Group B

Course: Laboratory Practice-III

Assignment No: 10

Title of the Assignment: Implement K-Nearest Neighbors algorithm on diabetes.csv dataset. Compute confusion matrix, accuracy, error rate, precision and recall on the given dataset.

Dataset Description: We will try to build a machine learning model to accurately predict whether or not the patients in the dataset have diabetes or not?

The datasets consists of several medical predictor variables and one target variable, Outcome. Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.

Link for Dataset: Diabetes predication system with KNN algorithm | Kaggle

Objective of the Assignment:

Students should be able to preprocess dataset and identify outliers, to check correlation and implement KNN algorithm and random forest classification models. Evaluate them with respective scores like confusion_matrix, accuracy_score, mean_squared_error, r2_score, roc_auc_score, roc_curve etc.

Prerequisite:

- 1. Basic knowledge of Python
- 2. Concept of Confusion Matrix
- 3. Concept of roc auc curve.
- 4. Concept of Random Forest and KNN algorithms

2

Course: Laboratory Practice-III

k-Nearest-Neighbors (k-NN) is a supervised machine learning model. Supervised learning is when a model learns from data that is already labeled. A supervised learning model takes in a set of input objects and output values. The model then trains on that data to learn how to map the inputs to the desired output so it can learn to make predictions on unseen data.

k-NN models work by taking a data point and looking at the 'k' closest labeled data points. The data point is then assigned the label of the majority of the 'k' closest points.

For example, if k = 5, and 3 of points are 'green' and 2 are 'red', then the data point in question would be labeled 'green', since 'green' is the majority (as shown in the above graph).

Scikit-learn is a machine learning library for Python. In this tutorial, we will build a k-NN model using Scikit-learn to predict whether or not a patient has diabetes.

Reading in the training data

For our k-NN model, the first step is to read in the data we will use as input. For this example, we are using the diabetes dataset. To start, we will use Pandas to read in the data. I will not go into detail on Pandas, but it is a library you should become familiar with if you're looking to dive further into data science and machine learning.

import pandas as pd#read in the data using pandas df = pd.read_csv('data/diabetes_data.csv')#check data has been read in properly df.head()

	pregnancies	glucose	diastolic	triceps	insulin	bmi	dpf	age	diabetes
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Next, let's see how much data we have. We will call the 'shape' function on our dataframe to see how many rows and columns there are in our data. The rows indicate the number of patients and the columns indicate the number of features (age, weight, etc.) in the dataset for each patient.

#check number of rows and columns in dataset df.shape

Op \rightarrow (768,9)

We can see that we have 768 rows of data (potential diabetes patients) and 9 columns (8 input features and 1 target output).

Course: Laboratory Practice-III

Split up the dataset into inputs and targets

Now let's split up our dataset into inputs (X) and our target (y). Our input will be every column except 'diabetes' because 'diabetes' is what we will be attempting to predict. Therefore, 'diabetes' will be our target.

We will use pandas 'drop' function to drop the column 'diabetes' from our dataframe and store it in the

variable 'X'. This will be our input.
#create a dataframe with all training data except the target column
X = df.drop(columns=['diabetes'])#check that the target variable has been removed
X.head()

	pregnancies	glucose	diastolic	triceps	insulin	bmi	dpf	age
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33

We will insert the 'diabetes' column of our dataset into our target variable (y). y = df['diabetes']. values y = df['diabetes']. values y = df['diabetes']. values y = df['diabetes'].

Bharati Vidyapeeth's College Of Engineering Lavale Pune.

array([1, 0, 1, 0, 1])

Split the dataset into train and test data

Now we will split the dataset into into training data and testing data. The training data is the data that the model will learn from. The testing data is the data we will use to see how well the model performs on unseen data.

Course: Laboratory Practice-III

Scikit-learn has a function we can use called 'train_test_split' that makes it easy for us to split our dataset into training and testing data.

from sklearn.model_selection import train_test_split#split dataset into train and test data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)

'train_test_split' takes in 5 parameters. The first two parameters are the input and target data we split up earlier. Next, we will set 'test_size' to 0.2. This means that 20% of all the data will be used for testing, which leaves 80% of the data as training data for the model to learn from. Setting 'random state' to 1 ensures that we get the same split each time so we can reproduce our results.

Setting 'stratify' to y makes our training split represent the proportion of each value in the y variable. For example, in our dataset, if 25% of patients have diabetes and 75% don't have diabetes, setting 'stratify' to y will ensure that the random split has 25% of patients with diabetes and 75% of patients without diabetes.

Building and training the model

Next, we have to build the model. Here is the code: from sklearn.neighbors import KNeighborsClassifier# Create KNN classifier knn = KNeighborsClassifier(n_neighbors = 3)# Fit the classifier to the data knn.fit(X_train,y_train)

First, we will create a new k-NN classifier and set 'n_neighbors' to 3. To recap, this means that if at least 2 out of the 3 nearest points to an new data point are patients without diabetes, then the new data point will be labeled as 'no diabetes', and vice versa. In other words, a new data point is labeled with by majority from the 3 nearest points.

We have set 'n_neighbors' to 3 as a starting point. We will go into more detail below on how to better select a value for 'n_neighbors' so that the model can improve its performance.

