# Module3-quiz-SP23 A\*

**Due** Feb 19 at 11:59pm

Points 10

**Questions** 10

Available Feb 5 at 12am - Feb 20 at 2:59am

Time Limit 300 Minutes

# **Attempt History**

| LATEST Attempt 1 7 min | utes 10 out of 10 | ) |
|------------------------|-------------------|---|

① Correct answers will be available on Feb 20 at 11:59pm.

Score for this quiz: **10** out of 10 Submitted Feb 15 at 1:22am This attempt took 7 minutes.

# Question 1 Is the formula (p→ q)→ (r→ s) a propositional rule? True False It is not a propositional rule as there are implications on the both sides. Left and right hand sides should be implication free.

# Question 2 1 / 1 pts What will be the ground term with values 25, 125, 625?

5 \*\* (2..4)
From the above ground term we can write the values as 5², 5³, 5⁴.
None of the above
5 \*\* (1..3)
5 \*\* (0..4)

## **Question 3**

1 / 1 pts

What is/are the stable model generated by clingo for P(X, Y) := Y = 1..9, Y = 3 \* X?

- $\bigcirc$  {p(1,3), p(3,9), p(6,9)}
- $\bigcirc$  {p(1,3), p(3,6), p(3,9)}
- (p(1,3), p(2,6), p(3,9))

As clingo doesn't take fractions, it will return above models.

(p(1,6), p(2,4),p(3,9))

# **Question 4**

1 / 1 pts

Assuming  $\sigma=\{p,q,r,s\}$ , find ALL minimal models of the program:  $\{p\lor q,r\leftarrow p,s\leftarrow q\}$ 

(p,r)

| ○ {p,q,r} and {s} |  |  |
|-------------------|--|--|
| ○ {p,q} and {r}   |  |  |
| {p,r} and {q,s}   |  |  |

## **Question 5**

1 / 1 pts

Consider the following program:

p(1..3).

$$q(X) := p(X), X=2..4$$
.

Which of the following rules are present in the equivalent propositional image for this program (select all that apply):

- $\ \, \square \ \, p(2) \wedge p(3) \wedge p(4)$
- $extbf{Q} \ q(v) \leftarrow p(v) \wedge \perp ext{ for all } v \in \mathbf{S} \cup \mathbf{Z} ackslash \{2,3,4\}$
- $lacksquare p(1) \wedge p(2) \wedge p(3)$
- $\ \ \, \square \ \, q(1) \leftarrow p(1) \wedge \top$



No stable model

(p)

The propositional image of a clingo program consists of the instances of its rules rewritten as propositional formulas. Which option is equivalent to the propositional image of the following clingo program?

p(3..6).

q(X\*2) := p(X), X<5.

$$egin{aligned} p(3) \wedge p(4) \wedge p(5) \wedge p(6) \ & q(6) \leftarrow p(3) \ & q(8) \leftarrow p(4) \end{aligned}$$

$$\begin{array}{c} p(3) \wedge p(6) \\ q(6) \leftarrow p(3) \end{array}$$

$$p(3)$$
 $p(4)$ 
 $p(5)$ 
 $p(6)$ 
 $q(6) \leftarrow p(3)$ 
 $q(8) \leftarrow p(4)$ 
 $q(10) \leftarrow p(5)$ 
 $q(12) \leftarrow p(6)$ 

$$p(3)$$
 $p(6)$ 
 $q(6) \leftarrow p(3)$ 
 $q(8) \leftarrow p(4)$ 
 $q(10) \leftarrow p(5)$ 
 $q(12) \leftarrow p(6)$ 

Question 9 1 / 1 pts

| hich of the clingo programs can represent "either a is true or b is true" |          |  |
|---------------------------------------------------------------------------|----------|--|
| a :- not b.                                                               |          |  |
| b :- not a.                                                               |          |  |
| a :- not a.                                                               |          |  |
| b:-notb.                                                                  |          |  |
| op(a;b).                                                                  |          |  |
| a.                                                                        |          |  |
| O b.                                                                      |          |  |
|                                                                           |          |  |
| Question 10                                                               | 1 / 1 pt |  |

| Question 10                                                                  | 1 / 1 pts    |
|------------------------------------------------------------------------------|--------------|
| True or False? For any propositional formula F, every stable m a model of F. | odel of F is |
| True                                                                         |              |
| ○ False                                                                      |              |

Quiz Score: 10 out of 10