Doc. H

Étude cinématique des systèmes de solides de la chaîne d'énergie Analyser, Modéliser, Résoudre

Sciences Industrielles de l'Ingénieur

Télescope

TP

Savoirs et compétences :

- Mod-C11: Modélisation géométrique et cinématique des mouvements entre solides indéformables
 - □ Mod-C11.2 : Champ des vecteurs vitesses des points d'un solide

Modélisation cinématique

	Modelisation et parametrage	2
2	Cinématique	2
2.1	Trajectoire du point B	. 2

Modélisation et paramétrage

2 Cinématique

2.1 Trajectoire du point B

On a : $\overrightarrow{OB} = a\overrightarrow{z_1} + R\overrightarrow{x_1} + L\overrightarrow{z_2}$. En exprimant \overrightarrow{OB} dans le repère \mathcal{R}_0 , on a :

$$\begin{array}{ll} \overrightarrow{OB} & = & a\overrightarrow{z_0} + R\left(\cos\alpha\overrightarrow{x_0} + \sin\alpha\overrightarrow{y_0}\right) + L\left(\cos\beta\overrightarrow{z_1} - \sin\beta\overrightarrow{y_1}\right) \\ & = & a\overrightarrow{z_0} + R\left(\cos\alpha\overrightarrow{x_0} + \sin\alpha\overrightarrow{y_0}\right) + L\left(\cos\beta\overrightarrow{z_0} - \sin\beta\left(\cos\alpha\overrightarrow{y_0} - \sin\alpha\overrightarrow{x_0}\right)\right). \end{array}$$

Au final,

$$\overrightarrow{OB} = \begin{bmatrix} R\cos\alpha + L\sin\beta\sin\alpha \\ R\sin\alpha - L\sin\beta\cos\alpha \\ a + L\cos\beta \end{bmatrix}_{\Re_0}$$