### Instrukcja podłączania i konfiguracji czytnika WMBUS

Jeśli jest to Twój pierwszy kontakt z ESPHome, to zalecam lekturę:

https://www.youtube.com/watch?v=3VntyBi4WNw

https://smartinhome.pl/esphome/esphome-instalacja-podstawowy-konfiguracja

http://forum.jdtech.pl/Watek-esphome-rozszerzenie-home-assistanta-o-diy-oparte-na-esp

Niniejsza instrukcja pokazuje, jak krok po kroku dodać nowe urządzenie i zaprogramować je w taki sposób, aby było widziane w Home Assistant. Czytnik będzie łączył się z siecią Wi-Fi, na której działa HA. Ważne jest, aby czytnik pracował w miejscu, gdzie jest zasięg zarówno sieci Wi-Fi jak i nakładki radiowej. Czytnik wymaga zasilania USB (gniazdo micro USB). Wystarczy najprostsza ładowarka do telefonu.

## 1. Podłączenie urządzenia

Podłącz urządzenie do zasilania 5V. Odczekaj chwilę, aż urządzenie utworzy swoją sieć: **WMBUS Reader – Fallback Hotspot:** 



Połącz komputer (na którym robisz konfigurację) z tą siecią, używając hasła: **12345678.** Wpisz w przeglądarce adres: **192.168.4.1.** Zobaczysz okno konfiguracyjne, w którym będą wyświetlone znalezione sieci Wi-Fi:



Wpisz **SSID** i **hasło** do swojej sieci (tej w której jest serwer HA), potwierdź przyciskiem **SAVE**. Pojawi się zielony napis potwierdzający łączenie do sieci:

# WiFi Networks: wmbus-reader



W tym momencie sieć **WMBUS Reader – Fallback Hotspot** przestanie działać. Połącz się komputerem ponownie do swojej sieci (o ile komputer nie zrobi tego automatycznie)

## 2. Dodawanie urządzenia w Home Assistant

Wejdź do interfejsu ESPHome w Home Assistant, zobaczysz wykryte urządzenie **wmbus-reader**. Kliknij przycisk **ADOPT**:



Pojawi się wyskakujące okno. Nie zmieniaj tutaj nazwy, bo cała konfiguracja i tak będzie zaciągnięta z githuba z domyślną nazwą. Zatwierdź ponownie przyciskiem **ADOPT**:



Po chwili pokaże się kolejne okno, potwierdzające utworzenie konfiguracji. Kliknij **SKIP**, aby zamknąć okno. Instalację wykonasz po skonfigurowaniu parametrów licznika:



Następnie pokaże się kolejne okno, potwierdzające pominięcie programowania. Kliknij **CLOSE**, aby zamknąć:



W ESPHome pokaże się dodane urządzenie (powinno być online). Kliknij **EDIT**, aby przejść do konfiguracji yaml.



## 3. Konfiguracja urządzenia

Domyślna konfiguracja urządzenia wygląda następująco:

## × wmbus-reader.yaml

```
1
     dashboard_import:
 2
      package_import_url: github://MariuszWoszczynski/WMBUS-reader/WMBUS-reader.yaml@main
 3
     import_full_config: true
 4
 5
    substitutions:
 6
     name: "wmbus-reader"
 7
     friendly_name: "wmbus-reader"
8
9
    esphome:
10
      name: "${name}"
11
      friendly_name: "${friendly_name}"
12
      project:
13
       name: esphome.wmbus_reader
      version: "1.0"
14
15
     esp32:
16
      board: nodemcu-32s
17
18
      framework:
19
     type: arduino
20
21
    external components:
22
      - source: github://SzczepanLeon/esphome-components@main
        components: [ wmbus ]
     refresh: 0d
24
25
    time:
26
27
     - platform: sntp
     id: time_sntp
28
29
30
31
    # Enable logging
32
     logger:
33
     level: debug
34
     # Enable Home Assistant API
35
36
     api:
37
      encryption:
38
     key: "9p2efbtoh/7izZ93LRVsgSXsL1JAoP07YQeoyATI7IE="
39
40
     ota:
41
     wifi:
42
43
      ssid: !secret wifi_ssid
44
     password: !secret wifi_password
45
46
     # static IP configuration (instead of data from the secret file)
47
    # ssid: "MY_WIFI"
48
     # password: "0123456789"
49
     # reboot_timeout: 10min
50
     # manual_ip:
51
     # static_ip: 192.168.1.99
52
53
     # gateway: 192.168.1.1
54
    # subnet: 255.255.255.0
55
56
```

```
57
        # Enable fallback hotspot (captive portal) in case wifi connection fails
58
 59
         ssid: "WMBUS Reader - Fallback Hotspot"
        password: "12345678"
 60
61
62
      captive_portal:
63
64
      wmbus:
65
      mosi_pin: GPIO32
       clk pin: GPIO33
66
       miso pin: GPIO19
67
       gdo2_pin: GPIO21
68
       gdo0_pin: GPIO22
69
      cs_pin: GPI023
70
71
 72
73
    sensor:
74
    # first sensor
75
       - platform: wmbus
        meter_id: 0x00000000
76
77
        type: izar
78
         add_prefix: false
         lqi:
79
         name: "My lqi"
80
81
         rssi:
82
          name: "My RSSI"
83
         total_water_m3:
         name: "My cold water"
84
        # filters:
85
                               #optional
           - offset: 123.4567 #the difference between the indications of the radio overlay and the counter
86
         last month total water m3:
         name: "Last month total water"
88
89
         current_month_total_water_1:
90
         name: "Current month toal water"
91
         transmit_period_s:
         name: "Transmit period [s]"
92
93
         remaining_battery_life_y:
94
         name: "Remaining battery life [Y]"
95
         current_alarms:
         name: "Current alarms"
96
97
        previous_alarms:
98
         name: "Previous alarms"
99
      # second sensor
100
       - platform: wmbus
        meter_id: 0x00000000
101
102
         type: apator162
103
         104
         lqi:
         name: "My lqi"
105
106
         rssi:
         name: "My RSSI"
107
108
        total_water_m3:
109
        name: "My cold water"
110
     # more options on https://github.com/SzczepanLeon/esphome-components
111
```

- W linii 7 możesz zmienić nazwę friendly name na swoją
- W liniach 48-54 możesz ustawić statyczne IP i dane swojej sieci, zamiast pobierania danych z pliku secret (linie 43 i 44 należy wówczas zakomentować #)

- Od linii 73 jest konfiguracja sensorów. Musisz ją dostosować do swoich liczników.
   Domyślna konfiguracja zawiera nakładkę Izar R4 oraz Apator 16-2.
- W miejsce "0xXXXXXXXX" (linie 76 i 101) podaj numer ID swojego licznika. W przypadku zapisu HEX, 0x musi zostać. W przypadku zapisu dziesiętnego, 0x należy skasować. Numer znajduje się z reguły na nakładce radiowej, obok kodu QR. Numer ID może zawierać mniej niż 8 cyfr, wówczas należy wypełnić do 8 cyfr zerami z lewej strony (po 0x). W przypadku niektórych nakładek radiowych (np. Izar), ID nie znajduje się na obudowie. Należy wówczas wpisać losowe ID i potem odczytać właściwe z ramek wychwytywanych przez czytnik, zmodyfikować kod i wgrać ponownie.

**UWAGA!!!** Czasami, pomimo ID składającego się z samych cyfr, może to być zapis HEX. Należy wówczas konfigurację kolejno z dwoma sposobami zapisu i pozostawić prawidłowo działającą konfigurację.

