G53KRR: Knowledge Representation & Reasoning

Lecture 5: Resolution

Brian Logan

School of Computer Science

brian.logan@nottingham.ac.uk

Outline of this lecture

- recap: propositional calculus
- soundness & completeness
- proof systems
- resolution

Recap: propositional calculus

- *atomic propositions* are simple declarative sentences about the world that can be *true* or *false*
- a *model* is an assignment of *true* or *false* to each atomic proposition *p*
- we can construct more complex sentences using the *logical* connectives: \neg "not, \wedge "and, \vee "or and \rightarrow "implies
- the meaning of the logical connectives is given in terms of *truth tables* which specify how the truth of complex sentences is built up from the truth of their components

Recap: truth tables

• the truth tables for the four basic connectives are:

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$
true	true	false	true	true	true
true	false	false	false	true	false
false	true	true	false	true	true
$_false$	false	true	false	false	true

• using truth tables we can determine the truth or falsity of *any* complex sentence in a given model

Example: truth tables

• by enumerating *all* possible models (all possible truth assignments) we can determine the truth value of, e.g.,

$$\neg p \lor q \to r$$

in all models

\overline{p}	\overline{q}	r	$\neg p$	$\neg p \lor q$	
true	true	true	false	true	true
true	true	false	false	true	false
true	false	true	false	false	true
true	false	false	false	false	true
false	true	true	true	true	true
false	true	false	true	true	false
false	false	true	true	true	true
false	false	false	true	true	false

Recap: entailment

- given a notion of truth, we can say what it means for the truth of one statement to follow necessarily from the truth (or falsity) of other statements
- a set of sentences $\{\phi_1, \phi_2, \dots, \phi_n\}$ entails a sentence ψ $\{\phi_1, \phi_2, \dots, \phi_n\} \models \psi$ if in all models where $\{\phi_1, \phi_2, \dots, \phi_n\}$ are true, ψ is also true
- e.g., $p \lor q$, $\neg p \models q$ since in all models where $p \lor q$ and $\neg p$ are true q is also true
- note that $p \lor q$, $p \not\models q$ since there is a model where $p \lor q$ and p are *true* but q is *false*

Inference

- entailment can be used to derive conclusions—i.e., to carry out *logical inference*
- by enumerating all possible models we can determine if a sentence ψ follows logically from sentences $\{\phi_1, \phi_2, \dots, \phi_n\}$
- gives us a reasoning process whose conclusions are guaranteed to be *true* if the premises are *true*
 - $-\inf\{\phi_1,\phi_2,\ldots,\phi_n\}$ are *true* in the world, then ψ is necessarily *true* in the world
- pattern of inference relies only on the truth values of propositions and the meaning of the logical connectives, not on a detailed knowledge of a particular problem domain

Example: valid inference

• given the atomic propositions

p: the train is late

q: there are taxis at the station

r: John is late

express in propositional calculus

- if the train is late and there are no taxis at the station, John is late for the meeting
- the train is late
- John is not late for the meeting

and show using truth tables that there must have been taxis at the station

Example: valid inference

• we need to show that in all models where $p \land \neg q \rightarrow r, \ p, \ \neg r$ are true q is also true

\overline{p}	\overline{q}	r	$\neg q$	$p \land \neg q$	$p \land \neg q \to r$	$\overline{\ \ } \gamma r$
\overline{true}	true	true	false	false	true	\overline{false}
true	true	false	false	false	true	true
true	false	true	true	true	true	false
true	false	false	true	true	false	true
false	true	true	false	false	true	false
false	true	false	false	false	true	true
false	false	true	true	false	true	false
false	false	false	true	false	true	true

Computational complexity

- with *n* propositions, i.e., n = |P|, the number of possible models (rows in the truth table) is 2^n
- computing entailment by exhaustive enumeration of models is therefore exponential in the number of propositional variables
- time complexity is $O(2^n)$, space complexity is O(n)

