Econometrics. Homework 1

R. Gevorgyan

2023-02-20

Due date: 2 March, 2023

Problem 1 (15 Points)

Lets $n \times n$ matrix \boldsymbol{A} is a function of scalar variable t, $\boldsymbol{A} = A(t)$, and, \boldsymbol{x} - is vector of size $n \times 1$.

- 1. Find $\partial (x'Ax)/\partial t$. (5 Points)
- 2. Find $\partial (\mathbf{x}' \mathbf{A} \mathbf{x}) / \partial t$, if \mathbf{x} is function of $t : \mathbf{x} = \mathbf{x}(t)$. (10 Points)

Problem 2 (20 Points)

Calculate the following expression:

$$\frac{\partial \log f(\mathbf{x} - \mathbf{y})}{\partial \mathbf{y}}$$

where f is scalar function and x, y are vectors.

Sometimes the notation of gradient is used.

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \equiv \nabla f(\mathbf{x})$$
 – the gradient of f

You can use this notation in your solution. So $\nabla f(\mathbf{x} - \mathbf{y})$ means the gradient of f evaluated at $(\mathbf{x} - \mathbf{y})$.

Problem 3(20 Points)

f is a scalar function of two vectors x and y:

$$f(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x} \cdot \boldsymbol{x}}{\boldsymbol{y} \cdot \boldsymbol{y}}$$

Calculate the derivative:

- 1. $\frac{\partial f}{\partial x}$ (5 Points) 2. $\frac{\partial f}{\partial y}$ (15 Points)

Problem 4 (25 Points)

Suppose f is a scalar function and x is a vector. If a second-order partial derivatives of f exist, then the Hessian matrix **H** of f is a square $n \times n$ matrix

$$\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}.$$

That is, the entry of the *i*th row and the jth column is

$$(\mathbf{H}_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

Prove that the Hessian matrix of a function f is the Jacobian matrix of the gradient of the function f; that is:

$$\mathbf{H}(f(\mathbf{x})) = \mathbf{J}(\nabla f(\mathbf{x}))$$

.

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \equiv \nabla f(\mathbf{x})$$
 - the gradient of f

The Jacobian is:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^{\mathrm{T}} f_1 \\ \vdots \\ \nabla^{\mathrm{T}} f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

where $\nabla^T f_i$ is the transpose (row vector) of the gradient of the *i* component.

Problem 5(20 Points)

In neural networks the Softmax function is used in back-propagation:

$$p_j = \frac{e^{x_j}}{\sum_k e^{x_k}}$$

This is used in a loss function of the form

$$L = -\sum_{j} y_j \log p_j,$$

where x is a some vector and y is a vector, which consist of 0 and 1 in position k:

$$y=\left[\begin{array}{cc}0,...,1,...0\end{array}\right]$$

Please calculate the derivative of L with respect to x.

Note: you can calculate the derivative of L by one component of x:

$$\frac{\partial L}{\partial x_i}$$