Аметов К.Л. ПИ-231(2)

Задание: Минимизировать ДКА Мили, заданный таблицей выходов и переходов. Построить эквивалентный автомат 2 рода. Провести проверку в JFLAP

No	1
112	

A Q	1	2	3	4	5	6	7	8	9
а	4, <i>x</i>	3, y	7, <i>x</i>	5, <i>x</i>	8, <i>x</i>	7, <i>x</i>	2, y	5, x	2, y
b	7, y	4, y	9, <i>x</i>	9, y	7, y	9, y	8, <i>x</i>	9, y	5, <i>x</i>

.. .

Построим множества $\pi 1$ эквивалентных состояний: это состояния, не различимые никаким однобуквенным воздействием: $\pi 1=\{A,B,C,D\}$, $Axy=\{1,4,5,6,8\}$ Byx= $\{9,7\}$ Cxx= $\{3\}$ Dyy= $\{2\}$. Индексами для удобства обозначены реакции на воздействия a,b соответственно.

Класс Аху был расщеплен, процедура была завершена за два шага.

В самом низу картинки представлен эквивалентынй гомоморфный нормализованный автомат мили с прежними обозначениями.

A	В В	С	D	E	F	G	н	1	J
A\Q	1	2	3	4	5	6	7	8	9
a	4x	Зу	7x	5x	8x	7x	2y	5x	2y
b	7y	4y	9x	9y	7y	9y	8x	9y	5x
	Axy					Вух		Cxx	Dyy
AlQ	1	4	5	6	8	9	7	3	2 C A
а	A	Α	Α	В	Α	D	D	В	С
b	В	В	В	В	В	Α	Α	В	A
	B0				B1		B2	B3	B4
A\Q	1	4	5	8	9	7	3	2	6
a	B0	В0	В0	В0	B3	B3	B1	B2	B1
b	B1	B1	B1	B1	B0	B0	B1	B0	B1
	B0	B1	B2	B3	B4				
A\Q	1	9	3	2	6				
a	B0	B3	B1	B2	B1				
b	B1	B0	B1	B0	B1				
A\Q	1	9	3	2	6				
a	1/x	2/y	9x	Зу	9x				
b	9/y	1/x	9x	1y	9y				
					_				

Убедимся на частном примере, что автоматные прелбразования двух машин одинаковы. Выберем в исходном автомате в качестве начального состояния 4 и подадим на его вход цепочку "abba". Так же проверим нормализованный автомат.

Исходная машина				
Момент времени	t	T+1	T+2	T+3
Анализируемый символ	a	b	b	a
Реакция	Х	у	Х	Х
состояние к след момент	4	9	5	8
Нормализованная машина				
Момент времени	t	T+1	T+2	T+3
Анализируемый символ	a	b	b	a
Реакция	Х	у	Х	х
состояние к след момент	1	9	1	1

Перейдем к автомату 2 рода(Мура), построю его и покажу в табличном виде

A	В	С	D	E	F	G	Н	
A\Q	1	9	3	2	6			
a	1/x	2/y	9x	3y	9x			
b	9/y	1/x	9x	1 y	9y			
Состояния	Реак при дост	Реал						
1	1/x	A0/x						
1	1/y	A1/y						
9	9/y	A2/y						
9	9x	A3/x						
3	3/y	A4/y						
2	2/y	A5/y						
6	-	A6/-						
	A0	A1	A2	A3	A4	A5	A6	
A/Q	Х	У	У	x	У	у	-	
a	A0	A0	A5	A5	A3	A4	A3	
b	A2	A2	A0	A0	A3	A1	A2	

Проверю автомат мура

2						
Момент времени	t	T+1	T+2	T+3	T+4	
4 Анализируемый символ	a	b	b	a	-	
Реакция	Х	Х	У	Х	Х	
состояние к след моменту	A0	A2	A0	A0	-	
состояние в тек момент	A0	A0	A2	A0	A0	
3						

P.S Так же была выполненна программная реализация автомата Мура и Мили, построение эквивалентного автомату Мили автомата мура и минимизация автомата на ЯП Python.

