CD54AC00, CD74AC00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SCHS303C - JANUARY 2001 - REVISED JUNE 2002

- AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
- Speed of Bipolar F, AS, and S, With Significantly Reduced Power Consumption
- Balanced Propagation Delays
- ±24-mA Output Drive Current
 Fanout to 15 F Devices
- SCR-Latchup-Resistant CMOS Process and Circuit Design
- Exceeds 2-kV ESD Protection Per MIL-STD-883, Method 3015

CD54AC00...F PACKAGE CD74AC00 . . . E OR M PACKAGE (TOP VIEW) 14 🛮 V_{CC} 1A [1в П 13 🛮 4B 12 🛮 4A 1Y [2A 🛮 4 11 **[**] 4Y 2B 🛛 5 10 **[**] 3B 9 🛮 3A 2Y 🛮 6 GND [] 7 8 🛮 3Y

description

The 'AC00 devices contain four independent 2-input NAND gates. Each gate performs the Boolean function of Y = $\overline{A} \cdot \overline{B}$ or Y = $\overline{A} + \overline{B}$ in positive logic.

ORDERING INFORMATION

TA	PAC	KAGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – E	Tube	CD74AC00E	CD74AC00E
_55°C to 125°C	SOIC-M	Tube	CD74AC00M	AC00M
=55°C to 125°C	301C - M	Tape and reel	CD74AC00M96	ACOOM
	CDIP - F	Tube	CD54AC00F3A	CD54AC00F3A

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Υ
Н	Н	L
L	X	Н
Х	L	н

logic diagram, each gate (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CD54AC00, CD74AC00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SCHS303C - JANUARY 2001 - REVISED JUNE 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 6 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): E package	80°C/W
M package	86°C/W
Storage temperature range, T _{sto}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			T _A = 25°C		–40°C TO 85°C		–55°C TO 125°C		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
Vcc	Supply voltage		1.5	5.5	1.5	5.5	1.5	5.5	V	
		V _{CC} = 1.5 V	1.2		1.2		1.2			
\/	/IH High-level input voltage	V _{CC} = 3 V	2.1		2.1		2.1		V	
٧IH		V _{CC} = 4.5 V	3.15				3.15			
		V _{CC} = 5.5 V	3.85		3.85		3.85			
		V _{CC} = 1.5 V		0.3		0.3		0.3		
\ /	Laur laural innut valtage	V _{CC} = 3 V		0.9		0.9		0.9	V	
V_{IL}	Low-level input voltage	V _{CC} = 4.5 V		1.35				1.35		
		V _{CC} = 5.5 V		1.65		1.65		1.65		
٧Į	Input voltage		0	Vcc	0	VCC	0	VCC	V	
٧o	Output voltage		0	Vcc	0	VCC	0	VCC	V	
loh	High-level output current	V _{CC} = 4.5 V to 5.5 V		-24		-24		- 24	mA	
I _{OL}	Low-level output current	V _{CC} = 4.5 V to 5.5 V		24		24		24	mA	
A+/A>-	Input transition rice or fall rate	V _{CC} = 1.5 V to 3 V		50		50		50	ns/V	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.6 \text{ V to } 5.5 \text{ V}$		20		20		20	115/V	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SCHS303C - JANUARY 2001 - REVISED JUNE 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		vcc	T _A = 25°C		–40°C TO 85°C		–55°C TO 125°C		UNIT			
				MIN	MAX	MIN	MAX	MIN	MAX				
VOH VI = VIH or VIL	I _{OH} = –50 μA	1.5 V	1.4		1.4		1.4						
		3 V	2.9		2.9		2.9						
			4.5 V	4.4		4.4		4.4					
	VI = VIH or VIL	I _{OH} = -4 mA	3 V	2.58		2.48		2.4		V			
		I _{OH} = –24 mA	4.5 V	3.94		3.8		3.7					
		I _{OH} = -50 mA†	5.5 V					3.85					
		I _{OH} = -75 mA [†]	5.5 V			3.85							
		I _{OL} = 50 μA	1.5 V		0.1		0.1		0.1	0.1			
			I _{OL} = 50 μA	I _{OL} = 50 μA	I _{OL} = 50 μA	3 V		0.1		0.1		0.1	
	VI = VIH or VI∟		4.5 V		0.1		0.1		0.1				
V_{OL}		I _{OL} = 12 mA	3 V		0.36		0.44		0.5	V			
		I _{OL} = 24 mA	4.5 V		0.36		0.44		0.5				
		I _{OL} = 50 mA [†]	5.5 V						1.65				
		I _{OL} = 75 mA†	5.5 V				1.65						
lı	$V_I = V_{CC}$ or GND		5.5 V		±0.1		±1		±1	μΑ			
Icc	$V_I = V_{CC}$ or GND,	I _O = 0	5.5 V		4		40		80	μΑ			
Ci					10		10		10	pF			

[†] Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 1.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–40°C TO 85°C	–55°C TO 125°C	UNIT
	(INT OT)	(0011-01)	MIN MAX	MIN MAX	
^t PLH	A or B	V	83	91	
t _{PHL}	AUID	T	83	91	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	–40°0 85°		–55°C 125		UNIT
	(HAP O1)	(001701)	MIN	MAX	MIN	MAX	
^t PLH	A or B	V	2.7	9.3	2.6	10.2	20
t _{PHL}	AOIB	'	2.7	9.3	2.6	10.2	ns

CD54AC00, CD74AC00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SCHS303C – JANUARY 2001 – REVISED JUNE 2002

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	−40°C TO 85°C −55°C TO 125°C MIN MAX MIN MAX 1.9 6.6 1.8 7.3 1.9 6.6 1.8 7.3	UNIT			
	(1141 01)	(0011 01)	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	V	1.9	6.6	1.8	7.3	20
t _{PHL}	AOID	1	1.9	6.6	1.8	7.3	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TYP	UNIT
C _{pd}	Power dissipation capacitance	45	pF

VOLTAGE WAVEFORMS

OUTPUT ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

VOLTAGE WAVEFORMS

PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns. Phase relationships between waveforms are arbitrary.
- D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. t_{PLH} and t_{PHL} are the same as t_{pd} .
- G. tpzL and tpzH are the same as ten.
- H. tpl 7 and tpH7 are the same as tdis.

Figure 1. Load Circuit and Voltage Waveforms

