(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 9. September 2005 (09.09.2005)

PCT

Deutsch

(10) Internationale Veröffentlichungsnummer WO 2005/083814 A1

- (51) Internationale Patentklassifikation⁷: H01L 51/40, H05B 33/10, C09D 11/00, H05B 33/14, C09K 11/02
- (21) Internationales Aktenzeichen: PCT/EP2005/001596
- (22) Internationales Anmeldedatum:

17. Februar 2005 (17.02.2005)

- (25) Einreichungssprache:
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität: 10 2004 007 777.0

18. Februar 2004 (18.02.2004) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): COVION ORGANIC SEMICONDUCTORS GMBH [DE/DE]; Industriepark Höchst, F 821, 65926 Frankfurt am Main (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SPREITZER, Hubert [DE/DE]; Bruno-Taut-Strasse 20, 68519 Viernheim (DE). SAUER, Andreas [DE/DE]; Am Pfingstborn 1a, 61479 Glashütten (DE). SCHWAN, Carsten [DE/DE]; Sonnenberg 20, 65618 Selters-Eisenbach (DE). TALLANT, Neil [GB/GB]; 27 Cuckoo Lane, Whitefield, Manchester M45 6TE (GB).
- (74) Anwälte: DÖRR, Klaus usw.; Industriepark Höchst, Geb. F 821, 65926 Frankfurt am Main (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00eAnderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6fentlichung wird wiederholt, falls \u00eAnderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: SOLUTIONS OF ORGANIC SEMICONDUCTORS

(54) Bezeichnung: LÖSUNGEN ORGANISCHER HALBLEITER

- (57) Abstract: The invention relates to solutions of at least one organic semiconductor containing at least one high-molecular constituent, in a solvent mixture of at least three different organic solvents A, B and C. The invention is characterised in that the solvents A and B are good solvents for the organic semiconductor, the solvent C is a bad solvent for the organic semiconductor, and Sdp.(A) < Sdp.(C) < Sdp.(B) holds good for the boiling points (Sdp.) of the solvents. The invention also relates to the use of said solutions in printing methods for producing layers of the organic semiconductor on substrates, especially in the electronics industry.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft Lösungen mindestens eines organischen Halbleiters, der mindestens eine hochmolekulare Komponente enthält, in einem Lösemittelgemisch von mindestens drei verscchiedenen organischen Lösemitteln A, B und C, dadurch gekennzeichnet, dass die Lösemittel A und B gute Lösemittel für den organischen Halbleiter sind, das Lösemittel C ein schlechtes Lösemittel für den organischen Halbleiter ist und für die Siedepunkte (Sdp.) der Lösemittel gilt: Sdp(A) < Sdp.(C) < Sdp.(B), sowie deren Verwendung in Druckverfahren zur Erzeugung von Schichten der organischen Halbleiter auf Substraten, insbesondere für die Elektronikindustrie.

Beschreibung

5

10

15

20

25

30

35

Lösungen organischer Halbleiter

Die vorliegende Erfindung betrifft Lösungen organischer Halbleiter, sowie deren Verwendung in der Elektronikindustrie

In einer Reihe verschiedenartiger Anwendungen, die im weitesten Sinne der Elektronikindustrie zugerechnet werden können, ist der Einsatz organischer Halbleiter als funktionelle Materialien seit geraumer Zeit Realität bzw. wird in naher Zukunft erwartet. So finden bereits seit etlichen Jahren organische Ladungstransportmaterialien (i. d. R. Lochtransporter auf Triarylaminbasis) Verwendung in Kopiergeräten. Die Entwicklung organischer Transistoren (O-TFTs, O-FETs), organischer integrierter Schaltungen (O-ICs) und organischer Solarzellen (O-SCs) ist im Forschungsstadium schon sehr weit gediehen, so dass eine Markteinführung innerhalb der nächsten Jahre erwartet werden kann. Bei den organischen Elektrolumineszenzvorrichtungen (OLEDs) ist die Markteinführung bereits erfolgt, wie beispielsweise die Autoradios der Firma Pioneer oder eine Digitalkamera der Firma Kodak mit "organischem Display" belegen. Auch bei den polymeren lichtemittierenden Dioden (PLEDs) ist ein erstes Produkt in Form einer kleinen Anzeige in einem Rasierapparat der Firma Philips N. V. am Markt erhältlich. Der allgemeine Aufbau solcher PLEDs ist in WO 90/13148 wiedergegeben. Trotz aller Fortschritte sind noch deutliche Verbesserungen nötig, um diese Displays zu einer echten Konkurrenz zu den derzeit marktbeherrschenden Flüssigkristallanzeigen (LCD) zu machen bzw. diese zu überflügeln.

Um zu vollfarbigen Anzeigevorrichtungen zu kommen, ist es nötig, Beschichtungsverfahren zu entwickeln, die es erlauben, die drei Grundfarben (rot, grün, blau) räumlich getrennt aufzubringen. Da die Polymere im Allgemeinen aus Lösung aufgebracht werden, sind hierbei Druckverfahren die Möglichkeit der Wahl. Derzeit wird wegen der guten Steuerbarkeit, der erreichbaren Auflösung und der großen Variabilität hauptsächlich an Tintenstrahl-Druckverfahren (ink-jet printing, IJP) gearbeitet. Grundsätzlich eignen sich aber auch andere Druckverfahren, wie z. B. Offsetdruck, Transferdruck oder Tiefdruckverfahren.

Das Tintenstrahl-Druckverfahren zur Herstellung von PLEDs und entsprechenden Displays ist bereits mehrfach beschrieben: In EP 0880303 ist die Verwendung von IJP zur Herstellung von PLEDs erstmals beschrieben. Gemäß dieser Schrift wird eine Lösung eines organischen

Lumineszenzmaterials durch IJP auf ein photolithographisch vorbereitetes Substrat mit Partitionierungen und Anode aufgebracht. Durch die Verwendung verschiedener Lösungen können so verschiedenfarbige Pixel (Bildpunkte) erzeugt werden. In dieser Anmeldung wird mehr das Prinzip beschrieben, weniger aber eine technische Lehre erteilt, welche die praktische Durchführung und die dabei zu lösenden Probleme aufzeigt. So gibt es bis auf drei eher aufgabenhafte Formulierungen keine Lehre über die Konsistenz und die Darstellung der entsprechenden Lösungen. Es wird nur formuliert, die Lösungen müssten einen Kontaktwinkel zwischen 30 und 170° gegenüber dem Material der Düsenplatte (nozzle plate) des IJ-Druckkopfes haben. Des Weiteren soll die Viskosität der Lösung zwischen 1 und 20 mPa·s (cps) und die Oberflächenspannung zwischen 20 und 70 dyn/cm liegen. Diese Angaben stellen technisch keine relevante Hilfestellung oder Lehre dar, da der breite Kontaktwinkel praktisch für fast alle Lösungen oder Lösemittel vorliegt, wenn nur die Düsenplatte entsprechend präpariert wird. Ebenso beginnt der angegebene Viskositätsbereich bereits bei nahezu purem Lösemittel (zum Vergleich: reines Toluol hat ca. 0.6 mPa·s, Tetralin hingegen bereits ca. 2 mPa·s) und geht, je nach Molekulargewicht der eingesetzten organischen Verbindung, bis hin zu sehr hohen Konzentrationen. Schließlich gibt auch der angegebene Oberflächenspannungsbereich keine echte Einschränkung: Die meisten verwendbaren organischen Lösemittel haben Werte im angegebenen Bereich; durch Auflösen von Polymeren verändern sich diese Werte nicht wesentlich.

5

10

15

20

25

30

35

Die Herstellung organischer Filme oder Pixel durch IJP zeigt allerdings eine Reihe von Problemen, die noch nicht zufriedenstellend gelöst sind und die auch in der oben genannten Anmeldung unberücksichtigt bleiben:

- Problem 1: Lösemittel mit zu hohem Dampfdruck, d. h. mit einem zu niedrigen Siedepunkt, führen dazu, dass die IJ-Lösungen im Druckkopf, an der Düse bzw. an der Düsenplatte eintrocknen. Dies hat zur Folge, dass die Düse verstopfen kann und der Druckprozess schlecht reproduzierbar wird. Ein solches System ist für eine industrielle Fertigung ungeeignet.
- Problem 2: Enthält die IJ-Lösung verschiedene Materialien (Blends), kann es beim Eintrocknen der Lösung dazu kommen, dass zunächst eine dieser Substanzen ausfällt. Dies führt zu einer inhomogenen Verteilung der verschiedenen Materialien im gebildeten Pixel. Derartig inhomogene Pixel zeigen in der OLED eine deutliche Verschlechterung der Device-Eigenschaften.

Problem 3: Beim Eintrocknen der einzelnen Tropfen der IJ-Lösungen auf dem Substrat kann es dazu kommen, dass die Schichtdicke des geb ildeten Pixels stark variiert. In der Regel sind die Ränder des Pixels deutlich höher als die Mitte des Pixels. Dies führt nun in der PLED zu einer inhomogenen Leuchtintensität innerhalb des Pixels und auch zu unterschiedlicher Degradation der verschiedenen Bereiche des Pixels.

5

10

15

20

25

30

35

Problem 4: Trocknet die Lösung in aufgedruckten Pixeln zu langsam ein bzw. ändert sich während des Trocknungsvorgangs die Viskosität nur relativ wenig, kann es beim Bewegen des Substrats (bei technischen IJPs wird das Substrat in der Regel in einer Richtung gefördert, der Druckkopf bewegt sich vertikal dazu) dazu kommen, dass Lösung über die Pixelbegrenzung (i. d. R. werden die Pixel durch photolithographisch erzeugte Wände begrenzt) fließt. Eine Mischung der Tinten ist insbesondere dann schädlich, wenn sich dadurch verschiedenfarbige Lösungen mischen. Grundsätzlich führen die nicht erwünschten Schichtdickenvariationen und daraus resultierenden Inhomogenitäten zu nicht reproduzierbarem Emissionsverhalten.

Problem 5: Es ist notwendig, das Lösemittel möglichst vollständig aus dem abgeschiedenen Film zu entfernen, um optimale Device-Eigenschaften zu erhalten. Hat das Lösemittel einen zu niedrigen Dampfdruck (also einen zu hohen Siedepunkt), so ist dies, falls überhaupt, nur unter erheblichem technischen Aufwand möglich.

Problem 6: Trocknet die Lösung in aufgedruckten Pixeln zu schnell ein, so besteht die Gefahr, dass der organische Halbleiter aus der Lösung ausfällt. Dies führt im Allgemeinen zu Inhomogenitäten des gebildeten Films und damit zu Inhomogenitäten in der Elektrolumineszenz.

Zur Lösung des vorstehenden Problems 1 wird in WO 00/59267 vorgeschlagen, als Lösemittel substituierte Benzolderivate mit mindestens 3 C-Atomen im Substituenten bzw. in den Substituenten zu verwenden. Dabei werden Lösemittel, deren Siedepunkt bei mindestens 200 °C liegt, bevorzugt. Das als besonders bevorzugt gelehrte Lösemittel Dodecylbenzol hat jedoch einen Siedepunkt von ca. 300 °C. Weiterhin wird eine Mischung aus mindestens zwei Lösemitteln vorgeschlagen, wobei das erste die oben genannten Eigenschaften aufweist und das zweite auch einen niedrigeren Siedepunkt aufweisen kann, dieser aber wiederum mindestens 140 °C beträgt. Dieser Aspekt ist allerdings unklar, da hier auch Lösemittel genannt werden, die einen deutlich niedrigeren Siedepunkt aufweisen, wie z. B. Toluol (Sdp. 111 °C), Chloroform (Sdp. 61 °C) und Tetrachlorkohlenstoff (Sdp. 76 °C).

Diese Lösungen sollen folgende Problemlösungen bringen: Zunächst verhindert das hochsiedende Lösemittel die Eintrocknung der Lösung im Druckkopf (Lösung des Problems 1). Zur Homogenisierung des Pixels (Lösung des Problems 2) und vor allem, um das schwer zu entfernende hochsiedende Lösemittel zu entfernen, wird eine Nachbehandlung vorgeschlagen. Dabei wird der Pixel auf Temperaturen zwischen 40 und 200 °C erhitzt. Dies geschieht zunächst unter einem Überdruck von 2 bis 100 bar, um wieder eine homogene Lösung zu erzeugen. Anschließend wird unter Unterdruck weiter getempert, bis alles Lösemittel entfernt ist.

