MA 351: Theory of Computation (Midsem)

Indian Institute of Technology Guwahati Date: 28/02/2022, Time: 2:00pm - 4:00pm

Write Name and Roll No. at the beginning of answer-script

1. Draw the **minimal DFA**s for the following lanuages over alphabet $\{0,1\}$. No marks unless the DFAs are **minimal** 3 (a) Set of all strings that start and end with same symbol. (b) $(01+10)^*$. 3 (c) Set of all strings (interpreted as binary representations of integers) which are divisible by 4. ϵ should be considered as the integer 0. 4 2. For any language L over alphabet Σ , we define $\frac{1}{2}L = \{w \mid \exists x \in \Sigma^* \text{ s.t. } wx \in L \text{ and } |w| = |x|\}.$ Also, recall that for any language L we defined the binary relation R_L over Σ^* as follows: xR_Ly if for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$. Now, prove or disprove that, If R_L has infinite index then $R_{\frac{1}{2}L}$ also has infinite index. 10 Write "Proving" or "Disproving" at the beginning of your answer. Otherwise you get zero. 3. Let L be the set of all strings over $\{a,b\}$ which contain more a than b. Prove or disprove that, L is regular 10 Write "Proving" or "Disproving" at the beginning of your answer. Otherwise you get zero. 4. A, B and X are formal languages (not necessarily regular) s.t. $X = AX \cup B$. Also, $A, B \neq \phi$ and $A, B \neq \{\epsilon\}$. Prove or disprove that, $X = A^*B$. 10 Write "Proving" or "Disproving" at the beginning of your answer. Otherwise you get zero.