# Stability and regularization properties of diagonal proximal gradient methods

### Silvia Villa

Department of Mathematics, MaLGa Center University of Genoa, https://ml.unige.it

Workshop "Regularisation for inverse problems", Paris, November 19<sup>th</sup>, 2019



# Computational regularization for large scale data problems

Integrating

### REGULARIZATION and OPTIMIZATION

in inverse problems (and learning)



# Computational regularization for large scale data problems

Integrating

### REGULARIZATION and OPTIMIZATION

in inverse problems (and learning)

Computational requirements tailored to the information in the data rather than to their raw amount



# Computational regularization for large scale data problems

Integrating

### REGULARIZATION and OPTIMIZATION

in inverse problems (and learning)

Computational requirements tailored to the information in the data rather than to their raw amount

Joint work with: G. Garrigos, L. Rosasco and L. Calatroni



2 / 40

- H and G Hilbert spaces.
- $A \in \mathcal{L}(H, G)$  forward operator

### Inverse problem

Given  $y \in G$ , find  $x \in H$  s.t. Ax = y



- H and G Hilbert spaces.
- $A \in \mathcal{L}(H, G)$  forward operator
- III-posedness! (existence? uniqueness? stability?)

### Inverse problems in practice

Given  $y \in G$ , how to solve Ax = y?

- H and G Hilbert spaces.
- $A \in \mathcal{L}(H, G)$  forward operator
- III-posedness! (existence? uniqueness? stability?)

### Inverse problems in practice

Given  $y \in G$ , how to solve Ax = y?

• EXISTENCE: introduce data discrepancy

$$x^{\dagger} = \underset{x}{\operatorname{argmin}} D(Ax, y)$$



- H and G Hilbert spaces.
- $A \in \mathcal{L}(H, G)$  forward operator
- III-posedness! (existence? uniqueness? stability?)

### Inverse problems in practice

Given  $y \in G$ , how to solve Ax = y?

EXISTENCE: introduce data discrepancy

$$x^{\dagger} = \operatorname{argmin} \ D(Ax, y)$$

• **UNIQUENESS**: introduce *a-priori* information on x. Let  $R: H \to R \cup \{+\infty\}$  be strongly convex, and define

$$x^{\dagger} = \underset{x \in \operatorname{argmin} D(Ax, y)}{\operatorname{argmin}} R(x)$$





- H and G Hilbert spaces.
- $A \in \mathcal{L}(H,G)$  forward operator
- III-posedness! (existence? uniqueness? stability?)

### Inverse problems in practice

Given  $y \in G$ , how to solve Ax = y?

EXISTENCE: introduce data discrepancy

$$x^{\dagger} = \operatorname{argmin} \ D(Ax, y)$$

• **UNIQUENESS**: introduce *a-priori* information on x. Let  $R: H \to R \cup \{+\infty\}$  be strongly convex, and define

$$x^{\dagger} = \underset{x \in \operatorname{argmin} D(Ax, y)}{\operatorname{argmin}} R(x)$$

• STABILITY: perturbation of the data...

Uni**Ge MalGa** 

In practice, we do not have access to  $y \in G$ , but only to its **noisy** version  $\hat{y} \in G$ :

$$\|\widehat{y} - y\| \le \delta, \qquad \delta > 0$$

Goal

Given  $\hat{y}$ , find a **stable** approximation of  $x^{\dagger}$ .





In practice, we do not have access to  $y \in G$ , but only to its **noisy** version  $\hat{y} \in G$ :

$$\|\widehat{y} - y\| \le \delta, \qquad \delta > 0$$

Goal

Given  $\hat{y}$ , find a **stable** approximation of  $x^{\dagger}$ .

$$x^{\dagger} := \underset{x \in \operatorname{argmin} D(Ax, y)}{\operatorname{argmin}} R(x)$$







 $y = Ax^{\dagger}$ 



In practice, we do not have access to  $y \in G$ , but only to its **noisy** version  $\hat{y} \in G$ :

$$\|\widehat{y} - y\| \le \delta, \qquad \delta > 0$$

Goal

Given  $\hat{y}$ , find a **stable** approximation of  $x^{\dagger}$ .

$$\widehat{x}^{\dagger} := \underset{x \in \operatorname{argmin} D(Ax, \widehat{y})}{\operatorname{argmin}} R(x),$$







 $y = Ax^{\dagger}$ 



ŷ



In practice, we do not have access to  $y \in G$ , but only to its **noisy** version  $\hat{y} \in G$ :

$$\|\widehat{y} - y\| \le \delta, \qquad \delta > 0$$

Goal

Given  $\hat{y}$ , find a **stable** approximation of  $x^{\dagger}$ .

$$\widehat{x}^{\dagger} := \underset{x \in \operatorname{argmin} D(Ax, \widehat{y})}{\operatorname{argmin}} \frac{R(x)}{P(x)},$$









In practice, we do not have access to  $y \in G$ , but only to its **noisy** version  $\hat{y} \in G$ :

$$\|\widehat{y} - y\| \le \delta, \qquad \delta > 0$$

Goal

Given  $\hat{y}$ , find a **stable** approximation of  $x^{\dagger}$ .

