Optimized Online Rank Learning for Machine Translation

Taro Watanabe

National Institute of Information and Communication Technology (NICT)

taro.watanabe@nict.go.jp

Tuning for MT

$$\hat{e} = \underset{e}{\operatorname{arg max}} p(e|f;\theta)$$

$$= \underset{e}{\operatorname{arg max}} \mathbf{w}^{\top} \mathbf{h}(f,e)$$

• MERT(Minimum Error Rate Training) by Och (2003)

$$\hat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} \ell(\left\{\operatorname*{arg\,max}_{e} \mathbf{w}^{\top} \mathbf{h}(f^{i}, e)\right\}_{i=1}^{N}, \left\{\mathbf{e}^{i}\right\}_{i=1}^{N})$$

 PRO(Pair-wise Rank Optimization) by Hopkins and May (2010)

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \ell(\mathbf{w}; D)$$

with hinge-loss:

$$\frac{1}{M(\mathbf{w}; D)} \sum_{\substack{(f, \mathbf{e}) \in D \\ e^*, e'}} \max \left\{ 0, 1 - \mathbf{w}^{\top} \Phi(f, e^*, e') \right\}$$

$$e' \in \text{NBEST}(\mathbf{w}; f) \setminus \text{ORACLE}(\mathbf{w}; f, \mathbf{e})$$

$$e^* \in \text{ORACLE}(\mathbf{w}; f, \mathbf{e})$$

$$\Phi(f, e^*, e') = \mathbf{h}(f, e^*) - \mathbf{h}(f, e').$$

• Batch algorithm: an iterative k-best merging approximation

Online Learning (SGD)

1:
$$k = 1, \mathbf{w}_1 \leftarrow \mathbf{0}$$
2: **for** $t = 1, ..., T$ **do**
3: Choose $B_t = \{b_1^t, ..., b_K^t\}$ from D
4: **for** $b \in B_t$ **do**
5: Compute n -bests and oracles of b
6: Set learning rate η_k
7: $\mathbf{w}_{k+\frac{1}{2}} \leftarrow \mathbf{w}_k - \eta_k \nabla(\mathbf{w}_k; b)$
8: $\mathbf{w}_{k+1} \leftarrow \min\left\{1, \frac{1/\sqrt{\lambda}}{\|\mathbf{w}_{k+\frac{1}{2}}\|_2}\right\} \mathbf{w}_{k+\frac{1}{2}}$
9: $k \leftarrow k + 1$
10: **end for**
11: **end for**
12: **return** \mathbf{w}_k

- Online approximation to the learning objective
- Optimization for sentence-BLEU ≠corpus BLEU!
- Larger sentence-batch for better corpus-BLEU approximation → slower convergence

Optimized Online Learning

• First, suffer gradients from L2-regularizer

$$\mathbf{w}_{k+\frac{1}{4}} \leftarrow (1 - \lambda \eta_k) \mathbf{w}_k$$

• Second, solve:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_{k+\frac{1}{4}}\|_{2}^{2} + \eta_{k} \sum_{(f,\mathbf{e}) \in b, e^{*}, e'} \xi_{f,e^{*},e'}$$
$$\mathbf{w}^{\top} \Phi(f, e^{*}, e') \geq 1 - \xi_{f,e^{*},e'}$$
$$\xi_{f,e^{*},e'} \geq 0.$$

• Third, Lagrangian dual:

$$\underset{\tau_{e^*,e'}}{\operatorname{arg\,min}} \frac{1}{2} \| \sum_{(f,\mathbf{e}) \in b, e^*, e'} \tau_{e^*,e'} \Phi(f, e^*, e') \|_{2}^{2}$$
$$- \sum_{(f,\mathbf{e}) \in b, e^*, e'} \tau_{e^*,e'} \left\{ 1 - \mathbf{w}_{k+\frac{1}{4}}^{\top} \Phi(f, e^*, e') \right\}$$

· Finally:

$$\mathbf{w}_{k+\frac{1}{2}} \leftarrow \mathbf{w}_{k+\frac{1}{4}} + \sum_{(f,\mathbf{e})\in b,e^*,e'} \tau_{e^*,e'} \Phi(f,e^*,e')$$

- Note:
 - Update by SGD

$$\mathbf{w}_{k+\frac{1}{2}} \leftarrow \mathbf{w}_{k+\frac{1}{4}} + \sum_{\substack{(f,\mathbf{e}) \in b, e^*, e'}} \frac{\eta_k}{M(\mathbf{w}_k; b)} \Phi(f, e^*, e')$$

• MIRA solve this:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\mathbf{w} - \mathbf{w}_k\|_2^2 + \sum_{(f, \mathbf{e}) \in b, e^*, e'} \xi_{f, e^*, e'}$$

Optimized Parallel Learning

1:
$$\mathbf{w}^1 \leftarrow \mathbf{0}$$

2: $\mathbf{for} \ t = 1, ..., T \ \mathbf{do}$
3: $\mathbf{w}^{t,s} \leftarrow \mathbf{w}^t$
4: Each shard learns $\mathbf{w}^{t+1,s}$ using D_s
5: $\mathbf{w}^{t+\frac{1}{2}} \leftarrow 1/S \sum_s \mathbf{w}^{t+1,s}$
6: $\mathbf{w}^{t+1} \leftarrow (1-\rho)\mathbf{w}^t + \rho \mathbf{w}^{t+\frac{1}{2}}$
7: end for
8: return \mathbf{w}^{T+1}

- Each shard learns locally + averaging in each round
- Line search to determine the optimal mixing ρ

Experiments

- NIST08 Chinese-to-English translation task
- MT02/MT06/MT08 for tuning/development testing/test
- SCFG / # of features = 14 / batch size = 16 / cores = 8
- MERT/PRO/MIRA and Online Rank Optimization(ORO) with hinge-loss/softmax-loss (1,000-best, 30-iterations)

	MT06	MT08
MERT	31.45†	24.13†
PRO	31.76†	24.43^{\dagger}
MIRA-L	31.42†	$24.15\dagger$
ORO-L _{hinge}	29.76	21.96
O - ORO - $L_{\rm hinge}$	32.06	24.95
ORO-L _{softmax}	30.77	23.07
O - ORO - $L_{softmax}$	31.16†	23.20

Main results by BLEU

Learning curve

	MT06	MT08
MIRA	30.95	23.06
MIRA-L	31.42†	$24.15\dagger$
$\overline{\mathrm{ORO}_{\mathrm{hinge}}}$	29.09	21.93
ORO - L_{hinge}	29.76	21.96
ORO _{softmax}	30.80	23.06
$ORO-L_{softmax}$	30.77	23.07
O-ORO _{hinge}	31.15†	23.20
O - ORO - L_{hinge}	32.06	24.95
O-ORO _{softmax}	31.40†	23.93†
O-ORO- L _{softmax}	31.16†	23.20

Mixing by line search