In the Name of God, the Merciful, the Compassionate

Introduction to Bioinformatics 06: Multiple Sequence Alignment

Instructor: Hossein Zeinali Amirkabir University of Technology

Overview

- 1. What is a multiple sequence alignment (MSA)?
- 2. Where/why do we need MSA?
- 3. What is a *good* MSA?
- 4. Algorithms to compute a MSA

Amirkabir University of Technology (Tehran Polytechnic)

Multiple Sequence Alignment

- Generalize pairwise alignment of sequences to include > 2 homologous (related) sequences
- Analyzing more than 2 sequences gives us much more information:
 - Which amino acids are required? Correlated?
 - Evolutionary/phylogenetic relationships
- Similar to PSI-BLAST idea (not yet covered):
 - Use a set of homologous sequences to provide more "sensitivity"

Multiple Sequence Alignments

What is a MSA?

Amirkabir University of Technology (Tehran Polytechnic)

Definition of MSA

- Given a set of sequences, a multiple sequence alignment is an assignment of gap characters, such that
 - Resulting sequences have same length
 - No column contains only gaps

No Amirkabir Uni Yes y of Technolog No (Tehran Polytechnic)

Applications of MSA

- Building phylogenetic trees and doing phylogenetic analysis of sequence families.
- Finding conserved patterns, e.g.:
 - Regulatory motifs
 - Protein domains
- Identifying and characterizing protein families
 - Find out which protein domains have same function
 - Prediction of protein secondary and tertiary structures
- DNA fragment assembly (in genomic sequencing)

Scoring an Alignment

Goal: Align homologous positions.

But: Without knowledge of phylogenetic tree is this very hard (sometimes

impossible) to achieve!

Scoring an Alignment

• In practice, simple scoring functions are used: usually, columns are scored independently, i.e.

$$S(m) = \sum_{i} S(m_i) + G \qquad \text{gap penalty}$$

$$\text{ith column of alignment } m$$

$$\text{A } \text{F } \text{F } \text{F } \text{G } \text{G } \text{F } \text{F } \text{F } \text{W } \text{W } \text{F } \text{F } \text{F } \text{G } \text{G } \text{G } \text{I } \text{I } \text{W } \text{G } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{W } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text{G } \text{G } \text{G } \text{G } \text{G } \text{I } \text{I } \text{I } \text{G } \text$$

Scoring Function

- Sum of Pairs (SP) Score = sum of scores of all possible pairs of sequences in an MSA based on a particular scoring matrix
- Compute for each column c

Example

Amirkabir University of Technology (Tehran Polytechnic)

How Score Gaps in MSAs?

- Want to align gaps with each other over all sequences.
- A gap in a pairwise alignment that "matches" a gap in another pairwise alignment should cost less than introducing a totally new gap.
 - Possible that a new gap could be made to "match" an older one by adjusting older pairwise alignment
 - Change gap penalty near conserved domains of various kinds (e.g. secondary structure elements, hydrophobic regions)

(Tehran Polytechnic)

Example of SP Score with Gap

	F	У	G	D
F	5	-2	-2	-1
У		7	1	-5
G			4	-3
D				5

BLOSUM 60

$$S(m) = S(m_1) + S(m_2) + S(m_3)$$

= $3s(F,F) + 2s(-,Y) + s(-,-) + s(G,G) + 2s(G,D)$
= $15 - 16 + 0 + 4 - 6 = -3$

Algorithms for MSA

Exhaustive Methods

- Multidimensional dynamic programming (DP)
 - <u>Divide-and-Conquer Alignment (DCA)</u> "semi-exhaustive"
 - Full DP Optimal Global Alignment?
 - Prohibitive in both time & space requirements for more than 10 sequences!!

Heuristic Methods

- Progressive alignments
 - We will cover Clustal, Star Alignment, T-Coffee, POA
 - Others: DbClustal and PRALINE -see text-book

Algorithms for MSA (Cont.)

- Iterative methods
 - Idea: optimal solution can be found by repeatedly modifying existing suboptimal solutions (eg: PRRN)
- Block-based Alignment
 - Multiple re-building attempts to find best alignment (eg: DIALIGN2 & Match-Box)
- Local alignments
 - Profiles, Blocks, Patterns more on these soon!

