A Model-Constructing Satisfiability Calculus VMCAI 2013

Leonardo de Moura Microsoft Research Dejan Jovanović NYU

Symbolic Reasoning

Software analysis/verification tools need some form of symbolic reasoning

Logic is "The Calculus of Computer Science"

Zohar Manna

Symbolic Reasoning

Practical problems often have structure that can be exploited.

Undecidable (FOL + LIA)

Semi Decidable (FOL)

NEXPTIME (EPR)

PSPACE (QBF)

NP (SAT)

Logic Engines as a Service

VeriFast

 $Scala^{Z3}$

Satisfiability

Solution/Model

$$x^{2} + y^{2} < 1 \text{ and } xy > 0.1$$
 \implies sat, $x = \frac{1}{8}, y = \frac{7}{8}$ $x^{2} + y^{2} < 1 \text{ and } xy > 1$ \implies unsat, Proof

Is execution path *P* feasible?

Is assertion *X* violated?

Is Formula F Satisfiable?

The RISE of Model-Based Techniques in SMT

Saturation x Search

Proof-finding

Model-finding

SAT

$$p_1 \lor \neg p_2$$
, $\neg p_1 \lor p_2 \lor p_3$, p_3 $p_1 = true$, $p_2 = true$, $p_3 = true$

CNF is a set (conjunction) set of clauses Clause is a disjunction of literals Literal is an atom or the negation of an atom

Two procedures

Resolution	DPLL
Proof-finder	Model-finder
Saturation	Search

Resolution

$$C \vee l$$
, $D \vee \neg l \Rightarrow C \vee D$

$$l, \neg l \Rightarrow unsat$$

Improvements

Delete tautologies $l \lor \neg l \lor C$ Ordered Resolution Subsumption (delete redundant clauses)

C subsumes C V D

. . .

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ r \rightarrow r, \$$

unsat

Resolution: Problem

Exponential time and space

Unit Resolution

$$C \vee l, \neg l \Rightarrow C$$

$$C \vee l, \neg l \Rightarrow C$$
subsumes
$$C \vee l$$

DPLL = Unit Resolution + Split rule

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 $x \lor y$, $\neg x \lor y$, $x \lor \neg y$,

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 $x \lor y$, $\neg x \lor y$, $x \lor \neg y$,

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 y , $\neg y$, x , x , x , x , x

CDCL: Conflict Driven Clause Learning

Linear Arithmetic

Fourier-Motzkin	Simplex
Proof-finder	Model-finder
Saturation	Search

Fourier-Motzkin

$$t_1 \le ax$$
, $bx \le t_2$

$$bt_1 \le abx$$
, $abx \le at_2$

$$bt_1 \le at_2$$

Very similar to Resolution

Exponential time and space

Simplex-based procedure

$$x \ge 0$$
, $x + y \le 2$, $x + 2y > 4$

$$S_1 = x + y$$

$$S_2 = x + 2y$$

$$x \ge 0,$$

$$S_1 \le 2,$$

$$S_2 > 4$$

 s_1, s_2 are basic (dependent) x, y are non-basic

Simplex-based procedure: Pivoting

$$s_1 = x + y$$
 $s_1 = x + y$ $s_1 = s_2 - y$
 $s_2 = x + 2y$ $x = s_2 - 2y$ $x = s_2 - 2y$
 $x \ge 0$, $x \ge 0$,

Example:

$$M(x) = 1$$

$$M(y) = 1$$

$$M(s_1) = 2$$

$$M(s_2) = 3$$

Key Property:

If an assignment satisfies the equations before a pivoting step, then it will also satisfy them after!

