Feuille de travaux dirigés 4 : Modélisation bayésienne

Exercice 1 (Modèle gaussien):

On considère le modèle bayésien suivant sur $\mathcal{X} = \mathbb{R}$:

$$\begin{cases} X|\theta \sim \mathcal{N}(\theta, \sigma^2) \\ \boldsymbol{\theta} \sim \mathcal{N}(\mu_0, \tau_0^2) \end{cases}$$

où σ^2 , μ_0 et τ_0^2 sont des constantes supposées connues.

- 1. Quel est l'espace des paramètres? Donnez la loi a posteriori $\pi(\theta|x)$.
- 2. On considère maintenant un échantillon i.i.d. $Y = (X_1, ..., X_n)$, où $X_i \sim X$. Quelle est le modèle pour Y? Donnez la loi a posteriori $\pi(\theta|y)$. Que se passe-t-il lorsque $n \to \infty$?

Exercice 2 (Mélange d'opinions):

Une expérience aléatoire a deux résultats possibles (succès ou échec). On note X la variable aléatoire valant 1 en cas de succès, 0 en cas d'échec. X est supposée suivre une loi de Bernoulli de paramètre θ inconnu. On considère seulement deux valeurs possibles pour θ : $\theta \in \{\theta_1 = 0.2, \theta_2 = 0.6\}$.

- 1. Écrire le modèle statistique, détailler l'espace des paramètres.
- 2. Le premier expert accorde une confiance égale en les deux possibilités pour θ . Autrement dit, son prior est $\pi_1(\theta_1) = \pi_1(\theta_2) = 0.5$. Donnez la loi a posteriori $(\pi_1(\theta_i|x=1))_{i=1,2}$ et $\pi_1(\theta_i|x=0)_{i=1,2}$.
- 3. Même question pour un deuxième expert qui croit a priori plus à la seconde alternative : son prior est $\pi_2(\theta_1) = 1/4$, $\pi_2(\theta_2) = 3/4$.
- 4. La loi predictive a posteriori (sachant l'observation X = x) est par définition, la loi sur \mathcal{X} dont la densité par rapport à la mesure de référence est donnée par

$$p(y) = \int_{\Theta} p(y|\theta)\pi(\mathrm{d}\theta|x),$$

où $\pi(\cdot|x)$ est la loi a posteriori. Quelle est cette prédictive a posteriori pour le prior π_2 , lorsque x=1?

On observe maintenant un échantillon i.i.d. $X = (X_1, \ldots, X_n)$.

- 5. Montrer que les lois a posteriori $\pi(\theta|x)$ ne dépendent que de $s = \sum_{j=1}^{n} x_j$.
- 6. On suppose que s = n/2. Écrire la loi a posteriori $\pi_2(\theta|x)$ ($x \in \{0,1\}^n, \sum_i x_i = s, \theta \in \{\theta_1, \theta_2\}$) pour l'a priori π_2 . Que se passe-t-il lorsque $n \to \infty$? Même question pour l'a priori π_1 . Plus généralement, le comportement lorsque n tend vers l'infini dépend-il de l'a priori?

Exercice 3 (Lois a posteriori):

On considère un modèle bayésien sur $\mathcal{X} = \mathbb{R}$, où la loi de X sachant $\theta \in \Theta = \mathbb{R}^+$ a pour densité $p_{\theta}(x) = 2x/\theta^2 \mathbb{1}_{[0,\theta]}(x)$.

- 1. Donnez la loi a posteriori lorsque l' a priori a pour densité $\pi(\theta) = \mathbbm{1}_{]0,1[}(\theta)$ par rapport à la mesure de Lebesgue.
- 2. Même question lorsque $\pi(\theta) = 3\theta^2 \mathbb{1}_{[0,1]}(\theta)$.
- 3. Quelle est l'espérance a posteriori $\mathbb{E}(\boldsymbol{\theta}|X=x)$ dans chaque cas?
- 4. On considère un échantillon i.i.d. $X = (X_1, ..., X_n)$. Donnez la loi a posteriori $\pi(\theta|x)$ lorsque $\pi(\theta) = \mathbb{1}_{[0,1]}(\theta)$.

Exercice 4 (modèle multinomial et a priori de Dirichlet):

On lance n fois un dé à p faces, numérotées de 1 à p. Les résultats de chaque lancer sont supposés i.i.d.. On note $Y_i (i = 1, ..., n)$ le résultat de chaque lancer, $\theta_j = \mathbb{P}(Y_1 = j)$ et X_j (j = 1, ..., p) le nombre de lancers pour lesquels on a obtenu j, c'est-à-dire

$$X_j = \sum_{i=1}^n \mathbb{1}_{\{j\}}(Y_i).$$

On note $\theta = (\theta_1, \dots \theta_p)$ le vecteur des poids : $\theta_j \ge 0$, $\sum_{j=1}^p \theta_j = 1$.

1. Donner la loi de $X=(X_1,\ldots,X_p)$ à θ fixé. Cette loi est appelée loi multinomiale $\mathcal{M}(\theta,n,p)$.

Dans ce problème, l'espace des paramètres est le simplexe $\Delta_p = \{\theta \in (\mathbb{R}^+)^p : \sum_{j=1}^p \theta_j = 1\}$. On peut prendre comme a priori une loi de Dirichlet sur le simplexe. La loi de Dirichlet de paramètres a_1, \ldots, a_p $(a_i > 1)$ est une loi à densité par rapport à $d\theta_1, \ldots, d\theta_{p-1}$ (la mesure de Lebesgue en dimension p-1), dont la densité est donnée par

$$\pi(\theta) = \operatorname{Diri}_{a_1, \dots, a_p}(\theta) := \frac{\Gamma(\sum_{j=1}^p a_j)}{\prod_j \Gamma(a_j)} \prod_{i=1}^p \theta_j^{a_j - 1}.$$

Notez que cette densité est une généralisation de la loi Bêta sur le segment [0, 1].

- 2. On prend comme a priori $\pi = \operatorname{Diri}_{(a_1,\ldots,a_p)}$. Montrer que la loi a posteriori $\pi(\theta|x)$ est encore une loi de Dirichlet dont on précisera le paramètre $(b_1,\ldots b_p)$.
- 3. On admettra que si $\theta \sim \text{Diri}(b_1, \dots, b_p)$, en notant $b = (b_1, \dots, b_p)$, $s = \sum_{1}^{p} b_j$, alors

$$\mathbb{E}(\boldsymbol{\theta}) = \frac{1}{s}b; \quad \mathbb{V}\operatorname{ar}(\boldsymbol{\theta}_j) = \frac{b_j(s-b_j)}{s^2(s+1)}.$$

En déduire l'expression de $\mathbb{E}(\boldsymbol{\theta}|x)$ et \mathbb{V} ar $(\theta_i|x)$. Que se passe-t-il lorsque $n \to \infty$ et $X = (X_1, \dots X_p)$ avec $X_j \overset{i.i.d.}{\sim} \mathcal{M}(\theta_0, n)$, où θ_0 est fixé?