

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 January 2002 (24.01.2002)

(10) International Publication Number WO 02/06459 A1

(51) International Patent Classification7: C12P 13/08, C12N 15/53

C12N 9/02,

MOLENAAR, Douwe; Hofstrasse 12, Baesweiler 52499

- (21) International Application Number: PCT/EP01/05548
- (22) International Filing Date: 16 May 2001 (16.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

100 34 833.5

18 July 2000 (18.07.2000) DE

101 03 874.7

30 January 2001 (30.01.2001)

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). THIERBACH, Georg; Gunststrasse 21, 33613 Bielefeld (DE). VAN DER REST, Michel, Eduard; Akkerwinde 24A, NL-5913 Venlo (NL).

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,

HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE FERMENTATIVE PREPARATION OF L-THREONINE

(57) Abstract: The invention provides a process for the fermentative preparation of L-threonine using Enterobacteriaceae which in particular already produce L-threonine and in which the nucleotide sequence(s) which code(s) for the mgo gene are enhanced, in particular over-expressed.

Process for the fermentative preparation of L-threonine

This invention relates to the new amino acid sequence of the malate:quinone oxidoreductase enzyme protein (Mqo) of Enterobacteriaceae and to a process for the fermentative 5 preparation of L-threonine using Enterobacteriaceae in which the mqo gene is enhanced.

Prior Art

L-Threonine is used in animal nutrition, in human medicine and in the pharmaceuticals industry. It is known that L
10 threonine can be prepared by fermentation of strains of Enterobacteriaceae, in particular Escherichia coli and Serratia marcescens. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the process can

15 relate to fermentation measures, such as e.g. stirring and supply of oxygen, or the composition of the nutrient media, such as e.g. the sugar concentration during the fermentation, or the working up to the product form by e.g. ion exchange chromatography, or the intrinsic output

20 properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e.g. the threonine analogue α -25 amino- β -hydroxyvaleric acid (AHV), or are auxotrophic for metabolites of regulatory importance and produce L-threonine are obtained in this manner.

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of 30 Enterobacteriaceae strains which produce L-threonine, by amplifying individual threonine biosynthesis genes and investigating the effect on the L-threonine production.

Object of the Invention

The inventors had the object of providing new measures for improved fermentative preparation of L-threonine.

Description of the Invention

- 5 The invention provides a polypeptide from Enterobacteriaceae with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16) chosen from the group consisting of
- a) polypeptide with the amino acid sequence shown in SEQ10 ID NO. 2, or
 - b) polypeptide which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to the amino acid sequence shown in SEQ ID NO. 2, or
- 15 c) polypeptide according to SEQ ID NO. 2, including deletion, insertion or exchange of one or more amino acids, or
 - d) polypeptide according to SEQ ID NO. 2, including N- or C-terminal lengthening by one or more amino acids,
- 20 the total length of the polypeptide according to b), c) or d) being at least 514 and at most 544, preferably at least 519 and at most 539, in a preferred form at least 524 and at most 534, particularly preferably at least 527 and at most 531 amino acid radicals.
- 25 The invention furthermore provides a polynucleotide from Enterobacteriaceae which codes for a polypeptide with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16), chosen from the group consisting of

- a) DNA which contains the nucleotide sequence corresponding to nucleobases 7 to 1593 of SEQ ID NO. 1, or
- b) DNA according to a) corresponding to the degeneration
 of the genetic code, or
 - c) DNA according to a) containing sense mutations of neutral function, or
- d) DNA which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to that mentioned in a) or b), or
 - e) polynucleotide which hybridizes with the DNA according to a), b), c) or d).

The invention also provides

- a DNA which is capable of replication and codes for the
 polypeptide shown in SEQ ID NO. 2,
 - a vector containing the mqo gene corresponding to nucleobases 7 to 1593 of SEQ ID NO. 1, in particular plasmid pMW218mqo shown in figure 1.
- "Polynucleotide" in general relates to polyribonucleotides 20 and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.
 - "Polypeptides" is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds.
- The polypeptides according to the invention include the polypeptides according to SEQ ID NO. 2, which have malate:quinone oxidoreductase activity, and also those which are at least 70%, preferably at least 80% and in particular at least 90% to 95% identical to the polypeptide according to SEQ ID NO. 2 and have the activity mentioned.

WO 02/06459 PCT/EP01/05548

Finally, the invention provides a process for the fermentative preparation of L-threonine using Enterobacteriaceae which in particular already produce L-threonine and in which the nucleotide sequence(s) which code(s) for the mgo gene are enhanced, in particular over-expressed.

In particular, the process is a process for the preparation of L-threonine, which comprises carrying out the following steps:

- 10 a) fermentation of microorganisms of the family
 Enterobacteriaceae in which at least the mgo gene
 is enhanced (over-expressed), optionally in
 combination with further genes,
- b) concentration of the L-threonine in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
 - c) isolation of the L-threonine.

The term "enhancement" in this connection describes the increase in the intracellular activity of one or more 20 enzymes or proteins in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or a gene which codes for a corresponding enzyme or protein with a high activity, and optionally combining these 25 measures.

The microorganisms which the present invention provides can prepare L-threonine from glucose, sucrose, lactose, fructose, maltose, molasses, starch, or from glycerol and ethanol. They are representatives of Enterobacteriaceae, in particular of the genera Escherichia and Serratia. Of the genus Escherichia the species E. coli and of the genus Serratia the species Serratia marcescens are to be mentioned in particular.

10

15

Suitable L-threonine-producing strains of the genus Escherichia, in particular of the species E. coli, are, for example

Escherichia coli TF427 5 Escherichia coli H4578 Escherichia coli KY10935

Escherichia coli EL1003

Escherichia coli VNIIgenetika MG-442 Escherichia coli VNIIgenetika VL334/pYN7 Escherichia coli VNIIgenetika M1 Escherichia coli VNIIgenetika 472T23 Escherichia coli VNIIgenetika TDH-6 Escherichia coli BKIIM B-3996 Escherichia coli BKIIM B-5318 Escherichia coli B-3996-C43 Escherichia coli B-3996-C80 Escherichia coli B-3996/pTWV-pps

Escherichia coli B-3996(pMW::THY) Escherichia coli B-3996/pBP5

20 Escherichia coli kat 13

Escherichia coli KCCM-10132

Suitable L-threonine-producing strains of the genus Serratia, in particular of the species Serratia marcescens, are, for example

25 Serratia marcescens HNr21 Serratia marcescens TLr156 Serratia marcescens T2000.

The nucleotide sequence of the chromosome of E. coli is known and is available in databanks accessible to the 30 public, such as, for example, the databank of the European Molecular Biology Laboratories (EMBL, Heidelberg, Germany). Examples of such sequences deposited are the entries accessible under number AE000310 or D90850.

In the work on the present invention it was possible to identify the mqo gene, which codes for malate:quinone oxidoreductase, of E. coli (SEQ ID NO. 1) and the amino acid sequence of the Mqo enzyme protein formed (SEQ ID NO. 2).

It has furthermore been possible to isolate two further new malate:quinone oxidreductase proteins, designated protein B and C, which have the N-terminal amino acid sequence shown in SEQ ID No. 11 and 12. These are also provided by the invention.

It has been found that Enterobacteriaceae produce Lthreonine in an improved manner after over-expression of
the mgo gene, which codes for malate:quinone oxidoreductase
(E.C. 1.1.99.16).

According to the invention, it is also possible to use a DNA section which contains the DNA sequence of the gene of the malate:quinone oxidoreductase given in the databank of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) with accession number P33940.

