1 NC 1 NC 367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 368 min 0 3 006 3 0 1 0 1 NC 1 NC 370 min </td <td></td> <td></td> <td>10</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>1</td>			10		•						_	_				1
363 11 max .003 1 .008 2 .0 .1 .0 .1 .0 .1 .NC .1 .NC 1 1 .NC 1 .NC 1 .NC 1 .NC 1 .			10									_				1
364 min 0 3 009 3 0 1 0 1 NC 1 NC 365 12 max .002 1 .007 2 0 1 0 1 NC 1 NC 366 min 0 3 007 3 0 1 0 1 NC 1 NC 367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 368 min 0 3 006 3 0 1 0 1 NC 1 NC 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 370 min 0 3 005 3 0 1 0 1 NC 1 NC 371 15 max .001 1			4.4			_										1
365 12 max .002 1 .007 2 0 1 0 1 NC 1 NC 1 NC 1 NC 366 min 0 3007 3 0 1 0 1 NC 1 NC 1 NC 1 NC 367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 NC 1 NC 368 min 0 3006 3 0 1 0 1 NC 1 NC 1 NC 1 NC 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 NC 1 NC 370 min 0 3005 3 0 1 0 1 NC 1 NC 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 NC 1 NC 372 min 0 3004 3 0 1 0 1 NC 1 NC 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 NC 374 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 NC 376 min 0 3002 3 0 1 0 1 NC 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			11											1_		1
366 min 0 3 007 3 0 1 0 1 NC 1 NC 367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 368 min 0 3 006 3 0 1 0 1 NC 1 NC 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 370 min 0 3 005 3 0 1 0 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 372 min 0 3 004 3 0 1 0 1 NC 1 NC 373 16 </td <td></td> <td></td> <td>40</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1_</td> <td></td> <td>1</td>			40		_									1_		1
367 13 max .002 1 .006 2 0 1 0 1 NC 1 NC 368 min 0 3006 3 0 1 0 1 NC 1 NC 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 370 min 0 3005 3 0 1 0 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 372 min 0 3004 3 0 1 0 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 374 min 0 3003 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC	365		12	max				2								1
368 min 0 3 006 3 0 1 0 1 NC 1 NC 369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 370 min 0 3 005 3 0 1 0 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 372 min 0 3 004 3 0 1 0 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 374 min 0 3 003 3 0 1 0 1 NC 1 NC 376 min<			12													1
369 14 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 NC 370 min 0 3005 3 0 1 0 1 NC 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 NC 372 min 0 3004 3 0 1 0 1 NC 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 NC 374 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 NC 376 min 0 3002 3 0 1 0 1 NC 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			13													1
