19APC0415T

B.Tech. DEGREE EXAMINATION, OCTOBER/NOVEMBER 2022.

End Examinations

Sixth Semester

ECE

DIGITAL SIGNAL PROCESSING

(Academic Year 2021-22)

(RU 19 Regulations)

(Regular)

Time: 3 Hours

Max. Marks: 70

PART — A

Compulsory questions.

 $(10 \times 2 = 20 \text{ Marks})$

Answer the following.

- 1. \(\sqrt{a} \) What are the advantages of DFT over DTFT? Also state the applications of DFT.
 - (b) What is FFT? How many multiplications and additions are required to compute N point DFT using redix-2 FFT?
 - (c) Why IIR filters do not have linear phase?
 - $\sqrt{(d)}$ What is Warping effect and how it is eliminated?
 - λ (e) Why FIR filters are always stable
 - (f) Distinguish between FIR and IIR filters.
 - √(g) Discuss about the various sources of errors in the computation using DSP processor implementations.
 - (h) Give the features of Fixed and Floating point DSP's.
 - $\sqrt{(i)}$ List out the on chip peripherals of TMS320C5X processor.
 - $\sqrt{(j)}$ Discuss in detail the Pipeline Operation of TMS320C54XX Processors.

Turn Over

PART - B

Answer ONE full questions from each Unit. $(5 \times 10 = 50 \text{ Marks})$ All questions carry equal marks.

UNITI

- Fourier series coefficients of the periodic discrete Determine the 2. signal $x(n) = \left(\cos\frac{2\pi}{3}n\right)\left(\sin\frac{2\pi}{5}n\right)$. Also, sketch its magnitude spectrum.
 - State and prove any two properties of DFT. (b)

(5)

- Find the 4-point DFT of the sequence xn = 2, 1, 4, 3 by using DIF FFT (5)algorithm? Also, plot its magnitude and phase spectra.
 - Find the 4-point IDFT of $(k) = \{10, -2 + j2, -2, -2, -j2\}$ using DIF FFT (5)algorithm.

UNIT II

Design a digital Chebyshev low pass filter using bilinear transformation with the following specifications: 3 dB ripple in the pass band $0 \le w \le 0.2\pi$; 25 dB attenuation in the stop band $0.45\pi \le w \le \pi$; Assume T=1 sec. (10)

Or

- Distinguish between Butterworth and Chebyshev filters. (5)
 - What are the advantages of parallel form realization? Implement the IIR (b) filter with difference equation
 - y(n) = -0.1(n-1) + 0.72 y(n-2) + 0.7x(n) 0.252x(n-2) in parallel form. (5)

UNIT III

Design an FIR digital filter to approximate an ideal low pass filter with pass band 6. gain of unity, cut-off frequency of 850 Hz and sampling frequency of 5000 Hz. The length of impulse response should be 5. Use Hamming window.

Or

- 7. $\int (a) \, o$ Sketch the direct form realization of linear phase FIR filter with $h(n) = \{1, 2, 3, 4, 3, 2, 1\}$. (5)

 (b) Explain the frequency domain characteristics of various window functions (5)
 - used in FIR filter design.

19APC0415T

1		UNIT IV	
8.	$\int_{(b)}$	Discuss in detail the Basic Architectural features of programmable D devices. Explain about DSP Computational building blocks.	SP (5)
			(5)
		\mathbf{Or}	
9.	(a)	Explain the Bus Architecture of DSP Processor.	(5)
	(b)	Explain about Address Generation unit and Speed issues of DSP's.	(5)
		UNITV	
10.	With proce	a neat diagram, explain about the architecture of TMS320C54XX I	OSF (10)
		\mathbf{Or}	
11.	(a)	Explain the various pipeline programming models that are adapted in I processors.	DSI (5)
	(b) '	What is the difference between internal and external modes of clockin TMS320C54XX Processor?	` '
		그는 시마네 마니 그리지 경기가 하다 하는 경기에서는 그리고 나는 후 모양을 먹는 것이 하는 이렇지?	