Introduction to XGboost

FU Hanlin fixed-term.hanlin.fu@bosch.com AE/MFP2.1-CN April 10, 2019

Outline

- 1. Unsupervised Learning
- 2. Supervised Learning
- 3. Ensemble Learning
- 4. XGboost

1. Unsupervised Learning

Unsupervised Learning

Figure: Unsupervised Learning(e.g., Mickey Mouse and Donald Duck)

Clustering

Figure: Clustering examples

K-means

Figure: K-means Iteration(3 clusters)

K-means algorithm

Input:

- K(number of clusters)
- Training set $x_{(1)}$, $x_{(2)}$, \odot , $x_{(m)}$

2. Supervised Learning

Classification

Figure: A labeled training set for supervised learning(e.g.,spam classficiation)

Regression

Figure: Regression

Classification Tree

Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs.

Figure: A decision tree with binary splits for classification

How to split

generative algorithm	categorization
ID3	information entropy
C4.5	gain ratio
CART	Gini index

Regression Tree(CART)

Regression tree analysis is when the predicted outcome can be considered a real number.

- regression tree (also known as classification and regression tree)
- contains one score in each leaf value
- base learner

How to predict

Step 1: Choose split point $\sum (y_i - f(x_i))^2$

- Area1: $R_1(j, s) = \{x | x^{(j)} \le s\}$
- Area2: $R_2(j, s) = \{x | x^{(j)} > s\}$

Step 2:Minize loss function

•
$$\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_1(j,s)} (y_i - c_2)^2$$

Step 3:Recursively call Step 1 and Step 2 in subareas Step 4:Output predicted value

- $c_1 = ave(y_i|x_i \in R_1(j,s))$
- $c_2 = ave(y_i|x_i \in R_2(j,s))$

3. Ensemble Learning

Ensemble Theory

Figure: Model stacking

Model Combination

\sum in previous slide

- averaging
 - 1. simple averaging: $H(x) = \frac{1}{T} \sum_{i=1}^{T} h_i(x)$ 2. weighted averaging: $H(x) = \sum_{i=1}^{T} \omega_i h_i(x)$
- voting
 - majority voting
 - 2. plurality voting
 - 3. weighted voting
- stacking

Bagging and Boosting

Figure: Bagging

Figure: Bootstrap Aggregating

4. XGboost

eXtreme Gradient Boosting Objective

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

- $L(\Theta)$ Trainning Loss, measures how well model fit on training data
- $\Omega(\Theta)$ Regularization, measures complexity of model
 - Optimizing training loss encourages predictive models
 Fitting well in training data at least get you close to training data which is hopefully close to the underlying distribution.
 - Optimizing regularization encourages simple models
 Simpler models tends to have smaller variance in future predictions, making prediction stable

Learning Step Function(visually)

Figure: L(f) VS $\Omega(f)$

How do we learn?

- Objective: $\sum_{i=1}^n I(\hat{y}_i, y) + \Omega(f_k)$, $\Omega(f_k) = \gamma T + \frac{1}{2}\lambda ||w||^2$, $f_k \in F$
- Solution: Boosting Start from constant prediction,add a new function each time $\hat{y}_i^{(0)} = 0$ $\hat{y}_i^{(1)} = f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i)$ $\hat{y}_i^{(2)} = f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i)$... $\hat{v}_i^{(t)} = \sum_{t=1}^t f_k(x_i) = \hat{v}_i^{(t-1)} + f_t(x_i)$
- Additive training
- Structure score: $Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$

 $\textit{G}_{j} = \sum_{i \in \textit{I}_{j}} \partial_{\hat{y}(t-1)} \textit{I}(y_{i}, \hat{y}_{(t-1)}), \textit{H}_{j} = \sum_{i \in \textit{I}_{j}} \partial_{\hat{y}(t-1)}^{2} \textit{I}(y_{i}, \hat{y}_{(t-1)}), \; \textit{T} \; \text{is number of leaves, } \textit{w} \; \text{are leaf scores}$

The Stucture Score Calculation

$$Obj = -\sum_{j} \frac{G_j^2}{H_j + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

How to split?

In practice, we grow the tree greedily

- Start from tree with depth 0
- For each leaf node of the ree, try to add a split. The change of objective after adding the split is

$$Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$$

 γ means the complexity cost by introducing additional leaf

References I

- [1] Tianqi Chen's Homepage https://homes.cs.washington.edu/~tqchen/
- [2] Chen and C Gusterin. XGBoost: A Scalable Tree Boosting System. In KDD 16ăProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page 785-794.
- [3] Apache http://xgboost.apachecn.org/cn/latest/model.html