Linear Algebra

Santanu Dey

January 7, 2016

Operations on matrices

- Set of all matrices of size $m \times n$ is denoted by $M_{m,n}$
- For $A = ((a_{ij})), B = ((b_{ij})) \in M_{m,n}$

$$A + B = ((a_{ij} + b_{ij})); \quad \alpha A = ((\alpha a_{ij}));$$

0 matrix with all entries 0; $-A = ((-a_{ij}))$

- $\mathbb{R}^n \longleftrightarrow M_{1,n}$, similarly $\mathbb{R}^m \longleftrightarrow M_{m,1}$
- 'Transpose' operation introduced earlier can be extended to all matrices

$$A^T := ((b_{ij})) \in M_{n,m}$$
 where $b_{ij} := a_{ji}$

- Let $f: \mathbb{R}^n \to \mathbb{R}^m, g: \mathbb{R}^m \to \mathbb{R}^l$ be linear maps. If $A:=\mathcal{M}_f$ and $B:=\mathcal{M}_g$ then $\mathcal{M}_{g \circ f}=?$

We have

$$(g \circ f)(\mathbf{e}_j) = g(\sum_i a_{ij} \mathbf{e}_i) = \sum_i a_{ij} g(\mathbf{e}_i)$$
$$= \sum_i a_{ij} (\sum_k b_{ki} \mathbf{e}_k) = \sum_k (\sum_i b_{ki} a_{ij}) \mathbf{e}_k$$

- So $\mathcal{M}_{g \circ f} = C = ((c_{kj}))$, where $c_{kj} = \sum_{i=1}^m b_{ki} a_{ij}$
- Define

$$BA := C$$

- Properties:
- 1. Associativity: A(BC) = (AB)C (if AB and BC are defined)
- 2. Right and Left Distributivity: A(B+C) = AB + AC, (B+C)A = BA + CA

- 3. Multiplicative identity: if $A \in M_{m,n}$, $B \in M_{n,k}$ then $AI_n = A$ and $I_nB = B$
- **4**. $(AB)^T = B^T A^T$
- 5. Let $f: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}^l$ be linear maps. Then $\mathcal{M}_{g \circ f} = \mathcal{M}_g \mathcal{M}_f$

Remark

$$M_{2,2} \longleftrightarrow \mathbb{R}^4$$

(preserves sum and scalar multiplication). Similarly

$$M_{m,n} \longleftrightarrow \mathbb{R}^{mn}$$

Invertible Transformations and Matrices

Definition

Any function $f: X \to Y$ is said to be invertible, if there exists $g: Y \to X$ such that

$$g \circ f = Id_X$$
 and $f \circ g = Id_Y$.

The inverse of a function if it exists is unique and is denoted by f^{-1} .

- A $n \times n$ matrix (i.e, square matrix) A is said to be invertible if there exists another $n \times n$ matrix B such that $AB = BA = I_n$. We call B an inverse of A. Remarks:
- (i) An inverse of a matrix is unique. [if C is another matrix such that $CA = AC = I_n$ then

$$C = CI_n = C(AB) = (CA)B = I_nB = B.$$

Denote it by A^{-1} .

- (ii) If A_1 , A_2 are invertible then so is A_1A_2 . What is its inverse?
- (iii) Clearly I_n , and

$$diag(a_1, a_2, \ldots, a_n)$$

with $a_i \neq 0$ are invertible.

(iv) Let $B:=A^{-1}$. If $f_A, f_B: \mathbb{R}^n \to \mathbb{R}^n$ are the linear maps associated with A, B resp., then it follows that

$$f_A \circ f_B = f_{AB} = Id$$
.

Likewise $f_B \circ f_A = Id$. Even the converse holds. (viz, $\mathcal{M}_f \mathcal{M}_{f^{-1}} = I_n$).

- (v) An invertible map is one-one and onto.
- (vi) If $f: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear map, then f^{-1} is linear.

Elementary and Permutation Matrix

- Consider a square matrix E_{ij} whose $(i, j)^{th}$ entry is 1 and all other entries are 0.
- If we multiply a matrix A by E_{ij} on the left, then what we get is a matrix whose i^{th} row is equal to the j^{th} row of A and all other rows are zero. In particular $E_{ij}E_{jj}=0$ for $(i \neq j)$.
- It follows that for any α and $i \neq j$

$$(I + \alpha E_{ij})(I - \alpha E_{ij}) = I + \alpha E_{ij} - \alpha E_{ij} - \alpha^2 E_{ij} E_{ij} = I.$$

•

$$(I + \alpha E_{ii})(I + \beta E_{ii}) = I + (\alpha + \beta + \alpha \beta)E_{ii}.$$

So rhs to be equal to *I* then we must have $\alpha + \beta + \alpha\beta = 0$. Thus $I + \alpha E_{ii}$ is invertible if $\alpha \neq -1$.

Alternatively, $I + \alpha E_{ii}$ is the diagonal matrix with all the diagonal entries equal to 1 except the $(i, i)^{th}$ one which is equal to $1 + \alpha$.

- Further consider $I + E_{ij} + E_{ji} E_{ii} E_{jj}$ which is similarly invertible. This matrix is nothing but the identity matrix after interchanging the i^{th} and j^{th} rows. These are called *transposition matrices*.
- The linear maps corresponding to them merely interchange the i^{th} and j^{th} coordinates. We shall denote them simply by T_{ij} . To sum up we have:

Theorem

The elementary matrices $I + \alpha E_{ij}$ ($i \neq j$), $I + \alpha E_{ii}$ ($\alpha \neq -1$) and $T_{ij} = I + E_{ij} + E_{ji} - E_{ii} - E_{jj}$ are all invertible with their respective inverses $I - \alpha E_{ij}$, $I - (\alpha/(1 + \alpha))E_{ii}$ and T_{ij} .

 Permutation matrices are defined to be those square matrices which have all the entries in any given row (and column) equal to zero except one entry equal to 1.

- From a permutation matrix, for each $1 \le i \le n$ consider the i^{th} row. If $(i,j)^{th}$ entry is 1, then define $\sigma(i) = j$. Thus with $N := \{1, \ldots, n\}$ we can get a map $\sigma : N \to N$ which is one-to-one mapping.
- Conversely, given a permutation σ : N → N, we define a matrix P_σ = ((p_{ij})) :

$$\rho_{ij} = \begin{cases} 0 & \text{if } j \neq \sigma(i) \\ 1 & \text{if } j = \sigma(i) \end{cases}$$

- A permutation matrix is obtained by merely shuffling the rows of the identity matrix (or by shuffling the columns)
- If A denotes a permutation matrix, then

$$AA^T = A^TA = I_n.$$

In particular, they are invertible.