BAYESIAN LINEAR REGRESSION

EFIM ABRIKOSOV

1. Framework

1.1. Notations.

- (1.1) $y = x \cdot \boldsymbol{\beta} + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$
 - (1) Individual observations $(x, y) \in \mathbb{R}^k \times \mathbb{R}$
 - (2) Observed data $(X,Y) \in \mathbb{R}^{n \times k} \times \mathbb{R}^n$
 - (3) Linear regression weights $\boldsymbol{\beta} \in \mathbb{R}^k$
 - (4) Model parameter distribution mean $\mu \in \mathbb{R}^k$ and covariance matrix $\Sigma \in \mathbb{R}^{k \times k}$
 - (5) Observation error variance σ^2

1.2. Model Assumptions.

- (1) Observations (x, y) satisfy linear relation 1.1
- (2) Observation errors are independent normally distributed with mean zero and variance σ^2
- (3) For posterior estimation, observations X must have full rank
- (4) For known error variance σ^2 , the prior on the space of parameters $\boldsymbol{\beta} \in \mathbb{R}^k$ is $\mathcal{N}(\boldsymbol{\mu}, \sigma^2 \boldsymbol{\Sigma})$
- (5) For unknown error variance, the prior for $(\beta, \sigma^2) \in \mathbb{R}^{k+1}$ has σ^2 following inverse gamma distribution with parameters (a_0, b_0) , and conditional distribution for linear relation weights $f(\beta \mid \sigma^2) = \mathcal{N}(\mu, \sigma^2 \Sigma)$

2. Gaussian Prior with Known Variance

2.1. Summary of Results.

Proposition 2.1 (Posterior paramer distribution with known variance). The posterior distribution of model parameters is normal $f(\beta \mid X, Y) = \mathcal{N}(\mu_1, \sigma^2 \Sigma_1)$ with parameters:

(2.1)
$$\Sigma_1^{-1} = \Sigma_0^{-1} + X^T X$$

(2.2)
$$\mu_1 = \mathbf{\Sigma}_1 \left(X^T X \widehat{\boldsymbol{\beta}} + \mathbf{\Sigma}_0^{-1} \mu_0 \right)$$

$$(2.3) \quad \widehat{\boldsymbol{\beta}} = \left(X^T X\right)^{-1} X^T Y$$

Proposition 2.2 (Posterior predictive distribution with known variance). For an observation (x, y) and its expectation $(x, \widehat{y} \stackrel{\text{def}}{=} x \cdot \beta)$, posterior conditional distributions of y and \widehat{y} are normal with parameters given below

(2.4)
$$f(y \mid x, X, Y) = \mathcal{N}\left(x\boldsymbol{\mu}_1, \sigma^2\left(1 + x\boldsymbol{\Sigma}_1 x^T\right)\right)$$

(2.5)
$$f(\widehat{y} \mid x, X, Y) = \mathcal{N}(x\boldsymbol{\mu}_1, \sigma^2 x \boldsymbol{\Sigma}_1 x^T)$$

Date: April 8, 2024.

Proposition 2.3 (Bayesian regresssion under known vairance and uninformative prior). If the prior parameter β distribution is uninformative, i.e. $\mu_0 = 0$ and $\Sigma_0^{-1} = 0$, then posterior distributions of model parameters and predictive distributions recover standard OLS formulas:

(2.6)
$$\boldsymbol{\beta} \sim \mathcal{N} \left(\boldsymbol{\mu}_1, \sigma^2 \left(X^T X \right)^{-1} \right)$$

$$(2.7) f(y \mid x, X, Y) = \mathcal{N}\left(x\boldsymbol{\mu}_1, \sigma^2\left(1 + x\left(X^T X\right)^{-1} x^T\right)\right)$$

$$(2.8) f(\widehat{y} \mid x, X, Y) = \mathcal{N}\left(x\mu_1, \sigma^2 x \left(X^T X\right)^{-1} x^T\right)$$