$$\widehat{x}^{\dagger} := \underset{x \in \operatorname{argmin} D(Ax,\widehat{y})}{\operatorname{argmin}} R(x),$$









 $\chi^{\dagger}$ 

 $v = Ax^{\dagger}$ 

UniGe MolGa

How to enforce well-posedness?

$$\underset{x \in \mathcal{H}}{\text{minimize}} \ \frac{1}{2\lambda} D(Ax, \widehat{y}) + R(x)$$



$$\underset{x \in \mathcal{H}}{\text{minimize}} \ \frac{1}{2\lambda} D(Ax, \widehat{y}) + R(x)$$

How to choose  $\lambda$ ?





$$\underset{x \in \mathcal{H}}{\text{minimize}} \ \frac{1}{2\lambda} D(Ax, \widehat{y}) + R(x)$$

How to choose  $\lambda$ ?

### Theorem

Let  $D(Ax, y) = ||Ax - y||^2$ . Let  $\hat{x}^{\lambda}$  be the solution of the regularized problem and assume that  $Im(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$ . Then

$$\|\widehat{\mathbf{x}}^{\lambda} - \mathbf{x}^{\dagger}\| \le C \left( \frac{\delta}{\sqrt{\lambda}} + \sqrt{\delta} + \sqrt{\lambda} \right)$$

Choosing  $\lambda_{\delta} \sim \delta$ , we derive

$$\|\widehat{x}^{\lambda_{\delta}} - x^{\dagger}\| \le C\sqrt{\delta}.$$

[Burger-Osher, Convergence rates of convex variational regularization, 2004]

UniGe | MalGa [Benning-Burger, Error estimates for general fidelities, 2011]

What about computations?





### What about computations?

### Tikhonov regularization in practice:

- choose an interval  $[\lambda_{\min}, \lambda_{\max}]$
- ullet approximately solve the regularized problem for  $\lambda \in [\lambda_{\min}, \lambda_{\max}]$
- ullet select the best  $\lambda$  according to a validation criterion





# Iterative regularization

A (new) old idea

Solve:

$$\min_{x \in \operatorname{argmin} D(A \cdot , \widehat{y})} R(x)$$

.



# Iterative regularization

A (new) old idea

Solve:

$$\min_{x \in \operatorname{argmin} D(A \cdot , \widehat{y})} R(x)$$

BUT early stop the iterations.



### Iterative regularization

A (new) old idea

Solve:

$$\min_{x \in \operatorname{argmin} D(A \cdot , \widehat{y})} R(x)$$

### BUT early stop the iterations.

An old idea in inverse problems for  $R = ||\cdot||^2/2$ :

Landweber [Engl-Hanke-Neubauer, inverse problems]

Recently revisited: [Osher-Burger-Yin-Cai-Resmerita-He.....  $\sim 2000s$ ]





# Iterative regularization: idea of the proof

Choose a convergent algorithm to find

$$x^{\dagger} \in \underset{x \in \operatorname{argmin} D(A \cdot, y)}{\operatorname{argmin}} R(x)$$

Call the iterates  $(x_t)_{t\in\mathbb{N}}$ .

2 Apply the same algorithm to

$$\underset{x \in \operatorname{argmin} D(A \cdot , \widehat{y})}{\operatorname{argmin}} R(x)$$

Call the iterates  $(\widehat{x}_t)_{t\in\mathbb{N}}$ .

3 Then

$$\|\widehat{x}_t - x^\dagger\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^\dagger\|}_{\text{optimization}}$$













 $\hat{x}_t$ 



### Recall that









 $\hat{x}_t$ 











λ̂t



ŷ









 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ

$$\|\widehat{x}_t - x^{\dagger}\| \le \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$







 $\hat{x}_t$ 



ŷ

$$\|\widehat{x}_t - x^{\dagger}\| \le \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$



original image



âτ



ŷ































 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ý











 $\hat{x}_t$ 











 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ

$$\|\widehat{x}_t - x^{\dagger}\| \le \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$







 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ









âτ



ŷ









âτ



ŷ

$$\|\widehat{x}_t - x^{\dagger}\| \le \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$







λ̂t



ŷ









λ̂t



ý

$$\|\widehat{x}_t - x^{\dagger}\| \le \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$







λ̂t



ŷ

$$\|\widehat{x}_t - x^{\dagger}\| \le \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$

















âτ



ŷ









âτ



ŷ









 $\hat{x}_t$ 



ŷ











 $\hat{x}_t$ 











âτ



ý





original image



 $\hat{x}_t$ 



ŷ





original image



âτ



ŷ





original image



 $\hat{x}_t$ 



ŷ









 $\hat{x}_t$ 



ŷ

#### Recall that









original image

 $\hat{x}_t$ 

ŷ

How to choose the stopping time?



### How to choose the algorithm: duality

Let *y* be the exact datum.

$$\min_{Ax=y} R(x) \quad \longleftrightarrow \quad \min_{x \in \mathcal{H}} R(x) + \iota_{\{y\}}(Ax),$$

where  $\iota_{\{y\}}(x) = 0$  if x = y and  $\iota_{\{y\}}(x) = +\infty$  otherwise.





