Week 5 Quiz Solutions.

1. (5 points) Find a parametric equations of the tangent line to the curve $\vec{r}(t) = \langle \frac{\pi}{t}, \cos^2(t), e^t \rangle$ at the point $(1, 1, e^{\pi})$.

Solution.

First, by solving for the z coordinate and checking the others, it is clear that when $t = \pi$, $\vec{r}(\pi) = (1, 1, e^{\pi})$. Then, it is enough to find the direction of a tangent vector at this point

$$\vec{r'}(t) = \langle -\pi t^{-2}, -2\cos(t)\sin(t), e^t \rangle$$
$$\vec{r'}(\pi) = \langle -1/\pi, 0, e^\pi \rangle.$$

Using a point on the line and its direction, the parametric equations of the tangent line can be written

$$x = 1 - t/\pi$$

$$y = 1$$

$$z = e^{\pi} + e^{\pi}t.$$

- 2. (5 points)
 - (a) Let $\vec{r}(t) = \langle 0, t, t^2 \rangle$ and $\vec{s}(u) = \langle u \sin(\pi u), u \cos(\pi u), u \rangle$. Find the intersection points of $\vec{r}(t)$ and $\vec{s}(u)$.

Solution.

$$0 = u\sin(\pi u) \tag{1}$$

$$t = u\cos(\pi u) \tag{2}$$

$$t^2 = u \tag{3}$$

- By the first equation, u = 0 or $\sin(\pi u) = 0$, so u must be an integer.
- This means that, in the second equation, $\cos(\pi u) = \pm 1$, so t = u or t = -u.
- Substitution into the third equation gives $u = (\pm u)^2 = u^2$ so u = 0 or u = 1.
- By the third equation, if u = 0 then t = 0.
- By the second equation, if u = 1 then t = -1.

Checking these values,

$$\vec{s}(0) = \langle 0, 0, 0 \rangle = \vec{r}(0)$$

 $\vec{s}(1) = \langle 0, -1, 1 \rangle = \vec{r}(-1).$

(b) Which (if any) of these intersection points are collision points?

Solution.

Collisions happens when $\vec{r}(t) = \vec{s}(t)$. In this case, this only happens when t = u = 0.