Loan Tap - Logistic Regression Case Study

About Data

Loantap is a leading financial technology company based in India, specializing in providing flexible and innovative loan products to individuals and businesses. With a focus on customer-centric solutions, Loantap leverages technology to offer hassle-free borrowing experiences, including personal loans, salary advances, and flexible EMI options. Their commitment to transparency, speed, and convenience has established them as a trusted partner for borrowers seeking efficient financial solutions.

- LoanTap is at the forefront of offering tailored financial solutions to millennials.
- Their innovative approach seeks to harness data science for refining their credit underwriting process.
- The focus here is the Personal Loan segment. A deep dive into the dataset can reveal patterns in borrower behavior and creditworthiness.
- Analyzing this dataset can provide crucial insights into the financial behaviors, spending habits, and potential risk associated with each borrower.
- The insights gained can optimize loan disbursal, balancing customer outreach with risk management.

Objective

In [49]: df.head()

As a data scientist at LoanTap, you are tasked with analyzing the dataset to determine the creditworthiness of potential borrowers. Your ultimate objective is to build a logistic regression model, evaluate its performance, and provide actionable insights for the underwriting process.

```
In [107... | import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy.stats import ttest_ind,chi2_contingency
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import train_test_split, KFold, cross_val_score
         from sklearn.preprocessing import MinMaxScaler, LabelEncoder, StandardScaler
         from sklearn.metrics import (
             accuracy_score, confusion_matrix, classification_report,
              roc_auc_score, roc_curve, auc, precision_recall_curve, average_precision_score,
             ConfusionMatrixDisplay, RocCurveDisplay,f1_score,recall_score,precision_score
         from statsmodels.stats.outliers_influence import variance_inflation_factor
         from imblearn.over_sampling import SMOTE
         %matplotlib inline
         import warnings
         warnings.filterwarnings("ignore")
In [48]: df=pd.read_csv("logistic_regression.csv")
```

Out[49]:		loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership	annual_inc	•••	open_
	0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	RENT	117000.0	•••	,
	1	8000.0	36 months	11.99	265.68	В	В5	Credit analyst	4 years	MORTGAGE	65000.0		
	2	15600.0	36 months	10.49	506.97	В	ВЗ	Statistician	< 1 year	RENT	43057.0	•••	,
	3	7200.0	36 months	6.49	220.65	А	A2	Client Advocate	6 years	RENT	54000.0		
	4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	MORTGAGE	55000.0		,

5 rows × 27 columns

In [50]: df.shape

Out[50]: (396030, 27)

In [51]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 396030 entries, 0 to 396029
Data columns (total 27 columns):

#	Column		ll Count	Dtype
0	loan_amnt		non-null	float64
1	term	396030		object
2	int_rate	396030	non-null	float64
3	installment	396030	non-null	float64
4	grade	396030	non-null	object
5	sub_grade	396030	non-null	object
6	emp_title	373103	non-null	object
7	emp_length	377729	non-null	object
8	home_ownership	396030	non-null	object
9	annual_inc	396030	non-null	float64
10	verification_status	396030	non-null	object
11	issue_d	396030	non-null	object
12	loan_status	396030	non-null	object
13	purpose	396030	non-null	object
14	title	394274	non-null	object
15	dti	396030	non-null	float64
16	earliest_cr_line	396030	non-null	object
17	open_acc	396030	non-null	float64
18	pub_rec	396030	non-null	float64
19	revol_bal	396030	non-null	float64
20	revol_util	395754	non-null	float64
21	total_acc	396030	non-null	float64
22	initial_list_status	396030	non-null	object
23	application_type	396030	non-null	object
24	mort_acc	358235	non-null	float64
25	<pre>pub_rec_bankruptcies</pre>	395495	non-null	float64
26	address	396030	non-null	object
dtype	es: float64(12), objec	t(15)		

memory usage: 81.6+ MB

In [52]: df.describe().T

Out[52]: min 25% count mean std

	count	mean	std	min	25%	50%	75%	max
loan_amnt	396030.0	14113.888089	8357.441341	500.00	8000.00	12000.00	20000.00	40000.00
int_rate	396030.0	13.639400	4.472157	5.32	10.49	13.33	16.49	30.99
installment	396030.0	431.849698	250.727790	16.08	250.33	375.43	567.30	1533.81
annual_inc	396030.0	74203.175798	61637.621158	0.00	45000.00	64000.00	90000.00	8706582.00
dti	396030.0	17.379514	18.019092	0.00	11.28	16.91	22.98	9999.00
open_acc	396030.0	11.311153	5.137649	0.00	8.00	10.00	14.00	90.00
pub_rec	396030.0	0.178191	0.530671	0.00	0.00	0.00	0.00	86.00
revol_bal	396030.0	15844.539853	20591.836109	0.00	6025.00	11181.00	19620.00	1743266.00
revol_util	395754.0	53.791749	24.452193	0.00	35.80	54.80	72.90	892.30
total_acc	396030.0	25.414744	11.886991	2.00	17.00	24.00	32.00	151.00
mort_acc	358235.0	1.813991	2.147930	0.00	0.00	1.00	3.00	34.00
pub_rec_bankruptcies	395495.0	0.121648	0.356174	0.00	0.00	0.00	0.00	8.00

