СОГЛАСОВАНО	УТВЕРЖДАЮ
Начальник 1142 ВП МО РФ	Главный конструктор
	AO «СЭГЗ»
В.А. Трухан	А.В. Поздеев
20r.	20r.
ПРОГРАММА И МЕТОД	ИКИ
№65-3- <u>/</u> 22	
предварительных испыта	ний
электродвигателя шагово	
ДШС60-1-1,8	
	СОГЛАСОВАНО
ΔC	«Корпорация «Комета»
	авный конструктор ПЗС ОМС
1 510	denomination in the control of the c

_____ Д.В. Кузнецов ____ 20__г.

Содержание

1 Объект испытаний, его состав и назначение	4
2 Цель и задачи испытаний	
3 Общие положения	4
4 Объем испытаний	5
5 Условия и порядок проведения испытаний	8
6 Материально-техническое обеспечение испытаний	9
7 Метрологическое обеспечение испытаний	9
8 Обеспечение защиты государственной тайны	9
9 Методика проведения испытаний	10
10 Отчетность	10
Лист согласования	11
Приложение А. Методики предварительных испытаний электродвигател	Rì
шагового ДШС60-1-1,8	12
А.1 Основные параметры	12
А.2 Общие положения	14
А.3 Проверка внешнего вида, наличия и качества маркировки	16
А.4 Проверка установочных, присоединительных и габаритных размеров	
А.5 Проверка сопротивления изоляции	16
А.6 Проверка электрической прочности изоляции	17
А.7 Проверка направления вращения	17
А.8 Проверка момента удержания	17
А.9 Проверка максимальной приемистости	19
А.10 Проверка работоспособности при разгоне	20
А.11 Проверка статического фиксирующего момента	21
А.12 Проверка массы	21
А.13 Проверка электромагнитной постоянной времени обмоток	21
А.14 Проверка шага и статической погрешности	22
А.15 Проверка температуры обмоток	25
А.16 Испытание на воздействие синусоидальной вибрации	26
А.17 Испытание на воздействие механических ударов одиночного	
действия	27
А.18 Испытание на воздействие механических ударов многократного	
действия	27
А.19 Испытание на воздействие линейного ускорения	28

А.20 Испытание на воздействие атмосферного пониженного давления	
при транспортировании	. 28
А.21 Испытание на воздействие повышенной температуры среды	
А.22 Испытание на воздействие пониженной температуры среды	. 29
А.23 Испытание на воздействие изменения температуры среды	. 30
А.24 Испытание на воздействие повышенной влажности воздуха	. 30
А.25 Испытание на прочность при транспортировании	. 31
А.26 Испытание на циклическую наработку	. 32
Приложение Б. Перечень средств измерения и оборудования	
для испытаний и контроля	. 35
Приложение В. Форма импульсов напряжения на выходе блока	
управления при нагрузке, равной активному сопротивлению	
обмоток фаз двигателя	. 37
Приложение Г. Порядок чередования импульсов напряжения на выводах	
двигателя и направление вращения	. 38
Приложение Д. Схема подключения двигателя для проведения	
- испытаний	. 39

1 Объект испытаний, его состав и назначение

- 1.1 Объектом испытания является опытный образец электродвигателя шагового ДШС60-1-1,8 ПСИЯ.522414.005 (далее двигатель) разработанный и изготовленный на предприятии АО «СЭГЗ» в соответствии с Техническим заданием №65-3-2/22 от 20.01.2022 (далее по тексту ТЗ) на составную часть опытно-конструкторской работы (СЧ ОКР) по теме: «Создание шагового двигателя прецизионной зеркальной сканирующей оптико-механической системы», шифр «Зеркало-ШД».
- 1.2 Предварительным испытаниям подвергаются двигатели в количестве двух штук, которые приняты и отобраны ОТК АО «СЭГЗ» и 1142 ВП МО РФ в установленном порядке.
- 1.3 Двигатель предназначен для применения в составе прецизионной зеркальной сканирующей оптико-механической системы (ПЗС ОМС). Двигатель предназначен для работы совместно с блоком управления. Блок управления в комплект не входит.

2 Цель и задачи испытаний

Испытания проводятся с целью оценки (проверки) соответствия двигателя предъявленным требованиям, определенным в Т3.

3 Общие положения

- 3.1 Предварительные испытания проводятся комиссией, формируемой в соответствии с ГОСТ РВ 15.210-2001.
- 3.2 Предварительные испытания проводят в соответствии с ГОСТ РВ 15.210-2001, которые организуются и проводятся силами испытательного цеха АО «СЭГЗ» по настоящей программе и методикам (далее программа) под контролем 1142 ВП МО РФ.

В случае технической невозможности проведения испытаний на АО «СЭГЗ», допускается их проведение на испытательной базе других предприятий.

- 3.3 Перечень документов, на основании которых проводятся предварительные испытания:
 - уведомление о готовности к предварительным испытаниям;
- приказ (решение) о проведении предварительных испытаний и назначении комиссии.
 - 3.4 На испытания представляются следующие документы:
 - ТЗ на СЧ ОКР.
 - настоящая программа и методики испытаний;
- справка о годности средств испытаний, средств контроля и измерений для проведения испытаний;
 - акт о готовности метрологического обеспечения испытаний;
 - проект ТУ.
- 3.5 Программа в процессе проведения испытаний при необходимости может корректироваться (уточняться и дополняться) путем выпуска дополнения к ней.
- 3.6 Все отказы и неисправности, возникающие в ходе испытаний, должны исследоваться в установленном порядке для установления причин и должны быть зафиксированы и внесены в протоколы и Акт предварительных испытаний.

4 Объем испытаний

- 4.1 Предварительные испытания проводятся в объеме и последовательности, указанных в таблице 2.
- 4.2 Методики отдельных видов испытаний изложены в «Методиках предварительных испытаний электродвигателя шагового ДШС60-1-1,8», являющихся Приложением А настоящей программы.
- 4.3 С целью оценки состояния двигателей после проведения предварительных испытаний проводят внешний осмотр и частичную разборку по программе дефектации с оформлением отчета.

