باقة تماريه رقم 02للوحدة 03

التمرين رقم: **01** التمرين رقم: **01**

اقترح أستاذ تعيين سعم مكثفت C بطريقتين مختلفتين:

الطريقة الأولى: شحن المكثفة بتيار مستمر ثابت.

الطريقة الثانية: تفريغ المكثفة في ناقل أومي.

لهذا الغرض تم تحقيق التركيب المقابل.

البادلة K البادلية فارغة ،نضع في اللحظة t=0 البادلة أولا: المكثفة في البادلة المكثفة في الوضع

نتشحن المكثفة بالمولد G الذي يعطي تيارا ثابتا شدته i=0,31mA وبواسطة جهاز $ExA\ O$ تمكنا من مشاهدة المنحنى البياني لتطور التوتر

الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t (الشكل-1-أ).

اًـ اعط عبارة التوتر u_{AB} بدلالة شدة التيار i المار في الدارة وسعة المكثفة C والزمن أـ

ب-جد قيمة سعة المكثفة .C

ثانيا: عندما يصبح التوتر بين طرفي المكثفة مساويا إلى القيمة $U_0=1,6V$ ، نضع البادلة K في الوضع (2) في لحظة نعتبرها من جديد t=0 ، فيتم تفريغ المكثفة في ناقل أومي مقاومته R=1k .

 $.u_{AB}$ أـ جد المعادلة التفاضلية التي يحققها

ب ـ أثناء تفريغ المكثفة سمح جهاز ExAO من متابعة تطور التوتر الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنا من الحصول على المنحنى البياني (الشكل ـ 1 ـ ب).

.C جد بيانيا قيمة ثابت الزمن au للدارة ،ثم استنتج قيمة سعة المكثفة

التمرين رقم: **02** بكالوريا 2011 ع ت

مكثفة سعتها C شحنت كليا تحت توتر ثابت E=6V ،من أجل معرفة سعتها نقوم بتفريغها في ناقل أومي $R=4k\,\Omega$ مقاومته $R=4k\,\Omega$

1- ارسم مخطط دارة التفريغ.

لتابعة تطور التوتر $u_{C}(t)$ بين طرفي المكثفة خلال الزمن نستعمل جهاز فولطمتر رقمي وميقاتية إلكترونية أمكيف يتم ربط جهاز الفولطمتر في الدارة؟

نغلق القاطعة في اللحظة t=0ms ونسجل نتائج المتابعة في الجدول التالي:

			**						
t(ms)	0	10	20	30	40	60	80	100	120
$u_{C}(V)$	6,00	4,91	4,02	3,21	2,69	1,81	1,21	0,81	0,54

ب ارسم المنحنى البياني المثل للدالة ($u_C = f(t)$ على ورقة ميليمترية.

جـعين بيانيا قيمة ثابت الزمن ٠.

د احسب سعم المكثفم C.

 $u_{C}\left(t\right)$ أـ بتطبيق قانون جمع التوترات اكتب المعادلة التفاضلية للتوتر الكهربائي 3

ب المعادلة التفاضلية السابقة تقبل العبارة $u_{C}\left(t\right)=Ae^{-lpha t}$ علية السابقة تقبل العبارة $u_{C}\left(t\right)$

(ت $_{ au}$ رقم: $\mathbf{0}$

نحقق الدارة (الشكل-2) ، والتي تتكون من مولد لتوتر ثابت $C=250\,\mu F$ ، ومكثفة سعتها $C=250\,\mu F$ وناقلين أوميين متماثلين مقاومة كل منهما $R=200\,\Omega$ ، وبادلة K

أولا: نضع البادلة في الوضع (1).

1- أ- أعد رسم الدارة (الشكل-2) مبينا عليها جهة انتقال حاملات الشحنة وما طبيعتها؟ حدد شحنة كل لبوس وجهة التيار.

