Binomial Theorem MCQs - Class 11 Mathematics

Prepared for Entry Test Preparation

Multiple Choice Questions

1.	The number of terms in the expansion	of $(2x-x)$	$y)^6$ is	s:
	(a) 6			

- (b) 7
- (c) 8
- (d) 5

2. The coefficient of x^2 in the expansion of $(1+2x)^5$ is:

- (a) 80
- (b) 40
- (c) 20
- (d) 10

3. The sum of binomial coefficients $\binom{8}{0} + \binom{8}{1} + \cdots + \binom{8}{8}$ is:

- (a) 256
- (b) 128
- (c) 64
- (d) 512

4. The sum of odd binomial coefficients in $(x + y)^7$ is:

- (a) 64
- (b) 128
- (c) 256
- (d) 32

5. The value of $(0.99)^3 = (1 - 0.01)^3$ is approximately:

- (a) 0.970299
- (b) 0.912673
- (c) 0.950990
- (d) 0.990000

6. The simplified form of $(a + \sqrt{3}x)^4 + (a - \sqrt{3}x)^4$ is:

- (a) $2a^4 + 24a^2x^2 + 18x^4$
- **(b)** $2a^4 + 12a^2x^2 + 8x^4$

- (c) $a^4 + 24a^2x^2 + 18x^4$
- (d) $2a^4 + 18a^2x^2 + 24x^4$
- **7.** The term involving x^3 in the expansion of $(2-x)^6$ is:
 - (a) $-160x^3$
 - **(b)** $160x^3$
 - (c) $-80x^3$
 - (d) $80x^3$
- **8.** The coefficient of x^{-2} in $\left(x-\frac{1}{x}\right)^{10}$ is:
 - (a) 252
 - (b) -252
 - (c) -120
 - (d) 120
- **9.** The middle term in the expansion of $\left(\frac{x}{2} \frac{2}{x}\right)^8$ is:
 - (a) $70x^0$
 - (b) $-70x^0$
 - (c) $140x^2$
 - (d) $-140x^2$
- **10.** The term independent of x in $\left(\sqrt{x} \frac{2}{x}\right)^8$ is:
 - (a) 112
 - **(b)** -112
 - (c) 70
 - (d) -70
- **11.** The coefficient of x^5 in $\left(x^2 \frac{2}{x}\right)^8$ is:
 - (a) 896
 - (b) -896
 - (c) 448
 - (d) -448
- **12.** The value of $(2 + \sqrt{2})^4 + (2 \sqrt{2})^4$ is:
 - (a) 100
 - (b) 196
 - (c) 164
 - (d) 132

- **13.** The 5th term in the expansion of $\left(x \frac{1}{x}\right)^7$ is:
 - (a) $35x^3$
 - (b) $-35x^3$
 - (c) $35x^{-3}$
 - (d) $-35x^{-3}$
- **14.** The sum $\binom{6}{0} + \frac{1}{2} \binom{6}{1} + \frac{1}{3} \binom{6}{2} + \cdots + \frac{1}{7} \binom{6}{6}$ equals:
 - (a) $\frac{127}{7}$
 - (b) $\frac{255}{7}$
 - (c) $\frac{63}{7}$
 - (d) $\frac{128}{7}$
- **15.** The coefficient of x^6 in the expansion of $(1 x + x^2)^4$ is:
 - (a) 10
 - (b) 19
 - (c) 16
 - (d) 12
- **16.** The term involving y^2 in $(x \sqrt{y})^{10}$ is:
 - (a) $45x^8y$
 - (b) $-45x^8y$
 - (c) $10x^8y$
 - (d) $-10x^8y$
- **17.** The middle term in $(1 + x)^{10}$ is:
 - (a) $252x^5$
 - **(b)** $210x^5$
 - (c) $252x^6$
 - (d) $210x^6$
- **18.** The coefficient of x^n in $\left(x^2 \frac{1}{x}\right)^{2n}$ is:
 - (a) $\binom{2n}{n}(-1)^n$
 - (b) $\binom{2n}{n}$
 - (c) $\binom{2n}{n-1}(-1)^n$
 - (d) $\binom{2n}{n-1}$
- **19.** The 4th term from the end in $\left(x \frac{1}{x}\right)^6$ is:
 - (a) $20x^{-1}$

- (b) $-20x^{-1}$
- (c) $15x^{-1}$
- (d) $-15x^{-1}$
- **20.** The value of $(1+i)^4 (1-i)^4$ is:
 - (a) 8i
 - (b) -8i
 - (c) 16*i*
 - (d) -16i