### How to choose the algorithm: duality

Let *y* be the exact datum.

$$\min_{Ax=y} R(x) \quad \longleftrightarrow \quad \min_{x \in \mathcal{H}} R(x) + \iota_{\{y\}}(Ax),$$

where  $\iota_{\{y\}}(x) = 0$  if x = y and  $\iota_{\{y\}}(x) = +\infty$  otherwise.

The dual problem is

$$\min_{v \in \mathcal{G}} d(v), \quad d(v) = R^*(-A^*v) + \langle y, v \rangle.$$

R strongly convex  $\Rightarrow$  the dual is smooth

We can apply the gradient method or an **inertial** gradient method to minimize it.

4 D > 4 B > 4 E > 4 E > E 9 Q C

### Dual gradient descent

R strongly convex  $\Rightarrow$ 

$$R = F + \frac{\alpha}{2} \| \cdot \|^2$$
 for some convex function  $F$ .

Let  $v_0 \in \mathcal{G}$ , and let  $\gamma \in \left]0, \alpha \|A\|^{-2}\right[$ . Iterate

$$v_{t+1} = v_t - \gamma(\nabla(R^* \circ -A^*)(v_t) + y)$$
  
=  $v_t + \gamma(A \operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t) - y)$ 





### Dual gradient descent

R strongly convex  $\Rightarrow$ 

$$R = F + \frac{\alpha}{2} \| \cdot \|^2$$
 for some convex function  $F$ .

Let  $v_0 \in \mathcal{G}$ , and let  $\gamma \in ]0, \alpha ||A||^{-2}[$ . Iterate

$$v_{t+1} = v_t - \gamma(\nabla(R^* \circ -A^*)(v_t) + y)$$

$$= v_t + \gamma(A\underbrace{\operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t)}_{=x_t} - y)$$

Equivalent to:

$$\begin{cases} x_t = \operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t) \\ v_{t+1} = v_t + \gamma(Ax_t - y) \end{cases}$$

A.k.a. linearized Bregman iteration [Yin-Osher-Burger, several papers UniGe | Molecular Bachmayr-Burger, 2005]

# Theoretical guarantees & early stopping

### Theorem (Matet, Rosasco, V., Vu, '17)

Let  $D(Ax, y) = ||Ax - y||^2$ , and R be strongly convex. Let  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$  and  $\|\widehat{y} - y\| \leq \delta$ . If  $\widehat{x}_t$  is the sequence generated by gradient descent on the dual problem associated to  $\hat{y}$ , then

$$\|\widehat{x}_t - x^{\dagger}\| \le c(1/\sqrt{t} + \sqrt{t}\delta).$$

Choosing  $t_{\delta} \sim \delta^{-1}$ , we have  $\|\hat{x}_{t_{\delta}} - x^{\dagger}\| = O(\delta^{1/2})$ 

UniGe Ma



# Theoretical guarantees & early stopping

### Theorem (Matet, Rosasco, V., Vu, '17)

Let  $D(Ax, y) = \|Ax - y\|^2$ , and R be strongly convex. Let  $Im(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$  and  $\|\widehat{y} - y\| \leq \delta$ . If  $\widehat{x}_t$  is the sequence generated by gradient descent on the dual problem associated to  $\widehat{y}$ , then

$$\|\widehat{x}_t - x^{\dagger}\| \le c(1/\sqrt{t} + \sqrt{t}\delta).$$

Choosing  $t_{\delta} \sim \delta^{-1}$ , we have  $\|\widehat{x}_{t_{\delta}} - x^{\dagger}\| = O(\delta^{1/2})$ 

#### Remarks

• if  $R = \|\cdot\|^2$  is Landweber algorithm

Uni**Ge | Mak G**a



# Inertial version: Theoretical guarantees & early stopping

#### Theorem (Matet, Rosasco, V., Vu, '17)

Let  $D(Ax, y) = ||Ax - y||^2$ , and R be strongly convex. Let  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$  and  $\|\widehat{y} - y\| \leq \delta$ . If  $\widehat{x}_t$  is the sequence generated by inertial gradient descent on the dual problem associated to  $\hat{y}$ , then

$$\|\widehat{x}_t - x^{\dagger}\| \leq c(1/t + t\delta).$$

Choosing  $t_{\delta} \sim \delta^{-1/2}$ , we have  $\|\widehat{x}_{t_{\delta}} - x^{\dagger}\| = O(\delta^{1/2})$ 

UniGe



## Inertial version: Theoretical guarantees & early stopping

#### Theorem (Matet, Rosasco, V., Vu, '17)

Let  $D(Ax,y) = \|Ax - y\|^2$ , and R be strongly convex. Let  $\operatorname{Im}(A^*) \cap \partial R(x^\dagger) \neq \emptyset$  and  $\|\widehat{y} - y\| \leq \delta$ . If  $\widehat{x}_t$  is the sequence generated by inertial gradient descent on the dual problem associated to  $\widehat{y}$ , then

$$\|\widehat{x}_t - x^{\dagger}\| \leq c(1/t + t\delta).$$

Choosing  $t_{\delta} \sim \delta^{-1/2}$ , we have  $\|\widehat{x}_{t_{\delta}} - x^{\dagger}\| = O(\delta^{1/2})$ 