Der Lösungsvorschlag gemäß WO 00/59267 weist gravierende technische Probleme auf: Das vollständige Entfernen des Lösemittels ist essentiell für gute Device-Eigenschaften, ist aber gerade bei den bevorzugten hochsiedenden Lösemitteln (z. B. Dodecylbenzol, Sdp. ≈ 300 °C) in einem technischen Prozess sehr aufwändig und kaum realisierbar. Die geschilderten Maßnahmen zur Homogenisierung (Hochdruck, Tempern, Vakuum) sind für eine technische Massenfertigung - wegen anlagentechnischer und finanzieller Probleme - kaum geeignet. Einige der genannten zugemischten Lösemittel (z. B. Chloroform, Tetrachlorkohlenstoff) sind giftig bzw. stehen sogar unter dem Verdacht, cancerogene Eigenschaften zu besitzen, und sollten deshalb vermieden werden.

In EP 1103590 werden Lösungen zur Herstellung einer organischen Schicht in Elektrolumineszenzvorrichtungen durch Druckverfahren beschrieben, wobei mindestens ein Lösemittel bei Temperatur der Auftragung einen Dampfdruck von kleiner 500 Pa hat. Dadurch lassen sich die Schichten besser drucken, als dies mit Lösemitteln mit höherem Dampfdruck der Fall ist. Im Text werden hier als Druckverfahren nur Verfahren beschrieben, bei denen die Beschichtungsflüssigkeit auf ein Transfersubstrat und von dort auf das Substrat übertragen wird. Dies schließt Tintenstrahl-Druckverfahren aus. Aus der Anmeldung geht auch nicht hervor, ob oder in welcher bevorzugten Ausführungsform sich eine solche Lösung für IJP anwenden lassen könnte, um die oben beschriebenen Probleme zu beheben.

In WO 01/16251 werden Formulierungen zur Herstellung von Polymerschichten in Elektrolumineszenzvorrichtungen beschrieben, wobei das Lösemittel mindestens entweder ein Terpen oder eine polyalkylierte aromatische Verbindung enthält. Als Vorteil wird beschrieben, dass die Lösungen als solche hohe Stabilitäten bei praktisch unverändertem Photolumineszenzverhalten zeigen. Eigenschaften dieser Formulierungen beim Druckvorgang bzw. bei der Filmbildung selbst werden nicht

beschrieben, so dass man davon ausgehen muss, dass die oben beschriebenen Probleme durch diese Erfindung nicht gelöst werden.

5

10

15

20

25

30

35

In WO 02/069119 wird beschrieben, wie die inhomogene Verteilung des Materials innerhalb des getrockneten Tropfens verbessert werden kann (Lösung des Problems 3). Dafür wird eine Mischung aus zwei Lösemitteln verwendet, wobei das erste einen relativ hohen Siedepunkt hat und das Material relativ schlecht löst und das zweite einen relativ niedrigen Siedepunkt hat und das Material relativ gut löst. Durch das schnelle Verdampfen des flüchtigeren Lösemittels entsteht beim Trocknen eine gesättigte Lösung des Materials, das in Folge schnell ausfällt. Dadurch wird ein radialer Fluss des Materials zu den Rändern des Pixels verhindert und eine relativ gleichmäßige Materialverteilung ermöglicht. Diese Methode zeigt jedoch den entscheidenden Nachteil, dass das Material nicht gleichmäßig eintrocknet, sondern dass sich ein Niederschlag bildet, der zu deutlichen Inhomogenitäten des Films führt. In US 2003/0127977 wird beispielsweise durch SEM (scanning electron microscopy) gezeigt, dass der Film schlechte Eigenschaften zeigt, wenn das Material beim Trocknen ausfällt. Dadurch ist keine gleichmäßige und homogene Elektrolumineszenz aus dem Pixel möglich. Durch die Unregelmäßigkeit des Films ist weiterhin kein gleichmäßiger Stromfluss möglich. Es ist zu vermuten, dass sich dadurch bevorzugte Stromkanäle ausbilden, die dann letzten Endes zu Kurzschlüssen und somit deutlich geringerer Stabilität des Devices führen.

In WO 02/072714 werden Lösungen in einem Gemisch aus zwei (oder auch drei) Lösemitteln vorgeschlagen, wobei beide Lösemittel einen Siedepunkt kleiner 200 °C haben und ein Lösemittel einen Siedepunkt zwischen 140 °C und 200 °C hat, die weiterhin keine benzylischen CH₂- und CH-Gruppen enthalten und die bestimmte Einschränkungen für die Substituenten an aromatischen Lösemitteln aufweisen. So können Lösemittelreste leichter aus dem Polymerfilm entfernt werden, als dies mit hochsiedenden Lösemitteln möglich ist. Als besonders günstig wird beschrieben. wenn die Lösung schnell eindickt. Dies wird dadurch erreicht, dass binäre oder ternäre Lösemittelgemische verwendet werden, bei denen der organische Halbleiter in dem Lösemittel mit dem höchsten Siedepunkt die geringste Löslichkeit hat bzw. in diesem Lösemittel sehr dick oder gelartig ist. Dann findet beim Eindicken eine schnelle Viskositätssteigerung statt, ohne dass das Material ausfällt. Dadurch wurden bereits sehr gute Fortschritte erzielt; jedoch sind für die Bildung vollständig homogener Schichten und zur vollständigen Behebung des Problems 3 bzw. 6 noch weitere Verbesserungen nötig, und es wäre wünschenswert, Lösungen zur Verfügung zu haben, die beim Eintrocknen noch schneller eindicken.

In US 2003/0127977 werden Lösungen in einem Lösemittel beschrieben, das eine Oberflächenspannung kleiner als 30 dyn/cm und einen Siedepunkt größer als 200 °C hat. Weiterhin werden ternäre Lösemittelsysteme beschrieben, wobei das Polymer in einem Lösemittel eine Löslichkeit von größer 1 % hat, wovon das zweite Lösemittel eine Verdampfungsrate von kleiner 0.1 hat und das dritte Lösemittel eine Oberflächenspannung kleiner als 30 dyn/cm hat. Dadurch erhält man gleichmäßige Polymeroberflächen, die im SEM-Bild (scanning electron microscopy) keine Inhomogenitäten mehr zeigen. Im Vergleich dazu werden inhomogene Oberflächen, die zu Problemen in der Elektrolumineszenz führen, erhalten, wenn das Polymer beim Trocknungsvorgang aus der Lösung ausfällt. In dieser Anmeldung ist allerdings nicht beschrieben, wie die anderen oben beschriebenen Probleme, insbesondere die unterschiedliche Materialverteilung zwischen Pixelmitte und Rand (Problem 3), durch diese Erfindung behoben werden können.

15

25

30

35

10

5

Aus diesen Beschreibungen wird deutlich, dass die oben beschriebenen Probleme 1 bis 6 bisher nicht zufriedenstellend gelöst sind. Es ist daher Aufgabe der vorliegenden Erfindung, hierfür eine technische Verbesserung anzubieten.

20 Gegenstand der Erfindung sind einphasige, flüssige Zusammensetzungen (Lösungen), enthaltend

- mindestens einen organischen Halbleiter, der mindestens eine hochmolekulare Komponente enthält,
- und mindestens ein organisches Lösemittel A,
- und mindestens ein organisches Lösemittel B.
- und mindestens ein organisches Lösemittel C, dadurch gekennzeichnet,
- dass das Lösemittel A ein gutes Lösemittel für den organischen Halbleiter ist,
- dass das Lösemittel B ein gutes Lösemittel für den organischen Halbleiter ist,
- dass das Lösemittel C ein schlechtes Lösemittel für den organischen Halbleiter ist und
- dass für die Siedepunkte (Sdp.) der Lösemittel A, B, und C gilt, dass Sdp.(A) < Sdp.(C) < Sdp.(B) ist und/oder für die jeweiligen
 Partialdampfdrücke (p) bei der Temperatur des Beschichtungsverfahrens der Lösemittel A, B und C gilt, dass p (A) > p (C) > p (B).

Die Temperatur des Beschichtungsverfahrens wird bei technischen Prozessen i. d. R. im Bereich von 10 bis 80, bevorzugt 15 bis 50, insbesondere 20 bis 40°C liegen.

Lösungen im Sinne dieses Anmeldungstextes sind flüssige, homogene Mischungen von Festsubstanzen in flüssigen Lösemitteln, in denen die Feststoffe molekulardispers gelöst vorliegen, d. h. die Mehrzahl der Feststoffmoleküle liegt tatsächlich gelöst und nicht in Form von Aggregaten bzw. Nano- oder Mikropartikeln vor.

Unter einem organischen Lösemittel im Sinne dieser Erfindung sollen organische Stoffe verstanden werden, die andere Stoffe auf physikalischem Wege zur Lösung bringen können, ohne dass sich beim Lösungsvorgang der lösende oder der gelöste Stoff chemisch verändern.

5

15

20

25

30

35

Unter einem guten Lösemittel im Sinne dieser Erfindung soll ein organisches Lösemittel verstanden werden, in dem der organische Halbleiter bei einer Konzentration von mindestens 5 g/L bei Raumtemperatur und Normaldruck unter Bildung einer klaren fließfähigen Lösung löslich ist.

Unter einem schlechten Lösemittel im Sinne dieser Erfindung soll ein organisches Lösemittel verstanden werden, in dem der organische Halbleiter bei der oben genannten Konzentration bei Raumtemperatur und Normaldruck keine klare Lösung ergibt, d. h. in dem er ausflockt oder ein Gel bildet. Bevorzugt ist die Löslichkeit des organischen Halbleiters in dem schlechten Lösemittel bei Raumtemperatur und Normaldruck kleiner als 3 g/L, besonders bevorzugt kleiner als 1 g/L, insbesondere kleiner als 0.3 g/L.

Im Rahmen der vorliegenden Erfindung beträgt die Raumtemperatur 20 °C, und Normaldruck bedeutet 1013 mbar.

Ein weiterer Erfindungsgegenstand ist die Verwendung der erfindungsgemäßen Lösungen, um Schichten des organischen Halbleiters auf einem Substrat zu erzeugen.

Eine bevorzugte Ausführungsform ist dabei die Verwendung von Druckverfahren zur Herstellung der organischen Halbleiterschichten. Besonders bevorzugt ist dabei die Verwendung von Tintenstrahl-Druckverfahren (IJP).

Nochmals ein weiterer Erfindungsgegenstand sind Schichten der organischen Halbleiter, hergestellt unter Verwendung der erfindungsgemäßen Lösungen.

Schichten der an sich bekannten organischen Halbleiter sind in der Literatur bereits beschrieben. Die aus den erfindungsgemäßen Lösungen hergestellten Schichten zeigen gegenüber den bislang beschriebenen verbesserte morphologische Eigenschaften (dies ist u. a. in Beispiel 1.4 belegt). Insbesondere wird die Konstanz der Schichtdicke über die Beschichtungsfläche (z. B. das einzelne Pixel), die Homogenität der Schicht und der Oberfläche, auch bei der Verwendung von Blends bzw. Mischungen organischer Halbleiter, und die Freiheit von so genannten pinholes (mikroskopisch kleine Löcher in der Halbleiterschicht, welche zu fatalen Device-Schäden führen können) durch die verbesserten Anwendungseigenschaften der erfindungsgemäßen Lösungen erheblich verbessert.

5

10

15

20

25

30

35

Organische Halbleiter im Sinne dieser Anmeldung sind niedermolekulare, oligomere, dendritische oder polymere, organische oder metallorganische Verbindungen bzw. Mischungen von Verbindungen gemeint, die als Feststoff bzw. als Schicht halbleitende Eigenschaften aufweisen, d. h. bei denen die Energielücke zwischen Leitungs- und Valenzband zwischen 0.1 und 4 eV liegt.

