'MATH+ECON+CODE' MASTERCLASS ON COMPETITIVE EQUILIBRIUM: WALRASIAN EQUILIBRIUM WITH SUBSTITUTES

Alfred Galichon (NYU)

Spring 2018

Day 3, May 23 2018: matching with general transfers (1)

Block 7. Equilibrium transport

LEARNING OBJECTIVES: BLOCK 7

- ► Equilibrium flow problem and min-cost flow problem
- ► Equilibrium transport problem and optimal transport problem
- ► Perfect matching, min-cut max-flow theorem and Strassen's theorem
- ► Reduced network and Bellman-Ford algorithm

REFERENCES FOR BLOCK 7

- ▶ Demange and Gale (1985). The Strategy Structure of Two-Sided Matching Markets. *Econometrica*.
- ▶ Ahuja, Magnanti and Orlin (1993). *Network Flows: Theory, Algorithms, and Applications.* Pearson.
- ▶ Bertsekas (1998). *Network Optimization: Continuous and Discrete Models*. Athena scientific.
- ▶ Villani (2003). *Topics in Optimal Transportation*. AMS.
- ▶ Villani (2008). Optimal transport: old and new. Springer.
- ► Trudinger (2014). On the local theory of prescribed Jacobian equations. Discrete and continuous dynamical systems.
- ▶ Nöldeke, Samuelson (2017). The implementation duality.
- ► Galichon, Vernet (2018). Monotone comparative statics in the equilibrium flow problem.
- ► Galichon, Samuelson (2018). Multivocal gross substitutes.

Section 1

EQUILIBRIUM FLOWS

SETTING

The reference for the following is Galichon and Vernet (2018).

- ▶ Consider a trading network $(\mathcal{Z}, \mathcal{A})$ where \mathcal{Z} is the set of nodes and \mathcal{A} is the set of directed arcs.
- ▶ Consider ∇ a $\mathcal{A} \times \mathcal{Z}$ matrix such that $\nabla_{az} = 1$ if z is the endpoint of a, and -1 if z is the starting point of a. For $f \in \mathbb{R}^{\mathcal{Z}}$ and $xy \in \mathcal{A}$ one has $(\nabla f)_{xy} = f_y f_x$.
- ▶ Let $p \in \mathbb{R}^{\mathcal{Z}}$ be the price vector of a commodity, such that p_z is the price at node z.
- ▶ Let $R: \mathbb{R}^{\mathcal{Z}} \mapsto \mathbb{R}^{\mathcal{A}}$ be a function $R_{xy}\left(p\right)$ be the rent of the strategy that consists in buying at x at price p_{x} and selling at y at price p_{y} . $R_{xy}\left(p\right)$ is decreasing in p_{x} , increasing in p_{y} , and does not depend on the other entries of p. Examples:
 - Additive case: $R_{xy}(p) = p_y p_x c_{xy}$ (no tax). Note that in that case, $R(p) = \nabla p c$.
 - ► Linear case: $R_{xy}(p) = p_y (1+\tau) p_x c_{xy}$ (import tax)
 - ► More generally, $R_{xy}(p) = p_y C_{xy}(p_x)$.

STABLE PRICES

▶ Pairwise stability: Because there is free entry, the prices are such that there is no positive rent on any arc, that is:

$$R_{xy}\left(p\right) \leq 0\ \forall xy\in\mathcal{A}$$

- ▶ Note that the set of p such that $R_{xy}(p) \leq 0$ for all $xy \in \mathcal{A}$ is a sublattice of $\mathbb{R}^{\mathcal{Z}}$.
- ▶ One may want to normalize the prices at some "ground" node. In that case, we will denote the set of nodes by \mathcal{Z}_0 instead of \mathcal{Z} , where $\mathcal{Z}_0 = \tilde{\mathcal{Z}} \cup \{0\}$ is the full set of nodes, including the ground node which is 0, and $\tilde{\mathcal{Z}}$, the set of non-ground nodes.
- ▶ In the additive case, this writes

$$p_y - p_x \le c_{xy} \ \forall xy \in \mathcal{A}.$$

FEASIBLE FLOWS

Let s_z be the exit flow, i.e. the flow leaving the network at z, and let μ_{xy} be the flow of commodity through arc xy. One has for all nodes $z \in \mathcal{Z}_0$

$$\sum_{x:xz\in\mathcal{A}}\mu_{xz}-\sum_{y:zy\in\mathcal{A}}\mu_{zy}=s_z$$

which can be rewritten

$$\nabla^{\mathsf{T}}\mu = s$$
.

▶ Note that we for a feasible flow to exist, one must have

$$\sum_{z\in\mathcal{Z}_0} s_z = 0$$

for this reason it is enough to specify the exit flow for the non-ground nodes, and deduce $s_0 = -\sum_{z \in \tilde{\mathcal{Z}}} s_z$.

