Digital Logic Design + Computer Architecture

Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

A Circuit that Remembers

- How do you remember things?
 - Memory
- Can we design a circuit which remembers?
 - A formal way to model this capability is called a state
 - So we will be modelling circuits to create a state.

A Circuit that Remembers

- Every digital logic you see in real life is sequential
 - Your processors that you going to see in the rest of the course
 - Your washing machine it remembers your setting and washes accordingly
 - Your elevator it remembers which floors to stop
 - Your ATM machine it remembers your choice and updates your account after despatching money

Sequential Circuits

Sequential Circuits

To generate the Y's: memory devices must be supplied with appropriate input values

- Characteristic table/functions: switching functions that describe the impact of x_i 's and y_j 's on the memory-element input
- Excitation table: its entries are the values of the memory-element inputs

Most widely used memory elements: flip-flops, which are made of latches

• Latch: remains in one state indefinitely until an input signals directs it to do otherwise

Latch: remains in one state indefinitely until an input signals directs it to do otherwise **Set-reset of** *SR* **latch**:

Characteristic table and excitation requirements:

y(t)	S(t)	R(t)	y(t+1)
0	0	0	0
0	0	1	0
0	1	1	?
0	1	0	1
1	1	0	1
1	1	1	?
1	0	1	0
1	0	0	1

-	Circuit	change	Required value	
	From:	To:	S	R
_	0	0	0	_
	0	1	1	0
	1	0	0	1
	1	1	_	0

$$RS = 0$$

$$y(t+1) = R'y(t) + S$$

Clocked SR latch: all state changes synchronized to clock pulses

• Restrictions placed on the length and frequency of clock pulses: so that the circuit changes state no more than once for each clock pulse

(a) Block diagram.

(b) Logic diagram.

Why is the (1,1) input forbidden?

y(t)	S(t)	R(t)	y(t+1)
0	0	0	0
0	0	1	0
0	1	1	?
0	1	0	1
1	1	0	1
1	1	1	?
1	0	1	0
1	0	0	1

$$\begin{array}{rcl} RS & = & 0 \\ y(t+1) & = & R'y(t) + S \end{array}$$

- 1. If R=S=1, Q and Q' will both settle to 1, which breaks our invariant that Q = Q'
- 2. If S and R transition back to 0 at the same time, Q and Q' begin to oscillate between 1 and 0 because their final values depend on each other (metastability)
 - This eventually settles depending on variation in the circuits

- A clock is a periodic signal that is used to keep time in sequential circuits.
- **Duty Cycle** is the ration of t_w/T_{period}
- We want to keep t_w small so that in the same clock pulse only a single computation is performed.
- We want to keep T_{period} sufficient so that there is enough time for the next input to be computed.

Value 1 applied to its input triggers the latch to change state

(a) Block diagram.

(b) Deriving the T latch from the clocked SR latch.

Excitations requirements:

Circuit	change	Required
From:	To:	value T
0	0	0
0	1	1
1	0	1
1	1	0

"Q" is basically "y"

Characteristic Table

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

$$y(t+1) = Ty'(t) + T'y(t)$$
$$= T \oplus y(t)$$

Memory Element: JK Latch

Unlike the SR latch, J = K = 1 is permitted: when it occurs, the latch acts like a trigger and switches to the

complement state

(a) Block diagram.

(b) Constructing the JK latch from the clocked SR latch.

Excitation requirements:

Circuit	change	Required value	
From:	To:	J	K
0	0	0	_
0	1	1	_
1	0	_	1
1	1	_	0

"Q" is basically "y"

Characteristic Table

JK I	<i>JK</i> Flip-Flop				
J	K	Q(t + 1)			
0	0	Q(t)	No change		
0	1	0	Reset		
1	0	1	Set		
1	1	Q'(t)	Complement		

Can you write the characteristic equation?

$$y(t+1) = Jy(t)' + K'y(t)$$

D Latch — The Latch of Your Life

The next state of the D latch is equal to its present excitation: y(t+1) = D(t)

D Flip-Flop

D	Q(t + 1))
0	0	Reset
1	1	Set

(a) Block diagram.

(b) Transforming the JK latch to the D latch.

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

How is Your Clock?

Clocked latch: changes state only in synchronization with the clock pulse and no more than once during each occurrence of the clock pulse

Duration of clock pulse: determined by circuit delays and signal propagation time through the latches

- Must be long enough to allow latch to change state, and
- Short enough so that the latch will not change state twice due to the same excitation

Excitation of a *JK* latch within a sequential circuit:

- Length of the clock pulse must allow the latch to generate the y's
- But should not be present when the values of the y's have propagated through the combinational circuit

How fast/slow should be the clock really?

But when does the flip-flop changes its state???

All in One

Delay to make sure all is well

Setup time, t_{su} , is the time period prior to the clock becoming active (edge or level) during which the flip-flop inputs must remain stable.

- Hold time, t_h , is the time after the clock becomes inactive during which the flip-flop inputs must remain stable.
- Setup time and hold time define a window of time during which the flip-flop inputs cannot change – quiescent interval.

More Delay

- Propagation delay, t_{pHL} and t_{pLH} , has the same meaning as in combinational circuit beware propagation delays usually will not be equal for all input to output pairs. There can be two propagation delays: $t_{C-Q}(clock \rightarrow Q delay)$ and $t_{D-Q}(data \rightarrow Q delay)$.
- For a level or pulse triggered latch:
 - Data input should remain stable till the clock becomes inactive.
 - Clock should remain active till the input change is propagated to Q output. That is, active period of the clock,

$$t_{\rm w}$$
 > max { $t_{\rm pLH}$, $t_{\rm pHL}$ }

The Triggering Dilemma

Master Slave Flip-Flop

At a given time, only one latch is alive (either master or slave)

Master Slave Flip-Flop

Master-slave flip-flop: a type of synchronous memory element that eliminates the timing problems by isolating its inputs from its outputs

Master-slave SR flip-flop:

Master-slave *JK* **flip-flop**: since master-slave *SR* flip-flop suffers from the problem that both its inputs cannot be 1, it can be converted to a *JK* flip-flip

Edge Triggered Flip-Flop

Positive (negative) edge-triggered D **flip-flip:** stores the value at the D input when the clock makes a 0 -> 1 (1 -> 0) transition

• Any change at the D input after the clock has made a transition does not have any effect on the value stored in the flip-flop

A negative edge-triggered *D* flip-flop:

- When the clock is high, the output of the bottommost (topmost) NOR gate is at D'(D), whereas the S-R inputs of the output latch are at 0, causing it to hold previous value
- When the clock goes low, the value from the bottommost (topmost) NOR gate gets transferred as D(D') to the S(R) input of the output latch
 - Thus, output latch stores the value of D
- If there is a change in the value of the *D* input after the clock has made its transition, the bottommost NOR gate attains value 0
 - However, this cannot change the SR inputs of the output latch

Registers: Your Main Sequential Element

- Used to store data
- Basically an array of D-flip-flops
- You can load data, reset it to zero, and shift it to left and right

Sequential circuit: its outputs a function of external inputs as well as stored information (aka. State)

Finite-state machine (FSM): abstract model to describe the synchronous sequential machines. It has finite memory.

Serial binary adder example: You are given a 1-bit adder. But you have to add n-bit numbers

- First, decide what to remember??
- Then decide how many bits to remember??

