19 BUNDESREPUBLIK DEUTSCHLAND

[®] Off nlegungsschrift ® DE 40 05 598 A 1

(51) Int. Cl.5: B 60 R 21/16

G 01 S 15/88

G 01 V 9/04 G 01 B 11/00

B 60 R 22/46

G 01 P 15/00 G 01 P 3/00 B 60 R 16/02 G 01 S 13/06 G 01 S 15/06 G 01 S 13/88

DEUTSCHES

PATENTAMT

(21) Aktenzeichen: P 40 05 598.1 Anmeldetag: 22. 2.90 Offenlegungstag: 29. 8.91

(7) Anmelder:

Robert Bosch GmbH, 7000 Stuttgart, DE

② Erfinder:

Mattes, Bernhard, Dipl.-Ing., 7123 Sachsenheim, DE; Reischle, Klaus, Dipl.-Ing. (BA), 7257 Ditzingen, DE

(S) Schutzverfahren für Fahrzeuginsassen und Einrichtung zur Durchführung des Verfahrens

 Bei einem Schutzverfahren für Fahrzeuginsassen werden die Beschleunigung des Fahrzeugs erfaßt und nach dem Überschreiten eines vorgebbaren Beschleunigungsgrenzwertes Sicherungsmittel zum Schutz des Fahrzeuginsassen aktiviert. Um eine optimale Auslösung der Sicherungsmittel 18 zu erreichen, wird mit einem Positionssensor S2 die Sitzposition des Fahrzeuginsassen und/oder seine Relativgeschwindigkeit in bezug auf die Fahrgastzelle meßtechnisch erfaßt. Die Sicherungsmittel 18 werden aktiviert, wenn die Sitzposition des Fahrzeuginsassen von einer Soll-Position abweicht und/oder die Relativgeschwindigkeit des Fahrzeuginsassen einen vorgebbaren Grenzwert überschreitet.

Stand der Technik

Die Erfindung geht aus von einem Schutzverfahren für Fahrzeuginsassen nach der Gattung des Anspruchs 1. Aus DE-OS 38 03 426 ist ein Verfahren zur Wirksamschaltung eines Sicherheitssystems bekannt, bei dem aus dem Signal eines Beschleunigungsaufnehmers die wäh- 10 rend eines Unfalls auftretende Insassen-Vorverlagerung berechnet wird. Wenn die durch Berechnung abgeleitete Insassen-Vorverlagerung einen vorgebbaren Wert übersteigt, wird beispielsweise ein aufblasbarer Gassack (Airbag) aufgeblasen. Nachteilig ist hierbei, daß als 15 len. Auslösekriterium eine fiktive Insassenposition herangezogen wird, die mit der vom Fahrzeuginsassen tatsächlich eingenommenen Sitzposition nicht zwangsläufig übereinstimmen muß.

Aus DE-OS 38 09 074 ist weiter ein Sicherheitssystem 20 für Kraftfahrzeuge unter Einbeziehung eines aufblasbaren Aufprallschutzkissens bekannt, bei dem über an der Gleitschiene des Fahrzeugsitzes angeordnete Drucksensoren die Sitzposition (Schwerpunktlage) des Fahrers festgestellt und das Aufprallschutzkissen nur teil- 25 weise aufgeblasen wird, wenn der Fahrzeuginsasse in Fahrtrichtung relativ weit nach vorne verlagert ist.

Schließlich ist in der Patentanmeldung DE-P 37 43 059.9 vorgeschlagen, die aktuelle Sitzposition eines Fahrzeuginsassen meßtechnisch mittels geeigneter 30 Sensoren, z. B. eines Ultraschall-Sende-Empfängers oder eines passiven Infrarotsensors zu ermitteln und je nach ermittelter Sitzposition, insbesondere eines Beifahrers, einen für den Beifahrer vorgesehenen aufblasbaren Gassack (Airbag) vollständig oder nur teilweise 35 aufzublasen. Die Sitzposition des Fahrzeuginsassen dient hierbei nicht als Auslösekriterium für das Sicherungsmittel, sondern lediglich zur Festlegung, ob das nach Maßgabe eines erreichten Beschleunigungsgrenzwertes des Fahrzeuges aktivierte Sicherungsmittel teil- 40 weise oder vollständig aufgeblasen wird.

Vorteile der Erfindung

Die erfindungsgemäße Lösung mit den kennzeich- 45 nenden Merkmalen des Anspruchs 1 hat den Vorteil, daß das an sich wichtigste Merkmal für den geeigneten Auslösezeitpunkt eines im Fahrzeug vorgesehenen Sicherungsmittels, nämlich eine Gefahr bringende Vorverlagerung eines Fahrzeuginsassen, meßtechnich er- 50 faßt und als Auslösekriterium für die Auslösung des Sicherungsmittels verwertet wird. Dadurch wird sichergestellt, daß hohe Wartungskosten verursachende Fehlauslösungen des Sicherungsmittels vermieden werden, wenn zwar die Ausgangssignale des vorhandenen Bech- 55 leunigungssensors auf einen Unfallvorgang hindeutende hohe Werte annehmen, ein Unfall tatsächlich aber nicht vorliegt und eine Insassen-Vorverlagerung nicht stattfindet. Andererseits wird die Betriebssicherheit eines Sicherungssystems vergrößert und die Schutzmöglich- 60 mit dem Ausgangsanschluß eines Beschleunigungssenkeit verbessert, da dann eine optimale Aktivierung der Sicherungsmittel ermöglicht wird, wenn die Ausgangssignale des Beschleunigungssensors hohe, auf einen Unfall hindeutende Werte annehmen und die Insassen-Vorverlagerung ebenfalls auf hohe Beschleunigungs- 65 werte hinweist.

Anstelle der Erfassung der Sitzposition des Fahrzeuginsassen kann auch mittelbar aus aufeinanderfolgenden

Messungen der jeweiligen Sitzposition des Fahrzeuginsassen eine Relativgeschwindigkeit des Fahrzeuginsassen in Bezug auf die Fahrgastzelle des Fahrzeugs meßtechnisch erfaßt und als Auslösekriterium für die Auslösung des Sicherungsmittels herangezogen werden. Ein besonders zuverlässiges Auslösekriterium kann dadurch gewonnen werden, daß sowohl die Sitzposition als auch die Relativgeschwindigkeit des Fahrzeuginsassen ausgewertet werden. Bei Unfallsituationen sind der Kopf und der Oberkörpfer eines Fahrzeuginsassen besonders gefährdet. Besonders zweckmäßig ist es daher, anstelle der Sitzposition des Fahrzeuginsassen die Position und/oder Relativgeschwindigkeit der Kopfpartie bzw. des Oberkörpers des Fahrzeuginsassen festzustel-

Eine besonders vorteilhafte Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfaßt neben einem Beschleunigungssensor, einem Steuergerät zur Auswertung der Signale des Beschleunigungssensors und den Sicherungsmitteln zum Schutz des Fahrzeuginsassen mindestens einen Positionssensor zur Feststellung der Sitzposition des Fahrzeuginsassen. Vorteilhaft wird dabei als Positionssensor gemäß einem Ausführungsbeispiel der erfindungsgemäßen Einrichtung mindestens je ein Lichtsender und ein Lichtempfänger vorgesehen, die mindestens eine quer zur Fortbewegungsrichtung des Fahrzeuginsassen verlaufende Meßstrecke begrenzen.

Besonders geeignet zur Feststellung der Sitzposition des Fahrzeuginsassen ist auch eine Meßstrecke, die einen Ultraschallsensor und einen Ultraschallempfänger umfaßt, wobei der Ultraschallsensor und der Ultraschallempfänger derart in Bezug auf den Fahrzeuginsassen angeordnet sind, daß die am Fahrzeuginsassen reflektierte Ultraschallenergie des Ultraschallsenders auf den Ultraschallempfänger gelangt. Eine besonders montagefreundliche Anordnung ergibt sich, wenn der Positionssensor im Armaturenbrett des Fahrzeugs angeordnet ist. Alternativ kann jedoch der Positionssensor auch in der Nackenstütze des Fahrzeugsitzes angeordnet

Zeichnung

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen

Fig. 1 ein Blockschaltbild einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens,

Fig. 2 mehrere Ausführungsbeispiele von Positionssensoren zur Verwendung in der Einrichtung nach Fig. 1 und Fig. 3 ein Ablaufdiagramm zur Erläuterung des erfindungsgemäßen Verfahrens.

Beschreibung der Ausführungsbeispiele

Die Einrichtung nach Fig. 1 umfaßt ein Steuergerät 10 mit mehreren Eingangs- und Ausgangsanschlüssen. Ein erster Eingangsanschluß des Steuergerätes 10 ist sors S1 verbunden, der beispielsweise eine der Beschleunigung a proportionale Spannung u erzeugt oder der erst bei Überschreiten einer festlegbaren Beschleunigungsschwelle ein Spannungssignal am Ausgang abgibt. Ein zweiter Eingangsanschluß des Steuergerätes 10 ist mit dem Ausgangsanschluß eines Positionssensors S2 verbunden, der die Position eines Fahrzeuginsassen meßtechnisch erfaßt, wie im einzelnen später noch er-

läutert wird. Ein erster Ausgangsanschluß des Steuergerätes 10 ist mit dem Masseanschluß verbunden. Ein zweiter Ausgangsanschluß des Steuergerätes 10 führt einerseits zu je einem ersten Anschluß eines Kondensators C12 und einer Spannungsquelle 17, deren jeweils zweiter Anschluß ebenfalls mit dem Masseanschluß verbunden ist; andererseits ist der zweite Ausgangsanschluß des Steuergerätes 10 mit einem ersten Pol eines Schaltelementes 11 verbunden, dessen zweiter Pol mit den ist. Der zweite Anschluß des Zündelements 14 wiederum liegt an Masse. Das Zündelement 14 steht in Wirkverbindung mit einem Sicherungsmittel 18 für Fahrzeuginsassen. Hierbei kann es sich beispielsweise nen Gurtstraffer handeln. Wirkverbindung in diesem Zusammenhang bedeutet, daß durch das Zündelement 14 eine nicht im einzelnen dargestellte Treibladung aktivierbar ist, die die für das Aufblasen des Gassacks benötigten Gasmengen erzeugt. Bei dem Zündelement 14 20 seinerseits handelt es sich vorzugsweise um sogenannte Zündpillen, die durch Stromfluß aufheizbar sind. Dieser Stromfluß durch das Zündelement 14 wird durch Schlie-Ben des Schaltelements 11 bewirkt, der seinerseits über ansteuerbar ist.

In Fig. 2 sind Einzelheiten mehrerer Ausführungsbeispiele von Positionssensoren S2 dargestellt, die mit dem Steuergerät 10 verbunden sind. Diese Positionssensoren Position des Fahrzeuginsassen 35 und/oder zur Feststellung der Relativgeschwindigkeit des Fahrzeuginsassen 35 in Bezug auf die Fahrgastzelle des Fahrzeugs, wenn der Fahrzeuginsasse 35 infolge der auf ihn einwirkenden spiel eines Positionssensors S2 umfaßt mindestens je einen Lichtsender 30 und einen Lichtempfänger 31, die mindestens eine quer zur Fortbewegungsrichtung des Fahrzeuginsassen 35 verlaufende Meßstrecke begrenzen. Durch die Anordnung mindestens einer derartigen 40 Meßstrecke, vorzugsweise jedoch mehrerer Meßstrekken dieser Art, kann vom Positionssensor S2 die jeweilige Position des Fahrzeuginsassen 35 meßtechnisch erfaßt werden. Werden mehrere derartiger optischer Meßstrecken entlang der möglichen Bewegungsbahn 45 des Fahrzeuginsassen 35 angeordnet, dann kann durch eine Lagebestimmung vermittels mehrerer Meßstrekken und durch eine Zeitbestimmung während der Bewegung des Fahrzeuginsassen 35 von einer Meßstrecke zur anderen auf vergleichsweise einfache Art auch eine 50 Bestimmung der Bewegungsgeschwindigkeit des Fahrzeuginsassen in Bezug auf die als raumfest angenommene Fahrgastzelle durchgeführt werden. In einem weiteren Ausführungsbeispiel der Erfindung umfaßt der Posiund Ultraschallempfänger 33, die derart in Bezug auf den Fahrzeuginsassen 35 angeordnet sind, daß die am Fahrzeuginsassen reflektierte Ultraschallenergie des Ultraschallsenders 32 auf den Ultraschallempfänger 33 gelangt. Auch dadurch ist eine einfache Bestimmung der 60 Position des Fahrzeuginsassen 35 möglich. Ultraschallsender 32 und Ultraschallempfänger 33 sind in dem in Fig. 2 dargestellten Ausführungsbeispiel räumlich getrennt dargesteilt. Es ist jedoch ebenfalls möglich, beide Komponenten in einer einzigen Baugruppe 34 zusam- 65 menzulassen. Neben den zuvor beschriebenen Sensoren zur Positionsbestimmung sind weitere Sensoren alternativ einsetzbar, die beispielsweise als aktive bzw. passive Infrarotsensoren ausgebildet sind.

Als weitere Ausführungsbeispiele für den Positionssensor können Mikrowellen-Radar-Sensoren verwendet werden. Mit ihnen ist eine besonders rasche, d. H. nur kurze Auswertezeit benötigende, Erkennung der Präsenz, der Position und/oder der Bewegungsgeschwindigkeit des Fahrzeug-Insassen relativ zur Fahrgastzelle möglich.

Der Positionssensor S2 wird in einem Ausführungseinem ersten Anschluß eines Zündelements 14 verbun- 10 beispiel der erfindungsgemäßen Einrichtung im Armaturenbrett des Fahrzeugs jeweils vor den Fahrzeuginsassen angeordnet. Diese Anordnung ist besonders montagefreundlich, da nur kurze Verbindungsleitungen zu dem Steuergerät 10 notwendig sind. In einem weiteum einen aufblasbaren Gassack (Airbag) und/oder ei- 15 ren Ausführungsbeispiel kann der Positionssensor S2 zweckmäßig in der Nackenstütze des jeweiligen Fahrzeugsitzes angeordnet sein. Dadurch läßt sich besonders gut feststellen, ob der jeweilige Fahrzeuginsasse in einer für die jeweilige Schutzfunktion des Sicherungsmittels optimalen Sitzposition, d. h. in engem Kontakt mit der Rückenlehne des Fahrzeugsitzes, sitzt.

Der Ablauf des erfindungsgemäßen Verfahrens und die Funktionsweise der in Fig. 1 und Fig. 2 dargestellten Einrichtung werden im folgenden auch unter Bezug auf einen dritten Ausgangsanschluß des Steuergerätes 10 25 das Diagramm gemäß Fig. 3 erläutert. Gemäß Fig. 3 beginnt das Verfahren mit dem Verfahrensschritt 100. Im Verfahrensschritt 101 wird zunächst mit dem Beschleunigungssensor S1 die Beschleunigung a gemessen, der das Fahrzeug ausgesetzt ist. Im Verfahrensschritt dienen, wie bereits schon erwähnt, zur Feststellung der 30 102 wird geprüft, ob diese Beschleunigung a einen vorgebbaren Beschleunigungsgrenzwert aG überschritten hat oder nicht. Im Verfahrensschritt 104 wird mit dem Positionssensor S2 die Position des Insassen 35 und/ oder seine Relativgeschwindigkeit in Bezug auf die Kräfte beschleunigt wird. Ein erstes Ausführungsbei- 35 Fahrgastzelle meßtechnisch erfaßt. Im Schritt 105 wird überprüft, ob die vom Positionssensor S2 ermittelten MeBwerte auf eine Gefahr für den Insassen 35 hindeuten. Hinweise für eine Gefahrensituation können eine Vorverlagerung des Insassen, insbesondere eine Vorverlagerung seines Kopf- oder Oberkörperbereichs sein oder das Überschreiten eines vorgebbaren Grenzwertes der Relativgeschwindigkeit des Fahrzeuginsassen 35 in Fahrtrichtung des Fahrzeugs. Die Position des Insassen 35 wird durch die oben schon beschriebenen Positionssensoren meßtechnisch erfaßt. Seine Relativgeschwindigkeit kann auf einfache Weise ebenfalls durch die Positionssensoren dadurch ermittelt werden, daß der Positionssensor S2 mehrere Positionswerte des Fahrzeuginsassen 35 erfaßt und daß zusätzlich die Zeit ermittelt wird, die von der Einnahme eines ersten Positionswertes bis zum zeitlich folgenden Positionswert verstreicht. Wenn nun festgestellt wird, daß die Position und/oder die Relativgeschwindigkeit des Fahrzeuginsassen und/oder das Ausgangssignal des Beschleunitionssensor S2 mindestens je einen Ultraschallsender 32 55 gungssensors S1 auf eine Unfallsituation hindeuten. wird vom Steuergerät 10 das Schaltelement 11 angesteuert und der Zündstromkreis geschlossen, mit der Folge, daß das Zündelement 14 durch Stromdurchgang erhitzt und aktiviert wird und damit die Sicherungsmittel 18 auslöst. Dieser Vorgang läuft im Verfahrensschritt 109 ab. Mit dem Verfahrensschritt 112 wird der zum Schutz des Fahrzeuginsassen 35 vorgesehene Ablauf abgeschlossen.

Patentansprüche

1. Schutzverfahren für Fahrzeuginsassen, bei dem Beschleunigungswerte des Fahrzeugs erfaßt und

6

nach dem Überschreiten eines vorgebbaren Beschleunigungsgrenzwertes die Fahrzeuginsassen schützende Sicherungsmittel (z. B. Airbag und/oder Gurtstraffer) aktiviert werden, dadurch gekennzeichnet, daß die Sitzposition des Fahrzeuginsassen (35) und/oder die Relativgeschwindigkeit (vR) des Fahrzeuginsassen (35) in Bezug auf die Fahrgastzelle des Fahrzeugs meßtechnisch erfaßt werden, und daß die Sicherungsmittel (18) nur dann aktiviert werden, wenn bei Überschreiten des vorgebbaren Beschleunigungsgrenzwertes (aG) die Sitzposition des Fahrzeuginsassen (35) von einer Sollposition abweicht und/oder die Relativgeschwindigkeit (vR) des Fahrzeuginsassen (35) einen vorgebbaren Grenzwert (vG) überschreitet.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lage des Oberkörpers des Fahr-

zeuginsassen (35) erfaßt wird.

3. Einrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 oder 2, mit einem 20 Beschleunigungssensor, einem Steuergerät zur Auswertung der Signale des Beschleunigungssensors und mit Sicherungsmitteln zum Schutz des Fahrzeuginsassen, dadurch gekennzeichnet, daß die Einrichtung mindestens einen Positionssensor 25 (S2) zur Feststellung der Sitzposition des Fahrzeuginsassen (35) umfaßt.

4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Positionssensor (S2) mindestens je einen Lichtsender (30) und einen Lichtempfänger 30 (31) umfaßt, die mindestens eine quer zur Fortbewegungsrichtung des Fahrzeuginsassen (35) verlau-

fende Meßstrecke begrenzen.

5. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Positionssensor (S2) mindestens 35 je einen Ultraschallsender (32) und Ultraschallempfänger (33) umfaßt, die derart in Bezug auf den Fahrzeuginsassen (35) angeordnet sind, daß die am Fahrzeuginsassen reflektierte Ultraschallenergie des Ultraschallsenders (32) auf den Ultraschallemp- 40 fänger (33) gelangt.

6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Positionssensor (S2) mindestens je einen Mikrowellenradarsender (32) und Mikrowellenradarempfänger (33) umfaßt, 45 die derart in Bezug auf den Fahrzeuginsassen angeordnet sind, daß die am Fahrzeuginsassen reflektierten Radarwellen des Mikrowellenradarsenders (32) auf den Mikrowellenradarempfänger (33) gelangen.

7. Einrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Positionssensor (2) im Armaturenbrett des Fahrzeugs angeordnet ist

8. Einrichtung nach einem der Ansprüche 3 bis 7, 55 dadurch gekennzeichnet, daß der Positionssensor (2) in der Nackenstütze des Fahrzeugsitzes angeordnet ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁵: Offenl gungstag: DE 40 05 598 A1 B 60 R 21/16 29. August 1991

Nummer: Int. Cl.⁵: Offenlegungstag: DE 40 05 598 A1 B 60 R 21/16 29. August 1991

FIG. 3

