Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

T ? 1		1	U
K amema	интеллектуальных	VI IIII OKIII OKIII IV	ΤΑΥΙΙΛΠΛΓΙΙΙΙ
Кашедра	иптеллект уальпыл	ипшормациоппыл	телпологии
1 71	J	1 1	

Отчет по лабораторной работе №2 по курсу «МРЗвИС» по теме «Реализация модели решения задачи на ОКМД архитектуре»

Выполнили студенты группы 821701: Хмелинко П.С. Шадрин Е.Д.

Проверил: Крачковский Д.Я.

<u>Цель:</u> реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений. <u>Постановка задачи:</u> дано: сгенерированные матрицы A, B,E, G, заданных размерностей pxm, mxq, 1xm, pxq, mxp и qxm соответственно со значениями в диапазоне [-1;1];

$$c_{ij} = \widetilde{\wedge}_{k} f_{ijk} * (3*g_{ij} - 2)*g_{ij} + (\widetilde{\vee}_{k} d_{ijk} + (4*(\widetilde{\wedge}_{k} f_{ijk} \widetilde{\circ} \widetilde{\vee}_{k} d_{ijk}) - 3*\widetilde{\vee}_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \widetilde{\to} b_{kj}) * (2*e_{k} - 1)*e_{k} + (b_{kj} \widetilde{\to} a_{ik}) * (1 + (4*(a_{ik} \widetilde{\to} b_{kj}) - 2)*e_{k}) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \widetilde{\wedge} b_{kj}$$

Вариант 1:

$$\tilde{\wedge}_{k} f_{ijk} = \prod_{k} f_{ijk}$$

$$\tilde{\vee}_{k} d_{ijk} = 1 - \prod_{k} (1 - d_{ijk})$$

$$\tilde{\wedge}_{k} f_{ijk} \tilde{\vee}_{k} \tilde{\vee}_{k} d_{ijk} = \tilde{\wedge}_{k} f_{ijk} * \tilde{\vee}_{k} d_{ijk}$$

$$a_{ik} \tilde{\rightarrow}_{kj} = a_{ik} * (1 - b_{kj}) + 1$$

$$b_{kj} \tilde{\rightarrow}_{kj} = a_{ik} * b_{kj}$$

$$a_{ik} \tilde{\wedge}_{kj} = a_{ik} * b_{kj}$$

Получить: C — матрицу значений соответствующей размерности рхq; в случае необходимости доопределить всеобщности(\forall) или существования(\exists) условие исходной задачи кванторами самостоятельно.

Описание модели:

Была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Возможность самостоятельно устанавливать все параметры, необходимые для работы модели, позволяет детально исследовать разработанную модель, установить зависимости между вышеуказанными параметрами.

Т1 – время выполнения программы на одном процессорном элементе. Данный параметр вычисляется следующим образом: подсчитывается количество вызовов той или иной операции, а затем полученное

значение умножается на время данной операции. Данное действие повторяется для всех операций, в итоге все значения суммируются. **Тп** — время выполнения программы на n-количестве процессорных элементов. Параметр вычисляется схожим путём, что и Т1: осуществляется поиск операций, которые можно считать на различных процессорах. Для подсчета времени на выполнение такой операции находится количество вызовов данной операции и делится на количество процессорных элементов.

Ку – коэффициент ускорения равен T1/Tn.

e – эффективность равна Ky/n.

D - коэффициент расхождения программы, D=Lsum/Lcp. Где, Lsumсуммарная длина программы и равна Tn. Lcp - средняя длина программы. Вычисляется путем подсчета количества вызовов операций на различных ветвях выполнения программы. Имея, количества вызовов операций, выполняющихся на ветвях программы, и их время выполнения, считаем данную величину.

Исходные данные:

р, m, q – размерность матриц;

n- количество процессорных элементов в системе; ti- время выполнения i операции над элементами матриц; матрицы $A,\,B,\,E,\,G,\,$ заполненные случайными

Результаты счёта и времена их получения:

вещественными числами в диапазоне [-1;1].

```
Input P : 2
Input M : 2
Input Q : 2
Matrix A :
0.1249  0.6194
0.5895  0.9565

Matrix B :
0.5938  0.6611
0.2678  0.0461

Matrix E :
0.426  0.3257

Matrix G :
0.3805  0.6258
0.2311  0.4924

Matrix C :
0.0389144  -0.0185783
0.457938  0.0010741

T1 = 284
Tn = 12
```

Построение графиков (всего 6 семейств):

Обозначения:

Ky(n, r) – коэффициент ускорения;

e(n, r) – эффективность;

D(n, r) – коэффициент расхождения программы;

n — количество процессорных элементов в системе (совпадает с количеством этапов конвейера);

r — ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно);

График зависимости Ку(n,r) от количества процессорных элементов п

График зависимости Ку(n,r) от ранга задачи г

График зависимости e(n,r) от количества процессорных элементов

График зависимости e(n,r) от ранга задачи r

График зависимости D(n,r) от количества процессорных элементов п

График зависимости D(n,r) от ранга задачи г

Ответы на вопросы:

1. Проверить, что модель создана верно, программа работает правильно:

Проверка правильности работы программы:

A(pxm)	B(mxq)	E(1xm)	G(pxq)	C(pxq)
0,1249	0,5938	0,426	0,3805	0,0389144
0,6194	0,6611	0,3257	0,6258	-0.0185783
0,5805	0,2678		0,2311	0,457938
0,9565	0,0461		0,4924	0,0010741

2. Объяснить на графиках точки перегиба и асимптоты:

— Для графика зависимости коэффициента ускорения (Ky) от количества элементов (n):

Асимптотой графика, исходя из значений графика, является прямая, параллельная оси абсцисс, то есть прямая, заданная при n=r. Точки перегиба появляются тогда, когда ширина векторного параллелизма становится кратной числу процессорных элементов, при достижении этого значения коэффициент ускорения перестает расти.

— Для графика зависимости коэффициента ускорения (Ky) от ранга задачи (r):

Асимптотой является прямая Ky=n, такого значения она достигает в точках, где ширина векторного параллелизма становится кратной числу процессорных элементов. При фиксированном значении процессорных элементов и при устремлении ранга задачи к бесконечности, ОКМД архитектура будет работать быстрее не более, чем в n раз по сравнению с последовательной системой.

— Для графика зависимости эффективности (e) от количества элементов (n):

Прямая e=0 будет являться асимптотой. Так как задача с фиксированным рангом содержит фиксированное количество операций, которые необходимо выполнить, а эффективность показывает долю работы одного процессорного элемента, то при большом количестве процессорных элементов эффективность стремится к 0.

— Для графика зависимости эффективности (e) от ранга задачи (r):

Прямая e=1 будет являться асимптотой, а точками перегиба — точки, где ширина векторного параллелизма становится кратной числу процессорных элементов.

- Для графика зависимости коэффициента расхождения программы (D) от количества элементов (n): При увеличении количества элементов, значение расхождения программы стремится к 1.
- Для графика зависимости коэффициента расхождения программы (D) от ранга задачи (r): При увеличении ранга задачи, значение расхождения программы увеличивается.
- 3. Спрогнозировать как изменится вид графиков при изменении параметров модели; если модель позволяет, то проверить на ней правильность ответа;

Зависимость коэффициента ускорения (Ky) от количества элементов (n) — при увеличении количества пар элементов,

возрастает значение коэффициента ускорения, до момента пока ширина векторного параллелизма не становится равной числу процессорных элементов. Далее при увеличении, коэффициент ускорения остается постоянным;

Зависимость коэффициента ускорения (Ky) от ранга задачи (r) — при увеличении количества процессорных элементов, возрастет значение коэффициента ускорения. Пиковые значения зафиксированы в точках, где ширина векторного параллелизма становится равной числу процессорных элементов, в этих точках Ky=n;

Зависимость эффективности (e) от количества элементов (n) — при увеличении количества процессорных элементов, снижается значение эффективности;

Зависимость эффективности (e) от ранга задачи (r) — при увеличении ранга, возрастает значение эффективности. Пиковые значения зафиксированы в точках, где ширина векторного параллелизма становится кратной числу процессорных элементов;

Зависимость коэффициента расхождения программы (D) от количества элементов (n) — при увеличении количества процессорных элементов, возрастает коэффициент расхождения программы;

Зависимость коэффициента расхождения программы (D) от ранга задачи (r) — при увеличении ранга задачи, снижается значение коэффициента расхождения программы.

Вывод:

В результате выполнения лабораторной работы была реализована и исследована ОКМД модель для решения задач вычисления матрицы значений. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата для числовых векторов, по сравнению с последовательной системой. Были исследованы характеристики конвейерной архитектуры: коэффициент ускорения, коэффициент расхождения программы и эффективность.