UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA DE CORRECCIÓN. EVALUACIÓN 1. ECUACIONES DIF. ORD. 521218.

PROBLEMA 1. (15 puntos) Resuelva la siguiente ecuación diferencial ordinaria

$$xy''(x) + y'(x) = [y'(x)]^2$$

utilizando la sustitución u(x) = y'(x).

Solución

La ecuación es equivalente a

$$xu' + u = u^2$$

<u>1er Método</u>: La ecuación es equivalente a

$$u' + \frac{1}{x}u = \frac{1}{x}u^2,$$

es decir una Bernouilli de orden 2 en u c/r a x.

5 puntos

Haciendo el cambio de variable $u^{-1}=z,\; -u^{-2}u'=z',\;$ la ecuación queda

$$z' - \frac{1}{x}z = -\frac{1}{x},$$

es decir lineal en z c/r a x.

5 puntos

El factor integrante está dado por $\mu(x) = e^{\int -\frac{1}{x} dx} = e^{-\ln|x|} = \frac{1}{|x|}$. Elegimos $\mu(x) = \frac{1}{x}$:

$$z = x \left(\int -\frac{1}{x} \cdot \frac{1}{x} dx + C \right) = 1 + Cx$$

$$\implies u = \frac{1}{z} = \frac{1}{1 + Cx}$$

$$\implies y = \int \frac{1}{1 + Cx} dx = \frac{1}{C} \ln|1 + Cx| + C_2,$$

con $C \neq 0$. Pero por otro lado, y = K = constante es otra solución que se obvio al hacer los cambios de variables. Luego la solución general se escribe de la forma :

$$\begin{cases} y(x) = \frac{1}{C_1} \ln|1 + C_1 x| + C_2, & C_1 \neq 0, \\ y(x) = K \text{ (constante)} \end{cases}$$
 o bien

5 puntos

2do Método: Separación de variables.

$$x\frac{du}{dx} = u^2 - u \Longrightarrow \frac{du}{u^2 - u} = \frac{dx}{x}$$

$$\Longrightarrow \int \left(\frac{1}{u - 1} - \frac{1}{u}\right) du = \int \frac{dx}{x}$$

$$\Longrightarrow \ln|u - 1| - \ln|u| = \ln|x| + C \Longrightarrow \ln\frac{u - 1}{u} = \ln C_1 x$$

5 puntos

$$\implies \frac{u-1}{u} = C_1 x \implies u = \frac{1}{1+C_1 x}$$

$$\implies y = \int \frac{1}{1+C_1 x} dx = \frac{1}{C_1} \ln|1+C_1 x| + C_2,$$

5 puntos

con $C_1 \neq 0$. Pero por otro lado, y = K = constante es otra solución que se obvio al hacer los cambios de variables. Luego la solución general se escribe de la forma :

$$\begin{cases} y(x) = \frac{1}{C_1} \ln|1 + C_1 x| + C_2, & C_1 \neq 0, \\ y(x) = K \text{ (constante)} \end{cases}$$
 o bien

5 puntos

PROBLEMA 2. (10 puntos) Considere la siguiente ecuación diferencial ordinaria (llamada ecuación de Bessel de orden 1/2)

$$x^{2}y''(x) + xy'(x) + \left(x^{2} - \frac{1}{4}\right)y(x) = 0, \qquad x > 0.$$

- (i) Sabiendo que la función $y_1(x) = \frac{\operatorname{sen} x}{\sqrt{x}}$ es una solución de esta ecuación de Bessel, encuentre otra solución que sea independiente de y_1 .
- (ii) ¿ Cuál es la solución general de la ecuación de Bessel de orden 1/2 ?

