Chapitre 2

Mesure de la liaison entre une variable et un ensemble de variables

Dans la plupart des situations, nous sommes amenés à étudier la relation entre une variable d'intérêt Y (souvent quantitative) et une ou plusieurs variable(s) X_1, X_2, \ldots, X_k , avec pour objectif d'expliquer les variations de la variable d'intérêt. La variable Y est appelée variable "à expliquer" (ou parfois variable dépendante, réponse, output, ...), et les variables X_1, X_2, \ldots, X_k sont dites "explicatives" et représentent, en épidémiologie par exemple, les facteurs de risque ou de confusion. L'utilisation des methodes d'analyse multivariée, et plus particulièrement des modèles de regression linéaire, permet donc :

- de prendre en compte simultanément plusieurs facteurs pouvant expliquer la variation ou la distribution de la variable Y;
- d'étudier le rôle de modification d'effet ou de confusion d'un ou de plusieurs facteur(s);
- de prédire les valeurs ou la distribution de la variable à expliquer connaissant les valeurs des variables explicatives.

Comme pour le TP précédent, on peut commencer par :

- 1. Dans le répertoire TP M1MIASHS SSD AD qui est déja créé.
- Lancer ensuite R et modifier le répertoire de travail en allant dans Fichier ->
 Changer le Répertoire Courant et en choisissant le répertoire Bureau/TP_M1MIASHS_SSD_AD
 qui a été créé.
- 3. Ouvrir une fenêtre d'éditeur Fichier -> Nouveau Script.

- 4. Sauver le fichier dans le répertoire courant sous le nom TP1.R : Fichier -> Sauver sous
- 5. Pour les différentes questions, on peut utiliser un "copier-coller" à partir de ce document. Il est fortement recommandé de saisir toutes les commandes dans la fenêtre ouverte de l'éditeur. Pour exécuter les commandes saisies, il suffit de les selectionner avec la souris et d'appuyer simultanément sur les touches Ctrl et R.
- 6. Pour inclure des commentaires dans le programme, ce qui est fortement recommandé, utiliser le caractère #. Tout ce qui suit le caractère # sera négligé lors de l'exécution.
- 7. Penser à sauvegarder régulièrement le contenu du fichier TP1.R en appuyant sur les touches Ctrl et S.

2.1 Exemple du cours

Cet exemple concerne le tableau de petite taille étudié en cours (croisant classe d'âge et diplôme). Cela permet de détailler les calculs que nécessite la mise en oeuvre des notions du cours, et donc de mieux comprendre les règles d'interprétation des résultats des techniques abordée.

 $1. \ \, \text{Ecrire une data.frame comportant les données}.$

```
data <- data.frame(BEPC = c(15,10,15,40), BAC = c(12,18,5,35), Licence = c(3,4,8,15), Total = c(30,32,28,90))
rownames(data) <- c("Plus de 50 ans", "Entre 30 et 50 ans", "Moins de 30 ans", "Total")
data
```

2. Création des matrices des profils lignes et colonnes.

A ce tableau sont associées les matrices suivantes, en utilisant la notation des paragraphes précédents : V11 est la matrice diagonale des fréquences relatives des lignes, V12 est le tableau des fréquences relatives et V22 la matrice diagonale des fréquences relatives des colonnes.

```
V11 <- diag(sapply(data$Total, function(e) e/90)[-4]);
dimnames(V11) <- list(c("Plus de 50 ans", "Entre 30 et 50 ans", "Moins de
30 ans"), c("BEPC", "BAC", "Licence"))
V11

V22 <- diag(sapply(data["Total",], function(e) e/90)[-4])
dimnames(V22) <- list(c("BEPC", "BAC", "Licence"),c("Plus de 50 ans", "Entre
30 et 50 ans", "Moins de 30 ans"))
V22
```

```
La condition [-4, -4] permet d'éliminer la ligne et la colonne Totale
V12 <- apply(data, 2, function(e) e/90)[-4, -4]
V12

V21 <- t(V12);
V21

Le tableau des profils des modalités de la première variable qualitative est alors:
P1 <- solve(V11)%*%V12;
P1

Et le tableau des profils des modalités de la seconde variable qualitative est:
P2 <-V12%*%solve(V22);
P2
```

3. Coordonnées des modalités de la première variable

Pour obtenir les décompositions principales de la première ACP, il faut diagonaliser la matrice suivante, qui est le profil de la matrice des profils des lignes avec la transposée de la matrice des profils des colonnes :

```
C1 <- solve(V11)%*%V12%*%solve(V22)%*%V21;
C1

Valeurs propres

val_pro_C1 <- eigen(C1)$values[2 :3];
val_pro_C1

Le test de Khi-deux:
chisq.test(C1)

4. Pourcentage des variances expliqurées
```

val_pro_C1/sum(val_pro_C1)*100

```
Vectours propres:
vect_pro_C1 <- eigen(C1)$vectors[,2 :3];
vect_pro_C1</pre>
```

Description	Unité ou Codage	Variable
Sexe	F pour fille; G pour garçon	SEXE
Ecole située en zone d'éducation prioritaire	O pour oui; N pour non	zep
Poids	Kg (arrondi à 100 g près)	poids
Age à la date de la visite	Année	an
Age à la date de la visite	Mois	mois
Taille	Cm (arrondi à 0.5 cm près)	taille

Table 2.1 – Variables et codage du jeu de données : IMC-Enfant (imcenfant.txt, xls, ...)

```
5. Coordonnées des modalités de la seconde variable
Pour déterminer les coordonnées des modalités de la seconde variable qualitative :
C2 <- solve(V22)%*%V21%*%solve(V11)%*%V12;
C2

Valeurs propres : val_pro_C2 <- eigen(C2)$values[2 :3];
val_pro_C2

chisq.test(C2)</li>
6. Pourcentage des variances expliquées
val_pro_C2/sum(val_pro_C2) *100
Vecteurs propres
vect_pro_C2 <- eigen(C2)$vectors[,2 :3];
vect_pro_C2</li>
```

2.2 Etude du jeu de données Poids-Naissance

Un échantillon de dossiers d'enfants a été saisi. Ce sont des enfants vus lors d'une visite en 1ère section de maternelle en 1996 - 1997 dans des écoles de Bordeaux (Gironde, France). L'échantillon est constitué de 152 enfants âgés de 3 ou 4 ans.

Nous allons travailler sur le jeu de donnée Poids-Naissance (cf. fichier Poids_naissance.txt). Il s'agit ici d'expliquer la variabilité du poids de naissance de l'enfant en fonction des caractéristiques de la mère, de ses antécédents et de son comportement pendant la grossesse. La variable à expliquer est le poids de naissance de l'enfant (variable quantitative BWT, exprimée en grammes) et les facteurs étudiés (variables explicatives) sont :

1. Lecture des données.

Instruction R	Description
$ extstyle{plot(Y\sim X)}$	Graphe du nuage de points
$lm(Y\sim X)$	Estimation du modèle linéaire
$\operatorname{summary}(\operatorname{lm}(Y \sim X))$	Description des résultats du modèle
$abline(lm(Y\sim X))$	Trace la droite estimée
$confint(lm(Y\sim X))$	Intervalle de confiance des paramètres de régression
<pre>predict()</pre>	Fonction permettant d'obtenir des prédictions
$plot(lm(Y\sim X))$	Analyse graphique des résidus

Table 2.2 – Liste des principales fonctions $\tt R$ permettant l'analyse d'une régression Iinéaire simple

2. Le poids de la mère étant exprimé en livres, nous commençons par effectuer une transformation du data.frame des données pour recoder cette variable en kilogrammes (1 livre = 0.45359237 kg). Convertir dans les donnés les poids des mamans en kg.

