Stratified Sampling

T	he	idea	٠,
		•	

divide leterogeneous propulation

into strutus shoul be homogenous within,

let crogenous between structus.

N-pap. Size k-# of Stratas $N_i-\#$ obs in each strata $\Xi N_i=N$ $N_i-\#$ rulsample size $\Xi I_i=n$

Procedure: 1) N= \(\frac{1}{2} \) N;

2) Prav n; from N;

Ses(WOR)

Cluster sampling: heterogenous within homogenous between

Strutification (Vari ance	reduction)
· · · ·		

 $E(y): y = \frac{1}{h} \geq y, \quad y - \text{ upbiased}$

 $var(\overline{y}) = \frac{var(y)}{w}$

K strata: WK - prob. to be in K-th strata

hk = Wr. n

Street = ZWK. YK

Ju- s. mean for h-th strata

$$E(\widehat{Y}_{spex}) = \mu$$

$$E(\widehat{Y}_{spex}) = \sum w_{i} \cdot E(\widehat{Y}_{i}) = \sum w_{i} \mu_{i} \cdot E(\widehat{Y}_{i}) = \mu$$

$$Van(\widehat{Y}_{spex}) = \delta^{2}/n$$

$$Van(\widehat{Y}_{spex}) = \sum w_{i}^{2} \cdot Van(\widehat{Y}_{i}) = \mu$$

$$= \sum \frac{\kappa_{i}^{2}}{n^{2}} \cdot \frac{\delta_{i}^{2}}{\mu_{i}} = \frac{1}{n^{2}} \sum w_{i} \cdot \delta_{i}^{2}$$

$$Van(\widehat{Y}_{spex}) \stackrel{?}{=} Van(\widehat{Y}_{spex}) \qquad 2 - stratification$$

$$covariate$$

$$Van(\widehat{Y}) = E(Van(\widehat{Y}_{i})) + Van(E(\widehat{Y}_{i})) = \mu$$

$$= E(\sum \delta_{i}^{2} \cdot I(2 = \mu)) + Van(\sum \mu_{i} \cdot I(2 = \mu))^{2} - \mu$$

$$= \sum \delta_{i}^{2} \cdot E(I(2 = \mu)) + E((\sum \mu_{i} \cdot I(2 = \mu))^{2}) - \mu$$

$$= \sum \delta_{i}^{2} \cdot E(I(2 = \mu)) + E((\sum \mu_{i} \cdot I(2 = \mu))^{2}) - \mu$$

$$= \sum \delta_{i}^{2} \cdot w_{i} - \mu^{2} = \sum \delta_{i}^{2} \cdot w_{i} + \sum w_{i} (\mu_{i} - \mu)^{2}$$

$$Van(\widehat{Y}_{spex}) = \sum \delta_{i}^{2} \cdot w_{i} + \sum w_{i} (\mu_{i} - \mu)^{2}$$

$$Van(\widehat{Y}_{spex}) = \sum \delta_{i}^{2} \cdot w_{i} + \sum w_{i} (\mu_{i} - \mu)^{2}$$

$$Van(\widehat{Y}_{strat})$$

$$within$$

$$van$$

$$Van(\widehat{Y}_{strat})$$

h, h, n, ..., h, ?

(1) min cost of survey (given precision)
(11) max precision (given cost)

1) Equal allocation:

hi = h

2) Proportional allocation:

n; 2 Ni

ni = SNi

n = 6. N => d = N/N

 $hi = \frac{n}{N} \cdot N;$

- · Precision PSS > Precision SRS
 - @ proportion / stratu siles are the same

3) Optimum (Neyman) allocation

ni & NiSi Si- unb. est. of van for i-th strates

 $n_i = 8^+ N_i S_i$

n = S* · Z N; s;

S* = N = N; S;

 $N_i = \frac{N_i S_i}{\sum N_i S_i}$

· Precision OSS = Precision PSS

(=) if von within each strate are equal

Cost:
$$C$$
 cost for unit don i -th structor $C = C_0 + \Sigma C_i h_i$
 $TC = FC + VC$
 $TC = FC +$

 $h_i = \frac{1}{\lambda} \cdot \frac{W_i \cdot S_i}{V_i}$

$$\Sigma Ci \cdot \frac{W_i}{\lambda V_{ci}} = C_0^{\dagger}$$

$$h_i = \frac{1}{\lambda_i} \cdot \frac{W_i \cdot S_i}{VG}$$

$$\sum \left(\frac{1}{N_i} - \frac{1}{N_i} \right) W_i^2 S_i^2 = V_0^4$$

$$\sum_{i=1}^{n} \frac{\lambda \cdot \sqrt{C_{i}}}{V_{i} \cdot S_{i}} \cdot V_{i}^{2} \cdot S_{i}^{2} = V_{0}^{*} + \sum_{i=1}^{n} \frac{V_{i}^{2} \cdot S_{i}^{2}}{N_{i}}$$

SRS
$$\frac{2^{1}}{e^{2}} 6^{2}$$

$$\left(\frac{\sum W_{k} \cdot \delta_{k}}{e^{2}}\right)^{2} = \frac{\left(\sum \frac{1}{k} \cdot \delta\right)^{2}}{e^{2}} = \frac{\delta^{2}}{e^{2}}$$