Seminars 12 and 13 - 2024

- **1.** Consider the sequence of independent identically distributed random variables $(X_n)_{n\geq 1}$ such that $X_n \sim Unif[1,3]$ for each $n\geq 1$. Compute the a.s. limit of the sequence which is
- i) the arithmetic mean of $X_1, ..., X_n$, as $n \to \infty$;
- ii) the geometric mean of $X_1,...,X_n$, as $n \to \infty$;
- iii) the harmonic mean of $X_1, ..., X_n$, as $n \to \infty$.
- **2.** Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that $P(X_n=n^2)=\frac{1}{n}$ and $P(X_n=0)=1-\frac{1}{n}$, for all $n\geq 1$. Prove that:
- **a)** $X_n \stackrel{P}{\longrightarrow} 0$.
- **b)** $(X_n)_{n\geq 1}$ does not converge in mean square.
- **3.** Consider a binary communication channel transmitting codes of n bits each. Assume that the probability of successful transmission of a single bit is $p \in (0,1)$ and that the probability of an error is 1-p. Assume also that the channel is capable of correcting up to m errors, where 0 < m < n. If we assume that the transmission of successive bits is independent, compute the probability of successful code transmission.
- **4.** The measurement error (in millimeters) of a certain object produced in a factory is a continuous random variable X with the cumulative distribution function $F : \mathbb{R} \to [0,1]$,

$$F(x) = \begin{cases} 0, & x < -1\\ \frac{1}{4}(2 + 3x - x^3), & x \in [-1, 1]\\ 1, & x > 1. \end{cases}$$

Find:
$$P(-\frac{1}{2} < X < \frac{1}{2})$$
, $P(X < \frac{1}{2}|X > -\frac{1}{2})$, $E(X)$.

- **5.** A random number generator returns the value Y according to the distribution given by $\begin{pmatrix} -2 & -1 & 0 & 1 \\ \frac{3}{10} & \frac{2}{10} & \frac{1}{10} & \frac{4}{10} \end{pmatrix}$. Find the mean value and the standard deviation of the generator.
- **6.** A random value X is generated according to the density function $f_X : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{2}e^{-|x|}$, for all $x \in \mathbb{R}$. Compute:
- a) the cumulative distribution function of X;
- b) the cumulative distribution function of the random value X^2 ;
- c) $P(X^2 \ge 1)$;
- d) the mean value and the variance of X.
- **7.** For each $n \in \mathbb{N}, n \ge 2$, consider

$$X_n \sim \begin{pmatrix} -1 & 1\\ \frac{1}{n} & 1 - \frac{1}{n} \end{pmatrix}$$

1

such that $(X_n)_{n\geq 2}$ is a sequence of pairwise independent random variables.

- (a) Does $(X_n)_{n\geq 2}$ obey the weak law of large numbers?
- (b) Compute $\lim_{n\to\infty} V\left(\frac{1}{2}(X_{n-1}+X_n)\right)$.