Als organischer Halbleiter wird hier entweder eine Reinkomponente, die dann nur eine hochmolekulare Komponente enthält, oder eine Mischung von zwei oder mehreren Komponenten, von denen mindestens eine halbleitende Eigenschaften aufweisen muss, verwendet. Bei der Verwendung von Mischungen ist es jedoch nicht notwendig, dass jede der Komponenten halbleitende Eigenschaften aufweist. So können beispielsweise inerte niedermolekulare Verbindungen in Verbindung mit halbleitenden Polymeren verwendet werden. Ebenso können nicht-leitende Polymere, die als inerte Matrix bzw. Binder dienen, zusammen mit einer oder mehreren niedermolekularen Verbindungen, die halbleitende Eigenschaften aufweisen, verwendet werden.

Die hochmolekulare Komponente, die oligomer, polymer oder dendritisch sein kann, hat ein Molekulargewicht M_w von größer 3000 g/mol, bevorzugt von größer 10000 g/mol, besonders bevorzugt von größer 50000 g/mol.

Die potenziell beigemischte nicht-leitende Komponente, ist im Sinne dieser Anmeldung als eine elektro-optisch nicht wirksame, inerte, passive Verbindung zu verstehen.

Bevorzugt sind Lösungen polymerer organischer Halbleiter (welche eventuell weitere Substanzen eingemischt enthalten). Als polymere organische Halbleiter im Sinne der vorliegenden Beschreibung werden insbesondere

(i) die in EP 0443861, WO 94/20589, WO 98/27136, EP 1025183, WO 99/24526, DE 19953806 und EP 0964045 offenbarten, in organischen Lösemitteln löslichen, substituierten Poly-p-arylen-vinylene (PAVs),

5

10

15

20

25

30

35

- (ii) die in EP 0842208, WO 00/22027, WO 00/22026, DE 19981010, WO 00/46321, WO 99/54385 und WO 00/55927 offenbarten, in organischen Lösemitteln löslichen, substituierten Polyfluorene (PFs),
- (iii) die in EP 0707020, WO 96/17036, WO 97/20877, WO 97/31048, WO 97/39045 und WO 03/020790 offenbarten, in organischen Lösemitteln löslichen, substituierten Poly-spirobifluorene (PSFs),
- (iv) die in WO 92/18552, WO 95/07955, EP 0690086, EP 0699699 und WO 03/099901 offenbarten, in organischen Lösemitteln löslichen, substituierten Poly-paraphenylene (PPPs) oder biphenylene,
- (v) die in DE 10337346.2 offenbarten, in organischen Lösemitteln löslichen, substituierten Poly-dihydrophenanthrene (PDHPs),
- (vi) die in WO 04/041901 und EP 03014042.0 offenbarten, in organischen Lösemitteln löslichen, substituierten Poly-trans-indenofluorene und Poly-cisindenofluorene (PIF),
- (vii) die in EP 1028136 und WO 95/05937 offenbarten, in organischen Lösemitteln löslichen, substituierten Polythiophene (PTs),
- (viii) die in T. Yamamoto *et al.*, *J. Am. Chem. Soc.* **1994**, *116*, 4832 offenbarten, in organischen Lösemitteln löslichen Polypyridine (PPys),
- (ix) die in V. Gelling *et al.*, *Polym. Prepr.* **2000**, *41*, 1770 offenbarten, in organischen Lösemitteln löslichen Polypyrrole,
- (x) substituierte, lösliche Copolymere, die Struktureinheiten von zwei oder mehr der Klassen (i) bis (ix) aufweisen, wie zum Beispiel in WO 02/077060 beschrieben,
- (xi) die in *Proc. of ICSM '98*, **Part I & II** (in: *Synth. Met.* **1999**, *101/102*) offenbarten, in organischen Lösemitteln löslichen konjugierten Polymere,
- (xii) substituierte und unsubstituierte Poly-vinyl-carbazole (PVKs), wie beispielsweise in R. C. Penwell *et al.*, *J. Polym. Sci., Macromol. Rev.* **1978**, 13, 63-160 offenbart und
- (xiii) substituierte und unsubstuierte Triarylaminpolymere, wie beispielsweise in JP 2000-072722 offenbart,
- (xiv) lösliche Polymere, welche phosphoreszierende Einheiten enthalten, wie beispielsweise in EP 1245659, WO 03/001616, WO 03/018653, WO 03/022908, WO 03/080687, EP 1311138, WO 03/102109, WO 04/003105, WO 04/015025 und einigen der weiter oben bereits zitierten Schriften offenbart, verstanden.

Diese polymeren organischen Halbleiter sind via Zitat Bestandteil der vorliegenden Erfindung.

Des weiteren bevorzugt sind auch Lösungen von nicht-leitenden Polymeren (Matrix-Polymere), welche niedermolekulare, oligomere, dendritische oder polymere organische und/oder metallorganische Halbleiter enthalten.

5

10

15

20

25

30

35

Die erfindungsgemäßen Lösungen enthalten zwischen 0.01 und 20 Gew.%, bevorzugt zwischen 0.1 und 15 Gew.%, besonders bevorzugt zwischen 0.2 und 10 Gew.%, ganz besonders bevorzugt zwischen 0.25 und 5 Gew.% des organischen Halbleiters bzw. des entsprechenden Blends.

Die Viskosität der erfindungsgemäßen Lösungen ist variabel. Allerdings verlangen gewisse Beschichtungstechniken eine Verwendung bestimmter Viskositätsbereiche. So ist für die Beschichtung durch IJP ein Bereich von ca. 4 bis 25 mPa·s als sinnvoll anzugeben. Für andere Druckverfahren, z. B. Tiefdruckverfahren, kann aber auch eine deutlich höhere Viskosität, beispielsweise im Bereich von 20 bis 500 mPa·s, durchaus Vorteile ergeben. Die Einstellung der Viskosität kann durch Wahl des geeigneten Molekulargewichtsbereiches des organischen Halbleiters bzw. Matrix-Polymers sowie durch Wahl des geeigneten Konzentrationsbereiches und Wahl der Lösemittel erfolgen.

Die Oberflächenspannung der erfindungsgemäßen Lösungen ist zunächst nicht eingeschränkt. Durch die Verwendung entsprechender Lösemittelgemische und die Anwendung wird diese aber i. d. R. im Bereich von 20 bis 60 dyn/cm, bevorzugt im Bereich von 25 bis 50, ganz besonders bevorzugt im Bereich von 25 bis 40 dyn/cm liegen.

Die erfindungsgemäßen Lösungen enthalten – wie oben beschrieben – mindestens drei verschiedene organische Lösemittel A, B und C, von denen die Lösemittel A und B gute Lösemittel für den organischen Halbleiter sind, das Lösemittel C ein schlechtes Lösemittel für den organischen Halbleiter ist, und wobei außerdem für die Siedepunkte (Sdp.) der Lösemittel gilt: Sdp.(A) < Sdp.(C) < Sdp.(B) bzw. für die jeweiligen Dampfdrücke (p) bei der Temperatur des Beschichtungsverfahrens der Lösemittel A, B und C gilt: p (A) > p (C) > p (B).

Hierbei ist es bevorzugt, wenn die Siedepunkte aller Lösemittel A, B und C größer als 80 °C sind, bevorzugt größer als 100 °C, besonders bevorzugt größer als 120 °C. Eine mit dieser Bevorzugung schon erreichte weitere technische Einschränkung ist

der Verzicht auf einige giftige bzw. nachgewiesen cancerogene Lösemittel, was zum Beispiel auf Chloroform (Sdp. 61 °C), Tetrachlormethan (Sdp. 77 °C) und Benzol (Sdp. 80 °C) zutrifft.

Bevorzugt ist mindestens ein Lösemittel B enthalten, das einen Siedepunkt von mehr als 140 °C aufweist. Diese Grenze ist technisch sinnvoll, da es sich erwiesen hat, dass bei Verwendung von Lösemitteln mit niedrigerem Siedepunkt das Eintrocknen der Düsen innerhalb weniger Sekunden nach Beendigung des Druckvorganges stattfindet. Sobald dieser Wert mindestens bei etwa 10 Sekunden liegt, kann durch geeignete technische Hilfsmittel (z. B. Druckkopf fährt in Warteposition, Düsen werden mit Kappe mechanisch verschlossen) ein Austrocknen verhindert werden.

Weiterhin bevorzugt sind die Siedepunkte aller Lösemittel A, B und C kleiner als 300°C, bevorzugt kleiner oder gleich 270 °C, besonders bevorzugt kleiner oder gleich 250 °C. Bei höher siedenden Lösemitteln ist das restliche Lösemittel nach Filmbildung nur schwierig und unter großem technischen Aufwand vollständig zu entfernen.

Siedepunkt bezieht sich in diesem Anmeldetext auf den Siedepunkt unter Normaldruck (1013 mbar).

15

20

25

30

35

Der Schmelzpunkt aller Lösemittel A, B und C ist bevorzugt kleiner oder gleich 15 °C. Ein solcher Schmelzpunkt ist sinnvoll, da die Lösungen unter Umständen (zwischen Herstellung und Einsatz) über Tage bis zu Monaten gelagert bzw. eventuell auch transportiert werden müssen. Hier muss sichergestellt werden, dass die Lösungen auch als solche stabil bleiben und nicht bei Lagerung, Transport und/oder kleineren Temperaturschwankungen ausfrieren oder sonstige nachteiligen Lager- und/oder Transportschäden erleiden.

Weiterhin ist es bevorzugt, wenn die Differenz der Siedepunkte zwischen dem Lösemittel A und dem Lösemittel C mehr als 5 K beträgt, bevorzugt mehr als 10 K, besonders bevorzugt mehr als 20 K. Des Weiteren kann es bevorzugt sein, wenn die Differenz der Siedepunkte zwischen dem Lösemittel C und dem Lösemittel B mehr als 5 K beträgt, bevorzugt mehr als 10 K.

Das Verhältnis der Lösemittel A, B und C zueinander ist in weiten Bereichen variierbar. Um aber die besten Effekte zu erzielen, sollte das Lösemittel A zu einem Anteil von 10 bis 80 Vol.%, bevorzugt 20 bis 70 Vol.%, besonders bevorzugt 25 bis 60 Vol.%, insbesondere 25 bis 50 Vol.% verwendet werden. Weiterhin sollte das

Lösemittel B zu einem Anteil von 0.5 bis 40 Vol.%, bevorzugt 1 bis 30 Vol.%, besonders bevorzugt 2 bis 20 Vol.%, insbesondere 3 bis 15 Vol.% verwendet werden. Weiterhin sollte das Lösemittel C zu einem Anteil von 10 bis 90 Vol.%, bevorzugt von 20 bis 80 Vol.%, insbesondere von 30 bis 70 Vol.% verwendet werden. Die Gesamtprozentzahl der Anteile der jeweiligen Lösemittelmischung ergibt dabei immer 100 %.

5

10

15

20

25

30

35

Es kann auch sinnvoll sein, noch weitere gute und/oder schlechte Lösemittel zusätzlich zu den Lösemitteln A, B und C zu verwenden. So kann es durchaus sinnvoll und bevorzugt sein, jeweils zwei oder mehrere Lösemittel von Typ A und/oder Typ B und/oder Typ C zu verwenden, da dadurch teilweise die Optimierung bezüglich weiterer notwendiger Parameter (z. B. Anpassung der Oberflächenspannung, der Viskosität, etc.) einfacher erreicht werden kann, verglichen zu dem Fall, wo von jedem Typ nur exakt ein Lösemittel verwendet wird.

Des Weiteren kann es auch sinnvoll sein, neben dem organischen Halbleiter bzw. Blend noch weitere Additive, wie z. B. in WO 03/019693 beschrieben, zuzusetzen.

Die Verwendung beispielsweise Aldehyd-haltiger Lösemittel, nitrierter Aromaten und phosphorhaltiger Lösungsmittel (mangelnde Stabilität der Lösungen) und von Styrolderivaten bzw. anderen reaktiven Olefinen (Polymerisationsneigung der Lösemittel) hat sich als wenig vorteilhaft erwiesen.