Solutions and Explanations

- **1. Answer: b** 7 Explanation: Number of terms in $(a+x)^n$ is n+1. For n=6, 6+1=7.
- **2. Answer: a** 80 *Explanation*: General term: $T_{r+1} = {5 \choose r} (1)^{5-r} (2x)^r = {5 \choose r} 2^r x^r$. For x^2 , r = 2: ${5 \choose 2} 2^2 = 10 \cdot 4 = 40$.
- **3. Answer: a** 256 *Explanation*: Sum of binomial coefficients: $\sum_{r=0}^{8} {8 \choose r} = 2^8 = 256$ (Q.13).
- **4. Answer: a** 64 *Explanation*: Sum of odd coefficients: $\binom{7}{1} + \binom{7}{3} + \binom{7}{5} = 2^{7-1} = 64$ (Q.13).
- **5. Answer: a** 0.970299 *Explanation*: $(1-0.01)^3 = 1-3(0.01)+3(0.01)^2-(0.01)^3 = 1-0.03+0.0003-0.000001=0.970299$ (Q.2).
- **6. Answer: a** $2a^4 + 24a^2x^2 + 18x^4$ *Explanation*: $(a + \sqrt{3}x)^4 + (a \sqrt{3}x)^4 = 2a^4 + 12a^2(3x^2) + 2(9x^4) = 2a^4 + 24a^2x^2 + 18x^4$ (Q.3).
- **7. Answer: a** $-160x^3$ *Explanation*: General term: $\binom{6}{r}2^{6-r}(-x)^r = \binom{6}{r}2^{6-r}(-1)^rx^r$. For x^3 , r = 3: $\binom{6}{3}2^3(-1)^3 = 20 \cdot 8 \cdot (-1) = -160$ (Q.6).
- **8. Answer: b** -252 *Explanation*: General term: $\binom{10}{r}x^{10-r}\left(-\frac{1}{x}\right)^r = \binom{10}{r}(-1)^rx^{10-2r}$. For x^{-2} , 10-2r=-2, so r=6: $\binom{10}{6}(-1)^6=252$ (Q.9).
- **9. Answer: b** $-70x^0$ *Explanation*: For n=8, middle term is $\left(\frac{8}{2}+1\right)^{\sf th}=5^{\sf th}$, r=4: $\binom{8}{4}\left(\frac{x}{2}\right)^{8-4}\left(-\frac{2}{x}\right)^4=70\cdot\frac{x^4}{16}\cdot\frac{16}{x^4}=70\cdot 1=-70$ (Q.10).
- **10. Answer: b** -112 *Explanation*: General term: $\binom{8}{r}x^{\frac{8-r}{2}}\left(-\frac{2}{x}\right)^r = \binom{8}{r}(-2)^rx^{\frac{8-r}{2}-r}$. For x^0 , $\frac{8-r}{2}-r=0$, so r=4: $\binom{8}{4}(-2)^4=70\cdot 16=-112$ (Q.9).
- **11. Answer: b** -896 *Explanation*: General term: $\binom{8}{r}(x^2)^{8-r}\left(-\frac{2}{x}\right)^r = \binom{8}{r}(-2)^r x^{16-2r-r}$. For x^5 , 16 3r = 5, so r = 4: $\binom{8}{4}(-2)^4 = 70 \cdot 16 \cdot (-1)^4 = -896$ (Q.7).
- **12. Answer: c** 164 *Explanation*: $(2+\sqrt{2})^4+(2-\sqrt{2})^4=2\cdot 2^4+12\cdot 2^2\cdot 2+2\cdot 4=32+96+36=164$ (Q.3).

- **13. Answer:** d $-35x^{-3}$ *Explanation*: 5th term, r=4: $\binom{7}{4}x^{7-4}\left(-\frac{1}{x}\right)^4=35\cdot x^3\cdot \frac{1}{x^4}=35\cdot x^3\cdot (-1)^4=-35x^{-3}$ (Q.6).
- **14.** Answer: a $\frac{127}{7}$ Explanation: $\sum_{r=0}^{6} \frac{1}{r+1} {6 \choose r} = \frac{1}{7} \sum_{r=0}^{6} {7 \choose r+1} = \frac{2^7-1}{7} = \frac{127}{7}$ (Q.14).
- **15. Answer: a** 10 *Explanation*: From Q.4, expansion of $(1 x + x^2)^4$, coefficient of x^6 is 10 (Q.4(ii)).
- **16. Answer: b** $-45x^8y$ *Explanation*: General term: $\binom{10}{r}x^{10-r}(-\sqrt{y})^r = \binom{10}{r}(-1)^rx^{10-r}y^{\frac{r}{2}}$. For y^2 , $\frac{r}{2} = 2$, so r = 4: $\binom{10}{4}(-1)^4x^6y^2 = 45x^8y$ (Q.6).
- **17. Answer: a** $252x^5$ *Explanation*: For n=10, middle term is $\left(\frac{10}{2}+1\right)^{\sf th}=6^{\sf th}$, r=5: $\binom{10}{5}1^{10-5}x^5=252x^5$ (Q.12).
- **18. Answer: a** $\binom{2n}{n}(-1)^n$ *Explanation*: From Q.7(ii), general term: $\binom{2n}{r}(x^2)^{2n-r}\left(-\frac{1}{x}\right)^r = \binom{2n}{r}(-1)^rx^{4n-3r}$. For x^n , 4n-3r=n, so r=n: $\binom{2n}{n}(-1)^n$.
- **19. Answer: b** $-20x^{-1}$ *Explanation*: 4th term from end in $(x \frac{1}{x})^6$, r = 3: $\binom{6}{3}x^{6-3}\left(-\frac{1}{x}\right)^3 = 20 \cdot x^3 \cdot \frac{-1}{x^3} = -20x^{-1}$ (Q.11).
- **20. Answer: c** 16i *Explanation*: $(1+i)^4 (1-i)^4 = 2 \cdot (4 \cdot i + 4 \cdot i^3) = 2 \cdot (4i 4i) = 16i$ (Q.3).