Таблица 1 – Объем и последовательность предварительных испытаний

	Номер пункта		
Вид испытания (проверок)	требований ТЗ	методики проведения испытаний (Приложение А)	
1	2	3	
1 Проверка внешнего вида, наличия и качества маркировки	3.2.4, 3.14.7, 3.14.8, 3.14.9, 8.1	A.3	
2 Проверка установочных, присоединительных и габаритных размеров	3.14.1, 3.14.2, 3.14.4, 3.14.5	A.4	
3 Проверка сопротивления изоляции	3.9.5	A.5	
4 Проверка электрической прочности изоляции	3.9.6	A.6	
5 Проверка направления вращения	3.2.5	A.7	
6 Проверка момента удержания	3.2.9	A.8	
7 Проверка максимальной приемистости	3.2.11	A.9	
8 Проверка работоспособности при разгоне	3.2.12, 3.2.13	A.10	
9 Проверка статического фиксирующего момента	3.2.10	A.11	
10 Проверка массы	3.14.3	A.12	
11 Проверка электромагнитной постоянной времени обмоток	3.2.6	A.13	
12 Проверка шага и статической погрешности	3.2.2, 3.2.3	A.14	
13 Проверка температуры обмоток	-	A.15	
14 Испытание на воздействие синусоидальной вибрации	3.4.1 Таблица 1, п.1	A.16	

Продолжение таблицы 1

	Номер пункта	
Вид испытания (проверок)	требований ТЗ	методики проведения испытаний (Приложение А)
1	2	3
15 Испытание на воздействие механических ударов одиночного действия	3.4.1 Таблица 1, п.4	A.17
16 Испытание на воздействие механических ударов многократного действия	3.4.1 Таблица 1, п.5	A.18
17 Испытание на воздействие линейного ускорения	3.4.1 Таблица 1, п.6	A.19
18 Испытание на воздействие квазистатических и низкочастотных (менее 20 Гц) динамических ускорений	3.4.1 Таблица 1, п.7	A20
19 Испытание на воздействие атмосферного пониженного давления при транспортировании	3.4.1	A.21
20 Испытание на воздействие атмосферного пониженного давления при эксплуатации	Таблица 1, п.9	A.22
21 Испытание на воздействие повышенной температуры среды	3.4.1 Таблица 1, п.11	A.23
22 Испытание на воздействие пониженной температуры среды	3.4.1 Таблица 1, п.12	A.24
23 Испытание на воздействие изменения температуры среды	3.4.1 Таблица 1, п.13	A.25
24 Испытание на воздействие повышенной влажности воздуха	3.4.1 Таблица 1, п.14	A.26
25 Испытание на прочность при транспортировании	3.8.1 Таблица 3	A.27
26 Испытание на циклическую наработку	3.7.5	A.28

Продолжение таблицы 1

	Номер пункта		
Вид испытания (проверок)	требований ТЗ	методики проведения испытаний (Приложение А)	
1	2	3	
27 Проверка на прочность к воздействию акустического давления	3.4.2	A.29	
28 Проверка радиационной стойкости	3.4.3 – 3.4.5	A.30	
29 Проверка требований надежности	3.5	A.31	
30 Проверка требований безопасности	3.9	A.32	
31 Проверка требований по стандартизации и унификации	3.12	A.33	
32 Проверка требований технологичности	3.13	A.34	
33 Проверка требований к метрологическому обеспечению	6.1	A.35	
34 Проверка требований к сырью, материалам и комплектующим изделиям межотраслевого применения	7	A.36	
35 Проверка требований к консервации, упаковке и маркировке	8	A.37	
36 Проверка специальных требований	10	A.38	

Примечания

- 1 По согласованию с 1142 ВП МО РФ допускается изменение очередности испытаний, кроме пп.1, 2, 3, 4 и п.26.
- 2 Испытание на циклическую наработку проводится на одном двигателе.

5 Условия и порядок проведения испытаний

5.1 Испытания, за исключением особо оговоренных, должны проводиться в нормальных климатических условиях (НКУ).

Характеристики НКУ:

- температура окружающего воздуха от плюс 15 °С до плюс 35 °С;
- относительная влажность воздуха от 45 % до 75 %;
- атмосферное давление от 86 до 106 кПа (от 645 до 795 мм рт. ст.).

Примечание – При температурах выше плюс 30 °C относительная влажность воздуха должна быть не более 70 %.

- 5.2 До начала испытаний должны быть представлены все виды материально-технического обеспечения, в том числе документация для проведения испытаний.
- 5.3 К испытаниям должны быть допущены лица, аттестованные для проведения испытаний и проинструктированные по правилам и мерам безопасности.
- 5.4 Исполнители до начала испытаний должны изучить техническую документацию в части обеспечения безаварийного проведения испытаний, а в процессе испытаний строго соблюдать требования инструкций по технике безопасности.
- 5.5 При непрерывном проведении испытаний допускается совмещение проверок после проведенного испытания с проверкой перед последующим видом испытания.
- 5.6 В процессе испытаний ведется «Журнал испытаний» в который вносится текущая информация о проводимых испытаниях (даты и виды проведенных проверок и испытаний, полученные значения параметров, время наработки, все неисправности и отказы, моменты и обстоятельства их возникновения, замечания по проведению испытаний).

Время наработки включает все время нахождения двигателя во включенном состоянии в процессе испытаний, проверок, отыскания и устранения неисправностей.

5.7 При обнаружении неисправности, несоответствия двигателя заданным требованиям, АО «СЭГЗ» организует работу комиссии по исследованию причин несоответствия. По результатам работы комиссия оформляет протокол.

- 5.8 Контроль технического состояния двигателей проводится в процессе проведения испытаний по указанным методикам.
- 5.9 В перерывах между испытаниями двигатели должны находиться в НКУ.

6 Материально – техническое обеспечение испытаний

Обеспечение оборудованием, средствами испытаний и измерений должно осуществляться силами АО «СЭГЗ», в соответствии с перечнем, приведенным в Приложении Б.

7 Метрологическое обеспечение испытаний

- 7.1 В процессе испытаний должны выполняться следующие требования:
 - обеспечение правильности применения средств испытаний;
 - обеспечение правильности выполнения измерений;
 - применение средств испытаний, срок аттестации которых не истек;
 - применение средств измерений, срок поверок которых не истек;
 - применение средств контроля, срок проверки которых не истек;
- средства измерений должны иметь свидетельства об утверждении типа, включены в Государственный реестр средств измерений.
- 7.2 Средства испытаний должны быть аттестованы, средства измерений поверены, средства контроля проверены и иметь документы и (или) знаки, идентифицирующие статус аттестации, поверки и проверки соответственно.
- 7.3 Метрологическое обеспечение испытаний двигателя должно соответствовать требованиям «Положения РК-11», ГОСТ РВ 0008-000, ГОСТ РВ 0008-001, ГОСТ РВ 0008-006.

8 Обеспечение защиты государственной тайны

8.1 КД не содержит сведений, составляющих государственную тайну, поэтому проведение работ по обеспечению ее защиты не требуется.

9 Методика проведения испытаний

9.1 Методики проведения испытаний в соответствии с Приложением A к данной программе.

