SECTION 6.8 UNIONS 147

can cope with textual substitutions that are beyond the capabilities of the preprocessor. For example,

```
typedef int (*PFI)(char *, char *);
```

creates the type PFI, for "pointer to function (of two char * arguments) returning int," which can be used in contexts like

```
PFI strcmp, numcmp;
```

in the sort program of Chapter 5.

Besides purely aesthetic issues, there are two main reasons for using typedefs. The first is to parameterize a program against portability problems. If typedefs are used for data types that may be machine-dependent, only the typedefs need change when the program is moved. One common situation is to use typedef names for various integer quantities, then make an appropriate set of choices of short, int, and long for each host machine. Types like size_t and ptrdiff_t from the standard library are examples.

The second purpose of typedefs is to provide better documentation for a program—a type called Treeptr may be easier to understand than one declared only as a pointer to a complicated structure.

6.8 Unions

A union is a variable that may hold (at different times) objects of different types and sizes, with the compiler keeping track of size and alignment requirements. Unions provide a way to manipulate different kinds of data in a single area of storage, without embedding any machine-dependent information in the program. They are analogous to variant records in Pascal.

As an example such as might be found in a compiler symbol table manager, suppose that a constant may be an int, a float, or a character pointer. The value of a particular constant must be stored in a variable of the proper type, yet it is most convenient for table management if the value occupies the same amount of storage and is stored in the same place regardless of its type. This is the purpose of a union—a single variable that can legitimately hold any one of several types. The syntax is based on structures:

```
union u_tag {
    int ival;
    float fval;
    char *sval;
} u;
```

The variable u will be large enough to hold the largest of the three types; the specific size is implementation-dependent. Any one of these types may be assigned to u and then used in expressions, so long as the usage is consistent: the type retrieved must be the type most recently stored. It is the programmer's

148 STRUCTURES CHAPTER 6

responsibility to keep track of which type is currently stored in a union; the results are implementation-dependent if something is stored as one type and extracted as another.

Syntactically, members of a union are accessed as

```
union-name . member
```

or

```
union-pointer -> member
```

just as for structures. If the variable utype is used to keep track of the current type stored in u, then one might see code such as

```
if (utype == INT)
    printf("%d\n", u.ival);
else if (utype == FLOAT)
    printf("%f\n", u.fval);
else if (utype == STRING)
    printf("%s\n", u.sval);
else
    printf("bad type %d in utype\n", utype);
```

Unions may occur within structures and arrays, and vice versa. The notation for accessing a member of a union in a structure (or vice versa) is identical to that for nested structures. For example, in the structure array defined by

```
struct {
    char *name;
    int flags;
    int utype;
    union {
        int ival;
        float fval;
        char *sval;
    } u;
} symtab[NSYM];
```

the member ival is referred to as

```
symtab[i].u.ival
```

and the first character of the string sval by either of

```
*symtab[i].u.sval
symtab[i].u.sval[0]
```

In effect, a union is a structure in which all members have offset zero from the base, the structure is big enough to hold the "widest" member, and the alignment is appropriate for all of the types in the union. The same operations are permitted on unions as on structures: assignment to or copying as a unit, taking the address, and accessing a member.

A union may only be initialized with a value of the type of its first member;

SECTION 6.9 BIT-FIELDS 149

thus the union u described above can only be initialized with an integer value.

The storage allocator in Chapter 8 shows how a union can be used to force a variable to be aligned on a particular kind of storage boundary.

6.9 Bit-fields

When storage space is at a premium, it may be necessary to pack several objects into a single machine word; one common use is a set of single-bit flags in applications like compiler symbol tables. Externally-imposed data formats, such as interfaces to hardware devices, also often require the ability to get at pieces of a word.

Imagine a fragment of a compiler that manipulates a symbol table. Each identifier in a program has certain information associated with it, for example, whether or not it is a keyword, whether or not it is external and/or static, and so on. The most compact way to encode such information is a set of one-bit flags in a single char or int.

The usual way this is done is to define a set of "masks" corresponding to the relevant bit positions, as in

```
#define KEYWORD 01
#define EXTERNAL 02
#define STATIC 04
```

or

```
enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };
```

The numbers must be powers of two. Then accessing the bits becomes a matter of "bit-fiddling" with the shifting, masking, and complementing operators that were described in Chapter 2.

Certain idioms appear frequently:

```
flags |= EXTERNAL | STATIC;
```

turns on the EXTERNAL and STATIC bits in flags, while

```
flags &= ~(EXTERNAL | STATIC);
```

turns them off, and

```
if ((flags & (EXTERNAL | STATIC)) == 0) ...
```

is true if both bits are off.

Although these idioms are readily mastered, as an alternative C offers the capability of defining and accessing fields within a word directly rather than by bitwise logical operators. A bit-field, or field for short, is a set of adjacent bits within a single implementation-defined storage unit that we will call a "word." The syntax of field definition and access is based on structures. For example, the symbol table #defines above could be replaced by the definition of three

150 STRUCTURES CHAPTER 6

fields:

```
struct {
    unsigned int is_keyword : 1;
    unsigned int is_extern : 1;
    unsigned int is_static : 1;
} flags;
```

This defines a variable called flags that contains three 1-bit fields. The number following the colon represents the field width in bits. The fields are declared unsigned int to ensure that they are unsigned quantities.

Individual fields are referenced in the same way as other structure members: flags.is_keyword, flags.is_extern, etc. Fields behave like small integers, and may participate in arithmetic expressions just like other integers. Thus the previous examples may be written more naturally as

```
flags.is_extern = flags.is_static = 1;
to turn the bits on;
    flags.is_extern = flags.is_static = 0;
to turn them off; and
    if (flags.is_extern == 0 && flags.is_static == 0)
```

to test them.

Almost everything about fields is implementation-dependent. Whether a field may overlap a word boundary is implementation-defined. Fields need not be named; unnamed fields (a colon and width only) are used for padding. The special width 0 may be used to force alignment at the next word boundary.

Fields are assigned left to right on some machines and right to left on others. This means that although fields are useful for maintaining internally-defined data structures, the question of which end comes first has to be carefully considered when picking apart externally-defined data; programs that depend on such things are not portable. Fields may be declared only as ints; for portability, specify signed or unsigned explicitly. They are not arrays, and they do not have addresses, so the & operator cannot be applied to them.

CHAPTER 7: Input and Output

Input and output facilities are not part of the C language itself, so we have not emphasized them in our presentation thus far. Nonetheless, programs interact with their environment in much more complicated ways than those we have shown before. In this chapter we will describe the standard library, a set of functions that provide input and output, string handling, storage management, mathematical routines, and a variety of other services for C programs. We will concentrate on input and output.

The ANSI standard defines these library functions precisely, so that they can exist in compatible form on any system where C exists. Programs that confine their system interactions to facilities provided by the standard library can be moved from one system to another without change.

The properties of library functions are specified in more than a dozen headers; we have already seen several of these, including <stdio.h>, <string.h>, and <ctype.h>. We will not present the entire library here, since we are more interested in writing C programs that use it. The library is described in detail in Appendix B.

7.1 Standard Input and Output

As we said in Chapter 1, the library implements a simple model of text input and output. A text stream consists of a sequence of lines; each line ends with a newline character. If the system doesn't operate that way, the library does whatever is necessary to make it appear as if it does. For instance, the library might convert carriage return and linefeed to newline on input and back again on output.

The simplest input mechanism is to read one character at a time from the standard input, normally the keyboard, with getchar:

int getchar(void)

getchar returns the next input character each time it is called, or EOF when it encounters end of file. The symbolic constant EOF is defined in <stdio.h>.

152 INPUT AND OUTPUT CHAPTER 7

The value is typically -1, but tests should be written in terms of EOF so as to be independent of the specific value.

