经典(超越)不等式

一、结论

- (1) 对数形式: $x \ge 1 + \ln x(x > 0)$, 当且仅当x = 1时, 等号成立.
- (2) 指数形式: $e^x \ge x + 1(x \in R)$, 当且仅当 x = 0 时, 等号成立.

进一步可得到一组不等式链: $e^x > x + 1 > x > 1 + \ln x (x > 0 \, \text{l.} \, x \neq 1)$

上述两个经典不等式的原型是来自于泰勒级数:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1};$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1});$$

截取片段:

$$e^x \ge x + 1(x \in R)$$

 $\ln(1+x) \le x(x>-1)$, 当且仅当 x=0 时, 等号成立;

进而: $\ln x \leq x - 1(x > 0)$ 当且仅当 x = 1 时, 等号成立

二、典型例题

例 1 (2023·陕西咸阳·校考模拟预测) 已知 $a=\frac{2}{5}$, $b=\mathrm{e}^{-\frac{3}{5}}$, $c=\ln 5-\ln 4$,则(

A.
$$a > b > c$$

B.
$$a > c > b$$

B.
$$a > c > b$$
 C. $b > a > c$ D. $b > c > a$

D.
$$b > c > c$$

【答案】C

【详解】 $f(x) = e^{x} - 1 - x$

 $f'(x) = e^x - 1$,则 $x \in (0, +\infty)$, f'(x) > 0, $x \in (-\infty, 0)$, f'(x) < 0, 故函数 f(x) 在 $(-\infty, 0)$ 单调递减, $(0, +\infty)$

单调递增,则 $f(x) \ge f(0) = 0$

则
$$e^x - 1 - x \ge 0$$
,即 $e^x \ge 1 + x$

由
$$e^x \ge 1 + x$$
, $: e^{-\frac{3}{5}} > \frac{2}{5}$, 故 $b > a$

同理可证 $\ln(1+x) \leq x$

又:
$$\ln(1+x) \le x$$
,: $\ln 5 - \ln 4 = \ln\left(1 + \frac{1}{4}\right) < \frac{1}{4}$,则 $b > a > c$

故选: C.

【反思】对于指数形式: $e^x \ge x + 1(x \in R)$, 当且仅当x = 0时, 等号成立,该不等式是可以变形使用的:

$$\mathbf{e}^{x} \geqslant x + 1(x \in R) \xrightarrow{-x \stackrel{\text{fr}}{\neq} x} \mathbf{e}^{-x} \geqslant -x + 1, \ \mathbb{P} \frac{1}{\mathbf{e}^{x}} \geqslant 1 - x \begin{cases} \frac{\exists \ x < 1}{} \\ \frac{\exists \ x > 1}{} \\ \frac{\exists \ x > 1}{} \\ \frac{\exists \ x > 1}{} \\ \frac{}{1 - x} \end{cases}$$

注意使用时x的取值范围:

同样的还可以如下处理: $e^x \ge x + 1(x \in R)$ 两边同时取对数: $x \ge \ln(x+1)(x > -1)$,同样可以变形使用:

$$x \geqslant \ln(x+1) \left(x > -1\right) \xrightarrow{\text{"$x-1$"}} \frac{\text{替换"}x\text{"}}{x} - 1 \geqslant \ln x (x > 0) \xrightarrow{\text{£} \, \text{五两边同乘以"}-1\text{"}} 1 - x \leqslant -\ln x (x > 0);$$

$$1 - x \leqslant -\ln x(x > 0) \Leftrightarrow 1 - x \leqslant \ln \frac{1}{x}(x > 0) \xrightarrow{\mathbb{M}^{\frac{1}{x}}} \frac{1}{x} \Leftrightarrow \frac{1}{x} \leqslant \ln x \Leftrightarrow \frac{x - 1}{x} \leqslant \ln x$$

注意使用时x的取值范围.

另外,选择填空题中,涉及到超越不等式可以直接使用,但是注意,解答题中一定要先证后用.

例 2 (2023·全国·高三专题练习) 已知函数 $f(x) = e^x - x - 1$.

