

Algorithms for Scientific Computing

Archimedes' Quadrature, High-Dimensional

Felix Dietrich

Technische Universität München

Department of Informatics 5

Chair of Scientific Computing in Computer Science (SCCS)

Summer 2020

Numerical Quadrature (So Far ...)

- Hierarchical and non-hierarchical one-dimensional quadrature
- Aim: dealing with high-dimensional functions
- Quadrature as an example: well-studied, relatively simple
- On the way to high dimensionalities we have to consider whether effort (measured in function evaluations, computations, . . .) is well-invested?
- ⇒ Consider ratio of cost vs. accuracy

Part I

Cost and Accuracy

ε -Complexity of Numerical Methods

Relate Cost to Achieved Accuracy:

- Usually approximate solution with error ε (due to discretization, rounding, truncation, . . .)
- To measure cost W: count operations (function evaluations, e.g.)
- Relate cost W to error ε
 - \Rightarrow How many operations $W(\varepsilon)$ to obtain error of at most ε ?

ε -Complexity of Numerical Methods

Relate Cost to Achieved Accuracy:

- Usually approximate solution with error ε (due to discretization, rounding, truncation, . . .)
- To measure cost W: count operations (function evaluations, e.g.)
- Relate cost W to error ε
 - \Rightarrow How many operations $W(\varepsilon)$ to obtain error of at most ε ?

Example: Composite Integration Rules

- Composite Trapezoidal (CT) rule with n subintervals:
 - n+1 function evaluations
 - Error $\mathcal{O}(n^{-2})$ (sufficiently smooth)
 - $-\varepsilon$ -complexity $W(\varepsilon) = \mathcal{O}(\sqrt{1/\varepsilon})$ [function evaluations]
- Composite Simpson's (CS) rule correspondingly $W(\varepsilon) = \mathscr{O}(\sqrt[4]{1/\varepsilon})$

CT and CS: Cost-Error Diagram

• $F_1 := \int_0^{\pi} \sin(x) dx$, determine $|CT - F_1|$ and $|CS - F_1|$

- ε -complexities $\mathscr{O}(\sqrt{1/\varepsilon})$ and $\mathscr{O}(\sqrt[4]{1/\varepsilon})$
- → Different gradients of the curves
 (asymptotically for large n; double-logarithmic scale)

Multi-Dimensional Quadrature

Now on to multi-dimensional functions:

Area of integration
$$\Omega := \prod_{k=1}^d [a_k, b_k]$$
, function $f : \Omega \to \mathbb{R}$

Compute approximation for

$$F_d(f,\Omega) := \int_{\Omega} f(x_1,\ldots,x_d) \, d\vec{x}.$$

Decomposition into One-Dimensional Integrals

• Decompose *d*-dimensional integral into sequence of one-dimensional ones (cf. Fubini's Theorem)

$$F_d(f,\Omega) = \int_{a_d}^{b_d} \cdots \int_{a_2}^{b_2} \left(\int_{a_1}^{b_1} f(x_1,\ldots,x_d) dx_1 \right) dx_2 \ldots dx_d.$$

• Consider this decomposition using the function F_1 (one-dimensional integration), and functions G_k :

$$G_0(x_1, x_2, x_3, \dots, x_d) := f(x_1, x_2, x_3, \dots, x_d)$$

• Consider this decomposition using the function F_1 (one-dimensional integration), and functions G_k :

$$G_0(x_1, x_2, x_3, ..., x_d) := f(x_1, x_2, x_3, ..., x_d)$$

 $G_1(x_2, x_3, ..., x_d) := F_1(G_0(\bullet, x_2, x_3, ..., x_d), a_1, b_1)$

• Consider this decomposition using the function F_1 (one-dimensional integration), and functions G_k :