In [53]: df.dtypes

float64 Out[53]: loan_amnt object term float64 int_rate installment float64 object grade object sub_grade emp_title object emp_length object home_ownership object float64 annual_inc object verification_status issue_d object object loan_status object purpose title object dti float64 earliest_cr_line object float64 open_acc float64 pub_rec revol_bal float64 float64 revol_util total_acc float64 initial_list_status object object application_type float64 mort_acc pub_rec_bankruptcies float64 address object dtype: object

In [54]: df.isna().sum().sort_values(ascending=False)

37795

Out[54]: mort_acc

emp_title 22927 18301 emp_length title 1756 pub_rec_bankruptcies 535 revol_util 276 loan_amnt 0 0 dti application_type 0 initial_list_status 0 total_acc 0 0 revol_bal pub_rec 0 open_acc 0 0 earliest_cr_line purpose 0 term 0 loan_status 0 issue_d 0 0 verification_status annual_inc 0 home_ownership 0 sub_grade 0 grade installment 0 0 int_rate 0 address

dtype: int64

In [55]: round(((df.isna().sum()/df.shape[0])*100),2).sort_values(ascending=False)

```
9.54
Out[55]: mort_acc
          emp_title
                                   5.79
          emp_length
                                   4.62
          title
                                  0.44
          pub_rec_bankruptcies
                                   0.14
          revol_util
                                   0.07
          loan_amnt
                                   0.00
                                   0.00
          dti
          application_type
                                   0.00
          initial_list_status
                                   0.00
          total_acc
                                   0.00
          revol_bal
                                   0.00
                                   0.00
          pub_rec
          open_acc
                                   0.00
          earliest_cr_line
                                   0.00
                                   0.00
          purpose
          term
                                   0.00
          loan_status
                                   0.00
          issue_d
                                   0.00
                                   0.00
          verification_status
          annual_inc
                                   0.00
          home_ownership
                                   0.00
                                   0.00
          sub_grade
                                   0.00
          grade
          installment
                                   0.00
          int_rate
                                   0.00
          address
                                   0.00
          dtype: float64
In [56]: df.duplicated().sum()
Out[56]: 0
In [57]: df.nunique().sort_values(ascending=False)
Out[57]: address
                                   393700
                                   173105
          emp_title
          installment
                                    55706
          revol_bal
                                    55622
          title
                                    48816
          annual_inc
                                    27197
          dti
                                    4262
                                    1397
          loan_amnt
                                    1226
          revol_util
          earliest_cr_line
                                      684
          int_rate
                                      566
                                      118
          total_acc
                                      115
          issue_d
                                       61
          open_acc
          sub_grade
                                       35
                                       33
          mort_acc
                                       20
          pub_rec
                                       14
          purpose
          emp_length
                                       11
          pub_rec_bankruptcies
                                        9
                                        7
          grade
                                        6
          home_ownership
                                        3
          application_type
                                        3
          verification_status
                                        2
          term
                                        2
          loan_status
                                        2
```

We don't have any duplicates in the data but we do have null values in the data which needs to be treated before EDA and model building.

We also have some categorical features in the data which needs to be converted into categorical variable.

```
In [58]: df.isna().sum().sum()/df.shape[0]*100
Out[58]: 20.601974597884
```

As 20% of our data contains null values, so we can't drop such a huge chunck of data for efficient model building.so, we will do null treatment like imputation.

