度数等于 $\Delta(G)$,从而 $2m = \sum_{v \in G} d(v) \ge \Delta(G) + (k-1) + 2(n-k) = 2n-1 > 2n-2$ 。矛盾。 证法二:

设v为T中度数最大的顶点,记v的邻域 $N(v) = \{v_1, v_2, \cdots, v_k\}$ 。令 Γ_i 为以 vv_i 为起点的 初级路径, 朝远离 v 的方向不断扩展此路径, 直到无法扩展为止。此时 Γ_i 的终点 v_i' 必是为叶(否 则, 若 $d(v_i') \geq 2$, 则 v_i' 至少与 Γ_i 上的两个顶点相邻, 从而可以构成圈, 这与 T 是树矛盾), 且对 $1 \le i, j \le k$,若 $i \ne j$,则 $v_i' \ne v_j'$ (否则又可以构成圈,矛盾),从而 T 中至少有 k 片树叶。

证明: 取 $\varphi: G \to H/H_1$, $\forall x \in G$, $\diamondsuit \varphi(x) = H_1 \sigma(x)$.

 φ 显然函数, 且由于 σ 是满同态, 所以对任意 $H_1y \in H/H_1$, 存在 $x \in G$, 使得 $\sigma(x) = y$, 于 是有 $\varphi(x) = H_1 y$ 。从而 φ 也是满射。

对任意 $a, b \in G$,

$$\varphi(ab) = H_1 \sigma(ab)$$
 $= H_1 \sigma(a) \sigma(b)$
 $= H_1 H_1 \sigma(a) \sigma(b)$
 $= H_1 H_1 \sigma(a) H_1 \sigma(b)$
 $= \varphi(a) \varphi(b)$
 $(\varphi 定义)$
 $(\sigma 是同态)$
 $(H_1 H_1 = H_1)$
 $(H_1 \sigma(a) = \sigma(a) H_1)$
 $(\varphi 定义)$

从而 φ 是同态,且 $\varphi(G) = H$ 。

对任意 $x \in G$,

 $x \in \ker \varphi$

$$\iff \varphi(x) = H_1$$
 (ker 定义)
 $\iff H_1\sigma(x) = H_1$ ($\varphi(x) = H_1\sigma(x)$)
 $\iff \sigma(x) \in H_1$ (教材定理 17.22)
 $\iff x \in G_1$ ($G_1 = \sigma^{-1}(H_1)$)

从而 $G_1 = \ker \varphi$ 。由群同态基本定理知, $G/G_1 \cong H/H_1$ 。