Relativité générale

Rappels sur la relativité restrainte (vecteurs et tenseurs)

 $\mbox{*}$ On prend comme exemple une espace euclidien de dimension 2 mais la théorie est générale

$$\mathbf{A} = A^1 \mathbf{e}_2 + A^2 \mathbf{e}_2 + A^3 \mathbf{e}_3 = A^i \mathbf{e}_i$$

les A^i sont les composantes contravariantes

Changement de base : $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$

$$\mathbf{e}_i = \Lambda_i^j \mathbf{e}_j' = \Lambda_i^1 \mathbf{e}_1' + A_i^2 \mathbf{e}_2' + A_i^3 \mathbf{e}_3'$$

$$\mathbf{e}_i' = (\Lambda^{-1})_i^j \mathbf{e}_i$$

$$\mathbf{A} = A^j \mathbf{e}_j = \underbrace{A^j \Lambda^i_j}_{A^{i\prime}} e_i^{\prime}$$

$$\boxed{A'i = \Lambda^i_j A^j}$$

Base duale

ayant une base B On peut définir une base duale $\tilde{B}=\left\{\mathbf{e}^1,\mathbf{e}^2,\mathbf{e}^3\right\}|\mathbf{e}^i\cdot\mathbf{e}^j=\delta^i_j$

$$\mathbf{A} = \underbrace{A^i}_{contravariante} \mathbf{e}_i = \underbrace{A_j}_{covariantes} \mathbf{e}^j$$

$$\mathbf{A} \cdot \mathbf{e}^i = A^i$$

$$\mathbf{A} \cdot \mathbf{e}_i = A_i$$

On veut démontrer que $\mathbf{e}'^i = A^i_j \mathbf{e}^j$

<u>Tenseurs</u>:

base : $\mathbf{e}_i \otimes \mathbf{e}_j$

$$\mathbf{T} = T^{ij}\mathbf{e}_j \otimes \mathbf{e}_j$$

Il y a des représentation covarientes contravarites et mixtes au tenseurs.

$$T'^{ij} = \Lambda_k^i \Lambda_l^j T^{kl}$$

$$T'^i_j = \Lambda_k^i (\Lambda^{-1})_j^l T_l^k$$

$$T_i^i = tr(T) = \cdot = tr(T')$$

Tenseur Métrique

$$\mathbf{e}_i = g_{ij}\mathbf{e}^j \iff \mathbf{e}_i \cdot \mathbf{e}_j = g_{ik}\underbrace{\mathbf{e}^k \cdot \mathbf{e}_j}_{\delta_j^k} = g_i j$$

de même :

$$\mathbf{e}^i \cdot \mathbf{e}^j = g^{ij} \mathbf{e}^j$$

$$\mathbf{AB} = A^i \mathbf{e}_i B^j \mathbf{e}_j = g_{ij} A^i B^i$$

$$A^i = \mathbf{A}\mathbf{e}^i = \mathbf{A} \cdot (g^{ij}\mathbf{e}_j) = g^{ij}A_j$$

$$A^i = g^{ij}A_j$$

$$A_i = g_{iij}A^j$$

$$g_{ik}g^{kj} = \delta_i^j$$

Espace-Temps (1908)

Un concept définis par Minkowski après avoir lu les papier de Einstein de 1905. Ce dernier n'aimait pas du tout ce concept.

Quadrivecteur

$$x^i = (ct, x, y, z)$$

Transformation de Lorentz

$$x'^i = \Lambda^i_j x^j$$

Intervalle

$$S^2 = \cancel{Z}_t^1 - x^2 - y^2 - z^2$$

unitées Géométriques

$$G=1$$
 $c=1$

Transformation de Lorentz

$$\Lambda^T g \Lambda = g$$

On a 16 variables dans une matrice 4x4. On a une contrainte sur 10 d'entres elles. Il reste donc 6 degrés de libertés. Celles ci représente l'alignement des axes et la vitesse.

 $\underline{\text{Rapidit\'e}}$

$$\tanh \psi = v$$

$$\Lambda = \begin{pmatrix} -x \sinh \psi & t \cosh \psi & 0 & 0 \\ x \cosh \psi & -t \sinh \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Quadrigradient

$$\partial_i = \frac{\partial}{\partial x^i}$$

$$\partial_{i'} = (\Lambda^{-1})_i^j \partial_j : q$$