Wave Nature of Matter

Uncertainty Principle

the act of observing effects the position and energy of electron

Uncertainty principle

$$\Delta x.\Delta p_x \ge \frac{h}{4\pi}$$

Photoelectric Effect: Wave -Particle Duality

Electromagnetic Radiation

$$E = E_0 Sin(kx - \omega t)$$

Wave energy is related to Intensity

 $I ∝ E^2_{o}$ and is independent of ω

Light photons

Electrons ejected from the surface

Sodium metal

Einstein borrowed Planck's idea that ΔE =hv and proposed that radiation itself existed as small packets of energy (Quanta)now known as PHOTONS

$$E_P = hv = KE_M + \phi = \frac{1}{2}mv^2 + \phi$$

 ϕ = Energy required to remove electron from surface

<u>Diffraction of Electrons: Wave - Particle Duality</u>

Davisson-Germer Experiment

A beam of electrons is directed onto the surface of a nickel crystal. Electrons are scattered, and are detected by means of a detector that can be rotated through an angle θ . When the Bragg condition $m\lambda = 2dsin\theta$ was satisfied (d is the distance between the nickel atom, and m an integer) constructive interference produces peaks of high intensity

<u>Diffraction of Electrons: Wave - Particle Duality</u>

G. P. Thomson Experiment

Electrons from an electron source were accelerated towards a positive electrode into which was drilled a small hole. The resulting narrow beam of electrons was directed towards a thin film of nickel. The lattice of nickel atoms acted as a diffraction grating, producing a typical diffraction pattern on a screen

de Broglie Hypothesis: Mater waves

Since **Nature** likes **symmetry**, **Particles** also should have **wave-like** nature

De Broglie wavelength

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Electron moving @ 106 m/s

$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34} \text{ J s}}{9.1 \times 10^{-31} \text{ Kg} \times 1 \times 10^{6} \text{ m/s}} = 7 \times 10^{-10} m$$

He-atom scattering

Diffraction pattern of He atoms at the speed 2347 m s⁻¹ on a silicon nitride transmission grating with 1000 lines per millimeter. Calculated de Broglie wavelength 42.5x10⁻¹² m

de Broglie wavelength too small for

<u>Diffraction of Electrons: Wave -Particle Duality</u>

The wavelength of the electrons was calculated, and found to be in close agreement with that expected from the De Broglie equation

Schrodinger's philosophy

PARTICLES can be WAVES and WAVES can be PARTICLES

- New theory is required to explain the behavior of electrons, atoms and molecules
- Should be Probabilistic, not deterministic
- (non-Newtonian) in nature
- Wavelike equation for describing sub/atomic systems

Schrodinger's philosophy

PARTICLES can be WAVES and WAVES can be PARTICLES

A concoction of

$$E = T + V = \frac{1}{2}mv^2 + V = \frac{p^2}{2m} + V$$

$$E = hv = \hbar\omega$$
 Wave is Particle

$$\lambda = \frac{h}{p} = \hbar k$$
 Particle is Wave

Schrodinger's philosophy

$$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$$
 Classical Wave Equation

$$\Psi(x,t)$$
 = Amplitude

$$\Psi(x,t)$$
 = Amplitude

$$\Psi(x,t) = Ce^{i\alpha}$$
; Where $\alpha = 2\pi \left(\frac{x}{\lambda} - vt\right)$ is the phase $E = hv = \hbar\omega$

$$\lambda = \frac{h}{p} = \frac{2\pi}{k}$$

$$\alpha = 2\pi \left(\frac{x}{\lambda} - vt \right) = \frac{x \cdot p - E \cdot t}{\hbar}$$

Time-dependent Schrodinger equation

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \widehat{H} \cdot \Psi(x,t) = \left[\frac{-\hbar^2}{2m} \nabla^2 + V(x) \right] \Psi(x,t)$$

$$\widehat{H} \cdot \Psi(x,y,z,t) = i\hbar \frac{\partial}{\partial t} \Psi(x,y,z,t) ; \quad \widehat{H} = \frac{-\hbar^2}{2m} \nabla^2 + V(x,y,z)$$