Proof of Proposition 2.1. Define for convenience $\Lambda_0 \stackrel{\text{def}}{=} \Sigma_0^{-1}$. Using $f(\beta \mid X, Y) \propto f(X, Y \mid \beta) f(\beta)$ and taking logarithms one has:

$$\ln f(\boldsymbol{\beta} \mid X, Y) + \operatorname{const} = -\left(\frac{n}{2} \ln \sigma^2 + \frac{n}{2} \ln 2\pi + \frac{1}{2} \ln \boldsymbol{\Sigma}_0 + \frac{k}{2} \ln 2\pi\right) - \frac{1}{2\sigma^2} (Y - X\boldsymbol{\beta})^T (Y - X\boldsymbol{\beta}) - \frac{1}{2\sigma^2} (\boldsymbol{\beta} - \boldsymbol{\mu}_0)^T \boldsymbol{\Lambda}_0 (\boldsymbol{\beta} - \boldsymbol{\mu}_0) = \\ = -\left(\frac{n}{2} \ln \sigma^2 + \frac{n}{2} \ln 2\pi + \frac{1}{2} \ln \boldsymbol{\Sigma}_0 + \frac{k}{2} \ln 2\pi\right) - \frac{1}{2\sigma^2} \left(\boldsymbol{\beta}^T \left(X^T X + \boldsymbol{\Lambda}_0\right) \boldsymbol{\beta} - (Y^T X + \boldsymbol{\mu}_0^T \boldsymbol{\Lambda}_0) \boldsymbol{\beta} - \boldsymbol{\beta}^T \left(X^T Y + \boldsymbol{\Lambda}_0 \boldsymbol{\mu}_0\right) + Y^T Y + \boldsymbol{\mu}_0^T \boldsymbol{\Lambda}_0 \boldsymbol{\mu}_0\right)$$

It suffices to show that this expression is a quadratic form $-\frac{1}{2\sigma^2}(\beta - \mu_1)^T \Lambda_1(\beta - \mu_1)$ up to an additive term independent of β . Here μ_1 and Λ_1 are as in 2.1-2.3. This follows immediately from the lemma on completing squares:

Lemma 2.4. For any symmetric quadratic form Q, liner form L and vector v:

$$v^T Q v - v^T L - L^T v = (v - Q^{-1}L)^T Q (v - Q^{-1}L) - L^T Q^{-1}L$$

Proof of Proposition 2.2. To find the posterior predictive distribution 2.4, we integrate out parameter β :

$$\begin{split} f(y\mid x,X,Y) &= \int\limits_{\boldsymbol{\beta}\in\mathbb{R}^k} f(y\mid x,X,Y,\boldsymbol{\beta}) f(\boldsymbol{\beta}\mid X,Y) d\boldsymbol{\beta} = \\ &= \int\limits_{\boldsymbol{\beta}\in\mathbb{R}^k} -\frac{\left(\det\boldsymbol{\Lambda}_1\right)^{\frac{1}{2}}}{\left(2\pi\sigma^2\right)^{\frac{1+k}{2}}} \exp\left(-\frac{1}{2\sigma^2}\left((y-x\boldsymbol{\beta})^2 + (\boldsymbol{\beta}-\boldsymbol{\mu}_1)^T\boldsymbol{\Lambda}_1(\boldsymbol{\beta}-\boldsymbol{\mu}_1)\right)\right) d\boldsymbol{\beta} \end{split}$$

Set $\widetilde{\boldsymbol{\beta}} \stackrel{\text{def}}{=} \boldsymbol{\beta} - \boldsymbol{\mu}_1$ and $\widetilde{\boldsymbol{y}} \stackrel{\text{def}}{=} \boldsymbol{y} - x \boldsymbol{\mu}_1$. The expession under the exponential can be rewritten as:

$$(y - x\beta)^{2} + (\beta - \mu_{1})^{T} \mathbf{\Lambda}_{1} (\beta - \mu_{1}) = (\widetilde{y} - x\widetilde{\boldsymbol{\beta}})^{2} + \widetilde{\boldsymbol{\beta}}^{T} \mathbf{\Lambda}_{1} \widetilde{\boldsymbol{\beta}} =$$

$$= \widetilde{y}^{2} - \widetilde{y}x (\mathbf{\Lambda}_{1} + x^{T}x)^{-1} x^{T} \widetilde{y} + (\widetilde{\boldsymbol{\beta}} - (\mathbf{\Lambda}_{1} + x^{T}x)^{-1} x^{T} \widetilde{y})^{T} (\mathbf{\Lambda}_{1} + x^{T}x) (\widetilde{\boldsymbol{\beta}} - (\mathbf{\Lambda}_{1} + x^{T}x)^{-1} x^{T} \widetilde{y})$$

