Kompleksne mreže

8. predavanje

Igre u mrežama (peer utjecaj, odnos mrežne strukture i ponašanja)

Peer utjecaj

- Koje proizvode / usluge kupujemo?
- Koju profesiju izabiremo?
- Koji strani jezik učimo?

• ...

Glavno pitanje

- Kako struktura (društvene) mreže utječe na ponašanje?
 - Ako pojedinac promijeni s kime ima društvenu interakciju, koji će biti utjecaj na njegovo/njezino ponašanje?
 - Inicijalno područje istraživanja u sociologiji, ali danas sve više u ekonomiji i računarstvu

Sadržaj

- Utjecaj cijelog društva na odluke pojedinca
- Utjecaj mrežne strukture na odluke pojedinca
 - Strateške komplementarnosti
 - Strateški supstituti
- Utjecaj dinamike mreže na ponašanje pojedinca

Primjer 1: Utjecaj cijelog društva na odluke pojedinca (1)

- Dvije moguće akcije su označene kao 0 i 1
- Vrijeme napreduje u diskretnim razdobljima $t \in \{1, 2, ...\}$

- Stanje sustava opisuje se brojem pojedinaca koji poduzimaju akciju 1, označeno s s_t , na kraju razdoblja t
- Tranzicija između diskretnih razdoblja: $\Pr(s_{t+1} = s' \mid s_t = s)$

Primjer 1: Utjecaj cijelog društva na odluke pojedinca (2)

Markovljev lanac

- Ravnomjerno nasumično biramo pojedinca koji ažurira svoju akciju na temelju trenutnog broja ljudi u društvu koji poduzimaju akciju 0 ili 1
 - Primjerice, pojedinac odlučuje hoće li otići na plažu ili ne

Ponašanje mrava: imitacija i herdanje [Kirman]

 Kirmanov rad bio je motiviran zapažanjem da mravi imaju tendenciju okupljanja (herd) na izvorima hrane koje iskorištavaju čak i kada imaju izbor nekoliko različitih jednako korisnih izvora

Utjecaj mrežne strukture (1)

- Dok jednostavan Markovljev model društvenih interakcija daje uvid u široke obrasce društvenog ponašanja, ne uključuje mikro-detalje tko s kim komunicira
- Takvi mrežni odnosi mogu imati dubok učinak na proces
- Da bismo uključili umrežene interakcije, potrebna nam je bogatija struktura

6 pojedinaca u društvu

6 pojedinaca u društvenoj mreži

Utjecaj mrežne strukture (2)

- Pojedinci opet biraju između dvije akcije 0 i 1
- Razlika je da sada društveno stanje mora pratiti koji pojedinci poduzimaju koje akcije
 - Društveno stanje je tako n-dimenzionalni vektor x(t), gdje je $x_i(t)$ za $i \in \{1, 2, ...\}$ akcija koju pojedinac i radi u trenutku t
- Interakcija je opisana sw, što je n x n-dimenzionalna matrica, gdje je $w_{ij}=[0,1]$ težina koja opisuje vjerojatnost da je izbor pojedinca i u trenutku t+1 akcija koju je pojedinac j poduzeo u trenutku t

Utjecaj mrežne strukture (3)

• Nadalje, dopustimo vjerojatnost, označenu kao $\varepsilon_i(1)$, da pojedinac i izabere akciju 1 neovisno o stanju sustava i vjerojatnost, označenu kao $\varepsilon_i(0)$, da izabere radnju 0 neovisno o stanju sustava

Tada vrijedi:

$$\Pr(x_i(\mathsf{t}+1)=1\,|\,x(\mathsf{t}))=\varepsilon_i(1)+(1-\varepsilon_i(1)-\varepsilon_i(0))\,\sum_i w_{ij}\,\,x_j(t)$$

Primjer 2: Mreža savjeta među menadžerima [Krackhardt] (1)

Akcija: odlazak u bar nakon posla

Primjer 2: Mreža savjeta među menadžerima [Krackhardt] (2)

