Medical Image Analysis and Processing

Image Noise Filtering
Anisotropic Diffusion Filter

Emad Fatemizadeh

Distance/online Course: Session 12

Date: 06 April 2021, 17th Farvardin 1400

Contents

- > Motivation
- > Mathematical Background
- > Physical Background
- > Homogeneous Linear Diffusion Filtering
- > Inhomogeneous Linear Diffusion Filtering
- > Inhomogeneous Nonlinear Diffusion Filtering

Motivation

- > Edge Preserving Filtering
- > Edge-Aware filtering

Mathematical Background

- → Let $u(x_1, x_2)$ is 2D scaler function and $J \in \mathbb{R}^2$ a 2D vector function:
- \rightarrow Gradient of u, ∇u :

$$\nabla u = \begin{bmatrix} \frac{\partial u}{\partial x_1} & \frac{\partial u}{\partial x_2} \end{bmatrix}^t, t: Transpose$$

→ Divergence of vector \vec{J} , $\nabla \cdot \vec{J}$:

$$\vec{J} = [J_1 \quad J_2]^t \Rightarrow \nabla \cdot \vec{J} = \frac{\partial J_1}{\partial x_1} + \frac{\partial J_2}{\partial x_2}$$

 \rightarrow Laplacian of u, $\nabla^2 u$:

$$\nabla^2 u = \nabla \cdot (\nabla u) = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}$$

> Diffusion:

Diffusion is the net movement of anything (for example, atom, ions, molecules, and etc.) from a region of higher concentration to a region of lower concentration.

> Diffusion: A distinguishing feature of diffusion is that it depends on particle random walk (Brownian Motion), and results in mixing or mass transport without requiring directed bulk motion.

> Fick First Law:

$$\vec{J} = -D\nabla u$$

- > u: Particle Concentration
- \vec{J} : Diffusion flux vector, amount of substance per unit area per unit time in each direction
- > D: is the diffusion coefficient (Tensor):

A Positive Definite Symmetric Matrix

- > Isotropic vs Anisotropic Diffusion:
- > Isotropic: Diffusion Coefficient is the same in every direction.

$$\vec{J} \parallel \nabla u$$

$$\mathcal{D} = \begin{bmatrix} D & 0 \\ 0 & D \end{bmatrix}$$

- > Isotropic vs. Anisotropic Diffusion:
- > Anisotropic: Different diffusion coefficients along different directions.

$$\vec{J} \not\parallel \nabla u$$

$$\mathcal{D} = \begin{bmatrix} D_{x_1x_1} & D_{x_1x_2} \\ D_{x_2x_1} & D_{x_2x_2} \end{bmatrix}, D_{x_1x_2} = D_{x_2x_1}$$

- > Inhomogeneous vs. homogeneous diffusion:
- \rightarrow Homogeneous Diffusion: $D = D_0$ is constant tensor
- > Inhomogeneous Diffusion: $D = D(x_1, x_2)$ is spatial variant tensor.

> Mass Conservation (continuity equation):

$$\frac{\partial u}{\partial t} = -\nabla \cdot \vec{J} = -\operatorname{div}(\vec{J})$$

> Using Fick's first law:

$$\frac{\partial u}{\partial t} = -\nabla \cdot \vec{J} = -\nabla \cdot (-D\nabla u) = \nabla \cdot (D\nabla u)$$

> For homogeneous (Constant D) diffusion:

$$\frac{\partial u}{\partial t} = \nabla \cdot (D\nabla u) = D\nabla \cdot (\nabla u) = D\nabla^2(u)$$

 $\rightarrow \nabla^2(u)$: Laplacian

> Fick's second law:

$$\frac{\partial u}{\partial t} = \nabla . (D \nabla u)$$

> For homogeneous (Constant D) diffusion:

$$\frac{\partial u}{\partial t} = D\nabla^2(u) = D\left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}\right)$$

> Similar to heat equation

> Consider the following isotropic diffusion problem:

$$\begin{cases} \frac{\partial u}{\partial t} = D\nabla^2 u & -\infty < x_1, x_2 < +\infty \\ u(x_1, x_2, t = 0) = u_0(x_1, x_2) \end{cases}$$

- > A PDE with initial condition (not boundary condition)
- $u_0(x_1, x_2)$: Noisy image as initial condition
- > It can be shown:

$$u(x_1, x_2) = u_0(x_1, x_2) ** h(x_1, x_2, t)$$

$$h(x_1, x_2, t) = \frac{1}{4\pi Dt} exp\left(-\frac{x_1^2 + x_2^2}{4Dt}\right)$$

> Solution:

$$u(x_1, x_2) = u_0(x_1, x_2) ** h(x_1, x_2, t)$$

$$h(x_1, x_2, t) = \frac{1}{4\pi Dt} exp\left(-\frac{x_1^2 + x_2^2}{4Dt}\right)$$

> Old fashion gaussian filtering $(2Dt = \sigma^2)$

$$h(x_1, x_2, t) = \frac{1}{2\pi\sigma^2} exp\left(-\frac{x_1^2 + x_2^2}{2\sigma^2}\right)$$

> A scale-space filtering!

