

Human Activity Recognition Problem

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(*tAcc-XYZ*) from accelerometer and '3-axial angular velocity' (*tGyro-XYZ*) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in \boldsymbol{X} , \boldsymbol{Y} , and \boldsymbol{Z} directions.

Feature names

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- 3. The accelertion signal was saperated into Body and Gravity acceleration signals(*tBodyAcc-XYZ* and *tGravityAcc-XYZ*) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk signals* (*tBodyAccJerk-XYZ* and *tBodyGyroJerk-XYZ*).
- 5. The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features with names like *tBodyAccMag*, *tGravityAccMag*, *tBodyAccJerkMag*, *tBodyGyroMag* and *tBodyGyroJerkMag*.
- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag* etc.,.
- 7. These are the signals that we got so far.
 - tBodyAcc-XYZ
 - tGravityAcc-XYZ
 - tBodyAccJerk-XYZ
 - tBodyGyro-XYZ
 - tBodyGyroJerk-XYZ
 - tBodyAccMag
 - tGravityAccMag
 - tBodyAccJerkMag
 - tBodyGyroMag
 - tBodyGyroJerkMag
 - fBodyAcc-XYZ
 - fBodyAccJerk-XYZ
 - fBodyGyro-XYZ
 - fBodyAccMag
 - fBodyAccJerkMag

- fBodyGyroMag
- fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - mean(): Mean value
 - std(): Standard deviation
 - mad(): Median absolute deviation
 - max(): Largest value in array
 - min(): Smallest value in array
 - sma(): Signal magnitude area
 - energy(): Energy measure. Sum of the squares divided by the number of values.
 - iqr(): Interquartile range
 - entropy(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - correlation(): correlation coefficient between two signals
 - maxinds(): index of the frequency component with largest magnitude
 - meanFreq(): Weighted average of the frequency components to obtain a mean frequency
 - skewness(): skewness of the frequency domain signal
 - kurtosis(): kurtosis of the frequency domain signal
 - bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
 - angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable'`
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

Y_Labels(Encoded)

- In the dataset, Y_labels are represented as numbers from 1 to 6 as their identifiers.
 - WALKING as 1
 - WALKING_UPSTAIRS as 2
 - WALKING_DOWNSTAIRS as 3
 - SITTING as 4
 - STANDING as 5
 - LAYING as 6

Train and test data were saperated

 The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects recordings were taken for test data

Data

- All the data is present in 'UCI_HAR_dataset/' folder in present working directory.
 - Feature names are present in 'UCI_HAR_dataset/features.txt'
 - Train Data
 - 'UCI_HAR_dataset/train/X_train.txt'
 - 'UCI_HAR_dataset/train/subject_train.txt'
 - 'UCI_HAR_dataset/train/y_train.txt'
 - Test Data
 - 'UCI_HAR_dataset/test/X_test.txt'
 - 'UCI_HAR_dataset/test/subject_test.txt'
 - 'UCI_HAR_dataset/test/y_test.txt'

Data Size:

27 MB

Quick overview of the dataset:

• Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.

- 1. Walking
- 2. WalkingUpstairs
- 3. WalkingDownstairs
- 4. Standing
- 5. Sitting
- 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- · Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- · Each datapoint corresponds one of the 6 Activities.

Problem Statement

· Given a new datapoint we have to predict the Activity

```
In [125]: import warnings
          warnings.filterwarnings("ignore")
          warnings.simplefilter(action='ignore', category=FutureWarning)
          warnings.simplefilter(action='ignore', category=UserWarning)
          import itertools
          from datetime import datetime
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          plt.rcParams["font.family"] = 'DejaVu Sans'
          import seaborn as sns
          # To be able to save images on server
          import matplotlib
          matplotlib.use('Agg')
          from matplotlib import pyplot
          from sklearn.manifold import TSNE
          from sklearn.metrics import confusion_matrix
          from sklearn import linear_model
          from sklearn import metrics
          from sklearn.model_selection import GridSearchCV
          from sklearn.svm import LinearSVC
          from sklearn.svm import SVC
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.ensemble import GradientBoostingClassifier
          # Importing tensorflow
          np.random.seed(42)
          import tensorflow as tf
          tf.set_random_seed(42)
          from keras import backend as K
          from keras.models import Sequential
          from keras.layers import LSTM , BatchNormalization
          from keras.layers.core import Dense, Dropout
          from keras.regularizers import L1L2
 In [2]: # get the features from the file features.txt
          features = list()
          with open('UCI_HAR_Dataset/features.txt') as f:
              features = [line.split()[1] for line in f.readlines()]
          print('No of Features: {}'.format(len(features)))
```

