

Instituto Federal Sul-rio-grandense – Campus Pelotas Curso Superior de Engenharia Elétrica EE.421 – Sistemas de Energia – Trabalho 2 Prof. José Ubiraiara Núñez de Nunes

Trabalho 2 – Implementação e Análise de Fluxo de Potência

Na Fig. 1 é ilustrado o diagrama unifilar do sistema de transmissão IEEE 14 barras. Na Tab. 1 são descritos os dados das barras e, na Tab. 2, os dados das linhas e dos transformadores do sistema. Para o sistema de potência considerado, faça o que se pede:

- a. Implemente uma rotina de fluxo de potência baseada no algoritmo iterativo de Newton-Raphson;
- b. O algoritmo deve ter como entrada de dados o sistema-teste mostrado no diagrama da Fig.1 e deve fornecer na saída 1) as magnitudes das tensões e os ângulos para todas as barras da rede ilustrada, e 2) os fluxos de potência ativa e reativa nas linhas;
- c. Ao final, deve ser entregue um relatório apresentando os resultados obtidos com o fluxo de potência e as suas conclusões a respeito do trabalho, bem como o código de implementação.

Figura 1. Diagrama unifilar do sistema de 14 barras do IEEE.

Fonte: http://labs.ece.uw.edu/pstca/

Tabela 2 - Sistema IEEE 14 barras: dados das barras.

N°	Nome	Tipo	V _{base} (kV)	<i>V</i> (pu)	(°)	P _g (MW)	Q _g (MVAr)	Q _{min} (MVAr)	Q _{max} (MVAr)	P _d (MW)	Q _d (MVAr)	Q _{shunt} (MVAr)
1	Barra 1	2	132	1,060	0,0	232,4	-16,5	-9999	99999			
2	Barra 2	1	132	1,045	-4,98	40	43,56	-40	50	21,7	12,7	
3	Barra 3	1	132	1,010	-12,72	0	25,08	0	40	94,2	19	
4	Barra 4	0	132	1,019	-10,73					47,8	-3,9	
5	Barra 5	0	132	1,020	-8,78					7,6	1,6	
6	Barra 6	1	33	1,070	-14,22	0	12,73	-6	24	11,2	7,5	
7	Barra 7	0	33	1,062	-13,37							
8	Barra 8	1	33	1,090	-13,36	0	17,62	-6	24			
9	Barra 9	0	33	1,056	-14,94					29,5	16,6	19
10	Barra 10	0	33	1,051	-15,10					9	5,8	
11	Barra 11	0	33	1,057	-14,79					3,5	1,8	
12	Barra 12	0	33	1,055	-15,07					6,1	1,6	
13	Barra 13	0	33	1,050	-15,16					13,5	5,8	
14	Barra 14	0	33	1,036	-16,04					14,9	5	

Observações:

- ✓ Barras do tipo "0" são barras P-Q ou barras de carga;
 ✓ Barras do tipo "1" são barras P-|V| ou barras de geração;
 ✓ Barras do tipo "2" são barras |V|-θ ou barras de folga (referência).

Fonte: http://labs.ece.uw.edu/pstca/

Tabela 3 - Sistema IEEE 14 barras: dados das linhas e transformadores.

DE	PARA	Circuito	R (%)	X (%)	B_C (MVAr)	Тар
1	2	1	1,938	5,917	5,28	0,000
1	5	1	5,403	22,304	4,92	0,000
2	3	1	4,699	19,797	4,38	0,000
2	4	1	5,811	17,632	3,40	0,000
2	5	1	5,695	17,388	3,46	0,000
3	4	1	6,701	17,103	1,28	0,000
4	5	1	1,335	4,211	0	0,000
4	7	1	0	20,912	0	0,978
4	9	1	0	55,618	0	0,969
5	6	1	0	25,202	0	0,932
6	11	1	9,498	19,890	0	0,000
6	12	1	12,291	25,581	0	0,000
6	13	1	6,615	13,027	0	0,000
7	8	1	0	17,615	0	0,000
7	9	1	0	11,001	0	0,000
9	10	1	3,181	8,450	0	0,000
9	14	1	12,711	27,038	0	0,000
10	11	1	8,205	19,207	0	0,000
12	13	1	22,092	19,988	0	0,000
13	14	1	17,093	34,802	0	0,000

Fonte: http://labs.ece.uw.edu/pstca/