Alleles of the mgo gene which result from the degeneracy of the genetic code or due to "sense mutations" of neutral function can furthermore be used. It is also known that the amino acid methionine or formylmethionine coded by the start codon ATG can be removed in various proteins by enzymes of the host.

To achieve an over-expression, the number of copies of the corresponding genes can be increased, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes which are incorporated upstream of the structural gene act in the same way. By inducible promoters, it is

7

PCT/EP01/05548

additionally possible to increase the expression in the course of fermentative L-threonine production. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is also increased by preventing the degradation of the enzyme protein. The genes or gene constructions can either be present in plasmids with a varying number of copies, or can be integrated and amplified in the chromosome. Alternatively, an over-expression of the genes in question can furthermore be achieved by changing the composition of the media and the culture procedure.

Instructions in this context can be found by the expert, inter alia, in Chang and Cohen (Journal of Bacteriology 134:1141-1156 (1978)), in Hartley and Gregori (Gene 13:347-15 353 (1981)), in Amann and Brosius (Gene 40:183-190 (1985)), in de Broer et al. (Proceedings of the National (sic) of Sciences of the United States of America 80:21-25 (1983)), in LaVallie et al. (BIO/TECHNOLOGY 11, 187-193 (1993)), in WO 98/04715, in Llosa et al. (Plasmid 26:222-224 (1991)), in Quandt and Klipp (Gene 80:161-169 (1989)), in Hamilton (Journal of Bacteriology 171:4617-4622 (1989), in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998) and in known textbooks of genetics and molecular biology.

- Plasmid vectors which are capable of replication in Enterobacteriaceae, such as e.g. cloning vectors derived from pACYC184 (Bartolomé et al.; Gene 102, 75-78 (1991)), pTrc99A, which is described by Amann et al. (Gene 69:301-315 (1988)), or pSC101 derivatives (Vocke and Bastia,
- 30 Proceedings of the National Academy of Science, USA 80 (21):6557-6561 (1983)) can be used. A strain transformed with a plasmid vector where the plasmid vector carries the nucleotide sequence which codes for the mgo gene can be employed in a process according to the invention.

In addition, it may be advantageous for the production of L-threonine with strains of the family Enterobacteriaceae to enhance, in particular to over-express, one or more enzymes of the known threonine biosynthesis pathway or enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide adenine dinucleotide phosphate, in addition to the mgo gene.

Thus, for example, one or more genes chosen from the group consisting of

- the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),
 - the pyc gene which codes for pyruvate carboxylase (DE-A-19 831 609),
- the pps gene which codes for phosphoenol pyruvate synthase (Molecular and General Genetics 231:332 (1992)),
 - the ppc gene which codes for phosphoenol pyruvate carboxylase (Gene 31:279-283 (1984)),
- 20 the genes pntA and pntB which code for transhydrogenase (European Journal of Biochemistry 158:647-653 (1986)),
 - the rhtB gene which imparts homoserine resistance (EP-A-0994190)
- the rhtC gene which imparts threonine resistance (EP-A-1013765), and
 - the gdhA gene which codes for glutamate dehydrogenase (Gene 27:193-199 (1984))

can be enhanced, in particular over-expressed, at the same time.

It may furthermore be advantageous for the production of L-threonine, in addition to the enhancement of the mgo gene, for one or more of the genes chosen from the group consisting of:

- the tdh gene which codes for threonine dehydrogenase (Ravnikar and Somerville, Journal of Bacteriology 169, 4716-4721 (1987)),
 - the mdh gene which codes for malate dehydrogenase (E.C. 1.1.1.37)
- 10 to be attenuated, in particular to be eliminated or for the expression thereof to be reduced at the same time.

Finally, in addition to enhancement of the mgo gene it may be advantageous for the production of L-threonine to eliminate undesirable side reactions, (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982). Bacteria in which the metabolic pathways which reduce the formation of L-threonine are at least partly eliminated can be employed in a process according to the invention.

The microorganisms produced according to the invention can be cultured in the batch process (batch culture) or in the fed batch process (feed process). A summary of known culture methods is described in the textbook by Chmiel

- 25 (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik [Bioprocess Technology 1. Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and Peripheral
- 30 Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose,

lactose, fructose, maltose, molasses, starch and optionally
cellulose, oils and fats, such as e.g. soya oil, sunflower
oil, groundnut oil and coconut fat, fatty acids, such as
e.g. palmitic acid, stearic acid and linoleic acid,
alcohols, such as e.g. glycerol and ethanol, and organic
acids, such as e.g. acetic acid, can be used as the source
of carbon. These substances can be used individually or as
a mixture.

Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep
15 liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulphate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

- 20 Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e.g. magnesium sulfate or iron sulfate,
- which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the abovementioned substances. Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to
- 30 the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed

in a suitable manner to control the pH. Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, e.g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 25°C to 45°C, and preferably 30°C to 40°C. Culturing is continued until a maximum of L-threonine has formed. This target is usually reached within 10 hours to 160 hours.

The analysis of L-threonine can be carried out by anion exchange chromatography with subsequent ninhydrin derivatization, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or it can take place by reversed phase HPLC as described by Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).

A pure culture of the L-threonine-producing strain
B-3996kurΔtdh/pVIC40, pMW218mqo was deposited on 24th
20 January 2001 at the Deutsche Sammlung für Mikroorgansimen
und Zellkulturen (DSMZ = German Collection of
Microorganisms and Cell Cultures, Braunschweig, Germany) as
DSM 14004.

The process according to the invention is used for the 25 fermentative preparation of amino acids, in particular L-threonine and L-isoleucine.

The present invention is explained in more detail in the following with the aid of embodiment examples.

The isolation of plasmid DNA from E. coli and all
techniques of restriction, Klenow and alkaline phosphatase
treatment are carried out by the method of Sambrook et al.
(Molecular cloning - A laboratory manual (1989) Cold Spring
Harbour Laboratory Press). Unless described otherwise, the

transformation of E. coli is carried out by the method of Chung et al. (Proceedings of the National Academy of Sciences of the United States of America USA (1989) 86:2172-2175).

5 The incubation temperature during preparation of strains and transformants is 37°C. Temperatures of 30°C and 44°C are used in the gene replacement process according to Hamilton et.al.

Example 1

10 Construction of the expression plasmid pMW218mqo

The mqo gene from E. coli K12 is amplified using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence of the yojH gene in E. coli K12 MG1655 (EMBL AE000310), PCR

15 primers (see SEQ ID No. 3 and 4) are synthesized (MWG Biotech, Ebersberg, Germany):

YojH1: 5' - GCGGAATTCGATGGCGGCAAAAGCG - 3'

YojH2: 5' - GTTACGCCGCATCCAACATC - 3'

The chromosomal E. coli K12 MG1655 DNA employed for the PCR is isolated according to the manufacturers instructions with "QIAGEN Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 1700 base pairs (bp) in size can be amplified with the specific primers under standard PCR conditions (Innis et al. (1990) PCR protocols. A guide to methods and applications, Academic Press) with Pfu-DNA polymerase (Promega Corporation, Madison, USA). The PCR product is cleaved with the enzyme EcoRI and ligated with the plasmid pMW218 (Nippon Gene, Toyama, Japan), which is cleaved with the enzymes EcoRI and SmaI. The E. coli strain DH5α is transformed with the ligation batch and plasmid-carrying cells are selected on LB agar (Lennox,

Virology 1:190 (1955)), to which 20 μ g/ml kanamycin is

WO 02/06459 PCT/EP01/05548 13

added. Successful cloning of the mgo gene can be demonstrated after plasmid DNA isolation and control cleavage with EcoRI, AccI and ClaI. The plasmid is designated pMW218mqo (figure 1).

