# 2024 Columbia Training Camp **Day 10: Number Theory**

**Christian Yongwhan Lim** 

Friday, August 30, 2024

### **Exit Survey**

- Please spend few minutes to complete the survey here:
  - https://forms.gle/m268EmZWHFJBUDUa6

#### **Overview**

- Totient Function
- Mobius Function
- Binary Exponentiation
- Euclidean Algorithm
- Sieve of Eratosthenes
- Practice Problems
- Some Resources

#### **Totient Function**

- Euler's totient function, also known as  $\phi$ -function  $\phi$  (n), counts the number of integers between 1 and n inclusive, which are coprime to n.
- Two numbers are **coprime** if their greatest common divisor equals 1.

| n         | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|
| $\phi(n)$ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4  | 10 | 4  |

#### **Totient Function**

$$\phi(p) = p-1.$$
  $\phi(p^k) = p^k - p^{k-1}.$   $\phi(ab) = \phi(a) \cdot \phi(b).$   $\phi(ab) = \phi(a) \cdot \phi(b) \cdot rac{d}{\phi(d)}$ 

#### **Totient Function**

$$egin{aligned} \phi(n) &= \phi(p_1{}^{a_1}) \cdot \phi(p_2{}^{a_2}) \cdots \phi(p_k{}^{a_k}) \ &= \left(p_1{}^{a_1} - p_1{}^{a_1-1}
ight) \cdot \left(p_2{}^{a_2} - p_2{}^{a_2-1}
ight) \cdots \left(p_k{}^{a_k} - p_k{}^{a_k-1}
ight) \ &= p_1^{a_1} \cdot \left(1 - rac{1}{p_1}
ight) \cdot p_2^{a_2} \cdot \left(1 - rac{1}{p_2}
ight) \cdots p_k^{a_k} \cdot \left(1 - rac{1}{p_k}
ight) \ &= n \cdot \left(1 - rac{1}{p_1}
ight) \cdot \left(1 - rac{1}{p_2}
ight) \cdots \left(1 - rac{1}{p_k}
ight) \end{aligned}$$

# Totient Function: Implementation $(n^{1/2})$

```
int phi(int n) {
    int result = n;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            while (n \% i == 0) n /= i;
            result -= result / i;
    if (n > 1) result -= result / n;
    return result;
```

#### **Totient Function: Implementation (n log log n)**

```
void phi_1_to_n(int n) {
    vector<int> phi(n + 1);
    for (int i = 0; i <= n; i++)
        phi[i] = i:
    for (int i = 2; i <= n; i++) {
        if (phi[i] == i) {
            for (int j = i; j <= n; j += i)
                phi[j] -= phi[j] / i:
```

#### **Möbius Inversion Formula**

$$g(n) = \sum f(d) \quad ext{for every integer } n \geq 1$$



$$f(n) = \sum_{l} \mu(d) g\left(rac{n}{d}
ight) \quad ext{for every integer } n \geq 1$$

#### **Möbius Function**

- $\mu(n) = +1$  if n is a square-free positive integer with an even number of prime factors.
- $\mu(n) = -1$  if n is a square-free positive integer with an odd number of prime factors.
- $\mu(n) = 0$  if n has a squared prime factor.

#### **Arithmetic Function**

#### An arithmetic function a is

- completely additive if a(mn) = a(m) + a(n) for all natural numbers m and n;
- completely multiplicative if a(mn) = a(m)a(n) for all natural numbers m and n;

Two whole numbers *m* and *n* are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.

Then an arithmetic function a is

- additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n;
- multiplicative if a(mn) = a(m)a(n) for all coprime natural numbers m and n.

