Vectors

Definition 1

An *inner product* on a vector space is such that

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle$
- 3. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$
- 4. $\langle u, u \rangle \ge 0$, and $= 0 \iff u = 0$

Definition 2

A norm is $||v|| = \sqrt{\langle v, v \rangle}$.

Definition 3

A line $l(t) : \mathbb{R} \to \mathbb{R}^n$ is l(t) = P + td, where $P, d \in \mathbb{R}^n$. It may also be given by l(t) = (1-t)Q + tP, where $P, Q \in \mathbb{R}^n$, and $t \in [0, 1]$.

Definition 4

A plane $p(s,t): \mathbb{R}^2 \to \mathbb{R}^3$ is $p(s,t) = P + sd_1 + td_2$, where $d_1, d_2 \in \mathbb{R}^3$. It may also be given in point-normal form, $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$, where $\langle a, b, c \rangle \in \mathbb{R}^3$ is normal to the plane, and $(x_0, y_0, z_0) \in \mathbb{R}^3$ lies on the plane.

Definition 5

A linear transformation $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ is such that $\lambda(\vec{0}) = \vec{0}$, and $\lambda(\vec{a} + \vec{b}) = \lambda(\vec{a}) + \lambda(\vec{b})$. Alternatively, write $\lambda(x_1, ..., x_n) = x_1 \vec{d_1} + ... + x_n \vec{d_n}$, where $\vec{d_i} \in \mathbb{R}^m$.

Definition 6

An *affine* transformation $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation plus a point $P \in \mathbb{R}^m$.

Definition 7

The *projection* of v onto u, denoted $\text{proj}_u(v)$, is given by $(u \cdot v) \frac{u}{\|u\|}$.

Definition 8

The *tangent line* of $r : \mathbb{R} \to \mathbb{R}^n$ at $a \in \mathbb{R}$ is an affine transformation λ satisfying

$$\lim_{t \to a} \frac{\|r(t) - \lambda(t)\|}{|t - a|} = 0$$

$$\lambda(t) = r(a) + (t - a)\vec{d} \quad \vec{d} \neq 0$$

Prop 1

 $||v + u|| \le ||v|| + ||u||$ (triangle inequality) and $|\langle u, v \rangle| \le ||u|| ||v||$ (Cauchy-Schwartz).

Prop 2

$$(u \times v) \cdot u = 0$$

 $||u \times v||$ is the area of the parallelogram bounded by u, v.

$$||u \times v|| = ||u|| \, ||v|| \sin(\theta)$$

$$u \cdot v = ||u|| \, ||v|| \cos(\theta)$$

Prop 3

The distance between a point R and a plane is given by $\|\operatorname{proj}_{\vec{n}}(P-R)\|$, where P, \vec{n} are as in point-normal form.

Differentiation

Definition 1

(a) $r: \mathbb{R} \to \mathbb{R}^n$ is differentiable at \vec{a} if \exists a linear transformation $\lambda: \mathbb{R} \to \mathbb{R}^n$ such that

$$\lim_{h \to 0} \frac{\|r(\vec{a} + h) - r(\vec{a}) - \lambda(\vec{h})\|}{|h|} = 0$$

(b) Similarly, $F: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at \vec{a} if \exists a linear transformation $\lambda: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k) - F(a,b) - \lambda(h,k)|}{\|\langle h,k\rangle\|}$$

(c) Generally, $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \vec{a} if \exists a linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\vec{h} \to \vec{0}} \frac{\|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})\|}{\|\vec{h}\|}$$

We denote the derivative $\lambda(\vec{a})$ as $DF_{\vec{a}}$

Definition 2

The *arc length* of a curve $r(t) : \mathbb{R}^n \to \mathbb{R}$ is given by

$$s = \int_{a}^{b} ||r'(t)|| dt$$

The arc length parameterization is some $t = \alpha(s)$ such that $||r'(\alpha(s))|| = 1$.

Definition 3

The *Jacobian* matrix of $F : \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$F' = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \frac{\partial F}{\partial x_2} & \cdots & \frac{\partial F}{\partial x_n} \end{bmatrix}$$

Note that, where m > 1, each element is a column vector.

Definition 4

A level surface is $F: \mathbb{R}^n \to 0$.

Definition 5

The *gradient* of $F: \mathbb{R}^n \to \mathbb{R}$ is $\left\langle \frac{\partial F}{\partial x_1}, ..., \frac{\partial F}{\partial x_n} \right\rangle$ (i.e. its Jacobian) and denoted by ∇F .

Definition 6

 $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at \vec{a} if, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $||\vec{x} - \vec{a}|| < \delta \implies ||\lambda(\vec{x}) - \lambda(\vec{a})|| < \varepsilon$.

Definition 7

 $F: \mathbb{R}^n \to \mathbb{R}$ is called C^k -continuous (or k-times continuously differentiable) at \vec{a} if all k^{th} -order partial derivatives exist near \vec{a} and are continuous at \vec{a} .

Definition 8

(a) The k^{th} partial derivative of $F: \mathbb{R}^n \to \mathbb{R}$ at \vec{a} , denoted by $\frac{\partial F}{\partial x_k}(\vec{a})$ is given by

$$\lim_{t \to 0} \frac{F(\vec{a} + te_k) - F(\vec{a})}{t}$$

where e_k is the standard basis vector, e.g. \vec{i} for k = 1.

(b) The directional derivative of $F: \mathbb{R}^n \to \mathbb{R}$ along \vec{h} , denoted by $\partial_{\vec{h}} F(\vec{a})$, is given by

$$\lim_{t \to 0} \frac{F(\vec{a} + t\vec{h}) - F(\vec{a})}{t}$$

(c) The j^{th} iterated directional derivative of $F: \mathbb{R}^n \to \mathbb{R}$ at \vec{a} along \vec{h} , denoted by $\partial_{\vec{h}}^j F(\vec{a})$, is given by $g^{(j)}(0)$, where $g(t) = F(\vec{a} + t\vec{h})$. Note that $g'(0) = \partial_{\vec{h}} F(\vec{a})$.

Prop 1 (Differentiability and Partials)

- (a) If $F : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then all partial derivatives of F exist at \vec{a} .
- (b) If all partial derivatives of $F: \mathbb{R}^n \to \mathbb{R}$ exist near \vec{a} and are continuous at \vec{a} , then F is differentiable.
- (c) If $F : \mathbb{R}^n \to \mathbb{R}$ is k-times continuously differentiable, then all $(k-1)^{th}$ -order partial derivative are continuously differentiable.

Prop 2 (Chain Rule)

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{a} \in \mathbb{R}^n$ and $f(\vec{a}) \in \mathbb{R}^m$, respectively. Then

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$

is differentiable. Furthermore, $Dh_{\vec{a}} = Dg_{f(\vec{a})} \circ Df_{\vec{a}}$, and $h'(\vec{a}) = g'(f(\vec{a}))f'(\vec{a})$.

Prop 3 (Iterated Partials)

(a) If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then

$$\partial_{\vec{h}}(\vec{a}) = \vec{h} \cdot \nabla F = \sum_{i=1}^{n} h_i \frac{\partial F}{\partial x_i}(\vec{a})$$

(b) If $F : \mathbb{R}^n \to \mathbb{R}$ if *k*-times continuously differentiable, then

$$\partial_{\vec{h}}^{j}(\vec{a}) = (\vec{h} \cdot \nabla)^{j} F(\vec{a})$$

Prop 4 (Mixed Partials)

If $F: \mathbb{R}^2 \to \mathbb{R}$ is C^2 -continuous, then $\partial_x \partial_v F = \partial_v \partial_x F$.

Prop 5 (Taylor)

If $F: \mathbb{R}^n \to \mathbb{R}$ is C^k continuous, let

$$\alpha_j(\vec{h}) = \frac{1}{j!} \partial_{\vec{h}}^j(\vec{a}) = \frac{1}{j!} (\vec{h} \boldsymbol{\cdot} \nabla)^j F(\vec{a})$$

Then $F(\vec{a}) + \sum_{i=1}^{k} \alpha_i (\vec{x} - \vec{a})$ is the best degree k approximation of F near \vec{a} .

Integration

Definition 1

Let $\mathcal{B} = [a_1, b_1] \times ... \times [a_n, b_n]$. Then $F : \mathbb{R}^n \to \mathbb{R}$ is *integrable* over \mathcal{B} if

$$\lim_{m \to \infty} \sum_{i=1}^{m} F(c_j^m) \frac{\operatorname{vol}(\mathcal{B})}{m^n} \text{ exists}$$

and is equivalent up to choices of c_j^m , where $c_i^m \in [a_i^k, b_i^k], k \in [1, m]$ (slice of size $\frac{1}{m}$).

Definition 2

A set $S \subseteq \mathbb{R}^n$ has zero measure if $\forall \varepsilon > 0$ we can choose a countable set of open balls such that $S \subseteq \bigcup B(x_i, \varepsilon_i)$, where $\sum \operatorname{vol} B(x_i, \varepsilon_i) < \varepsilon$.

Prop 1 (Integrability)

- (a) If $F : \mathbb{R}^n \to \mathbb{R}$ is continuous on \mathcal{B} , then F is integrable on \mathcal{B} .
- (b) The set of discontinuities of F in \mathcal{B} has zero measure if and only if F is integrable.

Prop 2 (Fubini)

Let $\mathcal{B} = [a_1, b_1] \times \cdots \times [a_n, b_n]$. If $F : \mathbb{R}^n \to \mathbb{R}$ is continuous on \mathcal{B} , then

$$\int_{\mathcal{B}} F = \int_{x_n=a_n}^{x_n=b_n} \cdots \left(\int_{x_1=a_1}^{x_1=b_1} F(x_1, ..., x_n) dx_1 \right) \cdots dx_n$$

The order of integration doesn't matter.

Prop 3 (MVT)

$$\int_{a}^{b} g(x) = g(c)(b-a) \text{ for some } c \in [a, b]$$