# ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Экономика и Анализ Данных»

### Отчет о проекте на тему:

Построение скоринговой модели с использованием WOE-преобразований

#### Выполнил студент:

группы №БЭАД223, 2 курс

Шевченко Артём Эдуардович

## Руководитель проекта:

Васильева Наталья Васильевна Приглашенный преподаватель Факультет экономических наук НИУ ВШЭ

# Содержание

| 1 | Введение |                                                                              |    |  |  |  |
|---|----------|------------------------------------------------------------------------------|----|--|--|--|
|   | 1.1      | Аннотация                                                                    |    |  |  |  |
|   | 1.2      | Цель работы                                                                  | 4  |  |  |  |
|   | 1.3      | В Методология                                                                |    |  |  |  |
|   | 1.4      | Данные                                                                       | 4  |  |  |  |
|   |          | 1.4.1 Описание                                                               | 4  |  |  |  |
|   |          | 1.4.2 Фичи                                                                   | 4  |  |  |  |
| 2 | Exp      | Explaratory Data Analysis                                                    |    |  |  |  |
|   | 2.1      | Категориальные признаки                                                      | 6  |  |  |  |
|   |          | 2.1.1 Распределения                                                          | 6  |  |  |  |
|   |          | 2.1.2 Генерация признаков                                                    | 6  |  |  |  |
|   |          | 2.1.3 Преобразование в числовые типы                                         | 7  |  |  |  |
|   | 2.2      | Непрерывные признаки                                                         | 9  |  |  |  |
|   |          | 2.2.1 Заполнение пропущенных значений                                        | 9  |  |  |  |
|   |          | 2.2.2 Стандартизация                                                         | 9  |  |  |  |
|   |          | 2.2.3 Корреляционный анализ                                                  | 10 |  |  |  |
| 3 | Обу      | учение                                                                       | 11 |  |  |  |
|   | 3.1      | Подбор моделей обучения                                                      |    |  |  |  |
|   | 3.2      | 2 WOE-преобразования                                                         |    |  |  |  |
|   |          | 3.2.1 Теория                                                                 | 11 |  |  |  |
|   |          | 3.2.2 Применение и обучение                                                  | 12 |  |  |  |
| 4 | Таб      | лица результатов                                                             | 13 |  |  |  |
| 5 | Вал      | идация                                                                       | 14 |  |  |  |
|   | 5.1      | Эффективность ранжирования всей модели                                       | 14 |  |  |  |
|   | 5.2      | Эффективность ранжирования отдельных факторов                                | 14 |  |  |  |
|   | 5.3      | Анализ вкладов факторов в формирование Джини модели                          | 15 |  |  |  |
|   | 5.4      | Динамика коэффициента Джини                                                  |    |  |  |  |
|   | 5.5      | Анализ корректности дискретного преобразования факторов                      |    |  |  |  |
|   | 5.6      | Сравнение прогнозного и фактического TR (Target Rate) на уровне выборки . 16 |    |  |  |  |
|   | 5.7      | Тест формы калибровочной кривой                                              | 16 |  |  |  |

|   | 5.8 | Сравнение эффективности ранжирования модели на разработке и валидации | 17 |
|---|-----|-----------------------------------------------------------------------|----|
|   | 5.9 | Сравнение эффективности ранжирования модели на разработке и валидации | 17 |
| 6 | Ско | ринговая карта                                                        | 18 |
| 7 | Под | дсчёт прибыли                                                         | 19 |

# 1 Введение

## 1.1 Аннотация

Скоринговая модель – это модель бинарной классификации, которая используется для оценки вероятности наступления события дефолт/недефолт. В работе используется различные модели машинного обучения поверх WOE (weight-of-evidence) трансформации для повышения их интерпретируемости.

# 1.2 Цель работы

Цель работы - изучение различных подходов машинного обучения, построение полноценной и интерпретируемой модели кредитного скоринга для оценки вероятности дефолта заёмщика, в том числе для прохождения ей предложенных тестов валидации.

## 1.3 Методология

- Провести предварительный анализ данных.
- Сгенерировать новые признаки и провести WOE-преобразования.
- Построить модели и оптимизировать гиперпараметры.
- Провести валидацию модели.
- Интерпретировать результаты модели.

