Álgebra Universal e Categorias

– Proposta de resolução do 1º teste (20 de abril de 2017) — duração: 2 horas _____

1. Sejam $\mathcal{A}=(\{1,2,3,4,5\};*^{\mathcal{A}},c^{\mathcal{A}})$ e $\mathcal{B}=(\{1,2\};*^{\mathcal{B}},c^{\mathcal{B}})$ as álgebras de tipo (2,0) cujas operações nulárias são dadas por $c^{\mathcal{A}}=2$, $c^{\mathcal{B}}=1$ e cujas operações binárias são definidas por

Seja $\alpha: \{1,2\} \rightarrow \{1,2,3,4,5\}$ a aplicação definida por $\alpha(1)=2$ e $\alpha(2)=3$.

(a) Diga, justificando, se o conjunto $Sg^{\mathcal{A}}(\{1\}) \cup Sg^{\mathcal{A}}(\{4\})$ é um subuniverso de \mathcal{A} .

Dado um conjunto $X\subseteq\{1,2,3,4,5\}$, representa-se por $Sg^{\mathcal{A}}(X)$ o menor subuniverso de \mathcal{A} que contém X, isto é, $Sg^{\mathcal{A}}(X)$ é o menor subconjunto de $\{1,2,3,4,5\}$ que contém X e é fechado para as operações de \mathcal{A} (o que significa que $c^{\mathcal{A}}\in Sg^{\mathcal{A}}(X)$ e, para quaisquer $x,y\in Sg^{\mathcal{A}}(X)$, $x*^{\mathcal{A}}y\in Sg^{\mathcal{A}}(X)$).

Assim, considerando $X=\{1\}$ tem-se:

- $\{1\} \subseteq Sg^{\mathcal{A}}(\{1\});$
- $c^{\mathcal{A}} = 2 \in Sg^{\mathcal{A}}(X)$ (pois $Sg^{\mathcal{A}}(\{1\})$ é fechado para a operação $c^{\mathcal{A}}$);
- $2*^{\mathcal{A}}2=3\in Sq^{\mathcal{A}}(X)$ (pois $2\in Sq^{\mathcal{A}}(\{1\})$ e $Sq^{\mathcal{A}}(\{1\})$ é fechado para a operação $*^{\mathcal{A}}$).

Logo $\{1, 2, 3\} \subseteq Sg^{\mathcal{A}}(\{1\}).$

A respeito de $\{1,2,3\}$ verifica-se que este conjunto contém $\{1\}$ e é um subuniverso de $\mathcal A$ (pois é fechado para as operações de $\mathcal A$). Porém, $Sg^{\mathcal A}(\{1\})$ é o menor subuniverso de $\mathcal A$ que contém $\{1\}$. Logo $Sg^{\mathcal A}(\{1\})\subseteq \{1,2,3\}$.

Portanto, $Sg^{\mathcal{A}}(\{1\}) = \{1, 2, 3\}.$

De modo análogo determina-se $Sg^{\mathcal{A}}(\{4\})$. De facto, como $\{4\}\subseteq Sg^{\mathcal{A}}(\{4\})$ e $Sg^{\mathcal{A}}(\{4\})$ é fechado para as operações de \mathcal{A} , tem-se $\{2,3,4\}\subseteq Sg^{\mathcal{A}}(\{4\})$. O conjunto $\{2,3,4\}$ contém $\{4\}$ e é um subuniverso de \mathcal{A} . Então, como $Sg^{\mathcal{A}}(\{4\})$ é o menor subuniverso de \mathcal{A} que contém $\{4\}$, segue que $Sg^{\mathcal{A}}(\{4\})\subseteq \{2,3,4\}$. Logo $Sg^{\mathcal{A}}(\{4\})=\{2,3,4\}$.

Assim, $Sg^{\mathcal{A}}(\{1\}) \cup Sg^{\mathcal{A}}(\{4\}) = \{1, 2, 3, 4\}$. O conjunto $\{1, 2, 3, 4\}$ não é um subuniverso de \mathcal{A} , pois não é fechado para a operação $*^{\mathcal{A}}(\{1, 4 \in \{1, 2, 3, 4\}, \text{ mas } 1 *^{\mathcal{A}} 4 = 5 \notin \{1, 2, 3, 4\})$.