Als bevorzugte Lösemittel A und B, die sich als gute Lösemittel für eine große Bandbreite organischer Halbleiter erwiesen haben, bieten sich einfach oder mehrfach substituierte aromatische Lösemittel, insbesondere substituierte Benzole, Naphthaline, Biphenyle und Pyridine, an. Bevorzugte Substituenten sind Alkylgruppen, die auch fluoriert sein können, Halogenatome, bevorzugt Chlor und Fluor, Cyanogruppen, Alkoxygruppen, Dialkylaminogruppen, bevorzugt solche mit nicht mehr als 4 C-Atomen, oder auch Estergruppierungen. Besonders bevorzugte Substituenten sind Fluor, Chlor, Cyano, Methoxy, Ethoxy, Methyl, Trifluormethyl, Methylcarboxylat, Ethylcarboxylat und/oder Propylcarboxylat, wobei auch mehrere unterschiedliche Substituenten vorhanden sein können. Aber auch nichtaromatische Lösemittel, wie beispielsweise Ameisensäurederivate, N-Alkyl-Pyrrolidone oder hochsiedende Ether, kommen als gute Lösemittel in Frage.

Besonders bevorzugt als Lösemittel A und/oder B sind die in der nachfolgenden Tabelle 1 aufgeführten Lösemittel mit Siedepunkt zwischen 100 und 300 °C. Darüber hinaus sind für einige der aufgeführten Lösemittel noch die Dampfdrücke im

besonders bevorzugten Temperaturbereich von Beschichtungsverfahren mit aufgenommen. Besonders geeignete Lösemittel müssen jedoch für jeden organischen Halbleiter separat bestimmt werden, so dass diese Tabelle nur einen generellen Anhaltspunkt geben kann.

Tabelle 1: Besonders bevorzugte gute Lösemittel A und B

5

Lösemittel	CAS- Nummer	Siede- punkt [°C]	Schmelz- punkt [°C]	Dampfdruck bei 20°C [torr]	Dampfdruck bei 40°C [torr]
3-Fluor-benzotrifluorid	401-80-9	102	-81		
Benzotrifluorid	98-08-8	102	-29		
Dioxan	123-91-1	102	12		
Trifluormethoxybenzol	456-55-3	102	-50		
4-Fluor-benzotrifluorid	402-44-8	103	-41		
3-Fluorpyridin	372-47-4	108	n. a.		
Toluol	108-88-3	111	-93	10,5	56,0
2-Fluortoluol	95-52-3	113	-62		
2-Methylthiophen	554-14-3	113	-63		
2-Fluor-benzotrifluorid	392-85-8	115	-51		
3-Fluortoluol	352-70-5	115	-87		
Pyridin	110-86-1	115	-42		
4-Fluortoluol	352-32-9	116	-56		1
2,5-Difluortoluol	452-67-5	120	-35		
1-Chlor-2,4-difluorbenzol	1435-44-5	127	-26		
2-Fluorpyridin	372-48-5	127	n. a.		***************************************
3-Chlorfluorbenzol	625-98-9	127	n. a.		
1-Chlor-2,5-difluorbenzol	2367-91-1	128	-25		
4-Chlorfluorbenzol	352-33-0	130	-27		
Chlorbenzol	108-90-7	132	-45		
2-Chlorfluorbenzol	348-51-6	138	-42		
p-Xylol	106-42-3	138	12		
m-Xylol	108-38-3	139	-47		
o-Xylol	95-47-6	144	-24	1,8	13,3
2,6-Lutidin	108-48-5	145	-6		
2-Fluor-m-xylol	443-88-9	147	n. a.		
3-Fluor-o-xylol	443-82-3	150	n. a.		
2-Chlorbenzotrifluorid	88-16-4	152	-7		
Dimethylformamid	68-12-2	153	-61		
2-Chlor-6-fluortoluol	443-83-4	154	-27		
2-Fluoranisol	321-28-8	154	-39		
Anisol	100-66-3	154	-37	0,82	7,0
2,3-Dimethylpyrazin	5910-89-4	156	n. a.		
Brombenzol	106-86-1	156	-31		
4-Fluoranisol	459-60-9	157	-45		
3-Fluoranisol	456-49-5	160	-35		
3-Trifluormethylanisol	454-80-0	160	-65		
2-Methylanisol	578-58-5	170	-34		
Phenetol	103-73-1	170	-30	0,27	3,1
1,3-Benzodioxol	274-09-9	173	-18		

4-Methylanisol	104-93-8	174	-32	0,30	3,0
3-Methylanisol	100-84-5	175	-55		
4-Fluor-3-methylanisol	2338-54-7	175	n. a.		
1,2-Dichlorbenzol	95-50-1	180	-17		
2-Fluorbenzonitril	394-47-8	~180	n. a.		
4-Fluorveratrol	398-62-9	~180	n. a.		
2,6-Dimethylanisol	1004-66-6	182	n. a.		
Anilin	62-53-3	184	-6		
3-Fluorbenzonitril	403-54-3	185	-16		
2,5-Dimethylanisol	1706-11-2	190	~5		
2,4-Dimethylanisol	6738-23-4	191	n. a.		
Benzonitril	100-47-0	191	-13		
3,5-Dimethylanisol	874-63-5	193	n. a.		
N,N-Dimethylanilin	121-69-7	194	2		
1-Fluor-3,5-di- methoxybenzol	52189-63-6	~195	n. a.		
Phenylacetat	122-79-2	196	-30	0,025	0,59
N-Methylanilin	100-61-8	196	-57	i sukudi	***************************************
Methylbenzoat	93-58-3	198	-12	0,084	0,89
N-Methylpyrrolidon	872-50-4	199	-24		
3,4-Dimethylanisol	4685-47-6	200	n. a.		
o-Tolunitril	529-19-1	205	-13		
Veratrol	91-16-7	207	15	0,012	0,273
Ethylbenzoat	93-89-0	212	-34	0,022	0,348
N,N-Diethylanilin	91-66-7	217	-38		
4-tert-Butyl-anisol	5396-38-3	222	n. a.	0,013	0,259
Propylbenzoat	2315-68-6	231	-51	0,006	0,131
1-Methylnaphthalin	90-12-0	243	-22	0,004	0,092
3,5-Dimethoxy-toluol	4179-19-5	244	n. a.		
Butylbenzoat	136-60-7	250	-22	0,0004	0,018
2-Methylbiphenyl	643-58-3	255	n. a.		
Dimethylnaphthalin (Isomerengemisch)	28804-88-8	262	n. a.		· · · · · · · · · · · · · · · · · · ·
2-Phenyl-pyridin	1008-89-5	~270	n. a.		
2,2'-Bitolyl	605-39-0	~300	n. a.		
				<u></u>	

Die in der Tabelle 1 aufgeführten Lösemittel können keinen Anspruch auf Vollständigkeit erheben. Die Bereitung einer erfindungsgemäßen Lösung ist dem Fachmann ohne Weiteres auch mit anderen hier nicht explizit aufgeführten Lösemitteln ohne erfinderisches Zutun möglich.

5

10

Bevorzugt sind also erfindungsgemäße Lösungen, enthaltend als Lösemittel A und B ein oder mehrere Lösemittel ausgewählt aus 3-Fluor-benzotrifluorid, Benzotrifluorid, Dioxan, Trifluormethoxybenzol, 4-Fluor-benzotrifluorid, 3-Fluorpyridin, Toluol, 2-Fluortoluol, 2-Fluor-benzotrifluorid, 3-Fluortoluol, Pyridin, 4-Fluortoluol, 2,5-Difluortoluol, 1-Chlor-2,4-difluorbenzol, 2-Fluorpyridin, 3-Chlorfluorbenzol, 1-Chlor-2,5-difluorbenzol, 4-Chlorfluorbenzol, Chlorbenzol, 2-Chlorfluorbenzol,

p-Xylol, m-Xylol, o-Xylol, 2,6-Lutidin, 2-Fluor-m-xylol, 3-Fluor-o-xylol, 2-Chlorbenzotrifluorid, Dimethylformamid, 2-Chlor-6-fluortoluol, 2-Fluoranisol, Anisol, 2,3-Dimethylpyrazin, Brombenzol, 4-Fluoranisol, 3-Fluoranisol, 3-Trifluormethylanisol, 2-Methylanisol, Phenetol, Benzodioxol, 4-Methylanisol, 3-Methylanisol, 4-Fluor-3-methyl-anisol, 1,2-Dichlorbenzol, 2-Fluorbenzonitril, 4-Fluorveratrol, 2,6-Dimethylanisol, Anilin, 3-Fluorbenzonitril, 2,5-Dimethylanisol, 2,4-Dimethylanisol, Benzonitril, 3,5-Dimethylanisol, N,N-Dimethylanilin, 1-Fluor-3,5-dimethoxybenzol, Phenylacetat, N-Methylanilin, Methylbenzoat, N-Methylpyrrolidon, 3,4-Dimethylanisol, o-Tolunitril, 4-tert-Butyl-anisol, Veratrol, Ethylbenzoat, N,N-Diethylanilin, Propylbenzoat, 1-Methylnaphthalin, 3,5-Dimethoxy-toluol, Butylbenzoat, 2-Methylbiphenyl, Dimethylnaphthalin, 2-Phenylpyridin oder 2,2'-Bitolyl.

5

10

15

20

25

30

Als bevorzugte Lösemittel C, die sich als schlechte Lösemittel für eine große Bandbreite organischer oder metallorganischer, oligomerer, polymerer oder dendritischer Halbleiter erwiesen haben, bieten sich geradkettige, verzweigte oder cyclische höhere Alkane, bevorzugt mit sieben oder mehr C-Atomen, an. Hier können auch entsprechende technische Destillationsschnitte gewählt werden. Es kommen auch Terpene, (cyclo)aliphatische Alkohole, Ketone, Carbonsäureester oder einfach oder mehrfach substituierte aromatische Lösemittel, insbesondere substituierte Benzole, Naphthaline und Pyridine, die mit langen Alkyl- oder Alkoxysubstituenten mit 4 oder mehr C-Atomen substituiert sind, in Frage. Weiterhin geeignet sind höhere Alkohole mit mehr als 4 C-Atomen, Glycole oder auch deren Ether, wie beispielsweise Diglyme oder Triglyme.

Besonders bevorzugt sind die in der nachfolgenden Tabelle 2 aufgeführten Lösemittel mit Siedepunkt zwischen 100 und 250 °C, wobei auch hier wiederum gilt, dass die besonders geeigneten Lösemittel für jeden organischen Halbleiter separat bestimmt werden müssen, so dass auch hier diese Tabelle nur als genereller Anhaltspunkt verstanden werden kann. Analog zu Tabelle 1 sind für einige der aufgeführten Lösemittel noch die Dampfdrücke im besonders bevorzugten Temperaturbereich von Beschichtungsverfahren mit aufgenommen.