(Tehran Polytechnic)

Dynamic Programming for MSA

• As with pairwise alignments, multiple sequence alignments can be computed by dynamic programming

Generalized Needleman-Wunsch Algorithm

- Given 3 sequences x, y, and z:
- Main iteration loop:

$$F(i,j,k) = \max (F(i-1, j-1, k-1) + S(x_i, y_j, z_k), F(i-1, j-1, k) + S(x_i, y_j, -), F(i-1, j, k-1) + S(x_i, -, z_k), F(i-1, j, k) + S(x_i, -, -), F(i, j-1, k-1) + S(-, y_j, z_k), F(i, j-1, k) + S(-, y_j, -), F(i, j, k-1) + S(-, -, z_k))$$

What Happens to Computational Complexity?

- Given k sequences of length n:
 - Space for matrix: $O(n^k)$
 - Neighbors/cell: 2^k-1
 - Time to compute SP score: O(k²)
 - Overall runtime: $O(k^2 2^k n^k)$

• So, full dynamic programming is limited to small datasets of less than ten short sequences ersity of Technology

(Tehran Polytechnic)

An Example of DP's Running Time

• Overall runtime: $O(k^2 2^k n^k)$

Don't worry, there are fast heuristics

# sequences	running time
2	1 second
3	2 minutes
4	5 hours
5	3 weeks
6	9 years

Sequences: globins (≈ 150 aa)

- Implementation example:
 - Divide-and-Conquer Alignment (DCA): semi-exhaustive
 - Breaking each of the sequences into two smaller sections.
 - <u>http://bibiserv.techfak.uni-bielefeld.de/dca</u>

Progressive Alignment

Heuristic procedure:

- 1. Align *most* similar sequences first
- 2. Add sequences progressively
- Often *guide trees* is used to determine order of alignments.

Examples: Star alignment

ClustalW Amirkabir University of Technology (Tehran Polytechnic)

Multiple Alignment by adding sequences

What is a Consensus Sequence?

• A single sequence that represents *most common* residue of each column in a MSA

• Example:

FGGHL-GF F-GHLPGF FGGHP-FG FGGHL-GF

• Steiner consensus sequence: given sequences s_1, \ldots, s_k , find a sequence s^* that maximizes Σ_i $S(s^*, s_i)$

Guide Tree

Binary tree

- Leaves correspond to sequences
- Internal nodes represent alignments
- Root corresponds to final MSA
- Is created using neighbor-joining method
- Is a simple phylogenetic tree

Example

Progressive Alignment Steps

Clustal Program

- The most well-known progressive alignment program
 - www.ebi.ac.uk/clustalw
- ClustalW and ClustalX: stand-alone programs which run on UNIX and Macintosh respectively.
- Does not rely on a single substitution matrix
 - Applies different scoring matrices depending on degrees of similarity.
- Uses of adjustable gap penalties
 - allow more insertions and deletions in regions that are outside the conserved domains, but fewer in conserved regions.
- Applies a weighting scheme to increase the reliability of aligning divergent sequences. (Tehran Polytechnic)

Clustal

- 1. Perform pair-wise alignments between all pairs of sequences (n * (n-1)/2 possibilities)
- 2. Generate distance matrix
 - Distance between a pair = number of mismatched positions in alignment divided by total number of matched positions
- 3. Generate a Neighbor-Joining 'guide tree' from distance table
- 4. Use guide tree to progressively align sequences in pairs from tips to root of tree

Amirkabir University of Technology (Tehran Polytechnic)

CLUSTAL: Overview

- 1. Compute pairwise alignments (DP)
- 2. Convert similarities into distances

 Distance between a pair = # of mismatched positions in alignment (divided by total # of matches)
- 3. Build guide tree from distances by Neighbor Joining
- 4. Align with respect to guide tree

ClustalW

CLUSTAL W

Quick pair wise alignment calculate distance matrix

Neighbour-joining tree (guide tree)

Progressive alignment following guide tree

Clustal Versions (http://www.clustal.org/)

Clustal: Multiple Sequence Alignment

Multiple alignment of nucleic acid and protein sequences

Clustal Omega

- Latest version of Clustal fast and scalable (can align hundreds of thousands of sequences in hours), greater accuracy due to new HMM alignment engine
- · Command line/web server only (GUI public beta available soon)

