DE4142548

Publication Title:

Drive for electrical isolation switch e.g. for overhead contact system - has housing with electrical or manual drive with limit switch interlock circuit.

Abstract:

Abstract of DE4142548

An overhead line switch has a box-shaped housing (1) supported on rails. Within the housing is an electric motor (6) with its output coupled to a worm and pinion drive, to a central shaft (9) in a tube (20). The end of the shaft has an arm that is turned through an arc to operated the isolating contacts. Within the housing are a number of limit switches that limit the movement of the shaft and control access to the housing. The shaft may also be operated by a manual input. ADVANTAGE - Cost effective design. Robust, low service requirement.

Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

(9) BUNDESREPUBLIK
DEUTSCHLAND

® Offenlegungsschrift

® DE 41 42 548 A 1

DEUTSCHES PATENTAMT

21) Aktenzeichen: P 41 42 548.0
 22) Anmeldetag: 21. 12. 91

Offenlegungstag: 24. 6. 93

(51) Int. Cl.⁵:

H 01 H 3/54

H 01 H 3/26 // H01H 3/32,B60M 3/04

71) Anmelder:

ABB Energie AG, Wien, AT

(74) Vertreter:

Rupprecht, K., Dipl.-Ing., Pat.-Anw., 6242 Kronberg

(72) Erfinder:

Handler, Karl, Wr. Neustadt, AT; Rehm, Erich, Wien, AT

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 27 06 352 C3 DE 36 08 481 A1 US 41 07 486

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Antrieb für einen Trennschalter, insbesondere für einen Fahrleitungsschalter

Der Antrieb ist für einen Trennschalter, insbesondere für einen Fahrleitungsschalter, bestimmt. Er enthält eine von einem Motor (6) oder von Hand antreibbare und auf den Schalter wirkende Antriebswelle (9). Bei Motorbetrieb ist der Antriebswelle (9) ein Schneckengetriebe (5) vorgeschaltet. Motor (6), Antriebswelle (9) und Schneckengetriebe (5) sind in einem verschließbaren Gehäuse (1) angeordnet. Dieser Antrieb soll einfach und robust ausgebildet sein und sich bei niedrigen Gestehungskosten und geringem Wartungsaufwand zudem dadurch auszeichnen, daß er besonders hohe sicherheitstechnische Anforderungen erfüllt. Dies wird dadurch erreicht, daß das Schneckengetriebe (5) eine vom Motor (6) antreibbare und der konzentrischen Lagerung der Antriebswelle (9) dienende Hohlwelle (8) aufweist, und daß in der Hohlwelle (8) eine die Antriebs- (9) und die Hohlwelle (8) voneinander trennende oder kraftschlüssig miteinander verbindende Kupplung (14) angeordnet ist, welche bei Umstellung von Motor- auf Handantrieb unter Aufhebung der kraftschlüssigen Verbindung gegen eine Stellkraft ausrückbar ist.

Beschreibung

Technisches Gebiet

Bei der Erfindung wird ausgegangen von einem Antrieb für einen Trennschalter, insbesondere für einen Fahrleitungsschalter, mit einer von einem Motor oder von Hand antreibbaren und auf den Schalter wirkenden Antriebswelle, mit einem Kraft vom Motor auf die An- 10 triebswelle übertragenden Schneckengetriebe und mit einem Motor, Antriebswelle und Schneckengetriebe aufnehmenden Gehäuse.

Stand der Technik

Ein Antrieb der eingangs genannten Art wird im Eisenbahnbetrieb zur Betätigung von Fahrleitungsschaltern eingesetzt. Fahrleitungsschalter werden für Anspeisungen und zum Trennen der — beispielsweise bei 20 den österreichischen Bundesbahnen auf einer Spannung von 15 kV befindlichen Fahrleitungsdrähte bestimmter Streckenabschnitte verwendet. Die Betätigung des Antriebs erfolgt hierbei entweder mit einem automatisch von einem Stellwerk aus angesteuerten Elektromotor 25 oder bei kleineren Bahnhöfen manuell mit einer auf eine Antriebswelle des Antriebs aufgesetzten Handkurbel. Der bisher eingesetzte Antrieb enthält zahlreiche schwere Gußteile und ist relativ störanfällig. Bei Wartungsarbeiten muß ein die Kraft vom Antrieb auf den 30 Fahrleitungsschalter übertragendes Schaltgestänge demontiert werden, da sonst kein ausreichender Personenschutz bei den Wartungsarbeiten gewährleistet ist. Zudem wird bei diesem Antrieb bei Wartungsarbeiten auch keine Meldung — etwa an ein Stellwerk — abge- 35 geben.

