Math 325K - Lecture 21 Section 8.1 & 8.2

Bo Lin

November 15th, 2018

Outline

- Relations and their inverses.
- Directed graph of relations.
- Properties of relations.

Definition

Recall the definition of relations (copied from Lecture 1)

Definition

Let A and B be sets. A **relation** R from A to B is a subset of $A \times B$. Given an ordered pair (x,y) in $A \times B$, x is related to y by R, written x R y, if and only if (x,y) is in R.

Definition

Recall the definition of relations (copied from Lecture 1)

Definition

Let A and B be sets. A **relation** R from A to B is a subset of $A \times B$. Given an ordered pair (x,y) in $A \times B$, x is related to y by R, written x R y, if and only if (x,y) is in R.

Definition

A **relation** on a set A is a relation from A to A.

Definition

Recall the definition of relations (copied from Lecture 1)

Definition

Let A and B be sets. A **relation** R from A to B is a subset of $A \times B$. Given an ordered pair (x,y) in $A \times B$, x is related to y by R, written x R y, if and only if (x,y) is in R.

Definition

A **relation** on a set A is a relation from A to A.

Remark

When we study the properties of a set, we may need to consider relations on it.

Inverse of relations

Just like we defined inverse function of bijections, we have an analogue for relations.

Definition

Let R be a relation from A to B. Define the **inverse relation** R^{-1} from B to A as follows:

$$R^{-1} = \{ (y, x) \in B \times A \mid (x, y) \in R \}.$$

In other words, R^{-1} is a relation such that $y R^{-1} x$ if and only if x R y.

Inverse of relations

Just like we defined inverse function of bijections, we have an analogue for relations.

Definition

Let R be a relation from A to B. Define the **inverse relation** R^{-1} from B to A as follows:

$$R^{-1} = \{ (y, x) \in B \times A \mid (x, y) \in R \}.$$

In other words, R^{-1} is a relation such that $y R^{-1} x$ if and only if x R y.

Remark

Note that every relation has a unique inverse, which is different from the case of functions!

Exercise

Let $A = \{2, 3, 4\}$ and $B = \{5, 6, 7, 8\}$ and let R be the "divides" relation from A to B: For all $(x, y) \in A \times B$,

$$x R y \Leftrightarrow x \mid y$$
.

Find the ordered pairs in R^{-1} , and describe R^{-1} in words.

Exercise

Let $A = \{2, 3, 4\}$ and $B = \{5, 6, 7, 8\}$ and let R be the "divides" relation from A to B: For all $(x, y) \in A \times B$,

$$x R y \Leftrightarrow x \mid y$$
.

Find the ordered pairs in R^{-1} , and describe R^{-1} in words.

Solution

First, we find all ordered pairs in R, which are (2,6),(2,8),(3,6),(4,8). Then the ordered pairs in R^{-1} are

Exercise

Let $A = \{2, 3, 4\}$ and $B = \{5, 6, 7, 8\}$ and let R be the "divides" relation from A to B: For all $(x, y) \in A \times B$,

$$x R y \Leftrightarrow x \mid y$$
.

Find the ordered pairs in R^{-1} , and describe R^{-1} in words.

Solution

First, we find all ordered pairs in R, which are (2,6),(2,8),(3,6),(4,8). Then the ordered pairs in R^{-1} are

Note that $y R^{-1} x$ if and only if x divides y, then how to describe this relation from y to x?

Exercise

Let $A = \{2, 3, 4\}$ and $B = \{5, 6, 7, 8\}$ and let R be the "divides" relation from A to B: For all $(x, y) \in A \times B$,

$$x R y \Leftrightarrow x \mid y$$
.

Find the ordered pairs in R^{-1} , and describe R^{-1} in words.

Solution

First, we find all ordered pairs in R, which are (2,6),(2,8),(3,6),(4,8). Then the ordered pairs in R^{-1} are

Note that $y R^{-1} x$ if and only if x divides y, then how to describe this relation from y to x? We simply say that y is a multiple of x.

