6 Ergodicity, differentiability, continuity

Problem 6.1. Let W_t be a Brownian Motion considered at integer time points $t = 0, 1, 2, \ldots$ Choose the ergodic processes. **Options:**

- $X_t = Ct + W_t$, where C is a non-zero constant;
- $X_t = \xi t + W_t$, where $\xi \sim \mathcal{N}(0,1)$ and ξ is independent of W_t ;
- none of above.

Solution. Recall that discrete-time process is said to be ergodic if

$$\frac{1}{T} \sum_{t=1}^{T} X_t \xrightarrow{\mathbb{P}} c.$$

We now check this property for both processes:

1. $X_t = Ct + W_t$:

$$\frac{1}{T} \sum_{t=1}^{T} X_t = \frac{1}{T} \sum_{t=1}^{T} (Ct + W_t) =$$

$$= \frac{1}{T} \sum_{t=1}^{T} Ct + \frac{1}{T} \sum_{t=1}^{T} W_t =$$

$$= \frac{C}{T} \sum_{t=1}^{T} t + \frac{1}{T} \sum_{t=1}^{T} W_t =$$

$$= \frac{C}{T} \frac{(T+1)T}{2} + \frac{1}{T} \sum_{t=1}^{T} W_t =$$

$$= \frac{C(T+1)}{2} + \frac{1}{T} \sum_{t=1}^{T} W_t,$$

clearly does not converge to a constant.

2. By the same argument for $X_t = \xi t + W_t$ one gets

$$\frac{1}{T} \sum_{t=1}^{T} X_t = \frac{\xi(T+1)}{2} + \frac{1}{T} \sum_{t=1}^{T} W_t,$$

which also does not converge to a constant.

Problem 6.2. Let $X_t = \cos(\omega t + \theta)$ be a stochastic process and $\theta \sim U([0, 2\pi])$, $\omega = \pi/10$. Is this process ergodic? Is it stationary? **Options:**

- It is ergodic and weakly stationary;
- It is non-ergodic and weakly stationary;
- It is ergodic and non-stationary;
- none of above.

Solution. Firstly, $\mathbb{E} X_t = \mathbb{E} \cos(\omega t + \theta) = 0$, because ωt is just a constant for fixed t, and hence $\theta \sim U([0, 2\pi])$ implies that $(\omega t + \theta) \pmod{2\pi}$ also has uniform distribution.

By the same argument, one can show that $K_X(t,s) = 0$, and therefore, X_t is weakly stationary.

Moreover, by the same argument as in the lecture, one can get that X_t is ergodic because the sum of any 20 consecutive X_t 's vanishes.

Problem 6.3. Let $X_t = \varepsilon_t + \xi \cos \frac{\pi t}{12}$, t = 1, 2, ..., where $\xi, \varepsilon_1, \varepsilon_2, ...$ are i.i.d. standard normal random variables. Choose the correct statement. **Options:**

- X_t is weakly stationary and ergodic;
- X_t is weakly stationary and non-ergodic;
- X_t is not weakly stationary, but it is ergodic;
- X_t is not weakly stationary and is not ergodic

Solution. Clearly $\mathbb{E} X_t = \mathbb{E} \varepsilon_t + \cos \frac{\pi t}{12} \cdot \mathbb{E} \xi = 0 + \cos \frac{\pi t}{12} \cdot 0 = 0$. However,

$$\begin{split} K_X(t,s) &= \operatorname{cov}(X_t, X_s) = \operatorname{cov}\left(\varepsilon_t + \xi \cos\frac{\pi t}{12}, \varepsilon_s + \xi \cos\frac{\pi s}{12}\right) = \\ &= \operatorname{cov}(\varepsilon_t, \varepsilon_s) + \operatorname{cov}\left(\xi \cos\frac{\pi t}{12}, \varepsilon_s\right) + \operatorname{cov}\left(\varepsilon_t, \xi \cos\frac{\pi s}{12}\right) + \operatorname{cov}\left(\xi \cos\frac{\pi t}{12}, \xi \cos\frac{\pi s}{12}\right) = \\ &= \mathbf{1}\{t = s\} + 0 + 0 + \operatorname{cov}\left(\xi \cos\frac{\pi t}{12}, \xi \cos\frac{\pi s}{12}\right) = \\ &= \mathbf{1}\{t = s\} + \mathbb{E}\left[\left(\xi \cos\frac{\pi t}{12} - 0\right) \cdot \left(\xi \cos\frac{\pi s}{12} - 0\right)\right] = \\ &= \mathbf{1}\{t = s\} + \cos\frac{\pi t}{12} \cdot \cos\frac{\pi s}{12} \cdot \mathbb{E}\,\xi^2, \end{split}$$

clearly not a function of t-s only, because $K_X(t,t)=1+\cos^2\frac{\pi t}{12}$, clearly not a constant. Therefore, X_t is not weakly stationary.

