University of California, Los Angeles Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Practice 1 - solutions

EXERCISE 1

Find the distribution of the random variable X for each of the following moment-generating functions:

- a. $M_X(t) = \left[\frac{1}{3}e^t + \frac{2}{3}\right]^5$. X follows binomial with n = 5, $p = \frac{1}{3}$.
- b. $M_X(t) = \frac{e^t}{2-e^t} = \frac{\frac{1}{2}e^t}{1-\frac{1}{2}e^t}$. X follows geometric with $p = \frac{1}{2}$.
- c. $M_X(t) = e^{2(e^t 1)}$. X follows Poisson with $\lambda = 2$.

EXERCISE 2

Let $M_X(t) = \frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t}$ be the moment-generating function of a random variable X.

- a. To find E(X) we need the first derivative of $M_X(t)$ w.r.t. t: $M_X'(t) = \frac{1}{6}e^t + \frac{2}{6}2e^{2t} + \frac{3}{6}3e^{3t}$. The first moment is the previous derivative evaluated at t = 0. The result is $E(X) = \frac{1}{6} + \frac{4}{6} + \frac{9}{6} = \frac{7}{3}$.
- b. To find var(X) we need the second moment. We need the second derivative of $M_X(t)$ w.r.t. t. $M_X''(t) = \frac{1}{6}e^t + \frac{8}{6}2e^{2t} + \frac{27}{6}3e^{3t}$. And at t=0 we obtain the second moment. It is equal to $EX^2 = \frac{1}{6} + \frac{8}{6} + \frac{27}{6} = 6$. The variance is equal to: $var(X) = EX^2 - (E(X))^2 = 6 - (\frac{7}{3})^2 = \frac{5}{9}$.
- c. From the definition of moment-generating functions $M_X(t) = Ee^{tX}$ we see that X is discrete with possible values 1, 2, and 3, and corresponding probabilities $\frac{1}{6}, \frac{2}{6}$, and $\frac{3}{6}$.

EXERCISE 3

Let X follow the Poisson probability distribution with parameter λ . Its moment-generating function is $M_X(t) = e^{\lambda(e^t - 1)}$.

- a. The moment-generating function of $Z = \frac{X \lambda}{\sqrt{\lambda}}$ Project Exam Help $M_Z(t) = M_{\frac{X \lambda}{\sqrt{\lambda}}}(t) = e^{-\frac{\lambda}{\sqrt{\lambda}}t} M_X(\frac{t}{\sqrt{\lambda}}) \Rightarrow M_Z(t) = e^{-\sqrt{\lambda}t} e^{\lambda(e^{\sqrt{\lambda}} 1)}$.
- b. Using the series expansion of

$$e^{\frac{t}{\sqrt{\lambda}}} = 1 + \frac{\frac{t}{\sqrt{\lambda}}}{1!} https \frac{e}{\sqrt{\lambda}} powcoder.com$$

$$\text{Therefore,} \begin{tabular}{l} M_Z(t) = e^{-\sqrt{\lambda}t} A^{+\lambda[1t]} \stackrel{t}{\overset{t}{\overset{t}{\overset{}{\sim}}}} + \stackrel{t^2}{\overset{2}{\overset{}{\sim}}} \stackrel{t}{\overset{}{\sim}} \stackrel{t}{\overset{t}{\sim}} \stackrel{t}{\overset{}{\sim}} \stackrel{t}{\sim}} \stackrel{t}{\overset{t}{$$

$$\lim_{\lambda \to \infty} M_Z(t) = e^{\frac{1}{2}t^2}$$

In other words, as $\lambda \to \infty$, the ratio $Z = \frac{X - \lambda}{\sqrt{\lambda}}$ converges to the standard normal distribution.

EXERCISE 4

Here we use the normal approximation to Poisson. It is given that X follows the Poisson distribution with $\lambda = 100$. We know that for large λ the ratio $Z = \frac{X - \lambda}{\sqrt{\lambda}}$ follows the standard normal distribution. Therefore:

$$P(X \le 110) = P(Z < \frac{110.5 - 100}{\sqrt{100}}) = P(Z < 1.05) = 0.8531.$$

The exact probability is

$$P(X \le 110) = \sum_{x=0}^{110} \frac{e^{-100}100^x}{x!} = \dots = 0.8529.$$

The approximation is not bad!

EXERCISE 5

We know that the moment generating function of a normal random variable is $e^{\mu t + \frac{1}{2}\sigma^2 t^2}$. Because the sample is i.i.d the moment generating function of $T = \sum_{i=1}^n X_i$ is:

 $M_T(t) = Ee^{Tt} = Ee^{(X_1 + \dots + X_n)t} = Ee^{X_1 t} \dots Ee^{X_n t} \Rightarrow M_T(t) = e^{n\mu t + \frac{1}{2}n\sigma^2 t^2}$. This is the moment generating function of a normal random variable with mean $n\mu$ and variance $n\sigma^2$. Therefore $T \sim N(n\mu, \sigma\sqrt{n})$.

