Variant calling Detecting variants in NGS data

The Genome Analysis ToolKit (GATK)

Edinburgh Genomics

Edinburgh, UK 23rd October 2015

Marta Bleda Latorre

mb2033@cam.ac.uk

Research Assistant at the Department of Medicine University of Cambridge Cambridge, UK

The pipeline

Objective

Assign a genotype to each position

Problems

Some variation observed in BAM files is caused by mapping and sequencing artifacts:

- PCR artifacts:
 - Mismatches due to errors in early PCR rounds
 - PCR duplicates
- Sequencing errors: erroneous call, either for physical reasons or to properties of the sequenced DNA
- Mapping errors: often happens around repeats or other low-complexity regions

Separate true variation from machine artifacts

Variant calling process pipeline

1. Mark duplicates

Duplicates should not be counted as additional evidence

2. Local realignment around INDELS

Reads mapping on the edges of INDELS often get mapped with mismatching bases introducing false positives

3. Base quality score recalibration (BQSR)

Quality scores provided by sequencing machines are generally inaccurate and biased

4. Variant calling

Discover variants and their genotypes

- The same DNA molecule can be sequenced several times during PCR
- Not informative
- Not to be counted as additional evidence for or against a putative variant
- Can result in false variant calls

Tools

- Samtools: samtools rmdup
- Picard: MarkDuplicates

- The same DNA molecule can be sequenced several times during PCR
- Not informative
- Not to be counted as additional evidence for or against a putative variant
- Can result in false variant calls

Tools

- Samtools: samtools rmdup
- Picard: MarkDuplicates

The reason why duplicates are bad

× = sequencing error propagated in duplicates

... and thus be more likely to make the right call

Duplicate identification

Duplicates have the same starting position and the same CIGAR string

2. Local realignment around INDELS

- Reads near INDELS are mapped with mismatches
- Realignment can identify the most consistent placement for these reads
 - 1. **Identify** problematic regions
 - 2. Determine the optimal consensus sequence
- Minimizes mismatches with the reference sequence
- Refines location of INDELS

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491-8. PMID: 21478889

2. Local realignment around INDELS

- Reads near INDELS are mapped with mismatches
- Realignment can identify the most consistent placement for these reads
 - 1. **Identify** problematic regions
 - 2. Determine the optimal consensus sequence
- Minimizes mismatches with the reference sequence
- Refines location of INDELS

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491-8. PMID: 21478889

3. Base quality score recalibration

- Calling algorithms rely heavily on the quality scores assigned to the individual base calls in each sequence read
- Unfortunately, the scores produced by the machines are subject to various sources of systematic error, leading to over- or under-estimated base quality scores in the data

How?

- 1. Analyze covariation among several features of a base:
 - Reported quality score
 - Position within the read
 - Preceding and current nucleotide
- 2. Use a set of **known variants** (i.e.: dbSNP) to model error properties of real polymorphism and determine the **probability that novel sites are real**
- 3. Adjust the quality scores of all reads in a BAM file

3. Base quality score recalibration

Phred Quality score:

$$Q_{\text{Phred}} = -10 \log_{10} P(\text{error}).$$

A score of 20 corresponds to 1% error rate in base calling

4. Variant calling Variant discovery process

Steps

- 1. Variant calling: Identify the positions that differ from the reference
- 2. Genotype calling: calculate the genotypes for each sample at these sites

Initial approach

Independent base assumption

Counting the number of times each allele is observed

Evolved approach

Bayesian inference → Compute genotype likelihood

Advantages:

Provide statistical measure of uncertainty

Lead to **higher accuracy** of genotype calling

Variant discovery process

Reference = A

Variant discovery process

Reference = A

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

$$N=30$$
, $X=0$

N = nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Reference = A

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

N=30, X=0

GGGGGGGGGGGGGGGGGGGG

N=30, X=30

N = nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Reference = A

AAAAAAAAAAAAAAAAAAAAAAAAAAA

N=30, X=0

GGGGGGGGGGGGGGGGGGGG

N=30, X=30

N=30, X=15

N = nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Reference = A

A		Δ	Д	Δ	1	Δ	Д	Δ	Δ	A	Δ,	Δ	A	Δ	Δ	Δ	Δ	A	1/	Δ,	Д	Д	Δ	Δ	Д	Δ	Δ	Δ	\A		Δ,	Д	Δ	A	4	1	V=3	86)
---	--	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	----	----	---	---	---	---	---	---	---	---	----	--	----	---	---	---	---	---	-----	----	---