#### Remarks

- ullet Same dependence on  $\delta$ , but the good solution is reached faster
- if  $R = \|\cdot\|^2$  see [Neubauer'16]





## Inertial version: Theoretical guarantees & early stopping

#### Theorem (Matet, Rosasco, V., Vu, '17)

Let  $D(Ax,y) = \|Ax - y\|^2$ , and R be strongly convex. Let  $\operatorname{Im}(A^*) \cap \partial R(x^\dagger) \neq \emptyset$  and  $\|\widehat{y} - y\| \leq \delta$ . If  $\widehat{x}_t$  is the sequence generated by inertial gradient descent on the dual problem associated to  $\widehat{y}$ , then

$$\|\widehat{x}_t - x^{\dagger}\| \leq c(1/t + t\delta).$$

Choosing  $t_{\delta} \sim \delta^{-1/2}$ , we have  $\|\widehat{x}_{t_{\delta}} - x^{\dagger}\| = O(\delta^{1/2})$ 

Extension to general D?





## Back to the beginning: regularized inverse problems

Tikhonov regularization: original hierarchical problem is replaced by

minimize 
$$\frac{1}{\lambda}D(Ax, y) + R(x)$$
,

for a suitable  $\lambda > 0$ , and an algorithm is chosen to compute

$$x_{t+1} = \mathsf{Algo}(x_t, \lambda).$$





## Back to the beginning: regularized inverse problems

Tikhonov regularization: original hierarchical problem is replaced by

minimize 
$$\frac{1}{\lambda}D(Ax, y) + R(x)$$
,

for a suitable  $\lambda > 0$ , and an algorithm is chosen to compute

$$x_{t+1} = \mathsf{Algo}(x_t, \lambda).$$

A diagonal approach[Lemaire 80s-90s]

$$x_{t+1} = \mathsf{Algo}(x_t, \frac{\lambda_t}{\lambda_t}),$$

with  $\lambda_t \to 0$ .





## A picture

#### The previous approach allows to describe:



A diagonal strategy



A warm restart strategy



Diagonal proximal gradient: [Attouch, Cabot, Czarnecki, Peypouquet ...]





Diagonal proximal gradient: [Attouch, Cabot, Czarnecki, Peypouquet ...] Not well-suited if *D* is not smooth.





Diagonal proximal gradient: [Attouch, Cabot, Czarnecki, Peypouquet ...] Not well-suited if D is not smooth.

Assume argmin  $D(\cdot, y) = y$  and D(y, y) = 0.





Diagonal proximal gradient: [Attouch, Cabot, Czarnecki, Peypouquet ...] Not well-suited if *D* is not smooth.

Assume argmin  $D(\cdot, y) = y$  and D(y, y) = 0.

$$\min_{\mathbf{R}(x)} R(x) \longrightarrow \frac{1}{\lambda} D(Ax, y) + R(x)$$
s.t.  $D(Ax, y) = 0$ 

$$\uparrow \qquad \qquad \downarrow$$

$$\min_{u \in G} \underbrace{\langle u, y \rangle + R^*(-A^*u)}_{=d(u)} \longleftarrow \underbrace{\frac{1}{\lambda} D^*(\lambda u, y) + R^*(-A^*u)}_{=d(u)}.$$

UniGe | MakGa



# Dual diagonal descent algorithm (3D)

If  $R = F + (\sigma_R/2) \|\cdot\|^2$  is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^{*}(-A^{*}u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^{*}(\lambda u, y)}_{nonsmooth}$$

We can use the **proximal gradient algorithm** on the dual.

$$u_0 \in G, \ \lambda_{\mathbf{t}} \to \mathbf{0}, \tau = \sigma_R / \|A\|^2$$

$$z_{t+1} = u_t + \tau A \nabla R^*(-A^*u_t)$$

$$z_{t+1} = u_t + \tau A \nabla R^*(-A^*u_t)$$
$$u_{t+1} = \operatorname{prox}_{\tau \lambda_t^{-1} D^*(\lambda_t, y)}(z_{t+1}).$$

UniGe MolGa



# Dual diagonal descent algorithm (3D)

If  $R = F + (\sigma_R/2) \|\cdot\|^2$  is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^*(-A^*u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^*(\lambda u, y)}_{nonsmooth}$$

We can use the **proximal gradient algorithm** on the dual.

$$u_0 \in G, \ \lambda_{\mathbf{t}} \to \mathbf{0}, \tau = \sigma_R / \|A\|^2$$

$$z_{t+1} = u_t + \tau A \nabla R^*(-A^*u_t)$$

$$\begin{vmatrix} z_{t+1} = u_t + \tau A \nabla R^*(-A^* u_t) \\ u_{t+1} = z_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_t)^{-1} D(\cdot, y)} (\tau^{-1} z_{t+1}) \end{vmatrix}$$

