-> 0 in lindr

> 1 re resitia o

16

Mintermi

Un minterm este o functie elementara de n variabile notata "m;" unde n indica numarul de variabile ale functiei iar i este echivalentul zecimal al mintermului.

Ez	<i>X</i> ₂	X_I	X_0	m_0^3	m_1^3	m_{2}^{3}	m_3^3	m_4^3	m_{5}^{3}	m_6^3	m_7^3
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0	0	0	0
3	0	1	1	0	0	0	1	0	0	0	0
4	1	0	0	0	0	0	0	1	0	0	0
5	1	0	1	0	0	0	0	0	1	0	0
6	1	1	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	1

Α	В	C	minterms		
0	0	0	A B C	m0	
0	0	1	ABC	m1	
0	1	0	A B C	m2	
0	1	1	A B C	m3-	
1	0	0	A B C	m4	
1	0	1	A B C	m5	
1	1	0	A B C	m6	
1	1	1	ABC	m7	

Sumo de minterni

- □ funcţia minterm $m_2^3(X_0, X_1, X_2) = \overline{X_2} \cdot X_1 \cdot \overline{X_0}$ are expresia 1 dacă $X_2 = 0$, $X_1 = 1$ şi $X_0 = 0$, şi valoarea 0 în rest;
- □ orice funcție booleană de n variabile poate fi reprezentată ca sumă logică de funcții minterm

$$f(X_{0}, X_{1}, ..., X_{n-1}) = \sum_{i \in K} m_{i}^{n}$$

Poe: m3 m5m6 m4 + = > (3,5,6,7)= x y2+ xy2+ xy2

☐ forma canonică disjunctivă a
funcției:- termenii produs logic ai
funcției conțin toate variabilele
funcției, între termeni realizându-se
operația SAU (disjuncție).
_

F
0
0
0
1
0
1
1
1

Masetom

- maxterm este o functie elementară de n variabile notate M_i^n unde i este echivalentul zecimal al n-uplului funcției, aplicat in "0", interpretat ca un număr binar pe n poziții.
- Functiei maxterm îi corespunde o expresie de n variabile în formă M_i^n care în urma evaluării pentru toate n-uplurile, ia aceeasi valoare ca si $M_i^n = m_i^n$.

-> O pe por O, 1 an rest

Representate a functile de comutatie

E _z	X_2	X_I	X_0	M_0^3	M_{1}^{3}	M_{2}^{3}	M_{3}^{3}	M_{4}^{3}	M_5^3	M_{6}^{3}	M_{7}^{3}
0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
2	0	1	0	1	1	0	1	1	1	1	1
3	0	1	1	1	1	1	0	1	1	1	1
4	1	0	0	1	1	1	1	0	1	1	1
5	1	0	1	1	1	1	1	1	0	1	1
6	1	1	0	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	1	1	1	0

- □ Funcţia maxterm $M_{\frac{3}{3}}^{3}$ de exemplu are expresia $M_{\frac{3}{3}}^{3} = X_{2} + \overline{X_{1}} + \overline{X_{0}}^{3} = 0$ pentru $X_{2} = 0$, $X_{1} = 1$, $X_{0} = 1$ pentru celelalte atribuiri având valoarea "1".
- □ O funcție de comutație de n variabile poate fi reprezentată printr-un produs de maxtermi: $f(X_{0,}X_{1}.....X_{n-1}) = \prod M_{i}^{n}$

unde K_0 este mulţimea indicilor M_i^n pt care care funcţia ia valoarea "0".

Maxtermi & Mintermi: $M_i^n = m_i^n$

Α	В	С	maxterms		minterms	
0	0	0	A + B + C	MO	A B C	m0
0	0	1	$A + B + \overline{C}$	M1	ABC	m1
0	1	0	$A + \overline{B} + C$	M2	A B C	m2
0	1	1	$A + \overline{B} + \overline{C}$	M3	A B C	m3
1	0	0	$\overline{A} + B + C$	M4	A B C	m4
1	0	1	\overline{A} + B+ \overline{C}	M5	ABC	m5
1	1	0	$\overline{A} + \overline{B} + C$	M6	A B C	m6
1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M7	ABC	∠ m7

$$F = \sum (3,5,6,7)$$

$$F = m_3^3 + m_5^3 + m_6^3 + m_7^3 = \sum (3,5,6,7)$$

$$F = M_0^3 \cdot M_1^3 \cdot M_2^3 \cdot M_4^3 = \prod (0,1,2,4)$$

☐ forma canonică conjunctivă a funcției:- termenii sumă logică ai funcției conțin toate variabilele funcției, între termeni realizându-se operația ŞI.

