Lecture Notes on Borel Sets

Math 6201 - Topology

AY 2024-2025 Term 1 James Israel B. Montillano

Department of Computer, Information Sciences, and Mathematics (May 2025)

Contents

1	Preliminaries	3
1.1	Sets	
1.2	Functions, or Maps	3
1.3	Topology	3
1.4	G_{δ}	
1.5	Relativization	4
1.6	Continuous maps and Homeomorphisms	5
1.7	σ -rings	
1.8	Projection Map	6
2	Cartesian product topology	6
	References	8

1 Preliminaries 3

1 Preliminaries

This section reviews some fundamental concepts needed to understand the basic parts on separation axioms on topology.

1.1 Sets

Definition 1.1 — Subset. (Lipschutz, 1965) A set A is a subset of a set B or, equivalently, B is a superset of A, written $A \subset B$ or $B \supset A$ iff each element in A also belongs to B; that is, if $x \in A$ implies $x \in B$.

Definition 1.2 — Union. (Lipschutz, 1965) The union of two sets A and B, denoted by $A \cup B$, is the set of all elements which belong to A or B, i.e., $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Definition 1.3 — Intersection. (Lipschutz, 1965) The intersection of two sets A and B, denoted by $A \cap B$, is the set of elements which belong to both A and B, i.e., $A \cap B = \{x : x \in A \text{ and } x \in B\}$

Definition 1.4 — Power Sets. (Dugundji, 1966) Let A be any set. Its power set $\mathcal{P}(A)$ is the set of all subsets of A.

Definition 1.5 — Countable. (Dugundji, 1966) A set *A* is countable if it is finite or equivalent to the set \mathbb{N} of counting numbers. If $A \equiv N$, then *A* is called countably infinite or denumerable.

1.2 Functions, or Maps

Definition 1.6 — Map. (Dugundji, 1966) Let X and Y be two sets. A map $f: X \to Y$ (or function with domain X and range Y) is a subset $f \subset X \times Y$ with the property: for each $x \in X$, there is one, and only one, $y \in Y$ satisfying $(x,y) \in f$. To denote $(x,y) \in f$, we write y = f(x) and say that y is the image of x under f.

Definition 1.7 — Surjective function. (Holmes, 2008) Let $f: X \to Y$ be a function. We say that f is surjective if for each $y \in Y$, there exists $x \in X$ such that f(x) = y

Definition 1.8 — Injective function. (Holmes, 2008) Let $f: X \to Y$ be a function. We say that f is injective if $f(x_1) = f(x_2)$ implies $x_1 = x_2(x_i \in X)$

Definition 1.9 — Bijective function. (Holmes, 2008) Let $f: X \to Y$ be a function. We say that f is bijective if it is both injective and surjective.

1.3 Topology

Definition 1.10 — Topology. (Dugundji, 1966) Let X be a set. A *topology* (or topological structure) in X is a family τ of subsets of X that satisfies:

- (1). Each union of members of τ is also a member of τ .
- (2). Each *finite* intersection of members of τ is also a member of τ .

1.4 G_{δ}

- (3). \emptyset and X are members of τ .
- Example 1.1 Discrete topology. Let X be any set and $\tau = \mathscr{P}(X)$. Then τ is a topology on X.

Proof.

- 1. Clearly, $X, \emptyset \in \tau$
- 2. Since every possible subset of X is included in τ , the union of any combination of these subsets will always result in another subset of X, which is already in τ .
- 3. Since all subsets are open, the intersection of any finite number of them will still be a subset of X, hence in τ .

Thus, τ is a topology on X.

■ Example 1.2 — Indiscrete topology. Let X be any set and $\tau = \{X, \emptyset\}$. Then τ is a topology on X

Proof.

- 1. $X \in \tau$ and $\emptyset \in \tau$
- 2. $X \cup X = X \cup \emptyset = X \in \tau$ $\emptyset \cup \emptyset = \emptyset \in \tau$
- 3. $X \cap X = X \in \tau$ $X \cap \emptyset = \emptyset \cap \emptyset = \emptyset \in \tau$

Thus, τ is a topology on X.

Definition 1.11 — Open sets. (Morris, 2020) Let (X, τ) be a topological space. Then the members of τ are said to be *open sets*.

Definition 1.12 — Closed sets. (Morris, 2020) Let (X, τ) be a topological space. A subset S of X is said to be *closed set* in (X, τ) if its complement in X, namely $X \setminus S$, is open in (X, τ) .

Definition 1.13 — Neighborhood. (Holmes, 2008) Let $x \in X$. Any open set containing x is called a neighborhood of x.

1.4 G_{δ}

Definition 1.14 (Dugundji, 1966) A set G is called G_{δ} if it is the intersection of at most countably many open sets.

