1. Within a certain region
$$\mathcal{E}=1\bar{0}^{11}$$
 F/m \mathcal{E} $\mathcal{U}=1\bar{0}^{5}$ H/m . If $B_{x}=2\times 10^{-4}$ Coe 15 t fin 10^{-3} y T

a) Upe
$$\nabla x \vec{H} = e \frac{\partial \vec{E}}{\partial t}$$
 to find \vec{E}

- b) Find the total magnetic flux passing flux through the purface x=0,0<y<40m,0<3<2m. at t=1,ue
- e) Find the value of the closed line integral of E around the perimeter of the given surface.

$$a\rangle$$
 $\nabla x \vec{H} = \mathcal{E} \frac{\partial \vec{E}}{\partial t}$

$$\frac{\partial \vec{E}}{\partial t} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial t} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial \vec{E}}{\partial x} = \frac{3x_{10}}{8x} \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$= \frac{2 \times 10^4}{8} \left[\hat{q}_{s} \left[-\cos 10^5 t \cos 10^3 y \right] 10^3 \right]$$

$$\frac{\partial \vec{E}}{\partial t} = -\frac{\partial \times 10^{7}}{\varepsilon M}$$
 Cop 10⁵t Eop 10³y âs

Integrate wirt t' both eider

Regrode
$$\omega$$
-ref to both $\frac{1}{6}$ to $\frac{1}{$

$$\vec{E} = -\frac{2 \times 10}{E M}$$

$$\vec{E} = -\frac{2 \times 10}{E M}$$

$$\vec{E} = -\frac{2 \times 10}{10^{-11} \times 10^{5}}$$

$$2 \sin 10^{5} + \cos 10^{3} y \hat{a}y \sqrt{m}$$

$$\vec{E} = -\frac{2 \times 10}{10^{-11} \times 10^{5}}$$

$$2 \sin 10^{5} + \cos 10^{3} y \hat{a}y \sqrt{m}$$

$$\vec{E} = \frac{-20,000 \text{ Bin}(o^5t) \cos(io^3y)}{2}$$

$$\phi = \int \vec{8} \cdot d\vec{s}$$

$$= 2 \times 10^{4} \operatorname{co}_{\ell}(0^{5}t) \int_{\epsilon}^{4} \sin i \vec{0} y \, dy \, dy$$

$$= 2 \times 10^{4} \operatorname{co}_{\ell}(10^{5}t) \left[-\frac{\operatorname{co}_{\ell}(10^{5}y)}{10^{-3}} \right]_{4.0}^{4.0}$$

$$= 3.98 \times 10^{5} \left[7.99 \times 10^{4} \right]$$

$$\phi = 0.318 \, \text{mwb}$$

$$c) The line integral it $\oint \vec{E} \cdot d\vec{L}$
From Stoke't theorem
$$\oint \vec{E} \cdot d\vec{L} = \int (\nabla x \vec{E}) \cdot d\vec{s}$$

$$= \int_{0}^{2} -\frac{3\vec{B}}{0^{5}t} \cdot d\vec{s}$$

$$= \int_{0}^{2} -\frac{3\vec{$$$$

From Stoke's theorem

$$\oint \vec{E} \cdot d\vec{L} = \int (\nabla x \vec{E}) \cdot d\vec{S}$$

$$= \int -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

$$= \int \frac{\partial ((-\partial x) \vec{O}^{4}(o_{P}) \vec{O}^{5} + \delta i_{P} i_{D} \vec{O}^{3}y) \hat{a}_{x}}{\partial t} \cdot (dy d_{S} \hat{a}_{x}) d_{S}$$

$$= \int_{S} [t \partial x \vec{O}^{4} \beta i_{P} i_{D} \vec{O}^{3}y] \hat{a}_{x} \cdot (dy d_{S} \hat{a}_{x}) d_{S}$$

$$= \int_{S} [t \partial x \vec{O}^{4} \beta i_{P} i_{D} i_{D}^{3}y] \hat{a}_{x} \cdot (dy d_{S} \hat{a}_{x}) d_{S}$$

$$= \int_{S} [t \partial x \vec{O}^{4} \beta i_{P} i_{D} i_{D}^{3}y] \hat{a}_{x} \cdot (dy d_{S} \hat{a}_{x}) d_{S}$$

$$= \int_{S} [t \partial x \vec{O}^{4} \beta i_{P} i_{D} i_{D}^{3}y] \hat{a}_{x} \cdot (dy d_{S} \hat{a}_{x}) d_{S}$$

$$= \partial x \vec{O} \beta i_{P} \cdot (0 \cdot i_{D} i_{D}^{3}y) \hat{a}_{x} \cdot (0 \cdot i_{D}^{3}y)$$

- Find the amplitude of displacement current density

 a) Adjacent to an automobile antenna where the magnetic field intensity of an FM signal is

 Hx= 0.15 Coe [3.12(3x10 t y)] A/m
 - b) In the air épace at a point within a large power distribution transformer where $\vec{B} = 0.8$ COE [1.257 x106 (3x10 t-x) \hat{a}_y T
 - c) Within a large oil filled power capacitor where &= 5

 & \(\vec{E} = 09 \) Coe [1.257 \times 10^6 (3x10 t 5\sqrt{5})] \(\hat{a}_{S} \) MV/m
 - d) In a metallic conductor at 60 Hz, if $\varepsilon = \varepsilon_0$, $M = M_0 \xi$ $\nabla = 6.8 \times 10^7 \text{ s/m} \quad \text{and} \quad \overrightarrow{J} = \text{sin} \left(377t 117.12\right) \widehat{a}_x \quad MA/m^2$
 - a) $\nabla x \vec{H} = \vec{J} + \vec{J}_D$ Since J = 0 at there is no $\vec{U} \Rightarrow \vec{J} = \sigma \vec{E} = 0$ $\nabla x \vec{H} = \vec{J}_D$ $= 1 \quad \hat{a} \qquad \hat{a} \qquad \hat{a} \qquad \hat{a} \qquad \hat{a} \qquad \hat{a}$

$$\vec{J}_{n} = \begin{bmatrix}
\hat{a}_{1} & \hat{a}_{2} & \hat{a}_{3} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0.45 & Cre \left[3.12 \left(3x \text{ ind } t - y\right)\right] & 0$$

$$\vec{J}_{D} = 0.468 \left[\sin 3.12(3 \times 10^8 t) - y \right] A/m^2$$

b)
$$\nabla x \vec{H} = \vec{J} + \vec{J}_D$$
 Since air space there is no σ
Hence $J = \sigma E = 0$

$$\nabla x \vec{H} = \vec{J}_{D}$$

$$\hat{d}_{x}$$

$$\hat{d}_{y}$$

$$\vec{J}_{D} = \hat{a}_{x} \left[-0.8 \cos \left[\frac{1.257 \times 10^{6}}{3 \times 10^{6}} (3 \times 10^{6} t - x) \right] \right] 1.251 \times 10^{6}$$

$$\vec{J}_{3} = 1 \cdot \frac{257 \times 10^{6}}{40} \left[-0.8 \cos \left[\frac{1.257 \times 10^{6} (3 \times 10^{6} + - \times)}{3 \times 10^{6} (3 \times 10^{6} + - \times)} \right] \hat{a}_{8}$$

$$\vec{J}_{D} = 0.800 \left[\cos 1.257 \times 10^{6} (3 \times 10^{8} t - x) \right] \hat{q}_{8}$$

$$\vec{J}_{D} = \frac{\partial \vec{D}}{\partial t} = \underbrace{\mathcal{E}}_{\partial t} = \underbrace{\mathcal{E}}_{\partial t} = \underbrace{\mathcal{E}}_{\partial t} \underbrace{0.9(0e^{[1.257\times10^{6}(3\times10^{8}t-5\sqrt{s})]}}_{\partial t} \underbrace{\lambda_{100}}_{\partial t}$$

$$\vec{J}_{D} = -\mathcal{E}_{0} \mathcal{E}_{Y} \ 0.9 \ \underbrace{\sin[1.257\times10^{6}(3\times10^{8}t-5\sqrt{s})]}_{\partial t} \times \underbrace{10^{6}\times10^{2}t-5\sqrt{s}}_{\partial t} \underbrace{\lambda_{100}}_{\partial t} + \underbrace{\lambda_{100}}_{\partial t} \times \underbrace{$$

