Algoritmi v bioinformatiki - 2. Domača naloga

Jan Panjan

May 12, 2025

1. Dano imamo naslednje zaporedje izidov metov kovanca

$$V = CCCGCGGCCGC$$

pri čemer C označuje, da je bil izid meta cifra, G pa da je bil izid meta grb. Za mete imamo na voljo 3 kovance, A, B in C, veljajo naslednje verjetnosti:

 Prehod:
 %
 A
 B
 C

 A
 40
 30
 30

 B
 30
 40
 30

 C
 30
 30
 40

 %
 C
 G

 A
 75
 25

 B
 80
 20

 C
 20
 80

Katera od možnosti je najbolj verjetna?

- (a) za vse mete smo uporabili kovanec A
- (b) za vse mete smo uporabili kovanec C
- (c) za vse mete smo uporabili kovanec B
- (d) $\Pi = AAACBCCBBCA$

Odgovor ustrezno utemeljite.

Za vse mete smo uporabili kovanec A

` /	7-krat vržemo C z verjetnostjo 0.75
	7-krat vržemo G z verjetnostjo 0.75
$(0.4)^{10}$	10-krat ne zamenjamo kovanca A z verjetnostjo 0.4

$$p(A) = (0.75)^7 \cdot (0.25)^4 \cdot (0.4)^{10} = 0.00209$$

Za vse mete smo uporabili kovanec B

$(0.8)^7$	7-krat vržemo C z verjetnostjo 0.8
	7-krat vržemo G z verjetnostjo 0.2
$(0.4)^{10}$	10-krat ne zamenjamo kovanca B z verjetnostjo 0.4

$$p(B) = (0.8)^7 \cdot (0.2)^4 \cdot (0.4)^{10} = 0.00134$$

Za vse mete smo uporabili kovanec C

	7-krat vržemo C z verjetnostjo 0.8
	7-krat vržemo G z verjetnostjo 0.2
$(0.4)^{10}$	10-krat ne zamenjamo kovanca C z verjetnostjo 0.4

$$p(C) = (0.2)^7 \cdot (0.8)^4 \cdot (0.4)^{10} = 0.0000209$$

$\Pi = AAACBCCBBCA$

$(0.3)^6$	6-krat ostanemo v istem kovancu (vsi kovanci imajo enake verjetnosti)
$(0.4)^4$	4-krat zamenjamo kovanec (tudi tu imajo enako verjetnosti)
$(0.75)^4$	4-krat vržemo kovanec A, vsakič vržemo cifro z verjetnostjo 0.75
$(0.8)^3$	3-krat vržemo kovanec B, vsakič vržemo cifro z verjetnostjo 0.8
$(0.8)^4$	4-krat vržemo kovanec C, vsakič vržemo grb z verjetnostjo 0.8

$$p(\Pi) = (0.3)^6 \cdot (0.4)^4 \cdot (0.75)^4 \cdot (0.8)^3 \cdot (0.8)^4 = 0.00000124$$

Rešitev: Najbolj verjetna je možnost z največjo verjetnostjo. To je možnost (a) z verjetnostjo 0.00209.

- 2. Dani imamo zaporedji s = GAGTACA in t = TGATTACA ter vrednostno funkcijo s parametroma $\mu = 4, \sigma = 2$ in nagrado za ujemanje 2.
 - (a) Z uporabo Needleman-Wunsch-evega algoritma za globalno poravnavo smo dobili naslednjo tabelo:

		-	G	A	G	T	A	С	A
		О	1	2	3	4	5	6	7
-	О	°-	→-2	→-4	→-6	→-8	→10	→12	→14
T	1	-2	→-4	→-6 —	→-8	-4-	→-6	→-8	→10
G	2	-4	0	→-2-	→-4	→-6	→-8	10	→12
A	3	-6	-2	2	- o -	→-2	→-4	→-6	→-8
T	4	-8	-4	o –	→-2	2	→ o _	→- <u>2</u>	→-4
T	5	-10	-6	-2	→- <u>4</u>	, o	→-2	→-4 <u></u>	→-6
A	6	-12	-8	-4	→-6	-2	2 —	→ o —	→-2
С	7								
A	8								

Dopolnite tabelo tako, da poračunate vrednosti (in ustrezne puščice) za zadnji dve vrstici.

