Preliminary

1 1 P Z Z 3

单触摸键检测 IC

概述

TTP223是触摸键检测IC,提供1个触摸键。触摸检测IC是为了用可变面积的键取代传统的按钮键而设计的。低功耗和宽工作电压是触摸键的DC和AC特点。

特点

- 工作电压 2.0V~5.5V
- 工作电流 @VDD=3V, 无负载, 低功耗模式下典型值1.5uA, 最大值3.0uA 快速模式下典型值3.5uA, 最大值7.0uA
- 最长响应时间大约为快速模式下60mS,低功耗模式下220mS@VDD=3V
- 灵敏度可由外部电容(0~50pF)调节
- 人体触摸检测稳定,可取代传统的直接的开关键
- 由选择管脚(TOG管脚)提供直接模式、触发模式的选择 Q管脚为CMOS输出
- 各输出模式都可通过选择管脚(AHLB管脚)选择高电平或者低电平有效
- 上电之后需要约0.5sec的稳定时间,此时间段内不要对键进行触摸, 此时所有功能都被禁止
- 始终进行自校准 当键没被触摸时, 重校准周期约为4.0sec

应用

- 广泛消费性产品
- 防水电器
- 按钮键取代品

1 1 P Z Z 3

方块图

管脚定义

管脚号	管脚名	I/O 类型	管脚定义
1	Q	О	CMOS 输出管脚
2	VSS	P	负电源电压,接地端
3	I	I/O	传感输入口
4	AHLB	I-PL	输出高电平或者低电平有效选择,
			1(默认)=>低电平有效; 0=>高电平有效
5	VDD	P	正电源电压
6	TOG	I-PL	输出类型选择管脚,
			1(默认)=>触发模式; 0=>直接模式

1 1 P Z Z 3

电气特性

• 最大绝对额定值

参数	符号	条件	值	单位
工作温度	T_{OP}		-20 ~ +70	$^{\circ}\!\mathbb{C}$
存放温度	T_{STG}		- 50 ∼ +125	$^{\circ}\!\mathbb{C}$
电源电压	VDD	Ta=25°C	VSS-0.3 ~ VSS+5.5	V
输入电压	V _{IN}	Ta=25°C	VSS-0.3 ~ VDD+0.3	V
芯片抗靜電强度HBM	ESD		≧4	KV
说明, VSS表示系统接地端	•	•		

• **DC/AC 特性:** (测试条件为室内温度=25℃)

参数	符号	测试条件		最小	典型	最大	单位
				值	值	值	
工作电压	VDD			2.0	3	5.5	V
系统振荡器	F _{FAST}	VDD=3V		-	512K	-	
パシルル初間	F_{LOW}				16K		Hz
传感振荡器	F_{SEN}	VDD=3V 无负载		-	1M	-	Hz
工作电流	I_{OP}	VDD=3V 低功耗模式	SLRFTB =1	-	1.5	3.0	
工- F - 七- 初L		输出无负载	SLRFTB =0	-	2.0	4.0	uA
输入端	$V_{\rm IL}$	输入低电压		0	-	0.2	VDD
输入端	V_{IH}	输入高电压		0.8	-	1.0	VDD
输出端灌电流(Sink Current)	I_{OL}	VDD=3V, V _{OL} =0	.6V	-	8	-	mA
输出端拉电流(Source Current)	I_{OH}	VDD=3V, V _{OH} =2.4V		-	-4	-	mA
输出响应时间	T_R	VDD=3V, 低功耗	毛模式			220	mS
输入口下拉电阻	R_{PL}	VDD=3V, (TOG, AHLB)			28K		ohm

Preliminary

1 1 P Z Z 3

功能定义

1. 灵敏度调节

PCB上电极(electrode)面积和连线电容的总负载会影响到灵敏度。所以灵敏度调节必须依据PCB上的实际应用情况。TTP223提供了一些从外部调节灵敏度的方法。

1-1 调节电极面积

在其他条件都固定的情况下,使用大面积电极能提高灵敏度,反之会降低灵敏度。但是电极 面积必须在有效范围内使用。

1-2 调节板厚

在其他条件都固定的情况下,薄板能提高灵敏度,反之会降低灵敏度。但是板厚必须小于其最大限制。

1-3 调节Cs电容值 (见下图)

在其他条件都固定的情况下,不接Cs而直接接VSS,灵敏度最高。在使用范围(0≤Cs≤50pF)内增加Cs值会降低灵敏度。

2. 输出模式

TTP223 由 AHLB 管脚选择直接模式的高电平或者低电平有效。由 TOG 管脚选择输出模式。管脚 Q 为数位输出

TOG	AHLB	管脚 Q 功能选择
0	0	直接模式, 高电平有效 CMOS 输出
0	1	直接模式, 低电平有效 CMOS 输出
1	0	触发模式, 上电状态为 0
1	1	触发模式, 上电状态为 1

Preliminary

1 1 P Z Z 3

6. 选择管脚

基于对省电及封装的综合考虑,所有功能选择管脚都设计为锁存类型,上电初始状态为0或1。如果这些管脚接到VDD或者VSS,其状态变为1或0,此过程中没有电流<u>漏電</u>,不与省电方针冲突。

功能选择管脚	上电初始状态
AHLB	0
TOG	0

应用电路

- PS: 1. 在 PCB 上,从触摸端口到 IC 管脚的连线越短越好。
 - 并且此连线不与其它线平行或者交叉。
 - 2. 电源供应必须稳定。如果电源电压发生漂移或者快速变化,可能导致灵敏度异常或者误检测。
 - 3. PCB板覆盖的材料不能有金属或者导电材料. 而表面喷涂(paints on the surfaces)也同样不能有。
 - 4. 电容Cs可以用来调节灵敏度。Cs值越小,灵敏度越好。灵敏度调节必须依据PCB上的实际应用情况。Cs的值域为 $0\sim50pF$ 。

Preliminary

1 1 P Z Z 3

TTP223-BA6 & TTP223-CA6封装脚位图

TTP223-CA6

TTP223-CA6的LPMB功能引脚,为快速模式和低功耗模式的工作模式选择脚位,上电初始化默认为"1"当LPMB 管脚开路或者接到VDD 时,TTP223-CA6 工作于快速模式。当LPMB 管脚接到VSS 时,TTP223-CA6 工作于低功耗模式。 快速模式下,响应时间较短,但是功耗电流会增大。低功耗模式会节省功耗,但是第一次按键的响应时间会减慢。在低功耗模式下,若检测到按键,会切换到快速模式。 按键被释放并且维持12sec 之后会回到低功耗模式。

封装外框尺寸

