HW 11: page 220 - 221, #1, 2, 5 and page 226-227, #1 - 3, 4(a)(b), 5, 11

Exercise 1 (pages 220 - 221)

Mark each statement True or False. Justify each answer.

- a. Let D be a compact subset of \mathbb{R} and suppose that $f: D \longrightarrow \mathbb{R}$ is continuous. Then f(D) is compact.
- b. Suppose that $f: D \longrightarrow R$ is continuous. Then, there exists a point x_1 in D st $f(x_1) \ge f(x) \ \forall \ x \in D$
- c. Let D be a bounded subset of \mathbb{R} and assume that $f:D\longrightarrow\mathbb{R}$ is continuous. Then f(D) is bounded.

Exercise 2 (pages 220 - 221)

Mark each statement True or False. Justify each answer.

- a. Let $f:[a,b] \longrightarrow \mathbb{R}$ be continuous and assume f(a) < 0 < f(b). Then there exists a point $c \in (a,b)$ st f(c) = 0.
- b. Let $f:[a,b] \longrightarrow \mathbb{R}$ be continuous and assume $f(a) \le k \le f(b)$. Then there exists a point $c \in [a,b]$ st f(c) = k.
- c. If $f: D \longrightarrow \mathbb{R}$ is continuous and bounded on D, then f assumes maximum and minimum values on D.

Exercise 5 (pages 220 - 221)

Show that the equation $5^x = x^4$ has at least one real solution.

Exercise 1 (pages 226 - 227)

Let $f: D \longrightarrow \mathbb{R}$. Mark each statement True or False. Justify each answer.

- a. f is uniformly continuous on D iff for every $\epsilon > 0$ there exists a $\delta > 0$ st $|f(x) f(y)| < \delta$ whenever $|x y| < \epsilon$ and $x, y \in D$.
- b. If $D = \{x\}$, then f is uniformly continuous at x.
- c. If f is continuous and D is compact, then f is uniformly continuous on D.

Exercise 2 (pages 226 - 227)

Let $f: D \longrightarrow \mathbb{R}$. Mark each statement True or False. Justify each answer.

- a. In the definition of uniform continuity, the positive δ depends only on the function f and the given $\epsilon > 0$.
- b. If f is continuous and (x_n) is a Cauchy sequence in D, then $(f(x_n))$ is a Cauchy sequence.
- c. If $f:(a,b) \longrightarrow \mathbb{R}$ can be extended to a function that is continuous on [a,b], then f is uniformly continuous on (a,b).

Exercise 3 (pages 226 - 227)

Determine which of the following continuous functions are uniformly continuous on the given set. Justify your answers.

- a. f(x) = x on [2, 5]
- b. f(x) = x on (0, 2)
- c. $f(x) = x^2 + 2x 7$ on [0, 5]
- d. $f(x) = x^2 + 2x 7$ on (1, 4)
- e. $f(x) = \frac{1}{r^2}$ on (0, 1)
- f. $f(x) = \frac{1}{r^2}$ on $(0, \infty)$
- g. $f(x) = \frac{x^2-4}{x-2}$ on (2, 4)
- h. $f(x) = x \sin(\frac{1}{x})$ on (0, 1)

Exercise 4(a)(b) (pages 226 - 227)

Prove that each function is uniformly continuous on the given set by directly verifying the ϵ - δ property in Definition 4.1.

- a. $f(x) = x^3$ on [0, 2]
- b. $f(x) = \frac{1}{x}$ on $[2, \infty)$

Exercise 5 (pages 226 - 227)

Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Exercise 11 (pages 226 - 227)

Let $f: D \longrightarrow \mathbb{R}$ be uniformly continuous on the bounded set D. Prove that f is bounded on D.