International FEL2017 Conference

Harmonic lasing & gain-cascading More efficient X-Ray free-electron laser oscillators

Haixiao Deng
Shanghai Institute of Applied Physics, CAS

Santa Fe, USA 2017.08.21

Outline

- Background & Motivation
- □ Harmonic lasing scheme of XFELO
- ☐ Gain-cascading scheme of XFELO
- Other XFELO issues
 - Simplified model for fast optimization
 - ✓ XFELO options for SCLF
- □ Summary & Outlook

Background & Motivation

XFELO History

- In 1984, proposed by Collela & Luccio
- In 2008, resurrected by Kwang-Je Kim
- In 2010, tunable wavelength X-ray cavity
- New ideas and proposals is coming out.

XFELO Proposal

- XFELO driven by 7GeV ERL
- Storage ring based XFELO
- XFELO options at European XFEL
- XFELO proposal at 4GeV LCLS-II
- XFELO proposal at 8GeV SCLF

- □ Goal: achieving shorter wavelength with a lower beam energy
- □ For high-gain FEL, various harmonic lasing schemes were proposed.
 - ✓ Harmonic amplifier (Latham 1991)
 - ✓ Harmonic lasing of SASE (McNeil 2006, Schneidmiller 2012)
 - ✓ Super-radiant harmonic lasing of HGHG (Giannessi 2006)
 - ✓ Linear harmonic lasing of HGHG (Dai & Deng, 2004-2009)

□ However for low-gain FEL , harmonic lasing already demonstrated

- ✓ Harmonic lasing of FEL oscillator proposed (Colson 1980)
- ✓ Harmonic lasing of FEL oscillator demonstrated at Stanford (1989)
- ✓ 2nd, 3rd, 5th harmonic lasing at JLAB (2000)
- √ 3rd harmonic lasing at Novo-FEL (2011)

- □ Cavity crystals with Bragg energy equals to the interested harmonic, instead of the fundamental.
- □ Phase-shifters are tuned to the interested harmonics, while suppressing the fundamental and other harmonics.

Parameters	Third harmonic	Fifth harmonic
Crystal Bragg energy $E_{\rm H}$	12.42 keV	20.71 keV
Phase jump $\Delta \varphi$	$4\pi/3$	$6\pi/5$
Undulator period λ_u	15 mm	15 mm
Undulator number N_u	1200	1200
Undulator parameter K	1.3244	1.3244
Beam energy E	3.5 GeV	3.5 GeV
Slice energy spread σ	100 keV	100 keV
Beam peak current I	20 A	100 A
Slice emittance ε_n	$0.083~\mu$ m-rad	$0.083~\mu$ m-rad
Single-pass gain gh	65%	72%
Total cavity reflection r	80%	80%
Cavity length L_c	150 m	150 m
Bragg crystal	C(4,4,4)	C(5,5,9)
FWHM spectral width	5.5 meV	24.6 meV
FWHM temporal width	463 fs	107 fs
Photons/pulse	0.86×10^{8}	0.24×10^{8}
Output peak power	0.35 MW	0.74 MW

Single-pass gain .vs. phase-shifter

$$g_1$$
=270, g_3 =10, g_5 =0.8 ($\Delta \phi$ =0)
 g_1 =2.2, g_3 =0.1, g_5 =0.8 ($\Delta \phi$ =6 π /5)

FEL growth .vs. roundtrip

FEL evolution in time and spectral domain

- Numerical simulation
 - ✓ GENESIS + OPC
 - ✓ harmonic field import
 - Proper noise loading

- Sensitivity anlysis on X-ray cavities
 - √ ~µm offset
 - √ ~10nrad tilt
 - ✓ <1×10⁻⁷ /K thermal expansion coefficient

Gain-cascading scheme of XFELO

Pendulum equation

$$k_{s} = \frac{\sqrt{\varepsilon}}{L_{u}}; \quad \eta_{\text{max}} = \frac{\sqrt{\varepsilon}}{k_{u}L_{u}}$$

Expected saturation

$$L_u = \frac{1}{4} \frac{2\pi}{k_s} = \frac{\pi/2}{\sqrt{\varepsilon}} L_u$$

Efficiency

$$\eta = \frac{P_{out}}{P_{beam}} = \frac{1}{4N_u}$$

- IR FELO : N=25 , $\eta=1\%$ XFELO : N=1000 , $\eta=0.02\%$
- □ Problem: Is it possible to extract more FEL power from the electrons? if one decrease the undulator period number Nu.
- □ Solution: In the following undulators, replace the used electron beam with a fresh one and continue to gain.

