Sommabilité des familles de réels ou complexes indexées par $\mathbb N$

Caractérisation de la sommabilité des familles de $\mathbb K$ indexées par $\mathbb N$

Une famille $(u_n)_{n\in\mathbb{N}}$ d'éléments de \mathbb{K} est sommable si, et seulement si, la série $\sum_{n\geq 0}u_n$ converge absolument. Dans ce cas,

$$\sum_{n \in \mathbb{N}} |u_n| = \sum_{n=0}^{+\infty} |u_n| \text{ et } \sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n.$$

Preuve

Soit $(u_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathbb{K} .

1ère étape

 \square On suppose que $(u_n)_{n\in\mathbb{N}}$ est sommable.

Alors, par définition, la famille $(|u_n|)_{n\in\mathbb{N}}$ est sommable.

Ainsi, par définition de la sommabilité pour les familles de réels positifs,

— il existe un réel M tel que, pour toute partie finie F incluse dans \mathbb{N} , on a :

$$\sum_{n \in F} |u_n| \le M.$$

— on peut définir la somme de la famille $(|u_n|)_{n\in\mathbb{N}}$:

$$\sum_{n \in \mathbb{N}} |u_n| = \sup_{F \subset \mathbb{N} \atop F \text{ fini}} \left(\sum_{n \in F} |u_n| \right)$$

— on a, pour toute partie finie F de \mathbb{N} ,

$$\sum_{n \in F} |u_n| \le \sum_{n \in \mathbb{N}} |u_n|.$$

On peut appliquer ce dernier résultat avec $F = [\![0,N]\!]$ où $N \in \mathbb{N}$:

$$\sum_{n \in [0,N]} |u_n| \le \sum_{n \in \mathbb{N}} |u_n|$$

ce qui s'écrit encore :

$$\forall N \in \mathbb{N}, \sum_{n=0}^{N} |u_n| \le \sum_{n \in \mathbb{N}} |u_n|$$
 (\alpha)

On constate donc que la suite des sommes partielles de la séries à termes positifs $\sum_{n\geq 0} |u_n|$ est majorée par $S=\sum_{n\in\mathbb{N}} |u_n|$ donc, par caractérisation, la série $\sum_{n\geq 0} |u_n|$ converge ce qui donne la convergence absolue de la série $\sum_{n\geq 0} u_n$.

 \square On suppose la convergence absolue de la série $\sum_{n>0} u_n$.

Soit F une partie finie de \mathbb{N} .

Alors, il existe $N \in \mathbb{N}$ tel que $F \subset [0, N]$.

Ainsi, par positivité des termes des sommes finies suivantes, on trouve :

$$\sum_{n \in F} |u_n| \le \sum_{n \in \llbracket 0, N \rrbracket} |u_n|$$

puis, par convergence absolue de la série $\sum_{n>0} u_n$:

$$\sum_{n \in F} |u_n| \le \sum_{n \in \llbracket 0, N \rrbracket} |u_n| \le \sum_{n=0}^{+\infty} |u_n| \tag{\beta}$$

Ainsi, l'ensemble $\left\{\sum_{n\in F} |u_n| \mid F \text{ partie finie de } \mathbb{N}\right\}$ est majoré donc, par définition, la famille $(|u_n|)_{n\in\mathbb{N}}$ est sommable donc, par définition, la famille $(u_n)_{n\in\mathbb{N}}$ est sommable.

Conclusion : $(u_n)_{n\in\mathbb{N}}$ est sommable si, et seulement si, la série $\sum_{n\geq 0}u_n$ converge absolument.

2ème étape

Dans ce cas,

— par passage à la limite (licite!) quand N tend vers $+\infty$ dans (α) , on obtient :

$$\sum_{n=0}^{+\infty} |u_n| \le \sum_{n \in \mathbb{N}} |u_n|.$$

— par caractérisation de la borne supérieure comme plus petit des majorants, on obtient avec (β) :

$$\sum_{n\in\mathbb{N}} |u_n| \le \sum_{n=0}^{+\infty} |u_n|$$

Conclusion: en cas de sommabilité de la famille $(u_n)_{n\in\mathbb{N}}$, on a :

$$\sum_{n\in\mathbb{N}} |u_n| = \sum_{n=0}^{+\infty} |u_n|.$$

3ème étape

Il reste à démontrer qu'en cas de sommabilité, on a aussi :

$$\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n.$$

On remarque d'abord que ceci a du sens, vu la définition de la sommabilité d'une famille et le fait que la convergence absolue d'une série numérique implique la convergence.

- Si les u_n sont positifs, c'est immédiat avec ce qui précède.
- Si les u_n sont réels, on conclut avec les définitions de $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n=0}^{+\infty}u_n$ utilisant les réels positifs u_n^+ et u_n^- .
- Si les u_n sont complexes, on conclut avec les définitions de $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n=0}^{+\infty}u_n$ utilisant les réels Re u_n et Im u_n .

Conclusion: en cas de sommabilité de la famille $(u_n)_{n\in\mathbb{N}}$, on a :

$$\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n.$$

Sommabilité des familles de réels ou complexes indexées par \mathbb{N}^2

\square Cas des familles de réels positifs indexées par \mathbb{N}^2

Une famille **de réels positifs** $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est sommable si, et seulement si, les deux conditions suivantes sont réunies :

— Pour tout $n \in \mathbb{N}$, la série $\sum_{m>0} a_{m,n}$ converge.

— La série
$$\sum_{n\geq 0} \left(\sum_{m=0}^{+\infty} a_{m,n}\right)$$
 converge.

Dans ce cas,

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n}\right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} a_{m,n}\right).$$

Preuve

On rappelle d'abord le <u>théorème de sommation par paquets pour les familles de réels positifs</u> indexées par un ensemble dénombrable I:

La famille $(u_i)_{i\in I}$ est sommable si, et seulement si, les deux conditions suivantes sont réunies :

— (α) pour tout $n \in \mathbb{N}$, la famille $(u_i)_{i \in I_n}$ est sommable.

—
$$(\beta)$$
 la série $\sum_{n\geq 0} \left(\sum_{i\in I_n} u_i\right)$ converge.

Dans ce cas, on a:

$$\sum_{i \in I} u_i = \sum_{n=0}^{+\infty} \left(\sum_{i \in I_n} u_i \right) \tag{\gamma}$$

Et on se place dans le cas particulier qui nous intéresse ici :

- $-I = \mathbb{N}^2$
- $\forall i \in I, u_i = a_i.$
- $(I_n)_{n\in\mathbb{N}}$ partition de $I=\mathbb{N}^2$ définie par :

$$\forall n \in \mathbb{N}, I_n = \{i = (m, n) \mid m \in \mathbb{N}\}.$$

Alors,

— (α) : La famille $(u_i)_{i\in I_n}$ est en fait la famille $(a_{m,n})_{m\in\mathbb{N}}$.

Comme c'est une famille **indexée par** \mathbb{N} , sa sommabilité est équivalente à la convergence absolue de la série $\sum_{m\geq 0} a_{m,n}$ donc, ici à la convergence de la série $\sum_{m\geq 0} a_{m,n}$ (par positivité) avec, en cas de

sommabilité,
$$\sum_{i \in I_n} u_i = \sum_{m=0}^{+\infty} a_{m,n}.$$

$$- (\beta) : \text{La série } \sum_{n \geq 0} \left(\sum_{i \in I_n} u_i \right) \text{ est donc la série } \sum_{n \geq 0} \left(\sum_{m=0}^{+\infty} a_{m,n} \right).$$

$$- (\gamma) : \sum_{i \in I} u_i = \sum_{n=0}^{+\infty} \left(\sum_{i \in I_n} u_i \right) \text{ devient alors } \sum_{(m,n) \in \mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n} \right).$$

Résumé

La famille **de réels positifs** $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est sommable si, et seulement si, pour tout $n\in\mathbb{N}$, la série $\sum_{m\geq 0} a_{m,n}$ converge et la série $\sum_{n\geq 0} \left(\sum_{m=0}^{+\infty} a_{m,n}\right)$ converge avec, dans ce cas,

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n}\right).$$

En cas de sommabilité de cette famille, on a même :

$$\sum_{(m,n)\in\mathbb{N}^2}a_{m,n}=\sum_{n=0}^{+\infty}\left(\sum_{m=0}^{+\infty}a_{m,n}\right)=\sum_{m=0}^{+\infty}\left(\sum_{n=0}^{+\infty}a_{m,n}\right).$$

en utilisant $(J_m)_{m\in\mathbb{N}}$ partition de $I=\mathbb{N}^2$ définie par :

$$\forall m \in \mathbb{N}, J_m = \{i = (m, n) \mid n \in \mathbb{N}\}.$$

Remarque

Ce théorème, qui permet l'interversion des sommes, s'appelle aussi **théorème de Fubini (version termes positifs).**

\square Cas des familles de réels ou complexes indexées par \mathbb{N}^2

Si la famille de réels ou complexes $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est sommable alors

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n}\right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} a_{m,n}\right)$$

Preuve

Si la famille de réels ou complexes $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est sommable alors, par théorème de sommation par paquets,

— utilisé avec la partition
$$(I_n)_{n\in\mathbb{N}}$$
 de \mathbb{N}^2 déjà utilisée dans la preuve précédente, on obtient :
$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{i\in I_n} a_i\right) = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n}\right).$$

— utilisé avec la partition $(J_m)_{m\in\mathbb{N}}$ de \mathbb{N}^2 déjà utilisée dans la preuve précédente, on obtient :

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{j\in J_m} a_j\right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} a_{m,n}\right).$$

Ce qui donne les résultats attendus.

Remarque

Ce théorème, qui permet l'interversion des sommes, s'appelle aussi théorème de Fubini (version termes non positifs).

Produit de Cauchy

Si les séries numériques $\sum u_m$ et $\sum v_n$ convergent absolument alors leur série produit de Cauchy $\sum w_k$ définie par

$$\forall k \in \mathbb{N}, w_k = \sum_{m+n=k} u_m v_n$$

converge absolument et, de plus,

$$\sum_{k=0}^{+\infty} w_k = \left(\sum_{m=0}^{+\infty} u_m\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

Preuve avec les familles sommables

Soit $(u_m)_{m\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de \mathbb{K} telles que les séries $\sum u_m$ et $\sum v_n$ convergent absolument.

On pose $a_{m,n} = u_m v_n$ ce qui donne une famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ de \mathbb{K} indexée par \mathbb{N}^2 .

 \square Montrons la sommabilité de la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$.

Par définition, la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est sommable si la famille $(|a_{m,n}|)_{(m,n)\in\mathbb{N}^2}$ l'est.

On va montrer que cette dernière l'est en utilisant le théorème de caractérisation de sommabilité des familles de réels positifs indexées par \mathbb{N}^2 (théorème de Fubini, version termes positifs).

— Pour n fixé dans \mathbb{N} , on a : $\sum_{m\geq 0} |a_{m,n}| = \sum_{m\geq 0} |u_m| \, |v_n| = |v_n| \left(\sum_{m\geq 0} |u_m|\right)$ avec $|v_n|$ constante (indépendante de m) et $\sum_{m\geq 0} |u_m|$ convergente par hypothèse.

Ainsi, par opérations algébriques sur les séries convergentes, la série $\sum_{m\geq 0} |a_{m,n}|$ converge avec :

$$\sum_{m=0}^{+\infty} |a_{m,n}| = |v_n| \left(\sum_{m=0}^{+\infty} |u_m| \right) = \left(\sum_{m=0}^{+\infty} |u_m| \right) |v_n|.$$

— La série $\sum_{n\geq 0} \left(\sum_{m=0}^{+\infty} |a_{m,n}|\right)$ est alors convergente car $\left(\sum_{m=0}^{+\infty} |u_m|\right)$ est une constante (indépendante de n) et $\sum_{n\geq 0} |v_n|$ converge par hypothèse.

Le théorème cité ci-dessus permet donc de conclure que la famille $(|a_{m,n}|)_{(m,n)\in\mathbb{N}^2}$ est sommable.

On en déduit la sommabilité de la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$.

 \square 1er calcul de la somme de la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$.

Comme $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est une famille sommable indexée par \mathbb{N}^2 , on peut lui appliquer le <u>théorème</u> <u>de Fubini</u>

(version termes non positifs) et en déduire que :

$$\sum_{(m,n)\in\mathbb{N}^2}a_{m,n}=\sum_{n=0}^{+\infty}\left(\sum_{m=0}^{+\infty}a_{m,n}\right)=\sum_{m=0}^{+\infty}\left(\sum_{n=0}^{+\infty}a_{m,n}\right)$$

ce qui donne ici, en utilisant les propriétés des séries numériques absolument convergentes donc convergentes que :

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} a_{m,n}\right) = \sum_{n=0}^{+\infty} \left(v_n \left(\sum_{m=0}^{+\infty} u_m\right)\right) = \left(\sum_{m=0}^{+\infty} u_m\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

 \square 2ème calcul de la somme de la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$.

Comme $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ est une famille sommable indexée par un ensemble dénombrable, on peut lui appliquer plus généralement le <u>théorème de sommation par paquets (version termes non positifs)</u> avec la partition de l'ensemble dénombrable des indices suivante :

$$\mathbb{N}^2 = \bigcup_{k \in \mathbb{N}} I_k \text{ avec } I_k = \{(m, n) \in \mathbb{N}^2, m + n = k\}.$$

On en déduit que :

— pour tout $k \in \mathbb{N}$, la famille $(a_{m,n})_{(m,n)\in I_k}$ est sommable.

— la série
$$\sum_{k\geq 0} \left(\sum_{(m,n)\in I_k} |a_{m,n}| \right)$$
 converge.

— la somme de la famille $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ vérifie :

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{k=0}^{+\infty} \left(\sum_{(m,n)\in I_k} a_{m,n} \right) = \sum_{k=0}^{+\infty} \left(\sum_{m+n=k} u_m v_n \right) = \sum_{k=0}^{+\infty} w_k.$$

En comparant les résultats des deux dernières étapes de la preuve, on a donc :

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{k=0}^{+\infty} w_k = \left(\sum_{m=0}^{+\infty} u_m\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

De plus, on a:

$$\forall k \in \mathbb{N}, |w_k| \le \sum_{m+n=k} |u_m v_n| \le \sum_{(m,n) \in I_k} |a_{m,n}|$$
 (ce sont des sommes finies)

la convergence de $\sum_{k\geq 0} \left(\sum_{(m,n)\in I_k} |a_{m,n}|\right)$ implique donc la convergence de $\sum |w_k|$ donc la convergence absolue de $\sum w_k$.

Conclusion

Si les séries numériques $\sum u_m$ et $\sum v_n$ convergent absolument alors leur produit de Cauchy $\sum w_k$ défini par

$$\forall k \in \mathbb{N}, w_k = \sum_{m+n=k} u_m v_n$$

converge absolument et, de plus,

$$\sum_{k=0}^{+\infty} w_k = \left(\sum_{m=0}^{+\infty} u_m\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$