Seaborn Creación de visualizaciones

CertiDevs

Índice de contenidos

1. Introducción
2. Datasets de seaborn
3. Cargar un dataset
4. Diagrama de dispersión (scatterplot)
5. Gráfico de barras (barplot)
6. Gráfico de línea (lineplot)
7. Histograma (histplot)
8. Gráfico de violín (violinplot)
9. Gráfico de caja (boxplot)
10. Gráfico de densidad (kdeplot)
11. Diagrama de dispersión con línea de regresión (regplot)
12. Gráfico de enjambre (swarmplot)
13. Gráfico de correlación (heatmap)

1. Introducción

Seaborn viene con una serie de **conjuntos de datos** integrados que se pueden utilizar para aprender y practicar cómo crear gráficos.

2. Datasets de seaborn

Seaborn incorpora distintos datasets para poder practicar y aprender a crear visualizaciones.

Para ver la lista de datasets disponibles, podemos ejecutar el siguiente código:

```
import seaborn as sns
print(sns.get_dataset_names())
```

3. Cargar un dataset

Para cargar un dataset, podemos usar la función load_dataset() de seaborn.

Por ejemplo, para cargar el dataset 'tips', podemos ejecutar el siguiente código:

```
import seaborn as sns

data = sns.load_dataset('tips')
```

4. Diagrama de dispersión (scatterplot)

Un diagrama de dispersión muestra la relación entre dos variables continuas.

Usaremos el conjunto de datos 'tips' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('tips')

sns.scatterplot(x='total_bill', y='tip', data=data)
plt.show()
```

5. Gráfico de barras (barplot)

Un **gráfico de barras** muestra la relación entre una **variable categórica** y una **variable numérica**.

Usaremos el conjunto de datos 'titanic' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('titanic')

sns.barplot(x='class', y='fare', data=data)
plt.show()
```

6. Gráfico de línea (lineplot)

Un **gráfico de línea** muestra la relación entre dos variables numéricas, donde una de ellas suele ser el tiempo.

Usaremos el conjunto de datos 'flights' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('flights')
data = data.pivot('month', 'year', 'passengers')

sns.lineplot(data=data)
plt.show()
```

7. Histograma (histplot)

Un **histograma** muestra la **distribución** de una variable numérica.

Usaremos el conjunto de datos 'penguins' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('penguins')

sns.histplot(x='bill_length_mm', data=data, bins=20)
plt.show()
```

8. Gráfico de violín (violinplot)

Un **gráfico de violín** muestra la distribución de una variable numérica a lo largo de diferentes categorías.

Usaremos el conjunto de datos 'iris' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('iris')

sns.violinplot(x='species', y='sepal_length', data=data)
plt.show()
```

9. Gráfico de caja (boxplot)

Un **gráfico de caja** muestra la distribución de una variable numérica a lo largo de diferentes categorías e indica la mediana, los cuartiles y los valores atípicos.

Usaremos el conjunto de datos 'diamonds' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('diamonds')

sns.boxplot(x='cut', y='price', data=data)
plt.show()
```

10. Gráfico de densidad (kdeplot)

Un **gráfico de densidad** estima y muestra la distribución de probabilidad de una variable numérica.

Usaremos el conjunto de datos 'penguins' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('penguins')

sns.kdeplot(x='bill_length_mm', data=data)
plt.show()
```

11. Diagrama de dispersión con línea de regresión (regplot)

Un **diagrama de dispersión** con línea de regresión muestra la relación entre dos variables numéricas y ajusta una línea de regresión lineal.

Usaremos el conjunto de datos 'tips' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('tips')

sns.regplot(x='total_bill', y='tip', data=data)
plt.show()
```

12. Gráfico de enjambre (swarmplot)

Un **gráfico de enjambre** muestra la distribución de una variable numérica a lo largo de diferentes categorías, distribuyendo los puntos de datos de manera que no se superpongan.

Usaremos el conjunto de datos 'iris' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('iris')

sns.swarmplot(x='species', y='sepal_length', data=data)
plt.show()
```

13. Gráfico de correlación (heatmap)

Un **gráfico de correlación** muestra la matriz de correlación entre variables numéricas utilizando colores para representar los valores de correlación.

Usaremos el conjunto de datos 'mpg' para este ejemplo:

```
import seaborn as sns
import matplotlib.pyplot as plt

data = sns.load_dataset('mpg')

# Calcular la matriz de correlación
```

```
corr_matrix = data.corr(numeric_only=True)
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.show()
```