Teorija programskih jezikov: poskusni izpit
6. januar 2020
Čas pisanja je 150 minut. Možno je doseči 100 točk. Veliko uspeha!
Ime in priimek Vpisna številka
1. naloga (25 točk)
Za vsakega od naslednjih izrazov ugotovite, ali ima tip in katerega. Nato ugotovite še, ali v operacijski semantiki malih korakov program divergira, se evalvira v vrednost, ali zatakne. Če se evalvira v vrednost, v katero?
${f a})$ if (if false then false else true) then false else true
b) (if $0 = 1$ then false else $14) * 3$
c) $(\lambda g.g.false)(\lambda x.x+1)$
$(\lambda g.g.g.a.se)(\lambda x.x + 1)$
d) $\lambda b.$ if b then 0 else 1

 $\mathbf{e)} \ (\mathtt{rec} \, \mathtt{fun} \, f \, b.\mathtt{if} \, f \, b \, \mathtt{then} \, 42 \, \mathtt{else} \, 42) \mathtt{false}$

2

3

4 Σ

2. naloga (25 točk)

Definiraimo izraz	7.

$$e = \lambda f. \lambda g. \lambda x. f(g(fx))$$

a) Poiščite tip A in sistem enačb $\mathscr E$, tako da velja $\emptyset \vdash e : A | \mathscr E$ ter zapišite ustrezno drevo izpeljave.

b) Poiščite najbolj splošno rešitev sistema $\mathscr E$, torej substitucijo σ , za katero velja $\mathscr E \searrow \sigma$.

3. naloga (25 točk)

V	λ-račun	dodamo	operaciji:
•	/ lacuii	addaniid	operaciji.

$$e ::= \cdots \mid e_1 \, \text{and} \, e_2 \mid e_1 \, \text{andalso} \, e_2$$

Obe operaciji naj bi izračunali logično konjunkcijo Boolovih izrazov e_1 in e_2 , razlika je le v tem, da and evaluira e_2 samo po potrebi, če iz e_1 ni razviden rezultat, medtem ko andalso vedno evaluira oba e_1 in e_2 .

a) Zapišite pravila za operacijsko semantiko in določanje tipov za and in andalso.

b) Podajte primer izrazov e_1 in e_2 tipa bool, iz katerih je opazna razlika med e_1 and e_2 in e_1 and also e_2 .

c) Dokažite, da za razširjeni jezik še vedno velja izrek o varnosti.

4. naloga (25 točk)

Običajni programski jeziki omogočajo medsebojne rekurzivne definicije, na primer v OCamlu lahko definiramo:

```
let rec sodo n =  if n = 0 then true else (not (liho (n - 1))) and liho n =  if n = 0 then false else (not (sodo (n - 1)))
```

a) S pomočjo običajnega izreka o negibnih točkah zveznih preslikav na domenah dokažite, da za poljubni domeni D in E ter zvezni funkciji $f: D \times E \to D$ in $g: D \times E \to E$ obstajata fiksni točki $x \in D$ in $y \in E$, da velja:

$$x = f(x, y) y = g(x, y)$$

b) Naj bosta $s,\ell\colon\mathbb{N}_\perp\to\mathbb{B}_\perp$ preslikavi, ki zadoščata rekurzivnim enačbam:

$$s(\perp) = \perp$$
 $s(0) = \text{tt}$ $s(n) = n(\ell(n-1))$ $\ell(\perp) = \perp$ $\ell(0) = \text{ff}$ $\ell(n) = n(s(n-1))$

kjer je preslikava $n\colon \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ podana z

$$n(\perp) = \perp$$
 $n(\text{tt}) = \text{ff}$ $n(\text{ff}) = \text{tt}$

Poiščite domeni D in E ter zvezni funkciji $\Phi: D \times E \to D$ in $\Psi: D \times E \to E$, tako da velja

$$s = \Phi(s, \ell)$$
 $\ell = \Psi(s, \ell)$

Tega, da sta D in E domeni ter Φ in Ψ zvezni, vam ni treba dokazovati.