NMAM INSTITUTE OF TECHNOLOGY, NILLE

(An Autonomous Institution affiliated to VTU, Belagavi) I Sem B.E. (Credit System) Mid Semester Examinations - II, October 2017

17MA101 - ENGINEERING MATHEMATICS - I

Max. Marks: 20

3

juration: 1 Hour

Note: Answer any One full question from each Unit.

Managon Caron	Note: Answ		Marks	BT.
1. a) Using eigen		find the dominant eigen values and corresponding	6	L*3

b) Reduce the quadratic form $3x^2 - 2y^2 - z^2 + 12yz + 8zx - 4xy$ to canonical form.

Diagonalize the matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. Hence find A^5 . 6

Y = AX is an orthogonal transformation with matrix A as b) i) Define an orthogonal linear transformation. follows $\begin{bmatrix} -2/3 & 1/3 & a/3 \\ 2/3 & 2/3 & b/3 \\ 1/3 & -2/3 & c/3 \end{bmatrix}$ find a,b,c

Unit - II

a) With usual notation prove that $tan\varphi = r \frac{d\theta}{dr}$.

b) In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the radius of curvature at the end of the major axis is equal to the semi latus rectum.

- 4. a) Find the angle between the curves $r = a(1 + sin\theta)$, $r = a(1 sin\theta)$.
 - Verify Cauchy's mean value theorem for the functions $f(x) = logx, g(x) = \frac{1}{x}$ in [1,e].

c) For the curve $\theta = \cos^{-1}\left(\frac{r}{k}\right) - \frac{\sqrt{k^2 - r^2}}{r}$, prove that $r\frac{ds}{dr}$ is a constant.

BT* Bloom's Taxonomy, L* Level

(38)		or	S: H-Plas,		
	3* **	1	Sem B.E. (Credit System) Mid Semester Examinations - II, October 2017		
D	Ĉr, ura	VIRA	17MA101 - ENGINEERING MATHEMATICS - I Max. Mar. Max. Max.	rks: 20	
	W. B. C.		Note: Answer any One full question from each Unit. Unit -1 Mark	s BT	•
		a)	Find the spectral and modal matrix of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$		2
			[0 -1 0]	6 L	3
			i) Define a regular linear transformation. ii) Show that $y_1 = \cos\theta x_1 - \sin\theta x_2$, $y_2 = \sin\theta x_1 + \cos\theta x_2$ is a regular linear transformation. Hence find the inverse of this transformation.	4 L	_2
	2.	a)	Using the power method, find the dominant eigen values and corresponding eigen vectors of the matrix $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \end{bmatrix}$ starting with the initial value		
	٠.	·	$\begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$	c	L3
		b)	$[1 \ 0 \ 0]^T$. Carry out 5 iterations Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 - 12xy - 8yz + 4zx$ to canonical form.	6 4	L2
			Unit – II		
	3.	a)	With usual notation prove that $tan\varphi = r \frac{d\theta}{dr}$	5	L3
		b)	Show that the radius of curvature at (a,0) on the curve $y^2 = \frac{a^2(a-x)}{x}$ is $\frac{a}{2}$.	5	L4
	4.	a)	State and prove Lagrange's mean value theorem.	4	L3
	٠٠.	b)	Find the angle of intersection of the odd $r = h(1 - \cos\theta)$	4	L2
		c)	Find $\frac{ds}{dr}$ for the curve $r^n = a^n cosn\theta$.	2	L2
	вт	r• Ble	com's Taxonomy, L* Level		