Package 'Rgof'

October 21, 2024

Title 1d Goodness of Fit Tests
Version 2.1.1
Description Routines that allow the user to run a large number of goodness-of-fit tests. It allows for data to be continuous or discrete. It includes routines to estimate the power of the tests and display them as a power graph.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.1
LinkingTo Rcpp
Imports Rcpp, parallel, ggplot2, stats
Suggests rmarkdown, knitr
VignetteBuilder knitr
NeedsCompilation yes
Author Wolfgang Rolke [aut, cre] (https://orcid.org/0000-0002-3514-726X)
Maintainer Wolfgang Rolke <wolfgang.rolke@upr.edu></wolfgang.rolke@upr.edu>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2024-10-21 14:20:02 UTC
Contents
check.functions 2 chi_power_cont 2 chi_power_disc 4 chi_test_cont 5 chi_test_disc 6 gof_power 7 gof_power_cont 9 gof_power_disc 10 gof_test 11 gof_test_adjusted_pvalue 13

2 chi_power_cont

	gof_test_cont	
	gof_test_cont_adj	16
	gof_test_disc	
	gof_test_disc_adj	18
	make_bins_cont	19
	make_bins_disc	20
	plot_power	21
	signif.digits	21
Index		22

check.functions

This function checks whether the inputs have the correct format

Description

This function checks whether the inputs have the correct format

Usage

```
check.functions(pnull, rnull, phat = function(x) -99, vals, x)
```

Arguments

pnull	cdf under the null hypothesis
rnull	routine to generate data under the null hypothesis
phat	=function(x) -99, function to estimate parameters from the data, or -99
vals	vector of discrete values
x	data

chi_power_cont	This function finds the power of various chi-square tests for continuous
	data

Description

This function finds the power of various chi-square tests for continuous data

chi_power_cont 3

Usage

```
chi_power_cont(
  pnull,
  ralt,
  param_alt,
  qnull = NA,
  phat = function(x) -99,
  w = function(x) -99,
  alpha = 0.05,
  Range = c(-99999, 99999),
  B = 1000,
  nbins = c(50, 10),
  rate = 0,
  minexpcount = 5,
  ChiUsePhat = TRUE
)
```

Arguments

pnull	function to find cdf under null hypothesis
ralt	function to generate data under alternative hypothesis
param_alt	vector of parameter values for distribution under alternative hypothesis
qnull	=NA function to find quantiles under null hypothesis, if available
phat	=function(x) -99, function to estimate parameters
w	=function(x) -99, optional weight function
alpha	=0.05, the level of the hypothesis test
Range	=c(-99999, 99999) limits of possible observations, if any
В	=1000 number of simulation runs to find power
nbins	=c(50,10), number of bins for chi square tests
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
minexpcount	=5 minimal expected bin count required
ChiUsePhat	=TRUE, if TRUE param is estimated parameters and no minimization is used

Value

A numeric matrix of power values.

chi_power_disc

chi_power_disc This function finds the power of various chi-square tests for continuous data	
--	--

Description

This function finds the power of various chi-square tests for continuous data

Usage

```
chi_power_disc(
  pnull,
  ralt,
  param_alt,
  phat = function(x) -99,
  alpha = 0.05,
  B = 1000,
  nbins = c(50, 10),
  rate = 0,
  minexpcount = 5,
  ChiUsePhat = TRUE
)
```

Arguments

pnull	function to find cdf under null hypothesis
ralt	function to generate data under alternative hypothesis
param_alt	vector of parameter values for distribution under alternative hypothesis
phat	= $function(x)$ -99, routine to estimate parameters
alpha	=0.05, the level of the hypothesis test
В	=1000 number of simulation runs to find power
nbins	=c(50,10), number of bins for chi square tests
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
minexpcount	=5 minimal expected bin count required
ChiUsePhat	= TRUE, should chi square use minimum chi square method?