10 Отчётность

- 10.1 По каждому пункту данной программы оформляются протоколы, которые являются приложением к акту предварительных испытаний.
 - 10.2 В протоколах по результатам испытаний должны быть указаны:
 - название, количество и зав. номера двигателей;
 - цель испытания;
 - режим и продолжительность испытания;
 - состав контролируемых параметров и результаты проверки;
 - все виды дефектов и отказов;
 - перечень средств испытаний, измерений и контроля;
 - выводы.
- 10.3 По испытаний окончании комиссия ПО проведению предварительных испытаний оформляет который акт, утверждает АО «Корпорация «Комета» или при необходимости акт утверждается совместным решением ПО соответствии акту В c ГОСТ РВ 15.210-2001 и ГОСТ РВ 15.203-2001.
- 10.4 Отчетные документы оформляются в двух экземплярах один хранится в АО «СЭГЗ» второй в АО «Корпорация «Комета».

Лист согласования программы и методики предварительных испытаний электродвигателя шагового ДШС60-1-1,8

от АО «СЭГЗ»

Директор по качеству В.В. Хованов

Главный метролог А.В. Маркеев

Зам. главного конструктора –

начальник СКО Р.Т. Ялалов

Начальник КБ-3 Н.В. Стариков

Ведущий конструктор темы СЧ ОКР С.Н. Козлов

Начальник испытательного цеха Ю.С. Махнев

от 1142 ВП МО РФ

Приложение A (обязательное)

Методики предварительных испытаний электродвигателя шагового ДШС60-1-1,8

А1 Основные параметры

- А.1.1 Вид исполнения двигателя гибридный, число фаз две.
- А.1.2 Двигатель предназначен для работы совместно с блоком управления (аппаратурой (системой) управления), параметры которого должны соответствовать техническим характеристикам технологического блока управления ПЗС ОМС:
 - напряжение питания на входе блока управления ($27^{+2,0}_{-1,5}$) В;
 - схема коммутации фаз двигателя четырехтактная биполярная парная;
- форма поступающих с блока управления импульсов напряжения при подаче их на активные сопротивления, равные сопротивлению обмоток фаз двигателя постоянному току, соответствует приложению В;
- блок управления имеет возможность изменения чередования управляющих импульсов для обеспечения изменения направления вращения;
- блок управления обеспечивает поддержание тока в обмотках двигателя (токовое регулирование):
- 1) в режиме удержания (фиксированной стоянки под током без подачи управляющих импульсов) ток в каждой фазе должен быть (1,0±0,1) А;
- 2) в режиме вращения (при коммутации фаз) ток в каждой фазе должен быть $(3,0\pm0,3)$ А.
 - А.1.3 Основные параметры двигателя приведены в таблице А.1.1.

Таблица А.1.1 – Основные параметры двигателя

Наименование параметра, единица измерения	Значение параметра
Номинальный вращающий момент, Н⋅м	0,9
Максимальная приемистость, шаг/с	700
Номинальный шаг	1,8°
Статический фиксирующий момент, Н-м, не менее	0,1
Момент удержания, при фиксированной стоянке под током обеих фаз (1,0±0,1) A, H·м, не менее	0,5

- А.1.4 Двигатель должен работать в режиме непрерывного вращения при номинальном моменте нагрузки с моментом инерции нагрузки $-0.02 \text{ кг} \cdot \text{м}^2$, при следующих условиях:
 - время выхода на режим (разгон) не более 1,1 с;
- плавное (равномерное) увеличении частоты управляющих импульсов со скоростью не более 1 Гц/мс с момента начала коммутации фаз с частоты не более 62 Гц до частоты 600 Гц.
- A.1.5 Температура обмоток двигателя в любых условиях работы, не должна быть более плюс $150\,^{\circ}\mathrm{C}$.
- А.1.6 Электрический монтаж двигателя должен соответствовать ПСИЯ.522414.005 ЭЗ, а порядок чередования импульсов напряжения на фазах и направление вращения приложению Г.
- А.1.7 Установочные, присоединительные и габаритные размеры двигателя должны соответствовать ПСИЯ.544414.005 ГЧ.

А.1.8 Требования к электрической изоляции

- А.1.8.1 Согласно п.14 ГОСТ РВ 0020.39.309-2019 сопротивление изоляции электрически не связанных между собой обмоток двигателя относительно друг друга и раздельно относительно корпуса должно быть не менее:
 - -20 МОм в НКУ;
 - 5 МОм при повышенной рабочей температуре среды;
 - 1 МОм при повышенной влажности воздуха.
- А.1.8.2 Изоляция электрически не связанных между собой обмоток двигателя относительно друг друга и раздельно относительно корпуса должна выдерживать без пробоя и поверхностного перекрытия в течение 1 мин воздействие испытательного напряжения синусоидальной формы частотой 50 Гц (амплитудное значение):
 - 250 В в НКУ;
- 125 В при повышенной влажности воздуха в практически холодном состоянии двигателя и после испытаний на циклическую наработку.

А.2 Общие положения

А.2.1 Класс точности средств измерений по ГОСТ 8.401:

для проверки электрических параметров0,5;

– для проверки сопротивления изоляции2,5;

– для проверки механических параметров3,0.

Погрешность измерения напряжения при проверке электрической прочности изоляции не должна превышать $\pm 5 \%$.

Допустимые отклонения на:

- частоту подаваемых импульсов ± 1 %.
- измерение времени \pm 10 %.
- измерение угловых величин \pm 0 ° 0 ' 30 ".
- А.2.2 Параметры испытательных режимов при испытаниях на воздействие механических и климатических факторов в течение всего времени испытаний должны соответствовать ГОСТ РВ 0020-57.305-2019 и ГОСТ РВ 0020-57.306-2019.
 - А.2.3 При испытаниях на воздействие механических факторов:
- время испытания при заданном режиме воздействия отсчитывается с момента достижения заданных норм параметров механического фактора;
- испытания проводят по трем взаимно перпендикулярным направлениям в соответствии с рисунком A.2.1;
- крепление двигателя к стенду фланцевое через жесткую монтажную плиту в соответствии с разделом 4 (п.4.22) ГОСТ РВ 0020-57.416-2020;
 - А.2.4 При испытаниях на воздействие климатических факторов:
- двигатель должен быть закреплен на приспособлении при горизонтальном положении оси вращения;
- при установке двигателя на приспособление должно соблюдаться требование раздела 5 (п.5.16.3.8) ГОСТ РВ 0020-57.416-2020.
- время выдержки в испытательном режиме отсчитывается с момента установления заданного режима в камере.
- А.2.5 В связи с производственными обстоятельствами в процессе испытания допускаются перерывы в работе, их длительность исключается из общей продолжительности испытания.

Рисунок А.2.1 – Схема расположения двигателя относительно осей координат при испытаниях на воздействие механических факторов

А.З Проверка внешнего вида, наличия и качества маркировки

А.3.1 Внешний вид проверяют осмотром. Оценку внешнего вида проводят с учетом требований раздела 2 ОСТ 92-0400-69.

