エッジと円の距離最小化

2019.11.29 谷

エッジと円の距離最小化

- ・ 円周を分割(今回は12~16等 分)
- 各点ごとにエッジまでの縦距 離、横距離を足し上げ (E = Ti+Li)
- 画像をぼかしてからエッジ化することで、エッジを滑らかに
- 角度 0、 π ではLiのみ、角度 $\pi/2$, $3\pi/2$ ではTiのみ足す
- 円の中心を1ずつずらして E が 最小になるところを探す。

正常な穴の例

- 上段:ハフサークルでの検出(緑) (黄色はエッジ)
- ・ 下段:滑らかなエッジ(黄色)、最 小化後(緑、ピンク)
- 正常な穴に対しては補正ができている

Hough Circles

異常な穴の例

Hough Circles

Hough Circles

半径は正常な穴 の大きさで固定

Hough Circles

225

250

275

300

300

350

400

400

225

250

275 -

300

適切なthresholdの値でのエッジ化ができていないと、満足な結果は得られないthr = 100(表面の~30%?)ではエッジの形状は円になるが、正常な穴の半径に比べて大きすぎ

異常な穴の例(thr = 80)

最小化の手順で 穴の大きさ可変

Hough Circles

最小値を探すところで、穴の大き さも変えながら試してみた。 いずれにせよthreshold の決定が 最重要課題でしょうか。