$$G_0(x_1, x_2, x_3, ..., x_d) := f(x_1, x_2, x_3, ..., x_d)$$

$$G_1(x_2, x_3, ..., x_d) := F_1(G_0(\bullet, x_2, x_3, ..., x_d), a_1, b_1)$$

$$G_2(x_3, ..., x_d) := F_1(G_1(\bullet, x_3, ..., x_d), a_2, b_2)$$

• Consider this decomposition using the function F_1 (one-dimensional integration), and functions G_k :

$$G_0(x_1, x_2, x_3, ..., x_d) := f(x_1, x_2, x_3, ..., x_d)$$
 $G_1(x_2, x_3, ..., x_d) := F_1(G_0(\bullet, x_2, x_3, ..., x_d), a_1, b_1)$
 $G_2(x_3, ..., x_d) := F_1(G_1(\bullet, x_3, ..., x_d), a_2, b_2)$
 \vdots
 \vdots
 $G_d() := F_1(G_{d-1}(\bullet), a_d, b_d)$

• G_k integrates over x_1, \ldots, x_k ; remaining variables free

• Consider this decomposition using the function F_1 (one-dimensional integration), and functions G_k :

$$G_0(x_1, x_2, x_3, ..., x_d) := f(x_1, x_2, x_3, ..., x_d)$$
 $G_1(x_2, x_3, ..., x_d) := F_1(G_0(\bullet, x_2, x_3, ..., x_d), a_1, b_1)$
 $G_2(x_3, ..., x_d) := F_1(G_1(\bullet, x_3, ..., x_d), a_2, b_2)$
 \vdots
 \vdots
 $G_d() := F_1(G_{d-1}(\bullet), a_d, b_d)$

• G_k integrates over x_1, \ldots, x_k ; remaining variables free

Numerical quadrature

• Replace F_1 by a quadrature formula, such as CT, CS, ...

Cost and Accuracy

Cost

- Uniform grid with n subintervals for 1d quadrature
- *d* dimensions: Cartesian product of 1d grids
- Indices

$$(i_1,\ldots,i_d)\in\{0,1,2,\ldots,n\}^d$$

with corresponding grid points

$$(x_1,\ldots,x_d)$$
 with $x_k=a_k+i_k\frac{b_k-a_k}{n}$

- Total cost:
 - $-(n+1)^d$ (with grid points on domain's boundary $\partial\Omega$)
 - $-(n-1)^d$ (if f is zero on $\partial\Omega$)

Cost and Accuracy (2)

Accuracy

- Still $\mathcal{O}(n^{-2})$ for CT, $\mathcal{O}(n^{-4})$ for CS
- Remark: starting with G_2 , the current function values are erroneous by $\mathcal{O}(n^{-2})$ and $\mathcal{O}(n^{-4})$ resp.; this does not alter the overall accuracy

 \Rightarrow Thus everything is fine...?

Multidimensional Quadrature: Example

Integration of

$$f(x_1,...,x_d) := \prod_{k=1}^d 4x_k(1-x_k)$$

on $\Omega = [0, 1]^d$ with the composite Trapezoidal rule

Multidimensional Quadrature: Example

Integration of

$$f(x_1,...,x_d) := \prod_{k=1}^d 4x_k(1-x_k)$$

on $\Omega = [0, 1]^d$ with the composite Trapezoidal rule

• Error:

Multidimensional Quadrature: Example (2)

• For ε -complexity: Use cost (number of function evaluations) as abscissa

Multidimensional Quadrature: Example (2)

• For ε -complexity: Use cost (number of function evaluations) as abscissa

Does not look that good any more...

Multidimensional Quadrature: Example (3)

"10²¹ function evaluations":

• Large number...

Multidimensional Quadrature: Example (3)

"10²¹ function evaluations":

- Large number...
- 1 ZFlop (Zeta) = 1.000.000.000.000 GFlop = 1.000.000 PFlop (if only one op. per grid point)

Multidimensional Quadrature: Example (3)

"10²¹ function evaluations":

- Large number...
- 1 ZFlop (Zeta) = 1.000.000.000.000 GFlop = 1.000.000 PFlop (if only one op. per grid point)
- Compute on LRZ's supercomputer SuperMUC:
 - Peak performance: 3 PFlop/s
- It would take almost 4 days to compute the integral, assuming that one integration operation can be performed in one clock cycle...

