[2]

DI-CO SUNIVERSITY

Enrollment No.....

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022 CA3CO18 Digital Electronics

Programme: BCA/ BCA- Branch/Specialisation: Computer MCA(Integrated) Application

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	(IVIC)	Qs) should be written in run instead of only	a, b, c or a.	
Q.1	i. An OR gate can be imagined as-			1
		(a) Switches connected in series(b) Switches connected in parallel		
		(c) MOS transistors connected in series		
		(d) All of these		
	ii.	A Negative AND gate can also be treated as-		1
		(a) NOR Gate (b) OR Gate	e	
		(c) NAND Gate (d) AND Ga	ate	
	iii. What would be hexadecimal of this Binary (11001110) ₂ ?		y (11001110) ₂ ?	1
		(a) CE (b) EC (c) 632	(d) EAC	
	iv.	If A and B are the inputs of a half adder, the sum is given by-		1
		(a) A AND B (b) A XOR		
		(c) A OR B (d) A XNO		
	v.	Which flip flop does not consist of the rac	ee round problem?	1
		(a) JK flip flop (b) JK mast		
		(c) T flip flop (d) None of		
	vi.	vi. A digital multiplexer is a combinational circuit that selects-		1
	(a) One digital information from several sources and transselected one		al sources and transmits the	
	(b) Many digital information and convert them into one			
		(c) Many decimal inputs and transmits the selected information (d) Many decimal outputs and accepts the selected information		
	vii.	. , , , , , , , , , , , , , , , , , , ,		1
		(a) All FFs are present with data		
	(b) Each FF is loaded with data, one at a time (c) Parallel shifting of data		ime	
			inic	
		. ,		
		(d) All FFs are set with data		

V111.		J 1		1	
		through the predetermined sequence of states only when input pulses			
		are applied to it.			
		(a) Register	(b) Memory unit		
		(c) flip flop	(d) Arithmetic logic unit		
	ix.	Which factor determines the	Which factor determines the effectiveness of the cache?		
		(a) Hit rate	(b) Refresh cycle		
		(c) Refresh rate	(d) Refresh time		
	х.	USB storage device is a-		1	
		(a) Secondary (b) Auxiliary	(c) Tertiary (d) Primary		
Q.2	i.	Why NAND and NOR gates	are called universal gates?	2	
	ii.	·		8	
		$F(A, B, C, D) = \Sigma m$ (2)	3, 4, 5, 7, 9, 13, 14, 15)		
OR	iii.	Explain and state De-Morga	an's theorem with truth table and logic	8	
		diagrams.	-		
		_			
Q.3 i.		What is ASCII code? Explain	ı it.	2	
	ii.	Convert from one base to and	other.	8	
		(a) $(1235)_{10} = ()_8$	(b) $(ABC)_{16} = ()_2$		
		(c) $(101101101)_2 = ()_8$	(d) $(5671)_{10} = ()_{16}$		
OR	iii.	Design full adder with the he	lp of two half adders.	8	
2.4				2	
Q.4 i.		Explain combinational and se	-	2	
. D	ii.	Design and explain Master sl		8	
OR	iii.	What is encoder? Explain and design Octal to Binary encoder.		8	
Q.5	i.	Which flip flop is used in des	signing registers? Why?	2	
	ii.	What is shift register? Design 4-bit left shift register.		8	
OR	iii.			8	
Q .6	i.	Why cache memory is needed? Explain it.		2	
	ii.	Explain the following terms:		8	
		(a) Hard Disk	(b) EPROM		
AD.		(c) Virtual Memory	(d) RAM	0	
ЭR	iii.	Explain different memory acc	cess methods.	8	

P.T.O.

Marking Scheme CA3CO18 Digital Electronics

Q.1	i.	An OR gate can be imagined as-		1
		(b) Switches connected in parallel		
	ii.	A Negative AND gate can also be treated as-		1
		(c) NAND Gate		
	iii.	What would be hexadecimal of this Binary (110011 (a) CE	10)2?	1
	iv.	If A and B are the inputs of a half adder, the sum is given by-		1
	v.	(b) A XOR B Which flip flop does not consist of the race round problem?		1
		(b) JK master slave		
	vi. A digital multiplexer is a combinational circuit that selects-			1
		(a) One digital information from several sources selected one	and transmits the	
	vii.			1
	, 11,	(a) All FFs are present with data		_
	viii.	viii. A counter is fundamentally a sequential circuit that proce		1
		when input pulses		
		are applied to it.	1 1	
		(a) Register		
	ix.			1
	(a) Hit rate			
	x. USB storage device is a-			1
		(a) Secondary		
Q.2	i.	Why NAND and NOR gates are called universal ga	tes?	2
	ii.	Minimize the following Boolean function-		8
		Drafting	4 marks	
		Minimization	4 marks	
OR	iii.	De-Morgan's theorem Statement	3 marks	8
		Truth table	2.5 marks	
		Logic diagrams	2.5 marks	
Q.3	i.	What is ASCII code? Explain it.		2
	ii.	Convert from one base to another. 2 marks for each		8
OR	iii.	Design full adder with the help of two half adders.		8
		Designing	4 marks	
		Truth table	4 marks	

Q.4	i.	Combinational	1 mark	2
		Sequential circuit.	1 mark	
	ii.	Design and explain Master slave flip flop.		8
		Designing	4 marks	
		Explanation	4 marks	
OR	iii.	Encoder	4 marks	8
		Design Octal to Binary encoder	4 marks	
Q.5	i.	Which flip flop is used in designing registers? Why	?	2
	ii.	Shift register	4 marks	8
		Design 4-bit left shift register.	4 marks	
OR	iii.	Ring counter	3 marks	8
		Block diagram	2.5 marks	
		Truth table	2.5 marks	
Q.6	i.	Why cache memory is needed? Explain it.		2
	ii.	Explain the following terms: 2 marks for each		8
		(a) Hard Disk (b) EPROM		
		(c) Virtual Memory (d) RAM		
OR	iii.	Four memory access methods 2 marks for each		8