However,

$$\frac{1}{T} \sum_{t=1}^{T} X_t = \frac{1}{T} \sum_{t=1}^{T} \left(\varepsilon_t + \xi \cos \frac{\pi t}{12} \right) = \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t + \frac{1}{T} \sum_{t=1}^{T} \xi \cos \frac{\pi t}{12} = \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t + \frac{\xi}{T} \sum_{t=1}^{T} \cos \frac{\pi t}{12}.$$

First sum converges to 0 by the classical law of large numbers, and the second sum converges to 0 by the same argument as in lecture (the sum of any 24 consecutive X_t 's vanishes). Hence, X_t is ergodic.

Problem 6.4. Assume that for a process X_t it is known that $\mathbb{E} X_t = \alpha + \beta t$, $\operatorname{cov}(X_t, X_{t+h}) = e^{-h\lambda}$ for all $h \ge 0$, t > 0, and some constants $\lambda > 0$, α , β . Is the process $Y_t = X_{t+1} - X_t$ stationary and ergodic? **Options:**

- Y_t is weakly stationary and ergodic;
- Y_t is weakly stationary and non-ergodic;
- Y_t is non-stationary and ergodic;
- none of above.

Solution. Firstly,

$$\mathbb{E} Y_t = \mathbb{E}[X_{t+1} - X_t] = \mathbb{E} X_{t+1} - \mathbb{E} X_t = (\alpha + \beta(t+1)) - (\alpha + \beta t) = \beta.$$

Secondly,

$$K_Y(t,s) = \operatorname{cov}(Y_t, Y_s) = \operatorname{cov}(X_{t+1} - X_t, X_{s+1} - X_s) =$$

= $\operatorname{cov}(X_{t+1}, X_{s+1}) - \operatorname{cov}(X_{t+1}, X_s) - \operatorname{cov}(X_t, X_{s+1}) + \operatorname{cov}(X_t, X_s).$

Each of these 4 summands depends only on t-s (it may look like some of them also depend on t+1-s and t-s-1, but these dependencies can be represented in terms of dependency on t-s). Therefore, Y_t is weakly stationary.

Moreover,

$$\frac{1}{T} \sum_{t=0}^{T-1} Y_t = \frac{1}{T} \sum_{t=0}^{T-1} (X_{t+1} - X_t) = \frac{X_T - X_0}{T}.$$

This expression converges to β , because its expectation is clearly equal to β , and because

$$\operatorname{Var} X_t = \operatorname{cov}(X_t, X_t) = e^{-0\lambda} = 1$$

meaning that

$$\operatorname{Var} \frac{X_T}{T} = \frac{1}{\sqrt{T}} \xrightarrow[T \to \infty]{} 0$$

 $T \to \infty$. Therefore, Y_t is ergodic.

Problem 6.5. Let $X_t = \sigma W_t + ct$, where W_t is Brownian motion, $\sigma, c > 0$. Choose the correct statements about this process. **Options:**

- X_t is differentiable;
- X_t has continuous trajectories;
- X_t is weakly stationary;
- X_t is strictly stationary;
- none of above.

Solution. X_t is not differentiable because σW_t is not and ct is, X_t has continuous trajectories because both σW_t and ct have. X_t is neither weakly nor strictly stationary, because

$$\mathbb{E} X_t = \mathbb{E}(\sigma W_t + ct) = \mathbb{E} \sigma W_t + \mathbb{E} ct = \sigma \mathbb{E} W_t + ct = \sigma \cdot 0 + ct = ct,$$

clearly not a constant.

Problem 6.6. Let the process X_t have an autocovariance function $\gamma(r) = e^{-\alpha|r|}$. Is $Y_t = X_t + w$ an ergodic process? Options:

- No, for any w.
- Yes, if w has the same distribution as X_t .
- Yes, for any w.
- \bullet Yes, if w is a constant.

Solution. To begin with,

$$\frac{1}{T} \sum_{t=1}^{T} Y_t = \frac{1}{T} \sum_{t=1}^{T} X_t + w = \frac{1}{T} \sum_{t=1}^{T} X_t + \frac{w}{T} \xrightarrow{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} X_t.$$

Furthermore, we know that X_t is ergodic by the theorem from lecture $(\gamma(r) \to 0 \text{ as } r \to \infty)$, hence so is Y_t .