# Bayesian Sensitivity Analysis for a Missing Data Model

Bart Eggen, Stéphanie van der Pas, Aad van der Vaart

Delft University of Technology, Amsterdam University Medical Centres

1 July 2022



## Co-authors





Aad van der Vaart





Stéphanie van der Pas



## Outline

1 Sensitivity Analysis

2 Missing data model

3 Results



| Observation | Outcome |
|-------------|---------|
| 1           | 15      |
| 2           | 3       |
| 3           | *       |
| 4           | *       |
| 5           | 5       |
| :           | :       |
|             |         |



| Observation | Outcome |
|-------------|---------|
| 1           | 15      |
| 2           | 3       |
| 3           | *       |
| 4           | *       |
| 5           | 5       |
| <b>:</b>    | :       |

### Solutions

- Assume data is missing completely at random
- Data imputation



What if we assume MCAR, but in reality it does not hold?



What if we assume MCAR, but in reality it does not hold?

## Sensitvity Analysis

How robust are study conclusion to violations of assumptions?



## How?

## **Statistics**

Assign a parameter to the assumption



## How?

#### **Statistics**

Assign a parameter to the assumption

#### **Problems**

- Sensitivity parameter is often unidentifiable
- Difficult to give intuition for practicioners



### How?

#### **Statistics**

Assign a parameter to the assumption

#### **Problems**

- Sensitivity parameter is often unidentifiable
- Difficult to give intuition for practicioners

#### Robustness

- At what values of the sensitivity parameter do study conclusions not hold anymore?
- Size is an indicator of robustness



## Bayesian sensitivity analysis

## Why Bayesian?

- Put all your intuition into the prior for the sensitivity parameter
- The posterior distribution acts as a single summary of your beliefs



## Bayesian sensitivity analysis

## Why Bayesian?

- Put all your intuition into the prior for the sensitivity parameter
- The posterior distribution acts as a single summary of your beliefs

#### **Problem**

- Not a lot of theory available
- Wat if we are "close" to the truth with our parameter, will our conclusion converge to the truth?



## Observations

$$Y_1,\ldots,Y_n\stackrel{\mathsf{iid}}{\sim} P$$



#### Observations

$$Y_1,\ldots,Y_n\stackrel{\mathsf{iid}}{\sim} P$$

## Missingness

$$R_1, \ldots, R_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$$



#### Observations

$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} P$$

## Missingness

$$R_1, \ldots, R_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$$

#### Observations

$$X_i := \begin{cases} Y_i, & R_i = 1 \\ *, & R_i = 0 \end{cases}$$



#### Observations

$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} P$$

## Missingness

$$R_1, \ldots, R_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$$

#### Observations

$$X_i := \begin{cases} Y_i, & R_i = 1 \\ *, & R_i = 0 \end{cases}$$

#### Interest

 $\mathbb{E}[g(Y)]$ 



## Sensitivity parameter

### Conditional distributions

$$Y \mid R = 1 \sim P_1,$$

$$Y \mid R = 0 \sim P_0$$



## Sensitivity parameter

#### Conditional distributions

$$Y \mid R = 1 \sim P_1,$$

$$Y \mid R = 0 \sim P_0$$

## Consequence

$$P = pP_1 + (1-p)P_0$$



## Sensitivity parameter <sup>1</sup>

$$P_0(A) = \frac{\int_A e^{\mathbf{q}} dP_1}{\int e^{\mathbf{q}} dP_1}$$



<sup>&</sup>lt;sup>1</sup>D. O. Scharfstein, M. J. Daniels, and J. Robins (2003). "Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes". In: Biostatistics 4.4, pp. 495-512

## Sensitivity parameter <sup>1</sup>

$$P_0(A) = \frac{\int_A e^{\mathbf{q}} dP_1}{\int e^{\mathbf{q}} dP_1}$$

## Example

$$q(y) = \alpha \log(y), \quad \alpha \in \mathbb{R}$$



<sup>&</sup>lt;sup>1</sup>D. O. Scharfstein, M. J. Daniels, and J. Robins (2003). "Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes". In: Biostatistics 4.4, pp. 495-512