EXERCISE 6

The two sample are independent with $X \sim N(\mu_1, \sigma_1)$ and $Y \sim N(\mu_2, \sigma_2)$.

a.
$$E(\bar{X} - \bar{Y}) = E(\bar{X}) - E(\bar{Y}) = \mu_1 - \mu_2$$
.

b.
$$Var(\bar{X} - \bar{Y}) = Var(\bar{X}) + Var(\bar{Y}) - 2Cov(\bar{X}, \bar{Y}) = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}$$
. The covariance is zero because the two samples are independent.

c.
$$M_{\bar{X}-\bar{Y}} = Ee^{(\bar{X}-\bar{Y})t} = Ee^{\bar{X}t}Ee^{-\bar{Y}t} = M_{X_1}(\frac{t}{m})\cdots M_{X_n}(\frac{t}{m})M_{Y_1}(-\frac{t}{n})\cdots M_{Y_n}(-\frac{t}{n}) = e^{m(\mu_1\frac{t}{m}+\frac{1}{2}\sigma_1^2\frac{t^2}{m^2})}e^{-n(\mu_2\frac{t}{n}-\frac{1}{2}\sigma_2^2\frac{t^2}{n^2})} = e^{t(\mu_1-\mu_2)+\frac{1}{2}t^2(\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n})}.$$
 This is the moment generating function of a normal random variable with mean $\mu_1-\mu_2$ and variance $\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}$.

d. It is given that
$$n = m$$
 and $\sigma_1^2 = 2, \sigma_2^2 = 2.5$. We want $P(-1 < \bar{X} - \bar{Y} - (\mu_1 - \mu_2) < 1) = 0.95$.

Since
$$\bar{X} - \bar{Y} \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{2}})$$
 we get:

$$X - Y \sim N(\mu_1 - \mu_2, \sqrt{\frac{1}{m} + \frac{2}{n}}) \text{ we get:}$$

$$P(\frac{-1}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} < Z < \frac{1}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}) = 0.95 \Rightarrow P(\frac{-1}{\sqrt{\frac{2}{n} + \frac{2.5}{n}}} < Z < \frac{1}{\sqrt{\frac{2}{n} + \frac{2.5}{n}}}) = 0.95$$

Therefore,
$$1.96 = \frac{1}{\sqrt{\frac{2}{n} + \frac{2.5}{n}}} \Rightarrow 1.96 = \frac{1}{\sqrt{\frac{4.5}{n}}} \Rightarrow n = 17.3 \approx 18.$$

EXERCISE 7

We are given that X follows the normal distribution with $\mu = 0$ and $\sigma^2 = 1$. Therefore its probability density function (p.d.f.) is $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, $-\infty < x < \infty$. The random variable Y is said to follow the lognormal distribution if $Y = e^X$ because log(y) follows the normal distribution. To find its p.d.f we start with its cumulative distribution function which by definition is:

$$F(y) = P(Y \le y) = P(e^X \le y) = P(X \le \log(y)) = F_x(\log(y)) \Rightarrow f(y) = \frac{1}{y} f_x(\log(y)) \Rightarrow \frac{1}{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\log(y))^2}.$$

EXERCISE 8

The radius of a circle, X_{\bullet}^{\bullet} is an exponential random variable with parameter λ . Therefore its p.d.ft is $f(x) = \lambda e^{-\lambda x}$. Let Y be the area G be cold. Then C is $f(x) = \lambda e^{-\lambda x}$. Let Y be the area G be cold. Then C is $f(x) = \lambda e^{-\lambda x}$. Let Y be the area G be cold. Then C is $f(x) = \lambda e^{-\lambda x}$. Let Y be the area G be cold. Function: $F(y) = P(Y \le y) = P(\pi X \ge y) = P(X^2 \le \frac{y}{\pi}) = P(-\sqrt{\frac{y}{\pi}} \ge X \le +\sqrt{\frac{y}{\pi}}) = F_X(\sqrt{\frac{y}{\pi}}) - F_X(-\sqrt{\frac{y}{\pi}}) \Rightarrow f(y) = F(y)' = \frac{1}{2\sqrt{\pi y}}f_X(\sqrt{\frac{y}{\pi}}) - 0 \Rightarrow f(y) = \frac{1}{2\sqrt{\pi y}}\lambda e^{-\lambda \sqrt{\frac{y}{\pi}}}$.

https://powcoder.com

Add WeChat powcoder