Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3

Установка виртуальных гипервизоров в Unix

Группа: Р34082

Выполнила: Савельева Д.А.

Проверил:

к.т.н. преподаватель Белозубов А.В.

Санкт-Петербург 2024г.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1 УСТАНОВКА ВИРТУАЛЬНЫХ ГИПЕРВИЗОРОВ В UNIX	4
2 РАБОТА С VMM	17
3 ИСПОЛЬЗОВАНИЕ УТИЛИТЫ VIRT-INSTALL	39
ЗАКЛЮЧЕНИЕ	45

ВВЕДЕНИЕ

В рамках данной лабораторной работы выполняется изучение основ работы с виртуальными гипервизорами на базе Unix-систем. Основной задачей является освоение операций по созданию, настройке и управлению виртуальными машинами с использованием таких инструментов, как Gnome Boxes, QEMU/KVM, Virtual Machine Manager (VMM) и утилита virt-install.

Работа проводится с использованием гостевых операционных систем, для которых настраиваются сетевые подключения, общие папки и дополнительные виртуальные диски. Также исследуются свойства виртуальных машин в процессе их работы, параметры их конфигурации и возможности восстановления системы с использованием снимков состояния. Для взаимодействия с удаленными машинами применяются протоколы SSH и RDP, что позволяет наладить работу между основными и гостевыми системами.

Цель работы — изучение принципов работы гипервизоров, методов управления виртуальными машинами через графический интерфейс и командную строку, а также исследование возможностей виртуальных сред для выполнения различных задач.

Задачи лабораторной работы включают:

- Установку и настройку гипервизоров и виртуальных машин.
- Настройку сетевых взаимодействий между системами.
- Использование снимков состояния для восстановления систем.
- Управление виртуальными машинами через командную строку.

Работа с виртуализацией позволяет лучше понять процессы, связанные с созданием и управлением изолированными вычислительными средами, что важно для дальнейшего применения в области системного администрирования и разработки программного обеспечения.

1 УСТАНОВКА ВИРТУАЛЬНЫХ ГИПЕРВИЗОРОВ В UNIX

Вся работа производиться гостевой ОС в Unix-системе.

Ниже представлено задание, которое необходимо выполнить в рамках данного раздела:

- 1. Добавить Жесткий диск (SATA) объемом 30 Gb в гостевую ОС Ubuntu.
- 2. Проверить конфигурацию гостевой ОС.
- 3. Создать общую папку, общую с основной и гостевой ОС, под названием Soft.
- 4. Скачать дистрибутив любой ОС (лучше Live, с возможность запуска без установки) с адреса http://mirror.yandex.ru.

Далее будем работать с Gnome Boxes. Последовательно выполняем задачи.

- 1. Установить в гостевой ОС приложение Gnome Boxes.
- 2. Запустите Boxes и создайте виртуальную машину.
- 3. Выберите ISO-образ диска с гостевой ОС.
- 4. Запустите ОС в режиме LiveCD.
- 5. Изучите свойства виртуальной машины созданной в Boxes, какие изменения в работе виртуальной машины можно производить? Какие параметры можно отслеживать в оперативном режиме?
- 6. Создайте удаленное подключение к серверу Helios.
- 7. Проверьте подключение.
- 8. Проверьте, что у вашей гостевой системы стоят настройки сетевого подключения Сетевой мост.
- 9. Попросите вашего соседа или напарника предоставить доступ к удаленному рабочему столу в ОС Windows (смотри скрин ниже). Получите у него следующие сведения: IP-адрес, логин и пароль.
- 10. Подключитесь у удаленному компьютеру.

Проверьте подключение (если нет возможности подключиться к соседу, настройте подключение к свой Хостовой машине).
 Далее поэтапно будем выполнять каждое из заданий.

1. Добавить Жесткий диск (SATA) объемом 30 Gb в гостевую ОС Ubuntu.

Рисунок 1 – Добавление жесткого диска в гостевую ОС

Рисунок 2 – Добавление жесткого диска в гостевую ОС

Рисунок 3 – Добавление жесткого диска в гостевую ОС

2. Проверить конфигурацию гостевой ОС.

Рисунок 4 – Конфигурация гостевой ОС Ubuntu

Рисунок 5 – Конфигурация гостевой ОС Ubuntu

3. Создать общую папку, общую с основной и гостевой ОС, под названием Soft.

Рисунок 6 – Добавление общей папки

Рисунок 7 – Общая папка

4. Установить в гостевой ОС приложение Gnome Boxes.

Рисунок 8 – Установка Gnome Boxes

5. Запустите Boxes и создайте виртуальную машину.

Рисунок 9 – Запуск Gnome Boxes

Рисунок 10 – Создание виртуальной машины Fedora

6. Запустите ОС в режиме LiveCD.

Рисунок 11 – Демонстрация отказа в работе вложенной ВМ

При запуске возникает критическая ошибка гостевой ОС Ubuntu, которую не получается исправить.

Поэтому дальнейшие действия будут осуществляться на хост-системе.

Рисунок 12 – Создание новой виртуальной машины

Рисунок 13 – Запуск машины в режиме Fedora Live

Рисунок 14 – Демонстрация работы Fedora Live

7. Изучите свойства виртуальной машины созданной в Boxes, какие изменения в работе виртуальной машины можно производить? Какие параметры можно отслеживать в оперативном режиме?

Рисунок 15 – Демонстрация свойств виртуальной машины

Рисунок 16 – Демонстрация свойств виртуальной машины

8. Создайте удаленное подключение к серверу Helios.

Рисунок 17 – Создание удаленного подключения к Helios

9. Подключитесь у удаленному компьютеру.

Рисунок 18 – ІР-адрес хоста

Рисунок 19 – Подключение xrdp для подключения по RDP

Рисунок 20 — Установка пакетов на Fedora для подключения по RDP

Рисунок $21 - \Pi$ одключение по RDP к хосту

Рисунок 22 – Работоспособность подключения по RDP к хосту

2 РАБОТА С VMM

Ниже представлено задание, которое необходимо выполнить в рамках данного раздела:

- 1. Установить QEMU.
- 2. Проверить, поддерживает ваша система KVM
- 3. Создайте виртуальную машину
- 4. Выполните следующие команды

\$mkdir VM

\$qemu-img create -f qcow2 ./VM/Fedora-36.img 10G

5. Запустите виртуальную машину

\$qemu-system-x86_64 ./VM/Fedora-36.img

6. Запустите виртуальную машину с установкой операционной системы. (Уточните полный путь до дистрибутива. Можно переименовать дистрибутив с более коротким именем fedora.iso)

\$qemu-system-x86_64 -m 2048 -enable-kvm Fedora-36.img -cdrom fedora.iso

- 7. После установки системы создайте команду запуска гостевой ОС с помощью команды qemu с следующими параметрами (воспользуйтесь командой qemu-system-x86_64):
 - Загрузка в полноэкранном режиме
 - Установка тас-адреса 17:10:20:22:20:09
- 8. Установка Virtual Man.
- 9. Установите пакеты приложений для нормальной работы Virtual-Manger.

\$sudo apt install qemu qemu-kvm libvirt-daemon libvirt-clients bridge-utils virt-manager

10. Добавить своего пользователя в группу libvirt.

\$sudo gpasswd -a \$USER libvirt

11. Проверка что libvirt запущен и работает

\$sudo systemctl status libvirtd

- 12. Перезапустите гостевую систему
- 13. Проверка на правильность работы системы и все ли правильно установлено.

\$kvm-ok

- 14. После перезапуска найдите в приложениях программу Virtual Machine Manager
- 15. Создайте виртуальную машину с именем FIO-ваша группа.
- 16. Проверьте настройки системы.
- 17. Добавьте еще один жесткий диск объемом 10МиБ.
- 18. Изучите свойства виртуальной машины созданной в VMM, какие настройки виртуальной машины можно выставлять? Какие параметры можно отслеживать в оперативном режиме?
- 19. Создать снимок состояния системы
- 20. Установить приложение Yandex Broweser
- 21. Восстановить состояние системы в первоначальное состояние.
- 22. Проверьте работу снимков состояния
- 23. Какие сетевые настройки можно устанавливать гостевой машине?
- 24. Управление виртуальной машиной из командной строки virsh
- 25.Посмотреть запущенные виртуальные хосты (все доступные --all):

virsh list

Перезагрузить хост можно:

virsh reboot \$VM_NAME

Остановить виртуальную машину:

virsh stop \$VM_NAME

Выполнить halt:

virsh destroy \$VM_NAME

Запуск:

virsh start \$VM_NAME

Отключение:

 $virsh\ shutdown\ \$VM_NAME$

Добавить в автозапуск:

virsh autostart \$VM_NAME

Склонировать систему, чтобы в будущем использовать её как основу для других виртуальных ОС

virt-clone -help

Далее поэтапно будем выполнять каждое из заданий.

1. Установить QEMU.

Рисунок 23 – Установка QEMU

2. Проверить, поддерживает ваша система KVM.

Рисунок 24 – Проверка поддержки KVM

3. Создайте виртуальную машину. Выполните следующие команды:

\$mkdir VM

\$qemu-img create -f qcow2 ./VM/Fedora-36.img 10G

Рисунок 25 – Создание виртуальной машины

4. Запустите виртуальную машину.

Рисунок 26 – Запуск виртуальной машины

5. Запустите виртуальную машину с установкой операционной системы.

\$qemu-system-x86_64 -m 2048 -enable-kvm Fedora-36.img cdrom fedora.iso

Рисунок 27 – Запуск виртуальной машины Fedora

Рисунок 28 – Запуск виртуальной машины Fedora

Рисунок 29 – Установка Fedora

Рисунок 30 – Установка Fedora

Рисунок 31 – Установка Fedora

- 6. После установки системы создайте команду запуска гостевой ОС с помощью команды qemu с следующими параметрами (воспользуйтесь командой qemu-system-x86_64):
 - 6.1. Загрузка в полноэкранном режиме
 - 6.2. Установка тас-адреса 17:10:20:22:20:09

sudo qemu-system-x86_64 -full-screen -m 2048 -net nic,macaddr=18:10:20:22:20:09 -netdev user,id=net0 -enable-kvm ./VM/Fedora-36.img

Рисунок 32 – Команда для запуска гостевой ОС

Рисунок 33 – Запуск Fedora после команды

7. Установка Virtual Man. Установите пакеты приложений для нормальной работы Virtual-Manger. Добавить своего пользователя в группу libvirt. Проверка что libvirt запущен и работает.

Рисунок 34 – Работа с Virtual Man

8. Проверка правильности установки системы.

Рисунок 35 – Проверка работоспособности KVM

Рисунок 36 – Программа Virtual Machine Manager

9. После перезапуска найдите в приложениях программу Virtual Mashine Manager. Создайте виртуальную машину с именем FIO-ваша_группа.

Рисунок 37 – Создание виртуальной машины

Рисунок 38 – Создание виртуальной машины

Рисунок 39 – Создание виртуальной машины

Рисунок 40 – Создание виртуальной машины

Рисунок 41 – Создание виртуальной машины

Рисунок 42 – Запуск виртуальной машины

При попытке запуска внутри гостевой системы происходит подобная Gnome Boxes ошибка(что логично, поскольку GnomeBoxes,так же как и VMM, это интерфейс для libvirt).

Поэтому дальнейшие действия будут выполняться на хост системе.

Рисунок 43 – Создание виртуальной машины

Рисунок 44 – Запуск виртуальной машины

Рисунок 45 — Работоспособность виртуальной машины Fedora

10. Изучите свойства виртуальной машины созданной в VMM, какие настройки виртуальной машины можно выставлять? Какие параметры можно отслеживать в оперативном режиме?

Рисунок 46 – Свойства виртуальной машины

Рисунок 47 – Свойства виртуальной машины

11. Добавьте еще один жесткий диск объемом 10МиБ.

Рисунок 48 – Добавление жесткого диска

Рисунок 49 – Свойства виртуальной машины

Рисунок 50 – Свойства виртуальной машины

12. Создать снимок состояния системы. Установить приложение Yandex Browser. Восстановить состояние системы в первоначальное состояние.

Рисунок 51 – Создание снимка состояния системы

Рисунок 52 – Проверка отсутствия директории hello

Рисунок 53 – Снимок системы

Рисунок 54 – Установка Yandex Browser

Рисунок 55 – Создание директории hello

Рисунок 56 – Восстановление до первоначального состояния

Рисунок 57 – Восстановление до первоначального состояния

Рисунок 58 – Сетевые настройки виртуальной машины

- 13. Какие сетевые настройки можно устанавливать гостевой машине?
 - Сетевой мост (Bridge)
 - NAT (Network Address Translation)
 - Сетевой адаптер (virtio, e1000 и др.)

