

JUNE EXAMINATION GRADE 12

PHYSICAL SCIENCES: CHEMISTRY

Supported by Sics.com

PHYSICAL SCIENCES P2

XØ5

TIME: 3 hours

MARKS: 150

17 pages + 4 data sheets

INSTRUCTIONS AND INFORMATION

This question paper consists of EIGHT questions. Answer ALL the questions in 1. the ANSWER BOOK.

(PAPER 2)

- 2. Start EACH question on a NEW page in the ANSWER BOOK.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line open between two subquestions, e.g., between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round-off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief discussions, et cetera where required.
- 10. You are advised to use the attached DATA SHEETS.
- 11. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are given as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A - D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

1.1 Consider the condensed structural formula below:

What is the name of the functional group?

- A Hydroxyl group
- B Carbonyl group
- C Formyl group
- D Carboxyl group (2)
- 1.2 Consider the compound below:

Which of the following is the IUPAC name of this compound?

- A 2,2,4-trimethyl-5-ethylheptane
- B 4,6,6-trimethyl-3-ethylheptane
- C 5-ethyl-2,2,4-trimethylheptane
- D 3-ethyl-4,6,6-trimethylheptane

(2)

Downloaded from Stanmore PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) GR12 0624

1.3 Ethanal, ethanol, ethanoic acid, and ethane are compounds that are found in a laboratory.

Arrange the compounds mentioned above in decreasing order of vapour pressure.

- A Ethanoic acid, ethanol, ethanal, ethane
- B Ethane, ethanal, ethanol, ethanoic acid
- C Ethanoic acid, ethanal, ethanol, ethane
- D Ethane, ethanol, ethanal, ethanoic acid
- 1.4 Which of the following reaction types will be used to prepare ethene and propane from pentane under high temperatures and pressures?
 - A Combustion
 - B Esterification
 - C Catalytic cracking
 - D Thermal cracking (2)
- 1.5 The graph below represents the relationship between potential energy and course of reaction for a certain chemical reaction.

The heat of reaction for the reverse reaction is:

- A 2 kJ
- B 4 kJ
- C -2 kJ
- D -5 kJ

(2)

4

(2)

1.6 The equation below represents the decomposition of calcium carbonate.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Which of the following factors will NOT affect the initial rate of decomposition of calcium carbonate?

- A Increase in temperature
- B Using powdered calcium carbonate
- C Adding a catalyst
- D Increasing the mass of calcium carbonate

(2)

Downloaded from Stanmore PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) GR12 0624

1.7 The reaction represented by the equation below reaches equilibrium.

$$Co(H_2O)_6^{+2}$$
 (aq) + $4C\ell^-$ (aq) $\rightleftharpoons CoC\ell_4^{-2}$ (aq) + $6H_2O(\ell)$ $\Delta H > 0$ pink

Which of the following changes to the reaction mixture will change its colour from pink to blue?

- A Add a catalyst.
- B Place the reaction mixture in a container with cold water.
- C Add a few drops of concentrated hydrochloric acid to the reaction mixture.
- D Add water to the reaction mixture.

(2)

5

1.8 The following hypothetical reaction is at equilibrium at 500 K:

$$A_2(g) + B(g) \rightleftharpoons A(g) + AB(g)$$

The diagram below shows the molecules involved in this chemical equilibrium at 500 K.

The temperature is decreased to 300 K.

The diagram below represents the same equilibrium mixture at 300 K.

Which of the following statements is CORRECT?

- A The forward reaction is exothermic.
- B The concentration of **AB** is lower at a lower temperature.
- C The forward reaction is endothermic.
- D The concentration of **B** is higher at a lower temperature.

Downloaded from Stanmore PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) GR12 0624

- 1.9 Which of the following is the CORRECT description for a 10 mol·dm⁻³ hydrochloric acid solution?
 - A Dilute strong acid
 - B Dilute weak acid
 - C Concentrated weak acid
 - D Concentrated strong acid (2)
- 1.10 Consider the reaction represented by the following equation:

$$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq)$$

Which of the following represents the oxidising agent in the above reaction?

- A Ag⁺
- B Cu
- C Ag
- D Cu²⁺

(2) **[20]**

QUESTION 2 (Start on a new page.)

A to H in the table below represents eight organic compounds.

I A	H H H H O O H	В	2-methylbutan-2-ol
С	Pentan-2-one	D	CH ₃ CH ₂ COCH ₂ CH ₃
E	Butan-2-ol	F	Methyl propanoate
G	H-C-H	Н	H-C-H H-C-H H-C-C-C-C-H H-C-H H-C-H

Use the table above to answer the following questions.

- 2.1 Define the term *homologous series*.
- 2.2 Consider the organic compound **G**.
 - 2.2.1 Write down the homologous series to which this compound belongs. (1)
 - 2.2.2 Write down the CONDENSED STRUCTURAL FORMULA. (1)
 - 2.2.3 Write down the IUPAC name of the functional isomer of **G**. (2)

(2)

Downloaded from Stanmore Physical Sciences: CHEMISTRY (PAPER 2) GR12 0624

2.3	Write d	lown the:	
	2.3.1	IUPAC name of compound H	(3)
	2.3.2	GENERAL FORMULA of the homologous series to which compound A belongs	(1)
2.4	Write d	lown the letter(s) of the compound(s) that represent(s):	
	2.4.1	The positional isomers	(2)
	2.4.2	An ester	(1)
2.5	Consid	ler the organic compound B.	
	2.5.1	Write down the STRUCTURAL FORMULA.	(2)
	2.5.2	Is compound B a PRIMARY, SECONDARY or TERTIARY alcohol?	(1)
	2.5.3	Explain the answer to QUESTION 2.5.2.	(2)
2.6	•	carbons are the principal constituents of petroleum and natural gas. ocarbon consists of 81,82% carbon and 18,18% hydrogen.	
	Calcula	ate the empirical formula of this hydrocarbon.	(4) [22]

9

QUESTION 3 (Start on a new page.)