# 1.4 Данные

#### 1.4.1 Описание

Датасет содержит данные о кредитах, выданных компанией LendingClub. Оригинальный набор данных представлен на Kaggle - анализ я проводил на его обрезанной по признакам версии. В тренировочной выборке содержится 61169 записей, а в тестовой - 60334 записи.

В датасете 23 фичи, их описание представлено в таблице ниже:

#### 1.4.2 Фичи

| Field | Description |                                     |
|-------|-------------|-------------------------------------|
| 1     | issue_d     | The month which the loan was funded |

| 2                                                     | purpose                  | A category provided by the borrower for the loan request.    |  |
|-------------------------------------------------------|--------------------------|--------------------------------------------------------------|--|
| 3                                                     | addr_state               | The state provided by the borrower in the loan application   |  |
| 4                                                     | sub grade                | External assigned loan subgrade                              |  |
| 5                                                     | home ownership           | The home ownership status provided by the borrower during    |  |
|                                                       |                          | registration or obtained from the credit report. Our values  |  |
|                                                       |                          | are: RENT, OWN, MORTGAGE, OTHER                              |  |
| 6                                                     | emp_title                | The job title supplied by the Borrower when applying for the |  |
|                                                       | _                        | loan.                                                        |  |
| 8                                                     | installment              | The monthly payment owed by the borrower if the loan         |  |
|                                                       |                          | originates.                                                  |  |
| 9                                                     | dti                      | A ratio calculated using the borrower's total monthly debt   |  |
|                                                       |                          | payments on the total debt obligations, excluding mortgage   |  |
|                                                       |                          | and the requested LC loan, divided by the borrower's self-   |  |
|                                                       |                          | reported monthly income.                                     |  |
| 10                                                    | funded_amnt              | The total amount committed to that loan at that point in     |  |
|                                                       |                          | time.                                                        |  |
| 11                                                    | annual_inc               | The self-reported annual income provided by the borrower     |  |
|                                                       |                          | during registration.                                         |  |
| 12                                                    | emp_length               | Employment length in years. Possible values are between $0$  |  |
|                                                       |                          | and 10 where 0 means less than one year and 10 means ten     |  |
|                                                       |                          | or more years.                                               |  |
| 13                                                    | term                     | The number of payments on the loan. Values are in months     |  |
|                                                       |                          | and can be either 36 or 60.                                  |  |
| 14                                                    | inq_last_6mths           | The number of inquiries in past 6 months (excluding auto     |  |
|                                                       |                          | and mortgage inquiries)                                      |  |
| 15 mths_since_recent_inq Months since most recent inq |                          | Months since most recent inquiry.                            |  |
| 16 delinq_2yrs The number of 30+ of                   |                          | The number of $30+$ days past-due incidences of delinquency  |  |
| in the bor                                            |                          | in the borrower's credit file for the past 2 years           |  |
| 17                                                    | chargeoff_within_12_mths | Number of charge-offs within 12 months                       |  |
| 18                                                    | num_accts_ever_120_pd    | Number of accounts ever 120 or more days past due            |  |
| 19                                                    | num_tl_90g_dpd_24m       | Number of accounts 90 or more days past due in last 24       |  |
|                                                       |                          | months                                                       |  |
| 20                                                    | acc_open_past_24mths     | Number of trades opened in past 24 months.                   |  |
| 21                                                    | avg_cur_bal              | Average current balance of all accounts                      |  |

| 22 | tot_hi_cred_lim                                                | Total high credit/credit limit |
|----|----------------------------------------------------------------|--------------------------------|
| 23 | delinq_amnt The past-due amount owed for the accounts on which |                                |
|    |                                                                | borrower is now delinquent.    |

# 2 Explaratory Data Analysis

Начну работу с первичного анализа - буду рассматривать отдельные признаки, что-то говорить про них, обрабатывать их и генерировать на их основе новые.

Целевой переменной в модели является def. В ней лежит бинарное число (1 или 0) - решение о выдаче или невыдаче кредита. Если быть точнее, число показывает, будет ли у клиента дефолт или не будет (где 1 - будет, 0 - нет).

