

CS310 Natural Language Processing 自然语言处理 Lecture 02 - Word Vectors

Instructor: Yang Xu

主讲人: 徐炀

xuyang@sustech.edu.cn

Table of Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

Words as one-hot vectors

- Words as discrete symbols ⇔ (equivalent to) localist representations
- One-hot vectors

Vocabulary (10k) =
$$\begin{bmatrix} a \\ about \\ all \\ \vdots \\ zoo \end{bmatrix}$$

Apple

[0 0 0 0 0 0 0 0 **1** 0 0 0 0 0 0 0 0 ... 0]

Orange [00000000000001000...0]

I would like some apple juice

I would like some orange _____

Distance between any pair of words is constant:

Euclidean distance =
$$\sqrt[2]{(1-0)^2+(1-0)^2}$$

Cosine distance = 0

One-hot vector is not helpful

Words as real-valued vectors

			A Part of the second se			
	Man	Woman	 King	Queen	Apple	Orange
Gender	-1	1	-0.98	0.97	0.00	-0.01
Royal	0.01	0.02	0.93	0.98	-0.01	0.00
Age	0.03	0.02	0.72	0.68	0.03	0.02
Food	0.00	0.00	0.01	0.02	0.95	0.97

$$e_{Man} = \begin{bmatrix} -1\\0.01\\0.03\\0.0 \end{bmatrix}$$
 $e_{Woman} = \begin{bmatrix} 1\\0.02\\0.02\\0.0 \end{bmatrix}$ $e_{Man} - e_{Woman} = \begin{bmatrix} -2\\-0.01\\0.01\\0.00 \end{bmatrix}$

$$e_{King} - e_{Queen} = \begin{bmatrix} -1.95 \\ -0.05 \\ 0.04 \\ -0.01 \end{bmatrix}$$

With real-valued dense vectors, word similarity can be computed more accurately

Table of Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

Documents and Word Counts

- Goal: Derive word vectors from a collection of documents
- without annotation -- unsupervised/self-supervised

- Notations:
- x is the collection of C documents
- x_c is the cth document in the corpus
- ℓ_c is the length of x_c (in # of tokens)
- N is the total number of tokens, $N = \sum_{c=1}^{C} \ell_c$

Build Word-Document Matrix (term-document matrix)[1]

- Build matrix $\mathbf{A} \in \mathbb{R}^{V \times C}$, which contains the count of each word in each document
- Example:

 x_1 :学而时习之

x2:学而不思则罔

x3: 思而不学则殆

Entry $\mathbf{A}_{v,c} = \operatorname{count}_{x_c}(v)$, count of word v in the cth document

		x_1	x_2	x_3
	学	1	1	1
	而	1	1	1
	不	0	1	1
	思	0	1	1
$V \prec$	则	0	1	1
	时	1	0	0
	习	1	0	0
	之	1	0	0
	罔	0	1	0
	殆	0	0	1

[1] https://en.wikipedia.org/wiki/Term-document_matrix

Think: how much surprise is in each word?

- What is the expected occurrence of word v in document c?
- Under a simple assumption, the chance of word v to occur at any position is $\frac{\operatorname{count}_{x}(v)}{N}$, (where $\operatorname{count}_{x}(v)$ is the count of v over all documents)
- So the expected occurrence of v in a document of length ℓ_c is $\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_{c}$
- Then we should consider the **ratio** of *observed* count of v in document c, $\operatorname{count}_{x_c}(v)$, to the expected count $\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c$

SP 2024

Intuition of surprise in word

	x_1	x_2	x_3
学	1	1	1
而	1	1	1
不	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

$$count_{x}(学) = 1 + 1 + 1 = 3$$

Expected count of 学 in
$$x_1$$
 is $\frac{\operatorname{count}_x(Ÿ)}{N} \cdot \ell_1 = \frac{3}{17} \cdot 5 \approx 0.88$

The observed count of 学 in x_1 is $count_{x_1}$ (学) = 1

The **surprise** of seeing 学 in x_1 is:

$$\log \frac{\text{observed}}{\text{expected}} = \log \frac{\text{count}_{x_1}(\ref{p})}{\frac{\text{count}_{x_1}(\ref{p})}{N} \cdot \ell_1} \approx \log \frac{1}{0.88} \approx 0.125$$