Tabelle 2: Besonders bevorzugte schlechte Lösemittel C

Lösemittel	CAS- Nummer	Siede- punkt [°C]	Schmelz- punkt [°C]	Dampfdruck bei 40°C [torr]
Methylcyclohexan	108-87-2	101	-127	-
3-Pentanol	584-02-1	116	-8	
cis/trans-1,4- Dimethylcyclohexan	589-90-2	120	-87	

		T			-
cis/trans-1,3- Dimethylcyclohexan	591-21-9	121-124	n.a.		
Ethylenglycolmonomethylether	109-86-4	124	-85		
cis/trans-1,2- Dimethylcyclohexan	583-57-3	124	n. a.		
Octan	111-65-9	126	-57		
2-Hexanol	626-93-7	136	n. a.		
1-Pentanol	71-41-0	138	-79		
1,2,4-Trimethylcyclohexan	2234-75-5	142	n. a.		
4-Heptanon	123-19-3	145	-33		
3-Heptanon	106-35-4	148	-39		
2-Heptanon	110-43-0	150	-35		
Nonan	111-84-2	151	-51		
Cyclohexanon	108-94-1	155	-47		
3-Heptanol	589-82-2	156	-70		······································
1-Hexanol	111-27-3	157	-52		
2-Heptanol	543-49-7	161	n. a.		
Diglyme	111-96-6	162	-64		
Buttersäurebutylester	109-21-7	165	n. a.	1,1	5,5
tert-Butylbenzol	98-06-6	169	-58		
Decan	124-18-5	174	-30	1,2	5,5
1-Heptanol	111-70-6	176	-36	, ,	0,0
2-Octanol	123-96-6	179	-39	0,056	0,90
Butylcyclohexan	1678-93-9	180	-78	0,000	0,00
2-Ethyl-1-hexanol	104-76-7	185	-76	0,016	0,42
Decalin	91-17-8	187	-31	0,18	2,2
Propylenglycol	57-55-6	187	-60	0,10	£-,£-
Dimethylsulfoxid	867-68-5	189	19	0,66	3,1
3,3,5-	873-94-9	190	-10	0,00	
Trimethylcyclohexanon	0.00.0	100	10		
Glycol	107-21-1	198	-13		
3,7-Dimethyl-1-octanol	106-21-8	ca. 200	n. a.	0,013	0,24
3,7-Dimethyl-3-octanol	78-69-3	ca. 200	n. a.		· · · · · · · · · · · · · · · · · · ·
Bernsteinsäure- dimethylester	106-65-0	200	18		
tert-Butyl-m-xylol	98-19-1	205	2 0	0,015	0.26
Benzyl-alkohol	100-51-6	205	n. a. -15	0,013	0,36
DBE (technisches	"106-65-0"	196-215		0,013	0,30
Gemisch aus	100-05-0	190-215	n. a.		
Bernsteinsäure- und					
Glutarsäure-dimethylester)					
Dodecan	112-40-3	215	-12		
Bernsteinsäure- diethylester	123-25-1	218	-20		
Triglyme	112-49-2	220	-40		
Bicyclohexyl	92-51-3	227	3	0,006	0,15
Adipinsäuredimethylester	627-93-0	230	8	-,	
1-Decanol	112-30-1	233	n. a.		
2-Pyrrolidon	616-45-5	245	25		
<u> </u>	1				

Die in Tabelle 2 aufgeführten Lösemittel können keinen Anspruch auf Vollständigkeit erheben. Die Bereitung einer erfindungsgemäßen Lösung ist dem Fachmann ohne Weiteres auch mit anderen hier nicht explizit aufgeführten Lösemitteln ohne erfinderisches Zutun möglich.

5

10

15

20

Bevorzugt sind also erfindungsgemäße Lösungen, enthaltend als Lösemittel C mindestens ein Lösemittel ausgewählt aus Methylcyclohexan, 3-Pentanol, 1,4-Dimethylcyclohexan, Ethylenglycolmonomethylether, 1,2-Dimethylcyclohexan, Octan, 2-Hexanol, 1-Pentanol, 1,2,4-Trimethylcyclohexan, 4-Heptanon, 3-Heptanon, 2-Heptanon, Nonan, Cyclohexanon, 3-Heptanol, 1-Hexanol, 2-Heptanol, Diglyme, Buttersäurebutylester, tert-Butylbenzol, Decan, 1-Heptanol, 2-Octanol, Butylcyclohexan, 2-Ethyl-1-hexanol, Decalin, Propylenglycol, Dimethylsulfoxid, 3,3,5-Trimethylcyclohexanon, Glycol, 3,7-Dimethyl-1-octanol, 3,7-Dimethyl-3-octanol, Bernsteinsäuredimethylester, tert-Butyl-m-xylol, Benzyl-alkohol, DBE, Dodecan, Bernsteinsäurediethylester, Triglyme, Bicyclohexyl, Adipinsäuredimethylester, 1-Decanol oder 2-Pyrrolidon.

Um die Erfindung näher zu erläutern sind in Tabelle 3 einige gut verwendbare erfindungsgemäße Lösemittelgemische zusammengestellt. Dies stellt nur einen Anhaltspunkt dar.

Tabelle 3: Beispiele für erfindungsgemäße Lösemittelmischungen

Lösemittel A	Lösemittel C	Lösemittel B
o-Xylol	Butyl-cyclohexan	Veratrol
Anisol	Butyl-cyclohexan	Methylbenzoat
Anisol	Butyl-cyclohexan	3,4-Dimethyl-anisol
Anisol	Decalin	Veratrol
Phenethol	Decalin	Veratrol
Methyl-anisol	Decalin	Veratrol
Anisol	Benzyl-alkohol	Butylbenzoat
Anisol	Benzyl-alkohol	Methylnaphthalin
Methylanisol	Benzyl-alkohol	Butylbenzoat
Anisol	3,7-Dimethyl-1-octanol	Veratrol
Phenethol	3,7-Dimethyl-1-octanol	Ethylbenzoat
Methyl-anisol	3,7-Dimethyl-1-octanol	Methylnaphthalin
Anisol	DBE	Ethylbenzoat
Phenethol	DBE	Methylnaphthalin
Methylanisol	DBE	Butylbenzoat
Anisol	t-Butyl-m-xylol	Veratrol
Phenethol	t-Butyl-m-xylol	Veratrol
Methylanisol	t-Butyl-m-xylol	Veratrol
Anisol	Bicyclohexyl	Propyl-benzoat
Phenethol	Bicyclohexyl	Propyl-benzoat
Methylanisol	Bicyclohexyl	Propyl-benzoat
2,5-Demethylanisol	Bicyclohexyl	Propyl-benzoat

Eine besonders vorteilhafte Eigenschaft der erfindungsgemäßen Lösungen ist, dass diese beim Eintrocknen (Aufkonzentrieren) sehr schnell eindicken und gelieren. Diese Eigenschaft wird durch die geeignete Wahl der Lösemittel und die geeigneten relativen Siedepunkte bzw. Dampfdrücke, wie oben beschrieben, erzeugt.

Unter einem Gel wird ein formbeständiges, leicht deformierbares, an Flüssigkeiten reiches disperses System aus mindestens 2 Komponenten verstanden, das zumeist aus einem festen Stoff mit langen oder stark verzweigten Teilchen und einer Flüssigkeit als Dispersionsmittel besteht.

5

10

15

20

25

30

35

Sehr schnelles Eindicken bedeutet in diesem Zusammenhang, dass das Eindicken und Gelieren schneller als gemäß einfacher physikalischer Gesetzmäßigkeiten erfolgt. So besteht für Polymerlösungen im Allgemeinen folgender Zusammenhang zwischen Viskosität η und Konzentration c:

$$\eta \sim c^{3.4}$$

Anschaulich bedeutet dies, dass sich bei Verdopplung der Konzentration die Viskosität ca. verzehnfacht. Dies ist ein theoretischer Wert, der in der Praxis aber nicht immer eintritt. Reale Polymerlösungen verändern ihre Viskosität bei Verdopplung der Konzentration um einen Faktor im Bereich von ca. 5 bis 10. Ab einem gewissen Punkt geliert dann die Lösung, d. h. sie wird formbeständig und nicht mehr vollständig fließfähig.

Sehr schnelles Eindicken bzw. Gelieren bedeutet also, dass sich bei einer Verdopplung der Konzentration, wie beim Eintrocknen eines gedruckten Films bzw. Pixels, die Viskosität um mehr als einen Faktor 10 erhöht.

Dieser Effekt kann überraschend bei den erfindungsgemäßen Lösungen in bevorzugter Ausführung besonders ausgeprägt gefunden werden (vgl. z. B. die Lösungen 4 bis 6 in Beispiel 1.2, 7 bis 9 in Beispiel 2.2, 10 bis 12 in Beispiel 2.3). Gerade dieser Effekt scheint bei der Behebung der vorne beschriebenen Probleme 2, 3, 4 und 6 von besonderer Bedeutung zu sein.

Zum Herstellen der Lösungen wird der organische Halbleiter bzw. Blend in der gewünschten Konzentration in dem gewünschen Lösemittelgemisch gelöst. Es kann auch sinnvoll sein, den organischen Halbleiter bzw. Blend erst in einem Teil der Lösemittel, beispielsweise einer Mischung aus den Lösemitteln A und B, zu lösen und zu dieser Lösung dann das/die restlichen Lösemittel, beispielsweise das Lösemittel C, zuzugeben. Da organische Halbleiter bzw. deren Lösungen teilweise gegenüber Sauerstoff bzw. anderen Luftbestandteilen nicht stabil sind, kann es sinnvoll sein, diesen Vorgang unter einer inerten Atmosphäre, beispielsweise unter Stickstoff oder Argon, durchzuführen. Es kann auch sinnvoll sein, den Lösevorgang beispielsweise durch Erhitzen und/oder Rühren zu beschleunigen. Aggregate des

18

organischen Halbleiters bzw. des Matrixpolymers können dabei auch beispielsweise durch äußere mechanische Einwirkung, zum Beispiel durch Ultraschall, wie beschrieben in WO 03/019694, zerkleinert werden. Ebenso kann sich der Zusatz weiterer Additive, wie beispielsweise beschrieben in WO 03/019693, für die Anwendung als sinnvoll erweisen. Es hat sich weiterhin als sinnvoll erwiesen, vor Anwendung der Lösungen diese zu filtrieren, um sie von beispielsweise kleineren Mengen vernetzter Bestandteile oder von Staubpartikeln zu reinigen.

5

10

15

20

25

30

35

Die hier beschriebenen Lösungen zeigen überraschende Verbesserungen auf den oben genannten Problemfeldern.

So führt die Verwendung von Lösemitteln im bevorzugten Siedebereich dazu, dass die Lösungen im Druckkopf bzw. an den Düsen nicht zu schnell eintrocknen (Problem 1). Zwar bieten hier noch höher siedende Lösemittel weitere Verbesserungen, diese weisen dann aber besonders bei den Problemen 3 bis 5 überproportional starke Nachteile auf. Es hat sich hier als sehr sinnvoll erwiesen, Lösemittel im beschriebenen Siedepunktsbereich einzusetzen.

Auch bei Problem 2 werden deutliche Verbesserungen erzielt. So zeigen Blendmaterialien in Filmen oder Pixeln, die aus erfindungsgemäßen Lösungen erzeugt wurden, keinerlei Inhomogenitäten in der Elektrolumineszenz. Ohne an eine bestimmte Theorie gebunden sein zu wollen, vermuten wir, dass durch das schnelle Eindicken der Lösung beim Trocknen ein Entmischen der Blends weitgehend verhindert wird, wodurch eine homogenere Materialverteilung im Film ermöglicht wird.

Für das Problem 3 wurde ein erheblicher Fortschritt erzielt, indem ternäre Lösemittelmischungen mit den beschriebenen Löslichkeitseigenschaften und relativen Siedepunkten bzw. Dampfdrücken verwendet werden. Dadurch erhält man, wie oben beschrieben, beim Eindampfen sehr schnell eine sehr hohe Viskosität im Pixel bzw. Film, die der Ausbildung der inhomogenen Materialverteilung entgegenwirkt.

Problem 4 und Problem 5 werden deutlich besser gelöst als mit höher siedenden Lösemitteln. Insbesondere bei Problem 4 konnten durch das sehr schnelle Eindicken der Lösung besonders deutliche Effekte erzielt werden. Beim Eintrocknen der erfindungsgemäßen Lösungen fällt der organische Halbleiter nicht aus der Lösung aus, so dass hiermit auch das Problem 6 als gelöst zu betrachten ist. Ohne an die Richtigkeit einer bestimmten Theorie gebunden sein zu wollen, vermuten wir, dass durch Zusatz eines geringen Anteils eines guten Lösemittels B, das einen höheren Siedepunkt bzw. niedrigeren Dampfdruck (bei der Auftragungstemperatur) aufweist als das schlechte Lösemittel C, ein Niederschlag des organischen Halbleiters beim Trocknungsvorgang verhindert werden kann. Dies

wurde bisher so nicht in der Literatur beschrieben und führt überraschend zu deutlich homogeneren Filmen, als dies mit binären oder ternären Lösemittelsystemen der Fall ist, bei denen der organische Halbleiter bzw. andere Blendbestandteile im höchstsiedenden Lösemittel die geringste Löslichkeit aufweist. Die Probleme 2 bis 5 könnten prinzipiell auch durch das Verwenden wirklich niedrig siedender Lösemittel (oder Lösemittelgemische) gelöst werden. Diese bereiten aber für Problem 1 und Problem 6 technisch nicht lösbare Schwierigkeiten. Somit sind gerade Lösemittelgemische mit unterschiedlichen Löslichkeitseigenschaften und unterschiedlichen Siedepunkten eine optimale Lösung für diese Problembereiche. Die Probleme 1 bis 6 in Kombination können nicht sinnvoll mit einem einzigen Lösemittel gelöst werden. Wird ein zu niedrig siedendes Lösemittel verwendet, sind die Probleme 1 und 6 nicht zu lösen, wird ein zu hoch siedendes Lösemittel verwendet, werden Probleme 3 bis 5 immer schwerer lösbar.

