

DBMS Architecture: Oracle DB Engine

D. J. Berndt
ISDS / College of Business
University of South Florida
dberndt@usf.edu

We gratefully acknowledge the teaching resources made available through the Oracle Academic Initiative.

Outline

- Database Architectures
 - □ Tiered Architectures
- Oracle DBMS Architecture
 - Shared Memory
 - Background Processes
 - Data Files
- Query Processing
- Update Processing
- COMMIT Processing
- Oracle Storage Architecture

Database Architectures

Computation/ Communication	Single Processor	Parallel Processors
Centralized Database	Traditional DBs I/O Costs	Parallel DBs I/O Costs Computation Costs
Distributed Databases	Distributed DBs I/O Costs Communication Costs	"Real Life" All Costs

Database Architectures

- Database architectures
 often implemented in
 tiers, or logical groupings
 of services.
- A three-tiered architecture isolates the desktop or end user, application code (often Web services), and the database services.
- A logical tier is typically composed of multiple computing nodes or servers.

Oracle E-Business Suite Concepts

Oracle DBMS Architecture

- Oracle uses a global shared memory for inter-process communications (IPC), divided into different components.
- Server processes interact with user process to provide access to the database.
- Background processes provide all database functions.

Oracle Database Concepts 11g: Memory Architecture

Oracle DBMS Architecture

- Client-side user processes interact with the database via server processes (with dedicated program memory).
 - Example: SQL Developer runs as a client-side user process.
- Background processes provide the database functions, such as query processing and optimization, database I/O (all the file reads and writes), security, and recovery.

Program Global Area (PGA)

DBMS Architecture: Overview

- First, the overview shows user processes interacting with server processes.
- 2. Background processes provide a range of database functions.
- 3. All communication uses shared memory (SGA).
- 4. A range of database files provide persistent storage (data/metadata).

System Global Area Database Process Server Storage D000 Device LGWR Legend: Process Control RECO **Datafiles**

Oracle Database Concepts 11g: Process Architecture

Shared Server Processes

- Web applications often require large numbers of database connections.
- In order to handle more connections and requests, while conserving resources, server processes can be shared through request/ response queues and dispatchers.
- Re-visit this in distributed databases ...

External Database Files

Database:

- One or more data files.
- One or more control files.
- Two or more online redo logs.

Instance Background Processes

Transient Memory

Oracle Database
Concepts 11g:
Process Architecture

- Recoverer Process (RECO) Resolves distributed transaction failures.
- Process Monitor (PMON) Automated process cleanup and recovery.
- System Monitor (SMON) Automated system cleanup and recovery.
- Database Writers (DBWn) Writes from cache buffers to data files.
- Log Writer (LGWR) Writes redo log data to sequential log files.
- Archiver Processes (ARCn) Copies redo log files to backup locations.

System Global Area (SGA)

Why have separate shared memory components?

- Java Pool Dedicated memory for Java (JVM) execution.
- Buffer Cache Database buffer cache (block oriented).
- Redo Buffer Redo (or write ahead) log for after images.
- Shared Pool Library, dictionary, and query result caches.
- Steams Pool Shared buffer for message queues.
- Large Pool Memory for large database operations.

Shared Pool

- SHARED_POOL_SIZE parameter controls size.
- Library cache contains statement text, parsed code, and an execution plan.
- Data dictionary cache contains table and column definitions and privileges.

Self-Managing Datases

Automatic shared memory management (as of 10g) allows the DBA to specify limits (SGA_MAX_SIZE) and targets (SGA_TARGET) for shared memory usage, with the engine dynamically reallocating the various regions.

Self-Managing Databases

Database Buffer Caches

- Stores the most recently used blocks.
- Can be dynamically resized.
 - □ ALTER SYSTEM SET DB_CACHE_SIZE = 96M
- Size of the standard buffer based on DB_BLOCK_SIZE.
 - □ DB_CACHE_SIZE (default buffer cache)
 - □ DB_KEEP_CACHE_SIZE (keep cache for likely-to-be-reused blocks)
 - □ DB_RECYCLE_CACHE_SIZE (recycle cache for blocks not reused)

Database Buffer Caches: LRU

- When a database block is requested by a user process, the buffer cache is searched first (a cache hit), and if not found, a physical I/O operation fetches the block from a data file on disk (a cache miss).
- LRU policy used to manage the cache.
 - □ Write list: identifies modified/dirty blocks.
 - □ LRU list: holds "free" blocks, "pinned" (in-use) blocks, and the odd "dirty" blocks.
 - □ In-demand blocks move to the MRU end (except full table scans CACHE clause).

Redo Log Buffer

- Redo log (or write ahead log) records the database changes necessary to roll forward during recovery.
- LOG_BUFFER parameter controls size.
- Records changes made through the database instance.
- Circular buffer used sequentially.

Redo Log Groups

- Redo logs are replicated on different devices to ensure availability for database recovery.
- Log files are applied in order to roll forward in time.

Large Pool and Java Pool

Large Pool

- Optional area in the SGA.
- Reduces Shared Pool demand for I/O processes, parallel execution, backup and restore operations.
- □ LARGE_POOL_SIZE

Javal Pool

- Optional area in the SGA.
- Supports parsing requirements for Java.
- □ JAVA_POOL_SIZE

Database Writer (DBWn)

- Server processes update undo and data blocks in the database buffer cache.
- DB writers write when:
 - □ Checkpoints occur.
 - □ Dirty buffer thresholds are reached.
 - □ Free buffer scans take too long.
 - Changes in tablespace status.
 - □ Table drops/truncations.

Log Writer (LGWR)

- The log writer does <u>sequential</u> writes from shared memory to disk.
- Log writes occur when:
 - Transactions commit.
 - \Box The log buffer is 1/3 full.
 - □ Threshold of changes is reached.
 - □ Before DBWn writes (can also invoke LGWR).
 - Every 3 seconds or so.

System Monitor (SMON)

- The system monitor performs automatic instance recovery when a database is re-opened.
- Recovery involves:
 - Rolling forward committed transactions using redo logs.
 - Applying changes to data blocks.
 - □ Rolling back uncommitted transactions.
 - Opening the database.
 - ☐ Free space maintenance.

Process Monitor (PMON)

- The process monitor handles zombie or failed processes by cleaning up resources.
- Clean up includes:
 - Rolling back uncommitted transactions.
 - □ Freeing locks and other resources.
 - Restarting necessary processes (e.g. dispatchers).

Checkpoint (CKPT)

- Every so often (say 3 seconds) the checkpoint process updates the control files, noting where recovery should start in the redo logs (managing recovery time).
- Checkpoints involve:
 - □ Updating control file information.
 - Updating data file headers with checkpoint information.
 - □ Signaling DBWn to handle data block writes.

DBMS Startup and Shutdown

Dynamic Performance Views

Query Processing

Update Processing

Rollback Processing

COMMIT Processing

DB Administration

The End

- DatabaseArchitectures
- Oracle DBMS Architecture
- Query Processing
- Update Processing
- COMMIT Processing
- Oracle StorageArchitecture