Value

A numeric matrix of power values.

chi_test_cont 5

chi_test_cont	This function performs a number of chi-square gof tests for continuous data
---------------	---

Description

This function performs a number of chi-square gof tests for continuous data

Usage

```
chi_test_cont(
    x,
    pnull,
    w = function(x) -99,
    phat = function(x) -99,
    qnull = NA,
    nbins = c(50, 10),
    rate = 0,
    Range = c(-99999, 99999),
    minexpcount = 5,
    ChiUsePhat = TRUE,
    allbins
)
```

Arguments

X	data set
pnull	cdf under the null hypothesis
W	function to find weights of observations, returns -99 if data is unweighted
phat	= $function(x)$ -99, estimated parameters, or starting values of multi-D minimum chi square minimization, or -99 if no estimation is done
qnull	=NA quantile function, if available
nbins	=c(50, 10) number of bins for chi-square tests
rate	=0, rate of Poisson if sample size is random
Range	=c(-99999, 99999) limits of possible observations, if any
minexpcount	=5 minimal expected bin count required
ChiUsePhat	=TRUE, if TRUE param is estimated parameters and no minimization is used
allbins	set of bins to use

Value

A numeric matrix of test statistics, degrees of freedom and p.values

6 chi_test_disc

chi_test_disc This function performs a number of chi-square gof tests for continuous data	i_test_disc	
---	-------------	--

Description

This function performs a number of chi-square gof tests for continuous data

Usage

```
chi_test_disc(
    x,
    pnull,
    phat = function(x) -99,
    nbins = c(50, 10),
    rate = 0,
    minexpcount = 5,
    ChiUsePhat = TRUE,
    allbins
)
```

Arguments

Х	data set
pnull	cdf under the null hypothesis
phat	=function(x) -99, function to estimate parameters, or starting values of multi-D minimum chi square minimization, or -99 if no parameters are estimated
nbins	=c(50, 10) number of bins for chi-square tests
rate	=0, rate of Poisson if sample size is random
minexpcount	=5 minimal expected bin count required
ChiUsePhat	= TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.
allbins	set of bins to use

Value

A numeric matrix of test statistics, degrees of freedom and p.values

gof_power 7

gof_power

Find the power of various gof tests for continuous data.

Description

Find the power of various gof tests for continuous data.

Usage

```
gof_power(
  pnull,
  vals = NA,
  rnull,
  ralt,
  param_alt,
  w = function(x) -99,
  phat = function(x) -99,
  TS,
  TSextra = NA,
  alpha = 0.05,
  Range = c(-Inf, Inf),
  B = c(1000, 1000),
  nbins = c(50, 10),
  rate = 0,
  maxProcessors,
  minexpcount = 5,
  ChiUsePhat = TRUE
)
```

pnull	function to find cdf under null hypothesis
vals	=NA, values of rv, if data is discrete, NA if data is continuous
rnull	function to generate data under null hypothesis
ralt	function to generate data under alternative hypothesis
param_alt	vector of parameter values for distribution under alternative hypothesis
W	(Optional) function to calculate weights, returns -99 if no weights
phat	= $function(x)$ -99 function to estimate parameters from the data, or -99
TS	user supplied function to find test statistics
TSextra	=NA, list provided to TS
alpha	=0.05, the level of the hypothesis test
Range	=c(-Inf, Inf) limits of possible observations, if any
В	=c(1000, 1000), number of simulation runs to find power and null distribution

8 gof_power

nbins =c(100,10), number of bins for chi square tests.

rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed

maxProcessors maximum of number of processors to use, 1 if no parallel processing is needed

or number of cores-1 if missing

minexpcount =5 minimal expected bin count required

ChiUsePhat = TRUE, if TRUE param is estimated parameter, otherwise minimum chi square

method is used.

Value

A numeric matrix of power values.

Examples

```
# Power of tests when null hypothesis specifies the standard normal distribution but
# true data comes from a normal distribution with mean different from 0.
pnull = function(x) pnorm(x)
rnull = function() rnorm(50)
ralt = function(mu) rnorm(50, mu)
TSextra = list(qnull=function(x) qnorm(x))
gof_power(pnull, NA, rnull, ralt, c(0.25, 0.5), TSextra=TSextra, B=c(500, 500))
# Power of tests when null hypothesis specifies normal distribution and
# mean and standard deviation are estimated from the data.
# Example is not run because it takes several minutes.
# true data comes from a normal distribution with mean different from 0.
pnull = function(x, p=c(0, 1)) pnorm(x, p[1], ifelse(p[2]>0.001, p[2], 0.001))
rnull = function(p=c(0, 1)) rnorm(50, p[1], ifelse(p[2]>0.001, p[2], 0.001))
phat = function(x) c(mean(x), sd(x))
TSextra = list(qnull = function(x, p=c(0, 1)) qnorm(x, p[1],
               ifelse(p[2]>0.001, p[2], 0.001)))
gof_power(pnull, NA, rnull, ralt, c(0, 1), phat=phat, TSextra=TSextra,
          B=c(200, 200), maxProcessor=2)
# Power of tests when null hypothesis specifies Poisson rv with rate 100 and
# true rate is 100.5
vals = 0:250
pnull = function() ppois(0:250, 100)
rnull =function () table(c(0:250, rpois(1000, 100)))-1
ralt =function (p) table(c(0:250, rpois(1000, p)))-1
gof_power(pnull, vals, rnull, ralt, param_alt=100.5, B=c(500,500))
# Power of tests when null hypothesis specifies a Binomial n=10 distribution
# with the success probability estimated
pnull=function(p) pbinom(0:10, 10, ifelse(0<p&p<1, p, 0.001))</pre>
rnull=function(p) table(c(0:10, rbinom(1000, 10, ifelse(0<p&p<1, p, 0.001))))-1
ralt=function(p) table(c(0:10, rbinom(1000, 10, p)))-1
phat=function(x) mean(rep(0:10,x))/10
gof_power(pnull, vals, rnull, ralt, c(0.5, 0.6), phat=phat,
                    B=c(200, 200), maxProcessor=2)
```

