Math 3070, Applied Statistics

Section 1

November 6, 2019

Lecture Outline, 11/6

Section 7.4

ullet Confidence Intervals for unknown σ

Problem

If Z is a standard normal random variable, what is the pdf of Z^2 ?

Letting F(x) be the cdf of $X = Z^2$, for $t \ge 0$,

$$F(t) = P(Z^2 \le t) = P(|Z| \le t^{1/2}) = 1 - 2\Phi(-t^{1/2})$$

Differentiating, we find the pdf:

$$f(t) = F'(t) = \frac{d}{dt}(1 - 2\Phi(-t^{1/2})) = -2\phi(-t^{1/2})\frac{d}{dt}(-t^{1/2})$$
$$= t^{-1/2}\phi(t^{-1/2}) = \frac{1}{\sqrt{2\pi}}t^{-1/2}e^{-t/2}$$

Up to a constant factor, we recognize this as the pdf of a gamma random variable, $\frac{\lambda^k}{\Gamma(k)}t^{k-1}e^{-\lambda t}$, with k=1/2 and $\lambda=1/2$. Since both are valid pdfs, the constant factors must agree; therefore,

$$\frac{1}{\sqrt{2\pi}} = \frac{(1/2)^{1/2}}{\Gamma(1/2)} = \frac{1}{\sqrt{2}\Gamma(1/2)} \implies \Gamma(1/2) = \sqrt{\pi}$$

Chi-squared Distribution

If Z is a standard normal random variable, then Z^2 has a so-called *chi-squared* distribution with one *degree of freedom*. It turns out that this is simply a gamma distribution with $k=\lambda=1/2$.

The following generalization has important applications in statistical inference.:

A *chi-square* random variable with ν degrees of freedom is a gamma random variable with $k=\nu/2$ and $\lambda=1/2$ and has pdf

$$f(x) = \begin{cases} \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Assume X_1, \ldots, X_n are i.i.d. with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$.

$$rac{X_i - \mu}{\sigma} \sim N(0, 1)$$

Recall: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

We expect \overline{X} and μ to be close when $n \to \infty$.

$$\left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \approx \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_1^2$$

More careful analysis shows that

$$\sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma^2} \right)^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

https://en.wikipedia.org/wiki/Cochran%27s_theorem# Estimation_of_variance

Confidence Interval for Variance of Normal

Suppose we want to find a confidence interval for the variance σ^2 of a normal distribution based on a random sample X_1, \ldots, X_n .

The statistic $(n-1)S^2/\sigma^2$ has a so-called χ^2 distribution with $\nu=n-1$ degrees of freedom.

Given a random sample X_1, \ldots, X_n from a normal distribution with unknown mean μ and variance σ^2 , A $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right]$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are critical values from a χ^2 distribution with $\nu=n-1$ degrees of freedom.

Chi-squared distribution

Example

Recall the breakdown voltage data, assumed to be normal:

 $1470, 1510, 1690, 1740, 1900, 2000, 2030, 2100, 2200, \\ 2290, 2380, 2390, 2480, 2500, 2580, 2190, 2700$

Find a 95% confidence interval for the standard deviation σ .

The observed sample mean and sample variance are $\overline{X}=2126.5$ and $S^2=137324.3$. The critical values are $\chi^2_{.025,16}=28.845$ and $\chi^2_{.975,16}=6.908$, which gives a 95% confidence interval of

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right] = [76172.3, 318064.4]$$

for σ^2 . The corresponding confidence interval for σ is

$$[\sqrt{76172.3}, \sqrt{318064.4}] = [276.0, 564.0]$$

Estimating a Proportion

Suppose we have a sequence of n Bernoulli trials, where the probability p of success is unknown. If we observe X successes, we know that the maximum likelihood estimator of p is the sample proportion $\hat{p} = X/n$.

How do we construct a confidence interval for p based on \hat{p} ?

Suppose X is a binomial random variable counting the number of successes in n trials where each trial has probability p of success. If n is sufficiently large an approximate $100(1-\alpha)\%$ confidence interval is given by

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $\hat{p} = X/n$ is the sample proportion, and $z_{\alpha/2}$ is a critical value from the standard normal distribution.

Rule of thumb: This may be used if the number of successes X and the number of failures n-X are both at least 10.

Example

A quality control team for a manufacturer tests 200 randomly selected devices, out of which 15 are defective. Assume that defective devices occur independently of one another. Find an approximate 95% confidence interval for the proportion defective.

Here the sample proportion is $\hat{p}=15/200=.075$, and the critical value is $z_{.025}=1.96$, so the approximate 95% confidence interval is

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = .075 \pm 1.96 \sqrt{\frac{.075(1-.075)}{200}}$$
$$= .075 \pm .037$$

Necessary Sample Size for Estimating Proportion

In the previous example, a 95% confidence interval for the proportion was .075 \pm .037. Estimate the required sample size to achieve a margin of error of .01.

Setting the margin of error equal to .01 gives an equation

$$.01 = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Solving for *n* gives

$$n = \frac{z_{\alpha/2}^2 \hat{p}(1-\hat{p})}{.01^2}$$

Unfortunately, this depends on \hat{p} , which is unknown until *after* the new sample is taken. However, we can estimate the required n by using our previous sample proportion $\hat{p} = .075$:

$$n \approx \frac{1.96^2(.075)(1 - .075)}{.01^2} = 2665.11 \approx 2666$$

Summary

Confidence interval for mean μ of normal, σ known	$\overline{X} \pm \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}$
Large-sample approximate confidence interval for mean μ	$\overline{X} \pm \frac{z_{\alpha/2} \cdot S}{\sqrt{n}}$
Confidence interval for mean μ of normal, σ unknown	$\overline{X} \pm rac{t_{lpha/2,n-1} \cdot \mathcal{S}}{\sqrt{n}}$
Prediction interval for normal observation	$\overline{X} \pm t_{\alpha/2,n-1} \cdot S\sqrt{1+rac{1}{n}}$
	$\overline{X} \pm t_{\alpha/2,n-1} \cdot S \sqrt{1 + \frac{1}{n}}$ $\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}} \right]$