Null Treatment

initial_list_status

dtype: int64

```
In [59]: df["emp_title"]=df["emp_title"].fillna("Not Available")
         df["emp_length"] = df["emp_length"].fillna("< 1 year")</pre>
         df["title"]=df["title"].fillna("Unavailable")
         df["mort_acc"]=df["mort_acc"].fillna(df["mort_acc"].mode()[0])
         df.loc[df["pub_rec_bankruptcies"].isna(),"pub_rec_bankruptcies"] = 0.0
         df["revol_util"]=df["revol_util"].fillna(df["revol_util"].mode()[0])
In [60]: df.isna().sum().sum()/df.shape[0]*100
Out[60]: 0.0
In [61]: df.describe(include='object').T
Out[61]:
                             count unique
                                                                  top
                                                                          freq
                      term 396030
                                         2
                                                             36 months 302005
                                         7
                     grade 396030
                                                                       116018
                 sub_grade 396030
                                        35
                                                                   В3
                                                                        26655
                  emp_title 396030
                                    173106
                                                           Not Available
                                                                        22927
                emp_length 396030
                                                             10+ years 126041
                                        11
           home_ownership 396030
                                                            MORTGAGE 198348
                                         6
          verification_status 396030
                                         3
                                                               Verified 139563
                   issue_d 396030
                                       115
                                                              Oct-2014
                                                                        14846
                                                             Fully Paid 318357
                                         2
                loan_status 396030
                   purpose 396030
                                                      debt_consolidation 234507
                                        14
                      title 396030
                                     48817
                                                      Debt consolidation 152472
             earliest_cr_line 396030
                                                             Oct-2000
                                       684
                                                                         3017
           initial_list_status 396030
                                         2
                                                                    f 238066
                                                            INDIVIDUAL 395319
           application_type 396030
                                         3
                   address 396030 393700 USCGC Smith\r\nFPO AE 70466
In [62]: #Split issue_date into month and year
         df[["issue_month", "issue_year"]] = df["issue_d"].str.split("-", expand=True)
         df.drop(["issue_d"], axis=1, inplace=True)
In [63]: |#Split er_cr_line date into month and year
         df[["er_cr_line_month", "er_cr_line_year"]] = df["earliest_cr_line"].str.split("-", expand=True)
         df.drop(["earliest_cr_line"], axis=1, inplace=True)
In [175... df[["state","zipcode"]] = df["address"].str.extract(r"([A-Z]{2}) (\d{5})")
         df.drop(["address"], axis=1, inplace=True)
         Feature Engineering
In [64]: df["pub_rec"] = [1 if i > 1.0 else 0 for i in df["pub_rec"]]
         df["mort_acc"] = [1 if i > 1.0 else 0 for i in df["mort_acc"]]
         df["pub_rec_bankruptcies"] = [1 if i > 1.0 else 0 for i in df["pub_rec_bankruptcies"]]
In [66]: # List of categorical columns
         cat_cols = df.select_dtypes(include="object")
         # List of numerical columns
         num_cols = df.select_dtypes(exclude="object")
In [74]: | num_cols.head(2)
Out [74]:
             loan_amnt int_rate installment annual_inc
                                                        dti open_acc pub_rec revol_bal revol_util total_acc mort_acc pub_rec_ba
          0
               10000.0
                          11.44
                                    329.48
                                             117000.0 26.24
                                                                 16.0
                                                                                36369.0
                                                                                              41.8
                                                                                                       25.0
                                              65000.0 22.05
          1
                8000.0
                          11.99
                                    265.68
                                                                  17.0
                                                                            0
                                                                                 20131.0
                                                                                             53.3
                                                                                                       27.0
         Graphical Analysis
In [101...
         fig = plt.figure(figsize=(15,20))
          for i,col in enumerate(num_cols,1):
              plt.subplot(6,2,i)
              sns.histplot(x=col,data=df,kde=True)
         fig.suptitle("Univariate Analysis/Quantitative", fontsize=20)
          plt.show()
```

Univariate Analysis/Quantitative

Box Plot for outlier detection

```
In [132... fig = plt.figure(figsize=(15,20))
    for i,col in enumerate(num_cols,1):
        plt.subplot(6,2,i)
        sns.boxplot(x=col,data=df)
    fig.suptitle("Box plot for all cols")
```

plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()

Box plot for all cols

From the boxplot it is evident that we have otliers in almost all numeric columns, which needs to be treated before model building.

In [79]:	cat	_cols.h	nead(1)									
Out[79]:		term	grade	sub_grade	emp_title	emp_length	home_ownership	verification_status	loan_status	purpose	title	initial_
	0	36 months	В	В4	Marketing	10+ years	RENT	Not Verified	Fully Paid	vacation	Vacation	

Univariate Analysis/Qualitative

Bivariate Analysis

```
In [137... fig = plt.figure(figsize=(15,23)).suptitle("BIivariate Analysis/Qualitative/cat_cols vs loan status", fontsize=20)
for i,col in enumerate(cat_cols1,1):
    plt.subplot(5,2,i)
    sns.countplot(x=col,hue="loan_status", data=df)
    plt.xticks(rotation=90)
    plt.tight_layout(rect=[0, 0, 1, 0.96])
    plt.show()
```

Blivariate Analysis/Qualitative/cat_cols vs loan status

fig = plt.figure(figsize=(15,23))
for i,col in enumerate(num_cols,1):
 plt.subplot(6,2,i)
 sns.boxplot(x="loan_status",y=col,data=df)

fig.suptitle("Box plot for num cols vs loan status")
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()

Box plot for num cols vs loan status


```
In [157... fig = plt.figure(figsize=(15,6))
          plt.subplot(1,3,1)
          sns.countplot(x="pub_rec",data=df,hue="loan_status")
          plt.title("loan_status vs pub_rec")
          plt.subplot(1,3,2)
          sns.countplot(x="mort_acc",data=df,hue="loan_status")
          plt.title("loan_status vs mort_acc")
          plt.subplot(1,3,3)
          sns.countplot(x="pub_rec_bankruptcies",data=df,hue="loan_status")
          plt.title("loan_status vs pub_rec_bankruptcies")
          plt.tight_layout(rect=[0, 0, 1, 0.96])
          plt.show()
                          loan_status vs pub_rec
                                                                                                             loan_status vs pub_rec_bankruptcies
                                                                      loan_status vs mort_acc
                                          loan_status
                                                                                       loan_status
                                                                                                                                   loan_status
                                          Fully Paid
                                                                                       Fully Paid
                                                                                                                                   Fully Paid
           300000
                                                                                                    300000
                                                       175000
                                           Charged Off
                                                                                       Charged Off
                                                                                                                                   Charged Off
           250000
                                                       150000
                                                                                                    250000
```



```
In [146... fig = plt.figure(figsize=(15,6))
    sns.scatterplot(x="loan_amnt",y="int_rate",data=df)
    plt.show()
```


