Foundations of representation theory 3. exercise sheet

Jendik Stelzner

October 30, 2013

Exercise 9:

Exercise 10:

Exercise 11:

Let e_1, \ldots, e_n be the canonical basis of K^n and $\phi, \psi \in \operatorname{Hom}_K(K^n)$ be defined as

$$\phi(e_i) := \begin{cases} 0 & \text{if } i = 1 \\ e_{i-1} & \text{otherwise} \end{cases} \text{ and } \psi(e_i) := \begin{cases} e_1 & \text{if } i = n \\ e_{i+1} & \text{otherwise} \end{cases}.$$

Let $U\subseteq K^n$ be a submodule. If $U\neq 0$ we find $v\in U$ with $v\neq 0$. Since e_1,\ldots,e_n is a basis of K^n we find $\lambda_1,\ldots,\lambda_n\in K$ with $v=\sum_{i=1}^n\lambda_ie_i$. Let $m:=\max\{i\in\{1,\ldots,n\}:\lambda_i\neq 0\}$; this is well-defined because $v\neq 0$, so $\lambda_i\neq 0$ for some $i\in\{1,\ldots,n\}$. Because U is a submodule we find that $e_1=\lambda_m^{-1}\phi^m(v)\in U$. So for all $i\in\{1,\ldots,n\}$ we get $e_i=\psi^i(e_1)\in U$. Since $\{e_1,\ldots,e_n\}\subseteq U$ it follows that $U=K^n$. So every submodule (K^n,ϕ,ψ) is either 0 or K^n , which means that (K^n,ϕ,ψ) is an n-dimensional simple 2-module.

Exercise 12:

Let K be a field with $\mathrm{char}(K)=0$ and (V,ϕ_1,ϕ_2) is a 2-module such that $V\neq 0$ and $[\phi_1,\phi_2]=1$. Assume that V is finite-dimensional. Because $V\neq 0$ we know that $n:=\dim V\geq 1$. Let v_1,\ldots,v_n be a Basis von V and Φ_1 and Φ_2 the coordinate matrix of ϕ_1,ϕ_2 with respect to the basis v_1,\ldots,v_n respectively. Because $[\phi_1,\phi_2]=1$ we find that $\Phi_1\Phi_2-\Phi_2\Phi_1=I_n$. It follows, that

$$0=\operatorname{tr}\Phi_1\operatorname{tr}\Phi_2-\operatorname{tr}\Phi_2\operatorname{tr}\Phi_1=\operatorname{tr}(\Phi_1\Phi_2-\Phi_2\Phi_1)=\operatorname{tr}I_n=n\cdot 1\neq 0.$$

This shows that (V, ϕ_1, ϕ_2) must be finite dimensional. (We know that such a module exists, because $\left(K[T], T, \frac{d}{dT}\right)$ is one.)