INDIVIDUAL RATIONALITY

▶ No trader will operate trades between x and y at a loss. Hence

$$\mu_{xy} > 0 \implies R_{xy}(p) \ge 0$$

which combining with the requirement that p should be stable prices, yields

$$\mu_{xy} > 0 \implies R_{xy}(p) = 0$$

► This is a **complementary slackess** condition, which can be written

$$\sum_{xy\in\mathcal{A}}\mu_{xy}R_{xy}\left(p\right)=0$$

SUMMARY: EQUILIBRIUM FLOW PROBLEM

Definition. (μ, p) is a called an equilibrium flow when the following conditions are met:

- (i) $\mu \geq 0$ and $\nabla^{\mathsf{T}} \mu = s$
- (ii) $R(p) \leq 0$

(iii)
$$\sum_{xy \in \mathcal{A}} \mu_{xy} R_{xy}(p) = 0$$

- ▶ The problem above is called an equilibrium flow (EQF) problem. As we shall see, μ and p are jointly determined by a pair of coupled problems
 - Given p, μ is the solution to a linear programming problem (max flow problem)
 - Given \(\mu, p\) is the solution to a dynamic programming problem (generalized shortest path problem)
- ▶ However, in the additive case, these two problems become decoupled.

SPECIAL CASE: THE MIN-COST FLOW PROBLEM

- ▶ In the additive case $(R_{xy}(p) = p_y p_x c_{xy})$, both μ and p solve linear programming problems that are dual of eachother.
- $\blacktriangleright \mu$ solves the primal problem

$$\min_{\mu \ge 0} \sum_{xy \in \mathcal{A}} \mu_{xy} c_{xy}$$

$$s.t. \ \nabla^{\mathsf{T}} \mu = s$$

while p solves the dual problem

$$\max_{s} \sum_{z \in \mathcal{Z}} s_{z}$$

$$s.t. \ s_{y} - s_{x} \le c_{xy}$$

► Cf. m+e+c_optim lectures (http://alfredgalichon.com/mec_optim/).

NONLINEAR COMPLEMENTARITY PROBLEM

• Given a map $f: \mathbb{R}^d \to \mathbb{R}^d$, a nonlinear complementarity problem consists of finding

$$z \ge 0$$
, $f(z) \ge 0$ and $z^T f(z) = 0$.

► This generalizes the complementarity slackness from linear programming, $\max_{x>0} c^{\mathsf{T}}x : Ax \le d = \min_{y>0} d^{\mathsf{T}}y : A^{\mathsf{T}}y \ge c$, where

$$A^{\mathsf{T}}y-c\geq 0 \ \ [x\geq 0]$$
 , $d-Ax\geq 0 \ \ [y\geq 0]$

Therefore, in that case,
$$z = (x, y)$$
, and $f(z) = \begin{pmatrix} 0 & A^{\mathsf{T}} \\ -A & 0 \end{pmatrix} + \begin{pmatrix} -c \\ d \end{pmatrix}$.

▶ In the present case, $z = (\mu, p^+, p^-)$ and

$$f\left(z\right) = \left(-R\left(p^{+}-p^{-}\right), s - \nabla^{\intercal}\mu, \nabla^{\intercal}\mu - s\right).$$

REGULARIZATION OF THE EQUILIBRIUM FLOW PROBLEM

- ▶ Let $f : \mathbb{R} \to \mathbb{R}_+$ be a continuous function such that $f(-\infty) = 0$ and $f(+\infty) = +\infty$, and let T > 0 be a temperature parameter.
- ▶ One can look for $\mu_{xy}^T = f\left(R_{xy}\left(p\right)/T\right)$ as an approximation of the solution to the EQF problem. That is, look for p such that

$$\sum_{x:xz\in\mathcal{A}}f\left(R_{xz}\left(p\right)/T\right)-\sum_{y:zy\in\mathcal{A}}f\left(R_{zy}\left(p\right)/T\right)=s_{s}$$

▶ Therefore the system writes $E^{T}(p) = s$, where

$$E_{z}^{T}\left(p\right) = \sum_{x:xz \in \mathcal{A}} f\left(R_{xz}\left(p\right)/T\right) - \sum_{y:zy \in \mathcal{A}} f\left(R_{zy}\left(p\right)/T\right)$$

REGULARIZATION OF THE EQUILIBRIUM FLOW PROBLEM: SUBSTITUTES

- Note that, $E^T(p)$ satisfies the weak gross substitutes property as $E_z^T(p)$ is weakly decreasing with respect to p_x for $x \neq z$.
- ▶ In particular in the differentiable case,

$$\frac{\partial E_{z}^{T}\left(p\right)}{\partial \rho_{x}} = \frac{f'\left(R_{xz}\left(p\right)/T\right)}{T} \frac{\partial R_{xz}}{\partial \rho_{x}} - \frac{f'\left(R_{zz}\left(p\right)/T\right)}{T} \frac{\partial R_{zx}}{\partial \rho_{x}} \leq 0.$$

REGULARIZATION OF THE EQUILIBRIUM FLOW PROBLEM: LIMIT

▶ Consider (μ^T, p^T) where $\mu^T = f(R_{xy}(p^T)/T)$ and p^T a solution of

$$E^{T}\left(p^{T}\right)=0$$

and assume $\mu^T \to \mu^*$ and $p^T \to p^*$ as $T \to 0$.