Termen Definiție	-
Literal Variabilă booleană sau complementul ei	
Termen Produs Literal sau produs logic (ŞI) între mai mulți literali	
(Product Term)	
Termen Sumă Literal sau sumă logică (OR) între mai mulți literali	
(Sum Term)	
Sum of Products Sumă logică (OR) între mai mulți termeni produs	
(SOP)	
Products of Sums Produs logic (ŞI) între mai mulți termeni sumă	-
(POS)	
Minterm Caz particular de termen produs, care conține toate variabilele	de
intrare o singură dată	
Maxterm Caz particular de termen sumă, care conține toate variabilele	de
intrare o singură dată	
Sumă de produse Sumă logică (OR) de acei mintermi aferenți rândurilor din tab	elul
canonică de adevăr al funcției de ieșire unde aceasta are valoarea 1 logic	
Produs de sume Produs logic (ŞI) de acei mintermi aferenți rândurilor din tab	elul
canonic de adevăr al funcției de ieșire unde aceasta are valoarea 0 logic	

NAND

NOT (X OR Y)

X or Y but not both

 $Z = \overline{X} \overline{Y} + X Y$ X and Y the same

("equality")

Minimiratea functional logice

- ☐ Găsirea a doi termeni (suma sau produs funcție de reprezentarea dorită SOP/POS) pentru care:
 - funcția ia valoare 1
 - numai o variabilă își modifică valoarea

B are aceși valoare → B este păstrat

A are valori diferite → A este eliminat

$$F = \overline{A} \overline{B} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B}$$

Diagrame Tramough

- constituie o matrice de pătrate cu proprietatea ca două celule vecine corespund unor mintermi adiacenţi.
- doi vectori sunt adiacenți dacă diferă valoric printr-un singur bit
 - ☐ în diagramă se marchează acei mintermi care au valoarea logică 1 în tabelul de adevăr
- □ Numerele adiacente numărului 0100 sunt: 0101; 0110; 0000; 1100.
- □ Numerele adiacente numărului 000 sunt: 001; 010; 100.
- □ Vectorii adiacenţi mintermului $ab\bar{c}$ sunt: $\bar{a}b\bar{c}$, $a\bar{b}c$, abc

cd				С	
ab	00	01	11	10	
00	0000	0001	0011	0010	
01	0100	0101	0111	0110	
11	1100	1101	1111	1110	
10	1000	1001	1011	1010	

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in ns
Inverter	s	$F = \chi'$	2	1
Driver	s	F = x	4	2
AND	x	F = xy	6	2.4
OR		F = x + y	6	2.4
NAND	х—	F = (xy)' $F = (x + y)'$	4	1.4
NOR	x	F = (x + y)'	4	1.4
XOR	x y	$F = x \oplus y$	14	4.2
XNOR	x y————————————————————————————————————	$F = x \odot y$	12	3.2

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in ns
3-input AND	Ĭ I I	F = xyz	8	2.8
4-input AND		F = xyz $F = xyzw$	10	3.2
3-input OR	<u>*</u>	F = x + y + z	8	2.8
4-input OR		F = x + y + z + w	10	3.2
3-input NAND	Ĭ≣D→7	F = (xyz)'	6	1.8
4-input NAND	ž Į	F = (xyzw)'	8	2.2
3-input NOR	Ĭ	F = (x + y + z)'	6	1.8
4-input NOR		F = (x + y + z)' $F = (x + y + z + w)'$	8	2.2

Name	Graphic Symbol	Functional Expression	Number of transistors	
2-wide, 2-input AOI		F = (wx + yz)'	8	2.0
3-wide, 2-input AOI	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	F = (uv + wx + yz)'	12	2.4
2-wide, 3-input AOI		F = (uvw + xyz)'	12	2.2
2-wide, 2-input OAI	BD-,	F = ((w+x)(y+z))'	8	2.0
3-wide, 2-input OAI		F = ((u + v)(w + x)(y + z))'	12	2.2
2-wide, 3-input OAI		F = ((u + v + w)(x + y + z))'	12	2.4