AAAAAAAAAAAAAAGGGGGGGGGGGGGGT
$$N=30$$
, $X=12$

N = nucleotides

X=0

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Reference = A

AAAGGGCCTT

$$N=30$$
, $X=0$

$$N=30$$
, $X=30$

$$N=30$$
, $X=15$

$$N=30$$
, $X=12$

$$N=10, X=3$$

N = nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Reference = A

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

N=30, X=0

GGGGGGGGGGGGGGGGGGGG

N=30, X=30

N=30, X=15

AAAAAAAAAAAAAGGGGGGGGGGGCT

N=30, X=12

AAAGGGCCTT

N=10, X=3

Cutoff for $X \rightarrow \text{value or proportion}$

•
$$c_1 = 10\%$$
, $c_2 = 30\%$ $X \le c_1$

$$X \le c_1 \longrightarrow RR$$

$$c_1 < X < c_2 \rightarrow RV$$

$$X \ge c_2 \longrightarrow VV$$

N =nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Reference = A

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

GGGGGGGGGGGGGGGGGGGGGG

AAAAAAAAAAAAAAGGGGGGGGGGCT

AAAGGGCCTT

$$N=30$$
, $X=0 \rightarrow RF$

$$N=30$$
, $X=30 \rightarrow VV$

$$N=30$$
, $X=15 \rightarrow RV$

$$N=30$$
, $X=12 \rightarrow RV$

$$N=10$$
, $X=3 \rightarrow ??$

Cutoff for $X \rightarrow \text{value or proportion}$

•
$$c_1 = 10\%$$
, $c_2 = 30\%$ $X \le c_1 \rightarrow RR$
 $c_1 < X < c_2 \rightarrow RV$
 $X \ge c_2 \rightarrow VV$

N = nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

Variant discovery process

Bayesian approximation

 α = nucleotide-base error rate

N =nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

$$P(G=VV,X|N,\alpha)$$
 = P of all V calls being correct and all R calls being wrong

$$P(G=RV,X|N,\alpha)$$
 = P of all R and V calls being correct

Variant discovery process

Bayesian approximation

 α = nucleotide-base error rate

N = nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

$$P(G=RR,X|N,\alpha) = \binom{N}{X}\alpha^{X}(1-\alpha)^{N-X}$$

$$P(G=VV,X|N,\alpha) = \binom{N}{X}(1-\alpha)^{X}\alpha^{N-X}$$

$$P(G=RV,X|N,\alpha) = \binom{N}{X}\left(\frac{1}{2}\right)^{N}$$

$$P(G=VV,X|N,\alpha) = {N \choose X} (1-\alpha)^X \alpha^{N-X}$$

$$P(G=RV,X|N,\alpha) = {N \choose X} \left(\frac{1}{2}\right)^N$$

Variant discovery process

Bayesian approximation

 α = nucleotide-base error rate

$$\left.\begin{array}{c} p_{_{VV}} \\ p_{_{VR}} \end{array}\right)$$
 Prior probabilities

N =nucleotides

G = true genotype

R = reference base

V = variant base

X = variant nucleotides

Outcomes:

$$P(G=RR,X|N,\alpha) = \binom{N}{X}\alpha^{X}(1-\alpha)^{N-X}(1-p_{VV}-p_{RV})$$

$$P(G=VV,X|N,\alpha) = \binom{N}{X}(1-\alpha)^{X}\alpha^{N-X}p_{VV}$$

$$P(G=RV,X|N,\alpha) = \binom{N}{X}\left(\frac{1}{2}\right)^{N}p_{RV}$$

VCF file format

- Specification defined by the 1000 genomes (current version 4.2):
 http://samtools.github.io/hts-specs/VCFv4.2.pdf
- Commonly compressed and indexed with bgzip/tabix
- Single-sample or multi-sample VCF