- Let A denote the state of the adder at t_i if the carry 0 is generated at t_{i-1}
- Let B denote the state of the adder at t_i if the carry 1 is generated at t_{i-1}

- Let A denote the state of the adder at t_i if the carry 0 is generated at t_{i-1}
- Let B denote the state of the adder at t_i if the carry 1 is generated at t_{i-1}

	t_5	t_4	t_3	t_2	t_1		
	0	1	1	0	0	=	X_1
+	0	1	1	1	0	=	X_2
	1	1	0	1	0	=	Z

		NS, z		
PS	$x_1x_2 = 00$	01	11	10
A	A, 0	A, 1	B, 0	A, 1
B	A, 1	B, 0	B, 1	B, 0

FSMs: whose past histories can affect their future behavior in only a finite number of ways

- **Serial adder**: its response to the signals at time *t* is only a function of these signals and the value of the carry at *t*-1
 - Thus, its input histories can be grouped into just two classes: those resulting in a 1 carry and those resulting in a 0 carry at *t*
- Thus, every finite-state machine contains a finite number of memory devices: which store the information regarding the past input history

Input variables: $\{x_1, x_2, ..., x_l\}$

Input configuration, symbol, pattern or vector: ordered l-tuple of 0's and 1's Input alphabet: set of n = 2l distinct input patterns

- Input alphabet: set of $p = 2^l$ distinct input patterns • Thus, input alphabet $I = \{I_1, I_2, ..., I_p\}$
 - Example: for two variables x_1 and x_2

$$-I = \{00, 01, 10, 11\}$$

Output variables: $\{z_1, z_2, ..., z_m\}$

Output configuration, symbol, pattern or vector: ordered m-tuple of 0's and 1's

Output alphabet: set of $q = 2^m$ distinct output patterns

• Thus, output alphabet $O = \{O_1, O_2, ..., O_q\}$

Main steps:

- 1. From a word description of the problem, form a state diagram or table
- 2. Select a state assignment and determine the type of memory elements
- 3. Derive transition and output tables
- 4. Derive an excitation table and obtain excitation and output functions from their respective tables
- 5. Draw a circuit diagram

One-input/one-output sequence detector: produces output value 1 every time sequence 0101 is detected, else 0

• Example: 010101 -> 000101

State diagram and state table:

	NS, z		
PS	x = 0	x = 1	
A	B,0	A, 0	
B	B, 0	C, 0	
C	D, 0	A, 0	
D	B, 0	C, 1	

One-input/one-output sequence detector: produces output value 1 every time sequence 0101 is detected, else 0

• Example: 010101 -> 000101

State diagram and state table:

	NS, z		
PS	x = 0	x = 1	
A	B, 0	A, 0	
B	B, 0	C, 0	
C	D, 0	A, 0	
D	B, 0	C, 1	

Transition and output tables:

	Y_1Y_2		2	z
y_1y_2	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	00	0	0
$D \rightarrow 10$	01	11	0	1

D Latch — The Latch of Your Life

The next state of the D latch is equal to its present excitation: y(t+1) = D(t)

D Flip-Flop

D	Q(t + 1))
0	0	Reset
1	1	Set

(a) Block diagram.

(b) Transforming the JK latch to the D latch.

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

- Let us use DFF as our state elements
- We need 2 DFFs as our state is 2 bit
- Now how to set the inputs of the DFFs??

	Y_1Y_2		Y_1Y_2 z		z
y_1y_2	x = 0	x = 1	x = 0	x = 1	
$A \rightarrow 00$	01	00	0	0	
$B \rightarrow 01$	01	11	0	0	
$C \rightarrow 11$	10	00	0	0	
$D \rightarrow 10$	01	11	0	1	

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

- Let us use DFF as our state elements
- We need 2 DFFs as our state is 2 bit
- Now how to set the inputs of the DFFs??

	Y_1Y_2		2	z
y_1y_2	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	00	0	0
$D \rightarrow 10$	01	11	0	1

D(`	Y1)	D(`	Y2)
x = 0	x = 1	x=0	x=1
0	0	1	0
0	1	1	1
1	0	0	0
0	1	1	1

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

	Y_1	Y_1Y_2		z
y_1y_2	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	00	0	0
$D \rightarrow 10$	01	11	0	1

D(`	Y1)	D(\	Y 2)
x = 0	x = 1	x=0	x=1
0	0	1	0
0	1	1	1
1	0	0	0
0	1	1	1

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

y_1y_2	0	1	1	
00	1			
01	1	1		
11				
10	1	1		
(c) Y ₂ map.				

