Cryptographic Protocols II

Van Nguyen – HUT

Hanoi - 2010

Agenda

Whittfield Diffie and Martin Hellman are called the inventors of Public Key Cryptography. Diffie-Hellman Key Exchange is the first Public Key Algorithm published in 1976.

DIFFIE-HELLMAN KEY EXCHANGE

What is Diffie-Hellman?

- A Public Key Algorithm
- Only for Key Exchange
- Does NOT Encrypt or Decrypt
- Based on Discrete Logarithms
- Widely used in Security Protocols and Commercial Products
- Williamson of Britain's CESG claims to have discovered it several years prior to 1976

Discrete Logarithms

- What is a logarithm?
- $\log_{10} 100 = 2$ because $10^2 = 100$
- In general if $log_m b = a$ then $m^a = b$
- Where m is called the base of the logarithm
- A discrete logarithm can be defined for integers only
- In fact we can define discrete logarithms mod p also where p is any prime number

Discrete Logarithm Problem

The security of the Diffie-Hellman algorithm depends on the difficulty of solving the discrete logarithm problem (DLP) in the multiplicative group of a finite field

Sets, Groups and Fields

- A set is any collection of objects called the elements of the set
- Examples of sets: R, Z, Q
- If we can define an operation on the elements of the set and certain rules are followed then we get other mathematical structures called groups and fields

Groups

- A group is a set G with a custom-defined binary operation + such that:
 - □ The group is closed under +, i.e., for $a, b \in G$:
 - a + b ∈ G
 - □ The Associative Law holds i.e., for any $a, b, c \in G$:
 - a + (b + c) = (a + b) + c
 - □ There exists an identity element *O*, such that
 - a + 0 = a
 - □ For each a ∈ G there exists an inverse element –a such that
 - a + (-a) = 0
- If for all $a, b \in G$: a + b = b + a then the group is called an Abelian or commutative group
- If a group G has a finite number of elements it is called a finite group

More About Group Operations

- + does not necessarily mean normal arithmetic addition
- + just indicates a binary operation which can be custom defined
- The group operation could be denoted as •
- The group notation with + is called the additive notation and the group notation with • is called the multiplicative notation

Fields

- A field is a set F with two custom-defined binary operations + and • such that:
 - □ The Field is closed under + and •, i.e., for $a, b \in F$:
 - $a+b \in F$ and $a \cdot b \in F$
 - □ The Associative Law holds i.e., for any $a, b, c \in F$:
 - a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - □ There exist identity elements 0 and 1, such that
 - a + 0 = a and $a \cdot 1 = a$
 - □ For each a ∈ F there exist inverse elements –a and a⁻¹ such that
 - a + (-a) = 0 and $a \cdot a^{-1} = 1$
- If a field F has a finite number of elements it is called a finite field

Examples of Groups

Groups

- Set of real numbers R under +
- Set of real numbers R under *
- Set of integers **Z** under +
- Set of integers **Z** under *?
- Set of integers modulo a prime number p under +
- Set of integers modulo a prime number p under *
- Set of 3 X 3 matrices under + meaning matrix addition
- Set of 3 X 3 matrices under * meaning matrix multiplication?

Fields

- Set of real numbers R under + and *
- Set of integers Z under + and *
- Set of integers modulo a prime number p under + and *

Generator of Group

- If for a ∈ G, all members of the group can be written in terms of a by applying the group operation * on a a number of times then a is called a generator of the group G
- Examples
 - \Box 2 is a generator of Z_{11}^*
 - \square 2 and 3 are generator of Z_{19}^*

m	1	2	3	4	5	6	7	8	9	10
$2^m \mod 11$	2	4	8	5	10	9	7	3	6	1

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$2^m \mod 19$	2	4	8	16	13	7	14	3	6	17	15	11	3	6	12	5	10	1
$3^m \mod 19$	3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1

Primitive Roots

- If $a^n = x$ then a is called the *n-th* root of x
- For any prime number p, if we have a number a such that powers of a mod p generate all the numbers between 1 to p-1 then a is called a Primitive Root of p.
- In terms of the Group terminology a is the generator element of the multiplicative group of the finite field formed by mod p
- Then for any integer b and a primitive root a of prime number p we can find a unique exponent i such that

$$b = a^i \mod p$$

The exponent i is referred to as the discrete logarithm or index, of b for the base a.

