1. Согласно теореме о равнораспределении энергии, на каждую колебательную степень свободы атома кристалла в среднем приходится энергия, равная kT, где T - абсолютная температура, k - постоянная Больцмана. Пользуясь этой теоремой, найдите молярную теплоемкость кристаллов.

В таблице приведены значения удельной теплоемкости c и молярные веса μ для ряда металлов. Оцените по этим данным значение универсальной газовой постоянной.

Таблица.

металл	С,	μ,	металл	С,	μ,
	κ Дж $/(\kappa r \cdot K)$	г / моль		κ Дж $/(\kappa r \cdot K)$	г / моль
			-		1
алюминий	0,88	27,0	натрий	1,20	23,0
железо	0,46	55,8	олово	0,20	118,6
золото	0,13	197,0	марганец	0,50	54,9
магний	1,05	24,3	медь	0,38	63,5

2. На длинную непроводящую гладкую спицу нанизано очень много одинаковых непроводящих шариков. Шарики несут одинаковые по модулю электрические заряды , причем знаки зарядов чередуются. Сила электростатического взаимодействия между двумя соседними шариками равна $f_0 = 10H$. Какую минимальную силу необходимо приложить к крайнему шарику, чтобы разорвать «цепочку»? Вычислите эту силу с погрешностью, не превышающей 5%.

В каком месте разорвется цепочка, если приложить к крайнему шарику медленно возрастающую силу \vec{F} ?

3. Трехлопастный вентилятор, вращающийся с

частотой $n = 10\,c^{-1}$, освещается стробоскопом, частота вспышек которого может плавно изменяться в диапазоне от 2 до 200 Гц. При каких частотах вспышек стробоскопа будет казаться, что вентилятор

- а) неподвижен и имеет три лопасти;
- б) неподвижен и имеет шесть лопастей;
- в) вращается в противоположную сторону с частотой $n_1 = 0.25c^{-1}$?
- 4. Сосуд в форме параллелепипеда, размеры которого указаны на рисунке, снабжен плотно пригнанным подвижным поршнем Π . В верхней крышке сосуда слева сделана небольшая щель AB. Первоначально поршень примыкает к правой стенке сосуда. В сосуд наливают воду так, что высота ее

уровня равна h_0 . Какую минимальную работу необходимо совершить, чтобы, медленно передвигая поршень, полностью

вытеснить воздух из сосуда? Атмосферное давление P_{θ} .

5 . Тонкое кольцо радиусом R = 10 c M сильно раскрутили вокруг собственной оси и повесили на горизонтальный стержень A радиусом r = 1,0 c M . На графике представлена зависимость от времени угла ϕ , определяющего положение центра кольца. Определите коэффициент трения кольца о стержень.

Стержень A расположили вертикально. С какой скоростью необходимо толкнуть кольцо, чтобы оно вращалось вокруг стержня на постоянной высоте?

Республиканская олимпиада по физике 1999 год, г. Гродно

11 класс.