Out[3]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	Dev
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	
	4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	

5 rows × 21 columns

In [4]: # Checking Number of Rows and Columns in Our Dataset:
 df.shape

Out[4]: (7043, 21)

In [5]: # Checking Basic Information Of the Dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

Ducu	COTAMILE (COCAT TT	CO _ a	
#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object
4+,,,,,	oc. £100+64/1\ ind	+C1(2) abias+(1)	٥١

dtypes: float64(1), int64(2), object(18)

memory usage: 1.1+ MB

In [6]: # Here we can see each user is identified through a unique customer ID. There are 19 independent variables used to predict the # In this dataset, customer churn is defined as users who have left within the last month.

```
In [7]: # Checking Missing Values in the Dataset.
df.isnull().sum()
```

```
Out[7]: customerID
          gender
          SeniorCitizen
          Partner
          Dependents
          tenure
          PhoneService
          MultipleLines
          InternetService
                              0
          OnlineSecurity
          OnlineBackup
          DeviceProtection
                              0
         TechSupport
         StreamingTV
                              0
         StreamingMovies
          Contract
         PaperlessBilling
          PaymentMethod
          MonthlyCharges
                              0
         TotalCharges
          Churn
                              0
          dtype: int64
In [8]: # Checking duplicates in the Dataset
         df.duplicated().sum()
Out[8]: 0
In [9]: # Checking all Columns names
         df.columns
Out[9]: Index(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents',
                 'tenure', 'PhoneService', 'MultipleLines', 'InternetService',
                 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport',
                 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling',
                 'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn'],
               dtype='object')
In [10]: # Stastical Analysis of numeric features
         df.describe()
```

ut[10]:		SeniorCitizen	tenure	MonthlyCharges							
	count	7043.000000	7043.000000	7043.000000							
	mean	0.162147	32.371149	64.761692							
std 0.368612 24.559481 30.090047											
	min	0.000000	0.000000	18.250000							
	25%	0.000000	9.000000	35.500000							
	50%	0.000000	29.000000	70.350000							
	75%	0.000000	55.000000	89.850000							
	max	1.000000	72.000000	118.750000							
:[11]:	Churn No 5174 Yes 1869 Name: count, dtype: int64										
[n [21]:				the customers i							
	# We wi	ill need to p	erform some	feature engineer							
[25]:	# Step	3: Explorato	ry Data Anal	ysis for Custome							
n [27]:				ratory data anal stomer churn.							
n [29]:		['gender','S		e demographic da ',"Partner","Dep							
		gure(figsize= col in enume									

```
ax = plt.subplot(1, len(num), i+1)
sns.countplot(x=str(col), data=df)
ax.set_title(f"{col}")
```


In [30]: # From here we see most customers in the dataset are younger individuals without a dependent. # There is an equal distribution of user gender and marital status.

In [31]: # Now, let's look into the relationship between cost and customer churn.
In the real world, users tend to unsubscribe to their mobile service provider and switch to a different brand,
if they find the monthly subscription cost too high. Let's check if that behavior is reflected in our dataset:

In [35]: sns.boxplot(x='Churn', y='MonthlyCharges', data=df)

Out[35]: <Axes: xlabel='Churn', ylabel='MonthlyCharges'>

In [37]: # From here we can see customers who churned have a higher median monthly charge than customers who renewed their subscription
In [39]: # Finally, Let's analyze the relationship between customer churn and a few other categorical variables captured in the dataset
In [41]: cols = ['InternetService', "TechSupport", "OnlineBackup", "Contract"]
 plt.figure(figsize=(16,5))
 for i, col in enumerate(cols):
 ax = plt.subplot(1, len(cols), i+1)
 sns.countplot(x = "Churn", hue = str(col), data = df)
 ax.set_title(f"{col}")

Analysis of Above Visualization:
1.InternetService: It is clear from the visual above that customers who use fiber optic Internet churn more often than other
This might be because fiber Internet is a more expensive service, or this provider doesn't have good coverage.

2.TechSupport: Many users who churned did not sign up for tech support.
This might mean that these customers did not receive any guidance on fixing technical issues and decided to stop using the s
3.OnlineBackup: Many customers who had churned did not sign up for an online backup service for data storage.

