PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedna poprawna odpowiedź.

Zadanie 1. (*1 pkt*)

Rozwiązaniem równania $8 - a\sqrt{5} = 3$ jest liczba:

B.
$$\frac{1}{\sqrt{5}}$$

$$\mathbf{C}.\sqrt{5}$$

D.
$$5\sqrt{5}$$

Zadanie 2. (*1 pkt*)

Prosta y = 2ax + b jest równoległa do prostej y = (a + b)x - a, gdzie $a \ne 0, b \ne 0$. Wynika stąd, że:

A.
$$a + b = 0$$

B.
$$a - b = 0$$
 C. $\frac{a}{b} = 2$

$$\mathbf{C} \cdot \frac{a}{b} = 2$$

D.
$$ab = 2$$

Zadanie 3. (*1 pkt*)

Okrąg o równaniu $(x-1)^2 + y^2 = r^2$, gdzie r > 0, ma z prostą x = 3 dwa punkty wspólne. Zatem:

$$\mathbf{A} \cdot r < 2$$

$$\mathbf{B} \cdot r > 2$$

$$\mathbf{C} \cdot r = 4$$

D.
$$1 < r < 2$$

Zadanie 4. (*1 pkt*)

Zbiorem wartości funkcji kwadratowej f określonej wzorem $f(x) = x^2 + bx + c$ jest przedział $\langle -2, \infty \rangle$. Funkcja przyjmuje wartości ujemne dla argumentów należących do przedziału (-4,6). Wskaż wzór funkcji f.

A.
$$f(x) = -2(x+4)(x-6)$$

B.
$$f(x) = (x+4)(x-6) - 2$$

C.
$$f(x) = (x+4)(x-6) + 23$$

D.
$$f(x) = (x-4)(x+6) - 23$$

Zadanie 5. (*1 pkt*)

Wyrażenie $\left(a^{-\frac{1}{2}} - 5\right) \left(a^{-\frac{1}{2}} + 5\right)$, dla $a \neq 0$, można zapisać w postaci: **A.** a - 25 **B.** $a^2 - 25$ **C.** $a^{-1} - 25$ **D.** $a^{-2} - 25$

$$A \cdot a = 25$$

B.
$$a^2 - 25$$

$$\mathbf{C.} \, a^{-1} - 25$$

D.
$$a^{-2} - 25$$

Zadanie 6. (*1 pkt*)

Funkcja wykładnicza f określona wzorem $f(x) = (2a + 3)^x$ jest rosnąca dla:

$$A.a > -1$$

B.
$$a > -1,5$$

$$\mathbf{D}_{\bullet} - 1, 5 < a < -1$$

Zadanie 7. (*1 pkt*)

Wiadomo, że α jest kątem ostrym i $\sin \alpha \cos \alpha = 0, 5$. Wynika stąd, że wartość wyrażenia $\cos^4 \alpha + \sin^4 \alpha$ jest równa:

$$\mathbf{C.}\,0,25$$

Zadanie 8. (*1 pkt*)

Ośmiocyfrowe numery telefonów w pewnym mieście są tworzone z cyfr: 0,1,2,3,4,5,6,7,8,9, przy czym numery nie mogą zaczynać się od cyfry 9. Ile najwięcej takich numerów telefonicznych można utworzyć?

$$A.9^{7}$$

B.
$$10^8 \cdot 10^7$$

B.
$$10^8 \cdot 10^7$$
 C. $8^{10} - 7^{10}$

$$\mathbf{D.}10^8 - 10^7$$

Zadanie 9. (*1 pkt*)

 $33\frac{1}{3}\%$ liczby m jest równa wartości wyrażenia $\left(\frac{1}{2}\right)^{-1} + 2^{-2} - \left(\frac{1}{16}\right)^{\frac{1}{2}}$. Liczba m jest więc równa:

A. 3

B. 6

Zadanie 10. (1 pkt)

Najmniejsza wartość wyrażenia |x| + |x + 2| jest równa:

 \mathbf{A} . 0

B. 1

 $D_{1}-2$

Zadanie 11. (*1 pkt*)

