Home Credit Risk Analysis

Ly Nguyen

Problems

- A number of increasing loan applicants
- Loss due to a borrower's failure to make payments
- Loss of potential valued customers

- How risky is the borrower?
- Should we lend him/her?

Objective

Model Architecture

Dataset

• Question: Is the loan was paid on time?

Question: Which customers mostly apply for loan?

Question: Which customers mostly apply for loan?

Question: Which day customers mostly apply for loan?

Question: Which occupation mostly applied for the loan?

Question: Which organization mostly applied for the loan?

Missing values

• 67 features have missing values

	Missing valu	es %	of missing	values
COMMONAREA_AVG	2148	65		69.87
COMMONAREA_MODE	2148	65		69.87
COMMONAREA MEDI	2148	65		69.87
NONLIVINGAPARTMENTS_MEDI	2135	14		69.43
NONLIVINGAPARTMENTS MODE	2135	14		69.43
NONLIVINGAPARTMENTS AVG	2135	14		69.43
FONDKAPREMONT MODE	2102	95		68.39
LIVINGAPARTMENTS AVG	2101	99		68.35
LIVINGAPARTMENTS MEDI	2101	99		68.35
LIVINGAPARTMENTS MODE	2101	99		68.35
FLOORSMIN AVG	2086	42		67.85
FLOORSMIN MEDI	2086	42		67.85
FLOORSMIN MODE	2086	42		67.85
YEARS BUILD MODE	2044	88		66.50
YEARS BUILD AVG	2044	88		66.50
YEARS BUILD MEDI	2044	88		66.50
OWN CAR AGE	2029	29		65.99
LANDAREA AVG	1825	90		59.38
LANDAREA MODE	1825	90		59.38
LANDAREA MEDI	1825	90		59.38
BASEMENTAREA MEDI	1799	43		58.52
BASEMENTAREA MODE	1799	43		58.52
BASEMENTAREA_AVG	1799	43		58.52
EXT SOURCE 1	1733	78		56.38
NONLIVINGAREA MEDI	1696	82		55.18
NONLIVINGAREA MODE	1696	82		55.18
NONLIVINGAREA AVG	1696	82		55.18
ELEVATORS_MODE	1638	91		53.30
ELEVATORS_MEDI	1638	91		53.30
ELEVATORS AVG	1638	91		53.30

Outlier

Dataset Characteristics

- Imbalance of classes 1:9 ratio
- Poor recall in baseline model

Baseline Modeling

	precision	recall	f1-score	support
0 1	0.91 0.20	1.00	0.95 0.00	46041 4387
accuracy			0.91	50428
macro avg	0.56	0.50	0.48	50428
weighted avg	0.85	0.91	0.87	50428

Table 1: Logistic Regression Classifier

Resampling

• To improve the gap between Precision and Recall

Under sampling

Logistic Regression

Average Precisions 0.895015570274

Average Recalls 0.762710377329

0.9475 0.9450 0.9425 0.9400 0.9375 0.9350 0.9300 0 20 40 60 80 100

RF's Precision

Random Forest

kNN

Over sampling (SMOTE)

	precision	recall	f1-score	support
0	0.94	0.60	0.73	46098
1	0.12	0.61	0.21	4329
accuracy			0.60	50427
macro avg	0.53	0.60	0.47	50427
weighted avg	0.87	0.60	0.69	50427

Results

	Precision	Recall
Logistic Regression - Under sampling	0.91	0.80
Logistic Regression - Over sampling	0.87	0.6
kNN – Under sampling	0.895	0.763
Random Forest – Under sampling	0.895	0.815

Table 2. Results of classification models

Regardless of techniques used, there is a tradeoff between Precision and Recall.

Conclusions

- Explored and analyzed risk with a variety of models
- Further studies can be performed to analyze to improve the models e.g. cross validation, feature importance, dimension reduction, etc.

Recommendations

- The models are good for predicting the loan risk analysis with +60% of improvement
- The remaining applicants' data should be further analyzed by financial experts
- The model should be used in combination with human analysis for decision making. They cannot replace the fully decision making, but aids in decision making workflow.
- For better precision, more relevant features will be needed.