# Napredno strojno učenje Izbrana poglavja računalniške matematike

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

Februar 2019

## Spremenljivke

### Napovedne (vhodne, neodvisne) spremenljivke (atributi) $X_i$ , i = 1..p

- Urejena p-terica  $\boldsymbol{X} = (X_1, X_2, \dots X_p)$
- Zaloge vrednosti spremenljivk D<sub>1</sub>, D<sub>2</sub>, ... D<sub>p</sub>
  - $X_i$  je numerična (<del>zvezna</del>, kvantitativna), če  $D_i \subseteq \mathbb{R}$
  - $X_i$  je diskretna (kvalitativna), če je  $D_i$  končna in običajno neurejena

## Ciljna (izhodna, odvisna) spremenljivka Y

Zaloga vrednosti  $D_Y$ 

4□ > 4□ > 4□ > 4□ > 4□ > 4□

### Primeri

### Učni primer

$$e \in X_{i=1}^p D_i \times D_Y$$
 oziroma

$$e = (x, y) = (x_1, x_2, \dots x_p, y), x_i \in D_i, y \in D_Y$$

### Podatkovna množica učnih primerov $S\subseteq\mathcal{E}$

 ${\mathcal E}$  označuje množico vseh možnih primerov, imenujemo jo tudi domena

$$\mathcal{E} = \underset{i=1}{\overset{p}{\times}} D_i \times D_Y$$

### Opomba o notaciji

$$X_{i-1}^p D_i = D_1 \times D_2 \times \ldots \times D_p$$

## Ilustrativni primer: Kartica zvestobe

## Primeri (vrstice) so kupci, spremenljivke (stolpci) lastnosti kupcev

| Ime   | Prihodki | Starost | Spol | Letna poraba | Dober kupec |
|-------|----------|---------|------|--------------|-------------|
| Mojca | 1,890    | 32      | Ž    | 18,200       | da          |
| Janez | 1,200    | 48      | М    | 8,900        | ne          |
| Špela | 900      | 63      | Ž    | 9,200        | da          |

### Primeri so nakupi, spremenljivke kupec in produkti

| Kupec | Spol | Pivo | Plenice | Voda | Kruh | Čokolada |
|-------|------|------|---------|------|------|----------|
| Mojca | Ž    | 0    | 0       | 0    | 2    | 3        |
| Janez | М    | 2    | 2       | 0    | 1    | 0        |

# Rezultat učenja: Model

### Model je funkcija m

$$m: \underset{i=1}{\overset{p}{\swarrow}} D_i \to D_Y$$

Za podane vrednosti napovednih spremenljivk  $\mathbf{x} = (x_1, x_2, \dots x_p)$  vrne model m ocenjeno (napovedano) vrednost ciljne spremenljivke  $\hat{y} = m(x_1, x_2, \dots x_p) = m(\mathbf{x})$ 

### Ilustrativni primeri: kartica zvestobe

- Dober kupec = m(Starost, Prihdoki, Spol)
- Letna poroaba = m(Starost, Spol)
- Pivo = m(Spol, Plenice)

# Definicija naloge nadzorovanega strojnega učenja

### Definicija naloge

- ullet Na osnovi podane učne podatkovne množice  $S_{train}$
- Najdi model m, ki je točen in splošno veljaven

### Točen in splošno veljaven model

Točen model doseže **minimalno napako** (maksimalno točnost) na učni množici  $S_{train}$ , splošno veljaven pa doseže **majhne napake** na poljubni podatkovni množici S.

Todorovski, UL-FU, IJS-E8

# Vrednotenje zmogljivosti modela

Funkcija izgube meri napako modela na enem primeru

$$L: D_Y \times D_Y \to \mathbb{R}_0^+$$

Vrne razliko  $L(y, \hat{y})$  med opazovano (y) in napovedano  $(\hat{y})$  vrednostjo ciljne spremenljivke Y na enem primeru.

