

General information

Designation

Betula alleghaniensis (L)

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

ıl						
Base material Wood (hardwood)						
content 100 %						
	0/					
	%					
- 1.34	USD/kg					
- 1.02e3	USD/m^3					
	- 1.34					

Physical properties

Density 620	-	760	kg/m^3
-------------	---	-----	--------

Mechanical properties

Young's modulus	* 13.7	-	16.8	GPa
Yield strength (elastic limit)	* 50.7	-	61.9	MPa
Tensile strength	* 95.8	-	117	MPa
Elongation	* 1.88	-	2.3	% strain
Compressive strength	50.7	-	62	MPa
Flexural modulus	12.5	-	15.2	GPa
Flexural strength (modulus of rupture)	103	-	126	MPa
Shear modulus	* 1.01	-	1.24	GPa
Shear strength	11.7	-	14.3	MPa
Bulk modulus	* 1.03	-	1.15	GPa
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.3			
Hardness - Vickers	* 6.54	-	7.99	HV
Hardness - Brinell	* 54.6	-	66.7	НВ
Hardness - Janka	* 6.54	-	7.99	kN

Birch (betula alleghaniensis) (I)

#EDUPIACK						
Fatigue strength at 10^7 cycles	* 30.9 - 37.8 MPa					
Mechanical loss coefficient (tan delta)	* 0.0064 - 0.0078					
Differential shrinkage (radial)	0.18 - 0.24 %					
Differential shrinkage (tangential)	0.26 - 0.31 %					
Radial shrinkage (green to oven-dry)	6.6 - 8 %					
Tangential shrinkage (green to oven-dry)	8.6 - 10.5 %					
Volumetric shrinkage (green to oven-dry)	15.1 - 18.5 %					
Work to maximum strength	129 - 158 kJ/m^3					
Impact & fracture properties						
Fracture toughness	* 5.7 - 6.9 MPa.m^0.5					
Thermal properties						
Glass temperature	77 - 102 ℃					
Maximum service temperature	120 - 140 ℃					
Minimum service temperature	* -7323 °C					
Thermal conductivity	* 0.3 - 0.37 W/m.°C					
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃					
Thermal expansion coefficient	* 2 - 11 µstrain/℃					
Electrical properties						
Electrical resistivity	3.05e14 - 3.73e14 µohm.cm					
Dielectric constant (relative permittivity)	* 6.85 - 8.37					
Dissipation factor (dielectric loss tangent)	* 0.08 - 0.098					
Dielectric strength (dielectric breakdown)	* 0.4 - 0.6 MV/m					
Magnetic properties						
Magnetic type	Non-magnetic					
Optical properties						
	Opaque					
Critical materials risk						
	No					
· · · · · · · · · · · · · · · · · · ·						
	Limited use					
•	Limited use					
	Limited use					
Strong acids	Unacceptable					
	Acceptable					
Strong alkalis	Unacceptable					
Magnetic properties Magnetic type Optical properties Transparency Critical materials risk Contains >5wt% critical elements? Durability Water (fresh) Water (salt) Weak acids Strong acids Weak alkalis Strong alkalis	Opaque No Limited use Limited use Limited use Unacceptable Acceptable					

Birch (betula alleghaniensis) (I)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	-	12.8	MJ/kg	
-------------------------------------	------	---	------	-------	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	kg/kg	
-----------------------------------	-------	---	-------	-------	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.25	-	1.38	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0938	-	0.104	kg/kg
Fine machining energy (per unit wt removed)	* 8.23	-	9.1	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.618	-	0.683	kg/kg
Grinding energy (per unit wt removed)	* 16	-	17.7	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.2	-	1.33	kg/kg

Recycling and end of life

×			
8.55	-	9.45	%
✓			
✓			
* 19.8	-	21.3	MJ/kg
* 1.69	-	1.78	kg/kg
✓			
✓			
	8.55 v * 19.8 * 1.69	8.55 - * 19.8 - * 1.69 - * 1.69 -	8.55 - 9.45 * 19.8 - 21.3 * 1.69 - 1.78

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