Table 7.6 Powers of Integers, Modulo 19

a	a^2	a^3	a^4	a ⁵	a6	a^7	a ⁸	a^9	a^{10}	a^{11}	a12	a^{13}	a14	a ¹⁵	a16	a ¹⁷	a ¹⁸
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Table 7.7 Tables of Discrete Logarithms, Modulo 19

(a) Discrete logarithms to the base 2, modulo 19

a	1	2	3	4	5	6	- 7	8	9	10	11	12	13	14	15	16	17	18
$Ind_{2,19}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9

(b) Discrete logarithms to the base 3, modulo 19

a	1	2	3	4	- 5	6	- 7	-8	9	10	11	12	13	14	15	16	17	18
$Ind_{3,19}(a)$	18	7	1	14	4	8	6	3	2	11	12	15	17	1.3	5	10	16	9

(c) Discrete logarithms to the base 10, modulo 19

a	1	2	3	4	- 5	6	- 7	- 8	9	10	11	12	13	14	15	16	17	18
Ind _{10,19} (a)	18	17	5	16	2	4	12	15	10	1	6	3	13	11	7	14	8	9

(d) Discrete logarithms to the base 13, modulo 19

a	1	2	3	4	- 5	6	- 7	8	9	10	11	12	13	14	15	16	17	18
Ind13,19(a)	18	11	17	4	14	10	12	15	16	7	6	3	1	5	1.3	8	2	9

(e) Discrete logarithms to the base 14, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ind _{14,19} (a)	18	13	7	8	10	2	6	3	14	5	12	15	11	1	17	16	14	9

(f) Discrete logarithms to the base 15, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ind _{15,19} (a)	18	5	11	10	8	16	12	15	4	13	6	3	7	17	1	2	12	9

Diffie-Hellman Algorithm

Five Parts

- Global Public Elements
- User A Key Generation
- 3. User B Key Generation
- 4. Generation of Secret Key by User A
- Generation of Secret Key by User B

Global Public Elements

q
Prime number

 α α < q and α is a primitive root of q

 The global public elements are also sometimes called the domain parameters

User A Key Generation

- Select private X_A
- Calculate public Y_A

$$X_A < q$$

$$Y_A = \alpha X_A \mod q$$

User B Key Generation

- Select private X_B
- Calculate public Y_B

$$X_B < q$$

$$Y_B = \alpha X_B \mod q$$

Generation of Secret Key by User A

 $K = (Y_B)^X \mod q$

Generation of Secret Key by User B

$$K = (Y_A)^X_B \mod q$$

Diffie-Hellman Key Exchange

Diffie-Hellman Example

- *q* = 97
- $\alpha = 5$
- $X_A = 36$
- $X_{B} = 58$
- $Y_A = 5^{36} = 50 \mod 97$
- $Y_B = 5^{58} = 44 \mod 97$
- $K = (Y_B)_A^X \mod q = 44^{36} \mod 97 = 75 \mod 97$
- $K = (Y_A)^{X_B} \mod q = 50^{58} \mod 97 = 75 \mod 97$

Why Diffie-Hellman is Secure?

- Opponent has q, α, Y_A and Y_B
- To get X_A or X_B the opponent is forced to take a discrete logarithm
- The security of the Diffie-Hellman Key Exchange lies in the fact that, while it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms. For large primes, the latter task is considered infeasible.

Homework: Man-in-the-middle-attack

- Find out yourself (maybe from the Internet)
 how this attack can be implemented
 successfully against Diffie-Hellman protocol
- Suggest a way to prevent against this attack

ZERO-KNOWLEDGE PROTOCOLS

The Cave of the Forty Thieves

The Cave of the Forty Thieves

Properties of Zero-Knowledge Proofs

- Completeness A prover who knows the secret information can prove it with probability 1.
- Soundness The probability that a prover who does not know the secret information can get away with it can be made arbitrarily small.

An Example

- Peggy the prover would like to show Vic the verifier that an element β is a member of the subgroup of Z_n^* generated by α , where α has order λ . (i.e., does $\alpha^k = \beta$ for some k such that $0 \le k \le \lambda$?)
- Peggy chooses a random j, $0 \le j \le \lambda 1$, and sends Vic α^{j} .
- Vic chooses a random i = 0 or 1, and sends it to Peggy.
- Peggy computes $j + ik \mod \lambda$, and sends it to Vic.
- Vic checks that $\alpha^{j+ik} = \alpha^j \alpha^{ik} = \alpha^j \beta^i$.
- They then repeat the above steps log₂n times.
- If Vic's final computation checks out in each round, he accepts the proof.