- (1) 证明: $f(x) \ge 0$;
- (2) 证明: $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\cdots\left(1 + \frac{1}{2^n}\right) < e$.

【答案】(1)证明见解析

(2)证明见解析

【详解】 $(1)f'(x) = e^x - 1$,

所以 f(x) 在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增,

所 f(x) 的最小值为 f(0) = 0, 所以 $f(x) \ge 0$.

(2) 由 (1) 知, 当 $x \in (0,+\infty)$ 时, f(x) > f(0) = 0, 即 $e^x - x - 1 > 0$, 即 $e^x > x + 1$, 即 $x > \ln(x + 1)$,

$$\Leftrightarrow x = \frac{1}{2^n}$$
,得 $\ln \left(1 + \frac{1}{2^n}\right) < \frac{1}{2^n}$,

所以
$$\ln \left(\left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2^2} \right) \cdots \left(1 + \frac{1}{2^n} \right) \right) = \ln \left(1 + \frac{1}{2} \right) + \ln \left(1 + \frac{1}{2^2} \right) + \cdots + \ln \left(1 + \frac{1}{2^n} \right)$$

$$<\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^n}=\frac{\frac{1}{2}\left(1-\frac{1}{2^n}\right)}{1-\frac{1}{2}}=1-\frac{1}{2^n}<1,$$

故
$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right)$$
 < e.

【反思】注意在解答题中 $e^x \ge 1 + x$, $x \ge 1 + \ln x (x > 0)$ 等超越不等式,及其变形式,不能直接使用,需要证明后才可以使用.才可以进一步变形得到有利于解题的不等式.

三、针对训练举一反三

一、单选题

1. (2023 春·浙江·高三校联考开学考试) 设
$$a = \frac{1}{2022}$$
, $b = \tan \frac{1}{2022}$ · $e^{\frac{1}{2022}}$, $c = \sin \frac{1}{2023}$ · $e^{\frac{1}{2023}}$, 则 ()

A.
$$c < b < a$$

B.
$$c < a < b$$

C.
$$a < c < b$$

D.
$$a < b < c$$

【答案】B

【详解】设
$$f(x) = e^x - (x+1)$$
,则 $f'(x) = e^x - 1$,在 $(0,+\infty)$ 时, $f'(x) > 0$,在 $(-\infty,0)$ 时, $f'(x) < 0$,

所以
$$f(x)_{\min} = f(0) = 0$$
,即 $e^x - (x+1) \ge 0$,所以 $e^x \ge x + 1$ 对任意 $x \in \mathbf{R}$ 均成立.取 $x = \frac{1}{2022}$

有
$$e^{\frac{1}{2022}} > \frac{1}{2022} + 1 = \frac{2023}{2022}$$
,所以 $\frac{1}{2023} e^{\frac{1}{2022}} > \frac{1}{2022}$.

再取
$$x = -\frac{1}{2023}$$
,可得 $e^{-\frac{1}{2023}} > 1 - \frac{1}{2023} = \frac{2022}{2023}$,两边取倒数,即 $e^{\frac{1}{2023}} < \frac{2023}{2022}$,

所以
$$\frac{1}{2023}$$
e $^{\frac{1}{2023}}$ < $\frac{1}{2022}$,

又当
$$x \in \left(0, \frac{\pi}{2}\right)$$
 时,设 $F(x) = x - \sin x$, $G(x) = \tan x - x$,则 $F'(x) = 1 - \cos x > 0$,

$$G'(x) = \left(\frac{\sin x}{\cos x}\right)' - 1 = \frac{1 - \cos^2 x}{\cos^2 x} = \frac{\sin^2 x}{\cos^2 x} > 0$$
,即 $F(x)$ 和 $G(x)$ 在 $\left(0, \frac{\pi}{2}\right)$ 均 递增,

