Plancha de ejercicios 2

Leandro Spagnolo, Ignacio Ortego y Agustin Lopez

Contents

1	Consigna:	2
2	Ejercicio 1	2
	2.1 a)	2
	2.2 b)	2
	2.3 c)	$\overline{2}$
	2.4 d)	$\overline{2}$
	2.5 e)	2
	2.6 f)	2
	2.7 g)	3
	2.1 8)	0
3	Ejercicio 2	3
4	Ejercicio 3	3
5	Ejercicio 4	4
	5.1 a)	4
	5.2 b)	6
	5.3 c)	7
	5.4 d)	8
6	Ejercicio 7	8
	6.1 a)	8
	,	9
	6.3 c)	10
7	Ejercicio 12	11
•	7.1 a)	11
	7.2 b)	12
	7.3 c)	

1 Consigna:

Resolver los ejercicios 1, 2, 3, 4, 7 y 12 de la Plancha 2.

- 2 Ejercicio 1
- 2.1 a)

$$29 = 1101 = 1.1101 \cdot 2^4$$

2.2 b)

$$0.625 = 0.101 = 1.01 \cdot 2^{-1}$$

2.3 c)

 $0.1 = 0.00011001100110011001100110011001100 = 1.10011... \cdot 2^{-4}$

IEEE754: 0 01111011 10011001100110011001101

2.4 d)

$$5.75 = 101.11 = 1.0111 \cdot 2^2$$

2.5 e)

$$-138 = -10001010 = -1.000101 \cdot 2^7$$

2.6 f)

$$-15.125 = -1111.001 = -1.111001 \cdot 2^3$$

2.7 g)

$$0.1 = 0.00011001100110011001100110011001100 = 1.10011... \cdot 2^{-4}$$
 IEEE754: 0 01111011 10011001100110011001101

3 Ejercicio 2

Adjuntamos main.c

4 Ejercicio 3

Número a convertir: 6.225

$$110_2 = 6$$

$$0.225 \cdot 2 = 0.45 \implies 0$$

$$0.45 \cdot 2 = 0.9 \implies 0$$

$$0.9 \cdot 2 = 1.8 \implies 1$$

$$0.8 \cdot 2 = 1.6 \implies 1$$

$$0.6 \cdot 2 = 1.2 \implies 1$$

$$0.2 \cdot 2 = 0.4 \implies 0$$

$$0.4 \cdot 2 = 0.8 \implies 0$$

$$0.8 \cdot 2 = 1.6 \implies 1$$

$$0.6 \cdot 2 = 1.2 \implies 1$$

$$0.2 \cdot 2 = 0.4 \implies 0$$

6.225 = 110.0011100110011...

Notación científica: $1.100011100110011 \cdot 2^2$

Signo: 0

Exponente: $2 \cdot 2^2$

Exponente ieee 754: $127 + 2 = 129_{10} = 10000001_2$

Mantisa: 1000111001100110011

Número en decimal: 6.224999904632568359375

Error: $6.225 - 6.224999904632568359375 = -6.224999905 \cdot 10^{-21}$

Exponente ieee 754 double: 1023 + 2 = 1025 = 10000000001

Número en decimal: 6.22499999999996447286321199499070644

Error: $6.225 - 6.2249999999999999447286321199499070644 = -6.225 \cdot 10^{-49}$

5 Ejercicio 4

5.1 a)

$$N_1 \otimes (N_2 \oplus N_3)$$

$$N_2 = (0.2)_{10} = (0.001100110011...)_2 = 1.100110011... \cdot 2^{-3}$$

 $Exp = -3 + 127 = (124)_{10} = (01111100)_2$
 $(N_2)_{IEEE754} = 0 \ 01111100 \ 10011001100110011001101$

 $(N_3)IEEE754 = (0.1)10 = 0 01111011 1001100110011001101$ Por ejercio 1

$$N_2 \oplus N_3 = 1.100110011... \cdot 2^{-3} + 1.100110011... \cdot 2^{-4}$$

= 1.100110011... \cdot 2^{-3} + 11.00110011... \cdot 2^{-3}
\frac{1.100110011001}{100110011}
\frac{+ 11.001100110011}{100.110011001}

 $100.110011001100 = 1.001100110011 \cdot 2^{-2}$

Entonces:

$$Exp = -2 + 127 = (125)_{10} = (1111101)_2$$

 $N_2 \oplus N_3 = 0 \ 01111101 \ 00110011001100110011001$

$$N_1 \otimes (N_2 \oplus N_3) = N_1 \otimes 0 \ 01111101 \ 00110011001100110011001$$

$$= 2^{16} \cdot 1.52587890625 \otimes 2^{-2} \cdot 1.199951171875$$

$$= 2^{16-2} \cdot (1.52587890625 \cdot 1.199951171875)$$

$$= 0.3051012754 \cdot 2^{14} = (29998.7793)_{10}$$

Entonces

$$(N_1 \otimes (N_2 \oplus N_3))_{IEEE754} = 0 \ 10001101 \ 11010100101110110001111$$

5.2 b)

 $=(30000)_{10}$

5.3 c)

 $= 1.1001100110011...\cdot 2^{-4}$

 $= 11.001100110011... \cdot 2^{-3}$

$$N_1 \otimes (N_2 \oplus N_3)$$

$$N_2 \oplus N_3 = 1.001100110011 \cdot 2^{-2}$$

$$N_1 \otimes (N_2 \oplus N_3) = 2^{16} \cdot 1.52587890625 \otimes 2^{-2} * 1.2$$

= $2^{14} \cdot 1,831054688$

$$(N_1 \otimes N_2) \oplus (N_1 \otimes N_3)$$

$$(N_1 \otimes N_2) = 1.52587890625 \cdot 2^{16} \otimes 1.60000002384185791016 \cdot 2^{-3}$$

= $2^{13} \cdot 2,441406286 = (20000.0003)_{10}$

$$(N_1 \otimes N_3) = 1.52587890625 \cdot 2^{16} \otimes 1.60000002384185791016 \cdot 2^{-4}$$

= $2^{12} \cdot 2,441406286 = (10000.00015)_{10}$

$$(N_1 \otimes N_2) \oplus (N_1 \otimes N_3)$$

$$= (30000.0003) - 10$$

5.4 d)

Podemos notar que la propiedad distributiva no se aplica a las operaciones \otimes y \oplus en el sistema de punto flotante IEEE754.

