

Task Prison

Алису и Боба несправедливо приговорили к тюремному заключению строгого режима. Теперь им предстоит спланировать побег. Для этого им необходимо общаться максимально эффективно (в частности, Алисе необходимо ежедневно отправлять Бобу информацию). Однако они не могут встречаться и могут обмениваться информацией только посредством записей, написанных на салфетках. Каждый день Алиса хочет отправлять Бобу новую информацию — число от 0 до N-1. За каждым обедом Алиса берёт три салфетки, пишет на каждой из них число от 0 до M-1 (могут быть повторения) и оставляет их на своём стуле. Затем их враг, Чарли, уничтожает одну из салфеток и перемешивает две другие. Наконец, Боб находит две оставшиеся салфетки и читает на них числа. Он должен точно расшифровать исходное число, которое Алиса хотела ему отправить. Место на салфетках ограничено, поэтому M фиксировано. Однако цель Алисы и Боба максимизировать пропускную способность, поэтому они могут выбрать N как можно большего значения. Помогите Алисе и Бобу, реализовать стратегию для каждого из них, чтобы максимизировать значение N.

${f rac{40}{3}}$ Implementation details

Поскольку это задача коммуникации, ваша программа будет запущена в двух отдельных запусках (одно для Алисы и одно для Боба), которые не смогут обмениваться данными или взаимодействовать каким-либо другим способом, кроме описанного здесь. Вам необходимо реализовать три функции:

```
int setup(int M);
```

Эта функция будет вызвана один раз при запуске вашей программы Алисой и один раз при запуске программы Бобом. Φ ункция получает M и должна вернуть желаемое N. Оба вызова setup должны возвращать одинаковое N.

```
std::vector<int> encode(int A);
```

Это реализует стратегию Алисы. Функция будет вызвана с числом, закодированным в A (0 $\leq A < N$), и должна вернуть три числа W_1, W_2, W_3 (0 $\leq W_i < M$), закодировавших A. Эта функция будет вызвана всего T раз — один раз в день (значения A могут повторяться в разные дни).

```
int decode(int X, int Y);
```

Это реализует стратегию Боба. Функция будет вызвана с двумя из трёх чисел, возвращаемых функцией encode, в определённом порядке. Она должна вернуть то

же значение A, что и функция encode. Эта функция также будет вызвана T раз — что соответствует T вызовам функции encode; они будут выполнены в том же порядке. Все вызовы encode будут выполняться перед вызовами decode.

Constraints

- M < 4300
- T = 5000

Scoring

Для конкретной подзадачи доля S полученных баллов зависит от наименьшего N, возвращаемого setup для любого теста в этой подзадаче. Она также зависит от N^* — целевого значения N, необходимого для получения полного количества баллов за подзадачу:

- Если ваше решение не проходит хотя бы один тест, то S=0.
- Если $N \ge N^*$, то S = 1, 0.
- Если $N < N^*$, то $S = \max \left(0.35 \max \left(\frac{\log(N) 0.985 \log(M)}{\log(N^*) 0.985 \log(M)}, 0.0\right)^{0.3} + 0.65 \left(\frac{N}{N^*}\right)^{2.4}, 0.01\right)$.

Subtasks

Подзадача	Баллы	M	N^*
1	10	700	82017
2	10	1100	202217
3	10	1500	375751
4	10	1900	602617
5	10	2300	882817
6	10	2700	1216351
7	10	3100	1603217
8	10	3500	2043417
9	10	3900	2536951
10	10	4300	3083817

Example

Рассмотрим следующий пример с T=5. Здесь мы имеем схему кодирования, в которой Алиса отправляет три одинаковых числа для кодирования 0 или три

различных числа для кодирования 1. Обратите внимание, что Боб может декодировать исходное число из любых двух из трёх чисел, отправленных Алисой.

Запуск	Вызов функции	Возвращаемое значение	
Alice	setup(10)	2	
Bob	setup(10)	2	
Alice	encode(0)	{5, 5, 5}	
Alice	encode(1)	{8, 3, 7}	
Alice	encode(1)	{0, 3, 1}	
Alice	encode(0)	{7, 7, 7}	
Alice	encode(1)	{6, 2, 0}	
Bob	decode(5, 5)	0	
Bob	decode(8, 7)	1	
Bob	decode(3, 0)	1	
Bob	decode(7, 7)	0	
Bob	decode(2, 0)	1	

3 Sample grader

В примере оценщика все вызовы encode и decode будут происходить в одном и том же выполнении программы. Кроме того, setup будет вызван только один раз (а не дважды, по одному разу за выполнение, как в системе оценивания).

На вход поступает одно целое число — M. Затем программа выведет N, которые вы вернули в вашей программе setup. Затем она вызовет функции encode и decode в указанном порядке T раз со случайно сгенерированными числами от 0 до N-1 и случайно сгенерированными вариантами выбора двух из трёх чисел из encode для функции decode (и в каком порядке). Если решение не удалось, программа выведет сообщение об ошибке.