Preamble to Discriminant Analysis

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Introduction

Introduction

In these slides I'll talk about the concept of Variance decomposition taking into account a group structure.

The idea is to layout a couple of foundational principles that should allow you to understand discriminant methods in a more comprehensive way.

BTW: this material is not in the textbooks ISL and APM.

Iris Data

Dataset iris in R

n=150 Observations, i.e. iris flowers

p = 4 predictors

- ▶ Sepal.Length
- ▶ Sepal.Width
- ▶ Petal.Length
- ▶ Petal.Width

One response (categorical)

Species (3 classes: setosa, versicolor, virginica)

Famous data set collected by Edgar Anderson (1935), and used by Ronald Fisher (1936) in his paper about Discriminant Analysis.

Dataset iris in R

1	nead(iris)				
-	(1110)				
	Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

Dataset iris in R

summary(iris)			
Sepal.Length Sepal.Width Min. :4.300 Min. :2.000 1st Qu.:5.100 1st Qu.:2.800 Median :5.800 Median :3.057 Mean :5.843 Mean :3.057 3rd Qu.:3.300 Max :7.900 Max. :4.400	Min. :1.000 1st Qu.:1.600 Median :4.350 Mean :3.758	Petal.Width Min.:0.100 1st Qu.:0.300 Median:1.300 Mean:1.199 3rd Qu.:1.800 Max.:2.500	Species setosa :50 versicolor:50 virginica :50

Let's take into account the group structure

Kernel densities of predictors (iris data)


```
library(reshape2)
library(ggplot2)
iris_melt <- melt(iris, id = "Species")</pre>
ggplot(data = iris_melt, aes(x = variable, y = value)) +
  geom_boxplot() +
  ggtitle("Boxplot of predictors (iris data)")
ggplot(data = iris_melt, aes(x = variable, y = value)) +
  geom_boxplot(aes(fill = Species, color = Species)) +
  ggtitle("Boxplot of predictors (iris data)")
ggplot(data = iris_melt, aes(x = value)) +
  geom_density(aes(fill = Species, color = Species),
               alpha = 0.7) +
  facet_wrap(~ variable, scales = 'free_y') +
  ggtitle("Kernel densities of predictors (iris data)")
```

Which predictor provides the "best" distinction between Species?

Caveat: messy notation

In regression problems we've been using two indices i and j

- ightharpoonup i for objects, $i = 1, \ldots, n$
- ▶ j for predictors, j = 1, ..., p

New index k

Now we have a new index k for groups or classes, $k=1,\ldots,K$.

Sum of Squares

Consider a single predictor X and a categorical response Y

Ignoring the respone, we can obtain the mean \bar{x} and the total sum of squares (TSS) of X as:

$$\bar{x} = \sum_{i=1}^{n} x_i$$

$$TSS = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Group (or class) structure

Let's take into account the group structure conveyed by Y

- Let G_k represent the k-th group in Y
- Let n_k be the number of observations in group G_k ,
- ▶ Then:

$$n = n_1 + n_2 + \dots + n_K = \sum_{k=1}^{K} n_k$$

Between Sum of Squares

Each group k will have its mean \bar{x}_k :

$$\bar{x}_k = \sum_{i \in G_k} x_{ik}$$

We can obtain the Between-Groups Sum of Squares (BSS)

BSS =
$$\sum_{k=1}^{K} n_k (x_k - \bar{x})^2$$

Within Sum of Squares

Each group k will also have its own sum-of-squares SS_k

$$SS_k = \sum_{i \in G_k} (x_{ik} - \bar{x}_k)^2$$

We can obtain the Within-Groups Sum of Squares (WSS)

WSS =
$$\sum_{k=1}^{K} \sum_{i \in G_k} (x_{ik} - \bar{x}_k)^2$$

Decomposition of sums-of-squares

An important aspect has to do with looking at the squared deviations: $(x_i - \bar{x})^2$ in terms of the group structure.

A useful trick is to rewrite the deviation terms $x_i - \bar{x}$ as:

$$x_i - \bar{x} = x_i - (\bar{x}_k - \bar{x}_k) - \bar{x}$$

= $(x_i - \bar{x}_k) + (\bar{x}_k - \bar{x})$

Sum of Squares Decomposition

We can decompose TSS in terms of BSS and WSS:

$$\sum_{k=1}^{K} \sum_{i \in G_k} (x_{ik} - \bar{x})^2 = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2 + \sum_{i \in G_k} (x_{ik} - \bar{x}_k)^2$$
TSS BSS WSS

In summary:

$$TSS = BSS + WSS$$

Density for Sepal Length


```
ggplot(data = iris, aes(x = Sepal.Length)) +
geom_density(fill = 'gray') +
ggtitle('Density for Sepal Length')
```

