Complex

the set of complex numbers

see math notation

definition

 $\mathbb{C}x\equiv x=a:b\iota\wedge\mathbb{R}a\wedge\mathbb{R}b$

notations

Cartesian Form $z = a : b\iota$

Polar Form $z=|z|\cos\theta:|z|\iota\sin\theta=|z|\cos\theta=|z|\,e[\iota\theta]$, see <u>eulers constant</u>, where $\mathrm{cis}=\mathrm{cos}:\iota\sin\theta\to e[\iota\theta]$

aka Euler's formula notation

applications

<u>complex</u> numbers are often intimately related to <u>discrete mathematics</u> — 3B1B <u>https://youtu.be/bOXCLR3Wric</u>

properties

 $\mathbb{C} \vdash \mathbb{U}$, see <u>universal</u>

equality $a:b\iota=c:d\iota\equiv a=c\wedge b=d$

addition $(a:b\iota):(c:d\iota)=(a:c):(b:d)\iota$

subtraction $(a:b\iota)\cdot (c:d\iota) = (a\cdot c):(b\cdot d)\iota$

multiplication

in cartesian form, $a:b\iota\mid c:d\iota=ac:ad\iota:b\iota c:bd\iota 2=(ac\cdot bd):(ad:bc)\iota$

in polar form, $z \mid w = |z| \ e[\iota \theta] \mid |w| \ e[\iota \phi] = |zw| \ e[\iota \mid \theta : \phi]$

square root of ι . $\lfloor \iota \rfloor = \cdots \mid 1 : \iota - \lfloor 2 \rfloor - \underline{\text{https://www.youtube.com/watch?}}$ $\underline{v=Z49hXoN4KWg}$

product of two <u>complex > conjugates</u> are product of <u>complex > moduluses</u> $a:b\iota \mid a\cdot b\iota = a2:b2 = |a:b\iota| \mid |a\cdot b\iota| - \underline{\text{https://youtu.be/bOXCLR3Wric?t=1522}}$

theorem De Moivre's Theorem $[\operatorname{cis} \theta]n = \operatorname{cis} n\theta \dashv \mathbb{Z}n \dashv \mathbb{R}\theta - \underline{\text{https://en.wikipedia.org/wiki/De_Moivre%27s_formula}}$

Real Part

Imaginary Part

let $z = a : b\iota$

definitions

real part of a complex number $z^{re}=a$

imaginary part of a complex number $z^{im} = b$

therefore, $z=z^{re}:\iota z^{im}$

Conjugate

<u>complex > conjugate</u>

definition

let $z = a : b\iota$

then, $\operatorname{conj} z = a \cdot b \iota = z^{re} \cdot \iota z^{im}$ is the *complex conjugate* of z

properties

let $\mathbb{C}z\wedge\mathbb{C}w\wedge\mathbb{R}c$

conj(z:w) = conj z : conj w

 $\operatorname{conj} cz = c \operatorname{conj} z$

 $\operatorname{conj} z | w = \operatorname{conj} z | \operatorname{conj} w$

 $\operatorname{conj} z$ - $w = \operatorname{conj} z - \operatorname{conj} w$

 $\operatorname{conj}\operatorname{conj} z=z$

 $\mathbb{R}z\equiv\operatorname{conj}z=z$

theorem $z \operatorname{conj} z = |z| 2 \dashv \mathbb{C} z$

theorem $-z = \operatorname{conj} z - |z| 2 \dashv \mathbb{C} z$

applications

multiplying by the conjugate can be used to reduce an expression such as $-4:3\iota$

Modulus

aka magnitude, absolute value

definition $|z| = \lfloor z^{re}2 : z^{im}2 \rfloor$ where |z| is the absolute value of z.

note the absolute value of <u>reals</u> can be thought of as "the <u>distance</u> of a point to the origin", which is why the absolute value of <u>complex</u> numbers is defined this way

properties

let $\mathbb{C}z\wedge\mathbb{C}w\wedge\mathbb{R}c$

let $\mathbb{R}|z| \wedge |z| \geq 0$

 $|z| = |\operatorname{conj} z|$

 $|zw|=|z|\ |w|$

|z-w|=|z|-|w|

triangle inequality $|z:w| \leq |z|:|w|$

Argument

aka phase

definition the *argument* of a <u>complex</u> number z is the counterclockwise <u>angle</u> between the positive <u>real</u> axis and the <u>line</u> segment from the origin to the point (z^{re}, z^{im})

definition $z=|z|\,e[\iota \arg z]$ where $\arg z$ is the argument of z