Práctica 3: Continuidad

"Calculus required continuity, and continuity was supposed to require the infinitely little;
but nobody could discover what the infinitely little might be."

Bertrand Russel

A. Continuidad

Ejercicio 1. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \longrightarrow Y$. Probar que:

- i) f es continua en $x_0 \in X$ si y sólo si para toda sucesión $(x_n)_{n \in \mathbb{N}} \subseteq X$ tal que $x_n \longrightarrow x_0$, la sucesión $(f(x_n))_{n \in \mathbb{N}} \subseteq Y$ converge a $f(x_0)$.
- ii) Son equivalentes:
 - 1. f es continua;
 - 2. para todo $G \subseteq Y$ abierto, $f^{-1}(G)$ es abierto en X;
 - 3. para todo $F \subseteq Y$ cerrado, $f^{-1}(F)$ es cerrado en X.

Ejercicio 2. Decidir cuáles de las siguientes funciones son continuas:

- i) $f:(\mathbb{R}^2,d)\longrightarrow (\mathbb{R},|\cdot|), f(x,y)=x^2+y^2$, donde d'espresenta la métrica euclídea.
- ii) $id_{\mathbb{R}^2}:(\mathbb{R}^2,\delta)\longrightarrow (\mathbb{R}^2,d_{\infty})$, la función identidad, donde δ representa la métrica discreta.
- iii) $id_{\mathbb{R}^2}:(\mathbb{R}^2,d_{\infty})\longrightarrow(\mathbb{R}^2,\delta)$, la función identidad, donde δ representa la métrica discreta.
- iv) $i:(E,d)\longrightarrow (X,d)$, la inclusión, donde $E\subseteq X$.

Ejercicio 3. Sean $f, g, h : [0, 1] \longrightarrow \mathbb{R}$ definidas por

$$f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q}, \\ 1 & \text{si } x \in \mathbb{Q}; \end{cases} \qquad g(x) = x.f(x); \qquad h(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q}, \\ \frac{1}{n} & \text{si } x = \frac{m}{n} \text{ con } (m:n) = 1, \\ 1 & \text{si } x = 0. \end{cases}$$

Probar que:

- i) f es discontinua en todo punto.
- ii) g sólo es continua en x = 0.
- iii) h es continua en $[0,1] \setminus \mathbb{Q}$.

Ejercicio 4. Probar que un espacio métrico X es discreto si y sólo si toda función de X en un espacio métrico arbitrario es continua.

Ejercicio 5. (Métricas topológicamente equivalentes)

i) Supongamos que existen constantes $c_1, c_2 \in \mathbb{R}_{>0}$ tales que

$$d_1(x,y) \le c_1 \ d_2(x,y) \le c_2 \ d_1(x,y)$$

para todo $x, y \in X$. Probar que d_1 y d_2 son topológicamente equivalentes.

- ii) Probar que dos métricas d_1 y d_2 son topológicamente equivalentes si y sólo si la función identidad $id_X: (X, d_1) \longrightarrow (X, d_2)$ es homeomorfismo.
- iii) Probar que en \mathbb{R}^n todas las métricas d_p con $1 \leq p \leq \infty$ son topológicamente equivalentes.
- iv) Consideramos en \mathbb{R} la métrica

$$d'(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|.$$

Probar que es topológicamente equivalente a la métrica usual d(x, y) = |x - y|.

Ejercicio 6. Considerando en cada \mathbb{R}^n la métrica euclídea, probar que:

- i) $\{(x,y) \in \mathbb{R}^2 : x^2 + y \operatorname{sen}(e^x 1) = -2\}$ es cerrado.
- ii) $\{(x, y, z) \in \mathbb{R}^3 : -1 \le x^3 3y^4 + z 2 \le 3\}$ es cerrado.
- iii) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : 3 < x_1 x_2\}$ es abierto.

Mencione otras dos métricas para las cuales siguen valiendo estas afirmaciones.

Ejercicio 7. Consideramos las funciones $E, I : C([0,1]) \to \mathbb{R}$ definidas por:

$$E(f) = f(0) \in I(f) = \int_0^1 f(x) dx.$$

- i) Demostrar que si utilizamos en C([0,1]) la distancia d_{∞} ambas resultan continuas.
- ii) Demostrar que si en cambio utilizamos en C([0,1]) la distancia d_1 , I es una función continua pero E no lo es.
- iii) Analizar si es posible que una función $F: C([0,1]) \to \mathbb{R}$ sea continua para la distancia d_1 pero no para d_{∞} .

