Контрольна робота №1 та №2 (ОДЗ)

```
In [7]: import pandas as pd
import numpy as np
from sklearn.metrics.regression import mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.linear_model import LinearRegression, LassoCV, Lasso
from sklearn.ensemble import RandomForestRegressor
```

У завданні буде використано набір даних про якість білого вина(репозиторій UCI) archive.ics.uci.edu/ml/machine-learning-databases/wine-quality. Завантажте дані

```
In [2]: !mkdir -p data
!wget -P data -c https://archive.ics.uci.edu/ml/machine-learning-databases/wine-data = pd.read_csv("data/winequality-white.csv", sep=";")
display(data.sample(10))
```

--2020-09-20 15:34:35-- https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv (https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv)

Resolving archive.ics.uci.edu (archive.ics.uci.edu)... 128.195.10.252 Connecting to archive.ics.uci.edu (archive.ics.uci.edu) | 128.195.10.252 | :443... connected.

HTTP request sent, awaiting response... 200 OK Length: 264426 (258K) [application/x-httpd-php] Saving to: 'data/winequality-white.csv'

winequality-white.c 100%[========>] 258.23K 1.03MB/s in 0.2s

2020-09-20 15:34:36 (1.03 MB/s) - 'data/winequality-white.csv' saved [264426/26 4426]

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
901	8.0	0.29	0.29	13.2	0.046	26.0	113.0	0.99830	3.25	0.37	9
144	8.1	0.20	0.40	2.0	0.037	19.0	87.0	0.99210	3.12	0.54	11
4238	6.4	0.29	0.18	15.0	0.040	21.0	116.0	0.99736	3.14	0.50	9
2201	6.0	0.28	0.27	2.3	0.051	23.0	147.0	0.99400	3.23	0.67	10
2544	6.9	0.32	0.30	1.8	0.036	28.0	117.0	0.99269	3.24	0.48	11
3330	6.7	0.23	0.33	8.1	0.048	45.0	176.0	0.99472	3.11	0.52	10
3070	6.8	0.28	0.43	7.6	0.030	30.0	110.0	0.99164	3.08	0.59	12
401	6.8	0.37	0.51	11.8	0.044	62.0	163.0	0.99760	3.19	0.44	8
695	6.3	0.34	0.28	14.7	0.047	49.0	198.0	0.99770	3.23	0.46	9
1778	6.4	0.15	0.36	1.8	0.034	43.0	150.0	0.99220	3.42	0.69	11

```
In [3]: data.head()
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	

```
_____
                           _____
 0
    fixed acidity
                                          float64
                          4898 non-null
 1
    volatile acidity
                          4898 non-null
                                          float64
 2
    citric acid
                          4898 non-null
                                          float64
 3
    residual sugar
                                          float64
                          4898 non-null
 4
    chlorides
                                          float64
                          4898 non-null
 5
    free sulfur dioxide 4898 non-null
                                          float64
 6
    total sulfur dioxide 4898 non-null
                                          float64
 7
    density
                          4898 non-null
                                          float64
 8
                                          float64
    рΗ
                          4898 non-null
 9
    sulphates
                          4898 non-null
                                          float64
 10 alcohol
                                          float64
                          4898 non-null
 11 quality
                          4898 non-null
                                          int64
dtypes: float64(11), int64(1)
```

memory usage: 459.3 KB

Відокремте цільову змінну, розділіть навчальну вибірку у відношенні 7:3 (30% - під задишену вибірку, нехай random state=17) і нормалізуйте дані за допомогою StandartScaler

```
In [7]: y = # Baw κοδ mym
data.drop("quality", axis=1, inplace=True)
X_train, X_holdout, y_train, y_holdout = train_test_split # Baw κοδ mym
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform # Baw κοδ mym
X_holdout_scaled = scaler.transform # Baw κοδ mym
```

Лінійна регресія

Навчіть просту лінійну модель регресії

```
In []: linreg = # Baw κοδ mym linreg.fit # Baw κοδ mym
```

Питання 1 : Які середньоквадратичні помилки лінійної регресії на навчальній і відкоаденій вибірках ?

