Foundations of Stochastic Analysis

Manuel Hinz

October 15, 2023

Contents

1	Intr	Introduction		
	1.1	Motiva	${ m ation}$	
	1.2	A revi	iew of conditional expectation	
		1.2.1	Definitions	
		1.2.2	Examples	
		1.2.3	Geometric interpretation	
			Random walk	
		1.2.5	Conditional densities	
			Start of lecture 1 (10.10.2023)	

Introduction

- Information on ecampus
- Exercise groups
 - 3 Slots
 - Register to your preferred slot
 - Add in the comments:
 - * Name(s) of exercise partner students
 - * Groups of 2 or 3 students
 - * Preference of other slots and / or which slots are not possible (why)
- Exercise sheets on ecampus, by Friday
- Oral exam first oder third week after lecture period
- Most content done by christmas! -; learn for the exam in the break

Revision: Stochastic processes

- First part: mostly repetition in continuous time.
- Important: conditional expectation, short review on friday

1 Introduction

1.1 Motivation

Brownian motion: Limit of random walk:

Let X_1, X_2, \ldots iid. random variable with $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}$ and

$$S_{t,n} = \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor tn \rfloor} X_k$$

By CLT $S_{t,n} \stackrel{\to \infty}{\to}$ Gaussian random variable. Brownian motion: $B_t = \lim_{n \to \infty} S_{t,n}$ example[Population growth] Let S_t be the size of a population at time t, let R be the average growth rate.

$$\implies \frac{dS_t}{dt} = RS_t \implies S_t = S_0 e^{Rt}$$

There are fluctuations

$$\implies \frac{dS_t}{dt} = (R + \underbrace{N_t}_{\text{noise term}})S_t$$

example

example [Langvin equation] Describes the evolution of a small particle in a fluid:

$$m\frac{dV_t}{dt} = -\eta V_t + \underbrace{N_t}_{\text{noise term}}$$

Where m is the mass of the particle, V_t is the speed at time t and η is the viscosity coefficient. example example [Dirichlet problems] Let f be a harmonic function on a domain $D \subset \mathbb{R}^d$, i.e. $\Delta f = \sum_{k=1}^d \frac{\partial^2}{\partial x_k^2} f = 0$. If f is kown on ∂D :

$$\implies x \in D \setminus \partial D : f(x) = \mathbb{E}(f(B_{\tau}^{x}))$$

where B_t^x is Brownian motion starting at x, $\tau = \inf\{t > 0 | B_t^x \in \partial D\}$. example

What should N_t be ?

1. Trial: Take N_t to be a fully random function in continuous time, i.e., analog of a sequence of random variables. \Rightarrow Ask for

- 1. N_t is independent of N_s for $t \neq t$
- 2. N_t has a distribution independent of t
- 3. $\mathbb{E}(N_t) = 0$

Problem:

 N_t is not measurable, expect when $N_t = 0$ (why?).

Let ν be the distribution of N_t .

 $\implies \exists a \in \mathbb{R} : p = \mathbb{P}(N_t \leq a) \in (0,1).$ Let $E = \{t \geq 0 | N_t \leq a\}$. Therefore E is not Lebesgue-measurable: If E where measurable $\implies \forall c < d : \text{leb}(E \cap (c,d)) = p \cdot (d-c)$ But if measurable: $\forall \alpha < 1 \exists (c,d) \text{ s.t.}$ leb $(E \cap (c,d)) > \alpha \cdot (d-c) \implies \text{contradiction}$.

In the examples, we were interested not directly to N_t , but to integrals:

$$\frac{dS_t}{dt} = (R + N_t)S_t \to \int_0^u \frac{dS_t}{dt} = S_u - S_0 = \int_0^u RS_t dt + \int_0^u N_t S_t dt$$

2. Trial: Let $B_t := \int_0^t N_s ds$. \Longrightarrow Ask for :

(BM1) For $0 = t_0 < t_1 <, \dots, t_n$, the random variables

$$B_{t_{i+1}} - B_{t_i} j = 0, \dots, n-1$$

are independent

(BM2) B_t has stationary increments:

$$B_{t_1+s} - B_{u_1+s}, \dots, B_{t_n+s} - B_{u_n+s}$$

is independent of $s \ge 0$ for all $u_i < t_i$ for i = 1, ..., n

(BM3) $\mathbb{E}(B_t) = 0$.