Simplex: Repairing Models

If the assignment of a non-basic variable does not satisfy a bound, then fix it and propagate the change to all dependent variables.

$$a = c - d$$

 $b = c + d$
 $b =$

Simplex: Repairing Models

If the assignment of a basic variable does not satisfy a bound, then pivot it, fix it, and propagate the change to its new dependent variables.

$$a = c - d$$

$$b = c + d$$

$$M(a) = 0$$

$$M(b) = 0$$

$$M(c) = 0$$

$$M(d) = 0$$

$$1 \le a$$

$$c = a + d$$

$$b = a + 2d$$

$$M(a) = 0$$

$$M(b) = 0$$

$$M(c) = 0$$

$$M(d) = 0$$

$$1 \le a$$

$$c = a + d$$

$$b = a + 2d$$

$$M(a) = 1$$

$$M(b) = 1$$

$$M(c) = 1$$

$$M(d) = 0$$

Polynomial Constraints

AKA
Existential Theory of the Reals

3R

$$x^{2} - 4x + y^{2} - y + 8 < 1$$
$$xy - 2x - 2y + 4 > 1$$

- 1. Project/Saturate set of polynomials
- 2. Lift/Search: Incrementally build assignment $v: x_k \to \alpha_k$ Isolate roots of polynomials $f_i(\alpha, x)$ Select a feasible cell C, and assign x_k some $\alpha_k \in C$ If there is no feasible cell, then backtrack

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$
1. Saturate
 $x^{2} - 1$

2. Search

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
X	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x = x^{2} + y^{2} - 1$
 $x = x^{2} + 1$
 $x = x^{2} - 1$
 $x = x^{2} -$

	(-∞, -1)	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
x	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$
1. Saturate
 $x^{2} - 1$
 $x^{2} - 1$

	$\left(-\infty,-\frac{1}{2}\right)$	$-\frac{1}{2}$	$(-\frac{1}{2},\infty)$
$4 + y^2 - 1$	+	+	+
-2y - 1	+	0	-

CONFLICT

$$x \rightarrow -2$$
 2. Search

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
x	-	-	-	0	+	+	+

NLSAT: Model-Based Search

Static x Dynamic

Optimistic approach

Key ideas

Start the Search before Saturate/Project

We saturate on demand

Model guides the saturation

Experimental Results (1)

OUR NEW ENGINE

	meti-tarski	(1006)	keymaera	(421)	zankl	(166)	hong	(20)	kissin	g (45)	all (1	1658)
solver	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
nlsat	1002	343	420	5	89	234	10	170	13	95	1534	849
Mathematica	1006	7 96	420	171	50	366	9	208	6	29	1491	1572
QEPCAD	991	2616	368	1331	21	38	6	43	4	5	1390	4036
Redlog-VTS	847	28640	419	78	42	490	6	3	10	275	1324	29488
Redlog-CAD	848	21706	363	730	21	173	6	2	4	0	1242	22613
z3	266	83	379	1216	21	0	1	0	0	0	667	1299
iSAT	203	122	291	16	21	24	20	822	0	0	535	986
cvc3	150	13	361	5	12	3	0	0	0	0	523	22
MiniSmt	40	697	35	0	46	1370	0	0	18	44	139	2112

Experimental Results (2)

Other examples

Delayed
Theory Combination
[Bruttomesso et al 2006]

Model-Based
Theory Combination

Other examples

Array Theory by Axiom Instantiation

X

Lemmas on Demand For Theory of Array [Brummayer-Biere 2009]

```
\forall a, i, v: a[i \coloneqq v][i] = v

\forall a, i, j, v: i = j \lor a[i \coloneqq v][j] = a[j]
```

Other examples

(for linear arithmetic)

Fourier-Motzkin

X

Generalizing DPLL to richer logics
[McMillan et al 2009]

Conflict Resolution [Korovin et al 2009]

Saturation: successful instances

Polynomial time procedures

Gaussian Elimination

Congruence Closure

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

[Audemard et al - 2002], [Barrett et al - 2002], [de Moura et al - 2002]

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \vee p_4)$$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \vee p_4)$$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver Assignment

$$p_1, p_2, \neg p_3, p_4$$

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

$$p_1, p_2, (p_3 \vee p_4)$$

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

$$p_1, p_2, \neg p_3, p_4$$

Assignment
$$y \ge 0, y = x + 1, y \ge 0, y = x + 1, y \ge 0, y \le 1$$

Basic Idea $x \ge 0$, y = x + 1, $(y > 2 \lor y < 1)$ $p_1, p_2, (p_3 \vee p_4)$ $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$ Assignment $p_1, p_2, \neg p_3, p_4 \longrightarrow x \ge 0, y = x + 1,$ $\neg (y > 2), y < 1$

