Фамил	ия имя	4. Пусть $Z[i]$ - Z -функция, а π - префикс функция. Выберите истинные утверждения.
1. Выбо	ерите истинные утверждения. Если объекты равны, то хеши могут быть равны. Если объекты равны, то хеши могут быть не равны.	\square Для строки S и любого $i < j$ верно, что $Z[i] \le Z[j]$. \square Для строки S и любого $i < j$ верно, что $Z[i] \ge Z[j]$. \square Для строки S и любого $i < j$ верно, что $\pi[i] \le \pi[j]$. \square Для строки S и любого $i < j$ верно, что $\pi[i] \ge \pi[j]$.
	Если хеши равны, то объекты могут быть равны. Если хеши равны, то объекты могут быть не равны. Если объекты не равны, то хеши всегда не равны. Если хеши не равны, то объекты всегда не равны. h(x) = 1 является корректной хеш-функцией. $h(x) = \operatorname{rand}\{0,1\}$ является корректной хеш-функцией.	\square Для строки S и любого i верно, что $\pi[i] \leq Z[i]$. \square Для строки S и любого i верно, что $\pi[i] \geq Z[i]$. \square Для строки S и любого i верно, что $Z[i] \leq i$. \square Для строки S и любого i верно, что $Z[i] \geq i$. \square Для строки S и любого i верно, что $\pi[i] \leq i$. \square Для строки S и любого i верно, что $\pi[i] \leq i$. \square Для строки S и любого i верно, что $\pi[i] \geq i$.
2. Для мене ющи	хеширования строки s , состоящей из маленьких латинских букв, была прина формула $\sum_{i=1}^n (s_i - {\bf 'a'}) 7^{n-i}$. Приведите пример двух различных строк, имех одинаковый хеш.	\square Для строки S и любого i верно, что $Z[i] \leq Z[Z[i]]$. \square Для строки S и любого i верно, что $Z[i] \geq Z[Z[i]]$. \square Для строки S и любого i верно, что $Z[i] \leq Z[\pi[i]]$. \square Для строки S и любого i верно, что $Z[i] \geq Z[\pi[i]]$. \square Для строки S и любого i верно, что $\pi[i] \leq \pi[\pi[i]]$.
о. р ыо	ерите истинные утверждения. Алгоритм Ахо-Корасик позволяет найти количество вхождений строк S_i в текст T за время $O(\sum S_i + T)$.	\square Для строки S и любого i верно, что $\pi[i] \ge \pi[\pi[i]]$. \square Z -функция позволяет найти наибольшую общую подстроку двух строк S и T за $O(S + T)$.
	Алгоритм Ахо-Корасик позволяет найти все вхождения строк S_i в текст T за время $O(\sum S_i + T)$. Алгоритм Ахо-Корасик позволяет найти наибольшую общую подстроку	\square Z -функция позволяет найти все вхождения строки S в текст T за $O(S + T)$. \square Z -функцию для строки S можно вычислить за $O(S)$.
	двух строк с длинами n и m за $O(n+m)$. Алгоритм Ахо-Корасик позволяет найти наибольший префикс строки S входящий в строку T за $O(S + T)$.	5. Подстроку длины m можно найти в строке длины n за время: $\square\ O(m^2n) \square\ O(mn^2) \square\ O(nn) \square\ O(m+n) \square\ O(n/m)$
	Глубина вершины в которую указывает суффиксная ссылка, построенная алгоритмом Ахо-Корасик для одной строки, совпадают с префикс функцией для этой строки.	
	Суффиксные ссылки, построенные алгоритмом Ахо-Корасик для одной строки, совпадают с Z-функцией для этой строки.	

Выберите верные утверждения:				
	Суффиксный массив (СМ) содержит номера суффиксов строки в порядке			
	увеличения длины.			
	СМ содержит номера суффиксов строки в лексикографическом порядке.			
	СМ содержит номера префиксов строки в порядке увеличения длины.			
	СМ содержит номера префиксов строки в лексикографическом порядке.			
	CM строки длины n можно построить за время $O(n^2)$.			
	CM строки длины n можно построить за время $O(n\log n)$.			
	CM строки длины n можно построить за время $O(n/\log n)$.			
	CM строки длины n позволяет искать в ней подстроку длины m за $O(nm)$.			
	CM строки длины n позволяет искать в ней подстроку длины m за			
	$O(n\log m)$.			
	CM строки длины n позволяет искать в ней подстроку длины m за			
	$O(m \log n)$.			
	${ m CM}$ строки длины n позволяет искать в ней подстроку длины m за			
	$O(m + \log n)$.			
	CM строки длины n позволяет искать в ней подстроку длины m за $O(n)$.			
	CM строки длины n позволяет искать в ней подстроку длины m за $O(m)$.			

6.

8. Как будут выглядеть массивы a порядка суффиксов длины L и массив c цветов при построении суффиксного массива для циклической строки: «ababaababba\$» при L=4?.

7. Укажите, для каких из приведенных задач вы знаете алгоритм решения за полиномиальное время. Укажите его асимптотику.

Задача	Время работы алгоритма
Поиск максимального паросочетания в двудоль-	
ном графе	
Поиск паросочетания минимального веса в дву-	
дольном графе (задача о назначениях)	
Поиск минимального вершинного покрытия в	
двудольном графе	

9. Постройте суффиксный массив для строки: «ababaababba» и посчитайте массив LCP.

- 10. Выберите истинные утверждения:
 - Можно проверить непустоту пересечения многоугольника с прямой за $O(\log n)$.
 - \square Можно проверить непустоту пересечения выпуклого многоугольника с прямой за $O(\log n)$.
 - Можно проверить непустоту пересечения многоугольника с прямой и, если оно непусто, найти точку пересечения за $O(\log n)$.
 - \square Можно проверить непустоту пересечения выпуклого многоугольника с прямой и, если оно непусто, найти точку пересечения за $O(\log n)$.
 - Можно проверить непустоту пересечения многоугольника с прямой за O(n).
 - Можно проверить непустоту пересечения выпуклого многоугольника с прямой за O(n).
 - Можно проверить непустоту пересечения многоугольника с прямой и, если оно непусто, найти точку пересечения за O(n).
 - \square Можно проверить непустоту пересечения выпуклого многоугольника с прямой и, если оно непусто, найти точку пересечения за O(n).
- 11. Постройте двудольный граф, в котором 8 вершин, 10 ребер и максимальное паросочетание имеет размер 2. Отметьте множества L^+ , L^- , R^+ и R^- .

12. Постройте автомат Ахо-Корасик для строк «ab», «b», «abba» и «ba». Приведите также суффиксные ссылки.

13. Посчитайте итоговую ассимптотику следующую функций

•
$$T(n) = 2T(\frac{n}{2}) + 1$$

•
$$T(n) = 3T(\frac{n}{2}) + n^2$$

•
$$T(n) = 5T(\frac{n}{2}) + n$$

•
$$T(n) = 2T(n-1) + 1$$