(a)
$$y = \ln(x+1)$$
 (b) $y = 2^{|x|}$ (c) $y = \tan^{-1} x$ (d) $y = -\sinh(x)$.

Solution: (a) 2 (b) 1 (c) 7 (d) 5

2. (38 points) Evaluate the following expressions.

(a)
$$\int \frac{x}{\sqrt{1-4x^2}} dx$$
 (b) $\int e^{2013 \ln x} dx$ (c) $\int_{-1}^{1} 2^{|x|} dx$

(d)
$$\int_0^{\sqrt{3}} \frac{e^{\arctan x}}{1+x^2} dx$$
 (e) $\frac{d}{dx} (x^{\cos 3x})$ (f) $\lim_{h\to 0} \frac{\sec^3(x+h) - \sec^3(x)}{h}$

Solution:

(a) Let
$$u = 1 - 4x^2$$
. Then $du = -8x dx \Rightarrow -du/8 = x dx$.

$$\int \frac{x}{\sqrt{1-4x^2}} \, dx = -\frac{1}{8} \int \frac{du}{\sqrt{u}} = -\frac{1}{8} \int u^{-1/2} \, du$$

$$= -\frac{1}{8} \left(2u^{1/2} \right) + C = \boxed{-\frac{1}{4} \sqrt{1 - 4x^2} + C}$$

(b) First simplify the integrand.

$$\int e^{2013\ln x} \, dx = \int e^{\ln x^{2013}} \, dx = \int x^{2013} \, dx = \boxed{\frac{x^{2014}}{2014} + C}$$

(c) Note that the integrand is an even function.

$$\int_{-1}^{1} 2^{|x|} dx = 2 \int_{0}^{1} 2^{x} dx = 2 \cdot \frac{2^{x}}{\ln 2} \bigg|_{0}^{1} = \frac{2}{\ln 2} (2 - 1) = \boxed{\frac{2}{\ln 2}}$$

(d) Let $u = \arctan x$. Then $du = dx/(1+x^2)$ and the u-limits are $u(0) = \arctan(0) = 0$, $u(\sqrt{3}) = \arctan(\sqrt{3}) = \pi/3$.

$$\int_0^1 \frac{e^{\arctan x}}{1+x^2} dx = \int_0^{\pi/3} e^u du = e^u \Big]_0^{\pi/3} = \boxed{e^{\pi/3} - 1}$$

(e) Let $y = x^{\cos 3x}$ and find dy/dx using logarithmic differentiation.

$$y = x^{\cos 3x}$$

$$\ln y = \ln x^{\cos 3x} = (\cos 3x)(\ln x)$$

$$\frac{1}{y} \frac{dy}{dx} = \cos 3x \cdot \frac{1}{x} + (\ln x)(-3\sin 3x)$$

$$\frac{dy}{dx} = \left[x^{\cos 3x} \left(\frac{\cos 3x}{x} - 3(\sin 3x)(\ln x) \right) \right]$$

(f) The limit represents the derivative of the function $\sec^3 x$.

$$\lim_{h \to 0} \frac{\sec^3(x+h) - \sec^3(x)}{h} = [\sec^3 x]' = 3\sec^2 x(\sec x \tan x)$$
$$= 3\sec^3 x \tan x$$

3. (15 points) Consider the function f(x). Is there a value of c that will make f continuous at x = 0? Use the definition of continuity to justify your answer.

$$f(x) = \begin{cases} \frac{\tan x}{2x} & x < 0\\ c & x = 0\\ x^{2x} & x > 0 \end{cases}$$

Solution:

f is continuous at x=0 if $f(0)=\lim_{x\to 0^-}f(x)=\lim_{x\to 0^+}f(x)$. The value of f(0) is c. First evaluate the left-hand limit.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\tan x}{2x} = \lim_{x \to 0^{-}} \frac{\sin x}{2x \cos x} = \lim_{x \to 0^{-}} \frac{\sin x}{x} \cdot \frac{1}{2 \cos x}$$
$$= 1 \cdot \frac{1}{2 \cdot 1} = \frac{1}{2}$$

by the theorem $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.

Next evaluate the right-hand limit which is an indeterminate power. Let L equal the value of the limit.

$$\begin{split} L &= \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^{2x} \\ \ln L &= \lim_{x \to 0^+} \ln x^{2x} = \lim_{x \to 0^+} 2x \ln x \\ &= \lim_{x \to 0^+} \frac{2 \ln x}{1/x} \stackrel{L'H}{=} \lim_{x \to 0^+} \frac{2/x}{-1/x^2} = \lim_{x \to 0^+} -2x = 0 \\ L &= e^0 = 1 \end{split}$$

Since $\lim_{x\to 0^-} f(x) = 1/2$ and $\lim_{x\to 0^+} f(x) = 1$, there is no value of c that will make f continuous at x = 0.

