Nanodegree Engenheiro de Machine Learning

Projeto final

Gabriel Yan Mitoso

21 de Outubro de 2018

I. Definição

Visão geral do projeto

A criminalidade no Brasil possui níveis acima da média mundial, com níveis particulamente altos para crimes a mão armada e homicídios, onde em sua maioria o narcotráfico está envolvido. Quando algum crime ocorre, um boletim de ocorrência é registrado e nele temos a categoria do crime que foi cometido.

Este trabalho busca através dos registros de ocorrências dos anos de 2015 a 2017, fornecidos pela Secretaria Nacional de Segurança Pública, prever a categoria do crime no estado de São Paulo.

Descrição do problema

O objetivo do problema é prever a categoria do crime no estado de São Paulo, utilizando os registros de ocorrências. E para alcançar este objetivo as seguintes tarefas serão aplicadas:

- 1. Explorar os dados, apresentando quantidade de colunas e linhas, mostrando as primeiras linhas e descrevendo cada atributo.
- 2. Gerar diferentes histogramas para análise.
- 3. Pré processar os dados, identificando e analisando possíveis outliers.
- 4. Dividir os dados em teste e treino.
- 5. Aplicar e otimizar o algoritmo K-Nearest Neighbors e Regressão Logística.
- 6. Aplicar e otimizar o algoritmo Regressão Logística.
- 7. Escolher o melhor algoritmo a partir do score obtido da métrica de Log Loss.

Ao final espera-se que o modelo escolhido seja capaz de prever a categoria do crime, baseado na cidade, mês, ano e quantidade de ocorrências.

Métricas

A métrica de Log Loss analisa a performance baseado nas probabilidades e o valor real. Considerando apenas uma categoria, a fórmula matemática de log loss é:

•
$$I(y,p) = -ylog(p) + (y-1)log(1-p)$$

Onde y é o valor real e p é o valor previsto.

Neste problema de classificação, temos que as ocorrências podem ter probabilidades de pertencer a determinada categoria de crime, então utilizar Log Loss é uma boa escolha, visto que o score é diminuido a cada categoria mal prevista.

II. Análise

Exploração dos dados

Os dados utilizados neste problema foram fornecidos pela Secretaria Nacional de Segurança Pública. O conjunto de dados trata da contabilização do número de ocorrências registradas, para cada cidade, mês e ano considerado.

Para o escopo deste problema foi considerado apenas o estado de São Paulo e os anos de 2015 a 2017. A tabela a seguir apresenta a descrição dos dados:

Atributo	Descrição			
Código IBGE do Município	Código de identificação do município utilizado pelo IBGE.			
Município	Cidade das ocorrências			
Tipo Crime	Categoria do crime			
Mês	Mês das ocorrências, representados de 1 a 12.			
Ano	Ano das ocorrências			
Qtde de Ocorrências	Quantidade de ocorrências			

A tabela a seguir apresenta as primeiras linha do arquivo csv obtido.

Código IBGE Município	Município	Tipo Crime	Mês	Ano	Qtde Ocorrências
3500105	Adamantina	Estupro	2	2015	1
3500105	Adamantina	Estupro	2	2015	1
3500105	Adamantina	Estupro	11	2015	1
3500105	Adamantina	Furto de veículo	2	2015	1
3500105	Adamantina	Furto de veículo	3	2015	2

Após ler o arquivo csv, obtive algumas informações sobre o mesmo:

• Número total de registros: 24550

• Número de atributos: 5

• Número de categorias de crime: 6

• Número de cidades: 626

O número de atributos não está correto, pois a biblioteca pandas não indexou todas as colunas.

Visualização exploratória

Por se tratar de um problema real e com dados reais, a visualização e compreensão dos dados é um dos objetivos deste trabalho. O primeiro gráfico a ser obtido é o das cidades com o maior número de ocorrências, e como esperado São Paulo apresenta uma quantidade bem mais significativa do que as outras cidades, chegando a quase 200 mil ocorrências.