UniGe MalGa

# Dual diagonal descent algorithm (3D)

If  $R = F + (\sigma_R/2) \| \cdot \|^2$  is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^*(-A^*u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^*(\lambda u, y)}_{nonsmooth}$$

We can use the **proximal gradient algorithm** on the dual.

$$|u_{0} \in G, \ \lambda_{t} \to \mathbf{0}, \tau = \sigma_{R}/\|A\|^{2}$$

$$x_{t} = \nabla R^{*}(-A^{*}u_{t}) = \operatorname{prox}_{\sigma_{R}^{-1}F}(-A^{*}u_{t})$$

$$z_{t+1} = u_{t} + \tau Ax_{t}$$

$$u_{t+1} = z_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_{t})^{-1}D(\cdot, y)} (\tau^{-1}z_{t+1})$$

UniGe | MalGa



AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u - y)$  (only for simplicity).





AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u - y)$  (only for simplicity).

AD2) Let  $p \in [1, +\infty]. \ D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u - y||^p \le D(u, y)$ 





AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u - y)$  (only for simplicity).

AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u - y||^p \le D(u, y)$ 

AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in dom R$ .





AD1) 
$$D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u - y)$$
 (only for simplicity).

AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u - y||^p \le D(u, y)$  AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in \text{dom } R$ .

#### Theorem [Garrigos-Rosasco-V. 2017]

Suppose that  $\lambda_t \in \ell^{1/(p-1)}(\mathbb{N})$ . Let  $x^{\dagger}$  be the solution of (P). Assume that  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$ . Then





- AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u y)$  (only for simplicity).
- AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u y||^p \le D(u, y)$ 
  - AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in \text{dom } R$ .

#### Theorem [Garrigos-Rosasco-V. 2017]

Suppose that  $\lambda_t \in \ell^{1/(p-1)}(\mathbb{N})$ . Let  $x^{\dagger}$  be the solution of (P). Assume that  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$ . Then

• Convergence Let  $(x_t, u_t)$  be generated by (3D). Then:

$$||x_t - x^{\dagger}|| \le C/\sqrt{\sigma_R t}$$





- AD1)  $D: G \times G \rightarrow [0, +\infty], D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u y)$ (only for simplicity).
- AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u y||^p \le D(u, y)$ 
  - AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in \text{dom } R$ .

#### Theorem [Garrigos-Rosasco-V. 2017]

Suppose that  $\lambda_t \in \ell^{1/(p-1)}(\mathbb{N})$ . Let  $x^{\dagger}$  be the solution of (P). Assume that  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$ . Then

• **Convergence** Let  $(x_t, u_t)$  be generated by (3D). Then:

$$||x_t - x^{\dagger}|| \le C/\sqrt{\sigma_R t}$$

• **Stability** Suppose that  $\|\hat{y} - y\| \le \delta$ . Let  $\hat{x}_t$  be associated to  $\hat{y}$ . Then:  $||x_t - \hat{x}_t|| < C\delta t$ .





- AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u y)$  (only for simplicity).
- AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u y||^p \le D(u, y)$ 
  - AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in \text{dom } R$ .

#### Theorem [Garrigos-Rosasco-V. 2017]

Suppose that  $\lambda_t \in \ell^{1/(p-1)}(\mathbb{N})$ . Let  $x^{\dagger}$  be the solution of (P). Assume that  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$ . Then

• Convergence Let  $(x_t, u_t)$  be generated by (3D). Then:

$$||x_t - x^{\dagger}|| \le C/\sqrt{\sigma_R t}$$

- Stability Suppose that  $\|\hat{y} y\| \le \delta$ . Let  $\hat{x}_t$  be associated to  $\hat{y}$ . Then:  $\|x_t \hat{x}_t\| \le C\delta t$ .
- Early stopping There exists a stopping rule  $t_\delta \sim \delta^{-2/3}$  such that

$$\|\hat{x}_{t(\delta)} - x^{\dagger}\| = O(\delta^{\frac{1}{3}})$$





- AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u y)$  (only for simplicity).
- AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned:  $\frac{\gamma}{p} ||u y||^p \le D(u, y)$ 
  - AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in dom R$ .

#### Theorem [Garrigos-Rosasco-V. 2017]

Suppose that  $\lambda_t \in \ell^{1/(p-1)}(\mathbb{N})$ . Let  $x^{\dagger}$  be the solution of (P). Assume that  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$ . Then

• Convergence Let  $(x_t, u_t)$  be generated by (3D). Then:

$$||x_t - x^{\dagger}|| \le C/\sqrt{\sigma_R t}$$

- Stability Suppose that  $\|\hat{y} y\| \le \delta$ . Let  $\hat{x}_t$  be associated to  $\hat{y}$ . Then:  $\|x_t \hat{x}_t\| \le C\delta t$ .
- Early stopping There exists a stopping rule  $t_{\delta} \sim \delta^{-2/3}$  such that

$$\|\hat{x}_{t(\delta)} - x^{\dagger}\| = O(\delta^{\frac{1}{3}})$$

Can be accelerated? Moreover, in general, not optimal

Uni**Ge** MakGa

# Inertial dual diagonal descent algorithm (I3D)

If  $R = F + (\sigma_R/2) \| \cdot \|^2$  is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^*(-A^*u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^*(\lambda u, y)}_{nonsmooth}$$