2.2.1 Régression linéaire simple

Le tableau ci-dessous présente les principales fonctions à utiliser afin d'effectuer une régression Iinéaire simple entre la variable à expliquer Y et la variable explicative X. On cherche à "expliquer" les variations d'une variable quantitative Y (par exemple, le poids de naissance de l'enfant, noté BWT) par une variable explicative X également quantitative (par exemple, le poids noté LWT). Le modèle :

$$BWT_i = \beta_0 + \beta_1 LWT_i + \varepsilon_i, i = 1, \dots, n,$$

où les ε_i sont des variables aléatoire centrées et de variance, σ^2 , constante pour tout i.

Remarque 2.2.1. L'hypothèse gaussienne du bruit ε permet d'obtenir la loi des estimateurs et ainsi d'effectuer des tests d'hypothèses sur les paramètres du modèle. Cependant, cette hypothèse n'est pas très importante puisque l'on peut s'en passer quand le nombre de données est important.

1. Ajustement sur des données

- (a) Inspection graphique: Afin d'étudier la relation entre le poids de naissance de l'enfant et l'âge de la mère, nous pouvons commencer par tracer le nuage des points (poids de l'enfant (en g) versus poids de la mère (en kg)) grâce à l'instruction plot (BWT~ LWT). Que remarque-t-on?
- (b) Estimation des paramètres: La fonction R permettant de réaliser cette opération est la fonction lm() (abregé de linear models). Le paramètre principal de cette

• Call	Un rappel e la formule utilisée dans le modèle		
• Residuals	Une analyse descriptive des résidues $\hat{\varepsilon}_i = \hat{y}_i - y_i$. On verra, par la suite,		
	l'intérêt des résidues pour valider les hypothèses du modèle de régression.		
• Coefficients	Ce tableau comprend quatre colonnes :		
Estimate	Correspond aux estimations des parametres de la droite de régression		
Std. Error	Correspond à l'estimation de l'écart-type des estimateurs de la droite		
	de régression		
t value	Correspond à la réalisation de la statistique du test de Student associée		
	aux hypothèses $H_0: \beta_i = 0$ et $H_1: \beta_i \neq 0$		
Pr(> ItI)	Correspond à la p-valeur du test de Student		
• Signif. codes	Symboles de niveau de significativité		
• Residual standard error	Une estimation de l'écart-type du bruit σ est fournie ainsi que le degré		
	de liberté associé $n-2$		
 Multiple R-Squared 	Valeur du coefficient de détermination r^2 (pourcentage de variance		
	expliqué par la régression).		
 Adjusted R-Squared 	r_a^2 ajusté (qui n'a pas grand intérêt en régression linéaire simple).		
• F-Statistic	Correspond à la réalisation du test de Fisher associé aux hypothèses		
	H_0 : $\beta_1=0$ et H_1 : $\beta_1\neq 0$. Nous y trouvons les degrés de liberté		
	associés (1 et $n-2$) ainsi que la p -valeur.		

Table 2.3 – Descriptions des différentes informations contenues dans la sortie summary

fonction est une formule, symbolisée par un tilde \sim , qui permet de préciscr le sens de la relation entre BWT et LWT.

- i. Donner les estimations MCO des coefficients β_0 et β_1 .
- ii. Représenter la droite de régression sur le nuage de points.
- (c) Tests sur les paramètres : Il est bon de noter que la fonction lm() permet une analyse complète du modèle linéaire et qu'on peut récupérer un résumé des calculs liés au jeu de données en utilisant la fonction summary ().
- 2. Tableau d'analyse de la variance En régression linéaire simple, le test de Fisher (dont la statistique se lit dans F-statistic) est équivalent au test de Student associé à la pente de la régression. On a la relation suivante F-statistic=t² et les p-valeurs des tests sont égales. Le test de Fisher est souvent associé à une table d'analyse de la variance qu'on peut avoir en utilisant la fonction anova().

3. Interprétation des résultats

(a) Le test associé à l'intercept β_0 du modèle est significatif (p-valeur < 0.05), il est donc conseillé de garder l'intercept (β_0) dans le modèle. Toutefois, l'intercept de cette régression n'a aucun sens. Il pourrait donc être plus judicieux de considérer une régression sur la variable poids de la mère, préalablement centrée. Dans ce cas-ci, β_0 representerait le poids moyen des enfants pour des mères ayant un poids

égal à la moyenne des poids des mères observées. Essayer la commande $lm(y\sim x-1)$

- (b) La relation lineaire entre BWT et LWT est demontrée par le résultat du test de Student sur le coefficient β_1 . La p-valeur < 0.05 nous indique une relation linéaire significative entre le poids de l'enfant et le poids de la mère.
- (c) Le pourcentage de variance expliqué par la régression r^2) vaut 0.035. Ce qui veut dire que seulement 3.5% de la variabilité du poids de l'enfant est expliquée par le poids de la mère. Il sera donc utile d'introduire dans le modèle d'autres variables explicatives (régression linéaire multiple) afin d'améliorer le pouvoir prédictif du modèle.
- (d) L'estimation de la pente indique que la différence entre les poids moyens de naissance des bébés de mères ayant un écart de poids d'un kilogramme est de 9.765 g.

4. Intervalle de confiance et de prédiction pour une nouvelle valeur

Considerons une nouvelle observation x_0 de la variable X pour laquelle nous n'avons pas observé la valeur y_0 correspondante de la variable à expliquer Y. Cette valeur y_0 inconnue, car non observée, est une réalisation de la variable aléatoire $Y_0 = \beta_0 + \beta_1 X_0 + \varepsilon_0$. Le préviseur (ou prédicteur) de Y_0 pour la nouvelle valeur x_0 est donné par :

$$\widehat{y}_0^p = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$$

La fonction permettant de définir l'intervalle de prévision et l'intervalle de confiance pour une nouvelle valeur x_0 est predict().

- (a) Calculer la prédiction pour le poids d'un bébé dont la mère à un poids de lwt = 56 kg.
- (b) Donner un intervalle de confiance de la valeur moyenne du poids des bébés pour un poids de la mère de $56 \, kg$.
- (c) En considérant la série de nouvelles valeurs de poids de la mère

représenter l'intervalle de confiance et l'intervalle de prévision.

5. Analyse des résidus

(a) Vérification des hypothèses du modèle

L'analyse des résidus consiste à examiner si les hypothèses de base du modèle linéaire sont violées. Différents graphiques tracés à l'aide des résidus permettent de détecter assez facilement si les hypothèses sur les erreurs ε_i ne sont pas respectées :

— Tracé de l'histogramme des résidus pour détecter la non-normalité. Le graphique QQ-plot est une autre approche. On peut également appliquer le test de non-normalité de Jarque et Bera sur les résidus disponible dans le package tseries.

- Tracé des résidus $\hat{\varepsilon}_i$ en fonction des valeurs prédites \hat{y}_i . En effet, lorsque les hypothèses associées au modèle sont correctes, les résidus et les valeurs prédites sont non corrélées. Par conséquent, le tracé de ces points ne devrait pas avoir de structure particulière. Ce type de tracé donne aussi des indications sur la validité des hypothèses de linéarité, ainsi que sur l'homogéneité de la variance de l'erreur. On devrait observer sur le graphique de $\hat{\varepsilon}_i$ versus \hat{y}_i une répartition uniforme des résidus suivant une bande horizontale de part et d'autre de l'axe des abscisses.
- Pour l'hypothèse d'indépendance des Y_i , si les valeurs de Y_i sont mesurées chez des individus différents sans aucune relation entre eux, l'hypothèse d'indépendance est en principe valide. En revanche, si les valeurs de Y_i représentent des mesures d'une certaine quantité au cours du temps (par exemple chaque mois), l'hypothèse d'indépendance peut ne pas être valide. On peut alors vérifier l'hypothèse d'indépendance en examinant l'autocorrélation des résidus soit graphiquement en portant sur un graphique les résidus successifs $\hat{\varepsilon}_i$ soit en utilisant des tests statistiques comme, par exemple, le test de Durbin-Watson (fonction dwtest() dans le package Imtest).

(b) Exemple d'analyse des résidus

Malgré que le pouvoir prédicitif, pour le modèle étudié sur les poids de naissance, est faible $(r^2 = 3.5\%)$, nous allons faire une étude des résidus.

```
Tout d'abord, examinons l'hypothèse de normalité:

par(mfrow=c(1,2))

hist(residuals(modelel), main="Histogramme")

qqnorm(resid(modelel),datax=TRUE) # Attention: quantiles normalises
en ordonnee
```

- i. Tracer l'histogramme des résidus et le QQ-plot.
- ii. Faire un test de Jarque Bera. Conclure.
- iii. Afin d'examiner le graphe des résidus en fonction des valeurs prédites, tracer le nuage correspondant. Conclure.

2.2.2 Régression linéaire multiple

II s'agit d'étudier les variations d'une variable quantitative Y (variable dite à expliquer ou dépendante, supposée aléatoire) en fonction de p(p>1) variables explicatives X_1, X_2, \ldots, X_p (variables aussi dites indépendantes). Les variables explicatives peuvent être uniquement quantitatives, uniquement qualitatives (auquel cas on retombe sur l'ANOVA), ou un mélange de variables quantitatives et qualitatives. Dans ce dernier cas, le modèle de régression linéaire multiple est aussi appelé ANCOVA.

1. Objectif et modèle

Le modèle de régression linéaire multiple s'écrit $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$, où ε représente le terme de perturbation aléatoire (bruit) du modèle souvent supposé gaussien d'espérance nulle et de variance σ^2 , et indépendant des X_j . Les paramètres (inconnus) du modèle de régression sont $\beta_0, \beta_1, \dots, \beta_p$ et σ^2 .

Le tableau ci-dessous présente les principales fonctions à utiliser afin d'effectuer une régression Iinéaire multiple entre la variable à expliquer Y et les variables explicatives X_1, \ldots, X_k .

Instruction R	Description
pairs()	Inspection graphique
$lm(Y \sim X1+X2++Xk)$	Estimation du modèle linéaire multiple
<pre>summary(lm())</pre>	Description des résultats du modèle
<pre>confint(lm())</pre>	Intervalle de confiance des paramètres de régression
<pre>predict()</pre>	Fonction permettant d'obtenir des prédictions
<pre>plot(lm())</pre>	Analyse graphique des résidus
anova(mod1,mod2)	Test de Fisher partiel
X1 :X2	Interaction entre X_1 et X_2
<pre>vif()</pre>	Calcul du VIF (disponible dans le package car)

Table 2.4 – Liste des principales fonctions R permettant l'analyse d'une régression linéaire multiple

2. Ajustement sur des données Le jeu de données provenant du modèle ci-dessus, pour les n individus, peut s'écrire sous la forme $\mathbf{y} = \mathcal{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, où \mathbf{y} est le vecteur des n réponses, $\boldsymbol{\beta}$ le vecteur des p paramères de régression, $\boldsymbol{\mathcal{X}}$ est la matrice (n, p+1) des covariables (dont la 1ère colonne ne comporte que des 1) et $\boldsymbol{\varepsilon}$ est le vecteur des n erreurs.

L'estimateur de β est donné par :

$$\widehat{oldsymbol{eta}} = \left(oldsymbol{\mathcal{X}}^toldsymbol{\mathcal{X}}
ight)^{-1}oldsymbol{\mathcal{X}}^toldsymbol{y}$$

Remarque 2.2.2. On suppose que la matrice \mathcal{X} , de type (n, p + 1), est de plein rang $(rang(\mathcal{X}) = p + 1 < n)$. Le but est que la matrice $\mathcal{X}^t\mathcal{X}$ soit inversible (car $rang(\mathcal{X}^t\mathcal{X}) = p + 1$).

Afin d'illustrer ce modèle, nous considérons le même exemple et démarche que dans le livre de Drouilhet et al. (20??). Il s'agit d'étudier le régression du poids de naissance de l'enfant (BWT qu'on notera Y: variable à expliquer) en fonction de l'âge de la mère (AGE qu'on notera X_1), de son poids (LWT qu'on notera X_2) et de son statut tabagique durant la grossesse (SMOKE qu'on notera X_3). Du coup, nous avons l'équation de la régression suivante :

$$I\!\!E(\mathtt{BWT}|\mathtt{AGE},\mathtt{LWT},\mathtt{SMOKE}) = \beta_0 + \beta_1\,\mathtt{AGE} + \beta_2\,\mathtt{LWT} + \beta_3\,\mathtt{SMOKE}$$

- (a) Inspection graphique: Afin de visualiser la relation entre la variable à expliquer et chacune des variables explicatives, et aussi de juger de la corrélation entre les variables explicatives, voire de diagnostiquer un problème potentiel de colinéarite entre les variables explicatives, tracer un diagramme de dispersion de toutes les paires de ces variables.
- (b) Estimation des paramètres : Comme en régression linéaire simple, estimer le modèle par la fonction lm.
- (c) Utiliser la commande summary pour faire des tests sur les différents paramètres. Conclure.

Rappelons que les valeurs réalisées des statistiques des tests de Student associés aux hypothèses $H_0: \beta_i = 0$ versus $H_1: \beta_i \neq 0$, se trouvent dans la colonne t value, les p-valeurs associées dans la colonne $\Pr(>|t|)$. Residual standard error fournit l'estimation de σ ainsi que le nombre de degrés de liberté associés n-p-1. On trouve enfin le coefficient de détermination r^2 (Multiple R-squared) ainsi qu'une version ajustée (Adjusted R-squared). Enfin, on trouve la réalisation du test de Fisher global (F-statistic) et sa p-valeur-p (p-value) associée.

