Threat Modeling (Architectural Risk Analysis)

Threat Model

- The threat model makes explicit the adversary's assumed powers
 - Consequence: The threat model must match reality, otherwise the risk analysis of the system will be wrong
- The threat model is critically important
 - If you are not explicit about what the attacker can do, how can you assess whether your design will repel that attacker?
- This is part of architectural risk analysis

Example: Network User

- An (anonymous) user that can connect to a service via the network
- Can:
 - measure the size and timing of requests and responses
 - run parallel sessions
 - provide malformed inputs, malformed messages
 - · drop or send extra messages
- **Example attacks**: SQL injection, XSS, CSRF, buffer overrun/ROP payloads, ...

Example: Snooping User

- Internet user on the same network as other users of some service
 - For example, someone connected to an unencrypted Wi-Fi network at a coffee shop
- Thus, can additionally
 - Read/measure others' messages,
 - · Intercept, duplicate, and modify messages
- Example attacks: Session hijacking (and other data theft), privacy-violating side-channel attack, denial of service

Example: Co-located User

- Internet user on the same machine as other users of some service
 - E.g., malware installed on a user's laptop
- Thus, can additionally
 - Read/write user's files (e.g., cookies) and memory
 - Snoop keypresses and other events
 - Read/write the user's display (e.g., to spoof)
- Example attacks: Password theft (and other credentials/secrets)

Threat-driven Design

- Different threat models will elicit different responses
- Network-only attackers implies message traffic is safe
 - No need to encrypt communications
 - This is what telnet remote login software assumed
- Snooping attackers means message traffic is visible
 - So use encrypted wifi (link layer), encrypted network layer (IPsec), or encrypted application layer (SSL)
 - Which is most appropriate for your system?
- Co-located attacker can access local files, memory
 - Cannot store unencrypted secrets, like passwords

Bad Model = Bad Security

- Any assumptions you make in your model are potential holes that the adversary can exploit
- E.g.: Assuming no snooping users no longer valid
 - Prevalence of wi-fi networks in most deployments
- Other mistaken assumptions
 - Assumption: Encrypted traffic carries no information
 - Not true! By analyzing the size and distribution of messages, you can infer application state
 - Assumption: Timing channels carry little information
 - Not true! Timing measurements of previous RSA implementations could be used eventually reveal a remote SSL secret key

Finding a good model

- Compare against similar systems
 - What attacks does their design contend with?
- Understand past attacks and attack patterns
 - How do they apply to your system?
- · Challenge assumptions in your design
 - What happens if an assumption is untrue?
 - What would a breach potentially cost you?
 - How hard would it be to get rid of an assumption, allowing for a stronger adversary?
 - What would that development cost?