Total No.	of Questions	:	8]
-----------	--------------	---	----

SEAT No.:	
-----------	--

[Total No. of Pages: 3

[7]

P3611

[5560]-566 T.E.(Electrical)

CONTROL SYSTEM-I

(2015 Course) (Semester - II)

Time: 2½ Hours] [Max. Marks: 70]

Instructions to the candidates:

- 1) Answer any one question from each pair of questions: Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- Q1) a) Draw the electrical analogous network and write the equation

- b) The poles of a real rational transfer function are given as 0, -1 and -4. There is a single zero (of order 2) at S = (-3). Determine the transfer function and plot pole zero on S-plane. [5]
- c) The block diagram of a unity feedback control system shown in figure below. [8]

Determine the characteristic equation of the system ω_n , ξ , ω_d , t_p , M_p the time at which the first overshoot occurs, the time period of oscillation.

OR

Q2)	a)	Define the following:	[7]
		i) Time response	
		i) Time responseii) Transient response	
		iii) Steady state response	
		iv) Delay time	
		v) Rise time	
		vi) Peak time	
		vii) Settling time	
	b)	A characteristic equation of a feedback control system is given $s^5 + s^4 + 4s^3 + 4s^2 + 2s + 1 = 0$ comment on stability.	by [4]
	c)	A unity feedback control system has an open loop transfer	[9]
	$G(s) = \frac{K}{s(s^2 + 4s + 13)}$ Sketch the root locus of the system by determine	ning	
		the following	
		i) centroid and angle of asymptotes	
	1	ii) Angle of departure from the poles	
		iii) The value of K and the frequency at which the root locus cro	sses
		the imaginary axis.	
<i>Q3</i>)	a)	Define and write formula	[8]
		i) Resonant frequency	
		ii) Resonant Peak	
		iii) Band width	5
		iv) Plot M_r , M_p versus ξ for a second order system	
	b)	A unity feedback system has open loop transfer function	
		$G(s) = \frac{(s+2)}{(s+1)(s-1)}$ using nyquist criterion determine whether the clo	sed
		loop system is stable or not.	[8]
		OR	
Q4)	a)	Briefly state the nyquist criterion.	[6]
	b)	Sketch the bode plot for the system whose open loop transfer func	
		is given by $G(s) = \frac{20(0.1s+1)}{s(0.5s+1)(0.3s+1)}$ and find GM, PM, ω_{gc} , ω_{pc} .	[10]
[556	60]-5	2	

- Define Gain margin, phase margin, phase crossover frequency, gain **Q5**) a) crossover frequency.
 - Sketch the asymptotic plot for open loop transfer function given by b) G(s) = $\frac{2(s + 0.25)}{s^2(s+1)(s+0.5)}$ from bode diagram determine GM, PM, ω_{gc} , [12] ω_{pc} .

OR

- Sketch bode diagram showing gain margin and phase margin for *Q6*) a) [6]
 - Stable system i)
 - Unstable system ii)
 - Using nyquist criterion investigate the stability of a closed loop control b) system whose open loop transfer function is given by [12]

G(s) =
$$\frac{K}{s(sT1+1)(sT2+1)}$$

Write short note on **Q7**) a)

[8]

- Lead compensator
- ii) **AC** Tachometer
- Explain the features of the following b)

[8]

- P-Controller i)
- PI-Controller ii)
- PID-Controller iii)

OR

Write short notes on synchros. **Q8**) a)

For the system shown below, design PID controller using Zigler Nichol b) tuning rule [10]

