

FUNDAMENTALS OF INFORMATION SCIENCE:

PART 3: NETWORKS

Shandong University 2025 Spring

Lecture 3.1: Communication Networks

Circuit vs. Packet Switching

Circuit switching	Packet Switching
Guaranteed rate	No guarantees (best effort)
Link capacity wasted if data is bursty	More efficient
Before sending data establishes a path	Send data immediately
All data in a single flow follow one path	Different packets might follow different paths
No reordering; constant delay; no dropped packets	Packets may be reordered, delayed, or dropped

Sharing a common medium (MAC protocols)
How to find paths between any two end points? (Routing)
How to communicate information reliably? (Transport)

Shared Communication Channels

- Basic idea in its simplest form: avoid collisions between transmitters collision occurs if transmissions are concurrent
- Wanted: a communications protocol ("rules of engagement") that ensures "good performance"
- Nodes may all hear each other perfectly, or not at all, or partially

TDMA for GSM Phones

The Aloha Protocol

Satellite clip art is in the public domain.

Aloha in Pictures: Collisions

Collisions! Packet is 5 slots long in this picture

- A collision occurs when multiple transmissions overlap in time (even partially)
- Throughput = Uncollided packets per second
- Utilization = Throughput / Channel Rate

Lecture 3.3: Forwarding, Routing

The problem: Distributed Methods for Finding Paths In Networks

- Addressing (how to name nodes?)
 - Unique identifier for global addressing
 - Link name for neighbors
- Forwarding (how does a switch process a packet?)
- Routing (building and updating data structures to ensure that forwarding works)
- Functions of the network layer

Forwarding

- Core function is conceptually simple
 - lookup(dst_addr) in routing table returns route (i.e., outgoing link) for packet
 - enqueue(packet, link_queue)
 - send(packet) along outgoing link
- And do some bookkeeping before enqueue
 - Decrement hop limit (TTL); if 0, discard packet
 - Recalculate checksum (in IP, header checksum)

Shortest Path Routing

- Each node wants to find the path with minimum total cost to other nodes
 - We use the term "shortest path" even though we're interested in min cost (and not min #hops)
- Several possible distributed approaches
 - Vector protocols, esp. distance vector (DV)
 - Link-state protocols (LS)

Routing Table Structure

Destination	Link (next-hop)	Cost		
A ROU	TE L1	18		
В	'Self'	0		
С	L1	11		
D	L2	4		
E ROU	TE L1	16		

Distributed Routing: A Common Plan

- Determining live neighbors
 - Common to both DV and LS protocols
 - HELLO protocol (periodic)
 - Send HELLO packet to each neighbor to let them know who's at the end of their outgoing links
 - Use received HELLO packets to build a list of neighbors containing an information tuple for each link: (timestamp, neighbor addr, link)
 - Repeat periodically. Don't hear anything for a while → link is down, so remove from neighbor list.
- Advertisement step (periodic)
 - Send some information to all neighbors
 - Used to determine connectivity & costs to reachable nodes
- Integration step
 - Compute routing table using info from advertisements
 - Dealing with stale data

Distance-Vector Routing

- DV advertisement
 - Send info from routing table entries: (dest, cost)
 - Initially just (self,0)
- DV integration step [Bellman-Ford]
 - For each (dest,cost) entry in neighbor's advertisement
 - Account for cost to reach neighbor: (dest,my_cost)
 - my_cost = cost_in_advertisement + link_cost
 - Are we currently sending packets for dest to this neighbor?
 - See if link matches what we have in routing table
 - If so, update cost in routing table to be my_cost
 - Otherwise, is my_cost smaller than existing route?
 - If so, neighbor is offering a better deal! Use it...
 - update routing table so that packets for dest are sent to this neighbor

DV Example: Round 2

```
\{'A': (L0,19), \{'B': (L0,4), \}\}
                                        'B': (None, 0), 'C': (L1, 15),
                                        'C': (L1,11), 'D': (None,0),
                                                           'E': (L2,13)
                                        'D': (L2,4)
                                         19
                                   LO
                                                                    13
                                              11
                {'A': (None,0),
                 'B': (L0,19),
                 'C': (L1,7)
                                              L1
                                                                    L1
                }
                                                        5
                                       \{'A': (L0,7), \{'C': (L0,5), \}
Node A: update routes to B_C, D_C, E_C
                                       'B': (L1,11), 'D': (L1,13),
Node B: update routes to A_C, E_C
                                       'C': (None,0), 'E': (None,0)
Node C: no updates
                                       'D': (L2,15),
Node D: update routes to A<sub>C</sub>
                                        'E': (L3,5)
Node E: update routes to A<sub>C</sub>, B<sub>C</sub>
```

