I hereby certify that this correspondence is being deposited with the United States Postal Service as First Class Mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C., 20231, on the date indicated below.

BY: Nelene Glabel

DATE: October 24 2001

PATENT

DEC 1 2 2001 (S)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent Application

of Ian Hector Frazer et al.

Conf. No.:

4929

Appln. No.:

09/900,345 /

Filed:

July 6, 2001

For:

METHOD AND POLYNUCLEOTIDES

: Attorney Docket

FOR DETERMINING TRANSLATIONAL

: No. 10338-5 US

EFFICIENCY OF A CODON

(2423066/VPA)

CLAIM OF FOREIGN PRIORITY AND TRANSMITTAL OF PRIORITY DOCUMENT

Applicants hereby confirm their claim of the right of foreign priority under 35 U.S.C. Section 119 for the above-identified patent application. The claim of foreign priority is based upon Application No. PP 8078, filed in Australia on January 8, 1999, and International Application No. PCT/AU00/00008, filed in Australian on January 7, 2000, and the benefit of those dates is claimed.

Submitted herewith are certified copies of both Australian Applications identified in the paragraph above. It is submitted that these documents complete the requirements of 35 U.S.C. Section 119, and benefit of the foreign priority is respectfully requested.

Respectfully submitted,

IAN HECTOR FRAZER ET AL.

oct 24, 2001 By

ALAN S. NADEL

Registration No. 27,363

AKIN, GUMP, STRAUSS, HAUER & FELD, L.L.P.

One Commerce Square

2005 Market Street - Suite 2200 Philadelphia, PA 19103-7086

Telephone: (215) 965-1200

Direct Dial: (215) 965-1280 Facsimile: (215) 965-1210

E-Mail: anadel@akingump.com

ASN/hg/Encls.

Attorney for Applicant

BEST AVAILABLE COPY

Patent Office Canberra

I, GAYE TURNER, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. PP 8078 for a patent by THE UNIVERSITY OF QUEENSLAND filed on 08 January 1999.

WITNESS my hand this Fifth day of October 2001

GAYE TURNER

TEAM LEADER EXAMINATION

SUPPORT AND SALES

AUSTRALIA

Patents Act 1990

PROVISIONAL SPECIFICATION

Invention Title: "CODON UTILIZATION"

The invention is described in the following statement:

TITLE

"CODON UTILIZATION"

FIELD OF THE INVENTION

INVENTION relates generally gene expression and in particular, a method and polynucleotides for determining codon utilization in one or more cells or tissues of an organism. particularly, the method and polynucleotides of the invention are concerned with ascertaining preferences in cells or tissues for purposes modifying the translational efficiency of proteinencoding polynucleotides in those cells or tissues.

BACKGROUND OF THE INVENTION

It is well known that a "triplet" codon of four possible nucleotide bases can exist in 64 variant These forms provide the message for only 20 forms. different amino acids (as well as translation initiation and termination) and this means that some amino acids can be encoded by more than one codon. this context, some amino acids have as many as six "redundant", alternative codons while some others have a single, required codon.

For reasons not completely understood, codon utilization is highly biased in that alternative codons are not at all uniformly present in the endogenous DNA of differing cell types. In this regard, there appears to exist a variable natural hierarchy of "preference" for certain codons between different cell types or between different organisms.

5

10

15

20

30

25

Codon usage patterns have been shown correlate with relative abundance of isoaccepting transfer RNA (iso-tRNA) species, and with encoding proteins of high versus low abundance. Moreover, the present inventors recently discovered that the intracellular abundance of different isotRNAs varies in different cells or tissues of a single multi-cellular organism (see copending International Application No. PCT/AU98/00530).

5

10

15

20

25

30

35

implications of codon preference The phenomena on gene expression are manifest in that affect the translational can these phenomena efficiency of messenger RNA (mRNA). In this regard, it is widely known that translation of "rare codons", for which the corresponding iso-tRNA is in relatively low abundance, may cause a ribosome to pause during translation which can lead to a failure to complete a chain and an uncoupling polypeptide nascent transcription and translation.

A primary goal in recombinant research is to provide transgenic organisms which express a foreign gene in an amount sufficient to confer the desired phenotype to the organism. However, expression of the foreign gene may be severely impeded if a particular host cell of the organism or the organism itself has a low abundance of iso-tRNAs corresponding to one or more codons of the foreign gene. Accordingly, a major aim of investigators in this field is to first ascertain the codon preference for particular cells or tissues in which a foreign gene is to be expressed, and subsequently alter the codon composition of the foreign gene for optimized expression in those cells or tissues.

Codon preference may be determined simply by analyzing the frequency at which codons are used by genes expressed by a particular cell or tissue or by a

Service of the servic

plurality of cells or tissues of a given organism. Codon frequency tables as well as suitable methods for determining frequency of codon usage in an organism are described, for example, in an article by Sharp et al (1988, Nucleic Acids Res. 16 8207-8211). The relative level of gene expression (e.g., detectable protein expression versus no detectable protein expression) can provide an indirect measure of the relative abundance of specific iso-tRNAs expressed in different cells or tissues.

Alternatively, codon preference may be determined by measuring the relative intracellular abundance of different iso-tRNA species. For example, reference may be made to copending International Application No. PCT/AU98/00530 which describes a method that utilizes labeled oligonucleotides specific for different iso-tRNAs to probe an RNA extract prepared from a particular cell or tissue type.

The above methods provide useful indirect evidence for determining codon preference. However, such indirect evidence may not provide an accurate indication of the translational efficiency of a given codon. Accordingly, there is a need to provide a method which more directly ascertains the translational efficiency of a codon in a cell or tissue.

OBJECT OF THE INVENTION

is therefore an object of the present 30 invention to provide a method for determining codon tissues which method in cells or preference disadvantages of the some ameliorates at least associated with the prior art.

5

10

15

20

25

SUMMARY OF THE INVENTION

Accordingly, in one aspect of the invention, there is provided a method for determining relative preference for a codon in at least one cell or tissue type, said method including the steps of:-

5

10

15

20

25

30

- (A) introducing into said at least one cell or tissue type a synthetic construct comprising a reporter polynucleotide fused in frame with a tandem repeat of identical codons corresponding to said codon under test, wherein said reporter polynucleotide encodes a reporter protein, and wherein said synthetic construct is operably linked to one or more regulatory nucleotide sequences;
- (B) expressing said synthetic construct in said at least one cell or tissue type; and
 - (C) measuring activity associated with said reporter protein in said at least one cell or tissue type to thereby determine the relative preference for said codon.

Preferably, the method is further characterized by the steps of:-

- (i) introducing into another of said at least one cell or tissue type a different synthetic construct having said reporter polynucleotide fused in frame with a tandem repeat of identical codons corresponding to a different codon under test, wherein said different codon is synonymous with said firstmentioned codon, and wherein said different synthetic construct is operably linked to one or more regulatory nucleotide sequences;
- (ii) expressing said different synthetic construct in said another of said at least one cell or tissue type;

- (iii) measuring activity associated with said reporter protein in said another of said at least one cell or tissue type; and
- (iv) comparing the respective activities associated with said reporter protein from said synthetic constructs to thereby determine the preference for said first-mentioned codon relative to the preference for said different codon.

5

30

35

Preferably, step (A) of the above method is further characterized by the steps of:-

- (a) introducing the synthetic construct into a progenitor cell or tissue of said at least one cell or tissue type; and
- (b) generating said at least one cell or 15 tissue type from said progenitor cell or tissue;

wherein said at least one cell or tissue type contains said synthetic construct.

Suitably, the method is further characterized by the steps of:-

- 20 (1) introducing the synthetic construct into a progenitor cell or tissue of said at least one cell or tissue type; and
 - (2) growing an organism or part thereof from said progenitor cell or tissue;
- wherein said organism comprises said at least one cell or tissue type containing said synthetic construct.

The method may be further characterized by the step of introducing the synthetic construct into an organism or part thereof such that said synthetic construct is introduced into said at least one cell or tissue type.

In another aspect, the invention resides in a synthetic construct comprising a reporter polynucleotide fused in frame with a tandem repeat of identical codons, wherein said reporter polynucleotide

encodes a reporter protein, and wherein said synthetic construct is operably linked to one or more regulatory nucleotide sequences

5

15

25

30

35

DETAILED DESCRIPTION

By "expressing said synthetic construct" is meant transcribing the synthetic construct such that mRNA is produced.

The term "synonymous codon" as used herein refers to a codon having a different nucleotide sequence to an existing codon but encoding the same amino acid as the existing codon.

By "isoaccepting transfer RNA" or "iso-tRNA" is meant one or more transfer RNA molecules that differ in their anticodon structure but are specific for the same amino acid.

The term "polynucleotide" as used herein designates mRNA, RNA, cRNA, cDNA or DNA.

The term "progenitor cell or tissue" as used herein refers to a cell or tissue that can gives rise to a particular cell or tissue in which codon preference is to be determined.

Throughout this specification, unless the context requires otherwise, the words "comprise", comprises" and "comprising" will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The present invention is based the discovery that different stretches of identical codons respectively fused in frame with a polynucleotide can give rise to different levels of reporter protein expressed within a given cell type. Not wishing to be bound by theory, it is believed that a tandem series of identical codons may cause

5

10

15

20

25

30

35

المحافظ والمحارب والمراجع والمراجع والمحاجم والمحاجم

ribosome to pause during translation if the iso-tRNA corresponding to the identical codons is limiting. this regard, it is well known that ribosomal pausing leads to a failure to complete a nascent polypeptide chain and an uncoupling of transcription translation. Accordingly, the levels of reporter protein expressed in the different cells or tissues will be sensitive to the intracellular abundance of the iso-tRNA species corresponding to the identical codons and will therefore provide a direct correlation a cell's or tissue's preference for a given codon. This means for example, that if the levels of the reporter protein obtained in a cell or tissue type are lower with a synthetic construct having a tandem series of identical first codons compared to those expressed in the same cell or tissue type with a different synthetic construct having a tandem series of identical second codons, wherein the first codons are different to, but synonymous with, the second codons, then it can be deduced that the cell or tissue has a higher preference for the second codon relative to the first codon with respect to translation.

Suitably, the tandem repeat comprises least three identical codons. Preferably, the tandem identical codons, comprises four repeat codons. seven identical preferably five, six, or However, it will be appreciated that the number of identical codons utilized for the synthetic construct for example, on the regulatory may vary depending, sequences used to express the synthetic construct, the reporter polynucleotide employed, and the cell tissue under test. Accordingly, it is preferred that preliminary experiments be carried out to determine an optimal number of identical codons which is sensitive to the intracellular abundance of the corresponding iso-tRNA species, when expressed as part

synthetic construct. In this regard, too many identical codons may completely inhibit expression of the reporter protein whilst too few may not influence reporter protein expression at all.

5

10

15

20

25

30

35

The tandem repeat may be fused at a location adjacent to, or within, the reporter polynucleotide. The location is preferably selected such that the tandem repeat interferes with translation of at least a portion of the reporter protein from which an activity can be measured. Preferably, the tandem repeat is located immediately upstream of the reporter polynucleotide.

The reporter polynucleotide may encode any levels may be suitable protein whose determined indirectly such as by suitable assay. directly, or Suitable reporter polynucleotides include, but are not encoding **B**restricted to, polynucleotides firefly luciferase, alkaline galactosidase, phosphatase, chloramphenicol acetyltransferase (CAT), β -glucuronidase (GUS), herbicide resistance genes such as the bialophos resistance (BAR) gene that confers to the herbicide BASTA, and resistance fluorescent protein (GFP). Assays for the activities associated with such proteins are well known by those Preferably, the reporter in the art. skill polynucleotide encodes GFP.

appreciated it will be that Of course reporter polynucleotides need not correspond to particular encoding а reporter full-length gene the invention protein. Accordingly, reporter polynucleotide sub-sequences contemplates encoding desired portions of the reporter protein. polynucleotide sub-sequence encodes a domain of the activity having an associated protein reporter therewith and preferably encodes at least 10, 20, 50,

100, 150, or 500 contiguous amino acids of the reporter protein.

The method of the invention is applicable to any suitable cell or tissue type. For example, the cell or tissue type may be of mammalian or plant origin. The cell or tissue type may be of suitable lineage. Suitable cell lines may include, example, CV-1 cells, COS cells, yeast spodoptera cells which are capable of being grown in The invention also contemplates cells which vitro. may be prokaryotic in origin.

5

10

15

20

25

30

35

Suitable methods for isolating particular cells or tissues are well known to those of skill in For example, one can take advantage of one or more particular characteristics of a cell or tissue specifically isolate the cell or tissue from a heterogeneous population. Such characteristics include, but are not limited to, anatomical location of a tissue, cell density, cell size, cell morphology, cellular metabolic activity, cell uptake of ions such as Ca²⁺, K⁺, and H⁺ ions, cell uptake of compounds such as stains, markers expressed on the cell surface, fluorescence, membrane protein and potential. Suitable methods that may be used in this regard include surgical removal of tissue, flow cytometry techniques such as fluorescence-activated cell sorting (FACS), immunoaffinity separation (e.g., magnetic bead separation such as Dynabead™ separation), density separation (e.g., metrizamide, Percoll™, or Ficoll™ gradient centrifugation), cell-type specific and density separation.

In an alternate embodiment, progenitor cells or tissues may be used for initially introducing the synthetic construct. Any suitable progenitor cell or tissue may be used which gives rise to a particular

....

cell or tissue of interest for which codon preference is to be ascertained. For example, a suitable progenitor cell may comprise an undifferentiated cell. In the case of a plant, a suitable progenitor cell may include, for example, a meristematic cell whereas a progenitor tissue may include, for example, a callus tissue.

5

10

15

20

25

30

35

another embodiment, In the synthetic construct may be introduced firstly into an organism or part thereof before subsequent expression of the construct in a particular cell or tissue type. suitable organism is contemplated by the invention include unicellular as well as which may multi-cellular Exemplary cellular organisms. organisms include mammals and plants.

The construction of the synthetic construct may be effected by any suitable technique. example, in vitro mutagenesis methods may be employed which are well known to those of skill in the art. Suitable mutagenesis methods are described for example in the relevant sections of CURRENT PROTOCOLS MOLECULAR BIOLOGY (Ausubel, et al., eds.) (John Wiley and of MOLECULAR CLONING. 1997), Sons, Inc. et al., eds.) (Cold MANUAL (Sambrook, LABORATORY Spring Harbor Press, 1989), which are incorporated Alternatively, suitable methods herein by reference. for altering DNA are set forth, for example, in U.S. Patent Nos. 4,184,917, 4,321,365 and 4,351,901, which are incorporated herein by reference. Instead of in vitro mutagenesis, the synthetic polynucleotide may be synthesized de novo using readily available machinery. Sequential synthesis of DNA is described, for example, in U.S. Patent No 4,293,652, which is incorporated herein by reference. However, it should be noted that the present invention is not dependent on and not

Contract to the second

5

10

15

20

25

30

directed to any one particular technique for constructing the synthetic construct.

Regulatory nucleotide sequences which may be utilized to regulate expression of the synthetic polynucleotide include, but are not limited to, promoter, an enhancer, and a transcriptional terminator. Such regulatory sequences are well known to those of skill in the art. Suitable promoters which may be utilized to induce expression of the polynucleotides of the invention include constitutive promoters and inducible promoters.

according Synthetic constructs to the invention may be operably linked to one or more regulatory sequences in the form of an expression By "vector" is meant a nucleic acid molecule, vector. preferably a DNA molecule derived, for example, from a plasmid, bacteriophage, or plant virus, into which a synthetic nucleic acid sequence may be inserted or A vector preferably contains one or more cloned. unique restriction sites and may be capable autonomous replication in a defined host including a target cell or tissue or a progenitor cell or tissue thereof, or be integratable with the genome of the defined host such that the cloned sequence is Thus, by "expression vector" is meant reproducible. element capable of directing the autonomous synthesis of a protein. Such expression vectors are well known by practitioners in the art.

include a selection The vector may also marker such as an antibiotic resistance gene which can suitable for selection of used be transformants/transfectants. Examples of resistance genes include the nptII gene which confers resistance to the antibiotics kanamycin and

(Geneticin®) and the hph gene which confers resistance to the antibiotic hygromycin B.

The step of introducing the synthetic construct into a particular cell or tissue type, or into a progenitor cell or tissue thereof, or into an organism or part thereof for subsequent introduction. particular cell or tissue, will differ depending on the intended use and or species, and may involve lipofection, electroporation, micro-projectile bombardment infection by Agrobacterium tumefaciens or A rhizogenes, or protoplast fusion. Such methods are well known to those skilled in the art.

5

10

15

20

25

30

35

Alternatively, the step of introduction may involve non-viral and viral vectors, cationic liposomes, retroviruses and adenoviruses such as, for example, described in Mulligan, R.C., (1993 Science 260 926-932) which is incorporated herein by reference. Such methods may include:

- Local application of the synthetic (i) nucleic acid sequence by injection (Wolff et al., 1990, Science 247 1465-1468, which is incorporated reference), surgical implantation, by herein instillation or any other means. This method may also used in combination with local application by injection, surgical implantation, instillation or any other means, of cells responsive to the reporter protein encoded by the synthetic construct. method may also be used in combination with local implantation, application by injection, surgical instillation or any other means, of another factor or factors required for the activity of said reporter protein.
- (ii) General systemic delivery by injection of DNA, (Calabretta et al., 1993, Cancer Treat. Rev. 19 169-179, which is incorporated herein

by reference), or RNA, alone or in combination with liposomes (Zhu et al., 1993, Science 261 209-212, which is incorporated herein by reference), viral capsids or nanoparticles (Bertling et al., 13 390-405, Biotech. Appl. Biochem. which is herein by reference) or any other incorporated mediator of delivery. Improved targeting might be linking the synthetic construct achieved by to targeting molecule (the so-called "magic bullet" approach employing for example, an antibody), or by local application by injection, surgical implantation any other means, of another factor or factors required for the activity of the protein produced from said synthetic construct, or of cells responsive to said reporter protein.

5

10

15

Injection or implantation or delivery (iii) by any means, of cells that have been modified ex vivo by transfection (for example, in the presence of calcium phosphate: Chen et al., 1987, *Mole*. CellBiochem. 7 2745-2752, or of cationic lipids 20 polyamines: Rose et al., 1991, BioTech. 10 520-525, which articles are incorporated herein by reference), electroporation (Shigekawa injection, infection, al., 1988, BioTech. 6 742-751, which is incorporated any other way herein by reference) or so 25 increase the expression of said synthetic construct in The modification may be mediated by those cells. bacteriophage, cosmid, viral (such plasmid, adenoviral or retroviral; Mulligan, 1993, Science 260 926-932; Miller, 1992, Nature 357 455-460; Salmons et 30 al., 1993, Hum. Gen. Ther. 4 129-141, which articles incorporated herein reference) or other by such vectors, or other agents of modification liposomes (Zhu et al., 1993, Science 261 209-212, which is incorporated herein by reference), viral 35

- we the second of the second

capsids or nanoparticles (Bertling et al., 1991, Biochem. 13 390-405, Biotech. Appl. which is incorporated herein by reference), or any mediator of modification. The use of cells as a delivery vehicle for genes or gene products has been described by Barr et al., 1991, Science 254 1507-1512 and by Dhawan et al., 1991, Science 254 1509-1512, which articles are incorporated herein by reference. Treated cells may be delivered in combination with any nutrient, growth factor, matrix or other agent that will promote their survival in the treated subject.

Advantageously, the relative preference for different codons may be determined by comparing the respective activities of the reporter protein in a given cell or tissue type. One of ordinary skill in the art will thereby be able to determine a relative codon preference table for the cell or tissue type.

The invention further contemplates cells or tissues containing therein the synthetic construct of the invention, or alternatively, cells or tissues produced from the method of the invention.

The invention is further described with reference to the following non-limiting examples.

25 EXAMPLE 1

5

10

15

20

30

35

Construction of expression vectors for determining relative codon preferences in mammalian cells.

Synthetic gfp genes will be constructed in which a single artificial start codon (ATG) followed by a stretch of five identical codons is fused in frame immediately upstream of a gfp coding sequence. A reverse oligonucleotide primer (SEQ ID NO:180; sequence complementary to the termination codon for GFP, is underlined), and a suite of forward

oligonucleotide primers (SEQ ID NO: 121 through 179; first codon of underlined) will be the GFP, is synthesized and used for PCR amplification humanized gfp gene (SEQ ID NO:119) (GIBCO) as template Tag DNA polymerase (Amplification parameters: $95^{\circ}C/30 \text{ sec}$; $52^{\circ}C/30 \text{ sec}$; $72^{\circ}C/1 \text{ min}$; 30 cycles). amplified fragments will have nucleic acid sequences and deduced amino acid sequences as shown in SEQ ID NO:1 through 120. In summary, the synthetic fragments contain an artificial start codon followed by a tandem repeat of five identical codons specific for a given immediately The tandem repeat iso-tRNA species. precedes the second codon of the gfp gene. The synthetic fragments by SEQ ID NO and encoded tandem repeat are presented in the TABLE 1.

5

10

15

TABLE 1. Synthetic fragments and tandem repeats encoded thereby.

	neoded energy:		
SEQ ID NO	Tandem repeat	SEQ ID NO	Tandem repeat
1	Ala (GCA) x 5	61	Leu (CTC) x 5
3	Ala (GCC) x 5	63	Leu (CTG) x 5
5	Ala (GCG) x 5	65	Leu (CTT) x 5
7,	Ala (GCT) x 5	67	Leu (TTA) x 5
9	Arg (AGA) x 5	69	Leu (TTG) x 5
11	Arg (AGG) x 5	71	Lys (AAA) x 5
13	Arg (CGA) x 5	73	Lys (AAG) x 5
15	Arg (CGC) x 5	75	Phe (CTT) x 5
17	Arg (CGG) x 5	7 7	Phe (TTC) x 5
19	Arg (CGT) x 5	79	Pro (CCC) x 5
21	Asn (AAC) x 5	81	Pro (CCG) x 5
23	Asn (AAT) x 5	83	Pro (CCT) x 5
25	Asp (GAC) x 5	85	Pro (CGA) x 5
27	Asp (GAT) x 5	87	Ser (AGC) x 5
29	Cys (TGC) x 5	89	Ser (AGT) x 5

31	Cys (T	GT) x	5	91	Ser	(TCA)	х	5
33	Gln (C	AA) x	5	93	Ser	(TCC)	x	5
35	Gln (C.	AG) x	5	95	Ser	(TCG)	x	5
37	Gly (G.	AA) x	5	97	Ser	(TCT)	x	5
39	Glu (G.	AG) x	5	99	Thr	(ACA)	x	5
41	Gly (G	GA) x	5	101	Thr	(ACC)	x	5
43	Gly (G	GC) x	5	103	Thr	(ACG)	х	5
45	Gly (G	GG) x	5	105	Thr	(ACT)	x	5
47	Gly (G	GT) x	5	107	Trp	(TGG)	x	5
49	His (C	AC) x	5	109	Tyr	(TAT)	x	5
51 [,]	His (C	AT) x	5	111	Val	(GTA)	х	5
53	Ile (A	TA) x	5	113	Val	(GTC)	x	5
55	Ile (A	TC) x	5	115	Val	(GTG)	x	5
57	lle (A	TT) x	5	117	Val	(GTT)	x	5
59	Leu (C	TA) x	5	119	cont	rol		٠
	1							

The amplified fragments will be cloned between the EcoRI and KpnI sites of the mammalian expression vector pCDNA3 containing SV40 ori (Invitrogen) and the CMV promoter.