A group of learners decide to conduct an investigation to compare the boiling points of the first three haloalkanes, namely chloromethane, chloroethane and 1-chloropropane.

The table below shows the results obtained from the investigation.

ď	COMPOUND	IUPAC NAME	BOILING POINT (°C)				
	Α	chloromethane	-24,2				
	В	chloroethane	12,3				
	С	1-chloropropane	46,6				

3.1	Define	the term boiling point.	(2)				
3.2	Identify	the:					
	3.2.1	Independent variable	(1)				
	3.2.2	Dependent variable	(1)				
	3.2.3	Controlled variable	(1)				
3.3	Write d	lown a suitable investigative question.	(2)				
3.4	Chloro	methane is highly flammable.					
	Write down ONE precaution that should be taken when working with this substance in the laboratory.						
3.5		ONE of these substances (A , B , or C) has the lowest vapour pressure? reason for the answer.	(2)				
3.6	The lea	arners find 1-chlorobutane in the laboratory.					
		ould the boiling point of 1-chlorobutane compare to that of opropane?					
	Write o	only HIGHER THAN, LOWER THAN or EQUAL TO.	(1)				
3.7	•	the answer to QUESTION 3.6 by referring to the type of intermolecular strength, and energy.	(3)				

3.8 The learners decide to do another investigation with compounds **J** and **K**.

Bromine water is used to distinguish between compounds **J** and **K** by adding it to each compound in two separate test tubes.

The learners observe that one compound decolourises the bromine water immediately, while the other substance only reacts after placing the test tube in direct sunlight.

Write down:

3.8.1 The letter (**J** or **K**) of the compound that will immediately decolourise the bromine water (1) 3.8.2 The reason that the other substance only reacts when placed in direct (1) sunlight 3.8.3 The MOLECULAR FORMULA of the organic product formed in the test tube containing compound J (2) A balanced chemical equation when compound **K** undergoes complete 3.8.4 combustion (3)[21]

11

QUESTION 4 (Start on a new page.)

The flow diagram below shows three organic reactions, namely Reactions I, II and III. Various organic and inorganic products are formed as a result of these reactions.

Use the flow diagram above to answer the following questions.

- 4.1 Define the term *saturated compound*. (2)
- 4.2 2-bromopentane undergoes hydrolysis.
 - 4.2.1 Name the type of reaction represented in Reaction I. (1)
 - 4.2.2 Name the inorganic product **A** that is formed in the reaction. (1)
 - 4.2.3 Give ONE reaction condition. (1)

Downloaded from Stanmore Physical Sciences: CHEMISTRY (PAPER 2) GR12 0624

- 4.3 Consider compound **B**.
 - 4.3.1 Write down the IUPAC name. (2)
 - 4.3.2 Name the type of reaction represented in Reaction II. (1)
 - 4.3.3 Write down the STRUCTURAL FORMULA of the major product **C**. (2)
 - 4.3.4 Write down the CHEMICAL FORMULA of the inorganic product formed in Reaction II. (1)
- 4.4 Consider Reaction III.
 - 4.4.1 Name the type of addition reaction. (1)
 - 4.4.2 Give the CHEMICAL FORMULA of the catalyst needed for this reaction. (1)
- 4.5 Esterification is one of the most important reactions in both organic synthesis and the chemical industry. When making an ester, 60 g of propan-1-ol reacts with excess ethanoic acid which produces 90,78 g of an ester and water.

The balanced chemical equation below shows the reaction that takes place.

$$C_3H_8OH(\ell) + CH_3COOH(aq) \rightarrow C_5H_{10}O_2(\ell) + H_2O(\ell)$$

- 4.5.1 Write down the STRUCTURAL FORMULA for the ester produced. (3)
- 4.5.2 Give the IUPAC name for the ester. (2)
- 4.5.3 Give the chemical name of the catalyst used. (1)
- 4.5.4 Calculate the percentage purity of propan-1-ol. (5) [24]

QUESTION 5 (Start on a new page.)

A group of learners use the reaction between excess hydrochloric acid and magnesium ribbon to investigate one of the factors that influences the rate of a chemical reaction. The reaction that takes place is:

$$Mg(s) + 2HC\ell (aq) \rightarrow MgC\ell_2 (aq) + H_2(g)$$

The learners follow the method shown below to conduct the investigation at room temperature. A diagram of the apparatus is given below.

Method – Experiment 1:

- Step 1: Place a piece of magnesium ribbon in a conical flask and add 50 cm³ HCℓ (aq) of known concentration.
- Step 2: Simultaneously start the stopwatch and close the flask with the rubber stopper containing the delivery tube.
- Step 3: Measure the volume of the $H_2(q)$ formed in time intervals of 20 seconds.

Method – Experiment 2:

Repeat steps 1 to 3 above, but use only 15 cm³ of the same $HC\ell$ (aq) diluted with 50 cm³ distilled water.

Apparatus:

5.1 Define the term *reaction rate*.

Write down a conclusion for this investigation.

- 5.3 The concentration of the hydrochloric solution is 2 mol·dm⁻³.
 - Calculate the concentration used in Experiment 2. (3)
- 5.4 Name TWO conditions that learners had to keep the same to ensure that this is a fair test. (2)

5.2

(2)

(2)

After completing the investigation, the learners represented the results obtained during each experiment on the graph below.

- 5.5 Give a reason why the same volume of hydrogen gas is formed in both experiments. (1)
- 5.6 Write down the volume of hydrogen gas formed during the first minute in:
 - 5.6.1 Experiment **1** (1)
 - 5.6.2 Experiment **2** (1)
- 5.7 Which ONE of the experiments (Experiment 1 or Experiment 2) took place at a faster rate? Use the graph to explain the choice. (3)
- 5.8 Calculate the average reaction rate with respect to the magnesium, in g·s⁻¹, in Experiment **1** if the molar volume at room temperature is 24 dm³. (5) **[20]**

QUESTION 6 (Start on a new page.)

