# Etap III: Wyniki pomiarów

#### 1. M-PSK

Przedstawiamy poniżej wyniki pomiarów dla różnych wersji PSK (M = 2,4,8,16,32,64), różnych poziomów zaszumienia w kanale (20 dB, 10 dB, 1 dB, 0.1 dB) oraz różnej liczby liczb (1000 i 10000 liczb – różnica w ilości przesyłanych bitów wynika z różnej szybkości transmisji). Na wyjściu prezentujemy poziom błędów BER.

SNR - stosunek mocy sygnału do mocy szumu. Szybkość transmisji - ilość bitów przesyłanych w jednym okresie fali nośnej Liczba przesłanych bitów = bity na symbol \* ilość liczb =  $\log_2 M * 1000$ 

a) M = 2 (BPSK)

Przesunięcie fazy =  $\pi/M = \pi/2$ . Szybkość transmisji =  $\log_2 M = 1 \frac{b}{T}$ 

i. SNR = 20 dB

Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 1000 = 1000$ 



Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 10000 = 10000$ 



#### ii. SNR = 10 dB

Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 1000 = 1000$ 



Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 10000 = 10000$ 



#### iii. SNR = 1 dB

Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 1000 = 1000$ 



Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 10000 = 10000$ 



#### iv. SNR = 0.1 dB

Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 1000 = 1000$ 



Liczba przesłanych bitów =  $\log_2 M * 1000 = \log_2 2 * 10000 = 10000$ 



## b) M = 4 (QPSK)

Przesunięcie fazy =  $\pi/M = \pi/4$ . Szybkość transmisji =  $\log_2 M = 2\frac{b}{T}$ 

### i. SNR = 20 dB





### ii. SNR = 10 dB



iii. SNR = 1 dB





### iv. SNR = 0.1 dB





## c) M = 8

Przesunięcie fazy =  $\pi/M = \pi/8$ . Szybkość transmisji =  $\log_2 M = 3 \frac{b}{T}$ 

### i. SNR = 20 dB





### ii. SNR = 10 dB



iii. SNR = 1 dB



### iv. SNR = 0.1 dB





## d) M =16

Przesunięcie fazy =  $\pi/M = \pi/16$ . Szybkość transmisji =  $\log_2 M = 4 \frac{b}{T}$ 

### i. SNR = 20 dB



### ii. SNR = 10 dB





### iii. SNR = 1 dB





#### iv. SNR = 0.1 dB



### e) M = 32

Przesunięcie fazy =  $\pi/M = \pi/32$ . Szybkość transmisji =  $\log_2 M = 5 \frac{b}{T}$ 

### i. SNR = 20 dB





### ii. SNR = 10 dB





### iii. SNR = 1 dB



iv. SNR = 0.1 dB



## f) M = 64

Przesunięcie fazy =  $\pi/M = \pi/64$ . Szybkość transmisji =  $\log_2 M = 6 \frac{b}{T}$ 





SNR = 20 Ilość bitów: 60000

Ilość błędów: 5218

0.0870

### ii. SNR = 10 dB





### iii. SNR = 1 dB



iv. SNR = 0.1 dB



#### 2. M-APSK

Do wykonania pomiarów dla wersji M-APSK napisaliśmy drugi program. Określamy w nim ilość "okręgów" na wykresie wskazowym, których promień odpowiada amplitudzie. Ilość bitów podobnie jak w przypadku punktu pierwszego to ilość liczb ( 1000 i 10000) razy ilość bitów które możemy przesłać w jednym okresie fali nośnej (jest to logarytm o podstawie dwa z ilości punktów konstelacji na wykrsie). Amplitudy to 0.5 i 1 odpowiednio dla mniejszego i większego okręgu.

g) M = [44] – 8 punktów w konstelacji.

Szybkość transmisji = log2(8) = 3 b/TPrzesunięcie fazowe dla obu okręgów wynosi  $\pi/4$ . Amplitudy to 0.5 oraz 1. Liczba bitów = liczba liczb \* log2(sum(M))

A. SNR = 160

## Amplitudy 0.5 i 1:









### B. SNR = 80



Amplitudy 0.5 i 1.5:



# C. SNR = 40

# Amplitudy 0.5 i 1:

0

In-Phase Amplitude

0.5





# Amplitudy 0.5 i 1.5:



## D. SNR = 20









### E. SNR = 10



Amplitudy 0.5 i 1.5:



### F. SNR = 1







G. SNR = 0.1

## Amplitudy 0.5 i 1:









# h) M = [88]

Przesunięcie fazy pi/8 i pi/16 A. SNR = 160





# Amplitudy 0.5 i 1.5:



### B. SNR = 80



# Amplitudy 0.5 i 1.5:

0

In-Phase Amplitude

0.5

-1



BER:

3.5000e-04



# C. SNR = 40



Amplitudy 0.5 i 1.5:



### D. SNR = 20

-1.5

## Amplitudy 0.5 i 1:

In-Phase Amplitude



BER:

0.0039





## Amplitudy 0.5 i 1:









### F. SNR = 1



Amplitudy 0.5 i 1.5:



### G. SNR = 0.1





## Amplitudy 0.5 i 1.5:



## i) M = [16 16]

### A. SNR = 160

- B. SNR = 80
- C. SNR = 40
- D. SNR = 20
- E. SNR = 10
- F. SNR = 1
- G. SNR = 0.1
- j) M = [32 32]
  - A. SNR = 160
  - B. SNR = 80
  - C. SNR = 40
  - D. SNR = 20
  - E. SNR = 10
  - F. SNR = 1
  - G. SNR = 0.1
- k)
- A. SNR = 160
- B. SNR = 80
- C. SNR = 40
- D. SNR = 20
- E. SNR = 10
- F. SNR = 1
- G. SNR = 0.1
- I)
- A. SNR = 160
- B. SNR = 80
- C. SNR = 40
- D. SNR = 20
- E. SNR = 10
- F. SNR = 1
- G. SNR = 0.1