MAHARASHTRA STATE BORAD OF TECHNICAL EDUCATION

(Autonomous)

(ISO-27001-2005 Certified)

WINTER-12 EXAMINATION

Subject Code-12204

Model Answer

Q. No.	Answer	Remark
1(A) a	<u>Fourier's Law</u> : If states that the rate of heat flow across an isothermal surface is proportional to the temperature gradient at the surface.	1 Mark
	OR	
	It states that the rate of heat flow by conduction through a uniform (fixed) material is directly proportional to the area normal to the direction of the heat flow and the temperature gradient in the direction of the heat flow. $Q \stackrel{.}{\alpha} A \left(-dT/dn\right)$ $Q = -kA(dT/dn)$	1 Mark
	Where q - rate if heat transfer A – area perpendicular to heat flow K – thermal conductivity T – temperature n – distance measured normal to the surface.	
	<u>Convection</u> : Convection is a mode of heat transfer when a macroscopic particle of hard crosses a specific surface, it carries with it a definite quantity of enthalpy such a flow of enthalpy is called convection. Convection occurs as a result of the movement of the fluid in the form of circulating currents.	1 Mark
	Eg. Heating of water by hot surface Flow of air across a heated radiator.	1 Mark Any one example may be given mark
A. b	Thermal conductivity: It is defined as the quantity of heat transferred in unit time through a uniform surface of unit area, of unit thickness at a temperature difference of 1°C between the surfaces.	2 marks
	It is denoted as k, unit is W/mK Overall heat transfer coefficient: It is defined as the quantity of heat transferred in unit time through unit area, log mean temperature difference is unity.	2 marks

[Type text] Page 1 / 12

	It is denoted	d by U, unit is W/m²K.	
A. c	black body i	zman law: It states that the total energy emitted (emissive power) by a s proportional to the fourth power of its absolute temperature. The order of the contraction of the contract	2 Marks
		Stefan Boltzman constant = 5.67 X 10 ⁻⁸ W/m ² k ⁴	2 Marks
		W/W_b	
	OR W	$= W_b \varepsilon$ = $\sigma T^4 \varepsilon$	
	i.e. w	= 0 1 &	
A. d		on of heat exchangers:	
		ed on application:	2 marks
	_	Graphite block heat exchanger for corrosive fluids apped surface heat exchangers for viscous liquid	
		ed on quantity to be handled :	2 Marks
	•	Double pipe heat exchanges for small quantity to be handled	
	She	Il & tube heat exchanges for large quantity to be handled.	
1(B) a	Concept log	mean radius for thick water cylinders.	3 Marks
	Log mean ra	adius (r _L) is the radius which when applied to the integrated equation of	
	a flat wall w	ill give the correct rate of heat flow through a thick walled cylinder.	
	r ₁ = r	r_0 - r_i /In(r_0 / r_i)	
		outer radius of cylinder and r _i is inner radius of cylinder	
	The optimu a bare pipe	m thickness of insulation. m thickness of insulation is arrived at by a purely economic approach. If were to carry a hot fluid, there would be a certain hourly loss of heat	3 Marks
		e can be determined from the cost of producing heat. Lower the heat r the thickness, initial and annual fixed charges (maintenance and	
		n). By assuming a no. of thickness of insulation and adding the fixed	
	•	he value of heat loss, a minimum cost will be obtained and the thickness	
	correspondi	ing to it will be the optimum thickness.	
		Total Cost	
	Cost	Fixed cost	
		Value of heat loss	
	Optimum thickness		
	Th	nickness of Insulation	

[Type text] Page 2 / 12

(B) b	Heat gained by cold water Q_c =1000.4.2.(T_2 -30) Heat lost by wall Q_h = 67.2.0.3454(600-30)/.005=324952.32W $Q_c = Q_h$ T_2 =65.52°C Rise in Temperature=65.52-30=35.52°C	01 01 01 02 01
Q.2.a	Thickness of wall (B ₁)= 300mm =0.3m Ti = 1000^{0} C = 1273 K T_{0} = 150^{0} C= 423 K K_{1} = 4.5 W/m K R_{1} = B_{1} / K_{1} A = $0.3/4.5^{*}$ 1 = 0.0667 K/W Q = $(T_{i}$ - $T_{0})$ / R_{1} = $(1273-423)/0.0667$ = 12743.63 W B ₂ = 200 mm=0.2m K ₂ =0.5 W mK T _i = 150^{0} C = 423 K T _o = 50^{0} C = 323 K R ₂ = B ₂ / K ₂ A = $0.2/0.5^{*}$ 1 = 0.4 K/W R = R_{1} + R_{2} = 0.4667 Q = $(1273-323)$ /0.4667 = 2035.57 W Reduction in heat loss $12743.63 - 2035.57$ = 10708.06 W	3 Marks 2 Marks 2 Marks 1 Mark
2.b	Thickness $B = 200 \text{ mm} = 0.2$ $K = 1.45 \text{ W/m}^2 \text{ K}$ $\Delta T = 623 - 313 = 310 \text{ K}$ $A = 2.5 \text{ m}^2$ $Q = \text{KA } \Delta T / B$ = 1.45 * 2.5 * 310 / 0.2 = 5,618.75 W $Q = h_i A_i (350 - T_w)$ Tw = 327.95 °C $Q = h_o A_o (T_{w1} - 40)$ $T_{w1} = 149.8 °C$	02 04 01 01

