Commented run of THERIAK

This example uses the database JUN92.bs. The calculation is done at 600 $^{\circ}$ C and 4000 Bar, for a bulk composition corresponding to 10 paragonite and 10 muscovite, with excess H₂O and SiO₂.

This is defined in the dat-file (containing P, T and bulk composition) with two lines. The dat-file us usually called THERIN or therin.txt. Edit this file, so that the first two lines (not counting the comment lines beginning with "!") are as follows:

```
600 4000
1 SI(160)AL(60)NA(10)K(10)H(100)O(?) *
```

Start the program Theriak: In a UNIX shell or in the Mac OsX Terminal or in the "start.bat" batch window on a PC you type the command "theriak" and enter Return.

In the following, the framed text (font courier) is the screen output of the program. The user input is bold.

theriak

```
Program THERIAK, Version (dd.mm.yy) 01.08.09 (MacOsX, gfortran)

"Computation of equilibrium assemblages at given PT"

Written by:
Christian de Capitani (Basel, Switzerland)
E-mail: christian.decapitani@unibas.ch

Input dialogue and help by:
Konstantin Petrakakis (Vienna, Austria)
E-mail: Konstantin.Petrakakis@univie.ac.at
```

This is the prolog of the program. Depending on the version used and the platform, the first few lines may look slightly different or may be missing. Some lines may have been inserted by the person istalling the program as a control, that the correct directories were chosen. (or to add their own name as author).

The title includes the version number, the operating system and the compiler used to install the software.

```
initialization
initialization-file: /user_capi/capi/gnugnu/DominoTheriak111207/theriak.ini
Program's directory: /user_capi/capi/gnugnu/DominoTheriak111207/
Working directory: /user_capi/capi/gnugnu/tests_and_examples/pixelmapsandH2Oact/
Run: 16.06.2009 - 10:32:51
```

Program's directory: Depending on the installation and how you invoke the program, this is the absolute or relative path of the directory containing the running program.

Working directory: Current directory from where you typed the command. (**However**: if this directory does not contain a dat-file (containing P, T and bulk composition) the working directory will be set equal to the program's directory.

In order to run, the program needs the initialization file "theriak.ini". (This file contains the personal settings, like calculation parameters and the file names of input and output). If "theriak.ini" is found in the working directory, this will be used. If not, the one in the program's directory is used. In neither is found, the program stops.

The run is identified by the date and time.

At this point the program asks for a database file. If a log-file (a file containing most interactive input from a previous run) exists, the last used database filename is proposed, which you can accept by entering an empty line (CR). Else you type the file name of the database, which must be located in the working directory.

The keyword "files" will provide you with the information on file names as defined in "theriak.ini"

JUN92.bs

```
database for this run: JUN92.bs

Input from file THERIN
-----
T = 600.00 C P = 4000.00 Bar
1 SI(160)AL(60)NA(10)K(10)H(100)O(?) *
```

Summary of the input. The last two lines are the information found in the dat-file (containing P, T and bulk composition. Its name is defined in "theriak.ini". In this case it is "THERIN"). This file must be located in your working directory.

(**Note** that the first character of the bulk composition line is "1". This means, that we will get a "long output" with information on bulk composition, considered phases, solution phases, compositions of stable phases and activities of all phases. A "0" at the beginning of the line will suppress these paragraphs.)

```
define type of calculations

Enter [ "?" | CR | "no" | "bin" | "loop" | filename ] < >?
```

At this point you have different options. The simplest is "no", which will calculate a single equilibrium with the P, T and bulk composition defined in the dat-file. For more information enter "?". In this example we use "no", and the calculation starts.

no

SI(160)AL(60)NA(10)K(10)	H(100)O(?) *				
TEST = 1.0000E-09 DELXSCAN = 1.0000E+00	LO1MAX = 300 DELXSTAR = 1.0000E-04	EQUALX = 1.0000E-02 STEPSTAR = 25	DELXMIN = 1.0000E-09 STEPMAX = 25	GCMAX = 500	

These are the calculation parameters (Beginners just ignore them)

TEST Δ G Testvalue to stop iterations. LO1MAX Maximum number of iterations.