- Menadžer s *outdegree* vrijednosti d odabire otići u bar s vjerojatnošću 1/(d+2), a ne otići s vjerojatnošću 1/(d+2), a s preostalom vjerojatnošću d/(d+2) uniformno nasumično odabire jednog od njegovih/njezinih susjeda te zatim odlazi u bar ako je taj susjed otišao u bar prethodni dan
- Ovo vrijedi za sve menadžere, osim za menadžere najviše razine (označene kao čvorovi 2,7, 14, 18 i 21) koji su pristrani prema odlasku u bar
 - Menadžeri najviše razine koriste slično pravilo osim što koriste težine 1/(d+1) i ne postavljaju nikakve težine na radnju 0
- Na temelju ovoga možemo izračunati učestalost kojom će svaki menadžer ići u bar na duge staze

Primjer 2: Mreža savjeta među menadžerima

[Krackhardt] (3)

label	Prob of 1	level	dept.	age	tenure
1	0.667	3	4	33	9.3
2	0.842	2	4	42	19.6
3	0.690	3	2	40	12.8
4	0.666	3	4	33	7.5
5	0.690	3	2	32	3.3
6	0.585	3	1	59	28
7	0.771	1	0	55	30
8	0.676	3	1	34	11.3
9	0.681	3	2	62	5.4
10	0.660	3	3	37	9.3
11	0.656	3	3	46	27
12	0.585	3	1	34	8.9
13	0.680	3	2	48	0.3
14	0.821	2	2	43	10.4
15	0.687	3	2	40	8.4
16	0.651	3	4	27	4.7
17	0.671	3	1	30	12.4
18	0.737	2	3	33	9.1
19	0.685	3	2	32	4.8
20	0.685	3	2	38	11.7
21	0.755	2	1	36	12.5

Utjecaj mrežne strukture na odluke pojedinca: definirajmo kanonski primjer

- Svaki pojedinac bira akciju x_i u $\{0,1\}$
- Nagrada pojedincu ovisi o tome
 - koliko susjeda bira svaku akciju
 - koliko susjeda pojedinac ima
- Razmotrimo slučajeve u kojima nagrada $u_{d_i}(x_i,m_{N_i})$ ovisi samo o $d_i(g)$ i $m_{N_i}(g)$ broju susjeda pojedinca i koji su odabrali akciju 1

Definicija: ekvilibrij

Pitanje:

Definirajte jednom rečenicom pojam ekvilibrija?

Definicija: ekvilibrij (teorija igara)

- ekvilibrij (lat. aequilibrium): ravnoteža, uravnoteženost
- Nashova ravnoteža je situacija u kojoj pojedinci ili igrači nemaju poticaj za promjenu svoje strategije uzimajući u obzir odluke svojih protivnika
- U Nashovoj je ravnoteži optimalna strategija koju je odabrao svaki od sudionika u sukobu ili igri, s obzirom na strategiju koju su odabrali ostali. Drugim riječima, nitko neće ništa dobiti ako odluči promijeniti svoju strategiju pod pretpostavkom da drugi pojedinci ne mijenjaju svoju
- Treba napomenuti da u Nashovoj ravnoteži najveći dobitak nije nužno postignut za sve pojedince ili igrače zajedno. Istina je samo da svaki optimalno reagira na strategiju ostalih. U mnogim slučajevima pojedinci bi željeli postići novu ravnotežu s većom dobiti, ali to ne uspijevaju jer se suočavaju s rizikom da budu izdani

John Nash (1928-2015)

Primjer 3: Jednostavni komplement (1)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to učini najmanje t njegovih/njezinih susjeda

- Nagrada akcije 0: $u_{d_i}(0, m_{N_i}) = 0$
- Nagrada akcije 1: $u_{d_i}(1, m_{N_i}) = -t + m_{N_i}$

Primjer 3: Jednostavni komplement (2)

 Pojedinac i voljan je izabrati akciju 1 ako i samo ako to učini najmanje 2 njegova/njezina susjeda

Primjer 3: Jednostavni komplement (3)

 Pojedinac i voljan je izabrati akciju 1 ako i samo ako to učini najmanje 2 njegova/njezina susjeda

Primjer 3: Jednostavni komplement (4)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to učini najmanje 2 njegova/njezina susjeda

Pitanje:

Je li ovo ekvilibrij?

Primjer 3: Jednostavni komplement (5)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to učini najmanje 2 njegova/njezina susjeda

Primjer 4: Best Shot (1)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to ne učini nijedan od njegovih/njezinih susjeda

• Nagrada akcije 0:
$$u_{d_i}(0, m_{N_i}) = 1$$
 ako $m_{N_i} > 0$ = 0 ako $m_{N_i} = 0$

• Nagrada akcije 1: $u_{d_i}(1, m_{N_i}) = 1 - c$

Primjer 4: Best Shot društveno dobro (2)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to ne učini nijedan od njegovih/njezinih susjeda

Primjer 4: Best Shot društveno dobro (3)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to ne učini nijedan od njegovih/njezinih susjeda

Pitanje:

Je li ovo ekvilibrij?

Primjer 4: Best Shot društveno dobro (4)

• Pojedinac i voljan je izabrati akciju 1 ako i samo ako to ne učini nijedan od njegovih/njezinih susjeda

Ekvilibrij 2

(Strateški) komplementi vs supstituti (1)

- Strateški **komplementi** (za sve d, $m \ge m'$)
 - Povećanje razlike

$$u_d(1,m)-u_d(0,m) \ge u_d(1,m')-u_d(0,m')$$

- Strateški **supstituti** (za sve d, $m \ge m'$)
 - Smanjenje razlike

$$u_d(1,m)-u_d(0,m) \le u_d(1,m')-u_d(0,m')$$

(Strateški) komplementi vs supstituti (2)

Strateški komplementi

 Izbor mojih prijatelja da poduzmu akciju povećava moju relativnu dobit od poduzimanja te akcije (npr. prijatelj uči igrati video igru)

• Strateški supstituti

 Izbor za poduzimanje akcije od strane mojih prijatelja smanjuje moju relativnu nagradu za poduzimanje te akcije (npr. cimer kupuje TV ili frižider)

(Strateški) komplementi vs supstituti (3): primjeri

• Strateški komplementi

- odluke o obrazovanju
 - briga o broju susjeda, pristupu poslovima: uložiti ako to učini barem \boldsymbol{k} susjeda
- pušenje i drugo ponašanje među tinejdžerima, vršnjacima
- usvajanje tehnologije koliko je drugih kompatibilnih
- naučiti jezik
- varanje, doping

• Strateški supstituti

- skupljanje informacija
 - npr. isplata 1 ako je netko u susjedstvu obaviješten, trošak informiranja (c < 1)
- lokalna javna dobra (dijeljivi proizvodi, ...)
- konkurentske tvrtke (oligopol s lokalnim tržištima)

Utjecaj veza u mreži

- Postojanje različitih veza u mreži mijenja ekvilibrij
 - best shot scenarij

Utjecaj dinamike mreže

- Dodavanje nove veze u društvenoj mreži mijenja ekvilibrij
 - best shot scenarij

Utjecaj broja veza u mreži (1)

- Ponašanje pojedinca kao funkcija stupnja čvora (broja veza)
 - Scenarij strateške komplementarnosti

Utjecaj broja veza u mreži (2)

Crveno (mreža koautorstva): Goyal, S., M. van der Leij, and J.-L. Moraga-González (2006). Economics: an emerging small world, Journal of Political Economy

Zeleno (Ijubavna mreža): Bearman, P., J. Moody, and K. Stovel (2004), Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks, University of Chicago

Što kada imamo više od dvije moguće akcije?

[Bramoulle & Kranton]

Želim znati više

- M. Jackson: "Social and Economic Networks" (2008)
 - Poglavlje 9 (Decisions, Behavior, and Games on Networks)