India

International Mathematical Olympiad Training Camp 2009

- Let ABC be a triangle with $\angle A = 60$. Prove that if T is point of contact of Incircle And Nine-Point Circle, Then AT = r, r being inradius.
- Let us consider a simle graph with vertex set V. All ordered pair (a,b) of integers with gcd(a,b)=1, are elements of V. (a,b) is connected to (a,b+kab) by an edge and to (a+kab,b) by another edge for all integer k. Prove that for all $(a,b) \in V$, there exists a path fromm (1,1) to (a,b).
- Let a, b be two distinct odd natural numbers. Define a Sequence $\langle a_n \rangle_{n \geq 0}$ like following: $a_1 = a$ $a_2 = b$ $a_n = \text{largest odd divisor of } (a_{n-1} + a_{n-2})$. Prove that there exists a natural number N such that $a_n = \gcd(a, b) \forall n \geq N$.
- 4 Let γ be circumcircle of $\triangle ABC$.Let R_a be radius of circle touching AB, $AC\gamma$ internally.Define R_b , R_c similarly. Prove That $\frac{1}{aR_a} + \frac{1}{bR_b} + \frac{1}{cR_c} = \frac{r^2}{sabc}$.
- Example 1. Let f(x) and g(y) be two monic polynomials of degree=n having complex coefficients. We know that there exist complex numbers $a_i, b_i, c_i \forall 1 \leq i \leq n$, such that $f(x) g(y) = \prod_{i=1}^n (a_i x + b_i y + c_i)$. Prove that there exists $a, b, c \in \mathbb{C}$ such that $f(x) = (x + a)^n + c$ and $g(y) = (y + b)^n + c$.
- 6 Prove The Following identity: $\sum_{j=0}^{n} \left(\binom{3n+2-j}{j} 2^j \binom{3n+1-j}{j-1} 2^{j-1} \right) = 2^{3n}$. The Second term on left hand side is to be regarded zero for j=0.
- 7 Let P be any point in the interior of a $\triangle ABC$. Prove That $\frac{PA}{a} + \frac{PB}{b} + \frac{PC}{c} \ge \sqrt{3}$.
- 8 Let n be a natural number ≥ 2 which divides $3^n + 4^n$. Prove That $7 \mid n$.
- 9 Let $f(x) = \sum_{k=1}^{n} a_k x^k$ and $g(x) = \sum_{k=1}^{n} \frac{a_k x^k}{2^k 1}$ be two polynomials with real coefficients. Let g(x) have $0, 2^{n+1}$ as two of its roots. Prove That f(x) has a positive root less than 2^n .
- For a certain triangle all of its altitudes are integers whose sum is less than 20. If its Inradius is also an integer Find all possible values of area of the triangle.
- I1 Find all integers $n \geq 2$ with the following property: There exists three distinct primes p, q, r such that whenever $a_1, a_2, a_3, \dots, a_n$ are n distinct positive integers with the property that at least one of p, q, r divides $a_j - a_k \ \forall 1 \leq j \leq k \leq n$, one of p, q, r divides all of these differences.
- Let G be a simple graph with vertex set $V = \{0, 1, 2, 3, \dots, n+1\}$. j and j+1 are connected by an edge for $0 \le j \le n$. Let A be a subset of V and G(A) be the induced subgraph associated

$\begin{array}{c} \textbf{India} \\ \textbf{International Mathematical Olympiad Training Camp} \\ 2009 \end{array}$

with A. Let O(G(A)) be number of components of G(A) having an odd number of vertices. Let $T(p,r)=\{A\subset V\mid 0.n+1\notin A, |A|=p, O(G(A))=2r\}$ for $r\leq p\leq 2r$. Prove That $|T(p,r)|=\binom{n-r}{p-r}\binom{n-p+1}{2r-p}$.