Отчет о выполненой лабораторной работе 1.1.4 Изучение статистических закономерностей на примере измерения фона космического излучения

Игнатов Илья, Осипов Максим Б03-604 September 16, 2025

1 Аннотация

В данной работе проводится экспериментальное изучение статистических закономерностей счёта частиц радиационного фона. Основное внимание уделено проверке гипотезы о том, что процесс регистрации частиц, являясь независимым и однородным во времени, описывается распределением Пуассона. На большом массиве данных исследуется переход пуассоновского распределения к нормальному. Работа включает расчёт и анализ таких параметров, как среднее значение, дисперсия и стандартное отклонение

2 Теоретические сведения

2.1 Оборудование

В работе используются: счетчик Гейгера-Мюллера(СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком, п.

В любой физической лаборатории присутствует естественный радиационный фон, основным источником которого является космическое излучение. Данный фон накладывается на излучение от других источников, если таковые имеются.

Конструкция счётчика Гейгера-Мюллера представляет собой металлический цилиндр, заполненный газом, с двумя электродами: катодом (корпусом счетчика) и анодом (тонкой нитью, натянутой по его оси). На электроды подаётся постоянное напряжение порядка 400 В от блока питания, который часто смонтирован вместе со счётчиком.

Регистрация частиц основана на явлении ударной ионизации. Пролетающие через счётчик космические частицы — в основном, протоны (92%), альфа-частицы (6%) и электроны/позитроны (1%) ионизируют газовый наполнитель или выбивают электроны из стенок цилиндра. Под действием сильного электрического поля первичные электроны ускоряются, сталкиваются с молекулами газа и порождают лавину вторичных электронов. Этот процесс приводит к возникновению кратковременного импульса тока (газового разряда) в цепи. Данные импульсы регистрируются с помощью компьютерной программы.

Число зарегистрированных частиц зависит от времени измерения, размеров счётчика, от давления и состава газа и от материала, из которого сделаны стенки счётчика.

Рисунок 1: Схема включения счетчика

2.2 Погрешности

Наиболее важной характеристикой является среднее число регистрируемых частиц в единицу времени. Если $n_1, n_2, ..., n_N$ - результаты N проведённых в одинаковых условиях измерений, можно вычислить выборочное среднее значение числа измерений:

$$\langle n \rangle = \frac{1}{N} \sum_{i=1}^{N} n_i$$

Согласно закону больших чисел, выборочное среднее стремится к истинному среднему. Если продолжать измерения можно ожидать:

$$\overline{n} = \lim_{N \to \infty} \langle n \rangle$$

Меру флуктуаций среднего значения количественно характеризуют среднеквадратичным отклонением σ_n .

$$\sigma_n = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \langle n \rangle)^2}$$

По определению, дисперсия (средний квадрат отклонений) вычисляется как:

$$\sigma_n^2 = \frac{1}{N} \sum_{i=1}^N (n_i - \langle n \rangle)^2 = \langle (n_i - \langle n \rangle)^2 \rangle$$

Погрешность среднего значения $\langle n \rangle$ при независимых измерениях связана с погрешностью отдельного измерения формулой:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$$

Таким образом, увеличивая количество измерений, среднее значение приближается к «истинному» n. При конечном N истинное среднее с высокой вероятностью лежит в интервале

$$\overline{n} = \langle n \rangle \pm \frac{\sigma_n}{\sqrt{N}}$$

2.3 Пуассоновский процесс

Если события однородны во времени и каждое последующее событие не зависит от предыдущих, то такую последовательность событий называют *пуассоновским процессом*.

Вероятности ω_n обнаружения n частиц в эксперименте для распределения Пуассона задаются формулой:

$$\omega_n = \frac{\overline{n}^n}{n!} e^{-\overline{n}}$$

Для пуассоновского процесса выполняется важное соотношение:

$$\sigma = \sqrt{\overline{n}}$$

То есть среднеквадратичное отклонение равно корню из среднего значения. На практике для выборочных данных можно ожидать выполнение приближённого равенства:

$$\sigma_n \approx \sqrt{\langle n \rangle}$$

При больших \overline{n} распределение Пуассона асимптотически приближается к нормальному распределению (распределению Гаусса), которое описывается формулой через \overline{n} , n и среднеквадратическое отклонение σ_n :

$$\rho_n = \frac{1}{\sqrt{2\pi}\sigma_n} e^{-\frac{(n-\overline{n})^2}{2\sigma_n^2}}$$

3 Погрешность эксперимента

Если подставить основное свойство распределения Пуассона в формулу погрешности среднего значения, то получится среднеквадратичная погрешность определения среднего:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}} = \sqrt{\frac{\langle n \rangle}{N}}$$

Для относительного значения погрешности:

$$\varepsilon_{\langle n \rangle} = \frac{\sigma_{\langle n \rangle}}{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle N}}$$

Рассмотрим опыт, в котором интервал измерения t разбит на $N=\frac{t}{\tau}$ промежутков, длительностью τ . В знаменателе полученного выражения, как нетрудно видеть, стоит полное число частиц $N_0=\langle n\rangle N=\sum\limits_{i=1}^N n_i,$ зарегистрированных за всё время измерений t. То есть относительная погрешность опыта не зависит от интервалов τ разбиения серий, и убывает обратно пропорционально корню из общего числа частиц N_0 .

Таким образом, единственный способ увеличить точность опыта — увеличивать общее число регистрируемых частиц за счёт увеличения совокупного времени измерений τ .

