Оптика. Отражение света

- 1. Угол отражения луча это:
 - А) угол между падающим и отраженным лучами;
 - Б) угол между отраженным лучом и отражающей плоскостью;
 - В) угол между отраженным лучом и перпендикуляром к плоскости отражения;
 - Г) угол между отраженным и преломленным лучами.
- **2.** Расположение плоского зеркала MN и источника света S показано на рисунке 1. Каково расстояние от источника света S до его изображения в зеркале MN?
- **A)** 2 m; **B)** 3 m; **B)** 4 m; **Γ)** 6 m.
- **3.** Определите и изобразите на рисунке угол δ между падающим и отраженным лучами. Угол между падающим лучом и зеркалом $\phi = 28^{\circ}$.
- 4. Постройте изображение А'В' предмета АВ в плоском зеркале (Рис. 2).

- **5.** Точка А движется со скоростью $\upsilon = 2$ м/с в направлении, перпендикулярном плоскости зеркала, а зеркало со скоростью $\upsilon = 4$ м/с в том же направлении (см. рис 3). Определите скорость υ' движения изображения точки А в зеркале.
- **6.** На рисунке 2 изображены два зеркала, угол между плоскостями которых $\beta = 75^\circ$. На первое зеркало луч света AO падает под углом α . Угол отражения этого луча от второго зеркала $\gamma = 35^\circ$. Чему равен угол α ?

7. Точка А движется со скоростью $\upsilon = 4$ м/с вдоль плоскости зеркала, а зеркало — со скоростью u = 3 м/с в направлении, перпендикулярном плоскости (см. рис. 2). Определите скорость υ' движения изображения точки А в зеркале.

Рис. 2

- **8.** Два точечных источника света расположены на одном и том же расстоянии a = 20 см от поверхности плоского зеркала. Чему равно расстояние l между источниками, если расстояние от одного из источников до изображения другого b = 50 см?
- **9.** Круглый бассейн радиусом R = 5 м залит до краев водой. Над центром бассейна на высоте h = 3 м от поверхности воды висит лампа. На какое максимальное расстояние l_{max} от центра бассейна может удалиться по горизонтали человек, рост которого H = 1.8 м, чтобы все еще видеть отражение лампы в воде?

- **10.** Точечный источник света расположен на расстоянии L = 1,5 м от вертикального экрана. На прямой перпендикулярной экрану, между источником и экраном, на расстоянии $l_1 = 50$ см от источника расположен центр круглого диска диаметром d = 10 см. Чему равна площадь S тени на экране?
- **11.** К потолку комнаты высотой H=4 м прикреплена небольшая светящаяся лампочка. На высоте h=2 м от пола параллельно полу расположен непрозрачный квадрат со стороной a=20 см. Лампочка и центр квадрата лежат на одной вертикали. Чему равна площадь S тени на полу?
- **12.** На рисунке 3 изображены два зеркала, угол между плоскостями которых $\beta = 110^\circ$. На первое зеркало луч света AO падает под углом α . Угол отражения этого луча от второго зеркала $\gamma = 50^\circ$. Чему равен угол α ?

Примечание. Падающий луч лежит в плоскости рисунка

Рис 3

- **13.** На стене комнаты висит круглое зеркало диаметром d=40 см. Человек стоит на расстоянии $l_1=1$ м от него. Чему равна площадь S участка противоположной стены, который может увидеть в зеркале человек, не меняя положения головы? Стена находится на расстоянии $l_2=4$ м от зеркала.
- **14.** На рисунке 4 изображены два зеркала, угол между плоскостями которых $\beta=130^\circ$. На первое зеркало луч света AO падает под углом $\alpha=60^\circ$. Найдите угол ϕ между направлением падающего на первое зеркало луча и луча отраженного от второго зеркала.

Примечание. Падающий луч лежит в плоскости рисунка

15. Угол падения света на горизонтально расположенное плоское зеркало равен 30° . Каким станет угол отражения света, если повернуть зеркало на 10° так, как показано на рисунке?

Ответы

2. B; **3.** $\delta = 124^{\circ}$; **5.** $\upsilon' = 6 \text{ m/c}$; **6.** $\alpha = 40^{\circ}$; **7.** $\upsilon' = 7.2 \text{ m/c}$; **8.** l = 30 cm; **9.** $l_{\text{max}} = 8 \text{ m}$; **10.** S = 706.5 cm^2 ; **11.** S = 1600 cm^2 ; **12.** $\alpha = 60^{\circ}$; **13.** S = 3.14 m^2 . **14.** $\varphi = 80^{\circ}$. **15.** 20° .

Оптика. Преломление света

1. На рисунке 1 показана горизонтальная граница раздела двух прозрачных сред. Падающий, отраженный и преломленный лучи, а так же перпендикуляр к границе раздела этих двух сред. Угол, соответствующий углу преломления на рисунке обозначен цифрой:

A) 1; Б) 2; В) 3.

2. На рисунке 1 показан луч, падающий на границу раздела двух сред. Если скорость света в воздухе $\upsilon_1=3\cdot 10^8$ м/с, а в стекле $\upsilon_2=2\cdot 10^8$ м/с, то после преломления этот луч распространится в направлении, обозначенной цифрой:

А) 1; Б) 2; В) 3.