- (d) Utiliser la commande anova pour obtenir la table d'analyse de la variance.
- (e) Interpréter les résultats de l'étude sur les poids de naissance.
- (f) Aurait-on bien pu conclure en utilisant la commande confint?
- (g) Supposons qu'une la mère est agée de 23 ans, pèse 57 kg et fume. Faire une prédiction du poids de naissance de son enfant, et son intervalle de prévision ainsi que l'intervalle de confiance du poids moyen des enfants dont les mères ont les mêmes caractéristiques.
- (h) Test d'une sous-hypothèse linéaire partiel : Le test de Fisher partiel permet de tester l'apport d'un sous-ensemble de variables explicatives dans un modèle qui en contient déjà d'autres. Considérons par exemple les deux modèles suivants :

$$\mathtt{BWT} = \beta_0 + \beta_1 \, \mathtt{LWT} + \varepsilon \quad \text{et} \quad \mathtt{BWT} = \beta_0 + \beta_1 \, \mathtt{LWT} + \beta_2 \, \mathtt{AGE} + \beta_3 \, \mathtt{SMOKE} + \varepsilon$$

Décrire les hypothèses puis faire le test de Fisher afin de tester l'apport simultané des variables AGE et SMOKE dans le modèle. Conclure.

3. Cas des variables qualitatives à plus de deux modalités

Le cas des variables explicatives binaires ne pose pas de problème comme nous avons pu le voir dans l'exemple pour la variable ${\tt SMOKE}$. L'utilisation d'une telle variable dans un modèle de régression linéaire multiple équivaut à comparer les moyennes de la variable à expliquer Y dans les deux groupes définis par la variable qualitative binaire. Cette comparaison est ajustée sur les autres variables explicatives. Cependant, pour une variable qualitative à plus de deux modalités, il est nécessaire d'introduire des variables indicatrices (${\tt dummy\ variables}$) afin de comparer les moyennes de Y

dans les différents groupes définis par les modalités de la variable explicative qualitative. Une variable indicatrice d'un groupe ou d'une modalité est une variable binaire qui prend la valeur 1 pour ce groupe et 0 pour les autres groupes.

Prenons l'exemple sur le poids de naissance de l'enfant en fonction de la "race"/origine/couleur de la mère et de son poids. La variable RACE est codée avec trois modalités : 1 pour blanche, 2 pour noire et 3 pour autre. Dans cet exemple, on peut donc définir trois variables indicatrices RACE1, RACE2, RACE3. Utiliser la fonction factor() dans l'instruction lm() pour ajuster le modèle. Interpréter.

Remarque 2.2.3. Ne jamais introduire dans le modèle l'indicatrice du groupe de réference : pour une variable qualitative à p modalités, il ne faut introduire que p-1 variables indicatrices.

4. Interaction entre les variables On dit donc qu'il y a interaction entre deux variables explicatives X_1 et X_2 si l'association entre l'une des variables et la variable à expliquer Y n'est pas la même selon les valeurs de l'autre variable. Cela correspond à la notion de modification d'effet en épidémiologie, par exemple.

Supposons qu'on s'intéresse à l'association entre X_1 et Y, et que l'on veuille savoir si l'effet de X_1 sur Y est différent selon les valeurs de X_2 . Il suffit pour cela d'introduire dans le modèle les variables X_1 et X_2 ainsi qu'une troisième variable X_3 définie comme le produit de X_1 et $X_2: X_3 = X_1 \times X_2$ (appelée terme d'interaction entre X_1 et X_2). Pour fixer les idées, supposons que l'on veuille déterminer si l'effet d'une variable X_1 quantitative est modifié par une variable X_2 binaire (prenant les vaeurs 0 et 1). On considère alors le modèle :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 \times X_2 + \varepsilon$$

Dans le groupe $X_2 = 0$, le modèle s'écrit : $Y = \beta_0 + \beta_1 X_1 + \varepsilon$ et l'effet de X_1 est mesuré par β_1 . Dans le groupe $X_2 = 1$, le modèle s'écrit $Y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1 + \varepsilon$ et l'effet de X_1 , est mesuré par $\beta_1 + \beta_3$.

Il y a interaction entre X_1 et X_2 (ou modification de l'effet de X_1 par X_2) si l'effet de X_1 est différent dans les groupes $X_2=0$ et $X_2=1$; autrement dit si $\beta_3\neq 0$. Il suffit donc d'effectuer un test individuel de Student sur $\beta_3:H_0:\beta_3=0$ versus $H_1:\beta_3\neq 0$. Si l'on accepte H_1 , on garde le terme d'interaction dans le modèle : il y a modification d'effet.

- (a) Etudier l'effet de l'âge de la mère sur le poids de naissance de l'enfant par le statut tabagique de la mère.
- (b) Proposer un modèle plus souple, permettant d'avoir des effets différents dans les deux groupes SMOKE = 0 et SMOKE = 1.

Remarque 2.2.4. Pour introduire un terme d'interaction entre deux variables X_1 et X_2 dans un modèle linéaire, il suffit de taper $X_1:X_2$. Noter que l'écriture X_1*X_2 dans une formule correspond à l'écriture $X_1+X_2+X_1:X_2$

- (c) Peut-on visualiser graphiquement la différence entre ces deux modèles?
- (d) Tester la significativité du terme d'interaction. Conclure.

5. Problème de la colinéarité

Lorsque plusieurs variables explicatives apportent le même type d'information, plusieurs phénomènes peuvent apparaître :

- qualité des estimations perturbée (variance très grande)
- valeurs des coefficients contradictoires (signes opposés)
- coefficients devenant non significatifs

C'est ce que l'on nomme le problème de colinéarité.

Le critère utilisé pour juger de la colinéarite entre les variables explicatives est le facteur d'inflation de la variance VIF (variance inflation factor) : $\frac{1}{1-r_j^2}$ où r_j^2 ne

désigne rien d'autre que le coefficient de corrélation multiple au carré (coefficient de détermination) lorsque l'on régresse la jème variable explicative \mathbf{x}_j sur l'ensemble des autres régresseurs.

Utiliser vif(), du package car, sur le modèle de régression de BWT sur LWT et AGE.

Remarque 2.2.5. Il n'est pas étonnant que lorsqu'il n'y a que deux régresseurs, les VIF soient identiques. En fait, il n'y a que deux régresseurs et on aurait pu analyser cette colinéarite graphiquement, mais l'on comprend aisément son intérêt lorsque l'on a un grand nombre de régresseurs.

6. Sélection de variables

Parmi le grand nombre de variables explicatives potentielles, il s'agit de sélectionner celles qui sont le plus à même d'expliquer Y. Cela permet d'économiser le nombre de prédicteurs (et ainsi d'obtenir un modèle parcimonieux) et d'obtenir un bon pouvoir prédictif en éliminant les variables redondantes qui augmentent le facteur d'inflation de la variance (VIF).

