Sistemas de N grados de libertad

Los ejercicios con (*) son opcionales.

Modos normales de oscilación

1. El sistema de la figura está en ausencia de gravedad

- a) Obtenga sus frecuencias naturales de oscilación y los modos normales correspondientes. Escriba las ecuaciones de movimiento de cada masa.
- b) Sabiendo que a t=0 el sistema satisface las siguientes condiciones: $\Psi_a(0)=1$, $\Psi_b(0)=0$ y que se encuentra en reposo, encuentre el movimiento de cada partícula.
- c) Analice cómo se modifica el resultado por la presencia de la gravedad.
- 2. El sistema simplificado de la figura que se basa en una molécula triatómica simétrica. En el equilibrio dos átomos de masa m están situados a ambos lados del átomo de masa M=2m y vinculados por resortes de constante k y longitud natural l_0 . Como sólo estamos interesados en analizar los modos longitudinales, supondremos que las masas se encuentran dentro de una canaleta que impide todo tipo de movimiento en la dirección transversal.

- a) Encuentre las ecuaciones de movimiento de cada masa.
- b) Halle las frecuencias de los modos normales.
- c) Dibuje las configuraciones de cada modo.
- d) Si el centro de masa de la molécula se mueve con $v_o = cte$, halle la solución para $\psi_a(t)$, $\psi_b(t)$ y $\psi_c(t)$.
- e) Determine las condiciones iniciales para excitar sólo el modo más alto (mayor frecuencia).
- 3. Analice las oscilaciones transversales del problema anterior. Para su mejor comprensión puede imaginarlo como el esquema de la figura, en el cual las masas de los extremos pueden subir/bajar pero solidarios a la barra enhebrada a los vástagos laterales.

- a) Encuentre las ecuaciones de movimiento de las masas. ¿Qué diferencias hay entre la ecuación de movimiento para resortes slinky y resortes con $l_0 \neq 0$ en la aprox. de pequeñas oscilaciones?
- b) Halle las frecuencias de los modos normales.
- c) Dibuje la configuración correspondiente a cada modo normal. Determine los desplazamientos de cada masa como función del tiempo (solución más general posible para cada masa).
- d) ¿Qué condiciones iniciales que permiten excitar sólo el segundo modo?
- e) Si se fuerza la masa del centro con frecuencias incrementalmente mayores, ¿qué modos se van observando?
- f) ¿Cómo se modifican los resultados anteriores si el extremo de la derecha se fija a la pared como se indica en la figura a continuación?.

4. En el sistema de la figura se tienen dos partículas de masa m unidas a las paredes con resortes verticales de longitud natural l_0 ($l_0 < L/2$) y constante k_1 , y con resortes horizontales $l_0 = 0$ (slinkies) y constante k_2 . Imagine que las partículas tienen la libertad de moverse en el plano y que el sistema es en ausencia de gravedad.

- a) ¿Bajo qué aproximaciones es posible decir que el movimiento más general posible de cada una de las masas es una superposición lineal del movimiento más general posible de las oscilaciones longitudinales y de las oscilaciones transversales? Demuestre su afirmación.
- b) Considerando la aproximación del punto anterior, determine las frecuencias propias y los modos normales de oscilación: longitudinales, transversales y de la solución más general posible para un movimiento arbitrario en el plano.

Batidos (o latidos, beats)

5. Considere el sistema de dos péndulos de igual longitud l pero de masas diferentes m_a y m_b , acoplados mediante un resorte de constante k.

- a) Escriba las ecuaciones de movimiento de cada masa. considerando pequeñas oscilaciones, ¿es relevante considerar $l_0 \neq 0$? ¿Qué cambia si el resorte es slinky?
- b) Obtenga las frecuencias naturales del sistema y sus modos normales de oscilación. Interprete el significado físico de estos modos normales.
- c) Suponga que el acoplamiento es débil $(k \ll \frac{g}{l} \frac{m_a m_b}{m_a + m_b})$ y que las condiciones iniciales son: $\dot{\Psi}_a(0) = 0, \dot{\Psi}_b(0) = 0, \Psi_a(0) = 0, \Psi_b(0) = 1$. Obtenga el movimiento de cada masa y grafíquelo en función del tiempo.
- d) Calcule los valores medios, en un ciclo rápido, de T_a y T_b , donde T indica energía cinética. Grafique $\langle T_a \rangle$ y $\langle T_b \rangle$, y analice las diferencias en el gráfico como función de las diferencias entre las masas ($m_a = m_b$ y m_a muy diferente de m_b). Calcule el valor medio de la energía de interacción entre las dos partículas.
- 6. Considere el sistema de la figura. Las masas están apoyadas en una mesa sin rozamiento, sujetas a las paredes por resortes de constante k y unidas por otro resorte de constante k'.

- a) Obtenga las frecuencias y los modos transversales del sistema.
- b) ¿Bajo qué condiciones espera observar batidos? ¿Qué son los batidos?

Sistemas forzados

- 7. Considere el sistema de dos péndulos acoplados del problema 5, tal que uno de ellos es impulsado por una fuerza $F = F_0 \cos(\Omega t)$.
 - a) Escriba las ecuaciones de movimiento del sistema con amortiguamiento y forzado y desacople las ecuaciones utilizando las coordenadas normales del sistema.
 - b) Resuelva el sistema forzado para las coordenadas normales y luego escriba la solución más general posible para las coordenadas de las partículas a y b.
 - c) Estudie el caso estacionario, observe cuando las partículas están en fase o contrafase.
 - d) Muestre que considerando $m_a = m_b = m$ y despreciando el amortiguamiento se obtienen las siguientes expresiones.

$$\begin{split} &\Psi_a \approx \frac{F_0}{2m} \cos(\Omega t) \left[\frac{1}{\omega_1^2 - \Omega^2} + \frac{1}{\omega_2^2 - \Omega^2} \right] \\ &\Psi_b \approx \frac{F_0}{2m} \cos(\Omega t) \left[\frac{1}{\omega_1^2 - \Omega^2} - \frac{1}{\omega_2^2 - \Omega^2} \right] \\ &\frac{\Psi_b}{\Psi_a} \approx \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2 - 2\Omega^2} \end{split}$$

donde ω_1 es la menor de las frecuencias modales, ω_2 es la mayor y Ω es la frecuencia de excitación.

- e) (*) Grafique $\frac{\Psi_b}{\Psi_a}$, ¿qué representa esta relación? Indique cuándo hay una transferencia efectiva de movimiento y cuándo no.
- 8. Considere el sistema del problema 6, pero en este caso en considere las oscilaciones longitudinales.
 - a) Halle la solución estacionaria para el caso forzado en el cual se aplica sobre la masa de la izquierda una fuerza oscilante del tipo $f(t) = f_0 \cos(\Omega t)$; Qué resonancias espera ver si realiza un barrido de frecuencias?
 - b) (*) Repita el punto anterior, teniendo en cuenta además una fuerza de disipación proporcional a la velocidad
 - c) (*) Repita el problema pero considerando las oscilaciones transversales del sistema