(b) Mostre que a aplicação α é um monomorfismo de \mathcal{B} em \mathcal{A} . Justifique que \mathcal{B} é isomorfa a uma subálgebra de \mathcal{A} .

A aplicação α é um monomorfismo de \mathcal{B} em \mathcal{A} se α é uma aplicação injetiva e é um homomorfismo de \mathcal{B} em \mathcal{A} , ou seja, se α é uma aplicação injetiva tal que:

- $\alpha(c^{\mathcal{B}}) = c^{\mathcal{A}}$;
- para quaisquer $x, y \in \{1, 2\}, \alpha(x *^{\mathcal{B}} y) = \alpha(x) *^{\mathcal{A}} \alpha(y).$

Ora, atendendo a que

- $\alpha(c^{\mathcal{B}}) = \alpha(1) = 2 = c^{\mathcal{A}},$
- $-\alpha(1*^{\mathcal{B}}1) = \alpha(2) = 3 = 2*^{\mathcal{A}}2 = \alpha(1)*^{\mathcal{A}}\alpha(1),$
- $-\alpha(1*^{\mathcal{B}}2) = \alpha(2) = 3 = 2*^{\mathcal{A}}3 = \alpha(1)*^{\mathcal{A}}\alpha(2),$
- $-\alpha(2*^{\mathcal{B}}1) = \alpha(2) = 3 = 3*^{\mathcal{A}}2 = \alpha(2)*^{\mathcal{A}}\alpha(1),$
- $-\alpha(2*^{\mathcal{B}}2) = \alpha(1) = 2 = 3*^{\mathcal{A}}3 = \alpha(2)*^{\mathcal{A}}\alpha(2),$

conclui-se que α é um homomorfismo de \mathcal{B} em \mathcal{A} . Claramente, a aplicação α é injetiva, pois

$$\forall x, y \in \{1, 2\}, x \neq y \Rightarrow \alpha(x) \neq \alpha(y).$$

De facto, $1 \neq 2$ e $\alpha(1) = 2 \neq 3 = \alpha(2)$. Logo α é um monomorfismo de \mathcal{B} em \mathcal{A} .

Um vez que α é um monomorfismo de $\mathcal B$ em $\mathcal A$, tem-se $\mathcal B\cong \alpha(\mathcal B)$. Além disso, como $\mathcal B$ é uma subálgebra de $\mathcal B$ e α é um homomorfismo de $\mathcal B$ em $\mathcal A$, $\alpha(\mathcal B)$ é um subálgebra de $\mathcal A$. Portanto, $\mathcal B$ é isomorfa a uma subálgebra de $\mathcal A$.

2. Seja $\mathcal{A}=(A;F)$ uma álgebra unária. Mostre que se S_1 e S_2 são subuniversos de $\mathcal{A},$ então $S_1\cup S_2$ é um subuniverso de $\mathcal{A}.$

Sejam $\mathcal A$ uma álgebra unária e S_1 , S_2 subuniversos de $\mathcal A$. Pretende-se mostrar que $S_1 \cup S_2$ é um subuniverso de $\mathcal A$.

Uma vez que $\mathcal A$ é uma álgebra unária, toda a operação de $\mathcal A$ é unária. Assim, um subconjunto X de A diz-se um subunivero de $\mathcal A$ se, para qualquer símbolo de operação unário f e para qualquer $x\in X$, $f^{\mathcal A}(x)\in X$.

Então, facilmente se verifica que $S_1 \cup S_2$ é um subuniverso de \mathcal{A} . Com efeito, como S_1 e S_2 são subuniversos de \mathcal{A} , tem-se $S_1, S_2 \subseteq \mathcal{A}$, pelo que $S_1 \cup S_2 \subseteq \mathcal{A}$. Além disso, para qualquer símbolo de operação f e para qualquer $x \in S_1 \cup S_2$, tem-se $f^{\mathcal{A}}(x) \in S_1 \cup S_2$. De facto, como $x \in S_1 \cup S_2$, então $x \in S_1$ ou $x \in S_2$. Caso $x \in S_1$, segue que $f^{\mathcal{A}}(x) \in S_1$, pois $x \in S_1$ e S_1 é fechado para a operação $f^{\mathcal{A}}$. Caso $x \in S_2$, segue que $f^{\mathcal{A}}(x) \in S_2$, pois S_2 também é fechado para a operação $f^{\mathcal{A}}$. Logo $f^{\mathcal{A}}(x) \in S_1 \cup S_2$. Desta forma, provámos que $S_1 \cup S_2$ é um subuniverso de \mathcal{A} .

- 3. Sejam $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in O}),\ \mathcal{B}=(B;(f^{\mathcal{B}})_{f\in O})$ e $\mathcal{C}=(C;(f^{\mathcal{C}})_{f\in O})$ álgebras de tipo $(O,\tau),$ $\alpha_1\in \operatorname{Hom}(\mathcal{A},\mathcal{B})$ e $\alpha_2\in \operatorname{Hom}(\mathcal{A},\mathcal{C}).$ Seja $\alpha:A\to B\times C$ a aplicação definida por $\alpha(a)=(\alpha_1(a),\alpha_2(a)),$ para todo $a\in A.$
 - (a) Mostre que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.

A aplicação α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$ se, para qualquer símbolo de operação n-ário $f \in O$ e para quaisquer $a_1, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}\times\mathcal{C}}(\alpha(a_1),\ldots,\alpha(a_n)).$$

Atendendo a que $\alpha_1 \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$ e $\alpha_2 \in \operatorname{Hom}(\mathcal{A}, \mathcal{C})$, é imediato que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$. De facto, para qualquer símbolo de operação n-ário $f \in O$ e para quaisquer $a_1, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_{1},...,a_{n})) = (\alpha_{1}(f^{\mathcal{A}}(a_{1},...,a_{n})), \alpha_{2}(f^{\mathcal{A}}(a_{1},...,a_{n}))$$
(1)
$$= (f^{\mathcal{B}}(\alpha_{1}(a_{1}),...,\alpha_{1}(a_{n})), f^{\mathcal{C}}(\alpha_{2}(a_{1}),...,\alpha_{2}(a_{n})))$$
(2)
$$= f^{\mathcal{B}\times\mathcal{C}}((\alpha_{1}(a_{1}),\alpha_{2}(a_{1})),...,(\alpha_{1}(a_{n}),\alpha_{2}(a_{n})))$$
(3)
$$= f^{\mathcal{B}\times\mathcal{C}}(\alpha(a_{1}),...,\alpha(a_{n}))$$
(4)

- (1) Por definição de α .
- (2) $\alpha_1 \in \text{Hom}(\mathcal{A}, \mathcal{B}) \text{ e } \alpha_2 \in \text{Hom}(\mathcal{A}, \mathcal{C}).$
- (3) Por definição de $f^{\mathcal{B}\times\mathcal{C}}$.
- (4) Por definição de α .
- (b) Mostre que $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.

Dadas álgebras $\mathcal{C}=(C;F)$ e $\mathcal{D}=(D;G)$ do mesmo tipo e um homomorfismo $\beta:\mathcal{C}\to\mathcal{D}$, tem-se

$$\ker \beta = \{(x, y) \in C \times C \mid \beta(x) = \beta(y)\}.$$

Assim, para qualquer $(x,y) \in A \times A$,

$$(x,y) \in \ker \alpha \quad \Leftrightarrow \quad \alpha(x) = \alpha(y)$$

$$\Leftrightarrow \quad (\alpha_1(x), \alpha_2(x)) = (\alpha_1(y), \alpha_2(y))$$

$$\Leftrightarrow \quad \alpha_1(x) = \alpha_1(y) \text{ e } \alpha_2(x) = \alpha_2(y)$$

$$\Leftrightarrow \quad (x,y) \in \ker \alpha_1 \text{ e } (x,y) \in \ker \alpha_2$$

$$\Leftrightarrow \quad (x,y) \in \ker \alpha_1 \cap \ker \alpha_2.$$

Logo $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.

(c) Mostre que se α é um epimorfismo, então α_1 e α_2 são epimorfismos e

$$A/(\ker \alpha_1 \cap \ker \alpha_2) \cong A/\ker \alpha_1 \times A/\ker \alpha_2.$$

Dadas álgebras $\mathcal{C}=(C;F)$ e $\mathcal{D}=(D;G)$ do mesmo tipo e uma aplicação $\beta:C\to\mathcal{D}$, diz-se que β é um epimorfismo se β é um homomorfismo sobrejetivo.

