

### **Order Selection**



Per Mattsson

Systems and Control
Department of Information Technology
Uppsala University

2019-09-23

per.mattsson@it.uu.se SysCon, IT, UU



## **Summary from last lecture**

- ▶ Alternatives to NLS, based on ARMA and covariance model
- ► HOYW, MUSIC, Min-Norm, ESPRIT
- Subspace methods using EVD/SVD
- Complicated derivation but easy to use (and implement)
- ▶ Need to select user parameters and model order



### **Today**

- ▶ How to choose the model order for parametric methods?
- ► Heuristic approaches
- ► Information criteria
- ► Intuitive ARMA order selection



### Parametric signal models

$$y(t) = \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} + e(t)$$

$$A(z)y(t) = B(z)e(t)$$

$$A(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$A(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$B(z) = 1 + b_1 z^{-1} + \ldots + b_m z^{-m}$$

 We can use these signal models and estimate spectra by estimating the parameters (real valued)



## Parametric signal models

$$y(t) = \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} + e(t)$$

$$A(z)y(t) = B(z)e(t)$$

$$A(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$B(z) = 1 + b_1 z^{-1} + \ldots + b_m z^{-m}$$

We can use these signal models and estimate spectra by estimating the parameters (real valued)

#### Remaining problem

What is n and  $m \in \mathbb{N}$ ?

How to estimate the **discrete** parameters?



### **Definitions**

Refer to n as the model order, or rather, the number of parameters, and N as the number of *real-valued* samples

$$\theta \in \mathbb{R}^n, \quad y \in \mathbb{R}^N$$



### **Definitions**

Refer to n as the model order, or rather, the number of parameters, and N as the number of  $\emph{real-valued}$  samples

$$\theta \in \mathbb{R}^n, \quad y \in \mathbb{R}^N$$

For  $\{y(t)\}_{t=1}^{N_s}$  complex-valued samples from the line spectra model

$$y(t) = \sum_{k=1}^{n_c} \alpha_k e^{i(\omega_k t + \varphi_k)} + e(t)$$

we have

$$N = 2N_s$$
$$n = 3n_c + 1$$

that is, both real and imaginary part of the data, and three parameters per component plus the noise variance are unknown



#### Rule of thumb

#### General

It is always possible to get a better model fit if we increase the model order ("increase flexibility").

- Infinite order is not better (or even possible)!
- Does not explain the underlying structure
- Fits to the random noise, giving random estimates (overfitting)



#### Rule of thumb

#### General

It is always *possible* to get a better model fit if we increase the model order ("increase flexibility").

- Infinite order is not better (or even possible)!
- Does not explain the underlying structure
- ► Fits to the random noise, giving random estimates (overfitting)

### Heuristic approach (Occam's razor)

We need to choose n high enough that the model gives a sufficient description of the data, while still keeping n << N to get reliable (low variance) estimates.

5/18 per.mattsson@it.uu.se SysCon, IT, UU



### In practice

### Principle of parsimony idea

Increase the order as long as the error reduces significantly

- Subjective but reasonable
- An even lower model order might still be enough for your purpose
- ▶ What is significant?



### In practice

### Principle of parsimony idea

Increase the order as long as the error reduces significantly

- Subjective but reasonable
- An even lower model order might still be enough for your purpose
- What is significant?





- ightharpoonup Somehow *automatically* estimate n from y
- ► Many application specific methods (of limited applicability)
- ► **Here:** General rules associated with the Maximum Likelihood Method (MLM)



- lacktriangle Somehow automatically estimate n from y
- Many application specific methods (of limited applicability)
- ► Here: General rules associated with the Maximum Likelihood Method (MLM)

#### Maximum likelihood

 $p(y|\theta)$  is the probability of the data vector y given the model parameter vector  $\theta$ .

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \ p(y|\theta) = \underset{\theta}{\operatorname{argmin}} \ - \ln \left( p(y|\theta) \right)$$



- Somehow automatically estimate n from y
- Many application specific methods (of limited applicability)
- ▶ Here: General rules associated with the Maximum Likelihood Method (MLM)

#### Maximum likelihood

 $p(y|\theta)$  is the probability of the data vector y given the model parameter vector  $\theta$ .

