14th Feb Sec 2 Science Extra Lesson 3:30 – 4:30 PM

Agenda:

- 1. Electrical Systems introducing ideas of current, voltage (potential difference) and resistance.
- 2. Arrangement of circuits
- How does resistance affect output of a circuit brightness of the bulb

Electric Circuits

• Electric circuits are made up of electrical components

Note:

Components refer to the light bulb, wires, battery

Flow of electricity in an electric circuit

- An electric current flows through a path that is set up by an electric circuit.
- All the <u>components</u> of the electric circuit must be connected correctly for it to work.
- A <u>circuit diagram</u> shows how the electrical components are connected in an electrical system.

The switch turns the current on or off.

Wires connect the various components together.
This provides a complete path for the current to flow.

The battery (energy source) provides energy for electric current to flow in the circuit.

The bulb converts electrical energy into light and heat.

Electric circuits

Note:

Components refer to the light bulb, wires, battery

- Electrical components must be joined together without any gap in between to form a closed circuit.
- Incomplete circuits are called **open circuits**.

Both the circuits in the diagram are incomplete, hence they are known as "open circuits".

How to draw circuit diagrams

Symbols are used to represent electrical components in circuits.

Component	Symbol	Component	Symbol
An electric cell (battery)		Two batteries	- - + - -
Light bulb (lamp)	<u> </u>	Switch	Switch (open) Switch (closed)
Connecting wires (not joined)		Connecting wires (joined)	

Circuit symbols

A switch is used to open or close a circuit.

Main switch used in buildings

Switches used on circuit boards

- Resistors contain resistance values
- Fixed resistor has only one resistance value
- Variable resistors have different resistance values

An ammeter is a device used to measure electric current.

A voltmeter is a device used to measure voltage or potential difference.

Conditions for current to flow

From the previous two slides, can you tell the conditions for current to flow through a circuit?

What causes electricity?

Electricity is due to the <u>flow of negatively</u> charged particles called electrons.

The electrons that flows in the wire are free electrons (only in metals and graphite.)

What is an electric current?

An electric current is the rate of flow of electric charges in a circuit.

- It has a symbol of <u>I</u>.
- The SI unit for electric current is **ampere** (A).

Current flow

Current flows from the positive terminal of a battery to the negative terminal

Direction of current flow

Instrument to measure current

• The <u>ammeter</u> is an instrument used for measuring electric current.

Two types of ammeters:

I. Analogue ammeter

2. Digital ammeter

How to connect ammeter

- Ammeters are always connected in **series** in a circuit.
- Positive side of ammeter must be connected nearest to the positive terminal of the battery (electric cell), and vice versa.

Voltage

Voltage is the <u>amount of energy given</u> to each unit of electrical charge, driving them around a complete circuit.

- It has a symbol of <u>V</u>.
- SI unit of voltage is <u>volts</u> (<u>V</u>).

Different voltages are supplied by different cells and batteries.

12 V Car Battery

1.5 V Dry Cell

9 V Dry Cell

What causes the electrical charges to move?

The battery in a circuit gives **energy** to the **electrical charges** and causes them to flow through the circuit.

How to measure voltage?

A voltmeter is the instrument used for measuring voltages.

Two types of ammeters:

I. Analogue voltmeter

2. Digital voltmeter

How to connect the voltmeter

- Voltmeters must be connected in <u>parallel</u> to a circuit or electrical component.
- The **positive** side of voltmeter is connected to the **positive** terminal of the cell, and vice versa.

Ammeter vs Voltmeter

Ammeter must be connected in series

Voltmeter must be connected in parallel

Potential Difference (p.d)

- P.d is a measure of the amount of <u>electrical energy converted to other</u> forms of energy when per unit of electric charge flows through the component.
- Units: volts (V)

What exactly is potential difference (p.d)?

- Electric charges will flow from a point of higher
 potential (energy) to lower potential.
- This <u>difference</u> in electric potential between 2 points in a circuit is the potential difference.

Resistance

- An electrical component hinders the flow of electric charges when it is connected in a circuit.
- The resistance to the flow of charges is similar to how a narrow channel resists the flow of water.

Resistance

The resistance of a conductor refers to its ability to hinder current flow.

- When an electric current flows through a circuit, there will be some resistance that opposes it. (similar to friction)
- It has a symbol of R.
- The SI unit for resistance is $\underline{ohm}(\Omega)$

Instrument to measure resistance

The <u>ohmmeter</u> is the instrument used to measure resistance.

Resistance

- Different electrical components have different resistance
- For example, nichrome wires have a higher resistance than copper wires.

Good conductor	Poor conductor	
Low resistance	High resistance	
Electricity is able to flow through easily. e.g. metal objects	Electricity is NOT able to flow through easily. e.g. wood, cloth	

So when do we use nichrome wires or copper wires?

(Hint: The resistance of a substance allows it to convert some of the electrical energy into other forms of energy, such as heat.)

Nichrome is used for heating element of a electrical appliances.

Copper is used to make electrical wires

Resistors

- An electrical component that is specially made to have a certain resistance is called a <u>resistor</u>.
- They can be connected in a circuit to resist the current flow.
- There are two types of resistors:

Fixed resistors

Fixed resistors have only one resistance value

fixed resistor symbol

Coloured bands indicate the resistance of the resistor.

In a circuit contains only fixed resistors, we can change the total effective resistance of the circuit by adding or removing fixed resistors in <u>different arrangements</u> (either in series or parallel arrangements).

Variable resistors

- Variable resistors or rheostat can be adjusted to change the resistance.
- There are two types of rheostats:

How does resistance affect brightness of a bulb?

When the slider is on the left, current passes through lesser wires, hence **lower** resistance.

When the slider is on the left, current passes through more wires, hence **higher** resistance.

- → Current flowing through the circuit increases.
- → Hence, the light bulb is brighter.

- → Current flowing through the circuit decreases.
- → Hence, the light bulb is dimmer.

Variable resistors

Rheostats have many uses.

volume controls on radios

light dimmers

speed controller of a remote-control car

Arrangement of circuits

There are 2 ways in which an electric circuit can be arranged:

Series Circuit

- A series circuit connects the components one after the other.
- Same current flows through the components.
- A break in any part of a series circuit stops the flow of current in the whole circuit.

Parallel Circuit

- A parallel circuit <u>divides</u> into two or more branches.
- The <u>current divides</u> and <u>flows through each parallel branch</u>.
- If a component <u>breaks</u> or is removed, the other components remain on.

pHet Simulation:

Use the "Lab" settings!
Use the handout to help you in your investigation.

Conclusions:

- I. How does adding a resistor in series affect the total resistance of a circuit?
- 2. How does adding a resistor in parallel affect the total resistance of a circuit?
- 3. How does adding a resistor in series affect the brightness of the light bulb?
- 4. How does adding a resistor in parallel affect the brightness of the light bulb?

Adding a resistor in SERIES

In this circuit the light bulb lights up.

When another resistor is **added in series**, the light bulb becomes **dimmer**.

Adding another resistor in series increases the total resistance in the circuit.

Hence the current flowing through the light bulb decreases.

Adding a resistor in PARALLEL

In this circuit the light bulb lights up.

When another resistor is added in parallel, the light bulb becomes **brighter**.

Adding another resistor in parallel decreases the total resistance in the circuit.

Hence, the current flowing through the light bulb increases.

Observation: How does resistance affect brightness of a bulb?

Resistors can be added in series or parallel.

