FUNDAMENTOS FÍSICOS DE LA INFOMÁTICA - RELACIÓN DE PROBLEMAS DE PRÁCTICAS

1 La ley de Ohm nos dice que en un circuito cuya resistencia vale "R" la intensidad de corriente "I" está directamente relacionada con la diferencia de potencial "V" a través de la relación I = V/R. Experimentalmente se han encontrado los siguientes valores de intensidad y diferencia de potencial:

$(I \pm \Delta I)$ [mA]	$(V \pm \Delta V)$ [V]
0.27 ± 0.01	$4,18 \pm 0.01$
0.34 ± 0.01	$5,19 \pm 0.01$
$0,40 \pm 0.01$	$6,10 \pm 0.01$
$0,48 \pm 0.01$	$7,32 \pm 0.01$
0.54 ± 0.01	$8,23 \pm 0.01$
$0,60 \pm 0.01$	$9,16 \pm 0.01$
$0,69 \pm 0.01$	$10,42 \pm 0.01$
0.76 ± 0.01	$11,48 \pm 0.01$
0.82 ± 0.01	$12,44 \pm 0.01$
0.89 ± 0.01	$13,46 \pm 0.01$

- a) A partir de los datos de la tabla, calcule el valor medio de la resistencia con su incertidumbre.
- b) Tras realizar la correspondiente regresión lineal obtenemos los siguientes resultados:

Pendiente: $A = (6,67 \cdot 10^{-5} \pm 0,05 \cdot 10^{-5}) \Omega^{-1}$; Ordenada en el origen: $B = (-8 \cdot 10^{-6} \pm 4 \cdot 10^{-6}) A$

A partir de estos datos calcule el valor de R con su incertidumbre. Exprese el resultado adecuadamente.

2 En la práctica de la resistencia interna de una fuente de tensión, la relación entre la diferencia de potencial V medida en el voltímetro y la intensidad I medida en el amperímetro es lineal (y=Ax+B): $V=\varepsilon-Ir$, donde ε es la fem de la fuente y r es su resistencia interna, mientras que la relación de la potencia P con la intensidad es cuadrática ($y=A'x^2+B'x+q'$): $P=IV=\varepsilon I-I^2r$. Al ajustar los datos experimentales obtenidos en el laboratorio a ambas ecuaciones, obtenemos los siguientes resultados:

A=	$(-3,3121212+/-0,0757176) \Omega$	A'=	$(-3,4325758 +/- 0,1510226) \Omega$
B=	(4,1686667 +/- 0,0469815) V	B'=	(4,2713485 +/- 0,1704617) V
		<i>q</i> '=	(-0,0101000+/- 0,0408152) W

- a) Indique dos valores experimentales tanto de ε como de r (con sus incertidumbres) a partir de esas expresiones.
- b) Obtenga el valor medio experimental (con su incertidumbre) de cada uno de los anteriores parámetros.
- c) Razone el significado del parámetro q'.

3 En un circuito RC el logaritmo de la intensidad de corriente I que atraviesa el circuito depende del tiempo t según la ecuación:

$$\ln I(t) = -\frac{t}{RC} + \ln I_0$$

Tras hacer las correspondientes mediciones en el laboratorio, se realiza la regresión lineal de *I* frente a *t* y obtenemos los siguientes resultados:

Pendiente $A = (-0.060502602 \pm 0.001242157) \text{ s}^{-1}$ Ordenada en el origen: $B = (-2.509240 \pm 0.087613)$

- a) Estime el valor de la constante de tiempo con su incertidumbre.
- b) Suponiendo que el valor de la resistencia (sin redondear) es $R=(1053,4689 \pm 18,2370) \text{ k}\Omega$, estime la capacidad del condensador (con su incertidumbre). Compare esa estimación con el valor nominal de 16 microfaradios (+10 %) suministrado por el fabricante.

FUNDAMENTOS FÍSICOS DE LA INFOMÁTICA - RELACIÓN DE PROBLEMAS DE PRÁCTICAS

4 Los valores medidos en la experiencia del efecto fotoeléctrico se reflejan en la siguiente tabla.

λ±Δλ (nm)	$(V \pm \Delta V)$ [V]	$(f \pm \Delta f)$ [Hz]	$(E_{c,m\acute{a}x} \pm \Delta E_{c,m\acute{a}x})$ [eV]
578±1	$0,74 \pm 0,01$		
546±1	0.86 ± 0.01		
436±1	$1,45 \pm 0.01$		
405±1	$1,71 \pm 0.01$		
366±1	$1,99 \pm 0.01$		

- a) Complete la tabla.
- b) En la gráfica se representa la energía cinética máxima en función de la frecuencia. Se realiza un ajuste lineal cuyos resultados son:

Pendiente: A= $(7.3807 \cdot 10^{-34} \pm 2.7112 \cdot 10^{-35})$ J·s; **Ordenada en el origen:** B= $(-2.7427 \cdot 10^{-19} \pm 1.8249 \cdot 10^{-20})$ J

A partir de estos datos calcule el valor de la constante de Plank (h), de la frecuencia umbral (f_0) y de la función trabajo (W_0) con sus correspondientes incertidumbres (Δh , Δf_0 y ΔW_0). Exprese los resultados adecuadamente.

5 Se mide en el laboratorio de Física la resistencia R de una placa de semiconductor a diferentes temperaturas T. Para determinar la anchura de la banda prohibida del material se utiliza la siguiente relación entre el logaritmo de la resistencia R del material y la inversa (1/T) de la temperatura T en Kelvin:

$$\ln R = \frac{E_g}{2k_B} \left(\frac{1}{T}\right) + \ln R_0,$$

donde E_g es la anchura de la banda prohibida del semiconductor, R_0 es una resistencia de referencia, y la constante de Bolztman es $k_B = 1.381 \times 10^{-23}$ J/K. Al ajustar los datos experimentales a una recta mediante el método de mínimos cuadrados se obtiene una pendiente $A = (6942,5582 \pm 735,3822)$ K. Estime la anchura de la banda prohibida del semiconductor (con su incertidumbre)

y razone si se puede afirmar que el semiconductor sea alguno de los siguientes:

SEMICONDUCTOR	GERMANIO	SILICIO	ARSENIURO DE GALIO
E_{σ}	0.67 eV	1.11 eV	1,43 eV