Matematiska Institutionen KTH

Tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-13.00.

OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng erhållna under läsåret 2010/11 kan användas vid detta tentamenstillfälle. För full poäng krävs korrekta och väl presenterade resonemang.

Betygsgränser: (Totalsumma poäng är 40p.)

13	poäng	totalt	eller	mer	ger	minst	$omd\ddot{o}met$	Fx
10	poang	ootare	CHUL	111C1	gui	111111111111111111111111111111111111111	omaomo	IΛ

DEL I

1. Låt A och B beteckna nedanstående matriser

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

- (a) (3p) Bestäm den till A inversa matrisen.
- (b) (2p) Bestäm en matris X sådan att XA = B.
- 2. (a) (2p) Skriv det komplexa talet $(1-i)^7(1+i)^{-5}$ på formen a+ib.
 - (b) (3p) Visa, t ex med hjälp av ett induktionsbevis, att

$$\sum_{k=1}^{n} k(k-1) = \frac{n(n^2-1)}{3}$$

3. Betrakta R^5 försett med den inre produkten

$$(x_1, x_2, x_3, x_4, x_5) \cdot (y_1, y_2, y_3, y_4, y_5) = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5$$
.

Låt L vara det delrum till R^5 som genereras av vektorerna (1,0,1,0,1), (2,1,0,-1,-2) samt (3,1,1,-1,-1).

- (a) (2p) Bestäm en bas för det ortogonala komplementet L^{\perp} till L.
- (b) (1p) Utvidga denna bas till en bas för hela \mathbb{R}^5 .
- (c) (2p) Skriv vektorn (1, 2, 3, 4, 5) som en summa av en vektor i L och en vektor i L^{\perp} .

DEL II

- 4. (ON-system) Planet π_1 innehåller punkterna (1,1,3), (1,2,4), (2,-1,3) och planet π_2 innehåller linjen med parameterformen (x,y,z) = (0,0,1) + t(1,1,3) samt punkten (1,2,5).
 - (a) (2p) Visa att planen π_1 och π_2 är parallella.
 - (b) (1p) Bestäm avståndet mellan planen π_1 och π_2 .
 - (c) (2p) Låt π beteckna det plan som ligger mitt emellan π_1 och π_2 . Ange tre olika punkter i π .
- 5. (5p) Betrakta rummet \mathcal{P}_n av polynom av grad högst lika med n och låt D beteckna derivering av polynom. Den linjära avbildningen A på \mathcal{P}_n definieras genom

$$A(p(t)) = tD(p(t)) .$$

Bestäm samtliga egenvärden och egenvektorer till den linjära avbildningen A.

6. (5p) Låt L vara ett 4-dimensionellt delrum till det 5-dimensionella vektorrummet V och låt A vara en linjär avbildning från V till vektorrummet W. Låt A(L) beteckna det delrum till W som består av de vektorer $A(\bar{v})$ i W för vilka \bar{v} tillhör L.

Vilka möjligheter finns det för dimensionen hos delrummet A(L) till W om A:s kärna har dimensionen 1. För full poäng krävs att du ger ett bevis av ditt svar.

DEL III (Om du i denna del använder eller hänvisar till satser från läroboken skall dessa citeras, ej nödvändigvis ordagrant, där de används i lösningen.)

- 7. (a) (2p) Du får reda på att ett givet linjärt ekvationssystem har bl a lösningarna $(x_1, x_2, x_3) = (1, 2, -1), (x_1, x_2, x_3) = (1, -1, 3)$ och $(x_1, x_2, x_3) = (2, 1, 0)$ samt att $(x_1, x_2, x_3) = (1, 0, 1)$ inte är en lösning. Bestäm systemets samtliga lösningar.
 - (b) (2p) Om du får reda på att ett linjärt ekvationssystem bl a har lösningen $(x_1, x_2, x_3) = (1, 0, 1)$ samt att $(x_1, x_2, x_3) = (1, 2, -1)$, $(x_1, x_2, x_3) = (1, -1, 3)$ och $(x_1, x_2, x_3) = (2, 1, 0)$ inte är lösningar så får du inte tillräckligt med information för att kunna bestämma systemets samtliga lösningar. Förklara varför.
 - (c) (1p) Hur många ickelösningar till systemet i uppgiften ovan måste man ytterligare som minst ange för att kunna bestämma systemets samtliga lösningar.
- 8. (5p) Du får följande information om matrisen **A**:
 - (i) matrisen **A** är symmetrisk,
 - (ii) matrisen A har ett egenrum som genereras av vektorn (1, 1, -2),
 - (iii) $\mathbf{A}^4 = \mathbf{I}$ där \mathbf{I} betecknar identitetsmatrisen.

Räcker denna information för att bestämma $\mathbf{A}\bar{x}^T$ för varje kolonnyektor \bar{x}^T ?

Om du anser att informationen räcker skall du bevisa detta, dvs att informationen räcker för att bestämma $\mathbf{A}\bar{x}^T$ för varje kolonnvektor \bar{x}^T , samt beräkna $\mathbf{A}(1,2,3)^T$.

Om du anser att informationen inte räcker skall du komplettera med ytterligare information om matrisen \mathbf{A} så att det går att bestämma $\mathbf{A}\bar{x}^T$ entydigt för varje kolonnvektor \bar{x}^T . (Poäng sätts efter kvaliteten på ditt svar.)