Sistemas numéricos, Primor parcial Gabriel José Alvaret Coral _{Nota:}

1000.
Escriba sus soluciones en el espacio proporcionado, sea ordenado y escriba legiblemente. Usted será calificado no solo por la exactitud de su respuestas, sino por la claridad con la que las expresa.
1. (10pts) Sea $A \subset \mathbb{R}$ no vacío y acotado inferiormente. Sea $-A = \{-x \mid x \in A\}$; muestre que
Blue como infA = -sup(-A) para todo xcA tenemo
Como A está acotedo inferiormente y es no vació,
par el teorema de completez. A tiene infimo. Como
infA = x para todo xEA, o equivalentemente
-infA >x are bodo x ex
-infA >-x pere todo x EA, es decir, -infA) es cote superior
Supergamor que existe una cota superior de A. -inf (+A) -inf (+A) -inf (+A)
par de finición de cota superiorio para, y yz-x $\forall x \in A$.
por definición de cota superior. pero Si -y < X = A. esto implica que y es una cota inferior.
esto implica que y = yzinIA
esto implica que y el una cota inferior de A más grande que contradicción de A más grande que contradicción
2. (10pts) Suponga que el desarrollo decimal de $\frac{1}{n}$ es periódico de longitud $n-1$. Muestre que 10^{n-1} es la primera entre las potencias $10 \cdot 10^2 \cdot 10^3$ que tiene un residuo 1 al dividirse por n
Sea 0, a, az an-= , el desarrollo decimal de /n, con a; € (1,2,)
Si multiplicamos con consportencias de cha monor ago 10m-1
10". 1 = a,az a, a,az a, de donde.
$\int_{n}^{\infty} - \frac{1}{n} = \frac{10^{n-1} - 1}{n} = a_1 a_2 \cdots a_{n-1} \Rightarrow 10^{n-1} - 1 = n \cdot (a_1 a_2 \cdots a_{n-1})$
Lo cual par definición es 10°=1.
porgé es la minu ?

3. (10pts) Un número natural n es perfecto si es igual a la suma de sus divisores salvo por n mismo (ej. 6 y 28 son perfectos pues 1+2+3=6 y 1+2+4+7+14=28). Suponga que 2^p-1 es un número primo, muestre que $m=2^{p-1}(2^p-1)$ es un número perfecto.

florers de en son métreles del 2. De addo los milliplos de 2,2, ..., 21-2 29-1 divide todos dividen ZP - 1 primo, tenemos divisores el número en sí no cuente pues que son Sumes $2^{p}-1+(2^{p}-1).(2^{p}-1)$ $(2^{p}-1)(2^{p-1})$ = partecto. m 4. (10pts) Demuestre la validez del siguiente criterio de divisibilidad por 7. Sea $n \in \mathbb{N}$, si n = 10a + b con $0 \le b \le 9$, entonces n es divisible por 7 si y sólo si a - 2b es divisible por 7. Use el criterio de forma sucesiva para mostrar que 7|37394. n=toatb y n divisible por 7, entonces N= 7 K = 40 a+ 6 pera algun K+2. Agrapando tenemos 7(K-a) = 3a+b, luego 7/3a+b. Como 7/10e+b 7 7/3c+b. 7 divide coalquier combinaçión lineal de ellos, en particular, 7 / (100+6-3. (3a+6)) > 7 p-26. See a - 25 divisible por 7, entowes a-2b=7K, agropando 80+5b= 7(K+a+b). (omo 718a+5b

divide a cualquier combinación lineal de ellos, en particular 37399 = 10.3739 + 4 3739 - 8 = 3731 3731 = 377.10 + 1 373 - 2 = 371 371 = 37.10 + 1 373 - 2 = 371 371 = 37.10 + 1 373 - 2 = 371

5. (10pts) Decida si la afirmación es falsa F o verdadera V. No es necesario justificar

- a) F Sean $n,a,b,c\in\mathbb{Z}$ tal que $ab\equiv ac\pmod n$, entonces necesariamente $b\equiv c\pmod n$
- b) $\boxed{\mathbf{y}}$ Si $a,b \in \mathbb{R}$ tal que a < b, entonces existe un número trascendente c tal que a < c < b.
- c) $\cite{figuresize}$ Sí $A\subset B\subset \mathbb{R},$ no vacíos y acotados, entonces $\inf(A)\leq \inf(B)$
- d) \cite{F} Si $a,b\in\mathbb{R}$ son irracionales, entonces necesariamente a+b también es irracional.
- e) \mathbf{F} Si $a \in \mathbb{R}$, tal que su desarrollo decimal es infinito no periódico, entonces a no es raíz de ningún polinomio con coeficientes enteros.