In [151... fig = plt.figure(figsize=(15,6))
 sns.scatterplot(x="annual_inc",y="loan_amnt",data=df)
 plt.show()

In [152... cr=num_cols.corr()
 cr

:[152	loan_amnt	int_rate	installment	annual_inc	dti	open_acc	pub_rec	revol_bal	revol_util	tot
loan_amnt	1.000000	0.168921	0.953929	0.336887	0.016636	0.198556	-0.027789	0.328320	0.100286	0.2
int_rate	0.168921	1.000000	0.162758	-0.056771	0.079038	0.011649	0.036631	-0.011280	0.292349	-O.C
installment	0.953929	0.162758	1.000000	0.330381	0.015786	0.188973	-0.021382	0.316455	0.124179	0.2
annual_inc	0.336887	-0.056771	0.330381	1.000000	-0.081685	0.136150	0.010399	0.299773	0.027492	0.1
dti	0.016636	0.079038	0.015786	-0.081685	1.000000	0.136181	-0.012845	0.063571	0.088491	0.
open_acc	0.198556	0.011649	0.188973	0.136150	0.136181	1.000000	-0.009732	0.221192	-0.129081	0.6
pub_rec	-0.027789	0.036631	-0.021382	0.010399	-0.012845	-0.009732	1.000000	-0.044911	-0.040764	-0.(
revol_bal	0.328320	-0.011280	0.316455	0.299773	0.063571	0.221192	-0.044911	1.000000	0.226245	0.
revol_util	0.100286	0.292349	0.124179	0.027492	0.088491	-0.129081	-0.040764	0.226245	1.000000	-0.
total_acc	0.223886	-0.036404	0.202430	0.193023	0.102128	0.680728	-0.001264	0.191616	-0.103372	1.C
mort_acc	0.220650	-0.054173	0.199140	0.196814	0.001661	0.129318	0.013248	0.182652	0.018534	0.0
pub_rec_bankruptcies	-0.027837	0.021520	-0.025444	-0.009160	-0.006361	-0.007626	0.534549	-0.034154	-0.035434	0.0

Correlation Matrix

- There exists a strong correlation between loan_amnt and installment, indicating that higher loan amounts correspond to larger installment payments.
- The variables total_acc and open_acc is showing a significant correlation.
- There is a good correlation between pub_rec_bankruptcies and pub_rec as well.

```
In []:
In [176... # outlier treatment
def remove_outliers(data, threshold=3):
    # Calculate Z-scores for numerical columns
    z_score = (df[num_cols.columns] - df[num_cols.columns].mean()) / df[num_cols.columns].std()
    # Identify outliers
    outlier = np.abs(z_score) > threshold
    # Keep non-outliers for numerical columns
    df_new = df[~outlier.any(axis=1)]
    return df_new

In [177... df1 = remove_outliers(df)
In [178... df1.shape
Out[178... (369208, 30)
In [179... df1.describe().T
```

> count mean std min 25% 50% 75% max loan_amnt 369208.0 13669.662358 7938.993467 500.00 7675.00 12000.00 18900.0000 38475.00 int_rate 369208.0 16.2900 26.99 13.557345 4.421167 5.32 10.16 13.18 549.0275 installment 369208.0 416.284609 230.827795 16.08 246.99 368.45 1183.81 annual_inc 369208.0 69803.078745 35871.857100 4000.00 45000.00 62000.00 85000.0000 259000.00 8.085114 dti 369208.0 17.330041 0.00 11.31 16.89 22.9300 71.40 open_acc 369208.0 8.00 10.973124 4.595719 0.00 10.00 14.0000 26.00 **pub_rec** 369208.0 0.000000 0.000000 0.00 0.00 0.00 0.0000 0.00 **revol_bal** 369208.0 14098.853606 11601.848727 0.00 5964.00 10956.50 18864.0000 77618.00 revol_util 369208.0 0.00 53.878627 24.396420 36.00 54.90 72.9000 123.30 total_acc 369208.0 24.666112 10.987720 2.00 16.00 23.00 32.0000 61.00 mort_acc 369208.0 0.387378 0.487152 0.00 0.00 0.00 1.0000 1.00 0.000000 0.00 0.00 0.00 0.0000 0.00 pub_rec_bankruptcies 369208.0 0.000000

Out [179...

Out [195...

