Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерного проектирования
Кафедра проектирования информационно-компьютерных систем

ПОСТРОЕНИЕ НЕЛИНЕЙНОЙ РЕГРЕССИИ С ИСПОЛЬЗОВАНИЕМ КОМАНДЫ «ДОБАВИТЬ ЛИНИЮ ТРЕНДА»

Студент гр. 315401

Е.М. Косарева

Проверил

Г.А. Пискун

Цель работы

Построить уравнение нелинейной регрессии с использованием команды «Добавить линию тренда».

Теоретические сведения

Шаг I. Ввести по столбцам исходные данные $\{x_i, y_i\}$, i = 1, 2, ..., n (рис. 3.3).

Шаг 2. По этим данным построить график в декартовой системе координат (рис. 3.3).

Шаг 3. Установить курсор на любую точку построенного графика, сделать щелчок правой кнопкой и в появившемся контекстном меню выполнить команду **Добавить линию тренда** (рис. 3.3).

Puc. 3.3.

Шаг 4. В появившемся диалоговом окне выбрать нужное уравнение регрессии.

Шаг 5. «Включить» необходимые опции:

- «Показать уравнение на диаграмме» на диаграмме будет показано выбранное уравнение регрессии с вычисленными коэффициентами;
- «Поместить на диаграмму величину достоверности аппроксимации (\mathbf{R}^2) » на диаграмме будет показано значение коэффициента детерминации \mathbb{R}^2 (для нелинейной регрессии индекс детерминации).

Если по построенному уравнению регрессии необходимо выполнить прогноз, то нужно указать число периодов прогноза.

 $UIa \ge 6$. После задания всех перечисленных опций на диаграмме появится формула построенного уравнения регрессии и значение индекса детерминации R^2 .

Реализация решения задачи

В качестве массива данных взята статистика организаций осуществлявших затраты на инновации в РБ в 2015-2022 годах.

1	A	В	C	D	E	F	G	Н	1
1		2015	2016	2017	2018	2019	2020	2021	2022
2	Число организаций, осуществлявших затраты на инновации, единиц	415	409	416	466	501	528	521	521
3	Удельный вес организаций, осуществлявших затраты на инновации, в общем числе обследованных организаций, процентов	21	21,1	21,6	22	21,1	20,6	19,7	20

Рисунок 1 – Массив данных

На рисунке 2 представлен результат построения:

Рисунок 2 – Степенное уравнение регрессии

Выводы

Полученное значение R^2 значение свидетельствует о том, что уравнением регрессии объясняется 99% дисперсии результативного признака, а на долю прочих факторов приходится 1%.