CS 161 Discussion 10 First-order Logic

Outline

- Syntax: how to write sentences
 - What kind of sentences are well-formed?
- **Semantics**: how to interpret sentences
 - Is this sentence True given this **possible world(model)**?
- Inference
 - How to determine entailment?

Syntax

- The same as in Propositional Logic, we have **sentences** in FOL.
- A sentence is evaluated as True/False with respect to a model.

Here we discuss how a sentence is formed in FOL.

We first see some sentence examples and move to the basic elements.

Sentences Types and Examples

- Atomic Sentences: objects (terms) and predicates
 - UCLAStudent(Mary) (predicate and constant)
 - UCLAStudent(x) (predicate and variable)
 - Married(Mother(Mary), Father(Mary))
 (predicate, constant, function)
- Complex Sentences
 - Under20(Mary) ∧ UCLAStudent(Mary)
 - Color(Apple)=Red
 - Sold(John, Car1, Tom) $\Rightarrow \neg$ Owns(John, Car1)
 - $\forall x UCLAStudent(x) \Rightarrow Person(x)$
 - $\exists x \ UCLAStudent(x) \land Under 20(x)$

Basic Elements

- Objects (a.k.a. Terms)
 - Constants
 - e.g., Apple, Pear, Mary, UCLA
 - Variables
 By convention, variables are represented
 - e.g., x, y, z ← by lowercase letters.
 - Complex terms (having functions)
 - e.g., Mother(Mary), Color(Apple), Color(x)

Functions (Return another constant)

A ground term is a term without variables

e.g., Apple, Color(Apple)

Basic Elements

- Predicates (Evaluated as <u>True/False</u>)
 - Properties (unary)
 - UCLA_student(Mary)
 - relations (n-ary)
 - Loves(Richard, Dog_of_Richard)
 - Brother(Richard, John)

Atomic Sentences

Atomic Sentences Consist of terms (objects) and predicates

- Examples
 - UCLAStudent(Mary)
 - UCLAStudent(x)
 - Married(Mother(Mary), Father(Mary))

The following is NOT a sentence:

Mary, x, Mother(Mary)

(They are not True or False!)

From Atomic Sentences to Complex Sentences

- Connectives
 - \neg , \land , \lor , \Rightarrow , \Leftrightarrow (as in propositional logic)
 - Owns(John, Car1)
 - Sold(John, Car1, Tom) $\Rightarrow \neg$ Owns(John, Car1)
 - =,≠ (will introduce after quantifiers)
 - Color(Apple)=Red
- Quantifiers
 - ∀ for all
 - ∃ there exists

Quantifiers

Express properties of <u>entire collections of objects</u>, instead of enumerating the objects by name.

- Universal quantification ∀ (For all)
 - $\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$
 - Naturally uses ⇒
- Existential quantification ∃ (There exists)
 - $\exists x \text{ King}(x) \land \text{OlderThan30}(x)$
 - Naturally uses ∧

Quantifiers - Nesting Quantifiers

- Same type quantifiers: order doesn't matter
 - $\forall x \forall y (Parent(x, y) \land Male(y) \Rightarrow Son(y, x))$
 - $\exists x \exists y (Loves(x, y) \land Loves(y, x))$
 - $\exists x, y \text{ (Loves}(x, y) \land \text{Loves}(y, x))$
- Mixed quantifiers: order does matter
 - $\forall x \exists y (Loves(x, y))$
 - Everybody has someone they love.
 - $\exists y \forall x(Loves(x, y))$
 - There is someone who is loved by everyone.
 - $\forall y \exists x (Loves(x, y))$
 - Everybody has someone who loves them.
 - $\exists x \forall y (Loves(x, y))$
 - There is someone who loves everyone.

Are they equivalent? What do they mean?