10000.0

36

```
Label Encoding
In [181... df1["loan_status"]=df1.loan_status.map({"Fully Paid":1, "Charged Off":0})
          df1["initial_list_status"]=df1.initial_list_status.map({"w":0, "f":1})
In [184... | df.head(1)
Out [184...
             loan_amnt
                          term int_rate installment grade sub_grade emp_title emp_length home_ownership annual_inc ... initial_lis
               10000.0
                                  11.44
                                            329.48
                                                                 B4 Marketing
                                                                                  10+ years
                                                                                                              117000.0 ...
         1 rows × 30 columns
In [185... | df1["emp_length_time"] = df1["emp_length"].str.extract("(\d+)")
          df1.drop(["emp_length"], axis=1, inplace=True)
          df1["term"] = df1["term"].str.split().str[0].astype("object")
In [186... | dfl.head(1)
Out [186...
             loan_amnt term int_rate installment grade sub_grade emp_title home_ownership annual_inc verification_status ...
                                                                                                                              appl
          0
               10000.0
                          36
                                11.44
                                          329.48
                                                      В
                                                                   Marketing
                                                                                       RENT
                                                                                                117000.0
                                                                                                                Not Verified ...
         1 rows × 30 columns
          Removing unneccessary features
In [193... cat_cols1 = df1.select_dtypes(include=["object"]).columns.tolist()
          for col in cat cols1:
              chi2, p, dof, expected = chi2_contingency(pd.crosstab(df1[col], df1["loan_status"]))
              if p > 0.05:
                  print(col,"p_value:",p)
         emp_title p_value: 0.08796940333678684
         title p_value: 1.0
         er_cr_line_month p_value: 0.1380278790045173
         state p_value: 0.8265092011378623
In [194... df2 = df1.drop(columns=["emp_title","title","sub_grade","er_cr_line_month","er_cr_line_year","initial_list_status",
                                   "state", "issue_month", "issue_year", "pub_rec", "pub_rec_bankruptcies"], axis=1)
         df2.head(1)
In [195...
```

One Hot Encoding on multivariate features

11.44

```
In [196... dummies=["zipcode", "grade", "purpose", "home_ownership", "verification_status", "application_type"]
          df3 = pd.get_dummies(df2, columns=dummies, drop_first=True)
In [197... df3.shape
```

loan_amnt term int_rate installment grade home_ownership annual_inc verification_status loan_status purpose

RENT

В

329.48

117000.0

Not Verified

dti c

1 vacation 26.24

```
Out[197... (369208, 50)
In [198... df3.sample(1)
Out [198...
                  loan_amnt term int_rate installment annual_inc loan_status dti open_acc revol_bal revol_util ... purpose_weddin
          288754
                      5400.0
                               36
                                      7.75
                                                168.6
                                                          8000.0
                                                                          1 3.0
                                                                                       4.0
                                                                                              1321.0
                                                                                                          16.5 ...
                                                                                                                             Fals
         1 rows × 50 columns
In [199... X = df3.drop(["loan_status"], axis=1)
         y = df3["loan_status"]
In [200... X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,stratify=y,random_state=42)
          print(X_train.shape)
          print(X_test.shape)
          print(y_train.shape)
         print(y_test.shape)
        (295366, 49)
        (73842, 49)
         (295366,)
        (73842,)
In [201... | scaler = MinMaxScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
         X_train = pd.DataFrame(X_train, columns=X.columns)
         X_test = pd.DataFrame(X_test, columns=X.columns)
In [211... | #Fit the Model on training data
         model = LogisticRegression()
         model.fit(X_train, y_train)
Out [211...
              LogisticRegression
         LogisticRegression()
In [212... | y_train_pred = model.predict(X_train)
         y_test_pred = model.predict(X_test)
In [213... model.score(X_test, y_test)
Out [213... 0.8898729720213429
In [214... | model.score(X_test, y_test_pred)
Out [214... 1.0
In [223... model.coef_
Out[223... array([[ 3.06401495e-02, -5.20513279e-01, -1.82601837e-02,
                  -5.55513219e-01, 1.42734222e+00, -1.68076747e+00,
                  -6.78086842e-01, 4.70377303e-01, -4.96482323e-01,
                   5.45035129e-01, 7.83999731e-03, 1.23114517e-01,
                   8.57930425e+00, -1.25752993e+01, -4.45579784e+00,
                   8.60193133e+00, -4.46614609e+00, -4.49528668e+00,
                  -4.46769462e+00, -1.25518226e+01, -1.25394661e+01,
                  -5.53512607e-01, -1.02950119e+00, -1.30871528e+00,
                  -1.50886151e+00, -1.64464494e+00, -1.64111246e+00,
                  -2.41129149e-02, -9.25182826e-02, -4.18862284e-02,
                  -1.55921892e-01, 7.45519921e-03, -7.96433044e-02,
                   -2.56807412e-01, -8.93619261e-02, -1.20571148e-01,
                  -2.03585651e-01, -4.71908078e-01, -4.13440942e-02,
                   3.04798661e-01, 1.64092069e+00, 1.89129870e-01,
                   7.48882522e-01, 1.51492599e+00, 1.39229000e+00,
                  -2.14960406e-01, -1.18012675e-01, 2.39778447e-01,
                   2.35944480e+00]])
In [324... df_= pd.DataFrame(list(zip(X_train.columns,np.abs((model.coef_.flatten())))),columns=["feature", "coeff"])
         df_.sort_values(by="coeff",ascending=False)
```

Out[324...