The reaction between steam and chlorine gas reaches equilibrium in a closed container according to the following balanced equation:

$$2H_2O(g) + 2C\ell_2(g) = 4HC\ell(g) + O_2(g)$$
 $\Delta H = +113 \text{ kJ}$

- 6.1 Is this reaction EXOTHERMIC or ENDOTHERMIC? Give a reason for the answer. (2)
- 6.2 The graphs below, not drawn to scale, show how the amount of products present in the container change with time at a specific temperature. The volume of the container is 5 dm³.

- 6.2.1 Which reaction is favoured? Choose from FORWARD or REVERSE?

 Give a reason for the answer. (2)
- 6.2.2 How do the rates of the forward and the reverse reactions compare at time t₃?

Write down only GREATER THAN, SMALLER THAN or EQUAL TO. (1)

- 6.2.3 Calculate the equilibrium constant (Kc) for this reaction at this temperature if there was initially 5 g of water and 5 g of chlorine. (9)
- 6.3 The pressure is NOW increased. How will this change affect the value of the equilibrium constant?

Write down only INCREASE, DECREASE or REMAINS THE SAME. Give a reason for the answer (2)

6.4 The reaction is repeated with a catalyst. Draw a potential energy diagram of this reaction and indicate the non-catalysed reaction (**B**) and catalysed reaction (**A**) on the same graph.

(4) [**20**]

QUESTION 7 (Start on a new page.)

- 7.1 Sulphuric acid is a diprotic acid.
 - 7.1.1 Define the term *ACID* in terms of the Arrhenius theory. (2)
 - 7.1.2 Give a reason why sulphuric acid is referred to as a diprotic acid. (1)
- 7.2 The hydrogen carbonate ion <u>can act as both an acid and a base</u>. It reacts with water according to the following balanced equation:

$$HCO_3^-$$
 (aq) + $H_2O(l) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$

- 7.2.1 Write down ONE word for the underlined phrase above. (1)
- 7.2.2 Copy the equation above and indicate the conjugate acid-base pairs. (2)
- 7.3 A laboratory assistant was asked to prepare a 2 500 cm³ solution of HC ℓ with a concentration of 0,25 mol·dm⁻³. The laboratory had a bottle of concentrated HC ℓ which had the following written on the label:

Chemical: HC ℓ

Density: 1,20 g·cm⁻³

% HC ℓ by mass in solution: 36%

- 7.3.1 Calculate the mass of HCℓ contained in 2 500 cm³ of a 0,25 mol·dm⁻³ solution. (4)
- 7.3.2 50 cm³ of the 0,25 mol·dm⁻³ HC ℓ solution is used to neutralise 20 cm³ of a sodium carbonate (Na₂CO₃) solution.

$$2HC\ell + Na_2CO_3 \rightarrow 2NaC\ell + H_2O + CO_2$$

Calculate the concentration of the carbonate solution.

7.3.3 Name a suitable indicator that can be used for this titration. Give a reason for the answer. (2)

[16]

(4)

QUESTION 8 (Start on a new page.)

8.1 A clean piece of copper (Cu) is placed in a solution of silver nitrate (AgNO₃). The balanced net ionic equation is:

Cu (s) + 2 Ag⁺ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 Ag (s)

8.1.1 Define *oxidation* in terms of electron transfer.

(2)

(3)

8.1.2 What type of reaction does copper (Cu) undergo in this equation?

Choose from OXIDATION or REDUCTION.

Explain the answer by referring to oxidation numbers.

8.2 Sulphur dioxide gas (SO₂) is bubbled into an acidified solution of potassium permanganate as shown in the diagram below.

It is observed that the solution turns from purple to colourless due to the reduction of $MnO_4^{2^-}$ ions to Mn^{2^+} ions. During the reaction SO_2 is oxidised to sulphate ions, $SO_4^{2^-}$.

Determine the oxidation number of manganese, in the permanganate ion (MnO_4^{2-}) .

(2)

TOTAL: 150

(PAPER 2)

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE		
Standard pressure	$p^{\scriptscriptstyle{\theta}}$	1,013 x 10 ⁵ Pa		
Standaarddruk		1,013 x 10 1 a		
Molar gas volume at STP	Vm	22,4 dm ³ ·mol ⁻¹		
Molêre gasvolume by STD	VIII	22,4 dill illoi		
Standard temperature	Tθ	273 K		
Standaardtemperatuur	'	27010		
Charge on electron	e	-1,6 x 10 ⁻¹⁹ C		
Lading op elektron		1,0 % 10		
Avogadro's constant	Na	6,02 x 10 ²³ mol ⁻¹		
Avogadro-konstante	1 1/4	0,02 X 10 11101		

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$	$n = \frac{V}{V_M}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH = - log[H ₃ O ⁺]

$$K_W = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} \, - E_{\text{anode}}^{\theta} \, / E_{\text{sel}}^{\theta} = E_{\text{katode}}^{\theta} \, - E_{\text{anode}}^{\theta}$$

or/of

$$m{E}_{\textit{cell}}^{\theta} = m{E}^{ heta}_{\textit{reduction}} - m{E}^{ heta}_{\textit{oxidation}} / m{E}_{\textit{sel}}^{\theta} = m{E}_{\textit{reduksie}}^{\theta} - m{E}_{\textit{oksidasie}}^{\theta}$$

or/of

$$E_{cell}^{\theta} = E_{oxidising \, agent}^{\theta} \, - E_{reducing \, agent}^{\theta} \, / E_{sel}^{\theta} = E_{oksideermiddel}^{\theta} \, - E_{reduseermiddel}^{\theta}$$

