Compact implementations of pairings

Anthony Van Herrewege

Lejla Batina & Miroslav Knezevic Prof. Dr. Ir. I. Verbauwhede & Prof. Dr. Ir. B. Preneel

22 May 2009

Outline

Outline

- 1 Problem
- 2 Pairings
- 3 Implementation
- 4 Conclussion

Symmetric cryptography

- Pro:
 - High security per bit
 - Very fast implementations
- Contra:
 - How to establish the key?

Asymmetric cryptography

- Pro:
 - No key establishment necessary
 - Central location with everyone's key
- Contra:
 - Need for certificate authorities, . . .

Identity-based cryptography

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Contra:
 - How to issue new keys, ...?
- Extra's:
 - Non-interactive key establishment
 - Date-stamped encryption

What?

- Mathematical construction discovered in the 40's
- Allow implementation of ID-based cryptography
- Strength based on discrete logarithm problem

How?

Several available pairings:

Tate pairing:

$$\hat{e}(P,Q): E(\mathbb{F}_q)[l] \times E(\mathbb{F}_q)[l] \mapsto \mu_l$$

Mapping needs to be:

- Bilinear: $\hat{e}(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$
- Non-degenerate: $\hat{e}(P, P) \neq 1$
- Efficiently computable

MALU

Modulo Arithmetic Logical Unit [general]:

MALU

Modulo Arithmetic Logical Unit [optimized]:

MALU

Modulo Arithmetic Logical Unit [optimized; d-bits wide]:

Wrappers - GF_{2^m}

GF_{2^m} Multiplication/Addition:

Controller - Miller's algorithm

Implementation ○○○○○

State of the art

Some currently available implementations:

Name	Platform	Field	Speed
TinyTate	ATMega128L [7.4Mhz]	$\mathbb{F}_{2^{256}}$	30.2s
TinyPBC	ATMega128L [7.4Mhz]	$\mathbb{F}_{2^{256}}$	5.45s
Hankerson	P4 [2.8Ghz]	$\mathbb{F}_{2^{1223}}$	0.07s
Hankerson	P4 [2.8Ghz] (SSE)	$\mathbb{F}_{2^{1223}}$	0.03s

Conclussion

Progress so far

- MALU
- lacksquare GF_{2^m} functions
- ECC functions
- Pairing functions (partial)

To do

- Complete pairing functions
- Bugfixing
- Optimization (VHDL)
- Write thesis text

Conclussion

The end

Questions?