Math 205A - Week 1

- 1. Let (a_n) be a sequence of real numbers. Show that (a_n) has two monotone subsequences, one converging to $\limsup_{n\to\infty} a_n$ and another converging to $\liminf_{n\to\infty} a_n$.
- 2. Sometimes, a limit is informally defined as follows: "As n goes to infinity, a_n gets closer and closer to L." Find as many faults with this definition as you can.
 - (a) Can a sequence satisfy this definition and still fail to converge?
 - (b) Can a sequence converge yet fail to satisfy this definition?
- 3. Suppose that $\lim_{n\to\infty} a_n = L$. Show that $\lim_{n\to\infty} \frac{a_1 + a_2 + ... + a_n}{n} = L$.
- 4. Suppose that (a_n) is a sequence of positive real numbers. Show that $\limsup_{n\to\infty}(a_n^{-1})=(\liminf a_n)^{-1}$.
- 5. Prove the monotone sequence theorem: any monotone increasing sequence that's bounded above also converges and any monotone decreasing sequence bounded below also converges. Try proving this using only the least upper bound property of \mathbb{R} . Is this theorem true in \mathbb{Q} ?
- 6. So far you've seen a few ways in which \mathbb{R} is different from \mathbb{Q} .
 - (a) The least upper bound property
 - (b) The monotone sequence theorem
 - (c) The nested interval theorem
 - (d) The Bolzano-Weierstrass theorem

Prove that these are all equivalent.