Intuition of surprise in word

	x_1	x_2	x_3
学	1	1	1
而	1	1	1
不	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

$$count_{x}(\supset) = 1 + 0 + 0 = 1$$

Expected count of
$$\Im$$
 in x_1 is $\frac{\operatorname{count}_x(\Im)}{N} \cdot \ell_1 = \frac{1}{17} \cdot 5 \approx 0.29$

The observed count of \Im in x_1 is $\operatorname{count}_{x_1}(\Im) = 1$

The **surprise** of seeing \Im in x_1 is:

$$\log \frac{\text{observed}}{\text{expected}} = \log \frac{\text{count}_{x_1}(\nearrow)}{\frac{\text{count}_{x}(\nearrow)}{N} \cdot \ell_1} \approx \log \frac{1}{0.29} \approx 1.223 \quad \text{> surprise of } \nearrow$$

Pointwise Mutual Information

• From matrix $\mathbf{A} \in \mathbb{R}^{V \times C}$, derive positive **pointwise mutual information**

$$[\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x_c}(v)}{N} \cdot \ell_c}\right]_{+} = \left[\log \frac{N \cdot \operatorname{count}_{x_c}(v)}{\operatorname{count}_{x}(v) \cdot \ell_c}\right]_{+} \quad \text{where } [x]_{+} = \max(0, x)$$

More examples:

$$[\mathbf{A}]_{\stackrel{\text{>}}{=},2} = \log \frac{17 \cdot 1}{3 \cdot 6} \approx -0.057 \rightarrow 0 \quad \text{rounded to 0 because of max()}$$

$$[\mathbf{A}]_{\mathbb{R},2} = \log \frac{17 \cdot 1}{2 \cdot 6} \approx 0.348$$

SP 2024 CS310 NLP 11

Meaning of PMI

Pointwise mutual information for two random variables A and B:

$$\mathsf{PMI}(a,b) = \log \frac{p(A=a,B=b)}{p(A=a) \cdot p(B=b)}$$
$$= \log \frac{p(A=a \mid B=b)}{p(A=a)}$$
$$= \log \frac{p(B=b \mid A=a)}{p(B=b)}$$

Example:

$$\log \frac{\operatorname{count}_{x_1}(\nearrow)}{\frac{\operatorname{count}_{x}(\nearrow)}{N} \cdot \ell_1} \approx \log \frac{1}{0.29} \approx 1.223$$

is high, which means we learn a lot about the global meaning of " \ge " by reading x_1

Mutual Information (MI):

The amount of information each r.v. offers about the other. I.e., how much do we know about **B** by knowing about A

$$[\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c}\right]_{+} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x}(v)}{N}}\right]_{+} \text{ Global probability}$$

How much do we know about the global meaning of v by knowing about its local meaning in document c

SP 2024 CS310 NLP 12

Pointwise Mutual Information

$$PMI = [\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c} \right]_{+}$$

- If a word v has nearly same frequency in every document, then its row $[\mathbf{A}]_{v,*}$ will be nearly all zeros
- If a word v only occurs in one document c, then its PMI will be large and positive
- Thus, PMI is sensitive to rare words; usually need to smooth the frequencies by filtering rare words

	x_1	x_2	x_3
学	1	1	1
而	1	1	1
不思	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

SP 2024 CS310 NLP 13

Reflection

- Can we directly use word-document matrix $\mathbf{A} \in \mathbb{R}^{V \times C}$ (or smoothed PMI $[\mathbf{A}]$) to represent word meanings?
- For example, can we use the row vectors as input features for a neural text classifier?
- What are the advantages/disadvantages?

Improvement: Latent Semantic Analysis

(Deerwester et al., 1990)

 LSA seeks to find a more compact (low rank) representation of document-word matrix A

$$\mathbf{A} \approx \widehat{\mathbf{A}} = \mathbf{M} \times \operatorname{diag}(\mathbf{s}) \times \mathbf{C}^{\mathsf{T}}$$

$$V \times C \qquad V \times d \qquad d \times d \qquad d \times C$$

- Can be solved by applying singular value decomposition to \mathbf{A} , and then truncating to d dimensions $(\widehat{\mathbf{A}})$
- M contains left singular vectors of A
- C contains right singular vectors of A
- s are singular values of A

SVD and Truncated SVD

SVD:

 $V \times V$

 $V \times C$

 $C \times C$

 $\mathbf{C}^{ op}$

- **M** and **C** are unitary, i.e., $MM^T = I$ and $CC^T = I$
- diag(s) only has non-zero elements at diagonal
- \mathbf{M} are eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$
- \mathbf{C} are eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$
- s^2 are eigenvalues

SVD truncated at *d* dimensions:

=

M

 $V \times d$

 $d \times d$

 $d \times C$

- Truncated: keeping only top d singular values in s
- corresponding d columns in M and C

SP 2024

CS310 NLP

16

Truncated SVD => word vectors

$$\mathbf{A} \approx \widehat{\mathbf{A}} = \mathbf{M} \times \operatorname{diag}(\mathbf{s}) \times \mathbf{C}^{\mathsf{T}}$$

- vth column in M is the embedding vector for word v
- cth column in C is the embedding vector for document c
- M contains useful word vectors ("embeddings") of d dimensions

 e_c

C contains document vectors

LSA Example d = 2

- Word vectors M plotted
- Note that some words are in the same spot. Why?

	x_1	x_2	x_3
学	1	1	1
而	1	1	1
不思	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

 $\mathbf{A} =$

SP 2024 CS310 NLP 18

LSA Example d = 2

- Document vectors C plotted
- Note that documents x_2 and x_3 are in the same spot. Why?

	x_1	x_2	x_3
学而	1	1	1
而	1	1	1
不	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

19

A =

LSA Summarized

- It creates a mapping of words and documents into the same lowdimensional space.
- Bag-of-words assumption (Salton et al., 1975):
 - A document is nothing more than the distribution of words it contains.
- Distributional hypothesis (Harris, 1954; J.R. Firth, 1957):
 - Words' meanings are nothing more than the distribution of *contexts* (here, documents) they occur in.
 - Words that occur in similar contexts have similar meanings.
- Word-document matrix **A** is sparse and noisy; LSA "fills in" the zeroes and tries to eliminate the noise.
- It finds the best rank-d approximation to A.

SP 2024 CS310 NLP 20

Table of Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

Motivation: Distributional semantics

- Distributional semantics: A word's meaning is given by the words that frequently appear close-by
- "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- When a word w appears in a text, its local context is the set of words that co-occur within a fixed-size window

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

The meaning of "banking" is represented by these context words

SP 2024 CS310 NLP 22

In What Form of Representation?

• **Goal**: Obtain a dense vector for each word, so that word sense similarity can be computed via vector distance, such as dot product

$$e_{apple} = \begin{bmatrix} 0.00 \\ -0.01 \\ 0.03 \\ 0.95 \\ \dots \\ 0.21 \end{bmatrix} \quad e_{orange} = \begin{bmatrix} -0.01 \\ 0.00 \\ 0.02 \\ 0.97 \\ \dots \\ 0.22 \end{bmatrix} \quad \text{Common dimension size:} \quad 100\text{-d,} 200\text{-d,} 300\text{-d,} \dots$$

These dense word vectors are also called word embeddings (嵌入) (which implies the idea of placing or mapping words into some continuous vector space)

Intuition: One-hot vs. Distributed repr.

One-hot representation

Distributed representation

The individual dimensions of a word embedding do not have concrete "meanings"

$$E_{orange} = \begin{bmatrix} -0.01\\ 0.00\\ 0.02\\ 0.97\\ ...\\ 0.22 \end{bmatrix}$$

For instance, e_{orange} It does NOT mean $1^{\rm st}$ dimension -0.01 is for "animalness" $4^{\rm th}$ dimension 0.97 is for "fruitness" They are only meaningful when compared to other words

SP 2024 CS310 NLP 24

Question: How to obtain word embeddings?

- An effective and efficient method: Word2vec (Mikolov et al. 2013 a&b)
- Basic Idea:
- Given a corpus as a list of words
- Go through each position t in the text, which has a center word c and context ("outside") words o
- Use the similarity of word vectors between c and o to compute the probability of o given c, i.e., conditional probability P(o|c) (or vice versa)
- Maximize this probability by keep adjusting the word vectors

Two architectures of Word2vec

Compute probability $P(w_{t+j}|w_t)$, for $j \in \{-2, -1, 1, 2\}$ when window size is 2

Use A Moving Window $t \leftarrow t + 1$

Skip-gram: Compute probability $P(w_{t+j}|w_t)$, for $j \in \{-2, -1, 1, 2\}$ when window size is 2

Continuous Bag-of-Words (CBOW)

Compute only one probability at position t: $P(w_t|w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2})$, for window size 2

Word2vec Objective Function (Skip-gram as example)

- Given a data set of T tokens, for each position t = 1, ..., T, we compute the conditional probability $P(w_{t+j}|w_t)$, for $j \in \{-m, ..., m\}$, with window size m
- Then the *likelihood* of data is:

$$\mathcal{L}(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j}|w_t; \theta)$$

 θ denotes model parameters, that is, all the word **embeddings** to be learned!