- W miejsce "type" (linie 77 i 102) trzeba wpisać model swojego licznika. Na moment aktualizacji tej instrukcji, obsługiwane są:
  - Apator 08 → type: apator 08
  - ➤ Apator 16-2→ type: apator162
  - Apatoreitn
  - ➤ Apator Elf → type: elf
  - ➤ Apator Ultrimis → type: ultrimis
  - ➤ Aquametro/Integra Topas Es K → type: topaseskr
  - ➤ Bmeters → type: bmeters
  - ➤ Bmeters Hydrocal-M3 → type: hydrocalm3
  - ➤ Diehl Izar R4→ type: izar
  - ➤ Diehl Hydrus → type: hydrus
  - ➤ Diehl Sharky 774 → type: sharky774
  - ➤ Sensus Iperl → type: iperl
  - ➤ Itron → type: itron
  - Maddalena EVO 868→ type: evo868
  - ➤ Tauron Amiplus → type: amiplus
  - ➤ Techem Compact V → type: compact5
  - ➤ Techem Mk Radio 3→ type: mkradio3
  - ➤ Techem Mk Radio 4→ type: mkradio4
  - ➤ Techem FHKV data II/III → type: fhkvdataiii
  - ➤ Techem vario 4 → type: vario451
  - ➤ Qundis Q heat 5.5→ type: gheat
  - ➤ Qundis QWater5.5 → type: qwater
  - uniSMART (gaz) → type: unismart
  - ➤ Zenner Zelsius C5 ISF → type: c5isf
- Linię "key" (103) zostaw aktywną tylko w przypadku wybranych liczników, np. Apator 16-2, Bmeters..... Domyślny klucz składa się z 32 zer i taki ma pozostać. Jeśli Twój licznik nie będzie prawidłowo odczytywany z zerowym kluczem, zgłoś się do wodociągów po udostępnienie właściwego klucza. W przypadku liczników innych producentów, linię key należy zakomentować. Warto próbować z kluczem i bez, jeśli nie jesteś pewien co do swojego licznika.
- Wspierane czujniki (sensor type) do liczników:
  - amiplus
    - total\_energy\_consumption\_kwh

- current power consumption kw
- total\_energy\_production\_kwh
- current\_power\_production\_kw
- ♦ voltage at phase 1 v
- voltage\_at\_phase\_2\_v
- voltage at phase 3 v
- > apatoreitn
  - current hca
  - previous\_hca
  - temp\_room\_avg\_c
- > apator08
  - ◆ total water m3
- apator162
  - ◆ total\_water\_m3
- bmeters
  - ◆ total water m3
- > c5isf
  - total\_heating\_kwh
- > compact5
  - current\_heating\_kwh
  - previous\_heating\_kwh
- ➤ elf
  - ◆ total energy consumption kwh
  - current\_power\_consumption\_kw
  - ◆ total water m3
- > evo868
  - ◆ total water m3
- fhkvdataiii
  - ◆ current\_hca
  - previous hca
- > hydrocalm3
  - total\_heating\_kwh
- hydrus
  - total\_water\_m3
- > itron
  - ◆ total water m3
- > izar
  - ◆ total water m3
  - ◆ last month total water m3
  - current month total water I
  - transmit period s
  - remaining battery life y
  - ◆ current\_alarms
  - previous alarms
- > mkradio3
  - total\_water\_m3
- mkradio4
  - total\_water\_m3
- > gheat
  - total energy consumption kwh
- qwater
  - total\_water\_m3

- > sharky774
  - ◆ total energy consumption kwh
- > topaseskr
  - ◆ total water m3
- ultrimis
  - ◆ total water m3
- > unismart
  - ◆ total gas m3
- > vario451
  - ◆ total heating kwh

Jeżeli jesteś posiadaczem używanej nakładki, która jest dokładana do licznika i stan licznika nie zgadza się ze stanem nakładki, można to skorygować poprzez dodanie filtra offset w konfiguracji sensora w sekcji total\_water\_m3 (linie 85 i 86).

Więcej info odnośnie konfiguracji na stronie autora projektu: <a href="https://github.com/SzczepanLeon/esphome-components#22-wmbus">https://github.com/SzczepanLeon/esphome-components#22-wmbus</a>

W celu dyskusji nad rozwiązaniem i ewentualnymi problemami, zapraszam na forum: <a href="https://forum.arturhome.pl/t/komponent-wm-bus-do-esphome-szczepanleon-wersja-2-x-watek-ogolny">https://forum.arturhome.pl/t/komponent-wm-bus-do-esphome-szczepanleon-wersja-2-x-watek-ogolny</a>

