Линейни изображения.

Нека M и M' са множества. Изображение φ от M в M'

$$\varphi:M\to M'$$

е правило, което на всеки елемент $x \in M$ съпоставя единствен елемент $\varphi(x) \in M'$. Казваме, че две изображения φ и ψ съвпадат, ако $\varphi(x) = \psi(x)$ за всяко $x \in M$.

Изображението $\varphi: M \to M'$ е биекция (или още взаимно-еднозначно изображение), ако $\forall x' \in M'$ съществува елемент $x \in M$, такъв че $\varphi(x) = x'$ и за $\forall x,y \in M$ от $x \neq y$ да следва $\varphi(x) \neq \varphi(y)$. Иначе казано φ е биекция, ако за всеки елемент $x \in M$ съществува единствен елемент $x' \in M'$, такъв че $\varphi(x) = x'$. Ако φ е биекция, то дефинираме обратно изображение

$$\varphi^{-1}:M'\to M$$

с $\varphi^{-1}(x') = x$. В такъв случай φ^{-1} също е биекция, а множествата M и M' се наричат paвномощни.

Всичко казано по-горе остава в сила и ако вместо произволни множества разглеждаме линейните пространства V и V^\prime над едно и също поле F.

Нека

$$\varphi: V \to V'$$

е изображение. φ е линейно изображение/хомоморфизъм на линейни пространства, ако

$$\forall x,y \in V \Rightarrow \varphi(x+y) = \varphi(x) + \varphi(y)$$

И

$$\forall x \in V, \forall \lambda \in F \Rightarrow \varphi(\lambda x) = \lambda \varphi(x).$$

Горните две изисквания са еквивалентни на

$$\varphi(\lambda x + \mu y) = \lambda \varphi(x) + \mu \varphi(y) \quad \forall x, y \in V; \forall \lambda, \mu \in F.$$

В случая, когато V'=V, т.е. имаме изображението $\varphi:V\to V,\ \varphi$ се нарича линеен оператор на V.

Тривиални примери за линейни оператори са нулевият оператор

$$0: V \to V$$
.

дефиниран с $\mathfrak{O}(x)=o$ за $\forall x\in V,$ както и идентитетът/единичен оператор

$$\mathcal{E}: V \to V$$

дефиниран с $\mathcal{E}(x) = x$ за $\forall x \in V$.

Изображението

$$\varphi: F_{n\times n} \to F_{n\times n},$$

дефинирано с $\varphi(A)=A^t$ е линеен оператор. Наистина, това следва от свойствата на транспонирането на матрици: $(A+B)^t=A^t+B^t$ и $(\lambda A)^t=\lambda A^t$.

Ще означаваме с $\operatorname{Hom}(V,V')$ множеството от всички хомоморфизми от V в V'. Ако V'=V, то $\operatorname{Hom}(V)$ е множеството на всички линейни оператори в V.

Свойства на хомоморфизмите $\varphi: V \to V'$:

- а) $\varphi(o)=o'$, където o' е нулевият вектор на V'. $\varphi(o)=\varphi(0.o)=0. \varphi(o)=o'$.
- b) $\varphi(-v) = -\varphi(v)$ за $\forall v \in V$.
- с) Ако $v_1, v_2, \ldots, v_k \in V$ са линейно зависими, то $\varphi(v_1), \varphi(v_2), \ldots, \varphi(v_k) \in V'$ са линейно зависими. Наистина, нека $\lambda_1 v_1 + \cdots + \lambda_k v_k = o$ като поне едно $\lambda_i \neq 0$. Тогава имаме

$$\varphi(\lambda_1 v_1 + \dots + \lambda_k v_k) = \varphi(o),$$

$$\lambda_1 \varphi(v_1) + \dots + \lambda_k \varphi(v_k) = o',$$

с поне едно $\lambda_i \neq 0$, откъдето следва, че векторите $\varphi(v_1), \ldots, \varphi(v_k)$ са линейно зависими.