Rozwiązaniem równania |6-2x|=1 są liczby:

A. przeciwne

B. różniace się o 1

C. całkowite

D. niewymierne

Zadanie 12. (*1 pkt*)

Zbiorem wartości funkcji f określonej wzorem:

$$f(x) = \begin{cases} x+3 & \text{dla } x \in \langle -3, 0 \rangle \\ -x^2 + 3 & \text{dla } x \in \langle 0, 2 \rangle \\ -1 & \text{dla } x \in \langle 2, \infty \rangle \end{cases}$$

iest:

 $\mathbf{A} \cdot \langle -1, 3 \rangle$

 $\mathbf{B}.(-\infty,3)$ $\mathbf{C}.(3,\infty)$ $\mathbf{D}.(-1,\infty)$

Zadanie 13. (1 pkt)

Prosta (2m-4)x + 2y + 1 = 0 jest nachylona do dodatniej półosi osi OX pod kątem 45°, gdy liczba m jest równa:

A. 2

B. $\frac{1}{2}$

C. –1

D. 1

Zadanie 14. (*1 pkt*)

Pole trójkata ABC jest cztery razy mniejsze od pola trójkata EFG. Trójkaty te są podobne. Długość boku AB jest równa 16. Długość boku EF, odpowiadającego bokowi AB, jest równa:

B. 32

C. 4

Zadanie 15. (1 pkt)

Pierwiastkami wielomianu stopnia trzeciego W(x) są liczby: -3,1,4 i współczynnik liczbowy stojący przy najwyższej potędze zmiennej jest równy 2. Wielomian ten możemy zapisać w postaci:

A.
$$W(x) = 2(x+3)(x+1)(x+4)$$

B.
$$W(x) = (2x + 3)(2x - 1)(2x - 4)$$

C.
$$W(x) = (2x + 3)(x - 1)(x - 4)$$

D.
$$W(x) = 2(x+3)(x-1)(x-4)$$

Zadanie 16. (*1 pkt*)

Na trójkacie równobocznym opisano koło, którego pole jest równe 4π. Długość boku tego trójkata jest równa:

 $\mathbf{A} \cdot \sqrt{3}$

B. $2\sqrt{3}$

C. $4\sqrt{3}$

D. 3

Zadanie 17. (*1 pkt*)

W trapezie równoramiennym podstawy są równe 10 i 16, a kąt rozwarty ma miarę 120°. Obwód trapezu jest równy:

A. 38

B. 26

 $\mathbf{C} \cdot 26 + 6\sqrt{3}$

D. 32

Zadanie 18. (1 pkt)

Pole figury ograniczonej fragmentem wykresu funkcji f danej wzorem $f(x) = x^2 - 4$ i osią OX jest:

A. mniejsze od 8

B. wieksze od 8

C. równe 8

D. wieksze od 16

Zadanie 19. (1 pkt)

Kosmonauta ma do wyboru dwie identyczne kapsuły ratunkowe. Prawdopodobieństwo, że kapsuła pierwsza spadnie na Ziemię nieuszkodzona jest równe $\frac{1}{2}$. Prawdopodobieństwo, że druga kapsuła spadnie na Ziemię nieuszkodzona jest równe $\frac{2}{5}$. Kosmonauta wybiera losowo kapsułę. Prawdopodobieństwo, że doleci na Ziemię w nieuszkodzonej kapsule jest równe:

A.
$$\frac{9}{10}$$

B.
$$\frac{9}{20}$$

$$\mathbf{C} \cdot \frac{2}{10}$$

$$0.\frac{1}{5}$$

Zadanie 20. (1 pkt)

Objętość kuli jest równa $\frac{1}{6}\pi$. Pole powierzchni tej kuli wyraża się liczbą:

A. wymierną większą od 3

B. wymierną mniejszą od 3

C. niewymierną większą od 3

D. niewymierna mniejsza od 3

Zadanie 21. (*1 pkt*)

Sześcian i czworościan foremny maja równe długości krawedzi. Stosunek objetości sześcianu do objętości czworościanu jest równy:

A.
$$\frac{4\sqrt{3}}{3}$$

B.
$$12\sqrt{2}$$

C.
$$6\sqrt{2}$$

D.
$$\frac{\sqrt{3}}{12}$$

Zadanie 22. (1 pkt)

Suma trzech pierwszych wyrazów ciągu geometrycznego jest równa -3,5. Iloraz tego ciągu jest równy 0,5. Czwarty wyraz tego ciągu jest równy:

A.0,25

$$C. -0.25$$

$$D_{1} - 1$$

Zadanie 23. (1 pkt)

Wskaż równość prawdziwą.

$$\mathbf{A.4}^{\log_2 5} = 25$$

B.
$$2^{1 - \log_2 5} = 5$$

$$\mathbf{C.4}^{\log_2 4} = 4$$

D.
$$5^{\log_{25} 5} = 5$$

Zadanie 24. (*1 pkt*)

Pole równoległoboku jest równe 24. Stosunek jego wysokości jest równy 3: 4. Długości boków i długości przekątnych wyrażają się liczbami naturalnymi i długość każdej z wysokości jest większa od 5. Boki równoległoboku są równe:

A.3 i 4

B. 6 i 8

C.6i4

D. 3 i 8

Zadanie 25. (1 pkt)

Punkty E, L, K, A leżą na okręgu w podanej kolejności. Cięciwy EK i LA przecinają się w punkcie M. Zatem:

$$\mathbf{A} \cdot |\angle LMK| = 2 |EMA|$$

$$\mathbf{A} \cdot |\angle LMK| = 2 |EMA|$$
 $\mathbf{B} \cdot |\angle LMK| = 2 |\angle LAK|$ $\mathbf{C} \cdot |\angle LEK| = |\angle LKA|$ $\mathbf{D} \cdot |\angle KEL| = |\angle LAK|$

$$\mathbf{C} \cdot |\angle LEK| = |\angle LKA|$$

$$\mathbf{D} \cdot |\angle KEL| = |\angle LAK|$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Suma drugiego i trzeciego wyrazu ciągu arytmetycznego (a_n) jest równa 0, a różnica trzeciego i czwartego wyrazu tego ciągu jest równa -2. Wyznacz różnicę tego ciągu i jego pierwszy wyraz.

Zadanie 27. (2 *pkt*)

Wykaż, że liczba $a = \log_{2\sqrt{2}} 8 - \log_{\frac{1}{2}} 0,25$ nie jest ani liczbą pierwszą, ani złożoną.

Zadanie 28. (2 *pkt*)

Rozwiąż równanie $2\cos\alpha - \sqrt{2} = 0$, gdy $0^{\circ} < \alpha < 90^{\circ}$.

Zadanie 29. (2 pkt)

Wykaż, że liczba $\sqrt{6\sqrt{3}+12}$ jest większa od 4.

Zadanie 30. (2 *pkt*)
Wiadomo, że
$$a > 0$$
 i $\frac{1}{a} + a = 2$. Wykaż, że $a^2 + \frac{1}{a^2} = a + \frac{1}{a}$.

Zadanie 31. (*4 pkt*)

Liczbę przekątnych wielokąta o n bokach można obliczyć ze wzoru $\frac{n(n-3)}{2}$, gdzie $n \ge 3$, $n \in N$. Ile boków ma wielokąt, który ma 35 przekątnych?

Zadanie 32. (5 *pkt*)

Ze zbioru liczb naturalnych spełniających nierówność $\frac{x-3}{2} - \frac{x-1}{3} < 0$ losujemy dwie różne liczby m, p. Oblicz prawdopodobieństwo zdarzenia: punkt o współrzędnych (m, p) należy do wykresu funkcji y = x + 4.

Zadanie 33. (6 pkt)
Długości krawędzi prostopadłościanu tworzą ciąg geometryczny. Objętość bryły jest równa 27, a suma długości jej krawędzi jest równa 13. Znajdź długość najkrótszej krawędzi prostopadłościanu.

