

4.º TESTE DE MATEMÁTICA A - 12.º 6

(2023/2024)

2.º Período

12/03/2024

Duração: 90 minutos

Nome:	N.°
I VOITIC.	14.

Classificação: (O professor:
------------------	--------------

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Em Semedo, os condutores utilizam a oficina ECOL para abastecerem os seus veículos, com ou sem lavagem. Dos condutores de Semedo que utilizam a oficina ECOL, 78% abastecem os seus veículos de GPL e os restantes abastecem os seus veículos de gasolina. Quando utilizam a ECOL, os condutores podem optar por abastecimento

Os registos da oficina indicam que:

de GPL ou de gasolina, com ou sem lavagem.

- dos condutores que abasteceram os seus veículos de GPL, 80% optaram pelo abastecimento sem lavagem;
- dos condutores que abasteceram os seus veículos de gasolina, 37% optaram pelo abastecimento com lavagem.

Foi selecionado, ao acaso, um condutor que utilizou a ECOL para fazer o abastecimento do seu veículo com lavagem.

Determine a probabilidade de esse condutor ter abastecido o seu veículo de GPL.

Apresente o resultado na forma de percentagem, com arredondamento às décimas.

Caso proceda a arredondamentos nos cálculos intermédios, conserve, no mínimo, quatro casas decimais.

Adaptado do Exame Nacional de MACS, 1.ª fase de 2014

2. No referencial xOy da figura ao lado está parte do gráfico da função f, de domínio \mathbb{R}^+ .

Sabe-se que as retas de equações x = 0 e y = 2x - 1 são assíntotas do gráfico de f.

Qual é o valor de $\lim_{x\to +\infty} \frac{\operatorname{sen}(5x)}{f(x)}$?

$$\infty$$
+ (**D**)

3. Seja g uma função, de domínio $]-\infty,2]$, diferenciável em todos os pontos do seu domínio.

Na figura junta encontra-se parte do gráfico de g', função derivada de g.

Admitindo que g(0) = -8, qual pode ser o valor de g(2)?

(B)
$$-10$$

(C)
$$-8$$

4. Considere o trapézio [ABCD] e o triângulo [ABM], retângulo em B, da figura.

Sabe-se que:

- $\overline{AD} = \overline{CD} = 2$;
- M é o ponto médio de [BC];
- x é a amplitude do ângulo ADC, $x \in \left] \frac{\pi}{2}, \pi \right[$.

Seja f a função que dá a área do triângulo [ABM], em função de x.

5. Seja (u_n) a sucessão de termo geral $u_n = \left(\frac{n^2+a}{n^2+1}\right)^{2n}$, sendo a um número real.

Qual é o valor de $\lim u_n$?

(A)
$$e^{1-a}$$

(B)
$$e^{a-1}$$

6. Seja h a função, de domínio \mathbb{R}^+ , definida por $h(x) = \frac{3x e^{x+1} - 8}{e^x}$.

O gráfico de h tem uma assíntota oblíqua.

Indique o seu declive.

(A)
$$\frac{3}{e}$$

(B)
$$-\frac{5}{e}$$

- **7.** Considere a função g, de domínio [0,6], definida por $g(x) = \sin x + \ln(x+e)$.
 - **7.1.** Sem recorrer à calculadora (exceto para cálculos numéricos), mostre que existe, pelo menos, um ponto do gráfico de g cuja ordenada é igual a 1,5, no intervalo $]0,\pi[$.

Se usar cálculos intermédios, conserve, pelo menos, duas casas decimais.

7.2. Considere a função h, de domínio [0,6], definida por h(x) = g(x) - 2, 2.

Recorrendo às capacidades gráficas da calculadora, resolva a inequação $h(x) \times h'(x) < 0$.

Na sua resposta, deve:

- reproduzir, num referencial, o gráfico da função h e, com base nesse gráfico, resolver a inequação dada;
- · apresentar os valores relevantes, arredondados às centésimas.

- 8. Considere:
 - os números reais a e b, superiores a 1, tais que $b = a^2$;
 - a função g, duas vezes diferenciável em \mathbb{R}^+ , tal que $g''(x) = \log_a x + \log_b 16$.

Sobre os pontos de inflexão do gráfico da função g, é possível concluir que:

- **(A)** existem dois, de abcissas $\frac{1}{16}$ e $\frac{1}{4}$;
- **(B)** existem dois, de abcissas $\frac{1}{4}$ e 16;
- (C) existe apenas um, de abcissa $\frac{1}{16}$;
- **(D)** existe apenas um, de abcissa $\frac{1}{4}$.
- **9.** Considere a função g, de domínio \mathbb{R} , definida por $g(x) = \begin{cases} \frac{\operatorname{sen}(x+2)}{e^x e^{-2}} & \text{se } x < -2 \\ \log_3(x+5) 2 + e^2 & \text{se } x \ge -2 \end{cases}$.

Resolva os itens seguintes sem recorrer à calculadora.

- **9.1.** Averigue se a função g é contínua em x = -2.
- **9.2.** Resolva, no intervalo $[-2, +\infty[$, a inequação $g(x) \ge \log_3(3-x) + e^2$.
- **10.** Seja f a função, de domínio $\left]0, \frac{\pi}{4}\right[$, definida por $f(x) = \log_2\left(2\sin x 4\sin^3 x\right) \log_2\left(2\sin x\right)$.

Resolva os itens seguintes sem recorrer à calculadora.

- **10.1.** Mostre que $f(x) = \log_2[\cos(2x)]$.
- **10.2.** Determine a(s) abcissa(s) do(s) ponto(s) de interseção do gráfico de f com a reta de equação y = -1.
- **11.** Considere a função h, de domínio $]1,+\infty[$, definida por $h(x)=\frac{e^x-ae^{-x}}{4^x-4}$, com a>0. Sabe-se que os valores de x para os quais h é não positiva pertencem ao intervalo $]1,\ln b\,]$. Determine, sem recorrer à calculadora, o valor de b.

Exercícios

de

MATEMÁTICA A

para preparar o

Exame Nacional de 2023

(inclui 3 provas modelo)

FIM

Exercícios

de

MATEMÁTICA A

para preparar o

Exame Nacional de 2023

(inclui 3 provas modelo)

mais de 200 items originais de Maremár Sarceras modeis mistrais de Mosembti pardurin de TODOS na avantirios

COTAÇÕES

ltem															
Cotação (em pontos)															
1.	2.	3.	4.1.	4.2.	5.	6.	7.1.	7.2.	8.	9.1.	9.2.	10.1.	10.2.	11.	
16	8	8	16	16	8	8	16	16	8	16	16	16	16	16	200

Formulário

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$