ClustalW/ClustalX

- "Classic Clustal"
- GUI (ClustalX), command line (ClustalW), web server versions available

Displaying MSAs using ClustalW

- RED: AVFPMILW (small)
- **BLUE**: DE (acidic, negative chg)
- MAGENTA: RHK (basic, positive chg)
- GREEN: STYHCNGQ (hydroxyl + amine + basic)
- * entirely conserved column
- : all residues have ~ same size *AND* hydropathy
- . all residues have \sim same size OR hydropathy

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between **three or more** sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

Clustal Omega

---GOYRALYDYK---

** * * *

sity of Technology lytechnic)

10

Clustal Drawbacks

- Is not suitable for comparing sequences of different lengths because it is a global alignment—based method.
- The final alignment result is influenced by the order of sequence addition.
- The "greedy" nature of the algorithm: it depends on initial pairwise alignment.
- Any errors made in first steps cannot be corrected.
- To alleviate some of the limitations, a new generation of algorithms have been developed.

Star Alignment

- Fast heuristic to compute MSA
- Good approximation of *optimal* MSA, if scoring scheme satisfies triangle inequality

Algorithm:

- 1. Compute pairwise similarities 58
- 2. Select center s_c that maximizes $\Sigma_{i\neq c} S(s_c, s_i)$
- 3. Add sequences in decreasing order of similarity to center s_c
 - Rule: "once a gap, always a gap" viechnic

Step 2 - Select Center

Does that function look familiar?

• Recall: Consensus sequence: single sequence (more accurately; "model") that represents most common residue of each column in MSA.

FGGHL-GF F-GHLPGF FGGHP-FG

• Recall: Steiner consensus sequence: Given sequences $s_1, ..., s_k$, find a sequence s^* that maximizes $\Sigma_i S(s^*, s_i)$

$$S_1$$
= ATTCGGATT
 S_2 = ATCCGGATT
 S_3 = ATGGAATTTT abir Unive
 S_4 = ATGTTGTT
 S_5 = AGTCAGG

Step 3 - Add sequences in decreasing order

Star-Alignment Example

\mathbf{S}_1	A A A A	T	T	G	C	C	A	T	T	
S_2	A	T	G	G	\mathbf{C}	\mathbf{C}	A	T	T	
S_3	A	T	\mathbf{C}	\mathbf{C}	A	A	T	T	T	T
S_4	A	T	\mathbf{C}	T	T	\mathbf{C}	T	T		
S_5	Α	\mathbf{C}	T	G	A	C	C			

Amirkabir U (Tehr

	S_1	S_2	S_3	S_4	S_5	
S_1	-	7	-2	0	-3	2
S_2	7	-	-2	0	- 4	1
S_3	-2	-2	-	0	-7	-11
S_4	0	0	0		-3	-3
S_5	-3	- 4	- 7	-3	-	-17
	2	1	-11	-3	-17	36

Star-Alignment Example (Cont.)

S_1 S_2	A A	T T	T G	G G	C C	C C	A A	T T	T T		
S ₁ S ₃	A A	T T	T C	G -	C C	C A	A A	T T	T T	- T	- T
S ₁ S ₄	A A	T T	T C	G T	C T	C C	A -	T T	T T		
S ₁ S ₅	A A	T C	T T	G G	C A	C C	A C	T -	T -		

Star-Alignment Example (Cont.)

Let's use the alignment of S_1 and S_2 . S_1 and S_2 are aligned Now, let's add S_3 , using its alignment to S_1 . S_1 , S_2 , and A T G G C C S_3 are aligned Then, let's add S_4 , using its alignment to S_1 . $S_1, S_2, S_3,$ A T G G and S₄ S_2 - C A A T T S_3 are aligned

Star-Alignment Example (Cont.)

Finally, let's add S_5 , using its alignment to S_1 .

S_1	A	T	T	G	C	C	A	T	T	-	-	$S_1, S_2,$
S_2	A	T	G	G	\mathbf{C}	C	A	T	T	-	-	S_3, S_4
S_3	A	T	C	-	C	A	A	T	T	T	T	and S ₅
S_4	A	T	C	T	T	C	-	T	T	-	-	are
S_5	A	C	T	G	A	C	C	-	-	-	-	S ₁ , S ₂ , S ₃ , S ₄ and S ₅ are aligned

For consistency, once a gap is added, it is never removed.