6 Ejercicio 7

6.1 a)

Dado el número binario:

Representación en formato IEEE 754:

Separamos los componentes:

- Signo (S): 1 (negativo)
- Exponente (E): $10000101_2 = 133_{10}$

Cálculo del exponente

Exponente real =
$$E - \text{sesgo} = 133 - 127 = 6$$

Cálculo de la mantisa

La mantisa en formato normalizado se representa como 1.M. Por lo tanto:

Cálculo del número en decimal

El número en decimal se calcula de la siguiente manera:

$$(-1)^1 \cdot 1.853515625 \cdot 2^6 = -118.625$$

El número es **normalizado** porque el exponente no es el máximo (255) ni el mínimo (0).

6.2 b)

Dado el número hexadecimal:

$$N2 = (40600000)_{16}$$

Conversión a binario

 $40600000_{16} = 0100\ 0000\ 0110\ 0000\ 0000\ 0000\ 0000\ 0000_2$

Representación en formato IEEE 754:

Separamos los componentes:

- Signo (S): 0 (positivo)
- Exponente (E): $10000000_2 = 128_{10}$

Cálculo del exponente

Exponente real = E - sesgo = 128 - 127 = 1

Cálculo de la mantisa

Cálculo del número en decimal

El número en decimal se calcula de la siguiente manera:

$$(-1)^0 \cdot 1.75 \cdot 2^1 = 3.5$$

El número es **normalizado** porque el exponente no es el máximo (255) ni el mínimo (0).

6.3 c)

Dado el número hexadecimal:

$$N3 = (00600000)_{16}$$

Conversión a binario

 $00600000_{16} = 0000\ 0000\ 0110\ 0000\ 0000\ 0000\ 0000\ 0000_2$

Representación en formato IEEE 754:

Separamos los componentes:

• Signo (S): 0 (positivo)

• Exponente (E): $00000000_2 = 0_{10}$

Cálculo del exponente

Como el exponente es 0, el número puede ser **desnormalizado** o 0. Dado que en este caso la mantisa es distinta de 0, se trata de un número desnormalizado. Al estar en precisión simple:

$$e_{\min} = 1 - 127 = -126$$

Este será nuestro exponente.

Cálculo de la mantisa

Como el número no es normalizado, la mantisa se representa como 0.M. Por lo tanto:

Cálculo del número en decimal

El número en decimal se calcula de la siguiente manera:

$$(-1)^0 \cdot 0.75 \cdot 2^{-126} = 8.816207631 \times 10^{-39}$$

El número es **desnormalizado** porque el exponente es 0.

7 Ejercicio 12

7.1 a)

Primero debemos convertir los números A=24, B=30 y C=15.75 al formato IEEE 754 de precisión simple:

Convertir A = 24 a IEEE 754 simple precisión:

- El número 24 en binario es 11000_2 , es decir 1.1×2^4 .
- El exponente con sesgo es 4 + 127 = 131, lo cual en binario es 10000011_2 .
- El bit de signo es 0 (positivo).

Entonces, la representación IEEE 754 para A=24 es:

 $0\ 10000011\ 1000000000000000000000000$

Convertir B = 30 a IEEE 754 simple precisión:

- El número 30 en binario es 11110_2 , es decir 1.1110×2^4 .
- El exponente con sesgo es 4 + 127 = 131, lo cual en binario es 10000011_2 .
- El bit de signo es 0 (positivo).

Entonces, la representación IEEE 754 para B=30 es:

 $0\ 10000011\ 1111000000000000000000000$

Convertir C = 15.75 a IEEE 754 simple precisión:

- El número 15.75 en binario es 1111.11₂, es decir 1.1111 \times 2³.
- El exponente con sesgo es 3 + 127 = 130, lo cual en binario es 10000010_2 .
- El bit de signo es 0 (positivo).

Entonces, la representación IEEE 754 para C=15.75 es:

Suma
$$S = A + B + C$$
:

Para realizar la suma en formato IEEE 754, convertimos los números a sus equivalentes binarios de coma flotante, alineamos los exponentes y realizamos la suma, normalizando el resultado final.

Primero sumamos los dos primeros números:

Ahora, normalizamos el resultado:

Luego sumamos el tercer número. Ajustamos el exponente de C (de 10000010 a 10000101):

$$\begin{array}{c} 1.1011100000000000000000000 \times 2^{5} \\ +0.111110000000000000000000 \times 2^{5} \\ \hline 10.101110000000000000000000000 \end{array}$$

Normalizando nuevamente:

Finalmente, el resultado en formato IEEE 754 es:

 $0\ 10000110\ 0101110000000000000000000$

7.2 b)

Una vez obtenido el resultado S=69.75, lo convertimos a su representación en formato IEEE 754 de precisión simple:

$$S_{\text{simple}} = 0x428b8000$$

7.3 c)

Al convertir S = 69.75 a formato IEEE 754 de doble precisión (64 bits), obtenemos:

$$S_{\text{doble}} = 0x4051700000000000$$