Solución

(i) Por Abel

$$y_{2} = y_{1} \int \frac{e^{-\int \frac{x}{x^{2}} dx}}{y_{1}^{2}} dx$$

$$= \frac{\sin x}{\sqrt{x}} \int \frac{e^{-\int \frac{dx}{x}}}{(\sin^{2} x)/x} dx \stackrel{x \geq 0}{=} \frac{\sin x}{\sqrt{x}} \int \frac{xe^{-\ln x}}{\sin^{2} x} dx$$

$$= \frac{\sin x}{\sqrt{x}} \int \frac{dx}{\sin^{2} x} = \frac{\sin x}{\sqrt{x}} \int \csc^{2} x dx$$

$$= \frac{\sin x}{\sqrt{x}} (-\cot x + C) = -\frac{\cos x}{\sqrt{x}} + C \frac{\sin x}{\sqrt{x}}$$
3 puntos

o bien simplemente $y_2 = \frac{\cos x}{\sqrt{x}}$

5 puntos

(ii)
$$y = C_1 \frac{\operatorname{sen} x}{\sqrt{x}} + C_2 \frac{\operatorname{cos} x}{\sqrt{x}}$$

2 puntos

PROBLEMA 3. Considere el siguiente problema de valores iniciales (PVI)

$$\begin{cases} y' = \frac{2xy}{x^2 + y^2 - 4} \\ y(a) = b \end{cases}$$

- (i) **(5 puntos)** Describa detalladamente todas las regiones donde usted pueda asegurar la existencia y unicidad del (PVI).
- (ii) (15 puntos) Encuentre una solución del (PVI) cuando a = 1 y b = 1.

Solución

(i) Sea

$$f(x,y) = \frac{2xy}{x^2 + y^2 - 4}.$$

Luego f es continua para todo par x,y tal que $x^2+y^2\neq 4$. Además, se tiene que

$$\frac{\partial f}{\partial y}(x,y) = \frac{2x\left[(x^2+y^2-4)-y(2y)\right]}{\left(x^2+y^2-4\right)^2} = \frac{2x(x^2-y^2-4)}{\left(x^2+y^2-4\right)^2}, \quad x^2+y^2 \neq 4.$$

Por lo tanto $\frac{\partial f}{\partial y}$ es continua para todo par x,y tal que $x^2 + y^2 \neq 4$. Entonces, en las regiones

$$R_1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 4\}$$

 $R_2 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 > 4\},$

las funciones f y $\frac{\partial f}{\partial y}$ son continuas. Luego, del teorema de existencia y unicidad tenemos que el PVI dado tiene una única solución en las regiones R_1 y R_2 . 5 puntos

(ii) Con y(1) = 1.

$$2xydx - (x^2 + y^2 - 4)dy = 0$$
$$\frac{\partial M}{\partial y} = 2x \; ; \; \frac{\partial N}{\partial x} = -2x \Longrightarrow \text{(EDO) no exacta}$$

Calculamos entonces el factor integrante:

$$\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{4x}{2xy} = \frac{2}{y}$$

$$\implies \mu(y) = e^{-\int \frac{2}{y} dy} = e^{-2\ln|y|} = \frac{1}{y^2}$$

Multiplicando la (EDO) por $\mu(y) = \frac{1}{y^2}$ obtenemos la ecuación diferencial exacta :

$$2\frac{x}{y}dx - \left(\frac{x^2}{y^2} + 1 - \frac{4}{y^2}\right)dy = 0$$

6 puntos

Luego,

$$\frac{\partial F}{\partial x} = M' = \frac{2x}{y} \Longrightarrow F(x, y) = \frac{x^2}{y} + C(y)$$

$$\frac{\partial F}{\partial y} = -\frac{x^2}{y^2} + C'(y) = N' = -\frac{x^2}{y^2} - 1 + \frac{4}{y^2}$$

$$\Longrightarrow C'(y) = \frac{4}{y^2} - 1 \Longrightarrow C(y) = -4y^{-1} - y + Cte.$$