We can use the inertial proximal gradient algorithm on the dual.

$$\begin{vmatrix} u_{0} = u_{1} \in G, \ \lambda_{t} \to \mathbf{0}, \tau = \sigma_{R}/\|A\|^{2}, \ \alpha_{t} \nearrow 1 \\ w_{t} = u_{t} + \alpha_{t}(u_{t} - u_{t-1}) \\ z_{t+1} = w_{t} + \tau A \nabla R^{*}(-A^{*}w_{t}) \\ u_{t+1} = \operatorname{prox}_{\tau \lambda_{t}^{-1} D^{*}(\lambda_{t}, y)}(z_{t+1}) = z_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_{t})^{-1} D(\cdot, y)}(\tau^{-1}z_{t+1}) \\ x_{t+1} = \nabla R^{*}(-A^{*}u_{t}) = \operatorname{prox}_{\sigma_{n}^{-1} F}(-A^{*}u_{t})$$





## (I3D):convergence

- AD1)  $D: G \times G \to [0, +\infty], D(u, y) = 0 \iff u = y$  and D(u, y) = L(u y) (only for simplicity).
- AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned.
  - AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in \text{dom} R$ .





# (I3D):convergence

- AD1)  $D: G \times G \to [0, +\infty], \ D(u, y) = 0 \iff u = y \text{ and } D(u, y) = L(u y) \text{ (only for simplicity)}.$
- AD2) Let  $p \in [1, +\infty]$ .  $D(\cdot, y)$  is p conditioned.
  - AR) There exists  $\bar{x}$  such that  $A\bar{x} = y$  and  $\bar{x} \in \text{dom} R$ .

#### Theorem [Calatroni-Garrigos-Rosasco-V. 2019]

Suppose that  $\lambda_t \in \ell^{1/(2(p-1))}(\mathbb{N})$ . Let  $x^{\dagger}$  be the solution of (P). Assume that  $\operatorname{Im}(A^*) \cap \partial R(x^{\dagger}) \neq \emptyset$  and let  $x_t$  be generated by (I3D). Then:

$$||x_t - x^{\dagger}|| \le \frac{C}{\sqrt{\sigma_R}t}$$

Uni**Ge** | Mak**G**a



# (I3D):stability

Let  $\hat{y}$  be such that  $D(y, \hat{y}) \leq \delta^p$ .





# (I3D):stability

Let  $\hat{y}$  be such that  $D(y, \hat{y}) \leq \delta^p$ .

$$\hat{u}_{0} = \hat{u}_{1} \in G, \ \lambda_{t} \to \mathbf{0}, \tau = \sigma_{R}/\|A\|^{2}, \ \alpha_{t} \nearrow 1 
\hat{w}_{t} = \hat{u}_{t} + \alpha_{t}(\hat{u}_{t} - \hat{u}_{t-1}) 
\hat{z}_{t+1} = \hat{w}_{t} + \tau A \nabla R^{*}(-A^{*}\hat{w}_{t}) 
\hat{u}_{t+1} = \hat{z}_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_{t})^{-1}D(\cdot,\hat{y})} (\tau^{-1}\hat{z}_{t+1}) 
\hat{x}_{t+1} = \operatorname{prox}_{\sigma_{R}^{-1}F}(-A^{*}\hat{u}_{t})$$





# (I3D):stability

Let  $\hat{y}$  be such that  $D(y, \hat{y}) \leq \delta^p$ .

$$\hat{u}_{0} = \hat{u}_{1} \in G, \ \lambda_{t} \to \mathbf{0}, \tau = \sigma_{R}/\|A\|^{2}, \ \alpha_{t} \nearrow 1 
\hat{w}_{t} = \hat{u}_{t} + \alpha_{t}(\hat{u}_{t} - \hat{u}_{t-1}) 
\hat{z}_{t+1} = \hat{w}_{t} + \tau A \nabla R^{*}(-A^{*}\hat{w}_{t}) 
\hat{u}_{t+1} = \hat{z}_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_{t})^{-1}D(\cdot,\hat{y})} (\tau^{-1}\hat{z}_{t+1}) 
\hat{x}_{t+1} = \operatorname{prox}_{\sigma_{R}^{-1}F}(-A^{*}\hat{u}_{t})$$

To study stability we need to study **convergence under perturbations of the prox operator** 

[Rockafellar '76; Le Roux-Schmidt-Bach 11; Salzo-V. '12; V.-Salzo-Baldassarre-Verri'13; Aujol-Dossal '15]

