NAVIGATION

HAROLD JACOBY

Cornell University Library Ithaca, New York

BOUGHT WITH THE INCOME OF THE

SAGE ENDOWMENT FUND

THE GIFT OF

HENRY W. SAGE

1891

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

THE MACMILLAN COMPANY NEW YORK · BOSTON · CHICAGO · DALLAS ATLANTA · SAN FRANCISCO

MACMILLAN & CO., Limited London · Bombay · Calcutta Melbourne

THE MACMILLAN CO. OF CANADA, LTD. TORONTO

NAVIGATION

BY

HAROLD JACOBY

RUTHERFURD PROFESSOR OF ASTRONOMY
IN COLUMBIA UNIVERSITY

SECOND EDITION

WITH A CHAPTER ON COMPASS ADJUSTING AND A COLLECTION OF MISCELLANEOUS EXAMPLES

New York THE MACMILLAN COMPANY

1918

All rights reserved

A.378198

COPYBIGHT, 1917 AND 1918, BY THE MACMILLAN COMPANY.

Set up and electrotyped. Published October, 1917.

Second edition, with new matter, February, 1918.

Norwood Bress
J. S. Cushing Co. — Berwick & Smith Co.
Norwood, Mass., U.S.A.

MACLEAR JACOBY

QUARTERMASTER,* THIRD CLASS, U. S. N.
ENLISTED FOR THE PERIOD OF THE WAR
THIS VOLUME IS OFFERED AS
A MARK OF RESPECT
BY HIS FATHEE

* Commissioned Ension, U. S. N. R. F., September, 1917

PREFACE

The present volume was undertaken with certain very definite aims. In the first place, it is intended to be complete in itself, so that it should be possible to navigate a ship in any ocean not very near the north or south pole without other books or tabular works, excepting only the nautical almanac for the year in which the voyage is made. To attain this end without unduly extending the size of the volume, certain essential nautical tables have been abridged; but all are given in sufficiently extended form to permit of actual navigation with their aid; and they are especially suitable for beginners, who can here attain the necessary knowledge with less effort than would be necessary with more bulky volumes. In cases where very extended tables are convenient, they are mentioned in the text.

In the second place, the author has not assumed that the reader possesses formal mathematical and astronomical knowledge, or desires to possess such knowledge. Whenever methods of navigation require for their demonstration an understanding of spherical trigonometry, or some other branch of formal mathematical science, such demonstrations have been replaced with incomplete or "outline" demonstrations designed for the non-mathematical reader. Practical methods are fully explained; and an attempt has always been made so to word the explanations that the reader, even the beginner, will understand his problem, and will know what he is doing, and why he does it.

The requirements of those who may study without a teacher have received constant and special attention. To meet these requirements the whole subject is presented in a somewhat informal manner; such topics as the use of logarithms, or the principles on which all mathematical tables are constructed — these less attractive parts of the subject are not presented in a special chapter, but are described in a sort of digression, when needed in the discussion of an actual navigational problem.

Finally, to further simplify and condense his material, the author has made no attempt to include every method that can possibly be used to navigate a ship, or that ever has been used to navigate a ship; his purpose has been rather to limit the volume to the methods at present thought best by the most reliable modern authorities.

Other books on navigation have been used freely, especially in the preparation of the tables. Among these, that admirable encyclopedia of navigation, known as "Bowditch," published by the Hydrographic Office, United States Navy, and Kelvin's "Tables for Sumner's Method at Sea" have been found of the greatest help.

Miss Dorothy W. Block, Instructor of Astronomy in Hunter College, New York, has helped with great energy in the preparation of the tables and the correction of the text. It is hoped that such errors as may now remain in the book are few in number.

H. J.

COLUMBIA UNIVERSITY, August, 1917.

PREFATORY NOTE TO THE SECOND EDITION

To meet the wishes of certain young navigators, this edition has an added chapter on the adjustment of correctors in a compensated compass binnacle, and also a collection of new problems and examples.

H.J.

TABLE OF CONTENTS

PAGE

I. THE FUNDAMENTAL PROBLEM OF NAVIGATION. The problem stated. Reasons for the existence of the problem. Definition of "ship's position." Longitude meridians and latitude parallels. Greenwich the initial meridian. Position determined by observation; on the coast and at sea. Dead reckoning. Sextant observations. Chronometer.	1
II. DEAD RECKONING WITHOUT LOGARITHMS The two problems. Designation of ship's course. Latitude difference and departure. The traverse table. Use and construction of tables in general. Arguments and tabular numbers. Relation between departure and longitude difference. Middle latitude.	7
III. Dead Reckoning with Logarithms Explanation of number logarithms and their use. Multiplication and division. Trigonometric logarithms. Solution of the two problems. Middle latitude sailing. Mercator sailing. Meridional parts. Great circle sailing. The rhumb line. Composite sailing. Parallel sailing. Traverse sailing.	23
IV. The Compass	40
V. Coastwise Navigation	53 .

CHAPTER VI. THE SEXTANT	PAGE . 61
Description of the instrument and its use. The vernier. Index error. Three adjustments. The artificial horizon. Correcting the altitude. Dip. Refraction. Parallax.	. 01
VII. THE NAUTICAL ALMANAC	7 5
VIII. OLDER NAVIGATION METHODS	86
IX. Newer Navigation Methods. Errors produced by dead reckoning. Captain Sumner, and the Sumner line. Bearing of the line. The Sumner point. Azimuth tables. Condensed form of calculation. Star observations. Comparison of Sumner navigation with time-sight navigation. The Kelvin table. Condensed forms of sun and star observations. Intersection of two Sumner lines obtained with a special table. Motion of ship between observations.	108
Voyage planned from New York to Colon. Departure at Sandy Hook lightship. The course to Watlings Island. The variation and deviation applied. Azimuth of the sun observed at sunrise. Bow and beam bearings of Barnegat Light. The patent log and the log book. New course from Barnegat. Morning sight worked as a Sumner line. Another Azimuth observation. Weather thickens at 11:30. Ex-meridian sight at 11:42, worked as a Sumner line. Afternoon sight worked as a Sumner line. Afternoon sight worked as a Sumner line. Easterly current estimated. Compass error again tested. The course set for the night.	141
Tables Appendix 1. Compass Adjusting Appendix 2. Miscellaneous Examples	153 323 335

LIST OF ABBREVIATIONS

USED IN THE PRESENT VOLUME

Alt. for altitude; App. for apparent;

Arg. diff. for argument difference;

Cf. for compare;
Chron. for chronometer;
Comp'd for computed;
Cos for cosine;
Cot for cotangent;
Csc for cosecant;

C. - W. for chronometer minus watch;

Dec. for declination;
Dep. for departure;
Dist. for distance;
D. R. for dead reckon

D. R. for dead reckoning; Eq. for equation of time;

G. A. T. for Greenwich apparent time; G. M. T. for Greenwich mean time;

Hav. for haversine;

H. D. for hourly difference;Int. diff. for interpolation difference;

Lat. for latitude;

Lat. diff. for latitude difference;

Log for logarithm; Long. for longitude;

Long. diff. for longitude difference;

Mer. lat. diff. for meridional latitude difference;

Obs'd for observed;

p for polar distance;

R. A. for right ascension;

s for half sum;

Sec for secant; Sin for sine;

T for ship's apparent solar time (or star's hour-angle);

Tab. diff. for tabular difference;

Tan for tangent.

NAVIGATION

CHAPTER I

THE FUNDAMENTAL PROBLEM OF NAVIGATION

To find one's way in a ship across the trackless ocean is our problem. Most people would like to know how it is solved; nor is the solution very difficult to understand when set forth in simple language and without too great wealth of technical detail. We hope the reader will find this to be the case after a study of the following pages.

Our fundamental problem can be more fully stated quite easily. It consists in the determination of a ship's location on the earth's surface at any given moment. If this location can be determined, it becomes a comparatively easy matter to ascertain the direction (north, south, northeast, southeast, etc.) in which the ship must be steered in order to reach her port of destination. For the location of the port of destination on the earth's surface is of course also known: and if we know where the ship and her destined port both are, we can easily find the right course for the helmsman.

With the fundamental problem stated in this way, it would almost seem as if there were really no such problem in existence. For when the ship begins her voyage, she is necessarily in a known port. Knowing also the port to which she is to go, we should be able to determine her proper course from the one known port to the other. This course being then steered, no further navigational proceedings would be required. But this reasoning is incorrect, because a ship

•

does not actually advance across the ocean in exactly the direction in which she is steered. Ocean currents deflect her; and the action of a strong wind blowing against one of her sides will have a similar effect. Currents and winds cannot be predicted with accuracy: and so it becomes necessary to re-determine the ship's position frequently at sea. This should be done at least once daily if possible; and when it has been done, the mariner can take a new "departure," as he calls it, and lay a new course for his intended port. Thus the effect of ocean currents, etc., can be eliminated, and the voyage made as safely as if they did not exist.

Now this determination of the ship's position at sea, and when out of sight of land, is strictly an astronomical problem. It can be solved by means of astronomical observations, and in no other way. But before giving an outline of how this is done, let us first see what is meant by the words "ship's position at sea." How can we describe a ship's position so that one mariner could tell another where she is located, and thus enable the second mariner to find her?

To thus indicate the point on the earth's surface occupied by the ship has a certain similarity with giving the address of a house in a city. Such a city address always consists of two separate statements; as, for instance, the name of a street and the number of the house. An address cannot be given completely unless two different facts are stated. They need not necessarily be a street name and a street number: we can equally well designate such an address by stating that the house is at the corner of a certain street and a certain avenue. But here also the address is made up of two separate facts.

This form of stating an address as the intersection of a certain street and avenue is the form having the closest resemblance to the method of the navigator. If the city avenues are supposed to run north and south, and the streets

east and west, as they do in New York (approximately), the analogy with navigation will be almost perfect.

For the navigator imagines the earth covered with a network consisting of "avenues," running north and south, and "streets," running east and west. He calls the "avenues" meridians of longitude, and the "streets" parallels of latitude. Then he designates the position of a ship on the ocean by stating that it is at the intersection of a certain meridian of longitude and parallel of latitude. There are 360 such meridians of longitude: each begins at the terrestrial equator, and runs north and south from there to the north and south poles of the earth. Of the latitude parallels there are 180.¹ They all run east and west, parallel to the terrestrial equator; 90 are between the equator and the north pole, and the other 90 between the equator and the south pole.

One of the longitude meridians (that passing through Greenwich, England) is chosen arbitrarily as the starting point for counting longitude meridians. To this initial meridian is assigned the number 0, and the other meridians are numbered successively 1, 2, 3, etc. So numbered, the meridians are called "degrees" of longitude; the third one, for instance, being written 3°. The meridians may be counted either eastward or westward from Greenwich, a ship on the 20th meridian west of Greenwich, for instance, being in longitude 20° west.

The latitude parallels are similarly counted north and south from the equator; and if the above ship were on the 40th latitude parallel north of the equator, her complete "address," or position at sea, would be long. 20° W.; lat. 40° N.

Of course a ship would only rarely be located exactly at the intersection of a meridian and parallel. Therefore, the space between any two successive meridians and between any two successive parallels is subdivided into 60 parts, called minutes of arc. Thus the above ship, if halfway

¹ Including the equator twice, but excluding the two poles.

between a pair of meridians and also halfway between a pair of parallels, might be in longitude 20° 30′ west, and in latitude 40° 30′ north. This would be written long. 20° 30′ W.; lat. 40° 30′ N.

Each minute of longitude and latitude is further subdivided, when extreme accuracy is required, into 60 seconds; so that if the ship were a little to the north and a little to the west of the above position, she might, for instance, be in long. 20° 30′ 26″ W.; lat. 40° 30′ 10″ N.

These meridians and parallels, or longitude and latitude lines, appear on many maps and charts as straight lines, or at least as lines only slightly curved. But being all lines imagined drawn on the earth, which is almost an exact sphere or round ball, they must really all be circles. the terrestrial equator is really a big circle, girdling the earth, and divided into 360 equal parts, or degrees. At each of the division points a meridian starts northward toward the pole. This meridian is also a big circle perpendicular to the equator. The distance along the meridian from the equator to the pole is divided into 90 equal parts or degrees, and the whole distance from equator to pole is one quarter of a complete circumference of the earth. The 90 degrees, from equator to pole, thus representing one quarter of a circumference of the earth, a complete circumference contains 4 × 90, or 360 degrees, the same as the equator. So the degrees measured along the meridians are equal to the degrees measured along the equator. The former are degrees of latitude, the latter degrees of longitude; and degrees of latitude are equal to degrees of longitude, when the latter are measured along the equator. The length of each degree is then 60 nautical miles.

Having thus indicated what is meant by a ship's position in latitude and longitude, we shall next describe in outline how such a position may be determined by observation. If the ship is within sight of a coast-line, there will probably

be some lighthouse, or other "aid to navigation," in view, from which the navigator can ascertain where he is. Methods for doing this are described later (p. 53). But when the ship is really at sea, with no land in sight, real deep-sea methods must be employed.

These methods, when the weather is clear, always include an observation of the sun or some other heavenly body. When the weather does not permit such observations, the mariner can still find his position approximately by means of "dead reckoning" (abbreviated, D. R.). This process will be described in detail in the next chapter; but we can already state that it consists in a calculation based on his astronomic observation of latest date. Knowing where the ship was the last time he observed the sun, and also knowing both the direction in which he has steered and the (approximate) speed of the ship, the navigator can calculate (also approximately) the location of the point he has reached.

Even when astronomical observations are made, the D. R. calculation is always carried out, because the navigator is always anxious to know how nearly correct his D. R. result would have been, if the day had been cloudy. Furthermore, this result also acts as a check on the astronomical work, and tends to increase the navigator's confidence in the correctness of his final result as to the ship's location.

The manner in which the ship's position is found from astronomic observations will of course be explained in detail later. It is all done with an instrument called a sextant. This is merely a contrivance with which the navigator can measure how high the sun (or other heavenly body) is in the sky at any moment. The sun is highest in the sky daily at noon, but it is not equally high on different days in the year. Nor is it equally high on the same date in different latitudes. Thus, by measuring with the sextant how high it is on any particular date at noon, as seen from the ship, the navigator learns the terrestrial latitude in which the ship is located.

Similar sextant observations made at other suitable times during the day, when combined with exact readings taken from an accurate chronometer such as every ocean-going ship carries, will similarly make the ship's longitude known. All this will of course be explained in full detail in later chapters.

CHAPTER II

DEAD RECKONING WITHOUT LOGARITHMS

As we have seen (p. 5), this is a process by means of which the mariner can calculate a ship's position in latitude

Fig. 1. — Dead Reckoning. (Diagram not drawn to scale.)

and longitude, without special astronomic observations of any kind. In the accompanying Fig. 1, which represents a portion of a chart of the North Atlantic, a ship's position at noon is shown at the point Y. This point we will call the ship's "initial position," in discussing our present problem. We will suppose that it was correctly obtained by astronomic observations, and that these showed the ship at Y to be in lat. 42° 11′ N. and long. 59° 28′ W. from Greenwich. Sometime in the afternoon, having traveled a distance estimated from the known speed of the ship as 63 miles, and having "made good" this distance in the direction YP, the ship arrives at P. This point P we will call the ship's "final position"; and our problem now is to find its latitude and longitude.

This problem may be called the first fundamental deadreckoning problem. The second and remaining fundamental problem is the converse of the first, and may be stated as follows: having given the latitude and longitude of the initial point Y, as occupied by the ship, and also the latitude and longitude of the final point P, it is required to find the distance from Y to P in miles, and also the direction of the line YP.

To understand these two problems properly it is next necessary to explain how we may define the words "direction YP." This is done by referring the line YP to the direction of the arrow shown in the figure. This arrow is parallel to the longitude meridians on the chart, and therefore points due north. The angle between the arrow YN and the line YP is marked in the figure, and is called the "ship's course." This angle is really the difference in direction of the two lines YN and YP. The point Y is called the "vertex" of the angle, and all angles are designated

¹ We think it advisable to place these two important converse problems together, and to call them both problems of dead reckoning, though many writers on navigation confine the phrase "dead reckoning" to the first fundamental problem alone.

by three letters, the letter belonging to the vertex being placed between the other two; in this case the angle is called either NYP or PYN.

Now let us draw a line PQ (fig. 2), from P to NY, and perpendicular to NY. Then the motion of the ship from

Y to P will have carried her north of the point Y by a distance equal to YQ, and east of the point Y by a distance equal to QP. Q This is not strictly true, unless the earth's surface, throughout the small area involved in the present problem, can be regarded as a flat surface. Such a flat surface is called in geometry a "plane" surface; and F these calculations therefore belong to that

Fig. 2. — Dead Reckoning.

part of navigation which is called "plane sailing." Planesailing calculations are easy calculations, and they are generally sufficiently accurate for the purposes of the navigator.

The ship's course, being thus an angle, must be designated

Fig. 3. — Latitude Angle.

by means of a unit of measure suitable for measuring angles. For this purpose the degrees and minutes already used for longitude and latitude (p. 3) are usually employed. Fig. 3 shows that a latitude, for instance, is really an angle, and must therefore also be measured in degrees. P is the earth's pole, PQ a meridian, and the latitude of the observer at O is the angle OCQ, here about 40° .

So it is clear that the ship's course NYP (figs. 1 and 2) will be measured in degrees. Minutes are not really needed in measuring courses, as they are in measuring latitudes; the nearest whole degree is always accurate enough, because

it is never possible to steer a ship on her proper course with absolute exactness. In fact, many mariners use a still less precise method of measuring courses by means of "the points of the compass." (See p. 40.)

Resuming our two fundamental problems (p. 8), let us now begin with the first one, and proceed to find the latitude and longitude of the point P (figs. 1 and 2). To solve this problem, we must not only know the distance YP (63 miles), as traveled by the ship, but also the number of degrees in the course angle NYP Let us suppose this course

Fig. 4. — Dead Reckoning.

angle happens also to be 40° . The problem then appears as shown in Fig. 4. We now know the distance YP and the angle QYP. Evidently the next step is to find the distances QY and QP. QY, in our present problem, is called a "latitude difference" and QP is called a "departure."

To find the "latitude difference" and "departure" from the course angle and dis-

tance we may either use that branch of mathematics called plane trigonometry, or we may find them from a special navigation table, called a "traverse table." Our Table 1 (beginning p. 154) is such a table.

Before 1 beginning its use it will be well for the reader to note in general that all mathematical tables consist of two sets of numbers. The first set of numbers are called "arguments" of the table, and the second set are called "tabular numbers." The main object of the table is to furnish us with the proper tabular number when we know the proper argument.

The ordinary multiplication table is a good example of a mathematical table. It is usually written as follows and

¹ The beginner may find it advisable, on a first reading of the book, to omit this explanation of mathematical tables, returning later when he finds a reference to it in the text. The dead reckoning problem under discussion is resumed on p. 13.

it affords a good opportunity of studying the principles underlying all mathematical tables in a case so simple as to offer no difficulty.

MULTIPLICATION TABLE
(to illustrate "argument" and "tabular number")

	2	3	4	5	6	7	8	9	10	11	12
1	2	3 6	4	5	6	7	8	9	10	11	12
2	4 6	9	8 12	10 15	12 18	14 21	16 24	18 27	20 30	22 33	24 36
4 5	8 10	12 15	16 20	$\frac{20}{25}$	24 30	28 35	32 40	$\frac{36}{45}$	40 50	44 55	48 60
6 7	12 14	18 21	24 28	30 35	36 42	42 49	48* 56	54 63	60 70	66 77	72 84
8 9	16 18	$\begin{array}{c} 24 \\ 27 \end{array}$	32 36	40 45	48 54	56 63	$\begin{array}{c} 64 \\ 72 \end{array}$	72 81	80 90	88 99	96 108
10 11	$\frac{20}{22}$	30 33	40 44	50 55	60 66 ·	70 77	80 88	90 99	100 110	110 121	120 132
12	$\overline{24}$	36	48	60	72	84	96	108	120	132	144

In this table the arguments are printed in heavy type and are contained in the left-hand column and the topmost horizontal line. In using the table, these arguments are given in pairs, being always the pair of numbers to be multiplied. In fact, in the case of most tables, the arguments are thus given in pairs, though there are some tables with but a single argument. In the present case one number from the pair of arguments will be found in the left-hand column, the other in the top horizontal line. Thus, if we wish to multiply 6 and 8, these two numbers constitute the pair. of arguments. We find the right line (belonging to 6) and column (belonging to 8), and the tabular number 48 (marked with a *) occurs at the intersection of the 6-line and the 8column. If the pair of arguments are taken in the order 8×6 instead of 6×8 , we should use the 8-line and the 6-column, again finding the required product (48) as the tabular number at the intersection.

Sometimes the given arguments cannot be found directly in the table. Thus we might wish to multiply $6\frac{1}{2}$ (written 6.5) by 8. Evidently the proper tabular number would be halfway between the 6 × 8 tabular number (48) and the 7×8 tabular number (56). The correct answer would therefore be 52. This process, by which the tabular number 52 is obtained, is called "interpolation." The example $6\frac{1}{2} \times 8$ is an extremely simple one. When less easy ones occur, the interpolation is best made as follows: we ascertain by subtraction how much the tabular number increases while the argument changes from 6 to 7. This increase is here 8, because the tabular number changes from 48 to 56 in the 8-column, while the argument in the left-hand column changes from 6 to 7. This increase of 8 in the tabular number is called a "tabular difference." We now compare the given argument (6.5) with the nearest argument (6) occurring in the left-hand column of arguments, and find an "argument difference" of 0.5 (being 6.5 minus 6). Since this "argument difference" is 0.5, we must evidently take 0.5×8 (8 being the tabular difference), and increase the tabular number 48 by 0.5×8 , or 4. This again brings us to 52. Similar examples are:

(1)
$$5.3 \times 4 = 21.2$$
; (2) $7.7 \times 8 = 61.6$.

In example (1) the tabular numbers are 20 and 24; the tabular difference is 4. $0.3 \times 4 = 1.2$; 20 + 1.2 = 21.2, the answer. Both examples may be verified, of course, by ordinary multiplication.

When both given arguments contain fractions, as, for instance, 5.3×8.4 , the resulting "double interpolation" is so complicated as to be of little practical use to the navigator.

To make this general explanation of mathematical tables complete, it remains to show how they can be used in an inverse manner; i.e. to find the argument from the tabular number. Thus, if we were told that the tabular number is 48, and one argument 8, an inspection of the table would at once show that the other argument must be 6. In this way the table might be used for division as well as multiplication; and interpolation would evidently also be possible. Many mathematical tables must frequently be thus used in an inverse manner.

Having thus explained the peculiarities of mathematical tables, we return to our dead-reckoning problem and its solution by means of the traverse table (p. 154).

Referring to that table we find a column (p. 167), headed 40°, the course angle of our present problem. On the left-hand side of the page we find the given distance, 63. Then, opposite the distance 63, and under 40°, we find the latitude difference (abbreviated, "Lat.") and the departure (abbreviated, "Dep.") to be:

lat.
$$= 48.3$$
, dep. $= 40.5$.

The following are additional examples for practice:

Given: dist., 84, course 26°; Ans., lat. = 75.5, dep. = 36.8. Given: dist., 28, course 11°; Ans., lat. = 27.5, dep. = 5.3.

When the course is between 1° and 45° the course angle will be found in Table 1 at the head of the column: but when the course is between 45° and 90°, it appears at the foot of the column. In the latter case, the tabular lat. and dep. are to be taken from the columns having "Lat." and "Dep." at the foot instead of the top of the column. Examples follow:

Given: dist., 63, course 50°; Ans., lat. = 40.5, dep. = 48.3. Given: dist., 84, course 64°; Ans., lat. = 36.8, dep. = 75.5. Given: dist., 28, course 52°; Ans., lat. = 17.2, dep. = 22.1,

In addition to the course angles from 1° to 90°, three additional angles are given in parentheses at the top and foot of each column. Thus, with the course angle 30° appear also 150°, 210°, 330°. This simply means that the latitudes

and departures are the same for these four course angles. The accompanying Fig. 5 shows, for instance, that the departures QP and Q'P' are equal for 30° and 150° courses if the two distances YP and YP' are alike.

It will be noticed also that our traverse table always gives distances from 1 to 50 on a left-hand page, and from 50 to 100 on a right-hand page. When distances larger than 100 occur, it is necessary to use the 100, 200, etc., given on the lower part of each page. If, for instance, we require the latitude and departure for a distance 363 miles, course 40°, we turn again to the 40° column, and find (near the bottom of

Fig. 5.—Departures for 30° and 150°. the page):

For 300 miles, lat. = 229.8, dep. = 192.8 and (in the usual way) for 63 miles, lat. = 48.3, dep. = 40.5

=278.1

Consequently, for dist. 363, course 40°, lat.=278.1, dep.=233.3.

Other examples are:

Course 25° , dist., 452; lat. = 409.6, dep. = 191.0.

Course 68, dist., 521; lat. = 195.2, dep. = 483.1.

Course 226, dist., 384; lat. = 266.8, dep. = 276.2.

When the given distances or course angles, which are really the "pairs of arguments" (p. 11) of the traverse table, contain fractions, interpolation can be used; but such close accuracy is seldom, if ever, required in navigation.

More extended traverse tables will be found in Bowditch's "American Practical Navigator," published by the Navy Department, Washington. They are also printed separately in Bowditch's "Useful Tables." Both volumes can be purchased at any "navigation shop" where instruments and books suitable for navigators are sold.

To complete this explanation of our traverse table, it is still necessary to mention that it also provides, with sufficiently close approximation, for the method of measuring course angles in "points of the compass" (pp. 10, 41). This method is not now in use in the United States Navy, but it is still largely employed in merchant vessels. It is sufficient to state here that a course of 3 points, for instance, is very nearly equal to a course of 34° , and the traverse table column for 34° may properly be used for a 3-point course. Similarly, 31° may be used for $2\frac{3}{4}$ points, and the mariner desiring to use points can always find from the traverse table itself just what column to use. A special traverse table for points may also be found in Bowditch's Tables, already mentioned.

We have now shown how to find latitude difference and departure by means of the traverse table. But our problem is not yet completely solved. Our ship (p. 8) started from the point Y in lat. 42° 11′ N.; long. 59° 28′ W. She traveled 63 miles on a 40° course, and the traverse table showed that she thus made good a latitude difference of 48.3 miles and a departure of 40.5 miles. It now remains to ascertain how much the ship changed her latitude in degrees and minutes from 42° 11′ N. and her longitude in degrees and minutes from 59° 28′ W. When we have found these last changes, we can learn the latitude and longitude of the point P, which we are required to find.

To get the latitude change in degrees and minutes from the latitude difference in miles offers no difficulty. If the miles used are nautical miles (and in navigation they always are nautical miles), each mile of latitude difference corresponds to 1' of angular measure (p. 9), and 60 miles correspond to 1°. Thus our ship must have changed her latitude 48'.3, corresponding to a latitude difference of 48.3 miles. Her initial latitude having been 42° 11' N., her final latitude at P will be 42° 11' + 48' (if we omit the odd .3) or 42° 59' N.

The relation between departure and difference of longitude is not quite so simple. Our ship's departure of 40.5 miles might correspond to far more than 40.5 minutes of longitude. In fact, in very high latitudes near the north pole, the longitude meridians converge so closely that a person traveling

a few miles might change his longitude very greatly. At the pole itself a man might change his longitude 180° by simply stepping across the pole. So it follows that the longitude difference in minutes is greater than the departure in miles (however, cf. p. 4). The difference between the two increases rapidly as we approach high latitudes though it is nil at the equator; in Table 2 (beginning p. 168) we give this excess of longitude difference over departure for all latitudes under 60°, and for all longitude differences up to 100. When the longitude differences are greater than 100, it is necessary to use the numbers given for 100, 200, 300, etc., near the bottom of each page in the table, and to sum tabular numbers, precisely as we did with the traverse table.

It will be noticed that Table 2 gives "tabular numbers" for each degree of latitude in a separate column, and that these various latitudes are called "middle latitudes." Thus the middle latitude and the longitude difference are the pair of arguments (p. 11) for Table 2, and, as we shall see presently, the use of the middle latitude avoids any uncertainty in choosing the correct column for use. In our present problem we have at our disposal (p. 15) two different latitudes: the initial latitude at the point Y, 42° 11' N., and the final latitude at the point P, 42° 59' N. In this case, the two latitudes are so nearly equal that we might use either of them as an argument in Table 2 without material inaccuracy. In fact, in using Table 2 it is unnecessary to consider minutes of latitude, the nearest degree being sufficient.

But often the two latitudes available at this stage of the problem differ by many degrees. In such cases mariners always use the average of the two latitudes, and call it the "middle latitude." In the present case, the middle latitude would be found thus:

Initial latitude = 42° 11'
Final latitude = 42° 59'
Sum = 85° 10' $\frac{1}{2}$ sum = middle latitude = 42° 35'

The nearest even degree to 42° 35′ is 43°, and the problem would therefore be worked with the 43° column of middle latitude in Table 2.

Before completing our problem it is necessary to point out that while Table 2 is intended primarily for changing longitude differences in minutes into departures in miles, it can also be used (as stated at the foot of each page) for the inverse transformation of departures into longitude differences; and this is the transformation we must make in our present problem. It is merely necessary to use the departure (40.5) in the left-hand column, at the head of which are the words "Long. Diff. or Dep.," indicating that either of these two may be used as the argument in that column. Then, in the 43° column of middle latitude, we find (using interpolation) the tabular number 10.8.

This means that a longitude difference of 40'.5 corresponds to a departure of 40.5 - 10.8 miles, or 29.7 miles.

But when the table, as in the present case, is used for the inverse transformation, the tabular number 10.8 must, before use, be multiplied by the factor given at the bottom of the column. For the middle latitude 43° this factor is 1.37; and so the right tabular number becomes, in the present case:

$$10.8 \times 1.37 = 14.8$$
;

and as the longitude difference is always greater than the departure, it follows that the departure of 40.5 miles gives a longitude difference of:

$$40.5 + 14.8 = 55'.3 = 0^{\circ} 55',$$

if we omit the odd tenths.

The initial longitude of the ship at the point Y was 59°28′ W. As her 40° course has carried her nearer to Greenwich, it follows that her final longitude at the point P is:

$$59^{\circ} 28' \text{ W.} - 0^{\circ} 55' = 58^{\circ} 33' \text{ W.}$$

We shall now discuss the following similar problem: A ship takes her departure from a point about one mile

east of Navesink Highlands Light, New Jersey, in the initial lat. 40° 24′ N., initial long. 73° 58′ W., and travels 1377 miles on a course of 166°. What final latitude and longitude does she attain?

Entering the traverse table in the column headed 166°, which is the same as the 14° column, we find:

For dist. 900, lat., 873.2, dep., 217.7 For dist. 400, lat., 388.1, dep., 96.7 For dist. 77, lat., 74.7, dep., 18.6 Sums, 1377, 1336.0, 333.0

To make the large given distance (1377 miles) come within the range of Table 1, it has been necessary to enter the 166° column three times, with the arguments 900, 400, and 77, and then to sum the corresponding tabular numbers.

The latitude difference, 1336 miles, is equivalent to 1336', or 22° 16', counting, as usual, 60' to 1°. Then, since the direction of her course (166°) carried the ship to the south of her initial position (cf. Fig. 5, p. 14, and p. 19), we have:

Now turning to Table 2, in the proper column for middle latitude 29°:

For dep. 300 tabular number is 37.6 For dep. $\frac{33}{333}$ tabular number is $\frac{4.1}{41.7}$

As in the former example, this 41.7 must be multiplied by the factor at the bottom of the column. This factor is 1.14. Multiplying, we have: $41.7 \times 1.14 = 47.5$. Consequently, long. diff. = $333 + 47.5 = 380'.5 = 6^{\circ} 20'.5$. Since the direction of her course (166°) carried the ship eastward, and therefore nearer to Greenwich, it follows that her final longitude is 73° 58′ W. $-6^{\circ} 20'$, or 67° 38′ W. The final position is therefore: lat. 18° 8′ N.; long. 67° 38′ W.

The point indicated by this final latitude and longitude is just off the entrance to the Mona Passage, between Haiti and Porto Rico; the given course and distance would therefore be correct for a voyage from New York to Mona Passage

·Additional similar problems are:

1. Initial lat., 40° 28′ N.; initial long., 73° 50′ W.; course, 119°; dist., 2924 miles. This would take the ship from Sandy Hook to St. Vincent, Cape Verde Islands.

Ans. Final lat., 16° 50′ N.; final long., 25° 7′ W.

2. Initial lat., 40° 10′ N.; initial long., 70° 0′ W.; course, 75°; dist., 2606 miles. This would take the ship from Nantucket Lightship to Fastnet, the nearest point of the Irish coast.

Ans. Final lat., 51° 24′ N.; final long., 9° 37′ W.

Before proceeding to our second fundamental problem (p. 8), it will be well to explain briefly two further points of interest. The first of these relates to the method of designating a ship's course. We have hitherto supposed it to be measured in degrees, from the north, around by way of the east, through the south and west, and so back to the north again. This is the best way to count courses, and is the way now in use in the United States Navy. Since a whole circle contains 360°, it follows that courses may contain any number of degrees from 0° to 360°.

But there is another quite convenient, although older, way of designating courses, in which a 60° course, for instance, is written N. 60° E., showing that the ship must be steered 60° east of north. In a similar way, a 120° course is written S. 60° E., showing that the helmsman should head her 60° east of south, which would be the same as 30° south of east, or 120° from the north toward the south by way of east.

The second further point of interest has to do with the relation between Tables 1 and 2. It is possible to avoid entirely the use of Table 2, and to transform longitude differences into departures, and vice versa, by means of Table 1

alone. It so happens that the relation between these two, for any given middle latitude, as, for instance, 29°, is identical with the relation between distance and latitude difference in Table 1 for the course 29°. In other words, if we have given a middle latitude and a longitude difference, and wish to find the departure, we:

Call the middle latitude a course, and Call the longitude difference a distance;

Then, corresponding to that course and distance, find from Table 1 the tabular latitude difference, and it will be the required departure. The same process can also be reversed, so as to find the longitude difference from the departure.

While this method with Table 1 is quite correct, we believe beginners (at least) will find the use of Table 2 advantageous in the solution of these problems, especially when the middle latitude is not very great.

Coming now to our second fundamental problem of dead reckoning, let us suppose a ship is required to proceed from the initial lat. 42° 11′ N. and long. 59° 28′ W. to a final lat. 42° 59′ N. and long. 58° 33′ W. We are to find the course she must steer, and the distance she must run.

We have at once the latitude difference of 0° 48′, or 48 miles, and the middle latitude 42° 35′, or nearest whole degree of middle latitude, 43°. The longitude difference is 55′; and with this we find from Table 2 the correction 14.8 in the 43° column of middle latitude. Remembering that this time we are transforming a longitude difference into departure, and consequently do not need to use the factor at the foot of the column, we subtract this correction (14.8) from the longitude difference (55′) and obtain the departure as 40.2 miles.

Next we proceed to Table 1, to find the course and distance corresponding to lat. 48, dep. 40.2. To do this, we must find a place in Table 1 where this particular latitude and departure appear side by side. If this pair of numbers

cannot be found (exactly) side by side, we must take the pair which come nearest to them: in this case such a pair of numbers is found in the 40° course column, opposite dist. 63. So it appears that the ship must steer on a 40° course a distance of 63 miles, to proceed from the given initial to the given final latitude and longitude. This problem is the direct converse of the one first solved (pp. 15, 17).

As a second example, let us now calculate the course and distance from Sandy Hook, lat. 40° 28' N.; long. 73° 50' W., to St. Vincent, lat. 16° 50' N.; long. 25° 7' W. We have, by subtraction, lat. diff. = 23° 38' = 1418' = 1418 miles; long. diff. = 48° 43' = 2923'.

This 2923' must be turned into a departure, the middle latitude being 28° 39', or, to the nearest whole degree, 29°. Turning to the column of Table 2 which belongs to 29° of middle latitude, we find the correction for 2923' of longitude difference thus:

Tabular number for 900 = 113.0,

which being multiplied by 3, gives:

Tabular number for 2700 = 339.0 Also, tabular number for 200 = 25.1 Tabular number for 23 = $\frac{2.9}{367.0}$ Sums, tabular number for $\frac{23}{2923} = \frac{2.9}{367.0}$

This must be subtracted from the longitude difference, and so we get: dep. = 2923 - 367.0 = 2556 miles.

We have now to seek a place in Table 1 where lat. 1418 and dep. 2556 appear side by side. No traverse tables are sufficiently extended to contain these large numbers, but we can at once obtain an approximate answer to the problem by dividing both numbers by 100. This reduces them to lat. 14.2, dep. 25.6; and the nearest numbers to these which can be found side by side in Table 1 are in the column belonging to course 119° and opposite dist. 29. This course (119°) is the same as would have been obtained if we had not been

forced to divide our latitude and departure by 100, to bring them within the range of Table 1. But the dist. 29 must now be multiplied by 100, to remove the effect of our former division of latitude and departure by 100. Thus we have the closely approximate information that the course and distance from Sandy Hook to St. Vincent are 119° and 2900 miles. The same problem (p. 19), when taken in its inverse form, starts with the numbers 119° and 2924 miles.

In discussing such a problem, many beginners have difficulty in choosing correctly the course number (119°) from the four (61°, 119°, 241°, 299°) to be found at the foot of the same column of Table 1. This choice is easily made with the help of our knowledge of elementary geography, or with any rough chart or map. From these, we know that St. Vincent is south and east of Sandy Hook, and the only one of the four possible courses that will carry a ship south and east is course 119°. The same course might be written in the other notation (p. 19) S. 61° E., which possibly makes the actual direction to be steered a little easier to understand.

The above result is approximate only, but higher accuracy is seldom required. When desired, it can be obtained by certain kinds of interpolations (p. 12); but these are always unsatisfactory, especially as complete precision can always be easily had by the use of logarithms, as explained in the next chapter.

CHAPTER III

DEAD RECKONING WITH LOGARITHMS

Since the publication in 1876 of Kelvin's tables for facilitating Sumner's method, it has been possible to navigate in the most approved way without using logarithms or trigonometry. Those who desire to study the subject in this manner may do so by simply omitting those parts of the book in which logarithmic or trigonometric formulas and calculations occur. But this method of study is not recommended, except perhaps for a first reading; for a knowledge of logarithmic processes always affords a most desirable check on the accuracy of the other method, and so makes for safety of the ship and peace of mind of the navigator.

Proceeding, then, with the subject of logarithms, we may define them as a mathematical device for facilitating calculations. They are merely numbers; but they are numbers having this peculiarity: every logarithmic number belongs to some ordinary number (like 1, 2, 3, 27, 800, etc.), and belongs to it alone. Its logarithm belongs to the number as a man's shadow belongs to the man.

For our present purpose it is unnecessary to enter into the theory of logarithms; we shall explain only the methods of using them in practice. Logarithms (abbreviated "log") always consist of two parts, a "whole number" part and a "decimal" part. Thus, 3.30103 is a logarithm, of which the whole number part is 3, and the decimal part .30103. The whole number part may even be zero: thus, 0.30103 is also a logarithm. The decimal part of the logarithm is found from a table of logarithms, such as our Table 3

(p. 178); but the whole number part is found by an inspection of the number to which the logarithm belongs.

We shall hereafter, to save space, always write "log 26" in place of "the logarithm belonging to 26": and, with the help of this abbreviation, we may now write the following tabular statement, which is fundamental in the matter of logarithms:

```
\log 1 = 0.00000, \log 1000 = 3.00000, \log 10 = 1.00000, \log 10000 = 4.00000, \log 100 = 2.00000, \log 100000 = 5.00000, etc.
```

In other words, for these particular numbers, all "multiples" of 10, the decimal part of the log is zero. For numbers intermediate between 1 and 10, the whole number part of the log is 0, and the decimal part lies between .00000 and .99999. For those between 10 and 100 the whole number part is 1, and the decimal part again lies between .00000 and .99999.

The general rule is: the whole number part of a log is one less than the number of figures or "digits" in the number to which the log belongs. Thus, the number 26 has two digits: the whole number part of its log is 1. The number 2678 has four digits: the whole number part of its log is therefore 3.

If a number is itself partly decimal, we count only the number of digits to the left of the decimal point for the purposes of the present rule. Thus, 26.78 has two digits only; 2.678 has one; 267.8 has three, etc.

If, on the other hand, a number is wholly decimal, as 0.2678, the whole number part of its logarithm should be "negative," or minus, i.e. less than 0; and it will be one greater than the number of zeros immediately following the decimal point in the number. According to this, the whole number part of log 0.2678 should be -1, because this number has no zeros immediately following the decimal point. But as these negative whole number parts are very inconvenient in actual work, it is customary to increase

all logs of decimal numbers arbitrarily by 10, which will avoid the negative sign. This arbitrary increase is always corrected again in the further or final procedure, so that it cannot possibly introduce error into the work.

In the case of \log_{10} 0.2678, the arbitrary increase of 10 changes the -1 to $+9^{\circ}$; and so 9 would be the whole number part of \log_{10} 0.2678. Similarly, \log_{10} 0.002678 would have 7 for its whole number part, because there are two zeros after the decimal point. This would make the whole number part of the \log_{10} - 3, which, being increased by 10, gives + 7.

In general, this matter of logs of wholly decimal numbers may be summarized as follows:

In all these cases the decimal part of the log is zero: and if the number lies, for instance, between 0.1 and 0.01, the whole number part of the log will be 8, and the decimal part will lie between .00000 and .99999.

The decimal part in the log of any number is taken from * Table 3 without regard to the position of the decimal point in the number itself. The numbers 0.2678, 0.002678, 26.78, 2.678, 267.8, and 2678 all have precisely the same decimal part in their logs, so that such logs will differ in their whole number parts only. We can at once obtain this common decimal part from Table 3 (p. 181), where it is found to be .42781. In looking up this log, we again use (p. 11) a pair of arguments. The argument for the lefthand column consists of the first three digits of 2678 (267): and in selecting this argument we disregard any zeros that may immediately follow the decimal point, if the number is wholly decimal, like .002678. The other argument, in the top horizontal line of the tabular page is 8, the righthand digit of the number 2678. In the horizontal line

¹ According to Algebra, 9 is greater than -1 by 10.

opposite 267, and in the column headed 8, appears 781; and these are the last three digits of the required log (.42781). The first two digits (.42) are common to a great many logs, and are therefore only printed in the column headed 0. The first two digits of every log are thus taken from the zero column, regularly from the same horizontal line that contains the last three digits of the log, or from some line above it. Only when there is an asterisk printed in the table with the last three digits do we make an exception, and take the first two digits from the line below the one containing the last three. Thus the decimal part of log 2691 is .42991, but the decimal part of log 2692 is .43008.

Having thus found the decimal part of log 2678 to be .42781, and the number 2678 having four digits, the complete

$$\log 2678 = 3.42781$$
;

and here the reader should once more note that all tabular logs like .42781 are thus always decimals. The corresponding logs for the other numbers given above are:

log 267.8 = 2.42781, log 26.78 = 1.42781, log 2.678 = 0.42781, log 0.2678 = 9.42781, log 0.002678 = 7.42781.

It is clear that Table 3 gives directly the decimal part of the logs of all numbers containing four digits. If the number contains less than four digits, as 26, we should look it up in the table as if it were 2600. We should find 260 as the argument in the left-hand column (p. 181); and in the corresponding line, in the column headed 0 (the fourth digit of 2600), is 41497. This is the decimal part, as usual, and the complete

$$\log 26 = 1.41497.$$

If, on the other hand, the number whose log is wanted contains more than four digits, as 26782, it is necessary to

resort to interpolation (p. 12). The number of digits being here 5, the whole number part of the log is 4 (p. 24). The decimal part of the log is to be found quite without regard to decimal points (p. 25). It may therefore be taken from Table 3 just as if we wanted log 2678.2 instead of 26782. Now the table tells us (p. 181):

decimal part of $\log 2678 = 42781$, decimal part of $\log 2679 = 42797$.

The tabular difference (p. 12) of these two decimal parts is 16. As 26782 may, for our present purpose, be regarded as lying $\frac{2}{10}$ of the way from 2678 to 2679, it follows that the decimal part of log 26782 will lie $\frac{2}{10}$ of the way from 42781 to 42797. Evidently, we must multiply the tabular difference 16 by $\frac{2}{10}$ (giving 3.2) to find how much larger the decimal part of log 26782 is than the decimal part of log 2678. This 3.2 (or 3, in round numbers) must then be added to 42781; and we have, as the result of this interpolation:

decimal part of $\log 26782 = .42784$.

As we have just found the whole number part to be 4, we have for the complete:

 $\log 26782 = 4.42784.$

This whole process of interpolation may perhaps be more clearly understood if we repeat (p. 10) that all tables furnish tabular numbers corresponding to given arguments. Interpolation is necessary when the given arguments are not to be found in the argument part of the table, but fall between two of the tabular arguments. Then we obtain by subtraction the difference between the given argument and the nearest smaller argument contained in the table. This difference is the "argument difference" (abbreviated, arg. diff.), and it should be expressed as a decimal fraction of the interval between two successive arguments (cf. $\frac{2}{10}$, above). The tabular difference (tab. diff.) between two successive tabular numbers being also obtained by subtrac-

tion, we have only to multiply the tabular difference by the argument difference to find the "interpolation difference" (int. diff.). This is then added ¹ to the proper tabular number (belonging to the above-mentioned nearest argument given in the table) to obtain the tabular number required.

The multiplication of the tabular difference by the argument difference is facilitated by certain little auxiliary multiplication tables (called tables of "proportional parts") printed in the margins of many mathematical tables. In the example given above, the tabular difference was 16; and Table 3 contains on the proper page (p. 181) a proportional part table headed with this same number 16; and it shows that for an argument difference .2, and tabular difference 16, the interpolation difference is 3.2, just as we found above.

Other examples of logarithms are:

The above considerations are preparatory only to the actual use of Table 3; and they are not yet quite complete. For it is still necessary to explain the inverse use (p. 12) of the table, or, in other words, the finding of the number to which a given log belongs. Thus, if the given log were 3.42781, we should begin by looking up its decimal part among the logs in the table. Finding it there, we take out the number to which it belongs, 2678. We then put in the decimal point according to the whole number part of the log. This being 3, we know (p. 24) that the number required must contain 4 digits. Therefore:

number to which the $\log 3.42781$ belongs = 2678.

^{&#}x27; Except when a glance at the table shows that the tabular numbers are growing smaller, in which case the interpolation difference must be subtracted. This never occurs in Table 3, but happens frequently in Table 4.

If the given log had been 2.42781, the table would furnish the same number 2678, but the decimal point would be differently located. Because the whole number part of the given log is now 2, we know that the number to which it belongs has three digits, and so:

number to which the $\log 2.42781$ belongs = 267.8.

When the given log is not to be found in the table exactly, a process of inverse interpolation is, of course, necessary. Thus, if the given log is 4.42784, we look for its decimal part in the table, and find it lies between

42781, which belongs to the number 2678, and 42797, which belongs to the number 2679.

The decimal part of the given log being 42784 is greater by 3 than the nearest tabular number 42781. This 3 is therefore the interpolation difference. The tabular difference is 16, obtained by subtraction between 42781 and 42797. now divide the interpolation difference by the tabular difference, which gives .2 ($\frac{3}{16} = 0.2$, in round numbers). .2 is the argument difference, and therefore the complete number belonging to the decimal part of the log (42784) The whole number part of the given log is 26782. being 4, the required number must have 5 digits, and will therefore be 26782. Had the given log been 2.42784, we should have arrived at the number 26782 in just the same way; but we should locate the decimal point differently. The whole number part of the log being now 2, there should be only 3 digits in the number, and we should have:

number to which the log 2.42784 belongs = 267.82.

Other similar examples are:

 $\log = 2.71828$, corresponding number = 522.73, $\log = 4.26323$, corresponding number = 18333,

 $\log = 9.26323$, corresponding number = 0.18333,

log = 0.21000, corresponding number = 1.6218.

The reader will perceive, from a consideration of these interpolated numbers, that work with logarithms is never

exact, absolutely. This is inherent in the nature of our log tables, which really contain only the decimal parts of the logs carried out to five places of decimals. Further decimals of course exist, but are here omitted, because five places always give sufficient accuracy for navigation calculations.

The simplest calculations which are facilitated by logarithms are the ordinary arithmetical processes of multiplication and division. These processes can be turned into addition and subtraction by the use of the following principle:

The log of a product is equal to the sum of the logs of the factors.

According to this principle, if we wish to multiply a series of factors, we simply add their logs. The sum is then a log and the number to which this log belongs is the product of the series of factors. Suppose, for instance, we wish to multiply the factors 2, 3, and 4. The product should be 24. Proceeding with logs, we have from Table 3:

 $\begin{array}{c} \log 2 = 0.30103,\\ \log 3 = 0.47712,\\ \log 4 = \underline{0.60206},\\ \log \text{product} = \text{sum} = \overline{1.38021}, \end{array}$

and the number to which the log. 1.38021 belongs is, according to Table 3, 24.00, the correct product.

It is evident that the use of the log table is here of no advantage, because the factors are very small: but when large numbers are to be multiplied the advantage is very great.

Taking now a similar simple example of division, let us divide 6 by 3. In division, evidently, we must subtract the log of the divisor from the log of the dividend, to obtain the log of the quotient. We have

 $\begin{array}{c} \log 6 = 0.77815, \\ \log 3 = \underline{0.47712}, \\ \log \frac{6}{3} = \text{difference} = 0.30103, \end{array}$

and the number to which the log 0.30103 belongs is 2.000, the correct quotient. Other examples are:

$$2.426 \times 42.78 \times 17.26 = 1791.3, \\ 6.242 \times 87.24 \times 62.71 = 34149, \\ \frac{2802}{1726} = 1.6234, \\ \frac{18}{24} = 0.75.$$

In the last example, we have

 $\log 18 = 1.25527$, $\log 24 = 1.38021$.

The subtraction would lead to a negative log because 1.38021 is larger than 1.25527. Therefore we arbitrarily increase 1.25527 by 10, giving 11.25527, and then the subtraction gives

log quotient = 9.87506,

which is the log belonging to the number 0.75, the correct quotient.

We come now to the solution of the two fundamental problems of dead reckoning (pp. 8, 10) by means of logs. For this purpose we must use our Table 4, in connection with Table 3. Table 4 is called a trigonometric log table and the tabular numbers in it are certain logs known as:

abbreviated sin, cotangent, abbreviated cot, sine. abbreviated cos. abbreviated sec. secant. tangent, abbreviated tan. abbreviated esc. cosecant.

It is not our purpose to consider the theory of trigonometry, but it is necessary for the reader to have some understanding of its practical applica-If we have a triangle QPY (fig. 6), we notice that it is made up of six "parts," the three sides and the three angles. Now it is a fact that if we know any three of these six parts, we can calculate the other three parts, provided one of the known parts is a side.

Fig. 6. - Trigonometry.

Trigonometry is the branch of mathematics which enables us

to do this, and the triangle QPY is the very triangle which occurs in the two problems of dead reckoning.

In trigonometry, every angle has belonging to it a sin, cos, etc., just as every number has its log. These sines, etc., can be taken out of Table 4 by means of a pair of arguments in the usual way. The two arguments are the number of degrees and the number of minutes in the angle (p. 9). The number of degrees is found in Table 4 at the top or bottom of the page, and the number of minutes in the right-hand or left-hand column. Each page (as, for instance, p. 229) has eight degree numbers, four, 33°, (213°), (326°), and 146° at the top, and four, 123°, (303°), (236°), and 56° at the bottom. The proper sines, etc., for all these degrees appear on the same page (p. 229). When the degree number is at the top or bottom of the left-hand column 33°, (213°), (303°), and 123°, the minutes must be taken from the left-hand column. But when the number of degrees is at the top or bottom of the right-hand column 146°, (326°), (236°), and 56°, the minutes must come from the right-hand column. And when the number of degrees comes from the top of the page, we must look for the proper sine, etc., in a column having the word sin, etc., at the top. But when the degree number comes from the bottom of the page, the sine, etc., will be taken from a column having the word sin, etc., at the bottom. Thus (p. 229):

```
\sin 33^{\circ} 26' = \sin 146^{\circ} 34' = \cos 56^{\circ} 34' = \cos 123^{\circ} 26' = 9.74113.
```

In this way, sines, tangents, etc., can be taken from Table 4. Examples are:

```
sin 28^{\circ} 32' = 9.67913, cot 117^{\circ} 10' = 9.71028, cos 66^{\circ} 14' = 9.60532, sec 12^{\circ} 40' = 0.01070, tan 128^{\circ} 28' = 0.09991, csc 111^{\circ} 11' = 0.03038.
```

These sines, etc., are really all logs. When the whole number part is 9, it indicates that the log belongs to a number which is wholly decimal (see p. 24), and that the log has been arbitrarily increased by 10.

Of course these trigonometric tables can also be used in the inverse manner. Thus, to find the angle corresponding to the sin 9.28190, we turn to p. 207, and finding 9.28190 in the sin column, we see that the corresponding angle is either 11° 2′, 191° 2′, 168° 58′, or 348° 58′. When the sin, etc., cannot be found in the table exactly, we may always take the nearest one: interpolation is never practically necessary in using the trigonometric tables in navigation. Examples are:

```
sec = 0.17177, angle = 47^{\circ} 40′, 227^{\circ} 40′, 132^{\circ} 20′, or 312^{\circ} 20′, tan = 0.17177, angle = 56^{\circ} 3′, 236^{\circ} 3′, 123^{\circ} 57′, or 303^{\circ} 57′, sin = 9.17177, angle = 8^{\circ} 32′, 188^{\circ} 32′, 171^{\circ} 28′, or 351^{\circ} 28′, cos = 9.17177, angle = 81^{\circ} 28′, 261^{\circ} 28′, 98^{\circ} 32′, or 278^{\circ} 32′, esc = 0.17177, angle = 42^{\circ} 20′, 222^{\circ} 20′, 137^{\circ} 40′, or 317^{\circ} 40′, cot = 0.17177, angle = 33^{\circ} 57′, 213^{\circ} 57′, 146^{\circ} 3′, or 326^{\circ} 3′.
```

Having thus explained the use of Table 4, we shall now apply it to the two problems of dead reckoning. These problems are:

- 1. To find latitude difference and departure from course and distance:
- 2. To find course and distance from latitude difference and departure.

These problems are solved by means of the following formulas, in which the letter C represents the course angle:

```
(1) \begin{cases} \log \text{ lat. diff.} = \log \text{ dist.} + \cos C, \\ \log \text{ dep.} = \log \text{ dist.} + \sin C. \end{cases}
(2) \begin{cases} \tan C = \log \text{ dep.} - \log \text{ lat. diff.,} \\ \log \text{ dist.} = \log \text{ dep.} - \sin C. \end{cases}
```

Sometimes it is preferable to find the distance from the latitude difference instead of the departure. We then use the following modification of formula (2):

(2')
$$\log \operatorname{dist.} = \log \operatorname{lat.} \operatorname{diff.} - \cos C.$$

Let us now solve with these formulas our former problem (p. 18), in which a ship traveled 1377 miles on a course of 166°. Applying formula (1) above, we have:

These corresponding latitude difference and departure agree very closely with the results already found (p. 18) from Table 1.

If the departure and latitude difference were given, we could find the course and distance by means of formula (2). In the present case we have:

These numbers, 166° and 1377 miles, are the same numbers with which we began this calculation; so it is clear that the log method of calculation agrees with the traverse table method. For accuracy the log method is superior.

The transformations of departure into longitude difference, and *vice versa*, are accomplished logarithmically with the following formulas:

- (3) log long. diff. = log dep. cos middle lat.
- (4) $\log \deg$ = $\log \log$ diff. + $\cos \min \deg \log$.

Thus the longitude difference corresponding to dep. 333.1 would be calculated by formula (3) as follows:

```
log dep. (333.1) = 2.52261

cos mid. lat. (29° 16′, p. 18) = 9.94069

by subtraction, log long. diff. = 2.58192

corresponding long. diff. = 381′.9 = 6° 21′.9.
```

- ¹ These numbers have been diminished by 10, to allow for the fact that both $\cos C$ and $\sin C$ have been arbitrarily increased by 10 (p. 32; cf. also p. 25).
- ² This number has been increased by 10, and therefore is in accord with the usual practice of avoiding negative whole numbers in the trigonometric Table 4.
- ³ This subtraction is correct, if we remember that the 9.38368 is really too large by 10.

This is in close accord with the result on p. 18, where Table 2 gave 6° 20′.5. The logarithmic method is again the more precise, for it takes account of minutes in the course, which were neglected on p. 18. But either result is accurate enough for practical purposes.

Before finally leaving these problems of dead reckoning, we shall explain briefly two additional methods of solving them which differ from the method so far employed. These two additional methods are called "Mercator sailing" and "great circle sailing"; whereas, up to the present, we have been using "middle latitude sailing," so named because the middle latitude appears in the calculations.

Mercator sailing is based on a kind of chart first designed by Gerhard Mercator, a sixteenth century geographer. Such charts are still widely used for nautical purposes. In calculations based on them, every parallel of latitude is referred directly to the equator by means of a table of "meridional parts." Our Table 5 is such a table, and it gives the meridional part for every degree and minute of latitude from the equator to 60°. These meridional parts are really the distances from the equator to the several parallels of latitude, such as they would appear on a Mercator chart drawn to such a scale that 1' of longitude at the equator would occupy one linear unit on the chart. Thus the meridional part for lat. 40° is given in Table 5 as 2607.6. Suppose the scale of the chart at the equator were 1 inch to the degree of longitude. That would be $\frac{1}{60}$ inch to the minute. The distance on the chart from the equator to the 40° parallel of latitude would then be $2607.6 \times \frac{1}{60}$ inches = 43.46 inches. It is needless to say that a chart on such a scale could not show a very large part of the ocean on a single sheet.

Calculations by Mercator sailing are of course only made when the distances involved are large and great accuracy is required. It is therefore best to do them by means of logarithms, although it is also possible to obtain Mercator results from the traverse table. In such calculations we do not

use the latitude difference of ordinary middle latitude sailing. In its place appears the "meridional latitude difference" (abbreviated mer. lat. diff.), defined as the difference between the meridional parts (Table 5) belonging to the two latitudes (initial and final) involved in the problem. With this definition in mind we may now give the Mercator formulas as follows:

- (5) log mer. lat. diff. = log long. diff. + cot C.
- (6) log long. diff. = log mer. lat. diff. + tan C.
- (7) $\tan C = \log \log \cdot \operatorname{diff.} \log \operatorname{mer.} \operatorname{lat.} \operatorname{diff.}$

Let us now apply these formulas to the problem of pp. 18 and 33, in which a ship starts from the initial lat. 40° 24' N.; long. 73° 58' W., and travels 1377 miles on a course, C, of 166°. What final latitude and longitude does she attain? The latitude difference is found in the ordinary way (p. 34), there being no special Mercator formula for it, and comes out 1336.1 miles, or $1336'.1 = 22^{\circ}16'$. The final latitude (p. 18) is therefore 40° 24' - 22° $16' = 18^{\circ}$ 8'. Then, from Table 5, we have:

for initial lat. 40° 24′, mer. parts = 2638.9 for final lat. 18° 8′, mer. parts = $\underline{1099.4}$ by subtraction, mer. lat. diff. = $\underline{1539.5}$

Now, applying formula (6), we have:

 $\begin{array}{ll} \text{log mer. lat. diff. (1539.5) (Table 3, p. 179)} = 3.18738 \\ \text{tan } C \text{ (166°) (Table 4, p. 209)} &= \underline{9.39677} \\ \text{by addition, log long. diff.} &= \underline{2.58415} \\ \text{corresponding long. diff. (Table 3, p. 183)} &= 383'.8 = 6° 24' \end{array}$

The final longitude is therefore $73^{\circ} 58' - 6^{\circ} 24' = 67^{\circ} 34'$ W., whereas we obtained before $67^{\circ} 38'$ W. (p. 18).

Finally, we shall apply the Mercator method to the example of p. 21. It is required to find the course and distance from

Sandy Hook, lat. 40° 28′ N.; long. 73° 50′ W. to St. Vincent, lat. 16° 50′ N.; long. 25° 7′ W.

' If one latitude were in the southern hemisphere and the other in the northern, we should add the meridional parts.

We have from Table 5:

```
for initial lat. 40° 28′, mer. parts = 2644.2 for final lat. 16° 50′, mer. parts = 1018.1 by subtraction, mer. lat. diff. = 1626.1
```

The longitude difference is found by subtraction to be $73^{\circ} 50' - 25^{\circ} 7' = 48^{\circ} 43' = 2923'$. Now applying formula (7), we have:

```
log long, diff. (2923) (Table 3) = 3.46583
log mer. lat. diff. (1626) (Table 3) = 3.21112
by subtraction, tan C = 0.25471
```

and therefore (Table 4) $C = 119^{\circ} 5'$.

The distance is found in the ordinary way from the latitude difference (not mer. lat. diff.) by means of formula (2'), p. 33.

The latitude difference is $40^{\circ} 28' - 16^{\circ} 50' = 23^{\circ} 38' = 1418'$. Formula (2') then gives:

```
log lat. diff. (1418') (Table 3) = 3.15168
eos C (119° 5') (Table 4) = \frac{9.68671^1}{3.46497^1}
by subtraction, log dist. = \frac{3.46497}{3.46497}
```

Course 119° 5′, distance 2917 miles is therefore the solution by Mercator sailing. On p. 22, we obtained 119° and 2900 miles; and on p. 19 we began with 119° and 2924 miles. The agreement is satisfactory.

Having thus briefly described Mercator sailing, we come next to "great circle sailing." This is a method of determining the ship's course toward her port of destination in such a way that the distance to be traveled will be as short as possible. If the earth's surface were flat instead of spherical, the shortest course would be a straight line, as used in plane sailing; but on the sphere the shortest course is a curve called a "great circle." Evidently, on all long voyages, the great circle course is the most advantageous one; that mariners do not more frequently use it is due to a peculiarity of their charts.

¹ This log is really too large by 10, so the subtraction is correct.

We cannot here enter into the details of chart "projections," as the theory of chart making is called. It is sufficient to remark that a straight line drawn on the ordinary nautical charts (which follow the Mercator system), between any two ports, will not represent the shortest (or great circle) course between them. On such a chart, the great circle course between the two ports will appear to be longer than the straight line course, although it is really shorter. This accounts for the use of the longer Mercator course by many navigators.

Now there is a kind of chart, called a "great circle sailing" chart, on which straight lines between ports really represent shortest (or great circle) courses. One would therefore naturally suppose that mariners would entirely discontinue the use of Mercator charts in favor of great circle charts. But there is a reason for not doing this.

On Mercator charts, all terrestrial longitude meridians are represented by parallel vertical straight lines. Consequently, if we draw another straight line on the Mercator chart joining two ports, that line will make the same course angle (p. 10) with all the meridians. In this way, a navigator can get from a Mercator chart, by simply drawing a straight line, and quite without calculation, a course angle which will carry him from one port to another. And because the course angle so obtained is the same with respect to all meridians to be crossed by the ship it follows that the voyage can be completed (theoretically at least) from the one port to the other with the great advantage of never changing the course to be steered.

On the other hand, the great circle track makes a different angle with every meridian it passes: so that the mariner must make very frequent changes in the course angle to be steered during the progress of a voyage. The simple Mercator track, without change of course, is called a "rhumb line"; the serious objection to it is that it sometimes leads to greatly (and unnecessarily) lengthened voyages.

The final conclusion is that Mercator charts, on account of their simplicity, are most convenient for short voyages, or for parts of long voyages when the land is not far away. But for shaping the main part of the course on a very long voyage, great circle sailing charts are to be preferred.

At times, in order to avoid very high latitudes, or to round some projecting point of land, navigators must substitute for a single great circle track one "composed" of two or more shorter arcs of great circles. This is called "composite" sailing.

Finally, for the sake of completeness, we shall merely mention two other kinds of sailing. "Parallel" sailing, which is simply middle latitude sailing when the latitude difference is zero; and "traverse" sailing, from which the traverse table gets its name. This is also the same thing as middle latitude sailing: but the special word "traverse" is used when the ship changes her course frequently, perhaps even during a single day. It is then possible to sum up the result of all the short courses which together make up the day's run. It is merely necessary to take from the traverse table the latitude difference and departure for each short course separately, and then to add 1 all the values of latitude difference for a "summed latitude difference," and all the values of departure for a "summed departure." With these a "composite course and distance" can be taken from the traverse table, or calculated with logs, and these will represent the motion of the ship, just as if she had steered an unchanged course during the entire day.

¹ It is necessary to sum separately latitude differences representing northward motion of the ship and those representing southward motion. The difference of the two sums is what we need to know. The same is true of departures representing eastward and westward motion of the ship.

CHAPTER IV

THE COMPASS

The ship's course has been defined (p. 8) as the angle between the north and the direction in which the ship is sailing. To ascertain what this angle is, or, in other words, to steer the ship, mariners use the compass. The dial (or "card") of this instrument is divided, like any circle, into 360°. In the United States Navy these are numbered in such a way (fig. 7) that 0° appears at the north, 90° at the east, 180° at the south, and 270° at the west. The numbers therefore increase in a "clockwise" direction. There are also compasses in which the numbering begins with 0° at both the north and south points, and increases to 90° at the east and west points. But the United States Navy system of numbering is to be preferred.

In addition to the above division and numbering, the dial is also divided into 32 points (pp. 10, 15), each containing $\frac{360^{\circ}}{32}$, or $11\frac{1}{4}^{\circ}$. These points are then further subdivided

into quarter points, all of which is shown clearly in Fig. 7.

The naming of the points has not been done by chance, but in accordance with a definite rule. The four principal, or "cardinal," points are north, east, south, and west. The remaining points are located by a continued process of halving. Halfway between the cardinal points are the "inter-cardinal" points; and each is named by combining the names of the two cardinal points adjacent to it. Thus northeast (abbreviated N.E.) is halfway between north and east. Again halving and combining names, we get points like E.N.E., S.S.E., etc. Still once more halving completes the tally of 32 points: but a combination of names would now be too complicated. However, since

each of these final points must necessarily be adjacent to a cardinal or inter-cardinal point, they are named by simply increasing the name of such adjacent cardinal or inter-cardinal point. This is accomplished with the word "by."

Fig. 7. — Compass Card.

Thus we find, adjacent to N.E., the points N.E. by E., and N.E. by N. In the light of the above, it is easy to "box" the compass, as seamen say, or to name the 32 points in order.

When the point system of division is used, and an accuracy

closer than a single point is required, the compass card is still further subdivided into quarter points. In naming these it is customary, in the United States Navy, to "box" from N. and S. towards E. and W. Thus the space between N.N.E. and N.E. by N. would be divided into four parts thus: N.N.E.\frac{1}{4}E., N.N.E.\frac{1}{2}E., N.N.E.\frac{3}{4}E. But an exception is made to this last rule in the case of quarter points adjacent to a cardinal or inter-cardinal point. These last are always put first in naming the quarter points. Thus, between E. by N. and E., if we always boxed from N. towards E., we should have: E. by N.\frac{1}{4}E., E. by N.\frac{1}{2}E., E. by N.\frac{3}{4}E. But it is customary, because shorter, to name these quarter points E.\frac{3}{4}N., E.\frac{1}{2}N., and E.\frac{1}{4}N.

Inside the "bowl" of the compass, and adjacent to the card, a black line is marked on the bowl. This line is in plain view of the steersman, through the glass cover of the compass, and is called the "lubber line." When the ship is headed in such a way that this line comes opposite N.E., for instance, on the card, the ship will be on a N.E. course, which makes an angle of 45° with the north.

But would the ship really be traveling on a line making a 45° angle with the geographic meridian, or direction of the north pole of the earth? She would be doing so only if the compass were absolutely correct. This is practically the case with the "gyro-compass," a mechanical contrivance now much used in the navy, but not the case with the ordinary "magnetic" compass.

In Chapters II and III, concerning dead reckoning, we have always used the word "course" as if all compasses were absolutely correct. But since they are not correct, it is now necessary to make allowance for their errors. In other words, whenever we use a compass, we must first ascertain the difference between the "true course" and the "compass course." It must not be supposed from this statement that a ship can be steered on two different courses at the same moment. There is really only one direction along which

the ship is moving: but the angle between that direction and the true north may be different from the angle between it and the "compass north." It is the course measured from the true north that must be used in all dead-reckoning calculations, and that always results from such calculations: but for steering the ship by means of a compass the steersman must be furnished with the course as measured from the compass north. Therefore it is essential for the navigator to know the difference between the two. This difference is called the "error" of the compass.

Unfortunately, this error is made up of two parts. The first, called "variation" of the compass, is due to peculiarities in the earth's magnetism, and is quite different in different places on the earth. It also varies in different years at the same place. But at any one time, all ships in the same part of the ocean will have the same variation.

The mariner can always ascertain how great the variation is in his part of the ocean, because it is always marked on his chart. Certain curved lines are drawn on the chart; and if the ship is located on or near a line marked "variation 10°," for instance, it follows that the navigator must on that day allow for 10° of variation. It is also important to take into consideration possible changes in the variation. Sometimes the annual change is marked on the chart; if not, it is important to use a chart of recent date.

The second part of the error is called "deviation" and is due to peculiarities in the magnetism always developed in the metallic parts of the ship itself. It is different in different ships, even in the same part of the ocean, and is even different in the same ship, when she is headed on different courses. Methods have been invented for "compensating" marine compasses, so as to remove the effects of deviation, and these methods are quite effective. But even when they are used, it is necessary, before beginning a long voyage, to have a "compass adjuster" visit the ship. He will then "swing" the ship on a number of different courses, and

adjust the compass so that it will be as nearly correct as possible. Finally, he will determine, by means of astronomic or other observations, just what the remaining compass deviation is on all the various courses, and give the navigator a table of these remaining deviations. This table must be taken into account in "shaping" the ship's course during the voyage. The navigator must also, from time to time, check these tabular deviations while at sea by means of astronomic observations of his own, to take care of possible changes.

Such astronomic observations are made with an instrument (the "azimuth circle"), which can be attached to the compass, and with which the "compass bearing" of the sun or any other object can be observed. The compass bearing is simply the compass direction of the object, as seen from the ship; or the compass course on which the ship would be steered, if she were moving directly toward the object. When the sun is used, its true bearing, measured from the true north, can be taken from astronomic tables which will be explained later; and it is called the sun's "azimuth." A comparison of this true bearing with that measured on the compass with the azimuth circle then makes the compass error known.

When it is not convenient to observe the sun, it is possible to substitute observations of a distant well-defined terrestrial object, whose true bearing can be measured on a chart for comparison with various compass bearings observed while the ship is being swung. Another method is to set up a compass on shore, away from any iron or steel, and use it to determine the bearing of the distant object. And there is still another method, if the above compass and the ship's compass are intervisible. For the bearing of each may then be taken from the other, and these should differ by exactly 180°. If they do not, the variation from 180° must be due to deviation on board.

The "pelorus" is another instrument which may at times replace the azimuth circle. It is located anywhere on the ship, at a convenient point for observation, and not necessarily close to the compass. It has a "dummy card" and a lubber line. The dummy card can be turned until the lubber line indicates the same course as the real compass. Observations of bearings with the pelorus will then obviously be the same as if made on the compass with the azimuth circle. The advantage of the pelorus is that it can be used anywhere on board, while the compass must be kept constantly in the exact place where it was "adjusted" before leaving port.

The error thus determined astronomically or otherwise is the sum of the variation and deviation. If we indicate by E the total compass error in that place, at that time, on that ship, and on that course; by D the deviation similarly described; by V the variation at that time and in that place; and if all three are counted from 0° in the usual direction around the compass card, then

we have the formula:

$$(1) E = V + D.$$

By counting in the usual direction, we mean counting from the north around to the east, as all courses are counted (p. 19); so that a compass error of 10°, for instance, would mean that the compass north pointed 10° east of the true north, or had a true bearing of N. 10° E. (p. 19). This is shown in Fig. 8, which also shows the ship's course, counted in the same way.

Fig. 8. — Compass Error.

It is clear from the figure that if we now indicate: by C, the ship's compass course,

by T, the ship's true course,

by E, the compass error,

we shall have the formula:

$$(2) T = C + E.$$

The simple formulas (1) and (2) enable the navigator to make all necessary compass calculations. The following are examples.

Suppose, for instance, that the error E has been determined by observation, and the variation V taken from the chart. Formula (1) then makes it possible to calculate the deviation D. For the formula shows that E is the sum of V and D; and so D must be the difference of E and V, or: D = E - V.

Thus the deviation D becomes known, as a check on the compass adjuster's work, and, while this value of D is correct only for the particular course on which the ship was headed at the time the observation was made, yet that course is the very one for which it is especially important to have correct information.

Again, suppose dead-reckoning calculations show that the ship is to sail on a 40° course. These calculations always furnish the true course (p. 43) so that $T=40^{\circ}$. The variation being known from the chart, and the deviation from the adjuster's table, we know from (1) E=V+D. Then from (2) we see that C=T-E, which gives the compass course. Let us suppose in the present case, that V was 9°, D 1°; then $E=V+D=9^{\circ}+1^{\circ}=10^{\circ}$; and since $T=40^{\circ}$, $C=T-E=40^{\circ}-10^{\circ}=30^{\circ}$; and the helmsman would be directed to steer a 30° course by compass.

If, in Fig. 8, the compass north happened to be 10° on the left side of the true north, instead of the right, the error E would be 350° , instead of 10° (see also fig. 7, p. 41). This might be made up of a variation V of 349° and a deviation D of 1° , as before. If the true course is again to be 40° , the compass course would be $40^{\circ}-350^{\circ}$, according to the formula C=T-E. This subtraction being impossible, we increase the 40° by a complete circumference of 360° , which is always permissible, and then have:

$$C = 360^{\circ} + 40^{\circ} - 350^{\circ} = 50^{\circ}$$
.

The ship would be steered on a compass course of 50°.

An alternative way to take care of errors, variations, and deviations on the left side of the true north is to mark them with the negative or *minus* sign. Instead of calling V 349°, we might call it - 11°. This is really the best way, and leads to the same result as before, if we remember that the subtraction of a minus quantity is always equivalent to an addition. In the example just given, calling $V-11^\circ$, instead of 349°, we should have: $E=V+D=-11^\circ+1^\circ=-10^\circ$; and $C=T-E=40^\circ-(-10^\circ)=50^\circ$, the same compass course as before.

An older way of designating variations, deviations, and errors is to call them east when the compass north points to the right of the true north, and west when it points to the left of the true north. This method leads to the necessity of providing various rules or diagrams with which to make compass calculations. We think the best way to avoid error (and such errors may lose ships and lives) is to use the method here given with its two simple formulas. When some other designation of the error, or some other method of numbering the card, is demanded by a captain, it is always possible to conform to that demand, but also to translate every problem into our method (in imagination at least) as a check against mistake.

The following is an example of a compass adjuster's "deviation table," taken from Bowditch's "Navigator" (1916 edition). The deviations are set down in degrees and tenths of a degree, instead of degrees and minutes, for convenience in the further calculations. The ship was swung so that her head bore successively around the horizon, and observations were made at intervals of 15°. This is a smaller interval than is usually necessary; and the deviations in the table are much larger than commonly occur in a modern well-compensated compass.

BEARINO OF SHIP'S HEAD BY COMFASS	DEVIA- TION	Bearing of Ship's Head by Compass	DEVIA- TION	Bearing of Ship's Head by Compass	DEVIA- TION	Bearino of Ship's Head by Comfass	DEVIA- TION
0	٥		0		o		o
0	- 15.5	90	-9.1	180	+17.9	270	+ 9.9
15	-14.9	105	-9.0	195	+23.8	285	+ 1.9
30	-13.3	120	-7.8	210	+27.1	300	-4.2
45	-11.3	135	-5.9	225	+25.6	315	-10.3
60	- 10.0	150	- 2.3	240	+22.0	330	-13.6
75	- 9.7	165	+8.5	255	+15.9	345	-16.0

DEVIATION TABLE

To illustrate the use of this table, let us suppose the ship to be sailing on a compass course of 165°, in a part of the ocean where the variation is $+10^{\circ}$, or 10° E. Using formula (1) (p. 45), and finding from our table that the deviation D for 165° is $+8^{\circ}.5$, we have the compass error $E=V+D=+10^{\circ}+8^{\circ}.5=+18^{\circ}.5$. By formula (2) (p. 45) the true course of the ship is $T=C+E=165^{\circ}+18^{\circ}.5=183^{\circ}.5$. We should use this true course 183°.5 in calculating later the ship's position by dead reckoning (p. 10).

If the compass variation were everywhere the same, it would be more convenient to have a table of compass errors, instead of a table of deviations; but because the variation, as given on the chart, varies greatly, the table must be specially made for deviations only.

Equally important with the above use of our deviation table is its inverse use. When the navigator has calculated by dead reckoning the course he must steer, that course, as it comes from the calculations, will be a true course (p. 43); and it is necessary to turn it into a compass course for the use of the steersman.

To do this we must know the deviation; and we cannot get it directly from the deviation table above, because the use of that table presupposes a knowledge of the compass course, the very thing we are trying to find. The best

way to avoid this difficulty is to imagine the deviation to be non-existent, for the moment, and to make use of the "magnetic course," defined as the course which would be indicated by the compass, if deviation were thus totally absent. Under these circumstances, formula (1) gives E = V, since D = 0; and if we designate the magnetic course by M, we may write, in place of formula (2) (p. 45):

$$(3) M = T - V.$$

Let us suppose a case in which the variation is $+10^{\circ}$, and the desired true course of the ship 175°. Then the magnetic course, allowing for variation only, will be, by formula (3):

$$M = T - V = 175^{\circ} - 10^{\circ} = 165^{\circ}.$$

This course is not really a compass course, because no account has yet been taken of the deviation. Nor can we yet find the deviation directly from the deviation table, because in that table we must still know the compass course to use as the argument (p. 10), whereas we know as yet only the magnetic course. Therefore navigators should always request the compass adjuster to furnish a "second deviation table," in which the argument is the magnetic course, instead of the compass course. Such a second table can always be calculated from the other. We here give one that has been calculated from the table on the preceding page.

SECOND	DEVIATION	TABLE

Mag- NETIC BEARING OF SHIP'S HEAD		Mag- NETIC BEARING OF SHIP'S HEAD	Devia- tion	Mag- netic Bearing of Ship's Head	Devia- Tion	MAG- NETIC BEARING OF SHIP'S HEAD	DEVIA- TION
0 15 30 45 60 75	- 14.9 - 13.4 - 11.7 - 10.4 - 9.8 - 9.3	90 105 120 135 150 165	$ \begin{array}{c} -9.0 \\ -8.4 \\ -6.9 \\ -4.8 \\ -1.4 \\ +5.0 \end{array} $	180 195 210 225 240 255	+ 11.0 + 16.9 + 21.3 + 24.9 + 26.8 + 24.1	270 285 300 315 330 345	+16.5 $+4.1$ -7.1 -13.2 -15.7 -15.5

We also add as an example the calculation of one number in the second table from those given in the first. We shall find the deviation corresponding to the magnetic course 165° ; and we do it by a kind of interpolation (p. 12). From the first table we have the deviation $-2^{\circ}.3$ for the compass course 150° . Since the deviation is the only difference between compass and magnetic courses, it follows that $150^{\circ}-2^{\circ}.3$, or $147^{\circ}.7$ magnetic, corresponds to 150° by compass. Similarly, $173^{\circ}.5$ magnetic corresponds to 165° by compass.

The magnetic course 165° for which we are making the calculation falls between 147°.7 and 173°.5, and exceeds the smaller of the two by 17°.3. The whole difference between 147°.7 and 173°.5 is 25°.8. Similarly, the whole difference between the two compass courses involved is 15°. Therefore we may write the proportion:

$$25^{\circ}.8:15^{\circ}=17^{\circ}.3:x^{\circ}$$

where x is the excess over 150° of the compass course corresponding to 165° magnetic.

Solving this proportion by the ordinary rules of arithmetic, we have:

$$x = \frac{15 \times 17.3}{25.8} = 10^{\circ}.0.$$

The compass course belonging to 165° magnetic is therefore $150^{\circ} + 10^{\circ}.0 = 160^{\circ}.0$. The corresponding deviation is $165^{\circ} - 160^{\circ}.0 = +5^{\circ}.0$, which is therefore the deviation for 165° magnetic, and appears as such in the second table. This entire table can be computed from the first table in an hour.

Sometimes the second deviation table gives compass courses instead of deviations. It is then often called a "table of

¹ A comparison of formulas (1), (2), and (3) shows that D = M - C; so that the deviation is obtained by subtracting the compass course from the magnetic course. This is also evident from the definition of a magnetic course (p. 49).

steering courses"; and in the example just calculated it would give the compass or steering course 160° for the magnetic course 165° , instead of giving the deviation $+5^{\circ}$.

We shall still further illustrate this important matter by an example, supposed to occur on board a ship for which our two deviation tables hold good.

What is the compass course to be given the helmsman at Sandy Hook, on a voyage to St. Vincent?

We have already found, from dead-reckoning calculations (p. 22) the course 119°. Being the result of a dead-reckoning calculation, this is a true course. The track chart of the north Atlantic gives the variation at Sandy Hook as 10° W., or -10° . The true course being 119° , we get the magnetic course, allowing for variation only, by formula (3), $M = T - V = 119^{\circ} - (-10^{\circ}) = 129^{\circ}$. The second deviation table shows that:

for magnetic course 120°, the deviation is $-6^{\circ}.9$, and for magnetic course 135°, the deviation is $-4^{\circ}.8$.

Magnetic course 129° falls between 120° and 135°, so that an interpolation (to be extremely exact) between $-6^{\circ}.9$ and $-4^{\circ}.8$ makes the deviation for magnetic course 129° come out $-5^{\circ}.6$. Formulas (1) and (2) now give:

Error
$$= E = V + D = -10^{\circ} - 5^{\circ}.6 = -15^{\circ}.6$$

Compass course $= C = T - E = 119^{\circ} - (-15^{\circ}.6) = 134^{\circ}.6$.

To check this, we can now solve the same problem in the inverse way with the first deviation table. For the compass course $134^{\circ}.6$, this table gives the deviation as $-5^{\circ}.9$. The variation being -10° , we have:

$$E = V + D = -10^{\circ} - 5^{\circ}.9 = -15^{\circ}.9$$
 and $T = C + E = 134^{\circ}.6 - 15^{\circ}.9 = 118^{\circ}.7$,

agreeing very closely with the true course 119°, with which we started. This shows that the two deviation tables are quite consistent in this case, and also checks the accuracy of the calculation.

We shall close this chapter with the following little table, showing the correspondence between the two methods of dividing the compass card into points, and into degrees.

COMPASS POINTS AND DEGREES

	۰	,		۰	,		•	,		•	,
North	0	0	East	90	0	South	180	0	West	270	0
N. by E.	11	15	E. by S.	101	15	S. by W.	191	15	W. by N.	281	
N.N.E.	22	30	E.S.E.	112	30	S.S.W.	202	30	W.N.W.	292 3	30
N.E. by N.	33	45	S.E. by E.	123	45	S.W. by S.	213	45	N.W. by W.	303 4	15
N.E.	45	0	S.E.	135	0	S.W.	225	0	N.W.	315	0
N.E. by E.	56	15	S.E. by S.	146	15	S.W. by W.	236	15	N.W. by N.	3261	15
E.N.E.	67	30	S.S.E.	157	30	W.S.W.	247	30	N.N.W.		
E. by N.	78	45	S. by E.	168	45	W. by S.	258	45	N. by W.	3484	15
		_		1			l				
$\frac{1}{2}$ pt. = 2° 49' $\frac{1}{2}$ pt. = 5° 38' $\frac{1}{2}$ pt. = 8° 26' 1 pt. = 11° 15'											

CHAPTER V

COASTWISE NAVIGATION

Before proceeding to a consideration of navigation by means of astronomic observations, as it is practiced on the high seas, we must first explain certain methods by which it is possible to ascertain a ship's position in latitude and longitude while she is in sight of land. Often such methods suffice to complete a long coastwise voyage in safety; they are always important for a last determination of the ship's position before a deep-sea voyage actually begins. Such a last determination is called "taking a departure" (cf. p. 2), and from such point of departure dead-reckoning calculations begin for the first day of the voyage.

Any determination or fixing of a ship's position, by astronomic observations or otherwise, is often called, for brevity, a "fix." To obtain one while in sight of land it is customary to make observations upon well-known objects ashore, such, for instance, as lighthouses, or other conspicuous objects marked on the chart. It is always possible to observe the bearings of such objects from the ship's deck with the compass, azimuth circle, or pelorus (p. 44).

When there is but one such object in sight, it is impossible to secure a fix with ordinary instruments, if the vessel is at anchor. But if she is running, it is merely necessary to take two bearings, and to estimate the distance run by the ship in the interval between the two. Figure 9 will make this matter clear. A lighthouse ashore is at L. SS" is the direction of the ship's course; S her position when the first bearing was observed, and S' her position at the time of the second bearing. SN is the direction of the north.

After taking the first bearing, the navigator must calculate the angle S"SL, between the ship's course SS" and the

Bearings.

lighthouse direction SL. Thus, if the ship's course angle NSS" (p. 10) was 20°, and the bearing NSL was 42°, the angle S''SLwould be $42^{\circ} - 20^{\circ} = 22^{\circ}$. the ship proceeds on her course, the angle S''SL will become larger, and a second bearing must be taken at the moment when the ship reaches the point S', where the angle S''SL has become S''S'L. This point S' must be so chosen that the angle S'S'L is just twice the angle S''SL observed at S; or, in this case, 44° . This is called "doubling the bear-Fig. 9.—Ship's Position by Two ing from the bow," and it can easily be accomplished if we con-

tinue watching the compass bearing of L as the ship goes ahead, and catch the observation at the right moment. The ship's course not having been changed from 20° (this is important), the right moment will occur when L bears $20^{\circ} + 44^{\circ} = 64^{\circ}$ by the compass.

It can easily be proved by geometry that the distance S'L between the ship at S' and the lighthouse at L will be equal to the distance SS' traveled by the ship in the interval between the two observations. This distance can be estimated quite accurately with an instrument called a "log," or "patent log," which is towed astern of the ship. It is so constructed that it turns as it is pulled through the water, and the number of turns is automatically counted by an attached contrivance on deck. The count is (also automatically) turned into miles of distance; so that the log on deck will indicate how far the ship traveled from S to S'.

As soon as we know the distance S'L and the bearing of the line S'L, we can "lay down" or "plot" the position of S' on the chart; and this will be a "good fix." To do this, let us indicate by B' the bearing of the line S'L, and then draw on the chart, through the lighthouse L, a pencil line whose bearing from L is $B' + 180^{\circ}$, or "B' reversed." This can be done with a "course protractor," or with "parallel rulers," instruments to be purchased from any dealer in navigators' supplies. Next we measure or "lay off" on that line the distance S'L, equal to the run SS' as it came from the log. We always know the right "scale" of the chart (or fraction of an inch corresponding to one logged mile) which must be used in laying off the distance S'L; for we know that one mile always corresponds to 1 minute of latitude (p. 15), and the right- and left-hand edges of the chart are always divided into degrees and minutes of latitude.

Since the above bearings were observed by compass, it is now important to consider the compass error (p. 43). This will not affect the observations, because it will be the same for both ship's course and lighthouse bearing, so the angles S''SL and S''S'L, which are obtained by subtraction, will be the same as if there were no compass error. But when we come to plotting on the chart, the compass bearing B' must be corrected by adding the deviation from the deviation table (pp. 48, 49). The resulting magnetic bearing (p. 49) must be used for B', if the chart has printed on it a compass card (p. 41) showing magnetic bearings. If the printed card shows true bearings only, B' must be corrected for both deviation and variation (p. 43).

A specially important case of the foregoing occurs when the two angles S''SL and S''S'L are 45° and 90°. The second bearing B' will then put the light just abeam, and the distance by log, SS', is the distance at which the ship passes the light abeam. This case is called a "bow-and-beam bearing." The navigator sights the light when it bears 45° or 4 points (p. 52) "broad" on the bow, "starboard,"

or "port." He then "reads" the log. When he brings the light abeam through the motion of the ship, he reads the log again, and the run in the interval, as taken from the log, is the light's distance abeam.

When sailing along the coast, it is particularly important so to shape the ship's course that lights and other prominent landmarks will be passed at the right distance abeam. The chart shows what the right distance is: if the navigator shapes a course which makes the distance abeam too small, he may fail to clear rocks or shoals extending seaward; and if he makes it too large, he may lengthen his voyage unnecessarily in rounding the light.

There are certain pairs of angles (S''SL) and S''S'L) which will make known the coming distance abeam long before the ship is dangerously near the light. These angles, S''SL and S''S'L, are called "bearings from the bow" (see p. 54), since they are really measured from the ship's bow instead of the north. If the two bearings from the bow are either of the following pairs:

22° and 34°, 32° and 59°, 27° and 46°, 40° and 79°,

then the logged distance in the interval between the two observations is the distance at which the ship will pass the light abeam if she continues on her present course. This kind of observation will inform the navigator whether his course is safe in ample time to change it if necessary; and, since in this case no bearings are marked on the chart, no attention need be paid to compass error.

When two or more known and conspicuous landmarks are visible from the ship, it is possible to secure a fix by means of "cross-bearings." Observe the bearings of the objects as nearly simultaneously as possible. Allow for compass error in the manner just explained. Calculate for each object a reversed bearing by adding 180° to its observed bearing. Draw on the chart through each object

a pencil line having the proper reversed bearing and these lines will intersect at the point on the chart where the ship

is located. Figure 10 illustrates this matter. L, L', L'' are lights or landmarks ashore. visible from the ship, and also printed on the chart. The ship is at S. The lines intersecting at S represent the reversed bearings of L, L', L''. as observed from S. Only two lines are necessarv: and thev should be chosen so that the angle between them is as near

Fig. 10. — Ship's Position by Cross Bearings.

a right angle as possible, if high accuracy is required in the fix. The third object and line merely serve as an additional check or safeguard against error.

In addition to the foregoing methods of locating a ship by observations of objects ashore, there is a way to avoid sunken rocks or shoals without actually locating the ship on the chart. It is called the "danger angle," and is shown in Fig. 11. The small circle is supposed drawn on the chart around a rocky shoal K which must be cleared by the ship traveling along the course SS'. To make certain of clearing it safely, the navigator selects two visible objects ashore, and shown on the chart at L and L'. He draws on the chart a large circle passing through L and L', and just touching the dangerous small circle at T. There is no difficulty in finding the center of the large circle, because it must be somewhere on the line PQ, which is drawn at right angles to the line LL' at its middle point P. A few trials with a

pair of compasses will locate the center. Next, the two lines LT and L'T are drawn. Then the angle LTL' is called the danger angle.

Now it is a principle of geometry that if we select other points on the large circle, such as T' and T'', the angles

Fig. 11. - The Danger Angle.

LT'L', LT"L', etc., will all be equal, and will contain the same number of degrees as the danger angle LTL'. It follows that if the navigator measures from the deck the angle formed by two lines drawn to the ship from L and L', and if he finds it equal to the danger angle LTL', as measured on the chart with a protractor (p. 55), he then knows that the ship is somewhere on the large circle, and is therefore perhaps too near the small dangerous circle. If, on the other hand, the ship is entirely outside the large circle, and therefore surely safe from the dangers of the small circle,

the measured angle at the ship between the objects L and L' will always be smaller than the danger angle LTL'.

Angles can be measured from the deck by taking compass bearings of L and L'. The difference of the two will be the deck angle, which should be smaller than the danger angle measured on the chart. But the very best way to measure the deck angle is to use the sextant, an angle-measuring instrument to be described later (p. 61).

The danger angle can also be used when it is necessary to pass between a sunken danger circle and the shore. The large circle is then drawn through L and L' as before, but in such a way as just to touch the inside of the small circle instead of the outside. To pass inshore of the small circle

it is then necessary for the navigator to keep his measured deck angle *larger* than the danger angle, instead of smaller.

Navigators also use at times a means of safety known as the "danger bearing," illustrated in Fig. 12. There is but one charted object in sight ashore at the point L. The ship at S must steer in such a way as to avoid sunken rocks at K. Evidently, she must pass outside the line SQ, of which the bearing from the north is the angle NSQ, which can be measured on the chart. This is the danger bearing, and the ship's course SS' to

Fig. 12.—The Danger Bearing.

be safe, must be *greater* than the danger bearing. In the case shown in the figure, the danger bearing would be very useful long before a fix could be had by means of bearings from the bow or bow-and-beam bearings.

Finally, to complete this part of our subject, it is necessary to mention "soundings," which are a method of *feeling* the land, even when it cannot be seen. By means of

the "lead-line" the mariner can ascertain when he is in shoal water; and as depths of water are always marked on the chart, he can often get valuable information as to the ship's position. As she runs along her course, he can take a "line of soundings" and upon examining the chart he will often find but a single possible line on the chart where the charted depths correspond with those observed. It follows that the ship's course must have been along that line on the chart; and at an anxious moment, in a fog, such a check will be a great relief to the navigator. Even in the ocean, far from land, it is possible to take soundings with the "sounding machine" at great depths, and in some parts of the ocean quite accurate locating of the ship will result. Specimens from the ocean floor can also be brought up by attaching some sticky grease to the bottom of the lead, and at times these specimens also give information of value, for the charts always specify the kind of bottom existing in various parts of the ocean.

CHAPTER VI

THE SEXTANT

WE have twice made reference to this instrument - once (p. 5) as a contrivance for ascertaining by observation how high the sun is in the sky, and again (p. 59) in the measurement of the danger angle. These two uses of the sextant are not inconsistent, for it is really intended for the measurement of any angle (p. 8) formed at the observer's eye by two lines drawn to two distant objects. In the case of the danger angle these two distant objects are landmarks ashore; in the case of the sun they are the "horizon" line (where sea and sky seem to meet), and the sun itself. height of the sun (or of any star) in the sky is called its "altitude": and so the altitude is always an angle, to be measured in degrees and minutes. The point directly overhead is the "zenith"; the angle between lines drawn to horizon and zenith is 90°, or a right angle. An altitude of 40°, for instance, simply means that the distance from the horizon to the sun is $\frac{40}{90}$ of the total distance from horizon to zenith.

Figure 13 will give an idea of the construction of the sextant. The essential parts are two small silvered mirrors, M and m; a telescope, EK; and a circle, AA, engraved with "graduations," by means of which angles may be measured upon it in degrees, minutes, and seconds. The mirror m and the telescope EK are firmly attached to the sextant; but the mirror M is pivoted in such a way that it

¹ Quoted in part from Jacoby's "Astronomy, a Popular Handbook," Macmillan, 1913; reprinted 1915.

can be turned, and the angle through which it is turned measured on the circle by means of the index CB. When the mirror M is turned until it is parallel to the fixed mirror m, the circle "reads" or indicates 0° , because the angle between the two mirrors is then 0° . In all other positions

Fig. 13. - The Sextant.

of the mirror M the circle measures the angle between the two mirrors. P and Q are sets of colored glasses, which can be interposed temporarily, when the sun's rays are so brilliant as to be hurtful to the observer's eye. R is a small magnifying glass, pivoted at S, intended to facilitate the examination of the index CB. At C and B are shown the "clamp," by which the index can be fastened to the circle, and the "tangent screw," or "slow-motion screw" which will adjust it delicately, after it has been clamped. I and F are additional telescopes or accessories.

The mirror m has an important peculiarity. The silvering is scraped away at the back of the mirror from half its

surface. Thus only one half reflects; the other half is simply transparent glass. A navigator looking into the telescope at *E* will therefore look *through* the mirror *m* with half his telescope, and with the other half he will look *into* the mirror.

Now it is a fact that half a telescope acts just like a whole one. If a person using an ordinary spy-glass half covers the big end with his hand, he will see the same view he saw with the whole glass. Only, as half the "light-gathering" power is cut off, this view will be fainter, — less luminous. Applying this to the sextant telescope, it is clear that the observer will see two things at once: with half the telescope he will see what is visible through the mirror m; and with the other half he will see what is visible by reflection from the mirror m.

If he holds the sextant in such a position that the telescope is horizontal, while the frame of the instrument is vertical, he will see the visible sea horizon with half the telescope through the mirror m. If the other mirror M is then turned to the proper position, it is possible to see the sun in the sky at the same time, with the other half of the telescope, the solar rays having been reflected successively from both mirrors, M and m. To make this possible, the sextant telescope must be aimed at that point of the sea horizon which is directly under the sun. The solar rays will then strike the mirror M first; be thence reflected to the silvered part of the mirror m; and finally reflected a second time into the telescope. Therefore the observation consists in so turning the movable mirror M, that the sun and horizon can be seen coincidently in the telescope.

The angle between the mirrors can then be measured on the circle; and it is easy to prove by geometry that the angular altitude of the sun will be twice the angle between the two mirrors. Thus it should merely be necessary to double the mirror angle, as indicated by the sextant index, to obtain the solar altitude. But the sextant makers always

save the navigator the trouble of doubling the angle by the simple device of numbering half degrees on the arc AA as if they were whole degrees; so the angle as it comes from the sextant is already doubled for further use. The mirror m is called the "horizon glass," because the navigator looks through it at the horizon. The other mirror M is the "index glass," because it is attached to the index arm.

When the sextant is used for non-astronomical observations, such as the danger angle, the frame is held horizontally, instead of vertically, as in observations of the sun. The telescope is aimed at the left-hand object ashore, and that object is viewed through the horizon glass m. The index glass M is then turned until light from the right-hand object is also brought into the telescope, after successive reflections from the two mirrors M and m. The two objects will then be seen "superposed," and the sextant arc will give the angle between two lines drawn from the observer on board to the two objects ashore. This angle should be smaller than the danger angle to keep the ship safely off-shore of sunken dangers (p. 59).

Reading the sextant circle, or ascertaining from it the angle that has been measured, is accomplished by means of a "vernier." This is a short circular arc, engraved with graduations resembling those on the sextant circle, attached to the index CB (fig. 13) just under the little magnifier R. It is so placed that the graduations on the sextant circle and the vernier are close together and can be seen at the same time through the magnifier R. Figure 14 gives an idea of the vernier and a part of the sextant circle near the zero of its graduations. Numbers on both circle and vernier increase toward the left. On the circle, the largest spaces, marked by long lines, are whole degree spaces. Each is usually divided into two halves of 30' each indicated by shorter lines, and these are again subdivided into three small spaces of 10' each. The divisions on the vernier resemble those on the circle, except that the degree spaces of the former are here called minute spaces, and the 10' spaces of the former are called 10" spaces.

The real index of the instrument is the zero mark on the vernier, sometimes provided with an engraved "arrow." If this falls exactly on a degree mark of the circle, say the 1° mark, the reading of the instrument is exactly 1° 0′ 0″. If it falls exactly on a small line of the circle, say the second to the left of the 1° mark, the reading is exactly 1° 20' 0". But if it falls between two of the small lines, say between the 20' and 30' marks to the left of the 1° mark (as shown in the figure), the reading must be 1° 20' and a "bit." It is the business of the vernier to estimate the size of that bit. To do this look along the vernier until you find a line which is exactly opposite some line on the circle. There will always be such a line: in the figure it is the 6' line of the vernier. Pay no further attention to noting which line on the circle is the one thus "exactly opposite"; it matters not which line it is. But read carefully the number on the vernier belonging to the "exactly opposite" line you have found there. Being on this occasion the 6' line, it follows

that the bit is 6'; and as we found the reading to be $1^{\circ} 20'$ and a bit, the complete reading is $1^{\circ} 20' + 6' = 1^{\circ} 26'$.

If the vernier line that happened to be "exactly opposite" was not one of the ten long minute lines, but fell between two of them, it would indicate that the bit was made up of minutes and seconds, instead of being an exact number of minutes. For each space the "exactly opposite" vernier line happens to lie to the left of a long vernier minute line, 10" must be added to the bit. For instance, if in the figure the "exactly opposite" vernier line was the next short one to the left of the 6' long line, the bit would be 6' 10", and the complete reading 1° 26' 10", instead of 1° 26'. But seconds are not really required when observing aboard ship, so that it will be sufficient, in using the vernier, to find the number of the long vernier line that comes nearest to being "exactly opposite."

It will also be noticed in the figure that the sextant circle has some additional graduations to the *right* of the 0° mark. These are called "off the arc" graduations, and it is sometimes necessary to read a small angle upon them, measuring from the 0° mark to the right instead of the left. This makes it necessary to read the vernier backwards, calling the 0′ mark of the vernier 10′ and the 10′ mark 0′.

This backward reading of the vernier offers no particular difficulty, and it is especially useful in determining by observation the "index error" of the sextant. We have seen (p. 62) that when the two sextant mirrors are parallel, the index should read 0° 0′ 0″. But it is seldom possible to adjust the instrument so that this condition will be satisfied exactly; nor would the adjustment remain perfect very long. A better plan is to determine by observation how much the reading differs from 0° 0′ 0″, when the mirrors are parallel. This difference is the index error, and must be applied as a correction to all angles observed with the instrument.

It is easy to make the mirrors parallel: we have merely

to sight some distant well-defined terrestrial object like the gilt ball on the top of a flagpole (or the sea horizon, if aboard ship at sea), after clamping the index near 0°. We shall then see in the telescope two images of the distant object; one by direct vision through the unsilvered part of the horizon glass, the other after reflection from both mirrors. By means of the tangent screw, the observer, with his eye at the telescope, can bring these two images together, so that they will appear as a single image. Then the mirrors will be parallel, and the vernier should read 0° 0′ 0″. If it actually reads 0° 8′, for instance, instead of 0° 0′ 0″, it means that the reading is 8′ too large on account of index error; and every angle measured with that sextant at that time will be 8′ too large, and must be corrected by subtracting 8′ from it.

If, on the other hand, the reading is 8' "off the arc," when it should be 0° 0', the instrument reads 8' too small, and any angle measured with it must be corrected by adding 8' to it.

For accurate determination of the index error (and it should be checked frequently), navigators prefer to observe the sun, or at night, a star. If a star is used, the process is the same as just described for a flagpole ball. But if the sun is used, a slightly different method is required. The sun, as seen in the telescope, shows a round disk of con-

siderable size, and it is not possible to superpose the two images accurately. Therefore it is better to make them just touch, as shown in Fig. 15, when they are said to be "tangent" to each other. This must be done successively in two positions, AB and BA. In other words, after the first "tangency" has been observed, the tangent screw (

Fig. 15. — Index Error.

has been observed, the tangent screw (B, fig. 13) is manipulated until the image A passes across B from top to bottom, and gives a new tangency in the second position.

Each tangency will give a reading of the vernier. Unless

the sextant is greatly out of adjustment, one of these readings will be off the arc, the other on the arc. If there were no index error, the off-arc and on-arc readings would be equal; if they differ, half the difference is the index error. If the off-arc reading is the larger, all altitudes measured with that sextant must be *increased* by the amount of the index error; and if the on-arc reading is the larger, all such altitudes must be similarly diminished.

The following is an example of an index error determination:

On-a	rc readings,	Off-arc readings,
	31' 20"	33′ 20′′
	31 40	33 50
	30 50	34 0
Means,	31' 17"	33' 43"

The difference is 33' 43'' - 31' 17'' = 2' 26''. Half the difference, or 1' 13'', is the index error; and because readings on the arc are the smaller, all angles read with this instrument must be *increased* by 1' 13'', or, for ordinary purposes of navigation, by 1'.

In addition to certain "adjusting screws" with which the index error can be reduced when it becomes unduly large, means are provided for three other sextant adjustments. These are:

- 1. To make the index glass perpendicular to the frame of the instrument.
 - 2. To do the same with the horizon glass.
- 3. To set the telescope parallel to the frame of the instrument.

These adjustments are always completed by the maker before a sextant is sent out, nor does the navigator usually need to correct them himself. But it is important to know how to test them occasionally. Perpendicularity of the index glass can be examined by looking into the glass very obliquely with the index set near 0°. It is then possible to see the inner edge of the sextant circle both by looking at

it directly, past the edge of the index glass, and also by reflection in the glass itself. The inner edge of the circle should form a continuous line when so examined, if the glass is perpendicular; but if it is inclined, the line will appear broken, instead of continuous.

Secondly, perpendicularity of the horizon glass can be tested at the same time the index error is determined by observing a star or a distant terrestrial point (p. 67). index glass having been properly adjusted to perpendicularity, the two mirrors can never be made parallel by moving the index, unless the horizon glass is also properly perpendicular. Any existing lack of adjustment will therefore betray itself in the index error determination, because the two images of the star or distant object will not be superposed in any position of the index.

Thirdly, the parallelism of the telescope to the frame of the instrument can usually be best tested with an ordinary pair of "calipers."

Having thus described the sextant, its adjustments, and its use from the deck, we have still to explain how it can be used

use from the deck, we have sum ashore. Sometimes it is necessary for the sahore, here when it is not usually possible to see the horizon line (p. 61). Recourse must then be had to an "artificial horizon," which is simply an iron basin full of mercury covered with a glass roof. mercury furnishes an almost perfectly horizontal mirror, and the glass roof prevents wind from ruffling the mercury surface, and thus destroying the mirror. Figure 16 explains the principle of the

artificial horizon. HH is the mercury mirror, S the sun. and X the sextant. The observer aims the sextant telescope at the mercury where he can see a reflection of the sun. then measures with the instrument the angle between a line

drawn to the sun as seen reflected in the mercury and another line drawn to the actual sun in the sky. It can be shown by geometry that this measured angle will be just twice the real altitude of the sun, such as it would be if observed from the sea horizon. Therefore, in using the artificial horizon, it is merely necessary to divide the sextant angle by 2 to obtain the correct altitude of the sun.

In observations of this kind two "suns" are seen at the same time in the telescope, just as is the case in index error observations (p. 67); whereas in observing from the sea horizon, the telescope shows only one solar image and the horizon line. When there are thus two solar images, they must be brought into tangency, just as we have already explained for index error (p. 67). When there is but one, it must be brought into tangency with the visible sea horizon line.

But this altitude is not yet ready to be used in the further calculations for obtaining the position of the ship in latitude

Fig. 17.—Dip of the Horizon.

and longitude. Further preparatory corrections must be applied, in addition to the index error (p. 66), which is always the first correction to receive attention. These preparatory corrections are:

1. "Dip" of the sea horizon, due to the elevation of the navigator on the ship's deck above the surface of the sea. Its cause is shown in Fig. 17. C is the center of the earth, K a point at sea level, and O the navigator, elevated

a distance OK above the sea. OZ is the direction of the zenith (p. 61), OS the direction of the sun, and OH a horizontal line from O. OT is a line drawn through O, and just touch-

ing the sea surface at T'. Evidently QT will be the direction of the sea horizon, where sky and sea seem to meet. Therefore, the altitude of the sun, as measured from the visible sea horizon, will be the angle SOT; whereas the angle we require is the angle SOH, or the altitude of the sun above the true horizontal line OH. Therefore the angle HOT is a correction for dip which must be subtracted from all measured altitudes, and the amount of the correction depends on the height of the navigator's eye above the sea surface.

- 2. "Refraction" is a bending of the light rays as they come down to us from the sun through the terrestrial atmosphere. It always makes the sun seem higher in the sky than it really is, giving another subtractive correction for the observed altitude. The bending here involved is due to the passage of the sun's light rays through atmospheric strata of increasing density as the light approaches the earth's surface.
- 3. "Parallax" is a small correction which must be added to the observed altitude of the sun. In strict theory, all astronomic observations are supposed to be made from the earth's center instead of its surface where the ship floats; and the small parallax correction allows for this minor theoretic point. In the case of star observations this correction is zero.
- 4. "Semidiameter" is a correction depending on the choice by the navigator of a particular point on the sun's disk (p. 67) for observation. The sun's altitude, as used in the further calculations, should be the altitude of the sun's center; but it is impossible to locate the center of the disk accurately in the telescope, so the navigator always observes the lowest point of the disk. This is called the "lower limb" of the sun.

Beginners sometimes have difficulty in distinguishing the upper from the lower limb in the telescope. The best way to do this is to focus the telescope on some distant object, and note whether it appears upside-down in the field of view. If so, the telescope is an "inverting" one, and the top of the sun must be observed, as it appears in the telescope, though it will really be the correct (or lower) limb, because of inversion by the telescope. When using the artificial horizon with an inverting telescope, the tangency must be made by bringing the bottom of the mercury image in contact with the top of the other image. The high-powered telescopes supplied with good sextants are usually inverting telescopes.

Evidently the measured altitude, as it comes from the sextant, must be increased by the amount by which the sun's center is higher than the lower limb, and this is the sun's semidiameter. The index correction, together with the above four additional corrections, will fully prepare a measured sextant altitude of the sun for further use in navigational calculations. In the case of a star, which appears in the telescope as a point of light only, without any perceptible disk, no semidiameter or parallax corrections are required; and in using the artificial horizon (p. 69), no correction for dip is necessary, either for the sun or a star.

It is possible to arrange these various corrections in convenient tables. Thus, in Table 6 (p. 247), we give a combination of corrections 2 (refraction), 3 (parallax), and 4 (semi-diameter), to be used for observations of the sun's lower limb, and the same combination without the semidiameter and parallax 1 to be used for star observations. It will be noticed that the tabular corrections vary for different values of the observed altitude, which appears in the left-hand column of the table. This variation comes mainly from the refraction part of the combined correction, for the refraction is much greater when the sun or star is observed at a low altitude near the horizon than it is at a high altitude near the zenith. At the foot of the page is given a small supplementary correction depending on the date in the year.

¹ Which leaves refraction only.

This small correction is not important in navigation, but is given here for the sake of completeness. It arises from the semidiameter part of the combined correction, for the annual orbit of the earth around the sun is of such a shape that the earth is nearer the sun in January than it is in July, which makes the sun appear bigger in January. And when the sun appears big, the semidiameter will of course be large too.

Table 7 gives the dip of the sea horizon, the number in the left-hand column being the height (in feet) of the navigator's eve above sea level. This will be the height of the ship's deck, increased by the height of the man's eve above the deck. Unfortunately, the dip, as given in Table 7, at times varies considerably from the dip as it actually exists at the ship. The cause can be seen from Fig. 17 (p. 70), where it will be noticed that the line from the observer at O to the sea horizon at T' passes very near the surface of the ocean. It is therefore entirely in the lowest strata of the terrestrial atmosphere, and there quite irregular refractions sometimes occur. These have been known to produce errors in the dip amounting to 10' or 20', and it is principally the existence of these unavoidable errors that makes it unnecessary to read the sextant closer than the nearest minute (p. 66), when observing from the deck. But when observing ashore with the artificial horizon, which has no dip, the navigator may, if he chooses, read seconds, especially if he intends to use in his further calculations the "mean" or average of a considerable number of observations.

We shall now give an example of the complete correction of a sextant observation. Suppose the angle read from the sextant was 30° 28′, the index error (p. 68) 1′, additive, height of observer's eye 26 feet. We should then have:

```
observed altitude, lower limb = 30^{\circ} 28' index correction = + 1' correction from Table 6 (p. 247) = + 14' corrected altitude, for further use = 30^{\circ} 28' = + 14' = -5' = -5'
```

If the altitude had been observed ashore with an artificial horizon, it might have been desirable to retain seconds. The calculation might then have been as follows:

observed double altitude (see p. 70), lower limb	$= 63^{\circ} \ 0' \ 20''$
index correction (p. 68)	= +1 13
corrected double altitude	= 63 1 33
resulting altitude	$= 31 \ 30 \ 46$
correction from Table 6 (interpolated)	= + 1431
corrected altitude, for further use	= 31 45 17

CHAPTER VII

THE NAUTICAL ALMANAC

Before beginning the further utilization of altitude observations in our navigation calculations, it is necessary to understand the use of the Nautical Almanac. This is an annual publication, issued in two different editions by the Nautical Almanac Office, United States Naval Observatory. Copies can be obtained from the Superintendent of Documents, Washington, D. C., or through any dealer in nautical supplies. Navigators do not need the larger edition, of which the title is "American Ephemeris and Nautical Almanac"; accordingly, all our references are made to the smaller edition for the year 1917. Parts of certain pages from that edition are reprinted in the present volume for convenience of reference, and we shall give a somewhat detailed explanation of the almanac page 29 (our p. 76).

Let us consider the date Monday, Dec. 17. We find for that date, and for every even hour $(0^h, 2^h, 4^h, 6^h, \text{ etc.})$ of "Greenwich Mean Time" (abbreviated G. M. T.¹), two tabular numbers (p. 10) called "sun's declination" and "equation of time."

To understand these it is necessary to bear in mind that the kind of time in ordinary use is "solar time," as kept by the sun. The "solar day" begins at "noon," called 0" in astronomic navigation, and it continues through twenty-four hours, without any confusing A.M. and P.M. In ordinary life the day begins twelve hours sooner, at midnight, and runs through two twelve-hour periods of A.M. and P.M. to

¹ The reader is requested to note carefully this abbreviation, as it will be used very frequently.

SUN, DECEMBER, 1917. From Nautical Almanac, p. 29

			· · ·						
G. M. T.	Sun's Dec- Lination	EQUATION OF TIME	Sun's Dec- Lination	EQUATION OF TIME	Sun's Dec- Lination	EQUATION OF TIME			
	Mond	lay 17	Tueso	lay 25	Satur	day 29			
h	. ,	l m. s	0 /	l m s	o ' m s				
${f 0 \over 2}$	- 23 21.3	+3 56.8	- 23 24.7	-0 1.6	- 23 15.2	-1 59.7			
2	23 21.5	3 54.4	23 24.6	0 4.1	23 14.9	2 2.1			
4 6	23 21.7	3 51.9	23 24.5	0 6.5	23 14.6	2 4.6			
	23 21.9	3 49.5	23 24.4	0 9.0	23 14.3	2 7.0			
8 10	23 22.1 23 22.2	3 47.0 3 44.5	23 24.2 23 24.1	0 11.5	23 14.0 23 13.7	2 9.4			
12	23 22.4	3 44.5 3 42.1	23 24.1	0 14.0 0 16.5	23 13.7 23 13.4	2 11.9 2 14.3			
14	23 22.6	3 39.6	23 23.8	0 18.9	23 13.1	2 16.7			
16	23 22.8	3 37.1	23 23.7	0 21.4	23 12.8	2 19.1			
18	23 22.9	3 34.7	23 23.5	0 23.9	23 12.5	2 21.5			
$\frac{20}{22}$	23 23.1	3 32.2	23 23.4	0 26.4	23 12.2	2 24.0			
H. D.	23 23.2 0.1	3 29.8 1.2	23 23.2 0.1	0 28.8 1.2	23 11.9	2 26.4			
ш. Б.					0.1	1.2			
0	Tuesd - 23 23.4	+3 27.3	Wednes - 23 23.1	- 0 31.3	Sund - 23 11.6				
2	23 23.6	3 24.8	23 22.9	0 33.8	23 11.8	- 2 28.8 2 31.2			
4	23 23.7	3 22.3	23 22.7	0 .36.3	23 11.0	2 33.6			
6,	23 23.8	3 19.9	23 22.5	0 38.7	23 10.6	2 36.0			
.8	23 24.0	3 17.4	23 22.4	0 41.2	23 10.3	2 38.4			
10 12	23 24.1 23 24.3	3 14.9 3 12.5	23 22.2	0 43.7	23 10.0	2 40.9			
14	23 24.4	3 12.5	23, 22.0 23, 21.8	0 46.2 0 48.6	23 9.7 23 9.3	2 43.3 2 45.7			
16	23 24.5	3 7.5	23 21.7	0 51.1	23 9.0	2 48.1			
18	23 24.6	3 5.0	23 21.5	0 53.6	23 8.6	2 50.5			
20	23 24.8	3 2.6	23 21.3	0 56.0	23 8.3	2 62.9			
H. D.	23 24.9	3 0.1 1.2	23 21.1	0 58.5	23 7.9	2 55.3			
п. Б.	Wednes		0.1 Thurse	1.2	0.2 1.2 Monday 31				
0	- 23 25.0	+ 2 57.6	- 23 20.9	-1 0.9	- 23 7.6 l	- 2 57.7			
2	23 25.1	2 55.1	23 20.7	1 3.4	23 7.2	3 0.1			
4 6	23 25.2	2 52.6	23 20.5	1 5.9	23 6.9	3 2.4			
	23 25.3	2 50.2	23 20.3	1 8.3	23 6.5	3 4.8			
.8	23 25.4	2 47.7	23 20.1	1 10.8	23 6.1	3 7.2			
10 12	23 25.5 23 25.6	2 45.2 2 42.7	23 19.8 23 19.6	1 13.2 1 15.7	23 5.8 23 5.4	$\begin{array}{ccc} 3 & 9.6 \\ 3 & 12.0 \end{array}$			
14	23 25.7	2 40.2	23 19.4	1 18.1	23 5.0	3 14.4			
16	23 25.8	2 37.8	23 19.2	1 20.6	23 4.6	3 16.7			
18	23 25.9	2 35.3	23 19.0	1 23.1	23 4.3	3 19.1			
20	23 26.0	2 32.8	23 18.7	1 25.5	23 3.9	3 21.5			
H. D.	23 26.1 0.0	2 30.3 1.2	23 18.5	1 28.0 1.2	- 23 3.5	- 3 23.9			
11. D.	Thursd		Frida		0.2	1.2			
0	- 23 26.1	+227.8	- 23 18.3 l	-130.4					
2	23 26.2	2 25.3	23 18.0	1 32.9					
4	23 26.3	2 22.8	23 17.8	1 35.3					
6	23 26.3	2 20.4	23 17.5	1 37.8					
. 8	23 26.4	2 17.9	23 17.3	1 40.2	SEMIDIA	METER			
	23 26.5	2 15.4 2 12.9	23 17.0 23 16.8	1 42.6					
10	92 98 5			1 45.1 1 47.5	Dec. 1	16'26			
12	23 26.5 23 26.6		23 16.5						
12 · 14	23 26.6	2 10.4	23 16.5	1	11	16'28			
12 14 16 18	23 26.6 23 26.6 23 26.7	2 10.4 2 7.9 2 6.4	23 16.5 23 16.3 23 16.0	1 50.0 1 52.4	11 21	16′28 16′29			
12 14 16 18 20	23 26.6 23 26.6 23 26.7 23 26.7	2 10.4 2 7.9 2 6.4 2 2.9	23 16.3 23 16.0 23 15.7	1 50.0 1 52.4 1 54.8	11	16'28			
12 14 16 18	23 26.6 23 26.6 23 26.7	2 10.4 2 7.9 2 6.4	23 16.3 23 16.0	1 50.0 1 52.4	11 21	16′28 16′29			

Note. — The Equation of Time is to be applied to the G. M. T. in accordance with the sign as given.

the following midnight; but this "civil day," as it is called, does not for the moment concern us.

Solar time, as kept by the *visible sun*, is a very inconvenient kind of time, because there are certain peculiarities in the astronomic motion of the earth which make these solar days of unequal length. They are called "apparent solar days" and the corresponding kind of time is "apparent solar time."

To avoid the above inconvenience, an imaginary "mean sun" and a "mean solar day" have been invented. The mean sun conforms as nearly as possible to the average performance of the visible sun, and the length of the mean solar day is the average of all the apparent solar days throughout the year. The corresponding kind of time, kept by the mean sun, is "mean solar time"; and this is the kind of time recorded by all our watches and marine chronometers (p. 6).

The difference between these two kinds of solar time varies on different dates, and even at different hours on the same date. It is this difference which is called the "equation of time" and which is one of the tabular numbers in the nautical almanac page 29 (our p. 76).

This equation of time is of great importance in navigation, and it is easy to see how page 29 of the almanac may be used to find it. Suppose, for instance, we wish to know what the equation is on Dec. 17, 1917, on board ship, when the ship's chronometer indicates on its face 3 P.M., civil time, or (which is the same thing) 3^h , astronomical time (p. 75). Ship's chronometers are always set to Greenwich mean time, so that 3^h by the chronometer signifies that the time at Greenwich was 3^h .

We then look in the almanac page 29 (our p. 76), and find that the equation was $+3^m 54^s.4$ at 2^h , G. M. T., and $+3^m 51^s.9$ at 4^h , G. M. T. Its value at 3^h must be half-way between these two, or $+3^m 53^s.15$. This we would call $+3^m 53^s.2$, so as to avoid the use of hundredths of seconds, which do not need attention in navigation. And

since the equation is merely the difference between the two kinds of solar time, the + sign means that it must be added to G. M. T., to obtain Greenwich apparent time, in accordance with the "Note" at the foot of the almanac page 29. Consequently, the G. M. T. by chronometer having been $3^h \ 0^m \ 0^s$, the Greenwich apparent time at the same instant was $3^h \ 0^m \ 0^s + 3^m \ 53^s .2 = 3^h \ 3^m \ 53^s .2$.

It will be noticed that the process we have here used for obtaining the equation from the almanac is merely an interpolation (see p. 12). Let us, as another example, find the equation for Sunday, Dec. 30, at 10^h 26^m A.M., civil time by chronometer, and we have purposely here retained the civil method of reckoning time to make certain that the reader understands the difference between civil and astronomic (or navigation) time. The given time is 10^h 26^m A.M... civil time, Dec. 30. But the astronomic Dec. 30 does not begin until noon (p. 75), so that it is not yet Dec. 30 by astronomic reckoning. By that reckoning it is really only 22^h 26^m on Dec. 29. In other words, when the civil time is P.M., as in the first example, the astronomic time is the same as the civil time. But when the civil time is A.M., as in the present example, the astronomic time is found by adding 12^h to the civil time, and deducting 1 from the date. These complications emphasize the advantage of the astronomic count, which avoids A.M. and P.M. altogether.

We now have from the almanac (p. 76):

equation of time, Dec. 29, 22^h, G. M. T. = -2^m 26^s.4, equation of time, Dec. 30, 0^h , G. M. T. = -2^m 28^s.8;

and the numbers in this example have been purposely so chosen that the above two tabular values of the equation (between which the required value falls) come from different dates in the almanac. This creates no confusion, for these two values of the equation are really consecutive tabular numbers, just as much as if they occurred on a single date.

The difference between the two values of the equation is

 $2^{\circ}.4$; and as this difference corresponds to 2^{h} in the lefthand (or argument) column, it follows that the difference for 1^{h} is here $1^{\circ}.2$. This is the change of the equation per hour of time; it is called the "hourly difference" (abbreviated H. D.) and is printed in the almanac at the foot of each daily column.

Now we want the equation for Dec. 29, $22^h \ 26^m$, by the chronometer. The 26^m must next be changed into a decimal fraction of an hour. $26^m = \frac{26}{60}$ of an hour = $0^h.43$. So the time for which we want the equation becomes Dec. 29, $22^h.43$. The H. D. being $1^s.2$, the change in $0^h.43$ will be $1^s.2 \times 0.43 = 0^s.5$. The almanac shows that at 22^h the equation was $2^m \ 26^s.4$, and was increasing numerically. Therefore, at $22^h.43$, it was $2^m \ 26^s.4 + 0^s.5 = 2^m \ 26^s.9$. And this number has the minus sign. Therefore, the G. M. T. being Dec. 29, $22^h \ 26^m$, the Greenwich apparent time at the same instant will be Dec. 29, $22^h \ 26^m - 2^m \ 26^s.9 = Dec.$ 29, $22^h \ 23^m \ 33^s.1$.

Most of these minor interpolation calculations, which are here set forth in great detail for the benefit of the beginner, can be made with sufficient accuracy by a skilled navigator mentally.

In the foregoing two examples we have assumed that the chronometer was right, but these instruments practically never run quite correctly. Therefore, before leaving port, navigators always have their chronometers "rated" by a chronometer expert; and when the instrument is returned to the ship just before sailing, a "rate card" (or "rate paper") always comes with it. Let us suppose that in the present example this card stated that the chronometer was slow $8^m 22^s.5$ on Dec. 20, at noon, and was "losing" 2 1s.8 daily. The $8^m 22^s.5$ would then be the "chronometer error" on Dec. 20; and the 1s.8 would be its "daily rate."

¹ This number is here purposely chosen much larger than would ever occur in practice.

² The opposite kind of "rate" is called "gaining."

From Dec. 20, noon, to Dec. 30, $10^h 26^m$ A.M. is an interval of 9 days 22 hours 26 minutes. This interval must now be reduced to a decimal of a day. $26^m = \frac{26}{60}$ of an hour = $0^h.43$. The interval is therefore $9^a 22^h.43$.

But $22^h.43 = \frac{22.48}{24}$ days = $0^d.93$. Therefore, in days, the interval is $9^a.93$. This transformation of hours and minutes into decimals of a day can be accomplished with less trouble by means of our Table 8 (p. 248).

Having a losing rate of 1°.8 daily, the chronometer lost $1^{\circ}.8 \times 9.93 = 17^{\circ}.9$ in the interval of 9.93 days. And as it was already slow 8^{m} 22°.5 on Dec. 20, it was slow 8^{m} 22°.5 + 17°.9 = 8^{m} 40°.4 at the time for which the equation is required.

Now the equation was required for Dec. 29, $22^h 26^m$ by the chronometer; and that instrument being slow $8^m 40^s.4$, the correct G. M. T. was: Dec. 29, $22^h 26^m + 8^m 40^s.4 = Dec. 29$, $22^h 34^m 40^s.4$. Turned into a decimal fraction of an hour, this becomes Dec. 29, $22^h.58$, instead of $22^h.43$, as we found before, when the chronometer error was omitted from the calculation. The H. D. is $1^s.2$, as before, and the change in $0^h.58 = 1^s.2 \times 0.58 = 0^s.7$. Therefore, at $22^h.58$ the equation is $2^m 26^s.4 + 0^s.7 = 2^m 27^s.1$. This still has the minus sign, so that the correct Greenwich apparent time becomes Dec. 29, $22^h 34^m 40^s.4 - 2^m 27^s.1 = <math>22^h 32^m 13^s.3$.

All the above calculations have been carried out here with unnecessary accuracy. There would be no harm if the result were in error by a few tenths of a second; and it is this circumstance that makes it possible to perform these interpolations largely mentally.

In the foregoing examples no account was taken of the ship's location on the ocean; yet this location may have an indirect influence on the calculations. To understand this, we must consider for a moment the time-differences which exist between different places on the earth. The sun rises in the east and travels across the sky toward the west; so that if we consider two places like Greenwich, England, and New York, for instance, the sun, because of this motion from east

to west, will pass Greenwich first. Consequently, when it is noon in New York, it has already been noon in Greenwich, and is afternoon there. Greenwich time is therefore always later than New York time. The same is true of any other two places; there is always a time-difference between them, and the easterly place has the later or "faster" time.

The amount of such time-difference of course depends on the relative location of the two places, and the relation is such that 15° of longitude-difference corresponds exactly to 1^{h} of time-difference. Thus Sandy Hook, which is in longitude 73° 50' west of Greenwich, has a time-difference from Greenwich of 4^{h} 55^{m} 20^{s} . This conversion of longitude into time-difference is best accomplished by means of our Table 9 (p. 249). According to that table:

$$73^{\circ} = 4^{h} \ 52^{m} \ 0^{g}$$

$$50' = 3 \ 20$$

$$73^{\circ} 50' = 4^{h} \ 55^{m} \ 20^{g}$$

The indirect influence of such time-differences upon the use of the almanac is that they may at times, especially when they are large, make the Greenwich date of the observation different from the date on board. Thus a vessel off Manila Bay, in longitude 120° east of Greenwich, would have her local time 8^h (120°) later than Greenwich time. If a sextant observation was made on board at 4 P.M., civil time, on a Thursday, the chronometer would indicate 8^h, and it would be 8 A.M. on Thursday, because Greenwich is 8^h earlier than the ship. This 8 A.M. would really be 20^h of the preceding Wednesday by astronomic time, and so the almanac date used would be one day earlier than the date of the observation. The chronometer will always give the right Greenwich time, but the navigator must be very careful to interpolate the almanac numbers on the right date.

We have now learned how to ascertain the equation of time from the almanac, and how to use it for transforming G. M. T. into Greenwich apparent time. The contrary transformation, from Greenwich apparent time to G. M. T., can be made by applying the equation in the opposite way: subtracting when it has the + sign in the almanac, and adding when it has the - sign.

The great importance of these time transformations comes from the fact that sextant observations must necessarily be made upon the visible sun. When they are made for the purpose of calculating the local time on board, this local time will therefore necessarily be local apparent solar time, as kept by the visible sun. At the instant of the observation (p. 6), the chronometer face (corrected for error and rate) tells us the G. M. T. If this is turned into Greenwich apparent time by applying the equation, we have only to compare the Greenwich and the ship's apparent times to get the time-difference between the ship and Greenwich. time-difference can then be turned into degrees and minutes. and will be the ship's longitude. Examples of this calculation will be given in detail (p. 99). It is also worth noting here that the time-difference between any two places is precisely the same, quite irrespective of the kind of time in which it is counted.

To complete our explanation of the almanac page 29 (our p. 76), it remains to give an example of a calculation of the sun's declination. This is an angle in degrees and minutes, and it is interpolated just like the equation by the aid of its H. D. Thus, for Dec. 29, $22^h.58$ (p. 80) the declination is obtained thus:

```
Dec. 29, 22^h, declination = 23^\circ 11'.9
H.D. (0'.1) \times 0^h.58 = 0.1, declination decreasing;
by subtraction, at 22^h.58, dec. = 23^\circ 11'.8,
```

and according to the almanac, this declination must be given the minus sign. When the sign should be +, that fact is indicated in the almanac. The use of the declination will be explained later; the accuracy required in the interpolation of it is not so great as we have used here, for the nearest minute suffices in practically all navigation work.

In addition to the sun's declination, navigators require

in their further calculations another number called the sun's "right ascension" (abbreviated, R. A.). This is obtained from pages like the almanac page 3 (reprinted in part below). It is always the R. A. of the "mean sun" that we need, and the almanac gives it for Greenwich mean noon of each day in the year. When needed in our further calculations, it is of course always required for the exact moment when a sextant observation was made. In fact, this statement applies also to the equation of time and declination. They must always be interpolated from the almanac for the moment when the navigator actually observed the sun; and

SUN, 1917. From Nautical Almanac, p. 3

DAY		R	GHT .	Asc	ENS	ON O	F T	HE .	MEAN	St	IN A	т Gr	EEN	WIC	н Мі	EAN	Ν̈́ο	on
OF	1—			_			_			_								
Month		Ju	ly		Augi	ıst	September			October			November			December		
	h	m	8	h	m	8	h	m	8	h	m	8	h	m	8	h	m	6
1	6	35	52.2	8	$\overline{38}$	5.5	10	$\overline{40}$	18.7	12	38	35.3	14	40	48.4	16	39	5.1
$\bar{2}$	6	39	48.8	8	42	2.0	10	44	15.2	12	42	31.8	14	44	45.0	16	43	1.7
2 3	6	43	45.3	8	45	58.6	10	48	11.8	12	46	28.4	14	48	41.5		46	58.2
4	6	47	41.9	8	49	55.1		52	8.3			24.9		52	38.1		50	54.8
4 5	6	51	38.4	8	53	51.7	10	56	4.9	12	54	21.5	14	56	34.6	_	54	51.3
6	6	55	35.0	8	57	48.2	11	0	1.4		58	18.0		0	31.2		58	47.9
7	6	59	31.6	9	1	44.8		3	58.0		2	14.6		4	27.8		2	44.5
6 7 8	7	3	28.1	9	5	41.4		7	54.5		6	11.1		-8	24.3		6	41.0
9	7	7	24.7	9	9	37.9		11	51.1		10	7.7			20.9		10	37.6
10	7	11	21.2	9	13	34.5	11	15	47.6		14	4.2		16	17.4		14	34.1
11	7	15	17.8	9	17	31.0		19	44.2		18	0.8		20	14.0		18	30.7
12	7	19	14.3	9	21	27.6		23	40.8		21	57.3		24	10.5		22	27.2
13	7	23	10.9	9	25	24.1		27	37.3		25	53.9		28	7.1		26	23.8
14	7	27	7.4	9	29	20.7		31	33.9		29	50.4		32	3.6		30	20.4
15	7	31	4.0	9	33	17.2		35	30.4		33	47.0		36	0.2		34	16.9
16	7	35	0.6	9	37	13.8		39	27.0		37	43.6		39	56.8		38	13.5
17	7	38	57.1	9	41	10.4		43	23.5		41	40.1		43	53.3		42	10.0
18	7	42	53.7	9	45	6.9		47	20.1		45	36.7		47	49.9		46	$\frac{6.6}{3.2}$
19	7		50.2	9	49	3.5		51	16.6		49	33.2		51	46.4		50 53	59.7
20	7	50	46.8	9	53	0.0		55	13.2		53	29.8		55	43.0	1		
21	7	54	43.4	9	56	56.6		59	9.7		57	26.3		59	39.5		57	56.3
22	7	58	39.9		0	53.1		3	6.3		1	22.9		3	36.1		1	52.8
23	8	2	36.5		4	49.7		7	2.8		5	19.4		7	32.6		5	49.4
24	8	6	33.0		8	46.2		10	59.4		9	16.0		11	29.2		9 13	$\frac{46.0}{42.5}$
25	8	10	29.6	10	12	42.8	12	14	55.9		13	12.5		15	25.8	1 .		
26	8	14	26.1	10	16	39.4		18	52.5		17	9.1		19	22.3		17	39.1
27	8	18		10	20	35.9		22	49.0		21	5.6		23	18.9		21	35.6
28	8	22	19.2		24	32.4		26	45.6		25	2.2		27	15.4			$\frac{32.2}{29.7}$
29	8	26	15.8		28	29.0		30			28	58.8		31	12.0		29 33	$28.7 \\ 25.3$
30	8	30	12.4		32	25.6		34	38.7		32	55.3		35		18		
31	8	34	8.9	10	36	22.1	12	38	35.3	14	36	51.9	16	39	5.1	18	37	21.9

CORRECTION TO BE ADDED TO R. A. M. S. AT G. M. N. FOR TIME PAST NOON

Тімв	0"		0 ^m		^m 6 ^m		12 ^m		18 ^m		24 ^m		30 ^m		36 ^m		42 ^m		48 ^m		TIME
h	$_{ m m}$	8	m	В	m		m		m	8	m	в	m		m		m	В	h		
12	1	58.3	1	59.3	2	0.2	2	1.2	2	2.2	2	3.2	2	4.2	2	5.2	2	6.2	12		
13	2	8.1	2	9.1	2	10.1	2	11.1	2	12.1	2	13.1	2	14.0	2	15.0	2	16.0	13		
14	12	18.0	2	19.0	12	20.0	2	20.9	2	21.9	2	22.9	2	23.9	2	24.9	2	25.9	14		
15	2	27.8	2	28.8	2	29.8	2	30.8	2	31.8	2	32.8	2	33.8	2	34.7	2	35.7	15		
16	2	37.7	2	38.7	2	39.7	2	40.7	2	41.6	2	42.6	2	43.6	2	44.6	2	45.6	16		
17	2	47.6	2	48.5	2	49.5	2	50.5	2	51.5	2	52.5	2	53.5	2	54.5	2	55.4	17		
18	2	57.4	2	58.4	2	59.4	3	0.4	3	1.4	3	2.3	3	3.3	3	4.3	3	5.3	18		
19	3	7.3				9.2													19		
20	13	17.1	3	18.1	3	19.1	3	20.1	3	21.1	3	22.1	3	23.0	3	24.0	3	25.0	20		
21	3	27.0	3	28.0	3	29.0	3	29.9	3	30.9	3	31.9	3	32.9	3	33.9	3	34.9	21		
22	3	36.8	3	37.8	3	38.8	3	39.8	3	40.8	3	41.8	3	42.8	3	43.7	3	44.7	22		
23						48.7													23		

From Nautical Almanac, p. 3, Continued

the Greenwich time of this event is of course always taken from the chronometer (duly corrected for error and rate).

Thus, if the R. A. of the mean sun is required for Dec. 29, 22^h 34^m 40^s .4, G. M. T. (p. 80), we find from the almanac page 3 (our p. 83) that the R. A. of the mean sun at Greenwich mean noon is 18^h 29^m 28^s .7.¹ This, according to the supplementary table quoted above from page 3, must be increased by a correction for "time past noon." In this case the time past noon is 22^h 34^m 40^s .4. The tabular correction for 22^h 30^m is 3^m 41^s .8, and for 22^h 36^m it is 3^m 42^s .8. Ours falls between these two, and an interpolation makes the correction 3^m 42^s .6. Consequently, the R. A. of the mean sun for Dec. 29, 22^h 34^m 40^s .4, G. M. T. is 18^h 29^m 28^s .7 + 3^m 42^s .6 = 18^h 33^m 11^s .3.

It will be noticed that the small supplementary table (quoted above from almanac page 3) only runs from 12^h to 24^h. The other half of the table, from 0^h to 12^h, is printed on the opposite page 2 of the almanac. There is also another longer table, printed near the end of the almanac, and there called Table III, from which the supplementary correction can be taken without the necessity of interpolation.

It is not absolutely essential that the navigator learn what

¹ Right ascensions are always thus measured in hours, minutes, and seconds, like time, and they are counted from 0^h to 24^h.

the words "right ascension" and "declination" really mean. But for the benefit of those who are curious in such matters we may state that these numbers locate the position of the sun (or of a star) on the sky. The sky is a great globe, called by astronomers the "celestial sphere," and all heavenly bodies are located upon it precisely as points on the earth are there located by their latitudes and longitudes (p. 3). There is a "celestial equator" with two "celestial poles," corresponding accurately to the terrestrial equator and poles. Declination then corresponds exactly to latitude on the earth, and so it measures the distance of a heavenly body from the celestial equator. When the body is north of the celestial equator, the declination is called +.

Right ascension similarly corresponds to longitude; and for the beginning point of right ascensions on the sky there is a "celestial Greenwich," which is called the "vernal equinox."

After this brief digression into astronomy, we return to our subject. We have seen (p. 82) that observations of the sun will tell us only apparent solar time, because it is only the visible sun that we can observe. If the observations are made upon a star, the kind of time is different from any so far mentioned. It is called "sidereal time," or star time.

It is always possible to change mean solar time into sidereal time, and *vice versa*, by a simple process of calculation; but the only change of this kind required in navigation is the transformation of G. M. T. into Greenwich sidereal time. To make this transformation, we have only to take from the almanac, for the given G. M. T., the R. A. of the mean sun, and then to add it to the given G. M. T.

Thus, to find the Greenwich sidereal time corresponding to Dec. 29, 22^h 34^m 40^s .4, G. M. T., we have already found (p. 84) that the R. A. of the mean sun = 18^h 33^m 11^s .3 To this must be added the given G. M. T. = 22 34 40.4 Sum = corresponding Greenwich sidereal time = 17^{h1} 7^m 51^s .7

¹ The number of hours was here really 41^h: but whenever it is larger than 24^h, we must drop or reject 24^h.

CHAPTER VIII

OLDER NAVIGATION METHODS

WE shall now explain in detail certain standard methods of determining a ship's latitude and longitude by means of sextant observations. An understanding of these methods is essential to a proper comprehension of the newer navigational processes to be described later; and the older methods are in fact still very widely used at sea, although most recent authorities believe they should be rejected in favor of the newer procedure.

The simplest of these older processes, and the one most frequently employed, is the determination of the ship's latitude by a noon or "meridian" observation ("noon-sight") of the sun's altitude (p. 61). Now the sun is higher in the sky at noon than it is at any other time during the day; and so it is possible to get the noon-sight by beginning to observe the sun with the sextant a few minutes before noon, and continuing the observation as long as the sun's altitude is increasing. The moment it begins to diminish, or the sun to "dip," as sailors say, the observation should be terminated, and the vernier read.

The altitude thus observed will be an altitude of the lower limb (p. 71); and before it is used further it must be fully corrected for index error; for refraction parallax and semi-diameter; and for dip; all as in the example on p. 73, where the observed altitude was 30° 28′, and we found the corrected altitude to be 30° 38′.

Next, the sun's declination must be taken from the almanac, being interpolated for the Greenwich time of the

observation, as in the example on p. 82, where we found the declination to be -23° 12' on Dec. 29, at 22^{h} 34^{m} 40^{s} .4, G. M. T. We shall suppose the above altitude 30° 28' to have been observed at the Greenwich time stated, so as to make use of the results of our former calculated examples. Nor is there any inconsistency in supposing a noon observation to have been made at 22^{h} 34^{m} 40^{s} .4. For the noon observation is made when it is noon on board ship, while the 22^{h} 34^{m} 40^{s} .4 is the G. M. T. at the same moment. The difference is simply the time-difference (p. 80) between Greenwich and the ship.

The calculation of the ship's latitude is now made by the following formula:

Latitude = 90° + Declination - Altitude.

In this formula, the plus sign signifies that the declination must be added; and the minus sign signifies that the altitude must be subtracted. Furthermore, it is most important to remember that if the declination is itself a "minus declination," as in this example, the addition of it according to the formula is really a subtraction. Or, in other words, and in general, whenever a formula calls for an addition, and the number to be added is a minus number, then that number must be subtracted instead of added. And similarly, if the formula calls for a subtraction, and the number to be subtracted is a minus number, then that number must be added instead of subtracted. Two minus signs neutralize each other.

In the present case we have, omitting seconds:

In considering this result it is of interest to inquire where this observation really locates the ship. Now we have not yet stated what the date was, on board, when the observation was made; but we have given the G. M. T. as Dec. 29, 22^h 34^m $40^{\circ}.4$. The noon-sight was taken, as a matter of fact, at noon on Dec. 30, or at the moment when the date Dec. 30 commenced by astronomic reckoning. Therefore the ship's time was later than the Greenwich time by about 1^h 25^m ; or 21° 15', allowing 15° to 1^h (p. 81); and the ship was (approximately) in 21° 15' east longitude from Greenwich. This, together with the latitude 36° 10', locates the ship in the Mediterranean, south of Greece, and west of Candia.

Although we have thus apparently located the ship completely in latitude and longitude from a single noon-sight, it must not be supposed that we have really accomplished this. The noon-sight is only suitable for ascertaining the ship's latitude; the longitude is determined so inaccurately as to be practically useless. The reason for this is that near noon the sun changes its altitude very slowly, because it is then near the turning-point where its upward morning motion is about to become a downward afternoon motion. For the sun's daily motion in the sky is upward in the morning and downward in the afternoon. Near noon it runs along horizontally, or very nearly so, for several minutes, so that its altitude change is insignificant during that time.

It follows from this temporary invariability of altitude that we cannot determine the exact moment when noon occurs by observing altitude changes with the sextant. But the latitude determination is not affected; because, for the latitude, we only need to know the noon altitude. And if we happen to measure it a little too soon or too late, on account of the difficulty of fixing the moment of noon, no harm will result, because the altitude very near noon is the same as it is at noon precisely, as we have just seen.

It is, in general, practically impossible to determine both latitude and longitude from a single observation. To determine two unknown things, at least two different observations must be made. Nor can any skillful method of planning the observation overcome this fundamental circumstance.

Returning now to our latitude formula (p. 87), it is necessary to modify it somewhat in case we happen to be in the tropics, where the sun may pass between the zenith and the celestial pole. Even in temperate latitudes a celestial body may do this, if we happen to observe a star instead of the sun. In such a case, if the ship is in the northern hemisphere, the navigator will observe the sun's altitude toward the north at noon instead of toward the south, as usual. Furthermore, in very high northern latitudes, the "midnight sun," as it is called, can be observed toward the north, and below the celestial pole. This is the minimum altitude during the day, instead of the maximum; but it is usable for a latitude determination. Such an observation is called a "lower transit"; and it can often be observed in the case of stars in temperate latitudes.

If we now remember to call northerly latitudes and declinations plus, and southerly ones minus, we have the following complete set of formulas for the present problem, including observations in both hemispheres. These formulas are so arranged that we can easily choose the right formula, by having regard to the + and - signs. But the right formula $once\ chosen$, the latitude is calculated without marking declinations with either the + or - sign.

We shall now give some more examples; and to enable the reader to follow star observations correctly we reprint part of the upper halves of pages 94 and 95 (our pp. 91, 92) of the Nautical Almanac. These contain the right ascensions and declinations (p. 85) of a quantity of bright stars for various dates in the year. These numbers are correct for the moment of "upper transit," which is the moment when these

¹ Latitude and declination are abbreviated lat. and dec.

stars attain their maximum altitudes. This event cannot be called a noon-sight in the case of a star; but it is observable in a manner perfectly similar to a solar noon-sight.

These stellar right ascensions and declinations change so slowly that it is unnecessary to use interpolation when taking them from the almanac pages.

Proceeding now to our examples, suppose that on shore, at Sandy Hook Light, approximate latitude and longitude $40^{\circ} 28' \text{ N.}$, $74^{\circ} 0' \text{ W.}$, on Monday, Dec. 17, 1917, at noon, the double altitude of the sun's lower limb was observed with a sextant and artificial horizon, and found to be 51° 48'. The index correction required by the sextant was +4'; and the G. M. T. by chronometer was $4^{h} 56^{m}$ at the moment the observation was made. Find the latitude. We have:

Observed double altitude	48'	(1)
Index correction	+ 4	(2)
Adding (1) and (2) gives corrected double altitude51°	52'	(3)
Halving (3) gives observed altitude25	56	(4)
Correction from Table 6 ¹ (p. 247) +	14	(5)
Adding (4) and (5) gives fully corrected altitude $\overline{26^{\circ}}$	10'	(6)
Now use formula (4) (p. 89) because latitude is +		
and declination is $-$. Write90	0	(7)
Subtracting (6) from (7) gives 90° - corrected altitude63	50	(8)
Interpolate declination from almanac (p. 76). This		
gives declination23	22	(9)
Subtracting (9) from (8) gives for the latitude40	28	(10)

With regard to the foregoing example it is worth remarking that if there had been no available chronometer set to Greenwich time, it would still have been possible to calculate the observation. For the known approximate longitude, even if only a dead-reckoning (p. 5) longitude, would be quite accurate enough to make possible the interpolation of the declination from the almanac. And in the present example, the chronometer was only used in getting the declination printed in line (9) above.

¹Dip correction from Table 7 not needed because the artificial horizon was used.

APPARENT PLACES OF STARS, 1917 From Nautical Almanac, p. 94 FOR THE UPPER TRANSIT AT GREENWICH

						Rı	онт А	CENSIC	N			
No.	CONSTELLA- TION NAME		Jan. 1	May 1	June 1	July 1	Aug. I	Sept. 1	Oct. 1	Nov. 1	Dec. 1	Dec. 32
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23	a Androm. β Cassiop. β Cessiop. a Urs. Min. a Eridani a Persei a Tauri β Orionis a Aurigæ γ Orionis a Orionis a Orionis a Can. Maj. a Can. Maj. a Can. Min. β Gemin. ε Argus λ Argus λ Argus β Argus	1 29 1 34 2 2 2 55 3 1 31 5 10 5 20 5 50 6 22 5 50 6 41 6 55 7 34 7 40 8 20 9 12	23.9 89.0 39.1 31.0 8.8 25.9 11.7 36.5 43.1 2.4 43.1 9.2 31.6 24.1 59.7 17.1 51.4 620.6	44.4 26.3 22.3 36.8 30.1 6.8 23.9 10.3 33.7 34.5 41.7 41.8 6.1 30.2 22.6 6.5 9.0 16.3 49.0 17.0 18.1	45.7 27.0 23.5 45.5 37.6 37.2 24.4 10.5 33.7 34.6 41.7 5.5 30.0 22.2 258.7 16.0 48.7 31.6	47.3 28.0 25.1 77.6 38.8 31.7 7.9 25.5 11.0 34.2 35.2 42.1 42.0 5.4 30.1 22.2 25.8 8 16.0 47.3 51.1	48.7 28.9 26.7 112.8 40.3 32.7 9.0 26.8 11.9 34.7 36.2 42.8 2.0 42.7 6.0 30.6 22.6 59.1 16.4 47.2 56.8 14.5	10.0 28.2 12.8 35.6 37.5 43.7 2.8 43.5 6.9 31.3 23.3 57.1 47.8 57.1 14.8	42.3 34.3 10.8 29.3 13.7 36.5 38.7 44.4 8.1 32.2 24.2 60.5 18.0 48.9 57.8 16.0	49.9 30.1 29.2 166.4 42.4 34.6 11.3 30.2 14.5 37.3 39.9 45.4 4.5 45.3 9.3 33.1 25.2 61.5 19.0 50.4 58.9 17.9	34.7 11.4 30.6 15.0 37.8 40.7 46.0 10.2 33.8 26.0 62.3 20.0 51.8 60.1 20.0	48.4 29.5 28.2 129.0 41.1 34.5 15.2 38.1 41.1 46.4 5.5 46.4 10.6 34.3 26.5 63.0 20.8 52.8 61.0 21.7
24 25	a Hydræ a Leonis		$\frac{32.5}{59.2}$				32.0 59.0		32.9 59.7	33.7 60.5	34.7 61.4	35.6 62.4

Had it been thus necessary to get the declination without using the chronometer, we should have proceeded as follows:

Apparent solar time of noon (p. 75)	0_{ν}	0^m	(1)
Approximate longitude = 74° 0′ W. = (at 15° to			
the hour)	4	56	W. (2)
Adding (1) and (2) (p. 81) gives approximate			
Greenwich apparent time	4	56	(3)
Approx. eq. of time, Dec. 17, at 4^h 56^m (p. 76)		+4	(4)
Subtracting 1 (4) from (3) gives approximate			
G. M. T	4	52	(5)
Declination interpolated for G. M. T. in line (5) is	-23°	22'	(6)

¹ The equation is additive to G. M. T., according to the note at the foot of p. 76, and therefore to be subtracted from Greenwich apparent time.

APPARENT PLACES OF STARS, 1917 From Nautical Almanac, p. 95

FOR THE UPPER TRANSIT AT GREENWICH

				D	ECLIN	ATIO	Ŋ					
No.		Jan. 1	Feb. 1	Mar. 1	Apr. 1	May 1	Oct. 1	Nov. 1	Dec. 1	Dec. 32	SPECIAL NAME	MAG.1
-			 -	-		-	,	-	-	-		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} +28\\ +58\\ +58\\ -18\\ +89\\ +88\\ -57\\ +23\\ -49\\ +16\\ -8\\ +45\\ -6\\ 1\end{array}$	38.2 41.9 26.5 48.7 52.2 39.7 4.5 38.3 34.3 20.7 17.8 55.0 16.6 15.2	38.1 41.8 26.5 48.7 52.2 39.7 4.4 38.3 20.7 17.8 55.1 16.5 15.3	38.0 41.7 26.5 48.6 52.1 39.6 4.4 38.3 20.7 17.9 55.1 16.5 15.3	38.0 41.6 26.4 48.4 52.0 39.4 38.2 20.7 17.9 55.1 16.5 15.3	38.0 41.5 26.3 48.3 51.8 39.2 4.3 38.1 20.7 17.8 55.0 16.5 15.3	38.4 42.0 26.0 48.6 52.0 39.0 4.6 37.7 34.3 20.8 17.5 54.9 16.7 15.0	38.5 42.1 26.1 48.8 52.2 39.2 4.7 37.8 34.3 20.8 17.6 54.9 16.7 15.1	38.5 42.2 26.2 48.9 52.4 39.3 4.7 38.0 34.4 20.8 17.7 55.0 16.6 15.1	38.5 42.2 26.2 49.0 52.5 39.4 4.7 38.1	Deneb Kaitos Ruchbah Polaris Achernar Hamal Acamar Aldeharan Rigel Capella Bellatrix Alnitam	2.2 2.4 2.2 2.8 2.1 0.6 2.2 3.0 1.9 1.1 0.3 0.2 1.7 1.8 1.0-1.4
16 17 18 19 20 21 22 23 24 25	- 16 - 28 + 5 + 28 - 59 - 43 - 69 - 8	36.1 51.5 26.3 13.6 14.4 5.7 22.4 17.9	36.2 51.7 26.2 13.6 14.6 5.9 22.6 18.1	36.3 51.7 26.2 13.6 14.8 6.1 22.8 18.1	36.3 51.8 26.2 13.7 14.9 6.2 22.9 18.2	51.7 26.2 13.7 14.9 6.2 23.0	35.9 51.3 26.3 13.5 14.4 5.8 22.5 18.0	36.0 51.4 26.2 13.5 14.4 5.8 22.4 18.0	36.1 51.5 26.2 13.4 14.5 5.9 22.5 18.1	36.2 51.6 26.1 13.4 14.7 6.0 22.7 18.2	Canopus Sirius Adhara Procyon Pollux Miaplacidus Alphard Regulus	- 0.9 - 1.6 1.6 0.5 1.2 1.7 2.2 1.8 2.2 1.3

¹ When the number in this column is very small, and especially when it is minus, the star is very bright.

It is further to be noted that as we can thus obtain the approximate G. M. T., we really know in advance the approximate moment when the observation should be made. So it is unnecessary to get the sextant ready a long time before the observation; and it is, in fact, better to observe at the proper predetermined approximate moment rather than to wait for the maximum altitude (p. 86).

When the ship's position at noon can be predicted with fair approximation, it is thus possible to have the declination and other numbers for calculating the noon-sight also all ready in advance, so that the latitude will be immediately available when the noon altitude has been read from the sextant.

We shall now consider the following example: Off St. Paul de Loando, West Africa, approximate latitude 8° 55' south, approximate longitude 12° 55' east, both predicted in advance by D. R. for noon on Monday, Dec. 31. The altitude of the sun's lower limb is to be measured. Index correction is -5'. Height of eye, 26 ft.

To prepare for the observation, we have, as before:

Apparent solar time of noon	0^h	0^m	(1)
Approximate D. R. longitude = $12^{\circ} 55'$ east = (at 15° to			•
the hour)		52 E.	(2)
Subtracting (2) from (1) gives approximate Greenwich			• /
1 11 D	~~	_	

The navigator will then make the observation when the G. M. T. is 23^h 11^m , as indicated by the chronometer, duly corrected for error and rate. This would of course also be noon, or the time when the sun attained its maximum altitude for the day.

Now the dials of chronometers are always divided into 12 hours, like ordinary watches, although navigators count time through 24 hours, as we have seen (p. 75). The reason is that the dial would be overloaded with numbers if there were 24 hour divisions. Therefore, when we speak of the chronometer indicating 23^h 11^m , it must be understood that the actual chronometer indication, or "chronometer face," as it is sometimes called, would really be $11^h 11^m$; only, the navigator would call it $23^h 11^m$, astronomic time. In this manner civil time still forces its way into navigation, by way of the chronometer face.

To make the observation at the prearranged G. M. T. by chronometer it is not desirable to carry that instrument out into the sunlight, where the observer stands. It is much better for the navigator to use his watch, and to calculate in advance the "watch time" of the observation. To do this, it is merely necessary to compare the watch with the chronometer, and thus ascertain how much the watch is slow or fast of the chronometer. This amount is called "chronometer minus watch" (abbreviated C.—W.); and when the watch is fast of the chronometer, C.—W. is marked with the minus sign.

To obtain the watch time for the observation, we subtract C. — W. from the G. M. T. In the present case we will suppose the watch was 47^m fast of the chronometer. Then C. — W. = -47^m . To get the watch time for the observation we must subtract — 47^m from 23^h 11^m . Subtracting a minus number is equivalent to addition; and so the watch time is 23^h $11^m + 47^m = 23^h$ 58^m . The observation would be made as nearly as possible 2^m before noon, by the watch.

In this connection it also becomes of interest to inquire how the navigator's watch happened to be 47^m fast of the chronometer. It is customary aboard ship to set the deck and cabin clocks, and all watches, to the ship's local apparent time once a day at least. To do this, we proceed as follows:

Take from chronometer the G. M. T., corrected for error and rate (1) Apply to this G. M. T. the eq. of time, giving Green'h app. time (2) Apply to (2) the approximate D. R. longitude, adding it if longi-

tude is E., which gives ship's apparent time................. (3) And set the watch to the time (3).

An example of this proceeding can be had from the data on p. 93. Suppose the watch was to be set; and the chronometer time was $23^h 0^m$. We should then prepare to set the watch in about 5^m , when the

C. M. T. by chronometer would be	23^{h}	5m	(1)
Chronometer error (corrected for rate) say			
Corrected G. M. T. by chronometer, $(1)+(2)$	23	3	(3)
Equation of time (p. 93)			
Greenwich apparent time, $(3)+(4)$	23	0	(5)
Approximate longitude (p. 93)		52 E.	(6)
Ship's apparent time, $(5)+(6)$	23	52	(7)

And the watch would be set to 23^h 52^m , when the chronometer face was 23^h 5^m ; or, which is the same thing, the watch would be set at 8^m to 12 when the chronometer indicated 5 minutes past 11.

Sometimes the navigator wishes the watch to be correct by ship's apparent time at noon, but desires to set it right half an hour sooner, so as to be free at noon to make an observation. In that case he calculates by D. R. what the longitude will be at noon, and proceeds practically in the same way as before.

Resuming now the example of p. 93, we are still off St. Paul de Loando, and at 2^m before noon by the watch (p. 94) the altitude of the sun's lower limb was measured.

Suppose it was found to be	75°	34'	(1)
The index correction was			
Adding (1) and (2), with regard to sign of (2), gives			•
corrected altitude	75	29	(3)
Correction from Table 6	+	- 16	(4)
Correction from Table 7, for 26 ft. height of eye		- 5	(5)
Adding (3), (4), (5) gives corrected altitude	75	40	(6)
Formula (2), p. 89, is the proper one, and the inter-			
polated declination, disregarding sign, is	23	8	(7)
Latitude, by formula, is $(6) + (7) - 90^{\circ}$, or	8	48	(8)

The latitude of the ship is therefore 8° 48′ south, from the above noon-sight observation. The difference of 7′ from the approximate latitude (p. 93) might easily be caused by ocean currents.

Our next example is a star observation. Position of ship by D. R. March 23, 1917, at 6^h 30^m ship's time is: latitude 40° 25' N., longitude 46° 52' W., so that she is near the turning point in the southern "lane route" followed by steamships bound from New York to Fastnet in summer. The upper transit (p. 89) of Sirius was observed; and the sextant altitude was 33° 7'. Index correction, - 7'; height of eye, 24 ft.

The calculation is as follows:

Observed altitude of Sirius	33°	7'	(1)
Index correction		- 7	(2)
Adding (1) and (2), having regard to minus sign of (2),			
gives corrected altitude	33	0	(3)
Correction Tables 6 and 7, combined		- 6	(4)
Adding (3) and (4) gives finally corrected altitude	32	54	(5)
Use formula (4), p. 89, because latitude is + and decli-			
nation of Sirius We have	90°		(6)
Subtract (5) from (6), giving (90° - altitude)	57	6	(7)
Declination of Sirius (p. 92), disregarding sign, is	16	36	(8)
Subtract (8) from (7), giving (90° - altitude - declina-			
tion), or the latitude	40	30	(9)

Ship's latitude at the moment of observation was therefore 40° 30′ N.

In making such a star observation, it is of course possible to follow the star with the sextant until it begins to dip (p. 86) toward the horizon exactly as we have explained for the sun. But it is preferable to prepare for the observation in advance, and to make it at a definite predetermined minute by the navigator's watch. To make such preparation, it is necessary to use pages 96 and 97 of the Nautical Almanac, parts of which pages are reprinted here (pp. 97, 98).

The almanac page 96 gives for all the bright stars the G. M. T. of upper transit (p. 89) at Greenwich, for the first day of each month. And it will be noticed that the upper transit is here called "meridian transit," which is practically another name for the same thing. Almanac page 97 (our p. 98) then gives a subtractive correction, applicable to the numbers on page 96, to make them correct on days of the month other than the 1st.

Another small correction is still required to make the numbers right in the approximate D. R. longitude of the ship, instead of the longitude of Greenwich, as used on almanac page 96. This correction is subtractive, if the ship is in west longitude, and additive, if she is in east longitude; and the

MERIDIAN TRANSIT OF STARS, 1917

From Nautical Almanac, p. 96

GREENWICH MEAN TIME OF TRANSIT AT GREENWICH

			_	==	=		_	ī								_	_	_	=
CONSTELLA- TION NAME	MAG.	JAN. 1		Fee			MAR.	-	APR. 1	M 1	MAY 1	Gmm 1		-		Mou		1	
a Androm. β Cassiop. β Ceti δ Cassiop. α Urs. Min. α Eridani α Arietis θ Eridani α Persei α Tauri	2.2 2.4 2.2 2.8 2.1 0.6 2.2 3.0 1.1	555666788	21 22 56 37 47 51 19 12		m 19 20 54 35 45 49 17 10 33	h11222 23445			24 58 43 52 57	22 23	41 50 55 23 20	13 14 14 14 15 16	57 38 49 52 20 12	11	54 22 14 38	9 10 10 10		8 9 10 10	m 24 24 59 40 51 54 22 14 38 50
β Orionis a Aurigæ γ Orionis c Orionis a Orionis	0.3 0.2 1.7 1.8 1.0-1.4	10 2 10 2 10 3	27 27 37 48 7	8	25 25 35 46 5	6 6 6 6 7	35 35 45 56 15	4 4 4 4	33 33 43 54 13	2 2	35 35 45 56	18 18 18	27 27 37	16 16	29 29 39	14 14 14 14	28 28 38	12 12 12 12 12	30 30 40 51
a Argus a Can. Maj. ε Can. Maj. a Can. Min. β Gemin.	$ \begin{array}{r} -0.9 \\ -1.6 \\ 1.6 \\ 0.5 \\ 1.2 \end{array} $	$11 \ 12 \ 12 \ 12 \ 1$	38 57 11 51 56		36 55 9 49 54	7 8 8 8 9	46 5 19 59 4	5 6 6 6 7	44 3 17 57 2	3 4 4 4 5	19 59 4	19 20 20 20	12 51 57	18 18 18 18	0 14 53 59	16 16 16	58 12 52 57	14 14 14	41 0 14 54 59
e Argus λ Argus β Argus α Hydræ α Leonis	1.7 2.2 1.8 2.2 1.3	14 14 14	36 20 28 39	12 12 12	26	9 10 10 10 11	28 36 47 27	7 8 8 8 9	42 27 34 45 25	6	$\frac{28}{36}$	21 22 22 22 23	21 28	$19 \\ 20 \\ 20 \\ 20 \\ 21$	$\frac{30}{42}$	17 18 18 18 19	21 28 40	15 16 16 16 17	39 23 31 42 22

amount of it is 10° for every 15° in the ship's longitude. After it has been applied, the result will be the ship's mean solar time of the star's upper transit.

As an example, let us take the preparation for the foregoing observation of Sirius, or a Can. Maj. We have:

, ,			
G. M. T. of upper transit, March 1, from almanac			
page 96 above	81	5^m	(1)
Correction for 23d day of month, from almanae			
page 97 (our p. 98)	1	27	(2)
Correcting (1) with (2), having regard to - sign of (2)	6	38	(3)
Further correction for longitude 46° 52′ W., at 10° per			
15° of longitude, approximately		1	(4)
Subtracting (4) from (3) gives ship's mean solar time			
of the observation	6	37	(5)

MERIDIAN TRANSIT OF STARS, 1917

From Nautical Almanac, p. 97

CORRECTIONS TO BE APPLIED TO THE MEAN TIME OF TRANSIT ON THE FIRST DAY OF THE MONTH, TO FIND THE MEAN TIME OF TRANSIT ON ANY OTHER DAY OF THE MONTH

DAY OF MONTH	Correction	DAY OF MONTH	Correction	DAY OF MONTH	Correction
1 2 3 4 5 6 7 8 9 10	-0 0 0 4 0 8 0 12 0 16 -0 20 0 24 0 28 0 31 0 35 -0 39	11 12 13 14 15 16 17 18 19 20 21	-0 39 0 43 0 47 0 51 0 55 -0 59 1 3 1 7 1 11 1 15 -1 19	21 22 23 24 25 26 27 28 29 30 31	- 1 19 - 1 23 - 1 27 - 1 30 - 1 34 - 1 38 - 1 42 - 1 50 - 1 54 - 1 58

Note. If the quantity taken from this Table is greater than the mean time of transit on the first of the month, increase that time by 23^h 56^m and then apply the correction taken from this Table.

The actual observation was made at 6^h 30^m, ship's time, as indicated by the navigator's watch. The difference of 7^m between 6^h 30^m, and 6^h 37^m in line (5) above, is due to the equation of time (p. 77), which is 7^m on March 23. This 7^m, if applied (with its proper sign from the almanac) to line (5) above, will give the ship's apparent time; and we have seen that watches and clocks on board are usually kept set to apparent and not mean ship's time (p. 94).

To complete this part of our subject, we have still to consider a few additional points of interest. For instance, a star chosen for observation may be one of the planets: Mars, Jupiter, or Saturn. These look like *very* bright stars in the sextant telescope; and calculations depending on them are similar to those described for stars. The planetary declinations and the G. M. T.'s of their upper transits are given in the almanac, but not on the pages reprinted here.

The moon is now so rarely observed that we have not given examples of lunar observations.

Sometimes an "ex-meridian" observation of the sun or a star is made at a time very near the upper transit, on a day when the actual transit observation could not be secured because of clouds. There are special tables for calculating observations of this kind; but we have not included them here because all such observations can be satisfactorily treated by a new general method to be explained later (p. 108).

Having now fully treated the older standard method of determining the ship's latitude, let us next consider the older way of obtaining the longitude. This cannot be done when the sun (or a star) is near its maximum altitude, as already explained (p. 88). The most favorable opportunity occurs when the observed object bears (p. 44) east or west; but it is not always possible to get the observation on such a bearing. In that case, the longitude observation, often called a "time-sight," must be taken when the sun is near the desired bearing, but always avoiding, if possible, observations at very low altitudes. And if a very low altitude has been observed in an emergency, it can sometimes be checked by a later observation at a better altitude.

The principle on which the time-sight depends is simple. Calculations based on the measured altitude make known the ship's mean time at the moment of observation. At the same moment the chronometer face (p. 93), duly corrected for error and rate, tells us the G. M. T. The difference between the two times then gives us the longitude (see p. 82).

The calculations for this problem are made by means of Table 4 (trigonometric logarithms) and Table 10 ("haversines"). These haversines (abbreviated hav.) are really additional trigonometric logarithms; and Table 10 gives in every case not only the haversine itself, which is really

¹ Tables 26 and 27 of Bowditch's "Navigator," for instance.

a logarithm, but also, in the adjoining heavy type columns, the number (abbreviated No.) of which the haversine is the log. This additional heavy type number is not given throughout the entire table, but only when necessary for working Sumner line calculations (see Chapter IX, p. 108). It is not needed in working time-sights.

The argument (p. 10) of the haversine table is a double argument, not to be confounded with the pairs of arguments already explained (p. 11). In the haversine table, the argument is generally given in degrees and minutes, as well as (for convenience) in hours and minutes of time, allowing the usual 15° to each hour, etc.

We shall now solve our time-sight problem for the sun; and in doing so shall make use of two angles not hitherto employed: the "polar distance" (abbreviated p), and the "half sum" (abbreviated s). We shall also, for brevity, indicate the ship's apparent solar time by T. Then we have the following formulas:

If lat. and dec. are both
$$+$$
 or both $-$. $p = 90^{\circ} - \text{dec.}$ (1)

If lat. and dec. are one
$$+$$
 and one $- \dots p = 90^{\circ} + \text{dec.}$ (2)

hav. $(24^{\circ}-T)$ = see lat. + csc p + cos s + sin (s - alt.) (4) If time-sight was made after noon, ship's time,

hav.
$$T = \sec \operatorname{lat.} + \csc p + \cos s + \sin (s - \operatorname{alt.})$$
 (5)

In using these formulas, we have to choose between (1) and (2), and also between (4) and (5). Formula (3) is always used. No attention need be given to the signs of the declination or latitude except in choosing between formulas (1) and (2) for calculating p; and in choosing between (4) and (5), we have merely to note whether the time-sight was taken in the forenoon or afternoon by ship's time.

