## project

September 22, 2025

## 1 Harmonic Tidal Analysis - Seattle NOAA Station

#### 1.1 The project!

This short project analyses 4 months of real water level from a Seattle NOAA station to fit a harmonic tidal model and investigate outliers of the model. We use haromine analysis to decopmose the tidal data into its 'constituent astronomical components'  $M_1, S_1, K_1$  (more on this later) and examine how well this physics centered approach fits real data!

```
[10]: import pandas as pd import numpy as np import matplotlib.pyplot as plt
```

#### 1.2 Loading data!

We have 4 CSVs from NOAA's IOOS system covering May-August 2025 Seattle with 60minute interval water level measurements. Lets load to a pandas dataframe!

```
[9]: # May 2025 -> August 2025!
files = [
    "data/IOOS_Raw_Water_Level_202505.csv",
    "data/IOOS_Raw_Water_Level_202506.csv",
    "data/IOOS_Raw_Water_Level_202507.csv",
    "data/IOOS_Raw_Water_Level_202508.csv"
]

dfs = []
for file in files:
    df_month = pd.read_csv(file, parse_dates=["time"], skiprows=[1]) # row 1 is_
    **units*
    dfs.append(df_month)

df = pd.concat(dfs, ignore_index = True)
df
```

```
[9]: time WL_VALUE latitude longitude STATION_ID \
0 2025-05-01 00:00:00+00:00 3.779 47.6026 -122.3393 9447130
1 2025-05-01 00:06:00+00:00 3.876 47.6026 -122.3393 9447130
```

```
2
      2025-05-01 00:12:00+00:00
                                     3.974
                                             47.6026
                                                       -122.3393
                                                                     9447130
3
      2025-05-01 00:18:00+00:00
                                     4.062
                                             47.6026
                                                       -122.3393
                                                                     9447130
4
      2025-05-01 00:24:00+00:00
                                     4.153
                                             47.6026
                                                       -122.3393
                                                                     9447130
29514 2025-08-31 23:30:00+00:00
                                     5.056
                                             47.6026
                                                       -122.3393
                                                                     9447130
29515 2025-08-31 23:36:00+00:00
                                     5.049
                                             47.6026
                                                       -122.3393
                                                                     9447130
29516 2025-08-31 23:42:00+00:00
                                     5.040
                                             47.6026
                                                       -122.3393
                                                                     9447130
29517 2025-08-31 23:48:00+00:00
                                     5.034
                                             47.6026
                                                       -122.3393
                                                                     9447130
29518 2025-08-31 23:54:00+00:00
                                     5.031
                                             47.6026
                                                       -122.3393
                                                                     9447130
```

```
0
         MSL
1
         MSL
2
         MSL
3
         MSL
4
         MSL
29514
         MSL
29515
         MSL
29516
         MSL
29517
         MSL
29518
         MSL
```

DATUM

[29519 rows x 6 columns]

We can see from above there is: time of measurement, WL\_VALUE is tide height in meters, and the rest we dont need (maye for a future project...)

It seems sorted in time and without NAs but just to be sure:

```
[12]: df = df.dropna(subset=["time", "WL_VALUE"])
    df["WL_VALUE"] = pd.to_numeric(df["WL_VALUE"], errors="coerce")
    df = df.dropna(subset=["WL_VALUE"])
    df
```

```
[12]:
                                        WL VALUE
                                                   latitude
                                                             longitude
                                                                        STATION ID \
                                  time
      0
            2025-05-01 00:00:00+00:00
                                           3.779
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      1
            2025-05-01 00:06:00+00:00
                                           3.876
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      2
            2025-05-01 00:12:00+00:00
                                           3.974
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      3
            2025-05-01 00:18:00+00:00
                                           4.062
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      4
            2025-05-01 00:24:00+00:00
                                           4.153
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      29514 2025-08-31 23:30:00+00:00
                                           5.056
                                                    47.6026
                                                            -122.3393
                                                                            9447130
      29515 2025-08-31 23:36:00+00:00
                                           5.049
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      29516 2025-08-31 23:42:00+00:00
                                           5.040
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      29517 2025-08-31 23:48:00+00:00
                                           5.034
                                                    47.6026
                                                             -122.3393
                                                                            9447130
      29518 2025-08-31 23:54:00+00:00
                                           5.031
                                                    47.6026
                                                             -122.3393
                                                                            9447130
```

```
DATUM
        MSL
0
1
        MSL
2
        MSL
3
        MSL
        MSL
29514
        MSL
29515
        MSL
29516
        MSL
29517
        MSL
29518
        MSL
[29519 rows x 6 columns]
```

