1.3 OS的演变、类型及特征

Ease of Evolution of an Operating System

- Fixes(修改)
- New Services
- Hardware Upgrade Plus New Types of Hardware
- Efficiency

Serial Processing (串行处理)

- No operating system
- Machines run from a console with display lights and toggle switches, input device, and printer. Two main problems:
 - Scheduling: waste processing time.
 - Setup time: Setup included loading the compiler, source program, saving compiled program, and loading and linking.

Simple Batch Systems

(简单批处理系统)

- Monitors (监督程序): Software that controls the running programs
 - Resident monitor is in main memory and available for execution
- Batch jobs together
- Program branches back to monitor when finished

Uniprogramming (单道程序设计)

- Processor must wait for I/O instruction to complete before proceeding.
- Be inefficient.

Multiprogramming (多道程序设计)

一个支持Multiprogramming的系统允许多道程序同 时准备运行: 当正在运行的那道程序因为某种原因 (比如等待输入或输出数据) 暂时不能继续运行时, 系统将自动地启动另一道程序运行:一旦原因消除 (比如数据已经到达或数据已经输出完毕), 暂时 停止运行的那道程序在将来某个时候还可以被系统 重新启动继续运行。

Multiprogramming

(2 Programs)

• When one job needs to wait for I/O, the processor can switch to the other job

Multiprogramming

(3 Programs)

Example

JOB1 JOB2 JOB3 Type of job **Heavy I/O Heavy compute Heavy I/O Duration** 15 min. 10 min. 5 min. 100 K **Memory required 50K** 80 K Need disk? No No Yes **Need terminal** No Yes No **Need printer?** No No Yes

Figure 2.6 Utilization Histograms

Difficulties with Multiprogramming

- Improper synchronization (同步)
 - ensure a process waiting for an I/O device receives the signal
- Failed mutual exclusion (互斥)
- Nondeterminate program operation
 - program should only depend on input to it
- Deadlocks (死锁)

Time Sharing (分时系统)

- Using multiprogramming to handle multiple interactive (交互) jobs
- Processor's time is shared among multiple users
- Multiple users simultaneously (同时) access the system through terminals

Batch Multiprogramming vs Time Sharing

(多道批处理系统与分时系统比较)

	Batch Multiprogramming	Time Sharing
Principal objective (主要目标)	Maximize processor use	Minimize response time
Source of directives to operating system	Job control language commands provided with the job	Commands entered at the terminal

现代0S的基本类型

按硬件平台系统结构分类:

- 单机OS
- 并行OS
- 网络0S
- 分布式0S

单机0S的基本类型

按功能特征分类:

- Batch_Processing OS (批处理系统)
- Time_Sharing OS (分时系统)
- Real_Time OS (实时系统)

现代0S的两个基本特征

• 任务共行

- 从宏观上看,任务共行是指系统中有多个任务同时运行
- 从微观上看,任务共行是指单处理机系统中的<u>任务并发</u> (Task Concurrency: 即多个任务在单个处理机上交替运行)或 多处理机系统中的任务并行(Task Parallelism: 即多个任务在 多个处理机上同时运行)。

• 资源共享

- 从宏观上看,资源共享是指多个任务可以同时使用系统中的 软硬件资源
- 从微观上看,资源共享是指多个任务可以*交替互斥*地使用系统中的某个资源。

任务管理模型

所谓<u>Task</u>是指,计算机系统在某个资源集合上所做的一次相对独立的计算过程。

- 在现代OS中,任务用<u>线程和进程</u>这两个基本概念共同表示; 在传统OS中,任务仅仅用进程这一基本概念表示。
- 在现代OS中,任务管理模型用<u>线程状态转换图</u>表示,在传统OS中,任务管理模型用<u>进程状态转换图</u>表示。

资源管理模式

所谓Resource是指,由程序和数据组成的软件资源以及包含CPU、存储器、I/O设备等在内的硬件资源。

- 通常情况下,系统用<u>竞争模式</u>管理软件资源,为此,系统 将为共享同一软件资源的多个任务提供互斥机制。
- 对于硬件资源,系统常常用<u>分配模式</u>加以管理。该模式可以描述为:

申请——分配——使用——释放——回收