Arrow diagram for relations

Recall that we introduced the arrow diagrams to describe the correspondences of functions. It could be naturally generalized to relations. Here the difference is: for a relation from A to B, an element in A could have zero or more than one arrow pointing out.

Arrow diagram for relations

Recall that we introduced the arrow diagrams to describe the correspondences of functions. It could be naturally generalized to relations. Here the difference is: for a relation from A to B, an element in A could have zero or more than one arrow pointing out. If we consider relations on a set A, then the two sides of the arrow diagram are the same set, and we introduce the directed graph of relations.

Arrow diagram for relations

Recall that we introduced the arrow diagrams to describe the correspondences of functions. It could be naturally generalized to relations. Here the difference is: for a relation from A to B, an element in A could have zero or more than one arrow pointing out. If we consider relations on a set A, then the two sides of the arrow diagram are the same set, and we introduce the directed graph of relations.

Definition

A directed graph of a relation R on a set A is the following figure: we encompass points corresponding to elements of A by an ellipse or a circle, and for every pair $(x,y) \in R$, we draw an arrow from x to y.

Example: directed graph

Example

Consider the relation R on $A = \{1, 2, 3, 4\}$ such that $(x, y) \in R$ if and only if x - y = 2. Its directed graph is the following:

Example: directed graph

Example

Consider the relation R on $A = \{1, 2, 3, 4\}$ such that $(x, y) \in R$ if and only if x - y = 2. Its directed graph is the following:

Exercise

Let $A = \{3, 4, 5, 6, 7, 8\}$ and relation R on A be as follows: For all $x, y \in A$,

$$x R y \Leftrightarrow 3 \mid (x - y)$$
.

Draw the directed graph of R.

Exercise

Let $A = \{3, 4, 5, 6, 7, 8\}$ and relation R on A be as follows: For all $x, y \in A$,

$$x R y \Leftrightarrow 3 \mid (x - y)$$
.

Draw the directed graph of R.

Solution

The ordered pairs in R are

$$(3,3), (3,6), (4,4), (4,7), (5,5), (5,8),$$

$$(6,3), (6,6), (7,4), (7,7), (8,5), (8,8).$$

So the directed graph is the following figure:

So the directed graph is the following figure:

Remark

Don't forget the loops $x \to x!$

The properties of equivalence relation

The properties of relations are important information of the relations. Once again, we explore the 3 properties that form the notion of equivalence relation.

The properties of equivalence relation

The properties of relations are important information of the relations. Once again, we explore the 3 properties that form the notion of equivalence relation.

Definition

Let R be a relation on a set A. R is called

- reflexive, if for all $x \in A$, $x \in R$
- symmetric, if for all $x, y \in A$, x R y implies y R x;
- transitive, if for all $x, y, z \in A$, the conjunction of x R y and y R z implies x R z.

The properties of equivalence relation

The properties of relations are important information of the relations. Once again, we explore the 3 properties that form the notion of equivalence relation.

Definition

Let R be a relation on a set A. R is called

- reflexive, if for all $x \in A$, $x \in R$
- symmetric, if for all $x, y \in A$, x R y implies y R x;
- transitive, if for all $x, y, z \in A$, the conjunction of x R y and y R z implies x R z.

Definition

If a relation R satisfies all these 3 properties, then it is called an equivalence relation on A.

Examples of equivalence relations

Note that on any set of numbers, "equal" is always an equivalence relation.

Examples of equivalence relations

Note that on any set of numbers, "equal" is always an equivalence relation.

On any subset of \mathbb{Z} and for every $n \in \mathbb{N}$, the relation x R y if and only if $n \mid (x - y)$ is an equivalence relation.

Examples of equivalence relations

Note that on any set of numbers, "equal" is always an equivalence relation.

On any subset of \mathbb{Z} and for every $n \in \mathbb{N}$, the relation x R y if and only if $n \mid (x - y)$ is an equivalence relation.

On any set of sets, "having the same cardinality" is an equivalence relation.

