1

(GATE ME 2010)

 $d) \geq 2$

ASSIGNMENT 1: GATE 2010 ME: MECHANICAL ENGINEERING

EE25BTECH11060 - Namaswi Vajjala

Q.1-Q.25 carry o 1) The parabolic a revolution is		s revolved around the x-	axis. The volume of the soli	id of
revolution is			(GATE ME 2	:010)
a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{3\pi}{4}$	d) $\frac{3\pi}{2}$	
2) The Blasius equ	ation,			
		$\frac{d^3f}{d\eta^3} + \frac{f}{2}\frac{d^3f}{d\eta^3}$		
=0. is a			(GATE ME 2	.040
b) Third order nc) Third order li	nonlinear ordinary differential onlinear ordinary differential nonlinear ordinary differential nonlinear ordinary differential is	tial equation equation		
		$J_{-1} = 1 + x^{-1}$	(GATE ME 2	(010)
a) -π	b) $-\pi/2$	c) $-\pi/2$	d) π	,
4) The modulus of	the complex number $(\frac{3+\epsilon}{1-\epsilon})$	$\frac{4i}{2i}$) is	(CATE ME 2	010)
	_		(GATE ME 2	,U1U)
a) 5	b) $\sqrt{5}$	c) $\frac{1}{\sqrt{5}}$	d) $\frac{1}{5}$	
5) The function $y = \frac{1}{2}$	= 2 - 3x		(CATE ME 2	010
b) is continuousc) is continuousd) is continuous	$\forall x \in \mathbb{R}$ and differentiable $\forall x \in \mathbb{R}$ and differentiable $\forall x \in \mathbb{R}$ and differentiable $\forall x \in \mathbb{R}$ except at $x = 3$ a stically indeterminate structure.	e $\forall x \in \mathbb{R}$ except at $x = \frac{3}{2}$ e $\forall x \in \mathbb{R}$ except at $x = \frac{2}{3}$ and differentiable $\forall x \in \mathbb{R}$	(GATE ME 2	.U1U)

7) Then there are 2 points P and Q in a planar body. The relative velocity between 2 points

c) 2

b) 0

a) ≤ -1

(GATE	ME	2010)
OLLL	1411	2010)

8) The state of plane stress at a point is given by $\sigma_1 = -200 \text{MPa} \ \sigma_y = 100 \text{MPa} \ \tau_{xy} = 100 \text{MPa}$ The maximum sheer stress in (MPa) is				
maximum sneer	suess in(wif a) is		(GATE ME 2010)	
a) 111.8	b) 150.1	c) 180.3	d) 223.6	
9) Which of the fo	ollowing statements is INC	CORRECT	(GATE ME 2010)	
and longest li b) Inversions of c) Geneva mech d) Gruebler's cri 10) The natural free	nk lengths cannot be less a mechanism are created anism is an intermittent materion assumes mobitity of quency of a spring mass sy	than the sum of the remain by fixing different links or notion device. If a planar mechanism to be	hanism, the sum of the shortest ining two link lengths. ne at a time.	
on $moon(g_{moon} =$	<u>6</u>) 1S		(GATE ME 2010)	
a) ω_n	b) $0.408\omega_n$	c) $0.204\omega_n$	d) $0.167\omega_n$	
			ced by (GATE ME 2010)	
d) incraesing nu	mber of gear teeth	the influence of gravity	alone, which of the following is	
 a) Metacentre should be below centre of gravity. b) Metacentre should be above centre of gravity. c) Metacentre and centre of gravity must lie on the same horizontal line. d) Metacentre and centre of gravity must lie on the same vertical line. 13) The maximum velocity of a one-dimensional incompressible fully developed viscous flow, between two fixed parallel plates, is 6 ms⁻¹. The mean velocity (ms⁻¹) of the flow is (GATE ME 2010) 				
a) 2	b) 3	c) 4	d) 5	
14) A phenomenon of non-dimension		nsional variables with k pr	rimary dimensions. The number (GATE ME 2010)	
a) k	b) n	c) n-k	d) n+k	

