14. Kanalikiht

Arvutivõrgud IEE1100 Ivo Müürsepp

Meediapöörduskiht MAC

- Saatmisel andmete jaotamine kaadriteks, füüsilisel aadressi (MAC aadress), kaadri pikkuse ja veatuvastusväljade lisamine.
- Vastuvõtul andmete eraldamine kaadrist, aadressi ja vigade tuvastamine.
- Kaadri sünkroniseerimine.
- Füüsilisele meediumile juurdepääsu haldamine (CSMA/CD).

SIMPLY EXPLAINED

LITTLE-ENDIAN

Veatuvastus

- Kontrollsumma
 - Lihtne aga ebatõhus
 - Paarsuskontroll
 - Mooduliga liitmine
- CRC (kontrollkood)
 - Cyclic redundancy check
 - Põhineb jagamisel
 - Käsitleb andmeid polünoomina

• CRC spetsifikatsioon:

 Määratud genereeriva polünoomiga

CRC-4: $x^4 + x + 1$; 0x3 (G.704)

CRC-16-CCITT: 0x1021

- Algväärtusega
- Tulemi edastamise järjekorraga
- Tulemile liidetava konstandiga

Biti- ja baiditäitmine(Bit- and byte stuffing)

- Kaadri algust ja lõppu tähistatakse spetsiifilise väljaga (flag): 0x7E
- Juhul kui kaadri sees edastatavates andmetes leidub sama bitijärjestus, siis loeb vastuvõtja selle ekslikult kaadri lõpuks.
- Lahenduseks on nn bit stuffing.
 - Iga viie järjestikuse "1" järele lisatakse "0" (farssbitt).
- Juhul, kui andmeid edastatakse baidi kaupa on mõistlikum kasutada byte stuffing'u nimelist tehnikat (Control Octet Transparency).
 - HDLC protokollis kasutatakse spetsiaalselt sümbolit 0x7D (Control escape octet), mis asetatakse iga kaadri sees oleva 0x7E või 0x7D okteti ette. Lisaks inverteeritakse vastava okteti viies bitt.

Meediapöördus raadiovõrgus

- Peidetud sõlme probleem
 - Hidden node probleem
 - Lahendus: pollimine, token
- Avaliku sõlme probleem
 - Exposed node probleem
 - Lahendus: RTS/CTS mehhanism

Loogilise ühenduse kiht *LLC*

- Liides kõrgema kihi protokollide jaoks. Andmete multipleksimine (*LSAP*).
- Voo juhtimine (Stop-and-Wait, Sliding-Window).
- Vigade tuvastus ja parandamine (ARQ, FEC).

Riistvaraline vookontroll

Nr	Lühend	Tähendus	Selgitus
1	CD	Carrier Detect	Modemid on omavahel ühendatud
2	Rx	Receive	Sisend vastuvõetavate andmete jaoks
3	Tx	Transmit	Väljund edastatavatele andmetele
4	DTR	Data Terminal Ready	Arvuti (DTE) on sideks valmis
5	GND	Ground	Maa
6	DSR	Data Set Ready	Modem (DCE) on sideks valmis
7	RTS	Request To Send	Arvuti (DTE) soovib edastada
8	CTS	Clear To Send	Modem (DCE) on valmis andmeid vastu võtma
9	RI	Ring Indicator	Sissetulev "kõne"

Nullmodem

-TxD

·RxD

RTS

CTS

DSR

GND

-DCD

DTR

Vigu parandavad koodid

- FEC Forward Error Correction
- Saavutatakse kontrollitud liiasuse lisamisega.
- Hammingi koodid
 - Kolmkeordselt kordav kood Hamming (3,1)
 - Hamming (7,4)
- Reed-Solomoni koodid
 - CD, DVB, WiMAX, QR
- BCH koodid
- Konvolutsioonilised koodid
- Võrekoodid
 - Viterbi algoritm.
- Turbokoodid
 - 3G/4G mobiil, kosmoseside
- LDPC koodid (Gallageri koodid)

Mõisted

- Hammingi kaal
 - Koodsõna c Hammingi kaaluks w{c} nimetatakse tema mittenulliste koordinaatide arvu.
- Hammingi kaugus
 - Kahe koodsõna \mathbf{c}_i ja \mathbf{c}_j vaheliseks kauguseks nimetatakse nende koordinaatide arvu, milles nad üksteisest erinevad. $h = d\{\mathbf{c}_i, \mathbf{c}_i\} = w\{\mathbf{c}_i \oplus \mathbf{c}_i\}$
- Minimaalne kaugus
 - Koodi ${\bf C}$ minimaalseks kauguseks h_{\min} nimetatakse kahe erineva koodsõna vähimat kaugust.

$$h_{min} = d\{\mathbf{c}_i, \mathbf{c}_j\} \quad i \neq j$$

Hammingi kood

- Lineaarne binaarne plokk-kood minimaalse kaugusega h_{min} = 3.
- Iga täisarvu $r \ge 2$ korral on ploki pikkus $n = 2^r 1$, millest informatsiooni kannab $k = 2^r r 1$ bitti ja ülejäänud on paarsusbitid.
- Koodi kiiruseks (*code rate*) nimetatakse informatsiooni edastavate bittide arvu *k* suhet kogu ploki pikkusesse *n*.

$$R = k/n$$

Hammingi koodi kiirus

$$R = 1 - r/(2^r - 1)$$

Suudab parandada ühekordseid bitivigu.