5 Example 2

Preparation of L-threonine with the strain MG442/pMW218mqo

2.1 Preparation of the strain MG442/pMW218mqo

The L-threonine-producing E. coli strain MG442 is described in US-A- 4,278,765 and deposited as CMIM B-1628 at the

10 Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

The strain MG442 is transformed with the plasmid pMW218mqo and plasmid-carrying cells are selected on LB agar supplemented with 20 $\mu\text{g/ml}$ kanamycin. The strain is 15 designated MG442/pMW218mgo.

2.2 Preparation of L-threonine

Selected individual colonies of MG442/pMW218mqo are multiplied further on minimal medium with the following composition: 3.5 g/l $Na_2HPO_4*2H_2O$, 1.5 g/l KH_2PO_4 , 1 g/l

- 20 NH₄Cl, 0.1 g/l MgSO₄*7H₂O, 25 mg/l isoleucine, 2 g/l glucose, 20 g/l agar, 20 mg/l kanamycin. The formation of L-threonine is checked in batch cultures of 10 ml contained in 100 ml conical flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract,
- 25 10 g/l $(NH_4)_2SO_4$, 1 g/l KH_2PO_4 , 0.5 g/l $MgSO_4*7H_2O$, 15 g/l $CaCO_3$, 20 g/l glucose, 20 mg/l kanamycin are inoculated and the batch is incubated for 16 hours at 37°C and 180 rpm on an ESR incubator from Kühner AG (Birsfelden, Switzerland). In each case 250 μl of this preculture are transinoculated
- 30 into 10 ml of production medium (25 g/l $(NH_4)_2SO_4$, 2 g/l KH_2PO_4 , 1 g/l $MgSO_4*7H_2O$, 0.03 g/l $FeSO_4*7H_2O$, 0.018 g/l $MnSO_4*1H_2O$, 25 mg/l isoleucine, 30 g/l $CaCO_3$, 20 g/l

glucose) and the batch is incubated for 48 hours at 37°C. After the incubation the optical density (OD) of the culture suspension is determined with an LP2W photometer from the company Dr. Lange (Berlin, Germany) at a 5 measurement wavelength of 660 nm.

The concentration of L-threonine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the experiment is shown in Table 1.

 Strain
 OD (660 nm)
 L-Threonine g/l

 MG442
 4.7
 0.46

 MG442/pMW218mqo
 4.5
 0.89

Table 1

Example 3

15 Preparation of L-threonine with the strain $B-3996kur\Delta tdh/pVIC40$, pMW218mq0

The L-threonine-producing E. coli strain B-3996 is described in US-A- 5,175,107 and deposited at the Russian National Collection for Industrial Microorganisms (VKPM,

20 Moscow, Russia).

3.1 Preparation of the strain B-3996kurΔtdh/pVIC40, pMW218mgo

After culture in antibiotic-free complete medium for approximately ten generations, a derivative of strain B- 3996 which no longer contains the plasmid pVIC40 is

isolated. The strain formed is streptomycin-sensitive and is designated B-3996kur.

The method described by Hamilton et al. (Journal of Bacteriology (1989) 171: 4617-4622), which is based on the use of the plasmid pMAK705 with a temperature-sensitive replicon, is used for incorporation of a deletion into the tdh gene. The plasmid pDR121 (Ravnikar and Somerville, Journal of Bacteriology (1987) 169:4716-4721) contains a DNA fragment from E. coli 3.7 kilo-base pairs (kbp) in size, on which the tdh gene is coded. To generate a deletion of the tdh gene region, pDR121 is cleaved with the restriction enzymes ClaI and EcoRV and the DNA fragment 5 kbp in size isolated is ligated, after treatment with Klenow enzyme. The ligation batch is transformed in the E. coli strain DH5α and plasmid-carrying cells are selected on LB agar, to which 50 μg/ml ampicillin are added.

Successful deletion of the tdh gene can be demonstrated after plasmid DNA isolation and control cleavage with EcoRI. The EcoRI fragment 1.7 kbp in size is isolated, and ligated with the plasmid pMAK705, which is partly digested with EcoRI. The ligation batch is transformed in DH5\alpha and plasmid-carrying cells are selected on LB agar, to which 20 \mug/ml chloramphenicol are added. Successful cloning is demonstrated after isolation of the plasmid DNA and cleavage with EcoRI. The pMAK705 derivative formed is designated pDM32.

For the gene replacement, B-3996kur is transformed with the plasmid pDM32. The replacement of the chromosomal tdh gene with the plasmid-coded deletion construct is carried out by the selection process described by Hamilton et al. and is verified by standard PCR methods (Innis et al. (1990), PCR Protocols. A Guide to Methods and Applications, Academic Press) with the following oligonucleotide primers (see SEQ ID No. 5 and 6).

Tdh1: 5'-TCGCGACCTATAAGTTTGGG-3'

Tdh2: 5'-AATACCAGCCCTTGTTCGTG-3'.

The strain formed is tested for kanamycin sensitivity and is designated $B-3996kur\Delta tdh$.

- 5 B-3996kurΔtdh is transformed with the plasmid pVIC40 isolated from B-3996 and plasmid-carrying cells are selected on LB agar with 20 μg/ml streptomycin. A selected individual colony is designated B-3996kurΔtdh/pVIC40 and transformed with the plasmid pMW218mqo. Selection is carried out on LB-agar to which 20 μg/ml streptomycin and
- 10 carried out on LB-agar to which 20 μg/ml streptomycin and 50 μg/ml kanamycin are added. The strain formed in this way is designated B-3996kurΔtdh/pVIC40, pMW218mqo.

3.2 Preparation of L-threonine

The preparation of L-threonine by the strains
15 B-3996kurΔtdh/pVIC40 and B-3996kurΔtdh/pVIC40, pMW218mqo is tested as described in example 2, the minimal medium and the production medium not being supplemented with L-isoleucine. The minimal medium, the preculture medium and the production medium are supplemented with 20 μg/ml
20 streptomycin for B-3996kurΔtdh/pVIC40 and with 20 μg/ml

streptomycin for B-3996kurΔtdh/pVIC40 and with 20 μg/ml streptomycin and 50 μg/ml kanamycin for B-3996kurΔtdh/pVIC40, pMW218mgo.

The result of the experiment is summarized in Table 2.

Table 2

Strain	OD	L-
· · · · · · · · · · · · · · · · · · ·	(660 nm)	Threonine
B-3996kur∆tdh/pVIC40	4.7 .	6.26
B-3996kur∆tdh/pVIC40, pMW218mqo	3.7	7.72

Example 4

Preparation of a vector containing a histidine-tagged malate: quinone oxidoreductase gene of E. coli

A 1744 bp DNA fragment, which codes for the malate:quinone oxidoreductase protein extended by a six-fold histidine radical on the C-terminal end, was prepared by means of the polymerase chain reaction (PCR) and then cloned.

The primer YOJHla (SEQ ID No 7) was drafted with the aid of the known nucleotide sequence with Accession Number AE000310 (EMBL, European Molecular Biology Laboratories

10 AE000310 (EMBL, European Molecular Biology Laboratories, Heidelberg, Germany). This primer has the sequence:

5 '-GGA TCC GTT GAT GCC GCG CAA ATC-3'.

The primer YCHIS (SEQ ID No 8), which has the following sequence, was employed as the second primer:

15 5'-CGC GAA TTC TTA GTG GTG GTG GTG GTG GTG CAA CGC AAT ATC CGC CAC-3'.