Darstellung der Erfindung

ist, löst die Aufgabe, einen Antrieb der eingangs genannten Art zu schaffen, welcher einfach und robust ausgebildet ist und welcher sich zugleich bei niedrigen Gestehungskosten und geringem Wartungsaufwand zusätzlich dadurch auszeichnet, daß er besonders hohe sicher- 45 heitstechnische Anforderungen erfüllt.

Der Antrieb nach der Erfindung ist aus serienmäßig erhältlichen, technisch erprobten Hauptkomponenten aufgebaut. Daher kann der Antrieb besonders kostengünstig hergestellt werden. Durch geeignete Auswahl 50 und Anordnung der Hauptkomponenten läßt sich der Antrieb nach der Erfindung in kostengünstiger Weise nicht nur besonders kompakt und robust ausbilden, sondern auch nahezu wartungsfrei betreiben. Unter normalen Betriebsbedingungen sind Inspektionen erst nach 55 fünf oder mehr Jahren bzw. nach mehr als 10 000 Schalthandlungen erforderlich. Zugleich erfüllt der erfindungsgemäße Antrieb ohne wesentlichen Mehraufwand die an ihn gestellten sicherheitstechnischen Anforderungen bei weitem und kann - falls erforderlich - ohne 60 großen Montageaufwand gewartet werden.

Kurze Beschreibung der Zeichnung

Die Erfindung wird nachfolgend anhand von Zeich- 65 nungen näher erläutert. Hierbei zeigt:

Fig. 1 eine Frontansicht einer vereinfacht dargestellten Ausführungsform des erfindungsgemäßen Antriebs nach dem Öffnen einer das Gehäuse des Antriebs verschließenden Tür.

Fig. 2 eine Aufsicht auf einen längs II-II geführten Schnitt durch den Antrieb gemäß Fig. 1 nach dem 5 Schließen der Tür, und

Fig. 3 ein Schaltbild von Stromversorgungs- und Meldekreisen des Antriebs gemäß den Fig. 1 und 2.

Weg zur Ausführung der Erfindung

Der in den Fig. 1 und 2 dargestellte Antrieb weist zwei vertikal an der Rückwand eines vorzugsweise aus Aluminium bestehenden kastenförmigen Gehäuses 1 abgestützte metallene Tragschienen 2, 3 auf, an denen 15 eine metallene Grundplatte 4 angeschraubt ist. Die Grundplatte 4 trägt ein Schneckengetriebe 5, dessen nicht dargestellte Schnecke von einem wechselstrombetriebenen Motor 6 je nach Anforderung im Uhrzeigersinn oder im Gegenuhrzeigersinn angetrieben werden kann. Ein aus Fig. 2 ersichtliches, von der Schnecke bewegtes Zahnrad 7 des Schneckengetriebes 5 treibt eine ebenfalls aus Fig. 2 ersichtliche Hohlwelle 8 des Schnekkengetriebes 5 an. Die Hohlwelle 8 dient der konzentrischen Lagerung einer Antriebswelle 9. Gemäß Fig. 2 ist diese Antriebswelle 9 durch die Rückseite des Gehäuses 1 geführt und trägt an ihrem ausgeführten Ende einen Hebelarm 10. Dieser Hebelarm 10 wirkt über ein nicht dargestelltes vertikales Gestänge auf einen ebenfalls nicht dargestellten Trennschalter, insbesondere einen Fahrleitungsschalter. Das vom ausgeführten Ende abgewandte andere Ende der Antriebswelle 9 trägt einen Schwerspannstift 11 und ist nach Offnen einer Verschlußklappe 12, welche in einer Tür 13 des Gehäuses 1 angeordnet ist, bei verschlossener Tür 13 von der Frontseite des Antriebs her zugänglich. Hierbei kann bei Handbetrieb eine Handkurbel 40 mit einer hohlen hinterschnittenen Nabe 41 durch die verschließbare Öffnung des Gehäuses 1 geführt und auf ein den Schwerspannstift 11 als Befestigungselement tragendes Ende Die Erfindung, wie sie im Patentanspruch 1 definiert 40 der Antriebswelle 9 gesteckt werden. Die Hinterschneidung der Nabe 41 weist einen azimutal um die Drehachse der Kurbel erstreckten Abschnitt 42 auf, welcher der Führung des Schwerspannstiftes 11 bei der Verrastung der aufgesteckten Kurbel 40 dient. Zwei Langlöcher 43 ermöglichen dem Schwerspannstift 11 das Eintreten in die Hinterschneidung.

