1 Vector Spaces

Suppose that V is a finite dimensional vector space over F, with $\dim(V) = n$.

V may have many different bases, we know that they all have the same size n.

Say $\mathcal{B} = \{\alpha_1, ..., \alpha_n\}$ is a basis fix the ordering of \mathcal{B} .

Fix the ordering of \mathcal{B} .

THEOREM

For any $\alpha \in V$, there is a unique n tuple $(x_1,...,x_n) \in F^n$ such that

$$\alpha = x_1 \alpha_1 + \dots + x_n \alpha_n$$

PROOF

Existence is immediate, since \mathcal{B} is a basis, thus \mathcal{B} spans V.

Uniqueness

Say $\alpha = x_1 \alpha_1 + \dots + x_n \alpha_n$ and $\alpha = y_1 \alpha_1 + \dots + y_n \alpha_n$.

Then we have that

$$x_1\alpha_1 + \cdots + x_n\alpha_n - y_1\alpha_1 + \cdots + y_n\alpha_n = 0$$
, so $(x_1 - y_1)\alpha_1 + \cdots + (x_n - y_n)\alpha_n = 0$

But since $\{\alpha_1, ..., \alpha_n\}$ is linearly independent, all coefficients must be 0.

What this means is that, for a vector space V, there is an associated mapping in F^n . Notice that we know nothing about the vectors α_i .

We define $[\alpha]_{\mathcal{B}}$ to be the *coordinates* of α with respect to \mathcal{B} .

Check: The mapping $\alpha \mapsto [\alpha]_{\mathcal{B}} \in F^n$ satisfies

- 1. One to one-ness
- 2. Onto-ness
- 3. "Additive", for any $\alpha, \beta \in V$, if $\alpha = x_1\alpha_1 + \cdots + x_n\alpha_n$ and $\beta = y_1\alpha_1 + \cdots + y_n\alpha_n$. Then

$$[\alpha + \beta]_{\mathcal{B}} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = [\alpha]_{\mathcal{B}} + [\beta]_{\mathcal{B}}$$

1

4. $[c\alpha]_{\mathcal{B}} + c[\alpha]_{\mathcal{B}}$

There exists an *isomorphism* between V and F^n .

EXAMPLE

Let \mathcal{P} be the space of all polynomials. Let $f(x) = x^3$, and $g(x) = x^5$. Then, let

$$V = \text{Span}\{f, g\} = \{\text{all } ax^3 + bx^5 : a, b \in F\}$$

then, $\dim(V) = 2$, since f and g are linearly independent.

Typical $h(x) \in V$, say $h(x) = 10x^3 - 2x^5$.

$$[h]_{\mathcal{B}} = \begin{bmatrix} 10\\ -2 \end{bmatrix}$$

 $\langle [h]_{\mathcal{B}} \text{ is the mapping of } h \text{ to } F^n. \text{ TODO is this right? } \rangle$

Now let $k(x) = 2x^3 + 4x^5$ and $l(x) = x^3 + 3x^5$. Since k, l are linearly independent, they form another basis of V.

$$\mathcal{B}' = \{k(x), l(x)\}\$$

1.1 Change of Basis

Given $\mathcal{B} = \{\alpha_1, ..., \alpha_n\}$, and $\mathcal{B}' = \{\alpha'_1, ..., \alpha'_n\}$ bases for V.

We want to describe the map going from $[\alpha]_{\mathcal{B}} \mapsto [\alpha]_{\mathcal{B}'}$.

 \langle We want to find The \mathcal{B} coordinate of $\alpha \mapsto$ the \mathcal{B}' coordinate of $\alpha \rangle$

Step 1.

Compute the \mathcal{B} coordinate of $\alpha'_1, ..., \alpha'_n$, old coordinates of the new basis elements.

Step 2.

For an $n \times m$ matrix

$$P = \left\lceil [\alpha_1']_{\mathcal{B}}, ..., [\alpha_n']_{\mathcal{B}} \right\rceil$$

Check: for any $\alpha \in V$

$$[\alpha]_{\mathcal{B}} = P[\alpha]_{\mathcal{B}'}$$

Ans: This is what we actually want

$$[\alpha]_{\mathcal{B}'} = P^{-1}[\alpha]_{\mathcal{B}}$$

Mon. Feb 13 2023

TODO Missing *some* info

Want: Describe the mapping $T: F^n \to F^n$

$$T([\alpha]_{\mathcal{B}_{\text{old}}}) = [\alpha]_{\mathcal{B}'_{\text{new}}}$$

(If we switch the basis for some reason, we want to see what the new coordinates are.)