The primers shown were synthesized by MWG Biotech (Ebersberg, Germany). The PCR reaction was carried out by the standard PCR method of Innis et al., (PCR Protocols. A

20 Guide to Methods and Applications, 1990, Academic Press, New York, USA).

Whole DNA isolated from a colony of the E. coli strain MC4100 (Casadaban et al. Journal of Molecular Biology 104, 541-555, 1976) served as the template.

- 25 The PCR was carried out in a Thermocycler from Techne (Cambridge, UK). The samples were first denatured for 5 minutes at 94°C and the Taq polymerase from Promega (Madison, WI, USA) was then added to the sample batch. A cycle comprising denaturing (60 seconds, 94°C), annealing
- 30 (60 seconds, 60°C) and synthesis (120 seconds, 72°C) was then passed through 10 times, the annealing temperature

being increased by 0.4°C in each cycle. The subsequent 25 cycles comprised denaturing (60 seconds, 94°C), annealing (60 seconds, 64°C) and synthesis (120 seconds, 72°C). Finally, a concluding synthesis of 10 minutes at 72°C was 5 carried out.

The DNA fragment 1744 bp in length containing the mgo gene amplified in this manner was purified with the aid of the QIAQuick PCR Purification Kit from Qiagen (Hilden, Germany) and then digested with the restriction enzymes BamHI and EcoRI. These restriction cleavage sites were generated during the PCR with the aid of the primers YOJHI and YCHIS. After gel electrophoresis, the digested DNA fragment was cut out of the agarose gel and purified with QIAEX II Gel Extraction Kit (155) (Hilden, Germany), mixed into the

15 vector pUC19 treated with the restriction enzymes BamHI and EcoRI (Yanisch-Perron et al., Gene 33, 103-119, 1985) and then treated with T4 DNA ligase.

An E. coli strain designated MC4100 Δ mqo, which contains a deletion in the mqo gene and was prepared according to the

- prior art, was used as the cloning host for the transformation. For this, the mgo gene was first amplified with the aid of the primers Y_01 (SEQ ID No 9) and Y_04 (SEQ ID No 10) using whole DNA isolated from strain MC4100, with the aid of the PCR method The PCR conditions
- comprised 30 cycles of denaturing (30 seconds, 94°C), annealing (30 seconds, 60°C) and synthesis (2 minutes, 72°C).

The primer Y_01 has the following sequence: 5`-GCTGGATGAATGGGCGGCGG-3`

30 The primer Y_04 has the following sequence: 5`-CGCGGATCCCCGGTTTCAACGATGATG-3`

The amplified DNA fragment contains a cleavage site for the restriction enzyme BamHI directly after the primer Y_01.

The BamHI restriction cleavage site contained in the oligonucleotide primer Y_04 is identified by underlining. The amplified DNA fragment was digested with BamHI and then incorporated into the BamHI cleavage site of the plasmid 5 pKO3 described by Link et al. (Journal of Bacteriology 179, 6228-6237 (1997)). The resulting plasmid was designated pKO3mqo and treated with the restriction enzyme MluI in order to remove an internal DNA segment of the mqo gene 416 bp long (deletion). The plasmid pKO3Δmqo obtained in this 10 manner was used for incorporation of the deletion Δmqo in the strain MC4100. The method described by Link et al (Journal of Bacteriology 179, 6228-6237 (1997)) was employed for this.

The strain MC4100Δmqo was transformed with the ligation

15 mixture described above. Transformants were selected on LB medium, which had been supplemented with 100μg/ml carbenicillin. A plasmid was isolated from a transformant and designated pUCH2. Plasmid pUCH2 contains a DNA fragment 1744 bp long, which codes for the malate:quinone oxidoreductase protein extended by a six-fold histidine radical on the C-terminal end.

Example 5

Isolation and purification of the over-expressed histidinetagged malate:quinone oxidoreductase

- 25 Five times, 200 ml LB medium were treated with 100 μ g/ml carbenicillin and 100 μ M isopropyl β -D-thiogalactoside (IPTG), inoculated with in each case a colony of the strain MC4100 Δ mqo/pUCH2 and in each case cultured in 1 l conical flasks for 16 hours at 37°C and 200 revolutions per minute.
- The cells were washed twice in buffer A (50 mM hepes, 10 mM potassium acetate, 10 mM CaCl₂, 5 mM MgCl₂, adjusted to pH 7.5 with NaOH) at 4°C and resuspended in 40 ml of the same buffer. The cells were then broken down twice in a precooled French Pressure Cell from Spectronic Unicam

(Rochester, NY, USA) under 69 MPa (mega-Pascal). The cell debris was then sedimented twice in a centrifuge at 4°C for 10 minutes at 10000 x g. The supernatant was then centrifuged for 30 minutes at 75000 x g and 4°C. The 5 membrane pellet was resuspended with the same volume of buffer B (50 mM Na phosphate, 200 mM NaCl, pH 7.5) and centrifuged again for 30 minutes at 75000 x g and 4°C. The pellet was then resuspended with 1 ml buffer B. The histidine-tagged malate:quinone oxidoreductase protein was purified in two steps.

Step 1: Solubilization:

2 % Triton X-100 and 10 % glycerol were added to the resuspended membranes and the batch was incubated for 10 minutes on ice. The batch was then centrifuged for 30 minutes at 200000 x g at 4°C.

Step 2: Affinity chromatography:

The equilibration of the "Talon-Metal-Affinity Resin" column material (500 µl column volume, CLONTECH Laboratories, Palo Alto, USA) was carried out twice with 1 ml buffer B and once with 1 ml buffer C (50 mM Na phosphate, 200 mM NaCl, 0.05 % Triton X-100, 10 µM flavin adenine dinucleotide (FAD), 0.2 mg/ml phospholipid, pH 7.0). The phospholipid used was L-α phosphatidylethanolamine, type IX from E. coli (Sigma-Aldrich, Deisenhofen, Germany), which was mixed as a

- Aldrich, Deisenhofen, Germany), which was mixed as a 30 mg/ml stock solution in deionized water and treated briefly with an ultrasound apparatus (BRANSON Sonifier Cell Disrupter B15) for a few seconds until the suspension was transparent. The supernatant (1 ml) from step 1 was
- 30 applied to the equilibrated column and incubated for 20 minutes at room temperature. Thereafter, the column was flushed five times with buffer D (50 mM Na phosphate, 200 mM NaCl, 0.05 % Triton X-100, 10 % glycerol, 10 μM FAD, 0.2 mg/ml phospholipid, 10 rM imidamals, pH 7.01 and than

eluted twice with 500 µl buffer E (50 mM Na phosphate, 200 mM NaCl, 0.05 % Triton X-100, 10 % glycerol, 10 µM FAD, 0.2 mg/ml phospholipid, 100 mM imidazole, pH 7.0). The two fractions were combined and a buffer exchange was carried out by means of an ULTRAFREE-0.5 Centrifugal Filter Device (Millipore Corporation, Bedford, MA, USA), in order to remove the imidazole and to reduce the volume to 500 µl. A second affinity chromatography was then carried out with the "Talon-Metal-Affinity Resin" column material (250 µl column volume), as described above. The purified protein was stored at -20°C.

The purified malate:quinone oxidoreductase protein was investigated by means of SDS polyacrylamide gel electrophoresis and subsequent staining with Coomassie blue. In this analysis, two protein bands (protein B and protein C) with the mobility corresponding to a molecular weight of about 60 ± 2 KD (kilo-Dalton) were detected. The two proteins were blotted on to a polyvinylidene difluoride (PVDF) membrane (Boehringer Mannheim, Mannheim, Germany) and stained with Coomassie blue. The two protein bands were then cut out of the blot membrane.