- $\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$
- $\forall x \text{ King}(x) \land \text{Person}(x)$
- $\exists x \text{ King}(x) \land \text{OlderThan30}(x)$
- $\exists x \text{ King}(x) \Rightarrow \text{OlderThan}30(x)$

Logical Equivalence for Quantifiers

• ∀ and ∃

$$\forall x \neg P \equiv \neg \exists x \ P \qquad \neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg \forall x \ P \equiv \exists x \ \neg P \qquad \neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\forall x \ P \equiv \neg \exists x \ \neg P \qquad P \land Q \equiv \neg (\neg P \lor \neg Q)$$

$$\exists x \ P \equiv \neg \forall x \ \neg P \qquad P \lor Q \equiv \neg (\neg P \land \neg Q).$$

$$\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$$

 $\neg \exists x \neg (\text{King}(x) \Rightarrow \text{Person}(x))$

More about quantifiers

- Variable scope
 - The scope of a variable is the sentence to which the quantifier syntactically applies.
 - $\forall \mathbf{x} \operatorname{King}(\mathbf{x}) \Rightarrow \operatorname{Person}(\mathbf{x})$
 - $\forall x \text{ King}(x) \lor (\exists x \text{ Brother}(x, \text{Richard}))$
 - The variable belongs to the innermost quantifier that mentions it. Then it
 will not be subject to any other
 quantification.
 - Equivalent sentence: ∃z Brother(z, Richard)
 - Cause confusion. Not recommended.
 - Not well-formed
 - $\exists x P(y)$
 - All variables should be properly introduced!
 - Ground expression
 - No variables
 - King(Richard) ⇒ Person(Richard)

Logical Connective -Equality

- Equality = (identity relation)
 - Color(Apple)=Red (True)
 - Color(Apple)=Blue (False)

Write FOL sentences:

Richard has (at least) two brothers

Hints for Exercise 1

Are they equivalent? What do they mean?

- $\exists x, y \text{ Brother}(x, \text{Richard}) \land \text{Bother}(y, \text{Richard})$
- $\exists x, y \text{ Brother}(x, \text{Richard}) \land \text{Bother}(y, \text{Richard}) \land (x \neq y)$

Consider the following cases:

- 1) Richard only has one brother John
- 2) Richard has two brothers: John and Tom

Write FOL sentences:

- Richard has (at least) two brothers
 - $\exists x, y \text{ Brother}(x, \text{Richard}) \land \text{Bother}(y, \text{Richard}) \land (x \neq y)$

Translate into FOL:

Everyone has <u>exactly one</u> mother.

- Mother(y, x) means y is the mother of x
- $\forall x \exists y \text{ Mother}(y, x)$?
 - Everyone has (at least one) mother.

Translate into FOL:

Everyone has <u>exactly one</u> mother.

- Mother(y, x) means y is the mother of x
- $\forall x \exists y \text{ Mother}(y, x)$?
 - Everyone has (at least one) mother.
- $\forall x \exists y Mother(y, x) \land (\forall z Mother(z, x) \Rightarrow y = z)$

What about "Richard has exactly two brothers?"

ヨメンy, Bro(x, Ridh) N Bro(y, Eich) N(x # y) N(YZ Bro(Z Rich) ⇒((Z=X) V(Z=y)))

Translate into FOL:

Everyone has <u>exactly one</u> mother.

- Mother(y, x) means y is the mother of x
- $\forall x \exists y \text{ Mother}(y, x)$?
 - Everyone has (at least one) mother.
- $\forall x \exists y Mother(y, x) \land (\forall z Mother(z, x) \Rightarrow y = z)$

What about "Richard has exactly two brothers?"

• $\exists x, y \text{ Brother}(x, \text{Richard}) \land \text{Bother}(y, \text{Richard}) \land (x \neq y) \land (\forall z \text{ Brother}(z, Richard) \Rightarrow ((z = x) \lor (z = y)))$

Exercise 3 – Translating English to FOL

- Every gardener likes sunshine
- You can fool some people all the time.
- You can fool all the people some of the time.

Exercise 3 – Translating English to FOL

- Every gardener likes sunshine
- You can fool some people all the time.
 - $\exists x \forall t$
- You can fool all the people some of the time.
 - ∀x∃t

Exercise – Translating English to FOL

```
    Every gardener likes the sun.
    (Ax) gardener (x) => likes (x,Sun)
```

You can fool some of the people all of the time.
 (Ex) (At) (person(x) ^ time(t)) => can-fool(x,t)

You can fool all of the people some of the time.
 (Ax) (Et) (person(x) ^ time(t) => can-fool(x,t)

