End Semester (Back Paper old syllabus) Examination 2024

Name of the course: B.Tech Semester: II

Name of the paper: Engineering Mathematics II Paper Code: TMA - 201
Time: 3 hours Maximum Marks: 100

Note:

(i) All questions are compulsory.

(ii) Answer any two sub questions among a, b and c in each main question.

(iii) Total marks in each main question are twenty.

(iv) Each sub part carries 10 marks.

0.1		7
Q.1	$(10 \times 2 = 20 \text{ Marks})$	
(a)	Solve: $\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}.$	
(b)	Test for exactness and solve the differential equation	CO: 1
	$(e^y + 1)\cos x dx + e^y \sin x dy = 0.$	
(c)	Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} + y = \sec x$.	
Q.2	$(10 \times 2 = 20 \text{ Marks})$	
(a)	Evaluate $L[t^2e^{2t}\sin t]$.	
	Using convolution theorem prove that	
(b)	$L^{-1}\left\{\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right\} = \frac{a\sin at - b\sin bt}{a^2-b^2}$	CO: 2
(c)	Solve the differential equation using Laplace transform method. $\frac{d^2x}{dt^2} + 9x = \cos 2t, x(0) = 1, x\left(\frac{\pi}{2}\right) = -1$	
Q.3	$(10 \times 2 = 20 \text{ Marks})$	
(a)	Expand the function $f(x) = x^2$ as a Fourier series in the interval $-\pi \le x \le \pi$.	
	Find the Fourier series expansion of the periodic function of period 2π .	
(b)	$f(x) = e^x, 0 < x < 2\pi$	60.4
(c)	Obtain the Fourier series expansion of $f(x) = \begin{cases} x, & 0 < x < \pi \\ -x, & -\pi < x < 0 \end{cases}$	CO: 3

Q.4	$(10 \times 2 = 20 \text{ Marks})$	
(a)	Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y)$	CO: 4
(b)	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$; $u(x,0) = 6e^{-3x}$	
(c)	Find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if initial temperature is $\sin \frac{\pi x}{2} + 3\sin \frac{5\pi x}{2}$.	
Q.5		-
(a)	Prove that: $\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \text{, if } m \neq n$ (10×2 = 20 Marks)	
(b)	Prove that: $x.J_n(x) = n.J_n(x) - x.J_{n,n}(x)$	CO: 5
(c)	Prove that: $(2n+1)xP_n = (n+1)P_{n+1} + nP_{n-1}$	