Module 4.8.2

Advanced Controller Structures Cascade Control

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

Cascade Control

Master (primary) controller sets setpoint of a slave (secondary) controller. Slave output PV is strongly related to the master output PV

Column Composition Control

Process Control Notes

- 2

Why and Tuning

• Pros

- Speeds up primary PV control
- Slave loop removes local disturbances
- Slave loop removes local non-linearities

Cons

- More instrumentation and loops to be tuffed

Tuning

- Inside-out
- Tune innermost first (outer loops on manual)
- Then tune next outer loop (inner loops on auto)
- Inner loops may be P only (for higher controller gain than PI)
- Slave loop dynamic speed >> Master loop dynamic speed

Series Cascade

Series Cascade

$$\frac{y_m}{y_m^{sp}} = \frac{G_c^m G_c^s G_p^s G_p^m}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^s G_p^m} \qquad \qquad \frac{y_m}{d_s} = \frac{G_p^m}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^s G_p^m} \qquad \qquad \frac{y_m}{d_m} = \frac{1}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^s G_p^m}$$

$$\frac{y_m}{d_s} = \frac{G_p^m}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^s G_p^m}$$

$$\frac{y_m}{d_m} = \frac{1}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^s G_p^m}$$

Parallel Cascade

Process Control Notes

6

Parallel Cascade

$$\frac{y_m}{y_m^{sp}} = \frac{G_c^m G_c^s G_p^m}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^m}$$

$$\frac{y_m}{d_s} = \frac{-G_c^s G_p^m}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^m}$$

$$\frac{y_m}{d_m} = \frac{1}{1 + G_c^s G_p^s + G_c^m G_c^s G_p^m}$$

Example

SERIES CASCADE CONTROLLER DESIGN

$$G_p^s = \frac{2}{(s+1)^3}$$
 $G_p^m = \frac{1}{(5s+1)^3}$

$$G_{ol} = \frac{2}{(p+1)^3}$$

$$K_{c} = \frac{1}{2} \sqrt{S_{c}^{2} - \frac{1}{2} + \frac{13}{2} \delta}$$

Slave controller is P only. Master controller is PI.

Slave and master controllers tuned for $\xi = 0.5$.

Master controller τ_i chosen to cancel dominant open loop pole.

Compare performance with a simple PI controller tuned for $\xi = 0.5$.

$$K_{c} = \frac{1}{2} \left(3a + 6a^{2} - 8a^{3} - 1 \right)$$

$$= \frac{1}{2} \left(\frac{3}{2} + \frac{6}{4} - \frac{8}{8} - 1 \right) = \frac{1}{2}$$

Example

Series Cascade Controller Design

$$G_p^s = \frac{2}{(s+1)^3}$$
 $G_p^m = \frac{1}{(5s+1)^3}$

Slave controller is P only. Master controller is PI.

Slave and master controllers tuned for $\xi = 0.5$.

Master controller τ_i chosen to cancel dominant open loop pole.

Compare performance with a simple PI controller tuned for $\xi = 0.5$.

SLAVE CONTROLLER DESIGN

CLCE:
$$s^3 + 3s^2 + 3s + 1 + 2K_c = 0$$

For
$$\xi = 0.5$$
 (ie $\varphi = \cos^{-1} \xi = 60^{\circ}$), $s = -a + \sqrt{3}ai$ satisfies CLCE

$$3a^3 - 6a^2(1 + \sqrt{3}j) + 3a(-1 + \sqrt{3}j) + 1 + 2K_c = 0$$

$$[8a^3 - 6a^2 - 3a + 1 + 2K_c] + 3\sqrt{3}aj[1 - 2a] = 0$$

∴
$$a = 0.5$$
 and $K_c = 0.5$

Conjugate pair CLCE roots are $s = -1/2 \pm \sqrt{3}/2j$

By conservation of roots, third root is s = -2

$$\therefore G_{CL}^{S} = \frac{1}{s^3 + 3s^2 + 3s + 2} = \frac{1}{(s + 1/2 - \sqrt{3}/2j)(s + 1/2 + \sqrt{3}/2j)(s + 2)}$$

$$G_{cl}^{5} = \frac{1}{S^{3}+3n^{2}+3n+2}$$

$$C_{1} = Smin \quad G_{c}^{m} = K, \frac{5n+1}{5n}$$

$$G_{nl}^{m} = \frac{-5m\pi T}{5n} \quad \frac{1}{S^{3}+3n^{2}+3n+2} \quad \frac{1}{(5n+1)^{3}2}$$

$$G_{nl}^{m} = \frac{1}{5n} (S+\frac{1}{1}-\frac{13}{1})(n+\frac{1}{2}+\frac{13}{2})(Sn+1)^{2} \quad (n+2)$$

$$G_{nl}^{m} = \frac{1}{5n} - \tan^{3} \int_{0.2-a}^{3} \int_{0.2-a}$$

Once
$$P_0$$
 is known
$$K_c = \left| \frac{1}{G_{0L}} \right|_{D=P_0}$$

$$= K_c = K_c = K_c$$

Process Control Notes

11

MASTER CONTROLLER DESIGN

Use
$$\tau_I = 5 \text{min}$$
 $\therefore G_{OL} = \frac{1}{5s(5s+1)^2(s^3+3s^2+3s+2)}$

Open loop roots:
$$s = -1/2 \pm \sqrt{3}/2j$$
, $-2, -1/5$ (twice), 0

CLCE:
$$125s^6 + 425s^5 + 530s^4 + 415s^3 + 115s^2 + 10s + K_c = 0$$

Let s = -a + bi satisfy CLCE. From root locus, a < 0.2

Angle condition must be satisfied for s to lie on root locus

$$-\tan^{-1}\frac{b}{a} + 2\tan^{-1}\frac{b}{0.2-a} + \tan^{-1}\frac{b}{2-a} + \tan^{-1}\frac{\sqrt{3}/2+b}{0.5-a} - \tan^{-1}\frac{\sqrt{3}/2-b}{0.5-a} = 0^{\circ}$$

Put $b=\sqrt{3}a$ (for $\xi=0.5$) and solve for a iteratively to get $\alpha=0.04504$

CLCE dominant root pair is $s_{1,2} = -0.04504 \pm 0.07801j$

By magnitude condition $K_c = |1/G_{OL}|_{s=s_1} = 0.6323$

CASCADE CONTROLLER DESIGN

Slave Loop:

Master Loop:

$$K_c = 0.5 \text{ (P only)}$$

$$K_c = 0.6323 \ \tau_i = 5 \text{ min}$$
 $K_c = 0.2815 \ \tau_i = 5 \text{ min}$

 $K_c = 0.1875$ $\tau_1 = 1 \text{ min}$

$$C_c = 0.2815$$
 $\tau_l = 5 \text{ min}$

$$G_{ol} = \frac{2}{(0+1)^7 (50+1)^7} \frac{(50+1)}{50}$$

$$G_{ol} = \frac{2}{5 n \left(5 p+1\right)^{2} \left(p+1\right)^{3}}$$

$$\overline{M}$$
 - tan' $\sqrt{3}$ + 2 tan' $\frac{\sqrt{3}a}{0.2-a}$ + 3 tan' $\frac{\sqrt{3}a}{1-a}$ = \overline{M} 0

$$\alpha = ?$$

$$S_{e}^{2} - a + 539$$
 lies on wot hous
$$K_{c}^{2} = \left| \frac{1}{G_{oc}} \right|_{S=S_{o}}$$

$$K_{c}^{2} = \left| \frac{G_{oc}}{G_{oc}} \right|_{S=S_{o}}$$

$$K_{c}^{2} = S_{min}$$

$$K_{c}^{2} = S_{min}$$

FEEDBACK CONTROLLER DESIGN

Use
$$\tau_I = 5 \text{min}$$
 :: $G_{OL} = \frac{2}{5s(5s+1)^2(s+1)^3}$

Open loop roots: s = -1 (thrice), -1/5 (twice), 0

CLCE:
$$125s^6 + 425s^5 + 530s^4 + 290s^3 + 65s^2 + 5s + 2K_c = 0$$

Let s = -a + bj satisfy CLCE. From root locus, a < 0.2

Angle condition must be satisfied for s to lie on root locus 100 = - 8 + py

$$-\tan^{-1}\frac{b}{a} + 2\tan^{-1}\frac{b}{0.2-a} + 3\tan^{-1}\frac{b}{1-a} = 0^{\circ}$$

Put $b=\sqrt{3}a$ (for $\xi=0.5$) and solve for a iteratively to get a=0.04049

CLCE dominant root pair is $s_{1,2}=-0.04049\pm0.07012j$ By magnitude condition $K_c=|1/G_{OL}|_{s=s_1}=0.1368$

Example: Dynamic Results

ds

Summary

- Cascade control
 - Used when controlling a secondary (fast) PV helps regulate a primary (slow) PV
 - Set point of slave (fast) loop remotely set by master (slow) loop
 - Inside-out tuning
- Slave loop
 - Removes local disturbances
 - Removes local non-linearities
 - o Flow controller mitigates valve non-linear characteristic
 - Somewhat speeds up the master loop response
- Slave loop dynamic speed >> Master loop dynamic speed
- Very commonly employed in process industry due to time scale separation