a) should always be along PQ

b) can be oriented along any directionc) should always be perpendicular to PQ

d) should be along QP when body undergoes pure transition

6) A turbo-charged four-stroke direct injection diesel engine has a displacement volume of 0.0259 m ³ (25.9liters). The engine has an output of 950KW at 2200 rpm. The mean effective pressure (in MPa) is elegant to				
is closest to			(0	GATE ME 2010)
a) 2 b) 1	c)	0.2	d) 0.1	
<u> </u>	-	nt into conta	ct with a high tem	perature thermal
reservoir. The entropy change of th	ne universe is		(0	GATE ME 2010)
· · · · · · · · · · · · · · · · · · ·	KW power for a ho	ead of 40m.	If the head is redu	aced to 20m, the
F			(0	GATE ME 2010)
a) 177 b) 354	c)	500	d) 707	
The material property which depen	ds only on the bas	sic crystal s		GATE ME 2010)
a) fatigue strengthb) work hardening			-	
In a gating system, the ratio 1:2:4	represents		(0	GATE ME 2010)
b) pouring basin area: ingate area:c) sprue base area: ingate area : cas	runner area sting area			
A shaft has a dimension, $\phi 35^{-0.025}$		values of fu	ndamental deviation	on and tolerance
are			(0	GATE ME 2010)
a) -0.025, ±0.08 b) -0.025, 0.016	· · · · · · · · · · · · · · · · · · ·			
In a CNC program block, N002 G	02 G91 X40 ZA0	, G02 and 0		GATE ME 2010)
b) circular interpolation in countercc) circular interpolation in clockwisd) circular interpolation in clockwis	lockwise direction se direction and inceeding and above the direction and abov	and absolu cremental d solute dime	ental dimension te dimension mension nsion	,
	(25.9liters). The engine has an outrous closest to a) 2 b) 1 One kilogram of water at room ten reservoir. The entropy change of the reservoir. The entropy change of the reservoir. The entropy change of water comparison of the reservoir. The entropy change of water comparison of the reservoir. The entropy change of the reservoir. The entrop	(25.9liters). The engine has an output of 950KW at 22 is closest to a) 2 b) 1 c) One kilogram of water at room temperature is brough reservoir. The entropy change of the universe is a) equal to entropy change of water c) equal to zero d) always positive A hydraulic turbine develops 1000KW power for a he power developed (in KW)is a) 177 b) 354 c) The material property which depends only on the base a) fatigue strength c) b) work hardening d) In a gating system, the ratio 1:2:4 represents a) sprue base area: runner area: ingate area b) pouring basin area: ingate area: casting area d) runner area: ingate area: a casting area d) runner area: ingate area: casting area A shaft has a dimension, φ35 ^{-0.025} The respective rare a) -0.025, ±0.08 c) b) -0.025, 0.016 d) In a CNC program block, N002 G02 G91 X40 ZA0 a) circular interpolation in counterclockwise direction b) circular interpolation in clockwise direction and incolocicular interpolation in clockwise direction and ab	(25.9liters). The engine has an output of 950KW at 2200 rpm. The is closest to a) 2 b) 1 c) 0.2 One kilogram of water at room temperature is brought into contareservoir. The entropy change of the universe is a) equal to entropy change of the reservoir b) equal to entropy change of water c) equal to zero d) always positive A hydraulic turbine develops 1000KW power for a head of 40m. power developed (in KW)is a) 177 b) 354 c) 500 The material property which depends only on the basic crystal st a) fatigue strength b) work hardening c) fracture strength b) work hardening d) elastic consum a gating system, the ratio 1:2:4 represents a) sprue base area: runner area: ingate area c) sprue base area: ingate area: casting area d) runner area: ingate area: casting area A shaft has a dimension, φ35 ^{-0.025} The respective values of further area area: a) -0.025, ±0.08 b) -0.025, 0.016 c) -0.009, ±0.0 d) -0.009, 0.01 In a CNC program block, N002 G02 G91 X40 ZA0, G02 and Compute the policy of the control of the cont	(25.9liters). The engine has an output of 950KW at 2200 rpm. The mean effective pris closest to (Ca) 2 b) 1 c) 0.2 d) 0.1 One kilogram of water at room temperature is brought into contact with a high tem reservoir. The entropy change of the universe is (Ca) equal to entropy change of the reservoir b) equal to entropy change of water c) equal to zero d) always positive A hydraulic turbine develops 1000KW power for a head of 40m. If the head is redepower developed (in KW)is (Ca) 177 b) 354 c) 500 d) 707 The material property which depends only on the basic crystal structure is (Ca) fatigue strength b) work hardening d) elastic constant In a gating system, the ratio 1:2:4 represents (Ca) sprue base area: runner area: ingate area b) pouring basin area: ingate area: casting area d) runner area: ingate area: casting area A shaft has a dimension, \$\phi 35^{-0.025}\$ The respective values of fundamental deviation are (Ca) -0.025, \pm 0.08 b) -0.025, 0.016 In a CNC program block, N002 G02 G91 X40 ZA0, G02 and G91 refer to