4. (14 points) Find the area of the largest rectangle that can be inscribed in the first quadrant of the unit circle if one side of the rectangle lies along the x-axis and another lies along the y-axis.

(*Hint*: The equation of a unit circle centered at the origin is $x^2 + y^2 = 1$.)

We wish to maximize the area A of the rectangle given $y = \sqrt{1 - x^2}$.

$$A = xy = x\sqrt{1 - x^2}$$

$$A' = x \cdot \frac{-2x}{2\sqrt{1 - x^2}} + \sqrt{1 - x^2}$$

$$= \frac{-x^2}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} = \frac{-2x^2 + 1}{\sqrt{1 - x^2}}$$

Find the critical points where A' = 0 given x > 0.

$$-2x^2 + 1 = 0 \implies x^2 = 1/2 \implies x = 1/\sqrt{2}$$

Confirm that there is a maximum value at the critical point using the first derivative test. Since $A'\left(\frac{1}{2}\right) > 0$ and $A'\left(\frac{4}{5}\right) < 0$, there is a maximum value at $x = 1/\sqrt{2}$, $y = 1/\sqrt{2}$. The area of the largest inscribed rectangle is $(1/\sqrt{2})^2 = 1/2$

- 5. (14 points) Sketch a graph of a single function y = g(x) that satisfies all of the following conditions. No explanation is necessary.
- (a) g(-x) = -g(x) (b) $\lim_{x \to \infty} g(x) = 1$ (c) $\lim_{x \to 2} g(x) = \infty$

- (d) $\lim_{x \to 4} g(x) = -2$ (e) g'' > 0 for x in (2,5) (f) g'' < 0 for x in $(5,\infty)$

(g)
$$\lim_{h\to 0} \frac{g(4+h)-g(4)}{h} = 0$$

Solution: Here is one possible solution. Note that condition (a) indicates that g is odd and condition (g) indicates that g'(4) = 0.

- 6. (12 points) Let $f(x) = \frac{\sinh x}{e^x}$.
 - (a) Simplify f(x) using the definition of $\sinh x$.
 - (b) Find the value of $f(-\ln 2)$.
 - (c) Is f increasing or decreasing at $x = -\ln 2$?
 - (d) Is f concave up or down at $x = -\ln 2$?

Solution:

(a)
$$f(x) = \frac{\sinh x}{e^x} = \frac{e^x - e^{-x}}{2} \cdot \frac{1}{e^x} = \boxed{\frac{1 - e^{-2x}}{2}}$$

(b)
$$f(-\ln 2) = \frac{1}{2} (1 - e^{2\ln 2}) = \frac{1}{2} (1 - 2^2) = \boxed{-\frac{3}{2}}$$

(c)
$$f'(x) = \frac{1}{2} \left(2e^{-2x} \right) = e^{-2x}$$
. Since $f' > 0$ for all x , f is increasing at $x = -\ln 2$.

(d)
$$f''(x) = -2e^{-2x}$$
. Since $f'' < 0$ for all x , f is concave down at $x = -\ln 2$.

7. (14 points) A 20-ft ladder is leaning against a wall when its base starts to slide away. At the moment when the angle between the ladder and the ground is $\pi/3$ radians, the top of the ladder is sliding down the wall at a rate of 1/4 ft/sec. How fast is the base of the ladder moving away from the wall then?

Solution:

Let x represent the distance from the base of the ladder to the wall and y represent the distance from the top of the ladder to the ground. When the angle θ between the ladder and the ground is $\pi/3$ radians, then $y=10\sqrt{3}$ ft and x=10 ft because $\sin\theta=\sqrt{3}/2$ and $\cos\theta=1/2$. We wish to find dx/dt given dy/dt=-1/4 ft/sec. Use the Pythagorean Theorem.

$$x^{2} + y^{2} = 20^{2}$$

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

$$x\frac{dx}{dt} + y\frac{dy}{dt} = 0$$

$$10\frac{dx}{dt} + (10\sqrt{3})\left(-\frac{1}{4}\right) = 0$$

$$\frac{dx}{dt} = \boxed{\frac{\sqrt{3}}{4} \text{ ft/sec}}$$

8. (10 points) Let $g(x) = \int_0^x \frac{dt}{\sqrt{1-t^2}}$. Find the linearization of g at x = -1/2.

