JOINT PROBABILITIES

Let x and y be random voriables as the same nample space x with nespective range space $x = \{x_1, \dots, x_n\}$ and $x = \{y_1, y_2, \dots, y_m\}$. The Joint distribution (or) and $x = \{y_1, y_2, \dots, y_m\}$ function of x and y is the function $x = \{y_1, y_2, \dots, y_m\}$ on the product space $x = \{x_1, x_2, \dots, y_m\}$ on the product space $x = \{x_1, x_2, \dots, y_m\}$ are fixed by $x = \{x_1, y_2, \dots, y_m\}$ on $x = \{x_1, y_2, \dots, y_m\}$ of $x = \{x_1, y_2, \dots, y_m\}$ of $x = \{x_1, y_2, \dots, y_m\}$ of $x = \{x_1, y_2, \dots, y_m\}$ or $x = \{x_1, \dots, x_m\}$ or $x = \{x_1, \dots, x_m\}$

JOINT distribution table

1×1	y,	ya	y ₃	· Ym	Pi= = > P(xi, yj)
9 (1	ÞII	þ12	þ13 - ·	From	P ₁
2/2	P21	P22	f23 -	þ2m	P2
7/3	P31	P32	þ33 -	P3m	P ₃
•	,			:	;
7/21	þm.	Pn2	þn3 -	þmm	þn
p; = 2 þ(xi, xi)	Þ,	P2	þ3 -	Pm	旦
'J i zi	0				

$$\underline{\text{NoTE:}} \quad p(x_i, y_i) = p_{xy}(x_i, y_i)$$

MARGINAL DISTRIBUTION OF X:

In the joint probability distribution, If the probability distribution, If the probability distribution, If the probability distribution of X is taken then it is called Marginal distribution of X denoted by $P_{i}(x) = P_{i}(x) = P_{i}(x)$.

le. $P_{i}(x) = P(x_{i}) = \sum_{i} P_{i}(x_{i}, y_{i}) = \sum_{i} P_{i}(x_{i}, y_{i})$

MARGINAL DISTRIBUTION OF Y:

In the joint probability distribution, If the pmf of only & is taken then it is called Marginal Pmf of only & is taken then it is called Marginal Aistribution & y senoted by by (m) p(yi)

1.e $y(y) = y(y_j) = \sum_{x} y(x_i, y_j^2) = \sum_{x} y(x_i, y_j^2) = \sum_{x} y(x_i, y_j^2)$

Joint Cummulative distribution function of x & y

$$F(x,y) = F_{xy}(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} \alpha_i, y_i)$$

Conditional probability mand function of x given y $\frac{y}{y}(y/x) = \frac{y}{y/x}(y/x) = \frac{y}{y/x}(x/x) = \frac{y}{y/x}(x/x) = \frac{y}{y/x}(x/x)$

Conditional brobability Morst function of y given X $\frac{1}{2}(x/y) = \frac{1}{2}(x/y) = \frac{1}{2}(x/$

Expectation (Mean), Vandace and Covariance

If X and Y are two discrete random variables having the joint probability function P(x1y) then the expectations of x and y are defined as follows.

$$\begin{aligned} \mathcal{M}_{x} &= E(x) = Z x_{i}^{*} p(x_{i}^{*}) = Z x_{i}^{*} p(x_{i}^{*}) \\ \mathcal{M}_{y} &= E(y) = Z y_{i}^{*} p(y_{i}^{*}) = Z y_{i}^{*} p(y_{i}^{*}) \\ \mathcal{M}_{y} &= E(xy) = Z x_{i}^{*} y_{i}^{*} p(x_{i}y) = Z x_{i}^{*} y_{i}^{*} p(y_{i}^{*}) \end{aligned}$$

$$\mathcal{M}_{xy} = E(xy) = Z x_{i}^{*} y_{i}^{*} p(x_{i}y) = Z x_{i}^{*} y_{i}^{*} p(y_{i}^{*})$$

$$\mathcal{M}_{xy} = E(xy) = Z x_{i}^{*} y_{i}^{*} p(x_{i}y) = Z x_{i}^{*} y_{i}^{*} p(y_{i}^{*})$$