 $q\left(t\right)$ و $u_{C}\left(t\right)$ و العلاقة بين $u_{C}\left(t\right)$ و العلاقة بين $u_{C}\left(t\right)$ و العلاقة بين $u_{C}\left(t\right)$ و $u_{C}\left(t\right)$

ي ورين أن المعادلة $u_{R}(t)$ و $u_{R}(t)$ وبين أن المعادلة $u_{C}(t)$ وبين أن المعادلة التفاضلية التي يحققها $u_{C}(t)$ هي من الشكل:

$$.\tau_{1} \times \frac{du_{C}(t)}{dt} + u_{C}(t) = A$$

A و au_1 ب-جد القيمة العددية لكل من

جـ جد من المعادلة التفاضلية وحدة au_1 وعرفه.

 τ_1 أـ اقرأ على المنحنى البياني (الشكل ـ 3) قيمة ثابت الزمن ، δ ، وقارنها مع القيمة المحسوبة سابقا .

ب-حدد بيانيا المدة الزمنية Δt الصغرى اللازمة لاعتبار المكثفة عمليا مشحونة . قارنها مع au_1 .

ثانيا: نضع البادلة في الوضع (2).

أـ ما هي الظاهرة الفيزيائية التي تحدث؟ اكتب المعادلة التفاضلية لـ ما هي الطاهرة الفيزيائية التي تحدث الما الموافقة.

بـاحسب au_2 ، قارنها بـ au_1 ، ما ذا تستنتج

 $u_{C}\left(t\right)$ بياني لتغير المنحنى البياني لتغير مشكل تقريبي المنحنى الميزة.

التمرين رقم: **04**

تتكون دارة كهربائية على التسلسل من:مولد للتوتر قوته المحركة الكهربائية E ،ناقل أومي مقاومته K ، K ، وقاطعة K ، وقاطة K ، وقاطعة K ، وقاطة K ، وقاطة K ، وقاطة K ، وقاطة K ، وقاطة

t=0 نغلق القاطعة في اللحظة:

1- ارسم الدارة الكهربائية مع توجيهها بالنسبة لشدة التيار والتوتر الكهربائيين.

عادلة التفاضلية للدارة بدلالة q(t) خلال شحن المكثفة.

3 حل المعادلة التفاضلية السابقة ، يعطى بالشكل:

$$A$$
 ، B ، α مجد عبارة $q(t) = A e^{\alpha t} + B$

4. التمثيل البياني يمثل تطور شحنة المكثفة q(t) بدلالة الزمن t (الشكل-4).

أـ استنتج بيانيا قيمة au ثابت الزمن ،ثم احسب C سعة الماحدة .

ب استنتج قيمة E القوة المحركة الكهربائية للمولد. جـ احسب الطاقة الكهربائية المخزنة في المكثفة في اللحظة t = 200ms.

التمرين رقم: **05**

مكثفة سعتها C شحنت كليا تحت توتر كهربائي ثابت: E=12V . لعرفة سعتها C نحقق الدارة الكهربائية (الشكل C) ،حيث: C الخلق القاطعة C في اللحظة C .

أـ بتطبيق قانون جمع التوترات جد المعادلة التفاضلية للتوتر الكهربائي $u_{C}(t)$

بـ حل المعادلة السابقة يعطى من الشكل $u_{C}\left(t\right)=A\,e^{\,\alpha t}$ بـ عطى من الشكل $u_{C}\left(t\right)=A\,e^{\,\alpha t}$ و α ثابتان يطلب كتابة عبارتهيما.

2 - اكتب العبارة اللحظيم $E_{C}(t)$ للطاقة المخزنة في المكثفة.

3 ـ (الشكل ـ 6) يمثل تطور ($E_C(t)$) ،الطاقة المخزنة في المكثفة بدلالة الزمن.

