TOF10120

Time-of-Flight ranging Sensor

描述/Descripti

TOF10120测距传感器提供了精确和可重复的远距离测量用于高速自动对焦(AF).创新的TOF time-of-flight技术使该传感器性能独立于目标物体的反射率.

TOF10120的TOF(time-of-flight)测量技术用夏普独创的低成本的 CMOS工艺的SPAD (单光子雪崩二极管) 来实现它使测量结果准确,对环境光具有更高的抗干扰性.

TOF10120 range sensor provides accurate and repeatable long range distance measurement for high-speed autofocus (AF). The innovative time-of-flight technology allows performance independent of object reflectance.

TOF10120's time-of-flight sensing technology is realized by Sharp's original SPAD (Single Photon Avalanche Diodes) using low-cost standard CMOS process. It enables accurate ranging result, higher immunity to ambient light and better robustness to cover-glass optical cross-talk by special optical package design.

特性/Features

- · 940nm激光符合IEC 60825-1:2014第3版规定的1类操作条件
- ·传感器尺寸(20×13.2×2.0mm)
- •最大测量距离室内可达1.8米精度在5%以内
- 测量的范围与目标物体的反射率无关
- 可工作在高红外光的环境下
- 高光学串扰补偿
- ·测量时间小于30ms
- 符合标准的回流焊工艺
- 不需要额外的光学器件
- 单电源供电
- ·标准的TTL电平串口 I2C
- · 无铅,符合RoHS标准
- 940nm laser classified as class 1 under operation condition
- etc.) by IEC 60825-1:2014-3rd edition
- Small ceramic package (20×13.2×2.0mm)
- · Long range absolute range measurement up
- to 1.8m within 5% accuracy at indoor
- Reported range is independent of the target reflectance
- · Operates in high infrared ambient light levels
- · Advanced optical cross-talk compensation
- High speed ranging MAX 30ms
- · Standard solder reflow compatible
- · No additional optics
- · Single power supply
- · UART I2C interface for device control and data transfer
- · Lead-free, RoHS compliant

应用/Applications

- 高速自动对焦
- 视频连续自动对焦
- 电脑等设备的用户检测
- 障碍物检测
- · 白色家电的手势自动识别 (如水龙头,冰箱等)
- · High-speed AF
- · Continuous AF for video
- User detection for Personal Computers/

Laptops/Tablets

- · Robotics (obstacle detection)
- · White goods (hand detection in automatic

Faucets, refrigerator

2.1 推荐工作条件 / Recommended Operating Conditions

项目 Items	额定 Rating	单位 Unit
测量范围 Ranging Range	100 ~ 1800	mm
工作电压 VCC	3 ~ 5	V
工作电流 ICC_VDD	35	mA
工作温度 Topr	- 20 + 70	°C
储存温度 Tstg	- 40 + 85	°C

2.2 引脚描述 / Pin Description

引脚	引脚名称	条件	功能
Pin	Pin name	Condition	Function
1	GND		电源地 GND
2	VDD		电源正极 3~5V
3	RXD	输入 INPUT	串口输入 TTL电平 RXD OUTPUT TTL
4	TXD	输出 OUTPUT	串口输出 TTL电平 TXD OUTPUT TTL
(5)	SDA	输入/输出INPUT/OUTPUT	I2C数据 TTL电平 I2C DATA I/O TTL
6	SCL	输出 OUTPUT	I2C数据 TTL电平 I2C CLK OPUTPUT TTL

2.3 通讯协议/ Communication protocol

波特率 Bits per Second:	9600
数据位 Data Bits :	8
校验位无 Parity :	None
停止位 Stop bits :	1
流控制 Flow Control :	None

2.4.1UART数据发送格式 / UART Data delivery format

1.