In many environments, a file may be substituted for the keyboard by using the < convention for input redirection: if a program prog uses getchar, then the command line

causes prog to read characters from infile instead. The switching of the input is done in such a way that prog itself is oblivious to the change; in particular, the string "<infile" is not included in the command-line arguments in argv. Input switching is also invisible if the input comes from another program via a pipe mechanism: on some systems, the command line

```
otherprog | prog
```

runs the two programs otherprog and prog, and pipes the standard output of otherprog into the standard input for prog.

The function

```
int putchar(int)
```

is used for output: putchar(c) puts the character c on the standard output, which is by default the screen. putchar returns the character written, or EOF if an error occurs. Again, output can usually be directed to a file with >filename: if prog uses putchar,

```
prog >outfile
```

will write the standard output to outfile instead. If pipes are supported,

```
prog ! anotherprog
```

puts the standard output of prog into the standard input of anotherprog.

Output produced by printf also finds its way to the standard output. Calls to putchar and printf may be interleaved—output appears in the order in which the calls were made.

Each source file that refers to an input/output library function must contain the line

```
#include <stdio.h>
```

before the first reference. When the name is bracketed by < and > a search is made for the header in a standard set of places (for example, on UNIX systems, typically in the directory /usr/include).

Many programs read only one input stream and write only one output stream; for such programs, input and output with getchar, putchar, and printf may be entirely adequate, and is certainly enough to get started. This is particularly true if redirection is used to connect the output of one program to the input of the next. For example, consider the program lower, which converts its input to lower case:

```
#include <stdio.h>
#include <ctype.h>

main() /* lower: convert input to lower case */
{
   int c;

   while ((c = getchar()) != EOF)
        putchar(tolower(c));
   return 0;
}
```

The function tolower is defined in <ctype.h>; it converts an upper case letter to lower case, and returns other characters untouched. As we mentioned earlier, "functions" like getchar and putchar in <stdio.h> and tolower in <ctype.h> are often macros, thus avoiding the overhead of a function call per character. We will show how this is done in Section 8.5. Regardless of how the <ctype.h> functions are implemented on a given machine, programs that use them are shielded from knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case to upper, depending on the name it is invoked with, as found in argy[0].

7.2 Formatted Output—Printf

The output function printf translates internal values to characters. We have used printf informally in previous chapters. The description here covers most typical uses but is not complete; for the full story, see Appendix B.

```
int printf(char *format, arg1, arg2, ...)
```

printf converts, formats, and prints its arguments on the standard output under control of the format. It returns the number of characters printed.

The format string contains two types of objects: ordinary characters, which are copied to the output stream, and conversion specifications, each of which causes conversion and printing of the next successive argument to printf. Each conversion specification begins with a % and ends with a conversion character. Between the % and the conversion character there may be, in order:

- A minus sign, which specifies left adjustment of the converted argument.
- A number that specifies the minimum field width. The converted argument will be printed in a field at least this wide. If necessary it will be padded on the left (or right, if left adjustment is called for) to make up the field width.
- A period, which separates the field width from the precision.
- A number, the precision, that specifies the maximum number of characters to be printed from a string, or the number of digits after the decimal point of a floating-point value, or the minimum number of digits for an integer.

154 INPUT AND OUTPUT

• An h if the integer is to be printed as a short, or 1 (letter ell) if as a long.

Conversion characters are shown in Table 7-1. If the character after the % is not a conversion specification, the behavior is undefined.

CHARACTER	ARGUMENT TYPE; PRINTED AS
d, i	int; decimal number.
0	int; unsigned octal number (without a leading zero).
x, X	int; unsigned hexadecimal number (without a leading 0x or 0x), using abcdef or ABCDEF for 10,, 15.
u	int; unsigned decimal number.
c	int; single character.
s	char *; print characters from the string until a '\0' or the number of characters given by the precision.
f	double; [-]m.dddddd, where the number of d's is given by the precision (default 6).
e, E	double; $[-]m.dddddd$ e $\pm xx$ or $[-]m.dddddd$ E $\pm xx$, where the number of d 's is given by the precision (default 6).
g, G	double; use %e or %E if the exponent is less than -4 or greater than or equal to the precision; otherwise use %f. Trailing zeros and a trailing decimal point are not printed.
p	void *; pointer (implementation-dependent representation).
%	no argument is converted; print a %.

TABLE 7-1. BASIC PRINTF CONVERSIONS

A width or precision may be specified as *, in which case the value is computed by converting the next argument (which must be an int). For example, to print at most max characters from a string s,

```
printf("%.*s", max, s);
```

Most of the format conversions have been illustrated in earlier chapters. One exception is precision as it relates to strings. The following table shows the effect of a variety of specifications in printing "hello, world" (12 characters). We have put colons around each field so you can see its extent.

```
:%s:
             :hello, world:
:%10s:
             :hello, world:
:%.10s:
             :hello, wor:
:%-10s:
             :hello, world:
:%.15s:
             :hello, world:
:%-15s:
             :hello, world
:%15.10s:
                   hello, wor:
:%-15.10s:
             :hello, wor
```

A warning: printf uses its first argument to decide how many arguments

follow and what their types are. It will get confused, and you will get wrong answers, if there are not enough arguments or if they are the wrong type. You should also be aware of the difference between these two calls:

```
printf(s);  /* FAILS if s contains % */
printf("%s", s); /* SAFE */
```

The function sprintf does the same conversions as printf does, but stores the output in a string:

```
int sprintf(char *string, char *format, arg1, arg2, ...)
```

sprintf formats the arguments in arg_1 , arg_2 , etc., according to format as before, but places the result in string instead of on the standard output; string must be big enough to receive the result.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way. As a minimum, it should print non-graphic characters in octal or hexadecimal according to local custom, and break long text lines.

7.3 Variable-length Argument Lists

This section contains an implementation of a minimal version of printf, to show how to write a function that processes a variable-length argument list in a portable way. Since we are mainly interested in the argument processing, minprintf will process the format string and arguments but will call the real printf to do the format conversions.

The proper declaration for printf is

```
int printf(char *fmt, ...)
```

where the declaration ... means that the number and types of these arguments may vary. The declaration ... can only appear at the end of an argument list. Our minprintf is declared as

```
void minprintf(char *fmt, ...)
```

since we will not return the character count that printf does.

The tricky bit is how minprintf walks along the argument list when the list doesn't even have a name. The standard header <stdarg.h> contains a set of macro definitions that define how to step through an argument list. The implementation of this header will vary from machine to machine, but the interface it presents is uniform.

The type va_list is used to declare a variable that will refer to each argument in turn; in minprintf, this variable is called ap, for "argument pointer." The macro va_start initializes ap to point to the first unnamed argument. It must be called once before ap is used. There must be at least one named argument; the final named argument is used by va_start to get started.

156 INPUT AND OUTPUT CHAPTER 7

Each call of va_arg returns one argument and steps ap to the next; va_arg uses a type name to determine what type to return and how big a step to take. Finally, va_end does whatever cleanup is necessary. It must be called before the function returns.

These properties form the basis of our simplified printf:

```
#include <stdarg.h>
/* minprintf: minimal printf with variable argument list */
void minprintf(char *fmt, ...)
    va_list ap; /* points to each unnamed arg in turn */
    char *p, *sval;
    int ival:
    double dval:
    va_start(ap, fmt); /* make ap point to 1st unnamed arg */
    for (p = fmt; *p; p++) {
        if (*p != '%') {
            putchar(*p);
            continue;
        switch (*++p) {
        case 'd':
            ival = va_arg(ap, int);
            printf("%d", ival);
            break:
        case 'f':
            dval = va_arg(ap, double);
            printf("%f", dval);
            break:
        case 's':
            for (sval = va_arg(ap, char *); *sval; sval++)
                putchar(*sval);
            break;
        default:
            putchar(*p);
            break;
        }
   va_end(ap); /* clean up when done */
}
```

Exercise 7-3. Revise minprintf to handle more of the other facilities of printf. \square

7.4 Formatted Input—Scanf

The function scanf is the input analog of printf, providing many of the same conversion facilities in the opposite direction.

```
int scanf(char *format, ...)
```

scanf reads characters from the standard input, interprets them according to the specification in format, and stores the results through the remaining arguments. The format argument is described below; the other arguments, each of which must be a pointer, indicate where the corresponding converted input should be stored. As with printf, this section is a summary of the most useful features, not an exhaustive list.

scanf stops when it exhausts its format string, or when some input fails to match the control specification. It returns as its value the number of successfully matched and assigned input items. This can be used to decide how many items were found. On end of file, EOF is returned; note that this is different from 0, which means that the next input character does not match the first specification in the format string. The next call to scanf resumes searching immediately after the last character already converted.

