5 פרק

ארכיטקטורה פיזית – הגדרת הפלטפורמה החישובית Physical Architecture – the Computational Platform

פעילות תיכון/תיעוד הארכיטקטורה הפיזית

מטרת הפעילות •

תיכון/תיעוד של הארכיטקטורה הפיזית (הפלטפורמה המיחשובית) של המערכת –

• קלט

- אילוצי חומרה (HC) מטבלת הדרישות, אפיון טכני של המערכת
 - תיכון מערכת/חומרה שנעשה ע"י הנדסת המערכת –

• תוצרים

- מודל הארכיטקטורה הפיזית (חומרה, ממשקים פיזיים ופריסת התוכנה על גבי החומרה)
 - לארכיטקטורה (HC) עקיבות בין אילוצי החומרה

ארכיטקטורה של מערכת עתירת תוכנה

מערכת מתאפיינת ע"י: •

- סביבה
- ע נתונה ✓
 - מטרות –
- (Use Cases) יושגו ע"י תהליכי המערכת שהוגדרו ✓
 - מרכיבים
 - ? מרכיבי חומרה
 - ? מרכיבי תוכנה
 - ארגון/מבנה (קשרים פנימיים וחיצוניים)
 - ? קשרים פיזיים
 - ? קשרים לוגיים
 - אינטראקציה/התנהגות –
- ? כיצד פועלי הרכיבים במשותף על מנת לממש את התהליכים שהוגדרו
 - לפיכך, ארכיטקטורה של מערכת עתירת תוכנה צריכה לכלול •
- ארכיטקטורה פיזית (מרכיבי חומרה וקשרים פיזיים) מודל סטטי (מבנה)
- ארכיטקטורה לוגית (מרכיבי תוכנה וקשרים לוגיים) מודל סטטי (מבנה)
- ארכיטקטורה משולבת (מימוש הקשרים הלוגיים באמצעות הקשרים הפיזיים) מודל סטטי (מבנה) •
- ארכיטקטורת תהליכים (מימוש התהליכים כאינטראקציה בין המרכיבים הלוגיים) מודל דינאמי (התנהגות)

- ארכיטקטורה פיזית
 - רכיבים פיזיים
- "קופסאות" חומרה
- לדוגמה: מעבדים, התקני איחסון, התקני תקשורת, ...
 - ממשקים פיזיים
- חיבורים בין רכיבים פיזיים המאפשרים להעביר באמצעותם מידע
 - ..., סיבים אופטיים, שידור/קליטה אלקטרומגנטית, ...
 - ארכיטקטורה פונקציונאלית / לוגית
 - רכיבים פונקציונאליים / לוגיים
 - רכיבי שימוש (בזמן ריצה)
- חלקי תוכנה אופרטיביים המבצעים משימות בזמן שהמערכת פעילה "GUI ,DLL , רכיבי תקשורת, " אדוגמה: יישומים, דרייברים, רכיבי תקשורת
 - רכיבי מימוש (בזמן כתיבה)
 - את רכיבי השימוש (source code) חלקי קוד מקור -
 - « לדוגמה: מודולים בשפת תכנות, ספריות, open source, ...
 - ממשקים פונקציונאליים / לוגיים
 - המידע המועבר בין הרכיבים הפונקציונאליים
 - לדוגמה: אותות בקרה, פקודות, נתונים, הודעות, ...

ממה מתחילים?

<u>מקרה א'</u>: הארכיטקטורה הפיזית קיימת / נקבעה מראש •

- מזהים רכיבים וממשקים לוגיים
- שוקלים חלופות של הקצאת רכיבים לוגיים לרכיבים הפיזיים בארכיטקטורה
 הנתונה
 - בונים ארכיטקטורה לוגית
 - מקרה ב<u>'</u>: הארכיטקטורה הפיזית טרם נקבעה
 - בונים ארכיטקטורה לוגית
 - שוקלים חלופות של בחירת רכיבים וממשקים פיזיים
 - בונים ארכיטקטורה פיזית

המקרה האופייני למערכות מידע

Deployment Diagram – באמצעות תרשים פריסה UML- מידול ארכיטקטורה פיזית

צומת (Node)

אובייקט פיזי פעיל המייצג משאב חישובי, אשרבדרך כלל כולל זיכרון ולרוב גם יכולת עיבוד.

