Solutions Excercise 2

Maksimov, Dmitrii dmitrii.maksimov@fau.de Ilia, Dudnik ilia.dudnik@fau.de

November 19, 2021

Exercise 1

The *k-SAT* problem is defined as follows:

- Given: Let \mathcal{F} be a Boolean CNF formula where each clause contains exactly k literals.
- Question: Is \mathcal{F} satisfiable?
- (a) Show: 3-SAT is \mathcal{NP} -complete.

3-SAT is \mathcal{NP} -complete if it is a \mathcal{NP} -hard and also 3-SAT $\in \mathcal{NP}$.

1. Proof of 3-SAT $\in \mathcal{NP}$

3-SAT is a subset of SAT and we know that SAT is \mathcal{NP} .

$$3\text{-SAT} \subseteq SAT \in \mathcal{NP} \Rightarrow 3\text{-SAT} \in \mathcal{NP}$$

2. Proof of 3-SAT is a \mathcal{NP} -hard

3-SAT is a \mathcal{NP} -hard if for every $L' \in \mathcal{NP}$, there is a Karp reduction from L' to 3-SAT. Let us see that SAT can be reduced to 3-SAT in polynomial time:

SAT
$$\leq_p$$
 3-SAT.

The original SAT problem is:

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_n,$$

where ϕ is satisfiable if every clause C_i is satisfiable and $C_i = (v_1 \vee \cdots \vee v_m), m = k$. Let us find an alogorithm R for k = 1, k = 2, k > 3.

• k = 1

Let z_1 and z_2 be two new variables. Replace C_i by the following four clauses:

$$C'_i = (\upsilon \lor z_1 \lor z_2) \cdot (\upsilon \lor \overline{z_1} \lor z_2) \cdot (\upsilon \lor z_1 \lor \overline{z_2}) \cdot (\upsilon \lor \overline{z_1} \lor \overline{z_2}).$$

The truth table for this function:

υ	z_1	z_2	7) \/ 71 \/ 70	$v \vee \overline{z_1} \vee z_2$	$7) \lor 7_1 \lor \overline{7_0}$	$7) \vee \overline{7_1} \vee \overline{7_2}$	C'_{i}	C:
T	$\frac{\sim_1}{T}$	$\frac{\sim_Z}{T}$	T	$\frac{c \vee z_1 \vee z_2}{T}$	$\frac{c \vee z_1 \vee z_2}{T}$	$\frac{c \cdot z_1 \cdot z_2}{T}$	$\frac{\mathcal{O}_i}{T}$	$\frac{\mathcal{O}_l}{T}$
1 	<i>T</i>	<i>1</i>	T	<i>I</i>	<i>I</i>	T	-	
	T	F	T	T	T	T	T	$T \mid$
$\mid T$	F	T	T	T	T	T	T	T
$\mid T$	F	F	T	T	T	T	T	T
F	T	T	T	T	T	F	F	F
F	T	F	T	F	T	T	F	F
F	F	T	T	T	F	T	F	F
F	F	F	F	T	T	T	F	F

Hence, C_i can be reduced to C_i' where each clause in C_i' contains exactly 3 literals and $C_i \iff C_i'$

• k = 2

Let z be the new variable. Replace C_i by the conjunction of clauses C'_i , where:

$$C'_i = (v_1 \vee v_2 \vee z) \cdot (v_1 \vee v_2 \vee \overline{z}).$$

The truth table for this function:

v_1	v_2	z	$v_1 \lor v_2 \lor z$	$v_1 \vee v_2 \vee \overline{z}$	C'_i	C_i
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	$T \mid$
T	F	F	T	T	T	$T \mid$
F	T	T	T	T	T	$T \mid$
F	T	F	T	T	T	$T \mid$
F	F	T	T	F	F	F
F	F	F	F	T	F	F

Hence, C_i can be reduced to C_i' where each clause in C_i' contains exactly 3 literals and $C_i \iff C_i'$