COVARIANCE ;

Let x and y be random variables with the joint Listos bution p(x,y), respective means ux and uy and respective variationed of and Ty. The Covariance of X and y denoted and defined as follows.

$$COV(X,Y) = E[(X-E(X))(Y-E(Y))]$$

= $E[XY-XE(Y)-YE(X)+E(X)E(Y)]$
= $E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)$

NOTE: If X and Y are independent, then Cov (xix) =0, So that E(XX) = E(X) E(X)

Correlation:

The Correlation of X and Y deboted by f(X,Y)(or) $\frac{f(X,Y)}{f(X,Y)}$ f(X,Y) and is defined as follows

$$\int_{X} (X,Y) = Y_{XY} = \frac{COV(X,Y)}{\sqrt{X}}, \quad \sqrt{X} = SD(X) = \sqrt{E(X^2) - [E(X)]^2}$$

$$\sqrt{Y} = SD(Y) = \sqrt{E(Y^2) - [E(Y)]^2}$$

NOTE:

(i)
$$E(x+y) = E(x) + E(y)$$

(ii)
$$\beta(x,y) = \beta(y,x)$$

$$\frac{1}{16} - 1 \leq \zeta \leq 1$$

Random Vectors:

Suppose that we have on random variables and it is Convenient to put them in a vector $X = [X_1 \ X_2 \dots X_n]^T$ called as RANDOM VECTOR [1e. X:5 -> R"]. Expectation of a random vector is simply the expectation applied to each component $E(X) = \begin{bmatrix} E(Xu) \\ \vdots \\ E(Xl) \end{bmatrix}$

The variance es generalized by the covariance matrix denoted by Z & is the nxn matrix whose entires are officer by Zij = cov [xi, xj] or cov (xi, xj)

Var (xi) 1.e $= \underbrace{\left[E(x_1^2) - E(x_1)E(x_1) \dots E(x_1 \times x_n) - E(x_1)E(x_n)\right]}_{E(x_1 \times x_n) - E(x_n)E(x_n)}$ $= \underbrace{\left[E(x_1^2) - E(x_1)E(x_1) \dots E(x_n)E(x_n) - E(x_n)E(x_n)\right]}_{E(x_1 \times x_n) - E(x_n)E(x_n)}$

$$= \begin{bmatrix} E(x_1) & \dots & E(x_1 \times x_n) \end{bmatrix} \begin{bmatrix} E(x_1) & E(x_1) & \dots & E(x_n) & E(x_n) \end{bmatrix}$$

$$= \begin{bmatrix} E(x_1) & E(x_1) & \dots & E(x_n) & E(x_n) \end{bmatrix} \begin{bmatrix} E(x_1) & E(x_1) & \dots & E(x_n) & E(x_n) \end{bmatrix}$$

$$= \begin{bmatrix} E(x_1) & E(x_1) & \dots & E(x_n) & E(x_n) & E(x_n) \end{bmatrix}$$

$$= E(XXT) - E(X)E(X)T$$

$$= E[(X-E(X))(X-E(X))T]$$

ii)
$$\Gamma_{12} = \frac{\text{Cov}(\mathbf{x}_1, \mathbf{x}_2)}{\sigma_1 \sigma_2} \rightarrow \text{Correlation Coefficient bto}$$

$$= \frac{\sigma_1 \sigma_2}{\sigma_1 \sigma_2} \rightarrow \sigma_1 \text{ and } \sigma_2$$

$$\mathcal{E}_{lm} = \frac{\text{cov}(x_1, y_n)}{\sigma_1 \sigma_n} \rightarrow \frac{x_1 \otimes x_n}{\sigma_n}$$

$$CoV(X) \xrightarrow{CoVariance} \operatorname{Matrix}$$

$$= \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \\ cov(x_2, x_1) & cov(x_3, x_2) \end{bmatrix}$$

$$= \begin{bmatrix} cov(x_2, x_1) & cov(x_2, x_2) \\ cov(x_3, x_1) & cov(x_3, x_2) \end{bmatrix}$$

