Machine Learning

sell개발팀 박준우

"기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야"

- Arthur Samuel, 1959년

Experience E 를 사용하여 (Learning하여) task T의 performance P가 개선이 되도록 하는 program (Algorithm) - Tom Mitchell

데이터 분석: 어떤 입력 데이터가 주어졌을 때

- 입력데이터간의 관계를 파악하거나
- 파악된 관계를 사용하여 원하는 출력데이터를 만들어내는 과정
- 데이터 분석도 목적에 따라 예측(prediction), 군집화(clustering), 모사 (approximation)등의 문제가 존재

문제들을 풀기위한 방법 중 rule-based와 data-based한 접근이 존재

AI?, 데이터 분석?

- 인간의 지능을 구현하기 위한 수단으로서의 ML
- 데이터분석의 목적을 달성하기위한 수단으로서의 ML
- AI를 구현하는 과정에 데이터분석 과정도 포함
- 예를 들어 알파고라는 바둑 Al(Narrow Al)를 구현하는 과정에 ML(Deep Learning)을 이용한 데이터 분석 과정이 포함

Experience E 를 사용하여 (Learning하여) task T의 performance P가

개선이 되도록 하는 program (Algorithm)

Y = f(X)를 구하는 것

현실적으로는 Y≈**f̂** (X)

 $\hat{f}(X)$ 를 어떻게 구할 것인가?

데이터 분석의 문제들…

- · 예측(prediction)
 - 분류(classification):

solution approach

- Generative: naive bayes, HMM…
- Discriminative: perceptron model 예시
- 회귀(regression)
- 군집화(clustering)
- 모사(approximation)

x1, x2 입력으로 Y를 출력하는 프로그램있다. 기존의 program(f)의 결과는 DB에 다음과 같을 때

index	x1	x2	Υ
1	1	1	-1(파랑)
2	-1	-1	1(주황)
3	2	1	-1
4	-3	-4	1

$$f:R^2 \rightarrow \{1,-1\}$$

x1, x2 입력으로 Y를 출력하는 프로그램있다. 기존의 program(f)의 결과는 DB에 다음과 같을 때

index	x1	x2	Υ
1	1	1	-1(파랑)
2	-1	-1	1(주황)
3	2	1	-1
4	-3	-4	1

$$f:R^2 \rightarrow \{1,-1\}$$

x1, x2 입력으로 Y를 출력하는 프로그램있다. 기존의 program(f)의 결과는 DB에 다음과 같을 때

index	x1	x2	Υ
1	1	1	-1(파랑)
2	-1	-1	1(주황)
3	2	1	-1
4	-3	-4	1

$$f:R^2 \longrightarrow \{1,-1\}$$

x1, x2 입력으로 Y를 출력하는 프로그램있다. 기존의 program(f)의 결과는 DB에 다음과 같을 때

index	x1	x2	Υ
1	1	1	-1(파랑)
2	-1	-1	1(주황)
3	2	1	-1
4	-3	-4	1

$$f:R^2 \rightarrow \{1,-1\}$$

$$f(x_1, x_2) = \begin{cases} 1 & if \ w_1 x_1 + w_2 x_1 > 0 \\ -1 & otherwise \end{cases}$$

index	x1	x2	Y
1	1	1	-1(파랑)
2	-1	-1	1(주황)
3	2	1	-1
4	-3	-4	1

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_1 > 0 \\ -1 & \text{otherwise} \end{cases}$$

init w1 = 1, w2 = 1

f`
$$(1,1) = 1 (1*1 + 1*1 > 0)$$

f` $(-1,-1) = -1 (1*-1 + 1*-1 < 0)$
f` $(2,1) = 1 (1*2 + 1*1 > 0)$
f` $(-3,-4) = -1 (1*-3 + 1*-4 < 0)$

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_1 > 0 \\ -1 & \text{otherwise} \end{cases}$$

init w1 = 1, w2 = 1

$$f`(1,1) = 1 (1*1 + 1*1 > 0)$$

 $f`(-1,-1) = -1 (1*-1 + 1*-1 < 0)$
 $f`(2,1) = 1 (1*2 + 1*1 > 0)$
 $f`(-3,-4) = -1 (1*-3 + 1*-4 < 0)$

틀렸다는 비교로 부터 새로운 W의 값을 찾아야함

Error1 = $Y^*y \rightarrow \{1,-1\}$ f`(-1,-1) = -1 (1*-1 + 1*-1 < 0) Y == y 때는 부호가 같음으로 항상 1 Y != y 때는 부호가 다름으로 항상 -1

하지만 이 정의의 문제

- 1. 틀렸다는 사실은 알수 있지만 그 정도는 알수 없음
- 2. 최적화 방법인 gradient를 이용할 수 없음

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_1 > 0 \\ -1 & \text{otherwise} \end{cases}$$

init w1 = 1, w2 = 1

f`
$$(1,1) = 1 (1*1 + 1*1 > 0)$$

f` $(-1,-1) = -1 (1*-1 + 1*-1 < 0)$
f` $(2,1) = 1 (1*2 + 1*1 > 0)$
f` $(-3,-4) = -1 (1*-3 + 1*-4 < 0)$

틀렸다는 비교로 부터 새로운 W의 값을 찾아야함

Error2 =
$$-Y^*(w1x1 + w2x2) -> R$$

부호는 Error1과 동일, 양수인 경우는 정답을 표현 더불어 정도(크기)에 대한 정보도 추가된 수식,

추가적으로 error의 의미에 맞도록 맞았을 경우는 에러가 줄어들도록 -를 붙여줌 (극소값을 찾는문제로 변환)

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_1 > 0 \\ -1 & \text{otherwise} \end{cases}$$

init w1 = 1, w2 = 1

f`
$$(1,1) = 1 (1*1 + 1*1 > 0)$$

f` $(-1,-1) = -1 (1*-1 + 1*-1 < 0)$
f` $(2,1) = 1 (1*2 + 1*1 > 0)$
f` $(-3,-4) = -1 (1*-3 + 1*-4 < 0)$

틀렸다는 비교로 부터 새로운 W의 값을 찾아야함

Error3 = $max(0,-Y^*(w1x1 + w2x2))$

맞춘것에 대해서는 그 맞춘정도는 보지 않겠다는)) 의미로 outlier에 의한 misclassification을 막음

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_1 > 0 \\ -1 & \text{otherwise} \end{cases}$$

init w1 = 1, w2 = 1

f`
$$(1,1) = 1 (1*1 + 1*1 > 0)$$

f` $(-1,-1) = -1 (1*-1 + 1*-1 < 0)$
f` $(2,1) = 1 (1*2 + 1*1 > 0)$
f` $(-3,-4) = -1 (1*-3 + 1*-4 < 0)$

비교 f`(1,1)!= -1 f`(-1,-1)! = 1 ··· 틀렸다는 비교로 부터 새로운 W의 값을 찾아야함

Error4 = $max(0,1-Y^*(w1x1 + w2x2))+L2_Term$

맞출때 적어도 마진을 최소한 1이상은 갖도록 함 (0) -> svm의 최대 마진과 관련

$$f(x_1, x_2) = \begin{cases} 1 & if \ w_1 x_1 + w_2 x_1 > 0 \\ -1 & otherwise \end{cases}$$

틀렸다는 비교로 부터 새로운 W의 값을 찾아야함

error를 정의하였으면 error를 최소화시키는 W를 찾아야한다.

HOW?

-> error가 최소가 되는 지점에 대하여 error함수의 미분은 항상 반대 방향을 가르키는 벡터임.

W_new = W_prev - a*dError/dW

index	x1	x2	Y
1	1	1	-1(파랑)
2	-1	-1	1(주황)
3	2	1	-1
4	-3	-4	1

$$f(x_1,x_2) = \begin{cases} 1 & if \ w_1x_1 + w_2x_1 > 0 \\ -1 & otherwise \end{cases}$$

Tensorflow

Tensorflow

 Tensorflow: is an open source software library for numerical computation using data flow graphs

TensorFlow 패키지는 선형 대수 심볼 컴파일 러(Symbolic Linear Algebra Compiler)이다. 다른 딥러닝 library 에 비해 분산처리 기능이 강화되어 있다.

Tensorflow 사용법…

- 1. 심볼 변수 정의
- 2. 심볼 관계 정의
- 3. 세션 정의
- 4. 세션 사용

딥러닝을 위한 library

Why?

Why?

- Perceptron -> SVM -> Neural Net -> Deep NN
- https://github.com/machine-learning-challenge/ mlc2017-online

어디에 쓸까?

<mark>단 개발로그</mark> 약	록(김박원과수리	4277 <u>0</u> 뷰타암 간략보기 수				26 4		◎ 성품 추천 중인데기목록	Sus \$	존치 #			저장	
타입	0 0 X	카틸로그램/코드법호	자동승인 이부	자동승인 비청수	승인 대상수 #	승인간수	변리간수	선택	0.01%	성품명 / 임선명	진마가	판매자및(아이티)	후천질수	술민요청일
	2.5	교스트의 플레그 683-3KP/(1084340)						○ 송 인○ 변세	8	<u>에비리스템 페이이플라고 5 배송비 선물만가는 훈련용</u>	14,370	씨에이치울 (d·ma***)	0.39284	2017/07/11
상품 단위	H		↑ 등	N	<u>157</u>	D	0	○ 송 인 ○ 덴리	8	스타마크 에버리스팅 파이어플라크 5	14,900	(주)한원이소민 (deisomei***)	0.38184	2017/07/11
성품 난위	*****	<u>부천기루 1kg 1개/(34849996)</u>	↑ 5	N	<u>156</u>	3	o	O 송인 O 펜리	2	스타마크 에비라스팅 마이아를라고 있었다시장난간	16,500	예고도분 (scenebi***)	0.381779 · ·	2017/07/11
성품님위	8	<u>에비라스팅 파이이클라고 M/(1009275)</u>	↑ S	N	<u>155</u>	o	0	O 송입 ○ 앱의	9	스타마크 에비라스팅 파이아들리고 보.	24,830	學期間 (selero***)	0.88142	2017/07/11
성품 단위	1	<u>작가건소대 3단/(1675934)</u>	↑동	N	<u>153</u>	0	4	○ 송인 ○ 변리	9	스타마크 에비라스팅 파이아들리고 요.	29,300	일도 미미] (rtp=++)	0.38123	2017/07/11
성품 단위		블랙스 핸 돌카비/() 095801)	수 등	N	<u>150</u>	0	0	O 송입 이 변리	9	에버라스팅 파이어플라그 M/배송비 신불단기능	19,450	III LEE (company)	0.37383	2017/07/11
성품 단위	1	채난기 DAS-BSy(3449151)	+ 5	N	<u>146</u>	0	0	O 숙인 이 템리		에버라스팅 확이어플라그 S 배송비 신글인가능 강아지	17.350	물로와	0.357017	2017/07/11
성품 단위	-	소타플러 WS-221/(1098012)	<u> </u>	N	<u>146</u>	0	0	○ ☆인○ 캠리		에버라스팅 확이어플러그 S 배송비 선물만가능 강아지	19.820	(ssangb***) 신성클리스	0.35701	2017/07/1
	to to	A-V(999624)						0.120.27	•			Qinolus***)		

QnA