Travail 2 Langage de modélisation et analyse post-optimale

Louis-Quentin Joucla	JOUL20069502	louisquentinjoucla@gmail.com
Simon Lecoq	LECS09129600	simon.lecoq@live.fr
Matthieu Michenot	MICM30019605	

8INF808 UQAC

February 22, 2019

Question 1:

Question 1.a:

```
!Transbordement;
!Variables de décisions : quantite_usine_entrepot_vd, quantite_entrepot_client_vd;
      Ensembles
                                    Éléments
                                                                                     Attributs;
                                    /laval, quebec, chicoutimi/
                                                                                     : capacite_usine;
      usines
                                                                                      : capacite_entrepot;
: demande client;
      entrepots
                                     /a, b/
                                    /hull, montreal, sherbrooke, trois_rivieres/
      clients
      liens_usines_entrepots
                                                                                      : cout_usine_entrepot, quantite_usine_entrepot_vd;
      liens_entrepots_clients
                                    (entrepots, clients)
                                                                                      : cout_entrepot_client, quantite_entrepot_client_vd;
! Définition des données;
                                    = 6000, 6000, 2500;
      capacite usine
                                    = 6000, 9000;
= 4000, 6000, 2000, 1500;
      capacite_entrepot
      demande client
      cout_usine_entrepot
                                    = 0.30, 0.20,
                                     0.70, 0.50,
                                      1.00, 0.60;
                                    = 0.40, 0.60, 0.70, 0.60, 0.50, 0.40, 0.20, 0.30;
      cout_entrepot_client
! Fonction objective;
[objective] min = @sum(liens_usines_entrepots(i, j) : cout_usine_entrepot(i, j) * quantite_usine_entrepot_vd(i, j) )
+ @sum(liens_entrepots_clients(j, k) : cout_entrepot_client(j, k) * quantite_entrepot_client_vd(j, k));
! Capacité des usines;
@for (usines(i) : [contraintes_capacite_usine]
      ! Capacité des entrepôts;
@for (entrepots(j) : [contraintes_capacite_entrepot]
    @sum(clients(k) : quantite_entrepot_client_vd(j, k)) <= capacite_entrepot(j)</pre>
! Demande des clients;
@for (clients(k) : [contraintes demande client]
      @sum(entrepots(j) : quantite_entrepot_client_vd(j, k)) = demande_client(k)
end
```

Question 1.b:

Global optimal solution found.

