## Learning Transferable Features with Deep Adaptation Networks

Mingsheng Long<sup>12</sup>, Yue Cao<sup>1</sup>, Jianmin Wang<sup>1</sup>, and Michael I. Jordan<sup>2</sup>

International Conference on Machine Learning, 2015

#### Introduction

- Goal: Enhance the transferability of features from task-specific layers
- Proposed a Deep Adaptation Network DAN architecture
  - General features can generalize well to a novel task; however, for specific features they cannot bridge the domain discrepancy
- Some ways to enhance feature transferability:
  - By mean-embedding matching, feature transferability can be enhanced substantially
  - Utilizing multi-layer representations across domains in a reproducing kernel Hilbert space

## Main Breakthrough

- Generalizes deep CNN to the domain adaptation
- Deep adaptation of multiple task-specific layers, including output
- Optimal adaptation using multiple kernel two-sample matching

## Deep Learning For Domain Adaptation

- None or very weak supervision in the target task (new domain)
  - Target classifier cannot be reliably trained due to over-fitting
  - Fine-tuning is impossible as it requires substantial supervision
- Generalize related supervised source task to the target task
  - Deep networks can learn transferable features for adaptation
- Hard to find big source task for learning deep features from scratch
  - Transfer from deep networks pre-trained on unrelated big dataset
  - $\bullet$  Transferring features from distant tasks better than random features



Figure: Deep Learning for Domain Adaptation Workflow

## How Transferable Are Deep Features?

- Transferability is restricted by (Yosinski et al. 2014; Glorot et al. 2011)
- Specialization of higher layer neurons to original task (new task )
- Disentangling of variations in higher layers enlarges task discrepancy
- Transferability of features decreases while task discrepancy increases



Figure: Transferability of features decreases while task discrepancy increases

## Deep Adaptation Network (DAN)

## Key Observations (AlexNet) (Krizhevsky et al. 2012)

- Comprised of five convolutional layers conv1 conv5 and three fully connected layers fc6 fc8
- Convolutional layers learn general features: safely transferable
  - Safely freeze conv1 conv3 & fine tuned conv4 conv5
- $\bullet$  Fully-connected layers fit task specificity: NOT safely transferable
  - Deeply adapt fc6 fc8 using statistically optimal two-sample matching



Figure: The DAN architecture for learning transferable features

## Objective Function

#### Main Problems

- Feature transferability decreases with increasing task discrepancy
- Higher layers are tailored to specific tasks, NOT safely transferable
- Adaptation effect may vanish in back-propagation of deep networks

#### Deep Adaptation with Optimal Matching

- Deep adaptation: match distributions in multiple layers includingoutput
- Optimal matching: maximize two-sample test of multiple kernels

$$\min_{\Theta} \max_{\kappa} \frac{1}{n_a} \sum_{i=1}^{n_a} J(\theta(x_i^a), y_i^a) + \lambda \sum_{\ell=l_1}^{l_2} d_k^2(D_s^{\ell}, D_t^{\ell})$$
 (1)

 $\lambda > 0$  is a penality,  $D_*^{\ell} = \{h_i^{*\ell}\}$  is the  $\ell$ -th layer hidden representation

#### MK-MMD

#### Theorem (Two-Sample Test (Gretton et al. 2012))

- $\bullet \ p=q \ \text{iff} \ d_k^2(p,q)=0 \ (\text{In practice}, \ d_k^2(p,q)<\epsilon)$
- $\bullet \ \max_{k \in \kappa} d_k^2(D_s^\ell, D_t^\ell) \sigma_k^{-2} \Leftrightarrow \min \text{Type II Error } (d_k^2(p,q) < \epsilon \text{ when } p \neq q)$

#### Multiple Kernel Maximum Mean Discrepancy (MK-MMD)

 $\triangleq$  RKHS distance between kernel embeddings of distributions p and q

$$d_k^2(p,q) \triangleq ||E_p[\phi(x^s)] - E_q[\phi(x^t)]||_{\mathcal{H}_k}^2$$
 (2)

 $k(\mathbf{x}^s, \mathbf{x}^t) = \langle \phi(\mathbf{x}^s), \phi(\mathbf{x}^t) \rangle$  is a convex combination of m PSD kernels

$$\kappa \triangleq \left\{ k = \sum_{u=1}^{m} \beta_u k_u : \sum_{u=1}^{m} \beta_u = 1, \beta_u \ge 0, \forall u \right\}$$
 (3)