При проверке внешнего вида проверяется:

- соответствие внешнего вида сборочным чертежам;
- качество сборки (наличие всех крепежных деталей);
- отсутствие механических повреждений (царапин, заусенцев, трещин, забоин) и следов коррозии;
 - отсутствие острых кромок;
 - наличие маркировки.
 - А.3.2 Двигатель считается выдержавшим проверку, если:
 - качество сборки и внешний вид отвечает сборочным чертежам;
 - отсутствуют острые кромки, коррозия и механические повреждения;
 - маркировка соответствует требованиям п.8.1 ТЗ.

А.4 Проверка установочных, присоединительных и габаритных размеров

- А.4.1 Проверка на соответствие установочных, присоединительных и габаритных размеров проводится универсальным измерительным инструментом и средствами допускового контроля, обеспечивающими требуемую точность с допускаемой погрешностью согласно ГОСТ 8.051.
- А.4.2 Двигатель считается выдержавшим проверку, если размеры соответствуют требованиям п.А.1.7.

А.5 Проверка сопротивления изоляции

- А.5.1 Проверку сопротивления изоляции проводят мегаомметром напряжением 100 В, а после воздействия повышенной влажности воздуха омметром.
- А.5.2 Проверка сопротивления изоляции проводится между обмотками разных фаз (между выводами 1 и 3 или 2 и 4) и между выводами обмоток и корпусом двигателя.
- А.5.3 Двигатель считается выдержавшим проверку, если сопротивление изоляции соответствует требованию А.1.8.1.

А.6 Проверка электрической прочности изоляции

А.6.1 Электрическую прочность изоляции проверяют на пробойной установке переменного синусоидального тока частотой 50 Гц. Уровни испытательного напряжения приведены в А.1.8.2.

Проверку проводят при плавном повышении напряжения с уровня не более 1/3 номинального, выдержке в течение 1 мин и плавном снижении его до уровня не более 1/3 номинального, затем напряжение отключается.

Точки приложения испытательного напряжения те же, что и при проверке сопротивления изоляции.

А.6.2 Двигатель считается выдержавшим проверку, если не произошло пробоя или поверхностного перекрытия изоляции.

А.7 Проверка направления вращения

- А.7.1 Проверку направления вращения выходного конца вала проводят со стороны фланца корпуса при включении двигателя в соответствии со схемой электрической принципиальной ПСИЯ.522414.005 ЭЗ и подаче управляющих импульсов напряжения с частотой, удобной для визуального определения направления вращения.
- А.7.2 Результат проверки удовлетворительный, если направление вращения вала двигателя и порядок чередования управляющих импульсов напряжения соответствуют приложению Г.

А.8 Проверка момента удержания

А.8.1 Проверка проводится при работе двигателя в режиме фиксированной стоянки под током.

Для этого обмотки фаз двигателя соединяют последовательно по схеме, приведенной на рисунке А.8.1.

ПМ – моментомер для создания противодействующего момента

М – испытываемый двигатель

ИП – регулируемый стабилизированный источник питания постоянного тока

РА – амперметр

PV – вольтметр

SF – выключатель

Рисунок A.8.1 – Схема подключения двигателя для проверки момента удержания

- А.8.2 Проверка проводится в следующей последовательности:
- а) включить двигатель в работу в режиме фиксированной стоянки под током в течение 10 мин при токе в обмотках фаз $(1,0\pm0,1)$ A;
- б) по истечение указанного времени при помощи моментомера провести измерения момента удержания при создании усилия по часовой и против часовой стрелки;
 - в) напряжение питания отключить.
- А.8.3 Результаты испытания положительные при соответствии момента удержания требованию п.3.2.9 ТЗ.

Примечание – При измерении моментомером не должно создаваться радиальное усилие на вал двигателя.

А.9 Проверка максимальной приемистости

А.9.1 При проверке максимальной приемистости ведется контроль отработки шагов для чего используется лимб, а на вал двигателя устанавливается индикаторная стрелка.

Двигатель включают по схеме, приведенной в приложении Д, без соединения с нагрузочным устройством, при напряжении питания на входе блока управления 25,5 В и токе в каждой фазе двигателя (3,0±0,3) А.

Проверка максимальной приемистости проводится в следующей последовательности:

- а) устанавливают стрелку на начало отчета, удобное для контроля;
- б) на обмотки двигателя подается питание без подачи управляющих импульсов (частота 0 Гц) и по приборам контролируется величина тока в фазах;
- в) двигатель включают в режиме проверки максимальной приемистости путем подачи с блока управления 200 серий импульсов с числом импульсов в серии, равным 201 с частотой 700 Гц.

Проверку производят при правом и левом направлении вращения.

А.9.2 Результат проверки положительный, если ротор двигателя последовательно занимает все фиксированные положения, отличающиеся друг от друга на один шаг.

А.10 Проверка работоспособности при разгоне

А.10.1 Для проверки работоспособности двигатель включают по схеме, приведенной в приложении Д.

Выходной конец вала со стороны фланца корпуса соединяется с нагрузочным устройством, а на второй конец вала устанавливается имитатор инерционной нагрузки с моментом инерции нагрузки $-0.02 \text{ кг} \cdot \text{м}^2 \pm 10\%$.

Проверку проводят при напряжении питания на входе блока управления 25,5 В и токе в каждой фазе двигателя (3,0±0,3) А.

Проверка проводится при правом и левом направлении вращения.

Проверка работоспособности проводится в следующей последовательности:

- а) на холостом ходу двигатель включается в режиме непрерывного вращения при частоте управляющих импульсов 600 Гц;
- б) плавно увеличивая напряжение питания порошковой муфты создают момент нагрузки типа «сухое трение», равный номинальному вращающему моменту;
- в) зафиксировать груз, отключить двигатель, питание муфты не отключать;
- г) на обмотки двигателя подается питание без подачи управляющих импульсов (частота 0 Гц) и по приборам контролируется величина тока в фазах;
- д) включить двигатель в режиме проверки работоспособности с обеспечением блоком управления параметров разгона плавное (равномерное) увеличение частоты управляющих импульсов с минимального значения 62 Гц до максимального значения 600 Гц со скоростью 1 Гц/мс с момента начала коммутации фаз;
- е) после завершения разгона на частоте управляющих импульсов 600 Гц осуществить работу двигателя в течение 5 мин, затем не отключая двигатель проверить момент нагрузки, освободив груз от фиксации.

Если момент нагрузки меньше номинального, то необходимо плавно восстановить соответствие момента нагрузки номинальному вращающему моменту и повторить проверку по пп. в) – e).

А.10.2 Результат проверки положительный, если в процессе проверки не произошло остановки ротора.

А.11 Проверка статического фиксирующего момента

- А.11.1 Проверку статического фиксирующего момента проводят при отключенном напряжении питания при помощи моментомера в трех произвольных устойчивых положениях ротора при создании усилия моментомером по часовой и против часовой стрелки.
- А.11.2 Результат проверки положительный, если величина статического фиксирующего момента соответствует требованию п.3.2.10 ТЗ.

