Grafika Komputerowa. Geometria 3W

Aleksander Denisiuk
Polsko-Japońska Akademia Technik Komputerowych
Wydział Informatyki w Gdańsku
ul. Targ Drzewny 9/11
80-894 Gdańsk

denisiuk@pja.edu.pl

Geometria 3W

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

Najnowsza wersja tego dokumentu dostępna jest pod adresem

http://users.pja.edu.pl/~denisjuk

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Definicja wektora

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

 $\begin{array}{c} \text{Przestrze\'n} \\ \text{rzutowa} \ \mathbb{RP}^{3} * \end{array}$

■ Wektorem nazywa się skierowany odcinek.

- Kierunek wektora pokazuje strzałka.
- lacktriangle Punkt A jest początkiem wektora
- lacksquare Punkt B jest $\emph{końcem}$ wektora
- Oznaczenie: $a=\overline{AB}$

Równość wektorów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

 $\overrightarrow{AB} = \overrightarrow{A_1B_1} = a$ jeżeli ABB_1A_1 jest równoległobokiem:

- Relcja równości wektorów jest relacją równoważności:
 - \Box a=a (symetryczna)
 - \Box $a=b\Rightarrow b=a$ (zwrotna)
 - \Box $a=b,b=c\Rightarrow a=c$ (przechodnia)
- Nie odróżniamy równych wektorów
 - □ każdy wektor może się zacząć w dowolnym pinkcie

Wektory, cd

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

 $\begin{array}{c} \text{Przestrze\'n} \\ \text{rzutowa} \ \mathbb{RP}^{3} * \end{array}$

- Dwa wektory są *zgodnie kolinearne (współliniowe),* jeżeli są równoległe i mają ten sam zwrot.
- Dwa wektory są *niezgodnie kolinearne (współliniowe),* jeżeli są równoległe i mają przeciwne zwroty.
- Długość odcinka AB, przedstawiającego wektor a, nazywa się jego długością $|AB|=|a|=\|a\|$
- wektor nazywą się *zerowym*, jeśli jego początek i koniec się pokrywają: $\overrightarrow{AA} = \mathbf{0}$

Dodawanie wektorów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

Suma wektorów a i b nazywa się wektora+b, otrymany z tych wektorów bądź równych im wektorów jak na poniższym rysunku

Dodawanie wektorów przemienne i łączne

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

 \blacksquare a+b=b+a

$$(a+b)+c=a+(b+c)$$

Odejmowanie wektorów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

lacktriangle Wektor a-b — jest wektorem, suma którego z b

Mnożenie wektora przez liczbę (skalowanie)

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

lacksquare Iloczynem wektora a i liczby $\lambda \in \mathbb{R}$ jest wektor λa

$$\Box$$
 $|\lambda a| = |\lambda| \cdot |a|$

- $\ \square$ $\ \lambda a$ i a są zgodnie kolinearne, jeżeli $\lambda>0$ oraz niezgodnie kolinearne, gdy $\lambda<0$
- $\Box \quad 0 \cdot a = 0$
- $(\lambda + \mu) \mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$

$$\lambda a, \lambda < 0$$
 $a \qquad \lambda a, \lambda > 0$

Kombinacje liniowe wektorów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

- Niech dany będzie układ wektorów $\{a_1,\ldots,a_k\}$ oraz wagi (liczby rzeczywiste) α_1,\ldots,α_k
- Wektor

$$\mathbf{a} = \alpha_1 \mathbf{a_1} + \cdots + \alpha_k \mathbf{a_k}$$

nazywa się *kombinacją liniową* wektorów a_1, \ldots, a_k .

Iloczyn skalarny wektorów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

lacktriangle Iloczynem skalarnym wektorów a i b jest liczba:

$$\Box \quad \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a} \circ \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} = |a||b|\cos\varphi$$

- lacksquare jest kątem międy $m{a}$ i $m{b}$
- $\blacksquare ab = ba$

Iloczyn skalarny wektorów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

- $a^2 = aa = |a|^2$

- $lackbox{a} b = 0 \iff a \perp b$ albo jeden z wektorów jest zerowy
- $\cos \varphi = \frac{a \cdot b}{|a| \cdot |b|}$
 - \Box jeżeli |a|=|b|=1, to $\cos \varphi= {m a}\cdot {m b}$
 - lacksquare normalizacja: $a\mapsto rac{a}{|b|}$
- OpenGL (GLSL):
 - \Box dot(a, b)
 - \square normalize(a)