Example 6

Determination of the N-position amino acid sequence

The N-position amino acid sequences of the malate:quinone oxidoreductase protein B and protein C were determined by Edman degradation (Edman, Molecular Biology Biochemistry Biophysics 8:211-55(1970)) by means of the automatic sequencer Procise Sequencer from PE Biosystems (Foster City, CA, USA). For protein B the amino acid sequence L N A V S M (see also SEQ ID No. 11) and for protein C the amino acid sequence A V S M A A K (see also SEQ ID No. 12) was determined.

Brief Description of the Figures:

Figure 1: Map of the plasmid pMW218mqo containing the mqo gene.

The length data are to be understood as approx. data. The babbreviations and designations used have the following meaning:

Plac: Promoter sequence of the lactose operon
 Kan: Kanamycin resistance gene

The abbreviations for the restriction enzymes have the 10 following meaning

- AccI: Restriction endonuclease from Acinetobacter calcoaceticus
- ClaI: Restriction endonuclease from Caryphanon latum
- EcoRI: Restriction endonuclease from E. coli
- KpnI: Restriction endonuclease from Klebsiella pneumoniae
 - SalI: Restriction endonuclease from Streptomyces albus

10

20

25

What is claimed is:

- 1. A polypeptide from Enterobacteriaceae with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16) chosen from the group consisting of
- a) polypeptide with the amino acid sequence shown in SEQ ID NO. 2, or
 - b) polypeptide which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to the amino acid sequence shown in SEQ ID NO. 2, or
 - c) polypeptide according to SEQ ID NO. 2, including deletion, insertion or exchange of one or more amino acids, or
- d) polypeptide according to SEQ ID NO. 2, including Nor C-terminal lengthening by one or more amino acids,

the total length of the polypeptide according to b), c) or d) being at least 514 and at most 544, preferably at least 519 and at most 539, in a preferred form at least 524 and at most 534, particularly preferably at least 527 and at most 531 amino acid radicals.

- A polynucleotide from Enterobacteriaceae which codes for a polypeptide with malate:quinone oxidoreductase (Mqo) activity (E.C. 1.1.99.16), chosen from the group consisting of
 - a) DNA which contains the nucleotide sequence corresponding to nucleobases 7 to 1593 of SEQ ID NO. 1, or
- b) DNA according to a) corresponding to the degeneration of the genetic code, or

WO 02/06459 PCT/EP01/05548 24

- c) DNA according to a) containing sense mutations of neutral function, or
- d) DNA which is at least 70%, preferably at least 80%, particularly preferably at least 90 to 95% identical to that mentioned in a) or b), or
- e) polynucleotide which hybridizes with the DNA according to a), b), c) or d).

. 5

30

- 3. A polynucleotide as claimed in claim 2, which is DNA which is capable of replication and codes for the 10 polypeptide shown in SEQ ID NO. 2.
 - 4. The plasmid pMW218mgo which contains the mgo gene of Escherichia coli.
- 5. A process for the fermentative preparation of Lthreonine, which comprises employing Enterobacteriaceae 15 bacteria, in particular those which already produce Lthreonine and in which the nucleotide sequence(s) which code(s) for the mgo gene are enhanced, in particular over-expressed.
- A process as claimed in claim 5, wherein further genes 20 are enhanced in addition to the mgo gene.
 - 7. A process as claimed in claim 5 or 6, wherein the microorganisms of the family Enterobacteriaceae are from the genus Escherichia and Serratia.
- A process as claimed in claim 7, wherein the 25 microorganisms are from the genus Escherichia, in particular of the species Escherichia coli.
 - A process as claimed in claim 5, wherein the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase is enhanced at the same time.

PCT/EP01/05548 WO 02/06459 25

- 10. A process as claimed in claim 5, wherein the pyc gene which codes for pyruvate carboxylase is enhanced at the same time.
- 11. A process as claimed in claim 5, wherein the pps gene which codes for phosphoenol pyruvate synthase is enhanced at the same time:
 - 12. A process as claimed in claim 5, wherein the ppc gene which codes for phosphoenol pyruvate carboxylase is enhanced at the same time.
- 10 13. A process as claimed in claim 5, wherein the genes pntA and pntB which code for transhydrogenase are enhanced at the same time.
- 14. A process as claimed in claim 5, wherein the gene rhtB which imparts homoserine resistance is enhanced at the same time. 15
 - 15. A process as claimed in claim 5, wherein bacteria in which the metabolic pathways which reduce the formation of L-threonine are at least partly eliminated are employed.
- 20 16. A process as claimed in claim 5, wherein a strain transformed with a plasmid vector is employed and the plasmid vector carries the nucleotide sequence which codes for the mgo gene can be employed.
- 17. A process as claimed in claim 5, wherein bacteria 25 transformed with the plasmid pMW218mqo are employed.
 - 18. A process as claimed in claim 5, wherein the expression of the mgo gene is optionally induced with isopropyl β -D-thiogalactoside.
- 19. A process as claimed in claim 5, wherein at the same 30 time the gdhA gene which codes for glutamate dehdyrogenase is enhanced.

WO 02/06459 PCT/EP01/05548

- 20. A process as claimed in claim 5, wherein at the same time the rhtC gene which imparts threonine resistance is enhanced.
- 21. A process as claimed in claim 5, wherein the nucleotide sequence codes for a malate:quinone oxidoreductase protein with the N-terminal amino acid sequence Met Ala Ala Lys Ala Lys corresponding to SEQ ID No. 2.
- 22. A process as claimed in claim 5, wherein the nucleotide sequence codes for a malate:quinone oxidoreductase
 protein with the N-terminal amino acid sequence Leu Asn Ala Val Ser Met according to SEQ ID no. 11.
- 23. A process as claimed in claim 5, wherein the nucleotide sequence codes for a malate:quinone oxidoreductase protein with the N-terminal amino acid sequence Ala Val Ser Met Ala Ala Lys according to SEQ ID No. 12.
 - 24. A process for the preparation of L-threonine, which comprises carrying out the following steps:
- a) fermentation of microorganisms of the family
 Enterobacteriaceae in which at least the mgo gene
 is enhanced (over-expressed), optionally in
 combination with further genes,
 - b) concentration of the L-threonine in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
- 25 d[sic]) isolation of the L-threonine.
 - 25. A malate-quinone oxidoreductase protein from Enterobacteriaceae with the N-terminal amino acid sequence according to SEQ ID No. 11.
- 26. A malate:quinone oxidoreductase protein from

 Enterobacteriaceae with the N-terminal amino acid
 sequence according to SEQ ID No. 12.

- 27. An L-threonine-producing strain of the genus Escherichia with the genetic and phenotypic features of the strain B-3996kurΔtdh/pVIC40, pMW218mqo.
- 28. The L-threonine-producing Escherichia coli strain B-3996kurΔtdh/pVIC40, pMW218mqo deposited as.(sic) DSM 14004.