Admitamos que α é um epimorfismo. Pretende-se mostrar que α_1 e α_2 são epimorfismos. Uma vez que α_1 e α_2 são homomorfismos, resta mostrar que α_1 e α_2 são aplicações sobrejetivas.

Mostremos que a aplicação α_1 é sobrejetiva, ou seja, mostremos que, para todo $b \in B$, existe $a \in A$ tal que $\alpha_1(a) = b$. Seja $b \in B$. Como $C \neq \emptyset$, existe $c \in C$. Logo $(b,c) \in B \times C$. Uma vez que α é uma aplicação sobrejetiva de A em $B \times C$ (pois α é um epimorfismo) e $(b,c) \in B \times C$, existe $a \in A$ tal que $\alpha(a) = (b,c)$, isto é, existe $a \in A$ tal que $(\alpha_1(a), \alpha_2(a)) = (b,c)$. Logo, para todo $b \in B$, existe $a \in A$ tal que $\alpha_1(a) = b$. Logo α_1 é sobrejetiva.

A prova de que α_2 é sobrejetiva é análoga.

4. Seja $\mathcal{A} = (A; f^{\mathcal{A}}, g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A = \{a,b,c,d\}$ e cujas operações $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são definidas por

Sabendo que o reticulado de congruências de \mathcal{A} pode ser representado por

onde $\theta_1 = \theta(a, b), \ \theta_2 = \theta(a, c), \ \theta_3 = \theta(b, d) \ \mathbf{e} \ \theta_4 = \triangle_A \cup \{(a, c), (c, a), (b, d), (d, b)\}$:

(a) Determine θ_1 e justifique que (θ_1, θ_4) é um par de congruências fator.

Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo (O,τ) . Uma relação binária em A diz-se uma congruência em A se θ é uma relação de equivalência em A que satisfaz a propriedade de substituição, i.e., se θ é uma relação de equivalência tal que, para qualquer símbolo de operação n-ário $f\in O$ e para quaisquer $a_1,\ldots,a_n,\,b_1,\ldots b_n\in A$,

$$(a_1,b_1),\ldots,(a_n,b_n)\in\theta\Rightarrow (f^{\mathcal{A}}(a_1,\ldots,a_n),f^{\mathcal{A}}(b_1,\ldots,b_n))\in\theta.$$

Dado $X \subseteq A^2$, representa-se por $\theta(X)$ a menor congruência em \mathcal{A} que contém X.

Uma vez que $\theta_1 = \theta(a, b)$ é a menor congruência em \mathcal{A} que contém $\{(a, b)\}$ segue que

- $(a, b) \in \theta_1$;
- $(b,a) \in \theta_1$ (pois θ_1 é simétrica);
- $\triangle_A \subseteq \theta_1$ (pois θ_1 é reflexiva);
- $(f^{\mathcal{A}}(a), f^{\mathcal{A}}(b)) = (b, a), (f^{\mathcal{A}}(b), f^{\mathcal{A}}(a)) = (a, b) \in \theta_1$ (pela propriedade de substituição);
- $(g^{\mathcal{A}}(a), g^{\mathcal{A}}(b)) = (c, d), (g^{\mathcal{A}}(b), g^{\mathcal{A}}(a)) = (d, c) \in \theta_1$ (pela propriedade de substituição);
- $(f^{\mathcal{A}}(c), f^{\mathcal{A}}(d)) = (b, a), (f^{\mathcal{A}}(d), f^{\mathcal{A}}(c)) = (a, b) \in \theta_1$ (pela propriedade de substituição);
- $(g^{\mathcal{A}}(c), g^{\mathcal{A}}(d)) = (a, b), (g^{\mathcal{A}}(d), g^{\mathcal{A}}(c)) = (b, a) \in \theta_1$ (pela propriedade de substituição).

Logo $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\} \subseteq \theta_1$

A relação $\theta = \triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$ é uma congruência em $\mathcal A$ (pois é uma relação de equivalência que satisfaz a propriedade de substituição) e contém $\{(a,b)\}$. Mas $\theta_1 = \theta(a,b)$ é a menor congruência em $\mathcal A$ que contém $\{(a,b)\}$. Logo $\theta_1 = \theta(a,b) \subseteq \theta$.

