TARGET – BUSINESS CASE

Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

Data type of all columns in the "customers" table.

Field name	Type
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INTEGER
customer_city	STRING
customer_state	STRING

Observation: The customers table contains two different datatypes, in which customer_id, customer_unique_id, customer_city, customer_state are STRING datatype and customer_zip_code_prefix is an INTEGER datatype.

Get the time range between which the orders were placed.

Output:

Observation: 2016, Sept 4th 21:15:19 UTC to 2018, Oct 17th 17:30:18 UTC was the time range between which orders were placed.

Count the Cities & States of customers who ordered during the given period.

Output:

JOB IN	FORMATION RESULTS	CHART PREVIEW	JSON EXECUTION DETAILS
Row /	customer_city ▼	customer_state ▼	no_of_orders ▼
1	sao paulo	SP	15540
2	rio de janeiro	RJ	6882
3	belo horizonte	MG	2773
4	brasilia	DF	2131
5	curitiba	PR	1521
6	campinas	SP	1444
7	porto alegre	RS	1379
8	salvador	BA	1245
9	guarulhos	SP	1189
10	sao bernardo do campo	SP	938

Observation: As for the above results a state named 'SP' in Brazil have high no. of orders from the customers when compared to the other states in the given time period.

In-depth Exploration:

Is there a growing trend in the no. of orders placed over the past years?

Output:

Quer	y results				
JOB IN	IFORMATION	RESULTS	CHA	ART PREVIEW	JSON
Row	year ▼	month ▼	h	no_of_orders_placed	
1	2016		9	4	
2	2016		10	324	
3	2016		12	1	
4	2017		1	800	
5	2017		2	1780	
6	2017		3	2682	
7	2017		4	2404	
8	2017		5	3700	
9	2017		6	3245	
10	2017		7	4026	

Observation: Yes, there is a rapid growth in number of orders placed in the given time period and we can also see that monthly sales are increasing in numbers when compare to the past months and yearly wise as well.

Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
select extract(month from order_purchase_timestamp) month,
```

```
count(order_id) no_of_orders_placed
from `Target.orders`
group by month
order by month
```

Quer	y results		
JOB IN	IFORMATION		RESULTS CHA
Row	month ▼	11	no_of_orders_placed
1		1	8069
2		2	8508
3		3	9893
4		4	9343
5		5	10573
6		6	9412
7		7	10318
8		8	10843
9		9	4305
10		10	4959
11		11	7544
12		12	5674

Observations:

Insights: According to the above results in the month of August no. of orders are at it peaks, also there is an rapid growth in the no. of orders from each month.

Recommendations: As we observe that since in the months of Nov, Jan and March no. of orders are high we can keep on increase the orders by

- -by putting on offers
- -by discounts
- -by promoting as much as possible through different platforms
- -by keeping the products in stock before the start of sales
- -by having different types of varieties in products etc...

During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

a. 0-6 hrs: Dawnb. 7-12 hrs: Morningsc. 13-18 hrs: Afternoond. 19-23 hrs: Night

Query results						
JOB IN	IFORMATION	RESULTS	CHART PREVIEW			
Row	order_time ▼	le .	no_of_orders ▼ //			
1	Mornings		27733			
2	Dawn		5242			
3	Afternoon		38135			
4	Night		28331			

Observations: Count of orders from above tells us that most of the customers place there orders in the Afternoon mostly when they are free from there work and Night is the second next time that customers place there orders when they are at home then follows the next timings is Mornings and then at last the least time when customers place there orders is Dawn.

Evolution of E-commerce orders in the Brazil region:

Get the month on month no. of orders placed in each state.

```
select c.customer_state,
    extract(month from order_purchase_timestamp) month,
    count(o.order id) no of orders monthly
```

Quer	y results					
JOB IN	IFORMATION	RESULTS	CHART P	REVIEW	JSON	EX
Row	customer_state -		month ▼	11	no_of_orders_monthly	7
1	AC			1		8
2	AC			2		б
3	AC			3	4	4
4	AC			4	(9
5	AC			5	10	0
6	AC			6		7
7	AC			7	(9
8	AC			8		7
9	AC			9	,	5
10	AC			10	(б

Observation: In the state 'AL' no. of orders placed are high when compared to the other states.

How are the customers distributed across all the states?

Query results

JOB IN	IFORMATION	RESULTS	CHART PREVIEW
Row	customer_state	· /	no_of_customers
1	RN		485
2	CE		1336
3	RS		5466
4	SC		3637
5	SP		41746
6	MG		11635
7	BA		3380
8	RJ		12852
9	GO		2020
10	MA		747

Observation: As per the number of customers in each state, SP state have the highest orders placed in this time period when compared to the other states in the Brazil.

Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

Que	Query results						
JOB	INFORMATION		RESULTS	CH/			
Row	month ▼	h	percent_inc	rease 🏅			
1		1		705.13			
2		2		239.99			
3		3		157.78			
4		4		177.84			
5		5		94.63			
6		6		100.26			
7		7		80.04			
8		8		51.61			

Observation: From the years 2017 to 2018 the percent increase in cost of orders in the months of Jan to Aug, in which Jan month has been seen to be higher other than its following months.

Calculate the Total & Average value of order price for each state.

```
select c.customer_state,
```

```
round(sum(oi.price),2) total_price,
round(avg(oi.price),2) avg_price
from `Target.orders` o
join `Target.customers` c
on o.customer_id = c.customer_id
join `Target.order_items` oi
on o.order_id = oi.order_id
group by c.customer state
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	CHART PREVIE	W JSON
Row	customer_state -		total_price ▼	avg_price ▼
1	MT		156453.53	148.3
2	MA		119648.22	145.2
3	AL		80314.81	180.89
4	SP		5202955.05	109.65
5	MG		1585308.03	120.75
6	PE		262788.03	145.51
7	RJ		1824092.67	125.12
8	DF		302603.94	125.77
9	RS		750304.02	120.34
10	SE		58920.85	153.04

Observation: By the above price analaysis of different states in Brazil we can draw a conclusion of customers avg and total amount variations in between each states.

