高等代数作业

1.

题目: 设 $V \in P$ 上的 n 维线性空间, 则 $V \cong P^n$.

解答:

在 V 中取定一组基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 后, V 中的每一个向量 α 都有唯一确定的坐标 (a_1, a_2, \cdots, a_n)

向量坐标是 P 上的 n 维数组, 因此属于 P^n , 则我们得到 V 到 P^n 的一个单射

$$\sigma: V \to P^n, \alpha \mapsto (a_1, a_2, \cdots, a_n)$$

并且对于 P^n 中任一元素 (a_1,a_2,\cdots,a_n) , 均有 $\alpha=\varepsilon_1a_1+\varepsilon_2a_2+\cdots+\varepsilon_na_n$ 这一唯一确定的元素与之对应, 所以 σ 是双射.

任取
$$\alpha, \beta \in V$$
, 设 $\alpha = \varepsilon_1 a_1 + \varepsilon_2 a_2 + \cdots + \varepsilon_n a_n, \beta = \varepsilon_1 b_1 + \varepsilon_2 b_2 + \cdots + \varepsilon_n b_n$

则有
$$\sigma(\alpha) = (a_1, a_2, \cdots, a_n), \sigma(\beta) = (b_1, b_2, \cdots, b_n)$$

$$\therefore \sigma(lpha+eta)=(a_1+b_1,a_2+b_2,\cdots,a_n+b_n) \ =(a_1,a_2,\cdots,a_n)+(b_1,b_2,\cdots,b_n) \ =\sigma(lpha)+\sigma(eta)$$

$$\sigma(k\alpha) = (ka_1, ka_2, \cdots, ka_n) = k(a_1, a_2, \cdots, a_n) = k\sigma(\alpha)$$

 $\therefore V \cong P^n$

2.

题目: 设 V,U 是数域 P 上的线性空间, $\varphi:V\to U$ 是同构映射, 则存在同构映射 $\psi:U\to V$, 使得 $\varphi\circ\psi=I_U$.

解答:

- $:: \varphi$ 是双射
- $\therefore \varphi^{-1}$ 也是双射

则我们有 $\varphi\circ \varphi^{-1}=I_U, \varphi^{-1}\circ \varphi=I_V$

任取 $\alpha, \beta \in U$, 由于 φ 是同构映射, 我们有

$$\therefore \varphi(\varphi^{-1}(\alpha + \beta)) = (\varphi \circ \varphi^{-1})(\alpha + \beta)
= \alpha + \beta
= (\varphi \circ \varphi^{-1})(\alpha) + (\varphi \circ \varphi^{-1})(\beta)
= \varphi(\varphi^{-1}(\alpha)) + \varphi(\varphi^{-1}(\beta))
= \varphi(\varphi^{-1}(\alpha) + \varphi^{-1}(\beta))$$

 $:: \varphi$ 是双射

$$\therefore \varphi^{-1}(\alpha+\beta) = \varphi^{-1} + \varphi^{-1}(\beta)$$

$$\therefore \varphi(\varphi^{-1}(k\alpha)) = (\varphi \circ \varphi^{-1})(k\alpha) = k\alpha = k(\varphi \circ \varphi^{-1})(\alpha) = k\varphi(\varphi^{-1}(\alpha)) = \varphi(k\varphi^{-1}(\alpha))$$

$$\therefore \varphi^{-1}(k\alpha) = k\varphi^{-1}(\alpha)$$

 $\therefore \varphi^{-1}$ 也是双射, 是 U 到 V 的同构映射

 $\therefore \varphi^{-1}$ 即为所求的 ψ , 满足 $\psi \circ \varphi = I_U$

3.

题目: 设 V, U 是线性空间, $\varphi: V \to U$ 是同构映射, 若 $V = V_1 \oplus V_2$, 则 $U = \varphi(V_1) \oplus \varphi(V_2)$.

解答:

 $:: \varphi: V \to U$ 是同构映射

$$\therefore \varphi(k\alpha) = k\varphi(\alpha)$$

取
$$k=0$$
 得 $\varphi(0)=0$

若
$$arphi(lpha_1)+arphi(lpha_2)=0, arphi(lpha_1)\inarphi(V_1), arphi(lpha_2)\inarphi(V_2)$$

则有
$$\varphi(\alpha_1 + \alpha_2) = \varphi(0)$$

$$\therefore \alpha_1 + \alpha_2 = 0, \alpha_1 \in V_1, \alpha_2 \in V_2$$

$$\therefore V = V_1 \oplus V_2$$

$$\therefore \alpha_1 = \alpha_2 = 0$$

$$\therefore \varphi(\alpha_1) = \varphi(\alpha_2) = 0$$

$$\therefore U = \varphi(V_1) \oplus \varphi(V_2)$$

4.

题目: 证明 $P^{2\times 2}\cong P^4$, 并写出同构映射.

解答:

构造映射
$$\sigma:P^{2 imes2} o P^4, egin{pmatrix} a_1 & a_2 \ a_3 & a_4 \end{pmatrix}\mapsto (a_1,a_2,a_3,a_4)$$

易知该映射为双射.

设有
$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}, B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$$

$$\therefore \sigma(A+B) = \sigma(\begin{pmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{pmatrix})$$

$$= (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4)$$

$$= (a_1, a_2, a_3, a_4) + (b_1, b_2, b_3, b_4)$$

$$= \sigma(A) + \sigma(B)$$

$$\sigma(kA) = \sigma(\begin{pmatrix} ka_1 & ka_2 \\ ka_3 & ka_4 \end{pmatrix})$$

$$= (ka_1, ka_2, ka_3, ka_4)$$

$$= k(a_1, a_2, a_3, a_4)$$

 $\therefore \sigma \neq P^{2\times 2}$ 到 P^4 的一个同构映射

 $= k\sigma(A)$

$$\therefore P^{2 imes 2}\cong P^4$$

5.

题目: 设 A 是 n 阶可逆矩阵, 定义 $\varphi_A: P^n \to P^n, x \to Ax$, 证明: φ_A 是同构映射.

解答:

:: A 是 n 阶可逆矩阵

 \therefore 对于任意 $y\in P^n$ 均能找到 $A^{-1}y\in P^n$ 符合 $arphi_A^{-1}(y)=A^{-1}y$

即 φ_A 是双射

对于任意向量 $\alpha, \beta \in P^n$

$$\therefore \varphi_A(\alpha+\beta) = A(\alpha+\beta) = A\alpha + A\beta = \varphi_A(\alpha) + \varphi_A(\beta)$$
$$\varphi_A(k\alpha) = A(k\alpha) = k(A\alpha) = k\varphi_A(\alpha)$$

 $\therefore \varphi_A$ 是同构映射