Giobal optimal solution lound.	10500 00	
Objective value:	10500.00	
Infeasibilities:	0.000000	
Total solver iterations:	4	
Elapsed runtime seconds:	0.07	
Model Class:	LP	
Total variables: 14		
Nonlinear variables: 0		
Integer variables: 0		
integer variables.		
Total constraints: 12		
Total constraints: 12		
Nonlinear constraints: 0		
Total nonzeros: 50		
Nonlinear nonzeros: 0		
Variable	Value	Reduced Cost
CAPACITE USINE(LAVAL)		0.000000
CAPACITE_USINE(QUEBEC)		0.000000
CAPACITE_USINE(CHICOUTIMI)		0.000000
CAPACITE_ENTREPOT(A)	6000.000	0.000000
CAPACITE_ENTREPOT(B)	9000.000	0.000000
DEMANDE_CLIENT (HULL)	4000.000	0.000000
DEMANDE CLIENT (MONTREAL)	6000.000	0.000000
DEMANDE CLIENT (SHERBROOKE)	2000.000	0.000000
DEMANDE CLIENT (TROIS RIVIERES)	1500.000	0.000000
COUT USINE ENTREPOT (LAVAL, A)	0.3000000	0.000000
COUT USINE ENTREPOT (LAVAL, B)	0.2000000	0.000000
COUT_USINE_ENTREPOT(QUEBEC, A)	0.7000000	0.000000
COUT_USINE_ENTREPOT(QUEBEC, B)	0.5000000	0.000000
COUT_USINE_ENTREPOT(CHICOUTIMI, A)	1.000000	0.000000
COUT_USINE_ENTREPOT(CHICOUTIMI, B)	0.6000000	0.000000
QUANTITE_USINE_ENTREPOT_VD(LAVAL, A)	4500.000	0.000000
QUANTITE_USINE_ENTREPOT_VD(LAVAL, B)	1500.000	0.000000
QUANTITE USINE ENTREPOT VD (QUEBEC, A)	0.000000	0.1000000
QUANTITE USINE ENTREPOT VD (QUEBEC, B)	6000.000	0.000000
QUANTITE USINE ENTREPOT VD (CHICOUTIMI,	0.000000	0.3000000
QUANTITE_USINE_ENTREPOT_VD(CHICOUTIMI,	1500.000	0.000000
COUT ENTREPOT CLIENT (A, HULL)	0.4000000	0.000000
COUT ENTREPOT CLIENT (A, MONTREAL)	0.6000000	0.000000
COUT_ENTREPOT_CLIENT(A, SHERBROOKE)	0.7000000	0.000000
COUT_ENTREPOT_CLIENT(A, TROIS_RIVIERES	0.6000000	0.000000
COUT_ENTREPOT_CLIENT(B, HULL)	0.5000000	0.000000
COUT_ENTREPOT_CLIENT(B, MONTREAL)	0.4000000	0.000000
COUT_ENTREPOT_CLIENT(B, SHERBROOKE)	0.2000000	0.000000
COUT_ENTREPOT_CLIENT(B, TROIS_RIVIERES	0.3000000	0.000000
QUANTITE_ENTREPOT_CLIENT_VD(A, HULL)	4000.000	0.000000
QUANTITE_ENTREPOT_CLIENT_VD(A, MONTREA	500.0000	0.000000
QUANTITE_ENTREPOT_CLIENT_VD(A, SHERBRO	0.000000	0.3000000
QUANTITE ENTREPOT CLIENT VD (A, TROIS R	0.000000	0.1000000
QUANTITE ENTREPOT CLIENT VD (B, HULL)	0.000000	0.3000000
QUANTITE ENTREPOT CLIENT VD(B, MONTREA		0.000000
QUANTITE ENTREPOT CLIENT VD(B, SHERBRO	2000.000	0.000000
QUANTITE ENTREPOT CLIENT VD(B, TROIS R	1500.000	0.000000
QUANTITE_ENTREFOT_CETENT_VD(B, TROID_R	1300.000	0.000000
Pau	Cleak on Cumplus	Dural Durine
	Slack or Surplus	
OBJECTIVE		-1.000000
CONTRAINTES_CAPACITE_USINE(LAVAL)	0.000000	0.4000000
CONTRAINTES_CAPACITE_USINE(QUEBEC)	0.000000	0.1000000
CONTRAINTES_CAPACITE_USINE(CHICOUTIMI)	1000.000	0.000000
CONTRAINTES_CAPACITE_ENTREPOT(A)	1500.000	0.000000
CONTRAINTES CAPACITE ENTREPOT (B)	0.000000	0.3000000
CONTRAINTES DEMANDE CLIENT (HULL)	0.000000	-1.100000
CONTRAINTES DEMANDE CLIENT (MONTREAL)	0.000000	-1.300000
CONTRAINTES DEMANDE CLIENT (SHERBROOKE)	0.000000	-1.100000
CONTRAINTES DEMANDE CLIENT (TROIS RIVIE	0.000000	-1.200000
CONTRAINTES LIENS ENTREE SORTIE ENTREPO	0.000000	-0.700000
CONTRAINTES LIENS ENTREE SORTIE ENTREPO	0.000000	-0.6000000
CONTRATMIES_BIENS_ENTREE_SORTIE_ENTREPO	0.000000	-0.0000000

Question 2:

Question 2.a:

```
!Définition des ensembles;
!Variables de décisions : media;
     !Ensembles
media
                                  Éléments
                     Eléments
/CJPM,CKRS,CFRE,radio,presse/
                                                                            : indice, cout, nb_annonce_max, est_une_chaine_tv, nb_annonce_vd;
endsets
! Définition des données;
data:
                                  3000, 2500, 2000, 200, 1500;
30, 20, 30, 30, 20;
100, 80, 75, 15, 40;
1, 1, 1, 0, 0;
nb_annonce_max
indice
est_une_chaine_tv
                                   1, 1,
51000;
budget_max
budget_tv
                                   36000;
nb_annonce_min_tv
! Fonction objective; [objective] max = @sum(media(i) : indice(i) * nb_annonce_vd(i));
! Contrainte budget;
[cnt_budget] @sum(media(i) : cout(i) * nb_annonce_vd(i)) <= budget_max;
! Contrainte budget tv; [cnt_budget_tv] @sum(media(i) : est_une_chaine_tv(i) * cout(i) * nb_annonce_vd(i)) <= budget_tv;
! Contrainte messages tv; [cnt_messages_tv] @sum(media(i) : est_une_chaine_tv(i) * nb_annonce_vd(i)) >= nb_annonce_min_tv;
! Contrainte annonces max ;
);
```

Question 2.b:

Global optimal solution found. Objective value: Infeasibilities: Total solver iterations: Elapsed runtime seconds:	2040.000 0.000000 2 0.03	
Model Class:	LP	
Total variables: 5 Nonlinear variables: 0 Integer variables: 0		
Total constraints: 9 Nonlinear constraints: 0		
Total nonzeros: 21 Nonlinear nonzeros: 0		
Variable BUDGET_MAX BUDGET_TV NB_ANNONCE_MIN_TV INDICE(CJFM) INDICE(CKRS) INDICE(CFRE) INDICE(RADIO) INDICE(PRESSE)	E1000 00	Reduced Cost 0.000000 0.000000 0.000000 0.000000 0.000000
COUT(CJPM) COUT(CKRS) COUT(CFRE) COUT(RADIO)	3000.000 2500.000 2000.000 200.0000	0.000000 0.000000 0.000000 0.000000 0.000000
COUT (PRESSE) NB_ANNONCE_MAX (CJPM) NB_ANNONCE_MAX (CKRS) NB_ANNONCE_MAX (CFRE) NB_ANNONCE_MAX (RADIO) NB_ANNONCE_MAX (PRESSE) EST_UNE_CHAINE_TV (CJPM) EST_UNE_CHAINE_TV (CKRS) EST_UNE_CHAINE_TV (CFRE) EST_UNE_CHAINE_TV (ERDIO)		0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
EST_UNE_CHAINE_TV(CFRE) EST_UNE_CHAINE_TV(CFRE) EST_UNE_CHAINE_TV(RADIO) EST_UNE_CHAINE_TV(PRESSE) NB_ANNONCE_VD(CJPM) NB_ANNONCE_VD(CFRE) NB_ANNONCE_VD(CFRE) NB_ANNONCE_VD(PRESSE)	0.000000 0.000000 0.000000 18.00000	0.000000 0.000000 0.000000 12.50000 13.75000 0.000000
		0.000000 Dual Price
OBJECTIVE CNT_BUDGET CNT_BUDGET_TV CNT_MESSAGES_TV CNT_ANNONCES_MAX(CJPM) CNT_ANNONCES_MAX(CKRS) CNT_ANNONCES_MAX(CFRE) CNT_ANNONCES_MAX(PRESSE) CNT_ANNONCES_MAX(PRESSE)	Slack or Surplus 2040.000 0.000000 8.000000 30.00000 20.00000 12.00000 0.000000 14.00000	1.000000 0.2666667E-01 0.1083333E-01 0.00000 0.000000 0.000000 0.000000 9.666667 0.000000

Question 3:

Question 3.a:

Variable	Définition.
X_3	Nombre de ballots de tourbe de Qualité 3 produits.
X_2	Nombre de sac de tourbe de Qualité 2 produits.
X_1	Nombre de sachets de tourbe de Qualité 1 produits.