5

EXAMPLE 2

Transfection of Cos-1 cells

plates will in 6-well Cos-1 cells transfected with 2 цq of the above expression 10 using lipofectamine (Gibco). **GFP** constructs analyzed 36 hrs after fluorescence will be Synthetic gfp mRNA expression transfection. transfected cells will also be tested by 15 transcriptase PCR.

EXAMPLE 3

Confocal microscopy

Transfected CV-1 cells can be examined using a Bio-Rad MRC-600 laser-scanning confocal microscope

equipped with a krypton-argon laser and filter sets suitable for the detection of fluorescein and Texas red dyes (Bio-Rad KlyK2), and a Nikon 603 PlanApo numerical aperture 1.2 water-immersion objective. Dual-channel confocal images and video montages of the transfected cells can be suitably composed using ADOBE PhotoShop.

The present invention has been described in terms of particular embodiments found or proposed by the present inventors to comprise preferred modes for the practice of the invention. Those of skill in the art will appreciate that, in light of the present disclosure, numerous modifications and changes may be made in the particular embodiments exemplified without departing from the scope of the invention.

SEQUENCE LISTING

	<110> The University of Queensland	
5	<120> Polynucleotide and Method	
	<130> codon optimization	
10	<140> PPXXXX <141> 1999-01-08	
=	<160> 180	
15	<170> PatentIn Ver. 2.0	
20	<210> 1 <211> 732 <212> DNA <213> Artificial Sequence	
20	<220> <223> Description of Artificial Sequence: Ala(GCA)5GFP	
25	<220> <221> CDS <222> (1)(732)	
30	<400> 1 atg agc agc agc agc agc agg gag gag ctg ttc act ggc gtg Met Ser Ser Ser Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 1 5 10 15	
35	gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt 96 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30	
4.0	tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc 144 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 45	
40	ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca 192 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 55 60	
45	ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca 240 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80	
50	gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95	
55	tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 100 105 110	
	acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 384 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 115 120 125	
60	gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 130 135 140	
65	aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 150 155 160	
70	aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile	

165 170 175 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 5 180 185 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 10 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 215 15 720 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 732 ctg tac aag tga 20 Leu Tyr Lys <210> 2 <211> 243 <212> PRT 25 <213> Artificial Sequence Met Ser Ser Ser Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 30 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 4535 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 55 60 40 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro
65 75 80 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 45 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 50 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 55 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 60 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 65 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val

Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu

70

	225	·		230					235					240	
	Leu Tyr	Lys													
5	<210> 3 <211> 73 <212> DM	JA.													
10	<213> Ai <220> <223> De			_		ial:	Sequ	ence	: Al	a (GC	c) 5G	FP			
15	<220> <221> CI <222> (1		732)												
20	<400> 3 atg gcc Met Ala 1	gcc q Ala A	gcc go Ala Al	c gcc a Ala 5	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
25	gtc cca Val Pro	att o	ctc gt Leu Va 20	g gaa al Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] À ààà	cac His 30	aaa Lys	ttt Phe	96
	tct gtc Ser Val	agc (Ser (gga ga Gly Gl	ag ggt Lu Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
30	ctg aaa Leu Lys 50	Phe :	atc to	gc acc ys Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
35	ctg gtc Leu Val 65	act a	acc t [.] Thr P	tc tct ne Ser 70	Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
40	gac cat Asp His	atg Met	Lys G	ag cat ln His 85	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
45	tat gtg Tyr Val	Gln	gag a Glu A 100	ga acc rg Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 110	tac Tyr	aag Lys	336
F.O.	acc cgc Thr Arg	gct Ala 115	gaa g Glu V	tc aag al Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
50	gag ctg Glu Leu 130	Lys	ggc a Gly I	tt gad le Asp	ttt Phe 135	Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
55	aag cto Lys Leu 145	gaa Glu	tac a Tyr A	ac tat sn Ty:	Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
60	aag caa Lys Glr	a aag n Lys	Asn G	gc ato ly Ile 65	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	тте	528
65	gag gat Glu Asp	gga Gly	tcc g Ser V 180	tg cad al Gli	g ctg n Leu	g gcc Ala	gac Asp 185	His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Inr	cca Pro	576
70	atc ggo Ile Gly	gac Asp 195	ggc c	ct gte Pro Va	g cto l Lev	cto Lev 200	ı Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tco Ser	acc Thr	624
70	cag tc	t gcc	ctg t	ct aa	a gat	ccc	aac	gaa	aaç	g aga	gac	cac	ato	g gtc	672

	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
5															gac Asp		720
10	_	tac Tyr	aag Lys	tga													732
15	<212	> 24 ?> PF		cial	. Sec	quenc	:e										
	<400											_				•	
20	Met 1	Ala	Ala	Ala	Ala 5	Ala	Ser	Lys	GLY	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
20	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
25	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
30	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
35	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
40	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu	Leu 130		Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
45	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
5.0	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val		Phe 170		Ile			Asn 175		
50	Glu	Asp	Gly	Ser 180		Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
55	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210		Leu	Ser	Lys	Asp 215		Asn	Glu	Lys	Arg 220		His	Met	Val	
60	Leu 225		Glu	Phe	Val	Thr 230		Ala	Gly	Ile	Thr 235		Gly	Met	Asp	Glu 240	
	Leu	Tyr	Lys														
65	<21	.0> 5 .1> 7 .2> E	32														
70			rtif	icia	l Se	equen	ce										
	<22	0>															

	<223	> De	scri	ptio	n of	Art	ific	ial	Sequ	ence	: Al	a (GC	G) 5G	FP			
5	<220 <221 <222	> CD	s)(732)													
10	<400 atg Met 1	gcg	gcg Ala														48
1 5	gtc Val		att Ile														96
15	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
20	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
25	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
30	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
2.5	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 110	tac Tyr	aag Lys	336
35	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
40	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc	cac His	432
45	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
50	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
55	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
55	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc Thr	624
60	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
65	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	Gly	g ato	aca Thr 235	His	ggc Gly	ato Met	gac : Asp	gag Glu 240	720
70			aag Lys		L												732

<210> 6 <211> 243 <212> PRT <213> Artificial Sequence 5 <400> 6 Met Ala Ala Ala Ala Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 10 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 4515 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 20 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 25 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 30 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 - 155 160 35 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 40 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 45 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 50 Leu Tyr Lys 55 <210> 7 <211> 732 <212> DNA <213> Artificial Sequence 60 <223> Description of Artificial Sequence: Ala(GCT)5GFP <220> <221> CDS 65 <222> (1)..(732) atg gct gct gct gct agc aag ggc gag gaa ctg ttc act ggc gtg Met Ala Ala Ala Ala Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 70

															aaa Lys		96
5															ctc Leu		144
10															cca Pro		192
15															tac Tyr		240
20															gag Glu 95		288
	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	GJÀ ààà	aac Asn 110	tac Tyr	aag Lys	336
25	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
30	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	ggc Gly	His	432
35	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	gcc Ala	Asp 160	480
40	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	aac Asn 175	Ile	528
10	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
45	atc Ile	ggc ggc	gac Asp 195	ggc ggc	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
50	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
55	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	ggg	atc	aca Thr 235	His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
60	_	tac Tyr	_														732
60	<21 <21	.0> 8 .1> 2 .2> P	43 RT	icia	ıl Se	quen	ıce										
65	<40 Met		. Ala	. Ala	Ala 5		Ser	: Lys	s Gly	, Glu 10		ı Lev	ı Phe	e Thr	: Gly 15	v Val	
70	Val	Pro	Ile	Leu 20		. Glu	ı Leı	ı Asp	Gly 25		val	L Asr	ı Gly	/ His	s Lys	s Phe	

 $\langle \cdot \rangle$

	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
5	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
10	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
15	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
	Thr	Arg	Ala 115	Glu	Val	Lys ·	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
20	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
25	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
20	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
30	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
35	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
40	Leu 225		Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
40	Leu	Tyr	Lys														
45	<21 <21	.0> 9 .1> 7 .2> D .3> A	32	icia	l Se	quen	ce										
50	<22 <22	:0> :3> D	escr)	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: A	.rg(A	GA) 5	GFP			
c c		21> 0	DS	(732)												
55	ato	: Arg	aga	aga J Arg	aga Arg 5	aga Arg	agc Ser	aag Lys	ggc Gly	gag Glu 10	Glu	ctg Leu	tto Phe	act Thr	ggc Gly	gtg Val	48
60	gto Val	c cca L Pro	a att	cto Lev 20	ı Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	Asp	gtg Val	aat Asn	ggg Gly	cac His	Lys	ttt Phe	96
65	tct Se:	t gto	ago L Sei 35	c Gly	ı gaç ⁄Glu	ggt Gly	gaa Glu	ggt Gly 40	/ Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	, Lys	g cto s Lev	acc Thr	144
70	ct; Let	g aaa u Ly:	s Phe	ato	tgc Cys	acc Thr	act Thr	: Gl	a aaç / Lys	cto Lev	cct Pro	gtç Val	. Pro	tgo Trp	g cca p Pro	a aca Thr	192

. }

												ttt Phe					240
5												gcc Ala					288
10												gac Asp					336
15	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Äsn	aga Arg	atc Ile	384
20	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
25	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
20	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
30	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
35	atc Ile	Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
40	cag Gln	tct Ser 210	Āla	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
45	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	ggg	atc Ile	aca Thr 235	His	ggc	atg Met	gac Asp	gag Glu 240	720
40	-		aag Lys	_													732
50	<21 <21	0> 1 1> 2 2> P 3> A	43	icia	l Se	quen	ıce										
55	<40 Met	_	.0 Arg	Arg	Arg	Arg	, Ser	Lys	s Gly	Glu 10		ı Lev	ı Phe	. Thr	: Gly 15	Val	
60	Val	Pro) Ile	Leu 20		Glu	ı Lev	a Asp	Gly 25	Asp	Val	. Asr	Gly	/ His	Lys)	Phe	
			35	i				40)				45	•		1 Thr	
65		50)				55	5				60)			Thr	
70	65	5				70)				75	5				Pro 80	
	Asp	His	s Met	Lys	Glr	n His	s Asp	Phe	e Phe	e Lys	s Se	r Ala	a Me	t Pro	o Glu	ı Gly	

85 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 100 ... 105. 5 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 10 135 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 15 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 185 20 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 25 215 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 235 30 Leu Tyr Lys <210> 11 <211> 732 35 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Arg(AGG)5GFP 40 <220> <221> CDS <222> (1)..(732) 45 <400> 11 atg agg agg agg agg agc aag ggc gag gaa ctg ttc act ggc gtg Met Arg Arg Arg Arg Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 50 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 96 144 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 55 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca 192 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 60 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 240 65 288 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 70 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag

Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys

100 105 110 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 384 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 5 115 120 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 10 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 155 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 15 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 576 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 20 180 185 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 25 200 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 672 30 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag 720 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 732 35 ctg tac aag tga Leu Tyr Lys <210> 12 40 <211> 243 <212> PRT <213> Artificial Sequence <400> 12 Met Arg Arg Arg Arg Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 45 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30 50 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 55 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 60 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 65 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His

135

70

	Lys :	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
5	Lys (Gln	Lys		Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
	Glu 2	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
10	Ile	_	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
15	Gln .	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu : 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
20	Leu	Tyr	Lys														
25	<210 <211 <212 <213	> 73 > DN	2 IA	.cial	. Sed	quenc	, ce										
	<220 <223		scri	ptic	on of	E Art	cific	cial	Sequ	ience	e: Al	rg (CC	5A) 50	FP			
30	<220 <221 <222	> CD		(732)													
35	<400 atg Met 1	cga	cga	cga Arg	cga Arg 5	cga Arg	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
40	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly	cac His 30	Lys	ttt Phe	96
45	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
50	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
30	ctg Leu 65	gtc Val	act Thr	acc	ttc Phe	tct Ser 70	Tyr	Gly Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
55	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
60	tat Tyr	gtg Val	cag Gln	gag Glu 100	Arg	acc Thr	atc	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly	aac Asn 110	Tyr	aag Lys	336
65	acc Thr	cgc Arg	gct Ala 115	Glu	gto Val	aag Lys	ttc Phe	gaa Glu 120	ı Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	Asn	aga Arg	atc Ile	384
7.0	gag Glu	ctg Leu 130	Lys	Gly	att	gac Asp	ttt Phe 135	: Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	Ile	cto Leu	ggc Gly	cac His	432
70	aag	ctg	gaa	tac	aac	: tat	aac	tco	cac	: aat	gto	, tac	ato	: atç	d dcc	gac	480

:

والمراجع والمراجع والمتعادة فيمان ووالمعاد والمعادي والمعادي والمعادي والمعادي

	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
5	_		aag Lys				_	_			_		_				528
10			gga Gly														576
15			gac Asp 195														624
			gcc Ala														672
20	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	GJ À aaa	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
25	_	tac Tyr	aag Lys	tga													732
30	<21 <21	0> 1 1> 2 2> P: 3> A	43	icia	L Sed	quen	ce										
35	1	Arg	Arg		5					⁻ 10					15		
	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
40	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
4 F	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60		Trp	Pro	Thr	
45	65					70					75					Pro 80	
50	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
	Tyr	. Val	Gln	Glu 100		Thr	Ile	Phe	Phe 105		Asp	Asp	Gly	110	Tyr	Lys	
55	Thr	Arg	Ala 115		Val	Lys	Phe	Glu 120		Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu	130		Gly	Ile	Asp	Phe 135		Glu	Asp	Gly	Asn 140		e Leu	Gly	His	
60	Lys 145		. Glu	Туг	Asn	Tyr 150		Ser	His	Asn	Val 155		Ile	Met	Ala	160	
65	Lys	Glr	Lys	Asn	Gly 165		Lys	Val	Asn	Phe 170		Ile	e Arç	, His	175	lle	
	Glu	ı Asp	Gly	/ Ser 180		. Glr	Leu	a Ala	Asp 185	His	туг	Glr	n Glr	190	n Thr	Pro	
70	Ile	e Gly	/ Asp 195		Pro	Val	Leu	200		Asp) Asr	n His	205	Let	ı Sei	Thr	

	Gln :	Ser 210	Ala	Leu :	Ser	_	Asp 215	Pro	Asn	Glu	_	Arg . 220	Asp	His	Met	Val	
5	Leu : 225	Leu	Glu	Phe '	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met		Glu 240	
	Leu '	Tyr	Lys														
10	<210 <211 <212 <213	> 73 > DN	2 A	cial	Seq	uenc	e										
15	<220 <223		scri	ptio	n of	Art	ific	ial	Sequ	ence	: Ar	g (CG	C) 5G	FP			
20	<220 <221 <222	> CI)s .)(732)													
25	<400 atg Met 1	cac	cac	cgc Arg	cgc Arg 5	cgc Arg	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
30	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly	cac His 30	aaa Lys	ttt Phe	96
35	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
33	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
40	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
45	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
50	tat Tyr	gtg Val	cag Gln	gag Glu 100	Arg	acc Thr	Ile	Phe	ttc Phe 105	Lys	gat Asp	Asp	Gly	Asn	Tyr	aag Lys	336
cc	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
55	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	Gly	cac His	432
60	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	Asn	tcc Ser	cac His	aat Asn	gtg Val 155	Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
65	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	lle	aag Lys	gto Val	aac Asn	tto Phe 170	: Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
70	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	cto Leu	g gcc Ala	gac Asp 185	His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576

.

						gtg Val											624
5						aaa Lys											672
10						acc Thr 230											720
15	ctg Leu		aag Lys	tga													732
20	<210> 16 <211> 243 <212> PRT <213> Artificial Sequence																
25	<400 Met 1			Arg	Arg 5	Arg	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
23	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
30	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50	Phe	Ile	Суз	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
35	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
40	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
45	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu	Leu 130		Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
50	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
55	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
	Glu	Asp	Gly	Ser 180		Gln	Leu	Ala	Asp 185		Туr	Gln	Gln	Asn 190	Thr	Pro	
60	Ile	Gly	Asp 195		Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210		Leu	Ser	Lys	Asp 215		Asn	Glu	Lys	Arg 220		His	Met	Val	
65	Leu 225		Glu	Phe	Val	Thr 230		Ala	Gly	Ile	Thr 235		Gly	Met	: Asp	Glu 240	
	Leu	Tyr	Lys														
70	<21	0> 1	.7														

* *. . .

	<211> 732 <212> DNA <213> Artificial Sequence															
5	<220> <223> Description of Artificial Sequence: Arg(CGG)5GFP															
10	<220> <221> CDS <222> (1)(732)															
15	<400> 1 atg cgg Met Arg 1	cgg	cgg Arg	cgg Arg 5	cgg Arg	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
0.0	gtc cca Val Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	ggg Gly	cac His 30	aaa Lys	ttt Phe	96
20	tct gtc Ser Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
25	ctg aaa Leu Lys 50	Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
30	ctg gtc Leu Val 65	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
35	gac cat Asp His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
	tat gto Tyr Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ej aaa	aac Asn 110	tac Tyr	aag Lys	336
40	acc cgo Thr Aro	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
45	gag cto Glu Leo 130	Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
50	aag cto Lys Led 145	g gaa ı Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
55	aag caa Lys Gli	a aag n Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
60	gag ga Glu As	t gga o Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Inr	cca Pro	576
60	atc gg Ile Gl	c gac y Asp 195	Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc Thr	624
65	cag tc Gln Se 21	r Ala	ctg Leu	tct	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
70	ctg ct Leu Le 225	g gag u Glu	ttt Phe	gtç Val	acc Thr 230	Ala	gct Ala	ggg Gly	ato Ile	aca Thr 235	His	Gly ggc	ato Met	gac : Asp	gag Glu 240	720

٠.,

ctg tac aag tga 732 Leu Tyr Lys 5 <210> 18 <211> 243 <212> PRT <213> Artificial Sequence 10 Met Arg Arg Arg Arg Ser Lys Gly Glu Glu Leu Phe Thr Gly Val $1 ext{ } 5 ext{ } 10 ext{ } 15$ 15 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 4520 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 . 75 . 80 25 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 30 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 35 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 40 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 45 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 50 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 215 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 55 235 Leu Tyr Lys 60 <210> 19 <211> 732 <212> DNA <213> Artificial Sequence 65 <220> <223> Description of Artificial Sequence: Arg(CGT)5GFP <220> <221> CDS

70

<222> (1)..(732)

٠.

	atg		cgt									ctg Leu					48
5	1				5					10					15		
	gtc Val											aat Asn					96
10		-	_				-		-	-		tac Tyr		_			144
15	-				_				_			gtg Val 60					192
20	_	_								_	_	ttt Phe		-			240
0.5												gcc Ala					288
25	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ggg ggg	aac Asn 110	tac Tyr	aag Lys	336
30	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
35	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc	cac His	432
40	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
4 E	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
45	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
50	atc Ile	ggc	gac Asp 195	Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
55	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
60	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	ggg Gly	atc Ile	aca Thr 235	His	ggc	atg Met	gac Asp	gag Glu 240	720
	-		aag Lys	-													732
65		_	_														
7.0	<21 <21	0> 2 1> 2 2> P 3> A	43	icia	l Se	quen	ce										
70	<40	0> 2	0														

`]

	Met 1	Arg	Arg	Arg	Arg 5	Arg	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
5	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
10	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
15	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
IJ	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	-
20	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
25	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
20	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
30	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
35	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	-
	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
40	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
4.5	Leu 225		Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
45	Leu	Tyr	Lys														
50	<21 <21	0> 2 1> 7 2> D 3> A	32	icia	l Se	quen	ce										
55	<22 <22	0> 3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: A	.sn (A	AC) 5	GFP			
60		1> C	DS	(732)												
	ato	Asr	laac aac Asn	aac Asn	aac Asn 5	Asn	ago Ser	aag Lys	Gly	gag Glu 10	ı Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
65	gto Val	cca Pro	att o Ile	cto Leu 20	\Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	Asp	gtg Val	, aat . Asn	ggg	cac His	Lys	ttt Phe	96
70	tct Ser	gto Val	c ago	gga Glv	gaç Glu	ggt Gly	gaa Glu	ggt Gly	gat Asp	gco Ala	aca Thr	tac Tyr	gga Gly	aag Lys	ctc Leu	acc Thr	14

ì

35 40 45 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 192 5 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 240 10 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 90 8.5 15 336 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 384 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 20 125 120 432 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 25 135 140 480 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 30 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 576 35 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 40 200 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 45 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag 720 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 235 225 50 732 ctg tac aag tga Leu Tyr Lys 55 <210> 22 <211> 243 <212> PRT <213> Artificial Sequence 60 <400> 22 Met Asn Asn Asn Asn Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 65 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 70

i

	Leu Val 65	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
5	Asp His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
10	Tyr Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
10	Thr Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
15	Glu Leu 130	_	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
	Lys Leu 145	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
20	Lys Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
25	Glu Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
23	Ile Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
30	Gln Ser 210		Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu Leu 225	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
35	Leu Tyr	Lys														
40	<210> 2 <211> 7 <212> I <213> A	732 DNA	icia	l Se	quen	ce										
45	<220> <223> I	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: A	sn (A	AT) 5	GFP			
10	<220> <221> (<222>		(732)												
50	<400> 2 atg aat Met Asi 1	t aat	aat Asn	aat Asn 5	Asn	agc Ser	aag Lys	ggc Gly	gag Glu 10	Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
55	gtc cca Val Pro	a att	ctc Leu 20	Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly	cac His 30	Lys	ttt Phe	96
60	tct gte Ser Va	c ago l Ser 35	Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	Lys	ctc Leu	acc	144
65	ctg aa Leu Ly 5	s Phe	ato Ile	tgc Cys	acc Thr	act Thr 55	Gly	aag Lys	cto Lev	cct Pro	gtg Val 60	Pro	tgg Trp	cca Pro	aca Thr	192
7.0	ctg gt Leu Va 65	c act l Thi	acc Thr	tto Phe	tct Ser 70	туг	ggc Gly	gto Val	g cag Glr	tgo Cys 75	Ph∈	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
70							. +++	· ++c	: aac	n and	acc	ato	r ccc	gac	ggc	288