Rzut prostopadły wektora na prostą

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

- Rzut (projekcja) wektora a na prostą jest wektor a', którego początkiem jest rzut początku wektora a na prostą, a końcem rzut końca wektora a na tę prostą.
- $lackbox{lack} |oldsymbol{e}|=1$, wówczas $oldsymbol{a}'=(oldsymbol{a}\cdotoldsymbol{e})oldsymbol{e}$

lloczyn wektorowy

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

$$lacksquare a imes b = c = -b imes a$$

- \Box $c \perp (a,b)$
- $\Box |c| = |a||b|\sin\varphi$
- \Box (a, b, c) > 0
- Pole równoległoboku

- $lacksquare a \parallel b \iff a imes b = 0$

- OpenGL (GLSL): cross(a, b)

Przykład

- Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)
- Wektory
- Iloczyn skalarny
- Iloczyn wektorowy
- Baza
- Przekształcenia liniowe
- Kąty Eulera
- Przestrzeń afiniczna \mathbb{R}^3
- Przestrzeń rzutowa \mathbb{RP}^{3*}

- lacksquare Niech |c|=1
- Mnożenie wektorowe przez c działa na płaszczyźnie prostopadłej do c jak obrót o $\frac{\pi}{2}$

Współrzędne wektora względem bazy

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

Niech dane będą trzy niezerowe, niekomplanarne wektory e_1 , e_2 , e_3 . Wtedy każdy wektor a może zostać jednoznacznie przedstawiony jako

suma
$$a=xe_1+ye_2+ze_3=\begin{pmatrix}e_1&e_2&e_3\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}$$

- Wektory e_1 , e_2 , e_3 nazywane są *bazą* przestrzeni wektorów.
- Liczby x, y, z nazywane są *współrzędnymi* wektora a w bazie e_1 , e_2, e_3 .

$$\mathbf{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x, y, z)$$

Przykłady

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

Działania liniowe na wektorach

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

Niech dana będzie baza e_1 , e_2 , e_3

$$\Box \quad \boldsymbol{a} \pm \boldsymbol{b} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} \pm \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = \begin{pmatrix} x_a \pm x_b \\ y_a \pm y_b \\ z_a \pm z_b \end{pmatrix}$$

$$\Box \quad \lambda \boldsymbol{a} = \lambda \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} = \begin{pmatrix} \lambda x_a \\ \lambda y_a \\ \lambda z_a \end{pmatrix}$$

Baza kartezjańska

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

lacksquare Baza kartezjańska: i,j,k

$$|i| = |j| = |k| = 1$$

$$\Box$$
 $i \perp j \perp k \perp i$

$$\Box$$
 $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}) > 0$

$$a = x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k} = (a\mathbf{i})\mathbf{i} + (a\mathbf{j})\mathbf{j} + (a\mathbf{k})\mathbf{k}$$

Działania metryczne w bazie kartezjańskiej

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

$$i^2 = j^2 = k^2 = 1$$

$$\Box \quad ab = x_a x_b + y_a y_b + z_a z_b$$

$$lack i imes i imes j imes j = k imes k = 0$$

$$lacksquare i imes j = k, j imes k = i, k imes i = j$$

$$j \times i = -k, k \times j = -i, i \times k = -j$$

$$\Box \quad \boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix}, - \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix}, \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix} \end{pmatrix}$$

$$\square$$
 $egin{aligned} oldsymbol{a} imes oldsymbol{b} & oldsymbol{j} & oldsymbol{k} \ x_a & y_a & z_a \ x_b & y_b & z_b \ \end{aligned}$

Zmiana bazy

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

- Niech dane będą dwie bazy: $\mathcal{E} = \{e_1, e_2, e_3\}$ oraz $\mathcal{F} = \{f_1, f_2, f_3\}$. Wtedy
 - \square Wektory $(oldsymbol{e_1}, oldsymbol{e_2}, oldsymbol{e_3})$ mają jednoznaczne rozłożenie po

bazie
$$(f_1, f_2, f_3)$$
:
$$\begin{cases} e_1 = a_{11}f_1 + a_{21}f_2 + a_{31}f_3, \\ e_2 = a_{12}f_1 + a_{22}f_2 + a_{32}f_3, \\ e_3 = a_{13}f_1 + a_{23}f_2 + a_{33}f_3. \end{cases}$$

- \square wektor a w bazie $\mathcal F$ będzie miał współrzędne $A \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix}$, gdzie

$$egin{pmatrix} x_a \ y_a \ z_a \end{pmatrix}$$
 — jego współrzędne w \mathcal{E} .