There is also a function sscanf that reads from a string instead of the standard input:

```
int sscanf(char *string, char *format, arg1, arg2, ...)
```

It scans the string according to the format in format, and stores the resulting values through arg_1 , arg_2 , etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used to control conversion of input. The format string may contain:

- Blanks or tabs, which are ignored.
- Ordinary characters (not %), which are expected to match the next non-white space character of the input stream.
- Conversion specifications, consisting of the character %, an optional assignment suppression character *, an optional number specifying a maximum field width, an optional h, 1, or L indicating the width of the target, and a conversion character.

A conversion specification directs the conversion of the next input field. Normally the result is placed in the variable pointed to by the corresponding argument. If assignment suppression is indicated by the * character, however, the input field is skipped; no assignment is made. An input field is defined as a string of non-white space characters; it extends either to the next white space character or until the field width, if specified, is exhausted. This implies that scanf will read across line boundaries to find its input, since newlines are white space. (White space characters are blank, tab, newline, carriage return, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The corresponding argument must be a pointer, as required by the call-by-value

158 INPUT AND OUTPUT CHAPTER 7

semantics of C. Conversion characters are shown in Table 7-2.

TABLE 7-2. BASIC SCANF CONVERSIONS

CHARACTER	INPUT DATA; ARGUMENT TYPE
đ	decimal integer; int *.
i	integer; int *. The integer may be in octal (leading 0) or hexadecimal (leading 0x or 0x).
0	octal integer (with or without leading zero); int *.
u	unsigned decimal integer; unsigned int *.
x	hexadecimal integer (with or without leading 0x or 0x); int *.
C	characters; char *. The next input characters (default 1) are placed at the indicated spot. The normal skip over white space is suppressed; to read the next non-white space character, use %1s.
s	character string (not quoted); char *, pointing to an array of characters large enough for the string and a terminating '\0' that will be added.
e, f, g	floating-point number with optional sign, optional decimal point and optional exponent; float *.
%	literal %; no assignment is made.

The conversion characters d, i, o, u, and x may be preceded by h to indicate that a pointer to short rather than int appears in the argument list, or by 1 (letter ell) to indicate that a pointer to long appears in the argument list. Similarly, the conversion characters e, f, and g may be preceded by 1 to indicate that a pointer to double rather than float is in the argument list.

As a first example, the rudimentary calculator of Chapter 4 can be written with scanf to do the input conversion:

```
#include <stdio.h>
main() /* rudimentary calculator */
{
    double sum, v;

    sum = 0;
    while (scanf("%lf", &v) == 1)
        printf("\t%.2f\n", sum += v);
    return 0;
}
```

Suppose we want to read input lines that contain dates of the form

25 Dec 1988

The scanf statement is

```
int day, year;
char monthname[20];
scanf("%d %s %d", &day, monthname, &year);
```

No & is used with monthname, since an array name is a pointer.

Literal characters can appear in the scanf format string; they must match the same characters in the input. So we could read dates of the form mm/dd/yy with this scanf statement:

```
int day, month, year;
scanf("%d/%d/%d", &month, &day, &year);
```

scanf ignores blanks and tabs in its format string. Furthermore, it skips over white space (blanks, tabs, newlines, etc.) as it looks for input values. To read input whose format is not fixed, it is often best to read a line at a time, then pick it apart with sscanf. For example, suppose we want to read lines that might contain a date in either of the forms above. Then we could write

Calls to scanf can be mixed with calls to other input functions. The next call to any input function will begin by reading the first character not read by scanf.

A final warning: the arguments to scanf and sscanf must be pointers. By far the most common error is writing

```
scanf("%d", n);
instead of
scanf("%d", &n);
```

This error is not generally detected at compile time.

Exercise 7-4. Write a private version of scanf analogous to minprintf from the previous section. \Box

Exercise 7-5. Rewrite the postfix calculator of Chapter 4 to use scanf and/or sscanf to do the input and number conversion.

7.5 File Access

The examples so far have all read the standard input and written the standard output, which are automatically defined for a program by the local operating system.

The next step is to write a program that accesses a file that is *not* already connected to the program. One program that illustrates the need for such operations is cat, which concatenates a set of named files onto the standard output. cat is used for printing files on the screen, and as a general-purpose input collector for programs that do not have the capability of accessing files by name. For example, the command

prints the contents of the files x.c and y.c (and nothing else) on the standard output.

The question is how to arrange for the named files to be read—that is, how to connect the external names that a user thinks of to the statements that read the data.

The rules are simple. Before it can be read or written, a file has to be opened by the library function fopen. fopen takes an external name like x.c or y.c, does some housekeeping and negotiation with the operating system (details of which needn't concern us), and returns a pointer to be used in subsequent reads or writes of the file.

This pointer, called the *file pointer*, points to a structure that contains information about the file, such as the location of a buffer, the current character position in the buffer, whether the file is being read or written, and whether errors or end of file have occurred. Users don't need to know the details, because the definitions obtained from <stdio.h> include a structure declaration called FILE. The only declaration needed for a file pointer is exemplified by

```
FILE *fp;
FILE *fopen(char *name, char *mode);
```

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. Notice that FILE is a type name, like int, not a structure tag; it is defined with a typedef. (Details of how fopen can be implemented on the UNIX system are given in Section 8.5.)

The call to fopen in a program is

```
fp = fopen(name, mode);
```

The first argument of fopen is a character string containing the name of the file. The second argument is the *mode*, also a character string, which indicates how one intends to use the file. Allowable modes include read ("r"), write ("w"), and append ("a"). Some systems distinguish between text and binary files; for the latter, a "b" must be appended to the mode string.

SECTION 7.5 FILE ACCESS 161

If a file that does not exist is opened for writing or appending, it is created if possible. Opening an existing file for writing causes the old contents to be discarded, while opening for appending preserves them. Trying to read a file that does not exist is an error, and there may be other causes of error as well, like trying to read a file when you don't have permission. If there is any error, fopen will return NULL. (The error can be identified more precisely; see the discussion of error-handling functions at the end of Section 1 in Appendix B.)

The next thing needed is a way to read or write the file once it is open. There are several possibilities, of which getc and putc are the simplest. getc returns the next character from a file; it needs the file pointer to tell it which file.

```
int getc(FILE *fp)
```

getc returns the next character from the stream referred to by fp; it returns EOF for end of file or error.

putc is an output function:

```
int putc(int c, FILE *fp)
```

putc writes the character c to the file fp and returns the character written, or EOF if an error occurs. Like getchar and putchar, getc and putc may be macros instead of functions.

When a C program is started, the operating system environment is responsible for opening three files and providing file pointers for them. These files are the standard input, the standard output, and the standard error; the corresponding file pointers are called stdin, stdout, and stderr, and are declared in <stdio.h>. Normally stdin is connected to the keyboard and stdout and stderr are connected to the screen, but stdin and stdout may be redirected to files or pipes as described in Section 7.1.

getchar and putchar can be defined in terms of getc, putc, stdin, and stdout as follows:

```
#define getchar() getc(stdin)
#define putchar(c) putc((c), stdout)
```

For formatted input or output of files, the functions fscanf and fprintf may be used. These are identical to scanf and printf, except that the first argument is a file pointer that specifies the file to be read or written; the format string is the second argument.

```
int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)
```

With these preliminaries out of the way, we are now in a position to write the program cat to concatenate files. The design is one that has been found convenient for many programs. If there are command-line arguments, they are interpreted as filenames, and processed in order. If there are no arguments, the standard input is processed. 162 INPUT AND OUTPUT CHAPTER 7

```
#include <stdio.h>
/* cat: concatenate files. version 1 */
main(int argc, char *argv[])
{
    FILE *fp;
    void filecopy(FILE *, FILE *);
    if (argc == 1) /* no args; copy standard input */
        filecopy(stdin, stdout);
    else
        while (--argc > 0)
            if ((fp = fopen(*++argv, "r")) == NULL) {
                printf("cat: can't open %s\n", *argv);
                return 1:
            } else {
                filecopy(fp, stdout);
                fclose(fp);
    return 0:
}
/* filecopy: copy file ifp to file ofp */
void filecopy(FILE *ifp, FILE *ofp)
{
    int c;
    while ((c = getc(ifp)) != EOF)
        putc(c, ofp);
}
```

The file pointers stdin and stdout are objects of type FILE *. They are constants, however, not variables, so it is not possible to assign to them.

The function

```
int fclose(FILE *fp)
```

is the inverse of fopen; it breaks the connection between the file pointer and the external name that was established by fopen, freeing the file pointer for another file. Since most operating systems have some limit on the number of files that a program may have open simultaneously, it's a good idea to free file pointers when they are no longer needed, as we did in cat. There is also another reason for fclose on an output file—it flushes the buffer in which putc is collecting output. fclose is called automatically for each open file when a program terminates normally. (You can close stdin and stdout if they are not needed. They can also be reassigned by the library function freopen.)

7.6 Error Handling—Stderr and Exit

The treatment of errors in cat is not ideal. The trouble is that if one of the files can't be accessed for some reason, the diagnostic is printed at the end of the concatenated output. That might be acceptable if the output is going to a screen, but not if it's going into a file or into another program via a pipeline.

To handle this situation better, a second output stream, called stderr, is assigned to a program in the same way that stdin and stdout are. Output written on stderr normally appears on the screen even if the standard output is redirected.

Let us revise cat to write its error messages on the standard error.

```
#include <stdio.h>
/* cat: concatenate files, version 2 */
main(int argc, char *argv[])
    FILE *fp;
    void filecopy(FILE *, FILE *);
    char *prog = argv[0]; /* program name for errors */
    if (argc == 1) /* no args; copy standard input */
        filecopy(stdin, stdout);
    else
        while (--argc > 0)
            if ((fp = fopen(*++argv, "r")) == NULL) {
                fprintf(stderr, "%s: can't open %s\n",
                    prog, *argv);
                exit(1):
            } else {
                filecopy(fp, stdout);
                fclose(fp);
            }
    if (ferror(stdout)) {
        fprintf(stderr, "%s: error writing stdout\n", prog);
        exit(2);
    }
    exit(0);
}
```

The program signals errors two ways. First, the diagnostic output produced by fprintf goes onto stderr, so it finds its way to the screen instead of disappearing down a pipeline or into an output file. We included the program name, from argv[0], in the message, so if this program is used with others, the source of an error is identified.

Second, the program uses the standard library function exit, which terminates program execution when it is called. The argument of exit is available to whatever process called this one, so the success or failure of the program can be tested by another program that uses this one as a sub-process.

164 INPUT AND OUTPUT CHAPTER 7

Conventionally, a return value of 0 signals that all is well; non-zero values usually signal abnormal situations. exit calls fclose for each open output file, to flush out any buffered output.

Within main, return expr is equivalent to exit(expr). exit has the advantage that it can be called from other functions, and that calls to it can be found with a pattern-searching program like those in Chapter 5.

The function ferror returns non-zero if an error occurred on the stream fp.

```
int ferror(FILE *fp)
```

Although output errors are rare, they do occur (for example, if a disk fills up), so a production program should check this as well.

The function feof(FILE *) is analogous to ferror; it returns non-zero if end of file has occurred on the specified file.

```
int feof(FILE *fp)
```

We have generally not worried about exit status in our small illustrative programs, but any serious program should take care to return sensible, useful status values.

7.7 Line Input and Output

The standard library provides an input routine fgets that is similar to the getline function that we have used in earlier chapters:

```
char *fgets(char *line, int maxline, FILE *fp)
```

fgets reads the next input line (including the newline) from file fp into the character array line; at most maxline-1 characters will be read. The resulting line is terminated with '\0'. Normally fgets returns line; on end of file or error it returns NULL. (Our getline returns the line length, which is a more useful value; zero means end of file.)

For output, the function fputs writes a string (which need not contain a newline) to a file:

```
int fputs(char *line, FILE *fp)
```

It returns EOF if an error occurs, and zero otherwise.

The library functions gets and puts are similar to fgets and fputs, but operate on stdin and stdout. Confusingly, gets deletes the terminal '\n', and puts adds it.

To show that there is nothing special about functions like fgets and fputs, here they are, copied from the standard library on our system:

```
/* fgets: get at most n chars from iop */
char *fgets(char *s, int n, FILE *iop)
    register int c;
    register char *cs;
    cs = s:
    while (--n > 0 \&\& (c = getc(iop)) != EOF)
        if ((*cs++ = c) == '\n')
            break;
    *cs = '\0';
    return (c == EOF && cs == s) ? NULL : s;
}
/* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)
{
    int c;
    while (c = *s++)
        putc(c, iop);
   return ferror(iop) ? EOF : 0;
}
```

The standard specifies that ferror returns non-zero for error; fputs returns EOF for error and a non-negative value otherwise.

It is easy to implement our getline from fgets:

```
/* getline: read a line, return length */
int getline(char *line, int max)
{
   if (fgets(line, max, stdin) == NULL)
       return 0;
   else
       return strlen(line);
}
```

Exercise 7-6. Write a program to compare two files, printing the first line where they differ. \Box

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input from a set of named files or, if no files are named as arguments, from the standard input. Should the file name be printed when a matching line is found?

Exercise 7-8. Write a program to print a set of files, starting each new one on a new page, with a title and a running page count for each file.

166 INPUT AND OUTPUT CHAPTER 7

7.8 Miscellaneous Functions

The standard library provides a wide variety of functions. This section is a brief synopsis of the most useful. More details and many other functions can be found in Appendix B.

7.8.1 String Operations

We have already mentioned the string functions strlen, strcpy, strcat, and strcmp, found in <string.h>. In the following, s and t are char *'s, and c and n are ints.

```
strcat(s,t)
                      concatenate t to end of s
strncat(s,t,n)
                      concatenate n characters of t to end of s
strcmp(s,t)
                      return negative, zero, or positive for
                        s < t, s == t, or s > t
                      same as stremp but only in first n characters
strncmp(s,t,n)
strcpy(s,t)
                      copy t to s
strncpy(s,t,n)
                      copy at most n characters of t to s
strlen(s)
                      return length of s
stichr(s.c)
                      return pointer to first c in s, or NULL if not present
strrchr(s,c)
                      return pointer to last c in s, or NULL if not present
```

7.8.2 Character Class Testing and Conversion

Several functions from <ctype.h> perform character tests and conversions. In the following, c is an int that can be represented as an unsigned char, or EOF. The functions return int.

```
isalpha(c) non-zero if c is alphabetic, 0 if not
isupper(c) non-zero if c is upper case, 0 if not
islower(c) non-zero if c is lower case, 0 if not
isdigit(c) non-zero if c is digit, 0 if not
isalnum(c) non-zero if isalpha(c) or isdigit(c), 0 if not
isspace(c) non-zero if c is blank, tab, newline, return, formfeed, vertical tab
toupper(c) return c converted to upper case
tolower(c) return c converted to lower case
```

7.8.3 Ungetc

The standard library provides a rather restricted version of the function ungetch that we wrote in Chapter 4; it is called ungetc.

```
int ungetc(int c, FILE *fp)
```

pushes the character c back onto file fp, and returns either c, or EOF for an error. Only one character of pushback is guaranteed per file. ungetc may be used with any of the input functions like scanf, getc, or getchar.

