

南开大学

计算机学院 编译原理作业报告

标题标题标题

朱浩泽 1911530

年级: 2019 级

专业:计算机科学与技术

指导教师:王刚

关键字: Parallel

目录

一、 概述

(一) 第一节

如图??所示

图 1: Caption

表

N/n\Algo	naive-conv	naive-pool	omp-conv	omp-pool
64/2	0.0167	0.01255	0.04142	0.03799
64/4	0.03599	0.0394	0.0458	0.0421

表 1: 性能测试结果 (4 线程)(单位:ms)

带单元格表格

Cost		То					
		A	В	C	D	E	
From	В	7	0	1	3	8	
	C	8	1	0	2	7	
	D	8	3	2	0	5	

表 2: 结点 C 距离向量表 (无毒性逆转)

(二) 第二节

伪代码

Algorithm 1 初始化 obj 文件信息——对应 MeshSimplify 类中 readfile 函数,Face 类 calMatrix 函数

Input: obj 文件, 顶点、边、面列表

Output: 是否读取成功

- 1: function calMatrix(Face)
- 2: $normal \leftarrow e1 \times e2$
- $3: normal \leftarrow normal/normal.length$
- 4: $temp[] \leftarrow normal.x, normal.y, normal.z, normal \cdot Face.v1$
- 5: Matrix[i][j] = temp[i] * temp[j]
- 6: return Matrix
- 7: end function
- 8: 根据 obj 的 v 和 f 区分点面信息, 读取并加入列表
- 9: scale ← 记录点坐标中距离原点最远的分量, 以便后续 OpenGL 进行显示
- 10: ori ← 记录中心点,便于 OpenGL 显示在中心位置,避免有的 obj 偏移原点较多

二、总结编译原理作业报告

- 11: 根据三角面片信息, 计算一个面的三条边
- 12: 计算每个面的矩阵 ← calMatrix
- 13: 将每个面的矩阵加到各点, 由点维护
- 14: return True

代码

```
void ord()

double head,tail,freq,head1,tail1,timess=0; // timers
init(N);

QueryPerformanceFrequency((LARGE_INTEGER *)&freq );

QueryPerformanceCounter((LARGE_INTEGER *)&head);

for (int i=0; i<NN; i++)

for (int j=0; j<NN; j++)

col_sum[i] += (b[j][i]*a[j]);

QueryPerformanceCounter ((LARGE_INTEGER *)& tail);

cout << "\nordCol" <<(tail-head)*1000.0 / freq<< "ms" << endl;
}</pre>
```

逐列访问平凡算法

a-b

(三) 第三节

参考文献 [?] [?] 多行公式

$$a+b=a+b \tag{1}$$

$$\frac{a+b}{a+b} \tag{2}$$

行内公式: $\sum_{i=1}^{N}$ 超链接 YouTube 带标号枚举

- 1. 1
- 2. 2

不带标号枚举

- 1
- 2

切换字体大小

二、总结