1.5 Relativization

Definition 1.15 — Subspace topology. (Dugundji, 1966) Let (X, τ) be a topological space and $Y \subset X$. The induced topology τ_Y on Y is $\{Y \cap U : U \in \tau\}$. The pair (Y, τ_Y) is called a subspace of (X, τ) .

1.6 Continuous maps and Homeomorphisms

Definition 1.16 — Continuous maps. (Belleza, 2025) Let (X, τ_X) and (Y, τ_Y) be topological spaces. A map $f: X \to Y$ is called *continuous* if the inverse image of each open set in Y is open in X. That is, f^{-1} maps $\tau_Y \to \tau_X$.

■ **Example 1.3** Let (X, τ) be any topological space and $f: (X, \tau) \to (X, \tau)$ is defined by f(x) = x for all $x \in X$. Then f is continuous.

Proof. To show that f is continuous, we need to verify that the inverse image of every open set in $Y = (X, \tau)$ is open in $X = (X, \tau)$.

Let O be an arbitrary open set in Y. By definition, $f^{-1}(O) = \{x \in X \mid f(x) \in O\}$. Since f(x) = x, this simplifies to $f^{-1}(O) = \{x \in X \mid x \in O\} = O$. Since O is open in O, and O has the same topology as O, O is also open in O. Thus, $f^{-1}(O) = O$ is open in O. Since the inverse image of every open set in O is open in O, the identity map O is continuous.

Not every identity function is continuous. To see this, let $X = \{1, 2, 3, 4\}$, and define two topologies on X, $\tau_1 = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, X\}$, $\tau_2 = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{2\}, \{1, 2, 3\}, X\}$. Clearly, τ_1 and τ_2 are topologies on X. Then $i: (X, \tau_1) \to (X, \tau_2)$ defined by i(x) = x for all $x \in X$ is not continuous, since there exists $\{2\} \in \tau_2$ such that $i^{-1}(\{2\}) = \{2 \notin \tau_1$.

Definition 1.17 — Homeomorphism. (Dugundji, 1966) A continuous bijective map $f: X \to Y$, such that $f^{-1}: Y \to X$ is also continuous, is called a homeomorphism (or a bicontinuous bijection) and denoted by $f: X \cong Y$. Two spaces X, Y are homeomorphic, written $X \cong Y$, if there is a homeomorphism $f: X \cong Y$.

- **Example 1.4** The identity map $1: X \to X$ is a homeomorphism.
- **Example 1.5** Two discrete spaces X and Y (similarly, for indiscrete spaces), are homeomorphic if and only if there is a one-to-one function on X onto Y.

Proof. In a discrete space, every subset is open. Let $f: X \to Y$ be a bijection (one-to-one and onto). We will show that f is a homeomorphism. To show f is continuous, the preimage of any open set in Y must be open in X. Since Y is discrete, every subset of Y is open. Thus, for any open $V \subseteq Y$, $f^{-1}(V) \subseteq X$. Because X is discrete, $f^{-1}(V)$ is open in X. Hence, f is continuous. Similarly, $f^{-1}: Y \to X$ is a bijection. For any open $U \subseteq X$, $(f^{-1})^{-1}(U) = f(U) \subseteq Y$. Since X is discrete, U is open, and since U is discrete, U is open in U. Thus, U is continuous. Hence, U is a bijection, continuous, and its inverse U is also continuous. Therefore, U is a homeomorphism, and U is U is a homeomorphism, and U is a homeomorphism.

1.7 σ -rings

Definition 1.18 — Topological Invariant. We call any property of spaces a topological invariant if whenever it is true for one space X, it is also true for every space homemorphic to X

1.7 σ -rings

Definition 1.19 A nonempty family $\Sigma \subseteq \mathscr{P}(X)$ is called a σ -ring if

- 1. $A \in \Sigma \Rightarrow A^C \in \Sigma$,
- 2. $A_i \in \Sigma$ for $i = 1, 2, \dots \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$.

1.8 Projection Map

This definition is found on page 11 of dugundji

Definition 1.20 — Projection map. (Dugundji, 1966) For any sets X, Y, the map $p_1: X \times Y \to X$ determined by $(x,y) \to x$ is called "projection onto the first coordinate"; $p_2: X \times Y \to Y$, where $p_2(x,y) = y$ is "projection onto the second coordinate."

2 Cartesian product topology

We form a product topology based on subbasis???

Definition 2.1 — Cylinder set.

Definition 2.2 (Dugundji, 1966) Let $\{Y_{\alpha} \mid \alpha \in \mathscr{A}\}$ be any family of topological spaces. For each $\alpha \in \mathscr{A}$, let \mathscr{T}_{α} be the topology for Y_{α} . The cartesian product topology in $\prod_{\alpha} Y_{\alpha}$ is that having for subbasis all sets

$$\langle U_{\beta} \rangle = p_{\beta}^{-1}(U_{\beta}),$$

where U_{β} ranges over all members of \mathscr{T}_{β} and β over all elements of \mathscr{A} .