NOTE:

$$Cov(x,y) = E(xy) - E(x)E(y)$$

$$Cov(x,y) = \frac{cov(x,y)}{\sqrt{x}\sqrt{y}}$$

$$= \frac{2x^2y^2}{\sqrt{x}\sqrt{y}}$$

Trivariate data:

A statistical data with respect to three variables (x1, x0, xs) is called trivaguate data

Notations:

Notations:

$$\frac{1}{1} \cdot \overline{x_1} = \frac{\Xi x_1}{\pi}, \quad \overline{x_2} = \frac{\Xi x_2}{\pi}; \quad \overline{y_3} = \frac{\Xi x_3}{\pi}$$

1.
$$\overline{x}_{1} = \frac{2x_{1}}{n}$$
; $x_{2} = m$
2. $\sigma_{1}^{2} = \frac{1}{n} \leq (x_{1} - \overline{x}_{1})^{2} = \frac{1}{n} \leq x_{1}^{2} - (\overline{x}_{1})^{2}$
2. $\sigma_{2}^{2} = \frac{1}{n} \leq (x_{2} - \overline{x}_{2})^{2} = \frac{1}{n} \leq x_{2}^{2} - (\overline{x}_{2})^{2}$
 $\sigma_{3}^{2} = \frac{1}{n} \leq (x_{3} - \overline{x}_{2})^{2} = \frac{1}{n} \leq x_{3}^{2} - (\overline{x}_{3})^{2}$
 $\sigma_{3}^{2} = \frac{1}{n} \leq (x_{3} - \overline{x}_{2})^{2} = \frac{1}{n} \leq x_{3}^{2} - (\overline{x}_{3})^{2}$

3.
$$r_{12} = \frac{\text{cov}(x_1, x_2)}{\sigma_1 \sigma_2} \rightarrow \text{correlation coefficient btw}$$

$$\gamma_{13} = \frac{\text{Cov}(\chi_1, \chi_3)}{\sigma_1 \sigma_3} \rightarrow \text{Correlation coefficient betwoenders}$$

$$723 = \frac{\text{Cov}(x_2, x_3)}{\sigma_2 \sigma_3} \rightarrow \text{Correlation coefficient btw}$$

In general;
$$\sigma_i^2 = \frac{1}{m} \sum x_i^2$$
; $x_i^2 = x_i^2 - \overline{x_i}$
 $Cov(x_i, x_j^2) = \frac{1}{m} \sum x_i^2$; $x_i^2 = x_i^2 - \overline{x_j}$
 $x_i^2 = x_i^2 - \overline{x_j}$

PRODUCT FORMULA.
$$V_{ij} = \frac{Cov(x_{i}, x_{i})}{\sigma_{i}\sigma_{j}} = \frac{x_{i}x_{j}}{\sigma_{i}\sigma_{j}}$$

JOINT PROBABILITY DISTRIBUTION OF CONTINUOUS RANDOM VARIABLE :

1. Joint density function

The joint probability density function (pdf) of twodimensional continuous random variable (x, y) is defined as a function f(x,y) satisfying the tollowing conditions.

Marginal density function of X and Y

The function $\beta_1(x) = g(x) = f_X(x) = \int_X^x f(x,y) dy$ is colled the marginal density function of X.

The function $f_2(y) = h(y) = f_y(y) = \int_0^x f(x,y) dx$ is called the marginal density function of Y.