- All purple mushrooms are poisonous.
 (Ax) (mushroom(x) ^ purple(x)) => poisonous(x)
- No purple mushroom is poisonous.
 (Ex) purple(x) ^ mushroom(x) ^ poisonous(x)
 or, equivalently,
 (Ax) (mushroom(x) ^ purple(x)) => ~poisonous(x)
- There are exactly two purple mushrooms.
 (Ex) (Ey) mushroom(x) ^ purple(x) ^ mushroom(y) ^ purple(y) ^ ~(x=y) ^ (Az)
 (mushroom(z) ^ purple(z)) => ((x=z) v (y=z))

Outline

- **Syntax:** how to write sentences
 - What kind of sentences are well-formed?
- **Semantics**: how to interpret sentences
 - Is this sentence True given this **possible world(model)**?
- Inference
 - How to determine entailment?

Models

In logical system, a sentence is evaluated as True or False with respect to a **model (possible world)**.

In Propositional Logic, a model is an assignment for this sentence

e.g.,
$$f = (\neg A \land B) \leftrightarrow C$$

 $w = \{A : 1, B : 1, C : 0\}$

- If a sentence α is true in model m, we say that model m satisfies α
- $M(\alpha) \coloneqq$ the set of all the models that satisfy α
- What about in First-Order Logic?
 - Much more complex!

Models in FOL

A model in FOL consists of:

- A set of objects
- A set of functions + what values will be returned
- A set of predicates + what values will be returned

Example - Model

Consider:

 $\begin{array}{ccc} \textbf{Objects} & \textbf{Predicates} & \textbf{Functions} \\ Orange & IsRed(\cdot) & OppositeOf(\cdot) \\ Apple & HasVitaminC(\cdot) \end{array}$

Example model:

Predicate	Argument	Value
IsRed	Orange	False
IsRed	Apple	True
HasVitaminC	Orange	True
HasVitaminC	Apple	True

Function	Argument	Return
OppositeOf	Orange	Apple
Opposite	Apple	Orange

Example – A Model

Sentence: $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$

Consider the following case:

OThree persons:

Richard (King, 50 years old)
John (Richard's brother, 20 years old)
Elizabeth (Richard's mother)

○A dog:

Gigi (Richard's dog)

Example – A Model (Possible World)

Formalize the setting:

- Objects:
 - · Richard, John, Elizabeth, Gigi
- Functions:
 - Age(⋅)
- Predicates:
 - King(\cdot), Person(\cdot), Brother(\cdot , \cdot), Mother (\cdot , \cdot), Dog (\cdot , \cdot)

A model:

Age(Richard) returns 50, Age(John) returns 20

The following sentences are True and all others are False

- King(Richard), Dog(Gigi, Richard)
- Person(Richard), Person(John), Person(Elizabeth) are True
- Brother(John, Richard), Brother(Richard, John) are True
- Mother(Elizabeth, Richard), Mother(Elizabeth, John) are True

Three persons:Richard (King, 50 years old)John (Richard's brother, 20 years old)Elizabeth (Richard's mother)

○A dog:Gigi (Richard's dog)

Propositionaliz ation

How to evaluate a sentence with quantifiers?

We eliminate the quantifiers and propositionalize it to a propositional logic sentence.

- Given a model, how to determine if $\forall x \ P$ is true?
 - Concatenate all universal instantiations by conjunction
 - instantiation: get rid of all variables by replacing them with ground terms
- Given a model, how to determine if $\exists x \ P$ is true?
 - Concatenate all existential instantiations by <u>disjunction</u>

Example - Propositionaliz ation

Determine if this is true: $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$

Example - Propositionaliz ation

Determine if this is true: $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$

1. Extend the interpretation:

 $x \rightarrow Richard$

 $x \rightarrow John$

 $x \rightarrow Elizabeth$

 $x \rightarrow Gigi$

Example - Propositionaliz ation

Determine if this is true:

 $\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$

2. Compute the propositional grounding (Do instantiation)

(In this example, we use universal instantiation)

King(Richard) ⇒ Person(Richard)
King(John) ⇒ Person(John)
King(Elizabeth) ⇒ Person(Elizabeth)
King(Gigi) ⇒ Person(Gigi)

Example

What do we do?