370 min 0 3 005 3 0 1 0 1 NC 1 NC 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 372 min 0 3 004 3 0 1 0 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 374 min 0 3 003 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18			1/									•		•		1
371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 372 min 0 3 004 3 0 1 0 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 374 min 0 3 003 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			14													1
372 min 0 3 004 3 0 1 0 1 NC 1 NC 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 374 min 0 3 003 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			15		_							_		_		1
373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 374 min 0 3 003 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			13									_				1
374 min 0 3 003 3 0 1 0 1 NC 1 NC 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			16													1
375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			10													1
376 min 0 3 002 3 0 1 0 1 NC 1 NC 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC			17									_				1
377 18 max 0 1 0 2 0 1 0 1 NC 1 NC						-										1
			18		_							_		_		1
1010 111111 0 0 7.001 0 1 0 1 100.	378		1.5	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379 19 max 0 1 0 1 0 1 NC 1 NC			19									•		•		1
380 min 0 1 0 1 0 1 NC 1 NC			T Š								_			1		1
		M10	1		•	1		2		15		1		1		2
						3						15		1		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.006	1	.005	2	0	15	2.717e-4	_1_	NC	_1_	NC	2
384			min	007	3	011	3	009	1	1.289e-5	15	NC	1	7593.892	1
385		3	max	.005	1	.004	2	0	15	2.55e-4	1_	NC	1	NC	2
386			min	006	3	01	3	008	1	1.211e-5	15	NC	1	8345.414	1
387		4	max	.005	1	.003	2	0	15	2.384e-4	1	NC	1	NC	2
388			min	006	3	01	3	008	1	1.132e-5	15	NC	1	9249.809	1
389		5	max	.005	1	.002	2	0	15	2.218e-4	1	NC	1	NC	1
390			min	006	3	01	3	007	1	1.053e-5	15	NC	1	NC	1
391		6	max	.004	1	.001	2	0	15	2.052e-4	1	NC	1	NC	1
392			min	005	3	009	3	006	1	9.743e-6	15	NC	1	NC	1
393		7	max	.004	1	0	2	0	15	1.886e-4	1	NC	1	NC	1
394			min	005	3	009	3	005	1	8.955e-6	15	NC	1	NC	1
395		8	max	.004	1	0	2	0	15	1.72e-4	1	NC	1	NC	1
396			min	004	3	008	3	004	1	8.167e-6	15	NC	1	NC	1
397		9	max	.003	1	<u>000</u>	2	<u>004</u>	15	1.554e-4	1	NC	1	NC	1
398		9	min	004	3	008	3	004	1	7.379e-6	15	NC NC	1	NC	1
399		10	max	.003	1	000 001	2	004	15	1.388e-4	1	NC	1	NC	1
400		10		004	3	007	3	003	1	6.591e-6	15	NC	1	NC	1
		11	min		1							NC NC	1	NC NC	
401			max	.003		001	15	0 003	15	1.222e-4	1_		1		1
402		12	min	003	3	007	3		1_	5.804e-6	<u>15</u>	NC NC	_	NC NC	_
403		12	max	.002	1	001	15	0	15	1.056e-4	1_	NC NC	1_	NC NC	1
404		40	min	003	3	006	3	002	1_	5.016e-6	<u>15</u>	NC NC	1_	NC NC	1
405		13	max	.002	1	001	15	0	15	8.899e-5	1_	NC	1	NC	1
406		4.4	min	002	3	005	3	001	1_	4.228e-6	<u>15</u>	NC NC	1_	NC NC	1
407		14	max	.002	1	001	15	0	15	7.238e-5	1_	NC NC	1_	NC NC	1
408		4.5	min	002	3	005	3	001	1_	3.44e-6	<u>15</u>	NC NC	1_	NC NC	1
409		15	max	.001	1	0	15	0	15	5.577e-5	1_	NC	1	NC NC	1
410		40	min	002	3	004	3	0	1	2.652e-6	<u>15</u>	NC NC	1_	NC	1_
411		16	max	.001	1	0	15	0	15	3.917e-5	1_	NC	1_	NC	1
412		47	min	001	3	003	4	0	1	1.865e-6	<u>15</u>	NC NC	1_	NC NC	1
413		17	max	0	1	0	15	0	15	2.256e-5	1_	NC NC	1	NC NC	1
414		40	min	0	3	002	4	0	1_	1.077e-6	<u>15</u>	NC NC	1_	NC NC	1
415		18	max	0	1	0	15	0	15	5.956e-6	1_	NC NC	1	NC	1
416		40	min	0	3	001	4	0	1	2.889e-7	<u>15</u>	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	-4.546e-7	<u>12</u>	NC NC	1_	NC NC	1
418	Maa	4	min	0	1	0	1	0	1	-1.065e-5	1_	NC NC	1_	NC NC	1
419	M11	1	max	0	1	0	1	0	1	4.323e-6	1	NC NC	1	NC	1
420			min	0	1	0	1	0	1	2.008e-7	12	NC NC	1_	NC	1
421		2	max	0	3	0	15	0	12	-1.098e-6	<u>15</u>	NC	1_	NC	1
422		_	min	0	2	002	4	0	1	-2.316e-5	1_	NC NC	1	NC NC	1
423		3	max	0	3	0	15	0	12	-2.4e-6	<u>15</u>	NC	1	NC	1
424		4	min	0	2	004	4	0	1_	-5.063e-5		NC NC	1_	NC NC	1
425		4	max	0	3	001	15	0	15	-3.702e-6		NC NC	1	NC	1
426		-	min	0	2	006	4	0	1_	-7.811e-5		NC NC	1_	NC	1
427		5	max	.001	3	002	15	0	15	-5.004e-6		NC	1	NC	1
428			min	001	2	008	4	0	1_	-1.056e-4		NC	1_	NC	1
429		6	max	.002	3	002	15	0	15	-6.305e-6		NC		NC	1
430		_	min	<u>001</u>	2	01	4	0	1	-1.331e-4		9625.224	4_	NC	1_
431		7	max	.002	3	003	15	0	15	-7.607e-6		NC		NC	1_
432			min	002	2	<u>011</u>	4	0	1_	-1.605e-4		8290.912	4_	NC	1
433		8	max	.002	3	003	15	0	15	-8.909e-6		NC	2	NC	1
434			min	002	2	012	4	<u>001</u>	1	-1.88e-4	1_	7468.572	4_	NC NC	1
435		9	max	.003	3	003	15	0	15	-1.021e-5		NC	3	NC	1
436		4.0	min	002	2	013	4	002	1	-2.155e-4	1_	6985.398	4_	NC	1
437		10	max	.003	3	003	15	0	15	-1.151e-5		NC 0757.004	5	NC	1
438		4.	min	002	2	<u>014</u>	4	002	1_	-2.43e-4		6757.831	4	NC	1
439		11	max	.003	3	003	15	0	<u> 15</u>	-1.281e-5	15	NC	3	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC		
440			min	003	2	014	4	002	1 -2.705e-4		6752.532	4	NC	1
441		12	max	.004	3	003	15	0	15 -1.412e-5		NC	3	NC	1
442			min	003	2	013	4	003	1 -2.979e-4		6973.607	4	NC	1
443		13	max	.004	3	003	15	0	15 -1.542e-5	15	NC	2	NC	1_
444			min	003	2	013	4	004	1 -3.254e-4	1	7465.839	4	NC	1
445		14	max	.004	3	003	15	0	15 -1.672e-5	15	NC	1	NC	1
446			min	003	2	011	4	004	1 -3.529e-4	1	8337.614	4	NC	1
447		15	max	.005	3	002	15	0	15 -1.802e-5	15	NC	1	NC	1
448			min	004	2	01	4	005	1 -3.804e-4	1	9828.082	4	NC	1
449		16	max	.005	3	002	15	0	15 -1.932e-5	15	NC	1	NC	1
450			min	004	2	008	4	006	1 -4.079e-4		NC	1	NC	1
451		17	max	.005	3	001	15	0	15 -2.062e-5	15	NC	1	NC	1