- ► Therefore, μ remains bounded, and we have $f\left(R_{xy}\left(p^{T}\right)/T\right) \leq K$, thus $R_{xy}\left(p^{T}\right) \leq Tf^{-1}\left(K\right)$, and as a result $R_{xy}\left(p^{*}\right) \leq 0$.
- ► Further, $\mu_{xy} > 0$ implies $\lim R_{xy} \left(p^T \right) = 0$, thus $R_{xy} \left(p^* \right) = 0$.

REGULARIZATION OF THE EQUILIBRIUM FLOW PROBLEM: ADDITIVE CASE

▶ In the additive case, $R_{xy}(p) = p_y - p_x - c_{xy}$, and

$$E_{z}^{T}(p) = \sum_{x:xz \in \mathcal{A}} f\left(\frac{p_{y} - p_{x} - c_{xy}}{T}\right) - \sum_{y:zy \in \mathcal{A}} f\left(\frac{p_{y} - p_{x} - c_{xy}}{T}\right)$$

Let $F(z) = \int^z f(t) dt$, which is a convex function. We have $E_z(p) = \partial W(p) / \partial p_z$, where

$$W(p) = \sum_{yy \in A} TF\left(\frac{p_y - p_x - c_{xy}}{T}\right)$$

REGULARIZATION OF THE EQUILIBRIUM FLOW PROBLEM: EXAMPLES

▶ In particular, when $f(z) = \exp(z)$, $F(z) = \exp(z)$, and

$$W(p) = \sum_{xy \in A} T \exp\left(\frac{p_y - p_x - c_{xy}}{T}\right).$$

▶ Similarly, when $f(z) = z^+$, we get $F(z) = z^2 1\{z \ge 0\}$ /2, and

$$W(p) = \sum_{xy \in \mathcal{A}} T\left(\left(\frac{p_y - p_x - c_{xy}}{T}\right)^+\right)^2 / 2$$

Section 2

GROSS SUBSTITUTES IN EQUILIBRIUM NETWORK FLOWS

THE MGS PROPERTY

Consider a network whose nodes set is $\mathcal{Z}_0 = \mathcal{Z} \cup \{0\}$. One normalizes $p_0 = 0$.

For $p \in \mathbb{R}^{\mathcal{Z}}$, let $\Sigma(p)$ be the set of $s \in \mathbb{R}^{\mathcal{Z}}$ such that letting

$$ilde{s}=\left(s,-1_{\mathcal{Z}}^{\intercal}s_{z}
ight)$$
 and $ilde{p}=\left(p,0
ight)$, there exists $\mu\in\mathbb{R}_{+}^{\mathcal{A}}$ with:

(i)
$$\mu \geq 0$$
 and $\nabla^{\mathsf{T}} \mu = \tilde{s}$

(ii)
$$R(\tilde{p}) \leq 0$$

(iii)
$$\sum_{xy \in \mathcal{A}} \mu_{xy} R_{xy} (\tilde{p}) = 0.$$

The following theorem is proven in G and Samuelson.

Theorem. The correspondence $p \to \Sigma(p)$ has the Multivocal Gross Substitutes property.

PROOF OF THE MGS PROPERTY

Proof. Let $s \in E(p)$ and $s' \in E(p')$. Then to show that the MGS property is satisfied, we need to show that there exists $s^{\vee} \in E(p \vee p')$ and $s^{\wedge} \in E(p \wedge p')$ such that for all $z \in \mathcal{Z}_0$

$$\left\{\begin{array}{l} 1\left\{z\in\mathcal{Z}_0^{\leq}\right\}s_z+1\left\{z\in\mathcal{Z}_0^{>}\right\}s_z'\leq s_z^{\wedge} \text{ and} \\ 1\left\{z\in\mathcal{Z}_0^{\leq}\right\}s_z'+1\left\{z\in\mathcal{Z}_0^{>}\right\}s_z'\geq s_z^{\vee}. \end{array}\right.$$

where we have defined $\mathcal{Z}_0^{\leq} = \{z \in \mathcal{Z}_0 : p_z \leq p_z'\}$ and

$$\mathcal{Z}_0^> = \{ z \in \mathcal{Z}_0 : p_z > p_z' \}.$$

Fact (i) $u_{xz} > 0$ and $p_z \le p_z'$ implies $0 = R_{xz}(p_x, p_z) \le R_{xz}(p_x, p_z')$ hence $p_{\times} < p'_{\times}$

Thus
$$\mu_{xz} 1 \left\{ z \in \mathcal{Z}_0^{\leq} \right\} \leq \mu_{xz} 1 \left\{ x \in \mathcal{Z}_0^{\leq} \right\}.$$

(ii)
$$\mu'_{xz} > 0$$
 and $p_z > p'_z$ implies $0 = R_{xz} (p'_x, p'_z) < R_{xz} (p'_x, p_z)$, thus $p_z > p'$

$$p_{x}>p_{x}'$$

Thus
$$\mu_{xz}^{\hat{\prime}} 1\{z \in \mathcal{Z}_0^{>}\} \leq \mu_{xz}^{\prime} 1\{x \in \mathcal{Z}_0^{>}\}.$$

PROOF OF THE MGS PROPERTY (CTD)

