

Overview

Proyek ini bertujuan untuk memprediksi apakah seseorang menderita diabetes atau tidak berdasarkan beberapa fitur kesehatan, seperti usia, BMI, tekanan darah, dan kadar glukosa.

Model machine learning yang digunakan adalah:

- Decision Tree
- Support Vector Machine (SVM) /

Dataset yang digunakan

- ✓ Data Training → Digunakan untuk melatih model
- ✓ Data Testing → Digunakan untuk mengevaluasi model

Fitur Dalam Dataset

Age (Usia) → Umur pasien

BMI (Body Mass Index) - Indeks massa tubuh

Blood Pressure → Tekanan darah pasien

Glucose (Kadar Glukosa) → Jumlah glukosa dalam darah

Diabetes (Label) → 1 jika pasien menderita diabetes, 0 jika tidak

Exploratory Data Analysis (EDA)

Sebelum membangun model, dilakukan analisis eksplorasi data (EDA) untuk memahami pola dalam dataset. Beberapa langkah yang dilakukan dalam EDA adalah:

a. Memeriksa Distribusi Data

- Melihat bagaimana data seperti usia, BMI, tekanan darah, dan glukosa tersebar.
- Menganalisis apakah ada outlier atau nilai ekstrim yang dapat mempengaruhi model.

b. Korelasi Antar Fitur

- Menganalisis hubungan antara BMI, tekanan darah, dan glukosa terhadap diabetes.
- Jika suatu fitur memiliki hubungan kuat dengan diabetes, maka fitur tersebut akan berpengaruh besar pada prediksi.

c. Data Cleaning

- Memeriksa missing values atau data yang hilang.
- Normalisasi atau standarisasi data jika diperlukan.

Full Code

https://github.com/nadhifroyal/DecisionTree_vs_SVM_DiabetesPrediction

Scan here

Datasets

Train

[∱]		Age	ВМІ	BloodPressure	Glucose	Diabetes	
	0	45	25.3	120	90	0	11.
	1	50	30.1	140	160	1	+1
	2	39	27.8	130	105	0	
	3	60	33.2	145	180	1	
	4	33	22.4	110	85	0	
	5	55	29.9	135	150	1	
	6	42	26.5	125	95	0	
	7	48	28.7	138	145	1	
	8	59	32.5	142	175	1	
	9	38	24.1	118	100	0	

Test

₹		Age	ВМІ	BloodPressure	Glucose	Diabetes	
	0	52	29.5	137	155	1	11.
	1	41	25.7	122	98	0	+1
	2	36	22.9	115	88	0	
	3	58	31.2	140	170	1	
	4	47	27.3	128	110	0	

Visualization Decision Tree

- Model Decision Tree membagi ruang fitur dengan garis tegas (vertikal) yang menunjukkan batas keputusan yang tidak terlalu kompleks.
- Model tampaknya memisahkan kelas berdasarkan nilai Age, dengan pemisahan utama di sekitar Age = 0 (standar).
- Hal ini menunjukkan bahwa Decision Tree lebih cenderung membuat keputusan berbasis aturan sederhana tanpa mempertimbangkan pola yang lebih kompleks dalam data.

Visualization SVM (Support Vector Machine)

Grafik ini menampilkan Decision Boundary (Batas Keputusan) dari model SVM (Support Vector Machine) yang digunakan untuk membedakan dua kelas berdasarkan Age (Standarized) dan BMI (Standarized).

- SVM pada grafik ini menunjukkan keputusan linier yang cukup baik dalam membagi dua kelas berdasarkan fitur Age dan BMI.
- Batas keputusan diagonal menunjukkan bahwa kedua fitur memiliki kontribusi dalam pemisahan kelas.
- Jika dataset lebih kompleks, bisa mempertimbangkan kernel SVM agar hasilnya lebih optimal.

The Result

Decision Tree

✓ Akurasi: 0.80

✓ F1 Score: 0.80

✓ Mean Squared Error: 0.20

✓ R² Score: 0.17

SVM

✓ Akurasi: 1.00

✓ F1 Score: 1.00

✓ Mean Squared Error: 0.00

✓ R² Score: 1.00

Perbandingan Model Decision Tree vs SVM

Berdasarkan hasil evaluasi, berikut adalah perbandingan antara Decision Tree dan Support Vector Machine (SVM) dalam memprediksi diabetes:

Metode	Akurasi	F1 Score	MSE	R ² Score
Decision Tree	0.80	0.80	0.20	0.17
SVM	1.00	1.00	0.00	1.00

Analisis Perbandingan

Akurasi & F1 Score

- SVM memiliki akurasi dan F1 Score 1.00 (100%), yang berarti model ini mampu mengklasifikasikan semua data dengan sempurna tanpa kesalahan.
- Decision Tree hanya mencapai akurasi 80% dan F1 Score 0.80, yang berarti ada beberapa kesalahan prediksi.

Mean Squared Error (MSE)

- o SVM memiliki MSE 0.00, yang berarti tidak ada kesalahan dalam prediksi.
- Decision Tree memiliki MSE 0.20, yang menunjukkan masih ada tingkat kesalahan dalam model ini.

R² Score

- SVM memiliki nilai R² Score = 1.00, yang berarti model ini mampu menjelaskan 100% variabilitas dalam data.
- Decision Tree memiliki R² Score = 0.17, yang cukup rendah, menunjukkan bahwa model ini kurang baik dalam menjelaskan variasi data.

Kesimpulan

- ◆ SVM adalah model terbaik untuk dataset ini, karena memberikan hasil sempurna dengan akurasi, F1 Score, dan R² Score sebesar 1.00, serta tidak memiliki kesalahan prediksi (MSE = 0.00).
- Decision Tree masih cukup baik dengan akurasi 80%, tetapi performanya lebih rendah dibandingkan SVM.
 Model ini bisa menjadi pilihan jika ingin interpretasi lebih mudah, tetapi kurang optimal dalam kasus ini.

Terimakasih