	Y_1Y_2		2	z
y_1y_2	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	OO	0	0
$D \rightarrow 10$	01	11	0	1

D(Y1)		D(Y2)		
x = 0	x = 1	x=0	x=1	
0	0	1	0	
0	1	1	1	
1	0	0	0	
0	1	1	1	

Excitation Table

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

y_1y_2	0	1		
00	1			
01	1	1		
11				
10	1	1		
(c) Y ₂ map.				

	Y_1Y_2		2	z
y_1y_2	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	OO	0	0
$D \rightarrow 10$	01	11	0	1

D(D(Y1)		Y2)
x = 0	x = 1	x=0	x=1
0	0	1	0
0	1	1	1
1	0	0	0
0	1	1	1

Excitation Table

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

\ \ \ \				
y_1y_2	0	1		
00	1			
01	1	1		
11				
10	1	1		
(c) Y ₂ map.				

$z = xy_1y_2'$	
$Y_1 = x'y_1y_2 + xy_1'y_2 + xy_1$	y_2
$Y_2 = y_1 y_2' + x' y_1' + y_1' y_2$	

	Y_1Y_2		2	z
y_1y_2	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	OO	0	0
$D \rightarrow 10$	01	11	0	1

D(`	Y1)	D(Y2)		
x = 0	x = 1	x=0	x=1	
0	0	1	0	
0	1	1	1	
1	0	0	0	
0	1	1	1	

Excitation Table

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

$$z = xy_1y_2'$$

 $Y_1 = x'y_1y_2 + xy_1'y_2 + xy_1y_2'$
 $Y_2 = y_1y_2' + x'y_1' + y_1'y_2$

Logic Diagram

	Y_1Y_2		2	z
$y_{1}y_{2}$	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	11	0	0
$C \rightarrow 11$	10	00	0	0
$D \rightarrow 10$	01	11	0	1

D(`	Y1)	D(\	Y2)	
x = 0	x = 1	x=0	x=1	
0	0	1	0	
0	1	1	1	
1	0	0	0	
0	1	1	1	

Another state assignment:

	Y_1	Y_2	2	z
$y_{1}y_{2}$	x = 0	x = 1	x = 0	x = 1
$A \rightarrow 00$	01	00	0	0
$B \rightarrow 01$	01	10	0	0
$C \rightarrow 10$	11	00	0	0
$D \rightarrow 11$	01	10	0	1

$$z = xy_1y_2$$

 $Y_1 = x'y_1y_2' + xy_2$
 $Y_2 = x'$

Binary Counter

One-input/one-output modulo-8 binary counter: produces output value 1 for every eighth input 1 value

State diagram and state table:

	N	S	Out	tput
PS	x = 0	x = 1	x = 0	x = 1
S_0	S_0	S_1	0	0
S_1	S_1	S_2	0	0
S_2	S_2	S_3	0	0
S_3	S_3	S_4	0	0
S_4	S_4	S_5	0	0
S_5	S_5	S_6	0	0
S_6	S_6	S_7	0	0
S_7	S_7	S_0	0	1

Binary Counter

Transition and output tables:

Excitation table for T

Circuit	change	Required
From:	To:	value T
0	0	0
0	1	1
1	0	1
1	1	0

PS	NS		2	z		$T_3T_2T_1$	
$y_3y_2y_1$	x = 0	x = 1	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	000	001	
001	001	010	0	0	000	011	
010	010	011	0	0	000	001	
011	011	100	0	0	000	111	
100	100	101	0	0	000	001	
101	101	110	0	0	000	011	
110	110	111	0	0	000	001	
111	111	000	0	1	000	111	

Binary Counter with SR Flip Flops

Excitation table for *SR* flip-flops and logic diagram:

Circuit	change	Required value		
From:	To:	S	R	
0	0	0	_	
0	1	1	0	
1	0	0	1	
1	1	_	0	

PS	N	S	2	z		x = 0			x = 1	
$y_3y_2y_1$	x = 0	x = 1	x = 0	x = 1	S_3R_3	S_2R_2	S_1R_1	S_3R_3	S_2R_2	S_1R_1
000	000	001	0	0	0-	0–	0–	0-	0–	10
001	001	010	0	0	0-	0-	-0	0–	10	01
010	010	011	0	0	0-	-0	0-	0–	-0	10
011	011	100	0	0	0-	-0	-0	10	01	01
100	100	101	0	0	-0	0-	0-	-0	0-	10
101	101	110	0	0	-0	0-	-0	-0	10	01
110	110	111	0	0	-0	-0	0-	-0	-0	10
111	111	000	0	1	-0	-0	-0	01	01	01

But...Life is Beautiful End of the day...

```
always @(posedge clk) begin
  if (rst)
    count <= 3'b000;  // Reset to 0
  else if (count == 3'b111)  // If 7, wrap back to 0
    count <= 3'b000;
  else
    count <= count + 1'b1;  // Increment
end</pre>
```

```
// SR Flip-Flop with synchronous reset
module sr_flip_flop (
  input wire clk,
  input wire reset,
  input wire s,
  input wire r,
  output reg q
  always @(posedge clk) begin
     if (reset)
       q \le 1'b0;
     else begin
       if (s & ~r) q <= 1'b1; // Set
       else if (~s & r) q <= 1'b0; // Reset
       // Hold if s=0, r=0
     end
  end
endmodule
```

```
// 3-bit synchronous up counter with enable 'x'
module sync_counter_3bit_sr_enable (
   input wire clk,
  input wire reset,
  input wire x,
                       // Enable input
  output wire [3:1] y // Output: y1 (LSB), y2, y3 (MSB)
  wire s1, r1, s2, r2, s3, r3;
  wire y1_internal, y2_internal, y3_internal;
  // Next state logic with enable 'x'
   assign s1 = x \& \sim y1_internal;
   assign r1 = x \& y1_internal;
   assign s2 = x \& y1_internal \& ~y2_internal;
   assign r2 = x \& y1_internal \& y2_internal;
   assign s3 = x \& y1_internal \& y2_internal \& ~y3_internal;
   assign r3 = x \& y1_internal \& y2_internal \& y3_internal;
  // SR Flip-Flops
  sr_flip_flop ff1 (.clk(clk), .reset(reset), .s(s1), .r(r1), .q(y1_internal));
  sr_flip_flop ff2 (.clk(clk), .reset(reset), .s(s2), .r(r2), .q(y2_internal));
  sr_flip_flop ff3 (.clk(clk), .reset(reset), .s(s3), .r(r3), .q(y3_internal));
   assign y[1] = y1_{internal};
   assign y[2] = y2_internal;
   assign y[3] = y3_internal;
endmodule
```


Generic Template for Writing State Machines

```
module simple_counter(clk,rst, enable, out);
input clk;
input rst;
input enable;
output reg out;
reg [<num_state_bits>:0] state, nxt_state;
parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;
parameter S3 = 2'b11;
parameter S4 = ...
```

```
always @(posedge clk) begin
if (rst) begin
state <= S0;
end
else if (enable) begin
state <= nxt_state;
end
end
```

```
always@(*) begin
     case(state)
       S0:
          begin
            If (<inp_sig == 1>) begin
               nxt_state = S1;
               out = 0;
            end
          end
       S1:
          begin
            nxt_state = S2;
            out = 1;
          end
      default:
          begin
            nxt_state = S0;
            out = 0;
          end
     endcase
  end
endmodule
```

