Physical Layer

서영주

Data & Signal

- Data something that has meaning
 - Analog (continuous) data audio, video
 - Digital (discrete) data text
- Signal electric or electromagnetic representations of data for transmission (encoded data)
 - Analog signal represents data with continuously varying wave
 - Digital signal represents data with sequence of voltage pulses

■ Time-Domain Representation of Signals

- Analog signals have three components
 - Amplitude: strength of signal (volts)
 - Frequency: rate of change of signal (Hz)
 - Phase: position of waveform relative to a given moment of time (degree)

Ex: sinusoidal signal $s(t)=A \sin(2\pi ft + \theta)$

A: amplitude, f: frequency=1/T, θ : phase

- Frequency-Domain Representation of Signals
 - Why freq-domain representation?

- Signal usually made up of many frequencies
- Components are sine waves
- Can be shown (Fourier analysis) that any signal is made up of component sine waves
- Can plot frequency domain functions

Example

Fourier Analysis:

Any periodic signal can be decomposed into a (possibly infinite) series of sinusoidal signals.

- Signal Spectrum
 - Describes a signal's characteristics as a function of frequency.

Spectrum and Bandwidth

- Bandwidth = BW
 - Maximum amount of data transmitted over an internet connection in a given amount of time.
 - The difference between the highest and the lowest frequencies contained in a signal

- Digital data is transmitted by a signal of limited bandwidth
 - Creates distortion to the signal
 - Makes interpreting of the received signal difficult
 - Increases errors in the receiver

[Remarks]

- The receiver samples the received signal at the center of each bit interval
- Exact shape of the signal outside the sampling instant is less important

- Transmission Impairments
 - Effect of transmission impairments
 - distorts or changes the values of the original transmitted signal
 - make the signal more difficult to determine the exact form of the original signal
 - Analog degradation of signal quality
 - Digital bit errors
- Impairment sources
 - Attenuation
 - Delay distortion
 - Noise

Attenuation

- With the increase in distance, energy of signal decreases
- The energy loss is due to resistance of transmission wire which gets warm when signals are passed through them
- Received signal strength must be enough to be detected
- To re-boost the weak signal, amplifiers are used

Delay distortion

 The velocity of propagation of a signal through a guided medium varies with frequency

- Noise a major limiting factor
 - unwanted signal inserted somewhere between transmission and reception
 - source of noise
 - thermal caused by thermal agitation of electrons in a conductor
 - crosstalk interference in a communication channel caused by a signals traveling in an adjacent channel
 - impulse short external pulse, (ex) lightening

Data Encoding

→ Data are either analog or digital - converted into a signal for transmission

Modulation - the process of translation of baseband signal to bandpass (modulated carrier) signal at frequencies that are very high compared to the baseband frequencies

Demodulation - process of extracting the baseband signal back from the modulated carrier.

- lacktriangle Analog data ightarrow Analog signals : (Analog) Modulation
 - The process of combining an input signal m(t) and a carrier c(t) at frequency f_c to produce a signal s(t) whose bandwidth is centered on f_c .
 - m(t): modulating signal or baseband signal
 - c(t): carrier signal
 - s(t): modulated signal
 - Shifts center frequency of baseband signal up to the radio carrier
 - Why modulation?
 - Higher frequency can give more efficient transmission
 - For FDM (Frequency Division Multiplexing)
 - To adjust to medium characteristics

Modulation

Demodulation

Modulation process

- Carrier signals have 3 basic characteristics: amplitude, frequency, phase
- Change any of these characteristics for modulation

Amplitude Modulation (AM) (ex1)

Frequency Modulation (FM)

- ◆ Phase Modulation → change phase
 - If modulation signal is analog, the result is basically the same as (or similar to) FM.

- Digital Data → Analog Signals (Digital Modulation)
 - → Transmitting digital data through telephone network
 - → Use modem (modulator-demodulator)
 - Modulation of digital signals is known as Shift Keying
 - Basic modulation methods
 - Amplitude shift keying (ASK) change A(t)
 - Frequency shift keying (FSK) change w
 - ullet Phase shift keying (PSK) change heta
 - Differences in spectral efficiency, power efficiency, robustness

- Amplitude Shift Keying (ASK)
 - very simple
 - low bandwidth requirements
 - very susceptible to interference

$$S(t) = \begin{cases} A\cos 2\pi f_c t & binary 1\\ 0 & binary 0 \end{cases}$$

- Frequency Shift Keying (FSK)
 - needs larger bandwidth
 - less susceptible to errors than ASK

$$S(t) = \begin{cases} A\cos 2\pi f_1 t & binary 1\\ A\cos 2\pi f_2 t & binary 0 \end{cases}$$