We also desire to emphasize especially that these formulas presuppose the latitude to be known. This is merely another application of the principle (p. 88) that both latitude and longitude cannot be determined from a single observation. It follows that in using this method we must first determine the latitude by a noon-sight before we can calculate the time-sight for longitude. If the time-sight was taken in the afternoon, the noon-sight will naturally have preceded it, and the ship's latitude at noon will be known. This noon latitude must then be carried forward to the moment of the afternoon time-sight by D. R. methods (p. 7); and the latitude thus obtained must be used for calculating the time-sight.

But if the time-sight was a forenoon observation, it cannot be properly calculated until noon, when the latitude will be determined. After that, the latitude can be carried backwards by D. R. to the moment of the forenoon time-sight, and the latter can be calculated.

But if the navigator, because of emergency, needs his longitude at once, after taking the forenoon time-sight, he must obtain the latitude by a D. R. calculation based on the last good noon-sight. Most navigators calculate morning time-sights in this way, and then repeat the calculation after the new noon-sight has been obtained. The latter calculation will be preferable to the former, because the further the latitude is carried along by D. R., the less accurate will it be. And any error in the latitude used in the calculation will impress a consequent error on the calculated longitude.

We shall now work some time-sight examples. On board ship, at sea, Dec. 18, 1917, in the afternoon, D. R. latitude 42° 20′ N., D. R. longitude 35° 16′ W., the altitude of sun's lower limb was observed to be 14° 19′. The time was taken with the navigator's watch, and was 2^h 29^m 58^s . A comparison of the watch and ship's chronometer gave C. — W. \pm 2^h 27^m 8^s . The chronometer correction was 2^m 8^s slow of G. M. T. The index correction of the sextant was +4'; height of eye, 24 ft. Calculate the ship's longitude.

We have first to find, for the moment of the observation.

1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	т.	المال	hi~
values of the declination and equation of time.	10 (JO L	ms,
we have:			
Watch time of observation 2	h 29m		
— ****	27	8	(2)
Adding (1) and (2) gives chronometer time of			(0)
0.0001100101111111111111111111111111111	1 57	6.	(3)
Chronometer correction, slow	2	8	(4)
	1 59 _.	14	(5)
For the G. M. T. (5) we interpolate the declination (p. 76), finding	– 23°	24'	(6)
and for the same G. M. T. we interpolate the	20	21	(0)
equation of time	+ 3 ^m	218	(7)
Now, adding (5) and (7) gives Greenwich ap-			(-)
	5 ^h 2 ^m	35*	(8)
		(0)	
Next we inspect the formulas (p. 100), cho			
cause latitude is $+$ and declination $-$, and (5)) beca	use	the
sight was an afternoon one.			
We now have, from line (3), declination (disregard	_		
ing sign)		24'	(9)
to which, by fermula (2), we add			(10)
giving p		24	(11)
The observed altitude was	. 14	19	(12)
Index correction		- 4	(13)
Adding (12) and (13) gives corrected altitude		23	(14)
Correction, Table 6		12	(15)
Correction, Table 7		- 5	(16)
Adding (14), (15), (16) gives finally corrected altitud		30	(17)
The latitude by D. R. is	170	20 14	(18) (19)
Halving (11), (17), (16) gives		7	(20)
Subtracting (17) from (20) gives (s – alt.)		37	(21)
babble (11) 110m (20) gives \(\text{v} \text{ also} \), \(\text{v} \text{ in \text{v}} \)		٠.	(==)
Next we apply formula (5), p. 100. We h	ave:		
sec lat. (18) from Table 4, page 238	0.131	21	(22)
esc p (11) from Table 4, page 219	0.037	27	(23)
cos s (20) from Table 4, page 200	8.930		(24)
$\sin (s - alt.)$ (21) from Table 4, page 215	9.974		(25)
sum (22) to (25) = hav. T , by formula (5)	9.073	21 1	(26)

¹ This sum has been diminished by 10 arbitrarily (see p. 25), which must always be done when the sum of logs is larger than 10.

T,1 corresponding to (26) from Table 10, page 260, is 2h	40m	598	(27)
Greenwich apparent time (8) by watch and			(,
chronometer is 5	2	35	(28)
Subtract (27) from (28), giving time difference			,
between ship and Greenwich	21	36	(29)
Turning (29) into degrees with Table 9, page 249,			, ,
gives35°	24'	W.	(30)
and (30) is the shin's longitude from this time-sight			(/

Upon comparing the D. R. longitude (35° 16' W.) with the result of the time-sight (35° 24' W.), we find that the ship is 8' west of her D. R. position. This means, of course, that there has been a westerly "set" of current in the interval between the last accurate determination of longitude and the present one. It would be proper for the navigator to calculate from this the amount of westerly drift per hour, and to allow for it in carrying forward his longitude by D. R. from the present time-sight. It is also clear that the northerly or southerly set of the current can be similarly measured and allowed for by comparing the D. R. latitude with the latitude from a noon-sight (cf. p. 95). It is the general custom of navigators to ascribe such differences to ocean currents, never to uncertainty in the astronomic results. Dead reckoning is never allowed any weight as against a sextant observation.

The reader will have noticed that the foregoing calculation has been made in great detail, so that a beginner may have no difficulty in understanding it. But a practiced navigator would of course work the calculation in a much more condensed form, in such a way as to bring the logarithms next to the numbers to which they belong. We shall therefore now repeat the same example in such a condensed form:

¹ If the observation had been made before noon, we should have used formula (4) and should here have obtained $24^h - T$, instead of T. This $24^h - T$ would then be subtracted from 24^h , to get T, before continuing the calculation. Thus the form of calculation would contain another line between (27) and (28), in the case of a forenoon observation.

TIME-SIGHT, CONDENSED FORM. SUN

```
Obs'd alt.:
                                                          14° 19′ (12)
                2^{h} 29^{m} 58^{s} (1)
Watch time:
C_{\cdot} - W_{\cdot}:
                   27
                          8
                             (2)
                                          Index:
                                                          + 4 (13)
Chr. time:
                    57
                             (3)
                                          Table 6:
                                                           +12(15)
Chr. corr'n:
                                          Table 7:
                                                             5
                                                                  (16)
                 + 2
                             (4)
                                          Corr'd alt.:
G. M. T.: 18th 4 59
                         14
                             (5)
                                                          14 30 (17)
Eq. of time:
                + 3
                         21
                             (7)
                     2
G. app. time: 5
                         35
                             (8)
                                   Eq. time, 18^{th}, 4^h: +3^m 22^s.3
Decl. 18th, 4h: 23° 23'.7
                                                                1.2
H. D.:
                       0.1
                                   H. D.:
Decl. 4<sup>h</sup> 59<sup>m</sup>:
                 23
                      24
                             (6)
                                   Eq. time, 4^{h} 59^{m}: +3
                                                               21.1(7)
                113
                      24
                            (11)
p:
Corr'd alt.:
                 14° 30′ (17)
Lat., D. R.:
                 42 20 (18)
                                sec lat.:
                                               0.13121(22)
                113 24 (11)
                                               0.03727(23)
                                ese p:
sum of 3:
              2)170
                     14 (19)
                 85
                          (20)
                                cos s:
                                               8.93007 (24)
8:
                 70 37 (21)
                                \sin (s-alt.): 9.97466 (25)
s — alt.:
                                               9.07321 (26) = hav. T
                                 sum of 4:
                                                         (\text{or } 24^h - T)^1
                T = \text{ship's app. time}:
                                                   2^h \ 40^m \ 59^s \ (27)
By chron., Greenwich app. time:
                                                            35
                                                                 (8)
                         Longitude:
                                                   2h 21m 36s (29)
                                                  35° 24′ W. (30)
                           or:
```

When the object observed is a star or planet, the choice between formulas (4) and (5), p. 100, is not quite the same as in the case of a solar time-sight. We must use (4) if there is any east in the star's bearing at the moment of observation; and (5), if there is west in the bearing. The more nearly the star bears due east or west, the more accurate will be the resulting longitude. The use of formulas (1), (2), and (3) is the same as for the sun; but T, in the case of a star, is no longer the ship's apparent solar time. Instead, it is called

¹ See p. 103, footnote.

the star's "hour-angle." To get the longitude, we must first (p. 85) calculate the Greenwich sidereal time corresponding to the G. M. T. of the observation, as taken from the chronometer, duly corrected for error and rate; and then use the following formulas:

- (6) Greenwich sid. time 1 right-ascension of star = Greenwich hour-angle.

As an example of a star observation we shall take the following:

At sea, just before sunrise, Dec. 17, 1917, off Cape Agulhas, latitude by D. R. 35° 20′ S., longitude by D. R. 20° 41′ E., the altitude of Sirius was measured, and found to be 40° 3′. The star bore west, and the height of eye was 22 ft. Index correction was +5′. Time by watch, 16^h 29^m 48°, or 4^h 29^m 48° A.M., civil time, Dec. 18; C. -W., -1^h 23^m 50°; chronometer fast of G. M. T. 2^m 28°.

The calculation would proceed thus:

-				
Watch time of observation	164	29 ^m	48*	(1)
C. – W	- 1	23	50	(2)
Adding (1) and (2), having regard to - sign of (2),				
gives chronometer time of observation	15	5	58	(3)
Chronometer correction, fast		-2	28	(4)
Adding (3) and (4), having regard to - sign of (4),				
gives G. M. T. of observation	15	3	30	(5)
Right ascension mean sun, Greenwich mean noon,				
Dec. 17 (p. 83)	17	42	10	(6)
Correction for "time past noon" (see p. 84)		2	28	(7)
Adding (6) and (7) gives right ascension of mean				
sun	17	44	38	(8)
Adding (5) and (8) (see p. 85) gives Greenwich				
sidereal time of the observation	_	48	8	(9)
Right ascension of Sirius, Dec. 17, is (p. 91)	6	41	34	(10)
Subtracting (10) from (9) gives Greenwich hour-				
angle (formula (6), above)	2	6	34	(11)

¹²⁴h may always be added or dropped here, if necessary.

Next we calculate T by formula (5), p. 100. We h	ave:
Declination of Sirius, Dec. 17 (p. 92) 16° 36′	(12)
By formula (1), p. 100, subtract (12) from 90°,	
without attention to sign of (12) , giving p . 73 24	(13)
The observed altitude was 40 3	(14)
The index correction was $+5$	(15)
Table 6 correction $\dots \dots \dots$	(16)
Table 7 correction	(17)
Adding (14), (15), (16), (17), having regard to	
signs, gives corrected altitude 40 2	(18)
The latitude by D. R. was	(19)
Adding (13), (18), and (19) gives	(20)
Halving (20) gives s	(21)
Subtracting (18) from (21) gives (s - altitude) 34 21	(22)
Now applying formula (5), page 100, we have :	
sec latitude (19) from Table 4, page 2310.08842	(23)
csc p (13) from Table 4, page 212	(24)
cos s (21) from Table 4, page 2119.43008	(25)
$\sin (s - \text{altitude})$ (22) from Table 4, page 230 9.75147	(26)
Summing (23) to (26) gives hav. T , by form. (5) 9.28846 ¹	(27)
T ² corresponding to (27), from Tab. 10, p. 263 is 3 ^h 29 ^m 14 ^s	(28)
Difference between (28) and (11) is the longi-	
tude by formula (7), page 105 1 22 40 E.	(29)
Turning (29) into degrees with Table 9, page	
249, gives	(30)

The D. R. longitude, 20° 41′ E., was therefore within 1′ of the longitude from this time-sight, and this shows that the ship has not been affected by ocean currents since the last observation. It is also interesting to note how near sunrise the observation was made. The twilight must have been quite strong, and the star therefore dim. But star observations can be made best in twilight because the horizon line can then be seen distinctly.

¹ This sum has also been diminished by 10 (see footnote, p. 102).

² Might be $24^h - T$, if the star bore E. instead of W. (see footnote, p. 103).

The foregoing example can of course also be arranged in condensed form, as follows:

TIME-SIGHT, CONDENSED FORM. STAR

```
Watch time:
                      16h 29m 48s
                                      (1)
                                            Obs'd alt.: 40°
                                                              3′
                                                                  (14)
C. - W.:
                     -1 23
                               50
                                      (2)
                                           Index:
                                                            +5
                                                                  (15)
Chr. time:
                      15
                           5
                               58
                                      (3) Table 6:
                                                            -1
                                                                  (16)
Chr. corr'n:
                         - 2
                              28
                                      (4)
                                           Table 7:
                                                            -5
                                                                  (17)
G. M. T.:
                           3
                      15
                               30
                                      (5) Corr'd alt.: 40
                                                              2
                                                                  (18)
R. A. mean sun:
                      17 42
                              10
                                      (6) Lat. D. R.: 35
                                                             20
                                                                  (19)
Corr'n, past noon:
                           2
                              28
                                      (7)
                                                        73
                                                             24
                                           p:
                                                                 (13)
Greenw'h sid. time:
                       8 48
                               8
                                      (9)
                                           sum:
                                                     2)148
                                                             46
                                                                  (20)
R. A. of Sirius:
                       6.41
                              34
                                     (10)
                                                        74
                                                             23
                                                                  (21)
Greenwich hour-ang.: 2
                           6
                              34
                                     (11)
                                           (s-alt.):
                                                        34
                                                             21
                                                                  (22)
T., from (27):
                       3 29
                              14
                                     (28)
Long.:
                       1 22
                              40 E. (29)
or:
                          20° 40′ E. (30)
R. A. of Sirius:
                                6^h 41^m 34^s (10)
Dec. of Sirius:
                                -16^{\circ} 36' (12)
                                   73
                                        24
p:
                                            (13)
sec lat.:
                               0.08842
                                            (23)
esc. p:
                               0.01849
                                            (24)
cos s:
                              9.43008
                                            (25)
\sin (s - alt.):
                               9.75147
                                            (26)
sum of 4:
                               9.28846 (27) = \text{hav. } T (\text{or } 24^h - T)^{-1}
```

Having now fully explained both the noon-sight and the time-sight, we shall close this chapter with a strong recommendation to young navigators to familiarize themselves with the observation of stars. These always furnish a valuable check on sun observations: and at times of danger may save the ship when clouds have obscured the sun for days, and clearing occurs after sunset. It is easy to learn to know the principal stars from Jacoby's "Astronomy," Chapter III, "How to Know the Stars."

¹ See footnote, p. 103.

CHAPTER IX

NEWER NAVIGATION METHODS

The reader may have noticed in Chapter VIII that there is a very definite difference between the determination of latitude by a noon-sight and longitude by a time-sight: for the latitude is obtained without previous knowledge of the longitude; but to get the longitude, a previous knowledge of the latitude is essential. This is, of course, a decided disadvantage in determining longitude, nor is there any practicable direct way to get the longitude without first knowing the latitude.

We have also seen (p. 101) that any existing uncertainty in our knowledge of the latitude will produce an error in the longitude computed from a time-sight. In situations of danger it is important to ascertain how great this longitude error may be. Suppose, for instance, we have calculated a time-sight with a D. R. latitude that we suspect may be as much as 10' too small; and we wish to know how much our computed longitude may have been thereby put wrong. The obvious way to find out is to recompute the longitude with an assumed latitude 10' larger than the D. R. latitude. The resulting longitude will then show the extreme range of error that must have been produced if the D. R. latitude was 10' too small.

A third calculation, with an assumed latitude 10' smaller than the D. R. latitude, will similarly exhibit the extreme possible range of longitude error in the other direction. Thus these two extra calculations will show the limits of longitude error that might be caused by a range of 20' in the possible error of the D. R. latitude.

This rather obvious procedure was probably used long ago by more than one intelligent navigator; but it was first published in 1837 by Thomas H. Sumner, an American merchant captain. He used the method in dramatic circumstances of great danger; and he brought his ship safely into port. According to his own account, he made three calculations of the longitude, using three assumed latitudes differing by 10', and he of course obtained three different longitudes. He then marked or plotted (p. 55) on his chart the point indicated by the first assumed latitude and its computed longitude. At this point the ship must have been located, if the first assumed latitude had been correct. The other two latitudes, with their computed longitudes, indicated two more points on the chart; and at one of these points the ship must have been, if either of these additional latitudes was correct.

Sumner found that the three points on the chart lay in a straight line; and it became at once evident that whatever latitude he might assume (within reason) he would always get a point on the same straight line, after computing the longitude. In other words, although he did not know his latitude accurately, and so could not compute his longitude accurately, yet he had found a straight line on the chart upon which his ship was surely situated.

Such a line can always be found in the way Sumner found it, or in some preferable modern way; and such a line we shall call a "Sumner line," though some writers on navigation prefer to call it a "line of position."

On the occasion of laying down his line, Sumner found that it passed directly through Small's Light, near the Irish coast; and as the line bore E.N.E. on his chart, he simply put the ship on that course, and in less than an hour he "made" Small's Light, actually bearing E.N.E. ½ E., and, as he says, "close aboard." He had had no observations after passing longitude 21° W., until the morning of Dec. 17, when these historic events occurred. He was off a rocky lee shore, in

the midst of a winter gale, after crossing the Atlantic; only a seaman can understand the relief he must have felt when that light suddenly appeared off the bow.

We have given this account of Sumner's experience to impress on the young navigator that he must positively familiarize himself with the Sumner method of navigation. Should we be so fortunate as to have any experienced navigator among our readers, we ask him to try the Sumner method once more, in the manner explained below, even if he may have found it troublesome in the past on account of certain difficulties in its application. For the Sumner method is the best method of navigation on all oceans and at all times: even when a noon-sight is available for latitude, it is better to treat it as a Sumner observation, and work out the Sumner line.

The principal objection urged against it by certain practical navigators arises from the small scale of existing ocean track charts, on which a distance of 10' is represented by about $\frac{1}{8}$ inch. A line like Sumner's, 20' long, would have only a length of $\frac{1}{4}$ inch on the chart; and such a little line would not be long enough to show accurately the direction in which it pointed. When near a coast, as in Sumner's case, this difficulty disappears, because navigators always have (or always should have and use) the large scale charts that can be obtained for coastwise waters.

But it is inconvenient for navigators to begin using a method off the coast, on the last day of a voyage, different from the form employed for many days at sea. Therefore, some authorities recommend the construction of a special large scale chart, with its latitude and longitude lines, each time an observation is made throughout the voyage, so that the Sumner line can always be drawn on a sufficiently large scale. It is no wonder that navigators have not generally adopted this somewhat laborious proceeding; and in the method given below we shall utilize the Sumner idea without requiring any lines to be drawn on charts.

Another objection to Sumner navigation is that it requires too much calculation; three longitude calculations for one observation, as Sumner practiced it. This objection is also quite removed now by the use of suitable tables such as we give in the present volume.

But before proceeding to explain these tables, we must outline briefly the real principle on which rests the complete utilization of the Sumner method on the open sea. There the navigator wants to know the ship's position in both latitude and longitude; and will not be satisfied with a mere line, with the ship "somewhere on the line." Along the coast such a line might help him to find Small's Light; but he is not looking for coast lights at sea.

And the Sumner method takes care of this matter in the simplest possible way. We have seen (p. 88) that two different observations are always necessary by any method to get both latitude and longitude. But two such observations by the Sumner method give two different lines on the chart: and as the ship must be located on both lines, her actual position must be at their point of intersection. We shall show how the required latitude and longitude of the ship at the point of intersection can be found by a simple calculation, without the drawing of any lines on the chart.

Coming now to the modern method of calculating a Sumner line, we must first state a general fundamental principle that may be easily verified by geometrical considerations. The true bearing (p. 44) of a Sumner line on a chart is always 90° greater than the true bearing or azimuth (p. 44) of the sun (or star) at the moment of observation. Or, in other words, the Sumner line bears at right angles to the sun at the time of observation.

We shall show how the bearing or azimuth of the sun can always be found from suitable "azimuth tables"; but the Sumner line is not completely known from its bearing alone. To locate it properly it is necessary to know in addition the latitude and longitude of some point on the line, which we

will call a "Sumner point." Then, knowing such a point of the line, and the bearing of the line, we may say we know the line completely, and, if necessary, could draw it on a chart.

Now to find the required Sumner point. We always have the D. R. position of the ship at the moment of observation; which we will call the "D. R. point." It is easy to find out if the D. R. point is also a Sumner point. It is merely necessary to calculate what the sun's altitude would be for a ship at the D. R. point, and then compare this calculated altitude with the one actually observed. If the D. R. point was really a Sumner point (which will rarely happen), the two altitudes will agree; if not, the amount of disagreement will show how far the D. R. point is distant from the nearest Sumner point.¹

The first step, then, in Sumner navigation, is the calculation of the altitude, supposing the ship to be at the D. R. point at the moment of observation. To do this for a sun observation, we first calculate the Greenwich apparent time (abbreviated G. A. T.) of the observation, just as was done in the case of a time-sight on p. 102. To this G. A. T. we then add the ship's D. R. longitude, if east, or subtract it, if west, to get T (p. 100), the ship's apparent time of the observation. We then use the formulas on p. 113, in which X and Z are "auxiliary angles" required in the calculations, but not otherwise of special interest. These formulas are called the "cosine-haversine" formulas.

There are several other sets of formulas with which the same problem can be solved. One set, called the "haversine" formulas, involves the use of haversines only; another, called the "sine-cosine" formulas, solves the problem with sines and cosines. But neither is preferable to the following cosine-haversine set.

¹ This method is often called the Marcq Saint Hilaire method; but it should probably be credited to Lord Kelvin, who published "Tables for Facilitating Sumner's Method at Sea" in 1876. These tables follow the method described above.

If observation was made before noon, ship's time,
hav.
$$X = \cos \operatorname{lat.} + \cos \operatorname{dec.} + \operatorname{hav.} (24^h - T),$$

If observation was made after noon, ship's time,
hav. $X = \cos \operatorname{lat.} + \cos \operatorname{dec.} + \operatorname{hav.} T,$

lat. $-\operatorname{dec.} = \operatorname{diff.}^1$ of lat. and dec., if both are $+$ or both $-$,
lat. $-\operatorname{dec.} = \operatorname{sum}^1$ of lat. and dec. if one is $+$ and one $-$,
(4)

No. hav. Z = No. hav. (lat. - dec.) + No. hav. X(5)Alt. = $90^{\circ} - Z$.

(6)

Now we can compare the altitude computed by formula (6) with the observed altitude, fully corrected for index error, etc. The difference between the two altitudes in minutes will be the distance in miles of the nearest Sumner point from the D. R. point, for the minute and nautical mile here correspond, as they do in the case of differences of latitude (p. 15). The bearing of the Sumner point from the D. R. point will be the same as the sun's azimuth if the observed altitude is greater than the computed altitude: but if the observed altitude is less than the computed, the bearing of the Sumner point will be 180° greater than the sun's azimuth.

The bearing and distance of the Sumner point from the D. R. point once known, it is easy, by means of the traverse table (p. 10), to obtain the latitude and longitude of the Sumner point from the known latitude and longitude of the D. R. point; or, which is the same thing, from the ship's D. R. latitude and longitude.

Before giving examples of these calculations, it remains to show how the sun's bearing or azimuth can be taken from Table 11 (p. 284), called the azimuth table. The pair of arguments (p. 11) for entering this table are: first, in the left-hand column, the declination, which is here used without regard to its sign; and second, in the four topmost hori-

I

¹ In using formulas (3) and (4), pay no attention to + or signs after the right formula is once chosen. The difference between latitude and declination is always taken by subtracting the smaller from the larger; and the sum by adding them, without regarding their + or - signs. Cf. also p. 89.

zontal lines, T (p. 100), the ship's apparent time at the moment of observation.

Having found this pair of arguments, we look in the column under T, and in the horizontal line opposite the declination. There we find an "index number." Next we look up the altitude, as computed by formula (6), page 113, in the right-hand column of the azimuth table, and follow along the horizontal line belonging to that altitude, until we reach a number equal (or nearly equal) to the index number. Then we go down the column containing this second appearance of the index number, and find the azimuth at the bottom of the page. The table gives approximate azimuths only, but the approximation is sufficient for our present purpose.

The azimuths at the bottom of the page appear in four horizontal lines, of which the upper two belong to forenoon observations, and the lower two to afternoon observations. All azimuths are counted from the north, through east, south, and west, from 0° to 360°, like compass courses in United States Navy practice (p. 41). It is important for the navigator to record, at the time of observation, the word "forenoon" or "afternoon," and also the sun's roughly approximate bearing, to aid in choosing which of the azimuths at the bottom of the tabular page is the right one. The record showing whether the observation was made in the forenoon or afternoon limits the choice to two of the lines of azimuths; and if there is any doubt remaining between these two, the following rules may clear it up.

When latitude is + and declination -, azimuth is between 90° and 270° ;

When latitude is + and declination +, if declination is greater than latitude, azimuth is not between 90° and 270°;

When latitude is - and declination -, if declination is greater than latitude, azimuth is between 90° and 270° ;

When latitude is - and declination +, azimuth is not between 90° and 270°.

In other cases, and especially when latitude and declination are nearly equal, the foregoing rules are insufficient, and we must consult Table 12 (p. 290), the "auxiliary azimuth table." This table has latitude and declination for its pair of arguments, the former in the left-hand vertical column, the latter in the topmost horizontal line: and in using the table it is not necessary to pay attention to the + and - signs of latitude and declination. Start with the latitude, and follow its horizontal line to the right until you reach the column having the declination at its head. There you will find an "auxiliary angle," which must be compared with the altitude computed by formula (6), page 113. Then:

If the computed altitude is greater than the auxiliary angle, and if latitude is +, azimuth is between 90° and 270°;

If the computed altitude is less than the auxiliary angle, and if latitude is -, azimuth is between 90° and 270°;

If the computed altitude is less than the auxiliary angle, and if latitude is +, azimuth is not between 90° and 270°;

If the computed altitude is greater than the auxiliary angle, and if latitude is -, azimuth is *not* between 90° and 270°.

It will rarely happen that any of the foregoing rules will be needed, if the navigator will make a careful observation of the sun's azimuth with the azimuth circle or pelorus (p. 44), as soon as possible after the sextant altitude has been observed. The ship's course should also be specially recorded when this observation is made. This proceeding is not merely a convenience to avoid consulting the foregoing rules in using the azimuth table: it is really essential to safe navigation, for a comparison of the observed azimuth with that derived from the table will make the compass error (p. 43) known. The variation is known from the chart; so that if we observe the compass error, we can allow for the variation, and get the deviation. This can then be compared with the deviation table (p. 48), to see if there has been any change in the compass since leaving port. It is

a great advantage of the Sumner method that the sun's azimuth comes out as a sort of by-product, so that the compass can be verified without any additional special calculations.

We shall now illustrate all the above considerations by means of examples; beginning with the observation already treated as a time-sight (p. 101). That observation we shall now work by the Sumner method. From page 101 we take the following:

Date of observation, Dec. 18, 1917, in the afternoon; D. R. latitude, 42° 20′ N.; D. R. longitude, 35° 16′ W.; altitude observed, 14° 19′; time by watch, 2^h 29^m 58^s; C. –W., 2^h 27^m 8^s; chronometer correction, 2^m 8^s slow of G. M. T.; index correction, + 4′; height of eye, 24 ft.

From the preparatory part of the calculation (p. 102), we also copy the following additional numbers:

Declination, line (6), page $102 -23^{\circ} 24'$ (1) Greenwich apparent time (G. A. T.) of observation,

We have next to calculate, by the formulas on page 113, the altitude corresponding to the D. R. point, for which the latitude and longitude are given above. The longitude is 35° 16′ W., or, at 15° to the hour (Table 9, p. 249):

gives ship's apparent time of observation, T...24131 (4)

We are now prepared to apply formulas (1) to (6), page 113. We choose formula (2) for an afternoon observation 1; and write:

For a forenoon observation we should choose formula (1), and should therefore need to know 24^h-T instead of T. This would make necessary another line in the form of calculation, and it would follow line (4). This new line might be numbered (4'); and in it would be written 24^h-T , obtained by subtracting T (line 4) from 24^h .

Cos lat., 42° 20' N. by D. R. (see Table 4, p. 238) 9.86879 (5) Cos dec., 23° 24', line (1) (see Table 4, p. 219) 9.96273 (6) Hav. T , 2^{h} 41^{m} 31^{s} , line (4) (see Table 10, p. 260) 9.07596 (7) Adding (5) to (7) gives hav. X (dropping 20, p. 25) 8.90748 (8))
Now we choose formula (4), because latitude and declina	_
tion are $+$ and $-$;	
The latitude is, by D. R)
Adding (1) and (9) according to formula (4) gives	
(lat. – dec.))
Now we have, Table 10, page 266, No. hav. of (10) 0.29451 (11)
No. hav. X , line (8) 0.08082 (12))
Adding (11) and (12), according to formula (5), page	
113, gives No. hav. Z 0.37533 (13)
And Z, corresponding to (13) is found from Table 10,	
page 268 75° 34′ (14)
Then, by formula (6) computed altitude = $90^{\circ} - Z$ (14),	
or 14° 26′ (15)
This computed altitude (15) must now be compared with the observed altitude, fully corrected. We find:	1
Obs'd alt., fully corrected, line (17), page 102, is 14° 30′ (16). Difference between (15) and (16), in minutes, is the distance of Sumner point from D. R. point in)
miles (p. 113). It is 4 miles (17))

Next we must find the sun's azimuth from Table 11, page 286. The top argument for entering the table is T, line (4), and it must be found in the "afternoon" lines. The argument for the left-hand column is the declination, line (1). Under T, and opposite declination, we find the tabular index number $5872.^2$ Then we find the computed altitude, line (15), in the right-hand column of Table 11, page 286, and

 1 This No. hav. X comes from Table 10, page 258, without looking up the angle X at all. We simply find hav. X in the table, and take the No. hav. X out of the adjoining heavy type column. No interpolations are needed, the nearest tabular numbers being sufficiently accurate.

² The index numbers and the azimuth need not be very accurate: it is sufficient to use the nearest tabular arguments, so that interpolation is not essential.

follow its horizontal line till we again come upon the index number 5872. It lies about halfway between 5703 and 5973. Going down the two columns containing these index numbers, we find in the afternoon azimuth lines two values of the azimuth, 217° and 323°. The choice between these two numbers would be very easy, if the observer's record contained even a rough estimate of the sun's bearing at the time of observation. We have purposely not made this available, so as to show how to consult the directions on page 114, and there we find that when the latitude is + and the declination -, the azimuth is between 90° and 270°. So we finally choose 217° for the sun's azimuth.

Since the observed altitude (16) is greater than the computed altitude (15), the bearing of the Sumner point from the D. R. point, according to page 113, is the same as the sun's azimuth, or 217°. And as we now know the bearing and distance of the Sumner point from the D. R. point, we can find its latitude and longitude by a simple application of the traverse table (p. 154).

We have merely to consider the bearing and distance to be a course angle and distance, and imagine a ship to have sailed from the one point to the other. In the present case, the distance is 4 miles (line 17), the course 217°: and Table 1 (p. 164) gives the corresponding latitude 3'.2, departure 2.4. The longitude difference is obtained from the departure by Table 2 (p. 174) and is, for latitude 42°, about 3'.2. Dropping odd fractions, the latitude difference and longitude difference both come out 3'. The Sumner point is therefore 3' distant from the D. R. point in both latitude and longitude. And since the bearing 217° indicates on the compass card that the Sumner point is south and west of the D. R. point, it follows that:

It is important for the reader to understand that the foregoing calculation is given in extended detail so as to make it easy for the beginner to follow. In condensed form, we should have the following arrangement of the calculation, corresponding to the condensed time-sight form (p. 104). Part of the work here repeated from page 104 has no attached reference numbers in parentheses: the new part of the work has references to the detailed calculation just given.

SUMNER LINE, CONDENSED FORM. SUN

Obs'd alt.: 14° 19'		Decl. 4^h : 23° 23′.7 S.		
Index: + 4		H. D.: 0.1		
Table 6: + 12		Decl. 4h 59m: 23° 24′ S.		
Table 7: - 5		Eq. time, 4^h : $+3^m 22^s.3$		
Corr'd alt.: 14° 30'		H. D.:	1.2	
		Eq. time, $4^h 59^m$: +3 21.	1	
Watch time:	2h 29m 58s			
C W.	2 27 8			
Chr. time:	4 57 6			
Chr. corr'n:	- 28			
G. M. T. 18th;	4 59 14			
Eq. of time:	- 3 21			
G. app. time:	5 2 35			
D. R. long.:	2 21 4 W. (3)			
Ship's app. time, T	: 2 41 31 - (4)	hav. $T (\text{or } 24^h - T)^1$: 9.075	96	
D. R. lat.:	42° 20′ N. (9)	cos lat.: 9.868	79	
Dec.:	23 24 S. (1)	$\cos \operatorname{dec.}$: 9.962	<u>73</u>	
		sum = hav. X: 8.907	48	
		No. hav. X: 0.080	82 (12)	
		No. hav. (lat.		
Lat Dec.:	65 44 (10)	- dec.): 0.294	<u>51</u> (11)	
$oldsymbol{z}$:	75 34 (14)	No. hav. Z 0.375	33 (13)	
Comp'd alt	14 26 (15)			
Obs'd alt.:	14 30 (16)			
Diff	4 (17)			
Index No	5872			
Azimuth:	217°			
Lat. diff.:	3'.2	Dep.: 2.4		
		Long. diff.: 3'.2		
D. R. lat.:	42° 20′ N. (9)	D. R. long.: 35° 16′ V	W. (3)	
Sumner pt. lat.:	42 17 N. (18)	Sumner pt. long.: 35 19 V	W. (19)	
Azimuth of Sumner	, ,			
		110		
	1 See footne	MAD IIK		

¹ See footnote, p. 116.

When the object observed is a star (cf. p. 104) or planet, the choice between formulas (1) and (2), page 113, is not quite the same as in the case of a solar observation. We must use formula (1) if the star was on the east side of the sky when observed, which might be called a "forenoon" observation of the star; and we must use (2) if the star was on the west side of the sky, giving an "afternoon" star observation. The use of the remaining formulas (3) to (6) is the same as for the sun; but T is now no longer the ship's apparent time. Instead, it is the star's hour-angle (p. 104); to find it for use in formulas (1) and (2), and in Table 11, we must first calculate (p. 85) the Greenwich sidereal time corresponding to the G. M. T. of the observation, as taken from the chronometer, duly corrected for error and rate; and then use the following formulas:

(7) Greenwich hour-angle = Greenwich sidereal time - right ascension of star,

(8) $\begin{cases} T = \text{Greenwich hour-angle} + D. \text{ R. longitude, if east,} \\ T = \text{Greenwich hour-angle} - D. \text{ R. longitude, if west.} \end{cases}$

As an application of the Sumner method to a star observation, let us take the observation of Sirius, Dec. 17, 1917, off Cape Agulhas, already treated as a time-sight (p. 105).

From the preliminary calculations there given, we have:

Greenwich hour-angle, line (11), page $105......2^h$ 6^m 34^s (1) D. R. longitude (p. 105) is 20° 41' E., or by

The star bore west 1 (p. 105) so we choose formula (2) (p. 113), and write:

cos lat. (p. 106, line 19), 35° 20′ S. by D. R.

cos dec. (p. 106, line 12), - 16° 36′ (Tab. 4, p. 212) 9.98151 (5)

hav. T, $3^h 29^m 18^s$ (line 3, above) (see Table 10, p. 263) 9.28872 (6)

Adding (4) to (6) gives, by formula (2), page 113, hav. X, 9.18181 2 (7)

¹ See p. 116, footnote.

² Sum diminished by 20 (see footnote, p. 102).

Next we choose formula (3), page 113, since latitude and	
declination are both We have:	
By formula (3), lat. $-\text{dec.} = 35^{\circ} 20' - 16^{\circ} 36' = 18^{\circ} 44'$	(8)
We now use formula (5), page 113. We have:	,0)
No har 100 44/ (0) / m 11 40 000	(9)
No. hav. X^1 (7) (see Table 10, p. 261) 0.15194 (1	,0)
Adding (9) and (10) gives No. hav. Z 0.17843 (1	1)
And Z, corresponding to (11) is found from	-,
Table 10 mans 000	2)
Then, by formula (6), page 113,	_,
computed alt. = $90^{\circ} - Z$ (12), or	3)
This computed altitude (13) must be compared	0,
with the observed altitude, fully corrected.	
This was (p. 106, line 18)	4)
Difference between (13) and (14), in minutes, or dis-	-,
tance of Sumner point from D. R. point in miles	
(p. 113)	5)

Next we find the star's azimuth from Table 11, page 287. The top argument for entering the table is T, line (3), and it must be found in the "afternoon" lines, since the star bore W. The argument for the left-hand column is the declination, line (5). Under T (p. 287), and opposite declination, we find (approximately) the tabular index number 7550. Then we find the computed altitude, 40° (13), in the right-hand column of the table (p. 289), and follow along its horizontal line until we again reach the index number 7550. The nearest to 7550 is 7544; and under this number, at the foot of the column, we find the two "afternoon" azimuths 260° and 280° .

These two numbers are so nearly equal that there is uncertainty in choosing between them. Had the observer taken the star's bearing by compass at the time of observation (p. 115), the uncertainty would be removed. But in the absence of this information, we must have recourse to Table 12 (p. 290), the auxiliary azimuth table. Entering this table with the pair of arguments of the present

 $^{^{1}}$ No. hav. here obtained from hav. without finding the angle X (p. 117, footnote).

problem: viz. latitude 35°, declination 17°, we find the auxiliary angle 31°. The computed altitude (13) being 40°, is greater than the auxiliary angle, and the latitude is —. Therefore, by the instructions (p. 115), the azimuth is not between 90° and 270°. We therefore choose 280° as our final azimuth, since 260°, the other possible value, is in the prohibited area between 90° and 270°.

The computed altitude (13) being less than the observed altitude, this observation places the Sumner point 1 mile (15) from the D. R. point, and bearing from it 280°, the same as the star's azimuth (p. 113). The traverse table (p. 156) gives, for distance 1 and course 280°, latitude 0.2, departure 1.0. The longitude difference, by Table 2 (p. 172), is 1'.2, for the departure 1.0. Therefore, since azimuth 280° indicates on the compass card that the Sumner point is W. and N. of the D. R. point, we have:

lat. of Sumner point =
$$-35^{\circ}20'$$
 (4) + $0'.2 = -35^{\circ}20'$ (16) long. of Sumner point = $20^{\circ}41'$ E. (2) - $1'.2 = 20^{\circ}40'$ E. (17)

The bearing of the Sumner line will be 90° greater than the star's azimuth (p. 111); so we have:

Bearing of Sumner line =
$$280^{\circ} + 90^{\circ} = 370^{\circ}$$
; or,
dropping $360^{\circ} = 10^{\circ}$ (18)

The foregoing calculation of the Sumner point from a star observation can of course also be put in condensed form. In doing so, we have repeated certain numbers from page 107 without references in parentheses. But numbers taken from the extended calculation just given have their reference numbers attached.

This condensed form, like the others previously given, is the form of calculation which would be used in actual navigation. It is most important, in the interest of numerical accuracy, to make all calculations upon forms; and no numbers should be written on the forms without having an adjoining statement as to the meaning of the numbers.

SUMNER LINE, CONDENSED FORM. STAR

```
Watch time:
                       16h 29m 48s
C_{\cdot} - W_{\cdot}:
                      - 1
                            23
                                 50
Chr. time:
                       15
                             5
                                58
Chr. corr'n:
                                28
                                              Obs'd alt.: 40° 3'
G. M. T.:
                       15
                             3
                                30
                                              Index:
R. A. mean sun:
                       17
                            42
                                10
                                              Table 6:
                                                             - 1
Corr'n, past noon:
                             2
                                28
                                              Table 7:
Greenw'h sid. time:
                        8
                            48
                                8
                                              Corr'd alt.: 40
R. A. of Sirius:
                        6
                           41
                                34
Greenw'h hour-angle:
                        2
                            6
                                34
D. R. long.:
                        1
                            22
                                44 E. (2)
T:
                        3
                            29
                                18
                                       (3)
     T \text{ or } (24^h - T)^{-1}: 3^h 29^m 18^s
                                      (3) hav.: 9.28872
                                                            (6)
     Dec. :
                      - 16° 36′
                                         cos:
                                                9.98151
                                                            (5)
     D. R. lat.:
                      - 35
                             20
                                                9.91158
                                         cos:
                                                            (4)
     Sum of 3 = \text{hav}, X:
                                                9.18181
                                                            (7)
     No. hav. X:
                                                0.15194
                                                          (10)
     Lat. - Dec.: 18° 44′ (8); No. hav.: 0.02649
                                                           (9)
     Sum of 2 = No. hav. Z:
                                                0.17843
                                                          (11)
                                                49° 59′
                                                          (12)
     Computed alt. = 90^{\circ} - Z:
                                                40
                                                     1
                                                          (13)
     Obs'd alt., corr'd:
                                                 40
                                                     2
                                                          (14)
     Diff.:
                                                     1
                                                          (15)
     Index No.: 7550
     Azimuth: 280°
     Lat. diff.: 0'.2
                         Dep.: 1.0 Long. diff.: 1'.2
     Sumner pt. lat.: - 35° 20′ (16); long.: 20° 40′ E. (17)
     Bearing of Sumner line: 10° (18)
```

We have now, in the foregoing examples, illustrated the manner of determining a Sumner line completely by ascertaining the latitude and longitude of one point on the line (the Sumner point), and the bearing of the line itself at that point. It may be desired to draw the line on the chart, which will always interest the navigator if he is near the coast and has a large-scale chart. To draw it, we merely locate the Sumner point on the chart by its latitude and longi-

¹ See footnote, p. 116.

tude, and then draw the line through the point so that it will make with the meridian an angle equal to the bearing which has been computed for the line. The Sumner line should be extended in both directions from the Sumner point, for any convenient distance, in such a way that the point will be near the middle of the line.

We can now gain a better understanding as to Sumner navigation by comparing the results obtained in one of the foregoing examples with the corresponding calculation of the same example as a time-sight. Thus from the same observation (pp. 104, 119)

As a Time-Sight

From D. R. latitude 42° 20′ N.; D. R. longitude 35° 16′ W., we found the ship's longitude to be 35° 24′ W.

As a Sumner Observation

From D. R. latitude 42° 20′ N.; D. R. longitude 35° 16′ W., we found the Sumner point to be in latitude 42° 17′; longitude 35° 19′ W.; and azimuth of Sumner line, 307°.

Starting with the same observed altitude, and the same D. R. position of the ship, we get quite different results by the two methods of calculation. The time-sight gives us nothing but a longitude; and it will be the correct ship's longitude only if the D. R. latitude was also correct (p. 101). Therefore the time-sight calculation leaves us with both latitude and longitude still affected by possible errors in the D. R. latitude.

On the other hand, the Sumner calculation gives us both a latitude and a longitude, but neither belongs to the ship's position. They both belong to the position of the Sumner point, but they are free from the effects of any D. R. errors. They fix the Sumner point only, but they fix it correctly. Furthermore, our knowledge that the ship is somewhere on the Sumner line is also a fact, free from error. So what we learn from the Sumner method is sure; what we get by the older methods is all really D. R. information in some

degree. The Sumner method is independent of D. R., an advantage of which the value cannot be estimated too highly.

Furthermore, it can be shown mathematically (cf. p. 111) that a single observation can never really do more than determine a line on which the ship must be. Even a noon-sight does no more than this; for in determining the ship's latitude, it really only makes known a horizontal line (the ship's latitude parallel) on the chart. In other words, for a noon-sight the Sumner line is horizontal, or has a bearing of 90°. And it will always come out 90°, if a noon-sight is worked as a Sumner observation.

But the principal purpose of our present comparison of the two methods of calculation is to warn the navigator against falling into the error of imagining the ship to be at the Sumner point. The observation does no more than tell us where the Sumner point is, and that the ship is somewhere on the line; so far as the observation is concerned, all points on the line are equally likely to be the ship's true position. Therefore it is misleading to call the Sumner point the ship's "most probable position." Were it so, a second observation, made later in the day, would give another "most probable position" of the ship. We should then be naturally led to take as the ship's final location a point midway between the two "most probables," ascribing their divergence to possible errors of observation. But the ship's real position we already know (p. 111) to be at the intersection of the two Sumner lines resulting from the two observations. And this intersecting point may be many miles from both "most probables," and from the above-mentioned midpoint between them.

Less than two observations cannot fix the ship's position completely; when two have been made, a correct application of the Sumner method requires that the intersection point of two Sumner lines be determined by calculation. But before explaining the method of doing this, we must describe an excellent alternative way of making Sumner

calculations such as we have given in the above examples. The results are the same results as before, but they are obtained with less work, and quite without logarithms, by means of special tables such as our Table 13 (p. 292), which we shall call Kelvin's Sumner Line Table.

This table has a pair of arguments (p. 11), a and b, a appearing at the heads of the tabular columns, and b in the left-hand column of each page. Corresponding to these two arguments, the table gives two angles, K and Q; so that whenever a and b are given we can find the corresponding b and b0; or, if b1 and b2 and b3 are given, we can find the corresponding b3 and b4.

In the Sumner problem we obtain, by preparatory calculation (cf. pp. 119, 123), the following data:

Declination of sun (or star); D. R. latitude; D. R. longitude; T, the ship's apparent time of the observation for the sun, or the hour-angle for a star;

and we wish to get the computed altitude and the azimuth.

The principle on which Table 13 depends is that the D. R. latitude and longitude being always somewhat uncertain, we can, if we choose, change them by reasonable amounts before beginning our calculations. The Sumner point will then be determined by its distance and bearing from the changed D. R. point, instead of the original D. R. point. By this device the tabular calculation is much facilitated. The use of the table is easy after a little practice, the work being divided into a series of separate operations. In describing these operations we have used small subscript numbers, to distinguish the several arguments, etc.; as, for instance, in Operation 1 we use a_1, b_1, K_1 .

¹ These tables were first published by Lord Kelvin in 1876. More extended ones were recently issued by Lieutenant de Aquino, of the Brazilian Navy; and these were reprinted by the Hydrographic Office, United States Navy, in 1917. Aquino also improved Kelvin's method of using his table.

OPERATION 1, requiring no interpolation. Enter Table 13 with:

Arg. a_1 = declination, taken without regard to + or - sign, and correct to the nearest whole degree only;

Arg. $b_1 = T$, if T is between 0^h and 6^h ;

- = $12^h T$, if T is between 6^h and 12^h ;
- = $T 12^h$, if T is between 12^h and 18^h ;
- = $24^h T$, if T is between 18^h and 24^h ;
- and before use b_1 must be turned into degrees with Table 9 (p. 249). It need be correct to the nearest degree only. This proceeding will make b_1 always less than 90°.

Then take from the table the tabular angle K_1 , also correct to the nearest degree only.

OPERATION 2, requiring simple interpolation. Enter the table a second time with:

Arg. a_2 = the K_1 , obtained in Operation 1.

Then, under this a_2 , run down the K-column until you find the declination (taken without regard to + or - sign); so that, in other words, K_2 = declination.

Take from the table the angle Q_2 , which stands next to the declination K_2 , and also the b_2 , which is in the left-hand argument column, in the same horizontal line with the declination K_2 in the K-column. It will rarely be possible to find the declination (which must this time be exact to the nearest minute) in the K-column; so that a simple interpolation will be necessary in getting Q_2 and b_2 . An example of this interpolation will be found on page 129; and, as we shall see, it is practically the only numerical calculation required in the whole problem. The Kelvin method is very much shorter than it looks.

The angle Q_2 is used in choosing the longitude of the "changed D. R. point"; the latitude of that point will be found in Operation 3. To utilize Q_2 for a sun observation, calculate the Greenwich apparent time (G. A. T.) of the

observation, as on page 102, line (8), and turn it into degrees with Table 9 (page 249). Then:

- W. long. of changed D. R. point = G. A. T. Q₂, if, in Operation 1, T was less than 6^h;
- (2) W. long. of changed D. R. point = G. A. T. $-(180^{\circ} Q_2)$ if, in Operation 1, T was between 6^{h} and 12^{h} ;
- (3) W. long. of changed D. R. point = G. A. T. $-(180^{\circ} + Q_2)$ if, in Operation 1, T was between 12^{h} and 18^{h} ;
- (4) W. long. of changed D. R. point = G. A. T. $-(360^{\circ} Q_2)$ if, in Operation 1, T was between 18^{h} and 24^{h} .

When the subtractions in these formulas cannot be made, the G. A. T. may be increased by 360°; and when the west longitude comes out greater than 180°, subtract it from 360°, and call it east longitude.

In the case of a star, we must use, in the above formulas, the Greenwich hour-angle, instead of the G. A. T. See page 105, line (11), for the method of obtaining it.

OPERATION 3, requiring no interpolation. Enter the table a third time with:

Arg. $a_8 = K_1$, again as obtained in Operation 1.

- (5) Arg. $b_8 = 90^{\circ} (b_2 + \text{changed D. R. lat.})$, if latitude and declination are of opposite signs, one + and one -;
- (6) Arg. $b_3 = (b_2 + \text{changed D. R. lat.}) 90^\circ$, if T was between 90° and 270° ;
- (7) Arg. $b_3 = 90^{\circ} (b_2 \text{changed D. R. lat.})$, if latitude is less than b_2 ;
- (8) Arg. $b_3 = 90^{\circ} + (b_2 \text{changed D. R. lat.})$, if latitude is greater than b_2 .

In choosing among formulas (5) to (8), give them precedence in order; do not use (7) or (8) if the conditions stated for (5) or (6) are satisfied. And at this point, use your privilege of choosing any reasonable changed D. R. latitude for the ship; and choose one that differs as little as possible from the original D. R. latitude, and that yet makes b_3 a whole number of degrees. In this way, all further

interpolation is avoided. Having once chosen among the formulas, the latitude is used without regard to + or - signs.

To complete Operation 3, having entered the table with the pair of arguments a_3 and b_3 , take out the tabular K_3 and Q_3 .

 K_3 is now the computed altitude, to be used (p. 113) in locating the Sumner point from the changed D. R. point; and Q_3 is the sun's true azimuth, which will always come from the table less than 90°. If the ship is in the northern hemisphere, this azimuth must be counted from the north point of the horizon if, in Operation 3, we used formulas (6) or (7); or from the south point of the horizon, if we used formulas (5) or (8). With the ship in the southern hemisphere, interchange the north and south points of the horizon in these directions. And in both hemispheres, the azimuth will of course be counted toward the east or west, according as the observation was a "forenoon" or "afternoon" one (cf. p. 120).

We shall now use Table 13 for the example given on page 119 in condensed form. We have (p. 127):

OPERATION 1.

 $a_1 = \text{dec.} = 23^{\circ}$, p. 119, line (1), to the nearest degree; $b_1 = T = 2^h 41^m 31^s$, p. 119, line (4) = 40°, to the nearest degree; and, with a_1 and b_1 as arguments, Table 13 gives (p. 298): $K_1 = 36^{\circ}$, to the nearest degree.

OPERATION 2.

$$a_2 = K_1 = 36^{\circ}$$
.
 $K_2 = 23^{\circ} 24'$, p. 119, line (1)

and, with a_2 and K_2 , we must find Q_2 and b_2 . Running down the column headed $a = 36^{\circ}$ (p. 302), we find:

When
$$K_2 = 23^{\circ}$$
 5', $Q_2 = 39^{\circ}$ 43', $b_2 = 29^{\circ}$, When $K_2 = 23^{\circ}$ 51', $Q_2 = 40^{\circ}$ 0', $b_2 = 30^{\circ}$.

We wish to interpolate for $K_2 = 23^{\circ} 24'$, which is 19' down from 23° 5' toward 23° 51'. The whole distance from

23° 5′ to 23° 51′ is 46′. Therefore we must interpolate down $\frac{19}{46}$ of the whole interval from $Q_2 = 39^{\circ}$ 43′ to $Q_2 = 40^{\circ}$ 0′. The difference between these two Q_2 's is 17′; therefore the final Q_2 , belonging to $K_2 = 23^{\circ}$ 24′, is 39° 43′ + $\frac{19}{46} \times 17' = 39^{\circ}$ 43′ + 7′ = 39° 50′. Similarly, the difference between the two b_2 's being 60′, the final value of b_2 , for $K_2 = 23^{\circ}$ 24′, is $29^{\circ} + \frac{19}{46} \times 60' = 29^{\circ}$ 25′. These two little interpolations are practically all the calculation required in the whole problem.

To find the longitude of the changed D. R. point from the above $Q_2 = 39^{\circ} 50'$, we take from page 102, line (8),

Greenwich apparent time of observation, $5^h 2^m 35^s$ which, by Table 9 (p. 249) is, $75^\circ 39'$

We now use formula (1), page 128, because T, in Operation 1, was less than 6^h . We get:

W. long. of ch'd D. R. pt. = G. A. T. $-Q_2 = 75^{\circ} 39' - 39^{\circ} 50' = 35^{\circ} 49'$ W.

OPERATION 3.

$$a_3 = K_1 = 36^{\circ}$$
.

The D. R. latitude is $+42^{\circ}$ 20' (p. 119, line (9)); and as the declination is -, we choose formula (5), page 128. This, without changing the D. R. latitude, would give $b_3 = 90^{\circ} - (b_2 + \text{D. R. lat.}) = 90^{\circ} - (29^{\circ} 25' + 42^{\circ} 20') = 90^{\circ} - 71^{\circ} 45'$; but by choosing a changed D. R. latitude of 42° 35', we shall make b_3 a whole number of degrees. So we have: $b_3 = 90^{\circ} - (b_2 + \text{changed D. R. latitude}) = 90^{\circ} - (29^{\circ} 25' + 42^{\circ} 35') = 90^{\circ} - 72^{\circ} = 18^{\circ}$.

Now we enter the table with the arguments $a_3 = 36^{\circ}$, and $b_3 = 18^{\circ}$, and obtain, without interpolation (p. 302):

 K_3 = computed altitude = 14° 29′, Q_3 = sun's true azimuth = 37° 22′.

This azimuth must be counted from the south point of the horizon, since we used formula (5) in Operation 3; and as the observation was an afternoon one, the correct azimuth will be S. 37° 22′ W. (cf. p. 19). Counted in the United States Navy way, from the north toward the east, and so around to 360°, the azimuth will be 217° 22′.

On page 119, we found: Computed altitude, 14° 26'; azimuth, 217°.

This computed altitude differs by 3' from the value just found by Table 13. The difference is due to our having changed the D. R. point.

From the changed D. R. point, in latitude 42° 35′ N.; longitude 35° 49′ W., we now calculate (see Condensed Form, next page) the position of the Sumner point to be: latitude 42° 34′ N.; longitude 35° 50′ W. The former position, as obtained on page 119, was: latitude 42° 17′ N.; longitude 35° 19′ W.

These two Sumner point positions should lie on the same Sumner line if the method of Table 13 gives correct results; and they will satisfy this test, if the bearing of a line joining them agrees with the azimuth of the Sumner line, which is $217^{\circ} + 90^{\circ} = 307^{\circ}$. From the two Sumner point positions we have: latitude difference = 17': longitude difference = 31'; departure (Table 2, p. 174) = 23.0. The traverse table (p. 164) gives, for latitude 17, departure 23.0, the distance 28, course 307°. The agreement is perfect, and shows that the same Sumner line passes through both points, though they are 28 miles apart. This test also shows that the calculation may indicate any point on the Sumner line as the Sumner point, if the D. R. position of the ship is uncertain: and so we again call attention to the error of taking the calculated Sumner point as the ship's most probable position (cf. p. 125).

We now, as usual, repeat the above calculation by Table 13, in condensed form, and including the final determination of the position of the Sumner point from the changed D. R. point.

SUMNER LINE BY TABLE 13, CONDENSED FORM. SUN [The following is taken from page 119.]

Decl., 4h: -23° 23'.7 Eq. of time: $+3^m 22^s.3$ H. D. : 0.1 H. D.: 1.2 Decl., 4h 59m: -23 24 Eq. time: +3 21.1 Obs'd alt.: 14° 19' Watch time: 2h 29m 58e 27 C. - W.: Index: +4Chr. time: 57 +12Table 6: Table 7: -5 Corr'd alt.: 14 30 D. R. lat.: 42° 20' N. D. R. long.: 35° 16' W. $+\dot{2}$ 8 Chr. corr'n: G. M. T.: 59 14 Eq. of time: 21

G. app. time: 5 2 35 D. R. long.: 2 21 4 W. (3) Ship's app. time, T: 2 41 31 (4)

[The following is calculated with Table 13.]

```
OPERATION 1

OPERATION 2

a_1 = \text{dec.} = 23^{\circ}
b_1 = T = 2^{h} 41^{m} 31^{s}(4)
= 40^{\circ}

Table 13, K_1 = 36^{\circ}

Greenwich app. time = 5^{h} 2^{m} 35^{s} = 75^{\circ} 39'

By page 128, form. (1), W. long. of changed D. R. pt. = G. A. T. - Q_3

Lat. of changed D. R. pt. = 42^{\circ} 35^{\circ} N.
```

OPERATION 3

Dist. of Sumner pt. from changed
D. R. pt. = corr'd obs'd alt. - comp'd alt. = 1' or 1 mile
Bearing of Sumner pt. from changed D. R. pt. = 217°,
since comp'd alt. is less than obs'd alt.
Dist. 1, on course 217°, gives lat. diff., 0'.8; dep., 0.6; long. diff., 0'.8
Lat. of Sumner pt. = lat. of ch'd D. R. pt. - lat. diff. = 42° 34' N.
Long. of Sumner pt. = long. of ch'd D. R. pt. + long. diff. = 35° 50' W.

A practised navigator can make the above complete calculation in a few minutes, as there are no logs used; and any one can easily obtain the necessary practice at sea by simply forming the habit of working his sights both as time-sights and as Sumners. To illustrate the subject further, we now give, in condensed form, the Star Example of p. 123, worked by Table 13.

SUMNER LINE BY TABLE 13, CONDENSED FORM. STAR [The following is taken from page 123.]

Watch time:	16h	29m	48*	Obs'd alt.:	40° 3′
C. – W.:	- 1	23	50	Index:	+5
Chr. time:	15	5	58	Table 6:	_ i
Chr. corr'n :		- ž	28	Table 7:	$-\frac{1}{5}$
G. M. T.:	15	3	30	Corr'd obs'd alt, :	40 2
R. A. mean sun:	17	42	10	0011 4 000 4 41011	10 2
Corr'n, past noon:		2	28	Dec. of Sirius:	- 16 36
Greenwich sid. time	: 8	48	8	D. R. lat. :	- 35 20
R. A. of Sirius:	6	41	34	21 20. 100.	00 20
Green. hour-angle:	2	6	$3\overline{4}$		
D. R. long.:	1	22	44 E.		
T:	3	29	18		

[The following is calculated with Table 13.]

```
OPERATION 1 OPERATION 2

a_1 = \text{dec.} = 17^{\circ}
b_1 = T' = 3h
29^m
18^s
a_2 = K_1 = 49^{\circ}
K_2 = \text{dec.} = 16^{\circ}
36'
= 52^{\circ}
Table 13, Q_2 = 51^{\circ}
57'
Table 13, Q_2 = 51^{\circ}
Table 13, Q_3 = 25^{\circ}
= 49'

By page 128, form. (1),

W. long. of changed D. R. pt. = Green. hour-angle -Q_21
= 339^{\circ}
= 20^{\circ}
= 20^{\circ}
19' E.

Lat. of changed D. R. pt. = -35^{\circ}
49'
```

OPERATION 3

```
a_4 = K_1 = 49^{\circ}

By form. (8), page 128, b_1 = 90^{\circ} + (b_2 - \text{changed D. R. lat.}) = 80^{\circ}

Table 13, K_3 = \text{comp'd alt.} = 40^{\circ} 15'

Table 13, Q_4 = \text{az. of Sirius} = N. 81^{\circ} 25' W. or, by U. S. Navy = 278° 35'

Az. of Sumner line = 368° 35', or 8° 35'
```

```
Dist. of Sumner pt. from changed D. R. pt. = corr'd obs'd alt. — comp'd alt. = -13' or 13 miles Bearing of Sumner pt. from changed D. R. pt. = 99^{\circ}, since comp'd alt. is greater than obs'd alt. Dist. 13, on course 99^{\circ}, gives lat. diff., 2'.0; dep., 12.8; long. diff., 15'.9 Lat. of Sumner pt. = lat. of ch'd D. R. pt. + lat. diff. = -35^{\circ} 51' Long. of Sumner pt. = long. of ch'd D. R. pt. + long. diff. = 20^{\circ} 35' E.
```

To complete this part of our subject, it remains to show how the position of the ship can be found at the intersection of two Sumner lines (pp. 111, 125) resulting from two different observations. Figure 18 explains the nature of the problem; and it is almost exactly the same figure and

 1 Q_{2} being larger than the Greenwich hour-angle, the latter was increased by 360°, to make the subtraction possible (p. 128).

problem treated in Chapter V, when we discussed fixing a ship's position by means of "bearings from the bow" (p. 54).

The two Sumner lines in Fig. 18 are SL and S'L, passing through the two Sumner points S and S', whose latitudes

Fig. 18.—Intersection of Sumner Lines.

and longitudes are known by calculation from the observed altitudes. The bearings or azimuths of the two Sumner lines from the north are the two angles NSL and N'S'L, which are also known from the previous calculations. It is now required to find the latitude and longitude of the intersection point L, where the ship is situated.

The similarity of this problem to the former one in Chapter V becomes plain, if we imagine a second ship sailing from one Sumner

point to the other, as from S to S', and taking bearings from her bow upon our ship, located at L. These bearings will be the two angles S'SL and S''S'L. If the second of these angles should happen to be just twice as big as the first, the distance S'L between the two ships at the time of the second bearing would be equal (p. 54) to the distance SS' run by the imagined ship between the two observations.

This would enable us to fix the position of the imagined ship at S', if L were a lighthouse ashore. But if L is our ship, and S' a Sumner point of known position, the same observations of bow bearings would fix the position of our ship at L. Nor is it necessary (or possible) to measure

such imaginary bearings, or read the patent log to get the distance run by an imagined ship.

For the distance and bearing of the second Sumner point from the first can be obtained from their known latitudes and longitudes with the traverse table. Thus the line SS' (marked "distance") and the bearing (or course) angle NSS' become known. Furthermore, the "bow bearing" at S is the angle S'SL, and it is equal to the difference NSL-NSS'. We have just seen that NSS' is obtained from the traverse table; and NSL is the calculated azimuth of the Sumner line through S. In a similar way we get the other "bow bearing" S''S'L. If this were twice the first one, the "required distance" S'L in the figure would be equal to the known distance SS' between the two Sumner points. If not, it can be easily shown mathematically that:

- (1) Required distance = known distance \times a factor,
- (2) $\log \operatorname{factor} = \sin S'SL \sin (S''S'L S'SL)$.

By these simple formulas the required distance S'L might be found: and as we also know the latitude and longitude of the Sumner point S', and the azimuth or bearing of S'L, the traverse table will make known the latitude and longitude of the ship at L. It is to be noted also that as we are at liberty to call either of the Sumner points S', it is desirable to call that one S' which has the larger "bow bearing," so that there will be no difficulty about subtracting S'SL from S''S'L.

The factor of formula (2) above can practically always be found in our Table 14, the Sumner Intersection Table, without using logarithms. The pair of arguments of the table are the smaller "bow bearing" and the larger "bow bearing"; the tabular number is the factor of formula (1) above, and will always give the distance of the intersection point from that one of the two Sumner points for which the bow bearing was the larger.

And it should not be forgotten that the Sumner line really

extends equally in both directions (p. 124) from the Sumner point, whereas, in Fig. 18, we have extended it mainly in the direction of the intersection point L. Now the calculated azimuth of any Sumner line may be changed 180° at will, because the bearings of the two ends of the line from the Sumner point differ by 180°, and we may take the bearing of the line to be the bearing of either end from the Sumner point in the middle of the line. Figure 18 shows, however, that for the purpose of the present problem we must choose the bearing of that end of the line which is nearest the point of intersection L; nor does the choice ever offer difficulty, because the known D. R. position of the ship at L, when compared with the known positions of the two Sumner points, will always indicate whether L bears east or west of either Sumner point, and also whether it bears north or south. And the bearing of L once chosen, we can always find either of the two bow bearings by this formula:

(3) Bow bearing = bearing of Sumner line minus bearing of the second Sumner point S' from the first point S.

In using formula (3) it is allowable to increase the bearings of the Sumner lines by 360°, when necessary to make the subtractions possible, and if the formula brings out bow bearings larger than 180°, subtract them from 360°, and proceed as before.

It is also always desirable to draw a rough sketch for every intersection problem occurring on shipboard so as to guard against accidental large errors like 90° or 180° in obtaining the two bow bearings; and also to make sure that the latitude and longitude of the intersection point L are correctly computed with the traverse table.

The foregoing assumes that the ship did not move from the point L between the two sextant observations from which the two Sumner lines were calculated. This will rarely be the case, because it is very desirable that the two observations, if they are both sun observations, be separated by three or four hours, if possible. The condition of an unmoving ship will occur only if she is a sailing vessel becalmed. or a steamer at anchor; or if the two observations are made at nearly the same time upon two different heavenly bodies, such as two stars.

High accuracy in the resulting "fix" (p. 53) of the ship will then be attained, if the azimuths of the two stars differ by about 90° at the time of observation. The same favorable condition will be secured if one of the observations is made upon a star near upper transit (pp. 89, 96), in the twilight just before sunrise or after sunset; and the other observation, at nearly the same time, upon the sun, when it is about 12° or 15° above the horizon.

But if the ship has traveled a considerable distance between the two observations, it is necessary to allow for such travel before calculating the intersection point. Suppose she has gone a distance D, upon a course C, by D. R., between the two observations. Then simply find from Tables 1 and 2 the difference of latitude and longitude corresponding to distance D and course C; and apply them as corrections to the latitude and longitude of the Sumner point belonging to the first observation. Everything else, including the bearing of the first Sumner line, remaining unchanged, the calculation then proceeds by Table 14, just as if the ship had not moved. The computed intersection point is then the ship's position at the time of the second sextant observation.

We shall now work some intersection examples.

Suppose we have two Sumner lines, as shown in the rough sketch, Fig. 19, taken on board a ship becalmed. The two sextant observations give:

FOR ONE SUMNER POINT, S

FOR THE OTHER POINT, S'

50' N. 42° 35° 36′ W.

 $\begin{array}{ccc} lat.^1: & 42^\circ \ 34' \ N. \\ long.: & 35^\circ \ 50' \ W. \\ bearing of Sumner line: & 307^\circ \end{array}$

93° (changed to 273°)

As found on page 132.

The rough sketch, Fig. 19, having been made, and the two "bow bearings" marked with little circular arcs as shown, we call that one of the two Sumner points S', which has the larger bow bearing; and, for the point S', we change

Fig. 19. - Rough Sketch of Sumner Intersection.

the bearing of the Sumner line from 93° to $180^{\circ} + 93^{\circ} = 273^{\circ}$, so as to count the bearing for that end of the line which is toward the intersection point L (p. 136). The other bearing, 307° , for the point S, is already correctly counted.

We now have, from the two Sumner point latitudes and longitudes: latitude difference = 16'; longitude difference = 14'; departure (Table 2, p. 174, for middle latitude 43°) = 10.2; and, for latitude difference = 16, departure = 10.2, we find (Table 1, p. 162), distance = 19, course = 32° . The distance between the two Sumner points is therefore 19 miles, and the bearing of S' from S is 32° .

Now we apply formula (3), page 136, and find:

Smaller bow bearing at $S = 307^{\circ} - 32^{\circ} = 275^{\circ}$. Larger bow bearing at $S' = 273^{\circ} - 32^{\circ} = 241^{\circ}$.

Being larger than 180°, these must be subtracted from 360° (p. 136), giving:

Smaller bow bearing = 85°; Larger bow bearing = 119°.

Next we refer to Table 14, and find with the smaller bearing 85°, and the larger 119° the factor 1.78 (p. 322).

According to formula (1), page 135, we then have: Required distance $LS' = \text{distance } SS' \times \text{factor}$ = $19 \times 1.78 = 33.8 \text{ miles}$.

Therefore the position of the ship at L is distant 33.8 miles from S', and she bears 273°. With this distance and bearing or course angle, the traverse table (p. 154) gives: latitude = 1.8, departure = 33.8. For the departure 33.8, Table 2 gives, for the middle latitude 43° (p. 174), difference longitude = 46'.2. The bearing 273° showing that the intersection point L is N. and W. of S', we have:

Latitude of ship at $L = 42^{\circ} 50' \text{ N.} + 1'.8 = 42^{\circ} 51'.8 \text{ N.}$ Longitude of ship at $L = 35^{\circ} 36' \text{ W.} + 46'.2 = 36^{\circ} 22' \text{ W.}$

As a second example take the following two Sumner lines, as shown in the rough sketch, Fig. 20. The two sextant observations give:

FOR ONE SUMNER POINT, S FOR THE OTHER POINT, S' lat.: 14° 26′ N. long.: 77° 8′ W. 76° 22′.5 W. bearing of line: 53° 135°

And suppose the ship, in the interval between the two sextant observations, has traveled a distance D=31 miles, on course $C=205^{\circ}$. We must begin (p. 137) by shifting the first Sumner point S a distance D, on the course C. For this course and distance, we have (Table 1, p. 160): lat., 28'.1; dep., 13.1; diff. long., 13'.5 (Table 2, p. 168).

NA S'

Sketch of Sumner Intersection.

Therefore, the latitude and longitude of

the first Sumner point must be corrected (p. 137) as follows:

For the point S, lat. = $14^{\circ} \ 26' \ N. - 28'.1 = 13^{\circ} \ 58' \ N.$ long. = $77^{\circ} \ 8' \ W. + 13'.5 = 77^{\circ} \ 21'.5 \ W.$

Bearing (unchanged) = 53°.

We now have, for the two Sumner points: lat. diff., 92';

long. diff., 59'; dep., 57.0 (p. 169); dist., 108 miles (p. 162); bearing of S' from S, 32° .

Now we have, by formula (3), page 136:

Smaller bow bearing at $S = 53^{\circ} - 32^{\circ} = 21^{\circ}$. Larger bow bearing at $S' = 135^{\circ} - 32^{\circ} = 103^{\circ}$.

Table 14 (p. 319) gives the factor 0.36; so that the ship at L is distant from S' 108 \times .36 = 38.9 miles, and bears 135°. For this distance and bearing we have (Table 1, p. 166), latitude = 27'.6; departure = 27.6; and longitude difference (Table 2, p. 168) = 28'.6. Finally, then, at the time of the second sextant observation, the ship at L was in latitude 15° 30′ N. - 27'.6 = 15° 2'.4 N.; and in longitude 76° 22'.5 W. - 28'.6 = 75° 54′ W.

CHAPTER X

A NAVIGATOR'S DAY AT SEA

THE present chapter contains a number of examples by means of which the reader can gain facility in the use of the methods set forth in the preceding pages.

The steam yacht Nav is bound from New York to Colon, and the captain plans to take his departure from the Sandy Hook Lightship, on Dec. 18, 1917, as early as possible in the morning.

The first bit of navigation, to be accomplished before the yacht leaves her anchorage in the "Horseshoe," is to ascertain by D. R. methods the proper course to steer from Sandy Hook. A glance at the track chart of the north Atlantic shows that she must go by way of Crooked Island Passage, and the Windward Passage between Cuba and Haiti. It is also apparent from the chart that the first land to be sighted among the islands is Watlings Island, and that the proper course should pass to the eastward of it.

The position of Sandy Hook Lightship ¹ is lat. 40° 28′ N.; long. 73° 50′ W. Hinchinbroke Rock, at the southern end of Watlings Island, is in lat. 23° 57′ N.; long. 74° 28′ W. But the course should be shaped for a point about 12 miles east of Watlings Island, to be perfectly safe. The position of such a point is (approximately) lat. 23° 57′ N.; long. 74° 15′ W.²

¹ There is an excellent list of latitudes and longitudes in Bow-ditch's "Navigator."

² The difference between this longitude and that of Hinchinbroke Rock is 13'; but 13' here corresponds to about 12 miles, on account of Table 2.

ABSTRACT OF LOG. Steam Yacht Nav. Dec. 18, 1917

		PATENT LOG	Compass Course	True Course
7:02 а.м.	Took departure from Sandy			
	Hook Lightship	26.2	S.	188°
7:21	Sunrise, observed azimuth	31.0	S.	188°
8:00		41.0	S.	188°
9:00		57.2	S.	188°
9:36	Bow bearing, Barnegat	67.0	S.	188°
9:42	Altitude and azimuth	69.1	S.	188°
9:57	Beam bearing, Barnegat	72.5	S.	188°
	(fix, lat. 39° 45′ N.; long. 73° 59′ W.)			
10:00		73.4	S.	188°
10:07	Changed course	75.3	$S_{\frac{1}{2}}E$.	182°
11:00		88.7	S.½E.	182°
11:42	Ex-mer. obs'n lat. 39° 19';			
	D. R. long. 73° 58'	98.5	S.½E.	182°
12:00		102.6	S.½E.	182°
1:00 р.м.		117.7	$S.\frac{1}{2}E.$	182°
2:00		133.0	S.½E.	182°
3:00		149.0	S.½E.	182°
4:00		163.8	S.½E.	182°
4:12	Alt. and az., fix, lat. 38° 11';			
	long. 73° 54′	166.9	$S.\frac{1}{2}E$.	182°
5:00		182.0	$S_{\frac{1}{2}}E$.	182°
6:00	•	197.2	S. <u>₹</u> E.	$182\frac{1}{2}^{\circ}$

By the method of page 20, the course from Sandy Hook Lightship should be 181°, and the distance is 990 miles. These numbers, and all subsequent numbers in the present chapter, should be verified by the reader.

The distance being quite large, it is well to check it by the logarithmic method, page 33. The result by this method is: course 181° 14′, distance 991.7 miles.

The chart also shows that this course will carry the yacht very near Barnegat Light, on the coast of New Jersey. The position of this light is lat. 39° 46′ N.; long. 74° 6′ W. The captain decides that it will be well to plan passing this light

at about 5 miles' distance. The position of a point 5 miles east of Barnegat Light is lat. 39° 46′ N., long. 73° 59′ W. The course and distance to this point from Sandy Hook Ship are 189° and 42.5 miles. This course is so nearly the same as the course to Watlings Island that the captain decides to steer the 189° course.

All this work must be complete before reaching Sandy Hook, for the course from the lightship must be ready for the quartermaster before the lightship is passed. And there is still more preliminary work. For the courses calculated above are true courses (p. 43) and the quartermaster must have the compass course, so that he may be able to steer the yacht. The method of calculating the compass course from the true course is given on page 48; and in applying it the captain must have his deviation tables at hand. We shall assume that the tables printed on pages 48 and 49 were the ones furnished by the compass adjuster for the present voyage.

An examination of the Atlantic track chart shows that in the vicinity of Sandy Hook, the variation, V, is 10° W., or -10° . By formula (3) (p. 49), we then have, since the true course T is 189° :

Magnetic course =
$$M = T - V = 189^{\circ} - (-10^{\circ}) = 199^{\circ}$$
.

The second deviation table (p. 49) shows that when the magnetic course (or magnetic bearing of ship's head) is 199°, the deviation, D, is + 18°. Then, with $V = -10^{\circ}$, $D = 18^{\circ}$, formula (1), page 45, gives:

Compass error = $E = V + D = -10^{\circ} + 18^{\circ} = +8^{\circ}$. And from formula (2), page 45: Compass course $C = T - E = 189^{\circ} - 8^{\circ} = 181^{\circ}$;

and so the yacht must be steered on a 181° compass course for Barnegat. But the quartermaster is to steer by "points" so that the course nearest the 181° course is due south. The captain decides to have the yacht steered due south by

compass, and is prepared to give the quartermaster his orders as soon as Sandy Hook Lightship shall be reached.

The foregoing preliminary work having been completed the previous day, the anchor is tripped at the Horseshoe about an hour before daylight on Dec. 18, the weather being fine, sea smooth, and wind light from the northwest. The lightship is reached and passed at 7:02 A.M., ship's time, civil reckoning, the ship then taking her departure. At that moment, the patent log is read, and found to register 26.2 miles. The quartermaster gets his orders to steer south; and all the above facts are duly recorded in the log-book. And at every hour thereafter, 8, 9, 10, etc., a similar record must be made in the log-book.

The next event is sunrise, which occurs at 7:21, very soon after leaving the lightship. The sun's compass bearing can then be very conveniently observed, and will furnish an excellent check on the compass adjuster. This observation was made at 7:21 A.M., ship's time, civil reckoning, corresponding to 19^k 21^m, Dec. 17, ship's apparent time, astronomic reckoning; and the sun's bearing or azimuth was 113° by compass. This was entered in the log-book, and at the same time the patent log was read, and found to be 31.0 miles.

To check the deviation table, the procedure was then as follows:

By patent log the yacht had proceeded from the light-ship a distance of 31.0-26.2=4.8 miles, on a compass course of 180° , or true course of 188° ; by D. R., she had therefore reached the position lat. 40° 23′ N.; long. 73° 51′ W. The sun's declination, from the almanac, is -23° 23′, and the (approximate 1) T (p. 100) is 19^{h} 21^{m} . The sun's true azimuth is found from Table 11 to be 121° ; and in using the table for this purpose take the altitude of the sun, for the

 $^{^1}$ If there is any chance of this T being much in error, the captain's watch, by which the observation is timed, must be compared with the chronometer. See p. 94.

moment of sunrise, to be 0°. The observed compass azimuth having been 113°, formula (2), page 45, gave E=T-C=121°-113°=+8°. Then from formula (1), page 45, D=E-V=+8°-(-10°)=+18°. As expected, this deviation agrees with the deviation table, which would not be likely to go wrong so soon after the beginning of a voyage.

At 8 A.M. the patent log read 41.0; and at 9 A.M., 57.2. The course was still S. by compass, or 188°, true course.

At 9:24 Barnegat Light was sighted by the lookout, and the mate was ordered to take bow-and-beam bearings (p. 55) upon it.

At 9:36, the light bore 225° by compass, or 45° from the bow; patent log, 67.0.

At 9^h 42^m 28^s by his watch the captain took the altitude of the sun's lower limb with the sextant, and found it to be 18° 51'. Index correction was + 3', and height of eye, 15 feet. C. – W. was 4^h 51^m 50° ; and the chr. correction by the rate card was 4°, slow. Patent log, 69.1. At 9:45 by the watch, the sun's azimuth was again observed with pelorus, and found to be 137°, compass bearing. It was intended to work a Sumner line from the altitude by Kelvin's table; and the pelorus observation was made because the sun's true azimuth always comes out as a by-product, when Kelvin's table is used, and so it is just as well to have another check on the deviation table. This is the peculiar advantage of Kelvin's table. Without any additional calculations, the compass is always checked up on the very course the ship is steering. This is just what the good navigator wants.

The observations could not be worked up at once, because the captain wished to see the result of the mate's bow-and-beam bearings. At 9:57 by the watch, Barnegat bore abeam, on the starboard hand, or 270° by compass, the yacht being still on the 180° compass course. Patent log now 72.5.

Between the bow-and-beam bearings the run by log was 72.5-67=5.5 miles. Therefore the yacht is now 5.5 miles from Barnegat Light, and the compass bearing of the light is 270° . The compass error being $+8^{\circ}$, the true bearing of the light is 278° ; and the bearing of the yacht from the light is the former bearing reversed, or $278^{\circ}-180^{\circ}=98^{\circ}$, true. From this comes an accurate and complete position of the yacht. Barnegat Light is in lat. $39^{\circ}46'$ N.; long. $74^{\circ}6'$ W. The yacht, 5.5 miles away on the bearing 98° , must, by traverse table, be in lat. $39^{\circ}45'$ N.; long. $73^{\circ}59'$ W.

At 10 A.M., the log was 73.4, course 188°, true.

Now the captain prepared to shape a new course to be followed from the Barnegat bow-and-beam bearing "fix" in the above lat. 39° 45′ N.; long. 73° 59′ W., at 9:57.

Allowing ten minutes to work up the new course, the captain plans to change course at 10:07. At that time the ship, on her course of 188°, will be (at 15-knot speed) 2'.5 S. and practically 0' W. of the Barnegat position. So the course will be changed when the yacht is in lat. 39° 42' N.; long. 73° 59' W., at 10:07. The course and distance from there to the point 12 miles east of Hinchinbroke Rock are: distance, 945 miles; course, 181°, true, or 173° by compass.

Therefore, by the table on page 52, the quartermaster gets the new course $S.\frac{1}{2}E$. by compass, at 10:07. This corresponds to 174° by compass, or 182° true course; and at 10:07, when the course was changed, the patent log read 75.3.

Now the Sumner line, from the observation at 9^h 42^m 28^s by the watch, was worked by Kelvin's table; and the result was:

Sumner point is in lat. 39° 50′ N.; long. 73° 56′ W.; bearing of Sumner line 237°.

It is necessary, as a check, to ascertain whether this Sumner line passes through the position obtained for the ship by the Barnegat bearings. Before doing this, the Sumner point must be shifted by the method of page 137, to allow for

the motion of the yacht between 9:42, when the sextant observation was made, and 9:57, when Barnegat bore abeam. The difference is 15 minutes, and in that time the ship moved south 3.4 miles by the patent log and an insignificant distance west.

Therefore the corrected Sumner data are:

Sumner point is in lat. 39° 46′.6 N.; long. 73° 56′ W.; bearing of Sumner line 237°.

If everything fits, this Sumner line must pass through the Barnegat "fix" of the yacht in lat. 39° 45′ N.; long. 73° 59′ W., because the yacht must have been somewhere on the line.

The traverse table shows that the bearing of a line passing the Sumner point and the yacht's position is 235°, differing only 2° from the Sumner line bearing; so this check is satisfactory. But a better way to check this matter is to determine the yacht's position from the intersection of two lines, one of which is the Sumner line, and the other the beam bearing of Barnegat Light. This can be done by the method of page 133. The data of the problem are:

Sumner point: lat. 39° 46′.6 N. long. 73° 56′ W.

Line bears 237°

Barnegat Light: lat. 39° 46′ N.

long. 74° 6′ W. Line bears 98°

We shall call Barnegat Light S'; and then formula (3), page 136, gives, for the two bow bearings:

At Sumner point, S, $237^{\circ} - 266^{\circ} = 29^{\circ}$. At Barnegat, S', $98^{\circ} - 266^{\circ} = 168^{\circ}$.

For these two bearings, Table 14 gives the factor 0.74, and the yacht is placed 6 miles from Barnegat, on the 98° bearing. The bow-and-beam observations gave 5.5 miles, so the check by the Sumner line is excellent.

It remains for the captain to utilize the azimuth observa-

tion made at 9:45. The bearing of the Sumner line was 237°, and therefore the sun's true azimuth was 147°. The observed azimuth, by pelorus (p. 145), was 137°. The compass error was therefore + 10°. The variation being - 10°, the deviation by formula (1), page 45, is $D = 10^{\circ} - (-10^{\circ}) = +20^{\circ}$.

On page 143 we found that the deviation table made this deviation + 18°; so that the table appears to require a correction of +2°. The captain decides not to correct the table for the present, unless later azimuth observations shall confirm it, especially as the sunrise observation showed the adjuster's results to be correct. Azimuth observations made when the sun is high in the sky are not quite as reliable as sunrise ones. Moreover, the observation was made at 9:45, whereas the altitude observation, for which the true azimuth was calculated with Kelvin's table, was made at 9:42, so that the true azimuth must have been in error by the sun's azimuth change in three minutes. This could have been avoided by giving the mate orders to observe the azimuth at about the same moment when the captain took the altitude. Or, the sun's azimuth change in three minutes might be taken from the azimuth table, and the computed true azimuth duly corrected.

At 11 the log read 88.7, and the course was S. $\frac{1}{2}$ E. by compass, or 182°, true.

At about 11:30, the weather showing signs of becoming thick, no preparations were made for a noon-sight by the method of page 86; and rather than take the risk of losing his noon observation altogether, the captain took an ex-meridian altitude at 11^h 42^m 0^s by his watch; log was 98.5; the sextant reading 26° 55'; index + 3'; height of eye 15 ft.; C. — W. was now 4^h 51^m 42^s ; and chronometer slow 4^s .

The observation was worked by Kelvin's table, and gave the Sumner point in lat. 39° 20′ N.; long. 73° 40′ W.; bearing of Sumner line 86°. Figure 21 is a rough sketch of this Sumner line. It is very nearly horizontal; had the observation been made at noon precisely, it would have been perfectly horizontal.

It would now have been possible to move up the Sumner line observed at 9:42, and obtain an intersection to fix the position of the yacht.

But this did not seem necessary to the captain, because of the beam bearing obtained at Barnegat at 9:57, which gave a good fix.

And the present Sumner line being so nearly horizontal, it is not necessary to know the longitude very accurately to obtain an exact latitude. The longitude by D. R. is

Frg. 21.—Sumner Line from ex-Meridian Observation.

sufficient, and it is 73° 58' W. The difference between this longitude and that of the Sumner point $(73^{\circ}$ 40') is 18'; and the ship at L (fig. 21) bears $180^{\circ} + 86^{\circ} = 266^{\circ}$ from the Sumner point. Table 2 gives the dep. 14.0 for long. diff. 18', in lat. 39°. And for course 266°, dep. 14.0, we find in Table 1, lat. diff. 1'.0, so the yacht's latitude is 1' less than that of the Sumner point, and is therefore 39° 19'. This happens to be in exact accord with the D. R. latitude, which was also 39° 19'. This was perfectly satisfactory, and the captain decided to carry this Sumner line forward for an intersection, in case he should obtain an observation in the afternoon.

At 12, the patent log read 102.6, course $S.\frac{1}{2}E.$, 182° true; D. R. lat. 39° 15′; long. 73° 58′; distance to Watlings Island 918 miles.

Had the yacht been on a course other than almost due south, it would have been necessary to set the watch and the cabin clock to ship's apparent time. In fact, some navigators set their watches to ship's apparent time before every observation (p. 94):

at 1, log read 117.7, misty, at 2, log read 133.0, misty, at 3, log read 149.0 misty, at 4, log read 163.8, clearing.

At 4^h 12^m 18^s by the watch, the weather having cleared, the altitude of the sun was found to be 4° 38'; index + 4'; eye 15 ft.; C. - W. 4^h 51^m 50^s ; chronometer slow 4^s ; log 166.9. Sun's azimuth, observed by the mate at the same time, came out 224° by compass.

This observation was worked for a Sumner line by the Kelvin table, and gave:

Position of Sumner point lat. 38° 6′ N.; long. 73° 49′ W.; bearing of line 145°; azimuth of sun 235°.

The Sumner line obtained at $11^h 42^m 0^s$ was brought up to the time of the present observation by D. R. (p. 137), giving:

Fig. 22. — Rough Sketch of Sumner Line Intersection.

position of 11:42 Sumner point, after moving it, lat. 38° 12′ N.; long. 73° 43′ W.; bearing of the line 86°. Both lines were then sketched, as shown in Fig. 22. The point S is the (moved) Sumner point from the 11:42 observation, S'

that from the 4:12 observation. The intersection point L is the position of the ship at 4:12, and it came out (p. 134): lat. 38° 11′ N.; long. 73° 54′ W. The position brought up by D. R. from 11:42 was: lat. 38° 11′; long. 74° 1′; so that there has been an easterly set of the current, amounting to 7′ of longitude in $4\frac{1}{2}$ hours. The sun's true azimuth at 4:12 was 235°, from the Kelvin table; and the pelorus observation gave 224°. The compass error was therefore

+ 11°. The variation being - 10°, the deviation must be $D=11^{\circ}-(-10^{\circ}=)+21^{\circ}$. The deviation table made this deviation + 18°, so that table seems to require a correction of + 3°. The pelorus observation of 9:45 gave a correction of + 2° for the deviation table; and as this is now apparently confirmed, the captain decides to examine the chart again, before finally shaping course for the night, to see if the yacht has not perhaps moved into a region where the variation is different from the Sandy Hook variation so far used.

At 5 the log read 182.0, course was still 182° true.

The captain now prepared to shape the course for the night, and to change his course, if necessary, at 6:00. His first step was to obtain the D. R. position at 6:00, starting from the observed position at 4:12. This gave position at 6:00, by D. R.: lat. 37° 41′; long. 73° 55′. The easterly current of about 2′ per hour set the yacht farther east about 3′ between 4:12 and 6:00. Therefore he took the D. R. position at 6:00 to be lat. 37° 41′; long. 73° 52′. The position of the point of destination, 12 miles east of Watlings Island, is still: lat. 23° 57′; long. 74° 15′. The true course and distance to that point from the yacht's 6:00 position is therefore, by traverse table: course $181\frac{1}{2}$ °; dist. 824 miles.

A further examination of the track chart shows that the variation, which was -10° at Sandy Hook, is now -8° . The compass error, from the last pelorus observation, was $+11^{\circ}$. Consequently, by the pelorus observation, the compass course for the night should be $181\frac{1}{2}^{\circ} - 11^{\circ} = 170\frac{1}{2}^{\circ}$, or S. $\frac{3}{4}$ E. (see the Table on p. 52). Furthermore, the variation being now -8° and the error $+11^{\circ}$ makes the deviation $D = E - V = +11^{\circ} - (-8^{\circ}) = +19^{\circ}$. The compass adjuster's deviation of $+18^{\circ}$ is therefore vindicated, and the compass course S. $\frac{3}{4}$ E. can be set for the night.

At 6 the log read 197.2, course S. L., or 1821° true.

^{&#}x27;Doubtless the Gulf Stream.

In conclusion, the captain of the Nav hopes he has been able to make his imagined proceedings clear enough to help the young navigator in planning his own first day's work at sea. May it be the first of many happy and successful days. And let him not forget, when attempting to verify the various calculations and problems of the Nav, that every observation in this book has been prepared by calculation, and none is the result of actual sextant observing. Should inconsistencies or errors be found by any young navigator, it is hoped that he will make them known so that they may be corrected, in case the Nav shall be required to make another voyage in a second edition.

LIST OF TABLES

1.	Traverse Table; explained on pages 10 and 19; and its	
	use in the Sumner method on pages 113, 135	154
2.	Conversion of longitude difference and departure; ex-	
	plained on page 16	168
3.	Number logarithms; explained on page 23	178
	Trigonometric logarithms; explained on page 31	196
5 .	Meridional parts; explained on page 35	241
6.	Sextant Correction Table; explained on page 72	247
7.	Dip correction; explained on page 73	247
8.	Conversion of hours and minutes into decimals of a day;	
	explained on page 80	248
9.	Conversion of degrees and minutes of longitude and hours	
	and minutes of time	249
10.	Haversines; explained on page 99	250
11.	Azimuth Table; explained on page 113	284
12.	Auxiliary Azimuth Table; explained on page 115	290
	Kelvin's Sumner Line Table; explained on page 126	292
14.	Sumner Intersection Table; explained on page 135	318

PUBLISHERS' NOTE

Table 3, Number Logarithms, has been reprinted from "The Macmillan Logarithmic and Trigonometric Tables," New York, 1917.

	1	۰	2	0	l ½ Pt	. 3°	1 4	l°.	5	۰	1 P1	t. 6°	7	70
Dist	(179°	, 181°, 9°)	(178°, 358	182°,		183°,	(176°, 35	184°, 6°)	(175°, 35	185°		186°	(173° 35	187°,
İ	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	·[Dep	Lat.	Dep.
1	1.0	0.0	1.0	0.0	1.0	0.1	1.0		1.0	0.1	1.0	0.1	1.0	
2 3	2.0 3.0	0.0	2.0 3.0	$0.1 \\ 0.1$	$\begin{vmatrix} 2.0 \\ 3.0 \end{vmatrix}$	$0.1 \\ 0.2$	2.0 3.0		$\frac{2.0}{3.0}$			0.2		
4	4.0	0.1	4.0	0.1	4.0	0.2	4.0	0.3	4.0	0.3	4.0	0.4	4.0	0.5
5	5.0 6.0	0.1	5.0 6.0	0.2		0.3	5.0 6.0			0.4				
7	7.0	0.1	7.0	0.2	7.0	0.4	7.0	0.5	7.0	0.6	7.0	0.7	6.9	0.9
8 9	8.0 9.0	$0.1 \\ 0.2$	8.0 9.0	0.3	8.0 9.0	0.4	8.0 9.0	0.6	8.0 9.0	0.7				
10	10.0	0.2	10.0	0.3	10.0	0.5	10.0	0.7	10.0	0.9	9.9	1.0	9.9	1.2
11 12	11.0 12.0	$\begin{array}{c} 0.2 \\ 0.2 \end{array}$	$ \begin{array}{c} 11.0 \\ 12.0 \end{array}$	0.4	$11.0 \\ 12.0$	0.6	$\begin{array}{ c c c c }\hline 11.0 \\ 12.0 \\ \end{array}$		$11.0 \\ 12.0$	$1.0 \\ 1.0$			10.9 11.9	
13	13.0	0.2	13.0	0.5	13.0	0.7	13.0	0.9	13.0	1.1	12.9	1.4	12.9	1.6
14 15	14.0 15.0	0.2	14.0 15.0	0.5	14.0 15.0	0.7	14.0 15.0		13.9 14.9	$1.2 \\ 1.3$			13.9 14.9	
16	16.0	0.3	16.0	0.6	16.0	0.8	16.0	1.1	15.9	1.4	15.9	1.7	15.9	1.9
17	17.0 18.0	$0.3 \\ 0.3$	17.0 18.0	0.6 0.6	17.0 18.0	0.9	17.0 18.0	1.2 1.3	16.9 17.9	1.5			16.9 17.9	$\frac{2.1}{2.2}$
18 19	19.0	0.3	19,0	0.7	19.0	1.0	19.0	1.3	18.9	1.7	18.9	2.0	18.9	2.3
20	20.0 21.0	0.3	20.0 21.0	0.7	20.0 21.0	1.0 1.1	20.0 20.9	1.4 1.5	19.9 20.9	1.7	19.9 20.9		$19.9 \\ 20.8$	
$\frac{21}{22}$	22.0	$0.4 \\ 0.4$	22.0	0.7 0.8	22.0	1.2	21.9	1.5	21.9	1.9	21.9	2.3	21.8	2.7
23	$23.0 \\ 24.0$	$0.4 \\ 0.4$	$23.0 \\ 24.0$	0.8 0.8	$23.0 \\ 24.0$	$\frac{1.2}{1.3}$	$22.9 \\ 23.9$	1.6 1.7	22.9 23.9	$\frac{2.0}{2.1}$	22.9 23.9	$\begin{array}{ c c c } 2.4 \\ 2.5 \end{array}$	$22.8 \\ 23.8$	2.8 2.9
24 25	25.0	0.4	25.0	0.9	25.0	1.3	24.9	1.7	24.9	2.2	24.9	2.6	$\frac{23.8}{24.8}$	3.0
26	26.0	$0.5 \\ 0.5$	26.0	0.9	$\frac{26.0}{27.0}$	$\frac{1.4}{1.4}$	25.9 26.9	1.8 1.9	25.9 26.9	$\frac{2.3}{2.4}$	$25.9 \\ 26.9$	$\begin{vmatrix} 2.7 \\ 2.8 \end{vmatrix}$	25.8 26.8	3.2 3.3
27 28	27.0 28.0	0.5	$27.0 \\ 28.0$	0.9 1.0	28.0	1.5	27.9	2.0	27.9	2.4	$\frac{20.9}{27.8}$	2.9	$\frac{20.8}{27.8}$	3.4
29 30	29.0 30.0	$0.5 \\ 0.5$	29.0 30.0	$1.0 \\ 1.0$	29.0 30.0	1.5 1.6	$28.9 \\ 29.9$	$\begin{array}{ c c c } 2.0 \\ 2.1 \end{array}$	28.9 29.9	$\frac{2.5}{2.6}$	28.8 29.8	3.0	$28.8 \\ 29.8$	3.5 3.7
31	31.0	0.5	31.0	1.1	31.0	1.6	30.9	2.2	30.9	2.7	30.8	3.2	30.8	3.8
32	32.0 33.0	0.6	32.0 33.0	$\frac{1.1}{1.2}$	32.0 33.0	1.7 1.7	$\frac{31.9}{32.9}$	$\frac{2.2}{2.3}$	31.9 32.9	2.8 2.9	$\frac{31.8}{32.8}$	3.3 3.4	$\frac{31.8}{32.8}$	3.9 4.0
33 34	34.0	0.6	34.0	1.2	34.0	1.8	33.9	2.4	33.9	3.0	33.8	3.6	33.7	4.1
35	35.0 36.0	$0.6 \\ 0.6$	35.0 36.0	1.2 1.3	35.0 36.0	1.8 1.9	34.9 35.9	$\frac{2.4}{2.5}$	34.9 35.9	3.1 3.1	34.8 35.8	3.7 3.8	34.7 35.7	4.3 4.4
36 37	37.0	0.6	37.0	1.3	36.9	1.9	36.9	2.6	36.9	3.2	36.8	3.9	36.7	4.5
38 39	38.0 39.0	0.7 0.7	$\frac{38.0}{39.0}$	$\frac{1.3}{1.4}$	37.9 38.9	$\frac{2.0}{2.0}$	37.9 38.9	$\frac{2.7}{2.7}$	37.9 38.9	$\frac{3.3}{3.4}$	$\frac{37.8}{38.8}$	$\begin{array}{ c c }\hline 4.0\\ 4.1\end{array}$	37.7 38.7	4.6 4.8
40	40.0	0.7	40.0	1.4	39.9	2.1	39.9	2.8	39.8	3.5	39.8	4.2	39.7	4.9
41 42	$ \begin{array}{c} 41.0 \\ 42.0 \end{array} $	0.7 0.7	$\frac{41.0}{42.0}$	$\frac{1.4}{1.5}$	$\frac{40.9}{41.9}$	$\frac{2.1}{2.2}$	40.9 41.9	$\frac{2.9}{2.9}$	40.8 41.8	$\frac{3.6}{3.7}$	40.8 41.8	4.3 4.4	$\frac{40.7}{41.7}$	5.0 5.1
43	43.0	0.8	43.0	1.5	42.9	2.3	42.9	3.0	42.8	3.7	42.8	4.5	42.7	5.2
44 45	44.0 45.0	0.8	44.0 45.0	1.5 1.6	43.9 44.9	$\frac{2.3}{2.4}$	43.9 44.9	3.1 3.1	$\frac{43.8}{44.8}$	$\frac{3.8}{3.9}$	43.8 44.8	4.6 4.7	43.7 44.7	5.4 5.5
46	46.0	0.8	46 .0	1.6	45.9	2.4	45.9	3.2	45.8	4.0	45.7	4.8	45.7	5.6
47 48	47.0 48.0	0.8 0.8	$\frac{47.0}{48.0}$	$\frac{1.6}{1.7}$	46.9 47.9	$\frac{2.5}{2.5}$	$\frac{46.9}{47.9}$	3.3 3.3	$\frac{46.8}{47.8}$	$\frac{4.1}{4.2}$	46.7 47.7	4.9 5.0	46.6 47.6	.5.7 5.8
49	49.0	0.9	49.0	1.7	48.9	2.6	48.9	3.4	48.8	4.3	48.7	5.1	48.6	6.0
50 100	50.0 100.0	$0.9 \\ 1.7$	50.0	$\frac{1.7}{3.5}$	49.9 99.9	$\frac{2.6}{5.2}$	49.9 99.8	3.5 7.0	49.8 99.6	4.4 8.7	49.7 99.5	$\frac{5.2}{10.5}$	49.6	$\begin{array}{c} 6.1 \\ 12.2 \end{array}$
200	200.0	3.5	99.9 199.9	7.0	199.7	10.5	199.5	14.0	199.2	17.4	198.9	20.9		24.4
300 400	300.0 399.9	$\frac{5.2}{7.0}$			$299.6 \\ 399.4$				$\frac{298.9}{398.5}$		$\frac{298.4}{397.8}$		297.8 397.0	
500	499.9	8.8			499.3		498.8		498.1		497.3			61.0
	Dep.	Let.	Dep.		Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.
	(91°, 1	269°,	(92°, 2	68°,	(93°, 2	67°,	(94°, 2	266°,	(95°, 2	65°,	(96°, 2	264°,	(97°, 2	63°,
	89		272 88		273 7 Pt.	.87°	274 8 6	,	275 85	'	276 7½Pt.	,84°	277 83	
	<u> </u>													

Table Tabl	187°, 3°) Dep. 6.2 6.3 6.5 6.6 6.7 6.8 6.9 7.1 7.2 7.3
Lat. Dep.	Dep. 6.2 6.3 6.5 6.6 6.7 6.8 6.9 7.1 7.2
52 52.0 0.9 52.0 1.8 51.9 2.8 52.9 3.7 52.8 4.6 52.7 5.5 52.6 52.7 5.5 52.6 52.7 5.5 52.6 55.6 55.0 1.0 55.0 1.9 54.9 2.9 54.9 3.8 53.8 4.7 53.7 5.5 52.6 53.6 55.0 1.0 56.0 2.0 55.9 2.9 54.9 3.8 54.8 4.9 55.7 5.7 54.6 56.6 56.0 1.0 56.9 3.0 56.9 3.9 55.8 4.9 55.7 5.9 55.6 55.7 5.7 5.7 6.1 55.6 66.0 1.0 58.0 2.0 57.9 3.0 56.9 4.0 56.8 5.1 57.7 6.1 55.6 66.0 60.0 2.1 58.9 3.1 58.9 4.1 58.8 5.1 57.7 6.1 66.0 2.3 61.9 3.2 61.8 <t< th=""><th>6.3 6.5 6.6 6.7 6.8 6.9 7.1 7.2</th></t<>	6.3 6.5 6.6 6.7 6.8 6.9 7.1 7.2
53 53.0 0.9 53.0 1.8 52.9 2.8 52.9 3.7 52.8 4.6 52.7 5.5 52.6 54 54.0 0.9 54.0 1.9 53.9 2.8 53.9 3.8 53.8 4.7 53.7 5.6 53.6 55 55.0 1.0 55.0 2.0 55.9 2.9 55.9 3.8 55.8 4.9 55.7 5.9 55.6 66.0 1.0 56.0 2.0 55.9 3.0 56.8 5.0 56.7 6.0 56.6 58.6 58.0 1.0 59.0 2.1 58.9 3.1 58.9 4.1 58.8 5.1 58.7 6.2 58.6 60 80.0 1.0 69.0 2.1 58.9 3.1 58.9 4.1 58.8 5.1 58.7 6.2 58.6 61 61.0 1.1 62.0 2.2 61.9 3.2 60.9 4.2 59.8	6.5 6.6 6.7 6.8 6.9 7.1 7.2
54 54.0 0.9 54.0 1.9 53.9 2.8 53.9 3.8 53.8 4.7 53.6 53.6 55.6 55.0 1.0 56.0 2.0 55.9 2.9 55.9 3.9 55.8 4.8 54.7 5.7 54.6 56 56.0 1.0 57.0 2.0 56.9 3.0 56.8 4.0 56.8 56.7 59.9 55.9 3.9 55.8 5.1 57.7 6.0 56.6 57.9 4.0 56.8 5.0 56.6 66.9 4.0 56.8 5.0 56.6 66.9 4.0 56.8 5.0 56.6 66.6 66.0 1.0 60.0 2.1 59.9 3.1 55.9 4.0 57.8 5.1 57.7 6.1 57.6 57.6 6.0 6.0 6.0 6.0 4.0 58.8 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 4.0 6.0 4.0 6.0	6.6 6.7 6.8 6.9 7.1 7.2
56 56.0 1.0 56.0 2.0 55.9 2.9 55.9 3.9 55.8 4.9 55.7 5.9 56.6 58 58.0 1.0 58.0 2.0 56.9 3.0 56.9 4.0 56.8 5.0 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.9 4.0 57.8 5.1 57.7 6.1 56.6 56.6 60.0 2.1 59.9 3.1 58.9 4.1 58.8 5.1 57.7 6.2 58.6 60.0 2.1 59.9 3.1 58.9 4.1 58.8 5.1 57.7 6.2 58.6 66.0 61.6 61.0 1.1 60.0 2.2 61.9 3.2 60.8 4.4 62.8 5.4 61.7 6.5 61.5 65.0 65.0 3.3 63.8	6.8 6.9 7.1 7.2
57 57.0 1.0 57.0 2.0 56.9 3.0 56.9 4.0 56.8 5.0 56.7 6.0 56.6 59 59.0 1.0 58.0 2.0 57.9 3.0 57.9 4.0 57.8 5.1 57.7 6.1 57.6 60 56.0 59.0 1.0 60.0 2.1 58.9 3.1 59.9 4.2 59.8 5.2 59.7 6.3 59.6 61 61.0 1.1 61.0 2.1 60.9 3.2 60.9 4.3 60.8 5.3 60.7 6.4 60.5 62.6 62.0 1.1 62.0 2.2 61.9 3.2 60.9 4.2 51.8 5.6 60.7 6.5 61.5 63.0 63.0 1.1 64.0 2.2 62.9 3.3 62.8 4.4 62.8 5.5 62.7 6.6 65.5 66.6 66.0 1.2 66.0 2.3 65.9 3.5 65.8 <th>6.9 7.1 7.2</th>	6.9 7.1 7.2
59 59.0 1.0 59.0 2.1 58.9 3.1 58.9 4.1 58.8 5.1 58.7 6.2 58.6 60 60.0 1.0 60.0 2.1 59.9 3.1 59.9 4.2 59.8 5.2 59.7 6.3 59.6 6.6 6.6 7.0 6.4 60.5 59.9 4.2 59.8 5.2 59.7 6.3 59.7 6.3 59.7 6.3 59.6 6.6 6.0 6.0 6.2 62.0 1.1 62.0 2.2 61.9 3.2 61.8 4.3 61.8 5.4 61.7 6.5 61.5 64 64.0 1.1 65.0 2.3 64.9 3.4 64.8 4.5 64.8 5.7 64.6 68.6 66.7 67.0 2.3 66.9 3.5 66.8 4.7 66.7 5.8 66.6 67.0 66.5 67.0 62.5 67.0 62.7 75.8 66.6 67.0 <th>7.2</th>	7.2
60 60.0 1.0 60.0 2.1 59.9 3.1 59.9 4.2 59.8 5.2 59.7 6.3 59.6 61 61.0 1.1 61.0 2.1 60.9 3.2 60.9 4.3 60.8 5.3 60.7 6.4 60.6 60.7 6.6 60.7 6.6 61.7 6.5 61.6 61.5 63.0 2.2 62.9 3.3 62.8 4.4 62.8 5.5 62.7 6.6 61.5 66.6 65.0 2.3 64.9 3.4 64.8 4.5 64.8 5.7 64.6 68.6 6.5 66.6 65.0 2.3 66.9 3.5 66.8 4.7 66.7 5.8 65.6 66.9 65.5 67 67.0 1.2 67.0 2.4 68.9 3.5 66.8 4.7 66.7 5.8 66.6 67.0 66.5 68 68.0 1.2 68.0 2.4 68.9 3.7	7.3
62 62.0 1.1 62.0 2.2 61.9 3.2 61.8 4.3 61.8 5.4 61.7 6.5 61.5 63 63.0 1.1 63.0 2.2 62.9 3.3 62.8 4.4 62.8 5.5 62.7 6.6 62.5 64 64.0 1.1 64.0 2.2 63.9 3.3 63.8 4.5 63.8 5.6 63.6 6.7 63.5 65 65.0 1.1 65.0 2.3 64.9 3.4 64.8 4.5 64.8 5.7 64.6 6.8 64.5 66 66.0 1.2 66.0 2.3 65.9 3.5 65.8 4.6 65.7 5.8 65.6 6.9 65.5 67 67.0 1.2 67.0 2.3 66.9 3.5 66.8 4.7 66.7 5.8 66.6 7.0 66.5 68 68.0 1.2 68.0 2.4 68.9 3.5 66.8 4.7 66.7 5.8 66.6 7.0 66.5 68 68.0 1.2 69.0 2.4 68.9 3.6 68.8 4.7 66.7 5.8 66.6 7.0 66.5 70 70.0 1.2 70.0 2.4 69.9 3.7 69.8 4.9 69.7 6.1 69.6 7.3 69.5 71 71.0 1.2 71.0 2.5 70.9 3.7 70.8 5.0 70.7 6.2 70.6 7.4 70.5 72 72.0 1.3 72.0 2.5 71.9 3.8 71.8 5.0 70.7 6.2 70.6 7.4 70.5 74 74.0 1.3 74.0 2.6 73.9 3.9 73.8 52.7 73.7 6.4 73.6 7.7 73.4 74.0 1.3 76.0 2.7 75.9 4.0 75.8 5.3 75.7 6.4 73.6 7.7 73.4 76 75.0 1.3 75.0 2.6 74.9 3.9 74.8 5.2 74.7 6.5 74.6 73.6 7.7 73.4 77 77.0 1.3 77.0 2.7 76.9 4.0 75.8 5.4 77.7 6.8 77.6 8.2 77.4 79 79.0 1.4 79.0 2.8 79.9 4.2 79.8 5.4 77.7 6.8 77.6 8.2 77.4 79 79.0 1.4 79.0 2.8 79.9 4.2 79.8 5.6 79.7 7.0 79.6 8.4 79.4 88 88.0 1.4 82.9 2.9 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.7 83.4 84.8 84.0 1.5 83.9 2.9 83.9 4.4 84.8 5.9 84.7 7.4 84.5 89.9 1.4 82.0 2.9 81.9 4.3 81.8 5.7 80.7 7.1 81.6 8.6 81.4 88 88.0 1.5 85.9 3.0 84.9 4.4 84.8 5.9 84.7 7.4 84.5 89.9 89.0 1.6 88.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 85.5 93.5 83.8 94.9 90.0 1.6 88.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 85.5 91.5 84.9 3.0 84.9 4.8 88.8 0.1.5 87.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 85.5 91.8 83.9 94.9 90.0 1.6 88.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 88.5 93.8 83.9 99.0 1.6 88.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 85.5 91.5 91.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 90.5 91.9 91.3 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 91.5 90.3 91.9 90.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 91.5 90.3 91.9 90.0 1.6 90.9 3.2 90.9 4.8 90.8 6.5 90.8 6.9 90.5 91.5 90.5 91.8 90.9 90.0 1.6 90.9 3.2 90.9 4.8 90.8 6.5 90.8 6.9 90.5 91.5 90.9 90.3 90.0 1.6 90.9 3.2 90.9 4.8 90.8 6.5	
63 63.0 1.1 63.0 2.2 62.9 3.3 62.8 4.4 62.8 5.5 62.7 6.6 62.5 64 64.0 1.1 64.0 2.2 63.9 3.3 62.8 4.5 63.8 5.5 62.7 6.6 62.5 65 65.0 1.1 65.0 2.3 64.9 3.4 64.8 4.5 64.8 5.7 64.6 6.8 64.5 66 66.0 1.2 66.0 2.3 66.9 3.5 66.8 4.5 66.8 5.7 5.8 65.6 6.9 65.5 67 67.0 1.2 67.0 2.3 66.9 3.5 66.8 4.7 66.7 5.8 65.6 6.9 65.5 68 68.0 1.2 68.0 2.4 67.9 3.6 67.8 4.7 67.7 5.9 67.6 7.1 67.5 69 69.0 1.2 69.0 2.4 68.9 3.6 68.8 4.7 66.7 5.8 66.6 7.2 68.5 70 70.0 1.2 70.0 2.4 69.9 3.7 69.8 4.9 69.7 6.1 69.6 7.3 69.5 71 71.0 1.2 71.0 2.5 70.9 3.7 70.8 5.0 70.7 6.2 70.6 7.4 70.5 72 72.0 1.3 72.0 2.5 71.9 3.8 71.8 5.0 71.7 6.3 71.6 7.5 71.5 73 73.0 1.3 73.0 2.5 72.9 3.8 72.8 5.1 72.7 6.3 71.6 7.5 71.5 73 73.0 1.3 75.0 2.6 74.9 3.9 73.8 5.2 73.7 6.4 72.6 7.6 72.5 74 74.0 1.3 74.0 2.6 73.9 3.9 73.8 5.2 73.7 6.4 73.6 7.7 73.4 75.0 1.3 75.0 2.6 74.9 3.9 74.8 5.2 73.7 6.4 73.6 7.7 73.4 74.0 1.3 74.0 2.6 73.9 3.9 73.8 5.2 73.7 6.4 73.6 7.7 73.4 74.7 77.0 1.3 77.0 2.7 76.9 4.0 76.8 5.4 76.7 6.7 76.6 8.0 76.4 74.6 78 74.4 78 78.0 1.4 78.0 2.7 77.9 4.1 77.8 5.4 77.7 6.8 77.6 8.2 77.4 79.0 1.4 79.0 2.8 78.9 4.1 78.8 5.5 78.7 6.9 78.6 8.3 78.4 80 80.0 1.4 80.0 2.8 89.9 4.1 78.8 5.5 78.7 6.9 78.6 8.3 78.4 84.8 80 80.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 80.7 71.8 86.9 3.0 86.9 4.6 88.8 5.9 83.7 7.8 85.5 93.8 83.4 84.8 88.0 1.5 85.9 2.9 82.9 4.3 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.7 82.4 84.8 80 1.5 83.9 2.9 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.7 82.4 84.8 80 1.5 83.9 2.9 82.9 4.4 84.8 5.9 84.7 7.4 84.5 8.9 84.4 84.8 85.9 80.0 1.6 88.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 85.5 93. 88.3 90 90.0 1.6 88.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 85.5 93. 88.3 90 90.0 1.6 88.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 85.5 93. 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 89.8 6.3 89.7 7.8 85.5 93. 89.3 94.0 1.6 93.9 3.3 93.9 4.7 89.8 6.3 89.7 7.8 85.5 93. 89.3 94.0 1.6 93.9 3.3 93.9 4.7 89.8 6.3 89.7 7.8 85.5 93.5 94.8 93.3 94.0 1.6 93.9 3.3 93.9 4.7 89.8 6.3 89.7 7.8 89.5 94.8 93.3 94.0 1.6 93.9 3.3 93.9 4.7 89.8 6.3 89.7 7.8 89.5 94.8 93.3 94.0 1.6 93.9 3.3 93.9 4.7 89.8 6.3 89.7 7.8 89.5 94.8 93	$\frac{7.4}{7.6}$
65 65.0 1.1 65.0 2.3 64.9 3.4 64.8 4.5 64.8 5.7 64.6 6.8 64.5 66 66.0 1.2 66.0 2.3 65.9 3.5 66.8 4.6 65.7 5.8 65.6 6.9 65.6 66.9 65.5 66.8 4.7 67.7 5.9 67.6 7.1 67.5 68 68.0 1.2 68.0 2.4 68.9 3.6 68.8 4.8 68.7 6.0 68.6 7.2 68.5 70 70.0 1.2 69.0 2.4 69.9 3.7 69.8 4.9 69.7 6.1 69.6 7.3 69.5 71 71.0 1.2 71.0 2.5 70.9 3.7 70.8 5.0 70.7 6.2 70.6 7.4 70.5 75.0 1.3 73.0 2.3 73.8 71.8 5.0 70.7 70.6 27.6 72.6 72.9 3.8	7.7
67 67.0 1.2 67.0 2.3 66.9 3.5 66.8 4.7 66.7 5.8 66.6 7.0 66.5 68 68.0 1.2 68.0 2.4 67.9 3.6 67.8 4.7 67.7 5.9 67.6 7.1 67.5 69 69.0 1.2 68.0 2.4 68.9 3.6 68.8 4.8 68.7 6.0 68.6 7.2 68.5 70 70.0 1.2 70.0 2.4 69.9 3.7 69.8 4.9 69.7 6.1 69.6 7.3 69.5 71 71.0 1.2 71.0 2.5 70.9 3.7 70.8 5.0 70.7 71.7 6.3 71.6 7.5 71.5 72 72.0 1.3 72.0 2.5 71.9 3.8 71.8 5.0 71.7 6.3 71.6 7.5 71.5 73 73.0 1.3 73.0 2.5 72.9 3.8 72.8 5.1 72.7 6.4 72.6 7.6 72.5 74 74.0 1.3 74.0 2.6 73.9 3.9 73.8 52.2 73.7 6.4 73.6 7.7 73.4 74.0 1.3 75.0 2.6 74.9 3.9 74.8 52.7 74.7 6.5 74.6 7.8 74.4 76 76.0 1.3 76.0 2.7 75.9 4.0 75.8 5.3 75.7 6.6 75.6 7.9 75.4 77 77.0 1.3 77.0 2.7 76.9 4.0 76.8 5.4 76.7 6.7 6.7 6.8 2.7 74.4 78.0 1.4 78.0 2.7 77.9 4.1 77.8 5.4 77.7 6.8 77.6 8.2 77.4 79 79.0 1.4 78.0 2.7 79.9 4.1 77.8 5.4 77.7 6.8 77.6 8.2 77.4 8.1 81.0 1.4 81.0 2.8 80.9 4.2 80.8 5.7 80.7 7.1 80.6 8.5 80.4 81.8 81.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 81.7 7.1 80.6 8.5 80.4 82 82.0 1.4 82.0 2.9 81.9 4.3 82.8 5.7 80.7 7.1 80.6 8.5 83.4 84.8 84.0 1.5 83.9 2.9 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.8 83.4 84.8 84.0 1.5 83.9 2.9 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.8 83.4 84.8 88.0 1.5 87.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 5.9 90.3 93.9 44.9 90.8 6.3 90.7 7.9 90.5 5.9 90.3 94.3 93.0 84.9 4.8 91.8 6.4 91.6 8.0 91.5 90.5 90.3 93.9 90.5 90.9 90.3 90.9 90.9 90.9 90.9 90.9 90.9	7.8 7.9
68 68,0 1,2 68,0 2,4 67,9 3,6 67,8 4,7 67,7 5,9 67,6 7,1 67,5 69 69,0 2,4 68,9 3,6 68,8 4,8 68,7 6,0 68,6 7,2 68,5 7,0 0,0 1,2 70,0 2,4 69,9 3,7 69,8 4,8 69,7 6,1 69,6 7,3 69,5 7,1 1,1 1,1 71,0 1,2 71,0 2,5 70,9 3,7 70,8 5,0 70,7 6,2 70,6 7,4 70,5 72,9 3,8 71,8 5,0 70,7 6,2 70,6 7,4 70,5 73,3 73,3 2,5 72,9 3,8 71,8 5,0 70,7 6,2 70,6 74,7 75,5 74,0 1,3 71,6 7,7 7,5 71,5 71,5 71,5 71,5 71,5 71,5 71,5 71,5 71,5 74,6 73,6 72,6 <t< th=""><th>8:0</th></t<>	8:0
69 69.0 1.2 69.0 2.4 68.9 3.6 68.8 4.8 68.7 6.0 68.6 7.2 68.5 70 70.0 1.2 70.0 2.4 69.9 3.7 69.8 4.9 69.7 6.1 69.6 7.3 69.5 71 71.0 1.2 71.0 2.5 70.9 3.7 70.8 5.0 70.7 6.2 70.6 7.4 70.5 72.7 72.0 1.3 72.0 2.5 71.9 3.8 71.8 5.0 70.7 6.2 70.6 7.4 70.5 71.5 73.9 3.8 72.8 5.1 72.7 6.4 72.6 72.6 72.5 74.9 3.9 73.8 5.2 73.7 6.4 73.6 7.7 76.4 76.7 6.1 3.6 7.7 76.9 4.0 76.8 5.2 74.7 6.5 74.6 7.8 74.4 77.7 77.0 1.3 77.0 2.7 <th>$8.2 \\ 8.3$</th>	$8.2 \\ 8.3$
71 71.0 1.2 71.0 2.5 70.9 3.7 70.8 5.0 70.7 6.2 70.6 7.4 70.5 72 72 72.0 1.3 72.0 2.5 71.9 3.8 71.8 5.0 71.7 6.3 71.6 7.5 71.5 71.5 73 73.0 1.3 73.0 2.5 72.9 3.8 72.8 5.1 72.7 6.4 72.6 7.6 72.5 74 74.0 1.3 74.0 2.6 73.9 3.9 73.8 5.2 73.7 6.4 73.6 7.7 73.4 76 75.0 1.3 75.0 2.6 74.9 3.9 74.8 5.2 74.7 6.5 74.6 7.8 74.4 76 76.0 1.3 76.0 2.7 75.9 4.0 75.8 5.3 75.7 6.4 73.6 7.9 75.4 77 77.0 1.3 77.0 2.7 76.9 4.0 75.8 5.3 75.7 6.6 75.6 7.9 75.4 77 77.0 1.3 77.0 2.7 76.9 4.0 75.8 5.3 75.7 6.8 77.6 8.2 77.4 79 79.0 1.4 78.0 2.7 77.9 4.1 77.8 5.4 77.7 6.8 77.6 8.2 77.4 79 79.0 1.4 79.0 2.8 78.9 4.1 78.8 5.5 78.7 6.9 78.6 8.3 78.4 81 81.0 1.4 80.0 2.8 79.9 4.2 79.8 5.5 78.7 6.9 78.6 8.3 78.4 81 81.0 1.4 82.0 2.8 80.9 4.2 80.8 5.7 79.7 7.0 79.6 8.4 79.4 81 81.0 1.4 82.0 2.8 80.9 4.2 80.8 5.7 80.7 7.1 80.6 8.5 80.4 82 82.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 81.7 7.1 81.6 8.6 81.4 83 83.0 1.4 82.9 2.9 83.9 4.2 82.8 5.8 82.7 7.2 82.5 8.7 82.4 84 84.0 1.5 83.9 2.9 83.9 4.4 83.8 5.8 82.7 7.2 82.5 8.7 82.4 84 84.0 1.5 86.9 3.0 86.9 4.2 88.8 5.8 82.7 7.3 83.5 8.8 83.4 85 85.0 1.5 87.9 3.1 87.9 4.6 87.8 6.1 86.7 7.6 86.5 9.1 86.4 88 88.0 1.5 87.9 3.1 87.9 4.6 87.8 6.3 89.7 7.8 89.5 9.4 88.8 9.9 9.0 1.6 89.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 88.8 6.3 89.7 7.8 89.5 9.4 89.3 91 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 89.7 7.9 90.5 9.5 90.3 92.9 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.6 91.3 93.9 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.6 91.3 93.9 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.5 91.3 94.9 94.0 1.6 93.9 3.3 93.9 92.9 4.9 92.8 6.5 92.6 8.1 92.5 9.7 92.3 94.9 94.0 1.6 93.9 3.3 93.9 94.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 94.9 94.0 1.6 93.9 3.3 93.9 94.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 94.9 94.0 1.6 93.9 3.3 93.9 94.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 94.9 94.0 1.6 93.9 3.3 93.9 94.9 93.8 6.6 93.6 8.2 93.5 9.9 93.3 94.9 94.0 1.6 93.9 3.3 94.9 94.8 6.6 93.6 8.2 93.5 9.8 93.3 94.3 94.0 1.6 93.9 3.3 94.9 94.9 93.8 6.6 93.6 8.2 93.5 9.9 93.3 94.3 94.0 1.6 93.9 3.3 94.9	8.4 8.5
73 73.0 1.3 73.0 2.5 72.9 3.8 72.8 5.1 72.7 6.4 72.6 7.6 72.5 74 74.0 1.3 74.0 2.6 73.9 3.9 73.8 5.2 73.7 6.4 73.6 7.7 73.4 76 75.0 1.3 75.0 2.6 74.9 3.9 74.8 5.2 74.7 6.5 74.6 7.8 74.4 76 76.0 1.3 76.0 2.7 75.9 4.0 75.8 5.3 75.7 6.6 75.6 7.9 75.4 77 77.0 1.3 77.0 2.7 76.9 4.0 76.8 5.4 76.7 6.6 75.6 79.9 75.4 78 78.0 1.4 78.0 2.7 77.9 4.1 77.8 5.4 77.7 6.6 75.6 77.6 8.7 7.6 82.7 77.4 79.9 4.2 79.8 5.5	8.7
74 74.0 1.3 74.0 2.6 73.9 3.9 73.8 5.2 73.7 6.4 73.6 7.7 73.4 76 75.0 1.3 75.0 2.6 74.9 3.9 74.8 5.2 74.7 6.5 74.6 7.8 74.4 76 76.0 1.3 77.0 2.7 75.9 4.0 76.8 5.4 76.7 6.6 75.6 8.0 76.4 78 78.0 1.4 78.0 2.7 77.9 4.1 77.8 5.4 76.7 6.6 76.6 8.0 76.4 79 79.0 1.4 79.0 2.8 78.9 4.1 78.8 5.5 78.7 6.9 78.6 8.3 78.4 80 80.0 1.4 80.0 2.8 80.9 4.2 80.8 5.7 80.7 7.1 80.6 8.5 80.4 81 81.0 1.4 82.0 2.9 81.	8.8
76 76.0 1.3 76.0 2.7 75.9 4.0 75.8 5.3 75.7 6.6 75.6 7.9 75.4 77 77.0 1.3 77.0 2.7 76.9 4.0 76.8 5.4 76.7 6.6 76.6 8.0 76.6 8.0 76.6 8.0 76.6 8.0 76.6 8.0 76.6 8.0 77.4 77.9 4.1 77.8 5.4 77.7 6.8 77.6 8.2 77.4 79 79.0 1.4 78.0 2.8 78.9 4.1 78.8 5.5 78.7 6.9 78.6 8.2 77.4 79.9 1.4 81.0 2.8 79.9 4.2 79.8 5.6 79.7 7.0 79.6 8.4 79.4 81.9 8.1 81.0 1.8 8.1 73.8 8.5 78.7 7.0 79.6 8.4 79.4 81.8 81.9 1.8 81.9 8.1 71.8 81.6 <th>$\frac{8.9}{9.0}$</th>	$\frac{8.9}{9.0}$
77 77.0 1.3 77.0 2.7 76.9 4.0 76.8 5.4 76.7 6.7 76.6 8.0 76.4 78 78.0 1.4 78.0 2.7 77.9 4.1 77.8 5.4 77.7 6.8 77.6 8.2 77.4 80 80.0 1.4 80.0 2.8 79.9 4.2 79.8 5.6 79.7 7.0 79.6 8.4 79.4 81 81.0 1.4 81.0 2.8 80.9 4.2 80.8 5.7 81.7 7.1 80.6 8.5 80.4 82 82.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 81.7 7.1 80.6 8.5 80.4 83 83.0 1.4 82.9 2.9 82.9 4.3 82.8 5.9 82.7 7.2 82.5 5.7 82.5 8.7 82.5 8.7 82.5 8.7 82.5 <td< th=""><th>9.1</th></td<>	9.1
79 79.0 1.4 79.0 2.8 78.9 4.1 78.8 5.5 78.7 6.9 78.6 8.3 78.4 80 80.0 1.4 80.0 2.8 79.9 4.2 79.8 5.6 79.7 7.0 79.6 8.4 79.4 81 81.0 1.4 81.0 2.8 80.9 4.2 80.8 5.7 80.7 7.1 80.6 8.5 80.4 82 82.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 81.7 7.1 81.6 8.6 81.4 83 83.0 1.4 82.9 2.9 82.9 4.3 82.8 5.9 83.7 7.3 83.5 83.7 82.5 87.7 82.5 87.7 82.5 87.8 82.7 7.2 82.5 87.8 82.4 83.4 83.4 84.4 84.8 5.9 84.7 7.4 84.5 8.9 84.7 7.4	$9.3 \\ 9.4$
80 80.0 1.4 80.0 2.8 79.9 4.2 79.8 5.6 79.7 7.0 79.6 8.4 79.4 81 81.0 1.4 81.0 2.8 80.9 4.2 80.8 5.7 80.7 7.1 80.6 8.5 80.4 82 82.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 81.7 7.1 81.6 8.6 81.4 83 83.0 1.4 82.9 2.9 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.6 81.4 84 84.0 1.5 83.9 2.9 83.9 4.4 83.8 5.9 83.7 7.3 83.5 8.8 83.4 85 85.0 1.5 86.9 3.0 86.9 4.5 85.8 6.0 85.7 7.6 85.5 9.0 85.4 87 87.0 1.5 86.9 3.0 86.	9.5
82 82.0 1.4 82.0 2.9 81.9 4.3 81.8 5.7 81.7 7.1 81.6 8.6 81.4 83 83.0 1.4 82.9 2.9 82.9 82.8 5.8 82.7 7.2 82.5 8.7 82.4 84 84.0 1.5 84.9 3.0 84.9 4.4 84.8 5.9 84.7 7.4 84.5 8.9 84.4 85 85.0 1.5 85.9 3.0 85.9 4.5 85.8 6.0 85.7 7.4 84.5 8.9 84.4 86 86.0 1.5 86.9 3.0 86.9 4.6 86.8 6.1 86.7 7.6 86.5 9.1 86.4 87.0 1.5 87.9 3.1 87.9 4.6 87.8 6.1 87.7 7.7 87.5 9.2 87.3 89 89.0 1.6 88.9 3.1 89.9 4.7 8	$9.6 \\ 9.7$
83 83.0 1.4 82.9 2.9 82.9 4.3 82.8 5.8 82.7 7.2 82.5 8.7 82.4 84 84.0 1.5 83.9 2.9 83.9 4.4 83.8 5.9 83.7 7.3 83.5 8.8 83.4 85 85.0 1.5 84.9 3.0 84.9 4.4 84.8 5.9 84.7 7.4 84.5 8.9 84.8 84.5 8.9 84.5 8.9 84.6 86.0 86.7 7.5 85.5 9.0 85.4 87 87.0 1.5 86.9 3.0 86.9 4.6 86.8 6.1 86.7 7.5 85.5 9.0 85.4 88 88.0 1.5 87.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 88.5 9.1 86.3 90 90.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 91 91.0 1.6	9.9 10.0
85 85.0 1.5 84.9 3.0 84.9 4.4 84.8 5.9 84.7 7.4 84.5 8.9 84.4 86 86.0 1.5 85.9 3.0 85.9 4.5 85.8 6.0 85.7 7.6 85.5 9.0 85.6 88 88.0 1.5 87.9 3.1 87.9 4.6 87.8 6.1 87.7 7.7 87.5 9.2 87.3 89 89.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 88.8 6.2 88.7 7.8 89.5 9.4 89.3 91 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 89.7 7.8 89.5 9.4 89.3 92 92.0 1.6 91.9 3.2 91.	10.1
86 86.0 1.5 85.9 3.0 85.9 4.5 85.8 6.0 85.7 7.5 85.5 9.0 85.4 87 87.0 1.5 86.9 3.0 86.9 4.6 86.8 6.1 86.7 7.6 86.5 9.1 86.4 88 88.0 1.5 87.9 3.1 87.9 4.6 87.8 6.1 87.7 7.6 86.5 9.1 86.4 89 89.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 89.8 6.3 89.7 7.8 89.5 9.4 89.3 91 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 9.5 90.3 92 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.5 90.3 93 93.0 1.6 92.9 3.2 92.9 4.9 92.8 6.5 92.6 8.1 92.5 9.7 <th>10.2 10.4</th>	10.2 10.4
88 88.0 1.5 87.9 3.1 87.9 4.6 87.8 6.1 87.7 7.7 87.5 9.2 87.3 89 89.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 89.8 6.3 89.7 7.8 89.5 9.4 89.3 91 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 9.5 90.3 92 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.5 90.3 93 93.0 1.6 92.9 3.2 92.9 4.9 92.8 6.5 92.6 8.1 92.5 9.7 92.3 94 94.0 1.6 93.9 3.3 94.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 95 95.0 1.7 94.9 3.3 94.9 5.0 94.8 6.6 94.6 8.3 94.5 9.9 93.3 <th>10.5</th>	10.5
89 89.0 1.6 88.9 3.1 88.9 4.7 88.8 6.2 88.7 7.8 88.5 9.3 88.3 90 90.0 1.6 89.9 3.1 89.9 4.7 89.8 6.3 89.7 7.8 89.5 9.4 89.3 91 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 9.5 90.3 92 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.6 91.3 93 93.0 1.6 92.9 3.2 92.9 4.9 92.8 6.5 92.6 8.1 92.5 9.7 92.3 94 94.0 1.6 93.9 3.3 93.9 4.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 95 95.0 1.7 94.9 3.3 94.9 5.0 94.8 6.6 94.6 8.3 94.5 9.9 94.3	10.6 10.7
91 91.0 1.6 90.9 3.2 90.9 4.8 90.8 6.3 90.7 7.9 90.5 9.5 90.3 92 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.6 91.3 93.9 3.0 1.6 92.9 3.2 92.9 4.9 92.8 6.5 92.6 8.1 92.5 9.7 92.3 94 94.0 1.6 93.9 3.3 93.9 4.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 95 95.0 1.7 94.9 3.3 94.9 5.0 94.8 6.6 94.6 8.3 94.5 9.9 94.3	10.8
92 92.0 1.6 91.9 3.2 91.9 4.8 91.8 6.4 91.6 8.0 91.5 9.6 91.3 93 93.0 1.6 92.9 3.2 92.9 4.9 92.8 6.5 92.6 8.1 92.5 9.7 92.3 94 94.0 1.6 93.9 3.3 93.9 4.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 95 95.0 1.7 94.9 3.3 94.9 5.0 94.8 6.6 94.6 8.3 94.5 9.9 94.3	11.0 11.1
94 94.0 1.6 93.9 3.3 93.9 4.9 93.8 6.6 93.6 8.2 93.5 9.8 93.3 95 95.0 1.7 94.9 3.3 94.9 5.0 94.8 6.6 94.6 8.3 94.5 9.9 94.3	11.2
95 95.0 1.7 94.9 3.3 94.9 5.0 94.8 6.6 94.6 8.3 94.5 9.9 94.3	11.3 11.5
1 00 1 00 0 1 7 0 0 0 2 4 0 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.6
96 96.0 1.7 95.9 3.4 95.9 5.0 95.8 6.7 95.6 8.4 95.5 10.0 95.3 97 97.0 1.7 96.9 3.4 96.9 5.1 96.8 6.8 96.6 8.5 96.5 10.1 96.3	11.7 11.8
98 98.0 1.7 97.9 3.4 97.9 5.1 97.8 6.8 97.6 8.5 97.5 10.2 97.3	11.9
99 99.0 1.7 98.9 3.5 98.9 5.2 98.8 6.9 98.6 8.6 98.5 10.3 98.3 100 100.0 1.7 99.9 3.5 99.9 5.2 99.8 7.0 99.6 8.7 99.5 10.5 99.3	12.1
600 599.9 10.5 599.6 20.9 599.2 31.4 598.6 41.9 597.7 52.3 596.7 62.7 595.5	
700 699.8 12.2 699.5 24.4 699.0 36.6 698.2 48.8 697.2 61.0 696.1 73.2 694.9	$12.2 \\ 73.1$
900 899.7 15.7 899.3 31.4 898.6 47.1 897.6 62.8 896.4 78.4 895.0 94.1 893.3 1	12.2 73.1 85.3
Dep. Lat.	$12.2 \\ 73.1$
(91°, 269°, (92°, 268°) (93°, 267°, (94°, 266°, (95°, 265°, (96°, 264°, (97°, 277°)) (97°, 277°) (97°, 277°) (97°, 277°)	12.2 73.1 85.3 97.5 09.6 Lat.
89° 83° 7½ Pt. 87° 86° 85° 7½ Pt. 84° 83	12.2 73.1 85.3 97.5 09.6 Lat.

	- Pt.	Q°	9	0	10	0	1 Pt.	110	12	0	13	20 1	11 P	. 14°
DIST.	(172°, 352	188°,	(171°,	189°,	(170°,	190°,	(169°,	191°,	(168°, 348		(167°.	193°.	(166°	194°.
Dist.			35		350	<u> </u>	349	<u> </u>	_		347	Dep.	Lat.	6°) Dep.
- -	Lat. 1.0	Dep. 0.1	Lat.	Dep.	Lat.	Dep.	!	Dep. 0.2	1.0	$\frac{\text{Dep.}}{0.2}$	1.0	0,2	1.0	0.2
$\begin{array}{ c c }\hline 1\\ 2 \end{array}$	2.0	0.3	$\frac{1.0}{2.0}$	0.2	$\frac{1.0}{2.0}$	0.2	$\frac{1.0}{2.0}$	0.2	2.0	0.4	1.9	0.4	1.9	0.5
3 4	$\frac{3.0}{4.0}$	0.4 0.6	$\frac{3.0}{4.0}$	0.5 0.6	3.0 3.9	$0.5 \\ 0.7$	$\frac{2.9}{3.9}$	0.6 0.8	$\frac{2.9}{3.9}$	$0.6 \\ 0.8$	2.9 3.9	0.7 0.9	$\frac{2.9}{3.9}$	$0.7 \\ 1.0$
5	5.0	0.7	4.9	0.8	4.9	0.9	4.9	1.0	4.9	1.0	4.9	1.1	4.9	1.2
6	5.9	0.8	5.9	0.9	5.9	1.0	5.9	1.1	5.9	1.2	5.8	1.3	5.8	1.5
7 8	6.9 7.9	$\frac{1.0}{1.1}$	6.9 7.9	1.1 1.3	6.9 7.9	1.2 1.4	$\frac{6.9}{7.9}$	1.3 1.5	6.8 7.8	$\frac{1.5}{1.7}$	6.8 7.8	$\frac{1.6}{1.8}$	6.8 7.8	$\frac{1.7}{1.9}$
9	8.9	1.3	8.9	1.4	8.9	1.6	8.8	1.7	8.8	1.9	8.8	2.0	8.7	$\frac{2.2}{2.4}$
10	9.9 10.9	1.4 1.5	9.9 10.9	$1.6 \\ 1.7$	$9.8 \\ 10.8$	1.7 1.9	9.8	$\frac{1.9}{2.1}$	9.8	$\frac{2.1}{2.3}$	9.7 10.7	$\frac{2.2}{2.5}$	9.7 10.7	$\frac{2.4}{2.7}$
12	11.9	1.7	11.9	1.9	11.8	2.1	11.8	2.3	11.7	2.5	11.7	2.7	11.6	2.9
13 14	$12.9 \\ 13.9$	1.8	12.8 13.8	$\frac{2.0}{2.2}$	$12.8 \\ 13.8$	$\frac{2.3}{2.4}$	12.8 13.7	$\frac{2.5}{2.7}$	12.7 13.7	$\frac{2.7}{2.9}$	$12.7 \\ 13.6$	$\frac{2.9}{3.1}$	$12.6 \\ 13.6$	$\frac{3.1}{3.4}$
15	14.9	2.1	14.8	2.3	14.8	2.6	14.7	2.9	14.7	3.1	14.6	3.4	14.6	3.6
16 17	15.8 16.8	$\frac{2.2}{2.4}$	15.8	$\frac{2.5}{2.7}$	15.8 16.7	2.8 3.0	15.7 16.7	$\frac{3.1}{3.2}$	15.7 16.6	3.3 3.5	15.6 16.6	3.6 3.8	15.5 16.5	$^{\cdot}_{4.1}^{\circ}$
18	17.8	2.5	16.8 17.8	2.9	17.7	3.1	17.7	3.4	17.6	3.7	17.5	4.0	17.5	4.4
19 20	18.8 19.8	$\frac{2.6}{2.8}$	18.8 19.8	3.0 3.1	18.7 19.7	3.3 3.5	18.7 19.6	3.6 3.8	18.6 19.6	$\frac{4.0}{4.2}$	18.5 19.5	4.3 4.5	18.4 19.4	$\frac{4.6}{4.8}$
21	20.8	2.9	20.7	3.3	20.7	3.6	20.6	4.0	20.5	4.4	20.5	4.7	20.4	5.1
22 23	$21.8 \\ 22.8$	$\frac{3.1}{3.2}$	21.7	3.4	21.7 22.7	3.8 4.0	$21.6 \\ 22.6$	4.2 4.4	$21.5 \\ 22.5$	4.6 4.8	$21.4 \\ 22.4$	$\frac{4.9}{5.2}$	$21.3 \\ 22.3$	5.3 5.6
24	23.8	3.2 3.3	$\frac{22.7}{23.7}$	3.6 3.8	23.6	4.2	23.6	4.6	23.5	5.0	23.4	5.4	23.3	5.8
25	24.8	3.5	24.7	3.9	24.6	4.3	24.5	4.8	24.5	5.2	24.4	5.6	24.3	6.0
26 27	25.7 26.7	3.6	25.7 26.7	$\begin{array}{ c c c } 4.1 \\ 4.2 \end{array}$	25.6 26.6	4.5 4.7	25.5 26.5	5.0 5.2	$25.4 \\ 26.4$	5.4 5.6	25.3 26.3	5.8 6.1	$25.2 \\ 26.2$	$6.3 \\ 6.5$
28	27.7	3.9	27.7	4.4	27.6	4.9	27.5	5.3	27.4	5.8	27.3	6.3	$27.2 \\ 28.1$	6.8
29 30	28.7 29.7	$\frac{4.0}{4.2}$	28.6 29.6	4.5	$28.6 \\ 29.5$	$\begin{bmatrix} 5.0 \\ 5.2 \end{bmatrix}$	$28.5 \\ 29.4$	5.5 5.7	28.4 29.3	6.0 6.2	28.3 29.2	6.5 6.7	$\frac{26.1}{29.1}$	$7.0 \\ 7.3$
31	30.7	4.3	30.6	4.8	30.5	5.4	30.4	5.9	30.3	6.4	30.2	7.0	30.1	7.5
32	31.7 32.7	$\begin{array}{ c c } 4.5 \\ 4.6 \end{array}$	31.6 32.6	5.0 5.2	$\begin{vmatrix} 31.5 \\ 32.5 \end{vmatrix}$	5.6 5.7	$31.4 \\ 32.4$	6.1	$\begin{array}{c} 31.3 \\ 32.3 \end{array}$	6.7 6.9	$\begin{array}{c c} 31.2 \\ 32.2 \end{array}$	7.2 7.4	$31.0 \\ 32.0$	$\begin{array}{c} 7.7 \\ 8.0 \end{array}$
34	33.7	4.7	33.6	5.3	33.5	5.9	33.4	6.5	33.3	7.1	33.1	7.6	33.0	8.2
35 36	34.7 35.6	4.9 5.0	34.6 35.6	5.5 5.6	34.5 35.5	6.1	34.4 35.3	6.7 6.9	34.2 35.2	7.3 7.5	34.1 35.1	7.9 8.1	34.0 34.9	8.5 8.7
37	36.6	5.1	36.5	5.8	36.4	6.4	36.3	7.1	36.2	7.7	36.1	8.3	35.9	9.0
38	37.6 38.6	5.3 5.4	37.5 38.5	$\frac{5.9}{6.1}$	37.4 38.4	6.8	37.3 38.3	7.3 7.4	37.2 38.1	7.9 8.1	37.0 38.0	8.5 8.8	36.9 37.8	$9.2 \\ 9.4$
40	39.6	5.6	39.5	6.3	39.4	6.9	39.3	7.6	39.1	8.3	39.0	9.0	38.8	9.7
$\begin{array}{ c c }\hline 41\\ 42\end{array}$	40.6 41.6	5.7 5.8	$\frac{40.5}{41.5}$	6.4 6.6	40.4 41.4	7.1 7.3	$\begin{array}{ c c c } 40.2 \\ 41.2 \\ \end{array}$	7.8 8.0	$ \begin{array}{c} 40.1 \\ 41.1 \end{array} $	8.5 8.7	39.9 40.9	9.2 9.4	39.8 40.8	$9.9 \\ 10.2$
43	42.6	6.0	42.5	6.7	42.3	7.5	42.2	8.2	42.1	8.9	41.9	9.7	41.7	10.4
44 45	43.6 44.6	6.1	43.5 44.4	6.9 7.0	43.3 44.3		$\begin{array}{ c c c c } 43.2 \\ 44.2 \end{array}$	8.4 8.6	$\begin{array}{ c c c c } 43.0 \\ 44.0 \end{array}$	9.1 9.4	42.9 43.8	9.9 10.1	$42.7 \\ 43.7$	$10.6 \\ 10.9$
46	45.6	6.4	45.4	7.2	45.3	8.0	45.2	8.8	45.0	9.6	44.8	10.3	44.6	11.1
47	46.5 47.5	6.5 6.7	46.4		46.3 47.3		46.1 47.1	9.0	46.0 47.0	9.8 10.0	45.8 46.8	10.6 10.8	45.6 46.6	11.4 11.6
49	48.5	6.8	47.4 48.4	7.7	48.3	8.5	48.1	9.3	47.9	10.2	47.7	11.0	47.5	11.9
50	49.5	7.0	49.4		49.2		49.1	9.5	48.9	10.4		11.2	48.5	12.1
100 200		$\frac{13.9}{27.8}$	98.8 197.5		98.5 197.0		98.2 196.3		97.8 195.6	20.8 41.6		$22.5 \\ 45.0$	$97.0 \\ 194.1$	$24.2 \\ 48.4$
300	297.1	41.8	296.3	46.9	295.4	52.1	294.5	57.2	293.4	62.4	292.3	67.5	291.1	72.6
400 500	396.1 495.1				393.9 492.4		392.6 $ 490.8 $			83.1 104.0		112.4	$\frac{388.1}{485.1}$	96.7 121.0
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	ı—	Lat.	Dep.	Lat.
1		262°,	(99°,	261°,	(100°,	260°,	(101°.	259°,		, 258°,	(103°	. 257°.	(104°	, 256°,
	278 71 Pt			9°) ´ 1 °	28		281 7 Pt.			2°) 8°		3°) ′′ 7 °	28 63 P	34°) t. 76 °
	HILL	. VA	, 0	_	1 0	-) 4 E G.		<u>' '</u>			·	OTF	U. 10

The 1-Pt. or 11° Courses are: N. by E., N. by W., S. by E., S. by W.

	1 3 D	. 00	1 6				1 Pt. 11°							
_	(172°	t. 8° 188°,	(171°	° , 189°,		0° . 190°.	1 Pt	, 11° , 191°,		2 ° '. 192°.		l3° °, 193°,	11 P	t. 14°
Dist.	35	2°)	35	1°)		,0°) '	34	9°)	34	8")	(107	47°)	34	, 194°, 6°)
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
51	50.5	7.1	50.4	8.0		8.9	50.1	9.7	49.9			11.5	49.5	12.3
52 53	51.5 52.5	7.2 7.4	51.4 52.3	8.1 8.3	51.2 52.2	$9.0 \\ 9.2$	51.0 52.0		50.9 51.8		50.7 51.6		50.5	12.6
54	53.5	7.5	53.3	8.4	53.2	9.4	53.0		52.8		52.6	$11.9 \\ 12.1$	51.4 52.4	12.8 13.1
55	54.5	7.7	54.3	8.6	1	9.6		1		11.4	53.6		53.4	13.3
56 57	55.5 56.4	7.8 7.9	55.3 56.3	8.8 8.9		9.7	55.0 56.0		54.8 55.8		54.6		54.3	13.5
58	57.4	8.1	57.3	9.1	57.1	10.1	56.9		56.7	$ 11.9 \\ 12.1$	55.5 56.5	12.8 13.0	55.3 56.3	13.8 14.0
59	58.4 59.4	8.2	58.3	9.2		10.2				12.3	57.5	13.3	57.2	14.3
60 61	60.4	8.4 8.5	59.3 60.2	9.4		10.4 10.6	58.9 59.9		58.7 59.7	12.5	58.5		58.2	14.5
62	61.4	8.6	61.2	9.7	61.1	10.8	60.9		60.6	$12.7 \\ 12.9$	59.4 60.4	13.7 13.9	59.2	14.8 15.0
63	62.4	8.8	62.2	9.9		10.9	61.8	12.0	61.6	13.1	61.4	14.2	61.1	15.2
64 65	63.4	$\begin{bmatrix} 8.9 \\ 9.0 \end{bmatrix}$	63.2 64.2	$ 10.0 \\ 10.2$		$11.1 \\ 11.3$	$62.8 \\ 63.8$		62.6 63.6		62.4 63.3	14.4 14.6	62.1 63.1	15.5
66	65.4	9.2	65.2	10.3	65.0	11.5	64.8	12.6	64.6		64.3		64.0	15.7 16.0
67	66.3	9.3		10.5	66.0	11.6	65.8	12.8	65.5	13.9	65.3	15.1	65.0	16.2
68 69	67.3 68.3	$\begin{array}{ c c} 9.5 \\ 9.6 \end{array}$		10.6 10.8	67.0 68.0	$ 11.8 \\ 12.0$	66.8 67.7	13.0 13.2	66.5 67.5	$ \begin{array}{c} 14.1 \\ 14.3 \end{array}$	66.3 67.2	15.3 15.5	66.0	16.5
70	69.3	9.7	69.1	11.0		12.2	68.7	13.4	68.5	14.6	68.2	15.7	67.0 67.9	$\begin{array}{c c} 16.7 \\ 16.9 \end{array}$
71	70.3	9.9	70.1	11.1	69.9	12.3	69.7	13.5	69.4	14.8	69.2	16.0	68.9	17.2
72	71.3 72.3	$10.0 \\ 10.2$	$71.1 \\ 72.1$	11.3 11.4		$12.5 \\ 12.7$	70.7 71.7	13.7 13.9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.0 15.2	70.2 71.1	$16.2 \\ 16.4$	69.9 70.8	17.4
74	73.3	10.3	73.1	11.6	72.9	12.8	72.6	14.1	72.4	15.4	72.1	16.6	71.8	$17.7 \\ 17.9$
75	74.3	10.4	74.1	11.7		13.0	73.6		73.4	15.6	73.1	16.9	72.8	18.1
76 77	75.3 76.3	10.6 10.7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} 11.9 \\ {}^{\circ}12.0 \end{array} $		13.2 13.4	74.6 75.6	14.5 14.7	74.3 75.3	15.8 16.0	74.1 75.0	17.1 17.3	73.7 74.7	$18.4 \\ 18.6$
78	77.2	10.9	77.0	12.2	76.8	13.5	76.6	14.9	76.3	16.2	76.0	17.5	75.7	18.9
79 80	78.2 79.2	$11.0 \\ 11.1$	78.0 79.0	$12.4 \\ 12.5$		13.7 13.9	77.5	15.1	77.3	16.4	77.0	17.8	76.7	19.1
81	80.2	11.3	80.0	12.7	79.8	14.1	78.5 79.5	15.3 15.5	$\begin{array}{ c c } 78.3\\ 79.2 \end{array}$	16.6 16.8	77.9 78.9	18.0 18.2	77.6 78.6	19.4 19.6
82	81.2	11.4	81.0	12.8	80.8	14.2	80.5	15.6	80.2	17.0	79.9	18.4	79.6	19.8
83 84	82.2 83.2	$ 11.6 \\ 11.7$	82.0 83.0	13.0 13.1	81.7 82.7	14.4 14.6	81.5 82.5	$\begin{array}{c c} 15.8 \\ 16.0 \end{array}$	$81.2 \\ 82.2$	$17.3 \\ 17.5$	80.9 81.8	18.7	80.5	20.1
85	84.2	11.8	84.0	13.3	83.7	14.8	83.4	16.2	83.1	17.7	82.8	18.9 19.1	81.5 82.5	20.3 20.6
86	85.2	12.0	84.9	13.5	84.7	14.9	84.4	16.4	84.1	17.9	83.8	19.3	83.4	20.8
87 88	86.2 87.1	$12.1 \\ 12.2$	85.9 86.9	$13.6 \\ 13.8$	85.7 86.7	$15.1 \\ 15.3$	85,4 86,4	$16.6 \\ 16.8$	85.1	18.1 18.3	84.8 85.7	19.6	84.4	21.0
89	88.1	12.4	87.9	13.9	87.6	15.5	87.4	17.0	86:1 87.1	18.5	86.7	$19.8 \\ 20.0$	85.4 86.4	$21.3 \\ 21.5$
90	89.1	12.5	88.9	14.1	88.6	15.6	88.3	17.2	88.0	18.7	87.7	20.2	87.3	21.8
91 92	90.1 91.1	$\frac{12.7}{12.8}$	89.9 90.9	$14.2 \\ 14.4$	89.6 90.6	15.8 16.0	89.3 90.3	$17.4 \\ 17.6$	89.0 90.0	$18.9 \\ 19.1$	88.7 89.6	20.5 20.7	88.3	22.0
93	92.1	12.9	91.9	14.5	91.6	16.1	91.3	17.7	91.0	19.1	90.6	20.9	89.3 90.2	$\frac{22.3}{22.5}$
94	93.1	13.1	92.8	$14.7 \\ 14.9$	92.6	16.3	92.3	17.9	91.9	19.5	91.6	21.1	91.2	22.7
95 96	94.1 95.1	$13.2 \\ 13.4$	93.8 94.8	14.9	93.6 94.5	$16.5 \\ 16.7$	93.3 94.2	18.1 18.3	92.9 93.9	19.8 20.0	92.6 93.5	21.4 21.6	92.2	23.0
97	96.1	13.5	95.8	15.2	95.5	16.8	95.2	18.5	93.9	20.0	94.5	21.8	93.1	$23.2 \\ 23.5$
98	97.0	13.6	96.8	15.3	96.5	17.0	96.2	18.7	95.9	20.4	95.5	22.0	95.1	23.7
99 100	98.0 99.0	$13.8 \\ 13.9$	97.8 98.8	$15.5 \\ 15.6$	97.5 98.5	$17.2 \\ 17.4$	97.2 98.2	$18.9 \\ 19.1$	$96.8 \\ 97.8$	$20.6 \\ 20.8$	96.5 97.4	$22.3 \\ 22.5$	96.1 97.0	$\frac{24.0}{24.2}$
600	594.2	83.5	592.6	93.8	590.9	104.2	589.0	114.5	586.9			135.0	582.2	
700	693.3	97.4	691.3	109.4	689.5	121.5	687.1	133.6	684.7	145.5	682.1	157.5	679.2	169.3
800 900	$\begin{array}{c} 792.3 \\ 891.3 \end{array}$		$790.2 \\ 888.8$		787.9 886.3				782.5 880.2		779.4 876.8	180.0 202.4	776.2 873.2	
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		Dep.	Lat.	Dep.	Lat.
	(98°.	262°.	(99°.	261°.		_	(101°,					1		
	278	3°)	279)°)	280°) 281°)			1°)	(102°, 282		(103°, 257°, 283°)			
	71 Pt	. 82°	81	L°	80)°	7 Pt	. 79°	78	3°	7	7°	6 ≩ Pt	. 76°
	The 7-Pt. or 79° C					-	2 3				by S. W. by			

The 7-Pt. or 79° Courses are: E. by N., W. by N., E. by S., W. by S.

	1	5°	10	3°	1 ½ Pt	. 17°	18	30	19	o°	13 P	t. 20°
Dist.	(165°,		(164°, 34	196°,		1970.	(162°.		(161°,	199°.	(160°	, 200°, 0°)
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
1	1.0	0.3	1.0	0.3	1.0	0.3	1.0	0.3	0.9	0.3	0.9	0.3
2 3	1.9	0.5	1.9	0.6	1.9	0.6	1.9	0.6	1.9	0.7	1.9	0.7
4	$\frac{2.9}{3.9}$	$0.8 \\ 1.0$	$\frac{2.9}{3.8}$	$0.8 \\ 1.1$	$\frac{2.9}{3.8}$	$0.9 \\ 1.2$	2.9 3.8	$0.9 \\ 1.2$	2.8 3.8	$\frac{1.0}{1.3}$	2.8 3.8	$1.0 \\ 1.4$
5	4.8	1.3	4.8	1.4	4.8	1.5	4.8	1.5	4.7	1.6	4.7	1.7
6	5.8 6.8	1.6 1.8	5.8 6.7	$\frac{1.7}{1.9}$	5.7 6.7	$\frac{1.8}{2.0}$	5.7 6.7	$\frac{1.9}{2.2}$	5.7 6.6	$\frac{2.0}{2.3}$	5.6 6.6	$\frac{2.1}{2.4}$
7 8	7.7	2.1	7.7	2.2	7.7	2.3	7.6	2.5	7.6	2.6	7.5	2.7
9 10	8.7 9.7	$\frac{2.3}{2.6}$	8.7 9.6	$\frac{2.5}{2.8}$	8.6 9.6	$\frac{2.6}{2.9}$	8.6 9.5	$\frac{2.8}{3.1}$	8.5 9.5	$\frac{2.9}{3.3}$	8.5 9.4	$\frac{3.1}{3.4}$
11	10.6	2.8	10.6	3.0	10.5	3.2	10.5	3.4	10.4	3.6	10.3	3.8
12 13	$11.6 \\ 12.6$	$\frac{3.1}{3.4}$	$11.5 \\ 12.5$	$\frac{3.3}{3.6}$	$11.5 \\ 12.4$	$\frac{3.5}{3.8}$	$11.4 \\ 12.4$	$\frac{3.7}{4.0}$	$11.3 \\ 12.3$	$\frac{3.9}{4.2}$	$11.3 \\ 12.2$	4.1 4.4
14	13.5	3.6	13.5	3.9	13.4	4.1	13.3	4.3	13.2	4.6	13.2	4.8
15 16	14.5 15.5	3.9 4.1	14.4 15.4	4.1	14.3 15.3	4.4 4.7	14.3 15.2	4.6 4.9	14.2 15.1	$\frac{4.9}{5.2}$	14.1 15.0	5.1 5.5
17	16.4	4.4	16.3	$\frac{4.4}{4.7}$	16.3	5.0	16.2	5.3	16.1	5.5	16.0	5.8
18 19	17.4 18.4	4.7 4.9	17.3 18.3	$\frac{5.0}{5.2}$	$17.2 \\ 18.2$	5.3 5.6	17.1 18.1	5.6 5.9	17.0 18.0	5.9 6.2	16.9 17.9	$\frac{6.2}{6.5}$
20	19.3	5.2	19.2	5.5	19.1	5.8	19.0	6.2	18.9	6.5	18.8	6.8
21 22	$20.3 \\ 21.3$	5.4 5.7	$20.2 \\ 21.1$	5.8	$20.1 \\ 21.0$	6.1 6.4	20.0 20.9	6.5 6.8	19.9 20.8	6.8 7.2	19.7 20.7	$7.2 \\ 7.5$
23	22.2	6.0	22.1	$6.1 \\ 6.3$	22.0	6.7	21.9	7.1	21.7	7.5	21.6	7.9
24 25	$23.2 \\ 24.1$	$\frac{6.2}{6.5}$	$23.1 \\ 24.0$	6.6 6.9	23.0 23.9	7.0 7.3	$\frac{22.8}{23.8}$	7.4 7.7	$22.7 \\ 23.6$	7.8 8.1	22.6 23.5	8.2 8.6
26	25.1	6.7	25.0		24.9	7.6	$\frac{23.8}{24.7}$	8.0	24.6	8.5	24.4	8.9
27 28	26.1	7.0	26.0	7.2 7.4	25.8	7.9	25.7	8.3 8.7	25.5	8.8	25.4	9.2
29	27.0 28.0	$\frac{7.2}{7.5}$	$\frac{26.9}{27.9}$	7.7 8.0	$26.8 \\ 27.7$	8.2 8.5	26.6 27.6	9.0	$26.5 \\ 27.4$	9.1 9.4	$26.3 \\ 27.3$	9.6 9.9
30	29.0	7.8	28.8	8.3	28.7	8.8	28.5	9.3	28.4	9.8	28.2	10.3
31 32	$\frac{29.9}{30.9}$	8.0 8.3	$\frac{29.8}{30.8}$	8.5 8.8	29.6 30.6	9.1 9.4	29.5 30.4	9.6 9.9	29.3 30.3	10.1 10.4	29.1 30.1	10.6 10.9
33	31.9	8.5	31.7	9.1	31.6	9.6	31.4	10.2	31.2	10.7	31.0	11.3
34 35	32.8 33.8	8.8 9.1	$32.7 \\ 33.6$	9.4 9.6	32.5 33.5	$9.9 \\ 10.2$	32.3 33.3	$ 10.5 \\ 10.8$	32.1 33.1	$ 11.1 \\ \cdot 11.4$	31.9 32.9	$11.6 \\ 12.0$
36	34.8	9.3	34.6	9.9	34.4	10.5	34.2	11.1	34.0	11.7	33.8	12.3
37 38	35.7 36.7	9.6 9.8	35.6 36.5	$10.2 \\ 10.5$	35.4 36.3	10.8 11.1	35.2 36.1	$11.4 \\ 11.7$	35.0 35.9	$12.0 \\ 12.4$	34.8 35.7	$12.7 \\ 13.0$
39	37.7	10.1	37.5	10.7	37.3	11.4	37.1	12.1	36.9	12.7	36.6	13.3
40 41	38.6 39.6	10.4 10.6	38.5 39.4	$11.0 \\ 11.3$	38.3 39.2	11.7 12.0	38.0 39.0	12.4 12.7	37.8 38.8	13.0 13.3	37.6 38.5	13.7 14.0
42	40.6	10.9	40.4	11.6	40.2	12.3	39.9	13.0	39.7	13.7	39.5	14.4
43 44	$\frac{41.5}{42.5}$	$11.1 \\ 11.4$	$\frac{41.3}{42.3}$	$\frac{11.9}{12.1}$	$41.1 \\ 42.1$	$12.6 \\ 12.9$	$\begin{array}{ c c c } 40.9 \\ 41.8 \end{array}$	13.3 13.6	40.7 41.6	14.0 14.3	$\begin{array}{ c c c } 40.4 \\ 41.3 \end{array}$	$14.7 \\ 15.0$
45	43.5	11.6	43.3	12.4	43.0	13.2	42.8	13.9	42.5	14.7	42.3	15.4
46 47	44.4 45.4	$\frac{11.9}{12.2}$	$\frac{44.2}{45.2}$	$\frac{12.7}{13.0}$	$\frac{44.0}{44.9}$	13.4 13.7	$\begin{array}{ c c c c }\hline 43.7 \\ 44.7 \end{array}$	14.2 14.5	$43.5 \\ 44.4$	15.0 15.3	43.2 44.2	15.7 16.1
48	46.4	12.4	46.1	13.2	45.9	14.0	45.7	14.8	45.4	15.6	45.1	16.4
49 50	47.3 48.3	$\frac{12.7}{12.9}$	$47.1 \\ 48.1$	$\frac{13.5}{13.8}$	46.9	$14.3 \\ 14.6$	46.6 47.6	15.1 15.5	46.3 47.3	16.0 16.3	46.0 47.0	$\frac{16.8}{17.1}$
100	96.6	25.9	96.1	27.6	95.6	29.2	95.1	30.9	94.6	32.6	94.0	34.2
200 300	$193.2 \\ 289.8$	51.8	$\begin{array}{c} 192.3 \\ 288.4 \end{array}$	$55.1 \\ 82.7$	$191.3 \\ 286.9$	58.5 87.7	$190.2 \\ 285.3$	61.8	$189.1 \\ 283.7$	65.1 97.7	$187.9 \\ 281.9$	68.4
400	386.3	103.5	384.5	110.2	382.5	117.0	380.4	123.6	378.2	130.2	375.9	136.8
500	183.0	129.4	480.6	137.8		146.2	l	154.5	472.8		469.9	
	Dep.		Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.
	(105° 28	, 255°, 5°)	(106°,	254°, 6°)	(107° 28	, 253°, 7°)	(108°,	, 252°, 8°)	(109°, 28	251°, 9°)	(110° 29	, 250°, 0°)
	7		7.	1 °′		t. 7 3°		ž°	71	L°		t. 70°

	18	5°	16°		11 P	t. 17°	1:	B°	1	.9°	13 P	t. 20°
Dist.	(165°,	195°,	(1640	196°, 4°)	(163°	, 197°, 3°)	(162°	, 198°, 2°)	(1619	, 199°, 11°)	(160%	200°, 0°)
			Lat.		Lat.	Dep.	Lat.	Dep.			Lat.	
51	Lat. 49.3	Dep. 13.2	49.0	Dep. 14.1	48.8	14.9	48.5	15.8	Lat. 48.2	Dep. 16.6	47.9	Dep. 17.4
52	50.2	13.5	50.0	14.3	49.7	15.2	49.5	16.1	49.2	16.9	48.9	17.8
53 54	$51.2 \\ 52.2$	13.7	50.9 51.9	14.6 14.9	50.7 51.6	15.5 15.8	50.4 51.4	16.4 16.7	50.1	17.3 17.6	49.8	18.1 18.5
55 55	53.1	$14.0 \\ 14.2$	52.9	15.2	52.6	16.1	52.3	17.0	$51.1 \\ 52.0$	17.0	50.7 51.7	18.8
56	54.1	14.5	53.8	15.4	53.6	16.4	53.3	17.3	52 Q	18.2	52.6	19.2
57 58	55.1 56.0	$\frac{14.8}{15.0}$	54.8 55.8	15.7 16.0	54.5 55.5	16.7 17.0	54.2 55.2	17.6 17.9	53.9 54.8	18.6 18.9	53.6 54.5	19.5 19.8
59	57.0	15.3	56.7	16.3	56.4	17.2	56.1	18.2	55.8	19.2	55.4	20.2
60	58.0	15.5	57.7	16.5	57.4	17.5	57.1	18.5 18.9	56.7	19.5	56.4	20.5
61 62	58.9 59.9	15.8 16.0	58.6 59.6	16.8 17.1	58.3 59.3	17.8 18.1	58.0 59.0	19.9	57.7 58.6	$19.9 \\ 20.2$	57.3 58.3	20.9
63	60.9	16.3	60.6	17.4	60.2	18.4	59.9	19.5	59.6	20.5	59.2	21.5
64 65	$61.8 \\ 62.8$	$\frac{16.6}{16.8}$	$61.5 \\ 62.5$	17.6 17.9	$61.2 \\ 62.2$	$\frac{18.7}{19.0}$	60.9	$19.8 \\ 20.1$	60.5 61.5	$20.8 \\ 21.2$	$60.1 \\ 61.1$	$\begin{array}{ c c c c c } 21.9 \\ 22.2 \end{array}$
66	63.8	17.1	63.4	18.2	63.1	19.3	62:8	20.4	62.4	21.5	62.0	22.6
67 68	$64.7 \\ 65.7$	$\frac{17.3}{17.6}$	$64.4 \\ 65.4$	18.5 18.7	64.1 65.0	19.6 19.9	$63.7 \\ 64.7$	$20.7 \\ 21.0$	63.3 64.3	$21.8 \\ 22.1$	63.0 63.9	22.9 23.3
69	66.6	17.9	66.3	19.0	66.0	20.2	65.6	21.3	65.2	22.5	64.8	23.6
70	67.6	18.1	67.3	19.3	66.9	20.5	66.6	$21.6 \\ 21.9$	66.2	$22.8 \\ 23.1$	65.8	23.9
$\begin{bmatrix} 71 \\ 72 \end{bmatrix}$	68.6 69.5	$\begin{array}{c} 18.4 \\ 18.6 \end{array}$	$68.2 \\ 69.2$	19.6 19.8	67.9 68.9	$\frac{20.8}{21.1}$	$\begin{array}{c} 67.5 \\ 68.5 \end{array}$	22.2	67.1 68.1	$\frac{23.1}{23.4}$	66.7 67.7	$24.3 \\ 24.6$
73	70.5	18.9	70.2	20.1	69.8	21.3	69.4	22.6	69.0	23.8	68.6	25.0
74 75	$71.5 \\ 72.4$	$19.2 \\ 19.4$	$\begin{array}{c c} 71.1 \\ 72.1 \end{array}$	$\frac{20.4}{20.7}$	70.8 71.7	$\frac{21.6}{21.9}$	$70.4 \\ 71.3$	$22.9 \\ 23.2$	70.0 70.9	24.1 24.4	69.5 70.5	25.3 25.7
76	73.4	19.7	73.1	20.9	72.7	22.2	72.3	23.5	71.9	24.7	71.4	26.0
77 78	$74.4 \\ 75.3$	$\frac{19.9}{20.2}$	74.0 75.0	$\frac{21.2}{21.5}$	73.6 74.6	$\frac{22.5}{22.8}$	$73.2 \\ 74.2$	$23.8 \\ 24.1$	$72.8 \\ 73.8$	$25.1 \\ 25.4$	72.4 73.3	26.3 26.7
79	76.3	20.4	75.9	21.8	75.5	23.1	75.1	24.4	74.7	25.7	74.2	27.0
80	77.3	20.7	76.9 77.9	$\frac{22.1}{22.3}$	76.5 77.5	$23.4 \\ 23.7$	76.1 77.0	$24.7 \\ 25.0$	75.6 76.6	$26.0 \\ 26.4$	75.2 76.1	27.4 27.7
81 82	$78.2 \\ 79.2$	$\frac{21.0}{21.2}$	78.8	22.6	78.4	$\frac{23.7}{24.0}$	78.0	25.3	77.5	26.7	77.1	28.0
83	80.2	21.5	79.8	$\frac{22.9}{23.2}$	79.4 80.3	$24.3 \\ 24.6$	78.9 79.9	25.6 26.0	78.5 79.4	$27.0 \\ 27.3$	78.0 78.9	$28.4 \\ 28.7$
84 85	$81.1 \\ 82.1$	$\frac{21.7}{22.0}$	80.7 81.7	23.4	81.3	24.9	80.8	26.3	80.4	27.7	79.9	29.1
86	83.1	22.3	82.7	23.7	82.2	25.1	81.8	26.6	81.3	28.0	80.8	29.4
87 88	84.0 85.0	$\frac{22.5}{22.8}$	83.6 84.6	$\frac{24.0}{24.3}$	83.2 84.2	$25.4 \\ 25.7$	82.7 83.7	26.9 27.2	82.3 83.2	28.3 28.7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
89	86.0	23.0	85.6	24.5	85.1	26.0	84.6	27.5	84.2	29.0	83.6	30.4
90 91	86.9 87.9	$23.3 \\ 23.6$	86.5 87.5	$24.8 \\ 25.1$	86.1 87.0	$26.3 \\ 26.6$	85.6 86.5	$\begin{array}{ c c } 27.8 \\ 28.1 \end{array}$	85.1 86.0	29.3 29.6	84.6 85.5	30.8 31.1
92	88.9	23.8	88.4	25.4	88.0	26.9	87.5	28.4	87.0	30.0	86.5	31.5
93	89.8 90.8	$24.1 \\ 24.3$	89.4 90.4	$\begin{array}{c} 25.6 \\ 25.9 \end{array}$	88.9 89.9	27.2 27.5	88.4 89.4	$\begin{vmatrix} 28.7 \\ 29.0 \end{vmatrix}$	87.9 88.9	30.3	87.4 88.3	$31.8 \\ 32.1$
94 95	91.8	24.6	91.3	26.2	90.8	27.8	90.4	29.4	89.8	30.9	89.3	32.5
96	92.7	24.8	92.3	26.5	91.8	28.1	91.3	29.7	90.8	31.3	90.2	32.8
97 98	$93.7 \\ 94.7$	$25.1 \\ 25.4$	$93.2 \\ 94.2$	$\frac{26.7}{27.0}$	92.8 93.7	$28.4 \\ 28.7$	92.3 93.2	30.0 30.3	91.7 92.7	31.6 31.9	91.2	33.2 33.5
9.9	95.6	25.6	95.2	27.3	94.7	28.9	94.2	30.6	93.6	32.2	93.0	33.9
100	96.6	25.9	$96.1 \\ 576.8$	27.6	95.6 573.8	$29.2 \\ 175.4$	95.1 570.6	$30.9 \\ 185.4$	94.6 567.3	32.6 195.3	94.0 563.8	$34.2 \\ 205.2$
		$155.3 \\ 181.1$		193.0	669.4	204.6	665.8	216.3	661.9	227.9	657.9	239.4
800	772.7	207.0	769.0	220.5	765.0	233.9	760.8	247.3	756.5	$260.4 \\ 292.9$	$751.8 \\ 845.7$	$273.6 \\ 307.8$
900		232.9			860.6					Lat.	Dep.	
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep. (109		(110°	Lat. 250°.
	(105°, 28	255°, 5°)	28		(107°, 28	253°, 7°)	(108°, 28	, 252°, 8°)	28	39°)	29	0°)
	75	o´	74			t. 73°		2°	7	'1°	7	0°

	21	° 1	2	2°	2 Pt.	23°	2	4°	21 Pt	25° l	2	6°
Dıат.	(159°,	201°.	(158°.	202°.	(157°,	203°.	(156°.	204°.	(155°.	205°.	(154°	, 206°, 4°)
	Lat.	Dep.	\ 338	Dep.	Lat.	Dep.	330 Lat.	Dep.	33. Lat.	Dep.	Lat.	Dep.
	0.9	0.4	0.9	$\frac{Dep.}{0.4}$	0.9	0.4	0.9	$\frac{\mathcal{D}_{\text{ep.}}}{0.4}$	0.9	0.4	0.9	0.4
2	1.9	0.7	1.9	0.7	1.8	0.8	1.8	0.8	1.8	0.8	1.8	0.9
3	$\frac{2.8}{3.7}$	1.1	$\frac{2.8}{3.7}$	$\frac{1.1}{1.5}$	$\frac{2.8}{3.7}$	$\frac{1.2}{1.6}$	$\frac{2.7}{3.7}$	$\frac{1.2}{1.6}$	$\frac{2.7}{3.6}$	$\frac{1.3}{1.7}$	$\frac{2.7}{3.6}$	$\frac{1.3}{1.8}$
5	4.7	1.8	4.6	1.9	4.6	2.0	4.6	2.0	4.5	2.1	4.5	2.2
6 7	$\frac{5.6}{6.5}$	$\frac{2.2}{2.5}$	$\frac{5.6}{6.5}$	$\frac{2.2}{2.6}$	$\frac{5.5}{6.4}$	$\frac{2.3}{2.7}$	5.5 6.4	$\frac{2.4}{2.8}$	5.4 6.3	$\frac{2.5}{3.0}$	5.4 6.3	$\frac{2.6}{3.1}$
8 9	7.5	2.9	7.4	3.0	7.4	3.1	7.3 8.2	3.3	7.3 8.2	3.4	7.2	$\frac{3.5}{3.9}$
10	8.4 9.3	$\frac{3.2}{3.6}$	$\frac{8.3}{9.3}$	$\frac{3.4}{3.7}$	$\frac{8.3}{9.2}$	3.5 3.9	9.1	$\frac{3.7}{4.1}$	9.1	3.8 4.2	8.1 9.0	4.4
11	10.3	3.9	10.2	4.1	10.1	4.3	10.0	4.5	10.0	4.6	9.9	4.8
12 13	$11.2 \\ 12.1$	4.3 4.7	$11.1 \\ 12.1$	$\frac{4.5}{4.9}$	$11.0 \\ 12.0$	4.7 5.1	$11.0 \\ 11.9$	4.9 5.3	$10.9 \\ 11.8$	5.1 5.5	10.8 11.7	$\frac{5.3}{5.7}$
14 15	$13.1 \\ 14.0$	$\frac{5.0}{5.4}$	13.0 13.9	$\frac{5.2}{5.6}$	$12.9 \\ 13.8$	5.5 5.9	12.8 13.7	5.7 6.1	$12.7 \\ 13.6$	5.9 6.3	$12.6 \\ 13.5$	6.1 · 6.6
16	14.9	5.7	14.8	6.0	14.7	6.3	14.6	6.5	14.5	6.8	14.4	7.0
17 18	15.9 16.8	$6.1 \\ 6.5$	15.8 16.7	$\frac{6.4}{6.7}$	15.6 16.6	6.6 7.0	$15.5 \\ 16.4$	$\frac{6.9}{7.3}$	15.4 16.3	7.2 7.6	$15.3 \\ 16.2$	$7.5 \\ 7.9$
19	17.7	6.8	17.6	7.1	17.5	7.4	17.4	7.7	17.2	8.0	17.1	8.3
20 21	18.7 19.6	7.2 7.5	18.5 19.5	7.5 7.9	18.4 19.3	7.8 8.2	$18.3 \\ 19.2$	8.1 8.5	$18.1 \\ 19.0$	8.5 8.9	18.0 18.9	$8.8 \\ 9.2$
22	20.5	7.9	20.4	8.2	20.3	8.6	20.1	8.9	19.9	9.3	19.8	9.6
23 24	$21.5 \\ 22.4$	8.2 8.6	$\frac{21.3}{22.3}$	8.6 9.0	$21.2 \\ 22.1$	9.0 9.4	$21.0 \\ 21.9$	9.4 9.8	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$9.7 \\ 10.1$	$20.7 \\ 21.6$	$10.1 \\ 10.5$
25	23.3	9.0	23.2	9.4	23.0	9.8	22.8	10.2	22.7	10.6	22.5	11.0
$\frac{26}{27}$	24.3 25.2	9.3 9.7	$24.1 \\ 25.0$	$9.7 \\ 10.1$	$23.9 \\ 24.9$	10.2 10.5	$23.8 \\ 24.7$	10.6 11.0	$23.6 \\ 24.5$	$11.0 \\ 11.4$	$23.4 \\ 24.3$	$\frac{11.4}{11.8}$
28 29	$26.1 \\ 27.1$	10.0 10.4	$\frac{26.0}{26.9}$	10.5 10.9	$25.8 \\ 26.7$	10.9 11.3	$25.6 \\ 26.5$	11.4 11.8	25.4 26.3	$11.8 \\ 12.3$	$25.2 \\ 26.1$	$\frac{12.3}{12.7}$
30	28.0	10.4	27.8	11.2	27.6	11.7	27.4	12.2	$\frac{20.3}{27.2}$	12.7	27.0	13.2
31 32	28.9 29.9	11.1 11.5	28.7 29.7	$11.6 \\ 12.0$	$28.5 \\ 29.5$	$12.1 \\ 12.5$	$28.3 \\ 29.2$	12.6 13.0	28.1 29.0	13.1 13.5	27.9 28.8	$13.6 \\ 14.0$
33	30.8	11.8	30.6	12.4	30.4	12.9	30.1	13.4	29.9	13.9	29.7	14.5
34 35	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$12.2 \\ 12.5$	$31.5 \\ 32.5$	12.7 13.1	$31.3 \\ 32.2$	13.3 13.7	$31.1 \\ 32.0$	$13.8 \\ 14.2$	$30.8 \\ 31.7$	14.4 14.8	30.6 31.5	$\frac{14.9}{15.3}$
36	33.6	12.9	33.4	13.5	33.1	14.1	32.9	14.6	32.6	15.2	32.4	15.8
37	34.5 35.5	13.3 13.6	34.3 35.2	13.9 14.2	34.1 35.0	14.5 14.8	33.8 34.7	15.0 15.5	33.5 34.4	15.6 16.1	$33.3 \\ 34.2$	$\frac{16.2}{16.7}$
39 40	36.4 37.3	14.0 14.3	$\frac{36.2}{37.1}$	14.6 15.0	35.9 36.8	15.2 15.6	35.6 36.5	15.9 16.3	35.3 36.3	16.5 16.9	35.1 36.0	$\frac{17.1}{17.5}$
41	38.3	14.7	38.0	15.4	37.7	16.0	37.5	16.7	37.2	17.3	36.9	18.0
42 43	39.2 40.1	15:1 15.4	38.9 39.9	15.7 16.1	38.7 39.6	16.4 16.8	38.4 39.3	17.1 17.5	38.1 39.0	17.7 18.2	37.7 38.6	18.4 18.8
44	41.1	15.8	40.8	16.5	40.5	17.2	40.2	17.9	39.9	18.6	39.5	19.3
45 46	42.0 42.9	16.1 16.5	$ \begin{array}{c} 41.7 \\ 42.7 \end{array} $	16.9 17.2	41.4 42.3	17.6 18.0		18.3 18.7	$ 40.8 \\ 41.7$	19.0	$ 40.4 \\ 41.3$	$19.7 \\ 20.2$
47	43.9	16.8	43.6	17.6	43.3	18.4	42.9	19.1	42.6	19.9	42.2	20.6
48 49	44.8 45.7	$17.2 \\ 17.6$	44.5 45.4	18.0 18.4	44.2 45.1	18.8 19.1	43.9 44.8	$ 19.5 \\ 19.9$	43.5 44.4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43.1 44.0	$21.0 \\ 21.5$
50	46.7	17.9	46.4	18.7	46.0	19.5	45.7	20.3	45.3	21.1	44.9	21.9
100 200	$93.4 \\ 186.7$	$\frac{35.8}{71.7}$	92.7 185.4	37.5 74.9	$92.1 \\ 184.1$	39.1 78.1	$91.4 \\ 182.7$	40.7 81.3	90.6 181.3	42.3 84.5		43.8 87.7
300	280.1	107.5	278.2	112.4	276.2	117.2	274.1	122.0	271.9	126.8	269.6	131.5
400 500		$143.4 \\ 179.2$	370.9 463.6				365.4 456.8	$\frac{162.7}{203.4}$		211.3	$359.5 \\ 449.4$	$\frac{175.4}{219.2}$
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.
	(111°, 29	249°,		248,° 2°)	(113°. 29		(114°,	246°, 4°)	(115°, 29	245°,	(116°	, 244°, 6°)
	6	9°		. 68°	67	7°	66		5			4°

The 2-Pt. or 23° Courses are: N.N.E., N.N.W., S.S.E., S.S.W.