No segundo gráfico temos a quantidade de ocorrências para cada mês do ano. Neste gráfico 4 meses se destacaram pelo maior número de ocorrências: Fevereiro, Abril, Maio e Junho.

O terceiro gráfico trás o número de ocorrências por ano. Os dados de 2017 não estão completos, o que desbalanceou o gráfico, mas percebemos que em 2016 o número de ocorrências diminui consideravelmente.

O último gráfico obtido trás a quantidade de ocorrências para cada categoria de crime. Duas categorias de crime se destacam: Furto de veículo e Roubo de veículo, ambas com um número consideravelmente maior que as outras categorias.

Algoritmos e técnicas

Neste trabalho dois algoritmos serão explorados e alguns pontos sobre os mesmos são discutidos:

Regressão Logística

- Modelo bastante utilizado para identificação de grupos, seja na medicina para identificar um grupo de indivíduos doentes, ou em instituições financeiras para identificar grupos de risco para subscrição de crédito.
- Com este modelo não precisamos nos preocupar com a relação entre os atributos e por ser um modelo facilmente regulável, se torna tolerante a ruídos nos dados, evitando sobreajuste.
- Se os atributos não forem linearmente separáveis o modelo não terá uma boa perfomance.
- Por ser regulável e de fácil implementação o modelo se apresenta um bom canditato ao

problema.

K-Nearest Neighbors

- Modelo muito utilizado para problemas de classificação, previsões de estrutura 3D, Interações proteína-proteína, etc.
- Este modelo possui fácil implementação e consegue lidar com problemas de classificação e regressão.
- Para dados com muita dimensão o modelo têm baixa perfomance e em qualquer problema é necessário refinar os seus parâmetros.
- Como os dados utilizados são de baixa dimensão, este modelo também se apresenta um bom canditato ao problema.

Após dividir o conjunto de dados em treino e teste, aplicarei os modelos propostos, K-Nearest Neighbors e Regressão Logística. Para refinar os parâmetros utilizarei GridSearchCV.

Benchmark

A ideia deste problema veio com base no problema San Francisco Crime Classification da Kaggle. Nele temos dados parecidos, como: local, data e categoria, e o objetivo também é prever a categoria do crime. A Kaggle utiliza a métrica de Log Loss para avaliar os modelos submetidos. O objetivo é chegar um valor de Log Loss aproximado aos submetidos.

III. Metodologia

Pré-processamento de dados

Os processamentos realizados no conjunto de dados são remover possíveis registros com a categoria de crime vazia, substituir as categorias por números e ao final remover as colunas que não serão utilizadas. Outros processamentos não foram necessários, visto que os dados estão bem ajustados. Ao final do pré processamento dos dados foram divididos 80% para treino e 20% para teste.

Implementação

Os modelos utilizados são de fácil implementação e além da métrica de Log Loss, a pontuação F1 e acurácia também foram obtidas.

Regressão Logística

• **F1**: 0.191974615632

Acurácia: 0.36150712831Log Loss: 1.79175946923

K-Nearest Neighbors

• **F1**: 0.451454935708

Acurácia: 0.456822810591Log Loss: 1.79842892278

Apesar dos algoritmos escolhidos não necessitarem de um pré processamento para os dados, a métrica Log Loss necessita que para cada categoria tenha uma previsão, então foi necessário fazer uma função que recebe a previsão dos algoritmos e retorna no formato para inserir na métrica.

```
# função para retornar no formato que a métrica log loss irá utilizar

def resultFrame(predictions):
    result_dataframe = pd.DataFrame({
        "Id": X_test["Código IBGE Município"]
})
    for key,value in data_dict_new.items():
        result_dataframe[key] = 0
    count = 0
    for item in predictions:
        for key,value in data_dict.items():
            if(value == item):
                result_dataframe[key][count] = 1
            count+=1
    return result_dataframe
```

Refinamento

Para a solução inicial os parâmetros 'default' foram utilizados. Para refinar esses parâmetros a técnica GridSearchCV foi utilizada, onde no modelo de Regressão Logística os parâmetros 'tol' e 'C' foram refinados e no modelo K-Nearest-Neighbors os parâmetros 'n_neighbors' e 'weights' foram refinados. A pontuação escolhida como parâmetro do GridSearchCV foi a F1, pois na métrica Log Loss necessita-se fazer a transformação da previsão.

