In [1]:

```
# Importing the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification
```

In [2]:

```
bank=pd.read_csv('C:/Users/Hp/Downloads/bank-full.csv',sep=";")
bank.head(10)
```

Out[2]:

	age	job	marital	education	default	balance	housing	loan	contact	day	mont
0	58	management	married	tertiary	no	2143	yes	no	unknown	5	ma
1	44	technician	sing l e	secondary	no	29	yes	no	unknown	5	ma
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	ma
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	ma
4	33	unknown	single	unknown	no	1	no	no	unknown	5	ma
5	35	management	married	tertiary	no	231	yes	no	unknown	5	ma
6	28	management	single	tertiary	no	447	yes	yes	unknown	5	ma
7	42	entrepreneur	divorced	tertiary	yes	2	yes	no	unknown	5	ma
8	58	retired	married	primary	no	121	yes	no	unknown	5	ma
9	43	technician	single	secondary	no	593	yes	no	unknown	5	ma
4											•

Generate the dataset

In [3]:

EDA

In [4]:

```
bank.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45211 entries, 0 to 45210
Data columns (total 17 columns):
#
     Column
                Non-Null Count Dtype
                -----
0
     age
                45211 non-null
                                int64
1
                45211 non-null
                                object
     job
 2
    marital
                45211 non-null
                                object
 3
     education 45211 non-null
                                object
4
                45211 non-null
    default
                                object
 5
    balance
                45211 non-null
                                int64
6
    housing
                45211 non-null
                                object
7
     loan
                45211 non-null
                                object
8
     contact
                45211 non-null
                                object
9
     day
                45211 non-null
                                int64
10
    month
                45211 non-null
                                object
     duration
                45211 non-null
                                int64
12
    campaign
                45211 non-null
                                int64
                45211 non-null
13
     pdays
                                int64
```

visualize the dataset

```
In [5]:
```

```
plt.scatter(x,y,c=y,cmap='rainbow')
plt.show()
```


split the dataset

```
In [6]:
```

```
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)
```

In [18]:

```
x_train.shape
```

Out[18]:

(75, 1)

perform logistic regression

```
In [22]:
```

```
log_reg = LogisticRegression()
log_reg.fit(x_train, y_train)
```

Out[22]:

LogisticRegression()

```
In [26]:
```

```
print(log_reg.coef_)
print(log_reg.intercept_)
```

```
[[2.9079778]]
[0.26649412]
```

make prediction using model

```
In [27]:
```

```
y_pred = log_reg.predict(x_test)
```

display the confusion matrix

```
In [28]:
```

```
confusion_matrix(y_test, y_pred)
```

Out[28]:

```
array([[14, 0], [ 0, 11]], dtype=int64)
```

In []: