Rechnernetze - Tutorium

zu Vernissage SS 2020

Link zu den Folien 🛂

https://github.com/blauwiggle/Rechnernetze-1-Tutorium

Aufgabe - Gruppe 1 (A und B)

Während der Entwurfsphase einer (fiktiven) neuen Netzwerkstruktur für die HdM stellt sich heraus, dass für Studiengänge, Abteilungen und erforderliche Reserven insgesamt 50 Subnetze benötigt werden. Die zur Verfügung stehende offizielle - im Internet bekannte Adresse - lautet **141.62.0.0**

- 1. Wieviele Stellen der Subnetzmaske müssen minimal reserviert werden?
- 2. Wie lautet die Subnetzmaske in der binären und dezimalen Schreibweise?
- 3. Wie viele Subnets können mit dieser Maske maximal adressiert werden?
- 4. Wieviele IP-Geräte sind pro Subnetz adressierbar?
- 5. Welcher Teil der IP-Adresse 141.62.13.13 ist für Router im Internet interessant?
- 6. Wie lautet im Beispiel die Netzwerk-Adresse für die IP-Adresse 141.62.13.200 ?

1. Wieviele Stellen der Subnetzmaske müssen minimal reserviert werden?

- 1. 50 Subnetze werden benötigt, 2^5 sind 32 Subnetze 2^6 sind 64 Subnetze.
- 2. Du nimmst 2^6 , weil dort die 50 Subnetze enthalten sind.
- 3. Weil die ersten beiden Byte 141.62. nicht verändert werden können, rechnest du $8(141)+8(62)+6(2^6)$ und kommst auf $\,$ /22 im 3. Oktett als <code>Netzanteil</code> .

2. Wie lautet die Subnetzmaske in der binären und dezimalen Schreibweise?

normal = 255.255.252.0

hexadezimal = FF.FF.FC.00

 $\overline{dezimal} = 4294966272$

3. Wie viele Subnets können mit dieser Maske maximal adressiert werden?

 2^6 sind 64 Subnetze

4. Wieviele IP-Geräte sind pro Subnetz adressierbar?

- 1. Wir haben den Netzanteil bereits ausgerechnet und kommen auf /22.
- 2. Du weißt, dass eine IPv4 32 bit hat.
- 3. Jetzt rechnest du 32bit-22bit=10bit für den Hostanteil
- 4. $2^{10}=1024-2(NetzID+BC)=1022$ IP Geräte die pro Subnetz adressierbar sind.

5. Welcher Teil der IP-Adresse 141.62.13.13 ist für Router im Internet interessant?

Die ersten zwei Oktets 141.62/22.

6. Wie lautet im Beispiel die Netzwerk-Adresse für die IP-Adresse 141.62.13.200 ?

NA - Netz Adresse / ID: 141.62.0.0

SM - Subnetzmaske: 255.255.252.0

IP	SM 1er = Netzanteil	SM 1er = Netzanteil	SM 1er = Subnetzanteil		Netz ID
NA	10001101	00111110	0000000	0000000	
SM	11111111	11111111	111111-00	00000000	
1. NA	11000000	00111110	000000-00	00000000	141.62.0
2. NA	11000000	00111110	000001-00	00000000	141.62.4

IP	SM 1er = Netzanteil	SM 1er = Netzanteil	SM 1er = Subnetzanteil		Netz ID
3. NA	11000000	00111110	000010-00	00000000	141.62.8
4. NA	11000000	00111110	000011-00	00000000	141.62.12
n. NA	11000000	00111110	111111-00	00000000	141.62.252

Schrittweite

Die Schrittweite zu erkennen, erspart dir viel Rechnerei.

Du musst hier auf das letzte Bit, des Subnetzanteils im 3. Oktett achten 000000-00

Image: Das ist hier 4, daher ist die Schrittweite immer 4→ 0, 4, 8, 12, 16 .. 252

Die IP 141.62.13.200 hat die Netz ID 141.62.12.0 mit der Broadcast Adresse 141.62.15.255, weil sie leicht erkennbar dazwichen liegt und übrigens eine IP von den oben genannten 1022 IPs von diesem Subnetz ist.