## Learning CNN

## Linear-Time Algorithm of MK-MMD (Streaming Algorithm)

$$\begin{array}{l} O(n^2): d_k^2(p,q) = \mathbf{E}_{\mathbf{x}^s\mathbf{x}^{f^s}}k(\mathbf{x}^s,\mathbf{x}^{f^s}) + \mathbf{E}_{\mathbf{x}^t\mathbf{x}^{f^t}}k(\mathbf{x}^t,\mathbf{x}^{f^t}) - 2\mathbf{E}_{\mathbf{x}^s\mathbf{x}^t}k(\mathbf{x}^s,\mathbf{x}^t) \\ d_k^2(p,q) = \frac{2}{n_s} \sum_{i=1}^{\frac{n_s}{2}} g_k(\mathbf{z}_i) \rightarrow \text{linear-time unbiased estimate} \end{array}$$

- Quad-tuple:  $\mathbf{z}_i \triangleq (\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^s, \mathbf{x}_{2i-1}^t, \mathbf{x}_{2i}^t)$
- $g_k(\mathbf{z}_i) \triangleq k(\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^s) + k(\mathbf{x}_{2i-1}^t, \mathbf{x}_{2i}^t) k(\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^t) k(\mathbf{x}_{2i}^s, \mathbf{x}_{2i-1}^t)$

#### Stochastic Gradient Descent(SGD)

For each layer  $\ell$  and for each quad-tuple  $\mathbf{z}_i \triangleq (\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^s, \mathbf{x}_{2i-1}^t, \mathbf{x}_{2i}^t)$ 

$$\nabla_{\Theta^{\ell}} = \frac{\partial J(z_i)}{\partial \Theta^{\ell}} + \lambda \frac{\partial g_k(z_i^{\ell})}{\partial \Theta^{\ell}} \tag{4}$$

4 D > 4 B > 4 B > 4 B > 9 Q P

## Learning Kernel

## Learning optimal kernel $k = \sum_{u=1}^{m} \beta_u k_u$

Maximizing test power  $\triangleq$  minimizing Type II error (Gretton et al. 2012)

$$\max_{k \in \kappa} d_k^2(D_s^{\ell}, D_t^{\ell}) \sigma_k^{-2} \tag{5}$$

where  $\sigma_k^2 = \mathbf{E}_{\mathbf{z}} g_k^2(\mathbf{z}) - [\mathbf{E}_z g_k(\mathbf{z})]^2$  is the estimation variance.

Quadratic Program (QP), scaling linearly to sample size:  $O(m^{2n} + m^3)$ 

$$\min_{d^T \beta = 1, \beta \ge 0} \beta^T (Q + \epsilon I) \beta \tag{6}$$

where  $\mathbf{d} = (d_1, d_2, ..., d_m)^T$ , and each  $d_u$  is MMD using base kernel  $k_u$ .

## Analysis

#### Theorem (Adaptation Bound)

(Ben-David et al. 2010) Let  $\theta \in H$  be a hypothesis,  $\epsilon_s(\theta)$  and  $\epsilon_t(\theta)$  be the expected risks of source and target respectively, then

$$\epsilon_t(\theta) \le \epsilon_s(\theta) + 2d_k(p,q) + C$$
 (7)

where C is a constant for the complexity of hypothesis space, the empirical estimate of **H**-divergence, and the risk of an ideal hypothesis for both tasks.

#### Two-Sample Classifier: Nonparametric vs. Parametric

- Nonparametric MMD directly approximates  $d_{\mathcal{H}}(p,q)$
- Parametric classifier: adversarial training to approximate  $d_{\mathcal{H}}(p,q)$

## Experiment Setup

- Datasets: pre-trained on ImageNet, fined-tuned on Office&Caltech
- $\bullet$  Tasks: 12 adaptation tasks  $\Rightarrow$  An unbiased look at dataset bias
- Variants: DAN; single-layer:  $DAN_7$ ,  $DAN_8$ ; single-kernel:  $DAN_{SK}$
- Protocols: unsupervised adaptation vs semi-supervised adaptation
- Parameter selection: cross-validation by jointly assessing
  - test errors of source classifier and two-sample classifier (MK-MMD)



Figure: the proposed DAN model is trained by fine-tuning from the AlexNet model (Krizhevsky et al., 2012) pre-trained on ImageNet, implemented in Caffe.