Obtain the train data

No of Features: 561

		tBodyAcc- mean()-X	_	_	tBodyAcc- std()-X		_	_	•	_	
2	2872	0.270531	-0.02003	-0.13885	-0.99541	-0.975719	-0.943967	-0.995795	-0.972381	-0.936507	-0.9

1 rows × 564 columns

```
In [7]: train.shape
```

Out[7]: (7352, 564)

Obtain the test data

Out[8]:

	tBodyAcc- mean()-X		tBodyAcc- mean()-Z						_	
1887	0.277531	-0.015711	-0.1131	-0.996947	-0.98728	-0.986408	-0.997356	-0.986709	-0.985017	-0.9

```
1 rows × 564 columns
```

```
In [9]: test.shape
Out[9]: (2947, 564)
```

Data Cleaning

1. Check for Duplicates

```
In [10]: print('No of duplicates in train: {}'.format(sum(train.duplicated())))
    print('No of duplicates in test : {}'.format(sum(test.duplicated())))

No of duplicates in train: 0
    No of duplicates in test : 0
```

2. Checking for NaN/null values

```
In [11]: print('We have {} NaN/Null values in train'.format(train.isnull().values.sum()))
print('We have {} NaN/Null values in test'.format(test.isnull().values.sum()))
```

We have 0 NaN/Null values in train We have 0 NaN/Null values in test

3. Check for data imbalance

```
In [12]: sns.set_style('whitegrid')
  plt.rcParams['font.family'] = 'Dejavu Sans'

In [13]: plt.figure(figsize=(16,8))
  plt.title('Data provided by each user', fontsize=20)
  sns.countplot(x='subject',hue='ActivityName', data = train)
```


We have got almost same number of reading from all the subjects

Observation

4. Changing feature names

```
In [15]: columns = train.columns
         # Removing '()' from column names
         columns = columns.str.replace('[()]','')
         columns = columns.str.replace('[-]', '')
         columns = columns.str.replace('[,]','')
         train.columns = columns
         test.columns = columns
         test.columns
Out[15]: Index(['tBodyAccmeanX', 'tBodyAccmeanY', 'tBodyAccmeanZ', 'tBodyAccstdX',
                 'tBodyAccstdY', 'tBodyAccstdZ', 'tBodyAccmadX', 'tBodyAccmadY',
                 'tBodyAccmadZ', 'tBodyAccmaxX',
                 . . .
                 'angletBodyAccMeangravity', 'angletBodyAccJerkMeangravityMean',
                 'angletBodyGyroMeangravityMean', 'angletBodyGyroJerkMeangravityMean',
                 'angleXgravityMean', 'angleYgravityMean', 'angleZgravityMean',
                 'subject', 'Activity', 'ActivityName'],
                dtype='object', length=564)
```

5. Save this dataframe in a csv files

```
In [16]: train.to_csv('UCI_HAR_Dataset/csv_files/train.csv', index=False)
    test.to_csv('UCI_HAR_Dataset/csv_files/test.csv', index=False)
```

Exploratory Data Analysis

"Without domain knowledge, EDA has no meaning, without EDA a problem has no soul."

1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

2. Stationary and Moving activities are completely different


```
In [18]: # for plotting purposes taking datapoints of each activity to a different dataframe
          df1 = train[train['Activity']==1]
          df2 = train[train['Activity']==2]
          df3 = train[train['Activity']==3]
          df4 = train[train['Activity']==4]
          df5 = train[train['Activity']==5]
          df6 = train[train['Activity']==6]
          plt.figure(figsize=(14,7))
          plt.subplot(2,2,1)
          plt.title('Stationary Activities(Zoomed in)')
          sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
          sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
          sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
          plt.axis([-1.01, -0.5, 0, 35])
          plt.legend(loc='center')
          plt.subplot(2,2,2)
          plt.title('Moving Activities')
          sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
          sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
          sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking down')
          plt.legend(loc='center right')
          plt.tight_layout()
          plt.show()
                          Stationary Activities(Zoomed in)
                                                                                    Moving Activities
```


3. Magnitude of an acceleration can saperate it well

```
In [19]: plt.figure(figsize=(7,7))
    sns.boxplot(x='ActivityName', y='tBodyAccMagmean',data=train, showfliers=False, saturation=1)
    plt.ylabel('Acceleration Magnitude mean')
    plt.axhline(y=-0.7, xmin=0.1, xmax=0.9,dashes=(5,5), c='g')
    plt.axhline(y=-0.05, xmin=0.4, dashes=(5,5), c='m')
    plt.xticks(rotation=90)
    plt.show()
```


- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.0 then the Activity is WalkingDownstairs.
- We can classify 75% the Acitivity labels with some errors.

4. Position of GravityAccelerationComponants also matters

```
In [20]: sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
   plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
   plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
   plt.xticks(rotation = 40)
   plt.show()
```


Observations:

- If angleX,gravityMean > 0 then Activity is Laying.
- We can classify all datapoints belonging to Laying activity with just a single if else statement.

```
In [21]: sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=False)
    plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
    plt.xticks(rotation = 40)
    plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
    plt.show()
```


Apply t-sne on the data

```
In [22]: # performs t-sne with different perplexity values and their repective plots..
         def perform_tsne(X_data, y_data, perplexities, n_iter=1000, img_name_prefix='t-sne'):
             for index,perplexity in enumerate(perplexities):
                 # perform t-sne
                 print('\nperforming tsne with perplexity {} and with {} iterations at max'.format(perplexity,
         n_iter))
                 X_reduced = TSNE(verbose=2, perplexity=perplexity).fit_transform(X_data)
                 print('Done..')
                 # prepare the data for seaborn
                 print('Creating plot for this t-sne visualization..')
                 df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1], 'label':y_data})
                 # draw the plot in appropriate place in the grid
                 sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\
                            palette="Set1",markers=['^','v','s','o', '1','2'])
                 plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter))
                 img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_iter)
                 print('saving this plot as image in present working directory...')
                 plt.savefig(img_name)
                 plt.show()
                 print('Done')
In [23]: | X_pre_tsne = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
         y_pre_tsne = train['ActivityName']
         perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,50])
         performing tsne with perplexity 2 and with 1000 iterations at max
         [t-SNE] Computing 7 nearest neighbors...
         [t-SNE] Indexed 7352 samples in 0.170s...
         [t-SNE] Computed neighbors for 7352 samples in 31.144s...
         [t-SNE] Computed conditional probabilities for sample 1000 / 7352
         [t-SNE] Computed conditional probabilities for sample 2000 / 7352
         [t-SNE] Computed conditional probabilities for sample 3000 / 7352
         [t-SNE] Computed conditional probabilities for sample 4000 / 7352
         [t-SNE] Computed conditional probabilities for sample 5000 / 7352
         [t-SNE] Computed conditional probabilities for sample 6000 / 7352
         [t-SNE] Computed conditional probabilities for sample 7000 / 7352
         [t-SNE] Computed conditional probabilities for sample 7352 / 7352
         [t-SNE] Mean sigma: 0.635855
         [t-SNE] Computed conditional probabilities in 0.028s
         [t-SNE] Iteration 50: error = 124.5738525, gradient norm = 0.0296602 (50 iterations in 5.255s)
         [t-SNE] Iteration 100: error = 107.1510468, gradient norm = 0.0297832 (50 iterations in 3.191s)
         [t-SNE] Iteration 150: error = 100.8849564, gradient norm = 0.0190584 (50 iterations in 2.336s)
         [t-SNE] Iteration 200: error = 97.4607620, gradient norm = 0.0157084 (50 iterations in 2.260s)
         [t-SNE] Iteration 250: error = 95.1622620, gradient norm = 0.0130789 (50 iterations in 2.232s)
         [t-SNE] KL divergence after 250 iterations with early exaggeration: 95.162262
         [t-SNE] Iteration 300: error = 4.1142921, gradient norm = 0.0015596 (50 iterations in 2.020s)
         [t-SNE] Iteration 350: error = 3.2060137, gradient norm = 0.0009984 (50 iterations in 1.868s)
         [t-SNE] Iteration 400: error = 2.7765975, gradient norm = 0.0007158 (50 iterations in 1.990s)
         [t-SNE] Iteration 450: error = 2.5130556, gradient norm = 0.0005601 (50 iterations in 1.952s)
         [t-SNE] Iteration 500: error = 2.3295407, gradient norm = 0.0004789 (50 iterations in 1.936s)
         [t-SNE] Iteration 550: error = 2.1922219, gradient norm = 0.0004095 (50 iterations in 1.951s)
         [t-SNE] Iteration 600: error = 2.0831914, gradient norm = 0.0003656 (50 iterations in 1.937s)
         [t-SNE] Iteration 650: error = 1.9932876, gradient norm = 0.0003318 (50 iterations in 2.037s)
         [t-SNE] Iteration 700: error = 1.9175169, gradient norm = 0.0003024 (50 iterations in 2.022s)
         [t-SNE] Iteration 750: error = 1.8528048, gradient norm = 0.0002762 (50 iterations in 2.023s)
         [t-SNE] Iteration 800: error = 1.7965311, gradient norm = 0.0002552 (50 iterations in 1.975s)
         [t-SNE] Iteration 850: error = 1.7464951, gradient norm = 0.0002381 (50 iterations in 1.961s)
         [t-SNE] Iteration 900: error = 1.7021343, gradient norm = 0.0002246 (50 iterations in 2.015s)
         [t-SNE] Iteration 950: error = 1.6620091, gradient norm = 0.0002131 (50 iterations in 1.988s)
         [t-SNE] Iteration 1000: error = 1.6257184, gradient norm = 0.0001977 (50 iterations in 1.982s)
         [t-SNE] KL divergence after 1000 iterations: 1.625718
         Done..
         Creating plot for this t-sne visualization..
         saving this plot as image in present working directory...
```



```
performing tsne with perplexity 5 and with 1000 iterations at max
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.191s...
[t-SNE] Computed neighbors for 7352 samples in 31.631s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.040s
[t-SNE] Iteration 50: error = 114.0045013, gradient norm = 0.0218148 (50 iterations in 3.931s)
[t-SNE] Iteration 100: error = 97.7540359, gradient norm = 0.0201030 (50 iterations in 2.377s)
[t-SNE] Iteration 150: error = 93.4471817, gradient norm = 0.0081666 (50 iterations in 2.035s)
[t-SNE] Iteration 200: error = 91.5198059, gradient norm = 0.0067892 (50 iterations in 1.946s)
[t-SNE] Iteration 250: error = 90.3294373, gradient norm = 0.0059565 (50 iterations in 1.949s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.329437
[t-SNE] Iteration 300: error = 3.5774119, gradient norm = 0.0014642 (50 iterations in 1.920s)
[t-SNE] Iteration 350: error = 2.8179550, gradient norm = 0.0007576 (50 iterations in 1.841s)
[t-SNE] Iteration 400: error = 2.4356155, gradient norm = 0.0005241 (50 iterations in 1.860s)
[t-SNE] Iteration 450: error = 2.2181222, gradient norm = 0.0004086 (50 iterations in 1.911s)
[t-SNE] Iteration 500: error = 2.0728469, gradient norm = 0.0003349 (50 iterations in 1.898s)
[t-SNE] Iteration 550: error = 1.9676163, gradient norm = 0.0002853 (50 iterations in 1.926s)
[t-SNE] Iteration 600: error = 1.8863214, gradient norm = 0.0002456 (50 iterations in 1.901s)
[t-SNE] Iteration 650: error = 1.8211229, gradient norm = 0.0002209 (50 iterations in 1.897s)
[t-SNE] Iteration 700: error = 1.7675735, gradient norm = 0.0001959 (50 iterations in 1.920s)
[t-SNE] Iteration 750: error = 1.7220205, gradient norm = 0.0001791 (50 iterations in 1.914s)
[t-SNE] Iteration 800: error = 1.6831133, gradient norm = 0.0001638 (50 iterations in 1.917s)
[t-SNE] Iteration 850: error = 1.6491792, gradient norm = 0.0001539 (50 iterations in 1.938s)
[t-SNE] Iteration 900: error = 1.6194623, gradient norm = 0.0001419 (50 iterations in 1.908s)
[t-SNE] Iteration 950: error = 1.5934302, gradient norm = 0.0001322 (50 iterations in 1.934s)
[t-SNE] Iteration 1000: error = 1.5701127, gradient norm = 0.0001244 (50 iterations in 1.931s)
[t-SNE] KL divergence after 1000 iterations: 1.570113
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```



```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.184s...
[t-SNE] Computed neighbors for 7352 samples in 32.098s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.075s
[t-SNE] Iteration 50: error = 105.5975342, gradient norm = 0.0265865 (50 iterations in 3.493s)
[t-SNE] Iteration 100: error = 90.2277222, gradient norm = 0.0105441 (50 iterations in 2.326s)
[t-SNE] Iteration 150: error = 87.1800156, gradient norm = 0.0058049 (50 iterations in 2.068s)
[t-SNE] Iteration 200: error = 85.9355545, gradient norm = 0.0036519 (50 iterations in 2.065s)
[t-SNE] Iteration 250: error = 85.2444153, gradient norm = 0.0025938 (50 iterations in 1.966s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.244415
[t-SNE] Iteration 300: error = 3.1290836, gradient norm = 0.0013881 (50 iterations in 1.900s)
[t-SNE] Iteration 350: error = 2.4865267, gradient norm = 0.0006460 (50 iterations in 1.895s)
[t-SNE] Iteration 400: error = 2.1677175, gradient norm = 0.0004223 (50 iterations in 1.908s)
[t-SNE] Iteration 450: error = 1.9836645, gradient norm = 0.0003125 (50 iterations in 1.932s)
[t-SNE] Iteration 500: error = 1.8657217, gradient norm = 0.0002491 (50 iterations in 1.938s)
[t-SNE] Iteration 550: error = 1.7822043, gradient norm = 0.0002117 (50 iterations in 1.917s)
[t-SNE] Iteration 600: error = 1.7194588, gradient norm = 0.0001798 (50 iterations in 1.929s)
[t-SNE] Iteration 650: error = 1.6704119, gradient norm = 0.0001596 (50 iterations in 1.998s)
[t-SNE] Iteration 700: error = 1.6307381, gradient norm = 0.0001444 (50 iterations in 2.030s)
[t-SNE] Iteration 750: error = 1.5978731, gradient norm = 0.0001297 (50 iterations in 1.948s)
[t-SNE] Iteration 800: error = 1.5702615, gradient norm = 0.0001194 (50 iterations in 2.055s)
[t-SNE] Iteration 850: error = 1.5463381, gradient norm = 0.0001106 (50 iterations in 2.073s)
[t-SNE] Iteration 900: error = 1.5259278, gradient norm = 0.0001043 (50 iterations in 2.066s)
[t-SNE] Iteration 950: error = 1.5087668, gradient norm = 0.0000966 (50 iterations in 2.050s)
[t-SNE] Iteration 1000: error = 1.4936571, gradient norm = 0.0000922 (50 iterations in 1.996s)
[t-SNE] KL divergence after 1000 iterations: 1.493657
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```



```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.185s...
[t-SNE] Computed neighbors for 7352 samples in 32.602s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.142s
[t-SNE] Iteration 50: error = 97.8273087, gradient norm = 0.0185177 (50 iterations in 3.108s)
[t-SNE] Iteration 100: error = 83.8836975, gradient norm = 0.0064890 (50 iterations in 2.504s)
[t-SNE] Iteration 150: error = 81.8936844, gradient norm = 0.0048022 (50 iterations in 2.218s)
[t-SNE] Iteration 200: error = 81.1817780, gradient norm = 0.0075951 (50 iterations in 2.202s)
[t-SNE] Iteration 250: error = 80.7856369, gradient norm = 0.0018122 (50 iterations in 2.178s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.785637
[t-SNE] Iteration 300: error = 2.7073162, gradient norm = 0.0013089 (50 iterations in 2.261s)
[t-SNE] Iteration 350: error = 2.1718423, gradient norm = 0.0005850 (50 iterations in 2.165s)
[t-SNE] Iteration 400: error = 1.9216920, gradient norm = 0.0003498 (50 iterations in 2.168s)
[t-SNE] Iteration 450: error = 1.7746754, gradient norm = 0.0002482 (50 iterations in 2.195s)
[t-SNE] Iteration 500: error = 1.6804155, gradient norm = 0.0001926 (50 iterations in 2.186s)
[t-SNE] Iteration 550: error = 1.6163112, gradient norm = 0.0001575 (50 iterations in 2.188s)
[t-SNE] Iteration 600: error = 1.5695801, gradient norm = 0.0001348 (50 iterations in 2.222s)
[t-SNE] Iteration 650: error = 1.5341690, gradient norm = 0.0001198 (50 iterations in 2.183s)
[t-SNE] Iteration 700: error = 1.5066086, gradient norm = 0.0001067 (50 iterations in 2.184s)
[t-SNE] Iteration 750: error = 1.4844245, gradient norm = 0.0000992 (50 iterations in 2.172s)
[t-SNE] Iteration 800: error = 1.4670590, gradient norm = 0.0000913 (50 iterations in 2.188s)
[t-SNE] Iteration 850: error = 1.4528230, gradient norm = 0.0000852 (50 iterations in 2.176s)
[t-SNE] Iteration 900: error = 1.4407786, gradient norm = 0.0000817 (50 iterations in 2.191s)
[t-SNE] Iteration 950: error = 1.4306071, gradient norm = 0.0000762 (50 iterations in 2.187s)
[t-SNE] Iteration 1000: error = 1.4219763, gradient norm = 0.0000724 (50 iterations in 2.202s)
[t-SNE] KL divergence after 1000 iterations: 1.421976
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```