Plus le nombre de paramètres augmente (nombre important de variables explicatives), plus l'ajustement aux données est bon (r^2 proche de 1). En contre-partie, l'estimation des paramètres est déteriorée (la variance des estimateurs augmente) à cause des problèmes de colinéarité.

Nous présentons brièvement dans cette sous-section quelques méthodes de sélection de variables disponibles avec le logiciel R. Celles-ci sont illustrées sur quelques variables du jeu de données "Poids à la naissance".

Les variables explicatives considerées sont : LWT, AGE, UI, SMOKE, HT et deux variables recodées FTV1 et PTL1. On note FVT1 = 1 s'il y a eu au moins une visite chez le médecin, et FVT1 = 0 sinon. De même, on note PTL1 = 1 s'il y a au moins un antécédent de prématurité, et PTL1 = 0 sinon.

- (a) La méthode du meilleur sous-ensemble (best subset): Lorsque le nombre p de variables explicatives n'est pas trop grand, on peut étudier toutes les possibilités. Un algorithme efficace (voir [19] et [20]) permet ainsi d'aller jusqu'à une trentaine de variables; il s'agit de la procédure leaps and bounds. A p fixe, on choisira le modèle de régression qui fournit le r^2 le plus grand. Pour deux modèles de régression ayant un nombre différent de variables explicatives, on peut choisir celle qui fournit le $\frac{2}{a}$ ajusté le plus grand.
 - i. Utiliser la fonction leaps() qui est disponible dans le package leaps de R, pour donner le meilleur modèle au sens du r_a^2 ajusté.
 - Remarque 2.2.6. Il est possible d'obtenir d'autres critères de sélection que le r_a^2 ajusté grâce au paramètre method de la fonction leaps (). Par exemple, method="Cp" utilise le critère bien connu du C_p de Mallows [26].
 - ii. Une autre fonction très intéressante disponible dans le package leaps est la fonction regsubsets (). Elle permet par exemple au moyen de son paramètre force.in de spécifier une ou plusieurs variables qui seront incluses dans tous les modèles comparés. Un exemple est donné ici en faisant le choix du meilleur modèle par le critère BIC (bayesian information criterion). Le meilleur modèle est celui ayant obtenu la valeur du critere BIC la plus petite. Donner le meilleur modèle au sens du BIC de l'exemple précédent.

Remarque 2.2.7. Il est possible d'obtenir d'autres critères de sélection grâce au paramètre scale utilise dans la fonction plot() appliquée à un objet de classe regsubsets.

- (b) La méthode pas à pas ascendante (forward selection): La régression pas à pas ascendante (ou méthode par additions successives) est une méthode itérative. Elle consiste à sélectionner à chaque étape la variable explicative la plus significative (au seuil α) lorsque l'on régresse Y sur toutes les variables explicatives sélectionnées aux étapes précédentes et la nouvelle variable choisie, tant que l'apport marginal de cette dernière est significatif.
 - i. Montrer le fonctionnement de cette procédure à l'aide de la fonction add1() pour un seuil $\alpha=0.05$.
 - ii. Quand plus aucune variable n'est significative, donner le modèle final.
- (c) La méthode pas à pas descendante (backward selection): Cette méthode est aussi appelée régression par éliminations successives. On part cette fois du modèle complet et on élimine à chaque étape la variable ayant la plus petite valeur pour la statistique du test de Student (p-valeur Ia plus grande) en valeur absolue, à condition qu'il soit non significatif (au seuil α choisi).

- i. Montrer le fonctionnement de cette procédure à l'aide de la fonction drop1() pour un seuil $\alpha=0.05$.
- ii. Quand plus aucune variable n'est significative, donner le modèle final.
- (d) La méthode pas à pas (stepwise): Cet algorithme est un perfectionnement de la méthode ascendante. Il consiste à effectuer en plus, à chaque étape, des tests du type Student ou Fisher pour ne pas introduire une variable non significative et pour éliminer éventuellement des variables déjà introduites qui ne seraient plus informatives compte tenu de la dernière variable sélectionnée. L'algorithme s'arrête quand on ne peut plus ajouter ni retrancher de variables.

A l'aide de la fonction step() effectuer la méthode pas à pas (en utilisant à chaque étape de la procédure une sélection par le critère AIC (an information criterion).

Remarque 2.2.8. Le jeu de données sur les poids à la naissance a été adopté ici uniquement pour illustrer l'utilisation des fonctions R qui sont propres aux méthodes de sélection automatique alors que la bonne strategie sur ce jeu de données particulier aurait plutôt consisté à procéder "manuellement". En effet, il est important de noter que diverses méthodes de sélection automatique peuvent ne pas conduire aux mêmes choix de variables explicatives à retenir dans le modèle final. Elles ont l'avantage d'être faciles à utiliser, et de traiter le probleme de la sélection de variables de fa ccon systématique. En revanche, l'inconvénient majeur est que les variables sont retenues ou éliminées du modèle sur la base de critères uniquement statistiques, sans tenir compte de l'objectif de I'étude. On aboutit généralement à un modèle qui peut être satisfaisant sur le plan purement statistique, alors que les variables retenues ne sont pas les plus pertinentes pour comprendre et interpréter les données de l'enquête.

7. Analyse des résidues

Nous présentons ici quelques éléments sur l'analyse des résidus permettant de vérifier les hypothèses du modèle et de détecter des valeurs possiblement atypiques ou aberrantes.

(a) Validation des hypothèses du modèle : En régression linéaire simple, nous avons déjà évoqué l'analyse des résidus pour éprouver les hypothèses du modèle de régression. Deux graphiques ont été présentés permettant d'invalider I'hypothèse de normalité des erreurs et l'hypothèse d'homoscédasticité des erreurs.

Reprenons l'exemple sur les poids à la naissance des enfants. Nous étudions la validité des hypothèses pour le modèle suivant :

 $\mathtt{BWT} = \beta_0 + \beta_1 \, \mathtt{SMOKE} + \beta_2 \, \mathtt{AGE} + \beta_3 \, \mathtt{LWT} + \beta_4 \, \mathtt{RACE2} + \beta_5 \, \mathtt{RACE3} + \beta_6 \, \mathtt{UI} + \beta_7 \, \mathtt{HT} + \beta_8 \, \mathtt{SMOKE} \times \mathtt{AGE} + \varepsilon$

i. Tracer les graphiques des résidus versus les valeurs ajustées.