	feature	coeff
13	zipcode_11650	9.008260
19	zipcode_86630	8.992093
20	zipcode_93700	8.980189
17	zipcode_48052	3.152789
18	zipcode_70466	3.125847
16	zipcode_30723	3.123890
14	zipcode_22690	3.113900
15	zipcode_29597	2.467996
12	zipcode_05113	2.465040
5	dti	1.606830
4	annual_inc	1.450594
25	grade_F	1.323139
26	grade_G	1.294236
24	grade_E	1.261084
23	grade_D	1.105960
48	application_type_JOINT	0.988525
22	grade_C	0.868723
40	home_ownership_MORTGAGE	0.824151
43	home_ownership_OWN	0.686651
6	open_acc	0.675208
44	home_ownership_RENT	0.571984
3	installment	0.532176
9	total_acc	0.509727
1	term	0.508642
37	purpose_small_business	0.493817
8	revol_util	0.462130
42	home_ownership_OTHER	0.455501
21	grade_B	0.445886
7	revol_bal	0.404453
2	int_rate	0.333633
33	purpose_medical	0.260203
36	purpose_renewable_energy	0.252552
45	verification_status_Source Verified	0.209947
30	purpose_home_improvement	0.195402
39	purpose_wedding	0.160268
35	purpose_other	0.132341
47	application_type_INDIVIDUAL	0.129819
32	purpose_major_purchase	0.129132
28	purpose_debt_consolidation	0.122154
11	emp_length_time	0.119705
29	purpose_educational	0.114901
34	purpose_moving	0.114487
46	verification_status_Verified	0.108187
41	home_ownership_NONE	0.103133
38	purpose_vacation	0.090540
27	purpose_credit_card	0.053794
31	purpose_house	0.039128
10	mort_acc	0.017398
0	loan_amnt	0.017112

```
In [224... model.intercept_
```

Evaluation Metrics

Out[224... array([5.82512612])

Accuracy: Train:0.8898383700222774 Test:0.8898729720213429 F1 Score: Train:0.935572399372713 Test:0.9355697466208186 Recall Score: Train:0.9939207041044713 Test:0.9935715127139323 Precision Score: Train:0.8836949203261764 Test:0.8839664026590409

Confusion Matrix

```
In [221... cm = confusion_matrix(y_test, y_test_pred)
    disp = ConfusionMatrixDisplay(cm)
    disp.plot()
    plt.title("Confusion Matrix")
    plt.show()
```



```
In [222... print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1–score	support
0	0.95	0.46	0.62	14419
1	0.88	0.99	0.94	59423
accuracy			0.89	73842
macro avg	0.91	0.73	0.78	73842
weighted avg	0.90	0.89	0.87	73842

Regularization

```
In [228... #Try with different regularization factor lamda and choose the best to build the model
    lambd = np.arange(0.01, 1000, 10)

train_scores = []
test_scores = []

for i in lambd:
    model = LogisticRegression(C = 1/i)
    model.fit(X_train, y_train)

    tr_score = model.score(X_train, y_train)
    te_score = model.score(X_test, y_test)

    train_scores.append(tr_score)
    test_scores.append(te_score)
```

```
In [230... #Plot the train and test scores with respect lambda values i.e. regularization factors range = np.arange(0.01, 1000, 10)
```

```
plt.figure(figsize=(15,6))
sns.lineplot(x=range,y=test_scores,color="red",label="test")
sns.lineplot(x=range,y=train_scores,color="green",label="train")
plt.title("Regularization",fontsize=18)
plt.xlabel("lambda")
plt.ylabel("Score")
plt.show()
```

```
0.890 0.888 0.888 0.888 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886
```

```
In [266... | print(np.argmax(test_scores))
          print(test_scores[np.argmax(test_scores)])
        0.889981311448769
In [267...] opt_lambd = 0.01 + (10*1)
          opt_lambd
Out [267... 10.01
In [268...
         model = LogisticRegression(C=1/opt_lambd)
         model.fit(X_train, y_train)
Out[268...
                     LogisticRegression
          LogisticRegression(C=0.0999000999000999)
In [269... | y_test_pred = model.predict(X_test)
In [270... model.score(X_test, y_test)
Out [270... 0.889981311448769
In [271... print(f"Accuracy:
                                   Train:{model.score(X_train, y_train)}
                                                                                Test:{model.score(X_test, y_test)}")
          print(f"F1 Score:
                                                                                  Test:{f1_score(y_test,y_test_pred)} ")
                                   Train:{f1_score(y_train,y_train_pred)}
                                                                                     Test:{recall_score(y_test,y_test_pred)} ")
         print(f"Recall Score:
                                   Train:{recall_score(y_train,y_train_pred)}
         print(f"Precision Score: Train:{precision_score(y_train,y_train_pred)}
                                                                                        Test:{precision_score(y_test,y_test_pre
        Accuracy:
                          Train: 0.8898248275021499
                                                         Test:0.889981311448769
        F1 Score:
                          Train: 0.935572399372713
                                                         Test:0.935680015201178
                          Train:0.9939207041044713
                                                         Test: 0.9944129377513757
        Recall Score:
        Precision Score: Train: 0.8836949203261764
                                                         Test:0.8834980488315416
In [272... | # Confusion Matrix
         cm = confusion_matrix(y_test, y_test_pred)
         disp = ConfusionMatrixDisplay(cm)
         disp.plot()
          plt.title("Confusion Matrix")
         plt.show()
```



