Cramming course of circuit

Chapter 16, Problem 5.

If $i_s(t) = e^{-2t} u(t)$ A in the circuit shown in Fig. 16.39, find the value of $i_0(t)$.

Chapter 16, Problem 3.

Find i(t) for t > 0 for the circuit in Fig. 16.37. Assume $i_s = 4u(t) + 2\delta(t)$ mA. (Hint: Can we use superposition to help solve this problem?)

Chapter 16, Problem 10.

Use Thevenin's theorem to determine $v_0(t)$, t > 0 in the circuit of Fig. 16.44.

Chapter 13, Problem 7.

Chapter 13, Problem 61.

*For the circuit in Fig. 13.126, find I_1 , I_2 , and V_o .

Chapter 13, Problem 16.

Obtain the Norton equivalent at terminals a-b of the circuit in Fig. 13.85.

Chapter 13, Problem 25.

 \downarrow For the network in Fig. 13.94, find \mathbf{Z}_{ab} and \mathbf{I}_{o} .

Chapter 13, Problem 43.

Obtain V_1 and V_2 in the ideal transformer circuit of Fig. 13.108.

Chapter 13, Problem 47.

ps $\frac{1}{ML}$ Find v(t) for the circuit in Fig. 13.112.

Chapter 13, Problem 50.

Calculate the input impedance for the network in Fig. 13.115.

Chapter 12, Problem 6.

For the Y-Y circuit of Fig. 12.41, find the line currents, the line voltages, and the load voltages.

Chapter 12, Problem 12.

Solve for the line currents in the Y- $\!\Delta$ circuit of Fig. 12.45. Take $\,{\bf Z}_\Delta=60\angle 45^\circ\Omega$.

T' 10.45

Chapter 12, Problem 13.

In the balanced three-phase Y- Δ system in Fig. 12.46, find the line current I_L and the average power delivered to the load.

Chapter 11, Problem 6.

For the circuit in Fig. 11.38, $i_s = 6\cos 10^3 t$ A. Find the average power absorbed by the 50- Ω resistor.

Chapter 11, Problem 7.

Given the circuit of Fig. 11.39, find the average power absorbed by the 10- Ω resistor.

Chapter 11, Problem 14.

It is desired to transfer maximum power to the load **Z** in the circuit of Fig. 11.45. Find **Z** and the maximum power. Let $i_s = 5\cos 40t$ A.

Chapter 11, Problem 16.

For the circuit of Fig. 11.47, find the maximum power delivered to the load \mathbf{Z}_L .

Chapter 11, Problem 44.

Find the complex power delivered by v_s to the network in Fig. 11.69. Let $v_s = 100 \cos 2000t$ V.

Chapter 11, Problem 56.

Obtain the complex power delivered by the source in the circuit of Fig. 11.75.

Chapter 11, Problem 51.

For the entire circuit in Fig. 11.70, calculate:

- (a) the power factor
- (b) the average power delivered by the source
- (c) the reactive power
- (d) the apparent power
- (e) the complex power

Chapter 10, Problem 3.

Determine v_o in the circuit of Fig. 10.52.

Figure 10.52 For Prob. 10.3.

Chapter 10, Problem 7.

Use nodal analysis to find ${\bf V}$ in the circuit of Fig. 10.56.

Chapter 10, Problem 19.

PS ML

Obtain V_o in Fig. 10.68 using nodal analysis.

Figure 10.68

Chapter 8, Problem 50.

For the circuit in Fig. 8.97, find i(t) for t > 0.

Figure 8.97 For Prob. 8.50.

Chapter 8, Problem 45.

In the circuit of Fig. 8.92, find v(t) and i(t) for t > 0. Assume v(0) = 0 V and i(0) = 1 A.

Chapter 8, Problem 33.

Find v(t) for t > 0 in the circuit of Fig. 8.81.

Figure 8.81 For Prob. 8.33.

Chapter 7, Problem 55.

Find v(t) for t < 0 and t > 0 in the circuit of Fig. 7.121.

Chapter 7, Problem 43.

Consider the circuit in Fig. 7.110. Find i(t) for t < 0 and t > 0.

Figure 7.110 For Prob. 7.43.