Final Exam Answersheet

Durga Pokharel

13/03/2022

Group(B)

[Q.N.6]

```
#a.
mpg <- c(sample(10:50,size = 500,replace = T))
#b
hist(table(mpg))</pre>
```

Histogram of table(mpg)

From histogram we see that maximum value is greater than 12 most of the value behind max value have same frequency. c.

hist(table(mpg),col="blue",bin= 8)

```
## Warning in plot.window(xlim, ylim, "", ...): "bin" is not a graphical parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "bin"
## is not a graphical parameter
## Warning in axis(1, ...): "bin" is not a graphical parameter
## Warning in axis(2, ...): "bin" is not a graphical parameter
```

Histogram of table(mpg)

#c

```
hist(table(mpg),col="blue",bin= 8)
```

```
## Warning in plot.window(xlim, ylim, "", ...): "bin" is not a graphical parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "bin"
## is not a graphical parameter
## Warning in axis(1, ...): "bin" is not a graphical parameter
## Warning in axis(2, ...): "bin" is not a graphical parameter
```

Histogram of table(mpg)

\mathbf{d}

```
qqnorm(mpg)
qqline(mpg,col="red")
```

Normal Q-Q Plot

Figue show that our data is not normally distrubated. Actual value and observed value are far from each others. # e

```
dens <- density(mpg)
plot(dens, frame=FALSE, col= "yellow")
polygon(dens, col = "yellow")</pre>
```


Density plot also shows that our data is not normally distribuated. We could not saw bell shape curve.

[Q.N.7]

#a

```
set.seed(11)
mpg <- sample(10:50, size = 100, replace =T)
gear <- sample(3:5,size=100, replace =T)
df <- data.frame(mpg,gear)</pre>
```

b.

To perform goodnessof fit we need to check normality and is independent variables and depandent variables variance is equal we can do it in following way.

```
with(df,shapiro.test(mpg[gear==3]))
```

```
##
## Shapiro-Wilk normality test
##
## data: mpg[gear == 3]
## W = 0.91092, p-value = 0.00354
```

Here p value is less than 0.05 hence it does not follow normal distribution.

```
with(df,shapiro.test(mpg[gear==4]))
```

```
##
## Shapiro-Wilk normality test
##
## data: mpg[gear == 4]
## W = 0.93061, p-value = 0.05096
```

Here P value is greater than 0.05 hence it follow normal distribution.

```
with(df,shapiro.test(mpg[gear==5]))
```

```
##
## Shapiro-Wilk normality test
##
## data: mpg[gear == 5]
## W = 0.94923, p-value = 0.1748
```

Here P value also greater than 0.05 hence it follows normal distribution.

In our data all the three categories of gear did not follow the normal distibution hence it is not normal.

b.

To check variance we let's do it. We need to used levene test insted of variance test because we have 3 categories.

```
library(car)
```

Loading required package: carData

```
leveneTest(mpg~as.factor(gear),data=df)
```

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.7238 0.4875
## 97
```

Here p value is greater than 0.05 hence variance between depandent variable mpg and independent variable gear have equal.

 \mathbf{c}

```
summary(aov(mpg~gear,data=df))
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## gear 1 16 15.65 0.107 0.744
## Residuals 98 14360 146.53
```

Here p value is greater than 0.05 hence h0 accepted. That means means across category is same hence we do not need to do post hoic test. #e. No, can not used this test for data to used it in to our data dependent variable should always follow normal distibution but above data did not satisfy the normality test.

[Q.N.8]

#a.

```
set.seed(11)
mpg <- sample(10:50,size= 200, replace = T)
am <- sample(0:1,size= 200, replace = T)
wt <- sample(1:10,size=200,replace = T)
hp <- sample(125:400,size=200, replace=T)
df <-data.frame(mpg,am,wt,hp)</pre>
```

b

```
set.seed(11)
ind <- sample(2,nrow(df), replace = T, prob = c(0.7,0.3))
train_data <- df[ind==1,]
test_data <- df[ind==2,]

#c I fit the linear model using mpg as dependent variable.</pre>
```

```
model <- lm(mpg~wt,data= train_data)</pre>
```

#d

```
library(caret)
```

```
## Warning: package 'caret' was built under R version 4.1.2
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked _by_ '.GlobalEnv':
##
## mpg
```

Loading required package: lattice

```
set.seed(11)
ind <- sample(2,nrow(df), replace = T, prob = c(0.7,0.3))
train_data <- df[ind==1,]
test_data <- df[ind==2,]
pred <- predict(model,test_data)
R2 <- R2(pred, test_data$mpg)
R2
## [1] 0.0540566</pre>
```

```
RMSE
```

RMSE <- RMSE(pred, test_data\$mpg)</pre>

[1] 14.1642

Here cofficent of determination is only 0.026. That is only 2.6% of variablity explain by independent variable. To do BLUE test it should have R2 greater than 50% independent variable and dependent variable must be normal and value of a and b are significant. Anova must be valid. It did not satisfied condition of blue test. #e.

