BAB 1 DASAR-DASAR ILMU FISIKA

1.1 Pendahuluan

- Sejarah dan Aplikasi Fisika 🥌

- Pengertian Fisika:

- Ilmu pengetahuan yang mempelajari benda-benda dialam, gejala-gejala, kejadian-kejadian alam serta interaksi dari benda-benda di alam.
- Fisika merupakan ilmu pengetahuan dasar yang mempelajari sifat-sifat dan interaksi antar materi dan radiasi.
- Fisika merupakan ilmu pengetahuan yang didasarkan pada pengamatan eksperimental dan pengukuran kuantitatif (Metode Ilmiah).

1.2 Satuan dan Notasi Ilmiah

> Besaran:

> Sesuatu yang dapat diukur → dinyatakan dengan angka (kuantitatif) Contoh : panjang, massa, waktu, suhu, dll.

> Setiap besaran selalu memiliki satuan → bisa lebih dari 1 sistem satuan Contoh : kg (SI) = slug (Sistem British)

> Satuan :

Ukuran dari suatu besaran ditetapkan sebagai satuan.

Contoh: • meter, kilometer

→ satuan panjang

■ detik, menit, jam → satuan waktu

gram, kilogram

→ satuan massa

dll.

- > Sistem satuan : ada 2 macam
- 1. Sistem Metrik: a. mks (meter, kilogram, sekon) b. cgs (centimeter, gram, sekon)
- 2. Sistem Non metrik (sistem British)
- Sistem Internasional (SI)

Sistem satuan mks yang telah disempurnakan → yang paling banyak dipakai sekarang ini.

Pengukuran

Mengukur:

Membandingkan sesuatu dengan sesuatu yang lain yang sejenis yang ditetapkan sebagai satuan.

Besaran Fisika baru terdefenisi jika :

- ada nilainya (besarnya)
 - ada satuannya

contoh: panjang jalan 10 km

TUGAS KELOMPOK

- ➤ Lakukan Pengukuran *Tinggi* dan *Berat Badan* terhadap 50 s.d 100 Mahasiswa. > anggota kelompok ditambah dengan diluar kelas. (Syarat yang diukur memiliki tahun lahir yang sama).
- Catat Bulan kelahiran dan Jenis Kelamin.
- > Buat Hasil Pengukuran dalam bentuk Grafik.
- Presentasikan Grafik tersebut (Jika waktu memungkinkan).
- ➤ Tugas paling lambat dikirim akhir Minggu ke 2 Bulan Des 2020 (<u>sattaryunus@ymail.com</u>)

PENGELOMPOKAN BESARAN

> Besaran Pokok

> Besaran Turunan

Besaran Pelengkap

BESARAN POKOK

Besaran Pokok adalah Besaran yang mendasari besaran yang lain

Dipilih karena memiliki 2 sifat :

- 1. Bebas Terhadap Besaran yang lain
- 2. Bersifat Lebih Makroskopis sehingga mudah diukur

Besaran Pokok dalam SI dan Dimensi

NO	Besaran Pokok	Satuan	Singkatan	Dimensi
1	Panjang	Meter	m	L
2	Massa	Kilogram	kg	М
3	Waktu	Sekon	S	т
4	Arus Listrik	Ampere	Α	I
5	Suhu	Kelvin	K	θ
6	Intensitas Cahaya	Candela	cd	i
7	Jumlah Zat	Mole	mol	N

BESARAN TURUNAN

Besaran Turunan adalah Besaran yang tersusun oleh ² besaran pokok atau lebih

Jumlah besaran turunan tak hingga.

Seperti Luas, Volume, Kecepatan dll

Contoh:

a. Tidak menggunakan nama khusus

NO	Besaran	Satuan
1	Kecepatan	meter/detik
2	Luas	meter ²

b. Mempunyai nama khusus

NO	Besaran	Satuan	Lambang
1	Gaya	Newton	N
2	Energi	Joule	J
3	Daya	Watt	w
4	Frekuensi	Hertz	Hz

Besaran Turunan dan Dimensi

NO	Besaran Pokok	Rumus	Dimensi
1	Luas	panjang x lebar	[L] ²
2	Volume	panjang x lebar x tinggi	[L] ³
3	Massa Jenis	massa volume	[m] [L] ⁻³
4	Kecepatan	perpindahan waktu	[L] [T] ⁻¹
5	Percepatan	kecepatan waktu	[L] [T]-2
6	Gaya	massa x percepatan	[M] [L] [T]-2
7	Usaha dan Energi	gaya x perpindahan	[M] [L]2 [T] ⁻²
8	Impuls dan Momentum	gaya x waktu	[M] [L] [T]-1

BESARAN PELENGKAP

- > Biasa juga disebut Besaran Pokok tak berdimensi
- > Besaran Pelengkap terdiri dari 2 besaran.
- > Satuannya sifatnya hanyalah melengkapi

NO	Besaran Pokok	Satuan	Singkatan	Dimensi
1	Sudut Datar	Radian	rad	•
2	Sudut Ruang	Steradian	sr	•

≻Dimensi

Cara suatu besaran itu tersusun oleh besaran-besaran pokok.