		_	9	A	9	Т	A	С	A
		0	1	2	3	4	5	6	7
-	0	0 -	→ -2 -	» -4 —	-6-	→ - 8 —	→ -1o —	> -12 -	>-14
Т	1	-2	3.4	- 6 -	→ -8	-4 -	→ - 6 —	→ -8 —	- 10
9	2	-4	0 -	» -z —	» -4 —	→ -6 ⁻	→ - 8 —	→ -10 <u></u>	> -12
Α	3	-6	-2	²	→ 0 —	→ -2 -	→ -4 <u> </u>	→ - 6 –	→ -8
Т	4	-8	-4	o –	→ -2	2 -	→ o —	→ -2 —	» -4
Т	5	-10	-6	-z -	→ -4	0	> -2	3-4	→ -6
Α	6	-12	-8	-4-	→ - 6	-2	2 -	→ o —	→ -2
С	7	-14	-10	-6-	> -8	-4	o -	4-	→ 2
A	8	-16	-12	-8 -	→ -10	-6	-2	2	6

(b) Koliko optimalnih globalnih poravnav dobite? Izpišite vse rešitve.

Dobim dve optimalni globalni poravnavi. Mesto vrzeli se spremeni in sicer iz mesta 4 na mesto 3 (in obratno):

Z matrikami to izgleda tako:

3. Dano imamo naslednjo matriko izražanja:

	T_1	T_2	T_3	T_4	T_5	T_6
g_1	2	2	6	2	3	4
g_2	3	7	3	1	9	3
g_3	2	2	7	2	6	3
g_4	3	2	3	2	1	3
g_5	2	1	5	1	0	4
g_6	3	5	5	8	2	3
g_7	1	3	1	5	4	2
g_8	5	4	2	4	7	5

Določite gruče z uporabo metode voditeljev, če je začetna množica voditeljev enaka $X = \{g_1, g_5, g_6\}$. Vsak gen lahko obravnavamo kot vektor $g_i = (T_1, \dots, T_6)$.

Prva iteracija

Prvi korak Najprej je potrebno izračunati razdalje med geni. (Evklidska) razdalja med vsakim genom je definirana kot:

$$d(g_i, g_j) = \sqrt{\left(T_i^{(1)} - T_j^{(1)}\right)^2 + \dots + \left(T_i^{(6)} - T_j^{(6)}\right)^2} \quad ; \quad 1 \le i, j \le 8$$
 (1)

Primer za prvi gen:

$$d(g_1, g_1) = \sqrt{(2-2)^2 + (2-2)^2 + (6-6)^2 + (2-2)^2 + (3-3)^2 + (4-4)^2} = 0$$

Očitno je razdalja med istim genom 0, kar pravi tudi prva lastnost metrike: $d(x,y) = 0 \iff x = y$. Ko poračunamo vse, dobimo matriko razdalj. Potrebujemo razdalje samo do voditeljev:

	$d(g_1,g_i)$	$d(g_5,g_i)$	$d(g_6,g_i)$
g_1	0	18.166	17.493
g_2	8.544	11.091	10.296
g_3	3.317	6.557	8.124
g_4	3.873	3.000	7.071
g_5	18.166	0	10.198
g_6	17.493	10.198	0
g_7	5.657	7.071	5.568
g_8	7.071	9.274	7.681

Drugi korak Za vsak gen izberemo najkrajšo razdaljo med njim in voditeljem.

