

MODULE 4: HUMAN FACTORS IN AUTONOMOUS DRIVING

Nicholas Ho, PhD
Institute of System Science, NUS

SAE International: **Levels of Automation**

NO **AUTOMATION**

Manual control. The human performs all driving tasks (steering, acceleration, braking, etc.).

DRIVER ASSISTANCE

The vehicle features a single automated system (e.g. it monitors speed through cruise control).

PARTIAL **AUTOMATION**

ADAS. The vehicle can perform steering and acceleration. The human still monitors all tasks and can take control at any time.

3

CONDITIONAL **AUTOMATION**

Environmental detection capabilities. The vehicle can perform most driving tasks, but human override is still required.

HIGH **AUTOMATION**

The vehicle performs all driving tasks under specific circumstances. Geofencing is required. Human override is still an option.

FULL AUTOMATION

The vehicle performs all driving tasks under all conditions. Zero human attention or interaction is required.

THE HUMAN MONITORS THE DRIVING ENVIRONMENT

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

SAE International:Levels of Automation

Driver Assistance	Partial Automation	3 Conditional Automation	4 High Automation	5 Full Automation
Example • City Emergency Braking	Example • Adaptive Cruise Control	Example • Highway Pilot	Example • City & Highway Pilot	Example • Robocar
 Definition Steering OR acceleration / deceleration Human supervision 	 Definition Steering AND acceleration / deceleration Human supervision 	 Definition All driving functions Human intervention may be needed 	 Definition All driving functions Human can but don't has to intervene 	 Definition All driving functions No human intervention possible

LEVEL 1: DRIVER ASSISTANCE

A SINGLE AUTOMATED SYSTEM

Nonholonomic car model

Holonomic robot model

Holonomic system where a robot can move in any direction in the configuration space

NAMLA Autonomous Omni-Directional Wheeled (i.e. Mecanum Wheeled) Mobile Robot

Source: https://www.youtube.com/watch?v=xL8deJDusns

Acceleration Assistance: Adaptive Cruise Control

Source: https://www.youtube.com/watch?v=GInSPWZRFRM

Steering Assistance: Lane Keeping Assist

Source: https://www.youtube.com/watch?v=OQkdvi55woA

LEVEL 2: PARTIAL AUTOMATION

- STEERING + ACCELERATION
- HUMAN MONITORS ALL TASKS

Combination of Acceleration and Steering

Adaptive Cruise Control

Lane Keeping Assist

SAE Level 2 Fatal Accident

5 fatal accident (4 in US, 1 in CN)

All are driver fatalities

Source: https://www.youtube.com/watch?v=CgLE_ZLLaxw

LEVEL 3: CONDITIONAL AUTOMATION

- MOST DRIVING TASKS
- HUMAN MONITORS ALL TASK

Source: https://www.youtube.com/watch?v=nlCQG2rg4sw

Smart Summon (Cont)

Source: https://www.youtube.com/watch?v=3o2sl37xwOc

1 fatal accident in 2018

Pedestrian fatality

Source: https://www.youtube.com/watch?v=ou8sqWr6mF0

LEVEL 4: HIGH AUTOMATION

- ALL DRIVING TASKS UNDER SPECIFIC CIRCUMSTANCES
- GEOFENCING IS REQUIRED

LEVEL 5: FULL AUTOMATION

ALL DRIVING TASKS UNDER ALL CONDITIONS

^{*}A geofence is a virtual perimeter for a real-world geographic area; A predefined set of boundaries

Minor Accident in SG

The self-driving car was changing lanes in Biopolis Drive at onenorth when it knocked into the lorry. The car was travelling at a "low speed" at the time of the accident --- 2016

SAE International: Levels of Automation

- It is a complex interaction between human drivers and SAE Levels 2 and 3 autonomous vehicles
- Any automated system
 that removes the human
 from the driving task, yet
 requires the human to
 monitor and supervise the
 system and regain control
 when necessary, could be
 unsafe

'Ironies of automation'

- Irony: combination of circumstances, the result of which is the direct opposite of what might be expected
- "The mere fact that you can automate does not mean that you should"
- Humans may misuse, disuse and abuse automation technology
- Humans tend to be poor supervisors of automation

