Design and Analysis of Algorithms

Insertion Sort

National University of Computer and Emerging Sciences, Islamabad

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Insertion Sort of Cards

Insertion Sort

The list is divided into two parts: sorted and unsorted

- In each pass, the following steps are performed
 - First element of the unsorted part (i.e., sub-list) is picked up
 - Transferred to the sorted sub-list
 - Inserted at the appropriate place
- A list of n elements will take at most n-1 passes to sort the data

Animation

https://visualgo.net/bn/sorting

Insertion Sort

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]
                                   for j \leftarrow 2 to n
                                           do key \leftarrow A[j]
                                               i \leftarrow j-1
  "pseudocode"
                                               while i > 0 and A[i] > key
                                                      do A[i+1] \leftarrow A[i]
                                                           i \leftarrow i - 1
                                               A[i+1] = key
                                                                       п
A:
```

8 2 4 9 3 6

Best Case

	1	2	3	4	5
- 1					

Worst Case

5	4	3	2	1

Running time of Insertion Sort

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input,
 - short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Kinds of Analyses

- Worst-case: (Usually)
 - T(n) = (maximum time of algorithm) on any input of size n.
- Average-case (Sometimes):
 - T(n) = (expected time of algorithm) over all inputs of size n.
 - Need assumption of statistical distribution of inputs
- Best-case: (bogus)
 - Cheat with a slow algorithm that works fast on some input

Machine-independent time: An example

A pseudocode for insertion sort (INSERTION SORT).

```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length [A]

2 do key \leftarrow A[j]

3 \nabla Insert A[j] into the sorted sequence A[1,..., j-1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i+1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i+1] \leftarrow key
```

Analysis of Insertion Sort

 Time to compute the running time as a function of the input size

	cost	times
1.for j=2 to length(A)	\mathtt{c}_1	n
2. do key=A[j]	C ₂	n-1
3. "insert A[j] into the	0	n-1
sorted sequence A[1j-1]"		
4. i=j-1	c ₄	$\lfloor n-1 \rfloor$
5. while i>0 and A[i]>key	C ₅	$\sum_{j=2}^{j} t_j$
6. do A[i+1]=A[i]	c ₆	$\left \sum_{j=2}^{n}(t_{j}-1)\right $
7. i	C ₇	$\sum_{j=2}^{n} (t_j - 1)$ $\sum_{j=2}^{n} (t_j - 1)$
8. $A[i+1]=key$	C ₈	n-1

Insertion-Sort Running Time

$$\begin{split} T(n) &= c_1 \bullet (n) + c_2 \bullet (n-1) + c_3 \bullet (n-1) + \\ c_4 \bullet (n-1) + c_5 \bullet (\Sigma_{j=2,n} t_j) + \\ c_6 \bullet (\Sigma_{j=2,n} (t_j - 1)) + c_7 \bullet (\Sigma_{j=2,n} (t_j - 1)) \\ + c_8 \bullet (n-1) \end{split}$$

 $c_3 = 0$, of course, since it's the comment

Best/Worst/Average Case

Best case:

elements already sorted, $t_j=1$, running time = f(n), i.e., *linear* time.

Worst case:

elements are sorted in inverse order, $t_i=j$, running time = $f(n^2)$, i.e., quadratic time

Average case:

 $t_j=j/2$, running time = $f(n^2)$, i.e., *quadratic* time

Best Case Result

Occurs when array is already sorted.

For each j = 2, 3,.....n we find that A[i]<=key in line 5 when i has its initial value of j-1.

$$T(n) = c_1 \cdot n + (c_2 + c_4) \cdot (n-1) + c_5 \cdot (n-1) + c_8 \cdot (n-1)$$

$$= n \cdot (c_1 + c_2 + c_4 + c_5 + c_8)$$

$$+ (-c_2 - c_4 - c_5 - c_8)$$

$$= c_9 n + c_{10}$$

$$= f_1(n^1) + f_2(n^0)$$

Worst Case T(n)

- Occurs when the loop of lines 5-7 is executed as many times as possible, which is when A[] is in reverse sorted order.
- key is A[j] from line 2
- i starts at j-1 from line 4
- i goes down to 0 due to line 7
- So, t_j in lines 5-7 is [(j-1) 0] + 1 = j

The '1' at the end is due to the test that fails, causing exit from the loop.

$$T(n) = c_{1} \cdot [n] + c_{2} \cdot (n-1) + c_{4} \cdot (n-1) + c_{5} \cdot (\Sigma_{j=2,n} j) + c_{6} \cdot [\Sigma_{j=2,n} (j-1)] + c_{7} \cdot [\Sigma_{j=2,n} (j-1)] + c_{8} \cdot (n-1)$$

$$T(n) = c_{1} \cdot n + c_{2} \cdot (n-1) + c_{4} \cdot (n-1) + c_{8} \cdot (n-1) + c_{5} \cdot (\Sigma_{j=2,n} j) + c_{6} \cdot [\Sigma_{j=2,n} (j-1)] + c_{7} \cdot [\Sigma_{j=2,n} (j-1)]$$

$$= c_{9} \cdot n + c_{10} + c_{5} \cdot (\Sigma_{j=2,n} j) + c_{11} \cdot [\Sigma_{j=2,n} (j-1)]$$

$$\begin{split} T(n) &= \quad c_9 \cdot n + c_{10} + c_5 \cdot (\Sigma_{j=2,n} \ j) + c_{11} \cdot [\\ \Sigma_{j=2,n} \ (j-1) \] \\ & \text{But} \\ \Sigma_{j=2,n} \ j = [n(n+1)/2] - 1 \\ \text{so that} \\ \Sigma_{j=2,n} \ (j-1) &= \Sigma_{j=2,n} \ j - \Sigma_{j=2,n} \ (1) \\ &= [n(n+1)/2] - 1 - (n-2+1) \\ &= [n(n+1)/2] - 1 - n + 1 = n(n+1)/2 - n \\ &= [n(n+1)-2n]/2 = [n(n+1-2)]/2 = n(n-1)/2 \end{split}$$

Wasn't that fun?

In conclusion,

$$T(n) = c_9 \cdot n + c_{10} + c_5 \cdot [n(n+1)/2] - 1 + c_{11} \cdot n(n-1)/2$$

$$= c_{12} \cdot n^2 + c_{13} \cdot n + c_{14}$$

$$= f_1(n^2) + f_2(n^1) + f_3(n^0)$$

Best/Worst/Average Case (2)

For a specific size of input *n*, investigate running times for different input instances: worst-case 6n Running Time 5n average-case 4n best-case 3n 2n1n В \mathbf{C} D Е G Α Input Instance

Insertion Sort Analysis

- Is insertion sort a fast sorting algorithm?
 - Moderately so, for small n
 - Not at all, for large n
 - sorting "almost sorted" lists

Reference

- Introduction to Algorithms
- Chapter # 2
 - Thomas H. Cormen
 - 3rd Edition
- https://visualgo.net/bn/sorting