Stacks API and finding strongly connected components

CS 146 - Spring 2017

Today

- DFS traversal
- Edge classification wrt DFS traversal
- Strongly connected components
- Tarjan's algorithm

The stack API

- push()
- pop() <- no parameter

DFS on a tree is just a generalization of tree-traversal

```
preorder(v) {
    // do stuff on v
    if v has left child w
        preorder(w)
    if v has right child w
        preorder(w)
}
```

```
dfs(v) {
    // do stuff on v
    for every neighbor w of v
        dfs(w)
}
```

sometimes, it will also be

useful to do stuff afterwards

DFS on a graph

```
Set visited = new Set();
dfs(v) {
    visited.add(v)
    // do stuff on v
    for every neighbor w of v
        if (!visited.contains(w))
             dfs(w)
```

observation: each node is "visited" (= input to a dfs call) once

Connection with textbook version

```
every vertex starts out
Set visited = new Set();
                                          white (not visited)
dfs(v) {
                                        upon entering a recursive
     visited.add(v)
                                        call, v turns grey (visiting)
     // do stuff on v
     for every neighbor w of v
           if (!visited.contains(w))
                  dfs(w)
                                       upon exiting the recursive call, v
                                        turns black (finished visiting)
```

Note similarities with the lifecycle of a vertex in BFS

Example with timestamps

each vertex gets a "visiting" timestamp when first visited each vertex gets a "done visiting" timestamp when finished


```
Set visited = new Set();
dfs(v) {
    visited.add(v)
    // do stuff on v
    for every neighbor w of v
        if (!visited.contains(w))
        dfs(w)
```

how would you modify dfs() to print timestamps...?

and ensure that every vertex gets a timestamp?

DFS for visit timestamp

```
Set visited = new Set();
time = 1
dfs(v) {
    visited.add(v)
    print("visiting v: " + time); time++
    for every neighbor w of v
        if (!visited.contains(w))
             dfs(w)
    print("done visiting v: " + time); time++
```

To ensure all vertices are visited (and get a timestamp)

```
Set visited = new Set();
                             for each vertex v
time = 1
                                  if (!visited.contains(v))
                                       dfs(v)
dfs(v) {
    visited.add(v)
    print("visiting v: " + time); time++
    for every neighbor w of v
        if (!visited.contains(w))
             dfs(w)
    print("done visiting v: " + time); time++
```

Time complexity of DFS

```
Set visited = new Set();
                                           each vertex is input of
dfs(v) {
                                           at most 1 recursive call
     visited.add(v)
     // do stuff on v
                                           each edge is explored
     for every neighbor w of v
                                            at most once overall
          if (!visited.contains(w))
                 dfs(w)
                                     as long as "do stuff" is O(1)
```

DFS is O(V + E)

Time complexity of DFS

```
Set visited = new Set();
 Note similarities with
 BFS/Dijkstra analysis
 despite DFS being a
 recursive algorithm
for every neighbor w of v
          if (!visited.contains(w))
```


https://www.codefellows.org/blog/trees-as-graphs-vs-trees-as-data-structures/ http://stackoverflow.com/questions/20192445/which-procedure-we-can-use-for-maze-exploration-bfs-or-dfs

DFS forest

```
if (!visited.contains(v))
            dfs(v) one DFS tree
dfs(v) {
    visited.add(v)
    for every neighbor w of v
         if (!visited.contains(w))
               dfs(w) 

v→w is a tree edge

= edge of DFS tree
```

Set visited = new Set();

for each vertex v

one possible

dfs forest made up of

two trees: dfs(0)

and dfs(1)

Find a DFS traversal that produces a forest with 1 tree.

Find a DFS traversal that produces a forest with 3 trees.

Edge classification

Can you classify all the other edges?

dfs forest made up of tree edges

http://www.csie.ntnu.edu.tw/~u91029/Graph.html

What does it mean for a directed graph to be connected?

Which of these graphs would you consider to be "connected"? Why?

V can **reach** W if there is a directed path connecting V to W

A can reach every other vertex

B can reach every other vertex except A

every vertex can reach every other vertex

A directed graph is said to be strongly connected if ...

every vertex in the graph is reachable from every other vertex in the graph

which is strongly connected?

Every directed graph can be decomposed into a set of strongly connected components (SCCs)

A strongly connected component is a (largest possible) set of vertices that are mutually reachable.

Every vertex is reachable from itself.

