Université Hassiba Benbouali de Chlef Année Universitaire : 2019-2020 Faculté des Sciences Exactes et Informatique Matière : Théorie des Opérateurs Département de Mathématiques Niveau : Master 1

Corrigé du TD 1

Exercice 1.

a) 1.i. Soit $P \in \mathbb{R}[X]$. Comme la fonction P^2 est continue et positive, (Un résultat de l'Analyse 1)

$$\langle P, P \rangle = 0 \Rightarrow \int_{0}^{1} P^{2}(x)dx = 0 \Rightarrow P^{2}(x) = 0, \ x \in [0, 1] \Rightarrow P(x) = 0, \ x \in [0, 1]$$

D'où, P(x) = 0, $x \in \mathbb{R}$, car le polynôme P admet un ensemble non dénombrable de racines dans l'intervalle [0,1], (Nombre de racines est plus grand que le degré de P). Par suite, P = 0.

2.i.
$$P = 0 \Rightarrow \langle P, P \rangle = 0$$
.

Il est facile de montrer que les autres conditions du produit scalaire sont satisfaites.

b) Pour $P(X) = -X + 2 \in \mathbb{R}[X] : \langle P, P \rangle = -2 < 0$. Ce qui montre que l'application $\langle ., . \rangle$ n'est pas un produit scalaire sur E. (La seconde condition n'est pas vérifiée)

Exercice 2.

a. Calcul direct en commençant par le côté droit.

b. (\Rightarrow) On calcule $\langle u(x), u(y) \rangle = \frac{1}{4}(\|u(x) + u(y)\|^2 - \|u(x) - u(y)\|^2)$ en utilisant la linéarité de u et le fait qu'elle est une isométrie.

(\Leftarrow) On montre que u est linéaire par le développement de $||u(x + \lambda y) - u(x) - \lambda u(y)||^2$ qui vaut 0. Donc, $u(x + \lambda y) - u(x) - \lambda u(y) = 0$. Puis, on montre l'isométrie en calculant $\langle u(x), u(x) \rangle$.

Exercice 3.

1. La trace d'une matrice carrée est par définition, la somme des éléments diagonaux de cette matrice. Exemple, si

$$A = \left(\begin{array}{cc} 1 & 2\\ -\frac{1}{2} & 5 \end{array}\right)$$

alors tr(A) = 1 + 5 = 6. Parmi ces propriétés :

a. $tr(I_n) = n$, où I_n est la matrice identité. (facile)

b. $tr(\alpha A + B) = \alpha tr(A) + tr(B)$ (facile)

c. $tr(AB) = tr(BA), A, B \in \mathcal{M}_n(\mathbb{R})$??

Preuve. Soient $A = (a_{ij})_{1 \leq i,j \leq n}, B = (b_{ij})_{1 \leq i,j \leq n}$. Alors

 $AB = C = (c_{ik})_{1 \le i,k \le n}$, avec $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$, $1 \le i,k \le n$ Donc,

$$tr(AB) = tr(C) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ji}a_{ij}$$
$$= \sum_{p=1}^{n} \sum_{q=1}^{n} b_{qp}a_{pq}$$
$$= tr(BA)$$

De plus, $\langle A, B \rangle = tr(A^t B) = \sum_{i=1}^n \sum_{j=1}^n a_{ji} b_{ji}$. Donc,

i.
$$\langle A, A \rangle = tr(A^t A) = \sum_{i=1}^n \sum_{j=1}^n a_{ji} a_{ji} = \sum_{i=1}^n \sum_{j=1}^n a_{ji}^2 \ge 0.$$

ii. Si A=0, il est clair que $\langle A,A\rangle=0$, et

si $\langle A, A \rangle = 0$, alors $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji}^{2} = 0$. Donc, $a_{ji}^{2} = 0, 1 \le i, j \le n$. D'où, $a_{ji} = 0, 1 \le i, j \le n$. Ce qui montre que A = 0.

Les autres conditions sont faciles à vérifier.

2. On a par l'inégalité de Cauchy-Schwartz

$$||AB||^{2} = \langle AB, AB \rangle = \langle C, C \rangle = tr(C^{t}C) = \sum_{i=1}^{n} \sum_{k=1}^{n} c_{ki}^{2} = \sum_{i=1}^{n} \sum_{k=1}^{n} (\sum_{j=1}^{n} a_{kj}b_{ji})^{2}$$

$$\leq \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} a_{kj}^{2} \sum_{j=1}^{n} b_{ji}^{2}$$

$$\leq \sum_{i=1}^{n} \sum_{k=1}^{n} a_{kj}^{2} \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji}^{2}$$

$$\leq \langle A, A \rangle \langle B, B \rangle$$

$$\leq ||A||^{2} ||B||^{2}$$

3. Par récurrence sur p, et en utilisant la question (2).

Exercice 4.

a. Rappelons d'abord, que si $P \in \mathbb{R}[X]$, alors $\deg P = \infty$, et si $P \in \mathbb{R}_n[X]$, alors $\deg P \leq n$. On vérifie facilement que $\langle ., . \rangle$ définit un prod. scal. sur $\mathbb{R}[X]$ et sur $\mathbb{R}_n[X]$.

b. $(\mathbb{R}_n[X], \langle .,. \rangle)$ est un espace pré-Hilbertien. Comme $\dim \mathbb{R}_n[X] = n+1 < +\infty$, $(\mathbb{R}_n[X], \langle .,. \rangle)$ est donc un espace de Hilbert.

c.1. On montre que $\lim_{n\to+\infty}\|P_n-\exp\|_{\infty}=0$, i.e., $\lim_{n\to+\infty}\sup_{0\leq x\leq 1}|P_n(x)-\exp(x)|=0$. et on utilise le développement limité à l'ordre n, de la fonction exp au voisinage de 0 qui est également

 $P_n(x)$, avec reste de Lagrange. Il existe donc c[0,1] tel que

$$||P_n - \exp||_{\infty} = \sup_{0 \le x \le 1} \left| \frac{\exp^{(n+1)}(c)}{(n+1)!} \right| = \sup_{0 \le x \le 1} \left| \frac{\exp(c)}{(n+1)!} \right| \le \sup_{0 \le x \le 1} \left| \frac{1}{(n+1)!} \right| \to 0, \ (n \to +\infty)$$

Par conséquent, $\lim_{n\to+\infty} ||P_n - \exp||_{\infty} = 0$.

c.2. On remarque que la norme associée au produit scalaire est la norme $\|.\|_2$. De plus, on sait que $\|.\|_2 \le \sqrt{b-a} \|.\|_{\infty} = \|.\|_{\infty}$, (b-a=1-0=1) Donc,

$$||P_n - \exp||_2 \le ||P_n - \exp||_{\infty} \to 0, \ (n \to +\infty)$$

d'après la question (c.1). D'où, $\lim_{n\to+\infty} ||P_n - \exp||_2 = 0$.

3. La suite $(P_n)_n$ est convergente pour la norme $\|.\|_2$ associée au produit scalaire vers la fonction exp. Elle est donc de Cauchy dans $(\mathbb{R}[X], \langle ., . \rangle)$. Or, la fonction exp $\notin \mathbb{R}[X]$???? Par conséquent, $(\mathbb{R}[X], \langle ., . \rangle)$ n'est pas complet. Il n'est donc pas un espace de Hilbert.