Resumo de Aprendizagem de Máquina 2014-2

Eduardo M. B. de A. Tenório

embat@cin.ufpe.br

CIn-UFPE

Resumo

Este documento tem por finalidade ser um resumo dos assuntos abordados na disciplina Aprendizagem de Máquina do período 2014-2 do CIn-UFPE, ministrada pelos professores Francisco Carvalho e Teresa Ludermir. A maioria do documento referencia o livro "Pattern Classification", de Duda, Hart & Stork. Os códigos utilizados como exercício de fixação encontram-se em github.com/embatbr/resumo-aprendizagem.

1 Teoria da Decisão Bayesiana

1.1 Introdução

Teoria da Decisão Bayesiana é uma abordagem estatística para a classificação de padrões, baseada em quantificar os tradeoffs associados a tomar uma determinada decisão (classificar) utilizando probabilidade e considerando os custos associados.

O estado natural é denotado por ω , de modo que $\omega = \omega_i$, para i = 1, 2, ..., c, significa que o exemplo foi classificado como pertencente à classe ω_i . Cada uma dessas classes possui uma **probabilidade a priori** $P(\omega_i)$, com

$$\sum_{i=1}^{c} P(\omega_i) = 1, \tag{1}$$

refletindo o conhecimento prévio da chance de

um elemento da classe ω_i aparecer. A **regra** de decisão fica:

Decida
$$\omega_i$$
 se $i = \max_j P(\omega_j)$. (2)

Neste caso a classe ω_i sempre é escolhida e a probabilidade de erro é dada por:

$$P_{err}(\omega_i) = 1 - P(\omega_i). \tag{3}$$

Utilizando uma característica x que seja contínua e aleatória, sua **densidade de probabilidade estado-condicional** é dada por $p(x|\omega)$. Logo, a diferença entre $p(x|\omega_i)$ e $p(x|\omega_j)$ descreve a diferença da característica x entre as populações das classes ω_i e ω_j .

Figura 1: Para $\omega_i = \omega_2$, é mais frequente observar x entre 11 e 12 que x = 13 (valor mais provável se $\omega_i = \omega_1$).

Sabendo $P(\omega_i)$ e $p(x|\omega_i)$, e medindo um valor x, a probabilidade conjunta de achar

um padrão na classe ω_i e com x é dado por: $p(\omega_i, x) = P(\omega_i|x)p(x) = p(x|\omega_i)P(\omega_i)$, que pela **fórmula de Bayes** fica:

$$P(\omega_i|x) = \frac{p(x|\omega_i)P(\omega_i)}{p(x)},$$
 (4)

com a evidência para c classes

$$p(x) = \sum_{j=1}^{c} p(x|\omega_j) P(\omega_j).$$
 (5)

A probabilidade a posteriori das classes ω_1 e ω_2 para um conjunto de valores de x é mostrada em Fig. (2). A regra de decisão fica:

Decida ω_i se ω_i minimiza P(erro|x), (6)

onde

$$P(erro|x) = \sum_{j \neq i} P(\omega_j|x), \tag{7}$$

ou simplesmente $P(erro|x) = 1 - P(\omega_i|x)$. Então a regra torna-se:

Decida
$$\omega_i$$
 se $i = \max_j P(\omega_j | x)$, (8)

Figura 2: Probabilidades a posteriori para $P(\omega_1)=\frac{2}{3}$ e $P(\omega_2)=\frac{1}{3}$, e para as densidades de probabilidade estado-condicional mostradas em Fig. (1).

Esta regra minimiza a probabilidade média de erro, dada por

$$P(erro) = \int_{-\infty}^{\infty} P(erro|x)p(x)dx.$$
 (9)

1.2 Características Contínuas

É de fácil compreensão que a característica x pode ser trocada por um vetor de características $\mathbf{x} = (x_1, x_2, ..., x_d)$, onde \mathbf{x} pertence ao espaço \mathbf{R}^d (espaço de características). A região que decide ω_i é denotada por \mathcal{R}_i .

Outras ações além de apenas classificar um elemento podem ser tomadas, como por exemplo a **rejeição**: recusar-se a tomar uma decisão; uma opção válida quando o custo de ser indeciso é aceitável. Para isso **funções de custo** são inseridas, permitindo tratar de situações onde alguns erros de classificação são mais importantes que outros.