Downloaded from Stanmorephysics.com

FISIESE WETENSKAPPE: CHEMIE (VRAESTEL 2) GR12 0624

19

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

10 11 12 14 15 16 17 18 (I) (II) (III) (IV) (V) (VI) (VII) (VIII) Atomic number/

							ŀ	(E)	Y/SLI	EU1	ΓEL		A		oomg																			
2,1	1 H 1							Εl	ectro	ne	gativ	/ity	, [0	29		Sy	mb	ol/															2 He 4
1,0	3 Li 7	1,5	4 Be 9						ektro					1,9	63.5		_ Si	mb	ool					2,0	5 B 11	2,5	6 C 12	3,0	7 N 14	3,5	8 O 16	4,0	9 F 19	10 Ne 20
6,0	11 Na 23	1,2	12 Mg 24								-				ative <i>i</i> ewe									1,5	13 Aℓ 27	1,8	14 Si 28	2,1	15 P 31	2,5	16 S 32	3,0	17 Cℓ 35,5	18 Ar 40
8,0	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	1,6	23 V 51	1,6	24 Cr 52	1,5	25 Mn 55	1,8	26 Fe 56	1,8	27 Co 59	1,8	28 Ni 59	1,9	29 Cu 63,5	1,6	30 Zn 65	1,6	31 Ga 70	1,8	32 Ge 73	2,0	33 As 75	2,4	34 Se 79	2,8	35 Br 80	36 Kr 84
8,0	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	1,4	40 Zr 91		41 Nb 92	1,8	42 Mo 96	1,9	43 Tc	2,2	44 Ru 101	2,2	45 Rh 103	2,2	46 Pd 106	1,9	47 Ag 108	1,7	48 Cd 112	1,7	49 In 115	1,8	50 Sn 119	1,9	51 Sb 122	2,1	52 Te 128	2,5	53 I 127	54 Xe 131
2,0	55 Cs 133	6,0	56 Ba 137		57 La 139	1,6	72 Hf 179		73 Ta 181		74 W 184		75 Re 186		76 Os 190		77 Ir 192		78 Pt 195		79 Au 197		80 Hg 201	1,8	81 Tℓ 204	1,8	82 Pb 207	1,9	83 Bi 209	2,0	84 Po	2,5	85 At	86 Rn
2,0	87 Fr	6,0	88 Ra		89 Ac																									1				

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140	141	144		150	152	157	159	163	165	167	169	173	175
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232		238											

226

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	Half	reaksies	Ε ^θ (V)
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+ 1,77
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	$2Cr^{3+} + 7H_2O$	+ 1,33
$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻		Pt	+ 1,20
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+ 1,07
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96
Hg²+ + 2e⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54
Cu⁺ + e⁻	\rightleftharpoons		+ 0,52
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons		+ 0,45
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	4OH⁻	+ 0,40
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻		Cu⁺	+ 0,16
Sn ⁴⁺ + 2e ⁻		Sn ²⁺	+ 0,15
S + 2H ⁺ + 2e ⁻	,	H ₂ S(g)	+ 0,14
2H ⁺ + 2e ⁻		H ₂ (g)	0,00
Fe ³⁺ + 3e ⁻ Pb ²⁺ + 2e ⁻	=	Fe Pb	- 0,06
Sn ²⁺ + 2e	+	Sn	- 0,13 - 0,14
Ni ²⁺ + 2e ⁻	7	Ni	- 0,14 - 0,27
Co ²⁺ + 2e ⁻	-	Co	- 0,28
Cd ²⁺ + 2e ⁻		Cd	- 0,40
Cr ³⁺ + e ⁻	≓	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
2H ₂ O + 2e ⁻	\rightleftharpoons	H ₂ (g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,18
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Αl	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na+ + e-	<i>,</i>	Na C-	- 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Sr ²⁺ + 2e⁻ Ba ²⁺ + 2e⁻	=	Sr	- 2,89
Cs+ + e-	 	Ba Cs	- 2,90 - 2,92
Cs + e K⁺ + e⁻	7	K	- 2,92 - 2,93
Li⁺ + e⁻		Li	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

DEL 4D. STANDAA	ND) I ENSIA
Half-reactions	Half	reaksies	Ε ^θ (V)
Li⁺ + e⁻	\rightleftharpoons	Li	- 3,05
K⁺ + e⁻	\rightleftharpoons	K	- 2,93
Cs+ + e-	\rightleftharpoons	Cs	- 2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	- 2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na⁺ + e⁻	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	<i>`</i>	Mg	- 2,36
Aℓ³+ + 3e⁻ Mn²+ + 2e⁻	 	Αl	- 1,66
Cr ²⁺ + 2e	-	Mn Cr	- 1,18 - 0,91
2H ₂ O + 2e⁻	+	H ₂ (g) + 2OH ⁻	- 0,91 - 0,83
Zn ²⁺ + 2e ⁻	+	Zn	- 0,76
Cr ³⁺ + 3e ⁻	<u>`</u>	Cr	- 0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06
2H+ + 2e-	=	H ₂ (g)	0,00
S + 2H+ + 2e-	<i>`</i>	H ₂ S(g)	+ 0,14
Sn⁴+ + 2e⁻ Cu²+ + e⁻	# #	Sn²⁺ Cu⁺	+ 0,15 + 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	←	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	+	40H ⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	<u>`</u>	S + 2H ₂ O	+ 0,45
Cu⁺ + e⁻	=	Cu	+ 0,52
I ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\ell)$	+ 0,85
NO ⁻ ₃ + 4H ⁺ + 3e ⁻	<i>`</i>	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^-$ $Pt^{2+} + 2e^-$	 	2Br ⁻ Pt	+ 1,07 + 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	⊢ι Mn²+ + 2H₂O	+ 1,20
$O_2(g) + 4H^+ + 4e^-$	+	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	-	2Cr ³⁺ + 7H ₂ O	+ 1,33
$C\ell_2(g) + 2e^-$	` ≓	2Cℓ ⁻	+ 1,36
MnO ₄ + 8H ⁺ + 5e ⁻	\rightleftharpoons	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	\rightleftharpoons	2H ₂ O	+ 1,77
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë

Downloaded from Stanmorephysics. com

JUNE EXAMINATION JUNIE EKSAMEN

GRADE/GRAAD 12

2024

MARKING GUIDELINES/ NASIENRIGLYNE Stanmorephysics.com

PHYSICAL SCIENCES: CHEMISTRY/
FISIESE WETENSKAPPE: CHEMIE

(PAPER/VRAESTEL 2)

13 pages/bladsye

Downloaded from Stanmorephysics, con

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

QUESTION/VRAAG 1

1.1	Α	1		
1.2	60	V /		
		4		
1.3	В	√ √		
1.4	D	$\checkmark\checkmark$		
1.5	Α	$\checkmark\checkmark$		
1.6	D	$\checkmark\checkmark$		
1.7	С	/ /		
			✓✓	
1.8	D UI		• •	
1.9	D	$\checkmark\checkmark$		
1.10	Α	√ ✓		

QUESTION/VRAAG 2

2.1 A series of <u>organic compounds</u> that can be described by <u>the same general</u> formula.

OR

A series of <u>organic compounds</u> in which <u>one member differs from the next with a CH₂ group</u>. $\checkmark\checkmark$ (2 or 0)

'n Reeks <u>organiese verbindings</u> wat deur dieselfde <u>algemene formule</u> beskryf kan word.

OF

'n Reeks <u>organiese verbindings</u> waarin die <u>een lid van die volgende verskil met 'n CH₂-groep.</u> (2)

2.2 2.2.1 Aldehydes/Aldehiede ✓

(1)

2.2.2 CH₃CH₂CHO ✓ OR/OF CHOCH₂CH₂CH₃ OR/OF CHO(CH₂)₂CH₃ (do not accept OH) (moet nie OH aanvaar nie)

(1)

2.2.3 Butan-2-one/Butan-2-oon ✓✓

Accept: 2-butanone / butanone

Aanvaar 2-butanoon / butanoon (2)

Marking criteria/Nasienriglyne

- Correct functional group: -ONE/Korrekte funksionele groep: EEN ✓
- IUPAC name correct ✓

Downloaded from Stanmorephysi

MARKING GUIDELINES
NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

2.3 2.3.1 3,4-dibromo-2,2-dimethylpentane ✓✓✓ 3,4-dibromo-2,2-dimetielpentaan

(3)

Marking criteria/Nasienriglyne

- Correct stem (pentane)/korrekte stamnaam (pentaan) ✓
- All substituents (bromo and methyl) were correctly identified./Alle substituente (broom en metiel) is korrek geïdentifiseer. ✓
- IUPAC name is completely correct including numbering, sequence, hyphens and commas./IUPAC-naam is heeltemal korrek insluitend nommering, volgorde, koppeltekens en kommas ✓
- 2.3.2 $C_nH_{2n+1}COOH\ OR/OF\ C_nH_{2n}O_2\checkmark$ (1)
- 2.4 2.4.1 $C \& D \checkmark \checkmark$ (must have both)I(moet beide hê) (2 or 0) (2)
 - 2.4.2 F ✓ (1)
- 2.5 2.5.1

(2)

Marking criteria/Nasienriglyne

- Correct stem (butane)/korrekte stam (butaan) ✓/
- Functional group **OH** and **methyl** on the **second** carbon/*Funksionele* groep **OH** en metiel op die tweede koolstof√
- 2.5.2 Tertiary/*Tersiêr* ✓

(1)

(2)

- 2.5.3 Three carbon atoms ✓ are bonded to the carbon atom to which the hydroxyl (OH)/functional group is bonded. ✓
 - <u>Drie koolstofatome</u> is verbind aan die <u>koolstofatoom waaraan die</u> hidroksielgroep (OH)/ funksionele groep verbind is.

Downloaded from Stanmorephysics, com

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

2.6

	% m = 100 g	М	$n = \frac{m}{M}$	Ratio/Verhouding	
Carbon/ Koolstof	81,82	12	81,82 12	$\frac{6,82}{6,82} = 1$ ×3	3
	18,18	1	18,18 1 ✓	$\frac{18,81}{6,82}$ = 2,67 × 3 ✓	8

 $C_3H_8\checkmark$ (4)

Marking criteria/Nasienriglyne

- Substitute 12 and 1 respectively into n = $\frac{m}{M}$ /Vervang 12 en 1 onderskeidelik in $n = \frac{m}{M}$ ✓
- Divide by the smallest amount of mols 6,82 √/Deel deur die kleinste aantal mol 6,82
- Multiply by 3 to get the smallest whole number ratio/Vermenigvuldig met 3 om die kleinste heelgetal verhouding te kry √
- Correct empirical formula C₃H₈/Korrekte empiriese formule C₃H₈√

[22]

QUESTION/VRAAG 3

3.1 Boiling point – The temperature at which the vapour pressure of a substance equals atmospheric pressure. ✓ ✓

Kookpunt – Die temperatuur waarby die dampdruk van die stof gelyk is aan atmosferiese druk.

(2)

Marking criteria/Nasienkriteria

If any of the underlined key words/phrases in the **correct context** is omitted deduct 1 mark./Indien enige van die onderstreepte sleutel woorde/frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

3.2 3.2.1 Chain length/molar mass/surface area ✓ (do not accept IUPAC name)

Kettinglengte/molêre massa/kontakoppervlakte (moet nie IUPAC-naam aanvaar nie)

(1)

3.2.2 Boiling point/kookpunt ✓

(1)

3.2.3 Homologous series ✓ type of intermolecular force (do not accept same volume, same kind of apparatus)

Homoloë reeks / tipe intermolekulêre kragte (moet nie aanvaar dieselfde volume, dieselfde soort apparaat nie) (1)

Downloaded from Stanmorephysics con

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

3.3 What is the relationship between chain length/molar mass/surface area and boiling point? ✓✓

Wat is die verwantskap tussen die kettinglengte/molêre massa/kontakoppervlakte en kookpunt?

