

I claim:

1. A cell sorter comprising:

5 at least one precision pump coupled to a fluid inlet
port, whereby fluid containing desired cells is caused
to enter said inlet port;

10 a cell detection system, said cell detection system
determining whether a particular cell is a desired
cell;

15 a sorting gate with at least two states, said sorting
gate allowing said desired cell to exit a cell
collection port and allowing waste to exit a waste
port;

20 a control unit, said control unit processing
information from said cell detection system and
causing said sorting gate to select said cell
collection port when a desired cell is in a proper
position to exit.

2. The cell sorter of claim 1 wherein said sorting gate is magnetostRICTive.

3. The cell sorter of claim 1 wherein said cell detection system is optical.

4. The cell sorter of claim 3 wherein said cell detection system uses fluorescence.

10 5. The cell sorter of claim 3 wherein said cell detection system uses scattered light.

6. The cell sorter of claim 3 wherein said cell detection system uses both fluorescence and scattered light.

15
7. The cell sorter of claim 6 wherein a fluorescence and scattered light determination is made simultaneously.

8. A cell sorter system for sorting desired cells from
20 undesired matter comprising a precision pump for pumping cell-containing fluid into a capillary and controlling positions of said cells in said capillary; an optical detection system for determining when a desired cell is in

a predetermined position in said capillary; a
magnetostriictive gate controlled by a magnetic field that
causes a desired cell to pass through a cell exit port and
waste material to pass through a waste port; a vacuum
5 system to cause said desired cell to exit said cell exit
port.

9. The cell sorter system of claim 8 further comprising a
means for applying said magnetic field to said
10 magnetostriictive gate, whereby said magnetostriictive gate
switches from a first exit port to a second exit port.

10. The cell sorter system of claim 8 wherein said optical
system uses fluorescence.

15

11. The cell sorter system of claim 8 wherein said optical
system uses scattered light.

12. The cell sorter system of claim 8 wherein said optical
20 system uses both fluorescence and scattered light
simultaneously.

13. The cell sorter system of claim 8 wherein said optical system uses a photomultiplier.

14. The cell sorter system of claim 8 wherein said optical
5 system uses a diode array.

15. A method for sorting cells comprising:

causing fluid containing cells to enter an inlet port
10 of a capillary;

causing said fluid to pass through an optical detection region where said fluid is exposed to light of at least one predetermined wavelength, whereby
15 scattered light from said cells, or fluorescence from said cells, is used to choose desired cells;

causing a magnetostriictive gate to sort said cells causing desired cells to pass through a cell exit gate
20 depending on a decision made from said light, whereby selected cells exit by said cell exit gate;

causing said selected cells to exit said cell exit
gate.

16. The method of claim 15 wherein said magnetostRICTIVE
5 gate is caused to select an exit port by application of a
magnetic field.

17. The method of claim 15 wherein said magnetostRICTIVE
gate contains a magnetostRICTIVE rod.

10

18. The method of claim 17 wherein said magnetostRICTIVE
rod changes length in an applied magnetic field.

19. The method of claim 15 wherein said optical system
15 contains optical fibers.

20. The method of claim 19 wherein said optical fibers
convey light from a source to a said optical detection
region.

20