CS3319 Foundations of Data Science

2. Data Fundamentals

Jiaxin Ding John Hopcroft Center

Understanding Data

Charles Minard's map of Napoleon's Russian campaign of 1812

Content

Data Attributes

Basic Statistical Descriptions of Data

Measuring Data Similarity and Dissimilarity

Probability Inequalities

Content

Data Attributes

Basic Statistical Descriptions of Data

Measuring Data Similarity and Dissimilarity

Probability Inequalities

Data Attributes

- Data object: an entity in the dataset
- A data attribute is a particular data field, representing a characteristic or feature of a data object (Feature)

学号	姓名	入学 年份
1001	张三	2018
1003	李四	2019
1099	王二	2020

Name in the database

The friends of a user

RGB value of a pixel

The reading at time t

The frequency of a word

The time-location of a trajectory point

Record Data

- Relational databases
 - Each row represents a data object
 - Each column represents a data attribute

```
JSON Format:
           GENDER
                    AGE
                             CITY
WEEKDAY
                                                  WEEKDAY: Monday;
                                                  GENDER: Female;
 TUESDAY
            MALE
                     28
                            London
                           New York
 Monday
           FEMALE
                     24
                                                  AGE: 24;
                          Hong Kong
 TUESDAY
           FEMALE
                     36
                                                  CITY: New York;
THURSDAY
            MALE
                     17
                             Токуо
```

Image Data

• A 3-layer matrix (3*height*width) of [0,255] real value

Text Data

• A sequence of words/tokens that represents semantic meanings.

Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text.

```
Bag-of-Words Format:
  text: 4;
  mining: 2;
   also: 1;
  referred: 1:
  to: 2;
   as: 1:
  data: 1;
  roughly: 1;
   equivalent: 1;
   analytics: 1;
  is: 1;
  the: 1:
  process: 1;
   of: 1:
   deriving: 1;
  high-quality: 1;
  information: 1:
  from: 1;
```

Graph Data

- A directed/undirected graph
 - Possibly with additional information for nodes and edges

Streaming Data

A sequence of readings

Spatio-Temporal Data

A sequence of (time, location, info) tuples

Content

Data Attributes

Basic Statistical Descriptions of Data

Measuring Data Similarity and Dissimilarity

Probability Inequalities

Basic Statistical Descriptions of Data

- How to capture the properties of a given data set?
 - Central tendency: describes the center around the data is distributed
 - **Dispersion:** describes the data spread

Measuring the Central Tendency

Mean (algebraic measure)

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Weighted arithmetic mean:

$$\mu = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Geometric mean: $\mu = \sqrt[n]{\Pi x_i}$
 - The geometric mean is always <= arithmetic mean, and more sensitive to values near zero.
 - Geometric means make sense with ratios: 1/2 and 2/1 should average to 1.

Measuring the Central Tendency

Median

 Middle value if odd number of values, or average of the middle two values otherwise.

Example:

- Five data points {1.2, 1.4, 1.5, 1.8, 10.2}
- Mean: 3.22 Median: 1.5

- Mean is meaningful for symmetric distributions without outliers: e.g. height and weight.
- Median is better for skewed distributions or data with outliers: e.g. wealth and income.

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula (moderately skewed distribution):

```
mean - mode \simeq 3 \times (\text{mean } - \text{median})
```

• Example:

- Five data points {1, 1, 1, 1, 1, 2, 2, 2, 3, 3}
- Mean: 1.7 Median: 1.5 Mode: 1

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Variance and standard deviation
 - Variance

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \mathbb{E}[x] \ \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

- Standard deviation σ is the square root of variance σ^2
- The normal distribution curve
 - From μ – σ to μ + σ : contains about 68% of the measurements
 - From μ – 2σ to μ + 2σ . contains about 95% of it
 - From μ –3 σ to μ +3 σ . contains about 99.7% of it

Measuring the Dispersion of Data

- Regardless of how data is distributed, at least $\left(1-\frac{1}{k^2}\right)$ of the points must lie within $k\sigma$ of the mean.
 - Thus at least 75% must lie within two sigma of the mean.
 - The normal distribution can achieve tighter bound.

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q_1 , median, Q_3 , max
 - Outlier: usually, a value higher(lower) than 1.5 x IQR than Q_3 (Q_1)

Histograms

 Histogram: Graph display of tabulated frequencies, shown as bars. It shows what proportion of cases fall into each of several categories

- The two histograms shown may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
 - But they have rather different data distributions

Quantile Plot

• Quantile Plot: Each value x_i is paired with f_i indicating that approximately $100f_i$ % of data $\leq x_i$

Quantile-Quantile (Q-Q) Plot

- Quantile-Quantile (Q-Q) Plot: graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Which branch has a lower price?
 - Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Content

Data Attributes and Types

Basic Statistical Descriptions of Data

Measuring Data Similarity and Dissimilarity

Probability Inequalities

Proximity Measure

- Proximity refers to a similarity or dissimilarity of two data objects
- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Applications: clustering, anomaly detection, and nearest neighbor search

Proximity Measure for Binary Attributes

- A contingency table for binary data
 - E.g. (1,0,1,0,1,0,···)

Object
$$i$$
 0 $\frac{1}{q}$ $\frac{0}{r}$ $\frac{q+r}{q+r}$ $\frac{1}{q+s}$ $\frac{q+r}{r+t}$ $\frac{1}{q+s}$ $\frac{1}{q+r}$

Object *j*

 $A \cap B$

Distance measure for symmetric binary variables:

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- Distance measure for asymmetric binary variables(if t is too large): $d(i \cdot j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient:

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

Note: Jaccard coefficient is the ratio of intersection over union of two sets.

Minkowski Distance

Minkowski distance:

$$x_{i} = (x_{i1}, x_{i2}, \dots, x_{ip})$$

$$x_{j} = (x_{j1}, x_{j2}, \dots, x_{jp})$$

$$d(i,j) = (|x_{i1} - x_{j1}|^{h} + |x_{i2} - x_{j2}|^{h} + \dots + |x_{ip} - x_{jp}|^{h})^{\frac{1}{h}}$$

- h is the order (the distance so defined is also called L_h norm)
- Properties
 - Positive definiteness: d(i,j) > 0 if $i \neq j$, and d(i,i) = 0
 - Symmetry: d(i,j) = d(j,i)
 - Triangle Inequality: $d(i,j) \le d(i,k) + d(k,j)$
- A distance that satisfies these properties is a metric

Minkowski Distance

- h = 1: Manhattan (city block, L_1 norm) distance
 - $d(i,j) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + \dots + |x_{ip} x_{jp}|$

E.g., the Hamming distance: the number of bits that are different between two binary vectors

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	Team	Coach	Hockey	Baseball	Soccer	Penalty	Score	Win	Loss	Season
d1	5	0	3	0	2	0	0	2	0	0
d2	3	0	2	0	1	1	0	1	0	1
d3	0	7	0	2	1	0	0	3	0	0
d4	0	1	0	0	1	2	2	0	3	0

• Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$\cos(d_1, d_2) = (d_1 \cdot d_2) / (\parallel d_1 \parallel \cdot \parallel d_2 \parallel)$$

where \bullet indicates vector dot product, $\parallel d \parallel$ is the length of vector d

Content

Data Attributes and Types

Basic Statistical Descriptions of Data

Measuring Data Similarity and Dissimilarity

Probability Inequalities

Markov's Inequality

• If X is a non-negative r.v. then for every c > 0:

$$\Pr[X \ge c\mathbb{E}[X]] \le \frac{1}{c}$$

Proof

$$\mathbb{E}[X] = \sum_{i} i \cdot \Pr[X = i] \qquad \text{(by definition)}$$

$$\geq \sum_{i=c\mathbb{E}[X]}^{\infty} i \cdot \Pr[X = i] \qquad \text{(pick only some i's)}$$

$$\geq \sum_{i=c\mathbb{E}[X]}^{\infty} c\mathbb{E}[X] \cdot \Pr[X = i] \qquad (i \geq c\mathbb{E}[X])$$

$$= c\mathbb{E}[X] \sum_{i=c\mathbb{E}[X]}^{\infty} \Pr[X = i] \qquad \text{(by linearity)}$$

$$= c\mathbb{E}[X] \Pr[X \geq c \mathbb{E}[X]] \qquad \text{(same as above)}$$

$$\Rightarrow \Pr[X \geq c \mathbb{E}[X]] \leq \frac{1}{c}$$

Pro: always works!

Cons:

Not very precise

Doesn't work for the lower tail: $\Pr[X \leq c \mathbb{E}[X]]$

Chebyshev's Inequality

Measuring the Dispersion of Data

- Regardless of how data is distributed, at least $\left(1 \frac{1}{k^2}\right)$ of the points must lie within $k\sigma$ of the mean.
 - Thus at least 75% must lie within two sigma of the mean.

• For every c > 0:

$$\Pr[|X - \mathbb{E}[X]| \ge c\sqrt{Var[X]}] \le \frac{1}{c^2}$$

• Proof:

$$\Pr\left[|\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}]| \ge c \sqrt{Var[\boldsymbol{X}]}\right]$$

$$= \Pr\left[|\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}]|^2 \ge c^2 Var[\boldsymbol{X}]\right] \text{ (by squaring)}$$

$$= \Pr\left[|\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}]|^2 \ge c^2 \mathbb{E}[|\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}]|^2]\right] \text{ (def. of Var)}$$

$$\le \frac{1}{c^2} \text{ (by Markov's inequality)}$$

Chernoff bound

- Let $X_1 ... X_t$ be independent and identically distributed random values with range [0,1] and expectation μ .
- Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$, $\Pr[|X \mu| \ge \delta \mu] \le 2 \exp\left(-\frac{\mu t \delta^2}{3}\right)$

Chernoff v.s Chebyshev: Example

Let
$$X = \frac{1}{t} \sum_{i} X_{i}$$
, $\sigma = Var[X_{i}]$:

• Chebyshev:
$$\Pr[|X - \mu| \ge c'] \le \frac{Var[X]}{c'^2} = \frac{\sigma}{t c'^2}$$

$$\Pr[|X - \mathbb{E}[X]| \ge c\sqrt{Var[X]}] \le \frac{1}{c^2}$$

• Chernoff:
$$\Pr[|X - \mu| \ge \delta \mu] \le 2 \exp\left(-\frac{\mu t \delta^2}{3c}\right)$$

If t is very big:

- Values μ , σ , δ , c, c' are all constants!
 - Chebyshev: $\Pr[|X \mu| \ge z] = O\left(\frac{1}{t}\right)$
 - Chernoff: $\Pr[|X \mu| \ge z] = e^{-\Omega(t)}$

So is Chernoff always better for us?

Yes, if we have i.i.d. variables.

Summary

- Data Attributes
- Basic Statistical Descriptions of Data
 - Centrality/Dispersion
- Measuring Data Similarity and Dissimilarity
 - Distances for binary/numerical
- Probability Inequalities
 - Markov/Chebyshev/Chernoff