3. На рисунке 1 показан луч, падающий на границу раздела двух сред. Если скорость света в стекле $v_1 = 2 \cdot 10^8$ м/с, а в воде $v_2 = 2,25 \cdot 10^8$ м/с, то после преломления этот луч распространится в направлении, обозначенной цифрой:

A) 1; Б) 2; В) 3.

4. Луч света идет из воды в скипидар. Угол падения $\alpha = 45^\circ$. Угол преломления $\beta = 40^\circ$. Найдите скорость света υ_2 в скипидаре, если скорость света в воде $\upsilon_1 = 2,25 \cdot 10^8$ м/с. ($\sin 40^\circ = 0,643$)

5. Луч света идет из воды в стекло. Угол падения $\alpha = 34^\circ$. Угол преломления $\beta = 30^\circ$. Найдите показатель преломления n_1 воды, если показатель преломления стекла $n_2 = 1,5$. ($\sin 34^\circ = 0,56$)

6. Свет падает на границу раздела двух сред. Показатель преломления первой среды $n_1=\sqrt{2}$, а второй $n_2=\sqrt{3}$. Определите угол ϕ между отраженным и преломленным лучами, если угол падения луча $\alpha=60^\circ$.

7. Свет падает на границу раздела двух сред так, что угол преломления $\beta = 35^{\circ}$. Угол между преломленным и падающим лучами $\phi = 155^{\circ}$. Определите скорость света υ_2 во второй среде, если скорость света в первой среде $\upsilon_1 = 3 \cdot 10^8$ м/с. (sin $35^{\circ} = 0,574$)

8. На границу AB раздела двух прозрачных сред падает световой луч (см. рис.). Найдите абсолютный показатель преломления второй среды n_2 , если абсолютный показатель преломления первой среды $n_1 = 1,33$.

9. Скорость распространения света в первой среде $\upsilon_1=3\cdot 10^8$ м/с, а во второй $\upsilon_2=1,5\cdot 10^8$ м/с. Определите предельный угол α_0 полного внутреннего отражения для этих двух сред.

- **10.** Свет падает на границу раздела двух сред так, что угол падения $\alpha = 64^\circ$. Угол между преломленным и отраженным лучами $\phi = 86^\circ$. Определите скорость света υ_1 в первой среде, если скорость света во второй среде $\upsilon_2 = 1,25\cdot 10^8$ м/с. (sin $64^\circ = 0,9$)
- **11.** В жидкость с показателем преломления n = 1,8 на глубине h = 4 см помещен источник света. На каком максимальном расстоянии l над источником следует поместить диск диаметром d = 4 см, чтобы свет не вышел из жидкости?

12. На плоскопараллельную стеклянную (n = $\sqrt{3}$) пластинку под углом $\alpha = 60^\circ$ падает световой луч. Найдите толщину пластинки h, если длина пути луча в пластинке составляет $l = \sqrt{3}$ см?

13. На плоскопараллельную стеклянную (n = 1,5) пластинку под углом α = 60° падает световой луч. Найдите, на каком расстоянии x от перпендикуляра к пластинке, проведенного через точку падения луча, находится точка выхода луча из пластинки? Толщина пластинки h = 2 см.

14. На дне сосуда с жидкостью с показателем преломления n=1,7 помещен точечный источник света. Высота слоя жидкости h=12 см. Каким минимальным радиусом г непрозрачный диск необходимо поместить на поверхности жидкости, чтобы глядя сверху нельзя было увидеть этот источник?

Ответы

4.
$$\upsilon_2 = 2.05 \cdot 10^8 \text{ m/c};$$
 5 $n_1 = 1.34;$ **6.** $\varphi = 75^\circ;$ **7.** $\upsilon_2 = 2 \cdot 10^8 \text{ m/c};$ **8.** $n_2 = 1.7;$ **9.** $\alpha_0 = 30^\circ;$ **10.** $\upsilon_1 = 2.25 \cdot 10^8 \text{ m/c};$ **11.** $l = 3 \text{ cm}.$ **12.** $h = 1.5 \text{ cm}.$ **13.** $x = 1.41 \text{ cm}$ **14.** $r = 8.7 \text{ cm}.$