7.8.4 Command Execution

The function system(char *s) executes the command contained in the character string s, then resumes execution of the current program. The contents of s depend strongly on the local operating system. As a trivial example, on UNIX systems, the statement

```
system("date");
```

causes the program date to be run; it prints the date and time of day on the standard output. system returns a system-dependent integer status from the command executed. In the UNIX system, the status return is the value returned by exit.

7.8.5 Storage Management

The functions malloc and calloc obtain blocks of memory dynamically.

```
void *malloc(size_t n)
```

returns a pointer to n bytes of uninitialized storage, or NULL if the request cannot be satisfied.

```
void *calloc(size t n, size t size)
```

returns a pointer to enough space for an array of n objects of the specified size, or NULL if the request cannot be satisfied. The storage is initialized to zero.

The pointer returned by malloc or calloc has the proper alignment for the object in question, but it must be cast into the appropriate type, as in

```
int *ip;
ip = (int *) calloc(n, sizeof(int));
```

free(p) frees the space pointed to by p, where p was originally obtained by a call to malloc or calloc. There are no restrictions on the order in which space is freed, but it is a ghastly error to free something not obtained by calling calloc or malloc.

It is also an error to use something after it has been freed. A typical but incorrect piece of code is this loop that frees items from a list:

```
for (p = head; p != NULL; p = p->next) /* WRONG */
    free(p);
```

The right way is to save whatever is needed before freeing:

```
for (p = head; p != NULL; p = q) {
    q = p->next;
    free(p);
}
```

Section 8.7 shows the implementation of a storage allocator like malloc, in

168 INPUT AND OUTPUT CHAPTER 7

which allocated blocks may be freed in any order.

7.8.6 Mathematical Functions

There are more than twenty mathematical functions declared in <math.h>; here are some of the more frequently used. Each takes one or two double arguments and returns a double.

```
sine of x, x in radians
sin(x)
              cosine of x, x in radians
\cos(x)
atan2(y,x) arctangent of y/x, in radians
exp(x)
              exponential function e^x
log(x)
              natural (base e) logarithm of x (x>0)
              common (base 10) logarithm of x (x>0)
log 10(x)
              \mathbf{x}^{y}
pow(x,y)
              square root of x \ (x \ge 0)
sgrt(x)
              absolute value of x
fabs(x)
```

7.8.7 Random Number Generation

The function rand() computes a sequence of pseudo-random integers in the range zero to RAND_MAX, which is defined in <stdlib.h>. One way to produce random floating-point numbers greater than or equal to zero but less than one is

```
#define frand() ((double) rand() / (RAND_MAX+1.0))
```

(If your library already provides a function for floating-point random numbers, it is likely to have better statistical properties than this one.)

The function srand(unsigned) sets the seed for rand. The portable implementation of rand and srand suggested by the standard appears in Section 2.7.

Exercise 7-9. Functions like isupper can be implemented to save space or to save time. Explore both possibilities. \square

CHAPTER 8: The UNIX System Interface

The UNIX operating system provides its services through a set of system calls, which are in effect functions within the operating system that may be called by user programs. This chapter describes how to use some of the most important system calls from C programs. If you use UNIX, this should be directly helpful, for it is sometimes necessary to employ system calls for maximum efficiency, or to access some facility that is not in the library. Even if you use C on a different operating system, however, you should be able to glean insight into C programming from studying these examples; although details vary, similar code will be found on any system. Since the ANSI C library is in many cases modeled on UNIX facilities, this code may help your understanding of the library as well.

The chapter is divided into three major parts: input/output, file system, and storage allocation. The first two parts assume a modest familiarity with the external characteristics of UNIX systems.

Chapter 7 was concerned with an input/output interface that is uniform across operating systems. On any particular system the routines of the standard library have to be written in terms of the facilities provided by the host system. In the next few sections we will describe the UNIX system calls for input and output, and show how parts of the standard library can be implemented with them.

8.1 File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files, because all peripheral devices, even keyboard and screen, are files in the file system. This means that a single homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before you read or write a file, you must inform the system of your intent to do so, a process called *opening* the file. If you are going to write on a file it may also be necessary to create it or to discard its previous contents. The system checks your right to do so (Does the file exist? Do

you have permission to access it?), and if all is well, returns to the program a small non-negative integer called a *file descriptor*. Whenever input or output is to be done on the file, the file descriptor is used instead of the name to identify the file. (A file descriptor is analogous to the file pointer used by the standard library, or to the file handle of MS-DOS.) All information about an open file is maintained by the system; the user program refers to the file only by the file descriptor.

Since input and output involving keyboard and screen is so common, special arrangements exist to make this convenient. When the command interpreter (the "shell") runs a program, three files are open, with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard error. If a program reads 0 and writes 1 and 2, it can do input and output without worrying about opening files.

The user of a program can redirect I/O to and from files with < and >:

```
prog <infile >outfile
```

In this case, the shell changes the default assignments for file descriptors 0 and 1 to the named files. Normally file descriptor 2 remains attached to the screen, so error messages can go there. Similar observations hold for input or output associated with a pipe. In all cases, the file assignments are changed by the shell, not by the program. The program does not know where its input comes from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for output.

8.2 Low Level I/O—Read and Write

Input and output uses the read and write system calls, which are accessed from C programs through two functions called read and write. For both, the first argument is a file descriptor. The second argument is a character array in your program where the data is to go to or come from. The third argument is the number of bytes to be transferred.

```
int n_read = read(int fd, char *buf, int n);
int n_written = write(int fd, char *buf, int n);
```

Each call returns a count of the number of bytes transferred. On reading, the number of bytes returned may be less than the number requested. A return value of zero bytes implies end of file, and -1 indicates an error of some sort. For writing, the return value is the number of bytes written; an error has occurred if this isn't equal to the number requested.

Any number of bytes can be read or written in one call. The most common values are 1, which means one character at a time ("unbuffered"), and a number like 1024 or 4096 that corresponds to a physical block size on a peripheral device. Larger sizes will be more efficient because fewer system calls

will be made.

Putting these facts together, we can write a simple program to copy its input to its output, the equivalent of the file copying program written for Chapter 1. This program will copy anything to anything, since the input and output can be redirected to any file or device.

We have collected function prototypes for the system calls into a file called syscalls.h so we can include it in the programs of this chapter. This name is not standard, however.

The parameter BUFSIZ is also defined in syscalls.h; its value is a good size for the local system. If the file size is not a multiple of BUFSIZ, some read will return a smaller number of bytes to be written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher-level routines like getchar, putchar, etc. For example, here is a version of getchar that does unbuffered input, by reading the standard input one character at a time.

```
#include "syscalls.h"

/* getchar: unbuffered single character input */
int getchar(void)
{
    char c;
    return (read(0, &c, 1) == 1) ? (unsigned char) c : EOF;
}
```

c must be a char, because read needs a character pointer. Casting c to unsigned char in the return statement eliminates any problem of sign extension.

The second version of getchar does input in big chunks, and hands out the characters one at a time.

```
#include "syscalls.h"

/* getchar: simple buffered version */
int getchar(void)
{
    static char buf[BUFSIZ];
    static char *bufp = buf;
    static int n = 0;

    if (n == 0) {    /* buffer is empty */
        n = read(0, buf, sizeof buf);
        bufp = buf;
    }
    return (--n >= 0) ? (unsigned char) *bufp++ : EOF;
}
```

If these versions of getchar were to be compiled with <stdio.h> included, it would be necessary to #undef the name getchar in case it is implemented as a macro.