Proof. Now, set:

$$\mu_{xz}^{\wedge} = 1 \left\{ x \in \mathcal{Z}_0^{\leq} \right\} \mu_{xz} + 1 \left\{ x \in \mathcal{Z}_0^{>} \right\} \mu_{xz}'$$
, and $s_z^{\wedge} = \sum_x \mu_{xz}^{\wedge} - \sum_y \mu_{zy}^{\wedge}$. We have $\mu_{xy}^{\wedge} > 0$ implies $R(p \wedge p') = 0$, and

$$\begin{split} s_{z}^{\wedge} &= \sum_{x} \mu_{xz}^{\wedge} - \sum_{y} \mu_{zy}^{\wedge} \\ &= \sum_{x} (1 \left\{ x \in \mathcal{Z}_{0}^{\leq} \right\} \mu_{xz} + 1 \left\{ x \in \mathcal{Z}_{0}^{>} \right\} \mu_{xz}') \\ &- \sum_{y} (1 \left\{ z \in \mathcal{Z}_{0}^{\leq} \right\} \mu_{zy} + 1 \left\{ x \in \mathcal{Z}_{0}^{>} \right\} \mu_{zy}') \\ &\geq \sum_{x} (1 \left\{ z \in \mathcal{Z}_{0}^{\leq} \right\} \mu_{xz} + 1 \left\{ z \in \mathcal{Z}_{0}^{>} \right\} \mu_{xz}') \\ &- \sum_{y} (1 \left\{ z \in \mathcal{Z}_{0}^{\leq} \right\} \mu_{zy} + 1 \left\{ z \in \mathcal{Z}_{0}^{>} \right\} \mu_{zy}') \\ &= 1 \left\{ z \in \mathcal{Z}_{0}^{\leq} \right\} s_{z} + 1 \left\{ z \in \mathcal{Z}_{0}^{>} \right\} s_{z}', \ \textit{QED}. \end{split}$$

A similar argument shows that $1\left\{z\in\mathcal{Z}_0^{\leq}\right\}s_z'+1\left\{z\in\mathcal{Z}_0^{>}\right\}s_z'\geq s_z^{\lor}.$

CONSEQUENCE: INVERSE ISOTONICITY OF OUTSTANDING FLOW

Theorem. The correspondence $s \to \Sigma^{-1}(s)$ is isotone in Veinott's strong set order. That is, if $s \in \Sigma(p) \le s' \in \Sigma(p')$, then $s \in \Sigma(p \land p')$ and $s' \in \Sigma(p \lor p')$.

 $\boldsymbol{\mathsf{Proof}}.$ Directly follows from the inverse isotonicity theorem of G and $\mathsf{Samuelson}.$

LATTICE STRUCTURE OF EQUILIBRIUM PRICES

Corollary. The set of equilibrium prices $E^{-1}(s)$ is a lattice.

Proof. Take $p \in \Sigma^{-1}(s)$ and $p' \in \Sigma^{-1}(s)$. Then $s \leq s$ yields $s \in \Sigma (p \wedge p')$ and $s \in \Sigma (p \vee p')$. In the bipartite case, this theorem was first proven by Demange and Gale (1985).

Section 3

FROM DUAL TO PRIMAL AND CONVERSELY

FROM DUAL TO PRIMAL: PERFECT MATCHINGS

▶ Let Γ be a subset of \mathcal{A} . A flow $\mu \geq 0$ is a perfect matching along Γ whenever (i) it is a feasible flow, i.e.

$$\nabla^{\mathsf{T}}\mu = s$$
,

and (ii) there is now flow outisde of Γ , i.e. $\mu_a > 0 \implies a \in \Gamma$.

▶ Clearly, the problem of recovering the primal solution (i.e. the flow μ) based on the dual solution (i.e. the prices p) is a perfect matching – simply define

$$\Gamma = \left\{ a \in \mathcal{A} : R_{a}\left(p\right) = 0 \right\}.$$

► The perfect matching problem is a linear programming problem: indeed, it can be solved using

$$\begin{aligned} & \min_{\mu \geq 0} \sum_{a} \mu_{a} \mathbf{1} \left\{ a \notin \Gamma \right\} \\ & s.t. \ \nabla^{\mathsf{T}} \mu = s \end{aligned}$$

FROM PRIMAL TO DUAL: DYNAMIC PROGRAMMING

- Assume that we know $\mu_{xy} > 0$ and we would like to recover the equilibrium prices $p \in \mathbb{R}^{\mathcal{Z}_0}$ such that $p_0 = 0$, $R_{xy}(p) \leq 0$ for all xy, and $\mu_{xy} > 0$ implies $R_{xy}(p) \leq 0$.
- From the lattice representation theorem, we know that this set is a sublattice of $\mathbb{R}^{\mathcal{Z}_0}$. We would like to get the largest element of this set.
- ► As we shall see, this is a *dynamic programming problem*.

REDUCED NETWORK

- Extend the set of arcs by adding the reverse of the arcs where there is a positive amount of flow, i.e. $\mathcal{A}^r = \mathcal{A} \cup \{yx : xy \in \mathcal{A}, \ \mu_{xy} > 0\}$. For such reverse arcs yx, define $R_{yx}(p) = -R_{xy}(p)$. Such a network is called *reduced network*.
- ► See textbook treatments in Ahuja, Magnuti and Orlin (1993) and Bertsekas (1998).