- ii. II peut aussi être utile de représenter les résidus en fonction de chaque variable explicative (6 graphes). Ce type de graphique permet de détecter s'il existe une relation entre le terme d'erreur et les variables explicatives et ainsi de vérifier l'hypothèse d'indépendance entre les erreurs et les variables explicatives. Outre le fait que ce genre de graphique permet de vérifier l'hypothèse d'indépendance entre les erreurs et les variables explicatives, il est aussi utile afin de visualiser des points qui seraient potentiellement atypiques.
- (b) Points atypiques et/ou influents: Un point atypique ou aberrant est un point s'écartant des autres. Il peut être visualisé sur le graphique des résidus versus les valeurs prédites (ou versus l'une des variables explicatives), comme un point très éloigné. Plusieurs types de résidus sont alors definis:
 - i. les résidus standardisés $t_i = \frac{\widehat{\varepsilon}_i}{\widehat{\sigma}\sqrt{1-h_{ii}}}$ avec h_{ii} le "levier" (defini ultérieurement). Ces résidus sont obtenus par la fonction rstantard(). Les résidus standardisés sont "principalement" compris entre -2 et 2, mais ils sont dépendants
 - ii. les résidus studentisés

$$t_i^* = \frac{\widehat{\varepsilon}_i}{\widehat{\sigma}_{(-i)}\sqrt{1 - h_{ii}}} = t_i \sqrt{\frac{n - p - 2}{n - p - 1 - t_i^2}}$$

où $\sigma_{(-i)}$ est l'estimation résiduelle, obtenue sans l'utilisation de l'observation i. Les résidus studentisés sont obtenus via la fonction $\mathsf{rstudent}()$. Une observation sera considérée comme aberrante lorsque $|t_i^*| > t_{n-p-2,0.975}$ où $t_{n-p-2,0.975}$ est le quantile d'ordre 0.975 d'une loi de Student à n-p-2 degrés de liberté.

i. Commenter les résultats obtenus par les commandes suivantes :

```
res.stud <- rstudent(rnodelefinal) # Calcul des residus studentises.
seuil.stud <- qt(0.975,189-822) # Calcul du seuil par la loi de Student
cond <- res.stud<(-seuil.stud) I res.stud > seuil.stud # Liste des
individus susceptibles d'etre consideres comme aberrants.
id.student <- ID[cond]
val.ajust <- fitted(modelefinal)
plot(res.stud~val.ajust, xlab="Valeurs ajustées",
ylab="Résidus studentisés")
abline(h=c(-seuil.stud, seuil.stud))
text(val.ajust[cond],res.stud[cond],id.student,col="red",pos=1)
```

ii. Un autre moyen pour étudier les points atypiques est la notion de "points leviers". Le levier pour l'observation i (noté h_{ii}) est la valeur lue sur la

diagonale de la matrice $\mathcal{H} = \mathcal{X} \left(\mathcal{X}^t \mathcal{X} \right)^{-1} \mathcal{X}^t$ (dite $hat \ matrix$). Cette mesure intervient principalement dans la variance des résidus : $var(\widehat{\varepsilon}_i) = \sigma^2(1 - h_{ii})$. Un levier dépassant 2(p+1)/n peut être considéré comme important. Un h_{ii} élevé indique que la ième observation est éloignée du centre de gravité. Les h_{ii} stockés dans Ie vecteur levier, sont obtenus par :

```
levier <- hatvalues(modelefinal)
# Equivalent à hat(model.matrix(modelefinal))
# On aurait pu également utiliser les deux instructions suivantes :
atyp <- influence.measures(modelefinal)
levier <- atyp$infmat [, "hat"]</pre>
```

iii. Pour détecter les valeurs atypiques au sens du levier, on peut taper :

```
seuil.levier <- 2*(8+1)/189
atyp.levier <- ID[levier>seuil.levier] # Liste des individus qui
ont un levier important :
atyp.levier
```

D'autres mesures diagnostiques sont aussi utilisées pour inspecter les valeurs atypiques et déterminer l'influence de ces valeurs sur le modèle de régression réalisé :

- i. La distance de Cook cooks.distance()), qui permet de mesurer l'influence de l'observation i sur l'estimation de l'ensemble des paramètres de régression par le calcul de la valeur C_i . Une forte valeur de C_i , indique que la ième observation est influente (1 est parfois considéré comme limite). La suppression de cette observation peut entrainer de grosses modifications sur l'équation de la régression.
- ii. La distance de Welsh-Kuh ou Dffits dffits(). Elle permet de calculer Dffits_i. Une forte valeur de $|\text{Dffits}_i|$ indique une influence de l'observation i sur l'estimation \widehat{y}_i , et permet donc d'affirmer que cette observation est influente sur les résultats de la régression. Dans la pratique, on considère qu'une observation peut être influente dès que $|\text{Dffits}_i| \geq 2\sqrt{\frac{p+1}{n}}$.
- iii. La mesure Dfbetas dfbetas (). Elle permet de calculer Dfbetas $_{j,i}$. Cette quantité mesure l'influence de l'observation i sur l'estimation du jème coefficient. Pour des jeux de données de petite taille ou de taille modérée, une valeur supérieure à 1 semble suspecte. Pour de gros jeux de données, on considérera que l'observation i est suspecte si $|\text{Dfbetas}_{j,i}| > 2/\sqrt{n}$ pour au moins un j.

Pour plus de details sur ces mesures diagnostiques, nous conseillons la lecture de [2], [5] ou [10].

2.3. Devoir 25

2.3 Devoir

Exercice 13.

1. Créer une data frame "acteurs" qui renvoie :

	Mort.à	Années.de.carrière	${\bf Nombre. de. films}$	Prénom	Nom	Date.du.décès
1	93	66	211	Michel	Galabru	04-01-2016
2	53	25	58	André	Raimbourg	23-09-1970
3	72	48	98	Jean	Gabin	15-10-1976
4	68	37	140	Louis	De Funès	27-01-1983
5	68	31	74	Lino	Ventura	22-10-1987
6	53	32	81	Jacques	Villeret	28-01-2005

- 2. Changer le nom de la 1ère colonne par : Age.du.décès.
- 3. Extraire la colonne Prénom.
- 4. Ordonner la data frame par ordre croissant suivant l'âge de la mort.

Exercice 14. Le goût d'un fromage dépend de la concentration de plusieurs composés chimiques, dont :

- la concentration d'acide acétique (variable X1),
- la concentration d'hydrogène sulfuré (variable X2),
- la concentration d'acide lactique (variable X3).

Pour 30 types de fromage (cf. le jeu de données dans le fichier fromages.txt), on dispose du score moyen attribué par des goûteurs (caractère Y).

- 1. Construire une data frame w constituée du jeu de données fromages avec les noms des colonnes.
- 2. Associer (attacher) les noms aux colonnes respectives. Taper X1 pour voir si cela a marché.
- 3. Afficher les caractéristiques de w.
- 4. Donner les paramètres statistiques élémentaires pour les variables Y, X1, X2 et X3.
- 5. Faite les commandes : pairs(w). Que cela renvoie t'il?
- 6. Construire une nouvelle data frame ww des individus vérifiant X1 > 5.1 et X3 < 1.77.
- 7. Afficher les caractéristiques de ww.
- 8. A partir de ww, donner les paramètres statistiques élémentaires pour les variables Y, X1, X2 et X3.

Exercice 15. On travaille avec le jeu de données airquality, disponible dans R.

1. Charger les données et comprendre d'où elles émanent.

- 2. Afficher les noms des variables considérées.
- 3. Afficher le nombre de lignes et de colonnes.
- 4. Calculer les paramètres statistiques de base à l'aide de la commande summary.
- 5. Représenter la boî te à moustaches de la variable Ozone pour chaque mois avec la commande plot.
- 6. Créer une variable qualitative saison qui vaut printemps quand le mois est 5, été quand les mois sont 6, 7 et 8, et automne quand le mois est 9.
- 7. Proposer des commandes R permettant d'obtenir le graphique suivant :

Ozone en fonction des saisons

FIGURE 2.1 – Ozone en fonction des saisons

80

90

Exercice 16.