DV Example: Round 3

```
\{'A': (L1,18), \{'A': (L1,22), \}
                     'B': (None, 0), 'B': (L0, 4),
                     'C': (L1,11), 'C': (L1,15),
                     'D': (L2,4),
                                      'D': (None, 0),
                     'E': (L1,16)
                                       'E': (L2,13)
                      19
                                              L2
                                   15
                          11
                                             13
{'A': (None, 0),
 'B': (L1,18),
                          L1
 'C': (L1,7),
                                              L1
'D': (L1,22),
 'E': (L1,12)
                    \{'A': (L0,7), \{'A': (L0,12), \}
                     'B': (L1,11), 'B': (L0,16),
                     'C': (None, 0), 'C': (L0,5),
                     'D': (L2,15),
                                    'D': (L1,13),
                     'E': (L3,5)
                                       'E': (None, 0)
                                      }
```

```
Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates
```

DV Example: Breaking a Link

```
'B': (None, 0), 'B': (L0, 4),
                   'C': (L1,11), 'C': (L1,15),
                    'D': (L2,4), 'D': (None,0),
                                    'E': (L2,13)
                LO
{'A': (None, 0),
 'B': (L1,18),
 'C': (L1,7),
                         L1
 'D': (L1,22),
 'E': (L1,12)
                   \{'A': (L0,7), \{'A': (L0,12), \}
                    'B': (L1,11), 'B': (L0,16),
                    'C': (None,0), 'C': (L0,5),
```

'E': (L3,5)

 $\{'A': (L1,18), \{'A': (L1,22), \}$

'D': (L2,15), 'D': (L1,13),

'E': (None,0)

When link breaks: eliminate routes

that use that link.

DV Example: Round 4

```
\{'A': (None, \infty), \{'A': (L1, 22), \}
                                         'B': (None, 0), 'B': (L0, 4),
                                         'C': (None,∞), 'C': (L1,15),
                                         'D': (L2,4), 'D': (None,0),
                                                             'E': (L2,13)
                                          'E': (None,\infty)
                                          19
                                    LO
                                                                      13
                {'A': (None, 0),
                  'B': (L1,18),
                                                L1
                  'C': (L1,7),
                  'D': (L1,22),
                                                          5
                  'E': (L1,12)
                                        \{'A': (L0,7), \{'A': (L0,12), \}
Node A: update cost to B<sub>C</sub>
                                         'B': (None,∞), 'B': (L0,16),
Node B: update routes to A<sub>A</sub>, C<sub>D</sub>, E<sub>D</sub>
                                         'C': (None,0), 'C': (L0,5),
Node C: update routes to B<sub>D</sub>
                                         'D': (L2,15), 'D': (L1,13),
Node D: no updates
                                                             'E': (None,0)
                                         'E': (L3,5)
Node E: update routes to B<sub>D</sub>
                                                              }
```

DV Example: Round 5

```
Update cost

{'A': (None,0),

'B': (L1, ∞),

'C': (L1,7),

'D': (L1,22),

'E': (L1,12)
}
```

```
Node A: update route to B<sub>B</sub>
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates
```

```
\{'A': (L0,19), \{'A': (L1,22), \}
    'B': (None, 0), 'B': (L0, 4),
    'C': (L2,19), 'C': (L1,15),
    'D': (L2,4),
                     'D': (None,0),
    'E': (L2,17)
                      'E': (L2,13)
   }
     19
         L1
LO
                  15
                             13
         L1
                             L1
                   5
   \{'A': (L0,7),
                     \{'A': (L0,12),
    'B': (L2,19), 'B': (L1,17),
    'C': (None, 0), 'C': (L0,5),
    'D': (L2,15),
                      'D': (L1,13),
    'E': (L3,5)
                     'E': (None,0)
   }
```

DV Example: Final State

```
\{'A': (L0,19), \{'A': (L1,22), \}\}
                                    'B': (None, 0), 'B': (L0, 4),
                                    'C': (L2,19), 'C': (L1,15),
                                    'D': (L2,4), 'D': (None,0),
                                    'E': (L2,17)
                                                      'E': (L2,13)
                                                  4 }
                                     19
                                                             L2
                               LO
                                                  15
                                                             13
              {'A': (None, 0),
               'B': (L0,19),
                                         L1
               'C': (L1,7),
                                                             L1
               'D': (L1,22),
                                        LO
                                                   5
                                              L3
               'E': (L1,12)
                                   \{'A': (L0,7), \{'A': (L0,12), \}
Node A: no updates
                                    'B': (L2,19),
                                                  'B': (L1,17),
Node B: no updates
                                    'C': (None, 0), 'C': (L0,5),
Node C: no updates
                                                  'D': (L1,13),
                                    'D': (L2,15),
Node D: no updates
                                    'E': (L3,5)
                                                      'E': (None,0)
Node E: no updates
                                   }
```

Correctness and Performance

- Optimal substructure property fundamental to correctness of both Bellman-Ford and Dijkstra's shortest path algorithms
 - Suppose shortest path from X to Y goes through Z.
 Then, the sub-path from X to Z must be a shortest path.
- Proof of Bellman-Ford via induction on number of walks on shortest (min-cost) paths
 - Easy when all costs > 0 and synchronous model (see notes)
 - Harder with distributed async model
- How long does it take for distance-vector routing protocol to converge?
 - Time proportional to largest number of hops considering all the min-cost paths