Schrodinger equation in 3-dimensions

Time-dependent Schrodinger equation

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \widehat{H} \cdot \Psi(x,t) = \left[\frac{-\hbar^2}{2m} \nabla^2 + V(x) \right] \Psi(x,t)$$

$$\widehat{H} \cdot \Psi(x,y,z,t) = i\hbar \frac{\partial}{\partial t} \Psi(x,y,z,t) ; \quad \widehat{H} = \frac{-\hbar^2}{2m} \nabla^2 + V(x,y,z)$$

$$\Psi(x,y,z,t) = \psi(x,y,z) \cdot \phi(t) \Rightarrow \Psi = \psi \cdot \phi$$

$$\widehat{H} \cdot \Psi = i\hbar \frac{\partial}{\partial t} \Psi$$

$$\widehat{H}(\psi \cdot \phi) = i\hbar \frac{\partial}{\partial t} (\psi \cdot \phi)$$

$$\widehat{H}(\psi \cdot \phi) = i\hbar \frac{\partial}{\partial t} (\psi \cdot \phi)$$

$$\widehat{H}$$
 operates only on ψ and $\frac{\partial}{\partial t}$ operates only on ϕ

$$\phi \cdot \widehat{H} \psi = \psi \left(i\hbar \frac{\partial}{\partial t} \phi \right)$$

Divide by $\psi \cdot \phi$

$$\frac{\widehat{H}\psi}{\psi} = \frac{1}{\phi} \left(i\hbar \frac{\partial}{\partial t} \phi \right)$$

LHS is a function of co-ordinates and RHS is function of time. If these two have to be equal then both functions must be equal to constant, say W

$$\frac{\widehat{H}\psi}{\psi} = \frac{1}{\phi} \left(i\hbar \frac{\partial}{\partial t} \phi \right) = W$$

$$\frac{\psi}{dt} = W$$
 $\widehat{H}\psi = W\psi$

$$\frac{\widehat{H} \cdot \psi}{\psi} = W \qquad \qquad \widehat{H} \psi = W \psi$$

$$\frac{1}{\phi} \left(i\hbar \frac{\partial}{\partial t} \phi \right) = W \qquad \qquad i\hbar \frac{\partial}{\partial t} \phi = W \phi$$
Separation of variables

The solution of the differential equation

$$i\hbar \frac{\partial}{\partial t} \phi = W\phi$$
 is $\phi(t) = e^{-iWt/\hbar}$

In classical mechanics \hat{H} represents total energy

We can therefore write

$$\widehat{H}\psi = W\psi$$
 as $\widehat{H}\psi = E\psi$

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x) = E \cdot \psi(x)$$

Schrodinger equation is an eigenvalue equation

There can be many solutions $\psi_n(x)$ each corresponding to different energy E_n

Laws of Quantum Mechanics

The mathematical description of Quantum mechanics is built upon the concept of an operator

Classical Variable

Position, *x*

$$\hat{x}$$

Momentum, $p_{y} = mv$

$$\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx} = -i\hbar \frac{d}{dx}$$

Kinetic Energy, $T_x = \frac{p_x^2}{2m}$

$$\hat{T}_x = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$$

Kinetic Energy, $T = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m}$ $\hat{T} = \frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$

$$\hat{T} = \frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$

Potential Energy, V(x)

$$\hat{V}(x)$$

Laws of Quantum Mechanics

The values which come up as result of an experiment are the eigenvalues of the appropriate operator

In any measurement of observable associated with operator \hat{A} , the only values that will be ever observed are the eigenvalues an, which satisfy the eigenvalue equation:

$$\widehat{A} \cdot \Psi_n = a_n \cdot \Psi_n$$

 Ψ_n are the eigenfunctions of the system and a_n are corresponding eigenvalues

If the system is in state Ψ_k , a measurement on the system will yield an eigenvalue a_k