

Stratospheric Instrusion Catalog: A 10-year Compilation of Events Identified by using TRACK with NASA's MERRA-2 Reanalysis

K. Emma Knowland (USRA/GESTAR, GMAO)

In collaboration with Lesley E. Ott, NASA GMAO Bryan N. Duncan, NASA GSFC Kris Wargan, NASA GMAO, SSAI Kevin Hodges, University of Reading, UK

Introduction to Upper-level flow

Upper-level wave trains exists, with troughs often forming as the flow is disturbed by mountains

- Converging air accumulates and subsides
- Diverging air draws air upwards from the surface

• As air enters the trough, wind speeds increase resulting in a jet maximum at the trough base.

 upper-level trough supports development of a mid-latitude cyclone

Descent behind cold front

Tropopause Fold (Stratospheric Intrusions: SI)

SIs are associated with:

- High O₃, PV
- Low CO,
 moisture ("dry
 intrusion")

O₃ is a regulated air pollutant

- SIs can lead to concentrations of ground-level O₃ exceeding the national ambient air quality standard (NAAQS) set by the EPA, especially at high elevations
- In October 2015, the EPA revised the U.S.
 NAAQS for daily maximum 8 h average
 (MDA8) O₃ from 75 parts per billion by volume
 (ppbv) to 70 ppbv

SIs misrepresented in models....until now!

- SIs are fine-scale features, resolution needs to be high enough to capture the filaments
- Simulating and predicting such events remains challenging
- Need horizontal resolution of 50 km or less

NASA's MERRA-2 Reanalysis

- High resolution data set
 - ➤ 0.5° latitude x 0.625° longitude, 72 vertical levels up to 0.01 hPa
- Satellite era
 - > 1 January 1980 to within a couple weeks of real time
- Product of GEOS-5 data assimilation system v 5.12.4
- Assimilates conventional meteorological observations, aerosols and ozone
 - ➤ Since October 2004, high resolution stratospheric O₃ profiles from the MLS and total column ozone from OMI.

Atmospheric dynamics

- Tropopause descends to ~600 hPa
- Wrapped around jet core

- Tropopause folds are associated with:
 - High O₃, PV
 - Low RH, CO

- Tropopause folds are associated with:
 - High O₃, PV
 - Low RH, CO

Since assimilated O_3 is mainly stratospheric, MERRA-2 O_3 captures SIs, however biased elsewhere in the troposphere.

Questions

- •Can we objectively capture SI events in MERRA-2 in order to assist the identification of stratospheric intrusion influenced ozone exceedence events?
- Are there regional differences in the western and eastern USA?

1. Construct storm tracks

- ► Using the objective feature tracking algorithm, TRACK (Hodges 1995, 1999) identify cyclones in reanalysis dataset by maxima in 850-hPa relative vorticity (ζ_{850} hPa)
 - -Smaller scale systems are more easily identified
 - Not strongly influenced by the large scale background field
 - Less extrapolation below orography

50°N

40°N

 $\zeta_{300 \text{ hPa}}$ tracks

 $\zeta_{850 \text{ hPa}}$ storm tracks

2. SI Filtering

In order to select tracks which are likely associated with SIs, the tracks for 2005-2014 were filtered by:

- 1. 300 hPa winds for COLs during track life time (similar to Pineiro et al., 2016).
- 2. Anomalies of EPV > 2PVU, RH < 10 %, H < 0 dam and three thresholds for O_3 > 25 ppbv, > 50 ppbv, > 100 ppbv (7°search radius)
- 3. Maximum $\omega_{500 \text{ hPa}}$ and $\omega_{700 \text{ hPa}}$

(a) March 27, 2012 0UTC (b) May 27, 2012 9UTC

Stratospheric Intrusions in MERRA-2 (2005-2014)

	DJF		MAM		JJA		SON	
	ω _{500 hPa}	ω _{700 hPa}						
WUSA	135	100	185	173	141	102	153	81
EUSA	55	30	94	57	59	34	75	22

Compared to other seasons,

- More MAM filt-ζ_{300hPa} tracks over the WUSA with the potential to impact lower tropospheric O₃ concentrations
- The impact of the filt- $\zeta_{300\text{hPa}}$ tracks in the EUSA and in the other seasons must be considered

 Knowland

Knowland et al., in prep.

Pacific North American (PNA) pattern

PNA weighting

Cyclone tracks are weighted by the NOAA Climate Prediction Center's monthly EOF-based PNA index, using the method described in Bengtsson et al. (2006) and Hodges (2008).

Gives a weight close to 1 for PNA index values ≥ 1σ

No hard cut-off in data near the threshold value

More data is included during the 10-year data period

Red -> PNA +

Blue -> PNA-

Red -> PNA +

Blue -> PNA-

PNA- is associated with $\xi_{300 \text{ hPa}}$ tracks with high EPV, low RH, and high O_3 over Western USA

Track density (# per month) for filt- $\zeta_{300\text{hPa}}$ tracks with O₃ anomaly > 25 ppbv where the max ω at 500 and 700 hPa in the WUSA for MAM 2005-2014 weighted by the PNA index

- PNA+ \rightarrow more filt- ζ_{300hPa} tracks at 35°N impacting O₃ at 500 hPa
- PNA- \rightarrow more filt- ζ_{300hPa} tracks at 40°N with anomalously high O₃ at 700 hPa

Summary

- MERRA-2 reanalysis is a high-resolution global reanalysis which can be used in scientific studies to identify and track SIs by both atmospheric dynamics and O₃
- Location of SIs over the W. USA can be linked with teleconnection patterns, such as the PNA.
- In particular, it may be the intensity or location of the upper-level trough, and not the frequency, that is the main driver in deep SI events.

Knowland, et al (2017). Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis. GRL https://doi.org/10.1002/2017GL074532