(Artifact) פריט

- מרכיב מידע פיזי שנוצר בתהליך הפיתוח אונמצא בשימוש המערכת בזמן הפעלתה
 - הפריטים הם רכיבי השימוש (בזמן ריצה)

(Deployment) פריסה

- כאשר פריט תוכנה מותקן בתוך פריט חומרה <deploy>> הוא מקיים מולו תלות הנקראת
- artifact מטעמי נוחות המידול, כאשר ממקמים node בתוך node, תלות ה-<
בתוך באופן אוטומטי

סימול אלטרנטיבי

Deployment Diagram – מידול ארכיטקטורה פיזית באמצעות תרשים פריסה

- צומת (Node)
- . אובייקט פיזי פעיל המייצג משאב חישובי, אשר בדרך כלל כולל זיכרון ולרוב גם יכולת עיבוד.
 - (Artifact) פריט
 - מרכיב מידע פיזי שנוצר בתהליך הפיתוח ונמצא בשימוש המערכת בזמן הפעלתה
 - הפריטים הם רכיבי השימוש (בזמן ריצה)
 - (Deployment) פריסה
 - פריטי התוכנה פרוסים (deployed) בצמתי החומרה
 - קשר פיזי

חומרה – צמתים אופייניים

• מחשבים

- שרתים –
- מחשבי קצה
- מיקרו-פרוססורים

• התקני איחסון

- כוננים
- התקני זכרון חיצוני

• התקני תקשורת פיזית

- מודמים
 - נתבים

(Peripherals) ציוד היקפי

- מדפסות, סורקים, ...
 - התקני תצוגה
 - חיישנים –

תוכנה – פריטים אופייניים

• תוכנת תשתיתית

- מערכות הפעלה ותקשורת
- יישומים סטנדרטיים (למשל אופיס) –

• קבצי ריצה

- .jar, .dll, .exe -
 - דרייברים

• הגדרות

- registry / קבצי התקנה
 - תבניות –

• פריטי נתונים

- קבצי נתונים
- בסיסי נתונים

• פריטי מדיה

- תמונות –
- קבצי אודיו / וידיאו –

פריטי מידע •

- קבצי עזרה –
- מדריכים מקוונים

(Deployment Diagram) תרשים פריסה

- תרשים המתאר את צמתי החומרה, הממשקים שביניהם ופריטי התוכנה הפרוסים בהם.
 - לדוגמה: תרשים פריסה (ארכיטקטורה פיזית) של מערכת ניווט

הנדסת תוכנה ארכיטקטורה פיזית 10

- תחום של שלמים לא שליליים, כולל אינסוף, המגדיר את מספר המופעים של ישות מסויימת.
- הריבוי מופיע בדרך כלל בקצה של קשר, המתאר יחס בין הישות לישות אחרת
 - דוגמאות לריבוי:
 - [1,1] = פעם אחת בדיוק -
 - [n,n] =ח פעמים בדיוק -
 - [1,n] =לא פחות מפעם אחת, ולא יותר מ-n פעמים -
 - $[1,\infty]$ = לא פחות מפעם אחת, אך ללא הגבלה -
 - $[0.. \infty] = ($ מספר כלשהו של פעמים (כולל אפס –

ארכיטקטורה פיזית א' למערכת המעליות

ארכיטקטורה מבוזרת •

- כל מעלית היא צומת בעלת מיחשוב אוטונומי ושירותים מקומיים לנוסעיה –
- שרת מרכזי מנהל ומבקר את כלל המערכת ונותן שירותים מרכזיים (אחזקה, חילוץ)
 - קשר ישיר בין כל מעלית לשרת (ברירת המחדל: כבלים)