	2:	0	2	90	2 Pt	020	24	0	01 D	4 050	26	20
_	(159°	201°.	(158°.	202°.	(157°.	203°.	(156°.	204°.		t. 25° , 205°,	(154°.	206°.
Dist.	33	9°)	33	8°)	33	7°)	336	6°)	33	5°)	33	4°) '
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
51	47.6	18.3	47.3	19.1	46.9	19.9	46.6	20.7	46.2	21.6	45.8	22.4
52 53	48.5 49.5	18.6 19.0	48.2 49.1	$19.5 \\ 19.9$	47.9 48.8	$\frac{20.3}{20.7}$	$47.5 \\ 48.4$	$\frac{21.2}{21.6}$	47.1 48.0	$\begin{array}{c} 22.0 \\ 22.4 \end{array}$	46.7 47.6	$\frac{22.8}{23.2}$
54	50.4	19.4	50.1	20.2	49.7	21.1	49.3	22.0	48.9	22.8	48.5	23.7
55	51.3	19.7	51.0	20.6	50.6	21.5	50.2	22.4	49.8	23.2	49.4	24.1
56 57	52.3 53.2	$20.1 \\ 20.4$	$51.9 \\ 52.8$	$\frac{21.0}{21.4}$	$51.5 \\ 52.5$	$\frac{21.9}{22.3}$	$51.2 \\ 52.1$	$\frac{22.8}{23.2}$	50.8 51.7	$\begin{array}{c} 23.7 \\ 24.1 \end{array}$	$50.3 \\ 51.2$	$\frac{24.5}{25.0}$
58	54.1	20.8	53.8	21.7	53.4	$\frac{22.3}{22.7}$	53.0	23.6	52.6	24.5	52.1	25.4
59	55.1	21.1	54.7	22.1	54.3	23.1	53.9	24.0	53.5	24.9	53.0	25.9
60 61	56.0 56.9	$21.5 \\ 21.9$	55.6 56.6	$22.5 \\ 22.9$	$55.2 \\ 56.2$	$23.4 \\ 23.8$	54.8 55.7	$\frac{24.4}{24.8}$	54.4 55.3	25.4 25.8	53.9 54.8	$26.3 \\ 26.7$
62	57.9	22.2	57.5	23.2	57.1	24.2	56.6	25.2	56.2	26.2	55.7	27.2
63	58.8 59.7	$\frac{22.6}{22.9}$	58.4 59.3	$\frac{23.6}{24.0}$	58.0 58.9	24.6	57.6	$25.6 \\ 26.0$	57.1 58.0	26.6	56.6 57.5	$\frac{27.6}{28.1}$
64 65	60.7	23.3	60.3	24.3	59.8	$25.0 \\ 25.4$	58.5 59.4	26.4	58.9	$\begin{array}{c} 27.0 \\ 27.5 \end{array}$	58.4	$\frac{28.1}{28.5}$
66	61.6	23.7	61.2	24.7	60.8	25.8	60.3	26.8	59.8	27.9	59.3	28.9
67	62.5 63.5	$24.0 \\ 24.4$	62.1 63.0	$25.1 \\ 25.5$	$61.7 \\ 62.6$	$26.2 \\ 26.6$	$61.2 \\ 62.1$	$27.3 \\ 27.7$	60.7 61.6	$\frac{28.3}{28.7}$	60.2 61.1	$\frac{29.4}{29.8}$
69	64.4	$\frac{24.7}{24.7}$	64.0	25.8	63.5	27.0	63.0	28.1	62.5	29.2	62.0	30.2
70	65.4	25.1	64.9	26.2	64.4	27.4	63.9	28.5	63.4	29.6	62.9	30.7
71 72	66.3	25.4 25.8	65.8 66.8	$26.6 \\ 27.0$	$65.4 \\ 66.3$	$27.7 \\ 28.1$	64.9 65.8	$28.9 \\ 29.3$	$64.3 \\ 65.3$	$\frac{30.0}{30.4}$	63.8 64.7	$31.1 \\ 31.6$
73	68.2	26.2	67.7	27.3	67.2	28.5	66.7	29.7	66.2	30.9	65.6	32.0
74 75	69.1 70.0	26.5 26.9	68.6 69.5	$27.7 \\ 28.1$	68.1 69.0	$28.9 \\ 29.3$	67.6 68.5	30.1 30.5	67.1 68.0	$\frac{31.3}{31.7}$	66.5 67.4	$\frac{32.4}{32.9}$
76	71.0	27.2	70.5	28.5	70.0	29.7	69.4	30.9	68.9	32.1	68.3	33.3
77	71.9	27.6	71.4	28.8	70.9	30.1	70.3	31.3	69.8	32.5	69.2	33.8
78 79	72.8 73.0	28.0 28.3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	29.2 29.6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30.5 30.9	$71.3 \\ 72.2$	31.7 32.1	70.7 71.6	$33.0 \\ 33.4$	70.1 71.0	$\frac{34.2}{34.6}$
80	74.7	28.7	74.2	30.0	73.6	31.3	73.1	32.5	72.5	33.8	71.9	35.1
81	75.6	29.0	75.1	30.3	74.6	31.6	74.0	32.9	73.4	34.2	72.8 73.7	35.5
82 83	76.6 77.5	$29.4 \\ 29.7$	76.0 77.0	30.7 31.1	75.5 76.4	$32.0 \\ 32.4$	74.9 75.8	33.4 33.8	74.3 75.2	$34.7 \\ 35.1$	74.6	35.9 36.4
84	78.4	30.1	77.9	31.5	77.3	32.8	76.7	34.2	76.1	35.5	75.5	36.8
85	79.4	30.5 30.8	78.8 79.7	31.8 32.2	78.2 79.2	33.2	77.7	34.6	77.0 77.9	35.9 36.3	76.4 77.3	37.3 37.7
86 87	80.3 81.2	31.2	80.7	32.6	80.1	33.6 34.0	78.6 79.5	35.0 35.4	78.8	36.8	78.2	38.1
88	82.2	31.5	81.6	33.0	81.0	34.4	80.4	35.8	79.8	37.2	79.1	38.6
89 90	83.1 84.0	$\begin{vmatrix} 31.9 \\ 32.3 \end{vmatrix}$	82.5 83.4	33.3 33.7	81.9 82.8	34.8 35.2	$\begin{array}{ c c c c } 81.3 \\ 82.2 \end{array}$	36.2 36.6	80.7 81.6	37.6 °	80.0 80.9	39.0 39.5
91	85.0	32.6	84.4	34,1	83.8	35.6	83.1	37.0	82.5	38.5	81.8	39.9
92	85.9	33.0 33.3	85.3	34.5 34.8	84.7	35.9	84.0	37.4 37.8	83.4 84.3	38.9 39.3	82.7 83.6	40.3 40.8
93 94	86.8 87.8	33.7	86.2 87.2	35.2	85.6 86.5	36.3 36.7	85.0 85.9	38.2	85.2	39.7	84.5	41.2
95	88.7	34.0	88.1	35.6	87.4	37.1	86.8	38.6	86.1	40.1	85.4	41.6
96	89.6 90.6	34.4 34.8	89.0 89.9	36.0 36.3	88.4 89.3	37.5 37.9	87.7 88.6	39.0 39.5	87.0 87.9	40.6 41.0	86.3 87.2	42.1 42.5
97 98	90.6	35.1	90.9	36.7	90.2	38.3	89.5		88.8	41.4	88.1	43.0
99	92.4	35.5	91.8		91.1	38.7	90.4		89.7	41.8	89.0 89.9	43.4
100 600	93.4	35.8 215.0	$92.7 \\ 556.3$	37.5	$92.1 \\ 552.3$	39.1	91.4 548 1		90.6 543.8	42.3 253.6	539.3	$ 43.8 \\ 263.0$
700	653.6	250.8	649.1	262.2	644.3	273.5	639.5	284.7	634.5	295.8	629.2	306.8
800		286.7		299.7	736.4			325.4 366.0			719.1 808.9	$350.6 \\ 394.5$
900	840.3			<u> </u>	828.3		822.1	<u> </u>				
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.
	(111° 29	, 249°, 1°)	(112° 29	, 248°, 2°)	(113°, 29	3°)	29	, 246°, 4°)	29	°, 245°, 95°)		6°)
	. 6	9°		. 68°	6	7°	6	6°	53 P	t. 65°		4°
·	T 4					TO M		U NT 13		יד ימדוב	T C 117	

The 6-Pt. or 68° Courses are: E.N.E., W.N.W., E.S.E., W.S.W.

	2		2½ P			9°		o° .		2 ³ Pt. 31° (149°, 211°, 329°)		2°
Dist.	(153°, 33	207°, 3°)	(152°, 33	208°, 2°)	33	209°, 1°)	(150°	, 210°, 0°)	(149°	, 211°, 9°)	(148)	7, 212°, 28°)
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
1	0.9	0.5	0.9	0.5	0.9 1.7	0.5	0.9	0.5	0.9 1.7	0.5	0.8 1.7	0.5
2 3	$\frac{1.8}{2.7}$	$0.9 \\ 1.4$	$\frac{1.8}{2.6}$	$0.9 \\ 1.4$	2.6	1.0 1.5	$\frac{1.7}{2.6}$	1.0 1.5	2.6	1.0 1.5	2.5	1.1 1.6
4	3.6	1.8	3.5	1.9	3.5	1.9	3.5	2.0	3.4	2.1	3.4	2.1
5	4.5 5.3	$\frac{2.3}{2.7}$	4.4 5.3	$\frac{2.3}{2.8}$	4.4 5.2	2.4 2.9	4.3 5.2	2.5 3.0	4.3 5.1	2.6 3.1	4.2 5.1	2.6 3.2
6 7	6.2	3.2	6.2	3.3	6.1	3.4	6.1	3.5	6.0			3.7
8	7.1	3.6	7.1	3.8	7.0	3.9	6.9	4.0	6.9	4.1	6.8	4.2
9 10	8.0 8.9	$\frac{4.1}{4.5}$	7.9 8.8	4.2 4.7	7.9 8.7	4.4 4.8	7.8 8.7	4.5 5.0	7.7 8.6	4.6 5.2	7.6 8.5	4.8 5.3
11	9.8	5.0	9.7	5.2	9.6	5.3	9.5	5.5	9.4	5.7	9.3	5.8
12	10.7	5.4	10.6	5.6	10.5	5.8 6.3	10.4	6.0	10.3	6.2 6.7	10.2	6.4
13 14	$11.6 \\ 12.5$	$\frac{5.9}{6.4}$	$11.5 \\ 12.4$	$6.1 \\ 6.6$	$11.4 \\ 12.2$	6.8	11.3 12.1	6.5 7.0	$11.1 \\ 12.0$	7.2	11.0 11.9	6.9 7.4
15	13.4	6.8	13.2	7.0	13.1	7.3	13.0	7.5	12.9	7.7	12.7	7.9
16 17	14.3 15.1	7.3 7.7	$14.1 \\ 15.0$	7.5 8.0	14.0 14.9	7.8 8.2	$13.9 \\ 14.7$	8.0 8.5	$13.7 \\ 14.6$	8.2 8.8	13.6 14.4	8.5 9.0
18	16.0	8.2	15.9	8.5	15.7	8.7	15.6	9.0	15.4	9.3	15.3	9.5
19	16.9	8.6	16.8	8.9	16.6	9.2 9.7	16.5	9.5	16.3	9.8	16.1	10.1
20 21	17.8 18.7	9.1 9.5	17.7 18.5	$9.4 \\ 9.9$	17.5 18.4	10.2	17.3 18.2	10.0 10.5	17.1 18.0	10.3 10.8	17.0 17.8	10.6 11.1
22	19.6	10.0	19.4	10.3	19.2	10.7	19.1	11.0	18.9	11.3	18.7	11.7
23 24	$\begin{array}{c} 20.5 \\ 21.4 \end{array}$	$10.4 \\ 10.9$	$\frac{20.3}{21.2}$	$10.8 \\ 11.3$	$20.1 \\ 21.0$	$11.2 \\ 11.6$	$\frac{19.9}{20.8}$	$11.5 \\ 12.0$	19.7 20.6	$11.8 \\ 12.4$	$19.5 \\ 20.4$	$12.2 \\ 12.7$
25	$\frac{21.4}{22.3}$	11.3	22.1	11.7	21.9	12.1	21.7	12.5	21.4	12.9	21.2	13.2
26	23.2	11.8	23.0	12.2	22.7	12.6	22.5	13.0	22.3	13.4	22.0	13.8
27 28	$24.1 \\ 24.9$	$\frac{12.3}{12.7}$	$23.8 \\ 24.7$	$12.7 \\ 13.1$	$23.6 \\ 24.5$	$13.1 \\ 13.6$	$23.4 \\ 24.2$	$13.5 \\ 14.0$	$23.1 \\ 24.0$	13.9 14.4	$22.9 \\ 23.7$	14.3 14.8
29	25.8	13.2	25.6	13.6	25.4	14.1	25.1	14.5	24.9	14.9	24.6	15.4
30	26.7 27.6	$13.6 \\ 14.1$	$26.5 \\ 27.4$	14.1 14.6	$26.2 \\ 27.1$	$14.5 \\ 15.0$	$26.0 \\ 26.8$	15.0 15.5	25.7 26.6	15.5 16.0	25.4	15.9 16.4
$\frac{31}{32}$	28.5	14.1	28.3	15.0	28.0	15.5	27.7	16.0	20.0 27.4	16.5	$26.3 \\ 27.1$	17.0
33	29.4	15.0	29.1	15.5	28.9	16.0	28.6	16.5	28.3	17.0	28.0	17.5
34 35	$30.3 \\ 31.2$	$15.4 \\ 15.9$	$\frac{30.0}{30.9}$	$16.0 \\ 16.4$	$\frac{29.7}{30.6}$	16.5 17.0	29.4 30.3	$17.0 \\ 17.5$	29.1 30.0	17.5 18.0	$28.8 \\ 29.7$	18.0 18.5
36	32.1	16.3	31.8	16.9	31.5	17.5	31.2	18.0	30.9	18.5	30.5	19.1
37 38	33.0 33.9	$16.8 \\ 17.3$	$32.7 \\ 33.6$	17.4 17.8	$32.4 \\ 33.2$	17.9 18.4	$\frac{32.0}{32.9}$	18.5 19.0	31.7 32.6	19.1 19.6	$\frac{31.4}{32.2}$	$\frac{19.6}{20.1}$
39	34.7	17.7	34.4	18.3	34.1	18.9	33.8	19.5	33.4	20.1	33.1	20.7
40	35.6	18.2	35.3	18.8	35.0	19.4	34.6	20.0	34.3	20.6	33.9	21.2
41 42	$\frac{36.5}{37.4}$	$18.6 \\ 19.1$	$\frac{36.2}{37.1}$	$19.2 \\ 19.7$	$35.9 \\ 36.7$	19.9 20.4	35.5 36.4	$20.5 \\ 21.0$	$35.1 \\ 36.0$	$21.1 \\ 21.6$	34.8 35.6	$\frac{21.7}{22.3}$
43	38.3	19.5	38.0	20.2	37.6	20.8	37.2	21.5	36.9	22.1	36.5	22.8
44 45	$\frac{39.2}{40.1}$	$\frac{20.0}{20.4}$	38.8 39.7	$20.7 \\ 21.1$	$38.5 \\ 39.4$	$21.3 \\ 21.8$	38.1 39.0	22.0 22.5	37.7 38.6	$\frac{22.7}{23.2}$	37.3 38.2	23.3 23.8
46	41.0	20.9	40.6	21.6	40.2	22.3	39.8	23.0	39.4	23.7	39.0	24.4
47	41.9	21.3	41.5	22.1	41.1	22.8	40.7	23.5	40.3	24.2	39.9	24.9
48 49	42.8 43.7	$\frac{21.8}{22.2}$	42.4 43.3	$22.5 \\ 23.0$	42.0 42.9	23.3 23.8	41.6 42.4	$24.0 \\ 24.5$	$41.1 \\ 42.0$	$24.7 \\ 25.2$	40.7 41.6	$25.4 \\ 26.0$
50	44.6	22.7	44.1	23.5	43.7	24.2	43.3	25.0	42.9	25.8	42.4	26.5
100 200	$\begin{array}{c} 89.1 \\ 178.2 \end{array}$	45.4	88.3	46.9	$87.5 \\ 174.9$	48.5	$86.6 \\ 173.2$	50.0	85.7	51.5103.0	84.8	53.0
300	267.3	136.2	264.9	140.8	262.4	145.4	259.8	150.0	257.1	154.5	254.4	159.0
400 500	$356.4 \\ 445.5$	$181.6 \\ 227.0$	$353.1 \\ 441.5$		$349.8 \\ 437.3$	193.9	$346.4 \\ 433.0$	200.0	342.9	206.0	339.2	211.9
-000	<u> </u>			!							424.0	
	Dep. (117°,	Lat. 243°,	Dep. (118°,		Dep.	241°,	Dep.	Lat. 240°.	Dep. (121°.		Dep.	
	29	7°)	29	8°) ်	29	9°) .	30	0°) ်	30	1°)	30	, 238°, 2°)
L	63	3°	5½ Pt	. 62°	<u> </u>	1°	6	0°	5‡ Pt	. 59°	5	8°

	27°		2½ Pt. 28°		29°		30°		23 Pt. 31°		32°	
Dist.	(153°, 207°, 333°)		(152°, 208°, 332°)		(151°, 209°, 331°)		(150°, 210°, 330°)		(149°, 211°, 329°)		(148°, 212°, 328°)	
1	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep,	Lat.	Dep.	Lat.	Dep.
51	45.4 46.3	23.2 23.6	45.0 45.9	$\frac{23.9}{24.4}$	44.6 45.5	$\frac{24.7}{25.2}$	44.2	25.5	43.7	26.3	43.3	27.0
52 53	47.2	24.1	46.8	24.9	46.4	25.7	45.0 45.9	26.0 26.5	44.6 45.4	$26.8 \\ 27.3$	$\frac{44.1}{44.9}$	$27.6 \\ 28.1$
54 55	48.1 49.0	$24.5 \\ 25.0$	47.7 48.6	$25.4 \\ 25.8$	47.2 48.1	26.2 26.7	46.8 47.6	27.0 27.5	46.3 47.1	$27.8 \\ 28.3$	45.8 46.6	$28.6 \\ 29.1$
56	49.9	25.4	49.4	26.3	49.0	27.1	48.5	28.0	48.0	28.8	47.5	29.7
57 58	50.8 51.7	$25.9 \\ 26.3$	$50.3 \\ 51.2$	26.8 27.2	49.9 50.7	$\frac{27.6}{28.1}$	49.4 50.2	$\begin{array}{ c c c c } 28.5 \\ 29.0 \end{array}$	$ \begin{array}{c} 48.9 \\ 49.7 \end{array}$	29.4 29.9	$\begin{array}{ c c c c } 48.3 \\ 49.2 \end{array}$	30.2 30.7
59 60	52.6 53.5	$26.8 \\ 27.2$	52.1 53.0	27.7	$51.6 \\ 52.5$	28.6 29.1	$51.1 \\ 52.0$	29.5 30.0	50.6	30.4	50.0	31.3
61	54.4	27.7	53.9	28.6	53.4	29.6	52.8	30.5	51.4 52.3	30.9 31.4	50.9 51.7	$\begin{vmatrix} 31.8 \\ 32.3 \end{vmatrix}$
62 63	55.2 56.1	$28.1 \\ 28.6$	54.7 55.6	29.1 29.6	54.2 55.1	30.1 30.5	53.7 54.6	31.0 31.5	53.1 54.0	$\frac{31.9}{32.4}$	52.6 53.4	32.9 33.4
64	57.0	29.1	56.5	30.0	56.0	31.0	55.4	32.0	54.9	33.0	54.3	33.9
65 66	57.9 58.8	29.5 30.0	57.4 58.3	30.5 31.0	56.9 57.7	31.5 32.0	56.3 57.2	32.5 33.0	55.7 56.6	33.5 34.0	55.1 56.0	34.4 35.0
67	59.7	30.4	59.2	31.5	58.6	32.5 33.0	58.0	33.5	57.4	34.5	56.8	35.5
68 69	60.6 61.5	30.9 31.3		31.9 32.4	60.3	33.5	58.9 59.8	34.0 34.5	58.3 59.1	35.0 35.5	57.7 58.5	36.0 36.6
70 71	62.4 63.3	$31.8 \\ 32.2$	61.8 62.7	32.9 33.3	61.2 62.1	33.9 34.4	60.6	35.0 35.5	60.0 60.9	36.1	59.4	37.1
72	64.2	32.7	63.6	33.8	63.0	34.9	$61.5 \\ 62.4$	36.0	61.7	$36.6 \\ 37.1$	60.2 61.1	$\begin{vmatrix} 37.6 \\ 38.2 \end{vmatrix}$
73 t	65.0 65.9	33.1 33.6	64.565.3	34.3	$63.8 \\ 64.7$	35.4 35.9	63.2 64.1	36.5 37.0	62.6	$37.6 \\ 38.1$	61.9 62.8	$38.7 \\ 39.2$
75	66.8	34.0	66.2	35.2	65.6	36.4	65.0	37.5	64.3	38.6	63.6	39.7
76 77	67.7 68.6	34.5 35.0	67.1 68.0	35.7 36.1	66.5 67.3	36.8 37.3	65.8 66.7	38.0 38.5	65.1 66.0	39.1 39.7	64.5 65.3	40.3 40.8
78 79	$69.5 \\ 70.4$	35.4 35.9	68.9 69.8	36.6 37.1	68.2 69.1	37.8 38.3	67.5 68.4	39.0 39.5	66.9 67.7	40.2 40.7	66.1	41.3
80	71.3	36.3	70.6	37.6	70.0	38.8	69.3	40.0	68.6	41.2	67.0 67.8	$ \begin{array}{c} 41.9 \\ 42.4 \end{array} $
81 82:	$72.2 \\ 73.1$	$36.8 \\ 37.2$	$71.5 \\ 72.4$	38.0 38.5	70.8	39.3 39.8	70.1 71.0	40.5 41.0	69.4 70.3	$\frac{41.7}{42.2}$	68.7 69.5	42.9 43.5
83	74.0	37.7	73.3	39.0	72.6	40.2	71.9	41.5	71.1	42.7	70.4	44.0
84 85	74.8 75.7	38.1 38.6	74.2 75.1	39.4 39.9	73.5 74.3	40.7	72.7 73.6	42.0 42.5	$72.0 \\ 72.9$	43.3 43.8	$71.2 \\ 72.1$	$\begin{array}{ c c c c }\hline 44.5 \\ 45.0 \end{array}$
86	76.6	39.0 39.5	75.9 76.8	40.4	75.2 76.1	$\frac{41.7}{42.2}$	74.5 75.3	43.0 43.5	73.7 74.6	44.3	72.9	45.6
87 88	77.5 78.4	40.0	77.7	40.8 41.3	77.0	42.7	76.2	44.0	75.4	44.8 45.3	73.8 74.6	46.1 46.6
89 90	$\begin{array}{c} 79.3 \\ 80.2 \end{array}$	40.4 40.9	78.6 79.5	$ \begin{array}{c} 41.8 \\ 42.3 \end{array} $	77.8 78.7	43.1 43.6	77.1 77.9	44.5 45.0	76.3 77.1	45.8 46.4	75.5 76.3	$47.2 \\ 47.7$
91	81.1	41.3	80.3	42.7	79.6	44.1	78.8	45.5	78.0	46.9	77.2	48.2
92 93	$82.0 \\ 82.9$	$\frac{41.8}{42.2}$	$81.2 \\ 82.1$	43.2 43.7	80.5 81.3	44.6 45.1	79.7 80.5	46.0 46.5	78.9 79.7	47.4 47.9	78.0 78.9	$\begin{array}{ c c c c } 48.8 \\ 49.3 \end{array}$
94	83.8	$\frac{42.7}{43.1}$	83.0 83.9	44.1	82.2 83.1	45.6 46.1	81.4 82.3	47.0 47.5	80.6	48.4	79.7	49.8
95 96	84.6 85.5	43.6	84.8	44.6 45.1	84.0	46.5	83.1	48.0	81.4 82.3	48.9 49.4	80.6 81.4	50.3 50.9
97 98	86.4 87.3	44.0 44.5	85.6 86.5	45.5 46.0	84.8 85.7	47.0 47.5	84.0 84.9	48.5 49.0	83.1 84.0	50.0 50.5	82.3 83.1	51.4 51.9
99	88.2	44.9	87.4	46.5	86.6	48.0	85.7	49.5	84.9	51.0	84.0	52.5
100 600	$89.1 \\ 534.6$	$45.4 \\ 272.4$	$88.3 \\ 529.8$	46.9 281.7	87.5 524.8	48.5 290.9	86.6 519.6	50.0 300.0	85.7 514.3	51.5 309.0	84.8 508.8	53.0 318.0
700	623.7	317.8	618.0	328.6	612.2	339.4	606.1	350.0	600.1	360.4	593.6	371.0
		363.2 408.5		$375.6 \\ 422.5$			692.8 779.3		$685.8 \\ 771.4$	412.0 463.4	$678.4 \\ 763.2$	423.9 $ 476.8 $
i	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.
`	(117°, 243°, 297°)		(118°, 242°, 298°)		(119°, 241°, 299°)		(120°, 240° 300°)		(121°, 239°, 301°)		(122°, 238°, 302°)	
	63°		5½ Pt. 62 °		51°		60°		5½ Pt. 59°		58°	

	33°		3 Pt. 34°		35°		36°		31 Pt. 37°		38°		
Dist.	(1470 2130		(146°, 214°, 326°)		(145°, 215°, 325°)		(144°, 216°, 324°)		(143°, 217°, 323°)		(142°, 218°, 322°)		
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	
1	0.8	0.5	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6	
. 3	$\frac{1.7}{2.5}$	1.1 1.6	$\frac{1.7}{2.5}$	$\frac{1.1}{1.7}$	$\frac{1.6}{2.5}$	1.1 1.7	$\begin{array}{c c} 1.6 \\ 2.4 \end{array}$	$\frac{1.2}{1.8}$	$\frac{1.6}{2.4}$	1.2 1.8	$\begin{array}{ c c } & 1.6 \\ & 2.4 \end{array}$	$\frac{1.2}{1.8}$	
4	3.4 4.2	2.2 2.7	$\frac{3.3}{4.1}$	$\frac{2.2}{2.8}$	3.3	$\frac{2.3}{2.9}$	3.2 4.0	2.4	3.2 4.0	$\frac{2.4}{3.0}$	$\frac{3.2}{3.9}$	$\frac{2.5}{3.1}$	
5	5.0	3.3	5.0	3.4	4.1 4.9	3.4	4.9	2.9 3.5	4.8	3.6	4.7	3.7	
7	5.9 6.7	3.8	5.8	3.9	5.7	4.0	5.7	4.1	5.6 6.4	$\frac{4.2}{4.8}$	5.5 6.3	4.3 4.9	
9 [.]	7.5	4.4 4.9	6.6 7.5	4.5 5.0	6.6 7.4	4.6 5.2	6.5 7.3	4.7 5.3	7.2	5.4	7.1	5.5	
10	8.4	5.4	8.3	5.6	-8.2	5.7	8.1	5.9	8.0	6.0	7.9	6.2	
11 12	9.2 10.1	6.0 6.5	9.1 9.9	$6.2 \\ 6.7$	9.0 9.8	6.3 6.9	8.9 9.7	6.5 7.1	8.8 9.6	6.6 7.2	8.7 9.5	6.8 7.4	
13	10.9	7.1	10.8	7.3	10.6	7.5	10.5	7.6 8.2	10.4	7.8	10.2	8.0	
14 15	$11.7 \\ 12.6$	$\frac{7.6}{8.2}$	$11.6 \\ 12.4$	7.8 8.4	$11.5 \\ 12.3$	8.0 8.6	$ \begin{array}{c} 11.3 \\ 12.1 \end{array}$	8.8	11.2 12.0	8.4 9.0	$11.0 \\ 11.8$	8.6 9.2	
16	13.4	8.7	13.3	8.9	13.1	9.2	12.9	9.4	12.8	9.6	12.6	9.9	
17 18	14.3 15.1	9.3 9.8	14.1 14.9	$\frac{9.5}{10.1}$	13.9 14.7	9.8 10.3	13.8 14.6	10.0 10.6	13.6 14.4	10.2 10.8	13.4 14.2	$10.5 \\ 11.1$	
19 20	15.9 16.8	10.3 10.9	$15.8 \\ 16.6$	$\frac{10.6}{11.2}$	15.6 16.4	$10.9 \\ 11.5$	15.4 16.2	11.2 11.8	15.2 16.0	$11.4 \\ 12.0$	$15.0 \\ 15.8$	$11.7 \\ 12.3$	
21	17.6	11.4	17.4	11.7	17.2	12.0	17.0	12.3	16.8	12.6	16.5	12.9	
22 23	18.5	$\frac{12.0}{12.5}$	$\frac{18.2}{19.1}$	$12.3 \\ 12.9$	18.0 18.8	12.6	17.8 18.6	12.9	17.6 18.4	13.2 13.8	17.3 18.1	13.5 14.2	
23 24	19.3 20.1	13.1	19.1	13.4	19.7	13.2 13.8	19.4	$13.5 \\ 14.1$	19.2	14.4	18.9	14.8	
25	21.0	13.6	20.7	14.0	20.5	14.3	20.2	14.7	20.0	15.0	19.7	15.4	
26 27	$\frac{21.8}{22.6}$	$14.2 \\ 14.7$	$\begin{array}{c} 21.6 \\ 22.4 \end{array}$	$14.5 \\ 15.1$	$\frac{21.3}{22.1}$	$14.9 \\ 15.5$	$\frac{21.0}{21.8}$	15.3 15.9	$20.8 \\ 21.6$	$15.6 \\ 16.2$	$\frac{20.5}{21.3}$	16.0 16.6	
28 29	$23.5 \\ 24.3$	$15.2 \\ 15.8$	$\frac{23.2}{24.0}$	$15.7 \\ 16.2$	$\frac{22.9}{23.8}$	$16.1 \\ 16.6$	$\frac{22.7}{23.5}$	16.5 17.0	$\frac{22.4}{23.2}$	$16.9 \\ 17.5$	$\frac{22.1}{22.9}$	17.2 17.9	
30	25.2	16.3	24.9	16.8	24.6	17.2	24.3	17.6	24.0	18.1	23.6	18.5	
31 32	$\frac{26.0}{26.8}$	16.9 17.4	$25.7 \\ 26.5$	$\frac{17.3}{17.9}$	$25.4 \\ 26.2$	17.8 18.4	25.1 25.9	18.2 18.8	24.8 25.6	18.7 19.3	24.4 25.2	19.1 19.7	
33	27.7	18.0	27.4	18.5	27.0	18.9	26.7	19.4	26.4	19.9	26.0	20.3	
34 35	$28.5 \\ 29.4$	$\frac{18.5}{19.1}$	$\begin{array}{c} 28.2 \\ 29.0 \end{array}$	$\frac{19.0}{19.6}$	$\frac{27.9}{28.7}$	$\frac{19.5}{20.1}$	$\frac{27.5}{28.3}$	20.0 20.6	$27.2 \\ 28.0$	$20.5 \\ 21.1$	$26.8 \\ 27.6$	$20.9 \\ 21.5$	
36	30.2	19.6	29.8	20.1	29.5	20.6	29.1	21.2	28.8	21.7	28.4	22.2	
37 38	$31.0 \\ 31.9$	$\frac{20.2}{20.7}$	$\frac{30.7}{31.5}$	$\frac{20.7}{21.2}$	$30.3 \\ 31.1$	$\frac{21.2}{21.8}$	29.9 30.7	$\frac{21.7}{22.3}$	29.5 30.3	$\frac{22.3}{22.9}$	29.2 29.9	$22.8 \\ 23.4$	
39	32.7	21.2	32.3	21.8	31.9	22.4	31.6	22.9	31.1	23.5	30.7	24.0	
40 41	33.5 34.4	$\frac{21.8}{22.3}$	33.2 34.0	$\frac{22.4}{22.9}$	32.8 33.6	$22.9 \\ 23.5$	32.4 33.2	$23.5 \\ 24.1$	$31.9 \\ 32.7$	$24.1 \\ 24.7$	31.5 32.3	$24.6 \\ 25.2$	
42	35.2	22.9	34.8	23.5	34.4	24.1	34.0	24.7	33.5	25.3	33.1	25.9	
43 44	36.1 36.9	$23.4 \\ 24.0$	35.6 36.5	$24.0 \\ 24.6$	35.2 36.0	$24.7 \\ 25.2$	34.8 35.6	25.3 25.9	34.3 35.1	25.9 26.5	33.9 34.7	$26.5 \\ 27.1$	
45	37.7	24.5	37.3	25.2	36.9	25.8	36.4	26.5	35.9	27.1	35.5	27.7	
46 47	38.6 39.4	$25.1 \\ 25.6$	$\frac{38.1}{39.0}$	$25.7 \\ 26.3$	37.7 38.5	$\frac{26.4}{27.0}$	37.2 38.0	$27.0 \\ 27.6$	36.7 37.5	$27.7 \\ 28.3$	36.2 37.0	$28.3 \\ 28.9$	
48	40.3	26.1	39.8	26.8	39.3	27.5	38.8	28.2	38.3	28.9	37.8	29.6	
49 50	41.1 41.9	$\begin{array}{ c c } 26.7 \\ 27.2 \end{array}$	$\frac{40.6}{41.5}$	$\frac{27.4}{28.0}$	$\begin{array}{ c c c } 40.1 \\ 41.0 \end{array}$	$28.1 \\ 28.7$	39.6 40.5	$28.8 \\ 29.4$	39.1 39.9	29.5 30.1	38.6 39.4	30.2 30.8	
100	83.9	54.5	82.9	55.9	81.9	57.4	80.9	58.8	79.9	60.2	78.8	61.6	
.300	$167.7 \\ 251.6$	$108.9 \\ 163.4$	$\frac{165.8}{248.7}$	111.8 167.8	$163.8 \\ 245.7$		$161.8 \\ 242.7$		$159.7 \\ 239.6$	$120.4 \\ 180.5$			
400	335.5	217.8	331.6	223.7	327.7	229.4	323.6	235.1	$319.4 \\ 399.3$	240.7	315.2	246.3	
500	1	272.3		279.6	409.6		404.5				394.0 Dep.		
		Dep. Lat. (123°, 237°.		Dep. Lat.		Dep. Lat. (125°, 235°,		Dep. Lat.		Dep. Lat.		Lat.	
1	303°)		30	(124°, 236°, 304°)		5°)	` 30	(126°, 234°, 306°)		(127°, 233°, 307°)		(128°, 232°, 308°)	
L	57°		5 Pt. 56°		55°		54°		43 Pt. 53°		5	52°	

The 3-Pt. or 34° Courses are: N.E. by N., N.W. by N., S.E. by S., S.W. by S.

_												
	(147°	3° . 213°.		t. 34° , 214°,		5° . 215°.		6° , 216°,		t. 37° . 217°.		8° ', 218°.
Dist.	32	7°) ,	32	6°)	32	5°)	32	4°)	32	3°)	32	220)
l .	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
51	42.8	27.8	42.3		41.8	29.3	41.3	30.0	40.7	30.7	40.2	31.4
52 53	43.6 44.4	$\begin{vmatrix} 28.3 \\ 28.9 \end{vmatrix}$	43.1 43.9	$29.1 \\ 29.6$	$\begin{array}{ c c c c } 42.6 \\ 43.4 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c } & 42.1 \\ & 42.9 \end{array}$	$\begin{vmatrix} 30.6 \\ 31.2 \end{vmatrix}$	$ \begin{array}{c} 41.5 \\ 42.3 \end{array}$	31.3 31.9	$ 41.0 \\ 41.8$	32.0 32.6
54	45.3	29.4	44.8	30.2	44.2	31.0	43.7	31.7	43.1	32.5	42.6	33.2
55	46.1	30.0				31.5	44.5		43.9	33.1	43.3	33.9
56 57	47.0 47.8	30.5 31.0	46.4 47.3			32.1 32.7	45.3 46.1	32.9 33.5	44.7	33.7 34.3	44.1 44.9	34.5 35.1
58	48.6	31.6	48.1	32.4	47.5 48.3	33.3	46.9 47.7	34.1	46.3	34.9	45,7	35.7
59 60	49.5 50.3	$\begin{array}{c c} 32.1 \\ 32.7 \end{array}$	48.9 49.7	33.0 33.6		33.8 34.4	$\begin{array}{ c c c c }\hline 47.7 \\ 48.5 \end{array}$	34.7 35.3	47.1 47.9	35.5 36.1	$\begin{array}{ c c c c } 46.5 \\ 47.3 \\ \end{array}$	36.3 36.9
61	51.2	33.2	50.6	34.1	50.0	35.0	49.4		48.7	36.7	48.1	37.6
62 63	52.0 52.8	33.8	51.4		50.8	35.6	50.2			37.3	48.9 49.6	38.2
64	53.7	34.3 34.9	52.2 53.1	35.2 35.8	$51.6 \\ 52.4$	36.1 36.7	51.0 51.8		50.3 51.1	37.9 38.5	50.4	38.8 39.4
65	54.5	35.4				37.3		38.2	51.9	39.1	51.2	40.0
66	55.4 56.2	35.9 36.5	54.7 55.5		54.1 54.9	37.9 38.4	53.4 54.2		52.7 53.5	39.7 40.3	52.0 52.8	40.6 41.2
68	57.0	37.0	56.4	38.0	55.7	39.0	55.0	40.0	54.3	40.9	53.6	41.9
69 70	57.9 58.7	37.6 38.1	57.2 58.0		56.5 57.3	39.6 40.2	55.8 56.6		55.1 55.9	$\begin{array}{ c c c c }\hline 41.5 \\ 42.1 \end{array}$	54.4 55.2	42.5 43.1
71	59.5	38.7	58.9		58.2	40.7	57.4	1	56.7	42.7	55.9	43.7
72	60.4	39.2	59.7			41.3	58.2	42.3	57.5	43.3		44.3
73 74	61.2	39.8 40.3	60.5		59.8 60.6	$ \begin{array}{c} 41.9 \\ 42.4 \end{array}$	59.1 59.9	42.9 43.5	58.3 59.1	43.9 44.5	57.5 58.3	44.9 45.6
75	62.9	40.8	62.2	41.9	61.4	43.0	60.7	44.1	59.9	45.1	.59.1	46.2
76 77	63.7 64.6	$\frac{41.4}{41.9}$	63.0 63.8		62.3 63.1	43.6 44.2	$\begin{vmatrix} 61.5 \\ 62.3 \end{vmatrix}$	44.7 45.3	60.7	45.7 46.3	59.9 60.7	46.8 47.4
78	65.4	42.5	64.7		63.9	44.7	63.1	45.8	62.3	46.9	61.5	48.0
79 80	66.3 67.1	43.0	65.5 66.3		64.7 65.5	45.3 45.9	63.9	46.4 47.0	63.1 63.9	47.5 48.1	62.3 63.0	48.6 49.3
81	67.9	43.6 44.1	67.2			46.5	64.7 65.5		64.7	48.7	63.8	49.9
82	68.8	44.7	68.0	45.9	67.2	47.0	66.3	48.2	65.5	49.3	64.6	50.5
83 84	69.6 70.4	$\frac{45.2}{45.7}$	68.8		68.0 68.8	47.6 48.2	67.1 68.0	48.8 49.4	66.3 67.1	50.0 50.6	65.4 66.2	51.1 51.7
85	71.3	46.3	70.5	47.5	69.6	48.8	68.8		67.9	51.2	67.0	52.3
86 87	$72.1 \\ 73.0$	46.8 47.4	$71.3 \\ 72.1$	48.1 48.6	70.4	49.3 49.9	69.6 70.4	50.5 51.1	68.7 69.5	51.8 52.4	67.8 68.6	52.9 53.6
88	73.8	47.9	73.0	49.2	72.1	50.5	71.2	51.7	70.3	53.0	69.3	54.2
89	74.6	48.5	73.8	49.8	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	51.0 51.6	$72.0 \\ 72.8$		$71.1 \\ 71.9$	53.6 54.2	70.1 70.9	54.8 55.4
90 91	75.5 76.3	49.0 49.6	74.6 75.4	50.3 50.9	74.5	52.2	73.6	53.5	72.7	54.8	71.7	56.0
92	77.2	50.1	76.3	51.4	75.4	52.8	74.4	54.1	73.5	55.4	72.5	56.6
93 94	78.0 78.8	$50.7 \\ 51.2$	77.1 77.9	52.0 52.6	76.2 77.0	53.3 53.9	$75.2 \\ 76.0$	54.7 55.3	74.3 75.1	56.0 56.6	$73.3 \\ 74.1$	57.3 57.9
95	79.7	51.7	78.8	53.1	77.8	54.5	76.9	55.8	75.9	57.2	74.9	58.5
96	80.5	52.3	79.6	53.7	78.6	55.1	77.7	56.4	76.7 77.5	57.8 58.4	75.6 76.4	59.1 59.7
97 98	81.4 82.2	$52.8 \\ 53.4$	80.4 81.2	54.2 54.8	79.5 80.3	55.6 56.2	78.5 79.3	57.0 57.6	77.5 78.3	59.0	77.2	60.3
99	83.0	53.9	82.1	55.4	81.1	56.8	80.1	58.2	79.1	59.6	78.0	61.0
100 600	$83.9 \\ 503.2$	$54.5 \\ 326.8$	$82.9 \\ 497.4$	55.9 335.5	81.9 491.5	57.4 344.1	$\begin{array}{c} 80.9 \\ 485.4 \end{array}$	$58.8 \\ 352.7$	$79.9 \\ 479.2$	60.2	$78.8 \\ 472.8$	61.6 369.4
700	587.0	381.3	580.3	391.4	573.5	401.5	566.2	411.4	559.0	421.3	551.6	430.8
800 900	671.0 754.8		663.3 746.1		$655.4 \\ 737.2$	$\frac{458.8}{516.2}$	$647.3 \\ 728.1$	$\frac{470.2}{528.9}$	$638.9 \\ 718.6$		$630.4 \\ 709.1$	
200		Lat.	Dep.		Dep.	Lat.	Dep.	Lat.	Dep.		Dep.	Lat.
	Dep. (123°,	237°,	(124°,		(125°.		(126°.	<u>'</u>	(127°.		(128°	
	303	3°)	30	4°)	,30	5°) (30	6°)	30	7°)	30	8°)
	57	7°	5 Pt	. 56°	5	5°	5	4°	43 Pt	. 53°	5	2°

The 5-Pt. or 56° Courses are: N.E. by E., S.E. by E., N.W. by W., S.W. by W.

Table 1. Traverse Table

		t. 39°		0°		1°		t. 42 °		3°		4°		t. 45°
Dist	(141° 32	, 219°, 1°)	(140° 32	, 220°, 0°)	(139° 31	, 221°, 9°)	(138°	, 222°, 8°)	(137° 31	, 223°, (7°)	(136° 31	, 224°, 6°)	(135	, 225°, 15°)
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
1	0.8	0.6	0.8	0.6	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7 1.4	0.7 1.4
2 3	1.6 2.3	1.3 1.9	$\frac{1.5}{2.3}$	1.3 1.9	$\begin{array}{ c c c } 1.5 \\ 2.3 \end{array}$	$\begin{bmatrix} 1.3 \\ 2.0 \end{bmatrix}$	$\begin{array}{c c} 1.5 \\ 2.2 \end{array}$	2.0	$\begin{array}{ c c c } 1.5 \\ 2.2 \end{array}$	2.0	$\frac{1.4}{2.2}$	2.1	2.1	2.1
4 5	3.1	$\begin{array}{ c c c } 2.5 \\ 3.1 \end{array}$	3.1 3.8	$\frac{2.6}{3.2}$	3.0 3.8	2.6 3.3	$\frac{3.0}{3.7}$	2.7 3.3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{2.7}{3.4}$	2.9 3.6	2.8 3.5	2.8 3.5	2.8 3.5
6	4.7	3.8	4.6	3.9	4.5	3.9	4.5	4.0	4.4	4.1	4.3	4.2	4.2	4.2
7 8	5.4 6.2	4.4 5.0	$\frac{5.4}{6.1}$	4.5 5.1	5.3 6.0	4.6 5.2	5.2 5.9	4.7 5.4	5.1 5.9	4.8 5.5	5.0 5.8	4.9 5.6	4.9 5.7	4.9 5.7
9	7.0	5.7	6.9	5.8	6.8	5.9	6.7	6.0	6.6	6.1	6.5	6.3	6.4	6.4
10 11	7.8 8.5	6.3 6.9	7.7 8.4	6.4 7.1	7.5 8.3	6.6 7.2	$7.4 \\ 8.2$	6.7	7.3 8.0		7.2 7.9	6.9	7.1 7.8	7.1 7.8
12	9.3	7.6	9.2	7.7	9.1	7.9	8.9	8.0	8.8	8.2	8.6	8.3	8.5	8.5
13	10.1 10.9	8.2 8.8	10.0 10.7	8.4 9.0	9.8 10.6	8.5 9.2	$9.7 \\ 10.4$	8.7	$9.5 \\ 10.2$	8.9 9.5	9.4	9.0	$9.2 \\ 9.9$	9.2 9.9
15	11.7	9.4	11.5	9.6	11.3	9.8	11.1	10.0	11.0	10.2	10.8	10.4	10.6	10.6
16	12.4 13.2	10.1 10.7	$12.3 \\ 13.0$	10.3 10.9	$12.1 \\ 12.8$	$10.5 \\ 11.2$	$11.9 \\ 12.6$	10.7 11.4	11.7 12.4	10.9 11.6	$11.5 \\ 12.2$	$11.1 \\ 11.8$	$11.3 \\ 12.0$	$11.3 \\ 12.0$
18 19	14.0 14.8	11.3 12.0	13.8 14.6	11.6 12.2	13.6 14.3	11.8	13.4	12.0	13.2		12.9 13.7	12.5 13.2	12.7 13.4	$12.7 \\ 13.4$
20	15.5	12.6	15.3	12.2	15.1	$\frac{12.5}{13.1}$	14.1 14.9	12.7 13.4	13.9 14.6	13.6	14.4	13.2	14.1	14.1
$\frac{21}{22}$	16.3	13.2	16.1	13.5	15.8	13.8	15.6	14.1	15.4	14.3	15.1	14.6	14.8	14.8 15.6
23	17.1 17.9	13.8 14.5	16.9 17.6	14.1 14.8	16.6 17.4	$14.4 \\ 15.1$	16.3 17.1	14.7 15.4	$16.1 \\ 16.8$	15.0 15.7	15.8 16.5	15.3 16.0	15.6 16.3	16.3
24 25	18.7 19.4	15.1 15.7	18.4 19.2	15.4 16.1	18.1 18.9	$15.7 \\ 16.4$	17.8 18.6	16.1 16.7	17.6 18.3	16.4 17.0	17.3 18.0	16.7 17.4	17.0 17.7	17.0 17.7
26	20.2	16.4	19.9	16.7	19.6	17.1	19.3	17.4	19.0	17.7	18.7	18.1	18.4	18.4
27 28	$21.0 \\ 21.8$	17.0 17.6	$20.7 \\ 21.4$	17.4 18.0	$20.4 \\ 21.1$	17.7 18.4	$\frac{20.1}{20.8}$	18.1 18.7	$19.7 \\ 20.5$	18.4 19.1	$19.4 \\ 20.1$	18.8 19.5	19.1 19.8	19.1 19.8
29	22.5	18.3	22.2	18.6	21.9	19.0	21.6	19.4	21.2	19.8	20.9	20.1	20.5	20.5
30 31	23.3 24.1	18.9 19.5	23.0 23.7	19.3 19.9	$22.6 \\ 23.4$	$19.7 \\ 20.3$	22.3 23.0	20.1	$21.9 \\ 22.7$	20.5	$\begin{array}{c} 21.6 \\ 22.3 \end{array}$	$20.8 \\ 21.5$	$21.2 \\ 21.9$	$\frac{21.2}{21.9}$
32	24.9	20.1	24.5	20.6	24.2	21.0	23.8	21.4	23.4	21.8	23.0	22.2	22.6	22.6
33 34	25.6 26.4	$20.8 \\ 21.4$	$25.3 \\ 26.0$	$21.2 \\ 21.9$	$24.9 \\ 25.7$	$\frac{21.6}{22.3}$	$24.5 \\ 25.3$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$24.1 \\ 24.9$	$22.5 \\ 23.2$	$23.7 \\ 24.5$	$\frac{22.9}{23.6}$	$23.3 \\ 24.0$	$\begin{array}{c c} 23.3 \\ 24.0 \end{array}$
35	27.2	22.0	26.8	22.5	26.4	23.0	26.0	23.4	25.6	23.9	25.2	24.3	24.7	24.7
36 37	28.0 28.8	$\frac{22.7}{23.3}$	$\frac{27.6}{28.3}$	$23.1 \\ 23.8$	$\frac{27.2}{27.9}$	$23.6 \\ 24.3$	26.8 27.5	24.1 24.8	$\frac{26.3}{27.1}$	24.6 25.2	$25.9 \\ 26.6$	$25.0 \\ 25.7$	$25.5 \\ 26.2$	$25.5 \\ 26.2$
38 39	29.5 30.3	23.9 24.5	29.1 29.9	$24.4 \\ 25.1$	$28.7 \\ 29.4$	$24.9 \\ 25.6$	$\frac{28.2}{29.0}$	$25.4 \\ 26.1$	27.8 28.5	$25.9 \\ 26.6$	$27.3 \\ 28.1$	$\frac{26.4}{27.1}$	$\frac{26.9}{27.6}$	26.9 27.6
40	31.1	25.2	30.6	25.7	30.2	26.2	29.7	26.8	29.3	27.3	28.8	27.8	28.3	28.3
41 42	31.9 32.6	$25.8 \\ 26.4$	$\frac{31.4}{32.2}$	$\frac{26.4}{27.0}$	$30.9 \\ 31.7$	$\frac{26.9}{27.6}$	30.5 31.2	27.4 28.1	30.0 30.7	28.0 28.6	29.5 30.2	$\frac{28.5}{29.2}$	29.0 29.7	$29.0 \\ 29.7$
43	33.4	27.1	32.9	27.6	32.5	28.2	32.0	28.8	31.4	29.3	30.9	29.9	30.4	30.4
44 45	34.2 35.0	$\begin{array}{c} 27.7 \\ 28.3 \end{array}$	33.7 34.5	28.3 28.9	$\frac{33.2}{34.0}$	$\frac{28.9}{29.5}$	32.7 33.4	29.4 30.1	$\frac{32.2}{32.9}$	30.0 30.7	$\begin{array}{c} 31.7 \\ 32.4 \end{array}$	$\frac{30.6}{31.3}$	$\frac{31.1}{31.8}$	$\frac{31.1}{31.8}$
46	35.7	28.9	35.2	29.6	34.7	30.2	34.2	30.8	33.6	31.4	33.1	32.0	32.5	32.5
47 48	36.5 37.3	$\frac{29.6}{30.2}$	$\frac{36.0}{36.8}$	$30.2 \\ 30.9$	$35.5 \\ 36.2$	$30.8 \\ 31.5$	34.9 35.7	$31.4 \\ 32.1$	34.4 35.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	33.8 34.5	32.6 33.3	33.2 33.9	33.2 33.9
49 50	38.1 38.9	$\frac{30.8}{31.5}$	37.5 38.3	$31.5 \\ 32.1$	37.0 37.7	$\frac{32.1}{32.8}$	36.4	32.8 33.5	35.8	33.4 34.1	35.2	34.0	34.6 35.4	34.6 35.4
100	77.7	62.9	76.6	64.3	75.5	65.6	74.3	66.9	36.6 73.1	68.2	36.0 71.9	34.7 69.5	70.7	70.7
200 300	$155.4 \\ 233.1$		153.2		150.9	131.2 196.8		$133.8 \\ 200.7$	146.3		143.9	138.9	$141.4 \\ 212.1$	
400	310.9	251.7	306.4	257.1	301.9	262,4	297.3	267.7	292.6	272.8	287.7	277.9	282.8	282.8
500		314.7		$\frac{321.4}{-}$	I							347.3		353.5
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep. (132°		Dep.	-	Dep.		Dep.	Lat.
	(129°, 309)°) ′		0°) ´		229°, 1°	31	2°) '	(133° 31	3°)	31	, 226°, 4°)	31	, 225°, 5°)
<u> </u>	4 ½ P	t. 51°	50)°	4	9°	41 P	t. 48°	4	7°	1 4	6°	4 P	. 45°

The 4-Pt. or 45° Courses are: N.E., N.W., S.E., S.W.

Table 1. Traverse Table

	3 ½ Pt	. 39°	40)°	41	L° I	3 2 Pt	. 42°	43	3°	44	.° [4 Pt	45°
Dist.	(141°, 32)	219°, l°)	(140°, 320	220°,)°)	(139°, 319	221°, 9°)	(138°, 31		(137°, 31	223°, 7°)	(136°, 316	224°, 3°)	(135°. 31	, 225°, 5°)
	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
51 52	39.6 40.4	$\frac{32.1}{32.7}$	39.1 39.8	$32.8 \\ 33.4$	$\frac{38.5}{39.2}$	33.5 34.1	37.9 38.6	$34.1 \\ 34.8$	37.3 38.0	34.8 .35.5	$\frac{36.7}{37.4}$	$35.4 \\ 36.1$	$\frac{36.1}{36.8}$	36.1 36.8
53 54	$\frac{41.2}{42.0}$	$33.4 \\ 34.0$	$\frac{40.6}{41.4}$	$\frac{34.1}{34.7}$	$\frac{40.0}{40.8}$	34.8 35.4	39.4 40.1	$35.5 \\ 36.1$	38.8 - 39.5	36.1 36.8	38.1 38.8	$\frac{36.8}{37.5}$	$37.5 \\ 38.2$	$\frac{37.5}{38.2}$
55	42.7	34.6	42.1	35.4	41.5	36.1	40.9	36.8	40.2	37.5	39.6	38.2	38.9	38.9
56 57	43.5 44.3	$35.2 \\ 35.9$	42.9 43.7	36.0 36.6	$\frac{42.3}{43.0}$	$36.7 \\ 37.4$	41.6 42.4	$37.5 \\ 38.1$	41.0 41.7	$\frac{38.2}{38.9}$	$\frac{40.3}{41.0}$	38.9 39.6	39.6 40.3	39.6 40.3
58	45.1 45.9	$\frac{36.5}{37.1}$	$\frac{44.4}{45.2}$	37.3 37.9	43.8 44.5	38.1 38.7	43.1 43.8	38.8 39.5	42.4 43.1	39.6 40.2	$41.7 \\ 42.4$	$\frac{40.3}{41.0}$	$\frac{41.0}{41.7}$	41.0 41.7
59 60	46.6	37.8	46.0	38.6	45.3	39.4	44.6	40.1	43.9	40.9	43.2	41.7	42.4	42.4
61 62	47.4 48.2	38.4 39.0	46.7 47.5	39.2 39.9	$\begin{array}{c c} 46.0 \\ 46.8 \end{array}$	40.0 40.7	45.3 46.1	$\frac{40.8}{41.5}$	44.6 45.3	41.6 42.3	43.9 44.6	$\frac{42.4}{43.1}$	43.1 43.8	43.1 43.8
63 64	49.0 49.7	39.6 40.3	48.3 49.0	$\frac{40.5}{41.1}$	47.5 48.3	41.3 42.0	$\frac{46.8}{47.6}$	$\frac{42.2}{42.8}$	46.1 46.8	43.0 43.6	45.3 46.0	$\frac{43.8}{44.5}$	44.5 45.3	44.5 45.3
65	50.5	40.9	49.8	41.8	49.1	42.6	48.3	43.5	47.5	44.3	46.8	45.2	46.0	4 6.0
66 67	51.3	41.5 42.2	50.6 51.3	42.4 43.1	49.8 50.6	43.3 44.0	49.0 49.8	44.2 44.8	48.3 49.0	45.0 45.7	47.5 48.2	45.8 46.5	46.7 47.4	46.7 47.4
68 69	52.8 53.6	42.8 43.4	$52.1 \\ 52.9$	43.7 44.4	51.3 52.1	44.6 45.3	50.5 51.3	45.5 46.2	49.7 50.5	46.4 47.1	48.9 49.6	$\frac{47.2}{47.9}$	48.1 48.8	48.1 48.8
70	54.4	4 4.1	53.6	45.0	52.8	45.9	52.0	46.8	51.2	47.7	50.4	48.6	49.5	49.5
71 72	55.2 56.0	44.7 45.3	54.4 55.2	45.6 46.3	53.6 54.3	$\frac{46.6}{47.2}$	52.8 53.5	47.5 48.2	51.9 52.7	48.4 49.1	51.1 51.8	49.3 50.0	$50.2 \\ 50.9$	$\frac{50.2}{50.9}$
73 74	56.7 57.5	45.9 46.6	55.9 56.7	46.9 47.6	55.1 55.8	47.9 48.5	54.2 55.0	48.8 49.5	53.4 54.1	49.8 50.5	52.5 53.2	$50.7 \\ 51.4$	$51.6 \\ 52.3$	51.6 52.3
75	58.3	47.2	57.5	48.2	56.6	49.2	55.7	50.2	54.9	51.1	54.0	$52.1 \\ 52.8$	53.0 53.7	53.0 53.7
76 77	59.1 59.8	47.8 48.5	58.2 59.0	48.9 49.5	57.4 58.1	49.9 50.5	56.5 57.2	$50.9 \\ 51.5$	55.6 56.3	51.8 52.5	54.7 55.4	53.5	54.4	54.4
78 79	60.6 61.4	49.1 49.7	59.8 60.5	50.1 50.8	58.9 59.6	51.2 51.8	58.0 58.7	52.2 52.9	57.0 57.8	53.2 53.9	$56.1 \\ 56.8$	54.2 54.9	55.2 55.9	55.2 55.9
80	62.2	50.3	61.3	51.4	60. 4 61.1	52.5 53.1	59.5	53.5	58.5 59.2	54.6 55.2	57.5 58.3	55.6 56.3	56.6 57.3	56.6 57.3
81 82	62.9 63.7	51.0 51.6	62.0 62.8	52.1 52.7	61.9	53.8	60.2 60.9	54.2 54.9	60.0	55.9	59.0	57.0	58.0	58.0
83 84	64.5 65.3	$52.2 \\ 52.9$	63.6	53.4 54.0	62.6 63.4	54.5 55.1	$\begin{array}{ c c c c c } 61.7 \\ 62.4 \end{array}$	55.5 56.2	60.7	56.6 57.3	5.9.7 60.4	$\begin{array}{c} 57.7 \\ 58.4 \end{array}$	58.7 59.4	58.7 59.4
85	66.1	53.5	65.1	54.6	64.2 64.9	55.8 56.4	63.2 63.9	56.9 57.5	62.2 62.9	58.0 58.7	61.1 61.9	59.0 59.7	60.1 60.8	60.1 60.8
86 87	66.8 67.6	54.1 54.8		55.3 55.9	65.7	57.1	64.7	58.2	63.6	59.3	62.6	60.4	61.5	61.5
88 89	68.4 69.2	55.4 56.0	67.4 68.2	56.6 57.2	66.4 67.2	57.7 58.4	65.4 66.1	58.9 59.6	64.4 65.1	60.0 60.7	63.3 64.0	61.1 61.8	62.2 62.9	$62.2 \\ 62.9$
90	69.9	56.6	68.9 69.7	57.9 58.5	67.9 68.7	59.0 59.7	66.9 67.6	60.2	65.8 66.6	61.4 62.1	64.7 65.5	$62.5 \\ 63.2$	63.6 64.3	63.6 64.3
91 92	70.7 71.5	57.3 57.9	70.5	59.1	69.4	60.4	68.4	61.6	67.3	62.7	66.2	63.9	65.1	65.1
93 94	72.3 73.1	58.5 59.2	$71.2 \\ 72.0$	59.8 60.4	70.2 70.9	61.0 61.7	69.1 69.9	62.2 62.9	68.0 68.7	63.4 64.1	66.9 67.6	64.6 65.3	65.8 66.5	65.8 66.5
95	73.8	59.8	72.8 73.5	61.1 61.7	71.7 72.5	62.3 63.0	70.6 71.3	63.6 64.2	69.5 70.2	64.8 65.5	68.3 69.1	66.0 66.7	67.2 67.9	67.2 67.9
96 97	74.6 75.4	60.4 61.0	74.3	62.4	73.2	63.6	72.1	64.9	70.9	66.2	69.8	67.4	68.6 69.3	68.6 69.3
98 99	76.2 76.9	$61.7 \\ 62.3$	75.1 75.8	63.0 63.6	74.0 74.7	64.3 64.9	72.8 73.6	65.6 66.2	71.7 72.4	66.8 67.5	71.2	68.1 68.8	70.0	70.0
100	77.7	62.9	76.6 459.6	64.3	75.5	65.6	74.3	66.9 401.5	$73.1 \\ 438.8$	68.2	71.9 431.6	69.5 416.8	$70.7 \\ 424.3$	$70.7 \\ 424.3$
600 700	543.9	440.6	536.3	450.0	528.3	459.2	520.2	468.4	511.9	477.4	503.5	486.3	495.0	495.0
800 900	$621.8 \\ 699.3$		$613.0 \\ 689.5$			$524.8 \\ 590.3$		602.2		613.8	647.3	$555.8 \\ 625.2$	636.3	636.3
	Dep.	Lat.	Dep.		Dep.		Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.
	(129°,	231°,	(130°,		(131°, 31	229°, 1°)	(132° 31	2°)	31	, 227° , 3°)	31		31	', 225°, l5°)
	4½ Pt	309°) 310°) 4½ Pt. 51 ° 50 °			49	9°′	312°) 4½ Pt. 48°		N 7	7°	314°) 46°		4 Pt. 45°	

The 4-Pt. or 45° Courses are: N.E., N.W., S.E., S.W.

To Change Long. Diff. into Dep., subtract Tabular Number from Long. Diff.

Long. Diff.							Мірр	LE LA	TITUD	E.				-	
OR DEP.	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°	11°	12°	13°	14°	15°
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 3 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1 0.1	0.1	0.1 0.1
4 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1
6 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2
7	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	$0.2 \\ 0.2$	0.2
8 9	0.0	0.0	0.0	0.0	0.0	0.0	$0.1 \\ 0.1$	0.1	0.1	0.1	0.2	$\begin{vmatrix} 0.2 \\ 0.2 \end{vmatrix}$	0.2 0.2	0.3	0.3
10 11	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	$0.2 \\ 0.2$	0.2	0.3	0.3	0.3
12	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.3	0.4
12 13 14	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.4	0.4
15	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5
16 17	0.0	0.0	0.0	0.0	0.1	0.1	0.1	$0.2 \\ 0.2$	0.2	0.2	0.3	0.3	0.4	0.5	0.5 0.6
17 18	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6
19 20	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.6	0.6 0.7
21	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.7
$\frac{22}{23}$	0.0	0.0	0.0	0.1	$0.1 \\ 0.1$	0.1	0.2	$0.2 \\ 0.2$	0.3	0.3	0.4	0.5	0.6	0.7	0.7 0.8
24	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.7	0.8
25 26	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.5	0.6	0.7	0.9
27	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9
28 29	0.0	0.0	0.0	0.1	0.1	$\begin{array}{c c} 0.2 \\ 0.2 \end{array}$	$0.2 \\ 0.2$	0.3	0.3	0.4	0.5	0.6	0.7	0.8	1.0 1.0
30	0.0 0.0	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
31 32	0.0	0.0	0.0	0.1	0.1	0.2	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \end{array}$	0.3	0.4	0.5	0.6	0.7	0.8	0.9 1.0	1.1 1.1
33 34	0.0	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.4 0.4	0.5 0.5	0.6 0.6	0.7	0.8	1.0 1.0	$\frac{1.1}{1.2}$
35	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.3	0.4	0.5	0.6	0.8	0.9	1.0	1.2
36 37	0.0	0.0	0.0	$0.1 \\ 0.1$	0.1	$0.2 \\ 0.2$	0.3	0.4	0.4 0.5	0.5 0.6	0.7 0.7	0.8	0.9	$1.1 \\ 1.1$	1.2
38	0.0	0.0	0.1	0.1	0.1	0.2	0.3 0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.1	1.3 1.3
39 40	0.0	0.0	0.1	0.1	$0.1 \\ 0.2$	0.2	0.3	0.4	0.5 0.5	0.6	0.7 0.7	0.9	1.0	$\frac{1.2}{1.2}$	1.3 1.4
41	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.8	0.9	1.1	1.2	1.4
42 43	0.0	$0.0 \\ 0.0$	0.1	0.1	0.2	$0.2 \\ 0.2$	0.3	0.4	0.5 0.5	0.6 0.7	0.8 0.8	0.9	1.1	$\frac{1.2}{1.3}$	1.4 1.5
44 45	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.7	0.8	1.0	1.1	1.3	1.5
46	0.0	0.0	0.1	0.1	0.2	0.3	0.3	0.4	0.6	0.7 0.7	0.8	1.0	$1.2 \\ 1.2$	1.3 1.4	1.5 1.6
47 48	0.0	0.0	0.1	0.1 0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.9	1.0	1.2	1.4	1.6
49	0.0	0.0	0.1	0.1	0.2	0.3	0.4	0.5	0.6 0.6	0.7	0.9	1.0	1.2 1.3	$\frac{1.4}{1.5}$	$\frac{1.6}{1.7}$
50 100	0.0	$0.0 \\ 0.1$	0.1	$0.1 \\ 0.2$	0.2	0.3	0.4	0.5	0.6	0.8	0.9	1.1	1.3	1.5	1.7
200	0.0	0.1	0.3	0.5	0.8	0.5 1.1	1.5	1.9	1.2 2.5 3.7	1.5 3.0	1.8 3.7	$\frac{2.2}{4.4}$	2.6 5.1	3.0 5.9	3.4 6.8
300 400	0.0	$0.2 \\ 0.2$	0.4	0.7 1.0	1.I 1.5	1.6 2.2	2.2 3.0	2.9 3.9	3.7 4.9	4.6 6.1	5.5 7.4	6.6 8.7	7.7 10.2	8.9	10.2
500	0.1	0.3	0.7	1.2	1.9	2.7	3.7	4.9	6.2	7.6	9.2	10.9	12.8		13.7 17.0
	1.00	1.00	1.00	1.00	1.00	1.01			1.01	1.02	1.02	1.02	1.03	1.03	1.04
]	ACTO	R						

TO CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER BY FACTOR AT FOOT OF COLUMN, AND ADD PRODUCT TO DEP.

TO CHANGE LONG. DIFF. INTO DEP. SUBTRACT TABULAR NUMBER FROM LONG. DIFF.

Long. Diff.	MIDDLE LATTFUDE 1° 2° 3° 4° 6° 6° 7° 8° 9° 10° 11° 12° 13° 14° 15° 0.0 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.1 1.3 1.5 1.7														
OR DEP.	1°	2°	3°	4°_	5°	6°	7°	8°	9°	10°	11°	12°	13°	14°	15°
51 52 53 54 56 57 58 59 60 61 62 63							0.4 0.4 0.4						I 		
	1.00	1.00	1.00	1.00	1.00	1.01	1.01		1.01	1.02	1.02	1.02	1.03	1.03	1.04
	<u> </u>							FA	CTOR						

TO CHANGE DEP. INTO LONG. DIFF. MULTIPLY TABULAR NUMBER BY FACTOR AT FOOT OF COLUMN AND PRODUCT TO DEP.

To Change Long. Diff. into Dep., subtract Tabular Number from Long. Diff.

To Change Dep. into Long. Diff., Multiply Tabular Number by Factor at Foot of Column and ADD Product to Dep.

To Change Long. Diff. into Dep. subtract Tabular Number from Long. Diff.

Lono. Diff.	MIDDLE LATITUDE												
OR DEP.	16°	17°	18°	19°	20°	21°	22°	23°	24°	25°	26°	27°	28°
51 52 53 54	2.0 2.0 2.1 2.1	2.2 2.3 2.3 2.4	2.5 2.5 2.6 2.6	2.8 2.8 2.9 2.9	3.1 3.1 3.2 3.3	3.4 3.5 3.5 3.6	3.7 3.8 3.9 3.9	4.1 4.1 4.2 4.3	4.4 4.5 4.6 4.7	4.8 4.9 5.0 5.1	5.2 5.3 5.4 5.5	5.6 5.7 5.8 5.9	6.0 6.1 6.2 6.3
55 56	$\frac{2.1}{2.1}$	$\frac{2.4}{2.4}$	2.7 2.7	3.0	3.3 3.4	3.7 3.7	4.0 4.1	4.4 4.5	4.8 4.8	5.2	5.6 5.7	6.0	6.4
57 58 59	2.2 2.2 2.3	$2.5 \\ 2.5 \\ 2.6$	2.8 2.8 2.9	$3.1 \\ 3.2 \\ 3.2$	3.4 3.5 3.6	3.8 3.9 3.9	4.2 4.2 4.3	4.5 4.6 4.7	4.9 5.0 5.1	5.2 5.3 5.4 5.5	5.8 5.9 6.0	6.2 6.3 6.4	6.6 6.7 6.8 6.9
60 61 62	$2.3 \\ 2.4 \\ 2.4$	2.6 2.7 2.7 2.8	3.0 3.0 3.1	3.3 3.4 3.4	3.6 3.7 3.7	4.0 4.1 4.1 4.2	4.4 4.4 4.5	4.8 4.8 4.9 5.0	5.2 5.3 5.4 5.4	5.6 5.7 5.8 5.9	6.1 6.2 6.3 6.4	6.5 6.6 6.8 6.9	7.0 7.1 7.3 7.4
63 64 65 66	2.4 2.5 2.5 2.6	$2.8 \\ 2.8 \\ 2.9$	3.1 3.2 3.2	3.5 3.5	3.8 3.9 3.9 4.0	4.3 4.3 4.4	4.6 4.7 4.7 4.8	5.1 5.2 5.2	5.5 5.6 5.7	$6.0 \\ 6.1 \\ 6.2$	6.5 6.6 6.7	7.0 7.1 7.2	7.5 7.6 7.7
67 68 69 70	2.6 2.6 2.7 2.7	2.9 3.0 3.0 3.1	3.3 3.3 3.4 3.4	3.6 3.7 3.7 3.8 3.8	4.0 4.1 4.2 4.2	4.5 4.5 4.6 4.6	4.9 5.0 5.0 5.1	5.3 5.4 5.5 5.6	5.8 5.9 6.0 6.1	6.3 6.4 6.5 6.6	6.8 6.9 7.0 7.1	7.3 7.4 7.5 7.6	7.8 8.0 8.1 8.2
71 72 73	2.7 2.8 2.8 2.8	3.1 3.1 3.2	3.5 3.5 3.6	3.9 3.9 4.0	4.2 4.3 4.3 4.4	4.7 4.8 4.8	5.2 5.2 5.3	5.6 5.7 5.8	6.1 6.2 6.3	6.7 6.7 6.8	7.2 7.3 7.4	7.7 7.8 8.0	8.3 8.4 8.5 8.7
74 75 76	2.9 2.9 2.9	3.2 3.3 3.3	3.6 3.7 3.7	4.0 4.1 4.1	4.5 4.5 4.6	4.9 5.0 5.0	5.4 5.5 5.5	5.9 6.0 6.0	6.4 6.5 6.6	6.9 7.0 7.1	7.5 7.6 7.7	8.1 8.2 8.3	8.8
77 78 79 80	3.0 3.0 3.1 3.1	3.4 3.4 3.5 3.5	3.8 3.8 3.9 3.9	4.2 4.2 4.3 4.4	4.6 4.7 4.8 4.8	5.1 5.2 5.2 5.3	5.6 5.7 5.8 5.8	6.1 6.2 6.3 6.4	6.7 6.8 6.9	7.2 7.3 7.4 7.5	7.8 7.9 8.0 8.1	8.4 8.5 8.6 8.7	9.0 9.1 9.2 9.4
81 82 83	3.1 3.2 3.2	3.5 3.6 3.6	4.0 4.0 4.1	4.4 4.5 4.5 4.6	4.9 4.9 5.0	5.4 5.4 5.5 5.6	5.9 6.0 6.0	6.4 6.5 6.6 6.7	7.0 7.1 7.2	7.6 7.7 7.8	8.2 8.3 8.4	8.8 8.9 9.0	9.5 9.6 9.7 9.8 9.9
84 85 86	3.3 3.3 3.4	3.7 3.7 3.8	4.1 4.2 4.2 4.3	4.6 4.6 4.7 4.7	5.1 5.1 5.2 5.2	5.6 5.6 5.7 5.8	6.1 6.2 6.3 6.3	6.7 6.8 6.8 6.9	7.3 7.3 7.4 7.5	7.9 8.0 8.1 8.2	8.5 8.6 8.7 8.8	9.2 9.3 9.4 9.5	10.1
87 88 89 90	3.4 3.4 3.5	3.8 3.8 3.9 3.9	4.3 4.4 4.4	4.8 4.8 4.9	5.3 5.4 5.4	5.8 5.9 6.0	6.4 6.5 6.6	7.0 7.1 7.2	7.6 7.7 7.8	8.2 8.3 8.4	9.0 9.1	9.6 9.7 9.8	10:2 10:3 10:4 10:5
91 92 93	3.5 3.6 3.6 3.6	4.0 4.0 4.1 4.1	4.5 4.6 4.6	5.0 5.0 5.1 5.1	5.5 5.6 5.7	6.0 6.1 6.2 6.2	6.6 6.7 6.8 6.8	7.2 7.3 7.4 7.5	7.9 8.0 8.0 8.1	8.5 8.6 8.7 8.8	9.2 9.3 9.4 9.5	9.9 10.0 10.1 10.2	10.7 10.8 10.9 11.0
94 95 96 97	3.7 3.7 3.8	4.2 4.2 4.2	4.6 4.7 4.7	5.2 5.2 5.3	5.7 5.8 5.8	6.2 6.3 6.4 6.4	6.9 7.0 7.1	7.6 7.6 7.7	8.2 8.3 8.4	8.9 9.0 9.1	9.6 9.7 9.8	10.4 10.5 10.6	11.1 11.2 11.4
98 99 100	3.8 3.8 3.9	4.3 4.4 4.4	4.8 4.8 4.9	5.3 5.4 5.4	5.9 6.0 6.0	6.5 6.6 6.6	7.1 7.2 7.3	7.8 7.9 7.9	8.5 8.6 8.6	9,2 9.3 9.4	9.9 10.0 10.1	10.7 10.8 10.9	11.5 11.6 11.7 70.2
600 700 800 900	23.2 27.2 31.0 35.0	26.2 30.6 35.0 39.4	29.4 34.2 39.2 44.1	32.7 38.1 43.5 49.1	36.2 42.1 48.2 54.3	39.9 46.4 53.1 59.7	43.7 50.9 58.2 65.5	47.7 55.7 63.6 71.7	51.9 60.5 69.2 77.9	56.2 65.5 74.9 84.4	60.7 70.8 80.9 91.1	65.4 76.3 87.1 98.1	82.0 93.7 105.5
330	1.04	1.05	1.05	1.06	1.06	1.07	1.08	1.09	1.10	1.10	1.11	1.12	1.13
L							FACTO)B					

To Change Dep. into Long. Diff. Multiply Tabular Number by Factor at Foot of Column, and ADD Product to Dep.

Table 2

To Change Long. Diff. into Dep., subtract Tabular Number from Long. Diff.

Long Diff						Мю	LE LA	TITUDE				
OR DEP.	29°	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	40°
1 2 3 4 5 6 7 8	0.1 0.3 0.4 0.5 0.6 0.8 0.9 1.0	0.1 0.3 0.4 0.5 0.7 0.8 0.9 1.1	0.1 0.3 0.4 0.6 0.7 0.9 1.0	0.2 0.3 0.5 0.6 0.8 0.9 1.1	0.2 0.3 0.5 0.6 0.8 1.0 1.1	0.2 0.3 0.5 0.7 0.9 1.0 1.2	0.2 0.4 0.5 0.7 0.9 1.1 1.3	0.2 0.4 0.6 0.8 1.0 1.1 1.3	0.2 0.4 0.6 0.8 1.0 1.2 1.4	0.2 0.4 0.6 0.8 1.1 1.3	0.2 0.4 0.7 0.9 1.1 1.3 1.6	0.2 0.5 0.7 0.9 1.2 1.4 1.6
9 10 11 12 13 14 15	1.0 1.1 1.3 1.4 1.5 1.6 1.8 1.9	1.1 1.2 1.3 1.5 1.6 1.7 1.9 2.0	1.1 1.3 1.4 1.6 1.7 1.9 2.0 2.1	1.2 1.4 1.5 1.7 1.8 2.0 2.1 2.3	1.3 1.5 1.6 1.8 1.9 2.1 2.3 2.4	1.4 1.5 1.7 1.9 2.1 2.2 2.4 2.6	1.4 1.6 1.8 2.0 2.2 2.4 2.5 2.7	1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9	1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0	1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.2	1.8 2.0 2.2 2.5 2.7 2.9 3.1 3.3	1.9 2.1 2.3 2.6 2.8 3.0 3.3 3.5
16 17 18 19 20 21 22 23	2.0 2.1 2.3 2.4 2.5 2.6 2.8 2.9	2.1 2.3 2.4 2.5 2.7 2.8 2.9 3.1	2.3 2.4 2.6 2.7 2.9 3.0 3.1 3.3	2.4 2.6 2.7 2.9 3.0 3.2 3.3 3.5	2.6 2.7 2.9 3.1 3.2 3.4 3.5 3.7	2.7 2.9 3.1 3.2 3.4 3.6 3.8 3.9	2.9 3.1 3.3 3.4 3.6 3.8 4.0 4.2	3.1 3.2 3.4 3.6 3.8 4.0 4.2 4.4	3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6	3.4 3.6 3.8 4.0 4.2 4.5 4.7 4.9	3.6 3.8 4.0 4.2 4.5 4.7 4.9 5.1	3.7 4.0 4.2 4.4 4.7 4.9 5.1 5.4
24 25 26 27 28 29 30	3.0 3.1 3.3 3.4 3.5 3.6 3.8 3.9	3.2 3.3 3.5 3.6 3.8 3.9 4.0 4.2	3.4 3.6 3.7 3.9 4.0 4.1 4.3 4.4	3.6 3.8 4.0 4.1 4.3 4.4 4.6 4.7	3.9 4.0 4.2 4.4 4.5 4.7 4.8	4.1 4.3 4.4 4.6 4.8 5.0 5.1	4.3 4.5 4.7 4.9 5.1 5.2 5.4	4.6 4.8 5.0 5.2 5.3 5.5 5.7	4.8 5.0 5.2 5.4 5.6 5.8 6.0	5.1 5.3 5.5 5.7 5.9 6.1 6.4	5.3 5.6 5.8 6.0 6.2 6.5 6.7	5.6 5.8 6.1 6.3 6.6 6.8 7.0
32 33 34 35 36 37 38	4.0 4.1 4.3 4.4 4.5 4.6 4.8	4.3 4.4 4.6 4.7 4.8 5.0 5.1	4.6 4.7 4.9 5.0 5.1 5.3 5.4	4.7 4.9 5.0 5.2 5.3 5.5 5.6 5.8	5.0 5.2 5.3 5.5 5.6 5.8 6.0 6.1	5.3 5.5 5.6 5.8 6.0 6.2 6.3 6.5	5.6 5.8 6.0 6.1 6.3 6.5 6.7 6.9	5.9 6.1 6.3 6.5 6.7 6.9 7.1 7.3	6.2 6.4 6.6 6.8 7.0 7.2 7.5 7.7	6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.1	6.9 7.1 7.4 7.6 7.8 8.0 8.2 8.5	7.3 7.5 7.7 8.0 8.2 8.4 8.7 8.9
39 40 41 42 43 44 45	4.9 5.0 5.1 5.3 5.4 5.5 5.6	5.2 5.4 5.5 5.6 5.8 5.9 6.0	5.6 5.7 5.9 6.0 6.1 6.3 6.4	5.9 6.1 6.2 6.4 6.5 6.7 6.8	6.3 6.5 6.6 6.8 6.9 7.1 7.3	6.7 6.8 7.0 7.2 7.4 7.5 7.7	7.1 7.2 7.4 7.6 7.8 8.0 8.1	7.4 7.6 7.8 8.0 8.2 8.4 8.6	7.9 8.1 8.3 8.5 8.7 8.9 9.1	8.3 8.5 8.7 8.9 9.1 9.3 9.5	8.7 8.9 9.1 9.4 9.6 9.8 10.0	9.1 9.4 9.6 9.8 10.1 10.3 10.5
46 47 48 49 50 100 200	5.8 5.9 6.0 6.1 6.3 12.5 25.1	6.2 6.3 6.4 6.6 6.7 13.4 26.8	6.6 6.7 6.9 7.0 7.1 14.3 28.6	7.0 7.1 7.3 7.4 7.6 15.2 30.4	7.4 7.6 7.7 7.9 8.1 16.1 32.3	7.9 8.0 8.2 8.4 8.5 17.1 34.2	8.3 8.5 8.7 8.9 9.0 18.1 36.2	8.8 9.0 9.2 9.4 9.5 19.1 38.2	9.3 9.5 9.7 9.9 10.1 20.1 40.3	9.8 10.0 10.2 10.4 10.6 21.2 42.4	10.3 10.5 10.7 10.9 11.1 22.3 44.6	10.8 11.0 11.2 11.5 11.7 23.4 46.8
300 400 500	37.6 50.2 62.7 1.14	40.2 53.6 67.0 1.15	42.9 57.1 71.4	45.6 60.8 76.0	48.4 64.5 80.7 1.19	51.3 68.4 85.5 1.21	54.3 72.3 90.4 1.22	57.3 76.4 95.5 1.24	60.4 80.6 100.7 1.25	63.6 84.8 106.0 1.27	66.9 89.1 111.4	70.2 93.6 117.0

To Change Dep. into Long. Diff., Multiply Tabular Number by Factor at Foot of Column, and ADD PRODUCT TO DEP.

Table 2

To Change Long. Diff. into Dep. subtract Tabular Number from Long. Diff.

Long. Diff.					M	IDDLE I	ATITUD	E				
OR Dep.	29°	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	40°
51 52	6.4 6.5	6.8 7.0	7.3 7.4	7.7 7.9	8.2 8.4	8.7 8.9	9.2 9.4	9.7 9.9	10.3 10.5	10.8 11.0	11.4 11.6	$\frac{11.9}{12.2}$
53 54	6.6 6.8	7.1 7.2	7.6 7.7	8.1 8.2	8.6 8.7	9.1 9.2	9.6 9.8	10.1 10.3	10.7 10.9	$11.2 \\ 11.4$	11.8 12.0	$12.4 \\ 12.6$
55	6.9	7.4	7.9	8.4	8.9	9.4	9.9	10.5	11.1	11.7	12.3	12.9
56 57	$7.0 \\ 7.1$	7.5 7.6	8.0 8.1	8.5 8.7	$9.0 \\ 9.2$	9.6 9.7	10.1 10.3	$10.7 \\ 10.9$	11.3 11.5	$11.9 \\ 12.1$	$12.5 \\ 12.7$	13.1 13.3
58	7.3 7.4	7.8 7.9	8.3 8.4	8.8 9.0	9.4 9.5	$9.9 \\ 10.1$	10.5 10.7	11.1 11.3	11.7 11.9	$12.3 \\ 12.5$	12.9 13.1	13.6 13.8
59 60	7.5	8.0	8.6	9.1	9.7	10.3	10.9	11.5	12.1	12.7	13.4	14.0
61 62	7.6 7.8	8.2 8.3	8.7 8.9	$9.3 \\ 9.4$	$\frac{9.8}{10.0}$	10.4 10.6	$11.0 \\ 11.2$	$\frac{11.6}{11.8}$	12.3 12.5	$\frac{12.9}{13.1}$	13.6 13.8	$14.3 \\ 14.5$
63	7.9	8.4	9.0	9.6	10.2	10.8	11.4	12.0	12.7	13.4	14.0	14.7
64 65	8.0 8.1	8.6 8.7	9.1 9.3	$\frac{9.7}{9.9}$	$10.3 \\ 10.5$	10.9 11.1	11.6 11.8	$12.2 \\ 12.4$	$12.9 \\ 13.1$	13.6 13.8	14.3 14.5	$15.0 \\ 15.2$
66 67	8.3 8.4	8.8 9.0	9.4 9.6	$10.0 \\ 10.2$	10.6 10.8	11.3 11.5	$11.9 \\ 12.1$	$\frac{12.6}{12.8}$	13.3 13.5	$14.0 \\ 14.2$	14.7 14.9	$15.4 \\ 15.7$
68	8.5	9.1	9.7	10.3	11.0	11.6	12.3	13.0	13.7	14.4	15.2	15.9
69 70	8.7 8.8	$9.2 \\ 9.4$	$\frac{9.9}{10.0}$	10.5 10.6	11.1 11.3	11.8 12.0	$12.5 \\ 12.7$	$13.2 \\ 13.4$	13.9 14.1	14.6 14.8	15.4 15.6	16.1 16.4
71	8.9	9.5	10.1	10.8	11.5. 11.6	12.1	$\frac{12.8}{13.0}$	$\frac{13.6}{13.8}$	14.3 14.5	$15.1 \\ 15.3$	15.8 16.0	16.6 16.8
72 73	$9.0 \\ 9.2$	9.6 9.8	10.3 10.4	$10.9 \\ 11.1$	11.8	$12.3 \\ 12.5$	13.2	13.9	14.7	15.5	16.3	17.1
74 75	9.3 9.4	$9.9 \\ 10.0$	10.6 10.7	$11.2 \\ 11.4$	$11.9 \\ 12.1$	$12.7 \\ 12.8$	$13.4 \\ 13.6$	14.1 14.3	14.9 15.1	15.7 15.9	16.5 16.7	17.3 17.5
76	9.5	10.2	10.9	11.5	12.3	13.0	13.7	14.5	15.3	16.1	16.9	17.8
77 78	9.7	10.3 10.5	11.0 11.1	11.7 11.9	$12.4 \\ 12.6$	13.2 13.3	$13.9 \\ 14.1$	14.7 14.9	15.5 15.7	$16.3 \\ 16.5$	17.2 17.4	$\frac{18.0}{18.2}$
79 80	9.9 10.0	10.6 10.7	11.3 11.4	$12.0 \\ 12.2$	$12.7 \\ 12.9$	13.5 13.7	14.3 14.5	15.1 15.3	15.9 16.1	16.7 17.0	17.6 17.8	18.5 18.7
81	10.2	10.9	11.6	12.3	13.1	13.8	14.6	15.5	16.3	17.2	18.1	19.0
82 83	10.3 10.4	11.0 11.1	11.7 11.9	$12.5 \\ 12.6$	13.2 13.4	$14.0 \\ 14.2$	14.8 15.0	15.7 15.9	16.5 16.7	17.4 17.6	18.3 18.5	$19.2 \\ 19.4$
84	10.5 10.7	11.3 11.4	$12.0 \\ 12.1$	12.8 12.9	13.6 13.7	14.4 14.5	15.2 15.4	16.0 16.2	16.9 17.1	17.8 18.0	18.7 18.9	19.7 19.9
85 86	10.8	11.5	12.3	13.1	13.9	14.7	15.6	16.4	17.3	18.2	19.2	20.1
87 88	10.9 11.0	11.5 11.7 11.8	$12.4 \\ 12.6$	13.2 13.4	$14.0 \\ 14.2$	14.9 15.0	15.7 15.9	16.6 16.8	17.5 17.7	18.4 18.7	19.4 19.6	20.4 20.6
89	11.2	11.9	12.7	13.5	14.4	15.2	16.1	17.0 17.2	17.9 18.1	18.9 19.1	19.8	$20.8 \\ 21.1$
90	11.3 11.4	12.1 12.2	12.9 13.0	13.7 13.8	14.5 14.7	15.4 15.6 15.7	16.3 16.5	17.4	18.3	19.3	20.1 20.3	21.3
92	11.5 11.7	12.3 12.5	13.1 13.3	14.0 14.1	14.8 15.0	15.7 15.9	16.6 16.8	17.6 17.8	18.5 18.7	19.5 19.7	20.5 20.7	$21.5 \\ 21.8$
94	11.8	12.6	13.4	14.3	15.2	16.1	17.0	18.0	18.9	19.9	20.9 21.2	22.0 22.2
9 5	11.9 12.0	12.7 12.9	13.6 13.7	14.4 14.6	15.3 15.5	16.2 16.4	17.2 17.4	18.1	19.1	20.1	21.4	
97	12.2	13.0	13.9 14.0	14.7	15.6 15.8	16.6 16.8	17.5 17.7	18.5 18.7	19.5 19.7	20.6 20.8	21.6 21.8	22.5 22.7 22.9
98	12.3 12.4	13.3	14.1	14.9 15.0	16.0	16.9	17.9	18.9	19.9	21.0	22.1	23.2
100 600	12.5 75.2	13.4 80.4	14.3 85.7	15.2 91.2	16.1 96.8	17.1 102.6	18.1 108.5	19.1 114.6	20.1 120.8	$21.2 \\ 127.2$	22.3 133.7	23.4 140.4
700	87.8	93.9	99.9	106.4	113.0	119.7	126.5	133.8	141.0	148.4	156.1	163.7
800 900	$100.3 \\ 113.0$	$107.2 \\ 120.7$	$114.2 \\ 128.6$	$121.6 \\ 136.8$	$ 129.0 \\ 145.2$	136.7 153.9	144.6 162.8	152.7 171.9	161.1 181.4	169.6 190.9	$178.2 \\ 200.7$	187.0 210.5
	1.14	1.15	1.17	1.18	1.19	1.21	1.22	1.24	1.25	1.27	1.29	1.31
	1					FA	CTOR					

To Change Dep. into Long. Diff. Multiply Tabular Number by Factor at Foot of Column and ADD Product to Dep.

To Change Long. Diff. into Dep., subtract Tabular Number from Long. Diff.

Long.	1				Мю	DLE LAT	TITUDE			·	
OR DEP.	41°	42°	43°	44°	45°	46°	47°	48°	49°	50°	51°
1	0.2	0.3 0.5	0.3 0.5	0.3	0.3	0.3	0.3 0.6	0.3 0.7	0.3	0.4	0.4
2 3 4	0.7	0.8	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.1
4	1.0	1.0	1.1	1.1	1.2	1.2	1.3	1.3	1.4	1.4	15
5	1.2	1.3 1.5	1.3	1.4 1.7	1.5 1.8	1.5	1.6	1.7 2.0	1.7	1.8 2.1	1.9
6 7	1.7	1.8	1.9	2.0	2.1	2.1	2.2	2.3	2.4	2.5	2.6
8 9	2.0	2.1	2.1	2.2	2.3	2.4	2.5	2.6	2.8	2.9	3.0
10	2.2 2.5	2.3 2.6	2.4	2.5 2.8	2.6 2.9	2.7 3.1	$\frac{2.9}{3.2}$	3.0	3.1	3.2	3.3
11	2.7	2.8	3.0	3.1	3.2	3.4	3.5	3.6	3.8	3.9	4.1
12 13	2.9 3.2	3.1	3.2	3.4	3.5	3.7	3.8	4.0	4.1	4.3	4.4
14	3.4	3.6	3.5	3.6	4.1	4.0	4.1	4.3	4.5	4.6 5.0	4.8 5.2
15	3.7	3.9	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6
16 17	3.9 4.2	4.1 4.4	4.3	4.5 4.8	4.7 5.0	4.9 5.2	5.1 5.4	5.3 5.6	5.5 5.8	5.7 6.1	5.9 6.3
18	4.4	4.6	4.8	5.1	5.3	5.5	5.7	6.0	6.2	6.4	6.7
19 20	4.7	4.9	5.1	5.3	5.6	5.8	6.0	6.3	6.5	6.8	7.0
21	4.9 5.2	5.1 5.4	5.4 5.6	5.6 5.9	5.9 6.2	6.1	6.4	6.6	6.9	7.1	7.4 7.8
22	5.4	5.7	5.9	6.2	6.4	6:7	7.0	7.3	7.6	7.9	8.2
$\frac{23}{24}$	5.6 5.9	5.9 6.2	6.2 6.4	6.5 6.7	6.7	7.0 7.3	7.3 7.6	7.6 7.9	7.9 8.3	8.2	8.5 8.9
25	6.1	6.4	6.7	7.0	7.3	7.6	8.0	8.3	8.6	8.9	9.3
26	6.4	6.7	7.0	7.3	7.6	7.9	8.3	8.6	8.9	9.3	9.6
27 28	6.6	6.9	7.3 7.5	7.6 7.9	7.9 8.2	8.2 8.5	8.6 8.9	8.9 9.3	9.3	9.6	10.0 10.4
29	7.1	7.4	7.8	8.1	8.5	8.9	9.2	9.6	10.0	10.4	10.7
30 31	7.4	7.7	8.1	8.4	8.8	9.2	9.5	9.9	10.3	10.7	11.1
32	7.6 7.8	8.0 8.2	8.3 8.6	8.7 9.0	9.1	9.5 9.8	9.9	10.3	10.7 11.0	11.1 11.4	11.5
33	8.1	8.5	8.9	9.3	9.7	10.1	10.5	10.9	11.4	11.8	12.2
34 35	8.3 8.6	8.7 9.0	9.1 9.4	9.5 9.8	10.0 10.3	10.4 10:7	10.8	11.2 11.6	11.7	12.1 12.5	12.6 13.0
36	8.8	9.2	9.7	10.1	10.5	11.0	11.4	11.9	12.4	12.9	13.3
37 38	$9.1 \\ 9.3$	9.5 9.8	$9.9 \\ 10.2$	10.4 10.7	10.8 11.1	11.3 11.6	11.8 12.1	12.2 12.6	12.7	13.2	13.7
39	9.6	10.0	10.2	10.7	11.4	11.0	$12.1 \\ 12.4$	12.0	13.1 13.4	13.6 13.9	14.1 14.5
40	9.8	10.3	10.7	11.2	11.7	12.2	12.7	13.2	13.8	14.3	14.8
41 42	10.1 10.3	$10.5 \\ 10.8$	11.0 11.3	11.5 11.8	$12.0 \\ 12.3$	12.5 12.8	13.0 13.4	.13.6	14.1 14.4	14.6 15.0	15.2 15.6
43	10.5	11.0	11.6	12.1	12.6	13.1	13.7	14.2	14.8	15.4	15.9
44 45	10.8 11.0	11.3 11.6	$11.8 \\ 12.1$	$12.3 \\ 12.6$	12.9 13.2	13.4 13.7	14.0 14.3	14.6	15.1	15.7	16.3
46	11.3	11.8	$12.1 \\ 12.4$	12.0 12.9	13.5	14.0	14.6	14.9 15.2	15.5 15.8	16.1 16.4	16.7 17.1
47	11.5	12.1	12.6	13.2	13.8	14.4	14.9	15.6	`16.2	16.8	17.4
48 49	$11.8 \\ 12.0$	$12.3 \\ 12.6$	$12.9 \\ 13.2$	13.5 13.8	14.1 14.4	14.7 15.0	15.3 15.6	15.9 16.2	16.5 16.9	17.1 17.5	17.8 18.2
50	12.3	12.8	13.4	14.0	14.6	15.3	15.9	16.5	17.2	17.9	18.2
100	24.5	25.7	26.9	28.1	29.3	30.5	31.8	33.1	34.4	35.7	37.1
200 300	$\frac{49.1}{73.6}$	51.4 77.1	53.7 80.6	$56.1 \\ 84.2$	58.6 87.9	$61.1 \\ 91.6$	63.6 95.4	66.2	68.8 103.2	$71.4 \\ 107.2$	$\begin{array}{c c} 74.1 \\ 111.2 \end{array}$
400	98.1	102.7	107.4	112.3	117.2	122.1	127.2	132.3	137.6	142.9	148.3
500	122.7	128.4	134.3	140.3	146.5	152.7	159.0	165.4	172.0	178.6	185.3
	1.33	1.35	1.37	1.39	1.41	1.44	1.47	1.50	1.52	1.56	1.59
						FACTOR					

TO CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER BY FACTOR AT FOOT OF COLUMN, AND ADD PRODUCT TO DEP.

To Change Long. Diff. into Dep. subtract Tabular Number from Long. Diff.

Long. Diff.					Midd	LE LATI	TUDE				
OR DEP.	41°	42°	43°	44°	45°	46°	47°	48°	49°	5Q°	51°
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	12.5 12.8 13.0 13.2 13.5 13.7 14.0 14.2 14.5 14.7 15.0 15.2 15.5 15.7 15.9	13.1 13.4 13.6 13.9 14.1 14.4 14.6 14.9 15.2 15.4 15.7 15.9 16.2 16.7 17.0	13.7 14.0 14.2 14.5 14.8 15.0 15.6 15.9 16.1 16.4 16.7 16.9 17.2 17.5	14.3 14.6 14.9 15.2 15.4 15.7 16.0 16.3 16.6 16.8 17.1 17.4 17.7 18.0 18.2 18.5	14.9 15.2 15.5 15.8 16.1 16.4 17.0 17.3 17.6 17.9 18.2 18.5 18.7 19.0 19.3	15.6 15.9 16.2 16.5 16.8 17.1 17.4 17.7 18.0 18.3 18.6 18.9 19.5 19.8 20.2	16.2 16.5 16.9 17.5 17.8 18.1 18.4 18.8 19.1 19.4 19.7 20.0 20.4 20.7 21.0	16.9 17.2 17.5 17.9 18.2 18.5 19.2 19.5 19.9 20.2 20.5 20.5 21.2 21.5 21.8	17.5 17.9 18.2 18.6 18.9 19.6 19.9 20.3 20.6 21.0 21.3 22.7	18.2 18.6 18.9 19.3 19.6 20.0 20.4 20.7 21.1 21.4 21.8 22.1 22.5 22.9 23.2 23.6	18.9 19.3 19.6 20.0 20.4 20.8 21.1 21.5 21.9 22.2 22.6 23.0 23.4 23.7 24.1 24.5
67 68 69 70 71 72 73 74 75 76 77 78 79	16.4 16.7 16.9 17.2 17.4 17.7 17.9 18.2 18.4 18.6 18.9 19.1 19.4 19.6	17.2 17.5 17.7 18.0 18.2 18.5 18.8 19.0 19.3 19.5 19.8 20.0 20.3 20.5	18.0 18.3 18.5 18.8 19.1 19.3 19.6 19.9 20.1 20.4 20.7 21.0 21.2 21.5	18.8 19.1 19.4 19.6 19.9 20.2 20.5 21.0 21.3 21.6 21.9 22.2 22.5	19.6 19.9 20.2 20.5 20.8 21.1 21.4 22.0 22.3 22.6 22.8 23.1 23.4	20.5 20.8 21.1 21.4 21.7 22.0 22.3 22.6 22.9 23.5 23.8 24.1 24.4	21.3 21.6 21.9 22.3 22.6 22.9 23.2 23.5 23.9 24.2 24.5 24.8 25.1 25.4	22.2 22.5 22.8 23.2 23.5 23.8 24.5 24.5 25.5 25.8 26.1 26.5	23.0 23.4 23.7 24.1 24.4 25.1 25.5 25.8 26.1 26.5 26.8 27.2 27.5	23.9 24.3 24.6 25.0 25.4 25.7 26.1 26.8 27.1 27.5 27.9 28.6 28.9	24.8 25.2 25.6 25.9 26.3 26.7 27.1 27.4 27.8 28.2 28.5 28.9 29.7 30.0
81 82 83 84 85 86 87 88 89 90 91 92	19.9 20.1 20.4 20.6 20.8 21.1 21.3 21.6 21.8 22.1 22.3 22.6 22.8	20.8 21.1 21.3 21.6 21.8 22.1 22.3 22.6 22.9 23.1 23.4 23.6 23.9 24.1	21.8 22.0 22.3 22.6 22.8 23.1 23.4 23.6 23.9 24.2 24.4 24.7 25.0 25.3	22.7 23.0 23.3 23.6 23.9 24.1 24.4 24.7 25.0 25.3 25.5 25.8 26.1 26.4	23.7 24.0 24.3 24.6 24.9 25.2 25.5 25.8 26.1 26.4 26.7 26.9 27.2	24.7 25.0 25.3 25.6 26.0 26.3 26.6 26.9 27.5 27.5 27.8 28.1 28.4 28.7	25.8 26.1 26.4 26.7 27.0 27.3 27.7 28.0 28.3 28.6 28.9 29.3 29.6 29.9	26.8 27.1 27.5 27.8 28.1 28.5 28.8 29.1 29.4 29.8 30.1 30.4 31.1	27.9 28.2 28.5 29.2 29.6 29.9 30.3 30.6 31.0 31.3 31.3 32.0 32.3	28.9 29.6 30.0 30.4 30.7 31.1 31.8 32.1 32.5 32.9 33.6	30.4 30.4 30.8 31.1 31.5 31.9 32.2 32.6 33.0 33.4 34.1 34.5 34.8
94 95 96 97 98 99 100 600 700 800 900	23.1 23.3 23.5 23.8 24.0 24.3 24.5 147.2 171.7 196.1 220.8	24.1 24.4 24.7 24.9 25.2 25.4 25.7 154.1 179.8 205.4 231.2	25.3 25.5 25.8 26.1 26.3 26.6 26.9 161.2 188.1 214.9 241.8	26.7 26.9 27.2 27.5 27.8 28.1 168.4 196.5 224.6 252.7	27.8 28.1 28.4 28.7 29.0 29.3 175.7 205.0 234.3 263.7	29.0 29.3 29.6 29.9 30.2 30.5 183.2 213.7 244.2 274.8	30.2 30.5 .30.8 31.2 31.5 31.8 190.8 222.6 254.4 286.2	31.4 31.8 32.1 32.4 32.8 33.1 198.5 231.6 264.7 297.8	32.7 33.0 33.4 33.7 34.1 34.4 206.4 240.8 275.2 309.7	33.9 34.6 35.0 35.4 35.7 214.3 250.0 285.8 321.5	35.2 35.6 36.0 36.3 36.7 37.1 222.4 259.4 296.5 333.7
	1.33	1.35	1.37	1.39	1.41	1.44 Гастон	1.47	1.50	1.52	1.56	1.59

To Change Dep. into Long. Diff. Multiply Tabular Number by Factor at Foot of Column and ADD Product to Dep.

Table 2

To Change Long. Diff. into Dep., subtract Tabular Number from Long. Diff.

TO CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER BY FACTOR AT FOOT OF COLUMN AND PROPERTY TO DEP.

To Change Long. Diff. into Dep. subtract Tabular Number from Long. Diff.

Lono. Diff.			- 	Midd	LE LATI	TUDE			
OR DEP.	52°	53°	54°	55°	56°	57°	58°	59°	60°
DIFF. OR	19.6 20.0 20.4 21.1 21.5 22.3 22.7 23.4 23.8 24.6 25.4 25.5 26.1 26.5 27.3 27.7 28.4 28.8 29.6 30.0 30.4 30.7 31.1 31.5 32.3 32.7 33.8 24.6 30.0 30.4 30.0 30.4 30.0 30.4 30.0 30.0	20.3 20.7 21.15 21.5 22.3 22.3 23.5 24.3 24.7 25.5 26.3 27.1 27.5 28.3 29.5 29.5 30.7 31.1 31.5 32.3 33.4 33.4 33.4 35.4 35.4 35.4 35.4 35	21.0 21.4 21.8 22.3 22.7 23.1 23.9 24.3 25.6 26.4 26.8 27.6 28.0 28.4 29.3 30.5 30.5 30.9 31.7 32.6 33.4 33.4 33.6 35.5 35.9 36.3 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37	55° 21.7 22.2.6 23.0 23.5 24.3 24.7 25.6 26.0 26.4 26.9 27.3 28.6 29.4 29.8 30.3 31.1 31.6 32.4 32.8 33.3 33.7 34.1 34.5 35.8 36.7 37.1 37.5 38.4 38.8 39.7	22.5 22.9 23.4 23.8 24.7 25.1 25.6 26.4 26.9 27.8 28.2 29.5 30.0 30.9 31.3 32.2 32.6 33.1 33.5 33.9 34.8 35.3 35.7 36.6 37.9 37.9 38.4 38.2 39.7 40.1 40.1	57° 23.2 23.7 24.1 24.6 25.0 26.4 27.3 27.8 28.2 28.7 29.1 29.6 30.5 31.4 31.9 32.3 33.7 34.2 33.7 34.6 35.1 35.5 36.0 36.4 36.9 37.8 38.3 38.7 39.6 40.5 41.0 41.4 41.9 42.3	24.0 24.4 24.9 25.9 26.3 26.3 27.7 28.2 7.2 29.1 29.6 30.6 31.5 32.4 33.4 33.8 35.3 35.7 37.6 38.1 38.6 39.5 40.4 41.8 42.8 42.8 43.7	24.7 25.2 25.7 26.7 27.6 28.6 29.1 28.6 29.1 30.1 31.5 32.0 33.5 33.4 4.9 35.9 36.4 37.8 38.8 39.8 34.9 40.7 41.7 42.2 42.7 43.6 44.1 44.6 1	25.5 26.0 26.5 27.5 28.0 29.5 30.5 31.0 32.5 33.5 33.5 35.5 36.0 37.5 38.5 39.0 40.5 41.0 42.0 42.0 44.5 45.0 46.5
93 94 95 96	35.7 36.1 36.5 36.9	37.0 37.4 37.8 38.2	38.3 38.7 39.2 39.6	39.7 40.1 40.5 40.9	41.0 41.4 41.9 42.3	42.3 42.8 43.3 43.7	43.7 44.2 44.7 45.1	45.1 45.6 46.1 46.6	46.5 47.0 47.5 48.0
97 98 99 100 600	37.3 37.7 38.0 38.4 230.6	38.6 39.0 39.4 39.8 238.9	40.0 40.4 40.8 41.2 247.3	41.4 41.8 42.2 42.6 255.9	42.8 43.2 43.6 44.1 264.5	44.2 44.6 45.1 45.5 273.2	45.6 46.1 46.5 47.0 282.0	47.0 47.5 48.0 48.5 291.0	48.5 49.0 49.5 50.0 300.0
700 800 900	269.2 307.5 346.0 1.63	279.7 319.5 358.3 1.66	$ \begin{array}{r} 288.6 \\ 329.8 \\ 371.1 \\ \hline 1.70 \end{array} $	298.5 341.2 383.8 1.74	308.6 352.6 396.8 1.79	318.7 364.3 409.9 1.84	$329.0 \\ 376.1 \\ 423.2 \\ \hline 1.89$	$ \begin{array}{r} 339.6 \\ 388.0 \\ \hline 436.6 \\ \hline \hline 1.94 \end{array} $	350.0 400.0 450.0 2.00
<u> </u>	<u> </u>			F	ACTOR				

To Change Dep. into Long. Diff. Multiply Tabular Number by Factor at Foot of Column and ADD Product to Dep.

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts	•
100	00 000	043	087	130	173	217	260	303	346	389				
01 02	432 860	475 903	518	561	604 *030	647	689	732	775	817	_	44	43	42
03	01 284	326	945 368	988 410	452	*072 494	*115 536	*157 578	*199 620	*242 662	$\frac{1}{2}$	4.4 8.8	4.3 8.6	4.2 8.4
04	703	745	787	828	870	912	953	995	*036	*078	3	13.2	12.9	12.6
05	02 119	160	202	243	284	325	366	407	449	490	4 5	17.6 22.0	17.2 21.5	16.8 21.0
06	531	572	612	653	694	735	776	816	857	898	6	26.4	25.8	25.2
07 08	938 03 342	979 383	*019 423	*060 463	*100 503	*141 543	*181 583	*222 623	*262 663	*302 703	8	30.8 35.2	30.1 34.4	29.4 33.6
09	743	782	822	862	902	941	981	*021	*060	*100	9	39.6	38.7	37.8
110	04 139	179	218	258	297	336	376	415	454	493				
11	532	571	610	650	689	727	766	805	844	883		41	40	39
12 13	922 05 308	961 346	999 385	*038 423	*077 461	*115 500	*154 538	*192 576	*231 614	*269 652	$\frac{1}{2}$	4.1 8.2	4.0 8.0	3.9 7.8
14	690	729	767	805	843	881	918	956	994	*032	3	12.3	12.0	11.7
15	06 070	108	145	183	221	258	296	333	371	408	4 5	16.4 20.5	16.0 20.0	15.6 19.5
16	446	48 3	521	558	595	633	670	707	744	781	6	24.6	24.0	23.4 27.3
17 18	819 07 188	856 225	893 262	930 298	967 335	*004 372	*041 408	*078 445	*115 482	*151 518	7 8	$\frac{28.7}{32.8}$	28.0 32.0	27.3 31.2
19	555	591	628	664	700	737	773	809	846	882	9	36.9	36.0	
120	918	954	990	*027	*063	*099	*135	*171	*207	*243				
21	08279	314	350	386	422	458	493	529	565	600		38	37	36
22 23	636 991	672 *026	707 ⁻ *061	743 *096	778 *132	814 *167	849 *202	884 *237	920 *272	955 *307	$\frac{1}{2}$	3.8 7.6	3.7 7.4	3.6 7.2
24	09 342	377	412	447	482	517	552	587	621	656	3	11.4	11.1	10.8
25	691	726	760	795	830	864	899	934	968	*003	4 5	15.2	14.8	14.4
26	10 037	072	106	140	175	209	243	278	312	346	6	19.0 22.8	$18.5 \\ 22.2$	$18.0 \\ 21.6$
27 28	380 721	415 755	449 789	483 823	517 857	551 890	585 924	619 958	653 992	687 *025	7 8	26.6 30.4	25.9 29.6	25.2 28.8
29	11 059	093	126	160	193	227	261	294	327	361	9	34.2	33.3	
130	394	428	461	494	528	561	594	628	661	694				
31	727	760	793	826	860	893	926	959	992	*024		35	34	33
32 33	12 057 385	090 418	123 450	156 483	189 516	222 548	254 581	287 613	320 646	352 678	1	3.5	3.4	3.3
34	710	743	775	808	840	872	905	937	969	*001	2 3	7.0 10.5	$\begin{array}{ c c } 6.8 \\ 10.2 \end{array}$	6.6 9.9
35	13 033	066	098	130	162	194	226	258	290	322	4	14.0	13.6	13.2
36	354	386	418	450	481	513	545	577	609	640	5	17.5 21.0	17.0 20.4	16.5 19.8
37	672	704	735	767	799	830	862	893	925	956	7	24.5	23.8	23.1
38 39	988 14 301	*019 333	*051 364	*082 395	*114 426	*145 457	*176 489	*208 520	*239 551	*270 582	8	$28.0 \\ 31.5$	27.2 30.6	26.4 29.7
140	613	644	675	706	737	768	799	829	860	891	l			
41	922	953	983	*014	*045	*076	*106	*137	*168	*198		32	31	30
42 43	15 229 534	259 564	290 594	320 625	351 655	381 685	412 715	442 746	473 776	503 806	1	3.2	3.1	3.0
44	836	866	897	927	957	987	*017	*047	*077	*107	2 3	6.4 9.6	$\frac{6.2}{9.3}$	6.0 9.0
45	16 137	167	197	227	256	286	316	346	376	406	4	12.8	12.4	12.0
46	435	465	495	524	554	584	613	643	673	702	5 6	$16.0 \\ 19.2$	15.5 18.6	15.0 18.0
47 48	732 17 026	761	791	820	850	879	909	938	967	997	7	22.4	21.7	21.0
49	319	056 348	085 377	114 406	143 435	173 464	202 493	231 522	260 551	289 580	8	$25.6 \\ 28.8$	$\frac{24.8}{27.9}$	$\frac{24.0}{27.0}$
150	609	638	667	696	725	754	782	811	840	869	']	
	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts.	

	0	1	2	3	4	5	6	7	8	9	Π	Pro	p. Pts	
150	17 609	638	667	696	725	754	782	811	840	869	1			
51	898	926	955	984	*013	*041	*070	*099	*127	*156				
52 53	18 184 469	213 498	241 526	270 554	298 583	327 611	355 639	384 667	412 696	441 724				
54	752	780	808	837	865	893	921	949	977	*005				
55	19 033	061	089	117	145	173	201	229	257	285	l			
56	312	340	368	396	424	451	479	507	535	562	İ			
57 58	590 866	618 893	645 921	673 948	700 976	728 *003	756 *030	783 *058	811 *085	838 *112	l			
59	20 140	167	194	222	249	276	303	330	358	385				
160	412	439	466	493	520	548	575	602	629	656				
61	683	710	737	763	790	817	844	871	898	925		29	28	27
62 63	952 21 219	978 245	*005 272	*032 299	*059 325	*085 352	*112 378	*139 405	*165 431	*192 458	1	2.9	2.8	2.7
64	484	511	537	564	590	617	643	669	696	722	2 3	5.8 8.7	5.6 8.4	5.4 8.1
65	748	775	801	827	854	880	906	932	958	985	4	11.6	11.2	10.8
66	22 011	037	063	089	115	141	167	194	220	246	5 6	14.5 17.4	14.0 16.8	13.5 16.2
67	272	298	324	350	376	401	427	453	479	505	7	20.3	19.6	18.9
68 69	531 789	557 814	583 840	608 866	634 891	660 917	686 943	712 968	737 994	763 *019	8	23.2 26.1	22.4 25.2	21.6 24.3
170	23 045	070	096	121	147	172	198	223	249	274	ľ	,	1	(-2.0
71	300	325	350	376	401	426	452	477	502	528		26	25	24
72	553	578	603	629	654	679	704	729	754	779	1	2.6	2.5	2.4
73	805	830	855	880	905	930	955	980	*005	*030	2 3	5.2 7.8	5.0	4.8 7.2
74 75	24 055 304	080 329	105 353	130 378	155 403	180 428	204 452	229 477	254 502	279 527	4	10.4	7.5 10.0	9.6
76	551	576	601	625	650	674	699	724	748	773	5 6	13.0	12.5 15.0	12.0 14.4
77	797	822	846	871	895	920	944	969	993	*018	7	15.6 18.2	17.5	16.8
78 79	25 042 285	066 310	091 334	115 358	139 382	164 406	188 431	212 455	237 479	261 503	8	20.8 23.4	20.0 22.5	19.2 21.6
180	527	551	575	600	624	648	672	696	720	744	9	20.4	22.0	21.0
81	768	792	816	840	864	888	912	935	959	983		23	22	21
82	26 007	031	055	079	102	126	150	174	198	221 458	1	2.3	2.2	2.1
83	245	269	293	316	340	364	387	411	435	l	$\frac{\tilde{2}}{3}$	4.6	4.4	4.2 6.3
84	482 717	505 741	529 764	553 788	576 811	600 834	623 858	647 881	670 905	694 928	4	6.9 9.2	6.6 8.8	8.4
85 86	951	975	998	*021	*045	*068	*091	*114	*138	*161	5	11.5	11.0	10.5
87	27 184	207	231	254	277	300	323	346	370	393	6	13.8 16.1	13.2 15.4	$12.6 \\ 14.7$
88	416	439	462	485	508	531	554	577 807	600 830	623 852	8	18.4	17.6	16.8
89 190	646	669 898	692 921	715 944	738 967	761 989	784 *012	*035	*058	*081	9	20.7	19.8	1 8.9
[875 28 103	126	149	171	194	217	240	262	285	307				
91 92	28 103	353	375	398	421	443	466	488	511	533				
93	556	578	601	623	646	668	691	713	735	758				
94	780 29 003	803	825	847	870	892	914	937	959	981				
95 96	29 003 226	026 248	048 270	070 292	092 314	115 336	137 358	159 380	181 403	203 425				
97	447	469	491	513	535	557	579	601	623	645				
98	667	688	710	732	754	776	798	820	842	863				
99	885	907	929	951	973	994	<u>*016</u>	*038	*060	*081				
200	30 103	125	146	168	190	211	233	255	276	298	_		D:	
<u> </u>	0	1	2	3	4	5	6	7	8_	9		Pro	p. Pts.	

	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts	
200	30 103	125	146	168	190	211	233	255	276	298				
01 02 03	320 535 7 50	341 557 771	363 578 792	384 600 814	406 621 835	428 643 856	449 664 878	471 685 899	492 707 920	514 728 942				
04 05 06	963 31 175 387	984 197 408	*006 218 429	*027 239 450	*048 260 471	*069 281 492	*091 302 513	*112 323 534	*133 345 555	*154 366 576				
07 08 09	597 806 32 015	618 827 035	639 848 056	660 869 077	681 890 098	702 .911 118	723 931 139	744 952 160	765 973 181	785 994 201				
210	222	243	263	284	305	325	346	366	387	408		1 22	21	20
11 12 13	428 634 838	449 654 858	469 675 879	490 695 899	510 715 919	531 736 940	552 756 960	572 777 980	593 797 *001	613 818 *021	1 2 3	2.2 4.4 6.6	2.1 4.2 6.3	2.0 4.0 6.0
14 15 16	33 041 244 445	062 264 465	082 284 486	102 304 506	122 325 526	143 345 546	163 365 566	183 385 586	203 405 606	224 425 626	4 5 6 7	8.8 11.0 13.2 15.4	8.4 10.5 12.6 14.7	8.0 10.0 12.0 14.0
17 18 19	646 846 34 044	666 866 064	686 885 084	706 905 104	726 925 124	746 945 143	766 965 163	786 985 183	806 *005 203	826 *025 223	8	17.6 19.8	16.8	16.0
220	242	262	282	301	321	341	361	380	400	420				
21 22 23	439 635 8 30	459 655 850	479 674 869	498 694 889	518 713 908	537 733 928	557 753 947	577 772 967	596 792 986	616 811 *005				
24 25 26	35 025 218 411	044 238 430	064 257 449	083 276 468	102 295 488	122 315 507	141 334 526	160 353 545	180 372 564	199 392 583				
27 28 29	603 793 984	622 813 *003	641 832 *021	660 851 *040	679 870 *059	698 889 *078	717 908 *097	736 927 *116	755 946 *135	774 965 *154				
230	36 173	192	211	229	248	267	286	305	324	342		19	18	17
31 32 33	361 549 736	380 568 754	399 586 773	418 605 791	436 624 810	455 642 829	474 661 847	493 680 866	511 698 884	530 717 903	1 2 3	1.9 3.8 5.7	1.8 3.6 5.4	1.7 3.4 5.1
34 35 36	922 37 107 291	940 125 310	959 144 328	977 162 346	996 181 365	*014 199 383	*033 218 401	*051 236 420	*070 254 438	*088 273 457	4 5 6	7.6 9.5 11.4	7.2 9.0 10.8	6.8 8.5 10.2
37 38 39	475 658 840	493 676 858	511 694 876	530 712 894	548 731 912	566 749 931	585 767 949	603 785 967	621 803 985	639 822 *003	7 8 9	13.3 15.2 17.1	12.6 14.4 16.2	11.9 13.6 15.3
240	38 021	039	057	075	093	112	130	148	166	184				
41 42 43	202 382 561	220 399 578	238 417 596	256 435 614	274 453 632	292 471 650	310 489 668	328 507 686	346 525 703	364 543 721				
44 45 46	739 917 39 094	757 934 111	775 952 129	792 970 146	810 987 164	828 *005 182	846 *023 199	863 *041 217	881 *058 235	899 *076 252				
47 48 49	270 445 620	287 463 637	305 480 655	322 498 672	340 515 690	358 533 707	375 550 724	393 568 742	410 585 759	428 602 777				
250	794	811	829	846	863	881	898	915	933	950	_			
L	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts	

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9		Pro	p. P	s
250	39 794	811	829	846	863	881	898	915	933	950				
51 52 53	967 40 140 312	985 157 329	*002 175 346	*019 192 364	*037 209 381	*054 226 398	*071 243 415	*088 261 432	*106 278 449	*123 295 466				
54 55 56	483 654 824	500 671 841	518 688 858	535 705 875	552 722 892	569 739 909	586 756 926	603 773 943	620 790 960	637° 807 976				
57 58 59	993 41 162 330	*010 179 347	*027 196 363	*044 212 380	*061 229 397	*078 246 414	*095 263 430	*111 280 447	*128 296 464	*145 313 481				
260	497	514	531	547	564	581	597	614	631	647				. 10
61 62 63	664 830 .996	681 847 *012	697 863 *029	714 880 *045	731 896 *062	747 913 *078	764 929 *095	780 946 *111	797 963 *127	814 979 *144	1 2	1.8 3.6 5.4	17 1. 3. 5.	1.6
64 65 66	42 160 325 488	177 341 504	193 357 521	210 374 537	226 390 553	243 406 570	259 423 586	275 439 602	292 455 619	308 472 635	4 5 6 1	7.2 9.0 0.8	6.8 8.1	6.4 6 8.0 2 9.6
67 68 69	651 813 975	667 830 991	684 846 *008	700 862 *024	716 878 *040	732 894 *056	749 911 *072	765 927 *088	781 943 *104	797 959 *120	8 1	$2.6 \\ 4.4 \\ 6.2$	11.3 13.4 15.3	$6 \mid 12.8$
270	43 136	152	169	185	201	217	233	249	265	281				
71 72 73	297 457 616	313 473 632	329 489 648	345 505 664	361 521 680	377 537 696	393 553 712	409 569 727	425 584 743	441 600 759				
74 75 76	775 933 44 091	791 949 107	807 965 122	823 981 138	838 996 154	854 *012 170	870 *028 185	886 *044 201	902 *059 217	917 *075 232				
77 78 79	248 404 560	264 420 576	279 436 592	295 451 607	311 467 623	326 483 638	342 498 654	358 514 669	373 529 685	389 545 700				
280	716	731	747	762	778	793	809	824	840	855		_	_	
81 82 83	871 45 025 179	886 040 194	902 056 209	917 071 225	932 086 240	948 102 255	963 117 271	979 133 286	994 148 301	*010 163 317	1 2	1 3	.5 .0	1.4 2.8
84 85 86	332 484 6 37	347 500 652	362 515 667	378 530 682	393 545 697	408 561 712	423 576 728	439 591 743	454 606 758	469 621 773	3 4 5 6	7	.5 .5 .5	4.2 5.6 7.0 8.4
87 88 89	788 939 46 090	803 954 105	818 969 120	834 984 135	849 *000 150	864 *015 165	879 *030 180	894 *045 195	909 *060 210	924 *075 225	7 8 9	10 12	2.0	9.8 11.2 12.6
290	240	255	270	285	300	315	330	345	359	374				
91 92 93	389 538 687	404 553 702	419 568 716	434 583 731	449 598 746	464 613 761	479 627 776	494 642 790	509 657 805	523 672 820				
94 95 96	835 982 47 129	850 997 144	864 *012 159	879 *026 173	894 *041 188	909 *056 202	923 *070 217	938 *085 232	953 *100 246	967 *114 261				
97 98 99	276 422 567	290 436 582	305 451 596	319 465 611	334 480 625	349 494 640	363 509 654	378 524 669	392 538 683	407 553 698	ı			
300	712	727	741	756	770	784	799	813	828	842				
	0	1	2	3	4	5	6	7	8	9	<u> </u>	Pro	р. Р	ts.

	0	1	2	3	4	5	6	7	8	9	I	rop. I	ets.
800	47 712	727	741	756	770	784	799	813	828	842			
01 02 03	857 48 001 144	871 015 159	885 029 173	900 044 187	914 058 202	929 073 216	943 087 230	958 101 244	972 116 259	986 130 273			
04 05 06	287 430 572	302 444 586	316 458 601	330 473 615	344 487 629	359 501 643	373 515 657	387 530 671	401 544 686	416 558 700			
07 08 09	714 855 996	728 869 *010	742 883 *024	756 897 *038	770 911 *052	785 926 *066	799 940 *080	813 954 *094	827 968 *108	841 982 *122			
310	49 136	150	164	178	192	206	220	234	248	262		15	14
11 12 13	276 415 554	290 429 568	304 443 582	318 457 596	332 471 610	346 485 624	360 499 638	374 513 651	388 527 665	402 541 679	1 2 3	1.5 3.0 4.5	1.4 2.8 4.2
14 15 16	693 831 969	707 845 982	721 859 996	734 872 *010	748 886 *024	762 900 *037	776 914 *051	790 927 *065	803 941 *079	817 955 *092	4 5 6	6.0 7.5 9.0	5.6 7.0 8.4
17 18 19	50 106 243 379	120 256 393	133 270 406	147 284 420	161 297 433	174 311 447	188 325 461	202 338 474	215 352 488	229 365 501	7 8 9	10.5 12.0 13.5	$9.8 \\ 11.2 \\ 12.6$
320	515	529	542	556	569	583	596	610	623	637			
21 22 23	651 786 920	664 799 934	678 813 947	691 826 961	705 840 974	718 853 987	732 866 *001	745 880 *014	759 893 *028	772 907 *041			
24 25 26	51 055 188 322	068 202 335	081 215 348	095 228 362	108 242 375	121 255 388	135 268 402	148 282 415	162 295 428	175 308 441			
27 28 29	455 587 720	468 601 733	481 614 746	495 627 759	508 640 772	521 654 786	534 667 799	548 680 812	561 693 825	574 706 838			
330	851	865	878	891	904	917	930	943	957	970			. 10
31 32 33	983 52 114 244	996 127 257	*009 140 270	*022 153 284	*035 166 297	*048 179 310	*061 192 323	*075 205 336	*088 218 349	*101 231 362	1 2 3	1.3 2.6 3.9	1.2 2.4 3.6
34 35 36	375 504 634	388 517 647	401 530 660	414 543 673	427 556 686	440 569 699	453 582 711	466 595 724	479 608 737	492 621 750	4 5 6	5.2 6.5 7.8	4.8 6.0 7.2
37 38 39	763 892 53 020	776 905 033	789 917 046	802 930 058	815 943 071	827 956 084	840 969 097	853 982 110	866 994 122	879 *007 135	7 8 9	9.1 10.4 11.7	8.4 9.6 10.8
340	148	161	173	186	199	212	224	237	250	263			
41 42 43	275 403 529	1	301 428 555	314 441 567	326 453 580	339 466 593	352 479 605	364 491 618	377 504 631	390 517 643			
44 45 46	656 782 908	794 920	681 807 933	694 820 945	706 832 958	719 845 970	732 857 983	744 870 995	757 882 *008	769 895 *020			
47 48 49	54 033 158 283	170	058 183 307	070 195 320	083 208 332	095 220 345	108 233 357	120 245 370	133 258 382	145 270 394			
850	407	419	432	444	456	469	481	494	506	518			
	0	1	2	8	4	5	6	7	8	9		Prop.	Pts.

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
350	54 407	419	432	444	456	469	481	494	506	518	
51	531	543	555	568	580	593	605	617	630	642	
52	654	667	679	691	704	716	728	741	753	765	
53	7 77	790	802	814	827	839	851	864	876	888	
54	900	913	925	937	949	962	974	986	998	*011	
55	55 023	035	047	060	072	084	096	108	121	133	
56	145	157	169	182	194	206	218	230	242	255	
57	267	279	291	303	315	328	340	352	364	376	
58	388	400	413	425	437	449	461	473	485	497	
59	509	522	534	546	558	570	582	594	606	618	
360	630	642	654	666	678	691	703	715	727	739	
61	751	763	775	787	799	811	823	835	847	859	13 12
62	871	883	895	907	919	931	943	955	967	979	1 1.3 1.2
63	991	*003	*015	*027	*038	*050	*062	*074	*086	*098	2 2.6 2.4
64 65 66	56 110 229 348	122 241 360	134 253 372	146 265 384	158 277 396	170 289 407	182 301 419	194 312 431	205 324 443	217 336 455	3 3.9 3.6 4 5.2 4.8 5 6.5 6.0 6 7.8 7.2
67	467	478	490	502	514	526	538	549	561	573	7 9.1 8.4
68	585	597	608	620	632	644	656	667	679	691	8 10.4 9.6
69	703	714	726	738	750	761	773	785	797	808	9 11.7 10.8
370	820	832	844	855	867	879	891	902	914	926	
71	937	949	961	972	984	996	*008	*019	*031	*043	
72	57 054	066	078	089	101	113	124	136	148	159	
73	171	183	194	206	217	229	241	252	264	276	
74	287	299	310	322	334	345	357	368	380	392	
75	403	415	426	438	449	461	473	484	496	507	
76	519	530	542	553	565	576	588	600	611	623	
77	634	646	657	669	680	692	703	715	726	738	
78	749	761	772	784	795	807	818	830	841	852	
79	864	875	887	898	910	921	933	944	955	967	
380	978	990	*001	*013	*024	*035	*047	*058	*070	*081	
81	58 092	104	115	127	138	149	161	172	184	195	$\begin{array}{c cccc} & 11 & 10 \\ 1 & 1.1 & 1.0 \\ 2 & 2.2 & 2.0 \end{array}$
82	206	218	229	240	252	263	274	286	297	309	
83	320	331	343	354	365	377	388	399	410	422	
84 85 86	433 546 659	444 557 670	456 569 681	467 580 692	478 591 704	490 602 715	501 614 726	512 625 737	524 636 749	535 647 760	3 3.3 3.0 4 4.4 4.0 5 5.5 5.0 6 6.6 6.0
87 88 89	771 883 995	782 894 *006	794 906 *017	805 917 *028	816 928 *040	827 939 *051	838 950 *062	850 961 *073	861 973 *084	872 984 *095	6 6.6 6.0 7 7.7 7.0 8 8.8 8.0 9 9.9 9.0
390	59 106	118	129	140	151	162	173	184	195	207	
91	218	229	240	251	262	273	284	295	306	318	
92	329	340	351	362	373	384	395	406	417	428	
93	439	450	461	472	483	494	506	517	528	539	
94	550	561	572	583	594	605	616	627	638	649	
95	660	671	682	693	704	715	726	737	748	759	
96	770	780	791	802	813	824	835	846	857	868	
97	879	890	901	912	923	934	945	956	966	977	
98	988	999	*010	*021	*032	*043	*054	*065	*076	*086	
99	60 097	108	119	130	141	152	163	173	184	195	
400	206	217	228	239	249	260	271	282	293	304	
	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
400	60 206	217	228	239	249	260	271	282	293	304	
01 02 03	314 423 531	325 433 541	336 444 552	347 455 563	358 466 574	369 477 584	379 487 595	390 498 606	401 509 617	412 520 627	
04 05 06	638 746 853	649 756 863	660 767 874	670 778 885	681 788 895	692 799 906	703 810 917	713 821 927	724 831 938	735 842 949	
07 08 09	$61 066 \\ 172$	970 077 183	981 087 194	991 098 204	*002 109 215	*013 119 225	*023 130 236	*034 140 247	*045 151 257	*055 162 268	
410	278	289	300	310	321	331	342	352	363	374	
11 12 13	384 490 595	395 500 606	405 511 616	$\frac{416}{521}$ 627	426 532 637	437 542 648	448 553 658	458 563 669	469 574 679	479 584 690	
14 15 16	700 805 909	711 815 920	721 826 930	731 836 941	742 847 951	752 857 962	763 868 972	773 878 982	784 888 993	794 899 *003	
17 18 19	$\begin{array}{c} 62014 \\ 118 \\ 221 \end{array}$	$024 \\ 128 \\ 232$	034 138 242	045 149 252	055 159 263	066 170 273	076 180 284	086 190 294	097 201 304	107 211 315	
420	325	335	346	356	366	377	387	397	408	418	
21 22 23	428 531 634	439 542 644	449 552 655	459 562 665	469 572 675	480 583 685	490 593 696	500 603 706	511 613 716	521 624 726	11 10 9 1 1.1 1.0 0.9 2 2.2 2.0 1.8
24 25 26	737 839 941	747 849 951	757 859 961	767 870 972	778 880 982	788 890 992	798 900 *002	808 910 *012	818 921 *022	829 931 *033	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
27 28 29	63 043 144 246	053 155 256	063 165 266	$073 \\ 175 \\ 276$	083 185 286	094 195 296	104 205 306	114 215 317	124 225 327	134 236 337	7 7.7 7.0 6.3 8 8.8 8.0 7.2 9 9.9 9.0 8.1
430	347	357	367	377	387	397	407	417	428	438	
31 32 33	448 548 649	458 558 659	468 568 669	478 579 679	488 589 689	498 599 699	508 609 709	518 619 719	$528 \\ 629 \\ 729$	538 639 739	
34 35 36	749 849 949	759 859 959	769 869 969	779 879 979	789 889 988	799 899 998	809 909 *008	819 919 *018	829 929 *028	839 939 *038	
37 38 39	64 048 147 246	$058 \\ 157 \\ 256$	068 167 266	078 177 276	088 187 286	098 197 296	108 207 306	118 217 316	128 227 326	137 237 335	
440	345	355	365	375	385	395	404	414	424	434	
41 42 43	444 542 640	454 552 650	464 562 660	473 572 670	483 582 680	493 591 689	503 601 699	513 611 709	523 621 719	532 631 729	
44 45 46	738 836 933	748 846 943	758 856 953	768 865 963	777 875 972	787 885 982	797 895 992	807 904 *002	816 914 *011	826 924 *021	
47 48 49	$\begin{array}{c} 65031 \\ 128 \\ 225 \end{array}$	040 137 234	050 147 244	$060 \\ 157 \\ 254$	070 167 263	079 176 273	089 186 283	099 196 292	108 205 302	118 215 312	
450	321	331	341	350	360	369	379	389	398	408	
<u> </u>	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
450	65 321	331	341	350	360	369	379	389	398	408	
51	418	427	437	447	456	466	475	485	495	504	
52	514	523	533	543	552	562	571	581	591	600	
53	610	619	629	639	648	658	667	-677	686	696	
54	706	715	725	734	744	753	763	772	782	792	
55	801	811	820	830	839	849	858	868	877	887	
56	896	906	916	925	935	944	954	963	973	982	
57	992	*001	*011	*020	*030	*039	*049	*058	*068	*077	
58	66 087	096	106	115	124	134	143	153	162	172	
59	181	191	200	210	219	229	238	247	257	266	
46 0	276	285	295	304	314	323	332	342	351	361	
61 62 63	370 464 558	380 474 567	389 483 577	398 492 586	408 502 596	417 511 605	427 521 614	436 530 624	445 539 633	455 549 642	
64	652	661	671	680	689	699	708	717	727	736	
65	745	755	764	773	783	792	801	811	820	829	
66	839	848	857	867	876	885	894	904	913	922	
67	932	941	950	960	969	978	987	997	*006	*015	
68	67 025	034	043	052	062	071	080	089	099	108	
69	117	127	136	145	154	164	173	182	191	201	
470	210	219	228	237	247	256	265	274	284	293	
71 72 73	302 394 486	311 403 495	321 413 504	330 422 514	339 431 523	348 440 532	357 449 541	367 459 550	376 468 560	385 477 569	10 9 8 1 1.0 0.9 0.8 2 2.0 1.8 1.6 3 3.0 2.7 2.4
74	578	587	596	605	614	624	633	642	651	660	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
75	669	679	688	697	706	715	724	733	742	752	
76	761	770	779	788	797	806	815	825	834	843	
77	852	861	870	879	888	897	906	916	925	934	$\begin{array}{c cccc} 7 & 7.0 & 6.3 & 5.6 \\ 8 & 8.0 & 7.2 & 6.4 \\ 9 & 9.0 & 8.1 & 7.2 \end{array}$
78	943	952	961	970	979	988	997	*006	*015	*024	
79	68 034	043	052	061	070	079	088	097	106	115	
480	124	133	142	151	160	169	178	187	196	205	
81	215	224	233	242	251	260	269	278	287	296	
82	305	314	323	332	341	350	359	368	377	386	
83	395	404	413	422	431	440	449	458	467	476	
84	485	494	502	511	520	529	538	547	556	565	
85	574	583	592	601	610	619	628	637	646	655	
86	664	673	681	690	699	708	717	726	735	744	
87	753	762	771	780	789	797	806	815	824	833	
88	842	851	860	869	878	886	895	904	913	922	
89	931	940	949	958	966	975	984	993	*002	*011	
490	69 020	028	037	046	055	064	073	082	090	099	
91	108	117	126	135	144	152	161	170	179	188	
92	197	205	214	223	232	241	249	258	267	276	
93	285	294	302	311	320	329	338	346	355	364	
94	373	381	390	599	408	417	425	434	443	452	;
95	461	469	478	487	496	504	513	522	531	539	
96	548	557	566	574	583	592	601	609	618	627	
97	636	644	653	662	671	679	688	697	705	714	
98	723	732	740	749	758	767	775	784	793	801	
99	810	819	827	836	845	854	862	871	880	888	
500	897	906	914	923	932	940	949	958	966	975	
	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts.
500	69 897	906	914	923	932	940	949	958	966	975			
01 02 03	984 70 070 157	992 079 165	*001 088 174	*010 096 183	*018 105 191	*027 114 200	*036 122 209	*044 131 217	*053 140 226	*062 148 234			
04 05 06	243 329 415	252 338 424	260 346 432	269 355 441	278 364 449	286 372 458	295 381 467	303 389 475	312 398 484	321 406 492			
07 08 09	501 586 672	509 595 680	518 603 689	526 612 697	535 621 706	544 629 714	552 638 723	561 646 731	569 655 740	578 663 749			
510	757	766	774	783	791	800	808	817	825	834			
11 12 13	842 927 71 012	851 935 020	859 944 029	868 952 037	876 961 046	885 969 054	893 978 063	902 986 071	910 995 079	919 *003 088			
14 15 16	096 181 265	105 189 273	113 198 282	122 206 290	130 214 299	139 223 307	147 231 315	155 240 324	164 248 332	172 257 341			
17 18 19	349 · 433 517	357 441 525	366 450 533	374 458 542	383 466 550	391 475 559	399 483 567	408 492 575	416 500 584	425 508 592			
520	600	609	617	625	634	642	650	659	667	675			
21 22 23	684 767 850	692 775 858	700 784 867	709 792 875	717 800 883	725 809 892	734 817 900	742 825 908	750 834 917	759 842 925	1 2 3	9 0.9 1.8	8 7 0.8 0.7 1.6 1.4
24 25 26	933 72 016 099	941 024 107	950 032 115	958 041 123	966 049 132	975 057 140	983 066 148	991 074 156	999 082 165	*008 090 173	3 4 5 6	2.7 3.6 4.5 5.4	2.4 2.1 3.2 2.8 4.0 3.5 4.8 4.2
27 28 29	181 263 346	189 272 354	198 280 362	206 288 370	214 296 378	222 304 387	230 313 395	239 321 403	247 329 411	255 337 419	7 8 9	6.3 7.2 8.1	5.6 4.9 6.4 5.6 7.2 6.3
530	428	436	444	452	460	469	477	485	493	501			
31 32 33	509 591 673	518 599 681	526 607 689	534 616 697	542 624 705	550 632 713	558 640 722	567 648 730	575 656 738	583 665 746			
34 35 36	754 835 916	762 843 925	770 852 933	779 860 941	787 868 949	795 876 957	803 884 965	811 892 973	819 900 981	827 908 989			
37 38 39	997 73 078 159	*006 086 167	*014 094 175	*022 102 183	*030 111 191	*038 119 199	*046 127 207	*054 135 215	*062 143 223	*070 151 231			
540	239	247	255_	263	272	280	288	296	304	312			
41 42 43	320 400 480	328 408 488	336 416 496	344 424 504	352 432 512	360 440 520	368 448 528	376 456 536	384 464 544	392 472 552			
44 45 46	560 640 719	568 648 727	576 656 735	584 664 743	592 672 751	600 679 759	608 687 767	616 695 775	624 703 783	632 711 791			
47 48 49	799 878 957	807 886 965	815 894 973	823 902 981	830 910 989	838 918 997	846 926 *005	854 933 *013	862 941 *020	870 949 *028			
550	74 036	044	052	060	068	076	084	092	099	107			
	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts.

	0	1	2	3	4	5	6	7	8	9	F	rop. P	ts.
550	74 036	044	052	060	068	076	084	092	099	107			
51 52 53	115 194 273	123 202 280	131 210 288	139 218 296	147 225 304	155 233 312	162 241 320	170 249 327	178 257 335	186 265 343			
54 55 56	351 429 507	359 437 515	367 445 523	374 453 531	382 461 539	390 468 547	398 476 554	406 484 562	414 492 570	421 500 578			
57 58 59	586 663 741	593 671 749	601 679 757	609 687 764	617 695 772	624 702 780	632 710 788	640 718 796	648 726 803	656 733 811			
560	819	827	834	842	850	858	865	873	881	889			
61 62 63	896 974 75 051	904 981 059	912 989 066	920 997 074	927 *005 082	935 *012 089	943 *020 097	950 *028 105	958 *035 113	966 *043 120			
64 65 66	128 205 282	136 213 289	143 220 297	151 228 305	159 236 312	166 243 320	174 251 328	182 259 335	189 266 343	197 274 351			
67 68 69	358 435 511	366 442 519	374 450 526	381 458 534	389 465 542	397 473 549	404 481 557	412 488 565	420 496 572	427 504 580			
570	587	595	603	610	618	626	633	641	648	656			
71 72 73	664 740 815	671 747 823	679 755 831	686 762 838	694 770 846	702 778 853	709 785 861	717 793 868	724 800 876	732 808 884	1 2	0.8 1.6	7 0.7 1.4
74 75 76	891 967 76 042	899 974 050	906 982 057	914 989 065	921 997 072	929 *005 080	937 *012 087	944 *020 095	952 *027 103	959 *035 110	3 4 5 6 7	2.4 3.2 4.0 4.8	2.1 2.8 3.5 4.2
77 78 79	118 193 268	125 200 275	133 208 283	140 215 290	148 223 298	155 230 305	163 238 313	170 245 320	178 253 328	185 260 335	7 8 9	5.6 6.4 7.2	4.9 5.6 6.3
580	343	350	358	365	373	380	388	395	403	410			
81 82 83	418 492 567	425 500 574	433 507 582	515 589	448 522 597	455 530 604	462 537 612	470 545 619	477 552 626	485 559 634			
84 85 86	641 716 790	649 723 797	656 730 805	664 738 812	671 745 819	678 753 827	686 760 834	693 768 842	701 775 849	708 782 856			
. 87 . 88 . 89	864 938 77 012	871 945 019	879 953 026	886 960 034	893 967 041	901 975 048	908 982 056	916 989 063	923 997 070	930 *004 078			
590	085	093	100	107	115	122	129	137	144	151			
91 92 93	159 232 305	166 240 313	173 247 320	181 254 327	188 262 335	195 269 342	203 276 349	210 283 357	217 291 364	225 298 371			
94 95 96	379 452 525	386 459 532	393 466 539	401 474 546	408 481 554	415 488 561	422 495 568	430 503 576	437 510 583	444 517 590			
97 98 99	597 670 743	605 677 750	612 685 757	619 692 764	627 699 772	634 706 779	641 714 786	648 721 793	656 728 801	663 735 808		•	
600	815	822	830	837	844	851	859	866	873	880			
	0	1	2	3	4	5	6	7	8	9	<u> </u>	Ргор. Р	ts.

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
600	77 815	822	830	837	844	851	859	866	873	880	
01 02	887 960	895 967	902 974	909 981	916 988	924 996	931 *003	938 *010	945 *017	952 *025	
03	78 032	039	046	053	061	068	075	082	089	097	
04 05	104 176	111 183	118 190	125 197	132 204	140 211	147 219	154 226	161 233	168 240	
06	247	254	262	269	276	283	290	297	305	312	
07 08	319 390	326 398	333 405	340 412	347 419	355 426	362 433	369 440	376 447	383 455	
09	462	469	476	483	490	497	504	512	519	526	
610	533	540	547	554	561	569	576	583	590	597	
111	604 675	611 682	618 689	625 696	633 704	640 711	647 718	654 725	661 732	668 739	·
13	746	753	760	767	774	781	789	796	803	810	
14 15	817 888	824 895	831 902	838 909	845 916	852 923	859 930	866 937	873 944	880 951	j
15 16	958	965	972	979	986	993	*000	*007	*014	*021	
17 18	79 029 099	036 106	043 113	050 120	057	064 134	071 141	078 148	085 155	092 162	
19	169	176	183	190	127 197	204	211	218	225	232	
620	239	246	253	2 60	267	274	281	288	295	302	
$\frac{21}{22}$	309 379	316 386	323 393	330 400	337 407	344 414	351 421	358 428	365 435	372 442	$\begin{bmatrix} & 8 & 7 & 6 \\ 1 & 0.8 & 0.7 & 0.6 \end{bmatrix}$
23	449	456	463	470	477	484	491	498	505	511	2 1.6 1.4 1.2
24 25	518 588	525 595	532 602	539 609	546 616	553 623	560 630	567 637	574 644	581 650	4 3.2 2.8 2.4
26	657	664	671	678	685	692	699	706	713	720	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
27 28	727 796	734 803	741 810	748 817	754 824	761 831	768 837	775 844	782 851	789 858	7 5.6 4.9 4.2 8 6.4 5.6 4.8
29	865	872	879	886	893	900	906	913	920	927	9 7.2 6.3 5.4
630	934	941	948	955	962	969	975	982	989	996	
31 32	80 003 072	010 079	017 085	024 092	030 099	037 106	044 113	051 120	058 127	065 134	
33	140	147	154	161	168	175	182	188	195	202	
34 35	209 277	216 284	223 291	229 298	236 305	$\frac{243}{312}$	$\frac{250}{318}$	257 325	264 332	271 339	
36	346	353	359	366	373	380	387	393	400	407	
37 38	414 482	421 489	428 496	434 502	441 509	448 516	$\frac{455}{523}$	462 530	468 536	475 543	
39	550	557	564	570	577	584	591	598	604	611	
640	618	625	632	638	645	652	659	665	672	679	
. 42	686 754	693 760	699 767	706 774	713 781	720 787	$\begin{array}{c} 726 \\ 794 \end{array}$	733 801	740 808	747 814	
43	821	828	835	841	848	855	862	868	875	882	:
44 45	889 956	895 963	902 969	909 976	916 983	922 990	929 996	936 *003	943 *010	949 *017	
46	81 023	030	037	043	050	057	064	070	077	084	j
47 48	090 158	097 164	104 171	111 178	117 184	124 191	131 198	137 204	144 211	151 218	
49	224	231	238	245	251	258	265	271	278	285	
650	291	298	305	311	318	325	331	338	345	351	
£	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

Table 3. Number Logarithms

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
650	81 291	298	305	311	318	325	331	338	345	351	
51	358	365	371	378	385	391	398	405	411	418	
52	425	431	438	445	451	458	465	471	478	485	
53	491	498	505	511	518	525	531	538	544	551	
54	558	564	571	578	584	591	598	604	611	617	
55	624	631	637	644	651	657	664	671	677	684	
56	690	697	704	710	717	723	730	737	743	750	
57	757	763	770	776	783	790	796	803	809	816	-
58	823	829	836	842	849	856	862	869	875	882	
59	889	895	902	908	915	921	928	935	941	948	
660	954	961	968	974	981	987	994	*000	*007	*014	
61	82 020	027	033	040	046	053	060	066	073	079	
62	086	092	099	105	112	119	125	132	138	145	
63	151	158	164	171	178	184	191	197	204	210	
64	217	223	230	236	243	249	256	263	269	276	
65	282	289	295	302	308	315	321	328	334	341	
66	347	354	360	367	373	380	387	393	400	406	
67	413	419	426	432	439	445	452	458	465	471	
68	478	484	491	497	504	510	517	523	530	536	
69	543	549	556	562	569	575	582	588	595	601	
670	607	614	620	627	633	640	646	653	659	666	
71	672	679	685	692	698	705	711	718	724	730	7 6
72	737	743	750	756	763	769	776	782	789	795	1 0.7 0.6
73	802	808	814	821	827	834	840	847	853	860	2 1.4 1.2
74	866	872	879	885	892	898	905	911	918	924	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
75	930	937	943	950	956	963	969	975	982	988	
76	995	*001	*008	*014	*020	*027	*033	*040	*046	*052	
77	83 059	065	072	078	085	091	097	104	110	117	7 4.9 4.2
78	123	129	136	142	149	155	161	168	174	181	8 5.6 4.8
79	187	193	200	206	213	219	225	232	238	245	9 6.3 5.4
680	251	257	264	270	276	283	289	296	302	308	
81	315	321	327	334	340	347	353	359	366	372	
82	378	385	391	398	404	410	417	423	429	436	
83	442	448	455	461	467	474	480	487	493	499	
84	506	512	518	525	531	537	544	550	556	563	
85	569	575	582	588	594	601	607	613	620	626	
86	6 32	639	645	651	658	664	670	677	683	689	
87	696	702	708	715	721	727	734	740	746	753	
88	759	765	771	778	784	790	797	803	809	816	
89	822	828	835	841	847	853	860	866	872	879	
690	885	891	897	904	910	916	923	929	935	942	
91	948	954	960	967	973	979	985	992	998	*004	
92	84 011	017	023	029	036	042	048	055	061	067	
93	073	080	086	092	098	105	111	117	123	130	
94	136	142	148	155	161	167	173	180	186	192	
95	198	205	211	217	223	230	236	242	248	255	
96	261	267	273	280	286	292	298	305	311	317	
97	323	330	336	342	348	354	361	367	373	379	
98	386	392	398	404	410	417	423	429	435	442	
99	448	454	460	466	473	479	485	491	497	504	
700	510	516	522	528	535	541	547	553	559	566	
I	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
700	84 510	516	522	528	535	541	547	553	559	566	
01	572	578	584	590	597	603	609	615	621	628	
02	634	640	646	652	658	665	671	677	683	689	
03	696	702	708	714	720	726	733	739	745	751	
04	757	763	770	776	782	788	794	800	807	813	
05	819	825	831	837	844	850	856	862	868	874	
06	880	887	893	899	905	911	917	924	. 930	936	
07	942	948	954	960	967	973	979	985	991	997	
08	85 003	009	016	022	028	034	040	046	052	058	
09	065	071	077	083	089	095	101	107	114	120	
710	126	132	138	144	150	156	163	169	175	181	
11	187	193	199	205	211	217	224	230	236	242	
12	248	254	260	266	272	278	285	291	297	303	
13	309	315	321	327	333	339	345	352	358	364	
14	370	376	382	388	394	400	406	412	418	425	
15	431	437	443	449	455	461	467	473	479	485	
16	491	497	503	509	516	522	528	534	540	546	
17	552	558	564	570	576	582	588	594	600	606	
18	612	618	625	631	637	643	649	655	661	667	
19	673	679	685	691	697	703	709	715	721	727	
720	733	739	745	751	757	763	769	775	781	788	
21 22 23	79 1 854 914	800 860 920	806 866 926	812 872 932	818 878 938	824 884 944	830 890 950	836 896 956	842 902 962	848 908 968	7 6 5 1 0.7 0.6 0.5 2 1.4 1.2 1.0 3 2.1 1.8 1.5
24 25 26	974 86 034 094	980 040 100	986 046 106	$992 \\ 052 \\ 112$	998 058 118	*004 064 124	*010 070 130	*016 076 136	*022 082 141	*028 088 147	3 2.1 1.8 1.5 4 2.8 2.4 2.0 5 3.5 3.0 2.5 6 4.2 3.6 3.0
27	153	159	165	171	177	183	189	195	201	207	7 4.9 4.2 3.5
28	213	219	225	231	237	243	249	255	261	267	8 5.6 4.8 4.0
29	273	279	285	291	297	303	308	314	320	326	9 6.3 5.4 4.5
730	332	338	344	350	356	362	368	374	380	386	
31	392	398	404	410	415	421	427	433	439	445	
32	451	457	463	469	475	481	487	493	499	504	
33	510	516	522	528	534	540	546	552	558	564	
34	570	576	581	587	593	599	605	611	617	623	
35	629	635	641	646	652	658	664	670	676	682	
36	688	694	700	705	711	717	723	729	735	741	
37	747	753	759	764	770	776	782	788	794	800	ļ
38	806	812	817	823	829	835	841	847	853	859	
39	864	870	876	882	888	894	900	906	911	917	
740	923	929	935	941	947	953	958	964	970	976	
41	982	988	994	999	*005	*011	*017	*023	*029	*035	
42	87 040	046	052	058	064	070	075	081	087	093	
43	099	105	111	116	122	128	134	140	146	151	
44	157	163	169	175	181	186	192	198	204	210	
45	216	221	227	233	239	245	251	256	262	268	
46	274	280	286	291	297	303	309	315	320	326	
47	332	338	344	349	355	361	367	373	379	384	
48	390	396	402	408	413	419	425	431	437	442	
49	448	454	460	466	471	477	483	489	495	500	
750	506	512	518	523	529	535	541	547	552	558	
l	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

	0	1	2	3	4	5	6	7	8	9	P	Prop. P	ts.
750	87 506	512	518	523	529	535	541	547	552	558			
51 52 53	564 622 679	570 628 685	576 633 691	581 639 697	587 645 703	593 651 708	599 656 714	604 662 720	610 668 726	616 674 731			
54 55 56	737 795 852	743 800 858	749 806 864	754 812 869	760 818 875	766 823 881	772 829 887	777 835 892	783 841 898	789 846 904			
57 58 59	910 967 88 024	915 973 030	921 978 036	927 984 041	933 990 047	938 996 053	944 *001 058	950 *007 064	955 *013 070	961 *018 076			
760	081	087	093	098	104	110	116	121	127	133			
61 62 63	138 195 252	144 201 258	150 207 264	156 213 270	161 218 275	167 224 281	173 230 287	178 235 292	184 241 298	190 247 304			
64 65 66	309 366 423	315 372 429	321 377 434	326 383 440	332 389 446	338 395 451	343 400 457	349 406 463	355 412 468	360 417 474			
67 68 69	480 536 593	485 542 598	491 547 604	497 553 610	502 559 615	508 564 621	513 570 627	519 576 632	525 581 638	530 587 643			
770	649	655	660	666	672	677	683	689	694	700			_
71 72 73	705 762 818	711 767 824	717 773 829	722 779 835	728 784 840	734 790 846	739 795 852	745 801 857	750 807 863	756 812 868	1 2	0.6 1.2	5 0.5 1.0
74 75 76	874 930 986	880 936 992	885 941 997	891 947 *003	897 953 *009	902 958 *014	908 964 *020	913 969 *025	919 975 *031	925 981 *037	3 4 5 6	1.8 2.4 3.0 3.6	1.5 2.0 2.5 3.0
77 78 79	89 042 098 154	048 104 159	053 109 165	059 115 170	064 120 176	070 126 182	076 131 187	081 137 193	087 143 198	092 148 204	7 8 9	4.2 4.8 5.4	3.5 4.0 4.5
780	209	215	221	226	232	237	243	248	254	260			
81 82 83	265 321 376	271 326 382	276 332 387	282 337 393	287 343 398	293 348 404	298 354 409	304 360 415	310 365 421	315 371 426			
84 85 86	432 487 542	437 492 548	443 498 553	448 504 559	454 509 564	459 515 570	465 520 575	470 526 581	476 531 586	481 537 592			
87 88 89	597 653 708	603 658 713	609 664 719	614 669 724	620 675 730	625 680 735	631 686 741	636 .691 .746	642 697 752	647 702 757			
790	763	768	774	779	785	790	796	801	807	812			
91 92 93	818 873 927	823 878 933	829 883 938	834 889 944	840 894 949	845 900 955	851 905 960	856 911 966	862 916 971	867 922 977		•	
94 95 96	982 90 037 091	988 042 097	993 048 102	998 053 108	*004 059 113	*009 064 119	*015 069 124	*020 075 129	*026 080 135	*031 086 140			
97 98 99	146 200 255	151 206 260	157 211 266	162 217 271	168 222 276	173 227 282	179 233 287	184 238 293	189 244 298	195 249 304			
800	309	314	320	325	331	336	342	347	352	358			
	0	1	2	3	4	5	6	7	8	9	P	rop. P	s.

