## **BRAC** University

Department of Computer Science and Engineering



Final Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 40 minutes
Date: May 02, 2023

Semester: **Spring 23**Course Code: **CSE460**Course Title: **VLSI Design** 

## Set A

| Student ID: | Name: | Section: |
|-------------|-------|----------|
|             |       |          |

[Answer any THREE questions out of FOUR. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

| 1. (CO3) | A digital system is driven by a clock frequency of 1 MHz and a supply voltage of 10 V A small part of the system can be modeled by a CMOS inverter driving a capacitive load ( $C_L$ ), the figure of which is given below. When the input node Vin is low, the output node Vout is high, and to make the output node high <i>once</i> , 10 nJ of energy supplied by the voltage source, $V_{DD}$ . [A joule (J) is the SI unit of energy. Assume the threshold voltages to be $V_{tn} =  V_{tp}  = 0.1*V_{DD}$ ] |                                                                                                                                                                                                      |   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|          | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assuming that $Vin$ stays low, how much of the energy supplied by the voltage source $(V_{DD})$ is stored in the load capacitor $C_L$ ?                                                              | 3 |
|          | <ul> <li>(b) What is the capacitance of the load capacitor C<sub>L</sub>?</li> <li>(c) If the activity factor of the output node is 0.2, calculate the average switching power dissipation of the CMOS inverter.</li> </ul>                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      | 3 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      | 3 |
|          | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | If the beta ratio of the CMOS inverter is $5$ , <i>neatly</i> sketch its DC response and clearly mark $\mathbf{V}_{IL}$ , $\mathbf{V}_{IH}$ , $\mathbf{V}_{OL}$ & $\mathbf{V}_{OH}$ on the response. | 4 |
|          | (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For the above CMOS inverter, are the two noise margins equal? If not, comment on which one is bigger.                                                                                                | 2 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |   |