If any one factor $Y_{\alpha} = \emptyset$, then the cartesian product is also empty and the topologies of the non-empty factors then play no role in determining that of the product; we wish to exclude such behavior, so we shall assume throughout this book that each factor of any cartesian product of topological spaces is non-empty.

This comes from Ai but it checks out

■ **Example 2.1** Subbasis for the Product Topology on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ Let's illustrate the subbasis for the product topology using the familiar example of \mathbb{R}^2 .

Let $Y_1 = \mathbb{R}$ and $Y_2 = \mathbb{R}$, where both are equipped with the standard topology. In the standard topology on \mathbb{R} , open sets are unions of open intervals (a,b).

The product space is \mathbb{R}^2 , which is the Cartesian plane. Our index set here is $\mathscr{A} = \{1,2\}$.

According to the definition, the subbasis for the product topology on $\prod_{\alpha \in \mathscr{A}} Y_{\alpha}$ (which is \mathbb{R}^2 in this case) consists of all sets of the form $p_{\beta}^{-1}(U_{\beta})$, where U_{β} is an open set in Y_{β} and $\beta \in \mathscr{A}$.

Let's look at what these sets represent geometrically.

First, consider subbasis elements from $p_1^{-1}(U_1)$. Let U_1 be an open interval in \mathbb{R} , for example, $U_1 = (a,b)$ for some $a,b \in \mathbb{R}$ with a < b. The set $p_1^{-1}((a,b))$ consists of all points $(x,y) \in \mathbb{R}^2$ such that their first coordinate x is in the interval (a,b).

$$p_1^{-1}((a,b)) = \{(x,y) \in \mathbb{R}^2 \mid a < x < b\}$$

Geometrically, this represents an **infinite vertical strip** in the Cartesian plane, extending infinitely in the positive and negative y-directions, bounded by vertical lines x = a and x = b.

Similarly, consider subbasis elements from $p_2^{-1}(U_2)$. Let U_2 be an open interval in \mathbb{R} , for example, $U_2 = (c,d)$ for some $c,d \in \mathbb{R}$ with c < d. The set $p_2^{-1}((c,d))$ consists of all points $(x,y) \in \mathbb{R}^2$ such that their second coordinate y is in the interval (c,d).

$$p_2^{-1}((c,d)) = \{(x,y) \in \mathbb{R}^2 \mid c < y < d\}$$

Geometrically, this represents an **infinite horizontal strip** in the Cartesian plane, extending infinitely in the positive and negative x-directions, bounded by horizontal lines y = c and y = d.

Therefore, the subbasis $\mathscr S$ for the product topology on $\mathbb R^2$ is the collection of all such open vertical strips and all such open horizontal strips:

$$\mathscr{S} = \{ p_1^{-1}(U_1) \mid U_1 \text{ is open in } \mathbb{R} \} \cup \{ p_2^{-1}(U_2) \mid U_2 \text{ is open in } \mathbb{R} \}$$

Forming a Basis from the Subbasis The product topology is defined by taking the collection of all *finite intersections* of these subbasis elements to form a basis. Consider the intersection of a typical open vertical strip and a typical open horizontal strip:

$$p_1^{-1}((a,b)) \cap p_2^{-1}((c,d)) = \{(x,y) \in \mathbb{R}^2 \mid a < x < b \text{ and } c < y < d\}$$

This precise set is an **open rectangle** in \mathbb{R}^2 , often denoted as $(a,b) \times (c,d)$.

Since the collection of all open rectangles forms a well-known basis for the standard topology on \mathbb{R}^2 , this example clearly demonstrates how the subbasis for the product topology correctly generates the familiar "standard" or "Euclidean" topology on \mathbb{R}^2 . This approach generalizes to any product of topological spaces, ensuring that the projection maps are continuous, which is a fundamental property of the product topology.

REFERENCES 8

References

Belleza, K. (2025). Continuous maps (general topology). [Last accessed 19 May 2025]. https://drive.google.com/file/d/1C4QofGsse0Id7WWCgmd424qTMKC51sfJ/view (cited on page 5).

- Dugundji, J. (1966). *Topology*. Allyn; Bacon, Inc. (Cited on pages 3–6).
- Holmes, R. R. (2008). *Introduction to topology*. https://api.semanticscholar.org/CorpusID: 13883851 (cited on pages 3, 4).
- Lipschutz, S. (1965). *Schaum's outline of general topology*. McGraw-Hill. (Cited on page 3). Morris, S. A. (2020). *Topology without tears* [Version of June 28, 2020]. Self-published. http://www.topologywithouttears.net (cited on page 4).