Примечание – При измерении моментомером не должно создаваться радиальное усилие на вал двигателя.

А.12 Проверка массы

- А.12.1 Проверку массы двигателя производят на весах с погрешностью взвешивания ± 2 г.
- А.12.2 Результат проверки положительный, если значение массы соответствует требованию п.3.14.3 ТЗ.

А.13 Проверка электромагнитной постоянной времени обмоток

А.13.1 Для определения электромагнитной постоянной времени обмотки необходимо измерить индуктивность и активное сопротивление обмотки фаз двигателя.

Электромагнитная постоянная времени обмотки $T_{\text{ЭЛ}}$, с, определяется по формуле:

$$T_{\mathfrak{I}} = ----- R_{20}$$

где L – индуктивность обмотки фазы при частоте измерения 1 к Γ ц, Γ н; R_{20} – активное сопротивление обмотки фазы постоянному току, приведенное к температуре 20°C, Ом.

А.13.2 Проверку двигатель должен проходить в практически холодном тепловом состоянии.

При проверке фиксируют значение температуры окружающей среды.

А.13.3 При помощи омметра измеряют активное сопротивление обмоток фаз двигателя постоянному току (между выводами 1-2 и 3-4).

Если активное сопротивление измеряется при температуре отличной от 20° C, то необходимо привести его к сопротивлению при температуре 20° C R_{20} , Oм, по формуле:

где T – температура окружающей среды, °C;

 R_{T} – активное сопротивление обмотки, измеренное при температуре T, Oм;

 $\alpha = 0.004$ – температурный коэффициент (для Cu).

- А.13.4 При помощи измерителя иммитанса (измерителя RLC) при частоте измерения 1 к Γ ц измеряют индуктивность обмоток фаз двигателя (между выводами 1 2 и 3 4).
- А.13.5 Результат проверки положительный при соответствии электромагнитной постоянной времени требованию п.3.2.6 ТЗ.

А.14 Проверка шага и статической погрешности

А.14.1 Проверка шага и статической погрешности отработки шагов двигателя производится в пределах одного оборота ротора (200 шагов) в режиме холостого хода (момент нагрузки равен нулю) при напряжении питания на входе блока управления 25,5 В и токе в каждой фазе двигателя (3,0±0,3) А.

Двигатель соединяется со стендом в соответствии со схемой, приведенной на рисунке A.14.1.

Рисунок А.14.1 – Схема подключения двигателя для проверки шага и статической погрешности

PV – вольтметр

А.14.2 Двигатель включают в режиме подачи с блока управления одиночных импульсов (пошаговый режим).

После подачи на обмотки двигателя напряжения, обнуляют показания на устройстве цифровой индикации и подают одиночные импульсы, для каждого шага фиксируя показания измеренного угла поворота.

Статическую погрешность $\Delta\alpha$, %, вычисляют по формуле:

$$\Delta \alpha = \frac{|+\Delta \alpha| + |-\Delta \alpha|}{2\alpha}$$

- где $+ \Delta \alpha$ наибольшая положительная разница между измеренным и расчетным углами поворота ротора, ';
 - $-\Delta \alpha$ наибольшая отрицательная разница между измеренным и расчетным углами поворота ротора, ';
 - α номинальное значение шага, '.

Проверку проводят при правом и левом направлении вращения.

А.14.3 Результат проверки положительный при соответствии статической погрешности требованиям п.3.2.3 ТЗ.

Примечания:

- 1 Между каждым одиночным импульсом должна быть пауза длительностью не менее 1 с.
- 2 Проверка при каждом направлении вращения должна быть выполнена за время не более 15 мин. Между ними перерыв не менее 20 мин.

А.15 Проверка температуры обмоток

А.15.1 Температуру обмоток проверяют методом сопротивления, определяя сопротивление обмоток при помощи метода амперметра – вольтметра.

Измеряют сопротивление обмоток постоянному току в практически холодном состоянии и температуру окружающей среды.

Проверку температуры проводят в одной обмотке (фазе) у которой в практически холодном состоянии меньшее значение сопротивления.

Метод установки двигателя в соответствии с разделом 8 (п.8.2.10) ГОСТ РВ 51816.0-2001.

- А.15.2 Двигатель нагружают номинальным вращающим моментом и производят работу в течение 30 мин в режиме непрерывного вращения на частоте управляющих импульсов 600 Гц при напряжении питания на входе блока управления 25,5 В и токе в каждой фазе двигателя (3,0±0,3) А при произвольном направлении вращения.
- А.15.3 В конце 30 мин работы измеряют сопротивление обмотки (фазы), определяя величину тока и значение напряжения на ней.

Температура обмотки T, °C, вычисляется по формуле:

$$R\Gamma - Rx$$

 $T = ----- (235+tx)+tx$,

где Rг – сопротивление обмотки постоянному току в нагретом состоянии, Ом;

Rx – сопротивление обмотки в практически холодном состоянии при температуре окружающей среды tx, Ом

tx – температура окружающей среды, °С.

- А.15.4 Затем проводят проверку максимальной приемистости по методике А.9.
 - А.15.5 Результаты проверки положительные при соответствии:
 - температуры обмотки требованию А.1.5;
 - максимальной приемистости требованию п.3.2.11 T3.

А.16 Испытание на воздействие синусоидальной вибрации

А.16.1 Испытание проводят на отключенном двигателе путем воздействия синусоидальной вибрации по режимам, приведенным в таблице А.16.1 при плавном изменении частоты со скоростью не более 1 окт/мин в каждом поддиапазоне частот от низшей к высшей и обратно.

Продолжительность воздействия вибрации в каждом поддиапазоне частот в каждую сторону устанавливают равной 1 мин.

Таблица А.16.1 – Режимы испытаний на воздействие синусоидальной вибрации

Поддиапазоны частот, Гц	Амплитуда виброускорения, m/c^2 (g)
10 – 20	12 (1,2)
20 – 40	30 (3,0)
40 – 80	30 (3,0)
80 – 160	50 (5,0)
160 – 320	80 (8,0)
320 – 640	80 (8,0)
640 – 1280	100 (10,0)
1280 – 2000	100 (10,0)

- А.16.2 После испытания проводят внешний осмотр двигателя и проверяют максимальную приемистость по методике А.9.
 - А.16.3 Результаты испытания положительные если:
 - отсутствуют механические повреждения;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.17 Испытание на воздействие механических ударов одиночного действия

А.17.1 Испытание проводят на отключенном двигателе путем воздействия механических ударов одиночного действия с треугольной (пилообразной) формой импульса ударного ускорения по режимам, приведенным в таблице А.17.1.