EQUILIBRIUM PRICES AS A FIXED POINT

▶ We shall restrict ourselves to the case $R_{xy}(p) = p_y - C_{xy}(p_x)$. In that case, for reverse arcs yx, we define $C_{yx}(p) = C_{xy}^{-1}(p)$.

Lemma. The set of equilibirum prices are the fixed points of an isotone map

$$T(p)_{y} = \min \left\{ p_{y}, \min_{xy \in \mathcal{A}^{r}} C_{xy}(p_{x}) \right\}.$$

Proof. T(p) = p if and only if $p_y \leq C_{xy}(p_x)$ for all x such that $xy \in \mathcal{A}^r$, that is

$$p_{y} \leq C_{xy}(p_{x}), \ \forall xy \in \mathcal{A}$$

 $p_{y} \leq C_{yx}^{-1}(p_{x}), \ \forall yx \in \mathcal{A}: \mu_{xy} > 0$

that is

$$p_{y} \leq C_{xy}(p_{x}), \ \forall xy \in \mathcal{A}$$

 $p_{y} \geq C_{xy}(p_{x}), \ \forall xy \in \mathcal{A}: \mu_{xy} > 0.$

QED.

BELLMAN-FORD ALGORITHM

This suggests to iterate map T in order to converge to the lattice upper bound of the set of fixed points. This method is known as the Bellman-Ford algorithm, and it is an early instance of dynamic programming.

Algorithm (Bellman-Ford).

At period 1, set $p_0^1 = 0$ and $p_z^1 = +\infty$.

At period $t \geq 2$, set $p_y^t = \min\left\{p_y^{t-1}, \min_{xy \in \mathcal{A}^r} C_{xy}\left(p_x^{t-1}\right)\right\}$

Repeat until convergence.

ADDITIVE CASE

- ▶ In the additive case, recall that $C_{xy}\left(p_{x}\right)=c_{xy}+p_{x}$. In this case, following the approach above, we construct the reduced network by adding the reverse arcs yx to \mathcal{A} whenever $\mu_{xy}>0$. One associates these with cost $c_{yx}=-c_{xy}$.
- ▶ One seeks the largest element of the set

$$\{p: p_y - p_x \le c_{xy} \ \forall xy \in \mathcal{A}^r, p_0 = 0\}$$

which formulates as a linear programming problem

$$\max p_y - p_0$$

s.t. $p_y - p_x \le c_{xy}$

▶ The Bellman-Ford algorithm consists of deducing the optimal solution in t steps from an optimal solution in t-1 steps using Bellman's equation $p_y^t = \min \left\{ p_y^{t-1}, \min_{xy \in \mathcal{A}^r} \left\{ c_{xy} + p_x^{t-1} \right\} \right\}$.

Section 4

BIPARTITE CASE: THE EQUILIBRIUM TRANSPORT PROBLEM

THE EQUILIBRIUM TRANSPORT PROBLEM

- ▶ Consider the case where $\mathcal{Z} = \mathcal{X} \cup \mathcal{Y}$, and $\mathcal{A} = \mathcal{X} \times \mathcal{Y}$. \mathcal{X} are the source nodes, \mathcal{Y} are the destination ones, and each source is connected to a destination.
- ▶ $n_x \geq 0$ is the mass at source $x \in \mathcal{X}$ and $m_y \geq 0$ is the mass at destination $y \in \mathcal{Y}$. Assume that the total source mass and total destination mass are the same: $\sum_x n_x = \sum_y m_y$. Set $s_z = -n_z 1 \{z \in \mathcal{X}\} + m_y 1 \{z \in \mathcal{Y}\}$.
- ▶ Then (μ, p) is a solution to the equilibrium transport (ET) problem if:

$$\begin{cases} \sum_{y \in \mathcal{Y}} \mu_{xy} = n_x, \sum_{x \in \mathcal{X}} \mu_{xy} = m_y \\ R_{xy}(p) \leq 0 \\ \sum_{x \in \mathcal{X}} \mu_{xy} R_{xy}(p) = 0 \\ y \in \mathcal{Y} \end{cases}$$

REFORMULATION

▶ In the bipartite case, it will often make sense to set $u_x = p_x$ and $v_y = -p_y$, and $\Psi_{xy}\left(u_x, v_y\right) = -R_{xy}\left(u_x, -v_y\right)$, so that $\Psi_{xy}\left(u, v\right)$ is increasing in u and v, and the problem becomes

$$\begin{cases} \sum_{y \in \mathcal{Y}} \mu_{xy} = n_x, \sum_{x \in \mathcal{X}} \mu_{xy} = m_y \\ \Psi_{xy} \left(u_x, v_y \right) \ge 0 \\ \sum_{x \in \mathcal{X}} \mu_{xy} \Psi_{xy} \left(u_x, v_y \right) = 0 \end{cases}$$

▶ Interpretation: if x and y match, they can bargain over the feasible sets of utilities (u_x, v_y) such that $\Psi_{xy}(u_x, v_y) \leq 0$.