Hamming (7,4)

$$r = 3$$

 $n = 7$
 $k = 4$
 $R = 4/7 \approx 0.57$

Biti nr		7	6	5	4	3	2	1
Biti sisu		d7	d6	d5	p4	d3	p2	p1
	P4	X	X	X	X			
	p2	X	X			X	X	
	p1	X		X		X		X

$$p4 = d7 + d6 + d5$$

 $p2 = d7 + d6 + d3$
 $p1 = d7 + d5 + d3$

Sõnum: 1101

$$p4 = d7 + d6 + d5 = 1+1+0 = 0$$
 $p2 = d7 + d6 + d3 = 1+1+1 = 1$
 $p1 = d7 + d5 + d3 = 1+0+1 = 0$

Koodsõna: 1100110

Hamming (7,4)

Sõnum: 1101

Koodsõna **c**: 1100110

Veavektor **e**: 0010000

Vigane koodsõna: 1110110

Sündroom:

$$A = p4 + d7 + d6 + d5$$

$$B = p2 + d7 + d6 + d3$$

$$C = p1 + d7 + d5 + d3$$

Leiame sündroomi s:

$$A = p4 + d7 + d6 + d5 = 0+1+1+1 = 1$$

$$B = p2 + d7 + d6 + d3 = 1 + 1 + 1 + 1 = 0$$

$$C = p1 + d7 + d5 + d3 = 0 + 1 + 1 + 1 = 1$$

Sündroom:
$$s = 101_2 = 5$$

Bitt numbriga 5 ehk d5 on vigane!

Parandatud koodsõna: 1100110

Hamming (7,4)

Genereeriv maatriks

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

c = dG

Süstemaatiline kood

$$\mathbf{G} = \begin{bmatrix} \mathbf{I} | \mathbf{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 | 0 & 1 & 1 \\ 0 & 1 & 0 & 0 | 1 & 1 & 0 \\ 0 & 0 & 1 & 0 | 1 & 0 & 1 \\ 0 & 0 & 0 & 1 | 1 & 1 & 1 \end{bmatrix}$$

Paarsuskontrolli maatriks

Saadakse genereeriva maatriksi teisendamisel

$$\mathbf{H} = \begin{bmatrix} \mathbf{A}^T | \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 | 1 & 0 & 0 \\ 1 & 1 & 0 & 1 | 0 & 1 & 0 \\ 0 & 1 & 1 & 1 | 0 & 0 & 1 \end{bmatrix}$$

Sündroom leitakse

$$\mathbf{s} = \mathbf{H}\mathbf{c}^T$$

Hamming (7,4) – lubatud koodsõnad

sõnum	koodsõna	sõnum	koodsõna
0000	0000000	1000	1001011
0001	0000111	1001	1001100
0010	0011001	1010	1010010
0011	0011110	1011	1010101
0100	0101010	1100	1100001
0101	0101101	1101	1100110
0110	0110011	1110	1111000
0111	0110100	1111	1111111

- Koodsõna on seitsmebitine, võimalike koodsõnade arv seega 2⁷ = 128
- Lubatud koodsõnu ainult 16
- Kasutusel ainult iga kaheksas

Vaheldamine (Interleaving)

- Vigu parandavad koodid suudavad edukalt parandada suhteliselt suurt hulka vigu, eeldusel, et vead on vastuvõetud andmetes ühtlaselt jaotunud.
- Praktikas kipuvad vead esinema suuremate gruppide e pursetena (error burst).
- Vaheldi (*Interleaver*) on seade mis vähendab veapursete mõju ja parandab seega vigu parandavate koodide kasutamise tõhusust. Eesmärk saavutatakse muutes enne saatmist andmete järjekorda selliselt, et järjestiku eksisteerivad andmed ei paiknes edastamisel lähestikku.

Interleaving

- Vaheldamise teostamiseks on mitmeid erinevaid viise. Antud näites vaatame plokk-vaheldit (*block interleaver*).
- Olgu edastatavaks sõnumiks järgnev tekst:

SeeOnVaheldamiseNäide

 Peale veapurset on vastuvõetud andmetest kadunud neli järjestikust sümbolit:

Puuduoleva osa taastamine on raskendatud, kui mitte võimatu.

Block interleaver

• Edastatavad andmed kirjutatakse ridahaaval *n×m* tabelisse:

S	е	е	0	n	V	а
h	е	I	d	a	m	i
S	е	N	ä	i	d	е

Andmed edastatakse sideliinis veergude kaupa.

ShseeeelNOdänaiVmdaie

• Selliselt ei paikne kõrvutised sümbolid edastamisel koos. Samas tekib edastamisel viide, mis on tingitud tabeli kirjutamisest enne edastamise algust ja lugemisest peale vastuvõtu lõppu.

Block interleaver

 Kui nüüd kustub edastatud jadas veapurske tõttu neli järjestikust sümbolit on tulemus järgmine:

Vastuvõtjas on täidetud tabel kujul:

S	е	_	0	n	V	а
h	_	-	d	a	m	
S	_	N	ä	i	d	е

• Näeme, et veapurse on peale sümbolite õige järjekorra taastamist jaotunud ühtlasemalt sõnumi peale laiali:

Lisaks lugeda

- William Stallings. Data and Computer Communications 8th edition. Peatükk 7 Data Link Conroll Protocols. lk 207 – 228.
- Functions of LLC and MAC sub-layers of Data Link Layer. http://computernetworkingsimplified.com/data-link-layer/components-data-link-layer-llc-mac/, 21.04.2018
- Erkki Laaneoks. Sissejuhatus võrgutehnoloogiasse. 6 ptk. OSI kanalikiht.
- Columbia University. Serial Port and Modem Cables. http://www.columbia.edu/kermit/cable.html, 21.04.2018
- Hamming Codes How it Works.
 https://www.gaussianwaves.com/2008/05/hamming-codes-how-it-works/, 21.04.2018