Info

x means destination register, SR means source register in a register–register operand, PR means register in a register–pointer operand. n means constant number (nB for 8-bit, nW for 16-bit, nD for 32-bit, nQ for 64-bit). * means pointer.

For arguments, R means register, K means constant, P means memory address.

Destination Registers (x)

```
{\tt rax}\Rightarrow 0 \ {\tt rbx}\Rightarrow 3
```

 $\texttt{rcx}\Rightarrow \texttt{1}$

 ${\tt rdx}\Rightarrow 2$

 $\mathtt{rdi} \Rightarrow 7$

Source Registers (SR)

```
R rax \Rightarrow Cx

R rbx \Rightarrow D(x+8)

R rcx \Rightarrow C(x+8)

R rdx \Rightarrow Dx

R rdi \Rightarrow F(x+8)
```

Register in a Register-Pointer Op (PR)

```
egin{array}{l} {
m rax} 
ightarrow 04 \\ {
m rbx} 
ightarrow 10 \\ {
m rcx} 
ightarrow 00 \\ {
m rdx} 
ightarrow 14 \\ {
m rdi} 
ightarrow 30 \end{array}
```

1 mov

1.1 register

```
mov R K \Rightarrow 48 C7 Cx nQ mov R R \Rightarrow 48 89 SR mov R P \Rightarrow 48 8B PR 25 *
```

1.2 pointer

```
mov P R \Rightarrow 48 89 PR 25 * mov P K \Rightarrow 48 C7 04 25 * nQ
```

2 arithmetic

2.1 add

2.1.1 register

add R R \Rightarrow 48 01 SR add R (K<0x80) \Rightarrow 48 83 Cx nB add rax K \Rightarrow 48 05 nQ add R K \Rightarrow 48 81 Cx nQ add R P \Rightarrow 48 01 PR 25 *

2.1.2 pointer

add P R \Rightarrow 48 03 PR 25 *

2.2 sub

sub R S \Rightarrow 48 29 SR sub R (K < 127) \Rightarrow 48 83 C(x+8) nB sub rax K \Rightarrow 48 2D nQ sub R K \Rightarrow 48 81 E(x+8) nQ sub R P \Rightarrow 48 29 PR 25 *

2.2.1 pointer

sub P R \Rightarrow 48 2B PR 25 *

2.3 mul

mul R \Rightarrow 48 F7 Ex mul P \Rightarrow 48 F7 24 25 *

2.4 imul

imul R \Rightarrow 48 F7 E(x+8) imul P \Rightarrow 48 F7 2C 25 * imul R R \Rightarrow 48 0F AF SR

2.5 div

div R \Rightarrow 48 F7 Fx div P \Rightarrow 48 F7 34 25 *

2.6 idiv

idiv R \Rightarrow 48 F7 F(x+8) idiv P \Rightarrow 48 F7 3C 25 *

2.7 neg

neg R \Rightarrow 48 F7 D(x+8) neg P \Rightarrow 48 F7 1C 25 *

3 Shift

3.1 shr

shr R (K=1) \Rightarrow 48 D1 E(x+8) shr R K \Rightarrow 48 C1 E(x+8) nB shr P (K=1) \Rightarrow 48 D1 2C 25 * shr P K \Rightarrow 48 C1 2C 25 * nB

3.2 sar

sar R (K=1) \Rightarrow 48 D1 F(x+8) sar R K \Rightarrow 48 C1 F(x+8) nB sar P (K=1) \Rightarrow 48 D1 3C 25 * sar P K \Rightarrow 48 C1 3C 25 * nB

3.3 shl

shl R (K=1) \Rightarrow 48 D1 Ex shl R K \Rightarrow 48 C1 Ex nB shl R (K=1) \Rightarrow 48 D1 24 25 * shl R K \Rightarrow 48 C1 24 25 * nB

3.4 ror

ror R (K=1) \Rightarrow 48 D1 C(x+8) ror R K \Rightarrow 48 C1 C(x+8) nB ror P (K=1) \Rightarrow 48 D1 OC 25 * ror P K \Rightarrow 48 C1 OC 25 * nB

3.5 rol

rol R (K=1) \Rightarrow 48 D1 Cx rol R K \Rightarrow 48 C1 Cx nB rol P (K=1) \Rightarrow 48 D1 04 25 * rol P K \Rightarrow 48 C1 04 25 * nB

4 Binary Logic

4.1 not

not R \Rightarrow 48 F7 Dx not P \Rightarrow 48 F7 14 25 *

4.2 or

4.2.1 register

or R R \Rightarrow 48 09 SR or R (K<0x80) \Rightarrow 48 83 C(x+8) nB or rax K \Rightarrow 48 0D nQ or R K \Rightarrow 48 81 C(x+8) nQ or R P \Rightarrow 48 09 PR 25 *

4.2.2 pointer

or P R \Rightarrow 48 0B PR 25 * or P (K<127) \Rightarrow 48 83 0C 25 * nB or P K \Rightarrow 48 81 0C 25 * nQ

4.3 xor

 $\begin{array}{l} \text{xor R R} \Rightarrow 48 \text{ 31 SR} \\ \text{xor R P} \Rightarrow \end{array}$

4.4 and

and R R \Rightarrow 48 21 SR

5 Miscellaneous

 $\begin{array}{l} \mathtt{nop} \Rightarrow \mathtt{90} \\ \mathtt{syscall} \Rightarrow \mathtt{0F} \ \mathtt{05} \end{array}$