Реализация построения эквивалентного автомату Мили, автомата Мура

```
_task > 🏺 transformation.py > 😭 mealy_to_moor
     from collections import defaultdict
     from moor_automata import MoorAutomata
     from mealy_automata import MealyAutomata
     def mealy_to_moor(automata: MealyAutomata) -> MoorAutomata:
         state_reactions = defaultdict(set)
         for state in automata.states:
             for symbol in automata.alphabet:
                 next_state, reaction = automata.table[state][symbol]
                 state_reactions[next_state].add(reaction)
         new_states = {}
         reaction_table = {}
         old_to_new_state = {}
         state_counter = 0
         for state in automata.states:
             if not state_reactions[state]:
                 state_reactions[state].add("") # Для состояния без реакций
             for reaction in state_reactions[state]:
                 new_state = f"A{state_counter}"
                 new_states[(state, reaction)] = new_state
                 reaction_table[new_state] = reaction
                 old_to_new_state[state] = new_state
                 state_counter += 1
29
         transition_table = defaultdict(dict)
         for new_state, old_state in new_states.items():
32
             for symbol in automata.alphabet:
                 next_old_state, reaction = automata.table[new_state[0]][symbol]
                 transition_table[old_state][symbol] = new_states[(next_old_state, reaction)]
         return MoorAutomata(
             states=transition_table.keys(),
             initial_state=old_to_new_state[automata.state],
             alphabet=automata.alphabet,
             table=transition_table,
             table_reactions=reaction_table
```

```
from mealy_automata import MealyAutomata
from collections import defaultdict
from moor_automata import MoorAutomata
from transformation import mealy_to_moor
def minimization(automata: MealyAutomata):
    reactions = {}
    ind = 1
    table = automata.table
    old_states_to_new = {}
    for s, i in table.items():
        reaction = tuple(i[a][1] for a in automata.alphabet)
        if reaction not in reactions:
            reactions[reaction] = f"A{ind}"
           ind+=1
    for s, i in table.items():
        reaction = tuple(i[a][1] for a in automata.alphabet)
        old_states_to_new[s] = reactions[reaction]
    table1= defaultdict(dict)
    for s, i in table.items():
        for a in automata.alphabet:
            table1[s][a] = old_states_to_new[table[s][a][0]]
    table2 = defaultdict(dict)
    ind2 = 66
    while True:
        old_states_to_new1 = {}
        reactions1 ={}
        ind = 1
        for s, i in table1.items():
            reaction1 = tuple(j for _,j in i.items())
            if reaction1 not in reactions1:
                reactions1[reaction1] = f"{chr(ind2)}{ind}"
                ind+=1
        for s, i in table1.items():
            reaction1 = tuple(j for _,j in i.items())
            old_states_to_new1[s] = reactions1[reaction1]
        for s, i in table.items():
            for a in alphabet:
                table1[s][a] = old_states_to_new1[table[s][a][0]]
        ind2+=1
        if table1 == table2:
            break
        table2 = table1
    new_to_old = {j:i for i, j in old_states_to_new1.items()}
    table2= defaultdict(dict)
    for s, i in table.items():
        for a in alphabet:
            table2[old_states_to_new1[s]][a] = (table1[s][a], table[s][a][1])
    table3 =defaultdict(dict)
    for s,i in table2.items():
        for a in alphabet:
            table3[new\_to\_old[s]][a] = (new\_to\_old[table2[s][a][0]], \ table2[s][a][1])
    return table3
```

Прогон строчки "abba" на исходном, нормализованном и эквивалентном автомате второго рода.

```
    (.venv) kemran@kemran:~/Automata_Theory_Solves$ cd /home/kemran/Automata_ter/.../../debugpy/launcher 39693 -- /home/kemran/Automata_Theory_Solves/1_Результат работы над строчкой 'abba' автомата Мили хухх Результат работы над строчкой 'abba' нормализованного автомата Мили хухх Результат работы над строчкой 'abba' автомата Мура хухх
    (.venv) kemran@kemran:~/Automata Theory Solves$ □
```

Вывод: выполнена минимизация автомата Мили, построен эквивалентный нормализованный автомат Мура; автоматные преобразования для тестовой четырехсимвольной цепочки совпадают.