- Phase Shift Keying (PSK)
 - more complex
 - robust against interference

$$S(t) = \begin{cases} A\cos(2\pi f_c t + 180^\circ) & binary 1\\ A\cos 2\pi f_c t & binary 0 \end{cases}$$

- BPSK (Binary Phase Shift Keying)
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - Robust

Signal Constellation Diagram

- Quadrature Phase Shift Keying (QPSK)
 - 2 bits coded as one symbol
 - twice the bandwidth efficiency of BPSK since 2 bits are transmitted in a single modulation symbol
 - symbol determines phase shift relative to reference signal

- Quadrature Amplitude Modulation (QAM)
 - Combines amplitude and phase modulation
 - Possible to code n bits using one symbol
 - \rightarrow 2ⁿ discrete levels; n=2 identical to QPSK
 - Bit error rate increases with n, but less errors compared to comparable PSK schemes

Example: 16-QAM (4 bits = 1 symbol)

Symbols 0011 and 0001 have the same phase, but different amplitude.

Symbols 0000 and 1000 have different phase, but same amplitude

→ used in standard 9600 bit/s modems

QAM vs. PSK

- 16QAM has larger distance between points, but requires very linear amplification.
- 16PSK has less stringent linearity requirements, but has less spacing between constellation points, and is therefore more affected by noise.

- Analog Data → Digital Signals (Digitization)
 - Steps
 - Sampling taking finite samples in time
 - Samples are taken by measuring the value of the signal at regular time intervals
 - Quantizing round off samples to take values of discrete values
 - Encoding Use binary encoding to represent the different quantized values

- Sampling theorem (by Nyquist 1933)
 - If a band-limited signal is sampled at a rate greater than twice the highest frequency present in the signal, it is possible to accurately and precisely reconstruct the original signal from the sample values.
- Voice data limited to below 4000Hz → Require 8000 sample per second
- Each sample assigned digital value
- n bit system gives 2ⁿ levels
- Quantized → Pulse Code Modulation (PCM) pulses
- Standard Telephone Voice
 - Utilizes 256 levels $(256 = 28) \rightarrow 8$ bit encoding
 - Voice signal bandwidth = 4000Hz
 - 8000 samples/sec (by sampling theorem) * bits/sample = 64Kbps

◆ Digitizing the Sampled Signal → Quantizing

- Digital Data → Digital Signal
 - A large number of encoding techniques are available.
 - The criteria for selecting a scheme are:
 - Frequency spectrum
 - ightharpoonup A lack of high frequency component \rightarrow save bandwidth
 - ► A lack of dc-component → reduce interference
 - lacktriang Clocking o synchronization
 - Error detection
 - Noise immunity
 - Encoding schemes
 - Non-Return to Zero (NRZ) Encoding
 - Nonreturn to Zero-Level (NRZ-L)
 - Nonreturn to Zero Inverted (NRZI)
 - Multilevel Binary Encoding
 - Biphase Encoding
 - Manchester
 - Differential Manchester

- Non-Return to Zero (NRZ) Encoding
 - Non-Return to Zero-Level (NRZ-L) Encoding
 - 0 = high level (high voltage)
 - 1 = low level (low voltage)
 - Problem of NRZ-L: consecutive 0s and 1s
 - Receiver keeps average of signal it has seen so far
 - high if received signal is significantly higher than average
 - low if received signal is significantly lower than average
 - Too many consecutive Os or 1s cause the average to change
 → difficult to detect signal
 - May cause clock drift problem

- Non-Return to Zero Inverted (NRZI) Encoding
 - 0 = No transition
 - 1 = Transition
- → Solves the problem of consecutive 1s in NRZ-L, but does nothing for consecutive 0s

- Advantages of NRZ Encoding
 - Efficient use of bandwidth
 - Simple and easiest
- Disadvantages of NRZ Encoding
 - Consecutive Os and/or 1s (dc component)
 - Lack of synchronization capability

(ex) a long string of 0's or 1's for NRZL or a long string of 0's for NRZI \rightarrow Output of a constant voltage over a long period of time may result in a loss of synchronization

- Biphase Encoding → Transition in middle of each bit period
 - ◆ Manchester → IEEE 802.3 (Ethernet)
 - O = transition from high to low
 - 1 = transition from low to high
 - Differential Manchester → IEEE 802.5 (token ring)
 - 0 = transition at beginning of interval
 - 1 = no transition at beginning of interval

- Advantages of Biphase Encoding
 - Synchronization
 - No dc component
 - Error detection
- Disadvantages of Biphase Encoding
 - Requires more bandwidth
 - Maximum modulation rate is twice NRZ (efficiency=50%)

	Min	Max
NRZL	0 (000) or (111)	B (10101010) or (01010101)
NRZI	0 (000)	B (111)
Manchester	B (1010) or (0101)	2B (000) or (111)
Differential Manchester	B (111)	2B (000)