TD n°12

Un problème et des révisions

Exercice 1 Pour tout langage L sur un alphabet Σ , on définit

$$L^{1/2} = \{ u \in \Sigma^* \mid uu \in L \}.$$

Le but de cet exercice est de montrer que si L est reconnaissable, alors $L^{1/2}$ l'est aussi. On suppose L reconnaissable et soit $A = (\Sigma, Q, q_0, F, \delta)$ un automate fini déterministe complet pour L. Pour tout état $q \in Q$, on note

$$G_q = \{ u \in \Sigma^* \mid \delta^*(q_0, u) = q \}$$

(lorsqu'on lit u depuis q_0 , on arrive dans l'état q) et

$$D_q = \{ u \in \Sigma^* \mid \delta^*(q, u) \in F \}$$

(lorsqu'on lit u depuis q, on arrive dans un état final)

- 1. Montrez que, pour tous $q, q' \in Q$, les langages G_q et D_q sont reconnaissables.
- 2. pour un $q \in Q$ donné, que vaut $G_q \cap D_q$?
- 3. Exprimez $L^{1/2}$ en fonction des ensembles G_q et D_q .
- 4. Concluez.

Pour un autre exercice de ce type voir Examen 2018 sur Moodle.

Révisions

Exercice 2 Soit $Min = \{a, b, c, ..., z\}$ l'ensemble de toutes les lettres minuscules. On considère l'alphabet $\Sigma = \{_\} \cup Min$.

Soit $L = \{u_v \mid u, v \in Min^*, u \neq v\}.$

- 1. Calculez $(abc)^{-1}L$, $(abc \ ab)^{-1}L$ et $(abc \ def)^{-1}L$
- 2. On rappelle qu'un mot w sépare des mots v_1 et v_2 , pour un langage L donné, quand $v_1w \in L$ et $v_2w \notin L$, ou $v_1w \notin L$ et $v_2w \in L$. Trouvez un mot qui sépare les deux mots ab et abab.
- 3. Montrez que, si $v_1, v_2 \in Min^*$ et $v_1 \neq v_2$ alors il y a un mot qui sépare v_1 et v_2 .
- 4. Qu'est-ce qu'il en suit pour le nombre de classes d'équivalence de la relation \sim_L ?
- 5. Est-ce que le langage L est reconnaissable ?
- 6. Le langage $L' = \{u_1 _ u_2 _ \dots _ u_n \mid u_i \in Min^* pour \text{ tous les } i, u_i \neq u_j pour \text{ tous les } i \neq j\}$, est-il reconnaissable? Pourquoi ou pourquoi non?

Exercice 3 (Lemme d'Arden) Utilisez le lemme d'Arden pour trouver une expression rationnelle correspondant au langage reconnu par cet automate.

Exercice 4 (Résiduels) Construisez l'automate pour les langages suivants en utilisant le calcul des résiduels :

- 1. $L_1 = b(ab)^* + (ab)^*a$
- 2. $L_2 = a(b+ab)^* + b^*(a+bb)$

Exercice 5 ((***) Clôture par Morphisme) Un morphisme de mot est une fonction φ : $\Sigma_1^* \mapsto \Sigma_2^*$ qui envoie un mot sur l'alphabet Σ_1 vers un mot sur l'alphabet Σ_2 telle que pour tout $u, v \in \Sigma_1^*$, $\varphi(u \cdot v) = \varphi(u) \cdot \varphi(v)$. Il suffit pour définir un morphisme de donner les valeurs $\varphi(a)$ pour tout $a \in \Sigma_1$. On remarquera que $\varphi(\varepsilon) = \varepsilon$.

- 1. Soit le morphisme de $\{a,b,c\}^*$ vers $\{A,B\}^*$ défini par $\varphi(a)=AAB$, $\varphi(b)=\varepsilon$ et $\varphi(c)=BA$.
 - Donnez la valeur de $\varphi(abbcc)$.
 - Soit L, le langage reconnu par l'automate de l'exercice 1, donnez un automate qui reconnaît $\varphi(L)$
- 2. Pouvez-vous généraliser? C'est-à-dire pouvez-vous montrer (informellement) que si un langage L est reconnaissable, alors $\varphi(L)$ l'est aussi?