Contrôle du 3 janvier 2012-8H00

durée: 1 heure

Exercice 1:

Soit π une probabilité de transition sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que $\pi(f) \in C_0(\mathbb{R})$ pour tout $f \in C_0(\mathbb{R})$.

1) Montrer que pour tout $t \geq 0$, on définit une probabilité de transition sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par

$$P_t(x, dy) = \sum_{n>0} e^{-\lambda t} \frac{(\lambda t)^n}{n!} \pi^n(x, dy),$$

où l'on convient que $\pi^0(x, dy) = \delta_x(dy)$, et que $P_t(f) \in C_0(\mathbb{R})$ pour tout $f \in C_0(\mathbb{R})$ et tout $t \geq 0$.

2) Montrer que $(P_t)_{t\geq 0}$ est un semi-groupe de Feller, puis identifier son générateur infinitésimal A (et donc le domaine \mathcal{D}_A de A).

Exercice 2:

Soit $(X_t)_{t\geq 0}$ un processus réel défini sur $(\Omega, \mathcal{F}, \mathbb{P})$ et adapté à la filtration $(\mathcal{F}_t)_{t\geq 0}$. On suppose que $\mathbb{E}(\sup_{t\geq 0} |X_t|) < \infty$. Soit T un temps d'arrêt fini (i.e. $\mathbb{P}(T=\infty)=0$) relativement à $(\mathcal{F}_t)_{t\geq 0}$.

- 1) On suppose que T prend ses valeurs dans un ensemble dénombrable D.
- a) Montrer que $(X_{T+t})_{t\geq 0}$ définit un processus intégrable et que pour tout $d\in D$ et tout $t\geq 0$, $\mathbf{1}_{\{T=d\}}\mathbb{E}(X_{T+t}|\mathcal{F}_T)=\mathbf{1}_{\{T=d\}}\mathbb{E}(X_{d+t}|\mathcal{F}_d)$.
- b) Montrer que si $(X_t)_{t\geq 0}$ est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale, $(X_{T+t})_{t\geq 0}$ est une $(\mathcal{F}_{T+t})_{t\geq 0}$ -martingale.
- 2) (difficile) On suppose T à valeurs réelles . Montrer que le résultat du 1)b) persiste si $(\mathcal{F}_t)_{t\geq 0}$ est continue à droite. (On rappelle que si $Y\in L^1$ et $(\mathcal{G}_n)_{n\in\mathbb{N}}$ est une filtration décroissante telle que $\cap_{n\in\mathbb{N}}\mathcal{G}_n=\mathcal{G}$, alors $\mathbb{E}(Y|\mathcal{G}_n)$ converge p.s. et dans L^1 vers $\mathbb{E}(Y|\mathcal{G})$.

Exercice 3:

Soit μ une mesure de probabilité infiniment divisible portée par \mathbb{R}^+ ($\mu \neq \delta_0$). Posons, pour tout $\lambda \geq 0$, $\gamma(\lambda) = \log \tilde{\mu}(\lambda)$, où $\tilde{\mu}(\lambda) = \int_0^\infty \mathrm{e}^{-\lambda x} \mu(dx)$. Pour tout $n \geq 1$, soit μ_n une mesure de probabilité telle que $\mu_n^{*n} = \mu$. On rappelle que le théorème de

continuité de Lévy est vrai pour les transformées de Laplace.

1) Montrer que pour tout $\lambda \geq 0$,

$$n(\tilde{\mu}_n(\lambda) - \tilde{\mu}_n(\lambda+1)) \underset{n \to +\infty}{\longrightarrow} \gamma(\lambda) - \gamma(\lambda+1).$$

- 2) Pour tout $n \ge 1$, posons $\tau_n(dx) = n(1 e^{-x})\mu_n(dx)$. Montrer que $\tau_n(\mathbb{R})$ converge, disons vers $\alpha \ne 0$, et que $(\tau_n/\tau_n(\mathbb{R}))_n$ est tendue.
- 3) Montrer qu'il existe (n_k) et une mesure de probabilité τ , telle que pour toute fonction f continue bornée sur \mathbb{R}^+ , $\tau_{n_k}(f)$ converge vers $\alpha \tau(f)$.
- Soit $\lambda > 0$. On définit une fonction g_{λ} sur \mathbb{R}^+ par $g_{\lambda}(x) = \frac{1 \mathrm{e}^{-x\lambda}}{1 \mathrm{e}^{-x}}$ si x > 0 et $g_{\lambda}(0) = \lambda$.
- 4) Montrer que g est continue bornée et en déduire que $\tilde{\mu}(\lambda) = \exp(-\alpha \int_0^\infty g_{\lambda}(x)\tau(dx))$.
- 5) Montrer qu'il existe a > 0 et une mesure de Lévy ν sur $]0, +\infty[$ telle que $\int_{]0,1]} x\nu(dx) < \infty$ de sorte que, pour tout $\lambda \geq 0$, $\tilde{\mu}(\lambda) = e^{-a\lambda \int_{]0,+\infty[}(1-e^{-\lambda x})\nu(dx)}$.