

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

Relatório Final

Nome do Bolsista	Ígor Assis Rocha Yamamoto		
Curso	Engenharia de Controle e Automação		
Título do Projeto do Orientador	Desenvolvimento de rotinas de programação em alto nível para configuração de FPGAs		
Nome do Orientador	Rodolfo César Costa Flesch		
Grupo de Pesquisa	Laboratório de Instrumentação (LIN/DAS)		
Palavras-chave	FPGA, Instrumentação virtual, Programação em alto nível		
Período de Vigência da Bolsa	Maio de 2015 até abril de 2016		
Motivo da suspensão			
/cancelamento da bolsa (se foi o caso)			
IAA anterior/IAA posterior	8.87/ 8.85		

Resumo

O objetivo do trabalho de iniciação científica foi desenvolver rotinas de programação de alto nível que podem ser integradas em ambiente LabView para programação e configuração de FPGAs. As atividades foram realizadas com o uso da placa de ensino *NI Digital Electronics FPGA Board*, possibilitando a criação de elementos de software que exploram as ferramentas do kit de ensino, como entradas e saídas - digitais e analógicas. O material produzido com o kit pode ser utilizado no auxílio ao ensino de eletrônica digital de forma mais intuitiva, através do ambiente de desenvolvimento gráfico oferecido pelo LabView, em contrapartida à programação em baixo nível.

Introdução

Nos dias atuais, tornou-se cada vez mais comum o emprego de sistemas microprocessados em itens de uso cotidiano. Em comparação com alternativas anteriores, baseadas em eletrônica analógica, os sistemas microprocessados permitem uma redução da dimensão física do produto final e também uma redução significativa no tempo de desenvolvimento. Todavia, o uso de microprocessadores está limitado a aplicações que apresentam dinâmica da ordem de microssegundos, uma vez que há limites físicos para a frequência do *clock* que pode ser empregada nesse tipo de dispositivo. Como alternativa entre

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

a solução analógica instantânea e a solução microprocessada surgiram os FPGAs (do inglês *Field-Programmable Gate Array*), ou Arranjo de Portas Programável em Campo traduzido para o português. Um FPGA é um circuito integrado que pode ser configurado (programado) pelo usuário e continuar apresentando desempenho similar ao de um hardware desenvolvido especificamente para determinado fim. Apesar da versatilidade, a programação de FPGAs geralmente é realizada em muito baixo nível através das HDLs (linguagens de descrição de hardware, do inglês *Hardware Description Language*, tais como Verilog ou VHD), o que acaba por dificultar sua ampla utilização no meio acadêmico.

O trabalho realizado na iniciação científica teve como objetivo principal explorar alternativas mais atrativas para a programação e configuração de FPGAs. Através das ferramentas de software do LabView, foram implementadas rotinas de programação em alto nível, utilizando os recursos e facilidades da programação gráfica. O uso do Labview, em contrapartida ao modo usual de programação em HDL, permitiu a redução no tempo de criação de programas, além de torná-los mais simples e de fácil entendimento. Essas vantagens oferecidas para a manipulação de FPGAs são ideais para estudantes de engenharia focarem suas atividades nos conceitos fundamentais de eletrônica digital, deixando de lado a preocupação excessiva no aprendizado de uma nova linguagem. Com o auxilío do kit de desenvolvimento *NI Digital Electronics FPGA Board*, foi possível criar elementos de software úteis para o uso em aulas de eletrônica digital de fases iniciais de cursos de engenharia, como contadores e unidades lógicas e aritméticas.

Atividades Realizadas

Período	Atividades realizadas	Em conformidade		dade
		com	plano	de
		ativid	lades?	
Abril a maio	Planejamento das atividades	SIM		
Maio a junho	Familiarização com o ambiente LabView	SIM		
	e com a placa de desenvolvimento			
Junho a julho	Estudo da linguagem de programação	SIM		
	gráfica LabView e do módulo do			
	software para FPGA			
Julho a agosto	Exploração dos recursos da placa de	SIM		
	desenvolvimento (botões, LEDs, DIP			
	switches, displays de 7 segmentos,			
	protoboard) através da criação de			
	exemplos didáticos			
Agosto a setembro	Criação de rotinas em alto nível,	SIM		
	utilizando o processamento de dados do			
	FPGA da placa de desenvolvimento.			

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

	Foram implementados em LabView: um	
	contador programável (Figura 2), um	
	detector de sequência predefinida	
	(Figura 3), utilização de memória ROM	
	(Figura 4) e RAM (Figura 5)	
Setembro a outubro	Integração da placa de desenvolvimento	SIM
	com a plataforma <i>NI ELVIS II,</i> que	
	fornece acesso a diversos instrumentos,	
	como osciloscópio, gerador de função,	
	multímetro digital, leitura e escrita de	
	sinais digitais	
Outubro a novembro	Desenvolvimento de atividades	SIM
	envolvendo a integração da placa NI	
	Digital Electronics FPGA com o NI ELVIS	
	II. Foi implementada uma ALU	
	(Arithmetic Logic Unit) de três bits com	
	quatro funções de operação em	
	LabView (Figura 6).	
Novembro a dezembro	Presença como aluno ouvinte nas aulas	SIM
	iniciais da disciplina de Controle	
	Preditivo da Pós-Graduação em	
	Engenharia de Automação e Sistemas	
Dezembro a janeiro	Recesso das atividades	SIM
Janeiro a fevereiro	Assistência a um projeto de mestrado:	SIM
	implementação de um controlador PID	
	em FPGA aliado a uma técnica de	
	controle preditivo (GPC), utilizando a	
	plataforma NI myRIO, que possui FPGA	
	e microprocessador com sistema	
	operacional de tempo real integrados	
Fevereiro a março	Assistência a um projeto de mestrado:	SIM
	implementação de um controlador PID	
	em FPGA aliado a uma técnica de	
	controle preditivo (GPC), utilizando a	
	plataforma NI myRIO, que possui FPGA	
	e microprocessador com sistema	
	operacional de tempo real integrados	

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

Avaliação do Aluno em Relação ao Programa Jovens Talentos

O Programa Jovens Talentos para Ciência, promovido pela CAPES, oferece uma ótima oportunidade para estudantes do ensino superior se inserirem no ambiente de pesquisa, através das bolsas de iniciação científica. Foi possível, por meio da bolsa, explorar um pouco mais os recursos que a Universidade oferece aos alunos e estender a rede de contatos ao realizar atividades em conjunto com outros estudantes da graduação e da pós-graduação.

Bibliografia

- **1.** Getting Started With LabVIEW FPGA, National Instruments. Disponível em http://www.ni.com/tutorial/14532/en/>. Acesso em Julho de 2015.
- 2. LabVIEW Courseware for the NI Digital Electronics FPGA Board and NI ELVIS II, National Instruments. Disponível em http://www.ni.com/white-paper/8856/en/>. Acesso em Agosto de 2015.
- **3.** Example Programs for the NI Digital Electronics FPGA Board and NI ELVIS II, National Instruments. Disponível em < http://www.ni.com/example/8857/en/>. Acesso em Setembro de 2015.

Anexos

Figura 1 – Placa de Ensino NI Digital Electronics FPGA Board

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

Figura 2 - Contador Programável

Figura 3 - Detector de Sequência

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

Figura 4 - Uso da Memória ROM

Figura 5 - Uso da Memória RAM

PROGRAMA JOVENS TALENTOS PARA CIÊNCIA

Figura 6 – ALU (Arithmetic Logic Unit)

Ígor Assis Rocha Yamamoto Matrícula: 14101045

CPF: 046.487.919-16