Conditional probability deusity function of X given Y=4

$$f(x|y) = \frac{f(x_1y)}{P_2(y)} ; P_2(y) = \frac{f(x_1y)}{f_y(y)}$$

Conditional Probability density function of y given X=x

$$f(y|x) = \frac{f(x,y)}{p_1(x)}, p_1(x)70 \mid \frac{f_{xy}(x,y)}{f_{x}(x)}$$

4. The joint cumonulative distibution function (cdf) is defined as $F(x,y) = P[x \in x, y \leq y] = \int_{\infty}^{y} \int_{-\infty}^{x} f(x,y) dxdy$; - on $(x \in x, y) = \int_{\infty}^{\infty} f(x,y) dxdy$;

5. Two random variables
$$x$$
 and y are said to be independent (or) Stochastically in dependent If

$$P_{1}(x)P_{2}(y) = f(x,y)$$

$$(x)P_{2}(y) = F(x,y)$$

$$E(x)E(y) = E(x,y)$$

6. Mean, Variance and Covariance

$$E(X) = \int_{\infty}^{\infty} x \, f(x) \, dx$$

$$E(Y) = \int_{\infty}^{\infty} y \, f_{2}(y) \, dy$$

$$E(XY) = \int_{\infty}^{\infty} xy \, f(x,y) \, dx \, dy$$

$$Coy(X,Y) = E(XY) - E(X) E(X)$$

9. Correlation of x and y
$$P(x,y) = Y_{xy} = \frac{\text{cov}(x,y)}{\sqrt{x}}$$

where
$$abla_{x} = SD(x) = \sqrt{V(x)}$$

$$abla_{y} = SD(y) = \sqrt{V(x)}$$

$$V(x) = E(x^{2}) - [E(x)]^{2}$$

$$V(y) = E(y^{2}) - [E(y)]^{2}$$

Problems:

1) Consider the following bivariate distribution p(x18) of discrete random variables X and Y

	4,=0	15	2 15	1,5
7	4=1	3	2 15	15
	y3=2	2/15	<u>L</u>	15
-	,	DC1=-	1 202=	x3=
			×	

- Compute i) The marginal distributions p(x) and p(y)
 - ii) The Conditional dishibutions P(X/Y=2), P(Y/X=1).
 - ii) P(X<1, Y=2), P(X<0, Y<2)

801:

i) Magginal distribution of
$$x$$

$$p(x=-1) = \frac{6}{15}, \quad p(x=0) = \frac{5}{15}, \quad p(x=1) = \frac{4}{15}$$

Marginal distribution of
$$y = \frac{6}{15}$$
, $b(y=1) = \frac{6}{15}$, $b(y=2) = \frac{5}{15}$.

$$p[X=-1/y=2] = \frac{p(X=-1 \cap Y=2)}{p(Y=2)} = \frac{2/15}{3/15} = \frac{2}{5}$$

$$P[X=0|Y=2] = \frac{P(X=0 \cap Y=2)}{P(Y=2)} = \frac{Y_{15}}{3/15} = \frac{1}{3}$$

$$P[X=1|Y=2] = \frac{P(X=1 \cap Y=2)}{P(Y=2)} = \frac{2/15}{3/15} = \frac{2}{5}$$

Conditional abtoibution of x given X=1

$$P[Y=0|X=1] = \frac{P(X=1 \cap Y=0)}{P(X=1)} = \frac{1/15}{4/15} = \frac{1}{4}$$

$$P[Y=1 \mid X=1] =$$

iii)
$$b(x \le 1, y = 2) = b(x = -1, y = 2) + b(x = 0, y = 2) + b(x = 1, y = 2) + b(x = 1, y = 2)$$

$$= \frac{2}{15} + \frac{1}{15} + \frac{2}{15} = \frac{1}{3}$$

$$p(X<0, Y\leq 2) = p(X=-1, Y=0) + p(X=-1, Y=1) + p(X=-1, Y=1)$$

$$= \frac{1}{15} + \frac{3}{15} + \frac{2}{15} = \frac{2}{5}$$

- 2) A coin is tossed three times, let X be egnal to o or I according as a head (or) tail occurs on the FIRST Foss. Let y be egnal the total sumber of heads which occur. Determine
 - 7 i) Marginal distribution of X and Y. (sii) The Joint probability distribution of X & y ii) E(X), E(Y), E(X+Y).