ארכיטקטורה א' – טבלת ממשקים פיזיים

"חומרה ICD

תווך / פרוטוקול	תכנים	מרכיב	מרכיב
חיבור ישיר	רקצאת נסיעות >	בקר מעלית	שרת מעליות
	> סטטוס		
	קריאת מצוקה >		
חיבור ישיר	קריאת חילוץ >	שרת מעליות	פאנל מחלץ
	> פקודות חילוץ		
חיבור ישיר	< הזמנות נסיעה	שרת מעליות	פאנל קומה
	> הדלקה/כיבוי כפתורי קומה		
חיבור ישיר	> פקודות בדיקה	שרת מעליות	פאנל טכנאי
	ר חיוויים וסטטוסים >		
חיבור ישיר	> בקשות נסיעה	בקר מעלית	פאנל נוסע
	< הדלקה/כיבוי כפתורי מעלית		
חיבור ישיר	פקודות נסיעה/עצירה >	בקר מעלית	מנוע
	0טטוס <		
חיבור ישיר	< פקודות פתיחה/סגירה	בקר מעלית	דלת
	> סטטוס		

ePark מטלה: ארכיטקטורה פיזית למערכת

- על בסיס סיפור הלקוח, ותוך התייחסות למפרט הדרישות (בעיקר אילוצי HC חומרה HC), הציעו ארכיטקטורה פיזית למערכת Deployment Diagram
 - בחרו צמתי חומרה והגדירו את הקשרים שביניהם ואת הריבוי המתאים
 - נסו לזהות או להגדיר פריטי תוכנה ואת פריסתם על גבי צמתי החומרה

סיווג דרישות למערכות עתירות תוכנה (2)

דרישות לא פונקציונאליות – איכות הפתרון •

- דרישות המגדירות תכונות נוספות של הפתרון שצריכות להתמלא תוך כדי מילויהדרישות הפונקציונאליות (How well?)
 - (PR = Performance Requirements) דרישות ביצועים
 - פרמטרים ניתנים למדידה לגבי ביצועי התוכנה
 - " זמן תגובה, נפח איחסון, ניצולת מעבד וכו »
 - (QA = Quality Attributes) מאפייני איכות
 - תכונות המאפיינות את המוצר הכולל
 - שנות (reliability) פעולה ללא תקלות לאורך זמן »
 - » שירות רצוף, התאוששות מהירה מתקלות (availability) »
 - א בטיחות (safety) הגנה על המשתמשים (והסביבה) מפני המערכת »
 - שים משתמשים (security) הגנה על המערכת מפני משתמשים »
 - « בדיקתיות (testability) היכולת לבדוק את המערכת ואת פעולותיה (גם בדיעבד)
 - אחזקתיות (maintainability) היכולת לערוך בקלות שינויים ותיקונים במוצר »
- שימושיות (usability) האפקטיביות והיעילות שמקנה המערכת למשתמש בביצוע משימותיו » ובהשגת מטרותיו
 - יש להגדיר את מאפייני האיכות באמצעות מדדים כמותיים!

ארכיטקטורה פיזית א' למערכת המעליות

ארכיטקטורה מבוזרת

- כל מעלית היא צומת בעלת מיחשוב אוטונומי ושירותים מקומיים לנוסעיה
- שרת מרכזי מנהל ומבקר את כלל המערכת ונותן שירותים מרכזיים (אחזקה, חילוץ)
 - קשר ישיר בין כל מעלית לשרת

ארכיטקטורה פיזית ב' למערכת המעליות

• ארכיטקטורת רשת

- השרת המרכזי והמעליות מחוברים ברשת תקשורת אלחוטית
- הטכנאי מגיע עם מחשב נייד, המתחבר למערכת דרך הרשת –

ארכיטקטורה פיזית ג' למערכת המעליות

- ארכיטקטורה ריכוזית •
- כל המערכת נשלטת ומתופעלת באמצעות מחשב אחד
- שירותים חיצוניים (בדיקה) ניתנים מרחוק, דרך רשת האינטרנט –

הערכת חלופות הארכיטקטורה ע"פ מאפייני איכות

- הארכיטקטורה קובעת את מאפייני האיכות של המערכת
- הדרישות המשפיעות ביותר על הארכיטקטורה הן הדרישות **הלא-פונקציונאליות**
 - כל הארכיטקטורות מספקות באופן זהה את הדרישות **הפונקציונאליות**

ריכוזית	רשת	מבוזרת	ארכיטקטורה
			מאפיין איכות
M	M	Н	ביצועים
L	M	н	זמינות
Н	L	н	אבטחה
Н	M	L	תחזוקתיות
L	M	Н	עלות