GALOIS CONNECTIONS

- Note that if $R_{xy}(p) = p_y C_{xy}(p_x)$, then $\Psi_{xy}(u_x, v_y) = C_{xy}(u_x) + v_y = v_y \mathbb{V}_{xy}(u_x)$ where $\mathbb{V}_{xy}(u_x) = -C_{xy}(u_x)$ is continuous and decreasing.
- ▶ If (μ, u, v) is a solution to the ET problem in the previous formulation, then the following conjugation relation holds

$$\left\{ \begin{array}{l} v_y = \max_{x \in \mathcal{X}} \mathbb{V}_{xy} \left(u_x \right) \\ u_x = \max_{y \in \mathcal{Y}} \mathbb{U}_{xy} \left(v_y \right) \end{array} \right.$$

► This relation is called a Galois connection, see Noeldeke and Samuelson (2017). In particular, if $\mathbb{V}_{xy}(u_x) = \Phi_{xy} - u_x$, then v is the Φ -convex conjugate of u, as studied in Villani (2008), and if $\mathcal{X} = \mathcal{Y} = \mathbb{R}^d$ and $\Phi_{xy} = x^\mathsf{T} y$, then v is the Legendre-French transform of u_x .

MONGE-AMPERE EQUATIONS

Assuming everything is smooth, and letting f_P and f_Q be the densities of P and Q we have under some conditions that the equilibrium transportation plan is given by y = T(x), where mass balance yields

$$\left|\det DT\left(x\right)\right|=rac{f_{P}\left(x
ight)}{f_{Q}\left(T\left(x
ight)
ight)}$$

and optimality in $\max_{x \in \mathcal{X}} \mathbb{V}_{xy}\left(u\left(x\right)\right)$ yieds

$$\partial_{x} \mathbb{V}_{xT(x)} (u(x)) + \partial_{u} \mathbb{V}_{xT(x)} (u(x)) \nabla u(x) = 0$$

which thus inverts into

$$T(x) = e(x, u(x), \nabla u(x)).$$

- ▶ In the case when $\mathbb{V}_{xy}(u(x)) = x^{\mathsf{T}}y u(x)$, we get $e(x, u(x), \nabla u(x))$; in the case when $\mathbb{V}_{xy}(u(x)) = \Phi(x, y) u(x)$, we get $e(x, u(x), \nabla u(x)) = \nabla_x \Phi(x, y)^{-1}(\nabla u(x))$.
- \blacktriangleright Trudinger (2014) studies Monge-Ampere equations in u of the form

$$|\det De(., u, \nabla u)| = \frac{f_P}{f_O(e(., u, \nabla u))}.$$

OPTIMAL TRANSPORT

▶ When $\Psi_{xy}(u_x, v_y) = u_x + v_y - \Phi_{xy}$, the problem writes

$$\begin{cases} \sum_{y \in \mathcal{Y}} \mu_{xy} = n_x, \sum_{x \in \mathcal{X}} \mu_{xy} = m_y \\ u_x + v_y \ge \Phi_{xy} \\ \mu_{xy} > 0 \implies u_x + v_y = \Phi_{xy} \end{cases}$$

► This are the complementary slackness conditions associated with the optimal transport problem, namely

$$\max_{\mu \ge 0} \sum \mu_{xy} \Phi_{xy}$$
s.t.
$$\sum_{y \in \mathcal{Y}} \mu_{xy} = n_x, \sum_{x \in \mathcal{X}} \mu_{xy} = m_y$$

which has dual

$$\min_{u,v} \sum_{x \in \mathcal{X}} n_x u_x + \sum_{y \in \mathcal{Y}} m_y v_y$$
s.t. $u_x + v_y > \Phi_{xy}$

▶ Many result extend beyond X and Y discrete; the theory is called optimal transport theory.

THE EQUILIBRIUM TRANSPORT PROBLEM WITH UNMATCHED AGENTS

▶ Consider now the case when $\sum_{x} n_{x} \neq \sum_{y} m_{y}$. Then define $\tilde{\mathcal{Z}} = \mathcal{X} \cup \mathcal{Y}$, and add a ground node 0. Let $\mathcal{Z}_{0} = \mathcal{X} \cup \mathcal{Y} \cup \{0\}$, and let

$$s_z = -n_z \mathbb{1}\left\{z \in \mathcal{X}\right\} + m_y \mathbb{1}\left\{z \in \mathcal{Y}\right\} + \left(\sum_{y \in \mathcal{Y}} m_y - \sum_{y \in \mathcal{Y}} n_x\right) \mathbb{1}\left\{z = 0\right\}.$$

▶ The set of arcs is now $\mathcal{A} = \mathcal{X} \times \mathcal{Y} \cup \mathcal{X} \times \{0\} \cup \{0\} \times \mathcal{Y}$. We set $p_0 = 0$, so that and the problem becomes

$$\begin{cases} \sum_{y \in \mathcal{Y}} \mu_{xy} + \mu_{x0} = n_x, \sum_{x \in \mathcal{X}} \mu_{xy} + \mu_{0y} = m_y \\ C_{xy}(p) \le 0, C_{x0}(p_x, 0) \le 0, C_{0y}(0, p_y) \le 0 \\ \sum_{x \in \mathcal{X}} \mu_{xy} C_{xy}(p) = 0 \end{cases}$$

