Practical session of

Phonon evaluation

Tom Ichibha/JAIST

Download template

- Open this URL by firefox

https://www.dropbox.com/s/I3lb571e77w7vt9/files.zip?dl=0

- Pick up the downloaded file 'files.zip' on your Desktop.

(File includes all the I/O for phonon calc.)

- Unzip the file to get ~/Desktop/files

Confirm your contents

```
% pwd
/Users/maezono/Desktop/files

% ls
1_scf/     4_phdos/     7_disp_phband/     As.pbe-n-van.UPF*
2_phonon/     5_freeE/     8_phonon_separated/     Ga.pbe-n-van.UPF*
3_q2r/     6_phband/     9_dynmat/
```

Each folder contains step-by-step

procedure of phonon calculations

Procedure

overview

ph.x/q2r.x: evaluating the 2nd. order force constant

2_phonon/, 3_q2r/

matdyn.x: calculating phonon DOS, dispersion

4_phdos/, 6_phband/

fqha.x: evaluating Free energy

5_freeE/

plotband.x : making phonon dispersion graph

7_disp_phband/

pw.x

pw.x: evaluating wavefunction

- 1) Go to '1_scf/' directory
- 2) Follow the instruction shown by Ichibha

pw.x

```
Execute pw.x % pw.x < input.in > out.o &
```

outputs

gaas.wfc: wavefunction data

gaas.wfc1,2,...,N: wave function data

for parallel processing

gaas.save : eigen values of KS orbitals

Getting smooth q-dep.

q2r.x/Fourier transform from 'q to r'

q2r.x

'discrete q-pt' evaluation
Fourier Tr. to 'r' (continuous)

matdyn.x

again inv-Fourier Tr. to 'q'

'continuous q-pt' interpolation

ph.x

ph.x/q2r.x: evaluating the 2nd. order force constant

- 1) Go to '2_phonon/' directory
- 2) copy wavefunction from 1_scf cp ../1_scf/gaas.* .
- 3) Follow the instruction shown by Ichibha

Execute ph.x

% ph.x < input.in > out.o

ph.x

Phonon calculation takes much time...

Let us use the 'pre-cooked' files. (~20min.)

- Kill the process, ctrl+c
- Copy the 'pre-cooked' output files cp ../9_dynmat/* .

outputs

gaas.dyn0: inequivalent q points

gaas.dyn1,2,...: Force constants on

each discrete q-point

[c.f., \sim 15 sec. for SCF]

q2r.x

ph.x/q2r.x: evaluating the 2nd. order force constant

- 1) Go to '3_q2r/' directory
- 2) copy the force constants of sampling q points %cp ../2_phonon/gaas.dyn* .
- 3) Execute q2r.x [take a look!] % q2r.x < input.in > out.o

outputs

gaas444.fc: Force constants in real space

Getting smooth q-dep.

q2r.x

'discrete q-pt' evaluation
Fourier Tr. to 'r'

again inv-Fourier Tr. to 'q'

matdyn.x

'continuous q-pt' interpolation

matdyn.x /DOS

matdyn.x: calculating phonon DOS, dispersion

- 1) Go to '4_phdos/' directory
- 2) copy the force constants of sampling real space cp ../3_q2r/gaas444.fc .
- 3) Follow the instruction shown by Ichibha

matdyn.x /DOS

- 1) Execute matdyn.x [take a look!] % matdyn.x < input.in > out.o
 Phonon DOS is written in PHDOS.out
- 2) make figure of phonon DOS

 gnuplot plot.gv

 [script to generate plot/take a look!]
- 3) display the figure gs gaas-phdos.eps

fqha.x

fqha.x: evaluating Free energy

- 1) Go to '5_freeE/' directory
- 2) Get the phonon DOScp ../4_phdos/PHDOS.out .
- 3) Follow the instruction shown by Ichibha

fqha.x

- 1) Execute fqha.x [take a look!] %fqha.x < input.in > out.o
 - → Free energy is written in gaas.thermal
- 2) Generate plot of Free energy
 - % gnuplot plot.gv [script to generate plot/take a look!]
- 3) Display the plot% gs gaas-phdos.eps

matdyn.x/dispersion

matdyn.x: calculating phonon DOS, dispersion

- 1) Go to '6_phband/' directory
- 2) copy the force constants of sampling real space %cp ../3_q2r/gaas444.fc .
- 3) Follow the instruction shown by Ichibha

matdyn.x/dispersion

Execute matdyn.x

% matdyn.x < input.in > out.o

outputs

gaas.freq: frequencies at selected q-points

matdyn.modes: force constants at selected q-points

plotband.x

plotband.x: making phonon dispersion graph

- 1) Go to '7_disp_phband/' directory
- 2) Copy the phonon dispersion data

%cp ../6_phband/gaas.freq .

3) Follow the instruction shown by Ichibha

plotband.x

1) Execute plotband.x

% plotband.x < input.in > out.o

outputs

```
gaas-phdisp.ps : phonon dispersion [PS image]
gaas-phdisp.xmgr : phonon dispersion [Xmgrace input]
```

2) Display the plot% gs gaas-phdisp.ps

Fin