452			min	004	2	006	1	007	1 -4.353e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	0	15 -2.193e-5	15	NC	1	NC	1
454			min	004	2	004	1	008	1 -4.628e-4	1	NC	1	NC	1
455		19	max	.006	3	0	10	0	15 -2.323e-5	15	NC	1	NC	2
456			min	005	2	002	1	01	1 -4.903e-4	1	NC	1	9455.187	1
457	M12	1	max	.003	1	.004	2	.01	1 -5.373e-6	15	NC	1	NC	3
458			min	0	3	006	3	0	15 -1.131e-4	1	NC	1	2599.72	1
459		2	max	.002	1	.004	2	.009	1 -5.373e-6	15	NC	1	NC	3
460			min	0	3	006	3	0	15 -1.131e-4	1	NC	1	2823.073	1
461		3	max	.002	1	.004	2	.008	1 -5.373e-6	15	NC	1	NC	3
462			min	0	3	005	3	0	15 -1.131e-4		NC	1	3089.139	1
463		4	max	.002	1	.004	2	.007	1 -5.373e-6		NC	1	NC	3
464			min	0	3	005	3	0	15 -1.131e-4	1	NC	1	3408.97	1
465		5	max	.002	1	.003	2	.007	1 -5.373e-6	15	NC	1	NC	3
466			min	0	3	005	3	0	15 -1.131e-4		NC	1	3797.589	1
467		6	max	.002	1	.003	2	.006	1 -5.373e-6		NC	1	NC	2
468			min	0	3	004	3	0	15 -1.131e-4	1	NC	1	4275.832	1
469		7	max	.002	1	.003	2	.005	1 -5.373e-6	15	NC	1	NC	2
470			min	0	3	004	3	0	15 -1.131e-4		NC	1	4873.274	1
471		8	max	.002	1	.003	2	.004	1 -5.373e-6		NC	1	NC	2
472			min	0	3	004	3	0	15 -1.131e-4		NC	1	5633.042	1
473		9	max	.001	1	.002	2	.004	1 -5.373e-6		NC	1	NC	2
474			min	0	3	003	3	0	15 -1.131e-4	1	NC	1	6620.055	
475		10	max	.001	1	.002	2	.003	1 -5.373e-6	15	NC	1	NC	2
476		1	min	0	3	003	3	0	15 -1.131e-4		NC	1	7935.779	
477		11	max	.001	1	.002	2	.003	1 -5.373e-6		NC	1	NC	2
478			min	0	3	003	3	0	15 -1.131e-4	1	NC	1	9746.167	1
479		12	max	0	1	.002	2	.002	1 -5.373e-6		NC	1	NC	1
480		· <u>-</u>	min		3	002	3	0	15 -1.131e-4		NC	1	NC	1
481		13	max	0	1	.001	2	.002	1 -5.373e-6		NC	1	NC	1
482		10	min	0	3	002	3	0	15 -1.131e-4		NC	1	NC	1
483		14	max	0	1	.001	2	.001	1 -5.373e-6		NC	1	NC	1
484			min	0	3	002	3	0	15 -1.131e-4		NC	1	NC	1
485		15	max	0	1	0	2	0	1 -5.373e-6		NC	1	NC	1
486		10	min	0	3	001	3	0	15 -1.131e-4		NC	1	NC	1
487		16	max	0	1	0	2	0	1 -5.373e-6		NC	1	NC	1
488		10	min	0	3	001	3	0	15 -1.131e-4		NC	1	NC	1
489		17	max	0	1	0	2	0	1 -5.373e-6		NC	1	NC	1
490		11	min	0	3	0	3	0	15 -1.131e-4	1	NC	1	NC	1
491		18	max	0	1	0	2	0	1 -5.373e-6		NC	1	NC	1
492		10	min	0	3	0	3	0	15 -1.131e-4		NC	1	NC	1
493		19		0	1	<u> </u>	1	0	1 -5.373e-6	15	NC NC	1	NC	1
494		19	max	0	1	0	1	0	1 -1.131e-4		NC NC	1	NC NC	1
494	M1	1	min	.007	3	.09	2	.001	1 1.542e-2	1	NC NC	1	NC NC	1
	IVI I		max		2									
496			min	003	2	011	3	0	15 -2.45e-2	3	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			o LC
497		2	max	.007	3	.043	2	0	15	7.466e-3	_1_		3	NC	1
498			min	003	2	003	3	007	1	-1.212e-2	3	2404.92	2	NC	1
499		3	max	.007	3	.011	3	0	15	1.22e-5	<u>10</u>	NC	5	NC	1
500			min	003	2	009	2	01	1	-2.099e-4	1	1157.386	2	NC_	1
501		4	max	.007	3	.037	3	0	15	4.064e-3	2	NC Too 447	5	NC_	1
502		_	min	003	2	067	2	009	1	-4.326e-3	3		2	NC NC	1