A scale-space filtering, h(r,t), $r = \sqrt{x_1^2 + x_2^2}$

> Scale-space filtering example:

 \rightarrow A more realistic processing (Ω : image domain)

ealistic processing (
$$\Omega$$
: image domain)
$$\begin{cases} \frac{\partial u}{\partial t} = D \nabla^2 u & (x_1, x_2) \in \Omega \\ u(x_1, x_2, t = 0) = u_0(x_1, x_2) & \frac{\partial u}{\partial \vec{n}} \Big|_{\partial \Omega} = 0 \end{cases}$$

 $\rightarrow \Omega$: image domain

 $\rightarrow \partial \Omega$: image boundary

 $\rightarrow \vec{n}$: image normal vector

> Boundary extraction to avoid unnecessary image blurring

> An Edge-Aware diffusion filter (version #1)

$$\Rightarrow \frac{\partial u}{\partial t} = \nabla \cdot (g(|\nabla f|^2)\nabla u), \quad (x_1, x_2) \in \Omega$$

$$u(x_1, x_2, t = 0) = f(x_1, x_2)$$

$$\Rightarrow \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0$$

- $\rightarrow f(x_1, x_2)$: Noisy image as initial condition
- $\rightarrow g(s)$: A monotonically decreasing function

- > Diffusion Coefficient function
- $g(s^2)$: A monotonically decreasing function

$$g(s^2) = \frac{g_0}{\sqrt{1+s^2/\lambda^2}}$$
, Charbonnier

$$g(s^2) = \frac{g_0}{1+s^2/\lambda^2}$$
, Perona-Malik

$$g(s^2) = g_0 exp(-s^2/\lambda^2)$$
, Gaussian

- > An Edge-Aware diffusion filter (version #2)
- > *f* is too noisy for gradient estimation, try smoothing (regularization)

$$\Rightarrow \frac{\partial u}{\partial t} = \nabla \cdot (g(|\nabla f_{\sigma}|^2)\nabla u), (x_1, x_2) \in \Omega$$

$$\Rightarrow u(x_1, x_2, t = 0) = f(x_1, x_2), \quad \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0$$

- $\rightarrow f(x_1, x_2)$: Noisy image as initial condition
- > where, $f_{\sigma} = f * G_{\sigma}$ (Gaussian Smoothing)

- > An Edge-Aware diffusion filter (version #3)
- \rightarrow Use u for gradient smoothing,

$$\Rightarrow \frac{\partial u}{\partial t} = \nabla \cdot (g(|\nabla u|^2)\nabla u), (x_1, x_2) \in \Omega$$

$$\Rightarrow u(x_1, x_2, t = 0) = f(x_1, x_2), \qquad \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0$$

- $\rightarrow f(x_1, x_2)$: Noisy image as initial condition
- > This PDE in nonlinear, inhomogeneous, but isotropic

- > An Edge-Aware diffusion filter (version #4)
- >u is noisy in early steps, try smoothing (regularization):

$$\Rightarrow \frac{\partial u}{\partial t} = \nabla \cdot \left(g \left(\left| \nabla u_{\sigma(t)} \right|^2 \right) \nabla u \right), \quad (x_1, x_2) \in \Omega$$

$$\Rightarrow u(x_1, x_2, t = 0) = f(x_1, x_2), \quad \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0$$

- $\rightarrow f(x_1, x_2)$: Noisy image as initial condition
- > where, $u_{\sigma(t)} = u * G_{\sigma(t)}$ (Gaussian Smoothing), and $\sigma(t)$ is a decreasing function of time steps.

- > An Edge-Aware diffusion filter (version #5)
- > Add smoothing factor to equation

$$\Rightarrow \frac{\partial u}{\partial t} = \nabla \cdot \left(g \left(\left| \nabla u_{\sigma(t)} \right|^2 \right) \nabla u \right) + \beta (f - u), \quad (x_1, x_2) \in \Omega$$

$$\Rightarrow u(x_1, x_2, t = 0) = f(x_1, x_2), \quad \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0$$

- $\rightarrow f(x_1, x_2)$: Noisy image as initial condition
- $\rightarrow \beta$: Adjust distance between initial, f, and final solution, u.

> How it works, weak smoothing near the edges

The End

>AnY QuEsTiOn?