8.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error, you must explicitly open files in order to read or write them. There are two system calls for this, open and creat [sic].

open is rather like the fopen discussed in Chapter 7, except that instead of returning a file pointer, it returns a file descriptor, which is just an int. open returns -1 if any error occurs.

```
#include <fcntl.h>
int fd;
int open(char *name, int flags, int perms);
fd = open(name, flags, perms);
```

As with fopen, the name argument is a character string containing the filename. The second argument, flags, is an int that specifies how the file is to be opened; the main values are

```
O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for both reading and writing
```

These constants are defined in <fcnt1.h> on System V UNIX systems, and in <sys/file.h> on Berkeley (BSD) versions.

To open an existing file for reading,

```
fd = open(name, O_RDONLY, 0);
```

The perms argument is always zero for the uses of open that we will discuss.

It is an error to try to open a file that does not exist. The system call creat is provided to create new files, or to re-write old ones.

```
int creat(char *name, int perms);
fd = creat(name, perms);
```

returns a file descriptor if it was able to create the file, and -1 if not. If the file already exists, creat will truncate it to zero length, thereby discarding its previous contents; it is not an error to creat a file that already exists.

If the file does not already exist, creat creates it with the permissions specified by the perms argument. In the UNIX file system, there are nine bits of permission information associated with a file that control read, write and execute access for the owner of the file, for the owner's group, and for all others. Thus a three-digit octal number is convenient for specifying the permissions. For example, 0755 specifies read, write and execute permission for the owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX program cp, which copies one file to another. Our version copies only one file, it does not permit the second argument to be a directory, and it invents permissions instead of copying them.

```
#include <stdio.h>
#include <fcntl.h>
#include "syscalls.h"
#define PERMS 0666 /* RW for owner, group, others */
void error(char *, ...);
/* cp: copy f1 to f2 */
main(int argc, char *argv[])
    int f1, f2, n;
    char buf[BUFSIZ];
    if (argc != 3)
        error("Usage: cp from to");
    if ((f1 = open(argv[1], O_RDONLY, 0)) == -1)
        error("cp: can't open %s", argv[1]);
    if ((f2 = creat(argv[2], PERMS)) == -1)
        error("cp: can't create %s, mode %03o",
            argv[2], PERMS);
   while ((n = read(f1, buf, BUFSIZ)) > 0)
        if (write(f2, buf, n) != n)
            error("cp: write error on file %s", argv[2]);
   return 0:
}
```

This program creates the output file with fixed permissions of 0666. With the

stat system call, described in Section 8.6, we can determine the mode of an existing file and thus give the same mode to the copy.

Notice that the function error is called with variable argument lists much like printf. The implementation of error illustrates how to use another member of the printf family. The standard library function vprintf is like printf except that the variable argument list is replaced by a single argument that has been initialized by calling the va_start macro. Similarly, vfprintf and vsprintf match fprintf and sprintf.

```
#include <stdio.h>
#include <stdarg.h>

/* error: print an error message and die */
void error(char *fmt, ...)
{
    va_list args;

    va_start(args, fmt);
    fprintf(stderr, "error: ");
    vfprintf(stderr, fmt, args);
    fprintf(stderr, "\n");
    va_end(args);
    exit(1);
}
```

There is a limit (often about 20) on the number of files that a program may have open simultaneously. Accordingly, any program that intends to process many files must be prepared to re-use file descriptors. The function close(int fd) breaks the connection between a file descriptor and an open file, and frees the file descriptor for use with some other file; it corresponds to fclose in the standard library except that there is no buffer to flush. Termination of a program via exit or return from the main program closes all open files.

The function unlink(char *name) removes the file name from the file system. It corresponds to the standard library function remove.

Exercise 8-1. Rewrite the program cat from Chapter 7 using read, write, open and close instead of their standard library equivalents. Perform experiments to determine the relative speeds of the two versions.

8.4 Random Access—Lseek

Input and output are normally sequential: each read or write takes place at a position in the file right after the previous one. When necessary, however, a file can be read or written in any arbitrary order. The system call lseek provides a way to move around in a file without reading or writing any data:

```
long lseek(int fd, long offset, int origin);
```

sets the current position in the file whose descriptor is fd to offset, which is taken relative to the location specified by origin. Subsequent reading or writing will begin at that position. origin can be 0, 1, or 2 to specify that offset is to be measured from the beginning, from the current position, or from the end of the file respectively. For example, to append to a file (the redirection >> in the UNIX shell, or "a" for fopen), seek to the end before writing:

```
lseek(fd, 0L, 2);
To get back to the beginning ("rewind"),
lseek(fd, 0L, 0);
```

Notice the OL argument; it could also be written as (long) 0 or just as 0 if lseek is properly declared.

With 1seek, it is possible to treat files more or less like large arrays, at the price of slower access. For example, the following function reads any number of bytes from any arbitrary place in a file. It returns the number read, or -1 on error.

```
#include "syscalls.h"

/* get: read n bytes from position pos */
int get(int fd, long pos, char *buf, int n)
{
   if (lseek(fd, pos, 0) >= 0) /* get to pos */
      return read(fd, buf, n);
   else
      return -1;
}
```

The return value from lseek is a long that gives the new position in the file, or -1 if an error occurs. The standard library function fseek is similar to lseek except that the first argument is a FILE * and the return is non-zero if an error occurred.

8.5 Example—An Implementation of Fopen and Getc

Let us illustrate how some of these pieces fit together by showing an implementation of the standard library routines fopen and getc.

Recall that files in the standard library are described by file pointers rather than file descriptors. A file pointer is a pointer to a structure that contains several pieces of information about the file: a pointer to a buffer, so the file can be read in large chunks; a count of the number of characters left in the buffer; a pointer to the next character position in the buffer; the file descriptor; and flags describing read/write mode, error status, etc.

The data structure that describes a file is contained in <stdio.h>, which must be included (by #include) in any source file that uses routines from the standard input/output library. It is also included by functions in that library. In the following excerpt from a typical <stdio.h>, names that are intended for use only by functions of the library begin with an underscore so they are less likely to collide with names in a user's program. This convention is used by all standard library routines.

```
#define NULL
                  0
#define EOF
                  (-1)
#define BUFSIZ
                  1024
#define OPEN_MAX 20 /* max #files open at once */
typedef struct _iobuf {
    int cnt:
                     /* characters left */
                     /* next character position */
    char *ptr;
                    /* location of buffer */
    char *base;
    int flag;
                     /* mode of file access */
                     /* file descriptor */
    int fd:
} FILE:
extern FILE _iob[OPEN_MAX];
#define stdin
                (&_iob[0])
#define stdout
                (\&_iob[1])
#define stderr (&_iob[2])
enum _flags {
                    /* file open for reading */
            = 01,
    READ
    WRITE = 02,
                     /* file open for writing */
    _{\rm UNBUF} = 04.
            = 04,
= 010,
= 020
                     /* file is unbuffered */
    EOF
                     /* EOF has occurred on this file */
    _ERR
                     /* error occurred on this file */
};
int _fillbuf(FILE *);
int _flushbuf(int, FILE *);
#define feof(p)
                  (((p)-)flag \& EOF) != 0)
#define ferror(p) (((p)->flag & _ERR) != 0)
#define fileno(p) ((p)->fd)
                  (--(p)->cnt >= 0 \setminus
#define getc(p)
               ? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x,p) (--(p)->cnt >= 0 \setminus
               ? *(p) \rightarrow ptr ++ = (x) : _flushbuf((x),p))
#define getchar()
                    getc(stdin)
#define putchar(x) putc((x), stdout)
```

The getc macro normally decrements the count, advances the pointer, and

returns the character. (Recall that a long #define is continued with a backslash.) If the count goes negative, however, getc calls the function fillbuf to replenish the buffer, re-initialize the structure contents, and return a character. The characters are returned unsigned, which ensures that all characters will be positive.

Although we will not discuss any details, we have included the definition of pute to show that it operates in much the same way as gete, calling a function flushbuf when its buffer is full. We have also included macros for accessing the error and end-of-file status and the file descriptor.