 \square A nazywa się macierzą przejścia od \mathcal{E} do \mathcal{F} (zmiany bazy)

Zmiana bazy. Uwagi

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

- Jeżeli obie bazy są kartezjańskie, to macierz przejścia jest ortogonalna
 - □ wektory-kolumny są jednostkowe i wzajemnie prostopadłe
 - to samo dotyczy wierszy
 - \square dla macierzy ortogonalnych $A^{-1}=A^t$

Przekształcenia liniowe

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

- Niech dane będą: układ wektorów $\mathcal{E} = \{e_1, e_2, e_3\}$ oraz baza $\mathcal{F} = \{f_1, f_2, f_3\}, \begin{pmatrix} e_1 & e_2 & e_3 \end{pmatrix} = \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix} A$.
 - □ *przekwształceniem liniowym* nawyza się odwzorowanie

$$\mathbf{a} = \begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} \mapsto x_a \mathbf{e_1} + y_a \mathbf{e_2} + z_a \mathbf{e_3}$$

- \square współrzędne wektora $oldsymbol{a}$ po przekształceniu będą równe $A\left(egin{array}{c} y_a \\ z \end{array}
 ight)$
- $\ \square \ A$ nazywa się $\mathit{macierzq}$ przekształcenia
- \square wynik przekształcenia zapisuje się $Aoldsymbol{a}$

Przekształcenia liniowe. Uwagi

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

- lacktriangle macierz A składa się z kolumn współrzędnych układu $\mathcal E$ w bazie $\mathcal F$
- macierz A składa się z kolumn współrzędnych wektorów bazy $\mathcal F$ po przekształceniu
- jeżeli macierz A jest odrwacalną, to $\mathcal E$ też jest bazą oraz przekształcenie liniowe zgada się z zamianą bazy $\mathcal E o \mathcal F$
- lacksquare przekształcenie $\phi:\mathbb{R}^n o\mathbb{R}^n$ jest liniowym wtedy i tylko wtedy, gdy
 - 1. dla dowolnych dwóch wektorów $m{a}, m{b}$ spełniono $\phi(m{a}+m{b})=\phi(m{a})+\phi(m{b})$
 - 2. dla dowolnego wektoru ${\bf a}$ oraz dowolnej liczby rzeczywistej λ spełniono $\phi(\lambda {\bf a}) = \lambda \phi({\bf a})$

Przekształcenia liniowe. Zmiana bazy*

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

- Niech dane będą dwie bazy: $\mathcal{E}=\{\,e_1,e_2,e_3\,\}$ oraz $\mathcal{F}=\{\,f_1,f_2,f_3\,\},\, egin{pmatrix} e_1&e_2&e_3\ \end{pmatrix}=egin{pmatrix} f_1&f_2&f_3\ \end{pmatrix} T$
- Niech przekształcenie liniowe będzie dane w bazie ${\mathcal E}$ macierzą A
- Wtedy w bazie \mathcal{F} to przekształcenie dane będzie macierzą TAT^{-1}

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

Figure II.5: Effect of a rotation through angle θ . The origin $\mathbf{0}$ is held fixed by the rotation.