Merjenje napake modela m na podatkovni množici S

$$Err: (\stackrel{p}{\underset{i=1}{\times}} D_i \to D_Y) \times \mathcal{P}(\mathcal{E}) \to \mathbb{R}_0^+$$

$$Err(m,S) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} L(y,m(\mathbf{x}))$$

Povprečna vrednost funkcije izgube modela m na primerih iz množice S.

# Napaka modela pri regresiji, $D_Y \subseteq \mathbb{R}$

### Običajna funkcija izgube je kvadratna napaka

$$L_{SE}(y,\hat{y}) = (y - \hat{y})^2$$

### Napaka modela

S to funkcijo izgube vrednotimo srednjo kvadratno napako MSE = Err modela. Pogosto računamo tudi celotno napako  $RMSE = \sqrt{MSE}$ .

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

## Napaka modela pri razvrščanju, $D_Y$ je končna množica

### Običajna funkcija izgube

$$L_{01}(y,\hat{y}) = \mathbb{I}(y \neq \hat{y}) = \begin{cases} 1; & y \neq \hat{y} \\ 0; & y = \hat{y} \end{cases}$$

### Napaka modela

S to funkcijo izgube vrednotimo klasifikacijsko napako,  $Err \in [0,1]$  modela (običajno v odstotkih). Pogosto računamo tudi klasifikacijsko točnost (ne natančnost) Acc = 1 - Err.

4□ > 4□ > 4 = > 4 = > = 90

# Algoritem za nadzorovano strojno učenje

$$\mathcal{A}:\mathcal{P}(\mathcal{E})\to(\bigotimes_{i=1}^p D_i\to D_Y)$$

Na osnovi podane učne množice  $S_{train}$ , algoritem vrne model m za ocenjevanje (napovedovanje) vrednosti ciljne spremenljivke Y iz podanih vrednosti napovednih spremenljivk  $X_1, X_2, \ldots X_p$ , t.j.,

$$m = \mathcal{A}(S_{train})$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Todorovski, UL-FU, IJS-E8

## Algoritmi za nadzorovano strojno učenje

- Linearni: linearna in logistična regresija
- Metoda najbližjih sosedov
- Odločitvena drevesa in pravila
- Metode podpornih vektorjev in jedra
- Umetne nevronske mreže
- Metode ansamblov

Todorovski, UL-FU, IJS-E8

## Priporočena priprava za nadaljevanje

## Če niste poslušali predmeta ITAP

- Prosojnice predavanj pri predmetu kt.ijs.si/~ljupco/lectures/itap/
- Prosto-dostopni učbenik ISL www-bcf.usc.edu/~gareth/ISL/

## Pregled vsebin

## Štirje tematski sklopi naprednega strojnega učenja

- Učenje iz podatkovnih tokov
- Meta učenje
- Upoštevanje predznanja pri strojnem učenju
- Razno, v glavnem (globoke) umetne nevronske mreže

## Način izvajanja predmeta

### Tematski sklop

- Trajanje: 3-4 tedne, 9-12 ur predavanj in seminarjev, 6-8 ur vaj
- Najprej 2-3 tedne predavanj: 6-9 ur
- Zadnji teden seminarji: 3 ure

### Vsebina predavanj in seminarjev

- Predavanja: predstavitev tematskega sklopa, fokus na algoritmih
- Seminarji: pregled tekočih raziskav in odprtih vprašanj

## Ocenjevanje

### Tri domače naloge (60 točk)

- Na koncu vsakega od prvih treh sklopov domača naloga
- Predstavljena na zadnjih vajah v okviru sklopa
- Vsaka naloga vredna 20 točk
- Običajni rok za oddajo: dva tedna po predstavitvi
- Pozitivno opravljene domače naloge: več kot 30 točk

### Ustni izpit (40 točk)

- Pogoj za pristop so pozitivno opravljene domače naloge
- Pozitivno opravljen izpit: več kot 20 točk
- Del izpita se da nadomestiti s seminarsko nalogo: razvoj algoritma (do 20 točk) ali aplikacija (do 10 točk)