Figure 1: Définition des variables de décisions.

Question 3.b:

Nom	Type	Valeur	Signification
1	Résultat	198 000	198 000\$ de profits ont été réalisés (sortie de la fonction économique).
CONT1	Ecart	0	La machinerie a été utilisée à son plein potentiel et ne peut plus être utilisée.
CONT2	Ecart	2 375	Il reste 2 375 m^3 de disponible dans l'entrepôt
CONT3	Ecart	0	Il ne reste plus aucune minute de défibrage à utiliser.
CONT4	Écart	3 000	3 000 ballots de tourbe de Qualité 3 peuvent encore être fabriqués.
CONT5	Surplus	2 000	2 000 ballots de tourbe de Qualité 3 ont été fabriqués en plus de ce que demandait le grossiste.
CONT6	Surplus	4 500	4 500 sacs de tourbe de Qualité 2 ont été fabriqués en plus de ce que demandait le grossiste.

Figure 2: Valeur et signification des variables d'écart et de surplus ainsi que de la fonction objective.

Question 3.c:

La solution optimale fournie par LINGO ne présente aucune ligne où la valeur ainsi que le *Reduced cost* d'une variable de décision sont tous les deux nulles. La solution optimale trouvée est donc unique pour le profit indiqué.

Question 3.d:

Il faudrait que les sachets de tourbe de Qualité 1 rapportent au moins 2.20 \$ de plus (soit au minimum 4.20 \$ de profit) pour que l'entreprise envisage sa production.

Ceci peut être trouvé en lisant la valeur du $Reduced\ cost$ pour X_1 .

Question 3.e:

La capacité d'extraction printanière passe de 450 000 kg de tourbes séchées à 475 000. Le coût marginal est valable à l'intérieur de l'interval [425 000, 487 500]. Le prix d'un kg de tourbe séchée est équivalent à 0.12 \$. Par conséquent, l'entreprise pourrait dépenser au maximum 3 000 \$ (0.12 \$ * 25 000 kg) pour augmenter la capacité d'extraction après quoi cela ne sera plus profitable.

Ceci peut être trouvé en lisant les valeurs de CONT1 dans la section Righthand Side Ranges ainsi que sa valeur du Dual price.

Question 3.f:

La capacité de défibrage passe de 120 000 min (2 000h) à 102 000 min (1 700h). Le coût marginal n'est pas valable à l'extérieur de l'interval [105 000, 130 000]. La base optimale va donc être modifiée ainsi que les coûts marginaux. Le profit ne peut donc pas être calculé à partir de la sortie actuelle.

Ceci peut être trouvé en lisant les valeurs de CONT3 dans la section Righthand Side Ranges.

Question 3.g:

La capacité d'entreposage passe de 20 000 m^3 à 19 000 m^3 . Lorsque la capacité d'entreposage diminue de 1 m^3 , cela n'a aucun effet sur la fonction économique. Le coût marginal est valable dans l'interval [17 625, $+\infty$]. Ce changement n'a donc aucun impact sur le profit.

Ceci peut être trouvé en lisant les valeurs de CONT2 dans la section $Righthand\ Side\ Ranges$ ainsi que sa valeur du $Dual\ price$.

Question 3.h:

La capacité de défibrage passe de 120 000 min (2 000h) à 126 000 min (2 100h). Le coût marginal est valable à l'intérieur de l'interval [105 000, 130 000]. Le prix d'une minute de défibrage est équivalent à 1.20 \$. Par conséquent, l'entreprise pourrait dépenser au maximum 7 200 \$ (1.20 \$ * 6000 min) pour acheter ce temps de défibrage supplémentaire après quoi cela ne sera plus profitable.

Ceci peut être trouvé en lisant les valeurs de CONT3 dans la section Righthand Side Ranges ainsi que sa valeur du Dual price.