

Department of CSE

Name: Rashik Rahman

Reg ID: 17201012

Year: 4th

Semester: 1st

Course Code: CSE 401

Course Title: Mathematics for computer Science

Date: 06.05.2021

"During Examination and upload time I will not take any help from anyone. I will give my exam all by myself."

University of Asia Pacific

Admit Card
Final-Term Examination of Fall, 2020

Financial Clearance PAID

Registration No : 17201012 Student Name : Rashik Rahman

Program : Bachelor of Science in Computer Science and

Engineering

Total Credit: 23.00

- 1. Examinees are not allowed to enter the examination hall after 30 minutes of commencement of examination for mid semester examinations and 60 minutes for semester final examinations.
- 2. No examinees shall be allowed to submit their answer scripts before 50% of the allocated time of examination has elapsed.
- 3. No examinees would be allowed to go to washroom within the first 60 minutes of final examinations.
- 4. No student will be allowed to carry any books, bags, extra paper or cellular phone or objectionable items/incriminating paper in the examination hall.
 Violators will be subjects to disciplinary action.

This is a system generated Admit Card. No signature is required.

Admit Card Generation Time: 25-Apr-2021 02:11 AM

Answer to the Q. No. 1 (a)

- i) As we are assuming of an random variable x is used to stone the number of times I need to not not the dice to get the first "6", so X is is a geometric random variable.
- ii) If we consider probability of getting 6 as p and others before the first 6 as (p-1) (1-P) then, the probability function for getting the first 6 after nolling the dia of i times can be defined as,

here,

and $p=\frac{1}{6}$; as were are nothing a dice

$$P(7) = (-\frac{1}{6})^{\frac{6}{1}}$$

$$=(0.833)^{6}\frac{1}{6}=0.05$$

to get finst your ling the dice 7 times is

SOF 5.6%

m)

Hene

12(1247)+2=5+2=7

In order to get the dice in order to is needed to be notted of times?

EIX] = = = = = 6

so in under the expected number of nolls we need to penform untill we get the first on is 6. In otherwoods were will get the First on on the 7th noll.

Answer to the Q, NO. 1(6)

i) & From the context we know that when a nandom variable Y is used to stone the number of times I get 6. And outten nolling N times I get 6 exactly i times. So here Y is a binomial random variable.

Hene,

$$N^{2}(0124.6)+5=5$$

 $i = (0124.4)+3=83$

100

$$P(3) = {5 \choose 3} 26 {1 \choose 6}^{3} (1 - \frac{1}{6})^{5-3}$$

here as we are rolling dice so pad considering is the probability of getting 6.

So if we not the dist clice 5 times the probability of getting 6" for 3 times is 3.2%.

iii)
we know for binomial expectation,

So if we not the dice 5 time we are expected to get 6" 0.833 times

An.

Answer to the QNO. 200)

So transition matrix:

Answer to the Q. NO. 2(6)

Assuming

Hene,

$$j = (12+2)$$
 y . $3 = 14$ y . $3 = 2$

As the patient is in i=0 state that is A state today so P(x1)=[1 0 0]

A M C

The probability of j=2 that is one c state, is after N23 days will be

Fort 6.24 6.027

So after 3 day the patient will be in estat

= [1 0 0] x [0.6854 0.2591 6.0554] 0.6765 6.2628 0.0605 0.6709 6.2652 0.0637

= [0.6854 0.2591 0.0554] A My C

So after 3 day two patient will be in C stat with probability of 5.54%

Answer to the Q. No-2 (e)

So from transition matrix we get,

$$\pi_0 = 0.74 \, \pi_0 + 0.58 \pi_1 + 0.96 \pi_2$$

$$T_1 = 0.24 T_0 + 0.29 T_1 + 0.37 T_2 - 37$$

We know

forom Diskin we get,

Prom

By solving (iv, (v) we get,

No = 0.682

T1 = 0.26

R2 = 0.057

So the P(X₁₀₁) = [0.682 0.26 0.057]

So the probability that patient will be in A state after loodings is 68.2%.

Answer to the Q.No.3(a)

Hene, $P(A_i) = Pnobability of manufacturing being <math>A_i = \frac{1}{3}$ $P(A_i) = Pnobability of manufaturen being <math>A_2 = \frac{1}{3}$ $P(A_3) = Pnobability of manufaturen being <math>A_3 = \frac{1}{3}$ $P(A_3) = A_3 = \frac{1}{3}$ E is denoted by deffective PPE.

... P(EIA) = 204. =0.2 P(EIA) = 12/1 = 0.12

$$P(F|A_2) = 12\% = 0.12$$

 $P(F|A_3) = 18\% = 0.18$

So, probability that the defective PPE was from company 1 or A, is,

$$P(A, 1E) = \frac{P(E|A_1)P(A_1)}{P(E|A_1)P(A_1)+P(E|A_2)P(A_2)+P(E|A_3)P(A_3)}$$

$$= \frac{0.2 \times \frac{1}{3}}{0.2 \times \frac{1}{3} + 0.12 \times \frac{1}{3} + 0.18 \times \frac{1}{3}}$$

$$=\frac{0.0667}{0.1667}=0.90$$

So the probability is 90%.

Answer to the Q. NO.3(5)

Let e be the event that the tested penson has conor cononavinus and E is the event that the trent that that the event that the event that

Herre,

P(EIE) = 704. = 0.7

P(e) = My. = (124.3+4)104. = 94, =0.04

P(FICE) = 5% = 0.05

P(Ce) = 0.96

P(EIE) = P(EE) P(EIE) P(E) P(EIE) P(E)

= 0.7×0.09 0.7×0.04+0.05×0.96

= 0.28 + 0.048

2 0.28 = 0.854

The probability that a penson has actually conona vinus given that his test result is positive is 85.4% De.

Answer to the Q. No. 4(a)

Hene

$$= 4+20 = 24$$

from Greneral algo of Josephus problem we know,

$$D' = \left[\frac{a}{4-1} D \right]$$

Hene,

So, o

$$9=3$$
; $(9-1)$ $N = 48$
 $D = 1$
 $\Rightarrow 0 = 9 = \sqrt{\frac{9}{9-1}} D7 = 9 = 2$
 $\Rightarrow 0 = 9 = 2 = 25 \sqrt{\frac{9}{9-1}} D7 = 28$

Do no no extra iteration with result

Do 19 100 extra iteration with result

Di 61 which is > 9-11 y so we have

Di 00 mg 100 extra iteration with result

Di 61 which is > 9-11 y so we have

Di 01 which is > 9-11 y so we have

Di 02 extra iteration with result

Di 01 mg 100 extra i

11th

So Both penson in the cincle is the last man

standing.

Answer to the Q.NO.4(b)

To find the number of disjoint areas we use the following ear,

 $L_n = 1 + \frac{n(n+1)}{2}$; where n is the number of lines.

Here, n=5

$$\frac{1}{12} = 1 + \frac{5(5+1)}{2} = 1 + \frac{30}{2} = 1 + 15 = 16$$

Fig. Lines