1 Optimization Problem

Problem is

$$\min_{x \in X} f_0(x), \tag{1}$$

$$f_i(x) \le 0, \tag{2}$$

for i = 1, ..., m, where $X \subseteq \mathbb{R}^n$ is a box:

$$\{x \mid x_j^{\min} \le x_j \le x_j^{\max}\}. \tag{3}$$

2 Approximate Problem

Suppose kth iterate is $x^{(k)}$. Then, for i = 0, ..., m, replace $f_i(x)$ with

$$g_i(x) = \nabla f_i(x_0) \cdot (x - x^{(k)}) + \frac{\rho_i^2}{2} \left| \frac{x - x^{(k)}}{\sigma} \right|^2.$$
 (4)

And make a trust region T (actually its $T \cup X$)

$$T = \{x \mid |x_j - x_j^{(k)}| \le \sigma_j\}. \tag{5}$$

So that the new problem is

$$\min_{x \in T} g_0(x),\tag{6}$$

$$g_i(x) \le 0. (7)$$

3 Overall Scheme

For the kth iteration:

- 1. Solve approximate problem to find candidate $\boldsymbol{x}^{(k+1)}$
- 2. Check conservative: $g_i(x^{(k+1)}) < f_i(x^{(k+1)})$.
 - If no, throw away candidate, double ρ_i for each non-conservative g_i , and solve approximate problem again.
- 3. Halve ρ (take bigger steps) and update σ (decrease σ_i if x_i oscillating, increase if monotonic i.e. heading somewhere else).

4 Solving approximate problem

4.1 Evaluating dual function

Lagrangian relaxation,

$$L(x,y) = g_0(x) + \sum_{i=1}^m y_i g_i(x)$$

$$= \left(\nabla f_0(x_0) + \sum_{i=1}^m y_i \nabla f_i(x_0)\right) \cdot (x - x^{(k)}) + \frac{1}{2} \left(\rho_0 + \sum_{i=1}^m y_i \rho_i\right) \left|\frac{x - x^{(k)}}{\sigma}\right|^2$$

$$= \sum_{j=1}^n \left(\left(\nabla f_0(x_0)_j + \sum_{i=1}^m y_i (\nabla f_i(x_0))_j\right) \left(x_j - x_j^{(k)}\right) + \frac{1}{2\sigma_j^2} \left(\rho_0 + \sum_{i=1}^m y_i \rho_i\right) \left(x_j - x_j^{(k)}\right)^2\right).$$
(10)

Define dual function,

$$g(y) = \min_{x \in T} L(x, y) \tag{11}$$

$$= \sum_{j=1}^{n} g_j(y),$$
 (12)

where

$$g_j(y) = \min_{|\delta_j| \le \sigma_j} \left(\left(\nabla f_0(x_0)_j + \sum_{i=1}^m y_i \nabla f_i(x_0)_j \right) \delta_j + \frac{1}{2\sigma_j} \left(\rho_0 + \sum_{i=1}^m y_i \rho_i \right) \delta_j^2 \right). \tag{13}$$

To evaluate, analytically minimize quadratic in $\delta_j = x_j - x_j^{(k)}$, snapping to bounds. Define

$$a_j = \frac{1}{2\sigma_j^2} \left(\rho_0 + \sum_{i=1}^m y_i \rho_i \right) = \frac{1}{2\sigma_j^2} u,$$
 (14)

$$b_j = \nabla f_0(x_0)_j + \sum_{i=1}^m y_i \nabla f_i(x_0)_j = v_j,$$
(15)

so that

$$g_j(y) = \min_{|\delta_j| \le \sigma_j} \left(a_j \delta_j^2 + b_j \delta_j \right) = \min_{|\delta_j| \le \sigma_j} \left(\frac{u}{2\sigma_j^2} \delta_j^2 + v_j \delta_j \right). \tag{16}$$

Note that,

$$\frac{\partial a_j}{\partial y_i} = \frac{\rho_i}{2\sigma_j^2},\tag{17}$$

$$\frac{\partial b_j}{\partial y_i} = \nabla f_i(x_0)_j. \tag{18}$$

If we snap to bounds, $g_j(y)$ should have gradient 0 (will have a kink, but oh well?). If we don't snap to bounds,

$$g_j(y) = \frac{b_j^2}{4a_j},\tag{19}$$

$$\frac{\partial g_j}{\partial y_i} = \frac{b_j}{2a_j} \frac{\partial b_j}{\partial y_i} - \frac{b_j^2}{4a_j^2} \frac{\partial a_j}{\partial y_i}$$
 (20)

$$= \frac{b_j}{2a_j} \nabla f_i(x_0)_j - \frac{b_j^2}{4a_j^2} \frac{\rho_i}{2\sigma_j^2}$$
 (21)

$$= \delta_j \nabla f_i(x_0)_j - g_j(y) \frac{\rho_i}{2\sigma_j^2}.$$
 (22)

And thus,

$$g(y) = -\frac{1}{4} \sum_{j=1}^{n} \frac{b_j^2}{a_j},\tag{23}$$

$$\frac{\partial g}{\partial y_i} = \frac{1}{2} \sum_{j=1}^n \frac{b_j}{a_j} \nabla f_i(x_0)_j - \frac{\rho_i}{8} \sum_{j=1}^n \frac{b_j^2}{a_j^2 \sigma_j^2}.$$
 (24)

We can first compute a_j and b_j for all j by Equation (14) and Equation (15), exploiting sparsity of the Jacobian column $\nabla f(x_0)_j$. We can then compute g(y) directly, and $\frac{\partial g}{\partial u_i}$ for each i by exploiting sparsity of the Jacobian row $\nabla f_i(x_0)$.

4.2 Maximizing dual function

The dual problem is,

$$\max_{y \ge 0} g(y). \tag{25}$$

We can provide g and its gradient function recursively to CCSA, which will solve it for us.

5 Main Goals

- Support sparse Jacobians
- Support affine constraints
 - Does paper handle these? (First, find where paper handles box constraints.)
 - Maybe think of this as a more complicated X, rather than a simple f_i .