Es decir,

$$F(x,y) = \frac{x^2}{y} - \frac{4}{y} - y = \frac{x^2 - 4}{y} - y.$$

La solución general es de la forma

$$\frac{x^2 - 4}{y} - y = C \Longrightarrow x^2 - y^2 - Cy = 4.$$

7 puntos

La solución del (PVI)
$$y(1) = 1 \Longrightarrow C = \frac{1-4}{1} - 1 = -4$$
,

$$\implies x^2 - y^2 + 4y = 4 \implies x^2 - (y - 2)^2 = 0 \implies y - 2 = \pm x.$$

1 punto

Es decir, que o bien y=x+2 es solución, o bien y=-x+2 es solución. De estas dos rectas, solo la segunda verifica y(1)=1. Luego la solución del (PVI) es : y=-x+2 1 punto

PROBLEMA 4. (15 puntos) En un tanque sin tapa hay 384 lt de agua con 15 kg de sal bien mezclados. Al mismo se le agrega una disolución de agua y sal con una concentración de 2 kg/lt a una tasa (o velocidad) de 17 lt/min. A su vez, una válvula permite que salga la mezcla a un flujo (o velocidad) de 5lt/min.

- (i) Determine el volumen del tanque si el mismo comienza a derramarse a los 15 minutos.
- (ii) Determine la cantidad de sal y de concetración de la sal antes que se derrame la mezcla.
- (iii) Determine la cantidad de sal y de concetración de la sal después de los primeros 15 minutos.

Solución

- (i) $V'(t) = 15 5 = 12 \Longrightarrow V(t) = 12t + V(0) = 12t + 384 \Longrightarrow V(15) = 384 + 12 \times 15 = 564 \ lts.$ Luego el volumen del tanque es de 564 lts.
- (ii) Para $t \leq 15$

$$Q'(t) = 17 \times 2 - 5\frac{Q(t)}{V(t)} = 34 - \frac{5Q(t)}{12t + 384}$$

$$\implies Q'(t) + \left(\frac{5}{12t + 384}\right)Q(t) = 34$$

2 puntos

que es una (EDO) lineal, cuya solución está dada por $Q(t) = \frac{C}{(12t+384)^{5/12}} + 2(12t+384)$, si $t \le 15$ minutos. **2 puntos**

Además, la concentración está dada por

$$c(t) = \frac{C}{(12t + 384)^{17/12}} + 2,$$
 si $t \le 15$.

Como Q(0) = 15, resulta que $C = (384)^{5/12} \times (-753)$.

1 puntos2 puntos

(iii) Para t > 15

$$Q'(t) = 17 \times 2 - 17 \frac{Q(t)}{V(t)} = 34 - \frac{17Q(t)}{564}$$

 $\implies Q'(t) + \left(\frac{17}{564}\right)Q(t) = 34$

2 puntos

que es una (EDO) lineal, cuya solución está dada por

$$Q(t) = e^{\frac{-17}{564}t} \left(C_2 + \int 34e^{\frac{17}{564}t} dt \right)$$
$$= C_2 e^{-\frac{17}{564}t} + 1128$$

2 puntos

Como la cantidad de sal es continua en el tiempo, tenemos que

$$Q(15) = \lim t \to 15^{-}Q(t) = \lim t \to 15^{+}Q(t)$$

$$\Longrightarrow \frac{(384)^{5/12} \times (-753)}{(12 \times 15 + 384)^{5/12}} + 1128 = 1128 + C_2 e^{255/564}$$

Con lo cual, la constante C_2 es igual a $C_2 = \left(\frac{(384)^{5/12} \times (-753)}{(564)^{5/12}}\right) e^{-\frac{255}{564}}$ Lo cuál determina Q(t) para t > 15. Finalmente, tenemos

2 puntos

 $c(t) = \frac{C_2 e^{\frac{-17}{564}t} + 1128}{564} \qquad \text{si } t > 15.$

1 puntos

HMH/JMS/CMG/MSC/msc (03-Mayo-2004)