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \ p(y|\theta) = \underset{\theta}{\operatorname{argmin}} \ - \ln \left( p(y|\theta) \right)$$

 $\triangleright$   $p(y|\theta)$  is called the *likelihood function* (arbitrary noise distr.)



- lacktriangle Somehow automatically estimate n from y
- ► Many application specific methods (of limited applicability)
- ► Here: General rules associated with the Maximum Likelihood Method (MLM)

#### Maximum likelihood

 $p(y|\theta)$  is the probability of the data vector y given the model parameter vector  $\theta$ .

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(y|\theta) = \underset{\theta}{\operatorname{argmin}} - \ln (p(y|\theta))$$

- $ightharpoonup p(y|\theta)$  is called the *likelihood function* (arbitrary noise distr.)
- ► Intuitive we want to maximize the probability that our model explains the data



- ightharpoonup Somehow automatically estimate n from y
- ► Many application specific methods (of limited applicability)
- ► Here: General rules associated with the Maximum Likelihood Method (MLM)

#### Maximum likelihood

 $p(y|\theta)$  is the probability of the data vector y given the model parameter vector  $\theta$ .

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(y|\theta) = \underset{\theta}{\operatorname{argmin}} - \ln (p(y|\theta))$$

- $ightharpoonup p(y|\theta)$  is called the *likelihood function* (arbitrary noise distr.)
- ► Intuitive we want to maximize the probability that our model explains the data
- Reduces to NLS for Gaussian data



▶ Data-model, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$



**Data-model**, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$

► Likelihood (assuming Gaussian noise):

$$p(y|\theta) = \frac{1}{(2\pi)^{N/2} (\sigma^2)^{N/2}} e^{-\frac{\|y - f(\gamma)\|^2}{2\sigma^2}}$$

where  $\theta = [\gamma, \sigma^2]^{\top}$  is the vector of all unknowns.



▶ Data-model, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$

► Likelihood (assuming Gaussian noise):

$$p(y|\theta) = \frac{1}{(2\pi)^{N/2} (\sigma^2)^{N/2}} e^{-\frac{\|y - f(\gamma)\|^2}{2\sigma^2}}$$

where  $\theta = [\gamma, \ \sigma^2]^{\top}$  is the vector of all unknowns.

► Log-likelihood:

$$-\ln(p(y|\theta)) =$$



Data-model, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$

Likelihood (assuming Gaussian noise):

$$p(y|\theta) = \frac{1}{(2\pi)^{N/2} (\sigma^2)^{N/2}} e^{-\frac{\|y - f(\gamma)\|^2}{2\sigma^2}}$$

where  $\theta = [\gamma, \sigma^2]^{\top}$  is the vector of all unknowns.

► Log-likelihood:

$$-\ln(p(y|\theta)) = \frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln(\sigma^2) + \frac{\|y - f(\gamma)\|^2}{2\sigma^2}$$



**Data-model**, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$

► Likelihood (assuming Gaussian noise):

$$p(y|\theta) = \frac{1}{(2\pi)^{N/2} (\sigma^2)^{N/2}} e^{-\frac{\|y - f(\gamma)\|^2}{2\sigma^2}}$$

where  $\theta = [\gamma, \ \sigma^2]^{\top}$  is the vector of all unknowns.

► Log-likelihood:

$$-\ln(p(y|\theta)) = \frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln(\sigma^2) + \frac{\|y - f(\gamma)\|^2}{2\sigma^2}$$

► Minimizer:

$$\hat{\gamma} =$$



**Data-model**, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$

► Likelihood (assuming Gaussian noise):

$$p(y|\theta) = \frac{1}{(2\pi)^{N/2} (\sigma^2)^{N/2}} e^{-\frac{\|y - f(\gamma)\|^2}{2\sigma^2}}$$

where  $\theta = [\gamma, \ \sigma^2]^{\top}$  is the vector of all unknowns.