	0	1	2	3	4	5	6	7	8	9		Prop.	Pts.
800	90 309	314	320	325	331	336	342	347	352	358			
01 02 03	363 417 472	369 423 477	374 428 482	380 434 488	385 439 493	390 445 499	396 450 504	401 455 509	407 461 515	412 466 520			
04 05 06	526 580 634	531 585 639	536 590 644	542 596 650	547 601 655	553 607 660	558 612 666	563 617 671	569 623 677	574 628 682			
07 08 09	687 741 795	693 747 800	698 752 806	703 757 811	709 763 816	714 768 822	720 773 827	725 779 832	730 784 838	736 789 843	<u> </u>		
810	849	854	859	865	870	875	881	886	891	897			
11 12 13	902 956 91 009	907 961 014	913 966 020	918 972 025	924 977 030	929 982 036	934 988 041	940 993 046	945 998 052	950 *004 057			
14 15 16	062 116 169	068 121 174	073 126 180	078 132 185	084 137 190	089 142 196	094 148 201	100 153 206	105 158 212	110 164 217			
17 18 19	222 275 328	228 281 334	233 286 339	238 291 344	243 297 350	249 302 355	254 307 360	259 312 365	265 318 371	270 323 376			
820	381	387	392	397	403	408	413	418	424	429			_
21 22 23	434 487 540	440 492 545	445 498 551	450 503 556	455 508 561	461 514 566	466 519 572	471 524 577	477 529 582	482 535 587	1 2 3	0.6 1.2	0.5 1.0
24 25 26	593 645 698	598 651 703	603 656 709	609 661 714	614 666 719	619 672 724	624 677 730	630 682 735	635 687 740	640 693 745	3 4 5 6	1.8 2.4 3.0 3.6	1.5 2.0 2.5 3.0
27 28 29	751 803 855	756 808 861	761 814 866	766 819 871	772 824 876	777 829 882	782 834 887	787 840 892	793 845 897	798 850 903	7 8 9	4.2 4.8 5.4	3.5 4.0 4.5
830	908	913	918	924	929	934	939	944	950	955			
31 32 33	92_{065}^{960}	965 018 070	$971 \\ 023 \\ 075$	976 028 080	981 033 085	986 038 091	991 044 096	997 049 101	*002 054 106	*007 059 111			
34 35 36	117 169 221	122 174 226	127 179 231	132 184 236	137 189 241	143 195 247	$\begin{array}{c} {\bf 148} \\ {\bf 200} \\ {\bf 252} \end{array}$	153 205 257	158 210 262	163 215 267			
37 38 39	273 324 376	278 330 381	283 335 387	288 340 392	293 345 397	298 350 402	304 355 407	309 361 412	314 366 418	319 371 423			
840	428	433	438	443	449	454	459	464	469	474			
41 42 43	480 531 583	485 536 588	490 542 593	495 547 598	500 552 603	505 557 609	511 562 614	516 567 619	521 572 624	526 578 629			
44 45 46	634 686 737	$639 \\ 691 \\ 742$	645 696 747	650 701 752	655 706 758	660 711 763	665 716 768	670 722 773	675 727 778	681 732 783			
47 48 49	788 840 891	793 845 896	799 850 901	804 855 906	809 860 911	81 4 865 916	819 870 921	824 875 927	829 881 932	834 886 937			
850	942	947	952	957	962	967	973	978	983	988			
	0	1	2	3	4	5	6	7	8	9	I	Prop. P	ts.

	0	1	2	3	4	5	6	7	8	9	•	Prop	. Pts	,
850	92 942	947	952	957	962	967	973	978	983	988				
51 52 53	993 93 044 095	998 049 100	*003 054 105	*008 059 110	*013 064 115	*018 069 120	*024 075 125	*029 080 131	*034 085 136	*039 090 141				
54 55 56	146 197 247	151 202 252	156 207 258	161 212 263	166 217 268	171 222 273	176 227 278	181 232 283	186 237 288	192 242 293				
57 58 59	298 349 399	303 354 404	308 359 409	313 364 414	318 369 420	323 374 425	328 379 430	334 384 435	339 389 440	344 394 445			,	
860	450	455	460	465	470	475	480	485	490	495				
61 62 63	500 551 601	505 556 606	510 561 611	515 566 616	520 571 621	526 576 626	531 581 631	536 586 636	541 591 641	546 596 646	·			
64 65 66	651 702 752	656 707 757	661 712 762	666 717 767	671 722 772	676 727 777	682. 732 782	687 737 787	692 742 792	697 747 797				
67 68 69	802 852 902	807 857 907	812 862 912	817 867 917	822 872 922	827 877 927	832 882 932	837 887 937	842 892 942	847 . 897 947				
870	952	957	962	967	972	977	982	987	992	997				_
71 72 73	94 002 052 101	007 057 106	012 062 111	017 067 116	022 072 121	027 077 126	032 082 131	037 086 136	042 091 141	047 096 146	1 2	0.6 1.2	0.5 1.0	0.4 0.8
74 75 76	151 201 250	156 206 255	161 211 260	166 216 265	171 221 270	176 226 275	181 231 280	186 236 285	191 240 290	196 245 295	3 4 5 6	1.8 2.4 3.0 3.6	1.5 2.0 2.5 3.0	1.2 1.6 2.0 2.4
77 78 79	300 349 399	305 354 404	310 359 409	315 364 414	320 369 419	325 374 424	330 379 429	335 384 433	340 389 438	345 394 443	6 7 8 9	4.2 4.8 5.4	3.5 4.0 4.5	2.8 3.2 3.6
880	448	453	458	463	468	473	478	483	488	493				
81 82 83	498 547 596	503 552 601	507 557 606	512 562 611	517 567 616	522 571 621	527 576 626	532 581 630	537 586 635	542 591 640				
84 85 86	645 694 743	650 699 748	655 704 753	660 709 758	665 714 763	670 719 768	675 724 773	680 729 778	685 734 783	689 738 787				
87 88 89	792 841 890	797 846 895	802 851 900	807 856 905	812 861 910	817 866 915	822 871 919	827 876 924	832 880 929	836 885 934				
890	939	944	949	954	959	963	968	973	978	983				
91 92 93	988 95 036 085	993 041 090	998 046 0 95	*002 051 100	*007 056 105	*012 061 109	*017 066 114	*022 071 119	*027 075 124	*032 080 129				
94 95 96	134 182 231	139 187 236	143 192 240	148 197 245	153 202 250	158 207 255	163 211 260	168 216 265	173 221 270	177 226 274				
97 98 99	279 328 376	284 332 381	289 337 386	294 342 390	299 347 395	303 352 400	308 357 405	313 361 410	318 366 415	323 371 419				
900	424	429	434	439	444	448	453	458	463	468				
	0	1	2	3	4	5	6	7	8_	9	<u> </u>	Proj	Pts	l.

	0	1	2	3	4	5	6	7	8	9]	Prop. 1	Pts.
900	95 424	429	434	439	444	448	453	458	463	468			
01 02 03	472 521 569	477 525 574	482 530 578	487 535 583	492 540 588	497 545 593	501 550 598	506 554 602	511 559 607	516 564 612			
04 05 06	617 665 7 13	622 670 718	626 674 722	631 679 727	636 684 732	641 689 737	646 694 742	650 698 746	655 703 751	660 708 756			
07 08 09	761 809 856	766 813 861	770 818 866	775 823 871	780 828 875	785 832 880	789 837 885	794 842 890	799 847 895	804 852 899			
910	904	909	914	918	923	928	933	938	942	947	ļ		
11 12 13	952 999 96 _. 047	957 *004 052	961 *009 057	966 *014 061	971 *019 066	976 *023 071	980 *028 076	985 *033 080	990 *038 085	995 *042 090			
14 15 16	095 142 190	099 147 194	104 152 199	109 156 204	114 161 209	118 166 213	123 171 218	128 175 223	133 180 227	137 185 232			
17 18 19	237 284 332	242 289 336	246 294 341	251 298 346	256 303 350	261 308 355	265 313 360	270 317 365	275 322 369	280 327 374			
920	379	384	388	393	398	402	407	412	417	421			
21 22 23	426 473 520	431 478 525	435 483 530	440 487 534	445 492 539	450 497 544	454 501 548	459 506 553	464 511 558	468 515 562	1 2	0.5 1.0	0.4 0.8
24 25 26	567 614 661	572 619 666	577 624 670	581 628 675	586 633 680	591 638 685	595 642 689	600 647 694	605 652 699	609 656 703	3 4 5 6	1.5 2.0 2.5 3.0	1.2 1.6 2.0 2.4
27 28 29	708 755 802	713 759 806	717 764 811	722 769 816	727 774 820	731 778 825	736 783 830	741 788 834	745 792 839	750 797 844	7 8 9	3.5 4.0 4.5	2.8 3.2 3.6
930	848	853	858	862	867	872	876	881	886	890			
31 32 33	895 942 988	900 946 993	904 951 997	909 956 *002	914 960 *007	918 965 *011	923 970 *016	928 974 *021	932 979 *025	937 984 *030			
34 35 36	97 035 081 128	039 086 132	044 090 137	049 095 142	053 100 146	058 104 151	063 109 155	067 114 160	072 118 165	077 123 169			
37 38 39	174 220 267	179 225 271	183 230 276	188 234 280	192 239 285	197 243 290	202 248 294	206 253 299	211 257 304	216 262 308			
940	313	317	322	327	331	336	340	345	350	354			
41 42 43	359 405 451	364 410 456	368 414 460	373 419 465	377 424 470	382 428 474	387 433 479	391 437 483	396 442 488	400 447 493			
44 45 46	497 543 589	502 548 594	506 552 598	511 557 603	516 562 607	520 566 612	525 571 617	529 575 621	534 580 626	539 585 630			
47 48 49	635 681 727	640 685 731	644 690 736	649 695 740	653 699 745	658 704 749	663 708 754	667 713 759	672 717 763	676 722 768			
950	772	777	782	786	791	795	800	804	809	813			
	0	1	2	3	4	5	6	7	8	9	1	Prop. 1	Pts.

	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
950	97 772	777	782	786	791	795	800	804	809	813	
51	818	823	827	832	836	841	845	850	855	859	
52 53	864 909	868 914	873 918	877 923	882 928	886 932	891 937	896 941	900 946	905	
54	955	959	964	968	973	978	982	987	991	996	1
55	98 000	005	009	014	019	023	028	032	037	041	
56	046	050	055	059	064	068	073	078	082	087	
57 58	091 137	096 141	100 146	105 150	109 155	114 159	118 164	123 168	127 173	132 177	ļ
59	182	186	191	195	200	204	209	214	218	223	i
980	227	232	236	241	245	250	254	259	263	268	İ
61	272	277	281	286	290	295	299	304	308	313	
62 63	318 363	322 367	327 372	331 376	336 381	340 385	345 390	349 394	35 <u>4</u> 399	358 403	
64	408	412	417	421	426	430	435	439	444	ı	
65	453	457	462	466	471	475	480	484	489	448 493	
66	498	502	507	511	516	520	525	529	534	538	
67	543	547	552	556	561	565	570	574	579	583	
68 69	588 632	592 637	597 641	601 646	605 650	610 655	614 659	619 664	623 668	628 673	
970	677	682	686	691	695	700	704	709	713	717	
71	722	726	731	735	740	744	749	753	758	762	5 4
72 73	767 811	771 816	776 820	780 825	784 829	789 834	793	798	802	807	1 0.5 0.4
1	1					1	838	843	847	851	$egin{array}{c c c} 2 & 1.0 & 0.8 \\ 3 & 1.5 & 1.2 \\ \hline \end{array}$
74 75	856 900	860 905	865 909	869 914	874 918	878 923	883 927	887 932	892 936	896 941	4 2.0 1.6
76	945	949	954	958	963	967	972	976	981	985	$egin{array}{c c c} 5 & 2.5 & 2.0 \\ 6 & 3.0 & 2.4 \\ \hline \end{array}$
77	989	994	998	*003	*007	*012	*016	*021	*025	*029	7 3.5 2.8
78 79	99 034 078	038 083	043 087	047 092	052	056 100	061 105	065 109	069 114	074 118	8 4.0 3.2 9 4.5 3.6
980	123	127	131	136	140	145	149	154	158	162	
81	167	171	176	180	185	189	193	198	202	207	
82 83	211 255	216 260	220 264	224 269	$\frac{229}{273}$	233 277	238 282	242 286	247 291	251 295	
84	300	304	308	313	317	322	326	330	335	339	
85	344	348	352	357	361	366	370	374	379	383	
86	388	392	396	401	405	410	414	419	423	427	
87	432	436	441	445	449	454	458	463	467	471	
88 89	476 520	480 524	484 528	489 533	493 537	498 542	502 546	506 550	511 555	515 559	
990	564	568	572	577	581	585	590	594	599	603	
91	607	612	616	621	625	629	634	638	642	647	
92	651	656	660	664	669	673	677	682	686	691	
93	695	699	704	708	712	717	721	726	730	734	
94 95	739 782	743 787	747 791	752 795	756 800	760 804	765 808	769 813	774 817	778 822	
96	826	830	835	839	843	848	852	856	861	865	
97	870	874	. 878	883	887	891	896	900	904	909	
98 99	913 957	917 961	922 965	926 970	930 974	935 978	939 983	944 987	948 991	952 996	
1000	00 000	004	009	013	017	022	026	030	035	039	
	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
L'					•	. •		<u> </u>			

0° (180°)

(359°) 179°

0 ° (180°	')					(359°)	
,	Sin	Cos	Tan	Cot	Sec	Csc	
0		0.00 000			0.00 000		60
1	6.46 373	.00 000	6.46 373	3.53 627	.00 000	3.53 627	59
2	6.76 476	.00 000	6.76 476	3.23 524	.00 000	.23 524	58 57
3	6.94 085	.00 000	6.94 085	$3.05915 \\ 2.93421$.00 000	2.93 421	56
4	7.06 579	.00 000	7.06 579	2.83 730	0.00 000	2.83 730	55
5	7.16 270	0.00 000	7.16 270 .24 188	.75 812	.00 000	.75 812	54
6 7	.24 188 .30 882	.00 000	.30 882	.69 118	.00 000	.69 118	53
8	.36 682	.00 000	.36 682	.63 318	.00 000	.63 318	52
9	.41 797	.00 000	.41 797	.58 203	.00 000	.58 203	51
10	7.46 373	0.00 000	7.46 373	2.53 627	0.00 000	2.53 627	50
11	.50 512	.00 000	.50 512	.49 488	.00 000	.49 488	49
12	.54 291	.00 000	.54 291	.45 709	.00 000	.45 709	48
13	.57 767	.00 000	.57 767	.42 233	.00 000	.42 233	47
14	.60 985	.00 000	.60 986	.39 014	.00 000	.39 015	46
15	7.63 982	0.00 000	7.63 982	2.36 018	0.00 000	2.36 018	45 44
16	.66 784	.00 000	.66 785 .69 418	.33 215	.00 000	.33 216 .30 583	43
17	.69 417	9.99 999	.71 900	.30 582 .28 100	.00 001	.28 100	42
18 19	.71 900 .74 248	.99 999 .99 999	.74 248	.25 752	.00 001	.25 752	41
20	7.76 475	9.99 999	7.76 476	2.23 524	0.00 001	2.23 525	40
21	.78 594	.99 999	.78 595	.21 405	.00 001	.21 406	39
22	.80 615	.99 999	.80 615	.19 385	.00 001	.19 385	38
23	.82 545	.99 999	.82 546	.17 454	.00 001	.17 455	37
24	.84 393	.99 999	.84 394	.15 606	.00 001	.15 607	36
25	7.86 166	9.99 999	7.86 167	2.13 833	0.00 001	2.13 834	35
26	.87 870	.99 999	.87 871	.12 129	.00 001	.12 130	34
27	.89 509	.99 999	.89 510 .91 089	.10 490	.00 001	.10 491	33 32
28 29	.91 088 .92 612	.99 999 .99 998	.92 613	.08 911 .07 387	$.00\ 001$ $.00\ 002$.08 912 .07 388	31
30	7.94 084	9.99 998	7.94 086	2.05 914	0.00 002	2.05 916	30
31	.95 508	.99 998	.95 510	.04 490	.00 002	.04 492	29
32	.96 887	.99 998	.96 889	.03 111	.00 002	.03 113	28
33	.98 223	.99 998	.98 225	.01 775	.00 002	.01 777	27
34	.99 520	.99 998	.99 522	.00 478	.00 002	.00 480	26
35	8.00 779	9.99 998	8.00 781	1.99 219	0.00 002	1.99 221	25
36	.02 002	.99 998	.02 004	.97 996	.00 002	.97 998	24
37	.03 192	.99 997	.03 194	.96 806	.00 003	.96 808	23
38	.04 350	.99 997	.04 353	.95 647	.00 003	.95 650	$\frac{22}{21}$
39	.05 478	.99 997	8.06 581	1.93 419	0.00 003	.94 522 1.93 422	20
40 41	8.06 578 .07 650	9.99 997	.07 653	.92 347	.00 003	.92 350	19
42	.08 696	.99 997	.08 700	.91 300	.00 003	.91 304	18
43	.09 718	.99 997	.09 722	.90 278	.00 003	.90 282	17
44	.10 717	.99 996	.10 720	.89 280	.00 004	.89 283	16
45	8.11 693	9.99 996	8.11 696	1.88 304	0.00 004	1.88 307	15
46	.12 647	.99 996	.12 651	.87 349	.00 004	.87 353	14
47	.13 581	.99 996	.13 585	.86 415	.00 004	.86 419	13
48	.14 495	.99 996	.14 500	.85 500	.00 004	.85 505	12
49	.15 391	.99 996	.15 395	.84 605	.00 004	.84 609	11
50	8.16 268	9.99 995	8.16 273 .17 133	1.83 727 .82 867	0.00 005	1.83 732	10
51 52	.17 128	.99 995	.17 976	.82 024	.00 005	.82 872 .82 029	9 8
53	.18 798	.99 995	.18 804	.81 196	.00 005	.81 202	7
54	.19 610	.99 995	.19 616	.80 384	.00 005	.80 390	6
56	8.20 407	9.99 994	8.20 413	1.79 587	0.00 006	1,79 593	5
56	.21 189	.99 994	.21 195	.78 805	.00 006	.78,811	4
. 57	.21 958	.99 994	.21 964	.78 036	.00 006	.78 042	3 2
.58	.22 713	.99 994	.22 720	.77 280	.00 006	.77 287	
59	.23 456	.99 994	.23 462	.76 538	.00 006	.76 544	1
60	8:24 186	9.99 993	8.24 192	1.75 808	0.00 007	1.75 814	0
	Cos	Sin	Cot	Tan	Csc	Sec	,

1° (181°)

(358°) 178°

1 ° (181	٠)					(358°) 178°
	Sin	Cos	Tan	Cot	Sec	Csc	
0	8.24 186	9.99 993	8.24 192	1.75 808	0.00 007	1.75 814	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.24 903	.99 993	.24 910	.75 090	.00 007	.75 097	59
3	.25 609	.99 993	.25 616	.74 384	.00 007	.74 391	58
4	.26 988	.99 993	.26 312	.73 688 .73 004	.00 007	.73 696	57
5	8.27 661	9.99 992	.26 996		.00 008	.73 012	56
6	.28 324	.99 992	8.27 669	1.72 331 .71 668	0.00 008	1.72 339	55
7	.28 977	.99 992	.28 332 .28 986	.71 008	.00 008 .00 008	.71 676 .71 023	54 53
8	.29 621	.99 992	.29 629	.70 371	.00 008	.70 379	52
9	.30 255	.99 991	.30 263	.69 737	.00 009	.69 745	51
10	8.30 879	9.99 991	8.30 888	1.69 112	0.00 009	1.69 121	50
11	.31 495	.99 991	.31 505	.68 495	.00 009	.68 505	49
12	.32 103	.99 990	.32 112	.67 888	.00 010	.67 897	48
13	.32 702	.99 990	.32 711	.67 289	.00 010	.67 298	47
14	.33 292	.99 990	.33 302	.66 698	.00 010	.66 708	46
15	8.33 875	9.99 990	8.33 886	1.66 114	0.00 010	1.66 125	45
16	.34 450	.99 989	.34 461	.65 539	00.011	65 550	44
17 18	.35 018 .35 578	.99 989 .99 989	.35 029	.64 971	.00 011	.64 982	43 42
19	.36 131	.99 989	.35 590 .36 143	.64 410 .63 857	.00 011	.64 422 .63 869	42
20	8.36 678	9.99 988	8.36 689	1.63 311	0.00 011	1.63 322	40
21	.37 217	.99 988	.37 229	.62 771	.00 012	.62 783	39
22	.37 750	.99.988	.37 762	62 238	.00 012	.62 250	38
23	.38 276	.99 987	.38 289	.61 711	.00 013	.61 724	37
24	.38 796	.99 987	.38 809	.61 191	.00 013	.61 204	36
25	8.39 310	9.99 987	8.39 323	1.60 677	0.00 013	1.60 690	35
26	.39 818	.99 986	.39 832	.60 168	.00 014	.60 182	34
$\begin{array}{c} 27 \\ 28 \end{array}$.40 320	.99 986	.40 334	.59 666	.00 014	.59 680	33
28 29	.40 816 .41 307	.99 986 .99 985	.40 830 .41 321	.59 170 .58 679	.00 014	.59 184 .58 693	32 31
30	8.41 792	9.99 985	8.41 807	1.58 193	0.00 015	1.58 208	30
31	.42 272	.99 985	.42 287	.57 713	.00 015	.57 728	29
32	.42 746	.99 984	.42 762	.57 238	.00 016	.57 254	28
33	.43 216	.99 984	.43 232	.56 768	.00 016	.56 784	27
34	.43 680	.99 984	.43 696	.56 304	.00 016	.56 320	26
35	8.44 139	9.99 983	8.44 156	1.55 844	0.00 017	1.55 861	25
36	.44 594	.99 983	.44 611	.55 389	.00 017	.55 406	24
37	.45 044	.99 983	.45 061	.54 939	.00 017	.54 956	23
38	.45 489	.99 982	.45 507	.54 493	.00 018	.54 511	$\begin{array}{c} 22 \\ 21 \end{array}$
39 40	.45 930 8.46 366	.99 982	.45 948	.54 052	.00 018 0.00 018	.54 070 1.53 634	20
41	.46 799	9.99 982 .99 981	8.46 385 .46 817	1.53 615 .53 183	.00 018	.53 201	19
42	.47 226	.99 981	.47 245	.52 755	.00 019	.52 774	18
43	.47 650	.99 981	.47 669	.52 331	.00 019	.52 350	17
44	.48 069	.99 980	.48 089	.51 911	.00 020	.51 931	16
45	8.48 485	9.99 980	8.48 505	1.51 495	0.00 020	1.51 515	15
46	.48 896	.99 979	.48 917	.51 083	.00 021	.51 104	14
47	.49 304	.99 979	.49 325	.50 675	.00 021	.50 696	13
48	.49 708	.99 979	.49 729	.50 271	$.00\ 021$ $.00\ 022$.50 292 .49 892	$^{12}_{11}$
49	.50 108	.99 978	.50 130	.49 870 1.49 473	0.00 022	1.49 496	10
50 51	8.50 504 .50 897	9.99 978 .99 977	8.50 527 .50 920	.49 473	.00 022	.49 103	9
52	.51 287	.99 977	.50 920	.48 690	.00 023	.48 713	.8
53	.51 673	.99 977	.51 696	.48 304	.00 023	.48 327	-8 7
54	.52 055	.99 976	.52 079	.47 921	.00 024	.47 945	6
55	8.52 434	9.99 976	8.52 459	1.47 541	$0.00\ 024$	1.47 566	5
56	.52 810	.99 975	.52 835	.47 165	.00 025	.47 190	4
57	.53 183	.99 975	.53 208	.46 792	.00 025	.46 817	3
58	.53 552	.99 974	.53 578	.46 422	.00 026	.46 448	2
59	.53 919	.99 974	.53 945	.46 055	.00 026	.46 081	1
60	8.54 282	9.99 974	8.54 308	1.45 692	0,00 026	1.45 718	-
	Cos	Sin	Cot	Tan	Csc	Sec	

2° (182°) (357°) 177°

2° (182	°)					(357) 177°
,	Sin	Cos	Tan	Cot	Sec	Csc	,
0	8.54 282	9.99 974	8.54 308	1.45 692	0.00 026	1.45 718	50
1	.54 642	.99 973	.54 669	.45 331	.00 027	.45 358	59
2	.54 999	.99 973	.55 027	.44 973	.00 027	.45 001	58
3	.55 354	.99 972	.55 382	.44 618	.00 028	.44 646	57
4	.55 705	.99 972	.55 734	.44 266	.00 028	.44 295	56
5	8.56 054	9.99 971	8.56 083	1.43 917	0.00 029	1.43 946	55
6	.56 400	.99 971	.56 429	.43 571	.00 029	.43 600	54
7 8	.56 743	.99 970	.56 773	.43 227	.00 030	.43 257	53
	.57 084	.99 970	.57 114	.42 886	.00 030	.42 916	52
9	.57 421	.99 969	.57 452	.42 548	.00 031	.42 579	51
10	8.57 757	9.99 969	8.57 788	1.42 212	0.00 031	1.42 243	50
11	.58 089	.99 968	.58 121	.41 879	.00 032	.41 911	49
12	.58 419	.99 968	.58 451	.41 549	.00 032	.41 581	48
13	.58 747	.99 967	.58 779	.41 221	.00 033	.41 253	47
14	.59 072	.99 967	.59 105	.40 895	.00 033	.40 928	46
15	8.59 395	9.99 967	8.59 428	1.40 572	0.00 033	1.40 605	45
.16	.59 715	.99 966	.59 749	.40 251	.00 034	.40 285	44
17	.60 033	.99 966	.60 068	.39 932	.00 034	.39 967	43
18	.60 349	.99 965	.60 384	.39 616	.00 035	.39 651	42
19	.60 662	.99 964	.60 698	.39 302	.00 036	.39 338	41
20	8.60 973	9.99 964	8.61 009	1.38 991	0.00 036	1.39 027	40
21	.61 282	.99 963	.61 319	.38 681	.00 037	.38 718	39
$\begin{array}{c} 22 \\ 23 \end{array}$.61 589	.99 963	.61 626	.38 374	.00 037	.38 411	38
$\frac{23}{24}$.61 894 .62 196	.99 962 .99 962	.61 931 .62 234	.38 069	.00 038	.38 106	37 36
							1
25 26	8.62 497 .62 795	9.99 961	8.62 535	1.37 465 .37 166	0.00 039	1.37 503	35 34
20 27	.63 091	.99 960	.62 834 .63 131	.36 869	.00 039	.37 205 .36 909	33
28	.63 385	.99 960	.63 426	.36 574	.00 940	.36 615	32
29	.63 678	.99 959	.63 718	.36 282	.00 040	.36 322	31
30	8.63 968	9.99 959	8.64 009	1.35 991	0.00 041	1.36 032	30
31	.64 256	.99 958	.64 298	.35 702	.00 041	.35 744	29
$3\overline{2}$.64 543	.99 958	.64 585	.35 415	.00 042	.35 457	28
33	.64 827	.99 957	.64 870	.35 130	.00 043	.35 173	27
34	.65 110	.99 956	.65 154	.34 846	.00 044	.34 890	26
35	8.65 391	9.99 956	8.65 435	1.34 565	0.00 044	1.34 609	25
36	.65 670	.99 955	.65 715	.34 285	.00 045	.34 330	24
37	.65 947	.99 955	.65 993	.34 007	.00 045	.34 053	23
38	.66 223	.99 954	.66 269	.33 731	.00 046	.33 777	22
39	.66 497	.99 954	.66 543	.33 457	.00 046	.33 503	21
40	8.66 769	9.99 953	8.66 816	1.33 184	0.00 047	1.33 231	20
41	.67 039	.99 952	.67 087	.32 913	.00 048	.32 961	19
42	.67 308	.99 952	.67 356	.32 644	.00 048	.32 692	18
43	.67 575	.99 951	.67 624	.32 376	.00 049	.32 425	17
44	.67 841	.99 951	.67 890	.32 110	.00 049	.32 159	16
45	8.68 104	9.99 950	8.68 154	1.31 846	0.00 050	1.31 896	15
46	.68 367	.99 949	.68 417	.31 583	.00 051	.31 633	14
47	.68 627	.99 949	.68 678	.31 322	.00 051	.31 373	13
48	.68 886	.99 948	.68 938	.31 062	.00 052	.31 114	12
49	.69 144	.99 948	.69 196	.30 804	.00 052	.30 856	11
50	8.69 400	9.99 947	8.69 453	1.30 547	0.00 053	1.30 600	10
51	.69 654	.99 946	.69 708	.30 292	.00 054	.30 346	9
$\frac{52}{50}$.69 907	.99 946	.69 962	.30 038	.00 054	.30 093	8
53	.70 159	.99 945	.70 214	.29 786	.00 055	.29 841	7
54	.70 409	.99 944	.70 465	.29 535	.00 056	.29 591	6
55	8.70 658	9.99 944	8.70 714	1.29 286	0.00 056	$1.29\ 342$	5
56	.70 905	.99 943	.70 962	.29 038	.00 057	.29 095	4
57	.71 151	.99 942	.71 208	.28 792	.00 058	.28 849	3
58 59	.71 395	.99 942	.71 453	.28 547	.00 058	.28 605	2
	.71 638	.99 941	.71 697	.28 303	.00 059	.28 362	1
60	8.71 880	9.99 940	8.71 940	1.28 060	0.00 060	1.28 120	0_
	Cos	Sin	Cot	Tan	Csc	Sec	,

92° (272°)

3° (183°)

0 8.71 880 9.99 940 8.71 940 1.28 060 0.00 660 1.28 120 60 1 7.72 120 9.99 940 7.2 181 2.78 139 0.00 060 1.27 840 58 2 7.2 587 9.99 838 7.2 420 2.7 580 0.00 061 2.7 641 58 3 7.2 587 9.99 838 7.2 420 2.7 580 0.00 061 2.7 641 58 6 56 8.73 069 9.99 838 7.3 669 2.7 104 0.00 062 2.7 166 56 6 6 7.3 303 9.99 937 8.3 132 1.26 888 0.00 063 1.26 931 55 6 7.3 535 9.99 936 7.3 366 2.6 634 0.00 064 2.6 697 5.4 7.3 535 9.99 936 7.3 360 2.6 634 0.00 064 2.6 697 5.4 7.3 535 9.99 936 7.3 600 2.6 400 0.00 64 2.6 665 38 7.3 767 9.99 935 7.3 832 2.6 168 0.00 065 2.6 233 52 9 7.3 997 9.99 934 8.74 202 1.25 708 0.00 066 1.25 774 50 11 7.4 454 9.99 33 7.4 521 2.5 479 0.00 067 2.5 546 49 12 7.4 686 0.99 932 7.4 748 2.5 252 0.00 068 2.5 520 48 13 7.4 906 9.99 32 7.4 748 2.5 252 0.00 068 2.5 520 48 13 7.4 906 9.99 32 7.4 748 2.5 252 0.00 068 2.5 520 48 13 7.4 906 9.99 32 7.4 574 2.4 577 0.00 070 1.24 425 44 17 7.5 736 9.99 929 7.5 645 2.4 557 0.00 071 2.4 425 44 17 7.5 795 9.99 29 7.5 645 2.4 355 0.00 071 2.4 425 44 17 7.5 795 9.99 29 7.5 645 2.4 355 0.00 071 2.4 425 44 17 7.5 795 9.99 29 7.5 687 2.4 133 0.00 71 2.4 425 44 17 7.5 795 9.99 29 7.5 687 2.4 133 0.00 71 2.4 425 44 17 7.5 795 9.99 29 7.5 687 2.2 133 0.00 71 2.2 4205 43 18 7.6 0.15 9.99 28 7.6 0.3 19 3.0 0.07 2.2 3.95 54 22 1.7 6 687 9.99 29 7.5 687 2.2 133 0.00 071 2.2 4205 43 18 7.6 0.00 67 2.2 3 9.99 20 7.7 8 67 2.2 133 0.00 071 2.2 4205 43 18 7.6 0.15 9.99 28 7.6 0.00 67 2.2 3 9.9 30 8.7 4 38 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	3° (183°	?)					(356°)	176°
1			Cos	Tan	Cot	Sec	Csc	
2 72 359 .99 938 .72 690 .27 580 .00 061 .27 401 58 4 .72 834 .99 938 .72 696 .27 104 .00 062 .27 166 56 5 8.73 069 .99 937 8.73 132 1.26 888 .00 064 .26 997 .54 6 .73 303 .99 936 .73 600 .26 400 .00 064 .26 465 53 8 .73 767 .99 934 .74 063 .25 397 .00 066 .26 233 52 9 .73 997 .99 934 .74 063 .25 397 .00 066 .26 203 51 11 .74 454 .99 933 .74 521 .25 708 .00 066 .26 203 51 12 .74 680 .99 932 .74 748 .25 252 .00 068 .25 320 48 12 .74 680 .99 932 .74 748 .25 526 .00 068 .25 320 44 12 .75 635 .99 920 .75 645 .24 355 .00 071								
3 72 597 99 988 72 696 27 341 00 062 27 408 56 5 8.73 069 9.99 987 7.2 896 227 104 00 062 27 166 56 6 73 303 .99 936 .73 366 26 634 .00 064 26 465 53 8 73 73 67 .99 935 .73 800 .26 400 .00 064 .26 465 53 9 .73 997 .99 934 .74 063 .25 937 .00 066 .26 203 52 10 8.74 226 .99 934 .74 521 .25 479 .00 066 1.25 774 50 11 .74 546 .99 932 .74 574 .25 479 .00 066 1.25 744 50 12 .74 680 .99 932 .74 974 .25 026 .00 068 .25 320 48 13 .74 974 .25 026 .00 068 .25 324 48 14 .75 130 .99 931 .75 149 .24 57 .00 068 .25 044 40								
4 72 834 999 888 72 866 27 104 0.00 662 27 166 56 5 8.73 669 9.99 887 8.73 132 1.26 888 0.00 063 1.26 931 55 6 7.3 303 9.99 86 7.3 800 2.6 684 0.00 064 2.6 465 53 7 7.35 55 9.99 934 7.4 063 2.25 40 0.00 066 2.6 203 52 9 7.3 997 9.99 334 7.4 063 2.5 708 0.00 066 2.6 203 51 11 7.4 545 9.99 332 7.4 292 1.25 708 0.00 066 2.5 746 50 12 7.4 630 9.99 32 7.4 748 2.25 526 0.00 688 2.5 320 44 12 7.7 6306 9.99 320 7.5 474 2.25 526 0.00 688 2.5 340 47 14 7.5 136 9.99 329 7.5 645 2.4 355 0.00 71 2.2 487 45 15 8.75 353 9.99 20 7.5 645 2.2 358 0.00 71<	3							
5 8.73 069 9.99 937 8.73 182 1.26 868 0.00 063 1.26 931 55 7 7.33 53 .99 936 7.3 360 2.66 634 0.00 064 .26 697 .54 8 7.37 667 .99 935 7.3 832 .26 618 .00 065 .26 233 52 9 7.3 997 .99 934 8.74 292 1.25 798 .00 066 1.26 2003 51 10 8.74 226 9.99 934 8.74 292 1.25 479 .00 066 1.25 774 50 12 7.4 680 .99 932 7.74 571 .25 479 .00 066 1.25 744 50 13 7.74 906 .99 932 7.74 974 .25 522 .00 068 2.5 320 48 14 .75 130 .99 931 .75 199 .24 501 .00 069 2.24 874 45 15 8.75 525 .99 929 .75 645 .24 575 .00 070 1.24 647 45 17 .75 795 .99 920 .76 625 .23 413								
7 73 555 99 986 .73 600 .26 400 .00 064 .26 465 53 9 .73 997 .99 934 .74 063 .25 937 .00 066 .26 003 51 10 8.74 226 .99 934 .74 063 .25 937 .00 066 .26 003 51 11 .74 454 .99 932 .74 748 .25 252 .00 066 .25 320 48 12 .74 680 .99 932 .74 744 .25 252 .00 068 .25 320 48 13 .74 904 .99 931 .75 199 .24 801 .00 069 .24 870 46 14 .75 130 .99 931 .75 199 .24 801 .00 071 .24 425 44 16 .75 575 .99 929 .75 645 .24 355 .00 071 .24 425 44 17 .75 795 .99 929 .75 867 .23 913 .00 071 .24 425 42 17 .76 667 .99 926 .76 525 .99 927 .76 366	5	8.73 069	9.99 937	8.73 132	1.26 868	0.00 063	1.26 931	55
8 .73 767 .99 935 .73 822 .26 168 .00 065 .26 233 52 10 8.74 226 9.99 934 .74 063 .25 937 .00 066 .25 774 50 11 .74 454 .99 933 .74 521 .25 479 .00 067 .25 546 49 12 .74 680 .99 932 .74 748 .25 252 .00 068 .25 204 48 13 .74 906 .99 932 .74 748 .25 252 .00 068 .25 204 47 14 .75 130 .99 930 .75 492 .24 801 .00 069 .24 870 .00 070 .124 647 46 15 .875 353 .99 929 .75 867 .24 133 .00 071 .24 4205 43 18 .76 015 .99 929 .75 867 .24 133 .00 071 .24 4205 43 18 .76 234 .99 927 .76 306 .23 694 .00 073 .23 766 41 21 .76 627 .99 925 .76 742	6							
69 .73 997 .99 934 .74 063 .25 937 .00 066 .26 003 51 10 8.74 226 .99 934 .874 292 .1.25 708 .00 066 .25 774 50 11 .74 454 .99 932 .74 748 .25 252 .00 066 .25 774 474 12 .74 680 .99 932 .74 748 .25 252 .00 068 .25 320 48 13 .74 906 .99 931 .75 199 .24 801 .00 069 .24 870 46 15 .8.75 353 .99 931 .75 199 .24 801 .00 071 .24 425 44 16 .75 575 .99 929 .75 645 .24 355 .00 071 .24 425 44 17 .75 795 .99 928 .76 645 .24 355 .00 071 .24 425 44 18 .76 1795 .99 928 .76 087 .23 913 .00 072 .23 985 42 20 .876 451 .99 926 .76 752 .99 926 .76 752								
10 8.74 226 9.99 934 8.74 292 1.25 708 0.00 0667 1.25 774 50 11 .74 454 .99 933 .74 521 .25 479 .00 067 .25 546 49 12 .74 680 .99 932 .74 748 .25 252 .00 068 .25 320 48 14 .75 130 .99 931 .75 199 .24 801 .00 069 .24 870 46 15 8.75 353 .99 930 .875 423 1.24 577 .00 070 1.24 425 44 16 .75 575 .99 929 .75 867 .24 133 .00 071 .24 4205 43 18 .76 015 .99 928 .76 087 .23 913 .00 072 .23 985 42 20 .876 451 .99 926 .76 742 .23 255 .00 074 1.23 549 40 21 .76 687 .99 925 .76 958 .23 042 .00 075 .23 117 33 39 22 .76 583 .99 925 .76 958 .23 042								
11 .74 454 .99 933 .74 521 .25 479 .00 067 .25 546 49 12 .74 680 .99 932 .74 747 .25 026 .00 068 .25 294 47 14 .75 130 .99 931 .75 199 .24 801 .00 069 .24 870 46 15 8.75 353 .99 930 .87 428 .124 577 .00 070 .24 425 44 16 .75 575 .99 929 .75 645 .24 355 .00 071 .24 425 44 17 .75 795 .99 928 .76 687 .24 355 .00 072 .23 985 42 19 .76 234 .99 927 .76 306 .23 694 .00 073 .23 766 41 20 .876 451 .99 928 .76 672 .23 258 .00 074 .23 333 39 21 .76 667 .99 923 .77 387 .22 613 .00 077 .22 903 37 24 .77 310 .99 921 .77 173 .22 87 .00 076								
12 74 680 99 932 74 748 25 252 00 068 25 320 4 47 13 74 906 99 931 7.5 199 24 801 .00 069 .24 870 46 15 8.75 353 9.99 930 8.75 423 1.24 577 .00 070 1.24 425 44 16 7.5 575 .99 929 7.5 667 24 133 .00 071 .24 425 44 17 7.5 795 .99 928 .76 687 .24 133 .00 071 .24 205 43 18 .76 015 .99 928 .76 686 .23 694 .00 073 .23 766 42 19 .76 234 .99 926 .76 6525 .23 475 .00 074 .23 333 39 22 .76 883 .99 925 .76 958 .23 042 .00 074 .23 333 39 23 .77 910 .99 923 .77 387 .22 613 .00 076 .22 903 37 24 .77 310 .99 921 .78 97 .22 163 .00 077 .12 2478 35 26 8.77 522 .99 923 .87 630 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
14 75 130 99 931 7.5 199 2.4 800 00 69 2.4 870 45 16 7.5 575 99 929 7.5 645 2.4 355 00 071 1.24 647 44 17 7.5 795 99 929 7.5 867 2.4 135 00 071 2.4 425 44 18 7.6 13 99 28 7.6 087 23 913 00 072 2.3 985 42 20 8.76 451 9.99 26 7.6 652 1.23 475 00 774 2.3 333 39 21 7.6 883 9.99 25 7.6 652 1.23 475 00 776 22 333 39 22 7.7 31 .99 22 .77 387 .22 613<	12		.99 932	.74 748	.25 252		.25 320	
15 8.75 353 9.99 930 8.75 423 1.24 577 0.00 070 1.24 647 45 16 .75 575 .99 929 .75 645 .24 355 .00 071 .24 255 44 17 .75 795 .99 929 .75 867 .24 133 .00 071 .24 205 43 19 .76 234 .99 927 .76 306 .23 694 .00 073 .23 766 41 20 8.76 451 9.99 926 .76 742 .23 258 .00 074 1.23 549 40 21 .76 667 .99 925 .76 762 .23 258 .00 074 1.23 549 40 22 .76 687 .99 921 .76 77 732 .28 267 .00 075 .23 117 38 23 .77 7907 .99 923 .77 877 .22 827 .00 076 .22 903 36 25 8.77 522 .99 923 .77 817 .22 287 .00 077 .22 203 36 25 8.77 522 .99 921 .78 222 .21 78 .00 077								
16 75 575 .99 929 .75 645 .24 355 .00 071 .24 425 44 17 .75 795 .99 929 .75 867 .24 133 .00 072 .23 985 42 19 .76 234 .99 927 .76 806 .23 694 .00 072 .23 985 42 20 8.76 451 .99 926 .876 525 1.23 475 .00 074 .23 549 40 21 .76 667 .99 926 .76 742 .23 258 .00 074 .23 333 39 22 .76 883 .99 925 .76 752 .23 258 .00 075 .23 117 33 23 .77 97 .99 924 .77 173 .22 827 .00 076 .22 903 37 24 .77 310 .99 922 .77 811 .22 189 .00 077 .22 478 35 26 .77 733 .99 922 .78 111 .22 189 .00 077 .22 478 35 27 .77 943 .99 912 .78 232 .21 768 .00 078								
17 .75 795 .99 929 .75 867 .24 133 .00 071 .24 205 43 18 .76 015 .99 928 .76 087 .23 913 .00 072 .23 985 42 20 8.76 451 .99 926 .876 525 1.23 475 0.00 074 1.23 549 40 21 .76 687 .99 926 .876 525 1.23 475 0.00 074 1.23 549 40 21 .76 687 .99 924 .77 173 22 827 0.00 075 .23 117 38 23 .77 097 .99 924 .77 173 .22 827 0.00 076 .22 903 37 24 .77 310 .99 923 .877 600 1.22 400 0.00 077 1.22 478 35 26 .77 733 .99 921 .78 600 1.22 400 0.00 077 1.22 478 35 27 .77 443 .99 921 .78 622 .21 978 .00 079 22 257 34 28 .78 152 .99 910 .78 441 .21 559 .00 08								
18 76 015 99 928 76 087 23 913 .00 072 23 985 42 20 8.76 451 9.99 926 8.76 525 1.23 475 .00 00 074 1.23 549 40 21 7.6 667 9.99 926 7.6 742 23 258 .00 074 23 333 39 22 7.6 883 9.99 924 .77 173 22 827 .00 076 .23 117 38 23 7.7 310 9.99 923 .77 387 .22 613 .00 077 .22 690 36 25 8.77 522 9.99 923 .87 600 1.22 189 .00 077 .22 478 35 26 .77 733 .99 922 .77 811 .22 189 .00 077 .22 478 35 27 .77 943 .99 920 .78 222 .21 78 .00 079 .22 267 34 29 .78 360 .99 920 .78 441 .21 559 .00 080 .21 848 32 29 .78 565 .99 918 .78 555 .21 145 .00 085								
20 8.76 451 9.99 926 8.76 525 1.23 475 0.00 074 1.23 549 40 21 .76 667 .99 926 .76 742 .23 258 .00 074 .23 333 39 22 .76 883 .99 925 .76 958 .30 42 .00 076 .22 903 .37 23 .77 097 .99 924 .77 173 .22 827 .00 076 .22 903 .36 24 .77 310 .99 923 .77 807 .22 607 .36 .00 077 .22 690 .36 25 .87 522 .99 923 .877 600 1.22 400 .00 077 .22 690 .36 26 .77 733 .99 921 .78 11 .22 189 .00 079 .22 267 .34 27 .77 943 .99 920 .78 232 .21 78 .00 079 .22 267 .34 29 .78 360 .99 901 .78 222 .21 78 .00 080 .21 640 .31 30 .8.78 568 .99 919 .8.78 649 1.21 351 <th></th> <td></td> <td></td> <td>.76 087</td> <td></td> <td></td> <td>.23 985</td> <td>42</td>				.76 087			.23 985	42
21 .76 667 .99 926 .76 742 .23 258 .00 074 .23 333 39 22 .76 883 .99 925 .76 958 .23 042 .00 075 .23 117 38 23 .77 097 .99 924 .77 173 .22 827 .00 076 .22 903 37 24 .77 310 .99 923 .77 887 .22 613 .00 077 .22 690 36 25 8.77 522 .99 923 .87 800 .00 078 .22 267 34 26 .77 733 .99 921 .78 822 .21 978 .00 079 .22 267 34 27 .77 943 .99 921 .78 232 .21 768 .00 080 .21 848 32 28 .78 152 .99 920 .78 841 .21 559 .00 080 .21 848 32 29 .78 846 .99 917 .79 061 .00 082 .21 266 29 31 .78 774 .99 918 .78 855 .21 145 .00 082 .21 262 29	19	.76 234						
22 .76 883 .99 9.55 .76 9.58 .23 0.22 .00 0.75 .23 1.17 38 23 .77 90 9.24 .77 1.73 22 8.27 .00 0.76 .22 903 36 25 8.77 522 9.99 9.23 8.77 600 1.22 400 0.00 0.77 1.22 478 36 26 .77 733 .99 922 .77 811 .22 189 .00 0.077 1.22 478 36 27 .77 943 .99 920 .78 421 .00 0077 1.22 478 36 29 .78 360 .99 920 .78 421 .21 205 .00 080 .21 484 32 30 .78 578 .99 11 .79 961 .20 39 .00								
23 .77 097 .99 924 .77 173 .22 827 .00 076 .22 903 36 25 8.77 522 9.99 923 8.77 600 1.22 400 .00 077 .22 478 35 26 .77 733 .99 921 .78 012 .24 00 .00 078 .22 267 34 27 .77 943 .99 921 .78 022 .21 978 .00 079 .22 267 34 28 .78 152 .99 920 .78 232 .21 768 .00 080 .21 848 32 29 .78 360 .99 920 .78 232 .21 768 .00 080 .21 640 31 30 .878 568 .99 918 .78 855 .21 145 .00 082 .21 226 29 31 .78 774 .99 918 .78 855 .21 145 .00 083 .21 021 28 33 .79 183 .99 917 .79 061 .20 939 .00 083 .21 021 28 35 .8.79 588 .99 915 .8.79 673 1.20 327 .00 085							.23 333	
24 .77 310 .99 923 .77 387 .22 613 .00 077 .22 690 36 25 8.77 522 9.99 923 8.77 600 1.22 400 .00 077 1.22 478 35 26 .77 733 .99 921 .78 022 .21 978 .00 079 .22 057 34 27 .79 43 .99 920 .78 232 .21 768 .00 080 .21 848 32 29 .78 360 .99 920 .78 441 .21 559 .00 080 .21 848 32 30 8.78 568 9.99 919 8.78 649 1.21 351 .00 081 1.21 432 30 31 .78 774 .99 918 .78 855 .21 145 .00 082 .21 226 29 32 .78 979 .99 917 .79 266 .20 734 .00 083 .20 817 27 34 .79 386 .99 915 8.79 673 1.20 327 .00 085 .10 412 26 35 8.79 588 .99 911 8.70 673 1.20 327 .00 085<								
25 8.77 522 9.99 923 8.77 600 1.22 400 0.00 077 1.22 478 35 26 .77 733 .99 921 .78 022 .21 978 .00 079 .22 267 34 27 .77 943 .99 920 .78 232 .21 778 .00 079 .22 057 33 28 .78 152 .99 920 .78 232 .21 778 .00 080 .21 640 31 30 .878 568 9.99 919 .78 841 .21 559 .00 080 .21 448 32 31 .78 774 .99 918 .78 855 .21 145 .00 081 .21 226 29 32 .78 879 .99 917 .79 666 .20 734 .00 083 .21 021 28 33 .79 183 .99 916 .79 470 .20 530 .00 084 .20 614 26 35 8.79 588 .99 914 .79 875 .20 125 .00 086 .20 211 24 36 79 789 .99 913 .80 076 .19 924 .00 085								
27 .77 943 .99 921 .78 022 .21 778 .00 079 .22 057 33 28 .78 152 .99 920 .78 232 .21 768 .00 080 .21 640 31 30 8.78 568 9.99 918 .78 649 1.21 351 0.00 081 .21 140 31 31 .78 774 .99 918 .78 855 .21 145 .00 082 .21 229 32 .78 979 .99 917 .79 061 .20 332 .00 083 .20 121 28 33 .79 183 .99 917 .79 266 .20 734 .00 083 .20 817 27 34 .00 83 .20 121 24 .00 81 .20 112 24 <th></th> <td></td> <td></td> <td>8.77 600</td> <td>1.22 400</td> <td>0.00 077</td> <td></td> <td></td>				8.77 600	1.22 400	0.00 077		
28 .78 152 .99 920 .78 232 .21 768 .00 080 .21 848 32 299 .78 360 .99 920 .78 441 .21 559 .00 080 .21 640 31 30 8.78 568 9.99 919 8.78 649 1.21 351 .00 081 .12 1432 30 31 .78 774 .99 918 .78 855 .21 145 .00 082 .21 226 29 32 .78 979 .99 917 .79 266 .20 734 .00 083 .21 021 28 33 .79 183 .99 916 .79 470 .20 530 .00 084 .20 614 26 35 8.79 588 9.99 915 .79 470 .20 530 .00 085 1.20 412 24 36 .79 789 .99 914 .79 875 .20 125 .00 085 1.20 412 25 36 .79 789 .99 913 .80 076 .19 924 .00 087 .20 101 23 38 .80 189 .99 913 .80 674 .19 524 .00 087								
29 .78 360 .99 920 .78 441 .21 559 .00 080 .21 640 31 30 8.78 568 9.99 919 8.78 649 1.21 351 0.00 081 1.21 432 30 31 .78 774 .99 917 .79 061 .20 939 .00 082 .21 226 29 32 .78 979 .99 917 .79 061 .20 939 .00 083 .21 021 28 33 .79 183 .99 917 .79 266 .20 734 .00 083 .20 614 26 35 8.79 588 .99 916 .79 470 .20 530 .00 084 .20 614 26 36 .79 789 .99 914 .79 875 .20 125 .00 086 .20 211 24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 913 .80 277 .19 723 .00 087 .19 811 22 40 8.80 585 9.99 911 .80 674 .19 524 .00 088								
30 8.78 568 9.99 919 8.78 649 1.21 351 0.00 081 1.21 432 30 31 78 774 .99 918 .78 855 .21 145 .00 082 .21 226 29 32 .78 979 .99 917 .79 266 .20 939 .00 083 .21 021 28 33 .79 183 .99 917 .79 266 .20 734 .00 083 .20 817 27 34 .79 386 .99 915 8.79 673 1.20 327 .00 084 .20 614 26 35 8.79 588 .99 915 8.79 673 1.20 327 .00 085 1.20 412 25 36 .79 789 .99 914 .79 875 .20 125 .00 086 .20 211 24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 911 8.80 674 1.19 326 .00 087 .19 811 22 40 8.80 585 9.99 911 8.80 674 1.19 326 .00 0								
31 .78 774 .99 918 .78 855 .21 145 .00 082 .21 226 29 32 .78 979 .99 917 .79 061 .20 939 .00 083 .21 021 28 33 .79 188 .99 916 .79 470 .20 530 .00 084 .20 614 26 34 .79 386 .99 916 .79 470 .20 530 .00 084 .20 614 26 35 8.79 588 .99 915 8.79 673 1.20 327 .00 085 1.20 412 25 36 .79 789 .99 914 .79 875 .20 125 .00 086 .20 211 24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 912 .80 476 .19 524 .00 087 .19 811 22 40 8.80 585 .99 911 8.80 674 1.19 326 .00 087 .19 812 21 41 .80 782 .99 910 .80 872 .19 128 .00 090		1		1				30
33 .79 183 .99 917 .79 266 .20 734 .00 083 .20 817 27 34 .79 386 .99 916 .79 470 .20 530 .00 084 .20 614 .26 35 8.79 588 9.99 915 8.79 673 1.20 327 .00 086 .20 211 .24 36 .79 789 .99 914 .79 875 .20 125 .00 086 .20 211 .24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 .23 38 .80 189 .99 912 .80 476 .19 524 .00 087 .19 811 .22 39 .80 388 .99 912 .80 476 .19 524 .00 088 .19 612 .19 612 .19 524 .00 088 .19 612 .19 524 .00 089 .19 415 .20 099 .19 612 .19 524 .00 089 .19 415 .20 099 .19 624 .00 090 .19 218 19 19 22 .18 811 .20 099 .19 624 .00 090 .19 221 .18 81 .18 814					.21 145	.00 082	.21 226	
34 .79 386 .99 916 .79 470 .20 530 .00 084 .20 614 26 35 8.79 588 9.99 915 8.79 673 1.20 327 0.00 085 1.20 412 25 36 .79 789 9.99 914 .79 875 .20 125 .00 086 .20 211 24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 913 .80 277 .19 723 .00 087 .19 811 22 39 .80 388 .99 912 .80 476 .19 524 .00 087 .19 811 22 40 .80 585 .99 911 .80 674 1.19 326 .00 089 1.19 415 20 41 .80 782 .99 910 .80 872 .19 128 .00 090 .19 218 19 42 .80 978 .99 909 .81 264 .18 736 .00 091 .18 827 17 44 .81 367 .99 908 .81 459 .18 541 .00 092	32							
35 8.79 588 9.99 915 8.79 673 1.20 327 0.00 085 1.20 412 25 36 .79 789 .99 914 .79 875 .20 125 .00 086 .20 211 24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 913 .80 277 .19 723 .00 087 .19 811 22 39 .80 388 .99 912 .80 476 .19 524 .00 088 .19 612 21 40 8.80 585 .99 911 8.80 674 1.19 326 .00 089 .19 415 20 41 .80 782 .99 910 .80 872 .19 128 .00 090 .19 218 19 42 .80 978 .99 909 .81 264 .18 736 .00 091 .18 827 17 44 .81 367 .99 908 .81 459 .18 541 .00 092 .18 633 16 45 .8.1 560 .99 907 .8.1 653 .1.8 47 .00 094 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
36 79 789 .99 914 79 875 .20 125 .00 086 .20 211 24 37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 912 .80 476 .19 524 .00 088 .19 811 22 39 .80 388 .99 912 .80 476 .19 524 .00 088 .19 612 21 40 8.80 585 9.99 911 .80 674 1.19 326 .00 090 .19 218 20 41 .80 782 .99 910 .80 872 .19 128 .00 090 .19 218 20 42 .80 788 .99 909 .81 068 .18 932 .00 091 .19 222 18 43 .81 173 .99 908 .81 459 .18 541 .00 092 .18 633 16 45 8.81 560 .99 906 .81 653 .18 347 .00 093 .18 440 15 46 .81 752 .99 906 .82 038 .17 962 .00 094								
37 .79 990 .99 913 .80 076 .19 924 .00 087 .20 010 23 38 .80 189 .99 913 .80 277 .19 723 .00 087 .19 811 22 39 .80 388 .99 912 .80 476 .19 524 .00 088 .19 612 21 40 8.80 585 .99 911 8.80 674 1.19 326 .00 090 .19 218 19 41 .80 782 .99 910 .80 872 .19 128 .00 090 .19 218 19 42 .80 978 .99 909 .81 068 .18 932 .00 091 .19 222 18 43 .81 173 .99 908 .81 459 .18 541 .00 092 .18 633 16 45 .81 560 .9.99 907 .81 653 .1.8 347 .00 093 .18 440 15 46 .81 752 .99 906 .81 846 .18 154 .00 094 .18 248 14 47 .81 944 .99 904 .82 230 .17 770 .00 096								
38 80 189 .99 913 .80 277 .19 723 .00 087 .19 811 22 40 8.80 585 .99 911 8.80 674 1.19 326 .00 088 1.19 415 20 41 .80 782 .99 910 8.80 674 1.19 326 .00 090 .19 218 19 42 .80 978 .99 909 .81 068 .18 932 .00 091 .19 022 18 43 .81 173 .99 909 .81 264 .18 541 .00 092 .18 633 16 45 8.81 560 .99 907 8.81 653 1.18 347 0.00 093 .18 440 15 46 .81 752 .99 906 .81 846 .18 154 .00 094 .18 248 14 47 .81 944 .99 905 .82 038 .17 962 .00 095 .18 056 13 48 .82 134 .99 904 .82 230 .17 770 .00 096 .17 866 12 49 .82 324 .99 903 .82 610 1.17 390 .00 097				.80 076		.00 087		
40 8.80 585 9.99 911 8.80 674 1.19 326 0.00 089 1.19 415 20 41 80 782 .99 910 .80 872 .19 128 .00 090 .19 218 19 42 .80 978 .99 909 .81 068 .18 932 .00 091 .19 218 19 43 .81 173 .99 909 .81 264 .18 736 .00 091 .18 827 17 44 .81 367 .99 908 .81 459 .18 541 .00 092 .18 633 16 45 .8.1 560 9.99 907 .8.1 653 1.18 347 .00 093 .18 440 15 46 .81 752 .99 906 .81 846 .18 154 .00 094 .18 248 14 47 .81 944 .99 905 .82 038 .17 962 .00 095 .18 056 13 48 .82 134 .99 904 .82 230 .17 770 .00 096 .17 676 11 50 .8.2 513 9.99 903 .8.2 610 1.17 390 .00 096 </th <th>38</th> <th></th> <th></th> <th>.80 277</th> <th></th> <th></th> <th></th> <th></th>	38			.80 277				
41								-
42 .80 978 .99 909 .81 068 .18 932 .00 091 .19 022 18 43 .81 173 .99 908 .81 264 .18 736 .00 091 .18 827 17 44 .81 367 .99 908 .81 459 .18 541 .00 091 .18 633 16 45 .8.1 560 .99 907 .8.1 653 1.18 347 0.00 093 1.18 440 15 46 .81 752 .99 906 .81 846 .18 154 .00 094 .18 248 14 47 .81 944 .99 905 .82 038 .17 962 .00 095 .18 056 12 48 .82 134 .99 904 .82 230 .17 750 .00 096 .17 866 12 49 .82 324 .99 904 .82 420 .17 580 .00 096 .17 676 11 50 .8.2 513 .9.99 903 .82 799 .17 201 .00 098 .17 299 9 51 .82 701 .99 902 .82 799 .17 201 .00 098								
43 .81 173 .99 909 .81 264 .18 736 .00 091 .18 827 17 44 .81 367 .99 908 .81 459 .18 541 .00 092 .18 633 16 45 8.81 560 9.99 907 8.81 653 1.18 347 .00 093 .18 440 15 46 .81 752 .99 906 .81 846 .18 154 .00 094 .18 248 14 47 .81 944 .99 905 .82 038 .17 962 .00 096 .17 866 12 48 .82 134 .99 904 .82 230 .17 780 .00 096 .17 676 11 50 8.82 513 9.99 903 8.82 610 1.17 390 .00 096 .17 487 10 51 .82 701 .99 902 .82 799 .17 201 .00 098 .17 299 9 52 .82 888 .99 900 .83 175 .16 825 .00 100 .16 739 6 54 .83 261 .99 898 .83 361 .16 639 .00 101								18
45 8.81 560 9.99 907 8.81 653 1.18 347 0.00 093 1.18 440 15 46 .81 752 .99 906 .81 846 .18 154 .00 094 .18 248 14 47 .81 944 .99 905 .82 038 .17 962 .00 095 .18 056 13 48 .82 134 .99 904 .82 230 .17 770 .00 096 .17 866 12 49 .82 324 .99 904 .82 420 .17 580 .00 096 .17 676 11 50 8.82 513 9.99 902 .82 709 .17 201 .00 096 .17 487 10 51 .82 701 .99 902 .82 799 .17 201 .00 099 .17 112 8 53 .83 075 .99 900 .83 175 .16 825 .00 100 .16 739 6 54 .83 261 .99 899 .83 3547 1.16 453 .00 102 1.16 739 6 55 .83 446 9.99 898 .83 547 1.16 453 .00 102								
46								
47 .81 944 .99 905 .82 038 .17 962 .00 095 .18 056 13 48 .82 134 .99 904 .82 230 .17 770 .00 096 .17 866 12 49 .82 324 .99 904 .82 420 .17 580 .00 096 .17 676 11 50 8.82 513 9.99 903 8.82 610 1.17 390 .00 097 1.17 487 10 51 8.2 701 .99 902 .82 799 .17 201 .00 098 .17 299 9 52 82 888 .99 901 .82 987 .17 013 .00 099 .17 112 8 53 83 075 .99 900 .83 175 .16 825 .00 100 .16 925 7 54 .83 261 .99 899 .83 361 .16 639 .00 101 .16 739 6 55 .83 446 9.99 898 .83 732 .16 268 .00 102 .16 554 5 56 .83 630 .99 896 .84 100 .15 900 .00 104 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
48 82 134 .99 904 .82 230 .17 770 .00 096 .17 866 12 49 .82 324 .99 904 .82 420 .17 580 .00 096 .17 676 11 50 8.82 513 9.99 903 8.82 610 1.17 390 0.00 097 1.17 487 10 51 .82 701 .99 902 .82 799 .17 201 .00 098 .17 299 9 52 .82 888 .99 901 .82 987 .17 013 .00 099 .17 112 8 53 .83 075 .99 900 .83 175 .16 825 .00 100 .16 739 6 54 .83 261 .99 899 .83 361 .16 639 .00 101 .16 739 6 55 .83 630 .99 898 .83 547 1.16 453 0.00 102 1.16 554 5 56 .83 630 .99 898 .83 732 .16 268 .00 102 .16 370 4 57 .83 813 .99 897 .83 916 .16 084 .00 103								
49 .82 324 .99 904 .82 420 .17 580 .00 096 .17 676 11 50 8.82 513 9.99 903 8.82 610 1.17 390 0.00 097 1.17 487 10 51 .82 701 .99 902 .82 799 .17 201 .00 098 .17 299 9 52 .82 888 .99 901 .82 987 .17 013 .00 099 .17 112 8 53 .83 075 .99 900 .83 175 .16 825 .00 100 .16 739 6 54 .83 261 .99 899 .83 361 .16 639 .00 102 .16 739 6 55 .8.83 446 9.99 898 .83 547 1.16 453 .00 102 .16 739 6 56 .83 630 .99 898 .83 732 .16 268 .00 102 .16 370 4 57 .83 813 .99 897 .83 916 .16 084 .00 103 .16 187 58 .83 996 .99 896 .84 282 .15 718 .00 105 .15 823							.17 866	12
50 8.82 513 9.99 903 8.82 610 1.17 390 0.00 097 1.17 487 10 51 .82 701 .99 902 .82 799 .17 201 .00 098 .17 299 9 52 .82 888 .99 901 .82 987 .17 013 .00 099 .17 112 8 53 .83 075 .99 900 .83 175 .16 825 .00 100 .16 925 7 54 .83 261 .99 899 .83 361 .16 639 .00 102 .16 739 6 55 8.83 446 9.99 898 8.83 547 1.16 268 .00 102 .16 370 4 56 .83 630 .99 898 .83 732 .16 268 .00 102 .16 370 4 57 .83 813 .99 896 .84 100 .15 900 .0103 .16 187 3 58 .83 996 .99 896 .84 282 .15 718 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106						.00 096		
51 82 888 .99 901 .82 987 .17 013 .00 099 .17 112 8 53 .83 075 .99 900 .83 175 .16 825 .00 100 .16 925 7 54 .83 261 .99 899 .83 361 .16 639 .00 101 .16 739 6 55 8.83 446 9.99 898 8.83 547 1.16 453 0.00 102 1.16 554 5 56 8.36 30 .99 898 8.37 32 .16 268 .00 102 .16 370 4 57 83 813 .99 897 .83 916 .16 084 .00 103 .16 187 3 58 .83 996 .99 896 .84 100 .15 900 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0		8.82 513						
53 .83 075 .99 900 .83 175 .16 825 .00 100 .16 925 7 54 .83 261 .99 899 .83 361 .16 639 .00 101 .16 739 6 55 8.83 446 9.99 898 8.83 547 1.16 453 0.00 102 1.16 554 5 56 8.36 630 .99 898 8.37 32 .16 268 .00 102 .16 370 4 57 83 813 .99 897 .83 916 .16 084 .00 103 .16 187 3 58 .83 996 .99 896 .84 100 .15 900 .00 104 .16 004 2 59 .84 177 .99 895 .84 282 .15 718 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0								
54 .83 261 .99 899 .83 361 .16 639 .00 101 .16 739 6 55 8.83 446 9.99 898 8.83 547 1.16 453 0.00 102 1.16 554 5 56 .83 630 .99 898 .83 732 .16 268 .00 102 .16 370 4 57 .83 813 .99 897 .83 916 .16 084 .00 103 .16 187 3 58 .83 996 .99 896 .84 100 .15 900 .00 104 .16 004 2 59 .84 177 .99 895 .84 282 .15 718 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0								
55 8.83 446 9.99 898 8.83 547 1.16 453 0.00 102 1.16 554 5 56 .83 630 .99 898 83 732 .16 268 .00 102 .16 370 4 57 .83 813 .99 897 .83 916 .16 084 .00 103 .16 187 3 58 .83 996 .99 896 .84 100 .15 900 .00 104 .16 004 2 59 .84 177 .99 895 .84 282 .15 718 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0								
56 .83 630 .99 898 .83 732 .16 268 .00 102 .16 370 4 57 .83 813 .99 897 .83 916 .16 084 .00 103 .16 187 3 58 .83 996 .99 896 .84 100 .15 900 .00 104 .16 004 2 59 .84 177 .99 895 .84 282 .15 718 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0					1.16 453			
58 .83 996 .99 896 .84 100 .15 900 .00 104 .16 004 2 59 .84 177 .99 895 .84 282 .15 718 .00 105 .15 823 1 60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0		.83 630	.99 898	.83 732				4
59								3
60 8.84 358 9.99 894 8.84 464 1.15 536 0.00 106 1.15 642 0								
8.01000 0.0001 0.0110							l i	
	- 60							,

4° (184°) (355°) **175°**

4° (184	F°)					(355°)	175
	Sin	Cos	Tan	Cot	Sec	Csc	
0	8.84 358	9.99 894	8.84 464	1.15 536	0.00 106	1.15 642	60
1	.84 539	.99 893	.84 646	.15 354	.00 107	.15 461	59
$\frac{2}{3}$.84 718 .84 897	.99 892 .99 891	.84 826 .85 006	.15 174	.00 108	.15 282 .15 103	58 57
4	.85 075	.99 891	.85 185	.14 815	.00 109	.13 103	56
5	8.85 252	9.99 890	8.85 363	1.14 637	0.00 110	1.14 748	55
6	.85 429	.99 889	.85 540	.14 460	.00 111	.14 571	54
6	.85 605	.99 888	.85 717	.14 283	.00 112	.14 395	53
8	.85 780	.99 887	.85 893	.14 107	.00 113	.14 220	52
9	.85 955	.99 886	.86 069	.13 931	.00 114	.14 045	51
10	8.86 128	9.99 885	8.86 243	1.13 757	0.00 115	1.13 872	50
11	.86 301	.99 884	.86 417	.13 583	.00 116	.13 699	49
12	.86 474	.99 883	.86 591	.13 409	.00 117	.13 526	48
13 14	.86 645 .86 816	.99 882 .99 881	.86 763 .86 935	.13 237 .13 065	.00 118	.13 355	47
15	8.86 987	9.99 880	8.87 106	1.12 894	.00 119	.13 184	46
16	.87 156	.99 879	.87 277	.12 723	0.00 120 .00 121	1.13 013 .12 844	45 44
17	.87 325	.99 879	.87 447	.12 553	.00 121	.12 675	43
18	.87 494	.99 878	.87 616	.12 384	.00 122	.12 506	42
19	.87 661	.99 877	.87 785	.12 215	.00 123	.12 339	41
20	8.87 829	9.99 876	8.87 953	1.12 047	0.00 124	1.12 171	40
21	.87 995	.99 875	.88 120	.11 880	.00 125	.12 005	39
22	.88 161	.99 874	.88 287	.11 713	00 126	.11 839	38
$\frac{23}{24}$.88 326	.99 873	.88 453	.11 547	.00 127	.11 674	37
24 25	:88 490	.99 872	.88 618	.11 382	.00 128	.11 510	36
26	8.88 654 .88 817	9.99 871	8.88 783 .88 948	1.11 217 .11 052	.00 129	1.11 346	35
27	.88 980	.99 869	.89 111	.10 889	.00 130	.11 183	34 33
$\frac{1}{28}$.89 142	.99 868	.89 274	.10 726	.00 131	.10 858	32
29	.89 304	.99 867	.89 437	.10 563	.00 133	.10 696	31
30	8.89 464	9.99 866	8.89 598	1.10 402	0.00 134	1.10 536	30
31	.89 625	.99 865	.89 760	.10 240	.00 135	.10 375	29
32	.89 784	.99 864	.89 920	.10 080	.00 136	.10 216	28
33 34	.89 943 .90 102	.99 863 .99 862	.90 080	.09 920 .09 760	.00 137	.10 057	27
35	8.90 260	9.99 861	.90 240 8.90 399		.00 138	.09 898	26
36	.90 417	.99 860	.90 557	1.09 601 .09 443	0.00 139 .00 140	1.09 740 .09 583	25 24
37	.90 574	.99 859	.90 715	.09 285	.00 140	.09 426	23
38	.90 730	.99 858	.90 872	.09 128	.00 142	.09 270	$\frac{20}{22}$
39	.90 885	.99 857	.91 029	.08 971	.00 143	.09 115	$\overline{21}$
40	8.91 040	9.99 856	8.91 185	1.08 815	0.00 144	1.08 960	20
41	.91 195	.99 855	.91 340	.08 660	.00 145	.08 805	19
42	.91 349	.99 854	.91 495	.08 505	.00 146	.08 651	18
43 44	.91 502 .91 655	.99 853 .99 852	.91 650 .91 803	.08 350 .08 197	.00 147	.08 498	17
45	8.91 807	9.99 851	8.91 957	1.08 043	.00 148 0.00 149	.08 345	16
46	.91 959	.99 850	.92.110	.07 890	.00 149	1.08 193 .08 041	15 14
$\frac{10}{47}$.92 110	.99 848	.92 262	.07 738	.00 150	.03 041	13
48	.92 261	.99 847	.92 414	.07 586	.00 153	.07 739	12
49	.92 411	.99 846	.92 565	.07 435	.00 154	.07 589	îĩ
50	8.92 561	9.99 845	8.92 716	1.07 284	0.00 155	1.07 439	10
51	.92 710	.99 844	.92 866	.07 134	.00 156	.07 290	9
52 53	.92 859 .93 007	.99 843 .99 842	.93 016 .93 165	.06 984 .06 835	.00 157	.07 141	8
54	.93 154	.99 842	.93 313	.06 687	.00 158 .00 159	.06 993	7 6
55	8.93 301	9.99 840	8.93 462	1.06 538	0.00 160	.06 846 1.06 699	
56	.93 448	.99 839	.93 609	.06 391	.00 161	.06 552	5 4
57	.93 594	.99 838	.93 756	.06 244	.00 162	.06 406	3
5 8	.93 740	.99 837	.93 903	.06 097	.00 163	.06 260	2
59	.93 885	.99 836	.94 049	.05 951	.00 164	.06 115	ĩ l
60	8.94 030	9.99 834	8.94 195	1.05 805	0.00 166	1.05 970	Ō
	Cos	Sin	Cot	Tan	Csc	Sec	

5° (185°)

(354°) 174°

5° (18	85°)					(354°)	174
′	Sin	Cos	.Tan	Cot	Sec	Csc	
0	8.94 030	9.99 834	8.94 195	1.05 805	0.00 166	1.05 970	60
1 1	.94 174	.99 833	.94 340	.05 660	.00 167	.05 826	59
2	.94 317	.99 832	.94 485	.05 515	.00 168	.05 683 .05 539	58 57
3 4	.94 461 .94 603	.99 831 .99 830	.94 630 .94 773	.05 370 .05 227	.00 169 .00 170	.05 397.	56
							55
5	8.94 746 .94 887	9.99 829 .99 828	8.94 917 .95 060	1.05 083	$0.00\ 171$ $0.00\ 172$	1.05 254 .05 113	54
6 7	.95 029	.99 827	.95 202	.04 798	.00 172	.04 971	.53
8	95 170	.99 825	.95 344	.04 656	.00 175	.04 830	52
l ğ	.95 310	.99 824	.95 486	.04 514	.00 176	.04 69Q	51
10	8.95 450	9.99 823	8.95 627	1.04 373	0.00 177	1.04 550	50
l îĭ	.95 589	.99 822	.95 767	.04 233	.00 178	.04 411	49
12	.95 728	.99 821	.95 908	.04092	.00 179	.04 272	48
13	.95 867	.99 820	.96 047	.03 953	.00 180	.04 133	47
14	.96 005	.99 819	.96 187	.03 813	.00 181	.03 995	46
15	8.96 143	9.99 817	8.96 325	1.03 675	0.00 183	1.03 857	45
16	.96 280	.99 816	.96 464	.03 536	.00 184	.03 720	44
17	.96 417	.99 815	.96 602	.03 398	.00 185 .00 186	.03 583 .03 447	43 42
18	.96 553	.99 814 .99 813	.96 739 .96 877	.03 261 .03 123	.00 180	.03 311	41
19	.96 689	9.99 812	8.97 013	1.02 987	0.00 188	1.03 175	40
20 21	8.96 825 .96 960	.99 812	.97 150	.02 850	.00 190	.03 040	39
21 22	.97 095	.99 809	.97 285	.02 715	.00 191	.02 905	38
23	.97 229	.99 808	.97 421	.02 579	.00 192	.02 771	37
24	.97 363	.99 807	.97 556	.02 444	.00 193	.02 637	36
25	8.97 496	9.99 806	8.97 691	1.02 309	0.00 194	1.02 504	3 5
26	.97 629	.99 804	.97 825	.02 175	.00 196	.02 371	34
27	.97 762	.99 803	.97 959	.02 041	.00 197	.02 238	33
28	.97 894	.99 802	.98 092	.01 908	.00 198 .00 199	.02 106 .01 974	$\frac{32}{31}$
29	.98 026	.99 801	.98 225	.01 775	1	1.01 843	30
30	8.98 157	9.99 800	8.98 358 .98 490	1.01 642 .01 510	0.00 200	.01 712	29
$\begin{array}{c c} 31 \\ 32 \end{array}$.98 288	.99 798 .99 797	.98 622	.01 378	.00 203	.01 581	28
33	.98 549	.99 796	.98 753	.01 247	.00 204	.01 451	27
34	.98 679	.99 795	.98 884	.01 116	.00 205	.01 321	26
35	8.98 808	9.99 793	8.99 015	1.00 985	0.00 207	1.01 192	25
36	.98 937	.99 792	.99 145	.00 855	.00 208	.01 063	24
37	.99 066	.99 791	.99 275	.00 725	.00 209	.00 934	$\frac{23}{22}$
38	.99 194	.99 790	.99 405	.00 595	.00 210 .00 212	.00 806	21
39	.99 322	.99 788	.99 534	.00 466	0.00 212	1.00 550	20
40	8.99 450	9.99 787	8.99 662 .99 791	1.00 338	.00 214	.00 423	19
41 42	.99 577	.99 786 .99 785	.99 791	.00 209	.00 214	.00 296	18
42	.99 830	.99 783	9.00 046	0.99 954	.00 217	.00 170	17
44	.99 956	.99 782	.00 174	.99 826	.00 218	.00 044	16
45	9.00 082	9.99 781	9.00 301	0.99 699	0.00 219	0.99 918	15
46	.00 207	.99 780	.00 427	.99 573	.00 220	.99 793	14
• 47	.00 332	.99 778	.00 553	.99 447	.00 222	.99 668	13 12
48	.00 456	.99 777	.00 679	.99 321	.00 223	.99 544	11
49	.00 581	.99 776	.00 805	.99 195	0.00 224	0.99 296	10
50	9.00 704	9.99 775	9.00 930	0.99 070	.00 223	.99 172	9
51	.00 828	.99 773	.01 179	.98 821	.00 228	.99 049	8 7
52 53	.00 931	.99 771	.01 303	.98 697	.00 229	.98 926	
54	.01 196	.99 769	.01 427	.98 573	.00 231	.98 804	6
55	9.01 318	9.99 768	9.01 550	0.98 450	0.00 232	0.98 682	5
56	.01 440	,99 767	.01 673	.98 327	.00 233	.98 560	4
57	.01 561	.99 765	.01 796	.98 204	.00 235	.98 439	3 2
58	.01 682	.99 764	.01 918	.98 082	.00 236	.98 318	1
59	.01 803	.99 763	.02 040	.97 960	0.00 237	0.98 077	Ô
60	9.01 923	9.99 761	9.02 162	0.97 838		.	-,-
	Cos	Sin	Cot	Tan	Csc	Sec	

6° (186°) (353°) 173°

	86°)					(000	°) 173°
,	Sin	Cos	Tan	Coț	Sec	Csc	
0	9.01 923	9.99 761	9.02 162	0.97 838	0.00 239	0.98 077	60
1	.02 043	.99 760	.02 283	.97 717	00 240	.97 957	59
2	.02 163	.99 759	.02 404	.97 596	.00 241	.97 837	58
3	.02 283	.99 757	.02 525	.97 475	.00 243	.97 717	57
4	.02 402	.99 756	.02 645	.97 355		97 598	56
5	9.02 520	9.99 755	9.02 766 .02 885	0.97 234 .97 115	.00 245	0.97 480 .97 361	55 54
. 7	.02 757	.99 752	.03 005	.96 995	.00 247	.97 243	53
8	.02 874	.99 751	.03 124	.96 876	.00 249	.97 126	52
9	.02 992	.99 749	.03 242	.96 758	.00 251	.97 008	51
10	9.03 109	9.99 748	9.03 361	0.96 639	0.00 252	0.96 891	50
11	.03 226	.99 747	.03 479	.96 521	.00 253	.96 774	49
12	.03 342	.99 745	.03 597	.96 403	.00 255	.96 658	48
13	.03 458	.99 744	.03 714	.96 286	.00 256	96 542	47
14	.03 574	.99 742	.03 832	.96 168	.00 258	.96 426	46
15	9.03 690	9.99 741	9.03 948	0.96 052	0.00 259	0.96 310	45.
16	.03 805	.99 740	.04 065	.95 935	.00 260	.96 195	44
17 18	.03 920	.99 738 .99 737	.04 181	.95 819 .95 703	.00 262	.96 080 .95 966	43 42
19	.04 149	.99 736	.04 413	.95 587	.00 264	.95 851	41
20	9.04 262	9.99 734	9.04 528	0.95 472	0.00 266	0.95 738	40
21	.04 376	.99 733	.04 643	.95 357	.00 267	.95 624	39
$\overline{22}$.04 490	.99 731	.04 758	.95 242	.00 269	.95 510	38
23	.04 603	.99 730	.04 873	.95 127	.00 270	.95 397	37
24	.04 715	.99 728	.04 987	.95 013	.00 272	.95 285	36
25	9.04 828	9.99 727	9.05 101	0.94 899	0.00 273	0.95 172	35
26	.04 940	.99 726	.05 214	.94 786	.00 274	.95 060	34
27 28	.05 052	.99 724	.05 328	.94 672	.00 276	.94 948	33
29	.05 164 .05 275	.99 723 .99 721	.05 441	. 94 559	.00 277	.94 836 .94 725	$\begin{vmatrix} 32 \\ 31 \end{vmatrix}$
30	9.05 386	9.99 720	9.05 666	0.94 334	0.00 279	0.94 614	30
31	.05 497	.99 718	05 778	.94 222	.00 282	.94 503	29
32	.05 607	.99 717	.05 890	.94 110	.00 283	.94 393	28
33	.05 717	.99 716	.06 002	.93 998	.00 284	.94 283	27
34	.05 827	.99 714	.06 113	.93 887	.00 286	.94 173	26
35	9.05 937	9.99 713	9.06224	0.93 776	0.00 287	0.94 063	25
36	.06 046	.99 711	.06 335	.93 665	.00 289	.93 954	24
37	.06 155	.99 710	.06 445	.93 555	.00 290	.93 845	23
38 39	.06 264	.99 708	.06 556	.93 444	.00 292	.93 736	22
40	.06 372	.99 707	.06 666	.93 334	.00 293	.93 628	21
41	9.06 481 .06 589	9.99 705	9.06 775 .06 885	0.93 225 .93 115	0.00 295 .00 296	0.93 519 .93 411	20 19
42	.06 696	.99 702	.06 994	.93 006	.00 298	.93 304	18
43	.06 804	.99 701	.07 103	.92 897	.00 299	.93 196	17
44	.06 911	.99 699	.07 211	.92 789	.00 301	.93 089	16
45	9.07 018	9.99 698	9.07 320	0.92 680	$0.00\ 302$	0.92982	15
46	.07 124	.99 696	.07428	.92 572	.00 304	.92876	14
47	.07 231	.99 695	.07 536	.92 464	.00 305	.92 769	13
48 49	.07 337	.99 693	.07 643	.92 357	00.307	.92 663	12
50	.07 442 9.07 548	.99 692	.07 751	.92 249	.00 308	.92 558	11
50 51	.07 653	9.99 690 .99 689	9.07 858 .07 964	0.92 142 .92 036	0.00310 $.00311$	$0.92\ 452$ $.92\ 347$	10
52	.07 758	.99 687	.08 071	.91 929	.00 311	$.92\ 347$ $.92\ 242$	9 8
53	.07 863	.99 686	.08 177	.91 823	.00 313	.92 137	7
54	.07 968	.99 684	.08 283	.91 717	.00 316	.92 032	6
55	9.08 072	9.99 683	$9.08\ 389$	0.91 611	0.00 317	0.91 928	5
56	.08 176	.99 681	.08 495	.91 505	.00 319	.91 824	4
57	.08 280	.99 680	.08 600	.91 400	.00320	.91 720	3
58 50	.08 383	.99 678	.08 705	.91 295	.00 322	.91 617	2
59 60	.08 486	.99 677	.08 810	.91 190	.00 323	.91 514	1
- 00	9.08 589	9.99 675	9.08 914	0.91 086	0.00 325	0.91 411	0
	Cos	Sin	Cot	Tan	Csc	Sec	,

7° (187°)

(352°) 172°

7° (187°)					(352°)	114
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.08 589	9.99 675	9.08 914	0.91 086	0.00 325	0.91 411	60
1	.08 692	.99 674	.09 019	.90 981	00 326	.91 308	59
2	.08 795	$.99 \ 672$.09 123	.90 877	.00 328	.91 205	58
3	.08 897	.99 670	$.09\ 227$.90 773	.00 330 .	.91 103	57
4	.08 999	.99 669	.09 330	.90 670	.00 331	.91 001	56
5	9.09 101	9.99 667	9.09434	0.90 566	0.00333	0.90 899	55
6	.09 202	.99 666	.09 537	.90 463	.00 334	.90 798	54
7	.09 304	.99 664	.09 640	.90 360	.00 336	.90 696	53
8	.09 405	.99 663	.09 742	.90 258	.00 337	.90 595	52
9	.09 506	.99 661	.09 845	.90 155	.00 339	.90 494	51
10	9.09 606	9.99 659	9.09 947	0.90 053	0.00 341	0.90 394	50
11	.09 707	.99 658	.10 049	.89 951	.00 342	.90 293	49
12	.09 807	.99 656	.10 150	.89 850	.00 344	.90 193	48
13	.09 907	.99 655	.10 252	.89 748	.00 345	.90 093	47
14	.10 006	.99 653	.10 353	.89 647	.00 347	.89 994	46
15	9.10 106	9.99 651	9.10 454	0.89 546	0.00 349	0.89 894	45
16	.10 205	.99 650	.10 555	.89 445	.00 350	.89 795	44 43
17	.10 304	.99 648	.10 656 .10 756	.89 344 .89 244	.00 352 .00 353	.89 696 .89 598	$\frac{43}{42}$
18 19	.10 402 .10 501	.99 647	.10 756	.89 244	.00 355	.89 499	41
20		.99 645	9.10 956	0.89 044	0.00 357	0.89 401	40
20	9.10 599	9.99 643 .99 642	.11 056	.88 944	.00 357	.89 303	40 39
$\begin{vmatrix} 21\\22 \end{vmatrix}$.10 795	.99 642	.11 155	.88 845	.00 360	.89 205	38
23	.10 893	.99 638	.11 254	.88 746	.00 362	.89 107	37
24	.10 990	.99 637	.11 353	.88 647	.00 363	.89 010	36
25	9.11 087	9.99 635	9.11 452	0.88 548	0.00 365	0.88 913	35
26	.11 184	.99 633	.11 551	.88 449	.00 367	.88 816	34
27	.11 281	.99 632-	.11 649	.88 351	.00 368	.88 719	33
28	.11 377	.99 630	.11 747	.88 253	.00 370	.88 623	32
29	.11 474	.99 629	.11 845	.88 155	.00 371	.88 526	31
30	9.11 570	9.99 627	9.11 943	0.88 057	0.00 373	0.88 430	30
31	.11 666	.99 625	.12 040	.87 960	.00 375	.88 334	29
32	.11 761	.99 624	.12 138	.87 862	.00 376	.88 239	28
33	.11 857	.99 622	.12 235	.87 765	.00 378	.88 143	27
34	.11 952	.99 620	.12 332	.87 668	.00 380	.88 048	26
35	9.12 047	9.99 618	9.12 428	0.87 572	0.00 382	0.87 953	25 24
36	.12 142	.99 617	$.12\ 525$ $.12\ 621$.87 475 .87 379	.00 383	.87 858 .87 764	23
37	.12 236	.99 615	.12 717	.87 283	.00 387	.87 669	22
38 39	.12 425	.99 613 .99 612	.12 813	.87 187	.00 388	.87 575	21
1			9.12 909	0.87 091	0.00 390	0.87 481	20
40 41	9.12 519	9.99 610 .99 608	.13 004	.86 996	.00 392	.87 388	19
$\frac{41}{42}$.12 706	.99 608	.13 004	.86 901	.00 393	.87 294	18
43	.12 799	.99 605	.13 194	.86 806	.00 395	.87 201	17
44	12 892	.99 603	.13 289	.86 711	.00 397	.87 108	16
45	9.12 985	9.99 601	9.13 384	0.86 616	0.00 399	0.87 015	15
46	.13 078	.99 600	.13 478	.86 522	.00 400	.86 922	14
47	.13 171	.99 598	.13 573	.86 427	.00 402	.86 829	13
48	.13 263	.99 596	.13 667	.86 333	.00 404	.86 737	12
49	.13 355	.99 595	.13 761	.86 239	.00 405	.86 645	11
50	9.13 447	9.99 593	9.13 854	0.86 146	0.00 407	0.86 553	10
51	.13 539	.99 591	.13 948	.86 052	.00 409	.86 461	9
52	.13 630	.99 589	.14 041	.85 959	.00 411 .00 412	.86 370 .86 278	8 7
53	.13 722	.99 588	.14 134	.85 866 .85 773	.00 412	.86 187	6
54	.13 813	.99 586	.14 227	0.85 680	0.00 414	0.86 096	5
55	9.13 904	9.99 584	9.14 320 .14 412	.85 588	.00 418	.86 006	4
56	.13 994	.99 582 .99 581	.14 412	.85 496	.00 419	.85 915	3
57	.14 175	.99 579	.14 504	.85 403	.00 421	.85 825	2
58 59	.14 266	.99 577	.14 688	.85 312	.00 423	.85 734	ĩ
50	9.14 356	9.99 575	9.14 780	0.85 220	0.00 425	0.85 644	Ô
		Sin	Cot	Tan	Csc	Sec	,
	Cos) SID	LOT	1 1411	USU	1 366	<u> </u>

Table 4. Trigonometric Logarithms

8° (188°)

(351°) 171°

8° (188	<i>,</i>					(351°	, 111
	Sin	Cos	Tan	Cot	Sec	Csc	
0	$9.14\ 356$	9.99 575	9.14 780	0.85 220	0.00 425	0.85 644	60
1	.14 445	.99 574	.14 872	.85 128	.00 426	.85 555	59 58
$\begin{array}{c c} 2 \\ 3 \end{array}$.14 535 .14 624	.99 572 .99 570	.14 963 .15 054	.85 037 .84 946	.00 428 .00 430	.85 465 .85 376	57
4	.14 714	.99 568	.15 145	.84 855	.00 432	.85 286	56
5	9.14 803	9.99 566	9.15 236	0.84 764	0.00 434	0.85 197	55
6	.14 891	.99 565	.15 327	.84 673	.00 435	.85 109	54
7	.14 980	.99 563	.15 417	.84 583	.00 437	.85 020	53
8	.15 069	.99 561	.15 508	.84 492	.00 439	.84 931	52
9	.15 157	.99 559	.15 598	.84 402	.00 441	.84 843	51
10	9.15245	9.99 557	9.15 688	0.84 312	0.00 443	0.84 755	50
11	.15 333	.99 556	.15 777	.84 223	.00 444	.84 667	49
12	.15 421	.99 554	.15 867	.84 133	.00 446	.84 579	48
13	.15 508	.99 552 .99 550	.15 956	.84 044	.00 448	.84 492 .84 404	47 46
14	.15 596		.16 046	.83 954	.00 450		
15 16	9.15 683 .15 770	9.99 548 .99 546	9.16 135 .16 224	0.83 865 .83 776	0.00 452 .00 454	0.84 317 .84 230	45 44
17	.15 857	.99 545	.16 312	.83 688	.00 455	.84 143	43
i8	.15 944	.99 543	.16 401	.83 599	.00 457	.84 056	42
19	.16 030	.99 541	.16 489	.83 511	.00 459	.83 970	41
20	9.16 116	9.99 539	9.16 577	0.83 423	0.00 461	0.83 884	40
21	.16 203	.99 537	.16 665	.83 335	.00 463	.83 797	39
22	.16 289	.99 535	.16 753	.83 247	.00465	.83 711	38
23	.16 374	.99 533	.16 841	.83 159	.00 467	.83 626	37
24	.16 460	.99 532	.16 928	.83 072	.00 468	.83 540	36
25	9.16 545	9.99 530	9.17 016	0.82 984	0.00 470	0.83 455	35
26	.16 631	.99 528	.17 103	.82 897	.00 472	.83 369	34
27 28	.16 716 .16 801	.99 526 .99 524	.17 190 .17 277	.82 810 .82 723	.00 474 .00 476	.83 284 .83 199	33 32
29	.16 886	.99 524	.17 363	.82 637	.00 478	.83 114	31
30	9.16 970	9.99 520	9.17 450	0.82 550	0.00 480	0.83 030	30
31	.17 055	.99 518	.17 536	.82 464	.00 482	.82 945	29
32	.17 139	.99 517	.17 622	.82 378	.00 483	.82 861	·28
33	.17 223	.99 515	.17 708	.82 292	.00485	.82 777	27
34	.17 307	.99 513	.17 794	.82 206	.00 487	.82 693	26
35	9.17 391	9.99 511	9.17 880	0.82 120	0.00489	0.82 609	25
36	.17 474	.99 509	.17 965	.82 035	.00 491	.82 526	24
37	.17 558	.99 507	.18 051	.81 949	.00 493	.82 442	23
38 39	.17 641 .17 724	.99 505 .99 503	.18 136 .18 221	.81 864 .81 779	.00 495 .00 497	.82 359 .82 276	$\frac{22}{21}$
40	9.17 807	9.99 501	9.18 306	0.81 694	0.00 499	0.82 193	20
41	.17 890	.99 499	.18 391	.81 609	.00 501	.82 110	19
42	.17 973	.99 497	.18 475	.81 525	.00 503	.82 027	18
43	.18 055	.99 495	.18 560	.81 440	.00 505	.81 945	17
44	.18 137	.99 494	.18 644	.81 356	.00 506	.81 863	16
45	9.18220	9.99 492	9.18 728	0.81 272	0.00508	0.81 780	15
46	.18 302	.99 490	.18 812	.81 188	.00 510	.81 698	14
47	.18 383	.99 488	.18 896	.81 104	.00 512	.81 617	13
48 49	.18 465	.99 486	.18 979	.81 021	.00 514	.81 535	12
50	0.18547 0.18628	.99 484 9.99 482	.19 063 9.19 146	.80 937	.00 516	.81 453	11
51	.18 709	.99 482	.19 229	$0.80854 \\ .80771$	0.00 518 .00 520	0.81 372 .81 291	10 9
52	.18 790	.99 478	.19 312	.80 688	.00 520	.81 210	8
53	.18 871	.99 476	.19 395	.80 605	.00 524	.81 129	8 7
54	.18 952	.99 474	.19 478	.80 522	.00 526	.81 048	6
55	9.19 033	9.99 472	9.19 561	0.80 439	0.00 528	0.80 967	5
56	.19 113	.99 470	.19 643	.80 357	.00 530	.80 887	4
57	.19 193	.99 468	.19 725	.80 275	.00 532	.80 807	3
58	.19 273	.99 466	.19 807	.80 193	.00 534	.80 727	2
59	.19 353	.99 464	.19 889	.80 111	.00 536	.80 647	1
60	9.19 433	9.99 462	9.19 971	0.80 029	0.00 538	0.80 567	
L,	Cos	Sin	Cot	Tan	Csc	Sec	_ ′ _

Table 4. Trigonometric Logarithms

9° (189°)

(350°) 170°

9 ° (189	,					(350°)	1,0
	Sin	Cos	Tan	Cot	Sec	Cse	
0	9.19 433	9.99 462	9.19 971	0.80 029	0.00 538	0.80 567	60
1	.19 513	.99 460	.20 053	.79 947	.00 540	.80 487	59
$\frac{2}{3}$.19 592 .19 672	.99 458 .99 456	.20 134	.79 866 .79 784	$.00\ 542$ $.00\ 544$.80 408 .80 328	58 57
4	.19 751	.99 456	.20 216 .20 297	.79 703	.00 544	.80 249	56
5	9.19 830	9.99 452	9.20 378	0.79 622	0.00 548	0.80 170	55
6	.19 909	.99 452	.20 459	.79 541	.00 550	.80 091	54
7	.19 988	.99 448	.20 540	.79 460	.00 552	.80 012	53
8	.20 067	.99 446	.20 621	.79 379	.00 554	.79 933	52
9	.20 145	.99 444	.20.701	.79 299	.00 556	.79 855	51
10	9.20 223	9.99442	9.20 782	0.79 218	0.00 558	0.79 777	50
11	.20 302	.99 440	.20 862	.79 138	.00 560	.79 698	49
12	.20 380	.99 438	.20 942	.79 058	.00 562	.79 620	48
13 14	.20 458 .20 535	.99 436 .99 434	.21 022 .21 102	.78 978 .78 898	.00 564 .00 566	.79 542 .79 465	47 46
15	9.20 613	9.99 434	9.21 182	0.78 818	0.00 568	0.79 387	45
16	.20 691	.99 429	.21 261	.78 739	.00 571	.79 309	44
17	.20 768	.99 427	.21 341	.78 659	.00 573	.79 232	43
18	.20 845	.99 425	.21 420	.78 580	.00 575	.79 155	42
19	.20 922	.99 423	.21 499	.78 501	.00 577	.79 078	41
20	9.20 999	9.99 421	9.21 578	0.78422	0.00 579	0.79 001	40
21	.21 076	.99 419	.21 657	.78 343	.00 581	.78 924	39
22	.21 153	.99 417	.21 736	.78 264	.00 583	.78 847	38
23	.21 229	.99 415	.21 814	.78 186	.00 585	.78 771 .78 694	37 36
24	.21 306	.99 413	.21 893	.78 107	.00 587	0.78 618	35
25 26	9.21 382 .21 458	9.99 411 .99 409	$9.21\ 971 \\ .22\ 049$	0.78 029 .77 951	0.00 589 .00 591	.78 542	3 4
$\frac{20}{27}$.21 534	.99 407	.22 127	.77 873	.00 593	.78 466	33
28	.21 610	.99 404	.22 205	.77 795	.00 596	.78 390	32
29	.21 685	.99 402	.22 283	.77 717	.00 598	.78 315	31
30	9.21 761	9.99 400	9.22 361	0.77 639	0.00 600	0.78 239	30
31	.21 836	.99 398	.22 438	.77 562	.00 602	.78 164	29
32	.21 912	.99 396	.22 516	.77 484	.00 604	.78 088	28
33	.21 987	.99 394	.22 593 .22 670	.77 407 .77 330	.00 606 .00 608	.78 013 .77 938	$\begin{array}{c} 27 \\ 26 \end{array}$
34	.22 062	.99 392	1	0.77 253	0.00 610	0.77 863	25
35 36	9.22 137	9.99 390 .99 388	$9.22747 \\ .22824$.77 176	.00 612	.77 789	24
37	.22 286	.99 385	.22 901	.77 099	.00 615	.77 714	23
38	.22 361	.99 383	.22 977	.77 023	.00 617	.77 639	22
39	.22 435	.99 381	.23 054	.76 946	.00 619	.77 565	21
40	9.22 509	9.99 379	9.23 130	0.76 870	0.00 621	0.77 491	20
41	.22 583	.99 377	.23 206	.76 794	.00 623	.77 417	19
42	.22 657	.99 375	.23 283	.76 717	.00 625	.77 343	18
43	.22 731	.99 372	.23 359	.76 641 .76 565	.00 628	.77 269 .77 195	17 16
44	.22 805	.99 370	9.23 510	0.76 490	0.00 632	0.77 122	15
45 46	9.22 878 .22 952	9.99 368	.23 586	.76 414	.00 634	.77 048	14
47	.23 025	.99 364	.23.661	.76 339	.00 636	.76 975	13
48	.23 028	.99 362	.23 737	.76 263	.00 638	.76 902	12
49	.23 171	.99 359	.23 812	.76 188	.00 641	.76 829	11
50	9.23 244	9.99 357	9.23 887	0.76 113	0.00 643	0.76 756	10
51	.23 317	.99 355	.23 962	.76 038	.00 645	.76 683	9
52	.23 390	.99 353	.24 037	.75 963	.00 647	.76 610	8
53	.23 462	.99 351	.24 112	.75 888	.00 649	.76 538 .76 465	7 6
54	.23 535	.99 348 9.99 346	9.24 261	0.75 739	0.00 654	0.76 393	5
55 56	9.23 607	.99 346	.24 335	.75 665	.00 656	.76 321	4
56 57	.23 752	.99 342	.24 410	.75 590	.00 658	.76 248	4 3
58	.23 823	.99 340	.24 484	.75 516	.00 660	.76 177	2
59	.23 895	.99 337	.24 558	.75 442	.00 663	.76 105	1
50	9.23 967	9.99 335	9.24 632	0.75 368	0.00 665	0.76 033	0
	Cos	Sin	Cot	Tan	Csc	Sec	ļ,
ı	, 200						

10° (190°)

(349°) 169°

10° (19	10")					(349) 169°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.23 967	9.99 335.	9.24 632	0.75 368	0.00 665	0.76 033	60
1	.24 039	.99 333	.24 706	.75 294	.00 667	.75 961	59
$\frac{2}{3}$.24 110	.99 331	.24 779	.75 221 .75 147	.00 669	.75 890 .75 819	58 57
4	.24 253	.99 326	.24 926	.75 074	.00 674	.75 747	56
5	9.24 324	9.99 324	9.25 000	0.75 000	0.00 676	0.75 676	55
6	.24 395	.99 322	.25 073	.74 927	.00 678	.75 605	54
6 7	.24 466	.99 319	.25 146	.74 854	.00 681	.75 534	53
8	.24 536	.99 317	.25 219	.74 781	.00 683	.75 464	52
9	.24 607	.99 315	.25 292	.74 708	.00 685	.75 393	51
10	9.24 677	9.99 313	9.25 365	0.74 635	0.00 687	0.75 323	50
11	.24 748	.99 310	.25 437	.74 563	.00 690	.75 252	49
12	.24 818	.99 308	.25 510	.74 490	.00 692	.75 182	48
13	.24 888	.99 306	.25 582	.74 418	.00 694	.75 112	47
14	.24 958	.99 304	.25 655	.74 345	.00 696	.75 042	46
15	9.25 028	9.99 301	9.25 727	0.74 273	0.00 699	0.74 972	45
16 17	.25 098 .25 168	.99 299 .99 297	.25 799 .25 871	.74 201	.00 701	.74 902	44
18	.25 237	.99 294	.25 943	.74 129 .74 057	.00 703	.74 832 .74 763	43
19	.25 307	.99 292	.26 015	.73 985	.00 708	.74 693	42
20	9.25 376	9.99 290	9.26 086	0.73 914	0.00 708	0.74 624	40
21	.25 445	.99 288	.26 158	.73 842	.00 710	.74 555	39
$\frac{2}{2}$.25 514	.99 285	.26 229	.73 771	.00 715	.74 486	38
$\overline{23}$.25 583	.99 283	.26 301	.73 699	.00 717	.74 417	37
24	.25 652	.99 281	.26 372	.73 628	.00 719	.74 348	36
25	9.25 721	9.99 278	9.26 443	0.73 557	0.00 722	0.74 279	35
26	.25 790	.99 276	.26 514	.73 486	.00 724	.74 210	34
27	.25 858	.99 274	.26 585	.73 415	.00 726	.74 142	33
28	.25 927	.99 271	.26 655	.73 345	.00 729	.74 073	32
29	.25 995	.99 269	.26 726	.73 274	.00 731	.74 005	31
30	9.26 063	9.99 267	9.26 797	0.73 203	0.00 733	0.73 937	30
$\frac{31}{32}$.26 131 .26 199	.99 264 .99 262	.26 867	.73 133	.00 736	.73 869	29
33	.26 267	.99 262	.26 937 .27 008	.73 063 .72 992	.00 738	.73 801 .73 733	28
34	.26 335	.99 257	.27 078	.72 932	.00 743	.73 665	27 26
35	9.26 403	9.99 255	9.27 148	0.72 852	0.00 745	0.73 597	25
36	.26 470	.99 252	.27 218	.72 782	.00 748	.73 530	24
37	.26 538	.99 250	.27 288	.72 712	.00 750	.73 462	23
38	.26 605	.99 248	.27 357	.72 643	.00 752	.73 395	$\frac{1}{22}$
39	.26 672	.99 245	.27 427	.72 573	.00 755	.73 328	21
40	9.26 739	9.99 243	9.27496	0.72 504	0.00 757	0.73 261	20
41	.26 806	.99 241	.27 566	.72 434	.00 759	.73 194	19
42	.26 873	.99 238	.27 635	.72 365	.00 762	.73 127	18
43 44	.26 940 .27 007	.99 236 .99 233	.27 704 .27 773	.72 296 .72 227	.00 764	.73 060	17
45	9.27 007	9.99 233			.00 767	.72 993	16
40 46	.27 140	.99 231	$9.27842 \\ .27911$	0.72 158 .72 089	0.00 769 .00 771	0.72 927	15
47	.27 206	.99 229	.27 911	.72 089	.00 771	.72 860 .72 794	14 13
48	.27 273	.99 224	.28 049	.71 951	.00 776	.72 727	12
$\tilde{49}$.27 339	.99 221	.28 117	.71 883	.00 779	.72 661	11
50	9.27 405	9.99 219	9.28 186	0.71 814	0.00 781	0.72 595	10
51	.27 471	.99 217	.28 254	.71 746	.00 783	.72 529	9
52	.27 537	.99 214	.28 323	.71 677	.00 786	.72 463	8
53	.27 602	.99 212	.28 391	.71 609	.00 788	.72 398	
54	.27 668	.99 209	.28 459	.71 541	.00 791	.72 332	6
55	9.27 734	9.99 207	9.28527	0.71 473	0.00 793	$0.72\ 266$	5
56 57	.27 799	.99 204.	.28 595	.71 405	.00 796	.72 201	4
57 58	.27 864 .27 930	.99 202	.28 662	.71 338	.00 798	.72 136	3
59	.27 930	.99 200 .99 197	.28 730 .28 798	.71 270 .71 202	.00 800	.72 070	2
60	9.28 060	9.99 197	9.28 865	0.71 135	.00 803	.72 005	1
					0.00 805	0.71 940	0
	Cos	Sin	Cot	Tan	Csc	Sec	,

11° (191°)

(348°) 168°

11° (19	1°)					(348°)	168°
	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.28 060	9.99 195	9.28 865	0.71 135	0.00 805	0.71 940	60
1	.28 125	.99 192	.28 933	.71 067	.00 808	.71 875	59
2 3	.28 190 .28 254	.99 190	.29 000	.71 000	.00 810	71 810	58
4	.28 319	.99 187 .99 185	.29 067 .29 134	.70 933 .70 866	.00 813 .00 815	.71 746	57
5	9.28 384	9.99 182	9.29 201	0.70 799		.71 681	56 55
6	.28 448	.99 180	.29 268	.70 732	.00 818	$0.71\ 616 \ .71\ 552$	55 54
7	.28 512	.99 177	.29 335	.70 665	.00 823	.71 488	53
8	.28 577	.99 175	.29 402	.70 598	.00 825	.71 423	52
9	.28 641	.99 172	.29 468	.70 532	.00 828	.71 359	51
10	9.28 705	9.99 170	9.29 535	0.70 465	0.00 830	0.71 295	50
11	.28 769	.99 167	.29 601	.70 399	.00 833	.71 231	49
12	.28 833	.99 165	.29 668	.70 332	.00 835	.71 167	48
13 14	.28 896 .28 960	.99 162	.29 734 .29 800	.70 266	.00 838	.71 104	47
15	9.29 024	.99 160 9.99 157	9.29 866	.70 200 0.70 134	.00 840	.71 040	46
16	.29 024	.99 157	.29 932	.70 068	0.00 843	0.70 976 .70 913	45 44
17	.29 150	.99 152	.29 998	.70 003	.00 848	.70 850	43
18	.29 214	.99 150	.30 064	.69 936	.00 850	.70 786	42
19	.29 277	.99 147	.30 130	.69 870	.00 853	.70 723	$\overline{41}$
20	9.29 340	9.99 145	9.30 195	0.69 805	0.00 855	0.70 660	40
21	.29 403	.99 142	.30 261	.69 739	.00 858	.70 597	39
22	.29 466	.99 140	.30 326	.69 674	.00 860	.70 534	38
$\begin{array}{cc} \cdot & 23 \\ 24 \end{array}$.29 529	.99 137	.30 391	.69 609	.00 863	.70 471	37
_	.29 591	.99 135	.30 457	.69 543	.00 865	.70 409	36
25 26	9.29 654	9.99 132	9.30 522 .30 587	0.69 478	0.00 868	0.70 346 .70 284	35 34
$\frac{20}{27}$.29 779	.99 130	.30 652	.69 348	.00 870	.70 284	33
28	.29 841	.99 124	.30 717	.69 283	.00 876	.70 159	32
29	.29 903	.99 122	.30 782	.69 218	.00 878	.70 097	31
30	9.29 966	9.99 119	9.30 846	0.69 154	0.00 881	0.70 034	30
31	.30 028	.99 117	.30 911	.69 089	.00 883	.69 972	29
32	.30 090	.99 114	.30 975	.69 025	.00 886	.69 910	28
33	.30 151	.99 112	.31 040	.68 960	.00 888	.69 849	27
34	.30 213	.99 109	.31 104	.68 896	.00 891	.69 787	26
35 36	9.30 275	9.99 106	9.31 168	0.68 832 .68 767	0.00 894	0.69 725	25 24
37	.30 398	.99 104	.31 297	.68 703	.00 899	.69 602	23
38	.30 459	.99 099	.31 361	.68 639	.00 901	.69 541	22
39	.30 521	.99 096	.31 425	.68 575	.00 904	.69 479	21
40	9.30 582	9.99 093	9.31 489	0.68 511	0.00 907	0.69 418	20
41	.30 643	.99 091	.31 552	.68 448	.00 909	.69 357	19
42	.30 704	.99 088	.31 616	.68 384	.00 912	.69 296	18
43 ′	.30 765	.99 086	.31 679	.68 321	.00 914	.69 235	17
44	.30 826	.99 083	.31 743	.68 257	.00 917	.69 174	16
45 46	9.30 887	9.99 080	9.31 806	0.68 194 .68 130	0.00 920	0.69 113 .69 053	15 14
46 47	.30 947	.99 078 .99 075	.31 870 .31 933	.68 067	.00 922	.68 992	13
48	.31 068	.99 073	.31 996	.68 004	.00 928	.68 932	12
49	.31 129	.99 070	.32 059	.67 941	.00 930	.68 871	īī
50	9.31 189	9.99 067	9.32 122	0.67 878	0.00 933	0.68 811	10
51	.31 250	.99 064	.32 185	.67 815	.00 936	.68 750	9
52	.31 310	.99 062	.32 248	.67 752	.00 938	.68 690	8
53	.31 370	.99 059	.32 311	.67 689	.00 941	.68 630	7
54	.31 430	.99 056	.32 373	.67 627	.00 944	.68 570	6
55	9.31 490	9.99 054	9.32 436	0.67 564	0.00 946	0.68 510	5
56 57	31 549	.99 051	.32 498 .32 561	.67 502 .67 439	.00 949	.68 451 .68 391	4 3
58	.31 669	.99 048	.32 623	.67 377	.00 952	.68 331	2
59	.31 728	.99 043	.32 685	.67 315	.00 957	.68 272	ĩ
60	9.31 788	9.99 040	9.32 747	0.67 253	0.00 960	0.68 212	0
	Cos	Sin	Cot	Tan	Csc	Sec	
L	1 008	NAME .	, 000	1 1012	, vac	1 500	

12° (192°) (347°) 167°

12° (19	2)					(347°)	167°
7	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.31 788	9.99 040	9.32 747	0.67 253	0.00 960	0.68 212	60
1	.31 847	.99 038	.32 810	.67 190	.00 962	.68 153	59
2	.31 907	.99 035	.32 872	.67 128 .67 067	.00 965	.68 093	58
$\frac{3}{4}$.31 966 .32 025	.99 032	.32 933 .32 995	.67 007	.00 968	.68 034 .67 975	57 56
5	9.32 084	9.99 027	1	0.66 943	0.00 973	0.67 916	55
6	.32 143	.99 027	9.33 057	.66 881	.00 976	.67 857	54
7	.32 202	.99 022	.33 180	.66 820	.00 978	.67 798	53
8	.32 261	.99 019	.33 242	.66 758	.00 981	.67 739	52
9	.32 319	.99 016	.33 303	.66 697	.00 984	.67 681	51
10	9.32 378	9.99 013	9.33 365	0.66 635	0.00 987	0.67 622	50
11	.32 437	.99 011	.33 426	.66 574	.00 989	.67 563	49
12	.32 495	.99 008	.33 487	.66 513	.00 992	.67 505	48
13	.32 553	.99 005	.33 548	.66 452	.00 995	.67 447	47
14	.32 612	.99 002	.33 609	.66 391	.00 998	.67 388	46
15	9.32 670	9.99 000	9.33 670	0.66 330	0.01 000	0.67 330	45
16	.32 728	.98 997	.33 731	.66 269	.01 003	.67 272	44
17	.32 786	.98 994	.33 792	.66 208	.01 006	.67 214	43
18 19	.32 844 .32 902	.98`991 .98 989	.33 853	.66 147 .66 087	.01 009	.67 156 .67 098	$\frac{42}{41}$
20	9.32 960	9.98 986	9.33 974	0.66 026	0.01 011	0.67 040	40
21	.33 018	.98 983	.34 034	.65 966	.01 014	.66 982	39
22	.33 075	.98 980	.34 095	.65 905	.01 020	.66 925	38
$\overline{23}$.33 133	.98 978	.34 155	.65 845	.01 022	.66 867	37
24	.33 190	.98 975	.34 215	.65 785	.01 025	.66 810	36
25	9.33 248	9.98 972	9.34 276	0.65 724	0.01 028	0.66 752	35
26	.33 305	.98 969	.34 336	.65 664	.01 031	.66 695	34
27	.33 362	.98 967	.34 396	.65 604	.01 033	.66 638	33
28	.33 420	.98 964	.34 456	.65 544	.01 036	.66 580	32
29	.33 477	.98 961	.34 516	.65 484	.01 039	.66 523	31
30	9.33 534	9.98 958	9.34 576	0.65 424	0.01 042	0.66 466	30
31	.33 591	.98 955	.34 635	.65 365	.01 045	66 409	29
32 33	.33 647	.98 953 .98 950	.34 695	.65 305	.01 047	.66 353	28
34	.33 761	.98 947	.34 755 .34 814	.65 245 .65 186	.01 050 .01 053	.66 296	27 26
35	9.33 818	9.98 944	9.34 874	0.65 126	0.01 056	.66 239	
36	.33 874	.98 941	.34 933	.65 067	.01 059	$0.66\ 182 \\ .66\ 126$	25 24
37	.33 931	.98 938	.34 992	.65 008	.01 062	.66 069	23
38	.33 987	.98 936	.35 051	.64 949	.01 064	.66 013	22
39	.34 043	.98 933	.35 111	.64 889	.01 067	.65 957	$\overline{21}$
40	9.34 100	9.98 930	9.35 170	0.64 830	0.01 070	0.65 900	20
41	.34 156	.98 927	.35 229	.64 771	.01 073	.65 844	19
42	.34 212	.98 924	.35 288	.64 712	.01 076	.65 788	18
43	.34 268	.98 921	.35 347	.64 653	.01 079	.65 732	17
44	.34 324	.98 919	.35 405	.64 595	.01 081	.65 676	16
45 46	9.34 380	9.98 916	9.35 464	0.64 536	0.01 084	0.65 620	15
40 47	.34 436 .34 491	.98 913 .98 910	.35 523	.64 477	.01 087	.65 564	14
48	.34 547	.98 907	.35 581 .35 640	.64 419 .64 360	.01 090 .01 093	.65 509	13
49	.34 602	.98 904	.35 698	.64 302	.01 093	.65 453 .65 398	12
50	9.34 658	9.98 901	9.35 757	0.64 243	0.01 099	0.65 342	11
51	.34 713	.98 898	.35 815	.64 185	.01 102	.65 287	10 9
52	.34 769	.98 896	.35 873	.64 127	.01 102	.65 231	8
53	.34 824	.98 893	.35 931	.64 069	.01 107	.65 176	7
54	.34 879	.98 890	.35 989	.64 011	.01 110	.65 121	6
55	9.34 934	9.98 887	9.36 047	0.63 953	0.01 113	0.65 066	5
56	.34 989	.98 884	.36 105	.63 895	.01 116	.65 011	4
57	.35 044	.98 881	.36 163	.63 837	.01 119	.64 956	$\hat{3}$
58	.35 099	.98 878	.36 221	.63 779	.01 122	.64 901	2
59	.35 154	.98 875	.36 279	.63 721	.01 125	.64 846	1
60	9.35 209	9.98 872	9.36 336	0.63 664	0.01 128	0.64 791	0
	Cos	Sin	Cot	Tan	Csc	Sec	,

13° (193°)

(346°) 166°

13° (19	3)					(346°)	166°
	Sin	Cos	Tan	Cot	Sec	Csc	
0 _	9.35 209	9.98 872	9.36 336	0.63 664	0.01 128	0.64 791	60
1	.35 263	.98 869	.36 394	.63 606	.01 131	.64 737	59
$\frac{2}{3}$.35 318	.98 867	.36 452	.63 548 .63 491	.01 133	.64 682 .64 627	58 57
4	.35 373 .35 427	.98 864 .98 861	.36 509 .36 566	.63 434	.01 136 .01 139	.64 573	57 56
5	9.35 481	9.98 858	9.36 624	0.63 376	0.01 142	0.64 519	55
6	.35 536	.98 855	.36 681	.63 319	.01 142	.64 464	54
7	.35 590	.98 852	.36 738	.63 262	.01 148	.64 410	53
8	.35 644	.98 849	.36 795	.63 205	.01 151	.64 356	$5\overline{2}$
9	.35 698	.98 846	.36 852	.63 148	.01 154	.64 302	51
10	9.35 752	9.98 843	9.36 909	0.63 091	0.01 157	0.64 248	50
11	.35 806	.98 840	.36 966	.63 034	.01 160	.64 194	49
12	.35 860	.98 837	.37 023	.62 977	.01 163	.64 140	48
13	.35 914	.98 834	.37 080	.62 920	.01 166	.64 086	47
14	.35 968	.98 831	.37 137	.62 863	.01 169	.64 032	46
15	9.36 022	9.98 828	9.37 193	0.62 807	0.01 172	0.63 978 .63 925	45 44
16 17	.36 075 .36 129	.98 825 .98 822	.37 250 .37 306	$.62\ 750$ $.62\ 694$.01 175 .01 178	.63 871	43
18	.36 182	.98 819	.37 363	.62 637	.01 181	.63 818	42
19	.36 236	.98 816	.37 419	.62 581	.01 184	.63 764	41
20	9.36 289	9.98 813	9.37 476	0.62 524	0.01 187	0.63 711	40
21	.36 342	.98 810	.37 532	.62 468	.01 190	.63 658	39
22 -	.36 395	.98 807	.37 588	.62 412	.01 193	.63 605	38
23	.36 449	.98 804	.37 644	.62 356	.01 196	.63 551	37
24	.36 502	.98 801	.37 700	.62 300	.01 199	.63 498	36
25	9.36 555	9.98 798	9.37 756	0.62 244	0.01 202	0.63 445	35
26	.36 608	.98 795	.37 812	$.62\ 188$ $.62\ 132$.01 205 .01 208	.63 392 .63 340	34 33
27 28	.36 660 .36 713	.98 792 .98 789	.37 868 .37 924	.62 076	.01 208	.63 287	32
29	.36 766	.98 786	.37 980	.62 020	.01 214	.63 234	31
30	9.36 819	9.98 783	9.38 035	0.61 965	0.01 217	0.63 181	30
31	.36 871	.98 780	.38 091	.61 909	.01 220	.63 129	29
32	.36 924	.98 777	.38 147	.61 853	.01 223	.63 076	28
33	.36 976	.98 774	.38 202	.61 798	.01 226	.63 024	27
34	.37 028	.98 771	.38 257	.61 743	.01 229	.62 972	26
35	9.37 081	9.98 768	9.38 313	0.61 687	0.01 232	$0.62919 \\ .62867$	25 24
36	.37 133	.98 765	.38 368	.61 632 .61 577	.01 235 .01 238	.62 815	23
37 38	.37 185 .37 237	.98 762 .98 759	.38 423 .38 479	.61 521	.01 241	.62 763	22
39	.37 289	.98 756	.38 534	.61 466	.01 244	.62 711	21
40	9.37 341	9.98 753	9.38 589	0.61 411	0.01 247	0.62 659	20
41	.37 393	.98 750	.38 644	.61 356	.01 250	.62 607	19
42	.37 445	.98 746	.38 699	.61 301	.01 254	.62 555	18
43	.37 497	.98 743	.38 754	.61 246	.01 257	.62 503	17
44	.37 549	.98 740	.38 808	.61 192	.01 260	.62 451	16
45	9.37 600	9.98 737	9.38 863	0.61 137	0.01 263	0.62 400 .62 348	15 14
46	.37 652	.98 734	.38 918	.61 082 .61 028	.01 266	.62 297	13
47 48	.37 703 .37 755	.98 731 .98 728	.38 972 .39 027	.60 973	.01 209	.62 245	12
48	.37 806	.98 725	.39 082	.60 918	.01 275	.62 194	11
50	9.37 858	9.98 722	9.39 136	0.60 864	0.01 278	$0.62\ 142$	10
51	.37 909	.98 719	.39 190	.60 810	.01 281	.62 091	9
52	.37 960	.98 715	.39 245	.60 755	.01 285	.62 040	8
53	.38 011	.98 712	.39 299	.60 701	.01 288	.61 989	7
54	.38 062	.98 709	.39 353	.60 647	.01 291	.61 938	6
55	9.38 113	9.98 706	9.39 407	0.60 593	0.01 294	0.61 887	5 4
56	.38 164	.98 703	.39 461	.60 539 .60 485	.01 297 .01 300	.61 836 .61 785	3
57	.38 215 .38 266	.98 700 .98 697	.39 515 .39 569	.60 431	.01 303	.61 734	$\frac{3}{2}$
58 59	.38 200	.98 694	.39 623	.60 377	.01 306	.61 683	ī
60	9.38 368	9.98 690	9.39 677	0.60 323	0.01 310	0.61 632	0
			Cot	Tan	Csc	Sec	
	Cos	Sin	l Cor	1411	USC	1 500	<u> </u>

14° (194°) (345°) 165°

14° (19	4)					(345°) 165°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.38 368	9.98 690	9.39 677	0.60 323	0.01 310	0.61 632	60
1	.38 418	.98 687	.39 731	.60 269	.01 313	.61 582	59
2	.38 469	.98 684	.39 785	.60 215	.01 316	.61 531	58
3	.38 519	.98 681	.39 838	.60 162	.01 319	.61 481	57
4	.38 570	.98 678	.39 892	.60 108	.01 322	.61 430	56
5	9.38 620	9.98 675	9.39 945	0.60 055	0.01 325	0.61 380	55
6 7	.38 670	.98 671	.39 999	.60 001	.01 329	.61 330	54
	.38 721	.98 668	.40 052	.59 948	.01 332	.61 279	53
8 9	38 771	98 665	.40 106 .40 159	.59 894 .59 841	.01 335	.61 229	52
	9.38 871		9.40 212			.61 179	51
10		9.98 659	.40 266	0.59 788	0.01 341	0.61 129	50
$^{11}_{12}$.38 921 .38 971	.98 652	.40 319	.59 734	.01 344 .01 348	.61 079	49 48
13	.39 021	.98 649	.40 372	.59 628	.01 351	.60 979	47
14	.39 071	.98 646	.40 425	.59 575	.01 354	.60 929	46
15	9.39 121	9.98 643	9.40 478	0.59 522	0.01 357	0.60 879	45
16	.39 170	.98 640	.40 531	.59 469	.01 360	.60 830	44
17	.39 220	.98 636	.40 584	.59 416	.01 364	.60 780	43
18	.39 270	.98 633	.40 636	.59 364	.01 367	.60 730	42
19	.39 319	.98 630	.40 689	.59 311	.01 370	.60 681	41
20	9.39 369	9.98 627	9.40 742	0.59 258	0.01 373	0.60 631	40
21	.39 418	.98 623	.40 795	.59 205	.01 373	.60 582	39
22	.39 467	.98 620	.40 847	.59 153	.01 380	.60 533	38
23	.39 517	.98 617	.40 900	.59 100	.01 383	.60 483	37
$\frac{24}{24}$.39 566	.98 614	.40 952	.59 048	.01 386	.60 434	36
25	9.39 615	9.98 610	9.41 005	0.58 995	0.01 390	0.60 385	35
26	.39 664	.98 607	.41 057	.58 943	.01 393	.60 336	34
27	.39 713	.98 604	.41 109	.58 891	.01 396	60 287	33
28	.39 762	.98 601	.41 161	.58 839	.01 399	.60 238	32
29	.39 811	.98 597	.41 214	.58 786	.01 403	.60 189	31
30	9.39 860	9.98 594	9.41 266	0.58 734	0.01 406	0.60 140	30
31	.39 909	.98 591	.41 318	.58 682	.01 409	.60 091	29
32	.39 958	.98 588	.41 370	.58 630	.01 412	.60 042	28
33	.40 006	.98 584	.41 422	.58 578	.01 416	.59.994	27
34	.40 055	.98 581	.41 474	.58 526	.01 419	.59 945	26
35	9.40 103	9.98 578	$9.41\ 526$	0.58 474	$0.01\ 422$	0.59 897	25
36	.40 152	.98 574	.41 578	.58422	.01 426	.59 848	24
37	.40 200	.98 571	.41 629	.58 371	.01 429	.59 800	23
38	.40 249	.98 568	.41 681	.58 319	.01 432	.59 751	22
39	.40 297	.98 565	.41 733	.58 267	.01 435	.59 703	21
40	9.40 346	9.98 561	9.41 784	$0.58\ 216$	0.01 439	$0.59\ 654$	20
41	.40 394	.98 558	.41 836	.58 164	.01 442	.59 606	19
42	.40 442	98 555	.41 887	.58 113	.01 445	.59 558	18
43	.40 490	.98 551	.41 939	.58 061	.01 449	.59 510	17
44	.40 538	.98 548	.41 990	.58 010	.01 452	.59 462	16
45	9.40 586	9.98 545	9.42 041	0.57 959	0.01 455	0.59 414	. 15
46	.40 634	.98 541	.42 093	.57 907	.01 459	.59 366	14
47	.40 682	.98 538	.42 144	.57 856	.01 462	.59 318	13
48 49	.40 730	.98 535	.42 195	.57 805	.01 465	.59 270	12
	.40 778	.98 531	.42 246	.57 754	.01 469	.59 222	11
50	9.40 825	9.98 528	9.42 297	0.57 703	0.01 472	0.59 175	10
$\frac{51}{52}$.40 873	.98 525	.42 348	.57 652 57 601	.01 475	.59 127	9
53	.40 921 .40 968	.98 521 .98 518	.42 399 .42 450	.57 601 .57 550	.01 479 .01 482	.59 079 .59 032	8 7
54	.41 016	.98 515	.42 450	.57 499	.01 482		6
55	9.41 063					.58 984	
56	.41 111	9.98 511 .98 508	$9.42552 \\ .42603$	0.57 448 .57 397	0.01 489	0.58 937	5
57	.41 158	.98 505	.42 653	.57 347	.01 492 .01 495	.58 889 .58 842	4
58	.41 138	.98 505	$.42\ 003$ $.42\ 704$.57 296	.01 495	.58 842 .58 795	$\frac{3}{2}$
59	.41 252	.98 498	.42 755	.57 245	.01 502	.58 748	1
60	9.41 300	9.98 494	9.42 805	0.57 195	0.01 502	0.58 700	0
- 00							
	Cos	Sin	Cot	Tan	Csc	Sec	,

15° (195°)

15° (19	95°)					(344°	') 164°
	Sin	Cos	Tan	Cot	Sec	Csc	
l û	9.41 300	9.98 494	9.42 805	0.57 195	0.01 506	0.58 700	50
1	.41 347	.98 491	.42 856	.57 144	.01 509	.58 653	59
2 3	.41 394	.98 488	42 906	.57 094	.01 512	.58 606	58
4	.41 488	.98 481	.42 957	.57 043 .56 993	.01 516	.58 559 .58 512	57 56
5	9.41 535	9.98 477	9.43 057	0.56 943	0.01 523	0.58 465	55
6	.41 582	.98 474	.43 108	.56 892	.01 526	.58 418	54
7	.41 628	.98 471	.43 158	.56 842	.01 529	.58 372	53
8	.41 675	.98 467	.43 208	.56 792	.01 533	.58 325	52
9	.41 722	.98 464	.43 258	.56 742	.01 536	.58 278	51
10	9.41 768	9.98 460	9.43 308	0.56 692	0.01 540	0.58 232	50
11	.41 815	98 457	.43 358	.56 642	.01 543	.58 185	49
$\frac{12}{13}$.41 861	.98 453	.43 408	.56 592	.01 547	.58 139	48
13	.41 908	.98 450 .98 447	.43 458	.56 542	.01 550	.58 092	47
15	9.42 001	9.98 443	9.43 558	0.56 442	.01 553	.58 046	46
16	.42 047	.98 440	.43 607	.56 393	0.01 557	0.57 999 .57 953	45 44
17	.42 093	.98 436	.43 657	.56 343	.01 564	.57 907	43
18	.42 140	.98 433	.43 707	.56 293	.01 567	.57 860	42
19	.42 186	.98 429	.43 756	.56 244	.01 571	.57 814	41
20	9.42 232	9.98 426	9.43 806	0.56 194	0.01 574	0.57 768	40
21	.42 278	.98 422	.43 855	.56 145	.01 578	.57 722	39
22	.42 324	.98 419	.43 905	.56 095	.01 581	.57 676	38
23	.42 370	.98 415	.43 954	.56 046	.01 585	.57 630	37
24	.42 416	.98 412	.44 004	.55 996	.01 588	.57 584	36
25 26	9.42 461	9.98 409 .98 405	9.44 053	0.55 947	0.01 591	0.57 539 .57 493	35
$\frac{26}{27}$.42 553	.98 403	.44 102	.55.849	.01 595	.57 493	34 33
28	.42 599	.98 398	.44 201	.55 799	.01 602	.57 401	32
29	.42 644	.98 395	.44 250	.55 750	.01 605	.57 356	31
30	9.42 690	9.98 391	9.44 299	0.55 701	0.01 609	0.57 310	30
31	.42 735	.98 388	.44 348	.55 652	.01 612	.57 265	29
32	.42781	.98 384	.44 397	.55 603	.01 616	.57 219	28
33	.42 826	.98 381	.44 446	.55 554	.01 619	.57 174	27
34	.42 872	.98 377	.44 495	.55 505	.01 623	.57 128	26
35	9.42 917	9.98 373	9.44 544	0.55 456	0.01 627	0.57 083	25
36 37	.42 962 .43 008	.98 370 .98 366	.44 592 .44 641	.55 408	.01 630 .01 634	.57 038 .56 992	$\frac{24}{23}$
38	.43 053	.98 363	.44 690	.55 310	.01 637	.56 947	22
39	.43 098	.98 359	.44 738	.55 262	.01 641	.56 902	21
40	9.43 143	9.98 356	9.44 787	0.55 213	0.01 644	0.56 857	20
41	.43 188	.98 352	.44 836	.55 164	.01 648	.56 812	19
$\overline{42}$.43 233	.98 349	.44 884	.55 116	.01 651	.56 767	18
43	.43 278	.98 345	.44 933	.55 067	.01 655	.56 722	17
44	.43 323	.98 342	.44 981	.55 019	.01 658	.56 677	16
45	9.43 367	9.98 338	9.45 029	0.54 971	0.01 662	0.56 633	15
46	.43 412 .43 457	.98 334 .98 331	.45 078 .45 126	.54 922 .54 874	.01 666 .01 669	.56 588 .56 543	14 13
47 48	.43 457	.98 331	.45 126	.54 826	.01 669	.56 498	12
49	.43 546	.98 324	.45 222	.54 778	.01 676	.56 454	iĩ
50	9.43 591	9.98 320	9.45 271	0.54 729	0.01 680	0.56 409	10
51	.43 635	.98 317	.45 319	.54 681	.01 683	.56 365	9
52	.43 680	.98 313	.45 367	.54 633	.01 687	.56 320	8
53	.43 724	.98 309	.45 415	.54 585	.01 691	.56 276	7
54	.43 769	.98 306	.45 463	.54 537	.01 694	.56 231	6
55	9.43 813	9.98 302	$9.45\ 511$	0.54489	0.01 698	0.56 187	5
56	.43 857	.98 299	.45 559	.54 441	.01 701	.56 143	4
57	.43 901	.98 295	.45 606	.54 394	.01 705	.56 099	$\frac{3}{2}$
58	.43 946 .43 990	.98 291 .98 288	.45 654 .45 702	.54 346 .54 298	.01 709 .01 712	.56 054 .56 010	1
· 59	9.44 034	9.98 284	9.45 750	0.54 250	0.01 712	0.55 966	ō
- 00							 ,
ļ	Cos	Sin	Cot	Tan	Cse	Sec	

16° (196°) (343°) **163°**

16° (19	6°)					(3430) 163°
′	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.44 034	9.98 284	9.45 750	0.54 250	0.01 716	0.55 966	60
1	.44 078	.98 281	.45 797	.54 203	.01 719	.55 922	.59
2	.44 122	.98 277 .98 273	.45 845	.54·155	.01 723	.55 878 .55 834	58 57
3 4	.44 166	.98 273	.45 892	.54 060	.01 730	.55 790	56
5	9.44 253	9.98 266	9.45 987	0.54 013	0.01 734	0.55 747	55
6	.44 297	.98 262	.46 035	.53 965	.01 738	.55 703	54
7	.44 341	.98 259	.46 082	.53 918	.01 741	.55 659	53
8	.44 385	.98 255	.46 130	.53 870	.01 745	.55 615	52
9	.44 428	.98 251	.46 177	.53 823	.01 749	.55 572	51
10	9.44 472	9.98 248	9.46 224	0.53 776	0.01 752	0.55 528	50
11	.44 516	.98 244	.46 271	.53 729	.01 756	.55 484	49
12 13	.44 559 .44 602	.98 240 .98 237	.46 319	.53 681	.01 760	.55 441	48 47
14	.44 646	.98 233	.46 413	.53 587	.01 767	.55 354	46
15	9.44 689	9.98 229	9.46 460	0.53 540	0.01 771	0.55 311	45
16	.44 733	.98 226	.46 507	.53 493	.01 774	.55 267	44
17	.44 776	.98 222	.46 554	.53 446	.01 778	.55 224	43
18	.44 819	.98 218	.46 601	.53 399	.01 782	.55 181	42
19	.44 862	.98 215	.46 648	.53 352	.01 785	.55 138	41
20	9.44 905	9.98 211	9.46 694	0.53 306	0.01 789	0.55 095	40
$\frac{21}{22}$.44 948 .44 992	.98 207 .98 204	.46 741 .46 783	.53 259 .53 212	.01 793 .01 796	.55 052 .55 008	39 38
$\frac{22}{23}$.45 035	.98 204	.46 835	.53 165	.01 800	.54 965	37
$\frac{20}{24}$.45 077	.98 196	.46 881	.53 119	.01 804	.54 923	36
25	9.45 120	9.98 192	9.46 928	0.53 072	0.01 808	0.54 880	35
26	.45 163	.98 189	.46 975	.53 025	.01 811	.54 837	34
27	.45 206	.98 185	.47 021	.52 979	.01 815	.54 794	33
28	.45 249	.98 181	.47 068	.52 932	.01 819	.54 751	32
29 30	.45 292 9.45 334	.98 177 9.98 174	.47 114	.52 886 0.52 840	.01 823	.54 708	31
30 31	.45 377	.98 174	9.47 160 .47 207	.52 793	0.01 826 .01 830	0.54 666 .54 623	30 29
32	.45 419	.98 166	.47 253	.52 747	.01 834	.54 581	28
33	.45 462	.98 162	.47 299	.52 701	.01 838	.54 538	27
34	.45 504	.98 159	.47 346	.52 654	.01 841	.54 496	26
35	9.45 547	9.98 155	9.47 392	0.52 608	0.01 845	0.54 453	25
36	.45 589	.98 151 .98 147	.47 438	.52 562	.01 849	.54 411	24
37 38	$.45\ 632$ $.45\ 674$.98 144	.47 484 .47 530	.52 516 .52 470	.01 853 .01 856	.54 368 .54 326	$\begin{array}{c} 23 \\ 22 \end{array}$
39	.45 716	.98 140	.47 576	.52 424	.01 860	.54 284	21
40	9.45 758	9.98 136	9.47 622	0.52 378	0.01 864	0.54 242	20
41	.45 801	.98 132	.47 668	.52 332	.01 868	.54 199	19
42	.45 843	.98 129	.47 714	.52 286	.01 871	.54 157	18
43 44	.45 885 .45 927	.98 125 .98 121	.47 760 .47 806	.52 240 .52 194	.01 875	.54 115	17
45	9.45 969	9.98 117	9.47 852	$0.52\ 194$ $0.52\ 148$.01 879 0.01 883	.54 073 0.54 031	16 15
46	.46 011	.98 113	.47 897	.52 148	.01 887	.53 989	14
47	.46 053	.98 110	.47 943	.52 057	.01 890	.53 947	13
48	.46 095	.98 106	.47 989	.52 011	.01 894	.53 905	12
49	.46 136	.98`102	.48 035	.51 965	.01 898	.53 864	11
50	9.46 178	9.98 098	9.48 080	0.51 920	0.01 902	0.53 822	10
51	.46 220	.98 094	.48 126	.51 874	.01 906	.53 780	9
52 53	.46 262 .46 303	.98 090 .98 087	.48 171 .48 217	.51 829 .51 783	.01 910 .01 913	.53 738 .53 697	8 7
54	.46 345	.98 083	.48 262	.51 738	.01 913	.53 655	6
55	9.46 386	9.98 079	9.48 307	0.51 693	0.01 921	0.53 614	5
56	.46 428	.98 075	.48 353	.51 647	.01 925	.53 572	4
57	.46 469	.98 071	.48 398	.51 602	.01 929	.53 531	3
58	.46 511	.98 067	.48 443	.51 557	.01 933	.53 489	2
59	.46 552	.98 063	.48 489	.51 511	.01 937	.53 448	1.
60	9.46 594	9.98 060	9.48 534	0.51 466	0.01 940	0.53 406	0
	Cos	Sin	Cot	Tan	Cse	Sec	

17° (197°)

107° (287°)

(249°) 169°

17° (197	7°)					(342°)	162°
, ,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.46 594	9.98 060	9.48 534	0.51 466	0.01 940	0.53 406	60
1	.46 635	.98 056	.48 579	.51 421	.01 944	.53 365	59
2	.46 676	.98 052	.48 624	.51 376	.01 948	.53 324	58
3 4	.46717 $.46758$.98 048 .98 044	$.48\ 669$ $.48\ 714$.51 331 .51 286	.01 952 .01 956	.53 283 .53 242	57 56
5	9.46 800	9.98 040	9.48 759	0.51 241	0.01 960	0.53 242	55
6	.46 841	.98 036	.48 804	.51 196	.01 964	.53 159	54
7	.46 882	.98 032	.48 849	.51 151	.01 968	.53 118	53
8	.46 923	.98 029	.48 894	.51 106	.01 971	.53 077	52
9	.46 964	.98 025	.48 939	.51 061	.01 975	.53 036	51
10	9.47 005	9.98 021	9.48 984	0.51 016	0.01979	0.52 995	50
11	.47 045	.98 017	.49 029	.50 971	.01 983	.52 955	49
12 13	.47 086	.98 013	.49 073	.50 927	.01 987	.52 914	48
14	.47 127 .47 168	.98 009 .98 005	.49 118 .49 163	.50 882 .50 837	.01 991 .01 995	.52 873 .52 832	47 46
15	9.47 209	9.98 001	9.49 207	0.50 793	0.01 999	0.52 791	45
16	.47 249	.97 997	.49 252	.50 748	.02 003	.52 751	44
17	.47 290	.97 993	.49 296	.50 704	.02 007	.52 710	43
18	.47 330	.97 989	.49 341	.50 659	.02 011	.52 670	$\overline{42}$
19	.47 371	.97 986	.49 385	.50 615	.02 014	.52 629	41
20	9.47 411	9.97 982	9.49 430	0.50 570	0.02 018	0.52 589	40
21	.47 452	.97 978	.49 474	.50 526	.02 022	.52 548	39
22	.47 492	.97 974	.49 519	.50 481	.02.026	.52 508	38
$\begin{array}{c} 23 \\ 24 \end{array}$.47 533	.97 970 .97 966	.49 563 .49 607	.50 437 .50 393	.02 030 .02 034	.52 467 .52 427	37 36
25	.47 573 9.47 613	9.97 962	9.49 652	0.50 348	0.02 034	0.52 387	35
26	.47 654	.97 958	.49 696	.50 304	.02 042	.52 346	34
27	.47 694	.97 954	.49 740	.50 260	.02 046	.52 306	33
28	.47 734	.97 950	.49 784	.50 216	.02 050	.52 266	32
29	.47 774	.97 946	.49 828	.50 172	.02 054	.52 226	31
30	9.47 814	9.97 942	9.49 872	0.50 128	0.02 058	0.52 186	30
31	.47 854	.97 938	.49 916	.50 084	.02 062	.52 146	29
32	.47 894	.97 934	.49 960 .50 004	.50 040 .49 996	.02 066 .02 070	.52 106 .52 066	28 27
33 34	.47 934 .47 974	.97 930 .97 926	.50 004	.49 950	.02 074	.52 000	26
35	9.48 014	9.97 922	9.50 092	0.49 908	0.02 078	0.51 986	25
36	.48 054	.97 918	.50 136	.49 864	.02 082	.51 946	24
37	.48 094	.97 914	.50 180	.49 820	.02 086	.51 906	23
38	.48 133	.97 910	.50 223	.49 777	.02 090	.51 867	22
39	.48 173	.97 906	.50 267	.49 733	.02 094	.51 827	21
40	9.48 213	9.97 902	9.50 311	0.49 689	0.02 098	0.51 787	20
41	.48 252	.97 898	.50 355	.49 645	.02 102	.51 748	19 18
42 43	.48 292 .48 332	.97 894	.50 398 .50 442	.49 602 .49 558	.02 106 .02 110	.51 708 .51 668	17
43	.48 371	.97 886	.50 485	.49 515	.02 114	.51 629	16
45	9.48 411	9.97 882	9.50 529	0.49 471	0.02 118	0.51 589	15
46	.48 450	.97 878	.50 572	.49 428	.02 122	.51 550	14
47	.48 490	.97 874	.50 616	.49 384	.02 126	.51 510	13
48	.48 529	.97 870	.50 659	.49 341	.02 130	.51 471	12
49	.48 568	.97 866	.50 703	.49 297	.02 134	.51 432	11
50	9.48 607	9.97 861	9.50 746	0.49 254	0.02 139	0.51 393	10
51	.48 647	.97 857	.50 789	.49 211 .49 167	.02 143	.51 353 .51 314	9
52	.48 686	.97 853	.50 833 .50 876	.49 107	.02 147	.51 275	7
53 54	.48 764	.97 845	.50 919	.49 081	.02 155	.51 236	6
55 55	9.48 803	9.97 841	9.50 962	0.49 038	0.02 159	0.51 197	5
56	.48 842	.97 837	.51 005	.48 995	.02 163	.51 158	4
57	.48 881	.97 833	.51 048	.48 952	.02 167	.51 119	$\frac{3}{2}$
58	.48 920	.97 829	.51 092	.48 908	.02 171	.51 080	2
59	.48 959	.97 825	.51 135	.48 865	.02 175	.51 041	1
60	9.48 998	9.97 821	9.51 178	0.48 822	0.02 179	0.51 002	0
	Cos	Sin	Cot	Tan	Csc	Sec	

18° (198°)

(341°) 161°

18° (19	98°)					(341)	°) 161 °
''	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.48 998	9.97 821	9.51 178	0.48 822	0.02 179	0.51 002	60
1	.49 037	.97 817	.51 221	.48 779	.02.183	.50 963	59
2 3	.49 076 .49 115	.97 812	.51 264 .51 306	.48 736 .48 694	.02 188	.50 924 .50 885	58 57
4	.49 153	.97 804	.51 349	.48 651	.02 192	.50 847	56
5	9.49 192	9.97 800	9.51 392	0.48 608	0.02 200	0.50 808	55
6	.49 231	.97 796	.51 435	.48 565	.02 204	.50 769	54
7	.49 269	.97 792	.51 478	.48 522	.02 208	.50 731	53
8	.49 308	.97 788	.51 520	.48 480	.02 212	.50 692	52
9	.49 347	.97 784	.51 563	.48 437	.02 216	.50 653	51
10	9.49 385	9.97 779	9.51 606	0.48 394	0.02 221	0.50 615	50
$^{11}_{12}$.49 424	.97 775	.51 648	.48 352	.02 225	.50 576	49
13	.49 462 .49 500	.97 771	.51 691 .51 734	.48 309 .48 266	.02 229 .02 233	.50 538 .50 500	48 47
14	.49 539	.97 763	.51 776	.48 224	.02 237	.50 461	46
15	9.49 577	9.97 759	9.51 819	0.48 181	0.02 241	0.50 423	45
16	.49 615	.97 754	.51 861	.48 139	.02 246	.50 385	44
17	.49 654	.97 750	.51 903	.48 097	.02 250	.50 346	$\overline{43}$
18	.49 692	.97 746	.51 946	.48 054	.02 254	.50 308	42
19	.49 730	.97 742	.51 988	.48 012	.02 258	.50 270	41
20	9.49 768	9.97 738	9.52 031	0.47 969	0.02 262	0.50 232	40
21	.49 806	.97 734	.52 073	.47 927	.02 266	.50 194	39
$\begin{array}{c} 22 \\ 23 \end{array}$.49 844 .49 882	.97 729 .97 725	.52 115 .52 157	.47 885	.02 271 .02 275	.50 156 .50 118	38 37
23 24	.49 920	.97 723	.52 200	.47 843 .47 800	.02 275	.50 118	36
25	9.49 958	9.97 717	9.52 242	0.47 758	0.02 279	0.50 042	35
26	.49 996	97 713	.52 284	.47 716	.02 287	.50 004	34
$\overline{27}$.50 034	.97 708	.52 326	.47 674	.02 292	.49 966	33
28	.50 072	.97 704	.52 368	.47 632	.02 296	.49 928	32
29	.50 110	.97 700	.52 410	.47 590	.02 300	.49 890	31
30	9.50 148	9.97 696	9.52 452	0.47 548	0.02 304	0.49 852	30
31	.50 185	.97 691	.52 494	.47 506	.02 309	.49 815	29
$\frac{32}{33}$.50 223 .50 261	.97 687 .97 683	.52 536 .52 578	.47 464	.02 313	.49 777 .49 739	28 27
34	.50 298	.97 679	.52 620	.47 380	.02 317	.49 702	26
35	9.50 336	9.97 674	9.52 661	0.47 339	0.02 326	0.49 664	25
36	.50 374	.97 670	.52 703	.47 297	.02 330	.49 626	24
37	.50 411	.97 666	.52 745	.47 255	.02 334	.49 589	$\overline{23}$
38	.50 449	.97 662	.52 787	.47 213	.02 338	.49 551	22
39	.50 486	.97 657	.52 829	.47 171	.02 343	.49 514	21
40	9.50 523	9.97 653	9.52 870	0.47 130	0.02 347	0.49 477	20
$\frac{41}{42}$.50 561 .50 598	.97 649 .97 645	.52 912 .52 953	.47 088 .47 047	.02 351	.49 439	19
43	.50 635	.97 640	.52 995	.47 047	.02 355 .02 360	.49 402 .49 365	18 17
44	.50 673	.97 636	.53 037	.46 963	.02 364	.49 327	16
45	9.50 710	9.97 632	9.53 078	0.46 922	0.02 368	0.49 290	15
46	.50 747	.97 628	.53 120	.46 880	.02 372	.49 253	14
47	.50 784	.97 623	.53 161	.46 839	.02 377	.49 216	13
48	.50 821	.97 619	.53 202	.46 798	.02 381	.49 179	12
49 50	.50 858	.97 615	.53 244	.46 756	.02 385	.49 142	11
51	9.50 896 .50 933	9.97 610 .97 606	9.53 285 .53 327	0.46 715 .46 673	0.02 390	0.49 104	10
52	.50 933	.97 602	.53 368	.46 632	.02 394 .02 398	.49 067 .49 030	9 8
53	.51 007	.97 597	.53 409	.46 591	.02 403	.48 993	~ ~
54	.51 043	.97 593	.53 450	.46 550	.02 407	.48 957	6
55	9.51 080	9.97 589	9.53492	0.46 508	0.02 411	0.48 920	5
56	.51 117	.97 584	.53 533	.46 467	.02 416	.48 883	4
57	.51 154	.97 580	.53 574	.46 426	.02 420	.48 846	3
58 59	.51 191 .51 227	.97 576 .97 571	.53 615	.46 385	.02 424	.48 809	2
60	9.51 264	9.97 567	.53 656	.46 344	.02 429	.48 773	ī
			9.53 697	0.46 303	0.02 433	0.48 736	0
	Cos	Sin	Cot	Tan	Csc	Sec	

19° (199°)

(340°) 160°

19° (199	9-)					(340°)	160°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.51 264	9.97 567	9.53 697	0.46 303	0.02 433	0.48 736	60
1	.51 301	.97 563	.53 738	.46 262	.02 437	.48 699	59
2	.51 338	.97 558	.53 779 .53 820	.46 221 .46 180	$.02\ 442$ $.02\ 446$.48 662	58
3 4	.51 374 .51 411	.97 554 .97 550	.53 820	.46 139	.02 440	.48 626 .48 589	57 56
5	9.51 447	9.97 545	9.53 902	0.46 098	0.02 455	0.48 553	55
8	.51 484	.97 541	.53 943	.46 057	.02 459	.48 516	54
6 7	.51 520	.97 536	.53 984	.46 016	.02 464	.48 480	53
8	.51 557	.97 532	.54 025	.45 975	.02 468	.48 443	52
9	.51 593	.97 528	.54 065	.45 935	.02 472	.48 407	51
10	9.51 629	9.97 523	9.54 106	0.45 894	0.02477	0.48 371	50
11	.51 666	.97 519	.54 147	.45 853	.02 481	.48 334	49
12	.51 702	.97 515	.54 187	.45 813	.02 485	.48 298	48
13	.51 738	.97 510	.54 228	.45 772	.02 490	.48 262	47
14	.51 774	.97 506	.54 269	.45 731	.02 494	.48 226	46
15	9.51 811	9.97 501	9.54 309	0.45 691	0.02 499	0.48 189	45 44
16	.51 847 .51 883	.97 497 .97 492	.54 350 .54 390	.45 650 .45 610	.02 503 .02 508	.48 153 .48 117	43
17 18	.51 919	.97 488	.54 431	.45 569	.02 512	.48 081	42
19	.51 955	.97 484	.54 471	.45 529	.02 516	.48 045	41
20	9.51 991	9.97 479	9.54 512	0.45 488	0.02 521	0.48 009	40
21	52 027	.97 475	.54 552	.45 448	.02 525	.47 973	39
22	.52 063	.97 470	.54 593	.45 407	.02 530	.47 937	38
. 23	.52 099	.97 466	.54 633	.45 367	.02 534	.47 901	37
24	.52 135	.97 461	.54 673	.45 327	.02 539	.47 865	36
25	9.52 171	9.97 457	9.54 714	0.45 286	0.02 543	0.47 829	35
26	.52 207	.97 453	.54 754 .54 794	.45 246 .45 206	.02 547 .02 552	.47 793 .47 758	34 33
27	.52 242	.97 448 .97 444	.54 835	.45 165	.02 556	47 722	32
28 29	.52 278	.97 439	.54 875	.45 125	.02 561	.47 686	31
30	9.52 350	9.97 435	9.54 915	0.45 085	0.02 565	0.47 650	30
31 .	.52 385	.97 430	.54 955	.45 045	.02 570	.47 615	29
32	.52 421	.97 426	.54 995	.45 005	.02 574	.47 579	28
33	.52 456	.97 421	.55 035	.44 965	.02 579	.47 544	27
34	.52 492	.97 417	.55 075	.44 925	.02 583	.47 508	26
35	9.52 527	9.97 412	9.55 115	0,44 885	0.02 588	0.47 473	25
36	.52 563	.97 408	.55 155	.44 845	.02 592	.47 437 .47 402	24 23
37	.52 598	.97 403	.55 195 .55 235	.44 805 .44 765	.02 601	.47 366	22
38 39	.52 634 .52 669	.97 399 .97 394	.55 275	.44 725	.02 606	.47 331	21
40	9.52 705	9.97 390	9.55 315	0.44 685	0.02 610	0.47 295	20
41	.52 740	.97 385	.55 355	.44 645	.02 615	.47 260	19
42	.52 775	.97 381	.55 395	.44 605	.02 619	.47 225	18
43	.52 811	.97 376	.55 434	.44 566	.02 624	.47 189	17
44	.52 846	.97 372	.55 474	.44 526	.02 628	.47 154	16
45	9.52 881	9.97 367	9.55 514	0.44 486	0.02 633	0.47 119	15
46	.52 916	.97 363	.55 554	.44 446	.02 637	.47 084 .47 049	14 13
47	.52 951	.97 358	.55 593	.44 407	.02 642 .02 647	.47 049	12
48	.52 986	.97 353 .97 349	.55 633 .55 673	.44 307	.02 651	.46 979	liĩ
49	.53 021	9.97 344	9.55 712	0.44 288	0.02 656	0.46 944	10
50 51	9.53 056	.97 344	.55 752	.44 248	.02 660	.46 908	9
52	.53 126	.97 335	.55 791	.44 209	.02 665	.46 874	8
53	.53 161	.97 331	.55 831	.44 169	.02 669	.46 839	7
54	.53 196	.97 326	.55 870	.44 130	.02 674	.46 804	6
55	9.53 231	9.97 322	9.55 910	0.44 090	0.02 678	0.46 769	5
56	.53 266	.97 317	.55 949	.44 051	.02 683	.46 734	3
57	.53 301	.97 312	.55 989	.44 011	.02 688	.46 699 .46 664	2
58	.53 336	.97 308	.56 028 .56 067	.43 972	.02 697	.46 630	ľí
59	.53 370	.97 303	9.56 107	9.43 893	0.02 701	0.46 595	Ō
60	9.53 405	9.97 299			Csc	Sec	,
	Cos	Sin	Cot	Tan_	USC	366	1

20° (200°) (339°) 159°

20° (20	0°)					(339)	°) 159°
,	Sin	Cos	Tan	Cot	Sec	Cse	
0	9.53 405	9.97 299	9.56 107	0.43 893	0.02 701	0.46 595	60
1	.53 440	.97 294	.56 146	.43 854	.02 706	.46 560	59
$\frac{2}{3}$.53 475	.97 289 .97 285	.56 185 .56 224	.43 815	02711 02715	.46 525 .46 491	58 57
4	.53 544	.97 280	.56 264	.43 736	.02 720	.46 456	56
5	9.53 578	9.97 276	9.56 303	0.43 697	0.02 724	0.46 422	55
6	.53 613	.97 271	.56 342	.43 658	.02 729	.46 387	54
7	.53 647	.97 266	.56 381	.43 619	.02 734	.46 353	53
8	.53 682	.97 262	.56 420	.43 580	.02 738	.46 318	52
9	.53 716	.97 257	.56 459	.43 541	.02 743	.46 284	51
10	9.53 751	9.97 252	9.56 498	$0.43\ 502$	0.02 748	0.46 249	50
11	.53 785	.97 248	.56 537	.43 463	.02 752	.46 215	49
12	.53 819	.97 243	.56 576	.43 424	.02 757	.46 181	48
13	.53 854	.97 238	.56 615	.43 385	.02 762	.46 146	47
14	.53 888	.97 234	.56 654	.43 346	.02 766	.46 112	46
15	9.53 922	9.97 229	9.56 693	0.43 307	0.02 771	0.46 078	45
16	.53 957	.97 224	.56 732	.43 268	.02 776	.46 043	44
17	.53 991 .54 025	.97 220 .97 215	.56 771	.43 229	.02 780	.46 009	43
18 19	.54 025	.97 215	.56 810 .56 849	.43 190	.02 785	.45 975	42
20	9.54 093	9.97 206	9.56 887	0.43 113			41
21	.54 127	.97 200	.56 926	.43 074	$0.02794 \\ .02799$	0.45 907 .45 873	40 · 39
22	.54 161	.97 196	.56 965	.43 035	.02 799	.45 839	38
23	.54 195	.97 192	.57 004	.42 996	.02 808	.45 805	37 1
$\tilde{24}$.54 229	.97 187	.57 042	.42 958	.02 813	.45 771	36
25	9.54 263	9.97 182	9.57 081	0.42 919	0.02 818	0.45 737	35
$\frac{1}{26}$.54 297	.97 178	.57 120	.42 880	.02 822	.45 703	34
27	.54 331	.97 173	.57 158	.42 842	.02 827	.45 669	33
28	.54 365	.97 168	.57 197	.42 803	.02 832	.45 635	32
29	.54 399	.97 163	.57 235	.42 765	.02 837	.45 601	31
30	9.54 433	9.97 159	9.57274	0.42726	0.02 841	0.45 567	30
31	.54 466	.97 154	.57 312	.42 688	.02 846	.45 534	. 29
32	.54 500	.97 149	.57 351	.42 649	.02 851	.45 500	28
$\frac{33}{34}$.54 534 .54 567	.97 145 .97 140	.57 389 .57 428	.42 611	.02 855	.45 466	27
				.42 572	.02 860	.45 433	26
35 36	9.54 601 .54 635	9.97 135 .97 130	9.57 466	0.42 534	0.02 865	0.45 399	25
37	.54 668	.97 126	.57 504 .57 543	.42 496 .42 457	.02 870	.45 365	24
38	.54 702	.97 121	.57 581	.42 419	$.02\ 874$ $.02\ 879$.45 332 .45 298	23 22
39	.54 735	.97 116	.57 619	.42 381	.02 884	.45 265	21
40	9.54 769	9.97 111	9.57 658	0.42 342	0.02 889	0.45 231	20
41	.54 802	.97 107	.57 696	.42 304	.02 893	.45 198	19
42	.54 836	.97 102	.57 734	.42 266	.02 898	.45 164	18
43	.54 869	.97 097	.57 772	.42 228	.02 903	.45 131	17
44	.54 903	.97 092	.57 810	.42 190	.02 908	.45 097	16
45	9.54 936	9.97 087	9.57849	$0.42\ 151$	0.02 913	$0.45\ 064$	15
46	.54 969	.97 083	.57 887	.42 113	.02 917	.45 031	14
47	.55 003	.97 078	.57 925	.42 075	.02 922	.44 997	13
$\frac{48}{49}$.55 036 .55 069	.97 073 .97 068	.57 963 .58 001	.42 037	.02 927	.44 964	12
50	9.55 102	9.97 063	9.58 039	.41 999	.02 932	.44 931	11
51	.55 136	.97 053	.58 077	0.41 961	0.02 937	0.44 898	10
52	.55 169	.97 059	.58 115	.41 923 .41 885	$.02\ 941 \\ .02\ 946$.44 864 .44 831	9
53	.55 202	.97 049	.58 153	.41 847	.02 940	.44 798	8 7
54	.55 235	.97 044	.58 191	.41 809	.02 956	.44 765	6
55	9.55 268	9.97 039	9.58 229	0.41 771	0.02 961	0.44 732	5
56	.55 301	.97 035	.58 267	.41 733	.02 965	.44 699	4
57	.55 334	.97 030	.58 304	.41 696	.02 970	.44 666	3
58	.55 367	.97 025	.58 342	.41 658	.02 975	.44 633	2
59	.55 400	.97 020	.58 380	.41 620	.02 980	.44 600	ī
60	9.55 433	9.97 015	9.58 418	0.41 582	$0.02\ 985$	0.44 567	0
	Cos	Sin	Cot	Tan	Csc	Sec	
-						200	

21° (201°)

(338°) 158°

21 (20.						(338°)	199
	Sin	Cos	Tan	Cot	Sec	Cse	
0 _	9.55 433	9.97 015	9.58 418	0.41 582	0.02985	0.44 567	60
$egin{array}{c} 1 \ 2 \end{array}$.55 466 .55 499	.97 010	.58 455	.41 545	.02 990	.44 534	59
3	.55 532	.97 005 .97 001	.58 493 .58 531	.41 507 .41 469	$.02\ 995$ $.02\ 999$.44 501 .44 468	58 57
4	.55 564	.96 996	.58 569	.41 431	.02 999	.44 436	56
5	9.55 597	9.96 991	9.58 606	0.41 394	0.03 009	0.44 403	55
6	.55 630	.96 986	.58 644	.41 356	.03 014	.44 370	54
7	.55 663	.96 981	.58 681	.41 319	.03 019	.44 337	53
8	.55 695	.96 976	.58 719	.41 281	.03 024	.44 305	52
9	.55 728	.96971	.58 757	.41 243	.03 029	.44 272	51
10	9.55 761	9.96 966	9.58794	0.41 206	$0.03\ 034$	0.44 239	50
11	.55 793	.96 962	.58 832	.41 168	.03 038	.44 207	49
12	.55 826	.96 957	.58 869	.41 131	.03 043	.44 174	48
13	.55 858	.96 952	.58 907	.41 093	.03 048	.44 142	47
14 15	.55 891	.96 947 9.96 942	.58 944	.41 056	.03 053	.44 109	46
16	9.55 923 .55 956	.96 942	9.58 981 .59 019	$0.41\ 019 \\ .40\ 981$	0.03 058	0.44 077 .44 044	45 44
17	.55 988	.96 932	.59 056	.40 944	.03 068	.44 012	43
18	.56 021	.96 927	.59 094	.40 906	.03 073	.43 979	$\frac{43}{42}$
19	.56 053	.96 922	.59 131	.40 869	.03 078	.43 947	41
20	9.56 085	9.96 917	9.59 168	0.40 832	0.03 083	0.43 915	40
21	.56 118	.96 912	.59 205	.40 795	.03 088	.43 882	39
22	.56 150	.96 907	.59 243	.40 757	.03 093	.43 850	38
23	.56 182	.96 903	.59 280	.40 720	.03 097	.43 818	37
24	.56 215	.96 898	.59 317	.40 683	.03 102	.43 785	36
25	9.56 247	9.96 893	9.59 354	0.40 646	0.03 107	0.43 753	35
$\frac{26}{27}$.56 279 .56 311	.96 888 .96 883	.59 391 .59 429	.40 609	.03 112	.43 721 .43 689	$\frac{34}{33}$
28	.56 343	.96 878	.59 429	.40 571 .40 534	.03 122	.43 657	32
29	.56 375	.96 873	.59 503	.40 497	.03 127	.43 625	31
30	9.56 408	9.96 868	9.59 540	0.40 460	0.03 132	0.43 592	30
31	.56 440	.96 863	.59 577	.40 423	.03 137	.43 560	29
32	$.56\ 472$.96 858	.59 614	.40 386	.03 142	.43 528	28
33	$.56\ 504$.96 853	.59 651	.40 349	.03 147	.43 496	27
34	.56 536	.96 848	.59 688	.40 312	.03 152	.43 464	26
35	9.56 568	9.96 843	9.59 725	0.40 275	0.03 157	0.43 432	25 24
36	.56 599	.96 838	.59 762 .59 799	.40 238 .40 201	.03 162 .03 167	.43 401	24 23
37 38	.56 631 .56 663	.96 833 .96 828	.59 835	.40 165	.03 172	.43 337	$\frac{23}{22}$
39	.56 695	.96 823	.59 872	.40 128	.03 177	.43 305	$\tilde{2}\tilde{1}$
40	9.56 727	9.96 818	9.59 909	0.40 091	0.03 182	0.43 273	20
41	.56 759	.96 813	.59 946	.40 054	.03 187	.43 241	19
$\frac{1}{42}$.56 790	.96 808	.59 983	.40 017	.03 192	.43 210	18
43	.56822	.96 803	.60 019	.39 981	.03 197	.43 178	17
44	.56 854	.96 798	.60 056	.39 944	.03 202	.43 146	16
45	9.56 886	9.96 793	9.60 093	0.39 907	0.03 207	0.43 114	15
46	.56 917	.96 788	.60 130	.39 870	$.03\ 212$ $.03 \cdot 217$.43 083 .43 051	14 13
47 48	.56 949 .56 980	.96 783 .96 778	.60 166 .60 203	.39 834	.03 222	.43 020	$\frac{13}{12}$
48	.57 012	.96 772	.60 240	.39 760	.03 228	.42 988	11
50	9.57 044	9.96 767	9.60 276	0.39 724	0.03 233	0.42 956	10
51	.57 075	.96 762	.60 313	.39 687	.03 238	.42 925	9
52	.57 107	.96 757	.60 349	.39 651	.03 243	.42 893	8
53	.57 138	.96 752	.60 386	.39 614	.03 248	.42 862	7
54	.57 169	.96 747	.60 422	.39 578	.03 253	.42 831	6
55	9.57 201	9.96 742	9.60 459	0.39 541	0.03 258	0.42 799	5
56	.57 232	.96 737	.60 495	.39 505 .39 468	.03 263 .03 268	.42 768 .42 736	4 3
57	.57 264 .57 295	.96 732 .96 727	.60 532 .60 568	.39 408	.03 273	.42 705	2
58 59	.57 326	.96 722	.60 605	39 395	.03 278	.42 674	ĩ
60	9.57 358	9.96 717	9.60 641	0.39 359	0.03 283	0.42 642	ō
	Cos	Sin	Cot	Tan	Cse	Sec	-,
	008	i Date	. 000			~~~	

22° (202°)