Calculate the Total & Average value of order freight for each state.

```
select c.customer_state,
    round(sum(oi.freight_value),2) total_value,
    round(avg(oi.freight_value),2) avg_value
    from `Target.orders` o
    join `Target.customers` c
    on o.customer_id = c.customer_id
    join `Target.order_items` oi
    on o.order_id = oi.order_id
    group by c.customer_state
```

Query results				
JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON
Row /	customer_state ▼	le	total_value ▼	avg_value ▼
1	MT		29715.43	28.17
2	MA		31523.77	38.26
3	AL		15914.59	35.84
4	SP		718723.07	15.15
5	MG		270853.46	20.63
6	PE		59449.66	32.92
7	RJ		305589.31	20.96
8	DF		50625.5	21.04
9	RS		135522.74	21.74
10	SE		14111.47	36.65

Observation: By the above freight analaysis of different states in Brazil we can draw a conclusion of customers avg and total amount variations in between each states.

Analysis based on sales, freight and delivery time.

Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

order by delivery_time

Output:

Query results

JOB IN	FORMATION	RESULTS	CHART PREVIEW	JSON
Row /	order_id ▼	[4	delivery_time ▼	diff ▼
1	e65f1eeee1f520	24ad1dcd034	0	9
2	bb5a519e352b4	5b714192a02f	0	25
3	434cecee7d1a6	5fc65358a632	0	19
4	d3ca7b82c9228	17b06e5ca211	0	11
5	1d893dd7ca5f7	7ebf5f59f0d20	0	10
6	d5fbeedc85190l	oa88580d6f82	0	7
7	79e324907160c	aea526fd8b94	0	8
8	38c1e3d4ed6a1	3cd0cf612d4c	0	16
9	8339b608be0d8	4fca9d8da68b	0	27
10	f349cdb62f69c3	fae5c4d7d3f3	0	12

Observation: By the above difference in delivery of an product from its purchase date can be analysed and understand whether products to customers are delivered on or before the estimated time given to the customer.

Find out the top 5 states with the highest & lowest average freight value.

on o.customer id = c.customer id

```
join `Target.order_items` oi
on o.order_id = oi.order_id
group by c.customer_state
order by avg_fgth_value
limit 5)
```

Quer	y results		
JOB IN	IFORMATION	RESULTS	CHART PREVIEW
Row	customer_state	~	avg_fgth_value ▼
1	RR		42.98
2	РВ		42.72
3	RO		41.07
4	AC		40.07
5	PI		39.15
6	SP		15.15
7	PR		20.53
8	MG		20.63
9	RJ		20.96
10	DF		21.04

Observation: By doing analysis of average of freight value in which top 5 states have highest average freight value are 'RR,PB,RO,AC,PI' and the lowest 5 states which have low average freight value are 'SP,PR,MG,RJ,DF'.

Find out the top 5 states with the highest & lowest average delivery time.

union all

Query results						
JOB IN	FORMATION	RESULTS	CHART PREVIEW			
Row	customer_state	•	delivery_time ▼			
1	RR		28.98			
2	AP		26.73			
3	AM		25.99			
4	AL		24.04			
5	PA		23.32			
6	SP		8.3			
7	PR		11.53			
8	MG		11.54			
9	DF		12.51			
10	SC		14.48			

Observation: By doing analysis of average of delivery time in which top 5 states have highest average delivery time are 'RR,AP,AM,AL,PA' and the lowest 5 states which have low average delivery time are 'SP,PR,MG,DF,SC'.

Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
order by order_delivery
limit 5
```

Order:

Quer	y results		
JOB IN	FORMATION	RESULTS	CHART PREVIE
Row	customer_state	▼	order_delivery ▼ //
1	AL		7.95
2	MA		8.77
3	SE		9.17
4	ES		9.62
5	BA		9.93

Observation: Fast delivery is one of the key business point, where the states which follow this key point and delivery the products before the estimated time of delivery are 'AL,MA,SE,ES,BA'.

Analysis based on the payments:

Find the month on month no. of orders placed using different payment types.

Quer	y results				
JOB IN	IFORMATION		RESULTS	CHART PREVIEW	JSON
Row	month ▼	h	payment_type	· //	no_of_orders ▼
1		1	UPI		1715
2		1	credit_card		6103
3		1	debit_card		118
4		1	voucher		477
5		2	UPI		1723
6		2	credit_card		6609
7		2	debit_card		82
8		2	voucher		424
9		3	UPI		1942
10		3	credit_card		7707

Observation: As there are different methods of payments by the above analysis we observe that customers in Brazil are tend to use credit card payment method most frequently and the next mostly used payment method is UPI method and then follows voucher and then debit_card.

Find the no. of orders placed on the basis of the payment installments that have been paid.

Query results					
JOB IN	IFORMATION		RESULTS	CHA	
Row	payment_installm	nent	no_of_orders	· /1	
1		0		2	
2		1	5	2546	
3		2	1	2413	
4		3	1	0461	
5		4		7098	
6		5		5239	
7		6		3920	
8		7		1626	
9		8		4268	
10		9		644	

Observation: The above results make us understand the customer preference upon payment installments. The count or no. of orders per each payment installment method explain us the most preferred payment installment method. By the above analysis we understand the customer preference and their payment methods.

...END...