Лабораторная работа № 4

Моделирование с помощью сетей Петри

Цель работы:Освоить основные формализмы ординарных и раскрашенных сетей Петри. Научиться составлять формальное описание ординарных и раскрашенных сетей Петри.

Содержание работы

- 1. Изучить теоретический материал
- 2. Построить модели ординарной и цветной сети Петри в соответствии с заданным вариантом.

Провести исследование построенной сети путем построения дерева маркировок.

3. Оценить свойства построенных на шаге 2 сетей Петри: ограниченность, консервативность, безопасность, живость.

Оформление работы

Оформленный отчет по лабораторной работе должен содержать:

- титульный лист с указанием фамилий исполнителей, группы и номера варианта;
- для каждого из заданий представить:
 - о сеть Петри по заданию;
 - о дерево маркировок;
 - о анализ свойств построенной сети;

Задание № 1. Моделирование ординарных сетей Петри

Требуется построить модель заданного объекта в виде ординарной сети Петри.

Варианты для самостоятельной работы

1. Задача об обедающих философах. Пять философов отдыхают в пансионате. Каждый из философов может или предаваться размышлениям, или обедать, посетив столовую. В столовой находится круглый стол, за которым есть места для каждого из философов, пять тарелок, пять вилок, расположенных между тарелками и блюдо спагетти в центре стола. Каждый философ для того чтобы пообедать берет

одновременно две вилки и приступает к трапезе, по завершению которой он кладет вилки на стол и предается размышлениям.

- 2. Представить задачу об обедающих философах для случая, когда левую и праву вилки берут поочередно.
- 3. Представить модель задачи 2 для случая, когда за стол приглашают одного из философов, не препятствующему общему поглощению пищи обедающими.
- 4. Представить модель задачи 3 для случая, когда приглашение к столу необязательные к рассмотрению философом.
- 5. Построить модель обслуживания процессов в компьютере, который имеет два процессора, магнитный диск и принтер.
- 6. Построить модель взаимодействия трех процессов, из которых один пишет сообщения в буфер, а другие два обрабатывают сообщения и помещают результат в выходной буфер.
 - 7. Представить модель задачи 6 при ограничениях на размер буферов.
- 8. Представить модель задачи 7 для произвольного заданного числа пишущих и читающих процессов.
- 9. Построить модель лифта для четырехэтажного дома. Кнопки вызова находятся на каждом этаже.
- 10.Представить модель задачи 9 с ограничениями на количество пассажиров.

Задание № 2. Моделирование раскрашенных сетей Петри

Требуется для указанного варианта построить, формально описать и исследовать цветную сеть Петри.

Варианты для самостоятельной работы

Задания составлены на основе 2 различных задач, каждая задача содержит 5 вариантов условий. Зная свой вариант задания, следует выбрать задачу и соответствующие условия.

Задача 1

В цеху собирается изделие, состоящее из K деталей типа A, M деталей типа B, N деталей типа C. Детали поступают в цех с участка комплектования в указанном ниже порядке. Собранное изделие поступает на склад емкостью S изделий, а со склада — на продажу потребителю. При отсутствии комплекта деталей и заполнении склада работа цеха останавливается.

Дополнительные условия:

1. Детали поступают на сборку по одной в определенном порядке: сперва типа A, затем типа B, затем типа C.

2. Детали поступают на сборку комплектами: κ деталей типа A, M — типа B, N — типа C.

Варианты заданий

№ варианта	K	M	N	S	Дополнительное условие			
1	1	2	3	2	1			
3	2	3	3	3	2			
5	2	4	6	3	1			
7	4	6	6	2	2			
9	3	5	6	3	1			

Задача 2

Система массового обслуживания содержит два типа устройств: A и B и выполняет заявки k видов. Устройств $A - n_A$ экземпляров, устройств $B - n_B$ экземпляров. Заявки поступают извне буфер заявок и обслуживаются в указанном ниже порядке, обслуженные заявки выводятся из системы.

Устройство типа A обслуживает все заявки, устройство типа B — только заявки первого и k-го видов.

Дополнительные условия:

- 1. Заявки поступают произвольном порядке, а выводятся из системы в том же порядке, что и поступили.
- 2. Заявки имеют приоритеты: сперва обслуживаются все находящиеся в буфере заявки первого вида, затем все заявки второго вида и т. д.

Варианты заданий

$N_{\overline{0}}$	n_A	n_B	k	Дополнительное				
варианта	I VA	I VB		условие				
2	1	2	4	2				
4	2	1	3	1				
6	3	2	2	2				
8	2	2	3	2				
10	3	2	3	1				

Контрольные вопросы

- 1. Укажите основные области применения сетей Петри.
- 2. Опишите коротко процесс функционирования сети Петри.
- 3. Укажите способы наглядного представления динамики сети Петри.
- 4. Что представляет собой графа достижимых маркировок сети Петри?
- 5. Какие сети Петри называют ординарными?

- 6. Какие свойства сетей Петри позволяет определить дерево достижимости маркировок?
 - 7. Какие сети Петри называют цветными?
 - 8. Укажите области применения цветных сетей Петри.