#### Results & Discussion

# Learning transferable features by deep adaptation and optimal matching

- Deep adaptation of multiple domain-specific layers (DAN) vs. shallow adaptation of one hard-to-tweak layer (DDC)
- Two samples can be matched better by MK-MMD vs. SK-MMD

| Table 1. Accuracy on Office-31 dataset with standard unsupervised adaptation protocol (Gong et al., 2013). |                         |                         |                       |                         |                         |                         |         |  |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|---------|--|--|--|
| Method                                                                                                     | $A \rightarrow W$       | $D \rightarrow W$       | $W \rightarrow D$     | $A \rightarrow D$       | $D \rightarrow A$       | $W \rightarrow A$       | Average |  |  |  |
| TCA                                                                                                        | $21.5 \pm 0.0$          | $50.1 \pm 0.0$          | $58.4 \pm 0.0$        | $11.4 \pm 0.0$          | $0.0 \pm 0.8$           | $14.6 \pm 0.0$          | 27.3    |  |  |  |
| GFK                                                                                                        | $19.7 \pm 0.0$          | $49.7 \pm 0.0$          | $63.1 \pm 0.0$        | $10.6 \pm 0.0$          | $7.9 \pm 0.0$           | $15.8 \pm 0.0$          | 27.8    |  |  |  |
| CNN                                                                                                        | $61.6 \pm 0.5$          | $95.4 \pm 0.3$          | $99.0 \pm 0.2$        | $63.8 \pm 0.5$          | $51.1\pm0.6$            | $49.8 \pm 0.4$          | 70.1    |  |  |  |
| LapCNN                                                                                                     | $60.4 \pm 0.3$          | $94.7 \pm 0.5$          | <b>99.1</b> $\pm$ 0.2 | $63.1 \pm 0.6$          | $51.6 \pm 0.4$          | $48.2 \pm 0.5$          | 69.5    |  |  |  |
| DDC                                                                                                        | $61.8 \pm 0.4$          | $95.0 \pm 0.5$          | $98.5 \pm 0.4$        | $64.4 \pm 0.3$          | $52.1 \pm 0.8$          | $52.2 \pm 0.4$          | 70.6    |  |  |  |
| DAN <sub>7</sub>                                                                                           | $63.2 \pm 0.2$          | $94.8 \pm 0.4$          | $98.9 \pm 0.3$        | $65.2 \pm 0.4$          | $52.3 \pm 0.4$          | $52.1 \pm 0.4$          | 71.1    |  |  |  |
| $DAN_8$                                                                                                    | $63.8 \pm 0.4$          | $94.6 \pm 0.5$          | $98.8 \pm 0.6$        | $65.8 \pm 0.4$          | $52.8 \pm 0.4$          | $51.9 \pm 0.5$          | 71.3    |  |  |  |
| $DAN_{SK}$                                                                                                 | $63.3 \pm 0.3$          | $95.6 \pm 0.2$          | $99.0 \pm 0.4$        | $65.9 \pm 0.7$          | $53.2 \pm 0.5$          | $52.1 \pm 0.4$          | 71.5    |  |  |  |
| DAN                                                                                                        | $\textbf{68.5} \pm 0.4$ | $\textbf{96.0} \pm 0.3$ | $99.0 \pm 0.2$        | $\textbf{67.0} \pm 0.4$ | $\textbf{54.0} \pm 0.4$ | $\textbf{53.1} \pm 0.3$ | 72.9    |  |  |  |

Figure: Table 1. Accuracy on Office-31 dataset with standard unsupervised adaptation protocol