• k > 3

Let $A = v_3 \vee \cdots \vee v_k$. So, $C_i = v_1 \vee v_2 \vee A$. Define C_i' as following:

$$C'_i = (v_1 \vee v_2 \vee z) \cdot (\overline{z} \vee A),$$

where z is a new variable. The first clause contains exactly 3 literals and the same procedure can be applied repeatedly to the second clause. Hence, we

need to proof that C_i' and C_i are equisatisfiable. The truth table:

v_1	v_2	z	\boldsymbol{A}	$v_1 \lor v_2 \lor z$	$\overline{z}\vee A$	C'_i	C_i
T	T	T	T	T	T	T	T
T	T	T	F	T	F	F	T
T	T	F	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	T	T	T	T	T
T	F	T	F	T	F	F	T
T	F	F	T	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	T	F	T	F	F	T
F	T	F	T	T	T	T	T
F	T	F	F	T	T	T	T
F	F	T	T	T	T	T	T
F	F	T	F	T	F	F	F
F	F	F	T	F	T	F	T
F	F	F	F	F	T	F	F

Hence, from this table we can we conclude that C'_i is satisfied if and only if C_i is satisfied.

Taking into account that all procedures above perform in polynomial time - 3-SAT is a \mathcal{NP} -hard.

Since 3-SAT is a \mathcal{NP} -hard and 3-SAT $\in \mathcal{NP}$, 3-SAT is \mathcal{NP} -complete.

P.S. We are not sure that we have used Karp reduction rather than Cook-Levin Theorem.

- (b) Next, show that 2-SAT is in \mathcal{P} .
 - (i) Give an example of a non-satisfiable 2-SAT formula and the corresponding auxiliary graph \widetilde{G} .

An example of non-satisfiable 22-SAT fromula:

$$\mathcal{F} = (v_1 \vee v_2) \cdot (\overline{v_1} \vee \overline{v_2}) \cdot (\overline{v_1} \vee v_2) \cdot (v_1 \vee \overline{v_2}).$$

The directed graph will contain the following vertices and edges:

$$\overline{v_1} \Longrightarrow v_2, \overline{v_2} \Longrightarrow v_1; v_1 \Longrightarrow \overline{v_2}, v_2 \Longrightarrow \overline{v_1}; v_1 \Longrightarrow v_2, \overline{v_2} \Longrightarrow \overline{v_1}; \overline{v_1} \Longrightarrow \overline{v_2}, v_2 \Longrightarrow v_1.$$

The corresponding graph:

(ii) Show: If there exists a directed path from v to u in \widetilde{G} for $u, v \in V$, then there also exists a path from \overline{u} to \overline{v} .

Let the path from v to u be $v \Rightarrow p_1 \Rightarrow p_2 \Rightarrow \cdots \Rightarrow p_n \Rightarrow u$. By construction of \widetilde{G} , if there is a $l_1 \Rightarrow l_2$, then there is also $\overline{l_2} \Rightarrow \overline{l_1}$. Therefore, there is a path: $\overline{v} \leftarrow \overline{p_1} \leftarrow \overline{p_2} \leftarrow \cdots \leftarrow \overline{p_n} \leftarrow \overline{u}$. Hence, there also exists a path from \overline{u} to \overline{v} .

(iii) Show: 2-SAT is <u>not</u>-satisfiable if and only if there is a node $v \in V$ for which there exists both a directed path from v to \overline{v} as well as a directed path from \overline{v} to v.

Let the path from v to \overline{v} be $v \Rightarrow p_1 \Rightarrow p_2 \Rightarrow \cdots \Rightarrow l_1 \Rightarrow l_2 \Rightarrow \cdots \Rightarrow p_n \Rightarrow \overline{v}$. If there is $l_1 \Rightarrow l_2$, then there is a claus $(\overline{l_1} \lor l_2)$. Consider the positible values of v:

• v = TRUE

The edge from l_i to l_k represents that if l_i is TRUE, then l_k must be also TRUE. Let us divide our path into 2 paths: from v to l_1 and from l_2 to \overline{v} . Hence, all literals in first path must be TRUE and in the second one must be FALSE. Since, $(\overline{l_1} \vee l_2)$ is a claus if it becomes FALSE $\mathcal F$ becomes not-satisfiable.

• v = FALSE

Exactly the same proof that \mathcal{F} becomes not-satisfiable, but for a path from \overline{v} to v.

(iv) Show by i)-iii): 2-SAT $\in \mathcal{P}$

In order to show that 2-SAT $\in \mathcal{P}$ we need to show that we can check for the existance of a path from \overline{v} to v and from v to \overline{v} in a polynomial time. The search for this path is $O(N^2)$, since for every variable (N) are considered (N) clauses, which means the algorithm is polynomial.