1 ECONWIN 来历

ECONWIN产生于很多的思考和工作中长期经验,我以前是做通信行业 C++软件开发,07年初转向设备行业,做 linux下面的嵌入式设备,08年正式进入工控行业,学习了很多的平台(DOS, windows, linux,单片机,各类 PLC),获益很多,但是学习中的艰辛和使用中项目期限的压力,各位经历过的可想而知。

开发人员为了做一个产品,经常进行反复的学习,反复的对比,有时系统有问题,因为是闭源,根本无法修改,感觉是浪费生命在这些东西上面。

我一直在想,能否一劳永逸的使用一个平台解决这些问题呢?经过反复的思考,都难以获得一个很好的解决方案,2013年看到贝加莱的 powerlink 总线方案,我眼前一亮,这不就是我一直追求的东西么!

我决定采用通用平台上的简易以太网协议来实现一个通用控制器,因为控制器使用以太网扩展连接外部的模块,还有控制器成本也很便宜,所以命名为 ECON,有以太网(Ethernet)和便宜(Easy)控制器的含义。

2 系统设计哲学 KISS

经过长年的工控系统的开发,我特别推崇 UNIX 的设计哲学-KISS,对于 ECONWIN 的设计 架构,我尝试将 KISS 原则贯穿于整个体系之中。

通用平台主机我选择 PC 机或者工控机,这个平台是目前性价比最好的硬件平台,window或者 linux 都是非常非常成熟的运行体系,虽然普通系统实时性不够好,但是加上实时补丁或者设计得够巧妙后,系统的实时性还是可以的(linux 可以得到 1ms 的硬实时,windows可以得到 1ms 的软实时),又加上 PC 平台的容易获得(现在人基本人手一台 PC 机或者笔记本),开发者可以在 10 分钟内搭建系统并开始设计验证。

通用平台上的开发环境,我采用 VC2003+Qt 作为系统开发 IDE, lua 脚本为系统的运行脚本,这些都是目前软件工业界能找得到最好的最成熟的东西, VC 开发环境从易用性还有性能上都是最好的, Qt 是开源的体系框架,作为 ECONWIN 的设计基础,刚好适合。Lua 脚本和 c/c++的完美契合、lua 脚本的简易语法、lua 运行高性能等都是我选择他的理由。

系统外围扩展总线采用以太网,由于网络的普遍应用,1000M 网口目前都是 pc 机的标配,100M 交换机的廉价和高性能,使基于太网的系统扩展,变得廉价而且易得。

外围模块采用 stm32 107、stm32 207 等 arm 芯片, stm32 芯片为高速的 risc 芯片, 体系成熟 稳定,使用者众多,107,207 等型号自身带了以太网 mac 器件,编程简单、性能优良,开发者可以快速的定制自己的外围模块。

3 ECONWIN 体系架构

4 快速体验 ECONWIN

在下面的项目托管网页中

https://github.com/huzhiwen28/econwin/

1 安装以太网驱动

在文件夹 econwin/econwinpackage/网口驱动程序/ 中运行 WinPcap_4_1_2.exe, 此是以太网驱动。

2 安装 lua IDE

在文件夹 econwin/econwinpackage/lua IDE 中会找到安装文件和 lua 学习教材, 运行安装文件 会安装 lua IDE。

3 系统运行

在文件夹 econwin/econwinpackage/econwin/中运行 econwin.exe 文件。

4 开始随意探索系统的功能吧

econwinpackage\econwin\hmi 文件夹中保存了 HMI 项目,其实是 lua 方式配置文件 econwinpackage\econwin\luasystem 文件夹中保存了系统的基础服务文件 econwinpackage\econwin\plugins 文件夹中保存了 qt 库

Fileregister.lua 文件是用户自己配置系统包含哪些用户定义的 lua 脚本的文件

Globalvar.lua 是用户自定义 lua 空间的全局变量的文件,这些变量的定义是方便在变量监控中显示

Para.lua 是系统使用的配置文件,用户最好不要编辑 usertask1.lua 是用户自己定义的 lua 脚本任务

5 ECONWIN 界面

5.1 主界面

运行程序后, 主界面如下

主界面主要为 HMI 编辑功能和 HMI 界面运行功能,系统自己会记忆 HMI 项目名称和运行状态。

5.2 系统界面

点击 系统 菜单,弹出系统界面

系统界面有如下功能

1) 启动、停止系统运行

2) 选择系统总线使用的网卡

在系统停止运行状态下面选择网卡

系统目前只支持有线网卡!

3) 进入变量监控界面

4) 进入任务监控界面

5) 进入模块监控界面

6) 进入程序监控界面

5.3 变量监控界面

变量监控界面,是对系统中定义的全局变量监控的界面,目前支持简单的变量(lua 脚本和 c++中的全局变量)监控和设置值。

5.4 任务监控界面

任务监控界面,是对系统中定义的任务监控(lua 任务和 C++任务)的功能界面,可以起到和停止任务

5.5 模块监控界面

模块监控界面,可以在其中系统中定义的模块的端口状态,并设置输出口的值。

5.6 程序监控界面

对 lua 脚本程序进行监控的界面,可以查看 lua 脚本中各个变量的实时刷新值。

6 ECONWIN 通信协议

ECONWIN 通信协议目前比较简单,分为 3 类,PDO 帧(01),SDO 帧(02),广播帧(03)PDO 帧和 SDO 帧由 PC 发出后,顺序经过外部模块进行数据交换(ethercat 方式),最后一个节点返回到 PC 机,广播帧由 PC 机发出,外部模块读自己的数据,无需应答。

PDO 是 PC 和外围模块自动间隔时间刷新的帧,主要做内存刷新。 SDO 是用户触发的或者模块启动时设置的通信帧,一般用来设定外部模块参数。 广播帧是用户触发的通信帧,用来做模块的同步。

注意:目前系统只实现了SDO

PDO 帧格式

PDO 帧中的每个模块数据,会根据模块中的映射参数进行解析,而映射参数是通过启动的时候,PC 使用 SDO 帧设置到外部模块上的。

SDO 帧格式

数据映射为8个字节,格式如下

WADDRL WADDRH WLen WDeviceADDR RADDRL RADDRH RLen RDeviceADDR

WADDRL: 写数据在帧中地址的低字节 WADDRH: 写数据在帧中地址的高字节 WLen: 写数据的长度 WDeviceADDR: 写设备中的内存地址 RADDRL: 读数据在帧中地址的低字节 RADDRH: 读数据在帧中地址的高字节 RLen: 读数据的长度 RDeviceADDR: 读设备中的内存地址

广播帧

目标 mac 地址 源 mac 地址 协议头 帧类 模块数量

第一个模块数据映射 第二个模块数据映射 第三个模块数据映射 数据

模块数据映射为5个字节,格式如下

ID WADDRL WADDRH WLen WDeviceADDR

ID: 为外部模块 id WADDRL: 写数据在帧中地址的低字节 WADDRH: 写数据在帧中地址的高字节 WLen: 写数据的长度 WDeviceADDR: 写设备中的内存地址