(2)

Marking criteria/Nasienriglyne

- Must mention INDEPENDENT and DEPENDENT variables ✓ Moet die ONAFHANKLIKE en AFHANKLIKE veranderlikes noem
- Answer to the question CANNOT be YES OR NO ✓
 Antwoord op die vraag mag nie JA of NEE wees nie.
- 3.4 (ONE reasonable answer)

Keep away from an open flame, OR work in a fume cupboard, OR heat in a water bath. ✓

(EEN redelike antwoord)

Hou weg van 'n oop vlam, OF werk in 'n dampkas, OF verhit in 'n waterbad. (1)

3.5 $C \checkmark$, it has the highest boiling point. \checkmark

C, dit het die hoogste kookpunt.

(2)

3.6 Higher than/*Hoër as* ✓

- (1)
- INTERMOLECULAR FORCES and STRENGTH
 As the <u>chain length increases</u>, ✓ <u>the strength of the London/ intermolecular forces increases</u>, ✓
 - ENERGY

Therefore more energy is needed to overcome the intermolecular forces leading to a higher boiling point. ✓

- INTERMOLEKULÊRE KRAGTE en STERKTE
 As die <u>kettinglengte verhoog</u>, <u>verhoog</u> <u>die sterkte van die London/</u>
 intermolekulêre kragte.
- ENERGIE

Daarom word <u>meer energie benodig om die intermolekulêre kragte</u> te oorkom wat dan tot 'n hoër kookpunt lei.

(3)

Marking criteria/Nasienriglyne:

- Identify the type of intermolecular force./Identifiseer die tipe intermolekulêre kragte. ✓
- Refer to the strength of intermolecular forces./Verwys na die sterkte van die intermolekulêre kragte. ✓
- Mention the energy required to <u>overcome intermolecular forces.</u>/Noem die energie benodig om die <u>intermolekulêre kragte te oorkom</u>. ✓

NO MARK if a learner says more energy required to BREAK BONDS/

GEEN PUNTE indien 'n leerder skryf meer energie benodig om BINDINGS TE BREEK NIE.

FISIESE WETENSKAPPE: CHEMIE NASIENRIGLYNE (PAPER/VRAESTEL 2) GR12 0623 3.8 3.8.1 (1) 3.8.2 The sunlight supplies sufficient energy (heat) to meet the activation energy of the reaction. ✓ Will react with the UV of the sunlight. Die sonlig verskaf genoeg energie (hitte) om gelyk te wees aan die aktiveringsenergie van die reaksie. Sal reageer met die UV van die son. (1) 3.8.3 $C_4H_8\mathbf{Br_2}\checkmark\checkmark$ (if only one Br is shown ½) (indien slegs een Br gewys word ½) (2)3.8.4 $2C_4H_{10} \checkmark + 13O_2 \rightarrow 8CO_2 + 10H_2O \checkmark$ bal ✓ Ignore phases and double arrows in answers / Ignoreer fases en dubbel pyl in antwoord (3)[21] QUESTION/VRAAG 4 4.1 Compounds in which there are no multiple bonds between carbon atoms in their hydrocarbon chain. ✓ ✓ (2 OR 0) A compound in which there are only single bonds between the carbon atoms in the chain. Verbindings waarin daar geen meervoudige bindings tussen C-atome in hul koolwaterstofkettings is nie. (2 OF 0) OF 'n Verbinding waarin daar slegs enkel bindings is tussen die koolstofatome in 'n ketting. (2) 4.2 4.2.1 Substitution/Substitusie ✓ (1) 4.2.2 Potassium bromide/KBr ✓ Kaliumbromied/KBr (1) 4.2.3 Dilute strong base OR mild heat ✓ OR KOH(ag) Verdunde sterk basis OF matige hitte OF KOH(aq) (1) Pentan-2-ol ✓✓ 4.3 4.3.1 Pentan-2-ol Accept 2-pentanol / Aanvaar 2-pentanol (2)Marking criteria/Nasienriglyne Correct stem (pentan)/Korrekte stam (pentan) ✓ IUPAC name is completely correct including numbering, sequence, hyphens and commas./ IUPAC naam is heeltemal korrek met alle nommering, volgorde, koppeltekens en kommas. ✓

PHYSICAL SCIENCES: CHEMISTRY

(1)

Downloaded from Stanmorephysic

MARKING GUIDELINES

4.3.2 Elimination OR Dehydration/Eliminasie OF Dehidrasie ✓

Downloaded from Stanmorephysics

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

4.3.3 H H H H
H—C—C=C—C—C—H

(2)

Marking criteria/Nasienriglyne

- 5 carbons in the chain/5 koolstowwe in die ketting ✓
- Functional group C = C/Funksionele groep C = C ✓

- 4.4 4.4.1 Hydrogenation/*Hidrogenasie of hidrogenering* ✓ (1)
 - 4.4.2 Pt OR/OF Pd OR/OF Ni ✓ (1)
- 4.5 4.5.1

Marking criteria/Nasienriglyne:

- Functional group/funksionele groep ✓
- correct number of carbon on either side of the functional group/korrekte hoeveelheid koolstowwe aan beide kante van die funksionele groep ✓
- Whole structure is correct/Hele struktuur is korrek ✓
- 4.5.2 Propyl ✓ ethanoate ✓

 Propieletanoaat (2)
- 4.5.3 Sulphuric acid/ hydrogensulphate ✓ Swawelsuur / waterstofsulfaat

(3)