smoothening method (smoothening coefficient = 0.25), forecast for the month of March is

	a) 431	b) 9587	c) 10706	d) 11000
23)	Little's law is a relat	tionship between		(GATE ME 2010)
		length of the queue les and job due dat	• •	(GITE WE 2010)
24)	vechile manufacturin	ig assembly line is	an example of	(GATE ME 2010)
	a) product layotb) process layot		c) manufacture layd) fixed layot	yot
25)	-		ramming problem uses	(GATE ME 2010)
26)	 a) all the points in the b) only the comer poet c) intermediate pointed d) only the interior period Q.26-Q.55 carry two Torque exerted on a using Simpson's rule 	sints of the feasible s within the infeasi points in the feasible to marks each flywheel over a cy	ible region e region	wheel energy $(in Jperunit cycle)$
		Angle (degree) 0 Torque (N m) 0		300 360 -355 0
				(GATE ME 2010)
	a) 542	b) 993	c) 1444	d) 1983
27)	One of the eigenvect	cors of the matrix A	$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} $ is	(GATE ME 2010)
	a) $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	c) $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$	d) $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$
28)	Velocity vector of a	flow field is given	as $(V) = 2xy \hat{i} - x^2 \hat{j}$. The velo	ocity vector at (1, 1, 1) is (GATE ME 2010)
	a) $4\hat{i} - \hat{j}$ b) $4\hat{i} - \hat{k}$		c) $\hat{i} - 4\hat{j}$ d) $\hat{i} - 4\hat{j}$	
29)	The Laplace transfor	m of a function $f($	(t) is $\frac{1}{(s^2)(s+1)}$. The function $f(t)$	(GATE ME 2010)
	a) $t-1+e^t$	b) $t+1+e^{-t}$	c) $-1+e^{-t}$	d) $2t + e^{-t}$

30) A box contains 2 washers, 3 nuts and 4 bolis. Items are drawn from the box at random one at a time without replacement. The probability of drawing 2 washers first followed by 3 nuts and subsequently the 4 bolis is

(GATE ME 2010)

a) $\frac{2}{315}$

b) $\frac{1}{630}$

c) $\frac{1}{1260}$

- d) $\frac{1}{2520}$
- 31) A band brake having band-width of 80 mm, drum diameter of 250 mm, coefficient of friction of 0.25 and angle of wrap of 270 degrees is required to exert a friction torque of 1000 N m. The maximum tension ($in\ kN$)developed in the band is

(GATE ME 2010)

a) 1.88

b) 3.56

c) 6.12

- d) 11.56
- 32) A bracket (*shown in figure*) is rigidly mounted on wall using four rivets. Each rivet is 6mm in diameter and has an effective length of 12mm.

Direct shear stress (in MPa) in the most heavily loaded rivet is

(GATE ME 2010)

a) 4.4

b) 8.8

c) 17.6

- d) 35.2
- 33) A mass m attached to a spring is subjected to a harmonic force as shown in figure. The amplitude of the forced motion is observed to be 50 mm. The value of m (in kg) is

a) 0.1

b) 1.0

c) 0.3

d) 0.5

34) For the epicyclic gear arrangement shown in the figure, $w_2 = 100$ clockwise (CW) and $w_{arod} = 80$ rad/s counter clockwise (CCW). The angular velocity (in rad/s) is

(GATE ME 2010)

a) 0

- b) 70CW
- c) 140CCW
- d) 140CW

35) A lightly loaded full journal bearing has journal diameter of 50 mm, bush bore of 50.05 mm and bush length of 20 mm. If rotational speed of journal is 1200 rpm and average viscosity of liquid lubricant is 0.03 Pa s. the power loss (in W) will be

(GATE ME 2010)

a) 37

b) 74

c) 118

- d) 237
- 36) For the configuration shown, the angular velocity of link AB is 10 rad/s countorclockwise. The magnitude of the relative sliding velocity (in ms"') of slider B with respect to rigid link CD is

a) 0

b) 0.86

c) 1.25

d) 0.25

- 37) A smooth pipe of diameter 200 mm carries water. The pressure in the pipe at section SI (elevation: 10m) is 50 kPa. At section S2 (elevation: 12m) the pressure is 20 kPa and velocity is $2 ms^{-1}$ Density of water is $1000 \ kgm^{-3}$ and acceleration due to gravity is $9.8ms^{-2}$ Which of the following is TRUE (GATE ME 2010)
 - a) flow is from S1 to S2 and head toss is 0.53 m
 - b) flow is from S2 to S1 and head loss is 0.53 m
 - c) flow is from SI to S2 and head loss is 1.06 m
 - d) flow is from S2 to SI and head loss is 1.06 m