(337°) 157°

22° (20	2°)					(337°)	101
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.57 358	9.96 717	9.60 641	0.39 359	0.03283	0.42 642	60
1	.57 389	.96 711	.60 677	.39 323	.03 289	.42 611	59
2	.57 420	.96 706	.60 714	.39 286	.03 294 .03 299	.42 580 .42 549	58 57
3	.57 451	.96 701	.60 750	.39 250		.42 518	56
4	.57 482	.96 696	.60 786	.39 214	.03 304		
5	9.57 514	9.96 691	9.60 823	0.39 177	0.03 309	0.42 486	55
6	.57 545	.96 686	.60 859	.39 141	.03 314	.42 455	54
7	.57 576	.96 681	.60 895	.39 105	.03 319	.42 424 .42 393	53 52
8	.57 607	.96 676	.60 931 .60 967	.39 069	.03 324 .03 330	.42 362	51
9	.57 638	.96 670		.39 033		0.42 331	50
10	9.57 669	9.96 665	9.61 004	9.38 996	0.03 335		49
11	.57 700	.96 660 -:96 655	.61 040 .61 076	.38 960 .38 924	.03 340 .03 345	.42 300 .42 269	48
$\frac{12}{13}$.57 731 .57 762	.96 650	.61 112	.38 888	.03 350	.42 238	47
14	.57 793	.96 645	.61 148	.38 852	.03 355	.42 207	46
				0.38 816	0.03 360	0.42 176	45
15	9.57 824 .57 855	9.96 640 .96 634	9.61 184 .61 220	.38 780	.03 366	.42 145	44
16 17	.57 885	.96 629	.61 256	.38 744	.03 371	.42 115	43
18	.57 916	.96 624	.61 292	.38 708	.03 376	.42 084	42
19	.57 947	.96 619	.61 328	.38 672	.03 381	.42 053	41
20	9.57 978	9.96 614	9.61 364	0.38 636	0.03 386	0.42 022	40
21	.58 008	.96 608	.61 400	.38 600	.03 392	.41 992	39
$\frac{21}{22}$.58 039	.96 603	.61 436	.38 564	.03 397	.41 961	38
$\frac{22}{23}$.58 070	.96 598	.61 472	.38 528	.03 402	.41 930	37
24	.58 101	.96 593	.61 508	.38 492	.03 407	.41 899	36
25	9.58 131	9.96 588	9.61 544	0.38 456	0.03 412	0.41 869	35
26	.58 162	.96 582	.61 579	.38 421	.03 418	.41 838	34
27	.58 192	.96 577	.61 615	.38 385	.03 423	.41 808	33
28	.58 223	.96 572	.61 651	.38 349	.03 428	.41 777	32
29	.58 253	.96 567	.61 687	.38 313	.03 433	.41 747	31
30	9.58 284	9.96 562	9.61 722	0.38 278	0.03 438	0.41 716	30
31	.58 314	.96 556	.61 758	.38 242	.03 444	.41 686	29
32	.58 345	.96 551	.61 794	.38 206	.03 449	.41 655	28
33	.58 375	.96 546	.61 830	.38 170	.03 454	.41 625	27
34	.58 406	.96 541	.61 865	.38 135	.03 459	.41 594	26
35	9.58 436	9.96 535	9.61 901	0.38 099	0.03 465	0.41 564	25
36	.58 467	.96 530	.61 936	.38 064	.03 470	.41 533	24
37	.58 497	.96 525	.61 972	.38 028	.03 475	.41 503	23
38	.58 527	.96 520	.62 008	.37 992	.03 480	.41 473	22
39	.58 557	.96 514	.62 043	.37 957	.03 486	.41 443	21
40	9.58 588	9.96 509	9.62 079	0.37 921	0.03 491	0.41 412	20
41	.58 618	.96 504	.62 114	.37 886	.03 496	.41 382	19
42	.58 648	.96 498	.62 150	.37 850	.03 502	.41 352	18
43	.58 678	.96 493	.62 185	.37 815	.03 507	.41 322	17
44	.58 709	.96 488	.62 221	.37 779	.03 512	.41 291	16
45	9.58 739	9.96 483	9.62 256	0.37 744	0.03 517	0.41 261	15
46	.58 769	.96 477	.62 292	.37 708	.03 523	.41 231 .41 201	14
47	.58 799	.96 472	.62 327 .62 362	.37 673 .37 638	.03 528 .03 533	.41 201	$\begin{array}{c} 13 \\ 12 \end{array}$
48 49	.58 829 .58 859	.96 467 .96 461	.62 302	.37 602	.03 539	.41 171	11
49 50	9.58 889	9.96 456	9.62 433	0.37 567	0.03 544	0.41 111	10
อบ 51	.58 919	.96 451	.62 468	.37 532	.03 544	.41 081	9
52	.58 949	.96 445	.62 504	.37 496	.03 555	.41 051	8
53	.58 979	.96 440	.62 539	.37 461	.03 560	.41 031	8 7
54	.59 009	.96 435	.62 574	.37 426	.03 565	.40 991	6
55	9.59 039	9.96 429	9.62 609	0.37 391	0.03 571	0.40 961	5
56	.59 069	.96 429	.62 645	.37 355	.03 576	.40 931	4
57	.59 009	.96 419	.62 680	.37 320	.03 581	.40 931	3
58	.59 128	.96 413	.62 715	.37 285	.03 587	.40 872	2
59	.59 158	.96 408	.62 750	.37 250	.03 592	.40 842	ī
60	9.59 188	9.96 403	9.62 785	0.37 215	0.03 597	0.40 812	Ô
	·						_
	Cos	Sin	Cot	Tan	Csc	Sec	· . '

23° (203°)

(336°) 156°

Sin Cos Tan Cot Sec 0 9.59 188 9.96 403 9.62 785 0.37 215 0.03 597 1 .59 218 .96 397 .62 820 .37 180 .03 603 2 .59 247 .96 392 .62 855 .37 145 .03 608 3 .59 277 .96 387 .62 890 .37 110 .03 613 4 .59 307 .96 381 .62 926 .37 074 .03 619 5 9.59 336 9.96 376 9.62 961 0.37 039 0.03 624 6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 365 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 394 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646 10 9.59 484 9.96 349 9.63 135 0.36 865 0.03 651	Csc 0.40 812 .40 782 .40 753 .40 723 .40 693 0.40 664 .40 634 .40 575 .40 545	59 58 57 56 55 54 53
1 .59 218 .96 397 .62 820 .37 180 .03 603 2 .59 247 .96 392 .62 855 .37 145 .03 608 3 .59 277 .96 387 .62 890 .37 110 .03 613 4 .59 307 .96 381 .62 926 .37 074 .03 613 5 9.59 336 9.96 376 9.62 961 0.37 039 0.03 624 6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 36 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 782 .40 753 .40 723 .40 693 0.40 664 .40 634 .40 604 .40 575 .40 545	59 58 57 56 55 54 53
2 .59 247 .96 392 .62 855 .37 145 .03 608 3 .59 277 .96 387 .62 890 .37 110 .03 613 4 .59 307 .96 381 .62 926 .37 074 .03 619 5 9.59 336 9.96 376 9.62 961 0.37 039 0.03 624 6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 360 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 36 34 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 753 .40 723 .40 693 0.40 664 .40 634 .40 604 .40 575 .40 545	58 57 56 55 54 53
3 .59 277 .96 387 .62 890 .37 110 .03 613 4 .59 307 .96 381 .62 926 .37 074 .03 613 5 9.59 336 9.96 376 9.62 961 0.37 039 0.03 624 6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 365 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 723 .40 693 0.40 664 .40 634 .40 604 .40 575 .40 545	57 56 55 54 53
4 .59 307 .96 381 .62 926 .37 074 .03 619 5 9.59 336 9.96 376 9.62 961 0.37 039 0.03 624 6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 365 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 693 0.40 664 .40 634 .40 604 .40 575 .40 545	56 55 54 53
5 9.59 336 9.96 376 9.62 961 0.37 039 0.03 624 6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 365 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	0.40 664 .40 634 .40 604 .40 575 .40 545	55 54 53
6 .59 366 .96 370 .62 996 .37 004 .03 630 7 .59 396 .96 365 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 634 .40 604 .40 575 .40 545	54 53
7 .59 396 .96 365 .63 031 .36 969 .03 635 8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 604 .40 575 .40 545	53
8 .59 425 .96 360 .63 066 .36 934 .03 640 9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 575 .40 545	
9 .59 455 .96 354 .63 101 .36 899 .03 646	.40 545	52
		51
	0.40 516	50
11 .59 514 .96 343 .63 170 .36 830 .03 657	.40 486	49
12 .59 543 .96 338 .63 205 .36 795 .03 662	.40 457	48
13 .59 573 .96 333 .63 240 .36 760 .03 667	.40 427	47
14 .59 602 .96 327 .63 275 .36 725 .03 673	.40 398	46
15 9.59 632 9.96 322 9.63 310 0.36 690 0.03 678	0.40 368	45
16 .59 661 .96 316 .63 345 .36 655 .03 684	.40 339	44
17 .59 690 .96 311 .63 379 .36 621 .03 689	.40 310	43
18 .59 720 .96 305 .63 414 .36 586 .03 695	.40 280	42
19 .59 749 .96 300 .63 449 .36 551 .03 700	.40 251	41
20 9.59 778 9.96 294 9.63 484 0.36 516 0.03 706	0.40 222	40
21 .59 808 .96 289 .63 519 .36 481 .03 711	.40 192	39
22 .59 837 .96 284 .63 553 .36 447 .03 716	.40 163	38
23 .59 866 .96 278 .63 588 .36 412 .03 722	.40 134	37
24 .59 895 .96 273 .63 623 .36 377 .03 727	40 105	36
25 9.59 924 9.96 267 9.63 657 0.36 343 0.03 733	0.40 076	35
26 .59 954 .96 262 .63 692 .36 308 .03 738	.40 046	34
27 .59 983 .96 256 .63 726 .36 274 .03 744	.40 017	33
28 .60 012 .96 251 .63 761 .36 239 .03 749	.39 988	32
2960 041 .96 245 .63 796 .36 204 .03 755	.39 959	31
30 9.60 070 9.96 240 9.63 830 0.36 170 0.03 760	.39 930	30 29
31	.39 901	29
32	.39 872 .39 843	27
35 101 101 100 100 100 100 100 100 100 10	.39 814	26
	0.39 785	25
	.39 756	24
00 110 211	.39 727	23
37 .60 273 .96 201 .64 072 .35 928 .03 799 38 .60 302 .96 196 .64 106 .35 894 .03 804	.39 698	22
39 .60 331 .96 190 .64 140 .35 860 .03 810	.39 669	21
40 9.60 359 9.96 185 9.64 175 0.35 825 0.03 815	0.39 641	20
41 .60 388 .96 179 .64 209 .35 791 .03 821	.39 612	19
42 .60 417 .96 174 .64 243 .35 757 .03 826	.39 583	18
43 .60 446 .96 168 .64 278 .35 722 .03 832	.39 554	17
44 .60 474 .96 162 .64 312 .35 688 .03 838	.39 526	16
45 9.60 503 9.96 157 9.64 346 0.35 654 0.03 843	0.39 497	15
46 .60 532 .96 151 .64 381 .35 619 .03 849	.39 468	14
47 .60 561 .96 146 .64 415 .35 585 .03 854	.39 439	13
48 .60 589 .96 140 .64 449 .35 551 .03 860	.39 411	12
49 .60 618 .96 135 .64 483 .35 517 .03 865	.39 382	11
50 9.60 646 9.96 129 9.64 517 0.35 483 0.03 871	0.39 354	10
51 .60 675 .96 123 .64 552 .35 448 .03 877	.39 325	9
52	.39 296 .39 268	8 7
00 102 100 102 102 000	.39 239	6
00101		5
55 9.60 789 9.96 101 9.64 688 0.35 312 0.03 899 60 818 96 095 64 722 35 278 .03 905	0.39 211 .39 182	4
010 20 110 20 21 21 21 21 21	.39 154	3
01 00 040 000 000 000 000 000	.39 134	2
00 000 000 000 00 176 00 001	.39 097	ĺ
00 000	0.39 069	ō
9.00 301 3.00 013 0.00 013		
Cos Sin Cot Tan Csc	Sec	<u>'</u>

24° (204°) (335°) 155°

24° (20)4°)					(335)	°) 155°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.60 931	9.96 073	9.64 858	0.35 142	0.03 927	0.39 069	60
1 1	.60 960	.96 067	.64 892	.35 108	.03 933	.39 040	59
$\frac{2}{3}$.60 988 .61 016	.96 062 .96 056	.64 926 .64 960	.35 074 .35 040	.03 938	.39 012	58 57
4	.61 045	.96 050	.64 994	.35 040	.03 950	.38 955	56
5	9.61 073	9.96 045	9.65 028	0.34 972	0.03 955	0.38 927	55 .
6	.61 101	.96 039	.65 062	.34 938	.03 961	.38 899	54
6 7	.61 129	.96 034	.65 096	.34 904	.03 966	.38 871	53
8	.61 158	.96 028	.65 130	.34 870	.03 972	.38 842	52
9	.61 186	.96 022	.65 164	.34 836	.03 978	.38 814	51
10	9.61 214	9.96 017	9.65 197	0.34 803	0.03 983	0.38 786	50
11	.61 242	.96 011	65 231	.34 769	.03 989	.38 758	49
$^{12}_{13}$.61 270 .61 298	.96 005	.65 265	.34 735	.03 995	.38 730	48
14	.61 326	.95 994	.65 333	.34 701	.04 000	.38 702	47 46
15	9.61 354	9.95 988	9.65 366	0.34 634	0.04 012	0.38 646	45
16	.61 382	.95 982	.65 400	.34 600	.04 012	.38 618	44
17	.61 411	.95 977	.65 434	.34 566	.04 023	.38 589	43
18	.61 438	.95 971	.65 467	.34 533	.04 029	.38 562	42
19	.61 466	.95 965	.65 501	.34 499	.04 035	.38 534	41
20	9.61 494	9.95 960	9.65 535	0.34 465	0.04 040	0.38 506	40
21	.61 522	.95 954	.65 568	.34 432	.04 046	.38 478	39
22	.61 550	.95 948	.65 602	.34 398	.04 052	.38 450	38
$\frac{23}{24}$.61 578 .61 6 06	95 942	.65 636	.34 364	.04 058	.38 422	37
25	9.61 634	9.95 931	.65 669 9.65 703	.34 331	.04 063	.38 394	36
26	.61 662	.95 925	.65 736	0.34 297 .34 264	0.04 069	0.38 366	35 34
27	.61 689	.95 920	.65 770	.34 230	.04 073	.38 311	33
28	.61 717	.95 914	.65 803	.34 197	.04 086	.38 283	$\begin{vmatrix} 32 \\ 32 \end{vmatrix}$
29	.61 745	.95 908	.65 837	.34 163	.04 092	.38 255	31
30	9.61 773	9.95 902	9.65 870	0.34 130	0.04 098	0.38 227	30
31	.61 800	.95 897	.65 904	.34 096	.04 103	.38 200	29
$\frac{32}{33}$.61 828 .61 856	.95 891	.65 937	'.34 063	.04 109	.38 172	28
34	.61 883	.95 885 .95 879	.65 971 .66 004	.34 029	.04 115	.38 144	27
35	9.61 911	9.95 873	9.66 038	0.33 962	.04 121	.38 117	26 25
36	.61 939	.95 868	.66 071	.33 929	0.04 127	$0.38\ 089$ $.38\ 061$	24
37	.61 966	.95 862	.66 104	.33 896	.04 138	.38 034	23
38	.61 994	.95 856	.66 138	.33 862	.04 144	.38 006	22
39	.62 021	.95 850	.66 171	.33 829	.04 150	.37 979	21
40	9.62 049	9.95844	9.66 204	0.33 796	0.04 156	0.37 951	20
$\frac{41}{42}$.62 076	.95 839	.66 238	.33 762	.04 161	.37 924	19
43	.62 104	.95 833 .95 827	.66 271 .66 304	.33 729	.04 167	.37 896	18
44	.62 159	.95 821	.66 337	.33 663	.04 173 .04 179	.37 869 .37 841	17 16
45	9.62 186	9.95 815	9.66 371	0.33 629	0.04 185	0.37 814	15
46	.62 214	.95 810	.66 404	.33 596	.04 190	.37 786	14
47	.62 241	.95 804	.66 437	.33 563	.04 196	.37 759	13
48	.62 268	.95 798	.66 470	.33 530	.04 202	.37 732	12
49	.62 296	.95 792	.66 503	.33 497	.04 208	.37 704	11
50	9.62 323	9.95 786	9.66 537	0.33 463	0.04 214	0.37 677	10
$\frac{51}{52}$.62 350 .62 377	.95 780 .95 775	.66 570 .66 603	.33 430	.04 220	.37 650	9
53	.62 405	.95 769	.66 636	.33 397 .33 364	.04 225 .04 231	.37 623	$\begin{bmatrix} 8 \\ 7 \end{bmatrix}$
54	.62 432	.95 763	.66 669	.33 331	.04 237	.37 595 .37 568	. 6
55	9.62 459	9.95 757	9.66 702	0.33 298	0.04 243	0.37 541	5
56	.62 486	.95 751	.66 735	.33 265	.04 249	.37 514	4
57	.62 513	.95 745	.66 768	.33 232	.04 255	.37 487	3
58	.62 541	.95 739	.66 801	.33 199	.04 261	.37 459	2
59	.62 568	.95 733	.66 834	.33 166	.04 267	.37 432	1
60	9.62 595	9.95 728	9.66 867	0.33 133	$0.04\ 272$	0.37 405	0
	Cos	Sin	Cot	Tan	Csc	Sec	-,

25° (205°)

(334°) 154°

25 ° (20	5°)					(334°)	154°
	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.62 595	9.95 728	9.66 867	0.33 133	0.04 272	0.37 405	60
1	.62 622	.95 722	.66 900	.33 100	.04 278	.37 378	59
$\frac{2}{3}$.62 649 .62 676	$.95\ 716 \\ .95\ 710$.66 933 .66 966	.33 067	$.04\ 284$ $.04\ 290$.37 351	58 57
4	.62 703	.95 704	.66 999	.33 034 .33 001	.04 296	.37 324 .37 297	56
5	9.62 730	9.95 698	9.67 032	0.32 968	0.04 302	0.37 270	55
6	62 757	.95 692	.67 065	.32 935	.04 302	.37 243	54
6 7	.62 784	.95 686	.67 098	.32 902	.04 314	.37 216	53
8	.62 811	.95 680	.67 131	.32 869	.04 320	.37 189	52
9	.62 838	.95 674	.67 163	.32 837	.04 326	.37 162	51
10	9.62 865	9.95 668	9.67 196	0.32 804	$0.04\ 332$	0.37 135	50
11	.62 892	.95 663	.67 229	.32771	.04 337	.37 108	49
12	.62 918	.95 657	.67 262	.32 738	.04 343	.37 082	48
13	.62 945	.95 651	.67 295	.32 705	.04 349	.37 055	47
14	.62 972	.95 645	.67 327	.32 673	.04 355	.37 028	46
15 10	9.62 999	9.95 639	9.67 360	$0.32\ 640$ $.32\ 607$	$0.04\ 361 \\ .04\ 367$	$0.37\ 001\ .36\ 974$	45 44
16 17	.63 026 .63 052	.95 633 .95 627	.67 393 .67 426	.32 574	.04 373	.36 948	43
18	.63 079	.95 621	.67 458	.32 542	.04 379	.36 921	42
19	.63 106	.95 615	.67 491	.32 509	.04 385	.36 894	$\tilde{41}$
20	9.63 133	9.95 609	9.67 524	0.32 476	0.04 391	0.36 867	40
$\overline{21}$.63 159	.95 603	.67 556	.32 444	.04 397	.36 841	39
22	.63 186	.95 597	.67 589	.32 411	.04 403	.36 814	38
23	.63 213	.95 591	.67 622	.32 378	.04 409	.36 787	37
24	.63 239	.95 585	.67 654	.32 346	.04 415	.36 761	36
25	9.63 266	9.95 579	9.67 687	0.32 313	0.04 421	0.36 734	35 34
$\begin{array}{c} 26 \\ 27 \end{array}$.63 292	.95 573 .95 567	$\begin{array}{c c} .67\ 719 \\ .67\ 752 \end{array}$.32 281 .32 248	.04 427	.36 708 .36 681	33
27 28	.63 345	.95 561	.67 785	.32 215	.04 439	.36 655	32
29	.63 372	.95 555	.67 817	.32 183	.04 445	.36 628	31
30	9.63 398	9.95 549	9.67 850	0.32 150	0.04 451	0.36 602	30
31	.63 425	.95 543	.67 882	.32 118	.04 457	.36 575	29
32	.63 451	.95 537	.67 915	.32 085	.04 463	.36 549	28
33	.63 478	.95 531	.67 947	.32 053	.04 469	.36 522 .36 496	27 26
34	.63 504	.95 525	.67 980	.32 020	.04 475	0.36 469	25
35	9.63 531	9.95 519	9.68 012 .68 044	0.31 988 .31 956	0.04 481	.36 443	24
$\frac{36}{37}$.63 557 .63 583	.95 513	.68 077	.31 923	.04 493	.36 417	23
38	.63 610	.95 500	.68 109	.31 891	.04 500	.36 390	22
39	.63 636	.95 494	.68 142	.31 858	.04 506	.36 364 .	21
40	9.63 662	9.95 488	9.68 174	0.31 826	$0.04\ 512$	0.36 338	20
41	.63 689	.95 482	.68 206	.31 794	.04 518	36 311	19
42	.63 715	.95 476	.68 239	.31 761	.04 524	.36 285	18
43	.63 741	.95 470	.68 271	.31 729	.04 530 .04 536	.36 259 .36 233	17 16
44	.63 767	.95 464	.68 303	.31 697 0.31 664	0.04 542	0.36 206	15
45	9.63 794	9.95 458	9.68 336	.31 632	.04 548	.36 180	14
46 47	.63 820 .63 846	.95 452 .95 446	.68 400	.31 600	.04 554	.36 154	13
48	.63 872	.95 440	.68 432	.31 568	.04 560	.36 128	12
49	.63 898	.95 434	.68 465	.31 535	.04 566	.36 102	11
50	9.63 924	9.95 427	9.68 497	0.31 503	0.04 573	0.36 076	10
51	.63 950	.95 421	.68 529	.31 471	.04 579	.36 050	9
52	.63 976	.95 415	.68 561	.31 439	.04 585	.36 024	8 7
53	.64 002	.95 409	.68 593	.31 407 .31 374	.04 591 .04 597	.35 972	6
54	.64 028	.95 403	.68 626	0.31 342	0.04 603	0.35 946	5
55	9.64 054	9.95 397	9.68 658	.31 310	.04 609	.35 920	4
56	.64 080 .64 106	.95 391	.68 722	.31 278	.04 616	.35 894	3
57 58	.64 132	.95 378	.68 754	.31 246	.04 622	.35 868	2
59	64 158	.95 372	.68 786	.31 214	.04 628	.35 842	1
60	9.64 184	9.95 366	9.68 818	0.31 182	0.04 634	0.35 816	0
 -	Cos	Sin	Cot	Tan	Csc	Sec	,
	1 000			 			

26° (206°)

(333°) 163°

	6°)					(333°	
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.64 184	9.95 366	9.68 818	0.31 182	0.04 634	0.35 816	60
1	.64 210	.95 360	.68 850	.31 150	.04 640	.35 790	59
2	.64 236	.95 354	.68 882	.31 118	.04 646	.35 764	58
3	.64 262	.95 348	.68 914	.31 086	.04 652	.35 738	57
4	.64 288	.95 341	.68 946	.31 054	.04 659	.35 712	56
5	9.64 313	9.95 335	9.68 978	0.31 022	0.04 665	0.35 687	65
6 7	.64 339	.95 329	.69 010	.30 990	.04 671	.35 661	54
7.	.64 365	.95 323	.69 042	.30 958	.04 677	.35 635	53
8 .	.64 391	.95 317	.69 074	.30 926	.04 683	.35 609	52
9	.64 417	.95 310	.69 106	.30 894	.04 690	.35 583	51
10	9.64 442	9.95 304	9.69 138	0.30 862	0.04 696	0.35 558	50
11 12	.64 468	.95 298	.69 170	.30 830	.04 702	.35 532	49
13•	.64 494	.95 292	.69 202 .69 234	.30 798	.04 708 .04 714	.35 506 .35 481	48 47
14	.64 519	.95 286 .95 279		.30 766 .30 734	.04 714	.35 455	46
	.64 545		.69 266				45
15 16	9.64 571	9.95 273	9.69 298	0.30 702	0.04 727 .04 733	0.35 429 .35 404	· 44
17	.64 596 .64 622	.95 267	.69 329	.30 671 .30 639	.04 733	.35 378	43
18	.64 647	.95 261 .95 254	.69 361 .69 393	.30 607	.04 746	.35 353	42
19	.64 673	.95 254	.69 425	.30 575	.04 752	.35 327	41
20	9.64 698	9.95 242	9.69 457	0.30 543	0.04 758	0.35 302	40
21	.64 724	.95 236	.69 488	.30 512	.04 764	.35 276	39
$\frac{21}{22}$.64 749	.95 229	.69 520	.30 480	.04 771	.35 251	38
23	.64 775	.95 223	.69 552	.30 448	.04 777	.35 225	37
24	.64 800	.95 217	.69 584	.30 416	.04 783	.35 200	36
26	9.64 826	9.95 211	9.69 615	0.30 385	0.04 789	0.35 174	35
26	.64 851	.95 204	.69 647	.30 353	.04 796	.35 149	34
27	.64 877	.95 198	.69 679	.30 321	.04 802	.35 123	33
28	.64 902	.95 192	.69 710	.30 290	.04 808	.35 098	32
29	.64 927	.95 185	.69 742	.30 258	.04 815	.35 073	31
30	9.64 953	9.95 179	9.69 774	0.30 226	0.04 821	0.35 047	30
31	.64 978	.95 173	.69 805	.30 195	.04 827	.35 022	29
32	.65 003	.95 167	.69 837	.30 163	.04 833	.34 997	28
33	.65 029	.95 160	.69 868	.30 132	.04 840	.34 971	27
- 34	.65 054	.95 154	.69 900	.30 100	.04 846	.34 946	26
36	9.65 079	9.95 148	9.69 932	0.30 068	0.04 852	0.34 921	25
36	.65 104	.95 141	.69 963	.30 037	.04 859	.34 896	24
37	.65 130	.95 135	.69 995	.30 005	.04 865	.34 870	23
38	.65 155	.95 129	.70 026	.29 974	.04 871	.34 845	22
39 ,	.65 180	.95 122	.70 058	.29 942	.04 878	.34 820	21
40	9.65 205	9.95 116	9.70 089	0.29 911	0.04 884	0.34 795	20
41	.65 230	.95 110	.70 121	.29 879	.04 890	.34 770	19
42	.65 255	.95 103	.70 152	.29 848	.04 897	.34 745	18
43	.65 281	.95 097	.70 184	.29 816	.04 903	.34 719	17
44	.65 306	.95 090	.70 215	.29 785	.04 910	.34 694	16
45	9.65 331	9.95 084	9.70 247	0.29 753	0.04 916	0.34 669	15
46	.65 356	.95 078	.70 278	.29 722	.04 922	.34 644	14
47	.65 381	.95 071	.70 309	.29 691	.04 929	.34 619	13
48 49	.65 406	.95 065	.70 341	.29 659	.04 935	.34 594	$\frac{12}{11}$
50	.65 431	.95 059	.70 372	.29 628	.04 941	.34 569	
50 51	9.65 456	9.95 052	9.70 404	0.29 596	0.04 948	0.34 544	10
51 52	.65 481	.95 046	.70 435 .70 466	.29 565 .29 534	.04 954 .04 961	.34 519	9 8
52 53	.65 506 .65 531	.95 039 .95 033	.70 406	.29 534	.04 961	.34 494 .34 469	7
54	.65 556	.95 033	.70 529	.29 471	.04 907	.34 444	6
55	9.65 580			0.29 440			
56	.65 605	9.95 020 .95 014	9.70 560 .70 592	.29 440	0.04 980	0.34 420	6 4
57	.65 630	.95 014	.70 623	.29 408	.04 986	.34 395 .34 370	3
58	.65 655	.95 007	.70 623	.29 346	.04 993	.34 345	2
59	.65 680	.94 995	.70 685	.29 315	.05 005	.34 320	í
60	9.65 705	9.94 988	9.70 717	0.29 283	0.05 003	0.34 295	Ô
							`
	Cos	Sin	Cot	Tan	Csc	Sec	,

27° (20'	7°)					(332°)	152°
	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.65 705	9.94 988	9.70 717	0.29 283	0.05 012	0.34 295	60
1	.65 729	.94 982	.70 748	.29 252	.05 018	.34 271	59
2	.65 754	.94 975	.70 779	.29 221	.05 025	.34 246	58
3	.65 779	.94 969	.70 810	.29 190	.05 031	.34 221	57
4	.65 804	.94 962	.70 841	.29 159	.05 038	.34 196	56
5	9.65 828	9.94 956	9.70 873	$0.29\ 127$	0.05 044	0.34 172	55
6	.65 853	.94 949	.70 904	.29 096	.05 051	.34 147	54
7 8	.65 878	.94 943	.70 935	.29 065	.05 057	.34 122	53
9	.65 902 .65 927	.94 936 .94 930	.70 966 .70 997	.29 034	.05 064	.34 098	52
		9.94 923	9.71 028	,	.05 070	.34 073	51
, 10 11	9.65 952 .65 976	.94 923	.71 028	0.28 972	0.05 077	0.34 048	50
$\frac{11}{12}$.66 001	.94 917	.71 039	.28 941 .28 910	.05 083 .05 089	.34 024 .33 999	49 48
13	66 025	.94 904	.71 121	.28 879	.05 096	.33 975	47
14	.66 050	.94 898	.71 153	.28 847	.05 102	.33 950	46
15	9.66 075	9.94 891	9.71 184	0.28 816	0.05 102	0.33 925	45
16	.66 099	.94 885	.71 215	.28 785	.05 115	.33 901	44
17	.66 124	.94 878	.71 246	.28 754	.05 122	.33 876	43
18	.66 148	.94 871	.71 277	.28 723	.05 129	.33 852	42
19	.66 173	.94 865	.71 308	.28 692	.05 135	.33 827	41
20	9.66 197	9.94 858	9.71 339	0.28 661	0.05 142	0.33 803	40
21	.66 221	.94 852	.71 370	.28 630	.05 148	.33 779	39
$\tilde{2}\tilde{2}$.66 246	.94 845	.71 401	.28 599	.05 155	.33 754	38
23	.66 270	.94 839	:71 431	.28 569	.05 161	.33 730	37
24	.66 295	.94 832	$.71\ 462$.28 538	.05 168	.33 705	36
25	9.66 319	9.94 826	9.71 493	0.28 507	0.05 174	0.33 681	35
26	.66 343	.94 819	.71 524	.28 476	.05 181	.33 657	34
27	.66 368	.94 813	.71 555	.28 445	.05 187	.33 632	33
28	.66 392	.94 806	.71 586	.28 414	.05 194	.33 608	32
29	.66 416	.94 799	.71 617	.28 383	.05 201	.33 584	31
30	9.66 441	9.94 793	9.71 648	0.28 352	0.05 207	0.33 559	30
31	.66 465	.94 786	.71 679	.28 321	.05 214	.33 535	29
32	.66 489	.94 780	.71 709	.28 291	.05 220	.33 511	28
33	.66 513	.94 773	.71 740	.28 260	.05 227	.33 487	27
34	.66 537	.94 767	.71 771	.28 229	.05 233	.33 463	26
35	9.66 562	9.94 760	9.71 802	$0.28\ 198$	0.05 240	0.33 438	25
36	.66 586	.94 753	.71 833	.28 167	.05 247	33 414	24
37	.66 610	.94 747	.71 863	.28 137	.05 253	.33 390	$\frac{23}{22}$
38	.66 634	.94 740	.71 894	.28 106 .28 075	.05 260 .05 266	.33 366 .33 342	21
39	.66 658	.94 734	.71 925			0.33 318	20
40	9.66 682	9.94 727	9.71 955	$0.28\ 045 \\ .28\ 014$	0.05 273	.33 294	19
41	.66 706	.94 720	.71 986	.28 014	.05 286	.33 269	18
42	.66 731	.94 714 .94 707	.72 017 .72 048	.27 953	.05 293	.33 245	17
43	.66 755 .66 779	.94 707	.72 048	.27 922	.05 300	.33 221	16
44		9.94 694	9.72 109	0.27 891	0.05 306	0.33 197	15
45 46	9.66 803 .66 827	.94 687	.72 140	.27 860	.05 313	.33 173	14
46 47	.66 851	.94 680	.72 170	.27 830	.05 320	.33 149	13
48 48	.66 875	.94 674	.72 201	.27 799	.05 326	.33 125	12
49	.66 899	.94 667	.72 231	.27 769	.05 333	.33 101	11
50	9.66 922	9.94 660	9.72 262	0.27 738	0.05 340	0.33 078	10
5 0	.66 946	.94 654	.72 293	.27 707	.05 346	.33 054	g
52	.66 970	.94 647	.72 323	.27 677	.05 353	.33 030	8 7
53	.66 994	.94 640	.72 354	.27 646	.05 360	.33 006	7
54	.67 018	.94 634	.72 384	.27 616	.05 366	.32 982	6
55	9.67 042	9.94 627	9.72 415	0.27 585	0.05 373	0.32 958	5
56	.67 066	.94 620	.72 445	.27 555	.05 380	.32 934	4
57	.67 090	.94 614	.72 476	.27 524	.05 386	.32 910	3
58	.67 113	.94 607	.72 506	.27 494	.05 393	.32 887	2
59	.67-137	.94 600	.72 537	.27 463	.05 400	.32 863	1
60	9.67 161	9.94 593	9.72 567	0.27 433	0.05 407	0.32 839	0_
	Cos	Sin	Cot	Tan	Csc	Sec	,
	1 000		,				

28° (208°)

(331°) 151°

28° (20	8-)					(331) 151
,	Sin	Cos	Tan	Cot	Sec	Cse	
0	9.67 161	9.94 593	9.72 567	0.27 433	0.05 407	0.32 839	60
1	.67 185	.94 587	.72 598	.27 402	.05 413	.32 815	59
$\frac{2}{3}$.67 208	.94 580	.72 628	.27 372	.05 420	.32 792	58
3	.67 232	.94 573	.72 659	.27 341	.05 427	.32 768 .32 744	57 56
4	.67 256	.94 567	72 689	_		0.32 720	
5 6	9.67 280	9.94 560	9.72 720 .72 750	0.27 280 .27 250	0.05 440	.32 697	55 54
7	.67 327	.94 553 .94 546	.72 780	.27 220	.05 454	.32 673	53
8	.67 350	.94 540	.72 811	.27 189	.05 460	.32 650	52
9	.67 374	.94 533	.72 841	.27 159	.05 467	.32 626	51
10	9.67 398	9.94 526	9.72 872	0.27 128	0.05 474	0.32 602	50
11	.67 421	.94 519	.72 902	.27 098	.05 481	.32 579	49
12	.67 445	.94 513	.72 932	.27 068	.05 487	.32 555	48
13	.67 468	.94 506	.72 963	.27 037	.05 494	.32 532	47
14	.67 492	.94 499	.72 993	.27 007	.05 501	.32 508	46
15	9.67 515	9.94 492	9.73 023	0.26 977	0.05 508	0.32 485	45
16	.67 539	.94 485	.73 054	.26 946	.05 515	.32 461	44
17 18	.67 562 .67 586	.94 479 .94 472	.73 084 .73 114	.26 916 .26 886	.05 521	.32 414	43 42
19	.67 609	.94 465	.73 144	.26 856	.05 535	.32 391	41
20	9.67 633	9.94 458	9.73 175	0.26 825	0.05 542	0.32 367	40
$\frac{21}{21}$.67 656	.94 451	.73 205	.26 795	.05 549	.32 344	39
22	.67 680	.94 445	.73 235	.26 765	.05 555	.32 320	38
23	.67 703	.94 438	.73 265	.26 735	.05 562	.32 297	37
24	.67 726	.94 431	.73 295	.26 705	.05 569	.32 274	36
25	9.67 750	9.94 424	9.73 326	0.26 674	0.05 576	0.32 250	35
26	.67 773	.94 417	.73 356	.26 644	.05 583	.32 227	34
$\begin{array}{c} 27 \\ 28 \end{array}$.67 796	.94 410	.73 386	.26 614	.05 590	.32 204	33
28 29	.67 820 .67 843	.94 404 .94 397	.73 416 .73 446	.26 584 .26 554	.05 596 .05 603	.32 180 .32 157	$\frac{32}{31}$
30	9.67 866	9.94 390	9.73 476	0.26 524	0.05 610	0.32 134	30
31	.67 890	.94 383	.73 507	.26 493	.05 617	.32 110	29
32	.67 913	.94 376	.73 537	.26 463	.05 624	.32 087	28
33	.67 936	.94 369	.73 567 .73 597	.26 433	.05 631	.32 064	$\overline{27}$
34	.67 959	.94 362		.26 4Q3	.05 638	.32 041	26
35	9.67982	9.94 355	9.73 627	0.26 373	0.05 645	0.32 018	25
36	.68 006	.94 349	.73 657	.26 343	.05 651	.31 994	24
37	.68 029	.94 342	.73 687	.26 313	.05 658	.31 971	23
38 39	.68 052 .68 075	.94 335 .94 328	.73 717 .73 747	.26 283 .26 253	$.05\ 665$ $.05\ 672$.31 948	$\frac{22}{21}$
40	9.68 098	9.94 321	9.73 777	0.26 223		.31 925	
41	.68 121	.94 314	.73 807	.26 193	0.05 679 .05 686	$0.31\ 902\ .31\ 879$	20 19
42	.68 144	.94 307	.73 837	.26 163	.05 693	.31 856	18
43	.68 167	.94 300	.73 867	.26 133	.05 700	.31 833	17
44	.68 190	.94 293	.73 897	.26 103	.05 707	.31 810	16
45	$9.68\ 213$	9.94286	9.73927	0.26 073	0.05 714	0.31 787	15
46	.68 237	.94 279	.73 957	.26 043	.05721	.31 763	14
47	.68 260	.94 273	.73 987	.26 013	.05 727	.31 740	13
48 49	.68 283	.94 266 .94 259	.74 017 .74 047	.25 983 .25 953	.05 734	.31 717	12
50	.68 305 9.68 328				.05 741	.31 695	11
51	.68 351	9.94 252 .94 245	9.74 077 .74 107	$0.25923 \\ .25893$	0.05 748 .05 755	$0.31\ 672 \\ .31\ 649$	10
52	.68 374	.94 245	.74 107	.25 863	.05 762	.31 626	9
53	.68 397	.94 231	.74 166	.25 834	.05 769	.31 603	8 7
54 .	.68 420	.94 224	.74 196	.25 804	.05 776	.31 580	6
55	9.68 443	9.94 217	9.74226	0.25 774	0.05 783	0.31 557	5
56	.68 466	.94 210	.74 256	.25 744	.05 790	.31 534	4
57	.68 489	.94 203	$.74\ 286$.25 714	.05 797	.31 511	$\frac{1}{2}$
58	.68 512	.94 196	.74 316	.25 684	.05 804	.31 488	2
59	.68 534	.94 189	.74 345	.25 655	.05 811	.31 466	1
60	9.68 557	9.94 182	9.74 375	0.25 625	0.05 818	0.31 443	0
	Cos	Sin	Cot	Tan	Csc	Sec	

Table 4. Trigonometric Logarithms

29° (209°)

(330°) 150°

29° (20)	9°)					(330°)	150°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.68 557	9.94 182	9.74 375	0.25 625	0.05 818	0.31 443	60
1	.68 580	.94 175	.74 405	.25 595	.05 825	.31 420	59
2	.68 603	.94 168	.74 435	.25 565	.05 832	.31 397	58
3	.68 625	.94 161	.74 465	.25 535	.05 839	.31 375	57
4	.68 648	.94 154	.74 494	.25 506	.05 846	.31 352	56
5	9.68 671	9.94 147	9.74 524	0.25 476	0.05 853	0.31 329	55
6 7	.68 694 .68 716	.94 140 .94 133	.74 554 .74 583	.25 446 .25 417	.05 860 .05 867	.31 306	54 53
8	.68 739	.94 126	.74 613	.25 387	.05 874	.31 284 .31 261	52
9	.68 762	.94 119	.74 643	.25 357	.05 881	.31 238	51
10	9.68 784	9.94 112	9.74 673	0.25 327	0.05 888	0.31 216	50
l īĭ	.68 807	.94 105	.74 702	.25 298	.05 895	.31 193	49
12	.68 829	.94 098	.74 732	.25 268	.05 902	.31 171	48
13	.68 852	.94 090	.74 762	.25 238	.05 910	.31 148	47
14	.68 875	.94 083	.74 791	.25 209	.05 917	.31 125	46
15	9.68 897	9.94 076	9.74 821	0.25 179	0.05 924	0.31 103	45
16	.68 920	.94 069	.74 851	.25 149	.05 931	.31 080	44
17	.68 942	.94 062 .94 055	.74 880 .74 910	.25 120 .25 090	.05 938	.31 058 .31 035	$\frac{43}{42}$
18 19	.68 987	.94 048	.74 910	.25 090	.05 943	.31 033	41
20	9.69 010	9.94 041	9.74 969	0.25 031	0.05 959	0.30 990	40
21	.69 032	.94 034	.74 998	.25 002	.05 966	.30 968	39
22	.69 055	.94 027	.75 028	.24 972	.05 973	.30 945	38
23	.69 077	.94 020	.75 058	.24 942	.05 980	.30 923	37
24	.69 100	.94 012	.75 087	.24 913	.05 988	.30 900	36
25	9.69 122	9.94 005	9.75 117	0.24 883	0.05 995	0.30 878	35
26	.69 144	.93 998	.75 146	.24 854	.06 002	.30 856 .30 833	34 33
27	.69 167	.93 991 .93 984	.75 176 .75 205	.24 824 .24 795	.06 009	.30 833	32
28 29	.69 189	.93 977	.75 235	.24 765	.06 023	.30 788	31
30	9.69 234	9.93 970	9.75 264	0.24 736	0.06 030	0.30 766	30
31	.69 256	.93 963	.75 294	.24 706	.06 037	.30 744	29
32	.69 279	.93 955	.75 323	.24 677	.06 045	.30 721	28
33	.69 301	.93 948	.75 353	.24 647	.06 052	.30 699	27
34	.69 323	.93 941	.75 382	.24 618	.06 059	.30 677	26
35	9.69 345	9.93 934	9.75 411	0.24 589	0.06 066	0.30 655	25 24
36	.69 368	.93 927	.75 441 .75 470	.24 559 .24 530	.06 073	.30 632 .30 610	23
37	.69 390 .69 412	.93 920 .93 912	.75 500	.24 500	.06 088	.30 588	22
38 39	.69 434	.93 905	.75 529	.24 471	.06 095	.30 566	21
40	9.69 456	9.93 898	9.75 558	0.24 442	0.06 102	0.30 544	20
41	.69 479	.93 891	.75 588	.24 412	.06 109	.30 521	19
$4\overline{2}$.69 501	.93 884	.75 617	.24 383	.06 116	.30 499	18
43	.69 523	.93 876	.75 647	.24 353	.06 124	.30 477	17 16
44	.69 545	.93 869	.75 676	.24 324	.06 131	.30 455 0.30 433	15 15
45	9.69 567	9.93 862	9.75 705	$0.24\ 295$ $.24\ 265$	0.06 138	.30 433	14
46	.69 589 .69 611	.93 855 .93 847	.75 735 .75 764	.24 236	.06 153	.30 389	13
47 48	.69 633	.93 840	.75 793	.24 207	.06 160	.30 367	12
49	.69 655	.93 833	.75 822	.24 178	.06 167	.30 345	. 11
50	9.69 677	9.93 826	9.75 852	0.24 148	0.06 174	0.30 323	10
51	.69 699	.93 819	.75 881	.24 119	.06 181	.30 301	9
52	.69 721	.93 811	.75 910.	.24 090	.06 189	.30 279	8 7
53	.69 743	.93 804	.75 939	.24 061	.06 196 .06 203	.30 257 .30 235	6
54	.69 765	.93 797	.75 969	.24 031	0.06 211	0.30 233	5
55	9.69 787	9.93 789	9.75 998 .76 027	$0.24\ 002$ $.23\ 973$.06 211	.30 191	4
56	.69 809 .69 831	.93 782 .93 775	.76 027	.23 944	.06 225	.30 169	3
57 58	.69 853	.93 768	.76 086	.23 914	.06 232	.30 147	2
59	.69 875	.93 760	.76 115	.23 885	.06 240	.30 125	1
60	9.69 897	9.93 753	9.76 144	0.23 856	0.06 247	0.30 103	0
	Cos	Sin	Cot	Tan	Csc	Sec	,
		. ~			 		_

30° (210°)

(329°) 149°

30° (21)					_	(329°)	123
, "	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.69 897	9.93 753	9.76 144	0.23 856	0.06 247	0.30 103	60
1	.69 919	.93 746	.76 173	.23 827	.06 254	.30 081	59
2	.69 941	.93 738	.76 202 .76 231	.23 798 .23 769	.06 262 .06 269	.30 059 .30 037	58 57
3 4	.69 963 .69 984	.93 731 .93 724	.76 261	.23 739	.06 276	.30 037	56
5	9.70 006	9.93 717	9.76 290	0.23 710	0.06 283	0.29 994	55
6	.70 028	.93 709	.76 319	.23 681	.06 291	.29 972	54
6 7	.70 050	.93 702	.76 348	.23 652	.06 298	.29 950	53
8	.70 072	.93 695	.76 377	.23 623	.06 305	.29 928	52
9	.70 093	.93 687	.76 406	.23 594	.06 313	.29 907	51
10	9.70 115	9.93 680	9.76 435	0.23 565	0.06 320	0.29 885	50
11	.70 137	.93 673	.76 464	23 536	.06 327	.29 863	49
12	.70 159	.93 665	.76 493	.23 507	.06 335	.29 841	4 8.
13	.70 180	.93 658	.76 522	.23 478	.06 342	.29 820	45
14	.70 202	.93 650	.76 551	.23 449	.06 350	.29 798	46
15 16	9.70 224 ,70 245	9.93 643 .93 636	9.76 580 .76 609	0.23 420 .23 391	0.06 357 .06 364	$0.29776 \\ .29755$	45 44
17	.70 243	.93 628	.76 639	.23 361	.06 372	.29 733	43
18	.70 288	.93 621	.76 668	.23 332	.06 379	.29 712	42
19	.70 310	.93 614	.76 697	.23 303	.06 386	.29 690	41
20	9.70 332	9.93 606	9.76 725	0.23 275	0.06 394	0.29 668	40
$\overline{21}$.70 353	.93 599	76 754	.23 246	.06 401	.29 647	39
22	.70 375	.93 591	.76 783	.23 217	.06 409	.29 625	38
23	.70 396	.93 584	.76 812	.23 188	.06 416	.29 604	37
24	.70 418	.93 577	.76 841	.23 159	.06 423	.29 582	36
25	9.70 439	9.93 569	9.76 870	0.23 130	0.06 431	0.29 561	35
26	.70 461	.93 562	.76 899	.23 101	.06 438	.29 539	34
27 28	.70 482 .70 504	.93 554 .93 547	.76 928 .76 957	.23 072 .23 043	.06 446 .06 453	.29 518 .29 496	33 32
29	.70 525	.93 539	.76 986	.23 043	.06 461	.29 475	31
30	9.70 547	9.93 532	9.77 015	0.22 985	0.06 468	0.29 453	30
31	.70 568	.93 525	.77 044	.22 956	.06 475	.29 432	29
32	.70 590	.93 517	.77 073	.22 927	.06 483	.29 410	28
33	.70 611	.93 510	.77 101	.22 899	.06 490	.29 389	27
34	.70 633	.93 502	.77 130	.22 870	.06 498	.29 367	26
35	9.70 654	9.93 495	9.77 159	0.22 841	0.06 505	0.29 346	25
36	.70 675	.93 487	.77 188	.22 812	.06 513	.29 325	24
37	.70 697	.93 480	.77 217	.22 783	.06 520	.29 303	23
38 39	.70 718 .70 739	.93 472 .93 465	.77 246 .77 274	.22 754 .22 726	.06 528 .06 535	.29 282 .29 261	$\frac{22}{21}$
40	9.70 761	9.93 457	9.77 303	0.22 697	0.06 543	0.29 239	20
41	.70 782	.93 450	.77 332	.22 668	.06 550	.29 218	19
42	.70 803	.93 442	.77 361	.22 639	.06 558	.29 197	18
43	.70 824	.93 435	.77 390	.22 610	.06 565	.29 176	17
44	.70 846	.93 427	.77 418	.22 582	.06 573	.29 154	16
45	9.70 867	9.93 420	9.77 447	0.22 553	0.06 580	0.29 133	15
46	.70 888	.93 412	.77 476	.22 524	.06 588	.29 112	14
47	.70 909	.93 405	.77 505	.22 495	.06 595	.29 091	13
48 49	.70 931	.93 397 .93 390	.77 533 .77 562	.22 467 .22 438	.06 603	.29 069 .29 048	12
49 50	.70 952				.06 610		11
51	9.70 973 .70 994	9.93 382 .93 375	9.77 591 .77 619	0.22 409	0.06 618 .06 625	0.29 027	10
52	.71 015	.93 367	.77 648	.22 352	.06 633	.28 985	9 8
53	.71 036	.93 360	.77 677	.22 323	.06 640	.28 964	7
54	.71 058	.93 352	.77 706	.22 294	.06 648	.28 942	6
55	9.71 079	9.93 344	9.77 734	0.22 266	0.06 656	0.28 921	5
56	.71 100	.93 337	.77 763	.22 237	.06 663	.28 900	4
57	.71 121	.93 329	.77 791	.22 209	.06 671	.28 879	3
58	.71 142	.93 322	.77 820	.22 180	.06 678	.28 858	2
59	.71 163	.93 314	.77 849	.22 151	.06 686	.28 837	1
60	9.71 184	9.93 307	9.77 877	0.22 123	0.06 693	0.28 816	0
	Cos	Sin	Cot	Tan	Csc	Sec	,

31° (2	11°)					(328°)	148°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.71 184	9.93 307	9.77 877	0.22 123	0.06 693	0.28 816	6U
1	.71 205 .71 226	.93 299	.77 906	.22 094	.06 701	.28 795	59
$\frac{2}{3}$.71 220	.93 291 .93 284	.77 935 .77 963	.22 065	.06 709 .06 716	.28 774 .28 753	58 57
4	.71 268	.93 276	.77 992	.22 008	.06 724	.28 732	56
5	9.71 289	9.93 269	9.78 020	0.21 980	0.06 731	0.28 711	65
6	.71 310	.93 261	.78 049	.21 951	.06 739	.28 690	54
7	.71 331	.93 253	.78 077	.21 923	.06 747	.28 669	53
8	.71 352	.93 246	.78 106	.21 894	.06 754	.28 648	52
9	.71 373	.93 238	.78 135	.21 865	.06 762	.28 627	51
10	9.71 393 .71 414	9.93 230 .93 223	9.78 163 .78 192	0.21 837 .21 808	0.06 770 .06 777	0.28 607 .28 586	50 49
11 12	.71 414	.93 223	.78 220	.21 780	.06 785	.28 565	48
13	.71 456	.93 207	.78 249	.21 751	.06 793	.28 544	47
14	.71 477	.93 200	78 277	.21 723	.06 800	.28 523	46
15	9.71 498	9.93 192	9.78 306	0.21 694	0.06 808	0.28 502	45
16	.71 519	.93 184	.78 334	$.21\ 666$.06 816	.28 481	44
17	.71 539	.93 177	.78 363	.21 637	.06 823	.28 461	43
18	.71 560	.93 169	.78 391 .78 419	.21 609 .21 581	.06 831 .06 839	.28 440 .28 419	$\begin{array}{c c} 42 \\ 41 \end{array}$
19 20	.71 581	.93 161 9.93 154	.78 448	0.21 552	0.06 846	0.28 398	40
21	$9.71\ 602$ $.71\ 622$.93 154	.78 448	.21 524	.06 854	.28 378	39
$\frac{21}{22}$.71 643	.93 138	.78 505	.21 495	.06 862	.28 357	38
23	.71 664	.93 131	.78 533	.21 467	.06 869	.28 336	37
24	.71 685	.93 123	$.78\ 562$.21 438	.06 877	.28 315	36
25	9.71 705	9.93 115	9.78 590	0.21 410	0.06 885	0.28 295	35
26	.71 726	.93 108	.78 618	.21 382	.06 892 .06 900	.28 274 .28 253	34 33
27 28	.71 747 .71 767	.93 100 .93 092	.78 647 .78 675	.21 353 .21 325	.06 908	.28 233	32
29	.71 788	.93 084	.78 704	.21 296	.06 916	.28 212	31
30	9.71 809	9.93 077	9.78 732	0.21 268	0.06 923	0.28 191	30
31	.71 829	.93 069	.78 760	.21 240	.06 931	.28 171	29
32	.71 850	.93 061	.78 789	.21 211	.06 939	.28 150	$egin{array}{c} 28 \ 27 \end{array}$
33	.71 870	.93 053	.78 817 .78 845	.21 183	.06 947	.28 130 .28 109	26
34	.71 891	9.93 046	9.78 874	0.21 126	0.06 962	0.28 089	25
35 36	9.71 911 .71 932	.93 030	.78 902	.21 098	.06 970	.28 068	24
37	.71 952	.93 022	.78 930	.21 070	.06 978	.28 048	23
38	.71 973	.93 014	.78 959	.21 041	.06 986	.28 027	22
39	.71 994	.93 007	.78 987	.21 013	.06 993	.28 006	21
40	9.72 014	9.92 999	9.79 015	0.20 985	0.07 001	0.27 986	20 19
41	.72 034	.92 991	.79 043 .79 072	.20 937	07 003	.27 945	18
42 43	.72 055 .72 075	.92 976	79 100	.20 900	.07 017 .07 024	27 925	17
44	.72 096	.92 968	.79 128	.20 872	.07 032	.27 904	16
45	9.72 116	9.92 960	9.79 156	0.20 844	0.07 040	0.27 884	15
46	.72 137	.92 952	.79 185	.20 815	.07 048	.27 863	14
47	.72 157	.92 944	.79 213	.20 787	.07 056	.27 843	13 12
48	.72 177	.92 936	.79 241	.20 759 .20 731	.07 004	27 802	11
49	.72 198 9.72 218	9.92 929	9.79 297	0.20 703	0.07 079	0.27 782	10
50 51	.72 238	.92 913	.79 326	.20 674	.07 087	.27 762	9
52	72 259	.92 905	79 354	.20 646	.07 095	.27 741	8
53	.72 279	.92 897	.79 382	.20 618	.07 103	.27 721	7
54	.72 299	.92 889	.79 410	.20 590	.07 111	.27 701	6 5
55	9.72 320	9.92 881	9.79 438	0.20 562	0.07 119 .07 126	0.27 680 .27 660	4
56	.72 340	.92 874 .92 866	.79 466 .79 495	.20 504	.07 120	.27 640	3
57	.72 360 .72 381	.92 858	.79 523	.20 477	.07 142	.27 619	. 2
58 59	.72 401	.92 850	.79 551	.20 449	.07 150	.27 599	1
60	9.72 421	9.92 842	9.79 579	0.20 421	0.07 158	0.27 579	0
	Cos	Sin	Cot	Tan	Csc	Sec	,
	1 000	<u> </u>	1		 	(00)	20) 500

32° (212°)

(327°) 147°

32° (21	2°)					(327°) 147°
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sin	Cos	Tan	Cot	Sec	Csc	
O	9.72 421	9.92 842	9.79 579	0.20 421	0.07 158	0.27 579	60
1	.72 441	.92 834	.79 607	.20 393	.07 166	.27 559	59
2	.72 461	.92 826	.79 635	.20 365	.07 174	.27 539	58
3	.72 482	.92 818	.79 663	.20 337	.07 182	.27 518	57
4	.72 502	.92 810	.79 691		.07 190		56
5	9.72 522	9.92 803	9.79 719	0.20 281	0.07 197	0.27 478	55
6 7	.72 542 .72 562	.92 795 .92 787	.79 747 .79 776 .	.20 253 .20 224	.07 205	.27 458 .27 438	54
8	.72 582	.92 779	.79 804	.20 196	.07 221	.27 418	53 52
9	72 602	.92 771	.79 832	20 168	.07 221	.27 398	51
10	9.72 622	9.92 763	9.79 860	0.20 140	0.07 237	0.27 378	50
11	.72 643	.92 755	.79 888	.20 112	.07 245	.27 357	49
12	.72 663	.92 747	.79 916	.20 084	.07 253	.27 337	48
13	.72 683	.92 739	.79 944	.20 056	.07 261	.27 317	47
14	.72 703	.92 731	.79 972	.20 028	.07 269	.27 297	46
15	9.72 723	9.92 723	9.80 000	0.20 000	0.07 277	0.27 277	45
16	.72 743	.92 715	.80 028	.19 972	.07 285	.27 257	44
17	.72 763	.92 707	.80 056	.19 944	.07 293	.27 237	43
18	.72 783	.92 699	.80 084	.19 916	.07 301	.27 217	42
19	.72 803	.92 691	.80 112	.19 888	.07 309	.27 197	41
20	9.72 823	9.92 683	9.80 140	0.19 860	0.07 317	0.27 177	40
21	.72 843	.92 675	.80 168	.19 832	.07 325	.27 157	39
22	.72 863	.92 667	.80 195	.19 805	.07 333	.27 137	38
23	.72 883	.92 659	.80 223	.19 777	.07 341	.27 117	37
24	.72 902	.92 651	.80 251	.19 749	.07 349	.27 098	36
25	9.72 922	9.92 643	9.80 279	0.19 721	0.07 357	0.27 078	35
26	.72 942	.92 635	.80 307	.19 693	.07 365	.27 058	34
$\begin{array}{c} 27 \\ 28 \end{array}$.72 962 .72 982	.92 627	.80 335	.19 665	.07 373	.27 038	33
$\frac{20}{29}$.73 002	.92 619 .92 611	.80 363 .80 391	.19 637 .19 609	.07 381	.27 018 .26 998	32 31
30	9.73 022	0.92 603	9.80 419	0.19 581	0.07 397	0.26 978	30
31	.73 041	.92 595	.80 447	.19 553	.07 405	.26 959	29
32	73 061	.92 587	.80 474	.19 526	.07 413	.26 939	28
33	.73 081	.92 579	.80 502	.19 498	.07 421	.26 919	27
34	.73 101	.92 571	.80 530	.19 470	.07 429	.26 899	26
35	9.73 121	9.92 563	9.80 558	0.19 442	0.07 437	0.26 879	25
36	.73 140	.92 555	.80 586	.19 414	.07 445	.26 860	24
37	.73 160	.92 546	.80 614	.19 386	.07 454	.26 840	23
38	.73 180	.92 538	.80 642	.19 358	.07 462	.26 820	22
39	.73 200	.92 530	.80 669	.19 331	.07 470	.26 800	21
40	9.73 219	$9.92\ 522$	9.80 697	0.19 303	0.07 478	0.26 781	20
41	.73 239	.92 514	.80 725	.19 275	.07 486	.26 761	19
42	.73 259	.92 506	.80 753	.19 247	.07 494	.26 741	18
43	.73 278	.92 498	.80 781	.19 219	.07 502	26 722	17
44	.73 298	.92 490	.80 808	.19 192	.07 510	.26 702	16
45	9.73 318	9.92 482	9.80 836	0.19 164	0.07 518	0.26 682	15
46 47	.73 337	.92 473 .92 465	.80 864	.19 136	.07 527	.26 663	14
48	.73 357 .73 377	.92 465	.80 892 .80 919	19 108 .19 081	.07 535 .07 543	$.26\ 643$ $.26\ 623$	13 12
49	.73 396	.92 449	.80 919	.19 051	.07 551	.26 623	11
50	9.73 416	9.92 441	9.80 975	0.19 025	0.07 559	0.26584	10
51	.73 435	.92 433	.81 003	.18 997	.07 567	.26 565	
52	.73 455	.92 425	.81 030	.18 970	.07 575	.26 545	8
53	.73 474	.92 416	.81 058	.18 942	.07 584	.26 526	7
54	.73 494	.92 408	.81 086	.18 914	.07 592	.26 506	6
55	9.73 513	9.92 400	9.81 113	0.18 887	0.07 600	0.26 487	5
56	.73 533	.92 392	.81 141	.18 859	.07 608	.26 467	4
57	.73 552	.92 384	.81 169	.18 831	.07 616	.26 448	3
58	.73 572	.92 376	.81 196	.18 804	.07 624	.26.428	2
59	.73 591	.92 367	.81 224	.18 776	.07 633	.26 409	$\bar{1}$
60	9.73 611	9.92 359	9.81 252	0.18748	0.07 641	0.26 389	0
	Cos	Sin	Cot	Tan	Csc	Sec	,
						~~~	1

33° (213°)

<b>33°</b> (21	3°)					(326°	) <b>146°</b>
	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.73 611	9.92 359	9.81 252	0.18 748	0.07 641	0.26 389	60
1	.73 630	.92 351	.81 279	.18 721	.07 649	.26 370	59
2	.73 650	.92 343	.81 307	.18 693	.07 657	.26 350	58
3	.73 669	.92 335	.81 335	.18 665	.07 665.	.26 331	57
4	.73 689	.92 326	.81 362	.18 638	.07 674	.26 311	56
5	9.73 708	9.92 318	9.81 390	0.18 610	0.07 682	0.26 292	55
6 7	.73 727 .73 747	.92 310 .92 302	.81 418	.18 582	.07 690	.26 273	54
8	.73 766	.92 302	.81 445 .81 473	.18 555 .18 527	.07 698	.26 253	53
9	.73 785	.92 285	.81 500	.18 500	.07 707 .07 715	.26 234	52 51
10	9.73 805	9.92 277	9.81 528			.26 215	
11	.73 824	.92 269	.81 556	0.18 472	0.07 723	0.26 195	50
12	.73 843	.92 260	.81 583	.18 417	.07 731 .07 740	.26 176 .26 157	49 48
13	.73 863	.92 252	.81 611	.18 389	.07 748	.26 137	47
14	.73 882	.92 244	.81 638	.18 362	.07 756	.26 118	46
15	9.73 901	9.92 235	9.81 666	0.18 334	0.07 765	0.26 099	45
16	.73 921	.92 227	.81 693	.18 307	.07 773	.26 079	45
17	.73 940	.92 219	.81 721	.18 279	.07 781	.26 060	43
18	.73 959	.92 211	.81 748	.18 252	.07 789	.26 041	42
19	.73 978	.92 202	.81 776	.18 224	.07 798	.26 022	41
20	9.73 997	9.92 194	9.81 803	0.18 197	0.07 806	0.26 003	40
21	.74 017	.92 186	.81 831	.18 169	.07 814	.25 983	39
$\tilde{2}\tilde{2}$	.74 036	.92 177	.81 858	.18 142	.07 823	.25 964	38
23	.74 055	.92 169	.81 886	.18 114	.07 831	.25 945	37
24	.74 074	.92 161	.81 913	.18 087	.07 839	.25 926	36
25	9.74 093	9.92 152	9.81 941	0.18 059	0.07 848	0.25 907	35
26	.74 113	.92 144	.81 968	.18 032	.07 856	.25 887	34
27	.74 132	.92 136	.81 996	.18 004	.07 864	.25 868	33
28	.74 151	.92 127	.82 023	.17 977	.07 873	.25 849	32
29	.74 170	.92 119	.82 051	.17 949	.07 881	.25 830	31
30	9.74 189	9.92 111	9.82 078	0.17 922	0.07 889	0.25 811	30
31	.74 208	.92 102	.82 106	.17 894	.07 898	.25 792	29
32	.74 227	.92 094	.82 133	.17 867	.07 906	.25 773	28
33	.74 246	.92 086	.82 161	.17 839	.07 914	.25 754	27
34	.74 265	.92 077	.82 188	.17 812	.07 923	.25 735	26
35	9.74 284	9.92 069	9.82 215	0.17 785	0.07 931	0.25 716	25
36	.74 303	.92 060	.82 243	.17 757	.07 940	.25 697	24
37	.74 322	.92 052	.82 270	.17 730	.07 948	.25 678	$\frac{23}{22}$
38	.74 341	.92 044	.82 298 .82 325	.17 702 .17 675	.07 956 .07 965	.25 659 .25 640	22
39	.74 360	.92 035					
40	9.74 379	9.92 027	9.82 352	0.17 648 .17 620	0.07 973	0.25 621 .25 602	<b>20</b> 19
41	.74 398	.92 018 .92 010	.82 380 .82 407	.17 620	.07 982	.25 583	18
42 43	.74 417	.92 010	.82 435	.17 565	.07 990	.25 564	17
43	.74 455	.92 002	.82 462	.17 538	.08 007	.25 545	16
	9.74 474	9.91 985	9.82 489	0.17 511	0.08 015	0.25 526	15
45 46	.74 493	.91 976	.82 517	.17 483	.08 024	.25 507	14
40 47	.74 512	.91 968	.82 544	.17 456	.08 032	.25 488	13
48	.74 531	.91 959	.82 571	.17 429	.08 041	.25 469	12
49	74 549	.91 951	.82 599	.17 401	.08 049	.25 451	11
50	9.74 568	9.91 942	9.82 626	0.17 374	0.08 058	0.25 432	10
51	.74 587	.91 934	.82 653	.17 347	.08 066	.25 413	9
52	.74 606	.91 925	.82 681	.17 319	.08 075	.25 394	8
53	.74 625	.91 917	.82 708	.17 292	.08 083	.25 375	7
54	.74 644	.91 908	.82 735	.17 265	.08 092	.25 356	. 6
55	9.74 662	9.91 900	9.82 762	0.17 238	0.08 100	0.25 338	5
56	.74 681	.91 891	.82 790	.17 210	.08 109	.25 319	4
57	.74 700	.91 883	.82 817	.17 183	.08 117	.25 300	3
58	.74 719	.91 874	.82 844	.17 156	.08 126	.25 281	2
-59	.74 737	.91 866	.82 871	.17 129	.08 134	.25 263	1
60	9.74 756	9.91 857	9.82 899	0.17 101	0.08 143	0.25 244	0
	Cos	Sin	Cot	Tan	Csc	Sec	<del>,</del>
		l DIII					<u>'                                    </u>

34° (214°)

(325°) 145°

	4°)					(325	°) 145°
	Sin	Cos	Tan	Cot	Sec	Csc	_
o O	9.74 756	9.91 857	9.82 899	0.17 101	0.08 143	0.25 244	60
$rac{1}{2}$	.74 775 .74 794	.91 849	.82 926 .82 953	.17 074	.08 151	.25 225	59
$\tilde{3}$	74 812	.91 832	.82 980	.17 020	.08 168	.25 206 .25 188	58
4	.74 831	.91 823	.83 008	.16 992	.08 177	.25 169	56
5	9.74 850	9.91 815	9.83 035	0.16 965	0.08 185	0.25 150	55
6	.74 868	.91 806	.83 062	.16 938	.08 194	.25 132	54
6 <b>7</b>	.74 887	.91 798 .91 789	.83 089	.16 911	.08 202	.25 113	53
8	.74 906	.91 789	.83 117	.16 883	.08 211	.25 094	52
9	.74 924	.91 781	.83 144	.16 856	.08 219	.25 076	51
10	9.74 943	9.91 772	9.83 171	0.16 829	0.08 228	0.25 057	50
11	.74 961	.91 763	.83 198	.16 802	.08 237	.25 039	49
$\frac{12}{12}$	.74 980	91 755	.83 225	.16 775	.08 245	.25 020	48
13 1 <b>4</b>	.74 999 .75 017	.91 746 .91 738	.83 252 .83 280	.16 748 ·16 720	.08 254	.25 001	47
15	9.75 036	9.91 729				.24 983	46
16	.75 054	.91 729	9.83 307	0.16 693	0.08 271	0.24 964	45
17	.75 073	.91 712	.83 361	.16 639	.08 288	.24 946 .24 927	44
18	.75 091	.91 703	.83 388	.16 612	.08 297	.24 927	43 42
19	.75 110	.91 695	.83 415	.16 585	.08 305	.24 890	41
20	9.75 128	9.91 686	9.83 442	0.16 558	0.08 314	0.24 872	40
21	.75 147	.91 677	.83 470	.16 530	.08 323	.24 853	39
22	.75 165	.91 669	.83 497	.16 503	.08 331	.24 835	38
23	.75 184	.91 660	.83 524	.16 476	.08 340	.24 816	37
24	.75 202	.91 651	.83 551	.16 449	.08 349	.24 798	36
25	9.75 221	9.91 643	9.83 578	0.16 422	0.08 357	0.24 779	35
26	.75 239	.91 634	.83 605	.16 395	.08 366	.24 761	34
27	.75 258	.91 625	.83 632	.16 368	.08 375	.24 742	33
$\frac{28}{29}$	.75 276 .75 294	.91 617	.83 659	.16 341	.08 383	.24 724	32
		.91 608	.83 686	.16 314	.08 392	.24 706	31
<b>30</b> 31	9.75 313 .75 331	9.91 599 .91 591	9.83 713	0.16 287 .16 260	0.08 401	0.24 687	30
32	.75 351	.91 582	.83 768	.16 232	.08 409	.24 669	29
33	.75 368	.91 573	.83 795	.16 205	.08 418 .08 427	.24 650 .24 632	28 27
34	.75 386	.91 565	.83 822	.16 178	.08 435	.24 614	26
35	9.75 405	9.91 556	9.83 849	0.16 151	0.08 444	0.24 595	25
36	.75 423	.91 547	.83 876	.16 124	.08 453	.24 577	24
37	.75 441	.91 538	.83 903	.16 097	.08 462	.24 559	$\tilde{2}\tilde{3}$
38	.75 459	.91 530	.83 930	.16 070	.08 470	.24 541	22
39	.75 478	.91 521	.83 957	.16 043	.08 479	.24 522	21
40	9.75496	9.91 512	9.83 984	0.16 016	0.08 488	0.24 504	20
41	.75 514	.91 504	.84 011	.15 989	.08 496	24 486	19
42 43	.75 533 .75 551	.91 495 .91 486	.84 038	.15 962	.08 505	.24 467	18
44	.75 569	.91 480	.84 065 .84 092	.15 935 .15 908	.08 514	.24 449	17
45	9.75 587	9.91 469	9.84 119	0.15 881	.08 523	.24 431	16
46	.75 605	.91 469	.84 146	.15 854	0.08 531 .08 540	0.24 413	15
47	.75 624	.91 451	.84 173	.15 827	.08 549	.24 395 .24 376	14 13
48	.75 642	.91 442	.84 200	.15 800	.08 558	.24 370	13
49	.75 660	.91 433	.84 227	.15 773	.08 567	.24 340	11
50	9.75 678	9.91 425	9.84 254	0.15 746	0.08 575	0.24 322	10
51	.75 696	.91 416	.84 280	.15 720	.08 584	.24 304	9
52	.75 714	.91 407	.84 307	.15 693	.08 593	.24 286	8
53	.75 733	.91 398	.84 334	.15 666	.08 602	.24 267	7
54	.75 751	.91 389	.84 361	.15 639	.08 611	.24 249	6
55	9.75 769	9.91 381	9.84 388	0.15 612	0.08 619	0.24 231	5
56	.75 787	.91 372	.84 415	.15 585	.08 628	.24 213	4
57 58	.75 805 .75 823	.91 363	.84 442	.15 558	.08 637	.24 195	3
59	.75 823	.91 354	.84 469	.15 531	.08 646	.24 177	2
60	9.75 859	.91 345	.84 496	.15 504	.08 655	:24 159	1
-		9.91 336	9.84 523	0.15 477	0.08 664	0.24 141	0
	Cos	Sin	Cot	Tan	Csc	Sec	·. /

(324°) 144°

<b>35°</b> (215	5°)					(324°)	144°
	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.75 859	9.91 336	9.84 523	0.15 477	0.08 664	0.24 141	60
1	.75 877	.91 328	.84 550	.15 450	.08 672	.24 123	59
$\frac{2}{3}$	.75 895 .75 913	.91 319 .91 310	.84 576 .84 603	.15 424 .15 397	.08 681	$.24\ 105$ $.24\ 087$	58 57
4	.75 913	.91 301	.84 630	.15 370	.08 699	.24 067	56
5	9.75 949	9.91 292	9.84 657	0.15 343	0.08 708	0.24 051	55
6	.75 967	.91 283	.84 684	.15 316	.08 717	24 033	54
7	.75 985	.91 274	.84 711	.15 289	.08 726	.24 015	53
. 8	.76 003	.91 266	.84 738	$.15\ 262$	.08 734	.23 997	52
9	.76 021	.91 257	.84 764	.15 236	.08 743	.23 979	51
10	9.76 039	9.91 248	9.84 791	0.15 209	0.08752	0.23 961	50
11	.76 057	.91 239	.84 818	$.15\ 182$	.08 761	.23 943	49
12	.76 075	.91 230	.84 845	.15 155	.08 770	.23 925	48
13	.76 093	.91 221	.84 872	.15 128	.08 779	.23 907	47 46
14	.76 111	.91 212	.84 899	.15 101	.08 788	.23 889	45 45
15 16	9.76 129 .76 146	9.91 203 .91 194	9.84 925 .84 952	0.15 075 .15 048	0.08 797 .08 806	$0.23871 \\ .23854$	45 44
16 17	.76 164	.91 185	.84 979	.15 048	.08 815	.23 836	43
18	.76 182	.91 176	.85 006	.14 994	.08 824	.23 818	42
19	.76 200	.91 167	.85 033	.14 967	.08 833	.23 800	41
20	9.76 218	9.91 158	9.85 059	0.14 941	0.08 842	0.23 782	40
21	.76 236	.91 149	.85 086	.14 914	.08 851	.23 764	39
22	.76 253	.91 141	.85 113	.14 887	.08 859	.23 747	38
23	.76 271	.91 132	.85 140	.14 860	.08 868	.23 729	37
24	.76 289	.91 123	.85 166	.14 834	.08 877	.23 711	36
25	9.76 307	9.91 114	9.85 193	0.14 807	0.08 886 .08 895	0.23 693	<b>35</b> 34
26	.76 324 .76 342	.91 105 .91 096	.85 220 .85 247	.14 780   .14 753	.08 904	.23 658	33
27 28	.76 342	.91 087	.85 273	.14 727	.08 913	.23 640	32
$\frac{20}{29}$	.76 378	.91 078	.85 300	.14 700	.08 922	.23 622	31
30	9.76 395	9.91 069	9.85 327	0.14 673	0.08 931	0.23 605	30
31	.76 413	.91 060	.85 354	.14 646	.08 940	.23 587	29
32	.76 431	.91 051	.85 380	.14 620	.08 949	.23 569	28
33	.76 448	.91 042	.85 407.	.14 593	.08 958	.23 552	27
34	.76 466	.91 033	.85 434	.14 566	.08 967	.23 534	26
35	9.76 484	9.91 023	9.85 460	0.14 540	0.08 977	0.23 <b>5</b> 16 .23 <b>4</b> 99	<b>25</b> 24
36	.76 501	.91 014	.85 487 .85 514	.14 513 .14 486	.08 986	.23 499	$\frac{24}{23}$
37	.76 519 .76 537	.91 005	.85 540	.14 460	.09 004	.23 463	$\frac{20}{22}$
38 39	.76 554	.90 987	.85 567	.14 433	.09 013	.23 446	21
40	9.76 572	9.90 978	9.85 594	0.14 406	0.09 022	0.23 428	20
41	.76 590	.90 969	.85 620	.14 380	.09 031	.23 410	19
42	.76 607	.90 960	.85 647	.14 353	.09 040	.23 393	18
43	.76 625	.90 951	.85 674	.14 326	.09 049	.23 375	17
44	.76 642	.90 942	.85 700	.14 300	.09 058	.23 358	16
45	9.76 660	9.90 933	9.85 727	0.14 273	0.09 067	0.23 340	15
46	.76 677	.90 924	.85 754	.14 246 .14 220	.09 076	.23 323	14 13
47	.76 695	90 915	.85 780 .85 807	.14 220	.09 085	.23 288	12
48	.76 712 .76 730	.90 896	.85 834	.14 166	.09 104	.23 270	iī
49 <b>50</b>	9.76 747	9.90 887	9.85 860	0.14 140	0.09 113	0.23 253	10
51	.76 765	.90 878	.85 887	.14 113	.09 122	.23 235	9
52	76 782	.90 869	.85 913	.14 087	.09 131	.23 218	8
53	.76 800	.90 860	.85 940	.14 060	.09 140	.23 200	7
54	.76 817	.90 851	.85 967	.14 033	.09 149	.23 183	6
65	9.76 835	9.90 842	9.85 993	0.14 007	0.09 158	0.23 165	5
56	.76 852	.90 832	.86 020	.13 980	.09 168	.23 148	4 3
57	.76 870	.90 823	.86 046	.13 954	.09 177	.23 130	2
58	.76 887	.90 814	.86 073 .86 100	13 927	.09 186	.23 113	1
59	.76 904	9.90 796	9.86 126	0.13 874	0.09 204	0.23 078	Ô
60	9.76 922				Csc	Sec	<del>-,-</del>
l	Cos	Sin	Cot	Tan	USC	Sec	<u> </u>

36° (216°)

(323°) 143°

<b>36°</b> (216	o-)					(323	) <b>143°</b>
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.76 922	9.90 796	9.86 126	0.13 874	0.09 204	0.23 078	60
1	.76 939	.90 787	.86 153	.13 847	.09 213	.23 061	59
2	.76 957	.90 777	.86 179	.13 821	.09 223	.23 043	58
3	.76 974	.90 768	.86 206	.13 794	.09 232	.23 026	57
4	.76 991	.90 759	.86 232	.13 768	.09 241	.23 009	56
5	9.77 009	9.90 750	9.86 259	0.13741	0.09 250	0.22 991	55
6	.77 026	.90 741	.86 285	.13 715	.09 259	.22 974	54
7	.77 043	.90 731	.86 312	.13 688	.09 269	.22 957	53
8	.77 061	.90 722	.86 338	13 662	.09 278	.22 939	52
9	.77 078	.90 713	.86 365	.13 635	.09 287	.22 922	51
10	9.77 095	9.90 704	9.86 392	0.13 608	0.09 296	0.22 905	50
11	.77 112	.90 694	.86 418	.13 582	.09 306	.22 888	49
$\begin{array}{c} 12 \\ 13 \end{array}$	.77 130 .77 147	.90 685	.86 445	.13 555	.09 315	.22 870	48
14		.90 676	.86 471	.13 529	.09 324	.22 853	47
	.77 164	.90 667	.86 498	.13 502	.09 333	.22 836	46
15	9.77 181	9.90 657	9.86 524	0.13 476	0.09 343	0.22 819	45
16	.77 199	.90 648	.86 551	.13 449	.09 352	.22 801	44
17	.77 216	.90 639	.86 577	.13 423	.09 361	.22 784	43
18 19	.77 233 .77 250	.90 630	.86 603	.13 397	.09 370 •	.22 767	42
		.90 620	.86 630	.13 370	.09 380	.22 750	41
20	9.77 268	9.90 611	9.86 656	0.13 344	0.09 389	0.22 732	40
$\frac{21}{22}$	.77 285	.90 602	.86 683	.13 317	.09 398	.22 715	39
23	.77 302 .77 319	.90 592	.86 709	.13 291	.09 408	.22 698	38
$\frac{23}{24}$	.77 336	.90 583	.86 736	.13 264 .13 238	.09 417	.22 681 .22 664	37 36
		.90 574	.86 762		.09 426		
25	9.77 353	9.90 565	9.86 789	0.13 211	0.09 435	0.22 647	35
$\frac{26}{27}$	.77 370	.90 555	.86 815	.13 185	.09 445	.22 630 .22 613	34
28	.77,387 .77,405	90 546	.86 842	.13 158 .13 132	.09 454		33
29	.77 422	.90 537 .90 527	.86 868 .86 894	13 106	.09 463 .09 473	.22 595 .22 578	$\frac{32}{31}$
30	9.77 439						
31	.77 456	9.90 518	9.86 921	0.13 079	0.09 482	0.22 561	30
32	.77 473	.90 509	.86 947 .86 974	.13 053 .13 026	.09 491 .09 501	.22 544 .22 527	29 28
33	.77 490	.90 499 .90 490	.87 000	.13 020	.09 501	.22 510	$\frac{20}{27}$
34	.77 507	.90 480	.87 027	.12 973	.09 520	.22 493	26
35	9.77 524	9.90 471	9.87 053	0.12 947	0.09 529	0.22 476	25
36	.77 541	.90 471	.87 079	.12 921	.09 538	.22 470	2 <b>5</b> 24
37	.77 558	.90 452	.87 106	.12 894	.09 548	.22 442	23
38	.77 575	.90 443	.87 132	.12 868	.09 557	.22 425	$\frac{23}{22}$
39	.77 592	.90 434	.87 158	.12 842	.09 566	.22 408	$\frac{22}{21}$
40	9.77 609	9.90 424	9.87 185	0.12 815	0.09 576	0.22 391	20
41	.77 626	.90 424	.87 211	.12 789	.09 585	.22 374	19
42	.77 643	.90 415	.87 238	.12 762	.09 595	.22 357	18
43	.77 660	.90 396	.87 264	.12 736	.09 604	.22 340	17
44	.77 677	.90 386	.87 290	.12 710	.09 614	.22 323	16
45	9.77 694	9.90 377	9.87 317	0.12 683	0.09 623	0.22 306	15
46	.77 711	.90 368	.87 343	12 657	.09 632	.22 289	14
47	.77 728	.90 358	.87 369	.12 631	.09 642	.22 272	13
48	.77 744	.90 349	.87 396	.12 604	.09 651	.22 256	12
49	.77 761	.90 339	.87 422	.12 578	.09 661	.22 239	11
50	9.77 778	9.90 330	9.87 448	$0.12\ 552$	0.09 670	0.22 222	10
51	.77 795	.90 320	.87 475	.12 525	.09 680	,22 205	9
52	.77 812	.90 311	.87 501	.12 499	.09 689	.22 188	š
53	.77 829	$.90\ 301$	.87 527	.12 473	.09 699	.22 171	7
54	.77 846	$.90\ 292$	.87 554	.12 446	.09 708	.22 154	6
55	9.77 862	9.90 282	9.87 580	0.12 420	0.09 718	0.22 138	5
56	.77 879	.90 273	.87 606	.12 394	.09 727	.22 121	4
57	.77 896	.90 263	.87 633	.12 367	.09 737	.22 104	$\hat{3}$
58	.77 913	$.90\ 254$	.87 659	.12 341	.09 746	.22 087	$\tilde{2}$
59	.77 930	$.90\ 244$	.87 685	.12 315	.09 756	.22 070	$\overline{1}$
60	9.77 946	9.90235	9.87 711	0.12 289	0.09 765	0.22 054	0
	Cos	Sin	Cot	Tan	Cse	Sec	<del></del>
	000	13111		1011	USU	366	

37° (217°)

	7°)					(322°	) <b>142°</b>
	Sin	Cos	Tan	Cot	Sec	Csc	I
0	9.77 946	9.90 235	9.87 711	0.12 289	0.09 765	0.22 054	60
1	.77 963	.90 225	.87 738	.12 262	.09 775	.22 037	59
$\frac{2}{3}$	.77 980	.90 216	.87 764	.12 236	.09 784	.22 020	58
4	.77 997	.90 206	.87 790	.12 210	.09 794	.22 003	57
5	9.78 030	.90 197	.87 817	.12 183	.09 803	.21 987	56
6	.78 047	9.90 187	9.87 843	0.12 157	0.09 813	0.21 970	55
7	.78 063	.90 178	.87 869 .87 895	.12 131	.09 822	.21 953	54
8	.78 080	.90 159	.87 922	.12 105	.09 832	.21 937	53 52
ğ	.78 097	.90 149	.87 948	.12 078	.09 851	.21 920	51
10	9.78 113	9.90 139	9.87 974	0.12 026	0.09 861	0.21 887	50
11	.78 130	.90 130	.88 000	.12 000	.09 870	.21 870	49
12	.78 147	.90 120	.88 027	.11 973	.09 880	.21 853	48
13	.78 163	.90 111	.88 053	.11 947	.09 889	.21 837	47
14	.78 180	.90 101	.88 079	.11 921	.09 899	.21 820	46
15	9.78 197	9.90 091	9.88 105	0.11 895	0.09 909	0.21 803	45
16	.78 213	.90 082	.88 131	.11 869	.09 918	.21 787	44
17	.78 230	.90 072	.88 158	.11 842	.09 928	.21 770	43
18	.78 246	.90 063	.88 184	.11 816	.09 937	.21 754	42
19	.78 263	.90 053	.88 210	.11 790	.09 947	.21 737	41
20	9.78 280	9.90 043	9.88 236	0.11 764	0.09 957	0.21 720	40
$\frac{21}{22}$	.78 296 .78 313	.90 034	.88 262	.11 738	.09 966	.21 704	39
23	.78 313	.90 024 .90 014	.88 289 .88 315	.11 711 .11 685	.09 976 .09 986	.21 687 .21 671	38
24	.78 346	.90 005	.88 341	.11 659	.09 980	.21 654	36
25	9.78 362	9.89 995	9.88 367	0.11 633	0.10 005	0.21 638	35
26	.78 379	.89 985	.88 393	.11 607	.10 015	.21 621	34
2 <b>7</b>	.78 395	.89 976	.88 420	.11 580	.10 024	.21 605	33
28	.78 412	.89 966	.88 446	.11 554	.10 034	.21 588	32
29	.78 428	.89 956	.88 472	.11 528	.10 044	.21 572	31
30	9.78 445	9.89 947	9.88 498	0.11 502	0.10 053	0.21 555	30
31	.78 461	.89 937	.88 524	.11 476	.10 063	.21 539	29
32	.78 478	.89 927	.88 550	.11 450	.10 073	.21 522	. 28
33	.78 494	.89 918	.88 577	.11 423	.10 082	.21 506	27
34	.78 510	.89 908	.88 603	.11 397	.10 092	.21 490	26
35	9.78 527	9.89 898	9.88 629	0.11 371	0.10 102	0.21 473	25
36	.78 543	.89 888	.88 655	.11 345	.10 112	.21 457	24
37 38	.78 560 .78 576	.89 879 .89 869	.88 681 .88 707	.11 319 .11 293	.10 121 .10 131	.21 440 .21 424	23 22
39	.78 592	.89 859	.88 733	.11 267	.10 141	.21 408	21
40	9.78 609	9.89 849	9.88 759	0.11 241	0.10 151	0.21 391	20
41	.78 625	.89 840	.88 786	.11 214	.10 160	.21 375	19
42	.78 642	.89 830	.88 812	.11 188	.10 170	.21 358	18
43	.78 658	.89 820	.88 838	.11 162	.10 180	.21 342	17
44	.78 674	.89 810	.88 864	.11 136	.10 190	.21 326	16
45	9.78 691	9.89 801	9.88 890	0.11 110	0.10 199	0.21 309	15
46	.78 707	.89 791	.88 916	.11 084	.10 209	.21 293	14
47	.78 723	.89 781	.88 942	.11 058	.10 219	.21 277	13
48	.78 739	.89 771	.88 968	.11 032	.10 229	.21 261	12
49	.78 756	.89 761	.88 994	.11 006	.10 239	.21 244	11
50	9.78 772	9.89 752	9.89 020	0.10 980	0.10 248	0.21 228	10
51	.78 788	.89 742 .89 732	.89 046 .89 073	.10 954 .10 927	.10 258 .10 268	.21 212 .21 195	9
$\frac{52}{53}$	.78 805 .78 821	.89 732	.89 073	.10 927	.10 208	.21 195	8 7
53 54	.78 837	.89 712	.89 125	.10 875	.10 288	.21 163	6
<b>55</b>	9.78 853	9.89 702	9.89 151	0.10 849	0.10 298	0.21 147	5
56	.78 869	.89 693	.89 177	.10 823	.10 307	.21 131	4
57	.78 886	.89 683	.89 203	.10 797	.10 317	.21 114	3
58	.78 902	.89 673	.89 229	.10 771	.10 327	.21 098	2
59	.78 918	.89 663	.89 255	.10 745	.10 337	.21 082	ī
60	9.78 934	9.89 653	9.89 281	0.10 719	0.10 347	0.21 066	0
	Cos	Sin	Cot	Tan	Csc	Sec	_,
		~					

38° (218°)

(321°) 141°

38" (21				,		(321	,
	Sin	Cos	Tan	Cot	Sec	Csc	_ <del></del>
0	9.78 934	9.89 653	9.89 281 .89 307	0.10 719	0.10 347	0.21 000	<b>60</b> 59
1	.78 950	.89 643	.89 307	.10 693 .10 667	.10 357 .10 367	.21 050	58
2 3	.78 967 .78 983	.89 633 .89 624	.89 359	.10 641	.10 376	.21 033	57
4	.78,999	.89 614	.89 385	.10 615	.10 386	.21 001	56
<b>5</b>	9.79 015	9.89 604	9.89 411	0.10 589	0.10 396	0.20 985	55
6	.79 031	.89 594	.89 437	.10 563	.10 406	.20 969	54
6 7	.79 047	.89 584	.89 463	.10 537	.10 416	.20 953	53
8	.79 063	.89 574	.89 489	.10 511	.10 426	.20 937	52
9	.79 079	.89 564	.89 515	.10 485	.10 436	.20 921	51
10	9.79 095	9.89 554	9.89 541	0.10 459	0.10 446	0.20 905	50
11	.79 111	.89 544	.89 567	.10 433	.10 456	.20 889	49
12	.79 128	.89 534	.89 593	.10 407	.10 466	.20 872	48
13 14	.79 144 .79 160	.89 524 .89 514	.89 619 .89 645	.10 381	.10 476 .10 486	.20 856	47 46
15	9.79 176	9.89 504	9.89 671	.10 355	0.10 496	0.20 824	45
16	.79 170	.89 495	.89 697	.10 329	.10 505	.20 808	44
17	.79 208	.89 485	.89 723	.10 277	.10 515	.20 792	43
18	79 224	.89 475	.89 749	.10 251	.10 525	.20 776	42
19	.79 240	.89 465	.89 775	.10 225	.10 535	.20 760	41
20	9.79 256	9.89 455	9.89 801	0.10 199	0.10 545	0.20 744	40
21	.79 272	.89 445	.89 827	.10 173	.10 555	.20 728	39
22	.79 288	.89 435	.89 853	.10 147	.10 565	.20 712	38
23	.79 304	.89 425	.89 879	.10 121	.10 575	.20 696	37
24	.79 319	.89 415	.89 905	.10 095	.10 585	.20 681	36
25	9.79 335	9.89 405	9.89 931	0.10 069	0.10 595	0.20 665	35
26	.79 351	.89 395	.89 957	.10 043	.10 605	.20 649	34
$\begin{array}{c} 27 \\ 28 \end{array}$	.79 367 .79 383	.89 385 .89 375	.89 983 .90 009	.10 017 .09 991	.10 615 .10 625	.20 633	$\begin{array}{c c} 33 \\ 32 \end{array}$
$\frac{20}{29}$	.79 399	.89 364	.90 009	.09 965	.10 625	.20 601	31
30	9.79 415	9.89 354	9.90 061	0.09 939	0.10 646	0.20 585	30
31	.79 431	.89 344	.90 086	.09 914	.10 656	.20 569	29
32	.79 447	.89 334	.90 112	.09 888	.10 666	.20 553	28
33	.79 463	.89 324	.90 138	.09 862	.10 676	.20 537	27
34	.79 478	.89 314	.90 164	.09 836	.10 686	.20 522	26
35	9.79 494	$9.89\ 304$	9.90 190	0.09 810	0.10696	0.20 506	25
36	.79 510	.89 294	.90 216	.09 784	.10 706	.20 490	24
37	.79 526 .79 542	.89 284 .89 274	.90 242	.09 758	.10 716	.20 474	23
38 39	.79 558	.89 274	.90 268 .90 294	.09 732 .09 706	.10 726 .10 736	.20 458 .20 442	$\frac{22}{21}$
40	9.79 573	9.89 254	9.90 320	0.09 680	0.10 746	0.20 427	20
40 41	.79 589	.89 244	.90 346	.09 654	.10 756	.20 427	19
42	.79 605	.89 233	.90 371	.09 629	.10 767	.20 395	18
$\tilde{43}$	.79 621	.89 223	.90 397	.09 603	.10 777	.20 379	17
44	.79 636	.89 213	.90 423	.09 577	.10 787	.20 364	16
45	9.79 652	9.89 203	9.90 449	0.09 551	0.10 797	0.20 348	15
46	.79 668	.89 193	.90 475	.09 525	.10 807	.20 332	14
47	.79 684	.89 183	.90 501	.09 499	.10 817	.20 316	13
48	.79 699	.89 173	.90 527	.09 473	.10 827	.20 301	12
49	.79 715	.89 162	.90 553	.09 447	.10 838	.20 285	11
<b>50</b> 51	9.79 731 .79 746	$9.89\ 152 \\ .89\ 142$	9.90 578 .90 604	0.09 422 .09 396	0.10 848 .10 858	0.20 269	10
51 52	.79 740	.89 142	.90 630	.09 396	.10 858	.20 254 .20 238	9 8
53	.79 778	.89 122	.90 656	.09 344	.10 878	.20 238	~ ~
54	.79 793	.89 112	.90 682	.09 318	.10 888	.20 207	6
55	9.79 809	9.89 101	9.90 708	0.09 292	0.10 899	0.20 191	5
56	.79 825	.89 091	.90 734	.09 266	.10 909	.20 175	4
57	.79 840	.89 081	.90 759	.09 241	.10 919	.20 160	3
58	.79 856	.89 071	.90 785	.09 215	.10 929	.20 144	2
59	.79 872	.89 060	.90 811	.09 189	.10 940	.20 128	1
60	9.79 887	9.89 050	9.90 837	0.09 163	0.10 950	0.20 113	0
	Cos	Sin	Cot	Tan	Csc	Sec	<del>-</del>
			~~*	744	030	DUU .	J

(320% 140%

<b>39°</b> (219	)°)					(320°)	140°
,	Sin	Cos	Tan	Cot	Sec .	Csc	
0	9.79 887	9.89 050	9.90 837	0.09 163	0.10 950	0.20 113	60
1	.79 903	.89 040	.90 863	.09 137	.10 960	.20 097	59
2	.79 918	.89 030	.90 889	.09 111	.10 970	.20 082	58
3	.79 934 .79 950	.89 020 89 009	.90 914 .90 940	.09 086 .09 060	.10 980 .10 991	.20 066 .20 050	57 56
4 5	9.79 965	9.88 999	9.90 966	0.09 034	0.11 001	0.20 035	56
9	.79 981	.88 989	.90 992	.09 034	.11 011	.20 019	54
6 7	.79 996	.88 978	.91 018	.08 982	.11 022	20 004	53
8	.80 012	.88 968	.91 043	.08 957	.11 032	.19 988	52
9	.80 027	.88 958	.91 069	.08 931	.11 042	.19 973	51
10	9.80 043	9.88 948	9.91 095	0.08 905	$0.11\ 052$	0.19 957	50
11	.80 058	.88 937	.91 121	.08 879	.11 063	.19 942	49
12	.80 074	.88 927	.91 147 .91 172	.08 853 .08 828	.11 073 .11 083	.19 926 .19 911	48 47
$\frac{13}{14}$	.80 089 .80 105	.88 917 .88 906	.91 172	.08 802	.11 083	.19 895	46
15	9.80 120	9.88 896	9.91 224	0.08 776	0.11 104	0.19 880	45
16	.80 136	.88 886	.91 250	.08 750	.11 114	.19 864	44
17	.80 151	88 875	.91 276	.08 724	.11 125	.19 849	43
18	.80 166	.88 865	.91 301	.08 699	.11 135	.19 834	42
19	.80 182	.88 855	.91 327	.08 673	.11 145	.19 818	41
20	9.80 197	9.88 844	9.91 353	0.08 647	0.11 156	0.19 803	40
21	.80 213	.88-834	.91 379 .91 404	.08 621 .08 596	.11 166 .11 176	.19 787 .19 772	39 38
$\frac{22}{23}$	.80 228 .80 244	.88 824 .88 813	.91 404	.08 570	.11 187	.19 756	37
$\frac{25}{24}$	.80 259	.88 803	.91 456	.08 544	.11 197	.19 741	36
25	9.80 274	9.88 793	9.91 482	0.08 518	0.11 207	0.19 726	35
26	.80 290	.88 782	.91 507	.08 493	.11 218	.19 710	34
27	.80 305	.88 772	.91 533	.08 467	.11 228	.19 695	33
28	.80 320	.88 761	.91 559	.08 441	.11 239	.19 680	32
29	.80 336	.88 751	.91 585	.08 415	.11 249	.19 664	31
30	9.80 351	9.88 741 .88 730	9.91 610	0.08 390 .08 364	0.11 259	0.19 649	. <b>30</b>
31 32	.80 366 .80 382	.88 730	.91 662	.08 338	.11 280	.19 618	28
33	.80 397	.88 709	.91 688	.08 312	.11 291	.19 603	27
34	.80 412	.88 699	.91 713	.08 287	.11 301	.19 588	26
35	9.80 428	9.88 688	9.91 739	0.08 261	0.11 312	0.19 572	25
36	.80 443	.88 678	.91 765	.08 235	.11 322	.19 557	24
37	.80 458	.88 668	.91 791	.08 209	.11 332	.19 542	23 22
38	.80 473 .80 489	.88 657 .88 647	.91 816 .91 842	.08 184	.11 343	.19 511	21
39	9.80 504	9.88 636	9.91 868	0.08 132	0.11 364	0.19 496	20
<b>40</b> 41	.80 519	.88 626	.91 893	.08 107	.11 374	.19 481	19
42	.80 534	.88 615	.91 919	.08 081	.11 385	.19 466	18
43	.80 550	.88 605	.91 945	.08 055	.11 395	.19 450	17
44	.80 565	.88 594	.91 971	.08 029	.11 406	.19 435	16
45	9.80 580	9.88 584	9.91 996	0.08 004	0.11 416	0.19 420	15
46	.80 595	.88 573	.92 022 .92 048	.07 978	.11 427	.19 405 .19 390	14 13
47	.80 610 .80 625	.88 563 .88 552	.92 048	.07 932	.11 448	.19 375	12
48 49	.80 625	.88 542	.92 099	.07 901	.11 458	.19 359	iī
50	9.80 656	9.88 531	9.92 125	0.07 875	0.11 469	0.19 344	10
51	.80 671	.88 521	.92 150	.07 850	.11 479	.19 329	9
52	.80 686	.88 510	.92 176	.07 824	.11 490	.19 314	8 7
53	.80 701	.88 499	.92 202	.07 798	.11 501	.19 299 .19 284	6
54	.80 716	.88 489	.92 227	.07 773	1	0.19 269	5
55	9.80 731	9.88 478	9.92 253	0.07 747	0.11 522	.19 254	4
56	.80 746	.88 468	.92 279	.07 721	.11 532	.19 238	3
57 58	.80 762	.88 457 .88 447	.92 304 .92 330	.07 696	.11 553	.19 223	2
59	.80 777 .80 792	.88 447	.92 356	.07 644	.11 564	.19 208	1
60	9.80 807	9.88 425	9.92 381	0.07 619	0.11 575	0.19 193	0
		Sin	Cot	Tan	Cse	Sec	,
	Cos	5111		- 411		(000	0) 500

40° (220°)

(310°) 139°

<b>40°</b> (220	)°)					(319°	) 139°
,	Sin	Cos	Tan	Cot	Sec	Csc	
0	9.80 807	9.88 425	9.92 381	0.07 619	0.11 575	0.19 193	60
1	.80 822	.88 415	.92 407	.07 593	.11 585	.19 178	59
2	.80 837	.88 404	.92 433	.07 567	.11 596	.19 163	58
3	.80 852	.88 394	.92 458	.07 542	.11 606	.19 148	57
4	.80 867	.88 383	.92 484	.07 516	.11 617	.19 133	56
5	9.80 882	9.88 372	9.92 510	0.07 490	0.11 628	0.19 118	55
6 7	.80 897	.88 362	.92 535	.07 465	.11 638	.19 103	54
8	$.80\ 912$ $.80\ 927$	.88 351 .88 340	.92 561 .92 587	.07 439	.11 649 .11 660	.19 088 .19 073	53 52
9	.80 942	.88 330	.92 612	.07 388	.11 670	.19 073	51
10	9.80 957	9.88 319	9.92 638	0.07 362	0.11 681	0.19 043	50
11	.80 972	.88 308	.92 663	0.07 302	.11 692	.19 028	49
12	.80 987	.88 298	.92 689	.07 337 .07 311	.11 702	.19 013	48
13	.81 002	.88 287	.92 715	.07 285	.11 713	.18 998	47
14	.81 017	.88 276	.92 740	07 260	.11 724	.18 983	46
15	9.81 032	9.88 266	9.92 766	0.07 234	0.11 734	0.18 968	45
16	.81 047	.88 255	.92 792	.07 208	.11 745	.18 953	44
17	.81 061	.88 244	.92 817	.07 183	.11 756	.18 939	43
18	.81 076	.88 234	.92 843	.07 157	.11 766	.18 924	42
19	.81 091	.88 223	.92 868	.07 132	.11 777	.18 909	41
20	9.81 106	9.88 212	9.92 894	0.07 106	0.11 788	0.18 894	40
21	.81 121	.88 201	.92 920	.07 080	.11 799	.18 879	39
22	.81 136	.88 191	.92 945	.07 055	.11 809	.18 864	38
23	.81 151	.88 180	.92 971	.07 029	.11 820	.18 849 .18 834	37 36
24	.81 166	.88 169	.92 996	.07 004	.11 831 0.11 842	0.18 820	35
<b>25</b> 26	9.81 180 .81 195	9.88 158 .88 148	9.93 022 .93 048	0.06 978 .06 952	.11 852	.18 805	34
27.	.81 210	.88 137	.93 043	.06 932	.11 863	.18 790	33
28	.81 225	.88 126	.93 099	.06 901	.11 874	.18 775	32
29	.81 240	.88 115	.93 124	.06 876	.11 885	.18 760	31
30	9.81 254	9.88 105	9.93 150	0.06 850	0.11 895	0.18 746	30
31	.81 269	.88 094	.93 175	.06 825	.11 906	.18 731	29
32	.81 284	.88 083	.93 201	.06 799	.11 917	.18 716	28
33	.81 299	.88 072	.93 227	.06 773	.11 928	.18 701	27
34	.81 314	.88 061	.93 252	.06 748	.11 939	.18 686	26
35	$9.81\ 328$	9.88 051	9.93278	0.06 722	0.11949	$0.18\ 672$	25
36	.81 343	.88 040	.93 303	.06 697	.11 960	.18 657	24
37	.81 358	.88 029	.93 329	.06 671	.11 971	.18 642	23
38 39	.81 372 .81 387	.88 018 .88 007	.93 354 .93 380	.06 646	.11 982 .11 993	.18 628 .18 613	$\begin{array}{c} 22 \\ 21 \end{array}$
40			9.93 406	0.06 594	0.12 004	0.18 598	20
40 41	$9.81\ 402 \\ .81\ 417$	9.87 996 .87 985	.93 406	.06 569	.12 015	.18 583	20 19
42	.81 431	.87 975	.93 457	.06 543	.12 015	.18 569	18
43	.81 446	.87 964	.92 482	.06 518	.12 026	.18 554	17
44	.81 461	.87 953	.93 508	.06 492	.12 047	.18 539	16
45	9.81 475	9.87 942	9.93 533	0.06 467	0.12 058	0.18 525	15
46	.81 490	.87 931	.93 559	.06 441	.12 069	.18 510	14
47	.81 505	.87 920	.93 584	.06 416	.12 080	.18 495	13
48	.81 519	.87 909	.93 610	.06 390	.12 091	.18 481	12
49	.81 534	.87 898	.93 636	.06 364	.12 102	.18 466	11
50	9.81 549	9.87 887	9.93 661	0.06 339	0.12 113	0.18 451	10
51	.81 563	.87 877	.93 687	.06 313 .06 288	.12 123	.18 437	9
52 53	.81 578 .81 592	.87 866 .87 855	.93 712 .93 738	.06 288	.12 134 .12 145	.18 422 .18 408	8 7
54	.81 607	.87 844	.93 763	.06 237	.12 145	.18 393	6
55	9.81 622	9.87 833	9.93 789	0.06 211	0.12 167	0.18 378	5
56	.81 636	.87 822	.93 814	.06 186	.12 178	.18 364	4
57	.81 651	.87 811	.93 840	.06 160	.12 189	.18 349	3
58	.81 665	.87 800	.93 865	.06 135	.12 200	.18 335	2
59	.81 680	.87 789	.93 891	.06 109	.12 211	.18 320	ĩ
60	9.81 694	9.87 778	9.93 916	0.06 084	$0.12\ 222$	.18 306	0
	Cos	Sin	Cot	Tan	Csc	Sec	<del>-,-</del>
		LOREAL				500	_

41° (221°)

(318°) 138°

No.   Cos   Tan   Cot   Sec   Csc	41° (22							) 138°
2 81 729 87 767 93 942 06 658 12 233 18 291 59 81 723 87 756 93 967 06 033 12 244 18 277 58 3 81 738 87 745 93 993 06 007 12 255 18 262 57 4 81 752 87 734 94 018 0.6 907 12 255 18 262 57 84 81 752 87 734 94 018 0.6 907 12 255 18 262 57 84 81 752 87 734 94 018 0.6 956 0.12 277 0.18 233 55 66 18 781 87 712 94 069 0.5 931 12 288 18 219 54 7 81 760 19 81 829 9 81 825 87 701 94 095 0.5 905 12 299 18 204 53 8 81 810 87 690 94 120 0.5 880 12 310 18 190 52 9 81 825 87 679 94 146 0.5 854 12 231 18 175 51 10 9.81 839 9.87 668 9.94 171 0.05 829 0.12 332 0.18 161 50 11 81 854 87 667 94 197 0.6 803 12 343 18 161 50 11 81 882 87 646 94 222 0.5 778 12 345 18 146 49 12 81 886 87 646 94 222 0.5 778 12 345 18 118 46 49 12 81 81 81 81 81 81 81 81 81 81 81 81 81							·	
2         881 7233         87 756         9.93 997         .06 0037         .12 245         .18 277         58           4         .81 7352         .87 744         .94 018         .05 982         .12 266         .18 248         56           5         9.81 767         9.87 723         9.94 044         .06 956         0.12 277         .01 8233         56           6         8.1 810         .87 690         .94 120         .05 806         .12 289         .18 204         53           8         8.18 10         .87 690         .94 120         .05 820         .12 321         .18 190         52           10         9.81 839         9.87 668         .94 171         .05 829         .12 322         .18 116         49           11         .81 868         .87 667         .94 197         .05 803         .12 343         .18 146         49           12         .81 868         .87 664         .94 222         .05 778         .12 365         .18 118         47           14         .81 807         .87 601         .94 239         .05 772         .12 365         .18 118         47           15         .9.81 911         .9.7 613         .9.94 299         .05 701         .01 23 37 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
3         8.1 788         8.7 745         9.93 93         0.6 007         1.12 265         1.8 262         57           5         9.81 767         9.87 723         9.94 018         0.6 982         1.2 266         1.8 248         56           6         .81 781         .87 712         .94 069         .05 905         0.12 277         0.18 233         55           8         .81 810         .87 701         .94 095         .05 905         1.2 299         1.8 204         53           8         .81 810         .87 701         .94 095         .05 806         1.2 310         1.8 190         52           9         .81 826         .87 667         .94 146         .08 800         1.2 311         1.8 186         1.8 105         51           10         .81 882         .87 661         .94 222         .05 778         1.2 354         1.8 186         44         40         1.8 184         49         418         1.8 184         49         418         1.8 12 345         1.8 18         44         1.8 189         1.8 181         44         1.8 189         1.8 184         49         1.8 18         42         1.8 18         42         1.8 18         48         1.8 18         1.8 18         48								
4         8.1 752         8.7 744         9.4 014         0.05 962         1.12 266         1.8 248         56           6         8.1 781         9.8 7 723         9.94 044         0.05 966         0.12 277         0.18 233         55           7         8.1 766         8.7 701         .94 095         0.6 905         1.12 289         1.8 219         54           8         8.1 810         8.7 690         .94 120         0.8 880         1.2 231         1.8 18 190         52           9         9.81 839         9.87 668         9.94 171         0.05 829         0.12 332         0.18 18 161         51           10         9.81 839         9.87 668         9.94 171         0.05 803         1.2 334         1.8 164         49           11         8.1 868         8.7 667         .94 197         0.05 803         1.2 354         1.8 18         44         48           13         8.1 868         8.7 667         .94 222         0.05 778         1.2 376         1.8 18         44         48           14         8.1 80         8.7 661         .94 273         0.05 727         1.2 376         1.8 18         4.4           15         9.81 911         9.87 613         9.94 299 </td <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2							
5         9.81 767         9.87 723         9.94 044         0.05 956         0.12 277         0.18 233         55           6         8.1 781         87 712         9.4 069         0.5 931         12 288         18 219         54           7         8.1 810         87 690         .94 120         0.6 860         .12 310         .18 190         52           9         8.1 825         87 679         .94 146         0.6 854         12 321         18 18 75         51           10         9.81 839         9.87 668         9.94 171         0.05 803         12 343         18 164         49           12         81 868         87 664         9.94 297         0.05 752         12 365         18 184         49           13         81 882         87 663         9.94 299         0.05 776         12 365         18 118         48           14         8.1 897         8.7 613         9.94 299         0.05 701         0.12 387         0.18 089         46           15         9.81 911         9.87 613         9.94 290         0.05 701         0.12 387         0.18 089         46           16         8.1 940         8.7 661         9.94 290         0.05 701         0.13 87								
6         .81 781         .87 712         .94 069         .05 931         12 288         18 219         54           8         .81 810         .87 600         .94 120         .05 806         .12 210         .18 190         52           9         .81 825         .87 679         .94 146         .05 880         .12 310         .18 190         52           10         9.81 839         9.87 668         9.94 171         .06 803         .12 332         .18 161         50           11         .81 864         .87 657         .94 197         .08 803         .12 334         .18 166         50           12         .81 868         .87 645         .94 222         .06 5778         .12 354         .18 132         48           13         .81 882         .87 635         .94 224         .05 7752         .12 365         .18 118         44           14         .81 891         .87 624         .94 273         .05 727         .12 376         .18 103         44           15         .9.81 911         .87 601         .94 324         .05 676         .12 379         .18 074         44           16         .81 926         .87 500         .94 375         .05 625         .12 412								
8         81 810         87 690         .94 120         .05 880         .12 310         .18 190         55           10         9.81 839         .87 668         9.94 171         .0.5 829         0.12 332         0.18 161         50           11         .81 854         .87 667         .94 197         .05 803         .12 334         .18 1846         49           12         .81 868         .87 664         .94 222         .05 7752         .12 3354         .18 1827           13         .81 882         .87 635         .94 284         .05 752         .12 365         .18 113         46           14         .81 897         .87 613         .94 273         .05 772         .12 365         .18 113         46           15         .9.81 911         .9.87 613         .9.4 250         .05 676         .12 399         .18 078         44           16         .81 926         .87 601         .94 350         .05 685         .12 430         .18 080         43           19         .81 960         .87 557         .94 375         .05 625         .12 431         .18 045         42           20         .9.81 988         .9.87 567         .94 452         .05 548         .12 443         .1	6					12 288		
8         81 810         87 690         .94 120         .05 880         .12 310         .18 190         55           10         9.81 839         .87 668         9.94 171         .0.5 829         0.12 332         0.18 161         50           11         .81 854         .87 667         .94 197         .05 803         .12 334         .18 1846         49           12         .81 868         .87 664         .94 222         .05 7752         .12 3354         .18 1827           13         .81 882         .87 635         .94 284         .05 752         .12 365         .18 113         46           14         .81 897         .87 613         .94 273         .05 772         .12 365         .18 113         46           15         .9.81 911         .9.87 613         .9.4 250         .05 676         .12 399         .18 078         44           16         .81 926         .87 601         .94 350         .05 685         .12 430         .18 080         43           19         .81 960         .87 557         .94 375         .05 625         .12 431         .18 045         42           20         .9.81 988         .9.87 567         .94 452         .05 548         .12 443         .1	ž							
10	8							
11         .81 854         .87 657         .94 197         .05 803         .12 343         .18 146         49           12         .81 868         .87 646         .94 222         .05 778         .12 364         .18 132         48           13         .81 882         .87 635         .94 248         .05 752         .12 365         .18 118         47           14         .81 897         .87 624         .94 273         .05 727         .12 376         .18 103         46           15         .81 916         .87 601         .94 234         .05 676         .12 399         .18 074         44           17         .81 940         .87 500         .94 350         .05 665         .12 410         .18 065         43           18         .81 955         .87 579         .94 375         .05 625         .12 421         .18 045         42           20         .981 983         .98 7568         .94 401         .05 599         .12 432         .18 031         41           21         .81 998         .87 546         .94 452         .05 548         .12 454         .18 002         39           22         .82 012         .87 524         .94 503         .05 497         .12 476	9	.81 825	.87 679	.94 146	.05 854	$.12\ 321$	.18 175	51
12         .81 868         .87 646         .94 222         .05 778         .12 354         .18 132         48           13         .81 887         .87 624         .94 273         .05 727         .12 365         .18 118         47           15         .981 911         .987 613         .94 299         .0.5 701         .12 387         .18 103         46           16         .81 926         .87 601         .94 324         .05 676         .12 399         .18 060         43           17         .81 940         .87 590         .94 350         .05 650         .12 410         .18 060         43           18         .81 955         .87 579         .94 375         .05 625         .12 412         .18 064         42           19         .81 969         .87 568         .94 401         .05 599         .12 432         .18 081         42           21         .81 985         .87 564         .94 452         .05 548         .12 454         .18 002         39           22         .82 012         .87 535         .94 477         .05 523         .12 465         .18 002         39           23         .82 055         .87 501         .94 528         .05 472         .12 487	10	9.81 839	9.87 668	9.94 171	0.05 829	$0.12\ 332$	0.18 161	50
13         .81 882         .87 635         .94 248         .05 752         .12 365         .18 118         46           15         9.81 911         9.87 613         .94 299         .05 701         .12 376         .18 103         46           16         .81 926         .87 601         .94 324         .05 676         .12 399         .18 074         .08         .18 108         .45         .05 676         .12 399         .18 074         .08         .08         .08         .05 676         .12 399         .18 074         .06         .43         .08         .08         .08         .08         .08         .05 50         .05 625         .12 421         .18 080         .43         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08         .08<								
14         81 897         87 624         9.4 273         0.5 727         1.12 376         1.18 103         45           16         .81 926         .87 601         .94 324         .05 676         .12 399         .18 074         44           17         .81 940         .87 590         .94 350         .05 650         .12 399         .18 074         44           18         .81 955         .87 579         .94 375         .05 625         .12 412         .18 045         42           19         .81 969         .87 568         .94 401         .05 599         .12 432         .18 031         41           20         .98 1983         .87 568         .94 401         .05 599         .12 432         .18 091         .44           21         .81 988         .87 568         .94 401         .05 599         .12 432         .18 002         39           22         .82 012         .87 535         .94 477         .05 523         .12 454         .18 002         39           23         .82 265         .87 501         .94 528         .05 472         .12 487         .17 959         36           25         .98 2055         .987 501         .94 554         .0.05 446         .01 2499								
15         9.81 911         9.87 613         9.94 299         0.05 701         0.12 387         0.18 089         45           16         .81 926         .87 601         .94 324         .05 676         1.2 399         .18 074         43           18         .81 955         .87 579         .94 375         .05 625         .12 421         .18 060         43           20         .81 989         .87 568         .94 401         .05 599         .12 432         .18 031         41           20         .81 989         .87 546         .94 426         .0.05 574         .0.12 443         .0.18 017         40           21         .81 998         .87 546         .94 457         .05 523         .12 454         .18 002         39           22         .82 026         .87 524         .94 503         .05 472         .12 487         .17 974         37           24         .82 041         .87 513         .94 528         .05 472         .12 487         .17 954         36           25         .98 2055         .87 501         .94 579         .05 421         .12 502         .17 945         35           26         .82 089         .87 480         .94 579         .05 421         .12 510 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
16         .81 926         .87 601         .94 324         .05 676         .12 399         .18 074         44           17         .81 940         .87 590         .94 375         .05 625         .12 410         .18 604         42           19         .81 969         .87 568         .94 401         .05 599         .12 432         .18 045         42           20         .81 998         .87 566         .94 405         .05 597         .01 2432         .18 031         41           20         .81 998         .87 546         .94 452         .05 548         .12 454         .18 002         39           22         .82 012         .87 535         .94 477         .05 523         .12 465         .17 988         38           23         .82 026         .87 535         .94 570         .05 523         .12 487         .17 974         37           24         .82 041         .87 513         .94 528         .05 472         .12 487         .17 974         37           25         .82 256         .87 460         .94 579         .05 421         .12 510         .17 931         34           26         .82 088         .87 468         .94 630         .05 370         .12 532								
17       .81 940       .87 590       .94 375       .05 650       .12 410       .18 045       42         19       .81 969       .87 568       .94 401       .05 599       .12 432       .18 031       41         20       9.81 983       9.87 557       9.94 426       .05 574       0.12 443       0.18 017       40         21       .82 012       .87 535       .94 477       .05 523       .12 465       .17 988       38         23       .82 026       .87 524       .94 503       .05 472       .12 487       .17 959       36         24       .82 041       .87 513       .94 528       .05 472       .12 487       .17 959       36         25       .82 055       .87 501       .94 579       .05 421       .12 510       .17 931       34         27       .82 084       .87 490       .94 579       .05 421       .12 510       .17 931       34         28       .82 098       .87 468       .94 630       .05 370       .12 532       .17 902       32         29       .82 112       .87 446       .94 655       .05 345       .12 543       .17 888       31         30       .9.82 126       .9.87 446       .9.4 681 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
18       .81 969       .87 568       .94 401       .05 599       .12 432       .18 031       41         20       9.81 983       9.87 557       9.94 426       .0.05 597       .01 2 432       .18 031       41         21       .81 998       .87 546       .94 426       .0.05 548       .12 454       .18 002       39         22       .82 012       .87 535       .94 477       .05 523       .12 476       .17 974       37         24       .82 041       .87 513       .94 528       .05 497       .12 476       .17 974       37         25       9.82 055       9.87 501       9.94 554       .0.5 446       .0.12 499       .17 945       35         26       .82 069       .87 490       .94 579       .05 421       .12 510       .17 931       34         27       .82 084       .87 479       .94 604       .05 396       .12 521       .17 916       33         28       .82 112       .87 457       .94 655       .05 345       .12 543       .17 888       31         30       9.82 126       9.87 446       .94 681       .05 319       .12 554       .17 874       30         31       .82 169       .87 412       .94				04 250				
19								
20         9.81 983         9.87 557         9.94 426         0.05 574         0.12 443         0.18 017         40           21         .81 998         .87 546         .94 452         .05 548         .12 454         .18 002         39           22         .82 012         .87 535         .94 477         .05 523         .12 465         .17 978         38           23         .82 026         .87 524         .94 503         .05 497         .12 476         .17 974         37           24         .82 041         .87 513         .94 528         .05 472         .12 487         .17 959         36           26         .82 069         .87 490         .94 574         .05 346         .12 499         .17 916         33           27         .82 084         .87 479         .94 630         .05 370         .12 532         .17 902         32           29         .82 112         .87 457         .94 655         .05 345         .12 543         .17 874         30           30         .9.82 126         .9.87 446         .94 681         .0.5 319         .12 566         .17 874         30           31         .82 126         .87 423         .94 732         .05 268         .12 577 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
21         81 998         87 546         .94 452         .05 548         .12 454         .18 002         39           22         82 012         87 535         .94 477         .05 523         .12 465         .17 988         38           23         82 026         87 535         .94 503         .05 497         .12 476         .17 974         37           24         82 041         .87 513         .94 528         .05 472         .12 487         .17 959         36           25         9.82 055         9.87 501         .94 579         .05 421         .12 510         .17 931         34           26         8.2 084         .87 479         .94 604         .05 396         .12 521         .17 916         33           28         8.2 098         .87 468         .94 630         .05 370         .12 532         .17 902         32           29         .82 112         .87 447         .94 655         .05 345         .12 543         .17 888         31           30         .9.2 126         .87 442         .94 706         .05 294         .12 566         .17 874         30           31         .82 141         .87 432         .94 732         .05 268         .12 577         .		1			1			
22         .82 012         .87 535         .94 477.         .05 523         .12 465         .17 978         .37           24         .82 041         .87 513         .94 528         .05 472         .12 487         .17 979         .36           25         9.82 055         9.87 501         9.94 554         .0.05 446         0.12 499         .0.17 945         .35           26         .82 069         .87 499         .94 604         .05 396         .12 510         .17 931         .34           27         .82 084         .87 479         .94 604         .05 396         .12 521         .17 916         .33           28         .82 098         .87 468         .94 630         .05 370         .12 532         .17 991         .34           30         .82 126         .87 446         .94 681         .05 319         .0.12 554         .0.17 874         .30           31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 879         .28           33         .82 155         .87 423         .94 757         .05 243         .12 589         .17 816         .28           34         .82 184         .87 401         .94 783         .05 217								
24         .82 041         .87 513         .94 528         .05 472         .12 487         .17 959         36           25         9.82 055         9.87 501         .94 579         .05 421         .12 510         .17 945         35           26         82 069         .87 490         .94 579         .05 421         .12 510         .17 916         33           27         .82 084         .87 479         .94 604         .05 396         .12 521         .17 916         33           28         .82 098         .87 468         .94 630         .05 345         .12 532         .17 902         32           29         .82 112         .87 446         .94 681         .05 319         .12 553         .17 874         30           31         .82 126         .9.87 446         .94 681         .05 319         .12 566         .17 874         30           31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 845         28           33         .82 155         .87 432         .94 732         .05 268         .12 577         .17 845         28           33         .82 169         .87 312         .94 733         .05 217         .12 599	22		.87 535	.94 477		$.12\ 465$	.17 988	38
25         9.82 055         9.87 501         9.94 554         0.05 446         0.12 499         0.17 945         35           26         .82 069         .87 490         .94 579         .05 421         .12 510         .17 931         34           27         .82 084         .87 479         .94 604         .05 396         .12 532         .17 902         32           28         .82 098         .87 468         .94 630         .05 370         .12 532         .17 902         32           29         .82 112         .87 457         .94 655         .05 345         .12 543         .17 888         31           30         .9.82 126         .9.87 446         .94 681         .0.05 319         0.12 554         0.17 874         30           31         .82 181         .87 432         .94 732         .05 268         .12 577         .17 845         28           32         .82 169         .87 412         .94 757         .05 243         .12 589         .17 816         26           35         .9.82 198         .9.87 390         .94 808         .0.5 192         .01 2610         0.17 802         25           36         .82 212         .87 367         .94 834         .05 166         .		.82 026						
26         .82 069         .87 490								
27         .82 084         .87 479         .94 604         .05 396         .12 521         .17 916         33           28         .82 098         .87 468         .94 630         .05 370         .12 532         .17 902         32           29         .82 112         .87 457         .94 655         .05 345         .12 543         .17 888         31           30         .9.82 126         .9.87 446         .9.94 681         .0.05 319         .0.12 554         .0.17 874         30           31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 859         29           32         .82 169         .87 412         .94 737         .05 243         .12 588         .17 831         27           34         .82 184         .87 401         .94 783         .05 217         .12 599         .17 816         26           35         .9.82 198         .9.87 390         .94 808         .0.5 192         .0.12 610         .0.17 802         25           36         .82 212         .87 367         .94 859         .05 141         .12 633         .17 774         23           38         .82 246         .87 366         .94 854         .05 166								
28         .82 098         .87 468         .94 630         .05 370         .12 532         .17 902         32           29         .82 112         .87 457         .94 655         .05 345         .12 543         .17 888         31           30         .9.82 126         9.87 446         .94 681         .0.5 319         0.12 554         0.17 874         30           31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 859         29           32         .82 169         .87 412         .94 757         .05 243         .12 586         .17 831         27           34         .82 184         .87 401         .94 783         .05 217         .12 599         .17 816         26           35         .82 198         .87 390         .94 808         .0.5 166         .12 620         .17 788         24           36         .82 212         .87 367         .94 859         .05 141         .12 633         .17 774         23           38         .82 240         .87 356         .94 884         .05 166         .12 644         .17 760         22           39         .82 255         .87 345         .94 910         .05 090         .12 655						.12 510	.17 931	
29         .82 112         .87 457         .94 655         .05 345         .12 543         .17 888         31           30         9.82 126         9.87 446         9.94 681         0.05 319         0.12 554         0.17 874         30           31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 859         29           32         .82 169         .87 412         .94 757         .05 243         .12 588         .17 831         27           34         .82 184         .87 401         .94 783         .05 217         .12 599         .17 816         26           35         .92 198         .98 7 390         .94 808         .05 192         0.12 610         0.17 802         25           36         .82 212         .87 378         .94 834         .05 166         .12 622         .17 788         24           37         .82 226         .87 356         .94 839         .05 141         .12 633         .17 774         23           38         .82 240         .87 356         .94 884         .05 166         .12 642         .17 774         23           40         .98 2 269         .9.87 334         .94 910         .05 090         .12 655<								
30         9.82 126         9.87 446         9.94 681         0.05 319         0.12 554         0.17 874         30           31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 859         29           32         .82 155         .87 422         .94 732         .05 268         .12 577         .17 845         28           33         .82 169         .87 412         .94 757         .05 243         .12 588         .17 831         27           34         .82 184         .87 401         .94 783         .05 217         .12 599         .17 816         26           35         .982 198         .987 390         .94 808         .05 192         .012 610         0.17 802         25           36         .82 212         .87 367         .94 859         .05 166         .12 622         .17 782         25           37         .82 226         .87 367         .94 854         .05 166         .12 634         .17 774         23           38         .82 240         .87 356         .94 884         .05 116         .12 644         .17 760         22           40         .9.82 269         .987 334         .9.94 935         .0.5 065         0.12 6								
31         .82 141         .87 434         .94 706         .05 294         .12 566         .17 859         29           32         .82 155         .87 423         .94 732         .05 268         .12 577         .17 845         28           33         .82 169         .87 412         .94 757         .05 243         .12 588         .17 831         27           34         .82 184         .87 401         .94 783         .05 217         .12 599         .17 816         26           35         .982 198         .9.87 390         .94 808         .0.5 192         .012 610         .0.17 802         25           36         .82 212         .87 378         .94 834         .05 166         .12 622         .17 774         23           37         .82 226         .87 367         .94 859         .05 141         .12 633         .17 774         23           38         .82 240         .87 356         .94 884         .05 116         .12 644         .17 760         22           39         .82 255         .87 345         .94 910         .05 090         .12 656         0.17 731         20           41         .82 283         .87 322         .94 961         .05 039         .12 666								
32         .82 155         .87 423         .94 732         .05 268         .12 577         .17 845         28           33         .82 169         .87 412         .94 757         .05 243         .12 588         .17 831         27           34         .82 184         .87 401         .94 783         .05 217         .12 599         .17 816         26           35         .98 198         .9.87 390         .94 808         .0.5 192         .012 610         0.17 802         25           36         .82 212         .87 378         .94 834         .05 166         .12 622         .17 788         24           37         .82 226         .87 356         .94 884         .05 161         .12 633         .17 774         23           38         .82 240         .87 356         .94 884         .05 161         .12 633         .17 776         22           39         .82 255         .87 345         .94 910         .05 090         .12 655         .17 745         21           40         .82 289         .98 734         .94 940         .05 065         0.12 666         0.17 731         20           41         .82 283         .87 322         .94 961         .05 039         .12 666								
33         .82 169         .87 412         .94 757         .05 243         .12 588         .17 831         27           34         .82 184         .87 401         .94 783         '05 217         .12 599         .17 816         26           35         .982 198         .98 7 390         .94 808         .05 192         0.12 610         0.17 802         25           36         .82 212         .87 378         .94 834         .05 166         .12 622         .17 788         24           37         .82 226         .87 367         .94 859         .05 141         .12 633         .17 774         23           38         .82 240         .87 356         .94 884         .05 116         .12 643         .17 745         21           40         .9.82 269         9.87 334         .94 910         .05 090         .12 655         .17 745         21           41         .82 283         .87 322         .94 961         .05 039         .12 666         0.17 731         20           42         .82 287         .87 311         .94 986         .05 014         .12 689         .17 707         18           43         .82 311         .87 300         .95 012         .04 988         .12 700								
35         9.82 198         9.87 390         9.94 808         0.05 192         0.12 610         0.17 802         25           36         82 212         .87 378         .94 834         .05 166         .12 622         .17 788         24           37         .82 226         .87 367         .94 859         .05 141         .12 634         .17 774         23           38         .82 240         .87 356         .94 884         .05 116         .12 644         .17 760         22           39         .82 255         .87 345         .94 910         .05 090         .12 655         .17 745         21           40         .982 269         .98 334         .94 935         .05 065         0.12 666         0.17 731         20           41         .82 283         .87 322         .94 961         .05 039         .12 689         .17 703         18           42         .82 287         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 723								
36         .82 212         .87 378         .94 834         .05 166         .12 622         .17 788         24           37         .82 226         .87 367         .94 859         .05 141         .12 633         .17 774         23           38         .82 240         .87 356         .94 884         .05 166         .12 645         .17 745         22           39         .82 255         .87 345         .94 910         .05 090         .12 655         .17 745         21           40         9.82 269         9.87 334         9.94 935         0.05 065         0.12 666         0.17 731         20           41         .82 283         .87 322         .94 961         .05 039         .12 678         .17 717         19           42         .82 297         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 712         .17 674         16           45         .98.2 340         9.87 277         .9.5 062         .0.4 938         0.12 723 <td>34</td> <td>.82 184</td> <td>.87 401</td> <td>.94 783</td> <td>'05 217</td> <td>.12 599</td> <td></td> <td>-</td>	34	.82 184	.87 401	.94 783	'05 217	.12 599		-
37         .82         .26         .87         367         .94         859         .05         141         .12         633         .17         774         23           38         .82         240         .87         366         .94         884         .05         116         .12         644         .17         760         22           39         .82         255         .87         345         .94         910         .05         090         .12         665         .17         745         21           40         9.82         269         9.87         334         9.94         35         0.05         065         0.12         666         0.17         731         20           41         .82         283         .87         322         .94         961         .05         039         .12         678         .17         717         19           42         .82         297         .87         311         .94         986         .05         014         .12         668         .17         717         19           43         .82         324         .98         288         .95         037         .04 <td></td> <td>9.82 198</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		9.82 198						
38         .82 240         .87 356         .94 884         .05 116         .12 644         .17 760         22           39         .82 255         .87 345         .94 910         .05 090         .12 655         .17 745         21           40         9.82 269         9.87 334         9.94 935         0.05 065         0.12 666         0.17 731         20           41         .82 283         .87 322         .94 961         .05 039         .12 678         .17 717         19           42         .82 297         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 700         .17 689         17           45         .9.82 340         .9.87 277         .9.95 062         .0.04 938         .0.12 723         .0.17 660         15           46         .82 354         .87 266         .95 088         .04 912         .12 734         .17 632         13           49         .82 382         .87 243         .95 139         .04 861         .12								
39         .82 255         .87 345         .94 910         .05 090         .12 655         .17 745         21           40         9.82 269         9.87 334         9.94 935         0.05 065         0.12 666         0.17 731         20           41         .82 283         .87 322         .94 961         .05 039         .12 678         .17 717         19           42         .82 297         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 712         .17 674         16           45         .98.2 340         .9.87 277         .9.5 062         .0.4 938         0.12 723         0.17 660         15           46         .82 354         .87 266         .95 088         .04 912         .12 734         .17 646         14           47         .82 368         .87 255         .95 113         .04 887         .12 745         .17 618         12           49         .82 382         .87 232         .95 164         .04 836         .12 768<								
40         9.82 269         9.87 334         9.94 935         0.05 065         0.12 666         0.17 731         20           41         82 283         87 322         94 961         .05 039         .12 678         .17 717         19           42         .82 297         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 712         .17 674         16           45         9.82 340         9.87 277         9.95 062         0.04 938         0.12 723         0.17 660         15           46         .82 354         .87 266         .95 088         .04 912         .12 734         .17 646         14           47         .82 368         .87 255         .95 113         .04 887         .12 745         .17 646         14           48         82 382         .87 232         .95 164         .04 836         .12 767         .17 618         12           49         .82 496         .87 232         .95 190         .04 836         .12 779								
41         .82 283         .87 322         .94 961         .05 039         .12 678         .17 717         19           42         .82 297         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 712         .17 674         16           45         .9.82 340         .98 277         .9.5 062         0.04 938         .012 723         0.17 660         15           46         .82 354         .87 266         .95 088         .04 912         .12 734         .17 646         14           47         .82 388         .87 255         .95 113         .04 887         .12 745         .17 632         13           48         .82 382         .87 243         .95 139         .04 861         .12 757         .17 618         12           49         .82 396         .87 232         .95 164         .04 836         .12 779         .0.17 590         10           51         .82 424         .87 209         .95 215         .04 785         .12 791								
42         .82 297         .87 311         .94 986         .05 014         .12 689         .17 703         18           43         .82 311         .87 300         .95 012         .04 988         .12 700         .17 689         17           44         .82 326         .87 288         .95 037         .04 963         .12 712         .17 674         16           45         .9.82 340         9.87 277         9.95 062         0.04 938         0.12 723         0.17 660         15           46         .82 354         .87 266         .95 088         .04 912         .12 734         .17 646         14           47         .82 368         .87 255         .95 113         .04 887         .12 745         .17 632         13           48         .82 382         .87 243         .95 139         .04 861         .12 757         .17 618         12           49         .82 396         .87 232         .95 164         .04 836         .12 768         .17 604         11           50         9.82 410         9.87 221         9.95 190         0.04 810         0.12 779         0.17 590         10           51         .82 424         .87 209         .95 215         .04 785         .12 791 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
43         .82         311         .87         300         .95         012         .04         988         .12         700         .17         689         17           44         .82         326         .87         288         .95         037         .04         963         .12         712         .17         674         16           45         9.82         340         9.87         277         9.95         062         0.04         938         0.12         723         0.17         660         15           46         .82         354         .87         266         .95         088         .04         912         .12         33         0.17         660         14           47         .82         368         .87         255         .95         113         .04         887         .12         745         .17         632         13           48         .82         382         .87         243         .95         139         .04         861         .12         755         .17         641         11           50         9.82         410         9.87         221         9.95         190         0.								
44         .82         326         .87         288         .95         037         .04         963         .12         712         .17         674         16           45         9.82         340         9.87         277         9.95         062         0.04         938         0.12         723         0.17         660         15           46         .82         354         .87         266         .95         088         .04         912         .12         734         .17         646         14           47         .82         368         .87         255         .95         113         .04         887         .12         745         .17         646         14           48         82         382         .87         243         .95         139         .04         861         .12         757         .17         618         12           49         .82         396         .87         232         .95         160         .04         836         12         757         .17         618         12           50         .82         410         9.87         221         .95         109         .04 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
45         9.82 340         9.87 277         9.95 062         0.04 938         0.12 723         0.17 660         15           46         82 354         .87 266         .95 088         .04 912         .12 734         .17 660         14           47         .82 368         .87 255         .95 113         .04 887         .12 745         .17 632         13           48         .82 382         .87 243         .95 139         .04 861         .12 757         .17 618         12           49         .82 396         .87 232         .95 164         .04 836         .12 768         .17 604         11           50         9.82 410         9.87 221         9.95 190         0.04 810         0.12 779         0.17 590         10           51         .82 424         .87 209         .95 215         .04 785         12 791         .17 576         9           52         .82 439         .87 188         .95 240         .04 760         .12 802         .17 561         8           53         .82 457         .87 175         .95 291         .04 709         .12 825         .17 561         8           54         .82 467         .87 175         .95 291         .04 709         .12 825							.17 674	16
46         .82 354         .87 266         .95 088         .04 912         .12 734         .17 646         14           47         .82 368         .87 255         .95 113         .04 887         .12 745         .17 632         13           48         .82 382         .87 243         .95 139         .04 861         .12 757         .17 618         12           49         .82 396         .87 232         .95 164         .04 836         .12 768         .17 604         11           50         9.82 410         9.87 221         9.95 190         0.04 810         0.12 779         0.17 590         10           51         .82 424         .87 209         .95 215         .04 785         .12 791         .17 576         9           52         .82 439         .87 198         .95 240         .04 760         .12 802         .17 561         8           53         .82 453         .87 187         .95 266         .04 734         .12 813         .17 547         7           54         .82 467         .87 175         .95 291         .04 709         .12 825         .17 533         6           55         9.82 481         9.87 164         .95 317         .04 683         .12 847	45		9.87 277	9.95 062				
48         82         382         .87         243         .95         139         .04         861         .12         757         .17         618         12           49         82         396         .87         232         .95         164         .04         836         .12         768         .17         604         11           50         9.82         410         9.87         221         9.95         190         0.04         810         0.12         779         0.17         590         10           51         .82         424         .87         209         .95         215         .04         785         .12         791         .17         576         9           52         .82         439         .87         198         .95         240         .04         760         .12         802         .17         561         8           53         .82         453         .87         187         .95         291         .04         760         .12         825         .17         547         7           54         .82         467         .87         175         .95         291         .04	46		.87 266					
49.         .82 396         .87 232         .95 164         .04 836         .12 768         .17 604         11           50         9.82 410         9.87 221         9.95 190         0.04 810         0.12 779         0.17 590         10           51         .82 424         87 209         .95 215         .04 785         .12 791         .17 576         9           52         .82 439         .87 198         .95 240         .04 760         .12 802         .17 561         8           53         .82 453         .87 187         .95 266         .04 734         .12 813         .17 547         7           54         .82 467         .87 175         .95 291         .04 709         .12 825         .17 533         6           55         9.82 481         9.87 164         9.95 317         .04 683         0.12 836         0.17 519         5           56         .82 495         .87 153         .95 342         .04 658         .12 847         .17 505         4           57         .82 509         .87 141         .95 368         .04 632         .12 859         .17 491         3           58         .82 523         .87 130         .95 418         .04 582         .12 881								
50         9.82 410         9.87 221         9.95 190         0.04 810         0.12 779         0.17 590         10           51         82 424         87 209         .95 215         .04 785         .12 791         .17 576         9           52         .82 439         .87 198         .95 240         .04 760         .12 802         .17 561         8           53         .82 453         .87 187         .95 266         .04 734         .12 813         .17 547         7           54         .82 467         .87 175         .95 291         .04 709         .12 825         .17 533         6           55         9.82 481         9.87 164         9.95 317         0.04 683         0.12 836         0.17 519         5           56         .82 495         .87 153         .95 342         .04 658         .12 847         .17 505         4           57         .82 509         .87 141         .95 368         .04 632         .12 859         .17 491         3           58         .82 523         .87 130         .95 393         .04 607         .12 870         .17 477         2           59         .82 537         .87 119         .95 444         0.04 556         0.12 893								
51         .82 424         .87 209         .95 215         .04 785         .12 791         .17 576         9           52         .82 439         .87 198         .95 240         .04 760         .12 802         .17 561         8           53         .82 453         .87 187         .95 266         .04 734         .12 813         .17 547         7           54         .82 467         .87 175         .95 291         .04 709         .12 825         .17 533         6           55         9.82 481         9.87 164         9.95 317         0.04 683         0.12 836         0.17 519         5           56         .82 495         .87 153         .95 342         .04 658         .12 847         .17 505         4           57         .82 509         .87 141         .95 368         .04 632         .12 859         .17 491         3           58         .82 523         .87 130         .95 393         .04 607         .12 870         .17 477         2           59         .82 537         .87 119         .95 418         .04 582         .12 881         .17 463         1           60         .9.82 551         9.87 107         9.95 444         0.04 556         0.12 893								
52     .82 439     .87 198     .95 240     .04 760     .12 802     .17 561     8       53     .82 453     .87 187     .95 266     .04 734     .12 813     .17 547     7       54     .82 467     .87 175     .95 291     .04 709     .12 825     .17 533     6       55     9.82 481     9.87 164     9.95 317     0.04 683     0.12 836     0.17 519     5       56     .82 495     .87 153     .95 342     .04 658     .12 847     .17 505     4       57     .82 509     .87 141     .95 368     .04 632     .12 859     .17 491     3       58     .82 523     .87 130     .95 393     .04 607     .12 870     .17 477     2       59     .82 537     .87 119     .95 418     .04 582     .12 881     .17 463     1       60     .9.82 551     9.87 107     9.95 444     0.04 556     0.12 893     0.17 449     0						19 701		
53         .82 453         .87 187         .95 266         .04 734         .12 813         .17 547         7           54         .82 467         .87 175         .95 291         .04 709         .12 825         .17 533         6           55         9.82 481         9.87 164         9.95 317         0.04 683         0.12 836         0.17 519         5           56         .82 495         .87 153         .95 342         .04 658         .12 847         .17 505         4           57         .82 509         .87 141         .95 368         .04 632         .12 859         .17 491         3           58         .82 523         .87 130         .95 393         .04 607         .12 870         .17 477         2           59         .82 537         .87 119         .95 418         .04 582         .12 881         .17 463         1           60         .9.82 551         9.87 107         9.95 444         0.04 556         0.12 893         0.17 449         0						12 802		
54       .82 467       .87 175       .95 291       .04 709       .12 825       .17 533       6         55       9.82 481       9.87 164       9.95 317       0.04 683       0.12 836       0.17 519       5         56       .82 495       .87 153       .95 342       .04 658       .12 847       .17 505       4         57       .82 509       .87 141       .95 368       .04 632       .12 859       .17 491       3         58       .82 523       .87 130       .95 393       .04 607       .12 870       .17 477       2         59       .82 537       .87 119       .95 418       .04 582       .12 881       .17 463       1         60       .9.82 551       9.87 107       9.95 444       0.04 556       0.12 893       0.17 449       0								7
55         9.82 481         9.87 164         9.95 317         0.04 683         0.12 836         0.17 519         5           56         .82 495         .87 153         .95 342         .04 658         .12 847         .17 505         4           57         .82 509         .87 141         .95 368         .04 632         .12 859         .17 491         3           58         .82 523         .87 130         .95 393         .04 607         .12 870         .17 477         2           59         .82 537         .87 119         .95 418         .04 582         .12 881         .17 463         1           60         .9.82 551         9.87 107         9.95 444         0.04 556         0.12 893         0.17 449         0								
56         .82 495         .87 153         .95 342         .04 658         .12 847         .17 505         4           57         .82 509         .87 141         .95 368         .04 632         .12 859         .17 491         3           58         .82 523         .87 130         .95 393         .04 607         .12 870         .17 477         2           59         .82 537         .87 119         .95 418         .04 582         .12 881         .17 463         1           60         .9.82 551         9.87 107         9.95 444         0.04 556         0.12 893         0.17 449         0		(		1				
57     .82 509     .87 141     .95 368     .04 632     .12 859     .17 491     3       58     .82 523     .87 130     .95 393     .04 607     .12 870     .17 477     2       59     .82 537     .87 119     .95 418     .04 582     .12 881     .17 463     1 <b>60</b> .9.82 551     9.87 107     9.95 444     0.04 556     0.12 893     0.17 449 <b>0</b>								4
58     .82 523     .87 130     .95 393     .04 607     .12 870     .17 477     2       59     .82 537     .87 119     .95 418     .04 582     .12 881     .17 463     1 <b>60</b> .9.82 551     9.87 107     9.95 444     0.04 556     0.12 893     0.17 449     0						.12 859	.17 491	3
59     .82 537     .87 119     .95 418     .04 582     .12 881     .17 463     1       60     .9.82 551     9.87 107     9.95 444     0.04 556     0.12 893     0.17 449     0				.95 393	.04 607	.12 870		
00 1.5.82 001 5.01 101 5.00 111			.87 119					
Cos Sin Cot Tan Csc Sec	<b>5</b> 0	. 9.82 551	9.87 107	9.95 444	0.04 556	0.12 893	0.17 449	0
		Cos	Sin	Cot	Tan	Csc	Sec	

42° (222°) (317°) 137° Sin Sec Cos Tan Cot Csc 9.95 444 0.04 556 0.128930 9.825519.87 107 0.1744960 .95 469 .12 904 .82565.87 096 .045311 .1743559  $\bar{2}$ .82 579 .95 495 .17 421 .87 085 .04505.12 915 58  $\bar{3}$ .82593.87 073 .12927.17 407  $.95\ 520$ .04 480 57 4 .87062.12 938  $.82\ 607$ .95 545  $.04\ 455$  $.17\ 393$ 56 Б 9.82 621 9.87 050 9.95 571 0.044290.12 950 0.1737955 67 .87 039 .12 961 .17 365 .82635.95596.0440454 .82 649 .87028.95622.04 378 .12 972 .17 351 53 89 .17 337 .82 663 .87 016 .95 647 .04353.1298452 .95672.04 328 .12995.17 323 .82677.87 005 51 10 0.04 302 0.13 007 9.82 691 9.869939.95 698 0.17 309 50 .17 295 .17 281 .82 705 .86 982 .95 723 .04 277 .13 018 11 49 .82 719 12 .86970.95 748 .04252.13 030 48 .04 226 .17 267 13 .82733.86 959 .95 774 47 .13041.82 747 .95 799 .04 201 .17 253 14 .86947.1305346 15 9.82 761 9.86 936 9.95 825 0.04 175 0.130640.1723945 16 .82 775 .86 924 .95 850 .04 150 .13076.17 225 44 17 .82.788.86 913 .95 875 .04 125 .13 087 .17 212 43 .04 099 .17 198 18 .82 802.86902.95 901 .1309842 19 .82 816 .86 890 .95 926 .13 110 .04 074 .17 184 41 20 9.82 830 9.86 879 9.95 952 0.13 121 0.17 170 0.04 048 40 21 .82 844 .86 867 .95 977 .04 023 .13 133 .17 156 39  $\frac{1}{2}$ .82 858 .86 855 .17 142 .96002.03998.13 145 38 .82 872 .86 844 .96 028 .13 156 .17 128 .0397237  24 .82 885 .86 832 .96 053 .03 947 .13 168 .17 115 36 25 9.82 899 9.86 821 9.96 078 0.03 922 0.13 179 0.17 101 .17 087 35 .13 191 26 .82913.86 809 .96104.0389634  $\overline{27}$ .82 927 .86 798  $.13\ 20\overline{2}$ .96129.03 871 .17 073 33 28 .82 941 .96 155 .13 214 .17 059 .86 786 .03 845 3229 .82 955 .13 225 .17 045 .86 775 .96 180 .03 820 31 0.13 237 .13 248 30 9.82 968 9.86 763 9.96 205 0.03 795 .03 769 0.1703230 .96 231 31 .82 982 .86752.17 018 29  $\bar{32}$ .82 996 .96 256 .13 260 .86 740 .03744 .03719.17 004 28  $.13\ 272$ 33 .83 010 .86 728 .96 281 .16 990 27 .83 023 .86 717 .96 307 .13 283 34 .03 693 .1697726 35 9.83 037 9.86 705 9.96 332 0.03 668 0.13 295 .13 306 0.16 963 25 .96 357 .16 949 36 .83051.86 694 .03 643 24 .13 318 .13 330 .96 383 37 .83 065 .86 682 .03 617 .16 935 23 38 .83 078 03592 03567.16 922 .86 670 .96 408 22 39 .13 341 .83092.86 659 .96433.16 908 21 40 9.83 106 9.86 647 9.96 459 0.035410.13 353 0.16 894 20 41 .83 120 .86 635 .96 484 .03 516 .13 365 .16 880 19 42 .83 133 .86624.03 490 .13 376 .16 867 .96 510 18 43  $.83\ 147$  $.86 \ 612$ .96 535 .03465.13388.16 853 17 44 .83 161 .96 560 .13 400 .86 600 .03 440 .16 839 16 45 9.83 174 9.86 589 9.96 586 0.03 414 0.13 411 0.1682615 46 .83 188 .86 577 .96 611 .03 389 .13 423 .16 812 14 47 .83 202.86 565 .96 636 .03 364 .13435.16 798 13 .83 215 .83 229 .03 338 .03 313 48 .86554.96 662 .13 446 .16 785 12 49 .86542.96 687 11 .13458.167710.0328850 9.83 242 9.86 530 9.96712 0.13 470 10 0.16 758 51 .83 256 .03 262 .13 482  $.86\,518$ .96 738 .16744 9 52 .83 270 .86 507 .96 763 .03237.13 493 .1673053 .83 283 .86 495 .96 788 .03212.13505.16 717 54 .83 297 .86 483 .96 814 .03 186 .13517.16 703 6 55 9.83 310 9.86 472 9.96 839 0.03 161 0.135280.16 690 56  $.83\ 324$ .86 460 .96 864 .03 136 .13540.16 676 4. 57 .83 338 .86 448 .96 890  $.03\ 110$ .13552.16 662 3 58 .83 351 .86 436 .96 915 .03 085 .13564.1664959 .83 365 .86425.96 940 .03 060 .135751 .1663560 9.83 378 9.86 413 9.96 966 0.03 034 0.13 587 0.166220

132° (312°)

Cos

Sin

Cot

Tan

Csc

Sec

43° (223°)

(316°) **136**°

43° (223	,				(316°)	100	
,	Sin	Cos	Tan	Cot	Sec	Csc	
.0	9.83 378	9.86 413	9.96 966	0.03 034	0.13 587	0.16 622	60
1	.83 392 .83 405	.86 401	.96 991	.03 009	.13 599	.16 608	59
$\frac{2}{3}$	.83 419	.86 389 .86 377	.97 016 .97 042	.02 984 . .02 958	$.13\ 611$ $.13\ 623$	.16 595 .16 581	58 57
4	.83 432	.86 366	.97 042	.02 933	.13 634	.16 568	56
5	9.83 446	9.86 354	9.97 092	0.02 908	0.13 646	0.16 554	55
6	.83 459	.86 342	.97 118	.02 882	.13 658	.16 541	54
ž	.83 473	.86 330	.97 143	.02 857	.13 670	.16 527	53
8	.83 486	.86 318	.97 168	.02 832	.13 682	.16 514	52
9	.83 500	.86 306	.97 193	.02 807	.13 694	.16 500	51
10	9.83 513	9.86 295	9.97 219	0.02 781	0.13 705	0.16 487	50
11	.83 527	.86 283	.97 244	.02 756	.13 717	.16 473	49
12	.83 540	.86 271	.97 269	.02 731	.13 729	.16 460	48
13 14	.83 554 .83 567	$.86259 \\ .86247$	.97 295 .97 320	.02 705	.13 741 .13 753	.16 446	47 46
	9.83 581			.02 680		.16 433	45
<b>15</b> 16	.83 594	9.86 235 .86 223	9.97 345 .97 371	$0.02\ 655\ .02\ 629$	0.13 765 .13 777	0.16 419	40
17	.83 608	.86 211	.97 396	.02 604	.13 789	.16 392	43
18	.83 621	.86 200	.97 421	.02 579	.13 800	.16 379	42
19	.83 634	.86 188	.97 447	.02 553	.13 812	.16 366	$\hat{41}$
20	9.83 648	9.86 176	9.97 472	0.02 528	0.13 824	0.16 352	40
$\overline{21}$	.83 661	.86 164	.97 497	.02 503	.13 836	.16 339	39
22	.83 674	.86 152	.97 523	$.02\ 477$	.13 848	.16 326	38
23	.83 688	.86 140	.97 548	.02 452	.13 860	.16 312	37
24	.83 701	.86 128	.97 573	.02 427	.13 872	.16 299	36
<b>25</b>	9.83 715	9.86 116	9.97 598	0.02 402	0.13 884	$0.16\ 285 \\ .16\ 272$	<b>35</b> 34
$\frac{26}{27}$	.83 728 .83 741	.86 104 .86 092	.97 624 .97 649	$.02\ 376$ $.02\ 351$	.13 896 .13 908	.16 272	33
28	.83 755	.86 080	.97 674	.02 326	.13 920	.16 245	32
29	.83 768	.86 068	.97 700	.02 300	.13 932	.16 232	31
30	9.83 781	9.86 056	9.97 725	0.02 275	0.13 944	0.16 219	30
31	.83 795	.86 044	.97 750	.02 250	.13 956	.16 205	29
32	.83 808	.86 032	.97 776	.02 224	.13 968	.16 192	28
33	.83 821	.86 020	.97 801	.02 199	.13 980	.16 179	27
34	.83 834	.86 008	.97 826	.02 174	.13 992	.16 166	26
35	9.83 848	9.85 996	9.97 851	0.02 149	0.14 004	0.16 152	25
36	.83 861	.85 984	.97 877	.02 123	.14 016 .14 028	.16 139 .16 126	$\frac{24}{23}$
37 38	.83 874 .83 887	.85 972 .85 960	.97 902 .97 927	.02 098	.14 040	.16 113	$\frac{23}{22}$ .
39	.83 901	.85 948	.97 953	.02 047	.14 052	.16 099	21
40	9.83 914	9.85 936	9.97 978	0.02 022	0.14 064	0.16 086	20
41	.83 927	.85 924	.98 003	.01 997	.14 076	.16 073	19
<b>42</b>	.83 940	.85 912	.98 029	.01 971	.14 088	.16 060	18
43	.83 954	.85 900	.98 054	.01 946	.14 100	.16 046	17
44	.83 967	.85 888	.98 079	.01 921	.14 112	.16 033	16
45	9.83 980	9.85 876	9.98 104	0.01 896	0.14 124	0.16 020	15
46	.83 993	.85 864	.98 130	.01 870	.14 136	.16 007	14 13
47	.84 006 .84 020	.85 851 .85 839	.98 155 .98 180	.01 845	.14 149 .14 161	.15 994	12
48 49	.84 020	.85 827	.98 206	.01 794	.14 173	.15 967	11
50	9.84 046	9.85 815	9.98 231	0.01 769	0.14 185	0.15 954	10
50 51	.84 059	.85 803	.98 256	.01 744	.14 197	.15 941	9
52	.84 072	.85 791	.98 281	.01 719	.14 209	.15 928	8
53	.84 085	.85 779	.98 307	.01 693	.14 221	.15 915	7
54	.84 098	.85 766	.98 332	.01 668	.14 234	.15 902	6
<b>5</b> 5	9.84 112	9.85 754	9.98 357	0.01 643	0.14 246	0.15 888	5
56	.84 125	.85 742	.98 383	.01 617	.14 258	.15 875	4
57	.84 138	.85 730	.98 408	.01 592	.14 270	.15 862	3 2
58	.84 151	.85 718	.98 433	.01 567	.14 282	.15 849 .15 836	1
59	.84 164	.85 706			0.14 307	0.15 823	Ô
60	9.84 177	9.85 693	9.98 484	0.01 516			<del></del>
	Cos	Sin	Cot	Tan	Cse	Sec	<u>'                                     </u>

44° (224°)

(315°) **135**°

44 (44		Cos	Ton	Cot	Sec	(313 ) 135	
l	Sin		Tan				- 50
0	9.84 177	9.85 693 .85 681	9.98 484	0.01 516 .01 491	0.14 307	0.15 823	<b>50</b>
1 5	.84 203	.85 669	.98 534	.01 466	.14 331	.15 797	58
2 3	.84 216	.85 657	.98 560	.01 440	.14 343	.15 784	57
4	.84 229	.85 645	.98 585	.01 415	.14 355	.15 771	56
5	9.84 242	9.85 632	9.98 610	0.01 390	0.14 368	0.15 758	55
l 6	.84 255	.85 620	.98 635	.01 365	.14 380	.15 745	54
6 7	.84 269	.85 608	.98 661	.01 339	.14 392	.15 731	53
8	.84 282	.85 596	.98 686	.01 314	.14 404	.15 718	52
9	.84 295	.85 583	.98 711	.01 289	.14 417	.15 705	51
10	9.84 308	9.85 571	9.98 737	0.01 263	0.14 429	0.15692	50
11	.84 321	.85 559	.98 762	.01 238	.14 441	.15 679	49
12	.84 334	.85 547	.98 787	.01 213	.14 453	.15 666	48
13 14	.84 347	.85 534	.98 812	.01 188	.14 466 .14 478	.15 653 .15 640	47 46
15	.84 360 9.84 373	.85 522	.98 838	.01 162	0.14 490		45
16	.84 385	9.85 510 .85 497	9.98 863 .98 888	0.01 137 .01 112	.14 503	0.15 627	44
17	.84 398	.85 485	.98 913	.01 087	.14 515	.15 602	43
18	.84 411	.85 473	.98 939	.01 061	.14 527	.15 589	42
19	.84 424	.85 460	.98 964	.01 036	.14 540	.15 576	41
20	9.84 437	9.85 448	9.98 989	0.01 011	0.14 552	0.15 563	40
21	.84 450	.85 436	.99 015	.00 985	.14 564	.15 550	39
22	.84 463	.85 423	.99 040	.00 960	.14 577	.15 537	38
23	.84 476	.85 411	.99 065	.00 935	.14 589	.15 524	37
24	.84 489	.85 399	.99 090	.00 910	.14 601	.15 511	36
25	9.84 502	9.85 386	9.99 116	0.00 884	0.14 614	0.15 498	35
$\frac{26}{27}$	.84 515 .84 528	.85 374	.99 141 .99 166	.00 859 .00 834	.14 626 .14 639	.15 485 .15 472	34 33
$\frac{27}{28}$	.84 540	.85 361 .85 349	.99 100	.00 809	.14 651	.15 460	32
$\overline{29}$	.84 553	.85 337	.99 217	.00 783	.14 663	.15 447	31
30	9.84 566	9.85 324	9.99 242	0.00 758	0.14 676	0.15 434	30
31	.84 579	.85 312	.99 267	.00 733	.14 688	.15 421	29
32	$.84\ 592$	.85 299	.99 293	.00 707	.14 701	.15 408	28
33	.84 605	.85 287	.99 318	.00 682	.14 713	.15 395	27
34	.84 618	.85 274	.99 343	.00 657	.14 726	.15 382	26
35 36	9.84 630	9.85 262	9.99 368	0.00 632	0.14 738 .14 750	0.15 370	<b>25</b> 24
37	.84 643 .84 656	.85 250 .85 237	.99 394 .99 419	.00 606 .00 581	.14 763	.15 357 .15 344	$\frac{24}{23}$
38	.84 669	.85 225	.99 444	.00 556	.14 775	.15 331	$\tilde{2}$
39	.84 682	.85 212	.99 469	.00 531	.14 788	.15 318	$\frac{21}{21}$
40	9.84 694	9.85 200	9.99 495	0.00 505	0.14 800	0.15 306	20
41	.84 707	.85 187	.99 520	.00 480	.14 813	.15 293	19
42	.84 720	.85 175	.99 545	.00 455	.14 825	.15 280	18
43	.84 733	.85 162	.99 570	.00 430	.14 838	.15 267	17
44	.84 745	.85 150	.99 596	.00 404	.14 850	.15 255	16
45	9.84 758	9.85 137	9.99 621	0.00 379	0.14 863	0.15 242	15
46 47	.84 771 .84 784	.85 125 .85 112	.99 646 .99 672	.00 354 .00 328	.14 875 .14 888	.15 229 .15 216	14 13
48	.84 796	.85 112	.99 672	.00 328	.14 900	.15 210	12
49	.84 809	.85 087	.99 722	.00 278	.14 913	.15 191	11
50	9.84 822	9.85 074	9.99 747	0.00 253	0.14 926	0.15 178	10
51	.84 835	.85 062	.99 773	.00 227	.14 938	.15 165	9
52	.84 847	.85 049	.99 798	.00 202	.14 951	.15 153	8
53	.84 860	.85 037	.99 823	.00 177	.14 963	.15 140	7
54	.84 873	.85 024	.99 848	.00 152	.14 976	.15 127	6
55	9.84 885	9.85 012	9.99 874	0.00 126	0.14 988	0.15 115	5
56 57	.84 898 .84 911	.84 999 .84 986	.99 899 .99 924	.00 101 .00 076	.15 001 .15 014	.15 102	4 3
58	.84 923	.84 986	.99 924	.00 076	.15 014	.15 089 .15 077	2
59	.84 936	.84 961	.99 975	.00 031	.15 020	.15 064	ī
60	9.84 949	9.84 949	0.00 000	0.00 000	0.15 051	0.15 051	ō
	Cos	Sin	Cot	Tan	Csc	Sec	<del></del>
	CUS	2111	COL	ТЗП	USC	Sec	