To do this: For each α'_j , compute $[\alpha'_j]_{\mathcal{B}_{\text{old}}}$. Let

$$P = \left[[\alpha_1']_{\mathcal{B}_{\text{old}}} \cdots [\alpha_n']_{\mathcal{B}_{\text{old}}} \right]$$

be an $n \times n$ matrix.

Claim: For any $\alpha \in V$

$$P \cdot [\alpha]_{\mathcal{B}'_{\text{new}}} = [\alpha]_{\mathcal{B}_{\text{old}}}$$

How?

$$P \cdot [\alpha_1']_{\mathcal{B}_{\text{new}}'} = P \cdot \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = [\alpha_1']_{\mathcal{B}_{\text{old}}}$$

This is the 1^{st} column of P, and similarly for all columns.

Thus: For any $\alpha \in V$,

$$[\alpha]_{\text{new}} = P^{-1} \cdot [\alpha]_{\text{old}}$$

EXAMPLE

In practice, we have the following.

 $V = \text{Span}(\{x^3, x^5\})$ subspace of $\mathcal{P} = \text{all polynomials.}$ Let $f(x) = x^3, g(x) = x^5, \mathcal{B} = [x^3, x^5]$. Let $h(x) = 10x^3 - 2x^5 \in V$.

Question: What are the coordinates of h with respect to \mathcal{B} ?

Answer:

$$[h]_{\mathcal{B}} = \begin{bmatrix} 10 \\ -2 \end{bmatrix}$$

EXAMPLE

Let $k(x) = 2x^3 + 5x^5$, $l(x) = x^3 + 3x^5$.

Let $\mathcal{B}' = \{k(x), l(x)\}$ be another basis of V.

Question: What are the coordinates of h with respect to \mathcal{B}' ?

Answer:

$$[k(x)]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
 and $[l(x)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

So

$$P = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$

Check:

$$P^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$$

Then

$$\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ -2 \end{bmatrix} = \begin{bmatrix} 32 \\ -54 \end{bmatrix}$$

This means:

$$h(x) = 32k(x) - 54l(x) = 10x^3 - 2x^5$$

Which is what we expect.

EXAMPLE

Let $V = \mathbb{R}^2$. Standard basis $\mathcal{B} = \{\varepsilon_1, \varepsilon_2\} = \{(1,0), (0,1)\}$

$$[(5,4)]_{\mathcal{B}} = \begin{bmatrix} 5\\4 \end{bmatrix}$$

Fix angle θ , Let

$$\mathcal{B}' = \{(\cos(\theta), \sin(\theta)), (-\sin(\theta), \cos(\theta))\}$$

Question: What is $\begin{bmatrix} 5 \\ 4 \end{bmatrix}_{\mathcal{B}'_{\text{new}}}$?

Answer:

1. Form P

$$[(\cos(\theta), \sin(\theta))]_{\mathcal{B}} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$

$$[(-\sin(\theta),\cos(\theta))]_{\mathcal{B}} = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

Then

$$P = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Fact:

$$P^{-1} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

so we have

$$\begin{split} [(5,4)]_{\mathcal{B}_{\text{new}}'} = & P^{-1} \begin{bmatrix} 5\\4 \end{bmatrix} \\ = \begin{bmatrix} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 5\\4 \end{bmatrix} \\ = \begin{bmatrix} 5\cos(\theta) & 4\sin(\theta)\\ -5\sin(\theta) & 4\cos(\theta) \end{bmatrix} \end{split}$$

2 Chapter 3

Say V, W are both vector spaces over the same field F.

DEFINITION

A Linear Transformation $T: V \to W$ is a function satisfying two rules

1. For all $\alpha, \beta \in V$,

$$T(\alpha + \beta) = T(\alpha) + T(\beta)$$

Note that the first + is addition in V, but the second is addition in W.

