Bayesian StatisticsPrior Elicitation

Brani Vidakovic

Professor

School of Industrial and Systems Engineering

Before We Begin...

Priors

 Swords and "Achilles heel" of Bayesian inference

• Garthwhite & Dickey: "...expert personal opinion is of great potential value and can be used more efficiently, communicated more accurately, and judged more critically if it is expressed as a probability distribution."

Elicitation of Priors

Given a family of distributions and some numerical characteristics (mean, variance, higher moments, quantiles, mode, ...) specify the prior.

Example:

- Family exponential, $\theta \sim \text{Exp}(\lambda)$ and $E\theta = 2 \Rightarrow \frac{1}{\lambda} = 2$, that is $\lambda = \frac{1}{2}$.
- Family exponential and median is equal to 4.

$$\theta \sim \mathsf{Exp}(\lambda), F(\xi_{1/2}) = \frac{1}{2} \Rightarrow F(4) = \frac{1}{2}$$
$$\frac{1}{2} = 1 - e^{-4\lambda} \Rightarrow e^{-4\lambda} = \frac{1}{2} \Rightarrow \lambda = \frac{\log 2}{4} = 0.1733.$$

Example: Elicit beta prior on θ if $E\theta = \frac{1}{2}$ and $Var \theta = \frac{1}{8}$.

 $\theta \sim \text{Be}(\alpha, \beta), \alpha, \beta$ to be specified.

$$\frac{1}{2} = E\theta = \frac{\alpha}{\alpha + \beta} \Rightarrow \alpha + \beta = 2\alpha \Rightarrow \alpha = \beta$$
 (1)

$$\frac{1}{8} = \text{Var } \theta = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \stackrel{\text{(1)}}{=} \frac{\alpha^2}{4\alpha^2(2\alpha + 1)} = \frac{1}{4(2\alpha + 1)}$$

$$4(2\alpha + 1) = 8 \Rightarrow 8\alpha = 4 \Rightarrow \alpha = \frac{1}{2} \ (= \beta).$$

In general, if $E\theta = \mu$ and $Var \theta = \sigma^2$

$$\alpha = \mu \left(\frac{\mu(1-\mu)}{\sigma^2} - 1 \right)$$
 and $\beta = (1-\mu) \left(\frac{\mu(1-\mu)}{\sigma^2} - 1 \right)$.

Non-Informative Priors

 Bayesian methodology was criticized for subjectivity of priors.

What if the information contained in a prior is incorrect?

 Bayesians answer to this criticism by offering robust, objective, and/or noninformative choices for priors, when the information about the parameter(s) is not strong.

Invariance Principle in Selecting the Prior

Let $X|\theta \sim f(x-\theta)$; density is a function of $(x-\theta)$; θ is the <u>location</u> parameter.

- Invariant prior with respect to translation $\pi(\theta)=\pi(\theta-\theta_0)$, for any θ_0 Solution is $\pi(\theta)=$ const. Often called <u>flat</u> prior
- If the parameter of interest is <u>scale</u> parameter, $X \mid \theta \sim \frac{1}{\theta} f\left(\frac{x}{\theta}\right)$, then the invariance principle suggests $\pi(\theta) \sim \frac{1}{c} \pi\left(\frac{\theta}{c}\right)$

The choice that satisfies scale invariance is $\pi(\theta) = \frac{1}{\theta}$, $\theta > 0$

Both priors are improper (that is, not bona-fide densities)

$$\int_{\mathbb{R}} Cd\theta = \infty; \quad \int_0^{+\infty} \frac{1}{\theta} d\theta = \infty$$

• The posteriors could be (and most of the time are) proper densities.

