

HC-12 使用导源

杭州友辉科技有限公司 2023 年 6 月 12 日

目录

杭州	l友辉科技有限公司	. 1
_,	HC-12 模块介绍	3
	1.1 模块概述	3
	1.2 模块特点	3
	1.3 模块参数	3
二、	模块尺寸与引脚定义	4
三、	模块连接方式与使用	5
	3.1 模块与单片机连接	5
	3.2 模块与调试板连接	6
四、	无线串口透传	6
	4.1 串口透传特性	6
	4.2 串口透传模式	7
五、	AT 指令	8
	5.1 默认出厂参数	8
	5. 2 AT 指令介绍	. 8

杭州友辉科技有限公司

一、HC-12 模块介绍

1.1 模块概述

HC-12 无线串口通信模块是新一代的多通道嵌入式无线数传模块。无线工作频段为433.4—473.0MHz,可设置多个频道,步进是 400KHz,总共 100 个。模块最大发射功率为100mW(20dBm),5000bps 空中波特率下接收灵敏度-116dBm,开阔地 1000 米的通信距离。

模块采用邮票孔封装方式,可贴片焊接,模块大小 27.4mm×13.2mm×4mm(包括天线帽,不包括弹簧天线),很方便客户嵌入应用系统之内。模块上有 PCB 天线座 ANT1,用户可以通过同轴线,使用 433M 频段外接天线;模块内也有天线焊接孔 ANT2,方便用户焊接弹簧天线。用户可以根据使用要求,选择其中一种天线。

模块内部含有 MCU,用户无需对模块另外编程,各种透传模式只管收发串口数据即可,使用方便。模块采用多种串口透传模式,用户可以根据使用要求用 AT 指令进行选择。四种模式 FU1、FU2、FU3、FU4 的空闲状态下平均工作电流分别为 3.6mA、80 μ A、16mA 和 16mA,最大工作电流为 100mA(满功率发射状态下)

1.2 模块特点

- ▶ 远距离无线传输(开阔地 1000 米/FU4 模式下,空中波特率 500bps)
- ▶ 工作频率范围(433.4—473.0MHz, 多达 100 个通信频道)
- ▶ 最大 100mW (20dBm) 发射功率 (可设置 8 档功率)
- ▶ 四种工作模式,适应不同应用场合
- ▶ 内置 MCU,通过串口和外部设备进行通信
- ➤ 不限一次发送的字节个数(FU1/FU3 模式)
- ▶ 模块支持一对一、一对多、多对多连接透传

1.3 模块参数

参数名称	参数	参数名称	参数
型号	HC-12	模块尺寸	27.4×13.2×4mm
芯片方案	SI4463	工作频段	433.4~473.0MHz
通讯接口	UART 3.3V/5V TTL 电平天线	天线接口	弹簧天线/天线插座
工作电压	3.3~5V 电平	工作温度	-25℃~+75℃
发射功率	20dBm (MAX)	参考距离	1000m

二、模块尺寸与引脚定义

序号	引脚	I/O 方向	引脚说明
1	VCC		电源输入,DC3.2V—5.5V,要求负载
1	VCC		能力不小于 200mA。
2	GND		公共地
3	RXD	输入,内部 3.3k 上拉电阻	URAT 输入口,TTL 电平
4	TXD	输出	URAT 输出口,TTL 电平
5	SET	输入,内部 10k 上拉电阻	参数设置控制脚,低电平有效
6	ANT	RF 输入/输出	433MHz 天线引脚
7	GND		公共地
8	GND		公共地
9	NC		公共地
ANT1	ANT	RF 输入/输出	IPEX20279-001E-03 天线插座
ANT2	ANT	RF 输入/输出	433MHz 弹簧天线焊接孔

注:

引脚 1-6 各有两个焊盘,靠外面的半孔焊盘用于贴片焊接。引脚 6 靠里面的焊盘 ANT2 用于模块贴片焊接时,可以手焊弹簧天线。引脚 1-5 靠里面的圆孔焊盘用来焊接 2.54mm 间距排针,可以直接插到用户 PCB 排座上。

三、模块连接方式与使用

杭州友辉科技有限公司

如上面图所示,HC-12 模块用于代替半双工通信时的物理连线。左边的设备向模块发送串口数据,模块的 RXD 端口收到串口数据后,自动将数据以无线电波的方式发送到空中。右边的模块能自动接收到,并从 TXD 还原最初左边设备所发的串口数据。从右到左也是一样的。模块间只能工作于半双工状态,不能同时收发数据。

3.1 模块与单片机连接

模块可与供电系统为 3.3V 或者 5V 的 MCU 连接, 串口交叉连接即可(模块的 RX 接 MCU 的 TX、模块的 TX 接 MCU 的 RX)