TSS for Sepal.Length

```
x <- iris$Sepal.Length
# overall mean
x_bar \leftarrow mean(x)
x_bar
## [1] 5.843333
# total sums-of-squares
tss <- sum((x - x_bar)^2)
tss
## [1] 102.1683
```

Let's consider the group structure


```
ggplot(data = iris, aes(x = Species, y = Sepal.Length)) +
   geom_boxplot(aes(fill = Species))
```



```
ggplot(data = iris, aes(x = Sepal.Length, group = Species)) +
geom_density(aes(fill = Species)) +
facet_grid(Species ~ .) +
ggtitle('Sepal Length by Species')
```

BSS for Sepal.Length

```
# Sepal Length group means
x_means <- tapply(x, iris$Species, mean)
# between sums-of-squares
bss <- sum(50 * (x_means - x_bar)^2)
bss
## [1] 63.21213</pre>
```

WSS for Sepal.Length

```
# Sepal Length group sum of squares
w1 <- sum((x[1:50] - x_means[1])^2)
w2 <- sum((x[51:100] - x_means[2])^2)
w3 <- sum((x[101:150] - x_means[3])^2)

# within sums-of-squares
wss <- w1 + w2 + w3
wss

## [1] 38.9562
```

TSS Decomposition

Let's check that we have:

$$TSS = BSS + WSS$$

```
# tss
tss

## [1] 102.1683

# bss + wss
bss + wss
## [1] 102.1683
```

Dispersion in Sepal.Length

Derived Ratios from TSS = BSS + WSS

Correlation Ratio

Correlation ratio η^2 (proposed by K. Pearson):

$$\eta^2(X,Y) = \frac{\mathsf{BSS}}{\mathsf{TSS}}$$

- $ightharpoonup \eta^2$ takes vaues between 0 and 1
- $\eta^2 = 0$ represents the special case of no dispersion among the means of the different categories
- $\eta^2 = 1$ refers to no dispersion within the respective categories.

The correlation ratio is a measure of the relationship between the dispersion within categories and the dispersion across all individuals.

F Ratio

With TSS = BSS + WSS, we can also calculate:

F ratio (proposed by R.A. Fisher):

$$F = \frac{\mathsf{BSS}/(k-1)}{\mathsf{WSS}/(n-k)}$$

The larger the value of both ratios, the more variability is there between groups than within groups.

Ratios for Sepal.Length

```
# correlation ratio
eta_sqr <- bss / tss
eta_sqr
## [1] 0.6187057
# F ratio
F_{\text{ratio}} \leftarrow (\text{bss} / (3 - 1)) / (\text{wss} / (150 - 3))
F_ratio
## [1] 119.2645
```

Ratios for all Variables

Let's compute the decompositions for all predictors, and obtain the correlation ratios and F ratios

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width ## 0.6187057 0.4007828 0.9413717 0.9288829