503		5	max	.007	3	.07	3	0	15	8.321e-3	1	NC FOE OA	5	NC_	1
504			min	003	2	129	2	007	1	-8.53e-3	3	525.31	2	NC NC	1
505		6	max	.007	3	.106	3	0	15	1.259e-2	1		15	NC NC	1
506		7	min	003	2	188	3	003	1	-1.273e-2	3	413.19 NC	2 15	NC NC	1
507		-	max	.007	2	<u>.14</u> 241		0 0	12	1.685e-2 -1.694e-2	1		2		1
508 509		8	min	003 .007	3	.169	3	.001	1	2.112e-2	3		15	NC NC	1
510		0	max	003	2	283	2	0	15	-2.114e-2	<u>1</u> 3	308.02	2	NC NC	1
511		9		.003	3	<u>263</u> .188	3	0	15	2.346e-2	<u> </u>		15	NC NC	1
512		1 9	max min	003	2	31	2	0	1	-2.118e-2	3		2	NC NC	1
513		10	max	.006	3	.195	3	0	1	2.549e-2	2		15	NC	1
514		10	min	003	2	319	2	0	12	-1.847e-2	3	281.736	2	NC	1
515		11	max	.006	3	.19	3	0	1	2.761e-2	2		15	NC	1
516			min	003	2	31	2	0	15	-1.575e-2	3		2	NC	1
517		12	max	.006	3	.174	3	0	15	2.678e-2	2		15	NC	1
518		<u> </u>	min	003	2	282	2	001	1	-1.308e-2	3		2	NC	1
519		13	max	.006	3	.148	3	0	15	2.149e-2	2		15	NC	1
520			min	003	2	238	2	0	1	-1.047e-2	3	354.305	2	NC	1
521		14	max	.006	3	.115	3	.002	1	1.62e-2	2		15	NC	1
522			min	003	2	182	2	0	15	-7.855e-3	3		2	NC	1
523		15	max	.006	3	.078	3	.006	1	1.091e-2	2	NC	5	NC	1
524			min	003	2	121	2	0	15	-5.243e-3	3	557.326	2	NC	1
525		16	max	.005	3	.04	3	.009	1	5.626e-3	2	NC	5	NC	1
526			min	003	2	061	2	0	15	-2.63e-3	3	796.93	2	NC	1
527		17	max	.005	3	.004	3	.01	1	6.342e-4	1	NC	5	NC	1
528			min	003	2	005	2	0	15	-1.723e-5	3	1307.538	1	NC	1
529		18	max	.005	3	.043	1	.007	1	1.072e-2	2	NC	4	NC_	1
530			min	003	2	028	3	0	15	-4.291e-3	3	2768.594	1	NC	1
531		19	max	.005	3	.084	1	0	15	2.146e-2	2	NC	1	NC_	1
532	145		min	003	2	<u>058</u>	3	001	1	-8.726e-3	3	NC NC	1	NC NC	1
533	<u>M5</u>	1_	max	.023	3	.22	2	0	1	0	1	NC	1	NC_	1
534			min	015	2	013	3	0	1	0	1	NC NC	1	NC NC	1
535		2	max	.023	3	.102	2	0	1	0	1	NC 070.040	5	NC NC	1
536		3	min	016	3	.001	3	0	1	0	<u>1</u> 1	979.642	5	NC NC	1
537		3	max	.023		.036		0	1	0	1		2	NC NC	1
538 539		4	min	016 .023	3	03 .108	3	0	1	0	1			NC NC	1
540		4	max	025 015	2	186	2	0	1	0	1		15 2	NC NC	1
541		5		.022	3	.205	3	0	1	0	+		15	NC NC	1
542		5	max min	015	2	354	2	0	1	0	1		2	NC NC	1
543		6	max	.022	3	.313	3	0	1	0	1		15	NC	1
544			min	015	2	52	2	0	1	0	1		2	NC	1
545		7	max	.021	3	.419	3	0	1	0	1		15	NC	1
546		T .	min	014	2	67	2	0	1	0	1		2	NC	1
547		8	max	.021	3	.507	3	0	1	0	1		15	NC	1
548			min	014	2	791	2	0	1	0	1		2	NC	1
549		9	max	.02	3	.564	3	0	1	0			15	NC	1
550		Ť	min	014	2	867	2	0	1	0	1		2	NC	1
551		10	max	.02	3	.584	3	0	1	0	1		15	NC	1
552			min	014	2	892	2	0	1	0	1		2	NC	1
553		11	max	.019	3	.569	3	0	1	0	1		15	NC	1
													-		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L	LC	(n) L/z Ratio	LC
554			min	013	2	866	2	0	1	0	1		2	NC	1
555		12	max	.019	3	.52	3	0	1	0	1	3785.13	15	NC	1
556			min	013	2	787	2	0	1	0	1		2	NC	1
557		13	max	.018	3	.441	3	0	1	0	1		15	NC	1