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Skalowanie

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

$$S_{\lambda_1,\lambda_2} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Mnożenie przekształceń

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

- lacktriangle Niech dane będą dwa przekształcenia liniowe: A oraz B
- lloczynem (superpozycją) przekształceń $A\circ B$ jest przekształcenie liniowe $AB({m a})=A(B{m a})$
 - \square Macierzą $A \circ B$ jest macierz AB
 - Dlatego zamiast $A \circ B$ będziemy pisać AB
- lacktriangle Macierzą przekształcenia odwrotnego do A jest macierz A^{-1}

Twierdzenie 1. Każde przekształcenie liniowe można rozłożyć w iloczyn obrotu oraz skalowania (o różnych współczynnikach)

Twierdzenie 2. Każde przekształcenie liniowe sztywne, które nie zmienia orientacji, jest obrotem

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

Figure II.14: The vector \mathbf{v} being rotated around \mathbf{u} . The vector \mathbf{v}_1 is \mathbf{v} 's projection onto \mathbf{u} . The vector \mathbf{v}_2 is the component of \mathbf{v} orthogonal to \mathbf{u} . The vector \mathbf{v}_3 is \mathbf{v}_2 rotated 90° around \mathbf{u} . The dashed line segments in the figure all meet at right angles.

Macierz obrotu 3D

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

Obrót dookoła osi wychodzącej z początku układu współrzędnych w kierunku $u=(u_1,u_2,u_3)$ o kąt θ stopni.

$$\begin{pmatrix} (1-c)u_1^2 + c & (1-c)u_1u_2 - su_3 & (1-c)u_1u_3 + su_2 \\ (1-c)u_1u_2 + su_3 & (1-c)u_2^2 + c & (1-c)u_2u_3 - su_1 \\ (1-c)u_1u_3 - su_2 & (1-c)u_2u_3 + su_1 & (1-c)u_3^2 + c \end{pmatrix},$$

gdzie $c = \cos \theta$, $s = \sin \theta$.

Przykład

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

Obrót odwzorowujący osie $x\mapsto y\mapsto z\mapsto u$

Kąty Eulera: odchylenie, pochylenie, przechylenie

 $\begin{array}{l} \text{Przestrze\'n liniowa } \mathbb{R}^3 \\ \text{(Przypomnienie)} \end{array}$

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

$$\blacksquare \quad R = R_{\theta_y,j} R_{\theta_p,i} R_{\theta_r,k}$$

Macierze obrotów Eulera

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

- $R_{\theta_p,i} \\ R_{\theta_y,j} \\ R_{\theta_r,k}$

Skalowanie 3D

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Wektory

Iloczyn skalarny

Iloczyn wektorowy

Baza

Przekształcenia liniowe

Kąty Eulera

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3*}

$$S_{\lambda_1,\lambda_2,\lambda_3} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia

afiniczne

Współrzędne

jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3} *

Przestrzeń afiniczna \mathbb{R}^3

Odejmowanie punktów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^3 *

lacksquare *Różnicą* punktów B i A jest wektor \overrightarrow{AB} .

$$\blacksquare \quad B - A = \overrightarrow{AB}$$

$$\blacksquare \quad A = B \iff B - A = \mathbf{0}$$

$$\blacksquare (B-A) + (C-B) = (C-A) = \overrightarrow{AC}$$

Dodanie do punktu wektora

 $\begin{array}{l} \text{Przestrze\'n liniowa } \mathbb{R}^3 \\ \text{(Przypomnienie)} \end{array}$

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

Sumą punktu A oraz wektora a jest punkt B, który zgadza się z końcem wektora a, jeżeli początek tego wektora umieścić w A.

- $\blacksquare \quad B = A + \overrightarrow{AB}$
- $(A + a_1) + a_2 = A + (a_1 + a_2)$
- Dodanie wektora nazywa się przesunięciem róznoległym

Kombinacja afiniczna punktów

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3} *

- Niech dany będzie układ punktów $\{A_1, \ldots, A_k\}$ oraz wagi (liczby rzeczywiste) $\alpha_1, \ldots, \alpha_k$, takie że $\alpha_1 + \cdots + \alpha_k = 1$
- \blacksquare Ustalmy dowolny punkt O
- **Kombinacją afiniczną** punkitów $\alpha_1 A_1 + \cdots + \alpha_k A_k$ jest punkt $O + \alpha_1 \overrightarrow{OA_1} + \cdots + \alpha_k \overrightarrow{OA_k}$

