ACA Healthcare Enrollments Across States

Analyze Influencers, Trends, and Predictions of ACA Healthcare Plan Enrollments

Jie Shen June, 2024

Content

- Problem Statement
- Executive Summary
- Related Work
- Proposed Work
- Evaluation
- Timeline & Discussion
- Conclusion & Future Work

Problem Statement 1

What is the problem? Why it's important?

- High healthcare costs per GDP in U.S.
- Enrollment is a critical metric in healthcare
 - Impacting risk pool size
 - Reflect Insurance accessibility

Problem Statement 2

Project Aims:

- Discover trends and patterns of enrollments and identify key factors influencing these patterns
- Investigate the main contributors and correlated features of enrollment to understand what drives changes in enrollment numbers
- Build models to predict 2022 enrollment counts

Executive Summary

Key Enrollment Trends and Patterns

- Enrollment numbers vary significantly across different states.
- Enrollments under different issuers are highly right-skewed.

Main Contributors and Correlated Features

- Prior year enrollments
- Premiums
- Issuer
- County-wise total enrollments

- Length of consumer stays
- Federal Poverty Level (FPL) ratio
- Age ratio
- Smoker ratio

Model Predictions

Tree models, MAE, cross-validation, feature importance

Related Work

- Enhancement of healthcare: ATHLOS project [2]
- Information from medical text records: Extraction of disease factors
 from medical text project [3]
- Anomaly Detection: Machine Learning Techniques Applied to Data Analysis and Anomaly Detection in EGG Signals Project [4]
- My Work: Inspired by prior work but unique angle healthcare enrollment

Proposed Work 1 - Data Sources & Data Integration

Data Sources

- 2017-2022 Issuer level enrollment data & 2024 QHP Avg. family premium
- All from ACA (know as Obama Care) healthcare plans from CMS.gov (U.S. Centers for Medicare & Medicaid Services)

Data Integration:

- Merge 7 data sources (6 year enrollment data & 1 premium data)
- Inconsistencies in data fields across data files (Ex: "2020" vs. "02020" vs. "2020.0")
- Data methodology change: 'Ever Enrolled' changed to 'Avg. Monthly Enrolled after 2020

Proposed Work 2 - Data Warehouse & Missing Values

Data Warehouse

- Data for EDA: Added "year" column to analyze trends by stacking yearly data, aggregated at state and year levels
- Data for Prediction: Treated each year as separate features

Missing values:

- From 2 Sources: Individual data & data integration
- In EDA: Not to fill to ensuring accurate analysis
- In Prediction: Model cannot accept . First fill with state averages, then deleted rows with entirely missing state data
- o In Aggregation: zero vs. missing values treated differently in avg. calulation

Proposed Work 3 - Enrollment State-wise Variations

Enrollments varies a lots across states:

- 2022 Avg. state enrollments range from ~200 to ~10,000
- 2022 Total state enrollments range from ~20,000 to ~2.5 million

• 2022 Top 5 Highest states

- Avg DE,FL, AZ, UT, TX
- Total FL, TX, GA, NC, IL

• 2022 Top 5 lowest states

- Avg SD, IA, NE, ND, WV
- Total DE, ND, AK, WV, HI

2022 Avg. State-wise Enrollments

Proposed Work 4 - Enrollment Trends Over Years

- Both state average and state total enrollments remain relatively stable across yrs.
- Similar patterns observed across all years with slight changes
- There are some states having enrollments in one year but not in another (Ex: NV, NE, PA, NJ in 2017 but not in 2022)

2017 Avg. State-wise Enrollments

Proposed Work 5 - Enrollments Under Issuers

- Distributions of total enrollments under issuers are quite right-skewed across all years
- Many around 15,000 enrollments.
- Outliers with enrollments above 700,000.
- Quartiles: 25% (~4,300), Median (~14,000), 75% (~45,000), Maximum (~750,000).

Proposed Work 6 - Factors Influencing Enrollments & Correlations

- **Prior year enrollments**: strongly influence, especially recent years
- Premiums: low enrollment states usually have high avg. premiums
- Avg. months consumers stay: Neg. Spearman correlation of -0.3
- Demographic (Spearman) Correlations with Enrollment:
 - Age Ratios: positive correlation with young ages 17 (0.32), 18-34 (0.49); negative correlation with older ages 35-54 (-0.25), and 55+ (-0.24).
 - Smoker Ratios: positive correlation (0.41).
 - Percent FPL Ratios: positive correlation for FPL < 138 (0.22) and FPL 400+ (0.25)*; negative for FPL 138-250 (-0.3).

