目 录

第八章 向]量代数与空间解析几何
第一节	向量及其线性运算1
	一、向量的概念(1) 二、向量的线性运算(2) 三、空间直角坐标系(6)
	四、利用坐标作向量的线性运算(8) 五、向量的模、方向角、投影(9)
	习题 8-1(13)
第二节	数量积 向量积 * 混合积14
	一、两向量的数量积(14) 二、两向量的向量积(17) *三、向量的混合
	积(20) 习题 8-2(23)
第三节	平面及其方程 23
	一、曲面方程与空间曲线方程的概念(23) 二、平面的点法式方程(24)
	三、平面的一般方程(26) 四、两平面的夹角(27) 习题 8-3(29)
第四节	空间直线及其方程 30
	一、空间直线的一般方程(30) 二、空间直线的对称式方程与参数方
	程(30) 三、两直线的夹角(32) 四、直线与平面的夹角(33)
	五、杂例(33) 习题 8-4(36)
第五节	曲面及其方程 37
	一、曲面研究的基本问题(37) 二、旋转曲面(38) 三、柱面(40)
	四、二次曲面(41) 习题 8-5(44)
第六节	空间曲线及其方程 45
	一、空间曲线的一般方程(45) 二、空间曲线的参数方程(46) 三、空
	间曲线在坐标面上的投影(49) 习题 8-6(51)
	51
	5元函数微分法及其应用 ····································
第一节	多元函数的基本概念 54
	一、平面点集 *n 维空间(54) 二、多元函数的概念(57) 三、多元函数的
<i>ii</i>	极限(60) 四、多元函数的连续性(62) 习题 9-1(64)
第二节	偏导数
tele II.	一、偏导数的定义及其计算法(65) 二、高阶偏导数(69) 习题 9-2(71)
第三节	
	一、全微分的定义(72) *二、全微分在近似计算中的应用(75)
	习题 9 – 3(77)

第四节	多元复合函数的求导法则	78
	习题 9-4(84)	
第五节	隐函数的求导公式	86
	一、一个方程的情形(86) 二、方程组的情形(88) 习题 9-5(91)	
第六节	多元函数微分学的几何应用	92
	一、一元向量值函数及其导数(92) 二、空间曲线的切线与法平面(96)	
š	三、曲面的切平面与法线(100) 习题 9-6(102)	
第七节	方向导数与梯度	103
	一、方向导数(103) 二、梯度(106) 习题 9-7(111)	
第八节	多元函数的极值及其求法	111
	一、多元函数的极值及最大值与最小值(111) 二、条件极值 拉格朗	
	日乘数法(116) 习题 9-8(121)	
*第九节	二元函数的泰勒公式	122
	一、二元函数的泰勒公式(122) 二、极值充分条件的证明(125)	
	* 习题 9 - 9(127)	
*第十节	最小二乘法	127
	・ 习题 9 - 10(132)	
总习题九		132
第十章 重	积分	135
第一节	二重积分的概念与性质	135
	一、二重积分的概念(135) 二、二重积分的性质(138) 习题 10-1(139)	
第二节	二重积分的计算法	140
	一、利用直角坐标计算二重积分(141) 二、利用极坐标计算二重	
	积分(147) *三、二重积分的换元法(152) 习题 10-2(156)	
第三节	三重积分	160
	一、三重积分的概念(160) 二、三重积分的计算(161) 习题 10-3(166)	
第四节	重积分的应用	168
	一、曲面的面积(168) 二、质心(172) 三、转动惯量(174)	
	四、引力(176) 习题 10-4(177)	
*第五节	含参变量的积分	179
	* 习题 10 - 5(184)	
总习题十	•	185
第十一章	曲线积分与曲面积分	188
第一节	对弧长的曲线积分	188
	一、对弧长的曲线积分的概念与性质(188) 二、对弧长的曲线积分	
	的计算法(190) 习题 11-1(193)	

	第二节	对坐标的曲线积分	194
		一、对坐标的曲线积分的概念与性质(194) 二、对坐标的曲线积分	
		的计算法(197) 三、两类曲线积分之间的联系(202) 习题 11-2(203)	
	第三节	格林公式及其应用	204
		一、格林公式(204) 二、平面上曲线积分与路径无关的条件(208)	
		三、二元函数的全微分求积(211) *四、曲线积分的基本定理(215)	
		习题 11-3(216)	
	第四节	对面积的曲面积分	218
		一、对面积的曲面积分的概念与性质(218) 二、对面积的曲面积分	
		的计算法(219) 习题 11-4(222)	
	第五节	对坐标的曲面积分	223
		一、对坐标的曲面积分的概念与性质(223) 二、对坐标的曲面积分	
		的计算法(227) 三、两类曲面积分之间的联系(229) 习题 11-5(231)	
	第六节	高斯公式 * 通量与散度	232
		一、高斯公式(232) *二、沿任意闭曲面的曲面积分为零的条件(236)	
		*三、通量与散度(237) 习题 11-6(239)	
	第七节	斯托克斯公式 * 环流量与旋度	240
		一、斯托克斯公式(240) *二、空间曲线积分与路径无关的条件(244)	
		*三、环流量与旋度(246) 习题 11-7(248)	
	总习题十	<u> </u>	249
第	十二章	无穷级数	251
	第一节	常数项级数的概念和性质	251
		一、常数项级数的概念(251) 二、收敛级数的基本性质(254)	
		*三、柯西审敛原理(257) 习题 12-1(258)	
	第二节	常数项级数的审敛法	259
		一、正项级数及其审敛法(259) 二、交错级数及其审敛法(265)	
		三、绝对收敛与条件收敛(266) *四、绝对收敛级数的性质(268)	
		习题 12-2(271)	
	第三节	幂级数	272
		一、函数项级数的概念(272) 二、幂级数及其收敛性(273) 三、幂	
		级数的运算(278) 习题 12-3(281)	
	第四节	函数展开成幂级数	282
		习题 12-4(289)	
	第五节	函数的幂级数展开式的应用	290
		一、近似计算(290) 二、微分方程的幂级数解法(294) 三、欧拉公式(29	97)
		习题 12-5(298)	

*	第六节	函数项级数的一致收敛性及一致收敛级数的基本性质	299
		一、函数项级数的一致收敛性(299) 二、一致收敛级数的基本	
		性质(303) * 习题 12 - 6(307)	
	第七节	傅里叶级数	307
		一、三角级数 三角函数系的正交性(308) 二、函数展开成傅里	
		叶级数(310) 三、正弦级数和余弦级数(315) 习题 12-7(320)	
	第八节	一般周期函数的傅里叶级数	321
		一、周期为21的周期函数的傅里叶级数(321) *二、傅里叶级数的	
		复数形式(325) 习题 12-8(327)	
	总习题十	<u> </u>	327
习	题答案与	提示	330