COM3110/4115/6115: Text Processing

Information Retrieval: retrieval models

Mark Stevenson

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ◇ ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Evaluation

Bag-of-Words Approach

- Standard approach to representing documents (and queries) in IR:
 - record what words (terms) are present
 - usually, plus count of term in each document
- Ignores relations between words
 - ♦ i.e. of order, proximity, etc
 - e.g. rabbit eating = eating rabbit

- Such representations known as bag of words approaches
 - ♦ c.f. mathematical structure "bag"
 - like a set (i.e. unordered), but records a count for each element

Information Retrieval: Methods

Boolean search:

- binary decision: is document relevant or not?
- presence of term is necessary and sufficient for match
- boolean operators are set operations (AND, OR)

Ranked algorithms:

- frequency of document terms
- onot all search terms necessarily present in document
- Incarnations:
 - The vector space model (SMART, Salton et al, 1971)
 - The probabilistic model (OKAPI, Robertson/Spärck Jones, 1976)
 - Web search engines

The Boolean model

- Approach: construct complex search commands, by
 - combining basic search terms (keywords)
 - using boolean operators
- Boolean Operators:
 - ◆ AND, OR, NOT, BUT, XOR (exclusive OR)
- E.g.:

```
Monte-Carlo AND (importance OR stratification) BUT gambling
```

- Boolean query provides a simple logical basis for deciding whether any document should be returned, based on:
 - whether basic terms of query do/do not appear in the document
 - the meaning of the logical operators

The Boolean model: set-theoretic interpretation

- Boolean operators have a set-theoretic interpretation for efficient retrieval
- Overall document collection forms maximal document set
- let d(E) denote the document set for expression E
 - E either a basic term or boolean expression
- Boolean operators map to set-theoretic operations:
 - ♦ AND \mapsto ∩ (intersection): $d(E_1 \text{ AND } E_2) = d(E_1) \cap d(E_2)$
 - \diamond OR $\mapsto \cup$ (union): $d(E_1 \text{ OR } E_2) = d(E_1) \cup d(E_2)$
 - ♦ NOT \mapsto c (complement): $d(NOT E) = d(E)^c$
 - ♦ BUT \mapsto (difference): $d(E_1 \text{ BUT } E_2) = d(E_1) d(E_2)$

The Boolean model: set-theoretic interpretation (contd)

E.g. Monte-Carlo AND (importance OR stratification) BUT gambling

The Boolean model: set-theoretic interpretation (contd)

E.g. Monte-Carlo AND (importance OR stratification) BUT gambling

The Boolean model: set-theoretic interpretation (contd)

E.g. Monte-Carlo AND (importance OR stratification) BUT gambling

Boolean Queries: Complexity

- Question: Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered
- Query: ((Ultrasonography [mh] OR ultrasound [tw] OR ultrasonograph* [tw] OR sonograp*[tw] OR us [sh]) OR (Magnetic Resonance Imaging [mh] OR MR imag*[tw] OR magnetic resonance imag* [tw] OR MRI [tw])) AND (Rotator Cuff [mh] OR rotator cuff* [tw] OR musculotendinous cuff* [tw] OR subscapularis [tw] OR supraspinatus [tw] OR infraspinatus OR teres minor [tw]) AND (Rupture [mh:noexp] OR tear* [tw] OR torn [tw] OR thickness [tw] OR lesion* [tw] OR ruptur* [tw] OR injur* [tw])

From Lenza, M., Buchbinder, R., Takwoingi, Y., Johnston, R. V., Hanchard, N. C., & Faloppa, F. (2013). Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. The Cochrane Library.

The Boolean model: summary

- Documents either match or don't match
 - ♦ Expert knowledge needed to create high-precision queries → OK for expert users
 - Often used by bibliographic search engines (library)
- Not good for the majority of users
 - \diamond Most users not familiar with writing Boolean queries \rightarrow not natural
 - \diamond Most users don't want to wade through 1000s unranked result lists \to unless very specific search in small collections
 - \diamond This is particularly true of web search \rightarrow large set of docs

The Vector Space model

- Documents are also represented as "bags of words":
 - ◇ "John is quicker than Mary" = "Mary is quicker than John"
- Documents are points in high-dimensional vector space
 - ♦ each term in index is a dimension → sparse vectors
 - values are frequencies of terms in documents, or variants of frequency
- Queries are also represented as vectors (for terms that exist in index)
- Approach
 - Select document(s) with highest document-query similarity
 - Document-query similarity is a model for relevance (ranking)
 - \diamond With ranking, the number of returned documents is less relevant \rightarrow users start at the top and stop when satisfied

The Vector Space model (contd)

2 dimensions:

Query: car insurance

The Vector Space Model (contd)

- Approach: compare vector of query against vector of each document
 - to rank documents according to their similarity to the query

	$Term_1$	Term ₂	Term ₃	 $Term_n$
Doc_1	9	0	1	 0
Doc ₁ Doc ₂ Doc ₃	0	1	0	 10
Doc ₃	0	1	0	 2
Doc_{N}	4	7	0	 5
Q	0	1	0	 1

How to measure similarity between vectors?

• Each document and the query are represented as a vector of n values:

$$\vec{d^i} = (d_1^i, d_2^i, \dots, d_n^i), \qquad \vec{q} = (q_1, q_2, \dots, q_n)$$

Many metrics of similarity between 2 vectors, e.g.: Euclidean

$$\sqrt{\sum_{k=1}^n (q_k - d_k)^2}$$

• E.g.: Distance between:

$$\begin{array}{l} \textit{Doc}_1 \text{ and } \textit{Q} = \sqrt{(9-0)^2 + (0-1)^2 + (1-0)^2 + (0-1)^2} = \sqrt{84} = 9.15 \\ \textit{Doc}_2 \text{ and } \textit{Q} = \sqrt{(0-0)^2 + (1-1)^2 + (0-0)^2 + (10-1)^2} = \sqrt{81} = 9 \\ \textit{Doc}_3 \text{ and } \textit{Q} = \sqrt{(0-0)^2 + (1-1)^2 + (0-0)^2 + (2-1)^2} = \sqrt{1} = 1 \end{array}$$

Doc 3 is the closest (shortest distance)

How to measure similarity between vectors? (contd)

Is it a good idea?

- Distance is large for vectors of different lengths, even if by only one term (e.g. Doc₂ and Q)
- Frequency of terms overweighted

How to measure similarity between vectors? (contd)

• Better similarity metric, used in *vector-space* model: **cosine** of the angle between two vectors \vec{x} and \vec{y} :

$$cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}$$

- It can be interpreted as the normalised correlation coefficient:
 - i.e. it computes how well the x_i and y_i correlate, and then divides by the length of the vectors, to scale for their magnitude
 - \diamond The vector \vec{x} is normalised by dividing its components by its length:

$$|\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

How to measure similarity between vectors? (contd)

- The cosine value ranges from:
 - ◆ 1, for vectors pointing in the same direction, to
 - 0, for orthogonal vectors, to
- Specialising the equation to comparing a query q and document d:

$$\mathit{sim}(\vec{q}, \vec{d}) = \mathit{cos}(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}$$

i.e. computes how well occurrences of each term i correlate in query and document, then scales for the magnitude of the overall vectors

Summary

- Automated Retrieval Models
 - Boolean Model
 - Vector Space Model

- Next time
 - What counts as a term?
 - How are terms weighted?