Homework 2 - Quantum Mechanics I

NIANTE.	CCODE	
IN A IVI H;•	SCUBE	
1 1 2 2 1 4 1 1 1 1 .	 SCOILL.	

Deadline: Wednesday 11 October 2023 by 13:00 (submission only on paper)

Credits: 20 points \rightarrow 20 credits Number of problems: 4

Type of evaluation: Formative Evaluation

This assignment is individual and consists of 4 problems related to unit 2 of quantum mechanics. Please justify all calculations and highlight the answers.

1. (5 points) Probability densities

Consider the log-normal distribution:

$$\rho(x) = \frac{A}{x} e^{-\frac{(\ln(x) - \mu)^2}{2\sigma^2}},$$

where A, μ , and σ are positive real constants.

- (a) Determine A.
- (b) Find $\langle x \rangle$.
- (c) Find $\langle x^2 \rangle$, and σ_x .
- (d) What do A, μ , and σ represent?
- (e) Plug some fiducial numbers for these constants, and sketch the graph of $\rho(x)$ using your favourite programming language.

2. (6 points) Wave functions, normalisation, and expectation values

The wave function of a particle at time t=0 is given by the following piecewise function:

$$\Psi(x, t = 0) = \begin{cases} C \frac{x}{\alpha}, & 0 \le x \le \alpha \\ C \frac{\beta - x}{\beta - \alpha}, & \alpha \le x \le \beta \\ 0, & \text{everywhere else,} \end{cases}$$

where C, α , and β are positive constants.

- (a) Find an expression for C.
- (b) Plug some fiducial numbers for the constants, and use programming tools to sketch $\Psi(x,t=0)$ as a function of x.
- (c) Where is the particle most likely to be found at t = 0?
- (d) What is the probability of finding the particle to the left of α ? Check your result in the limiting cases $\beta = \alpha$ and $\beta = 2\alpha$.
- (e) What is the probability of finding the particle between α and β ?
- (f) What is the expectation value of x?

3. (5 points) Free particles: Gaussian wave packets

We studied free particles in class and showed that they are represented by wave packets. Consider the case of a free particle whose initial wave function is given by:

$$\Psi(x,0) = \alpha e^{-\beta x^2},\tag{1}$$

where α and β are real and positive constants.

- (a) Find α by normalising the initial wave function, $\Psi(x,0)$.
- (b) Find $\Psi(x,t)$. Hint: compute $\phi(k)$ via Fourier analysis first, and then plug it into the wave packet function.
- (c) Find $|\Psi(x,t)|^2$. Then, plug some fiducial numbers, and use your favourite programming tools to sketch $|\Psi(x,t)|^2$ versus x for t=0 and two later times. Qualitatively, what happens to $|\Psi(x,t)|^2$ as time progresses?
- (d) Calculate $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, $\langle p^2 \rangle$, σ_x , and σ_p .
- (e) Does the uncertainty principle hold? At what time t does the system come closest to the uncertainty limit?

4. (4 points) The Schrödinger equation, potentials and general solutions Consider the following 1D wave function:

$$\psi(x) = A \left(\frac{x}{x_0}\right)^n e^{-\frac{x}{x_0}}$$

where A, n, and x_0 are constants.

- (a) Write down the time-independent Schrödinger equation.
- (b) Find the potential V(x) and energy E, for which this wave function is a solution to the Schrödinger equation. Assume that as $x \to +\infty$, $V(x) \to 0$.
- (c) Plug some fiducial values and sketch the potential, V(x), versus x, using your favourite programming tool.
- (d) Write down an expression for a more general time-dependent solution.