WO 02/06459 PCT/EP01/05548

Figure 1:

1

```
SEQUENCE PROTOCOL
    <110> Degussa AG
 5 <120> Process for the fermentative preparation of L-threonine.
    <130> 000323 BT
    <140>
10 <141>
    <160> 12
    <170> PatentIn Ver. 2.1
15
    <210> 1
    <211> 1720
    <212> DNA
    <213> Escherichia coli
20
    <220>
    <221> CDS
    <222> (7)..(15<del>9</del>3)
     <223> mgo gene
25
     <400> 1
     aattog atg gog goa aaa gog aaa gog too gag gag cag gaa act gat
            Met Ala Ala Lys Ala Lys Ala Ser Glu Glu Glu Glu Thr Asp
30
     gta ctg ttg att ggc ggc ggc att atg agc gcc acg ttg ggg acc tat
     Val Leu Leu Ile Gly Gly Gly Ile Met Ser Ala Thr Leu Gly Thr Tyr
35 tta cgc gag ctg gag cct gaa tgg tcg atg acc atg gtg gag cgc ctg
Leu Arg Glu Leu Glu Pro Glu Trp Ser Met Thr Met Val Glu Arg Leu
                                                                           144
                                                                           192
     gag ggt gtc gcg cag gag agt tcg aac ggc tgg aat aac gcc gga acc
    Glu Gly Val Ala Gln Glu Ser Ser Asn Gly Trp Asn Asn Ala Gly Thr
                                                                           240
     ggg cat tot goa ctg atg gaa ctg aac tac acc ccg caa aac gcc gat
     Gly His Ser Ala Leu Met Glu Leu Asn Tyr Thr Pro Gln Asn Ala Asp
45
                                                                            288
     ggc agc atc agt att gaa aaa gca gtc gcc att aac gaa gca ttt cag
     Gly Ser Ile Ser Ile Glu Lys Ala Val Ala Ile Asn Glu Ala Phe Gln
          80
                                85
                                                                            336
     att tee ege cag tte tgg geg cae cag gtt gag ege gge gtg etg egt
     Ile Ser Arg Gln Phe Trp Ala His Gln Val Glu Arg Gly Val Leu Arg
      95
                          100
 55 act eeg egt tea ttt ate aat ace gtt eeg cat atg age ttt gte tgg
                                                                            384
     Thr Pro Arg Ser Phe Ile Asn Thr Val Pro His Met Ser Phe Val Trp
                      115
                                            120
                                                                            432
     ggo gag gat aac gto aat tto otg ogo goo ogt tac goo gog ttg caa
 60 Gly Glu Asp Asn Val Asn Phe Leu Arg Ala Arg Tyr Ala Ala Leu Gln
                                       135
                  130
```

	caa Gln	agc Ser	tcg Ser 145	ctg Leu	ttt Phe	cgc Arg	ggt Gly	atg Met 150	cgt Arg	tac Tyr	tct Ser	gaa Glu	gat Asp 155	cac His	gcg Ala	cag Gln	480
5	atc Ile	aaa Lys 160	gag Glu	tgg Trp	gca Ala	ccg Pro	tta Leu 165	gtg Val	atg Met	gaa Glu	ej gag	cgc Arg 170	gat Asp	ccg Pro	caa Gln	cag Gln	528
10	aaa Lys 175	gtg Val	gca Ala	gcc Ala	acg Thr	cgt Arg 180	acg Thr	gaa Glu	att Ile	ggt Gly	acc Thr 185	gat Asp	gtg Val	aac Asn	tac Tyr	ggc Gly 190	576
15	gag Glu	atc Ile	acc Thr	cgc Arg	cag Gln 195	tta Leu	att Ile	gct Ala	tcc Ser	ttg Leu 200	cag Gln	aag Lys	aaa Lys _.	tct Ser	aac Asn 205	ttc Phe	624
20	tcg Ser	ctg Leu	caa Gln	ctc Leu 210	agc Ser	agc Ser	gaa Glu	gtc Val	cgc Arg 215	gcc Ala	cta Leu	aag Lys	cgt Arg	aat Asn 220	gac Asp	gat Asp	672
	aac Asn	acc Thr	tgg Trp 225	acc Thr	gtt Val	acc Thr	gtt Val	gcc Ala 230	gat Asp	ctg Leu	aaa Lys	aat Asn	ggc Gly 235	act Thr	gca Ala	cag Gln	720
25	aac Asn	att Ile 240	cgt Arg	gcc Ala	aaa Lys	ttt Phe	gtc Val 245	ttt Phe	atc Ile	ggc Gly	gcg Ala	ggc Gly 250	ggt Gly	gcg Ala	gcg Ala	ctg Leu	768
30	aag Lys 255	ctg Leu	tta Leu	cag Gln	gaa Glu	tcg Ser 260	Gly ggg	att Ile	ccg Pro	gaa Glu	gcg Ala 265	aaa Lys	gac Asp	tac Tyr	gcc Ala	ggt Gly 270	816
35	ttc Phe	ccg Pro	gtg Val	Gly	gga Gly 275	cag Gln	ttc Phe	ctt Leu	gtt Val	tcg Ser 280	gaa Glu	aac Asn	ccg Pro	gac Asp	gtg Val 285	gtt Val	864
40	aat Asn	cac His	cat His	ctg Leu 290	gcg Ala	aag Lys	gtt Val	tac Tyr	ggt Gly 295	aaa Lys	gca Ala	tcc Ser	gtt Val	ggc Glý 300	gca Ala	cca Pro	912
	ccg Pro	atg Met	tcg Ser 305	gtt Val	ccg Pro	cat His	atc Ile	gat Asp 310	acc Thr	cgc Arg	gtt Val	ctg Leu	gac Asp 315	ggt Gly	aaa Lys	cgc Arg	960
45	gta Val	gtg Val 320	ctg Leu	ttt Phe	ggg Gly	cca Pro	ttt Phe 325	gcc Ala	acc Thr	ttc Phe	tca Ser	acc Thr 330	aaa Lys	ttc Phe	ctc Leu	aaa Lys	1008
50	aac Asn 335	ggt Gly	tca Ser	ttg Leu	tgg Trp	gat Asp 340	cta Leu	atg Met	agt Ser	tcc Ser	acc Thr 345	acc Thr	acc Thr	tct Ser	aac Asn	gtg Val 350	1056
55	atg Met	ccg Pro	atg Met	atg Met	cac His 355	gtc Val	Gly ggg	ctg Leu	gat Asp	aat Asn 360	ttc Phe	gat Asp	ctg Leu	gtg Val	aaa Lys 365	tat Tyr	1104
60	ctg Leu	gtg Val	agt Ser	cag Gln -370	gtg Val	atg Met	ttg Leu	agt Ser	gaa Glu 375	gag Glu	gat Asp	cgt Arg	ttt Phe	gaa Glu 380	gcg Ala	ttg Leu	1152