Add: normalization:

(BM4) $\mathbb{E}(B_1^2) = 1$

Add: continuity

(BM5) $t \mapsto B_t$ is (almost surely) continuous.

We will see that a process with (BM1) - (BM5) exists (Wiener process / Brownian Motion).

Lemma 1.1. Property (BM5) implies $\forall \epsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}\left(\left| B_{t + \frac{1}{n}} - B_t \right| > \epsilon \right) = 0$$

Proof. Implicit assumption: $B_0 = 0$ (otherwise we have to carry the B_0 term) Let $H_t := \sup_{1 \le k \le n} \left| B_{\frac{k}{n}} - \frac{k-1}{n} \right|$

$$\implies \forall \epsilon > 0 : \mathbb{P}(H_n) > \epsilon \stackrel{\to \infty}{\to} 0$$

But
$$\mathbb{P}(H_n > \epsilon) = 1 - \mathbb{P}(H_n \le \epsilon) = 1 - \mathbb{P}(\left|B_{\frac{1}{n} - B_0}\right|, \dots, \left|B_{\frac{n}{n} - B_{\frac{n-1}{n}}}\right| \le \epsilon)$$

$$\stackrel{\text{BM1}}{=} 1 - \prod_{k=0}^{n} \mathbb{P}(\left|B_{\frac{k}{n}} - B_{\frac{k-1}{n}}\right| \le \epsilon) \stackrel{\text{BM2}}{=} 1 - \mathbb{P}(\left|B_{\frac{1}{n}} - B_{\frac{0}{n}}\right| \le \epsilon)^{n}$$

$$= 1 - \left(1 - \mathbb{P}(\left|B_{\frac{1}{n}}\right| > \epsilon)\right)^{1-x \le e^{-x}} 1 - \exp(-n\mathbb{P}(\left|B_{\frac{1}{n}}\right| > \epsilon))$$

$$\le \exp(-n\mathbb{P}(\left|B_{\frac{1}{n}}\right| > \epsilon))$$

$$\implies n \to \infty, n\mathbb{P}(\left|B_{\frac{1}{n} - B_0}\right| > \epsilon) \stackrel{n \to \infty}{\to} 0$$

Lemma 1.2. $\forall s < t : B_t - B_s \sim \mathcal{N}(0, t - s), i.e.$:

$$\mathbb{P}(\mathbb{B}_{\approx} - \mathbb{B}_{\sim}) \le n = \frac{1}{\sqrt[2]{2\pi/(t-s)}} \int_{-\infty}^{\infty} dy e^{-\frac{y}{2/(t-s)}}$$

Proof. Take s = 0, w.l.o.g..

Let $B_t = \sum_{k=0}^n X_{n,k}, X_{n,k} = B_{\frac{kt}{n} - B_{\frac{(k-1)t}{n}}}$ are iid. By (BM3) $\Longrightarrow \mathbb{E}(X_{n,k}) = 0$ and $\mathbb{E}(B_{\frac{t}{n}}) = 0$.

Assume: $\mathbb{E}(B_1^2) = 1 \implies \operatorname{Var}(B_1^2) = \sum_{t=1}^n \operatorname{Var}(X_{n,k}) \implies \operatorname{Var}(X_{n,k}) = \frac{t}{n} \implies \operatorname{Var}(B_t) = t$.

CLT finishes the prove.

Let (BM2): For $s, t \ge 0$:

$$\mathbb{P}(\mathbb{B}_{\approx +\sim} - \mathbb{B}_{\sim} \in \mathbb{A}) = \frac{1}{\sqrt{2\pi t}} \int_{A} dx e^{-\frac{x^{2}}{2t}}$$

Definition 1.3. A one-dimensional Brownian Motion is a real valued process $B_t, t \ge 0$, s.t.: $(BM1), (B\tilde{M}2), (BM5)$.

Remark. The standard brownian motion also has $B_0 = 0$.

Next: Construct a process satisfying this definition and study its properties.

—End of lecture 1 (10.10.2023) -—Start of lecture 2 (13.10.2023)

Definition. A one-dimensional **standard** Brownian motion is a real-valued stoch. process:

- 1. $B_0 = 0$
- 2. $\forall n \geq 1, 0 = t_0 < t_1 < \dots < t_n B_{t_1}, B_{t_2} B_{t_1}, \dots, B_{t_n} B_{t_{n-1}}$ are independent r.v. wth $B_{t_k} B_{t_{k-1}} \sim \mathcal{N}(0, t_k t_{k-1})$
- 3. for almost all $\omega \in \Omega$

$$t \mapsto B_t(\omega)$$

are continuous.