下图所示, 左图为 24 路舵机控制板 HC-12 无线通讯模块接线, 右图为三合一舵机控制板接线。

3.2 模块与调试板连接

将本店的调试板短接至【USB】和【TTL】处,然后打开上位机或者其他串口助手软件查看数据通讯情况。

四、无线串口透传

4.1 串口透传特性

HC-12 模块有四种串口透传模式,用 FU1、FU2、FU3 和 FU4 表示。使用时,各个模式都是只管收发串口数据即可,不用管空中无线传送部分,但只有在同样空中波特率下才能互相通信!系统默认工作在 FU3 全速模式下,此模式可以根据串口波特率自动调节空中波特率,在低波特率下通信距离最远。

不同模式是不能互传数据的,用户可以根据实际情况选择最优模式。

模块一般两个或两个以上连接使用,以半双工的方式互相传送数据。同时,透传模式、

波特率、无线通信频道必须设置成一样。出厂默认设置为 FU3、9600bps(8 位数据、无校 验、1 位停止位)、CH001(433.4MHz)。使用时一般不限定一次连续往模块串口发送的字节 数。但鉴于环境干扰等因素,一次连续发送大量数据时,有可能会丢失一些字节。所以,上 位机最好要有应答和重发等机制,避免信息丢失。

4.2 串口透传模式

HC-12 模块出厂时串口透传模式默认为 FU3。此时,模块工作于全速状态下,空闲工作 电流为 16mA 左右。在此模式下,模块会根据串口波特率自动调节无线传输空中波特率,其 对应关系如下表所示:

串口波特率	1200	2400	4800	9300	19200	38400	576600	115200
	bps	bps	bps	bps	bps	bps	bps	bps
无线空中波特率	50	000bps	15	000bps	58	000bps	23	6000bps

为了使通信距离尽量远,可以把串口波特率设为低波特率。如果是短时间传送大量数据, 则把串口波特率设为高波特率,但要牺牲通信距离。不同空中波特率条件下模块的接收灵敏 度如下表所示:

串口波特率	500	5000	15000	E9000hns	236000bps/25
	bps	bps	bps	58000bps	0000bps
无线空中波特率	-124dBm	-1168dBm	-111dBm	-106dBm	-100dBm

一般来说,接收灵敏度每下降 6 dB,通信距离会减少一半。

在模块"SET"脚置低电平时,可以通过 AT 指令来设置串口透传模式(详见下面章节的介 绍)。

FU1 模式为较省电模式,此时模块的空闲工作电流为 3.6mA 左右。此模式下模块同样 可以设置如上面表格所示的 8 种串口波特率,但空中波特率统一为 250000bps,通信距离较 短。

FU2 模式为省电模式,此时模块的空闲工作电流为 80µA 左右。此模式下模块只支持 1200 bps、2400 bps 和 4800 bps 的串口波特率,空中波特率统一为 250000bps,通信距离较 短。此模式下不能设置成其它串口波特率。同时,在 FU1 和 FU3 模式下设置为 FU2 模式 时,超过 4800 bps 的串口波特率一律会被自动降低为 4800 bps。FU2 模式下,只适用传输 少量数据(每个数据包在 20 个字节以内),数据包发送时间间隔不能太短(最好在 2 秒以

上), 否则会造成数据丢失。

杭州友辉科技有限公司

FU4 模式为超远距离通信模式,串口波特率固定为 1200bps, 空中波特率为 500bps。从 其它模式转到 FU4 后, 串口波特率会自动转为 1200bps。该模式下, 只适用传输少量数据(每个数据包在 60 个字节以内),数据包发送时间间隔不能太短(最好在 2 秒以上), 否则会造成数据丢失。

下面给出各种模式的一些特性参考值:

模式	FU1	FU2	FU3	FU4	备注
空闲电流	3.6mA	80 µ A	16mA	16mA	平均值
传送延时	15~25mS	500mS	4~80mS	15	发1 个字节
回环测试 1	31mS				串口波特 9600, 发 1 个字节
回环测试 2	31mS				串口波特 9600 , 发 10 个字节

注:回环测延时是指,短接一模块的 TX 与 RX 引脚,发串口数据给另一模块,从开始发送串口数据计起到另一模块 TX 引脚出现返回来的数据的这段时间。

五、AT 指令

AT 指令用来设置模块的参数和切换模块的功能,设置后需退出设置状态才生效。同时,参数和功能的修改,掉电不会丢失。

第一种进入方式——正常使用(已经上电)中,把第 5 引脚 "SET"置低电平;

第二种进入方式——断电,第 5 引脚 "SET" 先置低电平再重新上电。

这两种方式都能使模块进入 AT 指令模式,释放("SET"引脚不接低电平)则退出指令模式。退出指令模式后,如果更改了模块功能,则会切到相应的功能状态。

第二种方式固定以 9600, N, 1 的串口格式进入指令模式。

注:退出指令模式后,模块处于复位状态,至少要等 200mS 后才能再次进入指令模式, 否则模块有可能按照第二种方式进入指令模式!