• The objective function (cost/loss) is the negative log-likelihood

$$J(\theta) = -\frac{1}{T} \log \mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} | w_t; \theta)$$

Question: How to compute $P(w_{t+j}|w_t;\theta)$?

- **Solution**: Use *two* vectors per word *w*
- When w is a center word, its vector is v_w
- When w is a context (outside) word, its vector is u_w
- Then the conditional probability of context word o given center word c can be computed using **softmax** function:

$$P(o|c) = \frac{\exp(u_o^{\mathsf{T}} v_c)}{\sum_{w \in V} \exp(u_w^{\mathsf{T}} v_c)}$$

Dot product measures the similarity between o and c

Normalized over the entire vocabulary

Compute probabilities using softmax

$$P(problems|into) = \frac{\exp(u_{problems}^{\mathsf{T}} v_{into})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{into})} \qquad P(banking|into) = \frac{\exp(u_{banking}^{\mathsf{T}} v_{into})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{into})}$$

$$P(turning|into) = \frac{\exp(u_{turning}^{\mathsf{T}} v_{into})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{into})} \qquad P(crises|into) = \frac{\exp(u_{crises}^{\mathsf{T}} v_{into})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{into})}$$

Example from: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/

Problem with Softmax

center context

l would

like

some

orange

juice

with

some

white

chocolate

chips

$$P(juice|orange) = \frac{\exp(u_{juice}^{\mathsf{T}} v_{orange})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{orange})}$$

For a vocabulary of 10,000 words

Needs 10,000 times of dot product to compute the denominator

Number of Parameters

- Because *two* vectors are used per word w: v_w and u_w
- => Two parameter tables, or, embedding matrices

Usually we keep the target table **V** as the trained embeddings

Table **V** contains all parameters for center vectors

Table **U** contains all parameters for context vectors

To Overcome Softmax

Solutions

1. Hierarchical softmax

2. Negative sampling

Make binary predictions instead:

$$P\left(o < \frac{|V|}{2} \middle| c\right)$$

The probability of word o belongs to the 1st half of vocabulary

For vocabulary size |V| = 10k

Multiple steps of binary predictions until word o is found

Then
$$P(o|c) = P(o < 5k|c) \cdot P(o < 2.5k|c) \cdot P(o < 1.25k|c) \dots$$

Time complexity $O(\log(|V|))$

product of probabilities along the path

Reference: http://ruder.io/word-embeddings-softmax/

Solution 2: Negative sampling

Goal: Given a center word, predict if a randomly sampled word is its context or not (within a fixed window)

SP 2024 CS310 NLP 35

Negative Sampling: Objective Function

For token at position t, maximize the log-likelihood:

Word o is the positive sample

$$J_t(\theta) = \log \sigma(u_o^{\mathsf{T}} v_c) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P(w)} [\log \sigma(-u_{w_i}^{\mathsf{T}} v_c)]$$

The k words w_i (i = 1 ... k) are the negative samples

• Sigmoid function $\sigma(u_o^{\mathsf{T}}v_c)$ outputs the probability of o in the context window of c

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
 a monotone increasing function

SP 2024

Maximizing this term will push the dot product $u_o^\mathsf{T} v_c$ to larger values, i.e., making o and ccloser in semantic space

Maximizing this term will push the dot product $u_{w_i}^\mathsf{T} v_c$ to **smaller** values, i.e., making w_i and c farther apart in semantic space

Negative sampling: Example

С	t	У	
Center	Target	Context or not	
orange	juice	1	
orange	king	0	
orange	the	0	
orange	of	0	
orange	book	0	

Instead of using softmax:
$$P(t|c) = \frac{\exp(u_t \cdot v_c)}{\sum_{j=1...|V|} \exp(u_j \cdot v_c)} = \hat{y}_t$$