أ ـ استنتج قيمة E_{C_0} الطاقة المخزنة العظمى في المكثفة.

t=0ms بين أن الماس للمنحنى في اللحظة بين أن الماس للمنحنى في اللحظة

 $t = \frac{\tau}{2}$ يقطع محور الأزمنة في اللحظة

.C شمت المحتفة ما النومن، ثم استنتج سعة الم

 $t_{1/2} = \frac{\tau}{2} \ln(2)$.ثم الطاقة للنصف هو: $t_{1/2} = \frac{\tau}{2} \ln(2)$.ثم احسب قيمته.

20

حل التمرين رقم: 01 أولا: أ_عبارة التوتر u_{AB} بدلالة شدة التيار i المار في الدارة وسعة المكثفة c والزمن t: بكالوريا 2012 (تر+ر)

$$u_{AB}=rac{i}{C} imes t$$
 نعلم أن: $q=i imes t$ ومنه: $u_{AB}=rac{q}{C}$ ومنه: $u_{AB}=rac{q}{C}$ ومنه: $q=C$ ومنه: $q=C$

$$C = \frac{i}{a}$$
 : إذن: $\frac{i}{C} = a$ النظرية (1) والعلاقة البيانية (2) طرفا لطرف نجد: والعلاقة النظرية (1) والعلاقة البيانية

$$.C = \frac{0.31 \times 10^{-3}}{5.71 \times 10^{-2}} = 5.4 \times 10^{-3} = 5.4 mF$$
 :

$$C = \frac{i \times t}{U_0}$$
 اذن: $q_{\max} = i \times t$ اذن: $q_{\max} = i \times t$ وكذلك: $q_{\max} = i \times t$ وكذلك: $q_{\max} = i \times t$

$$C = \frac{0.31 \times 10^{-3}}{5.71 \times 10^{-2}} = 5.4 \times 10^{-3} = 5.4$$

: u_{AB} أـ المعادلة التفاضلية التي يحققها :

 $u_{AB} + Ri = 0$ ومنه: $u_{AB} + u_R = 0$ بتطبيق قانون جمع التوترات نجد:

$$u_{AB}+RC imesrac{du_{AB}}{dt}=0$$
 ومنه: $q=C$ ومنه: $q=C$ ومنه: $q=C$ وصنه: $q=C$ وصنه

بيان الشكل ـ1ـ ب ،خط مستقيم يمر من المبدأ معادلته $\frac{u_0}{u_{_{A\,R}}}=lpha imes t....(I)$ بيان الشكل ـ1ـ ب

$$\alpha = \frac{\Delta \ln \frac{u_0}{u_{AB}}}{\Delta t} = \frac{4,2-0}{22,5-0} = 0,1867 \, s^{-1}$$
 نجد:

ونعلم أن حل المعادلة التفاضلية السابقة هو: $u_{AB}=U_0e^{-\frac{t}{\tau}}$ ومنه: $u_{AB}=U_0e^{-\frac{t}{\tau}}$ وبإدخال العادلة التفاضلية السابقة هو: ونعلم أن حل المعادلة التفاضلية السابقة هو: ونعلم أن حل المعادلة التفاضلية السابقة هو: $u_{AB}=U_0e^{-\frac{t}{\tau}}$

$$\ln \frac{U_0}{u_{AB}} = \frac{1}{\tau} \times t \dots (II)$$
 المساواة نجد:

 $au=rac{1}{lpha}$ بالمطابقة بين العلاقة البيانية (I)والعلاقة النظرية (II)طرفا لطرف نجد العلاقة البيانية

.
$$\tau = \frac{1}{0.1867} = 5.4s$$
 تـع:

$$.C = \frac{5.4}{1000} = 5.4 \times 10^{-3} = 5.4 \times 10^{-3} = 5.4 \times 10^{-3}$$
 تعلم أن: $\tau = RC$ إذن:

انظر الشكل

 $u_C = f(t)$

t(ms)