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seg/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HO, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               ID
                                ALT
                                         OUAL FILTER INFO
                                                                                        FORMAT
                                                                                                     NA00001
                                                                                                                    NA00002
                                                                                                                                    NA00003
20
       14370
               rs6054257 G
                                         29
                                              PASS
                                                     NS=3:DP=14:AF=0.5:DB:H2
                                                                                        GT:GQ:DP:HQ 0 0:48:1:51,51 1 0:48:8:51,51 1/1:43:5:.,.
20
       17330
                                              q10
                                                     NS=3;DP=11;AF=0.017
                                                                                        GT:GQ:DP:HQ 0 0:49:3:58,50 0 1:3:5:65,3
                                                                                                                                    0/0:41:3
20
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
       1110696 rs6040355 A
                                G,T
                                         67
                                              PASS
                                                                                                                                    2/2:35:4
20
       1230237 .
                                         47
                                              PASS
                                                     NS=3:DP=13:AA=T
                                                                                        GT:GQ:DP:HQ 0 0:54:7:56,60 0 0:48:4:51,51 0/0:61:2
                                              PASS
                                                     NS=3;DP=9;AA=G
       1234567 microsat1 GTC
                                G,GTCT 50
                                                                                        GT:GQ:DP
                                                                                                     0/1:35:4
                                                                                                                                    1/1:40:3
                                                                                                                    0/2:17:2
```

VCF file format

- CHROM: chromosome
- POS: position
- ID: identifier
- REF: reference base(s)
- ALT: non-reference allele(s)

- QUAL: quality score of the calls (phed scale)
- FILTER: "PASS" or a filtering tag
- INFO: additional information
- FORMAT: describes the information given by sample

Software

Software	Available from	Calling method	Prerequisites	Comments	Refs
SOAP2	http://soap.genomics.org. cn/index.html	Single-sample	High-quality variant database (for example, dbSNP)	Package for NGS data analysis, which includes a single individual genotype caller (SOAPsnp)	15
realSFS	http://128.32.118.212/ thorfinn/realSFS/	Single-sample	Aligned reads	Software for SNP and genotype calling using single individuals and allele frequencies. Site frequency spectrum (SFS) estimation	-
Samtools	http://samtools. sourceforge.net/	Multi-sample	Aligned reads	Package for manipulation of NGS alignments, which includes a computation of genotype likelihoods (samtools) and SNP and genotype calling (bcftools)	53
GATK	http://www. broadinstitute.org/gsa/ wiki/index.php/The_ Genome_Analysis_Toolkit	Multi-sample	Aligned reads	Package for aligned NGS data analysis, which includes a SNP and genotype caller (Unifed Genotyper), SNP filtering (Variant Filtration) and SNP quality recalibration (Variant Recalibrator)	32,33
Beagle	http://faculty.washington. edu/browning/beagle/ beagle.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation, phasing and association that includes a mode for genotype calling	42
IMPUTE2	http://mathgen.stats. ox.ac.uk/impute/ impute_v2.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation and phasing, including a mode for genotype calling. Requires fine-scale linkage map	44
QCall	ftp://ftp.sanger.ac.uk/pub/ rd/QCALL	Multi-sample LD	'Feasible' genealogies at a dense set of loci, genotype likelihoods	Software for SNP and genotype calling, including a method for generating candidate SNPs without LD information (NLDA) and a method for incorporating LD information (LDA). The 'feasible' genealogies can be generated using Margarita (http://www.sanger.ac.uk/resources/software/margarita)	54
MaCH	http://genome.sph.umich. edu/wiki/Thunder	Multi-sample LD	Genotype likelihoods	Software for SNP and genotype calling, including a method (GPT_Freq) for generating candidate SNPs without LD information and a method (thunder_glf_freq) for incorporating LD information	-

A more complete list is available from http://seqanswers.com/wiki/Software/list, LD, linkage disequilibrium; NGS, next-generation sequencing.

GATK (Genome Analysis ToolKit)

http://www.broadinstitute.org/gatk/

- Probabilistic method: Bayesian estimation of the most likely genotype
- Calculates many parameters for each position of the genome
- INDEL realignment
- Base quality recalibration
- SNP and INDEL calling
- Multi-sample calling
- Uses standard input and output files
- Used in many NGS projects, including the 1000 Genomes Project, The Cancer Genome Atlas, etc.

Prerequisites: JAVA and Picard tools

- Requires Java (http://www.oracle.com/technetwork/java/javase/downloads/index.html)
 - Check your java version

```
java -version
```

GATK $\geq 2.6 \rightarrow \text{Requires Java version} \geq 1.7$

- Picard (current version 1.140)
 - Website: http://broadinstitute.github.io/picard/


```
java -jar picard.jar -h
```

- Usage

java -jar picard.jar <ToolName> [options]

GATK installation

GATK 3.4-46 download

http://www.broadinstitute.org/gatk/

- We need to register before download
- Go to Downloads and click GATK ★
- Accept the license agreement
- Extract the file

Check if GATK is working

java —jar GenomeAnalysisTK.jar —h

Usage

java -jar GenomeAnalysisTK.jar -T <ToolName> [arguments]

Filtering recomendations

Filtering recommendations for SNPs:

- QD < 2.0
- MQ < 40.0
- FS > 60.0
- HaplotypeScore > 13.0
- MQRankSum < -12.5
- ReadPosRankSum < -8.0

Filtering recommendations for indels:

- QD < 2.0
- ReadPosRankSum < -20.0
- InbreedingCoeff < -0.8
- FS > 200.0

GATK (Genome Analysis ToolKit)

Somatic calling

Comparison

Xu, Huilei, et al. "Comparison of somatic mutation calling methods in amplicon and whole exome sequence data." BMC genomics 15.1 (2014): 244.