Downloaded from Stanmorephysics G

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

4.5.4 **METHOD 1**:

$$C_3H_8OH + CH_3COOH \rightarrow C_5H_{10}O_2 + H_2O$$
 $M(C_5H_{10}O_2) = 102 \text{ g·mol}^{-1} \qquad M(C_3H_8OH) = 61 \text{ g·mol}^{-1}$
 $m = 90,78 \text{ g} \qquad \qquad n = \frac{m}{M}$
 $n = \frac{m}{M} \qquad \qquad 0,89 = \frac{m}{61} \checkmark$
 $m = 54,29 \text{ g}$

n(C₅H₁₀O₂): n(C₃H₈OH) 1:1

1:1 0,89 : 0,89**√** Percentage purity/
Persentasie suiwerheid =

$$\frac{Pure \ mass/Suiwer \ massa}{Impure \ mass/Onsuiwer \ massa} \times 100$$

$$= \frac{54,29}{60} \checkmark \times 100$$

$$= 90,48\% \checkmark$$

METHOD 2:

= 0.89 mol

$$C_3H_7OH + CH_3COOH \rightarrow C_5H_{10}O_2 + H_2O$$
 $M(C_5H_{10}O_2) = 102 \text{ g·mol}^{-1} \qquad M(C_3H_7OH) = 60 \text{ g·mol}^{-1}$
 $m = 90,78 \text{ g} \qquad \qquad n = \frac{m}{M}$
 $n = \frac{m}{M} \qquad \qquad 0,89 = \frac{m}{60} \checkmark$
 $m = 90,78 \text{ g} \qquad \qquad m = 53,4 \text{ g}$
 $m = 0,89 \text{ mol}$

n(C₅H₁₀O₂): n(C₃H₈OH) 1:1

0,89∶0,89✓

Percentage purity/
Persentasie suiwerheid =

Pure mass/Suiwer massa

| This is a second state of the second st

(5)

Marking criteria/nasienriglyne

- Substitute 102 g·mol⁻¹ into n= $\frac{m}{M}$ ✓

 Inveranging van 102 g·mol⁻¹ in n= $\frac{m}{M}$
- Use the mol ratio: n(C₅H₁₀O₂): n(C₃H₈OH) = 1: 1 ✓
 Gebruik die mol verhouding: n(C₅H₁₀O₂): n(C₃H₈OH) = 1: 1
- Substitute 61 g·mol⁻¹ into n= $\frac{m}{M}$ ✓

 Invervanging van 61 g·mol⁻¹ in n= $\frac{m}{M}$
- Substitute 60 g as the impure mass ✓ Invervanging van 60 g as die onsuiwer massa
- Final answer: 89 90,5% ✓
 Finale antwoord: 89 90,5%

[24]

Downloaded from Stanmorephysi

MARKING GUIDELINES
NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

(2)

(3)

(2)

QUESTION/VRAAG 5

5.1 <u>Change in concentration</u> of reactants or products <u>per unit time</u> ✓✓ (2 or 0)

Verandering in konsentrasie van reaktante of produkte per eenheid tyd. (2 of 0) (2)

5.2 As the concentration of the acid decreases, the rate of reaction will also decrease. ✓✓

OR

As the concentration of the acid increases, the rate of the reaction will increase.

Soos die konsentrasie van die suur afneem, sal die tempo van die reaksie ook afneem.

OF

Soos die konsentrasie van die suur toeneem sal die tempo van die reaksie ook toeneem.

Marking criteria/Nasienriglyne:

- Identify variables correct ✓
 Identifiseer die veranderlikes korrek
- Correct relationship ✓ Korrekte verwantskappe
- 5.3 **OPTION 1/OPSIE 1:**

$$c = \frac{n}{v}$$

$$2 = \frac{n}{0,015}$$

$$n = 0.03 \text{ mol}$$

$$c = \frac{n}{V}$$

$$c = \frac{0,03}{0,065}$$

$$c = 0,46 \text{ mol. dm}^{-3}$$

OPTION 2/OPSIE 2:

$$c_1V_1 = c_2V_2$$

(2)(0,015) $\checkmark = c_2 (0,065) \checkmark$
 $c_2 = 0,46 \text{ mol·dm}^{-3} \checkmark$

5.4 Learners should keep the <u>state of division/surface area</u> of the Mg-ribbon the same ✓ and the initial temperature. ✓

Leerders moet die <u>toestand van verdeeldheid/die oppervlakarea</u> van die Mg lint konstant hou en die <u>aanvanklike temperatuur</u>.

Downloaded from Stanmorephysics, con

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

The same mass of magnesium was used in each experiment.

DO NOT ACCEPT: HCl is in excess

Die Mg is die beperkende reagens en bepaal die hoeveelheid produkte wat vorm.

OF

Dieselfde massa magnesium is in elke eksperiment gebruik.

MOET NIE AANVAAR: HCl is in oormaat nie.

(1)

$$5.6 5.6.1 60 (cm3) \checkmark (1)$$

5.6.2 42 (cm³)
$$\checkmark$$
 (1)

5.7 Experiment 1 ✓

In the <u>same time, more product</u> ✓ is produced and the <u>gradient</u> of the graph is steeper. ✓

Eksperiment 1

In <u>dieselfde tyd word meer produkte</u> geproduseer en die <u>gradiënt</u> van die grafiek is steiler. (3)

5.8 Marking criteria/Nasienriglyne

- Use volume of 60 cm³/ 0,06 dm³ in n = $\frac{V}{V_m}$ Gebruik volume van 60 cm³ in n = $\frac{V}{V_m}$
- Ratio 1:1/Verhouding 1:1
- Use M = 24/Gebruik M = 24
- Substitute in rate equation
 Vervang in tempo vergelyking
- Answer 0,001/Antwoord 0,001

$$n = \frac{V}{V_m}$$
 $n_{Mg} = n_{H_2}$ $m_{Mg} = n_{xM}$ $n = \frac{0,06}{24}$ $m_{Mg} = 0,0025$ $m_{Mg} = 0,$

Answer must be positive/Antwoord moet positief wees

(5) **[20]**

Downloaded from Stanmorephysics, con

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

QUESTION/VRAAG 6:

6.1 Endothermic ✓

ΔH is greater that zero/is positive ✓

Endotermies

ΔH is groter as nul/is positief

(2)

6.2 6.2.1 Reverse√

The amount of product decreases with time. ✓

Terugwaarts

Die hoeveelheid produkte verminder met tyd.