## Učenje iz podatkovnih tokov

## Izvajalec Aljaž Osojnik, IJS in FMF, www.fmf.uni-lj.si/si/imenik/48599/

- Trajanje 3 tedne: 2 tedna (6 ur) predavanj, 1 teden (3 ure) seminarji, 3 tedne (6 ur) vaj
- Strukturo bo predstavil sam na prvih predavanjih

#### Vsebina

- Podatkovni tok: primeri prihajajo v kratkih časovnih intervalih
- Kako prilagoditi algoritme: izračun ustreznih statistik
- Kako vrednotiti (spreminjajoče se) modele?

# Meta učenje

#### Struktura

- Trajanje 3 tedne: enako kot prej
- Prva predavanja: naloge meta učenja
- Druga predavanja: AutoML in surogati
- Seminarji: nadgradnje surogatov in AutoML

#### Vsebina

- Meta učenje: učenje o učenju
- Napovedovanje zmogljivosti algoritmov na podani množici
- AutoML: avtomatsko nastavljanje parametrov algoritmov
- Meta učenje in globoke nevronske mreže
- Surogati: pristop k optimizaciji z učenjem približka ciljne funkcije

Februar 2019

# Upoštevanje predznanja pri strojnem učenju

#### Struktura

- Trajanje 4 tedne: 3 tedne predavanj, 1 teden seminarjev, 4 tedne vaj
- Prva predavanja: odkrivanje navadnih in diferencialnih enačb
- Druga predavanja: predznanje v logiki prvega reda
- Tretja predavanja: taksonomije in strojno učenje (Jan Kralj)
- Seminarji: predznanje in globoke nevronske mreže

#### Vsebina

- Simbolična regresija in odkrivanje enačb iz predznanja in podatkov
- Induktivno logično programiranje in relacijsko učenje
- Odločitvena drevesa za napovedovanje in razvrščanje
- Taksonomije in strojno učenje

→□→ →□→ →□→ □ →○□

### Razno

#### Struktura

- Trajanje 4 tedne: 2 tedna predavanj, 2 tedna seminarjev, 3 tedne vaj
- Prva predavanja: globoke nevronske mreže in ciljne funkcije, enačbe
- Druga predavanja: še nedoločeno (avto-enkoderji, vstavitve, delno nadzorovano učenje)
- Seminarji: nadgradnja globokih nevronskih mrež

#### Vsebina

- Alternativne ciljne funkcije in vzvratno razširjanje napake
- Umetne nevronske mreže in diferencialne enačbe
- Še nedoločeno (avto-enkoderji, delno nadzorovano učenje)

## Izvajalci in literatura

#### Izvajalci

- Predavanja in seminarji: Ljupčo Todorovski in Aljaž Osojnik
- Vaje: Jan Kralj in Aljaž Osojnik
- Domače naloge: Jan Kralj, Aljaž Osojnik in Ljupčo Todorovski
- Ustni izpit (seminarska naloga): Ljupčo Todorovski

#### Literatura

- Za vsak sklop posebej
- Za predavanja učbeniki in članki
- Za seminarje članki
- Članki bodo dostopni v spletni učilnici

# Definicija naloge

### Za podane

- Algoritme strojnega učenja  $\mathcal{A} = \{A_1, A_2, \dots A_m\}$
- Podatkovne množice  $S = \{S_1, S_2, \dots S_n\}, S_i \in \mathcal{E}_i$
- Metodo vrednotenja zmogljivosti  $p: \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$

### Odgovori na vprašanje

Ali so zmogljivosti algoritmov iz A statistično značilno različne?