Таблица A.17.1 – Режимы испытаний на воздействие механических ударов одиночного действия

Пиковое ударное	Длительность действия
ускорение, M/c^2 (g)	ударного ускорения, мс
100 (10)	от 5,0 – 10,0

- А.17.2 Проводят по три удара в обоих противоположных направлениях (всего 18 ударов).
- А.17.3 После испытания проводят внешний осмотр двигателя и проверяют максимальную приемистость по методике А.9.
 - А.17.4 Результаты испытания положительные если:
 - отсутствуют механические повреждения;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.18 Испытание на воздействие механических ударов многократного действия

А.18.1 Испытание проводят на отключенном двигателе путем воздействия механических ударов многократного действия с треугольной (пилообразной) формой импульса ударного ускорения по режимам, приведенным в таблице А.18.1.

Таблица A.18.1 – Режимы испытаний на воздействие механических ударов многократного действия

Пиковое ударное	Длительность действия	Количество ударов по
ускорение, M/c^2 (g)	ударного ускорения, мс	каждой оси
50 (5)	от 2,0 – 10,0	12

- А.18.2 После испытания проводят внешний осмотр двигателя и проверяют максимальную приемистость по методике А.9.
 - А.18.3 Результаты испытания положительные если:
 - отсутствуют механические повреждения;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.19 Испытание на воздействие линейного ускорения

A.19.1 Испытание проводят на отключенном двигателе путем воздействия линейного ускорения $150 \text{ м/c}^2 (15 \text{ g})$ поочередно в обоих противоположных направлениях.

Продолжительность воздействия линейного ускорения в каждом направлении – 3 мин (всего 18 мин).

- А.19.2 После испытания проводят внешний осмотр двигателя и проверяют максимальную приемистость по методике А.9.
 - А.19.3 Результаты испытания положительные если:
 - отсутствуют механические повреждения;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

A.20 Испытание на воздействие квазистатических и низкочастотных (менее 20 Гц) динамических ускорений

А.20.1 Испытание проводят на отключенном двигателе путем воздействия синусоидальной вибрации с амплитудой виброускорения 60 м/c^2 (6g) на частоте 18Γ ц.

Продолжительность воздействия вибрации по каждой оси 3,5 мин.

- А.20.2 После испытания проводят внешний осмотр двигателя и проверяют максимальную приемистость.
 - А.20.3 Результаты испытания положительные если:
 - отсутствуют механические повреждения;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.21 Испытание на воздействие атмосферного пониженного давления при транспортировании

- А.21.1 Испытание проводят на отключенном двигателе в условиях воздействие атмосферного пониженного давления при транспортировании самолетом.
- А.21.2 Двигатель помещают в термобарокамеру. Понижают температуру в камере до минус 50 °C и выдерживают 2 ч.
- А.21.3 Понижают давление в камере до $1,2\cdot10^4$ Па (90 мм рт. ст.) и поддерживают на этом уровне в течение 1 ч. При этом температуру в камере не контролируют.
- А.21.4 Давление к камере плавно повышают до соответствующего НКУ, двигатель извлекают из камеры и выдерживают в НКУ не менее 2 ч, затем проводят проверку максимальной приемистости по методике А.9.
- А.21.5 Результаты испытания положительные при соответствии максимальной приемистости требованию п.3.2.11 ТЗ.

А.22 Испытание на воздействие атмосферного пониженного давления при эксплуатации

- А.22.1 Двигатель помещают в термовакуумную камеру.
- А.22.2 Понижают давление в камере до $1,3\cdot10^{-4}$ Па (10^{-6} мм рт. ст.) с допустимым отклонением \pm 10%. Установить в камере температуру минус (30 ± 5) °C. Выдержать в этих условиях 2 ч.
- А.22.3 Двигатель включают в режиме непрерывного вращения на частоте управляющих импульсов 700 Гц при напряжении питания на входе блока управления 25,5 В и токе в каждой фазе двигателя $(3,0\pm0,3)$ А в течение 5 мин при правом и левом направлении вращения. При этом контролируется наличие вращения вала двигателя.
- А.22.4 Давление в камере плавно повышают до соответствующего НКУ, двигатель извлекают из камеры и выдерживают в НКУ не менее 2 ч, затем проводят проверку максимальной приемистости по методике А.9.
 - А.22.5 Результаты испытания положительные если:
 - имеется вращение вала двигателя при включении в камере;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

Примечание — Допускается проводить испытание при пониженном атмосферном давлении $1,33\cdot 10^{-3}\,\Pi a$ ($10^{-4}\,$ мм рт. ст.).

А.23 Испытание на воздействие повышенной температуры среды

А.23.1 Для обеспечения визуального контроля вращения вала двигателя, перед началом испытания на вал устанавливают индикаторную стрелку.

Метод установки двигателя в соответствии с разделом 8 (п.8.2.10) ГОСТ РВ 51816.0-2001.

- А.23.2 Двигатель помещают в камеру, после чего в камере устанавливают температуру плюс 50 °C (температура в камере может быть установлена заранее) и выдерживают при этой температуре в течение 24 ч.
- А.23.3 Температуру в камере понижают до плюс 30 °C и двигатель выдерживают при этой температуре в течение 1 ч, затем в камере проводится проверка максимальной приемистости по методике А.9.
- А.23.4 Двигатель извлекают из камеры и не позднее, чем через 3 мин после отключения напряжения, проводится проверка сопротивления изоляции по методике А.5.
- А.23.5 Двигатель выдерживают в НКУ не менее 2 ч, после чего проводится проверка максимальной приемистости по методике А.9.
 - А.23.6 Результаты испытания положительные если:
 - сопротивление изоляции соответствует требованию А.1.8.1;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.24 Испытание на воздействие пониженной температуры среды

- А.24.1 Для обеспечения визуального контроля вращения вала двигателя, перед началом испытания на вал устанавливают индикаторную стрелку.
- А.24.2 Двигатель помещают в камеру, после чего в камере устанавливают температуру минус 60 °С (температура в камере может быть установлена заранее) и выдерживают при этой температуре в течение 24 ч.
- А.24.3 Температуру в камере повышают до минус 30 °С и двигатель выдерживается при этой температуре в течение 1 ч, затем в камере проводится проверка максимальной приемистости по методике А.9.
- А.24.4 Двигатель извлекают из камеры и выдерживают в НКУ не менее 2 ч, после чего проводится проверка максимальной приемистости по методике А.9.
- А.24.5 Результаты испытания положительные при соответствии максимальной приемистости требованию п.3.2.11 ТЗ.

А.25 Испытание на воздействие изменения температуры среды

- А.25.1 Испытание проводят на отключенном двигателе методом 1 по ГОСТ РВ 0020-57.306-2019 в камерах холода и тепла, в которых заранее устанавливают температуру минус 50 °C и плюс 50 °C соответственно.
- А.25.2 Двигатель подвергают воздействию пяти непрерывно следующих друг за другом циклов.