Curse of Dimensionality

ПЦП

ε -complexity

$$ullet$$
 CT: $\mathscr{O}(arepsilon^{-rac{d}{2}})$, CS: $\mathscr{O}(arepsilon^{-rac{d}{4}})$

Curse of Dimensionality

ε -complexity

• CT: $\mathscr{O}(\varepsilon^{-\frac{d}{2}})$, CS: $\mathscr{O}(\varepsilon^{-\frac{d}{4}})$

Curse of dimensionality

- Exponential dependency on dimensionality d
- Higher-dimensional problems infeasible to tackle $(d = 10 \text{ is still moderate} \dots)$
- Property of the problem or just of the algorithm?
- It's the algorithm ⇒ hierarchical methods (among few others)
 will be able to mitigate the curse of dimensionality to some extent

Monte-Carlo Integration

- example for a better methods for numerical quadrature:
- simple approach, simple to implement

Monte-Carlo Integration

- example for a better methods for numerical quadrature:
- simple approach, simple to implement

Monte-Carlo Idea:

- X be a random variable, uniformly distributed on Ω
- The expectation of *X* is then given as

$$E(f(X)) = \frac{1}{\text{Vol}(\Omega)} \int_{\Omega} f(x) \, dx = \frac{1}{\text{Vol}(\Omega)} F_d(f, \Omega)$$

Monte-Carlo Integration

- example for a better methods for numerical quadrature:
- simple approach, simple to implement

Monte-Carlo Idea:

- X be a random variable, uniformly distributed on Ω
- The expectation of *X* is then given as

$$E(f(X)) = \frac{1}{\text{Vol}(\Omega)} \int_{\Omega} f(x) \, dx = \frac{1}{\text{Vol}(\Omega)} F_{d}(f, \Omega)$$

• On the other hand: if x_k are realizations of X we obtain

$$\lim_{M\to\infty}\frac{1}{M}\sum_{k=1}^M f(x_k)=E(f(X))$$

with probability 1 (strong law of large numbers)

Monte-Carlo Integration (2)

- Simple to implement
- Cost completely independent of *d* (counting function evaluations)

Monte-Carlo Integration (2)

- Simple to implement
- Cost completely independent of *d* (counting function evaluations)
- Accuracy?
 - Estimate stochastically: compute standard deviation (use additivity of variances)

$$\sqrt{\operatorname{Var}\left(\frac{1}{M}\sum_{k=1}^{M}f(x_{k})\right)} = \sqrt{\frac{1}{M^{2}}\sum_{k=1}^{M}\operatorname{Var}(f)} = \sqrt{\frac{\operatorname{Var}(f)}{M}}$$

- Independent of d, too
- Dependencies of d only in Var(f) and $Vol(\Omega)$ possible; does not affect exponent of M

Monte-Carlo Integration (2)

- Simple to implement
- Cost completely independent of *d* (counting function evaluations)
- Accuracy?
 - Estimate stochastically: compute standard deviation (use additivity of variances)

$$\sqrt{\operatorname{Var}\left(\frac{1}{M}\sum_{k=1}^{M}f(x_{k})\right)} = \sqrt{\frac{1}{M^{2}}\sum_{k=1}^{M}\operatorname{Var}(f)} = \sqrt{\frac{\operatorname{Var}(f)}{M}}$$

- Independent of d, too
- Dependencies of d only in Var(f) and $Vol(\Omega)$ possible; does not affect exponent of M
- Thus (stochastically) ε -complexity of $\mathscr{O}(\varepsilon^{-2})$
 - Very slow convergence, but independent of d
 - thus: very helpful for tackling high-dimensional problems!

ПШ

What Next?

