Indian Institute of Technology Kharagpur Department of Mathematics MA11004 - Linear Algebra, Numeircal and Complex Analysis

Problem Sheet - 3 Spring 2021

1. Prove the following statements:

- (a) If λ is an eigenvalue of a non-singular matrix A, then $\frac{|A|}{\lambda}$ is an eigenvalue of adj A, where |A| denotes the determinant of the matrix A.
- (b) If A and B are two invertible matrices, then AB and BA have same characteristic roots.
- (c) If λ is an eigenvalue of algebraic multiplicity r of A, then 0 is an eigenvalue of algebraic multiplicity r of the matrix $A \lambda I_n$.
- 2. Find all the eigenvalues and the corresponding eigenvectors of the following matrices:

$$(a) \ \begin{pmatrix} -5 & 2 \\ 2 & -2 \end{pmatrix} \ (b) \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ (c) \ \begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix} \ (d) \ \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- 3. Let $A=\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. Use Cayley-Hamilton theorem to express $2A^5-3A^4+A^2-5I$ as a linear polynomial in A.
- 4. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Show that for every integer $(n \ge 3)$ $A^n = A^{n-2} + A^2 I$. Hence evaluate A^{50} .
- Let $A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$. If $A = P^{-1}DP$, then find the diagonal matrix D.
 - 6. Let $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$. Find a diagonal matrix D and an invertible matrix P such that $A = P^{-1}DP$.
- 7. Find two different 2×2 matrices A and B such that both have the same eigenvalues $\lambda_1 = \lambda_2 = 2$ and both have the same eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ corresponding to 2.
 - 8. (a) Show that the matrix $A = \begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix}$ is skew-Hermitian.
 - (b) Diagonalize the matrix $A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$ and compute A^{2020} .

- 9. Let a+b=c+d. Show that $\begin{pmatrix} 1\\1 \end{pmatrix}$ is an eigenvector of $\begin{bmatrix} a & b\\c & d \end{bmatrix}$ and find the eigenvalues.
- 10. Prove the following statements:

(a) If
$$0 < \theta < \pi$$
, then $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ has no real eigenvalues.

- (b) If λ is an eigenvalue of an orthogonal matrix, then $\frac{1}{\lambda}$ is also an eigenvalue of it.
- 11. Examine whether the matrices A and B are similar or not, where

$$(a)\ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & -1 \\ 4 & -1 \end{bmatrix}.$$

(b)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$.

- 12. If A and B are two unitary matrices, show that AB is a unitary matrix.
- 13. Express the matrix $A = \begin{bmatrix} i & 2-3i & 4+5i \\ 6+i & 0 & 4-5i \\ -i & 2-i & 2+i \end{bmatrix}$ as the sum of a Hermitian and a skew Hermitian matrix.
- 14. If $N = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$, then show that $(I-N)(I+N)^{-1}$ is a unitary matrix, where I is the identity matrix of order 2.
- 15. If $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{pmatrix}$ where $a = e^{\frac{2i\pi}{3}}$, then prove that $M^{-1} = \frac{1}{3}\bar{M}$.
