Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №7. «Работа с системой компьютерной вёрстки L^AT_EX»

Выполнил:

Саломахин Тимур Евгеньевич, группа P3112

Преподаватель:

Малышева Татьяна Алексеевна, кандидат технических наук, доцент факультета ПИиКТ в него входила только одна тригонометрическая функция угла α . Для этого представим коэффициент трения k как тангенс некоторого угла φ :

$$tg \varphi = k; \quad \varphi = \operatorname{arctg} k
\sin \varphi = \frac{k}{\sqrt{1 + k^2}}; \quad \cos \varphi = \frac{k}{\sqrt{1 + k^2}}.$$

Так как k задано, угол φ можно считать известным. Подставляя в (4) $\lg \varphi$ вместо k и умножая числитель и знаменатель на $\cos \varphi$, получим

$$\begin{split} F &= \frac{P \operatorname{tg} \varphi}{\operatorname{tg} \varphi \sin \alpha + \cos \alpha} = \\ &= \frac{P \sin \varphi}{\sin \varphi \sin \alpha + \cos \varphi \cos \alpha} = \frac{P \sin \varphi}{\cos (\alpha - \varphi)} = \\ &= \frac{Pk}{\sqrt{1 + k^2} \cos (\alpha - \varphi)}. \end{split}$$

Теперь ясно, что сила F будет минимальной тогда, когда $cos(\alpha - \varphi) = 1$, то есть

$$a_{\min} = \varphi = \operatorname{arctg} k$$

При этом минимальное значение силы F равно

$$F_{\min} = \frac{kP}{\sqrt{1+k^2}}$$

Из решения этой задачи можно сделать практический вывод: когда необходимо везти на санях груз по дороге с большим коэффициентом трения (например, если дорога посыпана песком), нужно тянуть сани за короткую верёвку. Если же коэффициент трения мал, верёвка должна быть длинной. Объясните это.

Задача З. Точки 1 и 2 движутся по осям x и y κ началу координат (рис. 2). В момент $t_0=0$ точка 1 находится на расстоянии $s_1=10$ см,

Рис. 1:

а точка 2 — на расстоянии $s_2 = 5$ см от начала координат. Первая точка движется со скоростью $v_1 = 2$ см/с, а вторая — со скоростью $v_2 = 4$ см/с. Каково наименьшее расстояние между ними?

В момент времени t расстояние между точками равно

$$d = \sqrt{(s_1 - v_1 t)^2 + (s_2 - v_2 t)^2} =$$

$$= \sqrt{(10 - 2t)^2 + (5 - 4t)^2} =$$

$$= \sqrt{20t^2 - 80t + 125} \text{ (cm)}.$$

Под корнем стоит квадратный трёхчлен, из которого можно легко выделить полный квадрат. Действительно,

$$20t^2 - 80t + 125 = 5|(2t - 4)^2 + 9|.$$

Ясно, что минимум этого выражения, а значит и расстояния d будет при t=2, откуда

$$d_{\min} = \sqrt{45} \, \mathrm{cm} \approx 6,7 \, \mathrm{cm}.$$

В заключение рассмотрим задачу, для решения которой используется так называемый метод приращений, не входящий в программу средней школы.

Задача 4. Группа спорстменов организовала на берегу моря следующее соревновние. Стартуя из точки A (рис. 3) на берегу моря, каждый спорстмен должен достичь буйка B, расположенного на расстоянии $l=120\,\mathrm{M}$ от берега. Береговую линию можно считать прямой; расстояние от старта A до основания перпендикуляра BC, опущенного на эту линию, равно $L=200\,\mathrm{M}$. Каждый спорстмен имеет право пробежать любое расстояние по берегу от старта A.

Рис. 2:

жество близнецов. Наибольшей из известных пар-близнецов является пара (10000000009649, 100000000009651).

3. Коснёмся ещё одного вопроса, связанного с простыми числами. Возьмём отрезок ряда натуральных чисел от 1 до не которого п включительно. На этом отрезке имеется определённое количество простых чисел. Число их принято обозначать через $\pi(n)$ *). Чему равно $\pi(n)$ для отдельных значений n.

Для малых n это легко подсчитать. Например $\pi(1)=0,\pi(2)=1,\pi(3)=2,\pi(4)=2,\pi(5)=3,\pi(6)=3,\pi(7)=4,\pi(8)=4,\pi(9)=4,\pi(10)=4.$

Сразу замечаетсся нерегулярное изменение $\pi(n)$. Вообще, никакой простой формулы для $\pi(n)$ написать нельзя.

Тем не менее, увеличивая n, можно заметить, что «средняя плотность» простых чисел, то есть отношение $\pi(n)$: n становится все меньше и меньше. Это хорошо видно из следующей таблицы:

n	$\pi(n)$	$\pi(n):n$
10	4	0,4
100	25	0,4
1 000	168	0,17
10 000	1 229	0,12
100 000	9 592	0,096
1 000 000	78 498	0,078
10 000 000	$664\ 579$	0,066
100 000 000	5 761 455	0,057
1 000 000 000	50 847 478	0,051

Доказано, что с возрастанием n отношение $\pi(n):n$ приближается к нулю. Впервые этот факт доказал Леонард Эйлер — величайший математик XVIII века. В дальнейшем великий русский математик Пафнутий Львович Чебышев уточнил результат Эйлера, доказав более общую теорему (см. «Квант» №5 за 1971 год, стр 1-3), но об этом мы уже рассказывать не будем.

 $^{^{*)}\}pi$ — греческая буква «пи», n — латинская буква «эн», $\pi(n)$ — читается так: «пи от эн».