Lezione del 19 + parte del 23 marzo

Corollario 0.1. Sia $f: U \to \mathbb{C}$ olomorfa con $U \subseteq \mathbb{C}$ aperto connesso. Le sequenti affermazioni sono equivalenti

- (i) f è costante in U
- (ii) f' è identicamente nullo
- (iii) Re(f) è costante in U
- (iv) Im(f) è costante in U

Dimostrazione.

- $(i) \Rightarrow (iii) e(i) \Rightarrow (iv)$ sono ovvie
- $(i) \Leftrightarrow (ii)$ Una funzione è costante se e solo se ha Jacobiano nullo. Ora essendo f olomorfa il suo Jacobiano è rappresentata dalla matrice $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$ con $f'(z_0) = \alpha + i\beta$. Ora il jacobiano è identicamente nullo se e solo se $\alpha = \beta = 0$ da cui se e solo se f'(z) = 0
- $(iii) \Rightarrow (i)$ Scriviamo nella base $\{1, i\}$ di \mathbb{C}

$$f(x,y) = u(x,y) + iv(x,y)$$

- Re(f) costante è equivalente a u costante equivalentemente $\frac{\partial u}{\partial x} = 0 = \frac{\partial u}{\partial y}$ Per Cauchy-Riemann si ha $\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} = 0$ dunque la tesi
- $(iv) \Rightarrow (i)$ in modo analogo al punto precedente

1 Serie di potenze

Definizione 1.1 (Assoluta convergente).

Sia $(c_n)_{n\in\mathbb{N}}$ una successione di numeri complessi.

Diciamo che $\sum_{n\geq 0} c_n$ è assolutamente convergente se la serie $\sum |c_n|$ è convergente

Esercizio 1.1. La serie $\sum \frac{i}{n!}$ è assolutamente convergente?

Proposizione 1.2. Siano $\sum a_n$ e $\sum b_n$ due serie assolutamente convergenti

- $\sum (a_n + b_n)$ è assolutamente convergente e la somma di questa serie è ottenuta sommando la somma delle serie dati
- se $c_n = \sum_{p=0}^n a_p b_{n-p}$ la serie $\sum c_n$ è assolutamente convergente e la sua somma è uguale al prodotto della somma delle 2 serie date

Definizione 1.2 (Raggio di convergenza).

Sia $\sum a_n z^n$ una serie di potenza chiamiamo raggio di convergenza la quantità

$$\rho = \sup\{r \in \mathbb{R} \, r > 0 \, | \, \sum |a_n| r^n \text{ è convergente } \}$$

 $Osservazione~1.~\rho$ può essere finito e in questo caso, $\rho \geq 0$ oppure ρ è infinito

Definizione 1.3. Chiamiamo disco di convergenza l'insieme $\{z \in \mathbb{C} \mid |z| < \rho\}$

Osservazione 2. Il disco di convergenza è aperto.

Se $\rho = 0$ allora il disco è vuoto

Proposizione 1.3. Data una serie di potenza $\sum a_n z^n$ esiste $0 \le \rho \le \infty$ tale che

- $\rho = 0$ la serie converge per z = 0
- $\rho = \infty$ la serie converge assolutamente per ogni z
- $0<\rho<\infty$ allora se $|z|>\rho$ la serie converge assolutamente, per $|z|>\rho$ la serie non converge

Inoltre si ha la formula di Hadamard

$$\frac{1}{\rho} = \lim \sup |a_n|^{1/n}$$

con la convenzione

$$\rho=0$$
 se il limite superiore è ∞

$$\rho = \infty$$
 se il limite superiore è 0

2

Esercizio 1.4. Calcolare il raggio di convergenza delle seguenti serie

- $\sum n!z^n$
- $\sum \frac{1}{n!} z^n$
- $\bullet \ \sum (-1)^n \frac{z^{2n}}{(2n)!}$
- $\bullet \ \sum (-1)^n \frac{z^{2n+1}}{(2n+1)!}$