Proof systems

- instead of trying to show semantically that $\phi \models \psi$ a proof system uses rules of inference to derive valid formulas from other formulas syntactically
- a *proof* consists of a sequence of inference steps—applications of inference rules which lead from the initial formulas to the formula to be derived
- proofs may still be exponential (i.e., contain an exponential number of steps) in the worst case, but they can be much shorter

Modus ponens

• one example of an inference rule is the rule of *modus ponens*

$$rac{\phi,\;\phi o\psi}{\psi}$$

• from the last lecture we know that $\phi, \ \phi \rightarrow \psi \models \psi$

$\overline{\phi}$	ψ	$\phi o \psi$
true	true	${f true}$
true	false	false
false	true	true
false	false	true

• ϕ and ψ can be *arbitrarily complex formulas*—we can replace many rows in the truth table with the application of a single inference rule

Sound and complete inference

- rules of inference are chosen to give a *sound* and *complete* inference procedure
- a *sound* inference procedure is one which derives only entailed sentences, i.e., derives true conclusions given true premises
- a *complete* inference procedure is one that can derive any sentence that is entailed, i.e., derives all true conclusions from a set of premises

Resolution

- many proof systems for propositional calculus, e.g., natural deduction, tableaux methods, etc.—we shall focus on *resolution*
- resolution has a single rule of inference—the resolution rule
- sound and (refutation) complete
- widely used in AI theorem proving and problem solving systems
- requires that the logical description of the problem is formulated in terms of *clauses*

Clausal form

- a *literal* is an atomic proposition or its negation, e.g., $p, \neg p$ are literals
- a *clause* is a disjunction of literals, e.g., $p \lor q$, $\neg p \lor r$, and $p \lor q \lor r$ are all clauses
- a sentence expressed as a conjunction of disjunctions of literals (i.e,. clauses) is said to be in *conjunctive normal form* (CNF)
- any complex sentence in propositional calculus can be re-expressed in conjunctive normal form

Converting to clausal form

1. eliminate \rightarrow using

$$(\phi \to \psi) \equiv (\neg \phi \lor \psi)$$

2. move \neg inward so that it appears only in front of a propositional variable, using

$$\neg \neg \phi \equiv \phi$$
$$\neg (\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$$
$$\neg (\phi \lor \psi) \equiv (\neg \phi \land \neg \psi)$$

3. collect terms:

$$(\phi \lor \phi) \equiv \phi$$

$$(\phi \land \phi) \equiv \phi$$

The resolution rule

$$\frac{l_1 \vee \ldots \vee l_i \vee \ldots \vee l_k, \quad m_1 \vee \ldots \vee m_j \vee \ldots \vee m_n}{l_1 \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n}$$

- where l_i and m_j are complementary literals, i.e., one is the negation of the other
- resolution takes two clauses and produces a new clause containing all the literals of the two original clauses *except* the two complementary literals
- derived clause is called the *resolvent*

Example: resolution

• from the clauses $\neg p \lor q$ and $p \lor q$ we can derive q by resolution

$$\frac{\neg p \lor q, \quad p \lor q}{q}$$

• this is clearly a valid inference as $\neg p \lor q, \ p \lor q \models q$

\overline{p}	\overline{q}	$\neg p$	$\neg p \lor q$	$p \lor q$
true	true	false	true	true
true	false	false	false	true
false	true	true	true	true
false	false	true	true	false

Soundness of resolution

- resolution is *sound*
- we can see this by considering the literal l_i
 - if l_i is *true* then m_j is *false* and hence

$$m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$$

must be true, since $m_1 \vee \ldots \vee m_j \vee \ldots \vee m_n$ is true

- conversely, if l_i is false, then $l_1 \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k$
 - must be true since $l_1 \vee \ldots \vee l_i \vee \ldots \vee l_k$ is *true*
- so $l_1 \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$ is true

Completeness of resolution

- while resolution is sound, it is not *complete* for arbitrary formulas
- for example, we cannot derive $q \vee \neg q$ from p using resolution, even though $p \models q \vee \neg q$
- however resolution is *refutation complete*—if a set of clauses is inconsistent, it is possible to derive a contradiction