gof_power_cont 9

gof_power_cont

Find the power of various gof tests for continuous data.

Description

Find the power of various gof tests for continuous data.

Usage

```
gof_power_cont(
  pnull,
  rnull,
  ralt,
  param_alt,
  w = function(x) -99,
  phat = function(x) -99,
  TS,
  TSextra = NA,
  alpha = 0.05,
  Range = c(-Inf, Inf),
  B = c(1000, 1000),
  nbins = c(100, 10),
  rate = 0,
  maxProcessors,
  minexpcount = 5,
  ChiUsePhat = TRUE
)
```

pnull	function to find cdf under null hypothesis
rnull	function to generate data under null hypothesis
ralt	function to generate data under alternative hypothesis
param_alt	vector of parameter values for distribution under alternative hypothesis
W	(Optional) function to calculate weights, returns -99 if no weights
phat	= $function(x)$ -99, function to estimate parameters from the data, or -99 if no parameters aare estimated
TS	user supplied function to find test statistics, if any
TSextra	=NA, list provided to TS
alpha	=0.05, the level of the hypothesis test
Range	=c(-Inf, Inf) limits of possible observations, if any
В	=c(1000, 1000), number of simulation runs to find power and null distribution
nbins	=c(100,10), number of bins for chi square tests.

10 gof_power_disc

rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed

maxProcessors maximum of number of processors to use, 1 if no parallel processing is needed

or number of cores-1 if missing

minexpcount =5 minimal expected bin count required

ChiUsePhat =TRUE, if TRUE param is estimated parameter, otherwise minimum chi square

method is used.

Value

A numeric matrix of power values.

gof_power_disc

Find the power of various gof tests for discrete data.

Description

Find the power of various gof tests for discrete data.

Usage

```
gof_power_disc(
 pnull,
  rnull,
  vals,
  ralt,
 param_alt,
 phat = function(x) -99,
 TS,
  TSextra = NA,
  alpha = 0.05,
 B = c(1000, 1000),
  nbins = c(100, 10),
  rate = 0,
 maxProcessors,
 minexpcount = 5,
 ChiUsePhat = TRUE
)
```

Arguments

pnull cumulative distribution function under the null hypothesis

rnull a function to generate data under null hypothesis

vals values of discrete rv.

ralt function to generate data under alternative hypothesis

param_alt vector of parameter values for distribution under alternative hypothesis

gof_test 11

phat =function(x) -99, function to estimate parameters from the data, -99 if no parameters are estimated.

rameters are estimated

TS user supplied function to find test statistics, if any

TSextra =NA, list passed to TS, if desired alpha =0.05, the level of the hypothesis test

=c(1000, 1000), number of simulation runs to find power and null distribution

nbins =c(100, 10) number of bins for chi square tests

rate of Poisson if sample size is random

maxProcessors maximum of number of processors to use, 1 if no parallel processing is needed

or number of cores-1 if missing

minexpcount =5 minimal number of expected counts in each bin for chi square tests

ChiUsePhat = TRUE, if TRUE param is estimated parameter, otherwise minimum chi square

method is used.

