Complex Numbers

Integc15: ... -2, -1, 6, 1, 2, ... Rational! P,9 are integers 970 Ex: Is Jz rational? No. Assume if is: $\sqrt{2} = \frac{p}{4}$ reduced every $Z = \frac{p^2}{q^2} \qquad \qquad Zq^2 = \frac{p^2}{q^2}$ Piscucn => P=2r 292= (21)2:412 ρ even, q even,

so $\frac{\rho}{q}$ is not reduced χ $\frac{\rho^2}{q^2} = 2r^2$ even Our assumption was wrong! Irrational: 52, 53, 55, 70, e Ex; a,b such that a+b=4 ab=5

 $a = 2+\sqrt{-1}$ $b = 2-\sqrt{-1}$ $a + b = 2+\sqrt{-1} + 2-\sqrt{-1} = 4$ $ab = (2+\sqrt{-1})(2-\sqrt{-1})$ $= 4+2\sqrt{-1} = 4-(-1)=5$

$$\alpha = 2 + 1 , b = 2 - 1$$

$$x^2 = -1$$
 $x = \pm \sqrt{-1} = i$ imaginal vait

Addition:
$$(a+b') + (c+di) = (a+c) + (b+d)'$$
 $(a+bi) - (c+di) = (a-c) + (b-d);$
 $(a+b) - (c+di) = (a-c) + (b-d);$
 $(a+b) - (a-c) + (b-d);$
 $(a+b) - (a+b) - (a+b) + (b+d);$
 $(a+b) - (a+b) - (a+b) + (b+d);$
 $(a+b) - (a+b) + (b+d) - (a+d);$
 $(a+b) - (a+b) + (b+d) - (a+d);$
 $(a+b) - (a+d) + (a+d) + (a+d) + (a+d);$
 $(a+b) - (a+d) + (a+d) + (a+d) + (a+d) + (a+d);$
 $(a+b) -$

$$Ek! \frac{(3-i)(-2-5i)}{(-2+5i)(-2-5i)} = \frac{-6+2i - 15i - 5}{4+25} = \frac{-11-13i}{29}$$

$$= \frac{-11}{29} - \frac{13}{29i}$$