## Intuition?

$$logit Pr(R = 0 | Y) = \eta + q(Y)$$



### Intuition?

$$logit Pr(R = 0 | Y) = \eta + q(Y)$$

## When $q(y) = \alpha \log(y)$

- $\alpha$  = 0: MCAR
  - $\alpha$  > 0: Higher outcomes are more likely to not be observed
  - $\alpha$  < 0: Lower outcomes are more likely to not be observed



## Prior choices

## Parametrization $p, P_1$

$$p \sim Beta(\cdot, \cdot)$$

$$P_1 \sim DP(a)$$



### Prior choices

# Parametrization $p, P_1$

$$p \sim Beta(\cdot, \cdot)$$

$$P_1 \sim DP(a)$$

Parametrization  $\eta$ , P

$$\eta \sim \mathsf{Compact}$$

$$P \sim DP(a)$$



## Prior choices

## Parametrization $p, P_1$

$$p \sim Beta(\cdot, \cdot)$$

$$P_1 \sim DP(a)$$

Parametrization  $\eta$ , P

$$\eta \sim \mathsf{Compact}$$

$$P \sim DP(a)$$

We want to show

Bernstein-von Mises theorem for both parametrizations

$$\sqrt{n}\left(\chi_q(p, P_1) - \chi_q(\hat{p}, \hat{P_1})\right) \mid R^{(n)}, X^{(n)}, q \rightsquigarrow ?$$
 a.s.



### Relation

Relation between P and  $P_1$ 

$$P_{1}(A) = \frac{\int_{A} \frac{1}{1 + e^{\eta + q(y)}} dP(y)}{\int \frac{1}{1 + e^{\eta + q(y)}} dP(y)}$$



### Relation

## Relation between P and $P_1$

$$P_{1}(A) = \frac{\int_{A} \frac{1}{1 + e^{\eta + q(y)}} dP(y)}{\int \frac{1}{1 + e^{\eta + q(y)}} dP(y)}$$

#### Prior

 $P \sim DP(a)$  is equivalent to  $P_1 \sim NEGP(a, b)$ 



## BvM for normalized extended gamma processes

#### Theorem

Let  $X_1,...,X_n \mid P \sim P$  with  $P \sim \mathsf{NEGP}(a,b)$  and let  $\mathcal{F}$  be a Donsker-class. Let  $P_0$  be the true distribution of the data. Under assumption later to be specified

$$\sqrt{n}(P-\mathbb{P}_n)\mid X^{(n)} \rightsquigarrow B_{P_0},$$

in  $\ell^{\infty}(\mathcal{F})$  almost surely  $[P_0^{\infty}]$ , where  $B_{P_0}$  is a  $P_0$ -Brownian bridge.



## BvM for normalized extended gamma processes

#### Theorem

Let  $X_1,...,X_n \mid P \sim P$  with  $P \sim \mathsf{NEGP}(a,b)$  and let  $\mathcal{F}$  be a Donsker-class. Let  $P_0$  be the true distribution of the data. Under assumption later to be specified

$$\sqrt{n}(P-\mathbb{P}_n)\mid X^{(n)} \rightsquigarrow B_{P_0},$$

in  $\ell^{\infty}(\mathcal{F})$  almost surely  $[P_0^{\infty}]$ , where  $B_{P_0}$  is a  $P_0$ -Brownian bridge.

### Assumptions

- *b* is a positive, bounded measurable function
- a is an atomless, finite measure
- $\mathcal{F}$  has envelope function F with  $\int Fda < \infty$
- There exist r,q>0 with 1/q+1/r<1/2 such that  $P_0F^r<\infty$  and  $P_0b^{-q}<\infty$



## **Proof strategy**

- The posterior of P is a mixture (over  $\lambda$ ) of NCRMs
- ullet Show mixing density concentrates on big  $\lambda$ 's
- Show the continuous part of the NCRM vanishes
- Use multiplier central limit theorem



### To do

- Fix assumption on prior for  $\eta$
- Show what happens when we put a prior on  $q(\alpha)$
- Extend model with covariates!
- ...

