## Accelerator Physics Homework 2

- 1. For a proton beam with kinetic energy of 10 GeV, calculate:
  - a. The total energy [GeV]
  - b. The momentum [GeV/c]
  - c. The velocity [fraction of c]
  - d. The rigidity (B
    ho) [T-m]
- 2. This beam is circulating in a synchrotron, and we wish to extract it by inserting a small pulsed magnet in a straight section, as shown below.



In order to clear the next magnet, we need to bend the beam by at least 50 mr.

- a. If we use a 1m long dipole magnet, what field [T] will be required?
- b. In class, we calculated the field of a dipole magnet as

$$B = \frac{\mu_0 IN}{}$$

show that if the length and width of the pole face are I and W, the inductance is

$$L = \frac{\mu_0 N^2 w l}{m^2 w l}$$

 $\ensuremath{g}$  (reminder: inductance is defined as total magnetic flux divided by current)

- c. In order for the beam to fit, our 1 m long extraction magnet has to have g=w=5cm. To keep inductance low, we use a single turn (that is, N=1)
  - i. What is the inductance of the magnet [H]?
  - ii. What current will be required [A]?
  - iii. The beam is circulating, so we need a very fast rise time. If we assume the current rises linearly to the required value in 50 ns, what will be the inductive voltage

$$\left(V=L\frac{dI}{dt}\right)$$
 on the magnet [V]? (note: if you did the problem correctly, you'll get an

extremely large value here).

- 3. For the beam described above, what magnetic field gradient [T/m] would be required in a 1m long quadrupole to give it a focal length of *f*=50m?
- 4. If the lattice functions are  $\beta$ =20m and  $\alpha$ =0 at the entrance to this quadrupole
  - a. What are  $\alpha$ ,  $\beta$ , and  $\gamma$  at the exit, using the thin lens approximation?
  - b. How far away [m] will the minimum  $\beta$  occur, and what will be its value [m]?