### Primera metode p

Točnost izračunana s 100-kratnim zankanjem. Ploščina AUROC izračunana z 10-kratnim prečnim preverjanjem

## Od zmogljivosti p do rangov r

$$p_{ij} = p(A_j, S_i)$$
 $r_{ij} = rang(p_{ij}, \{p_{i1}, p_{i2}, \dots p_{im}\})$ 

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

# Navaden rang

rang: 
$$\mathbb{R} imes \mathcal{P}(\mathbb{R}) o \mathbb{N}$$

- Rangi elementov večkratne množice  $V = \{v_1, v_2, \dots v_s\}$ ,  $rang(v_1, V)$ ,  $rang(v_2, V)$ , ...  $rang(v_s, V)$  so permutacija naravnih števil od 1 do s = |V| za katero velja  $rang(v_i) < rang(v_j) \iff v_i > v_j$
- Primer  $rang(3, \{2, 1, 3, 2\})$  je 1,  $rang(2, \{2, 1, 3, 2\})$  je pa 2 oziroma 3.

Todorovski, UL-FU, IJS-E8

# Povprečen rang

$$rang_{avg}: \mathbb{R} imes \mathcal{P}(\mathbb{R}) o \mathbb{Q}$$

ullet Za elemente V, ki se pojavijo v množici q krat, je

$$rang_{avg}(v, V) = \frac{1}{q} \sum_{v_i \in V: v_i = v} rang(v_i, V)$$

• Primer  $rang_{avg}(3, \{2, 1, 3, 2\}) = 1$ ,  $rang(2, \{2, 1, 3, 2\}) = (2 + 3)/2$ .

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

# Konkreten primer, n = 25, m = 3

|                  | RF       | Tree     | NN       |
|------------------|----------|----------|----------|
| abalone          | 0.784774 | 0.775198 | 0.774240 |
| adult            | 0.849720 | 0.853610 | 0.839380 |
| ailerons         | 0.874545 | 0.858400 | 0.869964 |
| bank32nh         | 0.805908 | 0.758301 | 0.698486 |
| boston           | 0.887352 | 0.859684 | 0.861660 |
| car              | 0.977431 | 0.946759 | 0.993056 |
|                  |          |          |          |
| :                |          |          | :        |
| nursery          | 1.000000 | 1.000000 | 1.000000 |
| musk             | 0.999697 | 0.999697 | 0.995605 |
| puma8NH          | 0.831299 | 0.825562 | 0.806274 |
| puma32H          | 0.880249 | 0.863037 | 0.607666 |
| quake            | 0.530762 | 0.555096 | 0.548209 |
| rmftsa_sleepdata | 0.705078 | 0.744141 | 0.730469 |
| segment          | 0.998268 | 0.990909 | 0.996537 |
| splice           | 0.968025 | 0.945141 | 0.833229 |
| spectrometer     | 0.962335 | 0.949153 | 0.928437 |
| vowel            | 0.993939 | 0.987879 | 1.000000 |
| waveform-5000    | 0.888200 | 0.822600 | 0.855800 |
| wind             | 0.865075 | 0.831305 | 0.845908 |
|                  |          |          |          |

|                  | RF   | Tree | NN   |
|------------------|------|------|------|
| abalone          | 1    | 2    | 3    |
| adult            | 2    | 1    | 3    |
| ailerons         | 1    | 3    | 2    |
| bank32nh         | 1    | 2    | 3    |
| boston           | 1    | 3    | 2    |
| car              | 2    | 3    | 1    |
|                  |      |      |      |
|                  |      |      |      |
| nursery          | 2    | 2    | 2    |
| musk             | 1.5  | 1.5  | 3    |
|                  |      |      |      |
| puma8NH          | 1    | 2    | 3    |
| puma32H          | 1    | 2    | 3    |
| quake            | 3    | 1    | 2    |
| rmftsa_sleepdata | 3    | 1    | 2    |
| segment          | 1    | 3    | 2    |
| splice           | 1    | 2    | 3    |
| spectrometer     | 1    | 2    | 3    |
| vowel            | 2    | 3    | 1    |
| waveform-5000    | 1    | 3    | 2    |
| wind             | 1    | 3    | 2    |
| Povprečje        | 1.46 | 2.22 | 2.32 |