2. For all $\alpha \in V$ and $c \in F$,

$$T(c\alpha) = cT(\alpha)$$

⟨ The book combines these two into one. ⟩

Lots of examples to come

Two basic facts:

Suppose that $T: V \to W$ is a linear transformation

1. T(0) = 0

Proof:

T(0+0) = T(0) + T(0) thus T(0) = 0.

 \langle Always be aware of where the 0 lives \rangle

TODO Not super clear

2. For all $\{\alpha_1, ..., \alpha_n\} \subseteq V$, all $\{c_1, ..., c_n\} \in F$,

$$c_1T(\alpha_1) + \cdots + c_nT(\alpha_n)$$

Proof Easy induction on n.

EXAMPLE

Take $A \in F^{m \times n}$ an $m \times n$ matrix with entries in F.

Then $T_A: F^n \to F^m$ given by $T_A(x) = A \cdot X$ is a linear transformation.

Check

Chose any $X, Y \in F^n$, then

$$T_A(X+Y) = A \cdot (X+Y) = A \cdot X + A \cdot Y = T_A(X) + T_A(Y)$$

For $c \in F$, have

$$T_A(cX) = A \cdot (cX) = cAX = cT_A(X)$$

which is what we expect.

EXAMPLE

Consider \mathcal{P} the set of all polynomials $a_0 + a_1x + \cdots + a_nx^n$.

Differentiation

$$D: \mathcal{P} \to \mathcal{P}$$

F(f) = f', the **derivative**

Claim: $D: \mathcal{P} \to \mathcal{P}$ is a linear transformation.

Check:

$$D(f+g) = (f+g)' = f' + g' = D(f) + D(g)$$

and for $c \in F$,

$$D(cf) = (cf)' = c \cdot f' = c \cdot D(f)$$

which is what we expect.

EXAMPLE

Let $C(\mathbb{R})$ be all combinations of all functions $f: \mathbb{R} \to \mathbb{R}$.

Define $I:C(\mathbb{R})\to C(\mathbb{R})$ the **integral**

$$I(f) = \int_0^x f(t)dt$$

 \langle Note that the integral exists because you can always integrate a continuous function. \rangle

The result is also continuous and differentiable by the Fundamental Theorem of Calculus.

$$D(I(f)) = f$$

Is the Fundamental Theorem of Calculus.

Therefore I(f) really is continuous, $I(f) \in C(\mathbb{R})$.

Question: Is it really linear?

Check:

$$I(f+g) = \int_0^x (f(t) + g(t))dt$$
$$= \int_0^x f(t)dt + \int_0^x g(t)dt$$
$$= I(f) + I(g)$$

and

$$I(cf) = \int_0^x cf(t)dt = c \int_0^x f(t)dt = cI(f)$$

Fri. Feb 15 2023

Recall: A linear transformation $T:V\to W$ is a function between two vector spaces over the same field F, satisfying

1. For all $\alpha, \beta \in V$,

$$T(\alpha + \beta) = T(\alpha) + T(\beta)$$

Note that the first + is addition in V, but the second is addition in W.

2. For all $\alpha \in V$ and $c \in F$,

$$T(c\alpha) = cT(\alpha)$$

For all $\alpha_1, ..., \alpha_k \in V$, and $c_1, ..., c_k \in F$, it breaks nicely into

$$T(c_1\alpha_1 + \dots + c_k\alpha_k) = c_1T(\alpha_1) + \dots + c_kT(\alpha_k)$$

EXAMPLE

 $I^*: C(\mathbb{R}) \to \mathbb{R}$ (all continuous functions from \mathbb{R} to \mathbb{R})

$$I^*(f) = \int_0^1 f(x)dx$$

$$I^*(x^2) = \int_0^1 x^2 dx = \frac{x^3}{x} \Big|_0^1 = \frac{1}{3}$$

Note that the output of I* is just a number here. Additionally, I* is linear: you can split integrals up for polynomials, and you can take constants outside.

For any V, W, we also have

$$X:V \to W$$

Is the zero transformation. It takes any $\alpha \in V$ to the 0 of W. We'll use this to prove theorems about linear transformations later.

