Parameter Estimation for a Single-Outbreak Model

Ariel Cintrón, Ph.D.

Single Outbreak Susceptible-Infective-Recovered (SIR) Model

$$\frac{dS}{dt} = -\beta S \frac{I}{N}$$

$$\frac{dI}{dt} = \beta S \frac{I}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

- We assume the initial conditions (S(0), I(0), R(0)) and the population size N are known.
- ▶ The vector of model parameters is $\theta = (\beta, \gamma)$.
- The basic reproductive number is $\mathcal{R}_0 = \beta/\gamma$. Whenever $\beta/\gamma > 1$ then an outbreak occurs.

Forward Solution versus Inverse Problem

▶ Forward Problem: Given some values of the true parameters then a numerical solution is computed. In symbols, given θ_0 then $x(t, \theta_0)$ is computed.

Forward Solution versus Inverse Problem

- ▶ Forward Problem: Given some values of the true parameters then a numerical solution is computed. In symbols, given θ_0 then $x(t,\theta_0)$ is computed.
- ▶ **Inverse Problem**: Given $x(t, \theta_0)$ then θ_0 is computed.

Forward Solution versus Inverse Problem

- ▶ Forward Problem: Given some values of the true parameters then a numerical solution is computed. In symbols, given θ_0 then $x(t, \theta_0)$ is computed.
- ▶ **Inverse Problem**: Given $x(t, \theta_0)$ then θ_0 is computed.
- lacktriangle inverse problem pprox parameter inference pprox reverse engineering.

► Observation = model output + measurement error

- ► Observation = model output + measurement error
- ▶ Then, the statistical model for the observation process is

$$Y_i = I(t_i, \theta_0) + \mathcal{E}_i$$
 for $i = 1, \dots, n$.

- Observation = model output + measurement error
- ▶ Then, the statistical model for the observation process is

$$Y_i = I(t_i, \theta_0) + \mathcal{E}_i$$
 for $i = 1, \dots, n$.

- The errors \mathcal{E}_i are assumed to be random variables satisfying the following assumptions:
 - (i) the errors \mathcal{E}_i have mean zero, $E[\mathcal{E}_i] = 0$;

- Observation = model output + measurement error
- ▶ Then, the statistical model for the observation process is

$$Y_i = I(t_i, \theta_0) + \mathcal{E}_i$$
 for $i = 1, \ldots, n$.

- The errors \mathcal{E}_i are assumed to be random variables satisfying the following assumptions:
 - (i) the errors \mathcal{E}_i have mean zero, $E[\mathcal{E}_i] = 0$;
 - (ii) the errors \mathcal{E}_i have finite common variance, $\text{var}(\mathcal{E}_i) = \sigma_0^2 < \infty$;

- Observation = model output + measurement error
- ▶ Then, the statistical model for the observation process is

$$Y_i = I(t_i, \theta_0) + \mathcal{E}_i$$
 for $i = 1, \ldots, n$.

- The errors \mathcal{E}_i are assumed to be random variables satisfying the following assumptions:
 - (i) the errors \mathcal{E}_i have mean zero, $E[\mathcal{E}_i] = 0$;
 - (ii) the errors \mathcal{E}_i have finite common variance, $\text{var}(\mathcal{E}_i) = \sigma_0^2 < \infty$;
 - (iii) the errors \mathcal{E}_i are i.i.d. (i.e., $cov(\mathcal{E}_i, \mathcal{E}_j) = 0$ whenever $i \neq j$)

$$\frac{dS}{dt} = -\beta S \frac{I}{N}$$

$$\frac{dI}{dt} = \beta S \frac{I}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I,$$

- 1. N = 763, S(0) = 738, I(0) = 25, R(0) = 0.
- 2. The unknown model parameters are $\theta = (\beta, \gamma)$.
- Ordinary Least Squares (OLS):

$$\min_{\theta \in \Theta} \sum_{i=1}^{12} \left[y_j - I(t_j, \theta) \right]^2.$$

► The estimate $\hat{\theta}_{OLS}$ can be calculated applying one of several optimization algorithms (for example, Nelder-Mead simplex).

- ► The estimate $\hat{\theta}_{OLS}$ can be calculated applying one of several optimization algorithms (for example, Nelder-Mead simplex).
- ► The statistical package R has a built-in function called optim. The GA library has a function called ga.

- ► The estimate $\hat{\theta}_{OLS}$ can be calculated applying one of several optimization algorithms (for example, Nelder-Mead simplex).
- ► The statistical package R has a built-in function called optim. The GA library has a function called ga.

$$\hat{\theta}_{OLS} = \underset{\theta \in \Theta}{\operatorname{arg min}} \sum_{j=1}^{12} [y_j - I(t_j; \theta)]^2.$$

- 1. First estimate $\hat{\theta}^0$ from the entire dataset, using OLS.
- 2. Using this estimate define the standard residuals:

$$ar{r}_j = \sqrt{rac{n}{n-p}} \left(y_j - I(t_j, \hat{ heta}^0)
ight)$$

for $j=1,\ldots,n$. Then $\{\bar{r}_1,\ldots,\bar{r}_n\}$ are realizations of iid random variables \bar{R}_j from the empirical distribution \mathcal{F}_n . Set m=0.

- 3. Create a bootstrap sample of size n using **simple random** sampling with replacement from $\{\bar{r}_1, \ldots, \bar{r}_n\}$ to form a bootstrap sample $\{\bar{r}_1^m, \ldots, \bar{r}_n^m\}$.
- 4. Create bootstrap sample points

$$y_j^m = I(t_j, \hat{\theta}^0) + \bar{r}_j^m,$$

where $j = 1, \ldots, n$.

- 5. Obtain a new estimate $\hat{\theta}^{m+1}$ from the bootstrap sample $\{y_j^m\}$ using OLS.
- 6. Set m=m+1 and repeat steps 3–5.

Carry out the iterative process M times where M is large (e.g. M = 1000).

- Carry out the iterative process M times where M is large (e.g. M = 1000).
- ▶ R has the command sample for SRS.

- Carry out the iterative process M times where M is large (e.g. M = 1000).
- R has the command sample for SRS.
- Calculate mean, covariance matrix, and standard errors using the formulae:

$$\begin{split} \hat{\theta}_{boot} &= \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}^{m} \\ \text{Cov}(\hat{\theta}_{boot}) &= \frac{1}{M-1} \sum_{m=1}^{M} \left(\hat{\theta}^{m} - \hat{\theta}_{boot} \right)^{T} \left(\hat{\theta}^{m} - \hat{\theta}_{boot} \right) \\ SE_{k}(\hat{\theta}_{boot}) &= \sqrt{\text{Cov}(\hat{\theta}_{boot})} \end{split}$$

Parameter	Estimate	SE
β	1.8191	0.0608
γ	0.4703	0.0173
$\mathcal{R}_0 = \beta/\gamma$	3.8680	N/A