^{*}A little unexpected and may need more investigation

Proposed Work 7 - Model Selection

- Based on data, tree based models are chosen:
 - nonlinearity
 - relevant vs. irrelevant of features
 not obvious
- Random Forest, Gradient Boost,
 XGBoost (no scaling, insensitive to outliers, relatively insensitive to label encoding)

Scatter plot sample of a few features to dependent variable -2022 enrollment

Evaluation 1

- Parameter Tuning: Cross-validation and random search (with mostly numerical field, deep trees and large bin numbers work better)
- Evaluation metric: MAE (for regression, intuitive interpretation and resilience to outliers)
- Evaluation Results: Random Forest outperformed the others

Evaluation 2

Why Random Forest outperformed?

- Less hyperparameter to tune
- Simpler and less overfitting

Random Forest predicted vs. actual

Pred			to best- State	
	State			Percentage_Error
29	AZ	8733.285714	3757.739286	0.569722
2	NE	248.904762	333.136508	0.338410
9	KS	152.152542	200.780508	0.319600
28	TX	1983.327731	2496.022479	0.258502
7	SD	242.153846	296.169231	0.223062
26	UT	1274.590909	1523.411364	0.195216
11	OH	498.585366	591.488110	0.186333
22	IL	1496.687500	1287.935938	0.139476
20	OK	925.156250	1054.071875	0.139345
15	WY	792.357143	684.966071	0.135534
5	MT	305.750000	270.274432	0.116028
18	MI	555.562500	616.153906	0.109063
10	MS	394.955556	431.933333	0.093625
19	GA	639.721739	677.207826	0.058597
14	TN	474.906977	498.459593	0.049594
21	NC		1468.943611	0.046753
3	AR	289.442623	275.997951	0.046450
0	WV	134.500000	128.280682	0.046240
30	FL	9518.940299	9094.724254	0.044565
13	MO	616.972603	643.002397	0.042190
16	OR	622.300000	645.450000	0.037201
8	AK	1164.333333	1129.275000	0.030110
17	WI	805.095238	828.885714	0.029550
1	LA	945.274510	924.328431	0.022159
4	ND		210.956250	0.019948
6	IA	299.878049	294,282317	0.018660
27	AL		2568.859722	0.017039
24	HI	7750.000000		0.009242
12	IN	357.500000	354.685417	0.007873
23	NH			0.004901
25	SC	2099.405405	2090.147297	0.004410

Random Forest predicted vs. actual

Timeline & Discussion

Week 1

Week 2

Week 3

- Project topic
- Data collection

- Data merging
- Data cleaning
- EDA
- Quick modeling

- Modeling
- Evaluation

 Lots of time was spent on data collection, data integration, data cleaning, data sanity check, and data warehousing/arrangement

Now in week 3 and everything is on track!

Conclusion & Future Work

• Conclusion:

- Findings: enrollment pattern, trend, and contribution factors
- Prediction

Future work

- Label Encoding: relabeling Issuer ID and County FIPS code
 (based on enrollment avg. similar to state label encoding)
- Healthcare Knowledge: medical code/terminologies/policies

References

- [1] https://www.statista.com/chart/8658/health-spending-per-capita/
- [2] Anagnostou, P., Tasoulis, S., Vrahatis, A. G., Georgakopoulos, S., Prina, M., Ayuso-Mateos, J. L., ... Panagiotakos, D. (2021). Enhancing the Human Health Status Prediction: The ATHLOS Project. *Applied Artificial Intelligence*, *35*(11), 834–856. https://doi.org/10.1080/08839514.2021.1935591
- [3] Liu, R. L., Tung, S. Y., & Lu, Y. L. (2015). Extraction of Disease Factors from Medical Texts. *Applied Artificial Intelligence*, 29(1), 49–65. https://doi.org/10.1080/08839514.2014.962281
- [4] Andrysiak, T. (2016). Machine Learning Techniques Applied to Data Analysis and Anomaly Detection in ECG Signals. *Applied Artificial Intelligence*, 30(6), 610–634. https://doi.org/10.1080/08839514.2016.1193720