d)
$$\vec{J} = \nabla \vec{E}$$
 $\vec{E} = \vec{J}/\sigma$ \vec{S} $\vec{J}_{D}^{c} = \vec{E} \frac{\partial \vec{E}}{\partial t} = \vec{E} \frac{\partial \vec{J}}{\partial t}$
 $\vec{J}_{D} = \frac{\mathcal{E}_{O}}{\sigma} \frac{\partial}{\partial t} \vec{E} \sin \left(377t - 117.18\right) \hat{Q}_{A} \times 10^{6}$
 $\vec{J}_{D}^{c} = \frac{\mathcal{E}_{O}}{\sigma} \cot \left(377t - 117.18\right) \hat{Q}_{A} \times \left(377\right) \times 10^{6}$
 $\vec{J}_{D}^{c} = \frac{\mathcal{E}_{O}}{\sigma} \cot \left(377t - 117.18\right) \hat{Q}_{A} \times \left(377\right) \times 10^{6}$
 $\vec{J}_{D}^{c} = 57.551 \cot \left(377t - 117.18\right) \left(5^{-12} + A_{m}\right)$

Let
$$M=10^{-5}$$
 H/m, $E=4\times10^9$ F/m, $T=0$ g $S_v=0$. Find K to that each of the following paire of fields eatisfy Manwell'e equations: a) $\vec{D}=6\hat{a}_x-2y\hat{a}_y+2y\hat{a}_y$ nc/m^2 $\vec{H}=K\times\hat{a}_x+10y\hat{a}_y-25y\hat{a}_y$ A/m
b) $\vec{E}=(20y-kt)$ \hat{a}_x V/m $\vec{H}=(y+2x10^t)$ \hat{a}_y A/m

a)
$$\nabla \cdot \vec{B} = 0$$
 $\mu \nabla \cdot \vec{H} = 0$
 $\mu \left[(\frac{\partial}{\partial x} \hat{\alpha}_{x} + \frac{\partial}{\partial y} \hat{\alpha}_{y} + \frac{\partial}{\partial y} \hat{\alpha}_{y}) \cdot (H_{x} \hat{\alpha}_{x} + H_{y} \hat{\alpha}_{y} + H_{y} \hat{\alpha}_{y}) \right] = 0$
 $\frac{\partial}{\partial x} (kx) + \frac{\partial}{\partial y} (loy) + \frac{\partial}{\partial z} (-25s) = 0$
 $k + 10 - 25 = 0$
 $k = 15 \text{ A/m}^{2}$
 $\sqrt{x} \vec{H} = \vec{J}_{c} + \vec{J}_{g}$ Since $\nabla = 0$, $\vec{J} = \nabla \vec{E} = 0$

$$k = \frac{1}{9} = \frac{1}{8} = -2.5 \times 10^8 \text{ V/me}$$

The unit vector $0.64\hat{a}_x + 0.6\hat{a}_y - 0.48\hat{a}_y$ is dedicated from negion 2 $(\epsilon_r = 2, \mu_r = 3, \nabla_z = 0)$ towards region 1 $\epsilon_r = 4, \mu_r = 2, \tau = 0$. If $\epsilon_r = (\hat{a}_x - 2\hat{a}_y + 3\hat{a}_y)$ sin 300tT at point P in region 1 adjacent to the boundary find the amplitude at P of a) $\epsilon_r = 0$ by $\epsilon_r =$

a) Normal component is given by

$$H_{N1} = \overrightarrow{H}_{1} \cdot \hat{a}$$

$$\overrightarrow{B}_{N1} = \overrightarrow{B}_{1} \cdot \hat{a} = \left[(\hat{a}_{x} - \partial \hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) \right] \cdot \left[0.64\hat{a}_{x} + 0.6\hat{a}_{y} - 0.47\hat{a}_{y} \right]$$

$$\overrightarrow{B}_{N1} = \left[(0.64 - 1.2 - 1.44) \operatorname{Ain}(300 \, t) \right] = 0.88 \operatorname{Ain}(300 \, t)$$

