Formaty i relacje przestrzenne w QGIS

Tomasz Nycz

23 kwietnia 2021

Część I Odniesienia przestrzenne

Zbiory danych przestrzennych

1.1 Wymagania prawne

GML

1.2 GeoPackage - następca Shapefile

Tworzenie zbioru Geopackage

Połączenie ze zbiorem

1.3 Baza danych w GeoPackage

Dodawanie wielu warstw

Dołączanie projektu

Dołączanie symboli i styli

Układy współrzędnych

2.1 CRS i układ współrzędnych

W środowisku GIS możemy spotkać się z pojęciami CRS, odwzorowania kartograficznego, układu współrzędnych, oraz tzw. datum czy gridshift. Do dalszej komfortowej pracy konieczne jest zapoznanie się z nimi, oraz ich wzajemnymi powiązaniami.

- Coordinate Reference System system odniesień przestrzennych. Jest to zbiór parametrów opisujących wszelkie cechy odniesień przestrzennych konieczne do poprawnego wskazania unikalnego miejsca w odniesieniu do powierzchni Ziemi. Należą do nich odwzorowanie kartograficzne, elipsoida, tzw. datum, południk i równoleżnik początkowy, oraz jednostki miary (stopnie, metry, sążnie, etc.)
- Odwzorowanie kartograficzne jest to matematyczna realizacja sposobu odwzorowania elipsoidy obrotowej na płaszczyźnie mapy (lub zwizualizowania pseudotrójwymiarowego w kartografii komputerowej). W praktyce europejskiej spotkamy się z odwzorowaniami: poprzecznym Merkatora, Gaussa-Krügera, azymutalnym Lamberta. W mapach obecnie archiwalnych popularne były również odwzorowania quasi-stereograficzne (WIG i GUGIK80) i Cassiniego-Soldnera. Można też było się spotkać z odwzorowaniami wielościennymi (np. wczesne edycje Messtichblatt).
- Elipsoida to bryła powstała w wyniku obrotu elipsy wokół jej osi symetrii. Ziemię uznajemy w dużym uproszczeniu za elipsoidę obrotową (choć jej kształt jest dużo bardziej skomplikowany nazywany geoidą). Ruch obrotowy Ziemi sprawia, że średnica równika jest o 43 km większa niż średnica pomiędzy biegunami. W czasach gdy kształt i rozmiary naszej planety były dopiero poznawane, powstało wiele opracowań opisujących parametry półosi wielkiej (a), półosi małej (b), oraz spłaszczenia (1/f). W naszych dalszych pracach będziemy wykorzystywać elipsoidy Bessela, Krassowskiego, oraz WGS84(GRS80).
- Datum to geodezyjny układ odniesienia, opisujący kształt geoidy globalnie (np. systemy ETRS89/2000), jak również bardziej lokalnie (Pułkowo, Rauenberg, Hermannskogel). Obecnie w praktyce GIS geodezyjne układy odniesienia opisują translację względem geocentrycznego układu ETRF 89.

Rysunek 2.1: Datum - Transformacja między układami odniesienia (za [Affek, 2013])

EPSG - Rejestr i baza danych o układach odniesień (SRS i CRS), dawniej prowadzony przez European Petroleum Survey Group, obecnie Komitet Geomatyczny IOGP. Znajdują się w nim opisy parametrów elipsoid, południków zerowych, oraz całych CRS. Zamiennie z pojęciem kodu EPSG używa się terminu SRID - trochę szerszego, zawierającego również definicje własne producentów oprogramowania. Tabelę kodów EPSG przydatnych w codziennej pracy znajdziesz na końcu tego rozdziału. Można również skorzystać z wyszukiwarek kodu np. https://epsg.org/search/map

Pozostałe parametry używane przy definiowaniu CRS opiszemy bezpośrednio przy stosowanych układach współrzędnych.

2.2 Uwarunkowania prawne

Wymagania prawne co do stosowanych układów odniesienia zdefiniowane są w rozporządzeniu Rady Ministrów z dnia 15 października 2012 r. w sprawie państwowego systemu odniesień przestrzennych (Dz.U. 2012 poz. 1247)¹.