Sol: Let S = {HHHI, HHT, HTH, THH, TTH, THT, HTT, TTT} Let X: 0 - HEAD in the FIRST toss 1 -> TAIL in the FIRST toss

Y: No of heads appeared

i) The Joint probability distribution is given by $P_1 = P(X=0, Y=0) = 4 = 0$ P12 = P(x=0, Y=1) = P{ HTT3 = 1 $p_{13} = p(x=0, Y=2) = p\{HHT, HTH\} = \frac{2}{8}$ P14 = P(X=0, Y=3) = P (HHH) = 1/8 P21 = p(x=1, Y=0) = p { TTT} = =

$$p_{22} = p(x=1, y=1) = p\{TTH, THT\} = \frac{2}{8}$$

$$p_{23} = p(x=1, y=1) = p\{THH\} = \frac{1}{8}$$

$$p_{24} = p(x=1, y=3) = {1 \over 8}$$

$$p_{34} = p(x=1, y=3) = {1 \over 8}$$

7	O	1	2	3	p(x)
0	0	18	4	18	1/2
1	100	2/0	18	0	1/2
}(y)	1/8	14	1 2	8	

ii)

A Joint probability distribution is given by the following table.

Find (i) Marginal distribution of X and Y

(iii) correlation doefficient.

Sol: Given

XYI	-3	2	4	P(x)
1	001	0.9	0.2	0.5
	0.3	0=1	0.1	0.5
P(4)	0.4	0.3	0.3	

(i) Marginal distribution
$$\frac{4}{x}$$

 $p(x=1) = 0.5$, $p(x=3) = 0.5$

$$P(x=1) = 0$$

Malginal distribution of Y p(y=-3)=0.4, p(y=2)=0.3, p(y=4)=0.3

(ii)
$$\mathcal{L}_{X} = E(X) = Z \times p(X) = (1 \times 0.5) + (3 \times 0.5) = 2$$

 $\mathcal{L}_{Y} = E(Y) = Z y p(y) = (-3 \times 0.4) + (2 \times 0.3) + (4 \times 0.3) = 0.6$

$$V(x) = \sigma_{x}^{2} = E(x^{2}) - [E(x)]^{2}$$

$$E(x^{2}) = 2x^{2}p(x) = 1^{2}x \cdot 0.5 + \alpha(3) \times 0.5 = 5$$

$$E(x^{2}) = 5 - (2)^{2} = 1. \Rightarrow (x = \sqrt{1} = 1)$$

$$V(Y) = \sigma_{y}^{2} = E(y^{2}) - [E(y)]^{2}$$

$$E(y^{2}) = 2y^{2}p(y)$$

$$= (3)^{2}x \cdot 0.4 + 2^{2}x \cdot 0.3 + 4^{2}x \cdot 0.3$$

$$= 9.6$$

$$(iii) \quad Cov(x, y) = E(xy) - E(x) \cdot E(y)$$

$$E(xy) = 2xy \cdot p(x, y)$$

$$= (xy) - E(x) \cdot E(y)$$

$$= (xy) - E(x) - E(y)$$

$$= (xy)$$

The joint pmf is separated by the following table, where the number in each square (x, y) gives the value of Px, y (x, y)

(i) compute the modginal pmf Px(x) and Py(y).

(i) E(x), E(y). If Z=X+2y, complete PmfofZ, $P_{Z}(z)$, E(Z) and verify that E(Z)=E(X)+2E(Y).

18						,		
4		0		Y ₂₀	Y20		1/20	
3		1/20		2/20	3/2	0	1/20	
2		1/2	a	2/20	3	20	1/20	
3		1/20		1/20	1	20	ō	<u> </u>
	L)		2	,	3	4	\propto

Sol:

(i) Marginal dishibution of X $P_{X}(x=1) = 3/30, \quad P_{X}(x=2) = 6/20, \quad P_{X}(x=3) = 8/20, \quad P_{X}(x=4) = 3/20$

