School of Basic &	Department	of	B.Tech, CSE	Mathematics for Comput-
Applied Sciences	Mathematics			ing (UCS2005)

Question Bank- Unit 4 (Fourier Series)

Section A

- 1. Write the formula for the Fourier coefficients a_n , b_n for f(x) in $(-\pi, \pi)$.
- 2. If f(x) is an even function in $(-\pi, \pi)$, then write the Fourier coefficients.
- 3. If $f(x) = x^2 + x$ is expressed as a Fourier series in (-2, 2), then find f(2).
- 4. Write the half range sine series for f(x) = x in $(0, \pi)$.
- 5. Write the Dirchlet's conditions.
- 6. Write the period of $\cos 3x$.
- 7. If x = c is a point of discontinuity then the Fourier series of f(x) at x = c is gives f(x) as.
- 8. Find the value of f(0) if $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$.
- 9. The function $f(x) = \begin{cases} 1 x & -\pi < x < 0 \\ 1 + x & 0 < x < \pi \end{cases}$ is an odd or even function?
- 10. If $f(x) = x \sin x$ in $(-\pi, \pi)$ then find the value of b_n .
- 11. Consider the function f defined for x on the interval $-\pi \le x < \pi$ as

$$f(x) = \begin{cases} 1 & -\pi \le x < 0 \\ 1 + x & 0 \le x < \pi/2 \\ 2x & \pi/2 \le x < \pi \end{cases}$$

and for all other x function is defined by the periodicity condition $f(x + 2\pi) = f(x)$. without finding its Fourier series, determine the value where Fourier series of this function converges to at points x = 0, $x = \pi/2$ and $x = \pi$.

12. xcosx is even or odd function?

Section B

1. Find the Fourier series expansion of the periodic function with period 2π

$$f(x) = \begin{cases} \pi + x & -\pi < x < 0 \\ 0 & 0 < x < \pi \end{cases}$$

.

2. Find the Fourier series expansion of

(a)

$$f(x) = \begin{cases} k & -\pi < x < 0 \\ 0 & 0 \le x < \pi. \end{cases}$$

(b)

$$f(x) = \begin{cases} \pi & -\pi < x < 0 \\ \pi - x & 0 \le x < \pi. \end{cases}$$

(c)

$$f(x) = \begin{cases} -k & -\pi < x < 0 \\ k & 0 \le x < \pi. \end{cases}$$

(d)

$$f(x) = \begin{cases} 0 & -\pi < x < -\pi/2 \\ k & -\pi/2 \le x \le \pi/2 \\ 0 & \pi/2 < x < \pi. \end{cases}$$

(e)

$$f(x) = \begin{cases} 2 & -\pi < x < 0 \\ 4 & 0 < x < \pi. \end{cases}$$

(f)

$$f(x) = \begin{cases} -(\pi + x) & -\pi < x < 0 \\ -(\pi - x) & 0 \le x \le \pi. \end{cases}$$

3. Find the Fourier series expansion of the periodic function

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ x^2 & 0 \le x < \pi \end{cases}$$

with period 2π . Hence show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ and $\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots$

- 4. A periodic function of period 2 is defined as f(x) = 1 + x, -1 < x < 1. Obtain the Fourier series expansion of f(x) and hence show that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7}$
- 5. Find the half range Fourier sine and cosine series of $f(x) = x(\pi x)$; $0 \le x \le \pi$.

- 6. Show that constant c can be expanded in the form of an half range sine series $\frac{4c}{\pi} \left[\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right]$ in the range $0 < x < \pi$.
- 7. If

$$f(x) = \begin{cases} \sin x & -\pi \le x \le \pi/4 \\ \cos x & \pi/4 \le x \le \pi/2 \end{cases}$$

then expand f(x) in a half range cosine series.

8. Find the Fourier cosine series expansion of the periodic function

$$f(x) = \begin{cases} x^2 & 0 \le x \le 2\\ 4 & 2 \le x \le 4. \end{cases}$$

Answers:

Section A

1.
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx$

2.
$$a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$
 and $b_n = 0$

- 3. 4
- 4. $2\left(\sin x \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x \dots\right)$
- 5. Dirchlet's conditions
- 6. $\frac{2\pi}{3}$

7.
$$\frac{1}{2}[f(c-0) + f(c+0)]$$

- 8. $\frac{-\pi}{2}$
- 9. even function
- 10. 0

11. 1,
$$\frac{3\pi}{2} + \frac{1}{2}$$
, $\pi + \frac{1}{2}$

12. odd

Section B

1.
$$f(x) = \frac{\pi}{4} + \frac{2}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \dots \right] - \left[\frac{\sin x}{1} + \frac{\sin 2x}{2} + \dots \right]$$

2. (a)
$$\frac{k}{2} - \frac{k}{\pi} \sum_{n=0}^{\infty} \left[\frac{1}{n} (1 - (-1)^n) \sin nx \right]$$

(b)
$$\frac{3\pi}{4} + \sum \left[\frac{1}{\pi n^2} (1 - (-1)^n) \cos nx + \frac{1}{n} \cos nx \sin nx \right].$$

(c)
$$\frac{2k}{\pi} \sum_{n=0}^{\infty} \left[\frac{1}{n} (1 - (-1)^n) \sin nx \right].$$

(d)
$$\frac{k}{2} + \frac{2k}{\pi} \sum \left[\frac{1}{n} \sin(\frac{n\pi}{2}) \cos nx \right]$$

(e)
$$3 + \frac{2}{\pi} \sum_{n} \left[\frac{1}{n} (1 - (-1)^n) \sin nx \right].$$

(f)
$$-\frac{\pi}{2} - \frac{2}{\pi} \sum \left[\frac{1}{n^2} (1 - (-1)^n) \cos nx \right].$$

3.
$$f(x) = \frac{\pi^2}{6} + \sum_{n=0}^{\infty} \left[\frac{2}{n^2} (-1)^n \cos nx + \left\{ \frac{\pi}{n} (-1)^{n+1} - \frac{2}{\pi n^3} [1 - (-1)^n] \right\} \sin nx \right]$$

Set $x = 0$ (point of continuity), Set $x = \pi$ (point of discontinuity).

4.
$$1 - \frac{2}{\pi} \sum_{n=0}^{\infty} \left[\frac{1}{n} \cos n\pi \sin n\pi x \right]$$
. set $x = \frac{1}{2}$.

5.
$$\sum_{n=1}^{\infty} \frac{4}{\pi n^3} [1 - (-1)^n] \sin nx \text{ and } \frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{21 + (-1)^n \cos nx}{n^2}$$

6.
$$\frac{4c}{\pi} \left[\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right]$$

7.
$$\frac{4 - 2\sqrt{2}}{\pi} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1 + (-1)^n - \sqrt{2}\cos(\frac{n\pi}{2})\cos 2nx}{1 - 4n^2}.$$

8.
$$f(x) = \frac{8}{3} + \frac{32}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left[\cos\left(\frac{n\pi}{2}\right) - \left(\frac{2}{n\pi}\right) \sin\left(\frac{n\pi}{2}\right) \right] \cos\left(\frac{n\pi x}{4}\right).$$