Методы восстановления пропусков в данных

Каюмов Эмиль

MMI BMK MIV

Спецсеминар

«Алгебра над алгоритмами и эвристический поиск закономерностей»

План

- Введение
 - Необходимость
 - Типы пропущенных значений
- 2 Методы
 - Базовые методы
 - Продвинутые методы
- Оравнение
 - №1
 - №2

Содержание

- Введение
 - Необходимость
 - Типы пропущенных значений
- 2 Методы
 - Базовые методы
 - Продвинутые методы
- Оравнение
 - Nº 1
 - №2

Зачем это нужно?

Большинство реальных данных имеют пропущенные значения.

- Ошибки при записи.
- Ошибки при измерении.
- Невозможность сбора.

Далеко не все алгоритмы умеют работать с неполными данными.

MCAR

Missing completely at random

$$P(M_i|X_{osb}, X_{mis}, \theta) = const$$

Вероятность пропуска не зависит ни от значений наблюдаемых, ни от значений пропущенных данных.

Пример: среди пациентов только у случайной части измерили массу.

Missing at random

$$P(M_i|X_{osb}, X_{mis}, \theta) = f(X_{obs}, \theta)$$

Вероятность пропуска зависит от значений наблюдаемых, но не от значений пропущенных данных.

Пример: среди пациентов масса измеряется только у тех, у кого высокое давление.

Missing not at random

$$P(M_i|X_{osb}, X_{mis}, \theta) = f(X_{obs}, X_{mis}, \theta)$$

Вероятность пропуска зависит от значений и наблюдаемых, и от значений пропущенных данных.

Пример: среди пациентов взмешивают только тех, кто имеет избыточную массу.

Вывод

Важно понимать:

- Из какого источника и как были получены данные.
- Какой тип пропущенных значений соответсвует каждому признаку.

Содержание

- Введение
 - Необходимость
 - Типы пропущенных значений
- 2 Методы
 - Базовые методы
 - Продвинутые методы
- 3 Сравнение
 - Nº 1
 - №2

Простейшие методы

- Удаление объектов с пропущенными значениями (можно удалять не объекты, а признаки).
 - Ничего не испортим, но что если данных и так мало?
- Замена случайным значением.
- Замена специальным значением (индикатор пропущенного значения).
 - Как понимать специальное значение в случае вещественного признака?

Простые методы

- Замена средним значением признака.
- Замена медианой признака.
- Замена модой признака.
- Можно вычислять по каждому классу в отдельности.
 - Можно сделать только на обучающей выборке.
- Размножить выборку всеми возможными значениями пропущенного признака.
 - Необходимы эвристики для объединения результатов размноженного объекта.

Метод ближайших соседей

- Необходимо определить метрику и число соседей.
- Подходит и для категориальных признаков, и для непрерывных.
- Просто в случае одного пропущенного атрибута, но необходимы эвристики для множественных замен (например, искать только среди полностью заполненных объектов).

- Per Jonsson, Claes Wohlin «An Evaluation of k-Nearest Neighbour Imputation Using Likert Data».
- Gustavo Batista, Maria Carolina Monard «A Study of K-Nearest Neighbour as an Imputation Method».

Closest Fit

- Аналогично методу ближайших соседей, но с заданной метрикой, учитывающей тип признака.
- Простое использование в случае множественной замены.

$$dist(x^{'}, x^{''}) = \sum_{i=1}^{d} dist(x_{i}^{'}, x_{i}^{''})$$

$$dist(x_{i}^{'}, x_{i}^{''}) = \begin{cases} 0, & x_{i}^{'} = x_{i}^{''} \\ 1, & x_{i}^{'} \neq x_{i}^{''} \ if \ categorical \\ \frac{|x_{i}^{'} - x_{i}^{''}|}{max(x_{i}) - min(x_{i})}, & x_{i}^{'} \neq x_{i}^{''} \ if \ numerical \end{cases}$$

 Jerzy Grzymala-Busse, Witold Grzymala-Busse, and Linda Goodwin «A Closest Fit Approach to Missing Attribute Values in Preterm Birth Data».

Нейронная сеть

- В отличие от других алгоритмов для предсказывания, одна сеть – один паттерн пропущенных данных.
- Вход признаки, известные в данном паттерне, выход – неизвестные признаки паттерна.

	Average CCRs		
Data set	Training (%)	Test (%)	
EPS data set			
Complete	99.09	58.00	
Reconstruction methods:			
bp	95.65	74.35°	
regression	96.09	67.39	
average	95.22	64.35	
zero	96.09	71.30	

 Amit Guptaa, Monica Lam «The weight decay backpropagation for generalizations with missing values».