Uni**Ge** | MalGa

4 ロ ト 4 回 ト 4 豆 ト 4 豆 ・ り 9 ()

$$p = \operatorname{prox}_f(x) \iff p = \operatorname{argmin}\{f(z) + \frac{1}{2}||x - z||^2\} \iff x - p \in \partial f(p)$$





$$p = \operatorname{prox}_f(x) \iff p = \operatorname{argmin}\{f(z) + \frac{1}{2}||x - z||^2\} \iff x - p \in \partial f(p)$$

Type 1 errors: 
$$x + e - \hat{p} \in \partial_{\varepsilon_2^2/2} f(\hat{p})$$
,  $||e|| \le \varepsilon_3$ , and  $\varepsilon_2^2 + \varepsilon_3^2 \le \varepsilon$ .





$$p = \operatorname{prox}_f(x) \iff p = \operatorname{argmin}\{f(z) + \frac{1}{2}||x - z||^2\} \iff x - p \in \partial f(p)$$

Type 2 errors: 
$$x - \hat{p} \in \partial_{\varepsilon^2/2} f(\hat{p})$$





$$p = \operatorname{prox}_f(x) \iff p = \operatorname{argmin}\{f(z) + \frac{1}{2}||x - z||^2\} \iff x - p \in \partial f(p)$$

Type 3 errors: 
$$x + e - \hat{p} \in \partial f(\hat{p}), ||e|| \le \varepsilon$$
.





$$p = \operatorname{prox}_f(x) \iff p = \operatorname{argmin}\{f(z) + \frac{1}{2}||x - z||^2\} \iff x - p \in \partial f(p)$$

Possible notions of approximation [Salzo-V. '12]:

**Type 1 errors:** 
$$x + e - \hat{p} \in \partial_{\varepsilon_2^2/2} f(\hat{p}), \|e\| \le \varepsilon_3$$
, and  $\varepsilon_2^2 + \varepsilon_3^2 \le \varepsilon$ .

Type 2 errors:  $x - \hat{p} \in \partial_{\varepsilon^2/2} f(\hat{p})$ 

Type 3 errors: 
$$x + e - \hat{p} \in \partial f(\hat{p}), ||e|| \le \varepsilon$$
.





$$p = \operatorname{prox}_f(x) \iff p = \operatorname{argmin}\{f(z) + \frac{1}{2}||x - z||^2\} \iff x - p \in \partial f(p)$$

Possible notions of approximation [Salzo-V. '12]:

Type 1 errors:  $x + e - \hat{p} \in \partial_{\varepsilon_2^2/2} f(\hat{p})$ ,  $||e|| \le \varepsilon_3$ , and  $\varepsilon_2^2 + \varepsilon_3^2 \le \varepsilon$ .

Type 2 errors:  $x - \hat{p} \in \partial_{\varepsilon^2/2} f(\hat{p})$ 

**Type 3 errors:**  $x + e - \hat{p} \in \partial f(\hat{p}), ||e|| \le \varepsilon$ .

**Remark:** If  $\hat{p}$  is an approximation of type 2 or 3 then it is of type 1.

#### Proposition (Calatroni, Garrigos, Rosasco, V. '19)

- Additive losses correspond to type 3 errors, with  $\varepsilon = O(\delta)$ .
- **KL** corresponds to **type 2** errors, with  $\varepsilon = O(\delta/\lambda)$ .

←ロ → ←団 → ← 豆 → □ → への

#### Error estimates

#### Lemma: Error estimates [Calatroni, Garrigos, Rosasco, V. - 2019]

Assume that  $\lambda_t \in \ell^{\frac{1}{2(p-1)}}(\mathbb{N})$ ). Let  $\hat{x}_t$  be the I3D sequence associated to  $\hat{y}$  and assume that  $\operatorname{prox}_{(\tau\lambda_t)^{-1}D(\cdot,\hat{y})}(\tau^{-1}\hat{z}_{t+1})$  is a type 1 approximation. Then:

$$(\forall t \in \mathbb{N}) \quad \|\hat{x}_t - x^{\dagger}\|^2 \le \frac{C}{\sigma_R t^2} \left\{ 1 + \left[ \sum_{j=1}^{t-1} j^2 \varepsilon_{2,j}^2 + \frac{5}{2} \left( \sum_{j=1}^{k-1} j \varepsilon_{3,j} \right)^2 \right] \right\}$$

- Joint convergence and stability estimate
- Very general (describes several perturbations)
- Idea of the proof: Lyapunov

UniGe | MolGo



### Early stopping [Calatroni, Garrigos, Rosasco, V - 2019]

Assume that  $\lambda_t \in \ell^{\frac{1}{2(p-1)}}(\mathbb{N})$ . Let  $\hat{x}_t$  be the I3D sequence associated to  $\hat{y}$ , with  $D(y, \hat{y}) \leq \delta^p$ . Then, if :

• Let 
$$D(z,y) = L(z-y)$$
. If  $t_{\delta} \sim \delta^{-1/2}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{1/2}).$$





#### Early stopping [Calatroni, Garrigos, Rosasco, V - 2019]

Assume that  $\lambda_t \in \ell^{\frac{1}{2(p-1)}}(\mathbb{N})$ . Let  $\hat{x}_t$  be the I3D sequence associated to  $\hat{y}$ , with  $D(y,\hat{y}) \leq \delta^p$ . Then, if :