Value

A numeric matrix of power values.

gof_test

This function performs a number of gof tests

Description

This function performs a number of gof tests

Usage

```
gof_test(
  х,
  vals = NA,
 pnull,
  rnull,
 w = function(x) -99,
 phat = function(x) -99,
  TS,
 TSextra = NA,
  nbins = c(50, 10),
  rate = 0,
 Range = c(-Inf, Inf),
 B = 5000,
 minexpcount = 5,
 ChiUsePhat = TRUE,
 maxProcessors = 1,
  doMethods = "all"
)
```

gof_test

Arguments

Х	data set	
vals	=NA, values of discrete RV, or NA if data is continuous	
pnull	cdf under the null hypothesis	
rnull	routine to generate data under the null hypothesis	
W	(Optional) function to calculate weights, returns -99 if no weights	
phat	= $function(x)$ -99, function to estimate parameters from the data, or -99 if no parameters are estimated	
TS	user supplied function to find test statistics, if any	
TSextra	=NA, list passed to TS, if desired, or NA	
nbins	=c(100, 10) number of bins for chi-square tests	
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed	
Range	=c(-Inf, Inf) limits of possible observations, if any, for chi-square tests	
В	=5000 number of simulation runs	
minexpcount	=5 minimal expected bin count required	
ChiUsePhat	= TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.	
maxProcessors	=1, number of processors to use in parallel processing.	
doMethods	Methods to include in tests	

Value

A list with vectors of test statistics and p.values

Examples

```
# Tests to see whether data comes from a standard normal distribution.
pnull = function(x) pnorm(x)
rnull = function() rnorm(100)
x = rnorm(100)
gof_test(x, NA, pnull, rnull)
# Tests to see whether data comes from a normal distribution with standard deviation 1
# and the mean estimated.
pnull=function(x, m) pnorm(x, m)
rnull=function(m) rnorm(100, m)
TSextra = list(qnull=function(x, m=0) qnorm(x, m),
         pnull=function(x, m=0) pnorm(x, m), phat=function(x) mean(x))
phat=function(x) mean(x)
x = rnorm(100, 1, 2)
gof_test(x, NA, pnull, rnull, phat=phat, TSextra=TSextra)
# Tests to see whether data comes from a binomial (10, 0.5) distribution.
vals=0:10
pnull = function() pbinom(0:10, 10, 0.5)
rnull = function() table(c(0:10, rbinom(1000, 10, 0.5)))-1
x = rnull()
```

```
gof_test_adjusted_pvalue
```

This function performs a number of gof tests and finds the adjusted p value for the combined test

Description

This function performs a number of gof tests and finds the adjusted p value for the combined test

Usage

```
gof_test_adjusted_pvalue(
  vals = NA,
  pnull,
  rnull,
 w = function(x) -99,
  phat = function(x) -99,
  TS,
  TSextra = NA,
  nbins = c(50, 10),
  rate = 0,
  Range = c(-Inf, Inf),
 B = c(5000, 1000),
 minexpcount = 5,
  ChiUsePhat = TRUE,
  doMethods
)
```

X	data set
vals	=NA, values of discrete RV, or NA if data is continuous
pnull	cdf under the null hypothesis
rnull	routine to generate data under the null hypothesis
W	(Optional) function to calculate weights, returns -99 if no weights

phat =function(x) -99, function to estimate parameters from the data, or -99 if no

parameters are estimated

TS user supplied function to find test statistics, if any

TSextra =NA, list passed to TS, if desired, or NA

nbins =c(100, 10) number of bins for chi-square tests

rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed Range =c(-Inf, Inf) limits of possible observations, if any, for chi-square tests

B =c(5000,1000) number of simulation runs for individual and for adjusted p val-

ues

minexpcount =5 minimal expected bin count required

ChiUsePhat = TRUE, if TRUE param is estimated parameter, otherwise minimum chi square

method is used.

doMethods Methods to include in tests

Value

None

Examples

```
# Tests to see whether data comes from a standard normal distribution.
pnull = function(x) pnorm(x)
rnull = function() rnorm(100)
x = rnorm(100)
gof_test_adjusted_pvalue(x, NA, pnull, rnull, B=c(1000, 200))
# Tests to see whether data comes from a normal distribution with standard deviation 1
# and the mean estimated.
pnull=function(x, m) pnorm(x, m)
rnull=function(m) rnorm(100, m)
TSextra = list(qnull=function(x, m=0) qnorm(x, m),
          pnull=function(x, m=0) pnorm(x, m), phat=function(x) mean(x))
phat=function(x) mean(x)
x = rnorm(100, 1, 2)
gof_test_adjusted_pvalue(x, NA, pnull, rnull, phat=phat, TSextra=TSextra, B=c(1000, 200))
# Tests to see whether data comes from a binomial (10, 0.5) distribution.
vals=0:10
pnull = function() pbinom(0:10, 10, 0.5)
rnull = function() table(c(0:10, rbinom(1000, 10, 0.5)))-1
x = rnull()
gof_test_adjusted_pvalue(x, vals, pnull, rnull, B=c(1000, 200))
# Tests to see whether data comes from a binomial distribution with
# the success probability estimated from the data.
pnull = function(p=0.5) pbinom(0:10, 10, ifelse(p>0&&p<1, p, 0.001))</pre>
rnull = function(p=0.5) table(c(0:10, rbinom(1000, 10,
                  ifelse(p>0&&p<1, p, 0.001))))-1
phat=function(x) mean(rep(0:10,x))/10
gof_test_adjusted_pvalue(x, vals, pnull, rnull, phat=phat, B=c(1000, 200))
```

