CLUSTERING

WHAT IS CLUSTER ANALYSIS?

• Given a set of objects, place them in groups such that:

the objects in a group are similar (or related)

different from (or unrelated to) the objects in other groups

CLUSTERING ALGORITHMS

K-means and its variants

Hierarchical clustering

Density-based clustering

K-MEANS CLUSTERING

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

EXAMPLE OF K-MEANS CLUSTERING

EXAMPLE OF K-MEANS CLUSTERING

K-MEANS CLUSTERING – DETAILS

- Simple iterative algorithm.
 - Choose initial centroids;
 - repeat {assign each point to a nearest centroid; re-compute cluster centroids}
 - until centroids stop changing.
- Initial centroids are often chosen randomly.
 - Clusters produced can vary from one run to another
- The centroid is (typically) the mean of the points in the cluster, but other definitions are possible
- K-means will converge for common proximity measures with appropriately defined centroid
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

K-MEANS OBJECTIVE FUNCTION

- A common objective function (used with Euclidean distance measure) is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster center
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the centroid (mean) for cluster C_i
- SSE improves in each iteration of K-means until it reaches a local or global minima.

TWO DIFFERENT K-MEANS CLUSTERING

Original Points

1.5

0.5

0

2.5

1.5

2.5

1.5

2.5

1.5

2.5

1.5

2.5

1.5

2.5

1.5

2.5

Sub-optimal Clustering

IMPORTANCE OF CHOOSING INITIAL CENTROIDS ...

IMPORTANCE OF CHOOSING INITIAL CENTROIDS ...

SOLUTIONS TO INITIAL CENTROIDS PROBLEM

- Multiple runs
- Use some strategy to select the k initial centroids and then select among these initial centroids
 - Select most widely separated
 - K-means++ is a robust way of doing this selection
 - Use hierarchical clustering to determine initial centroids
- Bisecting K-means
 - Not as susceptible to initialization issues

K-MEANS++

The k-means++ algorithm guarantees an approximation ratio O(log k) in expectation, where k is the number of centers

To select a set of initial centroids, C, perform the following

Select an initial point at random to be the first centroid

For each of the N points, x_i , $1 \le i \le N$, find the minimum squared distance to the currently selected centroids,

$$C_1, ..., C_{j,1} \le j \le k$$
, i.e., $\min_{j} d^2(C_j, x_i)$

Randomly select a new centroid by choosing a point with probability proportional to $\frac{\min_{j} d^{2}(C_{j}, x_{i})}{\sum_{i} \min_{j} d^{2}(C_{j}, x_{i})}$

End For

K-MEAN++

BISECTING K-MEANS

- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering
 - 1: Initialize the list of clusters to contain the cluster containing all points.
 - 2: repeat
 - 3: Select a cluster from the list of clusters
 - 4: **for** i = 1 to $number_of_iterations$ **do**
 - 5: Bisect the selected cluster using basic K-means
 - 6: end for
 - 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
 - 8: until Until the list of clusters contains K clusters

BISECTING K-MEANS EXAMPLE

LIMITATIONS OF K-MEANS

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

LIMITATIONS OF K-MEANS: DIFFERING SIZES

Original Points

K-means (3 Clusters)

DATA MINING PIPELINE

- I. Data pre-processing for the entire dataset:
 - Remove outlines from the entire dataset
 - Remove noises from the entire dataset
 - Re-calculate the features (derived features)
- 2. split the entire data into training, validation, and testing (k-folder cross validation)
- 3. model selection based on different measures

LIMITATIONS OF K-MEANS: DIFFERING DENSITY

Original Points

K-means (3 Clusters)

LIMITATIONS OF K-MEANS: NON-GLOBULAR SHAPES

Original Points

K-means (2 Clusters)

OVERCOMING K-MEANS LIMITATIONS

One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.

OVERCOMING K-MEANS LIMITATIONS

One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.

OVERCOMING K-MEANS LIMITATIONS

One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.