1. [4 pts] Given the line L through (1,2,3) parallel to the vector (1,1,1), and given a point (2,3,5)which is not on L. Find a Cartesian equation for the plane M through (2,3,5) which contains every point on L.

The vector
$$\overrightarrow{PQ} = \overrightarrow{Q} - \overrightarrow{P''} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Normal direction for the plane computed as:
$$\vec{N} = \vec{PQ} \times \vec{\nabla} = \langle 1, 1, 2 \rangle \times \langle 1, 1, 1 \rangle = Det \begin{vmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix} = \begin{bmatrix} 1-2 \\ -(1-2) \\ 0 \end{bmatrix} = \vec{N}$$
Direction vector
given in Question

So, equation of plane given by
$$-(x-1) + (y-2) = 0$$

$$\longrightarrow (-x+y-2=0)$$
Answer!

add requirement of an additional point.

So, equation of plane given by

$$-(x-1) + (y-2) = 0$$
The line L is parametrized by $\tau(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $-\infty < 1 < \infty$

where $t = 0$

The line L is parametrized by $\tau(t) = 1 + 1 = 0$

where $t = 0$

$$-(x-1) + (y-2) = 0$$
Answer!

$$-(x+1) - (x+1) - 1 = 0$$
Answer!

$$-(x+1) - (x+1) - 1 = 0$$

- 2. [3 pts] If the three vectors \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^3 satisfy $\mathbf{u} \times \mathbf{v} \neq \mathbf{0}$ and $\mathbf{u} \times \mathbf{w} \neq \mathbf{0}$, but $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{u} \times \mathbf{w}) = \mathbf{0}$, then it follows that
 - (a) The plane spanned by \mathbf{u} and \mathbf{v} is orthogonal to the one spanned by \mathbf{u} and \mathbf{w} .
 - (b) $\mathbf{v} \perp \mathbf{w}$.

The Question asks: Which of these answer choices is NECESSARILY TIME.

- (c) $\mathbf{u} \perp \mathbf{v}$ and $\mathbf{u} \perp \mathbf{w}$.
- (d) **u**, **v** and **w** lie in the same plane.

For counter-examples to (6), (c), and (d) consider the vectors

$$\overline{U} = \overline{1} \qquad \overline{U} \times \overline{V} = 1 \times (1 + \overline{1}) = \overline{K}$$

$$\overline{V} = \overline{1} + \overline{J} \qquad \overline{U} \times \overline{U} = \overline{1}$$

$$\overline{U} = \overline{1} + \overline{K} \qquad \overline{U} \times \overline{U} = \overline{1}$$

$$\overline{U} = \overline{1} + \overline{K} \qquad \overline{U} \times \overline{U} = \overline{1}$$

$$\overline{U} = \overline{1} + \overline{K} \qquad \overline{U} \times \overline{U} = \overline{1}$$

$$\overline{U} = \overline{1} + \overline{K} \qquad \overline{U} \times \overline{U} = \overline{1}$$

$$\overline{U} = \overline{1} + \overline{K} \qquad \overline{U} \times \overline{U} = \overline{1}$$

$$\overline{U} \times \overline{U} = \overline{1} + \overline{U} \qquad \overline{U} \times \overline{U} = \overline{U} \qquad \overline{U} \qquad \overline{U} \qquad \overline{U} = \overline{U} \qquad \overline{U} \qquad \overline{U} \qquad \overline{U} \qquad \overline{U} = \overline{U} \qquad \overline{U}$$

3. [3 pts] Determine whether the parametrizations

$$\mathbf{r}_1(t) = \langle 3, -1, 4 \rangle + t \langle 8, 12, -6 \rangle$$
 and $\mathbf{r}_2(t) = \langle 11, 11, -2 \rangle + t \langle 4, 6, -3 \rangle$

describe the same line. If they do, show why. If they don't, show why not.

Solve the system of equations:

$$\vec{r}_{1}(t) = \vec{r}_{2}(s)$$

conclusion Yes, the sam line.

To and To parametrize
$$= \frac{2^{4}-equation!}{2^{4}-equation!}$$
The same line,
$$= -2-3(2t-2) = -2-6t+6 = 4-6t$$
 Matches

4. [4 pts] Match the contour surfaces with their equations. Enter O if there's no match.

g(x, y, z) =	O, (I), (II), (III)
$x^2 - y^2 + z^2 = 1$	U
$x^2 - y^2 = 1$	П
$x^4 + z = 1$	U
$x^2 + y - z^2 = 1$	Π

5. [4 pts] The intersection of a plane with the cone $S = \{(x, y, z) : x^2 + y^2 - z^2 = 0\}$ is called a **conic section**. What curve do we get? In each row check only one box.

	Intersect S with	hyperbola(s)	parabola(s)	circle(s)	line(s)	1
		hyperbola(s)	parabola(s)	circle(s)	ime(s)	
	z = 1 gives					
	z = x gives					
	z = x + 1 gives					,
	x = 1 gives					7211
	772=1			X=I		Parabola
Λ		Daga 2	of 2		Doint	g oprnod: