Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (previously presented) A composition which selectively reduces blood flow to a tumor region and forms a reactive oxygen species in vivo, wherein said composition comprises an anticancer agent having a quinone, quinone prodrug, catechol or catechol prodrug moiety, provided that said composition is not combretastatin A-1 or a salt, ester or prodrug thereof.
- 2. (original) The composition of claim 1 wherein said moiety is in the ortho position.
- (original) The composition of claim 1 wherein said anticancer agent is a tubulin binding agent.
- 4. (currently amended) A compound comprising the structure of formula I: wherein:

- Ring A is optionally substituted with one to five substituted selected from
 - a) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - b) a halogen or trhaloalkyl;
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinvl, or vinvloxy;
 - d) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;

- e) NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido: or
- f) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitosyl, cyano, carboxy, carbamyl, arvl, or heterocycle:
- Ring B comprises at least one structure denoted by R_a and R_b which represent an ortho-quinone moiety (-(C=O)-(C=O)-), ortho-catechol (-(C-OH)-(C-OH)-) or ortho-catechol pro-drug moiety (-(C-O-Prodrug moiety)-(C-O-Prodrug moiety)-); and the remaining carbons of Ring B are optionally substituted with one ot five substituents selected from
 - g) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - h) a halogen or trhaloalkyl;
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - j) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - k) NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido; or
 - oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and
- Bridge X is selected from the group consisting of alkenes (- CR_9 - CR_{10} -), alkanes (CR_9 - $CR_{11}R_{12}$), alkynes, amides (- NR_9 -CO-), amines (-NH-, - NR_8 -, or - CR_9 -N-), carbonyl (-CO-), ethers (- CR_8 -O-), sulfonamides (- NR_8 - SO_2 -), sulfonates (-O- SO_2 -), aryls, oxo (-O- or -O R_8 -), thio (-S-) cycloalkyls, propanones (-(C-O)- CR_8 - CR_9 -); sulfonamides (- NR_8 -(S- $O)_2$ -), and sulfonates (-O-(S- $O)_2$ -); wherein R_8 , R_9 , R_{10} , or R_{11} are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl;

provided that said compound is not combretastatin A1 or a salt, ester, or prodrug thereof.

5. (currently amended) A compound comprising a quinone, quinone prodrug, or a pharmaceutically acceptable salt form thereof having one of the following general structures:

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_8
 R_7
 R_8

la: or

wherein:

- a. at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 or R_8 are the same or different and are optionally selected from
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C1, C2, C3, C4 or C5 primary, secondary, or tertiary alcohol;

- NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido: or
- vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, arvl, or heterocycle:

and the remaining R₁, R₂, R₃, R₄, R₅, R₆, R₇, or R₈ are H; and

- b. X is selected from the group consisting of alkenes (-CR₉=CR₁₀-), alkanes (CR₉-CR₁₁R₁₂), alkynes, amides (-NR₉-CO=), amines (-NH-, -NR₉-, or -CR₉-N-), carbonyl (-CO-), ethers (-C R₈-O-), sulfonamides (-NR₈-SO₂-), sulfonates (-O-SO₂-), aryls, oxo (-O- or -O R₈-), thio (-S-) cycloalkyls, propanones (-(C=O)-CR₉-CR₉-), sulfonamides (-NR₉-(S=O)₂-), and sulfonates (-O-(S=O)₂-); wherein R₈, R₉, R₁₀, or R₁₁ are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl.
- 6. (original) The compound of claim 5, wherein X forms a covalent linkage between Ring Z and B comprising two contiguous atoms of the same or different element.
- 7. (original) The compound of claim 6, wherein the covalent linkage is an ethylene group (-CH=CH-) and Rings A and B are in a cis (Z) isomeric configuration.
- 8. (original) The compound of claim 7, wherein R₂, R₃, and R₄ are methoxy.
- 9. (original) The compound of claim 5, wherein said quinone is a bioreductive agent which is reductively activated in vivo to form a catechol capable of participating in a redox cycling reaction to form one or more Reactive Oxygen Species ("ROS").
- 10. (currently amended) A compound comprising a quinone, quinone prodrug, or a pharmaceutically acceptable salt form thereof having one of the following general structures:

$$R_3$$
 R_4
 R_7
 R_8
 R_7
 R_8
 R_8

lla: or

HO
$$R_6$$
 R_7 R_7 R_8 R_7 R_8

IIb:

wherein:

- a. at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 or R_8 are the same or different and are selected from:
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkvl:
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido; or
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;

and the remaining R₁, R₂, R₃, R₄, R₅, R₆, R₇, or R₈ are H; and

provided that said compound is not combretastatin A1 or a salt, ester, or prodrug thereof.

- 11. (original) The compound of claim 10, wherein X forms a covalent linkage between Ring A and B, comprising two contiguous atoms of the same or different element.
- 12. (original) The compound of claim 11, wherein the covalent linkadeis an ethylene group (-CH=CH-), and Rings A and Bare in a cis (Z) isomeric configuration.
- 13. (original) The compound of claim 12, wherein R_2 , R_3 and R_4 are methoxy.
- 14. (original) The compound of claim 13. wherein R₈ is selected from:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;

and the remaining R₁, R₅, R₆, and R₇ are H.

- 15. (original) The compound of claim 14, wherein R₈ is OH or -O-CH₂-CH=CH₂.
- 16. (original) The compound of claim 4, wherein said catechol is a biooxidative agent which is oxidatively activated in vivo to form a quinone capable of participating in a redox cycling reaction to form one or more Reactive Oxygen Species ("ROS").
- 17. (withdrawn) A method of inhibiting the proliferation of tumor cells, comprising administering to a mammal an antiproliferative agent capable of forming a Reactive Oxygen Species.
- 18. (withdrawn) A method of inhibiting the proliferation of tumor cells, comprising administering to a mammal a composition which selectively reduces blood flow to a tumor region and forms a ROS in vivo, wherein said composition comprises an anticancer agent having a quinone, quinone prodrug, catechol or catechol prodrug moiety.
- 19. (withdrawn) The method of claim 18, wherein said reduced tumor blood flow is reversible.
- 20. (withdrawn currently amended) A method of inhibiting the proliferation of tumor cells, comprising administering to a mammal a catechol, catechol prodrug, or a pharmaceutically acceptable salt form thereof having one the following general structures:

$$R_3$$
 R_4
 R_6
 R_7
 R_8
 R_8
 R_8

IIa.

or

HO
$$R_8$$
 R_7 R_6 R_8 R_8 R_8 R_8

IIb:

wherein:

- a. at least one of R₁, R₂, R₃, R₄, R₅, R₆, R₇ or R₈ are the same or different and are selected from:
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido: or
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;

and the remaining R₁, R₂, R₃, R₄, R₅, R₆, R₇, or R₈ are H; and

b. X is selected from the group consisting of alkenes (-CR₉-CR₁₀-), alkanes (CR₉-CR₁₁R₁₂), alkynes, amides (-NR₉-CO=), amines (-NH-, -NR₈-, or -CR₉-N-), carbonyl (-CO-), ethers (-C R₈-O-), sulfonamides (-NR₈-SO₂-), sulfonates (-O-SO₂-), aryls, oxo (-O- or -O R₈-), thio (-S-) cycloalkyls, propanones (-(C=O)-CR₈-CR₉-), sulfonamides (-NR₈-(S=O)₂-), and sulfonates (-O-(S=O)₂-); wherein

- R_8 , R_9 , R_{10} , or R_{11} are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl.
- 21. (withdrawn) The compound of claim 20, wherein X forms a covalent linkage between Ring A and B, comprising two contiguous atoms of the same or different element
- 22. (withdrawn) The compound of claim 21, wherein the covalent linkade is an ethylene group (-CH=CH-), and Rings A and Bare in a ci (Z) isomeric configuration.
- 23. (withdrawn) The compound of claim 22, wherein R₂, R₃ and R₄ are methoxy.
- 24. (withdrawn) The compound of claim 23, wherein R₈ is selected from:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;
- and the remaining R_1 , R_5 , R_6 , and R_7 are H.
- 25. (withdrawn) The method of claim 24, wherein R₈ is OH or -O-CH₂-CH=CH₂.
- 26. (withdrawn currently amended) A method of reducing blood flow in a patient suffering from a vascular proliferative disorder, comprising administering to the patient an effective amount of a catechol, catechol prodrug, or a pharmaceutically acceptable salt form thereof of one the following general structures:

lla: or

HO
$$R_6$$
 R_7 R_7 R_8 R_7 R_8

IIb:

wherein:

- a. at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 or R_8 are the same or different and are selected from:
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkvl:
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinvl, or vinvloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido; or
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;

- and the remaining R₁, R₂, R₃, R₄, R₅, R₆, R₇, or R₈ are H; and
- b. X is selected from the group consisting of alkenes (- CR_{θ} = CR_{10} -), alkanes (CR_{θ} - $CR_{11}R_{12}$), alkynes, amides (- NR_{θ} -CO-), amines (- NH_{τ} - NR_{θ} -, or - CR_{θ} -N-), carbonyl (-CO-), ethers (- CR_{θ} -O-), sulfonamides (- NR_{θ} - SO_2 -), sulfonates (- OSO_2 -), aryls, oxo (-O- or - OR_{θ} -), thio (-S-) cycloalkyls, propanones (-(C=O)- CR_{θ} - CR_{θ} -), sulfonamides (- NR_{θ} -(S-O)₂-), and sulfonates (-O-(S-O)₂-); wherein R_{θ} , R_{θ} , R_{10} , or R_{11} are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl.
- 27. (withdrawn) The compound of claim 26, wherein X forms a covalent linkage between Ring A and B, comprising two contiguous atoms of the same or different element.
- 28. (withdrawn) The compound of claim 27, wherein the covalent linkade is an ethylene group (-CH=CH-), and Rings A and Bare in a ci (Z) isomeric configuration.
- 29. (withdrawn) The compound of claim 28, wherein R_2 , R_3 and R_4 are methoxy.
- 30. (withdrawn) The compound of claim 29, wherein R₈ is selected from:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - v) NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;
- and the remaining R₁, R₅, R₆, and R₇ are H.

- 31. (withdrawn) The method of claim 30, wherein R₈ is OH or –O-CH₂-CH=CH₂.
- 32. (withdrawn) The method of claim 26, wherein said vascular proliferative disorder is selected from the group consisting of solid tumor cancer, wet age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, diabetic molecular edema, uveitis, corneal neovascularization, psoriasis, rheumatoid arthritis, atheroma, restenosis, Kaposi's sarcoma, haemangioma, and inflammatory diseases characterized by vascular proliferation.
- 33. (withdrawn) The method of claim 26, wherein the blood flow reduction causes the occlusion, destruction, or damage of proliferating vasculature.
- 34. (original) A composition of the following formula (V):

wherein

- a. Z is an ethylene (-CH=CH-) bridge in the cis (Z) isomeric configuration;
- b. R₁ and R₂ are OH or a prodrug form thereof;
- c. at least one of R₃, R₄, R₅, R₆, R₇, R₈, and R₉ are optionally
 - i) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;

- NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido:
- vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and

the remaining R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are hydrogen.

- 35. (original) The composition of claim 34, wherein at least three of R_6 , R_7 , R_8 , and R_9 are not hydrogen.
- 36. (original) The composition of claim 35, wherein R₆, R₇ and R₈ are the same.
- 37. (original) The composition of claim 36, wherein R₆, R₇ and R₈ are methoxy.
- 38. (original) The composition of claim 37, wherein R₃ is
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and
- R₄, R₅, and R₉ are hydrogen.

- 40. (original) The composition of claim 39, wherein R₆, R₇, and R₈ are F.
- 41. (original) The composition of claim 40, wherein R₃ is
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C1, C2, C3, C4 or C5 primary, secondary, or tertiary alcohol;
 - v) NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and
- R₄, R₅, and R₉ are hydrogen.
- 42. (currently amended) The composition of claim 41, wherein R₃ is −CH₃, −CH₂CH₃, −Ch₂CH₃, −Ch₂CH₃, −Ch₂-CH
- 43. (Withdrawn) A method of inhibiting the proliferation of tumor cells, comprising administering to a mammal a catechol, catechol prodrug, or a pharmaceutically acceptable salt form thereof of formula (V):

$$R_8$$
 R_7
 R_6
 R_4
 R_7
 R_6
 R_4
 R_7
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

wherein

- a. Z is an ethylene (-CH=CH-) bridge in the cis (Z) isomeric configuration;
- b. R₁ and R₂ are OH or a prodrug form thereof;
- c. at least one of R₃, R₄, R₅, R₆, R₇, R₈, and R₉ are optionally
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol:
 - NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and

the remaining R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are hydrogen.

- 44. (withdrawn) The method of claim 43, wherein at least three of R_6 , R_7 , R_8 , and R_9 are not hydrogen.
- 45. (withdrawn) The method of claim 44, wherein R₆, R₇ and R₈ are the same.
- 46. (withdrawn) The method of claim 45, wherein R₆, R₇ and R₈ are methoxy.

