SiLM Code User Manual

1. File introduction

Raw_data	27/3/2025 2:28 PM	File folder	
alignment_one_color	27/3/2025 2:57 PM	PY File	21 KB
fit_z_z_range_change.dll	22/10/2024 3:05 PM	Application exten	831 KB
Manual of code	27/3/2025 2:15 PM	Foxit PDF Editor D	991 KB
one_color_main_localization_z_range	27/3/2025 2:52 PM	PY File	37 KB
pystormbasic.dll	28/6/2023 7:50 PM	Application exten	1,454 KB
pystormRepeat.dll	29/6/2023 3:07 PM	Application exten	1,009 KB
requirements	27/3/2025 12:27 PM	Text Document	1 KB

Raw_data: code test data (Calibration_200frames.dat: three-channel calibration raw data; Acquisition_1000frames.dat: 1000frames test raw data; Processed result: the result of processed result) can be found from https://zenodo.org/records/15487082

alignment_one_color.py: three-channel alignment program (using Calibration_200frames.dat); one_color_main_localization_z_range.py: 3D localization main program (using Acquisition_1000frames.dat).

requirements.txt: The version of the library file, python version, CUDA version, and Windows SDK version.

dll file: The CUDA file that is called in the program.

We split the code into modules with comments so that users can read and modify it.

The crop size of each channel is 180x180 pixels, and the peak detection window size is 7x7, which can be modified by users according to their own experimental needs.

1. Alignment program runs

Raw_data	27/3/2025 2:28 PM	File folder	
alignment_one_color	27/3/2025 2:57 PM	PY File	21 KB
fit_z_z_range_change.dll	22/10/2024 3:05 PM	Application exten	831 KB
Manual of code	27/3/2025 2:15 PM	Foxit PDF Editor D	991 KB
one_color_main_localization_z_range	27/3/2025 2:52 PM	PY File	37 KB
pystormbasic.dll	28/6/2023 7:50 PM	Application exten	1,454 KB
pystormRepeat.dll	29/6/2023 3:07 PM	Application exten	1,009 KB
requirements	27/3/2025 12:27 PM	Text Document	1 KB

1.1 Select Calibration_200frames.dat for three-channel alignment.

3

1.2 Select a folder to save the alignment parameters calculated later.

1.3 Rough alignment operation instructions: "left mouse clicking" changes the position of the circle, the "u" key increases the circle radius, the "d" key decreases the circle radius, and the "q" key finishes this step.

1.3 Rough alignment operation instructions: Adjusting the slider position can adjust the contrast to help rough alignment.

1.3 Rough alignment operation instructions

8

The "u" key increases the circle radius

8

The "d" key decreases the circle radius

9

"left mouse clicking" changes the position of the circle

1.3 Rough alignment operation instructions: Match the three circles to the three channels, and then press the "q" key to start the fine alignment.

1.4 Fine alignment: Through iterative calculation, the program obtains the parameters of the fine alignment of the three channels and saves parameters as "Calibration_200frames_calibration_para.pkl".

11

2. 3D localization program runs

After the parameters of the fine alignment are obtained, the 3D localization program is run to obtain the three-dimensional coordinates of the molecule.

2.1 Select Calibration_200frames_calibration_para.pkl to load the parameters of the fine alignment.

2.2 Select a folder to save three-dimensional coordinates of the molecule calculated later.

2.3 Select the data you want to process.

2.4 Update acquisition parameter

Click "Confirm" to the next step 11

2.5 Enter parameters to preview peak selection.

2.5 Enter parameters to preview peak selection.

2.5 Enter parameters to preview peak selection.

- 2.6 Obtain the three-dimensional coordinates of the molecule.
- After a while of waiting, we will get the three-dimensional coordinates of the molecules, which are saved in the "points" numpy matrix and finally wrote in the "Acquisition_1000frames_mlefit_frame_x_y_z_crlbxy_crlb z_sigmax_y_N_bg_N1_N2_N3_0120250327_1358.npy" under the folder "Processed result ".

Each column is "Frame number", "x (nm)", "y (nm)", "z (nm)", "CRLB_xy (nm)", "CRLB_z (nm)", "Sigma_xy (nm)", "Total photon number", "Background", "Photon number of channel 1", "Photon number of channel 2" and "Photon number of channel 3" from left to right.

Acquisition_1000frames_mlefit_frame_x_y_z_crlbx_crlby_crlbz_sigmax_sigma_y_N_bg_PALM.hdf5

Acquisition_1000frames_mlefit_frame_x_y_z_crlbx_crlby_crlbz_sigmax_sigma_y_N_bg_PALM

Acquisition_1000frames_mlefit_frame_x_y_z_crlbxy_crlbz_sigmax_y_N_bg_N1_N2_N3_0120250327_1358

Acquisition_1000frames_mlefit_frame_x_y_z_crlbxy_crlbz_sigmax_y_N_bg_N1_N2_N3_0120250327_1358.npy

Acquisition_1000frames100_spots_image

Calibration_200frames_calibration_para.pkl