Twierdzenie 3. Kombinacja afiniczna punktów nie zależy od wyboru punktu O

Układ współrzędnych

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne Współrzedne

jednorodne

Obrót

Skalowanie

- Wybierzmy dowolny punkt *O*, *początek układu*
- Przez ten punkt poprowadźmy trzy niekomplanarne proste: Ox, Oy, Oz, osie współrzędnych
- Płaszczyzny współrzędnych Oxy, Oxz, Oyz
- Na osiach wyznaczymy niezerowe wektory: odpowiednio e_1, e_2, e_3 —bazę.
- Dla każdego punktu A wektor \overrightarrow{OA} ma jednoznaczne przedstawienie $\overrightarrow{OX}=xm{e_1}+ym{e_2}+zm{e_3}$
 - \square liczby x, y, z współrzędne punktu A
- układ jest prawym (dodatnim), jeżeli $\{e_1,e_2,e_3\}$ jest zorientowany dodatnio
- układ jest *lewym (ujemnym),* jeżeli $\{e_1,e_2,e_3\}$ jest zorientowany ujemnie
- kierunki na osiach, zorientowane zgodnie z wektorami bazy, nazywają się *dodatnimi*. Kierunki przeciwne *ujemnymi*

Układ współrzędnych kartezjańskich

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne Współrzedne

jednorodne

Obrót

Skalowanie

- Układ współrzędnych nazywa się kartezjańskim, jeżeli
 - □ osie są wzajemnie prostopadłe
 - \square wektory e_1 , e_2 , e_3 są jednostkowe (mają jednostkową długość).
- Dalej w prezentacji prawie zawsze układ będzie prawym kartezjańskim układem
- lacktriangle Dla wektorów bazy układu kartezjańskiego czasami stosuje się oznaczenia i,j,k

Działania na punktach w układzie współrzędnych

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

Odejmowanie punktów:

$$\Box A_2 - A_1 = \overrightarrow{A_1 A_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Dodanie wektora:

$$\Box A_1 + \mathbf{a} = \begin{pmatrix} x_1 + x_a \\ y_1 + y_a \\ z_1 + z_a \end{pmatrix}$$

■ Kombinacja afiniczna:

$$\square \quad \alpha_1 A_1 + \dots + \alpha_k A_k = \begin{pmatrix} \alpha_1 x_1 + \dots + \alpha_k x_k \\ \alpha_1 y_1 + \dots + \alpha_k y_k \\ \alpha_1 z_1 + \dots + \alpha_k z_k \end{pmatrix}$$

wzory są prawidłowe w każdym układzie

Podział odcinka w danym stosunku

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^3 *

- lacksquare Dane są dwa punkty $A_1(x_1,y_1,z_1)$ oraz $A_2(x_2,y_2,z_2)$
- \blacksquare Znaleźć punkt A(x,y,z), który dzieli odcinek A_1A_2 w stosunku $\lambda_1:\lambda_2$

$$\Box \quad \lambda_{2} \overrightarrow{A_{1}} \overrightarrow{A} - \lambda_{1} \overrightarrow{A} \overrightarrow{A_{2}} = 0$$

$$\Box \quad \overrightarrow{OA} = \underbrace{\lambda_{2} \overrightarrow{OA_{1}} + \lambda_{1} \overrightarrow{OA_{2}}}_{\lambda_{1} + \lambda_{2}}$$

$$\Box \quad x = \underbrace{\lambda_{2} x_{1} + \lambda_{1} x_{2}}_{\lambda_{1} + \lambda_{2}}, \ y = \underbrace{\lambda_{2} y_{1} + \lambda_{1} y_{2}}_{\lambda_{1} + \lambda_{2}}, \ z = \underbrace{\lambda_{2} z_{1} + \lambda_{1} z_{2}}_{\lambda_{1} + \lambda_{2}}.$$

wzory są prawidłowe w każdym układzie

Odległość między punktami

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

lacksquare Dane są dwa punkty $A_1(x_1,y_1,z_1)$ oraz $A_2(x_2,y_2,z_2)$

wzory są prawidłowe tylko w układzie kartezjańskim

Zmiana układu współrzędnych

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3} *

- Niech dane będą dwa ogólne układy współrzędnych: (O, e_1, e_2, e_3) oraz (O', f_1, f_2, f_3)
- Punkt P ma współrzędne (x,y,z) względem jednego układu oraz (z',y',z') względem drugiego.
- Wektory $(oldsymbol{e_1}, oldsymbol{e_2}, oldsymbol{e_3})$ mają jednoznaczne rozłożenie po

bazie
$$(f_1, f_2, f_3)$$
:
$$\begin{cases} e_1 = a_{11}f_1 + a_{21}f_2 + a_{31}f_3, \\ e_2 = a_{12}f_1 + a_{22}f_2 + a_{32}f_3, \\ e_3 = a_{13}f_1 + a_{23}f_2 + a_{33}f_3. \end{cases}$$

$$\Box \quad (e_1 \quad e_2 \quad e_3) = (f_1 \quad f_2 \quad f_3) A$$

Punkt O w nowym układzie ma współrzędne (x_0, y_0, z_0) .

