· Midterm

() hope to have grades soon.

- . Last Time

 Ly Magnetics Fundamentals
- · Today

 > Magnetic circuit anelogy

 Garred inductor

- Ferromagnetic material domains

- Magnetic Circuit Andlogy

· Facilitate design / intuition

Recall

$$H = \frac{B}{M}$$
 $A = \frac{\Phi}{A_c}$

Rewrite (1)
$$\begin{array}{c}
+ = \frac{B}{A} \\
+ = \frac{B}{A} \\
+ = \frac{A}{A} \\
+ = \frac{A}{A$$

Redraw as a ckt:

- strategy for complex core structures
 - · Break up core into "chunks" & compute

 R for each piece
 - . Windings are "sources" of MMF, draw as
 - · Solve ext for flow(s) ≠ in each piece
- Analogies to Kirchhoff's Laws:
 - * KCL 1:ke law

example:

Redraw as a ckt

Solve as a ckt

ni =
$$\Phi$$
 ($R_c + R_g$)

where $R_c = \frac{l_c}{u A_c}$
 $R_g = \frac{l_g}{u_o A_c}$

* where
$$\overline{\Phi} = \frac{ni(t)}{R_c + R_g}$$

where
$$L = \frac{n^2}{R_c + R_g}$$

observe

HW preview (get started now please)

