Project Development Phase Model Performance Test

Date	15 November 2022			
Team ID	PNT2022TMID23271			
Project Name	University Admit Eligibility Predictor			

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screensh	nshot			
1.	Metrics Regression Model MAE - , 0.0455 - , 0.00426 RMSE - 0.0652 R2 score - 0.7 Classification Confusion Mata Accuracy Score	Regression Model: MAE - , 0.04555 MSE	Mean Squared Error (MSE) In [25]: from sklearn.metrics import mean_squared_error, r2_scomse = mean_squared_error(pred_test,y_test) In [26]: mse Out[26]: 0.004260810050671112 Root Mean Squared Error (RMSE) In [27]: rmse = np.sqrt(mse) In [28]: rmse Out[28]: 0.06527488070208257 R2 Score In [29]: r2_score(pred_test, y_test)				
			In [32]:	Mean Absolute Error (MAE) from sklearn.metrics import mean_absolute_error mean_absolute_error(pred_test, y_test) 0.0455524319663054			
			Tue label	16	91	- 700 - 600 - 500	
			True -	93	800	- 300 - 200 - 100	
				False Predicted	True I label		

]: Accuracy = metrics.accuracy_score(actual, predicted) Accuracy]: 0.816 Classification Report : from sklearn.metrics import classification_report print(classification report(actual, predicted))				
				0 1 accuracy macro avg weighted avg	0.15 0.90 0.52 0.82	0.15 0.90 0.52 0.82	f1-score 0.15 0.90 0.82 0.52 0.82	support 107 893 1000 1000
2.	Tune the Model	Hyperparameter Tuning - Validation Method –	In [63]: free free free X, clf sk_ scc prigrif prigrif cree free free free free free free fre	Stratified K-Fold m sklearn import datas m sklearn.tree import m sklearn.model_select y = datasets.load_iris = DecisionTreeClassif folds = StratifiedKrol mes = cross_val_score(nt("Cross Validation S nt("Average CV Scores sus Validation Scores: mes Va	DecisionTreeClass ion import Strati (return_X_y=True) ier(random_state= d(n_splits = 5) clf, X, y, cv = s cores: ", scores: ", scores:mean()) s used in Average [0.96666667 0.96 333333333333333	fiedKFold, cri 42) k_folds) : ", len(score		i. 1