

白色矮星になる星のまわる速度の違い

白色矮星ってなんだろう

() ここ最近何してたの

白色矮星になる星はどうまわっているんだろう

白色矮星ってなんだろう

() ここ最近何してたの

() 白色矮星になる星はどうまわっているんだろう

8M_{sun}より小さい星の(ほぼ)

最後の段階 He 燃焼 分子 赤色 主系 白色 列星 巨星 矮星 H 燃焼

小さくて密度が高い!

$$R_{sun} = 7 * 10^{10} [cm]$$

 $M_{sun} = 2 * 10^{33} [g]$

 $R \sim 10^{-2} R_{sun}$ $M \sim 0.6 M_{sun}$

縮退圧

速くまわっている...はず。

角運動量保存の法則

$$J = MR^2\omega = -$$
定

外へ**角運動量を運ぶ**仕組み が必要!

C.A.Karl et al. (2005)									
WD	White dwarf	$T_{ m eff}$	$\log g$	М	R	Ref.	$v \sin i [\text{km s}^{-1}]$	$v \sin i [\text{km s}^{-1}]$	
		[K]	$\left[\frac{\mathrm{cm}}{\mathrm{s}^2}\right]$	$[M_{\odot}]$	$[R_{\odot}]$		1σ	3σ	
Parameters from spectral analyses:									
0220+222	G 94 - B5B	15840 ± 364	7.95 ± 0.07	0.561	0.0131	1	<9	<20	
0251-008	LP 591 - 117	7700 ± 178	8.05 ± 0.07	0.624	0.0124	8	24+4	24^{+10}	

白色矮星ってなんだろう

() ここ最近何してたの

() 白色矮星になる星はどうまわっているんだろう

ここ最近何してたの

HOSHIJ-F

K. Takahashi, et al. (2021)

恒星内部の基礎方程式(⇒)

を球座標1次元(ヘニエイ法)で解くコード さらに**回転や磁場**の影響や元素組成の分布 の時間発展なども解くことができる。

[仮定(一部)] α 効果 $(B_{\phi} \rightarrow B_{r\theta}$ を作る効果)を考えない Shellular回転 $B_{r\theta}$ が双極子近似される

$$rac{dP}{dM_r} = -rac{GM_r}{4\pi r^4}$$
 $rac{dM_r}{dr} = rac{1}{4\pi r^4
ho}$ $rac{dR}{dM_r} = rac{1}{4\pi r^4
ho}$ 半径と質量の関係 エネルギー保存の式 エネルギー輸送の式

ここ最近何してたの

1 コードの確認

論文との比較----

15M_{sun}における角運動量分布の時間発展

T=0	剛体回転
主系列星	剛体回転
赤色巨星	

同じ(ような)形が再現できた!

A. Heger, et al. (2000)

HOSHIコード

ここ最近何してたの

②3M_{sun}の角運動量変化

主系列星~漸近巨星分枝(白色矮星のちょっと手前)での

- ・ 磁場(あり/なし)での角運動量の変化
- (対流層の角速度の変化)
- ・ (磁場の大きさを変えた時の角運動量・ 角速度・磁場分布の変化)

白色矮星ってなんだろう

() ここ最近何してたの

白色矮星になる星はどうまわっているんだろう

白色矮星になる星のまわり方

磁場のあるなしで角運動量分布の違い $(J = \int j_{specific}dm)$

横軸: 質量座標

縦軸: 角運動量 (/m^{5/3})

白色矮星になる星のまわり方

磁場のあるなしで角運動量分布の違い

磁場が無いと角運動量がほとんど 輸送されない!!

白色矮星になる星のまわり方

角運動量が輸送されないと 観測データと合わない!

観測データ: Hα線のドップラー効果 を測定。

地磁気: 0.5G

ネオジウム磁石:5*10⁴G

まとめ

HOSHIコードで 白色矮星になる星の角運動量分布の時間発展を解析 磁場が**ない**と角運動量が外へとほぼ輸送されない! 磁場が**ある**と角運動量がコア⇒外層へと輸送される。そして 観測データに近づく!

参考文献

- Karl, C. A., Napiwotzki, R., Heber, U., et al. 2005, A&A, 434, 637
- Takahashi, K., Langer, N. 2021, A&A, 646, A19
- Heger, A., Langer, N., Woosley, S. E. 2000, ApJ, 528, 368