Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencias de la Computación

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 04

Aritmética Modular IIC3253 – Criptografía Fecha: 2021-04-14

1. Inverso Modular

Teorema 1.1 (Algoritmo Extendido de Euclides). Dado $a, b \in \mathbb{Z}$ el algoritmo devuelve $x, y, g \in \mathbb{Z}$ tales que ax + by = g y $g = \gcd(a, b)$, en $O(\log(\min(a, b)))$ pasos.

Corolario (Bezout). Dado $a, b \in \mathbb{Z}$ existen $x, y, g \in \mathbb{Z}$ tales que ax + by = g y $g = \gcd(a, b)$.

Definición 1.1 (Inverso Modular). Dado $a, b \in \mathbb{Z}$, se dice que b es el inverso modular de a si y solo si $ab \equiv 1 \mod n$. En general b se denota como a^{-1} .

Problema 1:

Demuestre que el inverso modular es único modulo n.

Teorema 1.2 (Inverso Modular). Dado $a \in \mathbb{Z}$, a tiene inverso modular si y solo si gcd(a, n) = 1.

Para demostrar el teorema se demostrará un lema, respecto al siguiente concepto.

Definición 1.2 (Divisor de Cero). Sea $a \in \mathbb{Z}$ tal que $a \not\equiv 0 \mod n$, se dice que a es divisor de cero, si y solo si existe un $b \in \mathbb{Z}$ tal que $b \not\equiv 0 \mod n$ y $ab \equiv 0 \mod n$.

Lema 1.3. Sea $a \in \mathbb{Z}$ un divisor de cero, entonces a no tiene inverso modular.

Demostración. Se asume por contradicción que a tiene inverso modular, sea $b \in \mathbb{Z}$ tal que $b \not\equiv 0 \mod n$ y $ab \equiv 0 \mod n$. Entonces se tiene que

$$a \cdot a^{-1} \equiv 1 \mod n$$

 $b(a \cdot a^{-1}) \equiv b \mod n$
 $(ba)a^{-1} \equiv b \mod n$
 $0 \cdot a^{-1} \equiv b \mod n$
 $0 \equiv b \mod n$

lo cual es una contradicción.

Volviendo al teorema de Inverso Modular:

Demostración. \sqsubseteq Por Bezout se tiene que existen $x, y \in \mathbb{Z}$ tales que ax + ny = 1, por lo que $n \mid 1 - ax$, o sea, $ax \equiv 1 \mod n$, lo que nos dice que a tiene inverso modular.

Usando contrapositiva se tiene que $\gcd(a,b) = g > 1$, como $g \mid n \ y \ g \mid a$, entonces $\frac{n}{g} \in \mathbb{Z} \ y \ \frac{a}{g} \in \mathbb{Z}$. Por lo que $n \mid \frac{an}{g}$, pero $n \nmid \frac{n}{g}$, con lo que se tiene que $a \cdot \frac{n}{g} \equiv 0 \mod n$, por lo que a es divisor de cero, y usando el lema anterior se tiene que a no tiene inverso modular.

2. Congruencias Lineales

Definición 2.1 (Congruencia Lineal). Dado $a, b, c \in \mathbb{Z}$, se dice que $ax + b \equiv c \mod n$ es una congruencia lineal.

Nota. Es claro que toda congruencia lineal se puede reducir a la forma $ax \equiv b \mod n$.

Teorema 2.1. Las congruencias lineales de la forma $ax \equiv b \mod n$ tienen solución si y solo si $gcd(a, n) \mid b \ o \ b \equiv 0 \mod n$.

Demostración. \subseteq Sea $g = \gcd(a, n)$, si g = 1, entonces la congruencia tiene como solución $x \equiv a^{-1}b \mod n$. Si $g \mid b$ y g > 1, entonces se toma a' = a/g, b' = b/g y n' = n/g, se nota que $a'x \equiv b' \mod n'$ tiene solución, ya que $\gcd(a', n') = 1$, por lo que $ax \equiv b \mod n$ tiene solución. Si $b \equiv 0 \mod n$, entonces $x \equiv 0 \mod n$ es solución.

 \implies Usando contrapositiva y contradicción se tiene que g no divide a b y $b\not\equiv 0 \mod n.$ Se ve lo siguiente

$$ax \equiv b \mod n \iff n \mid ax - b$$
 $\iff ny = ax - b$
 $\iff b = ax - ny,$

más aún $g \mid a$ y $g \mid n$, por lo que $g \mid ax-ny$, pero eso es lo mismo que $g \mid b$, lo que es una contradicción.