Examen de fin d'études secondaires 2001

Section: B

Juin

Branche: Mathématiques II

Nom et prénom du candidat

1) Démontrer : a) $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$

b)
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$$
 avec $\alpha > 0$

2) démontrer : a) pour tout a, b dans \mathbb{R} : $\exp(a+b) = \exp a \cdot \exp b$

b) pour tout a dans
$$\mathbb{R}$$
: $\exp(-a) = \frac{1}{\exp a}$

3) soient deux réels a et b tels que a < b démontrer: si f est une fonction continue positive sur [a; b]

alors
$$\int_a^b f(x) dx \ge 0$$

II) soit la fonction $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = \frac{e^{\frac{1}{x}}}{x^2}$$

- 1) domaine de définition, de continuité et de dérivabilité
- 2) limites et comportement asymptotique
- 3) dérivée et tableau de variation
- 4) définir le prolongement par continuité g de f à gauche au point 0 ; étudier la dérivabilité de g à gauche au point 0 ; en déduire l'existence d'une demi-tangente au point d'abscisse 0 à la courbe représentative C de g

5) tracer la courbe C dans un repère orthonormé (unité : 2cm) indiquer la demi-tangente au point d'abscisse 0

6) calculer l'aire A(m) de la partie du plan déterminée par la courbe C, par l'axe des abscisses et les deux droites verticales d'équations x = 1 et x = m avec m ∈ R^{*}, calculer lim A(m)

III) soit la fonction f_m définie sur R₊ par:

$$\begin{cases} f_m(x) = x (\ln x)^m & \text{si } x > 0 \\ f_m(0) = 0 & \text{avec } m \in N^* \end{cases}$$

soit C_m la courbe représentative de f_m

- 1) étude de f₁: a) continuité et dérivabilité en 0
 - b) limites et comportement asymptotique
 - c) dérivée et tableau de variation

Examen o	le	fin	d'	études	secondaires	2001
----------	----	-----	----	--------	-------------	------

Section: B

Branche: Mathématiques II

Nom et prénom du candidat

2) étude de f_m pour m>1 : (distinguer m pair et m impair)

Jun

- a) continuité et dérivabilité en 0
- b) limites et comportement asymptotique
- c) dérivée et tableaux de variation
- montrer que les courbes C₁ et C₂ ont trois points communs dont on détermine les coordonnées
- 4) étudier la position relative de C_m et C_{m+1} sur l'intervalle]1;+ ∞ [
- 5) construire C₁ et C₂ dans un même repère orthonormé (unité: 2cm)
- IV) 1) résoudre et discuter l'équation

$$e^x + \frac{1}{e^x} = 2m$$
 avec m paramètre réel

- 2) soit l'équation différentielle y" + 2y + 5y = 0 déterminer la solution f dont la courbe représentative dans un repère orthonormé passe par l'origine et qui admet en ce point une tangente de coefficient directeur 1
- 3) on jette trois dés cubiques de couleurs différentes; combien y a-t-il:
 - a) de résultats possibles
 - b) de résultats comportant un seul 4
 - c) de résultats comportant exactement deux 4
 - d) de résultats ne comportant aucun 6
 - e) de résultats comportant trois 5

4) soit
$$I_n = \int_1^e x^2 (\ln x)^n dx$$
 avec $n \in \mathbb{N}^*$

- a) calculer I,
- b) calculer I_{n+1} en fontion de I_n
- c) en déduire I,

répartition des points : 12 ;14 ;18 ;16

Francis Solvolles LTKL