	aaa Lys	gag Glu	tac Tyr 385	tat Tyr	ccg Pro	cag Gln	gcg Ala	aaa Lys 390	aaa Lys	gag Glu	gac Asp	tgg Trp	cgt Arg 395	ttg Leu	tgg Trp	caa Gln	1200
5	gcg Ala	ggg Gly 400	cag Gln	cgc Arg	gtg Val	cag Gln	att Ile 405	atc Ile	aag Lys	cgt Arg	gat Asp	gcc Ala 410	gag Glu	aaa Lys	ggt Gly	ggc Gly	1248
10	gta Val 415	ctg Leu	cgt Arg	ctg Leu	ggt Gly	act Thr 420	gaa Glu	gtc Val	gtc Val	agt Ser	gac Asp 425	cag Gln	caa Gln	gga Gly	acc Thr	att Ile 430	1296
15	gcc Ala	gcg Ala	ctc Leu	ctg Leu	ggg Gly 435	gca Ala	tcg Ser	cca Pro	Gly ggg	gcg Ala 440	tca Ser	acc Thr	gcc Ala	gcg Ala	ccg Pro 445	att Ile	1344
20	atg Met	ttg Leu	aat Asn	ctg Leu 450	ctg Leu	gaa Glu	aaa Lys	gta Val	ttt Phe 455	ggc Gly	gat Asp	cgt Arg	gtt Val	tcc Ser 460	agc Ser	ccg Pro	1392
	caa Gln	tgg Trp	cag Gln 465	gct Ala	acg Thr	ttg Leu	aaa Lys	gcg Ala 470	atc	gtt Val	ccg Pro	tct Ser	tat Tyr 475	gga Gly	cgc Arg	aag Lys	1440
25	ctg Leu	aac Asn 480	ggt Gly	gat Asp	gta Val	gcg Ala	gca Ala 485	aca Thr	gaa Glu	cgc Arg	gag Glu	ttg Leu 490	cag Gln	tac Tyr	acc Thr	agc Ser	1488
30	gaa Glu 495	gtg Val	ctg Leu	Gly	ttg Leu	aac Asn 500	tac Tyr	gac Asp	aag Lys	ccg Pro	cag Gln 505	gca Ala	gca Ala	gat Asp	agt Ser	acg Thr 510	1536
35	ccg Pro	aaa Lys	ccg Pro	cag Gln	ttg Leu 515	aaa Lys	ccg Pro	caa Gln	ccc Pro	gtt Val 520	caa Gln	aaa Lys	gaa Glu	gtg Val	gcg Ala 525	gat Asp	1584
	att Ile	gcg Ala	ttg Leu	taat	tgáta	acg (ccaca	atcc	gg ca	atggt	catgo	c cg	gatgi	ggc			1633
40	gta	tgct	gat a	aagad	cgcg	cc a	gcgt	cgcat	caq	ggcaa	accg	gct	eggge	egt 1	tagat	gttgg	1693
	atg	egge	gta 1	cgg	ggato	cc to	ctaga	ag									1720
45	<21:	0> 2 1> 5: 2> P: 3> E:		rich	ia co	oli											
50		0> 2 Ala	Ala	Lys	Ala 5	Lys	Ala	Ser	Glu	Glu 10	Gln	Glu	Thr	Asp	Val 15	Leu	
55	Leu	Ile	Gly	Gly 20	Gly	Ile	Met	Ser	Ala 25	Thr	Leu	Gly	Thr	Tyr 30	Leu	Arg	
	Glu	Leu	Glu 35	Pro	Glu	Trp	Ser	Met 40	Thr	Met	Val	Glu	Arg 45	Leu	Glu	Gly	
60	Val	Ala 50	Gln	Glu	Ser	Ser	Asn 55	Gly	Trp	Asn	Asn	Ala 60	Gly	Thr	Gly	His	
	Ser	Ala	Leu	Met	Glu	Leu	Asn	Tyr	Thr	Pro	Gln	Asn	Ala	Asp	Gly	Ser	

	65					70					75					80
5	Ile	Ser	Ile	Glu	Lys 85	Ala	Val	Ala	Ile	Asn 90	Glu	Ala	Phe	Gln	Ile 95	Ser
J	Arg	Gln	Phe	Trp 100	Ala	His	Gln	Val	Glu 105	Arg	Gly	Val	Leu	Arg 110	Thr	Pro
10	Arg	Ser	Phe 115	Ile	Asn	Thr	Val	Pro 120	His	Met	Ser	Phe	Val 125	Trp	Gly	Glu
	Asp	Asn 130	Val	Asn	Phe	Leu	Arg 135	Ala	Arg	Tyr	Ala	Ala 140	Leu	Gln	Gln	Ser
15	Ser 145	Leu	Phe	Arg	Gly	Met 150	Arg	Tyr	Ser	Glu	Asp 155	His	Ala	Gln	Ile	Lys 160
20	Glu	Trp	Ala	Pro	Leu 165	Val	Met	Glu	Gly	Arg 170	Asp	Pro	Gln	Gln	Lys 175	Val
	Ala	Ala	Thr	Arg 180	Thr	Glu	Ile	Gly	Thr 185	Asp	Val	Asn	Tyr	Gly 190	Glu	Ile
25	Thr	Arg	Gln 195	Leu	Ile	Ala	Ser	Leu 200	Gln	Lys	Lys	Ser	Asn 205	Phe	Ser	Leu
	Gln	Leu 210	Ser	Ser	Glu	Val	Arg 215	Ala	Leu	Lys	Arg	Asn 220	Asp	Asp	Asn	Thr
30	Trp 225	Thr	Val	Thr	Val	Ala 230	Asp	Leu	Lys	Asn	Gly 235	Thr	Ala	Gln	Asn	Ile 240
35	Arg	Ala	Lys	Phe	Val 245	Phe	Ile	Gly	Ala	Gly 250	Gly	Ala	Ala	Leu	Lys 255	Leu
	Leu	Gln	Glu	Ser 260	Gly	Ile	Pro	Glu	Ala 265	Lys	Asp	Tyr	Ala	Gly 270	Phe	Pro
40	Val	Gly	Gly 275	Gln	Phe	Leu	Val	Ser 280	Glu	Asn	Pro	Asp	Val 285	Val	Asn	His
	His	Leu 290	Ala	Lys	Val	Tyr	Gly 295	Lys	Ala	Ser	Val	Gly 300	Ala	Pro	Pro	Met
45	Ser 305		Pro	His	Ile	Asp 310		Arg	Val		Asp 315	Gly	Lys	Arg	Val	Val 320
50	Leu	Phe	Gly	Pro	Phe 325	Ala	Thr	Phe	Ser	Thr 330	Lys	Phe	Leu	Lys	Asn 335	Gly
	Ser	Leu	Trp	Asp 340	Leu	Met	Ser	Ser	Thr 345	Thr	Thr	Ser	Asn	Val 350	Met	Pro
55	Met	Met	His 355	Val	Gly	Leu	Asp	Asn 360	Phe	Asp	Leu	Val	Lys 365	Tyr	Leu	Val
	Ser	Gln 370		Met	Leu	Ser	Glu 375	Glu	Asp	Arg	Phe	Glu 380	Ala	Leu	Lys	Glu
60	Tyr 385	Tyr	Pro	Gln	Ala	Lys 390		Glu	Asp	Trp	Arg 395	Leu	Trp	Gln	Ala	Gly 400
	Gln	Arg	Val	Gln	Ile	Ile	Lys	Arg	Asp	Ala	Glu	Lys	Gly	Gly	Val	Lev

					405					410					415		
5	Arg	Leu	Gly	Thr 420	Glu	Val	Val	Ser	Asp 425	Gln	Gln	Gly	Thr	Ile 430	Ala	Ala	
J	Leu	Leu	Gly 435	Ala	Ser	Pro	Gly	Ala 440	Ser	Thr	Ala	Ala	Pro 445	Ile	Met	Leu	
10	Asn	Leu 450	Leu	Glu	Lys	Val	Phe 455	Gly	Asp	Arg	Val	Ser 460	Ser	Pro	Gln	Trp	
	Gln 465	Ala	Thr	Leu	Lys	Ala 470	Ile	Val	Pro	Ser	Tyr 475	Gly	Arg	Lys	Leu	Asn 480	
15	Gly	Asp	Val	Ala	Ala 485	Thr	Glu	Arg	Glu	Leu 490	Gln	Tyr	Thr	Ser	Glu 495	Val	
20	Leu	Gly	Leu	Asn 500	Tyr	Asp	Lys	Pro	Gln 505	Ala	Ala	Asp	Ser	Thr 510	Pro	Lys	
	Pro	Gln	Leu 515	Lys	Pro	Gln	Pro	Val 520	Gln	Lys	Glu	Val	Ala 525	Asp	Ile	Ala	
25	Leu																
30	<21:	0> 3 1> 2: 2> Di 3> A:	AN	icia	l se	quen	ce										
35	<22 <22	-	escr	ipti	on o	f th	e ar	tifi	cial	seq	uence	e: Pi	rime	r Yo	јН1		
		0> 3 gaat	tcg	atgg	cggc	aa a	agcg										25
40	<21:	0> 4 1> 2 2> D 3> A	NA	icia	l se	quen	ce					·· •					
45	<22	0>						tifi	cial	seq	uence	e: Pi	cime	r Yo	јН2		
50		0> 4 acgc		atcc	aaca	tc											20
55	<21 <21		0 NA	icia	l se	quen	ce			-							
60	<22 <22		escr	ipti	on o	f th	e ar	tifi	cial	. seq	uenc	e: Pi	rime	r Td	n1		
		0> 5 cgac		taag	rtttg	gg											20

