Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт
з лабораторної роботи № 3 з дисципліни
«Алгоритми та структури даних-1.
Основи алгоритмізації»
«Дослідження ітераційних циклічних алгоритмів»

Варіант__34__

Перевірив	Виконав студент _	111-15,_Ч1нь_Хоанг_Вьет	
	Перевірив		

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Mema — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 34

Постановка задачі

34. З точністю $\varepsilon = 10^{-8}$ обчислити значення функції $\frac{e^X - e^{-X}}{2}$ за формулою $S = x + \frac{X^3}{3!} + \frac{X^5}{5!} + \frac{X^7}{7!} + \frac{X^9}{9!} + \dots$, використавши рекурентну формулу для обчислення члена ряду.

Розв'язання: Точність отриманого значення можна вважати досягнутою, якщо останній член ряду не перевищує за число ε .

Математична модель:

Змінна	Тип	Ім'я	Призначення
Аргумент	дійсний	X	Початкові
			дані
Точність	дійсний	e	Початкові
			дані
Номер ряду	Цілочисельний	n	Початкові та
	та		проміжні дані
	натуральний		
Лічильник	дійсний	term	проміжні дані
Сума	дійсний	Sum	Результат

- 1. Визначаємо основні дії.
- 2. Вводимо значення х
- 3. При модулі більше е, використовуємо рекурентну формулу, змінюємо значення Sum та прибавляємо до п одиницю і все повторюємо.
- 4. Якщо модуль менше е, Виводимо значення Sum

Псевдокод

Крок 1

1. Вводимо значення х

- 2. При модулі більше е, використовуємо рекурентну формулу, змінюємо значення Sum та прибавляємо до п одиницю і все повторюємо.
- 3. Якщо модуль менше е, виводимо значення Sum

Крок 2

- 1. Ввід х
- 2. <u>При модулі більше е, використовуємо рекурентну формулу, змінюємо значення Sum та прибавляємо до п одиницю і все повторюємо.</u>
- 3. Якщо модуль менше е, виводимо значення Sum

Крок 3

- 1. Ввід х
- 2. Якщо 1 term 1 > e,

```
term = x*x/(2*n)(2*n + 1)*term
Sum = Sum + term
n++
```

Все повторити

3. Якщо модуль менше е, виводимо значення Sum

Крок 4

- 1. Ввід х
- 2. Якщо 1 term 1 > e,

```
term = x*x/(2*n)(2*n + 1)*term
Sum = Sum + term
n++
```

Все повторити

3. **Якщо** 1 term 1 < e, **Вивід** Sum

Блок-схема

Випробування:

Блок	Випробування
	Початок
1	Ввід $x = 2.5$, $n = 1$
2	term = $2.5*2.5/(2*3)*2,5 = 2,6041666$
3	2,6041666 > 0.0000001 -> true
4	Sum = 2.5 + 2,6041666 = 5.1041666
5	n = 1 + 1 = 2
6	term = 2.5*2.5/(4*5)*2,6041666 = 0.8138020
7	0.8138020 > 0.0000001 -> true
8	Sum = 5.1041666 + 0.8138020 = 5.9179686
9	n = 2 + 1 = 3
10	term = $2.5*2.5/(6*7)*0.8138020 = 0.1211015$
11	0.1211015 > 0.0000001 -> true
12	Sum = 5.9179686 + 0.1211015 = 6.0390701
13	n = 3 + 1 = 4
14	term = $2.5*2.5/(8*9)*0.1211015 = 0.0706425$
15	0.0706425 > 0.0000001 -> true
16	Sum = 6.0390701 + 0.0706425 = 6.1097126

17	n = 4 + 1 = 5
18	term = $2.5*2.5/(10*11)*0.0706425 = 0.0040138$
19	0.0040138 > 0.0000001 -> true
20	Sum = 6.1097126 + 0.0040138 = 6.1137264
21	n = 5 + 1 = 6
22	term = $2.5*2.5/(12*13)*0.0040138 = 0.0001511$
23	0.0001511 > 0.0000001 -> true
24	Sum = 6.1137264 + 0.0001511 = 6.1138775
25	n = 6 + 1 = 7
26	term = $2.5*2.5/(14*15)*0.0001511 = 0.0000045$
27	0.0000045 > 0.0000001 -> true
28	Sum = 6.1138775 + 0.0000045 = 6.1138820
29	n = 7 + 1 = 8
30	term = $2.5*2.5/(16*17)*0.0000045 > 0.0000001 -> false;$
31	Вивід 6.1138820
32	Кінець

Висновок: На цій лабораторній роботі, ми дослідили оператори повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій. Ми створили програму, яка дає нам змогу обчислити значення функції з точністю до числа е.