Fs ## Sepal.Length Sepal.Width Petal.Length Petal.Width ## 119.26450 49.16004 1180.16118 960.00715
```

More Notation: generalization for more than 1 predictor

Predictors and Response

- ightharpoonup p predictors X_1, X_2, \dots, X_p
- ightharpoonup One categorical response Y with K categories
- Y introduces a group or class structure
- Observations divided in K groups or classes

Here's some notation that I'll be using while covering classification methods:

Let n_k be the number of observations in the k-th group

Let x_{ijk} represent the *i*-th observation, of the *j*-th variable, in the *k*-th group.

Let x_{ik} represent i-th observation in group k

Let x_{jk} represent j-th variable in group k

I hope this doesn't create a lot of confussion

Let n_k be the number of observations in the k-th group G_k , then:

$$n = n_1 + n_2 + \dots + n_K = \sum_{k=1}^K n_k$$

For a given variable X_j , represented with vector $\mathbf{x_j}$, we have: Total or global mean:

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

Local mean of observations in group k:

$$\bar{x}_{jk} = \frac{1}{n_k} \sum_{i \in G_k} x_{ij}$$

where G_k represents the set of observations in group k

For a given variable X_j , representeded with vector $\mathbf{x_j}$, we have: Total Sum of Squared deviations

$$TSS_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$$

Assuming centered variables (mean = 0)

$$\mathsf{TSS}_j = \mathbf{x}_{\mathbf{j}}^\mathsf{T} \mathbf{x}_{\mathbf{j}}$$

Decomposition of sums-of-squares

An important aspect has to do with looking at the squared deviations: $(x_{ij} - \bar{x}_j)^2$ in terms of the group structure.

A useful trick is to rewrite the deviation terms $x_{ij} - \bar{x}_j$, as:

$$x_{ij} - \bar{x}_j = x_{ij} - (\bar{x}_{jk} - \bar{x}_{jk}) - \bar{x}_j$$

= $(x_{ij} - \bar{x}_{jk}) + (\bar{x}_{jk} - \bar{x}_j)$

Decomposition of Sums-of-Squares

Using the previous format of deviations, the sum of squared deviations can be decomposed as:

$$\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 = \sum_{k=1}^{K} n_k (\bar{x}_{jk} - \bar{x}_k)^2 + \sum_{k=1}^{K} \sum_{i \in G_k} (x_{ijk} - \bar{x}_{jk})^2$$

What's this?

Decomposition of Sums-of-Squares

Using the previous format of deviations, the sum of squared deviations can be decomposed as:

$$\underbrace{\sum_{i=1}^{n}(x_{ij}-\bar{x}_{j})^{2}}_{\text{Total SS}} = \underbrace{\sum_{k=1}^{K}n_{k}(\bar{x}_{jk}-\bar{x}_{k})^{2}}_{\text{Between-groups SS}} + \underbrace{\sum_{k=1}^{K}\sum_{i\in G_{k}}(x_{ijk}-\bar{x}_{jk})^{2}}_{\text{Within-groups SS}}$$

Decomposition of Variance

The sums-of-squares decompositions can be put in terms of **population** variances:

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}(x_{ij}-\bar{x}_{j})^{2}}_{\text{Total variance}} = \underbrace{\sum_{k=1}^{K}\frac{n_{k}}{n}(\bar{x}_{jk}-\bar{x}_{k})^{2}}_{\text{Between-groups variance}} + \underbrace{\frac{1}{n}\sum_{k=1}^{K}\sum_{i\in G_{k}}n_{k}(x_{ijk}-\bar{x}_{jk})^{2}}_{\text{Within-groups variance}}$$

Formula from one-way analysis of variance (anova)

Decomposition of Variance

Alternatively, the sums-of-squares decompositions can also be put in terms of **sample** variances:

$$TSS = \underbrace{\frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}_{\text{Total variance}} =$$

$$\underbrace{\sum_{k=1}^{K} \frac{n_k}{n} (\bar{x}_{jk} - \bar{x}_k)^2}_{\text{Between-groups variance}} + \underbrace{\frac{1}{n-1} \sum_{k=1}^{K} \sum_{i \in G_k} (n_k - 1) (x_{ijk} - \bar{x}_{jk})^2}_{\text{Within-groups variance}}$$

Geometric Perspective

Data as a cloud of points in p-dim space

Cloud of n points in p-dimensional space

Global centroid (center of gravity)

The centroid g is the point of averages

Global Centroid

The global centroid g is the point of averages which consists of the point formed with all the variable means:

$$\mathbf{g} = [\bar{x}_1, \bar{x}_2, \dots, \bar{x}_p]$$

where:

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

If all variables are mean-centered, the centroid is the origin

$$\mathbf{g} = \underbrace{[0, 0, \dots, 0]}_{p \text{ times}}$$

Total Dispersion

Taking the global centroid as a point of reference, we can look at the amount of spread or dispersion in the data.

Assuming centered variables, a matrix of total dispersion is given by the *Total Sums of Squares* (TSS):

$$\mathsf{TSS} = \mathbf{X}^\mathsf{T}\mathbf{X}$$

Alternatively, we can get the variance-covariance matrix \mathbf{V} :