2. Compute the propositional grounding

```
( King(Richard) ⇒ Person(Richard) ) ∧
( King(John) ⇒ Person(John) ) ∧
( King(Elizabeth) ⇒ Person(Elizabeth)) ∧
( King(Gigi) ⇒ Person(Gigi) )
```

Example

Determine if this is true: $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$

3. See if its' True

Three persons:Richard (King, 50 years old)John (Richard's brother, 20 years old)Elizabeth (Richard's mother)

○A dog:Gigi (Richard's dog)

```
    ( King(Richard) ⇒ Person(Richard) ) ∧ True
    ( King(John) ⇒ Person(John) ) ∧ True
    ( King(Elizabeth) ⇒ Person(Elizabeth) ) ∧ True
    ( King(Gigi) ⇒ Person(Gigi) ) True
```

This sentence is True!

Given:

- FOL sentence:
 - $\forall x, y \text{ (Friend}(x, y) \land LovesBBQ(x)) \Rightarrow LovesBBQ(y)$
- A finite domain {Alice, Bob} for variable x and y

Compute the propositional grounding for the FOL sentence with the given domain.

Given:

- FOL sentence:
 - $\forall x, y \text{ (Friend}(x, y) \land LovesBBQ(x)) \Rightarrow LovesBBQ(y)$
- A finite domain {Alice, Bob} for variable x and y

Compute the propositional grounding for the FOL sentence with the given domain.

```
(Friend(Alice, Alice) \land LovesBBQ(Alice)) \Rightarrow LovesBBQ(Alice)
(Friend(Alice, Bob) \land LovesBBQ(Alice)) \Rightarrow LovesBBQ(Bob)
(Friend(Bob, Alice) \land LovesBBQ(Bob)) \Rightarrow LovesBBQ(Alice)
(Friend(Bob, Bob) \land LovesBBQ(Bob)) \Rightarrow LovesBBQ(Bob)
```

Outline

- **Syntax:** how to write sentences
 - What kind of sentences are well-formed?
- **Semantics**: how to interpret sentences
 - Is this sentence True given this possible world(model)?
- Inference
 - How to determine entailment?

Knowledge Base (KB)

A KB in propositional logic is a set of sentences. Or it can be considered as a single sentence.

A KB in FOL consists of:

- Objects
- Functions
- Predicates
- Sentences that are asserted to be True

Example – Knowledge Base

- Objects:
 - Richard, John, Elizabeth, Gigi
- Functions:
 - Age(⋅)
- Predicates:
 - King(\cdot), Person(\cdot), Brother(\cdot , \cdot), Mother (\cdot , \cdot), Dog (\cdot , \cdot)

Example – Determine Entailment

Sentences that are asserted to be True:

```
\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)
\forall x, y \operatorname{Person}(x) \wedge \operatorname{Brother}(x, y) \Rightarrow \operatorname{Person}(y)
\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Brother}(y, x) \quad \text{General Knowledge}
\operatorname{King}(\operatorname{Richard}) \quad \text{specific problem}
\operatorname{Brother}(\operatorname{John}, \operatorname{Richard})
```

Entailment

```
Given the knowledge base

\forall x \text{ King}(x) \Rightarrow \text{Person}(x)

\forall x, y \text{ Person}(x) \land \text{Brother}(x, y) \Rightarrow \text{Person}(y)

\forall x, y \text{ Brother}(x, y) \Rightarrow \text{Brother}(y, x)

\underline{King}(\text{Richard})

\underline{King}(\text{Richard})

\underline{Brother}(\text{John, Richard})
```

We want to know if the following statements are true:

- Person(Richard) ✓
- Person(John)
- $\forall x \text{ Person}(x) \land \text{Brother}(y, x) \Rightarrow \text{Person}(y)$

Example – Determine Entailment

 $\triangleright \Delta$: (Our KB, all sentences connected by \land)

```
\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)
\forall x, y \operatorname{Person}(x) \land \operatorname{Brother}(x, y) \Rightarrow \operatorname{Person}(y)
\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Brother}(y, x)
\operatorname{King}(\operatorname{Richard})
\operatorname{Brother}(\operatorname{John}, \operatorname{Richard})
```

 $\triangleright \beta$: Person(John)

Does $\Delta \models \beta$?

- We know how to determine entailment by resolution in propositional logic.
- But FOL has quantifiers. What should we do?

Example – Proof by Refutation

Show that $(a \land \neg \beta)$ is unsatisfiable.

(Unsatisfiable when resolvents contain the empty clause)

Thank you!