[Type text] Page 3 / 12

2. c	$Tc_1 = 25^{\circ} C \ Tc_2 = 65^{\circ} C$	
2. 0	$Tc_1 = 23^{\circ} C Tc_2 = 65^{\circ} C$ $Th_1 = 230^{\circ} C Th_2 = 160^{\circ} C$	
	$m_h=0.9 \text{ Kg/sec } C_{ph}=1.45 \text{ KJ/Kg K}$	0.84
	$Q = m_h C_{ph} (Th_1-Th_2)$	2 Marks
	= 0.9 * 1.45 (230 - 160)	
	= 91.35 KJ/ Sec.	
	$91.35 = m_c * 4.2 (40)$	2 Marks
	$m_c = 91.35/4.2 * 40$	
	= 0.544 Kg/Sec	
	Q. = $91.35 * 10^3 \text{ J/Sec}$	
	For Counter current flow	
	$\Delta T1 = 230-65 = 165$	
	$\Delta T2 = 160-25 = 135$	2 Marks
	LMTD = (165-135)/In (165/135)	Zividino
	= 149.49	
	Q = UA LMTD	
	91.35 * 10 ³ J/Sec = 420 *A* 149.49	2 Marks
	$A = 1.45 \text{m}^2$	Z IVIdI KS
	A = 1.45III	
2 0	Important parts of a shall 0 tube heat avalagement are	
3. a	Important parts of a shell & tube heat exchanges are	1/ Monte
	1) Shell	½ Mark
	2) Shell side pass	each
	3) Tube bundle	
	i) Tube pitch	
	a)Square	
	b) Triangular	
	4) Channels &Channel covers	
	5) Tube sheet	
	6) Baffles	
	7) Tie rod	
	8) Spacers	
	OR	
	Diagram with names of different parts	4 Marks
3. b	Evaporators are classified as	2 Marks
	Natural circulating Evaporator	
	Forced circulation Evaporator	
	_, . s. ssa on outdition Enaporation	
	Natural Forced	
	1) Short Tube 1) Long Tube	
	2) Basket 2) Forced circulation	
	2) Dasket 2) i Oroca Circulation	
	OR	
	Diagram of Evaporator	2 Marks
<u> </u>	Diagram of Evaporator	Z IVIAI NO

[Type text] Page 4 / 12

3. c Thermal recompression

Thermal energy of vapours generated from a boiling solution in an evaporator can be utilized if at all there is temp difference between condensing vapours temp and boiling temp of solution. In a single evaporator this temperature difference is zero. To invrease economy of evaporation two methods are available.

- 1) Multiple effect evaporation
- 2) Thermal recompression

In thermal recompression vapours produced from an evaporator is compressed by means of a steam jet ejector. This increases the temperature of vapours to original temperature of steam & can be used as heating medium in evaporator.

Props of Solution which influences evaporation

- 1) Concentration
- 2) Foaming
- 3) Scale formation
- 4) Temp Sensitivity

3. d LMTD = Log mean temperature difference.

There are three flow arrangements for shell side liquid and tube side liquid flowing in a shell a tube type heat exchanges.

- 1) Para riel/ co current
- 2) Counter current
- 3) Cross Current

Temp gradient between hot third & cold third in both types of flows does not remain constant.

For accurately calculating temp gradient use of LMTD is essential.