Todorovski, UL-FU, IJS-E8

# Wilcoxonov test predznačenih rangov: Kaj opazujemo?

## Razlike v zmogljivosti algoritmov $A_1$ in $A_2$

$$d_i = p_{i1} - p_{i2}$$

- $sgn(d_i) = 1$ ,  $A_1$  bolj zmogljiv od  $A_2$
- $sgn(d_i) = -1$ ,  $A_2$  bolj zmogljiv od  $A_1$
- $sgn(d_i) = 0$ ,  $A_1$  in  $A_2$  sta enako zmogljiva

## Porazdelitev vrednosti rangov $r(|d_i|)$

- Rangi absolutnih vrednosti  $r(|d_i|) = rang(|d_i|, \{|d_1|, |d_2|, \dots |d_n|\})$
- Statistiki  $R^+ = \sum_{i=1}^n Z_i r(|d_i|)$  in  $R^- = \sum_{i=1}^n (1 Z_i) r(|d_i|)$
- Naključne spremenljivke  $Z_i = \mathbb{I}(d_i > 0), i = 1 \dots n$

4 D F 4 D F 4 D F 4 D F 26 / 49

## Predpostavke in ničelna hipoteza

### Predpostavke

- Razlike d<sub>i</sub> medsebojno neodvisne
- Porazdelitvi obeh vzorcev  $p_{1i}$  in  $p_{2i}$  sta zvezni
- Porazdelitev razlik je simetrična

Ničelna hipoteza:  $A_1$  in  $A_2$  sta enako zmogljiva

$$H_0: \theta_d = 0$$

 $\theta_d$  je mediana vrednosti  $d_i$ 

# Porazdelitev $Z_i$ ob predpostavki $H_0$

$$Z_i \stackrel{H_0}{\sim} Bernoulli(\frac{1}{2})$$
 $E[Z_i|H_0] = \frac{1}{2}$ 
 $Var[Z_i|H_0] = \frac{1}{4}$ 

◆ロト ◆個ト ◆注ト ◆注ト 注 りへの

# Približna porazdelitev $R^+$ ob predpostavki $H_0$

Izpeljavi na tabli

$$E[R^{+}|H_{0}] = \frac{1}{4}n(n+1)$$
  
 $Var[R^{+}|H_{0}] = \frac{1}{24}n(n+1)(2n+1)$ 

Po centralnem limitnem izreku  $W \sim N(0,1)$ 

$$W = \frac{R^{+} - \frac{1}{4}n(n+1)}{\sqrt{\frac{1}{24}n(n+1)(2n+1)}}$$

# Eksaktna porazdelitev $R^+$ ob predpostavki $H_0$

$$P(R^+ = k|H_0) = \frac{u_n(k)}{2^n}$$

- $u_n(k)$  je število n-teric vrednosti  $Z_i$ ,  $(z_1, z_2, \dots z_n)$  za katere velja  $R^+ = k$
- Kako preštejemo število n-teric  $u_n(k)$

### Preprosta rekurzija

- Razlikam  $d_1, d_2, \dots d_{n-1}$  dodamo  $d_n$
- Brez škode za splošnost predpostavimo  $r(|d_n|) = n$
- Če  $d_n < 0$ , ostane  $R^+$  nespremenjen
- Če  $d_n > 0$ , se  $R^+$  poveča za n

- 4 ロ ト 4 同 ト 4 ヨ ト 4 ヨ ト 9 0

# Eksaktna porazdelitev $R^+$ ob predpostavki $H_0$ , nadaljevanje

$$P(R^{+} = k|H_{0}) = \frac{u_{n}(k)}{2^{n}} = \frac{u_{n-1}(k)}{2^{n-1}}P(d_{n} < 0) + \frac{u_{n-1}(k-n)}{2^{n-1}}P(d_{n} > 0)$$
$$= \frac{u_{n-1}(k) + u_{n-1}(k-n)}{2^{n}}$$

- Velja torej  $u_n(k) = u_{n-1}(k) + u_{n-1}(k-n)$
- Za n = 1 velja  $u_1(0) = u_1(1) = 1$ , sicer pa  $u_1(k) = 0$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ ≡ √0⟨○⟩