In der Hohlwelle 8 ist eine die Antriebs- 9 und die Hohlwelle 8 voneinander trennende oder kraftschlüssig miteinander verbindende Kupplung 14 angeordnet. Diese Kupplung 14 ist bei Umstellung von Motor- auf Handantrieb unter Aufhebung der kraftschlüssigen Verbindung zwischen Antriebs- 9 und Hohlwelle 8 gegen eine Stellkraft ausrückbar. Zu diesem Zweck weist sie ein in der Hohlwelle 8 gegen Federkraft verschiebliches Formschlußteil 15 auf. Die Federkraft wird hierbei von Druckfedern 16 erzeugt, die mit ihren einen Enden in Bolzen 17 geführt und auf einer von der Hohlwelle 8 gehaltenen Scheibe 18 abgestützt sind und die mit ihren anderen Enden in Bohrungen des Formschlußteils 15 geführt und gestützt sind. Das Formschlußteil 15 ist mittels Bolzen 19, die in einer auf der Antriebswelle 9 befestigten Blockierscheibe 20 aus der Kupplung 14 herausgeführt sind, von außen verschiebbar.

Das Formschlußteil 15 weist eine Außenzahnung 21 auf, welche bei Motorantrieb mit einer auf der Innenseite der Hohlwelle 8 angebrachten Innenzahnung 22 zusammenwirkt. Vorzugsweise weisen Innen- und/oder Außenzahnung Bogenzähne auf. Eine solchermaßen geeingeschaltet ist.

3

bildete Bogenzahnkupplung weist eine für einen Schalterantrieb besonders vorteilhafte Flexibilität auf.

Die Blockierscheibe 20 ist Teil einer mit der Antriebswelle 9 zusammenwirkenden Blockiereinrichtung. Diese Blockiereinrichtung weist neben der auf der Antriebswelle 9 befestigten Blockierscheibe 20 auch einen schwenkbaren, zum Blockieren der Antriebswelle 20 in Aussparungen der Blockierscheibe einrastenden, hakenförmigen Blockierhebel 23 auf. Der Blockierhebel ist in einem auf einer ortsfesten Konsole 24 vorgesehenen 10 Drehlager 25 gelagert und kann in zwei Endlagen fixiert werden. Hierbei ist die eine Endlage durch das Einrasten des Blockierhebels 23 in der Blockierscheibe 20 und die andere Endlage durch Freigabe der Blockierscheibe 20 nach Abheben des Blockierhebels 23 bestimmt. Der 15 Blockierhebel ist in seinen beiden Endlagen durch ein Triebstangenschloß 26 mit einem verschiebbaren, in den Blockierhebel 23 einrastenden Vierkantbolzen 27 fixierbar.

In seinen beiden die Ein- bzw. die Ausschaltstellung 20 des vom Antrieb betätigten Trennschalters bestimmenden Endlagen schlägt bei Handbetrieb ein Stift 28 bzw. 29 an einem ortsfesten Ansatz 30 der Konsole 24 an. Die beiden Endlagen werden durch zwei um 180° winkelversetzt auf der Blockierscheibe 20 angeordnete Stel- 25 lungsanzeiger 31 kenntlich gemacht.

Bei Motorbetrieb werden die beiden die Ein- und die Ausschaltstellung des Trennschalters bestimmenden Endlagen durch Mikroschalter S4 und S5 festgelegt. Zu diesem Zweck weist die Blockierscheibe 20 durch deren 30 Scheibenkontur bestimmte mechanische Steuerelemente zum Betätigen der beiden Mikroschalter S4 und S5 auf. Die Mikroschalter S4 und S5 ihrerseits sind in den in Fig. 3 dargestellten Stromversorungs- und Meldekreisen des Motors angeordnet.

