

Question 11. Enthalpy of combustion of carbon to carbon dioxide is - 393.5 J mol^{-1} . Calculate the heat released upon formation of 35.2 g of CO_2 from carbon and oxygen gas.

```
Answer:
```

The combustion equation is:

$$C(s) + O_2(g) \rightarrow CO_2(g);$$

 $AcH = -393.5 \text{ KJ mol}^{-1}$

Heat released in the formation of 44g of CO_2 = 393.5 kj

Heat released in the formation of 35.2 g of CO_2

$$= (393.5 \text{ KJ}) \times (35.2 \text{g})/(44 \text{g}) = 314.8 \text{ kj}$$

Question 12. Calculate the enthalpy of the reaction:

 $N_2O_4(g) + 3CO(g) \rightarrow N_2O(g) + 3CO_2(g)$

Given that; $\Delta_f H^-CO(g) = -110 \text{ kj mot}^{-1}$;

 $\Delta_f HCO_2(g) = -393 \text{ kj mot}^1$

 $\Delta_f HN_2O(g) = 81 \text{ kj mot}^{-1}$;

 $\Delta_f N_2 O_4(g) = 9.7 \text{ kj mol}^{-1}$

Answer:

Enthalpy of reaction (Δ_{r} ,H) = [81 + 3 (- 393)] - [9.7 + 3 (- 110)]

$$= [81 - 1179] - [9.7 - 330] = -778 \text{ kj mol}^{-1}$$

Question 13. Given: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\Delta_{rH^-} = -92.4 \text{ kj mot}^-$

1 What is the standard enthalpy of formation of NH₂ gas?

Answer: $\Delta H^{-} NH_{3}(g) = -(92.4)/2 = -46.2 \text{ kj mot}^{1}$

Question 14. Calculate the standard enthalpy of formation of CH_3OH . from the following data:

(i)
$$CH_3OH(l) + 3/2 O_2(g) \rightarrow CO_2(g) + 2H_2O(l); \Delta_rH^- = -726kj \text{ mol}^{-1}$$

(ii) C(s) + O₂(g)
$$\rightarrow$$
 CO₂ (g); $\Delta_c H^- = -393 \text{ kj mot}^1$

(iii)
$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(l); \Delta_f H^- = -286 \text{ kj mol}^{-1}$$

Answer: The equation we aim at;

$$C(s) + 2H_2(g) + 1/2O_2(g) \rightarrow CH_3OH(I); \Delta_f H^- = \pm ? ... (iv)$$

Multiply eqn. (iii) by 2 and add to eqn. (ii)

$$C(s) + 2H_2(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(Z)$$

$$\Delta H = -(393 + 522) = -965 \text{ kj moH Subtract eqn. (iv) from eqn. (i)}$$

$$CH_3OH(Z) + 3/2O_2(g) \rightarrow CO_2(y) + 2H_2O(Z); \Delta H = -726 \text{ kj mol}^{-1}$$

Subtract: C(s) + $2H_2(y)$ + $1/2O_2(g) \rightarrow CH_3OH(Z)$; $\Delta_f He = -239$ kj mol

Question 15.

Calculate the enthalpy change for the process

$$CCl_4(g) \longrightarrow C(g) + 4 Cl(g)$$

and calculate bond enthalpy of C-Cl in CCl₄(g)

Given:
$$\Delta_{oap} H^{\ominus} (CCl_4) = 30.5 \text{ kJ mol}^{-1}; \quad \Delta_p H^{\ominus} (CCl_4) = -135.5 \text{ kJ mol}^{-1}$$

$$\Delta_a H^{\ominus} (C) = 715.0 \text{ kJ mol}^{-1} \text{ where } \Delta_a H^{\ominus} \text{ is enthalpy of atomisation}$$

$$\Delta_a H^{\ominus} (Cl_2) = 242 \text{ kJ mol}^{-1}.$$

Answer:

The available data is:

The equation we aim at is:

$$CCl_4(g) \longrightarrow C(g) + 4Cl(g); \Delta H= ?$$

Eqn. (iii) + 2 × Eqn. (iv) – Eqn. (i) – Eqn. (ii) gives the required equation with $\Delta H = 715.0 + 2 (242) - 30.5 - (-135.5) \text{ kJ mol}^{-1}$ = 1304 kJ mol⁻¹

Bond enthalpy of C-Cl in CCl₄ (average value) = $\frac{1304}{4}$ = 326 kJ mol⁻¹.