¹http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120001247

§ 15. 1 i 2 rozporządzenia

- § 15. 1. Państwowy system odniesień przestrzennych stosuje się w pracach geodezyjnych i kartograficznych oraz przy tworzeniu zbiorów danych przestrzennych przez organy władzy publicznej, przy czym:
 - 1. układ współrzędnych PL-LAEA stosuje się na potrzeby analiz przestrzennych i sprawozdawczości na poziomie ogólnoeuropejskim;
 - 2. układ współrzędnych PL-LCC stosuje się na potrzeby wydawania map w skali 1:500 000 i w mniejszych skalach;
 - układ współrzędnych PL-UTM stosuje się na potrzeby wydawania standardowych opracowań kartograficznych w skalach od 1:10 000 do 1:250 000, wydawania map morskich oraz wydawania innych map przeznaczonych na potrzeby bezpieczeństwa i obronności państwa;
 - 4. układ współrzędnych PL-2000 stosuje się na potrzeby wykonywania map w skalach większych od 1:10 000 w szczególności mapy ewidencyjnej i mapy zasadniczej.
- 2. W pracach geodezyjnych i kartograficznych innych niż wymienione w ust. 1 pkt 1–4 stosuje się układ współrzędnych PL-UTM lub układ współrzędnych PL-1992.

PUWG 92

PUWG 2000

UTM i LAEA

2.3 Starsze układy współrzędnych

2.4 Ćwiczenia

Przypisanie CRS warstwy rastrowej

W tym ćwiczeniu wykorzystamy zbiory numerycznego modelu terenu w formacie ASCII GRID (.asc) udostępniane poprzez Główny Urząd Geodezji i Kartografii. W katalogu "/modul1/crs/dtmźnajdziemy przykładowe pliki w takim formacie. Otwieramy okno **Data Source Manager**, z paska narzędzi lub przy pomocy skrótu (Ctrl+L) i wskazujemy w zakładce przeglądarka nasz plik rastrowy z dysku. Zwróć uwagę na ikonkę *znaku zapytania* znajdującą się po prawej stronie nazwy warstwy wyświetlanej na liście. Po najechaniu na ten symbol i kliknięciu otworzy się nam okno **Wybór układu współrzędnych**. W polu filtra możemy szybko odszukać potrzebny nam układ - w tym wypadku *ETRS89 / Poland CS92* o kodzie EPSG:2180. Po zatwierdzeniu *OK* wracamy do głównego okna mapy.

Rysunek 2.2: Ostrzeżenie o braku zdefiniowanego CRS

Rysunek 2.3: Menu kontekstowe warstwy - Ustawienie CRS

Zmiana odwzorowania rastra

W kolejnym ćwiczeniu zmienimy odwzorowanie naszej warstwy rastrowej i zapiszemy nowy zbiór na dysku. Wykorzystamy uprzednio otwarty raster NMT. Nasze zadanie możemy wykonać na dwa sposoby. Pierwszym jest wykorzystanie algorytmu processingu **Zmień odwzorowanie**. Ukaże się nam okno algorytmu, w którym wskazujemy kolejno:

- 1. warstwę wejściową
- 2. źródłowy układ współrzędnych
- 3. docelowy układ współrzędnych
- 4. metodę resamplingu

2.4. ĆWICZENIA 7

- 5. możliwe jest zdefiniowanie wartości NODATA
- 6. dodatkowe parametry GDAL (np. kafelkowanie, typ kompresji)

7. czy warstwa wyjściowa ma być zapisana na dysk, czy tylko wyświetlona jako tymczasowa

Rysunek 2.4: Zmiana odwzorowania rastra

Po zatwierdzeniu następuje transformacja rastra, która zależnie od jego wielkości może potrwać nawet kilkadziesiąt sekund. Druga metodą polega na zapisaniu istniejącej warstwy przy pomocy menu kontekstowego Eksport -> Zapisz Jako. W tym wypadku również wskazujemy docelowy układ współrzędnych, ale również możemy wygodnie wskazać docelową rozdzielczość rastra.

