a) Grafica de dispersión

A simple vista no parece haber una relación lineal entre las variables, los puntos están muy dispersos entre sí, aunque se puede apreciar una cierta tendencia a aumentar los errores a medida que aumentan las horas sin dormir.

b) Modelo de regresión lineal:

Se busca la función de x más simple, lineal, que permita aproximar el valor de Y, mediante la fórmula:

$$\widehat{Y} = a + bx$$

X: Variable independiente, predictora o explicatora, generalmente un dato en base al cual se quiere encontrar su valor correspondiente de la variable y.

Y: Variable dependiente, predicha o explicada, la cual varía en función de x.

Generalmente el valor de Y no coincide con el valor de \widehat{Y} , ya que se encuentra afectada por un error el cual se denomina residuo o error residual:

$$e = Y - \hat{Y}$$

La recta muestral que estima a la población será:

$$Y = \alpha + \beta x + \varepsilon$$

Donde α es la ordenada al origen, β la pendiente, y ε es una variable aleatoria con E(ε)=0 y Var(ε)= σ^2 .

El supuesto del modelo es que los residuos son independientes y se distribuyen en forma normal con media 0 y varianza constante σ^2 , de no cumplirse esto, el modelo será invalido.

c) Siendo las variables:

X: Tiempo sin dormir(hs)

Y: Nro de errores

Se obtiene la siguiente tabla de Excel:

	Tiempo sin dormir(hs)	Nro de errores	x^2	y^2	x*y				
	8	8	64	64	-				
	8	6	64	36	48				
	9	6	81	36	54	Sxx=	469,75		
	12	6	144	36	72	Syy=	210		
	12	10	144	100	120		261		
	15	11	225	121	165	S^2=	4,64175473		
	16	8	256	64	128	S=	2,15447319		
	16	14	256	196	224				
	18	16	324	256	288	Error α	-5,17424304		
	18	14	324	196	252	Error β	-0,29591269		
	20	14	400	196	280				
	20	12	400	144	240	Confian	za 99		
	23	15	529	225	345	t:	-2,97684273		
	23	16	529	256	368				
	24	12	576	144	288	b=	4176	=	0,55561469
	24	16	576	256	384		7516		
						a=	2,2629058		
							·		
SUMAS	266	184	4892	2326	3320				
Promedio	16,625	11,5							
N	16								

$$b = \frac{S_{xy}}{S_{xx}} = \frac{261}{469,75} = 0,556$$

$$a=\bar{y}-b\bar{x}=11,5-16,625*0,556=2,226;$$

Utilizando todos los decimales el resultado es $a=2,263$

La ecuación de la recta finalmente será:

$$\hat{y} = 2,263 + 0,556 x$$

d) Intervalo de 99% de confianza para β.

$$b - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} < \beta < b + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}}$$

$$t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} = 0,2959$$

$$0.556 - 0.2959 < \beta < 0.556 + 0.2959$$

$$0,2601 < \beta < 0,8519$$

e) Para poder estimar la cantidad de errores en un sujeto con 18,5 horas sin dormir, solo basta con reemplazar x=18,5 en la ecuación de la recta

$$\hat{y} = 2,263 + 0,556 * 18,5$$

 $\hat{y} = 12,549$

Como el número de errores es un numero entero, se estima que cometerá 13 errores.

- f) No, el modelo es utilizable solo para valores que se encuentren entre el valor máximo y mínimo de los datos usados para construirlo.
- g) El coeficiente de correlación muestral es el denominado r el cual se calcula de la siguiente manera:

$$\hat{\rho} = r = b * \sqrt{\frac{S_{xx}}{S_{yy}}} = \frac{S_{xy}}{\sqrt{S_{xx} * S_{yy}}}$$

Este determina la relación lineal entre las variables de estudio.

h)
$$r = \frac{261}{\sqrt{469,75 * 210}} = 0,831$$

- i) El coeficiente de determinación muestral es simplemente r²=0,69, este explica el porcentaje de la dependencia de la variable dependiente en función de la independiente, para este caso, 69%.
- j) Test:

H₀: ρ =0; H₁: ρ >0

$$t = \frac{b}{s/\sqrt{S_{xx}}} = \frac{0,556}{2,15/\sqrt{469,75}} = 5,605$$

El p-value de ese valor t es un número muy pequeño, menor a 0,01

Como el p-value obtenido es menor al nivel de significancia se rechaza la hipótesis nula y se puede afirmar que ρ es mayor a 0.

k) Test:

H₀: Los residuos se distribuyen de manera normal

H₁: Los residuos NO se distribuyen de manera normal

Salida del software:

Pruebas de normalidad

	Kolmo	gorov-Smirn	ov ^a	Shapiro-Wilk			
	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
Unstandardized Residual	,139	16	,200 [*]	,965	16	,758	

^{*.} Esto es un límite inferior de la significación verdadera.

Como n<50 utilizamos el test de Shapiro-Wilk, se observa que el p-value calculado es 0,758, un número muy elevado, por el cual no rechazamos H₀ y podemos decir nuestro modelo es válido.

a. Corrección de significación de Lilliefors