Время выдержки при каждой температуре 2 ч.

Время переноса двигателя из камеры в камеру не более 5 мин.

- А.25.3 После окончания последнего цикла испытаний двигатель извлекают из камеры и выдерживают в НКУ не менее 2 ч, после чего проверяют максимальную приемистость по методике А.9.
- А.25.4 Результаты испытания положительные при соответствии максимальной приемистости требованию п.3.2.11 ТЗ.

А.26 Испытание на воздействие повышенной влажности воздуха

А.26.1 Испытание проводят на отключенном двигателе в камеру влаги.

Двигатель подвергают воздействию непрерывно следующих друг за другом девяти циклов. Продолжительность цикла – 24 ч.

Каждый цикл состоит из следующих этапов:

- температуру в камере повышают до плюс (55 \pm 2) °C в течение от 1 до 3 ч. Относительная влажность не менее 95 %.
- в камере поддерживают температуру плюс (55 \pm 2) °C в течение (12 \pm 0,5) ч от начала цикла. Относительная влажность (93 \pm 3) %.
- температуру в камере понижают до плюс (25 \pm 2) °C в течение от 4 до 9 ч. Относительная влажность не менее 95 %.
- в камере поддерживают температуру плюс (25 \pm 2) °C и относительную влажность не менее 95 % до конца цикла.

В последнем цикле температуру в камере понижают до плюс (25 ± 2) °C и поддерживают при относительной влажности (98_{-3}) % до конца цикла без конденсации влаги.

- А.26.2 По истечении последнего цикла двигатель извлекают из камеры и не позднее, чем через 3 мин проверяют сопротивление изоляции по методике А.5. Затем проверяют электрическую прочность изоляции, по методике А.6, проверка которой должна быть закончена, не позднее, чем через 15 мин после извлечения из камеры.
- А.26.3 Двигатель выдерживают в НКУ не менее 6 ч, после чего проверяют максимальную приемистость по методике А.9.
 - А.26.4 Результаты испытания положительные если:
 - сопротивление изоляции соответствует требованию А.1.8.1;
- отсутствует пробой или поверхностное перекрытие изоляции при проверке электрической прочности изоляции;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.27 Испытание на прочность при транспортировании

А.27.1 Транспортировочная тара с двигателем жестко крепится на платформе ударного стенда и подвергается воздействию ударов по режимам в соответствии с таблицей А.27.1.

Таблица A.27.1 – Режимы испытаний на прочность при транспортировании

Наименование параметра, единица измерения	Значение параметра
Пиковое ударное ускорение, M/c^2 (g)	90 (9,0)
Длительность действия ударного ускорения, мс	от 5 до 10
Количество ударов по каждой оси	2 500
Частота повторения, ударов/мин, не более	до 120

А.27.2 После окончания испытания проводят внешний осмотр тары, извлекают двигатель и проводят внешний осмотр двигателя, затем проводят проверку максимальной приемистости по методике А.9.

- А.27.3 Результаты испытания положительные если:
- отсутствуют повреждения двигателя;
- тара сохранилась полностью или ее повреждения незначительны и не могут повлиять на сохранность двигателя;
 - максимальная приемистость соответствует требованию п.3.2.11 T3.

А.28 Испытание на циклическую наработку

- А.28.1 Двигатель должен быть закреплен на приспособлении при горизонтальном положении оси вращения, на вал двигателя устанавливается индикаторная стрелка.
- А.28.2 Испытание на проводят в НКУ в циклическом режиме работы двигателя.

Длительность цикла – 50 мин.

Каждый цикл состоит из следующих этапов (режимов):

- а) режим удержания двигатель включается в работу при фиксированной стоянке под током (без подачи управляющих импульсов (частота $0 \Gamma \mu$) при токе в обеих обмотках фаз $(1,0\pm0,1)$ А в течение 35 мин;
- б) режим непрерывного вращения двигатель включается в работу на частоте управляющих импульсов 700 Гц при напряжении питания на входе блока управления 25,5 В и токе в каждой фазе двигателя (3,0±0,3) А в течение 10 мин;
 - б) питание двигателя отключено в течение 5 мин.

Циклограммы работы двигателя приведена на рисунке А.26.1.

Іф – ток в каждой фазе двигателя;

Тц – продолжительность одного цикла;

tуд – продолжительность режима удержания;

tвр – продолжительность режима вращения;

тотк – время, когда питание двигателя отключено.

Рисунок А.26.1 – Циклограмма работы двигателя

А.28.3 Проводится 550 циклов при правом направлении вращения, затем 550 циклов – при левом.

После выполнения 550 циклов для каждого направления вращения проводят проверку:

- сопротивления изоляции, не позднее, чем через 3 мин после отключения напряжения по методике A.5;
- электрической прочности изоляции, в течение не более 15 мин после отключения напряжения по методике A.6;
 - момента удержания по методике А.8;
 - максимальной приемистости по методике А.9;
 - работоспособности при разгоне по методике А.10;
 - статического фиксирующего момента по методике А.11.

А.28.4 Результаты испытания положительные если:

- в процессе вращения не произошло остановки ротора;
- сопротивление изоляции соответствует требованию А.1.8.1;
- отсутствует пробой или поверхностное перекрытие изоляции при проверке электрической прочности изоляции;
 - момент удержания соответствует требованию п.3.2.9 ТЗ;
 - максимальная приемистость соответствует требованию п.3.2.11 T3;
- статический фиксирующий момент соответствует требованию п.3.2.10 T3.

А.29 Проверка на прочность к воздействию акустического давления

- А.29.1 Проверку проводят путем контроля результатов расчета.
- А.29.2 Проверка считается успешной если расчетом установлено соответствие двигателя требованиям п.3.4.2 ТЗ.

А.30 Проверка радиационной стойкости

- А.30.1 Проверку проводят путем контроля результатов расчета.
- А.30.2 Проверка считается успешной если расчетом установлено соответствие двигателя требованиям пп.3.4.3 3.4.5 ТЗ.

А.31 Проверка требований надежности

- А.31.1 Проверку показателей надежности проводят путем контроля результатов расчета.
- А.31.2 Проводится проверка, что имеются в наличии следующие документы:
 - программа обеспечения надежности (ПОН);
 - анализ видов, последствий и критичности отказов (АВПКО);
 - программа обеспечения стойкости (ПОСТ);
 - комплексная программа экспериментальной отработки (КПЭО);
 - тепловой расчет.
 - А.31.3 Проверка считается успешной если:
- расчетом установлено соответствие показателей надежности двигателя требованиям пп.3.5.4, 3.5.5 T3;
- документы ПОН, АВПКО, ПОСТ, КПЭО, тепловой расчет разработаны и согласованы в соответствии с Перечнем комплектности РКД.

