Multiple Linear Regression

Lecture 17

Dr. Emmanuel Papadakis

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Housing Price

Size in feet 2(x)	Number of bedrooms	Age of home (years)	Price (\$) in 1000's (y)
1000	3.0	12	\$950,000
1750	4.0	10	\$2,250,000
2200	5.0	5	\$2,400,000

Linear relationships

A statistical term used to describe a straight-line relation between two variables

$$Y = f(X) = m * X + b$$

- Y: dependent variable (target)
- X: one one more independent variables (predictors)
- f: function that predicts Y based on X
- m: coefficient of each variable = importance (slope: direction & steepness etc...)
- b: y-intercept (move up or down from (0,0)) = something like an adjustment of the value

It expresses a correlation:

how close to linear fashion **predictors change as related to the changes of the target value**

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Simple Linear Regression (SLR)

We want to predict Y based on the value of a variable X

- Establish if there is a relationship f so that
 - Y = f(X)
 - Y = b0 + b1 * X (stat world notation)
 - b0 → y-intercept (value of y when x is 0)
 - b1 → coefficient of X

Knowing relationship **f**

We can use it to forecast new observations (regression)

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Linear relations (housing price)

•
$$Y = b0 + b1 * X$$

Real world is not so... linear

Linear relations Vs real data

SLR: **learn** the **linear** relationship between

 a dependent value (target) and one or more independent variables (predictors)

In simple terms:

 Find the regression line that best fits the available data

- How?
 - Adjust y-intercepts b0 and predictors coefficients (b1) so the regression line represents the linear pattern of the data

Linear data patterns and residual

University of HUDDERSFIELD
Inspiring global professionals

- Data may follow a linear pattern but the regression line might not intersect with any of the observations
- Residual or error: vertical distance between data value and regression line
- Best fit of regression line:
 - Minimize residuals

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Linear Regression Model

$$Y = f(X) = b0 + b1 * X + e$$

- Y: dependent variable (target)
- X: independent variable (predictor)
- b0: y-intercept
- b1: coefficient of predictor X
- e: residual error

Training the model: find the best parameters b0 and b1 that minimize e

Ordinary Least Squares

Observed value

Measure the error between actual and "predicted" values

Sum of the squares of the residuals

Total number of training examples

$$MSE(B) = \frac{1}{m} \sum_{i=1}^{m} (f(x^{i}) - y^{i})^{2}$$
Predicted value

A set of parameters (intercept and coefficient)

Why Squared error?

Why Squared Mean Error instead of Absolute?

- Penalize points farther from regression
 - Distance = $2 \rightarrow Error = 4$
 - Distance = 4 → Error = 16!

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Fit line to data using OLS

Fit a Linear Regression Model

Gradient descent is an optimization algorithm

- > Iteratively tweak parameters to minimize cost function
- Start with random b0 & b1
- Compute partial derivatives of MSE
 - Measure how b_i affects MSE

$$\frac{\partial SME(B)}{\partial b_j} = \frac{1}{m} \sum_{i=1}^{m} (f(x^i) - y^i) x_j^i$$

Updated model parameters using the learning rate

$$b_j = b_j - \mathbf{a} * \frac{\partial SME(B)}{\partial b_j}$$

Source: ibm.com

Learning rate

University of HUDDERSFIELD
Inspiring global professionals

Learning rate (a) indicates how fast the cost function converges to the minimum value

- a too small meticulous learning
 - Too slow & danger of overfitting!
- a too large careless learning
 - Efficient but may lead to underfitting

Small learning rate

Large learning rate

Example

Assume a linear dataset

X (predictor)	Y (target)
0.548	4.32
0.715	4.54
0.602	3.51
0.544	3.9
0.42	5.11
0.64	4.82
0.43	4.41

Learning through Gradient descent

Training parameters:

- 1000 training steps
- a = 0.01

Results of the training procedure

Plot with errors

 Best configuration when error: 0.038

Learned parameters:

- Coefficient = 2.89
- Intercept = 2.58

Regression line:

• Y = 2.89 * X + 2.58

Trained Linear Regression Model

The red line fits the data with the minimal error

- Forecasting new values
 - f(25) = 74.85
 - f(120) = 349.51

How well does the model perform?

Rooted Mean Squared Error: $\sqrt{MSE} = 2.76$

Indicates the average error (lower is better)

Coefficient of determination (R²)

 How much the variance of Y is reduced by the MSE (more on that in week 12)

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Multiple linear regression

What happens when housing price depends on multiple criteria?

Size, number of bedrooms and age?

Multiple Linear Regression

- An extension of linear regression in high dimensional space
- The model tries to find the best fit of n-plane over the data

$$Y = f(X) = e + b_0 + \sum_{i=1}^{n} b_n * x_n$$

Same training routine

nth variable

- Linear relationships
- Simple Linear Regression
- Crisp functions vs Real data
- Linear Regression Model
- Training a Linear Regression Model
- Multiple Linear Regression
- Summary

Main Assumptions of Linear Regression

Linear regression is easy to implement and use

but it's predictive power is easily affected by data particularities:

Before using it, make sure that:

- Dependent and independent variables follow a linear relationship
- The order of the data do not follow any pattern
 - (e.g., error increases on larger values of x)
 - Known as autocorrelation
- There is little to no dependency between independent variables
 - known as multicollinearity
- Data observations must follow a normal distribution
 - limited number of outliers

