Algebra II: Tutorial 2

February 21, 2022

Problem 1. Let R be an integral domain. Show that if R[x] is a UFD, then R is again a UFD.

Solution. Consider any non-unit element a in R as an element of degree zero in R[x]. Since R[x] is a UFD, a has a unique factorisation into irreducibles in R[x]. By the additive property of degrees, each irreducible component has degree zero. We know that irreducibles in R[x] of degree zero are in bijection with irreducibles in R. This concludes our proof.

Problem 2 (Relation between irreducibility and existence of roots). Let K be any field, and consider the polynomial ring R = K[x].

- 1. Suppose that $f \in R$ has degree 2 or 3. Show that f is irreducible over K if and only if f has no roots in K.
- 2. Show that the statement in part 1. no longer holds if we assume that f has degree ≥ 4 .
- 3. Show that the statement in part 1. is no longer true if we replace K by an arbitrary integral domain.

Solution. 1. Suppose that f is reducible. Since f has degree 2 or 3, the additive property of degrees implies that f must have a linear factor, in which case f has a root. The converse is true without the assumption on the degree of f.

- 2. The polynomial $(x^2+2)^2$ is reducible over \mathbb{Q} yet does not have roots in \mathbb{Q} .
- 3. Consider $f = 2x^{+}4$ over \mathbb{Z} . Then, f is reducible and has degree two, but has no roots in \mathbb{Z} .

Problem 3 (Irreducibility tests over \mathbb{Q}). Determine whether or not the following polynomials are irreducible over \mathbb{Q} :

- 1. $f(x) = x^3 + 5x^2 + 4$,
- 2. $f(x) = x^4 10x^2 + 1$.

Solution. 1. Since f is primitive, f is irreducible over \mathbb{Q} if and only if it is irreducible over \mathbb{Z} . To show that f is irreducible over \mathbb{Z} , note that over \mathbb{Z}_3 , $f(x) = x^3 + 2x^2 + 1$ has no roots. This implies that f is irreducible over \mathbb{Z}_3 , which by the mod-p lemma, implies f is irreducible over \mathbb{Z} .

2. By Gauss's lemma, it suffices to show that f(x) is irreducible over \mathbb{Z} . Suppose that f is reducible over \mathbb{Z} . A direct computation using the root test shows that f has no root in \mathbb{Z} . Therefore, $f(x) = (x^2 + ax + b)(x^2 + cx + d)$ for some $a, b, c, d \in \mathbb{Z}$. A quick calculation shows this is not possible, and hence such a factorisation does not exist.

Problem 4 (Universal property of polynomial rings). Let K be a commutative ring, and L a ring containing K as a subring. Consider the polynomial ring K[x].

1. For each $\alpha \in L$, show that there exists a unique ring homomorphism

$$ev_{\alpha}: K[x] \to L$$

satisfying the following two conditions:

- (a) $ev_{\alpha}(k) = k$, for all $k \in K$, and
- (b) $ev_{\alpha}(x) = \alpha$.

For each $\alpha \in L$, we call that homomorphism the evaluation homomorphism at α .

- 2. Suppose now that K is an infinite field, and L = K. Show that $f \in K[x]$ and $g \in K[x]$ are equal if and only if the evaluations $ev_{\alpha}(f)$ and $ev_{\alpha}(g)$ are equal in K for all elements $\alpha \in K$.
- 3. Show that this property does not hold if K is a finite field. (Hint: find two distinct polynomials f and g over \mathbb{Z}_3 whose values $f(\alpha)$ and $g(\alpha)$ coincide $\forall \alpha \in \mathbb{Z}_3$.)

Solution. 1. For $f(x) = \sum_{n=0}^{m} a_n x^n$ with $a_n \in K \subset L$, define $\phi_a(f(x)) = \sum_{n=0}^{m} a_n \alpha^n$. Since K is a subring of L, the image of ev_α lies in L. It is easy to see that $ev_\alpha(k) = k$ for all $k \in K$, and that $ev_\alpha(x) = \alpha$. It is straightforward to see that ev_α is a ring homomorphism. Suppose now that ϕ_1 and ϕ_2 are two such ring homomorphisms from K[x] to L, i.e. ring homomorphisms fixing K and such that $\phi_1(x) = \phi_2(x) = \alpha$. Since ϕ_1 and ϕ_2 are ring homomorphisms, we get that $\phi_1(f(x)) = \phi_2(f(x))$ for any $f \in K[x]$, and therefore $\phi_1 = \phi_2$.

2. It is clear that if f and g are equal, their evaluations are equal for all $\alpha \in K$. Suppose now that $ev_{\alpha}(f) = ev_{\alpha}(g), \forall \alpha \in K$. By definition, this implies that the polynomial $f - g \in K[x]$ satisfies $(f - g)(\alpha) = 0, \forall \alpha \in K$. Suppose that f - g is non-zero, then f - g is a polynomial, say of degree n. On the other hand, the fact that K[x] equipped with the degree function is a Euclidean domain implies that f - g has root a if and only if f - g is divisible by x - a. Therefore, $f - g = \prod_{a \in K} (x - a)$. By assumption, K is infinite, and therefore the degree of the right-hand side is strictly larger than $n \in \mathbb{N}$, which is a contradiction. Therefore, f - g

is the zero polynomial, i.e. f = g. 3. Consider $f(x) = x^3 + 2x$ and g(x) = 0. Then, f and g are distinct polynomials in $\mathbb{Z}_3[x]$. However, a direct computation shows that $f() = g(a) = 0, \forall a \in \mathbb{Z}_3$.