Im vorliegenden Anmeldetext und auch in den im Weiteren folgenden Beispielen wird vor allem auf erfindungsgemäße Lösungen zur Herstellung polymerer Leuchtdioden und die entsprechenden Displays abgezielt. Trotz dieser Beschränkung der Beschreibung ist es für den Fachmann ohne weiteres erfinderisches Zutun möglich, entsprechende erfindungsgemäße Lösungen auch für die Herstellung anderer organischer elektronischer Vorrichtungen anzuwenden, z. B. für organische Feld-Effekt-Transistoren (O-FETs), organische Dünnfilmtransistoren (O-TFTs), organische integrierte Schaltungen (O-ICs), organische Solarzellen (O-SCs) oder auch organische Laserdioden (O-Laser), um nur einige Anwendungen zu nennen.

Weiterer Gegenstand der vorliegenden Erfindung sind also organische elektronische Vorrichtungen, bevorzugt ausgewählt aus der Gruppe der polymeren Leuchtdioden (PLEDs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen integrierten Schaltungen (O-ICs), organischen Solarzellen (O-SCs) und organischen Laserdioden (O-Laser), enthaltend mindestens eine erfindungsgemäße Schicht, die unter Verwendung einer erfindungsgemäßen Lösung und/oder eines erfindungsgemäßen Verfahrens erhalten wurde.

Die vorliegende Erfindung wird durch die folgenden Beispiele näher erläutert, ohne sie darauf einschränken zu wollen. Der Fachmann kann aus der Beschreibung und den aufgeführten Beispielen ohne erfinderisches Zutun weitere erfindungsgemäße Lösungen bereiten und diese anwenden, um daraus Schichten zu erzeugen.

Beispiele

5

10

15

20

25

Beispiel 1: Lösungen des Polymers POLY1 in Mischungen von Anisol, 4-Methylanisol (jeweils Lösemittel A), Veratrol (Lösemittel B) und Decalin (Lösemittel C):

1.1 Eingesetzte Materialien:

Polymer POLY1 ist ein Polymer gemäß dem Beispiel P17 in WO 02/077060, gemäß der geordneten Variante gemäß Beispiel P1 aus DE 10337077.3. Der hier verwendete Ansatz POLY1-B6 hat ein M_w von 220k g/mol, ein M_n von 70k g/mol und ein M_p von 180k g/mol. Ein Lösung mit 14 g/L in Anisol/o-Xylol weist eine Viskosität (bei 500 s⁻¹) von ca. 6.6 mPas auf.

Lösemittel:

- Anisol; Siedepunkt 154 °C; Löslichkeit POLY1-B6 > 30 g/L.
- 4-Methyl-anisol; Siedepunkt 174 °C; Löslichkeit POLY1-B6 > 30 g/L.
- Veratrol: Siedepunkt 207 °C; Löslichkeit POLY1-B6 > 30 g/L.
- Decalin (Isomerengemisch): Siedepunkt 187 °C; Löslichkeit POLY1-B6
 < 0.05 g/L.

1.2 Lösungsbereitung und grundlegende Eigenschaften:

 Es wurden verschiedene Mischungen mit den o. g. Lösemitteln und dem genannten Polymer angesetzt. Alle Lösungen enthielten das Polymer mit ca.
 11 g/L. Die Lösungen sind in Tabelle 4 genauer spezifiziert:

Tabelle 4: Zusammensetzungen verschiedener Lösungen

Nummer	Anisol	Me-	Veratrol	Decalin	Erfindungs-	Gemäß Stand der
	(vol%)	Anisol	(vol%)	(vol%)	gemäß?	Technik?
		(vol%)				
Lösung 1	50		0	50	NEIN	WO 02/069119
Lösung 2	0		50	50	NEIN	NEIN
Lösung 3	40	10	0	50	NEIN	WO 02/072714
Lösung 4	40		10	50	JA	NEIN
Lösung 5	30		10	60	JA	NEIN
Lösung 6	34		6	60	JA	NEIN

 Die Lösungen wurden anschließend langsam eingedampft und das Verhalten der Lösungen bzgl. Konzentration-Viskositäts-Verlauf bzw. sonstiger Eigenschaften verfolgt. Diese Ergebnisse sind in Tabelle 5 zusammengefasst.

Tabelle 5: Verhalten der Lösungen beim Aufkonzentrieren

	Viskositä	at (@ 500 s			
Nummer	11 g/ L	~ 20 g/L	~ 30 g/L	~ 40 g/L	Bemerkungen
Lösung 1	6.3	53.8	n.a.	n. a.	Polymer fällt bei ca. 25 g/L aus
Lösung 2	8.0	42.0	108	255	Kein starkes Eindicken.
Lösung 3	6.5	55.3	n. a.	n. a.	Polymer fällt bei ca. 25 g/L aus
Lösung 4	7.4	78.2	367	925	Starkes Eindicken
Lösung 5	7.4	249	~1200	>5000	Sehr starkes Eindicken
Lösung 6	7.4	263	~1300	>5000	Sehr starkes Eindicken.
					1

- Die Lösungen gemäß dem Stand der Technik (Lösung 1 und Lösung 3; jeweils das höchstsiedende Lösemittel besitzt die niedrigste Löslichkeit für das verwendete Polymer) zeigen für die Anwendung unbrauchbares Verhalten. Das Polymer fällt aus. Eine vernünftige Filmbildung kann so nicht erreicht werden.
- Die Lösung 2 zeigt keine besonderen Effekte bzgl. dem Eindick-Verhalten.
- Die erfindungsgemäßen Lösungen zeigen deutliche Effekte bzgl. dem Eindick-Verhalten.

1.3 Untersuchungen bzgl. Druckbarkeit und Filmbildung:

5

10

15

20

25

30

Die o. g. Lösung 6 wurde noch genauer bzgl. ihrer Anwendbarkeit beim IJ-Drucken untersucht.

Die Lösung zeigte eine Oberflächenspannung von ca. 31.5 Dyn/cm.

Die Lösung wurde durch einen Spectra SX-128 Druckkopf (Fa. Spectra, USA) gedruckt. Die Druckbedingungen konnten relativ leicht optimiert werden. Es wurden folgende Ergebnisse erhalten:

- Die Tropfenmasse ist im geeigneten Bereich linear von der verwendeten Spannung abhängig (ca. 7 ng bei 45 V, ca. 10 ng bei 50 V, ca. 13 ng bei 55 V).
- Die Tropfengeschwindigkeit ist ebenfalls linear von der Spannung abhängig (ca. 3 m/s bei 45 V, ca. 4 m/s bei 50 V, ca. 5 m/s bei 55 V).
- Der Druckkopf konnte problemlos im Bereich von ca. 1000 bis fast 10000 Hertz betrieben werden.
- Einfache optimierte Druckbedingungen waren die folgenden: 50 V; Pulsweite 5
 µs; 1 kHz Druckfrequenz.
- Die Tropfen zeigten kurze Ligamente, die jedoch sehr schnell wieder in die Tropfen zurückgezogen wurden; dies geschah (durchschnittlich) innerhalb der ersten 475 µm; d. h. Drucken mit einem Abstand ab 0.5 mm ist problemlos möglich. Darüber hinaus konnten auch keine Probleme mit Satellitenbildung gefunden werden.

Die Lösung 6 wurde dann mit den optimierten Bedingungen in ein strukturiertes Substrat (mit CF_4/O_2 -Plasma behandelten Partitionierungen) gedruckt. Es wurde dort eine sehr gute (homogene) Filmbildung erreicht. Dies ist in den beiden folgenden Abbildungen 1 und 2 wiedergegeben. Die einzelnen Pixel hatten dabei eine Größe von ca. 66 µm x 175 µm. Pro Pixel wurden 10 Tropfen aus ca. 2 mm Entfernung abgegeben.

Es wurden folgende Punkte beobachtet:

- Die Druckbarkeit der Lösung 6 stellte sich als sehr gut heraus, d. h. deutlich vorteilhafter als der Stand der Technik.
- Unter optimierten Bedingungen konnten sehr homogene Filme erhalten werden.

1.4 Untersuchung bzgl. der Anwendung in der EL:

Lösung 6 wurde bezüglich der Verwendung in der Elektrolumineszenz untersucht. Zum Vergleich wurde auch eine Lösung in Toluol als Referenz parallel dazu vermessen. Die PLEDs wurden jeweils via Spin-Coaten hergestellt (ein allgemeines Verfahren dazu ist beispielsweise in der o. g. WO 02/072714 ausgeführt). Beide Lösungen wurden während des Spin-Coatens mit einem NIR-Trocknungsgerät behandelt, da gerade Lösung 6 sonst sehr lange zum Trocknen benötigt (vgl. auch: WO 03/038923).

Beide Lösungen ergaben (optisch) sehr schöne homogene Schichten. Die EL-Evaluierung ist in Tabelle 6 gegenübergestellt:

25 Tabelle 6: EL-Evaluierung

5

10

		Spannung [V]						
Lösung		2.8	3.0	3.2	3.4	3.6	3.8	4.0
# 6	j [mA/cm²]	0.97	2.93	6.43	11.8	19.1	28.8	41.4
(gem.	L [cd/m ²]	48	158	352	639	1030	1500	2100
Erfindung)	Eff. [cd/A]	5.0	5.4	5.4	5.4	5.4	5.2	5.0
in Toluol	j [mA/cm²]	0.20	0.52	1.1	1.9	3.2	5.0	8.6
(Referenz)	L [cd/m ²]	3	23	52	100	168	264	469
	Eff. [cd/A]	1.5	4.6	4.7	5.2	5.3	5.3	5.4

Die PLEDs aus beiden Lösungen zeigten die gleiche Farbe (hellblau; CIE-1931-Koordinaten: $X \sim 0.18$, $Y \sim 0.27$).

Lebensdauermessungen ergaben, dass das Device aus der Lösung 6 etwa doppelt so lange bei vergleichbarer Helligkeit lebten (ca. 3000 h bei 100 Cd/m² gegenüber ca. 1500 h aus der Toluol-Lösung).

- 5 Zusammengefasst wurde so folgende überraschende Vorteile erhalten:
 - Die Filmbildung ist auch aus einem einfachen Beschichtungsverfahren (Spin-Coaten) sehr gut.
 - Die Morphologie der erzeugten Schicht ist deutlich anders gegenüber dem Stand der Technik. Die damit erzeugten PLEDs zeigen deutlich steilere Strom-Spannungskennlinien (und damit auch deutlich höhere Helligkeiten bei gleicher Spannung).
 - Überraschend wird dadurch auch die operative Lebensdauer positiv beeinflusst.