Метод k средних

- Выбираем центры кластеров как случайные k объектов без пропусков в данных.
- Действуем по стандартному алгоритму k средних.
- Заполняем пропущенные значения как соответвующие значения центров кластеров или самих объектов кластера.

- Необходимо определять метрику и число кластеров.
- Метрика должна учитывать пропущенные значения.
- Dan Li, Jitender Deogun, William Spaulding, Bill Shuart «Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method».

Метод нечётких k средних (Fuzzy K-means)

 Теперь объект принадлежит не конкретному кластеру, а каждому в определённой степени.

Центроиды кластеров:

Принадлежность x_i кластеру k:

$$U(v_k, x_i) = \frac{d(v_k, x_i)^{2/(m-1)}}{\sum_{i=1}^{K} d(v_i, x_i)^{2/(m-1)}}$$

 $v_k = \frac{\sum_{i=1}^{N} U(v_k, x_i) x_i}{\sum_{i=1}^{N} U(v_k, x_i)}$

Пропущенные значения:

$$x_{i,j} = \sum_{k=1}^{K} U(v_k, x_i) v_{k,j}$$

RMSE:

	Manhattan Distance	Euclidean Distance	Cosine-based Distance
K-means	13.37	14.08	17.65
Fuzzy K-means	11.12	11.77	14.99

 Dan Li, Jitender Deogun, William Spaulding, Bill Shuart «Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method».

Кроме того

- EventCovering аппроксимация смеси распределений одним дискретным с минимальными потерями информационного критерия. Опирается на rough set и кластеризует объекты.
 - Andrew Wong, David Chiu «Synthesizing statistical knowledge from incomplete mixed-mode data».
- Максимум правдоподобия и ЕМ-алгоритм.
 - A. P. Dempster, N. M. Laird, D. B. Rubin «Maximum Likelihood from Incomplete Data via the EM Algorithm».
 - James Honaker, Gary King «What to Do about Missing Values in Time-Series Cross-Section Data».

SVM

 Feng Honghai, Chen Guoshun, Yin Cheng, Yang Bingru, Chen Yumei «A SVM Regression Based Approach to Filling in Missing Values».

Содержание

- 1 Введение
 - Необходимость
 - Типы пропущенных значений
- 2 Методы
 - Базовые методы
 - Продвинутые методы
- Оравнение
 - №1
 - №2

Эксперимент 1.

 Gustavo Batista, Maria Carolina Monard «An Analysis of Four Missing Data Treatment Methods for Supervised Learning».

Data set	# Instances	#Duplicate or	#Attributes	Class	Class %	Majority
		conflicting $(\%)$	(quanti., quali.)			Error
bupa	345	4 (1.16%)	6 (6,0)	1	42.03%	42.03%
				2	57.97%	on value 2
cmc	1473	115 (7.81%)	9 (2,7)	1	42.70%	57.30%
				2	22.61%	on value 1
				3	34.69%	
pima	769	1 (0.13%)	8 (8,0)	0	65.02%	34.98%
				1	34.98%	on value 0
breast	699	8 (1.15%)	9 (9,0)	2	65.52%	34.48%
				4	34.48%	on value 2

- C4.5
- 10-fold CV.
- Искуственная порча данных.

Эксперимент 1.

• bupa:

o cmc:

Эксперимент 1.

• pima:

• breast:

Эксперимент 2.

• Lars Wohlrab, Johannes Furnkranz «A Comparison of Strategies for Handling Missing Values in Rule Learning».

- Simple separate-and-conquer rule-learner (похож на CN2) алгоритм на идее «правило индукции» (rule induction) как и деревья решений.
- 10-fold CV.
- Искусственная порча данных.

- Delete Strategy
- 2 Ignored Value Strategy
- 3 Any Value Strategy
- 4 Special Value Strategy
- 5 Common Value Strategy
- 6 Pessimistic Value Strategy
- 7 Predicted Value Strategy
- 8 Distributed Value Strategy

Эксперимент 2.

Содержание

- Введение
 - Необходимость
 - Типы пропущенных значений
- 2 Методы
 - Базовые методы
 - Продвинутые методы
- 3 Сравнение
 - Nº 1
 - №2

Что реализовано?

- R: Amelia II, Mice хорошо.
- Python: Pandas, Numpy, scikit-learn слабо.
- Matlab средне.

Неупомянутые статьи и книги

- Julian Luengo, Salvador Garcia, Francisco Herrera «A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method».
- Xi-Yu Zhou, Joon Lim «Replace Missing Values with EM algorithm based on GMM and Naive Bayesian».
- Benjamin Marlin «Missing Data Problems in Machine Learning».