Seja $\{\omega_1, ..., \omega_c\}$ o conjunto finito de c classes e seja $\{\alpha_1, ..., \alpha_a\}$ o conjunto finito de possíveis ações. A função de custo $\lambda(\alpha_i|\omega_j)$ descreve o custo de tomar a ação α_i quando a classe é ω_j . Logo, observado um x em particular, tomar a ação α_i quando a classe é ω_j leva a um custo esperado (**risco**)

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x}).$$
 (10)

 $R(\alpha_i|\mathbf{x})$ é chamado de **risco condicional**. Qualquer que seja o \mathbf{x} observado, o risco pode ser minimizado selecionando a ação que minimiza $R(\alpha_i|\mathbf{x})$.

A regra de decisão geral é uma função $\alpha(\mathbf{x})$ que diz qual ação tomar para cada possível observação, ou seja, para cada \mathbf{x} a **função de decisão** $\alpha(\mathbf{x})$ assume um dos a valores $\alpha_1, ..., \alpha_a$. Logo, o **risco global** é dado por

$$R = \int R(\alpha(\mathbf{x}))p(\mathbf{x})d\mathbf{x}.$$
 (11)

O risco global mínimo é chamado de **risco de Bayes**, denotado por R^* , sendo a melhor perfomance alcançável.

1.3 Classificação por Taxa de Erro Mínima

Para evitar erros, a regra de decisão procurada é aquela que minimiza a probabilidade de erro, i.e. minimiza a **taxa de erro**. A função de custo de interesse para este caso é chamada de **simétrica** ou **zero-um**,

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & \text{se } i = j \\ 1 & \text{se } i \neq j \end{cases} i, j = 1, ..., c.$$
(12)

Como todos os erros tem custo igual, o risco condicional é dado por

$$R(\alpha_i|\mathbf{x}) = 1 - P(\omega_i|\mathbf{x}) \tag{13}$$

com $P(\omega_i|\mathbf{x})$ sendo a probabilidade condicional da ação α_i estar correta. A regra de decisao neste caso continua:

Decida
$$\omega_i$$
 se $i = \max_j P(\omega_j | x)$. (14)

Figura 3: Se a penalização de classificar ω_1 como ω_2 for maior que o oposto, então a razão tende ao threshold θ_b .

1.4 Funções Discriminantes

A maneira mais usual de representar classificadores de padrões é através de um conjunto de **funções discriminantes** $g_i(\mathbf{x}), i =$

1, ..., c. O classificador atribui um vetor de características \mathbf{x} à classe ω_i se

$$g_i(\mathbf{x}) = \max_j g_j(\mathbf{x}) \tag{15}$$

Figura 4: Classificador com c funções discriminantes e entradas d-dimensional. A ação geralmente é "escolher o maior $g_i(\mathbf{x})$ ".

Para o caso geral com riscos, pode-se fazer $g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$, enquanto para o caso "taxa de erro mínima", $g_i(\mathbf{x}) = P(\omega_i|\mathbf{x})$. A função discriminante $g_i(\mathbf{x})$ pode ser substituída por $f(g_i(\mathbf{x}))$, com $f(\cdot)$ sendo uma função monotonicamente crescente (e.g. logaritmo), com o resultado da classificação ficando inalterado. Como resultado, \mathbf{R}^d é dividido em regiões de decisão \mathcal{R}_i (não necessariamente conectadas) para cada classe ω_i .

Para o caso em que c=2, o classificador é chamado **dicotomizador**, e apenas uma função discriminante $g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x})$ é necessária. Logo a regra de decisão torna-se:

Decida
$$\omega_1$$
 se $g(\mathbf{x}) > 0$; senão, ω_2 . (16)

1.5 Características Discretas

Em muitas aplicações práticas as componentes de \mathbf{x} são valores inteiros binários, ternários ou outro de ordem mais alta, de modo que \mathbf{x} pode assumir apenas um dos m valores discretos $\mathbf{v_1}, ..., \mathbf{v_m}$. Nestes casos, a função de densidade de probabilidade $p(\mathbf{x}|\omega_j)$ torna-se uma função de massa de probabilidade $P(\mathbf{x}|\omega_j)$ e

$$\int p(\mathbf{x}|\omega_j)d\mathbf{x} \tag{17}$$

é substituída por

$$\sum_{\mathbf{x}} P(\mathbf{x}|\omega_j). \tag{18}$$

Na fórmula de Bayes as densidades de probabilidade são trocadas por probabilidades

$$P(\omega_j|\mathbf{x}) = \frac{P(\mathbf{x}|\omega_j)P(\omega_j)}{P(\mathbf{x})}$$
(19)

onde

$$P(\mathbf{x}) = \sum_{j=1}^{c} P(\mathbf{x}|\omega_j) P(\omega_j).$$
 (20)

A definição do risco condicional $R(\alpha|\mathbf{x})$ mantém-se inalterada.

2 Estimação Paramétrica

TODO ler seções 3.1, 3.2, 3.8 do Duda, Hart & Stork