Homework 4

1. Solution to problem 1 as belows:

	1
1 Homework 1 Problem 1	
1 The cart always points forward.	
(Steering angle cannot be changed)	
we have dy tane	
	3
y sino	
	1
- This is a Pfaffian constraint.	
-X	
@ Configuration transition equations can be	
cualton as,	:15
0=0 : Cannot be charged - constraint	-
$x = U_S \cos(\Theta)$	
ÿ = u _s sir(θ) —x—	: 15
@ from eyer @	0
$x \sin \theta - y \cos \theta = 0$	
Integrating the above epin	
du sino de - Coro de = 6	6
Jat Jak	

2. The inflated object in the C space and the minimum length path can be seen as follows.

3. Code attached: run python rrt.py . should read input_maze.txt (Not working , hardcoded the values) , creates obstacles, builds the Tree in real time, finds a path. Comments inline.

The tree and the path is shown as below:

Number of Nodes < 11000

Attached files: rrt.py, RRT_includes.py (Some include stuff) input_maze.txt

Created input_triangle.txt from problem 2 and is attached too. Following is the path and the Tree when RRT is run on the problem 2 configuration space.

Number of nodes < 200

Attached files: rrt_2.py, RRT_includes.py (Some include stuff) input_triangle.txt

