GSK988TA 系统螺纹修复功能

功能简介

螺纹修复功能是指使用螺纹循环指令 G92 代码对已损坏的螺纹进行修复操作。

操作流程

MDI 方式下选择【程序】-【螺纹修复】按键进入螺纹修复页面。

- (1)、按图片所示,移动轴到对应的定位点如: P0,光标选中对应轴输入框,按"录入坐标"键,系统自动填入坐标值。
 - (2)、重复以上操作依次录入 P、P1 坐标。
 - (3)、按需要修复的螺纹规格将相关螺纹参数填入对应的输入框。
 - (4)、按"生成程序"键将自动在 MDI 页面生成螺纹修复程序。
 - (5)、按"循环启动"键执行螺纹修复程序进行修复螺纹。

相关值设定

● 长轴调整

取 EPO 坐标值设定长轴调整:

MDI 执行: G1 W-20 F1000

运行中查看坐标诊断 0302 Z: ****,如下图;取对应值设定至长轴调整。

● 锥度 R

轴向锥螺纹: 切削起点与切削终点 X 轴绝对坐标的差值(半径值)当 R 与 U 的符号不一致时,要求 $|R| \le |U/2|$ 。

径向锥螺纹: 切削起点与切削终点 Z 轴绝对坐标的差值(半径值)当 R 与 W 的符号不一致时,要求 $| R | \le | W |$ 。

螺纹修复类型说明

● Z轴螺纹

名称	坐标	坐标值	说明
对刀点 (P)	X	输入或读取	
	Z	输入或读取	
循环起点(P0)	X	输入或读取	
	Z	输入或读取	
螺纹终点 (P1)	X	不可编辑	与对刀点 P 的 X 轴一致

	Z	读取	
锥度	R	输入	
退尾量	短轴J	输入	
	长轴K	输入	
修复深度 D		输入	螺纹终点 X 轴的坐标为: X _{p1} - 深度,
			单位为 mm。
			不输时为 0 ,以 X_{pl} 设置的坐标位置进
			行螺纹切削
分刀次数 E		输入	修复切深分刀的次数
螺距 F		输入	
主轴转速 S		输入	
长轴位置调整		输入	Z轴

● X 轴螺纹

名称	坐标	坐标值	说明
对刀点(P)	X	输入或读取	
	Z	输入或读取	
循环起点(P0)	X	输入或读取	
	Z	输入或读取	
螺纹终点(P1)	X	输入或读取	
	Z	不可编辑	与对刀点 P 的 Z 轴一致
锥度	R	输入	
退尾量	短轴J	输入	
	长轴 K	输入	
修复深度 D		输入	螺纹终点 Z 轴的坐标为: Zp1 - 深度,单位为 mm。 不输时为 0,以 Zp1 设置的坐标位置进行螺纹切削
分刀次数 E		输入	修复切深分刀的次数
螺距 F		输入	
主轴转速 S		输入	
长轴位置调整		输入	X 轴

应用示例

修复螺纹: 螺距 F1.25, 长度 30mm

在螺纹修复页面,根据下面步骤录入数据:

- ①、将刀具移动到循环加工的起点位置,在螺纹修复页面的『循环起点(P0)』位置按【录入坐标】键,系统将当前位置坐标录入对应的轴。
- ②、将刀具移动至螺纹中间任意位置,让刀尖尽量靠近螺纹底部,在螺纹修复页面的『对刀点(P0)』位置按【录入坐标】键,系统将当前位置坐标录入对应的轴。

③、将刀具移至螺纹尾部(X轴不需要靠近工件),在螺纹修复页面的『螺纹终点(P1)』位置按【录入坐标】键,系统将当前位置坐标录入对应的轴。

- 4、根据需求,依次手动输入其他数据
- ⑤、『长轴调整』的输入,可参考 EPO 的值(所在的系统页面查看:【信息】→【系统诊断】→【坐标诊断】的诊断号 0302。)
 - ⑥、按【生成程序】, 系统将自动生成程序如下:

(7)、按【循环启动】执行程序进行螺纹修复。