	$d(g_1,g_i)$	$d(g_5,g_i)$	$d(g_6,g_i)$
g_1	0	18.166	17.493
g_2	8.544	11.091	10.296
g_3	3.317	6.557	8.124
g_4	3.873	3.000	7.071
g_5	18.166	0	10.198
g_6	17.493	10.198	0
g_7	5.657	7.071	5.568
g_8	7.071	9.274	7.681

Tretji korak Iz vsakega stolpca odčitamo nove voditelje (vrednosti označene z rdečo), katere označimo s C_i , $i \in \mathbb{N}$, in sicer:

$$C_1 = \{g_1, g_2, g_3, g_8\}$$

$$C_2 = \{g_4, g_5\}$$

$$C_3 = \{g_6, g_7\}$$

Četrti korak Za gručo C_i z n geni $\{g_1,\ldots,g_k\mid 1\leq k\leq 8\}$, izračunamo nov vektor vrednosti $v_i=(v_{i1},\ldots,v_{in})$ z enačbo:

$$v_i = \frac{1}{n} \sum_{j=1}^n g_k \tag{2}$$

Nove vrednosti so torej aritmetična sredina vseh genov v gruči:

$$v_1 = (3, 3.75, 4.5, 2.25, 6.25, 3.75)$$

$$v_2 = (2.5, 1.5, 4, 1.5, 0.5, 3.5)$$

$$v_3 = (2, 4, 3.5, 6.5, 3, 2.5)$$

Zdaj ponovimo korake dokler ne dosežemo konvergence:

- ko se gruče med iteracijama ne spremenijo
- ko postanejo razlike med radaljami gruč manjše od neke vnaprej določene vrednosti.

Druga iteracija

Prvi + drugi korak

	$d(v_1,g_i)$	$d(v_2,g_i)$	$d(v_3,g_i)$
g_1	3.808	3.354	5.723
g_2	4.743	10.209	8.761
g_3	3.317	6.344	6.764
g_4	5.788	1.500	5.454
g_5	7.036	1.500	7.263
g_6	7.314	7.632	2.784
g_7	5.148	5.958	2.784
g_8	3.937	8.185	6.305

Tretji korak

$$C_4 = \{g_1, g_2, g_3, g_8\}$$

$$C_5 = \{g_4, g_5\}$$

$$C_6 = \{g_6, g_7\}$$

Ker so gruče enake kot v prejšnji iteraciji, lahko postopek tu končamo...

Rešitev: gruče določene z metodo voditeljev s k=3 za dano matriko izražanja so

$$g_1, g_2, g_3, g_8$$

 g_4, g_5
 g_6, g_7

4. Izračunajte drevo hierarhičnega gručenja z uporabo algoritma UPGMA.

Naj bo množica vseh genov $G=\{g_1,\ldots,g_8\}$. Osnova za algoritem UPGMA je matrika razdalj genov, za katero uporabimo sledečo enačbo

$$d_{\text{avg}}(C, C^*) = \frac{1}{|C||C^*|} \sum_{x \in C, y \in C^*} d(x, y)$$
(3)

kjer sta C in C^* dve gruči (na začetku so to geni). d je ista kot v (1).

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
g_1	0	8.544	3.317	3.873	3.464	7.000	5.657	7.071
g_2		0	8.124	10.198	11.091	10.296	10.677	8.602
g_3			0	6.325	6.557	8.124	6.403	7.000
g_4				0	3.000	7.071	5.099	6.403
g_5					0	10.198	7.071	9.274
g_6						0	5.568	7.681
g_7							0	5.916
g_8								0

Gručenje deluje tako, da vsako iteracijo izberemo najbližja gena in ju združimo v gručo. Na začetku je vsak gen v svoji gruči, do konca postopka pa ustvarimo eno celovito gručo, ki bo vsebovala vse gene.

Prva iteracija

Prvi korak Izberemo najmanjšo vrednost med razdaljami.

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
g_1	0	8.544	3.317	3.873	3.464	7.000	5.657	7.071
g_2		0	8.124	10.198	11.091	10.296	10.677	8.602
g_3			0	6.325	6.557	8.124	6.403	7.000
g_4				0	3.000	7.071	5.099	6.403
g_5					0	10.198	7.071	9.274
g_6						0	5.568	7.681
g_7							0	5.916
g_8								0

Drugi korak Dodamo gena v gručo C_1 , torej $C_1 = \{g_4, g_5\}$ in poračunamo novi vektor v_1 , ki bo predstavljal novo gručo v matriki razdalj (tako kot prej uporabimo aritmetično sredino komponent vrednosti iz matrike izražanja):

$$v_1 = (2.5, 1.5, 4, 1.5, 0.5, 3.5)$$

Tretji korak Gena v gruči združimo, tako da je $G = \{g_1, \ldots, C_1, \ldots, g_8\}$. Izračunamo razdaljo gruče (C_1) do vseh ostalih gruč s pomočjo enačbe (3).

