Практическая реализация ЕМ-алгоритма для смеси гауссовских распределений

Г.А. Ситкарев, <sitkarev@unixkomi.ru>

Сыктывкарский Государственный Университет

1. Условия задачи

Дано N точек $(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)$ размерности M. Известно, что все точки принадлежат K многомерным гауссовским распределениям вида ω_k $\eta(\mathbf{x} \mid \mathbf{\mu}_k, \Sigma_k)$ с неизвестными параметрами $\mathbf{\mu}_k, \Sigma_k, \omega_k$:

- μ_k вектор средних значений для k-го распределения;
- Σ_k ковариационная матрица $M \times M$ для k-го распределения;
- ω_k вес k-го распределения, $\sum_k \omega_k = 1$.

Каждая точка \mathbf{x}_n имеет некоторую вероятность присутствия в распределении k. Эту вероятность мы будем обозначать как P_{nk} . Все параметры P_{nk} для всех точек удобно свести в матрицу $P_{N\times K}$:

$$P_{N\times K} = \begin{bmatrix} P_{11} & P_{12} & P_{13} & \cdots & P_{1K} \\ P_{21} & P_{22} & P_{23} & \cdots & P_{2K} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ P_{N1} & P_{N2} & P_{N3} & \cdots & P_{NK} \end{bmatrix}.$$

2. Правдоподобность и вероятности P_{nk}

Вероятностную плотность для точки с координатами \mathbf{x} будем обозначать как $P(\mathbf{x})$. Это вероятность попасть в точку по этим координатам, если случайным образом выбирать её из всей выборки. Правдоподобность параметров распределения будем обозначать как \mathscr{L} . Наша задача максимизировать \mathscr{L} , подобрав параметры $\mathbf{\mu}_k$, Σ_k , ω_k . Так как мы полагаем точки с данными независимыми, их \mathscr{L} будет произведением вероятностей присутствия точки из выборки в \mathbf{x}_n :

$$\mathscr{L} = \prod_{n=1}^{N} P(\mathbf{x}_n) = P(\mathbf{x}_1) \times P(\mathbf{x}_2) \times \cdots \times P(\mathbf{x}_N).$$

Для того, чтобы посчитать \mathcal{L} , нам нужно найти плотности распределения в точках \mathbf{x}_n и перемножить их. Для каждой точки \mathbf{x}_n плотность определяется как сумма плотностей из K распределений, пропорционально весу k-го распределения:

$$P(\mathbf{x}_n) = \sum_{k=1}^K \omega_k \, \eta(\mathbf{x}_n \mid \mathbf{\mu}_{k,} \, \Sigma_k).$$

Так как значения P_{nk} , то есть значения строки n матрицы $P_{N\times K}$, есть вероятности вхождения \mathbf{x}_n в распределение k, их сумма должна равняться единице:

$$\sum_{k=1}^k P_{nk} = 1.$$

Значит $P(\mathbf{x}_n)$ это сумма

$$P(\mathbf{x}_n) = P_{n1} \cdot P(\mathbf{x}_n) + P_{n2} \cdot P(\mathbf{x}_n) + \dots + P_{NK} \cdot P(\mathbf{x}_n),$$

но нам также известно, что

$$P(\mathbf{x}_n) = \omega_1 \, \eta(\mathbf{x}_n \mid \mathbf{\mu}_1, \, \Sigma_1) + \omega_2 \, \eta(\mathbf{x}_n \mid \mathbf{\mu}_2, \, \Sigma_2) + \cdots + \omega_K \, \eta(\mathbf{x}_n \mid \mathbf{\mu}_K, \, \Sigma_K).$$

Последнее означает, что каждое значение P_{nk} можно вычислить по формуле:

$$P_{nk} = \frac{\omega_k \, \eta(\mathbf{x}_n \mid \mathbf{\mu}_k, \, \Sigma_k)}{P(\mathbf{x}_n)} \, .$$

При заполнении матрицы $P_{N\times K}$ значениями P_{nk} , вычисления рационально построить по следующей схеме:

Для каждой строки n матрицы $P_{N \times K}$:

- а) Заполнить строку значениями $P_{nk} \cdot P(\mathbf{x}_n) = \omega_k \, \eta(\mathbf{x}_n \mid \mathbf{\mu}_k, \Sigma_k)$.
- б) Подсчитать сумму всех элементов в строке $\sum P_{nk}$.
- в) Поделить все элементы строки на сумму, полученную на предыдущем шаге.

3. Формулы максимизации

Значения $\bar{\mathbf{\mu}}_k$, $\bar{\Sigma}_k$, $\bar{\omega}_k$ на шаге максимизации вычисляются по следующим формулам:

$$\bar{\omega}_k = \frac{1}{N} \sum_n P_{nk} \tag{1}$$

$$\bar{\boldsymbol{\mu}}_k = \frac{\sum_{n} P_{nk} \cdot \mathbf{x}_n}{\sum_{n} P_{nk}} \tag{2}$$

$$\bar{\Sigma}_{k} = \frac{\sum_{n} P_{nk} \cdot (\mathbf{x}_{n} - \overline{\boldsymbol{\mu}}_{k}) (\mathbf{x}_{n} - \overline{\boldsymbol{\mu}}_{k})^{T}}{\sum_{n} P_{nk}}$$
(3)

4. Пошаговое выполнение алгоритма

Пользователь предоставляет данные \mathbf{x}_n , размерности N, M и K, значение ε и, возможно, вектор начальных значений для $\mathbf{\mu}_k$. Реализация алгоритма может состоять из следующих шагов:

- 1. На первом шаге:
 - а) Установить веса ω_k , как $\omega_k = \frac{1}{k}$.
 - б) Установить Σ_k в $I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$.
 - в) Выбрать μ_k , как K случайно взятых значения из набора \mathbf{x}_n , или же взять начальные значения, предоставленные пользователем.
- 2. На втором шаге:
 - а) Выполнить шаг E:
 - а.1) вычислить P_{nk} и $P(\mathbf{x}_n)$;
 - а.2) вычислить сумму всех логарифмов $P(\mathbf{x}_n)$;
 - а.3) сохранить $\sum \log P(\mathbf{x}_n)$ в переменную $log like_prev$.
 - б) Выполнить шаг *M*:
 - б.1) пользуясь формулой (1) и весами $P_{N \times K}$, вычислить $\bar{\omega}_k$;
 - б.2) пользуясь формулой (2) и весами $P_{N \times K}$, вычислить $\bar{\mathbf{\mu}}_{k}$;
 - б.3) пользуясь формулой (3) и весами $P_{N \times K}$, вычислить $\bar{\Sigma}_k$.

3. На третьем шаге:

- а) Выполнить шаг E, как в 2a, но сохраняя результат 2a.3 в переменную loglike.
- б) Вычислить $abs(loglike-loglike_prev)$, и сравнить с ε , заданным пользователем. Если $abs(loglike-loglike_prev) < \varepsilon$, тогда перейти на шаг 4.
- в) Выполнить шаг M, как в 26.
- г) Перейти на шаг 3.
- 4. Завершить выполнение алгоритма с успешным статусом, а значения $\bar{\pmb{\mu}}_{k_1}$ $\bar{\Sigma}_{k_1}$ $\bar{\varpi}_k$ вернуть пользователю.