 $u_{C}(V)$

- 2 أ ـ جهاز الفولطمتر يربط في الدارة: على التفرع بين طرفي المكثفة المشحونة. انظر الشكل.
- ب ـ رسم المنحنى البياني المثل للدالة ($u_C=f\left(t
 ight)$ على ورقة $.1cm \rightarrow 10ms$ و $1cm \rightarrow 1V$ ميليمترية اسلم الرسم: auجـ تعيين بيانيا قيمة ثابت الزمن
- يمثل نقطة تقاطع الماس عند اللحظة t=0 للمنحنى au. au = 50ms : مع محور الأزمنة نجد $u_C = f\left(t\right)$. $\tau = 15,12ms$ ومن البيان نقرأ:

د حساب سعة المكثفة : C

$$.C = \frac{\tau}{R} = \frac{50 \times 10^{-3}}{4 \times 10^{3}} = 12,5 \times 10^{-6} F$$
 نعلم أن: $\tau = RC$ إذن: $C = 12.5 \mu F$

- $. C = 12.5 \mu F$ ونكتب
 - $u_{C}\left(t\right)$ اًـ المعادلة التفاضلية للتوتر الكهربائى 3 $u_{C}\left(t\right)+u_{R}\left(t\right)=0$ بتطبيق قانون جمع التوترات نجد: $u_C(t) + Ri(t) = 0$ ومنه:

$$i\left(t\right)=C imes rac{du_{C}\left(t
ight)}{dt}$$
 ومنه: $q\left(t
ight)=Cu_{C}\left(t
ight)$ وصنه: $i\left(t
ight)=rac{dq\left(t
ight)}{dt}$ ومنه: $i\left(t
ight)=rac{dq\left(t
ight)}{dt}$ وصنه: $u_{C}\left(t
ight)+RC imes rac{du_{C}\left(t
ight)}{dt}=0$ أي: $u_{C}\left(t
ight)+RC imes rac{du_{C}\left(t
ight)}{dt}=0$

ب المعادلة التفاضلية السابقة تقبل العبارة $u_{C}\left(t
ight.)$ = $A\,e^{-lpha t}$ و A ثابتان يطلب تعيينهما:

$$\frac{du_{C}(t)}{dt} = -\alpha A e^{-\alpha t}$$
 :باشتقاق عبارة الحل بالنسبة للزمن نجد

 $-\alpha A e^{-\alpha t} + \frac{A e^{-\alpha t}}{PC} = 0$: بتعويض عبارة المشتقة في المعادلة التفاضلية نجد

.
$$\alpha = \frac{1}{RC} = \frac{1}{\tau}$$
 افن: $\alpha = \frac{1}{RC} = 0$ افن: $\alpha = \frac{1}{RC} = \frac{1}{\tau}$ افن: $\alpha = \frac{1}{RC} = \frac{1}{\tau}$

 $u_{C}\left(t\right)=Ee^{-rac{t}{ au}}$ ويتعويض t=0 عبارة الحل نجد: $u_{C}\left(t\right)=A=E$ عبارة الحل هي:

حل التمرين رقم: 03

أولا: _ أ_رسم الدارة مبينا عليها:

- ـ جهة انتقال حاملات الشحنة وهي الالكترونات.
- ـ تحديد شحنة كل لبوس في المكثفة ،انظر الشكل.
 - جهة التيار الكهربائي ،انظر الشكل.