Ejercicio 8. Sean X,Y espacios métricos y sea $f:X\longrightarrow Y$ una función continua. Probar que el gráfico de f, definido por

$$G(f) = \{(x, f(x)) \in X \times Y : x \in X\},\$$

es cerrado en $X \times Y$ ¿Es cierta la afirmación recíproca?

Ejercicio 9. Sea $f:(X,d) \longrightarrow (Y,d')$ una función. Analizar la validez de las siguientes afirmaciones:

- i) Si $X=\bigcup_{i\in I}U_i$, con cada U_i abierto y $f|_{U_i}$ continua para todo $i\in I$, entonces $f:X\longrightarrow Y$ es continua.
- ii) Si $X = \bigcup_{i \in I} F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para todo $i \in I$, entonces $f: X \longrightarrow Y$ es continua.
- iii) Si $X = \bigcup_{i=1}^{m} F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para cada i = 1, ..., m, entonces $f: X \longrightarrow Y$ es continua.
- iv) Si $X = \bigcup_{i=1}^{m} X_i$ y $f|_{X_i}$ continua para cada i = 1, ..., m, entonces $f: X \longrightarrow Y$ es continua.

Ejercicio 10. Sea (X, d) un espacio métrico y sea $f: X \to \mathbb{R}$. Probar que f es continua si y sólo si para todo $\alpha \in \mathbb{R}$, los conjuntos $\{x \in X : f(x) < \alpha\}$ y $\{x \in X : f(x) > \alpha\}$ son abiertos.

Ejercicio 11. Sea (X,d) un espacio métrico y sea A un subconjunto de X. Probar que la función $d_A: X \longrightarrow \mathbb{R}$ definida por $d_A(x) = d(x,A) = \inf_{a \in A} d(x,a)$ es (uniformemente) continua.

Ejercicio 12. Teorema de Urysohn. Sea (X, d) un espacio métrico y sean A, B cerrados disjuntos de X.

i) Probar que existe una función $f: X \longrightarrow \mathbb{R}$ continua tal que:

$$f|_A \equiv 0,$$
 $f|_B \equiv 1$ y $0 \le f(x) \le 1 \quad \forall x \in X.$

Sugerencia: Considerar la función $f(x) = \frac{d_A(x)}{d_A(x) + d_B(x)}$.

ii) Deducir que existen abiertos $U, V \subseteq X$ disjuntos tales que $A \subseteq U$ y $B \subseteq V$.

Ejercicio 13. Consideremos en \mathbb{Z} y \mathbb{Q} la métrica inducida por la usual de \mathbb{R} . Sea $f: \mathbb{Z} \longrightarrow \mathbb{Q}$ una función.

- i) Probar que f es continua. ¿Sigue valiendo si f toma valores irracionales?
- ii) Suponiendo que f es biyectiva, ¿puede ser un homeomorfismo?

Ejercicio 14. Sea (X, d) un espacio métrico, y sea $\Delta : X \longrightarrow X \times X$ la aplicación diagonal definida por $\Delta(x) = (x, x)$. Probar que:

- i) Δ es un homeomorfismo entre X y $\{(x,x):x\in X\}\subseteq X\times X$.
- ii) $\Delta(X)$ es cerrado en $X \times X$.

Ejercicio 15. Sean (X,d) e (Y,d') espacios métricos. Una aplicación $f:X\longrightarrow Y$ se dice *abierta* si f(A) es abierto para todo abierto $A\subseteq X$ y se dice *cerrada* si f(F) es cerrado para todo cerrado $F\subseteq X$.

- i) Suponiendo que f es biyectiva, probar que f es abierta (cerrada) si y sólo si f^{-1} es continua.
- ii) Dar un ejemplo de una función de \mathbb{R} en \mathbb{R} continua que no sea abierta.
- iii) Dar un ejemplo de una función de $\mathbb R$ en $\mathbb R$ continua que no sea cerrada.
- iv) Mostrar con un ejemplo que una función puede ser biyectiva, abierta y cerrada pero no continua.

Ejercicio 16. Sean (X,d) e (Y,d') espacios métricos y sea $f:X\longrightarrow Y$ una función.

