AMENDMENTS IN THE CLAIMS

- 1. (currently amended) An input circuit for providing separate scan and shift paths for a device utilizing single <u>data</u> input latches, said circuit comprising:
- a first latch having a single data input port and a single clock input port and an output port;
- a second also latch also having a single data input port and a single clock input port and an output port;

means for receiving a first clock input signal that enables selection of a scan chain input at said first latch and said second latch;

means for receiving a second clock input signal that enables selection of a shift chain input at said first latch and said second latch; and

wherein a selection of [[a]] the scan chain input for passing to said input ports of said latches occurs exclusive of selection of [[a]] the shift chain input for passing to said input ports, and vice versa, and wherein said single data input latches provide functionality of latches that support multiple inputs.

- (currently amended) The input circuit of Claim 1, further comprising:
 means for receiving said scan chain and said first clock input; and
 means for receiving said shift chain input and said second clock input.
- 3. (currently amended) The input circuit of Claim 1, further comprising:

means for receiving a data signal at [[a]] the data input port of each of said latches, wherein said data signal is one of a scan chain input and a shift chain input;

means for accepting the scan chain input into said latches to commence a scan chain operation within said device when [[a]] the first clock input signal is on; and

means for accepting the shift chain input into said latches to commence a shift chain operation within said device when [[a]] the second, different clock input signal is on, wherein only one of the first clock input signal and the second, different clock input signal is on at a time and both said scan chain operation and said shift chain operation are supported by said single data input, scan only latches.

4. (currently amended) The system input circuit of Claim 3, wherein:

said means for accepting the scan chain input includes a first NAND gate that receives as inputs a first clock signal along with a scan chain input and yields a scan chain NAND output;

said means for accepting the shift chain input includes a second NAND gate that receives as inputs a second clock signal along with a shift chain input and yields a shift chain NAND output, wherein both said first and second NAND gates process inputs at substantially the same times during an input operation; and

a third NAND gate that receives as input said scan chain NAND output and said shift chain NAND output, wherein both outputs are subsequently NANDed to yield a two-tiered NAND result.

- 5. (currently amended) The system input circuit of Claim 4, further comprising a non-inverting buffer that temporarily delays the two-tiered NAND result prior to sending forwarding said two-tiered NAND result to [[said]] the first and second latches as their input, wherein said NAND result is delayed for a pre-set period of time during which until a respective clock input signal is on shuts-off.
- 6. (currently amended) The system input circuit of Claim 1, wherein said second clock input is ANDed with a shift input to yield a shifted second clock input that is utilized as the second clock input for selection of said shift chain input.
- 7. (currently amended) The input circuit of Claim 1, further comprising an OR gate having inputs of said first clock <u>input</u> signal and a result of an ANDing of said second clock <u>input</u> signal with a shift input, wherein an output of [[said]] <u>an</u> OR <u>gate signal</u> is utilized as the clock input of [[said]] <u>the first and second</u> latches.
- 8. (currently amended) The input circuit of Claim 1, wherein said first clock <u>input</u> signal and said second clock <u>input</u> signal each provide a select signal for respectively receiving either said scan chain input or said shift chain input into said latches, wherein further, the selected input provides <u>triggers</u> a respective scan chain or shift chain operation to be <u>propagated</u> <u>completed</u> through the device[[,]].

- 9. (currently amended) The input circuit of Claim 1, wherein said latches are scan-only LSSD latches.
- 10. (original) The input circuit of Claim 1, wherein said device is a semiconductor device and said input circuit is fabricated on said semiconductor device.
- 11. (original) The input circuit of Claim 9, wherein said semiconductor device is an eFuse device.
- 12. (currently amended) In a device that includes multiple electrical fuse (effuse eFuse) circuits that are serially connected, a circuit for programming and testing electrical fuses, said circuit comprising:

an input circuit that enables a scan only latch to be utilized to dynamically select from among a scan chain path and a shift chain path being inputted to said device utilizing a series of input clock signals operating as MUX selects for the scan only latch[[es]] to select either said scan chain path or said shift chain path for passing through said device;

serially connected eFuse circuit[[ry]] comprising:

AND logic having two inputs and an output;

a multiplexer (MUX) having a first input, a second input, a select input, and a MUX output, wherein said output of said AND logic is coupled to said select input of said MUX;

wherein, said efuse eFuse circuit includes a fuse coupled to a switch that is controlled by signals from a fuse latch, a pattern latch, and a program signal source, said pattern latch being programmed with a fuse blow status indicating whether or not said fuse is to be blown during device testing; and

means for connecting components and signals of said eFuse circuit to said MUX and said AND logic, wherein said MUX and said AND logic provide a bypass function that determines when a shifted "1" that is serially passed to each of said effuse eFuse circuits should be forwarded to said fuse latch for initiating a blow of said fuse, wherein when a fuse blow status within said pattern latch indicates that said fuse is not to be blown, said MUX forwards said shifted 1 to a next effuse eFuse circuit without forwarding said shifted 1 to said fuse latch; and

coupling means for connecting said input circuit to said serially connected eFuse circuit such that both <u>a</u> scan chain path and <u>a</u> shift chain path are supported within said device utilizing said scan only latches.

13. (currently amended) The eireuit device of Claim 12, wherein:

a first input of said AND logic is coupled to a complement signal of said fuse blow status;

a second input of said AND logic is coupled to said program signal source; said first input of said MUX is coupled to said fuse latch; said second input of said MUX is coupled to a MUX output of a previous MUX; and said MUX output of said MUX is connected to a second input of a next MUX.

14. (currently amended) The <u>circuit device</u> of Claim 13, wherein, said <u>effuse eFuse</u> circuit is a first <u>effuse eFuse</u> circuit and is serially connected to at least a second <u>effuse eFuse</u> circuit whose fuse bow status indicates no blowing of its fuse and a third <u>effuse eFuse</u> circuit whose fuse blow status indicates a blowing of its fuse, said circuit comprising:

means for routing said shifted 1 through said fuse latch of said first efuse <u>eFuse</u> circuit, bypassing a fuse latch of said second efuse <u>eFuse</u> circuit and routing said shifted 1 through a fuse latch of said third <u>effuse eFuse</u> circuit, wherein only said first <u>efuse eFuse</u> circuit and said second <u>efuse eFuse</u> circuit utilizes processing time for routing said shifted 1 through respective fuse latches.

15. (currently amended) In a device that includes a single input, scan-only latch and a two-tiered NAND gate circuit configuration providing a resulting output to said single input latch, and a series of clock inputs, a system for reducing surface area required for supporting both scan chain and shift chain operations within the device, said system comprising:

means for receiving the resulting output at the input port of said latch, wherein said resulting output is one of a scan chain input and a shift chain input;

means for <u>selectively</u> accepting the scan chain input into said latch to commence a scan chain operation within said device only when a first clock input is on; and