	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
5			cag Gln														336
10			gct Ala 115														384
15			aag Lys														432
10			gaa Glu														480
20	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
25	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
30	atc Ile	ggc	gac Asp 195	Gly Ggc	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
35	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
33	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	Gly	atc Ile	aca Thr 235	cat His	ggc	atg Met	gac Asp	gag Glu 240	720
40	-		aag Lys	tga													732
45	<21 <21	0> 2 1> 2 2> P 3> A	43	icia	l Se	quen	ce										
50			4 Asn	Asn	Asn 5		Ser	Lys	Gly	Glu 10		Leu	Phe	Thr	Gly 15		
55				20)				25					30)	Phe	
			35	1				40	1				45	6		Thr	
60		5 ()				55					60)			Thr	
65	65	,				70	ı				75	5				Pro 80	
65					85	•				90)				95	Lys	
70				100)				105	5				11()	g Ile	

)

115 120 125 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 135 5 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 10 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 15 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 20 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 25 <210> 25 <211> 732 <212> DNA 30 <213> Artificial Sequence <223> Description of Artificial Sequence: Asp(GAC)5GFP 35 <220> <221> CDS <222> (1)..(732) <400> 25 48 40 atg gac gac gac gac agc aag ggc gag gaa ctg ttc act ggc gtg Met Asp Asp Asp Asp Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 96 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt 45 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 144 50 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 192 55 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca 240 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro
70
75
80 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 60 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 65 105 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 70

120

115

	gag Glu																432
5	aag Lys 145														gcc Ala		480
10	_		_				_	-			_		-		aac Asn 175	_	528
15	gag Glu														act Thr		576
20	atc Ile	ggc Gly	gac Asp 195	Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
25	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	ej ada	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
30	ctg Leu		aag Lys	tga													732
35		L> 2 2> P	43 RT	icia:	l Sed	quen	ce										
40	<400 Met 1	0> 2 Asp	6 Asp	Asp	Asp 5	Asp	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
45	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tvr	Glv	Lvs	Leu	Thr	
.	Leu	_									1111	-1-	45				
50		Lys 50		Ile	Cys	Thr	Thr 55	Gly					45			Thr	
	Leu 65	50					55 Tyr	Gly	Lys	Leu	Pro	Val 60 Phe	45 Pro	Trp	Pro	Thr Pro 80	
55	65	50 Val	Thr	Thr	Phe	Ser 70	55 Tyr	Gly	Lys Val	Leu Gln	Pro Cys 75 Ser	Val 60 Phe	45 Pro Ser	Trp Arg	Pro Tyr	Pro 80 Gly	
55	65 Asp	50 Val His	Thr Met	Thr Lys	Phe Gln 85 Arg	Ser 70 His	55 Tyr Asp	Gly Gly Phe	Lys Val Phe	Leu Gln Lys 90	Pro Cys 75 Ser	Val 60 Phe	45 Pro Ser Met	Trp Arg Pro	Pro Tyr Glu 95	Pro 80 Gly	
55 60	65 Asp Tyr	50 Val His Val	Thr Met	Thr Lys Glu 100	Phe Gln 85 Arg	Ser 70 His	55 Tyr Asp	Gly Gly Phe	Lys Val Phe 105	Leu Gln Lys 90	Pro Cys 75 Ser	Val 60 Phe Ala Asp	45 Pro Ser Met	Trp Arg Pro Asn 110 Asn	Pro Tyr Glu 95	Pro 80 Gly	
60	65 Asp Tyr Thr	50 Val His Val	Thr Met Gln Ala 115	Thr Lys Glu 100	Phe Gln 85 Arg	Ser 70 His Thr	55 Tyr Asp	Gly Gly Phe Glu 120	Lys Val Phe 105	Leu Gln Lys 90 Lys	Pro Cys 75 Ser Asp	Val 60 Phe Ala Asp	A5 Pro Ser Met Gly Val 125	Arg Pro Asn 110 Asn	Pro Tyr Glu 95	Pro 80 Gly	
	65 Asp Tyr Thr	Val His Val Arg Leu 130	Thr Met Gln Ala 115	Thr Lys Glu 100 Glu	Phe Gln 85 Arg Val	Ser 70 His Thr Lys	55 Tyr Asp Ile Phe 135 Asr	Gly Gly Phe Glu 120	Lys Val Phe 105	Leu Gln Lys 90 Lys Asp	Pro Cys 75 Ser Asp	Val 60 Phe Ala Asp Leu Asn 140	A5 Pro Ser Met Gly Val 125	Arg Pro Asn 110 Asn	Pro Tyr Glu 95 Tyr Arg	Pro 80 Gly Lys	

	Glu i	Asp	_	Ser 180	Val	Gln	Leu .		Asp 185	His	Tyr	Gln		Asn 190	Thr	Pro	
5	Ile	Gly	Asp 195	Gly	Pro	Val		Leu 200	Pro	Asp	Asn		Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210	Ala	Leu	Ser		Asp 215	Pro	Asn	Glu		Arg 220	Asp	His	Met	Val	
10	Leu : 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	_	Glu 240	
	Leu	Tyr	Lys														
15	<210 <211	> 73	32														
	<212 <213		A tifi	cial	Seq	quenc	e										
20	<220 <223		escri	ptio	n of	Art	ific	ial	Sequ	ence	e: As	p (GA	T) 5G	FP			
25	<220 <221 <222	> CI	os L)((732)													
30	<400 atg Met 1	gat	7 gat Asp	gat Asp	gat Asp 5	gat Asp	agc Ser	aag Lys	Gly ggc	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
35	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly ggg	cac His 30	aaa Lys	ttt Phe	96
	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
40	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
45	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
50	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
55	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] A	aac Asn 110	Tyr	aag Lys	336
60	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
60	gag Glu	ctg Leu 130	aag Lys	ggc	att Ile	gac Asp	ttt Phe 135	Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	Ile	ctc Leu	ggc Gly	cac His	432
65	aag Lys 145	Leu	ggaa Glu	tac Tyr	aac Asn	tat Tyr 150	Asn	tcc Ser	cac His	aat Asn	gtg Val 155	Tyr	ato	atg Met	gcc Ala	gac Asp 160	480
70	aag Lys	caa Glr	a aag n Lys	aat Asn	ggc Gly 165	/ Ile	aag Lys	g gtc Val	aac Asn	tto Phe 170	. Lys	ato Ile	aga Arg	cac His	aac Asr 175	att i Ile	528

5	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
3			gac Asp 195														624
10			gcc Ala														672
15			gag Glu														720
20	_	tac Tyr	aag Lys	tga													732
25	<213 <213	0> 21 1> 2 2> P1 3> A	43	icial	l Sec	quenc	ce										
30	<400 Met 1	0> 2: Asp	8 Asp	Asp	Asp 5	Asp	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
30	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
35	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
40	Leu 65		Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Туг	Pro 80	
45					85					90					95	Gly	
	_		Gln	100					105					110			
50			115					120					125			Ile	
		130					135					140					
55	145	,				150					155					160	
60					165					170)				1/5		
				180)				185	i				190)	Pro	
65			195	5				200)				205	•		Thr	
		210)				215	5				220)			: Val	
70	Let 225		ı Glu	ı Phe	e Val	Th: 230		a Ala	Gly	/ Ile	235	His	s Gly	y Met	t Asp	240	

Leu Tyr Lys

5	<210> 29 <211> 732 <212> DNA <213> Artificial Sequence	
10	<220> <223> Description of Artificial Sequence: Cys(TGC)5GFP	
15	<220> <221> CDS <222> (1)(732)	
20	<pre><400> 29 atg tgc tgc tgc tgc agc aag ggc gag gaa ctg ttc act ggc gtg Met Cys Cys Cys Cys Cys Gly Glu Glu Leu Phe Thr Gly Val 1 5 10 15</pre>	
	gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt 96 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30	
25	tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 45	
30	ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 55 60	
35	ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80	
40	gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95	
4 E	tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 100 105 110	
45	acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 115 120 125	
50 .	gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 130 135 140	
55	aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 150 155 160	
60	aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 175	
6.5	gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca 576 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 180 185 190	
65	atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 11e Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 195 200 205	
70	cag tot goo otg tot aaa gat ooc aac gaa aag aga gao oac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val	•

210 215 220 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 5 230 235 ctg tac aag tga 732 Leu Tyr Lys 10 <210> 30 <211> 243 <212> PRT <213> Artificial Sequence 15 <400> 30 Met Cys Cys Cys Cys Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 1 5 10 15 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30 20 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 25 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 60Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80 30 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 35 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 40 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 135 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 45 150 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 50 185 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 55 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 60 230 Leu Tyr Lys 65 <210> 31 <211> 732 <212> DNA <213> Artificial Sequence 70 <220>

<223> Description of Artificial Sequence: Cys(TGT)5GFP

-	<220 <221 <222	> CD		732)													
5	<400 atg Met 1	tgt	tgt														48
10	gtc Val																96
15	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
20	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
25	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	Gly ggc	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
30	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	Gly ggc	288
30	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly ggg	aac Asn 110	tac Tyr	aag Lys	336
35	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
40	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	aac Asn 140	Ile	Leu	GTÀ	His	432
45	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	tac Tyr	Ile	Met	Ala	160	480
50	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	atc Ile	Arg	His	175	lle	528
	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	185	His	Tyr	caa Gln	Gln	190	Thr	Pro	576
55	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	cat His	Tyr 205	Leu	ser	Thr	624
60	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro) Asn	Glu	Lys	220	Asp	H1S	s Met		672
65	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	Thr 230	Ala	gct Ala	. ggg	ato Ile	aca Thr 235	His	Gly	ato Met	g gac : Asp	gag Glu 240	720
5 0	_		aaç Lys	tga	ı												732

	<212	> 24 !> PF !> Ar	T	.cial	. Sec	quenc	e										
5)> 32 Cys		Cys	Cys 5	Cys	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
10	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
15	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
20	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
20	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
25	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
30	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
35	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
33	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
40	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
45	Gln	Ser 210		Leu	Ser	Lys	Asp 215		Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
50	Leu 225		Glu	Phe	Val	Thr 230		Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
30	Leu	Tyr	Lys														
55	<21 <21	0> 3 1> 7 2> D 3> A	32 NA	icia	ıl Se	equen	ıce										
60	<22 <22	:0> :3> D	escr	ipti	on o	of Ar	tifi	.cial	Sec	quenc	ce: C	3ln(0	CAA) S	GFP			
65		20> 21> C 22> ((732	?)												
Ţ-C	ato Met	00> 3 g caa : Glr	caa	a caa a Glr	ı Glı	a caa n Glr	a ago n Sei	c aaq r Lys	g Gly	gaq y Gli	ı Glı	a cto 1 Lei	g tto ı Phe	c act	t ggo c Gly	c gtg y Val	•
70	gto	c cca	a att	cto	gto	g gaa	a cto	g gat	gg	c ga	t gt	g aa	t gg	g ca	c aa	a ttt	

``;

	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
5			agc Ser 35														144
10			ttc Phe														192
15			act Thr														240
13	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
20	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ej aaa	aac Asn 110	tac Tyr	aag Lys	336
25	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
30	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
35	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
33	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
40	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
45	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
50	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	Gly	atc Ile	aca Thr 235	His	ggc	atg Met	gac Asp	gag Glu 240	720
55	-		aag Lys		Ļ												732
60	<21 <21	.0> 3 .1> 2 .2> F	43	icia	al Se	equen	ıce										
65	<40 Met		34 n Glr	ı Glr		n Glr	n Ser	: Lys	Gly	/ Glu 10		ı Lev	ı Phe	e Thi	Gly 15	y Val	
70	Va]	Pro	o Ile	Leu 20		l Glu	ı Lev	ı Asp	Gly 25		val	Asr	ı Gly	7 His 30	s Ly:)	s Phe	

	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
5	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
10	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
15	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
20	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
25	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
30	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
30	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
35	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
40	Leu	Tyr	Lys														
45	<21 <21	0> 3 1> 7 2> D 3> A	32 NA	icia	l Se	quen	ce									·	
50	<22 <22	0> 3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: G	ln(C	AG) 5	GFP			
		0> 1> C 2> ((732)												
55	ato	Gln	cad	cag Gln	cag Gln 5	cag Gln	agc Ser	aag Lys	ggc	gag Glu 10	Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
60	gto Val	cca Pro	att Ile	ctc Leu 20	Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	ggg Gly	cac His	Lys	ttt Phe	96
65	tct Ser	gtc Val	ago Ser 35	Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	Lys	cto Leu	acc Thr	144
70	cto	g aaa Lys 50	Phe	ato Ile	tgc Cys	acc Thr	act Thr 55	Gly	aag Lys	cto Leu	cct Pro	gtg Val	Pro	tgg Trp	cca Pro	aca Thr	192

				acc Thr													240
5	gac Asp			aag Lys													288
10				gag Glu 100													336
15				gaa Glu													384
20				ggc Gly													432
	aag Lys 145	ctg Leu `	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
25	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
30	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
35	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc Thr	624
40	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	G] À ààà	atc Ile	aca Thr 235	cat His	GJY	atg Met	gac Asp	gag Glu 240	720
45	-		aag Lys	tga													732
50	<21 <21	0> 3 1> 2 2> P 3> A	43 RT	icia	l Se	quen	ce										
55	<40 Met 1		6 Gln	Gln	Gln 5	Gln	Ser	Lys	Gly	Glu 10		Leu	Phe	Thr	Gly 15	Val	
60	Val	Pro	Ile	Leu 20		Glu	Leu	Asp	Gly 25		Val	. Asn	Gly	His 30	Lys	Phe	
00	Ser	Val	Ser 35		Glu	Gly	Glu	Gly 40		Ala	Thr	Туг	Gly 45	Lys	. Lev	Thr	
65 ·	Leu	Lys 50		lle	Cys	Thr	Thr 55		Lys	Lev	Pro	Val 60	Pro	Trp	Pro	Thr	
	Leu 65		Thr	Thr	Phe	Ser 70		Gly	/ Val	. Glr	n Cys 75	Phe	e Ser	Arg	ј Туј	Pro 80	
70	Asp	His	Met	Lys	Gln 85		s Asp	Phe	Phe	e Lys 90		: Ala	Met	Pro	Glu 99	ı Gly	

	Tyr Va	l Gln	Glu 100	Arg	Thr	Ile		Phe 105	Lys	Asp	Asp	-	Asn 110	Tyr	Lys	
5	Thr Ar	g Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
10	Glu Le 13	_	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
10	Lys Le 145	u Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
15	Lys Gl	n Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
	Glu As	p Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
20	Ile Gl	y Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
25	Gln Se 21		Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu Le 225	eu Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
30	Leu Ty	r Lys														
35	<210> <211> <212> <213>	732 DNA	icial	l Sed	mien	76										
33	\Z13>	ALCII	TCTA.		14011											
33	<220> <223>						cial	Seq	ıenc	e: G	Ly (G	AA) 50	FP			
40	<220>	Descr CDS	iptio	on o			cial	Seqi	uenc	e: G	Ly (G	AA) 50	3FP			
	<220><223><223><221><221><222><400>	Descr CDS (1)	iptio	on o:) gaa	f Ar	tifi agc	aaq	qqc	gag	gaa	ctg	ttc	act	ggc Gly 15	gtg Val	48
40	<220> <223> <220> <221> <222> <400> atg gamet G	Descr CDS (1)	iptic (732) gaa Glu	on of gaa Glu 5	f Ar ⁴ gaa Glu gaa	agc Ser	aag Lys gat	ggc	gag Glu 10 gat	gaa Glu gtg	ctg Leu	ttc Phe	act Thr	15 aaa	val ttt	48 96
40 45	<220><223> 223 221 221 222 400 atg gamet Gam	Descr CDS (1) 37 aa gaa lu Glu	iptic (732 gaa Glu ctc Leu 20 ggaa	gaa Glu 5 gtg Val	gaa Glu gaa Glu	agc Ser ctg Leu	aag Lys gat Asp	ggc Gly ggc Gly 25	gag Glu 10 gat Asp	gaa Glu gtg Val	ctg Leu aat Asn	ttc Phe ggg Gly	act Thr cac His 30	15 aaa Lys	ttt Phe	
40 45 50	<220><223> 223 221 222 400 atg gamet Gam	CDS (1) 37 aa gaalu Glu ca att	(732) gaa Glu ctc Leu 20 gga	gaa Glu 5 gtg Val gag Glu	gaa Glu gaa Glu ggt Gly	agc Ser ctg Leu gaa Glu	aag Lys gat Asp ggt 40 gga Gly	ggc Gly ggc Gly 25 gat Asp	gag Glu 10 gat Asp gcc Ala	gaa Glu gtg Val aca Thr	ctg Leu aat Asn tac Tyr	ttc Phe ggg Gly gga Gly 45 cca Pro	act Thr cac His 30 aag Lys	aaa Lys ctc Leu	ttt Phe acc Thr	96
40 45 50	<220><223> 223 221 222 400 atg gamet Gam	CDS (1) 37 aa gaalu Glu ca attro Ile tc age al Sei 35 aa ttc ys Phe	iptic (732 gaa Glu ctc Leu 20 gga Gly	gaa Glu 5 gtg Val gag Glu tgc Cys	gaa Glu gaa Glu ggt Gly acc	agc Ser ctg Leu gaa Glu act Thr 55	aag Lys gat Asp ggt 40 gga Gly	ggc Gly ggc Gly 25 gat Asp aag Lys	gag Glu 10 gat Asp gcc Ala ctc Leu	gaa Glu gtg Val aca Thr	ctg Leu aat Asn tac Tyr gtg Val 60	ttc Phe ggg Gly gga Gly 45 cca Pro	act Thr cac His 30 aag Lys tgg	aaa Lys ctc Leu cca Pro	ttt Phe acc Thr aca Thr	96 144
40 45 50	<220><223> 223 221 222 400 atg gamet Gam	CDS (1) 37 aa gaalu Glu ca attro Ile tc aggaal Ser 35 aa ttc 50	iptic (732) gaa Glu ctc Leu 20 cgga Gly catc	gaa Glu 5 gtg Val gag Glu tgc Cys	gaa Glu ggt Gly acc Thr	agc Ser ctg Leu gaa Glu act Thr 55	aag Lys gat Asp ggt 40 gga Gly	ggc Gly ggc Gly 25 gat Asp aag Lys gtg	gag Glu 10 gat Asp gcc Ala ctc Leu cag	gaa Glu gtg Val aca Thr cct Pro	ctg Leu aat Asn tac Tyr gtg Val 60	ttc Phe ggg Gly gga Gly 45 cca Pro	act Thr cac His 30 aag Lys tgg Trp	ctc Leu cca Pro	ttt Phe acc Thr aca Thr cca Pro 80 ggc Gly	96 144 192

5				gaa Glu													384
				ggc Gly													432
10				tac Tyr													480
15				aat Asn													528
20				tcc Ser 180													576
25	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
23	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
30	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	ggg Gly	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
35	_	tac Tyr	aag Lys	tga													732
40	<21 <21	0> 3 1> 2 2> P 3> A	43 RT	icia	l Se	quen	ce										
40	<21 <21 <21	1> 2 2> P 3> A 0> 3 Glu	43 RT rtif. 8	icia Glu		Glu		Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	<21 <21 <21 <40 Met	1> 2 2> P 3> A 0> 3 Glu	43 RT rtif 8 Glu		Glu 5	Glu	Ser			10					15 Lys		
	<21 <21 <21 <40 Met 1 Val	1> 2 2> P 3> A 0> 3 Glu Pro	43 RT rtif 8 Glu Ile	Glu Leu	Glu 5 Val	Glu	Ser Leu	Asp	Gly 25 Asp	10 Asp	Val Thr	Asn Tyr	Gly	His 30 Lys	Lys	Phe	
4 5	<21 <21 <21 <40 Met 1 Val	1> 2 2> P 3> A 0> 3 Glu Pro	43 RT rtif 8 Glu Ile Ser 35	Glu Leu 20 Gly	Glu 5 Val Glu	Glu Glu Gly	Ser Leu Glu	Asp Gly 40 Gly	Gly 25 Asp	Asp Ala	Val Thr	Asn Tyr	Gly Gly 45	His 30 Lys	Lys Leu	Phe	
45	<21 <21 <21 <40 Met 1 Val Ser	1> 2 2> P 3> A 0> 3 Glu Pro Val Lys 50	43 RT rtif. 8 Glu Ile Ser 35 Phe	Glu Leu 20 Gly	Glu 5 Val Glu Cys	Glu Glu Gly Thr	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys	10 Asp Ala Leu	Val Thr Pro	Asn Tyr Val	Gly Gly 45 Pro	His 30 Lys Trp	Lys Leu Pro	Phe Thr	
4 5	<21 <21 <40 Met 1 Val Ser Leu 65	1> 2 2> P 3> A 0> 3 Glu Pro Val Lys 50	43 RT rtif 8 Glu Ile Ser 35 Phe	Glu Leu 20 Gly Ile	Glu 5 Val Glu Cys	Glu Gly Thr Ser 70	Ser Leu Glu Thr 55	Gly 40 Gly Gly	Gly 25 Asp Lys	Asp Ala Leu Gln	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro	His 30 Lys Trp	Lys Leu Pro	Thr Thr Pro 80 Gly	
45 50 55	<21 <21 <40 Met 1 Val Ser Leu 65 Asp	1> 2 2> P 3> A 0> 3 Glu Pro Val Lys 50 Val	43 RT rtif 8 Glu Ile Ser 35 Phe Thr	Glu Leu 20 Gly Ile Thr	Glu 5 Val Glu Cys Phe 6ln 85	Glu Gly Thr Ser 70	Ser Leu Glu Thr 55 Tyr	Asp Gly 40 Gly Gly	Gly 25 Asp Lys Val	Asp Ala Leu Gln Lys 90 Lys	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro	His 30 Lys Trp Arg	Lys Leu Pro Tyr Glu 95	Thr Thr Pro 80 Gly	
45 50 55	<21 <21 <40 Met 1 Val Ser Leu Leu 65 Asp	1> 2 2> P 3> A 0> 3 Glu Pro Val Lys 50 Val	43 RT rtif 8 Glu Ile Ser 35 Phe Thr	Glu 20 Gly Ile Thr Lys Glu 100	Glu 5 Val Glu Cys Phe Gln 85	Glu Gly Thr Ser 70 His	Ser Leu Glu Thr 55 Tyr	Asp Gly 40 Gly Phe	Gly 25 Asp Lys Val Phe 105	Asp Ala Leu Gln Lys 90	Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe Ala	Gly Gly 45 Pro Ser Met	His 30 Lys Trp Arg Pro	Lys Leu Pro Tyr Glu 95	Thr Thr Pro 80 Gly	
45 50 55	<21 <21 <21 <40 Met 1 Val Ser Leu 65 Asp Tyr	1> 2 2> P 3> A 0> 3 Glu Pro Val Lys 50 Val His	43 RT rtif 8 Glu Ile Ser 35 Phe Thr Met	Glu Leu 20 Gly Ile Thr Lys Glu 100	Glu 5 Val Glu Cys Phe 85 Arg	Glu Glu Gly Thr 70 His	Ser Leu Glu Thr 55 Tyr Asp	Asp Gly 40 Gly Phe Phe 120	Gly 25 Asp Lys Val Phe 105	Asp Ala Leu Gln Lys 90 Lys	Val Thr Pro Cys 75 Ser Asp	Asn Tyr Val 60 Phe Ala Asp	Gly 45 Pro Ser Met Gly 125	His 30 Lys Trp Arg Pro	Lys Leu Pro Tyr Glu 95	Thr Thr Pro 80 Gly	

	145	150	155	160
	Lys Gln Lys Asn Gly 165	Ile Lys Val Asn Ph 17	e Lys Ile Arg His As	
5	Glu Asp Gly Ser Val	Gln Leu Ala Asp Hi 185	s Tyr Gln Gln Asn Th	
10	Ile Gly Asp Gly Pro 195	Val Leu Leu Pro As 200	p Asn His Tyr Leu Se 205	er Thr
	Gln Ser Ala Leu Ser 210	Lys Asp Pro Asn Gl 215	u Lys Arg Asp His Me 220	et Val
15	Leu Leu Glu Phe Val 225	Thr Ala Ala Gly Il 230	e Thr His Gly Met As 235	sp Glu 240
	Leu Tyr Lys			
20	<210> 39 <211> 732 <212> DNA <213> Artificial Se	quence		
25	<220> <223> Description o	f Artificial Sequen	nce: Glu(GAG)5GFP	
30	<220> <221> CDS <222> (1)(732)			
35	<pre><400> 39 atg gag gag gag Met Glu Glu Glu 1 5</pre>	ı Glu Ser Lys Gly G	ag gaa ctg ttc act g lu Glu Leu Phe Thr G 10	gc gtg 48 ly Val
40	gtc cca att ctc gtg Val Pro Ile Leu Val 20	g gaa ctg gat ggc ga . Glu Leu Asp Gly As 25	at gtg aat ggg cac a sp Val Asn Gly His L 30	aa ttt 96 ys Phe
45	tct gtc agc gga gag Ser Val Ser Gly Glu 35	g ggt gaa ggt gat go 1 Gly Glu Gly Asp Al 40	cc aca tac gga aag c la Thr Tyr Gly Lys L 45	etc acc 144 Seu Thr
45	ctg aaa ttc atc tgc Leu Lys Phe Ile Cys 50	c acc act gga aag co s Thr Thr Gly Lys Lo 55	tc cct gtg cca tgg c eu Pro Val Pro Trp P 60	cca aca 192 Pro Thr
50	ctg gtc act acc ttc Leu Val Thr Thr Phe 65	c tct tat ggc gtg c e Ser Tyr Gly Val G 70	ag tgc ttt tcc aga t ln Cys Phe Ser Arg T 75	cac cca 240 Cyr Pro 80
55	gac cat atg aag cad Asp His Met Lys Gli 8	n His Asp Phe Phe L	ag agc gcc atg ccc g ys Ser Ala Met Pro G 90	gag ggc 288 Flu Gly 95
60	tat gtg cag gag ag Tyr Val Gln Glu Ard 100	a acc atc ttt ttc a g Thr Ile Phe Phe L 105	aa gat gac ggg aac t ys Asp Asp Gly Asn T 110	tac aag 336 Tyr Lys
65	acc cgc gct gaa gt Thr Arg Ala Glu Va 115	c aag ttc gaa ggt g l Lys Phe Glu Gly A 120	ac acc ctg gtg aat a sp Thr Leu Val Asn A 125	aga atc 384 Arg Ile
65	gag ctg aag ggc at Glu Leu Lys Gly Il 130	t gac ttt aag gag g e Asp Phe Lys Glu A 135	gat gga aac att ctc o sp Gly Asn Ile Leu o 140	ggc cac 432 Gly His
70	aag ctg gaa tac aa Lys Leu Glu Tyr As	c tat aac tcc cac a n Tyr Asn Ser His A	aat gtg tac atc atg o Asn Val Tyr Ile Met <i>I</i>	gcc gac 480 Ala Asp

i

	145					150					155					160	
5	aag ca Lys Gl																528
10	gag ga Glu As		ly														576
10	atc go Ile Gl	y Ā								-				-			624
15	cag to Gln Se 21	r Ā															672
20	ctg ct Leu Le 225																720
25	ctg ta Leu Ty		-	tga													732
30	<210> <211> <212> <213>	243 PRT	:	.cia]	. Sec	quenc	ce										
35	<400> Met G		lu	Glu	Glu 5	Glu	Ser	Lys -	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
33	Val P	ro 1	le	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
40	Ser V		35					40					45				
	Leu L	ys I 50	?he	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
45	Leu V 65	al :	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
5.0	Asp H	is 1	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90		Ala	Met	Pro	Glu 95	Gly	
50	Tyr V	al (Gln	Glu 100		Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110		Lys	
55	Thr A		Ala 115	Glu	Val	Lys	Phe	Glu 120		Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu L 1	eu : 30	Lys	Gly	Ile	Asp	Phe 135		Glu	Asp	Gly	Asn 140		Leu	Gly	His	
60	Lys L 145	eu	Glu	Tyr	Asn	Tyr 150		Ser	His	Asn	Val 155		Ile	Met	: Ala	160	
65	Lys G	ln	Lys	Asn	Gly 165		Lys	Val	Asn	Phe 170		Ile	Arg	, His	175	Ile	
0.5	Glu A	sp	Gly	Ser 180		Gln	. Leu	Ala	Asp 185		Tyr	Gln	Glr	190	n Thr	Pro	
70	Ile G		Asp 195	Gly	Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205	Leu	ı Ser	Thr	

	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
5	Leu 225	Leu	Glu	Phe		Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	-	Glu 240	
	Leu	Tyr	Lys														
10	<211 <212)> 41 L> 73 2> DN 3> Ar	IA.	cial	Seg	luenc	e										
15	<220 <223)> 3> De	scri	ptio	n of	Art	ific	ial	Sequ	ence	: G1	.у (GG	A) 5G	FP			
20)> L> CI 2> (1		732)													
25	atq	0> 41 gga Gly	gga	gga Gly	gga Gly 5	gga Gly	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
2.0	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] À aàa	cac His 30	aaa Lys	ttt Phe	96
30	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
35	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
40	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
45	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
5.0	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ej A aaa	aac Asn 110	tac Tyr	aag Lys	336
50	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
55	gag Glu	ctg Leu 130	Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
60	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
65	Lys	g caa Gln	Lys	Asn	Gly 165	Ile	Lys	Val	. Asn	170	. Lys	Ile	Arg	Hls	175	ııe	528
7.0	gaç Glu	g gat 1 Asp	gga Gly	tcc Ser 180	Val	cag Gln	ctg Leu	gco Ala	gac Asp 185	His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
70	ato	ggc	gac	ggc	cct	gtg	ctc	cto	c cca	gac	aac	: cat	tac	ctç	tcc	acc	624

and the second second of the second s

	Ile	Gly	Asp	Gly	Pro	Val	Leu		Pro	Asp	Asn	His		Leu	Ser	Thr	
	cag	tct	195 gcc	cta	tet	aaa	gat	200	aac	даа	aaα	aga	205 gac	cac	atα	atc	672
5			Ala	_			-			-	_	_	-		_	-	072
10			gag Glu														720
		tac Tyr	aag Lys	tga													732
15	<212 <212	0> 42 1> 24 2> PI 3> A	13	icial	L Sec	quenc	e										
20		0> 42															
	Met 1	Gly	Gly	Gly	Gly 5	Gly	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
25	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
30	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
35	65		Thr			70					75					80	
	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
40	Tyr	Val	Gln	Glu 100		Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
45			Ala 115					120					125				
		130					135					140					
50	145		Glu			150					155					160	
			Lys		165					170					175		
55			Gly	180					185					190	ı		
60			195					200					205			Thr	
	Gln	Ser 210		Leu	Ser	Lys	Asp 215		Asn	Glu	Lys	Arg 220	Asp	His	Met	: Val	
65	Leu 225		ı Glu	Phe	· Val	Thr 230		Ala	Gly	, Ile	Thr 235	His	Gly	Met	: Asp	Glu 240	
	Leu	туг	: Lys	3													
70		LO> 4 L1> 7															

	<212 <213			cial	Seq	uenc	e										
5	<220 <223		scri	ptic	n of	Art	ific	ial	Sequ	ence	: Gl	y (GG	C) 5G	FP			
10	<220 <221 <222	> CD		732)													
10	<400 atg Met	ggc	ggc														48
15	gtc Val									gat					aaa		96
20	tct Ser																144
25	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
30	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
35	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 110	tac Tyr	aag Lys	336
40	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
45	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
50	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
55	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
33	gag Glu	gat Asp	gga Gly	tcc Ser 180	Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
60	atc Ile	ggc Gly	gac Asp 195	Gly	cct	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc Thr	624
65	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
70	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct	Gly	atc Ile	aca Thr 235	His	ggc	atg Met	gac : Asp	gag Glu 240	720

	ctg tac aag tga Leu Tyr Lys	732
5	<210> 44 <211> 243 <212> PRT <213> Artificial Sequence	
10	<400> 44 Met Gly Gly Gly Gly Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 1 5 10 15	
15	Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30	
	Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 45	
20	Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 55 60	
25	Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80	
23	Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95	
30	Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 100 105 110	
	Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 115 120 125	
35	Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 130 135 140	
40	Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 150 155 160	
40	Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 175	
45	Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 180 185 190	
	Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 195 200 205	
50	Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 210 215 220	
55	Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 225 230 235 240	
	Leu Tyr Lys	
60	<210> 45 <211> 732 <212> DNA <213> Artificial Sequence	
65	<220> <223> Description of Artificial Sequence: Gly(GGG)5GFP	
70	<220> <221> CDS <222> (1)(732)	
	<400> 45	

			Gly														48
5	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] À gàà	cac His 30	aaa Lys	ttt Phe	96
10			agc Ser 35														144
15			ttc Phe														192
20			act Thr														240
20			atg Met														288
25	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ggg Gly	aac Asn 110	tac Tyr	aag Lys	336
30	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
35	gag Glu	ctg Leu 130	aag Lys	Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc	cac His	432
40	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
40	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
45	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
50	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc	624
55	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
60	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	Gly ggg	atc Ile	aca Thr 235	His	ggc	atg Met	gac Asp	gag Glu 240	720
60			aag Lys		ı												732
65	<21 <21	.0> 4 .1> 2 .2> F	243	icia	ıl Se	equen	ıce										
70	<40 Met	00> 4 = Gly	16 7 Gly	, Gly	/ Gly	/ Gly	, Ser	Lys	s Gly	/ Glu	ı Glu	ı Lev	ı Phe	e Thi	Gly	y Val	

Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 5 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 10 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 15 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 20 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 25 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 30 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 170 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 35 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 40 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 45 Leu Tyr Lys <210> 47 <211> 732 <212> DNA 50 <213> Artificial Sequence <223> Description of Artificial Sequence: Gly(GGT)5GFP 55 <221> CDS <222> (1)..(732) 60 <400> 47 atg ggt ggt ggt ggt agc aag ggc gag gaa ctg ttc act ggc gtg Met Gly Gly Gly Gly Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 48 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt 96 65 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 45 70

5	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
-						tct Ser 70											240
10	-		_	_	_	cat His	_			-	_	-	-				288
15						açc Thr											336
20						aag Lys											384
25						gac Asp											432
20						tat Tyr 150											480
30	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
35	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
40	atc Ile	Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
45	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
40	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	el A aaa	atc Ile	aca Thr 235	cat His	Gly	atg Met	gac Asp	gag Glu 240	720
50		_	aag Lys	tga													732
55	<21 <21	0> 4 1> 2 2> P 3> A	43 RT	icia	l Se	quen	.ce										
60	<40 Met 1		8 Gly	Gly	Gly	Gly	Ser	: Lys	Gly	Glu 10	ı Glu	Leu	Phe	Thr	Gly 15	Val	
65				20	1				25	•				30	,	Phe Thr	
			35	•				40)				45	•		Thr	
70	пес	5 C		. 116	. . .		55		, -			60)	•			

	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
5	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
10	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
15	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
13	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
20	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
25	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
30	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
30	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
35	Leu	Tyr	Lys														
40	<21 <21	0> 49 1> 73 2> Di 3> A	32 NA	icial	l Se	quen	ce										
	<22 <22		escr:	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: H	is(C	AC) 50	GFP			
45		1> C		(732)												
50	ato	His	cac	cac His	cac His 5	cac His	agc Ser	aag Lys	ggc	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
55	gtc Val	cca Pro	att Ile	ctc Leu 20	Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] A aaa	cac His 30	aaa Lys	ttt Phe	96
60	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
G E	ctg Leu	aaa Lys 50	Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	Pro	tgg Trp	cca Pro	aca Thr	192
65	cto Lev 65	ı Val	act Thr	acc Thr	ttc Phe	tct Ser 70	Tyr	ggc	gtg Val	cag Gln	tgc Cys 75	Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
70	gac Asp	cat His	atg Met	aag Lys	cag Gln	cat	gac Asp	ttt Phe	ttc Phe	aaç Lys	ago Ser	gcc	atg Met	Pro	gag Glu	ggc Gly	288

85 95 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 5 100 105 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 384 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 10 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 135 15 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 528 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 20 . Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca 576 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 25 185 180 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 30 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 210 720 35 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 732 ctg tac aag tga 40 Leu Tyr Lys <210> 50 <211> 243 45 <212> PRT <213> Artificial Sequence <400> 50 Met His His His His Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 50 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 55 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 55 60 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 65 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys

Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile

70

115

er in a comparation of property of the

Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 130 135 5 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 10 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 15 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 20 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 Leu Tyr Lys 25 <210> 51 <211> 732 <212> DNA <213> Artificial Sequence 30 <223> Description of Artificial Sequence: His(CAT)5GFP <220> 35 <221> CDS <222> (1)..(732) <400> 51 atg cat cat cat cat agc aag ggc gag gaa ctg ttc act ggc gtg 48 Met His His His His Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 40 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 45 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc 144 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 50 192 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 55 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 288 60 85 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 65 105 384 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 70 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432

	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
5	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
10						atc Ile											528
15						cag Gln											576
						gtg Val											624
20						aaa Lys											672
25	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	Gly ggg	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
30	-	tac Tyr	aag Lys	tga													732
35 ⁻	<210> 52 <211> 243 <212> PRT <213> Artificial Sequence																
40		0> 5: His		His	His 5	His	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
10	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
45	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50		Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
50	Leu 65	Val	Thr	Thr	Phe	Ser 70		Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
55	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
33	Tyr	Val	Gln	Glu 100		Thr	Ile	Phe	Phe 105		Asp	Asp	Gly	Asn 110	Tyr	Lys	
60	Thr	Arg	Ala 115		Val	Lys	Phe	Glu 120		Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
		130)				135					140	1			His	
65	145					150					155)				Asp 160	
70	_				165	•				170)				1/5		
, 0	Glu	Asp	Gly	y Ser	. Val	Gln	Leu	ı Ala	Asp	His	туг	Glr	Glr	n Asr	1 Thi	Pro	

180 185 190 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 5 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 10 Leu Tyr Lys 15 <210> 53 <211> 732 <212> DNA <213> Artificial Sequence 20 <220> <223> Description of Artificial Sequence: Ile(ATA)5GFP <220> <221> CDS 25 <222> (1)..(732) <400> 53 atg ata ata ata ata agc aag ggc gag gaa ctg ttc act ggc gtg 48 Met Ile Ile Ile Ile Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 30 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 96 35 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 144 192 40 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca 240 45 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 50 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 110 55 384 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 60 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 135 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 65 155 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 70 165 170

	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
5	atc Ile	ggc Gly	gac Asp 195	Gly ggc	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
10	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
15	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	ggg Gly	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
	_	tac Tyr	aag Lys	tġa		•								-			732
25	<210> 54 <211> 243 <212> PRT <213> Artificial Sequence																
23		0> 54 Ile	1' Ile	Ile	Ile 5	Ile	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
30	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
35	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys 	Leu	Thr	
33	Leu	Lys 50	Phe	Ile	Суз	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
40	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lуs 90	Ser	Ala	Met	Pro	Glu 95	Gly	
45	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
50	Thr	Arg	Ala 115		Val	Lys	Phe	Glu 120	_	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
30	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
55	Lys 145		Glu	Tyr	Asn	Tyr 150		Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
60	Glu	Asp	Gly	Ser 180		Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190		Pro	
6.5	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205		Ser	Thr	
65	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215		Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
70	Leu 225		Glu	Phe	Val	Thr 230		Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	

Leu Tyr Lys

namen dalaka ka ka na ka na ka

5	<210: <211: <212: <213:	> 73 > DN	2 A	cial	Seq	uenc	e										
10	<220> <223> Description of Artificial Sequence: Ile(ATC)5GFP																
15	<220: <221: <222:	> CD		732.)					•								
	<400 atg Met	atc	atc														48
20	gtc Val																96
25	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
30	ctg Leu																192
35	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	Gly Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
40	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	el A aaa	aac Asn 110	tac Tyr	aag Lys	336
45	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
50	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
55	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
60	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	TTE	528
60	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
65	atc Ile	ggc Gly	gac Asp 195	Gly	cct Pro	gtg Val	ctc Leu	cto Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	. Leu	tcc Ser	acc Thr	624
70	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	ı aag ı Lys	aga Arg 220	Asp	cac His	ato Met	g gtc : Val	672

5	ctg ctg of Leu Leu 0 225														720
3	ctg tac a		a												732
10	<210> 56 <211> 243 <212> PR3 <213> Art	r	al Se	quenc	:e										
15	<400> 56 Met Ile :	Ile Il	e Ile 5	Ile	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
20	Val Pro	Ile Le 2		Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
	Ser Val S	Ser Gl 35	y Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
25	Leu Lys 1 50	Phe Il	e Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
30	Leu Val 1 65	Thr Th	r Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
	Asp His l	Met Ly	s Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
35	Tyr Val	10	0				105					110			
	Thr Arg	Ala Gl 115	u Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
40	Glu Leu 130	Lys Gl	y Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
45	Lys Leu 145	Glu Ty	r Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
10	Lys Gln	Lys As	n Gly 165		Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
50	Glu Asp	Gly Se	r Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
	Ile Gly	Asp G 195	y Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
55	Gln Ser 210	Ala L	u Sei	Lys	Asp 215		Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
60	Leu Leu 225	Glu P	ne Val	. Thr 230		Ala	Gly	Ile	Thr 235	His	Gly	Met	: Asp	Glu 240	
50	Leu Tyr	Lys													
65	<210> 57 <211> 73 <212> DN <213> And Control of the	32 NA	ial S	equen	ıce										
70	<220> <223> De	escrip	tion (of Ar	tifi	cial	Sec	quenc	ce:]	le(Æ	ATT)5	GFP			

	<220 <221 <222	> CD		732)													
5	<400 atg Met 1	att	att														48
10	gtc Val																96
15	tct Ser																144
20	ctg Leu				-				_								192
25	ctg Leu 65																240
	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
30	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ej A aaa	aac Asn 110	tac Tyr	aag Lys	336
35	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
40	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	ctc Leu	Gly	His	432
45	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	atg Met	Ala	Asp 160	480
	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	cac His	175	Ile	528
50	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	aac Asn 190	Thr	Pro	576
55	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205		Ser	Thr	624
60	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	. Lys	220	Asp	Hls	Met	gtc Val	672
65	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	Thr 230	Ala	gct	ggg Gly	ato Ile	aca Thr 235	His	ggc	atg Met	gac Asp	gag Glu 240	720
. .	-		aag Lys														732
70		0> 5 1> 2															

<211> 243

<212> PRT <213> Artificial Sequence <400> 58 5 Met Ile Ile Ile Ile Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 3010 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 15 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 20 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 25 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 30 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 35 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 170 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 185 40 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 45 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 50 Leu Tyr Lys <210> 59 <211> 732 55 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Leu(CTA)5GFP 60 <220> <221> CDS <222> (1)..(732) 65 atg cta cta cta cta agc aag ggc gag gaa ctg ttc act ggc gtg Met Leu Leu Leu Leu Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 48 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt 70 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe

20 25 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 5 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca 192 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 10 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 70 75 80240 15 288 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 20 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 105 110 100 384 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 25 120 432 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 135 30 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 155 145 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 528 35 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca 576 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 40 185 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 45 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 210 215 50 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag 720 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 235 230 732 55 ctg tac aag tga Leu Tyr Lys <210> 60 60 <211> 243 <212> PRT <213> Artificial Sequence <400> 60 Met Leu Leu Leu Leu Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 65 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe

Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr

35 40 45 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 5 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 10 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 15 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 20 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 25 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 185 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 30 205 195 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 35 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 Leu Tyr Lys 40 <210> 61 <211> 732 <212> DNA 45 <213> Artificial Sequence <223> Description of Artificial Sequence: Leu(CTC)5GFP 50 <220> <221> CDS <222> (1)..(732) atg ctc ctc ctc ctc agc aag ggc gag gaa ctg ttc act ggc gtg Met Leu Leu Leu Leu Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 48 55 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 3096 60 tet gte age gga gag ggt gaa ggt gat gee aca tae gga aag ete ace 144 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 65 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca 192 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 55 70

ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca

	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
5	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
10										aaa Lys							336
15										gac Asp							384
10										gat Asp							432
20	_	-	-							aat Asn				_	-	_	480
25										ttc Phe 170							528
30										cat His							576
35	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His -	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
33	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
40	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	G] À ààà	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
45	_	tac Tyr	aag Lys	tga													732
50	<21 <21	0> 6 1> 2 2> P 3> A	43	icia	l Se	quen	ce										
55	<40 Met 1		2 Leu	Leu	Leu 5	Leu	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	Val	Pro	Ile	Leu 20		Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
60	Ser	Val	Ser 35		Glu	Gly	Glu	Gly 40		Ala	Thr	Tyr	Gly 45	Lys ,	Leu	Thr	
65	Leu	Lys 50		lle	cys	Thr	Thr 55		Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
0.5	Leu 65		Thr	Thr	Phe	Ser 70		Gly	/ Val	l Glr	1 Cys 75	Phe	e Ser	Arq	д Туі	Pro 80	
70	Asp	His	s Met	. Lys	Glr 85		s Asp	Phe	Phe	e Lys 90	s Sei	Ala	a Met	: Pro	95 95	ı Gly	

where the constant of the constant $\Delta(x)$

	Tyr '	Val		Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
5	Thr 2	Arg	Ala 115	Glu	Val	Lys		Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu :	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
10	Lys :	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
15	Lys	Gln 	Lys	Asn	Gly 165	Ile	Lys	Val		Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
13	Glu :	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
20	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
25	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
20	Leu	Tyr	Lys														
30	<210 <211 <212 <213	> 73 > Di	32	cial	. Sec	quenc	ce										
35	<220 <223		escri	.ptic	on of	f Ar	tific	cial	Sequ	ience	∋: L	eu (Ci	rg) 50	SFP			
40	<220 <221 <222	> C1	DS 1)	(732))												
45	<400 atg)> 6	3														
	1	ctg Leu	ctg Leu	ctg Leu	ctg Leu 5	ctg Leu	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
50	1 atc	Leu	cta	Leu	Leu 5 ata	Leu	Ser	Lys	ggc	Glu 10 gat	Glu	Leu aat	Phe	Thr	Gly 15 aaa Lys	Val ttt	48 96
	gtc Val	cca Pro	ctg Leu	ctc Leu 20	Leu 5 gtg Val	Leu gaa Glu	Ser ctg Leu	Lys gat Asp	ggc Gly 25	Glu 10 gat Asp	gtg Val aca	Leu aat Asn tac	ggg	Thr cac His 30	Gly 15 aaa Lys ctc	ttt Phe	
50 55	gtc Val tct Ser	cca Pro gtc Val	att Ile agc Ser 35 ttc Phe	ctc Leu 20 gga Gly	Leu 5 gtg Val gag Glu	gaa Glu ggt Gly	ctg Leu gaa Glu	gat Asp ggt Gly 40	ggc Gly 25 gat Asp	Glu 10 gat Asp gcc Ala	gtg Val aca Thr	aat Asn tac Tyr	ggg Gly gga Gly 45 cca	Cac His 30 aag Lys	Gly 15 aaa Lys ctc Leu	ttt Phe acc Thr	96
	gtc Val tct Ser ctg Leu	cca Pro gtc Val aaa Lys	att Ile agc Ser 35 ttc Phe	ctc Leu 20 gga Gly atc Ile	gtg Val gag Glu tgc Cys	gaa Glu ggt Gly acc Thr	ctg Leu gaa Glu act Thr 55 tat	gat Asp ggt Gly 40 gga Gly	ggc Gly 25 gat Asp aag Lys	gat Asp gcc Ala ctc Leu	gtg Val aca Thr	aat Asn tac Tyr gtg Val 60	ggg Gly gga Gly 45 cca Pro	Cac His 30 aag Lys tgg	aaa Lys ctc Leu cca Pro	ttt Phe acc Thr aca Thr	96
55	gtc Val tct Ser ctg Leu ctg	cca Pro gtc Val aaa Lys 50 gtc	att Ile agc ser 35 ttc Phe	ctc Leu 20 gga Gly atc Ile	gtg Val gag Glu tgc Cys	gaa Glu ggt Gly acc Thr tct Ser 70 g cat	ctg Leu gaa Glu act Thr 55 tat	gat Asp ggt Gly 40 gga Gly	ggc Gly 25 gat Asp aag Lys gtg Val	Glu 10 gat Asp gcc Ala ctc Leu cag Gln	gtg Val aca Thr cct Pro tgc Cys 75	aat Asn tac Tyr gtg Val 60 ttt	ggg Gly gga Gly 45 cca Pro	Cac His 30 aag Lys tgg Trp	Gly 15 aaa Lys ctc Leu cca Pro tac Tyr	ttt Phe acc Thr aca Thr cca Pro 80 ggc Gly	96 144 192

	acc c Thr A	rg .	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
5	gag c Glu L 1	tg eu 30	aag Lys	Gly Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	4 32
10	aag c Lys L 145	tg eu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
15	aag c Lys G																528
20	gag g Glu A																576
	atc g Ile G	ĺу.															624
25	cag t Gln S 2																672
30	ctg c Leu L 225																720
35	ctg t Leu T		_	tga													732
33																	
40	<210><211><211><212><213>	24 PR	3 T	icia:	l Sed	quenc	ce										
40	<211> <212>	24 PR Ar	3 T tifi			_		Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	<211> <212> <213> <400> Met I	24 PR Ar 64 Leu	3 T tifi Leu	Leu	Leu 5	Leu	Ser			10					15		
40	<211> <212> <213> <400> Met I 1	· 24 · PR · Ar · 64 Geu	3 T tifi Leu Ile	Leu Leu 20	Leu 5 Val	Leu Glu	Ser Leu	Asp	Gly 25	10 Asp	Val	Asn	Gly	His 30	15 Lys	Phe	
40 45	<211><212><213><213> 400 Met I 1 Val F	· 24 · PR · Ar · 64 Leu Pro	3 T Titifi Leu Ile Ser 35	Leu Leu 20 Gly	Leu 5 Val Glu	Leu Glu Gly	Ser Leu Glu	Asp Gly 40	Gly 25 Asp	10 Asp Ala	Val Thr	Asn Tyr	Gly Gly 45	His 30 Lys	15 Lys Leu	Phe Thr	
40 45	<211> <212> <213> <400> Met I 1 Val F	24 PR Ar 64 Leu Pro /al	3 T Tifi Leu Ile Ser 35	Leu Leu 20 Gly Ile	Leu 5 Val Glu Cys	Leu Glu Gly Thr	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys	10 Asp Ala Leu	Val Thr Pro	Asn Tyr Val 60	Gly Gly 45 Pro	His 30 Lys Trp	15 Lys Leu Pro	Phe Thr	
40 45 50 55	<pre><211> <212> <213> <400> Met I</pre>	· 24 · PR · Ar · 64 Lys · 50	3 T tifi Leu Ile Ser 35 Phe	Leu 20 Gly Ile	Leu 5 Val Glu Cys	Leu Glu Gly Thr Ser 70	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys Val	10 Asp Ala Leu Gln	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro	His 30 Lys Trp	15 Lys Leu Pro	Phe Thr Thr Pro 80 Gly	
40 45 50	<211> <212> <213> <400> Met I 1 Val F Ser V Leu I Leu V 65	· 24 · PR · Ar · 64 Lys · 50 Val	The Ser Thr	Leu Leu 20 Gly Ile Thr	Leu 5 Val Glu Cys Phe Gln 85	Leu Glu Gly Thr Ser 70	Ser Leu Glu Thr 55 Tyr	Asp Gly 40 Gly Gly	Gly 25 Asp Lys Val	Asp Ala Leu Gln Lys 90 Lys	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro Ser	His 30 Lys Trp Arg	Leu Pro Tyr Glu 95	Phe Thr Thr Pro 80 Gly	
40 45 50 55	<pre><211> <212> <213> <400> Met I</pre>	· 24 · PR · Ar · 64 Lys · 50 Val His	3 T tifi Leu Ile Ser 35 Phe Thr Met	Leu Leu 20 Gly Ile Thr Lys Glu 100	Leu 5 Val Glu Cys Phe Gln 85	Leu Glu Gly Thr Ser 70 His	Ser Leu Glu Thr 55 Tyr Asp	Asp Gly 40 Gly Fhe	Gly 25 Asp Lys Val Phe 105	Asp Ala Leu Gln Lys 90 Lys	Val Thr Pro Cys 75 Ser Asp	Asn Tyr Val 60 Phe Ala Asp	Gly Gly 45 Pro Ser Met	His 30 Lys Trp Arg Pro	Leu Pro Tyr Glu 95	Thr Thr Pro 80 Gly	
40 45 50 55	<pre><211> <212> <213> <400> Met I</pre>	· 24 · PR · Ar · 64 Leu · 70 /al Lys 50 /al His	The ser 35 Phe Thr Met Gln Ala 115	Leu Leu 20 Gly Ile Thr Lys Glu 100 Glu	Leu 5 Val Glu Cys Phe 85 Arg Val	Leu Glu Gly Thr Ser 70 His	Ser Leu Glu Thr 55 Tyr Asp	Asp Gly 40 Gly Phe Phe Glu 120	Gly 25 Asp Lys Val Phe 105	Asp Ala Leu Gln Lys 90 Lys Asp	Val Thr Pro Cys 75 Ser Asp	Asn Tyr Val 60 Phe Ala Asp	Gly 45 Pro Ser Met Gly Val 125	His 30 Lys Trp Arg Pro Asn 110	Lys Leu Pro Tyr Glu 95 Tyr	Thr Thr Pro 80 Gly Lys	

)

	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
5	Glu i	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
10	Ile	Gly	Asp 195	Gly	Pro	Val		Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
10	Gln	Ser 210	Ala	Leu	Ser		Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
15	Leu : 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
	Leu '	Tyr	Lys								-						
20	<210: <211: <212: <213:	> 73 > DN	IA	cial	. Seq	_{[uenc}	:e										
25	<220 <223		scri	ptic	n of	Art	ific	ial	Sequ	ience	e: Le	u (CI	T) 50	FP			
30	<220 <221 <222	> CD		(732)													
35	<400 atg Met 1	ctt	ctt	ctt Leu	ctt Leu 5	ctt Leu	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly ggg	cac His 30	aaa Lys	ttt Phe	96
40	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
45	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
50	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	Tyr	ggc Gly	gtg Val	Gln	tgc Cys 75	Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
55	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	G] A gàc	288
	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ej A aaa	aac Asn 110	Tyr	aag Lys	336
60	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	Asn	aga Arg	atc Ile	384
65	gag Glu	ctg Leu 130	Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	ılle	cto Leu	ggc Gly	cac His	432
70	aag Lys 145	Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	Asn	tcc Ser	cac	aat Asn	gtg Val	Tyr	ato	ato Met	g gcc	gac Asp 160	480

5			aag Lys														528
			gga Gly														576
10			gac Asp 195														624
15			gcc Ala														672
20			gag Glu														720
		tac Tyr	aag Lys	tga													732
25																	
20	<211 <212	0> 66 L> 24 2> PF 3> As	13	.cial	Sec	quenc	e										
30)> 66 Leu	5 Leu	Leu	Leu 5	Leu	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
35	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
40	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
40	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
45	65					70					75					Pro 80	
	_				85					90					95	Gly	
50	_			100					105					110		Lys	
55			115					120					125			Ile	
		130					135					140				His	
60	145	ı				150					155					160	
	_				165					170)				1/5		
65				180)				185					190	,	Pro	
70			195	1				200)				205	,		Thr	
	Glr	ser	Ala	Lev	Ser	Lys	Asp	Pro) Asr	ı Glı	ı Lys	Arç	j Asp	His	s Met	: Val	

		210					215					220					
5	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
		Tyr	-														
10	<211 <212	0> 67 L> 73 2> DN 3> Ar	32 1A	cial	L Sec	luenc	e										
15	<220 <223		escri	ptic	n of	Art	ific	ial	Sequ	ience	: Le	u (TT	A) 5G	FP			
20)> L> CI 2> (1		(732))												
	atg		tta		tta Leu 5												48
25					gtg Val												96
30					gag Glu												144
35	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
40	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
45	gac Asp	cat	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
43	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ggg Gly	aac Asn 110	tac Tyr	aag Lys	336
50	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
55	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
60	aag Lys 145	Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
65	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
0.5	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576

atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr

195 200 205 cag tot goo otg tot aaa gat ooc aac gaa aag aga gao cac atg gto Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 5 210 215 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 720 235 230 10 ctg tac aag tga 732 Leu Tyr Lys 15 <210> 68 <211> 243 <212> PRT <213> Artificial Sequence 20 <400> 68 Met Leu Leu Leu Leu Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 3025 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 45Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 30 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 35 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 40 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 45 135 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 155 50 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 55 185 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 60 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 65 Leu Tyr Lys <210> 69 70 <211> 732

<212> DNA

5	<220 <223		scri	ptic	n of	Art	ific	ial	Sequ	ence	: Le	u (TT	'G) 5G	FP			
J		.> CI)s .)(732)													
10	atg		ttg									ctg Leu					48
15												aat Asn					96
20												tac Tyr					144
25												gtg Val 60					192
30												ttt Phe					240
												gcc Ala					288
35	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly ggg	aac Asn 110	tac Tyr	aag Lys	336
40	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
45	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	aac Asn 140	Ile	Leu	Gly	His	432
50	Lys 145	Leu	Ğlu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	tac Tyr	Ile	Met	Ala	Asp 160	480
	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	atc Ile	Arg	His	Asn 175	Ile	528
55	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	caa Gln	Gln	Asn 190	Thr	Pro	576
60	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser		624
65	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	220	Asp	His	Met	gtc Val	672
70	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	Thr 230	Ala	gct Ala	. Gly	atc Ile	Thr 235	Hls	ggc	atg Met	gac Asp	gag Glu 240	720
	ctg	tac	aag	tga													732

Leu Tyr Lys

70

<400> 71

<210> 70 5 <211> 243 <212> PRT <213> Artificial Sequence <400> 70 Met Leu Leu Leu Leu Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 10 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30 15 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 20 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 25 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 30 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 35 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 40 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 45 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 50 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 55 Leu Tyr Lys <210> 71 <211> 732 <212> DNA 60 <213> Artificial Sequence <223> Description of Artificial Sequence: Lys(AAA)5GFP 65 <220> <221> CDS <222> (1)..(732)

atg aaa aaa aaa aaa agc aag ggc gag gaa ctg ttc act ggc gtg

Service of the service of

Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 5 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 10 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 70 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 15 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 20 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 25 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 30 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 185 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 35 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 40 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 Leu Tyr Lys 45 <210> 73 <211> 732 <212> DNA 50 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Lys(AAG)5GFP 55 <220> <221> CDS <222> (1)..(732) <400> 73 atg aag aag aag aag agc aag ggc gag gaa ctg ttc act ggc gtg Met Lys Lys Lys Lys Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 48 60 10 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 96 65 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 70

70 65 75 80 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 5 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 10 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 15 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 20 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 25 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 30 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 35 <210> 75 <211> 732 <212> DNA <213> Artificial Sequence 40 <223> Description of Artificial Sequence: Phe(CTT)5GFP <220> 45 <221> CDS <222> (1)..(732) <400> 75 atg ttg ttg ttg ttg agc aag ggc gag gaa ctg ttc act ggc gtg 48 Met Leu Leu Leu Leu Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 50 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 96 55 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 60 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca 192 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 240 65 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 70 90 85

5	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 110	tac Tyr	aag Lys	336
			gct Ala 115														384
10			aag Lys														432
15			gaa Glu														480
20			aag Lys														528
25			gga Gly														576
20			gac Asp 195														624
30			gcc Ala														672
35			gag Glu														720
	ctg	tac	aag	tga													732
40	Leu	Tyr	Lys														
40	<21 <21 <21	0> 7 1> 2 2> P	6 43	icia	l Se	quenc	ce										
45	<21 <21 <21 <21 <40	0> 7: 1> 2: 2> P: 3> A	6 43 RT rtif:			-		Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	<21 <21 <21 <21 <40 Met	0> 7 1> 2 2> P: 3> A 0> 7 Leu	6 43 RT rtif:	Leu	Leu 5	Leu	Ser			10					15		
45	<210 <211 <211 <400 Met 1	0> 7 1> 2 2> P: 3> A 0> 7 Leu	6 43 RT rtif: 6 Leu	Leu Leu 20 Gly	Leu 5 Val	Leu Glu	Ser Leu	Asp	Gly 25	10 Asp	Val	Asn	Gly	His 30	15 Lys	Phe	
45 50	<21 <21 <21 <21 <40 Met 1 Val	0> 7 1> 2 2> P: 3> A 0> 7 Leu Pro	6 43 RT rtif: 6 Leu Ile Ser 35	Leu Leu 20 Gly	Leu 5 Val Glu	Leu Glu Gly	Ser Leu Glu	Asp Gly 40	Gly 25 Asp	10 Asp Ala	Val Thr	Asn Tyr	Gly Gly 45	His 30 Lys	15 Lys Leu	Phe Thr	
45 50	<210 <211 <211 <221 <40 Met 1 Val Ser	0> 7 1> 2 2> P: 3> A 0> 7 Leu Pro Val	6 43 RT rtif: 6 Leu Ile Ser 35	Leu 20 Gly	Leu 5 Val Glu Cys	Leu Glu Gly Thr	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys	10 Asp Ala Leu	Val Thr Pro	Asn Tyr Val	Gly Gly 45 Pro	His 30 Lys Trp	15 Lys Leu Pro	Phe Thr	
45 50 55	<210 <211 <211 <211 <400 Met 1 Val Ser Leu 65	0> 7 1> 2 2> P 3> A 0> 7 Leu Pro Val Lys 50	6 43 RT rtif: 6 Leu Ile Ser 35 Phe	Leu 20 Gly Ile	Leu 5 Val Glu Cys	Leu Glu Gly Thr Ser 70	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys Val	10 Asp Ala Leu Gln	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro	His 30 Lys Trp	15 Lys Leu Pro	Phe Thr Thr Pro 80	
45 50 55	<21: <21: <21: <21: <40: Met 1: Val: Ser: Leu: 65: Asp	0> 7 1> 2 2> P: 3> A 0> 7 Leu Pro Val Lys 50 Val	6 43 RT rtif: 6 Leu Ile Ser 35 Phe Thr	Leu 20 Gly Ile Thr	Leu 5 Val Glu Cys Phe 6ln 85	Leu Glu Gly Thr Ser 70	Ser Leu Glu Thr 55 Tyr	Asp Gly 40 Gly Gly	Gly 25 Asp Lys Val	Asp Ala Leu Gln Lys 90	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro	His 30 Lys Trp Arg	Leu Pro Tyr Glu 95	Phe Thr Thr Pro 80	

I

	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
5	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
10	Glu .	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
15	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	-
20	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
	Leu	Tyr	Lys														
25	<210 <211 <212 <213	> 73 > DN	IA	.cial	. Sec	quenc	e										
30	<220 <223		scri	ptic	on of	E Art	ific	cial	Sequ	ence	e: Ph	ne (TI	C) 50	FP			
35	<220 <221 <222	> CI		(732)													-
40	<400 atg Met 1	ttc	ttc	ttc Phe	ttc Phe 5	ttc Phe	agc Ser	aag Lys	Gly ggc	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
4.5	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	GJ À ààà	cac His 30	aaa Lys	ttt Phe	96
45	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	.ctc Leu	acc Thr	144
50	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
55	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
60	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
C.F.	tat Tyr	gtg Val	cag Gln	gag Glu 100	Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly	aac Asn 110	Tyr	aag Lys	336
65	acc Thr	cgc Arg	gct Ala 115	Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	Asn	aga Arg	atc	384
70	gag Glu	ctg Leu	aag Lys	ggc	att Ile	gac Asp	ttt Phe	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn	att	ctc Leu	ggc	cac His	432

130 135 140 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 480 5 150 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 10 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca 576 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 180 185 15 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 20 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 720 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 25 230 235 732 ctg tac aag tga Leu Tyr Lys 30 <210> 78 <211> 243 <212> PRT <213> Artificial Sequence 35 <400> 78 Met Phe Phe Phe Phe Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 40 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 45 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 80 50 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 55 105 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 60 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 135 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 65 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro

70

	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
5	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
10	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
	Leu	Tyr	Lys														
15	<211 <212)> 79 .> 73 !> DN !> Ar	2 A	cial	. Sec	_{[uenc}	:e										
20	<220 <223)> 3> De	scri	ptic	n of	Art	ific	ial	Sequ	ience	e: Pr	:o (CC	C) 50	FP			
25)> .> CD !> (1		732)													
30	atg	> 79 ccc Pro	ccc														48
30		cca Pro															96
35		gtc Val															144
40	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
45	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
E 0	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
50	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly	aac Asn 110	tac Tyr	aag Lys	336
55	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
60	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
65	aag Lys 145	Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
70	gag	gat	gga	tcc	gtg	cag	ctg	gcc	gac	: cat	tat	caa	cag	aac	: act	cca	576

	Glu .	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
5	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
10	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
15	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	GJ À ààà	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
15	ctg Leu		_	tga													732
20	<210 <211 <212 <213	> 24 > PF	3 T	cial	. Sec	_{[uenc}	:e										
25	<400 Met 1			Pro	Pro 5	Pro	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
30	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
35	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
4.0	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
40	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
45	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
50	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
.	Lys 145	Leu	Glu	Туг	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
55	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn -	Phe 170		Ile	Arg	His	Asn 175	Ile	
60	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185		Tyr	Gln	Gln	Asn 190	Thr	Pro	
	Ile	Gly	Asp 195		Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
65	Gln	Ser 210		Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	. Met	Val	
7.	Leu 225	Leu	Glu	Phe	· Val	Thr 230		Ala	Gly	Ile	Thr 235	His	Gly	Met	: Asp	Glu 240	
70	Leu	туг	Lys	;													

|--|

<210> 81 <211> 732 5 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Pro(CCG)5GFP 10 <221> CDS <222> (1)..(732) 15 <400> 81 atg ccg ccg ccg ccg agc aag ggc gag gaa.ctg ttc act ggc gtg Met Pro Pro Pro Pro Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 20 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 96 144 tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc 25 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 192 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 30 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca 240 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 70 35 288 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 40 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 105 384 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 45 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 50 135 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 55 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca 576 60 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 185 624 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 65 200 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 70 210

	ctg cte Leu Le 225															720
5	ctg ta Leu Ty	_	tga													732
10	<210> <211> <211> <212> <213> <	243 PRT	icial	L Sec	lue no	:e										
15	<400> Met Pro		Pro	Pro 5	Pro	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
20	Val Pr	o Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
	Ser Va	l Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
25	Leu Ly 5		Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
	Leu Va 65	l Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
30	Asp Hi	s Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
	Tyr Va	l Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
35	Thr Ar	g Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
40	Glu Le 13		Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
	Lys Le 145	u Glu	Tyr	Asn	Tyr 15.0	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
45	Lys Gl	n Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
.	Glu As		Ser 180		Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
50	Ile Gl	y Asp 195		Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
55	Gln Se		Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu Le 225	u Glu	Phe	V.al	Thr 230		Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
60	Leu Ty	r Lys	;													
65	<210> <211> <212> <213>	732 DNA	icia	al Se	quen	ce										
70	<220> <223>	Desci	ripti	on c	of Ar	tifi	cial	. Sec	luenc	e: E	ro(C	CT) 5	GFP			
	<220>															

<221> CDS <222> (1)..(732)

	1222	(1	. ,	,,52,													
5 .	atg)> 83 cct Pro	cct	cct Pro	cct Pro 5	cct Pro	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
10	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly ggg	cac His 30	aaa Lys	ttt Phe	96
15		gtc Val															144
20		aaa Lys 50															192
20		gtc Val															240
25		cat His															288
30	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 110	tac Tyr	aag Lys	336
35	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
40	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	Gly	cac His	432
40	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
45	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
50	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
55	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc Thr	624
60	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
00	ctg Leu 225	Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	ggg	ato	aca Thr 235	His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
65	_	tac Tyr	_	_	L												732
	<21	0> 8	4														

70 <210> 84 <211> 243 <212> PRT

.

<213> Artificial Sequence

	\Z1 3	> A1	CILI	.Clai	. sec	quenc	ce										
5)> 84 Pro		Pro	Pro 5	Pro	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
10	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
15	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro 	Thr	
	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
20	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
25	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
30	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
35	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
40	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
45	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu 225		Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
50	Leu	Tyr	Lys														
55	<21 <21	0> 8 1> 7 2> D 3> A	32 NA	icia	l Se	quen	ce										
	<22 <22	0> 3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: P	ro(C	GA) 5	GFP			
60		1> C	DS 1)	(732)												
65	ato	Arg	cga	cga Arg	cga Arg	cga Arg	agc Ser	aag Lys	Gly	gag Glu 10	Glu	ctg Leu	ttc Phe	act Thr	ggc Gly	gtg Val	48
70	gtc Val	cca Pro	att Ile	ctc Leu 20	Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	Asp	gtg Val	aat Asr	. Gly	cac His	: Lys	ttt Phe	96

5	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
10	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
15			atg Met														288
20			cag Gln														336
25			gct Ala 115														384
20			aag Lys														432
30	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
35	aag Lys	caa Gln	aag Lys	aat Asn	ggç Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
40	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
45	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
40	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
50	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	Gly	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
55	_		aag Lys	tga													732
60	<21 <21	0> 8 1> 2 2> P 3> A	43	icia	l Se	quen	ce										
65	<40 Met 1		6 Arg	Arg	Arg 5	Arg	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	Val	Pro	Ile	Leu 20		Glu	Leu	Asp	Gly 25		Val	Asn	Gly	His	Lys	Phe	
70	Ser	Val	Ser 35		Glu	Gly	Glu	Gly 40		Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	

.

	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
5	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
10	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
15	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
20	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
٥٢	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
25	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
30	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	•
35	Leu 225		Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
	Leu	Tyr	Lys														
40	<21 <21	0> 8 1> 7 2> D 3> A	32	icia	l Se	quen	ce										
45	<22 <22		escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: S	er(A	GC) 5	GFP			
50		1> C	DS	(732)												
55	ato	Ser	7 agc Ser	agc Ser	agc Ser 5	Ser	agc Ser	aag Lys	ggc	gag Glu 10	Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
60	gto Val	c cca L Pro	a att	ctc Leu 20	Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	Asp	gtg Val	aat Asn	Gly	cac His	Lys	ttt Phe	96
	tc: Se:	t gto r Val	c ago L Ser 35	Gly	gaç Glu	ggt Gly	gaa Glu	ggt Gly 40	Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	, га	ctc Leu	acc Thr	144
65	cte	g aaa u Ly: 50	a tto s Phe	ato	tgo Cys	aco Thr	act Thr	gga Gly	a aac	g cto Lev	cct Pro	gtç Val	. Pro	tgç Trp	g cca Pro	aca Thr	192
70	ct: Le	g gto u Vai	c act l Thi	acc Thi	tto Phe	tct Ser	tat	ggo Gly	gto Val	g caç . Glr	g tgo n Cys	ttt Phe	tcc Ser	aga Arg	a tac g Tyr	cca Pro	240

į

65 70 75 80 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc 288 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 5 85 90 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 10 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 384 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 120 15 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 130 135 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac 480 20 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 150 155 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 25 165 170 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 576 30 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 195 200 205 35 672 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 720 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag 40 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 235 732 ctg tac aag tga Leu Tyr Lys 45 <210> 88 <211> 243 <212> PRT 50 <213> Artificial Sequence <400> 88 Met Ser Ser Ser Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 55 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 60 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly

Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys

100 105 110

				100					105					110			
5	Thr 2	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
J	Glu :	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
10	Lys :	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
15	Glu i	Asp	Gly	Ser 180	Val	Gln	Leu	Ala -	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
20	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
20	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
25	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
	Leu	Tyr	Lys														
30	<210 <211 <212 <213	> 73 > DN	32 IA	lcial	L Sec	quenc	e:										
35	<220 <223		escri	iptio	on of	E Art	ific	cial	Sequ	uence	e: Se	er(A0	FT)50	FP			
40	<220 <221 <222	> CI		(732))												
45	<400 atg Met 1	agt	agt	agt Ser	agt Ser 5	agt Ser	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly ggg	cac His 30	aaa Lys	ttt Phe	96
50	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
55	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
60	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
65	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	95	ggc	288
	tat Tyr	gtg Val	cag Gln	gag Glu 100	Arg	acc	atc Ile	ttt Phe	ttc Phe 105	: Lys	gat Asp	gac Asp	ggg Gly	Asr 110	ı Tyr	Lys	336
70	acc	cgc	gct	gaa	gtc	aag	ttc	ga a	ggt	gac	acc	ctg	gto	, aat	aga	atc	384

	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
5	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
10					aac Asn												480
 15					ggc Gly 165												528
-					gtg Val												576
20					cct Pro												624
25					tct Ser												672
30					gtg Val												720
	ctg Leu		aag Lys	tga													732
35																	
	<211 <212)> 90 l> 24 2> PI 3> A:	13 RT	lcia:	L Sec	quenc	ce										
40	<211 <212 <213 <400	l> 24 2> PI 3> A: 0> 90	13 RT rtifi		Ser 5			Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
	<211 <212 <213 <400 Met	l> 24 2> PI 3> A: 0> 90 Ser	13 RT rtifi) Ser	Ser	Ser	Ser	Ser			10					15		
40	<211 <212 <213 <400 Met 1 Val	1> 24 2> P1 3> A3 0> 90 Ser Pro	13 RT rtifi Ser	Ser Leu 20	Ser 5	Ser Glu	Ser Leu	Asp	Gly 25	10 Asp	Val	Asn	Gly	His 30	15 Lys	Phe	
40	<211 <212 <213 <400 Met 1 Val	1> 24 2> PI 3> A 3> A 0> 90 Ser Pro	13 RT rtiff Ser Ile Ser 35	Ser Leu 20 Gly	Ser 5 Val	Ser Glu Gly	Ser Leu Glu	Asp Gly 40	Gly 25 Asp	10 Asp Ala	Val Thr	Asn Tyr	Gly Gly 45	His 30 Lys	15 Lys Leu	Phe Thr	
40	<211 <212 <213 <400 Met	l> 24 2> P1 3> A: 0> 90 Ser Pro Val	13 RT rtifi Ser Ile Ser 35	Ser Leu 20 Gly	Ser 5 Val Glu Cys	Ser Glu Gly Thr	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys	10 Asp Ala Leu	Val Thr Pro	Asn Tyr Val 60	Gly Gly 45 Pro	His 30 Lys Trp	15 Lys Leu Pro	Phe Thr	
40 45 50	<211 <212 <213 <400 Met 1 Val Ser Leu 65	l> 24 2> PP 3> A: 0> 90 Ser Pro Val Lys 50 Val	13 RT rtifi Ser Ile Ser 35 Phe	Ser Leu 20 Gly Ile	Ser 5 Val Glu Cys	Ser Glu Gly Thr	Ser Leu Glu Thr 55	Asp Gly 40 Gly	Gly 25 Asp Lys Val	10 Asp Ala Leu Gln	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro	His 30 Lys Trp	15 Lys Leu Pro	Phe Thr Thr Pro 80 Gly	
40 45 50	<211 <212 <213 <400 Met	l> 24 2> PP 3> A3 0> 90 Ser Pro Val Lys 50 Val	13 RT rtifi Ser Ile Ser 35 Phe Thr	Ser Leu 20 Gly Ile Thr	Ser 5 Val Glu Cys Phe Gln 85	Ser Glu Gly Thr Ser 70	Ser Leu Glu Thr 55 Tyr	Asp Gly 40 Gly Gly	Gly 25 Asp Lys Val	Asp Ala Leu Gln Lys 90 Lys	Val Thr Pro Cys 75 Ser	Asn Tyr Val 60 Phe	Gly Gly 45 Pro Ser	His 30 Lys Trp Arg	Leu Pro Tyr Glu 95	Phe Thr Thr Pro 80 Gly	
40 45 50 55	<pre><211 <212 <213 <400 Met 1 Val Ser Leu 65 Asp Tyr</pre>	l> 24 2> PM 3> A 3> A 0> 90 Ser Pro Val Lys 50 Val His	13 RT rtifi Ser Ile Ser 35 Phe Thr Met	Ser Leu 20 Gly Ile Thr Lys Glu 100 Glu	Ser 5 Val Glu Cys Phe Gln 85 Arg	Ser Glu Gly Thr Ser 70 His	Ser Leu Glu Thr 55 Tyr Asp	Asp Gly 40 Gly Gly Phe	Gly 25 Asp Lys Val Phe 105	Asp Ala Leu Gln Lys 90 Lys	Val Thr Pro Cys 75 Ser Asp	Asn Tyr Val 60 Phe Ala Asp	Gly Gly 45 Pro Ser Met	His 30 Lys Trp Arg Pro	Lys Leu Pro Tyr Glu 95	Phe Thr Thr Pro 80 Gly	
40 45 50	<211 <212 <213 <400 Met 1 Val Ser Leu 65 Asp Tyr Thr	l> 24 2> PP 3> A3 0> 90 Ser Pro Val Lys 50 Val His	13 RT rtiff Ser Ile Ser 35 Phe Thr Met Gln Ala 115 Lys	Ser Leu 20 Gly Ile Thr Lys Glu 100 Glu	Ser 5 Val Glu Cys Phe Gln 85 Arg	Ser Glu Gly Thr Ser 70 His Thr	Ser Leu Glu Thr 55 Tyr Asp Ile	Asp Gly 40 Gly Phe Glu 120 Lys	Gly 25 Asp Lys Val Phe 105	Asp Ala Leu Gln Lys 90 Lys Asp	Val Thr Pro Cys 75 Ser Asp	Asn Tyr Val 60 Phe Ala Asp	Gly 45 Pro Ser Met Gly Val 125	His 30 Lys Trp Arg Pro	Lys Leu Pro Tyr Glu 95 Tyr	Phe Thr Thr Pro 80 Gly Lys	

								1()2							
	Lys Gl	n Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
5	Glu As	sp Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
	Ile Gl	y Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
10	Gln Se		Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
15	Leu Le 225		Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
20	<210><211><211><212><213>	732 DNA	icial	. Seq	quenc	:e										
25	<220> <223>	Descr	iptic	n of	Art	ific	ial	Sequ	ience	e: Se	r (TC	:A) 5G	FP			
30	<220> <221> <222>		(732)													
	<400> atg to Met Se	a tca														48
35	gtc co Val Pr	a att	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	ggg Gly	cac His 30	aaa Lys	ttt Phe	96
40	tct gt Ser Va	c agc al Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
45	Leu Ly	aa ttc ys Phe 50	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
50	ctg gt Leu Va 65	tc act al Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	Gly Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
	gac ca Asp H	at atg is Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	Gly ggc	288
55	tat g Tyr V	tg cag al Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly ggg	aac Asn 110	Tyr	aag Lys	336
60	acc c Thr A	gc gct rg Ala 115	Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
65	Glu L	tg aag eu Lys 30	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	Ile	ctc	ggc Gly	cac His	432
70	aag c Lys L 145	tg gaa eu Glu	tac Tyr	aac Asn	tat Tyr 150	Asn	tcc Ser	cac His	aat Asn	gtg Val 155	Tyr	atc	atg Met	gcc Ala	gac Asp 160	480

														cac His			528
5														aac Asn 190			576
10	_		_							_				ctg Leu			624
15														cac His			672
20														atg Met			720
	_	tac Tyr	aag Lys	tga													732
25	<213 <213	0> 92 l> 24 2> PF 3> As	13 RT	cial	L Sec	Jueno	e										
30		0> 92 Ser		Ser	Ser 5	Ser	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
35	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
40	Leu	Lys 50	Phe	Ile	Суѕ	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
45	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
					85					90				Pro	95		
50	-			100					105					Asn 110			
			115					120					125			Ile	
55	Glu	Leu 130		Gly	Ile	Asp	Phe 135		Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
60	Lys 145		Glu	Tyr	Asn	Tyr 150		Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	160	
00	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170		Ile	Arg	, His	Asr 175	Ile	
65	Glu	Asp	Gly	Ser 180		Gln	Leu	Ala	Asp 185		Туг	Gln	Glr	190	Thr	Pro	
	Ile	e Gly	Asp 195		Pro	Val	Leu	Leu 200		Asp	Asn	His	Ту1 205	Leu	ser	Thr	
70	Glr	Ser 210		Leu	Ser	Lys	Asp 215		Asn	Glu	ı Lys	220	Asp	His	Met	: Val	

	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
5	Leu	Tyr	Lys								233					240	
10	<210 <211 <212 <213	> 73 > DN	2 A	cial	Seq	luenc	:e										
15	<220 <223		scri	ptic	n of	Art	ific	ial	Sequ	ence	: Se	r (TC	C) 5G	FP			
	<220 <221 <222	> CD		732)													
20	<400 atg Met 1	tcc	tcc														48
25	gtc Val								ggc Gly 25								96
30									gat Asp								144
35									aag Lys								192
40									gtg Val								240
40	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
45	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly ggg	aac Asn 110	tac Tyr	aag Lys	336
50	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
55	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	Gly	cac His	432
	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
60	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
65	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
70	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tcc Ser	acc Thr	624

	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asņ	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
5	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	GJ À aaa	atc Ile	aca Thr 235	cat	Gly ggc	atg Met	gac Asp	gag Glu 240	720
10	_	tac Tyr	aag Lys	tga													732
15	<211 <212)> 94 l> 24 2> PF B> Ar	13	.cial	L Sec	quenc	ce										
20)> 94 Ser	! Ser	Ser	Ser 5	Ser	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
0.5	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
25	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
30	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
35	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
40	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
45	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
50	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185		Tyr	Gln	Gln	Asn 190	Thr	Pro	
55	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
60	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215		Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu 225		Glu	Phe	Val	Thr 230		Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
65	Leu	Tyr	Lys														
70	<21 <21	0> 9 1> 7 2> D 3> A	32	icia	l Se	quen	ıce										

		<220> <223> Description of Artificial Sequence: Ser(TCG)5GFP															
5	<220> <221> CDS <222> (1)(732)																
10	atg	0> 9: tcg Ser	tcg	tcg Ser	tcg Ser 5	tcg Ser	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
15	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] À ààà	cac His 30	aaa Lys	ttt Phe	96
20	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
25	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
30	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
35	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	Gly ggg	aac Asn 110	tac Tyr	aag Lys	336
40	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
45	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
		ctg Leu															480
50		caa Gln															528
55		gat Asp				_	_	-	-				_				576
60		ggc Gly	-							_				-			624
65		tct Ser 210															672
55		ctg Leu															720
70	_	tac Tyr	_	tga													732

```
<210> 96
        <211> 243
 5
        <212> PRT
        <213> Artificial Sequence
       Met Ser Ser Ser Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val
10
       Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe
20 25 30
       Ser Val {\rm \widetilde{Ser}} Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35
15
        Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr
20
       Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80
       Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95
25
        Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys
                                         105
30
        Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile
        Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His
35
        Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp
        Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile
40
        Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro
        Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr
45
        Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val
                                 215
50
        Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu
        Leu Tyr Lys
55
        <210> 97
        <211> 732
        <212> DNA
60
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Ser(TCT)5GFP
65
        <220>
        <221> CDS
        <222> (1)..(732)
        <400> 97
        atg tct tct tct tct agc aag ggc gag gaa ctg ttc act ggc gtg
70
        Met Ser Ser Ser Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val
```


	1		5				10					15		
5	gtc cca Val Pro		Val Glu											96
1.0	tct gtc Ser Val													144
10			tgc acc											192
15			ttc tc1 Phe Se1	Tyr										240
20	gac cat Asp His		cag cat Gln His 85											288
25			aga aco Arg Th											336
20			gtc aad Val Ly:											384
30	gag ctg Glu Leu 130	aag ggd Lys Gly	att gad Ile As	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
35	aag ctg Lys Leu 145	gaa tad Glu Ty	aac ta Asn Ty 15	r Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
40	aag caa Lys Gln	aag aat Lys Ası	ggc at Gly Il 165	c aag e Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
45	gag gat Glu Asp	gga tco Gly Se: 18	gtg ca Val Gl	g ctg n Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
50	atc ggc Ile Gly	gac gg Asp Gl	c cct gt y Pro Va	l Leu	ctc Leu 200	Pro	Asp	aac Asn	His	Tyr	Leu	tcc Ser	acc Thr	624
30	cag tct Gln Ser 210	Ala Le	g tct aa u Ser Ly	a gat s Asp 215	Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
55	ctg ctg Leu Leu 225	g gag tt ı Glu Ph	t gtg ac e Val Th 23	r Ala	gct Ala	Gly	atc	aca Thr 235	His	Gly	atg Met	gac Asp	gag Glu 240	720
60	ctg tac Leu Ty	aag tg Lys	a			<u>.</u>								732
65	<210> 9 <211> 2 <212> 1 <213> 2	243 PRT	al Seque	nce										
70	<400> 9 Met Sea 1	98 r Ser Se	r Ser Se 5	er Se	r Lys	Gly	Glu 10	ı Glu	. Lev	ı Phe	e Thi	Gly 15	v Val	

	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
5	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
10	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
15	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
13	Tyr	Val	Gln	Glu 100	Arg	Thr.	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
20	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
25	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
30	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg		Asn 175	Ile	
30	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
35	Ile	Gly	Asp 195	Gly	Pro	Val_	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
40	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
45	Leu	Tyr	Lys														
	<212	L> 7 2> D	32	icia.	l Se	quen	ce										
50	<220 <223	0> 3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: T	hr (A	CA) 5	GFP			
55		1> C	DS 1)	(732)												
60	atσ	0> 9 aca Thr	9 aca Thr	aca Thr	aca Thr 5	aca Thr	agc Ser	aag Lys	ggc	gag Glu 10	Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
65	gtc Val	cca Pro	att Ile	ctc Leu 20	Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	Asp	gtg Val	aat Asn	ggg	cac His 30	Lys	ttt Phe	96
70	tct Ser	gto Val	ago Ser 35	Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	Lys	cto Leu	acc Thr	144
70	ctg	aaa	ttc	ato	tgo	acc	act	gga	aaç	ctc	cct	gtç	g cca	tgg	, cca	aca	192

1

	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
5			act Thr														240
10			atg Met														288
15			cag Gln														336
			gct Ala 115														384
20			aag Lys														432
25			gaa Glu														480
30			aag Lys														528
35	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
40	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
45	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	G] À ààà	atc Ile	aca Thr 235	cat His	ggc	atg Met	gac Asp	gag Glu 240	720
50			aag Lys														732
55	<21 <21	0> 1 1> 2 2> P 3> A	43	icia	l Se	quen	ce										
60	<40 Met 1		00 Thr	Thr	Thr 5	Thr	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
60				20					25					30		Phe	
65			35					40)				45			Thr Thr	
70		50)				55	•				60)			Pro	
. -	65					70					75	i				80	

1.)

 $(1, \cdots, r, r) = (r, r) = (r, r)$

gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc

Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly

	tat Tyr	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ggg Gly	aac Asn 110	tac Tyr	aag Lys	336
5	acc Thr	cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
10	gag Glu	ctg Leu 130	aag Lys	Gly ggc	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
15						tat Tyr 150											480
20						atc Ile											528
						cag Gln											576
25						gtg Val											624
30	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
35	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	G] À gàà	atc Ile	aca Thr 235	cat His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
	_	tac Tyr	aag Lys	tga													732
40	<212	0> 10 1> 20 2> P1 3> A	43 R T	icia	l Sed	quenc	ce										
45	<400 Met 1	0> 1 Thr	02 Thr	Thr	Thr 5	Thr	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
50	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
F. F	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
55	Leu	Lys 50		Ile	Суз	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
60	Leu 65		Thr	Thr	Phe	Ser 70		Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
	Asp	His	Met	Lys	Gln 85		Asp	Phe	Phe	Lys 90		Ala	. Met	Pro	Glu 95	Gly	
65	Tyr	Val	Gln	Glu 100		Thr	Ile	Phe	Phe 105		Asp	Asp	Gly	110	Tyr	Lys	
7.0	Thr	Arg	Ala 115		. Val	Lys	Phe	Glu 120		Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
70	Glu	Let	ı Lys	Gly	, Ile	Asp	Phe	Lys	Glu	ı Asp	Gly	Asr	ıle	Leu	ı Gly	His	

130 135 140 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 5 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 10 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 205 15 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 20 Leu Tyr Lys <210> 103 25 <211> 732 <212> DNA <213> Artificial Sequence <220> 30 <223> Description of Artificial Sequence: Thr(ACG)5GFP <220> <221> CDS <222> (1)..(732) 35 <400> 103 atg acg acg acg acg agc aag ggc gag gaa ctg ttc act ggc gtg Met Thr Thr Thr Thr Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 48 40 gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 45 144 192 ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca 240 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 55 gac cat atg aag cag cat gac ttt ttc aag agc gcc atg ccc gag ggc Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 288 60 tat gtg cag gag aga acc atc ttt ttc aaa gat gac ggg aac tac aag 336 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 100 105 acc cgc gct gaa gtc aag ttc gaa ggt gac acc ctg gtg aat aga atc 384 65 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 70 135 140 130

لعلقه المستحدوق المراو المحاج فالمراج المراوي

	Ile G		Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
5	Gln S	er 2	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu L 225	Leu (Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
10	Leu T	yr 1	Lys														
15	<210><211><211><212><213>	732 DN2	2 A.	cial	Seq	uenc	e										
20	<220> <223>		scri	ptic	n of	Art	ific	ial	Sequ	ence	: Th	ır (AC	T) 5G	FP			
	<220> <221> <222>	CD:		732)													
25	<400> atg a Met T	act a	act														48
30	gtc c Val F																96
35	tct g Ser V	gtc : /al :	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
40	ctg a Leu I	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
	ctg (Leu \ 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
45	gac (Asp H	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
50	tat o	gtg Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	ggg Gly	aac Asn 110	tac Tyr	aag Lys	336
55	acc (cgc Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
60	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
ć F	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
65	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	ITE	528
70	gag Glu	gat Asp	gga Gly	tcc Ser	gtg Val	cag Gln	ctg	gcc Ala	gac Asp	cat His	tat Tyr	caa Gln	cag Gln	aac Asn	act Thr	cca	576

116 180 190 185 atc ggc gac ggc cct gtg ctc ctc cca gac aac cat tac ctg tcc acc 624 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 5 200 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 10 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag 720 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 235 15 ctg tac aag tga 732 Leu Tyr Lys <210> 106 20 <211> 243 <212> PRT <213> Artificial Sequence <400> 106 25 Met Thr Thr Thr Thr Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 30 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 35 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro
70 75 80 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 40 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 45 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 50 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 55

Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 60 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 65 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 70 Leu Tyr Lys

5	<210> 1 <211> 7 <212> D <213> A	32 NA	cial	Seq	uenc	e										
	<220> <223> D	escri	ptio	n of	Art	ific	ial	Sequ	ence	: Tr	p(TG	G) 5G	FP			
10	<220> <221> C <222> (732)													
15	<400> 1 atg tgg Met Trp 1	tgg														48
20	gtc cca Val Pro															96
25	tct gtc Ser Val															144
30	ctg aaa Leu Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
30	ctg gtc Leu Val 65	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
35	gac cat Asp His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	G] À dàc	288
40	tat gtg Tyr Val	cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 110	tac Tyr	aag Lys	336
45	acc cgc Thr Arg	gct Ala 115	gaa Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
.	gag cto Glu Leu 130	Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
50	aag cto Lys Led 145	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
55	aag caa Lys Gli	a aag n Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
60	gag gat Glu As _l	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	Thr	cca Pro	576
65	atc gg	gac y Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	Leu	tco Ser	acc Thr	624
7.0	cag tc Gln Se 21	r Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	Pro	aac Asn	gaa Glu	ı aag ı Lys	aga Arg 220	Asp	cac His	ato Met	gtc Val	672
70	ctg ct	g gag	ttt	gtg	acc	gct	gct	ggg	ato	aca	cat	ggc	: atç	g gad	gag	720

.)