#### **Binary Exponentiation: Main Idea**

$$a^n = egin{cases} 1 & ext{if } n == 0 \ \left(a^{rac{n}{2}}
ight)^2 & ext{if } n > 0 ext{ and } n ext{ even} \ \left(a^{rac{n-1}{2}}
ight)^2 \cdot a & ext{if } n > 0 ext{ and } n ext{ odd} \end{cases}$$

#### **Binary Exponentiation: Implementation (Recursive)**

```
long long binpow(long long a, long long b) {
    if (b == 0)
        return 1;
    long long res = binpow(a, b / 2);
    if (b % 2)
        return res * res * a:
    else
        return res * res:
```

#### **Binary Exponentiation: Implementation (Iterative)**

```
long long binpow(long long a, long long b) {
    long long res = 1;
    while (b > 0) {
        if (b & 1)
            res = res * a;
        a = a * a;
        b >>= 1:
    return res;
```

### **Euclidean Algorithm**

 Given two non-negative integers a and b, we have to find their GCD (greatest common divisor), i.e. the largest number which is a divisor of both a and b. It's commonly denoted by gcd(a,b).

$$\gcd(a,b) = egin{cases} a, & \text{if } b = 0 \\ \gcd(b, a \bmod b), & \text{otherwise.} \end{cases}$$

#### **Euclidean Algorithm: Implementation (Recursive)**

```
int gcd (int a, int b) {
    return b ? gcd (b, a % b) : a;
}
```

#### **Euclidean Algorithm: Implementation (Iterative)**

• Since C++17, you may use gcd as a standard function in C++.

```
int gcd (int a, int b) {
    while (b) {
        a %= b;
        swap(a, b);
    }
    return a;
}
```

#### **Sieve of Eratosthenes: Main Idea**

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

#### **Sieve of Eratosthenes: Implementation**

```
int n;
vector<bool> is_prime(n+1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i * i <= n; i++)
    if (is_prime[i])
        for (int j = i * i; j <= n; j += i)
        is_prime[j] = false;</pre>
```

# **Practice #1: 1491E: Fib-tree**

### **Practice #2: 1497E2: Square-Free Division (hard version)**

# **Practice #3: 1278F: Cards**

# Practice #4: <u>1034C</u>: Region Separation

#### **Practice #5: 1404D: Game of Pairs**

#### Practice #6: 819C: Mister B and Beacons on Field

### **Practice #7: 1603D: Artistic Partition**

# Practice #8: 1973F: Maximum GCD Sum Queries

#### **Online Platforms**

- CodeForces
- Kattis
- acmicpc.net / solved.ac
- AtCoder
- CSES

#### **Tutorial Sites**

- usaco.guide
- cp-algorithms.com

# CLI Symposium: <a href="https://cli.u.icpc.global/">https://cli.u.icpc.global/</a>

#### ICPC Library (September 15)

• A living library of ICPC history including news, analytics, problem sets, solutions, judge archives, contest archives, awards, and other artifacts of ICPC history.

#### • ICPC Compete (September 16)

 competitive programming competitions at different levels including news, instructions, and tools for entering ICPC contests, ICPC endorsed contests, and practice contests.

#### • ICPC Educate (September 18)

 tools and resources for learning about competitive programming, including scholarly works, tutorials, algorithms from theory to application, strategies, how to coach, and programs for quick development.

# **CLI Symposium: ICPC Library (September 15)**

- **Nikolay Kalinin (KAN)**: CodeForces: Contests by the Community, for the Community
- Riku Kawasaki (maroonrk): Fun Facts about AtCoder
- Suhyun Park (shiftpsh): solved.ac Community Guide for Programming Challenges

# **CLI Symposium: ICPC Compete (September 16)**

- Antti Laaksonen (pllk): Creating Competitive Programming Material
- Gennady Korotkevich (tourist): Training tips
- Andrey Stankevich (andrewzta): Evolving of training tips: from beginners to world champions

# **CLI Symposium: ICPC Educate (September 18)**

- Erich Baker: Introducing the Journal of Competitive Learning
- Miguel Revilla Rodriguez: ICPC Archive
- Joshua Andersson: Enhancements to the Problem Package Format
- Matt Ellis: JetBrains for ICPC
- Christian Lim (yongwoods): ICPC Curriculum Committee