Using that for any positive definite form Q the integral $\exp(-(\beta - \mu)^T Q(\beta - \mu))$ is independent of μ , we find that up to a multiplicative constant:

$$f(y \mid x, X, Y) = \operatorname{const} \cdot \exp\left(-\frac{\widetilde{y}^2}{2\sigma^2} \left(1 - x\left(\mathbf{\Lambda}_1 + x^T x\right)^{-1} x^T\right)\right) = \operatorname{const} \cdot \exp\left(-\frac{\widetilde{y}^2}{2\sigma^2} \left(1 + x^T \mathbf{\Sigma}_1 x^T\right)^{-1}\right)$$

Consequently, $\tilde{y} = y - x \mu_1$ is normally distributed with variance as prescribed by 2.4. The second equality above follows from Sherman-Morrison formula.

Theorem 2.5 (Sherman-Morrison formula). Suppose $A \in \mathbb{R}^{k \times k}$ is an invertible matrix and $u, v \in \mathbb{R}^k$ are vectors. Then $A + uv^T$ is invertible iff $1 + v^T A^{-1}u \neq 0$. In this case,

$$(2.9) \quad (A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$

(2.10)
$$v^T (A + uv^T)^{-1} u = \frac{v^T A^{-1} u}{1 + v^T A^{-1} u}$$

The proof of 2.5 may be seen as a direct consequence of the general result on convolution of multivariate normal distributions. The result is well-known and is usually demonstrated using Fourier transform. We give an "elementary" proof in Appendix A \Box

Proof of Proposition 2.3. Straightforward by substituting $\mu_0 = 0$ and $\Sigma_0^{-1} = 0$ in propositions 2.1 and 2.2

3. Variance Scale Inverse Gamma Prior

4. Conjugate Priors For Observation Variance and Linear Weights

4.1. **Setup.**

$$(4.1) f(Y, X \mid \boldsymbol{\beta}, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2}(y - X\boldsymbol{\beta})^T(y - X\boldsymbol{\beta})\right)$$

$$(4.2) f(\boldsymbol{\beta} \mid \sigma^2) = |2\pi \boldsymbol{\Sigma}_0|^{-1} \exp\left(-\frac{1}{2\sigma^2}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)\boldsymbol{\Sigma}_0^{-1}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)^T\right)$$

(4.3)
$$f(\sigma^2) = \frac{b_0^{a_0}}{\Gamma(a_0)} (\sigma^2)^{-a_0 - 1} \exp\left(-\frac{b_0}{\sigma^2}\right)$$

Alternatively $f(\sigma^2)$ can be written as scaled inverse chi-squared distribution with parameters $\left(\nu_0, \tau_0^2\right) = \left(2a_0, \frac{b_0}{a_0}\right)$

4.2. Summary of Results. Posterior distribution of β :

(4.4)
$$f(\sigma^2 \mid Y, X) = \text{Inv-}\Gamma(a_1, b_1)$$

$$(4.5) a_1 = a_0 + \frac{n}{2}$$

(4.6)
$$b_1 = b_0 + \frac{1}{2} \left(Y^T Y + \beta_0 \Sigma_0^{-1} \beta_0^T - \beta_1 \Sigma_1^{-1} \beta_1^T \right)$$

(4.7)
$$f(\boldsymbol{\beta} \mid Y, X, \sigma^2) = \mathcal{N}(\boldsymbol{\beta}_1, \sigma^2 \boldsymbol{\Sigma}_1)$$

(4.8)
$$\Sigma_1^{-1} = \Sigma_0^{-1} + X^T X$$

(4.9)
$$\boldsymbol{\beta}_1 = \boldsymbol{\Sigma}_1 \left(X^T X \widehat{\boldsymbol{\beta}} + \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\beta}_0 \right)$$

$$(4.10) \quad \widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Posterior prediction distribution $\hat{y} \equiv x \cdot \beta$:

$$(4.11) \quad f(\widehat{y} \mid Y, X, x) \propto \left(1 + \frac{a_1 \left(y - x \beta_1\right)^2}{v b_1} \frac{1}{2a_1}\right)^{-\frac{2a_1 + 1}{2}}$$

(4.12)
$$v = (1 - x(\Sigma_1 + x^T x)^{-1} x^T)^{-1}$$

This is Student's t-distribution on $y - x\beta_1$ with scale $\frac{vb_1}{a_1}$ and $2a_1$ degrees of freedom. Posterior observation distribution $\hat{y} \equiv x \cdot \beta + e$:

(4.13)
$$f(y \mid Y, X, x) = ??$$

APPENDIX A. "ELEMENTARY" PROOF OF GAUSSIAN CONVOLUTION

Proposition A.1. Let $\beta \in \mathbb{R}^k$ be a gaussian vector with distribution $\mathcal{N}(\mu, \Sigma)$ and let A be any $l \times k$ matrix. Then $A\beta \in \mathbb{R}^k$ is a gaussian vector with distribution $\mathcal{N}(A\mu, A\Sigma A^T)$

Proof. We only consider the case l=1 with $A=a=(a_1,a_2,\ldots,a_k)$ is and $A\beta$ is a one dimensional random variable. Without loss of generality we may assume $a_1\neq 0$. Introduce notations:

(A.1)
$$\hat{y} = a\beta$$

(A.2)
$$\widetilde{y} = \widehat{y} - a\mu$$

(A.3)
$$a = (a_1, \mathbf{a}_{-1}), a_1 \in \mathbb{R}^k, \mathbf{a}_{-1} \in \mathbb{R}^{k-1}$$

(A.4)
$$\boldsymbol{\beta} = \left(\beta_1, \ \boldsymbol{\beta}_{-1}^T\right)^T, \ \beta_1 \in \mathbb{R}^k, \ \boldsymbol{\beta}_{-1} \in \mathbb{R}^{k-1}$$

(A.5)
$$\widetilde{\boldsymbol{\beta}} = \left(\widetilde{\boldsymbol{\beta}}_{1}, \ \widetilde{\boldsymbol{\beta}}_{-1}^{T}\right)^{T} = \boldsymbol{\beta} - \boldsymbol{\mu}$$

(A.6)
$$\Lambda = \Sigma^{-1}$$

(A.7)
$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_{11} & \lambda_1 \\ \boldsymbol{\lambda}_1^T & \boldsymbol{\Lambda}_{-1} \end{pmatrix}$$

We note that the volume element $d\beta = d\beta_1 d\beta_{-1} = d\left(\frac{\widehat{y} - a_{-1}\beta_{-1}}{a_1}\right) d\beta_{-1} = \frac{1}{a_1}d\widehat{y}d\beta - 1$. Thus to get the density of \widehat{y} it suffices to integrate out $d\beta_{-1}$. It's easy to re-center variables for convenience using:

$$\left(\frac{1}{a_1}\left(\widehat{y} - \boldsymbol{a}_{-1}\boldsymbol{\beta}_{-1}\right) - \boldsymbol{\mu}_1, \ \boldsymbol{\beta}_{-1}^T - \boldsymbol{\mu}_{-1}^T\right) = \left(\frac{1}{a_1}\left(\widehat{y} - a_1\boldsymbol{\mu}_1 - \boldsymbol{a}_{-1}\left(\boldsymbol{\beta}_{-1} - \boldsymbol{\mu}_{-1}\right) - \boldsymbol{a}_{-1}\boldsymbol{\mu}_{-1}\right), \ \boldsymbol{\beta}_{-1}^T - \boldsymbol{\mu}_{-1}^T\right) = \left(\frac{1}{a_1}\left(\widetilde{y} - \boldsymbol{a}_{-1}\widetilde{\boldsymbol{\beta}}_{-1}\right) - \boldsymbol{\mu}_1, \ \widetilde{\boldsymbol{\beta}}_{-1}^T\right)$$

We will use that the integral of the exponent of a qudratic form in a shift of $\widetilde{\beta}$ gives a multiplicative constant that does not depend on \widetilde{y} : (same idea as in the proof of Proposition 2.2, see 2.4):

$$\begin{split} & \left(\frac{\frac{1}{a_{1}}\left(\widetilde{\boldsymbol{y}}-\boldsymbol{a}_{-1}\widetilde{\boldsymbol{\beta}}_{-1}\right)}{\widetilde{\boldsymbol{\beta}}_{-1}}\right)^{T}\boldsymbol{\Lambda}\left(\frac{\frac{1}{a_{1}}\left(\widetilde{\boldsymbol{y}}-\boldsymbol{a}_{-1}\widetilde{\boldsymbol{\beta}}_{-1}\right)}{\widetilde{\boldsymbol{\beta}}_{-1}}\right) = \\ & = \left(\frac{\widetilde{\boldsymbol{y}}}{a_{1}}\right)^{T}\boldsymbol{\Lambda}\left(\frac{\widetilde{\boldsymbol{y}}}{a_{1}}\right) + \left(\frac{\widetilde{\boldsymbol{y}}}{a_{1}}\right)^{T}\boldsymbol{\Lambda}\left(-\frac{\boldsymbol{a}_{-1}}{a_{1}}\right)\widetilde{\boldsymbol{\beta}}_{-1} + \widetilde{\boldsymbol{\beta}}_{-1}^{T}\left(-\frac{\boldsymbol{a}_{-1}}{a_{1}}\right)^{T}\boldsymbol{\Lambda}\left(\frac{\widetilde{\boldsymbol{y}}}{a_{1}}\right)^{T} + \widetilde{\boldsymbol{\beta}}_{-1}^{T}\left(-\frac{\boldsymbol{a}_{-1}}{a_{1}}\right)^{T}\boldsymbol{\Lambda}\left(-\frac{\boldsymbol{a}_{-1}}{a_{1}}\right)\widetilde{\boldsymbol{\beta}}_{-1} \end{split}$$

Completing squares in $\widetilde{\boldsymbol{\beta}}_{-1}$ and integrating it out, we're left with an exponential of the following expression in $\widetilde{\boldsymbol{y}}$:

$$\begin{pmatrix} \frac{\widetilde{y}}{a_{1}} \\ \mathbf{0} \end{pmatrix}^{T} \mathbf{\Lambda} \begin{pmatrix} \frac{\widetilde{y}}{a_{1}} \\ \mathbf{0} \end{pmatrix} - \begin{pmatrix} \frac{\widetilde{y}}{a_{1}} \\ \mathbf{0} \end{pmatrix}^{T} \mathbf{\Lambda} \begin{pmatrix} -\frac{\mathbf{a}_{-1}}{a_{1}} \\ \mathbf{I} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} -\frac{\mathbf{a}_{-1}}{a_{1}} \\ \mathbf{I} \end{pmatrix}^{T} \mathbf{\Lambda} \begin{pmatrix} -\frac{\mathbf{a}_{-1}}{a_{1}} \\ \mathbf{I} \end{pmatrix}^{T} \mathbf{\Lambda} \begin{pmatrix} \frac{\widetilde{y}}{a_{1}} \\ \mathbf{I} \end{pmatrix}^{T} \mathbf{\Lambda} \begin{pmatrix} \frac{\widetilde{y}}{a_{1}} \\ \mathbf{I} \end{pmatrix} =$$

$$= \frac{\widetilde{y}^{2}}{a_{1}^{2}} \lambda_{11} - \begin{pmatrix} -\frac{\widetilde{y}}{a_{1}^{2}} \lambda_{11} \mathbf{a}_{-1} + \frac{\widetilde{y}}{a_{1}} \lambda_{1} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} -\frac{\mathbf{a}_{-1}}{a_{1}} \\ \mathbf{I} \end{pmatrix}^{T} \mathbf{\Lambda} \begin{pmatrix} -\frac{\mathbf{a}_{-1}}{a_{1}} \\ \mathbf{I} \end{pmatrix}^{-1} \begin{pmatrix} -\frac{\widetilde{y}}{a_{1}^{2}} \lambda_{11} \mathbf{a}_{-1}^{T} + \frac{\widetilde{y}}{a_{1}} \lambda_{1}^{T} \end{pmatrix} =$$

$$= \frac{\widetilde{y}^{2}}{a_{1}^{2}} \lambda_{11} - \begin{pmatrix} -\frac{\widetilde{y}}{a_{1}^{2}} \lambda_{11} \mathbf{a}_{-1} + \frac{\widetilde{y}}{a_{1}^{2}} \lambda_{1} \end{pmatrix} \begin{pmatrix} \frac{1}{a_{1}^{2}} \mathbf{a}_{-1}^{T} \mathbf{a}_{-1} - \frac{1}{a_{1}} \lambda_{-1}^{T} \mathbf{a}_{-1} - \frac{1}{a_{1}} \mathbf{a}_{-1}^{T} \lambda_{-1} + \mathbf{\Lambda}_{-1} \end{pmatrix}^{-1} \begin{pmatrix} -\frac{\widetilde{y}}{a_{1}^{2}} \lambda_{11} \mathbf{a}_{-1}^{T} + \frac{\widetilde{y}}{a_{1}^{2}} \lambda_{1}^{T} \end{pmatrix}$$