$$\mathbf{V} = \frac{1}{n-1} \mathbf{X}^\mathsf{T} \mathbf{X}$$

Class (group) structure

The objects are divided into classes or groups

Sub-cloud of points for each group

Each group G_k forms its own sub-cloud

Local or group centroids (one per class)

Each group G_k has its own centroid g_k

Group Centroids

The group centroid g_k is the point of averages for those observations in group k:

$$\mathbf{g}_{\mathbf{k}} = [\bar{x}_{1k}, \bar{x}_{2k}, \dots, \bar{x}_{pk}]$$

where:

$$\bar{x}_{jk} = \frac{1}{n_k} \sum_{i \in G_k} x_{ij}$$

Within-groups dispersion

We can focus on the dispersion within the clouds

Dispersion inside a group

Each group will have an associated spread or dispersion matrix given by a *Group Sums of Squares* (GSS):

$$\mathsf{GSS}_k = \mathbf{X}_{\mathbf{k}}^\mathsf{T} \mathbf{X}_{\mathbf{k}}$$

Equivalently, there is an associated variance matrix $\mathbf{W}_{\mathbf{k}}$ for each group

$$\mathbf{W}_{\mathbf{k}} = \frac{1}{n_k - 1} \mathbf{X}_{\mathbf{k}}^\mathsf{T} \mathbf{X}_{\mathbf{k}}$$

where $\mathbf{X_k}$ is the data matrix of the k-th group

Within-groups dispersion

We can combine the groups dispersion to obtain a Within-groups Sums of Squares (WSS) matrix:

$$\mathsf{WSS} = \sum_{k=1}^K \mathbf{X}_\mathbf{k}^\mathsf{T} \mathbf{X}_\mathbf{k}$$

Likewise, we can combine the group variances $W_{\mathbf{k}}$ as a weighted average to get the Within-groups variance matrix W:

$$\mathbf{W} = \sum_{k=1}^{K} \frac{n_k - 1}{n - 1} \mathbf{W_k}$$

Global and Group Centroids

What if we focus on just the centroids?

Global and Group Centroids

Note that the global centroid g can be expressed as a weighted average of the group centroids:

$$\mathbf{g} = \frac{n_1}{n}\mathbf{g_1} + \frac{n_2}{n}\mathbf{g_2} + \dots + \frac{n_K}{n}\mathbf{g_K}$$

$$\mathbf{g} = \sum_{k=1}^{K} \left(\frac{n_k}{n} \right) \mathbf{g_k}$$

Between-groups dispersion

We can focus on the dispersion between the centroids

Dispersion between groups

Focusing on just the centroids, we can get its corresponding matrix of dispersion given by the *Between Sums of Squares* (BSS):

$$\mathsf{BSS} = \sum_{k=1}^K (\mathbf{g_k} - \mathbf{g})(\mathbf{g_k} - \mathbf{g})^\mathsf{T}$$

Equivalently, there is an associated Between-groups variance matrix \boldsymbol{B}

$$\mathbf{B} = \sum_{k=1}^{K} \frac{n_k - 1}{n - 1} (\mathbf{g_k} - \mathbf{g}) (\mathbf{g_k} - \mathbf{g})^\mathsf{T}$$

Three types of Dispersions

Let's recap. We have three types of sums-of-squares matrices:

- ► TSS: Total Sums fo Squares
- ▶ WSS: Within-groups Sums fo Squares
- ▶ BSS: Between-groups Sums fo Squares

Alternatively, we also have three types of variance matrices:

- V: Total variance
- ▶ W: Within-groups variance
- ▶ B: Between-groups variance

Dispersion Decomposition

It can be shown (Huygens theorem) for both, sums-of-squares and variances, that the total dispersion (TSS or ${\bf V}$) can be decomposed as:

- ightharpoonup TSS = BSS + WSS
- V = B + W

Dispersion Decomposition

Let X be the $n \times p$ mean-centered matrix of predictors, and Y be the $n \times K$ dummy matrix of groups

- ightharpoonup TSS = $\mathbf{X}^\mathsf{T}\mathbf{X}$
- $\blacktriangleright \mathsf{BSS} = \mathbf{X}^\mathsf{T} \mathbf{Y} (\mathbf{Y}^\mathsf{T} \mathbf{Y})^{-1} \mathbf{Y}^\mathsf{T} \mathbf{X}$
- $\blacktriangleright \ \mathsf{WSS} = \mathbf{X}^\mathsf{T} (\mathbf{I} \mathbf{Y} (\mathbf{Y}^\mathsf{T} \mathbf{Y})^{-1} \mathbf{Y}^\mathsf{T}) \mathbf{X}$

References

- ▶ Principles of Multivariate Analysis: A User's Perspective by W.J. Krzanowski (1988). Chapter 11: Incorporating group structure: descriptive methods. Wiley.
- ▶ Data Mining and Statistics for Decision Making by Stephane Tuffery (2011). Chapter 11: Classification and prediction methods.
- ▶ Multivariate Analysis by Maurice Tatsuoka (1988). Chapter 7: Discriminant Analysis and Canonical Correlation.

References (French Literature)

- ➤ Statistique Exploratoire Multidimensionnelle by Lebart et al (2004). Chapter 3, section 3: Analyse factorielle discriminante. Dunod, Paris.
- Probabilites, analyse des donnees et statistique by Gilbert Saporta (2011). Chapter 18: Analyse discriminante et regression logistique. Editions Technip, Paris.
- ► Statistique explicative appliquee by Nakache and Confais (2003). Chapter 1: Analyse discriminante sur variables quantitatives. Editions Technip, Paris.
- ➤ Statistique: Methodes pour decrire, expliquer et prevoir by Michel Tenenhaus (2008). Chapter 10: L'analyse discriminante. Dunod, Paris.