	g_1	g_2	g_3	C_1	g_6	g_7	g_8
g_1	0	8.544	3.317	3.669	7.000	5.657	7.071
g_2		0	8.124	10.645	10.296	10.677	8.602
g_3			0	6.441	8.124	6.403	7.000
C_1				0	8.635	6.085	7.839
g_6					0	5.568	7.681
g_7						0	5.916
g_8							0

Četrti korak Gručo povežemo na dendrogramu na višini, ki jo izračunamo z enačbo:

$$h(C) = \frac{D(C_1, C_2)}{2} \tag{4}$$

Povezavi (C_1, g_4) dodelimo višino $h(C_1) - h(g_4) = h(C_1)$ ter povezavi (C_1, g_5) višino $h(C_1) - h(g_5) = h(C_1)$.

$$h(C_1) = \frac{D(g_4, g_5)}{2} = \frac{\frac{1}{|g_4||g_5|}d(g_4, g_5)}{2} = \frac{d(g_4, g_5)}{2} = \frac{3.000}{2} = 1.500$$

Dendrogramu dodamo vozlišče:

Ponavljamo vse korake, dokler obstaja več kot ena gruča.

Druga iteracija

Prvi korak

	g_1	g_2	g_3	C_1	g_6	g_7	g_8
g_1	0	8.544	3.317	3.669	7.000	5.657	7.071
g_2		0	8.124	10.645	10.296	10.677	8.602
g_3			0	6.441	8.124	6.403	7.000
C_1				0	8.635	6.085	7.839
g_6					0	5.568	7.681
g_7						0	5.916
g_8							0

Drugi korak Ustvarimo novo gručo $C_2 = g_1, g_3$ in poračunamo vektor v_2 :

$$v_2 = (2, 2, 6.5, 2, 4.5, 3.5)$$

Tretji korak Posodobimo množico genov $G = \{C_2, g_2, C_1, \dots, g_8\}$. Poračunamo nove razdalje, prepišemo ostale:

	C_2	g_2	C_1	g_6	g_7	g_8
C_2	0	8.334	5.055	7.562	6.030	7.036
g_2		0	10.645	10.296	10.677	8.602
C_1			0	8.635	6.085	7.839
g_6				0	5.568	7.681
g_7					0	5.916
g_8						0

Četrti korak Izračunamo višino povezave.

$$h(C_2) = \frac{D(g_1, g_3)}{2} = \frac{d(g_1, g_3)}{2} = \frac{3.317}{2} = 1.659$$

Posodobimo dendrogram:

Tretja iteracija

Prvi korak

	C_2	g_2	C_1	g_6	g_7	g_8
C_2	0	8.334	5.055	7.562	6.030	7.036
g_2		0	10.645	10.296	10.677	8.602
C_1			0	8.635	6.085	7.839
g_6				0	5.568	7.681
g_7					0	5.916
g_8						0

Drugi korak – Zdaj pa združimo gruči $C_3=\{C_1,C_2\}=\{g_1,g_3,g_4,g_5\}.$ Poračunamo vektor:

$$v_3 = (2.25, 1.75, 5.25, 1.75, 2.5, 3.5)$$

Tretji korak Posodobimo množico: $G = \{C_3, g_2, \dots, g_8\}.$

Nove razdalje:

	C_3	g_2	g_6	g_7	g_8
C_3	0	9.490	8.099	6.058	7.438
g_2		0	10.296	10.677	8.602
g_6			0	5.568	7.681
g_7				0	5.916
g_8					0