所以
$$F(x) > F(0) = 0$$
, $G(x) > G(0) = 0$, 即 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\sin x < x < \tan x$, 所以

$$\sin\!\frac{1}{2023}\cdot \mathrm{e}^{\frac{1}{2023}}\!\!<\!\frac{1}{2023}\mathrm{e}^{\frac{1}{2023}}\!\!<\!\frac{1}{2022}\!<\!\frac{1}{2023}\mathrm{e}^{\frac{1}{2022}}\!\!<\!\tan\!\frac{1}{2023}\cdot \mathrm{e}^{\frac{1}{2022}}\text{,}$$

由
$$\tan x$$
 在 $x \in \left(0, \frac{\pi}{2}\right)$ 单调递增,可得 $\tan \frac{1}{2023} \cdot e^{\frac{1}{2022}} < \tan \frac{1}{2022} \cdot e^{\frac{1}{2022}}$,即 $c < a < b$.

故选:B

2. (2023 秋·江苏苏州·高三常熟中学校考期末) $a = e^{0.2}$, $b = \log_7 8$, $c = \log_6 7$,则(

A.
$$a > b > c$$

B.
$$b > a > c$$

C.
$$a > c > b$$

D.
$$c > a > b$$

【答案】C

【详解】令
$$f(x) = \frac{\ln(x+1)}{\ln x}(x>0)$$

则
$$f'(x) = \frac{x \ln x - (x+1) \ln(x+1)}{x(x+1) \ln^2 x}$$
, 显然 $f'(x) < 0$

即
$$f(x)$$
单调递减,所以 $\frac{\ln 7}{\ln 6} > \frac{\ln 8}{\ln 7}$,即 $\log_6 7 > \log_7 8$, $c > b$.

$$\diamondsuit q(x) = e^x - x - 1(x \ge 0)$$

则
$$g'(x) = e^x - 1 \ge 0$$
,即 $g(x)$ 在 $[0, +\infty)$ 上单调递增

所以
$$g(x) \geqslant g(0) = 0$$
, 即 $e^x \geqslant x + 1$,

所以
$$e^{0.2} > 0.2 + 1 = \frac{6}{5}$$

$$\diamondsuit h(x) = \frac{x}{6} - \frac{\ln x}{\ln 6}$$

则
$$h'(x) = \frac{1}{6} - \frac{1}{x \ln 6}$$

当
$$h'(x) > 0$$
 时, $x > \frac{6}{\ln 6}$, 即 $h(x)$ 在 $\left(\frac{6}{\ln 6}, +\infty\right)$ 上单调递增

又
$$h(6) = 0$$
,所以当 $x > 6$ 时, $h(x) > h(6) = 0$

所以
$$h(7) > h(6) = 0$$
,即 $\frac{7}{6} - \frac{\ln 7}{\ln 6} > 0$

$$\mathbb{P} \log_6 7 < \frac{7}{6}$$
,

又
$$\frac{7}{6} < \frac{6}{5}$$
,所以 $\log_6 7 < \frac{7}{6} < \frac{6}{5} < e^{0.2}$,即 $c < a$.

综上:
$$a > c > b$$
.

故选: C.

3. (2023·云南曲靖·统考一模) 已知 a = e - 2, $b = 1 - \ln 2$, $c = e^e - e^2$, 则 ()

A.
$$c > b > a$$

B.
$$a > b > a$$

B.
$$a > b > c$$
 C. $a > c > b$

D.
$$c > a > b$$

【答案】**D**

【详解】令 $f(x) = x - 1 - \ln x, x > 0$,

$$\mathbb{P}[f(e) = e - 1 - \ln e = e - 2 = a, f(2) = 2 - 1 - \ln 2 = 1 - \ln 2 = b,$$

:
$$f'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$$
,

$$\therefore$$
 当 $x > 1$ 时, $f'(x) > 0$, $f(x)$ 单调递增,

$$\therefore f(e) > f(2), \mathbb{P} a > b,$$

$$\Leftrightarrow g(x) = e^x - x$$
, $\bigvee g'(x) = e^x - 1$,

∴ 当
$$x > 0$$
 时, $g'(x) > 0$, $g(x)$ 单调递增,

$$\therefore g(e) > g(2), \text{ pr } e^{e} - e > e^{2} - 2,$$

所以
$$e^{e}-e^{2}>e-2$$
,即 $c>a$.

综上,
$$c>a>b$$
.

故选: D.

4. (2023·全国·高三专题练习) 已知 $a = e^{\sin 1 - 1}, b = \sin 1, c = \cos 1$,则 ()

A.
$$a < c < b$$

B.
$$a < b < c$$

C.
$$c < b < a$$
 D. $c < a < b$

【答案】C

【详解】解: 当 $x \in \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$, $\sin x > \cos x$, 又 $1 \in \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$, 所以 $\sin 1 > \cos 1$, 故b > c

$$idf(x) = e^x - x - 1,$$
所以 $f'(x) = e^x - 1,$

$$f'(x) < 0, \forall x < 0, \forall f'(x) > 0, \forall x > 0, \forall x > 0$$

所以 f(x) 在 $(-\infty,0)$ 单调递减,在 $(0,+\infty)$ 单调递增.

所以
$$f(x) \ge f(0) = 0$$
. 即 $e^x - x - 1 \ge 0$. 当 $x = 0$ 时取等号.

所以
$$a = e^{\sin 1 - 1} > (\sin 1 - 1) + 1 = \sin 1 = b$$
,

所以c < b < a.

故选: C.

5. (2023·全国·高三专题练习) 已知 a > b + 1 > 1 则下列不等式一定成立的是(

A.
$$|b - a| > 0$$

A.
$$|b-a| > b$$
 B. $a + \frac{1}{a} > b + \frac{1}{b}$ C. $\frac{b+1}{a-1} < \frac{e^b}{\ln a}$ D. $a + \ln b < b + \ln a$

$$C. \frac{b+1}{a-1} < \frac{e^b}{\ln a}$$

$$D. a + \ln b < b + \ln a$$

【答案】C

【详解】取a=10,b=8,则|b-a|< b,故A选项错误;

取
$$a=3$$
, $b=\frac{1}{3}$, $a+\frac{1}{a}=b+\frac{1}{b}$, 则 B 选项错误;

取 a = 3, b = 1, 则 $a + \ln b = 3$, $b + \ln a = 1 + \ln 3 < 1 + \ln e^2 = 3$, 即 $a + \ln b > b + \ln a$,

故 D 选项错误:

关于 C 选项, 先证明一个不等式: $e^x \ge x + 1$, 令 $y = e^x - x - 1$, $y' = e^x - 1$,

于是x > 0时y' > 0,y递增:x < 0时y' < 0,y递减:

所以x=0时,y有极小值,也是最小值 $e^{0}-0-1=0$,

于是 $y=e^x-x-1\geq 0$,当且仅当x=0取得等号,

由 $e^x \ge x+1$, 当 x > -1 时,同时取对数可得, $x \ge \ln(x+1)$,

再用x-1替换x,得到x-1≥ $\ln x$,当且仅当x=1取得等号,

由于a > b+1 > 1,得到 $e^b > b+1$, $\ln a < a-1$, $\therefore \frac{a-1}{\ln a} > 1 > \frac{b+1}{e^b}$,即 $\frac{b+1}{a-1} < \frac{e^b}{\ln a}$

C选项正确.

故选: C.

- 6. (2023·全国·高三专题练习) 已知实数 a, b, c 满足 $ac = b^2$, 且 $a + b + c = \ln(a + b)$, 则 ()
 - A. c < a < b
- B. c < b < a C. a < c < b D. b < c < a

【答案】A

【详解】设
$$f(x) = \ln x - x + 1$$
,则 $f'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$,

当 $x \in (0,1)$ 时, f'(x) > 0, f(x) 单调递增, 当 $x \in (1,+\infty)$ 时, f'(x) < 0, f(x) 单调递减,

$$\therefore f(x) \leq f(1) = 0$$
, $\mathbb{F}^p \ln x \leq x - 1$,

所以 $\ln(a+b) \le a+b-1$, 所以 $a+b+c \le a+b-1$, 即 $c \le -1$,

又 $ac = b^2 > 0$. 所以 a < 0. 由 a + b > 0. 所以 b > -a > 0.