Jeffreys' Priors

- Sir Harold Jeffreys (1891-1989)
- Likelihood $f(x|\theta) \rightarrow$ Fisher Information

$$I(\theta) = -E^{x/\theta} \left(\frac{\partial^2 \log f(x|\theta)}{\partial \theta^2} \right)$$

Jeffreys' suggestion for non-informative prior is

$$\pi(\theta) \propto \det(I(\theta))^{1/2}$$

• Invariance $\phi = h(\theta)$, $\theta = g(\phi)$

$$I^{1/2}(\phi) = I^{1/2}(\theta) \times \left| \frac{d\theta}{d\phi} \right|.$$

Some important Jeffreys' priors

•
$$x | \theta \sim N(\theta, \sigma^2), \sigma^2 \text{ known}$$
 $\pi(\theta) \propto 1$

•
$$x|\theta \sim N(\mu, \theta), \mu$$
 known $\pi(\theta) = \frac{1}{\theta}$
 θ variance

•
$$x | \theta \sim \text{Poi}(\theta)$$
, θ rate $\pi(\theta) = \frac{1}{\sqrt{\theta}}$

•
$$x | \theta \sim \text{Bin}(n, \theta), \theta \text{ probability}$$
 $\pi(\theta) \propto \theta^{-\frac{1}{2}} (1 - \theta)^{-\frac{1}{2}} \sim \text{Be}\left(\frac{1}{2}, \frac{1}{2}\right)$

•
$$x|\theta \sim N(\mu, \theta^2)$$
, θ standard deviation $\pi(\theta) = \frac{1}{\theta}$ $\log \theta \sim$ is uniform on real line $\log \theta^2 = 2 \log \theta$ also uniform on real line.

•
$$x|\theta \sim \text{Bin}(n,\theta)$$
, $\log \text{it}(\theta) = \log \frac{\theta}{1-\theta} \sim \text{flat prior}$ Zellner's prior $\propto \theta^{-1}(1-\theta)^{-1}$

Objective Priors

Reference priors (Bernardo, Berger, Pericchi, ...)

- Maximizing the divergence (measure of distance) between prior and posterior.
- KL-divergence $\int \pi(\theta|t) \log \frac{\pi(\theta|t)}{\pi(\theta)} d\theta, \quad t = t(x_1, \dots, x_n)$ sufficient statistic $I = \int m(t) \left(\int \pi(\theta|t) \log \frac{\pi(\theta|t)}{\pi(\theta)} d\theta \right) dt$ $= \int \int h(t, \theta) \log \frac{h(t, \theta)}{m(t)\pi(\theta)} d\theta dt$ $\pi^*(\theta) = \arg \max I$ $\pi(\theta)$

For one-dimensional parameters Reference priors and Jeffreys' priors coincide

Effective "Sample Size"

Non-informative prior – a vague attribute.

For example: p in Bin(n, p)

- Uniform
$$\pi(p) = 1(0 \le p \le 1) \equiv \text{Be}(1,1)$$

- Jeffreys
$$\pi(p) = \operatorname{Be}\left(\frac{1}{2}, \frac{1}{2}\right)$$

- Zellner
$$\pi(p) \propto \frac{1}{p(1-p)} \sim \text{"Be}(0,0)$$
"

are all referred as non-informative.

- O How to calibrate amount of information carried by the prior?
- Informally

Information in the prior \equiv information in a sample of size m

m = ESS (Effective Sample Size)

• For $X | \theta \sim Bin(n, \theta)$ and $\theta \sim Be(\alpha, \beta)$

$$\frac{\alpha}{\alpha + \beta} \to \frac{\alpha + x}{\alpha + \beta + n} \Rightarrow ESS = \alpha + \beta$$

• For $X \mid \theta \sim Poi(\theta)$, $\theta \sim Ga(\alpha, \beta)$

$$\frac{\alpha}{\beta} \to \frac{\sum X_i + \alpha}{\beta + n} \Rightarrow ESS = \beta$$

• For $X | \theta \sim N(\mu, \theta^{-1})$, θ is precision $\equiv \frac{1}{\sigma^2}$

$$\theta \sim Ga(\alpha, \beta) \Rightarrow ESS = 2\alpha$$

- Spiegelhalter (Community of priors)
 - vague
 - skepticas
 - enthusiastic

Example: eBay Purchase

You decided to purchase a new Orbital Shaking Incubator for your lab. Two eBay sellers are offering this item for the same price, with free shipping.

The seller A has 95% positive feedback from 100 responders, and seller B has 100% positive feedback from 3 responders. We assume that all 103 responders are different unrelated customers.

From which seller to order?

WinBUGS: eBay.odc