▶ We can always redefine the problem by setting $u_x = -R_{x0} (p_x, 0)$ and $v_y = -R_{0y} (0, p_y)$, and $\Psi_{xy} (u_x, v_y) = -R_{xy} \left(R_{x0} (., 0)^{-1} (-u_x), R_{0y} (0, .)^{-1} (-v_y) \right)$, which becomes

$$\begin{cases} \sum_{y \in \mathcal{Y}} \mu_{xy} + \mu_{x0} = n_x, \sum_{x \in \mathcal{X}} \mu_{xy} + \mu_{0y} = m_y \\ \Psi_{xy} (u_x, v_y) \ge 0, u_x \ge 0, v_y \ge 0 \\ \sum_{xy} \mu_{xy} \Psi_{xy} (u_x, v_y) + \sum_{x} \mu_{x0} u_x + \sum_{y} \mu_{0y} v_y = 0 \end{cases}$$

Section 5

STRASSEN'S THEOREM

OPTIMAL TRANSPORT WITH ZERO-ONE COSTS

- ▶ Consider \mathcal{X} and \mathcal{Y} two open subsets of respectively \mathbb{R}^d and $\mathbb{R}^{d'}$. Let Γ be a closed subset of $\mathcal{X} \times \mathcal{Y}$, which stand for the set of pairs (x, y) that are compatible.
- ▶ For $x \in \mathcal{X}$, denote $\Gamma(x) == \{y \in \mathcal{Y} : (x,y) \in \Gamma\}$ the subset of receivers $y \in \mathcal{Y}$ that are compatible with donor x. Γ is a *set-valued function*, or *correspondence*. For $B \subseteq \mathcal{X}$, denote

$$\Gamma(B) = \{ y \in \mathcal{Y} : \exists x \in B, (x, y) \in \Gamma \}.$$

► The problem of maximizing the number of compatible pairs is given by

$$\max_{\pi \in \mathcal{M}(P,Q)} \Pr_{\pi} ((X, Y) \in \Gamma)$$

or equivalently

$$\min_{\pi \in \mathcal{M}(P,Q)} \Pr_{\pi} \left(\left(X, Y \right) \notin \Gamma \right).$$

This is an optimal transport problem with with 0-1 cost (or 0-1 surplus).

► By the Monge-Kantorovich theorem, the previous problem coincides with

$$= \sup \int a(x) dP(x) - \int b(y) dQ(y)$$

s.t. $a(x) - b(y) \le 1 \{(x, y) \notin \Gamma\}$

▶ We will see that we can take a and b valued in $\{0,1\}$. Then $a(x) = 1 \{x \in A\}$ and $b(y) = 1 \{y \in B\}$, so that the constraint rewrites

$$1\{y \notin B\} \le 1\{(x,y) \notin \Gamma\} + 1\{x \notin A\}$$

which means that if $y \in \Gamma(x)$ and $x \in A$ implies $y \in B$, that is $\Gamma(A) \subseteq B$. Therefore,

$$=\sup\left\{ P\left(A\right) -Q\left(B\right) :\Gamma\left(A\right) \subseteq B
ight\}$$
 ,

hence:

▶ **Theorem** (Strassen). Let P and Q be two probability measures on \mathcal{X} and \mathcal{Y} , and let $\Gamma: \mathcal{X} \rightrightarrows \mathcal{Y}$ be a closed correspondence. Then

and
$$\mathcal{Y}$$
, and let $\Gamma: \mathcal{X} \rightrightarrows \mathcal{Y}$ be a closed correspondence. Then
$$\min_{\pi \in \mathcal{M}(P,Q)} \Pr_{\pi} ((X,Y) \notin \Gamma) = \sup_{A \subset \mathcal{X}} \left\{ P(A) - Q(\Gamma(A)) \right\}. \tag{1}$$

PROOF OF STRASSEN'S THEOREM

▶ Let a and b a pair of solutions to the dual problem. Then

$$\begin{split} &a\left(x\right) = \min_{y \in \mathcal{Y}} \left\{1\left\{\left(x,y\right) \notin \Gamma\right\} + b\left(y\right)\right\} \\ &b\left(y\right) = \max_{x \in \mathcal{X}} \left\{a\left(x\right) - 1\left\{\left(x,y\right) \notin \Gamma\right\}\right\} \end{split}$$

▶ Step 1: a and b valued in [0,1]. One can take wlog min $_y$ b(y) = 0. It follows from $0 \le 1$ $\{(x,y) \notin \Gamma\} \le 1$ and the first equality that

$$0 \le \min_{y} \left\{ 1 \left\{ (x, y) \notin \Gamma \right\} \right\} \le a(x) \le 1 + \min_{y} b(y) = 1$$

Simlarly, it follows from $a(x) \leq 1$ and the second inequality that

$$b(y) \leq 1$$
.

PROOF OF STRASSEN'S THEOREM (CTD)

- ▶ Step 2: a and b can be taken valued in $\{0,1\}$. Indeed, $a(x) = \int_0^1 1\{t \le a(x)\} dt$ and $b(y) = \int_0^1 1\{t \le b(y)\} dt$. Let us show that $1\{t \le a(x)\} 1\{t \le b(y)\} \le 1\{(x,y) \notin \Gamma\}$. By contradiction, if not, then $1\{(x,y) \notin \Gamma\} = 0$, b(y) > t and $t \le a(x)$. But this implies a(x) b(y) > 0, yet $a(x) b(y) \le 1\{(x,y) \notin \Gamma\} = 0$, a contradiction.
- ▶ Next, each of $a_t(x) = 1\{t \le a(x)\}$ and $b_t(y) = 1\{t \le b(y)\}$ are feasible, and their convex combination is optimal for the dual; thus each of them is optimal. QED.