• Let D(z,y) = L(z-y). If  $t_{\delta} \sim \delta^{-1/2}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{1/2}).$$

• Let D(z,y) = KL(y,z) (in this case q=2) and  $\lambda_t = t^{-\theta}$ , with  $\theta > 2$ . If  $t_\delta \sim \delta^{-2/(3+2\theta)}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{2/(3+2\theta)}).$$

Uni**Ge** | MalGa



#### Early stopping [Calatroni, Garrigos, Rosasco, V - 2019]

Assume that  $\lambda_t \in \ell^{\frac{1}{2(p-1)}}(\mathbb{N})$ . Let  $\hat{x}_t$  be the I3D sequence associated to  $\hat{y}$ , with  $D(y,\hat{y}) \leq \delta^p$ . Then, if :

• Let D(z,y) = L(z-y). If  $t_{\delta} \sim \delta^{-1/2}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{1/2}).$$

• Let D(z,y) = KL(y,z) (in this case q=2) and  $\lambda_t = t^{-\theta}$ , with  $\theta > 2$ . If  $t_\delta \sim \delta^{-2/(3+2\theta)}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{2/(3+2\theta)}).$$

#### Earlier stopping

Uni**Ge | Mal Ga** 

4ロト 4回ト 4 三ト 4 三 ト 9 へ ○

#### Early stopping [Calatroni, Garrigos, Rosasco, V - 2019]

Assume that  $\lambda_t \in \ell^{\frac{1}{2(p-1)}}(\mathbb{N})$ . Let  $\hat{x}_t$  be the I3D sequence associated to  $\hat{y}$ , with  $D(y,\hat{y}) \leq \delta^p$ . Then, if :

• Let 
$$D(z,y)=L(z-y)$$
. If  $t_\delta\sim\delta^{-1/2}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{1/2}).$$

• Let D(z,y) = KL(y,z) (in this case q=2) and  $\lambda_t = t^{-\theta}$ , with  $\theta > 2$ . If  $t_\delta \sim \delta^{-2/(3+2\theta)}$  then

$$\|\hat{x}_{t_{\delta}}-x^{\dagger}\|=O(\delta^{2/(3+2\theta)}).$$

Earlier stopping

Uni**Ge** | MakGa

**Optimal** dependence on  $\delta$  for quadratic losses

## Setting

- deblurring and denoising (salt and pepper, gaussian, gaussian+salt and pepper, Poisson) of 512 x 512 images
- comparison between the two versions: diagonal and warm restart



#### diagonal:

one parameter =  $(\lambda_t)$ = n. iter.



#### warm restart:

2 parameters:  $(\lambda_t)$ ; accuracy  $|\lambda_t|$ 



# Diagonal works as well as warm restart (i.e. Tikhonov)

#### Euclidean distance from the true image



Dotted lines: diagonal with  $10^3$  and  $10^4$  iterations

# Diagonal works better than(?) warm restart (i.e. Tikhonov)

Total number of iterations as a function of  $(\lambda_t)$ 



Dotted lines: diagonal

Dashed lines: warm restart with 30  $\lambda$ s and accuracy:  $10^{-3}$ ,  $10^{-4}$ ,  $10^{-5}$ 

#### Parameter selection

using the true image

• using SURE (and the ideas in : Deladalle-Vaiter-Fadili-Peyré 2014 to compute it)

• budget of 10<sup>3</sup> iterations for diagonal and warm restart



36 / 40

#### Results

Blurring + Salt and pepper 35%. 
$$D(u, y) = ||u - y||_1$$
,  $R(x) = ||Wx||_1 + ||x||^2$  or  $||x||_{TV} + ||x||^2$ 



noisy image, reconstruction with diagonal and warm restart using true image, reconstruction with diagonal and warm restart using SURE UniGe



#### Results

Blurring + Poisson noise.  $D(u, y) = KL(y; u + b), R(x) = ||x||_{TV} + ||x||^2$ 



# Concluding remarks ad future perspecitves

#### **Concluding remarks**

- use the number of iterations as regularization parameters
- iterative regularization as an alternative to Tikhonov regularization
- optimization perspective: stability with respect to errors as a way to prove regularization results





# Concluding remarks ad future perspecitves

#### **Concluding remarks**

- use the number of iterations as regularization parameters
- iterative regularization as an alternative to Tikhonov regularization
- optimization perspective: stability with respect to errors as a way to prove regularization results

#### **Future perspectives**

- remove strong convexity
- better use of conditioning?





#### References

- S. Matet, L. Rosasco, S. Villa, B. C. Vũ, Don't relax: early stopping for convex regularization, arxiv 2017.
- G. Garrigos, L. Rosasco, and S. Villa, Iterative regularization via dual diagonal descent, JMIV 2018
- L. Calatroni, G. Garrigos, L. Rosasco, and S. Villa, Iterative regularization via inertial dual diagonal descent, manuscript 2019