```
In [273... print(classification_report(y_test, y_test_pred))
```

	precision	recall	f1-score	support
0 1	0.95 0.88	0.46 0.99	0.62 0.94	14419 59423
accuracy macro avg weighted avg	0.92 0.90	0.73 0.89	0.89 0.78 0.87	73842 73842 73842

Oversampling

```
In [261... sm=SMOTE(random_state=42)
         X_train_res, y_train_res = sm.fit_resample(X_train,y_train.ravel())
         print(f"Before OverSampling, count of label 1: {sum(y_train == 1)}")
         print(f"Before OverSampling, count of label 0: {sum(y_train == 0)}")
         print(f"After OverSampling, count of label 1: {sum(y_train_res == 1)}")
         print(f"After OverSampling, count of label 0: {sum(y_train_res == 0)}")
        Before OverSampling, count of label 1: 237692
        Before OverSampling, count of label 0: 57674
        After OverSampling, count of label 1: 237692
        After OverSampling, count of label 0: 237692
In [262... | model = LogisticRegression()
         model.fit(X_train_res, y_train_res)
         train_preds = model.predict(X_train)
         test_preds = model.predict(X_test)
In [263... print(f"Accuracy:
                                   Train:{model.score(X_train, y_train)}
                                                                              Test:{model.score(X_test, y_test)}")
         print(f"F1 Score:
                                   Train:{f1_score(y_train,y_train_pred)}
                                                                                 Test:{f1_score(y_test,y_test_pred)} ")
         print(f"Recall Score:
                                  Train:{recall_score(y_train,y_train_pred)}
                                                                                    Test:{recall_score(y_test,y_test_pred)} ")
         print(f"Precision Score: Train:{precision_score(y_train,y_train_pred)}
                                                                                      Test:{precision_score(y_test,y_test_pre
        Accuracy:
                         Train:0.798751379644238
                                                       Test:0.7978386284228488
                         Train:0.935572399372713
        F1 Score:
                                                        Test:0.935680015201178
                         Train:0.9939207041044713
                                                        Test:0.9944129377513757
        Recall Score:
        Precision Score: Train:0.8836949203261764
                                                        Test:0.8834980488315416
In [264... # Confusion Matrix
         cm = confusion_matrix(y_test, test_preds)
         disp = ConfusionMatrixDisplay(cm)
         disp.plot()
         plt.title("Confusion Matrix")
         plt.show()
```



```
In [265... y_pred = test_preds
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0 1	0.49 0.95	0.81 0.79	0.61 0.86	14419 59423
accuracy macro avg weighted avg	0.72 0.86	0.80 0.80	0.80 0.74 0.81	73842 73842 73842

```
In [ ]:
```

```
In [274... # area under ROC curve
logit_roc_auc = roc_auc_score(y_test,y_pred)

# Compute the false positive rate, true positive rate, and thresholds
fpr,tpr,thresholds = roc_curve(y_test,model.predict_proba(X_test)[:,1])

# Compute the area under the ROC curve
roc_auc = auc(fpr, tpr)

# plot ROC curve
plt.figure(figsize=(15,8))
plt.plot(fpr,tpr,label="Logistic Regression Roc curve (area = %0.2f)"% logit_roc_auc)
plt.plot([0,1],[0,1],"m--")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver operating characteristic (ROC curve)")
plt.show()
```



```
In [288... roc_auc = auc(fpr, tpr)
roc_auc
Out[288... 0.9054398758324379
In [287... logit_roc_auc
```

Tradeoff

Out [287... 0.8024073303954886

- The ROC curve area, representing model performance, is 80%. This indicates that the model effectively distinguishes between classes 80% of the time.
- Ideally, we aim for a higher True Positive Rate (TPR) and a lower False Positive Rate (FPR) to ensure accurate predictions.
- The ROC curve illustrates that as True Positives increase, there's a simultaneous increase in False Positives, which implies that while identifying more Fully Paid customers, there's a greater risk of misclassifying Charged Off customers as Fully Paid, potentially leading to Non-Performing Assets (NPAs).
- So to reduce the above mentioned risk ,Reducing FPR while maintaining TPR is crucial .By shifting False Positives towards the left on the ROC curve, the model's overall performance, as measured by AUC, can improve.
- This improvement in AUC relies on maintaining a high True Positive Rate while reducing False Positives.

```
In [283... precision, recall, thresholds = precision_recall_curve(y_test,model.predict_proba(X_test)[:,1])

plt.figure(figsize=(15,8))
plt.plot(thresholds, recall[0:thresholds.shape[0]], label="recall",linestyle="--")
plt.plot(thresholds, precision[0:thresholds.shape[0]], label="precision",linestyle="dotted")
plt.ylim([0.8, 1.05])
plt.title("Precision_Recall Curve")
plt.legend(loc="upper right")
sns.despine()
plt.show()
```


Out[284... 0.974

The Area Under the Curve (AUC) for the precision-recall curve is 0.974. This high AUC value suggests that the model achieves excellent performance in distinguishing between positive and negative classes, showcasing strong precision-recall characteristics.

Questionnaire:

- What percentage of customers have fully paid their Loan Amount?
- Comment about the correlation between Loan Amount and Installment features.
- The majority of people have home ownership as _____.
- People with grades 'A' are more likely to fully pay their loan. (T/F)
- Name the top 2 afforded job titles.
- Thinking from a bank's perspective, which metric should our primary focus be on..

