Game Theory

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Firs	et Chapter	1
	1.1	First Section	1
	1.2	Groups of Games	1

ii CONTENTS

Chapter 1

First Chapter

1.1 First Section

DEFINITION 1.1 (Winning Position). Consider a two-player game. We say that a player has a **winning position** if and only if optimal play by that player guarantees a win.

DEFINITION 1.2 (Losing Position). Consider a two-player game. We say that a player has a **losing position** if and only if an optimal move by their opponent guarantees a loss.

PROPOSITION 1.3.

- From a winning position (player to move), there exists a move that leads to a losing position for the other player.
- From a losing position (player to move), every move leads to a winning position for the other player.

1.2 Groups of Games

DEFINITION 1.4 (Equivalent Games). Let G and H be two impartial games. We say that G and H are **equivalent** if and only if for all impartial games J, G + J is a losing position if and only if H + J is a losing position.

- for all impartial games J, G + J is a losing position if and only if H + J is a losing position.
- for all impartial games J, G+J is a winning position if and only if H+J is a winning position.

PROPOSITION 1.5. Game equivalence is an equivalence relation.

PROPOSITION 1.6. $G \equiv H$ implies that G and H are both winning or both losing.

LEMMA 1.7. G is a losing position if and only if $G \equiv *0$.

Proof. Backward Direction: Suppose that $G \equiv *0$. Then $\forall J, G + J$ is a losing position if and only if *0 + J is a losing position. In particular, take J := *0, then G + *0 is a losing position if and only if *0 + *0 is a losing position. Notice G + *0 = *0 and *0 + *0 = *0. So G is a losing position if and only if *0 is a losing position. We know that *0 is indeed a losing position. So G is a losing position.

Forward Direction: Suppose that G is a losing position. I will show that $G \equiv *0$. Let J be an arbitrary impartial game. Notice *0 + J = J. So there remains to show that G + J is losing if and only if J is losing.

Suppose that G + J is a losing position. I will show that J is a losing position. Assume for the sake of contradiction that J is not losing. Then J is winning. Let $J \to J'$ be a move such that J' is losing. Since G is losing and J' is losing, we get G + J' is losing. So G + J is winning. However, this contradicts to the assumption that G + J is losing. So J is losing.

Suppose that J is a losing position. I will show that G + J is a losing position. Double strong well-founded induction.

G is winning and J is losing, then G + J is winning???

DEFINITION 1.8 (Group of Game). Let \mathcal{G} be a set of games. Let $*: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ be a binary operation on \mathcal{G} . We say that $(\mathcal{G}, *)$ is a **group** if and only if the following conditions hold:

- 1. Associativity: $\forall G_1, G_2, G_3 \in \mathcal{G}, (G_1 * G_2) * G_3 \equiv G_1 * (G_2 * G_3).$
- 2. Identity: $\exists I \in \mathcal{G}$ such that $\forall G \in \mathcal{G}$, $G * I \equiv I * G \equiv G$.
- 3. Inverse: $\forall G \in \mathcal{G}, \exists H \in \mathcal{G} \text{ such that } G * H \equiv H * G \equiv I.$

LEMMA 1.9. $G \equiv H$ if and only if $G + H \equiv *0$.

Proof. Forward Direction: Suppose that $G \equiv H$. I will show that $G + H \equiv *0$. Since $G \equiv H$, we get

$$G + H \equiv H + H$$
, by the

LEMMA 1.10. Let G and H be impartial combinatorial games. Suppose that

- For each option G' of G, there exists an option of H which is equivalent to G'.
- For each option H' of H, there exists an option of G which is equivalent to H'.

Then $G \equiv H$.

Proof. Since
$$G' + H' \equiv *0$$
, we get $G + H \equiv *0$.

THEOREM 1.11 (Sum of NIM Heaps). Suppose $n_1, ..., n_k \in \mathbb{Z}_{++}$ are distinct powers of 2. Then we have

$$*(n_1 + ... + n_k) \equiv (*n_1 + ... + *n_k).$$

Proof. Base Case: n = 0.

Inductive Step: Suppose the theorem holds for all positive integers less than n. Write n as $n=2^{a_1}+2^{a_2}...$ where $a_1>a_2>...$. Define $q:=n-2^{a_1}=2^{a_2}+2^{a_3}+...$. Note that q< n and $q<2^{a_1}$. Apply induction on q. Then we get $*q\equiv *2^{a_1}+*2^{a_2}+...$ Now there

remains to show that $*n \equiv *2^{a_1} + *q$. Consider the options of *n: $\{*(n-1), *(n-2), ..., *0\}$ and the options of $*2^{a_1} + *q$: $\{G + *q, *2^{a_1} + H\}$ where G is some option of $*2^{a_1}$ and H is some option of *q.

Consider the options of the form G + *q where G is some option for $*2^{a_1}$.

Consider the options of the form $*2^{a_1} + H$ where H is some option of *q. The set of options is $\{*2^{a_1} + *i : 0 \le i < q\}$. Write i as $i = 2^{b_1} + 2^{b_2} + ...$ Notice $2^{a_1} + i < 2^{a_1} + q < n$. So by the inductive hypothesis, we get

$$*(2^{a_1}+i) = *(2^{a_1}+2^{b_1}+2^{b_2}+...) = *2^{a_1}+*2^{b_1}+*2^{b_2}+...$$

So the set of options of *n is equivalent to the set of options for $*2^{a_1} + *q$. So $*n \equiv *2^{a_1} + *2^{a_2} + ...$

EXAMPLE 1.12.

$$(5,9,8) = *5 + *9 + *8 = *(4+1) + *(8+1) + *8$$

= *4 + *1 + *8 + *1 + *8 = *4.

So the optimal move is to take away the *4: $(5,9,8) \rightarrow (1,9,8)$.

DEFINITION 1.13 (Balance, Unbalanced). We say that a NIM position $(a_1, ..., a_q)$ is **balanced** if and only if $a_1 \oplus ... \oplus a_q = 0$. We say that is it **unbalanced** otherwise.

THEOREM 1.14. A NIM position $(a_1, ..., a_q)$ is a losing (winning) position if and only if it is balanced (unbalanced).