The second of th

Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 230 235 ctg tac aag tga 732 5 Leu Tyr Lys <210> 108 <211> 243 10 <212> PRT <213> Artificial Sequence <400> 108 Met Trp Trp Trp Trp Ser Lys Gly Glu Glu Leu Phe Thr Gly Val
1 5 10 15 15 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 25 30Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 4520 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 25 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 30 Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 105 35 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 40 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 150 155 160 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 45 170 165 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 50 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 55 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 60 <210> 109 <211> 732 <212> DNA 65 <213> Artificial Sequence <223> Description of Artificial Sequence: Tyr(TAT)5GFP 70 <220> <221> CDS

<222> (1)..(732)

5)> 10 tat Tyr	tat	tat Tyr	tat Tyr 5	tat Tyr	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	.48
10	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] À ààà	cac His 30	aaa Lys	ttt Phe	96
15	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
13			ttc Phe														192
20			act Thr														240
25	gac Asp		atg Met	_	_		-			-	-	_	_				288
30			cag Gln		_						_	-				-	336
2.5			gct Ala 115														384
35	gag Glu	ctg Leu 130	aag Lys	ggc Gly	att Ile	gac Asp	ttt Phe 135	aag Lys	gag Glu	gat Asp	gga Gly	aac Asn 140	att Ile	ctc Leu	ggc Gly	cac His	432
40	aag Lys 145	ctg Leu	gaa Glu	tac Tyr	aac Asn	tat Tyr 150	aac Asn	tcc Ser	cac His	aat Asn	gtg Val 155	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 160	480
45	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
50	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
55	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
55	cag Gln	tct Ser 210	Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	Asp	cac His	atg Met	gtc Val	672
60	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	Gly	atc Ile	aca Thr 235	His	ggc Gly	atg Met	gac Asp	gag Glu 240	720
65	_		aag Lys	-													732
70	<21 <21	0> 1 1> 2 2> P 3> A	43	icia	ıl Se	quen	ce										

`;

r)> 11 Tyr	lO Tyr	Tyr	Tyr 5	Tyr	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
5	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
10	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
15	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
20	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
20	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110	Tyr	Lys	
25	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
30	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
35	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn -	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
JJ	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
40	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
45	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
50	Leu	Tyr	Lys														
	<21 <21	0> 1 1> 7 2> D 3> A	32	icia	l Se	quen	ce										
55	<22 <22	0> 3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: V	al(G	TA) 5	GFP			
60		1> C	DS 1)	(732)												
65	ato	Val	ata	gta Val	gta Val	. Val	ago Ser	aag Lys	: GJÀ i ààc	gag Glu	ı Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
70	gto Val	cca Pro	att Ile	ctc Leu 20	. Val	gaa Glu	cto Lev	g gat 1 Asp	ggc Gl _y 25	/ Asp	gto Val	g aat . Asn	. Gly	cac His	з гуз	ttt Phe	96

ς,

	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
5	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
10	ctg Leu 65																240
15	gac Asp	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
20											gat Asp						336
	acc Thr										acc Thr						384
25	gag Glu										gga Gly						432
30	aag Lys 145										gtg Val 155						480
35 ⁻	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 165	atc Ile	aag Lys	gtc Val	aac Asn	ttc Phe 170	aag Lys	atc Ile	aga Arg	cac His	aac Asn 175	att Ile	528
40	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
45	cag Gln	tct Ser 210	gcc Ala	ctg Leu	tct Ser	aaa Lys	gat Asp 215	ccc Pro	aac Asn	gaa Glu	aag Lys	aga Arg 220	gac Asp	cac His	atg Met	gtc Val	672
50	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	Ala	gct Ala	G] À ààà	atc Ile	aca Thr 235	cat His	ggc	atg Met	gac Asp	gag Glu 240	720
55	_	tac Tyr	aag Lys	tga													732
60	<21:	0> 1 1> 2 2> P 3> A	43 RT	icia	l Se	quen	ıce							-			
65	<40 Met 1	0> 1 Val	12 Val	Val	Val 5		Ser	Lys	Gly	Glu 10		Leu	Phe	Thr	Gly 15	Val	
0.5	Val	Pro	Ile	Leu 20		Glu	. Leu	Asp	Gly 25		Val	Asn	Gly	His	Lys	Phe	
70	Ser	Val	Ser 35		Glu	Gly	Glu	Gly 40		Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	

;

 $(x_{i+1}, x_{i+1}, x_{i+1},$

the control of the co

	Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 60
5	Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80
	Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 85 90 95
10	Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 100 105 110
1 F	Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 115 120 125
15	Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 130 135 140
20	Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 145 150 155 160
	Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 175
25	Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 180 185 190
	Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 195 200 205
30	Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 210 215 220
35	Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 225 230 235 240
•	Leu Tyr Lys
40	<210> 113 <211> 732 <212> DNA <213> Artificial Sequence
45	<220> <223> Description of Artificial Sequence: Val(GTC)5GFP
50	<220> <221> CDS <222> (1)(732)
55	<400> 113 atg gtc gtc gtc gtc agc aag ggc gag gaa ctg ttc act ggc gtg Met Val Val Val Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val 1 5 10 15
	gtc cca att ctc gtg gaa ctg gat ggc gat gtg aat ggg cac aaa ttt 96 Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn_Gly His Lys Phe 20 25 30
60	tct gtc agc gga gag ggt gaa ggt gat gcc aca tac gga aag ctc acc 144 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 40 45
65	ctg aaa ttc atc tgc acc act gga aag ctc cct gtg cca tgg cca aca 192 Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 55 60
70	ctg gtc act acc ttc tct tat ggc gtg cag tgc ttt tcc aga tac cca 240 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80

5			atg Met														288
			cag Gln														336
10			gct Ala 115														384
15			aag Lys														432
20			gaa Glu														480
25			aag Lys														528
			gga Gly														576
30	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
35	Gln	Ser 210	gcc Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	672
40	ctg Leu 225	ctg Leu	gag Glu	ttt Phe	gtg Val	acc Thr 230	gct Ala	gct Ala	ggg Gly	atc Ile	aca Thr 235	cat His	Gly ggc	atg Met	gac Asp	gag Glu 240	720
	-	tac Tyr	aag Lys	tga													732
45	<213	0> 1 1> 2 2> P	43 RT	• _ • _ ·	3 a-												
50	<40	0> 1	rtif: 14													3	
	1		Val		5					10					15		
55	Val	Pro	Ile	Leu 20		Glu	Leu	Asp	Gly 25		Val	Asn	Gly	His 30	Lys	Phe	
60	Ser	Val	Ser 35		Glu	Gly	Glu	Gly 40		Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
60	Leu	Lys 50		Ile	Cys	Thr	Thr 55		Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
65	Leu 65		Thr	Thr	Phe	Ser 70		Gly	Val	Gln	Cys 75	Phe	Ser	Arc	у Туг	Pro 80	
	Asp	His	Met	Lys	Gln 85		Asp	Phe	Phe	90	s Ser	Ala	Met	Pro	95 95	Gly	
70	Tyr	· Val	Gln	Glu 100		Thr	: Ile	Phe	Phe 105	Lys	a Asp	Asp	Gly	Asr 110	туі Э	r Lys	

.)

	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
5	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
10	Lys 145	Leu	Glu	Tyr	Asn	Tyr 150	Asn	Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
15	Glu .	Asp	Gly	<u>Ser</u> 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
20	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
25	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
20	Leu	Tyr	Lys														
30	<210 <211 <212 <213	> 73 > DN	2 IA	cial	. Sec	quenc	ce										
35	<220 <223		scri	ptio	on of	Art	cific	cial	Sequ	ience	e: Va	al (GI	rG) 50	FP			
40	<220 <221 <222	> CI		(732)	ı	,											
	<400 atg Met 1	ata	qtq	gtg Val	gtg Val 5	gtg Val	agc Ser	aag Lys	ggc Gly	gag Glu 10	gaa Glu	ctg Leu	ttc Phe	act Thr	ggc Gly 15	gtg Val	48
45	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	Gly ggg	cac His 30	aaa Lys	ttt Phe	96
50	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
55	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
60	ctg Leu 65	gtc Val	act Thr	acc Thr	ttc Phe	tct Ser 70	Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80	240
	03																
c. -	aac	cat His	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	Gly	288
65	gac Asp	His	Met	Lys	Gln 85 aga Arg	His	Asp atc	Phe ttt	Phe ttc	Lys 90 aaa	Ser gat	Ala	Met ggg	Pro	95 tac Tyr	GIA	288 336

the first of the property of the property of

115 120 125 gag ctg aag ggc att gac ttt aag gag gat gga aac att ctc ggc cac 432 Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 5 aag ctg gaa tac aac tat aac tcc cac aat gtg tac atc atg gcc gac Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 480 10 aag caa aag aat ggc atc aag gtc aac ttc aag atc aga cac aac att 528 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 165 170 15 gag gat gga tcc gtg cag ctg gcc gac cat tat caa cag aac act cca 576 Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro ate gge gae gge eet gtg ete ete eea gae aae eat tae etg tee aee 624 20 Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr 200 cag tot goo otg tot aaa gat ooc aac gaa aag aga gac cac atg gto 672 Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 25 215 ctg ctg gag ttt gtg acc gct gct ggg atc aca cat ggc atg gac gag 720 Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu 30 732 ctg tac aag tga Leu Tyr Lys 35 <210> 116 <211> 243 <212> PRT <213> Artificial Sequence 40 <400> 116 Met Val Val Val Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 45 25 Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 50 Leu Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro 65 70 75 80 55 Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 60 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 65 135 Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 70 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile

165 170 175

					165					170					175		
5	Glu	Asp	Gly	Ser 180	Val	Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	Asn 190	Thr	Pro	
3	Ile	Gly	Asp 195	Gly	Pro	Val	Leu	Leu 200	Pro	Asp	Asn	His	Tyr 205	Leu	Ser	Thr	
10	Gln	Ser 210	Ala	Leu	Ser	Lys	Asp 215	Pro	Asn	Glu	Lys	Arg 220	Asp	His	Met	Val	
	Leu 225	Leu	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
15	Leu	Tyr	Lys														-
20	<212 <212	0> 1 l> 7 2> D 3> A	32	cial	. Sec	quenc	:e										
25	<220 <220		escri	iptic	on of	Art	ific	cial	Sequ	ence	e: Va	ıl (GI	T) 50	FP			
		1> C	DS 1)	(732)													
30	atg		17 gtt Val														48
35	gtc Val	cca Pro	att Ile	ctc Leu 20	gtg Val	gaa Glu	ctg Leu	gat Asp	ggc Gly 25	gat Asp	gtg Val	aat Asn	G] À ààà	cac His 30	aaa Lys	ttt Phe	96
40	tct Ser	gtc Val	agc Ser 35	gga Gly	gag Glu	ggt Gly	gaa Glu	ggt Gly 40	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 45	aag Lys	ctc Leu	acc Thr	144
45	ctg Leu	aaa Lys 50	ttc Phe	atc Ile	tgc Cys	acc Thr	act Thr 55	gga Gly	aag Lys	ctc Leu	cct Pro	gtg Val 60	cca Pro	tgg Trp	cca Pro	aca Thr	192
F.O.	ctg Leu 65	Val	act Thr	acc Thr	ttc Phe	tct Ser 70	tat Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 75	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 80 ·	240
50	gac Asp	cat	atg Met	aag Lys	cag Gln 85	cat His	gac Asp	ttt Phe	ttc Phe	aag Lys 90	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 95	ggc Gly	288
55	tat Tyr	gto Val	g cag Gln	gag Glu 100	aga Arg	acc Thr	atc Ile	ttt Phe	ttc Phe 105	aaa Lys	gat Asp	gac Asp	GJ À ààà	aac Asn 110	tac Tyr	aag Lys	336
60	acc Thr	cgo Aro	g gct g Ala 115	Glu	gtc Val	aag Lys	ttc Phe	gaa Glu 120	Gly	gac Asp	acc Thr	ctg Leu	gtg Val 125	aat Asn	aga Arg	atc Ile	384
65	Glu	130		Gly	Ile	Asp	Phe 135	Lys	Glu	Asp	Gly	140	lle	Leu	. GIY	HIS	432
70	aaq Lys 145	Le	g gaa u Glu	tac Tyr	aac Asn	tat Tyr 150	Asn	tcc Ser	cac His	aat Asn	gtg Val 155	Tyr	ato	atg Met	gcc Ala	gac Asp 160	480
70	aaç	g ca	a aag	, aat	ggc	ato	aag	gto	aac	ttc	aag	ato	aga	cac	aac	att	528

	Lys	Gln	Lys	Asn	Gly 165	Ile	Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	Asn 175	Ile	
5	gag Glu	gat Asp	gga Gly	tcc Ser 180	gtg Val	cag Gln	ctg Leu	gcc Ala	gac Asp 185	cat His	tat Tyr	caa Gln	cag Gln	aac Asn 190	act Thr	cca Pro	576
10	atc Ile	ggc Gly	gac Asp 195	ggc Gly	cct Pro	gtg Val	ctc Leu	ctc Leu 200	cca Pro	gac Asp	aac Asn	cat His	tac Tyr 205	ctg Leu	tcc Ser	acc Thr	624
15":			gcc Ala														672
. •			gag Glu														720
20	_	tac Tyr	aag Lys	tga													732
25	<212 <212	0> 1: 1> 2: 2> PI 3> A:	43	cial	. Sec	quenc	:e										
30		0> 1: Val	18 Val	Val	Val 5	Val	Ser	Lys	Gly	Glu 10	Glu	Leu	Phe	Thr	Gly 15	Val	
25-	Val	Pro	Ile	Leu 20	Val	Glu	Leu	Asp	Gly 25	Asp	Val	Asn	Gly	His 30	Lys	Phe	
35 ⁻	Ser	Val	Ser 35	Gly	Glu	Gly	Glu	Gly 40	Asp	Ala	Thr	Tyr	Gly 45	Lys	Leu	Thr	
40	Leu	Lys 50	Phe	Ile	Cys	Thr	Thr 55	Gly	Lys	Leu	Pro	Val 60	Pro	Trp	Pro	Thr	
	Leu 65	Val	Thr	Thr	Phe	Ser 70	Tyr	Gly	Val	Gln	Cys 75	Phe	Ser	Arg	Tyr	Pro 80	
45	Asp	His	Met	Lys	Gln 85	His	Asp	Phe	Phe	Lys 90	Ser	Ala	Met	Pro	Glu 95	Gly	
50	Tyr	Val	Gln	Glu 100	Arg	Thr	Ile	Phe	Phe 105	Lys	Asp	Asp	Gly	Asn 110		Lys	
30	Thr	Arg	Ala 115	Glu	Val	Lys	Phe	Glu 120	Gly	Asp	Thr	Leu	Val 125	Asn	Arg	Ile	
55	Glu	Leu 130	Lys	Gly	Ile	Asp	Phe 135		Glu	Asp	Gly	Asn 140	Ile	Leu	Gly	His	
	Lys 145		Glu	Tyr	Asn	Tyr 150		Ser	His	Asn	Val 155	Tyr	Ile	Met	Ala	Asp 160	
60	Lys	Gln	Lys	Asn	Gly 165		Lys	Val	Asn	Phe 170	Lys	Ile	Arg	His	175	Ile	
c E	Glu	ı Asp	Gly	Ser 180		Gln	Leu	Ala	Asp 185	His	Tyr	Gln	Gln	190	n Thr	Pro	
65	Ile	e Gly	/ Asp 195		Pro	Val	Leu	Leu 200		Asp	Asn	His	Tyr 205	Leu	ı Sei	Thr	
70	Glr	1 Sei 210		Leu	Ser	Lys	Asp 215		Asn	Glu	ı Lys	220	y Asp	His	s Met	: Val	

					•											
·	Leu Leu 225	Glu	Phe	Val	Thr 230	Ala	Ala	Gly	Ile	Thr 235	His	Gly	Met	Asp	Glu 240	
5	Leu Tyr	Lys														
10	<210> 1 <211> 7 <212> D <213> A	17 NA	cial	Seq	uenc	e										
	<220> <223> D	escri ontro		n of	Art	ific	ial	Sequ	ence	: GF	P hu	mani	zed			
15	<220> <221> C <222> (717)						•			•				
20	<400> 1 atg agg Met Ser 1	aag														48
25	gaa ctg Glu Leu	gat Asp	ggc Gly 20	gat Asp	gtg Val	aat Asn	Gly ggg	cac His 25	aaa Lys	ttt Phe	tct Ser	gtc Val	agc Ser 30	gga Gly	gag Glu	96
30	ggt gaa Gly Glu	ggt Gly 35	gat Asp	gcc Ala	aca Thr	tac Tyr	gga Gly 40	aag Lys	ctc Leu	acc Thr	ctg Leu	aaa Lys 45	ttc Phe	atc Ile	tgc Cys	144
35	acc act Thr Thr 50	Gly	aag Lys "	ctc Leu	cct Pro	gtg Val 55	cca Pro	tgg Trp	cca Pro	aca Thr	ctg Leu 60	gtc Val	act Thr	acc Thr	ttc Phe	192
40	tct tat Ser Tyr 65	ggc	gtg Val	cag Gln	tgc Cys 70	ttt Phe	tcc Ser	aga Arg	tac Tyr	cca Pro 75	gac Asp	cat His	atg Met	aag Lys	cag Gln 80	240
40	cat gad His Asp	ttt Phe	ttc Phe	aag Lys 85	agc Ser	gcc Ala	atg Met	ccc Pro	gag Glu 90	ggc Gly	tat Tyr	gtg Val	cag Gln	gag Glu 95	aga Arg	288
45	acc ato	ttt Phe	ttc Phe 100	aaa Lys	gat Asp	gac Asp	G] À ààà	aac Asn 105	tac Tyr	aag Lys	acc Thr	cgc Arg	gct Ala 110	gaa Glu	gtc Val	336
50	aag tto Lys Pho	c.gaa e Glu 115	ggt Gly	gac Asp	acc Thr	ctg Leu	gtg Val 120	aat Asn	aga Arg	atc Ile	gag Glu	ctg Leu 125	aag Lys	ggc Gly	att Ile	384
55 .	gac tt Asp Pho	e Lys	gag Glu	gat Asp	gga Gly	aac Asn 135	att Ile	ctc Leu	Gly	cac His	aag Lys 140	ctg Leu	gaa Glu	tac Tyr	aac Asn	432
60	tat aa Tyr As: 145	c tcc n Ser	cac His	aat Asn	gtg Val 150	tac Tyr	atc Ile	atg Met	gcc Ala	gac Asp 155	aag Lys	caa Gln	aag Lys	aat Asn	ggc Gly 160	480
	atc aa Ile Ly	g gtc s Val	aac Asn	ttc Phe 165	aag Lys	atc Ile	aga Arg	cac His	aac Asn 170	Ile	gag Glu	gat Asp	gga Gly	tcc Ser 175	vai	528
65	cag ct Gln Le	g gcc u Ala	gac Asp 180	His	tat Tyr	caa Gln	cag Gln	aac Asn 185	Thr	cca Pro	atc Ile	ggc Gly	gac Asp 190) GTA	cct Pro	576
70	gtg ct Val Le	c ctc u Leu 195	Pro	gac Asp	aac Asn	cat His	tac Tyr 200	Leu	tcc Ser	acc Thr	cag Gln	tct Ser 205	· Ala	cto Lev	g tct 1 Ser	624

