

数据结构与算法(七)

张铭 主讲

采用教材:张铭,王腾蛟,赵海燕编写 高等教育出版社,2008.6 ("十一五"国家级规划教材)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg

第7章 图

- 7.1 图的定义和术语
- 7.2 图的抽象数据类型
- 7.3 图的存储结构
- 7.4 图的周游
- 7.5 最短路径
 - 7.5.1 单源最短路径
 - 7.5.2 每对结点之间的最短路径
- 7.6 最小生成树

单源最短路径

- 单源最短路径(single-source shortest paths)
 - 给定带权图 $G = \langle V , E \rangle$, 其中每条边 (v_i , v_j) 上的权 $W[v_i , v_j]$ 是一个 **非负实数** 。 计算从任给的一个源点 s 到所有其他各结点的最短路径

Dijkstra算法基本思想

- 把所有结点分成两组
 - 第一组 U 包括已确定最 短路径的结点
 - 第二组 V-U 包括尚未确 定最短路径的结点
- 按最短路径长度递增的顺序逐个把第二组的结点加到第一组中
 - 直至从 s 出发可达结点 都包括进第一组中

	V_0	$oldsymbol{V}_1$	V_2	V_3	$\mathbf{V_4}$	V_5
初始状态	0 Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0

	V_0	V_1	V_2	V_3	V_4	V_5	
初始	0 Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0	
V ₀ 进入 第一组	0 Pre:0	50 Pre:0	10 Pre:0	∞ Pre:0	∞ Pre:0	∞ Pre:0	

	$\mathbf{V_0}$	$\mathbf{V_1}$	V_2	V_3	${f V_4}$	\mathbf{V}_{5}	
V ₂ 进入	0	50	10	∞	∞	∞	
之前	Pre:0	Pre:0	Pre:0	Pre:0	Pre:0	Pre:0	
V ₂ 进入	0	50	10	25	∞	∞	
第一组	Pre:0	Pre:0	Pre:0	Pre:2	Pre:0	Pre:0	

	V _o	V_1	V_2	V_3	V_4	V_5	
V₃进入	0	50	10	25	∞	∞	
V ₃ 进入 之前	Pre:0	Pre:0	Pre:0	Pre:2	∞ Pre:0	Pre:0	
V ₃ 进入 第一组	0 Pre:0	45 Pre:3			60 Pre:3	∞ Pre:0	

	V_0	V_1	V_2	V_3	V_4	V_5	
V ₁ 进入 之前	0	45	10	25	60	∞	◆
之前	Pre:0	Pre:3	Pre:0	Pre:2	Pre:3	Pre:0	
V ₁ 进入 第一组	0 Pre:0	45 Pre:3	10 Pre:0	25 Pre:2	60 Pre:3	∞ Pre:0	

	V_0	V_1	\mathbf{V}_2	V_3	$old V_4$	\mathbf{V}_{5}
V₄ 进入	0	45	10	25	60	∞
V ₄ 进入 之前	Pre:0	Pre:3	Pre:0	Pre:2	Pre:3	Pre:0
V ₄ 进入 第一组	0		10		60	∞
第一组	Pre:0	Pre:3	Pre:0	Pre:2	Pre:3	Pre:0

Dijkstra单源最短路径迭代过程

步数	S	$\mathbf{v_0}$	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4
初始	$\{\mathbf{v_0}\}$	Length:0 pre:0	length: <u>50</u> pre:0	length: <u>10</u> pre:0	length:∞ pre:0	length:∞ pre:0
1	$\{\mathbf{v_0}, \mathbf{v_2}\}$	Length:0 pre:0	length:50 pre:0	length:10 pre:0	length:25 pre:2	length:∞ pre:0
2	$\{\mathbf{v}_0,\mathbf{v}_2,\mathbf{v}_3\}$	Length:0 pre:0	length: <u>45</u> pre:3	length:10 pre:0	length:25 pre:2	length: <u>60</u> pre:3
3	$\{\mathbf{v}_0, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_1\}$	Length:0 pre:0	length: 45 pre:3	length:10 pre:0	length:25 pre:2	length:60 pre:3
4	$\{v_0, v_2, v_3, v_1, v_4\}$	Length:0 pre:0	length: 45 pre:3	length:10 pre:0	length:25 pre:2	length:60 pre:3

Dijkstra单源最短路径算法

```
// Dist类 , 用于保存最短路径信息
class Dist {
public:
                    // 结点的索引值, 仅Dijkstra算法用到
  int index;
                    // 当前最短路径长度
  int length;
                     // 路径最后经过的结点
  int pre;
};
void Dijkstra(Graph& G, int s, Dist* &D) { // s是源点
  D = new Dist[G. VerticesNum()];
                                // 记录当前最短路径长度
  for (int i = 0; i < G.VerticesNum(); i++) { // 初始化
     G.Mark[i] = UNVISITED:
     D[i].index = i; D[i].length = INFINITE; D[i].pre = s;
                                  // 源点到自身的路径长度置为0
  D[s].length = 0;
  MinHeap<Dist> H(G. EdgesNum()); // 最小值堆用于找出最短路径
  H.Insert(D[s]);
```



```
for (i = 0; i < G.VerticesNum(); i++)
  bool FOUND = false;
  Dist d:
  while (!H.isEmpty()) {
                                       //获得到s路径长度最小的结点
     d = H.RemoveMin();
     if (G.Mark[d.index] == UNVISITED) { //如果未访问过则跳出循环
        FOUND = true; break;
  if (!FOUND) break; // 若没有符合条件的最短路径则跳出本次循环
  int v = d.index;
  G.Mark[v] = VISITED; // 将标记位设置为 VISITED
  for (Edge e = G.FirstEdge(v); G.IsEdge(e); e = G.NextEdge(e)) // 刷新最短路
     if (D[G.ToVertex(e)].length > (D[v].length+G.Weight(e))) {
        D[G.ToVertex(e)].length = D[v].length + G.Weight(e);
        D[G.ToVertex(e)].pre = v;
        H.Insert(D[G.ToVertex(e)]):
  } }
```