$$\overrightarrow{B}_{N1} = \overrightarrow{B}_{N1} \cdot \hat{a} = -2 \operatorname{Ain}(300 \, t) \left[0.64\hat{a}_{x} + 0.6\hat{a}_{y} - 0.48 \, \hat{a}_{y} \right]$$

$$\overrightarrow{B}_{N1} = \overrightarrow{B}_{N1} \cdot \hat{a} = (1.28 \, \hat{a}_{x} - 1.2 \, \hat{a}_{y} + 0.96 \, \hat{a}_{y} \right) \operatorname{Ain}(300 \, t)$$

$$\overrightarrow{B}_{N1} = \overrightarrow{B}_{N1} \cdot \hat{a} = (1.28 \, \hat{a}_{x} - 1.2 \, \hat{a}_{y} + 0.96 \, \hat{a}_{y} \right) \operatorname{Ain}(300 \, t)$$

$$\overrightarrow{B}_{N1} = \overrightarrow{B}_{N1} \cdot \hat{a} = (1.28 \, \hat{a}_{x} - 1.2 \, \hat{a}_{y} + 0.96 \, \hat{a}_{y} \right) \operatorname{Ain}(300 \, t)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain}(300 \, t) - (1.28 \, \hat{a}_{x} - 1.2\hat{a}_{y} + 0.96 \, \hat{a}_{y} \right)$$

$$= (\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{y}) \operatorname{Ain$$

Scanned by CamScanner

5) Find the frequency at which conduction current density
$$\xi$$
 displacement current density are equal in medium with $\tau = 2 \times 10^4 \text{ J/m}$ ξ $\xi_n = 81$

The ratio of two current duration is given as
$$\frac{|\vec{J}_c|}{|\vec{J}_p|} = \frac{\vec{\omega}}{\omega} = 1$$

$$\omega = \frac{\vec{\varepsilon}}{\varepsilon} = \frac{\vec{\sigma}}{\varepsilon_0 \varepsilon_\gamma}$$

$$\omega = \frac{2 \times 10^4}{(8.854 \times 10^{-12})81} = 0.2788 \times 10^5 \text{ Mad/pec}$$

$$\omega = 2 \pi f$$

$$f = \omega/2\pi = 44.372 \text{ kHz}$$

a current of the amplitude of displacement current density if $\nabla = 35 \, \text{Ze/m}$ & Er = 10.

$$|\vec{J}_c| = \frac{\text{Conduction Current}}{\text{Area of cross section}} = \frac{5.5 \times 10^6}{\pi (1.5 \times 10^3)^2}$$

$$|\vec{J}_D| = |\vec{J}_C| \frac{\omega e}{\sigma} = \frac{0.77809 \times 10^{10} \times 10 \times 8.854 \times 10^{12}}{35}$$

To the fields
$$\vec{E} = E_m \sin x \sinh \hat{q} + \frac{E_m}{M_o} \cos x$$

Coet \hat{q}_s satisfy Maxwell's equations?

Consider
$$\nabla X \vec{E} = -\partial \vec{B}$$

$$\nabla \times \vec{E} = \begin{vmatrix} \hat{a}_x & \hat{a}_y & \hat{a}_y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ 0 & E_m pinz pint 0 \end{vmatrix}$$

$$\frac{-\partial \vec{B}}{\partial t} = \mathcal{U} \cdot \frac{\partial \vec{H}}{\partial t} = -\mathcal{U} \cdot \frac{\partial}{\partial t} \left[\frac{E_m}{\mathcal{U}} \left(o_{\ell} \times co_{\ell} t \right) \right] = E_m \left(co_{\ell} \times e_{\ell} \right) + \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left(o_{\ell} \times co_{\ell} t \right) \right] = \frac{1}{2} \left[\frac{E_m}{\partial t} \left($$

Hence
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

A uniform plane wave
$$\vec{E}_y = 10 \, \text{pin} \left(2\pi \times 10^8 t - \beta x \right) \, \hat{a}_y$$
 is travelling in x -direction in free space Find i) Phase Constant ii) Phase velocity iii) Expression for Hz Assume $\vec{E}_z = 0 = \text{Hy}$

