

What is Pruning?

Modifying a decision tree so that is has **poorer** performance on a training data set so that it has **better** performance on a validation/test set

Pre-pruning (Early Stopping)

Idea – as we train the decision tree, decide whether it is 'worth' adding in an extra decision

 Alternative: stop splitting when information gain is below a given threshold

• Example:

Sunny:

humidity	wind	Tennis?
High	Low	yes
high	Low	No
normal	High	Yes
normal	high	No

For the 'sunny' branch:

P(tennis | sunny): $\frac{4}{8} = 0.5$,

P(tennis|sunny, high): $\frac{1}{2} = 0.5$

P(tennis | sunny, normal): $\frac{1}{2} = 0.5$

Entropy before: $0.5(0.5 \log(0.5)) + 0.5(0.5 \log(0.5))$

Entropy after 'high': $0.5(0.5 \log(0.5)) + 0.5(0.5 \log(0.5))$

Information gain: 0

• Extra split is non-informative, so end this branch

Sunny:

humidity	wind	Tennis?
High	Low	yes
high	Low	No
normal	High	Yes
normal	high	No

Pros and Cons

Pros

- Does not require validation data
- Fast to train no unnecessary branches are created

Cons

- No guarantee that we get the best answer
 - Possible for one split to have low information gain, but subsequent splits to have high information gain.

Idea:

 Allow the decision tree to overfit to the training data (perfect classifier)

Prune back the tree so that it still performs well on validation

Train Validate Test

- 1.) Build tree using training data
- 2.) Keep adding decisions until all tree is as accurate as possible

Result: complex tree, with high accuracy on the training set, but low accuracy on a validation set

Train Validate Test

- 1.) Remove a branch, starting at the bottom of the tree
- 2.) Calculate validation set error
- 3.) If validation set error has decreased, goto step 1
- 4.) Otherwise,

Result: complex tree, with high accuracy on the training set, but low accuracy on a validation set

Post-pruning

Train Validate Test

Pros

- Possible to guarantee the 'best' answer (but still very difficult for large trees)

Cons

- Two-stage process, so slower than pre-pruning
- Typically requires validation data (which may mean that it is not possible for smaller datasets)

Summary

 Pruning – method of editing a decision tree so that it gives better generalisability

- Two main types of methods
 - Pre-pruning (early stopping)
 - Fast
 - Works well in most cases (but not always)
 - Post-pruning
 - Analagous to hyperparameter optimisation for other ML classifiers
 - Requires computation of 'unnecessary' branches