

Micro Controlador Programável Micro Controlador Programable

Manual do Usuário

Guia del Usuario

WEG Indústrias S/A - Automação

Medidas de Segurança

Precauções na Instalação:

Não instale o aparelho em ambiente que não esteja de acordo com as instruções do manual ou catálogo do

Alta temperatura, umidade, poeira, gás corrosivo e vibração podem resultar em condições perigosas como choque elétrico e danos no aparelho.

Favor instalar o CLIC-02 de acordo com as instruções e precauções descritas no manual do usuário, garantindo assim o bom funcionamento do equipamento.

Evite quedas do CLIC-02 a fim de evitar danos no equipamento.

Precauções na Alimentação e Fiação:

Favor energizar o sistema de acordo com as faixas de alimentação. Energizar o sistema fora da faixa de alimentação apropriada pode causar danos ao equipamento.

A energização do sistema deve ser feita por um técnico com conhecimentos em elétrica e eletrônica.

A energização deve ser feita de acordo com as regulamentações de eletricidade.

Deve ser utilizado um aterramento classe 3.

Qualquer erro na energização pode causar danos ao aparelho, mau funcionamento e choque elétrico ao instalador.

Precauções na Operação

Mão toque em nenhum terminal de conexão quando o aparelho estiver ligado, a fim de evitar choque elétrico. Favor instalar proteções de segurança no sistema incluindo circuito de emergência de parada e proteções mecânicas para prevenir danos ao sistema em caso de mau funcionamento do CLP.

Favor iniciar e parar a operação do CLIC-02 após verificar as precauções de segurança.

Erros na operação podem causar danos mecânicos.

Favor atentar para a següência de energização. Erros podem causar danos mecânicos ou outros acidentes.

Orientações de Programação

A programação em FBD somente é possível com a utilização do software de programação Clic 02 Edit versão 1.0 ou superior.

Não é possível a conversão entre os programas desenvolvidos através das linguagens FBD e Ladder. Para programação via PC, utilizar CLIC-02 Edit Versão 1.0 ou superior.

ÍNDICE

1.	Gera	ıl	4
2.	Prec	auções de Operacão	5
3.	Con	figuração do Sistema	6
	3-1.	Configuração Básica do Sistema	6
	3-2.	Configuração para conexão do computador e módulo de memória	
		sobressalente	7
4.	Insta	alação	7
	4-1	Ambiente para Instalação	7
	4-2	Instalação Direta	8
	4-3	DIN-Trilho de Instalação	9
5.	Fiaç	ão	10
	5-1	Precaução com a fiação	10
	5-2	10/12 pontos	10
	5-3	20 pontos	10
6.	Flux	o de Operação	11
	6-1	Após conexão de energia	11
7.	Des	crição para instrução Ladder	11
	7-1	Instrução Básica	11
	7-2	Função deInstrução Básica	12
	7-3	Instrução de Aplicação	13
		- Contador Geral	
		- Contador de alta velocidade	
		- Temporizador	
		- RTC	
		- Comparador Analógico	
		- HMI(Texto de Função)	
		- Função de saída PWM (Fornecido apenas para modelos com saída transis	stor
		- Função DATALINK (Fornecida apenas para modelos 20Vx-X)	
	7-4	Método de Operação	30
	7-5	Expansões e Rede de Comunicação	54
8.	FBD	Descrição dos Blocos	58
	8-1	Blocos da Bobina	58
	8-2	Blocos Lógicos	
	8-3	Bloco de Função	
		FBD Recurso de Memória	
	8-5	Tela Original Quando Ligada	69
9.	Carr	egando o Programa	74
	9-1	Carregando o Programa com o PM05	
		(cartucho de memória)	
		Carregando o Programa com o CLIC 02 EDIT	
10		e de Execução	
	10-1	Teste antes de Ligar	76

Descrição das Funções

10-2 Procedimento do Teste de Execução	77
11.Inspeção e Manutenção	78
11-1 Inspeção Periódica	78
12. Especificação Técnica	79
12-1 Especificações Gerais	79
12-2 Especificação do Sistema	80
12-3 Dimensões	81
Apêndice - Aplicações Ilustradas	83
13.Condições Gerais de Garantia para Controladores	
Programáveis	97

Descrição das Funções

1. GERAL

O CLIC-02 é um PLC pequeno e inteligente contendo 44 pontos de sistema E/S, possui programa gráfico em ladder e FBD, e aplicável a operação automática de pequena escala. O CLIC-02 pode expandir 3 grupos de módulo de 4 entradas - 4 saídas. A mobilidade inteligente e supremacia do CLIC-02 são de grande valia para você economizar consideravelmente tempo e custo na operação. As características especiais que o CLIC-02 possui são apresentadas abaixo:

Característica 1

Linha complete de produto:

- (1) Dimensão para o padrão super-mini 10/12/20 pontos
 - a) Modelo 10/12 pontos: 72 x 90 x 57.3 (mm)
 - b) Modelo 20 pontos: 126 x 90 x57.3 (mm)
- (2) Max. 3 Módulos de expansão: 38×90×57.3 (mm)
- (3) Versátil RTC e entrada analógica (10 bits)

Característica 2

Entrada e Saída Seletiva

- (1) Entrada: AC 85 ~ 264V ou CC 21.6 ~ 26.4V
- (2) Saída: Relé ou do tipo Transistor

Característica 3

Fácil de aprender e operar

- (1) Display LCD 12 x 4 embutido e 8 teclas para entrada de programa ladder
- (2) Os programas de computador são aplicáveis para plataforma WIN 32 (Windows 95/98/ME/NT/2000/XP)
- (3) Sete idiomas: inglês, francês, espanhol, italiano, alemão, português e chinês simplificado.

Característica 4

Fácil instalação e manutenção

- (1) Fixação com Parafuso
- (2) Trilho (calha) de instalação DIN
- (3) Cartucho de memória PM05 (opcional)
- (4) Display LCD exibe on line entrada e saída em operação

Característica 5

- (1) Saídas múltiplas: Relé de saída Max. 8A/ponto, com carga resistiva. Transistor de saída 0.5A/Ponto.
- (2) Pode acionar diretamente motores de 1/3 HP.
- (3) Programa de memória suficiente e instrução em abundância
- Max. 200 passos de instrução de entrada Ladder
- Muitas instruções de aplicações compartilhadas
- Temporizador
- Contador
- Comparação de tempo
- Comparação analógica
- Diferenciação superior e inferior
- Função PWM
- Função DATALINK
- Função REMOTE E/S
- Função HMI
- (4) Certificado internacionalmente por:
- CE
- cUL/UL

2. PRECAUÇÕES DE OPERAÇÃO

(1) Ambiente para Instalação

Os ambientes seguintes não são favoráveis para instalar o CLIC-02:

- Área com luz do sol direta ou temperatura ambiente acima de 55°C ou abaixo de 0°C.
- Umidade relativa do ar acima de 90% ou abaixo de 5%, temperaturas sujeitas a mudanças rápidas, suscetíveis a condensação.
- Áreas contendo gases inflamáveis ou corrosivos.

(2) Instalação

- Prenda os cabos firmemente com os parafusos para assegurar um bom contato.

Desenho para instalação

(3) Fiação

Os cabos de sinal E/S não devem ser fixados paralelos aos cabos de eletricidade, cabo de alta tensão (corrente) ou nas mesmas caixas de cabos de alta corrente para evitar sinais de interferência.

(4) Eletricidade Estática

Em áreas extremamente áridas, o corpo humano está suscetível a gerar eletricidade estática. Evite tocar o CLIC-02 com as mãos para evitar danos ao mesmo.

(5) Limpeza

Use um pano seco e limpo para limpar a superfície do CLIC-02. É proibido limpar o CLIC-02 com água ou solvente volátil para prevenir deformação e descoloração na estrutura.

(6) Armazenagem

O tempo de memória do CLIC-02 RTC possui super capacidade, a qual é suscetível a alta temperatura e umidade. O CLIC-02 RTC deve ser mantido longe dos lugares mencionados no item (1).

(7) Proteção de sobrecarga

O CLIC-02 não possui fusível de proteção no terminal de saída. Para evitar curto circuito, é recomendável colocar um fusível entre cada terminal de saída e cargas.

3. CONFIGURAÇÃO DO SISTEMA

3-1 Configuração básica do sistema

3-2 Configuração para conexão do computador e módulo de memória sobressalente

a figura abaixo) estará pronto para ler e escrever os programas contidos no CLIC-02 e monitorar operação on-line no CLIC-02. (Veja (1) Ligue o computador e o CLIC-O2 com o cabo de programação. Por meio do software de programação, o computador

Figura 3-2-1

(2) Plugue o PM05 ao CLIC-02 o qual está capacitado a carregar e ler os programas do PM05 (Módulo de memória).

(Veja a figura abaixo)

Figura 3-2-2

INSTALAÇÃO

4.1 - Ambiente para instalação

Temperatura ambiente acima de 55°C ou abaixo de 0°C. Recomenda-se evitar a instalação do CLIC-02 sob as seguintes condições ambientais:

- Umidade relativa ar acima de 90% ou abaixo de 5%.
- Area coberta de poeira, sal e pó de ferro.
- Sob luz direta do sol.
- Ambientes sujeitos a frequente vibração e impactos.
- Area com gás de óleo volátil, solvente orgânico, amônia, gás eletrolítico. Areas que contenham gases corrosivos e inflamáveis suscetíveis ao fogo.
- Pouca ventilação ou próximo a fontes de calor.

