

Engineering Databases

Lecture 1

October 19, 2022

M. Saeed Mafipour & Mansour Mehranfar

Course Information

- 3 ETCS
- On Wednesdays, 15:00 16:30, in presence at TUM:
 - Computer room: N0199
 - https://campus.tum.de/tumonline/co_loc_roomfinder.doRedirect?raumKey=7566
- Lectures will not be recorded
- Theory & Exercises
- Midterm assignment
- Register for the lecture <u>and</u> exam
- Exam
 - In Early February 2023
 - Closed book
 - 60 minutes

Course Topics

- **Database basics**
 - Terms / Motivation / Characteristics
 - History
 - Types of databases
- Database design
 - Entity-relationship model (ERM)
- The relational model
 - Transforming conceptual schema to relational schema
 - Relational algebra

Course Topics

- Relational Query Language (SQL)
 - Data types
 - Definition of schema
 - Elementary manipulations of data
- Relational design
 - Keys
 - Functional dependencies
 - Normal forms
- Transactions
- Database in software architecture
- Indexing

What is a Database?

"A set of information held in a computer"

(Oxford English Dictionary)

 "One or more large structured sets of persistent data, usually associated with software to update and query the data"

(Free On-Line Dictionary of Computing)

"A collection of data arranged for ease and speed of search and retrieval"

(Dictionary.com)

Introduction

- Much data everywhere
 - More & more → need to store it in a structured way
 - Easy & fast access → Database Management Systems (DBMS)
- Examples
 - bank accounts
 - client databases
 - Web 2.0 web pages, e.g. Facebook, GoogleDocs, TUMonline
 - Google
 - German railway
 - Product Data Management (PDM)
 - Enterprise Resource Planning (ERP)

Introduction

- We distinguish the terms
 - Database (DB) = all the data that is stored
 - Database Management System (DBMS) = program running on the computer
 - access to database
 - controls consistency, concurrency, integrity, and security
 - ensures fast access through proper organization
 - Sometimes these two terms are mixed

Motivation

- What problems occur if we don't use a DBMS but instead one or many files?
- Redundancy lead to inconsistency
 - If data is kept in isolated files, often the same information is stored multiple times
 - Problem: if the information is changed at one place it has to be updated at all other places
- Missing restricted access
 - It is not possible to link data in a file on a logical basis with data in another file
 - DB: use a query language
- Missing multi-user access
 - Problems occur if multiple users access the same data (modifications!)
 - Word-File → last modifier "wins"
 - Update during read access → no notification → old data

Motivation

- Loss of data
 - Recovery of a consistent state of the database
 - DB: actions to recover / data is always safe
 - File systems: only periodical storing
- Loss of integrity
 - Integrity conditions / rules, e.g. students can do an exam 2 times at maximum
 - Certain modification actions should be refused by the system
 - Database systems: transactions are realized only if they result in a consistent state

Motivation

- Security issues
 - Not all users should have read / write access to all data
 - DBMS: fine-grained user access control = rights management
 - Example roles:

Administrator: read / write access to all data

Lecturers: read / write access to grades

Students: read access to own grades

When do we use a database management system?

- Criteria
 - Large amount of data (> 50 MB)
 - Many users (> 5) with
 - different rights
 - simultaneous access
 - Filter data by means of logical conditions
 - Consistency rules → transactions
 - Loss of data → critical

Abstraction layers/levels

Views

- Partial sets of entire data set
- Tailored to the needs of specific users

Logical Layer

how data is logically organized → schema

Physical Layer

how data is stored on disk

Data models

- A schema defines the structure of the data that can be stored
 - contains no data
 - e.g. relational model:
 - which "tables" exist
 - what "columns" does it have
- An instance is one set of data that complies to the schema, e.g.
 - all students of TUM
 - all students of LMU

Data models

- A data model describes how we can model the schema in the database
 - Network model (historical)
 - Hierarchical model (historical)
 - relational model (98%)
 - object-oriented model
 - New as native model for databases
 - powerful, but seldom used
 - Performance issues
 - mixture: object-relational model

Database design

- Do a proper design→ then you'll have an efficient database
- Easy maintenance, future extensibility
- Use a formal approach (methodology)
- Use pen and paper first

Entity Relationship Model

- A graphical model, which includes the following elements
 - Entities
 - Relationships
 - Attributes
- Entities

"Well-defined physical objects or mental concepts of the world to be modeled"

- similar objects are abstracted to object types (= entity types / entity sets)
- often stated as nouns
- drawn as rectangle

Student

Relationships / Attributes

- Relationships
 - model relationships between entity types
 - drawn as diamond
 - often stated as verbs

- **Attributes**
 - characterize entities and relationships
 - drawn as ellipse

Example: An Entity Relationship Model

Recursive Relationships

Keys

Primary key candidate = minimal set of attributes that unambiguously identifies one entity among all entities of the same type

Cardinalities

Cardinalities

Exercise: Entity-Relationship-Diagram

- Your task is to define the database structure for an airport. To capture the "universeof-discourse" you use the entity-relationship-model. From the interviews with your clients you know the following:
- A number of airline companies work at the airport. The airline companies have a name and a signature (two letters) to identify their flights. Each airline company has a number of outgoing and incoming flights. Each outgoing flight has a flight number, a destiny, a gate, a boarding time and a departure time. Each incoming flight has a flight number, an origin, and an arrival time. The airport has different terminals. Each terminal has a name and a number of check-in counters. Each check-in-counter has a number. For each outgoing flight there is a specific check-in counter.
- Draw the entity-relationship-diagram.

Airport example: Cardinalities

(Min, Max) notation - cardinality

Chair of Computational Modeling and Simulation

- used to define minimum and maximum number of associated elements
- Example: Polyhedron

Another relationship type: N-ary

Test your Database Access

- Go to: https://mysql.cip.bgu.tum.de/DBadmin/
- Login: <Your Matriculation-Number> (with leading
- Password: EngDB_WS2022
- phpMyAdmin
 - Provides access to a mySql-Database
 - MySQL Documentation https://dev.mysql.com/doc/refman/5.7/en/

Basic of the user interface

- Change language
- Log-In

Willkommen bei phpMyAdmin

Basic of the user interface

User interface provides all functions we can execute via SQL

- Try to create the Airport example (slide 24) tables using the interface
 - Rectangles are tables, ellipses are columns (attributes)
 - Ideas about the diamond symbol?
 - Be aware, we still do not implement consistency rules

End of Lecture

Thank you for your attention