Relatorio BlackBox Test

João Cunha

7 de Novembro de 2020

Conteúdo

1	Equ	ıivalen	ıce	e	(\mathbf{C}	la	as	\mathbf{s}	P	aı	rt	it	i	oı	n	(E	C]	P)											2
	1.1	Méto	od	lo)	S	tr	ir	ıg	C	Ίε	ıs	si	fу	7 (()	`					٠.											2
		1.1.1]	Ιı	m	ıp	Ю	SS	ib	le																							2
		1.1.2	•	e	q	ui	ila	at	er	al																							2
		1.1.3]	Is	SC	s	SC	e	les	3																							2
		1.1.4]	R	₹i	gl	ht	;-1	٩ı	ıg.	le	d																					3
		1.1.5	ç	S	c	\tilde{a} l	le:	ne	9																								3
2		ndary ` Méto									-				`				_					•		•		•	•		•		3
3	Tes	t Case	es																														3
	3.1	Méto	od	lo)	S	tr	ir	ıg	C	Ίε	ıs	si	fy	7 (()																	3

1 Equivalence Class Partition (ECP)

1.1 Método String Classify ()

Pré-Condições

- Componente Inicializado atravez do construtor
- $\bullet\,$ Inputs sempre positivos

1.1.1 Impossible

Criterios	Class Válida	Class Invalida
$N^{\underline{o}}$ Entradas	3	$\neq 3$
Tipos	$_{ m int,int,int}$	$\neq int$
Condição	(side1 <	$(side1 \ge$
	$side2 + side3) \mid \mid$	$side2 + side3) \mid \mid$
	(side2 <	$(side2 \ge$
	$side1 + side3) \mid \mid$	side1 + side3)
	(side3 <	$(side3 \ge$
	side1 + side2)	side2 + side3)
Exemplos Input	side1 = 1,	side1 = 1,
	side2 = 0,	side2 = 1,
	side3 = 1	side3 = 1

1.1.2 equilateral

Criterios	Class Válida	Class Invalida
$N^{\underline{o}}$ Entradas	3	$\neq 3$
Tipos	$_{ m int,int,int}$	$\neq int$
Condição	(side1 == side2 &&	$(side1 \neq side2 \mid \mid$
	side1 == side3 &&	$side1 \neq side3 \mid\mid$
	side2 == side3)	$side2 \neq side3)$
Exemplos Input	side1 = 1,	side1 = 1,
	side2 = 1,	side2 = 1,
	side3 = 1	side3 = 3

1.1.3 Isossceles

Criterios	Class Válida	Class Invalida
$N^{\underline{o}}$ Entradas	3	$\neq 3$
Tipos	${ m int,int,int}$	$\neq int$
Condição	$(side1 == side2 \mid \mid$	$(side1 \neq side2 \&\&$
	$side1 == side3 \mid \mid$	$side1 \neq side3 \&\&$
	side2 == side3)	$side2 \neq side3)$
Exemplos Input	side1 = 1,	side1 = 1,
	side2 = 1,	side2 = 2,
	side3 = 3	side3 = 3

1.1.4 Right-Angled

Criterios	Class Válida	Class Invalida
$N^{\underline{o}}$ Entradas	3	$\neq 3$
Tipos	$_{ m int,int,int}$	$\neq int$
Condição	(side1 > 0 &&	$(side1 \le 0 \mid \mid$
	side2 > 0 &&	$side2 <= 0 \mid \mid$
	side3 > 0) &&	$side3 \le 0$
	$(side1^2 + side2^2 ==$	$(side1^2 + side2^2 \neq$
	$side3^2)$	$side3^2)$
Exemplos Input	side1 = 5,	side1 = 1,
	side2 = 12,	side2 = 1,
	side3 = 13	side3 = 3

1.1.5 Scalene

Criterios	Class Válida	Class Invalida
$N^{\underline{o}}$ Entradas	3	$\neq 3$
Tipos	$_{ m int,int,int}$	$\neq int$
Condição	$(side1 \neq side2 \&\&$	$(side1 == side2 \mid\mid$
	$side1 \neq side3$ &&	$side1 == side3 \mid\mid$
	$side2 \neq side3) \&\&$	side2 == side3)
	$(side1^2 + side2^2 \neq$	$(side1^2 + side2^2 ==$
	$side3^2)$	$side3^2)$
Exemplos Input	side1 = 3,	side1 = 1,
	side2 = 4,	side2 = 1,
	side3 = 2	side3 = 3

2 Bondary Value Analysis (BVA)

2.1 Método String Classify ()

Condições

M MaxInt

 $\mathbf{R} \ \in \mathbb{Z}^+ : x > 0 \land x < MaxInt$

 \mathbf{N} null

Inputs	\mathbf{Min}	\mathbf{Min}	\mathbf{Mid}	Max	\mathbf{Max}	Others
		Blow			Above	
side1	0	-1	\mathbf{R}	MaxInt	MaxInt +1	N
side2	0	-1	\mathbf{R}	MaxInt	MaxInt +1	N
side3	0	-1	\mathbf{R}	MaxInt	MaxInt +1	N

3 Test Cases

3.1 Método String Classify ()

Condições

M MaxInt

\mathbf{N} null

Test ID	Input Cases	Expected	\mathbf{Result}	Notes
#1	(0,0,0)	impossible	impossible	PASS
#2	(2, 2, 2)	equilateral	equilateral	PASS
#3	(2, 2, 1)	isossceles	isossceles	PASS
#4	(5, 12, 13)	right-angled	right-angled	PASS
#5	(2, 3, 4)	scalene	scalene	PASS
#6	(4, 1, 1)	(not) impossible	scalene	PASS
#7	(1, 1, 3)	(not) equilateral	isossceles	PASS
#8	(1, 2, 3)	(not) isossceles	scalene	PASS
#9	(1, 1, 3)	(not) right-angled	isossceles	PASS
#10	(3, 4, 5)	(not) scalene	right-angled	PASS
#11	(-1, -1, -1)	impossible	impossible	PASS
#12	(M, M, M)	equilateral	equilateral	PASS
#13	(M+1, M+1)	impossible	impossible	PASS
	, M + 1)			
#14	(-1, 1, 1)	impossible	impossible	PASS
#19	(2, 1, N)	NullException		Doesn't
				compile