```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy.stats import skew, kurtosis
import seaborn as sns #This is for generating Histogram with Ker
```

import pandas as pd

df = pd.read_csv ('hotel_books.csv') #read the 'hotel_books.csv file

from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

df.dtypes #check for data types

df.isnull().sum() #check for missing values

sns.histplot(df['clients'], kde=True) #generate histogram with kernel density estimate (KDE) for number of hotel clients

<Axes: xlabel='clients', ylabel='Count'>

sns.histplot(df['total_bill'], kde=True) #generate histogram with kernel density estimate (KDE) for total bill connected

```
<a> <Axes: xlabel='total_bill', ylabel='Count'>
```

```
#compute for skewness and kurtosis for number of clients
skew1 = df['clients'].skew()
kurt1 = df['total_bill'].kurt()
print(f'Kurtosis for the number of hotel clients in a day:{kurt1}')
print(f'Skewness for the number of hotel clients in a day:{skew1}')
```

Exertises for the number of hotel clients in a day:-1.130219880444574 Skewness for the number of hotel clients in a day:-0.05968808896371035

```
#compute for skewness and kurtosis for total number of bill
skew2 = df['clients'].skew()
kurt2 = df['total_bill'].kurt()
print(f'Kurtosis for the total bill collected from clients per day:{kurt2}')
print(f'Skewness for the total bill collected from clients per day:{skew2}')
```

Exertises for the total bill collected from clients per day:-1.130219880444574 Skewness for the total bill collected from clients per day:-0.05968808896371035

df.describe() #generate summary measure and observe the mean and 50% (median)

_ _*		day	clients	total_bill
	count	30.000000	30.000000	30.000000
	mean	15.500000	25.666667	28344.233333
	std	8.803408	13.557879	12441.769892
	min	1.000000	5.000000	7534.000000
	25%	8.250000	16.000000	18335.000000
	50%	15.500000	28.000000	25841.500000
	75%	22.750000	35.750000	39810.250000
	may 4	30 000000	40 000000	10150 000000

stats.mode(df['clients']) #compute for mode

→ ModeResult(mode=8, count=4)

stats.mode(df['total_bill']) #compute for mode

→ ModeResult(mode=7534, count=1)

df.dtypes #check for data types

df.isnull().sum() #check for missing values

#check dataset again for confirmation df.head(30) $\,$

	day	clients	total_bill
0	1	33	23958
1	2	25	26812
2	3	5	24871
3	4	17	17954
4	5	28	29416
5	6	16	19478
6	7	41	12904
7	8	8	49386
8	9	5	22155
9	10	36	7534
10	11	46	35116
11	12	7	30492
12	13	22	14039
13	14	29	20932
14	15	30	42492
15	16	20	40749
16	17	38	8733
17	18	23	44654
18	19	8	17652
19	20	28	21636
20	21	41	16992
21	22	16	15366
22	23	8	49450
23	24	35	23499
24	25	49	37999
25	26	8	37056
26	27	31	43434
27	28	41	46577
28	29	30	28577
20	30	16	40414