The wave to avelling in x-direction hence Ey component can be written ap

ω=2xx108 grad/E By comparing the given expression F. 2 10 V/m

Scanned by CamScanner

In four Epace
$$\mathcal{E}_{Y} = \mathcal{U}_{Y} = 1$$
 $\frac{1}{5}$ $c = \frac{1}{\sqrt{\mu_{*}}\ell_{*}} = 3 \times 10^{8} \, \text{m/p}$

I $\beta = \frac{\omega}{V} = \frac{8 \times 10^{8}}{3 \times 10^{8}} = 8.09435 \, \text{rad/m}$

2 Phase velocity $V = \sqrt{\sqrt{\mu_{*}}\ell_{*}} = 3 \times 10^{8} \, \text{m/p}$

3 For four space $\gamma_{0} = 377.0$

H₀ = $\frac{E_{y0}}{\gamma_{0}} = \frac{10}{317} = 0.026525 \, \text{H/m}$

H₃ = H₃0 sin ($\omega t - \beta x$)

H₄ = $26.52 \, \text{gin} \left(\omega \pi \times 10^{8} \, t - \beta \right) \, \text{Th F/m}$

4) An E field in four space it given by $E = 800 \, \text{Cop} \left(\frac{10^{4}}{5} + \frac{1}{5} \right) \, \text{Th F/m}$

V/m find i) $\beta = \frac{10}{3} \times 10^{3} \, \text{J/m}$

i) $\beta = \omega_{1} = \frac{10^{8}}{3} \times 10^{3} \, \text{J/m}$

ii) $\beta = \omega_{1} = \frac{10^{8}}{3} \times 10^{3} \, \text{J/m}$

iii) $\beta = \omega_{1} = \frac{10^{8}}{3} \times 10^{3} \, \text{J/m}$

H₄0 = $\frac{10^{8}}{3} \times 10^{3} \, \text{J/m}$

H₄0 = $\frac{10^{8}}{3} \times 10^{3} \, \text{J/m}$

At $\beta = \frac{10^{8}}{3} \times 10^{3} \, \text{J/m}$

- 10) A 300 MHz Uniform plane wave propagates through fresh water for which T=0, Ur=1 & Er= 78 Calculate
 - i) Attenuation Constant ii) Phase Constant iii) Wavelength
 - iv) Intrensic Impedance.
 - i) For the medium of fresh air T=0, hence the medium can be affurmed at loppless medium &= 0
 - ii) Phase Constant B= WVUE = WV(UOUI) (8081)

(ii)
$$\frac{\partial \pi}{\beta} = \frac{\partial \pi}{55529} = 0.1131 \text{ m}$$

ir)
$$\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu_0 \mu_v}{\epsilon_0 \epsilon_1}} = 42.656 \Omega$$

11) A lossy dielectric ic characterized by E= 2.5, Ur=4 & $T = 10^3 \text{ T/m}$ at a frequency 10 MHz. Find i) Attendation constant ii) Phase constant iii) Velocity of constant iv) Wavelength v) Intremic Impedance

For lossy dielectric

) The propagation constant
$$S = \sqrt{j\omega\mu} (\nabla + j\omega E)$$

$$= \sqrt{j \left(2\pi 10 \times 10^6 \right) \left(4\pi \times 10^7 \times 4 \right) \left[10^3 + j \left(2\pi \times 10 \times 10^6 \right) \left(8.854 \times 10^{12} \times 2.5 \right) \right]}$$

Attenuation d = 0.2255 Np/m

iii)
$$V = \frac{2\pi \times 10 \times 10}{0.7} = 8.9759 \times 10^{7} \text{ m/g}$$

$$\eta = \sqrt{\frac{315.82 \cdot 90^{\circ}}{1.7129 \times 10^{3} \cdot 54.28^{\circ}}}$$

12) A 160 MHz plane wave penetrates through aluminium of conductivity 10^5 V/m , 8r = Ur = 1. Calculate pkin depth and also depth at which the wave amplitude decreases to 13.5% of ite initial value.