The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The	′	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°	,
2         2.0.0         61.0         21.2         80.8         40.0         300.3         60.2         20.2         80.8         42.5         02.3         60.2         21.2         80.3         40.6         2         22.2         82.8         42.5         02.3         60.2         21.2         82.3         42.6         4           5         5.0         64.6         65.6         65.0         25.2         84.8         44.5         04.3         64.2         242.2         84.3         54.6         6           7         7.0         66.5         25.2         84.8         44.5         04.3         64.2         242.2         84.3         54.6         6           8         7.9         67.5         27.2         86.8         46.5         06.3         66.2         25.2         85.3         44.6         6           9         8.9         68.5         129.1         188.8         248.5         308.3         368.2         428.2         84.6         10           10         9.9         69.5         129.1         188.8         44.5         09.3         89.2         249.2         89.3         49.6         11           11         19.			59.6		178.9	238.6			418.2			
6         6.0         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         25.2         84.8         44.5         0.3         64.2         24.2         24.3         24.3         44.6         6         7           8         7.9         67.5         26.2         28.2         88.8         46.5         06.3         66.2         26.2         28.3         45.6         7           9         8.9         08.5         129.1         188.8         248.5         308.3         368.2         428.2         2488.3         548.6         10           11         10         9.0         90.5         129.1         188.8         448.5         308.3         368.2         428.2         488.3         548.6         10           11         10         9.7         75.5         30.1         98.8         49.5         50.3         10.3         70.2         20.2         89.3         49.6         10           12         14         13.9         74.5         34.1         138.8         25.5         12.3         72.2         32.2         92.4         55.7 <td>1 1</td> <td>1.0</td> <td>60.6</td> <td>20.2</td> <td>79.9</td> <td></td> <td>99.3</td> <td>59.2</td> <td>19.2</td> <td>79.3</td> <td></td> <td>1</td>	1 1	1.0	60.6	20.2	79.9		99.3	59.2	19.2	79.3		1
6         6.0         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         25.2         84.8         44.5         0.3         64.2         24.2         24.3         24.3         44.6         6         7           8         7.9         67.5         26.2         28.2         88.8         46.5         06.3         66.2         26.2         28.3         45.6         7           9         8.9         08.5         129.1         188.8         248.5         308.3         368.2         428.2         2488.3         548.6         10           11         10         9.0         90.5         129.1         188.8         448.5         308.3         368.2         428.2         488.3         548.6         10           11         10         9.7         75.5         30.1         98.8         49.5         50.3         10.3         70.2         20.2         89.3         49.6         10           12         14         13.9         74.5         34.1         138.8         25.5         12.3         72.2         32.2         92.4         55.7 <td>3</td> <td>3.0</td> <td>62.6</td> <td>22.2</td> <td></td> <td></td> <td>01.3</td> <td>61.2</td> <td>20.2</td> <td>81.3</td> <td></td> <td>2</td>	3	3.0	62.6	22.2			01.3	61.2	20.2	81.3		2
6         6.0         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         25.2         84.8         44.5         0.3         64.2         24.2         24.3         24.3         44.6         6         7           8         7.9         67.5         26.2         28.2         88.8         46.5         06.3         66.2         26.2         28.3         45.6         7           9         8.9         08.5         129.1         188.8         248.5         308.3         368.2         428.2         2488.3         548.6         10           11         10         9.0         90.5         129.1         188.8         448.5         308.3         368.2         428.2         488.3         548.6         10           11         10         9.7         75.5         30.1         98.8         49.5         50.3         10.3         70.2         20.2         89.3         49.6         10           12         14         13.9         74.5         34.1         138.8         25.5         12.3         72.2         32.2         92.4         55.7 <td>4</td> <td>4.0</td> <td>63.6</td> <td></td> <td>82.8</td> <td></td> <td>02.3</td> <td>62.2</td> <td>22.2</td> <td></td> <td>42.6</td> <td>4</td>	4	4.0	63.6		82.8		02.3	62.2	22.2		42.6	4
8         7.9         67.5         27.2         86.8         46.5         06.3         66.2         26.2         87.3         47.6         9           10         9.9         69.5         129.1         188.8         248.5         308.3         368.2         428.2         488.3         548.6         10           11         10.9         70.5         30.1         89.8         49.5         09.3         69.2         29.2         89.3         49.6         11           12         11.9         71.5         31.1         90.8         50.5         10.3         70.2         30.2         90.4         50.6         12.1           13         12.9         72.5         32.1         91.8         51.5         11.3         71.2         31.2         91.4         51.7         13           14         13.9         73.5         33.1         92.8         55.5         11.3         71.2         31.2         91.4         55.7         14           16         15.9         75.5         35.1         94.8         54.5         15.3         75.2         35.2         95.4         55.7         16           17         16.9         76.5	5		64.6	124.2			303.3	363.2	423.2	483.3	543.6	5
8         7.9         67.5         27.2         86.8         46.5         06.3         66.2         26.2         87.3         47.6         9           10         9.9         69.5         129.1         188.8         248.5         308.3         368.2         428.2         488.3         548.6         10           11         10.9         70.5         30.1         89.8         49.5         09.3         69.2         29.2         89.3         49.6         11           12         11.9         71.5         31.1         90.8         50.5         10.3         70.2         30.2         90.4         50.6         12.1           13         12.9         72.5         32.1         91.8         51.5         11.3         71.2         31.2         91.4         51.7         13           14         13.9         73.5         33.1         92.8         55.5         11.3         71.2         31.2         91.4         55.7         14           16         15.9         75.5         35.1         94.8         54.5         15.3         75.2         35.2         95.4         55.7         16           17         16.9         76.5	6	6.0	65.6	25.2	84.8	44.5	04.3	64.2	24.2	84.3		6
10	8	7.9	67.5	27.2	86.8		06.3	66.2	26.2		45.6	7
10	9	8.9	68.5	28.2		47.5	07.3	67.2	27.2	87.3		9
12	10	9.9	69.5		188.8		308.3	368.2	428.2			10
15         14.9         74.5         134.1         193.8         253.5         313.3         373.2         433.2         494.4         54.7         15           17         16.9         76.5         35.1         94.8         55.5         15.3         75.2         35.2         95.4         55.7         17           18         17.9         77.5         37.1         96.8         56.5         16.3         76.2         36.2         96.4         56.7         17           19         18.9         78.5         38.1         97.8         57.5         17.2         37.2         37.2         97.4         57.7         19           20         19.9         79.5         139.1         198.8         258.5         318.3         378.2         438.2         498.4         558.7         20           21         20.9         80.5         40.1         99.7         59.5         19.3         79.2         39.2         99.4         59.7         19           22         21.9         81.5         41.1         200.7         60.5         20.3         80.2         40.2         204.4         60.7         22           23         28.8         84.4	11	10.9			89.8	49.5	09.3	69.2	29.2	89.3		11
15         14.9         74.5         134.1         193.8         253.5         313.3         373.2         433.2         494.4         54.7         15           17         16.9         76.5         35.1         94.8         55.5         15.3         75.2         35.2         95.4         55.7         17           18         17.9         77.5         37.1         96.8         56.5         16.3         76.2         36.2         96.4         56.7         17           19         18.9         78.5         38.1         97.8         57.5         17.2         37.2         37.2         97.4         57.7         19           20         19.9         79.5         139.1         198.8         258.5         318.3         378.2         438.2         498.4         558.7         20           21         20.9         80.5         40.1         99.7         59.5         19.3         79.2         39.2         99.4         59.7         19           22         21.9         81.5         41.1         200.7         60.5         20.3         80.2         40.2         204.4         60.7         22           23         28.8         84.4	13	12.9	72.5	32.1		51.5	11.3	71.2	31.2	90.4	51.7	12
15         14.9         74.5         134.1         193.8         253.5         313.3         373.2         483.2         493.4         55.7         16           17         16.9         76.5         36.1         95.8         55.5         15.3         75.2         35.2         95.4         55.7         17           18         17.9         77.5         37.1         96.8         56.5         16.3         76.2         36.2         96.4         56.7         17           19         18.9         78.5         38.1         97.8         57.5         17.2         37.2         29.4         55.7         17           20         19.9         79.5         139.1         198.8         258.5         318.3         378.2         438.2         498.4         558.7         19           21         20.9         80.5         40.1         90.7         59.5         19.3         79.2         39.2         99.4         59.7         20           22         21.9         81.5         41.1         200.7         60.5         20.3         80.2         40.2         500.4         60.7         22           23         28.8         84.4         14.1	14	13.9	73.5	33.1	92.8	52.5	12.3	72.2	32.2	92.4	52.7	14
17	15	14.9	74.5			253.5	313.3	373.2	433 2	493.4	553.7	15
19         18.9         78.5         38.1         97.8         57.5         17.3         77.2         37.2         97.4         57.7         19           20         19.9         79.5         139.1         198.8         258.5         318.3         378.2         438.2         498.4         558.7         20           21         20.9         80.5         40.1         99.7         59.5         19.3         79.2         39.2         99.4         59.7         21           22         21.9         81.5         41.1         200.7         60.5         20.3         80.2         40.2         500.4         60.7         22           23         22.8         88.4         43.1         02.7         62.5         22.3         88.2         44.2         04.4         60.7         24           26         25.8         85.4         45.1         04.7         64.5         24.3         88.2         44.2         04.4         64.7         26.2           27         26.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         06.4         66.7         27           28         27.8         87.4	16	15.9	75.5		94.8	54.5	14.3	74.2	34.2	94.4	54.7	16
19         18.9         78.5         38.1         97.8         57.5         17.3         77.2         37.2         97.4         57.7         19           20         19.9         79.5         139.1         198.8         258.5         318.3         378.2         438.2         498.4         558.7         20           21         20.9         80.5         40.1         99.7         59.5         19.3         79.2         39.2         99.4         59.7         21           22         21.9         81.5         41.1         200.7         60.5         20.3         80.2         40.2         500.4         60.7         22           23         22.8         88.4         43.1         02.7         62.5         22.3         88.2         44.2         04.4         60.7         24           26         25.8         85.4         45.1         04.7         64.5         24.3         88.2         44.2         04.4         64.7         26.2           27         26.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         06.4         66.7         27           28         27.8         87.4	18	17.9	77.5	37.1			16.3	76.2	36.2		56.7	18
24         23.8         83.4         43.1         02.7         62.5         22.3         82.2         42.2         02.4         66.7         24           26         25.8         85.4         45.1         04.7         64.5         24.3         84.2         44.2         05.4         66.7         26           27         26.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         05.4         66.7         27           28         27.8         87.4         47.0         06.7         66.5         26.3         86.2         46.2         06.4         66.8         28           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         448.2         508.4         568.8         30           31         30.8         90.4         55.0         11.7         71.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4 <t< td=""><td>19</td><td>18.9</td><td>78.5</td><td>38.1</td><td>97.8</td><td>57.5</td><td>17.3</td><td>77.2</td><td>37.2</td><td>97.4</td><td>57.7</td><td>19</td></t<>	19	18.9	78.5	38.1	97.8	57.5	17.3	77.2	37.2	97.4	57.7	19
24         23.8         83.4         43.1         02.7         62.5         22.3         82.2         42.2         02.4         66.7         24           26         25.8         85.4         45.1         04.7         64.5         24.3         84.2         44.2         05.4         66.7         26           27         26.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         05.4         66.7         27           28         27.8         87.4         47.0         06.7         66.5         26.3         86.2         46.2         06.4         66.8         28           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         448.2         508.4         568.8         30           31         30.8         90.4         55.0         11.7         71.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4 <t< td=""><td>20</td><td></td><td>79.5</td><td>139.1</td><td></td><td>258.5</td><td>318.3</td><td>378.2</td><td>438.2</td><td></td><td>558.7</td><td>20</td></t<>	20		79.5	139.1		258.5	318.3	378.2	438.2		558.7	20
24         23.8         83.4         43.1         02.7         62.5         22.3         82.2         42.2         02.4         66.7         24           26         25.8         85.4         45.1         04.7         64.5         24.3         84.2         44.2         05.4         66.7         26           27         26.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         05.4         66.7         27           28         27.8         87.4         47.0         06.7         66.5         26.3         86.2         46.2         06.4         66.8         28           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         448.2         508.4         568.8         30           31         30.8         90.4         55.0         11.7         71.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4 <t< td=""><td>21</td><td>20.9</td><td>80.5</td><td>40.1</td><td>99.7</td><td>60.5</td><td>19.3</td><td>80.2</td><td>39.2</td><td>500.4</td><td>59.7</td><td>21</td></t<>	21	20.9	80.5	40.1	99.7	60.5	19.3	80.2	39.2	500.4	59.7	21
24         23.8         83.4         43.1         02.7         62.5         22.3         82.2         42.2         02.4         66.7         24           26         25.8         85.4         45.1         04.7         64.5         24.3         84.2         44.2         05.4         66.7         26           27         26.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         05.4         66.7         27           28         27.8         87.4         47.0         06.7         66.5         26.3         86.2         46.2         06.4         66.8         28           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         448.2         508.4         568.8         30           31         30.8         90.4         55.0         11.7         71.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4 <t< td=""><td>23</td><td></td><td>82.4</td><td>42.1</td><td></td><td>61.5</td><td>21.3</td><td>81.2</td><td>41.2</td><td></td><td></td><td>23</td></t<>	23		82.4	42.1		61.5	21.3	81.2	41.2			23
26         25.8         85.4         45.1         04.7         64.5         24.3         84.2         44.2         06.4         66.7         27           28         27.8         86.4         46.0         05.7         65.5         25.3         85.2         45.2         06.4         66.7         27           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         448.2         50.4         568.8         30           31         30.8         90.4         50.0         09.7         69.4         29.3         89.2         49.2         09.4         69.8         30           31         30.8         91.4         51.0         10.7         70.4         30.3         90.2 <t>50.2         10.4         70.8         32           33         32.8         92.4         52.0         11.7         71.4         31.3         91.2         51.2         11.4         71.8         33           35         34.8         94.4</t>			83.4	43.1	02.7	62.5	22.3		42.2	02.4	62.7	
28         27.8         87.4         47.0         06.7.         66.5         26.3         86.2         46.2         06.4         66.8         28           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         49.2         508.4         568.8         30           31         30.8         90.4         50.0         09.7         69.4         29.3         89.2         49.2         09.4         69.8         31           32         31.8         91.4         51.0         10.7         70.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4         52.0         11.7         71.4         30.3         90.2         50.2         11.4         71.8         33           34         33.8         93.4         53.0         12.7         72.4         32.3         99.2         55.2         12.4         72.8         34           35         36.7         96.4 <t< td=""><td></td><td>24.8</td><td></td><td></td><td></td><td>263.5</td><td>323.3</td><td>383.2</td><td>443.2</td><td></td><td></td><td>25</td></t<>		24.8				263.5	323.3	383.2	443.2			25
28         27.8         87.4         47.0         06.7.         66.5         26.3         86.2         46.2         06.4         66.8         28           29         28.8         88.4         48.0         07.7         67.4         27.3         87.2         47.2         07.4         67.8         29           30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         49.2         508.4         568.8         30           31         30.8         90.4         50.0         09.7         69.4         29.3         89.2         49.2         09.4         69.8         31           32         31.8         91.4         51.0         10.7         70.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4         52.0         11.7         71.4         30.3         90.2         50.2         11.4         71.8         33           34         33.8         93.4         53.0         12.7         72.4         32.3         99.2         55.2         12.4         72.8         34           35         36.7         96.4 <t< td=""><td></td><td></td><td></td><td>45.1</td><td></td><td>65.5</td><td>24.3</td><td>85.2</td><td>44.2</td><td>04.4</td><td>65.7</td><td>26 27</td></t<>				45.1		65.5	24.3	85.2	44.2	04.4	65.7	26 27
30         29.8         89.4         149.0         208.7         268.4         328.3         388.2         448.2         508.4         568.8         31           31         30.8         90.4         50.0         09.7         69.4         29.3         89.2         49.2         09.4         69.8         31           32         31.8         91.4         51.0         10.7         70.4         30.3         90.2         50.2         10.4         70.8         32           33         32.8         92.4         52.0         11.7         71.4         31.3         91.2         51.2         11.4         71.8         33           34         33.8         93.4         53.0         12.7         72.4         32.3         92.2         52.2         12.4         72.8         34           35.3         34.8         94.4         154.0         213.7         273.4         33.3         393.2         453.3         145.5         74.8         36           37.7         36.7         96.4         56.0         15.7         75.4         35.3         95.2         55.3         15.5         75.8         37           38.7         98.3         58.0 <td>28</td> <td>27.8</td> <td>87.4</td> <td>47.0</td> <td>06.7,</td> <td>66.5</td> <td>26.3</td> <td>86.2</td> <td>46.2</td> <td>06.4</td> <td>66.8</td> <td>28</td>	28	27.8	87.4	47.0	06.7,	66.5	26.3	86.2	46.2	06.4	66.8	28
31       30.8       90.4       50.0       09.7       69.4       29.3       89.2       49.2       09.4       69.8       31         32       31.8       91.4       51.0       10.7       70.4       30.3       90.2       50.2       10.4       70.8       32         33       32.8       92.4       52.0       11.7       71.4       31.3       91.2       51.2       11.4       71.8       33         34       33.8       93.4       53.0       12.7       72.4       32.3       92.2       52.2       12.4       72.8       34         35       34.8       94.4       154.0       213.7       273.4       333.3       393.2       453.2       513.4       574.8       36         36       35.8       95.4       55.0       14.7       74.4       343.3       94.2       543.1       14.5       74.8       36         37       36.7       96.4       56.0       15.7       75.4       35.3       95.2       55.3       15.5       75.8       37         38       37.7       97.3       57.0       16.7       76.4       36.2       96.2       56.3       16.5       77.8       38			88.4	48.0								29
34         33.8         93.4         53.0           12.7         72.4         32.3           92.2           52.2           12.4           72.8           34.8           35         34.8         94.4           154.0           213.7           273.4           33.3           393.2           453.2           513.4           573.8           35.8           35.8           95.4           55.0           14.7           74.4           34.3           94.2           543.2           513.4           573.8           35.8           37.7           97.3           57.0           16.7           76.4           36.2           96.2           56.3           16.5           76.8           38.8           37.7           98.3           58.0           17.7           77.4           37.2           97.2           57.3           17.5           77.8           39           38.7           98.3           58.0           17.7           77.4           37.2           97.2           57.3           17.5           77.8           39           40.0           40.3           40.7           100.3           60.0           21.7           79.4           39.2           49.2           458.3           518.5           578.8           40           41         40.7         100.3		29.8	89.4		208.7	268.4	328.3	388.2		508.4		30
34         33.8         93.4         53.0           12.7         72.4         32.3           92.2           52.2           12.4           72.8           34.8           35         34.8         94.4           154.0           213.7           273.4           33.3           393.2           453.2           513.4           573.8           35.8           35.8           95.4           55.0           14.7           74.4           34.3           94.2           543.2           513.4           573.8           35.8           37.7           97.3           57.0           16.7           76.4           36.2           96.2           56.3           16.5           76.8           38.8           37.7           98.3           58.0           17.7           77.4           37.2           97.2           57.3           17.5           77.8           39           38.7           98.3           58.0           17.7           77.4           37.2           97.2           57.3           17.5           77.8           39           40.0           40.3           40.7           100.3           60.0           21.7           79.4           39.2           49.2           458.3           518.5           578.8           40           41         40.7         100.3	32	31.8	90.4	51.0	10.7	70.4	30.3	90.2	50.2	10.4	70.8	32
34         33.8         93.4         53.0           12.7         72.4         32.3           92.2           52.2           12.4           72.8           34.8           35         34.8         94.4           154.0           213.7           273.4           33.3           393.2           453.2           513.4           573.8           35.8           35.8           95.4           55.0           14.7           74.4           34.3           94.2           543.2           513.4           573.8           35.8           37.7           97.3           57.0           16.7           76.4           36.2           96.2           56.3           16.5           76.8           38.8           37.7           98.3           58.0           17.7           77.4           37.2           97.2           57.3           17.5           77.8           39           38.7           98.3           58.0           17.7           77.4           37.2           97.2           57.3           17.5           77.8           39           40.0           40.3           40.7           100.3           60.0           21.7           79.4           39.2           49.2           458.3           518.5           578.8           40           41         40.7         100.3	33	32.8	92.4	52.0	11.7	71.4	31.3	91.2	51.2	11.4	71.8	33
38         37.7         97.3         57.0         16.7         76.4         36.2         96.2         56.3         16.5         76.8         38           39         38.7         98.3         58.0         17.7         77.4         37.2         97.2         57.3         17.5         77.8         39           40         39.7         99.3         159.0         218.7         278.4         338.2         398.2         458.3         518.5         578.8         40           41         40.7         100.3         60.0         19.7         79.4         39.2         99.2         59.3         19.5         79.9         41           42         41.7         01.3         61.0         20.6         80.4         40.2         400.2         60.3         20.5         80.9         42           43         42.7         02.3         62.0         21.6         81.4         41.2         01.2         61.3         21.5         81.9         43           44.7         104.3         164.0         22.6         82.4         42.2         02.2         62.3         22.5         82.9         44           45         44.7         104.3         164.0							32.3	92.2	52.2			34
38         37.7         97.3         57.0         16.7         76.4         36.2         96.2         56.3         16.5         76.8         38           39         38.7         98.3         58.0         17.7         77.4         37.2         97.2         57.3         17.5         77.8         39           40         39.7         99.3         159.0         218.7         278.4         338.2         398.2         458.3         518.5         578.8         40           41         40.7         100.3         60.0         19.7         79.4         39.2         99.2         59.3         19.5         79.9         41           42         41.7         01.3         61.0         20.6         80.4         40.2         400.2         60.3         20.5         80.9         42           43         42.7         02.3         62.0         21.6         81.4         41.2         01.2         61.3         21.5         81.9         43           44.7         104.3         164.0         22.6         82.4         42.2         02.2         62.3         22.5         82.9         44           45         44.7         104.3         164.0		34.8	94.4	154.0	213.7	74.4	333.3	393.2	453.2	14.5	74.8	36 35
38         37.7         97.3         57.0         16.7         76.4         36.2         96.2         56.3         16.5         76.8         38           39         38.7         98.3         58.0         17.7         77.4         37.2         97.2         57.3         17.5         77.8         39           40         39.7         99.3         159.0         218.7         278.4         338.2         398.2         458.3         518.5         578.8         40           41         40.7         100.3         60.0         19.7         79.4         39.2         99.2         59.3         19.5         79.9         41           42         41.7         01.3         61.0         20.6         80.4         40.2         400.2         60.3         20.5         80.9         42           43         42.7         02.3         62.0         21.6         81.4         41.2         01.2         61.3         21.5         81.9         43           44.7         104.3         164.0         22.6         82.4         42.2         02.2         62.3         22.5         82.9         44           45         44.7         104.3         164.0	37	36.7	96.4	56.0	15.7	75.4	35.3	95.2	55.3	15.5	75.8	37
40         39.7         99.3         159.0         218.7         278.4         338.2         388.2         458.3         518.5         578.8         40           41         40.7         100.3         60.0         19.7         79.4         39.2         99.2         59.3         19.5         79.9         41           42         41.7         01.3         61.0         20.6         80.4         40.2         400.2         60.3         20.5         80.9         42           43         42.7         02.3         62.0         21.6         81.4         41.2         01.2         61.3         21.5         81.9         43           44         43.7         03.3         63.0         22.6         82.4         42.2         02.2         62.3         22.5         82.9         44           45         44.7         104.3         164.0         223.6         283.4         343.2         403.2         46.3         523.5         583.9         45           46         45.7         05.3         66.0         25.6         85.4         45.2         05.2         65.3         25.5         88.9         46           47         46.7         06.3	38	37.7	97.3	57.0	16.7	76.4	36.2	96.2	56.3	16.5	76.8	38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						77.4		97.2	57.3	17.5		39
43         42.7         02.3         62.0         21.6         81.4         41.2         01.2         61.3         21.5         81.9         43           44         43.7         03.3         63.0         22.6         82.4         42.2         02.2         62.3         22.5         82.9         44           45         44.7         104.3         164.0         223.6         28.4         343.2         403.2         463.3         523.5         583.9         45           46         45.7         05.3         65.0         24.6         84.4         44.2         04.2         64.3         24.5         84.9         46           47         46.7         06.3         66.0         25.6         85.4         45.2         05.2         65.3         25.5         86.9         48           49         48.7         08.3         68.0         27.6         87.4         47.2         07.2         67.3         27.5         87.9         49           50         49.7         109.3         168.9         228.6         28.4         438.2         408.2         468.3         528.5         588.9         50           51         50.7         10.3				159.0		79.4		99.2	408.3 59.3	19.5	79.9	
43         42.7         02.3         62.0         21.6         81.4         41.2         01.2         61.3         21.5         81.9         43           44         43.7         03.3         63.0         22.6         82.4         42.2         02.2         62.3         22.5         82.9         44           45         44.7         104.3         164.0         223.6         28.4         343.2         403.2         463.3         523.5         583.9         45           46         45.7         05.3         65.0         24.6         84.4         44.2         04.2         64.3         24.5         84.9         46           47         46.7         06.3         66.0         25.6         85.4         45.2         05.2         65.3         25.5         86.9         48           49         48.7         08.3         68.0         27.6         87.4         47.2         07.2         67.3         27.5         87.9         49           50         49.7         109.3         168.9         228.6         28.4         438.2         408.2         468.3         528.5         588.9         50           51         50.7         10.3	42	41.7	01.3	61.0	20.6	80.4	40.2	400.2	60.3	20.5	80.9	42
45         44.7         104.3         164.0         223.6         283.4         343.2         403.2         463.3         523.5         583.9         45           46         45.7         05.3         65.0         24.6         84.4         44.2         04.2         64.3         24.5         84.9         46           47         46.7         06.3         66.0         25.6         85.4         46.2         05.2         65.3         25.5         85.9         47           48         47.7         07.3         67.0         26.6         86.4         46.2         06.2         66.3         26.5         86.9         48           49         48.7         109.3         168.9         228.6         288.4         348.2         408.2         468.3         528.5         588.9         50           51         50.7         10.3         69.9         29.6         89.4         49.2         09.2         69.3         29.5         88.9         51           52         51.6         11.3         70.9         30.6         90.4         50.2         10.2         70.3         30.5         90.9         52         53         52.6         12.3         71.9 <td>43</td> <td>42.7</td> <td>02.3</td> <td>62.0</td> <td>21.6</td> <td>81.4</td> <td>41.2</td> <td>01.2</td> <td>61.3</td> <td>21.5</td> <td>81.9</td> <td>43</td>	43	42.7	02.3	62.0	21.6	81.4	41.2	01.2	61.3	21.5	81.9	43
46         45.7         05.3         65.0         24.6         84.4         44.2         04.2         64.3         24.5         84.9         46           47         46.7         06.3         66.0         25.6         85.4         45.2         05.2         65.3         25.5         86.9         47           48         47.7         07.3         67.0         26.6         86.4         46.2         06.2         66.3         26.5         86.9         48           49         48.7         109.3         168.9         228.6         28.4         47.2         07.2         67.3         27.5         87.9         49           50         49.7         109.3         168.9         228.6         28.4         48.2         408.2         468.3         528.5         588.9         50           51         50.7         10.3         69.9         29.6         89.4         49.2         09.2         69.3         29.5         88.9         50           52         51.6         11.3         70.9         30.6         90.4         50.2         10.2         70.3         30.5         90.9         52         53         52.6         12.3         71.9												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		45.7	05.3	65.0	24.6	844	44.2	04.2	64.3	24.5	84.9	46
49       48.7       08.3       68.0       27.6       87.4       47.2       07.2       67.3       27.5       87.9       49         50       49.7       109.3       168.9       228.6       288.4       348.2       408.2       468.3       528.5       588.9       50         51       50.7       10.3       69.9       29.6       89.4       49.2       09.2       69.3       29.5       89.9       51         52       51.6       11.3       70.9       30.6       90.4       50.2       10.2       70.3       30.5       90.9       52         53       52.6       12.3       71.9       31.6       91.4       51.2       11.2       71.3       31.5       91.9       53         54       53.6       13.2       72.9       32.6       92.4       52.2       12.2       72.3       32.5       93.0       54         55       54.6       114.2       173.9       233.6       293.4       353.2       413.2       473.3       533.5       594.0       55         56       55.6       15.2       74.9       34.6       94.4       54.2       14.2       74.3       34.6       95.0	47	46.7	06.3	66.0	25.6	85.4	45.2	05.2	65.3	25.5	85.9	47
50         49.7         109.3         168.9         228.6         288.4         348.2         408.2         468.3         528.5         588.9         50           51         50.7         10.3         69.9         29.6         89.4         49.2         09.2         69.3         29.5         89.9         51           52         51.6         11.3         70.9         30.6         90.4         50.2         10.2         70.3         30.5         90.9         52           53         52.6         12.3         71.9         31.6         91.4         51.2         11.2         71.3         31.5         91.9         53           54         53.6         13.2         72.9         32.6         92.4         52.2         12.2         72.3         32.5         93.0         54           55         54.6         114.2         173.9         233.6         293.4         353.2         413.2         473.3         533.5         594.0         56           56         55.6         15.2         74.9         34.6         94.4         54.2         14.2         74.3         34.6         95.0         56           57         56.6         16.2	l 48 l	47.7	07.3	67.0	26.6	86.4	46.2	06.2	67.2	26.5	85.9	48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									4683			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50.7	10.3	69.9	29.6	89.4	49.2	09.2	69.3	29.5	89.9	51
55         54.6         114.2         173.9         233.6         293.4         353.2         413.2         473.3         533.5         594.0         55           56         55.6         15.2         74.9         34.6         94.4         54.2         14.2         74.3         34.6         95.0         56           57         56.6         16.2         75.9         35.6         95.4         55.2         15.2         75.3         35.6         96.0         57           58         57.6         17.2         76.9         36.6         96.3         56.2         16.2         76.3         36.6         97.0         58           59         58.6         18.2         77.9         37.6         97.3         57.2         17.2         77.3         37.6         98.0         59           60         59.6         119.2         178.9         238.6         298.3         358.2         418.2         478.3         538.6         599.0         60	52	51.6	11.3	70.9	30.6	90.4	50.2	10.2	70.3	30.5	90.9	52
55         54.6         114.2         173.9         233.6         293.4         353.2         413.2         473.3         533.5         594.0         55           56         55.6         15.2         74.9         34.6         94.4         54.2         14.2         74.3         34.6         95.0         56           57         56.6         16.2         75.9         35.6         95.4         55.2         15.2         75.3         35.6         96.0         57           58         57.6         17.2         76.9         36.6         96.3         56.2         16.2         76.3         36.6         97.0         58           59         58.6         18.2         77.9         37.6         97.3         57.2         17.2         77.3         37.6         98.0         59           60         59.6         119.2         178.9         238.6         298.3         358.2         418.2         478.3         538.6         599.0         60			12.3	71.9		91.4		12.2	72.3	32.5		53 54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				173.9					473.3			
58     57.6     17.2     76.9     36.6     96.3     56.2     16.2     76.3     36.6     97.0     58       59     58.6     18.2     77.9     37.6     97.3     57.2     17.2     77.3     37.6     98.0     59       60     59.6     119.2     178.9     238.6     298.3     358.2     418.2     478.3     538.6     599.0     60	56	55.6	15.2	74.9	34.6	94.4	54.2	14.2	74.3	34.6	95.0	56
59     58.6     18.2     77.9     37.6     97.3     57.2     17.2     77.3     37.6     98.0     59       60     59.6     119.2     178.9     238.6     298.3     358.2     418.2     478.3     538.6     599.0     60	57	56.6	16.2	75.9	35.6	95.4	55.2	15.2	75.3	35.6	96.0	57
<b>60</b>   59.6   119.2   178.9   238.6   298.3   358.2   418.2   478.3   538.6   599.0   <b>60</b>	58	57.6 58.6	17.2	76.9	37.6	95.3	57.2	17.2	77.3	37.6	98.0	58 59
			119.2						478.3			
		0°	1°	2°			5°				9°	

,	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°	,
0	599.0	659.6	720.5	781.5	842.8	904.4	966.3	1028.5		1153.9	0
1 2	$600.0 \\ 01.0$	60.6	$21.5 \\ 22.5$	82.5 83.6	43.9 44.9	05.4 06.5	67.3 68.3	$\frac{29.5}{30.5}$	92.0 $93.1$	54.9 56.0	1
2 3 4	02.0	61.7 62.7	23.5	84.6	45.9	07.5	69.4	31.6	94.1	57.0	$\frac{\bar{2}}{3}$
	03.0	63.7	24.5	85.6	46.9	08.5	70.4	32.6	95.2	58.1	4
5 6 7	604.1	664.7	725.5	786.6	847.9	909.6	971.4		1096.2		5
7	$05.1 \\ 06.1$	65.7 66.7	26.6 27.6	87.6 88.7	49.0 50.0	10.6 11.6	72.5 73.5	34.7 35.7	$97.3 \\ 98.3$	$60.2 \\ 61.2$	7
8 9	07.1	67.7	28.6	89.7	51.0	12.6	74.6	36.8	99.4	62.3	6 7 8 9
	08.1	68.7	29.6	90.7	52.0	13.7	75.6	37.8	1100.4	63.3	
10 11	$609.1 \\ 10.1$	669.8 70.8	730.6 31.6	791.7 92.7	853.1 54.1	914.7 15.7	976.6 77.7	$1038.9 \\ 39.9$	$1101.4 \\ 02.5$	1164.4 65.4	10 11
12	11.1	71.8	32.7	93.8	55:1	16.8	78.7	40.9	03.5	66.5	12
13	12.1	72.8 73.8	33.7	94.8	56.1	17.8	79.7	42.0	04.6	67.5	13
14 <b>15</b>	13.1 614.1	73.8 674.8	34.7	95.8	57.2	18.8	80.8	43.0	05.6	68.6	14
16	15.2	75.8	735.7 36.7	796.8 97.8	858.2 59.2	919.8 20.9	82.8	$1044.1 \\ 45.1$	1106.7 07.7	1169.7 70.7	<b>15</b> 16
17	16.9	76.8	36.7 37.7	98.9	60.2	21.9	83.9	46.1	08.8	71.8	17
18 19	17.2	77.9	38.8	99.9	61.3	22.9	84.9	47.2	09.8	72.8	18
20	18.2 619.2	78.9 679.9	39.8 740.8	800.9 801.9	62.3 863.3	24.0 925.0	85.9	48.2 1049.3	10.9	73.9	19 <b>20</b>
21	20.2	80.9	41.8	02.9	64.3	26.0	88.0	50.3	$1111.9 \\ 13.0$	76.0	21
22	21.2	81.9	42.8	04.0	65.4	27.1	89.0	51.3	14.0	77.0	22
23 24	$\frac{22.2}{23.2}$	82.9 83.9	43.8 44.9	05.0 06.0	66.4 67.4	28.1 29.1	90.1	52.4 53.4	$15.0 \\ 16.1$	78.1 79.1	23 24
25	624.2	684.9	745.9	807.0	868.5	930.1	91.1 992.1		10.1 $1117.1$	1180.2	25
26	25.3	86.0	46.9	08.1	69.5	31.2	93.2	55.5	18.2	81.2	26
27	26.3	87.0	47.9	09.1	70.5	32.2	94.2	56.6	19.2	81.2 82.3	26 27
28 29	$27.3 \\ 28.3$	88.0 89.0	48.9 49.9	10.1 11.1	71.5 72.6	33.2 34.3	95.3 96.3	57.6 58.6	$\frac{20.3}{21.3}$	83.3 84.4	28 29
30	629.3	690.0	751.0	812.1	873.6	935.3		1059.7	1122.4	1185.5	30
31	30.3	91.0	52.0	13,2 14.2 15.2	74.6	36.3	98.4	60.7	23.4	86.5	31
32 33	31.3 32.3	92.0 93.1	53.0 54.0	14.2	75.6 76.7	37.4 38.4	99.4 $1000.4$	$61.8 \\ 62.8$	$24.5 \\ 25.5$	87.6	32 33
34	33.3	94.1	55.0	16.2	77.7	39.4	01.5	63.9	26.6	88.6 89.7	34
35	634.3	695.1	756.0	817.3	878.7 79.7	940.5	1002.5		1127.6	1190.7	35
36	35.4	96.1	57.1	18.3	79.7	41.5	03.6	65.9	28.7	91.8	36
37 38	36.4 37.4	97.1 98.1	58.1 59.1	19.3 20.3	80.8 81.8	$\frac{42.5}{43.6}$	04.6 05.6	67.0 68.0	$\frac{29.7}{30.8}$	92.8 93.9	37 38
39	38.4	99.1	60.1	21.3	82.8	44.6	06.7	69.1	31.8	95.0	39
40	639.4	700.2	761.1	822.4	883.8	945.6		1070.1	1132.9	1196.0	40
$\begin{array}{c c} 41 \\ 42 \end{array}$	40.4 41.4	$\begin{array}{c} 01.2 \\ 02.2 \end{array}$	62.2 63.2	$23.4 \\ 24.4$	84.9 85.9	$\frac{46.7}{47.7}$	08.7 09.8	71.2	33.9	97.1	41 42
43	42.4	03.2	64.2	25.4	86.9	48.7	10.8	$72.2 \\ 73.2$	$35.0 \\ 36.0$	98.1 99.2	43
44	43.4	04.2	65.2	26.5	88.0	49.7	11.8	74.3	37.1	1200.2	44
45	644.5	705.2	766.2	827.5	889.0	950.8	1012.9	1075.3		1201.3	45
46 47	45.5 46.5	06.2	67.3 68.3	28.5 29.5	90.0 91.0	51.8 52.8	13.9 15.0	$\begin{array}{c} 76.4 \\ 77.4 \end{array}$	$\frac{39.2}{40.2}$	02.3 03.4	46 47
48	47.5.	07.3 08.3	69.3	30.5	92.1	53.9	16.0	78.5	41.3	04.5	48
49	48.5	09.3	70.3	31.6	93.1	54.9	17.0	79.5	42.3	05.5	49
<b>50</b> 51	649.5 50.5	710.3	771.3 72.3	832.6 33.6	894.1 95.2	955.9 57.0	1018.1 19.1	1080.5 81.6	$1143.4 \\ 44.4$		<b>50</b> 51
52	51.5	12.3	73.4	34.6	96.2	58.0	20.2	81.6	44.4 45.5	07.6 08.7	52
53	52.5	13.4	74.4	35.7	97.2	59.0	21.2	83.7	46.5	09.7	53
54 55	53.6 654.6	14.4 715.4	75.4	36.7	98.2 899.3	60.1 961.1	22.2	84.7	47.6	10.8	54
56	55.6	16.4	776.4	837.7 38.7	900.3	62.1	$1023.3 \\ 24.3$	1085.8 86.8	$1148.6 \\ 49.7$	$ 1211.8  \\  12.9 $	5 <b>5</b> 56
57	56.6	17.4	78.5	39.8	01.3	63.2	25.3	87.9	50.7	14.0	57
58 59	57.6 58.6	18.4	79.5	40.8	02.3	64.2	$\frac{26.4}{27.4}$	88.9	51.8	15.0	58
60	659.6	19.4 720.5	80.5 781.5	41.8 842.8	03.4 904.4	65.2 966.3		89.9	52.8 $1153.9$	16.1	59 <b>60</b>
- ,	10°	11°	12°	13°	14°	15°	16°	17°	1153.9 18°	1217.1 19°	- 60
	; 10	11	14	1.3	14	10	10	11	10.	TA.	

,	20°	21°	22°	23°	24°	25°	26°	27°	28°	29°	,
0	1217.1	1280.8	1344.9	1409.5	1474.5	1540.1	1606.2	1672.9	1740.2	1808.1	0
1	18.2	81.9	46.0	10.6	75.6	41.2	07.3	74.0	41.3	09.2	1
2 3 4	19.3	82.9	47.1	11.6	76.7	42.3	08.4	75.1	42.4	10.4	2
4	$20.3 \\ 21.4$	84.0 85.1	48.1 49.2	12.7 13.8	77.8 78.9	43.4 44.5	09.5 10.6	$76.2 \\ 77.4$	43.6	$11.5 \\ 12.6$	$\frac{3}{4}$
5		1286.1				1545.6			44.7		5
6	23.5	87.2	51.4	16.0	81.1	46.7	12.9	79.6	46.9	14.9	6
6 7	24.5	88.3	52.4	17.1	82.2	47.8	14.0	80.7	48.1	16.1	6 7
8	25.6	89.3	53.5	18.1	83.3	48.9	15.1	81.8	49.2	17.2	8
9	26.7	90.4	54.6	19.2	84.3	50.0	16.2	82.9	50.3	18.3	9
10	1227.7	1291.5		1420.3	1485.4	1551.1	1617.3	1684.1	1751.5		10
11	28.8	92.5	56.7	21.4	86.5	52.2	18.4	85.2	52.6	20.6	11
12 13	29.8 30.9	93.6	57.8 58.9	22.5 23.5	87.6 88.7	53.3 54.4	$19.5 \\ 20.6$	86.3 87.4	53.7 54.8	$\frac{21.8}{22.9}$	$\begin{array}{c} 12 \\ 13 \end{array}$
14	$\frac{30.9}{32.0}$	94.7 95.7	59.9	$\frac{23.5}{24.6}$	89.8	55.5	21.7	88.5	56.0	24.0	14
15		1296.8				1556.6			1757.1		15
16	34.1	97.9	62.1	26.8	92.0	57.7	23.9	90.8	58.2	26.3	16
17	35.1	98.9	63.2	27.9	93.1	58.8	25.0	91.9	59.4	27.5	17
18	36.2	1300.0	64.2	29.0	94.2	59.9	26.2	93.0	60.5	28.6	18
19	37.3	01.1	65.3	30.0	95.2	61.0	27.3	94.1	61.6	29.7	19
20		1302.1		1431.1	1496.3	1562.1	1628.4	1695.3	1762.7	1830.9	20
$\frac{21}{22}$	39.4	03.2	67.5	32.2 33.3	97.4 98.5	63.2	29.5 30.6	96.4 97.5	63.9 65.0	$\frac{32.0}{33.2}$	$\frac{21}{22}$
23	40.4 41.5	04.3 05.3	68.5 69.6	34.4	99.6	64.3 65.4	31.7	98.6	66.1	34.3	23
24	42.6	06.4	70.7	35.4	1500.7	66.5	32.8	99.7	67.3	35.4	$\frac{23}{24}$
25		1307.5				1567.6					25
26	44.7	08.5	72.8	37.6	02.9	68.7	35.0	02.0	69.5	37.7	26
27	45.7	09.6	73.9	38.7	04.0	69.8	36.1	03.1	70.7	38.9	27
28	46.8	10.7	75.0	39.8	05.1	70.9	37.3	04.2	71.8	40.0	$\frac{28}{29}$
29	47.9	11.7	76.1	40,9	06.2	72.0	38.4	05.3	72.9	41.2	3 <b>0</b>
<b>30</b> 31	1248.9	1312.8 13.9	$ 1377.1 \\ 78.2$	1442.0 43.0	1507.3	1573.1 74.2	1639.5	1706.5	75.2	1842.3 43.4	31
32	50.0 51.0	14.9	79.3	44.1	09.4	75.3	40.6 41.7	07.6 08.7	76.3	44.6	32
33	52.1	16.0	80.4	45.2	10.5	76.4	42.8	09.8	77.4	45.7	33
34	53.2	17.1	81.5	46.3		77.5	43.9	10.9	78.6	46.9	34
35	1254.2	1318.2	1382.5	1447.4	1512.7	1578.6	1645.0	1712.1		1848.0	35
36	55.3	19.2	83.6	48.5	13.8	79.7	46.2	13.2	80.8	49.2	36 37
37	56.4	20.3	84.7	49.5	14.9	80.8	47.3	14.3	82.0	50.3	37
38 39	57.4	21.4 22.4	85.8 86.8	50.6 51.7	16.0 17.1	81.9 83.0	48.4 49.5	15.4 16,6	83.1 84.2	$51.4 \\ 52.6$	39
40	58.5 1259.5					1584.1			1785.4		40
41	60.6	24.6	89.0	53.9	19.3	85.2	51.7	18.8	86.5	54.9	41
42	61.7	25.6	90.1	55.0	20.4	86.3	52.8	19.9	87.6	56.0	42
43	61.7 62.7	25.6 26.7	91.1	56.1	$21.5 \\ 22.6$	87.4	53.9	21.1	88.8	57.2	43
44	63.8	27.8	92.2	57.1		88.5	55.1	22.2	89.9	58.3	44
45	1264.9		1393.3	1458.2	1523.7	1589.6	1656.2	1723.3			45
46	65.9	29.9	94.4	59.3 60.4	24.8 25.9	90.7 91.8	57.3 58.4	24.4 25.5	92.2 93.3	60.6 61.8	46 47
47 48	67.0 68.0	$\begin{array}{r} 31.0 \\ 32.1 \end{array}$	95.5 96.5	61.5	$\frac{25.9}{27.0}$	91.8	59.5	26.7	94.5	62.9	48
49	69.1	33 1	97.6	62.6	28.0	94.1	60.6	27.8	95.6	64.0	49
50	1270 2	1334 2	1398.7	1463.7	1529.1	1595.2	1661.7	1728.9	1796.7	1865.2	50
51	71.2	35.3	1398.7 99.8	64.8	30.2	96.3	62.9	30.0	97.9	66.3	51
52	72.3	36.3	1400.9	65.8	31.3	97.4	64.0	31.2	99.0	67.5	52
53	73.4	37.4	01.9	66.9	32.4	98.5	65.1	32.3		68.6	53
54	74.4	38.5	03.0	68.0	33.5	99.6	66.2	33.4	01.3	69.8	54 <b>55</b>
55	1275.5	1339.6	1404.1	1469.1	1534.6	1600.7	1667.3	$1734.5 \\ 35.7$	1802.4 03.5	$1870.9 \\ 72.1$	<b>56</b>
56	76.6	40.6 41.7	05.2 06.2	70.2 71.3	35.7	01.8 02.9	68.4	36.8	03.5	73.2	57
57 58	77.6 78.7	42.8	07.3	72.4	36.8 37.9	04.0	69.5 70.7	37.9	05.8	74.4	58
59	79.7	43.8	08.4	73.5	39.0	05.1	71.8	39.1	07.0	75.5	59
60		1344.9	l			1606.2		1740.2	1808.1		60
	20°	21°	22°	23°	24°	25°	26°	27°	28°	29°	

,	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	,
0	1876.7			2086.8		2230.9	2304.2	2378.5			0
1 2	77.8		17.2 18.3	88.0 89.2	59.6 60.8		05.5 06.7	79.8 81.0	55.1 56.4	31.5 32.8	1 2
3	80.1	49.4	19.5	90.3	62.0	34.5	07.9	82.3	57.6	34.0	2 3 4
4 5 6 7 8	81.3	50.6		91.5	63.2	1	09.2	83.5			4
5		$1951.8 \\ 52.9$			$2164.4 \\ 65.6$		2310.4 11.6	2384.8 86.0	2460.2 61.4		5 6 7 8 9
7	83.6 84.7	52.9 54.1	23.0		66.8			87.3	62.7	39.2	7
8	85.9	55.3	25.4	96.3	68.0	40.6	14.1	. 88.5	64.0	40.5	8
9	87.0	56.4		97.5	69.2			89.8		41.7	
10 11	1888.2						2316.5		2466.5	2543.0	10
12	89.3 90.5	58.7 59:9	28.9 30.1	$99.8 \\ 2101.0$	71.6 72.8	44.2 45.5	17.8 19.0	92.3 93.5	67.8 69.0	44.3 45.6	11 12
13	91.6	61.1	31.3	02.2	74.0		20.3	94.8	70.3	46.9	13
14	92.8		32.4	03.4	75.2		21.5	96.0	71.6	48.2	14
15				2104.6		2249.1	2322.7	2397.3	2472.8	2549.5	15
16 17	95.1 96.2	64.6 65.7	34.8 36.0	05.8 07.0	77.6 78.8	50.3 51.6	24.0 25.2	98.5 99.8	74.1 75.4	50.7 52.0	16 17
18	97.4	66.9	37.1	08.2	80.0	52.8	26.4	2401.0	76.6	53.3	18
19	98.5	68.1	38.3	09.4	81.2	54.0	27.7	02.3	77.9	54.6	19
20								2403.5			20
$\frac{21}{22}$	$  1900.8 \\ 02.0  $	70.4	40.7	11.8 12.9	83.7 84.9	56.4 57.7	30.1	04.8	80.4	57.2 58.5	$\begin{array}{c} 21 \\ 22 \end{array}$
23	03.1	71.5 72.7	41.8 43.0	14.1	86.1	58.9	31.4 32.6	06.0 07.3	81.7 83.0	59.8	23
24	04.3	73.9	44.2	15.3	87.3	60.1	33.8	08.5	84.3	61.0	$\frac{24}{24}$
25							2335.1		2485.5	2562.3	25
26 27	06.6	76.2	46.6	17.7	89.7	62.5	36.3	11.1	86.8	63.6	26
28	07.8 08.9	77.4 78.5	47.7 48.9	18.9 20.1	$90.9 \\ 92.1$	63.8 65.0	37.6 38.8	12.3 13.6	88.1 89.3	64.9 66.2	27 28
29	10.1	79.7	50.1	21.3	93.3	66.2	40.0	14.8	90.6	67.5	29
30							2341.3	2416.1	2491.9	2568.8	30
31	12.4	82.0	52.5	23.7	95.7	68.7	42.5	17.3	93.2	70.1	31
32 33	13.5 14.7	83.2 84.4	53.6 54.8	24.9 26.1	96.9 98.1	69.9 71.1	43.7 45.0	$\frac{18.6}{19.8}$	94.4 95.7	$71.4 \\ 72.7$	32 33
34	15.8	85.5	56.0	27.3	99.4	72.3	46.2	21.1	97.0	73.9	34
35		1986.7	2057.2	2128.5	2200.6			2422.3			35
36	18.2	87.9	58.4	29.6	01.8	74.8	48.7	23.6	99.5	76.5	36
37 38	19.3 20.5	89.1 90.2	59.5 60.7	30.8 32.0	$03.0 \\ 04.2$	76.0 77.2	$\frac{49.9}{51.2}$	24.9 26.1	2500.8 02.1	$77.8 \\ 79.1$	37 38
39	21.6	91.4	61.9	33.2	05.4	78.4	52.4	27.4	03.4	80.4	39
40			2063.1	2134.4	2206.6	2279.7	2353.7	2428.6		2581.7	40
41	23.9	93.7	64.3	35.6	07.8	80.9	54.9	29.9	05.9	83.0	41
42 43	25.1 26.3	94.9 96.1	65.5 66.6	36.8 38.0	$09.0 \\ 10.2$	82.1 83.3	56.1 57.4	$\frac{31.2}{32.4}$	$\begin{array}{c} 07.2 \\ 08.5 \end{array}$	84.3 85.6	42 43
44	$\frac{20.3}{27.4}$	97.2	67.8	39.2	11.5	84.6	58.6	33.7	09.7	86.9	45 44
45	1928.6	1998.4	2069.0	2140.4	2212.7	2285.8		2434.9	2511.0		45
46	29.7	99.6	70.2	41.6	13.9	87.0	61.1	36.2	12.3	89.5	46
47 48	$\frac{30.9}{32.0}$	$2000.7 \\ 01.9$	$71.4 \\ 72.6$	42.8 44.0	15.1 16.3	88.3 89.5	62.4 63.6	37.4 38.7	$13.6 \\ 14.8$	90.8 92.1	47 48
49	33.2	03.1	73.7	45.2	17.5	90.7	64.8	40.0	16.1	93.4	48 49
50				2146.4		2291.9				2594.7	50
51	35.5	05.4	76.1	47.6	19.9	93.2	67.3	42.5	18.7	96.0	51
52 53	36.7 37.8	06.6 07.8	77.3 78.5	48.8 50.0	$21.1 \\ 22.4$	94.4 95.6	68.6	43.7	20.0	97.3	52 53
54	39.0	07.8	78.5	51.2	23.6	96.9	$69.8 \\ 71.1$	$\frac{45.0}{46.3}$	$\frac{21.2}{22.5}$	98.5 99.8	53 54
55	1940.2			2152.4				2447.5		2601.1	55
56	41.3	11.3	82.0	53.6	26.0	99.3	73.6	48.8	25.1	02.4	56
57 58	42.5 43.6	12.5	83.2	54.8		2300.5	74.8	50.1	26.4	03.7	57
59	44.8	$13.6 \\ 14.8$	84.4 85.6	56.0 57.2	28.4 29.6	01.8 03.0	76.1 77.3	51.3 52.6	$\frac{27.6}{28.9}$	05.0 06.3	58 59
60				2158.4				2453.8			60
	30°	31°	32°	33°	34°	35°	35°	37°	38°	39°	-,

<u>′</u>	40°	41°	42°	43°	44°	45°	46°	47°	48°	49°	,
0		2686.2	2766.0				3098.7			3364.4	0
$\begin{array}{c c} 1 \\ 2 \end{array}$	$08.9 \\ 10.2$	87.6 88.9	67.4 68.7	48.5 49.9	30.9	14.8	3100.1	87.1	75.6	65.9	1
3	11.5	90.2	70.1	51.2	$\frac{32.3}{33.7}$	$16.2 \\ 17.6$	$01.6 \\ 03.0$	88.5 90.0	77.1 78.6	67.4 69.0	$\frac{1}{2}$
4	12.8		71.4	52.6	35.1	19.0	04.4	91.4	80.1	70.5	4
6						3020.4					6
6 7	15.4	94.2	74.1	55.3	37.9	$\frac{21.8}{23.3}$	07.3	94.4	83.1	73.5	6
7	16.8	95.5	75.4	56.7	39.3	23.3	08.8	95.8	84.6	75.1	6 7 8
8 9	18.1 19.4	96.8 98.1	76.8 78.1	58.0 59.4	$40.6 \\ 42.0$	$24.7 \\ 26.1$	10.2 11.6	97.3 98.8	86.1 87.6	76.6 78.1	9
10						3027.5					10
11	22.0	2700.8	80.8	62.1	44.8	28.9	14.5	01.7	90.5	81.2	11
12	23.3	02.1	82.2	63.5	46.2	30.3	16.0	03.2	92.0	82.7	12
13	24.6		83.5	64.9	47.6	31.7	17.4	04.6	93.5	84.2	13
14	25.9	04.8	84.8	66.2	49.0	33.2	18.8	06.1	95.0	85.7	14
15	2627.2	2706.1	2786.2	2867.6	2950.4	3034.6	3120.3	3207.6	3296.5		15
16 17	$28.5 \\ 29.8$	07.4 08.7	87.5 88.9	69.0 70.3	51.8 53.2	36.0 37.4	$21.7 \\ 23.2$	09.0 10.5	98.0 99.5	88.8 90.3	16 17
18	31.1	10.1	90.2	71.7	54.5	38.8	$\begin{array}{c c} 23.2 \\ 24.6 \end{array}$		3301.0	91.8	18
19	32.4	11.4	91.6	73.1	55.9	40.2	26.0	13.4	02.5	93.4	19
20	2633.7	2712.7	2792.9	2874.4	2957.3	3041.7		3214.9	3304.0	3394.9	20
21	35.0	14.0	94.3	75.8	58.7	43.1	28.9	16.4	05.5	96.4	21
22	36.3	15.4 16.7	95.6	77.2	60.1	44.5	30.4	17.9	07.0	98.0	$\frac{22}{23}$
23 24	37.6 38.9	18.0	97.0 98.3		$61.5 \\ 62.9$	45.9 47.3	31.8 33.3	$19.3 \\ 20.8$	08.5	$99.5 \\ 3401.0$	$\frac{23}{24}$
25						3048.7			3311.5	3402.6	25
26	41.6	20.7	2801.0		65.7	50.2	36.2	23.7	13.0	04.1	26
27	42.9	22.0	02.4	84.0	67.1	51.6	37.6	25.2	14.5	05.6	27
28	44.2	23.3	03.7	85.4	68.5	53.0		26.7	16.0	07.2	28
29	45:5		05.1	86.8				28.2	17.5	08.7	29
30	2646.8 48.1	2726.0			72.7	3055.9	3141.9 43.4	3229.6	3319.0 20.5	3410.2 11.8	30 31
31	49.4		07.8 09.1	90.9	74.1	57.3 58.7	44.8		22.1	13.3	32
33	. 50.7	30.0	10.5	92.3	75.5	60.1	46.3	34.1	23.6	14.8	33
34	52.0	31.3	11.8	93.7	76.9	61.5	46.3 47.7	35.6	25.1	16.4	34
35	2653.3	2732.6	2813.2	2895.0	2978.3	3063.0	3149.2	3237.0	3326.6	3417.9	36
36	54.7	34.0		96.4	79.7	64.4		38.5	$28.1 \\ 29.6$	19.5	36 37
37 38	56.0 57.3		15.9 17.2		81.1 82.5	65.8 67.2	52.1 53.5	40.0 41.5	31.1	$21.0 \\ 22.5$	38
39	58.6		18.6	2900.5	83.9	68.7	55.0		32.6		39
40			2820.0	2901.9	2985.3	3070.1					40
41	61.2	40.6	21.3	03.3	86.7	71.5	57.9	45.9	35.6	27.2	41
42	62.5			04.7	88.1	72.9	59.4		37.1	28.7	42
43	63.9				89.5	74.4 75.8	60.8 62.3	48.9 50.3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		43 44
44	65.2	2746.0	25.4	9000	90.9	3077.2	21627	2051 8	22/17	3433 3	45
45 46	67.8	47.3	2826.7	10.2	93.7	78.7	65.2	53.3	43.2	34.9	46
47	69.1	48.6			95.1	80.1	66.6	54.8	44.7	36.4	47
48	70.4	50.0	30.8	13.0	96.5	81.5	68.1	56.3	46.2	38.0	48
49	71.7	51.3		14.3	97.9						49
50	2673.1	2752.7	2833.5	2915.7	2999.3	3084.4	3171.0	3259.3	3349.2	$3441.0 \\ 42.6$	50
51	74.4	54.0 55.3	34.9	$\begin{vmatrix} 17.1 \\ 18.5 \end{vmatrix}$	3000.7	85.8 87.2	72.5 73.9	60.7	50.8	42.6	51 52
52 53	75.7 77.0						75.4		53.8	45.7	53
54	78.3										54
55					3006.3	3091.5	3178.3	3266.7	3356.8	3448.8	65
56	81.0	60.7	41.7	24.0	07.7	93.0	1 79.7	68.2	58.3	50.3	56
57	82.3	62.0	43.0	25.4				69.7	59.9	51.9	57
58	83.6 84.9				$10.6 \\ 12.0$		82.7 84.1	71.1 72.6	$61.4 \\ 62.9$		58 59
59	2686.2	,				3098.7					<b>60</b>
60		41°	42°	43°	44°	45°	46°	47°	48°	49°	
L	40°	41	42	45	44	1 40	40	1 41	1 40	) <b>4</b> J	

′	50°	51°	<b>52°</b>	53°	54°	55°	56°	57°	58°	59°	′
0	3456.5	3550.6		3745.1	3845.7			4163.0	4274.4	4389.1	0
1 1	58.1	52.2	48.4	46.7	47.4	50.5	56.3	64.8	$\begin{array}{c} 76.3 \\ 78.2 \end{array}$	91.0	1
2 3	59.6 61.2	53.8 55.4	50.0 51.6	48.4 50.0	49.1 50.8	52.3 54.0	58.1 59.8	66.6 68.5	80.1	92.9 94.9	$\frac{2}{3}$
3	62.7	56.9	53.2	51.7	52.5	55.7	61.6	70.3	82.0	96.8	4
8		3558.5		3753.4			4063.4		4283.9		5
6	65.9	60.1	56.5	55.0	55.9	59.2	65.2	74.0		4400.7	6
7	67.4	61.7	58.1	56.7	57.6	61.0	67.0	75.8	87.6	02.6	6 7 8
8	69.0	63.3	59.7	58.3	59.3	62.7	68.8	77.7	89.5	04.6	8
9	70.5	64.9	61.3	60.0	61.0	64.5	70.6	79.5	91.4	06.5	9
10		3566.5					4072.4	4181.3	4293.3	4408.5	10
11	73.6	68.1	64.6	63.3	64.4	68.0	74.2 76.0	83.2 85.0	$95.2 \\ 97.1$	10.4	$\begin{array}{c} 11 \\ 12 \end{array}$
12 13	75.2 76.7	$69.7 \\ 71.3$	$\begin{array}{c} 66.2 \\ 67.9 \end{array}$	$65.0 \\ 66.7$	66.1 67.8	69.7 71.5	. 77.7	86.9	99.0	$12.4 \\ 14.3$	13
14	78.3	72.8	69.5	68.3	69.5	73.2	79.5		4300.9	16.3	14
15	3479.9			3770.0				4190.6			15
16	81.4	76.0	72.7	71.7	72.9	76.7	83.1	92.4	04.7	20.2	16
17	83.0	77.6	74.4	73.3	74.6	78.5	84.9	94.2	06.6	22.1	17
18	84.5	79.2	76.0	75.0	76.3	80.2	86.7	96.1	08.5	24.1	18
19	86.1	80.8	77.6	76.7	78.1	82.0	88.5	97.9	10.4	26.1	19
20		3582.4		3778.3	3879.8		4090.3	4199.8	4312.3	4428.0	20
$\begin{array}{ c c } 21 \\ 22 \end{array}$	89.2 90.8	84.0 85.6	80.9 82.5	80.0 81.7	81.5 83.2	85.5 87.2	92.1	$4201.6 \\ 03.5$	$14.2 \\ 16.1$	30.0 31.9	$\frac{21}{22}$
23	90.8	87.2	84.2	83.3	84.9	89.0	95.7	05.3	18.0	33.9	$\frac{22}{23}$
24	93.9	88.8	85.8	85.0	86.6	90.7	97.5	07.2	19.9	35.8	$\mathbf{\tilde{24}}$
25		3590.4		3786.7		3992.5			4321.8		25
26	97.1	92.0	89.1	88.4	90.0	94.3	4101.1	10.9	23.7	39.8	26
27	98.6	93.6	90.7	90.0	91.8	96.0	02.9	12.8	25.6	41.7	27
28	3500.2	95.2	92.3	91.7	93.5	97.8	04.8	14.6	27.5	43.7	28
29	01.8	96.8	94.0	93.4	95.2	99.5	06.6	16.5	29.4	45.7	29
30		3598.4		3795.1 96.8		4001.3		$\frac{4218.3}{20.2}$	4331.3 33.2	4447.6 49.6	30
$\frac{31}{32}$	04.9 06.5	$3600.0 \\ 01.6$	97.3 98.9		98.6 $3900.4$	03.1 04.8	$10.2 \\ 12.0$	22.0	35.2	51.6	$\frac{31}{32}$
33	08.0		3700.5		02.1	06.6	13.8	23.9	37.1	53.5	33
34	09.6	04.8	02.2	01.8		08.3	15.6	25.8	39.0	55.5	34
35	3511.2	3606.4	3703.8	3803.5	3905.5	4010.1	4117.4	4227.6	4340.9	4457.5	35
36	12.7	08.0	05.5	05.1	07.2	11.9	19.2	29.5	42.8	59.4	36
37	14.3	09.6	07.1	06.8			21.0	31.3	44.7	61.4	37
38 39	15.9 17.5	$11.2 \\ 12.8$	08.7	$08.5 \\ 10.2$		15.4	22.9 24.7	33.2 35.1	46.6 48.6	63.4 65.4	38
40		3614.5	10.4							4467.3	39 <b>40</b>
41	20.6	16.1	13.7	13.6	15.9		28.3	38.8	52.4	69.3	41
42	22.2	17.7	15.3	15.2	17.6	22.5	30.1	40.7	54.3	71.3	42
43	23.7	19.3	17.0	17.0	19.3	24.3	31.9	42.5	56.2	73.3	43
44	25.3	20.9					33.8		58.2	75.3	44
45		3622.5				4027.8					45
46	28.5	24.1	21.9	22.0		29.6	37.4	48.1	62.0 63.9	79.2	46
47 48	30.1 31.6	25.7 $27.3$					39.2 41.0	50.0 51.9	65.9	81.2 83.2	47 48
49	33.2					34.9	42.9	53.8	67.8	85.2	48
50	3534.8			3828.7		4036.7			4369.7		50
51	36.4	32.2	30.2	30.4	33.2	38.5	46.5	57.5	71.7	89.1	51
52	37.9	33.8	31.8	32.1	34.9	40.2	48.3	59.4	73.6	91.1	52
53	39.5	35.4						61.3	75.5	93.1	53
54	41.1								77.4	95.1	54
55 56	3542.7 44.3				$ 3940.1  \\ 41.8$	4045.6 47.4			4379.4 81.3		<b>55</b>
57	45.9							66.9		$99.1 \\ 4501.1$	56 57
58	47.4			42.3					85.2	03.1	58
59	49.0			45.0				72.5	87.1	05.1	59
60		3646.7				4054.5		4274.4			60
	50°	61°	52°	53°	54°	55°	56°	57°	58°	59°	′

### Combined Correction for Observed **Sextant Altitudes**

	Corr	ECTION
Observed Altitude	For Sun (to be added to observed alti- tude)	For Star (to be subtracted from observed altitude)
5°	6′ 14′′	9′ 55′′
6	7 41	8 28
7	8 45	7 24
8	9 35	6 34
9	10 16	5 53
10	10 50	5 19
11	11 17	4 51
12	11 41	4 27
13	12 2	4 7
14	12 19	3 49
15	12 34	3 34
20	13 29	2 39
25	14 3	2 5
30	14 26	1 41
35	14 44	1 23
40	14 57	1 10
45	15 8	0 58
50	15 17	0 49
55	15 25	0 40
60	15 31	0 34
65	15 37	0 27
70	15 42	0 21
75	15 47	0 16
80	15 52	0 10
85	15 55	0 5

Small supplementary correction, for Sun only.

Jan. to March and Oct. to Dec. add 10". April to Sept., subtract 10".

## Correction for Dip of Sea Horizon (Sun or Star)

HEIGHT OF OBSERVER'S EYE ABOVE SEA LEVEL (feet)	DIP CORRECTION (to be subtracted from observed altitude)
4	1′ 58′′
6	2 24
8	2 46
10	3 06
12	3 24
14	3 40
16	3 55
18	4 9
90	4 23
$\frac{20}{22}$ .	4 23
22 24	4 48
26	5 0
28	5 11
	=
30	5 22
35	$\begin{array}{c} 5 & 48 \\ 6 & 12 \end{array}$
40 45	6 36
50	6 56
55	7 16
60	7 35
70	8 12
85	9 2 9 48
100	9 48

The dip correction is not required when the artificial horizon is used.

# Table 8

# To Change Hours and Minutes into Decimals of a Day

HOURS EXPRESSED AS DECIMAL PARTS OF A DAY

MINUTES EXPRESSED AS DECIMAL PARTS OF A DAY

	DAY
Hours	DECIMAL
1	.0416
<b>2</b>	.0833
3	.1250
4	.1666
5	.2083
6	.2500
7	.2916
8	.3333
9	.3750
10	.4166
11	.4583
12	.5000
13	.5416
14	.5833
15	.6249
16	.6666
17	.7083
18	.7500
19	.7916
20	.8333
21	.8749
22	.9166
23	.9583
24	1.0000

MINUTES	DECIMAL	MINUTES	DECIMAL		
1	.0006	31	.0215		
2	.0013	32	.0222		
3	.0020	33	.0229		
4	.0027	34	.0236		
5	.0034	35	.0243		
6	.0041	36	.0250		
7	.0048	37	.0256		
8	.0055	38	.0263		
9 [	.0062	39	.0270		
10	.0069	40	.0277		
11	.0076	41	.0284		
12	.0083	42	.0291		
13	.0090	43	.0298		
14	.0097	44	.0305		
15	.0104	45	.0312		
16	.0111	46	.0319		
17	.0118	47	.0326		
18	.0125	48	.0333		
19	.0131	49	.0340		
20	.0138	50	.0347		
21	.0145	51	.0354		
22	.0152	52	.0361		
23	.0159	53	.0368		
24	.0166	54	.0375		
25	.0173	55	.0381		
26	.0180	56	.0388		
27	.0187	57	.0395		
28	.0194	58	.0402		
29	.0201	59	.0409		
30	.0208	60	.0416		

Table 9

#### To Interchange Degrees and Minutes of Longitude and Hours, Minutes. and Seconds of Time. Part 1

	0h	1h	$2^h$	34	4h	54	6ħ	7h	8h	9h	10h	11h
<b>0</b> ^m		15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
4	1	16	31	46	61	76	91	106	121	136	151	166
8	2	17	32	47	62	77	92	107	122	137	152	167
12	3	18	33	48	63	78	93	108	123	138	153	168
16	4	19	34	49	64	79	94	109	124	139	154	169
20	5	20	35	50	65	80	95	110	125	140	155	170
24	6	21	36	51	66	81	96	111	126	141	156	171
28	7	22	37	52	67	82	97	112	127	142	157	172
32	8	23	38	53	68	83	98	113	128	143	158	173
36	9	24	39	54	69	84	99	114	129	144	159	174
40	10	25	40	55	.70	85	100	115	130	145	160	175
44	11	26	41	56	71	86	101	116	131	146	161	176
48	12	27	42	57	72	87	102	117	132	147	162	177
52	13	28	43	58	73	88	103	118	133	148	163	178
56	14	29	44	59	74	89	104	119	134	149	164	179
56	14	29	44	59	74	89	104	119	134	149	164	179

	12h	13h	14h	15h	16h	17%	18h	19h	20h	214	22h	$23^h$
<b>0</b> ^m	180°	195°	210°	225°	240°	255°	270°	285°	300°	315°	330°	345°
4	181	196	211	226	241	256	271	286	301	316	331	346
8	182	197	212	227	242	257	272	287	302	317	332	347
12	183	198	213	228	243	258	273	288	303	318	333	348
16	184	199	214	229	244	259	274	289	304	319	334	349
20	185	200	215	230	245	260	275	290	305	320	335	350
24	186	201	216	231	246	261	276	291	306	321	336	351
28	187	202	217	232	247	262	277	292	307	322	337	352
32	188	203	218	233	248	263	278	293	308	323	338	353
36	189	204	219	234	249	264	279	294	309	324	339	354
40	190	205	220	235	250 .	265	280	295	310	325	340	355
44	191	206	221	236	251	266	281	296	311	326	341	356
48	192	207	222	237	252	267	282	297	312	327	342	357
52	193	208	223	238	253	268	283	298	313	328	343	358
56	194	209	224	239	254	269	284	299	314	329	344	359

## Part 2

	$0^m$	<b>1</b> ^m	$2^m$	$3^m$
0 ⁸	0′	15′	30′	45′
4 8	$\frac{1}{2}$	16 17	$\frac{31}{32}$	46 47
12	3	18	33	48
16 <b>20</b>	4 5	19 20	34 35	49 50
24	6	21	36	51
28 32	8	22 23	37 38	52 53
36	9	24	39	54
40 44	10 11	25 26.	40 41	55 56
48	12 13	27 28	42 43	57 58
52 56	14	28 29	44	59

# EXPLANATION OF TABLE 9

- 1. To change degrees of longitude into bours and minutes of time: Find the number of degrees in Part 1. The required hours will then be found at the head of the column containing the degrees, and the required minutes at the left-hand end of the line containing the degrees.
  - Examples:  $113^{\circ} = 7h \ 32^{m}$ ;  $294^{\circ} = 19h \ 36^{m}$ .
- 2. To change minutes of longitude into minutes and seconds of time: Find the minutes of longitude in Part 2. The required minutes and seconds of time will again be found at the head of the column and the left-hand end of the line.
  - Examples:  $43' = 2^m 52^s$ ;  $28' = 1^m 52^s$ .
  - 3. 1 and 2 can be combined by addition.

    Examples: 113° 43′ = 7ħ 34^m 52°.

    294° 28′ = 19ħ 37^m 52°.

4. To change hours and minutes of time into degrees and minutes of longitude: Find the number of hours at the head of one of the columns of Part 1; then run down the column until you reach a line having at its left-hand end a number of minutes equal to (or just smaller than) the given number of minutes of time. Where that line

and column meet you will find the required degrees of longitude. Examples:  $7h 32^m = 113^\circ$ ;  $19h 36^m = 294^\circ$ .

5. To change minutes and seconds of time into minutes of longitude: Find the number of minutes of time at the head of one of the columns of Part 2; then run down the column until you reach a line having at its left-hand end a number of seconds equal (or nearly equal) to the given number of seconds of time. Where that line and column neet you will find the minutes of longitude.

Examples:  $2^m 52^s = 43'$ ;  $1^m 52^s = 28'$ .

6. 4 and 5 can be combined by addition:

Examples:  $7^s 34^m 52^s = 113^\circ 43'$ ;  $19^h 37^m 52^s = 294^\circ 28'$ .

		Oh Om	00	0h 4m	1°	1 Oh 8m	2°	Oh 12m	3°
8	,	Hav.		·	No.	-	No.		No.
0	0	nav.	No. 0.00000	Hav. 5.88168	0.00008	Hav. 6.48371	0.00030	6.83584	0.00069
	1	2.32539	.00000	.89604	.00008	.49092	.00031	.84065	.00069
<i>4</i> 8	2	.92745	.00000	.91016	.00008	.49807	.00031	84543	.00070
12	3	3.27963	.00000	.92406	.00008	.50516	.00032	.85019	.00071
16	4	.52951	.00000	.93774	.00009	.51219	.00033	.85492	.00072
20	6	3.72333	0.00000	5.95121	0.00009	6.51916	0.00033	6.85963	0.00072
24 28	6 7	.88169 4.01559	.00000	.96447 .97753	.00009	.52608 .53295	.00034	.86431	.00073 .00074
32	8	.13157	.00000	.99040	.00010	.53976	.00034	.87360	.00075
36	9	.23388	.00000	6.00308	.00010	.54652	.00035	.87821	.00076
40	10	4.32539	0.00000	6.01557	0.00010	6.55323	0.00036	6.88279	0.00076
44	11	.40818	.00000	.02789	.00011	.55988	.00036	.88735	.00077
48	12	.48375	.00000	.04004	.00011	.56649	.00037	.89188	.00078
52 56	13 14	.55328	.00000	.05202	.00011	.57304	.00037	.89639	.00079
	14	.61765	.00000	.06384	.00012	.57955	.00038	.90088	
8	<del>-,</del> -	Oh 1m	0°	$O^h 5^m$	1°	0h 9m	2°	Oh 13 ^m	3°
0	15 16	4.67757	0.00000	6.07550	0.00012	6.58600	0.00039	6.90535	0.00080
4 8	17	.73363 .78629	.00001	.08700	.00012	.59241 .59878	.00039	.90979	.00081
12	18	.83594	.00001	.10956	.00013	.60509	.00040	.91860	.00083
16	19	.88290	.00001	.12063	.00013	.61136	.00041	.92298	.00084
20	20	4.92745	0.00001	6.13155	0.00014	6.61759	0.00041	6.92733	0.00085
24	21	.96983	.00001	.14234	.00014	.62377	.00042	.93166	.00085
28	22 23	5.01024	.00001	.15300	.00014	.62991	.00043	.93597	.00086
32 36	23 24	.04885 .08581	.00001	.16353	.00015	.63600	.00043	.94026	.00087 .00088
40	25	5.12127	0.00001	6.18421	0.00015	6.64806	0.00044	6.94877	0.00089
44	26	.15534	.00001	.19437	.00016	.65403	.00044	.95300	.00090
48	27	.18812	.00002	.20441	.00016	.65996	.00046	.95720	.00091
52	28	.21971	.00002	.21433	.00016	.66585	.00046	.96139	.00091
56	29	.25019	.00002	.22415	.00017	.67170	.00047	.96555	.00092
8		Oh 2m	0°	0h 6m	1°	Oh 10m	<b>2</b> °	Oh 14m	3°
0	30 31	5.27963	0.00002	6.23385	0.00017	6.67751	0.00048	6.96970	0.00093
<i>4</i> 8	32	.30811 .33569	.00002	.24345	.00018	.68328	.00048 .00049	.97382	.00094
12	33	.36242	.00002	.26233	.00018	.68901	.00049	.97793	.00096
16	34	.38835	.00002	.27162	.00019	.70036	.00050	.98608	.00097
20	35	5.41352	0.00003	6.28081	0.00019	6.70598	0.00051	6.99013	0.00098
24	36	.43799	.00003	.28991	.00019	.71157	.00051	.99416	.00099
28	37	.46179	.00003	.29891	.00020	.71712	.00052	.99817	.00100
32 36	38 39	.48496 .50752	.00003	.30781	.00020	.72263	.00053	7.00216	.00101
40	40	5.52951	0.00003	6.32536	0.00021	.72811 6.73355	.00053 0.00064	7.01009	.00101 0.00102
44	41	.55095	.00004	.33400	.00021	.73896	.00055	.01403	.00102
48	42	.57189	.00004	.34256	.00022	.74434	.00056	.01795	.00104
52	43	.59232	.00004	.35103	.00022	.74969	.00056	.02185	.00105
56	44	.61229	.00004	.35943	.00023	.75500	.00057	.02573	.00106
-8		Oh 3m	0°	Oh 7m	1°	Oh 11 ^m	<b>2</b> °	Oh 15m	3°
0	45	5.63181	0.00004	6.36774	0.00023	6.76028	0.00058	7.02960	0.00107
4 8	46 47	.65090 .66958	.00004	.37597 .38412	.00024 .00024	.76552	.00058	.03345	.00108 .00109
12	48	.68787	.00005	.39220	.00025	.77592	.00060	.04110	.00109
16	49	.70578	.00005	.40021	.00025	.78108	.00060	.04490	.00111
20	60	5.72332	0.00005	6.40814	0.00026	6.78620	0.00061	7.04869	0.00112
24	61	.74052	.00006	.41600	.00026	.79129	.00062	.05245	.00113
28 32	62 63	.75739 .77394	.00006	.42379	.00027	.79630	.00063	.05620	.00114
38	64	.77394	.00006 .00006	.43151 .43916	.00027 .00027	.80139 .80640	.00063	.05994 .06366	.00116 .00116
40	55	5.80611	0.00006	6.44675	0.00028	6.81137	0.00065	7.06736	0.00116
44	56	.82176	.00007	.45427	.00028	.81632	.00066	.07105	.00118
44 48	67	.83713	.00007	.46172	.00029	.82124	.00066	.07472	.00119
52	68	.85224	.00007	.46911	.00029	.82614	.00067	.07837	.00120
56	59	.86709	.00007	.47644	.00030	.83100	.00068	.08201	.00121
60	60	5.88168	0.00008	6.48371	0.00030	6.83584	0.00069	7.08564	0.00122

		Oh 16m	4°	I Oh aom	5°	L 01-0/m	00	l ol oom	
8	,	Hav.	No.	0h 20m Hav.		Oh 24m	6°	Oh 28m	7°
-0	0	7.08564	0.00122	7.27936	No. 0.00190	<b>Hav.</b> 7.43760	No.	Hav.	No.
	1	.08925	.00123	.28225	.00192	.44001	0.00274 .00275	7.57135	0.00373 .00374
8	2	,09284	.00124	.28513	.00193	.44241	.00277	.57547	.00376
12	3	.09642	.00125	.28800	.00194	.44480	.00278	.57752	.00378
16	4	.09999 7.10354	.00126 0.00127	.29086	.00195	.44719	.00280	.57957	.00380
24	5 6	.10708	.00127	7.29371	0.00197 .00198	7.44957 .45194	0.00282	7.58162 .58366	0.00382
28	7	.11060	.00129	.29938	.00199	.45431	.00285	.58569	.00385
32	8	.11411	.00130	.30220	.00201	.45667	.00286	.58772	.00387
36	9	.11760	.00131	.30502	.00202	.45903	.00288	.58974	.00389
40   44	10 11	7.12108 .12455	0.00132 .00133	7.30782	0.00203 .00204	7.46138 .46372	0.00289 .00291	7.59176	0.00391 .00392
48	12	.12800	.00134	.31340	.00204	.46605	.00292	.59579	.00394
52	13	.13144	.00135	.31618	.00207	.46838	.00294	.59779	.00396
56	14	.13486	.00136	.31895	.00208	.47071	.00296	.59979	.00398
_ \$		Oh 17m	4°	Oh 21m	5°	Oh 25m	6°	Oh 29m	7°
0,	15	7.13827	0.00137	7.32171	0.00210	7.47302	0.00297	7.60179	0.00400
8	16 17	.14167	.00139	.32446	.00211	.47533   .47764	.00299	.60378	.00402
12	18	.14843	.00141	.32994	.00214	.47994	.00302	.60775	.00405
16	19	.15179	.00142	.33266	.00215	.48223	.00304	.60973	.00407
20	20	7.15513	0.00143	7.33538	0.00216	7.48452	0.00305	7.61170	0.00409
24	21 22	.15846	.00144	.33809	.00218	.48680	.00307	.61367 .61564	.00411
32	23	.16509	.00146	.34348	.00213	.49134	.00310	.61760	.00415
36	<b>24</b>	.16839	.00147	.34616	.00222	.49360	.00312	.61955	.00416
40	25	7.17167	0.00148	7.34884	0.00223	7.49586	0.00313	7.62151	0.00418
44	26 27	.17494 .17820	.00150	.35150	.00225	.49811	.00315	.62345	.00420 .00422
52	28	.18144	.00152	35416	.00227	.50259	.00318	.62733	.00424
56	29	.18468	.00153	.35945	.00229	.50483	.00320	.62927	.00426
8		Oh 18 ^m	4°	Oh 22m	5°	Oh 26m	6°	Oh 30m	7°
0	30	7.18790	0.00154	7.36209	0.00230	7.50706	0.00321	7.63120	0.00428
8	31 32	.19111 .19430	.00155 .00156	.36471	.00232	.50928	.00323	.63312	.00430 .00432
12	33	.19749	.00158	.36994	.00234	.51370	.00326	.63696	.00432
16	34	.20066	.00159	.37254	.00236	.51591	.00328	.63887	.00435
20	35	7.20383	0.00160	7.37514	0.00237	7.51811	0.00330	7.64078	0.00437
24	36 37	.20698	.00161	.37773	.00239	.52030 .52249	.00331	.64269	.00439
32	38	.21325	.00163	.38288	.00240	.52467	.00335	.64648	.00443
36	39	.21636	.00165	.38544	.00243	.52685	.00336	.64837	.00445
40	40	7.21947	0.00166	7.38800	0.00244	7.52902	0.00338	7.65026	0.00447
44 48	41 42	.22256	.00167	.39054	.00246	.53119 .53335	.00340	.65214	.00449
52 52	43	.22872	.00169	.39562	.00249	.53550	.00343	.65590	.00453
56	44	.23178	.00171	.39815	.00250	.53766	.00345	.65777	.00455
8		Oh 19m	4°	Oh 23m	5°	Oh 27m	6°	Oh 31m	7°
0	45	7.23483	0.00172	7.40067	0.00252	7.53980	0.00347	7.65964	0.00457
4 8	46	.23787	.00173	.40318	.00253	.54194	.00348	.66150	.00459
12	47 48	.24090 .24392	.00174	.40568 .40818	.00255	.54407 .54620	.00350	.66521	.00461
16	49	.24693	.00177	.41067	.00257	.54833	.00353	.66706	.00465
20	50	7.24993	0.00178	7.41315	0.00259	7.55045	0.00355	7.66891	0.00467
24	51	.25292	.00179	.41563	.00260	.55256	.00357	.67075	.00469
28	52	.25590	.00180	.41810	.00262	.55467	.00359	.67259	.00471
_32 36	53 54	.25886 .26182	.00183	.42056 .42301	.00265	.55887	.00352	.67626	.00475
40	55	7.26477	0.00184	7.42546	0.00266	7.56096	0.00354	7.67809	0.00477
	56	.26771	.00185	.42790	.00268	.56305	.00366	.67991	.00479
44 48	57	.27064	.00186	.43034	.00269	.56513	.00367	.68173	.00481
52	58	.27355	.00188 .00189	.43277	.00271	.56721	.00369	.68355 .68536	.00483
56	69 60	.27646	0.00190	.43519 7.43760	0.00272	7.57135	0.00373	7.68717	0.00487
60	υU	7.27936	O.OOTAO	1.40/00	V.00214	11.01.100	,v.,vv313	11.00111	3.00101

$\overline{}$		Oh 32m	8°	Oh 36m	9°	0h 40m	10°	0h 44m	11°
8	•	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	7.68717	0.00487	7.78929	0.00616	7.88059	0.00760	7.96315	0.00919
8	1	.68897	.00489	.79089	.00618	.88203	.00762	.96446	.00921
	2	.69077	.00491	.79249	.00620	.88348	.00765	.96577 .96707	.00924
12	3	.69257 .69437	.00493	.79409 .79568	.00622	.88491	.00770	.96838	.00927
20	5	7.69616	0.00497	7.79728	0.00627	7.88778	0.00772	7.96968	0.00933
24	6	.69794	.00499	.79886	.00629	.88921	.00775	.97098	.00935
28	7	.69972	.00501	.80045	.00632	.89064	.00777	.97228	.00938
32	8	.70150	.00503	.80203	.00634	.89207	.00780	.97358	.00941
36	9	.70328	.00505	.80361	.00636	.89349	.00783	.97478	.00944
40	10	7.70505	0.00507	7.80519	0.00639	7.89491	0.00785	7.97617	0.00947 .00949
44 48	11 12	.70682 .70858	.00509 .00511	.80677 .80834	.00641	.89633 .89775	.00788	.97746 .97875	.00949
52	13	.71034	.00513	.80991	.00646	.89916	.00793	.98003	.00955
56	14	.71210	.00515	.81147	.00648	.90057	.00795	.98132	.00958
8		Oh 33m	8°	Oh 37m		Oh 41m	10°	Oh 45m	11°
0	15	7.71385	0.00517	7.81303	0.00650	7.90198	0.00798	7.98260	0.00961
8	16	.71560	.00520	.81459	.00653	.90339	.00801	.98389	.00964
	17	.71735	.00522	.81615	.00655	.90480	.00803	.98517	.00966
12	18	.71909	.00524	.81771	.00657	.90620	.00806	.98644	.00969
. 16	19	.72083	.00526	.81926	.00660	.90760	.00808	.98772	.00972
20 24	20 21	7.72257 .72430	0.00528 .00530	$7.82081 \\ .82235$	0.00662	7.90900	0.00811 .00814	7.98899	0.00975 .00978
28	22	.72603	.00532	.82390	.00667	.91179	.00816	.99154	.00981
32	23	.72775	.00534	.82544	.00669	.91318	.00819	.99281	.00984
36	24	.72948	.00536	.82698	.00671	.91457	.00821	.99407	.00986
40	25	7.73119	0.00539	7.82851	0.00674	7.91596	0.00824	7.99534	0.00989
44 48	26 27	.73291	.00541	.83004	.00676	.91734	.00827	.99660	.00992
52	27 28	.73462 .73633	.00543	.83157 .83310	.00679	.91872	.00829	.99786	.00998
56	29	.73803	.00547	.83463	.00683	.92148	.00835	8.00038	.01001
8	-	Oh 34m	8°	Oh 38m	9°	Oh 42m	10°	Oh 46m	11°
0	30	7.73974	0.00549	7.83615	0.00686	7.92286	0.00837	8.00163	0.01004
8	31	.74143	.00551	.83767	.00688	.92423	.00840	.00289	.01007
	32	.74313	.00554	.83918	.00691	.92560	.00843	.00414	.01010
12	33 34	.74482 .74651	.00556	.84070 .84221	.00693	.92697 $.92834$	.00845	.00539	.01012 .01015
20	35	7.74819	0.00560	7.84372	0.00698	7.92970	0.00851	8.00788	0.01018
24	36	.74988	.00562	.84522	.00700	.93107	.00853	.00913	.01021
28	37	.75155	.00564	.84672	.00703	.93243	.00856	.01037	.01024
32	38	.75323	.00567	.84822	.00705	.93379	.00859	.01161	.01027
36	39	.75490	.00569	.84972	.00707	.93514	.00861	.01285	.01030
40	40 41	7.75657	0.00571 .00573	7.85122 .85271	0.00710 .00712	7.93650 .93785	0.00864 .00867	8.01409	0.01033
44	41 42	.75824	.00575	.85271	.00712	.93785	.00869	.01532	.01036 .01039
52	43	.76156	.00578	.85569	.00717	.94055	.00872	.01779	.01042
56	44	.76321	.00580	.85717	.00720	.94189	.00876	.01902	.01045
8	′.	Oh 35m	8°	Oh 39m	9°	Oh 43 ^m	10°	Oh 47m	11°
0	45	7.76487	0.00582	7.85866	0.00722	7.94324	0.00877	8.02025	0.01048
8	46	.76652	.00584	.86014	.00725	.94458	.00880	.02148	.01051
12	47 48	.76816 .76981	.00686	.86161	.00727	.94592 .94726	.00883	.02270 $.02392$	.01054 .01057
16	49	.77145	.00591	.86456	.00732	.94859	.00888	.02592	.01060
20	50	7.77308	0.00593	7.86603	0.00735	7.94992	0.00891	8.02637	0.01063
24	51	.77472	.00595	.86750	.00737	.95126	.00894	.02758	.01066
28	62	.77635	.00598	.86896	.00740	.95259	.00897	.02880	.01069
32 36	53 54	.77798	.00600	.87042	.00742	.95391	.00899	.03001	.01072
40	55	7.78122	.00602 0.00604	.87188 7.87334	0.00745	.95524 7.95656	.00902 0.00905	.03123	.01076
44	56	.78284	.00604	.87480	.00750	.95788	.00908	8.03244 .03365	0.01078 .01081
48	57	.78446	.00609	.87625	.00752	.95920	.00910	.03486	.01081
52	58	.78607	.00611	.87770	.00755	.96052	.00913	.03606	.01087
56	. 69	.78768	.00613	.87915	.00757	.96183	.00916	.03727	.01090
60	60	7.78929	0.00616	7.88059	0.00760	7.96315	0.00919	8.03847	0.01093

		0h 48m	12°	Oh 52m	13°	Lot com	440	1 42 000	450
8	′	Hav.	No.	Hav.	No.	0h 56m	14°	1h Om	15°
10	0	8.03847	0.01093	8.10772	0.01282	Hav. 8.17179	No. 0.01485	Hav. 8.23140	No.
	1	.03967	.01096	.10883	.01285	.17282	.01489	8.23140 .23235	0.01704 .01707
8	2	.04087	.01099	.10993	.01288	.17384	.01492	.23331	.01711
12 16	3 4	.04207	.01102	.11104	.01291	.17487	.01496	.23427	.01715
20	5	.04326 8.04446	.01105 0.01108	.11214	.01295	.17590	.01499	.23523	.01719
24	ĕ	.04565	.01111	8.11324 .11435	0.01298 .01301	8.17692 .17794	0.01503 .01506	8.23618	0.01723 .01726
28	7	.04684	.01114	.11544	.01305	17896	.01510	.23809	.01730
32	8	.04803	.01117	.11654	.01308	.17998	.01513	.23904	.01734
36	9	.04922	.01120	.11764	.01311	.18100	.01517	.23999	.01738
40	10 11	8.05041	0.01123 .01126	8.11873	0.01314	8.18202	0.01521	8.24094	0.01742
48	12	.05277	.01129	.12092	.01317	.18303	.01524	.24189	.01745
52	13	.05395	.01132	.12201	.01324	18506	.01531	.24378	.01753
56	14	.05513	.01135	.12310	.01328	.18607	.01535	.24473	.01767
8		Oh 49m	12°	Oh 53m	13°	Oh 57m	14°	1h 1m	15°
0	15	8.05631	0.01138	8.12419	0.01331	8.18709	0.01538	8.24567	0.01761
8	16 17	.05749	.01142	.12528	.01334	.18810	.01542	.24661	.01764
12	18	.05984	.01145	.12636	.01338 .01341	.18910	.01546	.24755 .24850	.01768 .01772
16	19	.06101	.01151	.12853	.01341	.19112	.01549	.24944	.01776
20	20	8.06218	0.01154	8.12961	0.01348	8.19212	0.01556	8.25037	0.01780
24	21	.06335	.01157	.13069	.01351	.19313	.01560	.25131	.01784
28	22 23	.06451	.01160	.13177	.01354	.19413	.01564	.25225	.01788
32	24	.06568	.01163 .01166	.13285	.01358 .01361	.19513	.01567	.25319 .25412	.01791
40	25	8.06800	0.01170	8.13500	0.01365	8.19713	0.01574	8.25505	0.01799
44	26	.06917	.01173	.13607	.01368	.19813	.01578	.25599	.01803
48	27	.07032	.01176	.13714	.01371	.19913	.01582	.25692	.01807
52	28 29	.07148	.01179	.13822	.01375	.20012	.01585	.25785	.01811
56	29	.07264 Oh 50m	.01182 12°	.13928	.01378	.20112	.01589	.25878	.01815
8	30	8.07379	0.01185	$\frac{0^h \ 54^m}{8.14035}$	13°  0.01382	$\frac{0^{h} \ 58^{m}}{8.20211}$	14°  0.01593	1h 2m 8.25971	15°
	31	.07494	.01188	.14142	.01385	.20310	.01596	.26064	.01822
8	32	.07610	.01192	.14248	.01388	.20410	.01600	.26156	.01826
12	33	.07725	.01195	.14355	.01392	.20509	.01604	.26249	.01830
16 20	34 35	.07839 8.07954	.01198	.14461	.01395	.20608	.01607	.26341	.01834
24	36	.08069	.01201	8.14567 .14673	0.01399 .01402	8.20706 .20805	0.01611 .01615	8.26434 .26526	0.01838 .01842
28	37	.08183	.01207	.14779	.01405	.20904	.01618	.26618	.01846
32	38	.08297	.01211	.14885	.01409	.21002	.01622	.26710	.01850
36	39	.08411	.01214	.14991	.01412	.21100	.01626	.26802	.01854
40	40 41	8.08525 .08639	0.01217 .01220	8.15096	0.01416	8.21199	0.01629	8.26894	0.01858
44 48	42	.08752	.01220	.15201 .15307	.01419	.21297	.01633	.26986 .27078	.01861
52	43	.08866	.01226	.15412	.01426	.21493	.01640	.27169	.01869
56	44	.08979	.01230	.15517	.01429	.21590	.01644	.27261	.01873
8		Oh 51m	12°	Oh 55m	13°	Oh 59m	14°	1h 3m	15°
0	45	8.09092	0.01233	8.15622	0.01433	8.21688	0.01648	8.27352	0.01877
8	46 47	.09205	.01236 .01239	.15726 .15831	.01436 .01440	.21785 .21883	.01651 .01655	.27443 .27534	.01881
12	48	.09431	.01239	.15935	.01443	.21980	.01659	.27626	.01889
16	49	.09543	.01246	.16040	.01447	.22077	.01663	.27717	.01893
20	50	8.09656	0.01249	8.16144	0.01450	8.22175	0.01666	8.27807	0.01897
24	51	.09768	.01252	.16248	.01454	.22272	.01670	.27898	.01901
28 32	52 53	.09880	.01255 .01259	.16352 .16456	.01457 .01461	.22368 .22465	.01674	.27989 .28080	.01905 .01909
36	54	.10104	.01259	.16559	.01461	.22465	.01677	.28080	.01909
40	55	8.10216	0.01265	8.16663	0.01468	8.22658	0.01685	8.28260	0.01917
44	56	.10327	.01268	.16766	.01471	.22755	.01689	.28351	.01921
48	57	.10439	.01272	.16870	.01475	.22851	.01692	.28441	.01925
52	58	.10550	.01275	.16973	.01478	.22947	.01696	.28531	.01929
56 60	59 60	.10661 8.10772	.01278 0.01282	.17076	.01482	.23044	.01700	.28621	.01933
00	90	0.10//2	U.U1282	8.17179	0.01485	8.23140	0.01704	8.28711	0.01937

		1h 4m	16°	1h 8m	17°	1h 12m	18°	1h 16m	19°
8	,	Hav.	No.	Hav.	l No.	Hav.	No.	Hav.	No.
0	0	8.28711	0.01937	8.33940	0.02185	8.38867	0.02447	8.43522	0.02724
	1	.28801	.01941	.34025	.02189	.38946	.02452	.43597	.02729
8	2	.28891	.01945	.34109	.02193	.39026	.02456	.43673	.02734
12	3	.28980	.01949	.34194	.02198	.39105	.02461	.43748	.02738
16	4	.29070	.01953	.34278	.02202	.39185	.02465 0.02470	.43823	.02743
20 24	5 6	8.29159 .29249	0.01957 .01961	8.34362 .34446	0.02206 .02210	8.39264	.02470	8.43899 .43974	0.02748 .02753
28	7	.29249	.01965	.34530	.02215	.39423	.02479	.44049	.02757
32	8	.29427	.01969	.34614	.02219	.39502	.02483	.44124	.02762
36	9	.29516	.01973	.34698	.02223	.39581	.02488	.44199	.02767
40	10	8.29605	0.01977	8.34782	0.02227	8.39660	0.02492	8.44273	0.02772
44 48	11 12	.29694	.01981	.34865	.02232	39739	.02497	.44348	.02776
52	13	.29872	.01989	.35032	.02240	.39897	.02506	.44498	.02786
56	14	.29960	.01993	.35116	.02245	.39976	.02510	.44572	.02791
8	1	1h 5m	16°	1h 9m	17°	1h 13m	18°	1h 17m	19°
0	15	8.30049	0.01998	8.35199	0.02249	8.40055	0.02515	8.44647	0.02796
4	16	.30137	.02002	.35282	.02253	.40133	.02520	.44721	.02800
8	17	.30226	.02006	.35365	.02258	.40212	.02524	.44796	.02805
12 16	18 19	.30314	.02010 .02014	.35449	.02262 .02266	.40290	.02529	.44870	.02810 .02815
20	20	8.30490	0.02014	8.35614	0.02271	8.40447	0.02538	8.45018	0.02820
24	21	.30578	.02022	.35697	.02275	.40525	.02542	.45093	.02824
28	22	.30666	.02026	.35780	.02279	.40603	.02547	.45167	.02829
32	23	.30754	.02030	.35863	.02284	.40681	.02552	.45241	.02834
36	24   25	30842	.02034	.35945	.02288	.40760	.02556	.45315	.02839
40 44	25 26	8.30929 .31017	0.02038 .02043	8.36028 .36110	0.02292 .02297	8.40837 .40915	0.02561 .02565	8.45388 .45462	0.02844 .02849
48	27	.31104	.02047	.36193	.02301	.40993	.02570	.45536	.02853
52	28	.31192	.02051	.36275	.02305	.41071	.02575	.45610	.02858
56	29	.31279	.02055	.36357	.02310	.41149	.02579	.45683	.02863
8	20	1h 6m	16°	1h 10m	17°	1h 14m	18°	1h 18m	19°
0 4	30 31	8.31366 .31453	0.02059 .02063	8.36439 .36521	0.02314	8.41226 .41304	0.02584	8.45757 .45830	0.02868 .02873
8	32	.31453	.02063	.36521	.02319	.41304	.02588	.45830	.02873
12	33	.31627	.02071	.36685	.02327	.41459	.02598	.45977	.02883
16	34	.31714	.02076	.36767	.02332	.41536	.02602	.46050	.02887
20	36 36	8.31800	0.02080	8.36849	0.02336	8.41613	0.02607	8.46124	0.02892
24 28	36 37	.31887	.02084	.36930	.02340 .02345	.41690 .41767	.02612 .02616	.46197 .46270	.02897
32	38	.31974	.02088	.37012	.02349	.41767	.02621	.46343	.02902
36	39	.32147	.02096	.37175	.02354	.41921	.02626	.46416	.02912
40	40	8.32233	0.02101	8.37256	0.02358	8.41998	0.02630	8.46489	0.02917
44	41 42	.32319	.02105	.37337	.02363	.42075	.02635	.46562	. 02922
48 52	42 43	.32405	.02109	.37419	.02367	.42152 $.42229$	.02639	.46634	.02926
56	44	.32577	.02117	.37581	.02376	.42305	.02649	.46780	.02936
8	,	1h 7m	16°	1h 11m	17°	1h 15m	18°	1h 19m	19°
0	45	8.32663	0.02121	8.37662	0.02380	8.42382	0.02653	8.46852	0.02941
4 8	46	.32749	.02126	.37742	.02385	.42458	.02658	.46925	.02946
12	47 48	.32834	.02130 .02134	.37823	.02389	.42535 .42611	.02663	.46998	.02951
16	45 49	.32920	.02134	.37904	.02394	.42611	.02668	.47070 .47142	.02956 .02961
20	50	8.33091	0.02142	8.38065	0.02402	8.42764	0.02677	8.47215	0.02966
24	51	.33176	.02147	.38146	.02407	.42840	.02682	.47287	.02971
28	52	.33262	.02151	.38226	.02411	.42916	.02686	.47359	.02976
32 36	53 54	.33347	.02155	.38306	.02416	.42992	.02691	.47431	.02981
36 40	54 55	.33432 8.33517	.02159 0.02164	.38387 8.38467	.02420 0.02425	.43068 8.43144	.02696 0.02700	.47503 8.47575	.02986 0.02991
44	56	.33602	.02164	.38547	.02425	.43219	.02700	8.47575 .47647	0.02991 .02996
48	57	.33686	.02172	.38627	.02434	.43295	.02710	.47719	.03000
52	58	.33771	.02176	.38707	.02438	.43371	.02715	.47791	.03005
56	59	.33856	.02181	.38787	.02443	.43446	.02719	.47862	.03010
60	60	8.33940	0.02185	8.38867	0.02447	8.43522	0.02724	8.47934	0.03015

		1h 20m	20°	1h 24m	21°	1h 28m	22°	1h 32m	23°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	8.47934	0.03015	8.52127	0.03321	8.56120	0.03641	8.59931	0.03975
8	1	.48006	.03020	.52195	.03326	.56185	.03646	.59993	.03980
	2	.48077	.03025	.52263	.03331	.56250	.03652	.60055	.03986
12	3 4	.48149	.03030	.52331	.03337	.56315	.03657	.60117	.03992
20	5	.48220	.03035 0.03040	.52399	.03342 0.03347	.56379	.03663	.60179	.03998
24	6	8.48292 .48363	.03040	8.52467 .52535	.03352	8.56444 .56509	0.03668	8.60241 .60303	0.04003 .04009
28	7	.48434	.03050	.52602	.03368	.56574	.03679	.60365	.04015
32	8	.48505	.03055	.52670	.03363	.56638	.03685	.60426	.04020
36	9	.48576	.03060	.52738	.03368	.56703	.03690	.60488	.04026
40	10	8.48648	0.03065	8.52806	0.03373	8.56767	0.03695	8.60550	0.04032
44 48	11 12	.48719 .48789	.03070	.52873 .52941	.03379	.56832	.03701 .03706	.60611	.04038 .04043
52	13	.48860	.03080	.53008	.03389	.56960	.03712	.60734	.04043
56	14	.48931	.03085	.53076	.03394	.57025	.03717	.60796	.04055
8		1h 21m	20°	1h 25m	21°	1h 29m	22°	1h 33m	23°
0	15	8.49002	0.03090	8.53143	0.03400	8.57089	0.03723	8.60857	0.04060
8	16	.49073	.03095	.53210	.03405	.57153	.03728	.60919	.04066
	17	.49143	.03101	.53277	.03410	.57217	.03734	.60980	.04072
12	18	.49214	.03106	.53345	.03415	.57282	.03740	.61041	.04078
16	19	.49284	.03111	.53412	.03421	.57346	.03745	.61103	.04083
20	20 21	8.49355 .49425	0.03116 .03121	8.53479 .53546	0.03426 .03431	8.57410 .57474	0.03751 ,03756	8.61164 .61225	0.04089 .04095
28	22	.49425	.03121	.53613	.03437	.57538	.03762	.61286	.04101
32	23	.49566	.03131	.53680	.03442	.57601	.03767	.61347	.04106
36	24	.49636	.03136	.53747	.03447	.57665	.03773	.61408	.04112
40	25	8.49706	0.03141	8.53814	0.03453	8.57729	0.03778	8.61469	0.04118
44	26	.49777	.03146	.53880	.03458	.57793	.03784	.61530	.04124
48 52	27 28	.49847	.03151	.53947	.03463	.57856   .57920	.03795	.61591 .61652	.04130
56	29	.49987	.03161	.54080	.03474	.57984	.03800	.61713	.04141
8	<del></del> -	1h 22m	20°	1h 26m	21°	1h 30m	22°	1h 34m	23°
0	30	8.50056	0.03166	8.54147	0.03479	8.58047	0.03806	8.61773	0.04147
	31	.50126	.03171	.54214	.03484	.58111	.03812	.61834	.04153
8	32	.50196	.03177	.54280	.03490	.58174	.03817	.61895	.04159
12	33	.50266	.03182	.54346	.03495	.58238	.03823	.61955 .62016	.04164
16	34	.50335	.03187 0.03192	.54413 8.54479	0.03506	8.58364	0.03834	8.62077	0.04176
20 24	35 36	8.50405 .50475	.03197	.54545	.03511	.58427	.03839	.62137	.04182
28	37	.50544	.03202	.54612	.03517	.58491	.03845	.62197	.04188
32	38	.50614	.03207	.54678	.03522	.58554	.03851	.62258	.04194
36	39	.50683	.03212	.54744	.03527	.58617	.03856	.62318	.04199
40	40	8.50752	0.03218	8.54810	0.03533	8.58680	0.03862	8.62379	0.04205
44	41 42	.50821	.03223	.54876 .54942	.03538	.58743	.03867	.62439	.04211 .04217
48 52	43	.50960	.03233	.55008	.03549	.58869	.03879	.62559	.04223
56	44	.51029	.03238	.55073	.03554	.58932	.03884	.62619	.04229
8		1h 23m	20°	1h 27m	21.°	1h 31m	22°	1h 35m	23°
$\frac{1}{0}$	46	8.51098	10.03243	8.55139	0.03560	8.58994	0.03890	8.62680	0.04234
	46	.51167	.03248	.55205	.03565	.59057	.03896	.62740	.04240
8	47	.51236	.03254	.55271	.03570	.59120	.03901	.62800	.04246
12	48	.51305	.03259	.55336	.03576	.59183	.03907	.62860	.04252
16	49	.51374	.03264	.55402	.03581	.59245	.03912 0.03918	.62919 8.62979	.04258 0.04264
20	50 51	8.51442 .51511	0.03269 .03274	8.55467 .55533	.03592	8.59308	.03918	.63039	.04264
24 28	52	.51511	.03279	.55598	.03597	.59433	.03929	.63099	.04276
32	53	.51648	.03285	.55664	.03603	.59495	.03935	.63159	.04281
36	54	.51717	.03290	.55729	.03608	.59558	.03941	.63218	.04287
40	55	8.51785	0.03295	8.55794	0.03614	8.59620	0.03946	8.63278	0.04293
44	66	.51854	.03300	.55859	.03619	.59682	.03952	.63338	.04299
48	57	.51922	.03305	.55925 .55990	.03624	.59745	.03958	.63397	.04305
52 56	58 59	.51990	.03311	.56055	.03635	.59869	.03969	.63516	.04317
60	66	8.52127	0.03321	8.56120	0.03641	8.59931	0.03975	8.63576	0.04323
	~~			,	<del></del>				

	-,	1h 36m	24°	1h 40m	25°	1h 44m	26°	1h 48m	27°
8	′	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	8.63576	0.04323	8.67067	0.04685	8.70418	0.05060	8.73637	0.05450
	1	.63635	.04329	.67124	.04691	.70472	.05067	.73690	.05456
4 8	2	.63695	.04335	.67181	.04697	.70527	.05073	.73742	.05463
12	3	.63754	.04340	.67238	.04703	.70582	.05079	.73795	.05470
16	4	.63813	.04346	.67295	.04709	70636	.05086	.73847	.05476
20	5	8.63872	0.04352	8.67352	0.04715	8.70691	0.05092	8.73900	0.05483
24	6	.63932	.04358	.67409	.04722	.70745	.05099 .05105	.73952	.05489
28 32	7 8	.63991	.04364	.67465 .67522	.04728 .04734	.70800 .70854	.05105	.74005	.05503
36	9	.64109	.04376	.67579	.04740	.70909	.05111	74109	.05509
40	10	8.64168	0.04382	8.67635	0.04746	8.70963	0.05124	8.74162	0.05516
44	11	.64227	.04388	.67692	.04752	.71017	.05131	.74214	.05523
48	12	.64286	.04394	.67748	.04759	.71072	.05137	.74266	.05529
52	13	.64345	.04400	.67805	.04765	.71126	.05144	.74318	.05536
56	14	.64404	.04406	.67861	.04771	.71180	.05150	.74371	.05542
8	,	1h 37m	24°	1h 41m	25°	1h 45m	<b>26°</b>	1h 49m	<b>27°</b>
0	15	8.64463	0.04412	8.67918	0.04777	8.71234	0.05156	8.74423	0.05649
4 8	16	.64521	.04418	.67974	.04783	.71289	.05163	.74475	.05566
8 12	17	.64580	.04424 .04430	.68030	.04790	.71343	.05169 .05176	.74527	.05562
12 16	18 19	.64639	.04436	.68087	.04190	.71397 .71451	.05176	.74579 .74631	.05576
20	20	8.64756	0.04442	8.68199	0.04808	8.71505	0.05189	8.74683	0.05582
	21	.64815	.04448	.68256	.04815	.71559	.05195	.74735	.05589
24 28	22	.64873	.04454	.68312	.04821	.71613	.05201	.74787	.05596
32	23	.64932	.04460	.68368	.04827	.71667	.05208	.74839	.05603
36	24	.64990	.04466	.68424	.04833	.71721	.05214	.74890	.05609
40	25	8.65049	0.04472	8.68480	0.04839	8.71774	0.05221	8.74942	0.05616
44 48	26 27	.65107	.04478	.68536 .68592	.04846 .04852	.71828 .71882	.05227	.74994	.05623
52	28	.65224	.04490	.68648	.04858	.71936	.05240	.75097	.05636
56	29	.65282	.04496	.68704	.04864	.71989	.05247	.75149	.05643
s	,	1h 38m	<b>2</b> 4°	1h 42m	25°	1h 46m	26°	1h 50m	27°
0	30	8.65340	0.04502	8.68760	0.04871	8.72043	0.05253	8.75201	0.05649
4 8	31	.65398	.04508	.68815	.04877	.72097	.05260	.75252	.05656
8	32	.65456	.04514	.68871	.04883	.72150	.05266	.75304	.05663
12	33 34	.65514	.04520	.68927	.04890	.72204	.05273	.75355	.05670
16 20	35	.65572 8.65630	.04526 0.04532	.68983 8.69038	.04896 0.04902	3.72257 $3.72311$	.05279 0.05286	.75407 8.75458	.05676
24	36	.65688	.04538	.69094	.04908	.72364	.05292	.75510	0.05683 .05690
28	37	.65746	.04544	.69149	.04915	.72418	.05299	.75561	.05697
32	38	.65804	.04550	.69205	.04921	.72471	.05305	.75613	.05703
36	39	.65862	.04556	.69260	.04927	.72525	.05312	.75664	.05710
40	40	8.65920	0.04562	8.69316	0.04934	8.72578	0.05318	8.75715	0.05717
44 48	41 42	.65978	.04569	.69371	.04940	.72631	.05325	.75767	.05724
48 52	43	.66035	.04575	.69427	.04946	.72684 .72738	.05331	.75818 .75869	.05730 .05737
56	44	.66151	.04587	.69537	.04959	72791	.05345	75920	.05744
8	<del>-</del>	1h 39m	24°	1h 43m	.25°	1h 47m	26°	1h 51m	27°
0	45	8.66208	0.04593	8.69593	0.04965	8.72844	0.05351	$\frac{1807}{8.75972}$	0.05751
	46	.66266	.04599	.69648	.04971	.72897	.05351	.76023	.05757
4 8	47	.66323	.04605	.69703	.04978	.72950	.05364	.76074	.05764
12	48	.66381	.04611	.69758	.04984	.73003	.05371	.76125	.05771
16	49	.66438	.04617	.69814	.04990	.73056	.05377	.76176	.05778
20	50 61	8.66496	0.04623	8.69869	0.04997	8.73109	0.05384	8.76227	0.05785
24 28	51 52	.66553 .66610	.04629 .04636	.69924 .69979	.05003 .05009	.73162 .73215	.05390 .05397	.76278 .76329	.05791
zo 32	53	.66668	.04642	.70034	.05016	.73215	.05404	.76329	.05798 .05805
<i>36</i>	54	.66725	.04648	.70089	.05022	.73321	.05410	.76431	.05803
40	55	8:66782	0.04654	8.70144	0.05028	8.73374	0.05417	8.76481	0.05819
44	56	.66839	.04660	.70198	.05035	.73426	.05423	.76532	.05825
48	57	.66896	.04666	.70253	.05041	.73479	.05430	.76583	.05832
52	58	.66953	.04672	.70308	.05048	.73532	.05436	.76634	.05839
56 60	59	.67010	.04678	.70363	.05054	.73584	.05443	.76684	.05846
	60	8.67067	0.04686	8.70418	0.05060	8.73637	0.05450	8.76735	0.05853

_		1h 52m	28°	1 1h 56m	29°	l ot om		1 01 1111	
8	,	Hav.	No.	Hav.	No.	2h Om	30°	2h 4m	31°
0	0	8.76735	0.05853	8.79720	0.06269	Hav. 8.82599	No.	Hav.	No.
8	ĭ	.76786	.05859	.79769	.06276	.82646	0.06699	8.85380 .85425	0.07142 .07149
	2	.76836	.05866	.79818	.06283	.82694	.06713	.85471	.07157
12 16	3 4	.76887	.05873	.79866	.06290	.82741	.06721	.85516	.07164
20	5	.76938 8.76988	.05880 0.06887	.79915	.06297	.82788	.06728	.85562	.07172
24	6	.77039	.05894	8.79964	0.06304	8.82835 .82882	0.06735	8.85607 .85653	0.07179
28	7	.77089	.05901	.80061	.06318	.82929	.06760	.85698	.07187 .07194
32	8	.77139	.06907	.80110	.06326	82976	.06757	.85743	07202
36	9	.77190	.05914	.80158	.06333	.83023	.06764	.85789	.07209
40 44	10 11	8.77240 .77291	0.05921	8.80207 .80256	0.06340 .06347	8.83069	0.06772	8.85834	0.07217
48	12	.77341	.05935	.80304	.06354	.83116	.06779	.85879 .85925	.07224
52	13	.77391	.06942	.80353	.06361	.83210	.06794	.85970	.07239
56	14	.77441	.05949	.80401	.06368	.83257	.06801	.86015	.07247
8	_ ′	1h 53m	28°	1h 57m	29°	2h 1'n	30°	2h 5m	31°
0	15	8.77492	0.05955	8.80449	0.06375	8.83303	0.06808	8.86060	0.07254
8	16 17	.77542 .77592	.05962	.80498	.06382	.83350	.06816	.86105	.07262
12	18	.77642	.05976	.80546	.06389	.83397 .83444	.06823	.86151	.07270
16	19	.77692	.05983	.80643	.06404	.83490	.06838	.86241	.07285
20	20	8.77742	0.05990	8.80691	0.06411	8.83537	0.06845	8.86286	0.07292
24	21	.77792	.05997	.80739	.06418	.83583	.06852	.86331	.07300
28 32	22 23	.77842 .77892	.06004	.80788	.06425	.83630	.06860	.86376	.07307
36	24	.77942	.06011	.80884	.06432	83676	.06867	.86421	.07315
40	25	8.77992	0.06024	8.80932	0.06446	8.83769	0.06882	8.86511	0.07330
44	26	.78042	.06031	.80980	.06454	.83816	.06889	.86556	.07338
48	27	.78092	.06038	.81028	.06461	.83862	.06896	.86600	.07346
52 56	28 29	.78142 .78191	.06045	.81076 .81124	.06468	.83909	.06904 .06911	.86645	.07353
8		1h 54m	28°	1h 58m	29°	2h 2m	30°	2h 6m	31°
0	30	8.78241	0.06059	8.81172	0.06482	8.84002	0.06919	8.86735	0.07368
4 8	31	.78291	.06066	.81220	.06489	.84048	.06926	.86780	.07376
	32	.78341	.06073	.81268	.06497	.84094	.06933	.86825	.07383
12 16	33 34	.78390	.06080	.81316	.06504 .06511	.84140 .84187	.06941	.86869 .86914	.07391
20	35	8.78490	0.06094	8.81412	0.06518	8.84233	0.06956	8.86959	0.07406
24	36	.78539	.06101	.81460	.06525	.84279	.06963	.87003	.07414
28	37	.78589	.06108	.81508	.06532	.84325	.06970	.87048	.07421
32 36	38 39	.78638	.06115	.81555 .81603	.06540	.84371	.06978	.87093 .87137	.07429
40	40	8.78737	0.06122	8.81651	0.06564	8.84464	0.06993	8.87182	0.07444
44	41	.78787	.06136	.81699	.06561	.84510	.07000	.87226	.07452
48	42	.78836	.06143	.81746	.06568	.84556	.07007	.87271	.07459
52	43	.78885	.06150	.81794	.06576	.84602	.07015	.87315	.07467
<i>56</i>	44	.78935 1h 55m	.06157 28°	.81841 1h 59m	.06533	.84648 2h 3m	.07022 30°	.87360 2h 7m	31°
$-\frac{s}{o}$	45	8.78984	0.06164	8,81889	0.06590	8.84694	0.07030	3.87404	0.07482
	46	.79033	.06171	.81937	.06597	.84740	.07037	.87448	.07490
4 8	47	.79082	.06178	.81984	.06605	.84785	.07045	.87493	.07498
12	48	.79132	.06185	.82032	.06612	.84831	.07052	.87537	.07505
16 20	49 50	.79181 8.79230	.06192 0.06199	.82079 8.82126	.06619 0.06626	.84877 $8.84923$	.07059 0.07067	.87582 8.87626	.07513 0.07521
	51	.79279	.06206	.82174	.06633	.84969	.07074	.87670	.07521
24 28	52	.79328	.06213	.82221	.06641	.85015	.07082	.87714	.07536
32	53	.79377	.06220	.82269	.06648	.85060	.07089	.87759	.07544
36	54	.79426	.06227	.82316	.06655	.85106	.07097	.87803	.07551
40	55 56	8.79475 .79524	0.06234 .06241	8.82363 .82410	0.06662 .06670	8.85152 .85197	0.07104 .07112	8.87847 .87891	0.07559 .07667
44 48	57	.79573	.06241	.82458	.06677	.85243	.07112	.87935	.07574
52	58	.79622	.06255	.82505	.06684	.85289	.07127	.87980	.07582
56	59	.79671	.06262	.82552	.06691	.85334	.07134	.88024	.07590
60	60	8.79720	0.06269	8.82599	0.06699	8.85380	0.07142	8.88068	0.07598

	<del></del>	2h 8m	32°	2h 12m	33°	2h 16m	34°	2h 20m	35°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	8.88068	0.07598	8.90668	0.08066	8.93187	0.08548	8.95628	0.09042
	1	.88112	.07605	.90711	.08074	.93228	.08556	.95668	.09051
4 8	$\hat{2}$	.88156	07613	.90754	.08082	.93270	.08564	.95709	.09059
12	3	.88200	.07621	.90796	.08090	.93311	.08573	.95749	.09067
16	4	.88244	.07628	.90839	.08098	.93352	.08581	.95789	.09076
20	5	8.88288	0.07636	8.90881	0.08106	8.93393	0.08589	8.95828	0.09084
24	6	.88332	.07644	.90924	.08114	.93435	.08597	.95868	.09093
28	7	.88375	.07652	.90966	.08122	.93476	.08605	.95908	.09101
32 36	8 9	.88419	.07659	.91009 .91051	.08130	.93517	.08613	.95948	.09109
40	10	8.88507	0.07675	8.91094	0.08146	8.93599	0.08630	8.96028	0.09126
44	11	.88551	.07683	.91136	.08154	.93640	.08638	.96068	.09134
48	12	.88595	.07690	.91179	.08162	.93681	.08646	.96108	.09143
52	13	.88638	.07698	.91221	.08170	.93722	.08654	.96148	.09151
56	14	.88682	.07706	.91263	.08178	.93764	.08662	.96187	.09160
s	′	2h ym	32°	2h 13m	33°	2h 17m	34°	2h 21m	35°
0	15	8.88726	0.07714	8.91306	0.08186	8.93805	0.08671	8.96227	0.09168
4	16	.88769	.07721	.91348	.08194	.93846	.08679	.96267	.09176
8	17	.88813	.07729	.91390	.08202	.93886	.08687	.96307	.09185
12	18	.88857	.07737	.91432	.08210	.93927	.08695	.96346	.09193
16	19	.88900	.07745	.91475	.08218	.93968	.08703	.96386	.09202
20 24	20 21	8.88944	0.07752 .07760	8.91517	0.08226	8.94009	0.08711	8.96426 .96465	0.09210 .09218
24 28	22	.88988 .89031	.07768	.91559 .91601	.08234	.94050	.08720	.96505	.09218
32	23	.89075	07776	.91643	.08250	.94132	.08736	.96545	09235
36	24	.89118	.07784	.91685	.08258	.94173	.08744	.96584	.09244
40	25	8.89162	0.07791	8.91728	0.08266	8.94213	0.08753	8.96624	0.09252
44	26	.89205	.07799	.91770	.08274	.94254	.08761	.96663	.09260
48	27	.89248	.07807	.91812	.08282	.94295	.08769	.96703	.09269
52	28 29	.89292	.07815	.91854	.08290	.94336	.08777	.96742	.09277
56	Z <del>y</del>	.89335	.07823	.91896	.08298	.94376	.08785	.96782	.09286
-8		2h 10m	32°	2h 14m	33°	2h 18m	34°	2h 22m	35°
0	30 31	8.89379 .89422	0.07830 .07838	8.91938 .91980	0.08306 .08314	8.94417 .94458	0.08794 .08802	8.96821 .96861	0.09294
8	3 <b>2</b>	.89465	.07846	.92022	.08322	.94498	.08810	.96900	.09303
12	33	.89509	07854	.92064	.08330	.94539	.08818	.96940	.09320
16	34	.89552	.07862	.92105	.08338	.94580	.08827	.96979	.09328
20	35	8.89595	0.07870	8.92147	0.08346	8.94620	0.08835	8.97018	0.09337
24	36	.89638	.07877	.92189	.08354	.94661	.08843	.97058	.09345
28	37	.89681	.07885	.92231	.08362	.94701	.08851	.97097	.09353
32 36	38 39	.89725 .89768	.07893	.92273	.08370	.94742 .94782	.08860	.97136 .97176	.09362
40	40	8.89811	0.07901	8.92356	0.08386	8.94823	0.08876	8.97215	0.09370
44	41	.89854	.07917	.92398	.08394	.94863	.08885	.97254	.09387
48	42	.89897	.07924	.92440	.08402	.94904	.08893	.97294	.09396
52	43	.89940	.07932	.92482	.08410	.94944	.08901	.97333	.09404
56	44	.89983	.07940	.92523	.08418	.94985	.08909	.97372	.09413
8	′	2h 11m	32°	2h 15m	33°	2h 19m	34°	2h 23m	35°
0	45	8.90026	0.07948	8.92565	0.08427	8.95025	0.08918	8.97411	0.09421
4	46	.90069	.07956	.92607	.08435	.95065	.08926	.97450	.09430
8	47	.90112	.07964	.92648	.08443	.95106	.08934	.97489	.09438
12 16	48 49	.90155	.07972	.92690	.08451	.95146	.08943	.97529	.09447
20	50	.90198 8.90241	0.07987	.92731 8.92773	.08459 0.08467	.95186 8.95227	.08951	.97568	.09455
24	51	.90284	.07987	.92814	.08475	.95267	0.08959	8.97607 .97646	0.09464
28	52	.90326	.08003	.92856	.08483	.95307	.08976	.97685	.09481
32	53	.90369	.08011	.92897	.08491	.95347	.08984	.97724	.09489
36	<b>54</b>	.90412	.08019	.92939	.08499	.95388	.08992	.97763	.09498
40	55	8.90455	0.08027	8.92980	0.08508	8.95428	0.09001	8.97802	0.09506
44	66	.90498	.08035	.93022	.08516	.95468	.09009	.97841	.09515
48	57	.90540	.08043	.93063	.08624	.95508	.09017	.97880	.09524
52 56	58 59	.90583	.08051 .08059	.93104	.08532	.95548	.09026	.97919	.09632
00			0.08066	.93146 8.93187	.08540 0.08548	.95588 8.95628	.09034 0.09042	.97958 8.97997	.09541 0.09549
60	60	8.90668							

		2h 24m	36°	2h 28m	37°	2h 32m	38°	2h 36m	39°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0		8.97997	0.09549	9.00295	0.10068	9.02528	0.10599	9.04699	0.11143
4 8	1	.98035	.09558	.00333	.10077	.02565	.10608	.04735	.11152
	2	.98074	.09566	.00371	.10086	.02602	.10617	.04770	.11161
12	3	.98113	.09575	.00408	.10095	.02638	.10626	.04806	.11170
16 20	4 5	.98152	0.09583	.00446	.10103	.02675	.10635	.04842	.11179
24	6	8.98191 .98229	.09601	9.00484 $.00522$	0.10112 .10121	9.02712 .02748	0.10644 .10653	9.04877 $.04913$	0.11189 .11198
28	7	.98268	.09609	.00559	.10130	02785	.10662	.04948	.11207
32	8	.98307	.09618	.00597	.10138	.02821	.10671	.04984	.11216
36	9	.98346	.09626	.00634	.10147	.02858	.10680	.05019	.11225
40	10	8.98384	0.09635	9.00672	0.10156	9.02894	0.10689	9.05055	0.11234
44 48	11 12	.98423	.09643	.00710	.10165	.02931	.10698	.05090	.11244
52	13	.98402	.09661	.00747	.10174 .10182	.02967	.10707	.05126	.11253
56	14	.98539	.09669	.00822	.10191	.03040	.10725	.05197	.11271
8	-,	2h 25m	36°	2h 29m	37°	2h 33m	38°	2h 37m	39°
1-0	15	8.98578	0.09678	9.00860	0.10200	$\frac{2000}{9.03077}$	0.10734	9.05232	0.11280
	16	.98616	.09686	.00897	.10209	.03113	.10743	.05268	.11290
8	17	.98655	.09695	.00935	.10218	.03150	.10752	.05303	.11299
12	18	.98693	.09704	.00972	.10226	.03186	.10761	.05339	.11308
16	19	.98732	.09712	.01009	.10235	.03222	.10770	.05374	.11317
20	20	8.98770	0.09721	9.01047	0.10244	9.03259	0.10779	9.05409	0.11326
24	21 22	.98809	.09729	.01084	.10253 .10262	.03295	.10788	.05445	.11336
32	23	.98886	.09747	.01159	.10262	.03331	.10797	.05515	.11345 .11354
36	24	.98924	.09755	.01196	.10279	.03404	10815	.05551	.11363
40	25	8.98963	0.09764	9.01234	0.10288	9.03440	0.10824	9.05586	0.11373
44	26	.99001	.09773	.01271	.10297	.03476	.10833	.05621	.11382
48	27	.99039	.09781	.01308	.10306	.03513	.10842	.05656	.11391
52	28	.99078	.09790	.01345	.10315	.03549	.10851	.05692	.11400
56	29	.99116	.09799	.01383	.10323	.03585	.10861	.05727	.11410
$\frac{s}{0}$	-30	2h 26m	36°	$\frac{2^h \ 30^m}{9.01420}$	37°	2h 34m	38°  0.10870	$\frac{2^h \ 38^m}{9.05762}$	39°  0.11419
	31	8.99154 .99193	.09816	.01457	.10332	9.03621 .03657	.10879	.05797	.11428
8	32	.99231	.09824	.01494	.10350	.03694	.10888	.05832	.11437
12	33	.99269	.09833	.01531	.10359	.03730	.10897	.05867	.11447
16	34	.99307	.09842	.01569	.10368	.03766	.10906	.05903	.11456
20	35	8.99346	0.09850	9.01606	0.10377	9.03802	0.10915	9.05938	0.11465
24	36 37	.99384	.09859	.01643	.10386 .10394	.03838	.10924	.05973	.11474
28 32	38	.99422 .99460	.09876	.01680	.10394	.03874	.10933	.06008	.11493
36	39	.99498	.09885	.01754	.10412	.03946	10951	.06078	.11502
40	40	8.99536	0.09894	9.01791	0.10421	9.03982	0.10960	9.06113	0.11511
44	41	.99575	.09903	.01828	.10430	.04018	.10969	.06148	.11521
48	42	.99613	.09911	.01865	.10439	.04054	.10978	.06183	.11530
52	43	.99651	.09920	.01902	.10448 .10457	.04090	.10988	.06218	.11539
56	44	.99689 2h 27m	36°	.01939 2h 31m	37°	.04126 2h 35m	38°	2h 39m	39°
	45		0.09937	9.01976	0.10466	9.04162	0.11006	9.06288	10.11558
0	45 46	8.99727 .99765	.09946	.02013	.10474	.04198	.11015	.06323	.11567
8	47	.99803	.09955	.02050	.10483	.04234	.11024	.06358	.11577
12	48	.99841	.09963	.02087	.10492	.04270	.11033	.06393	.11586
16	49	.99879	.09972	.02124	.10501	.04306	.11042	.06428	.11595
20	50	8.99917	0.09981	9.02161	0.10510	9.04341	0.11051	9.06462	0.11604
24	51 52	.99955	.09990	.02197	.10519 .10528	.04377	.11060	.06497	.11614
28 32	52 53	9.00031	.10007	0.02234 0.02271	.10528	.04413	.11070	.06567	.11632
36	54	.00068	.10016	.02308	.10546	.04485	.11088	.06602	.11642
40	55	9.00106	0.10025	9.02345	0.10555	9.04520	0.11097	9.06637	0.11651
44	56	.00144	.10033	.02381	.10564	.04556	.11106	.06671	.11660
48	57	.00182	.10042	.02418	.10573	.04592	.11115	.06706	.11670
52	58	.00220	.10051	.02455	.10582	.04628	.11124	.06741	.11679
56	59	.00258	.10059	.02492	.10591	.04663	.11134	.06776	.11688
60	60	9.00295	0.10068	9.02528	0.10599	9.04699	0.11143	9.06810	0.11698

		oh /Om	40°	2h 44m	41°	2h 48m	42°	2h 52m	43°
8	,	$\frac{2^h \ 40^m}{\text{Hav.}}$	No.	Hav.	No.	Hav.	No.	Hav.	No.
-	0	9.06810	0.11698	9.08865	0.12265	9.10866	0.12843	9.12815	0.13432
		.06845	.11707	.08899	.12274	.10899	.12852	.12847	.13442
8	2	.06880	.11716	.08933	.12284	.10932	.12862	.12879	.13452
12		.06914	.11726 .11735	.08966	.12293 .12303	10965	.12872 .12882	.12911 .12943	.13462
20		.06949 9.06984	0.11745	9.09034	0.12312	9.11030	0.12891	9.12975	0.13482
24		.07018	.11754	.09068	.12322	.11063	.12901	.13007	.13492
28	7	.07053	.11763	.09101	.12331	.11096	.12911	.13039	.13502
32		.07088	.11773	.09135	.12341	.11129	.12921	.13071	.13512 .13522
36   40		.07122 9.07157	0.11791	09169	0.12360	9.11194	0.12940	9.13135	0.13532
44	11	.07191	.11801	.09236	.12370	.11227	.12950	.13167	.13542
48	12	.07226	.11810	.09269	.12379	.11260	.12960	.13199	.13552
52	13	.07260	.11820	.09303	.12389	.11292	.12970	.13231	.13562
56		.07295	1.11829 40°	.09337 2h 45m	12398 41°	.11325 2h 49m	42°	.13263 2h 53m	13571 43°
-8		2h 41m		9.09370		9.11358	0.12989	9.13295	0.13581
0		9.0 <b>7</b> 329 .0736 <b>4</b>	0.11838	.09404	0.12408 .12418	.11391	.12989	.13326	.13691
8	17	.07398	.11857	.09437	.12427	.11423	.13009	.13358	.13601
12	18	.07433	.11867	.09471	.12437	.11456	.13018	.13390	.13611
16 20		.07467	.11876	.09504 9.09538	.12446 0.12466	0.11489 $0.11521$	.13028 0.13038	.13422 9.13454	.13621 0.13631
24		9.07501	0.11885 .11896	.09571	.12466	9.11521 $.11554$	.13048	13486	.13631
28	22	.07570	.11904	.09605	.12475	.11586	.13068	.13517	.13651
32		.07605	.11914	.09638	.12485	.11619	.13067	.13549	.13661
36		.07639	.11923	.09672	.12494	.11652	.13077	.13581	.13671
40		9.07673	0.11933 .11942	9.09705	0.12504 .12514	9.11684	0.13087 .13097	9.13613 .13644	0.13681 .13691
48	27	.07742	.11951	.09772	.12523	.11749	.13107	.13676	.13701
52		.07776	.11961	.09805	.12533	.11782	.13116	.13708	.13711
56		.07810	.11970	.09839	.12543	.11814	.13126 42°	.13739	.13721
$-\frac{s}{o}$		$\frac{2^h \ 42^m}{9.07845}$	40°  0.11980	$\frac{2^h}{9.09872}$	41°  0.12552	$\frac{2^h \ 50^m}{9.11847}$	0.13136	$\frac{2^{h} \ 54^{m}}{9.13771}$	43°  0.13731
		.07879	.11989	.09905	.12562	.11879	.13146	.13803	.13741
8		.07913	.11999	.09939	.12572	.11912	.13156	.13834	.13751
12		.07947	.12008 .12018	.09972	.12581 .12591	.11944 .11977	.13166 .13175	.13866 .13898	.13761 .13771
20		9.08016	0.12018	9.10009	0.12691	9.12009	0.13185	9.13929	0.13781
24	36	.08050	.12036	.10072	.12610	.12041	.13195	.13961	.13791
28	37	.08084	.12046	.10105	.12620	.12074	.13206	.13992	.13801
32		.08118	.12055 .12065	.10138	.12629	.12106 .12139	.13215 .13225	14024	.13811
40		9.08186	0.12074	9.10205	0.12649	9.12171	0.13235	9.14087	0.13832
		.08220	.12084	.10238	.12658	.12203	.13244	.14119	.13842
44 48	42	.08254	.12093	.10271	.12668	.12236	.13264	.14150	.13852
52 56		.08288	.12103 .12112	.10304	.12678 .12687	.12268 .12300	.13264 .13274	.14182	.13862 .13872
8		2h 43m	40°	2h 47m	41°	2h 51m	42°	2h 55m	43°
0		9.08357	0.12122	$\frac{\sim}{9.10371}$	0.12697	$\frac{2}{9.12332}$	0.13284	$\frac{2.00}{9.14245}$	0.13882
4		.08391	.12131	.10404	.12707	.12365	.13294	.14276	.13892
12		.08425	.12141	.10437	.12717	.12397	.13304 .13314	.14307	.13902
16		.08459	.12160	.10470 .10503	.12726	.12429	.13314	.14339	.13912 .13922
20	50	9.08526	0.12169	9.10536	0.12746	9.12494	0.13333	9.14402	0.13932
24		.08560	.12179	.10569	.12756	.12526	.13343	.14433	.13942
28   32		.08594	.12188	.10602	.12765	.12558	.13363	.14465	.13952
36		.08628	.12198	.10635	.12775	.12590 .12622	.13363 .13373	.14496	.13962 .13972
40	55	9.08696	0.12217	9.10701	0.12794	9.12655	0.13383	9.14559	0.13983
44	66	.08730	.12226	.10734	.12804	.12687	.13393	.14590	.13993
48 52	57 58	.08764	.12236	.10767	.12814	.12719	.13403	.14621	.14003
56		.08797	.12245	.10800	.12823 .12833	.12751	.13412	.14653	.14013 .14023
60		9.08865	0.12265		0.12843	9.12815	0.13432	9.14715	0.14033

_		01 700		1		T = -		т .	
8	,	2h 56'm	44°	3h Om	45°	3h 4m	46°	3h 8m	47°
<u></u>		Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.14715 .14746	0.14033 .14043	9.16568	0.14645	9.18376 .18405	0.15267 .15278	9.20140 .20169	0.15900 .15911
8	2	.14778	.14053	.16629	.14665	.18435	.15288	.20198	.15921
12	3	.14809	.14063	.16659	.14676	.18465	.15298	.20227	.15932
16	4	.14840	.14073	.16690	.14686	.18495	.15309	.20256	.15943
20	5 6	9.14871 $.14902$	0.14084 .14094	9.16720	0.14696 .14706	9.18524	0.15319	9.20285	0.15953
28	7	.14902	.14104	.16781	.14717	.18584	.15330	.20314	.15964 .15976
32	8	.14965	.14114	.16812	.14727	.18613	.15351	.20372	.16985
36	9	.14996	.14124	.16842	.14737	.18643	.15361	.20401	.15996
40	10	9.15027	0.14134	9.16872	0.14748	9.18673	0.15372	9.20430	0.16007
44   48	11 12	.15058	.14144	16903	.14758 .14768	.18702	.15382 .15393	.20459	.16017 .16028
52	13	.15120	.14165	.16963	.14779	.18762	.15403	.20517	.16039
56	14	.15152	.14175	.16994	.14789	.18791	.15414	.20546	.16049
8	,	2h 57m	44°	3h 1m	45°	3h 5m	46°	3h 9m	47°
0	15	9.15183	0.14185	9.17024	0.14799	9.18821	0.15424	9.20574	0.16060
8	16	.15214	.14195	.17054	.14810	.18850	.15435	.20603	.16071
12	17 18	.15245	.14205 .14215	.17085	.14820 .14830	18880	.15445 .15456	.20632	.16081 .16092
16	19	.15307	.14226	.17145	.14841	.18939	.15466	.20690	.16103
20	20	9.15338	0.14236	9.17175	0.14851	9.18968	0.15477	9.20719	0.16113
24	21	.15369	.14246	.17206	.14861	.18998	.15487	.20748	.16124
28	22 23	.15400 .15431	.14256	.17236 .17266	.14872 .14882	.19027	.15498	.20776	.16135 .16146
32	23 24	.15462	.14276	.17296	.14892	.19086	.15519	.20834	.16156
40	25	9.15493	0.14287	9.17327	0.14903	9.19116	0.15530	9.20863	0.16167
44	26	.15524	.14297	.17357	.14913	.19145	.15540	.20891	.16178
48	27	.15555	.14307	.17387	.14923	.19175	.15551	.20920	.16188
52 56	28 29	.15585 .15616	.14317	17417	.14934 .14944	.19204	.15561	.20949	.16199 .16210
8	<del></del> -	2h 58m	44°	3h 2m	45°	3h 6m	46°	3h 10m	47°
0	30	9.15647	0.14337	9.17477	0.14955	9.19263	0.15582	9.21006	0.16220
4 8	31	.15678	.14348	.17507	.14965	.19292	.15593	.21035	.16231
	32	.15709	.14358	.17538	.14975	.19322	.15603	.21064	.16242
12 16	33 34	.15740 .15771	.14368	17568	.14986 .14996	.19351	.15614	.21092	.16253 .16263
20	35	9.15802	0.14388	9.17628	0.15006	9.19410	0.15635	9.21150	0.16274
24	36	.15832	.14399	.17658	.15017	.19439	.15646	.21178	.16285
28	37	.15863	.14409	.17688	.15027	.19469	.15656	.21207	.16296
32	38	.15894	.14419	.17718	.15038 .15048	.19498	.15667 .15677	.21236	.16306 .16317
36	39 40	0.15925 $0.15955$	.14429 0.14440	17748 9.17778	0.15048	.19527 9.19557	0.15688	9.21293	0.16328
40	41	.15986	.14450	.17808	.15069	.19586	.15699	.21322	.16339
48	42	.16017	.14460	.17838	.15079	.19615	.15709	.21350	.16349
52	43	.16048	.14470	.17868	.15090	.19644	.15720 .15730	.21379	.16360 .16371
56	44	.16078 2h 59m	1.14480 44°	.17898 3h 3m	1.15100 45°	.19674 3h 7m	46°	$\frac{.21407}{3^h 11^m}$	47°
8	45			$\frac{3^n \ 3^m}{9.17928}$	0.15110	9.19703	0.15741	$\frac{3^{n}11^{m}}{9.21436}$	0.16382
0	45 46	9.16109 .16140	0.14491 .14501	17928	.15121	.19732	.15751	.21464	.16392
8	47	.16170	.14511	.17988	.15131	.19761	.15762	.21493	.16403
12	48	.16201	.14521	.18018	.15142	.19790	.15773	.21521	.16414
16	49	.16232	.14532	.18048	.15152	.19820	.15783	.21550	.16425
20	50	9.16262	0.14542 .14552	9.18077	0.15163 .15173	9.19849 .19878	0.15794 .15804	9.21578	0.16436 .16446
24 28	51 52	.16293 .16324	.14552	.18107	.15183	.19907	.15815	.21635	.16457
32	53	.16354	.14573	.18167	.15194	.19936	.15826	.21664	.16468
36	54	.16385	.14583	.18197	.15204	.19965	.15836	.21692	.16479
40	55	9.16415	0.14593	9.18227	0.15215	9.19995	0.15847	9.21721	0.16489 .16500
44	56	.16446	.14604	.18256 .18286	.15226 .15236	.20024	.15858 .15868	.21749	.16500
48	57 58	.16476 .16507	.14614 .14624	.18286	.15236	.20033	.15879	.21806	.16522
56	59	.16537	.14634	.18346	.15257	.20111	.15889	.21834	.16533
60	60	9.16568	0.14645	9.18376	0.15267	9.20140	0.15900	9.21863	0.16543

		3h 12m	48°	3h 16m	49°	3h 20m	50°	3h 24m	51°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.21863	0.16543	9.23545	0.17197	9.25190	0.17861	9.26797	0.18534
4	1	.21891	.16554	.23573	.17208	.25217	.17872	.26823	.18545
	2	.21919	.16565	.23601	.17219	.25244	.17883	.26850	.18557
12	3	.21948	.16576	.23629	.17230	.25271	.17894	.26876	.18568
16 20	4 5	.21976 9.22004	.16587 0.16598	.23656	.17241 0.17252	.25298 9.25325	.17905 0.17916	.26903 9.26929	.18579 0.18591
24	6	.22033	.16608	$9.23684 \\ .23712$	.17263	.25352	.17928	.26956	.18602
28	7	.22061	.16619	.23739	.17274	.25379	17939	.26982	.18613
32	8	.22089	.16630	.23767	.17285	.25406	.17950	.27008	.18624
36	9	.22118	.16641	.23794	.17296	.25433	.17961	.27035	.18636
40	10 11	9.22146 $.22174$	0.16652 .16663	9.23822 $.23850$	0.17307 .17318	$9.25460 \\ .25487$	0.17972 .17983	$9.27061 \\ .27088$	0.18647 .18658
44 48	12	.22202	.16673	.23877	.17329	.25514	17995	.27114	.18670
52	13	,22231	.16684	.23905	.17340	.25541	.18006	.27140	.18681
56	14	.22259	.16695	.23932	.17351	.25568	.18017	.27167	.18692
s	,	3h 13m	48°	3h 17m	49°	3h 21m	60°	3h 25m	61°
0	15	9.22287	0.16706	9.23960	0.17362	9.25595	0.18028	9.27193	0.18704
4 8	16	.22315	.16717	.23988	.17373	.25622	.18039	.27219	.18715
12	17 18	.22343	.16728 .16738	.24015	.17384	.25649 .25676	.18050	.27246	.18727 .18738
16	19	.22400	.16749	.24043	.17406	.25703	.18073	.27298	.18749
20	20	9.22428	0.16760	9.24098	0.17417	9.25729	0.18084	9.27325	0.18761
24	21	.22456	.16771	.24125	.17428	.25756	.18095	.27351	.18772
28	22	.22484	.16782	.24153	.17439	.25783	.18106	.27377	.18783
32 36	23 24	.22512 $.22540$	.16793 .16804	.24180	.17450 .17461	.25810	.18118	.27403	.18795 .18806
40	25	9.22569	0.16815	9.24235	0.17472	9.25864	0.18140	9.27456	0.18817
44	26	.22597	.16825	.24263	.17483	.25891	.18151	.27482	.18829
44 48	27	.22625	.16836	.24290	.17494	.25917	.18162	.27508	.18840
52	28	.22653	.16847	.24317	.17505	.25944	.18174	.27535	.18852
56	29_	.22681	.16858	.24345	.17517	.25971	.18185	.27561	.18863
$\frac{s}{0}$	30	$\frac{3^h 14^m}{9.22709}$	48°	$\frac{3^h \ 18^m}{9.24372}$	49°	3h 22m 9.25998	50°	3h 26m	51°  0.18874
4	31	.22737	.16880	.24400	.17539	.26025	.18207	$9.27587 \\ .27613$	.18886
8	32	.22765	.16891	.24427	.17550	.26051	.18219	.27639	.18897
12	33	.22793	.16902	.24454	.17561	.26078	.18230	.27666	.18908
16	34	.22821	.16913	.24482	.17572	.26105	.18241	.27692	.18920
20 24	35 36	$9.22849 \\ .22877$	0.16924 .16934	9.24509	0.17583 .17594	9.26132 $.26158$	0.18252	9.27718	0.18931
28	37	.22905	.16945	.24536	.17605	.26185	.18263 .18275	.27744	.18943 .18954
32	38	.22933	.16956	.24591	.17616	.26212	.18286	.27796	.18965
36	39	.22961	.16967	.24618	.17627	.26238	.18297	.27822	.18977
40	40	9.22989	0.16978	9.24646	0.17638	9.26265	0.18308	9.27848	0.18988
44   48	41 42	.23017	.16989	.24673 .24700	.17649	.26292	.18320 .18331	.27875 .27901	.19000
52	43	.23073	.17011	.24728	.17672	.26345	.18342	.27901	.19011 .19022
56	44	.23100	17022	.24755	.17683	.26372	.18353	.27953	.19034
8		3h 15m	48°	3h 19m	49°	3h 23m	′ 60°	3h 27m	51°
0	45	9.23128	0.17033	9.24782	0.17694	9.26398	0.18365	9.27979	0.19045
8	46 47	$\begin{array}{c} .23156 \\ .23184 \end{array}$	.17044	.24809 .24837	.17705 .17716	.26425	.18376	.28005	.19057
12	48	.23212	.17066	.24864	.17727	.26452	.18387 .18399	.28031	.19068 .19080
16	49	.23240	.17076	.24891	.17738	.26505	.18410	.28083	.19091
20	50	9.23268	0.17087	9.24918	0.17749	9.26532	0.18421	9.28109	0.19102
24	51 52	.23295	.17098	.24945	.17760	.26558	.18432	.28135	.19114
28 32	52 53	.23323	.17109	.24973	.17772	.26585	.18444	.28161	.19125 .19137
36	54	.23379	.17131	.25027	.17794	.26638	.18466	.28187	.19137
40	55	9.23407	0.17142	9.25054	0.17805	9.26664	0.18478	9.28239	0.19160
44	56	.23434	.17153	.25081	.17816	.26691	.18489	.28265	.19171
48	57	.23462	.17164	.25108	.17827	.26717	.18500	.28291	.19183
52 56	58 59	.23490	.17175	.25135	.17838	.26744	.18511	.28317	.19194
60	60	$\begin{array}{c} .23518 \\ 9.23545 \end{array}$	.17186 0.17197	0.25163 $0.25190$	.17849 0.17861	.26770 9.26 <b>7</b> 97	.18523	.28342	.19205
00	υυ	∂.∠0040	10.T(13)	la.79180	1A'T 190T	18.20197	0.18534	9.28368	0.19217

		3h 28m	52°	3h 32m	53°	l as acm	F 40	1 01 100	550
8	,	Hav.	No.	Hav.	No.	3h 36m	54°	3h 40m	55°
<del>-0</del>	0	9.28368	0.19217	9.29906	0.19909	Hav. 9.31409	No. 0.20611	Hav.	No.
	ĭ	.28394	.19228	.29931	.19921	.31434	.20623	9.32881 .32905	0.21321 .21333
8	2	.28420	.19240	.29956	.19932	.31459	.20634	.32930	.21345
12	3	.28446	.19251	.29981	.19944	.31484	.20646	.32954	.21357
16	4	.28472	.19263	.30007	.19956	.31508	.20658	.32978	.21369
20	5 6	9.28498	0.19274	9.30032	0.19967	9.31533	0.20670	9.33002	0.21381
24	7	.28524	.19286	.30057	.19979	.31558	.20681 .20693	.33027	.21393
32	ė	.28575	.19309	.30108	.20002	.31607	.20705	.33051	.21405 .21417
36	9	.28601	.19320	.30133	.20014	.31632	.20717	.33099	.21429
40	10	9.28627	0.19332	9.30158	0,20026	9.31657	0.20729	9.33123	0.21440
44	11	.28653	.19343	.30184	.20037	.31682	.20740	.33148	.21452
48	12	.28679	.19355	.30209	.20049	.31706	.20752	.33172	.21464
52 56	13 14	.28704	.19366 .19378	.30234	.20060	.31731	.20764	.33196	.21476
	<del></del>	3h 29m	52°		53°	.31756	.20776	.33220	.21488
8	15			3h 33m		3h 37m	54°	3h 41m	55°
0	15 16	9.28756 $.28782$	0.19389 .19401	9.30285	0.20084 .20095	9.31780	0.20788 .20799	9.33244	0.21500
. 4	17	.28807	.19412	.30335	.20107	.31805	.20811	.33268	.21512 .21524
12	18	.28833	19424	.30360	20119	.31854	.20823	.33317	.21536
16	19	.28859	.19435	.30385	.20130	.31879	.20835	.33341	.21548
20	20	9.28885	0.19447	9.30410	0.20142	9.31903	0.20847	9.33365	0.21560
24	21	.28910	.19458	.30436	.20154	.31928	.20858	.33389	.21572
28 32	22 23	.28936 .28962	.19470 .19481	.30461	.20165	.31953	.20870	.33413	.21584
36	24 24	.28987	.19493	.30486	.20177	.31977	.20882 .20894	.33437	.21596 .21608
40	25	9.29013	0.19504	9.30536	0.20200	9.32026	0.20906	9.33485	0.21620
44	26	.29039	.19516	.30561	.20212	.32051	.20918	.33509	.21632
48	27	.29064	.19527	.30586	.20224	.32076	.20929	.33533	.21644
52	28	.29090	.19539	.30611	.20235	.32100	.20941	.33557	.21656
56	29	.29116	.19550	.30636	.20247	.32125	.20953	.33581	.21668
8		3h 30m	52°	3h 34m	53°	3h 38m	54°	3h 42m	55°
0	30 31	9.29141 .29167	0.19562 .19573	9.30662	0.20259 .20271	9,32149	0.20965 .20977	9.33605	0.21680 .21692
8	32	.29107	.19585	.30712	.20282	.32174	.20989	.33653	.21704
12	33	.29218	.19597	.30737	20294	.32223	.21000	.33677	.21716
16	34	.29244	.19608	.30762	.20306	.32247	.21012	.33701	.21728
20	35	9.29269	0.19620	9.30787	0.20317	9.32272	0.21024	9.33725	0.21740
24	36	.29295	.19631	.30812	.20329	.32296	.21036	.33749	.21752
28	37 38	.29320	.19643 .19654	.30837	.20341	.32321	.21048 .21060	.33773	.21764 .21776
32	39	.29346	.19666	.30862	.20352	.32343	.21072	.33821	.21778
40	40	9.29397	0.19677	9.30912	0.20376	9.32394	0.21083	9.33845	0.21800
44	41	.29422	.19689	.30937	.20388	.32418	.21095	.33869	.21812
48	42	.29448	.19701	.30962	.20399	.32443	.21107	.33893	.21824
52	43	.29473	.19712	.30987	.20411	.32467	.21119	.33917	.21836
<u>56</u>	44	3h 31m	1.19724 52°	31012 3h 35m	.20423 53°	.32492 3h 39m	21131 54°	.33941 3h 43m	.21848 55°
0	45	$\frac{3.51}{9.29524}$	0.19735	9.31036	0.20435	9.32516	0.21143	9.33965	0.21860
	46	.29550	.19747	.31061	.20446	.32541	.21155	.33988	.21872
8	47	.29575	.19758	.31086	.20458	.32565	.21167	.34012	.21884
12	48	.29601	.19770	.31111	.20470	.32589	.21178	.34036	.21896
16	49	.29626	.19782	.31136	.20481	.32614	.21190	.34060	.21903
20	50	9.29652	0.19793	9.31161	0.20493	9.32638	0.21202	9.34084	0.21920
24	51 52	.29677	.19805 .19816	.31186	.20505 .20517	.32662 .32687	.21214	34108	.21932 .21944
28	52 53	.29703 .29728	.19816	.31211	20528	.32087	.21238	.34155	.21944
36	54	.29753	.19840	.31260	.20540	.32735	.21250	.34179	.21968
40	55	9.29779	0.19851	9.31285	0.20552	9.32760	0.21262	9.34203	0.21980
44	56	.29804	.19863	.31310	.20564	.32784	.21274	.34227	.21992
48	57	.29829	.19874	.31335	.20575	.32808	.21235	.34251	.22004
52	58	.29855	.19886	.31360	.20587	.32833	.21297	.34274	.22016
56	59	.29880	.19898	.31385	.20599	.32857	.21309	.34298	.22028
60	60	9.29906	0.19909	9.31409	0.20611	9.32881	0.21321	9.34322	0.22040

		3h 44m	56°	3h 48m	57°	3h 52m	58°	3h 56m	59°
ə	′	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.34322	0.22040	9.35733	0.22768	9.37114	0.23504	9.38468	0.24248
	1	.34346	.22052	.35756	.22780	.37137	.23516	.38490	.24261
8	2	.34369	.22064	.35779	.22792	.37160	.23629	.38512	.24273
12	3	.34393	.22077	.35802	.22805	.37183	.23541	.38535	.24286
16	4	.34417	.22089	.35826	.22817	.37205	.23553	.38557	.24298
20	5	9.34441	0.22101	9.35849	0.22829	9.37228	0.23566	9.38579	0.24310
24	6	.34464	.22113	.35872	.22841	.37251	.23578	.38602	.24323
28 32	7 8	.34488 .34512	.22125 .22137	.35895	.22853 .22866	.37274	.23590 .23603	.38624	.24336 .24348
36	9	.34535	.22149	.35942	.22878	.37319	.23615	.38668	.24360
40	10	9.34559	0.22161	9.35965	0.22890	9.37342	0.23627	9.38691	0.24373
44	īĭ	.34583	.22173	.35988	.22902	.37364	.23640	.38713	.24385
48	12	.34606	.22185	.36011	.22915	.37387	.23652	.38735	.24398
52	13	.34630	.22197	.36034	.22927	.37410	.23666	.38757	.24410
56	14	.34654	.22209	.36058	.22939	.37433	.23677	.38780	.24423
8		3h 45m	56°	3h 49m	57°	3h 53m	58°	3h 57m	69°
0	15	9.34677	0.22221	9.36081	0.22951	9.37455	0.23689	9.38802	0.24435
4	16	.34701	.22234	.36104	.22964	.37478	.23702	.38824	.24448
8	17	.34725	.22246	.36127	.22976	.37501	.23714	.38846	.24460
12 16	18 19	.34748 .34772	.22258	36150	.22988	.37523	.23726	.38868	.24473
20	20	9.34795	0.22282	.36173 9.36196	0.23012	9.37569	0.23761	9.38913	0.24498
24	21	.34819	.22294	.36219	.23025	.37591	.23764	.38935	.24510
.28	22	.34843	.22306	.36243	.23037	.37614	.23776	.38957	.24523
32	23	.34866	.22318	.36266	.23049	.37636	.23788	.38979	.24535
36	24	.34890	.22330	.36289	.23061	.37659	.23801	.39002	.24548
40	25	9.34913	0.22343	9.36312	0.23074	9.37682	0.23813	9.39024	0.24560
44	26	.34937	.22355	.36335	.23086	.37704	.23825	.39046	.24573
48 52	27 28	.34960 .34984	.22367 .22379	.36358	.23098	.37727	.23838 .23850	.39068	.24586 .24598
56	29	.35007	.22391	.36404	.23123	.37772	.23863	.39112	.24611
8		3h 46m	56°	3h 50m	57°	3h 54m	58°	3h 58m	59°
10	30	9.35031	0.22403	9.36427	0.23135	9.37794	0.23875	9.39134	0.24623
	31	.35054	.22415	.36450	.23147	.37817	.23887	.39156	24636
8	32	.35078	.22427	.36473	.23160	.37840	.23900	.39178	.24648
12	33	.35101	.22440	.36496	.23172	.37862	.23912	.39201	.24661
16	34	.35125	.22462	.36519	.23184	.37885	.23925	.39223	.24673
20 24	35 36	9.35148	0.22464 .22476	9.36542	0.23196 .23209	9.37907	0.23937 .23950	9.39245	0.24686 .24698
28	37	.35172	.22488	.36588	.23221	.37952	.23962	.39267	24711
32	38	.35219	.22500	.36611	.23233	.37975	.23974	.39311	24723
36	39	.35242	.22512	.36634	.23246	.37997	.23987	.39333	.24736
40	40	9.35266	0.22525	9.36657	0.23258	9.38020	0.23999	9.39355	0.24749
44	41	.35289	.22637	.36680	.23270	.38042	.24012	.39377	.24761
48 52	42 43	.35312	.22549 .22561	.36703	.23282 .23296	.38065	.24024	.39399	.24774
56	44	.35336	.22573	.36726	.23296	.38087	.24036	.39421 .39443	.24786 .24799
8	<del></del> -	3h 47m	66°	3h 51m	67°	3h 55m	58°	3h 59m	69°
0	45	9.35383	0.22585	9.36772	0.23319	$\frac{0.00}{9.38132}$	0.24061	9.39465	0.24811
	46	.35406	.22598	.36794	.23332	.38154	.24074	.39487	.24824
8	47	.35429	.22610	.36817	.23344	.38177	.24086	.39509	.24836
12	48	.35453	.22622	.36840	.23356	.38199	.24099	.39531	.24849
16	49	.35476	.22634	.36863	.23368	.38222	.24111	.39553	.24862
20 24	50 51	9.35500	0.22646 .22668	9.36886	0.23381 .23393	9.38244 .38267	0.24124	9.39575	0.24874
28	52	.35523	.22608	.36932	.23393	.38289	.24136 .24148	39597	.24887 .24899
32	53	.35570	.22683	.36955	.23418	.38311	.24161	.39641	.24912
36	54	.35593	.22695	.36977	.23430	.38334	.24173	.39663	.24924
40	55	9.35616	0.22707	9.37000	0.23442	9.38356	0.24186	9,39685	0.24937
44	56	.35639	.22719	.37023	.23455	.38378	.24198	.39706	.24950
48	57	.35663	.22731	.37046	.23467	.38401	.24211	.39728	.24962
52 56	58 59	.35686	.22744	.37069 .37091	.23479	.38423	.24223 .24236	39750	.24975
60	60	9.35733	0.22768	9.37114	0.23504	9.38468	0.24248	9.39794	.24987 0.26000
100	90	[9.00100	V.86(VO	10.01 TT#	・マ・エンリリオ	19.00400	.v.∆±240	15.02124	V.20UUU

_		4h 0m	60°	4h 4m	61°	4h 8m	62°	4h 12m	63°
ક	′	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.39794	0.25000	9.41094	0.25760	9.42368	0.26526	9.43617	0.27300
	ĭ	.39816	.25013	.41115	.25772	.42389	.26539	.43638	.27313
8	2	.39838	.25025	.41137	.25785	.42410	.26552	.43658	.27326
12	3	.39860	.25038	.41158	.25798	.42431	.26565	.43679	.27339
16	4	.39881	.25050	.41180	.25810	.42452	.26578	.43699	.27352
20	5 6	9.39903	0.25063	9.41201	0.25823 .25836	9.42473	0.26591	9.43720	0.27365
24	7	.39925	.25076 .25088	.41222	.25849	.42515	.26604 .26616	.43741	.27378 .27391
32	8	.39969	.25101	.41265	.25861	.42536	.26629	.43782	.27404
36	9	.39991	.25113	.41287	.25874	.42557	.26642	.43802	.27417
40	10	9.40012	0.25126	9.41308	0.25887	9.42578	0.26655	9.43823	0.27430
44	11	.40034	.25139	.41329	.25900	.42599	.26668	.43843	.27443
48 52	12 13	.40056	.25151 .25164	.41351	.25912 .25925	.42620	.26681 .26694	.43864	.27456 .27469
56	14	.40078	.25177	.41372	.25925	.42641	.26706	.43905	.27482
8	<del></del>	4 ^h 1 ^m	60°	4h 5m	61°	4h 9m	62°	4h 13m	63°
<u> </u>	15	$\frac{4^{11}}{9.40121}$	0.25189	$\frac{4}{9.41415}$	0.25951	$\frac{4^{11}9}{9.42682}$	0.26719	$\frac{4}{9.43926}$	0.27495
	16	.40143	.25202	.41436	.25963	.42703	.26732	.43946	.27508
8	17	.40165	.26214	.41457	.25976	.42724	.26745	.43967	.27521
12	18	.40187	.25227	.41479	.25989	.42745	.26758	.43987	.27534
16	19	.40208	.25240	.41500	.26002	.42766	.26771	.44008	.27547
20	20	9.40230	0.25252	9.41521	0.26014	9.42787	0.26784	9.44028	0.27560
24 28	21 22	.40252	.25265	.41543	.26027 .26040	.42808	.26797 .26809	.44048	.27573 .27586
32	23	.40274	.25290	.41564 .41585	.26053	.42850	.26822	.44089	.27599
36	24	.40317	.25303	.41606	.26065	.42870	.26835	.44110	.27612
40	25	9.40339	0.25316	9.41628	0.26078	9.42891	0.26848	9.44130	0.27625
44	26	.40360	.25328	.41649	.26091	.42912	.26861	.44151	.27638
48 52	27	.40382	.25341	.41670	.26104	.42933	.26874	.44171	.27651
	28	.40404	.25354	.41692	.26117	.42954	.26887 .26900	.44192	.27664 .27677
56	29	.40425	.25366 60°	.41713	.26129 61°	4h 10m	62°	4h 14m	63°
8	30	4h 2m		4h 6m		$\frac{4^{11}10^{11}}{9.42996}$	0.26913	$\frac{4^{11}4^{11}}{9.44232}$	0.27690
0	31	9.40447	0.25379	9.41734 .41755	0.26142 .26155	.43016	.26925	.44253	.27703
4 8	32	.40490	.25404	.41776	.26168	.43037	.26938	.44273	.27716
12	33	.40512	.25417	.41798	.26180	.43058	.26951	.44294	.27729
16	34	.40534	.25429	.41819	.26193	.43079	.26964	.44314	.27742
20	35	9.40555	0.25442	9.41840	0.26206	9.43100	0.26977	9.44334	0.27755 .27768
24 28	36 37	.40577	.25455 .25467	.41861	.26219 .26232	.43120	.26990 .27003	.44375	.27781
32	38	.40620	.25480	.41904	.26244	.43162	.27016	.44396	27794
36	39	.40642	.25493	41925	.26257	.43183	.27029	.44416	.27807
40	40	9.40663	0.25506	9.41946	0.26270	9.43203	0.27042	9.44436	0.27820
44	41	.40685	.25518	.41967	.26283	.43224	.27055	.44457	.27833
48	42	.40707	.25531	.41988	.26296	.43245	.27068	.44477	.27846 .27859
52 56	43 44	.40728 .40750	.25544 .25556	.42009 .42031	.26308 .26321	.43266	.27093	.44518	.27873
8	7	4h 3m	60°	4h 7m	61°	4h 11m	62°	4h 15m	63°
<u>-°</u>	45	$\frac{4^{13}}{9.40771}$	10.25569	9.42052	0.26334	$\frac{4}{9.43307}$	0.27106	9.44538	0.27886
	46	.40793	.25582	.42073	.26347	.43328	.27119	.44558	.27899
4 8	47	.40814	.25594	.42094	.26360	.43348	.27132	.44579	.27912
12	48	.40836	.25607	.42115	.26372	.43369	.27145	.44599	.27925
16	49	.40858	.25620	.42136	.26385	.43390	.27158	44619	.27938
20	50	9.40879	0.25632	9.42157	0.26398	9.43411	0.27171 .27184	9.44639	0.27951 .27964
24	.51 52	.40900 .40922	.25645 .25658	.42178	.26411 .26424	.43431	.27197	.44680	.27977
32	53	.40943	.25671	.42221	.26437	.43473	27210	.44700	.27990
36	54	.40965	.25683	.42242	.26449	.43493	.27223	.44721	.28003
40	55	9.40986	0.25696	9.42263	0.26462	9.43514	0.27236	9.44741	0.28016
44	56	.41008	.25709	.42284	.26475	.43535	.27249	.44761	.28029
48	57	.41029	.25721	.42305	.26488	.43555	.27262	.44781	.28042 .28055
52	58 59	.41051	.25734	.42326	.26501 .26514	43576	.27275 .27288	.44801	.28068
56 60		.41072 9.41094	0.25760	9.42368	0.26526	9.43617	0.27300	9.44842	0.28081
00	υU	D.41094	U.4010U	3.44000	U.4UU4U	10.40011	19.21.000	10.11012	J.SUUJI

		4h 16m	64°	4h 20m	65°	4h 24m	66°	4h 28m	67°
s	′	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.44842	0.28081	9.46043	0.28869	9.47222	0.29663	9.48378	0.30463
8	1	.44862	.28095	.46063	.28882	.47241	.29676	.48397	.30477
	2 3	.44882	.28108	.46083 .46103	.28895	.47261 .47280	.29690	.48416	.30490
12 16	4	.44903	.28121 .28134	.46123	.28922	.47300	.29716	.48454	.30504
20	5	9.44943	0.28147	9.46142	0.28935	9.47319	0.29730	9.48473	0.30530
24	6	.44963	.28160	.46162	.28948	.47338	.29743	.48492	.30544
28	7	.44983	.28173	.46182	.28961	.47358	.29756	.48511	.30557
32 36	8 9	.45003	.28186 .28199	.46202	.28975	.47377 .47397	.29770	.48530	.30571 .30584
40	10	9.45044	0.28212	9.46241	0.29001	9.47416	0.29796	9.48568	0.30597
44	11	.45064	.28225	.46261	.29014	.47435	.29809	.48587	.30611
48	12	.45084	.28238	.46281	.29027	.47455	.29823	.48607	.30624
52 56	13 14	.45104	.28252 .28265	.46301	.29041 .29054	.47474	.29836 .29849	.48626	.30638 .30651
8	<del></del>	4h 17m	64°	4h 21m	65°	4h 25m	66°	4h 29m	67°
0	15	$\frac{4^{11}}{9.45144}$	0.28278	9.46340	0.29067	$\frac{4^{11} \times 5^{11}}{9.47513}$	0.29863	$\frac{4^{11}28}{9.48664}$	0.30664
	16	.45165	.28291	.46360	.29080	.47532	.29876	.48683	.30678
8	17	.45185	.28304	.46380	.29093	.47552	29889	.48702	.30691
12	18	.45205	.28317	.46399	.29107	.47571	.29903	.48720	.30705
16 20	19 20	.45225 $9.45245$	.28330 0.28343	.46419 9.46439	.29120 0.29133	.47590 9.47610	.29916 0.29929	.48739 9.48758	.30718 0.30732
24	21	.45265	.28356	.46458	.29146	.47629	.29943	.48777	.30745
28	22	.45285	.28369	.46478	.29160	.47648	.29956	.48796	.30758
32	23	.45305	.28383	.46498	.29173	.47668	.29969	.48815	.30772
36	24 25	.45325	.28396	.46517	.29186	.47687	.29983	.48834	.30785
40 44	26	9.45345	0.28409 .28422	$9.46537 \\ .46557$	0.29199 .29212	$9.47706 \\ .47725$	0.29996 .30009	9.48853	0.30799 .30812
48	27	45385	.28435	.46576	.29226	.47745	.30023	.48891	.30826
52	28	.45405	.28448	.46596	.29239	.47764	.30036	.48910	.30839
56	29	.45426	.28461	.46616	.29252	.47783	.30049	.48929	.30852
$\frac{s}{0}$	30	$\frac{4^{h} 18^{m}}{9.45446}$	64° 0.28474	$\frac{4^h 22^m}{9.46635}$	65°	$\frac{4^{h} 26^{m}}{9.47803}$	66°	$\frac{4^h \ 30^m}{9.48948}$	67°  0.30866
	31	.45466	.28488	.46655	.29279	.47822	.30076	.48967	.30879
8	32	.45486	.28501	.46675	.29292	.47841	.30089	.48986	.30893
12 16	33 34	.45506	.28514	.46694	.29305	.47860	.30103	.49004	.30906
20	35	.45526 9.45546	.28527 0.28540	0.46714 $0.46733$	.29318 0.29332	.47880 9.47899	.30116 0.30129	0.49023 $0.49042$	.30920 0.30933
24	36	.45566	.28553	.46753	.29345	.47918	.30143	.49061	.30946
28	37	.45586	.28566	.46773	.29358	.47937	.30156	49080	.30960
32 36	38 39	.45606 .45625	.28580	.46792	.29371	.47957	.30169	.49099	.30973
40	40	9.45645	.28593 0.28606	0.46812 $0.46831$	.29385 0.29398	.47976 9.47995	.30183 0.30196	.49118 9.49137	.30987 0.31000
44	41	.45665	.28619	.46851	.29411	.48014	.30209	.49155	.31014
48	42	.45685	.28632	.46871	29424	.48033	.30223	.49174	.31027
52 56	43 44	.45705 .45725	.28645 .28658	.46890 .46910	.29438 .29451	.48053	.30236 .30249	.49193	.31041
8	<del></del>	4h 19m	64°	4h 23m	65°	4h 27m	66°	$\frac{.49212}{4^h \ 31^m}$	.31054 67°
0	45	9.45745	0.28672		0.29464	9.48091	0.30263	9.49231	0.31068
4 8	46	.45765	.28685	.46949	.29477	.48110	.30276	.49250	.31081
8 12	47 48	.45785 .45805	.28698 .28711	.46968	.29491 .29504	.48129	.30290	.49268	.31095
16	49	.45825	.28711	.46988 .47007	.29504	.48148	.30303 .30316	.49287 .49306	.31108
20	60	9.45845	0.28737	9.47027	0.29530	9.48187	0.30330	9.49325	.31121 0.31135
24	51	.45865	.28751	.47046	.29544	.48206	.30343	.49344	.31148
28 32	52 63	.45884	.28764 .28777	.47066	.29557	.48225	.30356	.49362	.31162
38 36	54	.45904 $.45924$	.28777	.47085 $.47105$	.29570 .29583	.48244 .48263	.30370 .30383	.49481 .49400	.31175 .31189
40	55	9.45944	0.28803	9.47124	0.29597	9.48282	0.30397	9.49400 $9.49419$	0.31202
44	56	.45964	.28816	.47144	.29610	.48302	.30410	.49437	.31216
48	67	.45984	.28830	.47163	.29623	.48321	.30423	.49456	.31229
52 56	58 59	.46004 .46023	.28843 .28856	47183 $47202$	.29637 .29650	.48340 .48359	.30437 .30450	.49475	.31243
60	60				n 29663	9 48378		$oxed{0.49494} 0.49512$	.31256 0.31270
									A'OTTO!A

		4h 32m	68°	4h 36m	69°	4 ^h 40 ^m	70°	4h 44m	71°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.49512	0.31270	9.50626	0.32082	9.51718	0.32899	9.52791	0.33722
4	1	.49531	.31283	.50644	.32095	.51736	.32913	.52809	.33735
8	$\hat{2}$	.49550	.31297	.50662	.32109	.51754	.32926	.52826	.33749
12	3	.49568	.31310	.50681	.32122	.51772	.32940	.52844	.33763
16	4	. <b>4</b> 9587	.31324	.50699	.32136	.51790	.32954	.52862	.33777
20	6	9.49606	0.31337	9.50717	0.32150	9.51808	0.32967	9.52879	0.33790
24	6	.49625	.31351	.50736	.32163	.51826	.32981	.52897	.33804
28	7 8	.49643	.31364 .31378	.50754 .50772	.32177	.51844	.32995	.52915	.33818
32 36	9	.49662 .49681	.31391	.50772	.32190	.51862	.33008 .33022	.52952	.33845
40	10	9.49699	0.31405	9.50809	0.32217	9.51898	0.33036	9.52968	0.33859
44	11	.49718	.31418	.50827	.32231	.51916	.33049	.52985	.33873
48	12	.49737	.31432	.50846	.32245	.51934	.33063	.53003	.33887
52	13	.49755	.31445	.50864	.32258	.51952	.33077	.53021	.33900
56	14	.49774	.31459	.50882	.32272	.51970	.33090	.53038	.33914
8	'	4h 33m	68°	4h 37m	69°	4h 41m	70°	4h 45m	71°
0	15	9.49793	0.31472	9.50901	0.32285	9.51988	0.33104	9.53056	0.33928
4 8	16	.49811	.31486	.50919	.32299	.52006	.33118	.53073	.33942
	17	.49830	.31499	.50937	.32313	.52024	.33132	.53091	.33956
12	18	.49849	.31513	.50956	.32326	.52042	.33145	.53109	.33969
16	19	.49867	.31526	.50974	.32340	.52060	.33159 0.33173	9.53144	0.33997
20	20 21	9.49886 .49904	0.31540 .31553	9.50992 .51010	0.32353 .32367	9.52078 .52096	.33186	.53162	.34011
24 28	22	.49904	.31567	.51010	.32381	.52114	.33200	.53179	.34024
32	23	.49942	.31580	.51047	.32394	.52132	.33214	.53197	.34038
36	24	.49960	.31594	.51065	.32408	.52150	.33227	.53214	.34052
40	25	9.49979	0.31607	9.51083	0.32422	9.52168	0.33241	9.53232	0.34066
44	26	.49997	.31621	.51102	.32435	.52185	.33255	.53249	.34080
48	27	.50016	.31634	.51120	.32449	.52203	.33269	.53267	.34093 .34107
52	28 29	.50034	.31648 .31661	.51138 .51156	.32462 .32476	.52221	.33282 .33296	53285	.34121
56		4h 34m	68°	4h 38m	69°	4h 42m	70°	4h 46m	71°
8	30	$\frac{4^{n}}{9.50072}$	0.31675	$\frac{4.38}{9.51174}$	0.32490	$\frac{4^{-}4^{2}}{9.52257}$	0.33310	$\frac{4}{9.53320}$	0.34135
0	31	.50090	.31688	.51193	.32503	.52275	.33323	.53337	.34149
8	32	.50109	.31702	.51211	.32517	.52293	.33337	.53355	.34162
12	33	.50127	.31716	.51229	.32531	.52311	.33351	.53372	.34176
16	34	.50146	.31729	.51247	.32544	.52328	.33365	.53390	.34190
20	35	9.50164	0.31742	9.51265	0.32558	9.52346	0.33378	9.53407	0.34204 .34218
24	36	.50183	.31756	.51284	.32571	.52364	.33392	.53425	.34231
28 32	37 38	.50201	.31770 .31783	.51302	.32585	.52382	.33419	.53460	.34245
36	39	.50238	.31797	.51338	.32612	.52418	.33433	.53477	.34259
40	40	9.50257	0.31810	9.51356	0.32626	9.52436	0.33447	9.53495	0.34273
44	41	.50275	.31824	.51374	.32640	.52453	.33461	.53512	.34287
48	42	.50294	.31837	.51393	.32653	.52471	.33474	.53530	.34300
52	43	.50312	.31851	.51411	.32667	.52489	.33488	.53547	.34314
56	44	.50331	.31865	.51429	.32681	.52507	<del> </del>	.53565	71°
8		4h 35m	68°	4h 39m	69°	4h 43m	70°	4h 47m	
0	45	9.50349	0.31878	9.51447	0.32694	9.52525	0.33515	9.53582	0.34342
4	46	.50368	.31892	.51465	.32708	.52542	.33529	.53600	.34369
12	47 48	.50386	.31919	.51501	32735	.52578	.33557	.53635	.34383
16	49	.50403	.31932	.51519	.32749	.52596	.33570	.53652	.34397
20	50	9.50442	0.31946	9.51538	0.32762	9.52613	0.33584	9.53670	0.34411
24	61	.50460	.31959	.51556	.32776	.52631	.33598	.53687	.34425
28	52	.50478	.31973	.51574	.32790	.52649	.33612	.53704	.34439
32	53	.50497	.31987	.51592	.32803	.52667	.33625 .33639	.53722	.34452
36	54	.50515	.32000	.51610	.32817	9.52702	0.33653	9.53757	0.34480
40	55	9.50534	0.32014	9.51628	0.32831 .32844	52702	.33667	.53774	.34494
1 44	56 57	.50552	.32027 .32041	.51664	.32858	.52738	.33680	.53792	.34508
48 52	58	.50570	.32054	.51682	.32872	.52755	.33694	.53809	.34521
56	59	.50607	.32068	.51700	.32885	.52773	.33708	.53826	.34535
60	60	9.50626	0.32082	9.51718	0.32899	9.52791	0.33722	9:53844	0.34549
, ,,,		, , , , , , , , ,							

