Chem231B: Quiz #4

March 1, 2020

- 1. What is the spin multiplicity of the ground state of H_2 and of H_2^+ ? H_2 spin multiplicity is 1; H_2^+ is 2.
- 2. Give the electronic Hamiltonian for H_2 .

 $H_{\rm el}=\hat{h}(1)+\hat{h}(2)+V_{ee}$ where $\hat{h}(i)$ is the one electron Hamiltonian for *i*-th electron and V_{ee} is the coulombic interaction:

$$\hat{h}(i) = -\frac{\nabla_i^2}{2} - \frac{1}{|r_i - R\hat{z}|} - \frac{1}{|r_i|}$$
 and $V_{ee} = \frac{1}{|r_1 - r_2|}$

r is the position of the electron and R is the position of the nucleus. The H_2 is placed along the z-axis where a proton is at the origin.

- 3. Which one of the following changes significantly when going from H₂ to D₂: R_e , D_e , ω ?
- 4. Within the harmonic approximation, say how your answer to the previous question will change? Still ω .
- 5. Give an expression for the matrix element H_{AA} in H_2^+ for 1s orbitals $(\gamma = 1)$.

$$h_{AA} = \gamma^2/2 - \gamma f(x) = 1/2 - f(x)$$
, where $f(x) = 1 - \frac{(1+x)e^{-2x} - 1}{x}$.

6. Sketch how the matrix element H_{AA} should depend on R, giving its value as $R \to \infty$.

 H_{AA} should go to -0.5 Hartree as $R \to \infty$.

7. Sketch a molecular energy curve for H_2 as a function of R, giving its value as $R \to \infty$.

-11/16 or -0.6875 Hartree as $R \to \infty$

- 8. Sketch the curve within the Hartree-Fock approximation. What qualitative error does it make? Sketch which curve within HF?
- 9. For a molecule with $y_e=0$, deduce a formula for the number of states it will bind in terms of D_e , ω , and x_e .

$$E_{\text{vib}}(\nu) = \nu_e[(\nu + 1/2) - x_e(\nu + 1/2)^2]$$

Dissociation is when $E_{\rm vib}=D_e$ and hence, solve for ν which will yield the max number of bounded states $\nu_{\rm max} pprox \frac{1}{2x_e} - \frac{1}{2} + \frac{\sqrt{(1-x_e)^2 - 4x_eD_e/\nu_e}}{2x_e}$

10. Deduce an expression for x_e in terms of D_e and ω for the Morse potential, for which $\epsilon_n = -V_0 \left(1 - \frac{\alpha(n + \frac{1}{2})}{\sqrt{2 \mu V_0}}\right)^2$ $x_e = \frac{\alpha}{\sqrt{8\mu D_e}}$