- Guna Dimensi:
- 1. Untuk menurunkan satuan dari suatu besaran
- 2. Untuk meneliti kebenaran suatu rumus atau persamaan

- Metode penjabaran dimensi :
 - 1. Dimensi ruas kanan = dimensi ruas kiri
 - 2. Setiap suku berdimensi sama

Contoh Soal

- 1. Tentukan dimensi dan satuannya dalam SI untuk besaran turunan berikut :
 - a. Gaya
 - b. Berat Jenis
 - c. Tekanan
 - d. Usaha
 - e. Daya

Jawab :

b. Berat Jenis =
$$\frac{\text{berat}}{\text{volume}}$$
 = $\frac{\text{Gaya}}{\text{Volume}}$ = $\frac{\text{MLT}^{-2}}{\text{L}^3}$
= $\frac{\text{MLT}^2}{\text{ML}^{-2}\text{T}^{-2}}$ satuan kgm⁻²

c. Tekanan =
$$\frac{\text{gaya}}{\text{luas}} = \frac{\text{MLT}^{-2}}{\text{L}^2} = \text{MLT}^{-1} \text{ satuan kgm}^{-1}\text{s}^{-1}$$

e. Daya =
$$\frac{\text{usaha}}{\text{waktu}}$$
 = $\frac{\text{ML}^2 \text{T}^{-2}}{\text{T}}$ = ML $^2 \text{T}^{-1}$ satuan kgm $^{-2}$ s $^{-1}$

- 2. Buktikan besaran-besaran berikut adalah identik :
 - a. Energi Potensial dan Energi Kinetik
 - b. Usaha/Energi dan Kalor

Jawab :

a. Energi Potensial : Ep = mgh

Energi potensial = massa x gravitasi x tinggi

 $= M \times LT^2 \times L = ML^2T^2$

Energi Kinetik : Ek = 1/2 mv²

Energi Kinetik = 1/2 x massa x kecepatan²

= M x (LT-1) 2

 $= ML^2T^2$

Keduanya (Ep dan Ek) mempunyai dimensi yang sama → keduanya identik

b. Usaha = ML²T⁻²

Energi = ML²T⁻²

Kalor = 0.24 x energi = ML²T⁻²

Ketiganya memiliki dimensi yang sama → identik

TUGAS INDIVIDU KE 2

Tentukan dan Uraikan Dimensi serta Satuan dalam SI (Seperti Contoh Soal no 1 diatas) besaran turunan selain dari turunan berikut :

Kecepatan, Luas, Gaya, Berat Jenis, Tekanan, Usaha, Daya

Catatan:

- 1. Tugas tersebut ditulis tangan
- 2. Difoto atau scan lalu pdf kan dan kirim ke email: sattaryunus@ymail.com
- 3. Setelah mengirim ke email lalu mengisi Google Form yang linknya tersedia di WA Group

PENULISAN SATUAN DAN NOTASI ILMIAH

- 1. Nama Satuan, Jika ditulis lengkap huruf depannya berupa huruf kecil, jika disingkat harus dalam huruf besar.
 - > 2 ampere
 - > 2 A
- 2. Ada aturan penyingkatan pada penulisan. Bersifat Lebih Makroskopis sehingga mudah diukur.
 - > Waktu sekon disingkat s bukan det
- **3.** Untuk Efisiensi penulisan besaran Fisika, kelipatan puluhan dapat diganti dengan awalan pada satuan.
 - > Kelipatan 1000 bisa diganti " kilo "

Faktor Penggali dalam SI

NO	Faktor	Nama	Simbol
1	10 -18	atto	а
2	10 ⁻¹⁵	femto	f
3	10 ⁻¹²	piko	р
4	10 ⁻⁹	nano	n
5	10 ⁻⁶	mikro	μ
6	10 ⁻³	mili	m
7	10 ³	kilo	K
8	10 ⁶	mega	М
9	10 ⁹	giga	G
10	10 ¹²	tera	Т

PENULISAN SATUAN DAN NOTASI ILMIAH

4. Notasi Ilmiah juga berlaku pada penyajian satuan. Penulisan ilmiah diartikan sebagai mengganti angka kelipatan puluhan dengan yang berpangkat.

Tabel 2. Ukuran beberapa parameter di alam dalam notasi ilmiah

Kelipatan	Jenis parameter alam (dalam meter)	Kelipatan	Jenis parameter alam (dalam sekon)
10-17	eksperimen untuk menentukan struktur inti atom	10-23	waktu cahaya melewati proton
10-15	diameter proton	10-15	periode gelombang cahaya
10-10	diameter atom	10.8	waktu untuk mengemisi cahaya dari keadaan eksitasi
10-8	panjang ribosom	10°2 10°9	skala hidup manusia (sejak dar zigot)
10-6	panjang gelombang cahaya, dan bakteri	107	satu tahun (3,16x10 ⁷ sekon)
100	tinggi manusia	1017	umur bumi
107	jejari bumi	1018	umur jagat raya
10^{16}	1 tahun cahaya		30000 90
10^{22}	jarak ke galaksi terdekat		
10^{26}	jejari jagat raya		