Dijkstra算法时间代价分析

- 每次改变D[i].length
 - 不删除,添加一个新值(更小的),作为堆中新元素。旧值被找到时,该结点一定被标记为VISITED,从而被忽略
- 在最差情况下,它将使堆中元素数目由Θ(|V|)增加到Θ(|E|),总的时间代价Θ((|V|+|E|) log|E|)

Dijkstra算法

- 是否支持
 - 有向图、无向图
 - 非连通
 - 有回路的图
 - 权值为负
- 如果不支持
 - •则修改方案?

- •针对有向图(且"有源")
 - •若输入无向图?
 - •照样能够处理(边都双向)
- •对非连通图,有不可达
 - •没有必要修改
- •支持回路
- •支持负权值?

Dijkstra算法不支持负权值

如果存在总权值为负的回路,则将出现权值为 -∞ 的情况

如果不存在负权回路呢? Dijkstra算法不受负权边的影响吗?

- 即使不存在负的回路,也可能有在后面出现的负权值, 从而导致整体计算错误
- 主要原因是 Dijkstra 算法是贪心法, 当作最小取进来后, 不会返回去重新计算

- 持负权值的最短路径算法
 - Bellman Ford 算法
 - 参考书 MIT "Introduction to Algorithms"
 - SPFA 算法

每对结点间的最短路径

- 还能用 Dijkstra 算法吗?
- 以每个结点为起点,调用 n 次 Dijkstra 算法

```
void Dijkstra_P2P(Graph& G) {
        Dist **D=new Dist *[G.VerticesNum()];
        for(i=0; i<G.VerticesNum(); i++)
        Dijkstra(Graph& G, i, D[i]);
}</pre>
```


Floyd算法求每对结点之间的最短路径

- 用相邻矩阵 adj 来表示带权有向图
- 基本思想:
 - 初始化 adj⁽⁰⁾ 为相邻矩阵 adj
 - 在矩阵 adj⁽⁰⁾上做 n 次迭代,递归地产生一个矩阵序列adj⁽¹⁾,...,adj^(k),...,adj⁽ⁿ⁾
 - 其中经过第k次迭代, $adj^{(k)}[i,j]$ 的值等于从结点 v_i 到结点 v_j 路径上所经过的结点序号不大于 k 的最短路径长度
- 动态规划法

最短路径组合情况分析

由于第 k 次迭代时已求得矩阵 $adj^{(k-1)}$, 那么从结点 v_i 到 v_j 中间结点的序号不大于 k 的最短路径有两种情况:、

- 一种是中间不经过结点 v_k , 那么此时就有 $adj^{(k)}[i,j] = adj^{(k-1)}[i,j]$
- 另中间经过结点 v_k , 此时 $adj^{(k)}$ [i , j] < $adj^{(k-1)}$ [i , j] , 那么这条由结点 v_i 经过 v_k 到结点 v_j 的中间结点序号不大于k的最短路径由两段组成

$$adj^{(k)}[i,j] = adj^{(k-1)}[i,k] + adj^{(k-1)}[k,j]$$

Floyd算法演示动画

6+11

3+4

 ∞

每对结点之间最短路径的Floyd算法

```
void Floyd(Graph& G, Dist** &D) {
  int i,j,v;
  D = new Dist*[G.VerticesNum()];
                                              // 申请空间
  for (i = 0; i < G.VerticesNum(); i++)
     D[i] = new Dist[G.VerticesNum()];
                                              // 初始化数组D
  for (i = 0; i < G.VerticesNum(); i++)
     for (j = 0; j < G.VerticesNum(); j++) {
        if (i == j) {
           D[i][j].length = 0;
           D[i][j].pre = i;
        } else {
           D[i][j].length = INFINITE;
           D[i][j].pre = -1;
```



```
for (v = 0; v < G.VerticesNum(); v++)
  for (Edge e = G.FirstEdge(v); G.IsEdge(e); e = G.NextEdge(e)) {
     D[v][G.ToVertex(e)].length = G.Weight(e);
     D[v][G.ToVertex(e)].pre = v;
// 加入新结点后,更新那些变短的路径长度
for (v = 0; v < G.VerticesNum(); v++)
  for (i = 0; i < G.VerticesNum(); i++)
     for (j = 0; j < G.VerticesNum(); j++)
        if (D[i][j].length > (D[i][v].length+D[v][j].length)) {
           D[i][j].length = D[i][v].length+D[v][j].length;
           D[i][j].pre = D[v][j].pre;
```


Floyd算法的时间复杂度

- 三重for循环
 - 复杂度是Θ(n³)

讨论: Dijkstra 找最小 Dist 值

·如果不采用最小堆,而采用每次遍历的方式寻找最小值,与用最小堆实现的Dijkstra 相比,时间效率如何?

讨论: Floyd算法保持 pre 的方式

- 将"D[i][j].pre= D[v][j].pre" 改为
 " D[i][j].pre = v" 是否可以?
 - 上述两种方案不影响 D[i][j].length 的求解
 - 对于恢复最短路径,策略有何不同?那种更优?

数据结构与算法

谢谢聆听

国家精品课"数据结构与算法" http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

> 张铭,王腾蛟,赵海燕 高等教育出版社,2008. 6。"十一五"国家级规划教材