Information Theory, Fall 2015	Iftach Haitner
Problem se	et 5
December 29, 2015	Due: January 12

- Please submit the handout in class, or email the grader (omer.rotem1 at gmail.com).
- Write clearly and shortly using sub-claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- It is allowed to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")

- (a) Let (E, D) be a perfectly correct encryption scheme for messages of length n and keys of length ℓ . Let $K \leftarrow \{0,1\}^{\ell}$. For each of the following cases find the best lower bound for ℓ .
 - i. $D(\mathsf{E}_K(m_0)||\mathsf{E}_K(m_1)) \le \varepsilon$ for any $m_0, m_1 \in \{0, 1\}^n$.
 - ii. $SD(\mathsf{E}_K(m_0),\mathsf{E}_K(m_1)) \leq \varepsilon$ for any $m_0,m_1 \in \{0,1\}^n$.
- (b) Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be (s,ε) -OWF, and let $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^n\}$ be 2-universal family. Define g over $\{0,1\}^n \times \{0,1\}^n \times \mathcal{H} \times [n]$ by $g(x,r,h,i) = (f(x),r,h,h(x)_{1,\dots,i},b(x,r))$, for b being the Goldreich-Levin hardcore predicate (i.e., $b(x,r) = \langle x,r\rangle_2$). Find good as you can vales for s' and ε' such that $g(U_{2n},H,I)$ has (s',ε') -entropy $H(g(U_{2n},H,I)) + \frac{1}{2n}$, for $H \leftarrow \mathcal{H}$ and $I \leftarrow [n]$. You can assume that \mathcal{H} can be sampled and evaluated by a size n circuit.