Exercise 2.4. We consider the problem

$$\begin{cases} -(\alpha u')'(x) + (\beta u')(x) + (\gamma u)(x) = f(x), & x \in (0,1), \\ u(0) = u(1) = 0, \end{cases}$$
(11)

where α, β , and γ are continuous functions on [0,1] with $\alpha(x) \ge \alpha_0 > 0$ for all $x \in [0,1]$.

- 1) Give the weak form of the problem (11).
- 2) Prove the weak problem admits a unique solution under the following assumption
 - a. $\beta(x) = 0$, $\gamma \ge 0$ for all $x \in [0, 1]$;
 - b. $-\frac{1}{2}\beta' + \gamma \ge 0 \text{ for all } x \in [0, 1];$
 - c. see [Brezis p. 224].
- 3) Propose a P1-FEM for the numerical solution of (11).
- 4) Carry out an error analysis.

Proof.

1). Let I = (0,1) and $V = H_0^1(I)$. The weak form reads

$$\begin{cases} \text{Find } u \in V \text{ such that} \\ a(u, v) = \mathcal{F}(v), \ \forall v \in V, \end{cases}$$
 (1)

where the bilinear form $a(u, v) = (\alpha u', v') + (\beta u', v') + (\gamma u, v)$ and $\mathcal{F}(v) = (f, v)$.

2). It is clear that $a(\cdot, \cdot)$ is a bilinear form, and \mathcal{F} is a continuous functional from V to \mathbb{R} . By Lax-Milgram Lemma, it remains to show that $a(\cdot, \cdot)$ is continuous and coercive. Continuity is clear for all cases since the coefficients are continuous over \bar{I} , i.e.,

$$|a(u,v)| \leq ||\alpha||_{\infty} ||u'||_{0} ||v'||_{0} + ||\beta||_{\infty} ||u'||_{0} ||v||_{0} + ||\gamma||_{\infty} ||u||_{0} ||v||_{0}$$

$$\leq (||\alpha||_{\infty} + ||\beta||_{\infty} + ||\gamma||_{\infty}) ||u||_{1} ||v||_{1}, \quad \forall u, v \in V.$$

For the coercivity, we consider case by case:

a. By Poincaré inequality on $H_0^1(I)$, there exists C>0 such that

$$a(v, v) = (\alpha v', v') + (\gamma v, v) \ge \alpha_0 ||v'||_0^2 \ge C ||v||_1^2, \quad \forall v \in V.$$

b. Note that for any $v \in V$, we have $(\beta v', v) = (\beta/2, (v^2)') = (-\beta'/2, v^2)$. Thus by Poincaré inequality on $H_0^1(I)$, we have

$$a(v,v) = (\alpha v', v') + (\beta v', v) + (\gamma v, v) = (\alpha v', v') + ((-\beta'/2 + \gamma)v, v)$$

$$\geq \alpha_0 ||v'||_0^2 \geq C||v||_1^2, \quad \forall v \in V.$$

- c. Omitted.
- 3). Let $0=x_0 < x_1 < \cdots < x_N < x_{N+1}=1$ be a grid on I=(0,1). The space of piecewise linear polynomials is denoted by $X_h^1=\mathrm{span}\{\varphi_0,\cdots,\varphi_{N+1}\}$. Then $V_h=V\cap X_h^1=\mathrm{span}\{\varphi_1,\cdots,\varphi_N\}$. Let $u_h=\sum_{j=1}^N u_j\varphi_j(x)$ and

$$\sum_{j=1}^{N} a(\varphi_j, \varphi_i) u_j = \mathcal{F}(\varphi_i), \quad i = 1, \dots, N.$$

4). Let u_h be the solution of P1-FEM. Note that $a(u-u_h,v_h)=0, \forall v_h \in V_h$. Thus

$$||u - u_h||_1^2 \leqslant Ca(u - u_h, u - u_h) = Ca(u - u_h, u - v_h) \leqslant C||u - u_h||_1||u - v_h||_1,$$

for any $v_h \in V_h$. It leads to $||u - u_h||_1 \le \inf_{v_h \in V_h} ||u - v_h||_1 \le ||u - u_I||_1$, where u_I denotes the interpolation of u into V_h . By the Poincaré inequality, we know that $C||v||_1 \le ||v'||_0 \le C||v||_1$, then

$$||u' - u_h'||_0 \le ||u' - u_I'||_0 \le Ch||u''||_0.$$

To obtain error estimate for $||u - u_h||_0$, we use duality argument. Consider the dual problem of (1): given $r \in L^2(I)$,

$$\begin{cases} \text{Find } \varphi(r) \in V \text{ such that} \\ a(v, \varphi(r)) = (r, v), \quad \forall v \in V. \end{cases}$$