Обработка результатов 4

4.1 Γ руппировка по $\tau = 10$ с

Рисунок 2: Распределение вероятностей для $\tau=10$

На гистограмму наложен граффик нормального распределения. С параметрами среденего $\langle n \rangle$ и среднеквадратичного отклоения σ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Данные для построение гистограммы

Таблица 1: Данные для построения гистограммы распределения числа срабатываний счетчика за 10 с

Число импульсов n_i	1	2	3	4	5	6	7	8	9
Число случаев	2	5	6	12	27	26	53	51	46
Доля случаев w_n	0,005	0,012	0,015	0,03	0,068	0,065	0,132	0,128	0,115

Число импульсов n_i	10	11	12	13	14	15	16	17	18
Число случаев	41	31	32	23	22	6	6	3	5
Доля случаев w_n	0,102	0,078	0,08	0,058	0,055	0,015	0,015	0,008	0,012

Группировка по $\tau = 10$ с и $\tau = 40$ 4.2

Для обоих измерений вычислим среденее значение $\langle n \rangle$, среднеквадратичное отклоение отдельного эсперимета и погрешность среднего

$$\langle n \rangle = \frac{1}{N} \sum_{i=1}^{N} n_i \quad \sigma_n = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \langle n \rangle)^2} \quad \sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$$

Также убедимся в справедливости формулы $\sigma_n \approx \sqrt{\langle n \rangle}$

t = 10 c: $\overline{n}_1 = 10,09$, $\sigma_1 = 3,17$, $\sigma_{\overline{n}_1} = 0,05$; $3.11 \approx \sqrt{10.09} = 3.11$. t = 40 c: $\overline{n}_2 = 40,34$, $\sigma_2 = 6,35$, $\sigma_{\overline{n}_2} = 0,1$; $6,55 \approx \sqrt{40,34} = 6,55$.

Рисунок 3: Распределение вероятностей для $\tau=10$ и $\tau=40$ с

Найдём процент случаев, когда отклонение от среднего не превышает $\sigma, 2\sigma$. Сравним результаты с теоретическими оценками.

Ошибка	Доля случаев, %	Теоретическая оценка
σ_1	75,25	68
$2\sigma_1$	96,5	95
σ_2	72	68
$2\sigma_2$	95	95

Найдём относительную погрешность средних значений:

$$\varepsilon_1 = \frac{1}{\sqrt{\overline{n_1}N_1}} = 0,49\%, \quad \varepsilon_2 = \frac{1}{\sqrt{\overline{n_2}N_2}} = 0,24\%.$$

Таблица 2: Число срабатываний за 20 с

№опыта	1	2	3	4	5	6	7	8	9	10
0	26	26	26	22	28	18	19	28	17	27
10	22	26	22	20	25	23	32	21	24	30
20	22	24	26	18	20	19	23	39	28	21
30	28	27	19	20	25	29	31	36	30	22
40	19	35	29	20	30	15	16	20	22	15
50	24	21	17	18	23	24	21	19	37	17
60	23	27	12	20	29	31	24	24	22	25
70	20	26	19	27	26	30	24	25	24	18
80	24	23	27	32	26	25	30	25	22	22
90	25	20	18	26	26	27	28	22	22	33
100	14	31	26	32	20	25	27	24	24	28
110	28	18	30	23	35	28	21	25	28	27
120	27	29	23	24	20	14	23	25	27	34
130	22	26	20	20	16	27	19	28	26	24
140	22	22	25	22	24	22	32	32	23	31
150	17	28	25	21	27	24	24	27	22	24
160	21	25	30	16	34	36	34	25	24	32
170	22	17	18	20	28	24	24	40	25	16
180	27	21	26	22	19	25	28	20	30	29
190	27	17	27	21	26	24	18	32	30	23

Данные для построения диаграммы разбиение по 40 секунд

Таблица 3: Число срабатываний счетчика за 40 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	52	48	46	47	44	48	42	48	53	54
10	46	44	39	62	49	55	39	54	67	52
20	54	49	45	36	37	45	35	47	40	54
30	50	32	60	48	47	46	46	56	49	42
40	47	59	51	55	44	45	44	53	50	55
50	45	58	45	51	52	46	53	63	46	55
60	56	47	34	48	61	48	40	43	47	50
70	44	47	46	64	54	45	46	51	51	46
80	46	46	70	59	56	39	38	52	64	41
90	48	48	44	48	59	44	48	50	50	53

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счетчика за 40 с

Число импульсов	26	27	28	29	31	32	33	34	35	36	37	38
Число случаев	1	2	1	1	3	3	4	3	1	8	8	4
Доля случаев	0,01	0,02	0,01	0,01	0,03	0,03	0,04	0,03	0,01	0,08	0,08	0,04

Число импульсов	39	40	41	42	43	44	45	46	47	48	49	50
Число случаев	8	6	4	5	7	7	5	6	3	1	2	3
Доля случаев	0,08	0,06	0,04	0,05	0,07	0,07	0,05	0,06	0,03	0,01	0,02	0,03

Число импульсов	53
Число случаев	2
Доля случаев	0,02

5 Вывод

В ходе работы были получены данные интенсивности радиационного фона. С помощью методов оценки погрешностей и теории вероятности мы нашли средние значения для разбиений по 10с и 40с.

 $\overline{n}_1 = 10.09 \pm 0,05$ и $\overline{n}_2 = 40.34 \pm 0,1$. Относительные погрешности определения n_1 и n_2 совпадают и весьма невелики (0.49%; 0, 24%). Проверено, что результаты измерений соответствуют характерному для распределения Пуассона равенству: $\sigma = \sqrt{n_0}$. При большом числе регистраций частиц выполняются свойства нормального распределения, так-же гистограммы сходятся с теоретическими графиками нормального распределения