所以 $b^2 > a^2$,即 $ac > a^2$,所以c < a,所以c < a < b.

故选: A.

7. (2023·全国·高三专题练习) 若正实数 a, b 满足 $\ln a + \ln b^2 \ge 2a + \frac{b^2}{2} - 2$,则(

A.
$$a + 2b = \sqrt{2} + \frac{1}{4}$$

A.
$$a + 2b = \sqrt{2} + \frac{1}{4}$$
 B. $a - 2b = \frac{1}{2} - 2\sqrt{2}$ C. $a > b^2$

C.
$$a > b^2$$

D.
$$b^2 - 4a < 0$$

【答案】B

到各不等式取等号的条件,解得a,b的值,然后逐一检验即可做出正确判断.

【详解】先证明熟知的结论: $x-1 \ge \ln x$ 恒成立, 且当且仅当 x=1 时取等号.

设
$$f(x) = x - 1 - \ln x$$
, 则 $f'(x) = 1 - \frac{1}{x}$,

在(0,1)上, f'(x) < 0, f(x) 单调递减; 在 $(1,+\infty)$ 上, f'(x) > 0, f(x) 单调递增.

故
$$f(x)_{\min} = f(1) = 1 - 1 - 0 = 0$$
,

 $\therefore f(x) = x - 1 \ge \ln x$ 恒成立,且当且仅当 x = 1 时取等号.

由已知
$$\ln a + \ln b^2 \le 2a + \frac{b^2}{2} - 2$$
,

∴
$$\ln a + \ln b^2 = 2a + \frac{b^2}{2} - 2$$
, 且 $\begin{cases} 2a = \frac{b^2}{2} \\ \sqrt{ab^2} = 1 \end{cases}$,

解得
$$\begin{cases} a = \frac{1}{2} \\ b = \sqrt{2} \end{cases}$$

经检验只有 B 正确,

故选:B.

8. (2023·四川南充·四川省南充高级中学校考模拟预测) 已知 a_1, a_2, a_3, a_4 成等比数列,且 $a_1 + a_2 + a_3 + a_4 = \ln(a_1 + a_2)$ $+a_2+a_3$). 若 $a_1>1$,则

A.
$$a_1 < a_2, a_3 < a_4$$

B.
$$a_1 > a_3, a_2 < a_4$$

A.
$$a_1 < a_3, a_2 < a_4$$
 B. $a_1 > a_3, a_2 < a_4$ C. $a_1 < a_3, a_2 > a_4$ D. $a_1 > a_3, a_2 > a_4$

D.
$$a_1 > a_3, a_2 > a_4$$

【答案】B

【详解】令 $f(x) = x - \ln x - 1$,则 $f'(x) = 1 - \frac{1}{x}$,令f'(x) = 0,得x = 1,所以当x > 1时,f'(x) > 0,当0 < x < 1

1 时,
$$f'(x) < 0$$
, 因此 $f(x) \ge f(1) = 0$, $\therefore x \ge \ln x + 1$,

若公比
$$q>0$$
,则 $a_1+a_2+a_3+a_4>a_1+a_2+a_3>\ln(a_1+a_2+a_3)$,不合题意;

若公比
$$q \le -1$$
,则 $a_1 + a_2 + a_3 + a_4 = a_1(1+q)(1+q^2) \le 0$,

即
$$a_1+a_2+a_3+a_4 \le 0 < \ln(a_1+a_2+a_3)$$
,不合题意;

因此
$$-1 < q < 0, q^2 \in (0,1)$$
,

∴
$$a_1 > a_1 q^2 = a_3$$
, $a_2 < a_2 q^2 = a_4 < 0$, & B.

二、填空题

9. (2022 春·广东佛山·高二佛山市顺德区容山中学校考期中) 已知对任意 x,都有 $xe^{2x}-ax-x \ge 1 + \ln x$,则实 数a的取值范围是 .