Aufgabe - Gruppe 2 (C und D)

Untersuchen Sie nachfolgende IP-Adressen. Welche der Adressen können als Rechneradresse genutzt werden?

- 192.168.28.33 / 28
- 192.168.28.112 / 28
- 192.168.28.175 / 28

Anleitung

- Ziel Netz ID und BC bestimmen.
- 1. IP binär schreiben
- 2. /28 (255.255.255.240) binär schreiben

192.168.28.33 / 28

Netz ID			
11000000	10101000	000111000	00100001
+ AND			
11111111	11111111	11111111	11110000
=			
11000000	10101000	000111000	0010000
192	168	28	32

Ja, die IP ist gültig.

192.168.28.112 / 28

Netz ID			
11000000	10101000	000111000	01110000
+ AND			
11111111	11111111	11111111	11110000
=			
11000000	10101000	000111000	0111000
192	168	28	112

Nein, die IP ist nicht gültig für einen Host, da es die Netz ID ist.

192.168.28.175 / 28

long story short, es ist nicht die Netz ID, also passt es ja.

Oder nicht?

Broadcast Adresse checken, wenn es nicht die Netz ID ist.

Broadcast			
11000000	10101000	000111000	10101111
+ OR	mit	invertierter	Subnetzmaske
00000000	00000000	00000000	00001111
=			
11000000	10101000	000111000	10101111
192	168	28	175

Nein, die IP ist nicht gültig für einen Host, da es die BC ist.

Aufgabe - Gruppe 3 (E und F)

Ergänzen Sie für die angegebenen Subnetzmasken die fehlenden Broadcastadressen für die IP 9.5.2.30.

Subnetzmaske	Broadcastadresse
255.0.0.0	9.255.255.255
255.255.0.0	9.5.255.255
255.255.255.0	9.5.2.255
255.255.192.0	9.5. ???
255.255.224.0	9.5. ???

Anleitung

- 1. IP binär schreiben
- 2. Subnetzmaske invertiert (auch Wildcard genannt) binär schreiben
- 3. Logische OR Verknüpfung anwenden

Subnetzmaske	Broadcastadresse
255.0.0.0	9.255.255.255
255.255.0.0	9.5.255.255
255.255.255.0	9.5.2.255
255.255.192.0	9.5.63.255
255.255.224.0	9.5.31.255

Aufgabe - Gruppe 4 (G und H)

Geben Sie für die nachfolgende IP Adresse an.

- Netzklasse
- Subnetz Netz ID
- Subnetz Broadcast Adresse

IP: 193.174.24.180

SN: 255.255.250.240

Netzklasse

Klasse C geht von 192.0.0.0 bis 223.255.255.255, also ist es eine Klasse C IP.

Anleitung - Netz ID bestimmen

- 1. IP binär schreiben
- 2. Subnetzmaske binär schreiben
- 3. Logische AND Verknüpfung anwenden

Lösung - Netz ID bestimmen

Netz ID 193.174.24.176

Anleitung - Broadcast Adresse bestimmen

- 1. IP binär schreiben
- 2. Subnetzmaske invertiert (auch Wildcard genannt) binär schreiben
- 3. Logische OR Verknüpfung anwenden

Lösung - Broadcast Adresse bestimmen

193.174.24.191

Aufgabe - Gruppe 5 (I und J)

Bestimmen Sie die Subnetz-ID und die Broadcast-Adresse für das Subnetz, zu dem nachfolgende Adresse gehört:

• 200.200.200.45 / 27

Anleitung - Subnetz ID bestimmen

- 1. IP binär schreiben
- 2. Subnetzmaske /27 (255.255.255.224) binär schreiben
- 3. Logische AND Verknüpfung anwenden

Lösung - Subnetz ID bestimmen

200.200.200.32

Anleitung - Broadcast Adresse bestimmen

- 1. IP binär schreiben
- 2. Subnetzmaske /27 (255.255.255.224) invertiert (Wildcard) binär schreiben
- 3. Logische OR Verknüpfung anwenden

Lösung Broadcast Adresse bestimmen

200.200.200.63

Weitere Fragen?

Bitte per E-Mail an mv068@hdm-stuttgart.de oder auf GitHub direkt.

Bis nächste Woche 😜

git pull nicht vergessen