Network Theory Homework 5

Manoj Gopalkrishnan

12 August 2017

Homework is not to be submitted. If you prepare a solution and upload it to Moodle, you may be eligible for extra credit, as per the course rules.

- 1. Define the following:
 - (a) Field
 - (b) Vector Space over a field
 - (c) Linear Map $L: U \to V$ between vector spaces U and V
 - (d) Dual vector space V^*
 - (e) Transpose L^T of a linear map L.
 - (f) Subspace of a vector space
 - (g) A linearly independent set in a vector space
- 2. Prove or disprove: Let (F,0,+,1,*) be a field. Then (F,0,+) is a vector space over (F,0,+,1,*).
- 3. Prove or disprove: Let F be a field, and V a vector space over F. Then the dual of the dual $(V^*)^*$ is isomorphic to V.
- 4. Let F be a field. Let U, V be vector spaces over F. Let $\mathcal{L}(U, V)$ be the set of all linear maps from U to V. Give a vector space structure on $\mathcal{L}(U, V)$.
- 5. Let (N, E) be a graph. Define the map δ . What are the domain and codomain of this map? Prove/ disprove: δ is a linear map. If $N = \{1, 2, 3, 4\}$ and $E = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$ then write down the matrix corresponding to δ . Define the map δ^T . What are the domain and codomain of this map?
- 6. For a given graph G, define W_{KCL} and W_{KVL} . Prove/ disprove: if $v \in W_{KVL}$ and $i \in W_{KCL}$ then the power $\sum_{e \in E} i_e v_e = 0$.
- 7. Let V be a vector space and let $S \subseteq V$ be a finite subset of V. Define the span of S. Prove/ disprove: The span is a vector space.

- 8. Let $L:V\to W$ be a linear map from vector spaces V and W. Define the kernel or nullspace $\ker L$ of L. Prove or disprove: The kernel is a subspace of V. Define the image $\operatorname{im} L$. Prove/ disprove: The image is a subspace of W.
- 9. Let $W \subseteq V$ be a subspace of a vector space V. Define W^{\perp} .
- 10. Fix a linear map $L: V \to W$. Prove/ disprove: $(\ker L)^{\perp} = \operatorname{im} L^{T}$.
- 11. Let $S \subseteq V$ be a finite subset of a vector space V. Let W_S be the intersection of all vector spaces containing S.
 - (a) Prove/ disprove: W_S is a vector space.
 - (b) Prove/ disprove: W_S is the span of S.