$$= \frac{\widetilde{y}^{2}}{a_{1}^{2}} \lambda_{11} - \begin{pmatrix} -\frac{\widetilde{y}}{a_{1}^{2}} \lambda_{11} \mathbf{a}_{-1} + \frac{\widetilde{y}}{a_{1}^{2}} \lambda_{1} \end{pmatrix} \begin{pmatrix} \frac{1}{a_{1}^{2}} \mathbf{a}_{-1}^{T} \mathbf{a}_{-1} - \frac{1}{a_{1}} \lambda_{-1}^{T} \mathbf{a}_{-1} - \frac{1}{a_{1}^{2}} \mathbf{a}_{-1}^{T} \lambda_{-1} + \mathbf{\Lambda}_{-1} \end{pmatrix}^{-1} \begin{pmatrix} -\frac{\widetilde{y}}{a_{1}^{2}} \lambda_{11} \mathbf{a}_{-1}^{T} + \frac{\widetilde{y}}{a_{1}^{2}} \lambda_{1}^{T} \end{pmatrix}$$

The next step is to apply recognize the above expression as the inverse of a matrix using two versions of the block-matrix inverse:

Lemma A.2. If matrices A and $D - CA^{-1}B$ are invertible then:

$$(A.9) \quad \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B \left(D - CA^{-1}B \right)^{-1}CA^{-1} & -A^{-1}B \left(D - CA^{-1}B \right)^{-1} \\ - \left(D - CA^{-1}B \right)^{-1}CA^{-1} & \left(D - CA^{-1}B \right)^{-1} \end{pmatrix}$$

If matrices D and $A - BD^{-1}C$ are invertible then:

$$(A.10) \quad \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{pmatrix}$$

If matrices A and D are invertible then:

(A.11)
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} \left(A - BD^{-1}C\right)^{-1} & \mathbf{0} \\ \mathbf{0} & \left(D - CA^{-1}B\right)^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{I} & -BD^{-1} \\ -CA^{-1} & \mathbf{I} \end{pmatrix}$$

Applying the above to $A = \frac{a_1^2}{\lambda_{11}}$, $B = \boldsymbol{a}_{-1} - \frac{a_1}{\lambda_{11}} \boldsymbol{\lambda}_1$, $C = -B^T$, $D = \boldsymbol{\Lambda}_{-1} - \frac{1}{\lambda_{11}} \boldsymbol{\lambda}_1^T \boldsymbol{\lambda}_1$ we see that the right hand side of A.8 can be rewrittn further

$$(A.12) \qquad \widetilde{y}^{2} \left(\frac{a_{1}^{2}}{\lambda_{11}} + \left(-\boldsymbol{a}_{-1} + \frac{a_{1}}{\lambda_{11}} \boldsymbol{\lambda}_{1} \right) \left(\boldsymbol{\Lambda}_{-1} - \frac{1}{\lambda_{11}} \boldsymbol{\lambda}_{1}^{T} \boldsymbol{\lambda}_{1} \right)^{-1} \left(-\boldsymbol{a}_{-1}^{T} + \frac{a_{1}}{\lambda_{11}} \boldsymbol{\lambda}_{1}^{T} \right) \right)^{-1} =$$

$$= \widetilde{y}^{2} + \left(\boldsymbol{a} \left(\begin{pmatrix} \frac{1}{\lambda_{11}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} + \begin{pmatrix} \frac{1}{\lambda_{11}} \boldsymbol{\lambda}_{1} \\ -\boldsymbol{I} \end{pmatrix} \left(\boldsymbol{\Lambda}_{-1} - \frac{1}{\lambda_{11}} \boldsymbol{\lambda}_{1}^{T} \boldsymbol{\lambda}_{1} \right)^{-1} \left(\frac{1}{\lambda_{11}} \boldsymbol{\lambda}_{1}^{T} - \boldsymbol{I} \right) \right) \boldsymbol{a}^{T} \right)^{-1}$$

It suffices to observe that the quadratic form in a in the expression above equals Σ . Indeed this follows from the formula A.9 applied to $\Sigma = \Lambda^{-1}$.