.
$$i\left(t\right) = \frac{dq\left(t\right)}{dt}$$
: بـ العلاقة بين $i\left(t\right)$ و $i\left(t\right)$ هي:

$$.q\left(t
ight)$$
 = $C\,u_{C}\left(t
ight)$ هي: $q\left(t
ight)$ و $u_{C}\left(t
ight)$

 $u_{C}\left(t
ight)$ استنتاج العلاقة بين $i\left(t
ight)$ استنتاج

 $.i\left(t\right) = C imes rac{du_{C}\left(t
ight)}{dt}$: لدينا $q\left(t
ight) = C u_{C}\left(t
ight)$ ولدينا $i\left(t
ight) = rac{dq\left(t
ight)}{dt}$ ولدينا

 $u_{C}\left(t\right)$ و $u_{R}\left(t\right)$:د أ ـ العلاقة بين $u_{R}\left(t\right)$

 $.u_{R}\left(t
ight)=RC imesrac{du_{C}\left(t
ight)}{dt}$: نعلم أن: $i\left(t
ight)=C imesrac{du_{C}\left(t
ight)}{dt}$: ولدينا: $u_{R}\left(t
ight)=RC$ ولدينا

 $: au_1 imes rac{du_C\left(t
ight)}{dt} + u_C\left(t
ight) = A$: تبيان أن المعادلة التفاضلية التي يحققها $u_C\left(t
ight)$ هي من الشكل

 $RC imes rac{du_C\left(t
ight)}{dt} + u_C\left(t
ight) = E \dots (1)$ بتطبيق قانون جمع التوترات نجد: $u_R\left(t
ight) + u_C\left(t
ight) = E$ ومنه:

 $. au_1 \times \frac{du_C(t)}{dt} + u_C(t) = A....(2)$ وهي توافق:

 au_1 ب القيمة العددية لكل من au_1 و

 $au_1=RC=200\times250\times10^{-6}=0,05(SI$) بالمطابقة بين العلاقتين (2) و طرفا لطرف نجد A=E=9V

auب إجاد من المعادلة التفاضلية وحدة au_1

$$au_{1} = \frac{\left(A - u_{C}\left(t\right)\right) \times dt}{du_{C}\left(t\right)}$$
 ومنه: $au_{1} \times \frac{du_{C}\left(t\right)}{dt} + u_{C}\left(t\right) = A$ لدينا:

. (s) وبالتحليل البعدي نجد: [T] = [T] = [T] . فثابت الزمن [T] = [T] متجانس مع الزمن ووحدته الثانية وبالتحليل البعدي نجد:

 $.\tau_1 = RC = 200 \times 250 \times 10^{-6} = 0,05s$ وعليه نڪتب:

 $: au_1$ تعریف ثابت الزمن

يوافق المدة الزمنية الضرورية لبلوغ التوتر الكهربائي بين طرفي المكثفة %63 من قيمته الأعظمية.

المناني ،ومقارنة قيمته مع القيمة المحسوبة سابقا: au_1 من المنحنى البياني ،ومقارنة قيمته مع القيمة المحسوبة سابقا:

 u_{C} ($au_{1}=0.05s$: نجد $t= au_{0}$ ومن البيان نقرأ u_{C} ومن البيان نقرأ u_{C} انجد وهو متطابق مع القيمة العددية المحسوبة سابقا.

auب تحديد بيانيا المدة الزمنية Δt الصغرى اللازمة لاعتبار المكثفة عمليا مشحونة . قارنها مع

 $\Delta t = 5 au_1$.بيانيا: $\Delta t = 0.25s$ وهي توافق $\Delta t = 0.25s$

ثانيا: أ - الظاهرة الفيزيائية التي تحدث هي: تفريغ المكثفة المشحونة سابقا عبر الناقلين الأوميين.

المعادلة التفاضلية لـ $u_{C}\left(t
ight)$ الموافقة:

 $2R imes i\left(t\right) + u_{C}\left(t\right) = E$. ومنه: $u_{R}\left(t\right) + u_{R}\left(t\right) + u_{C}\left(t\right) = 0$. وبنا: $i\left(t\right) = C imes \frac{du_{C}\left(t\right)}{dt} + u_{C}\left(t\right) = 0$. ولدينا: $i\left(t\right) = C imes \frac{du_{C}\left(t\right)}{dt}$

 $: au_1$ ب قارنها ب au_2

. $au_2 = 2RC = 2 \times 200 \times 250 \times 10^{-6} = 0.1s$ نعلم أن:

. $au_2 = 2RC = 2 au_1$ نلاحظ أن:

نستنتج أن:

ثابت الزمن يتناسب طردا مع قيمة المقاومة للناقل الأومي وعليه:مدة تفريغ المكثفة هي ضعف مدة شحنها.

