Adders

module 9

10/23/2023

1 Active inputs & ouputs

Logic devices can be active high or active low

- HIGH: 1 activates a input or ouput
- LOW: 0 activates a input or ouput

Negation bubble denotes an active low input, inputs without them are active high.

2 Adder

Adders are the basic building blocks of digital system processors.

2.1 building an adder

- Buid a trut table
- \bullet take the sum of the inputs $\to \! \! s$ is the sum and c is the carry
- They can also be simplified by mapping

2.2 Full adder

- Same as a half adder but can now accept a carry in bit
- Carry out of first sum becomes the carry in of the next

Full Adder

* Full adder is similar to a half adder, but can accept a carry in bit

Α	В	Cin	S	Cout
0	0	D	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	D	1	0
1	0	1	0	1
1	1	D	0	1
1	1	1	1	1

Full Adder

* SOP circuit for full adder

$$S = A \, \overline{B} \, \overline{C_{in}} + \overline{A} \, \overline{B} \, C_{in} + AB \, C_{in} + \overline{A} \, B \, \overline{C_{in}}$$

$$C = AC_{in} + BC_{in} + AB$$

2.3 Cascadng half adders

Cascading two half adders in seires produces a full adder

A carryout can come from any of the half adders

2.4 Cascading Full Adders

In binary math, a full adder is implemented for every two digits (bits) added together. Cascading multiple adders increases the size of the binary numbers that can be added together.

- Two full adders add 2 bit binary numbers
- A ground symbol on an adder indicates the LSB diigt