## 4. Wgrywanie nowej konfiguracji

Po wprowadzeniu konfiguracji swoich nakładek, kliknij **SAVE**,a następnie **INSTALL** (w prawym górnym rogu edytora yaml w ESPHome). Pojawi się okno z wyborem sposobu instalacji. Urządzenie jest połączone z siecią, więc wybierz **Wirelessly**:



Rozpocznie się proces kompilacji:

```
Install wrmbus-reader yaml

| DECEMBER 2027-7.1 | DECEMBER 2027-7.
```

Potrwa on kilka minut i zakończy się zielonym komunikatem **SUCCES** i nastąpi samoczynne przejście do instalacji oprogramowania na urządzeniu. Gdyby z jakiegoś, bliżej nieokreślonego powodu urządzenie nie chciało się zaprogramować bezprzewodowo, przejdź do kroku 6 tej instrukcji.

Jeśli nie zamkniesz okna, to po chwili będą widoczne logi z urządzenia:

```
Now that the forecasts.

Now Successful yellowing progres.

Now Successfully wellowing progres.

Now Successfully wellowing progres.

Now Successfully wellowing progres.

Particularly the progress of the control of t
```

Zielone komunikaty to odebrane ramki. Niebieskie komunikaty to zdekodowane dane, wysyłane do Home Assistanta

Jeśli w logach dane są ok, można przejść do kolejnego kroku.

## 5. Dodanie wykrytego urządzenia

W powiadomieniach powinien pokazać się komunikat o wykryciu nowego urządzenia.



Po kliknięciu w **Check it out**, zostaniesz przeniesiony do zakładki Urządzenia i usługi, gzie zobaczysz nowe, wykryte urządzenie:



Po kliknięciu Konfiguruj, pojawi się okienko z prośbą o wpisanie klucza szyfrującego (API Key), który znajdziesz w swojej konfiguracji yaml.



To okno nie zawsze się pokazuje – czasem urządzenie zostaje dodane automatycznie. Dodanie urządzenia potwierdzone jest okienkiem Sukces!.



To już koniec konfiguracji. W Esphome pojawi się czytnik wraz ze zdefiniowanymi encjami, które możesz dowolnie wykorzystać w Home Assistant. Jednym z oczywistych zastosowań jest dodanie encji stanu liczników do zakładki Energia.

## 6. Reczne wgrywanie oprogramowania do urządzenia

Skompiluj kod yaml poprzez wybranie opcji "INSTALL" (u góry po prawej stronie ekranu konfiguracji yaml), a następnie zamiast Wirelessly (jak poprzednio) wybierz opcję "Manual download".



Pojawi się kolejne okienko z wyborem formatu pliku – wybierz "Modern format".



Po wybraniu formatu uruchamia się kilkuminutowy proces kompilacji, który będzie widoczny w logu. Po zakończeniu kompilacji pojawi się wyskakujące okno, w którym należy wybrać miejsce zapisu pliku \*.bin.



Zapisz plik i zamknij okno.

W przeglądarce **Chrome**, otwórz stronę:

https://web.esphome.io/?dashboard install

#### UWAGA!!! W Mozilli nie działa!!!



Następnie za pomocą przewodu USB podłącz czytnik do komputera (tego na którym pracujesz) i wybierz "CONNECT", a następnie wybierz swoje urządzenie z listy urządzeń podłączonych na USB. **UWAGA!!!** Bardzo ważne, żeby przewód USB posiadał możliwość transmisji danych. Wiele tanich przewodów umożliwia tylko np. ładowanie telefonów.

Po prawidłowym połączeniu z czytnikiem, pojawi się okno:



Wybierz opcję "INSTALL", pojawi się wyskakujące okno:



Select the project that you want to install on your device.

Wybierz plik Ne wybrano pliku

To get the factory file of your ESPHome project:

- 1. Open your ESPHome dashboard
- 2. Find your device card click on menu ( 🚦 )
- 3. Click on Install
- 4. Click on "Plug into this computer"
- 5. Click on download project.



a następnie wybierz plik, który wcześniej zapisałeś na dysku i kliknij "INSTALL". Czekaj aż program się załaduje. Po zakończeniu, zamknij stronę i wróć do ESPHome w HA.