Методы оптимизации. Семинар 9. Двойственность.

Александр Катруца

Московский физико-технический институт

27 октября 2020 г.

Напоминание

- ▶ Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств

Обозначения Задача

$$\min f(\mathbf{x}) = p^*$$
s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

$$h_j(\mathbf{x}) \le 0, \ j = 1, \dots, p$$

Лагранжиан

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \mu_j h_j(\mathbf{x})$$

Двойственные переменные

Вектора μ и λ называются двойственными переменными.

Двойственная функция

Функция $g(\boldsymbol{\mu}, \boldsymbol{\lambda}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ называется двойственной функцией Лагранжа.

Свойства двойственной функции

Вогнутость

Двойственная функция является вогнутой как инфимум аффинных функций по (μ, λ) вне зависимости от того, является ли исходная задача выпуклой.

Нижняя граница

Для любого $\pmb{\lambda}$ и для $\pmb{\mu} \geq 0$ выполнено $g(\pmb{\mu}, \pmb{\lambda}) \leq p^*.$

Двойственная задача

$$\max g(\boldsymbol{\mu}, \boldsymbol{\lambda}) = d^*$$
 s.t. $\boldsymbol{\mu} \geq 0$

Зачем?

- Двойственная задача выпукла независимо от того, выпукла ли прямая
- Нижняя оценка может достигаться

Связь с сопряжённой функцией

Рассмотрим задачу

$$\min f_0(\mathbf{x})$$

s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 $\mathbf{C}\mathbf{x} = \mathbf{d}$

Тогда

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x}} (f_0(\mathbf{x}) + \boldsymbol{\lambda}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \boldsymbol{\mu}^{\top} (\mathbf{C}\mathbf{x} - \mathbf{d})) =$$

$$- \mathbf{b}^{\top} \boldsymbol{\lambda} - \boldsymbol{\mu}^{\top} \mathbf{d} + \inf_{\mathbf{x}} (f_0(\mathbf{x}) + (\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{C}^{\top} \boldsymbol{\mu})^{\top} \mathbf{x}) =$$

$$- \mathbf{b}^{\top} \boldsymbol{\lambda} - \boldsymbol{\mu}^{\top} \mathbf{d} - f_0^* (-\mathbf{A}^{\top} \boldsymbol{\lambda} - \mathbf{C}^{\top} \boldsymbol{\mu})$$

Области определений двойственной и сопряжённой функций связаны:

$$\mathsf{dom}\ g = \{(\boldsymbol{\lambda}, \boldsymbol{\mu}) \mid -\mathbf{A}^{\top} \boldsymbol{\lambda} - \mathbf{C}^{\top} \boldsymbol{\mu} \in \mathsf{dom}\ f_0^*\}$$

Примеры

Найти двойственную функцию:

▶ Решение СЛУ минимальной нормы

$$\min \|\mathbf{x}\|_2^2$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

Линейное программирование

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0$

Задача разбиения

$$\begin{aligned} &\min \mathbf{x}^{\top} \mathbf{W} \mathbf{x} \\ \text{s.t. } x_i^2 = 1, \ i = 1, \dots, n \end{aligned}$$

Слабая и сильная двойственность

Определение

Оптимальные значения целевой функции в прямой и двойственной задаче связаны соотношением

$$d^* \le p^*.$$

Если $d^* < p^*$, то свойство называют слабой двойственностью. Если $d^* = p^*$, то — сильной двойственностью.

Замечание

Слабая двойственность есть всегда по построению двойственной задачи.

Вопросы

- При каких условиях выполняется сильная двойственность?
- Как использовать двойственность для проверки оптимальности?

Критерий субоптимальности

По построению $p^* \geq g(\pmb{\lambda}, \pmb{\mu})$, поэтому

$$f_0(\mathbf{x}) - p^* \le f_0(\mathbf{x}) - g(\lambda, \boldsymbol{\mu}) = \varepsilon.$$

Определение

Разность $f_0(\mathbf{x})-g(\pmb{\lambda},\pmb{\mu})$ называется *двойственным* зазором и является оценкой сверху для разности текущего и оптимального значения функции.

Способы использования:

- критерий остановки в итерационном процессе
- теоретическая оценка сходимости алгоритма
- проверка оптимальности данной точки

Условия Слейтера

Теорема

Если задача выпуклая и существует \mathbf{x} , лежащий внутри допустимой области, т.е. ограничения типа неравенств выполнены как строгие неравенства, то выполнено свойство сильной двойственности.

- ▶ Решение СЛАУ наименьшей нормы
- Линейное программирование
- Квадратичное программирование с квадратичными огранчиениями

Геометрическая интерпретация

$$\min_{x} f_0(x)$$
, где $f_1(x) \leq 0$.

$$g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u) \qquad \mathcal{G} = \{ (f_1(x), f_0(x)) \}$$

Условия дополняющей нежёсткости

Пусть \mathbf{x}^* и $(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ решения прямой и двойственной задачи. То есть

$$f(\mathbf{x}^*) = g(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \le$$
$$f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*) \le$$
$$f(\mathbf{x}^*), \qquad \boldsymbol{\mu} \ge 0$$

Условия дополняющей нежёсткости

$$\mu_i^* h_j(\mathbf{x}^*) = 0, \qquad j = 1, \dots, p$$

Для каждого неравенства

- либо множитель Лагранжа равен нулю
- либо оно активно.

Условия Каруша-Куна-Таккера

Из прошлого семинара известны необходимые условия ККТ:

- 1. $g_i(\mathbf{x}^*) = 0$ допустимость в прямой задаче
- 2. $h_j({f x}^*) \leq 0$ допустимость в прямой задаче
- 3. $\mu_j^* \geq 0$ допустимость в двойственной задаче
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$ условие дополняющей нежёсткости
- 5. $L_{\mathbf{x}}'(\mathbf{x}^*, \pmb{\lambda}^*, \pmb{\mu}^*) = 0$ стационарность лагранжиана по прямым переменным

Пример $(\mathbf{P} \in \mathbf{S}^n_+)$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r$$
st $\mathbf{A} \mathbf{x} = \mathbf{b}$

Примеры

ightharpoonup Отрицательная энтропия при линейных ограничениях

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1} x_i \log x_i$$
 s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

$$\mathbf{1}^{\mathsf{T}}\mathbf{x} = 1$$

 Сформулировать двойственную задачу и по её решению найти решение прямой задачи:

$$\min \frac{1}{2}x^2 + 2y^2 + \frac{1}{2}z^2 + x + y + 2z$$
 s.t. $x + 2y + z = 4$

 Релаксация Лагранжа для задачи бинарного линейного программирования:

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} &\leq \mathbf{b} \\ x_i &\in \{0, 1\}, \quad i = 1, \dots, n \end{aligned}$$

Главное

- Двойственая задача: что это такое и зачем она нужна?
- ▶ Сильная и слабая двойственность
- Условие Слейтера
- Геометрическая интерпретация
- Связь с сопряжённой функцией