

Presentación del equipo

Brayan
Zuluaga
Redacción de informe, código

Samuel Rendón Redacción de informe, código

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Algorítmo de Dijkstra

Inicialmente, se establece el nodo inicial y el nodo destino, en este caso A y F respectivamente, posteriormente, se establece un valor para cada nodo, siendo infinito para todos los nodos diferentes al inicial, luego, se inicia un recorrido comparando los pesos de cada arista, y la suma de las aristas de nodos antecesores para determinar cual es el valor mínimo posible para llegar a cada nodo, hasta llegar al nodo final habiendo evaluado los caminos posibles, sabiendo ya los antecesores de dicho nodo final y el camino más corto.

Complejidad del algoritmo

Nombre	Complejidad temporal	Complejidad de la memoria
Dijkstra	O(V ²)	O(V)
N/A	N/A	N/A

Complejidad en tiempo y memoria del nombre del algoritmo. V representa la cantidad nodos.

Resultados del camino más corto

Origen	Destino	Distancia más corta (metros)	Sin superar un riesgo promedio ponderado de acoso
Universidad EAFIT	Universidad de Medellín	7228.1 m	0.84
Universidad de Antioquia	Universidad Nacional	815.4 m	0.83
Universidad Nacional	Universidad Luis Amigó	1478.6 m	0.85

Distancia más corta obtenida sin superar un riesgo medio ponderado de acoso r.

Se expresa el camino encontrado desde los puntos establecidos, tras correr el algoritmo Dijkstra, partiendo de un valor de riesgo de acoso.

Resultados del menor riesgo

Origen	Destino	Riesgo promedio ponderado de acoso	Sin superar una distancia (metros)
Universidad EAFIT	Universidad de Medellín	0,87	5000
Universidad de Antioquia	Universidad Nacional	0,83	7000
Universidad Nacional	Universidad Luis Amigó	0,85	6500

Menor riesgo medio ponderado de acoso obtenido sin superar una distancia d.

Se expresa el camino encontrado desde los puntos establecidos, tras correr el algoritmo Dijkstra, partiendo de un valor de distancia (metros)

Tiempos de ejecución del algoritmo

Tiempos de ejecución

30.1 segundos

32.5 segundos

34.25 segundos

Direcciones de trabajo futuras

Bases de datos

Optimización del manejo de datos

Proyecto 1

Mejorar la usabilidad de la interfaz del mapa

Mejorar la ingreso y salida de datos

Ing. Software

Optimización del algoritmo

Implementación de algoritmos más avanzados (A*)

Proyecto 2

Implementación web para mejora de la usabilidad