The ekin depth is given by
$$(\tau = 10^5 \text{ for aluminium})$$

$$S = \sqrt{\pi f \mu \tau} = \sqrt{\pi \times 160 \times 10^5 \times 4\pi \times 10^7 \times 10^5}$$

$$S = 125.82 \text{ Jum}$$

At $3^23'$ the amplitude decreases to 13.5% y its initial value. Let $|\vec{E}| = E_0 e^{\beta \delta'} = \frac{13.5}{100} E_0$

Taking In on both sides
$$-\beta 3^{1} \ln (e) = \ln (0.135) = -2.0025$$

$$-\beta 3^{1} \ln (e) = \ln (0.135) = -2.0025$$

Thue at 3=3= 252 µm the amplitude decreases to 13.5% of its initial value.

13) Wet Marshy soil is characterized by
$$\sigma = 10^2 \, \text{s/m}$$
, $8r^2 15$ and $\mu r^2 1$. At frequencies 60 Hz, IMHz, 100 MHz and 10GHz indicate whether soil be Considered a conductor or dielectric

$$\frac{\sigma}{\omega \epsilon} = \frac{\sigma}{(2\pi f)(\epsilon_0 \epsilon_1)} = \frac{10^{\frac{1}{2}}}{(2\pi \times 60)(8.854 \times 10^{\frac{1}{2}} \times 15)}$$

The wet massing soil acts as conductor at 60ths.

ii) At
$$f = 1MH_0$$

$$\frac{\sigma}{We} = \frac{10^2}{(8\pi \times 1\times 10^6)} = \frac{11.9836}{(8\pi \times 1\times 10^6)} = \frac{11.9836}{(8\pi \times 1\times 10^6)} = \frac{11.9836}{(8\pi \times 1\times 10^6)}$$
At $1MH_0$ also \$0:1 acts as Conductor

iii) At
$$f = 100 \, \text{MHz}$$

$$\frac{\nabla}{We} = \frac{10^2}{(4\pi \text{ Model})^6 (2.8.)} = 0.1198 < 1$$
At $f = 100 \, \text{MHz}$ soil acts as lossy dielectric

iv) At
$$f = 10 G H_{\delta}$$

$$\frac{\sqrt{10^{2}}}{\omega \epsilon} = \frac{10^{2}}{(2\pi \times 10 \times 10^{2})} (20 \epsilon_{V})$$

At fright the wet marshy soil acts as perfect dielectric

19) In free space
$$\vec{E} = 150 \, \text{pin} \, (\omega t - \beta z) \, \hat{a}x \, V/m$$
. Calculate the total power passing through a rectangular area of sides 30 mm and 15 mm in 520 plane. Appume $\frac{Em}{Hm} = \eta_0 \, \xi \, \eta_0 = 120 \pi$

$$\vec{E} = 150 \text{ Rin } (\omega t - \beta z) \hat{a}_x \frac{V}{m}$$

$$\vec{H} = \frac{150}{\gamma_0} \text{ Rin } (\omega t - \beta z) \hat{a}_y \frac{a}{m}$$

Converting both the sinusoidal function to cosinusoidal function $\vec{E} = 150 \quad \text{Cop} \left(\omega t - \beta \delta^{-7} /_2 \right) \hat{a}_x \text{ and}$

$$\vec{H} = \frac{150}{\eta_0} \cos(\omega t - \beta s - \pi/2) \hat{a}y$$

writing in phasor form
$$\vec{E} = 150 e^{j(-\beta_0 - \frac{\pi}{2})} \hat{a}_x$$

$$\vec{H}^* = \frac{150}{70} e^{j(|^35 + \frac{\pi}{2})} \hat{a}_y$$

Hence average power density ie given by

$$\vec{P}_{avg} = \frac{1}{2} \Re \left[\vec{E} \times \vec{H}^{*} \right]$$

$$= \frac{1}{2} \frac{(150)}{70} \left(e^{j(-\beta_{ij}^{2} - \omega t)} \hat{a}_{ik} \times e^{j(\omega t + \beta_{ij}^{2})} \hat{a}_{ij} \right)$$

$$\vec{P}_{avg} = \frac{1}{2^2} \frac{150}{120\pi} \hat{a}_3 = 29.841 \hat{a}_3 \omega/m^2$$

Now the total power crossing area is given by