(2)

(1)

6.2.3

$$n_{(C_{\ell}2)} = \frac{m}{M} \\
= \frac{5}{71} \\
= 0.07 \text{mol}$$

	\		/		
	H ₂ O	Cl2	HCℓ	O ₂	
Ratio	2	2	4	1	
Initial mole Aanvanklike mol	0,28	0,07	1	0,3	
Change Verandering	+0,4	+0,4	-0,8	-0,2	Ratio <
Equilibrium Ewewig	0,68	0,47	0,2	0,1✓	
$c = \frac{n}{V}$	0,68 5 =0,136	$\frac{0,47}{5}$ =0,094	$\frac{0.2}{5}$ =0.04	$\frac{0.1}{5}$ = 0,02	
[110/14[0]]	,	_U,UJ T	- 0,0 -1		j

$$K_{c} = \frac{[HC\ell]^{4}[O_{2}]}{[H_{2}O]^{2}[C\ell_{2}]^{2}} \checkmark$$

$$= \frac{(0,04)^{4}(0,02)}{(0,136)^{2}(0,094)^{2}} \checkmark$$

 $= 0.0003 \checkmark (3.15 \times 10^{-4})$

(9)

Marking criteria

- Calculate the mole of water. ✓
- Calculate the mole of Cℓ₂
- Substitution of initial mole for both HCℓ and O2 ✓
- Correct use of ratio ✓
- Correct mol at equilibrium for O₂. ✓
- Divide by volume of 5 ✓
- Kc expression ✓ (Wrong Kc max 7/9)
- Substitution of values from Equilibrium concentration ✓
- Correct answer. ✓

Downloaded from

rom Stanmorephysi MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

Nasienkriteria:

- Bereken die mol water. ✓
- Bereken die mol Cl₂
- Vervang beide HCℓ en O₂
- Korrekte gebruik van verhouding
- Korrekte mol by ewewig O₂. ✓
- Deel deur volume van 5 ✓
- Kc uitdrukking ✓ (Verkeerde Kc maks 7/9)
- Vervanging van waardes van ewewigskonstante ✓
- Korrekte antwoord ✓
- 6.3 Remains the same ✓ Only temperature affects K_c. ✓

Bly dieselfde Slegs temperatuur affekteer Kc.

(2)

6.4

Marking criteria/Nasienkriteria:

- Both axes correctly labelled./Asse korrek benoem ✓
- Shape of Ep curve for endothermic reaction as shown./Vorm van kurwe vir endotermiese reaksie soos getoon. (B) ✓✓
- Added catalyst/Bygevoegde katalisator ✓ (A)

(4) [**20**]

(2)

QUESTION 7/VRAAG 7:

7.1 7.1.1 An acid is a substance that produces hydrogen ions (H⁺) / hydronium ions (H₃O⁺) when <u>in solution</u>. ✓ ✓

'n Suur is 'n stof wat waterstof ione produseer (H⁺) hidroniuim ione (H_3O^+) wanneer <u>dit in oplossing is</u>.

- 7.1.2 It ionises to form <u>2 protons/Dit ioniseer om 2 protone</u> te vorm. ✓ (1)
- 7.2 7.2.1 Ampholyte or amphiprotic /amfoliet of amfiproties ✓ (1)

GAUTENG PROVINCE

Downloaded from Stanmorephysi

MARKING GUIDELINES NASIENRIGLYNE

PHYSICAL SCIENCES: CHEMISTRY
FISIESE WETENSKAPPE: CHEMIE
(PAPER/VRAESTEL 2) GR12 0623

7.2.2

$$HCO_{3^{-}}(aq) + H_{2}O(\ell) \rightleftharpoons H_{2}CO_{3}(aq) + OH^{-}(aq)$$
 b_{1}
 a_{2}
 a_{1}
 b_{2}

(2)

(4)

7.3 7.3.1

OPTION 1/OPSIE 1: $c = \frac{m}{MV}$ $0.25 = \frac{m}{(36.5)(2.5)} \checkmark \checkmark$ $m = 22.82 g \checkmark$ range/gebied: 22.82 – 23

OPTION 2/OPSIE 2: $c = \frac{n}{v}$ $n = \frac{m}{M}$ n = (0,25)(2,5) $0,625 = \frac{m}{36,5}$ m = 22,82 g \sqrt{m} range/gebied: 22,82 - 23

7.3.2

OPTION 1/OPSIE 1:

$$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$$

$$\frac{(0,25)(50)\checkmark}{c_b(20)\checkmark} = \frac{2}{1}\checkmark$$

$$c_b = 0,31 \text{ mol·dm}^{-3}\checkmark$$

OPTION 2/OPSIE 2:

$$c_a = \frac{n}{V}$$

n = (0,25)(0,05) \checkmark
n = 0,0125 mol

$$n_b = \frac{1}{2}n_a \checkmark$$

= 0,00625 mol

$$c_b = \frac{n}{V}$$
 $c_b = \frac{0,00625}{0,02} \checkmark$
 $c_b = 0,31 \text{ mol} \cdot \text{dm}^{-3} \checkmark$

(4)

7.3.3 Methyl orange. ✓
Strong acid reacts with weak base ✓

Metieloranje Sterk suur reageer met 'n swak basis. (2) [16]

QUESTION/VRAAG 8:

8.1 8.1.1 Oxidation is the loss of electrons

Oksidasie is die verlies van elektrone. ✓ ✓

(2)

(3)

8.2 **METHOD 1**: MnO₄² x + (4(-2)) = -2 $x = +6 \checkmark \checkmark$

METHOD 2: MnO₄⁻ x + (4(-2)) = -1

x = +7 (2)

TOTAL/TOTAAL: 150

