Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Versuch 23 Röntgenstrahlung

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Phillip Bastian

Versuchsdatum: 11.03.2015

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie 2.1 Röntgenröhre	3 3 4
	2.4 Abhängigkeit der Intensität von der Anodenspannung	4
3	Durchführung	4
4	4.1 Charakteristisches Spektrum von Eisen	4 4 4 4
5	Diskussion	5
6	Anhang	5
Lit	eratur	5

1 Einleitung

2 Theorie

2.1 Röntgenröhre

Abbildung 1: Aufbau. [LP2, Datum: 02.01.15]

Abbildung 2: Bragg-Reflexion schematisch. [LP2, Datum: 02.01.15]

$$2d\sin\theta = n\lambda\tag{1}$$

2.2 Geiger-Müller-Zählrohr

$$N_{\text{korrigiert}} = \frac{N_{\text{gemessen}}}{1 - \tau \cdot N_{\text{gemessen}}} \tag{2}$$

2.3 charakteristische Röntgenstrahlung

$$v_K = R_v (Z - 1)^2 \left(\frac{1}{n_f^2} - \frac{1}{n_s^2} \right)$$
 (3)

$$v_L = R_v (Z - \sigma_L)^2 \left(\frac{1}{n_f^2} - \frac{1}{n_s^2} \right)$$
 (4)

2.4 Abhängigkeit der Intensität von der Anodenspannung

$$\lambda_{\rm gr} = \frac{hc}{e \cdot U_A} \tag{5}$$

$$I_K \sim I_A \cdot (U_A - U_K)^{3/2}$$
 (6)

3 Durchführung

4 Auswertung

4.1 Charakteristisches Spektrum von Eisen

4.1.1 Wellenlängen und Energien

					Energie E [eV]	
		n	Winkel θ	Wellenlänge λ [pm]	Messwert	Lit. Wert
K_{α}	7	1	$28.9^{\circ} \pm 0.2^{\circ}$	194.3 ± 1.3	6380 ± 50	6391, 6404
	\mathbf{L}_{α}	2	$74.1^{\circ} \pm 0.2^{\circ}$	193.3 ± 0.2	6414 ± 14	0591, 0404
K_{β}	7	1	$26.0^{\circ} \pm 0.2^{\circ}$	176.2 ± 1.3	7040 ± 60	7058
	2	$60.8^{\circ} \pm 0.2^{\circ}$	175.5 ± 0.4	7065 ± 17	1000	

4.1.2 Abhängigkeit von der Anodenspannung

4.1.3 Grenzwellenlänge der Bremsstrahlung

$$h = (6.57 \pm 0.06) \ 10^{-34} \text{J s}$$
(7)

Abbildung 3: Spektrum aus Messung 2

5 Diskussion

6 Anhang

Literatur

[LP2] Lehrportal der Universität Göttingen. https://lp.uni-goettingen.de/get/text/4385.

Abbildung 4: Produkt aus Beschleunigungsspannung und zugehöriger Grenzwellenlänge in Abhängigkeit der Spannung