Introduction to Machine Learning

Class Tree Based Model

Topic

Tree Based Ensembles: Bagged Trees and Random Forests

Agenda

Another category of machine learning models

Ensemble Models

Tree Based Ensembles Overview

Tree Based Ensembles Overview

Schematic working of ensembles

Tree Based Ensembles Overview

The way this data set is fed into each of the base learners is based on a data sampling scheme

Different sampling schemes give rise to different types of tree based ensembles

Tree Based Ensemble Models

Sampling Scheme	Bootstrap Sampling	Bootstrap Sampling + Feature Sampling	Data Reweighing	
Base Learner	Tree	Tree	Tree	

The total error due to any machine learning algorithm

In-sample error

Out-ofsample error

Good predictions on training data but is unable to do so on unseen data

Inability of an ML algorithm to fit the training data well

Inability of a model to generalize well

Error = Bias + Variance = In-sample Error + Out-of-sample Error Trade offs between the model complexity and the error in models

More complicated models have very **low in-sample error but have a high out-of-sample error**

Simpler models have **low out-of-sample error but high in-sample error**

Theoretically, there is a limit to minimum error that can be achieved

Reduce error further by decreasing insample error and out-of-sample error simultaneously

Use tree based models as base learners to reduce in-sample error

While training a tree based ensemble the constituent tree models are allowed to grow many levels deep

The intricacies of training data are captured intimately, thereby reducing the in-sample error

In the case of **Bagged trees** each of the unpruned trees are fed bootstrapped samples of original data set

Bootstrapped sampling simply refers to sampling by replacement

Blue and red dots are repeated more often in the samples than they are present in the original data

Bootstrapped Sampling at the data level

Bootstrapped Sampling helps in reducing out of sample error

If an unpruned decision tree is fit into any data set then the model will have very high out-of-sample error

Why?

The test data can be very different from training data

Since tree model is being overfitted on training data, the **out-of-sample error will be high**

Hypothetically, if unpruned tree model is being fitted on total population data the error will be very low

Low error due to all the variation and variety in data has been already seen by the model as the population data has been used to train the model

Realistic view of the data generation process

Synthetically generate variation and variety in the training data itself

Using **Bootstrapped Sampling** to create samples that are fed to each of the base learners

Peculiarities of Bagged Trees

Bagged tree ensemble is comprised of multiple decision trees

Not interpretable as a linear model or simple decision tree

Qualitative statement on ensemble models

Identify the important predictors by looking at Variable Importance

Variable Importance

Variable Importance - Averaging or summing the improvement in **Gini or Entropy for a classification model** and **RSS for a regression model** for all the variables

Bagged tree ensemble model contains many tree models

Feature importance of each variable in each of the constituent trees

Tracking the decrease in Gini metric and weighing this decrease appropriately

Variable Importance

Tree 1 Gini Measure for each split

Tree 2 Gini Measure for each split

Computing variable importance for all the variables used in the split

Variable Importance

Ensemble has N trees

Improvement in Gini/RSS Across Splits

Variable	Tree 1	Tree 2	Tree 3	••••	Tree N
V1	300	30	12		0
V2	600	0	200		150
•••					
V_k	120	450	30	••••	19

Variable	Variable Importance
V1	$\frac{(300+30+12+\dots+0)}{N}$
V2	$\frac{(600+0+200+\dots+150)}{N}$
***	••••
V_k	$\frac{(120 + 450 + 30 + \dots + 19)}{N}$

The average values of importance measures per variable will produce a consolidated number

Parameters of Bagged Trees

What could be the user specified parameters while building a bagged tree model?

Number of tree used to build an ensemble

Depth of the tree

Number of observations per node of a tree

User specified parameters or **Hyperparameters**

Parameters of Bagged Trees

User specified parameters have an implication

Different ensemble model depending on different parameters

Model 1: Trees = 100 Depth of Tree = 4

Which among the three model?

Model 2: Trees = 150 Depth of Tree = 3

K-Fold CV to get an estimate of out of sample error

Expensive

Model 3: Trees = 500 Depth of Tree = 4

Out of Bag Error is generally used in most tree based models

Out Of Bag Error (OOB)

In Bootstrap Sampling, some observation gets left out from the original data

Average Out of Bag observations in Bootstrapped Sampling is around **33**%

Random Forests

Random Forests

Number of random sample features for splitting can vary and is usually a **hyperparameter** that the user of the algorithm specifies

{V10, V1, V18} considered for split

Random Forests

Random Forests uses tree models as base learner

Extract Variable Importance or compute Out-of-bag Error to get an estimate of out of sample model performance for parameter tuning

Number of features considered for each split

Number of trees

Parameters of Radom Forests

Number of observations in root node

Depth of tree models

Recap

- Tree based ensembles overview
- Tree based ensembles models Bagged Tree and Random Forests
- Bootstrapped sampling
- Variable importance
- Out of bag error (OOB error)
- Random Forests
- Code Demo