Extra Credit 1

CMSY-199, Fall 2010

50 points

The source code and sample output for this assignment must be submitted electronically using the CE6 course website prior to the start of class on Monday, November 15.

A common application of complex numbers in the field of Electrical Engineering involves converting a real-valued AC Circuit into a complex-valued Phasor Circuit. The Phasor Circuit greatly simplifies the solution of the AC Circuit although it does require the manipulation of complex numbers rather than real numbers.

- 1. Write a class called PhasorCircuit which has two member variables:
 - (a) a double named frequency
 - (b) a three-element array of type Complex named impedance
- 2. Write a constructor that takes four doubles named w, R, L, and C. Assign the argument w to the member variable frequency. Use the formulas shown in the Phasor Circuit for $\mathbf{Z_R}$, $\mathbf{Z_L}$, and $\mathbf{Z_C}$ to initialize the Complex member variables impedance[0], impedance[1], and impedance[2] from the arguments.
- 3. Write a method called **solveCurrent** which takes an argument of type Complex named **phasorVoltage** and returns a Complex type. Use equation (2) below to compute and return the phasor current, **X**.
- 4. Make the PhasorCircuit class a Java application by adding a main method to:
 - (a) Create an instance of type PhasorCircuit called seriesCircuit using the parameters ω , R, L, and C shown in the AC Circuit below. *Hint:* be careful not to perform integer division when computing C.
 - (b) Create an instance of type Complex called **phasorVoltage** with the value of the phasor voltage, **V**, in the Phasor Circuit below.
 - (c) Print the phasor current by calling the solveCurrent method of the seriesCircuit object with phasorVoltage as the argument.

AC Circuit

An AC Circuit with an ideal voltage source of $v(t) = 3\cos 2t$ volts is connected in series to three circuit elements - one R = 3 ohm resistor, one L = 1.5 henry inductor, and one $C = \frac{1}{6}$ farad capacitor. Note that the frequency of the voltage source is $\omega = 2$ radians/s. The resulting current, x(t) amperes, is given by the differential equation (1).

Phasor Circuit

The corresponding Phasor Circuit has phasor voltage $\mathbf{V}=(3,0)$, resistor impedance $\mathbf{Z}_{\mathbf{R}}=(R,0)$ ohms, inductor impedance $\mathbf{Z}_{\mathbf{L}}=(0,\omega L)$ ohms, and capacitor impedance $\mathbf{Z}_{\mathbf{C}}=(0,-1/(\omega C))$ ohms. The resulting phasor current, \mathbf{X} amperes, is given by the algebraic equation(2).

After solving for the phasor current, the current in the original AC circuit is given by equation (3).

$$x(t) = \text{Re}[\mathbf{X} \cdot (\cos 2t, \sin 2t)] \tag{3}$$