4.2 - Instalação Direta

Use parafuso M4x15mm para instalar diretamente o CLIC-02 como mostrado abaixo.

Assim que o modulo de espansão estiver instalado, encaixe o conector corretamente e pressione o botão da expansão para encaixar o Master.

O processo de desinstalação é do modo oposto. Primeiro solte o parafuso de expansão, em seguida pressione o botão de expansão para desconectar o modulo e o master. Finalmente, solte o parafuso master para desinstalar o mesmo.

4-3 DIN Trilho de Instalação

Para Instalar

Pressione as fendas na parte de traz do CLIC-02 e o plug conector do modulo de expansão no trilho até que os grampos de elástico segurem o trilho na posição. Em seguida conecte o modulo de expansão e o conector com o master.

Para Desinstalar

Pressione o botão de expansão e puxe o grampo para fora, puxe o CLIC-02 para cima até que este desengate do trilho.

- É recomendável aplicar o grampo para segurar o CLIC-02 na posição.

5. FIAÇÃO

5.1 Precaução com a Fiação

- Os cabos de E/S não devem ser fixados em paralelo a fiação de potência ou colocados na mesma caixa.
- Adote cabo de 0.75 ~ 3.5mm² como cabo externo.
- Aplique torques de 4 ~ 6kgf.cm para apertar os parafusos de trava.

5.2 10/12 pontos

(1) Fornecimento de energia e terminais de entrada CA (100~240Vca)

CC (24Vcc)

(2) Terminais de saída

5.3 - 20 pontos

(1) Fornecimento de energia e terminais de entrada CA (100-240Vca)

(2) Terminais de saída

Nota:

As Entradas Analógicas podem ser usadas como Entradas Digitais.

(3) DATA LINK ou E/S REMOTO

É necessário instalar um disjuntor e fusível para proteção do circuito:

- 1- Disjuntor (400V CA)
- 2- Fusível (2A)
- 3- Disjuntor (36V CC)
- 4- Fusível (2A)
- 5- Saída CA (Fusível)
- 6- Saída CC (Fusível)
- 7- Terminal comum para entrada analógica deve ser conectado com o mesmo terra da fonte
- 8- A alimentação e as entradas devem estar conectadas a mesma fonte
- 9- Curto-Circuite somente o primeiro e o último módulo

Em acordo com a norma EIA RS-485, DATA LINK pode conectar no máximo 8 Módulos (ID:1~8), Podendo se conectar apenas 2 módulos de E/S Remotas (MASTER & AUXILIAR). Por favor reportar detalhadamente ao item SET do menu principal.

6. FLUXO DE OPERAÇÃO

6.1 - Após conexão de energia

- (1) Inicialização da memória de dados
- Após energizado, os dados iniciais aparecerão na memória de dados. Antes de transcorrer o primeiro ciclo de scan, o relé de entrada atualizará a execução de dados em concordância com as acões ON/OFF.
- (2) Transfere Programas de EEPROM → RAM
- Após energizado, o programa armazenado no EEPROM será transferido para RAM.
- (3) Tempo de Scan
- O tempo de scan cobre o tempo para processar os dados de entrada e saída, o tempo de processo do operador lógico é aplicado até o resultado final ser obtido.
 - O tempo de scan está relacionado com o tipo da instrução. Ladder: 5~20ms; FBD: 2~10mS.

7. DESCRIÇÃO PARA INSTRUÇÃO LADDER

7.1 - Instrução básica

	-[↑	→	Р	$_{\mathrm{T}}^{\perp}$	\	NO. / NC
Instrução de entrada					-	i	I1∼IC / i1∼iC
Instrução de saída	Q	Ø	Q	Q	Q	q	Q1~Q8 / q1~q8
Instrução auxiliar	М	М	М	М	М	m	M1~MF / m1~mF
Instrução RTC	R				R	r	R1~RF / r1~rF
Instrução do contador	С				С	С	C1~CF / c1~cF
Instrução do Temporizador	Т			Т	Т	t	T1~TF / t1~tF
Instrução de comparação	G				G	g	G1~GF / g1~gF
analógica							
Instrução HMI	Н						H1~HF
Instrução PWM	Р						P1
DATALINK	L						L1~L8

	Diferencial superior	Diferencial inferior	Outros símbolos de instr.
Instrução diferencial	D	d	
Instrução SET			↑
Instrução RESET			\
Instrução P			Р

Circuito aberto	u n	
Curto circuito	""	

Símbolo LINK	Descrição
-	Conectando os componentes de esquerda e direita
Т	Conectando os componentes de esquerda, direita e superior
+	Conectando os componentes de esquerda, direita, superior e inferior
Т	Conectando os componentes de esquerda, direita e inferior

7.2 - Função de instrução básica

- Função D (d) Instrução

1: I1-D---[Q1

2: i1-d---[Q1

NORMAL(-[] saída

SET (↑) saída

RESET (↓) saída

I1--- ↓ Q1

P saída

i1---PQ1

7.3 - Instrução de aplicação

- Contador geral

Símb.	Descrição
0	Modo do contador (1-6)
2	Direção do contador (I1 ~ gF)
	OFF: crescente
	ON: decrescente
3	Reset do contador (I1 ~ gF)
	OFF: continua contagem
	ON: limpa valor atual do contador e desliga a saída do
	mesmo
4	Valor atual da contagem: 0~999999
(5)	Valor de ajuste: 0~999999
6	Endereço do contador (C1 ~ CF total: 15 grupos).

Nota:

O valor de ajuste do contador pode ser constante, ou o valor atual do temporizador, contador ou entrada analógica de A1~A4.

Para I1~gF, terminal de entrada: I1~IC(I1~I12), terminal de saída: Q1~Q8, expansão do terminal de entrada: X1~XC(X1~X12), expansão do terminal de saída: Y1~YF(Y1~Y12), contador: C1~CF(C1~C15), Temporizador: T1~TF(T1~T15), comparador RTC: R1~RF(R1~R15), comparador analógico: G1~GF(G1~G15), terminal auxiliar: M1~MF (M1~M15).

A caixa superior (I1) é o contato 'a' enquanto a caixa inferior (i1) é o contato 'b'.

(1) Contador Modo 1

Exemplo:

(2) Contador Modo 2

Nota:

Sob este modo, o valor atual do contador mostrado será maior que 20, diferente do modo 1 no qual o valor é travado em 20.

- (3) O contador modo 3 é similar ao modo 1 exceto que o ultimo pode relembrar o valor após ser desligado e continuar a contar quando for ligado novamente.
- (4) O contador modo 4 é similar ao contador modo 2 exceto que o ultimo pode relembrar o valor gravado após ser desligado e continuar a contagem após ser ligado novamente.

(5) Contador modo 5

Nota:

Sob este modo, o valor da contagem atual surgido será maior que 20, diferente do modo1 no qual o valor é travado em 20. Se o reset estiver disponível, o valor presente será reajustado (reset) para 0, não relacionado a direção de contagem.

(6) O contador modo 6 é similar ao contador modo 5, exceto que o ultimo pode relembrar o valor gravado após ser desligado e continuar a contagem quando ligado novamente.

Manual do Micro Controlador

MEG CLIC-02

- Contador de Alta Velocidade

Contador de alta velocidade (Fornecido apenas para modelos com alimentação CC)

O modelo com alimentação CC tem dois terminais de entrada de alta velocidade de 1 KHz, I1 e I2. Dois grupos de função de contagem de alta velocidade estão disponíveis com dois temporizadores.

(1) Contador modo 7

Descrição	.dmì8
Contagem modo (7)—contagem em alta	Θ
veloc.	
Terminal de entrada de contagem de alta	0
velocidade: apenas I1, I2 disponíveis.	
Use I1~gF p/ reajustar o valor de contagem.	(2)
ON: contador é reajustado a zero.	
OFF: contador continua a contar.	
Valor atual do contador : 0~999999	Ð
Valor objetivo do contador: 0~999999	©
Código do contador (C1~CF, Total: 15Grupos)	9

440	NO	440		9
NO		440	но	©
				©
0 0	666666 666666 666666	866666	0 0	Ð
		666666		G
				2 = 1

(2) Contador modo 8

Símb.	Descrição
0	Contagem modo (8)—comparação de
	freqüência
②	Terminal de entrada de contagem de alta
w w	veloc.: apenas I1, I2 disponíveis.
3	Intervalo de tempo de contagem
9	:(0~99.99S)
4	Contador 'on' valor meta (000000~999999)
(5)	Contador 'off' valor meta (000000~999999)
6	Código do contador (C1~CF Total
6	:15Grupos)

Nota:

Como mostrado no diagrama, a saída será atrasada por um intervalo.

Temporizador

Símb.	Descrição					
0	Temporizador modo (1-7)					
2	Unidade do temporizador : 1 : 0.00~99.99s					
	2:0.0~999.9s					
	3:0~9999s					
	4:0~9999m					
3	Use I1~gF p/ reajustar o valor do temporizador.					
	ON : Valor do temporizador é reajustado a Zero					
	OFF: Temporizador continua a marcar o tempo					
4	Valor atual do temporizador					
(\$)	Valor meta do temporizador					
6	Código do temporizador (T1~TF total: 15 Grupos)					

Modo de seleção do temporizador

Modo 1 (① = 1) - Retardo na energização

Modo 2 (① = 2) - Retardo na energização memorizando o estado de saída após atingir o tempo até o acionamento da entrada de reset.

Modo 3 (① = 3) - Retardo na desenergização com entrada de reset (aciona a saída quando a entrada for acionada, temporiza após a entrada ser desacionada e desliga a saída no final da temporização).

Modo 4 (① = 4) - Retardo na desenergização após o flanco de descida (aciona a saída quando a entrada for desacionada, temporiza após a entrada 1 ser desacionada e desliga a saída no final da temporização).

Modo 5 (\bigcirc = 5) - Modo oscilador.

Modo 6 (① = 6) - Modo oscilador com reset.

Modo 7 (① = 7) - Modo oscilador $T_{ON} \neq T_{OFF}$ com reset.

Nota:

O valor de ajuste do temporizador pode ser constante, ou o valor atual do temporizador, contador ou entrada analógica de A1~A4.

Para I1~gF, terminal de entrada:I1~IC(I1~I12), terminal de saída: Q1~Q8,expansão do terminal de entrada: X1~XC(X1~X12),expansão do terminal de saída:Y1~YF(Y1~Y12),contador:C1~CF(C1~C15), Temporizador: T1~TF(T1~T15), comparador RTC:R1~RF(R1~R15), comparador analógico: G1~GF(G1~G15), terminal auxiliar: M1~MF (M1~M15).

A caixa superior (I1) é o contato 'a' enquanto a caixa inferior (i1) é o contato 'b'.

(1) Temporizador Modo 1: Retardo na energização com reset na habilitação do temporizador.

Exemplo:

t = tempo ajustado

(2) Temporizador Modo 2: Retardo na energização com entrada de reset

(3) Temporizador Modo 3: Retardo na desenergização (A)

(4) Temporizador Modo 4: Retardo na energização (B)

(5) Temporizador Mode 5: Oscilador (A)

(6) Temporizador Modo 6: Oscilador (B)

(7) Temporizador Modo 7: Oscilador (B)

Nota:

Este é um modo muito especial do qual a série conecta dois temporizadores, t1 e t2. Em adição, adiciona PTn, onde n=1, 2, 3, 4... Porém Tn + 1 não pode ser usado para outro proprósito.

Exemplo: I1————PT1, t1=T1 valor preset; t2=T2 valor preset.

RTC Instrução

Modo semanal

Símb	Descrição
Θ	Entra a primeira semana para RTC
0	Entra a segunda semana para RTC
(G)	Modo RTC (1~2) 1:diariamente, 2:dias consecutivos
4	RTC mostra a hora atual.
S	RTC mostra o minuto atual
6	Set RTC hora ON
9	Set RTC minuto ON
⊚	Set RTC hora OFF
9	Set RTC minuto OFF

Descrição para código da semana, segunda~domingo=MO , TU , WE , TH , FR , SA , SU

8

Código do RTC (R1~RF Total: 15 Grupos)

Modo ano-mês-dia

Símb.
ω (c
4
9
@
0
8
<u></u>

(1) RTC Modo 1

Exemplo:

Manual do Micro Controlador WEG CLIC-02

** Nota:

Se o Habilita falhar, saída está OFF.

Exemplo 2:

3	1
① :②	TU-FR
6:0	17:00
8:9	8:00

Exemplo 3:

3	1
① : ②	FR-TU
6:0	08:00
8:9	17:00

Exemplo 4:

3	1
① : ②	FR-MO
6:0	17:00
8:9	8:00

Exemplo 5:

Exemplo 6:

3	1
① : ②	SU-SU
6 : T	17:00
8 : 9	8:00

(2) RTC Modo 2

Exemplo 1:

3	2
①:②	TU-SA
6 : 7	08:00
8:9	17:00

^{**} Nota: Quando o Habilita estiver indisponível, a saída está OFF.

Exemplo 2:

3	2
0:2	TU-SA
6 : 7	17:00
8:9	08:00

Exemplo 3:

3	2
①:②	SA-TU
6 : 7	08:00
8:9	17:00

Exemp	lo 4	ŀ
-------	------	---

3	2
0 : 2	SA-TU
6 : T	17:00
8:9	08:00

Exemplo 5:

3	2
① : ②	SA-SA
© : ⑦	08:00
8:9	17:00

Exemplo 6:

3	2
① : ②	SA-SA
6 : 7	17:00
8:9	08:00

semana	seg	unda	te	rça			sexta		. sexta		sexta		Si	ábado	do	omingo
hora	8:00	17:00	8:00	17:00			8:00	17:00	8:00	17:00	8:00	17:00				
Habilita																
Saída Rn																

(2) RTC Modo 3

Exemplo 1:

0	3
2/5/6	03/05/23
3/7/8	04/12/22

^{**} Nota: Se o Habilita falhar, a saída será desligada.

Exemplo 2:

Exemplo 3:

①	3
2/5/6	03/05/23
3/9/8	03/05/23

Comparador analógico

Símbolo	Descrição			
0	Modo de comparação analógica (1~5)			
2	AX entrada analógica (A1~A4), ou o valor atual do timer, contador.			
3	AY entrada analógica (A1~A4), ou o valor atual do, contador.			
4	AX valor de entrada analógica(0.00~9.99)			
(\$)	AY valor de entrada analógica (0.00~9.99)			
6	Ajusta o valor comparativo de referência: pode ser constante, ou o valor atual do timer, contador e entrada analógica.			
7	Terminal de saída (G1~GF)			

 ON ou Off dos terminais de saída analógico (G1~GF) é determinada pela comparação das entradas analógicas de Ax e Av.

Quando o relé do comparador analógico estiver ON, há 5 modos ocorridos descritos abaixo:

- (1)Comparador analógico modo 1 ($A_v @ \le A_v \le A_v + @, @ ON$)
- (2) Comparador analógico modo 2 ($A_y \le A_y \le A_y \ne \emptyset$, \emptyset ON)
- (3) Comparador analógico modo 3 $(A_v \ge A_v, \oslash ON)$
- (4) Comparador analógico modo 4 (⑥ ≥ A_x, ⑦ ON)
- (5) Comparador analógico modo 5 ($6 \le A_v$, ON)

- Arquivo (File) HMI

Este bloco de função,12x4 pode mostrar as informações como palavras, valor atual e valor preset do contador, temporizador, RTC e comparador analógico. Em execução, para modificar o valor preset do temporizador, contador e comparador analógico. HMI pode mostrar a situação do terminal de entrada (I, X) e relé auxiliar também.

Símbolo	Descrição
1	Modo display (1~2)
(5)	HMI sinal do terminal de saída (H1~H8)

- (1) O modo Display pode ser alterado através das teclas:
- Quando modo display = 1, na tela principal, pressionar tecla 'SEL' por 3 segundos para visualizar mensagens. Utilizar tecla ↑ e ↓ para navegar entre as mensagens.
- As informações mostradas podem apenas ser alteradas por meio do Software CLIC-02 EDIT. Sob o modo em execução, para modificar o valor preset do temporizador, contador, RTC e comparador analógica está disponível via HMI dos equipamentos controlados.

A função de ajuste HMI, refere-se ao arquivo do cliente HELP. O exemplo seguinte mostra como modificar o valor pré-ajustado de C1 sob o modo em execução.

Para modificar o valor pré-ajustado 000010 do contador modo 7 como valor atual de T2 em HMI.

Passo1: Na tela HMI, pressionar 'SEL', o cursor pisca na seguinte localização.

T 1 = 0 0 . 0 0 S e c
T 1 = 0 0 . 0 5 S e c
C 1 = 0 0 0 0 1 0
0 0 0 0 0 0

Passo2: Pressione 'DOWN' e o cursor pula para C1 posição do valor pré-ajustado.

T 1 = 0 0 . 0 0 S e c
T 1 = 0 0 . 0 5 S e c
C 1 = 0 0 0 0 1 0
0 0 0 0 0 0

Passo3: Pressione 'SEL' três vezes, o valor pré-ajustado altera de 000000, A1, T1 .

T 1 = 0 0 . 0 0 S e c
T 1 = 0 0 . 0 5 S e c
C 1 = T 1
0 0 0 0 0 0

Passo3: Pressione 'UP'

T 1 = 0 0 . 0 0 S e c
T 1 = 0 0 . 0 5 S e c
C 1 = T 2
0 0 0 0 0 0

Passo4: Pressione 'OK' para salvar o ajuste.

T 1 = 0 0 . 0 0 S e c
T 1 = 0 0 . 0 5 S e c
C 1 = T 2
0 0 0 0 0 0

- Função de saída PWM (Fornecido apenas para modelos com saída a transistor)

Saída variante com um terminal de saída PWM 'Q1', o qual pode sair 8-estágios PWM (contorno de ondas).

Símbolo	Descrição				
0	Set mostra as fases (1~8)				
2	Mostra o estágio atual como operação(0~8)				
3	Entra estágio selecionado 1(I1~gF)				
4	Entra estágio selecionado 2(I1~gF)				
(5)	Mostra estágio selecionado 3(I1~gF)				
6	Set PWM largura do pulso (0~32768ms)				
7	Set PWM período (1~32768ms)				
8	PWM terminal de saída P1				

Nota:

Para I1~gF, terminal de entrada: I1~IC(I1~I12),

Terminal de saída: Q1~Q8,

Expansão do terminal de entrada : X1~XC (X1~X12), Expansão do terminal de saída : Y1~YF (Y1~Y12)

Contador: C1~CF (C1~C15), Temporizador: T1~TF (T1-T15), Comparador RTC: R1~RF (R1~R15), Comparador analógico: G1~GF (G1~G15), Terminal auxiliar: M1~MF (M1~M15).

 A saída contorno de ondas do terminal de saída 'P1-®' é determinada pelo contorno de ondas pré-ajustado do terminal de entrada 1-®, 2-®, 3-® e habilitação do P1 através do LADDER.

Habilita	(5)	4	3	2	®Saída PWM
OFF	Х	Х	Х	0	OFF
ON	OFF	OFF	OFF	1	Set estagio 1
ON	OFF	OFF	ON	2	Set estagio 2
ON	OFF	ON	OFF	3	Set estagio 3
ON	OFF	ON	ON	4	Set estagio 4
ON	ON	OFF	OFF	5	Set estagio 5
ON	ON	OFF	ON	6	Set estagio 6
ON	ON	ON	OFF	7	Set estagio 7
ON	ON	ON	ON	8	Set estagio 8

Nota:

X indica que a entrada está inativa.

- Função DATALINK (fornecido apenas para modelo 20VR-D e 20VT-D)

Símbolo	Descrição							
1	Modo de ajuste (1,2) 1:envia 2:recebe							
2	Ajusta os pontos envia/recebe (1~8)							
3	Ajusta os pontos envia/recebe							
	Lista de localização da memória envia/recebe							
S	Data link terminal de saída (L1~L8)							

Nota:

- Cada CLIC-02 pode enviar no máximo 8 bits de dados, e receber 8 bits de cada CLIC-02 na rede. Selecionar os pontos de entrada: I1~IC(I1~I12), pontos de saída: Q1~Q8, pontos de entrada expansivos: X1~XC(X1~X12), pontos de saída expansivos: Y1~YF(Y1~Y12), pontos auxiliares: M1~M (M1~M15).
- O modo "enviar" é determinado pelo ID o qual não pode ser alterado, como mostrado na lista a seguir. O modo receber pode selecionar: W1,W9,W17,W25,W33,W41,W49 e W57.

Exemplo 1: DATALINK Modo 1

Set ① = 1, ② = 5, set ③ iniciando a partir de I3, a situação do real terminal de envio I3-I7 é enviada para a lista de memória; o controlador ID = 0, a situação da lista de posicionamento da memória W17-W24-④ e o relacionamento do terminal de envio é como segue:

Exemplo 2: DATALINK modo 2

Set ① = 2, ② = 5, set ③ iniciando a partir de Q3, set ④ iniciando a partir de W1, quando o Datalink estiver habilitado, a situação ON/OFF' deQI3~Q7 é controlada pela memória W1~W5-④.

7.4 - Método de operação

- A tela original quando ligada.
- (1) Tela de ajuste de idiomas:

Tela de Display de 4 linhas

Menu de seleção de idiomas.

Pressione as teclas:

\uparrow \downarrow	Move o Cursor
OK	Entre o idioma selecionado, e mostra a tela para ajuste de tempo.

(2) Tela atual de ajuste de tempo

Pressione a tecla:

SEL	Seleciona valor
SEL + ←/ →	Move o Cursor
SEL+↑/↓	1. ano = 00~99,mês = 01~12, dia = 01~31
	2.semana ⇔TU⇔WE⇔TH⇔FR⇔SA⇔SU⇔MO
	3. hora = 00~23 ou minuto = 00~59
OK	Salva a hora RTC, encerra a tela original de ajuste, depois mostra a tela inicial.

Nota:

O método default é o modo de edição LADDER.

Tela original quando ligada.

Pressione a tecla:

	ESC	Retorna ao menu principal
	SEL+↑↓	Sob o modo de edição LADDER, mostra a situação de outros relés
	SEL+↑↓	(expansão X&Y \Leftrightarrow M \Leftrightarrow T \Leftrightarrow C \Leftrightarrow R \Leftrightarrow G \Leftrightarrow A) \Leftrightarrow tela original
ſ		Função H será mostrada quando a tecla for pressionada por 3
	SEL	segundos. Se o modo 2 estiver selecionado para HMI, a função H não
		será exibida.

Exemplo:

a) Mostra a operação de outro relé:

Caso haja expansão das E/S mostra a situação

I Mostra a situação:

T Mostra a situação:

C Mostra a situação:

R Mostra a situação:

G Mostra a situação:

Valor de entrada analógica:

A1, A2, A3, A4, Valor das entradas analógicas

b) Operação para mostrar a função H:

	Т	1	=	1	0	0	0		М	i	N
>	С	1	=	0	0	4	0	0	0		
	С	2	=	0	0	2	0	0	0		

Menu principal

LCD mostra menu principal de 4 linhas

(1) O menu principal com CLIC-02 sob o modo 'STOP'.

(2) O nemu principal com o CLIC-02 sob o modo 'RUN' (executa).

Pressione a tecla

↑ ↓	Move o cursor para selecionar o menu principal					
OK	Confirma a função selecionada					
ESC	Pula para a tela inicial					

- CLIC-02 pode ser modificado, editado, limpo e lê o programa do usuário apenas quando este estiver sob o modo STOP.
- Assim que o programa é modificado, CLIC-02 automaticamente fará o backup deste para EEPROM. (não PM05)

1. Menu principal LADDER

Pressione a tecla

Tecla	Descrição
SEL	1. lx ⇒ ix ⇒ — ⇒ espaço ⇒ lx (apenas p/ digital e posição do caractére das colunas 1,3,5.)
	2. Qx ⇒ espaço ⇒ Qx (apenas p/ digital e posição do caractére da coluna 8).
	$3. \ \top \Rightarrow \text{espaço} \Rightarrow \top \qquad \qquad \text{(todos disponíveis exceto as colunas 2,4,6 da primeira linha)}$
	Т Т
	x : Digital: 1~F
SEL +↑/ ↓	1. 1F, — (Quando o cursor localizar a posição digital, o alcance do digital é restrito pelo tipo de
	relé.
	$2.I \Leftrightarrow X \Leftrightarrow Q \Leftrightarrow Y \Leftrightarrow M \Leftrightarrow D \Leftrightarrow T \Leftrightarrow C \Leftrightarrow R \Leftrightarrow G \Leftrightarrow I$
	(Quando o cursor está localizado nas colunas 1,3,5).
	$3. \ Q \Leftrightarrow Y \Leftrightarrow M \Leftrightarrow T \Leftrightarrow C \Leftrightarrow R \Leftrightarrow G \Leftrightarrow H \Leftrightarrow L \Leftrightarrow P \Leftrightarrow Q$
	(Quando o cursor estiver localizado na coluna 8)
	4. ($\Leftrightarrow \uparrow \Leftrightarrow \lor \Leftrightarrow P \Leftrightarrow$ ((Quando o cursor estiver localizado na coluna 7, e a coluna 8 for ajustada
	como Q,Y,M)
	5. (\Leftrightarrow P \Leftrightarrow ((Quando o cursor estiver localizado na coluna 7, e a coluna 8 for ajustada como T)
SEL + ←/→	
1/↓	Move o cursor verticalmente
←/ →	Move o cursor horizontalmente
DEL	Deleta uma instrução
ESC	Cancela a instrução ou ação sob edição.
	Retorna ao menu principal após solicitar o programa
OK	Confirma os dados e salva automaticamente, o cursor move p/ a próxima posição de entrada.
	2. Quando o cursor estiver na coluna 8, pressione a tecla p/ automaticamente entrar a função de
	bloqueio e ajustar os parâmetros (tal qual T/C) -
SEL+DEL	Deleta uma linha de instrução.
SEL+ESC	Mostra o número das linhas e a situação de operação do SG2 (RUN/STOP) ·
SEL+↑/↓	Pula up/ down a cada programa de 4 linhas.
SEL+OK	Insere um espaço – linha -

Manual do Micro Controlador WEG CLIC-02

Procedimento:		1 2 3 4 5 6 7 8 Coluna
Press 'DEL'	Linha 1	q 4 ^T M 1 — I 3 — (Q 1
	2	? r 3 ———
	3	
(p/ deletar o elemento C7 o cursor	4	
Em localização)		

Mostra a linha atual e a situação de operação do CLIC-02.

	,	- -		- 3 -									
Procedimento:		1		2	3		4	5		6	7	8	Coluna
Pressione 'SEL+ESC'	Links 4		_			_		_	_		,	0.4	
(simultaneamente	Linha 1	q	4	Т	IVI	1	_	'	3	_	(Qī	
	2			\perp	r	3	_	_	_	_	(C 7	
(A linha 4 mostra onde o cursor em	3												
Localização e a situação de			_	_	_					_	_		
operação do CLIC-02)	4	5	1	O	۲		L	1	IN	E	U	0 2	

Deleta toda a linha

Procedimento:		: 1		2	3	: 4:	5	6	7	8		Coluna
Pressione 'SEL+DEL'	Linha 1		4	_		1	1 2		,	_	1	
(Simultaneamente)	LIIIIa I	Ч	4		IVI	1 —	1 3	_	(Q	'	
	2			\perp	r	3 —		- —	(С	7	
	3	С	L	Е	Α	R	L n		0	0	2	
('ESC' Cancela , 'OK' Executa)	4	Е	S	С		?		0	K		?	