(ii) Marginal distribution of Y

$$P_{y}(y=1)=3/20$$
, $P_{y}(y=2)=7/20=P_{y}(y=3)$, $P_{y}(y=4)=3/20$.

$$E(x) = \sum_{x} x p(x) = 1 \cdot \frac{3}{20} + 2 \cdot \frac{6}{20} + 3 \cdot \frac{8}{20} + 4 \cdot \frac{3}{10} = \frac{51}{20}$$

$$E(y) = \sum_{x} y b(y) = 1 \cdot \frac{3}{20} + 2 \cdot \frac{7}{20} + 3 \cdot \frac{7}{20} + 4 \cdot \frac{3}{20} = \frac{57}{20}$$

$$\begin{array}{ll}
b(z) &=& \sum_{X,Y} b(x,y) \\
Z & \left\{ (x,y) \middle| z = x + 2y \right\}
\end{array}$$

From the table we have

$$p_{2}(3) = \frac{1}{20}$$
, $p_{2}(4) = \frac{1}{20}$, $p_{2}(5) = \frac{2}{20}$, $p_{2}(6) = \frac{2}{20}$

$$x+2y=Z$$

$$b_2(7) = \frac{4}{20}$$
, $b_2(8) = \frac{3}{20}$, $b_2(9) = \frac{3}{20}$, $b_2(10) = \frac{2}{20}$

$$p_2(11) = \frac{1}{20}, \quad p_2(12) = \frac{1}{20}.$$

$$E(z) = \sum_{z} z \, b(z) = 3 \cdot \frac{1}{20} + \cdots + 12 \cdot \frac{1}{20} = 7.55. \, 0$$

$$E(x+2Y) = E(x) + 2 E(Y)$$

$$= \frac{57}{20} + 2 \cdot \frac{50}{20} = 7.55$$

EXI Compute the covariance Matrix for the two VV X, & X2 given by the following 1 | p₁(x₁) - p₁
0.06 | 0.3 7 | Margmal
0.14 | 0.3 | probabilités
0.00 | 0.4 table. Joint bibber -1 0.24 10,40 P2 4 P2(X2) 0.8 1 - D Z p = St2 $X_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathcal{M}_{1} = E(X_{1}) = \sum_{\alpha | \beta \in A_{1}} \chi_{1} \beta_{1}(X_{1})$ Solno = (-1x0.3) + (0x0.3) + (1x0.4) $M_2 = E(X_2) = \sum_{all \, Y_1} P_2(X_2)$ = 0x008 +1x002 = 009

i. Mean vector =
$$M = \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = \begin{bmatrix} E(x_1) \\ E(x_2) \end{bmatrix} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$

$$\sum_{i} = \mathbb{E}\left[(X-u)(X-u)^{T} \right]$$

$$Covariance = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} 0.69 & -0.06 \\ -0.08 & 0.16 \end{bmatrix}$$

$$Matrix$$

$$S_{12} = \frac{\sigma_{12}}{\sqrt{\sigma_{1}}} = \frac{\text{Cov}(x_1, x_2)}{\sqrt{\sigma_{0}} \text{Sp(x)}} \text{Sp(x)}$$

$$= \frac{-0.08}{\sqrt{0.69}} = -0.24$$

$$\text{The strength of the strengt$$

Ex 2 Compare the Correlation Matrix Siven that covaliance matrix
$$Z = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 2 & -3 \\ 2 & -3 & 25 \end{bmatrix}$$
obtains V^2 & S

Sol: Given $Z = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$
Covariance matrix

$$V^2 = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
Standard deviation Matrix

$$V^2 = \begin{bmatrix} \sqrt{\sigma_{11}} & 0 & 0 \\ 0 & \sqrt{\sigma_{22}} & 0 \\ 0 & 0 & \sqrt{\sigma_{33}} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
Standard deviation Matrix

$$V^2 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \sqrt{\sigma_{33}} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

The calculation matrix $V^2 = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & \sqrt{v_3} & 1 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 1 & 9 & -3 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 & \sqrt{v_3} \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 1 & 2 \\ 0 & 0 &$