超声波在固体中的传输

 \LaTeX by Jerry

2023年12月26日

目录

1	数据	处理			2
	1.1	声波波	速及杨氏模量测量、	泊松系数测量	2
	1.2	超声波	採伤		3
		1.2.1	直探头测缺陷深度		3
		1.2.2	斜探头测缺陷 D .		3
2	教师	签字的	原始实验数据		5

1 数据处理

1.1 声波波速及杨氏模量测量、泊松系数测量

测试样密度 $\rho = 2700 \text{kg/m}^3$ (铝), 测试样尺寸如下:

尺寸: R_1 =30.00, R_2 =60.00, L_A =20.00, H_A =20.00, L_B =50.00, H_B =50.00(单位: mm) A、B、D 为**背面开口**的非贯通横孔,C 为底面开口的竖直非贯通孔

图 1: 测试样尺寸

实验数据:

表 1: 声波波速及杨氏模量测量、泊松系数测量

直探头	纵波	斜探头	横波
底面回波	表面回波	R_2 弧面回波	R_1 弧面回波
峰位 $(t_2/\mu s)$	峰位 $(t_1/\mu s)$	峰位 $(t_{R_2}/\mu s)$	峰位 $(t_{R_1}/\mu s)$
19.60	0.40	48.00	28.00
19.60	0.40	49.00	29.00
19.60	0.40	49.00	29.00
可变探头		表面波	
探头角度 (°)	移动距离 (Δ_l/mm)	回波峰位 $(t_{S_1}/\mu s)$	回波峰位 $(t_{S_2}/\mu s)$
68	50.0	68	103

处理数据得到 $\overline{t_2}=19.60\mu s, \overline{t_1}=0.40\mu s,$ 结合 l=60.00mm, 计算介质的纵波声速为

$$c_l = \frac{2 \cdot l}{\overline{t_2} - \overline{t_1}} = 6.25 \times 10^4 m/s$$

处理数据得到 $\overline{t_{R_2}}=48.67\mu s, \overline{t_{R_1}}=28.67\mu s,$ 结合 $R_2=60.00mm,$ $R_1=30.00mm,$ 计算介质的纵波声速为

$$c_r = \frac{2 \cdot (R_2 - R_1)}{\overline{t_{R_2}} - \overline{t_{R_1}}} = 3.00 \times 10^4 m/s$$

处理数据得到 $\Delta t_S=t_{S_2}-t_{S_1}=35\mu s$,结合移动距离 $\Delta l=50.0mm$,计算介质的表面波声速为

$$c_s = \frac{2 \cdot \Delta l}{\Delta t_S} = 2.86 \times 10^4 m/s$$

则

$$T = \frac{c_l}{c_r} = 2.083$$

则试样的杨氏模量

$$E = \frac{\rho c_r^2 (3T^2 - 4)}{T^2 - 1} = 65.53GPa$$

试样的 Poisson 系数

$$\sigma = \frac{T^2 - 2}{2(T^2 - 1)} = 3.047 \times 10^{-1}$$

1.2 超声波探伤

1.2.1 直探头测缺陷深度

实验数据:

表 2: 直探头测缺陷深度

直探头 (B)	扩散角 1	扩散角 2	直探头	测缺陷 C
$x_0(cm)$	$x_1(cm)$	$x_2(cm)$	底面波 $(t_H - t_1)(\mu s)$	缺陷波 $(t_C - t_1)(\mu s)$
3.50	3.20	3.85	19.40	13.90
3.48	3.12	3.82	19.40	14.00
3.46	3.14	3.80	19.20	14.20

计算得到 $\overline{x_2} = 3.823cm$, $\overline{x_1} = 3.480cm$, 则直探头扩散角为

$$\theta = 2 \arctan \frac{\overline{x_2} - \overline{x_1}}{2H_B} = 3.933^{\circ}$$

计算得到 $\overline{t_H - t_1} = 19.33 \mu s$, $\overline{t_C - t_1} = 14.03 \mu s$

计算缺陷深度

$$d = H \cdot (1 - \frac{\overline{t_C - t_1}}{\overline{t_H - t_1}}) = 16.45mm$$

声速测量计算缺陷深度

$$d = c_l \cdot \frac{\overline{(t_H - t_1)} - \overline{(t_C - t_1)}}{2} = 16.56mm$$

1.2.2 斜探头测缺陷 D

实验数据:

表 3: 斜探头测缺陷 D

斜探头 (A)	扩散角 1	扩散角 2	缺陷 A		缺陷 B		缺陷 D	
$x_0(cm)$	$x_1(cm)$	$x_2(cm)$	$x_A(cm)$	$t_A(\mu s)$	$x_B(cm)$	$t_B(\mu s)$	$x_D(cm)$	$t_D(\mu s)$
3.20	2.65	3.50	3.22	26.4	9.02	52.4	11.22	34.0
3.20	2.70	3.45	3.20	26.4	9.00	52.4	11.20	34.0
3.18	2.70	3.45	3.18	26.4	9.01	52.4	11.18	34.0

计算得到 $\overline{x_A}=3.20cm$, $\overline{x_B}=9.01cm$, $\overline{x_D}=11.20cm$, $\overline{t_A}=26.4\mu s$, $\overline{t_B}=52.4\mu s$, $\overline{t_D}=34.0\mu s$, $\overline{x_2}=3.467cm$, $\overline{x_1}=2.683cm$

折射角

$$\beta = \arctan \frac{(\overline{x_B} - \overline{x_A}) - (L_B - L_A)}{H_B - H_A} = 43.127^{\circ}$$

则斜探头扩散角为

$$\theta = 2 \arctan(\frac{\overline{x_2} - \overline{x_1}}{2 \cdot H_A} \cdot \cos \beta) = 9.976^{\circ}$$

缺陷 D 的深度

$$H_D = H_B \cdot \frac{t_D}{t_B} = 32.443mm$$

缺陷 D 的位置

$$L_D = (x_D - H_B \cdot \tan \beta \cdot \frac{t_D}{t_B}) - (x_B - H_B \cdot \tan \beta) + L_B = 88.245mm$$

2 教师签字的原始实验数据

图 2: 原始实验数据