Proof by contradiction

- recall that $\phi \models \psi$ if and only if $\phi \land \neg \psi$ is unsatisfiable
- proving ψ from ϕ by checking the unsatisfiability of $\phi \land \neg \psi$ is called proof by refutation or proof by contradiction
- we assume the sentence ψ to be false and show that this leads to a contradiction with the known axioms ϕ
- for resolution, we add the negation of the clause we wish to derive to the premises and show that this leads to an empty clause (i.e., a contradiction)

Example: proof by contradiction

- show that $(p \lor q) \land (p \to q) \land (q \to p) \models p \land q$
- convert to clausal form using $p \to q \equiv \neg p \lor q$ $q \to p \equiv p \lor \neg q$
- which gives $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \models p \land q$
- assume $p \land q$ to be *false* and convert to clausal form using $\neg(p \land q) \equiv \neg p \lor \neg q$
- which gives $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q) \models \emptyset$

Example: proof by contradiction

- Clauses (1) $p \lor q$
 - $(2) \neg p \lor q$
 - $(3) p \vee \neg q$
 - $(4) \neg p \lor \neg q$
- Proof $1 \quad p \vee q$ (1)
 - $2 \quad \neg p \lor q \qquad (2)$
 - $3 \quad q \qquad 1, 2,$ by resolution
 - $4 \quad p \lor \neg q \qquad (3)$
 - 5 p 3, 4 by resolution
 - $6 \quad \neg p \vee \neg q \quad (4)$
 - 7 $\neg q$ 5, 6 by resolution
 - 3, 7 by resolution

Example: travel advice

- imagine that we want to give advice about travel destinations
- far destinations are Chile or Kenya $Far \rightarrow Chile \vee Kenya$
- far destinations are international $Far \rightarrow Int$
- far destinations are expensive $Far \rightarrow Exp$
- in *Kenya*, *yellow fever* vaccination is strongly recommended, and there is a risk of *malaria* when staying in *lodges*

$$Kenya \rightarrow YellowFever \quad Logde \land Kenya \rightarrow Malaria$$

• accommodation in *Kenya* is in *lodges* and in *Chile* is in *hotels*

$$Kenya \rightarrow Lodge \quad Chile \rightarrow Hotel$$

• when there is a risk of malaria, mosquito nets are recommended

$$Malaria \rightarrow Nets$$

Example: travel advice clauses

- Clauses (1) $\neg Far \lor Chile \lor Kenya$
 - $(2) \neg Far \lor Int$
 - $(3) \neg Far \lor Exp$
 - $(4) \neg Kenya \lor YellowFever$
 - (5) $\neg Lodge \lor \neg Kenya \lor Malaria$
 - $(6) \neg Kenya \lor Lodge$
 - $(7) \neg Chile \lor Hotel$
 - (8) $\neg Malaria \lor Nets$
- Prove that Far and $\neg Hotel$ entails Kenya
- and that Far and $\neg Hotel$ entails Nets

Example: travel advice clauses

- Clauses (1) $\neg Far \lor Chile \lor Kenya$
 - $(2) \neg Far \lor Int$
 - $(3) \neg Far \lor Exp$
 - $(4) \neg Kenya \lor YellowFever$
 - (5) $\neg Lodge \lor \neg Kenya \lor Malaria$
 - $(6) \neg Kenya \lor Lodge$
 - $(7) \neg Chile \lor Hotel$
 - (8) $\neg Malaria \lor Nets$
 - (9) *Far*
 - $(10) \neg Hotel$
 - $(11) \neg Kenya$

Example: travel advice (proof 1)

Proof $\neg Far \lor Chile \lor Kenya$ (1)(9)Far $Chile \lor Kenya$ 1, 2 by resolution $\neg Chile \lor Hotel$ (7)5 $\neg Hotel$ (10) $\neg Chile$ 4, 5 by resolution 3, 6 by resolution Kenya $\neg Kenya$ (11)7, 8 by resolution \emptyset