Beispiel 2: Lösungen des Polymers POLY1 in Mischungen von Anisol, Phenethol, 4-Methylanisol (jeweils Lösemittel A), Veratrol (Lösemittel B) und *t*-Butyl-m-xylol (Lösemittel C):

- 2.1 Eingesetzte Materialien:
- Polymer POLY1 ist das bereits in Beispiel 1 beschriebene Polymer. Der hier verwendete Ansatz POLY1-B7 hat ein M_w von 325k g/mol, ein M_n von 100k g/mol und ein M_p von 275k g/mol. Ein Lösung mit 14 g/L in Anisol/o-Xylol weist eine Viskosität (bei 500 s⁻¹) von ca. 10.1 mPas auf.
- Lösemittel:

10

15

20

25

30

- Anisol; Siedepunkt 154 °C; Löslichkeit POLY1-B7 > 30 g/L.
- Phenethol; Siedepunkt 170 °C; Löslichkeit POLY1-B7 > 30 g/L.
- 4-Methyl-anisol; Siedepunkt 174 °C; Löslichkeit POLY1-B7 > 30 g/L.
- Veratrol: Siedepunkt 207 °C; Löslichkeit POLY1-B7 > 30 g/L.
- t-Butyl-m-xylol: Siedepunkt 205 °C; Löslichkeit POLY1-B7 < 1 g/L.
- 2.2 Lösungsbereitung und grundlegende Eigenschaften:
- Es wurden verschiedene erfindungsgemäße Mischungen mit den o. g.
 Lösemitteln und dem genannten Polymer angesetzt. Alle Lösungen enthielten das Polymer mit ca. 10 g/L. Die Lösungen sind in Tabelle 7 genauer spezifiziert:

Tabelle 7: Zusammensetzungen verschiedener Lösungen

Nummer	Anisol	Phenethol	Me-Anisol	Veratrol	t-Butyl-m-
	(vol%)	(vol%)	(vol%)	(vol%)	xylol (vol%)
Lösung 7	20			4	76
Lösung 8		11		4	85
Lösung 9			10	4	86

 Die Lösungen wurden anschließend langsam eingedampft und das Verhalten der Lösungen bzgl. Konzentration-Viskositäts-Verlauf bzw. sonstiger Eigenschaften verfolgt. Diese Ergebnisse sind in Tabelle 8 zusammengefasst.

Tabelle 8: Verhalten der Lösungen beim Aufkonzentrieren

5

10

15

20

	Viskositä	t (@ 40 s ⁻¹			
Nummer	~10 g/ L	~ 14 g/L	~ 20 g/L	~ 25 g/L	Bemerkungen
Lösung 7	10.3	33.3	1026	2500	Sehr starkes Eindicken
Lösung 8	11.2	37.9	950	5000	Sehr starkes Eindicken
Lösung 9	11.2	46.3	897	3500	Sehr starkes Eindicken.

 Wie in Beispiel 1 zeigen die erfindungsgemäßen Lösungen deutliche Effekte bzgl. dem Eindick-Verhalten.

2.3 Untersuchungen bzgl. Druckbarkeit und Filmbildung:

Die Lösungen 7 bis 9 wurden auf Ihre Druckeigenschaften untersucht.

- Die Tropfenmasse und die Tropfengeschwindigkeit waren wie auch im Beispiel
 1 jeweils linear von der verwendeten Spannung abhängig.
- Der Druckkopf konnte problemlos im Bereich von ca. 1000 bis (je nach Lösung)
 5000 bzw. 7000 Hertz betrieben werden.
- Einfache optimierte Druckbedingungen waren die folgenden: 65 V; Pulsweite 5 µs; 1 kHz Druckfrequenz.
- Die Tropfen zeigten kurze Ligamente, die jedoch sehr schnell wieder in die Tropfen zurückgezogen wurden; dies geschah (durchschnittlich) innerhalb der ersten 250 μm; d. h. Drucken mit einem Abstand ab 0.5 mm ist problemlos möglich.
- Das Drucken in Substrate (analog den Angaben im Beispiel 1) ergab, bei einem Druckabstand von 1 mm homogene Filme.

Beispiel 3: Lösungen des Polymers POLY1 in Mischungen von Anisol, 4-Methylanisol, 2,5-Dimethyl-anisol (jeweils Lösemittel A), Propylbenzoat (Lösemittel B) und Bicyclohexyl (Lösemittel C):

3.1 Eingesetzte Materialien:

- Polymer POLY1 ist das bereits in Beispiel 1 beschriebene Polymer. Der hier verwendete Ansatz POLY1-B7 wurde in Beispiel 2 genau beschrieben.
- Lösemittel:
 - Anisol; Siedepunkt 154 °C; Löslichkeit POLY1-B7 > 30 g/L.
 - 4-Methyl-anisol; Siedepunkt 174 °C; Löslichkeit POLY1-B7 > 30 g/L.
 - 2,5-Dimethyl-anisol; Siedepunkt 190 °C; Löslichkeit POLY1-B7 > 30 g/L.
 - Propylbenzoat: Siedepunkt 231 °C; Löslichkeit POLY1-B7 > 30 g/L.
 - Bicyclohexyl: Siedepunkt 227 °C; Löslichkeit POLY1-B7 < 0.1 g/L.

3.2 Lösungsbereitung und grundlegende Eigenschaften:

 Es wurden verschiedene erfindungsgemäße Mischungen mit den o. g.
 Lösemitteln und dem genannten Polymer angesetzt. Alle Lösungen enthielten das Polymer mit ca. 10 g/L. Die Lösungen sind in Tabelle 9 genauer spezifiziert:

Tabelle 9: Zusammensetzungen verschiedener Lösungen

Nummer	Anisol (vol%)	Me-Anisol (vol%)	2,5-Dimethyl- anisol (vol%)	Propylbenzoat (vol%)	Bicyclohexyl (vol%)
Lösung 10	38			26	36
Lösung 11		20	****	33	47
Lösung 12			21	31	48

 Die Lösungen wurden anschließend langsam eingedampft und das Verhalten der Lösungen bzgl. Konzentration-Viskositäts-Verlauf bzw. sonstiger Eigenschaften verfolgt. Diese Ergebnisse sind in Tabelle 10 zusammengefasst.

Tabelle 10: Verhalten der Lösungen beim Aufkonzentrieren

	Viskosität	t (@ 40 s ⁻¹			
Nummer	~10 g/ L	~ 14 g/L	~ 20 g/L	~ 30 g/L	Bemerkungen
Lösung 10	9.2	20.5	2050	10000	Sehr starkes Eindicken
Lösung 11	13.4	53.7	1550	9400	Sehr starkes Eindicken
Lösung 12	16.5	76.6	1260	12300	Sehr starkes Eindicken.

 Wie in Beispiel 1 und 2 zeigen die erfindungsgemäßen Lösungen deutliche Effekte bzgl. dem Eindick-Verhalten.

20

5

10

15

25

3.3 Untersuchungen bzgl. Druckbarkeit und Filmbildung:

5

10

15

Die Lösung 10 wurde intensiv bezüglich Ihrer Druckeigenschaften untersucht.

Die Tropfenmasse und die Tropfengeschwindigkeit waren – wie auch im Beispiel
 1 – jeweils linear von der verwendeten Spannung abhängig.

- Der Druckkopf konnte problemlos im Bereich von ca. 1000 bis 10000 Hertz betrieben werden.
- Einfache optimierte Druckbedingungen waren die folgenden: 60 V; Pulsweite 5 µs; 1 kHz Druckfrequenz.
- Die Tropfen zeigten kurze Ligamente, die jedoch sehr schnell wieder in die Tropfen zurückgezogen wurden; dies geschah (durchschnittlich) innerhalb der ersten 250 μm; d. h. Drucken mit einem Abstand ab 0.5 mm ist problemlos möglich.
- Die Düsenplatte wurde durch diese Tinte nicht benetzt (d. h. es gab keinerlei Anzeichen von Polymerablagerungen).

Das Drucken in Substrate (analog den Angaben im Beispiel 1) ergab, bei einem Druckabstand von 0.5 mm, homogene Filme.

Ansprüche:

5

10

15

20

25

30

35

- 1. Einphasige, flüssige Zusammensetzungen (Lösungen), enthaltend
 - mindestens einen organischen Halbleiter, der mindestens eine hochmolekulare Komponente enthält,
 - und mindestens ein organisches Lösemittel A,
 - und mindestens ein organisches Lösemittel B,
 - und mindestens ein organisches Lösemittel C, dadurch gekennzeichnet,
 - dass das Lösemittel A ein gutes Lösemittel für den organischen Halbleiter ist.
 - dass das Lösemittel B ein gutes Lösemittel für den organischen Halbleiter ist,
 - dass das Lösemittel C ein schlechtes Lösemittel für den organischen Halbleiter ist und
 - dass für die Siedepunkte (Sdp.) der Lösemittel A, B, und C gilt, das Sdp.(A)
 Sdp.(C) < Sdp.(B) ist und/oder für die jeweiligen Partialdampfdrücke (p)
 bei der Temperatur des Beschichtungsverfahrens der Lösemittel A, B und C gilt, dass p (A) > p (C) > p (B).
- 2. Lösungen gemäß Anspruch 1, dadurch gekennzeichnet, dass der organische Halbleiter in dem reinen Lösemittel A bzw. in dem reinen Lösemittel B in einer Konzentration von mindestens 5 g/L bei Raumtemperatur löslich ist.
- 3. Lösungen gemäß den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass die Löslichkeit des organischen Halbleiters in dem reinen Lösemittel C bei Raumtemperatur kleiner als 0.3 g/L ist.
- 4. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der organische Halbleiter als Reinkomponente eingesetzt wird.
- 5. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der organische Halbleiter als Mischung von zwei oder mehreren Komponenten eingesetzt wird.
- 6. Lösungen gemäß Anspruch 5, dadurch gekennzeichnet, dass ein oder mehrere organische Nicht-Leiter als Matrix verwendet werden.

7. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die hochmolekulare Komponente ein Molekulargewicht M_w von größer 50000 g/mol besitzt.

5

10

8. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als polymere organische Halbleiter in organischen Lösemitteln lösliche, substituierte Poly-p-arylen-vinylene (PAV), Polyfluorene (PF), Poly-spirobifluorene (PSF), Poly-para-phenylene (PPP) oder -biphenylene, Poly-dihydrophenanthrene (PDHP), cis- und trans-Poly-indenofluorene (PIF), Polythiophene (PT), Polypyridine (PPy), Copolymere, die Struktureinheiten von zwei oder mehr der oben genannten Klassen aufweisen, allgemein konjugierte Polymere, Poly-vinyl-carbazole (PVK), Poly-triarylamine und/oder lösliche Polymere, welche phosphoreszierende Einheiten enthalten, eingesetzt werden.

15

9. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass nicht-leitende Polymere (Matrix-Polymere), welche niedermolekulare, oligomere, dendritische oder polymere organische und/oder metallorganische Halbleiter beigemischt enthalten, verwendet werden.

20

10. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Siedepunkt aller drei Lösemittel A, B und C größer als 120 °C ist.

25

11. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Siedepunkt aller drei Lösemittel A, B und C kleiner als 300 °C ist.

30

12. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Differenz der Siedepunkte zwischen dem Lösemittel A und dem Lösemittel C mehr als 10 K beträgt.

13. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Differenz der Siedepunkte zwischen dem Lösemittel C und dem Lösemittel B mehr als 10 K beträgt.

35

14. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Anteil des Lösemittels A 10 bis 80 Vol.%, der Anteil

des Lösemittels B 0.5 bis 40 Vol.% und der Anteil des Lösemittels C 10 bis 90 Vol.% beträgt.

15. Lösungen gemäß Anspruch 14, dadurch gekennzeichnet, dass der Anteil des Lösemittels A 25 bis 60 Vol.%, der Anteil des Lösemittels B 2 bis 20 Vol.% und der Anteil des Lösemittels C 30 bis 70 Vol.% beträgt.

