Q!

Qг

4

Rź

y s

Heisenberg's uncertainty principle

masurable quantity

(x) = 0

(b) a 50 kg person moving at 2 m s^{-1} .

$$\Delta x \Delta p > \frac{h}{4\pi}$$
, $\frac{h}{p} = \lambda$, $\Delta x = 6 = \frac{\lambda}{2}$

the uncertainty relation $\Delta p.\Delta r \geq \hbar/2$, estimate the root mean square speed of the proton, assuming it to be non-relativistic. (You can assume that the average value of p^2 is square of the uncertainty in momentum.)

Proton is bound in nullmand rad p^2 p^2

2. A lead nucleus has a radius 7×10^{-15} m. Consider a proton bound within nucleus. Using

1. Estimate the uncertainty in the position of (a) a neutron moving at 5×10^6 m s⁻¹ and

:. Dr = L Dr Dp >, \f /2 and we have to find \(\sqrt{v^2} \)
GRMS ve

Since proton is effectively bound in a sphere (p>=0 du to velocities randonly in all direchs

J(v2) = 7.5416 x 10-21 = 4.5159 x 106 m/s

$$\Delta p^{2} = \langle p^{2} \rangle - \langle p \rangle^{2}$$

$$\Delta p = \int \langle p^{2} \rangle = \frac{1}{2} \Delta n = 7.5416 \times 10^{-21}$$
For rms vel, divide by mp

1.67 × 10-27

3. * A π^0 meson is an unstable particle produced in highenergy particle collisions. It has a mass-energy equivalent of about 135MeV, and it exists for an average lifetime of only 8.7×10^{-17} s before decaying into two γ rays. Using the uncertainty principle, estimate the fractional uncertainty $\Delta m/m$ in its mass determination.

ΔF = <u>h</u> 4πΔt

Ry uncertainty principle: $\Delta E \Delta E = \frac{L}{4\pi}$

4. * For a non-relativistic electron, using the uncertainty relation
$$\Delta x \Delta p_x = \hbar/2$$
(a) Derive the expression for the minimum kinetic energy of the electron localized in a

- region of size 'a'.

 (b) If the uncertainty in the location of a particle is equal to its de Broglie wavelength, show that the uncertainty in the measurement of its velocity is same as the particle velocity.
 - (c) Using the expression in (b), calculate the uncertainty in the velocity of an electron having energy 0.2 keV (d) An electron of energy 0.2 keV is passed through a circular hole of radius 10^{-6} m. What

is the uncertainty introduced in the angle of emergence in radians? (Given $\tan\theta\cong\theta$)

- Non relativistic e⁰
- a) for Localisatin in a. $\Delta n = \alpha/2$ (can also take a)
 - $KE = \Delta p_{1}^{2} : \langle p_{1}^{2} \rangle$, $|C| = \frac{h^{2}}{2ma^{2}}$
 - on=a, KEmin= $\frac{\pi^2}{8ma2}$

 $\Delta R M \Delta V = \frac{h}{2}$ $\Rightarrow \Delta V = \frac{h}{a m}$

 $\lambda \Delta p = \frac{h}{2}$ and $\Delta p = \frac{h}{\lambda \times 4\pi}$

It dn= A, Hun dv= V

c) Energy = 0.2 keV

5. An atom in an excited state 1.8eV above the ground state remains in that excited state

DVn= V const factor

 $\Delta V n = V$ 4π $\Delta V = \int \frac{2F}{m} \cdot \frac{1}{4\pi} = \int \frac{2 \times 0.2}{511} \text{ keV} = 6.7 \times 10^5 \text{ m/s}$ e^{Θ}

Dy DPy = 1/2

$$0 = (\frac{h/2\Delta y}{1}) = 4.3 \times 10^{-5} \text{ rad}$$

Just tell verbally

· DL = h

electrons must be used in this instrument?

To resolve object-s smaller than 0,14 nm.

2 2 0,14 for co microscope.

6. * An electron microscope is designed to resolve objects as small as 0.14 nm. What energy

Note: e° microsupes are relativistic

7. * Show that the uncertainty principle can be expressed in the form
$$\Delta L \Delta \theta \geq \hbar/2$$
, where θ is the angle and L the angular momentum. For what uncertainty in L will the angular position of a particle be completely undetermined?

Resumptions a circular case

Assumption and of circular puth is precisely known

L= xp=> \(\mathrice{\pi} = \pi \text{\result} \), \(\pi = \pi \text{\result} \), \(\pi = \pi \text{\result} \text{\result} \)

for umpletely undetermined post, when uncertainty is total path => 1. D0=211