1.2 A review of conditional expectation

1.2.1 Definitions

Definition 1.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a prob. space and $\mathcal{G} \subset \mathcal{F}$ is sub- σ -algebra. Let $X \in L^1(\mathbb{P})$. The conditional expectation of X given \mathcal{G} , $\mathbb{E}(X|\mathcal{G})$ is any random variable Y s.t.

- 1. Y is G-measurable
- 2. $\forall A \in \mathcal{G}, \int_A Y d\mathbb{P} = \int_A X d\mathbb{P}$

Remark. If Y, \tilde{Y} satisfy 1.4 $\implies Y = \tilde{Y}$ a.s..

<u>In words:</u> In \mathcal{G} we have partial information, for $A \subset \mathcal{G}$ we know wether it occurs or not.

$$\mathbb{E}[X|\mathcal{G}]$$

is the best guess of X given the information in \mathcal{G} .

1.2.2 Examples

Example 1. Let X be \mathcal{G} measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s.

Example 2. Let X be independent of $\mathcal{G} \implies \mathbb{E}|\mathcal{G} = \mathbb{E}(X)$ a.s..

Remark. $\forall B \in \mathcal{B}(\mathbb{R}), A \in \mathcal{G}, \mathbb{P}(X \in B \cap A) = \mathbb{P}(X \in B)\mathbb{P}(A).$ $Y := \mathbb{E}(X) \implies Y \in \mathcal{G} \text{ measurable. Let } A \in \mathcal{G}:$

$$\int_A \mathbb{E}(X)d\mathbb{P} = \mathbb{E}(X)\mathbb{P}(A) = \mathbb{E}(X)\mathbb{E}(1_A)$$

$$\overset{X,1_A}{=}\overset{in\ dependent}{=}\mathbb{E}(X1_A)=\int_A Xd\mathbb{P}$$

Example 3. Assume $\Omega = \bigcup_{k>1} \Omega_k$ disjoint union with $\mathbb{P}(\Omega_k) > 0$. Let $\mathcal{G} = \sigma(\Omega_1, \dots, \Omega_n)$

$$\implies \forall k \geq 1Y \coloneqq \mathbb{E}(X|\mathcal{G}) = \frac{\mathbb{E}(X1_{\Omega_k})}{\mathbb{P}(\Omega_k)} \ on \ \Omega_k$$

If $\omega \in \Omega_k$ what is the best guess of $X(\omega)$. Y is constant on $\Omega_k \Longrightarrow Y$ is measurable. Since \mathcal{G} is generated by the Ω_k (smallest elements), we have to verify the second property only for $A = \Omega_k \forall k$.

Remark. If $\mathcal{G} = \{\emptyset, \Omega\} \implies$

$$\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X)$$
 a.s.

Proposition 1.5. $X \in L^1(\mathbb{P})$

- 1. $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$
- 2. If $G_1 \subset G_2$ are two sub- σ -algebras,

$$\implies \mathbb{E}(\mathbb{E}(X|\mathcal{G}_1)|\mathcal{G}_2) = \mathbb{E}(\mathbb{X}|\mathcal{G}_{\mathbb{H}}) \ a.s.$$

$$\Longrightarrow \mathbb{E}(\mathbb{E}(X|\mathcal{G}_2)|\mathcal{G}_1) = \mathbb{E}(\mathbb{X}|\mathcal{G}_{\mathbb{H}}) \ a.s.$$

3. If X is G-measurable, Y a random variable, $\mathbb{E}(|Y|) < \infty$, $\mathbb{E}(|XY|) < \infty$

$$\implies \mathbb{E}(XY|\mathcal{G}) = X\mathbb{E}(Y|\mathcal{G}) \ a.s.$$

1.2.3 Geometric interpretation

Proposition 1.6. Let X be a r.v. with $\mathbb{E}(|X|^2) < \infty \implies \mathbb{E}(X|\mathcal{G})$ is the random variable Y which is \mathcal{G} -measurable and minimizes

$$\mathbb{E}((X-Y)^2)$$

Notation

$$L^2(\mathcal{G}) = \{Y\mathcal{G}\text{-measurable}|\mathbb{E}(|Y|^2) < \infty\}$$

Proof. $L^2(\mathcal{F})$ is Hilbert space and $L^2(\mathcal{G})$ is a closed subspace.