8

Četrti korak Višina povezave:

$$h(C_3) = \frac{D(C_1, C_2)}{2}$$

$$= \frac{1}{2|C_1||C_2|} \sum_{x \in C_1, y \in C_2} d(x, y)$$

$$= \frac{1}{2|C_1 \times C_2|} \sum_{u \in C_1 \times C_2} d(u)$$

$$= \frac{1}{8} \cdot (d(g_4, g_1) + d(g_4, g_3) + d(g_5, g_1) + d(g_5, g_3))$$

$$= \frac{1}{8} \cdot (3.873 + 6.325 + 3.464 + 6.557)$$

$$= \frac{1}{8} \cdot 20.219$$

$$= 2.5278$$

Posodobimo dendrogram:

Četrta iteracija

Prvi korak

	C_3	g_2	g_6	g_7	g_8
C_3	0	9.490	8.099	6.058	7.438
g_2		0	10.296	10.677	8.602
g_6			0	5.568	7.681
g_7				0	5.916
g_8					0

Drugi korak Ustvarimo gručo $C_4 = \{g_6, g_7\}.$

Poračunamo vektor:

$$v_4 = (2.0, 4.0, 3.5, 6.5, 3.0, 2.5)$$

Tretji korak Posodobimo množico: $G = \{C_3, g_2, C_4, g_8\}.$

Nove razdalje:

	C_3	g_2	C_4	g_8
C_3	0	9.490	7.079	7.438
g_2		0	10.487	8.602
C_4			0	6.799
g_8				0

Četrti korak Višina povezave:

$$h(C_4) = \frac{D(g_6, g_7)}{2} = \frac{\frac{1}{|g_6||g_7|}d(g_6, g_7)}{2} = \frac{d(g_6, g_7)}{2} = \frac{5.568}{2} = 2.784$$

Posodobimo dendrogram:

Peta iteracija

Prvi korak

	C_3	g_2	C_4	g_8
C_3	0	9.490	7.079	7.438
g_2		0	10.487	8.602
C_4			0	6.799
g_8				0

Drugi korak Ustvarimo gručo $C_5 = \{C_4, g_8\} = \{g_6, g_7, g_8\}.$

Poračunamo vektor:

$$v_5 = (4.0, 3.75, 2.0, 4.25, 6.25, 4.25)$$

Tretji korak Posodobimo množico: $G = \{C_3, g_2, C_5\}.$

Nove razdalje:

	C_3	g_2	C_5
C_3	0	9.490	7.258
g_2		0	9.545
C_5			0

Četrti korak Višina povezave:

$$h(C_5) = \frac{D(C_4, g_8)}{2}$$
$$= \frac{1}{2} \cdot 6.799$$
$$= 3.399$$

Posodobimo dendrogram:

Šesta iteracija

Prvi korak

	C_3	g_2	C_5
C_3	0	9.490	7.258
g_2		0	9.545
C_5			0

Drugi korak Ustvarimo gručo $C_6 = \{C_3, C_5\} = \{g_1, g_3, g_4, g_5, g_6, g_7, g_8\}$. Poračunamo vektor:

$$v_6 = (3.125, 2.75, 3.625, 3.0, 4.375, 3.875)$$

Tretji korak Posodobimo množico: $G = \{g_2, C_6\}.$

Nove razdalje:

	C_6	g_2
C_6	0	9.518
g_2		0

Četrti korak Višina povezave:

$$h(C_6) = \frac{D(C_3, C_5)}{2}$$
$$= \frac{1}{2} \cdot 7.258$$
$$= 3.629$$

 ${\bf Posodobimo\ dendrogram:}$

Sedma iteracija

Prvi korak

	C_6	g_2
C_6	0	9.518
g_2		0

Drugi korak Ustvarimo gručo $C_7=\{g_2,C_6\}=\{g_1,g_2,g_3,g_4,g_5,g_6,g_7,g_8\}.$ Poračunamo vektor:

$$v_7 = (3.0625, 4.875, 3.3125, 2.0, 6.6875, 3.4375)$$

Tretji korak Posodobimo množico: $G = \{C_7\}$.

Nove razdalje: ker smo združili vse gene, smo odstranili še zadnje elemente matrike.

Četrti korak Višina povezave:

$$h(C_7) = \frac{D(C_6, g_2)}{2}$$
$$= \frac{1}{2} \cdot 9.518$$
$$= 4.759$$

Končni dendrogram:

