CLAIMS

ados addes 1. Influenza antigen, comprising a fusion product of at least the extracellular part of a conserved influenza membrane protein or a functional fragment thereof and a presenting carrier.

2. Influenza antigen, wherein the presenting carrier is a presenting (poly)peptide.

- 3. Influenza antigen, wherein the presenting carrier is a non-peptidic structure, such as glycans, peptide mimetics, synthetic polymers.
- 4. Influenza antigen as claimed in claims 1-3 further comprising an additional domain for enhancing the cellular immune response immunogenicity of the antigen.
- 5. Influenza antigen as claimed in claims 1-4, wherein the conserved influenza membrane protein is the
 - 6. Influenza antigen as claimed in claim 5, wherein the M2 membrane protein originates from influenza A virus.
- 7. Influenza antigen as claimed in claims 1-6, wherein the presenting (poly) peptide is selected from the hepatitis B core protein, one or more C3d domains, tetanus toxin fragment C.
- 8. Influenza antigen as claimed in claims 1-7, wherein the antigen consists of <u>Lactococci</u> cells
 25 expressing the fusion product in or on their cell
 - membrane, optionally said cells release said product.

 9. Influenza antigen as claimed in claims 1-8, wherein the functional fragment of the conserved influenza membrane protein is a fragment that is capable of clinicians.
- of eliciting a statistically significant higher immunoprotection when administered in an immunoprotective dose to test members of a species than is found in control members of the same species not receiving the functional fragment.

- 10. Influenza antigen as claimed in claims 1-9, wherein the additional domain is an influenza specific T helper cell epitope or cytotoxic T cell epitope.
- 11. Influenza antigen as claimed in claims 15 10, obtainable by preparing a gene construct comprising a coding sequence for at least the extracellular part of a conserved influenza membrane protein or a functional fragment thereof and at least one coding sequence for a presenting (poly) peptide operably linked thereto,
- optionally in the presence of suitable transcription and/or translation regulatory sequences, bringing this gene construct in a suitable acceptor cell, effecting expression of the gene construct in the acceptor cell and optionally isolating the antigen from the acceptor cell or its culture medium.
- 12. Influenza antigen as claimed in claim 11, wherein the coding sequence for the extracellular part of a conserved influenza membrane protein consists of a coding sequence for the extracellular part of the M2 20 protein of the influenza A virus or a functional fragment thereof and the coding sequence for the presenting (poly) peptide is selected from coding sequences for hepatitis B core protein, one or more C3d domains, or tetanus toxin fragment C.
- 13. Influenza antigen as claimed in claims 112, comprising the amino acids 2 to 24 of the M2 protein of influenza A virus, or modified versions thereof not substantially altering the tertiary structure of this part of the protein and hepatitis B core protein and/or one or more C3d domains.
 - 14. Influenza antigen as claimed in claims 1-13 for use in the preparation of a vaccine against influenza for humans and animals.
- 15. Influenza antigen as claimed in claims 1-14
 35 for use in the preparation of a vaccine against influenza
 A for humans and animals.

- 16. Vaccine against influenza, comprising at least an antigen as claimed in claims 1-15, optionally in the presence of one or more excipients.
- 17. Vaccine as claimed in claim 16, wherein the 5 antigen is in isolated form.
 - 18. Vaccine as claimed in claim 16, wherein the antigen is part of a membrane fragment.
- 19 Vaccine as claimed in claim 16, wherein the antigen is anchored in the membrane of an acceptor cell 10 expressing the antigen.
 - 20. Vaccine as claimed in claim 16, wherein the antigen consists of <u>Lactococci</u> cells expressing the fusion product in or on their cell envelope.
- 21. Vaccine as claimed in claims 16-20, further 15 comprising one or more other influenza antigens, for example selected from hemagglutinin, neuraminidase nucleoprotein and/or native M2.
 - 22. Use of an antigen as claimed in claims 1-13 for the preparation of a vaccine against influenza.
- 23. Method of preparing an antigen as claimed in claims 1-15, comprising the steps of:
 - a) preparing a gene construct comprising a coding sequence for at least the extracellular part of a conserved influenza membrane protein or a functional
- 25 fragment thereof and at least one coding sequence for a presenting (poly)peptide operably linked thereto, optionally in the presence of suitable transcription and/or translation regulatory sequences,
- b) bringing this gene construct in a suitable 30 acceptor cell,
 - c) effecting expression of the gene construct in the acceptor cell, and
 - d) optionally isolating the antigen from the acceptor cell or its culture medium.
- 24. Acceptor cell, expressing an antigen as claimed in claims 1-15.
 - 25. Acceptor cell as claimed in claim 24, wherein the cells are <u>Lactococcus</u> cells.

