

02:54:28

Shopee Code League 2022 - Qualification Round

LIVE INVITE ONLY ACCESS

Mar 19, 2022, 03:00 PM SGT - Mar 19, 2022, 06:00 PM SGT

INSTRUCTIONS	PROBLEMS	SUBMISSIONS	LEADERBOARD	ANALYTICS	JUDGE
← Problems / Shopee Xp	oress Delivery				
Shopee Xp	ress Delive	ery			
Max. score: 100					

00	0	1	2	3	4	5	6	7
0	go					1		
1		1					2	
2								
3				1				
4						2		2
5								
6			3					3
7				2				end

Description

Bob is a Shopee Xpress deliveryman and is delivering a package to his destination. He started his journey from one of our Shopee warehouses at position (0, 0), and his destination is at the bottom-right corner of the map. For example, if the map is an 8x8 grid, the destination is (7, 7).

Each step, his car can move 1 square up, down, left, or right. If his car reaches a black hole, it can teleport to any other location connected to the black hole at no cost, he also can skip the teleport feature. For example, if the car reaches black hole A at position (1, 1), Bob can teleport to position (0, 5) without costing an additional step.

Find the least number of steps (shortest path) that Bob can take to move from (0, 0) to the destination.

So, one path of least steps for example map is:

 $0.0 \rightarrow 0.1 \rightarrow 1.1/0.5 \rightarrow 1.5 \rightarrow 1.6/7.3 \rightarrow 7.2 \rightarrow 6.2/6.7 \rightarrow 7.7$, the answer is 7.

Input:

The first line contains two numbers M, N ($1 \le M, N \le 100$). M refers to the number of rows in the map, and N refers to the number of columns in the map.

The next M rows contain N values x_{ij} ($0 \le x[i][j] \le 255$), where 0 means that position (i, j) is an empty square, and non-zero values mean that a black hole is present in the square. Non-zero values are guaranteed to have at least 2 or more instances on the map.

Output:

To print the integer of the least number of steps needed.

CODE EDITOR

Your Rating: Like 0 Share

Niew all comments

	Resources	Solutions	Company	Service & Support			
	Tech Recruitment Blog	Assess Developers	About Us	Technical Support			
	Product Guides	Conduct Remote Interviews	Press	Contact Us			
	Developer hiring guide	Assess University Talent	Careers				
+1-650-461-4192	Engineering Blog	Organize Hackathons					
contact@hackerearth.com	Developers Blog						
	Developers Wiki						
	Competitive Programming						
f y in D	Start a Programming Club						
	Practice Machine Learning						

© 2022 HackerEarth All rights reserved | Terms of Service | Privacy Policy