

Capstone Project 2

Seoul Bike Sharing Demand Prediction ML SUPERVISED REGRESSION

CHETAN BHANGARE
NIKHIL BHANGARE

Contents

- Problem Statement
- Data Summary
- Data Analysis
- Analysis Details
- Feature Selection
- Data Preparation
- Implementing Various Regression Algorithms
- Challenges
- Conclusions

Problem Statement

- A bike-sharing system is a service in which bikes are made available for shared use to individuals on a short term basis on rent.
- A South korea city Seoul based rental bike provider wants to come up with a mindful business plan to be able to accelerate its revenue.
- The company wants to find out the key driving factors for the demand for shared bikes.
- These will help them to construct the business strategy to meet the demand levels and meet the customer's expectations.
- This model will also help to reduce waiting time of public.
- Further, the model will be a good way for management to understaned the demand dynamics of a new market.

Data summary

- Date : Year-Month-Day
- Rented Bike Count Count of bikes rented at each hour
- Hour Hour of the day
- Temperature Temperature in Celsius
- Humidity %
- Windspeed m/s
- Visibility 10m
- Dew point temperature -Celsius

Data Summary

- Solar radiation -MJ/m2
- Rainfall -mm
- Snowfall -cm
- Seasons -Winter, Spring, Summer, Autumn
- Holiday -Holiday/No Holiday
- Functional Day NoFunc(Non Functional Hrs), Fun(Functional Hrs)

Basic Data Exploration

- The dataset has 8760 rows and 14 features(columns).
- Three categorical features 'Seasons', 'Holiday', & 'Functioning Day'.
- One Datetime[ns] features 'Date'.
- Outliers present only in dependent variable.
- No Missing Values.
- No Duplicated values.
- No null values.

Missing Values

Checking for the outlier in our dependent variable

Division on rented bike on holiday and non holiday days

Distribution on rented bike according to different seasons

Chart showing distribution of Rented bike count per hour

Relation of our dependent variable with Temperture

Relation of our dependent variable with Humidity

Relation of our dependent variable with wind speed

Relation of our dependent variable with Rainfall

Relation of our dependent variable with Snowfall

3-D plot showing relation between Snowfall, Rainfall and Rented bike count

Per hour distribution

- 0.8

-0.6

- 0.4

- 0.2

Correlation between different factors

Al maBetter

Outliers present in our important independent features

Linear Regression

MSE: 198793.5341180045 RMSE: 445.8626852720515 MAE: 333.68919457334323

Adjusted R2: 0.5049660638596776

Lasso Regression

MSE: 198793.663747306

RMSE: 445.86283064111325 MAE: 333.68926336070683

Ridge Regression

MSE: 198890.40226455292 RMSE: 445.97130206388044 MAE: 333.7678564764892

Decision Tree

MSE: 111943.4251299008 RMSE: 334.579475057722 MAE: 193.50543221539914

Adjusted R2: 0.7212394527168611

Gradient Boosting Machine

MAE : 174.081134728031

MSE: 67935.3191486026

RMSE: 260.6440468313109

Adjusted R2: 0.830828056906927

Random Forest

MSE: 60132.13303353803

RMSE: 245.21854137388965

MAE: 150.1287009919697

Adjusted R2: 0.8502594833570604

r2_score 0.8509671417532936

Feature Importance

XGBoost

MSE : 54287.031544213925

RMSE: 232.9957758076612

MAE: 143.48340080681663

adj_r2 0.8657453657658387

r2 0.8662260483087465

Feature Importance

Challenges

Large Dataset to handle.

Needs to plot lot of Graphs to analyse.

Carefully handled Feature selection part as it affects the R2 score.

• Carefully tuned Hyperparameters as it affects the R2 score.

Conclusion

- The Rented Bike Count has been increased from 2017 to 2018.
- No overfitting is seen.
- XGBoost Regressor gives the highest R2 score of 96.6%for Train
 Set and 89.4% for Test set.
- Feature Importance value for Random Forest, Gradient Boost, and XGBoost are different.
- We can deploy this model.

THANK YOU