gof_test_cont 15

gof_test_cont

This function performs a number of gof tests for continuous data

Description

This function performs a number of gof tests for continuous data

Usage

```
gof_test_cont(
  Х,
  pnull,
  rnull,
  w = function(x) -99,
  phat = function(x) -99,
  TS,
  TSextra = NA,
  nbins = c(50, 10),
  rate = 0,
  Range = c(-Inf, Inf),
  B = 5000,
  minexpcount = 5,
  ChiUsePhat = TRUE,
  maxProcessors = 1,
  doMethods = "all"
)
```

x	data set	
pnull	cdf under the null hypothesis	
rnull	routine to generate data under the null hypothesis	
W	(Optional) function to calculate weights, returns -99 if no weights	
phat	=function(x) -99, function to estimate parameters from the data, or -99 if no parameters aare estimated	
TS	user supplied function to find test statistics, if any	
TSextra	=NA, list passed to TS, if desired	
nbins	=c(50, 10) number of bins for chi-square tests	
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed	
Range	=c(-Inf, Inf) limits of possible observations, if any, for chi-square tests	
В	=5000 number of simulation runs	
minexpcount	=5 minimal expected bin count required	
ChiUsePhat	=TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.	

gof_test_cont_adj

maxProcessors =1, number of processors to use in parallel processing. If missing single proces-

sor is used.

doMethods Methods to include in tests

Value

A list with vectors of test statistics and p.values

 $gof_test_cont_adj$ This function performs a number of gof tests for continuous data and finds the adjusted p value

Description

This function performs a number of gof tests for continuous data and finds the adjusted p value

Usage

```
gof_test_cont_adj(
  Х,
  pnull,
  rnull,
 w = function(x) -99,
 phat = function(x) 0,
  TS,
  TSextra = NA,
  nbins = c(50, 10),
  rate = 0,
  Range = c(-Inf, Inf),
 B = c(5000, 1000),
 minexpcount = 5,
 ChiUsePhat = TRUE,
  doMethods = c("W", "ZC", "AD", "ES-s-P")
)
```

x	data set
pnull	cdf under the null hypothesis
rnull	routine to generate data under the null hypothesis
W	(Optional) function to calculate weights, returns -99 if no weights
phat	=function(x) -99, function to estimate parameters from the data, or -99 if no parameters aare estimated
TS	user supplied function to find test statistics, if any
TSextra	=NA, list passed to TS, if desired

gof_test_disc 17

nbins =c(50, 10) number of bins for chi-square tests

rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed

Range =c(-Inf, Inf) limits of possible observations, if any, for chi-square tests

B =c(5000,1000) number of simulation runs for p values and for p value distribution

minexpcount =5 minimal expected bin count required

ChiUsePhat =TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.

doMethods Methods to include in tests

Value

None

gof_test_disc

This function performs a number of gof tests for discrete data.

Description

This function performs a number of gof tests for discrete data.

Usage

```
gof_test_disc(
  Х,
 pnull,
  rnull,
  vals,
  phat = function(x) -99,
 TS,
 TSextra = NA,
  nbins = c(50, 10),
  rate = 0,
 B = 5000,
 minexpcount = 5,
 ChiUsePhat = TRUE,
 maxProcessors = 1,
 doMethods = "Default"
)
```

Arguments

x data set (the counts)
pnull cumulative distribution function under the null hypothesis
rnull routine to generate data under the null hypothesis

gof_test_disc_adj

vals a vector of values of discrete random variables

phat =function(x) -99, function to estimate parameters from the data, or -99 if no

parameters aare estimated

TS =NA, user supplied function to find test statistics

TSextra =NA, list passed to TS, if desired

nbins =c(50, 10) number of bins for chi-square tests

rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed

B =5000 number of simulation runs

minexpcount =5 minimal expected bin count required

ChiUsePhat = TRUE, if TRUE param is estimated parameter, otherwise minimum chi square

method is used.