4.Contract: Users who churned were almost always on a monthly contract.
This makes sense, since these customers pay for the service on a monthly basis and can easily cancel their subscription befo

In [43]: # For instance, if the company realizes that most of their users who churn have not signed up for tech support,
they can include this as a complimentary service in some of their future product offerings to prevent other customers from l

Step 4: Preprocessing Data for Customer Churn-----!

df['TotalCharges']=pd.to numeric(df['TotalCharges'],errors='coerce')

In [49]: # Converting total charge column into numeric:

```
In [51]: # Step 5: Encoding of Categorical Columns---->
In [53]: # The categorical variables in the dataset need to be converted into a numeric format before we can feed them into the machine
         # We will perform the encoding using Scikit-Learn's label encoder.
In [55]: # First, Let's take a look at the categorical features in the dataset:
         cat features = df.drop(['customerID','TotalCharges','MonthlyCharges','SeniorCitizen','tenure'],axis=1)
         cat features.head()
Out[55]:
            gender Partner Dependents PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport
                                                         No phone
         0 Female
                                    No
                                                                             DSL
                                                                                            No
                                                                                                          Yes
                                                                                                                          No
                        Yes
                                                  No
                                                            service
         1
              Male
                        No
                                    No
                                                  Yes
                                                               No
                                                                             DSL
                                                                                            Yes
                                                                                                          No
                                                                                                                          Yes
         2
                                    No
                                                 Yes
                                                                             DSL
                                                                                                                          No
              Male
                        No
                                                               No
                                                                                            Yes
                                                                                                          Yes
                                                         No phone
         3
              Male
                                    No
                                                                             DSL
                                                                                            Yes
                        No
                                                  No
                                                                                                          No
                                                                                                                          Yes
                                                            service
                                    No
                                                                        Fiber optic
                                                                                                                          No
         4 Female
                        No
                                                  Yes
                                                               No
                                                                                            No
                                                                                                          No
In [57]:
         from sklearn import preprocessing
         le = preprocessing.LabelEncoder()
         df cat = cat features.apply(le.fit transform)
         df cat.head()
```

Out[57]:		gender	Partner	Dependents	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSuppo			
	0	0	1	0	0	1	0	0	2	0				
	1	1	0	0	1	0	0	2	0	2				
	2	1	0	0	1	0	0	2	2	0				
	3	1	0	0	0	1	0	2	0	2				
	4	0	0	0	1	0	1	0	0	0				
	4										•			
In [58]:		# Notice that all the categorical values in the dataset have now been replaced with numbers. #Finally, run the following lines of code to merge the dataframe we just created with the previous one:												
In [61]:	<pre>num_features = df[['customerID','TotalCharges','MonthlyCharges','SeniorCitizen','tenure']] finaldf = pd.merge(num_features, df_cat, left_index=True, right_index=True)</pre>													
In [63]:	<pre>finaldf.head()</pre>													

Out[63]:		customerID	TotalCharges	MonthlyCharges	SeniorCitizen	tenure	gender	Partner	Dependents	PhoneService	MultipleLines	•••	Onli
	0	7590- VHVEG	29.85	29.85	0	1	0	1	0	0	1		
	1	5575- GNVDE	1889.50	56.95	0	34	1	0	0	1	0		
	2	3668- QPYBK	108.15	53.85	0	2	1	0	0	1	0		
	3	7795- CFOCW	1840.75	42.30	0	45	1	0	0	0	1		
	4	9237- HQITU	151.65	70.70	0	2	0	0	0	1	0		

5 rows × 21 columns

In [79]: # Checking Correlation between Features:

Checking Correlation between Feature
corr_matrix=finaldf.corr()

corr_matrix

	TotalCharges	MonthlyCharges	SeniorCitizen	tenure	gender	Partner	Dependents	PhoneService	MultipleLines
TotalCharges	1.000000	0.651065	0.102411	0.825880	0.000048	0.319072	0.064653	0.113008	0.453202
MonthlyCharges	0.651065	1.000000	0.219874	0.246862	-0.013779	0.097825	-0.112343	0.248033	0.433905
SeniorCitizen	0.102411	0.219874	1.000000	0.015683	-0.001819	0.016957	-0.210550	0.008392	0.146287
tenure	0.825880	0.246862	0.015683	1.000000	0.005285	0.381912	0.163386	0.007877	0.343673
gender	0.000048	-0.013779	-0.001819	0.005285	1.000000	-0.001379	0.010349	-0.007515	-0.006908
Partner	0.319072	0.097825	0.016957	0.381912	-0.001379	1.000000	0.452269	0.018397	0.142717
Dependents	0.064653	-0.112343	-0.210550	0.163386	0.010349	0.452269	1.000000	-0.001078	-0.024975
PhoneService	0.113008	0.248033	0.008392	0.007877	-0.007515	0.018397	-0.001078	1.000000	-0.020504
MultipleLines	0.453202	0.433905	0.146287	0.343673	-0.006908	0.142717	-0.024975	-0.020504	1.000000
InternetService	-0.175691	-0.322173	-0.032160	-0.029835	-0.002236	0.000513	0.044030	0.387266	-0.108849
OnlineSecurity	0.254473	-0.053576	-0.127937	0.327283	-0.014899	0.150610	0.151198	-0.014163	0.007306
OnlineBackup	0.375556	0.119943	-0.013355	0.372434	-0.011920	0.153045	0.090231	0.024040	0.117276
DeviceProtection	0.389066	0.163984	-0.021124	0.372669	0.001348	0.165614	0.079723	0.004718	0.122614
TechSupport	0.276890	-0.008237	-0.151007	0.324729	-0.006695	0.126488	0.132530	-0.018136	0.010941
StreamingTV	0.392472	0.337156	0.031019	0.290572	-0.005624	0.136679	0.046214	0.056393	0.175403
StreamingMovies	0.398088	0.335761	0.047088	0.296785	-0.008920	0.129907	0.022088	0.043025	0.181705
Contract	0.450306	-0.072739	-0.141820	0.676734	0.000095	0.294094	0.240556	0.003019	0.111029
PaperlessBilling	0.157830	0.351930	0.156258	0.004823	-0.011902	-0.013957	-0.110131	0.016696	0.165306
PaymentMethod	-0.330594	-0.192500	-0.038158	-0.370087	0.016942	-0.156232	-0.041989	-0.005499	-0.176598
Churn	-0.199484	0.192858	0.150541	-0.354049	-0.008545	-0.149982	-0.163128	0.011691	0.038043

```
In [81]: # Plot Heatmap:
    plt.figure(figsize=(12,6))
    sns.heatmap(corr_matrix,annot=True,fmt=".2f",cmap="coolwarm",linewidths=0.5)
    plt.title('Correlation Heatmap Matrix of Telecom Customer Churn Features',size=12)
    plt.show()
```



```
In [83]: # Sort the Correleation of Churn with Other Features:
         churn corr=corr matrix['Churn'].sort values(ascending=False)
         churn corr
Out[83]: Churn
                             1.000000
         MonthlyCharges
                             0.192858
         PaperlessBilling
                             0.191454
         SeniorCitizen
                             0.150541
         PaymentMethod
                             0.107852
         MultipleLines
                             0.038043
         PhoneService
                             0.011691
         gender
                            -0.008545
         StreamingTV
                            -0.036303
         StreamingMovies
                            -0.038802
         InternetService
                            -0.047097
         Partner
                            -0.149982
         Dependents
                            -0.163128
         DeviceProtection -0.177883
         OnlineBackup
                            -0.195290
         TotalCharges
                            -0.199484
         TechSupport
                            -0.282232
         OnlineSecurity
                            -0.289050
                            -0.354049
         tenure
         Contract
                            -0.396150
         Name: Churn, dtype: float64
In [ ]: # From the correlation analysis, here are some key observations:
         # Strong Positive Correlations:
         # Internet Service (Fiber optic): Indicates customers with fiber optic internet are more likely to churn compared to other int
         # Payment Method: Customers who pay via electronic check have a higher likelihood of churning.
         # Monthly Charges (0.193356): Higher monthly charges are moderately associated with a higher churn rate.
In [ ]: # Strong Negative Correlations:
         # Tenure Months (-0.354049): Customers with longer tenure are less likely to churn, indicating loyalty.
         # Contract (Two year) (-0.392253): Longer contracts (e.g., two-year contracts) are associated with lower churn, likely due to
         # Dependents (-0.163142): Customers with dependents are less likely to churn.
         # Internet Service (No Internet Service) (-0.047890): Not having internet service is associated with Lower churn,
         # possibly because these customers are less reliant on services where churn is relevant.
```

```
In [ ]: # Step 6: Training the Dataset----->
 In [ ]: # Oversampling:
         # As we see above, the dataset is imbalanced, which means that a majority of values in the target variable belong to a single c
         # Most customers in the dataset did not churn - only 27% of them did.
         # This class imbalance problem can lead to an underperforming machine learning model. Some algorithms that train on an imbalance