38) Match the following

P: Compressible flow	U: Reynolds number
Q: Free surface flow	V: Nusselt number
R: Boundary layer flow	W: Weber number
S: Pipe flow	X: Froude number
T: Heat convection	Y: Mach number
	Z: Skin friction coefficient

(GATE ME 2010)

a) P-U; Q-X; R-V; S-Z; T-W

c) P-Y: Q-W: R-Z: S-U: T-X

b) P-W; Q-X; R-Z: S-U; T-V

d) P-Y; Q-W; R-Z: S-U; T-V

39) A mono-atomic ideal gas (y=1.67, molecular weight = 40) is compressed adiabatically from 0.1 MPa, 300K to 0.2 MPa. The universal gas constant is 8.314 kJ kmol" K-1. The work of compression of the gas (in kJ kg") is

(GATE ME 2010)

a) 29.7

b) 19.9

c) 13.3

d) 0

40) Consider the following two processes; a. A heat source at 1200K loses 2500kJ of heat to a sink at 800K b. A heat source at 800K loses 2000kJ of heat to a sink at 500K Which of the following statements is true?

	 a) Process I is more irreversible than Process II b) Process II is more irreversible than Process I c) Icreversibility associated in both the processes are equal 					
	'K-1, One end of the fi	ter and 100 mm length. T n is maintained at 130°C	The thermal conductivity of and its remaining surface is 40Wm- K-', the heal lo	is exposed to ambient air		
	a) 0.08	b) 5.00	c) 7.00	d) 7.80		
42)	per kg dry ajr. Assume	molecular weight of air a	30°C and specific humidit as 28.93. If the saturation kPa, then the relative hum	vapour pressure of water		
	a) 50.5	b) 38.5	c) 56.5	d) 68.5		
43)	welding using 30 V po	wer supply. At the interfa	r diameter 110 mm each ace, 1 mm of malcrial me is 64.4MJ m"1, then time	Its from each pipe which e required for welding (in		
				(GATE ME 2010)		
	a) 1	b) 5	c) 10	d) 20		
44)		• ' '	5 and constant (<i>K</i>) is 90. ove which tool A will ha	•		
				(GATE ME 2010)		
	a) 26.7	b) 42.5	c) 80.7	d) 142.9		
45)	from the bottom, 5 poin	ts are touched and a diame 40 mm diameter is obtai	probe of 2 mm diameter. eter of circle (<i>not compens</i> ned at a height $Z = 40$ m	ated for size) is obtained		

(GATE ME 2010)

- a) 13.334
- b) 15.334
- c) 15.442
- d) 15.542
- 46) Annual demand for window frames is 10000. Each frame costs Rs. 200 and ordering cost is Rs. 300 per order. Inventory holding cost is Rs. 40 per frame per year. The supplier is willing to offer 2 (GATE ME 2010)
 - a) order 200 frames every time
 - b) accept 2
 - c) accept 4
 - d) order Economic Order Quantity
- 47) The project activities, precedence relationships and durations are described in the table. The critical path of the project is

Activity	Precedence	Duration (in days)
P	_	3
Q	_	4
R	P	5
S	Q	5
T	R, S	7
U	R, S	5
V	T	2
W	U	10

- a) P-R-T-V
- b) Q-S-T-Y

- c) P-R-U-W
- d) Q-S-U-W

(GATE ME 2010)

Common Data Questions

Common Data for Questions 48 and 49

In a steam power plant operating on the Rankine cycle, steam enters the turbine at 4MPa, 350 C and exits at a pressure of 15 kPa. Then it enters the condenser and exits as saturated water. Next, a pump feeds back the water to the boiler. The adiabatic efficiency of the turbine is 90%. The thermodynamic states of water and steam are given in the table.

h is specific enthalpy, s is specific entropy and v the specific volume; subscripts f and g denote saturated liquid state and saturated vapour state.

State	h (kJ/kg)	$s (kJ/kg\cdot K)$	ν (m³/kg)
Steam: 4 MPa, 350°C	3092.5	6.5821	0.06645
Water: 15 kPa	$h_f = 225.94$	$s_f = 0.7549$	$v_f = 0.001014$
	$h_g = 2599.1$	$s_g = 8.0085$	$v_g = 10.02$

TABLE 47: Thermodynamic properties of steam and water at specified states.