If
$$Z \in L^2(\mathcal{G}) \implies \mathbb{E}(Z \cdot \mathbb{E}(X|\mathcal{G})) = \mathbb{E}(\mathbb{E}(ZX|\mathcal{G})) = \mathbb{E}(ZX)$$

$$\implies \mathbb{E}(Z(X - \mathbb{E}(X|\mathcal{G}))) = 0$$

If $Y \in L^2(\mathcal{G})$ and $Y = \mathbb{E}(X|\mathcal{G}) + Z$

$$\implies \mathbb{E}(|X - Y|^2) = \mathbb{E}((X - \mathbb{E}(X|\mathcal{G}) - Z)^2)$$
$$= \mathbb{E}((X - \mathbb{E}(X|\mathcal{G}))^2) + \mathbb{E}(Z^2) - \underbrace{2\mathbb{E}(\mathbb{Z}(\mathbb{X} - \mathbb{E}(\mathbb{X}|\mathcal{G})))}_{=0}$$

 \implies Minimize $\mathbb{E}((X-Y)^2) \iff \mathbb{E}(Z^2) = 0 \implies Z = 0$

1.2.4 Random walk

Let X_1, \ldots, X_n iid random variables with $\mathbb{E}(X_i) = 0$; let $S_n := X_1 + \cdots + X_n$. Let $\mathcal{G}_n = \sigma(X_1, \ldots, X_n), n \ge 1$

$$\implies \mathcal{G}_1 \subset \mathcal{G}_2 \subset \dots$$

$$\implies \forall m < n : \exists \mathcal{E}(S_n | \mathcal{G}_n) = S_m \text{a.s.}$$

<u>Ideed:</u> $Y = S_n$ is \mathcal{G}_m -measurable.

Let
$$A \in \mathcal{G}_m \implies \int_A S_m d\mathcal{P} = \int_A S_n d\mathcal{P}$$

But
$$\int_A S_n d\mathbb{P} = \int_A S_m d\mathbb{P} + \sum_{k=1}^n \underbrace{\int_A X_k d\mathbb{P}}_{\mathbb{E}(X_k, Y_k) \neq \emptyset}$$

and $X_k, 1_A$ are independent by assumption.

1.2.5 Conditional densities

Definition 1.7. Let X, Y be r. v. with $\mathbb{E}(|X|) < \infty$. \implies We define $\mathbb{E}(X|Y) := \mathbb{E}(X|\sigma(Y))$

• Consider the case where (X, Y) have a density with respect to Lebesgue, i.e.

$$\forall B \in \mathcal{B}(\mathbb{R}^2)\mathbb{P}((X,Y) \in B) = \int_B f(x,y)dxdy$$

Remark. $\mathbb{P}(A|\mathcal{G}) := \mathbb{E}(1_A|\mathcal{G}).$

Assume $\int f(x,y)dx > 0 \forall y$

Proposition 1.8. Let X be a r.v. and g a function s.t. $\mathbb{E}(|g(X)|) < \infty$.

$$\implies \mathbb{E}(g(X)|Y) = h(Y)$$

where

$$h(Y) = \frac{\int g(x)f(x,y)dx}{\int f(x,y)dx}$$

Proof. How to derive?

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x \cap Y = y)}{\mathbb{P}(Y = y)} = \frac{f(x, y)}{\int f(x, y) dx}$$
$$\implies \mathbb{E}(g(X) | Y = y) = \frac{\int g(x) f(x, y) dx}{\int f(x, y) dx} = h(y)$$

h(Y) is \mathcal{G} -measurable.

For $A \in \sigma(Y) \implies \exists \tilde{A} \in \mathcal{B}(\mathbb{R}) \text{ s.t. } A = \{\omega : Y(\omega) = \tilde{A}\}$

$$\implies \int_A h(y)dy = \int_{\tilde{A}} dy \underbrace{\int dx h(y f(x,y))}_{=\int dx g(x) f(x,y)}$$

$$\implies \int dx g(x) \int_{\tilde{A}} dy f(x,y) = \mathbb{E}(g(X) 1_{\tilde{A}}(Y)) = \mathbb{E}(g(X) 1_A)$$

End of lecture 2 (13.10.2023)

6