oefening 81

Wietse Vaes

Beschouw de volgende verzameling

$$D = \left\{ f \in \mathcal{C}([0,1],\mathbb{R}) | f\left(\frac{1}{2}\right) = 0 \text{ en } f \text{ is afleidbaar in } \frac{1}{2} \right\}$$

1. Toon aan dat D een deelvectorruimte is van $\mathcal{C}([0,1],\mathbb{R})$ Zij $f,g\in D$ en $\lambda\in\mathbb{R}$, dan is $f,g\in\mathcal{C}([0,1],\mathbb{R})$ dus $f+g\in\mathcal{C}([0,1],\mathbb{R})$ en λf ook. Nu is $(f+g)(\frac{1}{2})=f(\frac{1}{2})+g(\frac{1}{2})=0$ deze voorwaarde wordt dus voldaan. Ook is (f+g)'(x)=f'(x)+g'(x) en omdat ze beide afleidbaar zijn in $\frac{1}{2}$, is f+g afleidbaar in $\frac{1}{2}$. Uiteraard geldt ook: $\lambda f(\frac{1}{2})=0$ en is λf afleidbaar in $\frac{1}{2}$. Nu is $f+g\in D$ en $\lambda f\in D$, dus D is dus een deelvectorruimte van $\mathcal{C}([0,1],\mathbb{R})$.

2.

$$T:D \to \mathbb{R}: f \mapsto f'\left(\frac{1}{2}\right)$$

is lineair, maar niet continu, wanneer we D uitrusten met de supremum norm.

Lineair: Zij $f, g \in D$ en $\lambda, \mu \in \mathbb{R}$. Dan is: $T(\lambda f + \mu g) = (\lambda f + \mu g)'(\frac{1}{2}) = \lambda f'(\frac{1}{2}) + \mu g'(\frac{1}{2}) = \lambda T(f) + \mu T(g)$

Niet continu: Uit stelling 2.10 volgt dat T continu is als en slechts als $\{||Tf|| : ||f||_{\infty} \le 1\}$ begrensd is (want T is lineair). Maar neem nu een rij functies $(f_n)_{n\in\mathbb{N}}$ met

$$f_n(x) := \begin{cases} -1 & x \in]-\infty, \frac{1}{2} - \frac{1}{n}] \\ n(x - \frac{1}{2} + \frac{1}{n}) - 1 & x \in]\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}[\\ 1 & x \in [\frac{1}{2} + \frac{1}{n}, \infty[\end{cases}$$

het is duidelijk dat $(f_n)_{n\in\mathbb{N}}\subset D$ en dat $||f_n||_{\infty}=1$ voor alle n. Echter als n stijgt, stijgt de afgeleide van f_n in $\frac{1}{2}$. Hier is geen grens. Nu zal de norm ervan ook geen grens aannemen, en dus is T niet continu.

3. Concludeer dat D en bijgevolg $\mathcal{C}([0,1],\mathbb{R})$ geen eindig dimensionale vectorruimten zijn. Volgens stelling 2.25: als \mathbb{R} een genormeerde ruimte, en D een eindig-dimensionale genormeerde ruimte. Dan is elke lineaire afbeelding $T:D\to\mathbb{R}$ continu. We weten nu dat de lineaire afbeelding niet continu is, en \mathbb{R} is wel degelijk een genormeerde ruimte. Hieruit besluiten we dat D niet eindig-dimensionaal is. Dus is $\mathcal{C}([0,1],\mathbb{R})$ ook niet eindig-dimensionaal want $D\subset\mathcal{C}([0,1],\mathbb{R})$.