Re: Deep G-Buffers for Stable Global Illumination Approximation

Ferit Tohidi Far

November 11, 2018

Abstract

G-Buffers can be used to efficiently render images with an absurd amount of light sources - compared to other global illumination methods like pathtracing. This is possible thanks to a process called "deferred rendering". By using Deep G-Buffers we can speed up the whole process by approximating global illumination instead.

Keywords g-buffer, deep g-buffer, pathtracing, global illumination, shading

Contents

1	Def	erred Rendering	2
	1.1	Different global illumination methods (Pathtracing, photonmapping)	2
	1.2	Why they are inefficient (but pretty)	2
	1.3	How deffered rendering handles lighting more efficiently	2
2	G-E	Buffer	2
	2.1	Frame-Buffer	2
	2.2	Z-Buffer	2
	2.3	Position-Buffer	2
	2.4	Normal-Buffer	2
	2.5	Diffuse-buffer	2
	2.6	Computing global illumination using G-Buffers	2
	2.7	Performance comparison: G-buffers vs Pathtracing	2
	2.8	Output comparison: G-Buffers vs Pathtracing	2
3	Deep G-Buffer		2
	3.1	Concept	2
	3.2	How Deep G-Buffers improve performance	2
	3.3	Performance comparison: G-buffers vs Deep G-Buffers vs Pathtracing	2
	3.4	Output comparison: G-Buffers vs Deep G-Buffers vs Pathtracing	2

1 Deferred Rendering

TODO

- 1.1 Different global illumination methods (Pathtracing, photonmapping)
- 1.2 Why they are inefficient (but pretty)
- 1.3 How deffered rendering handles lighting more efficiently
- 2 G-Buffer
- 2.1 Frame-Buffer
- 2.2 Z-Buffer
- 2.3 Position-Buffer
- 2.4 Normal-Buffer
- 2.5 Diffuse-buffer
- 2.6 Computing global illumination using G-Buffers
- 2.7 Performance comparison: G-buffers vs Pathtracing
- 2.8 Output comparison: G-Buffers vs Pathtracing
- 3 Deep G-Buffer
- 3.1 Concept
- 3.2 How Deep G-Buffers improve performance
- 3.3 Performance comparison: G-buffers vs Deep G-Buffers vs Pathtracing
- 3.4 Output comparison: G-Buffers vs Deep G-Buffers vs Pathtracing