Fatto 1.5. Siano $\sum a_n z^n$ e $\sum b_n z^n$ serie di potenze con raggio di convergenza > R per un certo R allora

$$S(z) = \sum a_n z^n + \sum b_n z^n$$
$$P(z) = \left(\sum a_n z^n\right) \left(\sum b_n z^n\right)$$

hanno raggio di convergenza minore di R. Inoltre $\forall r \in \mathbb{C}$ con |r| < R si ha

$$S(r) = \sum a_n r^n + \sum b_n r^n$$
$$P(r) = \left(\sum a_n r^n\right) \left(\sum b_n r^n\right)$$

Fatto 1.6. Sia $f(z) = \sum a_n z^n$ chiamiamo serie derivata la serie di potenze $\sum na_n z^{n-1}$ e la denotiamo con f'(z).

f e f' hanno lo stesso raggio di convergenze

2 Esponenziale e logaritmo complesso

Definizione 2.1. Fissato $z \in \mathbb{C}$ chiamiamo esponenziale del numero complesso z la quantità

$$e^z = \sum \frac{1}{n!} z^n$$

Definizione 2.2. Fissato $z \in \mathbb{C}$ chiamiamo coseno del numero complesso z la quantità

$$\cos z = \sum (-1)^n \frac{z^{2n}}{(2n)!}$$

Definizione 2.3. Fissato $z \in \mathbb{C}$ chiamiamo seno del numero complesso z la quantità

$$\sin z = \sum (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

Osservazione 3. Le definizioni sono ben poste, avendo le serie raggio di convergenza ∞

Esercizio 2.1. Provare che le definizioni date oggi e nella lezione precedente coincidono

Esempio 2.2. Dati $z, z' \in \mathbb{C}$, proviamo che $e^{z+z'} = e^z + e^{z'}$

Dimostrazione. Siano $a_n = \frac{1}{n}z^n$ e $b_n = \frac{1}{n}(z')^n$ allora

$$c_n = \sum_{p=0}^n a_p b_{n-p} = \sum_{p=0}^n \left(\frac{z^p}{p!}\right) \left(\frac{(z')^{n-p}}{(n-p)!}\right) = \frac{1}{n!} \sum_{p=0}^n \frac{n!}{p!(n-p)!} z^p (z')^{n-p} = \frac{1}{n!} \sum_{p=0}^n \binom{n}{p} z^p (z')^{n-p}$$

dunque $c_n = \frac{1}{n!}(z+z')^n$.

Per quanto abbiamo visto sulle serie di potenze $\sum c_n$ converge assolutamente con

$$e^{z+z'} = \sum c_n = \left(\sum a_n\right)\left(\sum b_n\right) = e^z \cdot e^{z'}$$

Osservazione 4. Siano $z,z'\in\mathbb{C}$ allora $e^z=e^{z'} \Leftrightarrow z'=z+i2\pi k$ con $k\in\mathbb{Z}$ infatti dall'esercizio precedente $e^{z'}\cdot e^{-z}=e^{z'-z}$.

Ora $e^z = e^{Re(z)}(\cos Im(z) + i\sin Im(z)$ dunque se w = z' - z otteniamo

$$e^z = e^{z'} \quad \Leftrightarrow \quad e^w = 1 \quad \Leftrightarrow \quad \begin{cases} e^{Re(w)} = 1 \\ \cos(Im(w)) + i\sin(Im(w)) = 1 \end{cases} \quad \Leftrightarrow \quad \begin{cases} Re(w) = 0 \\ Im(w) = 2\pi k \text{ con } k \in \mathbb{Z} \end{cases}$$

Definizione 2.4. Sia $z \in \mathbb{C} \setminus \{0\}$ allora definiamo il logaritmo del numero complesso z come

$$\log(z) = \log(|z|) + i \arg(z)$$

Osservazione 5. Nella definizione c'è un'ambiguità derivante dal fatto che $arg(z) \in \frac{\mathbb{R}}{2\pi\mathbb{Z}}$ Vediamo come sia possibile definire una funzione $z \to \log(z)$

Definizione 2.5 (branca).

Sia D un insieme aperto e connesso di \mathbb{C} con $0 \notin D$.

Diciamo che $f: D \to \mathbb{C}$ continua è una branca di $\log(z)$ se $e^{f(z)} = z$ (f(z) è uno dei possibili valori di $\log(z)$)

Sia D come sopra e $g: D \to \mathbb{C}$ continua è una branca di arg(z) se $z = |z| e^{ig(z)}$ (g(z) è uno dei possibili valori di arg(z))

Osservazione 6. Se g è una branca di arg(z) allora $f(x) = \log(|z|) + ig(x)$ è una branca di $\log z$

Proposizione 2.3. Assumiamo che esista una branca di $\log(z)$ in D, allora tutte le altre di $\log z$ in D sono della forma $f(z) + k(2\pi i)$ per qualche $z \in \mathbb{Z}$. Inoltre $f(z) + k(2\pi i)$ è una branca di $\log(z)$ in D per ogni z intero

Dimostrazione. Siano f(z) e g(z) due branche di log(z) in D consideriamo la funzione

$$h(z) = \frac{1}{2\pi i}(g(z) - h(z)) : D \to \mathbb{C}$$

Osserviamo che h è continua e ha immagine contenuta in \mathbb{Z} (essendo f(z) e g(z) due branche di $\log(z)$ allora $e^{f(z)} = z = e^{g(z)}$ due per quanto abbiamo osservato sull'esponenziale f(z) e g(z) differiscono per $k(2\pi i)$)

Poichè D è connesso allora h è costante dunque $h(t) = k \ \forall t \in D$ dunque

$$\frac{1}{2\pi i}(g(t) - f(t)) = k \quad \Rightarrow \quad g(t) = f(t) + 2k\pi i \ \forall t \in D$$

Osservazione 7. Per ogni $z \in D = \{z \in \mathbb{C} \mid Re(z) > 0\}$ esiste unico $\phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tale che $z = |z| e^{i\phi}$.

Definiamo la funzione $Arq: D \to \mathbb{C}$ con $Arq(z) = \phi$.

Se mostriamo che tale funzione è continua, abbiamo costruito una branca dell'argomento

Proposizione 2.4. $Arg: D \to \mathbb{C} \ \hat{e} \ continua$

Dimostrazione. Sia $U=\{z\in D\,|\,abs(z)=1\}$ sia $f:\,D\to U$ con $f(z)=\frac{z}{|(|z|)},$ chiaramente f è continua

Osserviamo che per ogni $z \in D$ arg(z) = arg(f(z)) dunque abbiamo il seguente diagramma cui abbiamo il seguente diagramma commutativo

Essendo f continua basta provare che $Arg:U\to\mathbb{C}$ è continua.

Per costruzione tale mappa è l'inversa della mappa $g: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to U$ dove $g(y) = e^{iy}$. Estendiamo tale mappa a

$$\widetilde{g}: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \{u \in \mathbb{C} \mid |u| = 1 \text{ e } Re(u) \ge 0\}$$

 \widetilde{g} è continua e bigettiva da un compatto ad uno spazio di Hausdorff dunque è un omeomorfismo, in particolare la sua inversa è continua, da cui anche l'inversa di g (f) è continua

Definizione 2.6. Chiamiamo branca principale di $\log z$ la funzione continua

$$\log(|z|) + iArg(z) \text{ per } z \in D = \{z \in \mathbb{C} \, | \, Re(z) > 0\}$$

Proposizione 2.5. La serie di potenze $\sum (-1)^{n+1} \frac{z^n}{n}$ converge per |z| < 1 ed è uguale alla branca principale di $\log(z+1)$

Proposizione 2.6. Se f(z) è una branca di $\log z$ in un insieme aperto e connesso la funzione ammette derivata $\frac{1}{z}$

Definizione 2.7. $\forall z, \alpha \in \mathbb{C} \text{ con } z \neq 0 \text{ poniamo}$

$$z^{\alpha} = e^{\alpha \log(z)}$$