Gruppen, Ringe und Körper

M sei eine Menge und \circ eine zweistellige Operation (Abbildung von M × M in M).

Bezeichnung (M, \circ), analog (M, \circ , *) bei zwei Operationen.

Definition 1: (M, °) ist eine Gruppe, wenn gilt:

- (1) Die Operation ist assoziativ.
- (2) Es gibt genau ein neutrales Element $e \in M$ mit $a \circ e = e \circ a = a$ (für alle $a \in M$).
- (3) Es gibt zu jedem $a \in M$ genau ein inverses Element a^{-1} mit $a \circ a^{-1} = a^{-1} \circ a = e$.

Eine Gruppe heißt abelsch, wenn die Operation o kommutativ ist.

Beispiel: Die Menge der regulären Matrizen vom Typ (n,n) bildet mit der Operation Matrizen-Multiplikation eine (nicht-abelsche) Gruppe.

Definition 2: $(M, \oplus, *)$ heißt Ring, wenn gilt:

- (1) (M,⊕) ist eine abelsche Gruppe.
- (2) Die Operation * ist assoziativ.
- (3) Es gelten die Distributivgesetze (für beliebige a, b, c \in M): $a*(b\oplus c)=(a*b)\oplus (a*c)$ und $(a\oplus b)*c=(a*c)\oplus (b*c)$.

Ein Ring heißt kommutativer Ring, wenn die Operation * kommutativ ist.

Beispiel: Die Menge der quadratischen Matrizen vom Typ (n, n) bildet mit den Operationen Matrizen-Addition und -Multiplikation einen nicht-kommutativen Ring.

Definition 3: $(M, \oplus, *)$ heißt Körper, wenn gilt:

- (1) $(M, \oplus, *)$ ist ein Ring (mit dem neutralen Element 0 für die Operation \oplus).
- (2) (M \ {0}, *) ist eine abelsche Gruppe (mit dem neutralen Element 1 für die Operation •).

Beispiele:

- 1) Die rationalen Zahlen (Q), die reellen Zahlen (R) und die komplexen Zahlen (C) jeweils mit den üblichen arithmetischen Operationen Addition und Multiplikation.
- 2) Die Restklassenmenge $Z_p(p \dots Primzahl)$ mit den modularen Operationen Addition \oplus und Multiplikation \otimes (s. Seite 2).

Der Restklassenkörper Z_p

• Es seien a und b ganze Zahlen und m > 0 eine natürliche Zahl. Es bedeute $a \equiv b \pmod{m}$ (lies: a kongruent b modulo m), dass a und b bei Division durch m den gleichen Rest besitzen.

Durch $(a, b) \in T : \Leftrightarrow a \equiv b \pmod{m}$ ist auf Z eine Äquivalenzrelation T erklärt. Äquivalenzklassen sind die Restklassen modulo m (Eine Restklasse enthält alle ganzen Zahlen, die bei Division durch den Modul m den gleichen Rest lassen.)

• Es seien $a \in Z$ und $m \in N^*$. Dann gibt es eine eindeutige Darstellung von a der Gestalt $a = q \cdot m + r$ mit $0 \le r < m$ und $q \in Z$.

Bezeichnungen: r ist der (kleinste nichtnegative) Rest, q ist der Quotient (größte ganze Zahl k, für die k·m kleiner oder gleich a ist) bei Division durch den Modul m.

• Es seien $a \equiv b \pmod{m}$ und $c \equiv d \pmod{m}$, dann gelten auch $a + c \equiv b + d \pmod{m}$ und $a \cdot c \equiv b \cdot d \pmod{m}$, d. h.

in Summen und Produkten darf jede Zahl durch einen beliebigen Vertreter der gleichen Restklasse ersetzt werden.

• Beispiel: Restklassen modulo 7

$$\begin{aligned} &\text{Restklasse 0: } \{..., -21, -14, -7, 0, \ 7, 14, 21, 28, 35, ...\} = \{7k + 0 \mid k \in Z\}, \\ &\text{Restklasse 1: } \{..., -20, -13, -6, 1, \ 8, 15, 22, 29, 36, ...\} = \{7k + 1 \mid k \in Z\}, \\ &\text{Restklasse 2: } \{..., -19, -12, -5, 2, \ 9, 16, 23, 30, 37, ...\} = \{7k + 2 \mid k \in Z\}, \end{aligned}$$

Restklasse 6:
$$\{..., -15, -8, -1, 6, 13, 20, 27, 34, 41, ...\} = \{7k + 6 \mid k \in \mathbb{Z}\}.$$

In der modularen Arithmetik werden die Restklassen mit den jeweils kleinsten nichtnegativen Vertretern identifiziert (im Beispiel $0, 1, 2, \ldots, 6$). Diese bilden die Restklassenmenge Z_m , hier $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$. Für Addition \oplus und Multiplikation \otimes ergeben sich in Z_7 folgende Rechentabellen:

\oplus	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

\otimes	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Wegen $3 \cdot 5 \equiv 1 \pmod{7}$, d. h. $3 \otimes 5 = 1$ ist 5 in \mathbb{Z}_7 die Inverse von 3: $3^{-1} = 5$.

• Ist p eine Primzahl, so ist (Z_p, \oplus, \otimes) ein Körper.