

Hardware Architectures for Embedded and Edge Al

<u>Prof Manuel Roveri – manuel.roveri@polimi.it</u> <u>Massimo Pavan – massimo.pavan@polimi.it</u>

Exercise session 4 – TinyML and TensorFlow lite (for Microcontrollers)

What is TinyML?

- •Fast growing field of Machine Learning
- Algorithms, hardware, and software
- On-device sensor data analytics
- •Extreme low power consumption
- Always on ML use-cases
- Battery operated devices

What are the goals of tinyML?

- •We want to **perform inference** on an embedded/iot device
- •We want to be able to perform computation completely **on-device**, for efficiency, privacy and latency reasons.
- •We want it to solve **simple tasks**, with respect to big ML pipelines/algorithms
- •We want TinyML algorithms to have a **low power consumption**, in order to be able to function continously for days, weeks or even a year without human aid and without changing batteries
- •Very often, we want it to be «embeddable» in larger cascade architectures.

What are the application of tinyML now...

Wake-word detection

Presence detection

Anomaly detection

Health parameter monitoring

... and what will they be in the next future

TinyML is not only Neural Networks, nor only TFmicro

Endpoints have sensors, a lot of sensors

Motion sensors

Gyroscope, Radar, Accelerometer

Acustic sensors

Ultrasonic, Microphones, Vibrometers ...

Environmental sensors

Temperature, Humidity, Pressure, IR ...

Touchscreen sensors

Capacitive, IR

Image sensors

Thermal, Image

Biometric sensors

Fingerprint, Heart rate ...

Force sensors

Pressure, Strain

Rotation sensors

Encoders

Endpoints have sensors, a lot of sensors

Motion sensors

Gyroscope, Radar,

Accelerometer

Acustic sensors

Ultrasonic, Microphones,

Vibrometers ...

Environmental sensors

Temperature, Humidity,

Pressure, IR ...

Touchscreen sensors

Capacitive, IR

Image sensors

Thermal, Image

Biometric sensors

Fingerprint, Heart rate ...

Force sensors

Pressure, Strain

Rotation sensors

Encoders

A complete ML pipeline: wake-word detection example

A complete ML pipeline: wake-word detection example

Step 2:

Process input
Translation, than
execute command

A complete ML pipeline: wake-word detection example

Step 3:

Generate output

Play response trough

embedded speakers

Questions

- •How do we capture the data to feed into the network?
- •How do you design the neural network to take in the speech signal?
- •What dataset does the network need to be trained on?
- •How do we **pre-process** the data for neural network inference?
- •How do you post-process the neural network output?
- •How do you deploy this on the microcontroller?
- •How do we ensure that the neural network is **resilient**?
- •How do we get the neural network to train faster?

(Tiny) Machine Learning Workflow

Al Infrastracture

Data Engineering

Model Engineering

Model Deployment

Product Analytics

Data Engineering

- Defining data requirements
- Collecting data
- Labelling the data
- Inspect and clean the data
- Prepare data for training
- Augment the data
- Add more data

Al Infrastracture

Data Engineering

Model Engineering

- Training ML models
- Improving training speed
- Setting target metrics
- Evaluating against metrics
- Optimizing model training
- Keeping up with SOTA

Al Infrastracture

Data Engineering

Model Engineering

Model Deployment

- Model conversion
- Performance optimization
- Energy-aware optimizations
- Security and privacy
- Inference serving APIs
- On-device fine-tuning

Al Infrastracture

Data Engineering

Model Engineering

Model Deployment

Product Analysis

- Dashboards
- Field data evaluation
- Value-added for business
- Opportunities for advancement and improvements

Al Infrastracture

Data Engineering

Model Engineering

Model Deployment

Product Analytics

TinyML workflow

Differences between targets and operative frameworks

	TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Training	Yes	No	No
Inference	Yes (but inefficient on edge)	Yes (and efficient)	Yes (and even more efficient)
How Many Ops	~1400	~130	~50
Native Quantization Tooling + Support	No	Yes	Yes

	† TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Needs an OS	Yes	Yes	No
Memory Mapping of Models	No	Yes	Yes
Delegation to accelerators	Yes	Yes	No

	† TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Base Binary Size	3MB+	100KB	~10 KB
Base Memory Footprint	~5MB	300KB	20KB
Optimized Architectures	X86, TPUs, GPUs	Arm Cortex A, x86	Arm Cortex M, DSPs, MCUs

Edge Devices

Let's start with EDGE

A comparison

- MobileNet (2015)
 - MobileNetv1
 - 70.6% top-1 accuracy
 - 16.9MB in size

- Arduino Nano BLE 33 sense
 - Has only 256KB of RAM!
 - 1 MB of flash

Using the TFLITE converter

- Export saved model:
- Use the TFLite converter:
- Save the TFLite model:
- Create TFLite interpreter:

Test inference:

```
export_dir = 'saved_model/1'

tf.saved_model.save(model, export_dir)

converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)

tflite_model = converter.convert()

import pathlib

tflite_model_file = pathlib.Path('model.tflite')

tflite_model_file.write_bytes(tflite_model)

interpreter = tf.lite.Interpreter(model_path=tflite_model_file)
```

```
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
to_predict = # Input data in the same shape as what the model expects
interpreter.set_tensor(input_details[0]['index'], to_predict)

tflite_results = interpreter.get_tensor(output_details[0]['index'])
```

Using the TFLite converter

COLAB:

https://colab.research.google.com/github/tiny MLx/colabs/blob/master/3-3-7-RunningTFLiteModels.ipynb

Quantization

Quantization

Why quantizing is (almost) always a good idea

•Storage and Memory size: when quantizing we have an immediate ≈4x reduction on the storage Memory, and a 2/4x reduction in peak RAM usage depending on the type of quantization you choose Arduino Nano BLE 33 sense has 1 MB of flash memory

Why quantizing is (almost) always a good idea

- •Inference Latency: by performing integer arithmetics instead of floating point arithmetics all the computations on the device are much faster. The expected reduction in time is in the order of 2/4x
- •Energy saving: for the same reasons performing 8bit operations is much less energy-hungry than 32bit floating point arithmetics.

Why quantizing is (almost) always a good idea

•Portability: not every device can perform floating point 32 bits arithmetics. Everyone instead can perform 8bit integer arithmetics.

Accuracy-latency(/memory) trade-off

Quantization works well but performance can suffer of accuracy-loss during inference.

Enabling conversions optimization

Default optimization:

Quantization with representative dataset optimization:

```
converter.optimizations = [tf.lite.Optimize.DEFAULT]

tflite_model = converter.convert()
tflite_model_file = 'converted_model.tflite'

with open(tflite_model_file, "wb") as f:
    f.write(tflite_model)
```

```
converter.optimizations = [tf.lite.Optimize.DEFAULT]
def representative_data_gen():
  for input_value, _ in test_batches.take(100):
     yield [input_value]
converter.representative_dataset = representative_data_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
tflite_model = converter.convert()
tflite_model_file = 'converted_model.tflite'
with open(tflite_model_file, "wb") as f:
  f.write(tflite_model)
```

Full integer optimization

```
def representative_data_gen():
    for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):
        yield [input_value]

converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_data_gen
# Ensure that if any ops can't be quantized, the converter throws an error
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
# Set the input and output tensors to uint8 (APIs added in r2.3)
converter.inference_input_type = tf.uint8

tflite_model_quant = converter.convert()
```

In case input and output type == uint8, remember to quantize the input before feeding it to the network! (and de-quantize the output, in case you need it)

```
# Check if the input type is quantized, then rescale input data to uint8
if input_details['dtype'] == np.uint8:
  input_scale, input_zero_point = input_details["quantization"]
  test_image = test_image / input_scale + input_zero_point
```

Optimizing the network

COLAB:

https://colab.research.google.com/github/tiny MLx/colabs/blob/master/3-3-10-TFLiteOptimizations.ipynb#scrollTo=0RTZmnd kcZFP

Quantization-aware training

Quantization aware training emulates inference-time quantization during training, creating a model that downstream tools will use to produce actually quantized models. The quantized models use lower-precision (e.g. 8-bit instead of 32-bit float), leading to benefits during deployment.

- •Mimic the inference path during the training phase.
- •Expose the training pipeline to the errors introduced by quantization
- •Allow the training phase to recover the error «naturally»

Results comparison

	Floating-point Baseline	Post-training Quantization (PTQ)	Quantization-Aware Training (QAT)
MobileNet v1 1.0 224	71.03%	69.57%	71.06%
MobileNet v2 1.0 224	70.77%	70.20%	70.01%
Resnet v1 50	76.30%	75.95%	76.10%

How to quantization aware-training

```
import tensorflow_model_optimization as tfmot
quantize_model = tfmot.quantization.keras.quantize_model
# q_aware stands for for quantization aware.
q_aware_model = quantize_model(model)
# 'quantize_model' requires a recompile.
q_aware_model.compile(optimizer='adam',
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=['accuracy'])
```

Quantization aware training

COLAB:

https://colab.research.google.com/github/tiny MLx/colabs/blob/master/3-3-12-QAT.ipynb#scrollTo=w7fztWsAOHTz

Hands on: rock paper scissor

https://colab.research.google.com/drive/1vAXuU9bDbD90W6fnpx1crvbQrzpnOcaU?usp=sharing

Appendix

Credits and reference

- "TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers", Daniel Situnayake, Pete Warden, O'Reilly Media, Inc.
- Online course:
 - https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
- A lot more material on TinyML:
 - http://tinyml.seas.harvard.edu/