Prueba 3

1S - 2015

NRO.MATRICULA:		
☐ Estructura de Datos	☐ Complejidad Computacional	

Recursión

 Utilizando el método dibujaCirculo(x, y, r) que dibuja un circulo de radio r en el punto x,y.
 Escriba un método recursivo que genere el dibujo de la derecha. [6 ptos.]

2. Nombre la función matemática que implementa este método. [2 ptos.]

```
int A(int i) {
    if( i == 1)
        return 1;
    else
        return(i*(A(i-1);
}
```

- 3. Los métodos recursivos son más eficientes que los métodos tradicionales. [2 ptos.]
 - a. Verdadero
 - b. Falso

Justifique:	 	 	 	

Árboles Binarios

- 4. ¿Qué tiempos de ejecución tienen las operaciones *Inserción* y *Eliminación* de un árbol binario? [*2 ptos.*]
 - a. Inserción:
 - b. Eliminación:
- 5. Un árbol binario es un árbol de búsqueda cuando [2 ptos.]
 - a. Cada nodo (no hoja) tiene hijos cuyos valores son menores o iguales que sus padres.
 - b. En la ruta desde la raíz a cada nodo hoja, el valor de cada nodo es mayor o igual que el valor del padre.
 - c. Un nodo puede tener un máximo de dos hijos.
 - d. Todo hijo izquierdo contiene un valor menor que su padre y cada hijo derecho contiene un valor mayor o igual que su padre.

6.	En un árbol binario completo con 20 nodos, ¿cuántos nodos hay en el nivel 4 considerando a la raíz como el nivel 0? [2 ptos.]				
	ļ				
7.	Cuales son las clases principales en la implementación de un árbol binario. [2 ptos.]				
8.	<pre>Marque el error en el código y explique por qué es un error. [3 ptos.] class Tree { private Node root; public Node leftChild; public Tree() { root = null; } }</pre>				
9.	 Un árbol desbalanceado es aquel donde [2 ptos.] a. La mayoría de sus nodos tiene valores mayores que la media. b. El comportamiento de los nodos es impredecible. c. Los nodos generan una forma de paraguas. d. En donde la raíz o cualquier otro nodo tiene muchos más hijos izquierdos que derechos o viceversa. 				
10	¿Cómo se puede generar un árbol binario desbalanceado? [2 ptos.]				

- 11. Eliminar un nodo con un solo hijo de un árbol de búsqueda binario requiere encontrar al sucesor del nodo. [1 pto.]
 - a. Verdadero.
 - b. Falso.
- 12. Identifique el método asociado al código de la columna de la izquierda. [3 ptos.]

```
.....
public Node A(int key) {
       Node current = root;
       while(current.iData != key {
             if(key < current.iData</pre>
                    current = current.leftChild;
             else
                    current = current.rightChild;
        if(current == null) return null;
     return current;
public void B(int id) {
      Node newNode = new Node();
       newNode.iData = id;
       if(root==null) root = newNode;
       else {
             Node current = root;
             Node parent;
             while(true) {
                    parent = current;
                    if(id < current.iData) {</pre>
                           current = current.leftChild;
                           if(current == null) {
                                 parent.leftChild =
                                 newNode;
                                 return;}
                    else {
                           current = current.rightChild;
                           if(current == null) {
                                 parent.rightChild =
                                 newNode;
                                 return;}
                    }
             }
      }
}
```

13. Escriba el método para calcular	el valor máximo de un árbol de búsqueda binario. [<i>4 ptos</i> .]
14. Dibuje el árbol binario resultant	te cuando se elimina el nodo "71" [2 ptos.]
15. Suponga que Ud. quiere generar de ingreso de datos utilizaría? [2	un árbol de búsqueda binario balanceado, ¿qué estrategia 2 <i>ptos</i> .]