COROLLARY 1: HALL'S MARRIAGE LEMMA

▶ Hall's marriage lemma: assume there are n donors $i \in \{1,...,n\}$ and receivers $j \in \{1,...,n\}$. Let $\Gamma(i) \subseteq \{1,...,n\}$ be the set of receivers which are compatible with donors i, and for $A \subseteq \{1,...,n\}$, define $\Gamma(A) = \bigcup_{i \in A} \Gamma(i)$. A (pure) matching is a permutation σ such that $j = \sigma(i)$ means that i donates to j. A matching is perfect if $\sigma(i) \in \Gamma(ij)$ for all $i \in \{1,...,n\}$. Hall's theorem says that there is a perfect matching if and only if

$$\forall A \subseteq \{1, ..., n\}, |A| \leq |\Gamma(A)|.$$

- ▶ Follows from the previous result by taking $\mathcal{X} = \mathcal{Y} = \{1, ..., n\}$ and P and Q the uniform distributions on these sets. To do this, note that the value of the dual is zero if and only if $P(A) \leq Q(\Gamma(A))$ for all $A \subseteq \mathcal{X}$.
- ► As for the primal, we'll need to show it has a Monge solution.

INTEGRALITY

- ► There is a perfect matching iff the value of the (primal) problem is zero:
 - ightharpoonup is obvious.
 - ► For \Leftarrow , if the value of the problem is zero, there exists $\pi \in \mathcal{M}\left(P,Q\right)$ such that $\sum \pi_{ij} 1\left\{i \notin \Gamma\left(j\right)\right\} = 0$. One can show that w.l.o.g. π can be taken such that $\pi_{ij} = 1\left\{i = \sigma\left(j\right)\right\}/n$.
- ▶ To show the latter, consider among the matrices $\pi \in \mathcal{M}(P, Q)$ with $\sum \pi_{ij} 1\{i \notin \Gamma(j)\} = 0$ the one such that $n\pi$ has the smallest number of noninteger cells.
 - Assume that this number is > 0. Then start with one noninteger cell. There is another noninteger cell on the same line; on the same column of that cell, there is another one; on the line of the latter, another one; etc. At some point, we'll get a cycle. It's possible to strictly decrease the number of noninteger entries of $n\pi$ by removing enough mass on that cycle.
- ▶ The previous argument is (in disguise) the Birkhoff-von Neumann theorem: any coupling between the uniform distribution over {1, ..., n} and itself can be written as a convex combination of Monge couplings between these distributions

COROLLARY 2: RANDOM SETS

- Assume that we observe the marginal tax rate of invididuals, which allow us to deduce the income bracket of the individual. This is a random set \mathbb{X} . A model predicts the distribution of the income of individuals. If θ is the models' parameter, then $X \sim P_{\theta}$ is the predicted distribution of income.
- ▶ The identified parameter set is the set of θ such that there exists a joint distribution of X and of $X \sim P_{\theta}$ such that $X \in X$ holds almost surely.
- ▶ When does this happen? answer using Arstein's theorem. To do this, we need first to describe the distribution of a random set.

COROLLARY 2: RANDOM SETS (CTD)

- Assume for a minute \mathcal{X} is finite. Then the distribution of \mathbb{X} is characterised by $\pi_{\mathbb{X}}(A) = \Pr(\mathbb{X} = A)$ for each $A \subseteq \mathcal{X}$. This is OK when \mathcal{X} is finite; however, it does not extend well beyond that case. Instead, define the *capacity* of \mathbb{X} as $c_{\mathbb{X}}(A) = \Pr(\mathbb{X} \cap A \neq \emptyset)$.
- ► The capacity characterizes the distribution of X; we denote $X \approx c$. In the finite case, one can recover $\pi_X(A)$ from c_X by the Möbius inversion formula

$$\pi_{\mathbb{X}}(A) = \sum_{S \subseteq A} (-1)^{|A \setminus S|} (1 - c(\mathcal{X} \setminus A))$$

▶ Therefore, it is equivalent to describe the distribution of X in terms of π_X or in terms of c_X .

COROLLARY 2: RANDOM SETS (CTD)

lacktriangle Arstein's theorem says that one can find a coupling such that $X\in\mathbb{X}$ if and only if

$$\forall A \text{ closed subset of } \mathcal{X}, P(A) \leq c(A)$$
.

▶ To do this, assume (actually w.l.o.g.) that $\mathbb{X} = ^{-1}(Y)$, where $Y \sim Q$ and Γ is a correspondence. Then

$$c\left(A\right)=\Pr\left(^{-1}\left(Y\right)\cap A\neq\varnothing\right)=\Pr\left(Y\in\Gamma\left(A\right)\right)=Q\left(\Gamma\left(A\right)\right),$$

so that Strassen's theorem readily applies.