Question 16.For an isolated system $\Delta U = 0$; what will be ΔS ? Answer: Change in internal energy (ΔU) for an isolated system is zero for it does not exchange any energy with the surroundings. But entropy tends to increase in case of spontaneous reaction. Therefore, $\Delta S > 0$ or positive.

Question 17. For a reaction at 298 K

$$2A + B \rightarrow C$$

 $\Delta H = 400 \text{ kj mol}^{-1} \text{ and } \Delta S = 0.2 \text{ kj Kr}^{-1} \text{ mol}^{-1}$.

At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range? Answer:

As per the Gibbs Helmholtz equation:

 $\Delta G = \Delta H - T\Delta S$ For $\Delta G = 0$:

 $\Delta H = T\Delta S$ or $T = \Delta H / \Delta S$

 $T = (400 \text{ KJ mol}^{-1})/(0.2 \text{ KJ K}^{-1} \text{ mol}^{-1}) = 2000 \text{ k}$

Thus, reaction will be in a state of equilibrium at 2000 K and will be spontaneous above this temperature.

Question 18. For the reaction; $2Cl(g) \rightarrow Cb(g)$; what will be the signs of ΔH and ΔS ?

Answer:

 $\Delta \text{H:}$ negative (- ve) because energy is released in bond formation. $\Delta \text{S:}$ negative (- ve) because entropy decreases when atoms combine to form molecules.

Ouestion 19.

For the reaction

$$2A(g) + B(g) \longrightarrow 2D(g)$$

 $\Delta U^{\ominus} = -10.5 \text{ kJ} \text{ and } \Delta S^{\ominus} = -44.1 \text{ Jk}^{-1}$

Calculate ΔG^{\ominus} for the reaction, and predict whether the reaction may occur spontaneously.

Answer:

$$\Delta H^{\ominus} = \Delta U^{\ominus} + \Delta^{ng}RT$$

$$\Delta U^{\ominus} = -10.5 \text{ kJ}; \quad \Delta^{ng} = 2 - 3 = -1 \text{ mol}$$

$$R = 8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1}; T = 298 \text{ K}$$

$$\Delta H^{\ominus} = (-10.5 \text{ kJ}) + [(-1 \text{ mol}) \times (8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1}) \times (298\text{K})]$$

$$= -10.5 \text{ kJ} - 2.478 \text{ kJ} = -12.978 \text{ kJ}$$

According to Gibbs Helmholtz equation:

$$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$$

 $\Delta G^{\ominus} = (-12.978 \text{ kJ}) - (298 \text{ K}) \times (-0.0441 \text{ kJ K}^{-1})$
= -12.978 + 13.112 = -12.978 + 13.142 = **0.164 kJ**

Since AG® is nositive, the reaction is non-spontaneous in nature

Question 20.

The equilibrium constant for the reaction is 10. Calculate the value of ΔG^{Θ} ; Given $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$; T = 300 K.

Answer:

$$\Delta G^{\ominus} = -RT \ln K = -2.303 RT \log K.$$
 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}; T = 300 \text{ K}; K = 10$
 $\Delta G^{\ominus} = -2.303 \times 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \times (300 \text{ K}) \times \log 10$
 $= -5527 \text{ J mol}^{-1} = -5.527 \text{ kJ mol}^{-1}.$

Comment on the thermodynamic stability of NO(g) and NO₂(g) given: :

$$\begin{array}{ll} 1/2N_2(g) + 1/2O_2(g) & \longrightarrow NO(g); & \Delta_r H^{\ominus} = 90 \ kJ \ mol^{-1} \\ NO(g) + 1/2O_2(g) & \longrightarrow NO_2(g); & \Delta_r H^{\ominus} = -74 \ kJ \ mol^{-1} \end{array}$$

Answer:

For NO (g);
$$\Delta_r H^{\ominus} = + \text{ ve}$$
: Unstable in nature
For NO₂ (g); $\Delta_r H^{\ominus} = - \text{ ve}$: Stable in nature

Question 22.

Calculate the entropy change in surroundings when 1.0 mol of $H_2O(l)$ is formed under standard conditions. Given $\Delta H^{\odot}=-286$ kJ mol $^{-1}$.

Answer:

$$q_{\rm rev} = (-\Delta_f H^{\ominus}) = -286~{\rm kJ~mol^{-1}} = 286000~{\rm J~mol^{-1}}$$

$$\Delta S_{\text{(Surroundings)}} = \frac{q_{\text{rev}}}{T} = \frac{(286000 \text{ J mol}^{-1})}{298 \text{ K}} = 959 \text{ J K}^{-1} \text{ mol}^{-1}.$$

******* END ******