- 1. Simuler 100 valeurs e_1, \ldots, e_{100} d'une var suivant la loi normale $\mathcal{N}(0, 5^2)$.
- 2. Pour tout $i \in \{1, ..., 100\}$, on pose $y_i = 1.7 + 2.1 i + e_i$.

60

- (a) Représenter le nuage de points $\{(i, y_i) \text{ pour } i \in \{1, \dots, 100\}\}.$
- (b) Sur ce même graphique, tracer en rouge la droite qui ajuste au mieux ce nuage de points.

Exercice 17. On considère un tableau de contingence obtenu en ventilant 592 femmes

2.3. Devoir 27

suivant la couleur de leurs yeux et la couleur de leurs cheveux.

	brun	chatin	roux	blond
marron	68	119	26	7
noisette	15	54	14	10
vert	5	29	14	16
bleu	20	84	17	94

- 1. Saisir les données du tableau ci-dessus.
- 2. Calculer la matrice des fréquences (arrondir au 100ème près).
- 3. Donner les lois marginales (nommer c pour le vecteur colonne et r pour le vecteur ligne).
- 4. Utiliser la commande sweep pour donner la matrice des profils lignes L (distributions conditionnelles en ligne).
- 5. Utiliser la commande sweep pour donner la matrice des profils colonnes C (distributions conditionnelles en colonne).
- 6. Calculer la distance de chi-deux entre les profils lignes.
- 7. Donner la matrice des taux de liaison (arrondir au 100ème près).
- 8. Faire un test permettant de juger de la liaison entre la couleur des yeux et la couleur des cheveux.

Exercice 18. Considérons l'exemple fictif discuté au cours. Pour une population d'effectif n=1000 on a mesuré les deux variables qualitatives "Couleur des yeux" et "Etat matrimonial". Les résultats sont résumés sous la forme d'un tableau de contingence :

1. Créer une variable tableau à l'aide des commandes :

```
tableau <- matrix(c(290,410,110,190), ncol=2, byrow=TRUE)
colnames(tableau) <- c("Bleu","Brun")
rownames(tableau) <- c("Celib","Marie")
tableau <- as.table(tableau)</pre>
```

- 2. Afficher le contenu de la variable tableau. Afficher une représentation graphique à l'aide de la commande barplot(tableau).
- 3. Exécuter les commandes suivantes et comprendre leur signification :

```
n <- margin.table(tableau)
m1 <- margin.table(tableau,1)
m2 <- margin.table(tableau,2)
prop.table(tableau)</pre>
```

4. Le test du chi-deux

(a) Créer un tableau tab0 à l'aide des commandes : tab0 <- as.array(m1) %*% t(as.array(m2))/n tab0 <- as.table(tab0) Quelle est sa signification?

- (b) Exécuter les commandes : summary(tableau) et summary(tab0) Explication : Chisq donne la valeur de la distance χ^2 à l'indépendance, df est le nombre de degrés de liberté, et p-value est la probabilité que le χ^2 d'un échantillon indépendant dépasse la valeur calculée. En général, on considère les échantillons comme non indépendants si p-value est inféroieur à un certain seuil 0.05, par exemple.
- 5. Créer un tableau dans lequel tous les individus aux yeux bleus sont mariés et tous les autres sont célibataires, et effectuer le test du chi-deux.
- 6. Applications
 - (a) Appliquer le test du chi-deux au tableau de contingence suivant,
 - (b) Appliquer le test du chi-deux à quelques échantillons statistiques de R, par exemple HairEyeColor, Titanic et UCBAdmissions.

Exercice 19. L'objectif de cet exercice est de manipuler les commandes de bases permettant d'effectuer une régression linéaire sous R, mais également de contrôler les résultats obtenus, sélectionner les modèles et effectuer des représentations graphiques.

- 1. Afin de pouvoir conserver certaines données si on le le souhaite, effectuer un changement de répertoire de travail.
- 2. On va utiliser un jeu de données simple déjà implanté :

data()
data(cars)

cars Que représente ce jeu de données (attention aux unités)?

names(cars) Comment doit-on appeler les variables?

dim(cars) Quelle est la taille de la matrice?

plot(cars) Est-ce que la représentation graphique est adaptée?

La régression linéaire multidimensionnelle est obtenue très simplement par la commande 1m.

?1m Noter au passage que 1m ne sert pas uniquement à la régression linéaire mais permet également d'implémenter d'autres modèles (analyse de la variance (ANOVA) notamment).

Noter aussi qu'il est nécessaire de spécifier le modèle dans la syntaxe de lm. Un coup

^{1.} Il est inutile de se dépêcher de taper les commandes du TP en vitesse (et de prendre une avance artificielle sans rien comprendre à leur signification . . . surtout pour ceux qui ne viennent qu'irrégulièrement en cours.

2.3. Devoir 29

d'oeil aux exemples, qui suivant, permet de comprendre que la formule se met sous la forme :

$$Y \sim X_1 + X_2 + \dots + X_p$$

On y va

reg<-lm(dist speed, cars)</pre>

reg Pas terrible. On aurait pu dire bien des choses encore

Faisons connaissance avec l'objet que nous venons de construire

attributes (reg) Sa carte d'identité

La fonction 1m est tellement importante que l'on a crée une classe pour elle toute seule.

On voit également dans la rubrique names que l'objet reg contient un certain nombre d'informations qui ne sont manifestement pas affichées par la command reg.

summary(reg) C'est nettement mieux.

Il est crucial de comprendre toutes les rubriques qui apparaissent ici. Elles constituent le coeur de la régression linéaire.

anova(reg) comparer avec summary

Revenir à names (reg). Affichez les différentes valeurs et, avec l'aide en ligne, dire ce qu'elles représentent. Un certain nombre de ces rubriques ne sera d'aucune utilité : terms, call, assign, effects. Par contre xlevel sera exploitée lors de l'analyse de variance.

plot(reg) 4 graphiqueson n'en connait qu'un, éventuellement deux (les graphiques 1 et 3) mais le 2 et le 4 sont sans doute inconnus.

Le graphique 2 (QQ-plot) permet de vérifier l'hypothèse de normalité des résidus : si les points sont à peu près alignés en se confondant avec la première bissectrice des axes, on peut dire que les résidus suivent une loi normale.

Le graphique 4 (Cook's D) permet de repérer les points ń influents ż, c'est-à-dire ceux pour qui la régression linéaire est mal (ou pas) adaptée, parce qu'ils se situent trop loin de la droite de régression. Ces points sont repérés par de grandes valeurs du D de Cook.

On peut tracer désormais la droite de régression

plot(cars,pch=20,col='blue') abline(reg=reg,col='red')

Recommencer avec abline(reg\$coeff,col='yellow')

Pour la prévision, on a besoin de la commande predict.