Твърдение 1. Нека $\dim V = n$. За всеки базис v_1, \ldots, v_n на V и за произволни вектори $v'_1, \ldots, v'_n \in V'$ съществува, при това еднствено линейно изображение $\varphi \in \operatorname{Hom}(V, V')$, такова че $\varphi(v_1) = v'_1, \ldots, \varphi(v_n) = v'_n$.

Доказателство. Съществуване: Всеки вектор $x \in V$ се записва еднозначно като $x = \lambda_1 v_1 + \dots + \lambda_n v_n$, където $\lambda_i \in F$ за $i = \overline{1,n}$. Дефинираме изображение $\varphi: V \to V'$ чрез

$$\varphi(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 v_1' + \dots + \lambda_n v_n'.$$

 φ е коректно дефинирано и за $j=1,\dots,n$ имаме, че $\varphi(v_j)=v_j'$, защото $\varphi(v_j)=\varphi(0.v_1+\dots+1.v_j+\dots+0.v_n)=0.v_1'+\dots+1.v_j'+\dots+0.v_n'=v_j'.$ φ е линейно изображение, понеже за $\forall x,y\in V: x=\lambda_1v_1+\dots+\lambda_nv_n,$ $y=\mu_1v_1+\dots+\mu_nv_n$ имаме

$$\varphi(x+y) = \varphi((\lambda_1 + \mu_1)v_1 + \dots + (\lambda_n + \mu_n)v_n)$$

$$= (\lambda_1 + \mu_1)v'_1 + \dots + (\lambda_n + \mu_n)v'_n$$

$$= (\lambda_1v'_1 + \dots + \lambda_nv'_n) + \dots + (\mu_1v'_1 + \dots + \mu_nv'_n)$$

$$= \varphi(x) + \varphi(y).$$

Директно се проверява и че $\varphi(\lambda x) = \lambda \varphi(x)$.

Единственост: Нека $\varphi, \psi \in \text{Hom}(V, V')$ са такива че $\varphi(v_i) = v_i'$ и $\psi(v_i) = v_i'$ за всяко $i = \overline{1, n}$. Нека $x \in V: x = \lambda_1 v_1 + \dots + \lambda_n v_n$. Тогава

$$\varphi(x) = \lambda_1 \varphi(v_1) + \dots + \lambda_n \varphi(v_n) = \lambda_1 v_1' + \dots + \lambda_n v_n'.$$

Имаме още, че

$$\psi(x) = \lambda_1 \psi(v_1) + \dots + \lambda_n \psi(v_n) = \lambda_1 v_1' + \dots + \lambda_n v_n'.$$

По този начин $\varphi(x) = \psi(x)$ за всяко $x \in V$, т.е. $\varphi = \psi$.

Изображението

$$\varphi: V \to V'$$

се нарича uзоморфизъм, ако φ е хомоморфизъм (линейно изображение) и едновременно φ е биекция (взаимно-еднозначно изображение). В такъв случай обратното изображение

$$\varphi^{-1}:V'\to V$$

също е изоморфизъм, а V и V' се наричат uзоморфиu линейни пространства. Означаваме $V\cong V'$.

Твърдение 2. Ако $\varphi: V \to V'$ е изоморфизъм и $v_1, \dots, v_k \in V$ са линейно независими вектори, то $\varphi(v_1), \dots, \varphi(v_k) \in V'$ също са линейно независими вектори.

