

slideplayer.com/

Chapter 6: Physical Database Design and Performance

Slides:

Denormalization

- Transforming normalized relations into unnormalized physical record specifications
- Benefits:
 - Can improve performance (speed) by reducing number of table lookups (i.e. reduce number of necessary join queries)
- Costs (due to data duplication)
 - Wasted storage space
 - Data integrity/consistency threats
- Common denormalization opportunities
 - One-to-one relationship (Fig. 6-3)
 - Many-to-many relationship with attributes (Fig. 6-4)
 - Reference data (1:N relationship where 1-side has data not used in any other relationship) (Fig. 6-5)

Chapter 6

🗎 slideplayer.com/:

Chapter 6: Physical Database Design and Performance

Slides:

Partitioning

- Horizontal Partitioning: Distributing the rows of a table into several separate files
 - Useful for situations where different users need access to different rows
 - Three types: Key Range Partitioning, Hash Partitioning, or Composite Partitioning
- Vertical Partitioning: Distributing the columns of a table into several separate relations
 - Useful for situations where different users need access to different columns
 - The primary key must be repeated in each file
- · Combinations of Horizontal and Vertical

Partitions often correspond with User Schemas (user views)

Chapter 6

Jazz 📴

Chapter 6: Physical Database Design and Performance

Slides:

Partitioning (cont.)

- Advantages of Partitioning:
 - Efficiency: Records used together are grouped together
 - Local optimization: Each partition can be optimized for performance
 - Security, recovery
 - Load balancing: Partitions stored on different disks, reduces contention
 - Take advantage of parallel processing capability
- Disadvantages of Partitioning:
 - Inconsistent access speed: Slow retrievals across partitions
 - Complexity: Non-transparent partitioning
 - Extra space or update time: Duplicate data; access from multiple partitions

Chapter 6

🗎 slideplayer.com/:

Chapter 6: Physical Database Design and Performance

Slides:

Data Replication

- · Purposely storing the same data in multiple locations of the database
- Improves performance by allowing multiple users to access the same data at the same time with minimum contention
- Sacrifices data integrity due to data duplication
- Best for data that is not updated often

Chapter 6

 \odot

Chapter 6 Physical Database Design. Physical Design u The purpose of the physical design process is to translate the logical description of the data into.

slideplayer.com

Slides:

Physical Files

- ♦ Physical File: A file as stored on disk
- Constructs to link two pieces of data:
 - · Sequential storage
 - Pointers
- ◆ File Organization: How the files are arranged on the disk (more on this later)
- Access Method: How the data can be retrieved based on the file organization
 - Relative data accessed as an offset from the most recently referenced point in secondary memory
 - Direct data accessed as a result of a calculation to generate the beginning address of a record

281-27-1502 }

ITEMTYPE INDEX			ITEM			
ITEMTYPE			<u>ITEMNO</u>	ITEMNAME	ITEMTYPE	ITEMCOLOR
С	_	1	1	Pocket knife - Nile	E	Brown
С	_\		2	Pocket knife - Thames	E	Brown
С			3	Compass	N	-
С	\sim		4	Geo positioning system	N	-
E	\sim		5	Map measure	N	-
E	/	$\times\!\!\times\!\!\!\times$	6	Hat - polar explorer	С	Red
F	>		7	Hat - polar explorer	С	White
N	-/>	\times	8	Boots - snakeproof	С	Green
N	//		9	Boots - snakeproof	С	Black
N	_/		10	Safari chair	F	Khaki

①

google.com/amp

Chapter 6 Physical Database Design. Physical Design u The purpose of the physical design process is to translate the logical description of the data into.

Slides:

Maintaining an Index

- Adding a record requires at least two disk accesses:
 - Update the file
 - Update the index
- Trade-off:
 - Faster queries
 - *Slower maintenance (additions, deletions, and updates of records)
 - · Thus, more static databases benefit more overall

Adv<u>ertisements</u>

①

google.com/amp

Chapter 6 Physical Database Design. Physical Design u The purpose of the physical design process is to translate the logical description of the data into.

Slides:

Rules of Thumb for Using Indexes

- 1. Indexes are most useful on larger tables
- 2. Index the primary key of each table (may be automatic, as in Access)
- 3. Indexes are useful on search fields (WHERE)
- 4. Indexes are also useful on fields used for sorting (ORDER BY) and categorizing (GROUP BY)
- 5. Most useful to index on a field when there are many different values for that field

