1 Постановка задачи статистического оценивания параметров.

По выборке наблюдаемой случайной величины X оценить (поучить точное в определенном смысле) значение неизвестного параметра θ

2 Определение оценки параметра.

Любое приближенное значение параметра heta , определенное по выборке X_1, X_2, \dots, X_n

3 Определение статистики.

Любая функция от выборочных значений

4 Интерпретации выборки.

Можно интерпретировать как последовательность н.о.р.с.в. X_1, X_2, \dots, X_n

Или как гконкретные значения, принемаемые с.в. X в результате n испытаний x_1, x_2, \dots, x_n

5 Определение точечной оценки параметра.

Точечной оценкой неизвестного параметра называется приближенное значение этого параметра, полученное по выборке

6 «Исправленная» выборочная дисперсия.

Так как выборочная дисперсия является состоятельной, но смещенной оценкой дисперсии с.в. то умножая её на $\frac{n}{n-1}$ мы получим несмещенную оценку, это и есть исправленная дисперсия

7 Определение функции правдоподобия.

$$L(\gamma) = P(x_1, \gamma) \dots P(x_n, \gamma)$$

 $P(x,\gamma)$ - плотность распределения

8 Идея метода моментов.

Приравниваем к параметру его аналог из статистики, например к математическому ожиданию среднее, к дисперсии ???

9 Определение интервальной оценки параметра.

10. Несмещенная оценка.

Оценка $\bar{\theta}$ параметра θ называется несмещенной, если M ($\bar{\theta}$) = θ , то есть математическое ожидание оценки равно оцениваемому параметру. Е

11.Состоятельная оценка.

Оценка $\bar{\theta}$ параметра θ называется состоятельной, если она сходится по вероятности к оцениваемому параметру, то есть для любого $\varepsilon>0$:

$$\lim_{n o \infty} P(|\overline{ heta} - heta| < arepsilon) = 1$$

12. Эффективная оценка.

Несмещенная оценка $\overline{\theta}$ параметра θ называется эффективной, если она среди всех несмещенных оценок, обладает наименьшей дисперсией.

13. Определение доверительного интервала.

Интервал, который накрывает искомое значение с заданной вероятностью.

14. Определение надежности (доверительной вероятности).

Вероятность, с которой гарантируется, что отклонение оценки характеристики от её истиного значение, не будет привышать заранее заданное значения.

15.Определение точности оценки.

Это её доверительный интервал