         # predicting the majority class. In our case, for instance, the model may predict that none of the customers churned.
         # While a model like this will be highly accurate (in this case it will be correct 73% of the time),
         # it is of no value to us since it is always predicting a single outcome.
In [ ]: # We are going to oversample the minority class until the number of data points are equal to that of the majority class.
         # Before we oversample, let's do a train-test split. We will oversample solely on the training dataset,
         # as the test dataset must be representative of the true population:
In [67]: from sklearn.model selection import train test split
         finaldf = finaldf.dropna()
         finaldf = finaldf.drop(['customerID'],axis=1)
         x= finaldf.drop(['Churn'],axis=1)
         v = finaldf['Churn']
         x train, x test, y train, y test = train test split(x, y, test size=0.3, random state=42)
In [69]: # Now, let's oversample the training dataset:
         from imblearn.over sampling import SMOTE
         oversample = SMOTE(k neighbors=5)
         x smote, y smote = oversample.fit resample(x train, y train)
         x train, y train = x smote, y smote
In [70]: # Let's check the number of samples in each class to ensure that they are equal:
         y train.value counts() #There should be 3614 values in each class, which means that the training dataset is now balanced.
```

```
Out[70]: Churn
              3614
              3614
         Name: count, dtype: int64
In [71]: # Step 7: Building the Customer Churn Prediction Model------!
         # 1. We will now build a random forest classifier to predict customer churn:
         from sklearn.ensemble import RandomForestClassifier
         rf = RandomForestClassifier(random state=46)
         rf.fit(x train,y train)
Out[71]: ▼
                   RandomForestClassifier
         RandomForestClassifier(random state=46)
In [72]: # Step 8: Customer Churn Prediction Model Evaluation-----!
In [97]: # Let's evaluate the model predictions on the test dataset:
         from sklearn.metrics import accuracy score
         preds = rf.predict(x test)
         print(confusion matrix(y test, preds))
         print(classification report(y test, preds))
        [[1308 241]
        [ 238 323]]
                                  recall f1-score
                     precision
                                                   support
                  0
                          0.85
                                              0.85
                                    0.84
                                                        1549
                          0.57
                                    0.58
                                              0.57
                                                         561
                                              0.77
           accuracy
                                                        2110
           macro avg
                          0.71
                                    0.71
                                              0.71
                                                        2110
        weighted avg
                          0.77
                                    0.77
                                              0.77
                                                        2110
```

In []: # Our Random Classifier model is performing well, with an accuracy of approximately 0.78 on the test dataset.

```
In [87]: # 2.Building LogisticRegression Model:
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import classification report, confusion matrix
In [89]:
         model1 = LogisticRegression(max iter=1000)
         model1.fit(x train, y train)
         y pred = model1.predict(x test)
         print(confusion matrix(y test, y pred))
         print(classification report(y test, y pred))
        [[1174 375]
        [ 150 411]]
                      precision
                                  recall f1-score support
                           0.89
                   0
                                     0.76
                                              0.82
                                                        1549
                           0.52
                                    0.73
                                              0.61
                                                         561
                                              0.75
                                                        2110
            accuracy
                           0.70
                                              0.71
                                                        2110
           macro avg
                                     0.75
        weighted avg
                           0.79
                                     0.75
                                              0.76
                                                        2110
In [93]: model1.score(x test,y test)
Out[93]: 0.7511848341232228
```

In [23]: # Hence Our Logistic Regression model is also performing well, with an accuracy of approximately 0.76 on the test dataset.