6

5	<210> 6 · (211> 20 (212> DNA (213> Artificial sequence (213> Artificia	
	<220> <223> Description of the artificial sequence: Primer Tdh2	
10	<400> 6 aataccagcc cttgttcgtg	20
	<210> 7 <211> 24 <212> DNA <213> Artificial sequence	
20	<220> <223> Description of the artificial sequence: Primer YOJHla	
25	<400> 7 - ggatccgttg atgccgcgca aatc	24
30	<210> 8 <211> 48 <212> DNA <213> Artificial sequence	
	<220> <223> Description of the artificial sequence: Primer YCHIS	
35	<pre><400> 8 cgcgaattct tagtggtggt ggtggtggtg caacgcaata tccgccac .</pre>	48
40	<210> 9 <211> 20 <212> DNA <213> Artificial sequence	
45	<220> <223> Description of the artificial sequence: Primer Y_01	
	<400> 9 gctggatgaa tgggcggcgg	20
50	<210> 10 <211> 27	
55	<212> DNA <213> Artificial sequence	
	<220> <223> Description of the artificial sequence: Primer Y_04	
60	<400> 10 cgcggatccc cggtttcaac gatgatg	27

<210> 11

WO 02/06459 PCT/EP01/05548

7"

30

<400> 12

25 Ala Val Ser Met Ala Ala Lys

INTERNATIONAL SEARCH REPORT

PCT/EP 01/05548

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N9/02 C12P13/08 C12N15/53 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) BIOSIS, WPI Data, PAJ, EPO-Internal, EMBL, EMBASE C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ KATHER BIRGIT ET AL: "Another unusual 1-4,25,type of citric acid cycle enzyme in 26 Helicobacter pylori: The malate:quinone oxidoreductase. JOURNAL OF BACTERIOLOGY, vol. 182, no. 11, June 2000 (2000-06), pages 3204-3209, XP002179952 ISSN: 0021-9193 Υ tables 1.2 5-24,2728 DATABASE EMBL 'Online! 1-4,25, BLATTNER F.R. ET AL.: "The complete genome 26 sequence of Escherichia coli K-12. retrieved from EBI Database accession no. P33940 XP002179954 the whole document Further documents are listed in the continuation of box C. Χ Patent family members are listed in annex. Special categories of cited documents: T' later document published after the International filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19 October 2001 05/11/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Lanzrein, M

INTERNATIONAL SEARCH REPORT

Intermonal Application No PCT/EP 01/05548

	,	PC1/EP 01/05548
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category •	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 198 31 609 A (KERNFORSCHUNGSANLAGE JUELICH) 15 April 1999 (1999-04-15) page 5, line 55 -page 6, line 10	5-24
Υ	EP 0 436 886 A (KERNFORSCHUNGSANLAGE JUELICH) 17 July 1991 (1991-07-17) the whole document	6-14,19, 20
Υ	US 5 939 307 A (LIAW HUNGMING JAMES ET AL) 17 August 1999 (1999-08-17) column 7, line 42-57; claims 4,17-20	27,28
A	MOLENAAR D ET AL: "BIOCHEMICAL AND GENETIC CHARACTERIZATION OF THE MEMBRANE-ASSOCIATEDMALATE DEHYDROGENASE (ACCEPTOR) FROM CORYNEBACTERIUM GLUTAMICUM"	1-28
	EUROPEAN JOURNAL OF BIOCHEMISTRY, BERLIN, DE, vol. 254, 1998, pages 395-403, XP000941422 ISSN: 0014-2956 the whole document	
A	VOGEL R F ET AL: "CLONING AND SEQUENCE OF THE MDH STRUCTURAL GENE OF ESCHERICHIA COLICODING FOR MALATE DEHYDROGENASE" ARCHIVES OF MICROBIOLOGY, BERLIN, DE, vol. 149, 1987, pages 36-42, XP002932511 ISSN: 0302-8933 the whole document	1-28
Ρ,Χ	VAN DER REST MICHEL E ET AL: "Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli." JOURNAL OF BACTERIOLOGY, vol. 182, no. 24, December 2000 (2000-12), pages 6892-6899, XP002179953	1-4 25-28
	ISSN: 0021-9193' the whole document	
P,Y	EP 1 038 969 A (DEGUSSA) 27 September 2000 (2000-09-27) the whole document	1-28
P _. ,Y	EP 1 085 091 A (DEGUSSA; KERNFORSCHUNGSANLAGE JUELICH (DE)) 21 March 2001 (2001-03-21) the whole document	1-28

INTERNATIONAL SEARCH REPORT

information on patent family members

Interest on Application No PCT/EP 01/05548

Patent document cited in search report		Publication date		Patent family member(s)	Publication date		
DE 19831609	A	15-04-1999	DE	19831609 A1	15-04-1999		
			AU	1148299 A	27-04-1999		
•			BR	9813021 A	15-08-2000		
			CN	1275167 T	29-11-2000		
			WO	9918228 A2	15-04-1999		
			EP	1015621 A2	05-07-2000		
			HU	0004381 A2	28-03-2001		
			SK	4812000 A3	12-09-2000		
EP 0436886	Α	17-07-1991	· DE	3942947 A1	27-06-1991		
			DE	59005821 D1	30-06-1994		
			EP	0436886 A1	17-07-1991		
US 5939307	Α	17-08-1999	AU	730102 B2	22-02-2001		
			ΑU	3899497 A	20-02-1998		
			BR	9710503 A	11-01-2000		
			CN	1226931 A	25-08-1999		
	•		EP	0917578 A1	26-05-1999		
			HU	9903856 A2	28-03-2000		
	•		JP	2000515763 T	28-11-2000		
			NO	990362 A	26-01-1999		
	•	•	PL	331351 A1	05-07-1999		
			TR	9900213 T2	21-04-1999		
		سي سيونون الأامات الأساب الأ	WO	9804715 A1	05-02-1998		
EP 1038969	Α	27-09-2000	DE	19912384 A1	21-09-2000		
			AU	2236900 A	21-09-2000		
			BR	0001342 A	02-05-2001		
			CN	1267734 A	27-09-2000		
			EP	1038969 A2	27-09-2000		
>			JP	2000270888 A	03-10-2000		
·		~~~~~	SK	3742000 A3	09-10-2000		
EP 1085091	. А	21-03-2001	DE	19941478 A1	08-03-2001		
			CN	1291651 A	18-04-2001		
			EP	1085091 A1	21-03-2001		
			JP	2001095592 A	10-04-2001		