Find the strongly connected components of each of these graphs

Find the strongly connected components of this graph

What is an algorithm for finding all the strongly connected components of a directed graph?

```
Stack<Vertex> stack = new Stack();
Map<Vertex, Integer> index = new Map(),
Map<Vertex, Integer> lowlink = new Map();
int nextIndex = 0;
for each vertex v
    if (!index.containsKey(v))
         scc(v)
scc(v) {
   // init v
   for every neighbor w of v {
       if (!index.containsKey(w)) { // tree edge
            scc(w)
            lowlink.put(v, min(lowlink.get(v), lowlink.get(w)))
       } else if (w on stack) { // non-tree edge
            lowlink.put(v, min(lowlink.get(v), index.get(w)))
   }
      pop current scc of v if done
}
         Tarjan's algorithm
```

```
Set visited = new Set();
for each vertex v
     if (!visited.contains(v))
          dfs(v)
dfs(v) {
    visited.add(v)
    for every neighbor w of v
        if (!visited.contains(w
             dfs(w)
```

DFS

```
Stack<Vertex> stack = new Stack();
Map<Vertex, Integer> index = new Map();
Map<Vertex, Integer> lowlink = new Map();
int nextIndex = 0;
for each vertex v
     if (!index.containsKey(v))
          scc(v)
                                                            stack.push(v);
                                                            index.put(v, nextIndex);
scc(v) {
                                                            lowlink.put(v, nextIndex);
   // init v
                                                            nextIndex++;
    for every neighbor w of v {
       if (!index.containsKey(w)) { // tree edge
                                                      if (index.get(v) == lowlink.get(v)) {
             scc(w)
                                                         List<Vertex> component = new List();
             lowlink.put(v, min(lowlink.get(v), low
                                                         while (stack.peek() != v)
       } else if (w on stack) { // non-tree edge
                                                             component.add(stack.pop());
             lowlink.put(v, min(lowlink.get(v), ind
                                                         component.add(stack.pop());
                                                         print component;
    }
      pop current scc of v if done
    Tarjan's algorithm
```

Tarjan's algorithm: example


```
Stack<Vertex> stack = new Stack();
Map<Vertex, Integer> index = new Map();
Map<Vertex, Integer> lowlink = new Map();
int nextIndex = 0:
for each vertex v
    if (!index.containsKey(v))
         dfs(v)
scc(v) {
   // init v
   for every neighbor w of v {
       if (!index.containsKey(w)) { // tree edge
             scc(w)
             lowlink.put(v, min(lowlink.get(v), low
       } else if (w on stack) { // non-tree edge
             lowlink.put(v, min(lowlink.get(v), ind
   }
      pop current scc of v if done
    Tarjan's algorithm
```

stack invariant:

a vertex stays on stack after it is visited if it has an edge to a vertex earlier on stack (and visited earlier)

```
stack.push(v);
index.put(v, nextIndex);
lowlink.put(v, nextIndex);
nextIndex++;
```

```
if (index.get(v) == lowlink.get(v)) {
   List<Vertex> component = new List();
   while (stack.peek() != v)
        component.add(stack.pop());
   component.add(stack.pop());
   print component;
}
```

```
Stack<Vertex> stack = new Stack();
Map<Vertex, Integer> index = new Map();
Map<Vertex, Integer> lowlink = new Map();
int nextIndex = 0:
for each vertex v
    if (!index.containsKey(v))
         dfs(v)
scc(v) {
   // init v
   for every neighbor w of v {
       if (!index.containsKey(w)) { // tree edge
             scc(w)
             lowlink.put(v, min(lowlink.get(v), low
       } else if (w on stack) { // non-tree edge
             lowlink.put(v, min(lowlink.get(v), ind
   }
      pop current scc of v if done
    Tarjan's algorithm
```

time complexity:

DFS with additional bookkeeping problem: "w on stack" not constant

```
stack.push(v);
index.put(v, nextIndex);
lowlink.put(v, nextIndex);
nextIndex++;
```

```
if (index.get(v) == lowlink.get(v)) {
   List<Vertex> component = new List();
   while (stack.peek() != v)
        component.add(stack.pop());
   component.add(stack.pop());
   print component;
}
```

```
Stack<Vertex> stack = new Stack():
Set<Vertex> onStack = new Map();
Map<Vertex, Integer> index = new Map();
Map<Vertex, Integer> lowlink = new Map();
int nextIndex = 0;
for each vertex v
     if (!index.containsKey(v))
         dfs(v)
scc(v) {
   // init v
    for every neighbor w of v {
        if (!index.containsKey(w)) { // tree edge
             scc(w)
             lowlink.put(v, min(lowlink.get(v), low
        } else if (onStack.contains(w)) { // non-tr
             lowlink.put(v, min(lowlink.get(v), ind
    }
    // pop current scc of v if done
    Tarjan's algorithm
```

time complexity:

fix: use **set** to track what's on the stack DFS with O(1) bookkeeping is **O(V+E)**

```
stack.push(v); onStack.add(v);
index.put(v, nextIndex);
lowlink.put(v, nextIndex);
nextIndex++;
```

```
if (index.get(v) == lowlink.get(v)) {
   List<Vertex> component = new List();
   while (stack.peek() != v) {
        onStack.remove(stack.peek());
        component.add(stack.pop());
   }
   onStack.remove(stack.peek());
   component.add(stack.pop());
   print component;
}
```