```
pred <- predict(model,test_data)
pred</pre>
```

```
##
          6
                    9
                            13
                                      14
                                               15
                                                         35
                                                                  46
                                                                            50
  28.55184 31.64755 32.88583 29.17098 29.17098 32.26669 29.17098 29.17098
##
                                      75
         58
                   62
                            65
                                               85
                                                         89
                                                                  92
                                                                            95
## 32.26669 29.79012 30.40926 31.02840 32.26669 30.40926 32.26669 27.93270
                  101
##
         97
                           108
                                     111
                                              114
                                                        117
                                                                 123
                                                                           128
## 29.17098 32.26669 32.88583 31.64755 32.88583 27.31355 29.79012 29.17098
        129
##
                  131
                           138
                                     139
                                              140
                                                        149
                                                                 152
                                                                           154
## 28.55184 30.40926 31.64755 30.40926 28.55184 29.79012 31.64755 31.02840
##
        166
                  169
                           172
                                     174
                                              178
                                                        181
                                                                 185
                                                                           190
## 31.02840 29.79012 29.79012 29.79012 30.40926 32.26669 32.26669 31.64755
##
        193
                  194
                           196
                                     197
                                              200
## 31.64755 29.79012 28.55184 30.40926 32.88583
```

[Q.N.9]

#a.

```
set.seed(11)
mpg <-sample(10:50, size = 300, replace = T)
am <- sample(0:1,size = 300, replace = T)
wt <- sample(0:10,size=300, replace = T)
hp <- sample(125:400,size=300, replace = T)
df <- data.frame(mpg, am,wt,hp)</pre>
```

#b

```
set.seed(11)
ind <- sample(2, nrow(df), replace = T, prob=c(0.8,0.2))</pre>
train <- df[ind==1,]</pre>
test <- df[ind==2,]
#c
log.mod <- train(am~., data= train,methods= "glm", family= "binomial")</pre>
## note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .
#d.
library(caret)
pred <- predict(log.mod,test)</pre>
pred
           6
                      9
                                13
                                          14
                                                     35
                                                                46
                                                                          50
                                                                                     58
  0.8472333 0.5133000 0.3990000 0.3117667 0.4992667 0.4528667 0.7349333 0.8238000
##
                                                                                    128
##
          75
                     85
                                89
                                          95
                                                                         123
                                                    114
                                                               117
## 0.4422333 0.3347000 0.8037333 0.4662333 0.5459333 0.5360333 0.6554000 0.5749667
                               149
##
         131
                    140
                                         166
                                                    169
                                                               172
                                                                         178
                                                                                    181
## 0.7058000 0.5657000 0.5396333 0.8154667 0.2060333 0.7373667 0.5678000 0.7854667
                    190
                                                               206
                                                                         212
##
         185
                               193
                                         194
                                                    197
                                                                                    216
  0.2373333 0.3558000 0.7216000 0.5095000 0.3125333 0.7349000 0.6200333 0.6839333
                                                                         238
##
         217
                    219
                               220
                                         221
                                                    222
                                                              223
                                                                                    241
## 0.5887667 0.2684667 0.6646333 0.1663667 0.6090667 0.6136333 0.7820333 0.2792667
##
         244
                    245
                              248
                                         251
                                                    253
                                                              257
                                                                         276
## 0.8303333 0.2994667 0.7486667 0.8038667 0.6020333 0.5332667 0.4181000 0.4120667
##
         295
## 0.5088333
#e .
library(caret)
#confusionMatrix(pred, data= test$am)
```

e numbers question code could not run in my R studio so, inorder to knit it I comment it In above chunck.

[Q.N.10]

#a.

```
data <- mtcars
head(data)</pre>
```

```
##
                     mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                            6 160 110 3.90 2.620 16.46
                                                         0
                     21.0
                              160 110 3.90 2.875 17.02
## Mazda RX4 Wag
                     21.0
## Datsun 710
                     22.8
                              108
                                  93 3.85 2.320 18.61
                                                                      1
                           4
## Hornet 4 Drive
                     21.4
                            6
                              258 110 3.08 3.215 19.44
                                                                      1
                                                                      2
## Hornet Sportabout 18.7
                           8 360 175 3.15 3.440 17.02
                                                         0
## Valiant
                     18.1
                            6 225 105 2.76 3.460 20.22
```

Using head function we can get top 6 row of data frame. In above result we can see the top 6 row together with all columns of mtcars data frame.

str(data)

```
'data.frame':
                   32 obs. of 11 variables:
   $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
   $ cyl : num
                6 6 4 6 8 6 8 4 4 6 ...
   $ disp: num 160 160 108 258 360 ...
                110 110 93 110 175 105 245 62 95 123 ...
   $ hp : num
   $ drat: num
                3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##
                2.62 2.88 2.32 3.21 3.44 ...
         : num
##
   $ qsec: num 16.5 17 18.6 19.4 17 ...
  $ vs : num
                0 0 1 1 0 1 0 1 1 1 ...
                1 1 1 0 0 0 0 0 0 0 ...
##
  $ am : num
   $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Function str check the data type of variables present in the table. Here we can see all the data type of variable is numerical.