2 Marks

½ Marks each

[Type text] Page 5 / 12

[Type text] Page 6 / 12

		1
	U= Overall heat transfer coefficient	
	Value of 'U' in turn depends on surface coefficients of liquid on inside & outside so	
	for	1
	Ui = Overall heat transfer coefficient based on inside liquid is given as	1 mark
	1/Ui = 1/hi + Ldi/kd _m + di/hodo	1 morte
	Uo = Overall heat transfer coefficient based on outside liquid 1/ U0 = d0/hidi + Ld0/Kdm + 1/h0	1 mark 1 mark
	So value of U will depend on value of hi & ho	IIIIdik
4.A	30 value of 0 will depend on value of the & no	
(b)	Dropwise condensation Filmwise condensation	1 mark
(6)	Condensation takes in form of Condensation takes place in form of a	THUIK
	drops which fall down film which covers the surface	1 mark
	2) Condensate does not wet the Condensate wets the surface.	I man
	surface.	1 mark
	3) Rate of heat transfer is high as Rate of heat transfer is low due to	
	surface is available for more resistance offered by film formed on	
	condensation surface	1 mark
	4) This type is not common & This type is very common.	
	takes place by chance	
4. A		
(c)	Cocurrent 1	1 mark
	Thi ->> The	
	Tei	
	Thi	1 mark
	The	I mark
	7	
	Te	
	Leanth	
	Counter currenti Tai	
	Counter current To	1 mark
	Tini	
	The	
	+ Ten	
	Th ₁ ,	1 mark
	Temp	IIIIdIK
	Tee	
	Te	
	La com Blot.	

[Type text] Page 7 / 12

4. A (d)	Laminax from. Nu = 2 [mep]/3 [M] Nu = 2 [Mu]	2 Marks
	Nu = 0.023 (OUS) (CPM) MW	2 Mark
4,B(a)	Doubble pipe heat exchange.	4 marks
	Return Gland Gland Gland bend Tee	
	Advantages i) Simple in construction 2) Assumbly is easy.	1 mark
	Disadvantages 1) Ralé of heat 1-rans is very 10w. 2) Area committ be increased to a large content	1 Mark

[Type text] Page 8 / 12

4. B	Diagram of Graphite heat exchanger	4 marks
(b)	agraphile block	
	Graphite heat exchanger is ideally suited for processing corrosive liquids. Graphite is inert to most corrosive fluids and advantage is taken of very high thermal conductivity. It is very soft and is not ductile. Heat exchanger is made up of blocks. Circular channels are drilled across blocks to obtain cross current flow. These channels are drilled at alternate planes.	2 marks
5. a)	D=45 mm =45*10 ⁻³ m u= 0.78m/s I=3.2m	2 Marks
	k=0.66 w/mk µ= 0.478*10 ⁻⁶ Nm/s Npr=2.98	1 Mark
	ρ =1000kg/m ³ Nre= Du ρ/μ = 45*10 ⁻³ *.78*1000/478*10 ⁻⁶ = 73430 The flow is turbulent Then we have to use Dittus boelter equation	1 Mark
	The process is heating Thus the equation is	2 Marks
	NNU=0.023(NRE)0.8 (NPR)0.4 hd/k =0.023(73430)0.8(2.98)0.4 h =278.45*K/D=278.45*0.66/45*10 ⁻³ =4083.93w/m ² k	2 Marks
	$T_1=(70+273)K=343K$ $T_2=(50+273)K=323K$	
	THUS THE RATE OF HEAT TRANFER Q=ha(T1-T2)=4083.93*πDI*(343-323) =4083.93*3.14*45*10 ⁻³ *3.2*20=36931w	

[Type text] Page 9 / 12

Q5B	heat content in hot fluid $Q_H = m_H cp_H (T_1 - T_2)$ Heat content in cold fluid $Q_C = m_C cp_C (T_4 - T_3)$ (where cpH=specific heat of hot fluid,cpc=specific heat of cold fluid) cpH=cpc(as both are water) According to energy balance $Q_H = Q_C$ $m_H cp_h (T_1 - T_2) = m_C cp_C (T_4 - T_3)$ $0.2 * cp_H (75 - 45) = 0.5 * cp_H (T4 - 20)$ 0.2 * 30 = 0.5 (T4 - 20) 6 = 0.5 (T4 - 20) 14 - 20 = 6/0.5 = 12	2 marks
	$T4=12+20=32^{0}c$ $Q=UA LMTD$ $1/U=1/ho+1/hi$ $1/u=1/650+1/650=1+1/650=2/650$ $U=650/2=325w/m^{2}{}^{0}C$ $Q_{H}=m cp_{H}(T_{1}-T_{2})$ $=0.2*4.187*(75-45)$	2 marks
	=25.122 kj/s 25.122*10 ³ j/s	2 marks
	LMTD=ΔTI-ΔT2/In(ΔTI-ΔT2) =55-13/In(55/13)=42/In(4.23)=42/1.44=29.16 °C	2 marks
	Q=UALMTD	2 11101 K3
	A=Q/ULMTD= $25*103/325*29.16=2.63$ m ² Since the value of x_w and k are not given, due consideration should be given.	
Q5C (i).	Mf=12000 kg/hr Solute in feed=solute in thick liquor 5/100*12000=20/100*m 600=20/100*m M=600*100/20=3000kg/hr	
	Mf=m+mv Mv=mf-m	4 Marks
	=12000-3000 =9000kg/hr	4 Marks
	(ii) ms=9000kg/hr Economy=mv/ms=9000/9000=1	7 IVIAINS
Q6 a)	write the formula for the following. (i) nusselts number (ii) grashoff number in calculating film coefficient.state meaning of each term. ANS nusselt number (N _{NU} =hD/k)=wall heat transfer rate/heat transfer by	2 Marks
	conduction Where h=film heat transfer coefficient, D=dia of pipe;k=thyermal conductivity Grashoffs number(N_{Gr} = β g Δ TD $^{3}\rho^{2}/\mu^{2}$ =buoyancy forces*inertia forces/(viscous forces) 2 where β =thermal expansion coefficient, g=acceleration due to gravity, Δ T=difference in temperature ,D=dia of pipeline, ρ =density of liquid, μ =viscosity of liquid.	2 Marks

[Type text] Page 10 / 12

6. b) Explain the significance of heat transfer coefficient in boiling liquid and condensing 2 Marks vapors. The change from liquid to vapor state is known as vaporization and that from vapor to liquid is known as condensation, in either case, the latent heats involved are identical. In the condensation of a pure vapor, it is necessary to remove latent heat of vapourazation.condensation is a convection process that involves a change of phase from vapor to liquid and it occurs whenever a saturated vapor comes into contact of a cold surface, for e.g, in surface condensers, heat transfer from the vapor to the surface takes place and the vapor gets condensed on the surface. 2 Marks The phenomena of boiling, opposite of condensation, is commonly encountered in the unit operations such as distillation and evaporation and steam generation, in all cases where condensation is carried out, boiling apparatus associates it. in chemical industry usually the boiling takes place on a hot submerged surface, e.g, kettle reboiler or inside vertical tube, e.g, vertical tube evaporator. In boiling surface, initially the vapor is formed in the form of bubbles and afterwards as a distinct vapor phase above the liquid interface. As film of liquid is involved in both the cases hilm heat transfer coefficient is important over here. 2 Marks 6. c) Explain the concept of black body and gray body. A black body for which $a=1,r=\zeta=0$, which absorbs all the incident radiant energy, is called a black body. It neither reflects nor transmit but absorbs all the radiation incidents on it. So it is treated as an ideal radiation receiver. It is not necessary that the surface of the body be black in colour. The black body radiates maximum possible amount of energy at a given temperature and though perfectly black bodies do not exist in nature, some materials approach it. E.g. lamp black is the nearest to ablack body. It absorbs 96% of visible light. 2 Marks Gray body= A body having the same value of monochromatic emissivity at all wave lengths is called a gray body. 2 Marks 6. d) Define Kirchoff's law. Write the equation of Plank's law. It states that, at thermal equilibrium the ratio of total emissive power to its absorptivity is the same for all bodies. The emissivity "e" of any body is defined as the ratio of total emissive power E of the body to that of a black body E_b at the same temperature. The emissivity depends on the temp of body only. $e=E/E_b$ According to kirchoff's law $E_1/a_1=E_2/a_2=E_b/a_b=E_b$ 2 Marks Plank's law equation This law gives the relationship between the monochromatic emissive power of a black body, absolute temperature and the corresponding wavelength.

[Type text] Page 11 / 12

		1
	$E_{b,,\lambda}=2~\pi hc^2~\lambda^{-5}/e^{hc}/k~\lambda T-1$ Where $E_{b,,\lambda}$ is the monochromatic emissive power of the black body, W/(m². μ m), h = plank's constant .k=boltzman constant, c= speed of light T=absolute temperature, λ =wave length of radiation.	
6. e)	A=wave length of radiation. How economy of an evaporator can be increased? Name method and explain any one of them. Ans: Economy of an evaporator is defined as the no of kg of water evaporated per kg of steam fed to the evaporator. It is also called the steam economy. Thus economy e=mv/ms. Where mv=kg of vapor evaporated & ms=kg of steam fed By increasing this ratio we can increase the economy of an evaporator. This is done by using two methods. They are i) Use of multiple effect evaporator ii) Vapor recompression. Explanation of multiple effect evaporation In multiple effect evaporation system, the vapor produced in first effect is fed to the steam chest of second effect as a heating medium in which boiling takes place at a low pressure and temperature and so on. Thus in a triple effect evaporator, 1kg of steam fed to 1st effect evaporates approximately 2.5 kg of steam.	2 Marks 2 Marks

[Type text] Page 12 / 12