【答案】 $(-\infty,1]$

【详解】根据题意可知,x>0,

由
$$x \cdot e^{2x} - ax - x \ge 1 + \ln x$$
, 可得 $a \le e^{2x} - \frac{\ln x + 1}{x} - 1(x \ge 0)$ 恒成立,

令
$$f(x) = e^{2x} - \frac{\ln x + 1}{x} - 1$$
,则 $a \le f(x)_{\min}$,

现证明
$$e^x \ge x + 1$$
 恒成立, 设 $g(x) = e^x - x - 1$,

$$q'(x) = e^x - 1$$
, $\exists q'(x) = 0$ $\exists q'(x) = 0$, $\exists q'(x) = 0$,

当
$$x < 0$$
时, $q'(x) < 0$, $q(x)$ 单调递减,

当x > 0时, g'(x) < 0, g(x) 单调递增, 故x = 0时, 函数g(x) 取得最小值, g(0) = 0,

所以
$$g(x) \ge g(0) = 0$$
, 即 $e^x - x - 1 \ge 0 \Leftrightarrow e^x \ge x + 1$ 恒成立,

$$f(x) = e^{2x} - \frac{\ln x + 1}{x} - 1 = \frac{x \cdot e^{2x} - \ln x - 1}{x} - 1$$
,

$$=\frac{\mathrm{e}^{\ln x+2x}-\ln x-1}{x}-1\geqslant \frac{\ln x+2x+1-\ln x-1}{x}-1=1,$$

所以 $f(x)_{\min}=1$,即 $a \leq 1$.

所以实数a的取值范围是 $(-\infty,1]$.

故答案为: $(-\infty,1]$

三、解答题

- 10. (2023·全国·高三专题练习) 已知函数 $f(x) = e^x a$.
 - (1) 若函数 f(x) 的图象与直线 y=x-1 相切,求 a 的值;
 - (2) 若 $a \leq 2$,证明 $f(x) > \ln x$.

【答案】(1)a = 2

- (2)证明见解析
- (1)

$$\Re: f(x) = ex - a, :: f'(x) = ex, \Leftrightarrow f'(x) = 1, \neq x = 0,$$

而当
$$x=0$$
 时, $y=-1$, 即 $f(0)=-1$, 所以 $f(0)=e^0-a=-1$, 解得 $a=2$.

(2)

证明
$$: a \leq 2, : f(x) = ex - a \geq ex - 2,$$

$$\diamondsuit \varphi(x) = ex - x - 1, \ \mathbb{N} \varphi'(x) = ex - 1, \ \diamondsuit \varphi'(x) = 0 \Rightarrow x = 0,$$

∴ 当
$$x \in (0, +\infty)$$
 时, $\varphi'(x) > 0$; 当 $x \in (-\infty, 0)$ 时, $\varphi'(x) < 0$,

$$\therefore \varphi(x)$$
 在 $(-\infty, 0)$ 上单调递减,在 $(0, +\infty)$ 上单调递增,

$$\therefore \varphi(x)_{\min} = \varphi(0) = 0, \text{ pr } \varphi(x) \geqslant 0, \text{ pr } ex \geqslant x+1,$$

∴
$$ex-2 \ge x-1$$
, 当且仅当 $x=0$ 时等号成立,

$$h(x) = \ln x - x + 1$$
 , 则 $h'(x) = \frac{1}{x} - 1 = \frac{1-x}{x}$, $h'(x) = 0 \Rightarrow x = 1$,

∴
$$\exists x \in (0, 1)$$
 时, $h'(x) > 0$; $\exists x \in (1, +\infty)$ 时, $h'(x) < 0$,

$$:: h(x)$$
 在 $(0,1)$ 上单调递增,在 $(1,+\infty)$ 上单调递减,

$$h(x)_{\text{max}} = h(1) = 0$$
, $h(x) \le h(1) = 0$, $h(x) \le x - 1$,

∴
$$\ln x \leq x - 1$$
, 当且仅当 $x = 1$ 时等号成立,

$$\therefore ex-2 \ge x-1 \ge \ln x$$
,两等号不能同时成立,

$$\therefore ex-2 > \ln x$$
, 即证 $f(x) > \ln x$.