#b

```
pca1 <- prcomp(data)</pre>
pca1
## Standard deviations (1, .., p=11):
   [1] 136.5330479 38.1480776
                                                1.3066508
                                                             0.9064862
                                                                         0.6635411
                                   3.0710166
   [7]
          0.3085791
                      0.2859604
                                   0.2506973
                                                0.2106519
                                                             0.1984238
##
## Rotation (n x k) = (11 \times 11):
##
                 PC1
                                             PC3
                                                          PC4
                                                                       PC5
## mpg -0.038118199 0.009184847 0.982070847 0.047634784 -0.08832843
## cyl
         0.012035150 -0.003372487 -0.063483942 -0.227991962 0.23872590
## disp 0.899568146 0.435372320 0.031442656 -0.005086826 -0.01073597
         0.434784387 - 0.899307303 \quad 0.025093049 \quad 0.035715638 \quad 0.01655194
## drat -0.002660077 -0.003900205 0.039724928 -0.057129357 -0.13332765
         0.006239405 \quad 0.004861023 \quad -0.084910258 \quad 0.127962867 \quad -0.24354296
## qsec -0.006671270 0.025011743 -0.071670457 0.886472188 -0.21416101
        -0.002729474 0.002198425 0.004203328 0.177123945 -0.01688851
        -0.001962644 \ -0.005793760 \ \ 0.054806391 \ -0.135658793 \ -0.06270200
## gear -0.002604768 -0.011272462 0.048524372 -0.129913811 -0.27616440
## carb 0.005766010 -0.027779208 -0.102897231 -0.268931427 -0.85520810
                                              PC8
                               PC7
## mpg -0.143790084 -0.039239174 2.271040e-02 -0.002790139 0.030630361
```

```
## cyl -0.793818050 0.425011021 -1.890403e-01 0.042677206 0.131718534
## disp 0.007424138 0.000582398 -5.841464e-04 0.003532713 -0.005399132
        0.001653685 -0.002212538 4.748087e-06 -0.003734085 0.001862554
## drat 0.227229260 0.034847411 -9.385817e-01 -0.014131110 0.184102094
       -0.127142296 -0.186558915 1.561907e-01 -0.390600261 0.829886844
## qsec -0.189564973 0.254844548 -1.028515e-01 -0.095914479 -0.204240658
        0.102619063 -0.080788938 -2.132903e-03 0.684043835 0.303060724
        ## gear 0.334971103 0.801625551 2.174878e-01 0.156118559 0.203540645
## carb -0.283788381 -0.165474186 3.972219e-03 0.127583043 -0.239954748
                PC11
## mpg
       -0.0158569365
## cyl
        0.1454453628
## disp 0.0009420262
## hp
       -0.0021526102
## drat -0.0973818815
## wt
       -0.0198581635
## gsec 0.0110677880
## vs
        0.6256900918
## am
        0.7331658036
## gear -0.1909325849
## carb 0.0557957968
Here, 11 components of pca are seen. There are respectively from PC1 to PC11.
\#d
biplot(pca1, lavels= rownames(data))
## Warning in plot.window(...): "lavels" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "lavels" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "lavels" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "lavels" is not a
## graphical parameter
## Warning in box(...): "lavels" is not a graphical parameter
## Warning in title(...): "lavels" is not a graphical parameter
## Warning in text.default(x, xlabs, cex = cex[1L], col = col[1L], ...): "lavels"
## is not a graphical parameter
## Warning in plot.window(...): "lavels" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "lavels" is not a graphical parameter
```

Warning in title(...): "lavels" is not a graphical parameter

```
## Warning in axis(3, col = col[2L], ...): "lavels" is not a graphical parameter
## Warning in axis(4, col = col[2L], ...): "lavels" is not a graphical parameter
## Warning in text.default(y, labels = ylabs, cex = cex[2L], col = col[2L], :
## "lavels" is not a graphical parameter
```


#e

library(psych)

```
## Warning: package 'psych' was built under R version 4.1.2
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:car':
##
## logit
```

```
fa1 <- psych::principal(data, nfactors = 3, rotate = "varimax")
biplot(fa1, labels = rownames(fa1))</pre>
```


Here, we can see biplot RC2 in the top and RC3 in to second row and RC1 in last row. PCA obtained from VARIMAX in not true pca.