'Ironies of automation'

Source: https://www.youtube.com/watch?v=kzBNdssqrEA

- Driver inattention and distraction
- Situational awareness
- Overreliance and trust
- Skill degradation
- Motion sickness

- Re-engaging the driver
- The user interface and the communication of automation limitations
- Automation misuse and the need to monitor the driver
- The personalization of automation
- Acceptance

THE STRAITS TIMES

WORLD

Tesla crash victim had lauded 'full selfdriving' in videos on TikTok

Since 2016, at least three Tesla vehicles operating on Autopilot have been in fatal crashes. PHOTO: REUTERS

Source: https://www.youtube.com/watch?v=HI23Yiy-EAE

From 16:40

HUMAN FACTORS IN LEVEL 5 AUTOMATION

predict:

future positions of Nagents for tpred steps

given:

- history positions
- types (pedestrian, bicycle, car, etc.)
- positions of obstacles

Challenges of predicting their motions

Diverse dynamics, geometry, behaviors (heterogeneous)

Challenges of predicting their motions

Diverse dynamics, geometry, behaviors (heterogeneous)

Intensive interactions

Challenges of predicting their motions

Diverse dynamics, geometry, behaviors (heterogeneous)

Intensive interactions

Complex road conditions

We know these are unknown (uncertain)

We know these are known (quite certain)

Example unknown known: driving is reactive?!

To overtake, the car needs to:

- Understand the stopped car's intention of not moving
- Understand the road context information such as left/right lane exist and is of same direction

Planning vs Reactive

Source: https://www.youtube.com/watch?v=SVPVTwxNRLc

MODULE 3 & 4 WORKSHOP: WORKSHOP DAY 2

WORKSHOP: HANDS-ON CONSTRUCTION OF MDP/HRIMDP MODELS OF AUTONOMOUS DRIVING

Personal Healthcare Robot

Personal assistant robots gain their popularity,
 E.g., Google Home, Amazon Echo, Xiao Mi robot vacuum, ASUS Zenbo, etc

Learning Objectives of Workshop Day 2

- Basic programming that creates trajectories of human and robot movements within a virtual world
- 2. Basic programming that enables you to visualize these interactions between the human and robot (include movements and collision avoidance)
- Implementation of a Human-Robot-Interactionfocused MDP method (named as HRIMDP) within a 5D gridworld
- 4. Understand the benefits of the HRIMDP method vs conventional MDP methods

The perfect-sized environment to learn about Reinforcement Learning for the start

human

world1.csv

0,0,0,0

0,1,0,0

0,0,0,0

S: Stay put

1 U: Go up

D: Go down

L: Go left (but in this case, stay put due to collision)

R: Go right

Robot Execution

robot_a1.csv

U,L,R,R,S,U,L,U,L

> python3 robot_execute.py

world1.csv Gridworld

robot_a1.csv Robot actions

1 2 Robot initial state

robot_s1.csv Robot trajectory

Executing the sequence of actions results in a robot trajectory:

[[1,2], [0,2], [0,1], [0,2], [0,3], [0,3], [0,3], [0,2], [0,2], [0,1]]

II S: Stay put

U: Go up (but in this case, stay put due to collision)

D: Go down (but in this case, stay put due to collision)

L: Go left

R: Go right

T: Toggle request status

-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	10	-1	-1	-1
-1	-1	10	10	10	-1	-1
-1	-1	-1	10	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1

-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-5	-1	-1	-1
-1	-1	-5	-10	-5	-1	-1
-1	-5	-10	-10	-10	-5	-1
-1	-1	-5	-10	-5	-1	-1
-1	-1	-1	-5	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1

1 (

Why the rest of the cells is put at -1 reward instead of 0?