Rysunek 2.5: Menu kontekstowe warstwy - Eksport Zapisz Jako

Praca z archiwalnymi rastrami

- 3.1 Wprowadzenie
- 3.2 Referencja do punktów wspólnych
- 3.3 Referencja do narożników mapy
- 3.4 Ćwiczenia

Referencja liniowa

- 4.1 Wprowadzenie
- 4.2 Przygotowanie zbioru liniowego
- 4.3 Wyszukiwanie lokalizacji
- 4.4 Ćwiczenia

Część II

Analiza

Numeryczny model terenu - wprowadzenie

- 5.1 Mapa spadków
- 5.2 Mapa ekspozycji
- 5.3 Inne wskaźniki topograficzne
- 5.4 Ćwiczenia

Wyznaczenie strefy narażonej osuwiskowo

Stok narciarski

Wyszukanie stoku o ekspozycji północnej oraz nachylonego 10-30 stopni, wykorzystanie fuzzy logic

Widocznosc obiektów

- 6.1 Dominanty krajobrazu
- 6.2 Osie widokowe
- 6.3 Ćwiczenia

Nasłonecznienie

- 7.1 Mapa nasłonecznienia
- 7.2 Zmiana warunków
- 7.3 Potencjał solarny
- 7.4 Ćwiczenia

Strefy cienia

Jakość powierzchni dachowych dla fotowoltaiki

Wskaźniki urbanizacyjne

- 8.1 Powierzchnia zabudowy
- 8.2 Wskaźnik intensywności zabudowy
- 8.3 Powierzchnia biologicznie czynna
- 8.4 Ćwiczenia

Wyliczanie powierzchni zabudowy

Publikacja w internecie

- 9.1 GeoPDF
- 9.2 Strona html z osadzoną mapą
- 9.3 Geoportal Lizmap/QWC
- 9.4 Usługi w chmurze
- 9.5 Ćwiczenia

Nowa droga rowerowa

Plan zagospodarowania

Spis treści

I	Oai	niesienia przestrzenne	1
1	Zbi o	ory danych przestrzennych Wymagania prawne	2 2
	1.2	GeoPackage - następca Shapefile	2
	1.3	Baza danych w GeoPackage	2
2	Ukł	ady współrzędnych	3
	2.1	CRS i układ współrzędnych	3
	2.2	Uwarunkowania prawne	4
	2.3	Starsze układy współrzędnych	5
	2.4	Ćwiczenia	5
3	Prac	za z archiwalnymi rastrami	9
	3.1	Wprowadzenie	9
	3.2	Referencja do punktów wspólnych	9
	3.3	Referencja do narożników mapy	9
	3.4	Ćwiczenia	9
4	Refe	erencja liniowa	10
	4.1	Wprowadzenie	10
	4.2	Przygotowanie zbioru liniowego	10
	4.3	Wyszukiwanie lokalizacji	10
	4.4	Ćwiczenia	10
II	Ana	aliza	11
5	Ni	nonverser model toward virginiaria	12
3	5.1	neryczny model terenu - wprowadzenie Mapa spadków	12
	5.1	1 1	12
	5.3	Mapa ekspozycji	12
	5.4	Inne wskaźniki topograficzne	
	5.4	Ćwiczenia	12
6	Wid	locznosc obiektów	13
	6.1	Dominanty krajobrazu	13

18 SPIS TREŚCI

	6.2	Osie widokowe	13
	6.3	Ćwiczenia	13
7 N	Nas	łonecznienie	14
	7.1	Mapa nasłonecznienia	14
	7.2	Zmiana warunków	14
	7.3	Potencjał solarny	14
	7.4	Ćwiczenia	14
8 V	Wsł	caźniki urbanizacyjne	15
	8.1	Powierzchnia zabudowy	15
	8.2	Wskaźnik intensywności zabudowy	15
	8.3	Powierzchnia biologicznie czynna	15
	8.4	Ćwiczenia	15
9 I	Pub	likacja w internecie	16
	9.1	GeoPDF	16
	9.2	Strona html z osadzoną mapą	16
	9.3	Geoportal Lizmap/QWC	16
	9.4	Usługi w chmurze	16
	9.5	Ćwiczenia	16
Bi	bliog	grafia	19

Bibliografia

A. Affek. Georeferencing of historical maps using gis, as exemplified by the austrian military surveys of galicia. online, 2013. URL http://rcin.org.pl/igipz/Content/40957/WA51_58447_r2013-t86-no4_G-Polonica-Affek.pdf.