EQUALX Two phases of the same solution are considered equal if $\Delta xi < EQUALX$. DELXMIN smallest possible stepsize = precision for calculating xi's in a non-ideal solution.

DELXSCAN Grid width for scanning non-ideal solution phases for initial solution.

DELXSTAR initial stepsize.

STEPSTAR Maximum number of steps, if initial solution results from a scan.

STEPMAX Maximum number of steps if initial solution is a previous minimum.

GCMAX Maximum number of G-function calls per step. (= maximum m in stepsize procedure)

P = 4000.00 bar P(Gas) = 4000.00 bar T = 600.00 C = 873.15 K

P Pressure

P(Gas) Gases may have a different pressure. (see input description)

T Temperature in C and K

-	osition:	N	N	mol%
1	0	470.000000	4.70000E+02	58.024691
2	AL	60.000000	6.00000E+01	7.407407
3	H	100.000000	1.00000E+02	12.345679
4	K	10.000000	1.00000E+01	1.234568
5	NA	10.000000	1.00000E+01	1.234568
6	SI	160.000000	1.60000E+02	19.753086
7	E	0.000000	0.00000E+00	0.000000

Bulk omposition for which an equilibrium assemblage will be calculated.

N number of moles of a component (usually elements)

mol% Calculated to a sum of 100. (not very useful)

Note: E is an elementary charge, and used with aqueous solutions. Its bulk is always zero (charge-balance) and has absolutely no influence on any non-aqueous calculations. Ignore it.

	idered phases:									
COIIS	idered phases:									
			G	0	AL	Н	K	NA	SI	E
			ū	•				-11-1		-
1	"O"	:	0.00	1.00	_	_	_	_	_	_
2	"AL"	:	0.00	_	1.00	_	_	_	_	_
3	"H"	:	0.00	_	_	1.00	_	_	_	_
4	"K"	:	0.00	-	-	-	1.00	-	-	_
5	"NA"	:	0.00	_	_	_	_	1.00	_	_
6	"SI"	:	0.00	_	_	_	_	_	1.00	_
7	"E"	:	0.00	_	_	_	_	_	_	1.00
8	DIASPORE	:	-1047775.33	2.00	1.00	1.00	_	_	_	_
9	KALSILITE	:	-2256465.94	4.00	1.00	_	1.00	_	1.00	_
10	KAOLINITE	:	-4366185.33	9.00	2.00	4.00	_	_	2.00	_
11	ALEUCITE	:	-3229951.25	6.00	1.00	_	1.00	_	2.00	_
12	BLEUCITE	:	-3229405.33	6.00	1.00	_	1.00	_	2.00	_
13	NEPHELINE	:	-2231922.39	4.00	1.00	_	_	1.00	1.00	_
14	PYROPHYLLITE	:	-5929821.26	12.00	2.00	2.00	_	_	4.00	_
15	A-OUARTZ	:	-957912.89	2.00	_	_	_	_	1.00	_
16	B-QUARTZ	:	-957821.08	2.00	_	_	_	_	1.00	_
17	COESITE	:	-953829.50	2.00	_	_	_	_	1.00	_
18	CORUNDUM	:	-1745597.28	3.00	2.00	_	_	_	_	_
19	ALPHA CRISTOBALI	:	-955432.80	2.00	_	_	_	_	1.00	_
20	BETA CRISTOBALIT	:	-955771.70	2.00	_	_	_	_	1.00	_
21	LOW TRIDYMITE	:	-955698.13	2.00	_	_	_	_	1.00	_
22	HIGH TRIDYMITE		-955863.33	2.00	_	_	_	_	1.00	_
23	ANDALUSITE	:	-2704783.72	5.00	2.00	_	_	_	1.00	_
24	KYANITE	:	-2704158.53	5.00	2.00	_	_	_	1.00	_
25	SILLIMANITE		-2705131.37	5.00	2.00	_	_	_	1.00	_
26	ALBITE	:	-4167512.31	8.00	1.00	_	_	1.00	3.00	_
27	K-FELDSPAR		-4205701.06	8.00	1.00	_	1.00	_	3.00	_
28	MUSCOVITE		-6320272.46	12.00	3.00	2.00	1.00	_	3.00	_
29	PARAGONITE		-6276324.68	12.00	3.00	2.00	_	1.00	3.00	_
30	JADEITE		-3187647.18	6.00	1.00	_	_	1.00	2.00	_
31	STEAM		-363605.93	1.00	_	2.00	_	_	_	_
32	OXYGEN		-122337.01	2.00	_	_	_	_	_	_
33	HYDROGEN		-57124.59	_	_	2.00	_	_	_	_

For each phase found in the database that belongs to the chemical system defined by the bulk composition, This table shows its name, the apparent ΔG and the composition in terms of the components. The number in the first column is the internal phase-number, used to identify the phase.

The first nc lines (nc=number of components) are fictive "phases" made of the components and represent the initial solution to the equilibrium problem. (Ignore "E")

G (apparent
$$\Delta$$
G) = $\Delta_a G = \Delta_f H^o + \int_{T_o}^T Cp \, dT - T \cdot S^o - T \cdot \int_{T_o}^T \frac{Cp}{T} \, dT + \int_{P_o}^P V \, dP$

Line 1: FSP: Name of solution, as defined in the database. The number in front is the internal solution-phase-number, used to identify the solution-phase. This is solution-phase Nr. 1.

Part of this solution model is calculated in an external subroutine (located in the file fsol.f). In addition Margules-Parameters are used to describe its non-ideality.

Line 2: The first enemember of the solution is "ALBITE". (The internal phase number of ALBITE is 26).

Line 3: The second enemember of the solution is " K-FELDSPAR ". (The internal phase number of K-FELDSPAR is 27).

The activity model printed at the end of the lines is a text provided as optional information by the external subroutine. This may be a formula, a comment or simply a reference to some publication.

Line 4: The non-ideality of the solution is expressed as a Margules type excess function.

$$\Delta G^{ex} = \sum W^{G} \cdot \frac{X_{k_1} \cdot X_{k_2} \cdot \dots \cdot X_{k_p}}{\left(s\right)^{K}}$$

In this case the excess-function at 600 °C and 4000 Bar is: $X_{ab} \cdot X_{KFsp}^2 \cdot (11392.56) + X_{ab}^2 \cdot X_{KFsp} \cdot (19902.56)$

For both terms $S=X_{ab}+X_{Kfsp}=1$, and K=0 (defined in the database)

```
2 WHITE MICA : solution model: ideal one site mixing + Margules type excess function info: ideal+margules

MUSCOVITE [Z]:Si,Si,Si,Al

PARAGONITE [Z]:Si,Si,Si,Al

1 MUSCOVITE (28) A(Ms) = X(Ms)

2 PARAGONITE (29) A(Pg) = X(Pg)

Margules parameters: W(122) = 16858.00 W(112) = 7958.00

K= 0.00 K= 0.00
```

Line 1: WHITE MICA: Name of solution, as defined in the database. The number in front is the internal solution-phase-number, used to identify the solution-phase. This is solution-phase Nr. 2.

Line 2 and 3: Because the database contains information on site occupancies, these are printed. (in this case they are not used to define the activities). The configrational part of this solution model is and ideal solution (a=x) in addition Margules-Parameters are used to describe its non-ideality.

Line 4: The first enemember of the solution is "MUSCOVITE". (Its internal phase number is 28).

Line 5: The second enemember of the solution is "PARAGONITE". (Its internal phase number is 29).

The configurational part of the activity models printed at the end of the lines are derived from the information given in the database.

When defining solution models it is crucial to check this output and control that the interpretation of the model corresponds to the intension of the user.

Line 6 and 7: The non-ideality of the solution is expressed as a Margules type excess function.

$$\Delta G^{ex} = \sum W^{G} \cdot \frac{x_{k_{1}} \cdot x_{k_{2}} \cdot \dots \cdot x_{k_{p}}}{\left(s\right)^{K}}$$

In this case the excess-function at 600 °C and 4000 Bar is: $X_{pa}^2 \cdot X_{mu} \cdot (16858.00) + X_{pa} \cdot X_{mu}^2 \cdot (7958.00)$ For both terms S=X_{pa}+X_{mup}=1, and K=0 (defined in the database)

P Pressure

P(Gas) Gases may have a different pressure. (see input description)

T Temperature in C and K

stable phases Calculated number of stable phases

loop Number of iterations

loop2 Number of secondary iterations

max.phases Maximal number of phases simultaneously considered in any loop.

gcalc Number of calls to subroutine gcalc (Calculation of ΔG of solution phases) blkshift Measure of difference in Bulk between beginning and end of calculation

G(-) The change of the total G in the last iteration.

G(System) The apparent ΔG of the system.

Stepsize Last initial stepsize.
R Gas constant.

phase	N	mol%			x	x	activity	act.(x)
	-				-	-		
0 1 FSP_Ab	6.083286	3.897461	ALBITE		0.962060	9.62060E-01	9.67371E-01	9.67371E-01
_			K-FELD	SPAR	0.037940	3.79400E-02	4.41922E-01	4.41922E-01
0 2 WHITE_MICA_Ms	13.916714	8.916210	MUSCOV	ITE	0.701976	7.01976E-01	7.40464E-01	7.40464E-01
			PARAGO	NITE	0.298024	2.98024E-01	7.33208E-01	7.33208E-01
	[Si(Z)]	= 0.750000	[Al(Z)]	= 0.250000				
15 0 A-QUARTZ	93.916714	60.170898						

25 0	SILLIMANITE	6.083286	3.897461
31 0	STEAM	36.083286	23.117969

phase Stable phases. The two numbers in front are the indices used by the program. For solution phases the first number is zero, for non-solution phases the second number is zero.

To the names of stable solution phases the abbreviation of the dominant endmember is appended.

N Number of moles of stable phase.

mol% mol% of stable phase (not very useful)

x If the stable phase is a solution phase, the concentrations of the endmembers are listed. (in two different formats).

Activity Activity calculated from: $-R^*T^*In(ai) = G(i)$, where G(i) is the Gibbs free energy of the endmember i relative to the stable assemblage.

act.(x) Activity calculated as a function of composition.

Activity and act.(X) should be identical within the precision of the calculation.

If a solution phase has sites defined, their occupancies will also be listed.

solid phases	N	volume/mol	volume[ccm]	vol%	wt/mol	wt [g]	wt %	density [g/ccm]
FSP Ab	6.0833	101.8995	619.8838	12.3282	262.8342	1598.8954	11.6674	2.579347
WHITE MICA Ms	13.9167	141.1169	1963.8841	39.0576	393.5074	5476.3296	39.9618	2.788520
A-QUARTZ	93.9167	22.7846	2139.8526	42.5572	60.0843	5642.9200	41.1774	2.637060
SILLIMANITE	6.0833	50.0649	304.5588	6.0570	162.0456	985.7696	7.1933	3.236713
total of solids			5028.1794	100.0000		13703.9146	100.0000	2.725423
gases and fluids	N	volume/mol	volume[ccm]		wt/mol	wt [g]		density [g/ccm]
STEAM	36.0833	23.6579	853.6533		18.0153	650.0505		0.761492

The output of volumes and weights is separated for solids and gases. vol% and wt% are only calculated for the solids. Solids are defined in the database in the secion "MINERAL DATA" and gases in "GAS DATA". Because both sections have identical input, one may chose liberally which phase is a "solid" and which is a "gas".

