Activité 0.1 – Notation scientifique et unités

Rappels sur les puissance de 10

Document 1 - Les puissances de 10

Les puissances indiquent qu'on va répéter une multiplication $(2^3 = 2 \times 2 \times 2 = 8)$. Pour lire les puissances de 10, il suffit de suivre deux règles simples :

- Écrire le nombre 10^n (avec $n=0,1,2,3,\ldots$), revient à écrire "1" suivi de n zéros.
- Exemple: $10^3 = \dots$
- Écrire 10^{-n} (avec $n=1,2,\ldots$), revient à écrire "0," suivi de n-1 zéros et d'un 1.
- $Exemple: 10^{-2} = \dots \dots \dots$
- 1 Écrire les nombres correspondant aux puissances de 10 suivantes :

$$10^2 = \dots$$

$$10^{5}$$
 —

$$10^{-3} = \dots$$

$$10^5 = \dots 10^{-3} = \dots 10^{-1} = \dots 10^{-1}$$

Document 2 - Règles de calculs

Il y a deux règles de calculs à connaître pour les puissances de 10

- $10^a \times 10^b = 10^{a+b}$
- $10^{-n} = \frac{1}{10^n}$
- 2 Réaliser les calculs suivants :
- $10^2 \times 10^1 = \dots$
- $10^{-2} \times 10^{-3} = \dots$
- $10^4 \times 10^{-3} = \dots$
- $10^{-1} \times 10^{-5} \times 10^4 = \dots$

Document 3 - Moyen mnémotechnique

- de dix.

2 Notation scientifique

- 3 Écrire les nombres suivants comme le produit d'un nombre compris entre 0 et 9 et d'une puissance de 10 (*Exemple* : $600 = 6.00 \times 10^2$) :
- 0,1 =
- 0.0006 =
- 0,00705 =

Document 4 - La notation scientifique

La notation scientifique d'une quantité se présente de la façon suivante :

chiffre différent de zéro

autres chiffres

puissance de dix

unité

4 - Écrire les quantités suivantes en notation scientifique :

- 288 h =
- $0.01\% = \dots$
- 1 m =
- $8960 \, g/L = \dots$
- $756\,864\,000\,\mathrm{s} = \dots$
- 638 N =
- $0.336 \,\mathrm{s} = \dots$

⚠ Il faut toujours préciser l'unité d'une grandeur quand on réalise un calcul! L'unité indique comment la grandeur a été mesurée. Sans unités le résultat n'a pas de sens. Les grandeurs sans unités sont rares en physique-chimie.

3

Le système international de mesure

Document 5 - Le système international

Pour comparer des grandeurs entre elles, il faut les exprimer avec les **mêmes unités de mesures**. Pour pouvoir communiquer facilement d'un pays à un autre, le **système international (SI)** a été développé par la Conférence Générale des Poids et Mesures (CGPM). Le système international est composé de **sept unités de bases**.

En physique on est amené à décrire des **échelles** très variées, par exemple quand on mesure la taille d'une molécule ($\sim 10^{-9}$ m), d'une cellule ($\sim 10^{-6}$ m) ou d'un humain (~ 1 m).

Pour simplifier la manipulation des grandeurs éloignées de l'unité, chaque **puissance de 1000** est associée à un **préfixe** dans le système international.

Puissance	Préfixe	Symbole	Nombre décimal
10^{12}	tera	Т	1 000 000 000 000
10^{9}	giga	G	1 000 000 000
10^{6}	mega	M	1 000 000
10^{3}	kilo	k	1 000
10^{0}			1
10^{-3}	milli	m	0,001
10^{-6}	micro	μ	0,000 001
10^{-9}	nano	n	0,000 000 001
10^{-12}	femto	f	0,000 000 000 001