(Tehran Polytechnic)

Complexity of Star Alignment?

Given k sequences of length n, and an upper bound l for alignment length. We need:

- $-O(k^2n^2)$ to compute the alignments
- $-O(k^2)$ to compute the center
- O(k²l) to build multiple alignment

Overall: $O(k^2n^2)$

Is this really much better than $O(k^22^kn^k)$?

```
YES! Remember: k = \# of sequences n = length of sequences
```

T-Coffee Program

- T-Coffee (Tree-based Consistency Objective Function for alignment Evaluation) performs progressive sequence alignments as in Clustal.
 - www.ch.embnet.org/software/TCoffee.html
- The main difference: T-Coffee performs both global and local pairwise alignment for all possible pairs involved.
- The global pairwise alignment is performed using the Clustal program.
- The local pairwise alignment is generated by the *Lalign* program
 - The top ten scored alignments are selected.
- T-Coffee outperforms Clustal when aligning moderately divergent sequences. However, it is also slower than Clustal.

https://www.ebi.ac.uk/Tools/msa/tcoffee/

Multiple Sequence Alignment

T-Coffee is a multiple sequence alignment program. Its main characteristic is that it will allow you to combine results obtained with several alignment methods.

Important note: This tool can align up to 500 sequences or a maximum file size of 1 MB.

POA (Partial Order Alignments)

- POA is a progressive alignment program that does not rely on guide trees.
 - The multiple alignment is assembled by adding sequences in the order they are given.
 - A partial order graph is used to represent a growing multiple alignment.
 - www.bioinformatics.ucla.edu/poa/
- Each time a new sequence is added, it is aligned with every sequence within the partial order graph individually using the Smith–Waterman algorithm.
- POA is local alignment-based and has been shown to produce more accurate alignments than Clustal. It is also faster than Clustal.

POA

Conversion of a sequence alignment into a graphical profile in the POA algorithm. Identical residues in the alignment are condensed as nodes in the partial order graph.

POA Example

(a) . . P K M I V R P Q K N E T V . T H . K M L V R . . . N E T I M

 $(b) \quad \text{$(b)$} \quad \text{$$

- $(d) \quad \overset{(P)}{\longleftarrow} \overset{(V)}{\longleftarrow} \overset{(V)}{\longleftarrow$

POA Example 2

. . P K M . I V R P Q K N E T G A L V R P Q K N . T R M T H . K M . L V R . . . N E T A M

Iterative Alignment

- Idea: an optimal solution can be found by repeatedly modifying existing suboptimal solutions.
- The procedure starts by producing a low-quality alignment and gradually improves it by iterative realignment.
- The method may reduce the "greedy" problem of the progressive strategy:
 - Because the order of the sequences used for alignment is different in each iteration.
- The method is also heuristic in nature and does not have guarantees for finding the optimal alignment.

PRRN

- Uses a double nested iterative strategy.
- Two sets of iterations:
- Outer iteration:
 - An initial random alignment is generated that is used to derive a guide tree.
 - Weights are subsequently applied to optimize the alignment.

http://prrn.ims.u-tokyo.ac.jp/

PRRN (Cont.)

• Inner iteration:

- The sequences are randomly divided into two groups.
- Randomized alignment is used for each group in the initial cycle, after which the alignment positions in each group are fixed.
- The two groups, each treated as a single sequence, are then aligned to each other using global dynamic programming.

http://prrn.ims.u-tokyo.ac.jp/

PRRN (Cont.)

Inner iteration (Cont.):

Polytechnic)

- The process is repeated through many cycles until the total SP score no longer increases.
- At this point, the resulting alignment is used to construct a new guide tree. New weights are applied to optimize alignment scores.
- The newly optimized alignment is subject to further realignment in the inner iteration.
- This process is repeated over many cycles until there is no further improvement in the overall alignment scores.

MAFFT (Multiple Alignment using FFT)

Initial alignment Sequences

A progressive alignment is made then divided into subalignments by tree-dependent partitioning. Partitions are realigned, then subgroups are aligned. If an objective score improves, this new alignment replaces the initial one and the process may be repeated.