Gain-cascading scheme of XFELO

Condition

$$r \prod_{1}^{n-1} (1 + g_i) < 1$$

arXiv:1605.00872 (2016). Electron beams act as in a RELAY race

Gain-cascading scheme of XFELO

12.4keV X-ray FELO simulation Normal XFELO:

- 7GeV, 0.2µm-rad,10A, 20pC
- 18.8mm×2000, g=15%

Gain-cascading XFELO:

- 7GeV, 0.2µm-rad,10A, 20pC
- $18.8 \text{mm} \times 900 \times 4$, $g_1 + g_2 + g_3 + g_4 = 15\%$
- 0.5ps delay for each chicane

Peak power:

1.1MW → 9.7MW

Pulse length:

1.7ps → 0.46ps

Pulse energy:

 $1.67 \mu J \rightarrow 4.23 \mu J$

Simplified XFELO model

Motivation: the traditional way of tracking each macro-particle is time-consuming.

Solution:

- Solving the electron density partial differential equation to get single-pass gain.
- Calculating the light evolution using the initial noise, gain and cavity reflectivity.

Electron density distribution equation

$$\frac{\partial \rho}{\partial z'} + \eta' \frac{\partial \rho}{\partial \theta} + \sin \theta \frac{\partial \rho}{\partial \eta'} = 0$$

Light power profile evolution equation

$$P_{n+1} = P_n (1 + g(P)) R(\omega)$$

- Theoretical model
- □ Fast optimization (~minute)
- Cavity detuning analysis

Phys. Rev. AB 20, 030702 (2017).

Electron density distribution

XFELO options for SCLF

Shanghai Coherent Light Facility (SCLF): 8GeV CW-FEL

40 20

60

s (µ m)

100

Parameter	Value
Beam energy	8 GeV
Relative energy spread	0.01~%
Repetition rate	$1~\mathrm{MHz}$
Peak current (low mode)	10, 20, 30 A
Bunch charge (low mode)	20 pC
Normalized emittance (low mode)	$0.2~\mathrm{mm}\mathrm{\cdot mrad}$
Peak current (high mode)	0.5, 1, 1.5 kA
Bunch charge (high mode)	100 pC
Normalized emittance (high mode)	$0.4~\mathrm{mm}\cdot\mathrm{mrad}$
Undulator period length	26 mm
Undulator module length	$5 \mathrm{m}$
Radiation wavelength	$0.1 \mathrm{nm}$

arXiv:1706.06338 (2017). MOP063, FEL2017

Summary & Outlook

- □ Full scientific potentials of X-ray FEL will be realized if both the amplifiers and oscillators are available.
- □ Harmonic lasing scheme for XFELO allows for hard X-ray generation with a low beam energy, e.g., 3-4GeV electron beam.
- □ Gain-cascading scheme for XFELO delivers fully coherent x-ray pulse with higher peak power (×10), shorter pulse length (×1/4), and higher pulse energy (×2.5) in the mean time. On other hand, for an Oscillator which is suffered from large cavity loss, gain cascading scheme may make it lase.
- □ There are still many new ideas and proposals for XFELO. With the constructions of high-repetition rate / CW machines, i.e., European XFEL, LCLS-II, and SCLF, there exists an opportunity for XFELO.

Acknowledgment

- ☐ FEL2015 Prize Committee, FEL2017 Conference Organizer
- □ KwangJe Kim, Gennady Stupakov, Zhirong Huang, Lihua Yu, Alex. Wu Chao for helpful discussion and encouragement.
- □ Dong Wang, Zhimin Dai and Zhentang Zhao for continuous support.
- ☐ Many thanks to SINAP FEL-team colleagues, especially Chao Feng, Lie Feng, Si Chen, Xingtao Wang, and Bo Liu et al.
- □ Special thanks to my collaborator, Qingmin Zhang, Kai Li.
- □ And many others.

Thanks for attention!