$$\begin{cases} x' = a_{11}x + a_{12}y + a_{13}z + x_0, \\ y' = a_{21}x + a_{22}y + a_{23}z + y_0, \\ z' = a_{31}x + a_{32}y + a_{33}z + z_0. \end{cases}$$

Przekształcenia afiniczne

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzedne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3} *

- Niech dany będzie układ współrzędnych O, f_1, f_2, f_3 oraz punkt O'i układ wektorów e_1, e_2, e_3
 - przekwształceniem afinicznym nawyza się odwzorowanie

$$P = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto O' + x\mathbf{e_1} + y\mathbf{e_2} + z\mathbf{e_3}$$

współrzędne punktu A po przekształceniu będą równe

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$
, gdzie

$$e_1 \quad (e_1 \quad e_2 \quad e_3) = (f_1 \quad f_2 \quad f_3) A$$

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

- Jeżeli układ wektorów e_1,e_2,e_3 jest bazą, to przekształcenie afiniczne zgadza się z zamianą układu współrzędnych
- Przekwształcenie afiniczne B składa się z przekształcenia linowego A i przesunięcia równoległego T_u , $B=T_u\circ A$
 - \square Wówczas przesunięcie T_u oraz przekształcenie liniowe A określone są jednoznacznie.

Twierdzenie 4. Każde przekształcenie afiniczne można rozłożyć w iloczyn obrotu, skalowania (o różnych współczynnikach) oraz przesunięcia równoległego

Twierdzenie 5. Każde przekształcenie afiniczne sztywne, które nie zmienia orientacji, jest obrotem (afnicznym) lub przesunięciem równoległym

Przykład

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3} *

Obrót o 90° dookoła punktu (2,3) na płaszczyźnie

Współrzędne jednorodne w \mathbb{R}^2

 $\begin{array}{c} \text{Przestrze\'n liniowa } \mathbb{R}^3 \\ \text{(Przypomnienie)} \end{array}$

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

- Trójka liczb $x,y,w\in\mathbb{R}$ ($w\neq 0$) reprezentuje punkt o współrzędnych $(x/w,y/w)\in\mathbb{R}^2.$
- $(2,1) \sim (2:1:1) \sim (6:3:3) \sim (-2:-1:-1)$

Współrzędne jednorodne w \mathbb{R}^3

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

- Czwórka liczb $x,y,z,w\in\mathbb{R}$ ($w\neq 0$) reprezentuje punkt o współrzędnych $(x/w,y/w,z/w)\in\mathbb{R}^3$.
- $(2,1,1) \sim (2:1:1:1) \sim (6:3:3:3) \sim (-2:-1:-1:-1)$

Macierz przekształcenia afinicznego w \mathbb{R}^2

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^3 *

Niech $B=T_u\circ A$ będzie przekształceniem afinicznym,

$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

 \blacksquare Macierzą przekształcenia B nazywa się macerz

$$M_B = \begin{pmatrix} a_{11} & a_{12} & u_1 \\ a_{21} & a_{22} & u_2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Box \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + u_1 \\ a_{21}x + a_{22}y + u_2 \end{pmatrix} \\
\Box \begin{pmatrix} a_{11} & a_{12} & u_1 \\ a_{21} & a_{22} & u_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + u_1 \\ a_{21}x + a_{22}y + u_2 \\ 1 \end{pmatrix}$$

Obrót

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Skalowanie

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

$$S_{\lambda_1,\lambda_2} = \begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Przesunięcie równoległe

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

$$T_{u_1,u_2} = \begin{pmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Macierz przekształcenia afinicznego w \mathbb{R}^3