#### 1.2.1 Now lets convert to time series pandas

```
[17]: s_6min = df.set_index("time")["WL_VALUE"].astype(float).sort_index()
      s_hour = s_6min.resample("1h").mean()
      print("Coverage:", s_6min.index.min(), "→", s_6min.index.max())
      print("Data points:", len(s_6min), "6-min intervals |", len(s_hour), "hourly"
       ⇔points")
      print("\nData quality checks:")
      # 6 minute interval check
      diff = s_6min.index.to_series().diff().value_counts().head()
      print("Top time intervals:")
      print(diff)
      print("(Should be mostly 00:06:00 for 6-minute data)")
      # Make sure all data is from same station and datum
      print(f"\nStations: {df['STATION_ID'].dropna().unique()}")
      print(f"Datum: {df['DATUM'].dropna().unique()}")
      print("(Should be single station and datum for consistent analysis)")
     Coverage: 2025-05-01 \ 00:00:00+00:00 \rightarrow 2025-08-31 \ 23:54:00+00:00
     Data points: 29519 6-min intervals | 2952 hourly points
     Data quality checks:
     Top time intervals:
     time
     0 days 00:06:00
                         29517
     0 days 00:12:00
     Name: count, dtype: int64
     (Should be mostly 00:06:00 for 6-minute data)
```

Stations: [9447130] Datum: ['MSL']

(Should be single station and datum for consistent analysis)

### 1.3 okay looks all good (with one 12 minute gap) Let's plot the tide vs date:

Water level range: 1.215 to 6.247 meters

Mean: 4.459, Std: 1.124



#### 1.4 cool! Can see the sinusoidal patterns, Let's group by time of Day:

```
[23]: df_analysis = s_6min.reset_index()
    df_analysis['hour'] = df_analysis['time'].dt.hour
    df_analysis['minute'] = df_analysis['time'].dt.minute
    df_analysis['time_of_day'] = df_analysis['hour'] + df_analysis['minute']/60

time_stats = df_analysis.groupby('time_of_day')['WL_VALUE'].agg([
```

```
'count', 'median', 'mean', 'std',
    lambda x: x.quantile(0.05), # 5th percentile
    lambda x: x.quantile(0.95) # 95th percentile
]).round(3)
time_stats.columns = ['count', 'median', 'mean', 'std', 'p5', 'p95']
print("Sample of time-of-day statistics:")
print(time_stats.head(10))
print(f"\nWe have {len(time_stats)} unique times of day (should be 240 for_
 ⇔6-min intervals)")
plt.figure(figsize=(12, 6))
plt.scatter(df_analysis['time_of_day'], df_analysis['WL_VALUE'],
           c='lightgray', alpha=0.8, s=1.9, label='All measurements')
plt.plot(time_stats.index, time_stats['median'], 'ro-',
         linewidth=2, markersize=3, label='Median by time of day')
plt.title('Daily Tidal Pattern - All Data Points + Median Line')
plt.xlabel('Hour of Day')
plt.ylabel('Water Level (meters)')
plt.xlim(0, 24)
plt.xticks(range(0, 25, 3)) # Every 3 hours
plt.grid(True, alpha=0.3)
plt.legend()
plt.tight_layout()
plt.show()
```

#### Sample of time-of-day statistics:

|             | count | median | mean  | std   | р5    | p95   |
|-------------|-------|--------|-------|-------|-------|-------|
| time_of_day |       |        |       |       |       |       |
| 0.0         | 123   | 4.776  | 4.561 | 0.988 | 2.745 | 5.796 |
| 0.1         | 123   | 4.769  | 4.594 | 0.980 | 2.760 | 5.788 |
| 0.2         | 123   | 4.800  | 4.626 | 0.972 | 2.769 | 5.788 |
| 0.3         | 123   | 4.832  | 4.658 | 0.964 | 2.780 | 5.812 |
| 0.4         | 123   | 4.846  | 4.689 | 0.956 | 2.827 | 5.830 |
| 0.5         | 123   | 4.846  | 4.720 | 0.948 | 2.887 | 5.842 |
| 0.6         | 123   | 4.933  | 4.751 | 0.939 | 2.932 | 5.855 |
| 0.7         | 123   | 4.951  | 4.780 | 0.931 | 2.923 | 5.870 |
| 0.8         | 123   | 4.970  | 4.809 | 0.923 | 2.918 | 5.882 |
| 0.9         | 123   | 5.023  | 4.837 | 0.914 | 2.973 | 5.885 |

We have 240 unique times of day (should be 240 for 6-min intervals)