Block-Based Alignment

- The progressive and iterative alignment strategies are largely global alignment based:
 - May fail to recognize conserved domains and motifs among highly divergent sequences of varying lengths.
- For such divergent sequences that share only regional similarities, a local alignment based approach has to be used.
- The strategy identifies a **block of ungapped alignment** shared by all the sequences, hence, the block-based local alignment strategy.

 (Tehran Polytechnic)

DIALIGN

- It does not apply gap penalties and thus is not sensitive to long gaps.
- The method breaks each of the sequences down to smaller segments and performs all possible pairwise alignments between the segments.
- High-scoring segments, called *blocks*, among different sequences are then compiled in a progressive manner to assemble a full multiple alignment.
- The program has been shown to be especially suitable for aligning divergent sequences with only local similarity.

Example

Dialign-Pfam

me nep Department
Dialign-Pfam Dialign-Pfam identifies possible domains in protein sequences by scanning the input sequences using HMMER against PFAM database. It then uses this information to align protein sequences using Dialign.
Input Sequences
Paste your sequences in multiple FASTA format:
Or, upload your sequences file in multiple FASTA format:
Choose File No file chosen
Insert Sample Reset
Thresholds
HMMER assigns quality scores to matches between sequences and models of proteins and domains in a database. In order to control which hits are used by our algorithm, we use two threshold values for <u>E-values of HMMER hits</u> . E _m : 0.005

Protein-Coding DNA Sequences

- Alignment at the protein level is more sensitive than at the DNA level.
- Sequence alignment directly at the DNA level can often result in frameshift errors
 - in DNA alignment gaps are introduced irrespective of codon boundaries.
- In the process of achieving maximum sequence similarity at the DNA level, mismatches of genetic codons occur that violate the accepted evolutionary scenario
 - insertions or deletions occur in units of codons
- There are occasions when sequence alignment at the DNA level is often necessary, for example, in constructing DNA-based molecular phylogenetic trees.

 Tehran Polytechnic

Protein-Coding DNA Sequences (Cont.)

Protein alignment

AGT GCA GAA ACA --- GAT

correct

AGT GCA GAA A-- -CA GAT

incorrect

DNA alignment

- DNA can be translated into an amino acid sequence before carrying out alignment to avoid the errors of inserting gaps within codon boundaries.
- After alignment of the protein sequences, the alignment can be converted back to DNA alignment.

Example: RevTrans Program

RevTrans 1.4 Server

http://www.cbs.dtu.dk/services/RevTrans/

[NOTICE: New improved version is now open for testing: RevTrans 2.0]

RevTrans takes a set of DNA sequences, virtually translates them, aligns the peptide sequences, and uses this as a scaffold for constructing the corresponding DNA multiple alignment.

New in RevTrans 1.4: Improvements in the transcription model, restriction on 75 sequences removed, more alignments programs: Dialign 2, Dialign-T and ClustalW, - [Previous version: RevTrans 1.3]

<u>Instructions</u>	Output format	<u>Background</u>	<u>Software download</u>	<u>Article abstract</u>
Paste in DNA sequences		Optional: Paste in peptide alignment		
			d	
Upload file containing DNA sequ	ences	Optional: Upload peptide alignment		
Browse No file selected.		Browse No file selected.		
Valid formats: FASTA, MSF and AL	N (Clustal) - any gaps will be remo	oved from DNA sequences		
Submit query Clear fields				Translate only 5

Editing Alignments

- The automated alignment often contains misaligned regions.
 - the user should check the alignment carefully for biological relevance and edit the alignment if necessary.
 - This involves introducing or removing gaps to maximize biologically meaningful matches.

BioEdit Seguence Alignment Editor - [Untitled]

Courier New

Mode: Edit

sars 1p9uF

Bovine CoV

Avian IBV

Sequence Alignment View World Wide Web Accessory Application RNA Options Window Help

8 total sequences

Seguence Mask: None

Numbering Mask: None

_ 8

58

- *BioEdit* is a multifunctional sequence alignment editor for Windows.
- Rascal is a web-based program er that automatically refines a ran Pomultiple sequence alignment.

References

- Mostly used:
 - Essential bioinformatics, Chapter 4 (Multiple Sequence Alignment)
- Second reference:
 - Bioinformatics and functional genomics, Chapter 6 (Multiple Sequence Alignment)

• IP notice: some slides were selected from Drena Dobbs' slides.

Amirkabir University of Technology (Tehran Polytechnic)

Thanks for your attention