## 2.1 Категориальные признаки

Часть признаков на этом этапе была удалена - например, emp\_title, который содержал места работы, выгруженные из анкет клиентов. При анализе признака было обнаружено большое количество уникальных значений (63% на трейне, 39% на тесте), составляющее значительную часть от выборки, в связи с чем признак просто вносил бы лишний шум в модель.

Кроме того, был удален признак installment - использование ежемесячного платежа в модели может приводить к лику данных. Так, в installment входит ставка по кредиту, которая формируется исходя из личных данных клиента.

Наконец, был удалён признак issue $_{\rm d}$  - то есть дата заявки. Так, конкретные даты подачи создают лишний шум для модели и спобствуют переобучению, а появившиеся в датасете даты заведомо не появятся для новых заявок.

#### 2.1.1 Распределения

В работе было рассмотрено распределение категориальных переменных по дискретным значениям (например purpose принимает значения debt\_consolidation, medical и тд). Так, я построил распределения в тренировочной и тестовой выборках, сравнил их и графически показал отсутствие выбросов.

#### 2.1.2 Генерация признаков

Далее я обработал addr\_state - FIPS код штата США заявителя на кредит. Так, в интернете я нашёл датасет, с помощью которого составил эмбеддинг для перевода сокращения штата в

широту и долготу его местонахождения. На этой основе можно генерировать новые признаки - воспользуемся алгоритмом k-средних для кластеризации значений. Алгоритм будет учиться только на
тренировочной выборке во избежание data leak. Так, алгоритм делит все addr\_state по кластерам
(количество которых задано мануально), и каждому заявителю генерируется признак по отношению
к тому или иному кластеру. Идея почти аналогична делению на бины, но при этом учитывает метрики дальности городов заявителей друг от друга, соответвенно распределение значений целевой
переменной могут отличаться в зависимости от кластера. В рамках построения модели я проводил
эксперименты с количеством кластеров и получил, что 6 - оптимальное число для равномерного
распределения заявителей и улучшения качества модели.



В результате, гипотеза о том, что для разных кластеров может значительно отличаться соотношение дефолтов, оказалась отвергнута:



В дальнейшем я буду относиться к этому признаку как к категориальному с натуральным числом - номером кластера.

#### 2.1.3 Преобразование в числовые типы

Так как в общем случае модель не может воспринимать категориальные признаки для обучения, нам нужно преобразовать их в числовые типы, то есть, по сути, закодировать по некоторой логике. Эта логика может варьироваться в зависимости от задачи, но в нашей задаче я воспользовался се. Ordinal Encoder, который реализует подход one-hot encoding, то есть присвоение каждому

возможному значению категориального признака некоторго натурального числа. Этот подход особенно эффективен в случае, если область значения признака не слишком велика (а у большинства наших признаков область значений ограничена 15-20-ю).

В процессе подобного преобразования важно не допустить неочевидную ошибку. Если признак имеет ранговый смысл (как, например категориальный признак subgrage, отражающий кредитный рейтинг клиента, принимающий значения  $(A_1, ..., A_n, B_1, ...)$  и являющийся ранговым, поскольку каждый рейтинг с буквой, идущей раньше в алфавите, лучше любого рейтинга с буквой позже в алфавите, а в рамках одной буквы лучше рейтинг с меньшей цифрой), то его нельзя кодирвать натуральными числами по порядку встречи нового значения в выборке, как это делает классический энкодер. Если наше преобразование окажется не линейным  $(A_1 = 1, ..., A_n = n, B_1 = n + 1, ...))$ , а беспорядочным  $(A_1 = n, ..., A_n = k, B_1 = m, ...))$ , то создаётся риск в будущем не суметь поделить значения признака на последовательные промежутки, в рамках которых процент дефолтов по кредитам схож (в чем, как окажется позже, и заключается смысл WOE-преобразований). Это приведёт к неизбежному критическому падению качества модели, поскольку тот же subgrade, как выяснится позже - один из ключевых признаков на обучении. Во избежание этой ошибки в работе разработан собственный энкодер для проведения преобразования, описанного выше.