558			min	013	2	66	2	0	1	0	1		2	NC	1
559		14	max	.018	3	.342	3	0	1	0	1		<u>-</u> 15	NC	1
560			min	013	2	502	2	0	1	0	1		2	NC	1
561		15	max	.017	3	.231	3	0	1	0	1		 15	NC	1
562			min	013	2	331	2	0	1	0	1		2	NC	1
563		16	max	.017	3	.118	3	0	1	0	1		15	NC	1
564		'	min	013	2	164	2	0	1	0	1		1	NC	1
565		17	max	.017	3	.012	3	0	1	0	1		5	NC	1
566		T '	min	012	2	016	2	0	1	0	1		1	NC	1
567		18	max	.017	3	.103	1	0	1	0	1		5	NC	1
568		10	min	012	2	078	3	0	1	0	1		1	NC	1
569		19	max	.017	3	.2	1	0	1	0	1		1	NC	1
570		10	min	012	2	16	3	0	1	0	1		1	NC	1
571	M9	1	max	.007	3	.09	2	0	15	2.45e-2	3		1	NC	1
572	TVIO	+	min	003	2	011	3	001	1	-1.542e-2	1		1	NC	1
573		2	max	.003	3	.043	2	.007	1	1.212e-2	3		3	NC	1
574			min	003	2	003	3	<u>.007</u>	15	-7.466e-3	1		2	NC	1
575		3	max	.007	3	.011	3	.01	1	2.099e-4	1		5	NC	1
576			min	003	2	009	2	0	15	-1.22e-5	10		2	NC	1
577		4	max	.007	3	.037	3	.009	1	4.326e-3	3		5	NC	1
578		4	min	003	2	067	2	<u>.009</u>	15	-4.064e-3	2		2	NC	1
579		5	max	.003	3	.07	3	.007	1	8.53e-3	3		5	NC	1
580		5	min	003	2	129	2	<u>.007</u>	15	-8.321e-3	1		2	NC	1
581		6		.003	3	.106	3	.003	1	1.273e-2	3		<u>-</u> 15	NC NC	1
582		0	max	003	2	188	2	<u>.003</u>	15	-1.259e-2	1		2	NC	1
583		7	min	.003	3	<u>100</u> .14	3		12	1.694e-2	3		<u>~</u> 15	NC NC	1
584			max	003	2	241	2	0	1	-1.685e-2	<u> </u>		2	NC	1
585		8		.003	3	.169	3	0	15	2.114e-2	3		<u>-</u> 15	NC	1
586		0	max min	003	2	283	2	001	1	-2.112e-2	1		2	NC NC	1
		9		.003	3		3		1	2.112e-2 2.118e-2	•			NC NC	1
587		9	max		2	.188		0			3		15		1
588		10	min	003		31	2	0	15	-2.346e-2	1		2	NC NC	
589		10	max	.006	3	.195	3	0	12	1.847e-2	3		15	NC NC	1
590		11	min	003		319	2	0	1	-2.549e-2	2		2	NC NC	
591		11	max	.006	3	.19 31	3	<u> </u>	15	1.575e-2	<u>3</u>		1 <u>5</u> 2	NC NC	1
592		10	min	003					1	-2.761e-2					1
593		12	max	.006	3	.174	3	.001		1.308e-2	3		1 <u>5</u>	NC NC	1
594		12	min	003	2	282	2	0		-2.678e-2 1.047e-2	2		<u>2</u>	NC NC	1
595		13	max	.006	3	.148 238	3	0	1		3		1 <u>5</u> 2	NC NC	
596		4.4	min	003				0	15	-2.149e-2	2				1
597		14	max	.006	3	.115	3	0	15		3		15	NC NC	1
598		4.5	min	003	2	182	2	002	1 1 5	-1.62e-2	2		2	NC NC	1
599		15	max	.006	3	.078	3	0	15		3		5	NC NC	1
600		40	min	003	2	121	2	006	1_1_	-1.091e-2	2		2	NC NC	1
601		16	max	.005	3	.04	3	0	15	2.63e-3	3_		5	NC NC	1
602		47	min	003	2	061	2	009	1_45	-5.626e-3	2		2	NC NC	1
603		17	max	.005	3	.004	3	0	15		3		5	NC NC	1
604		40	min	003	2	005	2	<u>01</u>	1	-6.342e-4	1_	1007.000	1_	NC NC	1
605		18	max	.005	3	.043	1	0	15	4.291e-3	3_		4	NC NC	1
606		4.0	min	003	2	028	3	007	1	-1.072e-2	2	_: 00:00:	1_	NC NC	1
607		19	max	.005	3	.084	1	.001	1	8.726e-3	3		1	NC NC	1
608			min	003	2	058	3	0	15	-2.146e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ V/e/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.