AJEENKYA D Y PATIL SCHOOL OF ENGINEERING, LOHEGAON

Next, we need to train the model. In order to train our new model, we will use the 'fit' function and

Course: Laboratory Practice-III

pass in our training data as parameters to fit our model to the training data.

Testing the model

Once the model is trained, we can use the 'predict' function on our model to make predictions on our

test data. As seen when inspecting 'y' earlier, 0 indicates that the patient does not have diabetes and

1 indicates that the patient does have diabetes. To save space, we will only show print the first 5

predictions of our test set.

#show first 5 model predictions on the test data

knn.predict(X_test)[0:5]

array([0, 0, 0, 0, 1])

We can see that the model predicted 'no diabetes' for the first 4 patients in the test set and 'has

diabetes' for the 5th patient.

Now let's see how our accurate our model is on the full test set. To do this, we will use the 'score'

function and pass in our test input and target data to see how well our model predictions match up to

the actual results.

#check accuracy of our model on the test data

knn.score(X test, y test)

0.66883116883116878

Our model has an accuracy of approximately 66.88%. It's a good start, but we will see how we can

increase model performance below.

Congrats! You have now built an amazing k-NN model!

k-Fold Cross-Validation

Cross-validation is when the dataset is randomly split up into 'k' groups. One of the groups is used as

the test set and the rest are used as the training set. The model is trained on the training set and

scored on the test set. Then the process is repeated until each unique group as been used as the test

set.

For example, for 5-fold cross validation, the dataset would be split into 5 groups, and the model would be trained and tested 5 separate times so each group would get a chance to be the test set. This can be seen in the graph below.

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5

Training data

Test data

5-fold cross validation (image credit)

The train-test-split method we used in earlier is called 'holdout'. Cross-validation is better than using the holdout method because the holdout method score is dependent on how the data is split into train and test sets. Cross-validation gives the model an opportunity to test on multiple splits so we can get a better idea on how the model will perform on unseen data.

In order to train and test our model using cross-validation, we will use the 'cross_val_score' function with a cross-validation value of 5. 'cross_val_score' takes in our k-NN model and our data as parameters. Then it splits our data into 5 groups and fits and scores our data 5 seperate times, recording the accuracy score in an array each time. We will save the accuracy scores in the 'cv scores' variable.

To find the average of the 5 scores, we will use numpy's mean function, passing in 'cv_score'. Numpy

is a useful math library in Python.

from sklearn.model_selection import cross_val_score

import numpy as np#create a new KNN model

knn_cv = KNeighborsClassifier(n_neighbors=3)#train model with cv of 5

cv_scores = cross_val_score(knn_cv, X, y, cv=5)#print each cv score (accuracy) and average them print(cv_scores)

print('cv_scores mean:{}'.format(np.mean(cv_scores)))

[0.68181818 0.69480519 0.75324675 0.75163399 0.68627451] cv_scores mean:0.7135557253204311

Bharati Vidyapeeth's College Of Engineering Lavale Pune.

Using cross-validation, our mean score is about 71.36%. This is a more accurate representation of how our model will perform on unseen data than our earlier testing using the holdout method.

Hypertuning model parameters using GridSearchCV

When built our initial k-NN model, we set the parameter 'n_neighbors' to 3 as a starting point with no real logic behind that choice.

Course: Laboratory Practice-III

Hypertuning parameters is when you go through a process to find the optimal parameters for your model to improve accuracy. In our case, we will use GridSearchCV to find the optimal value for 'n_neighbors'.

GridSearchCV works by training our model multiple times on a range of parameters that we specify.

That way, we can test our model with each parameter and figure out the optimal values to get the best accuracy results.

For our model, we will specify a range of values for 'n_neighbors' in order to see which value works best for our model. To do this, we will create a dictionary, setting 'n_neighbors' as the key and using numpy to create an array of values from 1 to 24.

Our new model using grid search will take in a new k-NN classifier, our param_grid and a cross-

validation value of 5 in order to find the optimal value for 'n_neighbors'. from sklearn.model_selection import GridSearchCV#create new a knn model knn2 = KNeighborsClassifier()#create a dictionary of all values we want to test for n_neighbors param_grid = {'n_neighbors': np.arange(1, 25)}#use gridsearch to test all values for n_neighbors knn_gscv = GridSearchCV(knn2, param_grid, cv=5)#fit model to data knn_gscv.fit(X, y)

After training, we can check which of our values for 'n neighbors' that we tested performed the best.

To do this, we will call 'best_params_' on our model. #check top performing n_neighbors value knn_gscv.best_params_

{'n_neighbors': 14}

We can see that 14 is the optimal value for 'n_neighbors'. We can use the 'best_score_' function to check the accuracy of our model when 'n_neighbors' is 14. 'best_score_' outputs the mean accuracy of the scores obtained through cross-validation.

#check mean score for the top performing value of n_neighbors knn_gscv.best_score_

0.7578125

By using grid search to find the optimal parameter for our model, we have improved our model accuracy by over 4%!

 $Code: {\tt -} \, \underline{\tt https://www.kaggle.com/code/shrutimechlearn/step-by-step-diabetes-classification-knn-detailed}$

Course: Laboratory Practice-III

Conclusion:

In this way we build a a neural network-based classifier that can determine whether they willleave or not in the next 6 months