Analysis 1

Mike Desgrottes

October 2020

Theorem 1. Let $f : \mathbb{R} \to \mathbb{R}$, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is consant.

Proof. As $-(x-y)^2 \le f(x) - f(y) \le (x-y)^2$, we see that

$$0 = \lim_{x \to y} \frac{-(x-y)^2}{x-y} \le f'(x) = \lim_{x \to y} \frac{f(x) - f(y)}{x-y} \le \lim_{x \to y} \frac{(x-y)^2}{x-y} = 0$$

. Hence $f'(x) = 0 \implies$ f is constant.

Theorem 2. Suppose g is real function on \mathbb{R} , with bounded derivative $|g'| \leq M$. Fix $\epsilon > 0$, and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one, if ϵ is small enough.

Proof. f(x) is differentiable with derivative $f^{'}(x) = 1 + \epsilon g^{'}(x)$. The Mean value Theorem guarantee the existence of a real number c such that $f^{'}(c) = \frac{f(x) - f(y)}{x - y}$. Hence if $0 = |f(x) - f(y)| = |f^{'}(c)(x - y)|$, tt remains to show that $f^{'}(c) \neq 0$ which is given when $\epsilon M < 1$.

$$-\epsilon M \le \epsilon g^{'}(x) \le \epsilon M \implies 1 - \epsilon M \le 1 + \epsilon g^{'}(x) = f^{'}(x) \le 1 + \epsilon M$$

with $1 - \epsilon M > 0$. The claims follows because when $\epsilon < \frac{1}{M}$, $|f(x) - f(y)| = 0 \implies |x - y| = 0$.

Theorem 3. If

$$C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

, where $C_0, ..., C_n$ are real constants, prove that the equation

$$f(x) = C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Let $g(x) = C_0 x + \frac{C_1 x^2}{2} + \dots + \frac{C_{n-1} x^n}{n} + \frac{C_n x^{n+1}}{n+1}$, then g(x) is continuous and differentiable. Its derivative is given by f(x). Since g(0) = g(1) = 0, there exists a $c \in (0,1)$ such that g'(c) = f(c) = 0. This is because of the Mean Value Theorem.

Theorem 4. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to \infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to \infty$.

Proof. As g(x) is differentiable, the mean value theorem allow us to find c such that g(x) = f(x+1) - f(x) = (x+1-x)f'(c) = f'(c) where x < c < x+1 and hence $g(x) \to 0$ as x goes to infinity. This is because as $x \to \infty$, $c \to \infty$.

Theorem 5. Suppose, for a fixed x, $f^{'}(x)$ and $g^{'}(x)$ exist, $g^{'}(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}$$

.

$$\begin{aligned} & \textit{Proof. As } t \to x, \ f(t) = f(x) + [f^{'}(x) + v(t)](t-x) \ \text{and} \ g(t) = g(x) + [g^{'}(x) + u(t)](t-x) \ \text{where} \ u(t) \to 0, \\ & \text{and} \ v(t) \to 0. \ \text{Hence} \ \frac{f(t)}{g(t)} = \frac{f(x) + f^{'}(x)(t-x)}{g(x) + g^{'}(x)(t-x)} = \frac{f^{'}(x)}{g^{'}(x)} \ \text{as} \ t \to x. \end{aligned}$$

Theorem 6. Suppose f' is continous on [a,b] and $\epsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$.

Proof. Since f' is defined on [a,b], let $x,t \in [a,b]$ and $\phi(t) = \frac{f(t)-f(x)}{t-x}$ then $f'(x) = \lim_{t\to x} \phi(t)$ for all $x \in [a,b]$ and for all $\epsilon > 0$, there exists $\delta(x,\epsilon) > 0$ such that $|t-x| < \delta(x,\epsilon) \implies |\phi(t)-f'(x)| < \epsilon$. Hence for all $x,t \in [a,b]$, $\epsilon > 0$, there exists $\delta > 0$ such that $|t-x| < \delta \implies |\phi(t)-f'(x)| < \epsilon$ by setting $\delta = \delta(x,\epsilon)$.

Theorem 7. Suppose f is defined in a neighborhood of x and suppose $f^{''}(x)$ exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Proof. Let $\epsilon > 0$, then we can find δ_0 such that

$$\left|\frac{f(x+h) - f(x)}{h} - f'(x)\right| < \epsilon$$

and

$$\left|\frac{f(x) - f(x - h)}{h} - f'(x - h)\right| < \epsilon$$

whenever $|h| < \delta_0$. Hence,

$$-h(f^{'}(x) - f^{'}(x - h) + 2\epsilon) \le f(x + h) + f(x - h) - 2f(x) \le h(f^{'}(x) - f^{'}(x - h) + 2\epsilon)$$

and

$$|\frac{f(x+h)+f(x-h)-2f(x)}{h^2}|\leq |\frac{f^{'}(x)-f^{'}(x-h)}{h}|+2\epsilon$$

and

$$f''(x) - \epsilon \le \frac{f'(x) - f'(x - h)}{h} \le f''(x) + \epsilon$$

whenever $|h| < \delta_1$. Set $\delta = \min\{\delta_0, \delta_1\}$ and the claim follows.