- i) Probar que f es continua si y sólo $f(\overline{E}) \subseteq \overline{f(E)}$ para todo subconjunto $E \subseteq X$. Mostrar con un ejemplo que la inclusión puede ser estricta.
- ii) Probar que f es continua y cerrada si y sólo si $f(\overline{E}) = \overline{f(E)}$ para todo subconjunto $E \subseteq X$.

Ejercicio 17. Definición: Un subconjuto D de un espacio métrico X se dice denso si $\overline{D} = X$.

- i) Sean (X,d) e (Y,d') espacios métricos y sea $D\subseteq X$ denso. Sean $f,g:X\longrightarrow Y$ funciones continuas. Probar que si $f|_D=g|_D$, entonces f=g.
- ii) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función continua tal que f(x+y) = f(x) + f(y) para todo $x, y \in \mathbb{Q}$. Probar que existe $\alpha \in \mathbb{R}$ tal que $f(x) = \alpha x$ para todo $x \in \mathbb{R}$.

Ejercicio 18. Sean (X,d) e (Y,d') espacios métricos. Consideramos en $X\times Y$ la métrica d_{∞} .

- i) Probar que las proyecciones $\pi_1: X \times Y \longrightarrow X$ y $\pi_2: X \times Y \longrightarrow Y$ son continuas y abiertas. Mostrar con un ejemplo que pueden no ser cerradas.
- ii) Sea (Z, δ) un espacio métrico y sea $f: Z \longrightarrow X \times Y$ una aplicación. Probar que f es continua si y sólo si $f_1 = \pi_1 \circ f$ y $f_2 = \pi_2 \circ f$ lo son.

Ejercicio 19. Sea (X,d) un espacio métrico y sea $f:X\longrightarrow\mathbb{R}$ una función. Se dice que f es semicontinua inferiormente (resp. superiormente) en $x_0\in X$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que

$$d(x, x_0) < \delta \Longrightarrow f(x_0) - \varepsilon < f(x)$$
 (resp. $f(x_0) + \varepsilon > f(x)$).

Probar que:

- i) f es continua en x_0 si y sólo si f es semicontinua inferiormente y superiormente en x_0 .
- ii) f es semicontinua inferiormente si y sólo si $f^{-1}(\alpha, +\infty)$ es abierto para todo $\alpha \in \mathbb{R}$.
- iii) f es semicontinua superiormente si y sólo si $f^{-1}(-\infty, \alpha)$ es abierto para todo $\alpha \in \mathbb{R}$.
- iv) si $A \subseteq X$ y $\chi_A : X \to \mathbb{R}$ es su función característica, entonces χ_A es semicontinua inferiormente (resp. superiormente) si y sólo si A es abierto (resp. cerrado).

B. Continuidad Uniforme

Ejercicio 20. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \longrightarrow Y$ una función que satisface:

$$d'(f(x_1), f(x_2)) \le c \ d(x_1, x_2)$$

para todo $x_1, x_2 \in X$, donde $c \ge 0$. Probar que f es uniformemente continua.

Ejercicio 21.

- i) Sean (X, d) e (Y, d') espacios métricos, $A \subseteq X$ y $f : X \longrightarrow Y$ una función. Probar que si existen $\alpha > 0$, $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \subseteq A$ sucesiones y $n_0 \in \mathbb{N}$ tales que
 - a) $d(x_n, y_n) \longrightarrow 0$ para $n \to \infty$ y
 - b) $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$,

entonces f no es uniformemente continua en A.

- ii) Verificar que la función $f(x)=x^2$ no es uniformemente continua en \mathbb{R} . ¿Y en $\mathbb{R}_{\leq -\pi}$?
- iii) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).

Ejercicio 22. Sea $f:(X,d) \longrightarrow (Y,d')$ una función uniformemente continua y sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en X. Probar que $(f(x_n))_{n\in\mathbb{N}}$ es una sucesión de Cauchy en Y.

Ejercicio 23.

- i) Dar un ejemplo de una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ acotada y continua pero no uniformemente continua.
- ii) Dar un ejemplo de una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ no acotada y uniformemente continua.

Ejercicio 24. Sea $f:(X,d) \longrightarrow (Y,d')$ una función uniformemente continua, y sean $A,B \subseteq X$ conjuntos no vacíos tales que d(A,B) = 0. Probar que d'(f(A),f(B)) = 0.