

CALCULO DE FILTRO PASIVO PASA BAJOS DE BUTTERWORTH

Se desea calcular un filtro pasivo pasa bajos de Butterworth con una frecuencia de corte f_C = 3000 Hz, a -3 [dB] , una atenuación de 25 [dB] para una frecuencia f_S = 9000 [Hz] y una impedancia de carga Ro = 600 [Ω]. Supondremos que la impedancia del generador es de 0 [Ω].

Calculamos en primer lugar el valor de la pulsación normalizada Ω para poder determinar por método gráfico el valor n del orden del filtro a diseñar.

$$\Omega = \frac{\omega_S}{\omega_C} = \frac{f_S}{f_C} = \frac{9000}{3000} = 3$$

ATENUACIÓN NORMALIZADA DE FILTRO PASABAJOS DE BUTTERWORTH CON Amax = 3dB ó Epsilon=1

De las curvas normalizadas de atenuación de Butterworth obtenemos que el grado del filtro debe ser **n=3**. Por lo tanto el denominador de la función de transferencia tendrá el siguiente polinomio normalizado :

$$B_{(5)}(S) = S^3 + 2 S^2 + 2 S + 1$$

Utilizaremos la siguiente red escalera:

Cuya función de transferencia está dada por la siguiente expresión :

$$G_3(S) = \frac{V_{OUT}}{V_{IN}} = \frac{1}{S^3(L_2.L_3.C_2) + S^2.L_3.C_2 + S.(L_2 + L_3) + 1}$$

Comparando el polinomio de Butterworth para n=3 con el polinomio del denominador de la función de transferencia del circuito propuesto, tenemos :

$$L_2.L_3.C_2 = 1$$
 $L_3.C_2 = 2$
 $L_2 + L_3 = 2$

$$\therefore L_2 = \frac{1}{L_3.C_2} = \frac{1}{2} = 0,5[H] \qquad \Rightarrow \qquad L_3 = 2 - L_2 = 2 - 0,5 = 1,5[H]$$

$$C_2 = \frac{2}{L_3} = \frac{2}{1,5} = 1,333^*[F]$$

El circuito normalizado, será como el que indica la siguiente figura :

Para desnormalizar para ω_C = $2*\pi*$ f_C = $2*\pi*$ 3000 [rad/s] y Ro = 600 [Ω] aplicamos las siguientes expresiones:

$$R_X = R_O$$

$$L_X = L_N \frac{Ro}{\omega_C}$$

$$C_X = C_N \frac{1}{\omega_C * Ro}$$

Circuito simulado con programa MULTISIM de National Instrument.

Página 2 de 3

 \underline{NOTA} : recordar que f_C = 3000 [Hz] y F_S = 9000 [Hz]

Amax $|_{BEUTTERWORTH \rightarrow n=3} = 3$ [db] y Amin $|_{REQUERIDO} = 25$ [db]