Solution:

Note that

$$g(x) = \int_0^x \frac{dt}{\sqrt{1-t^2}} = \arcsin t \Big]_0^x = \arcsin x - \arcsin 0 = \arcsin x$$

and

$$g'(x) = \frac{1}{\sqrt{1 - x^2}}.$$

Then $g(-1/2) = \arcsin(-1/2) = -\pi/6$ and $g'(-1/2) = \frac{1}{\sqrt{1-1/4}} = 2/\sqrt{3}$. The linearization is therefore

$$L(x) = g(-1/2) + g'(-1/2)\left(x + \frac{1}{2}\right) = \boxed{-\frac{\pi}{6} + \frac{2}{\sqrt{3}}\left(x + \frac{1}{2}\right)}$$

9. (10 points) Suppose h(x) is an even, continuous function with roots at $x=\pm 2$. Given $\int_0^2 h(x)\,dx=7$ and $\int_{-5}^0 h(x)\,dx=-4$, find the values of the following expressions.

(a)
$$\int_{-5}^{-2} h(x) dx$$
 (b) h_{ave} on $[-5, 5]$ (c) $\int_{-5}^{5} |h(x)| dx$

Solution:

Since h is even, $\int_{-2}^{0} h(x) dx = \int_{0}^{2} h(x) dx = 7$ and $\int_{0}^{5} h(x) dx = \int_{-5}^{0} h(x) dx = -4$.

(a)
$$\int_{-5}^{-2} h(x) dx = \int_{-5}^{0} h(x) dx - \int_{-2}^{0} h(x) dx = -4 - 7 = \boxed{-11}$$

(b)
$$h_{ave} = \frac{1}{5 - (-5)} \int_{-5}^{5} h(x) dx = \frac{1}{10} (-4 - 4) = \boxed{-\frac{4}{5}}$$

(c)

$$\int_{-5}^{5} |h(x)| dx = 2 \int_{0}^{5} |h(x)| dx = 2 \left(\int_{0}^{2} h(x) dx + \left| \int_{2}^{5} h(x) dx \right| \right)$$
$$= 2(7+11) = \boxed{36}$$

- 10. (15 points) Zach walks into a casino with \$1000 and steadily loses 20% of his money each hour. Meredith enters the casino with \$500 and steadily loses 15% of her money each hour.
 - (a) How long will it take before Zach is left with just \$50?
 - (b) Who will reach \$50 first: Zach or Meredith?

Use the law of exponential decay and the following approximations to compute your answers.

$$\ln 0.15 \approx -1.9$$
 $\ln 0.2 \approx -1.6$ $\ln 0.8 \approx -.22$ $\ln 0.85 \approx -.16$ $\ln 10 \approx 2.3$ $\ln 20 \approx 3.0$

Solution:

(a) Let z(t) represent the amount of money Zach has t hours after he enters the casino. We are given that after one hour, $z(1) = 0.8z_0$.

First find *k*.

$$z(t) = z_0 e^{kt}$$

$$z(1) = z_0 e^k = 0.8z_0$$

$$e^k = 0.8 \Rightarrow k = \ln 0.8$$

Now find t when z(t) = 50.

$$z(t) = z_0 e^{kt} = 50$$

$$1000e^{kt} = 50$$

$$e^{kt} = 1/20$$

$$kt = \ln(1/20) = -\ln(20)$$

$$t = -\frac{\ln(20)}{k} = \frac{-\ln(20)}{\ln 0.8}$$

$$\approx \frac{-3.0}{-.22} = \frac{300}{22} = \frac{150}{11} = \boxed{13\frac{7}{11} \text{ hrs}}$$

(b) Let m(t) represent the amount of money Meredith has t hours after she enters the casino. We are given that after one hour, $m(1)=0.85m_0$. First find k.

$$m(t) = m_0 e^{kt}$$

 $m(1) = m_0 e^k = 0.85 m_0$
 $e^k = 0.85 \implies k = \ln 0.85$

Now find t when m(t) = 50.

$$m(t) = m_0 e^{kt} = 50$$

$$500e^{kt} = 50$$

$$e^{kt} = 1/10$$

$$kt = \ln(1/10) = -\ln(10)$$

$$t = -\frac{\ln(10)}{k} = \frac{-\ln(10)}{\ln 0.85}$$

$$\approx \frac{-2.3}{-.16} = \frac{230}{16} = \frac{115}{8} = 14\frac{3}{8} \text{ hrs}$$

Zach will reach \$50 before Meredith.