Root locus

Kjartan Halvorsen

September 27, 2022

Block diagram algebra

Transfer function from r(t) to y(t):

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

Block diagram algebra

Transfer function from r(t) to y(t):

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

Mason's gain formula:
$$G_c(s) = \frac{Y(s)}{R(s)} = \frac{\sum_k P_k \Delta_k}{\Delta}$$

For simple systems with one loop only:

$$G_c(s) = \frac{Y(s)}{R(s)} = \frac{\text{Forward path gain}}{1 + \text{Loop gain}}$$

The DC motor

The DC motor

Unit step-response

Activity What is the angle (approximately) rotated by the motor after 0.1s starting from still?

The normalized DC motor

The normalized DC motor

Activity What is the settling time (approximately) for the velocity (in τ and in seconds)?

Activity What is the overshoot (in percent) and rise time (in seconds)?

Closed-loop transfer function:

$$G_c(s) = \frac{K}{s(s+1) + K}$$

Characteristic equation:

$$s^2 + s + K = 0$$

Activity Solve the characteristic equation!

Root locus

How do the closed-loop poles depend on K?

Root locus definition

Let

$$\begin{cases} P(s) &= s^n + a_1 s^{n-1} + \dots + a_n = (s - p_1)(s - p_2) \dots (s - p_n) \\ Q(s) &= s^m + b_1 s^{m-1} + \dots + b_m = (s - q_1)(s - q_2) \dots (s - q_m) \end{cases}, \quad n \ge m$$

The root locus shows how the roots to the equation

$$P(s) + K \cdot Q(s) = 0, \quad 0 \le K < \infty$$
 (1)

depend on the parameter K. The root locus consists of the set of all points in the complex plane that are roots to (1) for some non-negative value of K.

Characteristics of the root locus

The polynomial P(s) + KQ(s) = 0 above will always have n roots. Each gives a branch in the root locus. Since the polynomials P(s) and Q(s) have real-valued coefficients, all roots are either real or complex-conjugated pairs. This means that the root locus is symmetric about the real axis. Other characteristics

- Start points marked by crosses
- End points marked by circles
- Asymptotes
- Pieces of the real axis

Start- and end points

Start points These are the *n* roots of P(s) + KQ(s) for K = 0, i.e. the roots of P(s). These are the open-loop poles, and are marked with crosses ' \times '

End points These are the m (finite) roots of P(s) + KQ(s) when $K \to \infty$, and are hence the roots of Q(s). The end points are marked with circles 'o'

The real axis

Those parts of the real axis that have an odd number of real-valued start- or end points to the right (including multiplicity) belong to the root locus.

Asymptotes, directions

The directions of the asymptotes are given by the expression

$$heta_k = \arg s = \frac{(2k+1)\pi}{n-m}, \ k \in \mathbb{Z}$$

Example: 6 start points and 3 end points gives n - m = 6 - 3 = 3 and the directions

$$heta = egin{cases} rac{\pi}{3}, & k = 0 \ \pi, & k = 1 \ -rac{\pi}{3}, & k = -1 \end{cases}.$$

Asymptotes, intersection with the real axis

$$ip = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} q_i}{n - m},$$

where $\{p_i\}$ are the starting points (open-loop poles) and $\{q_i\}$ are the end points (open-loop zeros).

Examples

Motor driving an elastic shaft

$$\Theta_{2}(s) = \underbrace{\frac{k + bs}{s^{2}(J_{1}J_{2}s^{2} + bs + k)}}_{G(s)} T_{i}(s) \underbrace{-\frac{J_{1}s^{2} + bs + k}{s^{2}(J_{1}J_{2}s^{2} + bs + k)}}_{H(s)} T_{l}(s)$$

Motor driving an elastic shaft

Activity Indicate the start- and end points.

Motor driving an elastic shaft

Harmonic oscillator

Activity Indicate the start- and end points, and the asymptotes.

Harmonic oscillator

Lead-compensator

Activity Indicate the start- and end points, and the asymptotes.

Pair the root locus plots with the correct transfer function

$$G_1(s) = K rac{s+2}{s(s+4)}$$
 $G_2(s) = K rac{s+2}{s(s+4)(s+8)}$
 $G_3(s) = K rac{s+2}{s^2(s+4)}$
 $G_4(s) = K rac{1}{s^2(s+4)}$.