Link-State Routing

- Advertisement step
 - Send information about its <u>links</u> to its neighbors (aka **link** state advertisement or LSA):

```
[seq#, [(nbhr1, linkcost1), (nbhr2, linkcost2), ...]
```

- Do it periodically (liveness, recover from lost LSAs)
- Integration
 - If seq# in incoming LSA > seq# in saved LSA for source node: update LSA for node with new seq#, neighbor list rebroadcast LSA to neighbors (→ flooding)
 - Remove saved LSAs if seq# is too far out-of-date
 - Result: Each node discovers current map of the network
- Build routing table
 - Periodically each node runs the same shortest path algorithm over its map (e.g., Dijkstra's alg)
 - If each node implements computation correctly and each node has the same map, then routing tables will be correct

LSA Flooding

LSA: [F, seq, (G, 8), (C, 2)]

- Periodically originate LSA
- LSA travels each link in each direction
 - Don't bother with figuring out which link LSA came from
- Termination: each node rebroadcasts LSA exactly once
 - Use sequence number to determine if new, save latest seq
- Multiple opportunities for each node to hear any given LSA
 - Time required: number of links to cross network

Integration Step: Dijkstra's Algorithm

Suppose we want to find paths from A to other nodes

Dijkstra's Shortest Path Algorithm

- Initially
 - nodeset = [all nodes] = set of nodes we haven't processed
 - spcost = $\{me:0, all other nodes: ∞\}$ # shortest path cost
 - routes = {me:--, all other nodes: ?} # routing table
- while nodeset isn't empty:
 - find u, the node in nodeset with smallest spcost
 - remove u from nodeset
 - for v in [u's neighbors]:
 - d = spcost(u) + cost(u,v) # distance to v via u
 - if d < spcost(v): # we found a shorter path!
 - $-\operatorname{spcost}[v] = d$
 - routes[v] = routes[u] (or if u == me, enter link from me to v)
- Complexity: N = number of nodes, L = number of links
 - Finding u (N times): linear search=O(N), using heapq=O(log N)
 - Updating spcost: O(L) since each link appears twice in neighbors

Another Example

Finding shortest paths from A:

LSAs:

```
A: [(B,19), (C, 7)]
B: [(A,19), (C,11), (D, 4)]
C: [(A, 7), (B,11), (D,15), (E, 5)]
D: [(B, 4), (C,15), (E,13)]
```

E: [(C, 5), (D,13)]

Step u	Nederst	spcost			route							
	u	ı Nodeset	A	В	C	D	E	A	В	C	D	E
0		[A,B,C,D,E]	0	8	8	∞	∞	1	?•	?.	?	?
1	A	[B,C,D,E]	0	19	7	∞	∞	I	LO	L1	?	?
2	С	[B,D,E]	0	18	7	22	12	1	L1	L1	L1	L1
3	E	[B,D]	0	18	7	22	12	1	L1	L1	L1	L1
4	В	[D]	0	18	7	22	12	1	L1	L1	L1	L1
5	D	[]	0	18	7	22	12		L1	L1	L1	L1

Failures

- Problems:Links and switches could fail
 - Advertisements could get lost
 - Routing loop
 - A sequence of nodes on forwarding path that has a cycle (so packets will never reach destination)
 - Dead-end: route does not actually reach destination
 - Loops and dead-ends lead to routes not being valid
- Solution
 - HELLO protocol to detect neighbor liveness
 - Periodic advertisements from nodes
 - Periodic integration at nodes
 - Leads to eventual convergence to correct state

Routing Loop in Link-State Protocol

A's LSA to B is lost.

A now uses B to get to D.

But B continues to use A.

Routing loop!

Must wait for eventual arrival of correct LSAs to fix loop.

Distance-Vector: Pros, Cons, and Loops

- + Simple protocol
- + Works well for small networks
- Works only on small networks

But what if A had advertised to B <u>before</u> B advertised to A?

Suppose link AC fails.

When A discovers failure, it sends E: cost = INFINITY to B.

B advertises E: cost=2 to A A sets E: cost=3 in its table

Now suppose link BD fails.

B discovers it, then sets

E: cost = INFINITY.

Sends info to A, A sets

E: cost = INFINITY.

Fixing "Count to Infinity" with Path Vector Routing

- In addition to (or instead of) reporting costs, advertise the *path* discovered incrementally by the Bellman-Ford update rule
- Called "path-vector"
- Modify Bellman-Ford update with new rule: a node should ignore any advertised route that contains itself in the advertisement

Path Vector Routing

- For each advertisement, run "integration step"
 - E.g., pick shortest, cheapest, quickest, etc.
- Ignore advertisements with own address in path vector
 - Avoids routing loops that "count to infinity"

Summary

- The network layer implements the "glue" that achieves connectivity
 - Does addressing, forwarding, and routing
- Forwarding entails a routing table lookup; the table is built using routing protocol
- DV protocol: distributes route computation; each node advertises its best routes to neighbors
 - Path-vector: include path, not just cost, in advertisement to avoid "count-to-infinity"
- LS protocol: distributes (floods) neighbor information; centralizes route computation using shortest-path algorithm