<u>_ t</u>
$u_{C}\left(t ight)$ علم أن عبارة حل المعادلة التفاضلية هي: علم أن عبارة حل المعادلة التفاضلية و
$E=9V$ و $ au_2=2RC=0.1s$.

القيم العددية الميزة الساعدة:

t(s)	0	$ au_2$	$5\tau_2$
$u_{C}(V)$	E = 9	0,37E = 3,33	0,06

حل التمرين رقم: 04

1_ رسم الدارة الكهربائية مع توجيهها بالنسبة لشدة التيار والتوتر الكهربائيين: انظر الشكل المقابل.

المعادلة التفاضلية للدارة بدلالة $q\left(t\right)$ خلال شحن المكثفة:

 $u_{C}\left(t\right)+u_{R}\left(t\right)=E$:بتطبيق قانون جمع التوترات نجد $u_C(t) + Ri(t) = E$ ومنه:

$$i\left(t\right) = \frac{dq\left(t\right)}{dt}$$
 ومنه: $u_{C}\left(t\right) = \frac{q\left(t\right)}{C}$ ومنه: $q\left(t\right) = Cu_{C}\left(t\right)$

.
$$\frac{dq(t)}{dt} + \frac{1}{RC}q(t) = \frac{E}{R}$$
 : في: $\frac{q(t)}{C} + R\frac{dq(t)}{C} + R\frac{dq(t)}{dt} = E$ في:

A ، B ، α عبارة التفاضلية السابقة ، يعطى بالشكل: A ، B ، A ، بد عبارة A ، بد عبارة A .

$$\frac{dq(t)}{dt} = \alpha A e^{\alpha t}$$
 باشتقاق عبارة الحل بالنسبة للزمن نجد:

 $\alpha A e^{\alpha t} + \frac{\left(A e^{\alpha t} + B\right)}{BC} = \frac{E}{D}$: بتعويض عبارة الحل وعبارة المشتقة في المعادلة التفاضلية نجد

$$\alpha = -\frac{1}{RC} = -\frac{1}{\tau}$$
 اِذَن: $\alpha + \frac{1}{RC} = 0$ نجد: $A e^{\alpha t} \left(\alpha + \frac{1}{RC} \right) + \left(\frac{B}{RC} - \frac{E}{R} \right) = 0$ ومنه: $A e^{\alpha t} \left(\alpha + \frac{1}{RC} - \frac{E}{R} \right)$

$$B = CE = Q_{\text{max}}$$
 إذن: $\frac{B}{RC} - \frac{E}{R} = 0$

 $q\left(0
ight)$ = 0 : ويتعويض t=0 ميث من البيان نقرأ الحل نجد ويتعويض ويتعو

$$A = -B = -CE$$
 أي:

$$Q_{\max} = CE$$
 : وكذلك $\tau = RC$ عيث $q(t) = -Q_{\max}e^{-\frac{t}{\tau}} + Q_{\max} = Q_{\max}\left(1 - e^{-\frac{t}{\tau}}\right)$ وكذلك الخارة الحل

$$q\left(t\right)\!=\!Q_{ ext{max}}\!\left(1\!-\!e^{-rac{t}{ au}}
ight)$$
ا استنتاج بیانیا قیمهٔ au ثابت الزمن: نعلم أن: 4

$$Q_{\mathrm{max}} = 4.8 \times 10^{-4} C$$
 ولما $q(\tau) = 0.63 \times Q_{\mathrm{max}}$ انجد: ولما $t = \tau$ ولما

au = 39ms : وبقراءة بيانية نجد $q(au) = 0.63 \times 4.8 \times 10^{-4} = 3.024 \times 10^{-4}$

