

Introdução à Assimilação de Dados (MET 563-3)

Motivação - Equação de Análise Empírica

Dr. Carlos Frederico Bastarz Dr. Dirceu Luis Herdies

Programa de Pós-Graduação em Meteorologia (PGMET) do INPE

22 de Setembro de 2025

Motivação

- Esta é uma primeira aproximação para o problema de análise univariada
- Isto significa, na prática, que estamos tratando de um conjunto (ou uma série) de observações de uma mesma quantidade (e.g., temperatura)
- Considere um modelo matemático simples:

$$f(\mathbf{x}) = \sin(\mathbf{x}) + arepsilon, \quad arepsilon \sim \mathcal{N}(0, \sigma^2), \quad -\pi \leq x \leq \pi$$

 A função seno com a adição de um ruído normalmente distribuído

Motivação

• Suponha que possamos utilizar este modelo para ajustar uma curva produzida a partir de uma distribuição normal randômica utilizando uma **equação de análise empírica**:

$$\mathbf{x_a} = \alpha \mathbf{y_o} + (1 - \alpha) \mathbf{x_b}$$

- Onde:
 - ∘ x_a: é o vetor análise
 - ∘ **x**_b: é o vetor background
 - ∘ y₀: é o vetor observação
 - \circ α : é um peso escalar dado à observação e ao background

O modelo

• Já sabemos que o nosso modelo é a função seno. Então, vamos definir um domínio para a nossa função. Seja \mathbf{x}_0 um vetor com 629 elementos de 1 a 629:

```
x0 = np.arange(1,630,1)
```

• Como nosso modelo é a função seno, vamos aplicar a função aos elementos do nosso domínio e vamos nomear de \mathbf{x}_b o vetor com a imagem da nossa função, ou melhor, \mathbf{x}_b é o nosso background:

```
xb = np.sin(x0) + ruido
```

Como é x_b?

```
xb =
array([ 1.60624883e+00,  1.32688359e+00,  1.36485484e-01, -5.28018657e-01, ...
-1.70776972e+00, -1.23210461e+00, -4.33982552e-01, 8.86349535e-01])
```


As observações

• O vetor observação y_o , pode ser definido de forma semelhante ao vetor background x_b :

```
mu_true = 0
sigma_true = 1
s = np.random.normal(mu_true, sigma_true, 629)
y = xb + np.sin(s)
```

Como é yo?

```
y =
array([ 8.63703635e-01, 1.61015360e+00, 5.87457172e-01, -1.50481750e+00, ...
-9.50091116e-01, -1.64829028e+00, 5.60348293e-01, 5.84897816e-02])
```


Distribuição Normal

• Observe que ambos, $\mathbf{x_b}$ e \mathbf{y} , possuem distribuição normal, isto é, ambos são representados por valores aleatórios distribuídos sobre uma curva normal com $\mu_{xb}=0,0019$ e $\sigma_{xb}=0,8909$ e $\mu_y=-0.011$ e $\sigma_y=0.8563$:

Distribuição Normal

• Estamos mantendo as distribuições de $\mathbf{x_b}$ e $\mathbf{y_o}$ próximas à distribuição normal, porque esta distribuição possui as seguintes propriedades:

$$f(\psi) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(\psi-\mu)^2}{2\sigma^2}}$$

- ~68% dos valores encontram-se a uma distância da média inferior a um desvio-padrão
- ~95% dos valores encontram-se a uma distância da média inferior a duas vezes o desvio-padrão
- ~99,7% dos valores encontram-se a uma distância da média inferior a três vezes o desvio-padrão

Séries de x_b e y_o

• Com $\mathbf{x_b}$ e $\mathbf{y_o}$ definidos, podemos plotar os seus elementos:

Equação de Análise Empírica

- Olhando para nossa equação de análise empírica, percebemos que os elementos $\mathbf{x_b}$ e $\mathbf{y_o}$ já estão definidos
- Ainda precisamos determinar o parâmetro α , que é o peso a ser atribuído às observações
- $1-\alpha$ é um outro peso que será atribuído ao background **por que?**
- Uma vez determinado o valor de α , determinaremos $1-\alpha$ e, consequentemente, o valor de $\mathbf{x_a}$, o vetor análise (representado da mesma forma que $\mathbf{x_b}$ e $\mathbf{y_o}$):

$$\mathbf{x_a} = \alpha \mathbf{y_o} + (1 - \alpha) \mathbf{x_b}$$

Determinação de α

- Antes de determinarmos o parâmetro α , precisamos saber o que ele é e como pode ser definido
- α é um parâmetro que relaciona as medidas das variâncias das parcelas:

$$lpha = rac{\sigma_b^2}{\sigma_b^2 + \sigma_o^2}$$

- Onde:
 - $\circ \ \sigma_{\it h}^2$ e $\sigma_{\it o}^2$ são as variâncias do background e das observações
- Para calcular lpha, precisamos calcular as variâncias dos vetores $\mathbf{x_b}$ e $\mathbf{y_o}$

Erros $E(\mathbf{x_b})$ e $E(\mathbf{y_o})$

- A variância é uma medida de dispersão
- Ela pode ser calculada com base no erro da distribuição dos valores
- Vamos fazer as seguintes considerações:
 - 1. Não há relação entre os elementos dos dois vetores $\mathbf{x_b}$ e $\mathbf{y_o}$
 - 2. Os erros dos elementos dos vetores \mathbf{x}_b e \mathbf{y}_o são radômicos, ou seja, não há relação entre os erros dos elementos do vetor background e entre os elementos do vetor observação

```
errb = mdb + dpb * np.random.randn(len(x0))
erro = mdo + dpo * np.random.randn(len(x0))
```

- Onde:
 - $\circ mdo$: média da observação (μ_o)
 - $\circ \, mdb$: média do background (μ_b)
 - $\circ~dpo$: desvio-padrão da observação (σ_o)
 - $\circ dpb$: desvio-padrão do background (σ_b)

Testando alguns valores de σ_b e σ_o

• Exemplo da série dos erros de background $E(\mathbf{x_b})$ e observação $E(\mathbf{y_o})$:

Testando alguns valores de σ_b e σ_o

• Exemplo da distribuição dos erros de background $E(\mathbf{x_b})$ e observação $E(\mathbf{y_o})$:

Variância dos erros σ_b^2 e σ_o^2

• Dado que α depende dos valores das variâncias das distribuições dos erros de background e observação, calculamos σ_b^2 e σ_o^2 :

```
sigmab2 = np.var(errb)
sigmao2 = np.var(erro)
```

• Partindo-se dos valores das distribuições de $E(\mathbf{x_b})$ e $E(\mathbf{y_o})$, obtemos as seguintes variâncias:

```
sigmab2 = 0.0095226361060977
sigmao2 = 0.00011333207595536619
```

A variância dos erros de observação é muito menor do que a variância dos erros de background

Cálculo de α

• Com os valores de σ_b^2 e σ_o^2 , o valor de α é calculado:

```
alpha = sigmab2 / (sigmab2 + sigmao2)
alpha = 0.9882386415340758
```

• Da equação de análise empírica, observamos que 99% do peso é dado para as observações, enquanto que $1\%~(1-\alpha)$ de peso é dado para o background

$$\mathbf{x_a} = \alpha \mathbf{y_o} + (1 - \alpha) \mathbf{x_b}$$

Cálculo de x_a

• Observando novamente a equação da análise, notamos que todos os parâmetros estão determinados:

$$\mathbf{x_a} = \alpha \mathbf{y_o} + (1 - \alpha) \mathbf{x_b}$$

- α : é um valor único ($\alpha \approx 0,99$)
- y_o : é um vetor com valores "observados" de apenas uma grandeza (e.g., temperatura)
- \mathbf{x}_b : é um vetor com valores produzidos (calculados) por um modelo matemático (neste caso, a função seno adicionada de um ruído de distribuição próxima à Normal)

Cálculo de x_a

$$\mathbf{x_a} = \alpha \mathbf{y_o} + (1 - \alpha) \mathbf{x_b}$$

Plotando todos os resultados juntos

- Observe que a análise (curva vermelha) representa o ajuste do background (curva azul) às observações (pontos azuis)
- Quanto mais precisa a observação, melhor o ajuste
- Notebook com Atividade Prática 1

https://cfbastarz.github.io/met563-3/

https://github.com/cfbastarz/MET563-3

🔀 <u>carlos.bastarz@inpe.br</u>