The function fopen can now be written. Most of fopen is concerned with getting the file opened and positioned at the right place, and setting the flag bits to indicate the proper state. fopen does not allocate any buffer space; this is done by fillbuf when the file is first read.

```
#include <fcntl.h>
#include "syscalls.h"
#define PERMS 0666
                    /* RW for owner, group, others */
/* fopen: open file, return file ptr */
FILE *fopen(char *name, char *mode)
{
    int fd;
    FILE *fp;
    if (*mode != 'r' && *mode != 'w' && *mode != 'a')
        return NULL;
    for (fp = _iob; fp < _iob + OPEN_MAX; fp++)
        if ((fp->flag & (_READ | _WRITE)) == 0)
            break;
                         /* found free slot */
    if (fp >= _iob + OPEN_MAX) /* no free slots */
        return NULL;
    if (*mode == 'w')
        fd = creat(name, PERMS);
    else if (*mode == 'a') {
        if ((fd = open(name, O_WRONLY, 0)) == -1)
            fd = creat(name, PERMS);
        lseek(fd, 0L, 2);
    } else
        fd = open(name, O_RDONLY, 0);
    if (fd == -1)
                         /* couldn't access name */
       return NULL:
    fp->fd = fd;
    fp->cnt = 0;
    fp->base = NULL;
    fp->flag = (*mode == 'r') ? _READ : _WRITE;
   return fp;
}
```

This version of fopen does not handle all of the access mode possibilities of the

standard, though adding them would not take much code. In particular, our fopen does not recognize the "b" that signals binary access, since that is meaningless on UNIX systems, nor the "+" that permits both reading and writing.

The first call to getc for a particular file finds a count of zero, which forces a call of _fillbuf. If _fillbuf finds that the file is not open for reading, it returns EOF immediately. Otherwise, it tries to allocate a buffer (if reading is to be buffered).

Once the buffer is established, _fillbuf calls read to fill it, sets the count and pointers, and returns the character at the beginning of the buffer. Subsequent calls to _fillbuf will find a buffer allocated.

```
#include "syscalls.h"
/* _fillbuf: allocate and fill input buffer */
int _fillbuf(FILE *fp)
{
    int bufsize;
    if ((fp->flag&(_READ; _EOF; _ERR)) != _READ)
        return EOF:
    bufsize = (fp->flag & _UNBUF) ? 1 : BUFSIZ;
    if (fp->base == NULL) /* no buffer yet */
        if ((fp->base = (char *) malloc(bufsize)) == NULL)
            return EOF;
                           /* can't get buffer */
    fp->ptr = fp->base;
    fp->cnt = read(fp->fd, fp->ptr, bufsize);
    if (--fp->cnt < 0) {</pre>
        if (fp->cnt == -1)
            fp->flag |= _EOF;
        else
            fp->flag |= _ERR;
        fp->cnt = 0;
        return EOF;
    }
   return (unsigned char) *fp->ptr++;
}
```

The only remaining loose end is how everything gets started. The array _iob must be defined and initialized for stdin, stdout and stderr:

```
FILE _iob[OPEN_MAX] = {     /* stdin, stdout, stderr: */
     { 0, (char *) 0, (char *) 0, _READ, 0 },
     { 0, (char *) 0, (char *) 0, _WRITE, 1 },
     { 0, (char *) 0, (char *) 0, _WRITE ! _UNBUF, 2 }
};
```

The initialization of the flag part of the structure shows that stdin is to be read, stdout is to be written, and stderr is to be written unbuffered.

Exercise 8-2. Rewrite fopen and _fillbuf with fields instead of explicit bit

operations. Compare code size and execution speed.

Exercise 8-3. Design and write _flushbuf, fflush, and fclose.

Exercise 8-4. The standard library function

int fseek(FILE *fp, long offset, int origin)

is identical to lseek except that fp is a file pointer instead of a file descriptor and the return value is an int status, not a position. Write fseek. Make sure that your fseek coordinates properly with the buffering done for the other functions of the library.

8.6 Example—Listing Directories

A different kind of file system interaction is sometimes called for—determining information about a file, not what it contains. A directory-listing program such as the UNIX command 1s is an example—it prints the names of files in a directory, and, optionally, other information, such as sizes, permissions, and so on. The MS-DOS dir command is analogous.

Since a UNIX directory is just a file, 1s need only read it to retrieve the filenames. But it is necessary to use a system call to access other information about a file, such as its size. On other systems, a system call may be needed even to access filenames; this is the case on MS-DOS, for instance. What we want is provide access to the information in a relatively system-independent way, even though the implementation may be highly system-dependent.

We will illustrate some of this by writing a program called fsize. fsize is a special form of 1s that prints the sizes of all files named in its command-line argument list. If one of the files is a directory, fsize applies itself recursively to that directory. If there are no arguments at all, it processes the current directory.

Let us begin with a short review of UNIX file system structure. A directory is a file that contains a list of filenames and some indication of where they are located. The "location" is an index into another table called the "inode list." The *inode* for a file is where all information about a file except its name is kept. A directory entry generally consists of only two items, the filename and an inode number.

Regrettably, the format and precise contents of a directory are not the same on all versions of the system. So we will divide the task into two pieces to try to isolate the non-portable parts. The outer level defines a structure called a Dirent and three routines opendir, readdir, and closedir to provide system-independent access to the name and inode number in a directory entry. We will write fsize with this interface. Then we will show how to implement these on systems that use the same directory structure as Version 7 and System V UNIX; variants are left as exercises.

The Direct structure contains the inode number and the name. The maximum length of a filename component is NAME_MAX, which is a system-dependent value. opendir returns a pointer to a structure called DIR, analogous to FILE, which is used by readdir and closedir. This information is collected into a file called direct.h.

```
#define NAME MAX 14 /* longest filename component; */
                             /* system-dependent */
typedef struct {     /* portable directory entry: */
    long ino:
                             /* inode number */
    char name[NAME_MAX+1]; /* name + '\0' terminator */
} Dirent:
typedef struct {     /* minimal DIR: no buffering, etc. */
    int fd:
                     /* file descriptor for directory */
   Dirent d;
                      /* the directory entry */
} DIR;
DIR *opendir(char *dirname);
Dirent *readdir(DIR *dfd);
void closedir(DIR *dfd);
```

The system call stat takes a filename and returns all of the information in the inode for that file, or -1 if there is an error. That is,

```
char *name;
struct stat stbuf;
int stat(char *, struct stat *);
stat(name, &stbuf);
```

fills the structure stbuf with the inode information for the file name. The structure describing the value returned by stat is in <sys/stat.h>, and typically looks like this:

```
struct stat
              /* inode information returned by stat */
{
    dev_t
              st dev: /* device of inode */
              st_ino; /* inode number */
    ino_t
    short
              st_mode; /* mode bits */
              st_nlink; /* number of links to file */
    short
    short
              st_uid; /* owner's user id */
              st_gid; /* owner's group id */
    short
    dev_t
              st_rdev; /* for special files */
              st_size; /* file size in characters */
    off_t
    time_t
              st_atime; /* time last accessed */
              st_mtime; /* time last modified */
    time t
    time t
              st_ctime; /* time inode last changed */
};
```

Most of these values are explained by the comment fields. The types like

dev_t and ino_t are defined in <sys/types.h>, which must be included too.

The st_mode entry contains a set of flags describing the file. The flag definitions are also included in <sys/stat.h>; we need only the part that deals with file type:

```
#define S_IFMT 0160000  /* type of file: */
#define S_IFDIR 0040000  /* directory */
#define S_IFCHR 0020000  /* character special */
#define S_IFBLK 0060000  /* block special */
#define S_IFREG 0100000  /* regular */
/* ... */
```

Now we are ready to write the program fsize. If the mode obtained from stat indicates that a file is not a directory, then the size is at hand and can be printed directly. If the file is a directory, however, then we have to process that directory one file at a time; it may in turn contain sub-directories, so the process is recursive.

