ETI Aufgabenblatt 1

https://github.com/LitschiW/ETIPAVorschlaege

letzte Änderung: 25. Januar 2019

Aufgabenbereich 1: Festkommaarithmetik

a)

Füllen Sie die Tabelle aus:

Dezimalzahl	Vorzeichenbehaftete Binärdarstellung	B-Komplement Darstellung	Hexadecimal Darstellung
42			2A
-8			
	00110000		
	10001101		
		00011010	
		11111111	

(Hinweiß:
$$A_{(16)} = 10_{(10)}, B_{(16)} = 11_{(10)}, C_{(16)} = 12_{(10)}, D_{(16)} = 13_{(10)}, E_{(16)} = 14_{(10)}, F_{(16)} = 15_{(10)}$$

1	`
h	١
V	,

Konvertieren Sie 93, $625_{(10)}$ jeweils in die Binär- und Hexadezimaldarstellung:

(Hinweis: Ihr Ergebnis sollte mehr als 8 Binärstellen enthalten. Das ist in diesem Fall gewollt, Sie müssen nicht kürzen/runden.)

aktion:			mittels binärer

Aufgabenbereich 2: Fließkommaarithmetik

Für diesen Aufgabenbereich nutzen wir den IEEE 754 Standard für Minifloats. D.h. wir benutzen eine 8 Bit Darstellung mit einem Vorzeichen-, 3 Manitssen- und 4 Exponentbits.

a)

Wie groß ist der Bias unserer Darstellung?

Was ist der Bias für eine Fließkommzahl mit einem Exponent der Länge 6?

b)

Konvertieren Sie diese Sonderfälle in Fließkommadarstellung:

$$\infty =$$

$$NaN =$$

c)

Bestimmen sie die einzelnen Bestandteile der Fließkommazahl $11011100_{(2F)}$:

$$V =$$

$$E =$$

$$M =$$

d)
Konvertieren Sie $11011100_{(2F)}$ in eine Dezimalzahl:
e)
Addieren Sie $01011100_{(2F)}$ und $01001000_{(2F)}$ mittels Fließkommaarithmetik:

f)
Multiplizieren Sie 01011100 $_{(2F)}$ und 00111100 $_{(2F)}$ mittels Fließkommaarithmetik:
$\mathbf{g})$
Stellen sie 1 ₁₀ in Fließkommaschreibweise da:
Zeigen Sie anhand eines Beispiels, dass man durch das kontinuierliche Addieren von 1_{10} auf eine beliebige Fließkommazahl F $(\neq \infty)$ niemals ∞ erreicht.

Aufgabenbereich 3: Logik und CMOS-Komplexgatter

In diesem Bereiche beschäftigen wir uns mit Logik und CMOS Komplexgattern. Es wird erwartet, dass Sie entsprechen Pull-up und Pull-down Netzwerke zeichnen.

a) Logische Funktionen

Füllen sie Folgende Wahrheitstabellen aus: (Hinweiß: $(A \Rightarrow B) \equiv (\overline{A} \vee B)$)

A	B	$A \vee B$
0	0	
0	1	
1	0	
1	1	

A	B	$A \Rightarrow B$
0	0	
0	1	
1	0	
1	1	

A	B	$\overline{A \wedge B}$
0	0	
0	1	
1	0	
1	1	

A	В	$\overline{A \oplus B}$
0	0	
0	1	
1	0	
1	1	

b) Allgemeine Fragen zum Thema CMOS:

Wie viele Transistoren benötiget ein OR Komplexgatter?

Wie viele Transistoren benötiget ein NAND Komplexgatter?

Was ist der Unterschied zwischen n-Mos- und p-Mos-Transistoren?

\mathbf{c})
Vereinfachen Sie die Formel $\overline{\left(C\vee(\overline{C}\wedge A)\vee(\overline{\overline{A}\vee B})\right)\wedge\overline{C}}$ möglichst stark:
Zeichnen Sie ein (strukturgleiches) CMOS-Komplexgatter das ihrem Ergebnis entspricht:

d)
Zeichnen Sie folgende Funktion strukturgleich als CMOS-Komplexgatter: $f(x) = \overline{(A \vee B)}$.
Wie viele Transistoren würden Sie benötigen?

Aufgabenbereich 4: Flipflops und Schaltungen

a) Volladdierer

Zeichnen sie einen Halbaddierer auf Gatterebene. Setzen Sie dann 2 Halbaddierer (gekennzeichnent als \fbox{HA}) zu einem Volladdierer zusammen:

Füllen Sie die Funktionstabelle für ein Volladdierer aus:

A	B	C_{in}	S	C_{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b) D-FlipFlop
Was ist der Unterschied zwischen einem D-Latch und einem D-Flip-Flop?
Füllen Sie die Funktionstabelle für ein D-Flip-Flop aus:
$egin{array}{ c c c c c c c c c c c c c c c c c c c$
(Hinweis: \square bezeichnet eine sinkende, \square eine steigende Flanke)
Zeichnen Sie ein taktgesteuertes D-Latch auf Gatter Ebene. Makieren sie das enthaltene Flipflop:

Zeichnen Sie ein taktgesteuertes D-Flip-Flop. Nutzen Sie D-Latches als vorhandene Bauteile:
c) Schieberegister
Zeichnen Sie ein 3-Bit-Links-Schieberegister:
Wofür können Schieberegister eingesetzt werden?

Wo kann m	nan Schiebereg	ister auf ein	em Mikroco	ontroller find	len?	

Aufgabenbereich 5: Finite State Machines

Aufgabenbereich 6: VHDL