Im Gehäuse 1 befinden sich neben den beiden Mikroschaltern S₄ und S₅ weitere von beweglich ausgebildeten Elementen des Antriebs mechanisch angesteuerte Mikroschalter, wie die Mikroschalter S₁, S₂, S₃, S₆ und S₇. Zwei Mikroschalter S₁ sind an der Wand der Tür 13 40 des Gehäuses 1 angebracht und öffnen ihre Schaltkontakte beim Öffnen der für die Durchführung einer Handkurbel bestimmten Verschlußklappe 12. Vier Mikroschalter S₂ sind an der Konsole 24 befestigt und öffnen beim Blockieren der Antriebswelle 9 mittels des 45 in der Blockierscheibe 20 eingerasteten Blockierhebels 23 ihre Schaltkontakte. Vier Mikroschalter S₃ sind an einem vom Schneckengetriebe 5 getragenen Halteteil 32 angebracht und öffnen beim Öffnen der Tür 13 ihre an Halteteil 32 befestigt. Sie dienen der Abgabe einer Meldung sobald die Antriebswelle 9 bei Motor- oder bei Handbetrieb eine ihrer beiden Endlagen eingenommen hat.

Wie aus Fig. 3 ersichtlich ist, sind in der bei einem 55 Ausschaltvorgang vorgesehenen Stromversorgung des Motors 6 in Reihe geschaltet je ein Mikroschalter S₃, S₅, S₁ und S₂ angeordnet, hingegen in der für einen Einschaltvorgang vorgesehenen Stromversorgung in Reihe geschaltet je ein Mikroschalter S₃, S₄, S₁, und S₂ In zwei 60 Meldekreisen M ist jeweils einer der beiden Mikroschalter S₆ und S₇ angeordnet.

Die Wirkungsweise dieses Antriebs ist nun wie folgt:

Bei Motorbetrieb ist bei einem durchzuführenden Schaltvorgang des Trennschalters, beispielsweise beim 65 Ausschalten, eine Betätigung des Motors 6 nur dann möglich, wenn alle in der für einen Ausschaltvorgang vorgesehenen Stromversorgung St angeordneten Mi-

kroschalter, nämlich die Mikroschalter S₁, S₂, S₃, S₅, geschlossen sind. Dies bedeutet, daß ein vom Motor 6 durchgeführter Ausschaltvorgang erst dann gestartet werden kann, wenn die vom Mikroschalter S₁ kontrol-5 lierte Verschlußklappe 12 geschlossen ist, wenn die Blockiereinrichtung nach Freigabe der Blockierscheibe 20 durch den Blockierhebel 23 die Antriebswelle 9 freigibt und wenn die Tür 13 des Gehäuses 1 geschlossen ist. Der Mikroschalter S5 ist wie der Mikroschalter S4 als Offner ausgebildet und öffnet lediglich dann, wenn der Trennschalter ausgeschaltet ist. Entsprechend öffnet der Mikroschalter S4 lediglich dann, wenn der Trennschalter

Die Kupplung 14 ist durch die Kraft der Druckfedern 16 eingerückt und der beispielsweise von einer zentralen Warte aus gestartete Motor 6 betätigt über das Schneckengetriebe 5 und die Kupplung 14 die Antriebswelle 9, wodurch der Trennschalter ausgeschaltet wird. Sobald die Ausschaltposition erreicht ist, öffnet der durch die Blockierscheibe 20 gesteuerte Mikroschalter S₅ und unterbricht die Energieversorgung des Motors 6.

Zur Durchführung von Wartungsarbeiten wird nun die Antriebswelle 9 blockiert. Zu diesem Zweck wird das Triebstangenschloß 26 geöffnet, über den auf das Triebstangenschloß 26 wirkenden Vierkantbolzen 27 der Blockierhebel 23 in die Blockierscheibe 20 eingerastet und danach das Triebstangenschloß 26 wieder abgeschlossen. Der in die Blockierscheibe 20 einrastende Blockierhebel 23 verhindert während der Wartungsarbeiten ein Drehen der Antriebswelle 9 und damit eine unerwünschte Betätigung des Trennschalters, so daß sich ein sonst aus Sicherheitsgründen notwendiges Entfernen des von der Antriebswelle 9 betätigten Schaltgestänges erübrigt.

Nach Beendigung der Wartungsarbeiten wird die Blockierung der Antriebswelle 9 durch Entfernen des Blockierhebels 23 aufgehoben und der Blockierhebel 23 durch das Triebstangenschloß 26 in einer Lage fixiert, in der die Blockierung der Antriebswelle 9 aufgehoben bleibt und der Mikroschalter S2 geschlossen ist. Damit ist der Antrieb wieder normal einsatzfähig.