- We know that the curse of dimensionality can be overcome
- Search for alternative (better?) methods
- which can be used for other applications apart from integration as well, for example
- approach: hierarchical bases in higher dimensions

Part II

Archimedes, d-Dimensional

Current State: One-Dimensional Quadrature

- One-dimensional functions *f*, interval [*a*,*b*]
- Compute approximation $F_1(f, a, b)$ of area:

$$F_1(f,a,b) \approx \int_a^b f(x) dx$$

- Notation for appoximation of exact integral value in the following: $F_d(.)$, with d as the dimension
- One-dimensional quadrature rules:
 - Composite trapeziodal rule
 - Composite Simpson's rule
 - Archimedes' quadrature

Multi-Dimensional Quadrature

Consider multi-dimensional setting

$$F_d(f,\Omega) \approx \int_{\Omega} f(x_1,\ldots,x_d) d\vec{x}, \qquad \Omega := \prod_{k=1}^d [a_k,b_k]$$

First Attempt

• remember theorem of Fubini:

$$F_d(f,\Omega) = \int_{a_d}^{b_d} \cdots \int_{a_1}^{b_1} f(x_1,\ldots,x_d) dx_1 \ldots dx_d$$

• Use full-grid approach as before:

$$G_0(x_1,x_2,x_3,\ldots,x_d) := f(x_1,x_2,x_3,\ldots,x_d)$$

First Attempt

remember theorem of Fubini:

$$F_d(f,\Omega) = \int_{a_d}^{b_d} \cdots \int_{a_1}^{b_1} f(x_1,\ldots,x_d) dx_1 \ldots dx_d$$

Use full-grid approach as before:

$$G_0(x_1, x_2, x_3, \dots, x_d) := f(x_1, x_2, x_3, \dots, x_d)$$

$$G_1(x_2, x_3, \dots, x_d) := F_1(G_0(\bullet, x_2, x_3, \dots, x_d), a_1, b_1)$$

First Attempt

remember theorem of Fubini:

$$F_d(f,\Omega) = \int_{a_d}^{b_d} \cdots \int_{a_1}^{b_1} f(x_1,\ldots,x_d) dx_1 \ldots dx_d$$

Use full-grid approach as before:

$$G_0(x_1, x_2, x_3, ..., x_d) := f(x_1, x_2, x_3, ..., x_d)$$

$$G_1(x_2, x_3, ..., x_d) := F_1(G_0(\bullet, x_2, x_3, ..., x_d), a_1, b_1)$$

$$G_2(x_3, ..., x_d) := F_1(G_1(\bullet, x_3, ..., x_d), a_2, b_2)$$

First Attempt

• remember theorem of Fubini:

$$F_d(f,\Omega) = \int_{a_d}^{b_d} \cdots \int_{a_1}^{b_1} f(x_1,\ldots,x_d) dx_1 \ldots dx_d$$

Use full-grid approach as before:

$$G_0(x_1, x_2, x_3, ..., x_d) := f(x_1, x_2, x_3, ..., x_d)$$
 $G_1(x_2, x_3, ..., x_d) := F_1(G_0(\bullet, x_2, x_3, ..., x_d), a_1, b_1)$
 $G_2(x_3, ..., x_d) := F_1(G_1(\bullet, x_3, ..., x_d), a_2, b_2)$
 \vdots
 \vdots
 $G_d() := F_1(G_{d-1}(\bullet), a_d, b_d)$

We now consider the effect of Archimedes' quadrature as one-dimensional quadrature method for
 F₁

First Attempt: Employing Archimedes

- d nested loops (x_1, x_2, \dots)
- Summation of weighted function values
- No real advantages apart from adaptivity (which is not very useful this way)

First Attempt: Employing Archimedes

- *d* nested loops (*x*₁, *x*₂,...)
- Summation of weighted function values
- No real advantages apart from adaptivity (which is not very useful this way)

Interplay of hierarchization and summation (integration)

- Consider setting with d = 2
- First, compute integrals in x_1 -direction: $F_1(G_0(\bullet, x_2), a_1, b_1)$
 - Involves hierarchization in x_1 -direction
 - But no impact on $G_1(x_2)$
- $G_1(x_2)$: no hierarchical values, thus all $G_1(x_2)$ of same order
- After summation (integration) in x_1 -direction:
 - Hierarchization in x_2 -direction
 - Finally summation in x_2 -direction