- (a) Quelle valeur prédite pour une vitesse de 20?
- (b) Donner un intervalle de confiance pour cette valeur (avec les options confidence puis prediction)?
- (c) Quelles différences sont notables? La solution est 61.06908.

On passe aux rudiments de la sélection de modèles.

- (a) L'exemple cars est-il adapté à la sélection de modèles?
- (b) Se renseignez sur les commandes update et step.
- (c) Choisir le jeu de données cpus dans la librairie MASS.
- (d) Pour avoir une idée globale du comportement des variables les unes par rapport aux autres, quelles commande peut-on utiliser?

Effectuer la régression de perf contre toutes les autres variables quantitatives. Affiner enfin le modèle en sélectionnant pas ou pas vous-même ou automatiquement les variables pertinentes (Vous pouvez également utiliser la doc sur cette librairie très utile et jeter un coup d'oeil aux fonctions stepAIC, addterm, dropterm).

Exercice 20.

1. Entrer les données suivantes :

$$x = (3, 6, 9, 12, 15, 18, 21, 24)$$
 et $y = (20, 50, 40, 70, 40, 60, 50, 80)$

- 2. Donner la 1ère et la 2ème droite d'ajustement.
- 3. Calculer le coefficient de corrélation entre x et y.
- 4. Faire un test de F.
- 5. Tracer le nuage de points, puis ajouter la droite de régression de y en x.

Exercice 21.

1. Entrer les données suivantes :

$$y = (85, 70, 100, 140, 115, 105), x_1 = (3, 5, 9, 12, 14, 17)$$
 et $x_2 = (11, 14, 15, 16, 19, 23)$

- 2. Calculer un modèle de régression de réponse y et de variables explicatives (x_1, x_2) .
- 3. Faire une ANOVA.

Exercice 22. Les données sont extraites d'un reccueil de données issu d'une enquête portant sur une population d'enseignants de collèges. Elles ont été modifiées pour les besoins du TP. La plupart des variables sont explicites. Le salaire est exprimé en euros, l'âge et l'ancienneté en années. Le stress, l'estime de soi et la satisfaction au travail sont mesurés sur des échelles allant de 0 à 50 suivant des techniques appropriées.

- 1. Importer les données du fichier TP2_Analyse_de_Donnees.xls :
 library(readxl)
 data<- read_excel("C :/VOTRE CHEMIN CHEMIN/TP2_Analyse_de_Donnees")
 head(data)</pre>
- 2. Donner un résumé descriptif standard des données : names, summary, ...
- 3. Examiner les résumés et en particulier celui du salaire.
- 4. Croisement qualitatif vs qualitatif

2.3. Devoir 31

- (a) Donner les tableaux de contingences (effectifs, fréquences, pourcentages).
- (b) Donner différentes représentations graphiques du tableau de contingence des effectifs : balloonplot, barplot, en utilisant l'option beside=TRUE et beside=FALSE, mosaicplot, ...
- (c) Donner les distributions marginales et comparer avec les distributions univariées.
- (d) Donner les distributions conditionnelles. En fait, les distributions conditionnelles permettent de voir comment connaissant la modalité d'une variable se répartissent les modalités de l'autre variable.
- (e) Faire un test de chi-deux (avec chisq.test) afin d'apprécier la dépendance, ou non, des variables Sexe et EtatCivil.
- (f) Récupérer le tableau correspondant à l'indépendance de la question précédente. Calculer le chi-deux par étapes (Tableau des effectifs théoriques correspondant à l'indépendance des variables, Calcul du coefficient de chi-deux par étapes, ...) et comparer aux résultats obtenus à la question précédente.
- (g) Tester et conclure de deux manières (à partir du coefficient et à partir de la p-valeur) la liaision entre les variables Sexe et EtatCivil. Conclure.
- 5. Croisement quantitatif vs qualitatif. On s'intéresse au croisement Stress vs EtatCivil. On va déterminer s'il existe une relation ou non entre le stress et l'état civil des enseignants interrogés.
 - (a) Donner le résumé standard de la variable Stress.
 - (b) Représenter et commenter le boxplot de la variable Stress.
 - (c) Constituer 5 classes, avec la commande Nclasse, de mêmes amplitudes pour la variable Stress.
 - (d) Donner les tableaux de contingences de Stress vs EtatCivil : en effectifs, en fréquences, en pourcentages (arrondir au 100ème près).
 - (e) Donner les boxplots de la variable Stress en fonction de la variable EtatCivil. Que remarque-t-on?
 - (f) Donner les histogrammes de la variable Stress en fonction de la variable EtatCivil (package lattice).
 - (g) Donner les résumés de la variable Stress en fonction de la variable EtatCivil.
 - (h) Calculer le rapport de corrélation neta2 par étapes (Calcul de la variance intragroupes, Calcul de la variance inter-groupes, le coefficient η^2).
 - (i) Comparer avec le F de Fisher (Calcul de l'indicateur de Fisher F(Stress/ EtatCivil), Calcul du seuil de signicativité de F(Stress/ EtatCivil)). Conclure
- 6. Croisement quantitatif vs quantitatif. On s'intéresse au croisement Age vs Satisfaction. On va déterminer s'il existe une relation ou non entre l'âge et la satisfaction au travail des enseignants interrogés.

- (a) Donner le résumé standard de la variable Satisfaction.
- (b) Représenter et commenter le boxplot de la variable Satisfaction. Commenter.
- (c) Détecter graphiquement les "outliers" en dehors d'une bande de 2 écarts-types autour de la moyenne. On pourra utiliser la fonction identify()
- (d) Donner le résumé standard de la variable Age.
- (e) Représenter et commenter le boxplot de la variable Age. Commenter.
- (f) Détecter graphiquement les "outliers" en dehors d'une bande de 2 écarts-types autour de la moyenne
- (g) Constituer 5 classes de même amplitude de la variable Satisfaction.
- (h) Constituer 4 classes de même amplitude de la variable Age.
- (i) Donner les tableaux de contingences de Age vs Satisfaction : en effectifs, en fréquences, en pourcentages (arrondir au 100ème près). Utiliser Balloonplot pour voir le tableau de contingence en effectif de Age vs Satisfaction.
- (j) Représenter le nuage de points de la variable Satisfaction en fonction de la variable Age.
- (k) Détecter dynamiquement un "intrus" et afficher le profil de cet "intrus". Que remarque-t-on?
- (l) Réexaminer plus attentivement les résumés réalisés en début de traitement. Que conclure ?
- (m) Représenter le nuage de points de la variable Satisfaction en fonction de la variable Age en distinguant les femmes et les hommes. On pourra utiliser la fonction split()
- (n) Calculer par étapes la covariance entre la variable Age et la variable Satisfaction. Comparer avec celle donnée par R.
- (o) Calculer par étapes la corrélation entre la variable Age et la variable Satisfaction. Comparer avec celle donnée par R.
- (p) Donner la matrice de corrélation entre les variables numériques (sauf le nombre d'enfants).
- (q) Représenter cette matrice graphiquement et commenter. On pourra utiliser la fonction scatterplotMatrix
- 7. Faire un rapport sur cette étude.