HRI Reward Structure

human_state [0]

"Push" Robot away

human_state [1]

"Pull" Robot nearer

Human Execution

human_a1.csv

U,L,R,T,D,T,L

> python3 human_execute.py
 world1.csv Gridworld
 human_a1.csv Human actions
 2 3 0 Human initial state
 human_s1.csv Human trajectory

Executing the sequence of actions results in a human trajectory:

[[2,3],0],[[1,3],0],[[1,2],0],[[1,3],0], [[1,3],1],[[2,3],1],[[2,3],0],[[2,2],0]

Setup & Preparation

- In terminal, change directory to the day2a folder
 First and last reminder!
- 2. Run the skeleton code with the following command. This step is to ensure all the dependencies and packages are properly installed. E.g. python3, pip3, pygame, etc python3 visualizer.py world1.csv human_s1.csv robot_s1.csv
- Install all missing dependencies and packages
 Refer to "Setup and Preparation" README file

Complete Run (Try it out!)

1. Generate a valid trajectory of a human based on the init state and a sequence of actions

python3 human_execute.py world1.csv human_a1.csv 2 3 0 human_ss1.csv

2. Generate a valid trajectory of a robot based on the init state and a sequence of actions

python3 robot_execute.py world1.csv robot_a1.csv 0 1 robot_ss1.csv

3. Visualize

python3 visualizer.py world1.csv human_ss1.csv robot_ss1.csv

*Note that you need to install all dependencies beforehand (i.e. python3, pip3, pygame) beforehand

1. The nature of the robot's movements will be dependent on the human's request status

2. Rewards are not collected and factored in yet

Human is visualized as a dot, and the robot is visualized as a circle

[[x,y], 1]

[[x,y], 0]

DEMO

playback

simulate system dynamics

visualization

Part B: Introduction to HRIMDP

Comparison between GRIDMDP and HRIMDP

	GRIDMDP	HRIMDP
Has HUMAN	NO	YES
State Space	2D robot workspace $S_r = \{robot_x, robot_y\}$	$S_{r} imes S_{h} \ = \{(robot_{x}, robot_{y}, \ human_{x}, human_{y}, human_{request})\}$
Action Space	$A_r = \{'U', 'L', 'R', 'D'\}$	$A_r = \{'S', 'U', 'L', 'R', 'D'\}$
Transition	Uncertain execution	Certain execution But uncertain human state
Reward	Static 2D reward	Dynamic reward in 2D But static in 5D
Terminal States	Yes	No

Reward & Transition Structures used for GRIDMDP

The **reward** function **R** and **transition** function **T** remain unchanged for this example unless stated.

- Verify installation, pytest is needed
 python3 test_mdp.py
- 2. Try out solving MDP without terminal states python3 test_mdp_without_terminal_states.py
- 3. Implement our HRIMDP with 5 dimensional gridworld
 - a) Assign reward[state]
 - b) Complete function calculate_T
 - c) Implement function human_execute_one_step
- 4. Test implementation with python3 test_hrimdp.py

Hints to complete test_hrimdp.py

1. Assign reward[state]

Need a set of codes to represent below reward structure

-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	10	-1	-1	-1
-1	-1	10	10	10	-1	-1
-1	-1	-1	10	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1

[[x,y], 1]

-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-5	-1	-1	-1
-1	-1	-5	-10	-5	-1	-1
-1	-5	-10	-10	-10	-5	-1
-1	-1	-5	-10	-5	-1	-1
-1	-1	-1	-5	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1

[[x,y], 0]

Hints to complete test_hrimdp.py

2. Complete function calculate_T

Assume Transition Matrix of Human Movements is:

		Next Status					
		S	J	D	Г	R	Т
Current Status	S	0.5	0.1	0.1	0.1	0.1	0.1
	U						
	D						
	L						
	R						
	Т						

Hints to complete test_hrimdp.py

3. Complete function human_execute_one_step

- Refer to the function before this (i.e. robot_execute_one_step) for reference; both should be similar except for:
- You have to account for the following events:
 - a) There is a toggle request from human, upon which, will change the toggle request status. This means if the current status is 'False', this action will change the next status to 'True'; whereas if the current status is 'True', this action will change the next status to 'False'
 - b) There is NO toggle request, upon which, the toggle request status remains the same as the previous

playback

simulate system dynamics

visualization

This is a group project. Each group submits one zip file of all your codes/files (i.e. py) into LumiNUS at the end of the workshop

A123456_A234567_A345678_P2.zip

- Download all files in the directory
 /workshops/day2 for reference codes
- Refer to the README file for instructions

THANK YOU

Email: nicholas.ho@nus.edu.sg