Brown klaszterek

Rejtett Markov Modell (HMM)

- Valószínűségi modell, amely az állapotátmenet,- és az emissziós valószínűségekből áll
 - Markov feltevés: az adott pillanat rejtett állapota csak a megelőzőtől függ
 - Segítségével a megfigyelt változókat leginkább megmagyarázni képes rejtett változókat határozhatjuk meg

HMM példa

 Tudjuk, hogy 2 napja napos idő volt, és a következő két napban forró, majd jeges teát fogyasztottunk. Milyen időjárás volt a legvalószínűbb az elmúlt 2 nap folyamán?

	Napos	Esős
Napos	0,8	0,2
Esős	0,3	0,7

	Forró	Jeges
Napos	0,1 0,9	0,9
Esős	0,6	0,4

HMM példa

 Tudjuk, hogy 2 napja napos idő volt, és a következő két napban forró, majd jeges teát fogyasztottunk. Milyen időjárás volt a legvalószínűbb az elmúlt 2 nap folyamán?

-
$$NN \rightarrow (0.8*0.1)*(0.8*0.9)=0.0576$$

	Napos	Esős
Napos	0,8	0,2
Esős	0,3	0,7

	Forró	Jeges
Napos	0,1	0,9
Esős	0,6	0,4

HMM példa

 Tudjuk, hogy 2 napja napos idő volt, és a következő két napban forró, majd jeges teát fogyasztottunk. Milyen időjárás volt a legvalószínűbb az elmúlt 2 nap folyamán?

-
$$NN \rightarrow (0.8*0.1)*(0.8*0.9)=0.0576$$

- NE \rightarrow (0,8*0,1)*(0,2*0,4)=0,0064
- $EN \rightarrow (0,2*0,6)*(0,7*0,9)=0,0324$
- $EE \rightarrow (0,2*0,6)*(0,7*0,4)=0,0336$

	Napos	Esős
Napos	0,8	0,2
Esős	0,3	0,7

	Forró	Jeges
Napos	0,1	0,9
Esős	0,6	0,4

HMM feladatok – Tanítás

- Cél: a tanítószekvencia megfigyelését legvalószínűbbé tevő paraméterek meghatározása
 - Ha a rejtett változók ismertek (lennének), akkor egyszerű maximum likelihood módon elvégezhető
 - A rejtett változók azonban nem (legfeljebb részlegesen) ismertek
 - A szekvencia hosszában (l) és a lehetséges rejtett állapotok számában (H) exponenciálisan sok (H^l) lehetséges rejtett állapot szekvencia

HMM feladatok – Tanítás

- Cél: a tanítószekvencia megfigyelését legvalószínűbbé tevő paraméterek meghatározása
 - Ha a rejtett változók ismertek (lennének), akkor egyszerű maximum likelihood módon elvégezhető
 - A rejtett változók azonban nem (legfeljebb részlegesen) ismertek
 - Expectation Maximization (EM) algoritmus
 - A szekvencia hosszában (l) és a lehetséges rejtett állapotok számában (H) exponenciálisan sok (H^l) lehetséges rejtett állapot szekvencia
 - Dinamikus programozással kiküszöbölhető a H^l szekvencia explicit kiszámítása

HMM feladatok – Inferencia

- Cél: a modell paraméterei alapján egy megfigyelési sorozatot legjobban magyarázó rejtett állapotsorozat meghatározása
 - A szekvencia hosszában (l) és a lehetséges rejtett állapotok számában (H) ugyancsak exponenciálisan sok (H^l) lehetséges magyarázó rejtett állapot szekvencia
 - A tanítás során használthoz hasonló dinamikus programozási megoldás

Brown klaszterezés

- Tegyük fel, hogy minden egyes korpuszban megfigyelt szót egy rejtett szóosztályok "generálják"
 - Pl. a {macska, kutya, egér, ...} szavakat egy adott (állatokhoz kötődő dolgokat összefogó) klaszter generálja

Brown klaszterezés

- Tegyük fel, hogy minden egyes korpuszban megfigyelt szót egy rejtett szóosztályok "generálják"
 - Pl. a {macska, kutya, egér, ...} szavakat egy adott (állatokhoz kötődő dolgokat összefogó) klaszter generálja

Lényegében egy HMM-el van dolgunk!

Példa Brown klaszterek

• Magyar Twitterről Percy Liang implementációjával kinyerve cluster path 0110110010 cluster path 110010111010

490 words, 14,612 tokens freq alpha suffix

Words in frequency order

1	ülföld	1,196
2	megnövekedett	930
3	áció	461
4	ép	424
5	ülföldifoci	337
6	ácsony	328
7	ékelyföld	327
8	átokközt	314
9	ánsok	307

37 words, 13,219 tokens freq alpha suffix

Words in frequency order

1	akit	3,231
2	amire	1,889
3	amiért	1,650
4	amiket	1,622
5	akivel	1,030
6	akiket	932
7	amiről	799
8	akikkel	309
9	akire	289

Példa Brown klaszterek

• Magyar Twitterről Percy Liang implementációjával kinyerve cluster path 0110110010 cluster path 110010111010

490 words, 14,612 tokens freg alpha suffix

37 words, 13,219 tokens <u>freq alpha suffix</u>

Words in frequency order

1	ülföld	1,196
2	megnövekedett	930
3	áció	461
4	ép	424
5	ülföldifoci	337
6	ácsony	328
7	ékelyföld	327

Words in frequency order

1	akit	3,231		
2	amire	1,889		
3	amiért	1,650		
4	amiket	1,622		
5	akivel	1,030		
6	akiket	932		
7	amiről	799		

<u>^011010111111</u> (400)