	48)	The	network	$(KJKg^{-1})$	output	of	the	cycle
--	-----	-----	---------	---------------	--------	----	-----	-------

a) 498

b) 775

c) 860

d) 957

49) Heat supplied $(kJkg^{-1})$ to the cycle is

(GATE ME 2010)

a) 2372

b) 2576

c) 2863

d) 3092

Common Data for Questions 50 and 51:

Four jobs are to be processed on a machine as per data listed in the table

Job	Processing limit (in days)	Due date
1	4	6
2	7	9
3	2	19
4	8	17

50) If the Earliest Due Date (*EED*) rule is used to sequence the jobs, the number of jobs delayed is (GATE ME 2010)

a) 1

b) 2

c) 3

d) 4

51) Using the Shortest Processing Time (SPT) rule, 101al tardiness is

(GATE ME 2010)

a) 0

b) 2

c) 6

d) 8

Linked Answer Questions Statement for Linked Answer Questions 52 and 53:

A massless beam has a loading pattern as shown in the figure. The beam is of rectangular cross-section with a width of 30 mm and height of 100 mm.

52) The maximum bending moment occurs at

(GATE ME 2010)

- a) Location B
- b) 2675 mm lo the right of A
- c) 2500 mm to the right of A
- d) 3225 mm to the right of A
- 53) The maximum magnitude of bending stress (in MPa) is given by

(GATE ME 2010)

a) 60.0

b) 67.5

- c) 200.0
- d) 225.0

Statement for Linked Answer Questions 54 and 55:

In shear cutting operation, a sheet of 5 mm thickness is cut along a length of 200 mm. The cutting blade is 400 mm long (see figure) and zero-shear (S=0) is provided on the edge. The ultimate shear strength of the sheet is 100 MPa and penetration to thickness ratio is 0.2. Neglect friction.

54) Assuming force vs displacement curve is regular then the work done is

(GATE ME 2010)

	a) 100	b) 200	c) 250	d) 300
55)		= 20 mm) is now provid the maximum force (in k	ed on the blade. Assumir(N) exerted is	
				(GATE ME 2010)
	a) 5	b) 10	c) 20	d) 40
	General Aptitude (GA) Questions Q.56 - Q.60	carry one mark each.	
56)	-	± •	ey, 17 of them play foothersons playing neither hoc	
	a) 2	b) 17	c) 13	d) 3
57)			ns given below to complet ıld live a better planet f	
	a) uphold	b) restrain	c) cherish	d) conserve
58)	-	v - v	words followed by four pal pair. Unemployed: W	
59)	a) fallow: landb) unaware: sleeperc) wit: jesterd) renovated: houseWhich of the following	options is the closest in	meaning to the word below	
	a) cyclieb) indirectc) confusingd) crooked			(GATE ME 2010)
60)		-	ns given below to complet of seriousness about the	2
	a) masked	b) belied	c) betrayed	d) suppressed
	Q.61 -Q.65 carry two	marks each.		

61) Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were born on 1" January. The age difference between any two successive siblings (that is born one after another)

d) 54

d) 1513

(GATE ME 2010)

			10
 i. Hari's age + G ii. The age difference not the youngest. iii. There are no a) SGEI b) HSIG c) IGSH d) IHSG 	twins. In what order were	Saira's age. ra is 1 year. However, G they born (oldest first)?	
unskilled workers	can build a wall in 30 day	ys. If a team has 2 skilled	s can build a wall in 25 days; 10 d, 6 semi-skilled and 5 unskilled
workers. how lon	g will it take to build the	wall?	(GATE ME 2010)
a) 20 days	b) 18 days	c) 16 days	d) 15 days
populations. Che and regretfully, are useful tools	emical agents that do the there exist people in mil	oir work silently appear litary establishments w	mies to suppressioo of civilian r to be suited to such warfare; rho think that chemical agents e above passage: (GATE ME 2010)
b) Chemical agenc) Use of chemicald) People in milit	e has resulted in civil strifts are useful in modern wal agents in warfare would ary establishments like to . 3, 3, 3, 4, 4, 4, 4 how 1	arfare. I be undesirable. use chemical agents in v	war. mbers greater than 3000 can be
			(GATE ME 2010)

c) 52

c) 1623

a) 50

a) 534

b) 51

b) 1403

65) If 137+276=435 how much is 731+672?