ς.																	672
3	acc Thr 225	gct Ala	gct Ala	Gly ggg	atc Ile	aca Thr 230	cat His	ggc Gly	atg Met	gac Asp	gag Glu 235	ctg Leu	tac Tyr	aag Lys	tga		717
10	<211 <212	.> 23 ?> PF	88 RT														
15	<213> Artificial Sequence																
				Gly	Glu 5	Glu	Leu	Phe	Thr	Gly 10	Val	Val	Pro	Ile	Leu 15	Val	
20	Glu	Leu	Asp	Gly 20	Asp	Val	Asn	Gly	His 25	Lys	Phe	Ser	Val	Ser 30	Gly	Glu	
25	Gly	Glu	Gly 35	Asp	Ala	Thr	Tyr	Gly 40	Lys	Leu	Thr	Leu	Lys 45	Phe	Ile	Суѕ	
23	Thr	Thr 50	Gly	Lys	Leu	Pro	Val 55	Pro	Trp	Pro	Thr	Leu 60	Val	Thr	Thr	Phe	
30	Ser 65	Tyr	Gly	Val	Gln	Cys 70	Phe	Ser	Arg	Tyr	Pro 75	Asp	His	Met	Lys	Gln 80	
	His	Asp	. Phe	Phe	Lys 85	Ser	Ala	Met	Pro	Glu 90	Gly	Tyr	Val	Gln	Glu 95	Arg	
35	Thr	Ile	Phe	Phe 100	Lys	Asp	Asp	Gly	Asn 105	Tyr	Lys	Thr	Arg	Ala 110	Glu	Val	
40	Lys	Phe	Glu 115	Gly	Asp	Thr	Leu	Val 120	Asn	Arg	Ile	Glu	Leu 125	Lys	Gly	Ile	
	_	130	_				135					140					
45	145					150					155					160	
		_			165					170					175		
50				180					185					190			•
55			195					200					205				
		210					215					220				Val	
60			Ala	Gly	Ile			Gly	Met	Asp	G1u 235	ьeu	тyr	ьys			
65	<21 <21	1> 5 2> D	4 NA	icia	l Se	quen	ıce										
70	<22 <22	3> D			on o	of Ar	tifi	cial	Seq	uenc	e: A	la(G	CA) 5	•			
	15 20 25 30 35 40 45 50 55	Lys 5 acc Thr 225 10 <210 <211 <212 <213 15 <400 Met 1 20 Glu Gly 25 Thr 30 65 His 35 Thr Lys 40 Asp 45 145 Ile 50 Gln Val 55 Lys 60 225 <21 <21 <21 <21 <21 <22 <22	Lys Asp 210 acc gct Thr Ala 225 10 <210 12 <211 23 <212 PF <213 An 15 <400 12 Met Ser 1 20 Glu Leu Gly Glu 25 Thr Thr 50 30 Ser Tyr 65 His Asp 35 Thr Ile Lys Phe 40 Asp Phe 130 45 145 Ile Lys 50 Gln Leu Val Leu 55 Lys Asp 210 60 225 C210 1 <211 5 <212 E <213 An C220 C213 E <220 C213 E <220 C223 E 20 C223 E </20 C223 E </20 C224 E </20 C225 E </2</td <td>Lys Asp Pro 210 acc gct gct Thr Ala Ala 225 10 <210> 120 <211> 238 <212> PRT <213> Artifi <400> 120 Met Ser Lys 1 20 Glu Leu Asp Gly Glu Gly 35 Thr Thr Gly 50 Ser Tyr Gly 65 His Asp Phe Lys Phe Glu 115 Asp Phe Lys 130 40 Asp Phe Lys 130 Tyr Asn Ser 145 Ile Lys Val 50 Gln Leu Ala Val Leu Leu 195 Lys Asp Pro 210 Thr Ala Ala 225 C210> 121 <211> 54 <212> DNA <213> Artifi <220> <223> Descr</td> <td>Lys Asp Pro Asn 210 acc gct gct ggg Thr Ala Ala Gly 225 10 <pre></pre></td> <td>Lys Asp Pro Asn Glu 210 acc gct gct ggg atc Thr Ala Ala Gly Ile 225 10 <210> 120 <211> 238 <212> PRT <213> Artificial Sec <400> 120 Met Ser Lys Gly Glu 1 20 Gly Glu Gly Asp Ala 35 Thr Thr Gly Lys Leu 50 30 Ser Tyr Gly Val Gln 65 His Asp Phe Phe Lys 85 35 Thr Ile Phe Phe Lys 85 35 Thr Ile Phe Phe Lys 100 Lys Phe Glu Gly Asp 115 40 Asp Phe Lys Glu Asp 130 45 Tyr Asn Ser His Asn 145 Ile Lys Val Asn Phe 165 50 Gln Leu Ala Asp His 180 Val Leu Leu Pro Asp 195 Lys Asp Pro Asn Glu 210 Thr Ala Ala Gly Ile 225 <220> <220> <220> C210> 121 <211> 54 <212> DNA <213> Artificial Sec <220> <220> C223> Description of</td> <td>Lys Asp Pro Asn Glu Lys 210 acc gct gct ggg atc aca Thr Ala Ala Gly Ile Thr 225 10 <pre></pre></td> <td>Lys Asp Pro Asn Glu Lys Arg 210 acc gct gct ggg atc aca cat Thr Ala Ala Gly Ile Thr His 225 10 <pre></pre></td> <td>Lys Asp Pro Asn Glu Lys Arg Asp 210 acc gct gct ggg atc aca cat ggc Thr Ala Ala Gly Ile Thr His Gly 225 10 <pre></pre></td> <td>Lys Asp Pro Asn Glu Lys Arg Asp His 210 acc gct gct ggg atc aca cat ggc atg Thr Ala Ala Gly Ile Thr His Gly Met 225 10 <pre></pre></td> <td>Lys Asp Pro Asn Glu Lys Arg Asp His Met 210 acc gct gct ggg atc ara cat ggc atg gac Thr Ala Ala Gly Ile Thr His Gly Met Asp 225 10 <pre></pre></td> <td>Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 210 210 210 210 211 238 2212 PRT 2213 Artificial Sequence 2400> 120 211 238 2212> PRT 2213 Artificial Sequence 2400> 120 211 20 212 238 2212> PRT 213 Artificial Sequence 2400> 120 210 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 20 21 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 30 30 30 30 30 30 31 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 31 31 31 31 32 32 33 33 34 35 36 37 38 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30</td> <td>Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 210 acc gct gct ggg atc aca cat ggc atg gac gag ctg Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu 225 10 <pre></pre></td> <td> Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 210 </td> <td>Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu 210 acc gct gct ggg atc aca cat ggc atg gac gag ctg tac aag Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 10 <pre></pre></td> <td> Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 acc gct gct ggg atc aca cat ggc atg gac gag ctg tac aag tga</td> <td>acc gct gct ggt ggt aca aca cat ggc atg ac gas ctg tac aag tg acc gct gct gct ggt ags acc acat ggc atg gct gas cag ctg tac aag tga 231 her Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 232 235 leu Tyr Lys 238 4212 PRT 4213 Artificial Sequence 4400 120</td>	Lys Asp Pro 210 acc gct gct Thr Ala Ala 225 10 <210> 120 <211> 238 <212> PRT <213> Artifi <400> 120 Met Ser Lys 1 20 Glu Leu Asp Gly Glu Gly 35 Thr Thr Gly 50 Ser Tyr Gly 65 His Asp Phe Lys Phe Glu 115 Asp Phe Lys 130 40 Asp Phe Lys 130 Tyr Asn Ser 145 Ile Lys Val 50 Gln Leu Ala Val Leu Leu 195 Lys Asp Pro 210 Thr Ala Ala 225 C210> 121 <211> 54 <212> DNA <213> Artifi <220> <223> Descr	Lys Asp Pro Asn 210 acc gct gct ggg Thr Ala Ala Gly 225 10 <pre></pre>	Lys Asp Pro Asn Glu 210 acc gct gct ggg atc Thr Ala Ala Gly Ile 225 10 <210> 120 <211> 238 <212> PRT <213> Artificial Sec <400> 120 Met Ser Lys Gly Glu 1 20 Gly Glu Gly Asp Ala 35 Thr Thr Gly Lys Leu 50 30 Ser Tyr Gly Val Gln 65 His Asp Phe Phe Lys 85 35 Thr Ile Phe Phe Lys 85 35 Thr Ile Phe Phe Lys 100 Lys Phe Glu Gly Asp 115 40 Asp Phe Lys Glu Asp 130 45 Tyr Asn Ser His Asn 145 Ile Lys Val Asn Phe 165 50 Gln Leu Ala Asp His 180 Val Leu Leu Pro Asp 195 Lys Asp Pro Asn Glu 210 Thr Ala Ala Gly Ile 225 <220> <220> <220> C210> 121 <211> 54 <212> DNA <213> Artificial Sec <220> <220> C223> Description of	Lys Asp Pro Asn Glu Lys 210 acc gct gct ggg atc aca Thr Ala Ala Gly Ile Thr 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg 210 acc gct gct ggg atc aca cat Thr Ala Ala Gly Ile Thr His 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg Asp 210 acc gct gct ggg atc aca cat ggc Thr Ala Ala Gly Ile Thr His Gly 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg Asp His 210 acc gct gct ggg atc aca cat ggc atg Thr Ala Ala Gly Ile Thr His Gly Met 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg Asp His Met 210 acc gct gct ggg atc ara cat ggc atg gac Thr Ala Ala Gly Ile Thr His Gly Met Asp 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 210 210 210 210 211 238 2212 PRT 2213 Artificial Sequence 2400> 120 211 238 2212> PRT 2213 Artificial Sequence 2400> 120 211 20 212 238 2212> PRT 213 Artificial Sequence 2400> 120 210 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 20 20 21 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 35 30 30 30 30 30 30 31 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 31 31 31 31 32 32 33 33 34 35 36 37 38 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 210 acc gct gct ggg atc aca cat ggc atg gac gag ctg Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 210	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu 210 acc gct gct ggg atc aca cat ggc atg gac gag ctg tac aag Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 10 <pre></pre>	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 acc gct gct ggg atc aca cat ggc atg gac gag ctg tac aag tga	acc gct gct ggt ggt aca aca cat ggc atg ac gas ctg tac aag tg acc gct gct gct ggt ags acc acat ggc atg gct gas cag ctg tac aag tga 231 her Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 232 235 leu Tyr Lys 238 4212 PRT 4213 Artificial Sequence 4400 120

	<400> 121 cggggtacca tggcagcagc agcagca <u>agc</u> aagggcgagg aactgttcac tggc	54
5	<210> 122 <211> 54 <212> DNA <213> Artificial Sequence	
10	<220> <223> Description of Artificial Sequence: Ala(GCC)5 primer	
15	<400> 122 cggggtacca tggccgccgc cgccgcc <u>agc</u> aagggcgagg aactgttcac tggc	54
20	<210> 123 <211> 54 <212> DNA <213> Artificial Sequence	
25	<220> <223> Description of Artificial Sequence: Ala(GCG)5 primer	
20	<400> 123 cggggtacca tggcggcggc ggcggcgagc aagggcgagg aactgttcac tggc	54
30	<210> 124 <211> 54 <212> DNA <213> Artificial Sequence	
35	<220> <223> Description of Artificial Sequence: Ala(GCT)5 primer	
40	<400> 124 cggggtacca tggctgctgc tgctgct <u>agc</u> aagggcgagg aactgttcac tggc	54
45	<210> 125 <211> 54 <212> DNA <213> Artificial Sequence	
50	<220> <223> Description of Artificial Sequence: Arg(AGA)5 primer	
55	<400> 125 cggggtacca tgagaagaag aagaaga <u>agc</u> aagggcgagg aactgttcac tggc	54
60	<210> 126 <211> 54 <212> DNA <213> Artificial Sequence	
65	<220> <223> Description of Artificial Sequence: Arg(AGG)5 primer	
0.3	<400> 126 cggggtacca tgaggaggag gaggaggagc aagggcgagg aactgttcac tggc	54
70	<210> 127 <211> 54	

Service and the service of the servi

<212> DNA <213> Artificial Sequence <220> 5 <223> Description of Artificial Sequence: Arg(CGA)5 <400> 127 cggggtacca tgcgacgacg acgacgaagc aagggcgagg aactgttcac tggc 54 10 <210> 128 <211> 54 <212> DNA 1.5 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Arg(CGC)5 primer 20 <400> 128 54 cggggtacca tgcgccgccg ccgccgc<u>agc</u> aagggcgagg aactgttcac tggc 25 <210> 129 <211> 54 <212> DNA <213> Artificial Sequence 30 <220> <223> Description of Artificial Sequence: Arg(CGG)5 primer <400> 129 35 54 cggggtacca tgcggcggcg gcggcggagc aagggcgagg aactgttcac tggc <210> 130 <211> 54 40 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: arg(CGT)5 45 primer <400> 130 cggggtacca tgcgtcgtcg tcgtcgtagc aagggcgagg aactgttcac tggc 54 50 <210> 131 <211> 54 <212> DNA <213> Artificial Sequence 55 <220> <223> Description of Artificial Sequence: Asn(AAC)5 primer 60 <400> 131 cggggtacca tgaacaacaa caacaac<u>agc</u> aagggcgagg aactgttcac tggc <210> 132 65 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Asn(AAT)5 70 primer

-)

<400> 132 cggggtacca tgaataataa taataat<u>agc</u> aagggcgagg aactgttcac tggc 54 5 <210> 133 <211> 54 <212> DNA <213> Artificial Sequence 10 <220> <223> Description of Artificial Sequence: Asp(GAC)5 primer 15 <400> 133 54 cggggtacca tggacgacga cgacgac<u>agc</u> aagggcgagg aactgttcac tggc <210> 134 20 <211> 54 <212> DNA <213> Artificial Sequence <220> 25 <223> Description of Artificial Sequence: Asp(GAT)5 primer <400> 134 54 cggggtacca tggatgatga tgatgat<u>agc</u> aagggcgagg aactgttcac tggc 30 <210> 135 <211> 54 <212> DNA <213> Artificial Sequence 35 <220> <223> Description of Artificial Sequence: Cys(TGC)5 primer 40 <400> 135 54 cggggtacca tgtgctgctg ctgctgcagc aagggcgagg aactgttcac tggc 45 <210> 136 <211> 54 <212> DNA <213> Artificial Sequence 50 <220> <223> Description of Artificial Sequence: Cys(TGT)5 primer <400> 136 54 cggggtacca tgtgttgttg ttgttgt<u>agc</u> aagggcgagg aactgttcac tggc 55 <210> 137 <211> 54 60 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Gln(CAA)5 65 primer 54 cggggtacca tgcaacaaca acaacaa<u>agc</u> aagggcgagg aactgttcac tggc 70 <210> 138

	<211> 54 <212> DNA <213> Artificial Sequence	
5	<220> <223> Description of Artificial Sequence: Gln(CAG)5 primer	
10	<400> 138 cggggtacca tgcagcagcagagc aagggcgagg aactgttcac tggc	54
15	<210> 139 <211> 54 <212> DNA <213> Artificial Sequence	
20	<220> <223> Description of Artificial Sequence: Glu(GAA)5 primer	
	<400> 139 cggggtacca tggaagaaga agaagaa <u>agc</u> aagggcgagg aactgttcac tggc	54
25	<210> 140 <211> 54 <212> DNA <213> Artificial Sequence	
30	<220> <223> Description of Artificial Sequence: Glu(GAG)5 primer	
35	<400> 140 cggggtacca tggaggagga ggaggaggagc aagggggagg aactgttcac tggc	54
40	<210> 141 <211> 54 <212> DNA <213> Artificial Sequence	
45	<220> <223> Description of Artificial Sequence: Gly(GGA)5 primer	
50	<400> 141 cggggtacca tgggaggagg aggagga <u>agc</u> aagggcgagg aactgttcac tggc	54
55	<210> 142 <211> 54 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Gly(GGC)5 primer	
60	<400> 142 cggggtacca tgggcggcgg cggcggcagc aagggcgagg aactgttcac tggc	54
65	<210> 143 <211> 54 <212> DNA <213> Artificial Sequence	
70	<220> <223> Description of Artificial Sequence: Gly(GGG)5	

primer

5	<400> 143 cggggtacca tgggggggg gggggggagc aagggcgagg aactgttcac tggc	54
10	<210> 144 <211> 54 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: Gly(GGT)5 primer <400> 144	
20	<pre><ggggtacca <210="" aactgttcac="" aagggcgagg="" tggc="" tgggtggtgg="" tggtggtagc=""> 145 <211> 54 <212> DNA</ggggtacca></pre>	54
25	<213> Artificial Sequence <220> <223> Description of Artificial Sequence: His(CAC)5 primer	
30	<400> 145 cggggtacca tgcaccacca ccaccac <u>agc</u> aagggcgagg aactgttcac tggc	54
35	<210> 146 <211> 54 <212> DNA <213> Artificial Sequence	
40	<220> <223> Description of Artificial Sequence: His(CAT)5 primer	
45	<400> 146 cggggtacca tgcatcatca tcatcat <u>agc</u> aagggcgagg aactgttcac tggc	54
	<210> 147 <211> 54 <212> DNA <213> Artificial Sequence	
50	<220> <223> Description of Artificial Sequence: Ile(ATA)5 primer	
55	<400> 147 cggggtacca tgataataat aataata <u>agc</u> aagggcgagg aactgttcac tggc	54
60	<210> 148 <211> 54 <212> DNA <213> Artificial Sequence	
65	<220> <223> Description of Artificial Sequence: Ile(ATC)5 primer	
70	<400> 148 cggggtacca tgatcatcat catcatc <u>agc</u> aagggcgagg aactgttcac tggc	54

1,3

والراجا والمراوية والمتقافة والمسارمون

<210> 149 <211> 54 <212> DNA <213> Artificial Sequence 5 <220> <223> Description of Artificial Sequence: Ile(ATT)5 10 <400> 149 cggggtacca tgattattat tattattagc aagggcgagg aactgttcac tggc 54 <210> 150 15 <211> 54 <212> DNA <213> Artificial Sequence <220> 20 <223> Description of Artificial Sequence: Leu(CTA)5 primer <400> 150 cggggtacca tgctactact actactaagc aagggcgagg aactgttcac tggc 54 25 <210> 151 <211> 54 <212> DNA 30 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Leu(CTC)5 primer 35 <400> 151 cggggtacca tgctcctcct cctcctcagc aagggcgagg aactgttcac tggc 54 40 <210> 152 <211> 54 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: Leu(CTG)5 primer <400> 152 cggggtacca tgctgctgct gctgctgagc aagggcgagg aactgttcac tggc 50 <210> 153 <211> 54 55 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Leu(CTT)5 60 primer <400> 153 cggggtacca tgcttcttct tcttctt<u>agc</u> aagggcgagg aactgttcac tggc 54 65 <210> 154 <211> 54 <212> DNA <213> Artificial Sequence 70 <220>

	<223> Description of Artificial Sequence: Leu(TTA)5 primer	
5	<400> 154 cggggtacca tgttattatt attatta <u>agc</u> aagggcgagg aactgttcac tggc 5	4
10	<210> 155 <211> 54 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: Leu(TTG)5 primer	
	<400> 155 cggggtacca tgttgttgtt gttgttg <u>agc</u> aagggcgagg aactgttcac tggc 5	4
20	<210> 156 <211> 54 <212> DNA <213> Artificial Sequence	
25	<220> <223> Description of Artificial Sequence: Lys(AAA)5 primer	
30	<400> 156 cggggtacca tgaaaaaaaa aaaaaaa <u>agc</u> aagggcgagg aactgttcac tggc 5	54
35	<210> 157 <211> 54 <212> DNA <213> Artificial Sequence	
40	<220> <223> Description of Artificial Sequence: Lys(AAG)5 primer	
45	<400> 157 cggggtacca tgaagaagaa gaagaag <u>agc</u> aagggcgagg aactgttcac tggc	5 4
50	<210> 158 <211> 54 <212> DNA <213> Artificial Sequence	
55	<220> <223> Description of Artificial Sequence: Phe(CTT)5 primer <400> 158	
	cggggtacca tgcttcttct tcttctt <u>agc</u> aagggcgagg aactgttcac tggc	54
60	<210> 159 <211> 54 <212> DNA <213> Artificial Sequence	
65	<220> <223> Description of Artificial Sequence: Phe(TTC)5 primer	
70	<400> 159 cggggtacca tgttcttctt cttcttcagc aagggcgagg aactgttcac tggc	5 4

·

```
<210> 160
        <211> 54
        <212> DNA
 5
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Pro(CCC)5
              primer
10
        <400> 160
        cggggtacca tgccccccc ccccccagc aagggcgagg aactgttcac tggc
                                                                             54
15
        <210> 161
        <211> 54
        <212> DNA
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: Pro(CCG)5
              primer
        <400> 161
25
                                                                             54
        cggggtacca tgccgccgcc gccgccgagc aagggcgagg aactgttcac tggc
        <210> 162
        <211> 54
30
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Pro(CCT)5
35
              primer
        <400> 162
        cggggtacca tgcctcctcc tcctcctagc aagggcgagg aactgttcac tggc
                                                                             54
40
        <210> 163
        <211> 54
        <212> DNA
        <213> Artificial Sequence
45
        <220>
        <223> Description of Artificial Sequence: Pro(CGA)5
              primer
50
        <400> 163
        cggggtacca tgcgacgacg acgacga<u>agc</u> aagggcgagg aactgttcac tggc
                                                                             54
        <210> 164
        <211> 54
<212> DNA
55
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Ser(AGC)5
60
               primer
         <400> 164
        cggggtacca tgagcagcag cagcagc<u>agc</u> aagggcgagg aactgttcac tggc
 65
         <210> 165
         <211> 54
         <212> DNA
<213> Artificial Sequence
 70
```

	<220> <223> Description of Artificial Sequence: Ser(AGT)5 primer	
5	<400> 165 cggggtacca tgagtagtag tagtagt <u>agc</u> aagggcgagg aactgttcac tggc	54
10	<210> 166 <211> 54 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: Ser(TCA)5 primer	
20	<400> 166 cggggtacca tgtcatcatc atcatca <u>agc</u> aagggcgagg aactgttcac tggc	54
25 ·	<210> 167 <211> 54 <212> DNA <213> Artificial Sequence	
30	<220> <223> Description of Artificial Sequence: Ser(TCC)5 primer	
50	<400> 167 cggggtacca tgtcctcctc ctcctcc <u>agc</u> aagggcgagg aactgttcac tggc	54
35	<210> 168 <211> 54 <212> DNA <213> Artificial Sequence	
40	<220> <223> Description of Artificial Sequence: Ser(TCG)5 primer	
45	<400> 168 cggggtacca tgtcgtcgtc gtcgtcgagc aagggcgagg aactgttcac tggc	54
50	<210> 169 <211> 54 <212> DNA <213> Artificial Sequence	
55	<220> <223> Description of Artificial Sequence: Ser(TCT)5 primer	
	<400> 169 cggggtacca tgtcttcttc ttcttct <u>agc</u> aagggcgagg aactgttcac tggc	54
60	<210> 170 <211> 54 <212> DNA	
65	<220> <220> <223> Description of Artificial Sequence: Thr(ACA)5 primer	
70	<400> 170 cggggtacca tgacaacaac aacaaca <u>agc</u> aagggcgagg aactgttcac tggc	5 4

........

```
<210> 171
        <211> 54
 5
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Thr(ACC)5
10
              primer
        <400> 171
        cggggtacca tgaccaccac caccacc<u>agc</u> aagggcgagg aactgttcac tggc
                                                                            54
15
        <210> 172
        <211> 54
        <212> DNA
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: Thr(ACG)5
              primer
25
        <400> 172
        cggggtacca tgacgacgac gacgacgagc aagggcgagg aactgttcac tggc
                                                                           54
        <210> 173
30
        <211> 54
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Thr(ACT)5
35
              primer
        <400> 173
                                                                            54
        cqqqqtacca tgactactac tactactagc aagggcgagg aactgttcac tggc
40
        <210> 174
        <211> 54
        <212> DNA
45
        <213> Artificial Sequence
        <220>
        <223> Description of Artificial Sequence: Trp(TGG)5
              primer
50
        <400> 174
        cggggtacca tgtggtggtg gtggtggagc aagggcgagg aactgttcac tggc
                                                                             54
55
        <210> 175
        <211> 54
         <212> DNA
         <213> Artificial Sequence
 60
         <220>
         <223> Description of Artificial Sequence: Tyr(TAT)5
               primer
         <400> 175
         cggggtacca tgtattatta ttattat<u>agc</u> aagggcgagg aactgttcac tggc
 65
         <210> 176
         <211> 54
 70
         <212> DNA
         <213> Artificial Sequence
```

The state of

54

.

4 <220> <223> Description of Artificial Sequence: Val(GTA)5 primer 5 <400> 176 cggggtacca tggtagtagt agtagtaagc aagggcgagg aactgttcac tggc 54 10 <210> 177 <211> 54 <212> DNA <213> Artificial Sequence 15 <220> <223> Description of Artificial Sequence: Val(GTC)5 primer <400> 177 20 54 cggggtacca tggtcgtcgt cgtcgtcagc aagggcgagg aactgttcac tggc <210> 178 <211> 54 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Val(GTG)5 30 primer <400> 178 cggggtacca tggtggtggt ggtggtgagc aagggcgagg aactgttcac tggc 35 <210> 179 <211> 54

<212> DNA <213> Artificial Sequence 40 <220> <223> Description of Artificial Sequence: Val(GTT)5 primer 45 <400> 179 54 cggggtacca tggttgttgt tgttgtt<u>agc</u> aagggcgagg aactgttcac tggc <210> 180 50 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: 3' 55 oligonucleotide common primer <400> 180 33 ccggaattct cacttgtaca ggtggtccat gcc