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne

jednorodne

Obrót

Skalowanie

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & u_1 \\ a_{21} & a_{22} & a_{23} & u_2 \\ a_{31} & a_{32} & a_{33} & u_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & u_1 \\ a_{21} & a_{22} & a_{23} & u_2 \\ a_{31} & a_{32} & a_{33} & u_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z + u_1 \\ a_{21}x + a_{22}y + a_{23}z + u_2 \\ a_{31}x + a_{32}y + a_{33}z + u_3 \\ 1 \end{pmatrix}$$

Przesunięcie równoległe

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

Przesunięcie o wektor $u = (u_1, u_2, u_3)$

$$\begin{pmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^3 *

Obrót dookoła osi wychodzącej z początku układu współrzędnych w kierunku $u=(u_1,u_2,u_3)$ o kąt θ stopni. Kierunek obrotu określany jest orientacją.

$$\begin{pmatrix} (1-c)u_1^2 + c & (1-c)u_1u_2 - su_3 & (1-c)u_1u_3 + su_2 & 0\\ (1-c)u_1u_2 + su_3 & (1-c)u_2^2 + c & (1-c)u_2u_3 - su_1 & 0\\ (1-c)u_1u_3 - su_2 & (1-c)u_2u_3 + su_1 & (1-c)u_3^2 + c & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

 $gdzie c = \cos \theta, s = \sin \theta.$

Skalowanie

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia

afiniczne

Współrzędne

jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

$$\begin{bmatrix} \alpha_1 & 0 & 0 & 0 \\ 0 & \alpha_2 & 0 & 0 \\ 0 & 0 & \alpha_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 — symetria względem płaszczyzny $y-z$.

58 / 64

Jednorodność macierzy przekształcenia afinicznego

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^3 *

lacktriangle Macierze A oraz λA określają to samo przekształcenie afiniczne.

Macierz superpozycji przekształceń

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia afiniczne

Współrzędne jednorodne

Obrót

Skalowanie

- lacktriangle Niech dane będą dwa przekształcenia afiniczne: A oraz B
- iloczynem (superpozycją) przekształceń $A\circ B$ jest przekształcenie afiniczne $AB({\bf a})=A(B{\bf a})$
 - \square Macierzą $A \circ B$ jest macierz AB
 - lacktriangle Dlatego zamiast $A \circ B$ będziemy pisać AB
- lacktriangle Macierzą przekształcenia odwrotnego do A jest macierz A^{-1}

Teoria transponowana

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Działania na punktach

Układ współrzędnych

Przekształcenia

afiniczne

Współrzędne

jednorodne

Obrót

Skalowanie

Przestrzeń rzutowa \mathbb{RP}^{3*}

- Wektory i punkty są zapisywane jako wiersze $\boldsymbol{v}=(v_x,v_y,v_z)$, P=(x:y:x:w)
- Mnożenie przez macierz przekształcenia po prawej stronie $(v_x \ v_y \ v_z) M$, $(x \ y \ z \ w) A$
- Macierze są zamieniane na transponowane:
 - \square przesunięcie o wektor $u = (u_1, u_2, u_3)$:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ u_1 & u_2 & u_3 & 1 \end{pmatrix},$$

etc

- Mnożenie macierzy w innej kolejności
 - \square Macierzą $A_1 \circ A_2$ będzie A_2A_1

 $\begin{array}{c} \text{Przestrze\'n liniowa} \ \mathbb{R}^3 \\ \text{(Przypomnienie)} \end{array}$

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

Przestrzeń rzutowa

Przestrzeń rzutowa

- Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)
- Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^3 *

Przestrzeń rzutowa

- Składa się z czwórek współrzędnych (x:y:z:w) współrzędnych jednorodnych
 - \square w może być zerem
- Dwie proporcjonalne czwórki reprezentują ten sam punkt:

$$(x_1: y_1: z_1: w_1)$$

$$\sim (x_2: y_2: z_2: w_2) \iff \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = \frac{w_1}{w_2}$$

Przekształcenia rzutowe

Przestrzeń liniowa \mathbb{R}^3 (Przypomnienie)

Przestrzeń afiniczna \mathbb{R}^3

Przestrzeń rzutowa \mathbb{RP}^{3} *

Przestrzeń rzutowa

Przekształceniem rzutowym (projektywicznym) nazywa się przekształcenie

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix},$$

gdzie A jest dowolną 4×4 macierzą, przy czym $\det A \neq 0$