Hadassah Academic College

Department of Computer Science

Computer Architecture

Exercise 8

Consider the following code fragment for the DLX CPU:

LW R2, 1000(R0)

loop: LW R4, 0(R2)

SUBI R4, R4, #D0

SW 0(R2), R4

ADDI R2, R2, #4

ADD R3, R2, R4

BEQZ R3, loop

AND R11, R8, R4

1. In its first iteration of the instruction **BEQZ R3**, **loop** the value in register **R3** is **1234**. Analyze the execution of the program for version 2 of the DLX, but completing the following tables:

Format 1

	1	2	3	4	5	6	7
LW R2, 1000(R0)	IF	ID	EX	MEM	WB		
LW R4, 0(R2)		IF					

Format 2

	IF	ID	EX	MEM	WB
1	LW R2				
2	LW R4	LW R2			
3	SUBI		LW R2		

2. Repeat the analysis in question 1 for version 6c of the DLX.

In format 1, include arrows to indicate the forwarding of intermediate values between registers.