Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica

University of California, Berkeley

NSDI'11

What is fair sharing?

- □ n users want to share a resource
 - Solution:

Allocate each 1/n of the shared resource

- Generalized by max-min fairness
 - Handles if a user wants less than its

Fair share

□ Generalized by weighted max-min fairness

□ Give weights to users according to importance

Why is max-min fairness not enough?

- Job scheduling in datacenters is not only about CPUs
 - □ Jobs consume CPU, memory, disk, and I/O
- Does this pose any challenge

Heterogeneous Resource Demands

2000-node Hadoop Cluster at Facebook

Problem

- □ Single resource example
 - 1 resource: CPU
 - □ User 1 wants <1 CPU> per task
 - □ User 2 wants <3 CPU> per task
- Multi resource example
 - □ 2 resources: CPUs & mem
 - User 1 wants <1 CPU, 4 GB> per task
 - User 2 wants <3 CPU, 1 GB> per task

Problem definition

■ How to fairly share multiple resources when users have heterogenous demands on them?

Allocation Properties

- **□** Share Guarantee
 - Every user should get 1/n of at least one resource
- Strategy proofness
 - A user should not be able to increase her allocation by lying about her demand vector
- Envy freeness
- □ Pareto efficiency

Dominant Resource Fairness

- A user's dominant resource is the resource she has the biggest share of
 - Example:

Total resources: <10 CPU, 4 GB>

User 1's allocation: <2 CPU, 1 GB>

Dominant resource is memory as 1/4 > 2/10

- A user's dominant share is the fraction of the dominant resource she is allocated
 - □ User 1's dominant share is 25%

Dominant Resource Fairness(2)

- □ Apply max-min fairness to dominant shares
- Equalize the dominant share of the users
 - Example:

Total resources: <9 CPU, 18 GB>

User 1 demand: <1 CPU, 4 GB>dom res: mem

User 2 demand: <3 CPU, 1 GB>dom res: CPU

Online DRF Scheduler

- Whenever there are available resources and tasks to run: Schedule a task to the user with smallest dominant share
- □ O(log n) time per decision using binary heaps

Schedule	User A		User B		CPU	RAM
	res. shares	dom. share	res. shares	dom. share	total alloc.	total alloc.
User B	$\langle 0, 0 \rangle$	0	(3/9, 1/18)	1/3	3/9	1/18
User A	$\langle 1/9, 4/18 \rangle$	2/9	(3/9, 1/18)	1/3	4/9	5/18
User A	(2/9, 8/18)	4/9	(3/9, 1/18)	1/3	5/9	9/18
User B	(2/9, 8/18)	4/9	(6/9, 2/18)	2/3	8/9	10/18
User A	$\langle 3/9, 12/18 \rangle$	2/3	(6/9, 2/18)	2/3	1	14/18

Compare with Asset Fairness and **CEEI**

- Asset Fairness: Equalize each user's sum of resource shares
- □ CEEI: Competitive Equilibrium from Equal Incomes
 - Give each user 1/n of every resource
 - Let users trade in a perfectly competitive market

DRF vs CEEI

- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>
 - DRF more fair, CEEI better utilization

- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>
 - User 2 increased her share of both CPU and memory

Gaming Utilization-Optimal Schedulers

- Cluster with <100 CPU, 100 GB>
- 2 users, each demanding <1 CPU, 2 GB> per task

- User 1 lies and demands <2 CPU, 2 GB>
- Utilization-Optimal scheduler prefers user 1

Example of DRF vs Asset vs CEEI

- □ Resources <1000 CPUs, 1000 GB>
- □ 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1

a) DRF

b) Asset Fairness

c) CEEI

Properties of Policies

Property	Asset	CEEI	DRF
Share guarantee		V	V
Strategy-proofness	✓		✓
Pareto efficiency	✓	V	V
Envy-freeness	✓	✓	✓
Single resource fairness	✓	V	✓
Bottleneck res. fairness		✓	✓
Population monotonicity	✓		✓
Resource monotonicity			

Evaluation Methodology

- Micro-experiments on EC2
 - Evaluate DRF's dynamic behavior when demands change
 - Compare DRF with current Hadoop scheduler
- Macro-benchmark through simulations
 - Simulate Facebook trace with DRF and current Hadoop scheduler

DRF inside Mesos on EC2

- Dominant shares are equalized
- □ Job1's dominant
 resource changes from
 Memory to CPU
 Share guarantee changes

from 70% to 50%

Experiment: DRF vs Slots

Number of Type 2 Jobs Finished

Type 1 jobs <2 CPU, 2 GB> Type 2 jobs <1 CPU, 0.5GB>

NSLab, RIIT, Tsinghua Univ

Experiment: DRF vs Slots

Completion Time of Type 2 Jobs

NSLab, RIIT, Tsinghua Univ

Simulations using Facebook **Traces**

Simulations using Facebook **Traces**

Conclusion

- DRF provides multiple-resource fairness in the presence of heterogenous demand
 - □ First generalization of max-min fairness to multiple-resources
- DRF's properties
 - □ Share guarantee
 - □ Strategy-proofness
 - Performs better than current approaches

Thanks