The main routine deals with command-line arguments; it hands each argument to the function fsize.

```
#include <stdio.h>
#include <string.h>
#include "syscalls.h"
#include <fcntl.h>
                        /* flags for read and write */
#include <sys/types.h>
                        /* typedefs */
#include <sys/stat.h>
                        /* structure returned by stat */
#include "dirent.h"
void fsize(char *);
/* print file sizes */
main(int argc, char **argv)
{
    if (argc == 1)
                        /* default: current directory */
        fsize(".");
    else
        while (--argc > 0)
            fsize(*++argv);
    return 0;
}
```

The function fsize prints the size of the file. If the file is a directory, however, fsize first calls dirwalk to handle all the files in it. Note how the flag names S_IFMT and S_IFDIR from <sys/stat.h> are used to decide if the file is a directory. Parenthesization matters, because the precedence of & is lower than that of ==.

```
int stat(char *, struct stat *);
void dirwalk(char *, void (*fcn)(char *));

/* fsize: print size of file "name" */
void fsize(char *name)
{
    struct stat stbuf;

    if (stat(name, &stbuf) == -1) {
        fprintf(stderr, "fsize: can't access %s\n", name);
        return;
    }
    if ((stbuf.st_mode & S_IFMT) == S_IFDIR)
        dirwalk(name, fsize);
    printf("%81d %s\n", stbuf.st_size, name);
}
```

The function dirwalk is a general routine that applies a function to each file in a directory. It opens the directory, loops through the files in it, calling the function on each, then closes the directory and returns. Since fsize calls dirwalk on each directory, the two functions call each other recursively.

```
#define MAX_PATH 1024
/* dirwalk: apply fcn to all files in dir */
void dirwalk(char *dir, void (*fcn)(char *))
    char name[MAX_PATH];
   Dirent *dp;
   DIR *dfd;
    if ((dfd = opendir(dir)) == NULL) {
        fprintf(stderr, "dirwalk: can't open %s\n", dir);
        return;
   while ((dp = readdir(dfd)) != NULL) {
        if (strcmp(dp->name, ".") == 0
         !! strcmp(dp->name, "..") == 0)
                       /* skip self and parent */
            continue;
        if (strlen(dir)+strlen(dp->name)+2 > sizeof(name))
            fprintf(stderr, "dirwalk: name %s/%s too long\n",
                dir, dp->name);
            sprintf(name, "%s/%s", dir, dp->name);
            (*fcn)(name);
        }
    }
   closedir(dfd);
```

Each call to readdir returns a pointer to information for the next file, or

NULL when there are no files left. Each directory always contains entries for itself, called ".", and its parent, ".."; these must be skipped, or the program will loop forever.

Down to this level, the code is independent of how directories are formatted. The next step is to present minimal versions of opendir, readdir, and closedir for a specific system. The following routines are for Version 7 and System V UNIX systems; they use the directory information in the header <sys/dir.h>, which looks like this:

```
#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct /* directory entry */
{
    ino_t d_ino; /* inode number */
    char d_name[DIRSIZ]; /* long name does not have '\0' */
};
```

Some versions of the system permit much longer names and have a more complicated directory structure.

The type ino_t is a typedef that describes the index into the inode list. It happens to be unsigned short on the system we use regularly, but this is not the sort of information to embed in a program; it might be different on a different system, so the typedef is better. A complete set of "system" types is found in <sys/types.h>.

opendir opens the directory, verifies that the file is a directory (this time by the system call fstat, which is like stat except that it applies to a file descriptor), allocates a directory structure, and records the information:

closedir closes the directory file and frees the space:

```
/* closedir: close directory opened by opendir */
void closedir(DIR *dp)
{
    if (dp) {
        close(dp->fd);
        free(dp);
    }
}
```

Finally, readdir uses read to read each directory entry. If a directory slot is not currently in use (because a file has been removed), the inode number is zero, and this position is skipped. Otherwise, the inode number and name are placed in a static structure and a pointer to that is returned to the user. Each call overwrites the information from the previous one.

```
#include <sys/dir.h> /* local directory structure */
/* readdir: read directory entries in sequence */
Dirent *readdir(DIR *dp)
{
    struct direct dirbuf; /* local directory structure */
   static Dirent d;
                         /* return: portable structure */
   while (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf))
                    == sizeof(dirbuf)) {
       if (dirbuf.d_ino == 0) /* slot not in use */
           continue;
       d.ino = dirbuf.d ino;
       strncpy(d.name, dirbuf.d_name, DIRSIZ);
       d.name[DIRSIZ] = '\0'; /* ensure termination */
       return &d;
   }
   return NULL;
}
```

Although the fsize program is rather specialized, it does illustrate a couple of important ideas. First, many programs are not "system programs"; they merely use information that is maintained by the operating system. For such programs, it is crucial that the representation of the information appear only in standard headers, and that programs include those files instead of embedding the declarations in themselves. The second observation is that with care it is possible to create an interface to system-dependent objects that is itself relatively system-independent. The functions of the standard library are good examples.

Exercise 8-5. Modify the fsize program to print the other information contained in the inode entry. \Box

8.7 Example—A Storage Allocator

In Chapter 5, we presented a very limited stack-oriented storage allocator. The version that we will now write is unrestricted. Calls to malloc and free may occur in any order; malloc calls upon the operating system to obtain more memory as necessary. These routines illustrate some of the considerations involved in writing machine-dependent code in a relatively machine-independent way, and also show a real-life application of structures, unions and typedef.

Rather than allocating from a compiled-in fixed-sized array, malloc will request space from the operating system as needed. Since other activities in the program may also request space without calling this allocator, the space that malloc manages may not be contiguous. Thus its free storage is kept as a list of free blocks. Each block contains a size, a pointer to the next block, and the space itself. The blocks are kept in order of increasing storage address, and the last block (highest address) points to the first.

When a request is made, the free list is scanned until a big-enough block is found. This algorithm is called "first fit," by contrast with "best fit," which looks for the smallest block that will satisfy the request. If the block is exactly the size requested it is unlinked from the list and returned to the user. If the block is too big, it is split, and the proper amount is returned to the user while the residue remains on the free list. If no big-enough block is found, another large chunk is obtained from the operating system and linked into the free list.

Freeing also causes a search of the free list, to find the proper place to insert the block being freed. If the block being freed is adjacent to a free block on either side, it is coalesced with it into a single bigger block, so storage does not become too fragmented. Determining adjacency is easy because the free list is maintained in order of increasing address.

One problem, which we alluded to in Chapter 5, is to ensure that the storage returned by malloc is aligned properly for the objects that will be stored in it. Although machines vary, for each machine there is a most restrictive type: if the most restrictive type can be stored at a particular address, all other types may be also. On some machines, the most restrictive type is a double; on others, int or long suffices.

A free block contains a pointer to the next block in the chain, a record of the size of the block, and then the free space itself; the control information at the beginning is called the "header." To simplify alignment, all blocks are multiples of the header size, and the header is aligned properly. This is achieved by a union that contains the desired header structure and an instance of the most restrictive alignment type, which we have arbitrarily made a long:

The Align field is never used; it just forces each header to be aligned on a worst-case boundary.

In malloc, the requested size in characters is rounded up to the proper number of header-sized units; the block that will be allocated contains one more unit, for the header itself, and this is the value recorded in the size field of the header. The pointer returned by malloc points at the free space, not at the header itself. The user can do anything with the space requested, but if anything is written outside of the allocated space the list is likely to be scrambled.

A block returned by malloc

The size field is necessary because the blocks controlled by malloc need not be contiguous—it is not possible to compute sizes by pointer arithmetic.

The variable base is used to get started. If freep is NULL, as it is at the first call of malloc, then a degenerate free list is created; it contains one block of size zero, and points to itself. In any case, the free list is then searched. The search for a free block of adequate size begins at the point (freep) where the last block was found; this strategy helps keep the list homogeneous. If a too-big block is found, the tail end is returned to the user; in this way the header of the original needs only to have its size adjusted. In all cases, the pointer returned to the user points to the free space within the block, which begins one unit beyond the header.