Волновая оптика

- 1. Скорость распространения света в вакууме приближенно равна
- **A)** 3.10^8 cm/c; **B)** 3.10^8 km/c; **B)** 3.10^8 mm/c; **C)** 3.10^8 m/c.
- **2.** При переходе из вакуума в воду скорость распространения электромагнитной волны:
- А) увеличится; Б) уменьшится; В) не изменится; Г) станет равной нулю.
- **3.** При переходе из вакуума в некоторое вещество частота электромагнитной волны:
- **А)** увеличится; **В)** не изменится;
- **Б**) уменьшится; Γ) зависит от показателя преломления.
- **4.** При переходе из вакуума в некоторое вещество длина электромагнитной волны:
- **А)** увеличится; **В)** не изменится;
- **5.** Определите частоту ν света, если длина его волны в вакууме $\lambda = 700$ нм.
- **6.** Длина световой волны в вакууме $\lambda_0 = 540$ нм. Определите длину волны λ в стекле с показателем преломления n = 1,5.
- 7. Определите длину световой волны λ в вакууме, если ее частота $\nu = 6.10^{14} \, \Gamma$ ц.
- **8.** Электромагнитная волна с частотой $v = 6 \cdot 10^{14}$ Гц переходит из вакуума в вещество с абсолютным показателем преломления n = 1,5. Определите изменение Δv частоты электромагнитной волны при таком переходе.
- **9.** Определите оптическую разность хода двух монохроматических волн с $\lambda = 550$ нм, образующих при дифракции максимум второго порядка.
- **10.** При нормальном падении света с длиной волны $\lambda = 5 \cdot 10^{-9}$ м на дифракционную решетку четвертый дифракционный максимум наблюдается под углом $\theta = 45^{\circ}$. Чему равен период d дифракционной решетки?
- **11.** На дифракционную решетку с периодом d=0,1 мм перпендикулярно к ее поверхности падает свет. Определите длину λ падающей электромагнитной волны, если второй дифракционный максимум отклонен от перпендикуляра на угол $\theta=30^\circ$.
- **12.** Найдите длину волны λ монохроматических волн, если при оптической разности хода $\Delta = 1,4$ мкм они образуют дифракционный максимум второго порядка.
- **13.** На дифракционную решетку нормально падает параллельный пучок монохроматического света длиной волны $\lambda=720$ нм. Определите максимальный порядок m_{max} дифракционного спектра, если период решетки d=5 мкм.
- **14.** На дифракционную решетку с периодом d=2 мкм нормально падает параллельный пучок монохроматического света. Определите длину волны λ , если угол между направлениями на дифракционные максимумы в спектре второго порядка $\phi=60^\circ$.

- **15.** Сколько штрихов N содержит дифракционная решетка длины L=1 см, если при нормальном падении на нее света с длиной волны $\lambda=0.5$ мкм, максимум второго порядка наблюдается под углом $\theta=30^{\circ}$.
- **16.** Определите наибольший порядок спектра m_{max} в дифракционной решетке, имеющей N=500 штр/мм, при освещении ее светом с длиной волны $\lambda=720$ нм.
- **17.** С помощью дифракционной решетки с периодом d=0,1 мм на экране, расположенном на расстоянии l=1,8 м от нее, наблюдают спектр пропускания. Первый дифракционный максимум находится на расстоянии h=3,6 см от центрального. Определите длину волны λ нормально падающего на решетку электромагнитного излучения.
- **18.** Определите число максимумов k, которое дает дифракционная решетка с периодом d = 5 мкм, если на нее падает излучение с длиной волны $\lambda = 760$ нм.
- 19. Дифракционная решетка с периодом d = 40 мкм находится на расстоянии L = 2 м от экрана. Решетка освещается монохроматическим светом. На экране наблюдается дифракционная картина. Расстояние между двумя ближайшими светлыми полосами, лежащими по разные стороны от центральной полосы дифракционной картины, равно l = 6 см. Чему равна длина световой волны λ ?
- **20.** Дифракционная решетка, имеющая N=200 штр/мм, освещается нормально монохроматическим светом и находится на расстоянии l=40 см от экрана. Четвертый дифракционный максимум на экране находится на расстоянии h=20 см от центрального. Определите длину волны λ падающего света.
- **21.** Дифракционная решетка, имеющая N=200 штр/мм, освещается нормально монохроматическим светом. Четвертый дифракционный максимум на экране, находящемся на расстоянии L=1 м от решетки, наблюдается под углом $\theta=30^{\circ}$ от центрального. Каково расстояние между третьим и четвертым максимумом?
- **22.** В установке Юнга при освещении двух щелей монохроматическим светом, длина волны которого $\lambda = 500$ нм, на экране получена интерференционная картина (см. рис.). В точке В оптическая разность хода волн равна нулю. Чему будет равна оптическая разность хода волн в точке A?
- **23.** Дифракционная решетка, имеющая N=200 штр/мм, освещается нормально монохроматическим светом. Четвертый дифракционный максимум на экране, находящемся на расстоянии L=1 м от решетки, наблюдается под углом $\theta=30^{\circ}$ от центрального. Каково расстояние между третьим и центральным максимумами?

Ответы

5. $v = 4,3 \cdot 10^{14}$ $\Gamma_{II};$ **6.** $\lambda = 360$ Hm; **7.** $\lambda = 500$ Hm; **8.** $\Delta v = 0;$ **9.** $\Delta = 1,1$ MKM; **10.** d = 28,3 HM; **11.** $\lambda = 25$ MKM **12.** $\lambda = 0,7$ MKM. **13.** $m_{max} = 6$ **14.** $\lambda = 500$ HM; **15.** N = 500 **16.** $m_{max} = 9$ **17.** $\lambda = 2$ MKM **18.** k = 13 **19.** $\lambda = 0,6$ MKM **20.** $\lambda = 250$ HM; **21.** $\Delta l = 0,172$ M **22.** $\Delta = 750$ HM