Solutions to Shannon Ciphers and Perfect Security

Problem 1 (Multiplicative one-time pad).

Correctness: $D(k, E(k, m)) = D(k, k \cdot m \mod p) = k^{-1(p)} \cdot (k \cdot m \mod p) \mod p = k^{-1(p)} \cdot k \cdot m \mod p = m$

Perfect security: $\Pr[E(k, m_0) = c] = \Pr[k \cdot m_0 = c] = \frac{1}{p-1} = \Pr[k \cdot m_1 = c] = \Pr[E(k, m_1) = c].$

For every fixed $m \in \mathcal{M}$, consider the function e(k) = E(k, m). The fundamental principle of the one-time pad is that we have for each cipher text $c \in \mathcal{C}$ a key $k \in \mathcal{K}$ such that e(k) = c and vice versa. Hence e is a bijection. This is also the case for the above multiplicative one-time pad as k can be chosen by $k = c \cdot m^{-1(p)}$ for every $c \in \mathcal{C}$ and hence

$$e(k) \equiv km \equiv c \cdot m^{-1(p)} m \equiv c \mod p$$

Problem 2 (A good substitution cipher).

Let $m_0, m_1 \in \mathcal{M}$ and $c[0], \ldots, c[L-1] \in \mathcal{C}$

$$\Pr[E(k, m_0) = c[0], \dots, c[L-1]]$$

$$= \Pr[k[0](m_0[0]), \dots, k[L-1](m_0[L-1]) = c[0], \dots, c[L-1]]$$

$$= \Pr[k[0](m_0[0]) = c[0]] \cdot \dots \cdot \Pr[k[L-1](m_0[L-1]) = c[L-1]]$$

The probability that a random permutation maps an element $x \in \Sigma$ to c[i] is exactly $\frac{1}{|\Sigma|}$, i.e. $\Pr[k[i](m_0[i]) = c[i]] = \frac{1}{|\Sigma|} = \Pr[k[i](m_1[L-1]) = c[i]]$. Hence we obtain

$$\Pr[k[0](m_0[0]) = c[0]] \cdot \dots \cdot \Pr[k[L-1](m_0[L-1]) = c[L-1]]$$

$$= \Pr[k[0](m_1[0]) = c[0]] \cdot \dots \cdot \Pr[k[L-1](m_1[L-1]) = c[L-1]]$$

$$= \Pr[E(k, m_1) = c[0], \dots, c[L-1]]$$

Problem 3 (Same key twice).

Intuitively, the second encryption with the same key is not secure, because we can distinguish if the same plain text m has been encrypted twice or not. Let $c = E(k, \bar{m})$ be the cipher text that was sent in the first round with the encryption using key $k \in \mathcal{K}$ for some fixed plaintext $\bar{m} \in \mathcal{M}$.

Now consider the encryption E(k, m) in the second round for some $m \in \mathcal{M}$. Then $\Pr[E(k, \bar{m}) = c] = 1$ (as we know the cipher text c from the first round) and $\Pr[E(k, m) = c] = 0$ for any $m \in \mathcal{M} \setminus \{\bar{m}\}$. Note that by condition $\mathcal{M} \setminus \{\bar{m}\}$ is not empty. Hence the second round of encryption with the same key is not perfectly secure.

Problem 4 (A broken one-time pad). • Let $k \in \mathcal{K}$ be uniformly chosen, then $\Pr[E(0^L, k) = 0^{L-1}1] = 0$ as it is not possible to produce a string with an odd number of 1's from 0^L . However, the probability for $m_1 = 0^{L-1}1$ is $\Pr[E(k, 0^{L-1}1) = 0^{L-1}1] = \frac{1}{2^{L-1}}$ as $0^{L-1}1 \oplus 0^L = 0^{L-1}1$, where 0^L is a key with an even number of 1's. Hence this variant of the one-time pad is not perfectly secure.

- Consider the property $\Phi(c) = \begin{cases} 1 & \text{if } c \text{ contains an odd number of 1's} \\ 0 & \text{otherwise} \end{cases}$. By the same argumentation as above, we obtain that $\Pr[\Phi(E(k,0^L))] = 0$ while $\Pr[\Phi(E(k,0^{L-1}1))] = 1$. Hence this variant of the one-time pad is not semantically secure.
- The probability distribution of $E(k,0^L)$ is different to the probability distribution of $E(k,0^{L-1}1)$ as for example, by the argumenation in the first part, $\Pr[E(0^L,k)=0^{L-1}1]=0$ while $\Pr[E(k,0^{L-1}1)=0^{L-1}1]=\frac{1}{2^{L-1}}$. Hence this variant of the one-time pad is not ciphertext independent.

Problem 5 (Proof of Theorem 2.1 in BS). See proof in BS.