solid phases	N	H20[pfu]	H2O[mol]	H2O [g]	wt% of phase	wt% of solids	wt% of H2O.solid
WHITE_MICA_Ms	13.9167	1.000	13.9167	250.7135	4.57813	1.82950	100.0000
total H2O in solid	ds		13.9167	250.7135		1.82950	
					wt% of		
gases and fluids	N	H20[pfu]	H20[mol]	H2O [g]	phase		
CORRAM	26 0022	1.000	36.0833	650.0505	100 00000		
STEAM	36.0833	1.000	36.0833	650.0505	100.00000		

The output of H₂O content is separated for solids and gases. Solids are defined in the database in the secion "MINERAL DATA" and gases in "GAS DATA". Because both sections have identical input, one may chose liberally which phase is a "solid" and which is a "gas". (e.g. melts)

```
compositions of stable phases [ mol% ]:
                     61.538462
                                  7.692308
                                              0.000000
                                                          0.291846
                                                                      7.400462
                                                                                 23.076923
                                                                                               0.000000
FSP Ab
WHITE_MICA_Ms
A-QUARTZ
                     57.142857
                                 14.285714
                                              9.523810
0.000000
                                                          3.342743
                                                                      1.419162
0.000000
                                                                                 14.285714
33.333333
                                                                                               0.000000
                     66.666667
SILLIMANITE
                     62.500000
                                 25.000000
                                              0.000000
                                                          0.000000
                                                                       0.00000
                                                                                  12.500000
                                                                                               0.000000
                                                                                               0.000000
STEAM
                     33.333333
                                  0.000000
                                             66.666667
                                                          0.000000
                                                                      0.000000
                                                                                   0.000000
TOTAL:
                     58.024691
                                  7.407407
                                             12.345679
                                                          1.234568
                                                                       1.234568
                                                                                 19.753086
                                                                                               0.000000
elements in stable phases:
                                                                        NA
                                 6.083286
41.750142
                     48.666287
                                              0.000000
                                                          0.230800
                                                                       5.852486
                                                                                 18.249858
                                                                                               0.000000
FSP_Ab
WHITE_MICA_MS
                    167.000569
                                             27.833428
                                                          9.769200
                                                                                  41.750142
                                                                                               0.000000
                                                                       4.147514
A-QUARTZ
                    187.833428
                                  0.000000
                                              0.000000
                                                          0.000000
                                                                       0.000000
                                                                                  93.916714
                                                                                               0.000000
STLLTMANTTE
                     30.416429
                                 12,166572
                                              0.000000
                                                          0.000000
                                                                       0.000000
                                                                                   6.083286
                                                                                               0.000000
                     36.083286
                                  0.000000
                                             72.166572
                                                          0.000000
                                                                       0.000000
                                                                                   0.000000
                                                                                               0.000000
```