```
In [ ]: print("Mean squared error (train): %.3f" % # Βαω κοδ mym print("Mean squared error (test): %.3f" % # Βαω κοδ mym
```

Подивіться на коефіцієнти моделі і ранжуйте ознаки за впливом на якість вина (врахуйте, що великі за модулем негативні значення коефіцієнтів теж говорять про сильний вплив). Створіть для цього новий невеликий DataFrame.

Питання 2 : Яку ознаку лінійна регресія вважає найбільш впливовою на якість вина?

```
In [ ]: linreg_coef = pd.DataFrame # Baw κοθ mym
linreg_coef.sort_values # Baw κοθ mym
```

Lasso-регресія

Навчіть Lasso-регресію з невеликим коефіцієнтом alpha=0,01 (слабка регуляризація). Hexaй знову random_state=17.

```
In [ ]: lasso1 = Lasso # Βαω κο∂ mym lasso1.fit # Βαω κο∂ mym
```

Подивіться на коефіцієнти моделі і ранжуйте ознаки за впливом на якість вина. Яка ознака "відпала" першою, тобто найменш важлива для пояснення цільової змінної в моделі Lasso?

```
In [ ]: lasso1_coef = pd.DataFrame # Βαω κο∂ mym
lasso1_coef.sort_values # Βαω κο∂ mym
```

Тепер визначте краще значення alpha в процесі 5-кратної крос-валідації. Використовуйте LassoCV і random_state = 17.

```
In [ ]: alphas = np.logspace(-6, 2, 200)
    lasso_cv = LassoCV # Βαω κοθ mym
    lasso_cv.fit # Βαω κοθ mym
In [ ]: lasso_cv.alpha_
```

Виведіть коефіцієнти "кращого" Lasso в порядку зменшення впливу на якість вина.

Питання 3: Яка ознака "занулилася першою" в налаштованій моделі LASSO?

```
In [ ]: lasso_cv_coef = pd.DataFrame # Βαω κοδ mym
lasso_cv_coef.sort_values # Βαω κοδ mym
```

Оцініть середньоквадратичну помилку моделі на навчальній і тестовій вибірках.

Питання 4 : Які середньоквадратичні помилки налаштованої LASSOрегресії на навчальній і відкладеній вибірках?

```
In [ ]: print("Mean squared error (train): %.3f" % # Βαω κοδ mym print("Mean squared error (test): %.3f" % # Βαω κοδ mym
```

Випадковий ліс

Навчіть випадковий ліс з параметрами "з коробки", фіксуючи тільки random_state=17.

```
In [ ]: forest = RandomForestRegressor # Βαω κο∂ mym forest.fit # Βαω κο∂ mym
```

Питання 5 : Які середньоквадратичні помилки випадкового лысу на навчальній вибірці, на крос-валідації (cross_val_score з scoring='neg_mean_squared_error' і іншими параметрами за замовчуванням) і відкладеній вибірках?

```
In [ ]: print("Mean squared error (train): %.3f" % # Baw κοθ mym
print("Mean squared error (cv): %.3f" % # Baw κοθ mym
print("Mean squared error (test): %.3f" % # Baw κοθ mym
```

Налаштуйте параметри min_samples_leaf i max_depth за допомогою GridSearchCV i знову перевірте якість моделі на крос-валідації і на відкладеній вибірках.

Нажал результати GridSearchCV в повному не відтворювані (можуть відрізнятися на різних платформах навіть при фіксованому random_state). Тому навчіть ліс з параметрами max_depth=19, max_features=7, i min_samples_leaf=1 (краще в моэму випадку).

Питання 6 : Які середньоквадратичні помилки налаштованого випадкового лісу на навчальній вибірці, на крос-валідації (cross_val_score з scoring='neg_mean_squared_error') і на відкладеній вибірках?

```
In [ ]: print("Mean squared error (cv): %.3f" % # Baw κο∂ mym print("Mean squared error (test): %.3f" % # Baw κο∂ mym
```

Оцініть важливість ознак за допомогою випадкового лісу.

Питання 7 : Яка ознака виявилася найінформативнішою в налаштованій моделі випадкового лісу?

```
In [ ]: rf_importance = pd.DataFrame # Βαω κοδ mym
rf_importance.sort_values # Βαω κοδ mym
```

Зробіть висновки про якість моделей і оцінки впливу ознак на якість вина за допомогою цих трьох моделей