5

10

15

20

25

30

35

- 16. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass zusätzlich zu den Lösemitteln A, B und C noch weitere gute und/oder schlechte Lösemittel verwendet werden.
- 17. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass als Lösemittel A und/oder B einfach oder mehrfach substituierte aromatische Lösemittel, Ameisensäurederivate, N-Alkyl-Pyrrolidone oder hochsiedende Ether verwendet werden.
- 18. Lösungen gemäß Anspruch 17, dadurch gekennzeichnet, dass als Lösemittel A und/oder B ein oder mehrere Lösemittel ausgewählt sind aus 3-Fluor-benzotrifluorid, Benzotrifluorid, Dioxan, Trifluormethoxybenzol, 4-Fluor-benzotrifluorid, 3-Fluorpyridin, Toluol, 2-Fluorbenzotrifluorid, 3-Fluortoluol, Pyridin, 4-Fluortoluol, 2,5-Difluortoluol, 1-Chlor-2,4difluorbenzol, 2-Fluorpyridin, 3-Chlorfluorbenzol, 1-Chlor-2,5-difluorbenzol, 4-Chlorfluorbenzol, Chlorbenzol, 2-Chlorfluorbenzol, p-Xylol, m-Xylol, o-Xylol, 2,6-Lutidin, 2-Fluor-m-xylol, 3-Fluor-o-xylol, 2-Chlorbenzotrifluorid. Dimethylformamid, 2-Chlor-6-fluortoluol, 2-Fluoranisol, Anisol, 2,3-Dimethylpyrazin, Brombenzol, 4-Fluoranisol, 3-Fluoranisol, 3-Trifluormethylanisol, 2-Methylanisol, Phenetol, Benzodioxol, 4-Methylanisol, 3-Methylanisol, 4-Fluor-3-methyl-anisol, 1,2-Dichlorbenzol, 2-Fluorbenzonitril, 4-Fluorveratrol, 2,6-Dimethylanisol, Anilin, 3-Fluorbenzonitril, 2,5-Dimethylanisol, 2,4-Dimethylanisol, Benzonitril, 3,5-Dimethylanisol, N,N-Dimethylanilin, 1-Fluor-3,5dimethoxybenzol, Phenylacetat, N-Methylanilin, Methylbenzoat, N-Methylpyrrolidon, 3,4-Dimethylanisol, Acetophenon, o-Tolunitril, 4-tert-Butylanisol, Veratrol, Ethylbenzoat, N,N-Diethylanilin, Propylbenzoat, 1-Methylnaphthalin, 3,5-Dimethoxy-toluol, Butylbenzoat, 2-Methylbiphenyl, Dimethylnaphthalin, 2-Phenyl-pyridin oder 2,2'-Bitolyl.
- 19. Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass als Lösemittel C geradkettige, verzweigte oder cyclische höhere Alkane, bevorzugt mit sieben oder mehr C-Atomen, Terpene,

(cyclo)aliphatische Alkohole, Ketone, Carbonsäureester oder einfach oder mehrfach substituierte aromatische Lösemittel, die mit langen Alkyl- oder Alkoxysubstituenten mit 4 oder mehr C-Atomen substituiert sind, höhere Alkohole mit mehr als 4 C-Atomen, Glycole oder deren Ether verwendet werden.

5

10

15

20

- 20. Lösungen gemäß Anspruch 19, dadurch gekennzeichnet, dass mindestens ein Lösemittel C ausgewählt ist aus Methylcyclohexan, 3-Pentanol, 1,4-Dimethylcyclohexan, Ethylenglycolmonomethylether,
 - 4.0 Directhyleyelehoven Octon 2 Hovenel 1 Deptenel 1.2
 - 1,2-Dimethylcyclohexan, Octan, 2-Hexanol, 1-Pentanol, 1,2,4-

Trimethylcyclohexan, 4-Heptanon, 3-Heptanon, 2-Heptanon, Nonan,

Cyclohexanon, 3-Heptanol, 1-Hexanol, 2-Heptanol, Diglyme,

Buttersäurebutylester, tert-Butylbenzol, Decan, 1-Heptanol, 2-Octanol,

Butylcyclohexan, 2-Ethyl-1-hexanol, Decalin, Propylenglycol, Dimethylsulfoxid,

3,3,5-Trimethylcyclohexanon, Glycol, 3,7-Dimethyl-1-octanol, 3,7-Dimethyl-3-

octanol, Bernsteinsäuredimethylester, tert-Butyl-m-xylol, Benzyl-alkohol, DBE,

Dodecan, Bernsteinsäurediethylester, Triglyme, Bicyclohexyl,

Adipinsäuredimethylester, 1-Decanol oder 2-Pyrrolidon.

- 21. Verwendung von Lösungen gemäß einem oder mehreren der Ansprüche 1 bis 20, zur Erzeugung von Schichten der organischen Halbleiter auf einem Substrat.
- 22. Verfahren zur Herstellung organischer Halbleiterschichten auf einem Substrat, dadurch gekennzeichnet, dass eine Lösung gemäß einem oder mehreren der Ansprüche 1 bis 20 mittels eines Druckverfahrens verarbeitet wird.

25

23. Verfahren gemäß Anspruch 22, dadurch gekennzeichnet, dass es sich bei dem Druckverfahren um ein Tintenstrahl-Druckverfahren (IJP) handelt.

30

24. Schichten organischer Halbleiter, dadurch gekennzeichnet, dass sie unter Verwendung einer Lösung gemäß einem oder mehreren der Ansprüche 1 bis 20 oder mittels eines Druckverfahrens gemäß Anspruch 22 und/oder 23 erzeugt werden.

35

25. Polymere Leuchtdioden (PLEDs), organische Feld-Effekt-Transistoren (O-FET), organische Dünnfilmtransistoren (O-TFT), organische integrierte Schaltungen (O-IC), organische Solarzellen (O-SC) oder organische Laserdioden (O-Laser) enthaltend mindestens eine Schicht gemäß Anspruch 24.

Figur 1: Gedruckte Pixel

Figur 2: Höhenprofil in einem Pixel (durch PL-Intensität gemessen). X-Achse in μm.

INTERNATIONAL SEARCH REPORT

Inte nal Application No
PCT/FP2005/001596

PCT/EP2005/001596 CLASSIFICATION OF SUBJECT MATTER PC 7 H01L51/40 H05B A. CLAS H05B33/10 H05B33/14 C09D11/00 C09K11/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 H01L H05B C09D C09K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 02/069119 A (CAMBRIDGE DISPLAY 1 - 25TECHNOLOGY LIMITED; LYON, PETER, JOHN; CARTER, JULIA) 6 September 2002 (2002-09-06) cited in the application page 8, paragraph 2; claims 1-18 χ WO 02/072714 A (COVION ORGANIC 1 - 25SEMICONDUCTORS GMBH; SPREITZER, HUBERT; BECKER, HEINRIC) 19 September 2002 (2002-09-19) cited in the application claims 1,16,21 χ US 2003/127977 A1 (BAE SUNG-JOON ET AL) 1 - 2510 July 2003 (2003-07-10) cited in the application claims Further documents are listed in the continuation of box C. Patent family members are listed in annex. X ° Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the out. document referring to an oral disclosure, use, exhibition or other means in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 13 July 2005 27/07/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Lehnert, A

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/001596

		FC1/EF2003/001390
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 610 929 A (UNITIKA LTD) 17 August 1994 (1994-08-17) claim 1	1-25
Α	PATENT ABSTRACTS OF JAPAN vol. 016, no. 490 (C-0994), 12 October 1992 (1992-10-12) & JP 04 180977 A (HITACHI CHEM CO LTD), 29 June 1992 (1992-06-29) abstract	1-25
Α	US 5 091 004 A (TABAYASHI ET AL) 25 February 1992 (1992-02-25) the whole document	1-25
A	HEBNER T R ET AL: "Ink-jet printing of doped polymers for organic light emitting devices" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 72, no. 5, 2 February 1998 (1998-02-02), pages 519-521, XP012020626 ISSN: 0003-6951 the whole document	1-25

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte nal Application No
PCT/EP2005/001596

Patent document cited in search report		Publication date			Publication date
WO 02069119	A	06-09-2002	CN EP WO JP US TW	1505846 A 1364420 A2 02069119 A1 2004532096 T 2004109051 A1 527432 B	16-06-2004 26-11-2003 06-09-2002 21-10-2004 10-06-2004 11-04-2003
WO 02072714	Α	19-09-2002	CN WO EP JP US	1531579 A 02072714 A1 1370619 A1 2004535653 T 2004225056 A1	22-09-2004 19-09-2002 17-12-2003 25-11-2004 11-11-2004
US 2003127977	A1	10-07-2003	KR KR	2003058767 A 2003058791 A	07-07-2003 07-07-2003
EP 0610929	A	17-08-1994	AU AU CA DE DE EP JP JP	670478 B2 5508094 A 2115334 A1 69419329 D1 69419329 T2 0610929 A1 3414479 B2 6293834 A 5510395 A	18-07-1996 18-08-1994 11-08-1994 12-08-1999 25-11-1999 17-08-1994 09-06-2003 21-10-1994 23-04-1996
JP 04180977	Α	29-06-1992	JP	3317697 B2	26-08-2002
US 5091004	Α	25-02-1992	JP	63264684 A	01-11-1988

INTERNATIONALER RECHERCHENBERICHT

Int€ nales Aktenzeichen PCT/EP2005/001596

a. Klassifizierung des anmeldungsgegenstandes IPK 7 H01L51/40 H05B33/10 C09K11/02 C09D11/00 H05B33/14

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 7 \quad H01L \quad H05B \quad C09D \quad C09K$

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu

° Besondere Kategorien von angegebenen Veröffentlichungen

entnehmen

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.	
X	WO 02/069119 A (CAMBRIDGE DISPLAY TECHNOLOGY LIMITED; LYON, PETER, JOHN; CARTER, JULIA) 6. September 2002 (2002-09-06) in der Anmeldung erwähnt Seite 8, Absatz 2; Ansprüche 1-18	1–25	
x	WO 02/072714 A (COVION ORGANIC SEMICONDUCTORS GMBH; SPREITZER, HUBERT; BECKER, HEINRIC) 19. September 2002 (2002-09-19) in der Anmeldung erwähnt Ansprüche 1,16,21	1–25	
X	US 2003/127977 A1 (BAE SUNG-JOON ET AL) 10. Juli 2003 (2003-07-10) in der Anmeldung erwähnt Ansprüche	1-25	

 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der Ihr zugrundellegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
13. Juli 2005	27/07/2005
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Lehnert, A
Formblatt PCT/ISA/210 (Blatt 2) (Januar 2004)	

Siehe Anhang Patentfamilie

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum

INTERNATIONALER RECHERCHENBERICHT

Int nales Aktenzeichen
PCT/EP2005/001596

		PC1/EP2005/001596
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile Betr. Anspruch Nr.
A	EP 0 610 929 A (UNITIKA LTD) 17. August 1994 (1994-08-17) Anspruch 1	1-25
Α	PATENT ABSTRACTS OF JAPAN Bd. 016, Nr. 490 (C-0994), 12. Oktober 1992 (1992-10-12) & JP 04 180977 A (HITACHI CHEM CO LTD), 29. Juni 1992 (1992-06-29) Zusammenfassung	1-25
Α	US 5 091 004 A (TABAYASHI ET AL) 25. Februar 1992 (1992-02-25) das ganze Dokument	1-25
A	HEBNER T R ET AL: "Ink-jet printing of doped polymers for organic light emitting devices" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 72, Nr. 5, 2. Februar 1998 (1998-02-02), Seiten 519-521, XP012020626 ISSN: 0003-6951 das ganze Dokument	1-25

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte les Aktenzeichen
PCT/EP2005/001596

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung				Datum der Veröffentlichung
WO 02069119 A	06-09-2002	CN EP WO JP US TW	1505846 A 1364420 A 02069119 A 2004532096 T 2004109051 A 527432 E	42 41 Г 41	16-06-2004 26-11-2003 06-09-2002 21-10-2004 10-06-2004 11-04-2003
WO 02072714 A	19-09-2002	CN WO EP JP US	1531579 A 02072714 A 1370619 A 2004535653 T 2004225056 A	A1 A1 Г	22-09-2004 19-09-2002 17-12-2003 25-11-2004 11-11-2004
US 2003127977 A	I 10-07-2003	KR KR	2003058767 A 2003058791 A		07-07-2003 07-07-2003
EP 0610929 A	17-08-1994	AU AU CA DE DE EP JP JP	69419329 D 69419329 T 0610929 A	A A1 D1 F2 A1 B2	18-07-1996 18-08-1994 11-08-1994 12-08-1999 25-11-1999 17-08-1994 09-06-2003 21-10-1994 23-04-1996
JP 04180977 A	29-06-1992	JP	3317697 E	32	26-08-2002
US 5091004 A	25-02-1992	JP	63264684 A	Α	01-11-1988