Improved Version

- Consider computing $G_1(x_2)$
 - We are only interested in hierarchical surplus
 - Hierarchical surplus typically much smaller than function value
- \Rightarrow Could be computed with much less grid points in x_1 -direction

ТИП

Improved Version

- Consider computing $G_1(x_2)$
 - We are only interested in hierarchical surplus
 - Hierarchical surplus typically much smaller than function value
- \Rightarrow Could be computed with much less grid points in x_1 -direction
- We change the order of "integration in x_1 -direction" and "hierarchization in x_2 -direction"
 - Write hierarchical area elements of quadrature in x_2 -direction (trapezoid, segments, triangles) as function of x_1
 - Integrate those in x_1 -direction
- Now interplay of dimensions for integration much more complicated
- ... but this will lead to much more efficient method

Example, 2d

Consider

$$f(x_1,x_2) := \left(x_1 + \frac{1}{2}\right) \left(x_1 - \frac{3}{2}\right) \left(x_2 + \frac{1}{2}\right) \left(x_2 - \frac{3}{2}\right)$$

on
$$\Omega = [0, 1] \times [0, 2]$$

Trapezoidal Volume and Remainder Segment

First step of the hierarchical decomposition

$$F_2(f,\Omega) = F_1(T_2,a_1,b_1) + S_2(f,\Omega)$$

"Green function" \rightarrow linear interpolation of values at a_2 , b_2 :

$$\frac{f(x_1,a_2)(b_2-x_2)+f(x_1,b_2)(x_2-a_2)}{b_2-a_2}$$
 for any x_1

Trapezoidal Volume and Remainder Segment (2)

Decompose volume into

• trapezoidal (for constant x_1) cross-section with area

$$T_2(x_1) := \frac{b_2 - a_2}{2} (f(x_1, a_2) + f(x_1, b_2)),$$

 \rightarrow to be integrated in x_1 -direction using quadrature rule F_1

Trapezoidal Volume and Remainder Segment (2)

Decompose volume into

• trapezoidal (for constant x_1) cross-section with area

$$T_2(x_1) := \frac{b_2 - a_2}{2} (f(x_1, a_2) + f(x_1, b_2)),$$

- \rightarrow to be integrated in x_1 -direction using quadrature rule F_1
- and remainder segment

$$S_2(f,\Omega) := F_2(f,\Omega) - F_1(T_2, a_1, b_1)$$

$$= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \left(f(x_1, x_2) - \frac{f(x_1, a_2)(b_2 - x_2) + f(x_1, b_2)(x_2 - a_2)}{b_2 - a_2} \right) dx_1 dx_2$$

Note: T_2 is the integral over the linear interpolation ("green function")

Triangular Volumes and Remainder Segments

Second step of the hierarchical decomposition

$$S_2(f,\Omega) = F_1(D_2,a_1,b_1) + S_2(f,\ldots) + S_2(f,\ldots)$$

again: hierarchization in x_2 -direction; integrate in x_1 -direction

Triangular Volumes and Remainder Segments (2)

Decompose remainder segment $S_2(f,\Omega)$ into

• triangular (for constant x_1) cross-section with area

$$D_2(x_1) := \frac{b_2 - a_2}{2} \left(f\left(x_1, \frac{a_2 + b_2}{2}\right) - \frac{f(x_1, a_2) + f(x_1, b_2)}{2} \right)$$

- \rightarrow to be integrated in x_1 -direction using quadrature rule F_1
- and two remainder segments

$$S_2(f,[a_1,b_1] \times [a_2,b_2]) = F_1(D_2,a_1,b_1)$$

$$+ S_2(f,[a_1,b_1] \times \left[a_2,\frac{a_2+b_2}{2}\right])$$

$$+ S_2(f,[a_1,b_1] \times \left[\frac{a_2+b_2}{2},b_2\right])$$

Triangular Volumes and Remainder Segments (3)