Unsatisfiable

SAT

Solver

$$x \ge 0$$
, $y = x + 1$, $y < 1$

Theory Solver

Basic Idea $x \ge 0$, y = x + 1, $(y > 2 \lor y < 1)$ $p_1, p_2, (p_3 \vee p_4)$ $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$ Assignment $x \ge 0, y = x + 1, -(y > 2), y < 1$

New Lemma $\neg p_1 \lor \neg p_2 \lor \neg p_4$

SAT

Solver

Unsatisfiable

$$x \ge 0, y = x + 1, y < 1$$

Theory Solver

SAT + Theory Solvers: refinements

Incrementality

Efficient Backtracking

Efficient Lemma Generation

Theory propagation [Ganzinger et all – 2004]

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

Propagations

Propagations

Propagations

Decisions

Model Assignments

Conflict

We can't find a value of y s.t. $4 + y^2 \le 1$

Conflict

We can't find a value of
$$y$$
 s.t. $4 + y^2 \le 1$

Learning that
$$\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$$
 is not productive

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1 \quad x^2 + y^2 \le 1 \quad x \to 2$$

$$\neg(x^2 + y^2 \le 1) \lor x \le 1$$

Learned by resolution

$$\neg(x \ge 2) \lor \neg(x^2 + y^2 \le 1)$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \rightarrow x \ge 1 \rightarrow y \ge 1$ $\neg (x^2 + y^2 \le 1)$
 $\neg (x \ge 2) \lor \neg (x^2 + y^2 \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

Every theory that admits quantifier elimination has a finite basis (given a fixed assignment order)

$$F[x_1, \dots, x_n, y_1, \dots, y_m] \qquad y_1 \to \alpha_1, \dots, y_m \to \alpha_m$$

$$\exists x_1, \dots, x_n : F[x_1, \dots, x_n, y]$$

$$C_1[y_1, \dots, y_m] \land \dots \land C_k[y_1, \dots, y_m]$$

$$\neg F[x_1, \dots, x_n, y_1, \dots, y_m] \lor C_k[y_1, \dots, y_m]$$

Every "finite" theory has a finite basis

$$F[x_1, \dots, x_n, y_1, \dots, y_m]$$
 $y_1 \to \alpha_1, \dots, y_m \to \alpha_m$

$$y_1 = \alpha_1, \dots, y_m = \alpha_m$$

Theory of uninterpreted functions has a finite basis

Theory of arrays has a finite basis [Brummayer- Biere 2009]

In both cases the Finite Basis is essentially composed of equalities between existing terms.

We can also use literals from the finite basis in decisions.

Application: simulate branch&bound for bounded linear integer arithmetic

MCSat: Termination

Propagations

Decisions

Model Assignments

Maximal Elements

|FiniteBasis|

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \rightarrow x \ge 1 \rightarrow y \ge 1 \quad \neg(x^2 + y^2 \le 1)$
 $x \ge 2 \rightarrow x \ge 1 \rightarrow y \ge 1 \quad \neg(x^2 + y^2 \le 1)$

$$x \ge 2, \qquad (\neg x \ge 1 \lor y \ge 1), \qquad (x^2 + y^2 \le 1 \lor xy > 1)$$

$$x^2 \qquad \le 1$$
Conflict
$$\neg (x \ge 2) \lor \neg (x \le 1) \qquad \neg (x^2 + y^2 \le 1) \lor x \le 1$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1)$
 $x \ge 2$, $(x^2 + y^2 \le 1)$

$$x < 1 \lor p$$
, $\neg p \lor x = 2$

 $x \rightarrow 1$

$$x < 1 \lor p, \qquad \neg p \lor x = 2$$

$$x \to 1 \qquad p$$

Conflict (evaluates to false)

New clause

$$x < 1 \lor x = 2$$

New clause

$$x < 1 \lor x = 2$$

x < 1

New clause

$$x < 1 \lor x = 2$$

MCSat: Architecture

MCSat: development

News: Z3 source code is available

http://z3.codeplex.com

Conclusion

Logic as a Service

Model-Based techniques are very promising

MCSat

http://z3.codeplex.com

http://rise4fun.com/z3py