0         0         9.53844         0.34549         9.54878         0.35381         9.55893         0.36218         9.56           4         1         .53861         .34663         .54895         .35395         .55909         .36232         .56	av. No.
0 0 9.53844 0.34549 9.54878 0.35381 9.55893 0.36218 9.56	
7 2 100001 100001 10000 100000 100000 1	906 .37073
	922 .37087
	939 .37101
	955 .37115
20 5 9.53931 0.34618 9.54963 0.35451 9.55976 0.36288 9.56	
	988   . <b>37143</b> 005   <b>.37157</b>
	021 .37171
	037 .37186
40	054 0.37200
	070 <b>.37214</b>
	087   .37228
	103 .37242
10 10 10 10 10 10 10 10 10 10 10 10 10 1	119 .37256
$\frac{s}{\sqrt{4^h}} \frac{49^m}{4^0} \frac{72^\circ}{\sqrt{4^h}} \frac{4^h}{53^m} \frac{73^\circ}{\sqrt{4^h}} \frac{4^h}{57^m} \frac{74^\circ}{\sqrt{4^h}} \frac{5^h}{\sqrt{4^h}}$	
0 15 9.54104 0.34757 9.55133 0.35590 9.56144 0.36428 9.57 4 16 .54121 .34771 .55150 35604 .56160 36442 .57	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152   . <b>37284</b> 169   . <b>37298</b>
	185 . <b>37312</b>
16 19 .54173 .34812 .55201 .35646 .56210 .36484 .575	
<b>20 20</b>   9.54190   <b>0.34826</b>   9.55218   <b>0.35660</b>   9.56227   <b>0.36498</b>   9.57	218 0.37340
24 21   .54208   .34840   .55235   .35674   .56244   .36512   .57	
28         22         .54225         .34854         .55252         .35688         .56260         .36526         .57           32         23         .54242         .34868         .55269         .35702         .56277         .36540         .57	
32   23   .54242   .34868   .55269   .35702   .56277   .36540   .57.   36   24   .54260   .34882   .55286   .35716   .56294   .36554   .57.	
40 <b>25</b> 9.54277 <b>0.34895</b> 9.55303 <b>0.35730</b> 9.56310 <b>0.36568</b> 9.573	
44   26   .54294   .34909   .55320   .35743   .56327   .36582   .573	
48   <b>27</b>   .54311   . <b>34923</b>   .55337   . <b>35757</b>   .56343   . <b>36596</b>   .57	
	3 <b>48 .37453</b>
56         29         .54346         .34951         .55370         .36785         .56377         .36624         .573	
8 ' 4 ^h 50 ^m 72° 4 ^h 54 ^m 73° 4 ^h 58 ^m 74° 5 ^h 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000	
4     31     .54380     .34979     .55404     .35813     .56410     .36652     .578       8     32     .54397     .34992     .55421     .35827     .56426     .36666     .578	
12 33   .54415   .35006   .55438   .35841   .56443   .36680   .574	
16 <b>34</b>   .54432   . <b>35020</b>   .55455   . <b>35855</b>   .56460   . <b>36694</b>   .574	146 .37537
20 35 9.54449 0.35034 9.55472 0.35869 9.56476 0.36708 9.574	
24     36     .54466     .35048     .55489     .35883     .56493     .36722     .57.       28     37     .54483     .35062     .55506     .35897     .56509     .36736     .57.	
28   37   .54483   .35062   .55506   .35897   .56509   .36736   .574   32   38   .54501   .35076   .55523   .35911   .56526   .36750   .574	
36 39   .54518   .35090   .55539   .35925   .56543   .36764   .578	
40	
44 .41   .54552   .35117   .55573   .35953   .56576   .36792   .57	560 . <b>37636</b>
48   42   .54569   .35131   .55590   .35967   .56592   .36806   .573	
10000 10000 10000 10000 10000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0 45 9.54621  0.35173  9.55641  0.36009  9.56642  0.36848  9.576	
4 46 .54638 .35187 .55657 .36023 .56658 .36862 .576	
12     48     .54672     .35215     .55691     .36050     .56692     .36891     .57       16     49     .54689     .35228     .55708     .36064     .56708     .36905     .57	
8/ 54	
28 <b>52</b>   .54741   .3 <b>5270</b>   .55758   .36106   .56758   .36947   .57	
32 53 .54758 .35284 .55775 .36120 .56774 .36961 .57	
36 54 .54775 .35298 .55792 .36134 .56791 .36975 .577	
40	
10.   60016.   ±25001   ±25001	
48   57   .54826   .35340   .55842   .36176   .56840   .37017   .578   .52   58   .54843   .35354   .55859   .36190   .56856   .37031   .578	
56 59 .54860 .35368 .55876 .36204 .56873 .37045 .578	
60 60 9.54878 0.36381 9.55893 0.36218 9.56889 0.37059 9.578	

_		5h 4m	76°	5h 8m	77°	5h 12m	78°	5h 16m	79°
8	•	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.57868	0.37904	9.58830	0.38752	9.59774	0.39604	9.60702	0.40460
8	1	.57885	.37918	.58846	.38767	.59790	.39619	.60717	.40474
	2	.57901	.37932	.58862	.38781	.59806	.39633	.60733	.40488
12 16	3 4	.57917 .57933	.37946 .37960	.58878 .58893	.38795 .38809	.59821	.39647	.60748	.40502
20	5	9.57949	0.37974	9.58909	0.38823	.59837 9.59852	.39661 0.39676	.60763 9.60779	.40517 0.40531
24	6	.57965	.37989	.58925	.38837	.59868	.39690	.60794	.40545
28	7	.57981	.38003	.58941	.38852	.59883	.39704	.60809	.40560
32	8	.57998	.38017	.58957	.38866	.59899	.39718	.60825	.40574
36	9	.58014	.38031	.58973	.38880	.59915	.39732	.60840	.40588
40	10	9.58030	0.38045	9.58989	0.38894	9.59930	0.39746	9.60855	0.40602
44 48	11 12	.58046 .58062	.38059 .38073	.5900 <b>4</b> .59020	.38908 .38923	.59946 .59961	.39761	.60870	.40617
52	13	.58078	.38087	.59020	.38937	.59977	.39775	.60886	.40631 .40645
56	14	.58094	.38102	.59052	.38951	.59992	.39803	.60916	.40660
8		5h 5m	76°	5h ym	77°	5h 13m	78°	5h 17m	79°
0	15	9.58110	0.38116	9.59068	0.38965	9.60008	0.39818	9.60931	0.40674
	16	.58126	.38130	.59083	.38979	.60023	.39832	.60947	.40688
8	17	.58143	.38144	.59099	.38994	.60039	.39846	.60962	.40702
12	18	.58159	.38158	.59115	.39008	.60054	.39861	.60977	.40717
16	19	.58175	.38172	.59131	.39022	.60070	.39875	.60992	.40731
20 24	20 21	9.58191	0.38186 .38200	9.59147	0.39036 .39050	9.60085 .60101	0.39889	9.61008 .61023	0.40745 .40760
28	22	.58223	.38215	.59178	.39064	.60101	.39918	.61028	.40774
32	23	.58239	.38229	.59194	.39079	.60132	.39932	.61053	.40788
36	24	.58255	.38243	.59210	.39093	.60147	.39946	.61069	.40802
40	25	9.58271	0.38257	9.59225	0.39107	9.60163	0.39960	9.61084	0.40817
44	26	.58287	.38271	.59241	.39121	.60178	.39975	.61099	.40831
48   52	27 28	.58303	.38285	.59257 .59273	.39135 .39150	.60194	.39989	.61114	.40845
56	29	.58335	.38314	.59289	.39164	.60209 .60225	.40017	.61129	.40874
8	<del>-</del> -	5h 6m	76°	5h 10m	77°	5h 14m	78°	5h 18m	79°
0	30	9.58351	0.38328	9.59304	0.39178	9.60240	0.40032	9.61160	0.40888
4	31	.58367	.38342	.59320	.39192	.60256	.40046	.61175	.40903
8	32	.58383	.38356	.59336	.39206	.60271	.40060	.61190	.40917
12	33	.58399	.38370	.59351	.39221	.60287	.40074	.61205	.40931
16	34 35	.58415	.38384 0.38398	.59367 9.59383	.39235 0.39249	.60302  9.60318	.40089 0.40103	.61221 9.61236	.40945 0.40960
20 24	36	9.58431	.38413	.59399	.39263	.60333	.40117	.61251	.40974
28	37	.58463	.38427	.59414	.39277	.60348	.40131	.61266	.40988
32	38	.58479	.38441	.59430	.39292	.60364	.40146	.61281	.41003
36	39	.58495	.38455	.59446	.39306	.60379	.40160	.61296	.41017
40	40	9.58511	0.38469	9.59461	0.39320	9.60395	0.40174	9.61312	0.41031
144	41 42	.58527 .58543	.38483	.59477	.39334	.60410	.40188	.61327	.41046 .41060
48 52	43	.58559	.38512	.59508	.39363	.60441	.40217	.61357	.41074
56	44	.58575	.38526	.59524	.39377	.60456	.40231	.61372	.41089
-8	,	$5^h \gamma^m$	76°	5h 11m	77°	5h 15m	78°	5h 19m	79°
0	45	9.58591	0.38540	9.59540	0.39391	9.60472	0.40245	9.61387	0.41103
8	46	.58607	.38554	.59556	.39405	.60487	.40260	.61402	.41117
	47	.58623	.38568	.59571	.39420	.60502	.40274	.61417	.41131
12	48 49	.58639	.38582 .38597	59587	.39434	.60518	.40288	.61433	.41146 .41160
20	50	9.58671	0.38611	9.59618	0.39462	9.60549	0.40317	9.61463	0.41174
24	51	.58687	.38625	.59634	.39476	.60564	.40331	.61478	.41189
28	<b>52</b>	.58703	.38639	.59649	.39491	.60579	.40345	.61493	.41203
32	53	.58719	.38653	.59665	.39605	.60595	.40360	.61508	.41217
36	64	.58735	.38667	.59681	.39519	.60610	.40374	61523	.41232
40	55	9.58750	0.38682	9.59696	0.39533	9.60625	0.40388	9.61538	0.41246
44	56	.58766	.38696 .38710	.59712	.39548	.60641	.40402 .40417	.61553 .61568	.41260
48 52	57 58	.58782	.38710	.59728	.39576	.60671	.40417	.61583	.41275
56	59	.58814	.38738	.59759	.39590	.60687	.40445	.61598	.41303
60	60	9.58830	0.38752	9.59774	0.39604	9.60702	0.40460	9.61614	0.41318
		10.2000			T-X100 711 11 11 11	100			

	,	5h 20m	80°	5h 24m	81°	5h 28m	82°	5h 32m	83°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	Hav.	No.
0	0	9.61614	0.41318	9.62509	0.42178	9.63389	0.43041	9.64253	0.43907
	1	.61629	.41332	.62524	.42193	.63403	.43056	.64267	.43921
4 8	2	.61644	.41346	.62538	.42207	.63418	.43070	.64281	.43935
12	3	.61659	.41361	.62553	.42221	.63 <b>4</b> 32	.43085 .43099	.64296	.43950
16 20	4 6	.61674 9.61689	.41375 0.41389	0.62568 $0.62583$	0.42250	9.63461	0.43113	0.64324	0.43979
24	6	.61704	.41404	.62598	.42264	.63476	.43128	.64339	.43993
28	7	.61719	.41418	.62612	.42279	.63490	.43142	.64353	.44008
32	8	.61734	.41432	.62627	.42293	.63505	.43157	.64367	.44022
36	9	.61749	.41447	.62642	.42308	.63519	.43171	.64381	.44036
40	10	9.61764	0.41461	9.62657	0.42322 .42336	9.63534	0.43185 .43200	9.64396	0.44051 .44065
44 48	11 12	.61779 .61794	.41475 .41490	.62671 .62686	.42351	.63563	.43214	.64424	44080
<i>52</i>	13	.61809	.41504	.62701	.42365	.63577	.43229	.64438	.44094
56	14	.61824	.41518	.62716	.42379	.63592	.43243	.64452	.44109
8		5h 21m	80°	5h 25m	81°	5h 29m	82°	5h 33m	83°
0	15	9.61839	0.41533	9.62730	0.42394	9.63606	0.43257	9.64467	0.44123
4	16	.61854	.41547	.62745	.42408	.63621	.43272	.64481	.44138
	17	.61869	.41561	.62760	.42423	.63635	.43286	.64495	.44152
12	18 19	.61884	.41576 .41590	.62774	.42437 .42451	.63649 .63664	.43301 .43315	.64509 .64523	.44166 .44181
16 20	20	0.61899 $0.61914$	0.41604	0.62789 $0.62804$	0.42466	9.63678	0.43330	9.64538	0.44195
24	21	.61929	.41619	.62819	.42480	.63693	.43344	.64552	.44210
28	22	.61944	.41633	.62833	.42494	.63707	.43358	.64566	.44224
32	23	.61959	.41647	.62848	.42509	.63722	.43373	.64580	.44239
36	24	.61974	.41662	.62863	.42523	.63736	.43387	.64594	.44253
40	25 26	9.61989	0.41676 .41690	9.62877 $.62892$	0.42538 .42552	9.63751 .63765	0.43402 .43416	9.64609	0.44268 .44282
44 48	27	.62018	.41705	.62907	.42566	.63779	.43430	.64637	.44296
52	28	.62033	.41719	.62921	.42581	63794	.43445	.64651	.44311
56	29	.62048	.41733	.62936	.42595	.63808	.43459	.64665	.44325
8	′	5h 22m	80°	5h 26m	81°	5h 30m	82°	5h 34m	83°
0	30	9.62063	0.41748	9.62951	0.42610	9.63823	0.43474	9.64679	0.44340
<i>4</i> 8	31	.62078	.41762	.62965	.42624	.63837	.43488	.64694	.44354
8 12	32 33	.62093 .62108	.41776 .41791	.62980 .62995	.42638 .42653	.63851 .63866	.43503 .43517	.64708	.44369
16	34	.62123	.41805	.63009	.42667	.63880	.43531	.64736	.44398
20	35	9.62138	0.41819	9.63024	0.42681	9.63895	0.43546	9.64750	0.44412
24	36	.62153	.41834	.63039	.42696	.63909	.43560	.64764	.44427
28	37	.62168	.41848	.63063	.42710	.63923	.43575	.64778	.44441
32 36	38 39	.62182 .62197	.41862 .41877	.63068 .63082	.42725 .42739	.63938 .63952	.43589 .43603	.64793 .64807	.44455
<i>40</i>	40	9.62212	0.41891	9.63097	0.42763	9.63966	0.43618	9.64821	0.44484
44	41	.62227	.41905	.63112	.42768	.63981	.43632	.64835	.44499
48	42	.62242	.41920	.63126	.42782	.63995	.43647	.64849	.44513
52	43	.62257	.41934	.63141	.42797	.64010	.43661	.64863	.44528
56	44	.62272	.41949	.63156	.42811	.64024	.43676	.64877	.44542
8		5h 23m	80°	5h 27m	81°	5h 31m	82°	5h 35m	83°
0	45 46	9.62287	0.41963 .41977	9.63170	0.42825 .42840	9.6 <b>4</b> 038 .6 <b>4</b> 053	0.43690	9.64891	0.44557
4 8	47	.62301	.41992	63185	.42854	.64067	.43704 .43719	.64905	.44571
12	48	.62331	.42006	.63214	.42869	.64081	.43733	.64934	.44600
16	49	.62346	.42020	.63228	.42883	.64096	.43748	.64948	.44614
20	50	9.62361	0.42035	9.63243	0.42897	9.64110	0.43762	9.64962	0.44629
24 28	51 52	.62376	.42049 .42063	.63258 .63272	.42912 .42926	.64124 .64139	.43777	.64976	.44643
zo 32	53	.62405	.42063	.63272	.42920	.64153	.43791 .43805	.64990 .65004	.44658 .44672
36	54	.62420	.42092	.63301	.42955	.64167	.43820	.65018	.44687
40	55	9.62435	0.42106	9.63316	0.42969	9.64181	0.43834	9.65032	0.44701
44	56	.62450	.42121	.63330	.42984	.64196	.43849	.65046	.44716
48	67	.62464	.42135	.63345	.42998	.64210	.43863	.65060	.44730
	58	.62479	.42150	.63360	.43013	.64224	.43878	.65074	.44745
52 56	59	.62494	.42164	.63374	.43027	.64239	.43892	.65088	.44769

Ė		5h 36m	84°	5h 40m	85°	5h 44m	86°	l ch /Om	87°
8	,	Hav.	No.	Hav.	No.	Hav.	No.	5h 48m Hav.	No.
0	0	9.65102	0.44774	9.65937	0.45642	9.66757	0.46512	$\frac{1000}{9.67562}$	0.47383
	1	.65116	.44788	.65950	.45657	.66770	.46527	.67576	.47398
8	2	.65130	.44803	.65964	.45671	.66784	.46541	.67589	.47412
12	3	.65144	.44817	.65978	.45686	.66797	.46556	.67602	.47427
16	4	.65158	.44831	.65992	.45700	.66811	.46570	.67616	.47441
20	5 6	9.65172	0.44846 .44860	9.66006	0.45715 .45729	9.66824	0.46585	9.67629	0.47456
28	7	.65200	.44875	.66033	.45744	.66838	.46599 .46614	.67642 .67656	.47470 .47485
32	8	65214	.44889	.66047	.45758	.66865	.46628	.67669	.47499
36	9	.65228	.44904	.66061	.45773	.66878	.46643	.67682	47514
40	10	9.65242	0.44918	9.66074	0.45787	9.66892	0.46657	9.67695	0.47528
44	11	.65256	.44933	.66088	.45802	.66905	.46672	.67709	.47543
48 52	12 13	65270	.44947	.66102	.45816	.66919	.46686	.67722	.47558
56	14	.65298	44976	.66116	.45831	.66932 .66946	.46701 .46715	.67735 .67748	.47572 .47587
8	<del></del>	5h 37m	84°	5h 41m	85°	5h 45m	86°		
0	15	9.65312	10.44991			- ', -		$\frac{5^{h} 49^{m}}{0.07760}$	87°
	16	.65326	.45005	9.66143	0.45860 .45874	9.66959 $.66973$	0.46730 .46744	9.67762	0.47601 .47616
8	17	.65340	.45020	.66170	.45889	.66986	.46759	.67788	.47630
12	18	.65354	.45034	.66184	.45903	.67000	.46773	.67801	.47645
16	19	.65368	.45048	.66198	.45918	.67013	.46788	.67815	.47659
20	20	9.65382	0.45063	9.66212	0.45932	9.67027	0.46802	9.67828	0.47674
24	21 22	.65396 .65410	.45077 .45092	.66225	.45947	.67040	.46817	.67841	.47688
32	23	.65424	.45106	.66239	.45961 .45976	.67054 .67067	.46831 .46846	.67854	.47703 .47717
36	24	.65438	.45121	.66266	.45990	.67081	.46860	.67881	47732
40	25	9.65452	0.45135	9.66280	0.46005	9.67094	0.46875	9.67894	0.47746
44	26	.65466	.45150	.66294	.46019	.67108	.46890	.67907	.47761
48	27	.65480	.45164	.66307	.46034	.67121	.46904	.67920	.47775
52 56	28 29	.65493 .65507	.45179 .45193	.66321	.46048 .46063	.67134 .67148	.46919 .46933	.67934	.47790
8	<del></del>	5h 38m	84°	5h 42m	85°	5h 46m	86°	.67947 5h 50m	.47805 87°
0	30	9.65521	0.45208	9.66348	10.46077	9.67161	0.46948	9.67960	0.47819
	31	.65535	.45222	.66362	.46092	.67175	.46962	.67973	.47834
4 8	32	.65549	.45237	.66376	.46106	.67188	.46977	.67986	.47848
12	33	.65563	.45251	.66389	.46121	.67202	.46991	.68000	.47863
16	34	.65577	.45266	.66403	.46135	.67215	.47006	.68013	.47877
20 24	35 36	9.65591	0.45280 .45295	9.66417	0.46150 .46164	9.67228 .67242	0.47020 .47035	9.68026 .68039	0.47892 .47906
28	37	.65619	.45309	.66444	.46179	.67255	.47049	.68052	.47921
32	38	.65632	.45324	.66458	46193	.67269	.47064	68066	.47935
36	39	.65646	.46338	.66471	.46208	.67282	.47078	.68079	.47950
40	40	9.65660	0.45353	9.66485	0.46222	9.67295	0.47093	9.68092	0.47964
44	41	.65674	.45367	.66499	.46237	.67309	.47107	.68105	.47979
48 52	42 43	.65688	.45381 .45396	.66512	.46251 .46266	.67322	.47122 .47136	.68118	.47993 .48008
56	44	.65716	.45410	.66539	.46280	.67349	.47151	.68144	.48022
8	<del></del> -	5h 39m	84°	5h 43m	85°	5h 47m	86°	5h 51m	87°
0	45	9.65729	0.45425	9.66553	0.46295	9.67362	0.47165	9.68158	0.48037
	46	.65743	.45439	.66567	.46309	.67376	.47180	.68171	.48052
8	47	.65757	.45454	.66580	.46324	.67389	.47194	.68184	.48066
12	48	.65771	.45468	.66594	.46338	.67402	.47209	.68197	.48081
16	49	.65785	.45483	.66607	.46353	.67416	.47223	.68210	.48095
20 24	50 51	9.65799 $.65812$	0.45497 .45512	9.66621 .66635	0.46367 .46382	9.67429 .67443	0.47238 .47252	9.68223 .68236	0.48110 .48124
28	52	.65826	.45526	.66648	.46396	.67456	.47267	.68249	.48139
32	53	.65840	.45541	.66662	.46411	.67469	.47282	.68263	.48153
36	54	.65854	.45555	.66675	.46425	.67483	.47296	.68276	.48168
40	55	9.65868	0.45570	9.66689	0.46440	9,67496	0.47311	9.68289	0.48182
44	56	.65881	.45584	.66702	.46454	.67509	.47325	.68302	.48197
48	57	.65895	.45599	.66716	.46469	.67522	.47340	.68315	.48211
52	58 59	.65909	.45613	.66730	.46483 .46498	67536	.47354 .47369	.68328	.48226 .48241
56	1	.65923	.45628 0.45642	.66743	.46498 0.46512	.67549		.68341	
60	60	9.65937	U.40042	9.66757	0.40012	9.67562	0.47383	9.68354	0.48255

		5h com	88°	Eli E Om	000	T	1	6h 0m	Ch Im
8	,	5h 52m Hav.	No.	5 ^h 56 ^m	89°		s	Hav.	6h 4m   Hav.
0	0	9.68354	0.48255	9.69132	0.49127		0	9.69897	9.70648
48	1	.68367	.48269	.69145	.49142			.69910	.70661
8	2	.68380	.48284	.69158	.49166		8	.69922	.70673
12 16	3 4	.68393	.48299	.69171 .69184	.49171 .49186		12	.69935 .69948	.70686
20	5	9.68420	0.48328	9.69197	0.49200		16 20	9.69960	9.70710
24	6	.68433	.48342	.69209	.49215		24	.69973	.70723
28	7	.68446	.48357	.69222	.49229		24 28	.69985	.70735
32 36	8 9	68459	.48371 .48386	.69235 .69248	.49244 .49258	•	32	.69998	.70748
40	10	9.68485	0.48400	9.69261	0.49273		36 40	.70011 9.70023	0.70760 $0.70772$
44	11	.68498	.48415	.69274	.49287		44	.70036	.70785
44 48	12	.68511	.48429	.69286	.49302	_	44 48	.70048	.70797
52 56	13 14	.68524 .68537	.48444	.69299	.49316	l se	52	.70061	.70809
	14	5h 53m	.48459 88°	.69312 5h 57m	.49331 89°	ig.	- 56	.70074	.70822
- <u>s</u>	15	9.68550	0.48473			haversines	- 8	6h 1m	6h 5m
	16	.68563	.48488	9.69325 .69338	0.49346 .49360	ha	0	9.70086 .70099	9.70834 .70847
<i>4</i> 8	17	.68576	.48502	.69350	.49375	ó	4 8	.70111	.70859
12	18	.68589	.48517	.69363	.49389	No.	12	.70124	.70871
16 20	19 20	.68602 9.68615	.48531 0.48546	.69376	.49404	the	16	.70136	.70884
	21	.68628	.48560	9.69389 .69402	0.49418 .49433	as t	20	9.70149	9.70896 .70908
24 28	22	.68641	.48675	.69414	.49447	g,	24 28	.70174	.70908
32	23	.68654	.48589	.69427	.49462	table, <b>90</b> °.	32	.70187	.70933
36	24	.68667	.48604	.69440	.49476	ta 90	36	.70199	.70945
40	25 26	9.68680 .68693	0.48618 .48633	$9.69453 \\ .69465$	0.49491 .49506	this $S^h$ or	40	9.70212	9.70958
44 48 52	27	.68706	.48648	.69478	.49520	f t] 6 ^h	44 48	.70224 .70237	.70970 .70982
52	28	.68719	.48662	.69491	.49535	o o	52	.70249	.70995
56	29	.68732	.48677	.69504	.49649	on o	56	.70262	.71007
0	30	5h 54m	88°  0.48691	5h 58m	89°	The No. column is omitted in the rest of are not needed beyond 6	8	6h 2m	6h 6m
	31	9.68745 .68758	.48706	$9.69516 \\ .69529$	0.49664 .49578	od £	0	$9.70274 \ .70287$	$9.71019 \\ .71032$
4 8	32	.68771	.48720	.69542	.49593	ed ii	<i>4</i> 8	.70299	.71032
12	33	.68784	.48736	.69555	.49607	ne ge	12	.70312	.71056
16 20	34 35	.68797 9.68810	.48749 0.48764	.69567 9.69580	.49622 0.49636	ot	16	.70324	.71068
24	36	.68823	.48778	.69593	.49651	9 °	20 24	9.70337	9.71081 .71093
28	37	.68836	.48793	.69605	.49666	n is	28	.70362	.71105
32 36	38 39	.68849	.48807	.69618	.49680	- E	32	.70374	.71118
30 40	40	0.68862 $0.68875$	.488 <b>22</b> 0.48837	.69631 9.69644	.49695 0.49709	륁	36	.70387	.71130
44	41	.68887	.48851	.69656	.49724	8	40 44	9.70399 .70412	9.71142 .7115 <b>4</b>
44 48	42	.68900	.48866	.69669	.49738	ş i	44 48	.70424	.71167
52 56	43 44	.68913 .68926	. 48880 .48895	.69682 .69694	.49753 .49767	- P	52	.70437	.71179
8	<del></del>	5h 55m	88°	5h 59m	89°			.70449 6h 3m	$\frac{.71191}{6^h 7^m}$
0	45	9.68939	0.48909	9.69707	0.49782	l l	- <u>s</u>		$\frac{6^{4}}{9.71203}$
4 8	46	.68952	.48924	.69720	.49796	Note.		.70474	.71216
8 12	47 48	.68965	.48938	.69732	.49811	ž	<i>4</i> 8	.70487	.71228
16	49	.68978 $.68991$	.48953 .48967	.697 <b>45</b> .69758	.49825 .49840		12	.70499	.71240
20	50	9.69004	0.48982	9.69770	0.49866		16 20	.70512 9.70524	0.71252 $0.71265$
24	51	.69017	.48997	.69783	.49869		24	.70537	.71277
28 32	52 53	.69029	.49011	.69796	.49884		28	.70549	.71277 .71289 .71301
36	54	.69042 .69055	.49026 .49040	$.69808 \\ .69821$	.49898 .49913		32 36	.70561	.71301
40		9.69068	0.49055	9.69834	0.49927			.70574 9.70586	0.71314 $0.71326$
44 48 52	56	.69081	.49069	.698 <b>4</b> 6	.49942		40 44 48	.70599	.71326
48	67	.69094	.49084	.69859	.49966		48	.70611	71350
5E 56	68 69	.69107 $.69120$	.49098 .49113	.69872 .69884	. <b>49</b> 971   .49985		52	.70624	.71362
<i>60</i>	1				.49989 10000	i	56 60	.70636 0.70648	71375
00	00	0.00104	O. 23141	9.09097		'	2011	o /rinax !	G /1207

	6h 8m	6h 12m	6h 16m	6h 20m	l oh a tm	ak nom	l ot gom	ot ====
8	Hav.	Hav.	Hav.	Hav.	6h 24m Hav.	6h 28m	6h 32m	6h 36m
0	9.71387	9.72112	9.72825	9.73526	$\frac{1131.}{9.74215}$	9.74891	Hav.	Hav.
	.71399	.72124	.72837	.73538	.74226	.74902	9.75556 .75567	9.76209 .76220
8	.71411	.72136	.72849	.73549	.74237	.74914	.75578	.76231
12	.71423	.72148	.72861	.73561	.74249	.74925	.75589	.76241
16	.71436	.72160	.72873	.73572	.74260	.74936	75600	.76252
20	9.71448	9.72172	9.72884	9.73584	9.74272	9.74947	9.75611	9.76263
24	.71460	.72184	.72896	.73596	.74283	.74958	.75622	.76274
28	.71472	.72196	.72908	.73607	.74294	.74969	.75633	.76285
32	.71484	.72208	.72920	.73619	.74306	.74981	.75644	.76296
36	.71496	.72220	.72931	.73630	.74317	.74992	.75655	.76306
40	9.71509	9.72232	9.72943	9.73642	9.74328	9.75003	9.75666	9.76317
44 48	.71521	.72244	.72955	.73653	.74340	.75014	.75677	.76328
52 52	.71533 .71545	.72256	.72967	.73665	.74351	.75025	.75688	.76338
56	.71545	.72280	.72978	.73676	.74362	.75036	.75698	.76349
			.72990	73688	.74374	75047	.75709	.76360
8	6h 9m	6h 13m	6h 17m	$6^h 21^m$	6h 25m	6h 29m	6h 33m	6h 37m
O	9.71569	9.72292	9.73002	9.73699	9.74385	9.75059	9.75720	9.76371
8	.71582	.72304	.73014	.73711	.74396	.75070	.75731	.76381
	.71594	.72316	.73025	.73722	.74408	.75081	.75742	.76392
12 16	.71606	.72328 .72340	73037	.73734	.74419	.75092	.75753	.76403
20	.71618		73049	.73746	.74430	.75103	.75764	.76414
24	9.71630	9.72352 .72363	9.73060	9.73757	9.74442	9.75114	9.75775	9.76424
28	.71654	.72375	.73072 .73084	73769	.74453	.75125	.75786	.76435
32	.71666	.72387	.73094	.73792	.74475	.75147	.75797 .75808	.76446 .76456
36	.71679	.72399	.73107	73803	.74487	.75159	.75819	.76467
40	9.71691	9.72411	9.73119	9.73815	9.74498	9.75170	9.75830	9.76478
44	.71703	.72423	.73131	.73826	.74509	.75181	.75840	.76489
48	.71715	.72435	.73142	.73838	.74521	.75192	.75851	.76499
52	.71727	.72447	.73154	.73849	.74532	.75203	.75862	.76510
56	.71739	.72459	.73166	.73860	.74543	.75214	.75873	.76521
s	6h 10m	6h 14m	6h 18m	6h 22m	6h 26m	6h 30m	6h 34m	6h 38m
0	9.71751	9.72471	9.73177	9.73872	9.74554	9.75225	9.75884	9.76531
4 8	.71763	.72482	.73189	.73883	.74566	.75236	.75895	.76542
	.71775	.72494	.73201	.73895	.74577	.75247	.75906	.76553
12	.71787	.72506	.73212	.73906	.74588	.75258	.75917	.76563
16	.71800	.72518	.73224	.73918	.74600	.75269	.75927	.76574
20 24	9.71812	9.72530 $.72542$	9.73236 .73247	9.73929	9.74611	9.75280	9.75938	9.76585
28	.71824 .71836	.72554	.73259	.73952	.74622 .74633	.75291 .75303	.75949 .75960	.76595 .76606
32	.71848	.72565	.73271	.73964	.74645	.75314	.75971	.76617
36	.71860	.72577	.73282	.73975	.74656	.75325	.75982	.76627
40	9.71872	9.72589	9.73294	9.73987	9.74667	9.75336	9.75993	9.76638
44	.71884	.72601	.73306	.73998	.74678	.75347	.76004	.76649
44 48	.71896	.72613	.73317	.74009	.74690	.75358	.76014	.76659
52	.71908	.72625	.73329	.74021	.74701	.75369	.76025	.76670
_ 56	.71920	.72637	.73341	.74032	.74712	.75380	.76036	.76681
8	6h 11m	$6^h 15^m$	$6^h 19^m$	6h 23m	6h 27m	6h 31m	6h 35m	6h 39m
0	9.71932	9.72648	9.73352	9.74044	9.74723	9.75391	9.76047	9.76691
4 8	.71944	.72660	.73364	.74055	.74734	.75402	.76058	.76702
	.71956	.72672	.73375	.74067	.74746	.75413	.76069	.76713
12	.71968	.72684	.73387	.74078	.74757	.75424	.76079	.76723
16	.71980	.72696	.73399	.74089	.74768	.75435	.76090	.76734
20	9.71992	9.72708	9.73410	9.74101	9.74779	9.75446	9.76101	9.76745
24 28	.72004 .72016	.72719 .72731	.73422 .73433	.74112 .74124	.74791 .74802	.75457 .75468	.76112 .76123	.76755 .76766
20 32	.72016	.72743	.73445	.74124	.74813	.75479	.76123	.76777
32 36	.72040	72755	.73457	.74146	.74824	.75499	.76144	.76787
40	9.72052	9.72767	9.73468	9.74158	9.74835	9.75501	9.76155	9.76798
44	.72064	.72778	.73480	.74169	.74846	.75512	.76166	.76808
48	.72076	.72790	.73491	.74181	.74858	.75523	.76177	.76819
52	.72088	.72802	.73503	.74192	.74869	.75534	.76188	.76830
56	.72100	.72814	.73515	.74203	.74880	.75545	.76198	.76840
60	9.72112	9.72825	9.73526	9.74215	9.74891	9.75556	9.76209	9.76851

	6h 40m	6h 44m	6h 48m	6h 52m	6h 56m	7h Om	7h 4m.	7h 8m
s	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.
$-{o}$	9.76851	9.77481	9.78101	9.78709	9.79306	9.79893	9.80470	9.81036
	.76861	.77492	.78111	.78719	.79316	79903	.80479	.81045
4 8	.76872	.77502	.78121	.78729	.79326	.79913	.80489	.81054
12	.76883	.77512	.78131	.78739	.79336	.79922	.80498	.81064
16	.76893	.77523	.78141	.78749	.79346	.79932	.80508	.81073
20	9.76904	9.77533	9.78152	9.78759	9.79356	9.79942	9.80517	9.81082
24	.76914	.77544	.78162	.78769	.79366	.79951	.80527	.81092
28	.76925	.77554	78172	.78779	.79376	.79961	.80536	.81101
32 36	.76936 .76946	.77564	78182	.78789	79385	79971	.80546 .80555	.81110
40	9.76957	9.77585	9.78203	9.78809	9.79405	9.79990	9.80565	9.88129
40	.76967	.77596	.78213	.78819	.79415	.80000	.80574	.81138
44 48	.76978	.77606	.78223	.78829	.79425	.80009	.80584	.81148
52	.76988	.77616	.78233	.78839	.79434	.80019	.80593	.81157
56	.76999	.77627	.78243	.78849	.79444	.80029	.80603	.81166
8	6h 41m	$6^h \ 45^m$	6h 49m	$6^{h} 53^{m}$	6h 57m	$7^h 1^m$	7h 5m	7h 9m
0	9.77009	9.77637	9.78254	19.78859	9.79454	9.80038	9.80612	9.81176
4 8	.77020	.77647	.78264	.78869	.79464	.80048	.80622	.81185
	.77031	.77658	.78274	.78879	.79474	.80058	.80631	.81194
12	.77041	.77668	.78284	.78889	.79484	.80067	.80641	.81204
16	.77052	.77679	.78294	.78899	.79493	.80077	.80650	.81213
20	9.77062	9.77689	9.78305	9.78909	9.79503	9.80087 .80096	9.80660	9.81222 $.81231$
24 28.	77083	.77710	78325	.78929	.79523	.80106	.80678	.81231
32	77094	.77720	78335	78939	.79533	.80116	.80688	.81250
36	.77104	.77730	.78345	.78949	.79542	.80125	.80697	.81259
40	9.77115	9.77741	9.78355	9.78959	9.79552	9.80135	9.80707	9.81269
44	.77125	.77751	.78365	.78969	.79562	.80144	.80716	.81278
48	.77136	.77761	.78376	.78979	.79572	.80154	.80726	.81287
52	.77146	.77772	.78386	.78989	.79582	.80164	.80735	.81296
56	.77157	.77782	.78396	78999	.79591	.80173	.80745	.81306
$\frac{s}{o}$	6h 42m	6h 46m	$\frac{6^h \ 50^m}{9.78406}$	6 ^h 54 ^m	6h 58m	7h 2m	7h 6m	7h 10m
	9.77167	9.77792	.78416	.79019	9.79601 .79611	9.80183	9.80754	9.81315 .81324
4 8	.77188	.77813	.78426	.79029	.79621	.80202	.80773	.81333
12	.77199	.77823	.78436	.79039	.79631	.80212	.80782	.81343
16	.77209	.77834	.78447	.79049	.79640	.80221	.80792	.81352
20	9.77220	9.77844	9.78457	9.79059	9.79650	9.80231	9.80801	9.81361
24	.77230	.77854	.78467	.79069	.79660	.80240	.80811	.81370
28	.77241	.77864	.78477	.79079	.79670	.80250	.80820	.81380
32 36	.77251 .77262	.77875	.78487	.79089	.79679	.80260	.80829	.81389
	9.77272	.77885	.78497 9.78507	.79099 9.79108	.79689	.80269	.80839	.81398
40 44	.77283	9.77895	.78517	.79108	9.79699	9.80279	9.80848	9.81407
48	.77293	.77916	.78528	.79128	.79718	.80298	.80867	.81417 .81426
52	.77304	.77926	.78538	.79138	.79728	.80307	.80876	.81435
56	.77314	.77936	.78548	.79148	.79738	.80317	.80886	.81444
8	6h 43m	6h 47m	6h 51m	$6^{h} \ 55^{m}$	$6^{h} 59^{m}$	7h 3m	7h $7m$	7h 11m
0	9.77325	9.77947	9.78558	9.79158	9.79748	9.80327	9.80895	9.81454
4 8	.77335	.77957	.78568	.79168	.79757	.80336	.80905	.81463
	.77346	.77967	.78578	.79178	.79767	.80346	.80914	.81472
12 16	.77356	.77978	.78588	.79188	.79777	.80355	.80923	.81481
20	.77366	.77988	.78598	.79198	.79787	.80365	.80933	.81490
20 24	9.77377	9.77998	9.78608 .78618	9.79208	9.79796	9.80374	9.80942	9.81500
24 28	.77398	.78019	.78628	79227	.79816	.80384	.80952 .80961	.81509
32	.77408	.78029	.78638	79237	.79825	.80403	.80970	.81518 .81527
36	.77419	.78039	.78649	.79247	.79835	.80413	.80980	.81536
40	9.77429	9.78049	9.78659	9.79257	9.79845	9.80422	9.80989	9.81546
44 48	.77440	.78060	.78669	.79267	.79855	.80432	.80998	.81555
48	.77450	.78070	.78679	.79277	.79864	.80441	.81008	.81564
52	.77460	.78080	.78689	.79287	.79874	.80451	.81017	.81573
56	.77471	.78090	.78699	.79297	.79884	.80460	.81026	.81582
60	9.77481	9.78101	9.78709	19.79306	9.79893	9.80470	9.81036	9.81592

No.   Part   P									
	8	7h 12m	7h 16 ^m	7h 20m	7h 24m	7h 28m	7h 32 ^m	7h 36m	7h 40 ^m
4         81601         82146         82862         83207         83732         84238         84726         85214           8         81610         82165         82691         83216         83732         84246         84743         85230           16         81628         82173         82708         83233         83749         84255         84761         85230           24         81647         82191         82726         83251         83776         84263         948776         85242           28         81665         82200         82735         83259         83774         84280         84776         85262           36         81674         8218         82752         83277         83791         84288         84776         85262           37         81665         82209         82786         83278         83791         84288         84748         85270           4         81665         82208         82761         98380         98480         98480         98526           4         8162         82236         82771         8380         98480         98480         98526           5         717         8278         8371 </th <th></th> <th>Hav.</th> <th>Hav.</th> <th>Hav.</th> <th>Hav.</th> <th></th> <th>Hav.</th> <th></th> <th></th>		Hav.	Hav.	Hav.	Hav.		Hav.		
8         31610         82154         82699         33225         83732         84246         84743         85230           16         81628         82173         82708         33225         83749         84246         84741         85238           90         9.18637         8.28122         9.8717         9.83242         8.3766         84263         9.84759         9.85465           24         8.1666         8.2020         8.2735         83251         8.3766         84271         84767         85254           36         8.1667         8.2218         8.2752         8.3276         8.3773         84280         84776         85264           36         8.16674         8.2218         8.2752         8.3276         8.3783         84288         84784         85270           36         8.1619         8.2227         9.82741         8.3328         9.83800         9.84305         9.84800         9.85266           44         8.1692         8.2224         8.2781         8.3331         8.38431         3.4880         8.2941         8.8361           48         8.1701         8.2254         8.2789         8.3323         8.3431         9.8481         9.8481         9.8									
16	4								
66         8.1628         8.2173         8.8708         8.3233         8.83749         8.4263         9.84759         9.85246           24         8.1637         8.2182         9.82717         9.83242         8.83766         8.4263         9.84777         8.5254           28         8.1666         8.2200         8.2735         8.3251         8.3776         8.4280         8.4777         8.5252           36         8.1674         8.2218         8.2752         8.3277         8.3791         8.4280         8.4774         8.5264           40         9.81683         9.82227         9.82761         9.83255         9.8370         8.4280         8.4774         8.5274           44         8.1692         8.22245         8.2777         8.3303         8.8303         8.4800         9.85278           45         8.1701         8.2254         8.2778         8.3303         8.4817         8.4817         8.5850           56         8.1720         8.82263         8.2796         8.3322         8.3334         8.4833         8.4833         8.8531           8         74.157         7.2278         7.4279         7.4297         7.4297         7.4299         7.4333         8.4833 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
9.81637									
2£4         81647         82191         82726         83251         83766         84271         84767         85254           2£8         81656         82200         83744         83268         83783         84288         84776         85252           36         81674         82218         83752         83277         83783         84288         84784         85270           44         81692         822287         983285         983800         9.84305         9.84808         85294           44         81692         822246         82770         83233         83813         84831         84808         85294           48         81701         822246         82779         83330         83817         84321         84817         8530           56         81720         82263         82796         83320         83848         84331         84833         84833         84833           5         7h 137         7h 77         7h 27m         7h 25m         7h 25m         7h 37m         7h 47m           6         81729         9.82272         9.82832         83320         9.83481         9.85344           8         8174         82299 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
8g8         81656         82209         82734         83258         83774         84280         84776         85262           36         81674         82218         83752         83277         83791         84296         84792         85278           40         9.81683         9.82227         9.82761         9.83820         9.84305         9.84800         9.85286           44         81692         82236         82770         83294         83800         9.84305         9.84800         9.85286           52         81711         82245         82788         83311         83821         84321         84817         85302           56         81720         832263         82796         83320         83834         84333         84825         85318           5         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777         71777									
52         81666         \$2209         \$2744         \$3288         \$3783         \$48288         \$4792         \$8270           56         81674         \$2218         \$2752         \$3277         \$33945         \$3450         \$9,4800         \$9,84505         \$9,84504           44         \$1692         \$2326         \$3770         \$3304         \$3800         \$84313         \$48508         \$85286           48         \$1711         \$2254         \$3779         \$3303         \$3817         \$4321         \$4817         \$5502           66         \$17120         \$32263         \$2776         \$33320         \$3834         \$4333         \$4835         \$8510           8         \$7h \$177         \$7177         \$7277         \$7277         \$74277         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477         \$7477	28								
10				.82744	.83268	.83783		.84784	
ABOR   B.81701   B.82245   B.82770   B.8304   B.8308   B.84313   B.84808   B.85294   B.87101   B.82245   B.82784   B.83311   B.8325   B.84330   B.84825   B.85310	36	.81674		.82752	.83277	.83791	.84296	.84792	.85278
	40								
56         31711         32294         82788         83310         83825         84330         84825         85310           56         31720         822963         82796         83320         83834         84338         84833         84833         84833         84833         84833         84833         84833         84834         84354         84354         84374         85318           6         81737         822261         82814         83337         83851         84363         84857         85342           16         81765         82308         82840         83363         83851         84380         84874         85354           20         9.81775         9.82317         9.82849         9.83372         9.83865         84380         84874         85358           24         8.1793         8.2336         82858         83380         83893         84898         84882         9.85362           25         8.1811         82353         82867         83389         83910         84413         84914         85394           36         8.1810         8.2360         9.82847         83389         83919         84413         84934         85342	44								
56         :81720           82268         .82706           83320           83834           84338           84833           85318           8         7h 13m         7h 17m         7h 25m         7h 25m         7h 35m         7h 37m         7h 41m           0         9.81729         9.82272         9.82805         9.83329         9.83842         9.84346         9.84841         9.85326           4         8.1738         8.2291         8.28814         8.3337         8.3851         8.4355         8.4845         8.4847         8.5342           16         8.1765         8.2299         8.2832         8.3355         8.3868         8.4371         8.4868         8.4574         8.5350           20         9.81775         9.82317         9.82849         9.83372         9.83886         8.4371         8.4846         8.5350           24         8.1784         8.2326         8.28849         9.83372         9.83885         9.4388         9.84820         9.8362           28         8.1810         8.2335         8.2887         8.3389         8.3910         8.4413         8.4906         8.5324           28         8.1810         8.2326         9.82836         9.83415         9.83293	48								
S								94823	
0   9.81729   9.82272   9.82805   9.83329   9.83842   9.84346   9.85326     4   8.1738   8.2281   8.2814   8.3337   8.3851   8.4355   8.4849   8.5334     5   8.1747   8.2290   8.2823   8.3346   8.3859   8.4363   8.4857     6   8.1765   8.2299   8.2832   8.3355   8.3868   8.4371   8.4866   8.5350     7   8.1765   8.2239   8.2832   8.3355   8.3868   8.4371   8.4866   8.5350     8   8.1765   8.22317   9.82849   9.83372   9.83885   9.84888   9.84884     8   8.1793   8.2335   8.2867   8.3389   8.3890   8.4840   8.5334     8   8.1793   8.2335   8.2867   8.3389   8.3902   8.4405   8.4898   8.5382     3   8   8.1802   8.2344   8.2876   8.3389   8.3902   8.4405   8.4899   8.5382     3   8   8.1811   8.2353   8.2867   8.3389   8.3910   8.4413   8.4906   8.5390     3   8   8.1811   8.2353   8.2884   8.3406   8.3919   8.4421   8.4914   8.5398     40   9.81820   9.82362   9.82833   9.83415   9.83927   9.84430   9.84923   9.85406     44   8.1829   8.2337   8.2902   8.3444   8.3935   8.4438   8.4931   8.5412     52   8.1847   8.2388   8.2920   8.3441   8.3944   8.4464   8.4933   8.5422     52   8.1847   8.2388   8.2920   8.3441   8.3944   8.4464   8.4937   8.5430     5   7   1/m   7   1/m   7   2/m   2									
4         .81738         .82291         .82814         .83337         .83851         .84355         .84849         .85342           8         .81747         .82290         .82823         .83346         .83859         .84867         .85342           16         .81765         .82299         .82840         .83363         .83876         .84380         .84874         .85358           20         .9.81775         .9.82317         .9.82849         .9.83372         .9.83885         .9.4388         .948482         .85360           24         .81793         .823345         .82876         .83389         .84906         .84890         .85374           28         .81801         .82344         .82876         .83389         .84401         .84906         .85390           36         .81811         .82353         .82884         .83406         .83919         .84421         .84914         .85390           36         .81857         .82362         .982839         .83415         .83937         .84438         .84931         .85414           48         .81829         .82341         .83932         .84440         .84488         .84484         .8446         .84931         .85414									
8         8.1747         8.2290         8.2832         8.3346         8.3859         8.4363         8.4867         8.5342           12         8.1766         8.2299         8.2832         8.3355         8.3866         8.4371         8.4866         8.5350           20         9.81775         9.82317         9.82849         9.83372         9.83885         9.4388         9.48482         9.85366           24         8.1784         8.2326         8.2856         8.3380         8.3893         8.4343         8.4898         8.5382           32         8.1802         8.2344         8.2876         8.3389         8.3902         8.4405         8.4898         8.5382           36         8.1811         8.2353         8.2864         8.3491         8.4413         8.4904         8.4482         9.85864           40         9.81820         9.82362         9.82893         9.83415         9.83927         9.84420         9.84923         9.85462           44         8.1824         8.2388         8.2390         8.3444         8.3935         8.4446         8.4931         8.5414           48         8.1836         8.2406         8.2928         8.3444         8.3951         8.4446									
12       81756       82399       82832       83365       83868       84371       85350         20       9.81775       9.82317       9.82849       9.83372       9.83885       9.84388       9.84882       9.85366         24       81784       8.82326       82858       83380       83893       84396       84880       85374         28       81793       82335       82867       83389       83902       84405       84898       85382         36       81811       82353       82884       83406       83919       84413       84966       85390         40       9.81820       9.82362       9.82893       9.83415       9.83927       9.84430       9.84923       9.85406         44       81829       8.2371       82902       83441       83952       84458       84931       85414         48       8.1838       82380       82911       83432       83941       84446       84939       85424         56       81847       82388       82920       83441       83951       84454       84939       85420         8       81847       82388       82928       83449       84466       849393       85422	4								
16									
20   9.81775   9.82317   9.82849   9.83372   9.83885   9.84386   8.4880   8.5374     28   8.1793   8.2335   8.2867   8.3389   8.3890   8.4405   8.4898   8.5382     28   8.1802   8.2344   8.2876   8.3389   8.3910   8.4413   8.4906   8.5390     36   8.1811   8.2353   8.2884   8.3406   8.3919   8.4421   8.4914   8.5390     40   9.81820   9.82362   9.82893   9.83415   9.83927   9.84430   9.84923   9.85464     44   8.1829   8.2371   8.2902   8.3442   8.3935   8.4438   8.4931   8.5414     48   8.1838   8.2380   8.2911   8.3432   8.3944   8.4464   8.4933   8.5424     56   8.1857   8.2397   8.2928   8.3449   8.3961   8.4463   8.4937   8.5430     56   8.1857   8.2397   8.2928   8.3449   8.3961   8.4463   8.4957   8.5430     56   8.1857   8.2397   8.2937   9.83458   9.83969   9.84471   9.48953   9.85424     6   8.1858   8.2424   8.2955   8.3475   8.3966   9.84471   9.48963   9.85454     8   8   8   8   8   8   8   8   8									
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect									
28         8.1793         8.2335         8.2867         8.3389         8.3900         8.4413         8.4906         8.5390           36         8.1811         8.2353         8.2886         8.3406         8.3910         8.4413         8.4904         8.5390           40         9.81820         9.82362         9.82893         9.83415         9.83927         9.84430         9.84923         9.85406           44         8.1829         8.2371         82902         834415         9.83927         9.84430         9.84923         9.85414           48         8.1838         8.2380         82911         83432         8.3944         8.4446         84939         85422           52         8.1847         82338         82920         83441         8.3951         84454         84931         85422           56         8.1857         82397         82928         83449         83961         84471         9.84963         85438           5         7h 1/47         7h 1/87         7h 2/27         7k 2/67         7k 3/67         7h 3/47         9.84963         9.85456           4         8.1854         8.2424         8.2945         8.2946         8.3467         8.3986         8.4477 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.84396</td> <td>.84890</td> <td></td>							.84396	.84890	
Second Color	28				.83389				.85382
\$\begin{array}{c c c c c c c c c c c c c c c c c c c									.85390
Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   R	<i>36</i>								
Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   R									
52         81847         82388         82920         83441         83952         84454         84947         85430           56         81857         82397         82928         83449         83961         84454         84955         85438           8         7h 14m         7h 18m         7h 22m         7h 26m         7h 30m         7h 34m         7h 38m         7h 42m           9.81866         9.82406         9.82937         9.83458         9.83969         9.84479         9.84963         9.85454           4         8.1875         82415         82946         83467         83978         84479         9.84963         9.85454           8         81884         82424         82955         83475         83986         84488         84971         85454           12         81893         82433         82963         83484         83995         84446         84996         84988         85470           20         9.81911         9.82451         9.82981         9.83501         9.84011         9.84512         9.85044         84996         84996         84996           24         81920         82460         82999         83518         84028         84521	44								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48								
s         7h 14m         7h 18m         7h 28m         7h 28m         7h 28m         7h 30m         7h 34m         7h 38m         7h 48m           0 .         9.81866         9.82406         9.82937         9.83458         9.83969         9.84471         9.84963         9.85446           4 .         81875         82415         82946         83467         83978         84479         .84971         .85454           8 .         81884         82424         82955         83478         33986         84488         84971         .85462           16 .         81902         82442         82972         83492         .84003         .84504         .84988         .85470           20 .         9.81911         9.82451         9.82981         9.83510         9.84011         9.84569         82998         .83510         84020         .84521         .85012         .85442           28 .         81929         82469         82998         .83518         .84028         .84529         .85020         .85502           32 .         81938         .82478         .83016         .83537         .84037         .84537         .85036         .85518           40 .         9.81956         9.82495									
0 .         9,81866         9,82406         9,82937         9,83458         9,83969         9,84471         9,84461         4,81875         82415         82946         83467         83978         844479         84971         ,85444           8         8,1884         82424         82955         83475         83986         84488         84979         ,85462           10         8,1902         82442         82972         83492         84003         84504         84998         85470           20         9,81911         9,82451         9,82981         9,83501         9,8411         9,85004         9,85486           24         8,1929         82469         82998         83518         84028         84529         85012         85602         85502           36         8,1947         8,2487         83016         83535         84045         9,85044         9,85526         444         8,1965         82495         9,83025         9,83544         9,84554         9,85026         85518           40         9,81956         9,82495         9,83025         9,83544         9,84054         9,84554         9,85046         85514           48         8,1975         8,2513         8,3033 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>7h 38m</td> <td>7h 42m</td>							<u> </u>	7h 38m	7h 42m
4         81875         82415         82946         83467         83978         84479         84971         85462           8         81884         82424         82955         83475         83986         84488         84979         85462           12         81893         82433         82963         83484         83995         84496         84988         85470           20         9.81911         9.82451         9.82981         9.83501         9.84011         9.84996         .85478           20         9.81911         9.82460         82998         83518         84020         .84521         .85012         .85494           28         8.1920         82460         82998         83518         84028         .84521         .85012         .85494           28         8.1938         82478         .83007         .83527         .84037         .84537         .85028         .85510           36         .81947         .82487         .83016         .83535         .84045         .84545         .985044         .98526           44         .81965         .82504         .83033         .33552         .84062         .84562         .85052         .85544		/				1		9.84963	9.85446
8         .81884         .82424         .82955         .83475         .83986         .84488         .84979         .85462           12         .81893         .82433         .82963         .83484         .83995         .84496         .84988         .85470           20         9.81911         9.82451         9.82981         9.83501         9.84011         9.84512         9.85004         9.85486           24         .81920         .82460         .82990         .83510         .84020         .84521         .85022         .85502           28         .81929         .82469         .82998         .83518         .84028         .84521         .85020         .85502           36         .81947         .82487         .83007         .83527         .84037         .84537         .85028         .85510           36         .81947         .82487         .83016         .83535         .84045         .84545         .85028         .85510           40         .81956         .82513         .83042         .83561         .84074         .84576         .85061         .85524           44         .81965         .82513         .83042         .83561         .84070         .84578         .850								.84971	.85454
12         81893         82433         82963         83484         83995         84496         84988         85478           20         9.81911         9.82451         9.82981         9.83501         9.84011         9.84512         9.85004         9.85486           24         81920         82460         82990         83510         9.84011         9.84512         9.85004         9.85486           28         81929         82469         82998         83518         84028         84529         .85020         .85502           32         8.1938         82478         83007         33527         34037         34537         .85028         .85510           36         8.1947         82487         9.83016         .83535         84045         9.84544         9.85024           40         9.81956         9.82495         9.83025         9.83544         9.84054         9.84554         9.85044         9.85526           44         81965         825013         83032         83551         84070         .84570         .85061         .85532           48         81975         .82513         83059         83578         84087         .85061         .85552           56	8				.83475	.83986	.84488		
10		.81893	.82433						
20         8.1920         8.2460         8.2990         8.3510         84020         8.4521         8.5012         8.5494           28         8.1929         8.2469         8.2998         8.3518         8.4028         8.4529         8.5020         8.5502           32         8.1938         8.2478         8.3007         8.3535         84045         8.4545         8.5036         8.5518           36         8.1947         8.2487         83016         8.3535         84045         9.84545         .85036         .85518           40         9.81956         9.82495         9.83025         9.83544         9.84054         9.84554         9.85044         9.85526           44         8.1965         8.2504         83033         83552         84062         84562         .85061         .85534           48         8.1984         .82522         .83051         .83570         .84070         .84578         .85069         .85552           56         .81993         .82521         .83059         .83578         .84087         .84587         .85061         .85542           8         7h 15m         7h 19m         7h 25m         7h 27m         7h 37m         7h 35m         7h 35m	16								
24         .81929         .82460         .82998         .83518         .84028         .84529         .85020         .85502           32         .81938         .82478         .83007         .83557         .84037         .84537         .85028         .85510           36         .81947         .82487         .83016         .83535         .84045         .84545         .85036         .85518           40         .81965         .82504         .83033         .83552         .84045         .98454         .985044         .9.85044           48         .81975         .82513         .83042         .83561         .84070         .84570         .85061         .85552           56         .81984         .82522         .83051         .83570         .84079         .84578         .85069         .85550           56         .81993         .82531         .83059         .83578         .84087         .84587         .85077         .85557           5         7h 16m         7h 19m         7h 23m         7h 27m         7h 31m         7h 35m         7h 39m         7h 43m           4         .82011         .82549         .83077         .83595         .84104         .84603         .85035 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
32         81938         82478         83007         83527         84037         84537         85028         85510           36         81947         82487         83016         83535         84045         84545         85036         85518           40         9.81956         9.82495         9.83025         9.83552         84045         9.84554         9.85044         9.85526           44         8.1965         8.2513         83042         83551         84062         84562         85062         85534           48         8.1975         82513         83042         83561         84070         84570         85061         85542           52         81984         82522         83051         83570         84087         84578         85069         85550           56         81993         82531         83058         9.83578         84087         8457         85067         85061         85550           8         9.82002         9.82540         9.83068         9.83587         9.84096         9.84595         9.85085         9.85085           8         8.2020         9.82549         83077         83595         84104         84603         85093									
36         81947         82487         83016         83535         84045         84545         85036         85518           40         9.81956         9.82495         9.83025         9.83544         9.84054         9.84554         9.85044         9.85526           44         8.1965         8.2504         83033         83552         84062         84562         85061         85534           52         8.1984         82522         83051         83570         84070         84578         85069         855542           56         81993         82531         83059         83578         84087         84587         85069         85557           8         7h 15m         7h 19m         7h 25m         7h 27m         7h 37m         7h 35m         7h 39m         7h 43m           9         9.82020         9.82549         83077         83595         84104         84603         85085         9.85585           4         82011         82549         83074         83612         84112         84611         85111         85611           12         82020         82558 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
\$\begin{array}{c c c c c c c c c c c c c c c c c c c									
40         8.1965         8.2549         83033         83552         84062         .84562         .85052         .85554           48         8.1975         8.2513         83042         83561         .84070         .84570         .85061         .85552           52         8.1984         .82522         .83051         .83570         .84079         .84587         .85069         .85550           56         .81993         .82531         .83059         .83578         .84087         .84587         .85077         .85557           8         7h 15m         7h 19m         7h 23m         7h 27m         7h 31m         7h 35m         7h 39m         7h 43m           9.82002         9.82540         9.83068         9.83587         .84096         9.84595         9.85085         9.85085         9.85085         9.85085         8.5573           8         8.20202         .82558         .83086         .83604         .84112         .84603         .85093         .85581           12         .82029         .82567         .83094         .83612         .84121         .84620         .85109         .85581           24         .82047         .82584         9.83112         9.83630         .8								9.85044	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c								.85052	.85534
52         81984         82522         83051         83570         84079         84578         85069         .85557           s         7h 15m         7h 19m         7h 23m         7h 27m         7h 37m         7h 35m         7h 35m         7h 39m         7h 43m           0         9.82002         9.82549         9.83068         9.83587         9.84096         9.84595         9.85085         9.85565           8         82020         82558         83086         83604         84112         84603         85093         85573           8         82020         82558         83086         83604         84112         84603         85093         85581           12         82029         825575         83103         83621         84121         84628         85117         85589           90         9.82047         9.82584         9.83112         9.83630         9.84138         9.84636         9.85117         85599           24         82056         82593         83120         83633         84148         84683         85117         85591           24         82065         82602         83129         83647         84154         84653         85141 <t< td=""><td>48</td><td></td><td></td><td></td><td></td><td>.84070</td><td></td><td></td><td>.85542</td></t<>	48					.84070			.85542
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		.81984	.82522	.83051	.83570				
8         718         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72<			<del></del>						<u> </u>
0         9.82002         9.82540         9.83068         9.83587         9.84096         9.84595         9.85085         9.85563           4         82011         82549         83077         83595         84104         84603         85093         85563           12         82029         82567         83094         83612         84121         84620         85101         85581           20         9.82047         9.82584         9.83112         9.83630         9.84138         9.84636         9.85125         855613           24         82065         82593         83120         83638         84146         84653         85117         9.85665           32         82074         82611         83138         83655         84163         84661         85143         85623           36         82083         83620         83147         83664         84171         84669         85149         85637           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           44         82101         82646         83173         83689         84195         84685         85162         85660	8								
4         82011         82549         83077         83595         84104         84603         .85093         .85581           8         82020         82558         83086         83604         .84112         .84611         .85101         .85581           12         82029         82567         83094         83612         .84121         .84620         .85109         .85589           20         9.82047         9.82584         9.83112         9.83630         9.84138         9.84636         9.85125         9.85605           24         82056         82593         83129         83647         84154         .84653         .85141         .85613           38         82074         82611         83138         83655         .84163         .84661         .85149         .85629           36         82083         82620         83147         83664         84171         84669         85158         .85637           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           44         82101         82646         83173         83689         84205         84196         84196         85182									
12         82029         82567         83094         83612         84121         84020         85109         85089           20         9.82047         9.82584         9.83112         9.83630         9.84138         9.84636         9.85125         9.85605           24         82056         82593         83120         83638         84146         84644         85133         85613           28         82065         82602         83129         83647         84154         84653         85141         85623           32         82074         82611         83138         83655         84163         84661         85149         85629           36         82083         82620         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           48         82110         82646         83173         83689         84196         84694         85182         85630           48         82110         82646         83173         83689         84205         84702         85190         85668		.82011							
12         .02029         .02029         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037         .02037									
16         .82035         .82574         .83112         .83681         .84138         .84636         .85125         9.85635           20         .82056         .82593         .83120         .83638         .84146         .84644         .85133         .85613           28         .82065         .82602         .83129         .83647         .84154         .84653         .85141         .85621           32         .82074         .82611         .83138         .83655         .84163         .84661         .85149         .85629           36         .82083         .82620         .83147         .83664         .84171         .84669         .85158         .85637           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           44         .82110         .82646         .83173         .83689         .84198         .84685         .85174         .85630           52         .82119         .82655         .83181         .83698         .84205         .84702         .85190         .85668           56         .82128         .82664         .83190         .83706         .84213         .84710         .8					.83612				
20         8.2054         8.2059         8.3120         83638         8.4146         8.4644         .85133         .85613           24         82065         82602         83129         83647         84154         84653         .85141         .85623           32         82074         82611         83138         83655         .84163         .84661         .85149         .85629           36         82083         82620         83147         83664         84171         .84669         .85158         .85637           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           44         82101         82646         .83173         83689         84198         84685         .85182         .85660           52         82119         82655         83181         33689         84205         .84702         .85190         .85668           56         .82128         82664         .83190         83706         84213         .84710         .85198         .85678									
24         .3206         .3208         .3120         .38129         .38467         .84154         .84653         .85141         .85621           32         .82074         .82611         .83138         .33655         .84163         .84661         .85149         .85629           36         .82083         .82620         .83147         .83664         .84171         .84669         .85158         .85637           40         .82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           44         .82101         .82646         .83173         .83689         .84196         .84694         .85182         .85660           52         .82119         .82655         .83181         .83698         .84205         .84702         .85190         .85668           56         .82128         .82664         .83190         .83706         .84213         .84710         .85198         .85678           56         .82128         .82664         .83190         .83706         .84213         .84710         .85198         .85678									
32         82074         82611         83138         83655         84163         84661         .85149         .85629           36         .82083         .82620         .83147         .83664         .84171         .84669         .85158         .85637           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85645           44         82110         82638         83164         .83681         .84188         .84685         .85174         .85653           48         82110         82646         .83173         33689         84196         .84694         .85182         .85660           52         821128         .82664         .83190         .83706         .84213         .84710         .85198         .856676           56         .82128         .82664         .83190         .83706         .84213         .84710         .85198         .85676	24								
36         82083         82620         83147         83664         84171         84669         85158         85654           40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85645           44         82101         82638         83164         83681         84188         84685         85174         85653           48         82110         82646         83173         83698         84196         84694         85182         85660           52         82118         82664         83190         83706         84213         84702         85190         85668           56         82128         82664         83190         83706         84213         84710         85198         85676								.85149	.85629
40         9.82092         9.82629         9.83155         9.83672         9.84179         9.84677         9.85166         9.85654           44         82101         82638         83164         33681         84188         84685         .85174         .85653           48         82110         82646         .83173         83689         84196         .84094         .85182         .85660           52         821128         82664         .83190         83706         .84213         .84702         .85190         .85668           56         .82128         .82664         .83190         .83706         .84213         .84710         .85198         .85676							.84669		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	6	I.	9.84179			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
52 82119 82655 83181 83698 84200 84702 85198 85198 85676 86213 82684 83190 83706 84213 84710 85198 85676	1.8					84196			
56 .82128 .82004 .63190 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100 .63100	52								
60  9.82137  9.82673  9.83199  9.83715  9.84221  9.84718  9.85200  9.85084	56		1						
	60	9.82137	19.82673	9.83199	19.83715	19.84221	9.54718	[a.00Z00	13.00004

	7h 44m	7h 48m	7h 52m	7h 56m	8h Om	8h 4m	8h 8m	8h 12m
8	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.
0	9.85684	9.86153	9.86613	9.87064	9.87506	9.87939	9.88364	9.88780
	.85692	.86161	.86621	.87072	.87513	.87947	.88371	.88787
4 8	.85700	.86169	.86628	.87079	.87521	.87954	.88378	.88793
12	.85708	.86176	.86636	.87086	.87528	.87961	.88385	.88800
16	.85716	.86184	.86643	.87094	.87535	.87968	.88392	.88807
20	9.85724	9.86192	9.86651	9.87101	9.87543	9.87975	9.88399	9.88814
24	.85731	.86200	.86659	.87109	.87550	.87982	.88406	.88821
28	.85739	.86207	.86666	.87116	.87557	.87989	.88413	.88828
32	.85747	.86215	.86674	.87124 .87131	.87564	.87996 .88004	.88420 .88427	.88835 .88841
36	.85755	.86223	.86681			9.88011	9.88434	9.88848
40	9.85763 .85771	9.86230 .86238	9.86689 .86696	9.87138 .87146	9.87579	.88018	.88441	.88855
44 48	.85779	.86246	.86704	.87153	.87593	.88025	.88448	.88862
52	.85787	.86254	.86712	.87161	.87601	.88032	.88455	.88869
56	.85794	.86261	.86719	.87168	.87608	.88039	.88462	.88876
8	7h 45m	7h 49m	7h 53m	7h 57m	8h 1m	8h 5m	8h 9m	8h 13m
0	9.85802	9.86269	9.86727	19.87175	9.87615	19.88046	9.88469	9.88882
	.85810	.86277	.86734	.87183	.87623	.88053	.88476	.88889
4 8	.85818	.86284	.86742	.87190	.87630	.88061	.88483	.88896
12	.85826	.86292	86749	.87198	.87637	.88068	.88490	.88903
16	.85834	.86300	.86757	.87205	.87644	.88075	.88496	.88910
20	9.85841	9.86307	9.86764	9.87212	9.87652	9.88082	9.88503	9.88916
24	.85849	.86315	.86772	.87220	.87659	.88089	.88510	.88923
28 32	.85857	.86323 .86331	.86780 .86787	.87227	.87666 .87673	.88096	.88517	.88930
36	.85865	.86338	.86795	.87242	.87680	.88110	.88531	.88944
40	9.85881	9.86346	9.86802	9.87249	9.87688	9.88117	9.88528	9.88950
44	.85888	.86354	.86810	.87257	.87695	.88124	.88545	.88957
48	.85896	.86361	.86817	.87264	.87702	.88131	.88552	.88964
52	.85904	.86369	.86825	.87271	.87709	.88139	.88559	.88971
56	.85912	.86377	.86832	.87279	.87717	.88146	.88566	.88978
- 8	7h 46m	7h 50m	7h 54m	7h 58m	8h 2m	8h 6m	8h 10m	8h 14m
0	9.85920	9.86384	9.86840	9.87286	9.87724	9.88153	9.88573	9,88984
4 8	.85928	.86392	.86847	.87294	.87731	.88160	.88580	.88991
12	.85935 .85943	.86400 .86407	.86855 .86862	.87301 .87308	.87738	.88167	.88587 .88594	.88998
16	.85951	.86415	.86870	.87316	.87753	.88181	.88600	.89003
20	9.85959	9.86423	9.86877	9.87323	9.87760	9.88188	9.88607	9.89018
24	.85967	.86430	.86885	.87330	.87767	.88195	.88614	.89025
28	.85974	.86438	.86892	.87338	.87774	.88202	.88621	.89032
32	.85982	.86446	.86900	.87345	.87782	.88209	.88628	.89039
36	.85990	.86453	.86997	.87352	.87789	.88216	.88635	.89045
40	9.85998	9.86461	9.86915	9.87360	9.87796	9.88223	9.88642	9.89052
44 48	.86006	.86468	.86922	.87367	.87803	.88230	.88649	.89059
48 52	.86013	.86476	.86930 .86937	.87374	.87810 .87818	.88237 .88244	.88656	.89066
56	.86029	.86491	.86945	.87389	.87825	.88252	.88670	.89072 .89079
8	7h 47m	7h 51m	7h 55m	7h 59m	8h 3m	8h 7m	8h 11m	8h 15m
0	9.86037	9.86499	9.86952	9.87396	9.87832	19.88259	9.88677	9.89086
4 8	.86045	.86507	.86960	.87404	.87839	.88266	.88683	.89093
8	.86052	.86514	.86967	.87411	.87846	.88273	.88690	.89099
12	.86060	.86522	.86975	.87418	.87853	.88280	.88697	.89106
16	.86068	.86529	.86982	.87426	.87861	.88287	.88704	.89113
20 24	9.86076	9.86537	9.86990	9.87433 .87440	9.87868	9.88294	9.88711	9.89120
24 28	.86083	.86545	.86997	.87440	.87875	.88301	.88718	.89126
32	.86099	.86560	.87012	.87455	.87889	.88315	.88725 .88732	.89133
36	.86107	.86568	.87019	.87462	.87896	.88322	.88739	.89140
40	9.86114	9.86575	9.87027	9.87470	9.87904	9.88329	9.88745	9.89153
44	.86122	.86583	.87034	.87477	.87911	.88336	.88752	.89160
48	.86130	.86590	.87042	.87484	.87918	.88343	.88759	.89167
52	.86138	.86598	.87049	.87492	.87925	.88350	.88766	.89174
56	.86145	.86606	.87057	.87499	.87932	.88357	.88773	.89180
60	9.86153	9.86613	9.87064	9.87506	9.87939	9.88364	9.88780	19.89187

	8h 16m	8h 20m	8h 24m	8h 28m	8h 32m	Oh @cm	Gh /cm	OF 1 1111
8	Hav.	Hav.	Hav.	8" 28"     Hav.	Hav.	8h 36m	8h 40m	8h 44m
0	9.89187	9.89586	9.89976	9.90358	9.90732	9.91098	Hav.	Hav.
	.89194	.89592	.89983	.90365	.90738	.91104	9.91455 .91461	9.91805
8	.89200	,89599	.89989	.90371	90744	.91110	.91467	.91816
12	.89207	.89606	.89995	.90377	.90751	.91116	.91473	.91822
16	.89214	.89612	.90002	.90383	.90757	.91122	.91479	.91828
20	9.89221	9.89619	9.90008	9.90390	9.90763	9.91128	9.91485	9.91833
24	.89227	.89625	.90015	.90396	.90769	.91134	.91490	.91839
28 32	.89234 .89241	.89632 .89638	.90021	.90402	.90775	.91140	.91496	.91845
36	.89247	.89645	.90028	.90409	.90781	.91146	.91502	.91851
40	9.89254	9.89651	9.90040	9.90421	9.90794	9.91158	9.91508	.91856
1 24	.89261	.89658	.90047	.90428	.90800	.91164	.91520	9.91862
44 48	.89267	.89665	.90053	.90434	.90806	.91170	.91526	.91874
52	.89274	.89671	.90060	.90440	.90812	.91176	.91532	.91879
56	.89281	.89678	.90066	.90446	.90818	.91182	.91537	.91885
8	8h 17m	8h 21 ^m	8h 25m	8h 29m	8h 33m	8h 37m	8h 41m	8h 45m
0	9.89287	9.89684	9.90072	9.90452	9.90824	9.91188	9.91543	9.91891
8	.89294	.89691	.90079	.90459	.90830	.91194	.91549	.91896
12	.89301	.89697 .89704	.90085	.90465	.90836	.91200	.91555	.91902
16	.89314	.89704	.90092	.90471	.90843	.91206 .91212	.91561	91908
20	9.89321	9.89717	9.90104	9.90484	9.90855	9.91212	9.91567	9.91914
24	.89328	.89723	.90111	.90490	.90861	.91224	.91578	.91919
28	.89334	.89730	.90117	.90496	.90867	.91230	.91584	.91931
32	.89341	.89736	.90124	.90503	.90873	.91236	.91590	.91936
36	.89348	.89743	.90130	.90509	.90879	.91242	.91596	.91942
40	9.89354	9.89749	9.90136	9.90515	9.90885	9.91248	9.91602	9.91948
44 48	.89361	.89756	.90143	.90521	.90892	.91254	.91608	.91954
48 52	.89368 .89374	.89763 .89769	.90149	.90527	.90898	.91260	.91613	.91959
56	.89381	.89776	.90160	.90540	.90904	.91205	.91619	.91965
8	8h 18m	8h 22m	8h 26m	8h 30m	8h 34m	8h 38m	8h 42m	8h 46m
0	9.89387	19.89782	9.90168	9.90546	9.90916	9.91277	9.91631	9.91976
4 8	.89394	.89789	.90175	.90552	.90922	.91283	.91637	.91982
8	.89400	.89795	.90181	.90559	.90928	.91289	.91643	.91988
12	.89407	.89802	.90187	.90565	.90934	.91295	.91648	.91993
16	.89414	.89808	.90194	.90571	.90940	.91301	.91654	.91999
20 24	9.89421	9.89815	9.90200	9.90577	9.90946	9.91307	9.91660	9.92005
28	.89434	.89828	.90200	.90590	.90952	.91319	.91672	.92016
32	.89441	.89834	.90219	.90596	.90965	.91325	.91677	.92022
36	.89447	.89840	.90225	.90602	.90971	.91331	.91683	.92027
40	9.89454	9.89847	9.90232	9.90608	9.90977	9.91337	9.91689	9.92033
44	.89460	.89853	.90238	.90615	.90983	.91343	.91695	.92039
48	.89467	.89860	.90244	.90621	.90989	.91349	.91701	.92044
52 56	.89474 .89480	.89866 .89873	.90251	.90627	.90995	.91355 .91361	.91706 .91712	.92050
8	8h 19m	8h 23m	8h 27m	8h 31m	8h 35m	8h 39m	8h 43m	8h 47m
$\frac{s}{0}$	9.89487	9.89879	9.90264	9.90639	9.91007	9.91367	9.91718	9.92061
	.89493	.89886	.90270	.90646	.91013	.91372	.91724	.92067
4 8	.89500	.89892	.90276	.90652	.91019	.91378	.91730	.92073
12	.89507	.89899	.90282	.90658	.91025	.91384	.91735	.92078
16	.89513	.89905	.90289	.90664	.91031	.91390	.91741	.92084
20	9.89520	9.89912	9.90295	9.90670	9.91037	9.91396	9.91747	9.92090
24	.89527	.89918	.90301	.90676	.91043	.91402	.91753	.92095
28 32	.89533 .89540	.89925 .89931	.90308 .90314	.90683	.91049 .91055	.91408	.91758	.92101
32 36	.89546	.89938	.90314	.90695	.91061	.91414	.91704	.92112
40	9.89553	9.89944	9.90327	9.90701	9.01067	9.91426	9.91776	9.92118
44	.89559	.89950	.90333	.90707	.91074	.91432	.91782	.92124
48	.89566	.89957	.90339	.90714	.91080	.91437	.91787	.92129
52	.89573	.89963	.90346	.90720	.91086	.91443	.91793	.92135
56	.89579	.89970	.90352	.90726	.91092	.91449	.91799	.92140
60	9.89586	9.89976	9.90358	9.90732	9.19098	19.91455	9.91805	9.92146

	Ob 10***	Ok com	l ol com	9h 0m	9h 4m	9h 8m	9h 12m	9h 16m
8	8h 48m	8h 52m	8h 56m			Hav.	Hav.	Hav.
	Hav.	9.92480	9.92805	Hav. 9.93123	<b>Hav.</b> 9.93433	9.93736	9.94030	9.94318
0	9.92146	.92485	.92811	.93128	.93438	.93741	.94035	.94322
4 8	.92157	.92491	.92816	.93134	.93443	.93746	.94040	.94327
12	.92163	.92496	.92821	.93139	.93448	.93751	.94045	.94332
16	.92169	.92502	.92827	.93144	.93454	.93755	.94050	94336
20	9.92174	9.92507	9.92832	9.93149	9.93459	9.93760	9.94055	9.94341
24	.92180	.92512	.92837	.93154	.93464	.93765	.94059 .94064	.94346
28 32	.92185	.92518	.92843	.93160	.93469	93770	.94069	.94351
3 <i>z</i> 36	.92197	.92523	.92853	.93170	.93479	.93780	.94074	.94360
40	9.92202	9.92534	9.92859	9.93175	9.93484	9.93785	9.94079	9.94365
	.92208	.92540	.92864	.93181	.93489	.93790	.94084	.94369
44 48	.92213	.92545	.92869	.93186	.93494	.93795	.94088	.94374
52	.92219	.92551	.92875	.93191	.93499	.93800	.94093	.94379
56	.92225	.92556	.92880	.93196	.93504	93805	.94098	.94383
	8h 49m	8h 53m	8h 57m	9h 1m	9h 5m	9h 9m	9h 13m	9h 17m
0	9.92230	9.92562	9.92885	9.93201	9.93509	9.93810	9.94103	9.94388
4 8	.92236	.92567	.92891	.93207	.93515	.93815	.94108	.94393
8 12	.92241 .92247	.92573	.92890	.93212	.93 <b>5</b> 20 .93525	.93820	.94117	.94402
16	.92253	.92584	.92907	.93222	.93530	.93830	.94122	.94407
20	9.92258	9.92589	9.92912	9.93227	9.93535	9.93835	9.94127	9.94412
24	.92264	.92594	.92917	.93232	.93540	.93840	.94132	.94416
28	.92269	.92600	.92923	.93238	.93545	.93845	.94137	.94421
32	.92275	.92605	.92928	93243	.93550	.93849	.94141	.94426
36	.92280	.92611	.92933 9.92939	.93248	.93555	.93854	.94146 9.94151	9.94430
40 44	9.92286	9.92616	.92944	9.93253 .93258	9.93560	9.93859	.94156	.94440
48	.92297	.92627	.92949	.93264	.93570	.93869	.94161	.94444
52	.92303	.92633	.92955	.93269	.93575	.93874	.94165	.94449
56	.92308	.92638	.92960	.93274	.93580	.93879	.94170	.94454
8	8h 50m	$8^h \ 54^m$	8h 58m	9h 2m	9h 6m	9h 10 ^m	9h 14m	$9^h 18^m$
0	9.92314	9.92643	9.92965	9.93279	9.93585	9.93884	9.94175	9.94458
4	.92319	.92649	.92970	.93284	.93590	.93889	.94180	.94463
3 12	.92325	.92654	.92981	.93295	.93595	.93894	.94184	.94468
16	.92336	.92665	.92986	.93300	.93605	.93904	.94194	.94477
- 20	9.92342	9.92670	9.92992	9.93305	9.93611	9.93908	9.94199	9.94482
24	.92347	.92676	.92997	.93310	.93616	.93913	.94204	.94486
28	.92353	.92681	.93002	.93315	.93621	.93918	.94208	.94491
32 36	.92358 .92364	.92687	.93007	.93320	.93626 .93631	.93923	.94213	.94496
	9.92369	9.92698	9.93018	9.93331	9.93636	.93928 9.93933	9.94223	9.94500
40 44	.92375	.92703	.93023	.93336	.93641	.93938	.94227	.94509
44 48	.92380	.92708	.93029	.93341	.93646	.93943	.94232	.94514
52	.92386	.92714	.93034	.93346	.93651	.93948	.94237	.94519
56	.92391	.92719	.93039	.93351	.93656	.93952	.94242	.94523
8	8h 51m	8h 55m	8h 59m	9h 3m	9h 7m	9h 11m	9h 15m	$9^{h} 19^{m}$
0,	9.92397	9.92725	9.93044	9.93356	9.93661	9.93957	9.94246	9.94528
4 8	.92402	.92730 .92735	.93050	.93362 .93367	.93666	.93962	.94251	.94533
12	.92408	.92741	.93060	.93372	.93676	.93967	.94256	.94537 .94542
16	.92419	92746	.93065	.93377	.93681	.93977	.94265	.94546
20	9.92425	9.92751	9.93071	9.93382	9.93686	9.93982	9.94270	9.94551
24	.92430	.92757	.93076	.93387	.93691	.93987	.94275	.94556
28	.92436	.92762	.93081	.93392	.93696	.93991	.94280	.94560
32 36	.92441	.92768	.93086	.93397	.93701	.93996	.94284	.94565
30 40	9.92447	9.92778	9.93092	.93403 9.93408	9.93706	.94001	.94289	.94570
40	.92458	.92784	.93102	.93413	.93716	9.94006 .94011	9.94294 .94299	9.94574 .94579
44 48	.92463	.92789	.93107	.93418	.93721	.94016	.94303	.94583
52	.92469	.92794	.93113	.93423	.93726	.94021	.94308	.94588
56	.92474	.92800	.93118	.93428	.93731	.94026	.94313	.94593
60	9.92480	9.92805	9.93123	9.93433	9.93736	9.94030	9.94318	9.94597

	9h 20m	9h 24m	9h 28m	9h 32m	9h 36m	9h 40m	1 Oh 1 IM	Oh /Om
8	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	$\frac{9^h 44^m}{\text{Hav.}}$	9h 48m
0	9.94597	9.94869	9.95134	9.95391	9.95641	9.95884	9.96119	9.96347
4 8	.94602	.94874	.95138	.95396	.95645	.95888	.96123	.96351
	.94606	.94878	.95143	.95400	.95649	.95892	.96127	.96355
12	.94611	.94883	.95147	.95404	.95654	.95896	.96131	.96359
16	.94616	.94887	.95151	.95408	.95658	.95900	.96135	.96362
20	9.94620	9.94892	9.95156	9.95412	9.95662	9.95904	9.96139	9.96366
24 28	.94625	.94896	.95160	.95417	.95666	.95908	.96142	.96370
32	.94634	.94901	.95164	.95421	.95670	.95912	.96146	.96374
36	.94638	.94909	.95173	.95429	.95678	.95916	.96150	.96377
40	9.94643	9.94914	9.95177	9.95433	9.95682	9.95924	9.96158	9.96385
44	.94648	.94918	.95182	.95438	.95686	.95928	.96162	.96388
48	.94652	.94923	.95186	.95442	.95690	.95932	.96165	.96392
52	.94657	.94927	.95190	.95446	.95694	.95936	.96169	.96396
56	.94661	.94932	.95195	.95450	.95699	.95939	.96173	.96400
8	9h 21m	9h 25m	9h 29m	9h 33m	9h 37m	9h 41m	9h 45 ^m	9h 49m
0	9.94666	9.94936	9.95199	9.95454	9.95703	9.95943	9.96177	9.96403
4 8	.94670	.94941	.95203	.95459	.95707	.95947	.96181	.96407
12	.94675	.94945	.95208	.95463 .95467	.95711 .95715	.95951 .95955	.96185	.96411 .96412
16	.94684	.94954	.95216	.95471	.95719	.95959	.96192	.96412
20	9.94689	9.94958	9.95221	9.95475	9.95723	9.95963	9.96196	9.96422
24	.94693	.94963	.95225	.95480	.95727	.95967	.96200	.96426
28	.94698	.94967	.95229	.95484	.95731	.95971	.96204	.96429
32	.94702	.94972	.95234	.95488	.95735	.95975	.96208	.96433
36	.94707	.94976	.95238	.95492	.95739	.95979	.96211	.96437
40	9.94711	9.94981	9.95242	9.95496	9.95743	9.95983	9.96215	9.96440
44 48	.94716	.94985	.95246	.95501	.95747	.95987	.96219	.96444
52	.94725	.94994	.95255	.95509	.95755	.95995	.96227	.96448
56	.94730	.94998	.95259	95513	.95759	.95999	.96230	.96455
8	9h 22m	9h 26m	9h 30m	9h 34m	9h 38m	9h 42m	9h 46m	9h 50m
0	9.94734	9.95003	9.95264	9.95517	9.95763	9.96002	9.96234	9.96459
4 8	.94739	.95007	.95268	.95521	.95768	.96006	.96238	.96462
12	.94743	.95011	.95272 .95276	.95526	.95772	.96010	.96242	.96466
16	.94748 .94752	.95016	.95270	.95530 .95534	.95776	.96014	.96246 .96249	.96470
20	9.94757	9.95025	9.95285	9.95538	9.95784	9.96022	9.96253	9.96477
24	.94761	.95029	.95289	.95542	.95788	.96026	.96257	.96481
28	.94766	.95033	.95294	.95546	.95792	.96030	.96261	.96484
32	.94770	.95038	.95298	.95550	.95796	.96034	.96265	.96488
36	.94774	.95042	.95302	.95555	.95800	.96038	.96268	.96492
40	9.94779	9.95047	9.95306	9.95559	9.95804	9.96042	9.96272	9.96495
44 48	.94784	.95051	.95311	.95563	.95808	.96046	.96276	.96499
52	94788	.95055	.95315	.95567	.95812	.96049	.96280 .96283	.96503
56	.94797	.95064	.95323	.95575	.95820	.96057	.96287	.96510
8	9h 23m	9h 27m	9h 31m	9h 35m	9h 39m	9h 43m	9h 47m	9h 51m
0	9.94802	19.95069	9.95328	9.95579	9.95824	9.96061	9.96291	9.96514
4 8	.94806	.95073	.95332	.95584	.95828	.96065	.96295	.96517
	.94811	.95077	.95336	.95588	.95832	.96069	.96299	.96521
12	.94815	.95082	.95340	.95592	.95836	.96073	.96302	.96525
16	.94820	.95086	.95345	.95596	.95840	.96077	.96306	.96528
20 24	9.94824	9.95090	9.95349	9.95600	9.95844 .95848	9.96081 .96084	9.96310	9.96532
24 28	.94829	.95099	.95357	.95608	.95852	.96084	.96317	.96539
32	.94838	.95104	.95362	.95613	.95856	.96092	.96321	.96543
36	.94842	.95108	.95366	.95617	.95860	.96096	.96325	.96547
	9.94847	9.95112	9.95370	9.95621	9.95864	9.96100	9.96329	9.96550
44	.94851	.95117	.95374	.95625	.95868	.96104	.96332	.96554
48	.94856	.95121	.95379	.95629	.95872	.96108	.96336	.96557
52	.94860	.95125 .95130	.95383 .95387	.95633 .95637	.95876	.96112 .96115	.96340 .96344	.96561
56 eo	.94865				.95880			.96565
60	9.94869	9.95134	9.95391	$9.95641_{-}$	9.95884	9.96119	9.96347	9.96568

			1	4 OL 4m	1 101 02	10h 12m	10h 16m	10h 20m
8	9h 52m	9h 56m	10h 0m	10h 4m	10h 8m			Hav.
	Hav.	Hav.	Hav.	Hav.	Hav.	Hav. 9.97566	Hav. 9.97745	9.97916
0	9.96568	9.96782	9.96989	9.97188	9.97381 .97384	.97569	.97748	.97919
4 8	.96572	.96786 .96789	.96992	.97192	.97387	.97572	.97751	.97922
12 12	.96579	.96793	.96999	.97198	.97390	.97575	.97754	.97925
16	.96583	.96796	.97002	.97201	.97393	.97578	.97756	.97927
20	9.96586	9.96800	9.97006	9.97205	9.97397	9.97581	9.97759	9.97930
24	.96590	.96803	.97009	.97208	.97400	.97584	.97762	.97933
28	.96594	.96807	.97012	.97211	.97403	.97587	97765	.97936
32	.96597	.96810	.97016	.97214	.97406	.97591	.97771	.97939
36	.96601	.96814	.97019	9.97221	9.97412	9.97597	9.97774	9.97944
40	9.96604	9.96817	9.97022	.97224	.97415	.97600	.97777	.97947
44 48	.96612	.96824	.97029	.97227	.97418	.97603	.97780	.97950
52	.96615	.96827	.97033	.97231	.97422	.97606	.97783	.97953
56	.96619	.96831	.97036	.97234	.97425	.97609	.97785	.97955
8	9h 53m	9h 57m	10h 1m	10h 5m	10h 9m	10h 13m	10h 17m	10h 21m
0	9.96622	9.96834	9.97039	9.97237	9.97428	9.97612	9.97788	9.97958
4 8	.96626	.96837	.97043	.97240	.97431	.97615	.97791	.97961
	.96630	.96841	.97046	.97244	.97434	.97618	.97794	.97964
12	.96633	.96845	.97049	.97247 .97250	.97437 .97440	.97621 .97624	.97797	.97966
16 20	9.96640	9.96852	9.97056	9.97253	9.97443	9.97627	9.97803	9.97972
20 24	.96644	.96855	.97059	.97257	.97447	.97630	.97806	.97975
28	.96648	.96859	.97063	.97260	.97450	.97633	.97808	.97977
32	.96651	,96862	.97066	.97263	.97453	.97636	.97811	.97980
36	.96655	.96866	.97069	.97266	.97456	.97639	.97814	.97983
40	9.96658	9.96869	9.97073	9.97269	9.97459	9.97642	9.97817	9.97986
44 48	.96662	.96873	.97076	.97273	.97462	97645	.97820 .97823	.97988 .97991
48 52	.96665	.96876	97079	.97276 .97279	.97468	.97650	.97826	.97991
56	.96673	.96883	.97086	97282	.97471	.97653	.97829	.97997
- 8	9h 54m	9h 58m	10h 2m	10h 6m	10h 10m	10h 14m	10h 18m	10h 22m
0	9.96676	19.96886	9.97089	9.97285	9.97474	9.97656	9.97831	9.97999
4 · 8	.96680	.96890	.97093	.97289	.94478	.97659	.97834	.98002
	.96683	.96894	.97096	.96292	.97481	.97662	.97837	.98005
12 16	.96687	.96897	.97099	.97295 .97298	.97484 .97487	.97665 .97668	.97840	.98008 .98010
20	9.96694	9.96904	.97103 9.97106	9.97301	9.97490	9.97671	9.97846	9.98010
24	.96697	.96907	.97109	.97305	.97493	.97674	.97849	.98016
28	.96701	.96910	.97113	.97308	.97496	.97677	.97851	.98019
32	.96705	.96914	.97116	.97311	.97499	.97680	.97854	.98021
36	.96708	.96917	97119	.97314	.97502	.97683	.97857	.98024
40	9.96712	9.96921	9.97123	9.97317	9.97505	9.97686	9.97860	9.98027
44	.96715	.96924	.97126 .97129	97321	.97508	.97689	.97863	.98030 .98032
52 52	.96722	.96931	.97129	.97327	.97514	.97695	.97868	.98032
56	.96726	.96934	.97136	.97330	.97518	.97698	.97871	.98038
8	9h 55m	9h 59m	10h 3m	10h 7m	10h 11m	10h 15m	10h 19m	10h 23m
0	9,96729	9.96938	9.97139	9.97333	9.97521	9.97701	9.97874	9.98040
4 8	.96733	.96941	.97142	.97337	.97524	.97704	.97877	.98043
12	.96736 .96740	.96945	.97146	.97340	.97527	.97707	.97880	.98046
16	.96743	.96951	.97149	.97346	.97533	.97710	.97883	.98049
20	9.96747	9.96955	9.97156	9.97349	9.97536	9.97716	9.97888	9.98054
24	.96750	.96958	.97159	.97352	.97539	.97718	.97891	.98057
28	.96754	.96962	.97162	.97356	.97542	.97721	.97894	.98059
32	.96758	.96965	.97165	.97359	.97545	.97724	.97897	.98062
36	.98761	.96968	.97169	.97362	.97548	.97727	.97899	.98065
40	9.96765	9.96972	9.97172	9.97365	9.97551	9.97730	9.97902	9.98067
44	.96772	.96975	.97175	.97371	.97554	.97733	.97905	.98070
48 52	.96775	.96982	.97182	.97375	.97560	.97739	.97908	.98076
56	.96779	.96985	.97185	.97378	.97563	.97742	.97914	.98078
60	9.96782	9.96989	9.97188	9.97381	9.97566	9.97745	9.97916	9.98081

	101 2 12	101 000	l tob gam	101 00m	1 402 40m	401 (111	1 401 400	
8	10h 24m	10h 28m	10h 32m	10h 36m	10h 40m	10h 44m	10h 48m	
	Hav.	Hav.	Hav.	Hav.	Hav.	Hay.	Hav.	Hav.
0	9.98081 .98084	9.98239 .98241	9.98389	9.98533 .98536	9.98670	9.98801	9.98924	9.99041
8	.98086	.98244	.98394	.98538	.98675	.98803	.98926	.99043
12	.98089	.98246	.98397	.98540	.98677	.98807	.98930	.99044
16	.98092	.98249	.98399	.98543	.98679	.98809	.98932	.99048
20	9.98094	9.98251	9.98402	9.98545	9.98681	9.98811	9.98934	9.99050
24 28	.98097	.98254	.98404	.98547	.98684	.98813	.98936	.99052
28	.98100	.98256	.98406	.98550	.98686	.98815	.98938	.99054
32 36	.98102	.98259	.98409	.98552	.98688	.98817	.98940	.99056
40	9.98105	.98262 9.98264	.98411	.98554 9.98557	.98690	.98819	.98942	.99058
40	.98110	.98267	.98416	.98559	9.98692	9.98822	9.98944	9.99059
44 48	.98113	.98269	.98419	.98561	.98697	.98826	.98948	.99063
52	.98116	.98272	.98421	.98564	.98699	.98828	.98950	.99065
56	.98118	.98274	.98424	.98566	.98701	.98830	.98952	.99067
8	10h 25m	10h 29m	10h 33m	10h 37m	10h 41m	10h 45m	10h 49m	10h 53m
-0	9.98121	9.98277	9.98426	9.98568	9.98703	9.98832	9.98954	9.99069
4 8	.98124	.98279	.98428	.98570	.98706	.98834	.98956	.99071
8.	.98126	.98282	.98431	.98573	.98708	.98836	.98958	.99072
12 16	.98129	.98285 .98287	.98433	.98575	.98710	.98838	.98960	.99074
20	9.98134	9.98290	9.98438	9.98580	.98712 9.98714	9.98840	.98962 9.98964	.99076 9.99078
24	.98137	.98292	.98440	.98582	.98717	.98845	.98966	.99080
28	.98139	.98295	.98443	.98584	.98719	.98847	.98968	.99082
32	.98142	.98297	.98445	.98587	.98721	.98849	.98970	.99084
36	.98145	.98300	.98448	.98589	.98723	.98851	.98971	.99085
40	9.98147	9.98302	9.98450	9.98591	9.98725	9.98853	9.98973	9.99087
44	.98150	.98305	.98453	.98593	.98728	.98855	.98975	.99089
48	.98153	98307	.98455	.98596	.98730	.98857	.98977	.99091
52 56	.98155	.98312	.98460	.98600	.98734	.98861	.98979 .98981	.99093
8	10h 26m	10h 30m	10h 34m	10h 38m	10h 42m	10h 46m	10h 50m	10h 54m
0	9.98161	19.98315	9.98462	9.98603	9.98736	19.98863	9.98983	9.99096
	.98163	.98317	.98465	.98605	.98738	.98865	.98985	.99098
4 8	.98166	.98320	.98467	.98607	.98741	.98867	.98987	.99100
12	.98168	.98322	.98469	.98609	.98743	.98869	.98989	.99102
16	.98171	.98325	.98472	.98612	.98745	.98871	.98991	.99104
20	9.98174 .98176	9.98327	9.98474	9.98614	9.98747	9.98873	9.98993	9.99106
24 28	.98179	.98332	.98479	.98619	.98751	.98877	.98997	.99109
32	.98182	.98335	.98481	.98621	.98754	.98880	.98999	.99111
36	.98184	.98337	.98484	.98623	.98756	.98882	.99001	.99113
40	9.98187	9.98340	9.98486	9.98625	9.98758	9.98884	9.99003	9.99115
44 48	.98189	.98342	.98488	.98628	.98760	.98886	.99004	.99116
48	.98192	.98345	.98491	.98630	.98762	.98888	.99006	99118
52 56	.98195 .98197	.98347	.98493	.98634	.98764	.98892	.99008	.99120
8	10h 27m	10h 31m	10h 35m	10h 39m	10h 43m	10h 47m	10h 51m	10h 55m
0	9.98200	19.98352	9.98498	9.98637	9.98769	19.98894	9.99012	19.99124
	.98202	.98355	.98500	.98639	.98771	.98896	.99014	.99126
4 8	.98205	.98357	.98503	.98641	.98773	.98898	.99016	.99127
12	.98208	.98360	.98505	.98643	.98775	.98900	.99018	.99129
16	.98210	.98362	.98507	.98646	.98777	9.98902	.99020 9.99022	9.99131
20	9.98213	9.98365	9.98510 .98512	9.98648	9.98779 .98781	.98904	.99022	.99133
24 28	.98215	.98370	.98512	.98652	.98784	.98908	.99024	.99136
32	.98221	.98372	.98517	.98655	.98786	.98910	.99027	.99138
36	.98223	.98375	.98519	.98657	.98788	.98912	.99029	.99140
40	9.98226	9.98377	9.98521	9.98659	9.98790	9.98914	9.99031	9.99142
44	.98228	.98379	.98524	.98661	.98792	.98916	.99033	.99143
48 52	.98231	.98382	.98526	.98664	.98794	.98918	.99035	.99145
	.98233	.98384	.98529 .98531	.98666 .98668	.98796 .98798	.98920	.99037 .99039	.99147
56	.98236		9.98533	9.98670	9.98801	9.98924	9.99041	9.99151
60	9.98239	9.98389	[გ.გნება	19.90070	10.0001	15.50524	14066.6	19.88101

	1 4 01 7 000	441.0m	1 445 400	111 Om	1 + + 1 + 0 m	111 1 Cm	1 111 000	11h 0/m
8	10h 56m		11h 4m	11h 8m	11h 12m	11h 16m   Hav.	11h 20m	11h 24m   Hav.
0	Hav. 9.99151	Hav. 9.99254	Hav. 9.99350	9.99440	9.99523	9.99599	9.99669	9.99732
	.99152	.99255	.99352	.99441	.99524	.99600	.99670	.99733
4 8	.99154	.99257	.99353	.99443	.99526	.99602	.99671	.99734
12	.99156	.99259	.99355	.99444	.99527	.99603	.99672	.99735
16	.99158	.99260	.99356	.99446	.99528	.99604	.99673	.99736
20	9.99159	9.99262	9.99358	9.99447	9.99529	9.99605	9.99674	9.99737
24 28	.99161	.99265	.99361	.99450	.99532	.99608	.99677	.99739
32	.99165	.99267	.99362	.99451	.99533	.99609	.99678	.99740
36	.99166	.99269	.99364	.99453	.99535	.99610	.99679	.99741
40	9.99168	9.99270	9.99366	9.99454	9.99536	9.99611	9.99680	9.99742
44 48	.99170	.99272	.99367 .99369	.99456	.99537	.99612	.99681	.99743
52	.99172	.99274	.99370	.99458	.99540	.99615	.99683	.99745
56	.99175	.99277	.99372	.99460	.99541	.99616	.99684	.99746
8	10h 57m	11h 1m	11h 5m	11h 9m	11h 13m	11h 17m	11h 21m	11h 25m
0	9.99177	9.99278	9.99373	9.99461	9.99543	9.99617	9.99685	9.99747
4 8	.99179	.99280	.99375	.99463	.99544	.99618	.99686	.99748
1 8	.99180	.99282	.99376	.99464	.99545	.99620	.99687	.99748
12 16	.99182	.99283	.99378	.99467	.99548	.99621	.99690	.99749
20	9.99186	9.99287	9.99381	9.99468	9.99549	9.99623	9.99691	9.99751
24	.99187	.99288	.99382	.99470	.99550	.99624	.99692	.99752
28	.99189	.99290	.99384	.99471	.99552	.99626	.99693	.99753
32 36	.99191	.99291	.99385	99472	.99553	.99627	.99694	.99754
40	9.99194	9.99295	9.99388	9.99475	9.99555	9.99629	9.99696	9.99756
44	.99196	.99296	.99390	.99477	.99557	.99630	.99697	.99757
44 48	.99198	.99298	.99391	.99478	.99558	.99631	.99698	.99758
52	.99200	.99300	.99393	.99479	.99559	.99633	.99699	.99759
56	.99201 10h 58m	11h 2m	.99394 11h 6m	11h 10m	.99561 11h 14m	.99634 11h 18m	.99700	1.99760 11h 26m
8	9.99203	19.99303	9.99396	9.99482	$\frac{11^{n}14^{m}}{9.99562}$	9.99635	11h 22m 9.99701	9.99761
	.99205	.99304	.99397	.99484	.99563	.99636	.99702	.99762
4 8	.99206	.99306	.99399	.99485	.99564	.99637	.99703	.99763
12	.99208	.99308	.99400	.99486	.99566	.99638	.99704	.99764
16 20	.99210 9.99212	.99309	.99402 9.99403	9.99489	.99567 9.99568	.99639 9.99641	.99705	.99765
24	.99212	.99312	.99405	.99489	.99569	.99642	9.99706	9.99766
28	.99215	.99314	.99406	.99492	.99571	.99643	.99708	.99767
32	.99217	.99316	.99408	.99493	.99572	.99644	.99710	.99768
36	.99218	.99317	.99409	.99495	.99573	.99645	.99711	.99769
40	9.99220 .99222	9.99319	9.99411	9.99496 .99497	9.99575	9.99646	$9.99712 \\ .99713$	9.99770 .99771
44 48	.99223	.99322	.99414	.99499	.99577	.99649	.99713	.99772
52	.99225	.99324	.99415	.99500	.99578	.99650	.99715	.99773
- 56	.99227	.99325	.99417	.99501	.99580	.99651	.99716	.99774
- 8	10h 59m	11h 3m	11h 7m	11h 11m	11h 15m	11h 19m	11h 23m	11h 27m
0 4	9.99229 .99230	9.99327	9.99418	9.99503	$9.99581 \\ .99582$	9.99652 .99653	9.99717	9.99774 .99775
4 8	.99232	.99330	.99421	.99505	.99583	.99654	.99719	.99776
12	.99234	.99331	.99422	.99507	.99584	.99655	.99720	.99777
16	.99235	.99333	.99424	.99508	.99586	.99657	.99721	.99778
20	9.99237	9.99335	9.99425	9.99510	9.99587	9.99658	9.99722	9.99779
24 28	.99239	.99336	.99427	99511	.99588	.99659	.99723	.99780 .99781
32	.99242	.99339	.99430	.99514	.99591	.99661	.99725	.99782
36	.99244	.99341	.99431	.99515	.99592	.99662	.99726	.99783
40	9.99245	9.99342	9.99433	9.99516	9.99593	9.99663	9.99727	9.99784
44 48 52	.99247	.99344	.99434	.99518	.99594	.99664	.99728	.99785
52	.99249	.99345	.99436	.99519	.99596	.99666	.99729	.99786
56	.99252	.99349	.99438	.99522	.99598	.99668	.99731	.99787
60	9.99254	9.99350	9.99440	9.99523	9.99599	9 99669	9 99732	9.99788

	1 1 1 1 000	141 00m	1 441 200	441 10m	1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	441 10m	1 441 800	447 2000
8	11h 28m	11h 32m	11h 36m	11h 40m	11h 44m	11h 48m	11h 52m	
	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.	Hav.
0 4	9.99788	9.99838	9.99881	9.99917	9.99947	9.99970	9.99987 .99987	9.99997
4 8	.99790	.99839	.99882	.99918	.99948	.99971	.99987	.99997
12	.99791	.99840	.99883	.99919	.99948	.99971	.99987	.99997
16	.99792	.99841	.99884	.99919	.99949	.99972	.99988	.99997
20	9.99793	9.99842	9.99884	9.99920	9.99949	9.99972	9.99988	9.99997
24	.99793	.99842	.99885	.99921	.99950	.99972	.99988	.99997
28	.99794	.99843	.99885	.99921	.99950	.99973	.99988	.99997
32 36	.99795	.99844	99886	.99922	.99951 .99951	99973	.99988	.99998
40	9.99797	9.99845	9.99887	9.99923	9.99951	9.99973	9.99989	9.99998
1 7/4	.99798	.99846	.99888	.99923	.99952	.99974	.99989	.99998
44 48	.99799	.99847	.99889	.99924	.99952	.99974	.99989	.99998
52	.99800	.99848	.99889	.99924	.99953	.99974	.99989	.99998
56	.99800	.99848	.99890	.99925	.99953	.99975	.99990	.99998
8	11h 29m	11h 33m	11h 37m	11h 41m	11h 45m	11h 49m	11h 53m	11h 57m
0	9.99801	9.99849	9.99891	9.99925	9.99953	9.99975	9.99990	9.99998
4 8	.99802	.99850	.99891	.99926	.99954	.99975	.99990	.99998
	.99803	.99851	.99892	.99926	.99954	.99976 .99976	.99990	.99998
12 16	.99804	.99851	.99893	.99927	.99954	.99976	.99991	.99998
20	9.99805	9.99853	9.99894	9.99928	9.99955	9.99976	9.99991	9.99999
24	.99806	.99854	.99894	.99928	.99956	.99977	.99991	.99999
28	.99807	.99854	.99895	.99929	.99956	.99977	.99991	.99999
32	.99808	.99855	.99896	.99929	.99957	.99977	.99991	.99999
36	.99809	.99856	.99896	.99930	.99957	.99978	.99992	.99999
40	9.99810	9.99857	9.99897	9.99931	9.99958	9.99978	9.99992	9.99999
44	.99811	.99857	.99897	.99931	.99958	.99978	.99992 .99992	.99999
48 52	.99811	99858	.99898	.99932	.99958	.99979	.99992	.99999
56	.99813	.99859	.99899	.99933	.99959	.99979	.99992	.99999
8	11h 30m	11h 34m	11h 38m	11h 42m	11h 46m	11h 50m	11h 54m	11h 58m
0	9.99814	19.99860	9.99900	9.99933	9.99959	9.99979	9.99993	9.99999
4 8	.99815	.99861	.99901	.99934	.99960	.99980	.99993	.99999
8	.99815	.99862	.99901	.99934	.99960	.99980	.99993	.99999
12	.99816	.99862	.99902	.99935	.99961	.99980	.99993	.99999
16 20	.99817	9.99863	9.99902	9.99935	9.99961	9.99981	9.99993	9.99999
20 24	9.99818	.99864	.99904	.99936	.99962	.99981	.99994	.99999
28	.99820	.99865	.99904	.99936	.99962	.99981	.99994	.00000
32	.99820	.99866	.99905	.99937	.99963	.99981	.99994	.00000
36	.99821	.99867	.99905	.99937	.99963	.99982	.99994	.00000
40	9.99822	9.99867	9.99906	9.99938	9.99963	9.99982	9.99994	0.00000
44	.99823	.99868	.99906	.99938	.99964	.99982	.99994	.00000
48 52	.99824	.99869	.99907	.99939	.99964	.99983	.99995	.00000.
56	.99825	.99870	.99908	.99940	.99965	.99983	.99995	.00000
8	11h 31m	1 1h 35m	11h 39m	11h 43m	11h 47m	11h 51m	11h 55m	11h 59m
0-	9.99826	9.99871	9.99909	19.99940	9.99965	9.99983	9.99995	0.00000
	.99827	.99871	.99909	.99941	.99965	.99983	.99995	.00000
4 8	.99828	.99872	.99910	.99941	99966	.99984	.99995	.00000
12	.99828	.99873	.99911	.99942	.99966	.99984	.99995	.00000
16	.99829	.99874	.99911	.99942	.99966	.99984	.99995 9.99996	00000.0
20	9.99830	9.99874	9.99912	9.99943	9.99967	9.99984	.99996	0.00000
24	.99831 .99832	.99875	.99912	.99943	.99968	.99985	.99996	.00000
28 32	.99832	.99876	.99913	.99944	.99968	.99985	.99996	.00000
32 36	.99833	.99877	.99914	.99944	.99968	.99985	.99996	.00000
40	9.99834	9.99878	9.99915	9.99945	9.99969	9.99986	9.99996	0.00000
1 24	.99835	.99878	.99915	.99945	.99969	.99986	.99996	.00000
44 48	.99836	.99879	.99916	.99946	.99969	.99986	.99996	.00000
52	.99836	.99880	.99916	.99946	.99970	.99986	.99996	.00000
56	.99837	.99880	.99917	.99947	.99970	9.99987	9.99997	0.00000
60	9.99838	9.99881	9.99917	9.99947	9.99970	10866.61	18.59591	.0.00000

			T,	THE	SHI R TH	r's E H	APPA	REN ANGI	T TI	ME I	FOR A	Su R O	n Oi	SSER VATI	VATION	on,			
Use These IN		12h	$O^m$	12h		ļ	$16^m$	12h	$24^m$			ļ	40m	ĺ		1	56 ^m	<u> </u>	Use These IN
Fore- NOON	_	24	0	23	52	23	44	23 	36	23	28	23	20	23	12	23	4		Fore-
Use These IN	<b>→</b>	Oh	$O^m$	Oh	8 ^m	Oh	16 ^m	Oh	$24^{m}$	$O^h$	$32^m$	Oh	40 ^m	l	48 ^m		$56^m$	<b>—</b>	Use These IN
AFTER- NOON		12	0	11	52	11	44	11	36	11	28	11	20	11	12	11	4		AFTER- NOON
	0°		0	3	49 49	6	98 97	10	)45 )45	13	$\frac{92}{91}$	17	737 736	20	)79 )78	24	19 17	2	
	4 6		0	3	48 47	6	96 94	10	$\frac{142}{140}$	13	889 884	17	$732 \\ 726$	20	)74 )67	24	.13 .06	4 6	
	8 10		0		46 44		91 87		)35 )29		78 71		$720 \\ 710$		)59 )47		$\frac{95}{82}$	8 10	
	12		0	3	41	6	82	10	22	13	61	16	698	20	33	23	67	12	
	14 16		0		39 36	6	77 71		)15 )05		351 38		885 869		$\frac{18}{98}$		$\frac{47}{26}$	14 16	
	18		0	3	32		63	9	994	18	323	16	351	19	77	23	01	18	
	<b>20</b> 22		0		$\frac{28}{24}$		$\frac{56}{47}$		$\frac{082}{069}$		808 290		332		$\frac{54}{28}$		74 44	<b>20</b> 22	
	24	İ	0	3	19	6	37	9	55	12	272	15	586	19	00	22	10	24	
	$\begin{array}{c} 26 \\ 28 \end{array}$		0		$\begin{array}{c} 14 \\ 08 \end{array}$		$\frac{27}{16}$		$\frac{140}{23}$		$\frac{251}{228}$		61		68 35		.74 .36	26 28	
	30		0	3	02	6	04	g	005	12	205	15	504	18	01	20	95	30	
	$\frac{32}{34}$	ĺ	0		96 89		$\frac{92}{78}$		886 867		.80 .53		172 140		24		151 105	$\frac{32}{34}$	
	36		0	2	82 75	5	64	8	346 324	11	.26		105	16	82	19	57	36	
SNO	38 40		0		75 67		50 34	ı –	301		)96 )66		369 330		$\frac{39}{92}$		06 53	38 40	70
ATI	$\frac{42}{44}$		0		59 51	5	18	7	77 $752$		)34 )01	12	290		45 96		98	42	Į.
DECLINATIONS	46		0	2	42		85		26		67	12	$249 \\ 206$		44		'40 81	44 46	Arritodes
) E	48 50		0		34 24		67´		699		931 395		162		$\frac{91}{37}$		19 55	48	¥
	52		0	2	15		$\frac{48}{29}$	6	344		95 357	10	)69	12	80	14	.89	<b>50</b> 52	
	54 56		0		05 95		11 90		315 585		318 778		$\frac{021}{071}$		$\frac{122}{62}$		22 53	54 56	
ļ	58		ő		85		70		554		38		20	11	02	12	82	58	
1	<b>60</b> 62		0		$\begin{array}{c} 75 \\ 64 \end{array}$		$\frac{49}{28}$		523 190		596 553		368 315	10	)40 )76		36	<b>60</b> 62	
	64		0	1	53	3	06	4	158	(	310	7	761	Ĝ	11	10	60	64	
	66 68		0		$\frac{42}{31}$		$\frac{84}{61}$		125 392		$\frac{566}{521}$		706 551		346		84 906	66 68	
ļ	70		0	1	19	2	39	3	358	4	176	8	594	7	11	8	27	70	
	72 74		0	1	08 96		$\begin{array}{c} 16 \\ 92 \end{array}$		$\frac{323}{288}$		130 384		537 179		$\frac{1}{2}$		48 67	$\frac{72}{74}$	
	76		0		84	1	69	2	253	3	337	4	120	5	603	5	85	76	
	78 80		0		73 61		$\frac{45}{21}$		217 182		$289 \\ 242$		$\frac{361}{302}$	1	$\frac{132}{61}$		03 20	78 <b>80</b>	
	82		0		49	1	97	1	146		194	2	242	2	289	3	37	82	
	84 86		0		36 24		73	'	109 73	'	97		182 121		217 145		53 .69	84 86	
Use	88	_	0	-	12	-	24		36	_	49		61		73		84_	88	Use
THESE	_		0°		$2^{\circ}$		4°		6°		8°		10°	1	l2°	1	l4°	۰	THESE
FORE-	_	18	30	1	78	1'	76	13	74	1	72	1'	70	16	88	16	66		IN Fore- NOON
Use These		18	80°	1	82°	13	84°	1:	86°	1	 88°	19	90°	19	92°	19	 94°		Use These
AFTER- NOON	<b>→</b>	36			58	1	56	1	54	1	52		50	34		34		<b>←</b>	IN AFTER-
NOON		-	TRUE BEARINO OR AZIMUTE												NOON				

		Т,	THE	: Sн	ір's Е <b>Н</b> е	App.	AREN ANGI	т Т: .в г	ME I	OR Sta	a Su r Oe	n O	BSER VATIO	VATI ON	on,		
Use These		13h	$4^m$	101	12 ^m	1.01	20 ^m	1 01	28 ^m	1 01	$36^m$		/ /m	1.01	~ am	_	Use
IN FORE-	$\rightarrow$	22	56		12 48	l	20	13" 22			30 24		44 ^m 16	13" 22	52 ^m 8	<del></del>	THESE IN
NOON	<u> </u>				<del>40</del>		40				~4		10	22	<i>-</i>	_	Fore-
Use These		1h	$4^m$	1h	12m	1h	20 ^m	1h	28 ^m	1h	36 ^m	1h	$44^m$	1 h	52 ^m		Use These
AFTER	.→	10	56	10	48	10	40	10	32	10	24	10		10	8	<del></del>	IN AFTER-
NOON		-07	750			- 0.4	0.1		110								NOON
	0°	27	756 755	30	190 188	34	$\frac{121}{18}$	37	46 44	40	)67 )65	43	83 81	46		0° 2	
	6		750		$\frac{182}{173}$		12		37		)58		73	46		4	
	8		730		60 160		$\frac{102}{887}$		26 10		)44 )28		$\frac{60}{41}$	46 46		8	
	10		714		43	33	68	36	89		005		17	46	24	10	
	12 14		396 374		$\frac{23}{98}$		46		64		78		87	45		12	
	16		550		70		19 88		35 00		$\frac{147}{10}$		53 14	45 45		$\frac{14}{16}$	
	18		322	29	39		53		63		868		70	44		18	
	<b>20</b> 22		90		03		14		21		21		19	44		20	
	24		556 519		$\frac{65}{23}$		71 25		73 22		71 15		$\frac{64}{05}$	43 42		$\frac{22}{24}$	
	26	24	77	27	77	30	74	33	67	36	556	39	41	42	20	26	
1	28 <b>30</b>		34 887		$\frac{29}{76}$		$\frac{1}{100}$		08 44		$\frac{91}{22}$		71 96	41 40		28 <b>30</b>	
	32		37		20	29	000	31			49		18	39		32	
	34		85		63	28	35		06		72		34	38		34	
_	36 38		$\frac{30}{72}$		00 35		67 96	30	$\frac{31}{52}$		91 95		46 54	37 36		36 38	
Declinations	40		12		67		20		69		16		58	35		40	10
ATI	42		148		97		42		84		23		58	34		42	ALTITUDES
l ii	44 46		83 14		$\frac{23}{47}$		60 75	26 26	95 02		$\frac{25}{26}$		$\frac{54}{45}$	33 32		44 46	
100	48		45	20			89	25			21		34	31		48	ΑĽ
1	50		72		86		99	24			14	28		30		50	
	52 54		$\begin{array}{c c} 97 \\ 20 \end{array}$	18	$\frac{02}{18}$		06 10	23 22			04 91	$\frac{26}{25}$		28 27	91 59	52 54	
	56	15	41	17	28	19	13	20	94	22	75	24	51	26	25	56	
	58		61	16			12	19			55	23		24		58	•
	<b>60</b> 62		78 94	15 14			10 06	18 17			33 09	$\frac{21}{20}$		23 22		60 62	
	64	12	09	13	55	14	99	16	43	17	83	19	22	20	58	64	
	66 68		$\frac{21}{32}$	$\frac{12}{11}$		$\frac{13}{12}$	91	15 14			$\frac{54}{24}$	17 16		19 17		66 68	
	70		43	10			69	12			91	14		16		70	
	72	8	52	9	55	10	57	11	58	12	57	13	55	14	51	72	
	74 76		60 67		$\frac{52}{48}$		$\frac{43}{27}$	10	$\frac{32}{06}$		$\frac{21}{84}$	$\frac{12}{10}$		12 11		74 76	
	78		73		43		11		79		46		11		76	78	
	80		79		37		94		51		06		61		15	80	
i	82 84		84   88		$\frac{30}{23}$		76 58		$\begin{array}{c c} 21 & \\ 92 & \end{array}$		$\frac{66}{25}$		10 58		53 91	82 84	
	86	1	92	2	16	2	39	2	61	2	90	3	06	3	28	86	
	88		96	1	80		19	1	31	1	42	1	53	_1	64	88	
Use These		1	6°	1	8°	2	0°	2	2°	2	4°	2	6°	2	8°		Use These
IN Fore-	<del>→</del>	16	- 1	16	- 1	16		15		15		15		15	- 1	<del></del>	IN FORE-
NOON							_										NOON
Use These		19	6°	19	8°	20	0°	20	2° '	20	4°	20	6°	20	8°		Use These
IN AFTER- NOON		34	4	34	2	34	0	33	8	33	6	33	4	33	2	<del></del>	IN After- NOON
MOON			I		T	RUE	BEA	ŔÍN	O OR	Azı	MUTE	r					MOON

			Т,						TI LE F							on,			
Use These in Fore- noon	<b>→</b>	14 ^h 22	0 ^m	14h 21		14h	16 ^m	i	24 ^m	14h		14h		1	48 ^m	14 ^h 21	56 ^m 4	<del></del>	Use These IN Fore- NOON
Use These in After- noon	<b>→</b>	2h 10	0 ^m	2h 9	8 ^m 52	2h 9	16 ^m 44		24 ^m 36	2h 9	32 ^m 28	1	40 ^m 20	,	48 ^m 12	2h 9	56 ^m 4	<b>-</b>	Use These in After- noon
Declinations	0° 2 4 6 8 10 2 14 6 8 20 2 24 6 8 3 3 2 2 4 4 4 4 4 8 8 2 2 2 2 6 8 3 3 2 4 4 4 4 6 8 6 7 7 2 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 5 3	$\begin{array}{c} 98731312659369350054444105636489950072334058007489600723340580074896007233405800723340580072334058007233405800723340580007233405800072334058000723340580000000000000000000000000000000000$	52 522 522 523 511 500 500 498 487 446 454 440 398 386 335 342 242 211 112 112 112 112 113 114 115 116 116 116 117 117 117 117 117 117 117	$\begin{array}{c} 99\\ 976\\ 870\\ 841\\ 940\\ 9141\\ 63\\ 893\\ 876\\ 609\\ 312\\ 846\\ 606\\ 538\\ 456\\ 813\\ 818\\ 612\\ 208\\ 457\\ 85\\ 612\\ 813\\ 612\\ 208\\ 457\\ 85\\ 612\\ 813\\ 612\\ 813\\ 612\\ 813\\ 612\\ 813\\ 613\\ 813\\ 813\\ 813\\ 813\\ 813\\ 813\\ 813\\ 8$	55555555555555555555555555555555555555	$\begin{array}{c} 939\\ 939\\ 887\\ 628\\ 0.702\\ 652\\ 842\\ 207\\ 846\\ 2334\\ 2435\\ 2443\\ 263\\ 925\\ 1584\\ 2413\\ 221\\ 2852\\ 943\\ 2763\\ 925\\ 1788\\ 995\\ \end{array}$	5885585575565554488476552551554488476552515544884765525155448847655448847655448847656448867667676767676767676767676767676767	378 3775 3775 3445 3445 3445 3789 3799 383 390 3984 3770 383 390 3984 3977 3984 3987 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988 3988	61 61 61 61 61 60 60 60 55 55 55 55 55 55 55 55 55 55 55 55 55	$\begin{array}{c} 56\\ 53\\ 22\\ 4\\ 296\\ 63\\ 22\\ 73\\ 3\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 22\\ 204\\ 33\\ 204\\ 33\\ 204\\ 33\\ 204\\ 33\\ 204\\ 33\\ 204\\ 33\\ 204\\ 34\\ 34\\ 34\\ 34\\ 34\\ 34\\ 34\\ 34\\ 34\\ 3$	6464 6436 6366 6266 6166 6166 6166 6166 6166 61	79 13 0460 777 5 75 6518005 276 276 245 118 118 118 118 118 118 118 118 118 118	666 666 666 665 664 662 661 662 661 663 662 663 664 664 664 665 664 664 665 664 664 665 664 665 664 665 664 665 664 665 664 665 664 665 664 665 664 664	$\begin{array}{c} 91\\ 988\\ 888\\ 655\\ 527\\ 1945\\ 292\\ 363\\ 388\\ 388\\ 399\\ 399\\ 399\\ 399\\ 399\\ 39$	688 687 666 665 644 633 551 499 484 422 211 99 7 44	4298974151770240633461889412298974177780244633461889412275888876456225741814	0° 2 4 6 8 10 2 14 6 8 22 24 6 8 3 3 3 4 6 2 4 4 6 8 6 2 2 4 6 8 6 6 6 6 8 7 7 7 7 7 8 8 8 8 8 8 8 8	ALTITUDES
USE THESE IN FORE- NOON	<b>→</b>	3 15	0° 0	3 14	32° 18	14	84° 46	14	36° 14	14	88° 12	14	:0° :0	13	12°	4 13	4°	<del></del>	Use These IN Fone-
USE THESE IN AFTER-	<b>→</b>	21 33		21 32	2°	21	4° 26		16° 24	21 32	8° 22	22 32	:0°	22	22°	22 31		<u></u>	NOON USE THESE IN AFTER-
NOON						<u>'</u> :	FRUE	   Be	AHIÑ	i a oı	ı Azı	l MUT	н	)		í			NOON

																_	
		Т,	THE	SE R TE	ip's . E Ho	App.	AREN ANGI	r Ti	ME P	OR Sta	a Su r Oe	n O	BSER VATIO	VATI NC	on,		
USE THESE IN FORE- NOON	<b>→</b>	15h 20	4 ^m 56	15h 20	12 ^m 48	15h 20	20 ^m	l	28 ^m 32	15h 20	36 ^m 24	15h 20		15h 20	52m 8	<del></del>	Use These IN Fore-
USE THESE IN AFTER-	<b>→</b>	3h 8	4 ^m 56	3h 8	12 ^m 48	3h 8	20 ^m 40	_	28 ^m 32	3h 8	36 ^m	١.	44 ^m	3h 8	 52 ^m 8	<u>←</u>	USE THESE IN AFTER- NOON
Decenations	24 66 8 10 12 14 16 18 22 24 25 33 24 44 45 55 25 66 66 66 8 70 27 77 68 82 48 66 66 8 8 8 8 66 66 8 8 6 8 6 8 6 8	711 711 711 712 713 714 717 717 717 717 717 717 717 717 717	$\begin{array}{c} 93 \\ 990 \\ 553 \\ 224 \\ 9836 \\ 979 \\ 570 \\ 252 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\ 301 \\$	744 743 733 722 711 700 698 676 646 655 553 514 49 45 43 30 27 22 22 20 11 12 11 12 11 12 12 13 14 14 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	$\begin{array}{c} 32\\ 227\\ 3191\\ 518\\ 816\\ 911\\ 911\\ 911\\ 911\\ 911\\ 911\\ 911\\ 9$	766 767 767 767 768 774 771 667 667 667 667 667 467 467 467 467 467	661 556 541 542 541 542 544 544 544 544 544 544 544	78 78 78 77 77 76 68 65 63 60 58 54 46 44 41 39 32 29 26 21 11 10 8	33 07 76	80 80 80 80 79 77 77 77 77 77 77 77 77 77 77 77 77	991 985 987 987 987 988 998 998 998 998	822 822 823 8181 8187 776 627 643 677 655 551 486 433 333 311 225 220 217 144 1118	290 285 285 2845 2845 2869 287 287 287 287 287 287 287 287	844 844 833 822 811 800 776 744 731 700 686 646 631 616 549 427 423 423 423 424 424 424 424 425 447 444 426 427 447 447 447 447 447 447 447 447 447	33992482835669342394911633722842336481897009174122842336372371535632	0° 2 4 6 8 0 10 2 14 6 18 0 2 2 2 4 6 8 0 10 2 2 2 4 6 8 0 2 2 2 2 8 0 3 3 3 4 6 4 2 4 4 6 8 0 2 2 4 6 6 6 6 8 0 7 2 7 4 6 8 8 8 8 6 6 6 6 6 6 8 0 2 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Altitudes
Use These IN Fore-	88 →		6° 4		59 8° 2		67 60° 60		75 2° 8		282 54° 26	_	66°		96 8° 2	₩	Use These in Fore- noon
USE THESE IN AFTER- NOON	<b>→</b>	22 31	6° 4	22 31	8° 2	23 31	0°	23 30	_	28 30	34° 06	23 30	6° 14	23 30		<b>←</b>	USE THESE IN AFTER- NOON
	_				T	RUE	ВЕ	ARIN	o or	Az	MUTI	3					

			Т,	THI	E SH	ır's E H	APPA	REN ANO	TI LE FO	ME :	FOR .	A St	JN O	BSER VATI	VATI ON	on,			
Use These IN Fore- NOON	<b>→</b>	16h 20	0 ^m	16ħ		16h		1	$24^m$		32 ^m		40 ^m 20			16h 19	56 ^m	<b>←</b>	USE THESE IN FORE- NOON
Use These in After- noon	— →	4h 8	$O^m$	4 ^h 7	 8 ^m 52	4h 7	16 ^m	1 1	24 ^m 36	4h 7	32 ^m 28	4h 7	40 ^m	4h 7	48 ^m 12	4h 7	56 ^m	<b>→</b>	Use These IN AFTER- NOON
	0°2468	6	560412690703655703112	888 887 868 8686 8686 8686 8686 8686 86	328 324 368 368 368 368 368 368 368 368 368 368	898989888887786685888887777686664266075552770886664288888888888888888888888888888888	$\begin{array}{c} 89\\ 82\\ 639\\ 00\\ 1\\ 51\\ 224\\ 49\\ 47\\ 33\\ 2\\ 178\\ 8\\ 82\\ 50\\ 178\\ 2\\ 82\\ 50\\ 178\\ 2\\ 82\\ 50\\ 178\\ 2\\ 82\\ 50\\ 178\\ 2\\ 18\\ 82\\ 50\\ 178\\ 2\\ 18\\ 82\\ 50\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 18\\ 2\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\$	91 91 90 89 89 88 88 88 87 77 77 66 67 67 66 62 58 42 42 42 42 42 42 42 42 42 42 43 44 45 45 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	35 31 31 31 31 31 31 31 31 31 31	92929292929292929292929292929292929292	$\begin{array}{c} 772 \\ 766 \\ 421 \\ 369 \\ 733 \\ 870 \\ 363 \\ 886 \\ 114 \\ 960 \\ 338 \\ 870 \\ 338 \\ 886 \\ 100 \\ 740 \\ 404 \\ 609 \\ 504 \\ 421 \\ 656 \\ 442 \\ 100 \\ 969 \\ 447 \\ 421 \\ 647 \\ 647 \\ 647 \\ 647 \\ 648 \\ 647 \\ 647 \\ 648 \\ 647 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\ 648 \\$	933 933 933 933 933 933 933 933 933 933	997 991 394 394 395 397 496 397 397 397 397 397 399 399 399	95 944 94 93 92 91 91 90 88 88 86 63 66 63 55 53 50 47 44 41 33 53 22 23 19 66 66 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	67 603 243 444 318 88 49 7 318 88 49 7 318 88 49 7 318 88 49 7 40 65 40 65 40 66 40 67 67 67 67 67 67 67 67 67 67 67 67 67	969 959 949 949 949 949 959 959 959 959 95	$\begin{array}{c} 12\\ 007\\ 661\\ 90\\ 661\\ 90\\ 661\\ 90\\ 661\\ 90\\ 661\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90$	2468 10214618 2022468 332444468 55558 6666668 777468 88888888888888888888888	ALTITODES
USE THESE IN FORE- NOON	<b>→</b>	6 12	0° 0	11	62° 18	11	6 .6		36° 14	11	88° .2	11	70° 10	10	'2° 8	7 10	74° 06	<del></del>	USE THESE IN Fore- NOON
USE THESE IN AFTER- NOON	— →	24 30	_	24 29	12° 98	24	14° 96	l	16° 94	24 29	18°		50° 90	25 28	2° 88	28 28	54° 86	<b>~</b>	USE THESE IN AFTER NOON
				-		• •	CRUE	BE	ARIN	0 01	Azı	MU1	H	' 					

		Ι	_	_														_	
			Τ,	, Тн С	E SE	HP'S	APP -lour	ARE	NT T	IME OR A	FOR STA	A S	UN O	BSEI	IVATI	юn,			
Use				1				1		1						1			Use
THESE	· ->		ļ m	l	12 ^m	'	20 ^m	174	28 ^m	17h	$36^m$	17h	44 ^m	17h	52 ^m	18h	$O^m$	_	THESE
FORE-		18 50	3	18	48	18	40	18	32	18	24	18	16	18	8	18	0		Fore-
Use			_								_	ļ						<u> </u>	NOON
THESE	-	5h .	r r	54	12 ^m	5h	$20^{m}$	5h	28 ^m	5h	$36^m$	5h	$44^{m}$	5h	$52^m$	6h	$O^m$		THESE
AFTER.	. 1	6 50	3	6	48	6	40	6	32	6	24	6	16	6	8	6	0		AFTER-
NOON	0°	970	_		10.1		140		204		-								NOON
	2	9696			'81 '74		$\frac{349}{342}$		904 397		945 940		974 970		993 988	100		0°	
	4	9679			57		324		379	99	22	99	951	99	70	99	74	4	
İ	8	9649 9610			27 87		'95 '52		349 306		91 49		$\frac{922}{379}$		940 397	99		8	
	10	9557			34	96	99	97	752	97	95	98	324	98	342	98	49	10	
	12 14	9491 9414			68 91		34 57		387 310		$\frac{27}{49}$	97	757 579		74 96	97		12	
	16	9326	,	94	01	94	66		519		61		590		07	96		14 16	
	18 <b>20</b>	9228			03		67		119		58		86		06	95		18	
	22	9118 8997		91 90	91 69		53 31		305 181		$\frac{46}{21}$		74 249		91 66	93		<b>20</b> 22	
	24	8863		89	35	89	97	90	<b>)46</b>	90	84	91	14	91	31	91	35	24	
	$\frac{26}{28}$	8722 8567		87 86	$\frac{92}{36}$		51 96		900 744		39 80		966 808		$\frac{82}{24}$	89 88		$\frac{26}{28}$	
1	30	8403		84			29	_	576		12		40		56	86		30	
	$\frac{32}{34}$	8228 8044		82			52		399		33	84	61		76	84	80	32	
	36	7850		· 79			64 68		210 211		45 46		69 71		85 85	82 80		34 36	
異	38	7645		77			61		303	78	36	78	61		75	78		38	
TIO	<b>40</b> 42	7433 $7211$	1	$\frac{74}{72}$			44 18		86 858		19 91		$\frac{42}{13}$		56 27	760 743		40	SES
INA	44	6979		70	36	70	84	71	24		53		76	71	90	719		$\frac{42}{44}$	5
DECLINATIONS	46 48	$6741 \\ 6492$		67 65		68 65			379 327		98		29 76	69	42	694		46	ALTITUDES
À	50	6237	1	62			30		365		55 93		12		$\frac{88}{24}$	669		48 <b>50</b>	4
	52	5973		60		60	63	60	96	61	24	61	42	61	53	61	56	52	
	54 56	5703 5426	-	57 54		57 55	89 07		321 338		$\frac{45}{62}$		64 78	58 55		587 559		54 56	
	58	5141		51	83	52	19	52	48	52	70	52	86	52	97	529	99	58	
	<b>60</b> 62	$\frac{4852}{4555}$		48 45			$\begin{array}{c c} 23 \\ 24 \end{array}$		51 49	49 46			87 84	49 46		500 469		<b>60</b> 62	
	64	4253		42		43			41		60		73	43		438		64	
	66 68	3947 3635		39°		40 36			$\frac{10}{10}$	40 37	44	40 37		40		406		66	
	70	3319		33		33			87	34		34		$\frac{37}{34}$		$\frac{374}{342}$		68 <b>70</b>	
	72	2998		30	23	30	43	30	60	30	73	30	82	30	88	308	90	72	
	74 76	$\frac{2674}{2347}$	ı	26 23		$\frac{27}{23}$	14 82		30 95	$\frac{27}{24}$		$\frac{27}{24}$		$\frac{27}{24}$		$\frac{275}{241}$		74   76	
	78	2018	I	20	33	$\frac{1}{20}$			59	$\bar{20}$		20		20		207		78	
	80 82	1685 1351		16		17			20	17		17		17		173		80	
	84	1015	1	130 103	$\frac{01}{22}$	13 10			78 35	13 10	40	13 10	42	13 10		139 104		82   84	
	86	677	1		82		87		91		94		96		97	69		86	
TTan	88	339	-		41	0	44		46		47	3	48		49	34	19	88	T7
Use These	- 1	76°	1	7	8°	8	0°	8	32°	8	4°	8	6°	8	8°	90	)°		Use These
IN Fore-	<b>→</b>	104		10	2	10	0	9	8	9	6	9	4	9	2	90	,	<del></del>	IN Fore-
NOON	.		_ .																NOON
Use These		256°	1	258	30	26	00	26	20	26	40	26	₆	26	80	270	ا در		Use These
IN AFTER-	$\rightarrow$	284		282		28	_	27	_ 1	27		27	1	27	- 1	270	1	<del></del>	IN AFTER-
NOON		-01		_0,		_0	-		٦		~	_,	-	~.	<b>-</b>	210	_		NOON
						1	RUE	BE	ARIN	OR	Azı	MUT	Eť						

LATITUDE						DE	LINAT	IONS					
	0°	2°	4°	6°	8°	10°	12°	14°	16°	18°	20°	22°	24
0°	0°												
2	٠ŏ	90°	ĺ							1			l
2 4 6 8	0	30	90°		-						1		
6	0	20	42	90°	ł			l		i		1	
8	0	15	30	49	90°	ł				!			
10	0	12	24	37	53	90°		i					1
12	0	10	20	30	42	57	90°			1			
14	0	8	17	26	35	46	59	90°				i	
16	0	7	15	22	30	39	49	61	90°				
18	0	6	13	20	27	34	42	52	63	90°		ŀ	
20	0	6	12	18	24	31	37	45	54	65	90°		
22	0	5	11	16	22	28	34	40	47	56	66	90°	
24	0	5	10	15	20	25	31	36	43	49	57	67	90
26	0	5	9	14	19	23	28	34	39	45	51	59	68
28	0	4	9	13	17	22	26	31	36	41	47	53	60
30	0	4	8 8 7	12	16	20	25	29	33	38	43	49	54
32	0	4	8	11	15	19	23	27	31	36	40	45	50
34	0	4 3	7	11	14	18	22	26	30	34	38	42	47
36 38	0	3	7	10	14	17	21	24	28	32	36	40	44
	0	3	7	10	13	16	20	23	27	30	34	37	41
40	0	3	6	9	12	16	19	22	25	29	32	36	39
42	0	3	6	9	12	15	18	21	24	28	31	34	37
44	0	3	6	9	12	14	17	20	23	26	30	33 31	36 34
46	0	3	5	8	11   11	14 14	17 16	20 19	$\frac{23}{22}$	$\frac{25}{25}$	28 27	30	33
48	_												
<b>50</b> 52	0	3	5	8	10	13	16	18	21	24	27	29 28	32 31
52 54	0	3	ð	8	10 10	13 12	15 15	18 17	20 20	$\frac{23}{22}$	26 25	28	30
56 56	0	2	9	7	10	12 12	15	17	19	22	25	27	29
58	ŏ	$\begin{vmatrix} 2\\2\\2 \end{vmatrix}$	5 5 5 5 5	7	9	12	14	17	19	21	24	26	29
60	0	2	5 5	7	9	12	14	16	19	21	23	26	28

Table 12. Completed

Ligrany						DEC	LINAT	IONS					
LATITUDE	26°	28°	30°	3 <b>2</b> °	34°	36°	38°	40°	42°	44°	46°	48°	50°
26°	90°												
28	69	90°			Į.	i	l			i			Ì
30	61	70	90°	Į.							ŀ		
32	56	62	71	90°									
34	52	57	63	71	90°			l					
36	48	53	58	64	72	90°				ĺ			ŀ
38	45	50	54	59	65	73	90°						1
40	43	47	51	56	60	66	73	90°	ł				
42	41	45	48	53	57	61	67	74	90°				
44	39	43	46	50	54	58	62	68	74	90°			
46	38	41	44	47	51	55	59	63	68	75	90°	İ	
48	36	39	42	45	49	52	56	60	64	69	75	90°	
60	35	38	41	44	47	50	53	57	61	65	70	76	90°
52	34	37	39	42	45	48	51	55	58	62	66	71	76
<b>54</b>	33	35	38	41	44	47	50	53	56	59	63	67	71
56	32	34	37	40	42	45	48	51	54	57	60	64	68
58	31	33	36	39	41	44	47	49	52	55	58	61	65
60	30	33	35	38	40	43	45	48	51	53	56	59	62



	a	• =	0°	a	. =	1°		. =	2°	a :	= 3°	a =	= <b>4°</b>	a =	5°	a =	6°
b	I	ĸ	Q	F	ζ.	Q	I	ζ.	Q	K	Q	K	Q	K	Q	K	Q
0 1 2 3 4	0 1 2 3 4	, 0 0 0 0 0	0 0 0 0 0 0	0 1 2 3 4	0 0 0 0 0	1 0 0 0 0	0 1 2 3 4	, 0 0 0 0 0	2 0 0 0 0 0	0 (		0 0 1 0 2 0 3 0 59	4 0 0 0 0 0	0 0 1 0 2 0 59 3 59	5 0 0 0 0 1	0 0 1 0 59 2 59 3 59	6 0 0 0 0 1
5 6 7 8 9	5 6 7 8 9	0 0 0 0	0 0 0 0	5 6 7 8 9	0 0 0 0	0 0 0 1 1	5 6 7 8 9	0 0 0 0 0	0 1 1 1 1	5 (6 (5) 7 59 8 59	$\begin{vmatrix} 1\\1\\2\end{vmatrix}$	4 59 5 59 6 59 7 59 8 59	1 1 2 2 3	4 59 5 59 6 58 7 58 8 58	1 2 3 4	4 58 5 58 6 58 7 57 8 57	1 2 3 4 5
10 11 12 13 14	11 12 13	0000	0 0 0 0	10 11 12 13 14	0000	1 1 1 2 2	10 11 12 13	0 0 0 0 59	2 3 3 4	9 59 10 59 11 59 12 59 13 59	3 4 5	9 59 10 58 11 58 12 58 13 58	4 4 5 6 7	9 58 10 57 11 57 12 57 13 57	5 6 7 8 9	9 57 10 56 11 56 12 56 13 55	6 7 8 9 11
15 16 17 18 19	16 17 18	0 0 0 0	0 0 0 0	15 16 17 18 19	0 0 0	2 2 3 3 3	14 15 16 17 18	59 59 59	4 5 5 6 7	14 59 15 59 16 59 17 58 18 58	7 8 9	14 58 15 58 16 57 17 57 18 57	8 10 11 12 14	14 56 15 56 16 56 17 56 18 55	10 12 14 15 17	14 55 15 55 16 54 17 54 18 54	13 14 16 18 21
20 21 22 23 24	21 22 23	0 0 0 0	0 0 0 0	20 21 22 23 24	0 0 0 0	4 5 5 6	19 20 21 22 23	59 59 59	8 9 9 10 11	19 58 20 58 21 58 22 58 23 58	13 14 15	19 57 20 57 21 57 22 56 23 56	15 17 19 21 23	19 55 20 55 21 55 22 54 23 54	19 21 23 26 28	19 53 20 53 21 52 22 52 23 52	23 25 28 31 34
25 26 27 28 29	26 27 28	0 0 0 0	0 0 0 0	25 26 27 28 29	0 0 0 0	6 7 7 8 9	24 25 26 27 28	59 59 59	12 13 15 16 17	24 58 25 58 26 58 27 57 28 57	20	24 56 25 56 26 56 27 56 28 55	25 27 29 32 34	24 54 25 54 26 53 27 53 28 53	31 34 37 40 43	24 51 25 51 26 50 27 50 28 50	37 40 44 47 51
30 31 32 33 34	31 32 33	0 0 0 0 0	0 0 0 0	30 31 32 33 34	0 0 0 0	9 10 11 12 12	29 30 31 32 33	59 59 59	19 20 21 23 25	29 57 30 57 31 57 32 57 33 57	28 30 32 34 37	29 55 30 55 31 55 32 55 33 54	37 40 43 46 49	29 52 30 52 31 52 32 52 33 51	46 50 53 57 6 1	29 49 30 49 31 48 32 48 33 47	55 59 7 4 9 14
37 38	36 37	0 0 0 0 0	0	35 36 37 38 39	0 0 0 0 0	13 14 15 16 17	34 35 36 37 38	58 58 58	26 28 30 32 34	34 57 35 57 36 56 37 56 38 56	40 42 45 48 51	34 54 35 54 36 54 37 53 38 53	53 56 5 0 4 8	34 51 35 51 36 50 37 50 38 49	6 10 15 20 25	34 47 35 46 36 46 37 45 38 45	19 24 30 36 42
42 43	41 42	0 0 0 0 0	0 0 0 0	40 41 42 43	0 0 0 0 59	18 19 21 22 23	39 40 41 42 43	58 58 58	37 39 41 44 47	39 56 40 56 41 56 42 56 43 55	58 4 2	39 53 40 53 41 52 42 52 43 52	13 18 23 28 33	39 49 40 49 41 48 42 48 43 47	31 37 43 49 56	39 44 40 44 41 43 42 42 43 42	49 56 8 3 11 19
45	45	0	0	44	59	25	44	58	50	44 55	14	44 52	39	44 47	7 3	44 41	27

	a	_	0°	١.	a =	1°		۱ ,	a =	: 2°	'	a	a =	3°		a	. =	4°			a =	5°		2	. =	6°	
b	К	·	Q	1	•	Q	,	F		G	2	F	ζ	ς	,	E		q	•	K		(	2	E	2	Q	!
$\frac{46}{47}$	45 46 47 48 49	, 0 0 0 0	0 0 0 0 0 0	44 45 46 47 48	59 59 59 59		$\frac{26}{28}$	44 45 46 47 48	58 58 58		53 56 59	44 45 46 47 48	55 55 55		19 24 29	44 45 46 47 48	51 51 51		45 51 58	44 45 46 47 48	46 46 45	7	$\begin{array}{c} 3 \\ 11 \\ 19 \\ 27 \end{array}$	44 45 46 47 48	41 40 39		27 36 46 56
51 52 53	50 51 52 53 54	0 0 0 0	0 0 0 0	49 50 51 52 53	59 59 59		35 37 40	49 50 51 52 53	57 57 57		11 15 19	49 50 51 52 53	54 54 54		46 52 59	49 50 51 52 53	50 49 49		$\frac{21}{29}$	49 50 51 52 53	44 43 43	8	55 5 16	49 50 51 52 53	37 36 35		17 29 41 54 8
56 57 58	55 56 57 58 59	0 0 0 0	0 0 0 0	54 55 56 57 58	59 59 59		47 50 53	54 55 56 57 58	57 57 57		34 40 46	54 55 56 57 58	53 53 52		$\frac{21}{30}$	54 55 56 57 58	48 47 47	7	8 19 31	54 55 56 57 58	41 40 39	9	$\frac{7}{22}$	55 56	32 31 30	11	23 39 55 13 32
61 62 63	60 61 62 63 64	${0 \atop 0} \atop {0 \atop 0} \atop {0} \atop {0}$		59 60 61 62 63	59 59 59		$\frac{4}{8}$	59 60 61 62 63	56 56 56	4	7 15 24	59 60 61 62 63	52 51 51	6	$\frac{10}{22}$	59 60 61 62 63	45 44 44	8	13 28 <b>4</b> 5	$\frac{61}{62}$	36 35 34		$\frac{14}{33}$	$\frac{61}{62}$	26 25 23	12 13	52 14 37 2 29
66 67 68	65 66 67 68 69	0 0 0 0 0	0 0 0	64 65 66 67 68	59 59 59		27 33 40	64 65 66 67 68	55 55 55	5	54 6 19	64 65 66 67 68	$\frac{49}{49}$		20 38 58	64 65 66 67 68	41 40 39	10	45 9 34	64 65 66 67 68	31 29 28		8 37 9	66 67	18 16 14	14	$\frac{3}{40}$
71 72 73	70 71 72 73 74	0 0 0 0 0	0 0 0 0	69 70 71 72 73	58 58 58		$^{4}_{14}_{25}$	69 70 71 72 73	54 54 53	6	7 27 49		46 46		9 38 10	$\frac{71}{72}$	36 35 33	12 13 14	7 45 27	70 71	$\frac{23}{20}$ $18$	15 16	$21 \\ 48 \\ 40 \\ 37$	70 71	6 3 0	17 18 19 20	54 47 46
76 77 78	75 76 77 78 79	0 0 0 0 0	0 0 0 0	76 77	58 58	4	$\begin{array}{c} 8 \\ 26 \\ 48 \end{array}$	74 75 76 77 78	52 51 50	9	13 50 32	74 75 76 77 78	41 40 38	$\frac{12}{13}$	13 7 9	75 76 77	$\frac{27}{25}$	16 17 18	7 16 35	75 76 77	9 5 1	$\frac{19}{21}$	41 53 15 49 38	74 75 76	47 42 36	23 25 26	29 3 49
81 82 83	80 81 82 83 84	0 0 0 0 0	0	82	57 56	7	9	81	45	14	5 50	81	28	20	38	81	57	26  29	41 51	180 181	34 24	32	44 13 9 40 56	80	47	40	47
86 87 88	85 86 87 87 88 88 89	0 0 0 0 0	0 0	85 86 87	54 53 50 46 35	14 18 26	$\frac{3}{27}$	85 86 87	32 24 10	$\frac{26}{33}$	36 43	86 86	45 24	36  45	55 2 20	84 85	$\frac{21}{0}$	38 45 53 63 75	11 29	83 84	36 10 37	68	26	83	48 18 41		26
90	90	0	0	89	0	90	0	88	0	90	C	87	0	90	0	86	0	90	0	85	0	90	0	84	0	90	0

ь	a	= 7°	a =	= 8°	a =	= 9°	a =	10°	<b>a</b> =	11°	a = 15	°	a =	: 13°
	K	Q	К	Q	K	Q	K	Q	К	Q	K	Q	K	Q
0 1 2 3 4	0 ( 1 ( 59 2 59 3 58		59 1 59 2 58	0 0 1		9 0 0 0 1	0 0 59 1 58 2 57 3 56	0 0 0 0 0 1 1	0 0 59 1 58 2 57 3 56	0 / 11 0 0 0 1 2	0 0 12 59 1 57 2 56 3 55	0 0 0 1	0 0 58 1 57 2 55 3 54	0 / 13 0 0 0 1 2
5 6 7 8 9	4 58 5 57 6 57 7 56 8 56	3 4	5 56 6 56 7 55	2 3 4 5 6	4 56 5 56 6 55 7 54 8 53	2 3 4 5 7	4 55 5 55 6 54 7 53 8 52	2 3 4 6 7	4 54 5 53 6 52 7 51 8 50	3 4 5 6 8	4 53 5 52 6 51 7 49 8 48	4 5 7	4 52 5 51 6 49 7 48 8 46	3 4 6 8 10
12 13	9 55 10 55 11 55 12 54 13 54	11	10 53	13	9 53 10 52 11 51 12 50 13 49	12 14	9 51 10 50 11 49 12 48 13 47	13 15	9 49 10 48 11 47 12 45 13 44	14 17	9 47 10 45 11 44 12 43 13 41	13 10	1 41 2 40	12 14 17 20 23
16 17 18	14 53 15 53 16 52 17 52 18 51	17 19 21	14 51 15 50 16 50 17 49 18 48	19 22 24	14 49 15 48 16 47 17 46 18 45	$\begin{array}{c} 21 \\ 24 \\ 27 \end{array}$	14 46 15 45 16 44 17 43 18 42	24 27 30	14 43 15 42 16 41 17 39 18 38	26 29 33	14 40 15 38 16 37 17 36 18 34	25 14 28 13 32 16 36 17 40 18	6 33 7 31	26 30 34 39 43
21 22 23	19 51 20 50 21 50 22 49 23 49	30 33 36	19 48 20 47 21 46 22 46 23 45	34 37 41	19 45 20 44 21 43 22 42 23 41	38 42 46	19 41 20 40 21 39 22 38 23 37	42 46 51	19 37 20 36 21 35 22 33 23 32	46 51 56	19 33 20 31 21 30 22 28 23 27		0 26	48 53 59 14 5
26 27 28	24 48 25 48 26 47 27 46 28 46	47 51 55	24 44 25 44 26 43 27 42 28 41	53 58 9 3	24 40 25 39 26 38 27 38 28 37	10 0 5 10	24 36 25 35 26 33 27 32 28 31	6 12 18	24 31 25 29 26 28 27 27 28 25	12 18 25	24 25 25 23 26 22 27 20 28 18	12 24 18 25 25 26 32 27 40 28	5 17 6 15 7 13	17 24 31 39 47
31 32 33	29 45 30 45 31 44 32 43 33 43	$egin{array}{c} 9 \\ 14 \\ 20 \\ \end{array}$	29 41 30 40 31 39 32 38 33 37	19 25 31	29 36 30 35 31 34 32 33 33 32	28 35 42		38 45 52	29 24 30 22 31 21 32 19 33 18	47 55 13 3	29 17 30 15 31 13 14 32 11 33 10	48 29 56 30 4 31 13 32 23 33	7 1 5 2 3	56 15 5 14 24 34
36 37 38	34 42 35 41 36 41 37 40 38 39	38 45 52	34 37 35 36 36 35 37 34 38 33	51 · 59 10 7	34 30 35 29 36 28 37 27 38 26	$\begin{array}{cc} 11 & 5 \\ & 13 \\ & 22 \end{array}$	34 24 35 22 36 21 37 19 38 18	18 27 37	37 11	$\begin{array}{c} 21 \\ 31 \\ 41 \\ 51 \\ 14 \end{array}$	36 4 37 2 15	33 43 34 54 38 6 36 18 37	5 54	44 55 16 7 20 33
$\frac{41}{42}$	39 39 40 38 41 37 42 36 43 35	14 23 32	39 32 40 31 41 30 42 29 43 28	33 43 53	39 25 40 23 41 22 42 21 43 19	$\begin{array}{c} 51\\12&2\\13\end{array}$	41 13	21	$\begin{array}{ccc} 40 & 5 \\ 41 & 3 \\ 42 & 1 \end{array}$	40 53	57 39 55 40 53 41 51 16 42 48	31 38 44 39 58 40 12 41 28 42	44 41 39	46 17 0 15 31 48
45	44 34	51	44 27	14	44 18	38	<b>44</b> 8	14 0	43 57	22	43 46	44 43	3 33	18 5

		a =	- 7°			a=	8°			a =	9°		;	a =	10	•		a =	11	•	a	. =	12	•	a	-	13	. ]
b	F	i	Ç	•	ŀ	<b>K</b>	Q	2	F	•	Ç		F	τ	Q	•	E	τ	Q	•	F		(	5	K		Q	,
46 47 48	44 45 46 47 48	34 34 33 32		1 12 24	44 45 46 47 48	27 26 24 23		26 39 52	44 45 46 47 48	16 15 13	13	51	$\frac{45}{46}$	8 6 4 2		15 30 46	44 45	55 53 51	16	38 55 12	44 45	43 40 38		44 1 19 37	43 44 45 46 47	30 27 24	19	5 23 42 2 23
51 52 53	49 50 51 52 53	29 27 26	11	$\frac{2}{17}$	49 50 51 52 53	19 18 16	13	$\frac{35}{52}$	51 52	8 6 4	14	26 45	49 50 51 52	$\frac{54}{52}$	16	39 59 20	$\frac{50}{51}$	43 40 37	17	10 31 54	49 50 51	$\frac{29}{26}$	18 19	40	50 51	13 9 5		33 59
56 57 58	54 55 56 57 58	22 21 19		23 42 3	54 55 56 57 58	11 9 7	14	$^{6}_{28}$	54 55 56 57	58 56 53	16	49 13 39	54 55 56	41 38	18	$\frac{30}{56}$	54 55	28 25 21	19 20	$\frac{10}{39}$	54 55	11 7 3	21	19 51	53 54	$\frac{48}{43}$	23	58
61 62 63	59 60 61 62 63	$\frac{14}{12}$		13 39 8		58 56	16 17	$10 \\ 40 \\ 12$	58 59 60 61 62	$\frac{45}{42}$		$\frac{6}{39}$	59 60	$\frac{28}{24} \\ 20$	$\frac{20}{21}$	$\frac{59}{35}$	59 60	9 5	$\frac{22}{23}$	51 30 11	58 59	49 44 38	$\frac{24}{25}$	41 22 5	57 58 59 60 61	27 21 15	25 26 27	11 57
66 67 68	64 65 66	4 1 58		48 27 9	64 65 66	47 43 39	19 20	4 47 34	64 65 66	28 24 19	$\frac{21}{22}$	17 4 55	64 65	7 2 56	$\frac{23}{24}$	$\frac{26}{17}$ $\frac{12}{12}$	63 $64$ $65$	38 32	24 25 26 27 28	33 27 26	63 64	20 13 5	27 28 29	30 33 34	63 64	53 45 37	28 29 30 31 32	35 35 39
71 72 73	69	48 44 39	$\frac{20}{21}$	$\frac{40}{40}$	68 69 70 71 72	$\frac{26}{21}$ $\frac{16}{16}$	$\frac{23}{24}$	21 27	69	57 50	25 27	56 8	68 69	37 29	28 29	26 43	68 69	9 50	29 30 32 33 35	50 10 37	67 68 69	39 29 18	33 34 36	31	67 68	55 43	35 36 38	20 46 18
76   77	74 75 76	23 16 8	26 28 30	55 38 34	73 74 75 76	55 46 37	30 32 34	9 0 4	73 74 75	24 14 2	33 35 37	13 9 18	73 74	39 26	36 38 40	5 18	72 73	$\frac{16}{2}$ $47$	36 38 40 43 45	47 50 4	$\frac{72}{73}$	38 23 6	41	$\frac{23}{38}$		59 42 23	41 43 45 48 50	40 45 0
81 82	78 79 80	37 23 7	38 41 45	$\frac{8}{25}$	77 78 79 80	59 42	41 45	56 17	77	18 59	45 48 52	21 42 25	76 77	35 13 49	48 51 55	25 43 21	76	49 26 59	48 51 54 57 61	10 24 55	75	37 8	53 56 60	39 47	74 75	14 46 16	53 55 58 62 65	53
86	82	57 23 43	60	24 55 8	81	28 45	58 63 69 76 82	36 35 3	80	9 31 47	61 66 71 77 83	14 43 34	79	14 34 48	63 68 73 78 84	25 28 48	78	18 36 49	65 70 74 79 84	16 56 49		22 38 50	71 76 80	42 50 10 41 5 18	1	25 40 51	81	
90	83	0	90	0	82	0	90	C	81	0	90	C	80	) C	90	0	79	0	90	0	78	3 (	90	) (	77	C	90	0

Ь			a =	= 1	4°		a	= 1	5°		a	= 1	6°		a	=	17	0		a	= 1	l8°	-	<b>a</b> :	= 1	9°		a	= 2	:0°
		1	K		Q		K		Q		K		Q		K		•	ą		K		Q		K	_ _	Q		K		Q
1 2 3	2	2		3	(		0 5 1 5 2 5 3 5	6		0 1 1	0 ( 55 1 55 2 55 3 5	3		0	0 5 1 5 2 5 3 4	7 5 2	17	0 0 1 1 2	1 2	57 57 54 51 54	Į.		0	0 ( 57 1 54 2 5( 3 47	0 19 7 4			56 56 1 53 2 49 3 46	20 6 3	0 0 0 0 1 2 3
7 8 9	3	5 6 7	51 49 47 46 44		10	1 3 3 7	4 5 5 4 6 4 7 4 8 4	8 6 4	1	5 6	4 48 5 46 6 44 7 4 1 8 39	1	į	7 6	4 4' 5 44 6 42 7 39 8 30	2		4 5 7 9 12	5 6 7	45 42 39 36 38		16 13	3 6	4 44 5 40 3 37 7 34 3 30	) 7 1	10 13	3 6	1 42 5 38 5 35 7 31 8 27	3  5	4 6 8 11 14
11 12 13		l0 l1 l2	42 40 38 36 35		$\frac{18}{21}$	10 11 12	9 39 0 37 1 38 2 33 3 3	5	$\frac{19}{22}$	110	37 34 32 22 32 37	5	24		2	3		25	$10 \\ 11 \\ 12$	$30 \\ 27 \\ 24 \\ 21 \\ 18$		$\frac{23}{27}$	10 11 12	27 24 20 21 21 21 313	<u> </u>	24 28		12		17 21 25 29 34
16	1111	5 6 7	$\frac{29}{27}$		$\frac{32}{37}$	$\frac{15}{16}$	1 29 5 26 5 24 7 22 8 20	1	35 39 44	15 16 17	24 22 19 17 17		37 42 47	14 15 16 17 18	17 14 11	Į L		39 44 49	$\frac{15}{16}$	15 12 9 6 2		41 46 52	15 16			42 48 54	16	57 53		39 44 50 56 3
20 21 22 23 24	222	20	21 19 17	15	57 3 9		10	16	3 1 7	19 20 21 22 23	6 4	17	11 18		59 56	3		$\frac{15}{22}$	$\frac{20}{21}$	59 56 52 49 45	19	11 19 27	19 20 21	52 48 45 41 37		15 22 30	$\frac{19}{20}$			10 18 26 34 43
25 26 27 28 29	$\frac{2}{2}$	5 6 7	13 10 8 6 4		30 38 46	24 25 26 27	58 58		44 53	$\frac{24}{25}$	58 55 52 50 47		42 50 59	23 24 25 26 27	47 44 41	1	9	47 56 6	24	42 38 35 31 27	20	$\begin{array}{c} 52 \\ 2 \\ 12 \end{array}$	$\frac{24}{25}$	33 29 25 21 17	21	58 8 18	23 24 25 26 27	$\frac{20}{15}$	22	53 3 13 24 36
30 31 32 33 34	33	0	59 57 54	16	$\frac{13}{23}$ $\frac{33}{33}$	$\frac{29}{30}$	53 50 47 44 42		$\frac{22}{32}$	28 29 30 31 32	$\frac{41}{37}$	19	30 41 53	28 29 30 31 32	$\frac{30}{27}$ $\frac{23}{23}$	2	0	38 50		$\frac{20}{16}$	21	46	28 29 30 31	9	22	53 6 19	28 29 30 31	$\frac{52}{47}$	23	48 1 14 28 42
35 36 37 38 39	333	4 4 5 4 6 4	16 14 11	17	8 20 33	34 35 36	39 36 33 29 26		20 33 47	33 34 35 36 37	24 21 17	20	31 45 0	33 34 35 36 37	12 8	2	4 5 1 1	2			22	53 8 24	32 33 34 35 36	$\frac{46}{41}$ $\frac{36}{36}$	23		33 34 35	$\frac{32}{26}$		57 13 30 48 6
40 41 42 43 44	3 4 4	9 3 0 2 1 2	32 29 26	18 19	33	$\frac{39}{40}$	23 19 16 12 9		33 50 7	38 39 40 41	6 2 58	21	$\frac{6}{25}$	38 39 40 41	$\frac{47}{42}$	2:	2 2 4	3 22 1	39 40	$\frac{36}{31} \\ 26$		18	38 39 40	15		12 32 52 13 35	38		26	25 45 6 27 50
45	4	3 1	ι9		25	43	5		45	42	49	22	4	42	33		2	3	42	16		41		57		58	41	39	27	14

	a = 14°			;	s =	15	٥		a =	16	°	;	a =	: 17	0		a =	18	,•		a =	19	٥		a =	20	۰	
b	1	ζ_	(	• •	3	K	•	5	ĭ	ζ.	•	<b>3</b>	1	K		•	ī	K	•	ð	1	ĸ	•	5	1	ζ.		Q
46 47 48	43 44 45 46 47	16		45 5 26	44 45	5 1 57 53	21	6 27 49	$\frac{43}{44}$	49 45 40 35		4 26 48 12	43 44 45	,	24	23 45 9 33	43 44	16 10	25	41 4 28 54	42 43 44	57 51 45 39	26	58 22 47 14	41 42 43 44 45	$\frac{32}{25}$ $18$	28	39 5 33
51 52 53	48 49 50 51	$\frac{56}{52}$ $\frac{48}{48}$		37 30	48 49	$\frac{39}{34}$ $\frac{29}{29}$	ŀ	$31 \\ 0$	47 48 49 50 51	20 15 9	25	30 59 29	48 49	0	26	55 25 56	47 48 49	46 39 32 25 18	27 28	18 49	47 48 49	$^{18}_{10}_{2}$	29	47		$\begin{array}{c} 46 \\ 38 \end{array}$	30 31	31 36 10 46
56 57 58	52 53 54 55 56	$\frac{33}{28}$ $\frac{22}{22}$	24	$\frac{2}{36}$	53 54 55	12 6 0	26	36 12 49	52 53 54 55	43 36	28	9 46 25	52 53 54	34 27 20 12 4	29	$\frac{40}{18}$ $\frac{59}{18}$	52 53	54 46	30 31	10 49 31	51 52 53	37 28 18	$\frac{32}{33}$	37 18 1	50 51 52 53	10 0 50	33 34	3 45 29
61 62 63	57 58 59 60	57 50	27 28	13 59 47	57 58 59	39 31 23	29 30	56 43 33	57 58	13 4 55	$\frac{31}{32}$	25 17	57 58	46 36 26	32 33	14 4 57	56 57	7 56	34 35	50 41 35	55 56 57	47 36 24	35 36 37	23 16 11	54 55 56 57	16 4 51	37 38	54 47 43
66 67	61 62 63 64	25 16 7	31 32 33	31	62 63	56 46 35	33 34 35	23 27 35	61 62 63	25 14 2	35 36 37	11 17 26	$\frac{61}{62}$	53	36 38 39	56 3 13	60 61	19 6 52	38 39 40	37 45 56	59 60 61	$\frac{44}{30}$ $15$	$\frac{40}{41}$	15 23 35	58 59 60 61	9 53 36	$\frac{41}{42}$	49 58 11
71 72	65 66 67 68	$\frac{33}{20}$	$\frac{37}{38} \\ 40$	27 54 27	66 67	58 44 29	$\frac{39}{40}$	27 56 30	65 66	21 6 49	$\frac{41}{42}$	52 52 27	64 65	43 26 8	43 44 46	12 42 17	64 65	45 26	44 46 48	56 26	63 64	23 4 43	46 48 49	36 6 40	62 63 64	41 21 59	51	11 40 14
76 77 78	69 70 71 72	18 59 38	45 47 50	$\frac{52}{57}$	69 70	36 15 53	47 49 52	55 59 12	69	52 30 6	49 51	51 53 3	68	18	51 53	39 39 47	67 68	$\frac{20}{55}$	55 57	$\frac{20}{18}$ $\frac{23}{23}$	66 67	$\begin{array}{c} 33 \\ 7 \\ 39 \end{array}$	54 56	55 51 53	65 66 67	45 18 48	56 58 60	23 17 16
82	73 74	55 23	57 60	50 57		34 3 29	57 59 62 65 68	$\frac{43}{33}$ $\frac{32}{32}$	1	42 9 34	61 64 66	23 7	71	$\frac{16}{39}$	62	54 31 16	<b>7</b> 0	56 21	66 69	18 49 26	ı	$\frac{3}{27}$ 48		31	68 69	9 31 51	64 66 69 71 73	45 5 29
85 86 87 88 89			74 78 82	9 2 0		29 43 52 58	75 78 82 86	25 57 35 16		31 44 53 58	76 79 83 86	20 39 4 31		33 45 53 58	74 77 80 83 86	17 29 44		35 46 54 58	74 77 80 83 86	53 51 52 55		36 46 54 58	75 78 81 84 87	$\frac{33}{22}$		37 47 54	76 79 81 84 87	9 49 31
90	76	0	90	0	75	0	90	0	74	0	90	0	73	0	90	0	72	0	90	0	71	0	90	0	<b>7</b> 0	0	90	0