► Log-likelihood:

$$-\ln(p(y|\theta)) = \frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln(\sigma^2) + \frac{\|y - f(\gamma)\|^2}{2\sigma^2}$$

► Minimizer:

$$\hat{\gamma} = \underset{\gamma}{\operatorname{argmin}} \|y - f(\gamma)\|^2$$



**Data-model**, with parameters  $\gamma$  and noise variance  $\sigma^2$ :

$$y = f(\gamma) + e$$

► Likelihood (assuming Gaussian noise):

$$p(y|\theta) = \frac{1}{(2\pi)^{N/2} (\sigma^2)^{N/2}} e^{-\frac{\|y - f(\gamma)\|^2}{2\sigma^2}}$$

where  $\theta = [\gamma, \ \sigma^2]^{\top}$  is the vector of all unknowns.

► Log-likelihood:

$$-\ln(p(y|\theta)) = \frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln(\sigma^2) + \frac{\|y - f(\gamma)\|^2}{2\sigma^2}$$

► Minimizer:

$$\hat{\gamma} = \underset{\gamma}{\operatorname{argmin}} \ \|y - f(\gamma)\|^2 \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{N} \|y - f(\hat{\gamma})\|^2$$



# Maximum a posteriori (MAP)

**Hypothesis:**  $H_n$  denotes that the model order is n

Bayes rule:

$$p(H_n|y) = \frac{p(y|H_n)p(H_n)}{p(y)}$$

where  $p(H_n)$  is the a priori probability of  $H_n$ 



# Maximum a posteriori (MAP)

**Hypothesis:**  $H_n$  denotes that the model order is n

Bayes rule:

$$p(H_n|y) = \frac{p(y|H_n)p(H_n)}{p(y)}$$

where  $p(H_n)$  is the *a priori* probability of  $H_n$ 

#### MAP

Find the most probable order, given the data, through

$$\max_{n\in[1,\ \bar{n}]} p(y|H_n)p(H_n)$$

p(y) is just a normalization factor independent of n



#### A few different rules

Derived from statistical reasoning and information theory (Maximum a posteriori or Kullback-Leibler information)

Four methods we will look at (listed by increasing "performance")

- Akaike information criterion (AIC)
- Corrected Akaike information criterion (AIC<sub>c</sub>)
- Generalized information criterion (GIC)
- Bayesian information criterion (BIC)

See the book for derivations (beyond our scope).



#### A few different rules

Derived from statistical reasoning and information theory (Maximum a posteriori or Kullback-Leibler information)

Four methods we will look at (listed by increasing "performance")

- Akaike information criterion (AIC)
- Corrected Akaike information criterion (AIC<sub>c</sub>)
- Generalized information criterion (GIC)
- Bayesian information criterion (BIC)

See the book for derivations (beyond our scope).

Several other criteria available too:

- ► Minimum description length (MDL)
- ▶ etc...



## Statistical approach

**Reasonable idea:** Add a term to the fitting problem that depends on n, penalizing high order.

#### Family of selection rules

minimize 
$$-2\ln(p_n(y|\theta_n)) + \eta(n,N)n$$

where  $\theta_n$  is used as a reminder that  $\theta$  is of length n

The penalty coefficients  $\eta(n, N)$  are given by

$$\begin{aligned} &\mathsf{AIC}: \eta(n,N) = 2\\ &\mathsf{AIC_c}: \eta(n,N) = 2\frac{N}{N-n-1}\\ &\mathsf{GIC}: \eta(n,N) = \nu \in [2,\ 6]\\ &\mathsf{BIC}: \eta(n,N) = \ln N \end{aligned}$$



### **Penalty comparison**



Figure C.1. Penalty coefficients of AIC, GIC with  $\nu = 4$  ( $\rho = 3$ ), AIC<sub>c</sub> (for n=5), and BIC, as functions of data length N.



#### **Practical considerations**

► Hard to solve

$$\min_{\theta_n,n} -2\ln(p_n(y|\theta_n)) + \eta(n,N)n$$

lacktriangle Assuming Gaussian noise, inserting the solution for fixed n

$$-2\ln(p_n(y|\hat{\theta}_n)) = N\ln(2\pi) + N + N\ln(\hat{\sigma}_n^2),$$

where 
$$\hat{\sigma}_n^2 = \frac{1}{N} ||y - f(\hat{\gamma_n})||^2$$
.