The dual problem admits a unique solution $\varphi(r)$ since $a(\cdot,\cdot)$ is continuous and coercive. If we suppose $\varphi(r) \in H^2(I)$, and there exists constant C > 0 such that $\|\varphi''(r)\|_0 \leqslant C\|r\|_0$.

Thus we denote $\varphi_I(r)$ being the interpolation of $\varphi(r)$ into V_h and obtain

$$||u - u_h||_0 = \sup_{r \in L^2(I), \ r \neq 0} \frac{(r, u - u_h)}{||r||_0} = \sup_{r \in L^2(I), \ r \neq 0} \frac{a(u - u_h, \varphi(r))}{||r||_0}$$

$$= \sup_{r \in L^2(I), \ r \neq 0} \frac{a(u - u_h, \varphi(r) - \varphi_I(r))}{||r||_0}$$

$$\leqslant C \sup_{r \in L^2(I), \ r \neq 0} \frac{\frac{||u - u_h||_1 ||\varphi(r) - \varphi_I(r)||_1}{||r||_0}}{||r||_0}$$

$$\leqslant C \sup_{r \in L^2(I), \ r \neq 0} \frac{\frac{||u' - u_h'||_0 ||\varphi'(r) - \varphi_I'(r)||_0}{||r||_0}}{||r||_0}$$

$$\leqslant Ch||u' - u_h'||_0 \sup_{r \in L^2(I), \ r \neq 0} \frac{||\varphi''(r)||_0}{||r||_0}$$

$$\leqslant Ch||u' - u_h'||_0.$$

Exercise 3.1. Let $\Omega = (a,b)^2$, $f \in L^2(\Omega)$. Consider the Dirichlet elliptic problem

$$\begin{cases} -\Delta u(\mathbf{x}) = f(\mathbf{x}), & \mathbf{x} \in \Omega, \\ u|_{\Gamma} = 0. \end{cases}$$

1. Prove the following Poincaré inequality holds: there exists a constant c, depending only on a and b, such that

$$||v||_1 \leqslant c|v|_1, \quad \forall v \in H_0^1(\Omega).$$

2. Prove that the Dirichlet elliptic problem admits a unique weak solution in $H_0^1(\Omega)$, and the solution u satisfies

$$||u||_1 \leqslant c||f||_0$$

where c is a constant.

Proof. 1. Note that for any $y \in (a, b)$,

$$v(x,y) = \int_a^y \partial_y v(x,y) dy,$$

we have $|v(x,y)| \leq (b-a)^{1/2} \|\partial_y v\|_0$. Similarly we have $|v(x,y)| \leq (b-a)^{1/2} \|\partial_x v\|_0$. It leads to

$$||v||_0 \leqslant \frac{(b-a)^{3/2}}{\sqrt{2}}|v|_1.$$

Thus $||v||_1 = (||v||_0^2 + |v|_1^2)^{1/2} \le c|v|_1$.

2

2. The variational form reads

$$\begin{cases} \text{Find } u \in H^1_0(\Omega) \text{ such that} \\ a(u,v) = (f,v), \quad \forall v \in H^1_0(\Omega), \end{cases}$$

where $a(u,v)=(\nabla u,\nabla v)$. It is clear that $a(\cdot,\cdot)$ is a continuous bilinear form. Its coercivity is guaranteed by Poincaré inequality, that is,

$$a(v,v) = |\nabla v|_1^2 \ge c ||v||_1^2, \quad \forall v \in H_0^1(\Omega).$$

Thus by Lax-Milgram lemma, there exists a unique weak solution u such that

$$||u||_1 \leqslant c \sup_{v \in H_0^1(\Omega), v \neq 0} \frac{(f, v)}{||v||_1} \leqslant c||f||_0.$$