Insere uma linha inteira:

Passo:		1		2	3		4	5		6	7	8	coluna
Pressione"SEL+OK" (ao mesmo tempo)	Linha 1	q	4	Т	М	1	_	ı	3	_	(Q 1	
	2 3 4			1	r	3	_		_	_	(C 7	

Vire a página

2. Programação dos Blocos de Função (FUN. BLOCK)

Passo 2: modifica ① valor meta pré-ajustado ② reajusta a ação de relé

Pré-ajusta o valor meta

	2.3	4:5	6:7:8	Coluna
Linha 1	「 1		1	
2	1 ⊣			
3	0	0 . 0 0	+ T 1	
4	1		_	
	Linha 1 2 3 4	Linha 1	Linha 1	Linha 1

© Procedimento 2-2:	1 2 3 4 5 6 7 8 Coluna
Pressione 'SEL'	Linha 1
	2 1 -
(inicie entrada do valor meta)	3 0 0 . 0 <u>0</u> ⊢ T 1
	4

1 2 3 4 5 6 7 8	Coluna
Linha 1 1	
2 1 -	
3 0 0 . 0 <u>3</u> ⊢ T 1	
4 1	
	_
	-
1 23 45 678	Coluna
Linha 1 1	
2 1 -	
3 0 0 . 0 3 + T 1	
4 1	
	_
1 2 3 4 5 6 7 8	Coluna
Linha 1 1	
2 1 -	
3 0 0 . <mark>0</mark> 3 ⊢ T 1	
4 ⊥	
	_
	Linha 1

Repita os passos 2-2 ~ passo 2-4 3 vezes, para entrar a seguinte tela:

Assim como o valor atual do timer, contador e comparador analógico é ajustado como o valor presente dos mesmos. A seguir p/ os passos 2-2, para executar a seguinte operação:

Repita os passos 2-3A, a seguinte tela será mostrada:

	1 2:3	4:5	6.7.8	coluna
linha1	 		7	
2	1 ⊣			
3	T	1	⊢ T 1	
4	_	_		
	1 2 3	4:5	6:7:8	coluna
linha 1	 		1	
2	1 ⊣			
3	C	1	⊦ T 1	
4	_			
-				,
, a seguin	te tela será	mostrad	la.	
:	1 :2:3	: 4:5	6:7:8	coluna
linha1	 		7	
2	1 ⊣			
3	A	2	⊢ T 1	
4	_		J	
_				•
	linha1 2 3 4 Linha 1 2 3 4 Linha1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Inha1	linha1	linha1

Repita os passos 2—4A (pressione '\$\psi\$' também disponível), o valor pré-ajustado de A1-A4 será periodicamente alterado. E assim por diante. Os outros blocos de função (tempo, contador) o valor atual é ajustado como o valor pré-ajustada, para repitir o passo para selecionar T1-TF, C1-CF.

Procedimento 2-9:	1 2 3 4 5 6 7 8 Coluna
Press '↑'	Linha 1
(Pressione 'SEL' + ' ↑, ↓'	3 3 3 3 . 3 + T 1
P/ alterar de 1' p/ ' 2')	4
Procedimento 2-10:	1 23 45 678 Coluna
Pressione 'OK'	Linha 1 「 1
(salva os dados de entrada)	2 2 4 3 3 3 3 . 3 + T 1 4
Procedimento 2-11:	1 2:3 4:5 6:7:8 Coluna
Pressione '1'	Linha 1
(move o cursor p/ posição '1")	3
① Procedimento 2-12:	1 2 3 4 5 6 7 8 Coluna
Pressione 'SEL'	Linha 1
(começa a editar os dados)	2 2 - 3 3 3 3 . 3 + T 1 4
© c 2-13:	.1 .2.3 .4.5 .6.7.8 .Coluna
Pressione '↑' 3 vezes	Linha 1
(Pressione 'SEL' e seguido de '↑↓'	3 3 3 3 . 3 F T 1
P/ alterar de 1 p/ 5)	4 1 1 ±
Procedimento 2-14:	1 2 3 4 5 6 7 8 Coluna
Pressione 'OK'	Linha 1
	2 2 -
(salva os dados de entrada)	3
	1

1 2 3 4 5 6 7 8 Coluna

⊢ T 1

| 3 3 3 . 3

relé)

Procedimento 2-15:

Pressione '↓' 3 vezes

(este passo conduz a editar a ação

② Edita o programa de ação e pré-ajusta o relé de ação

, , ,	•
© Procedimento 2-16: Pressione 'SEL'	1 2 3 4 5 6 7 8 Coluna
	2 2 -
(começa a modificar)	3
© B F 0.47	14 1010 1415 101710 1014
Procedimento 2-17: Pressione '↑' 4 vezes	inha 1
Pressione 1 4 vezes	Linha 1
(Pressione 'SEL' + '↑ ↓'	3 3 3 3 . 3 ⊢ T 1
P/ alterar I p/ M)	4 M 1 ⊥
① Procedimento 2-18:	1 2 3 4 5 6 7 8 Coluna
Pressione '→'	Linha 1 4
	2 2 -
(Pressione 'SEL' + '← →' p/ mover	3 3 3 3 . 3 ⊩ T 1
O cursor p/ localização digital)	4 <u>M 1</u> _
Procedimento 2-19:	1 2:3 4:5 6:7:8 Coluna
Pressione '1' 3 vezes	Linha 1
(Pressione 'SEL' + '↑ ↓' p/ alterar	3 3 3 3 . 3 + T 1
'1' p/ '4')	4 M 4 1
® Procedimento 2-20:	:1 :2:3 :4:5 :6:7:8 : Coluna
Pressione'OK'	Linha 1 4
	2 2
(salva os dados de entrada)	3 3 3 3 . 3 T 1
	4 M 4 ±
	<u> </u>
® Procedimento 2-21:	1 2 3 4 5 6 7 8 Coluna
Pressione' '	Linha 1
(Move o cursor p/ a area de valor	3 3 3 3 . 3 + T 1
Pre´-ajustado p/ repetir o passo	4 M 4 ±
2-1)	
① Procedimento 2-22:	1 23 45 678 Coluna
Pressione '1'	Linha 1 4 7
(Move o cursor p/ a posição '2' p/	3 3 3 3 . 3 F T 1
Repetir 2-8)	4 M 4 ±
I	

Operação detalhada para modificar o comparador analógico Ax, Ay: passo 2-22A: 12:3 14:5 16:7:8 Pressione '↑' linha 1 (Move o cursor p/ 2, ou repete o + G 1 passo seguinte. Seleciona A1~A4 _⊥ 0 3 . 3 3 Passo 2-22B: 2 3 4 5 6 7 8 Pressione 'SEL' linha 1 2 A 1 ⊣ (Move o cursor p/ 2 p/ repetir o ⊢ G 1 passo acima. Seleciona A2-T1-C1-A1) _⊥ 0 3 . 3 3 Passo 2-22C: :2:3 :4:5 6:7:8 : coluna Pressione '1' linha 2 A 1 (Move o cursor p/ 2 p/ repetir o 3 T 2 ⊢ G 1 passo acima. Seleciona T1~TF,C1~CF,A1~A4) ⊥ 0 3 . 3 3 Passo 2-22D: :2:3 :4:5 :6:7:8 Pressione 'OK' 「 4 linha 2 A 4 -Salva os dados atuais | 0 3 . 3 3 ⊢ G 1 2 3 4 5 6 7 8 O Procedimento 2-23: Pressione '1' Linha 1 2 -(Move cursor p/ posição '4' 3 3 3 . 3 ⊢ T 1 P/ repetir o passo 2-12) 4 M 4

Continue p/ entrar Bloco de Função

Próxima Bloco de Função

Última bloco de função:

Procedimento :		1	:2	:3	:4	:5	:6	7:8	Coluna
Press 'SEL+↓' (Simultaneamente)	v 1		Γ	3				7	
	2		2 -					1	
	3			0	5 0		0	⊢ T !	F
	4	R	1 ±						

Deleta função de bloqueio:

Retorna ao menu principal:

Altera bloco de função:

3. EXECUTA OU PARA

(1) Modo RUN – executa - (2) Modo STOP –para-RUN PROG. STOP PROG.

YES NO NO

\uparrow \downarrow	Move o cursor
OK	Executa a instrução, então retorna ao menu principal
ESC	Retorna ao menu principal

4. Outros itens do menu

(1) CLEAR PROGRAM (limpa RAM, EEPROM e senha ao mesmo tempo)

CLEAR PROG.
YES

(2) ESCREVE (salva o programa (RAM) p/ o PM05 - cartucho de programa sobressalente)

ESCREVE
YES

(3) LÊ (Lê o programa de PM05 cartucho de programa sobressalente p/ SG2 (RAM))

LË YES ▶NO

(1) ~ (3) Agora pressione:

\uparrow \downarrow	Move o cursor
OK	Executa a instrução, então retorna ao menu principal
ESC	Retorna ao menu principal

(4) SET (sistema de ajuste)

ID SET 01 l→ ID ajusta (00~99) REMOTO I/0 N Remoto E/S Modo (N: nenhum M: Mestre S: Escravo) BACK LIGHT × Back light modo (✓: sempre light x: light por 5s após pressionado.) M MANTÉM ✓ **|**→ M: não volátil (√: Volatil x: não volátil) E/S NÚMERO 0 Expansão E/S Pontos (0~3) E/S ALARME ✓ \rightarrow Alarme para expansão de E/S inesistente! (✓: Yes x:No) C MANTÉM ×

Agora pressione:

$\uparrow \downarrow \leftarrow \rightarrow$	Move o cursor
SEL	Começa a editart.
Press 'SEL' e	Move o cursor p/ item 'ID SET'
'← →'	
Press 'SEL'	1. ID SET=00~99 ; I/O NUMBER=0~3
e '↑ ↓'	2. REMOTO I/O= N⇔M⇔S⇔N
	3. BACK LIGHT; C mantém = X ⇔ ✓
	4. M mantém; I/O ALARME = ✓✓ ⇔ XX
OK	Confirma os dados de edição
ESC	Cancela o ajuste quando pressionado 'SEL'
	2. Retorna ao menu principal

Nota:

- Ao modificar as configurações do menu SET, desligue o CLIC-02 por 15s. para que as modificações sejam salvas.

(5) RTC Ajuste

Agora pressione

SEL	Começa a entrar parâmetros	
Press 'SEL'	Maria a Ormana	
+ '← →'	Move o Cursor	
SEL então	1. YY=00~99,NN=01~12,DD=01~31	
	2.MO⇔TU⇔WE⇔TH⇔FR⇔SA⇔SU⇔MO	
↑ ↓	3. HH = 00~23 ou MM = 00~59	
OK	Salva os dados de entrada	
ESC	Cancela os dados de entrada quando pressionar 'SEL'.	
	2. Retorna ao menu principal.	

(6) Ajuste analógico

A 1=AVANÇA : 010	\rightarrow	AVANÇA (0~999)
OFFSET: +00	\rightarrow	OFFSET (-50~+50)
A 2=AVANÇA : 010		
OFFSET: + 00		

Agora pressione:

↑↓	Move o cursor p/ baixo
1 🗸	2. Altera a tela de ajuste de A1, A2 to A3, A4.
SEL	Começa a entrar parâmetros
Press 'SEL'	Move a Cursor
+ '← →'	Move o Cuisor
'SEL' +	1. AVANÇA =000~999
'↑↓'	2. OFFSET=-50~+50
OK	Salva os dados de entrada
ESC	Cancel the Input Data when press 'SEL'.
	2. Back to Main Menu.

(7) Ajustando a senha

Agora pressione

SEL	começa a entrar numerais
SEL	Quando a senha estiver ON, esta não mostrará 0000, mas ****.
Press 'SEL'	Manage and a second
+ '← →'	Move o cursor
Press 'SEL'	
+ '↑↓'	0~9
ОК	Salva os dados de entrada 0000 senha em OFF.
ESC	Cancela os dados de entrada quando pressionar 'SEL'.
	2. Retorna ao menu principal.

(8) Seleção de idioma

Agora pressione

•	
Press '↑ ↓'	Move o cursor verticalmente
OK	Seleciona o idioma a cursor localizado
ESC	Retorna ao menu principal

Exemplo:

(8) INICIAL

Agora pressione:

Press '↑↓'	Move o cursor verticalmente
ОК	Seleciona o idioma o cursor localizado
ESC	Retorna ao menu principal

O programa original será limpo como a alteração do método de edição

7.5- Expansões e Rede de Comunicação

Modo DATALINK

O modo DATALINK permite troca de 8 bits de dados entre CLPs Clic02. O endereço do primeiro Clic02 deverá ser ID=0, e os próximos devem ter os endereços seqüentes.

CONFIGURAÇÃO:

Remoto I/O = N (Nenhum).

CARACTERÍESTICAS:

- Apenas para modelo CLIC2-02/20VR-D e 20VT-D.
- Este modo permite E/S Expandidas.

PORTA DE COMUNICAÇÃO RS485:

- A ligação do cabo da rede RS485 deve ser como segue:

Modo E/S Remota

Com o modo Remoto pode-se dobrar a capacidade de E/S do Clic02. Porém como ele ocupa os mesmos endereços das E/S expandidas, estas não podem ser usadas.

Entradas Remotas : X1~X12 <= I1~112 Saídas Remotas : Y1~Y8 => Q1~Q8

CONFIGURAÇÃO DO MESTRE:

Remote I/O = M (Mestre). I/O Number = 0

CONFIGURAÇÃO DO MESTRE:

Remote I/O = S (Escravo).

I/O Number = 0

CARACTERÍSTICAS:

- Permite apenas 1 Clic2 escravo.
- Apenas para modelo CLIC02-02/20VR-D e 20VT-D.
- O escravo não permite programa.

PORTA DE COMUNICAÇÃO RS485:

- A ligação do cabo da rede RS485 deve ser como segue:

Mestre	Escravo
Α	——— A
В ———	——— В

Modo E/S Expandidas

Este modo permite a expansão de até 3 módulos de E/S, com um máximo de 40 pontos de E/S digitais e 4 entradas analógicas.

CONFIGURAÇÃO:

Remote I/O = N (Nenhum).

I/O Number = 1, 2 ou 3 (número de expansões).

I/O Alarm = " (para exibir falha na tela de falta ou excesso de módulos).

ModBus Escravo

Este modo permite até 99 CLPs Clic02 comunicando com um mestre em ModBus RTU.

As configurações da porta RS485 são as seguintes:

- Baud rate 38400bps;
 - 8 bits data;2 stop bits;
- no parity;

CONFIGURAÇÃO:

Remoto I/O = N (Nenhum).

CARACTERÍESTICAS:

- Apenas para modelo CLICO2-02/20VR-D e 20VT-D. Permite E/S Expandidas. Não Permite E/S Remota.

MAPA DE MEMÓRIA DO CLIC02:

Bit\Registro	0	1	2	3	4	5	6	7	8	10	15
0	R1	G1	T1	C1	M1	11	X1	Q1	Y1	H1	L1
1	R2	G2	T2	C2	M2	12	X2	Q2	Y2	H2	L2
2	R3	G3	Т3	C3	МЗ	13	Х3	Q3	Y3	НЗ	L3
3	R4	G4	T4	C4	M4	14	X4	Q4	Y4	H4	L4
4	R5	G5	T1	C5	M5	15	X5	Q5	Y5	H5	L5
5	R6	G6	T2	C6	M6	16	X6	Q6	Y6	H6	L6
6	R7	G7	Т3	C7	M7	17	X7	Q7	Y7	H7	L7
7	R8	G8	T4	C8	M8	18	X8	Q8	Y8	H8	L8
8	R9	G9	T1	C9	M9	19	X9	Q9	Y9	H9	
9	RA	GΑ	TA	CA	MA	IA	XA		YΑ	HA	P1
10	RB	GB	TB	CB	MB	ΙB	XB		YΒ	ΗВ	
11	RC	GC	TC	CC	MC	IC	XC		YC	HC	
12	RD	GD	TD	CD	MD		XD		YD	HD	
13	RE	GE	TE	CE	ME		ΧE		YΕ	HE	
14	RF	GF	TF	CF	MF		XF		YF	HF	

8. FBD DESCRIÇÃO DOS BLOCOS

8-1 Blocos da Bobina

	①Contatos	Bobina	Faixa
entrada	ı		I01~I0C(12)
Expansão da entrada	X		X01~X0C(12)
saída	Q	Q	Q01~Q08(8)
Expansão da saída	Υ	Υ	Y01~Y0C(12)
auxiliar	M	M	M01~M0F(15)
pino	N	N	N01~N0F(15)
HMI		Н	H01~H0F(15)
PWM		Р	P01(1)
SHIFT		S	S01(1)
DATALINK		L	L01~L08(8)
Logica /função de blog.	В		B01~B99(99)
Normal ON	Hi		
Normal OFF	Lo		
Nenhuma conexão	Nop		

(2) PWM

(3) SHIFT

Descrição do terminal de entrada

Descrição do parâmetro de ajuste:

Simbolo	Descrição
①	SHIFT codigo (Total 1 grupo)
2	Tipo de saída de ajuste (Q,Y)
3	Ajuste de saída de alteração numérica (1~8)

2=Q, 3=5 Shift Saída de: Q1 ~ Q5

Exemplo:

Nota:

Quando a Habilitação estiver acionada, Q1 ON, Q2~Q4 estarão OFF, com um novo pulso na entrada Shift, Q2 ON, Q1 e Q3~Q5 OFF. A saída seguinte da bobina estará ligada as outras estarão desligadas.

8-2 Blocos Lógicos

(1) AND

60

(2) AND (pulso)

FBD:

LADDER:

101 e 102 e 103 e D

Nota : o terminal de entrada NOP é equivalente a 'Hi'

(3) NAND

FBD:

LADDER:

não(I01 e I02 e I03)

Nota: o terminal de entrada NOP é

equivalente a 'Hi'

(4) NAND (pulso)

FBD:

LADDER:

Não (101 e 102 e 103) e d

Nota : o terminal de entrada NOP é

equivalente a 'Lo'

Manual do Micro Controlador WEG CLIC-02

5) OR

LADDER:

101 ou 102 ou 103

Nota: o terminal de entrada NOP é equivalente a 'Lo'

(6) NOR

FBD:

LADDER:

não (101 ou 102 ou 103)

Nota: o terminal de entrada NOP é equivalente a 'Lo'

(7) XOR

FBD:

LADDER:

101 Xor 102

Nota: o terminal de entrada NOP é

equivalente a 'Lo'

(8) SR

FBD:

LADDER:

Tabela lógica

I01	102	Вхх
0	0	holding
0	1	0
1	0	1
1	1	0

Nota: o terminal de entrada NOP é equivalente a 'Lo'

(9) NOT

FBD:

LADDER:

Nota: o terminal de entrada NOP é equivalente a 'Hi'

(10) Pulse

FBD:

LADDER:

Nota: o terminal de entrada NOP é

equivalente a 'Lo'

8.3 - Blocos de Função

As funções de bloqueio são classificadas em 4 tipos: Time, Contador, RTC Comparador 'R' e comparador analógico 'G'.

- Contador

(1) Contador Modo 1

(2) Contador Modo 2

(3) Contador Modo 3

(4) Contador Modo 4

(5) Contador Modo 5

(6) Contador Modo 6

Contador de alta velocidade da função de bloqueio

(1) Contador Modo 7

Nota: terminal de entrada de alta velocidade I1,I2

(2) Contador Modo 8

Nota: terminal de entrada de alta velocidade I1.I2

Temporizador

(1) Timer modo 1 (modo ON-Delay A)

(2) Timer modo 2 (modo ON-Delay B)

(3) Timer modo 3 (modo OFF-Delay A)

(4) Timer modo 4 (modo OFF-Delay B)

(5) Timer modo 5 (modo FLASH A)

(6) Timer modo 6 (modo FLASH B)

(7) Timer modo 7 (modo FLASH C)

RTC Comparador

(1) RTC Modo 1 (diariamente)

(2) RTC Modo (Continuo)

(3) RTC Modo 3 (ano mês dia)

Comparador analógico

(1) comparação analogica modo 1

Entrada de habilitação
$$\rightarrow$$

Entrada analógica \rightarrow

Entrada analógica \rightarrow

Referencia \rightarrow

Entrada $\mathbf{x} = \mathbf{x} =$

(2) comparação analogical modo 2

Entrada de habilitação
$$\rightarrow$$
 E n \rightarrow \rightarrow B x x Entrada analógica \rightarrow A x \rightarrow A x \rightarrow A y \rightarrow Seferencia \rightarrow Referencia \rightarrow R e f \rightarrow \rightarrow \rightarrow \rightarrow B x x A x \rightarrow B x x \rightarrow

(3) comparação analogica modo 3

Entrada de habilitação
$$\rightarrow$$

Entrada analógica \rightarrow

Entrada analógica \rightarrow

A $x \rightarrow A x \qquad A \qquad B \qquad x$

Entrada analógica \rightarrow

Referencia \rightarrow

Referencia \rightarrow

(4) comparação analogica modo 4

(5) comparação analogica modo 5

En En

Referência	ntrada analógica	trada de habilitação
\	\	†
Ref —	Α×	Εn
[⊢ ≪A x	⊢Ref	т— –
⊢вуу ⊐	-	-¬ Вхх

3.4 - FBD Recurso de Memória

total e a memória compartilhada são mostradas abaixos Sob o modo de edição FBD, os blocos lógicos e os blocos de função compartilham o sistema de memória. A memória

Comparador analógico Modo 1~5	RTC Comparador Modo 1~3	Counter Modo 1~8	Timer Modo 7	Timer Modo 1~6	Blocos lógicos	Memoria total	
1	1	1	1	1	1	99	Blocos Lógicos
			2	1		15	Timer
		1				15	Counter
	1					15	RTC Comparador
_						15	Comparador analógico

Exemplo para calcular a memória em uso:

Se um programa em FBD contém 2 ANDs, 1 OR, 2 Temporizadores Modo 1, 1 Contador Modo 7, RTC comparador Modo 1, o total de memória ocupada é 2+1+2+1+1=7, restando 99-7=92. Restão ainda 13 Temporizadores, 14 contadores e 14 comparadores RTC.

8.5 - Tela original quando ligada

Agora pressione :

ESC	Retorna ao menu principal
\uparrow \downarrow	Mostra a situação dos outros relés(Expansão X&Y⇔M ⇔ N⇔A) ⇔
1 🗸	tela original
SEL	Pressione SEL por 3s, para navegar pelas teclas editadas na função
SEL	H (exceto modo 2).

Exemplo:

a) operação para mostrar a situação de outro relé ∘

1. Entradas Expandidas

2. Marcadores M

3. Marcadores N

4. Entradas analógicas

Operação para visualizar os displays H.

Tela do menu principal

LCD mostra seleção de 4 linhas do menu principal

(1) Quando o CLIC-02 estiver sob o modo STOP, a seleção principal mostra:

(2) Quando o CLIC-02 estiver sob o modo RUN, a seleção principal mostra:

Agora pressione:

↑ ↓	Move o Cursor para selecionar os itens do menu principal						
OK	Confirma para entrar os itens selecionados						
ESC	Retorna a tela original						

9. CARREGANDO O PROGRAMA

9-1. Carregando o programa com o PM05 (cartucho de memória)

O método de instalação do PM05:

Passo 1: Remova a tampa do CLIC-02 com uma chave, como segue :

Passo 2: Plugue o PM05 a fenda, como segue :

Passo 3: Na lista de função de operação, clique ESCREVER para entrar na interface de confirmação e clique SIM para baixar (download) o programa sobressalente.

Nota:

Se desejar recuperar o programa sobressalente, clique LER na lista de função de operação para entrar na interface de confirmação e clique SIM para carregar (upload) o programa sobressalente.

9.2 Carregando o Programa com o CLIC 02 EDIT

Passo 1: Remova a tampa do CLIC-02 com uma chave, como segue:

Passo 2: Insira o cabo de Programação (PL 01) fenda, como segue: O outro conectar é ligado a porta de comunicação RS-232 no computador.

Passo 3: Com o software do cliente CLIC-02 EDIT, o computador está pronto para editar, lêr e escrever programas no CLIC-02.

10. TESTE DE EXECUÇÃO

10.1 - Teste Antes de Ligar

10.2 - Procedimento do teste de execução

11. INSPEÇÃO E MANUTENÇÃO

11.1 - Inspeção Periódica

- Itens gerais

Item de inspeção	Conteúdo de inspeção	Norma	notas
Temperatura	Eles devem ser limitados a	0-55℃	
ambiente	especificação, a temperatura		
Umidade relativa	dentro do painel de controle	5-90% RH	Sem gelo
Gas	deve ser igual a temperatura	Nenhum gás	
	ambiente.	corrosivo existente	
Vibração		Nenhuma	
Impacto		Nenhuma	

12. ESPECIFICAÇÃO TÉCNICA

12.1 - Especificações gerais

	Item	Especificação						
Método de progra	amação	Ladder / Função Block						
	Operação	0-55℃						
Operação Meio	Temperatura de Amazenamento	-40 até 70℃						
ambiente	Operação umidade	20-90% HR, sem gelo						
	Gás natural	Nenhum gás corrosivo existente						
Estrutura	Resistência a vibração	IEC60068-2-6 norma 0.075mm amplitude/1.0g aceleração						
Principal	Resistência a impacto	IEC60068-2-27 norma 15g pico, 11ms duração						
	ESD	Contato ±6KV, descarga de ar ±8KV						
	EFT	Power DC/AC: ±2KV						
A prova de som (barulho)	cs	0.15~80MHz 10V/m						
,	RS	80~1000MHz 10V/m						
	ЕМІ	EN55011 classe B						
	Proteção	IP20						
Instalação	Método de fixação	Direto ou Trilho Din (35mm) instalação						
	Direção	Sem limite						
Tamanho do cab	0	AWG 12/3.5mm ²						
Dimensões		72x90x59.6 mm(WxLxH) Trilho Din 72x106x59.6 mm(WxLxH) instalação direta						

12.2 - E/S Especificação do Sistema

Número de	pontos de	E/S	Modelo	AC 100~240	DC 24V	Pontos de Entrada		Pontos de Saída	Entradas Analógicas	RTC	LCD Key	Expansão	Entrada de Alta Velocidade	Saída PWM	Data Link
10 nontos	sos	de E/S	10HR-A	х		6	4	Relé		х	х	х			
	pou		12HR-D		х	8*	4	Relé	2	х	х	х	х		
	5 6	Ö	12HT-D		х	8*	4	Transistor	2	х	х	х	х	х	
Expansões 20 pontos de E/S			20HR-A	х		12	8	Relé		Х	Х	х			
		20HR-D		х	12	8	Relé	4	Х	Х	х	х			
	s de		20HT-D		х	12	8	Transistor	4	Х	Х	х	х	х	
	ontc		Comunicação Alta Velocidade												
	20 p		20VR-D		х	12*	8	Relé	4	х	Х	х	х		х
			20VT-D		х	12*	8	Transistor	4	х	Х	х	х	х	х
	es	es	8ER-A	х		4	4	Relé							
	ansõ		8ER-D		х	4	4	Relé							
	Exps	Expa	8ET-D		х	4	4	Transistor							

^{*:} Os pontos de entrada consistem em uma função da entrada analógica.

12.3 - Dimensões

- Expansão de 8 pontos de E/S

APÊNDICE - APLICAÇÕES ILUSTRADAS

1. CONTROLE DE ILUMINAÇÃO PARA ESCADARIAS

1.1 Requisitos

- Quando alguém sobe ou desce a escadaria, as lâmpadas precisam ser energizadas para fornecer iluminação.
- Após a saída da pessoa, o sistema de iluminação precisa ser desligado em cinco minutos automaticamente ou manualmente

1.2 Sistema de Iluminação Tradicional

Existem dois tipos de controle tradicionais:

- Utilização de reles.
- Utilização de temporizador automático dedicado.

Componentes utilizados:

- Interruptores
- Temporizador automático ou reles

Utilizando reles como controlador do sistema:

- A iluminação fica ligada enquanto qualquer interruptor estiver ligado.
- Pressione qualquer interruptor para desligar a iluminação.
- Desvantagem: O usuário normalmente esquece de desligar a iluminação.