ROC AUC, Precision, Recall, F1 Score

- How does the gap in precision and recall affect the bank?
- Which were the features that heavily affected the outcome?
- Will the results be affected by geographical location? (Yes/No)

What percentage of customers have fully paid their Loan Amount?

```
In [304... df["loan_status"].value_counts(normalize=True)*100

Out[304... loan_status
Fully Paid 80.387092
```

Charged Off 19.612908
Name: proportion, dtype: float64

Around 80% of customers have fully paid their Loan Amount.

Comment about the correlation between Loan Amount and Installment features.

```
In [305... df[["loan_amnt", "installment"]].corr()

Out[305... loan_amnt installment
| loan_amnt | 1.000000 | 0.953929 |
| installment | 0.953929 | 1.000000
```

From above data we can see that correlation between Loan Amount and Installment features is around 0.95, which means they are highly correlated features.

The majority of people have home ownership as ______

```
In [293... (df["home_ownership"].value_counts(normalize=True)*100).to_frame()
Out[293... proportion
```

home_ownership					
MORTGAGE	50.084085				
RENT	40.347953				
OWN	9.531096				
OTHER	0.028281				
NONE	0.007828				
ANY	0.000758				

The majority of people have home ownership as mortgage followed by rent.

People with grades 'A' are more likely to fully pay their loan.

```
In [294... pd.crosstab(df["grade"],df["loan_status"], normalize = "index")

Out[294... loan_status Charged Off Fully Paid

grade

A 0.062879 0.937121

B 0.125730 0.874270
```

А	0.062879	0.937121
В	0.125730	0.874270
С	0.211809	0.788191
D	0.288678	0.711322
E	0.373634	0.626366
F	0.427880	0.572120
G	0.478389	0.521611

Yes,93% of people with grade 'A' have fully paid the loan

Name the top 2 afforded job titles.

```
In [303... df.groupby("emp_title")["loan_status"].count().sort_values(ascending=False).to_frame()[1:3]

Out[303... loan_status

emp_title

Teacher 4389

Manager 4250
```

The top 2 afforded job titles are Teacher and Manager

Thinking from a bank's perspective, which metric should our primary focus be on.. ROC AUC, Precision, Recall, F1 Score.

- From a bank's perspective, the primary focus should be on minimizing risks while maximizing profitability. Therefore, the most relevant metric would be Precision.
- Precision represents the proportion of correctly predicted positive instances (e.g., customers who fully pay their loans) out of all instances predicted as positive. In the context of a bank, precision reflects the accuracy of identifying creditworthy customers who are likely to repay their loans. Maximizing precision ensures that the bank minimizes the number of false positives, which are instances where the bank incorrectly identifies customers as creditworthy when they are not. By prioritizing precision, the bank can reduce the risk of loan defaults which can help them in maximizing profit.
- While ROC AUC, Recall, and F1 Score are also important metrics, precision aligns most with the bank's objective of minimizing risks and ensuring the quality of its loan disburbal.

How does the gap in precision and recall affect the bank?

- For efficient working of model, it's crucial to evaluate both false positives and false negatives, which are gauged through metrics like precision and recall. When precision and recall is low, it poses a significant risk for the bank. So, as the gap between precision and recall widens, there will be increase in incorrect predictions.
- Good precision means less False Positives i.e. less loan defaults(less NPA).
- Good recall means less False Negatives i.e. not loosing on eligible customers.

Which were the features that heavily affected the outcome?

Address(Zipcode), Annual_Income, Grade seems to be most important features affecting the outcome.

Will the results be affected by geographical location? (Yes/No)

Yes, from df_ above we can see that all the zip_codes are having good coefficients, so geographical location has impact on our result.

Actionable Insights

- For optimum result we should work on reducing FPR while maintaining/improving TPR.
- For good results False Negatives should also be taken care of efficiently.
- Adress is having a significant role in positive as well as negative loan status so, more offers and good intrest rates should be provided to customers belonging to areas having high positive loan paid status and measures should be taken against customers from area having high loan default history(Negative Coefficient).
- Customers in grade A,B,C have high chances of loan repayment.so, they should be focused on more for maximizing bank revenue.
- Also there is high chance of loan repayment if loan term is 36 months and employment length is 10 or more years so customers belonging to these segments should be given priority and some extra added advantages.

Recommendations

- More emphasis should be put on precision to minimize loan default risks.
- Focus on maximizing the F1 score and area under the Precision-Recall Curve to effectively manage the precision-recall trade-off.

 This ensures identifying most defaulters while reducing false positives and false negatives, enhancing risk management and correct customer identification.
- Consider using more complex classifiers like Random Forests or XGBoost and perform hyperparameter tuning to enhance model performance and capture intricate relationships in the data.
- Scrutinize loans with lower grades more rigorously and consider adjusting interest rates to compensate for higher risk.
- Implement targeted strategies for high-risk zip codes, such as additional verification steps or higher interest rates.
- Evaluate small business loans with additional checks and collateral requirements to mitigate default risk.

In []:		
In []:		