Use logistic regression:
$$P(y = 1 | c, t) = \sigma(u_t \cdot v_c)$$

k+1 times of logistic regression

For each center word, the k negative examples are different

$$k = 5 \sim 20$$
 for small dataset

$$k = 2 \sim 5$$
 for large dataset

Negative Sampling: More Details

- Maximize probability that real outside word appears;
- Minimize probability that random words appear around center word
- Sample from the distribution $P(w) = \frac{U(w)^{\frac{3}{4}}}{Z}$, the unigram frequency distribution U(w) raised to the $\frac{3}{4}$ power (Z is normalization term)
- The power makes less frequent words be sampled more often
- $0.9^{3/4} \approx 0.924 => a 2.7\%$ increase in chance being sampled
- $0.1^{3/4} \approx 0.178 => a$ 77.8% increase in chance being sampled

Table of Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

General Evaluation in NLP

- Intrinsic (内在的) vs. Extrinsic (外在的)
- Intrinsic:
 - Evaluation on a specific/intermediate subtask
 - Fast to compute
 - Not clear if really helpful unless correlation to real task is found
- Extrinsic:
 - Evaluation on a real task
 - Can take a long time to compute accuracy
 - Unclear if the subsystem is the problem or its interaction with other subsystems

Adapted from: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/

Evaluate Word Vectors (Embeddings)

• Intrinsic task: Word semantic similarity task

$$d_1 = \cos(e_{book}, e_{library})$$
, cosine similarity

Word1	Word2	Hur	nan score	Cosi	ne distance
book	library	7.46		d1	
bank	money	8.12		d2	
wood	forest	7.73		d3	
professor	cucumber	0.31		d4	
		•••			

Spearman's correlation between the two columns are used to evaluate the quality of word embeddings

Evaluate Word Vectors (Embeddings)

Intrinsic task: Word analogy task

Question: What is to "King" as "woman" to "man"?

$$e_{Man} - e_{Woman} \approx e_{King} - e_{w} \quad w = ?$$

Find the word w so that:

$$\arg\max_{w} sim(e_{w}, e_{King} - e_{Man} + e_{Woman})$$

Here, sim() is a similarity function, for example, cosine similarity

$$sim(u,v) = \frac{u^T v}{\|u\| \|v\|}$$

Finding the most similar vector e_w will hopefully pick up the word w = Queen

Word Analogy Task (as an interesting application)

Capital-common-countries:

Athens Greece Baghdad Iraq Athens Greece Bangkok Thailand Athens Greece Beijing China Athens Greece Berlin Germany

•••

Comparative:

bad worse big bigger bad worse bright brighter bad worse cheap cheaper bad worse cold colder

••

Family:

boy girl brother sister boy girl brothers sisters boy girl dad mom boy girl father mother

...

City-in-state:

Chicago Illinois Houston **Texas**Chicago Illinois Philadelphia **Pennsylvania**Chicago Illinois Phoenix **Arizona**Chicago Illinois Dallas **Texas**

...

70 - 80 % accuracy reported in Mikolov et al., 2013

Figure from: Pennington et al. (2014). Glove: Global vectors for word representation.

Extension: GloVe

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.

A Different way from Word2vec

How the paper gets to this function step by step is deep and enlightening (reading recommended)

Cost function:
$$J = \sum_{i,j=1}^{V} f(X_{ij}) (e'_{i}e_{j} + b_{i} + b'_{j} - \log(X_{ij}))^{2}$$

Dot product of two embeddings

Frequency counts of word i and j co-occur (within a fixed window)

Basic idea: words that appear together more often (larger X_{ij}) should have closer meanings (larger dot product $e'_i e_j$)

Advantages: Fast training; scalable to huge corpra

Fun Application: Emoji2vec

Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., & Riedel, S. (2016). emoji2vec: Learning emoji representations from their description. *arXiv preprint arXiv:1609.08359*.

To-Do

- Attend Lab 3
- Continue working on A2
- Read Chapter 9 RNNs and LSTMs

References

- Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975.
- Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.
- J. R. Firth. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis, pages 1–32. Blackwell, 1957.
- Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In Proceedings of ICLR, 2013a. URL http://arxiv.org/pdf/1301.3781.pdf.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In NeurIPS, 2013b.
- Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.
- Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., & Riedel, S. (2016). emoji2vec: Learning emoji representations from their description. arXiv preprint arXiv:1609.08359.