Доказателство. Нека

$$\lambda_1 \varphi(v_1) + \dots + \lambda_k \varphi(v_k) = o'$$

за някакви скалари $\lambda_i \in F, i = 1, \dots, k$. От дефиницията и свойствата на линейните изображения имаме, че горното равенство е еквивалентно на

$$\varphi(\lambda_1 v_1 + \dots + \lambda_k v_k) = \varphi(o).$$

Тъй като φ е изоморфизъм и в частност е биективно изображение, имаме

$$\lambda_1 v_1 + \dots + \lambda_k v_k = o,$$

но т.к. векторите v_1, \ldots, v_k са линейно независими, то $\lambda_1 = \cdots = \lambda_k = 0$, а оттук следва, че и векторите $\varphi(v_1), \ldots, \varphi(v_k)$ също са линейно независими.

Следващата теорема дава отговор на въпроса кога две линейни пространства са изоморфни. Изоморфността е важна релация, т.к. алгебрата често отъждествява изоморфните обекти и техните свойства, с което изучаването им значително се улеснява.

Теорема. Две крайномерни линейни пространства V и V' над поле F са изоморфни тогава и само тогава, когато $\dim V = \dim V'$.

Доказателство. Необходимост: Нека $V\cong V'$ и $\varphi:V\to V'$ е изоморфизъм. Нека още $\dim V=m, \dim V'=n$. Да вземем базис e_1,\ldots,e_m от линейно независими вектори на V. Според Твърдение 2 векторите $\varphi(e_1),\ldots,\varphi(e_m)\in V'$ също са линейно независими и оттук $\dim V'\geq m,$ т.е. $n\geq m$. Нека от друга страна вземем базис e'_1,\ldots,e'_n от линейно независими вектори на V'. От свойствата на изоморфизмите и от Теорема 2 следва, че векторите $\varphi^{-1}(e'_1),\ldots,\varphi^{-1}(e'_n)\in V$ също са линейно независими. Оттук $\dim V\geq n$, т.е. $m\geq n$. Това означава, че n=m, т.е. $\dim V=\dim V'$.

Достатъчност: Нека $\dim V = \dim V' = n$. Нека e_1, \ldots, e_n е базис на V, а e'_1, \ldots, e'_n е базис на V'. Според Твърдение 1 съществува единствено

линейно изображение $\varphi:V\to V'$ такова че $\varphi(e_i)=e_i'$ за $i=1,\ldots,n$. По-точно, това е изображението

$$\varphi(\lambda_1 e_1 + \dots + \lambda_n e_n) = \lambda_1 e'_1 + \dots + \lambda_n e'_n.$$

Нека $v' \in V'$ и $v' = \mu_1 e'_1 + \dots + \mu_n e'_n$. Разглеждаме вектора $v = \mu_1 e_1 + \dots + \mu_n e_n \in V$. Имаме, че

$$\varphi(v) = \mu_1 e_1' + \dots + \mu_n e_n' = v',$$

т.е. за всеки вектор $v' \in V'$ съществува вектор $v \in V$ такъв че $\varphi(v) = v'$. Нека сега вземем $x,y \in V: x \neq y$. Нека $x = \alpha_1 e_1 + \dots + \alpha_n e_n$, а $y = \beta_1 e_1 + \dots + beta_n e_n$. От $x \neq y$ следва, че $\alpha_i \neq \beta_i$ за поне един индекс i. Имаме, че

$$\varphi(x) = \alpha_1 e_1' + \dots + \alpha_n e_n'$$

И

$$\varphi(y) = \beta_1 e_1' + \dots + \beta_n e_n'$$

като $\alpha_i \neq \beta_i$ за поне един индекс i, т.е. $\varphi(x) \neq \varphi(y)$. Така от $x \neq y \Rightarrow \varphi(x) \neq \varphi(y)$. По този начин φ е биективно линейно изображение, т.е. е изоморфизъм и $V \cong V'$.

Нека F е поле и $n\in\mathbb{N}$. Тогава F^n е линейно пространство над F с $\dim F=n$. От теоремата следва, че ако V е линейно пространство над F и $\dim V=n$, то $V\cong F^n$.

Следствие. Съществува единствено, с точност до изоморфизъм, n-мерно линейно пространство над F. Това е пространството F^n .