Métodos Matemáticos da Física

2010/11

Teste 2 07-05-2011

1.a) Coloque na forma de Sturm-Liouville a equação diferencial

$$(1 - x^2) y''(x) - x y'(x) + \lambda y(x) = 0, \qquad x \in [-1, +1].$$

- b) Escreva a expressão do produto interno de funções adequado a este problema.
- **2.a)** Admita que a solução y(x) da equação

$$(1-x^2)y''(x) - xy'(x) + \lambda y(x) = 0$$
, $x \in [-1, +1]$,

se pode escrever como uma série de potências inteiras de x: $y = \sum_n a_n x^n$. Determine a relação de recorrência entre os coeficientes a_n e obtenha a expressão de y(x) em termos de (a_0, a_1) até à ordem x^5 .

- b) Estabeleça o espectro de valores próprios λ_n associados a funções próprias $y_n(x)$ dadas por polinómios de grau bem definido.
- c) Determine as funções próprias $y_n(x)$ associadas aos quatro valores próprios mais pequenos, sujeitas à condição $y_n(1) = 1$.
- **3.** As funções harmónicas esféricas $Y_l^m(\theta,\phi)$ são funções próprias do operador $\partial/\partial\phi$ e do operador

$$A = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} ; \qquad A Y_l^m = -l(l+1) Y_l^m .$$

- a) Escreva a expressão do produto interno aplicável às funções $u(\theta, \phi)$ e diga qual é a condição de normalização a que obedecem $Y_l^m(\theta, \phi)$.
- **b)** Aplique os operadores A, $\partial/\partial\phi$, às funções $u=(x+iy)^2/r^2$, $v=(x+iy)z/r^2$, e verifique que $u(\theta,\phi)$, $v(\theta,\phi)$, são funções próprias de A e de $\partial/\partial\phi$.
- c) Determine as relações entre as funções $u(\theta, \phi)$, $v(\theta, \phi)$, e as funções harmónicas esféricas $Y_l^m(\theta, \phi)$, a menos de constantes multiplicativas.