Todorovski, UL-FU, IJS-E8

# Je porazdelitev $R^+$ simetrična?

Enostavno pokazati, da

$$P(R^+ - \frac{1}{4}n(n+1) \ge k|H_0) = P(R^+ - \frac{1}{4}n(n+1) \le -k|H_0)$$

Namig: Pod predpostavko  $H_0$ , sta vrednosti  $Z_i$  in  $1 - Z_i$  enako verjetni

# Kaj pa porazdelitev $R^-$ ?

Je enaka porazdelitvi  $R^+$ , izpeljava na tabli

$$P(R^+ \le k|H_0) = P(R^- \le k|H_0)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

# Enostranski Wilcoxonov test predznačenih rangov

Alternativna hipoteza:  $A_1$  je bolj zmogljiv od  $A_2$ 

$$H_A: \theta_d > 0$$

- $H_0$  zavrnemo, če je vrednost  $R^-$  majhna
- Bolj natančno, če  $R^- \leq t_{\alpha}$
- $t_{lpha}$  je največje naravno število za katero še velja  $P(R^- \leq t_{lpha}|H_0) \leq lpha$

# Dvostranski Wilcoxonov test predznačenih rangov

## Alternativna hipoteza: $A_1$ in $A_2$ nista enako zmogljiva

$$H_A: \theta_d \neq 0$$

- $H_0$  zavrnemo, če je ena od vrednosti  $R^+$  in  $R^-$  majhna
- ullet Bolj natančno, če  $\mathit{min}(R^+,R^-) \leq t_{lpha/2}$
- $t_{\alpha}$  je največje naravno število za katero še velja  $P(\min(R^+,R^-) \leq t_{\alpha/2}|H_0) \leq \alpha/2$

## Friedmanov test: Kaj opazujemo?

Povprečne range za vsako podatkovno množico  $S_i$ 

$$r_{ij} = rang(p_{ij}, \{p_{i1}, p_{i2}, \dots p_{im}\})$$

Povprečje povprečnih rangov

$$\overline{r_j} = \frac{1}{N} \sum_{i=1}^{n} r_{ij}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

### Predpostavke in ničelna hipoteza

#### Predpostavke

- Opazovanja za različne podatkovne množice so neodvisne
- Porazdelitev opazovanj je zvezna
- ullet Opazovanja za različne podatkovne množice se lahko razlikujejo le v lokacijskem parametru  $\Delta$  (povprečju ali mediani)

Ničelna hipoteza: vsi algoritmi so enako zmogljivi

$$H_0: \Delta_1 = \Delta_2 = \dots \Delta_m$$

 $\Delta_i$  je lokacijski parameter porazdelitve opazovanj za podatk. množico  $S_i$ 

## Statistika porazdelitve povprečij povprečnih rangov

Varianca povprečij povprečnih rangov

$$\chi_r^2 = \frac{12n}{m(m+1)} \sum_{j=1}^m (\overline{r_j} - \overline{r})^2$$

Povprečje povprečij povprečnih rangov

$$\overline{r} = \frac{1}{m} \sum_{j=1}^{m} \overline{r_j} = \frac{1}{mn} \sum_{j=1}^{m} \sum_{i=1}^{n} r_{ij} = \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}$$

$$= \frac{1}{mn} \sum_{i=1}^{n} \frac{1}{2} m(m+1) = \frac{1}{2mn} n m(m+1)$$

$$= \frac{1}{2} (m+1)$$

### Statistika porazdelitve povprečij povprečnih rangov, nad.

$$\chi_r^2 = \frac{12n}{m(m+1)} \sum_{i=1}^m (\overline{r_i} - \frac{1}{2}(m+1))^2$$