Bei Handbetrieb wird ein Schaltvorgang des Trennschalters, beispielsweise ein Ausschaltvorgang, durch Betätigung der Antriebswelle 9 mittels einer Handkurbel durchgeführt. Zu diesem Zweck wird ein nicht dargestelltes Schloß in der Tür 13 entsperrt und sodann die dadurch freigegebene Verschlußklappe 12 von einer in Tür 13 vorgesehenen Offnung entfernt. Die Handkurbel kann nun durch die Offnung auf die Antriebswelle 9 Schaltkontakte. Auch die Mikroschalter S6 und S7 sind 50 gesteckt und auf der Antriebswelle 9 festgesetzt werden. Zunächst wird hierbei der Schwerspannstift 11 in die Langlöcher 43 eingeführt und wird die Handkurbel 40 längs der Langlöcher 43 auf die Antriebswelle 9 geschoben, wobei der Schwerspannstift 11 in den azimutal erstreckten Abschnitt 42 der Hinterschneidung eintritt. Durch das Aufschieben der Handkurbel 40 werden die Bolzen 19 in die Kupplung 14 gedrückt und führen das Formschlußteil 15 gegen die Kraft der Druckfedern 16 in axialer Richtung in die Hohlwelle 8 hinein. Die Kupplung 14 wird nun ausgerückt. Die Antriebswelle 9 wird vom Schneckengetriebe 5 und damit auch vom Motor 6 getrennt. Sodann wird die Kupplung 14 in ihrer ausgerückten Lage fixiert. Dies erfolgt durch Drehen der gegen die Kraft der Druckfedern 16 gedrückten Handkurbel 40 um 90°. Der Schwerspannstift 11 wird hierbei im Abschnitt 42 azimutal geführt. In zwei axial nach außen geführten, an den Abschnitt 42 anschließenden Abschnitten der Hinterschneidung verrastet die Handkur-

25

bel 40 schließlich unter Nachlassen des Federdruckes am Schwerspannstift 11 und stellt bei ausgerückter Kupplung 14 eine kraftschlüssige Verbindung mit der Antriebswelle 9 her. Der Trennschalter kann nun durch Drehen der Handkurbel ausgeschaltet werden. Die Aus- 5 schaltposition ist dann erreicht, wenn der Stift 29 auf dem Ansatz 30 anschlägt.

In entgegengesetztem Drehsinn kann wieder eingeschaltet werden, wobei die Einschaltposition dann erreicht ist, wenn der Stift 28 auf dem Ansatz 30 anschlägt. 10 Nach Abziehen der Handkurbel ist der Motoreingriff durch das Rückführen des federbelasteten Formschlußteils 15 unter Eingriff seiner Außenzahnung 21 in die Innenzahnung 22 wiederhergestellt.

Bei Handbetrieb ist der Mikroschalter S1 geöffnet. 15 Dadurch ist sichergestellt, daß der Motor bei unbeabsichtigter Abgabe eines Schalthandlungsbefehls in einer entfernten Warte betätigt werden kann.

Nach Blockierung der Antriebswelle 9 sind die Mikroschalter S₂ geöffnet und Wartungsarbeiten am 20 Trennschalter können nun vollkommen risikolos ohne Demontage des Schaltgestänges durchgeführt werden.

Patentansprüche

- 1. Antrieb für einen Trennschalter, insbesondere für einen Fahrleitungsschalter, mit einer von einem Motor (6) oder von Hand antreibbaren und auf den Schalter wirkenden Antriebswelle (9), mit einem Kraft vom Motor (6) auf die Antriebswelle (9) über- 30 tragenden Schneckengetriebe (5) und mit einem Motor (6), Antriebswelle (9) und Schneckengetriebe (5) aufnehmenden Gehäuse (1), dadurch gekennzeichnet, daß das Schneckengetriebe (5) eine vom Motor (6) antreibbare und der konzentrischen 35 Lagerung der Antriebswelle (9) dienende Hohlwelle (8) aufweist, und daß in der Hohlwelle (8) eine die Antriebs- (9) und die Hohlwelle (8) voneinander trennende oder kraftschlüssig miteinander verbindende Kupplung (14) angeordnet ist, welche bei 40 Umstellung von Motor- auf Handantrieb unter Aufhebung der kraftschlüssigen Verbindung gegen eine Stellkraft ausrückbar ist.
- 2. Antrieb nach Anspruch 1, dadurch gekennzeichnet, daß eine auf die Antriebswelle (9) aufsteckbare 45 und das Ausrücken und Verriegeln der Kupplung (14) gegen die Stellkraft ermöglichende Handkurbel vorgesehen ist, welche durch eine verschließbare Öffnung des Gehäuses (1) führbar ist.
- 3. Antrieb nach Anspruch 2, dadurch gekennzeich- 50 net, daß die Handkurbel (40) eine hohle Nabe (41) mit einer Hinterschneidung aufweist, und daß diese Hinterschneidung einen in Drehrichtung der Handkurbel (40) erstreckten Abschnitt (42) enthält, welcher beim Verriegeln der ausgerückten Kupplung 55 (40) der Führung eines an der Antriebswelle (9) angebrachten Befestigungselementes (Schwerspannstift 11) dient.
- 4. Antrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kupplung (14) ein 60 gegen Federkraft verschiebliches Formschlußteil (15) aufweist.
- 5. Antrieb nach Anspruch 4, dadurch gekennzeichnet, daß das Formschlußteil (15) eine Außenzahnung (21) aufweist, welche bei Motorantrieb mit 65 einer auf der Innenseite der Hohlwelle (8) angebrachten Innenzahnung (22) zusammenwirkt.
- 6. Antrieb nach Anspruch 5, dadurch gekennzeich-