## 2.2 Непрерывные признаки

### 2.2.1 Заполнение пропущенных значений

В отличие от категориальных признаков, многие непрерывные содержали пропущенные значения. В работе с данными существует множество подходов к их заполнению, но для начала важно лучше понять распределение и область значений наших признаков.

```
dti
                                 0
funded amnt
                                 0
annual_inc
                                 0
emp_length
                              5809
term
inq_last_6mths
mths_since_recent_inq
                             19518
deling_2yrs
                                 0
chargeoff_within_12_mths
                                 0
num_accts_ever_120_pd
                             11941
num_tl_90g_dpd_24m
                             11941
acc_open_past_24mths
                              7886
avg cur bal
                             11945
tot_hi_cred_lim
                             11941
delinq_amnt
                                 0
dtype: int64
```

Рис. 2.1: Количество пропущенных значений для каждого признака

Для этого в работе реализованы две функции: одна рассматривает распределения значений признака на тренировочной и тестовой выборки для анализа возможных выбросов и различий в распределении, а другая ищет сильную корреляцию с другими признаками с помощью заданного погороа корреляции, который в работе я установил равным 0.7. В ноутбуке можно ознакомиться с графиками соответствующих распределений.

По результатам экспериментов, была обнаружена сильная корреляция признаков avg\_cur\_bal и tot\_hi\_cred\_lim. Eë я опишу чуть дальше.

Выборчочные распределения признаков в тренировочной и тестовой выборках не отличались, в связи с чем соответствующие пропущенные значения заполнены средними значениями для каждого отдельного признака.

#### 2.2.2 Стандартизация

Стандартизация - это процесс приведения непрерывных признаков к одному масштабу путем вычитания среднего значения и деления на стандартное отклонение. Этот метод помогает сделать данные более интерпретируемыми для модели и обеспечивает лучшую сходимость алгоритмов машинного обучения. В работе я также воспользовался этим методом обработки данных.

Важно отметить, что скейлер применим только к действительно непрерывным признакам, которые изначально не являлись категориальными и позже оказались закодированные некоторыми числами, ведь иначе стандартизация бы потеряла смысл.

### 2.2.3 Корреляционный анализ

Рассмотрена корреляцию признаков в рамках анализа. Для этого, я воспользовался корреляционной матрицей из numpy. В ней, конечно, рассмотрены только непрерывные признаки.



Видно, что немногие признаки демонстрируют высокую связь - среди таковых можно выделить только признак среднего текущего баланса и кредитного лимита (0,81). Так как оба признака могут иметь собственную интерпретацию в WOE-анализе, я пожертвовал некоторой разгрузкой модели в виде удаления одного из коррелируемых признаков из датасета.

# 3 Обучение

## 3.1 Подбор моделей обучения

Для задачи кредитного скоринга я воспользовался тремя моделями машинного обучения: логистической регрессией, случайным лесом и градиентным бустингом. Всего в работе 4 этапа обучения моделей - на исходном обработанном датасете, на таковом с неизбирательными WOE-преобразованиями (то есть делением всех признаков на бины и преобразованием датасета, вне зависимости от монотонности и WOE получившихся признаков), с избирательными WOE-преобразованиями (то есть с использованием значимых WOE-признаков, где значимость определяется монотонностью, или смыслом, хорошо укладывающимся в совокупную логику подбора признаков для задачи), и с WOE на основе IV (Information Value) - максимизации (где останутся только монотонные признаки с IV выше некоторого порога, который в работе установлен на уровне 0.02). Для краткости обращения, в дальнейшем я буду обращаться к каждому подходу по его порядковму номеру.

На каждом этапе работы обучена логистическая регрессия - будучи важнейшеймоделью классификации и классической для задачи скоринга, она выбрана за её интерпретируемость, простоту в реализации и хорошую работу с монотонными признаками (в контексте WOE-задачи), что позволяет легко объяснить полученные результаты и влияние различных факторов на вероятность дефолта.

Случайный лес используется благодаря его способности работать с данными без необходимости тщательной предобработки, а также за его высокую устойчивость к переобучению и возможность оценивать важность признаков. Он добавлен в качестве дополнительной модели для сравнения метрик на каждом этапе.