◆ロ > ◆個 > ◆種 > ◆種 > 種 ● りゅう

### Friedmanov test, dvosmerna analiza variance z rangi

#### Alternativna hipoteza: Algoritmi so različno zmogljivi

$$H_A:\exists j,j'\in\{1,2,\ldots m\}:\Delta_j\neq\Delta_{j'}$$

- H<sub>0</sub> zavrnemo, če je varianca povprečij visoka
- Bolj natančno, če  $\chi_r^2 \geq c_\alpha$
- $c_{lpha}$  je največje število, za katero še velja  $P(\chi_r^2 \leq c_{lpha}) \leq lpha$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

### Friedmanov test: približna statistika

$$F = \frac{(n-1)\chi_r^2}{n(m-1) - \chi_r^2}$$

• Porazdelitev F(m-1,(m-1)(n-1))

- ◀ □ ▶ ◀ 🗇 ▶ ◀ 필 Þ - ( 필 · ) 역 Q @

## Zapleti in popravki, ki jih ne obravnavamo tukaj

Enake zmogljivosti, kar je pri zveznih porazdelitvah p=0

- $\bullet \exists i: d_i = 0$
- $\bullet \ \exists i,j,j': p_{ij}=p_{ij'}$

### In kaj če ničelno hipotezo zavrnemo?

#### Post-hoc testi

Katere razlike po parih algoritmov so povzročile zavračanje?

#### Dve vrsti post-hoc testov

- Vsi-z-enim: V fokusu en algoritem, m-1 testov
- ② Vsi-z-vsemi: Vsi algoritmi, m(m-1)/2 testov

#### Vsi-z-enim: Bonferroni-Dunn test

$$z = \frac{|\overline{r_j} - \overline{r_{j'}}|}{\sqrt{\frac{m(m+1)}{6n}}}$$

- Vrednosti z so porazdeljene po N(0,1)
- Izračunamo vrednost p = 2P(N(0,1) > |z|)
- Če je  $p < \alpha$ , zavrnemo ničelno hipotezo, da je algoritem  $A_j$  enako zmogljiv kot kontrolni algoritem  $A_{j'}$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

### Vsi-z-vsemi: Nemenyi test

$$CD = q_{\alpha} \sqrt{\frac{m(m+1)}{12n}}$$

- Kritična razdalja *CD*: razlika med zmogljivostmi dveh algoritmov  $A_j$  in  $A_{j'}$  je statistično značilna, če  $|p_{ij} p_{ij'}| > CD$
- ullet  $q_{lpha}$  je kritična vrednost Studentove porazdelitve rangov

Todorovski, UL-FU, IJS-E8

### Konkreten primer, n = 25, m = 3, nadaljevanje

#### Fisherjev test

- Vrednost statistike 11.82, vrednost p = 0.002713
- ullet p < 0.01: ničelno hipotezo, pri stopnji zaupanja 99%, zavrnemo
- Torej so razlike med algoritmi statistično značilne

#### Post-hoc Nemenyi test

$$CD = 0.6768776$$

Razlika med zmogljivostmi dveh algoritmov je statistično značilna, če se njihovi povprečji povprečnih rangov razlikujeta za več kot 0.6768776.

(4日) (個) (量) (量) (量) (9Qで)

# Konkreten primer, diagram povprečja povprečnih rangov



47 / 49

### Literatura in odprta vprašanja

#### Literatura

- Predavanje: članek (Demšar 2006, JMLR)
- Predavanje: magistrska naloga Lare Dular, poglavje 3

#### Tekoče raziskave in odprta vprašanja

- Kaj če primerjamo po več kot en mero zmogljivosti?
- Seminar: magistrska naloga Lare Dular, poglavja 4 in 5
- Kaj pa Bayesov pristop?
- Seminar: članek-vadnica (Benavoli in ost. 2018, JMLR)

### Praktični napotki

#### Implementacija v R

- Paket scmamp
- Kratka vadnica cran.r-project.org/web/packages/scmamp/vignettes-/Statistical\_assessment\_of\_the\_differences.html

#### Podatki o zmogljivosti algoritmov na različnih množicah

- Spletna stran in repozitorij openml.org
- Paket za R OpenML