Exercise

Consider the following relations R defined on \mathbb{N} , are they reflexive, symmetric and transitive?

- **1** For all $x, y \in \mathbb{N}$, x R y if and only if $x \mid y$.
- **o** For all $x, y \in \mathbb{N}$, x R y if and only if x < y.
- **⑤** For all $x, y \in \mathbb{N}$, x R y if and only if x + y is even.

Solution

Relation	Reflexive	Symmetric	Transitive
(a)	Yes	No $(x = 1, y = 2)$	Yes

Solution

Relation	Reflexive	Symmetric	Transitive
(a)	Yes	No $(x = 1, y = 2)$	Yes
(b)	No $(x = 1)$	No $(x = 1, y = 2)$	Yes

Solution

Relation	Reflexive	Symmetric	Transitive
(a)	Yes	No $(x = 1, y = 2)$	Yes
(b)	<i>No</i> $(x = 1)$	No $(x = 1, y = 2)$	Yes
(c)	Yes	Yes	Yes

Exercise: the properties are independent of each other

Exercise

Find a relation R on \mathbb{N} that is reflexive and symmetric, but not transitive.

Exercise: the properties are independent of each other

Exercise

Find a relation R on $\mathbb N$ that is reflexive and symmetric, but not transitive.

Solution

We let R be a relation on $\mathbb N$ such that for all $x,y\in\mathbb N$, $x\ R\ y\Leftrightarrow |x-y|\leq 1$. This R is reflexive because for any $x\in\mathbb N$, $|x-x|=0\leq 1$ and if $|x-y|\leq 1$, then $|y-x|\leq 1$.

Exercise: the properties are independent of each other

Exercise

Find a relation R on \mathbb{N} that is reflexive and symmetric, but not transitive.

Solution

We let R be a relation on $\mathbb N$ such that for all $x,y\in\mathbb N$, $x\,R\,y\Leftrightarrow |x-y|\leq 1$. This R is reflexive because for any $x\in\mathbb N$, $|x-x|=0\leq 1$ and if $|x-y|\leq 1$, then $|y-x|\leq 1$. However we have $1\,R\,2,2\,R\,3$, but $2\,\mathbb M\,3$. So R is not transitive.

Properties on R^{-1}

Theorem

Let R be a relation on set A. Then we have

- **1** R is symmetric $\Leftrightarrow R^{-1}$ is symmetric;

Properties on R^{-1}

Theorem

Let R be a relation on set A. Then we have

- **1** R is reflexive $\Leftrightarrow R^{-1}$ is reflexive;
- **b** R is symmetric $\Leftrightarrow R^{-1}$ is symmetric;
- **1** R is transitive $\Leftrightarrow R^{-1}$ is transitive.

Proof.

We only prove the hardest (c). Since $(R^{-1})^{-1} = R$, it suffices to show that if R is transitive, then R^{-1} is transitive. Suppose R is transitive. For any $x,y,z\in A$, suppose x R^{-1} y and y R^{-1} z, then y R x and z R y. Since R is transitive, we have z R x. Then by definition we have x x x hence x x x is transitive too.

Exercise: operations on relations

Exercise

Let both R and S be relations on a set A. If R and S are both reflexive, is $R \cap S$ always reflexive?

Exercise: operations on relations

Exercise

Let both R and S be relations on a set A. If R and S are both reflexive, is $R \cap S$ always reflexive?

Solution

Let's explore. To check whether $R \cap S$ is always reflexive, we just need to check the following universal statement:

$$\forall x \in A, (x, x) \in R \cap S.$$

So we choose an arbitrary element $x \in A$, and we need to check whether $(x,x) \in R$ and $(x,x) \in S$. Since R is reflexive, by definition we have $(x,x) \in R$; since S is reflexive, we also have $(x,x) \in S$. Then $(x,x) \in R \cap S$, and the answer is yes.

HW# 10 in today's sections

Section 8.1 Exercise 9(c), 11. Section 8.2 Exercise 5, 16, 21, 39, 40.