MA215 Probability Theory

Assignment 07

- 1. Find the following values by using the Statistical Tables:
 - (a) F(-1.72), F(-1.723), F(0.48) and F(1.234), where F(x) is the c.d.f. of the standard normal random variable.
 - (b) Find x such that F(x) = 0.546, where F(x) is the c.d.f. of the standard normal random variable. Similarly find y such that F(y) = 0.258.
- 2. Assume that heights of children in a certain age group average are normally distributed, i.e., $X \sim N(\mu, \sigma^2)$, where $\mu = 58.4$ inches and with $\sigma = 2.9$ inches.
 - (a) What proportion of children are between 57 and 61 inches tall?
 - (b) What is the number c such that 90% of the children's height in a certain age group average is less than c?
- 3. Suppose $X \sim N(\mu, \sigma^2)$ and let $Y = \exp(X) = e^X$.
 - (a) What are all possible values of Y?
 - (b) Obtain the probability density function of Y.
- 4. Suppose $X \sim N(\mu, \sigma^2)$ and let Y = aX + b where a and b are two constants and the constant a is not zero.
 - (a) What are all possible values of Y?
 - (b) Obtain the probability density function of Y.
 - (c) Explain Y is also normally distributed. What are the parameters of Y?
- 5. Suppose $X \sim N(0,1)$ and let $Y = X^2$.
 - (a) What are all possible values of Y?
 - (b) Obtain the probability density function of Y.
- 6. Suppose $Y \sim N(0,1)$. Let $-\infty < a < b < +\infty$ and $m = \frac{1}{2} \max\{a^2, b^2\}$. Show that $(b-a)e^{-m} \le \sqrt{2\pi}P\{a \le Y \le b\} \le b-a$.
- 7. Suppose $Y \sim N(0,1)$. Show that for any y > 0, we have

$$\frac{1}{y} - \frac{1}{y^3} \leqslant \sqrt{2\pi} e^{\frac{y^2}{2}} P\{Y \geqslant y\} \leqslant \frac{1}{y}.$$

Hint: First show that for any y > 0,

$$e^{-\frac{y^2}{2}}\left(\frac{1}{y} - \frac{1}{y^3}\right) = \int_y^{+\infty} e^{-\frac{x^2}{2}}\left(1 - \frac{3}{x^4}\right)dx.$$

1