#### Results & Discussion

## Semi-supervised adaptation: source supervision vs. target supervision?

- Limited target supervision is prone to over-fitting the target task
- Source supervision can provide strong but inaccurate inductive bias
- Two-sample matching is more effective for bridging dissimilar tasks

| Table 2. Accuracy on Office-10 + Caltech-10 dataset with standard unsupervised adaptation protocol (Gong et al., 2013). |                         |                         |                         |                       |                            |                         |             |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------|----------------------------|-------------------------|-------------|--|--|--|
| Method                                                                                                                  | $A \rightarrow C$       | $W \rightarrow C$       | $D \rightarrow C$       | $C \rightarrow A$     | $\mathbf{C} 	o \mathbf{W}$ | $C \rightarrow D$       | Average     |  |  |  |
| TCA                                                                                                                     | $42.7 \pm 0.0$          | $34.1 \pm 0.0$          | $35.4 \pm 0.0$          | $54.7 \pm 0.0$        | $50.5 \pm 0.0$             | $50.3 \pm 0.0$          | 44.6        |  |  |  |
| GFK                                                                                                                     | $41.4\pm0.0$            | $26.4 \pm 0.0$          | $36.4 \pm 0.0$          | $56.2 \pm 0.0$        | $43.7 \pm 0.0$             | $42.0\pm0.0$            | 41.0        |  |  |  |
| CNN                                                                                                                     | $83.8 \pm 0.3$          | $76.1 \pm 0.5$          | $80.8 \pm 0.4$          | $91.1 \pm 0.2$        | $83.1 \pm 0.3$             | $89.0 \pm 0.3$          | 84.0        |  |  |  |
| LapCNN                                                                                                                  | $83.6 \pm 0.6$          | $77.8 \pm 0.5$          | $80.6 \pm 0.4$          | <b>92.1</b> $\pm$ 0.3 | $81.6 \pm 0.4$             | $87.8 \pm 0.4$          | 83.9        |  |  |  |
| DDC                                                                                                                     | $84.3 \pm 0.5$          | $76.9 \pm 0.4$          | $80.5 \pm 0.2$          | $91.3 \pm 0.3$        | $85.5 \pm 0.3$             | $89.1 \pm 0.3$          | 84.6        |  |  |  |
| DAN <sub>7</sub>                                                                                                        | $84.7 \pm 0.3$          | $78.2 \pm 0.5$          | $81.8 \pm 0.3$          | $91.6 \pm 0.4$        | $87.4 \pm 0.3$             | $88.9 \pm 0.5$          | 85.4        |  |  |  |
| $DAN_8$                                                                                                                 | $84.4 \pm 0.3$          | $80.8 \pm 0.4$          | $81.7 \pm 0.2$          | $91.7 \pm 0.3$        | $90.5 \pm 0.4$             | $89.1 \pm 0.4$          | <u>86.4</u> |  |  |  |
| $DAN_{SK}$                                                                                                              | $84.1 \pm 0.4$          | $79.9 \pm 0.4$          | $81.1 \pm 0.5$          | $91.4 \pm 0.3$        | $86.9 \pm 0.5$             | $89.5 \pm 0.3$          | 85.5        |  |  |  |
| DAN                                                                                                                     | $\textbf{86.0} \pm 0.5$ | $\textbf{81.5} \pm 0.3$ | $\textbf{82.0} \pm 0.4$ | $92.0 \pm 0.3$        | $\textbf{92.0} \pm 0.4$    | $\textbf{90.5} \pm 0.2$ | 87.3        |  |  |  |

Figure: Table 2. Accuracy on Office-10 + Caltech-10 dataset with standard unsupervised adaptation protocol

#### Data Visualization

#### How transferable are DAN features? t-SNE embedding for visualization

- target points form clearer class boundaries
- target points can be classified more accurately
- Source and target categories are aligned better



Figure: t-SNE of DDC features on source (a) and target (b) versus. t-SNE of DAN features on source (c) and target (d)

## Empirical Analysis

## How is generalization performance related to two-sample discrepancy?

- $\hat{d}_A$  on CNN & DAN features  $> \hat{d}_A$  on Raw features
- $\Rightarrow \hat{d}_A$  on DAN feature is much smaller than  $\hat{d}_A$  on CNN feature
- $\hat{d}_A$  on DAN feature  $< \hat{d}_A$  on CNN feature
- ⇒Domain adaptation can be boosted by reducing domain discrepancy





Figure: (e) A-Distance of CNN & DAN features; (f) sensitivity of  $\lambda$ 

## Summary

- DAN: A deep adaptation network for learning transferable features
- Deep adaptation of multiple task-specific layers (including output)
- Optimal adaptation using multiple kernel two-sample matching
- A brief analysis of learning bound for the proposed deep network