Visão Por Computador Trabalho 5

Christophe Oliveira n°2011154912 Noé Godinho n° 2011159459

8 de Maio de 2015

Conteúdo

Intr	O	lı	19	çê	ăc)																			
Prir																									
1.1																									
1.2																									
1.3																									
1.4								,																	
Segi	un	ıc	la	ı	P	a	rt	e	,																1

Introdução

Esta ficha está focada em dois objectivos principais, onde na primeira parte estimamos a matriz fundamental através de imagens e usando para isso o algoritmo dos 8 pontos e após isto também obtemos os respetivos epipolos e rectas epipolares, Já na segunda parte, o objetivo é estimar a matriz essencial.

Primeira Parte

1.1

No inicio desta ficha foi-nos logo proposto a determinação da matriz fundamental através do algoritmo dos 8 pontos referido e explicado passo a passo na ficha. Para isso foi necessário o auxílio de quatro imagens fornecidas já com esta ficha, onde 2 são esquerdas e as outras 2 são direitas e cada uma contém um plano diferente. Para determinar as coordenadas dos pontos foi usado o detector de cantos, já implementado no trabalho anterior, onde foram escolhidos dez pontos, pois o número de pontos necessários para este algoritmo tem de ser superior a 8. Após a aplicação do detector de cantos e a colocação dos mesmos em cada uma das imagens, obtemos as seguintes imagens:

Figura 1: Imagem LeftCamera02 com cantos

Figura 2: Imagem LeftCamera05 com cantos

Figura 3: Imagem RightCamera
02 com cantos

Figura 4: Imagem RightCamera05 com cantos

Após isto foi necessário normalizar as coordenadas dos pontos acima considerados e foi necessário calcular os centros de massa através das seguintes fórmulas:

$$\bar{\mathbf{x}} = \sum_{i} \frac{x_i}{n}$$

$$\bar{\mathbf{y}} = \sum_{i} \frac{y_i}{n}$$

Onde consideramos os pontos $\hat{\mathbf{p}}_i$ de cada imagem com coordenadas:

$$\hat{\mathbf{p}}_i = \begin{bmatrix} x_i & y_i & 1 \end{bmatrix}^T$$

Após isto também foi necessário construir as matrizes \mathbf{T}_e e \mathbf{T}_d resultantes da seguinte matriz:

$$T = \begin{bmatrix} 1 & 0 & -\bar{\mathbf{x}} \\ 0 & 1 & -\bar{\mathbf{y}} \\ 0 & 0 & -\bar{\mathbf{d}} \end{bmatrix}$$

Onde $\bar{\mathbf{d}}$ é a distância média obtida da seguinte forma:

$$\bar{d} = \frac{\sum_{i} \sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}}{n * \sqrt{2}}$$

A partir dos valores de $\bar{\mathbf{x}},\,\bar{\mathbf{y}}$ e
 d, é possível construir duas matrizes T_e e
 $T_d.$

$$\hat{p_e'} = T_e \hat{p_e}$$

$$\hat{p'_d} = T_d \hat{p_d}$$

Uma vez obtidas as matrizes, é possível obter \hat{F} .

$$\hat{F} = T_d^{-T} F T_e^{-1}$$

A partir de \hat{F} , conseguimos obter F, o nosso objetivo.

$$F = T_d^T \hat{F} T_e$$

Isto tudo realizado com o realizado com o algoritmo dos $8\ {\rm pontos}.$ Foi obtida a seguinte matriz:

$$F = 1.0e + 04 * \begin{bmatrix} 0.0000 & -0.0000 & 0.0029 \\ 0.0000 & 0.0000 & 0.0079 \\ -0.0048 & -0.0072 & -2.4607 \end{bmatrix}$$

1.2

Uma vez que obtivemos a matriz fundamental, é possível calcular os epipolos. O epipolo na imagem esquerda $\hat{e_e}$ pertence a todas as rectas epipolares. Assim, qualquer que seja $\hat{p_d}$ obtém-se:

$$\hat{p_d^T} F \hat{e_e} = 0$$

ou seja

$$F\hat{e_e} = 0$$

1.3

Depois do cálculo dos epipolos, é necessário representar as rectas epipolares correspondentes.

Figura 5: Imagem LeftCamera02 com as rectas epipolares

Figura 6: Imagem LeftCamera
05 com as rectas epipolares

Figura 7: Imagem RightCamera02 com as rectas epipolares

Figura 8: Imagem RightCamera
05 com as rectas epipolares

Como é possível observar, o algoritmo foi bem sucedido e a matriz fundamental tem uma boa precisão, uma vez que as rectas epipolares das respectivas câmaras, estão a apontar para os pontos certos de cada canto detectado previamente.

1.4

A matriz fundamental tem uma boa precisão, tal como foi referido previamente, porque as rectas epipolares coincidem com os pontos previamente calculados.

Segunda Parte

Na 2ª parte desta ficha foi nos inicialmente pedido que determinássemos a matriz essencial, sabendo que as matrizes dos parâmetros intrínsecos das câmaras da esquerda e da direita são respetivamente:

$$K_{esq} = \begin{bmatrix} 1317.24980 & 0 & 512.23259 \\ 0 & 1316.83041 & 413.07903 \\ 0 & 0 & 1 \end{bmatrix}$$
$$K_{dir} = \begin{bmatrix} 1312.94890 & 0 & 533.80481 \\ 0 & 1313.02652 & 397.59032 \\ 0 & 0 & 1 \end{bmatrix}$$

Com isto apenas foi necessário aplicar a seguinte equação:

$$E = K_{esq} * F * (K_{dir})^T$$

Onde obtivemos a seguinte matriz:

$$1.0e + 05 * \begin{bmatrix} 0.2979 & -0.2837 & 0.4130 \\ 1.1264 & 0.0786 & 1.4938 \\ -0.1747 & -1.0411 & -0.1714 \end{bmatrix}$$