14. Управление виртуальной машиной из командной строки virsh

Рисунок 59 – Управление виртуальной машиной из командной строки

Рисунок 60 – Управление виртуальной машиной из командной строки

3 ИСПОЛЬЗОВАНИЕ УТИЛИТЫ VIRT-INSTALL

Ниже представлено задание, которое необходимо выполнить в рамках данного раздела:

1. Установите в системы следующие пакеты:

\$sudo apt install virt-install libosinfo-bin

2. Проверьте какие ОС доступны из репозитория

\$osinfo-query os

- 3. Отсортируйте все ОС Windows и сохраните список
- 4. Отсортируйте все ОС Fedora и сохраните список
- 5. Добавить виртуальную машину с помощью virt-install

```
virt-install \
--name FIO_Group \
--virt-type=kvm \
--memory 2048 --vcpus=2 \
--os-variant=fedora31 \
--hvm \
--cdrom=fedora.iso \
--network default,model=virtio \
--disk
path=~/VM/fedora31.qcow2,size=8,bus=virtio,format=qcow2 \
--graphics vnc \
--noautoconsole
```

- 6. Объясните значение параметров используем при вводе команды.
- 7. Проверьте запуск виртуальной машины.
- 8. Как можно запустить машину в фоновом режиме?
- 9. Подключиться к виртуальной машине по ssh. Что для этого нужно сделать?

Далее поэтапно будем выполнять каждое из заданий.

1. Установите в систему следующие пакеты:

\$sudo apt install virt-install libosinfo-bin

Рисунок 61 – Установка пакетов

2. Проверьте какие ОС доступны из репозитория.

Рисунок 62 – Операционные системы из репозитория

3. Отсортируйте все ОС Windows и сохраните список.

Рисунок 63 – Операционные системы Windows

4. Отсортируйте все ОС Fedora и сохраните список.

Рисунок 64 – Операционные системы Fedora

5. Добавить виртуальную машину с помощью virt-install.

Рисунок 65 – Добавление виртуальной машины с помощью virt-install

- 6. Объясните значение параметров используем при вводе данной команды.
 - --name FIO_Group: Имя виртуальной машины.
 - --virt-type=kvm: Тип виртуализации.
 - --тетоту 2048: Размер памяти в МБ.
 - --vcpus=2: Количество процессоров.
 - --os-variant=fedora31: Дистрибутив ОС.
 - --cdrom=fedora.iso: Путь к ISO-образу.
 - --network default, model=virtio: Настройка сетевой карты.
 - --disk path= \sim /VM/fedora31.qcow2: Путь к диску и его размер.
 - --graphics vnc: Использование VNC для графики.
 - --noautoconsole: Отключить консоль после установки.

7. Проверьте запуск виртуальной машины.

Рисунок 66 – Проверка запуска виртуальной машины

Рисунок 67 – Проверка запуска виртуальной машины

8. Как можно запустить машину в фоновом режиме?

Добавить параметр --noautoconsole для запуска машины без автоматического подключения.

9. Подключиться к виртуальной машине по ssh. Что для этого нужно сделать?

Рисунок 68 – Запуск ssh сервиса на гостевой ОС

Рисунок 69 – Подключение по ssh с хоста на гостевую ОС

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были изучены основные принципы работы с виртуальными гипервизорами на базе Unix-систем. Рассмотрены и освоены такие инструменты, как Gnome Boxes, QEMU/KVM, Virtual Machine Manager (VMM) и утилита virt-install, которые используются для создания, настройки и управления виртуальными машинами.

В процессе работы успешно решены задачи по добавлению виртуальных дисков, настройке сетевых подключений, созданию и применению снимков состояния системы, а также удаленному подключению к виртуальным и физическим системам с использованием протоколов SSH и RDP. Особое внимание было уделено исследованию свойств виртуальных машин, настройке их параметров и мониторингу работы в реальном времени.

Лабораторная работа продемонстрировала важность навыков работы с гипервизорами и виртуализацией для решения различных задач в области системного администрирования и разработки программного обеспечения. Полученные знания и ОПЫТ могут быть применены ДЛЯ создания вычислительных изолированных сред, тестирования программного обеспечения и оптимизации инфраструктуры.

Таким образом, выполнение данной работы позволяет сделать вывод, что виртуализация является мощным и гибким инструментом, обеспечивающим эффективное использование ресурсов и упрощение управления вычислительными системами.