Solution: Compute  $\hat{\sigma}_n^2$  for many n, and choose the solution that minimize

$$N\ln(\hat{\sigma}_n^2) + \eta(n,N)n.$$



### **Example:** Line spectra

For some fixed order  $n_c$  of the complex-valued signal model, and the estimated parameters for that order, we have

$$\hat{\sigma}_{n_c}^2 = \frac{1}{N_s} \sum_{t=1}^{N_s} \left| y(t) - \sum_{k=1}^{n_c} \hat{\alpha}_k e^{i(\hat{\omega}_k + \hat{\varphi}_k)} \right|$$

which can be computed for every order  $n_c$ 



### **Example:** Line spectra

For some fixed order  $n_c$  of the complex-valued signal model, and the estimated parameters for that order, we have

$$\hat{\sigma}_{n_c}^2 = \frac{1}{N_s} \sum_{t=1}^{N_s} \left| y(t) - \sum_{k=1}^{n_c} \hat{\alpha}_k e^{i(\hat{\omega}_k + \hat{\varphi}_k)} \right|$$

which can be computed for every order  $n_c$ 

We can then compute, e.g. the AIC, as

$$AIC(n_c) = 2N_s \ln(\hat{\sigma}_{n_c}^2) + 2(3n_c + 1)$$

and choose the order that minimizes the AIC

- ▶ We need to compute the error (MSE) for many model orders
- ▶ Then we can choose based on some information criteria



#### Considerations

- Automatic order selection is possible
- Now we have several criteria, how do we choose?
  - Pick your favorite
  - Look at all of them to make a final decision
  - Combine the information based approaches
- Computational burden can be a problem
- Methods can "fail"
- An informed guess can still be better
- Non-parametric approaches avoids this problem (almost)

SysCon, IT, UU



#### ARMA order selection

### Heuristic for ARMA (or linear systems)

Reduce order if you have pole/zero cancellation, i.e., if there are estimated poles and zeros that overlap (more or less) they may not influence the result.

$$y(t) = \frac{B(z)}{A(z)}e(t) = \frac{\tilde{B}(z)(1 - kz^{-1})}{\tilde{A}(z)(1 - kz^{-1})}e(t) = \frac{\tilde{B}(z)}{\tilde{A}(z)}e(t)$$

where  $\tilde{B}$  and  $\tilde{A}$  have lower order

- Model specific approach (but quite general)
- Easy to use
- Intuitive



### **Useful functions**

#### Custom functions implemented:

- ▶ armaorder(mvec, sig2, N, nu)
- sinorder(mvec,sig2,N,nu)

#### Usage:

- mvec: vector of number of sinusoids (or complex exponentials for complex valued data)
- $\blacktriangleright$  sig2: vector mean square errors (that is, estimate of  $\sigma^2$ ) for model orders given in mvec
- N: number of real-valued data points
- ▶ nu: GIC parameter (usually  $\nu \in [2, 6]$ , default=4)
- output: the model orders that minimizes the AIC, AICc, GIC, and BIC criterions



### **Summary**

- Out of a selection of models that are sufficient for the application, choose the simplest one
- ▶ In general: try to choose n << N
- ► Look at the increase in performance (decrease in error) as a function of *n*
- ▶ BIC, GIC, AIC<sub>c</sub>, AIC can give automatic guidance
- ► Study your model and simplify (e.g. pole/zero cancellation)



## **Summary**

- Out of a selection of models that are sufficient for the application, choose the simplest one
- ▶ In general: try to choose n << N
- ► Look at the increase in performance (decrease in error) as a function of *n*
- ▶ BIC, GIC, AIC<sub>c</sub>, AIC can give automatic guidance
- Study your model and simplify (e.g. pole/zero cancellation)

In the end, try several things to make yourself comfortable with a certain choice of  $\boldsymbol{n}$ 

18/18 per.mattsson@it.uu.se SysCon, IT, UU