THEOREM

1. Linear Transformations $T: V \to W$ are **determined** by their behavior on a basis \mathcal{B} of V. More precisely,

Suppose that $\mathcal{B} = \{\alpha_1, ..., \alpha_n\}$ is a basis for V and suppose that $T, U : V \to W$ are both linear transformations (and they agree on a basis), such that

$$T(\alpha_1) = U(\alpha_1), T(\alpha_2) = U(\alpha_2), ..., T(\alpha_n) = U(\alpha_n)$$

Then T = U

2. For any map $T_0: \mathcal{B} \to W$, there s a unique linear transformation $T: V \to W$ with $T \supseteq T_0$. In other words,

Let $\mathcal{B} = \{\alpha_1, ..., \alpha_n\}$ be any basis for V and let $\beta_1, ..., \beta_n$ be any vectors in W.

Then, there is a **unique** linear transformation $T: V \to W$ such that

$$T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2, ..., T(\alpha_n) = \beta_n$$

Proof

1. Uniqueness: Chose any $\alpha \in V$, since \mathcal{B} is a basis,

 $\langle \text{ Will show that } T = U \Leftrightarrow \text{For any } \alpha \in V, T(\alpha) = U(\alpha) \rangle$

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

for some **unique** $c_1, ..., c_n \in F$.

Since T is a linear transformation,

$$T(\alpha) = c_1 T(\alpha_1) + \dots + c_n T(\alpha_n)$$

Likewise with U,

$$U(\alpha) = c_1 U(\alpha_1) + \cdots + c_n U(\alpha_n)$$

But, since $T(\alpha_1) = U(\alpha_1), ..., T(\alpha_n) = U(\alpha_n), T(\alpha) = U(\alpha)$.

 \langle Essentially, if T, U work the same for all α_i , then their sum will obviously be the same, and so they'll give the same result for the same α . \rangle

Note that this theorem *still* works for infinite dimensional vector spaces.

2. **Existence**: Chose any $\alpha \in V$. \langle We must define $T(\alpha) \rangle$

Since \mathcal{B} is a basis, we can write

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

which is unique.

Define

$$T(\alpha) := c_1 \beta_1 + \dots + c_n \beta_n \in W$$

Check: Is T linear?

Say $\gamma = d_1 \alpha_1 + \dots + d_n \alpha_n$, $\delta = e_1 \alpha_1 + \dots + e_n \alpha_n$.

In V, we have that $\gamma + \delta = (d_1 + e_1)\alpha_1 + \cdots + (d_n + e_n)\alpha_n$.

By our definition of T, we have

$$T(\gamma + \delta) = (d_1 + e_1)\beta_1 + \dots + (d_n + e_n)\beta_n$$
$$= (d_1\beta_1 + \dots + d_n\beta_n) + (e_1\beta_1 + \dots + e_n\beta_n)$$
$$= T(\gamma) + T(\delta)$$

Check: $T(c\gamma) = cT(\delta)$

So such a tranformation T exists. Additionally by part (1), it is unique.

DEFINITION

Range $(T) = \{T(\alpha) : \alpha \in V\} \subseteq W$ is the set of all vectors in W hit by T.

Fact: Range(T) is a subspace of W.

- 1. 0 is in it. This is because T(0) = 0, obviously.
- 2. Combinations of α_i are in it

Say that $\beta_1, \beta_2 \in \text{Range}(T)$. $\langle \text{ must show that } \beta_1 + \beta_2 \in \text{Range}(T) \rangle$ Since $\beta_1 \in \text{Range}(T)$, there is some $\alpha_1 \in V$ such that

$$T(\alpha_1) = \beta_1$$

similarly for β_2 . Now $T(\alpha_1 + \alpha_2) = T(\alpha_1) + T(\alpha_2) = \beta_1 + \beta_2$, since T is linear. So $T(\alpha_1 + \alpha_2) = \beta_1 + \beta_2$ so $\beta_1 + \beta_2 \in \text{Range}(T) \ \langle \text{ since } \alpha_1, \alpha_2 \in V \text{ means that } \alpha_1 + \alpha_2 \in V$, because it's a vector space! \rangle

3. Scaling Works: Say $\beta \in \text{Range}(T)$, and $c \in F$. Chose $\alpha \in V$ such that $T(\alpha) = \beta$. Then $T(c\alpha) = cT(\beta)c\beta$, therefore $c\alpha \in \text{Range}(T)$.