 $C = \frac{39 \times 10^{-3}}{10^3} = 39 \times 10^{-6} F$ تـع. $C = \frac{\tau}{R}$ إذن: $\tau = RC$ إذن: $\tau = RC$

$$E = \frac{Q_{\text{max}}}{C} = \frac{4.8 \times 10^{-4}}{39 \times 10^{-6}}$$
 ; 12 V إذن: $Q_{\text{max}} = CE$ نعلم أن:

جـ ـ حساب الطاقة الكهربائية المخزنة في المكثفة في اللحظة t = 200ms:

$$q\left(t\right)=Q_{\max}$$
 عيث، $E_{C}\left(t\right)=rac{q^{2}\left(t\right)}{2C}$ افن: $Q\left(t\right)=Cu_{C}\left(t\right)$ عدد نعلم أن: $E_{C}\left(t\right)=rac{1}{2}Cu_{C}^{2}\left(t\right)$ عدد الك: $E_{C}\left(t\right)=q$

$$E_C(t) = \frac{\left(4.8 \times 10^{-4}\right)^2}{2 \times 39 \times 10^{-6}} = 2.95 \times 10^{-3} J$$
; $3mJ$: قـع

بكانا u_C وقم: u_C بكانا بتطبيق قانون جمع التوترات جد المعادلة التفاضلية للتوتر الكهربائي u_C بين طرفي المكثفة: بكالوريا 2013 (ت ر + ر)

 $Ri\left(t\right)+u_{C}\left(t\right)=0$ ومنه: $u_{R}\left(t\right)+u_{C}\left(t\right)=0$ بتطبيق قانون جمع التوترات نجد:

$$.i\left(t\right) = C \times \frac{du_{C}\left(t\right)}{dt}$$
 : نعلم أن: $q\left(t\right) = Cu_{C}\left(t\right)$ وكذلك: $i\left(t\right) = \frac{dq\left(t\right)}{dt}$: نعلم أن

$$.\frac{du_{C}\left(t\right)}{dt}+\frac{u_{C}\left(t\right)}{RC}=0$$
 إذن: $RC imes \frac{du_{C}\left(t\right)}{dt}+u_{C}\left(t\right)=0$

بـ حل المعادلة السابقة يعطى من الشكل $u_{C}\left(t
ight)$ = $A\,e^{\,lpha t}$ بيارتهيما:

$$\frac{du_{C}\left(t\right)}{dt}$$
 = $\alpha Ae^{\alpha t}$:باشتقاق عبارة الحل بالنسبة للزمن نجد

 $\alpha A e^{\alpha t} + \frac{A e^{\alpha t}}{RC} = 0$:بتعويض عبارة الحادة المشتقة في المعادلة التفاضلية نجد

$$lpha=-rac{1}{RC}=-rac{1}{ au}$$
 اِذن: $lpha+rac{1}{RC}=0$ این: $lpha=rac{1}{RC}=0$ حیث: $lpha=lpha^{t}$ این: $lpha=rac{1}{RC}=0$ حیث: $lpha=rac{1}{RC}=0$ این: $lpha=rac{1}{RC}=0$ حیث: $lpha=rac{1}{RC}=0$ این: $lpha=1$

 $u_C\left(t\right)=Ee^{-rac{t}{ au}}$ ويتعويض t=0 في عبارة الحل نجد: $u_C\left(0\right)=A=E$: ويتعويض t=0العبارة اللحظية $E_{C}\left(t
ight)$ للطاقة المخزنة في المكثفة: 2

$$E_{C}\left(t\right) = \frac{1}{2}CE^{2}e^{-\frac{2t}{\tau}}$$
 :نعلم أن: $E_{C}\left(t\right) = \frac{1}{2}CE^{2}e^{-\frac{2t}{\tau}}$ ولدينا: $E_{C}\left(t\right) = \frac{1}{2}CU_{C}^{2}\left(t\right)$ ولدينا:

 $E_{C_0} = 140 \mu J$: نَقْراً: t = 0 الطاقة المخزنة العظمى في المكثفة: من البيان ولـما $E_{C_0} = 140 \mu$ الطاقة المخزنة العظمى في المكثفة: من البيان ولـما

t=0ms يقطع محور الأزمنة في اللحظة t=0ms بيان أن الماس للمنحنى في اللحظة

$$E_{C}=at+b$$
 :هي: $E_{C}=f\left(t\right)$ معادلة الماس للمنحنى

 $a=rac{dE_C}{dt}=-rac{CE^2}{\tau}e^{-rac{2t}{ au}}$ عيث a يمثل معامل توجيه المماس ويمثل مشتقة عبارة E_C بالنسبة للزمن نجد:

.
$$a = \frac{dE_C}{dt}\Big|_{t=0} = -\frac{CE^2}{\tau}$$
 : وعند اللحظة $t=0$ نجد:

. $E_C = -\frac{CE^2}{\tau}t + \frac{1}{2}CE^2$ أي: $b = E_{C_0} = \frac{1}{2}CE^2$. و $b = E_{C_0} = \frac{1}{2}CE^2$ أي: $E_C = 0$ أي: $E_C =$

إذن: $\frac{\tau}{2} = \frac{\tau}{2}$ وهو المطلوب. $\frac{t}{\tau} = \frac{1}{2}$ وعليه: $\frac{cE^2}{\tau} t + \frac{1}{2} CE^2 = 0$

au = 2ms إذن: $t = \frac{\tau}{2} = 1ms$ إذن: $t = \frac{\tau}{2}$

 $\cdot C$ استنتاج سعة المكثفة

$$C = \frac{2 \times 10^{-3}}{10^3} = 2 \times 10^{-6} F = 2 \mu F$$
 تـعلم أن: $\tau = RC$ إذن: $\tau = RC$

 $E_{C}\left(t\right)=rac{1}{2}CE^{2}e^{-rac{2t}{ au}}$: نعلم أن: $t_{1/2}=rac{ au}{2}\ln(2)$ هو: $t_{1/2}=rac{ au}{2}\ln(2)$ نعلم أن: طاقة للنصف هو: $t_{1/2}=rac{ au}{2}\ln(2)$

$$E_{C_0} = \frac{1}{2}CE^2$$
 ولما $E_{C}(t_{1/2}) = \frac{E_{C_0}}{2}$ ولما $E_{C}(t_{1/2}) = \frac{1}{2}CE^2e^{-\frac{2t_{1/2}}{\tau}}$ عيث $E_{C}(t_{1/2}) = \frac{1}{2}CE^2e^{-\frac{2t_{1/2}}{\tau}}$ ولما $E_{C}(t_{1/2}) = \frac{1}{2}CE^2e^{-\frac{2t_{1/2}}{\tau}}$

$$\frac{1}{2} = e^{-\frac{2t_{1/2}}{\tau}}$$
 اي: $\frac{E_{C_0}}{2} = \frac{1}{4}CE^2 = \frac{1}{2}CE^2e^{-\frac{2t_{1/2}}{\tau}}$ ومنه:

وبإدخال $\ln(2)$ على طرفي العبارة نجد: $\ln(2) = \frac{2t_{1/2}}{\tau}$ وهو المطلوب.

.
$$t_{1/2} = \frac{2 \times 10^{-3} \times 0,693}{2} = 0,693 \times 10^{-3} s = 0,693 ms$$
 : $t_{1/2} = \frac{2 \times 10^{-3} \times 0,693}{2} = 0,693 \times 10^{-3} s = 0,693 ms$