CS321: Computer Networks

IP, ICMP

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

IP Header

 The most widely used protocol for internetworking is the Internet Protocol (IP).

IP Datagram Fields

- VER: version of the IPv4 protocol
- HLEN: total length of the datagram header
- ToS: provides differentiated services (DiffServ)
- Total length: header plus data in byte
- Identification, Flags, Fragmentation Offset: These three fields are related to the fragmentation of the IP datagram
- TTL: control the maximum number of hops (routers) visited by the datagram
- Protocol: this field helps to define to which protocol the payload should be delivered
- Checksum: helps to check the error in datagram header
- Source & Destination Address: 32 bit IP addresses
- Options & Padding: used for network testing and debugging
- Payload: the packet coming from other protocols that use the service of IP

Fragmentation & Reassembly

- A datagram can travel through different networks.
- Each router decapsulates the IP datagram from the frame it receives, processes it, and then encapsulates it in another frame.

- Fragmentation is done by the source host or intermediate router. Reassembly is done by the receiver
- 16-bit identification field: identifies a datagram. This is the present value of a counter maintained by sender.
- 3-bit flags field: Not used, D: do not fragment, M: more fragment
- 13-bit fragmentation offset field: shows the relative position of a fragment w.r.t. the whole datagram

ICMP

ICMP: Internet Control Message Protocol

- What happens
 - if something goes wrong?
 - if router discards a datagram?
 - if TTL finishes?
 - if fragmentation is not permitted?
- Need a mechanism for network management

ICMP

 Its messages are not passed directly to the data-link layer as would be expected. Instead, the messages are first encapsulated inside IP datagrams before going to the lower layer.

ICMP Messages

 ICMP Message size: 8-byte header and a variable-size data section

8 bits 8 bits 16 bits

Type Code Checksum

Identifier Sequence number

Data section

Query messages

Type and code values

Error-reporting messages

03: Destination unreachable (codes 0 to 15)

04: Source quench (only code 0)

05: Redirection (codes 0 to 3)

11: Time exceeded (codes 0 and 1)

12: Parameter problem (codes 0 and 1)

Query messages

08 and 00: Echo request and reply (only code 0)

13 and 14: Timestamp request and reply (only code 0)

Error Reporting Messages

- Only error reporting; no error correction
- Messages are sent to original sources of the datagrams
- No error message for:
 - datagram carrying an ICMP error message
 - a fragmented datagram that is not the first fragment
 - a datagram having a multicast address
 - a datagram having a special address such as 127.0.0.0 or 0.0.0.0

Debugging Tools

- Ping: to find if a host is alive and responding
 - The source host sends ICMP echo-request messages;
 - the destination, if alive, responds with ICMP echoreply messages.
 - It can calculate the round-trip time

\$ ping auniversity.edu		
PING auniversity.edu (152.181.8.3) 56 (84) bytes of data	1.	
64 bytes from auniversity.edu (152.181.8.3): icmp_seq=0	ttl=62	time=1.91 ms
64 bytes from auniversity.edu (152.181.8.3): icmp_seq=1	ttl=62	time=2.04 ms
64 bytes from auniversity.edu (152.181.8.3): icmp_seq=2	ttl=62	time=1.90 ms

- The traceroute program in UNIX or tracert in Windows can be used to trace the path of a packet from a source to the destination.
 - It can find the IP addresses of all the routers that are visited along the path
 - It gets help from ICMP error reporting messages

\$ traceroute printers.	.com			
traceroute to printers.c	om (13.1.69.93), 30 hoj	ps max, 38-byte	e packets	
1 route.front.edu	(153.18.31.254)	0.622 ms	0.891 ms	0.875 ms
2 ceneric.net	(137.164.32.140)	3.069 ms	2.875 ms	2.930 ms
3 satire.net	(132.16.132.20)	3.071 ms	2.876 ms	2.929 ms
4 alpha.printers.com	(13.1.69.93)	5.922 ms	5.048 ms	4.922 ms

 The traceroute application program is encapsulated in a UDP user datagram, but traceroute intentionally uses a port number that is not available at the destination.

Thanks!