Data Exploration

```
v1
                         v2
                                        v3
                                                        v4
     :0.0002389
                         :1.000
                                         :30.09
                                                  Min. :1.000
Min.
                                  Min.
                   Min.
                   1st Qu.:1.062
                                   1st Qu.:35.10
                                                  1st Qu.:1.079
1st Qu.:0.2294261
Median :0.4803411
                   Median :1.134
                                   Median :40.09
                                                  Median :1.158
                   Mean :1.136
Mean
    :0.4882555
                                   Mean
                                        :40.08
                                                  Mean :1.155
3rd Ou.:0.7439418
                   3rd Qu.:1.207
                                   3rd Qu.:45.29
                                                  3rd Qu.:1.234
                                         :49.98
Max.
      :0.9984908
                   Max.
                          :1.284
                                  Max.
                                                  Max.
                                                         :1.300
     v5
                     v6
                                        v7
                                                          v8
Min. :2.999
                      :0.0000597
                                  Min. :-3.0328
                                                    Min. :1.483
               Min.
1st Qu.:3.454
               1st Qu.:0.0241761
                                   1st Qu.:-2.5380
                                                    1st Qu.:1.496
Median :3.963
               Median :0.0504044
                                   Median :-2.0406
                                                    Median :1.500
Mean :3.976
                      :0.0497798
                                         :-2.0242
                                                         :1.500
                                   Mean
                                                    Mean
                                   3rd Qu.:-1.5148
3rd Qu.:4.486
               3rd Qu.:0.0746565
                                                    3rd Qu.:1.504
                                                    Max. :1.516
Max. :5.000
                      :0.0998852
                                         :-0.9635
               Max.
                                   Max.
     v9
Min. :-5.5649
                Min.
                      : 464.5
1st Ou.:-0.4858
                 1st Ou.: 629.8
                 Median : 820.4
Median : 0.5061
    : 0.5013
                      : 836.2
Mean
                 Mean
3rd Ou.: 1.4764
                 3rd Ou.:1044.4
      : 5.5063
                        :1269.7
Max.
                 Max.
```

Given the summary of the training data, it's necessary to preprocess the data since it present observations at different scales. We perform standardisation to get mean 0 and std 1.

```
# pre-processing so each predictor contribute equally
train_standardize <- as.data.frame(scale(train[1:10]))
train_standardize["Y"] <- list(train$Y)</pre>
```

For the first item we are going to check the assumption of linear regression model:

- Linearity
- Independence
- Normality
- Homoscedasticity

We will follow forward selection

Parametric Approach, Linear regression

Independence - Correlation

checking correlation between predictors
corr <- cor(train[1:9])# just predictors
which(corr>0.1 & corr<1, arr.ind=TRUE)</pre>

	ГOW	col
v5	5	1
v7	7	1
v1	1	5
v7	7	5
v1	1	7
v5	5	7

From the correlation analysis v1, v7 and v5 are correlated. We will keep the predictor with significant p-value (p < 0.05). The dropped predictors are: V1 and v7

Normality

From the plot we can see some predictors do not follow a normal distribution.

We will remove the predictors with non-significant p-value and that do not fulfil the condition above.

v3 do not follow it but have p < 0.001

The dropped predictors are:
v2, v4 and v6

Linearity

From the plot we can see some predictors can not be described with a straight line.

We will remove the predictors with non-significant p-value that do not fulfil the condition above v5 do not fulfil but have p < 0.05 The dropped predictors are: None

Parametric Approach, Linear regression

Homoscedasticity variance of error terms

We try the model with the remaining predictors and plot Residual (y) vs Fitted values (x)

In the plot there is no visible randomness. A non-linear model would better describe the data. The relationship can be model as a polynomial regression

Polynomial regression

The residual describe a quadratic behavior. We try the 3 predictors as a quadratic term. The one with significant p-value (p < 0.001) is v3

Now there is more randomness in the residuals vs fitted, so the model fit more the data. The predictors fulfil the assumptions of the model

p-value significance

From the summary, v8 and v9 p-value (p > 0.05) are non-significant. Then we remove them. This predictors have no relationship with the prediction

Linear regression, Results

After the previous analysis the final linear regression model is:


```
Call:
lm(formula = Y \sim v3 + I(v3^2) + v5, data = train_standardize)
Residuals:
                      Median
-0.278145 -0.077925 0.002741 0.078629 0.279523
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.193e+02 5.192e-03 157813.5
            2.361e+02 3.432e-03 68799.6
I(v3^2)
           1.693e+01 3.905e-03 4335.6
v5
           1.187e+00 3.429e-03
                                   346.3
                 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0
Residual standard error: 0.1083 on 996 degrees of freedom
Multiple R-squared:
                               Adjusted R-squared:
F-statistic: 1.579e+09 on 3 and 996 DF, p-value: < 2.2e-16
```

Note: Potential problems like outliers, high-leverage points were not present as eliminating v8 and v9 remove the need of the evaluation.

Non-parametric Approach, K-Nearest Neighbors

For the second item by definition no assumptions are made over the model. So we:

- Work in the curse of dimensionality by doing the combinations of predictors and evaluating the relevance of them.
- Find the value of k which reduce the MSE (mean square error)
- Do cross-validation with leave-one-out and majority voting, to find the best fitting model

This results were saved in the variable compare, the predictors, k and MSE values

```
# for each combination of predictors do the knn for values of k between 1 and sqrt(n)/2 = 15
# also as no test set is given cross validations leave-one-out of the
                                                                                                       vars k
# training set is perform
                                                                                                           1 1 111516.83
for (combination in combinations list){
 for (i in 1:length(k values)){
                                                                                                                 86231.42
   combination <- combination [! combination %in% zero]
                                                                                                                 75428.60
   combination <- unlist(combination, use.names = FALSE)
                                                                                                                 70190.65
   # run the knn
   knn_pred = knn.reg(train = train_standard[, combination], test = NULL, y = train$Y, k=k_values[i])
                                                                                                                67718.01
                                                                                                           1 6 66331.85
   row <- data.frame(paste(unlist(combination), collapse=''), k values[i], mean((knn predsresiduals)^2))
                                                                                                     > compare[which(compare$mse == min(compare$mse)), ]
   names(row) <- c("vars", "k", "mse")
                                                                                                         vars k
   compare <- rbind(compare, row)
                                                                                                             3 5 2.155141
```

The configuration with lowest MSE is using the v3 predictor and k=5

Conclusions

Linear regression

- Check the assumptions of the model.
- Be aware of the interpretation of summary tables and plots to realize potential problems, information loss.
- At the end 2 out of the 9 predictors where taken as having a relation with the label with a polynomial regression model.

K-Nearest neighbors

Trying to avoid the curse of dimensionality just one predictor give the best MSE. However the linear regression model conclude 2 predictors. This may be a situation of overfitting of the model.

Without the labels of the test set this cannot be verified.