Complexity Theory

- The last proof works because the problem of solving discrete logarithms is NP-complete (or is believed to be, at any rate).
- It has been shown that all problems in NP have a zero-knowledge proof associated with them.

Identification

- Alice is identified by some secret she alone is known to possess - e.g. a password
- Problems
 - The authenticator must be trusted
 - If secret sniffed or given to untrusted party, can impersonate
- Use zero knowledge!

One time setup:

- Trusted center published modulus n=pq, but keeps p and q secret
- Alice selects a secret prime s comprime to n, computes v=s² mod n, and registers v with the trusted center as its public key

Protocol messages:

$$A \rightarrow B$$
: $x = r^2 \mod n$

$$B \rightarrow A$$
: e from $\{0, 1\}$

$$A \rightarrow B$$
: $y = rs^e \mod n$

Protocol messages: $A \rightarrow B: x = r^2$ $B \rightarrow A: e from$ $A \rightarrow B: y = rs^e \mod n$ If e=0, then the response y=r is independent of secret s

Protocol messages:

$$A \rightarrow B$$
: $x = r^2 \mod n$

$$B \rightarrow A$$
: e from $\{0, 1\}$

$$A \rightarrow B$$
: $y = rs^e \mod n$

If e=1, then information pairs (x, y) can be simulated by choosing y randomly, and setting x=y² /v mod n

Bit Commitments

- "Flipping a coin down a well"
- "Flipping a coin by telephone"
- A value of 0 or 1 is committed to by the prover by encrypting it with a one-way function, creating a "blob". The verifier can then "unwrap" this blob when it becomes necessary by revealing the key.

Bit Commitment Properties

- Concealing The verifier cannot determine the value of the bit from the blob.
- Binding The prover cannot open the blob as both a zero and a one.

Bit Commitments: An Example

- Let n = pq, where p and q are prime. Let m be a quadratic nonresidue modulo n. The values m and n are public, and the values p and q are known only to Peggy.
- Peggy commits to the bit b by choosing a random x and sending Vic the blob m^bx².
- When the time comes for Vic to check the value of the bit, Peggy simply reveals the values b and x.
- Since no known polynomial-time algorithm exists for solving the quadratic residues problem modulo a composite n whose factors are unknown, hence this scheme is computationally concealing.
- On the other hand, it is perfectly binding, since if it wasn't, m would have to be a quadratic residue, a contradiction.

Bit Commitments and Zero-Knowledge

- Bit commitments are used in zero-knowledge proofs to encode the secret information.
- For example, zero-knowledge proofs based on graph colorations exist. In this case, bit commitment schemes are used to encode the colors.
- Complex zero-knowledge proofs with large numbers of intermediate steps that must be verified also use bit commitment schemes.

- Consider this simple protocol
 - If the prover claims to be A, the verifier chooses a random message M, and sends the ciphertext $C = P_A(M)$ to the prover.
 - The prover decrypts C using S_A and sends the result M' to the verifier.
 - The verifier accepts the identity of the prover if and only if M' = M.
- At first sight, it may seem OK:
 - V already knows M
- But WRONG! What if the verifier is an adversary?

Fixed protocol

- 1. If P claims to be A, V chooses a random message M, and sends $C = P_A(M)$ to P
- P decrypts C using S_A and sends V a commitment to the result commit_{pk}(r,M')
- 3. V → P: M.
- 4. P checks if M = M'. If not he stops the protocol. Otherwise he opens the commitment $P \rightarrow V$: r,M
- 5. V accepts the identity of the prover if and only if M' = M and the pair r,M' correctly opens the commitment

Computational Assumptions

- A zero-knowledge proof assumes the prover possesses unlimited computational power.
- It is more practical in some cases to assume that the prover's computational abilities are bounded. In this case, we have a zeroknowledge argument.

Proof vs. Argument

Zero-Knowledge Proof:

- Unconditional completeness
- Unconditional soundness
- Computational zeroknowledge
- Unconditionally binding blobs
- Computationally concealing blobs

Zero-Knowledge Argument:

- Unconditional completeness
- Computational soundness
- Perfect zero-knowledge
- Computationally binding blobs
- Unconditionally concealing blobs

Applications

- Zero-knowledge proofs can be applied where secret knowledge too sensitive to reveal needs to be verified
- Key authentication
- PIN numbers
- Smart cards

Limitations

- A zero-knowledge proof is only as good as the secret it is trying to conceal
- Zero-knowledge proofs of identities in particular are problematic
- The Grandmaster Problem
- The Mafia Problem
- etc.