total: 470.00000 60.00000 100.00000 10.00000 10.00000 160.00000 0.00000

Composition is recalculated that each row has a sum of 100.

```
activities of all phases:
        phase
                                  N
                                                 G
                                                            activity
     51
         FSP
                              6.08329E+00
                                           -1.13687E-13
                                                            1.00000E+00
                                                                           9.6206E-01 3.7940E-02
7.0198E-01 2.9802E-01
         WHITE MICA
                                                            1.00000E+00
     53
                              1.39167E+01
                                            -2.27374E-13
     15
         A-QUARTZ
                              9.39167E+01
                                             0.00000E+00
                                                            1.00000E+00
         SILLIMANITE
                              6.08329E+00
                                                            1.00000E+00
                                             0.00000E+00
     31
         STEAM
                              3.60833E+01
                                             0.00000E+00
                                                            1.00000E+00
          "E"
                                                            1.00000E+00
                              0.00000E+00
                                             0.00000E+00
Р
     33
         HYDROGEN
                              7.10543E-15
                                             0.00000E+00
                                                            1.00000E+00
          "0"
                              0.00000E+00
                                             3.06481E+05
                                                            4.62701E-19
         "AL"
                              0.00000E+00
                                             4.13887E+05
                                                            1.73754E-25
P
P
         "H"
                              0.00000E+00
                                             2.85623E+04
                                                            1.95574E-02
         "K"
                              0.00000E+00
                                             3.11041E+05
                                                            2.46909E-19
     -5
         "NA"
                              0.00000E+00
                                             2.67165E+05
                                                            1.04078E-16
         "SI"
                              0.00000E+00
                                             3.44950E+05
                                                            2.31190E-21
     -6
         DIASPORE
                              0.0000E+00
                                             7.63688E+03
                                                            3.49251E-01
                              0.00000E+00
         KALSILITE
                                             3.93377E+04
                                                            4.43295E-03
     10
         KAOLINITE
                              0.00000E+00
                                             2.40708E+04
                                                            3.63084E-02
         ALEUCITE
                              0.00000E+00
                                             2.37653E+04
                                                            3.78691E-02
     11
         BLEUCITE
                              0.00000E+00
                                             2.43112E+04
                                                            3.51258E-02
                              0.00000E+00
     13
         NEPHELINE
                                             2.00049E+04
                                                            6.35681E-02
     14
         PYROPHYLLITE
                              0.00000E+00
                                             1.26547E+04
                                                            1.74966E-01
     16
         B-OUARTZ
                              0.00000E+00
                                             9.18156E+01
                                                            9.87432E-01
         COESITE
                              0.00000E+00
                                             4.08340E+03
                                                            5.69794E-01
                              0.00000E+00
                                                            7.99862E-01
     18
         CORUNDUM
                                             1.62119E+03
     19
         ALPHA CRISTOBALI
                              0.0000E+00
                                             2.48009E+03
                                                            7.10612E-01
     20
                              0.00000E+00
         BETA CRISTOBALIT
                                             2.14119E+03
                                                            7.44572E-01
         LOW TRIDYMITE HIGH TRIDYMITE
                              0.0000E+00
                                                            7.37065E-01
     22
                              0.00000E+00
                                             2.04956E+03
                                                            7.54030E-01
     23
         ANDALUSITE
                              0.0000E+00
                                             3.47644E+02
                                                            9.53241E-01
         KYANITE
                              0.00000E+00
                                             9.72837E+02
                                                            8.74584E-01
                              0.0000E+00
         K-FELDSPAR
     2.7
                              0.00000E+00
                                             5.92837E+03
                                                            4.41922E-01
         MUSCOVITE
                                             2.18137E+03
                                                            7.40464E-01
                              0.00000E+00
     29
         PARAGONITE
                              0.00000E+00
                                             2.25285E+03
                                                            7.33208E-01
     32
         OXYGEN
                              0.00000E+00
                                             4.90626E+05
                                                            4.45855E-30
                                                                           9.6206E-01 3.7940E-02
         WHITE MICA
                              0.00000E+00
                                            -2.27374E-13
                                                            1.00000E+00
                                                                           7.0198E-01
```

The table of activities contains all phases considered in the last loop of the G-minimization.

The first colum is an identifier (P for non-solution phases and S for solution phases)

The second column is the internal phase-number identifying the phase. Note that phases which should not be considered for the minimization have a negative number. (e.g. all fictive "phases" made of the components and used for the initial solution to the equilibrium problem.)

phase names of phases.

N Number of moles of phase in stable assemblage.

G Gibbs free energy relative to the stable assemblage.

Activity Activity calculated from: -R*T*In(a) = G

The remaining columns are the concentration of endmembers for solution phases, in the same order as they are defined in the database.

```
exit THERIAK
CPU time: 0h 00m 00.04s
```

Here the program tells you that it took less time to calculate the equilibrium, than you need to read the output.

The Terminal output is also written to the out-file. This is usually called "OUT"