А.32 Проверка требований безопасности

- А.32.1 Проверка проводится путем рассмотрения РКД на двигатель.
- А.32.2 Проводится проверка наличия программы обеспечения безопасности (ПОБ).
 - А.32.3 Проверку считать успешной если:
- ПОБ разработана и согласована в соответствии с Перечнем комплектности РКД.
- по итогам рассмотрения РКД установлено, что в двигателе применяются экологически безопасные, пожаро- и взрывобезопасные комплектующие, материалы и покрытия.

А.33 Проверка требований по стандартизации и унификации

- А.33.1 Проверка проводится путем рассмотрения РКД на двигатель.
- А.33.2 Проверку считать успешной если по итогам рассмотрения РКД установлено, что применяются документы по стандартизации в соответствии с их областью применения и включенные в сводный перечень документов по стандартизации оборонной продукции.

А.34 Проверка требований технологичности

- А.36.1 Проверка проводится путем рассмотрения технических справок (справки) о выполнении требований технологичности.
 - А.36.2 Проверку считать успешной если:
 - проведена оценка унификации техпроцессов и оснастки;
 - проведена оценка технологичности конструкции двигателя;
- техпроцессы на двигатель разработаны с учетом требований «Положения РК-11».

А.35 Проверка требований к метрологическому обеспечению

- А.35.1 Выполнение требований к метрологическому обеспечению подтверждается следующими документами:
- справкой о годности средств испытаний, средств контроля и измерений для проведения испытаний;
 - актом о готовности метрологического обеспечения испытаний.
- А.35.2 Проверку считать успешной если метрологическое обеспечение соответствует требованиям п.6.1 ТЗ.

А.36 Проверка требований к сырью, материалам и комплектующим изделиям межотраслевого применения

- А.36.1 Проверка проводится при входном контроле в соответствии с ГОСТ РВ 0015-308-2017.
- А.36.2 Проверку считать успешной если по итогам входного контроля применяемых при изготовлении двигателя сырья, материалов и комплектующих изделии установлено:
- наличие и правильность оформления сопроводительной документации (паспорта, этикетки, сертификаты);
- соответствие маркировки данным, указанным в сопроводительной документации;
 - отсутствие механических повреждений;
- результаты входного контроля зафиксированы в журнале учета входного контроля.

А.37 Проверка требований к консервации, упаковке и маркировке

- А.37.1 Проверка проводится осмотром.
- А.37.2 Проверку считать успешной если:
- консервация двигателя выполнена в соответствии с ГОСТ 9.014-78 и ГОСТ ВД 9.014-80;
- упаковка (тара) на двигатель соответствует РКД и требованиям ГОСТ РВ 0009-001-2019;
 - тара имеет маркировку по ГОСТ 14192-96.

А.38 Проверка специальных требований

- А.38.1 Проводят проверку документов по проведению патентных исследований.
- А.38.2 Проверку считать успешной если патентные исследования проведены по ГОСТ Р 15.011-96 и оформлен отчет.

Приложение Б (обязательное)

Перечень средств испытаний, средств измерений и средств контроля

Б.1 Перечень средств испытаний, средств измерений и средств контроля, используемых для испытаний (проверки) двигателя, приведен в таблице Б.1.

Таблица Б.1

таолица Б.1				
Наименование	Тип (марка, модель)	Класс точности/ погрешность измерения		
	Средства испытаний			
Вибростенд	УВЭП-6000			
Ударный стенд	ТираШок 4110М	до 983 м/с² (100,2 g); от 60 до 180 уд/мин		
Термобарокамера	VTH-7100	от минус 65,5 °C до плюс 100,5 °C; до 133 Па (1 мм рт. ст.); ± 5 %		
Камера тепла и влаги	КТВ-04-155	до 99%, ± 3 %, до 55 °C, ± 2 °C		
Камера холода	MC-81	от минус 65 °C до плюс 80 °C, ± 2 °C		
Камера тепла	MA-01-334	до 81,5 °C, ± 2 °C		
	Средства контроля			
Стенд, обеспечивающий момент нагрузки от 0 до 1,0 H·м	MA-01-611			
Стенд для проверки шага и статической погрешности	MA-01-566			
Пульт (блок управления	ЭМА-1420			
Центрифуга	Э7-943			
Стенд термовакуумных испытаний	ВЭИР.468911.002			

продолжение таблицы Б.1

Наименование	Тип (марка, модель)	Класс точности/ погрешность измерения
	Средства измерений	
Барометр-анероид метеорологический	БАММ-1	± 0,2 кПа
Термогигрометр	ИВА-6Н	± 0.3 °C; ± 2 %
Штангенциркуль	ШЦЦ-І-150-0,01	$\pm~0,03~\mathrm{mm}$
Микрометр	MK-25-0,001	± 0,004 mm
Мегаомметр	M4100/1	2,5
Вольтамперметр	M2038	0,5
Секундомер	СОПпр-1в-3-000	± 0,8 c
Мультиметр	APPA-301	
Измеритель иммитанса	LRC-826	
Весы для статического взвешивания	ВСП-12/2-3К	±2 Γ
Установка высоковольтная, измерительная	УПУ-21/1	± 3 %
Осциллограф	WaveAce 204	Коэф. отклонения \pm 3 %; Коэф. развертки \pm 0,01 %
Отвертка моментная для проверки статического фиксирующего момента	Holex, серии 659050, мод. 659050 50	± 2 %
Моментомер для проверки момента удержания	DB3N4-S	± 3 %
Стабилизированный источник питания до 36 В постоянного тока мощностью до 100 Вт	Б5-71КИП	$\pm (0.001 \cdot \text{Uyct} + 0.02) \text{ B};$ $\pm (0.01 \cdot \text{Iyct} + 0.05) \text{ A}$

Примечание – Допускается использование средств испытаний, средств измерений и средств контроля других типов, обеспечивающих необходимую точность и удовлетворяющих условиям испытаний (проверок).

Приложение В (обязательное)

Форма импульсов напряжения на выходе блока управления при нагрузке, равной активному сопротивлению обмоток фаз двигателя

 $\mathrm{U_{f}}\,$ - импульсы управления на входе коммутирующего устройства

U - импульсы напряжения на одном из выходов блока управления

$$\frac{b}{T} = \frac{1}{2}$$
; $a < 0.2 \text{ MC}$

а - время нарастания и спада импульса;

b - длительность импульса;

Т - период;

t - время.

Приложение Г (обязательное)

Порядок чередования импульсов напряжения на выводах двигателя и направление вращения

Uf — импульсы напряжения на входе блока управления; U_I , U_{II} — импульсы напряжения на выводах 1 и 2 первой фазы и выводах 3 и 4 второй фазы двигателя соответственно; t — время.

Приложение Д (обязательное) Схема подключения двигателя для проведения испытаний

РА - амперметр

PV - вольтметр

N - осциллограф

SF - выключатель