Градиентный бустинг применяется для достижения высокой точности предсказаний за счёт объединения слабых моделей, что позволяет эффективно справляться с более сложными паттернами в данных. Он обучен только на этапе 1 в качестве бонуса, когда данные наиболее сложны в интерпретации и выявлении паттернов.

В самой работе можно подробно ознакомиться с кодом и небольшими особенностями обучения для каждой модели.

## 3.2 WOE-преобразования

### 3.2.1 Теория

WOE (Weight of Evidence) преобразования - полезный инструмент предобработки данных в задаче кредитного скоринга. Метод используется для преобразовании признаков в значения, которые лучше отражают их взаимосвязь с вероятностью дефолта.

Логика WOE-преобразований заключается в том, чтобы для каждого признака сгруппировать значения (сформировать бины), имеющие схожие характеристики по таргету. После формиро-

вания бинов рассчитывается WOE для каждого из них по следующей формуле:

$$WOE_i = \ln \left( \frac{P(\text{good}|\text{bin}_i)}{P(\text{bad}|\text{bin}_i)} \right)$$

где  $P(\text{good}|\text{bin}_i)$  и  $P(\text{bad}|\text{bin}_i)$  - доли хороших и плохих заемщиков в данном бине соответственно.

С помощью таких преобразований можно, например, лучше выявить теоретическую линейную зависимость возраста от дефолта. Пусть у нас есть гипотеза, что пенсионеры более надежные заемщики - тогда поделим возраст на некоторые промежутки (18-25, 26-36, ..., 60-80), для каждого из которого подсчитаем долю дефолтов. Будем называть такую связь монотонной, если у признака для каждого бина доля дефолтов не меньше (не больше), чем у следующего бина.

WOE-признаки позволяют линейно разделить классы и получить более стабильные коэффициенты модели, что способствует улучшению метрик качества обучения моделей.

## 3.2.2 Применение и обучение

Преобразования осуществлены с помощью библиотеки scorecardpy. Она умеет автоматически делить признаки на бины для максимальной интерпретируемости, но так как в задаче важна и монотонность признаков - я самостоятельно дивагл границы вычисленных интервалов.

После обработки в датасете осталось 19 признаков. Ниде описаны изменения данных на каждом из четырех этапов.

- Этап 1: WOE-преобразования не применены
- Этап 2: Применение ко всем 19 признакам
- Этап 3: Применение к 13 признакам; для 5 признаков изменены границы бинов
- Этап 4: Применение к 9 признакам; для 5 признаков изменены границы бинов

Введём некоторые метрики для интерпретируемости результатов обучения модели:

### • Коэффициент Джини

Измеряет степень неравенства в распределении значений целевой переменной. Чем ближе к 1, тем лучше разделение классов моделью.

#### • Точность (Accuracy)

Оценивает долю правильных предсказаний модели среди всех предсказаний. Подходит для сбалансированных классов.

### • Полнота (Recall)

Измеряет способность модели обнаруживать все положительные примеры. Важна для минимизации пропущенных дефолтов.

## • Точность (Precision)

Определяет долю правильно предсказанных положительных примеров среди всех положительных предсказаний модели. Важна для минимизации ложных срабатываний.

# 4 Таблица результатов

Отмечу что на всех этапах обучения я использовал подбор гиперпараметров с использованием GridSearchCV. Единственный шаг, на котором я это не сделал - на этапе 1, для сравнения результатов с оптимизацией гиперпараметров и без неё на одном и том же наборе данных.

Рассмотрим сначала метрики, которые дала эта модель на этапе 1:

| Метрика   | Значение |
|-----------|----------|
| Джини     | 0.21705  |
| Accuracy  | 0.823    |
| Recall    | 0.000    |
| Precision | 0.227    |

Приведём результаты всех прочих экспериментов

| Джини   | Этап    |         |         |         |
|---------|---------|---------|---------|---------|
|         | I       | II      | III     | IV      |
| Лог     | 0.34931 | 0.35729 | 0.35297 | 0.36444 |
| Дерево  | 0.35259 | 0.33867 | 0.33233 | 0.35307 |
| Бустинг | 0.30518 | -       | -       | -       |

Видно, что качество лорегрессии последовательно улучшалось при проведении преобразований. Случайный лес вёл себя по разному наборах данных. Бустинг, несмотря на выдвинутую гипотезу, оказался хуже в проведении предсказаний на самых сырых данных.

Для каждого из проведённых экспериментов в работе приведена матрица ошибок, а также Accuracy, Recall и Precision.

# 5 Валидация

Валидация проводилась на модели, лучшей по коэффициенту Джини - логистической регрессии этапа 4. Функции для построения представленных визуализаций, а также функции-светофоры, определяющие результат каждого теста, можно найти в ноутбуке.

# 5.1 Эффективность ранжирования всей модели

Тест пройден - коэффициент Джини в итоговой модели составил 0.36444



# 5.2 Эффективность ранжирования отдельных факторов

Тест пройден частично - поскольку funded\_amnt\_woe дал прибавку к Джини модели чуть меньшую, чем 0.05, а так признаков в лучшей модели немного - получилось так, что он один дал долю более 0.1 к желтым признакам, что, по критериям, является желтым цветом светофора валидации. Несмотря на это, я решил не удалять признак из итоговой модели - очень странно удалять информацию об объёме заёма из модели кредитного скоринга.



# 5.3 Анализ вкладов факторов в формирование Джини модели

Информационный тест - без светофора



# 5.4 Динамика коэффициента Джини

Информационный тест - без светофора



# 5.5 Анализ корректности дискретного преобразования факторов

Тест пройден - в ноутбуке можно ознакомиться с визуализациями для каждого графика (ниже приведу только пример), а также с датафреймом с разностями для каждого признака



# 5.6 Сравнение прогнозного и фактического TR (Target Rate) на уровне выборки

Тест пройден - фактическая разница между фактическим уровнем и прогнозной вероятностью составила 0.00622



# 5.7 Тест формы калибровочной кривой

Тест пройден в соответствии с критериям светофора



# 5.8 Сравнение эффективности ранжирования модели на разработке и валидации

Тест пройден - абсолютная разница в Джини составила 0.00979, относительная - 0.02619



# Сравнение эффективности ранжирования модели на разработке и валидации

Тест пройден - все факторы оказались зелёными, кроме  $acc\_open\_past\_24mths$ 



# 6 Скоринговая карта

Скоринговая карта - инструмент в скоринге, который помогает оценить кредитный риск заемщика на основе его характеристик. Она представляет собой таблицу или график, в котором каждый признак (например, возраст, доход, тд) разбивается на несколько бинов. Каждому бину соответствует определенное количество скоринговых баллов. Скоринговая карта позволяет оценить, какие характеристики влияют на решение о выдаче кредита, и как их значения соотносятся с рискованными или безрисковыми заемщиками

Ниже представлена скоринговая карта для модели, в которой каждый признак разбит на бины (в соответствии с WOE-преобразованием), а каждый бин имеет свой диапазон скоринговых баллов. Там же редставлены бины для каждого признака с их границами и соответствующими скоринговыми баллами.



Видно, что наибольший вклад внсит признак subgrade, который определяется кредитным рейтингом заявщика. Далее идут текущий средний баланс и прочие признаки, для каждого из которых в легенде можно посмотреть тепловую карту бинов.

# 7 Подсчёт прибыли

Основываясь на предсказаниях, подсчитаны прибыль банка, который получает приведённые в датасете заявки. Выведено две кривых - одну для валидационных данных, другую - для тестовых. Рассчитан оптимальный порог выдачи кредитов для максимизации прибыли. Логика подсказывает, что валюта рассчётов - доллары США.



Видно, что по итогам анализа нашлась точка с максимальной прибылью как на валидационной, так и на тестовой выборке. При изменении LGD (то есть доли потерь банка в каждом кейсе дефолта с1 до 0,8), прибыль банка в каждой точке увеличилась, кривая сдвинулась, из-за чего и увеличилась прибыль.

Точка оптимального порога выдачи кредитов и суммарной прибыли представлена на каждом графике.