Assim,
$$\theta_1 = \theta = \triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}.$$

O par (θ_1, θ_4) é um par de congruências fator, pois

- $\theta_1 \cap \theta_4 = \triangle_A$;
- $\theta_1 \lor \theta_4 = \theta_1 \cup \theta_4 \cup \{(a,d), (d,a), (b,c), (c,b)\} = \nabla_A;$
- $\theta_1 \circ \theta_4 = \theta_1 \cup \theta_4 \cup \{(a,d), (d,a), (b,c), (c,b)\} = \theta_4 \circ \theta_1.$
- (b) Justifique que $\mathcal{A}\cong\mathcal{A}/\theta_1\times\mathcal{A}/\theta_4$. Defina as operações da álgebra $\mathcal{A}/\theta_4=(A/\theta_4;f^{\mathcal{A}/\theta_4},g^{\mathcal{A}/\theta_4})$.

Da alínea anterior sabe-se que (θ_1, θ_4) é um par de congruências fator. Logo $\mathcal{A} \cong \mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4$.

Atendendo a que $\theta_4=\triangle_A\cup\{(a,c),(c,a),(b,d),(d,b)\}$, tem-se $A/\theta_4=\{[a]_{\theta_4},[b]_{\theta_4}\}$, onde $[a]_{\theta_4}=[c]_{\theta_4}$ e $[b]_{\theta_4}=[d]_{\theta_4}$. As operações f^{A/θ_4} e g^{A/θ_4} são definidas por

- (c) Diga, justificando, se a álgebra A é:
 - i. c-distributiva. ii. subdiretamente irredutível.

A álgebra \mathcal{A} é c-distributiva se o reticulado $\mathrm{Con}\mathcal{A}$ das congruências de \mathcal{A} é distributivo. O reticulado $\mathrm{Con}\mathcal{A}$ é distributivo se e só se não tem qualquer subrreticulado isomorfo a N_5 nem a M_5 .

Ora, o reticulado

é um subrreticulado de $\mathrm{Con}\mathcal{A}$ ($\{\triangle_A, \theta_1, \theta_3, \theta_4, \nabla_A\} \subseteq \mathrm{Con}\mathcal{A}$ e $\{\triangle_A, \theta_1, \theta_3, \theta_4, \nabla_A\}$ é fechado para as operações ínfimo e supremo definidas em $\mathrm{Con}\mathcal{A}$) e é isomorfo a N_5 . Logo $\mathrm{Con}\mathcal{A}$ não é distributivo e, por conseguinte, \mathcal{A} não é c-distributiva.

A álgebra \mathcal{A} é subdiretamente irredutível se e só se a álgebra \mathcal{A} é trivial ou $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ tem elemento mínimo. Uma vez que a álgebra \mathcal{A} não é trivial e o conjunto parcialmente ordenado $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$

não tem elemento mínimo (note-se que não existe $\theta \in \mathrm{Con}\mathcal{A}$ tal que $\theta \subseteq \alpha$, para todo $\alpha \in \mathrm{Con}\mathcal{A}$), concluímos que a álgebra \mathcal{A} não é subdiretamente irredutível.

5. Considere os operadores de classes de álgebras H e S. Mostre que HSH é um operador idempotente.

Pretendemos mostrar que HSH é idempotente, ou seja, que $(HSH)^2 = HSH$.

Ora, atendendo a que $H^2=H$, $S^2=S$ e $SH\subseteq HS$ tem-se:

$$\begin{array}{lll} HSH & = & HSSH & (\ \mathsf{pois}\ S^2 = S) \\ & = & HSSHH & (\ \mathsf{pois}\ H^2 = H) \\ & \subseteq & HSHSH & (\ \mathsf{pois}\ SH \subseteq HS) \\ & = & HSHHSH & (\ \mathsf{pois}\ H^2 = H) \end{array}$$

е

$$\begin{array}{rcl} HSHHSH & = & HSHSH & (\ \mathsf{pois}\ H^2 = H) \\ & \subseteq & HHSSH & (\ \mathsf{pois}\ SH \subseteq HS) \\ & = & HSH & (\ \mathsf{pois}\ H^2 = H\ \mathsf{e}\ S^2 = S). \end{array}$$

 $\mathsf{Logo}\ (HSH)^2 = HSH.$