47. (withdrawn) The method of claim 46, wherein R₃ is

- a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
- ii) a halogen or trhaloalkyl;
- a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy:
- iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
- v) NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
- vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and

R₄, R₅, and R₉ are hydrogen.

 $\label{eq:continuous} \begin{tabular}{ll} \begin{tabular}{ll} A. (withdrawn - currently amended) & The method of claim 47, wherein R_3 is $-CH_3$, $-CH_2CH_3$, $-OCh_2CH_3$, $-F$, $-BF$, $-CF_3$, $-CH_3$, $-OCh_2-CH=CH_2$, $-CH_2-CH_2-CH_2$, $-CH_2-CH_2$, $-CH_2$, $-CH_2$

49. (withdrawn) A method of reducing blood flow in a patient suffering from a vascular proliferative disorder, comprising administering to the patient an effective amount of a catechol, catechol prodrug, or a pharmaceutically acceptable salt form thereof of formula (V):

$$R_8$$
 R_7
 R_6
 R_4
 R_7
 R_6
 R_4
 R_7
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

wherein

a. Z is an ethylene (-CH=CH-) bridge in the cis (Z) isomeric configuration;

- b. R₁ and R₂ are OH or a prodrug form thereof;
- c. at least one of R₃, R₄, R₅, R₆, R₇, R₈, and R₉ are optionally
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - v) NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
 - vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and

the remaining R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are hydrogen.

- 50. (withdrawn) The method of claim 49, wherein at least three of R_6 , R_7 , R_8 , and R_9 are not hydrogen.
- 51. (withdrawn) The method of claim 50, wherein R_6 , R_7 and R_8 are the same.
- 52. (withdrawn) The method of claim 51, wherein R_6 , R_7 and R_8 are methoxy.
- 53. (withdrawn) The method of claim 52, wherein R₃ is
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trhaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C_1 , C_2 , C_3 , C_4 or C_5 primary, secondary, or tertiary alcohol;

- NH₂ or an amino, lower alkylamino, arylamino, aralkylamino, cycloalkylamino, heterocycloamino, aroylamino, aralkanoylamino, amido, lower alkylamino, arylamido, cycloalkylamido, heterocycloamido, aroylamido, or aralkanoylamido;
- vi) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle; and
- R₄, R₅, and R₉ are hydrogen.
- 54. (withdrawn currently amended)

 The method of claim 53, wherein R₃ is -CH₃, -CH₂CH₃, -OCh₂CH₃, -F, -Br, -CF₃, -CBr₃, -OH, -O-CH₂-CH=CH₂, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2
- 55. (withdrawn) The method of claim 49, wherein said vascular proliferative disorder is selected from the group consisting of solid tumor cancer, wet age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, diabetic molecular edema, uveitis, corneal neovascularization, psoriasis, rheumatoid arthritis, atheroma, restenosis, Kaposi's sarcoma, haemangioma, and inflammatory diseases characterized by vascular proliferation.
- 56. (withdrawn) The method of claim 49, wherein the blood flow reduction causes the occlusion, destruction, or damage of proliferating vasculature.
- 57. (original) A composition selected from the group consisting of 6-[(Z)-2-(3,4,5-Trimethoxyphenyl) vinyl]-1,2-dihydroxybenzene,
- 3-Ethyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1 ,2-dihydroxybenzene,
- 3-Eury-0-[(Z)-2-(3,4,3-unineuroxyprietry)/virryij-1 ,2-uniyuroxyberizerie,
- 3-Methyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene, 4-Bromo-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 4-Phenyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 3-Allyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 4-Fluoro-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 2,3,4-Trihydroxy-6-[(Z)-2(3,4,5-trimethoxyphenyl)vinyl]-benzene,
- 2,3-Dihydroxy-4-ethoxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-benzene,

- 2,3-Dihydroxy-4-allyloxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-benzene,
- 4-Nitro-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-2,3-dihydroxybenzene,
- 2',3'dihydroxy -3,5 dichloro4,4'-dimethoxy-(Z)-stilbene,
- 2',3' dihydroxy-4'-methoxy-3,4,5-trifluoro-(Z)-stilbene,
- 2,3-Dihydroxy-4-methoxy-[(Z)-2-(3,4,5-trimethoxyphenyl) Beta-lactam]-benzene,
- 2'.3' diphosphate-3.4.5-trimethoxy-(Z)-stilbene, tetrasodium salt:
- 3',4' diphosphate-3,4,5-trimethoxy-(Z)-stilbene, tetrasodium salt; and combinations thereof.