Advanced Algorithms, Fall 2012

Prof. Bernard Moret

Homework Assignment #10

due Monday night, Dec. 10

Write your solutions in LaTeX using the template provided on the Moodle and web sites and upload your PDF file through Moodle by 4:00 am Tuesday morning, Dec. 11.

Question 1. (Computational Geometry)

You are given n points on the plane, no three of them collinear. We say p_i and p_j are *intimate* if and only if the circle with $\overline{p_i p_j}$ as the diameter does not contain any other points.

- 1. Give an $O(n \log n)$ algorithm to calculate all intimate pairs.
- 2. Consider the complete graph on all n points, with the weight of edge (p_i, p_j) set to the distance between p_i and p_j .

Prove that any minimum spanning tree of this graph is made of edges linking intimate pairs.

Question 2. (Dynamic Programming)

You are given n distinct points on a line (say on the x axis). Design an algorithm in $O(n^3)$ to find a path to visit all points such that the summation of the *delay* for each point is minimized. The delay for a point p_i , with respect to a path P, is the total length of the subpath in P from the beginning of the path to the first arrival at p_i .

For example, assume you are given 5 points with coordinates 0, 9, 10, 11 and 20. If the path starts at 11, moves to 0, and then reverses direction to move to 20, then the delay is 0 for point 11, 1 for point 10, 2 for point 9, 11 for point 0, and 31 for point 20, for a total delay of 45—you can verify that this is the optimal total delay.

Question 3. (Randomized Algorithms)

Design a randomized algorithm that runs in $\tilde{O}(n+m)$ time and, given n red points and m green points on the plane (no three points are collinear), decides whether there exists a line such that all red points are on one side of this line while all green points are on the other side.

Question 4. (Randomized Analysis)

Consider coloring the edges of the complete graph on n vertices, K_n , from a set of two colors, say red and blue. Thus each edge is assigned a single color; note that this is not what is termed a *coloring* of the graph, in which coincident edges must be assigned different colors. We are interested in the largest complete subgraph of K_n that is entirely red or entirely blue.

Prove that, whenever we have

$$\binom{n}{m} 2^{1 - \binom{m}{2}} < 1,$$

there exists a red-blue coloring of K_n that does not induce a complete subgraph K_m that is entirely red nor one that is entirely blue. Prove it by showing that the event [no blue K_m and no red K_m] has nonzero probability.