Mealy and Moore Machines

Example: 01/10 Detector

Moore

		current		current
reset	input	state	state	output
1	_	_	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	D	0
0	0	С	E	0
0	1	С	С	0
0	0	D	E	1
0	1	D	С	1
0	0	Ε	В	1
0	1	E	l D	1

Mealy

	reset	input	current state	next state	current output
•	1	_	_	Α	0
	0	0	Α	В	0
	0	1	Α	С	0
	0	0	В	В	0
	0	1	В	С	1
	0	0	С	В	1
	0	1	С	С	0
				l	

Registers: Your Main Sequential Element

- 4-bit register
- Asynchronous Reset
- On a clock tick, the data in I0, I1, I2, I3 gets available in A0, A1, A2, A3.

Registers: Your Main Sequential Element

- 4-bit register with parallel load
- Asynchronous Reset
- The main difference from the previous design is that in the former case the stored data deliberately changes at every clock tick. But here we have a control through the *Load* line.
- This is your "the building block"

Shift Registers

- Shift the bits left and right
- Again, very easy to write in Verilog

Control element: streamlines computation by providing appropriate control signals

Example: digital system that computes the value of (4a + b) modulo 16

- a, b: four-bit binary number
- 4-bit output

First let's decide what are the components needed

Control element: streamlines computation by providing appropriate control signals

- *a*, *b*: four-bit binary number
- X: register containing four flip-flops
- A 4-bit parallel adder
- x: number stored in X
- Register can be loaded with: either b or a + x
- But we have to stop after 4 additions who tells that??

Control element: streamlines computation by providing appropriate control signals

- a, b: four-bit binary number
- X: register containing four flip-flops
- A 4-bit parallel adder
- x: number stored in X
- Register can be loaded with: either b or a + x
- But we have to stop after 4 additions who tells that??
- K: modulo-4 binary counter, whose output L equals 1 whenever the count is 3 modulo 4 but where does it connect to??

Control element: streamlines computation by providing appropriate control signals

- a, b: four-bit binary number
- X: register containing four flip-flops
- A 4-bit parallel adder
- x: number stored in X
- Register can be loaded with: either b or a + x
- But we have to stop after 4 additions who tells that??
- K: modulo-4 binary counter, whose output L equals 1 whenever the count is 3 modulo 4 but where does it connect to??

Control element: streamlines computation by providing appropriate control signals

- a, b: four-bit binary number
- X: register containing four flip-flops
- A 4-bit parallel adder
- x: number stored in X
- Register can be loaded with: either b or a + x
- But we have to stop after 4 additions who tells that??
- K: modulo-4 binary counter, whose output L equals 1 whenever the count is 3 modulo 4 but where does it connect to??
- We need another sequential circuit as a controller to the circuit

General View of a Hardware

Sequential circuit *M*:

- Input *u*: initiates computation
- Input L: gives the count of K
- Outputs: α , β , γ , z
- When $\alpha = 1$: contents of b transferred to X
- When β = 1: values of x and a added and transferred back to X
- When $\gamma = 1$: count of K increased by 1
- z = 1: whenever final result available in X

Sequential circuit *M*:

- *K*, *u*, *z*: initially at 0
- When u = 1: computation starts by setting $\alpha = 1$
 - Causes b to be loaded into X
- To add a to x: set $\beta = 1$ and $\gamma = 1$ to keep track of the number of times a has been added to x
- After four such additions: z = 1 and the computation is complete
- At this point: K = 0 to be ready for the next computation

State diagram:

State assignment, transition table, maps and logic diagram:

PS <i>y</i> ₁ <i>y</i> ₂	NS Y_1Y_2
00	0 <i>u</i>
01	11
11	1 <i>L</i> ′
10	00

(a) Transition table.

(b) Maps for Y_1 and Y_2 .

$$\alpha = y_1 'y_2$$
 $\beta = \gamma = y_1 y_2$
 $z = y_1 y_2 '$
 $Y_1 = y_2$
 $Y_2 = y_1 'y_2 + uy_1 ' + L'y_2$

Now go and code it down