Utilizando temporizador automático dedicado como controlador do sistema:

- A iluminação fica ligada enquanto qualquer interruptor estiver ligado.
- A iluminação poderá ser desligada em alguns minutos automaticamente ou manualmente.
- Desvantagem: O usuário não tem como cancelar o tempo de desligamento.

1.3 Utilizando o CLIC como controlador do sistema

Componentes utilizados

- Q1 Lâmpada H1
- I1 Interruptor B1
- I2 Sensor de presença infravermelho

Esquema de ligação do controle de iluminação:

Programa para o controle de iluminação utilizando o CLIC:

Ladder:

BLOCO DE FUNÇÃO:

FBD:

2. CONTROLE DE PORTA AUTOMÁTICA

As portas automáticas são geralmente instaladas na entrada de supermercados, bancos e hospitais.

2.1 Requisitos

- A porta deve abrir automaticamente quando uma pessoa está se aproximando.
- A porta permanece aberta durante um determinado tempo e então fecha, se não houver alguma pessoa presente.

2.2 Solução Tradicional

Quando quaisquer sensores B1 ou B2 detectarem a presença de algum visitante, a porta será aberta. Após um determinado tempo sem detectar ninguém, o relê MC4 irá comandar o fechamento da Porta.

2.3 Utilizando o CLIC como controlador do sistema

A utilização do CLIC como controlador do sistema pode simplificar o circuito. Tudo o que precisa ser feito é conectar ao CLIC os sensores de presença, fins de curso e o contator.

Componentes utilizados:

- MC1 contator de abertura da porta
- MC2 contator de fechamento da porta
- S1 (contato NF) fim de curso de fechamento
- S2 (contato NF) fim de curso de abertura
- B1 (contato NA) sensor infravermelho externo
- B2 (contato NA) sensor infravermelho interno

Circuito elétrico e Programa com o CLIC sendo utilizado:

Ladder:

BLOCO DE FUNÇÃO:

FBD:

3. CONTROLE DE VENTILAÇÃO

3.1 Requisitos

A função principal do sistema de ventilação é colocar ar fresco e retirar ar contaminado conforme exibido na figura abaixo.

- A sala é equipada com o exaustor para ar contaminado e insuflador para ar fresco.
- Sensores de fluxo monitoram a entrada e a saída de ar.
- Pressão positiva não será permitida em qualquer momento.
- O insuflador de ar irá funcionar apenas se o sensor de fluxo de ar contaminado estiver funcionando.
- Se qualquer irregularidade na entrada ou saída de ar for detectada, a lâmpada de alarme será acesa.

O circuito de controle do sistema de ventilação tradicional é mostrado abaixo:

O sistema de ventilação é completamente controlado pelo fluxo de ar. Se não há fluxo de ar na sala após um determinado período de tempo, o sistema irá ativar o alarme e o operador deverá desligar o sistema.

Componentes utilizados:

- MC1 contator principal
- MC2 contator principal
- S0 (contato NF) botão desliga
- S1 (contato NA) botão liga
- S2 (contato NA) sensor de fluxo de ar
- S3 (contato NA) sensor de fluxo de ar
- H1lânpada de operação
- H2 lâmpada de alarme

Circuito elétrico e Programa com o CLIC sendo utilizado

Ladder:

BLOCO DE FUNÇÃO:

FBD:

4. CONTROLE DE PORTÃO DE FÁBRICA

4.1 Requisitos

O objetivo principal de um portão de fábrica é controlar o acesso de caminhões, o qual é operado manualmente pelo vigia do portão.

- O vigia controla a abertura e o fechamento do portão.
- A chave de parada (emergência) pode ser ativada a qualquer momento, desconsiderando a posição do portão.
- O alarme ficará ativo por 5 segundos antes que o portão inicie o movimento.
- Um sensor de pressão está instalado no portão. Em qualquer instante que o sensor atuar, a operação de fechamento do portão é parada.

4.2 Circuito de controle tradicional

Componentes utilizados:

- MC1 Contator principal
- MC2 Contator principal
- S0 (contato NF) Botão de emergência
- S1 (contato NA) Botão de abertura
- S2 (contato NA) Botão de fechamento
- S3 (contato NF) sensor de pressão de abertura
- S4 (contato NF) sensor de pressão de fechamento

Circuito elétrico e Programa com o CLIC-02 sendo utilizado:

Ladder:

BLOCO DE FUNÇÃO:

FBD:

5. CONTADOR PARA MÁQUINAS DE EMBALAGENS

Requisitos

- O ciclo de empacotamento inicia com a contagem dos produtos no final da linha de produção. Quando o valor da contagem atingir 12 unidades, a máquina procede a operação de empacotamento que leva 5 segundos. Após finalizada, inicia-se um novo ciclo. 7
 - Deve-se simultaneamente contar a quantidade final de pacotes de produto.
- No caso de falta de energia, o contador permanece inalterado.

Análise:

- Um sensor é utilizado para gerar um pulso quando ele detectar a chegada de um produto. Um contador aciona a =
 - saída quando o valor de contagem atingir 12, e um temporizador é utilizado para se obter o atraso de 5 s. O contador será utilizado no modo 3 ou modo 4, no esforço em manter precisa a contagem mesmo no caso de falta de energia. 2

Componentes utilizados:

- 11 Sensor de contagem;
- S1 Reset do contador para zero;
 - MC1 empacotamento.

Circuito elétrico e Programa com o CLIC sendo utilizado:

Ladder:

EBD:

BLOCO DE FUNÇÃO:

13. CONDIÇÕES GERAIS DE GARANTIA PARA CONTROLADORES PROGRAMÁVEIS

A Weg Indústrias S.A - Automação, estabelecida na Av. Pref. Waldemar Grubba, 3000 na cidade de Jaraguá do Sul - SC, oferece garantia para defeitos de fabricação ou de materiais, no hardware dos Controladores Programáveis WEG, conforme a seguir:

- 1.0 É condicional para a validade desta garantia que a compradora examine minuciosamente o controlador programável adquirido imediatamente após a sua entrega, observando atentamente as suas características e as instruções de instalação, ajuste, operação e manutenção do mesmo. O controlador programável será considerado aceito e automaticamente aprovado pela compradora, quando não ocorrer a manifestação por escrito da compradora, no prazo máximo de cinco dias úteis após a data de entrega.
- 2.0 O prazo desta garantia é de doze meses contados da data da WEG, comprovado através da nota fiscal de compra do equipamento.
- 3.0 Em caso de não funcionamento ou funcionamento inadequado do controlador programável em garantia, os serviços em garantia poderão ser realizados a critério da Weg Automação S.A., por esta indicada.
- 4.0 O produto, na ocorrência de uma anomalia deverá estar disponível para o fornecedor, pelo período necessário para a identificação da causa da anomalia e seus devidos reparos.
- 5.0 Weg Automação S.A. examinará o controlador programável enviando, e, caso comprove a existência de defeito coberto pela garantia, reparará, modificará ou substituirá o controlador programável defeituoso, à seu critério, sem custos para a compradora, exceto os mencionados no item 7.0.
- 6.0 A responsabilidade da presente garantia se limita exclusivamente ao reparo, modificação ou substituição do controlador programável fornecido, não se responsabilizando a Weg por danos pessoais, a terceiros, a outros equipamentos ou instalações, lucros cessantes ou quaisquer outros danos emergentes ou conseqüentes.
- 7.0 Outras despesas como fretes, embalagens, custos de montagem/ desmontagem e parametrização, correrão por conta exclusiva da compradora, inclusive todos os honorários e despesas de locomoção/estadia do pessoal de assistência técnica, quando for necessário e/ou solicitado um adiantamento nas instalações do usuário.
- 8.0 A presente garantia não desgaste normal dos produtos ou equipamentos, nem os danos decorrentes de operação indevida ou negligente, manutenção ou armazenagem inadequada, defeitos causados pelos programas (software aplicado) e correções/ melhorias do mesmo, operação anormal em desacordo com as especificações técnicas, instalações de má qualidade ou influência da natureza química, eletroquímica, elétrica, mecânica ou atmosférica.
- 9.0 Ficam excluídas da responsabilidade por defeitos as partes ou peças consideradas de consumo, tais como partes de borracha ou plástico, bulbos incandescentes, fusíveis, baterias, etc.
- 10.0 A garantia extinguir-se-á, independente de qualquer aviso, se a compradora sem prévia autorização por escrito da WEG, fizer ou mandar fazer por terceiros, eventuais modificações ou reparos no produto ou equipamento que vier a apresentar defeito.
- 11.0 Quaisquer reparos, modificações, substituições decorrente de defeitos de fabricação não interrompem nem prorrogam o prazo desta garantia.
- 12.0 Toda e qualquer reclamação, comunicação, etc, no que se refere a produtos em garantia, assistência técnica, star-up, deverão ser dirigidos por escrito, ao seguinte endereço: WEG AUTOMAÇÃO A/C Departamento de Assistência Técnica, Av. Pref. Waldemar Grubba, 3000 malote 190, CEP 89256-900, Jaraguá do Sul -SC Brasil, Telefax 047 -372.4200, e-mail: astec@weg.com.br, Fone 0800-7010701
- 13.0 A garantia oferecida pela Weg Automação está condicionada à observância desta condições gerais, sendo este o único termo de garantia válido.

www.weg.com.br