Recursive decomposition

- Repeat last step for both remainder segments
- Decompose each into triangular sub-volume and two remainder segments
- Example for one of the two segments and sum of trapezoidal and first three triangular sub-volumes:

Recursive Structure of Function Calls

- Nested recursive structure of function calls
- For higher-dimensional problems: one more level (F_d and S_d) for each additional dimension

Recursive Structure of Function Calls

- Nested recursive structure of function calls
- For higher-dimensional problems: one more level (F_d and S_d) for each additional dimension

- Consider number of function evaluations for grid point inside of Ω
 - Straightforward: 3^d evaluations to compute surplus
 - All but one have already been computed!

пп

Subvolumes

- F_1 : the subvolumes (hierarchized in x_2 -direction) are decomposed (in x_1 -direction) into trapezoid and many triangles
- Integrand itself is area (one slice trapezoidal/triangular subareas)
- Subvolumes which are added in quadrature are pagodas (neglecting trapezoidals)
 - Height of pagodas: *d*-dimensional hierarchical surplus
 - Volume of pagodas: 2^{-d} times size of support times surplus (more in next part)

тип

Subvolumes

- F_1 : the subvolumes (hierarchized in x_2 -direction) are decomposed (in x_1 -direction) into trapezoid and many triangles
- Integrand itself is area (one slice trapezoidal/triangular subareas)
- Subvolumes which are added in quadrature are pagodas (neglecting trapezoidals)
 - Height of pagodas: d-dimensional hierarchical surplus
 - Volume of pagodas: 2^{-d} times size of support times surplus (more in next part)
- Taking stopping criterion depending on surplus (*d* criteria: one for each S_i)
 - Find those grid points for which function evaluation is worthwile
 - In general much less than naive implementation
- Extend from composite trapezoidal rule to Simpsons' as in one-dimensional setting

Archimedes Quadrature – d Dimensions

Start of recursion \rightarrow "trapezoid plus segment S":

$$F_d^{\text{Arch}}(f(x_1,...,x_d),[a_1,b_1]\times \cdots \times [a_d,b_d])$$

$$=F_{d-1}^{\text{Arch}}(T_d(x_1,...,x_{d-1}),[a_1,b_1]\times \cdots \times [a_{d-1},b_{d-1}])$$

$$+S_d(f(x_1,...,x_d),[a_1,b_1]\times \cdots \times [a_d,b_d])$$

with "trapezoid" function

$$T_d(x_1,\ldots,x_{d-1})=\frac{b_d-a_d}{2}\big(f(x_1,\ldots,x_{d-1},a_d)+f(x_1,\ldots,x_{d-1},b_d)\big)$$

Archimedes Quadrature – d Dimensions

Dimensional recursion for surplus section *S*:

$$S_{d}(f(x_{1},...,x_{d}),[a_{1},b_{1}]\times[a_{2},b_{2}]\times\cdots\times[a_{d},b_{d}])$$

$$=F_{d-1}^{Arch}(D_{d}(x_{1},...,x_{d-1}),[a_{1},b_{1}]\times\cdots\times[a_{d-1},b_{d-1}])$$

$$+S_{d}(f(x_{1},...,x_{d}),[a_{1},b_{1}]\times\cdots\times[a_{d-1},b_{d-1}]\times\left[a_{2},\frac{a_{2}+b_{2}}{2}\right])$$

$$+S_{d}(f(x_{1},...,x_{d}),[a_{1},b_{1}]\times\cdots\times[a_{d-1},b_{d-1}]\times\left[\frac{a_{2}+b_{2}}{2},b_{2}\right])$$

with
$$D_d(x_1,...,x_{d-1}) = \frac{b_d - a_d}{2} \left(f\left(x_1,...,x_{d-1},\frac{a_d + b_d}{2}\right) - \frac{f(x_1,...,x_{d-1},a_d) + f(x_1,...,x_{d-1},b_d)}{2} \right)$$