① 读取偏差值	命令	r1#	返回值	D=xx	说明	xx=00~99mm 未校准前为 0
②读取串口发送间隔	命令	r2#	返回值	T=xxxx	说明	xxxx=10~9999ms 默认100ms
③ 读取距离模式	命令	r3#	返回值	M=x	说明	x=0 滤波后距离x=1实时距离默认=0滤波后距离
④ 读取最大距离	命令	r4#	返回值	Max=x	说明	xxxx=100~2000mm 默认不限制最大距离>2000mm
⑤ 读取距离发送方式	命令	r5#	返回值	S=x	说明	x=0 主动发送 (UART) x=1被动读取(UART/I2C)默认=0主动发送
⑥ 读取距离	命令	r6#	返回值	L=xxxx	说明	xxxx=100~2000mm 只有在发送方式为被动读取才有效
⑦ 读取模块I2C从机ID	命令	r7#	返回值	I=xxx	说明	xxx=1~254(0x01~0xFE) 默认164(0xA4)

2.4.2 写命令/Write a command

2.

① 设置偏差值正负偏差	命令	s1+xx#		返回信息 > 设置成功: ok 设置失败: fail
	命令	s1-xx#		s1+xx#(正偏差) 或者s1-xx#(负偏差)
			说明	xx=00~99mm s1+0#或者s1-0# 偏差清0
② 设置串口发送间隔	命令	s2-xxxx#		返回信息 > 设置成功: ok 设置失败: fail
			说明	xxxx=10~9999ms 默认100ms
③ 设置距离模式	命令	s3-x#		返回信息 > 设置成功:ok 设置失败: fail
			说明	x=0 滤波后距离x=1实时距离默认=0滤波后距离
④ 设置最大距离	命令	s4-xxxx#		返回信息 > 设置成功: ok 设置失败: fail
			说明	xxxx=100~2000mm xxxx=0为不限制最大距离
⑤ 设置距离发送方式	命令	s5-x#		返回信息 > 设置成功: ok 设置失败: fail

			说明	x=0 主动发送(仅UART)x=1被动读取(UART,I2C)
⑥ 设置I2C从机ID	命令	s7-xxx#		返回信息 > 设置成功: ok 设置失败: fail
			说明	xxx=1~254(0x01~0xFE) 默认164(0xA4)

2.4.3 例程 / Routine

3.

命令	发送	说明	返回信息
字符串输入框	s4-1000#	OK	设置成功: ok 说明距离设置最大1000mm

2.4.4 I2C

1.参数和数据寄存器地址

地址	数据/参数	字节数	读写	单位	数据形式	取值范围
0x00-0x01	实时距离	2	只读	mm	Hex码	100mm-1800mm
0x04-0x05	滤波距离	2	只读	mm	Hex码	100mm-1800mm
0x06-0x07	距离偏差	2	读写	mm	Hex码有符号数	-99mm-99mm
0x08	距离数据模式	1	读写	-	Hex码	0-滤波值 1-实时值
0x09	距离发送方式	1	读写	-	Hex码	0-模块发送(串口) 1-主机读取(串口 , i2c)

0x0c-0x0d	最大测量距离	2	只读	mm	Hex码	100mm-1800mm
0x0f	I2C从机地址	1	读写	-	Hex码	0x02~0xfe bit7~bit1有效bit0=0

2.5 测距特性 / Ranging Characteristics

参数 Parameter	符合 Symbol	最小值 Min.	典型 Typ.	最大值 Max.	单位 Unit	条件 Condition
最小距离和精度(室内白色)	Rmin	-	10	-	cm	
Min Range distance & accuracy (White indoor)	Rminacc	-	-	±5	%	※ Condition ①
最大范围距离与精度(室内白色)	Rinw	120	180	-	cm	
Max Range distance & accuracy (White indoor)	Rinaccw	-	-	±4	%	
最大范围距离与精度(室内灰色) Max Range distance &	Ring	70	80	-	cm	
accuracy (White indoor)	Rinaccw	-	-	±7	%	
最大范围距离与精度(白色户外) Max Range distance &	Routw	60	-	-	cm	
accuracy (White outdoor)	Routaccw	-	-	±7	%	※ Condition ④
最大范围距离与精度(灰色户外) Max Range distance &	Routg	40	-	-	cm	
accuracy (Gray outdoor)	Routaccg	-	-	±12	%	
测距速度 Ranging speed	Trange	-	-	33	msec	

2.5.1 ※ 测距条件 / Ranging condition

条件 Condition	目标与反射率 Target & Reflectance	环境 Environment	距离精度和偏移条件 Range Accuracy & Offset condition
1	白卡 White 88%	室内: 无红外线 Indoor : no infrared	10cm
2	白卡 White 88%	室内: 无红外线 Indoor : no infrared	120cm
3	灰卡 Gray 17%	室内: 无红外线 Indoor : no infrared	70cm
4	白卡 White 88%	室外: 相当于5KLUX日光 Outdoor : equivalent to 5kLux daylight	60cm
(5)	灰卡 Gray 17%	室外: 相当于5KLUX日光 Outdoor : equivalent to 5kLux daylight	40cm

2.5.2 电气和光学特性 / Electrical and Optical Characteristics

参数 Parameter	符合 Symbol	最小值 Min.	典型 Typ.	最大值 Max.	单位 Unit	备注 Remarks
垂直腔面发射激光器峰值波长 VCSEL peak wavelength	λP_PS	-	940	-	nm	
垂直腔面发射激光器峰值电流 VCSEL peak current	Ivcsel		59		mA	

2.6 I2C/时序图

说明:主机在发送寄存器地址后要延时至少30uS给模块准备数据,否则I2C会出现异常。

2.6.1 I2C/读写例程

```
例1.
      设置距离发送方式
* Function Name: Sensor Set SendDir
* Description : 设置主动发送还是被动读取
* Input
         : senddir flag
* Output
          : None
          : None
* Return
********************************
void Sensor Set SendDir(void)
{
      UserI2c WritenByte((unsigned char *)&senddir flag, 0x09,1);
/************test i2c start*********/
senddir flag=1;//=1禁止串口主动发送
Sensor Set SendDir();
Delay mS(100);
      读取3个模块距离
例2.
* Function Name: Sensor Get AveRange
* Description : 读取滤波距离
* Input
         : None
* Output
         : averange val
* Return
          : None
**********************************
void Sensor_Get AveRange(void)
      unsigned short int read val:
      if(SET==UserI2c ReadnByte((unsigned char *)&read val, 0x04,2))
            averange val=read val;
i2caddr=162: //0xA2
averange val=0;
Sensor Get AveRange();
                       //读取滤波后距离
Display i2cLength((u16)averange val);
OLEDSSD1306 Puts(65,0,dispbuf);
i2caddr=164; //0xA4
averange val=0;
                        //读取滤波后距离
Sensor Get AveRange();
Display i2cLength((u16)averange val);
OLEDSSD1306 Puts(0,1,dispbuf);
i2caddr=166:
            //0xA6
averange val=0;
                       //读取滤波后距离
Sensor Get AveRange();
Display i2cLength((u16)averange val);
OLEDSSD1306 Puts(65,1,dispbuf);
```


2.7 带盖玻片/ with cover window

保持盖窗表面光洁度非常重要。

It is important to keep the cover window surface finish smooth.

2.8 外形尺寸 / Outline Dimensions

PIN	信号名称 Signal Name
1	GND
2	VDD
3	RXD
4	TXD
(5)	SDA
6	SCL

Unit: mm

产品重量: 约1.0克

Product mass: Approx. 1.0g

TOF10120

深圳泰达世纪科技有限公司 Shenzhen Taida Century Technology Co.,Ltd Tel:+86-13928868158

E-mail:billyuan12@taida-century.com billyuan12@gmail.com