maxProcessors =1, number of processors to use in parallel processing. If missing single proces-

sor is used.

doMethods Methods to include in tests

Value

A numeric matrix of test statistics and p.values

gof_test_disc_adj This function performs a number of gof tests for discrete data and finds the adjusted p value

Description

This function performs a number of gof tests for discrete data and finds the adjusted p value

Usage

```
gof_test_disc_adj(
    x,
    pnull,
    rnull,
    vals,
    phat = function(x) -99,
    TS,
    TSextra = NA,
    nbins = c(50, 10),
    rate = 0,
    B = c(5000, 1000),
    minexpcount = 5,
    ChiUsePhat = TRUE,
    doMethods = c("Wassp1", "W", "AD", "s-P")
)
```

make_bins_cont 19

Arguments

X	data set (the counts)
pnull	cumulative distribution function under the null hypothesis
rnull	routine to generate data under the null hypothesis
vals	a vector of values of discrete random variables
phat	= $function(x)$ -99, function to estimate parameters from the data, or -99 if no parameters aare estimated
TS	=NA, user supplied function to find test statistics
TSextra	=NA, list passed to TS, if desired
nbins	=c(50, 10) number of bins for chi-square tests
rate	=0 rate of Poisson if sample size is random, 0 if sample size is fixed
В	=c(5000, 1000) number of simulation runs for p values and for adjusted p value
minexpcount	=5 minimal expected bin count required
ChiUsePhat	= TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.
doMethods	Methods to include in tests

Value

A numeric matrix of test statistics and p.values

make_bins_cont This function creates several type of bins for continuous data

Description

This function creates several type of bins for continuous data

Usage

```
make_bins_cont(
    x,
    pnull,
    qnull = NA,
    phat = function(x) -99,
    DataBased = FALSE,
    nbins = c(50, 10),
    minexpcount = 5,
    Range = c(-99999, 99999)
)
```

20 make_bins_disc

Arguments

Χ data set cdf under the null hypothesis pnull =NA quantile function, if available qnull =function(x) -99 parameters for pnull phat DataBased =FALSE bins based on data, not expected counts nbins =c(50, 10) number of bins =5 smallest expected count per bin minexpcount Range =c(-99999, 99999) limits of possible observations, if any

Value

A list of bins and bin probabilities

make_bins_disc This function creates several types of bins for discrete data

Description

This function creates several types of bins for discrete data

Usage

```
make_bins_disc(
    x,
    pnull,
    phat = function(x) -99,
    nbins = c(50, 10),
    minexpcount = 5
)
```

Arguments

x counts

pnull cumulative distribution function

phat =function(x) -99, function to estimated parameters, or -99

nbins =c(50, 10) number of bins

minexpcount =5 smallest expected count per bin

Value

A list of indices

plot_power 21

plot_power	This function draws the power graph, with curves sorted by the mean power and smoothed for easier reading.
	power and smootned for easier reading.

Description

This function draws the power graph, with curves sorted by the mean power and smoothed for easier reading.

Usage

```
plot_power(pwr, xname = " ", title, Smooth = TRUE, span = 0.25)
```

Arguments

pwr a matrix of power values, usually from the twosample_power command

xname Name of variable on x axis title (Optional) title of graph

Smooth =TRUE lines are smoothed for easier reading span =0.25bandwidth of smoothing method

Value

plt, an object of class ggplot.

signif.digits

This function does some rounding to nice numbers

Description

This function does some rounding to nice numbers

Usage

```
## S3 method for class 'digits'
signif(x, d = 4)
```

Arguments

x a list of two vectors

d =4 number of digits to round to

Value

A list with rounded vectors

Index

```
check.functions, 2
chi_power_cont, 2
chi_power_disc, 4
chi_test_cont, 5
chi_test_disc, 6
gof_power, 7
gof_power_cont, 9
gof_power_disc, 10
gof\_test, 11
{\tt gof\_test\_adjusted\_pvalue}, 13
gof_test_cont, 15
{\tt gof\_test\_cont\_adj}, 16
gof_test_disc, 17
\verb"gof_test_disc_adj", \frac{18}{}
{\tt make\_bins\_cont}, \\ 19
{\tt make\_bins\_disc}, \textcolor{red}{20}
plot_power, 21
\verb|signif.digits|, 21|
```