DEEP GENERATIVE MODEL WITH BETA BERNOULLI PROESS FOR MODELING AND LEARNING CONFOUNDING FACTORS

B. THOMAS GOLISANO

College of COMPUTING AND
INFORMATION SCIENCES

Prashnna K. Gyawali^{1*}, Cameron Knight¹, Sandesh Ghimire¹, John L. Sapp², Milan Horacek², Linwei Wang¹
Rochester Institute of Technology, Rochester, USA; ²Dalhousie University, Halifax, Canada
*www.pkgyawali.com pkgyawali@mail.rit.edu pkgyawali

Introduction

- Two important challenges exist to address the confounding factors (an inherent property in most data analyses):
 - Unknown and sometimes infinite number of confounding factors.
 - Some of the confounding factors are not easily observable.

- Disentangled representation learning aims to separate all the factors of variations within the data.
 - Challenges: Modeling and inference of an infinite number of confounding factors
- Conditional IBP-VAE (cIBP-VAE)

A deep conditional generative model to disentangle a task-relevant representation from an unknown number of confounding factors that may grow infinite.

Beta-Bernoulli Process

- A stochastic process defining a probability distribution over sparse binary matrices Z indicating feature activation for K features.
- Taking the infinite limit as $K \rightarrow \infty$, we get, Indian Buffet Process (IBP).

$$v_k \sim Beta(\alpha, \beta); z_{n,k} \sim Bernoulli(\pi_k); \pi_k = \prod_{i=1}^k v_i$$

where, $z_{n,k}$ is the element of $Z \in \{0,1\}^{\{NXK^+\}}$, α and β are the shape parameters for Beta process.

Conditional Generative Model

- Conditional probabilistic model admits two sources of variations:
 - the task-related representations, y_t
 - the confounding representation, y_c
- To model an unbounded number of unobserved confounders, we model y_c with an IBP prior :

$$Z, \nu \sim IBP(\alpha); A_n \sim N(0, I); y_c = Z \odot A;$$

 $X \sim p_{\theta}(X|Z \odot A, y_t)$

The likelihood function $p_{\theta}(X|Z \odot A, y_t)$ is defined by a neural networks parameterized by θ .

(Left) Conditional generative model. (Right) Overall network architecture.

Inference: Structured stochastic variational inference (SSVI) to infer the latent variables Z, A and ν .

• The objective is to maximize the following lower bound \mathcal{L} :

$$KL(q(\nu_k)||p(\nu_k)) + \sum_{n=1}^{N} \frac{\mathbb{E}_q[\log p(x_n|Z_n, A_n, y_{tn})] - KL(q(\nu_k)||p(\nu_k)) + \sum_{n=1}^{N} \frac{KL(q(Z_n|\nu, x_n)||p(Z_n|\nu)) - KL(q(A_n|x_n)||p(A_n)))}{KL(q(A_n|x_n)||p(A_n))}$$

• The task-representation y_t is encoded from deterministic encoder $q(y_t|X)$ supervised using a classification loss. Hence, final objective is:

$$\mathcal{L}^{\gamma} = \mathcal{L} + \zeta \cdot \mathbb{E}_{p(X, y_t)}[-\log q_{\phi_2}(y_t | X)]$$

Experiments

Colored MNIST: b/w MNIST dataset augmented with RGB color

(**Left**) represents swapping between y_t and y_c . (**Right**) triggering units within binary features Z responsible for recognizing presence or absence of color.

Clinical ECG dataset: A large pace-mapping ECG dataset collected from 39 scar-related ventricular tachycardia (VT) patients (IRB approved)

	Model	Segment classification			
	QRS Int	47.61 %			
	CNN	53.89 %			
	c-VAE	55.97 %			
	cIBP-VAE	57.53 %			

(Left) Segment classification accuracy for the clinical task of VT localization. (Right) Reconstruction errors.

Model	all signal	only artifacts		
		all	no stimulus	stimulus
c-VAE	2293.23	3.20	3.91	2.49
cIBP-VAE	2273.65	0.45	0.19	0.72

(A) Original signal, (B) reconstructed signal, (C) (D) (E) generated signals by manipulating *triggering* units within binary feature Z.

Conclusion

- A deep conditional generative model for disentangling and learning the unobserved and unbounded number of confounding factors.
- Acknowledgment: This work is supported by the National Institutes of Health [grant no: NIH HL140500]