	а	. =	21	,	а	. =	22°	,	а	. =	23	•	а	. =	24	0	a	. =	25	•	a	=	26	•	a	. =	27	•
b	F		(	2	E		Ç		ŀ	•	(	5	F	ζ	•	5	I	ζ	•	3	ı.	<u> </u>	-	5				Q ——
0 1 2 3 4	2	0 56 52 48 44	21	0 0 1 2 3	2	0 56 51 47 42	22	0 0 1 2 3	2	0 55 51 46 41	23	0 0 1 2 3	2	0 55 50 44 39	24	0 0 1 2 3	2	0 54 49 43 38	25	0 0 1 2 3	2	0 54 48 42 36	26	0 0 1 2 3	2	0 53 47 40 34	27	0 0 1 2 3
<b>5</b> 6 7 8 9	5 6 7	40 36 32 28 24		4 6 9 11 14	5 6 7	38 34 29 25 20		5 7 9 12 15	5 6 7	36 31 26 22 17		5 7 9 12 15	5 6 7	34 29 24 18 13		5 7 10 13 16	5 6	32 26 20 15		5 7 10 13 16	5 6	30 23 17 11 5		5 10 13 17	5	27 21 14 7 1		5 8 11 14 17
	12		!	18 22 26 30 35	$\frac{10}{11}$	16 11 7 2 58		$\frac{26}{31}$	10	12 7 2 57 52		$\frac{27}{32}$	9 10 11 12			33	9 10 11 12	46		34	9 10 11 12	<b>4</b> 0		35	9 10 11 12	34		21 26 31 36 42
17 18	14 15 16 17	50	22	$\frac{46}{52}$	13 14 15 16 17	48 44 39	23	48 54 1	13 14 15 16 17	$\frac{42}{37}$	24	49 56 3	13 14 15 16 17	35 29 24	25	51 58 5	13 14 15 16 17	28 22 16	26	53 0 7	13 14 15 16 17	21	27	54 1 9	13 14 15 16	13 6 59	28	49 56 3 11 19
21 22 23	18 19 20 21 22	$\frac{33}{28} \\ 24$		$\frac{21}{29}$	18 19 20 21 22	$\frac{24}{19}$		$\frac{24}{33}$	18 19 20 21	16		$\frac{27}{36} \\ 45$	18 19 20 21	7 1 55		30 39 49	18 19 20 21	57 51 44	27	42 52	18 19 20 21	40 33	28	35 45 55	17 18 19 20 21	$\frac{37}{30} \\ 22$	29	28 37 47 58 9
26 27 28	23 24 25 26	4 59	23	8 19 30	23 24 25 26	48	24	12 23 35	22 23 24 25 26	48 42 36	25	$\frac{17}{28} \\ 40$	22 23 24 25 26	$\frac{37}{30} \\ 24$	26	$\begin{array}{c} 33 \\ 46 \end{array}$	$\frac{23}{24}$	25 18	28	25 37 50	22 23 24 25	12 5 57	29	42 55	23	7 52 44 36	30	21 33 46 59 13
31 32 33	27 28 29 30 31	44 39 34	24	7 21 36	27 28 29 30 31	$\frac{26}{20}$	25	$\frac{14}{28}$	27 28 29 30	18		21 35 51	29	57 50		$\frac{27}{42}$	27 28 29 30	$\frac{42}{35}$	29	33 48 4	26 27 28 29 30	34 26 18	30	38	26 27 28 29		31	28 44 0 17 35
36 37	33 34 35	11 5		23 40 58		55 48		32 50 9	31 32 33 34 35	45 38 31	28	41 59 18	31 32 33 34 35	$\frac{29}{21}$	29	49 8 28	31 32 33 34	11 3 55	30	37	$\begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \end{array}$	45 36	31 32	$_{25}^{5}$		$\frac{35}{26}$ $\frac{16}{16}$	32 33	53 12 32 53 15
41 42 43	37 38 39	53 46 40 33 26		58 19 42	38	28 21 13		10 32 55	38	9 1 53		44	36 37	49 41 32		$\frac{56}{20}$	36 37	$\frac{29}{20}$	31 32	43 7 31	36 37	8 58 48	33 34	42	36	25		38 1 26 52 19
45	41	19		30		58		44	40	37		59	40	14	32	12		51	33	24	39	28		36	39	3		47

ь		a =	21			a =	: 22	°	;	a =	23	°	<u> </u>	a =	24	•	;	a =	25	•	;	a =	26	,0		a =	= 27	
	]	K	<u>'</u>	Q —	J	K		Q ——	]	K		Q	1	K	  (	Q	]	K	•	Q Q	]	K	-	Q	J	K		Q
47 48	42 43	19 11 4 56	29	30 55 22	$\frac{41}{42}$	58 50 42 33	30	44 11 39 8	$\frac{41}{42}$	37 28 19 10	31 32	59 26 54 23	$\frac{41}{42}$	14 5 55	33	12 39 8 38	$ 40 \\ 41 \\ 42$	51 41 31 20	34	$\frac{24}{52}$	40 41	28 17 6 55	35 36	36 4 34 5	40	3 52 40 28	35 36 37	47 16 46
51 52 53	46 47	22 13	31	23 57 32	46 47	46	33	$\frac{42}{17}$	45 46 47	40 30 19	34 35	$\frac{0}{35}$	45 46	3	35 36	53 30	44 45	58 47 35 22 9	37		44 45	18 5 52			l	49 36		0 37
57 58	50 51	$\frac{32}{21}$	35	48 28 11 55 42	50 51	14 2 50	36 37	34 19	49 50	$\frac{44}{32}$ $\frac{19}{19}$	37 38	56	49 50	14 1 47	39	16	49 50	42 28 14		$\frac{49}{34}$	48 49	10 55	41 42	51 38	47 48	37 21 5		20 5 52
62 63	54 55	44 31 17	38 39 40	31 22 16 13 13	54 55	$\frac{11}{57}$ $\frac{42}{2}$	40 41	43 40	54 55	$\frac{37}{22}$	$\frac{41}{42}$	12 7 5	53 54	$\frac{2}{46}$	42 43 44	$\frac{34}{29}$ $\frac{27}{27}$	52 53	26 9	44 45	$\frac{53}{48}$ $\frac{46}{46}$	52	49 31 13	45 46			12 53 33	46 47 48	$\frac{25}{21}$ $18$
67 68	58 59	32 15	43 44 45	$\frac{30}{42}$	58	54 36 17	44 45 47	49 58	57 58	14 55 35	46 47 48	$\frac{22}{34}$	57	34 14 53	$\frac{47}{48}$	35 44 55	56 57	$\frac{32}{10}$	48 50 51	54 2	55 56	$\frac{12}{50}$ $\frac{27}{27}$	50 51 52	$     \begin{array}{r}       5 \\       10 \\       18 \\       28 \\       42     \end{array} $	55	$^{29}_{\ 6}_{\ 42}$	52 53	24 31 41
71 72	62 63	58 36 13	49 51 52	18 42 10 42 19	61 62	$\frac{14}{51}$ $\frac{27}{27}$	51 52 5 <del>4</del>	8 35	61	$^{6}_{41}$	53 55	31 57 27	60	$\frac{44}{19}$	53 55 56	49 14 42	59	$^{32}_{5}$	55 56	28 55		$\frac{12}{44} \\ 16$	57	17 39 4	57 58	$\frac{24}{56}$	58	46 9
76 77 78	65	27	57 59 61	34	65	$\frac{7}{37}$	$\frac{60}{62}$	53 46		16 45 13	62	19 5 54		$\frac{26}{54} \\ 20$	63	29 12 58		$^{34}_{1}_{26}$	62	15 58		$\frac{42}{8}$	63 65 66	$\frac{37}{14}$	ľ	50 15 38	64 66 <b>67</b>	36 11 48
82 83	67	14 36 55	$\frac{70}{72}$	50 4	66	19 40 58	68 71 73	0 13		23 43 1	69 71	51 59		28 47 3	68 70 72 74 76	$\frac{39}{39}$ $\frac{42}{42}$		50 6	71 73	27 23 21		35 53 8	$\frac{72}{74}$	13 4 58		39 56 10	71 72 74 76 78	56 43 33
85 86 87 88 89		26 38 48 55 59	79 82 84	42 14 48		28 39 48 55 59	80 82 85	12 37 4		29 40 49 55 59	80 82 85	40 58 18		31 41 49 55 59	81 83 85	6 18 31		42 50 56	79 81 83 85 87	30 36 <b>4</b> 3		43 50 56	79 81 83 85 87	52 53 55			86	
90	69	0	90	0	<b>6</b> 8	0	90	0	67	0	90	0	66	0	90	0	65	0	90	0	64	0	90	0	63	0	90	0

Table 13. Kelvin's Sumner Line Table

ь		a =	- 28	°		a =	- 29	°		a =	= 3(	)°		a =	= 31	۱°		a =	= 3%	e°		a =	<b>3</b> 3	s°	ĺ	a =	= 3	4°
	] 1	K			]	K		Q	]	K		Q	]	K		Q		K		Q	]	K	'	Q	j	K		Q
0 1 2 3 4	0 1 2 3	53 46	28	•	2				1 2			•	1 2				1 2	51 42	32		0 1 2	50 50 41 31 21			1 2	•		
5 6 7 8 9	5 6	25 18 11 4 56		5 8 11 14 18		59		6 8 11 14 18	5 6	55		6 8 11 15 19	5 6	0 51		8 11 15 19	5 6	14 5 56 47 37		6 8 11 15 19	5 6	12 $52$ $42$ $32$		6 9 12 15 19	5 6	9 58 48 38 27		6 9 12 16 20
13		27		37		21			9	39 31 22 14 6				34 25 16 7 58	1					24 29 34 40 47		52		24 29 35 41 48	9			25 30 35 41 48
16 17 18	13 14 15 16	5 58 50	29	12	_		30	6 14	13 14 15 16	$\frac{40}{31}$	31	59 7 16	12 13 14 15 16	$\frac{40}{31}$	32	1 9 17	12 13 14 15 16	31 21 12	33	2 10			34	3 11 20	12 13 14 15	$\frac{13}{2}$ $51$	35	56 4 12 21 30
$\frac{21}{22}$	$17 \\ 18 \\ 19 \\ 20 \\ 21$	$\frac{27}{19}$	30	40 50 1	17 18 19 20	16 8 59	31	42 52 3	17 18 19 20	5 56 47	32	44 55 6	$17 \\ 18 \\ 19 \\ 20$	34	33	57 8	17 18 19 20	$\frac{31}{21}$	34	48	$\frac{17}{18}$	40 29 19 8 57	35	$^{49}_{012}$	16 17 18 19	$\begin{array}{c} 17 \\ 6 \\ 54 \end{array}$	36	40 51 2 14 26
$\frac{27}{28}$	22 23 24 25	$\frac{38}{29}$	31	37 50 3		32	32	40 53 7	21 22 23 24	19 9 59	33	43 57 11	21 22 23 24	4 54 44	34	46 0	21 22 23 24	49 38 27	35	$^{48}_{2}$	20 21 22 23	$\frac{34}{23}$	36	51 5 20	20 21 22 23	18 6 54	37	39 53 8 23 38
31 32 33	26 27 28 29	3 54 45	32	$\frac{5}{22}$	26 27 28 29	$\frac{37}{27}$	33	37 53 10 28 46	25 26 27 28	29	34	$\frac{15}{33}$	26	12 1 50	35	19 37	25 26 27 28	30	36 37	6	26	$\frac{35}{23}$ $11$	37 38	52 9 27 45 4	26	29 16 3 50 37		55 12 30 49 8
36	32	16 6 56	33 34	$\frac{19}{39}$	30 31 32 33	56 46 35	34 35	$\frac{25}{46}$	30 31 32	$\frac{36}{25}$	35 36	$\frac{31}{52}$	29 30 31 32	15 3 51	36 37	$\frac{36}{57}$ $\frac{20}{20}$	30	28	38	41	30		39	45 7	30	$\frac{10}{56}$	<b>4</b> 0	28 49 11 34 57
	36	$\frac{24}{13}$	35 36	10 35	36	1 49 37		53 18 43 10 37	35	25		25 51 17	33 34 35 36	13 0 46		31 57 24	33 34 35 36	48 34		$\begin{array}{c} 37 \\ 4 \\ 31 \end{array}$	33 34		41	43 9 36	33 34	$\frac{57}{42}$	42	47 14 41
45	38	38		57	38	12	38	5	37	46	39	14	37	19	40	21		51	41	28	36	22		34		53		<b>3</b> 9

	a	=	28°		a	=	29°	,	a		30°		a	-	31°	2,	а	. =	32	,	а	. =	33°	,	a	. =	34	۰,
ь	K		G	)	K		(	2	К		(	2	F	<b>x</b>	q		E	ζ ΄	G	2	H	<b>C</b>	<b>-</b>	2	Б		_	<b>3</b>
46 47		26 13 0	37 38	26 56 28		59 46 32	39	35 6 38	38 39 40	$\frac{32}{18}$	<b>4</b> 0	44 15 47	38 39	19 4 49	41	52 23 55	37 38 39	36 20		$\frac{58}{30}$	37	6 50 33	43 44	36 36	36 37 38	36 19	44 45	9 41
51 52 53	42 43 44 45	20 5 50	41	12 49 28		18	$\frac{41}{42}$	$^{22}_{0}_{39}$	43	$^{18}_{2}$ 46	$\frac{42}{43}$	$\frac{32}{10}$		46 29 12	44	40 18 57	41 42	$\frac{14}{56}$	45 46	48 26	42	$\frac{41}{22}$	46	$\frac{54}{32}$		7 48	47	59 37
56 57 58	46 47 48 49	3 46 29	44	19 6	47	29 11 53	45 46	$\frac{45}{30}$	46 47	53 35 16	46 47	55 40 27	45 46	17 58 38	47 48	4 49 35	45	$\frac{40}{20}$	47 48 49 50	10 55 42	44 45	$\frac{3}{42}$	49 50	16 1 47		$^{25}_{3}_{40}$	51	20 5 51
62 63	50 51	33 13 53	47 48 49	38 33 30	50 51	$\frac{54}{33}$ $12$	49 50	50 44 41	49	15 53 30	50 51	59 53 49	<b>4</b> 9	56 34 11 48 24	51 52	6 0 56	48	53 29	51 52 53 54	12 5	47	11 46	53 54	15 8 3	46 47 48	$^{28}_{\ 37}$	55	18
66 67 68	54	46 22 57	52 53 54	$\frac{35}{41}$	53 54	$\frac{2}{37}$	53 54 55	44 49	1	$\frac{18}{52}$ $25$	55 57	50 55 1	51 52	33 6 38	55 56 58	55 58 3	51	47 19 50	55 56 57 59 60	56 59 4	50 51	$^{1}_{32}_{2}$		57 58	49 50	14 44	59 60	55 55
71 72 73	57	36 7 36	58 59 61	$\frac{31}{50}$ $\frac{12}{12}$	56	47 17 46	59 60 62	$\frac{34}{52}$ $12$	55	58 27 55	60 61 63	35 51 9	55	36 3	62	33 47 3		18 45 11	61 62 63 64 66	$\frac{29}{41}$ $\frac{56}{6}$	53	28 54 19	63 64	$\frac{22}{33}$ $\frac{46}{6}$	52	$\frac{37}{3}$ $27$	64 65	$\frac{23}{34}$
78	59	57 21 44	67 68	32 4 39	58	27 49	64 66 67 69 71	25 54 26	57	10 33 54	68 70	16 43 12		16 38	69 70	4 29 55		22 43 3	67 68 70 71 73	50 12 36	55	28 48 7	69 70	34 54 15	53 54	33 53 11	70 71 72	16 33
80 81 82 83 84	61	$\frac{42}{58}$ $\frac{12}{12}$	75	36 20 6	60	45 0 14	72 74 75 77 79	14 54 36	59	48 3 16	73 74 76 78 79	50 27 5	58	51 5 18	73 75 76 78 80	$\frac{24}{57}$	57	53 7	74 75 77 78 80	57 27 58	56	56 9 21	79	27		58 11 22	76 78 79	
85 87 88 89		44 51 56	80 82 84 86 88	32 23 15		45 51 56	81 82 84 86 88	36 24		46 52 56	81 83 84 86 88	7 49 32		46 52 56	81 85 86 88	$\frac{23}{40}$		47 53 57	82 83 85 86 88	38 13 48		47 53 57	85	52 23 55		48 53 57	84 85 87	34
90	62	0	90	0	61	0	90	0	60	0	90	0	59	0	90	0	58	0	90	0	57	0	90	0	56	0	90	0

	a	. =	35	•	:	a =	36	ь	a	- د	37	•		a =	38	٥		a =	: 39	٥		a =	40	0		a =	41	l°
b	F	ζ.	(	<b>2</b>	]	K	•	3	I	•	•	5	1	K	•	5	I	K	•	2	I	ζ.	(	5	F	ζ.	•	ð.
° 0 1 2 3 4	2	′	35	0 0 1 2 4		0 <b>4</b> 9	36	0 0 1 2 4	2	0 48 36 24 12	37	0 0 1 2 4	1	0 47 35	38	0 0 1 2 4	0 1 2 3	0 47 33 20 7	39	0 0 1 2 4	0 1 2 3	0 46 32 18 4	<b>4</b> 0	0 0 1 2 4	0 1 2 3	0 45 31 16	41	0 0 1 2 4
5 6 7 8 9	6	55 44 33 22		6 12 16 20	6	51 39 28 16		$^{6}_{12}_{16}_{20}$	5 6	59 47 35 23 11		6 9 12 16 20	5	56 44 31 18 5		6 9 12 16 21	5	53 40 26 13 59		6 9 13 17 21		50 36 21 7 53		6 9 13 17 21		46 31 17 2 47	,	6 9 13 17 21
	8 9 10 11			25 30 36 42 49				25 30 36 43 50	$\frac{9}{10}$	58 46 34 21 8		25 31 37 43 50		52 39 26 13 59		26 31 37 43 50	8	45 32 18 4 50		26 31 37 44 51	8	39 24 10 55 41		26 31 37 44 51		$\begin{array}{c} 32 \\ 17 \\ 2 \\ 47 \\ 31 \end{array}$		26 32 38 44 51
16 17 18	12 13 14 15	3 51 40	36	22	12 13 14 15	29	37	13	12 13 14 15	30	38	$\frac{5}{14}$	11 12 13 14	33	39	$\frac{15}{24}$	12	22 8 54	<b>4</b> 0	7 16 25	11 12 13 14	$\frac{56}{41}$	41	$^{7}_{16}_{25}$	11 12 13 14	$\begin{array}{c} 0 \\ 45 \\ 29 \end{array}$	<b>4</b> 2	59 7 16 26 36
21 22 23	16 17 18 19	$\frac{4}{52}$	37	$\frac{52}{4}$ $\frac{16}{16}$	16 17 18 19		38	5		51 38 25 11 57	39	55 6 18	15 16 17 18	24 10 56	40	55 7 19	15 16 17 18	10 55 40	41	56 8 20	16 17 18	$\frac{56}{41}$	42				43	46 57 9 22 35
26 27 28	20 21 22 23	3 50 37	38	$\frac{10}{25}$	$\frac{22}{23}$	33 19 5	39	$\frac{57}{12}$		43 29 15 1 47	40	59 13 29	19 20 21 22	13 58 43	41	0 15 30	20		42	16	19 20 21		43	$\frac{2}{17}$	18 19 20 21	$^{19}_{\ 2}_{\ 45}$	44	48 3 18 33 49
31 32 33	24 25 26 27	57 44		33 52	24 25 26	51/37 23 9		17 35 54	23 24 25 26	$\frac{17}{2}$ $\frac{47}{2}$		19 37 56	23 24 25 26	57 41 25	43	$\begin{array}{c} 39 \\ 58 \end{array}$		36 19	43 44	$\frac{22}{41}$	22 23 24 25	$\frac{14}{57}$ $\frac{40}{10}$		$\frac{23}{42}$	23	10 52, 34 16 58		6 24 43 2 22
36 37 38			41 42	52 14 37	29	24	42	56 18 41	27 28 29 30	27	43	$\frac{20}{43}$	27 28 29	18 1	44 45	$\begin{array}{c} 0 \\ 22 \\ 45 \end{array}$		11 53 35	45 46	$\frac{2}{24}$	26 27 28	$\begin{array}{r} 4 \\ 46 \\ 27 \\ 8 \\ 49 \end{array}$		$\frac{3}{25}$	25 26 27 28	$^{20}_{1}_{41}$	47 48	42 3 25 48 12
42 43	32 33	46 30 14 58 41	43	51 18 45	32 33	46	44	49	31 32 33	0	45	58 24 52	30 31 32 33	8 49 30	46 47	26 53	31	58 39 20 0 40	47 48	28. 55		$\frac{10}{50}$		2 28 55	29 30 31	59	<b>49</b> 50	$\begin{array}{c} 37 \\ 2 \\ 28 \\ 55 \\ 23 \end{array}$
45	35	24		43		54		46	34	23		49		52		51	33	20		52		<b>4</b> 8		53	32	15		52

b		a =	= 38	20	Ī	a =	- 36	i°		a =	37			a =	- 38	ş°		a =	= 39	)°		a =	= <b>4</b> (	)°	Ī	a =	= 4:	L°
		K		Q		K		Q	:	K		Q	:	K		Q		K		Q	]	K		Q	]	K		Q
46 47 48	36	48	45 46	14 45 18	34 35 36		46 47	46 17 49 21	35	23	47 48	49 20 51 24	34 35	52 32 12	47 48 49	22 53	33 34 35	59 38	48 49 50	26	33 34	48 26 4	50 51	23	33 34	53 30	51 52	52 22 53 25 57
52 53	39 40	32 12	48 49		39 40	57 36 15	49	43 22	38 39	$^{22}_{0}$	50 51	8 <b>45</b>	38 39	46 23 0	51	9 46 24	37 38	46 22	52	45 23	37	32 8	53 54		36 37	55 30	54 55	31 6 42 18 56
56 57	43 44	47 24 0	51 52		42 43	43 19	52 53	9 54	42	52 28 3 38 12	54	25 8 53	41	22 56	54 55	24 7 51	40	41 14	55 56	41 22 4 48 33	40	26 59 31	56 57		39	44 16 48	57 58	15 56 38
61 62 63	46	46 20	55 56 57	28 18 10 3 57	45	2 35		17 8		46 19 51 22 52	57 58	15 5 56	44	34 5 36	58 59	11 0 50	<b>4</b> 3	49 20 50	59 60	19 6 54 43 34	43	$^{4}_{34}$	60 61			18 47		51 38 25
67	48 49	27 56 25	59 60 61	53 51 50 51 54	48	39 8 36	60 61 62	46 44 44	47	22 51 19 46 13	61 62 63	39 36 34		30 56	$^{63}_{64}$	$\frac{30}{26}$	45 46	14 40 6	64	20		25 51 16		57	43 44	35 0	66	41
71	51	46 10 34	65 66 67	58 4 11 20 31	50	54 18 41	64 65 66 68 69	52 58 5		26 48	66 67 68	38 42 48		10 33	68 69	23 25 29	47 48	39 0	68	6 7 9	46 47	25 46 6	68 69	47 47		$\frac{32}{52}$	69 70 71	28 26 25
76 77	53	57 15	70 72 73	56 11	52	43 1 18	70 71 72 74 75	35 48 2	51	22	72 73	23 35	50	52	75	48 56 6	49	$\frac{57}{13}$ $\frac{29}{29}$	72 73 74 75 76	22 29 36		44 17 32 46	76	55 0 5	47	48 5 20 35 48	74 75 76	27 30 33
80 81 82 83 84	54	$\frac{13}{24}$	77 78	24 46 8 31	53	$\frac{14}{25}$	77 79	51 9 29	52	51 16 26 35	78 79 80	32			79 81	41 54 8	<b>5</b> 0	8 19 29	77 79 80 81 82	4 15 27			79 80 81	35 44	48		82	48
85 86 87 88 89		41 48 53 57 59	84 85 87	19 44 9		42 49 54 57 59	84 85 87	31 53 15		43 49 54 57 59	84 86 87	$\begin{array}{c} 43 \\ 2 \\ 21 \end{array}$		43 49 54 57 59	84 86 87	$\frac{54}{10}$		50 54 57	83 85 86 87 88	5 18 32		44 50 54 57 59	85 [.] 86 87	15 26 37		45 50 54 57 59	85 86 87	25 33 42
90	55	0	90	0	54	0	90	0	53	0	90	0	52	0	90	0	51	0	90	0	50	0	90	0	<b>4</b> 9	0	90	0

b		a =	= <b>4</b> 2	;° .		a =	<b>4</b> 8	B°		a =	44	Į°		a =	- 4	5°		a =	= 40	8°		a =	- 47	1°		a =	<b>4</b> 8	3°
B	]	K		Q	]	K		Q	]	K	'	Q		K		Q		K		Q		K		Q	] :	K		Q
0 1 2 3 4	0	0 45			1 2	44	43	0 0 0 1 2 4	0	43 26 10 53	44		1 2	42 25	45	6 ( 1 2 4	1 2	42 23	46	6 C 1 2 4	1 2	$\frac{41}{22}$	47	0 0 1 2 4	0 1 2	40 20	48	0 0 1 2 4
5 6 7 8 9	5	43 27 12 56 41		6 9 13 17 21	4 5	39 23 7 51 34		6 9 13 17 21	<b>4</b> 5	36 19 2 45 28		6 9 13 17 21	5	32 14 57 39 21		9 13 17 21	5	28 10 51 33 14		6 9 13 17 21	4	46 27		6 9 13 17 21	4	$\frac{40}{20}$		6 9 13 17 21
10 11 12 13 14	8	53 37		26 32 38 45 52	7 8 9 10			26 32 38 45 52	8	11 53 36 19		26 32 38 45 52	l	3 45 27 9 51		26 32 38 45 52	8	56 37 18 59 40		26 32 38 45 52	7 8 9			26 32 38 45 52	7 8 9			26 32 38 44 51
18	11 12 13 14	33	43	59 17 26 36	11 12 13	55 38 21 4 46	44	$^{8}_{17}_{26}$	11 12 13	8 50	45	8 17 26	10 11 12 13	$\frac{56}{37}$	46	$\frac{8}{17}$ 26	10 11 12 13	$\begin{array}{c} 2 \\ 43 \end{array}$	47	8 17	11	10 50 30 10 50		0 8 17 26 36	10	58 38 17 56 35	49	59 7 16 25 35
$\frac{22}{23}$	15 16 17	10 53	44	58 10 22	14 15 16 17	$\frac{12}{54}$ $\frac{36}{36}$	45	$\frac{58}{10}$	16	56 38	46	10	14 15 16	21	47	$\frac{10}{22}$	14 15 16	5 <b>4</b> 5		$\frac{10}{22}$	13 14 15 16	9 48	49	57		14 53 31 9 47	50	46 57 9 21 34
25 26 27 28 29	19 20	$\begin{array}{c} 1 \\ 43 \end{array}$	45	49 18 34 50	19		46		18 <b>19</b> 20	4 44	47	$\frac{3}{18}$	18 19	$\begin{array}{c} 3 \\ 43 \end{array}$	48			$^{5}_{44}_{23}_{2}_{41}$	49		17 18 19	45 24 2 40 18	50	$\frac{2}{17}$	16 17 18	$\frac{3}{41}$	51	47 1 16 31 47
30 31 32 33 34	23	$\frac{30}{11}$ $52$	46 47	$\frac{25}{43}$	21 22 23 24	$\frac{8}{48}$	47 48	$\frac{25}{43}$	21 22 23	$\frac{45}{25}$	48 49	$\begin{array}{c} 7 \\ 25 \\ 43 \\ 2 \\ 21 \end{array}$	21 22 23	$\frac{0}{39}$	49 50	$^{6}_{24}_{42}_{1}_{20}$		20 58 36 14 52		6 23 41 0 19	20 21 22	34		22 40 58	19 20 21	$\frac{10}{46}$ $\frac{22}{2}$	52 53	3 20 38 56 15
35 36 37 38 39		54 34 14		26 49		7 46	49 50	$^{3}_{25}$	24 25 26	1 39 17	50	25 <b>47</b>	24 25 26	11 48	51 52	$\begin{array}{c} 41 \\ 2 \\ 23 \\ 46 \\ 9 \end{array}$	23 24 25		52 53	44	23 24 25	38 14 50 25	53 54	58	22 23 24	$\frac{10}{45}$		35 56 17 39 1
40 41 42 43 44	29 30	11 49 27	50 51	55	29	$^{18}_{55}$	51 52	$36 \\ 27 \\ 54 \\ 21$	28	$\frac{9}{46}$	52 53	35 0 25 52 19	27 28 29	50	53 54	58 23 49		$\begin{array}{c} 7 \\ 42 \\ 17 \end{array}$		31 55 20 46 13		43	55 56	$\frac{52}{17}$	27	28 2 36 9 42		24 48 13 38 4
45		42		51	31	9		50	30	34		47	30	0		44	29	25		<b>4</b> 0		50		36	28	14		31

Ь		a =	= 49	s.		a =	43	s°		a =	= 44	٥	Ī	a =	= 48	5°	Ī	a =	= 46	;°		a =	= <b>4</b> 7	7°	Ī	a =	= 48	
Ľ	_	K	_	Q		K	L	Q	]	K	-	Q		K		Q		ĸ		Q	]	K		Q		K		Q
47 48	31 32	55 31	51 52 53	3 23	31 32	20	52 53 54	49	31 32	34 10 45	53 54 55	46 17	30 31	34 8	54 55	$\frac{13}{42}$	29 30 31	59 32 (	56  57	- 9 38	28 29	50 23 55 27 59	56 57 58	$egin{pmatrix} 4 \ 33 \ 2 \end{bmatrix}$	28 29	46 18 49	57 58	31 59 27 56 26
52	38 36	5 17 51	55 56	38 15	35	38 11 44	56	59 34	33 34 35	59 32	57	55 29	34	20 52 23	58	58	33	40 11 42	59	50		30 0	60	36 8	31 32	49 18	60 61	33
56 57	38 39	33 33 4	58 59	30 3 9 50 31 14	37	19 50 20	59	3 43 24	37	36 6		56 35 15	36	53 22 51 19	61 62	47	35 36	10 38 6	62	15 54		20	62 63	28	34	$\frac{8}{34}$	63	53 30
61	41	33 1 28	61 62	42 28 15		13		2	39 40	59 26 52	64	21 4 49	38 39	12 38 3	64	51 35	37	$\frac{25}{50}$	İ	14 55 37 20 3		37 1		$\begin{array}{c} 0 \\ 40 \\ 21 \\ 3 \\ 46 \end{array}$	36	$\frac{13}{36}$	66 67 68	5 46
66	43	10 33	65 66 67	51 41 32 25 18		55	67	26 16 7		5 28 50	68	10 58 48		14 36	68 69			$\frac{23}{45}$		33		32 53 13	69	59 <b>4</b> 5		41 1 21	69 70 71 72	53 37
71 72		39	70 71	3	44	$\begin{array}{c} 45 \\ 4 \end{array}$	72	$\frac{45}{40}$	43	$\frac{51}{10}$ $\frac{28}{28}$		22	42	58 16 33	71 72 73 74	$\frac{50}{42}$	41	$\frac{3}{21}$ $\frac{3}{38}$	73 7 <b>4</b>	33 23		$^{9}_{26}$		7 56		31 <b>47</b>	73 74 75 76	27 15
75 76 77 78 79	46	9 24 38	74 75	58 58 58 0 2			75 76 77	26 26		16 30	75 76 77 78	56 53 51	43	19 33 46	76 77 78	19		$\frac{36}{48}$	76 77 78 79	45			77 78	17 9 2	41	$^{41}_{53}$	77 78 79 80	33 24
80 81 82 83 84	47	$\frac{13}{23}$ $\frac{3}{32}$	79 80 81 82 83	9 13 18		5 15 24 32 40	80 81 82	31 33			82	48 48 48	44	8 18 27 34 41	$\frac{82}{83}$	9 7 5 3 2		$\frac{20}{28}$ $\frac{35}{35}$	80 81 82 83 84	$25 \\ 21 \\ 17$		12 21 29 36 42	$\begin{array}{c} 82 \\ 83 \end{array}$	$\frac{42}{36}$		37		45
85 86 87 88 89		51 55 58	84 85 86 87 88	34 40 47		46 51 55 58 59	85 86 87	43 47 51		47 51 55 58 59	85 86 87	52 54 56		47 52 55 58 59	86 87 88	1 0 0 0 0		47 52 55 58 59	87 88	11 9 6 4 2		48 52 56 58 0	86 87	17 12 8	<b>4</b> 2	52 56 58	85 86 87 88 89	24 18
90	48	0	90	0	47	0	90	0	<b>4</b> 6	0	90	0	45	0	90	0	44	0	90	0		0	90	0		0	90	0

ь		n =	49	)°	ı	n =	50	ه.		. =	51			a =	52	}°	;	a =	53	°		a =	54	•		a =	= <b>5</b> 8	5°
Ĺ	1	<b>K</b>	-	<b>.</b>	1	K	•	5	1	<u>«</u>	•	Q	ı	K	-	<b>Q</b>	ı	<b>K</b>	•	Q	נ	<b>K</b>	•	3	1	K	•	ð
0 1 2 3 4		0 39 19 58 37	49	•	-		50	0 0 1 2 4	0 1 2	0 38 16 53 31	51	0 0 1 2 4	1	,	52	0 0 1 2 4		0 36 12 48 24	53	0 0 1 2 4		0 35 11 46 21	54	0 0 1 2 4	0 1 2	0 34 9 43 18	55	0 0 1 2 4
5 6 7 8 9	4	17 56 35 14 53		6 9 13 17 21		13 51 30 8 46		6 9 13 17 21	3 4 5	$947 \\ 24 \\ 2 \\ 39$		6 9 13 17 21		5 41 18 55 32		6 9 12 16 21		0 36 12 48 24		6 9 12 16 20	4	56 31 6 41 16		6 9 12 16 20	3 4 5	52 26 0 35 9		6 9 12 16 20
10 11 12 13 14	7	32 11 50 29		26 32 38 44 51	7	25 3 41 19 57		26 31 37 44 51	6 7 8	16 54 31 8 45		26 31 37 44 51	ľ	8 45 21 58 34		26 31 37 43 50		$\begin{array}{c} 0 \\ 36 \\ 11 \\ 47 \\ 22 \end{array}$		25 30 36 43 50	7	51 26 1 36 11		$25 \\ 30 \\ 36 \\ 42 \\ 49$	6 7	43 17 51 25 59		25 30 36 42 49
17 18	10 11 12	$\begin{array}{c} 47 \\ 25 \\ 4 \\ 42 \\ 20 \end{array}$	50	$\frac{16}{25}$	10	35 12 50 28 5	51	59 7 15 24 34	9 10 11		52	58 6 15 24 34	9 10 11	$\frac{22}{58}$	53	58 6 14 23 33	9 10 11	58 33 8 43 18	54		9 10 11	45 19 54 28	55	56 4 12 21 31	8 9 10	$\begin{array}{c} 32 \\ 6 \\ 39 \\ 13 \\ 46 \end{array}$	56	56 3 11 20 29
22 23	13 14 15	14 51	51	45 56 8 20 33	13 14 15	42 19 56 33 9	52	45 56 7 19 32	12 13 14	$\frac{2}{38}$	53	55 6 18	12 13 14	9 45 20 55 30	54	5 17	12 13 14	53 27 2 36 10	• 55	42 52 3 15 27	12 13		56	41 51 2 14 26	11 12 13	52 25 57	57	39 49 0 12 24
28	16 17 18	56	52	14 29	16 17 18	$\frac{58}{34}$	53	59	15 16 17	26 1 36 11 46	54	$43 \\ 57 \\ 11 \\ 26 \\ 42$	15 16 17	5 40 14 48 22	55	42 55 9 24 39	15 16	$     \begin{array}{r}       44 \\       18 \\       51 \\       25 \\       58     \end{array} $	56	$^{40}_{53}$ $^{7}_{22}$ 37		23 56 29 1 33	57	19	14 15 16	$\begin{array}{c} 2\\ 34\\ 6\\ 37\\ 9 \end{array}$	58	36 49 2 16 31
31 32 33	19 20 21	56	53 54	36	19 20 21	$\frac{20}{55}$	54 55	17 34 52	18 19 20	55	55 56	$\frac{31}{49}$	18 19 20	$\frac{2}{35}$	56 57	$^{11}_{28}$	17 18 19	$31 \\ 36 \\ 8 \\ 40$	57 58	$^{8}_{25}_{42}$	17 18 19	5 37 9 40 11	58	49 22 39 56	17 18	42	59	46 18 35 52
35 36 37 38 39		$\begin{array}{c} 6 \\ 41 \\ 15 \\ 49 \\ 23 \end{array}$	55	33 53 14 35 57			56	30 50 10 32 54	21 22 23	43 16 48	57	26 46 7 28 49	21 22	45	58	23 42 2 23 44	20 21 22	$\frac{43}{14}$ $\frac{45}{45}$	59	19 38 58 18 39	20 21	42 13 43 13 43	59 60	12	19 20 21	42 12 41	60 61	10 28 47 7 27
	25 26 27	57 30 3 35 7	-	20 44 8 33 59	25	$^{24}_{56}_{28}_{0}$			24 25	$\frac{23}{54}$		11 34 58 22 47	24	19 50 20 50 19		$\begin{array}{c} 6 \\ 29 \\ 52 \\ 15 \\ 40 \end{array}$	23 24	45	60 61	$\begin{array}{c} 0 \\ 22 \\ 45 \\ 8 \\ 32 \end{array}$	22 23 24			54 16 38 1 25	22 23	38 6 34 2 29	62 63	48 9 31 53 16
45		38	58	25	27	2	59	19	26	25	60	12		48	61	5	25	11		57		34		49		56		40

ь		a =	49	0	;	a =	50	)°	;	a =	51	.•	1	a =	52	0		a =	- 53		a	<b>.</b> –	54	•		a =	- 55	°
	1	K	(	•	ı	K		Q	1	K	•	Q	1	ĸ	•	<b>5</b>	1	K.	•	<b>5</b>	1	K	•	Q	]	K	•	5
46 47	28	40 11	59	25 52 20 49 18	28	$\frac{32}{2}$ $\frac{32}{32}$	60	19 46 13 41	26 27 28	25 55 24 53	61	38 5	26	17 46		5 31	26	11 39 7				$28 \\ 54$	63	49 13 38	24	22 48 14		4 29 54
51 52 53	31	8 36	61 62	51 23		26		41	29 30	44		30	28 29	35 1 27	-	20 49 19 49 20		44		7	27 28	36	65 66		26 27	28 52 16 39		46 13 41 9 38
58	33	57 23	63 64 65		32 33	$\frac{12}{37}$		18 52 26 2 38	32	27 51 15	65 66 67	$\frac{38}{12}$ $\frac{47}{47}$	30 31	41 5 28	66 67 68	57 31	30 31	19 41	67 68	41 14	29 30	$\frac{10}{32} \\ 54$	67 68 69	57	28 29	24 45 6 27	68 69 70	7 37 8 39 10
62 63	35	24 46	66 67 68 69	9 48 28	34 35	13 35 56		14 52 30 9 48			68 69 70	34 11 49	32 33	35 56	69 70	51	32	46 6	69 70 71	21 56 31 7 43	31	56 16 35	70 71 72	36	30 31	$\begin{array}{c} 47 \\ 7 \\ 26 \\ 44 \\ 2 \end{array}$	71 72	48
65 66 67 68 69	37			14 58	36	58 17 35	70 71 72 73	51 33	35		71 72 73	$^{26}_{7}$	34 35	55 13 31 48 5	73	$44 \\ 22 \\ 1 \\ 41 \\ 21$		21 38 55	72 73 74	$\begin{array}{c} 58 \\ 36 \end{array}$	32 33	28 45 1	73 7 <b>4</b> 75	9 46	32	$\frac{36}{52}$	73 74 75	$\begin{array}{c} 6 \\ 42 \end{array}$
71 72 73	38 39	20 36 51	73 74 75 76	$\begin{array}{c} 12 \\ 58 \end{array}$		41 56	74 75 76	43	36 37	31 46 0	74 75 76 77	14 57 41	36	21 36 50 4 17	75 76 77		35	26 41 55 8 21	75 76 77 78	13 54 35	34	46 59	76 77 78	3 42 21 1 41	33	51 4 16	76 77 78 79	9 47 26
75 76 77 78 79	40	32 44 55	77 78 79 80	7 56	39	$\begin{array}{c} 35 \\ 47 \end{array}$	77 78 79 80	32 19 6	38	38 49 59	78 79 80 81	$\frac{55}{41}$ $27$	37	$\frac{41}{52}$	78 79 80 81	18 2 46	36		79 80 81	23	35	46 56	81	21 43 25 7	3 <b>4</b>	59 8	80 81 82	3 43
80 81 82 83 84		23 31 38	81 82 83 84	15 6 57		24	81 82 83 84	$\frac{31}{20}$		39	82 83 84 85	22		$\frac{27}{34} \\ 40$	82 83 84 85	$\frac{2}{48}$		$\frac{28}{35}$ $\frac{41}{41}$		17 1 45		22 29 36 41 46		13 56			83 84 85	
85 86 87 88 89	41	53 56 58	85 86 87 88 89	32 24 16	40	56 58	86 87 88	$\frac{39}{29}$	39	56 58	86 87 88 89	$\frac{34}{23}$	38	58	87 88		37	54 57 59		0 45 30		50 54 57 59 0	87 88	6 49	35	54 57 59	86 87 88 89	12 54 36
90		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0

ь	1	a =	56	•	[ ]	a =	- 57	۱۰		a =	<b>5</b> 8	٥		a =	- 59	)°		a =	= 60	)°		a =	- 61	l°		a =	= 6	s.
Ľ	1	K	•	Q	1	K		Q	1	K	-	Q	]	K		Q	7	K		Q	]	K		Q	]	K		Q
0 1 2 3 4	0 1 2	0 34 7 41 14	56	0 0 1 2 4	0 1 2	0 33 5 38 11	57	0 0 1 2 4	1	0 32 4 35	58	0 0 1 2 4	1	,		,	1	30 30 30	60	•	1	•		•		•	62	′
5 6 7 8 9		48 21 54 28		6 9 12 16 20	1	43 16 48 21 53		6 9 12 15 19	3	39 11 42 14 45		6 8 11 15 19	3	34 5 36 7 37		6 8 11 15 19	3	30 30 59 29		6 8 11 14 18	3	25 54 23 52 21		6 8 11 14 18	3	21 49 17 45 13		5 8 11 14 18
10 11 12 13 14	6	34 7 40 13 46		24 29 35 41 48		26 58 30 2 34		24 29 35 41 47	6	17 48 20 51 22		24 29 34 40 46	5 6 7	8 38 9 39		23 28 33 39 45	-	59 29 58 28 57		23 28 33 38 44	-	50 19 47 16 44		22 27 32 38 44	5 6	41 8 36 4 31		22 26 31 37 43
15 16 17 18 19		25 57	57	55 3 11 19 28	8 9 10	$\frac{10}{42}$	58	54 10 18 27	ľ	53 24 55 26 56	59	53 0 8 17 26	8 9	39 39 9 39	60	52 59 7 15 24	7 8 9	55	61	51 58 6 14 22	7 8 9	13 41 9 37 5	62	50 57 4 12 20		59 26 53 20 47	63	49 56 3 11 19
20 21 22 23 24	12	33 5 37 9	58	59	11 12	46	59	36 46 57 8 19	10 11 12	57 27 57	60	35 45 55 6 17	10 11 12	9 38 7 36 5	61	33 43 53 3 14		51 19 48 16 44	62	$\begin{array}{c} 31 \\ 40 \\ 50 \\ 1 \\ 12 \end{array}$		28 55	63	29 38 48 58	9 10 11	14 41 8 34 0	64	27 36 45 55 5
27	14 15	40 11 42 13 44	59	14	13 14 15	49 19 49	60	31 44 57 10 24	13 14	55	61	29 41 54 7 21	13 14		62	26 38 50 3 17		12 40 7 34 1	63	23 35 47 59 12	12 13	49 16 43 9 36	64	20 31 43 55 8	12 13	44	65	16 27 39 51 4
31 32 33	16 17 18	44 14 44	60	43 58 14 30 47	16 17	46	61	39 54 10 26 42	15 16 17	50 18 46	62	35 50 5 21 37	15 16	50	63	31 45 0 15 31			64	26 40 55 10 25	14 15	28 53 19 44	65	21 35 49 4 19	14 15	34 59 24 49 13	66	17 30 44 58 13
35 36 37 38 39	19 20	$\frac{11}{40}$	61 62	$\frac{23}{41} \\ 0$	18 19 20	40 8 36	62 63	$\begin{array}{c} 35 \\ 54 \end{array}$	18 19	42 9 36 3 29	63 64		17 18	11 37 3 29 55	64	48 5 22 40 58	17 18	40 6 31 56 21	65	41 58 15 32 50	16 17		66	$\begin{array}{c} 35 \\ 51 \\ 7 \\ 24 \\ 42 \end{array}$	16 17	37 1 25 48 11	67	28 44 0 16 33
40 41 42 43 44	21 22	58	63 64	40 1 23 45 7	21 22	48	64	33 53 14 36 58	20 21	46	65	45	19 <b>2</b> 0	$\frac{45}{10}$	65 66	36 56 17	19 20	45 9 33 56 19	66 67	27 47 7 27	18 19	33 56 19	67 68	0 18 37 56 16		$\frac{18}{40}$	68 69	50 8 26 45 4
45	23	17		30		<b>3</b> 9	65	20	22	0	<b>6</b> 6	10	21	22		59		<b>4</b> 2		<b>4</b> 8	20	3		36		23		24

ь		a =	50	°	Ī	a =	- 57	r°	]	a =	- 58	s°		a =	- 59	)°		a =	= 60	)°	;	a =	61			a =	= 67	S.
	]	K		Q		K		Q	]	K		Q		K		Q	I	K		Q	]	K		Q	1	K		Q
45 46 47 48 49	23 24	17 43 8 33	-	30 54 18 43	<b>2</b> 3	39	66	43	23	0 24 48		10 32 55	22	22 45 8 30 52	67	59 21 43 6	21		68	48 9 31 53	20 21	25	69	36 56 17 39		23 44 5 25 45	69 70	24 44
51	26	9 32	67 68	$34 \\ 27 \\ 54 \\ 22$	25	25 47	68	20 46 12 39 6	24 25	19 41	68 69	32 57		14 36 57 17 37		53 17 42 7 33	23	31 52 12 32 52		38 26 50 15	22 23	48 8 28 47 6	71	23 46 9 33 57	21 22	$\begin{array}{c} 24 \\ 43 \end{array}$	71 72	8 30 52 15 39
56 57	28	16 37 58 18 38		$51 \\ 20 \\ 50 \\ 20 \\ 51$	27	30 51 11 31 50	71	34 31 1 31	26	44 23 42 1	70 71 72	$\frac{44}{12}$	25 26						72 73	41 7 33 59 26	24	$^{42}_{0}_{17}$	72 73 74	22 47 12 38 4	23	37 54 11 28 44	73 74	26 51 16 41
62 63	29		72	22 54 26 59 32	29	27 45	73	$\begin{array}{c} 1\\ 32\\ 3\\ 35\\ 7\end{array}$	28	54	73 74	39 39 10 41	27	46 3 19	73 74 75	46 15 45	26	40 56 12 27 42		54 22 50 19 48	25	49 21 36 50		$\frac{25}{53}$	24	59 14 29 44 58	75 76	7 33 59 26 53
65 66 67 68 69	31	14	İ	5 39 14 49 25	30		75 76		29	42 57 12 26 39	76	50	28	50 4 18 31 44		45 16 47 19 51	27	57 11 24 37 50	77	48	26	$\begin{array}{c} 4 \\ 17 \\ 30 \\ 43 \\ 55 \end{array}$	77 78	18 47	25 26	$\frac{24}{36}$ $\frac{48}{48}$	77 78 79	48 16 44
70 71 72 73 74	32	42 55 8 20 31	77 78 79		31	47 0 12 23 34	77 78 79	$\frac{4}{39}$	30	16 27	78 79 80	$\frac{4}{39}$	29	9	79	23 56 29 2 36	28	$     \begin{array}{r}       2 \\       13 \\       24 \\       34 \\       44     \end{array} $	79 80	53	27	37	79 80 81	46 17 48		$\overline{31}$	80 81	40
75 76 77 78 79	33	42 52 1 10 18	81	6 44 22 1 40	32	44 54 3 11 19	80 81 82	4 41	31	5 13	81 82 83	0 36	30	59 7 15	81 82 83	44 18 53	29	53 1 9 17 24	81 82 83		28	11	82 83	50 22 54 26 58	27	20	82 83 84	40 11 41
80 81 82 83 84		32 38	83 84 85	59 38		$\frac{32}{38}$	83 84 85 86	12 50		$\frac{39}{44}$		$\frac{2}{39}$		45	84 85 86	49		36 41 45	84 85 86	50 24 58			84 85 86	$\begin{array}{c} 30 \\ 3 \\ 35 \\ 8 \\ 41 \end{array}$		42	85 86	46
85 86 87 88 89		51 54 57 59 0	87 88	18 59	33	57 59		46 24 3 42 21	32	57 59	87 88 89	53 30 8 45 23	31	59	88	$\begin{array}{c} 0 \\ 36 \\ 12 \\ 48 \\ 24 \end{array}$	30	55 57 59	87 88 89	51	29	55 57 59	87 88 89	47 20 53	28	56 58 59	87 88 89	52 24 56
90		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0

		a =	63	,0	;	a =	64	ļ°	;	a =	65	i a	1	a =	= 66	°	T ,	a =	67	0		<b>a</b> =	- 68	•		a =	69	o
b	1	K	•	Q	,	K	•	Q	,	K	•	Q	]	K		Q	]	K	•	<b>5</b>	1	K	_	3	1	K	(	3
0 1 2 3 4	0	0 27 54 22 49	63	0 0 1 2 3	0	0 26 53 19 45	64	,	0		65			$\begin{array}{c} 0 \\ 24 \\ 49 \end{array}$	66		0	$\frac{0}{23}$	67	0 0 1 2 3	0	0 22 45 7 30	68	0 0 1 2 3	0	0 22 43 5 26	69	0 0 1 2 3
5 6 7 8 9		16 43 10 37 4		5 7 10 13 17	3	11 38 4 30 56		5 7 10 13 17	3	7 32 57 22 47		5 7 10 13 16	3	26 50 15 39		5 7 9 12 16	3	57 20 44 7 30		5 7 9 12 15	3	52 15 37 59 22		5 7 9 12 15	3	47 9 30 52 13		4 6 8 11 14
10 11 12 13 14		31 58 25 52 18		21 26 31 36 42		22 48 14 40 5		21 25 30 35 40	4 5	12 37 2 27 52		20 24 29 34 39	4 5	3 27 51 15 39		20 24 28 33 38	4 5	53 16 39 2 25		19 23 27 32 37	4	44 6 28 50 12		18 22 26 31 36	4	34 55 16 37 58		17 21 25 29 34
15 16 17 18 19	8	45 11 38 4 30	64	48 54 1 9 17		31 56 22 47 12	65	46 53 0 7 15	6 7	17 41 6 30 54	66	45 51 58 5 12	7	$\begin{array}{c} 3 \\ 26 \\ 50 \\ 13 \\ 37 \end{array}$	67	44 50 56 3 10	6 7	48 11 34 56 19	68	42 48 54 1 8	6	34 56 17 39 0	69	41 47 53 59 6	5 6	19 40 1 22 42		39 45 51 57 3
20 21 22 23 24	9 10		65	25 34 43 52 2	9 10	37 27 27 52 16		23 31 40 49 59	9	18 42 6 30 54		20 28 37 46 56	9	$\begin{array}{c} 0 \\ 23 \\ 46 \\ 9 \\ 31 \end{array}$		18 26 34 43 52	8	41 25 47 9		15 23 31 39 48	8	$22 \\ 43 \\ 4 \\ 25 \\ 46$		13 20 28 36 44	8	23 43 3 23		10 17 24 32 40
26 27	11 12	4 29 54 19 43		13 24 35 47 59	11 12	5 29 53	66	9 20 31 42 54	10 11	17 41 4 27 50	67	$     \begin{array}{r}       6 \\       16 \\       26 \\       37 \\       49     \end{array} $	10 11	$54 \\ 16 \\ 38 \\ 0 \\ 22$	68	2 12 22 32 43	10		69	57 7 17 27 38	9 10	7 27 48 8 28	70	53 12 22 32	9 <b>10</b>	$^{43}_{\ 22}_{\ 41}_{\ 0}$	71	49 58 7 17 27
$\frac{31}{32}$	13 14	7 31 55 19 43	66 67	24 38 52	13 14	$^{3}_{26}$	67	6 19 32 45 59	12 13	34 56	68	13 25 38 52	12 13	44 6 27 48 9	69	55 7 19 31 44		16 37 57 17 37	70	$\begin{array}{c} 12 \\ 24 \end{array}$	11 12	48 27 46 5	71	43 54 5 17 29	11	19 38 57 15 33	72	37 47 58 9 21
35 36 37 38 39	15 16	6 29 52 14 36	68	21 36 51 7 24	15 16	56 18 40	68 69	13 28 43 59 15	14 15	23 44 5 26	69 70	6 20 34 49 5	14	30 50 10 30 50	70	58 12 26 40 55	13 14	36 55	71	50 3 16 30 44	13	$24 \\ 43 \\ 2 \\ 20 \\ 38$	72	41 54 7 20 34	12 13	51 9 27 45 2	73	33 45 57 10 23
40 41 42 43 44	17 18	58 20 41 2 23	69	41 58 16 34 52	17	$^{22}_{43}_{4}_{24}$	70	31 48 5 22 40	16 17	$^{46}_{\ 6}_{\ 26}_{\ 45}$	71	21 37 53 10 27	15 16	9 28 47 6 25	71 72	26 42 58	15	33 51 9 27 45		59 14 29 45	14 15	56 14 31 48 5	73	48 2 17 32 48	14	19 36 53 9 25	74	37 51 5 19 34
45		44	70	11	18	4		58		23		45		<b>4</b> 3		31	16	2		18		22	74	3		41		49

	a	- -	63	•	;	. =	64	•	;	a =	65	,•	;	. =	66	•	a	. =	67	o	a	· =	68	•		a =	- 69	,0
b	K		(	5	,	K	•	•	1	K	•	<b>.</b>	,	ζ.	(	•	I	ζ.	(	<b>)</b>	1	ζ.	•	<b>.</b>	I	•	•	
47 48	19	44 44 24 43 2	70 71	30 50	18 19	4 23 42 1 19		36 55	17 18	23 42 0 18 36	71 72		17	1	72 73	31 49 7 25 43	16 17	2 19 36 53		18 34 51 8 26	15 16	38 54 10	74 75	19	14 15	56	74 75	49 4 20 36 52
50 51 52 53 54	21	58 16	72 73	52 13 35 57 20	20	37 55 12 29 46	73 74	36 56 17 38 0	19	53 10 27 43 59		19 39 59 19 40	18 19	9 25 41 57 13	74 75	$\begin{array}{c} 2 \\ 21 \\ 40 \\ 0 \\ 20 \end{array}$	18	56	75	44 3 21 40 59	17	41 56 10 24 38	76	26 44 2 20 38	16	$\frac{10}{24}$ 38	76 77	8 25 42 59 17
55 56 57 58 59	22	50 7 23 39 54	74 75	43 6 30 54 18	21 22	3 19 34 49 4	75	22 45 7 30 54	20 21	30 45	75 76	23 45 7 30	20	28 43 57 11 24	76 77	40 1 22 43 5	19	40 54 8 21 34	76 77	19 39 59 19 40	18	52 6 19 32 44	77 78	57 16 35 55 15	17	4 17 29 41 53	78	35 53 11 30 49
61 62 63		9 24 38 52 5	76 77	42 7 33 59 25	23	19 33 46 59 12	76 77	18 42 6 31 56	22	28 42 55 7 19	77 78	53 16 39 3 27	21	37 50 3 15 27	78	27 49 11 34 57	20	59 11	78 79	1 22 44 6 28	19	56 8 19 30 41	79	35 55 16 37 58	18	5 16 27 37 47	79 80	8 27 47 7 27
65 66 67 68 69		18 30 42 54 5	78 79	45	24	$24 \\ 36 \\ 48 \\ 59 \\ 10$	78 79 80	47 13	23	54	79 80	41	22	38 49 59 9	79 80	20 44 8 32 56	21	5 15	80 81	50 12 35 58 21	20	1	80 81	$^{19}_{40}$ $^{2}_{24}$ 46	19	$^{16}_{25}$	81 82	47 8 28 49 10
70 71 72 73 74		15 25 35 44 53	80 _. 81 82	7 35 3 32 0		47	81 82	53		42	81 82		23	37 45 53	81 82 83	45 10 35	22	33 41 49 57 4		44 32 56 20	21	37 45 52 59 6		8 30 53 16 39	20	41 49 56 3 9	83	31 53 14 36 58
75 76 77 78 79		22	83 84	57	25	$\begin{array}{c} 3 \\ 10 \\ 17 \\ 23 \\ 29 \end{array}$	83 84	$\frac{16}{44}$	24	13	83 84	7 34 1 28 55		27	84 85	26 51 17 43 9		11 17 23 28 33	84 85	44 8 33 57 22		$\frac{19}{25}$	84 85	25 48 12 36		15 21 26 31 36	84 85	20 42 4 26 49
80 81 82 83 84		33 38 43 47 50	85 86	57 27 57 27 57		34 39 43 47 51	85 86 87	38 7 36 5		$\frac{40}{44}$ $\frac{48}{48}$	85 86 87	50 17 45		37 41 45 49 52	86 87	$35 \\ 27 \\ 54 \\ 20$		38 42 46 49 52	86 87	47 12 37 2 28		47	86 87	59 23 47 11 35		44 47	86 87	34 57
85 86 87 88 89		56 58 59	87 88 89	58 28 59	26	54 56 58 59	88 89	34 32 1 31	25	54 56 58 59	88 89	40 8 36 4 32	24	58	88 89	47 13 40 7 33	23	58	88 89	53 18 44 9 34	22	58	88 89	47	21	57 58	88 89	5 28 51 14 37
90		0	90	0		0	90	0		0	9	0 0		0	90	0		0	90	0		0	90	0		0	90	0

b	a	=	70		a	. =	71	•	á	a =	72	•	á	a =	73	•	:	a. =	- 74	۰		. =	75	,•	a	. =	76	•
D.	K		6	2	I	ĸ	(	5	1	K	G	2	I	•	(	5	I	<u>«</u>	•	3	I	ζ_	•	5	F	•	6	}
0 1 2 3 4	1	0 21 41 2 22	<b>7</b> 0	0 0 1 2 3	0	0 20 39 59 18	71	0 0 1 2 3	0	0 19 37 56 14	72	0 0 1 1 2	0	0 18 35 53 10	73	0 0 1 1 2	0	0 17 33 50	74	0 0 1 1 2	0	0 16 31 47 2	75	0 0 1 1 2	0	0 15 29 44 58	, 76	0 0 0 1 2
<b>5</b> 67 89	2	13 23 14 4		4 6 8 11 14	2	38 57 17 36 55		4 6 8 10 13	2	33 51 9 28 46		4 6 8 10 13	2	28 45 3 20 37	1	$\begin{array}{c} 4 \\ 5 \\ 7 \\ 9 \\ 12 \end{array}$	2	23 39 56 12 28		3 5 7 9 11	2	18 33 49 4 19		3 5 6 8 10		13 27 41 56 10		3 4 6 8 10
10 11 12 13 14	4	24 45 5 25 45		17 20 24 28 33		15 34 53 12 31		16 19 23 27 31	3 4	5 23 41 59 17		16 19 22 26 30	3	55 12 29 46 3		$15 \\ 18 \\ 21 \\ 25 \\ 29$	3	45 17 33 49		$14 \\ 17 \\ 20 \\ 23 \\ 27$	3	35 50 5 20 35		$13 \\ 16 \\ 19 \\ 22 \\ 25$	3	25 39 53 7 21		12 15 18 21 24
15 16 17 18 19	6	5 25 14 4 24		38 43 49 55 1	5 6	50 9 28 46 5		36 41 46 52 58	5	$35 \\ 53 \\ 11 \\ 29 \\ 46$		34 39 44 49 55	5	$20 \\ 37 \\ 54 \\ 11 \\ 28$		33 37 42 47 52	<b>4 5</b>	5 21 37 53 9		31 35 40 45 50	4	50 20 35 50		29 33 38 42 47	4	35 49 3 17 31		27 31 35 40 44
20 21 22 23 24	7	13 22 11 0		$7 \\ 14 \\ 21 \\ 29 \\ 37$	7	$24 \\ 42 \\ 0 \\ 18 \\ 36$	72	$^{4}_{18}_{18}_{25}_{32}$	6	4 21 39 56 13	73	1 7 14 21 28	6	44 17 34 50	74	58 10 17 24	6	25 40 56 11 26	75	55 7 13 19	5 6	5 19 34 48 3	76	52 57 3 9 15	5	45 59 12 26 39	77	49 54 59 4 10
25 26 27 28 29	9		72	45 53 2 11 20	8	54 12 30 48 5	73	$     \begin{array}{r}       40 \\       48 \\       56 \\       5 \\       14     \end{array} $	8	$\begin{array}{c} 30 \\ 47 \\ 4 \\ 21 \\ 37 \end{array}$	74	35 43 51 59 8	8	22 38 54 9	75	31 38 46 54 2	7	$41 \\ 56 \\ 11 \\ 26 \\ 41$	:	$26 \\ 33 \\ 40 \\ 48 \\ 55$	7	17 31 45 59 13		21 27 34 41 48	6	52 5 18 31 44		16 22 28 35 42
30 31 32 33 34	10	51 9 27 44 2	73	$\begin{array}{c} 30 \\ 40 \\ 51 \\ 2 \\ 13 \end{array}$	10	22 39 56 13 30	74	24 34 44 54 4	9	53 9 25 41 57		17 26 36 46 56	9	25 40 55 10 25		10 19 28 37 46	8	55 10 24 38 52	76	$\begin{array}{c} 3 \\ 11 \\ 20 \\ 29 \\ 38 \end{array}$	8	26 40 53 6	77	56 12 20 28	7	57 10 22 34 46	78	49 56 4 11 19
35 36 37 38 39	12	19 36 53 9	74	24 36 48 0 12	11	46 2 18 34 50	75	15 26 37 49	10 11	$\frac{28}{43} \\ 58$	75	6 16 27 38 50	10	39 54 8 22 36	76	56 17 27 38	9	6 19 33 46 59	77	$\begin{array}{c} 47 \\ 56 \\ 6 \\ 16 \\ 26 \end{array}$	9	32 45 58 10 22	78	37 46 55 4 14		58 10 22 34 46	79	27 36 44 53 2
40 41 42 43 44	13		75	25 38 52 6 20		50 35 4	76	13 26 39 52 5	12	$28 \\ 42 \\ 56 \\ 10 \\ 24$	76	13 26 38 51	11	50 4 17 30 43	77	$^{49}_{12}_{24}$	10 11	12 25 38 50 2	78	37 47 58 9 21	10	34 46 58 10 22	79	24 34 44 55 5	9	57 8 19 30 41		11 21 30 40 50
45		59		34		18		19		38	77	4		56		48	L	14		32		33		16		51	80	0

b	a	. ==	70	,	а	. =	71	•	а	-	72	0	a	. =	73	,	а	. =	74		а	. =	75	•	;	a =	76	•
	F	•	_(	2	I	<b>K</b>	•	3	F	ζ	(	5	I	<b>«</b>	G	)	F	ζ.	(	2	ŀ	ζ.	(	2	I	ζ.	•	3
45 46 47 48 49		14	75 76	34 49 4 19 34		18 32 46 0 13	76 77	33	12 13	38 51 4 17 29	77	4 17 30 44 58	11 12	56 9 21 33 45	77 78	48 1 13 26 39		14 26 38 49	78 79	$^{44}_{56}$	10 11	33 44 55 6 16	79 80	16 27 39 50	9 10	51 11 11 21 31	80	0 10 21 32 43
50 51 52 53 54		11 25 38 51 4	77	50 6 22 39 55	15	26 39 52 4 16	78	31 46 2 18 34	14	41 53 5 17 29	78 79	26 41 56	13	57 8 19 30 41	79	53 7 21 35 49		11 22 33 43 53	80	33 46 59 13 26	12	26 36 46 56	81	14 26 38 50	11	41 50 59 8 17	81	54 5 16 28 40
55 56 57 58 59	17	$\frac{28}{40}$	78 79	$\frac{30}{47}$	16	28 40 51 2 12	<b>7</b> 9	50 6 23 40 57	15	40 51 1 11 21	80	26 42 58 14 30	14		80 81	3 18 33 48 3	13	3 13 22 31 40	81	40 54 8 22 36		14 23 32 41 49	82	16 29 42 55		26 34 42 50 58	82	52 16 28 41
61 62 63 64		14 24 34 44 54	80	41 0 18 37 56	17	22 32 42 52 1	80 81	$\frac{31}{49}$	16	31 41 50 59 8	81	46 3 20 37 54	15	$^{40}_{49}_{58}_{614}$	82	$18 \\ 34 \\ 50 \\ 6 \\ 22$	14	49 57 5 13 21	82	50 20 35 50	13	57 5 13 20 27	83	$\begin{array}{c} 22 \\ 36 \\ 50 \\ 4 \\ 18 \end{array}$	12	6 13 20 27 34	83	54 7 20 33 46
65 66 67 68 69	18	$3 \\ 12 \\ 21 \\ 29 \\ 37$	81 82	35 54		10 18 26 34 42	82	$\begin{array}{r} 43 \\ 20 \\ 39 \\ 58 \end{array}$		$\frac{24}{32}$	82 83	$     \begin{array}{r}       11 \\       28 \\       46 \\       4 \\       22     \end{array} $	•	$\begin{array}{c} 22 \\ 30 \\ 37 \\ 44 \\ 51 \end{array}$	83	38 55 11 28 45		$28 \\ 35 \\ 42 \\ 49 \\ 55$	83 84	5 21 36 52 8		34 41 47 53 59	84	$\begin{array}{c} 32 \\ 47 \\ 1 \\ 16 \\ 31 \end{array}$	13	$^{40}_{46}_{52}_{58}$	84	59 12 26 40 54
70 71 72 73 74	19	45 52 59 6 12	83 84	54 15 35 56 16	18	56 2	83 84	36 56	17	53 59 5 11 17	84		16	57 3 9 14 19	84 85	19 36 53 11	15	1 7 12 17 22	85	24 40 56 12 29	14	5 10 15 20 25	85	46 1 16 31 47		$     \begin{array}{r}       8 \\       13 \\       18 \\       23 \\       27     \end{array} $	85 86	8 22 36 50 4
75 76 77 78 79		18 23 28 33 37		37 58 19 40 2		20 25 30 34 38	85 86	$\frac{34}{54}$		22 27 31 35 39		$12 \\ 30 \\ 49 \\ 8 \\ 27$		24 29 33 37 41	86	28 46 4 22 40		27 31 35 39 42	86	$\begin{array}{c} 45 \\ 2 \\ 19 \\ 35 \\ 52 \end{array}$		29 33 37 40 43	86 87	$\begin{array}{c} 2\\17\\33\\49\\4\end{array}$		31 35 38 41 44	87	18 33 47 2 17
80 81 82 83 84		41 45 48 51 53	87	23 44 6 28 49		42 45 48 51 53	87	35 55 15 36 56		43 46 49 52 54	87 88	46 5 25 44 3		44 47 50 52 54	87 88	58 16 34 52 10		45 48 51 53 55	87 88	9 26 43 0 17		46 49 51 53 55	88	$\begin{array}{c} 20 \\ 36 \\ 52 \\ 8 \\ 24 \end{array}$		47 50 52 54 56	88	31 46 1 15 30
85 86 87 88 89	20	$\begin{array}{c} 57 \\ 58 \end{array}$	88 89	33 55 16	19	57 58	88 89	37 58 19	18	56 57 58 59	89	21	17	56 57 58 59	89	28 47 5 23 42	16	56 57 58 59 0	89	$34 \\ 51 \\ 8 \\ 26 \\ 43$	15	57 58 59 0	89	40 56 12 28 44	1	57 58 59 4 0	89	45 0 15 30 45
90		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0		0	90	0

	<b>a</b> =	: 77°	a ==	78°	a =	· 79°	a =	80°	a = 8	81°	a =	82°	a =	= 83 °
Ь	K	Q	K	Q	K	Q	К	Q	K	Q	K	Q	K	Q
0 1 2 3 4	0 0 14 27 41	0 0 1	0 0 12 25 37 50	78 0 0 0 1 2	0 0 111 23 34 46	0 0 0 1 2	0 0 10 21 31 42	80 0 0 0 1	0 0 8: 9 19 28 38	0 0 0 1 1	0 0 8 8 17 25 33	° , 32 0 0 0 1 1	0 0 7 15 22 29	83 0 0 0 1 1
5 6 7 8 9	21 34 48		1 2 15 27 39 52	3 4 5 7 9	57 1 9 20 31 43	3 4 5 6 8	52 1 2 13 23 33	2 3 4 6 7	47 56 1 6 15 24	2 3 4 5 6	$\begin{array}{c} 42 \\ 50 \\ 58 \\ 1 \\ 7 \\ 15 \end{array}$	2 3 4 5 6	37 44 51 58 1 6	2 2 3 4 5
10 11 12 13 14	14 28 41 54 3 7		2 4 17 29 41 53	11 13 15 18 21	2 5 16 28 39	10 12 14 16 19	44 54 2 4 14 24	9 11 13 15 17	33 43 52 2 1 10	8 10 12 14 16	23 31 40 48 56	7 9 10 12 14	13 20 27 34 41	6 8 9 11 12
15 16 17 18 19	20 33 46 59 4 12	26 29 33 37 41	3 5 17 29 41 53	24 27 30 34 38	50 3 1 12 23 34	22 25 28 31 35	34 44 54 3 4 14	20 23 26 29 32	19 28 37 46 55	18 20 23 26 29	2 4 12 20 28 36	16 18 21 23 26	48 55 2 2 9 16	14 16 18 20 23
20 21 22 23 24	25 37 50 5 3 15	45 50 55 78 0 5	4 5 17 28 40 51	42 46 51 56 79 1	$\begin{array}{r} 45 \\ 55 \\ 4 & 6 \\ 17 \\ 27 \end{array}$	39 43 47 51 56	24 34 44 53 4 3	35 39 43 47 51	3 4 13 22 30 39	32 35 39 42 46	44 52 59 3 7 15	29 32 35 38 41	23 30 37 44 50	25 28 30 33 36
25 26 27 28 29	27 39 51 6 3 15	11 17 23 29 35	5 3 14 25 36 47	6 11 16 22 28	38 48 58 5 18	80 1 6 11 16 21	13 22 31 41 50	55 81 0 4 9 14	47 56 4 5 13 21 82	50 54 58 2 7	22 30 37 45 52 83	44 48 52 56 3 0	3 4 10 17 23	39 42 45 49 52
30 31 32 33 34	27 39 51 7 2 14	41 48 55 79 3 10	58 6 9 20 30 41	34 40 47 54 30 1	28 38 48 58 6 8	27 33 39 45 51	5 8 17 26 34	19 24 30 35 41	29 37 45 53 5 1	11 16 21 26 31	59 4 7 14 21 28	4 8 12 17 21	30 36 42 48 54	56 3 7 11
35 36 37 38 39	25 36 47 58 8 8	17 25 33 41 50	7 1 11 21 31	8 15 22 29 37	17 27 36 45 54	57 81 4 11 18 25	43 52 6 0 8 16	47 53 59 32 5 12	9 17 24 32 39	36 42 47 53 59	35 42 48 55 5 2	26 31 36 41 46	4 0 6 12 18 24	15 20 24 28 33
40 41 42 43 44	19 29 39 49 59	58 80 7 16 25 34	8 0 8 9 18	45 53 31 1 10 18	7 3 12 20 29 37 8	32 39 47 55 32 2	24 32 40 48 56	18 25 32 39 46	46 83 6 0 7 14	5 11 17 23 30	8 14 21 27 27 33	51 57 2 8 14	30 35 41 46 52	38 42 47 52 57
45	9 9	43	27	27	45	10	7 3	54	21	37	39	20	57 8	35 2

	a =	= 77°		a =	78°		a =	79°	a =	= 80°	a =	81°	a =	82°	a =	83°
b	K	Q		K	Q		K	Q	К	Q	K	Q	K	Q	K	Q.
45 46 47 48 49	9 9 9 19 28 31 40	81	Ί	8 27 36 45 53 9 2	3	7 36 15 4	° , 7 45 53 8 1 9 17	82 10 19 27 35 44	11 18 25	82 54 83 1 9	6 21 28 34 41 47	83 37 43 50 57 84 4	5 39 45 51 56 6 2	84 20 26 32 38 44	6 7 4 57 5 2 7 12 17	85 2 7 13 18 24
50 51 52 53 54	58 10 4 13 21 29	1 82	33 14 55 6 17	10 18 26 34 41	3	3 23 33 13 33	24 32 39 46 53	53 83 2 11 20 29	45 52 58	40 48 57	53 59 7 5 11 16	11 18 26 33 41	7 13 18 23 28	50 57 85 3 10 17	21 26 31 35 40	29 35 41 46 52
<b>55</b> 56 57 58 59	31 44 53 11	5 3 5 83 5 83	28 39 50 1	48 55 10 2 9 16	3	3 24 34 15	9 0 6 13 19 25	38 48 57 84 17	16 22 28	22 31 40	22 27 32 37 42	49 56 85 4 12 20	33 38 42 47 51	23 30 37 44 52	44 48 52 56 6 0	58 86 4 10 17 23
60 61 62 63 64	14 22 28 34 40	l 3 3 4 184	25 37 49 1	23 29 35 41 46	84 1 2	6 7 8 29	31 37 42 47 52	27 37 47 57 85	44 49 54	85 7 16 25	47 52 57 8 1 5	28 37 45 53 86 2	55 59 7 3 7	59 86 6 13 21 28	4 7 11 14 17	29 36 42 49 55
65 66 67 68 69	40 55 57 12	2 7 2 85	25 38 51 3	$ \begin{array}{r} 52\\ 57\\ 11\\ 2\\ 7\\ 12 \end{array} $	85 1 2	2 4 1 5 27 89	10 2 7 11 15	18 29 39 50 86	12 16	$   \begin{array}{r}     54 \\     86     4 \\     \hline     13   \end{array} $	9 13 17 21 24	10 19 28 36 45	15 19 22 25 28	36 44 51 59 87 7	20 23 26 29 32	87 2 8 15 22 29
70 71 72 73 74	1: 1: 2: 2: 2:	7 1 5 86	29 12 55 8 22	16 20 24 28 32	86 1	3 5 27 89	19 23 27 31 34	15 23 34 45 56	27 30 33	43 53 87 3	36	54 87 3 12 21 30	31 34 37 39 41	15 23 31 39 47	35 37 39 42 44	36 43 50 57 88 4
75 76 77 78 79	33 40 43 40	7 4 0 87 3 1	35 18 2 15 29	35 38 41 44 47	87 1 2	3 6 8 11	37 40 43 46 48	87 7 18 30 41 53	42 45 47	33 44 54	42 44 46 48 50	39 48 58 88 7 16	43 45 47 49 51	55 88 3 11 20 28	46 48 49 51 52	11 18 25 32 39
80 81 82 83 84	48 50 55 56	88 1 1 1	42 56 10 23 37	49 51 53 55 56	88 1	6 8 8 14	50 52 54 55 56	88 4 13 27 39 50	53 54 55 55	25 36 46	52 54 55 56 57	25 35 44 54 89 3	53 54 55 56 57	36 44 53 89 1 10	54 55 56 57 58	47 54 89 1 9 16
85 86 87 88 89	55 55 13	889 9 3	51 5 18 32 46	57 58 59 12 0	89	66 9 22 34 1	57 58 59 11 0	89 2 13 25 37 48	58 59 710 0	18 28 39	59	13 22 31 41 50	58 59 59 8 0	18 26 35 43 52	58 59 59 7 0	23 31 38 45 53
90	(	90	0	0	90	0	0	90 (	0	90 0	0	90 0	0	90 0	0	90 0

Table 13. Kelvin's Sumaer Line Table

b	a =	84°	a =	85°	a =	86°	. a =	87°	<b>a</b> =	: 88°	a =	89°	a =	= 90°
_	K	Q	K	Q	K	Q	K	Q	K	Q	K	Q	K	Q
0 1 2 3 4	0 0 6 13 19 25	0	0 0 5 10 16 21	85 0 0 0 0 1	0 0 4 8 13 17	86 0 0 0 0 1	0 0 3 6 9 13	87 0 0 0 0	0 0 2 4 6 8	88 0 0 0 0	0 0 1 2 3 4	89 0 0 0 0	0 0 0 0 0 0	90 0 0 0 0 0
5 6 7 8 9	31 *38 44 50 56	1 2 3 3 4	26 31 37 42 47	1 2 2 3 4	21 25 29 33 38	1 1 2 2 3	16 19 22 25 28	• 1 1 1 2 2	10 13 15 17 19	0 1 1 1 1	5 6 7 8 9	0 0 0 1 1	0 0 0 0	0 0 0 0
10 11 12 13 14	1 2 9 15 21 27	5 7 8 9 11	52 57 1 2 .7 12	5 6 7 8 9	42 46 50 54 58	4 4 5 6 7	31 34 37 40 44	3 4 5 5	21 23 25 27 29	2 2 3 4	10 11 13 14 15	1 1 2 2	0 0 0 0	0 0 0 0
15 16 17 18 19	33 39 45 51 57	12 14 16 18 20	18 23 28 33 38	10 12 13 15 16	1 2 6 10 14 18	8 9 10 12 13	47 50 53 56 59	6 7 8 9 10	31 33 35 37 39	4 5 5 6 7	16 17 18 19 20	2 2 3 3 4	0 0 0 0	0 0 0 0 0
20 21 22 23 24	2 3 9 15 20 26	22 24 26 28 31	43 48 52 57 2 2	18 20 22 24 26	22 26 30 34 38	14 16 17 19 21	1 2 4 7 10 13	11 12 13 14 16	41 43 45 47 49	7 8 9 10 10	21 22 22 23 24	4 4 4 5 5	0 0 0 0	0 0 0 0
25 26 27 28 29	32 38 43 49 54	34 36 39 42 45	7 11 16 21 25	28 30 33 35 37	41 45 49 53 56	22 24 26 28 30	16 19 22 24 27	17 18 20 21 23	51 53 54 56 58	11 12 13 14 15	25 26 27 28 29	6 7 7 8	0 0 0 0 0	0 0 0 0
30 31 32 33 34	3 0 5 11 16 21	48 51 54 58 85 1	30 35 39 43 48	40 43 45 48 51	2 0 4 7 11 14	32 34 36 39 41	30 33 35 38 41	24 26 27 29 31	1 0 2 4 5 7	16 17 18 19 20	30 31 32 33 34	8 9 9 10 10	0 0 0 0	0 0 0 0
35 36 37 38 39	26 31 36 41 46	5 8 12 16 20	52 56 3 0 5	54 57 86 0 3	18 21 24 28 31	43 46 48 51 53	43 46 48 51 53	33 34 36 38 40	9 11 12 14 16	22 23 24 25 27	34 35 36 37 38	11 11 12 13 14	0 0 0 0	0 0 0 0
40 41 42 43 44	51 56 4 1 5 10	24 28 32 36 41	13 17 21 25 28	10 13 17 20 24	34 37 41 44 47	56 59 87 2 4 7	56 58 2 0 3 5	42 44 46 48 50	17 19 20 22 23	28 29 31 32 34	39 39 40 41 42	14 15 15 16 17	0 0 0 0	0 0 0 0
45	14	45	. 32	28	50	10	7	53	25	35	43	18	0	0

ь	a =	84°	a =	85°	a =	86°	a =	87°	a =	88°	a =	89°	a =	90°
	K	Q	K	Q	K	Q	K	Q	K	Q	K	Q	K	Q
45 46 47 48 49	4 14 19 23 27 31	85 45 49 54 59 86 3	3 32 36 39 43 46	86 28 31 35 39 43	2 50 53 55 58 3 1	87 10 13 16 19 22	° , 2 7 9 12 14 16	87 53 55 57 59 88 2	1 25 26 28 29	88 35 37 38 40 41	0 43 43 44 45 45	89 18 18 19 20 21	° ', 0 0 0 0 0	90 0 0 0 0 0
50 51 52 53 54	35 39 43 47 51	8 13 18 23 28	50 53 56 59 4 2	47 51 55 59 87 3	4 7 9 12 14	26 29 32 35 35	18 20 22 24 26	4 7 9 12 14	32 33 35 36 37		46 46 47 48 49	21 22 23 24 25	, 0 0 0 0	0 0 0 0 0
55 56 57 58 59	55 58 5 2 5 8	33 38 43 49 54	5 8 11 14 17	8 12 16 21 25	17 19 21 24 26	42 46 49 53 56	27 29 31 33 34	17 19 22 25 27	38 39 41 42 43	53 55 56	49 50 50 51 51	26 26 27 28 29	000000000000000000000000000000000000000	
60 61 62 63 64	11 14 17 20 23	87 0 5 11 16 22	20 22 25 27 30	30 34 39 44 48	28 30 32 34 36	88 0 7 11 15	36 37 39 40 42	30 33 35 38 41	44 45 46 47 48	2 4 5	52 53 53 54	30 31 32 33 34	0 0 0 0	
65 66 67 68 69	26 29 31 34 36	27 33 39 45 51	32 34 36 38 40	53 58 3 7 12	38 39 41 42 44	18 22 26 30 34	· 43 44 46 47 48	44 47 50 53 55	49 50 50 51 52	11 13 15	54 55 55 56 56	35 36 37 38 38	0 0 0 0	0
70 71 72 73 74	38 40 42 44 46	56 88 2 8 14 20	42 44 45 47 49	17 22 27 32 37	46 47 48 50 51	38 42 46 50 54	49 50 51 52 53	58 89 1 4 7 10	53 53 54 55 55	21 23 25	56 56 57 57 58	39 40 41 42 43	0 0 0 0	0
<b>75</b> 76 77 78 79	48 49 51 52 53	27 33 39 45 51	50 51 52 53 54	42 47 52 57 89 3	52 53 54 55 56	58 89 2 6 10 14	54 55 55 56 57	13 16 19 23 26	56 56 57 57 58	31 33 35	58 58 58 59 59	44 45 46 47 49	000	0
80 81 82 83 84	54 55 56 57 58	57 89 3 10 16 22	55 56 57 58 58	8 13 18 23 29	56 57 58 58 59	18 22 27 31 35	57 58 58 59 59	29 32 35 38 41	58 59 59 59 59	41 43 45	59 59 59 1 0	50 51 52 53 54	000	0
85 86 87 88 89	59 59 6 0 0	29 35 41 47 54	59 59 5 0 0	. 34 39 44 50 55	59 59 4 0 0	39 43 47 52 56	59 3 0 0 0	44 47 51 54 57	2 0 0 0 0	52 54 56	0 0 0 0		000	0 0
90	0	90 0	0	90 0	0	90 0	0	90 0	C	90 0	0	90 0	(	0

LARGER	1	SMALI	LER BI	EARING	
BEARING	2°	4°	6°	8°	10°
34° 36	0.07	0.14	0.22	0.32	0.43
38	.06	.13 .12	.21	.30	.40 .37
40	.06	.12	.19	.26	.35
42 44	.05 .05	.11 .11	.18 .17	.25 .24	.33 .31
46 48	.05 .05 .05	.10	.16	.23	.30
50	.05	.10 .10	.16 .15	.22 .21	.28 .27
52 54	.05 .04	.09	.15	.20	.26
56	.04	.09	.14	.19 .19	$.25 \\ .24$
58 <b>60</b>	.04	.09	.13	.18	.23
62	.04	.08 .08	.13 .13	.18 .17	$.23 \\ .22$
64 66	.04	.08	.12 .12	.17	$.21 \\ .21$
68	.04	.08	.12	.16	.20
70 72	.04	.08	.12 .11	.16 .15	.20 .20
72 74	.04	.07	.11	.15	.19
76 78	.04	.07 .07	.11	.15	.19
80	.04	.07	.11	.15	.18
82 84	.04	.07 .07	.11 .11 .11	.14	.18
86	.04	.07	.11	.14	.18
88 <b>90</b>	.04	.07 .07	.11	.14	.18
92	.03	.07	.10	.14	.18
94 96	.03	.07 .07	.10	.14 .14	.17
98 <b>100</b>	.04	.07	.10	.14	.17 .17
102	.04	.07	.11	.14	.17 .17
104 106	.04	.07	.11	.14 .14	.17 .17
108	.04	.07	.11	.14	.18
110 112	.04	.07 .07	.11 .11	.14	.18 .18
112 114	.04	.07	11	.15	181
116 118	.04	.07	.11	.15 .15	.18
120	.04	.08	.11	.15	.18
$\frac{122}{124}$	.04	.08	.12 .12	.15	.19 .19
126 128	.04	.08	.12	.16	.19
130	.04	.08	.12	.16	.20 .20
132 134	.05	.09	.13	.17 .17	.20
136	.05	.09	.13	.18	.21
138 <b>140</b>	.05	.10	.14	.18	.22
142	.05	.10 .10	.15 .15	.19	.23
144 146	.06	.11	.16	.20 .21	.24
148	.06	.12	.17	.22	.26
150 152	.07	.12	.18	.23 .24	.27 28
154	.07	.14	.20	.25	.30
156 158	.08	.15	.21	.26 .28	.31
160	.09	.17	.24	.30	.35

LARGER	<u></u> .	SMALI		ARING	
	12°	14°	16°	18°	20°
42° 44 46 48 50 52 54 56 68 60 62 64 66 68 70 72 74 76 78 80 82	12° 0.42 .39 .37 .35 .34 .32 .21 .20 .28 .27 .26 .25 .24 .23 .23 .23 .22 .22	14° 0.52 .48 .46 .43 .41 .39 .38 .36 .35 .34 .33 .32 .29 .28 .27 .27 .26	16° 0.63 .59 .55 .52 .49 .47 .45 .41 .40 .38 .37 .36 .35 .34 .33 .32 .31 .31	0.76 .70 .66 .62 .58 .55 .52 .50 .48 .46 .44 .43 .42 .40 .39 .38 .36 .36 .35 .35	20° 0.91 .844 .78 .68 .65 .51 .549 .48 .46 .43 .42 .41 .39 .39
84 86 88 90 92 94 96 98 100 102 104 106 118 110 1118 120 122 124 126 128 130	.22 .22 .21 .21 .21 .21 .21 .21 .21 .21	.26 .25 .25 .25 .25 .25 .24 .24 .24 .24 .24 .24 .24 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	.30 .29 .29 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28	.34 .33 .33 .32 .32 .32 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31	38 37 36 36 35 35 34 34 34 34 34 35 35 35 36 36 36 36 36 36 37 37 38 38 38 38 38 38 38 38 38 38
132 134 136 138 140 142 144 146 148 150 152 154 156 160 162 164 166 168	.24 .24 .25 .26 .26 .27 .28 .29 .30 .31 .32 .34 .35 .37 .39 .41 .47	.27 .28 .28 .29 .30 .31 .32 .33 .34 .35 .36 .38 .39 .41 .43 .46 .48 .52	.31 .31 .32 .32 .33 .34 .35 .36 .37 .38 .40 .41 .43 .45 .47 .52 .55	.34 .34 .35 .36 .36 .37 .38 .39 .40 .42 .43 .44 .46 .48 .50 .55 .58 .62	.37 .38 .39 .39 .40 .41 .42 .43 .45 .46 .48 .49 .51 .53 .56 .58

Table 14. Sumner Intersection

LARGER		SMALL	er Be	ARING		LARGER		SMALL	er Be	ARING	
BEARING	22°	24°	26°	28°	30°	BEARING	32°	34°	36°	38°	40°
54°	0.71	0.01	0.93	1.07	1 02		4				
5 <del>4</del>	0.71 .67	0.81 .77	.88	1.00	$1.23 \\ 1.14$				l	İ	1
58	.64	.73	.83	0.94	1.07						
60	.61	.69	.78	.89	1.00				i	- 1	1
62	.58	.66	.75 .71	.84	0.94	62°	1.06	1.19	1.34	1.51	1.72
64	.56	.63	.71	.80	.89	64	1.00	1.12	1.25	1.40	1.58
66	.54	.61	.68	.76	.85	66	0.95	1.06	1.18	1.31	1.47
68	.52	.59	.66	.73	.81	68	.90	1.00	1.11	1.23	1.37
70	.50	.57	.63	.70	.78	70 72	.86 .82	$0.95 \\ .91$	$\frac{1.05}{1.00}$	$\frac{1.16}{1.10}$	$1.29 \\ 1.21$
$\begin{array}{c} 72 \\ 74 \end{array}$	.49 .48	.55 .53	.61 .59	.68 .65	.75 .72	74	.79	.87	0.95	1.05	1.15
76	.46	.52	.57	.63	70	76	.76	.84	.91	1.00	1.09
78	.45	.50	.56	.61	.67	78	.74	.80	.88	0.96	1.04
80	.44	.49	.54	.60	.65	80	.71	.78	.85	.92	1.00
82	.43	.48	.53	.58	.63	82	.69	.75 .73	.82	.89	0.96
84	.42	.47	.52	.57	.62	84	.67	.73	.79 .77 .75	.86	.93
86	.42	.46	.51	.55	.60	86 88	.66	.71	.//	.83 .80	.89
88	.41	.45	.50	.54	.59	90	.64	.69	.73	.78	.86
90	.40	.45	.49	.53	.58	90 92	.62 .61	.67 .66	.73	.76	.84 .82
92 94	.40	.44	.48	.52 .51	.56	94	.60	.65	.69	.74	.79
96	.39	.43	47	.51	.55	96	.59	.63	.68	.73	.78 .76
98	.39	.42	.46	.50	.54	98	.58	.62	.67	.71	.76
100	.38	.42	.46	.49	.53	100	.57	.61	.65	.70	.74
102	.38	.42	.45	.49	.53	102	.56	.60	.64	.68	.73
104	.38 .38	.41	.45	.48	.52	104	.56	.60	.63	.67	.72
106	.38	.41	.45	.48	.52	106 108	.55 .55	.59 .58	.63 .62	.66 .66	.69
108	.38	.41	.44	.48	.51	110	.54	.58	.61	.65	.68
110	.37	.41 .41	.44 .44	.47 .47	.51	112	.54	.57	.61	.64	.68
112 114	.37 .37	.41	.44	.47	.50	114	.54	.57	.60	.63	.67
116	.38	41	.44	47	.50	116	.53	.56	.60	.63	.66
118	.38	.41	.44	.47	.50	118	.53	.56	.59	.63	.66
120	.38	.41	.44	.47	.50	120	.53	.56	.59	.62	.65
122	.38	.41	.44	.47	.50	122 124	.53	.56	.59 .59	.62 .62	.65 .65
124	.38	41	.44	.47	.50	124	.53	.56	.59	.62	.64
126 128	.39 .39	.42	.45 .45	.47 .48	.50	128	.53	.56	.59	.62	.64
130	.39	.42	.45	.48	.51	130	.54	.56	.59	.62	.64
132	.40	.43	.46	.48	.51	132	.54	.56	.59	.62	.64
134	.40	.43	.46	.49	.52	134	.54	.57	.59	.62	.64
136	.41	.44	.47	.49	.52	136	.55	.57	.60	.62	.65 .65
138	.42	.45	.47	.50	.53	138	.55	.58	.60	.63	.65
140	.42	.45	.48	.51	.53	140 142	.56	.59	.61	.63	.66
142	.43	.46	.49	.51 .52	.54	144	.57	.60	.62	.64	.66
144 146	.44	.48	.50	.53	.56	146	.58	.60	.63	.65	.67
148	.46	.49	.52	.54	.57	148	.59	.61	.63	.66	.68
150	.48	.50	.53	.55	.58	150	.60	.62	.64	.66	.68
152	.49	.52	.54	.57	.59	152	.61	.63	.65 .67	.67	.69
154	.50	.53	.56	,58	.60	154	.62 .64	.65 .66	.68	.68 .70	.70 .72
156	.52	.55	.57	.60	.62	156 158	.66	.67	.69	.71	.73
158	.54	.57	.59	.61		160	.67	.69	.71	.73	
160	.56	.59	.61	.63 .65	.65	162	.69		.73		
162	.58	.61		.68		164	.71	.73	.75	.76	.78
164 166	.64	.66		.70		166			.77	.78	
168	.67	.69	71	.73	.75	168	.76	.78	.79		
170	.71	.73	.75	.76	.78	170	.79			.83	
172	.75	.77	.78	.80	.81	172	.82	.84	.85	.86	.86
174	.80		.83	.84	.85	174	.86				.89 93
176	.85	.87	.88			176 178	.95				
178_	.92	.93	.93	1 .94	1 .94	L 118	1 .00	, ,,,,	1 .00	1.00	

T. Acres	Ī	SMALI	er Be	ARING	
LARGER BEARING	42°	44°	46°	48°	50°
72° 74 76 78 80 82 84 86 88 90 92 94 100 1102 104 106 118 118 120 112 124 126 138 130 132 134 136 138 140 142 144 146 148 150 162 174 166 168 170 172 174 176 178	1.34 1.26 1.14 1.09 1.04 1.00 0.96 .93 .85 .83 .81 .79 .77 .70 .69 .68 .68 .68 .67 .67 .67 .67 .67 .67 .67 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7	1.48 1.39 1.31 1.124 1.18 1.04 1.00 9.93 .91 .88 .86 .84 .82 .82 .72 .72 .72 .72 .72 .72 .72 .70 .70 .70 .70 .70 .70 .70 .70 .71 .72 .72 .72 .72 .72 .73 .74 .75 .75 .76 .77 .70 .70 .70 .70 .70 .70 .70 .70 .70	1.64 1.53 1.28 1.22 1.08 1.22 1.09 1.17 1.12 1.00 0.97 .89 .87 .76 .75 .74 .74 .73 .72 .72 .72 .72 .72 .73 .74 .74 .74 .75 .75 .76 .77 .77 .77 .77 .77 .77 .77 .77 .77	1.83 1.70 1.49 1.40 1.31 1.16 1.21 1.10 0.97 94 92 92 98 88 86 84 83 83 81 77 77 77 77 75 75 75 75 75 77 77 77 77	2.04 1.88 1.75 1.53 1.45 1.37 1.30 1.14 1.10 1.00 0.97 9.92 9.90 8.88 8.87 7.77 7.77 7.77 7.77 7.77 7.7

LARGER		SMALI	er Be	ARING		LARGER	Ī	SMALL	ER BE	ARING	
BEARING	62°	64°	66°	68°	70°	BEARING	72°	74°	76°	78°	80°
92° 94 96 98 100 102 104 108 110 112 114 116 118 120 132 134 136 138 140 142 144 148 150 152 154 166 158 160 170 172 174	1.77 1.67 1.58 1.50 1.27 1.23 1.19 1.15 1.102 1.009 1.07 .95 .94 .90 .90 .89 .89 .89 .89 .89 .89 .90 .90 .91 .92 .93 .93 .94 .95 .96 .97 .97 .98 .99 .99 .99 .99 .99 .99 .99 .99 .99	1.91 1.80 1.70 1.61 1.46 1.49 1.29 1.25 1.21 1.17 1.14 1.11 1.11 1.10 0.98 9.97 .94 .95 .94 .90 .90 .90 .90 .90 .90 .90 .90 .90 .90	2.08 1.95 1.83 1.72 1.55 1.48 1.37 1.32 1.19 1.10 1.03 1.02 1.00 0.99 .97 .94 .93 .92 .92 .92 .92 .92 .92 .92 .92 .92 .92	2.28 2.12 1.97 1.85 1.66 1.58 1.144 1.39 1.25 1.21 1.10 1.07 1.05 1.01 1.00 0.99 9.96 9.94 9.93 9.93 9.93 9.93 9.93 9.93 9.94 9.95 9.96 9.96 9.96 9.96 9.96 9.96 9.96	2.51 2.31 2.14 2.00 1.77 1.68 1.40 1.35 1.31 1.19 1.16 1.13 1.11 1.09 1.00 0.99 9.98 9.97 9.95 9.95 9.94 9.94 9.94 9.94 9.94 9.94	102° 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 142 144 146 148 150 152 154 158 160 162 164 166 168 170 172 174 176	1.90 1.70 1.62 1.54 1.42 1.27 1.28 1.24 1.11 1.10 1.08 1.01 1.00 1.03 1.01 1.00 98 .97 .97 .95 .95 .95 .95 .95 .95 .95 .96	2.05 1.92 1.81 1.72 1.64 1.38 1.29 1.15 1.11 1.00 1.02 1.01 1.02 1.03 1.04 1.02 1.04 1.02 1.04 1.02 1.04 1.03 1.04 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	2.21 1.94 1.83 1.74 1.51 1.35 1.31 1.23 1.20 1.17 1.14 1.12 1.10 1.03 1.02 1.01 1.03 1.02 1.01 1.03 1.02 1.01 1.03 1.02 1.01 1.03 1.03 1.03 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	2.40 2.23 2.08 1.85 1.75 1.59 1.52 1.28 1.24 1.11 1.09 1.07 1.01 1.01 1.01 1.00 1.01 1.00 9.99 9.99	2.63 2.42 2.25 2.10 1.97 1.86 1.60 1.53 1.47 1.33 1.25 1.19 1.10 1.06 1.05 1.04 1.02 1.01 1.00 0.99 9.99 9.99 9.99

Table 14. Sumner Intersection

# APPENDIX 1

# COMPASS ADJUSTING

In Chapter IV we have assumed that the ship's compass will be properly compensated by a professional compass adjuster (p. 43), and that the navigator will thereafter only need to check the adjuster's table of small remaining deviations from time to time during the voyage. This occasional checking is accomplished most easily by observing the sun's azimuth at the same (or very nearly the same) time when a sextant altitude is measured in the regular work of navigating the ship (cf. p. 145).

But it may happen, expecially in the Navy, that the navigator will be his own compass adjuster: he may be required to swing ship (p. 43), and construct a complete table of deviations himself. To do this he will probably compare the sun's compass bearing with its true azimuth after swinging the ship's head successively on a number of different Each time he observes the sun's bearing with a pelorus (p. 44) or other similar instrument, he will record the time by his watch, which should as usual be set to the ship's apparent time (p. 94). But no sextant observations of any kind will be needed; nor will the sun's altitude ordinarily be calculated. For this reason it is impossible to obtain the sun's true azimuth from our Table 11 p. 284) which requires a knowledge of the altitude, and which is merely intended for checking the compass error by an observation made nearly simultaneously with a sextant observation, as just explained.

For the purposes of the compass adjuster, the sun's true azimuth is most conveniently taken from Publication 71,

U. S. Hydrographic Office, often called the "red" azimuth table. But if this is not available it can be obtained with almost equal ease, and without interpolation, from the Kelvin Table 13 (p. 292), the use of which is in this case greatly simplified because we only need the sun's azimuth, without a "computed altitude" (the  $K_3$  of p. 129), and because the azimuth itself need only be correct to within a degree.

The given quantities of the problem are:

- The sun's declination, to be taken to the nearest degree only, and without regard to its + or - sign;
- The ship's known latitude, or D. R. latitude, always taken to the nearest degree only, and without regard to sign, except when choosing formulas;
- 3. The ship's apparent time, taken from the navigator's watch; counted for the present purpose in civil reckoning, A.M. or P.M. (pp. 75, 78); and hereafter called "the time."

We proceed as follows: 2

OPERATION 1. Enter Table 13 with:

Arg.  $a_1$  = declination,

Arg.  $b_1$  = the time, if it is earlier in the morning than 6 A.M., or earlier in the afternoon than 6 P.M.;

Arg.  $b_1$  = the time subtracted from  $12^h$ , if later than 6, A.M. or P.M., and before use  $b_1$  must be turned into degrees with Table 9 (p. 249). It need be correct to the nearest degree only; and it will always be less than 90°.

Then take from Table 13 the tabular angle  $K_1$ , also correct to the nearest degree only.

OPERATION 2. Enter Table 13 a second time with:

Arg.  $a_2$  = the  $K_1$  obtained in Operation 1.

Then, under this  $a_2$ , run down the K-column until you find the  $K_2$  which comes nearest to the declination; and from the left-hand argument column take the  $b_2$  which is in the

¹ In using this very extended table, the young navigator will note that the words "declination – same name as – latitude" signify that declination and latitude have the same sign, both + or both –.

² This is a modification of the proceeding of p. 127.

same horizontal line with the declination  $K_2$  just found in the K-column.

OPERATION 3. Add  $b_2$  to the given latitude, and call it the *sum*. Also take the *difference*, between  $b_2$  and the latitude, subtracting the smaller from the larger. Then enter Table 13 a third time with:

Arg.  $a_3 = K_1$ , again as obtained in Operation 1.

- (5') Arg.  $b_3 = 90^{\circ}$  above *sum*, if latitude and declination are of opposite signs, one + and one —.
- (6') Arg.  $b_3$  = above  $sum 90^{\circ}$ , if the time was later than 6 p.m. in the afternoon, or earlier than 6 a.m. in the morning.
- (7') Arg.  $b_3 = 90^{\circ}$  above difference, in all other cases.

Then with the arguments  $a_3$  and  $b_3$ , take from Table 13 the tabular  $Q_3$ , the sun's true azimuth, to the nearest degree. If the latitude is +, this azimuth  $Q_3$  is to be counted from the north point of the horizon if we used formula (6') just given; or if, in using formula (7'),  $b_2$  was greater than the latitude; otherwise  $Q_3$  is to be counted from the south point of the horizon. (If the latitude is -, interchange the north and south points of the horizon in these directions.²) And in all latitudes, the azimuth will of course be counted toward the east or west, according as the time was A.M. or P.M.

The foregoing will enable the navigator to obtain the sun's true azimuth from Table 13, either for compass adjusting purposes, or in case he should ever wish to know the azimuth when no altitude has been observed. The following are examples: Given:

- 1. Dec. =  $+8^{\circ}$ ; D. R. lat. =  $+38^{\circ}$ ; ship's apparent time =  $4^{h}$  10^m, P.M.; ship's head by compass =  $165^{\circ}$ ; observed bearing of sun =  $240^{\circ}.5$ .
- ¹ The sum and difference are not both needed; usually only one of the two will be written down.
- ² It will not usually be necessary to consider these directions about  $Q_3$ , because the navigator will generally know whether the sun bore N. or S. of the E. or W. point of the horizon at the time of observation.

```
Operation 1 gives a_1 = 8^\circ; b_1 = 4^h 10^m = 62\frac{1}{2}^\circ (p. 249); K_1 = 61^\circ (p. 295); Operation 2 gives a_2 = 61^\circ; K_2 = 8^\circ; b_2 = 17^\circ (p. 308); Operation 3 gives sum = 55^\circ; difference = 21^\circ; a_3 = 61^\circ; b_3 = 69^\circ; Q_3 = 79^\circ; sun's azimuth = 8 79° W = 259^\circ. The red tables, p. 88, give N 101^\circ W. = 259^\circ. Then by formula (2), p. 45, we have: E = T - C = 259^\circ - 240^\circ.5 = +18^\circ.5 = compass error. And if we take the variation to be +10^\circ, as on p. 48, we have by formula (1), p. 45, D = E - V = 18^\circ.5 - 10^\circ = +8^\circ.5 = the deviation when the bearing of the ship's head by compass was 165^\circ. This deviation is the same as is given in the table on p. 48.
```

2. Doc. =  $-8^{\circ}$ ; D. R. lat. =  $+38^{\circ}$ ; time =  $7^{h} 50^{m}$ , A.M.; ship's head by compass =  $75^{\circ}$ ; compass bearing of sun =  $114^{\circ}$ ;  $a_{1} = 8^{\circ}$ ;  $b_{1} = 12^{h} - 7^{h} 50^{m} = 4^{h} 10^{m} = 62\frac{1}{2}^{\circ}$ ;  $K_{1} = 61^{\circ}$ ;  $a_{2} = 61^{\circ}$ ;  $K_{2} = 8^{\circ}$ ;  $b_{2} = 17^{\circ}$ ;

sum = 55°; diff. = 21°;  $a_3$  = 61°;  $b_3$  = 35°;  $Q_3$  = 8 66°E = 114°. The red tables also give 114° for the sun's azimuth, affording an excellent check on the work. Now the compass error  $E = T - C = 114^{\circ} - 114^{\circ} = 0^{\circ}$ . With  $V = + 10^{\circ}$ ,

 $D = E - V = 0^{\circ} - 10^{\circ} = -10^{\circ}$ . The table on p. 48 gives  $D = -9^{\circ}$ .7.

C. Dec. =  $+15^{\circ}$ ; D. R. lat. =  $+38^{\circ}$ ; time =  $5^{h}$  40^m, A.M.; ship's head by compass =  $225^{\circ}$ ; compass bearing of sun =  $39^{\circ}$ ;  $a_{1} = 15^{\circ}$ ;  $b_{1} = 5^{h}$  40^m =  $85^{\circ}$ ;  $K_{1} = 74^{\circ}$ ;  $a_{2} = 74^{\circ}$ ;  $K_{2} = 15^{\circ}$ ;  $b_{2} = 70^{\circ}$ ;  $sum = 108^{\circ}$ ;  $diff. = 32^{\circ}$ ;  $a_{3} = 74^{\circ}$ ;  $b_{3} = 18^{\circ}$ ;  $Q_{3} = N75^{\circ} E = 75^{\circ}$ . The red tables also give  $75^{\circ}$  for the sun's azimuth. And the compass error  $E = T - C = 75^{\circ} - 39^{\circ} = 36^{\circ}$ . With  $V = +10^{\circ}$ ,  $D = E - V = 36^{\circ} - 10^{\circ} = +26^{\circ}$ . The table on p. 48 gives  $D = +25^{\circ}$ .6.

In this way the entire deviation table of p. 48 might have been obtained from observations, and the Second Deviation Table (p. 49) subsequently computed.

In connection with these two deviation tables, it may be of interest to supplement p. 49 by emphasizing once more that both tables are needed in correct navigation. The second table is necessary for changing a true course into a compass course for the helmsman (see p. 143 for an example): and the first table (in coastwise navigation) for correcting a re-

versed bearing (p. 55), or fixing a ship's position by cross bearings (p. 56). Only if the compass has been very well compensated or adjusted is it permissible to navigate with one table only. With a compass thus compensated the outstanding deviations would be so small that the two tables would be practically interchangeable. Were it possible to effect a perfect compensation, the two tables would be identical, and all the deviations of both would be 0°.

Having now explained the method of determining deviations without measuring or calculating the sun's altitude, we shall next consider in a practical way the principal problem of compass adjusting, or the placing of magnetic and other correctors in position, so as to minimize the deviation on all courses. We shall begin with certain definitions.

- 1. Semicircular deviation is that part of the total deviation which is corrected by two permanent magnets (or bundles of thin magnets) placed in the lower part of the binnacle. One of these permanent magnets is always placed in a foreand-aft position, the other in a thwartship position. Both may be raised and lowered, so as to change their distances from the compass card. The north (or north-seeking) ends of all permanent magnets are always painted red.
- 2. Quadrantal deviation is that part of the total deviation which is corrected with two hollow iron spheres or other pieces of iron placed on each side of the compass bowl in an athwartship direction. They are adjustable in position, so that their distances from the compass card can be varied.
- 3. The heeling error is an additional deviation caused by the ship's rolling, and is corrected with an additional permanent magnet placed in a vertical position directly under the center of the compass bowl.
- 4. The following procedure may be used on a compass entirely uncompensated, or on a compass already approximately compensated, either by actual observations, or by the placing of magnets in approximate positions suggested

by experience. The method is specially designed to avoid the necessity of steering directly by the sun, by ranges of known bearing, or by means of a "Napier diagram," in the course of the adjustment.

- 5. With the ship on an even keel and all permanent magnets being removed, begin by moving the vertical heeling magnet from top to bottom of its travel. This should not affect the compass card at all. If it does, the compass bowl is itself not properly centered in the binnacle, and its position there must be adjusted by the proper adjusting screws.
- 6. After the preliminary centering under 5, remove the heeling magnet to a distance, and place the two iron spheres in an approximately proper position, suggested by experience; or, if lacking experience, place them in the middle positions permitted by their respective ranges of adjustment.
- 7. Next you must learn how to head your ship on any desired magnetic course, say M. To do this, let G represent any convenient auxiliary number of degrees. In a steel ship, with compass entirely uncompensated, we might put  $G=15^{\circ}$ . In a wooden ship, or for a compass already approximately compensated, we might take  $G=10^{\circ}$ , or even less. In general, G should be about half as large as the largest remaining deviations the compass is expected to have.

Now steady the ship on the compass course M-G, and keep her steady on that course by heading for some object ashore, or by careful use of the compass. While running slowly on that course, observe the sun's compass bearing and note the ship's apparent time by your watch. The watch should be set in advance to ship's apparent time (see p. 94).

Then, with the red azimuth tables, or the Kelvin table, ascertain the true bearing of the sun, which we will call T, and calculate the compass error E = T - (M - G). The variation, V, being taken from the chart, you will have the

1 "Maneuver the ship with the helm until the sun comes on the sight vanes (of the pelorus)." Bowditch, p. 51, 1916 edition.

deviation D = T - (M - G) - V. Call this deviation  $d_1$  (it corresponds to the compass course M - G).

Now steady the ship on a new compass course M + G, and determine by observation in exactly the same way a new deviation, which call  $d_2$ .

You will then have:

For ship's head by compass the deviation 
$$M-G$$
,  $d_1$ ,  $M+G$ ,  $d_2$ ,

Then the deviation for the magnetic course M, which we desire to find, and which we will call  $d_M$ , will be:

$$d_{M} = \frac{G(d_{2} + d_{1})}{2 G + d_{2} - d_{1}};$$

And the required compass course,  $C_M$ , corresponding to the given magnetic course M, will be:

$$C_{M} = M - d_{M}.$$

The value of  $d_M$  may be taken from the accompanying little Table in all cases that are likely to arise in actual work. Should a number ever be required from a blank place in the Table, the compass probably has unusual deviations, and a preliminary partial compensation should be attempted by means of known ranges taken from a chart.

8. Go through the work under 7 for the magnetic course  $M=0^{\circ}$  (or due north). If you take  $G=15^{\circ}$ , this will necessitate determining by observation the deviations  $d_1$  and  $d_2$  for the compass courses  $0^{\circ}-15^{\circ}=345^{\circ}$ , and  $0^{\circ}+15^{\circ}=15^{\circ}$  (see example, p. 333).

You will then calculate  $d_0$  and  $C_0$ , the deviation and compass course corresponding to the magnetic course  $0^{\circ}$ , using the above formula for  $d_M$ , which in this case is  $d_0$ ; or you will take  $d_0$  directly from the Table.

9. Steady your ship on this compass course  $C_0$  (or magnetic course  $M=0^{\circ}$ ), and keep her quite steady by heading for a visible fixed point like a light-house, or by using tem-

# Values of $d_{\mathbb{M}}$ , the Deviation for the Magnetic Course M

 $G \Rightarrow 16^{\circ}$ 

	1	_	ı	. (DYI E	Dave	T A M T O N	T TO 19	mun C	OMBA	an Co	проп	M + 0	2	
	- 1	000	-26°											
<u> </u>		-30	-20	-20	-10	-10-	0		+0-	+10-	+10-	+20°	+25	+30
0	-30°	-30°	24°	-19°	-15°	-12°	-10°	- 8°	- 6°	_ 4°	- 3°	- 2°	~ 1°	00
13	-25	-33	-25	-19	-15	-12	- 9	- 7	- 5	<b>–</b> 4	<b>–</b> 2	- 1	Ō	+ 1
×	20	1	-27	-20	-15	11	- 8	- 6	- 4	<b>–</b> 2	- 1	0	+ 1	+ 2
Соштве	-15		-30	-21	-15	-11	- 8	- 5	- 3	- 1	0	+ 1	+ 2	+ 3
1 2	-10			-22	-15	-10	- 6	- 4	- 2	0	+ 1	+ 2	+ 4	+ 4
	- 5			-25	-15	- 9	- 5	- 2	0	+ 2	+ 3	+ 4	+ 5	+ 6
Con	0			30	-15	- 8	- 3	0	+ 2	+ 4	+ 5	+ 6	+ 7	+ 8
	+ 5	1.00			-15	- 5	0	+ 3	+ 5	+ 6	+ 8	+ 8	+ 9	+10
Į.į	+10	+30		115	-15 0	0 +15	+ 5	+ 8	+ 9	+10	+11	+11	+12	+12
Ē	+16	+15	+15	+15	l -	1+19	+15	+15	+15	+15	+15	+15	+15	+15
Dev'n for	+20	+ 8	+ 5	0	-15		ļ.	+30	+25	+22	+21	+20	+19	+19
	+25	+ 3	0 3	- 5 - 8	$-15 \\ -15$	-30	l			+35	+30	+27	+25	+23
-ਵੰ	+30	0	1-3	- 0	-13	-30	<u> </u>	<u>i</u>			]	l	+33	+30

 $7 = 10^{\circ}$ 

Ī	1		d	2, THE	DEV.	IATION	FOR	тне С	COMPA	ss Co	ORSE .	M + 0	7	
		-30°	-26°	-20°	-16°	-10°	-6°	0°	+6°	+10°	+16°	+20°	+25°	+30°
M-G.	-30° -25 -20	−30° −37	-22° -25 -30	-17° -18 -20	-13° -13 -14	-10° -10 -10	- 8° - 8 - 7	- 6° - 6	- 5° - 4 - 3	- 3° - 3 - 2	- 2° - 2	- 1° - 1	- 1° 0 + 1	0° + 1 + 1
Course	-15 - <b>10</b>		-30	-23 -30	-15 -17	$-10 \\ -10$	- 7 - 6	- 4 - 3	- 3 - 1	- 1 0	0 + 1	+ 1 + 2	+ 2 + 3	+ 2 + 3
Com. C	- 5 0 + 5	+30 +17	+20	+30	-20 -30	-10 -10 -10	- 5 - 3 0	$\begin{bmatrix} -2 \\ 0 \\ +3 \end{bmatrix}$	0  + 2  + 5	+ 1 + 3 + 6	$\begin{array}{c} + \ 2 \\ + \ 4 \\ + \ 7 \end{array}$	+ 3 + 5 + 7	+ 4 + 6 + 8	+ 4 + 6 + 8
Dev'n for	+10 +16	+10 + 6	+10 + 5	+10 + 3	+10 0	-10	+10	+10 +30	+10 +20	+10 +17	+10 +15	+10 +14	+10 +13	+10 +13
dı, Dev	$^{+20}_{+25}_{+30}$	+ 3 + 1 0	+ 2 0 - 1	- 2 - 3	- 3 - 5 - 6	-10 -10 -10	-30 -20 -17	-30		+30	+23	+20 +30	+18 +25	+17 +22 +30

 $G = 6^{\circ}$ 

Г			d	, THE	DEVI	ATION	FOR	тне С	OMPAS	в Сот	rse 1	M + G	1	
		-30°	—26°	-20°	-16°	-10°	-6°	0°	+6°	+10°	+16°	+20°	+26°	+30°
6	-30°	-30°	-18°	-12°	- 9°	- 7°	- 5°	- 4°	- 3°	- 2°	- 1°		0°	0°
7	-25 -20		-25	$-15 \\ -20$	$-10 \\ -12$	- 7 - 8	- 5 - 5	- 4   - 3	- 2 - 2	- 2	- 1	0	0	0
Course M	-20			-20 -35	-15	- 8	- 5	- 3	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	- 1	- 0	+ 1	+ 1	$\begin{vmatrix} + & 1 \\ + & 1 \end{vmatrix}$
l a	-10	+20	+35		-25	-10	- 5	- 2	- 1	0	+ 1	+ 1	<b>+</b> 2	+ 2
	- 5 0	$^{+12}_{+8}$	$\frac{-15}{+8}$	$+25 \\ +10$	+15	-15	- 5 - 5	- 2   0	$+ \frac{0}{2}$	$+ 1 \\ + 2$	+ 2 + 3	+ 2 + 3	+ 2	+ 3
8	+ 5	+ 5	+ 5	+ 5	+ 5	+ 5	0	+ 5	+ 5	$  + \frac{2}{5}  $	+ 5	+ 5	+ 4 + 5	+ 5
b	+10	+ 3	+ 3	+ 2	+ 2	0	- 5	,,	+15	+10	+ 8	+ 8	+ 7	+ 7
'n	+16 +20	+2 + 1	+ 2	+ 1	_ 1	- 2   - 2	- 5 - 5	$-15 \\ -10$	-25	-25	+15	+12 +20	+10 +15	+ 9
Dev'n for Com.	+25	+ 1	T 0	~ 1	- 2	- ž	- 5	- 8	-15	-35		+20	+25	+12 +18
g,	+30	0	- 1	- 1	- 2	3	- 5	- 8	-12	-20				+30

porarily an auxiliary compass. But this auxiliary compass must not be near enough to the magnets to be influenced by them.

- 10. Move the thwartship permanent correcting magnet toward or from the compass bowl, until the lubber line (p. 42) is on the correct magnetic course  $0^{\circ}$ . If you are working with a compass as yet entirely uncompensated, for which the permanent magnets have not even been placed in the binnacle, the thwartship one should be located with its red end to starboard, if the  $d_0$  found under 8 was plus, or easterly deviation; and with its red end to port, if that  $d_0$  was minus, or westerly deviation.
- 11. Go through the work under 7 again for the magnetic course  $M=90^{\circ}$  (or due east). This will necessitate determining by observation the deviations for the compass courses 75° and 105°, if you are working with  $G=15^{\circ}$ . And you will calculate  $d_{90}$  and  $C_{90}$ , the deviation and compass course for the magnetic course 90°.
- 12. Now steady the ship on the compass course  $C_{90}$ , and place the fore-and-aft compensating permanent magnet with its red end forward, if the  $d_{90}$  found under 11 was plus, and with its red end aft, if  $d_{90}$  was minus. Adjust the magnet so as to make the compass read 90°. Your semicircular deviation is now corrected.
- 13. Go through the work under 7 for the magnetic course  $M=45^{\circ}$  (or north-east, magnetic). This will necessitate observing the sun on the compass courses 30° and 60°; and will give you  $d_{45}$  and  $C_{45}$ , the deviation and compass course corresponding to magnetic course 45°.
- 14. Steady your ship on the compass course  $C_{45}$ , and move the two spheres in and out until the lubber line is on 45°, leaving the two spheres finally so placed that they are equally distant from the compass bowl. Your quadrantal deviation is now corrected.
- 15. To compensate for heeling error, head the ship approximately north or south, and keep her accurately on that

course by heading slowly for an object ashore. Now heel the vessel about 10°, by any convenient method.

If the north-seeking end of the compass card is thereby deviated toward the high side of the ship, place the heeling corrector with red end up in such a position as will bring the compass card back where it was before ship was heeled. If the compass card was deviated toward the low side of the ship, place the heeling corrector with the red end down.

- 16. The "Flinders bar" is a vertical bar of soft iron (or a combination of several bars) sometimes placed directly forward or aft of the compass. It will correct a certain part of the semicircular deviation not fully removed by the permanent magnets adjusted under 10 and 12. Usually a Flinders bar is best located by placing it in a position suggested by experience; but many compasses are adjusted without such a bar, and when there is none, the magnets usually need readjustment whenever the ship changes her latitude very considerably.
- 17. After completing the adjustment, it is well to swing ship on eight equidistant courses, and check the deviation table by new observations.
- 18. After a compass has once been adjusted, necessary minor changes of the magnets and spheres can be most conveniently made as follows. Head the ship north, and steady her with an auxiliary compass, or by means of a conspicuous object ashore. Then move the athwartship magnet up one inch, and note by the compass bearing of the sun how much the compass has changed, and in which direction. The same thing can be done with the fore-and-aft magnets by heading the ship east; and with the spheres by heading northeast. Having thus ascertained how much the compass is changed by a one-inch motion of each corrector, it is easy to calculate how much they should each be moved to compensate for any outstanding small deviations on the north, east, and northeast magnetic courses. Corrections can thus be made at any time during a voyage, if the deviations become unduly large.

When the magnets are not movable, but consist of fixed bundles of thin wire magnets, all adjustments throughout are made by increasing or diminishing the number of wires, instead of moving the magnets toward the compass bowl or away from it.

### Notes

Note to 8. You can equally well head the ship south instead of north, and go through the work for  $M = 180^{\circ}$ , instead of  $M = 0^{\circ}$ .

Note to 10. If you head south, according to the Note to 8. the red end of the thwartship magnet must lie reversed.

This work may be done before that under 8, Note to 11. if desired.

Note to 12. You may head the ship west, if you wish, instead of east, and work for  $M = 270^{\circ}$ , instead of 90°. The magnet must then be placed with red end aft, to correct plus deviation.

Note to 14. This may equally well be done for  $M = 135^{\circ}$ , 225°, or 315°.

The above notes to 12 and 14 also apply to 18. Note to 18. General Note. Whenever an adjustment can be made on two opposite courses, as indicated in the above Notes, accuracy will be increased by adjusting on both courses, and leaving the correctors finally in the average of the two positions found.

#### EXAMPLE

Consider the compass for which the two deviation tables (pp. 48, 49) hold good; and we shall suppose it to have been a totally uncompensated compass.

Under 8 and 7, putting  $M = 0^{\circ}$ ,  $G = 15^{\circ}$ , we have:

for compass course  $M - G = 345^{\circ}$ ,  $d_1 = -16^{\circ}.0$  (table, p. 48),

for compass course  $M + G = 15^{\circ}$ ,  $d_2 = -14^{\circ}.9$  (table, p. 48).

Then, 
$$d_{M} = d_{0} = \frac{G(d_{2} + d_{1})}{2 G + d_{2} - d_{1}} = \frac{15 \times (-30.9)}{30 - 14.9 + 16.0} = -\frac{463.5}{31.1} = -14^{\circ}.9.$$

This  $-14^{\circ}.9$  is in exact agreement with the  $d_0$  given in the second deviation table (p. 49), for the magnetic course  $M = 0^{\circ}$ . The agreement would not always be as perfect. The  $-14^{\circ}.9$  must now be corrected with the thwartship magnet as directed under 10.

Next, under 11, for  $M = 90^{\circ}$ , we have: for compass course  $M - G = 75^{\circ}$ ,  $d_1 = -9^{\circ}$ .7 (table, p. 48), for compass course  $M + G = 105^{\circ}$ ,  $d_2 = -9^{\circ}$ .0 (table, p. 48).

Then, 
$$d_M = d_{90} = \frac{G(d_2 + d_1)}{2G + d_2 - d_1} = \frac{15 \times (-18.7)}{30 - 9.0 + 9.7} = -\frac{280.5}{30.7} = -9^{\circ}.1.$$

The  $-9^{\circ}.1$  agrees closely with  $-9^{\circ}.0$ , given in the second deviation table (p. 49) for  $M=90^{\circ}$ . It must be corrected as directed under 12. This completes the ordinary semicircular compensation.

Coming now to 13, with  $M=45^{\circ}$ , we must observe the sun on the compass courses 30° and 60°. But the semicircular correction being now complete, the observed deviations will no longer agree with those given in the table, which are supposed to have been observed with a compass entirely uncompensated.

Let us suppose the observations gave the following results:

for compass course  $M-G=30^{\circ}$ ,  $d_1=+6^{\circ}.9$ , for compass course  $M+G=60^{\circ}$ ,  $d_2=+6^{\circ}.0$ .

Then, 
$$d_M = d_{45} = \frac{G(d_2 + d_1)}{2G + d_2 - d_1} = \frac{15 \times 12.9}{30 + 6.0 - 6.9} = +\frac{193.5}{29.1} = +6^{\circ}.6.$$

This 6°.6 must now be corrected as directed under 14, completing the quadrantal compensation.

#### APPENDIX 2

# EX-MERIDIAN AND MISCELLANEOUS EXAMPLES

Ex-meridian observations (p. 99) are completely and accurately calculated with the Kelvin Table 13, working out a Sumner line (see p. 148 for an example). But if a rapid calculation of the ship's latitude only is desired, we may either use special tables (p 99, footnote), or, if these are not available, we may apply the Kelvin Table with but little additional labor and almost equal accuracy. We may still use the simplified method already explained in Appendix 1 (p. 324): except that  $Q_3$  will not now be required, and  $K_2$  as well as  $K_3$ must be taken from the Table exact to the nearest minute (see Ex. 1) This having been done, the ship's latitude, at the moment of observation, may be quickly calculated from the ex-meridian altitude by first choosing from p. 89 the formula which would be appropriate for a noon-sight, and then applying to the D. R. latitude (taken to the nearest degree only) the two following corrections:

the "altitude correction" = corrected observed altitude  $-K_3$ ; the "declination correction" = sun's declination  $-K_2$ .

These corrections are to be added or subtracted, according as the formula chosen from p. 89 had a + or - sign for the altitude and declination respectively. This is the only use here made of the formula.

Young naval officers having commands should give special attention to the foregoing, because they may be required to signal their latitude to the flagship promptly at noon, before they have had time to calculate a noon-sight. In such cases an ex-meridian taken at about 11^h 30^m, ship's apparent time,

and the resulting latitude carried forward to noon with the traverse table, will furnish an excellent value for the noon latitude to be signaled. The whole calculation, including the carrying forward to noon, can be completed in a few minutes, and the signal flags bent on, ready to be run up at noon precisely. The navigator will then be free to observe a noon-sight as a check.

As the noon longitude is always signaled as well as the latitude, a time-sight should be observed (if weather permits) in the early morning. This time-sight should be calculated as a Sumner long before noon; and the resulting Sumner line should be carried forward to noon by D. R. methods (p. 137), estimating in advance the probable speed of the ship and her course to noon. An ex-meridian observation made at about 11^h 30^m (and also carried forward) having furnished the noon latitude, the complete noon position of the ship will be finally fixed at that point of the moved Sumner line which cuts the ship's noon parallel of latitude (see Ex. 4). But when the navigator is not hurried by the necessity of signaling the ship's position at noon, it is better to work out a Sumner line from the morning time-sight, and also from a sight taken near noon (or at noon), and then determine the intersection point of the two Sumner lines in the regular way.

Ex. 1. Observed altitude,  $26^{\circ}$  55'; index, +3'; height of eye, 15 feet; watch time of observation,  $11^{h}$   $42^{m}$   $0^{s}$  A.M.; D. R. latitude, to the nearest degree,  $39^{\circ}$ ; D. R. longitude,  $73^{\circ}$  58'; C. - W.,  $4^{h}$   $51^{m}$   $42^{s}$ ; chron. slow,  $4^{s}$ ; equation,  $+3^{m}$   $22^{s}$ ; declination,  $-23^{\circ}$  24'; find the latitude by the ex-meridian method. (This is the example worked as a Sumner on pp. 148-149.)

The corrected observed altitude comes out 27° 8'; ship's apparent time,  $11^h \ 41^m \ 16^s \ \text{A.M.}$ ;  $a_1 = 23^\circ$ ;  $b_1 = 18^m \ 44^s = 4^\circ \ 41' = 5^\circ$ , to the nearest degree;  $K_1 = 4^\circ$ ;  $a_2 = 4^\circ$ ;

¹ The value 4° is the nearest whole degree for  $K_1$ , since, in using Table 13, we notice that  $b_1$  was only 4° 41′, and therefore not quite 5°. But our result would be almost as accurate if we continued the calculation with  $K_1 = 5$ ° (see also Ex. 11).

 $K_2=22^\circ$  56' (taken out to the nearest minute);  $b_2=23^\circ$ ;  $sum=62^\circ$ ;  $b_3=90^\circ-sum=28^\circ$ ;  $a_3=4^\circ$ ;  $K_3=27^\circ$  56' (taken to the nearest minute). We choose formula (4), p. 89, or lat.  $=90^\circ-$  alt. - dec. The altitude correction is  $27^\circ$  8' - 27° 56' = - 48', which must be subtracted, because alt. is - in the formula. The declination correction is  $23^\circ$  24' - 22° 56' = + 28', which must also be subtracted, because dec. is also - in the formula. The D. R. latitude being 39°, the final latitude will be  $39^\circ-(-48')-28'=39^\circ$  20'. On p. 149 we found  $39^\circ$  19' by the Sumner calculation.

- Ex. 2. Corrected observed ex-meridian altitude,  $74^{\circ}$  26'; ship's apparent time,  $12^{h}$   $24^{m}$  P.M.; declination, + 3° 12'; D. R. latitude, + 17° 45', or, to the nearest degree, + 18°. Find the latitude. Ans. 17° 39'.
- Ex. 3.¹ Corrected observed ex-meridian altitude, 72° 3′; ship's apparent time, 11^h 46^m A.M.; declination, + 20° 30′; D. R. latitude, + 3° 5′; find the latitude. Ans. 2° 53′.
- Ex. 4. At sea, at 9^h 42^m 28^s A.M, by the watch (see p. 146), a time-sight was observed, and worked as a Sumner. It gave a Sumner point in lat. 39° 50′ N., long. 73° 56′ W., bearing of line, 237°. The ship was estimated to be steaming at a speed of 15 knots on a true course of 182°. At 11^h 42^m an ex-meridian (see Ex. 1) gave the latitude 39° 20′. Find the latitude and longitude to be signalled at noon.
- Ans. Sumner point carried forward to noon is then in lat. 39° 16′, long. 73° 58′; bearing of line unchanged at 237°.
- ¹ If the observed altitude is larger than  $45^{\circ}$ , it is well to be specially careful in taking out  $K_3$ . For instance, if  $K_1$  happened to be  $3\frac{1}{2}^{\circ}$ ,  $a_2$  as well as  $a_3$  would also be  $3\frac{1}{2}^{\circ}$ , and we might therefore take  $K_2$  and  $K_3$  from the column headed  $a=3^{\circ}$  or the column headed  $a=4^{\circ}$ . In the case of sun observations the choice between the two columns will not matter for  $K_2$ , but for  $K_3$  it is better to interpolate between the values given in the two adjoining columns in question (see Ex. 3).

It may also help the beginner in choosing between the sum and difference formulas of p. 325 to remember that the proper formula will always make  $b_3$  come within a degree or two of the observed altitude in the case of ex-meridian observations.

The ex-meridian carried forward to noon gives the ship's noon latitude as  $39^{\circ}$  15' (to be signaled). So the latitude difference at noon between the ship and the Sumner point is 1', and the bearing of the ship from the Sumner point is  $237^{\circ}$ . For course  $237^{\circ}$  and lat. diff. 1', the Traverse Table gives dep. = 1'.7. The corresponding long. diff. is 2'.2; and so the ship's long. at noon =  $73^{\circ}$  58' + 2' =  $74^{\circ}$  0' (to be signaled).

Ex. 5. At sea, Sept. 20, 1918, A.M., with D. R. lat. 45° 26′ N.; D. R. long. 21° 40′ W.; at 7^h 58^m 26°, A.M. by the watch, the sun's measured altitude was 22° 7′; index, + 3′; height of eye, 26 feet; C. — W. was 1^h 26^m 20° at 6^h A.M. Sept. 20, and 1^h 27^m 11° at 9^h 26^m A.M. of the same date. The chronometer had been compared with a standard ashore, and found to be fast of G. M. T. 0^m 26° on Sept. 1 at 10 A.M., and slow of G. M. T. 0^m 18° on Sept. 15 at 4 P.M.

The 1918 almanac gives:

```
Sept. 19, 20^h G. M. T., decl., +1^\circ 22'.4; equation, +6^m 17^\circ.2. Sept. 19, 22^h G. M. T., decl., +1^\circ 20'.5; equation, +6^m 19^\circ.0. Sept. 20, 0^h G. M. T., decl., +1^\circ 18'.6; equation, +6^m 20^\circ.7. Sept. 20, 2^h G. M. T., decl., +1^\circ 16'.6; equation, +6^m 22^\circ.5.
```

Find the longitude of the ship by the time-sight method. Ans. At the time of observation C.-W. was  $1^h 26^m 49^s.4$ ; chronometer was slow  $0^m 32^s.4$ ; the observation being a forenoon one, the G. M. T. came out  $21^h 25^m 48^s$  of the 19th Sept. (p. 78); by formula (4), p. 100, hav.  $(24^h - T)$  was 9.38260; corresponding  $24^h - T$  was  $3^h 55^m 23^s$  (p. 264), and T was  $20^h 4^m 37^s$  (p. 103, footnote); ship's longitude was  $21^\circ 52'$  W.

Ex. 6. Simultaneously with the altitude measured in Ex. 5, the sun's compass bearing was taken with a pelorus and found to be  $123^{\circ}$  The variation was  $22^{\circ}$  W., by the magnetic chart. Find the deviation. Ans.  $11^{\circ}$  E.

This example may be solved with Table 11 because the altitude has been measured.

- Ex. 7. Using the data of Ex. 5, find the ship's noon latitude on Sept. 20, 1918, from a measured noon altitude of 45° 46′, Ans. 45° 18′.
  - Ex. 8. Calculate Ex. 5 as a Sumner by the Kelvin Table.
- 1  This would be 237° 180° if the ship's latitude had come out greater than that of the Sumner point.

Ans. The Sumner point is in latitude 45° 33′; longitude 21° 49′; bearing of the line 22° or  $180^{\circ} + 22^{\circ}$ , according to the end of the line to be used.

- Ex. 9. From the noon latitude of Ex. 7, and the Sumner line of Ex. 8, find the ship's noon longitude, assuming the ship was steaming at 17 knots on a 168° true course. Ans. 21° 2'.
- Ex. 10. At sea, from an observation at  $8^h$   $28^m$  A.M., ship's apparent time, a Sumner point was computed to be in latitude  $28^\circ$  26' N.; longitude  $40^\circ$  11' W.; bearing of the line  $28^\circ$  or  $208^\circ$ . Clouds having prevented observation at noon, the latitude was found from an ex-meridian observation to be  $27^\circ$  17' at  $12^h$   $28^m$  P.M., ship's time. The ship was steaming at 18 knots on a  $130^\circ$  true course. Find the noon latitude and longitude. Ans. Latitude,  $27^\circ$  22'; longitude,  $39^\circ$  30'.
- Ex. 11. With the data of Ex. 1, it is required to prepare in advance for an ex-meridian observation and its calculation.

Since it is intended to make the observation at about  $11^h$   $40^m$ , ship's time, we begin our preparatory calculations by computing  $K_2$  and  $K_3$  for  $11^h$   $36^m$  and  $11^h$   $44^m$ , ship's time, which correspond to  $11^h$   $36^m$   $44^s$  and  $11^h$   $44^m$   $44^s$  by the watch 2 We thus obtain:

for  $11^h 36^m 44^s$ , declination correction = -28', to be subtracted; alt. correction = alt.  $-26^{\circ} 50'$ , to be subtracted.

for 11^h 44^m 44^s, declination correction = +28', to be subtracted; alt. correction = alt. -27° 56', to be subtracted.

This completes the preparatory calculation. In Ex. 1 the actual observation of altitude was made at  $11^h$   $42^m$ , and the corrected altitude was  $27^\circ$  8'. Interpolating the declination and altitude corrections for  $11^h$   $42^m$ , we obtain:

declination correction = +9'; alt. correction =  $27^{\circ}8' - 27^{\circ}34'$ = -26':

both corrections to be subtracted. We then have, finally: Latitude =  $39^{\circ} - 9' + 26' = 39^{\circ} 17'$ . In Ex. 1 we found  $39^{\circ} 20'$ , and on p. 149,  $39^{\circ} 19'$ .

- ¹ We have chosen  $36^m$  and  $44^m$  so as to have  $b_1$  an exact number of degrees. This increases the accuracy of  $K_1$  (cf. Ex. 1, p. 336, footnote).
- ² We know from the data of Ex. 1 that the watch was 44° fast of ship's apparent time.

- Ex. 12. With the data of Ex. 3, prepare in advance for the calculation. Ans. We find:
- for 11^h 40^m, declination correction, -25', to be added, alt. correction = alt.  $-71^{\circ}$  20', to be added;
- for  $11^h 48^m$ , declination correction, -28', to be added, alt. correction = alt.  $-71^{\circ} 46'$ , to be added:

and for the final latitude 2° 52'. In Ex. 3 we found 2° 53'; but such small differences are not of much importance in navigation calculations.

- Ex. 13. Using the data of Ex. 5 and Ex. 9, prepare in advance for the noon-sight of Ex. 7, and its speedy calculation.
- Ans. D R. longitude at noon,  $21^{\circ} 20'$ ; watch time of noon,  $11^{h} 50^{m} 37^{s}$ ; declination at noon,  $+1^{\circ} 17'$ ; D. R. latitude at noon,  $44^{\circ} 20'$ ; formula (p. 89), lat.  $=90^{\circ} + \text{dec.}$  alt. To get the approximate noon altitude in advance, we invert the formula, and thus obtain an approximate "D. R. alt."  $=90^{\circ} + \text{dec.}$  D. R. lat.  $=90^{\circ} + 1^{\circ} 17'$   $44^{\circ} 20' = 46^{\circ} 57'$ . For this D. R. alt. at noon, we find that Table 6 + Table 7 = +10'. Therefore, at noon, lat.  $=90^{\circ} + \text{dec.}$  10' observed alt.  $= 10^{\circ} 4' 10' 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' + 10' +$
- Ex. 14. With declination  $-3^{\circ}7'$ ; D. R. noon latitude  $+38^{\circ}17'$ ; prepare a constant for a noon-sight, and calculate the latitude, supposing that the observed altitude turned out to be 48° 17', height of eye 20 feet, and index correction +3'. Ans. D. R. altitude, 48° 36'; lat.  $=86^{\circ}39'$  obs'd alt.  $=38^{\circ}22'$ .
- Ex. 15. With the data of Ex. 13, and at 11^h 30^m by the watch, it is required to set it so that it will be correct at noon.
- Ans. Move the hands forward from  $11^h$   $30^m$  to  $11^h$   $39^m$   $23^s$ , as nearly as may be conveniently possible. (The second hand of a watch should always be set so as to be on  $60^s$  when the minute hand is exactly on one of the minute divisions of the dial.)

Ex. 16. Prepare a constant for a meridian observation of  $\beta$  Cassiopeiæ, Dec. 20, 1917, and determine in advance the approximate time for the observation. D. R. latitude, 39° 18′ N., D. R. longitude, 33° 7′ W., both calculated for 8 p.m.; ship steaming 11 knots due E. by compass; variation, 24° W.; deviation, 3° E. Also calculate the latitude, supposing the observed altitude turned out to be 70° 54′, with eye 20 feet and index + 3′. Ans. Ship's time of observation, 6^h 11^m p.m.; lat. = obs'd alt - 31° 19′ = 70° 54′ - 31° 19′ = 39° 35′. The constant is 31° 19′.

Ex. 17. On the ship of Ex. 16, Dec. 20, 1917, at  $6^{h}$   $38^{m}$   $23^{s}$  P.M. by the watch, the altitude of Aldebaran or  $\alpha$  Tauri was measured, and found to be  $33^{\circ}$  25'. C. - W. was  $2^{h}$   $12^{m}$   $48^{s}$ ; chron. fast  $2^{m}$   $26^{s}$ . Find the longitude, using a D. R. latitude; and also run a Sumner line. (Note. The correction for "time past noon" in this example is  $1^{m}$   $27^{s}$ .) Ans. Longitude,  $33^{\circ}$  13' W.; Sumner point, latitude,  $39^{\circ}$  15'; longitude,  $33^{\circ}$  13'; bearing of the line,  $6^{\circ}$  or  $180^{\circ} + 6^{\circ}$ 

Ex. 18. From the Sumner line of Ex. 17 and the latitude of Ex. 16 find the longitude at  $6^h$   $11^m$ , when the meridian observation was made. Ans.  $33^{\circ}$  16'.

Ex. 19. A ship is to proceed (p. 19) from Sandy Hook (lat., 40° 28′ N.; long., 73° 50′ W.) to St. Vincent (lat., 16° 50′ N.; long., 25° 7′ W.). A straight line being drawn between these two points on the North Atlantic great circle sailing (or gnomonic) chart (p. 38), it was found to cross the successive principal longitude meridians at the following points:

A, lat., 39° 37'; long., 70° 0'; B, lat., 36° 39'; long., 60° 0'; C, lat., 32° 34'; long., 50° 0'; D, lat., 27° 10'; long., 40° 0'; E, lat., 20° 30'; long., 30° 0'.

The shortest track between Sandy Hook and St. Vincent will therefore pass through these successive points (see p. 38). It is required to calculate logarithmically, by middle latitude sailing (p. 35), the successive courses and distances between these points, so as to compare them with the middle latitude course and distance from Sandy Hook to St. Vincent direct. The middle latitude is to be taken to the nearest minute in each case. Ans.

	Course	Dist.
Sandy Hook to $A$	106°. 9′	183.3
A  to  B	110° 40′	504.4
$^{\circ}B$ to $C$	116° 23′	551.3
C to $D$	121° 55′	613.0
D to $E$	126° 5′	679.1
E to St. Vincent	128° 24′	354.2
Total distance by great cir	2885.3	

Middle latitude sailing, Sandy Hook to St. Vincent direct.

course, 118° 56' dist. 2931.0

'Apparent saving of distance by great circle sailing.

45.7

It will thus be seen that the great circle course on leaving the Hook is more than a whole compass point to the north-

ward of the middle latitude course, being 106° 9', instead of 118° 56′.

Ex. 20. A sub-chaser with a cruising speed of 12 knots is bound from Norfolk to New York. While on the way, the navigator is required to find her true course and distance from a point off Winter Quarter Lightship (lat., 37° 54'; long., 74° 54'), to a point off N. E. End Lightship (lat., 38° 56'; long., 74° 27'), assuming that a ½-knot flood-current set into the mouth of the Delaware in a N. W. direction during 3 hours of the run.

If the chaser shaped her course without regard to the tidal current, she would, after running down her distance, be 1½ miles N. W. of her intended destination off N. E. End ship. To avoid this, her course should be shaped for a point  $1\frac{1}{2}$  miles S.E. of her intended destination, and then the current will cause her to reach the original desired point. The easiest way to make the calculation is to use the method of traverse sailing (p. 39). This requires that we calculate the latitude difference and departure, separately, both for the ship's run and for the current, and then correct the former with the latter before taking from the traverse table the ship's final course and distance. We first calculate for the run from Winter Quarter to N. E. End, using the latitudes and longitudes given above, and obtain:

For ship's run without LAT. DIFF. DEP. regarding current . 62.0, northerly: 21.2, easterly: 1½ miles, N.W. current . . 1.0, northerly; 1.0, westerly; Subtracting the current effect . 61.0, northerly; 22.2, easterly; and corresponding to latitude difference 61.0, departure 22.2, the Traverse Table gives true course for the ship 20°, distance 65 miles. The course without regard to current would have been 19°.

# INDEX

Accuracy, how attained in Sumner	Argument, difference, 12, 27
method, 137	double, in haversine table, 100
in interpolating declination, 82	in tables, 10
in reading sextant, 66, 73	pairs of, 11
Address, of house in city, 2	pairs of, in log table, 25
of ship at sea, 3	pairs of, in traverse table, 14
Adjuster, compass, 43, 323	pairs of, in trigonometric table
deviation table, 48	32
Adjusting screws, 68	Arrow on sextant vernier, 65
Adjustments of sextant, 68	Artificial horizon, 69
Advance preparation for observa-	accuracy of, 73
tion, star, 96	Ashore, observing with sextant, 69
sun, 92	Astronomic time, 75, 78
"Afternoon" observation of star,	Auxiliary, angle, in azimuth table,
120	115
Aid to navigation, 5.	angle, in Sumner method, 112
Almanac, nautical, chapter on, 75	azimuth table, 115
specimen pages, 76, 83, 84, 91, 92,	Avenues and streets imagined by
97, 98	navigator, 3
Altitude, changes slowly near noon,	Azimuth, circle (instrument), 44, 53
88	how counted, 114
defined, 61	of sun, defined, 44
maximum and minimum, 89	table, 111, 113
maximum of star, 90	table, auxiliary, 115
sun or star, correction of, 70	
used for noon-sight, 86	Beam, bearing, 55
A.M. and P.M., 75	Bearing, bow and beam, 55
American ephemeris, 75	compass, of sun, 44
Angle, auxiliary, in Sumner method,	cross, 56
112	danger, 59
auxiliary, in azimuth table, 115	favorable, for time-sight, 99
course, 10	from the bow, doubling it, 54
danger, 58	from the bow, in Sumner naviga-
deck, 59	tion, 134
defined, 8	of objects ashore, 53
how designated, 8	of Sumner line, 111
how measured, 9	reversed, 55
of triangle, 31	Below pole observations, 89
pairs of, for bow bearings, 56	Bow, and beam bearings, 55
vertex of, 8	bearings from the, doubling, 54
Apparent solar day, 77	bearings from the, use in Sumner
time, 77	navigation, 134
time, used for ship's clock, 94.	Bowl of compass, 42
Arc, minutes of, 3	Boxing the compass, 41
	13

Cabin clock, how set, 94	Compass, points of, 10, 15, 52
Calipers, used in testing sextant, 69	points, cardinal and inter-cardinal,
Card, compass, 41	41
rate, of chronometer, 79	variation, 43
Cardinal points of compass, 41	Compensating compass, 43
Celestial, equator, 85	Composite sailing, 39
Greenwich, 85	Correction, of altitudes, 70
poles, 85	tables, for altitudes, 72
sphere, 85	Cosecant, 31
Changed D. R. point in Sumner	Cosine, 31
navigation, 126	-haversine formulas, in Sumner
Chart, great circle sailing, 37	method, 112
how to draw Sumner lines on, 123	Cotangent, 31
in dead reckoning, 8	Course, angle, 10
laying down ship's place on, 55	magnetic, 49
Mercator, 35	protractor, 55
Mercator, meridians on, 38	ship's, defined, 8
projections, 38	ship's, error of compass, 43
scale of, 55	ship's, in points, 15
Chronometer, 6	ship's, measured, 9, 19
dial, divided in 12 hours, 93	ship's, old way of measuring, 19,
error, 79	22
face, 93	ship's, shaping it, 44
keeps mean solar time, 77	ship's, true and compass, 42
minus watch, 94	steering, 51
rated, 79	Cross-bearings, 56
used in interpolating declination,	Currents, ocean, effect of, 2
90	ocean, measured, 103
Circle, graduated, of sextant, 61	Daily rate of chronometer, 79
Civil day, 77 time, 78, 93	Danger, angle, 57
Clamp of sextant, 62	bearing, 59
Clock, deck and cabin, how set, 94	Date, right, in almanac, 81
Clockwise, numbering of compass, 41	Day, apparent solar, 77
Coastwise navigation, chapter on, 53	at sea, uavigator's, 141
Compass, adjuster, 43, 323	civil, 77
bearing of objects ashore, 53	mean solar, 77
bearing of sun, 44	solar, 75
bowl, 42	Dead reckoning, begins, 53
boxing, 41	chapter on, 7, 23
card, 41	defined, 5
chapter on, 40	fundamental problems of, 8, 10, 20
compensating, 43	point, changed, in Sumner naviga-
course and true course, 42	tion, 126
deviation by observation, 44, 115	point, in Sumner navigation, 112
deviation table, 48	with logs, 23, 31, 33
error of, 43	Decimal part of log, 23
error of, when negative, 47	rule for, 25
formulas, 45	Deck, angle, 59
gyro, 42	clock, how set, 94
lubber line, 42	Declination, interpolated without
north, 43	chronometer, 90
old-fashioned designation of error,	north and south, plus and minus,
47	G#

#### INDEX

Declination, of star, 85, 89, 92	Dividend, log of, 30
of star, slow change of, 90	Division, by logs, 30
of sun, 75, 82, 85	Divisor, log of, 30
of sun, minus, 87	Documents, superintendent of, 75
Degrees, of latitude and longitude,	
when equal, 4	Double, argument in haversine table, 100
of longitude, 3	
	interpolation, 12
of longitude, counted East and	Doubling the bearing from the bow,
West, 3	<b>54</b> .
on compass card, 41	
subdivisions of, 3	Ephemeris, American, 75
unit for measuring angles, 9	Equation of time, 75, 77
Departure, defined, 10	Equator, celestial, 85
new, 2	earth's, a circle, 4
port of, 1	longitude meridians begin at, 3
relation of longitude difference to,	Equinox, vernal, 85
16, 20	Error, index, of sextant, 66
summed, 39	in tabular dip of horizon, 73
taking a, 53	of chronometer, 79
Destination, port of, 1	of compass, 43
Deviation, of compass, 43	
	of compass, older designation of, 47
of compass, by observation, 44, 115	of compass, when negative, 47
of compass, older designation of, 47	Exactness of logs, 30
of compass, when negative, 47	Ex-meridian observation, 99
table, 48, 49	
table, inverse use of, 48	Face, chronometer, 93
table, second, 49	Factor, correction, in Table 2, 17
Dial, chronometer, divided in 12	log of, 30
hours, 93	Favorable bearing for time-sight, 99
of compass, 41	"Fix" defined, 53
Difference, argument, 12, 27	"Forenoon" observation of star, 120
hourly, 79	Formulas, cosine-haversine, for alti-
interpolation, 28	tude, 112
latitude, defined, 10	for compass, 45
latitude, in miles and minutes, 15	for dead reckoning, 33, 34
latitude, meridional, 36	for latitude by noon-sight, 87, 89
latitude, summed, 39	for magnetic course, 49
longitude, converted into depar-	for Mercator sailing, 36
ture, 15, 19	for operations by Kelvin's Sumner
tabular, 12, 27	table, 127
time, 80	for Sumner intersection point, 135
Digits, defined, 24	for time-sight, 100
Dip, of sea horizon, 70	for time-sight, star, 105
of sea horizon, errors in, 73	Tor wine-signer, sear, 190
of sea horizon, table of, 73	Gaining rate of chronometer, 79
of star, at upper transit, 96	Graduated circle, of sextant, 61
of sun, at noon-sight, 86	off arc, 66
Direction, defined, 8	Great circle, 37
difference of, 8	chart, 38
Disk of sun in telescope, 67	sailing, 35, 37
Distance, in dead reckoning, 10.	Greenwich, beginning of longitude, 3
in traverse table, 13	celestial, 85
laying off on chart, 55	mean time, 77
polar, 100	Gyro-compass, 42

Half sum, 100 Haversines, 99 High latitudes, noon-sight in, 89 Horizon, 61 artificial, 69 dip of, 70 glass, on sextant, 64 Hour-angle of star, 104, 120 Hourly difference, 79 Imaginary ship, in Sumner navigation, 134 Index, error, of sextant, 66 error, of sextant, from sun observations, 67 glass, of sextant, 64 number, in azimuth table, 114 of sextant, 62 Initial meridian, Greenwich, 3 Inter-cardinal points of compass, 41 Interpolation, 12

of logs, 27 Intersection point of Sumner lines, 111, 125 finding it, 133

in trigonometric tables, 33

difference, 28

double, 12

inverse, 29

finding it, 133
Inverse interpolation, 29
use of deviation table, 48
use of mathematical tables, 12
use of Table 3, 28
use of Table 4, 33
Inverting telescope, 72

Kelvin, Lord, his table, 126 improves Sumner's method, 112

Land-marks, observed from ship, 53
Lane route, 95
Latitude, degrees of, equal to degrees
of longitude, 4
determined by noon-sight, 85
determined by sextant, 5
determined by star, 89
difference, defined, 10
difference, in miles and minutes, 15
difference, meridional, 36
difference, summed, 39
for time-sight calculation, 101
high, noon-sight in, 89
parallels of, defined, 3

Laving down ship's place on chart, 55 off distance on chart, 55 Lead-line, 60 Light-gathering power of telescope, Lighthouse, aid to navigation, 5 observed from ship, 53 Limb, lower, of sun, 71 Line of soundings, 60 Sumner, or line of position, 109 Sumner, principle of, 111 Log, abbreviation for logarithm, 23 instrument for estimating speed of ship, 54 Logarithms, decimal part of, rule for, 25 exactness of, 30 in dead reckoning, chapter on, 23 interpolation of, 27 multiplication and division with, 30 of multiples of 10, 24 of products, 30 table of, 25 table of, inverse use of, 28 table of, trigonometric, 32 two parts of, 23 whole number part of, rule for, 24 Longitude, begins at Greenwich, 3 degrees of, 3 degrees of, counted east and west, degrees of, when equal to degrees of latitude, 4 determined from star. 104 determined from sun, 99 difference, converted into departure. 15, 19 difference, converted into timedifference, 81 meridians of, defined, 3 minutes and seconds of, 4 not determinable by noon-sight, 88 Losing rate of chronometer, 79 Lower, limb of sun, 71, 86 transit, 89 Lubber-line of compass, 42

Magnetic course, 49 Maps, lines on, 4

Mathematical tables, 10

inverse use of, 12

Maximum, altitude, 89 of star, 90

### INDEX

Mean, of observations, 73	Noon, sight, advance preparation for,
solar day, 77	92
solar time, 77	sight, good for latitude only, 88
sun, 83	sight, in high latitudes, 89
time, Greenwich, 77	sight, in tropics, 89
Mercator, charts, 35	sight, of star, 90
charts, meridians on, 38	North, by compass, 43
Gerhard, 35	declination and latitude are plus,
sailing, 35	89
Mercury, in artificial horizon, 69	Numbers, of longitude meridians, 3
Meridian, how numbered, 3	tabular, 10
initial, at Greenwich, 3	011 11 0 0 0
of longitude, defined, 3	Objections to Sumner line, 110
on maps, 4	Observation, advance preparation
on Mercator chart, 35	for sun, 92
observation, 86	advance preparation for star, 96
transit, 96	determines ship's position, 4
Meridional, latitude difference, 36	for compass deviation, 44
parts, 35	planets and moon, 98
Middle latitude, 16	single, determines one thing only,
sailing, 35	88
sailing, formulas for, 33, 34	Ocean currents, deflect ship, 2
Midnight sun, observed for latitude, 89	measured, 103
Miles, nautical, 15	Off are, graduations of sextant, 66 Older navigation methods, chapter
Minimum, altitude, 89	on, 86
Minus, declination, 82, 87	01, 80
defined, 25	Pages from nautical almanac, 76, 83,
sign, for south latitude and decli-	84, 91, 92, 97, 98
nation, 89	Pairs, of angles for bow bearings, 56
sign, in formula, 87	of arguments, 11
Minutes of arc, 3	of arguments, in log table, 25
subdivided, 4	of arguments, in traverse table, 14
used in measuring angles, 9	Parallax, correction of sun's altitude,
Mirror, artificial horizon, 69	71
sextant, 61	Parallel, of latitude, defined, 3
Moon, observation of, 99	of latitude, how counted, 3
Motion, of ship, between two Sum-	of latitude, on maps, 4
ner observations, 137	rulers, 55
Multiples of 10, logs of, 24	sailing, 39
Multiplication, by logarithms, 30	Parts, meridional, 35
table, 11, 28	of triangle, 31
	proportional, 28
Nautical almanac, chapter on, 75	two, of compass error, 43
miles, 15	two, of log, 23
specimen pages, 76, 83, 84, 91, 92,	two, of log, rule for, 24
97, 98	Patent log, 54
Navigator, his day at sea, 141	Pelorus, 44, 53
Negative, compass error, 47	Plane, defined, 9
defined, 24	sailing, 9
Newer navigation methods, chapter	trigonometry, 10
on, 108	Planets, observation of, for latitude,
Noon, 75	98
sight, 86	observation of, time-sight, 104

Plotting ship's place on chart, 55	Sailing, composite, 39
Plus, sign in formula, 87	Mercator, 35
sign, north declination and lati-	middle latitude, 35
tude, 89	parallel, 39
P.M. and A.M., 75	plane, 9
Point, D. R., in Sumner navigation,	traverse, 39
112	Saint Hilaire, Marcq, improves
intersection, of Sumner lines, 111,	Sumner's method, 112
125	Scale of chart, 55
Sumner, 112	Screw adjusting, 68
Sumner, ship not at, 125	Secant, 31
Points of compass, 10, 15	Second deviation table, 49
cardinal, 41	Seconds of arc, 4
inter-cardinal, 41	Semi-diameter of sun, 71
table of, 52	Set of current measured, 103
Polar distance, 100	Setting watch on board, 94
Pole, celestial, 85	Sextant, adjustments, 68
celestial, observing below it, 89	chapter on, 61
end of longitude meridians, 3	clamp, 62
Port of departure and destination, 1	defined, 5
Position, line of, 109	determines latitude, 5
of ship at sea, defined, 2	for danger angle, 59
of ship, determined daily, 2	graduated circle of, 61
of ship, how determined, 4	graduations off arc, 66
of ship, most probable, not at	horizon glass of, 64
Sumner point, 125	index, 62
Preparation for observation, star, 96	index glass, 64
sun, 92	mirrors, 62
Principle of Sumner line, 111	read to minutes only, 66, 73
Probable position of ship, not at	superposed objects, 64
Sumner point, 125	tangency of sun's image, 67, 70
Problem, of dead reckoning, 8, 10,	tangent screw, 62
20	telescope, 62
of dead reckoning, with logarithms,	use of, ashore, 69
23, 31, 33	vernier, 64
of navigation, 1	Shaping a course, 39, 44
Product, log of, 30	Ship, course, defined, 8
Projection chart, 38	course, measured, 9, 19
Proportional parts, 28	course, measured, old way, 19
Protractor, instrument, 55, 58	imaginary, in Sumner navigation,
	134
0 11 1 1 100	motion of, between two Sumner
Quotient, log of, 30	observations, 137
	position of, how determined, 4
Rate of chronometer, 79	position of, laying down on chart,
Reading sextant circle, 62	55
Refraction of light, 71	swinging, for compass adjustment,
Reversed bearing, 55	43
Rhumb line, 38	time is apparent solar time, 94
Right-ascension, of star, 85, 89, 91	Sidereal time, 85
of star, slow change of, 90	Sides of triangle, 31
of sun, 83	Sine, 31
Roof, of artificial horizon, 69	Single observation determines one
Rulers, parallel, 55	thing only, 88, 111, 125
rearcis, paramer, ou	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

•	
Sky, 85	Sumner navigation, use of bearings
Slow-motion screw of sextant, 62	from the bow in, 134
Solar day, 75	Sumner observations, motion of ship
apparent, 77	between two, 137
mean, 77	
	Sumner point, 112
Solar time, 75	ship not at, 125
apparent, 77	Sun, advance preparation for obser-
mean, 77	vation of, 92
Soundings, 59	altitude correction of, 70
machine, 60	azimuth of, 44
South declination and latitude,	compass bearing of, 44
minus, 89	declination of, 75, 82, 85
Specimen pages, from nautical	in nautical almanac, 76
almanac, 76, 83, 84, 91, 92, 97, 98	its disk in telescope, 67
Sphere, celestial, 85	lower limb of, 71
Star, advance preparation for obser-	mean, 77, 83
vation, 96	midnight, observed for latitude, 89
dip of, 96	observed for index error, 67
"forenoon" and "afternoon" ob-	observed for Sumner line, 112
servation, 120	right, ascension of, 83, 85.
hour-angle of, 104	Superintendent of documents, 75
"noon-sight" of, 90	Superposed objects in sextant, 64
observed for index error, 67	Supplementary correction of sun's
observed for latitude, 89	altitude, 72
observed for Sumner line, 120	Swinging ship for compass adjust-
observed for time-sight, 104	ment, 43
right-ascension and declination, 85,	·
91, 92	Table, auxiliary azimuth, 115
time of upper transit, 96	azimuth, 111
Steering courses, table of, 51	compass points, 52
Streets and avenues, imagined by	corrections for altitudes, 72
navigator, 3	deviation, 48
Subdivisions, of degrees, etc., 3	deviation, second, 49
of minutes, 4	dip, 73
Summed latitude difference and de-	haversines, 99
parture in traverse sailing, 39	logarithms, 25
Sumner, Capt. Thos. H., 109	logarithms, inverse use of, 28
Sumner intersection table, 135	mathematical, 10
Sumner line, 109	mathematical, inverse use of, 12
bearing of, 111	multiplication, 11, 28
how to draw it on chart, 123	of steering-courses, 51
objections to it, 110	Sumner, by Kelvin, 126
point of intersection, 111, 125	Sumner intersection, 135
point of intersection, finding it, 133	traverse, 10
principle of, 111	traverse, used to convert longitude
	difference into departure, 19
star observed for, 120	trigonometric logarithms, 32
sun observed for, 112	Tobular difference 19 97
Sumner method, auxiliary angles in,	Tabular, difference, 12, 27
112	numbers, 10
conditions for accuracy in, 137	Taking a departure, 53
cosine-haversine formula, 112	Tangency of sun's images, 67, 70
with special tables, 126	Tangent, images of sun, 67, 70
Sumner navigation, compared with	in this an amount is tables 21
	in trigonometric tables, 31
time-sight, 124	in trigonometric tables, 31 screw of sextant, 62

INDEX

Telescope, inverting, 72 of sextant, 61 Ten, arbitrary increase of logs by, 25, 31, 32 multiples of, logs of, 24 Time, apparent solar, 77 apparent solar, used for ship's clock, 94 astronomical, 78 civil, 78, 93 difference, 80, 87 equation of, 75, 77 Greenwich mean, 75 mean solar, 77 sidereal, 85 solar, 75 transformation, mean to sidereal, Time-sight, 99 calculation, latitude for, 101 compared with Sumner navigation, Transformations, time, importance of, 82 mean to sidereal, 85 Transit, lower, 89 upper, 89 Traverse, sailing, 39 table, 10 table, in Sumner method, 113, 135 table, used to convert longitude

difference and departure, 19

Triangle, parts of, 31
Trigonometry, log table, 31
plane, 10, 31
Tropics, noon-sight in, 89
True course of ship, 42
north, 43

Unit for measuring angles, 9 Upper transit, 89 time of, for stars, 96

Variation of compass, 43
older designation of, 47
when negative, 47
Vernal equinox, 85
Vernier, backward reading, off arc, 66
of sextant, 64
Vertex of angle defined, 8

Watch, chronometer minus, 94 how set, 94 used for timing observations, 94 Whole number part of log, 23 rule for, 24 Wind, deflects ship, 2

Zenith, defined, 61 sun near it in tropics, 89 Zero, hours, same as noon, 75 mcridian, Greenwich, 3 THE following pages contain advertisements of books by the same author or on kindred subjects.

# MACMILLAN BOOKS ON ASTRONOMY (TEXT-BOOKS)

## Astronomy—A Popular Handbook

### By HAROLD JACOBY

Rutherfurd Professor of Astronomy in Columbia University

Decorated cloth, illustrated, 32 plates and many figures in the text, 8vo, \$2.50

This book has been made to meet the wishes of the ordinary reader who may desire to inform himself as to the present state of astronomic science or to secure a simple explanation of the many phenomena continually exhibiting themselves in the universe about him. In order that the non-scientific reader may not be hampered by formulæ and symbols of which he knows little, Professor Jacoby has divided the book into two parts, the first being free from mathematics, and the second a series of extended elementary mathematical notes and explanations to which appropriate references are made in the first part. The general reader may, therefore, confine his attention to the non-mathematical part, the student to the whole volume. The work is elaborately illustrated, there being 32 full-page plates from photographs and many text figures.

"It serves its purpose better than any recent hand-book, and ought to lead many inquirers toward this fascinating study."—New York Times.

"The author has the gift of making technical subjects seem easy, and in this book he has incorporated all the latest results of the science of the heavens."

-San Francisco Chronicle.

THE MACMILLAN COMPANY

Publishers 64-66 Fifth Avenue New York

### An Introduction to Celestial Mechanics

#### By F. R. MOULTON

Professor of Astronomy in the University of Chicago

Second edition, revised, diagrams, 8vo, \$3.75

Intended to give a satisfactory account of many parts of celestial mechanics rather than an exhaustive treatment of any special part; to present the work so as to attain logical sequence, to make it progressively more difficult, and to give the various subjects the relative prominence which their scientific and educational importance deserves. In short, the aim has been to prepare such a book that one who has had the necessary mathematical training may obtain from it, in a relatively short time and by the easiest steps, a broad and just view of the whole subject.

"Composed with remarkable good judgment, and indispensable to all students of the subject." — N. Y. Post.

THE MACMILLAN COMPANY

# MACMILLAN BOOKS ON ASTRONOMY (TEXT-BOOKS)

#### By FOREST RAY MOULTON, Ph.D.

Assistant Professor of Astronomy in the University of Chicago

## An Introduction to Astronomy

Revised edition, Ill., cloth, 8vo, \$2.40

This book gives an introductory account of the present state of the science of astronomy, logically arranged and written, so that it may be easily comprehended by the student without mathematical or extensive scientific training, and so that he may obtain from it not only some knowledge of scientific achievements, but also some of the spirit which inspires scientific work. To secure the benefits of the laboratory method numerous suggestions and exercises for practical observations, both with and without a telescope, are given. Finally, the aim has been to give the student a well-balanced conception of the astronomy of the present day.

## The Elements of Practical Astronomy

By W. W. CAMPBELL

Astronomer in the Lick Observatory

Cloth, 8vo, 254 pages, \$2.25

The elements of practical astronomy, with numerous applications to the problems first requiring solution. It is suited for use with students who have had an introductory training in astronomy and mathematics.

### THE MACMILLAN COMPANY

Publishere 64-66 Fifth Avenue

New York

## MACMILLAN BOOKS ON ASTRONOMY (TEXT-BOOKS)

## By WILLIS I. MILHAM, Ph.D. Field Memorial Professor of Astronomy in Williams College

## How to Identify the Stars

Cloth, 12mo, 38 pages, 75 cents

The purpose of this little book is to serve as a guide in taking the first steps in learning the stars and constellations and also to point the way to the acquisition of further information on the part of those who desire it. Excellent star maps are included.

## Meteorology

A Text-book of the Weather, the Causes of its Changes, and Weather Forecasting for the Student and General Reader

Cloth, 8vo, illustrated, 549 pages, \$4.50

This book is essentially a text-book. For this reason, the marginal comments at the sides of the pages, the questions, topics for investigation, and practical exercises have been added. A syllabus of each chapter has been placed at its beginning, and the book has been divided into numbered sections, each treating a definite topic. The book is also intended for the general reader of scientific tastes; for while it can hardly be called an elementary treatise, it starts at the beginning and no previous knowledge of meteorology itself is anywhere assumed. It is assumed, however, that the reader is familiar with the great general facts of science. References have been added at the end of each chapter.

#### THE MACMILLAN COMPANY

Publishers 64-66 Fifth Avenue New York

