Exploring Features of Unitary Matrices in Kashin Representation Quantization

Зайнуллин Амир, Чирков Георгий, Богданов Азат, Черняков Севастьян, Нистюк Алексей

Проект по методам оптимизации. МФТИ

Вступление

Проект основан на статье, в которой предлагается новый итерационный метод квантизации, основанный на представлении Кашина. В этом разложении один из основных объектов - ортогональная матрица. Мы проверим, какие способы получения ортогональной матрицы дают наискорейшую сходимость, исследуем сходимость метода от различной начальной инициализации и дадим теоретическое обоснование. Данный проект поможет в разработке более надежных методов сжатия LLM.

Переопределенный базис и представление Кашина

Введем переопределенный базис размера m=2n, где первые n элементов из стандартного ОНБ базиса, а вторые n - столбцы некоторой ортогональной матрицы Q. Пусть $B=\begin{bmatrix}I&Q\end{bmatrix}$

$$x=u+Qv$$
 ИЛИ $x=\sum_{i=1}^N a_i b_i$

Пусть имеется набор векторов $b_1, \dots, b_N \in \mathbb{R}^n$. Мы называем представление вектора $x \in \mathbb{R}^n$ представлением Кашина уровня c, если

$$x = \sum_{i=1}^{N} a_i b_i$$
 \mathbf{v} $\max_{i=1,...,N} |a_i| \le \frac{c}{\sqrt{N}} ||x||_2$

- Имеем вектор x с большим разбросом значений. Мы хотим преобразовать этот вектор в новый с меньшим разбросом. Получим два вектора u и v. Для этого существует жадный алгоритм.
- Оказывается, при некоторых обстоятельствах, элементы векторов u и v будут концентрироваться у нескольких пиков.

Алгоритм

Псевдокод алгоритма Vector Decomposition Kashin Algorithm:

Input: Vector $x \in \mathbb{R}^n$, Orthogonal matrix Q, Tolerance $\varepsilon > 0$ **Output:** Vectors $u, \hat{v} \in \mathbb{R}^n$ such that $x \approx u + \hat{v} = u + Qv$, and both u and v have small infinity norm.

Initialize: $u \leftarrow 0^n, \hat{v} \leftarrow 0^n$ and Define projection: $\pi_x(y) \frac{x^\top y}{\|y\|_2^2} \cdot y$

while
$$\|x-u-\hat{v}\| \geq \varepsilon$$
 do if $\|x\|_1 > \|Q^Tx\|_1$ then $\pi \leftarrow \pi_x(\operatorname{Sign}(x))$ $u \leftarrow u + \pi$ else $\pi \leftarrow \pi_x(Q\operatorname{Sign}(Q^Tx))$ $\hat{v} \leftarrow \hat{v} + \pi$ end if $x \leftarrow x - \pi$ end while Return: x, u, \hat{v}

Теорема Кашина

Theorem 1 Для $\forall x \in B_2^N = \{x \in \mathbb{R}^N : \|x\|_2 \le 1\}$ жадный алгоритм за k шагов строит вектора u_k и v_k , такие что

$$||x - u_k - v_k||_2 \le \eta^k$$

$$||u_k||_{\infty} \le \frac{c}{\sqrt{N}}, \quad ||Qv_k||_{\infty} \le \frac{c}{\sqrt{N}}$$

где c>0 это константа. Для нашего алгоритма неравенство сходимости

$$||x - \hat{x}||^2 \le 1 - \frac{1}{n} \left(\max(||x||_1, ||Q^T x||_1) \right)^2$$
 (1)

Генерация разных распределений компонент вектора X

Равномерное распределение

Нормальное распределение

Распределение Стьюдента с двумя степенями свободы

- Как и было сказано, для неравномерных распределений наблюдается концентрирование у четырех пиков. Их количество зависит от размерности матрицы.
- Распределение с равномерным распределением (распределение с экстремально тяжелым хвостом) значений по компонентам дает зашумление по базису U
- Распределение с ярко выраженным пиком (Стьюдент) дает зашумление по базису ${\cal V}$
- На худшее уменьшение невязки влияет меньшая повернутость гиперкуба, повернутого матрицей, относительно обычного гиперкуба

Работа c outliers

Outliers - элементы матрицы, превышающие по абсолютному значению 99%(в нашем случае) остальных элементов матрицы (шумы). Исследуем, как влияет на кластеризацию удаление или зануление таких элементов.

Левый график, который демонстрирует применение алгоритма в случае заполнения нулями компоненты outliers, отражает ухудшение квантизации. Тогда как правый график показывает состоятельность подхода зачистки outliers.

Тест разных ортогональных матриц

В качестве метрики релевантности используется поперечник Колмогорова - нахождение входа, на котором происходит наихудшее уменьшение за итерацию (1). Нами дополнительно

Q	$\min_{\ x\ _2=1} \max\{\ x\ _1, \ Q^T x\ _1\}$
Random	0.548
Householder	0.076
DCT	0.330
Monarch	0.686
Toeplitz	0.612

рассмотрены матрицы Теплица и Монарх, обе из которых крайне перспективны. Более тщательный анализ на слое модели показывает, что Монарх не так хорош, но вот матрица Теплица действительно может быть использована.

Выводы

Наглядно продемонстрированы влияния экстремальных случаев распределения компонент входного вектора на квантизацию по базисам U и V. Также выбран корректный подход работы с outliers. Исследованы новые ортогональные матрицы: Монарха и Теплица, и показано, что вторая матрица может давать улучшения в работе относительно случайной матрицы подходе, используемом на данном этапе при квантизации.