block name 1

1. Statistic models

introduction

block name 3

Statistical model

Let:

 $\cdot \Omega$ set

 $\cdot\,\mathcal{A}$ sigma-algebra over Ω

$$\cdot \mathcal{P} \subset \mathcal{F}(\Omega, \mathbb{R})$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is a statistical model if:

$$\cdot \quad \forall \ f \in \mathcal{P}$$
:

f probability distribution

Parametrized

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model

$$\cdot \, \Theta \subset \mathbb{R}^d$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is parametrized by Θ if:

$$\cdot \mathcal{P} = \{P_{\theta}\}_{\theta \in \Theta}$$

Likelihood

Let:

4

 $\cdot \left(\Omega, \mathcal{A}, \mathcal{P} \right)$ statistical model parametrized by Θ

We name likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$ to:

$$\begin{array}{cccc} L : \Omega \times \Theta & \longrightarrow & \mathbb{R}^+ \\ (x, \theta) & \longmapsto & P_{\theta}(x) \end{array}$$

block name 5

Exponential model

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

· L likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is exponential if:

$$\exists \{f_i\}_{i=1}^r, f \in \mathcal{F}(\Omega, \mathbb{R}) \mid \forall i \in [1, r]_{\mathbb{N}}$$
:

 f_i, f measurable

$$\exists \{\phi_i\}_{i=1}^r, \phi \in \mathcal{F}(\theta, \mathbb{R}) \quad \forall i \in [1, r]_{\mathbb{N}}$$
:

 ϕ_i, ϕ measurable

 $\cdot \quad \forall \ x \in \Omega$:

 $\forall \ \theta \in \Theta$:

$$L(x,\theta) = \exp(\sum_{i=1}^{r} f_i(x)\phi_i(\theta) + f(x) + \phi(\theta))$$

description

Let:

 $\cdot a$

Show that:

 $\cdot b$

Demonstration:

c