Mesmo após o refinamento as pontuações permaneceram as mesmas.

IV. Resultados

Modelo de avaliação e validação

A técnica GridSearchCV retornou os melhores parâmetros, sendo os 'defaults' (que já são utilizados pelos algoritmos) os melhores. Para variar um pouco as entradas modifiquei o parâmetro 'random_state' dá função train_test_split, e os resultados obtidos foram semelhantes aos apresentados.

Justificativa

Analisando a pontuação F1 e acurácia o algoritmo não se saiu tão bem e utilizá-lo na vida real não seria viável, mas se compararmos aos primeiros colocados do problema San Francisco Crime Classification, os algoritmos se saíram bem, onde o primeiro colocado da Kaggle tem a pontuação de 1.95936. Obviamente não se pode dizer que os algoritmos apresentados se saíram melhor, mas sim que um resultado satisfatório foi encontrado.

V. Conclusão

Foma livre de visualização

A tabela a seguir apresenta a correlação entre os atributos utilizados para teste, obtida utilizando a função corr.

	Código IBGE Município	Mês	Ano	Qtde Ocorrências
Código IBGE Município	1.000000	-0.003562	0.002353	0.072456
Mês	-0.003562	1.000000	-0.235237	0.000829
Ano	0.002353	-0.235237	1.000000	-0.002990
Qtde Ocorrências	0.072456	0.000829	-0.002990	1.000000

Analisando a tabela descobrimos uma característica importante do conjunto de dados: os atributos não possuem correlação entre si. Esta característica nos ajuda na escolha de algoritmos que podem ser utilizados no futuro.

Reflexão

O trabalho proposto foi baseado no problema San Francisco Crime Classification da Kaggle, onde, após encontrar um conjunto de dados semelhante ao problema e referente as ocorrências

brasileiras, obtive interesse pelo problema. Então, após obter os dados da Secretaria Nacional de Segurança Pública, explorei o conjunto de dados para obter algumas informações sobre o mesmo e depois gerei alguns gráficos com o intuito de analisar o conjunto de dados de diferentes formas. Após pré processar os dados, utilizei os algoritmos de Regressão Logística e K-Nearest-Neighbors para a solução e a métrica Log Loss foi utilizada para validá-los. Ao final, para refinar os modelos, a técnica GridSearchCV foi utilizada.

Apesar do problem não ter nenhum aspecto difícil, analisar o conjunto de dados visualmente se mostrou muito interessante pela natureza do projeto. Verificou-se neste projeto que a maioria das ocorrências são de roubo ou furto de veículos e que a cidade de São Paulo possui um número muito elevado de ocorrências e que seus dados deveriam ser analisados separadamente.

Mesmo não obtendo resultados consistentes devido ao conjunto de dados, adotaria os mesmos procedimentos para solucionar problemas semelhantes.

Melhorias

Apesar de melhorias poderem ser alcançadas nos algoritmos utilizados, acredito que outros algoritmos devam ser explorados, como XgBoost, o qual foi utilizado pelos competidores da Kaggle para solucionar o problema San Francisco Crime Classification.

Outra possibilidade seria a Secretaria Nacional de Segurança Pública enriquecer o conjunto de dados com outras informações das ocorrências. Dessa forma as previsões poderiam melhorar e teriam mais formas de explorar o conjunto de dados.