- net, daß Innen- und/oder Außenzahnung Bogenzähne aufweist.
- 7. Antrieb nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Antriebswelle (9) mit einer Blockiereinrichtung zusammenwirkt.
- 8. Antrieb nach Anspruch 7, dadurch gekennzeichnet, daß die Blockiereinrichtung eine auf der Antriebswelle (9) befestigte Blockierscheibe (20) und einen schwenkbaren, zum Blockieren der Antriebswelle (9) in der Blockierscheibe (20) einrastenden Blockierhebel (23) aufweist.
- 9. Antrieb nach Anspruch 8, dadurch gekennzeichnet, daß die Blockiereinrichtung in zwei Endlagen fixierbar ist, von denen die eine Endlage durch das Einrasten des Blockierhebel (23) in die Blockierscheibe (20) und die andere Endlage durch Freigabe der Blockierscheibe (20) durch den Blockierhebel (23) bestimmt ist.
- 10. Antrieb nach Anspruch 9, dadurch gekennzeichnet, daß der Blockierhebel (23) in den beiden Endlagen der Blockiereinrichtung durch ein Triebstangenschloß (26) fixierbar ist.
- 11. Antrieb nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Blockierscheibe (20) Steuerelemente zum Betätigen von mindestens zwei Mikroschaltern (S4, S5) aufweist.
- 12. Antrieb nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Gehäuse (1) mehrere von verschiedenen, beweglich ausgebildeten Elementen mechanisch angesteuerte Mikroschalter (S₁, S₂, S₃, S₄, S₅, S₆, S₇) enthält, von denen ein in Reihe geschalteter Teil auf eine Stromversorgung (St) des Motors (6) wirkt.
- 13. Antrieb nach Anspruch 12, dadurch gekennzeichnet, daß in einer für einen Schaltvorgang des Trennschalters vorgesehenen Stromversorgung (St) in der Reihenschaltung Mikroschalter (S1, S2, S₃, S₄; S₁, S₂, S₃, S₅) enthalten sind, welche jeweils beim Offnen des Gehäuses (1), beim Blockieren der Antriebswelle (9) oder dem Erreichen einer von zwei Endpositionen der Antriebswelle (9) angesteuert werden.
- 14. Antrieb nach Anspruch 13, dadurch gekennzeichnet, daß in einer für einen Aus- bzw. Einschaltvorgang des Trennschalters vorgesehenen Stromversorgung (St) in der Reihenschaltung jeweils mindestens folgende Mikroschalter enthalten sind: ein erster Mikroschalter (S1), welcher beim Öffnen einer für die Durchführung einer Handkurbel bestimmten Verschlußklappe (12) des Gehäuses (1) öffnet, ein zweiter Mikroschalter (S2), welcher beim Blockieren der Antriebswelle (9) öffnet,

ein dritter Mikroschalter (S3), welcher beim Öffnen einer Gehäusetür (13) öffnet, und

ein vierter Mikroschalter (S4; S5), welcher beim Er-

reichen einer der beiden Endpositionen der Antriebswelle (9) öffnet.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

. .

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 41 42 648 A1 H 01 H 3/64

24. Juni 1993

Frig. 1

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 41 42 548 A1 H 01 H 3/54

24. Juni 1993

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 41 42 548 A1 H 01 H 3/54 24. Juni 1993