5.1 默认出厂参数

串口波特率为 115200bps、通信频道为 C001、串口透传模式为 FU3。

5.2 AT 指令介绍

1) 测试通讯

指令	响应	说明
AT	ОК	测试

2) 更改串口波特率指令

指令	响应	说明
		用 AT 指令设好波特率后,下
AT+Bxxxx	OK+Bxxxx	次上电使用不需再设置,可以
		掉电保存波特率。

更改串口波特率指令。可设置波特率为 1200bps、2400bps、4800bps、9600bps、19200bps、8400bps、57600bps 和 115200bps。出厂默认为 115200bps。

例:

设置模块串口波特率为19200bps,请发给模块指令"AT+B19200",模块返回"OK+B19200"。

3) 更改无线通信的频道

指令	响应	说明
AT+Cxxx	OKsetname	更改无线通信的频道

更改无线通信的频道,从 001 到 127 可选(超过 100 以后的无线频道,通信距离不作保证)。无线频道默认值为 001,工作频率为 433.4MHz。频道的步进是 400KHz,频道 100 的工作频率为 473.0MHz。

例:

设置模块工作到频道 21,请发给模块指令 "AT+C021",模块返回 "OK+C021"。退出指令模式后,模块工作在第 21 通道,工作频率为 441.4 MHz。

注意:

由于 HC-12 模块的无线接收灵敏度比较高,当串口波特率大于 9600 bps 时,必须要错开 5 个相邻频道来使用。当串口波特率不大于 9600 bps 时,如果短距离(10 米以内)通信,也需要错开 5 个相邻频道使用。

4) 更改模块串口透传模式

指令	响应	
·		

AT : File	OKIELIN	可选 FU1、FU2、FU3 和 FU4 四
AT+FUx	OK+FUx	种模式

模块默认模式是 FU3,两模块的串口透传模式必须设置为一样才能正常通信。详细介绍请查看上面"无线串口透传"部分的介绍。

例:

发给模块指令 "AT+FU1", 模块返回 "OK+FU1"。

5) 设置模块的发射功率等级

指令	响应	说明
AT+Px	OK+Px	设置模块的发射功率等级

设置模块的发射功率等级, x 可取 1-8, 对应模块发射功率如下:

x 值	1	2	3	4	5	6	7	8
模块发送功率(dBm)	-1	2	5	8	11	14	17	20

出厂默认设置为 8,发射功率最大,通信距离最远。发射功率等级设置为 1,发射功率最小。一般来说,发射功率每下降 6dB,通信距离会减少一半。

例:

发给模块指令"AT+P5",模块返回"OK+P5"。退出指令模式后,模块发射功率为+11dBm。

6) 获取模块的单项参数

指令	响应	说明
AT+Ry	OK+(v 所指定的参数)	y 为 B、C、F、P 中的任一字母,分别表示:波
		特率、通信频道、串口透传模式、发射功率。

例 1:

发给模块指令"AT+RB",如果模块返回"OK+B9600",则查询到模块的串口波特率为 9600bps。例 2:

发给模块指令 "AT+RC",如果模块返回 "OK+RC001",则查询到模块的通信频道为 001。例 3:

发给模块指令 "AT+RF",如果模块返回 "OK+FU3",则查询到模块工作在串口透传模式 3。例 4:

发给模块指令 "AT+RP", 如果模块返回 "OK+RP: +20 dBm", 则查询到模块的发射功率为+20 dBm。

7) 获取模块的所有参数

指令	响应	说明	
	依次返回当前模块的串口透		
AT+RX	传模式、串口波特率、通信频道、	获取模块的所有参数	
	发射功率等信息。		

例:

发给模块指令 "AT+RX", 模块返回 "OK+FU3

OK+B9600

OK+C001

OK+RP: +20 dBm"

8) 设置串口通信的数据位数、校验位和停止位

指令	响应	说明
AT+Uxxx	OK+Uxxx	设置串口通信的数据位数、校验位和停止位。
		校验位中, N 代表无校验, O 代表奇校验, E 代表
		偶校验。停止位中,1代表1位停止位,2代表2
		位停止位,3代表 1.5 位停止位。

例:

要把串口格式设置成 8 位数据位, 奇校验, 1 个停止位, 请发给模块指令 "AT+U8O1", 模块返回 "OK+U8O1"。

9) 设置睡眠模式

杭州友辉科技有限公司

指令	响应	说明		
		收到指令后,模块在退出 AT 指令时进入睡眠模		
AT+SLEEP	OK+SLEEP	式,工作电流约22µA,这时模块不能进行串口数据传		
		输。再次进入 AT 设置状态则自动退出睡眠模式。		

例:

当不用无线传输数据时,为了节约电量,发给模块指令"AT+SLEEP",模块返回"OK+SLEEP"

10) 将串口波特率、通信频道、串口透传模式恢复出厂默认值。

指令	响应	说明
AT+DEFAULT	OK - DEFAULT	将串口波特率、通信频道、串口透传
	OK+DEFAULT	模式恢复成出厂默认值。

例:

发给模块"AT+DEFAULT",模块返回"OK+DEFAULT",恢复出厂默认值。串口波特率为 115200bps、通信频道为 C001、串口透传模式为 FU3。