1 Overview

정의

- 하드웨어와 응용프로그램 (또는 사람) 사 이 중간 역할
 - 성능(Performance) 향상을 도모
 - 사용자 인터페이스(User interface) 제공

성능 척도

• 처리량 (<u>T</u>hroughput)

자원 활용도(Utilization)

• 응답시간 (Response)

jobs/second

% (of time busy)

second

user oriented

	자원	Т	U	R
식당	의자, 식기	팔린그릇/시간	의자 사용(%)	음식 빨리?
컴퓨터	CPU, 메모리	끝낸 Job/시간	CPU 사용(%)	Output 빨리?

system oriented

관점/표현의 전환

- 주어, 주체
 - 다른 과목 내 프로그램
 - OS 과목 OS가 주체
- "<u>내 프로그램이</u> 메모리에 <u>올라간다</u>"
- "OS가 내 프로그램에 메모리 공간을 할당 한다"
- "<u>내 프로그램이</u> CPU 상에서 <u>돌아간다</u>"
- <u>"OS가</u> "내 프로그램에 <u>CPU를 할당</u> 한다"

Process vs. Program

- 프로그램(Program)
 - Code
 - 정적 개념

```
source program
main()
{
    printf("Hello");
}
```


*.EXE a.out

- 프로세스(Process)
 - 실행 중인 프로그램
 - 동적 개념
 - 프로그램 + 자원(기억장치, CPU 등)\

OS가 하는 일

프로세스 관리

- OS가 프로세스에 자원을 할당/회수
- OS가 자원을 할당하기 시작하면
 - Process is "created"
 - 메모리 공간 할당
 - CPU 할당 ...
- Process가 끝나면
 - OS가 자원을 회수
 - 메모리 공간 등 회수

주기억장치 관리

보조기억장치 관리

입출력 시스템

OS 구성요소

- 하드웨어와 사람(또는 응용 프로그램) 사 이 중간 역할
 - 성능(Performance) 향상을 도모
 - 사용자 인터페이스(User interface) 제공

Operating System Definitions

- Resource allocator manages and allocates resources.
- Control program controls the execution of user programs and operations of I/O devices.
- Kernel the one program running at all times (all else being application programs).

OS에서 사용되는 기법

옛날 CPU의 가격

진공관

트랜지스터

VLSI

초창기 컴퓨터 일일이 손으로 연결 가격이 매우 비쌈 가격이 부품수에 비례

Uni-programming

Multi-programming (Throughput, Utilization 높아짐)

Main CPU - Satellite CPU(channel)

그러나 30000쪽이 너무 오랫동안 메모리를 차지함

SPOOLING

SPOOLING - input

OS의 종류

Single-tasking vs. Multi-tasking

Single-user vs. Multi-user

PC Windows

Server Linux, UNIX, IBM

일괄처리(Batch) 시스템

일괄처리	개별처리	
시스템이 비싼 경우	시스템이 싼 경우	
Utilization Thruput 위주	Response 위주	
버스	택시	
Cobol 프로그램 batch?	도착 즉시 매번 수행	
Cobol 컴파일러 수행		
전화요금 데이터 batch?	도착 즉시 매번 수행	
요금프로그램 수행		

Card Reader & Batch System

같은 종류 일감이 batch로 쌓여야 프로그램을 수행

Operator가 batch 크기로 수행 순서를 결정

시분할(Time-sharing) 시스템

- 터미널의 등장
- keyboard로 부터 프로그램 명령 입력
 - "탐색기" "folder 이동" "list files" "cp"
- 작은 일 수초 내 output 주어야
- short interactive jobs (입력 즉시)
- multi-user 시스템부터 출발했음
- Time-share
 - CPU 등의 시간을
 - 여러 job이 돌려가며 사용

실시간 (Realtime) 시스템

- 747, 원자력 발전소, 중환자실, MP3...
- deadline을 가진 job들
- 보통 m-seconds 이내에 Response 주어야