# 1.5 Very cool! 1 More plot before fitting... Lets do a zoom in on the first two weeks:

```
[25]: # Let's first plot a shorter time window to see the tidal patterns clearly
plt.figure(figsize=(15, 6))

# Plot just 2 weeks to see the patterns
two_weeks = s_hour.head(24*14) # First 14 days
plt.plot(two_weeks.index, two_weeks.values, 'b-', linewidth=1)

plt.title('Water Level - First 2 Weeks (to see tidal patterns)')
plt.xlabel('Time')
plt.ylabel('Water Level (meters)')
plt.grid(True, alpha=0.3)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



#### 1.6 Sure Looks like a sum of sinuisoidal curves!

Now for the physics.

#### 1.6.1 Harmonic Tidal Thoery

Tides can be modeled from a sum of sine waves where each wave represents a different astronomical 'forcing' - the moon and sun pulling on oceans from different angles and distances.

The water level can be modeled using these sinusoidal components like:

$$\text{Water Level}(t) = \text{Mean} + \sum_{i} A_{i} \cos \left( \frac{2\pi}{T_{i}} t + \phi_{i} \right)$$

Where  $T_i$  is the period of each contituent,  $A_i$  is the amplitude, and  $\phi_i$  is the phase.

There are many constituents, but we will the following 6 that have short periods that can be fit with our 4-month data and are known(?) to be strong in the Pacific Coast. Also Diurnal - one period per day. Semi-diurnal twice per day

The 6 major constituents come from: - M2 (12.42h): Principal lunar semi-diurnal - Earth's rotation relative to moon - S2 (12.00h): Principal solar semi-diurnal - Earth's rotation relative to sun

- N2 (12.66h): Lunar elliptic semi-diurnal - moon's elliptical orbit variations - K1 (23.93h): Lunar diurnal - moon's declination (north-south position) - O1 (25.82h): Lunar diurnal - combined moon declination and orbit effects - P1 (24.07h): Solar diurnal - sun's declination variations

 $Taken \ from \ page \ 98 \ of \ https://tidesand currents.noaa.gov/publications/Tidal\_Analysis\_and\_Predictions.pdf$ 

Theese periods are fixed by celesital mechanics. Only  $A_i$  and  $\phi_i$  very by location.

So essentially we will be summing the following sinuisodal and fitting the amplitude  $A_i$  and  $\phi_i$  to the Seattle Tidal data while fixing the  $T_i$  to the NOAA values. The following plots the periods of the 6 major Tidal Constituents

```
[26]: fig, axes = plt.subplots(3, 2, figsize=(15, 10))
      fig.suptitle('The 6 Major Tidal Constituents (Period compairons)', fontsize=16)
      t_hours = np.linspace(0, 72, 1000) # 3 days
      constituents = {
          'M2 (Principal Lunar)': 12.421,
          'S2 (Principal Solar)': 12.000,
          'N2 (Lunar Elliptic)': 12.658,
          'K1 (Lunar Diurnal)': 23.934,
          '01 (Lunar Diurnal)': 25.819,
          'P1 (Solar Diurnal)': 24.066
      }
      for i, (name, period) in enumerate(constituents.items()):
          row, col = i // 2, i % 2
          omega = 2 * np.pi / period
          wave = np.cos(omega * t_hours)
          axes[row, col].plot(t_hours, wave, linewidth=2)
          axes[row, col].set_title(f'{name}\nPeriod: {period:.2f} hours')
          axes[row, col].set_xlabel('Hours')
          axes[row, col].set_ylabel('Amplitude')
          axes[row, col].grid(True, alpha=0.3)
      plt.tight_layout()
      plt.show()
```



#### 1.7 Okay now for the fit:

We will use scipy's curve\_fit to fit the amplitude and phase of the 6 constituents as well as the mean tidal height per hour leaving 13 parameters.

Specifically curve\_fit utses least squares optimization or finds the 13 paramteres that minize the sum of squared differences between model predictions and the **hourly averageed** water levels. Each hour's data point is an average of  $\sim 10$  six-minute measurements from that hour noise

```
omega_M2 = 2 * np.pi / periods['M2']
    omega_S2 = 2 * np.pi / periods['S2']
    omega_N2 = 2 * np.pi / periods['N2']
    omega_K1 = 2 * np.pi / periods['K1']
    omega_01 = 2 * np.pi / periods['01']
    omega_P1 = 2 * np.pi / periods['P1']
    # mean, sum of all constituents
    result = (mean +
               A_M2 * np.cos(omega_M2 * t_hours + phi_M2) +
               A_S2 * np.cos(omega_S2 * t_hours + phi_S2) +
               A_N2 * np.cos(omega_N2 * t_hours + phi_N2) +
               A_K1 * np.cos(omega_K1 * t_hours + phi_K1) +
               A_01 * np.cos(omega_01 * t_hours + phi_01) +
               A_P1 * np.cos(omega_P1 * t_hours + phi_P1))
    return result
# using hours
t0 = s_hour.index[0]
t_hours = (s_hour.index - t0).total_seconds() / 3600
water_levels = s_hour.values
# Initial parameter guess: [mean, A1, phi1, A2, phi2, ...]
p0 = [s_hour.mean(), # mean
                 # M2 amplitude, phase
# S2 amplitude, phase
# N2 amplitude, phase
# K1 amplitude, phase
      0.5, 0,
      0.3, 0,
      0.2, 0,
      0.4, 0,
      0.3, 0,
                     # 01 amplitude, phase
      0.1, 0]
                 # P1 amplitude, phase
print("Starting harmonic fit...")
print(f"Data points: {len(water_levels)}")
print(f"Time span: {t hours[-1]:.1f} hours ({t hours[-1]/24:.1f} days)")
# fit the model
popt, pcov = curve_fit(tidal_model, t_hours, water_levels, p0=p0)
print("Fit completed!")
print(f"Mean water level: {popt[0]:.3f} meters")
Starting harmonic fit...
Data points: 2952
Time span: 2951.0 hours (123.0 days)
Fit completed!
Mean water level: 4.456 meters
```

[]:

Now that the fit is complete I will make a figure of 3 plots.

- **Top plot** is the observed water level (hourly average) vs the predicted harmoinc fit water level for the first 30 days to see how well the model captures tidal cycles.
- Middle Plot shows the residual between the hourly averaged tidal hieghts and model predictions over the full 4 months. Important to look for patterns in the residuals demonstrating what the tidal
- Bottom plot: Bar chart of the fitted amplitudes for each of the 6 tidal constituents, showing relative importance

```
[33]: fitted_values = tidal_model(t_hours, *popt)
      residuals = water_levels - fitted_values
      fig, axes = plt.subplots(3, 1, figsize=(15, 12))
      # plot 1: Observed vs Fitted (first 30 days)
      days_to_show = 30
      end_idx = min(24 * days_to_show, len(s_hour))
      time_subset = s_hour.index[:end_idx]
      obs_subset = water_levels[:end_idx]
      fit subset = fitted values[:end idx]
      axes[0].plot(time_subset, obs_subset, 'b-', alpha=0.7, linewidth=1,_
       →label='Observed')
      axes[0].plot(time_subset, fit_subset, 'r-', linewidth=1.5, label='Harmonic Fit')
      axes[0].set_title(f'Tidal Harmonic Fit - First {days_to_show} Days')
      axes[0].set_ylabel('Water Level (m)')
      axes[0].legend()
      axes[0].grid(True, alpha=0.3)
      # plot 2: Residuals (observed - fitted)
      axes[1].plot(s_hour.index, residuals, 'g-', alpha=0.6, linewidth=0.5)
      axes[1].axhline(y=0, color='black', linestyle='--', alpha=0.5)
      axes[1].set_title('Residuals (Observed - Fitted)')
      axes[1].set_ylabel('Residual (m)')
      axes[1].grid(True, alpha=0.3)
      # plot 3: Constituent amplitudes
      constituent_names = ['M2', 'S2', 'N2', 'K1', 'O1', 'P1']
      amplitudes = [popt[1], popt[3], popt[5], popt[7], popt[9], popt[11]]
      axes[2].bar(constituent_names, amplitudes, color=['skyblue']*3 + ['orange']*3)
      axes[2].set_title('Fitted Tidal Constituent Amplitudes')
      axes[2].set_ylabel('Amplitude (m)')
      axes[2].grid(True, alpha=0.3)
      plt.tight_layout()
```



Root Mean Square Error: 0.152 meters  $\mathbb{R}^2$  (explained variance): 0.982

#### 1.8 Results and Analysis

From the three plots we can see:

Top plot (Fit Quality): The harmonic model captures the main tidal oscillations reasonably well, but there appears to be some systematic mismatch - sinusoidal drift over the 30 day period.

Middle plot (Residuals): The residuals clearly show they are NOT random noise around zero. Instead, there's a distinct sinusoidal pattern with what appears to be a ~30-day period. This systematic pattern suggests our 6-constituent model is missing longer-period tidal components.

Bottom plot (Constituent Strengths): M2 (principal lunar) dominates at ~1.0m amplitude, followed by K1 (lunar diurnal) at 0.9m magnitude. This confirms Seattle has mixed semi-diurnal tides - both twice-daily and once-daily components are significant.

The smoking gun: That organized residual pattern suggests we're missing monthly and fortnightly tidal constituents like: - Mf (14.77 days): Fortnightly tide from lunar orbit variations - Mm (27.55 days): Monthly tide from lunar distance changes

With only 4 months of data, we have limited ability to resolve these longer periods, but the residual pattern suggests they're present and measurable. Future work should focus on gathering data from a larger time window to feet these additional constituents, and possibly compare other sites geographically close to Seattle

**Model Performance:** The fit statistics show reasonable results with RMSE of 0.152 meters and R<sup>2</sup> of 0.982, indicating our 6-constituent model explains 98.2% of the tidal variation despite missing the longer-period components.

| []: |  |
|-----|--|
| []: |  |