Домашнее задание по теории вероятностей

Родигина Анастасия, БПМИ ФКН 166 группа

19 ноября 2017

Задача 1 (Задача 1с в 6 листке)

Боб загадал случайным образом число от 0 до 4. Алиса получает свое число так: подкидывает монетку и в случае орла прибавляет к числу Боба 1, а в случае решки вычитает 1 (всё по модулю 5). Найдите распределение каждого из полученных чисел, а также их совместное распределение.

Найдем распределение каждого из полученных чисел. Для Боба распределение:

ξ	0	1	2	3	4
$P_B(\xi)$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

И для Алисы: $\frac{1}{2} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{2} = 0.2$. (Она может набрать каждое число двумя способами)

η	0	1	2	3	4
$P_B(\eta)$	0.2	0.2	0.2	0.2	0.2

Запишем их совместное распределение (b — число, выпавшее Бобу, а — значения для результата у Алисы (вероятность, что числа различаются на 1 равна $\frac{1}{2} \cdot \frac{1}{5}$):

$$\begin{cases} 0, & |b-a| \neq 1 \pmod{5} \\ \frac{1}{2} \cdot \frac{1}{5} = 0.1, & |b-a| \equiv 1 \pmod{5} \end{cases}$$

η/ξ	0	1	2	3	4
0	0	0.1	0	0	0.1
1	0.1	0	0.1	0	0
2	0	0.1	0	0.1	0
3	0	0	0.1	0	0.1
4	0.1	0	0	0.1	0

Задача 2 (Задача 4 в 6 листке)

Существуют ли независимые случайные величины X и Y такие, что каждая из них не является константой с вероятностью единица и $X^2+Y^2\equiv 1$

Приведем следующий пример. Пусть $X=\frac{1}{2}$ с вероятностью 1/18098 и $X=-\frac{1}{2}$ с вероятностью 1 - 1/18098.

 $Y=\frac{\sqrt{3}}{2}$ с вероятностью 1/1698 и $Y=-\frac{\sqrt{3}}{2}$ с вероятностью 1 - 1/1698. Достаточно очевидно, что эти величины независимы и $X^2+Y^2=1$

Задача 3 (Задача 6 в 6 листке)

Из треугольника $\{x>0,\ y>0,\ x+y<1\}$ случайно выбирается точка $(x,\ y)$. Найдите функции распределения и плотности случайных величин $\xi(x,y)=x,\ \eta(x,y)=y.$ Являются ли эти случайные величины независимыми?

Функция распределения случайной величины $\xi(x,y) = x$ равна отношению площади трапеции с основаниями 1, (1 х) и высотой х к площади треугольника:

$$P(\xi \le x) = \begin{cases} 0, & x \le 0 \\ 1, & x \ge 1 \\ x \cdot (1 + 1 - x), & x \in [0, 1] \end{cases}$$

Запишем плотность случайной величины:

$$(P(\xi \le x))' = \begin{cases} 0, & x \le 0 \\ 0, & x \ge 1 \\ (x \cdot (1+1-x))' = 2-2x, \ x \in [0,1] \end{cases}$$

Аналогичное сделаем для η

$$P(\eta \le y) = \begin{cases} 0, & y \le 0 \\ 1, & y \ge 1 \\ y \cdot (1 + 1 - y), & y \in [0, 1] \end{cases}$$

Запишем плотность случайной величины:

$$(P(\eta \le y))' = \begin{cases} 0, & y \le 0 \\ 0, & y \ge 1 \\ (y \cdot (1+1-y))' = 2-2y, \ y \in [0,1] \end{cases}$$

Найдем совместное распределение: треугольника:

$$P(\xi \le x, \eta \le y) = \begin{cases} 0, & x \le 0 \\ 0, & y \le 0 \\ 1, & x \ge 1, \ y \ge 1 \\ x \cdot (1+1-x), & x \in [0,1], \ y \ge 1 \\ y \cdot (1+1-y), & y \in [0,1], \ x \ge 1 \\ 2x + x^2 - 1 + 2y^2, & x \in [0,1], \ y \in [0,1] \end{cases}$$

По последней строке видно, что эти события не являются независимыми