```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.185s...
[t-SNE] Computed neighbors for 7352 samples in 33.970s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.344s
[t-SNE] Iteration 50: error = 86.8576126, gradient norm = 0.0147354 (50 iterations in 4.192s)
[t-SNE] Iteration 100: error = 75.6796341, gradient norm = 0.0045453 (50 iterations in 3.721s)
[t-SNE] Iteration 150: error = 74.6311874, gradient norm = 0.0023849 (50 iterations in 2.901s)
[t-SNE] Iteration 200: error = 74.2492905, gradient norm = 0.0016185 (50 iterations in 2.929s)
[t-SNE] Iteration 250: error = 74.0620575, gradient norm = 0.0012495 (50 iterations in 2.978s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.062057
[t-SNE] Iteration 300: error = 2.1505814, gradient norm = 0.0011883 (50 iterations in 2.804s)
[t-SNE] Iteration 350: error = 1.7544994, gradient norm = 0.0004870 (50 iterations in 2.664s)
[t-SNE] Iteration 400: error = 1.5867132, gradient norm = 0.0002781 (50 iterations in 2.675s)
[t-SNE] Iteration 450: error = 1.4930662, gradient norm = 0.0001878 (50 iterations in 2.692s)
[t-SNE] Iteration 500: error = 1.4334233, gradient norm = 0.0001401 (50 iterations in 2.695s)
[t-SNE] Iteration 550: error = 1.3925681, gradient norm = 0.0001117 (50 iterations in 2.671s)
[t-SNE] Iteration 600: error = 1.3633409, gradient norm = 0.0000950 (50 iterations in 2.677s)
[t-SNE] Iteration 650: error = 1.3421924, gradient norm = 0.0000820 (50 iterations in 2.652s)
[t-SNE] Iteration 700: error = 1.3267561, gradient norm = 0.0000754 (50 iterations in 2.688s)
[t-SNE] Iteration 750: error = 1.3154731, gradient norm = 0.0000698 (50 iterations in 2.656s)
[t-SNE] Iteration 800: error = 1.3065718, gradient norm = 0.0000648 (50 iterations in 2.695s)
[t-SNE] Iteration 850: error = 1.2996116, gradient norm = 0.0000618 (50 iterations in 2.642s)
[t-SNE] Iteration 900: error = 1.2942611, gradient norm = 0.0000596 (50 iterations in 2.698s)
[t-SNE] Iteration 950: error = 1.2900971, gradient norm = 0.0000615 (50 iterations in 2.704s)
[t-SNE] Iteration 1000: error = 1.2868505, gradient norm = 0.0000561 (50 iterations in 2.679s)
[t-SNE] KL divergence after 1000 iterations: 1.286850
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```


Apply Machine Learning Models

```
In [24]: train = pd.read_csv('UCI_HAR_dataset/csv_files/train.csv')
  test = pd.read_csv('UCI_HAR_dataset/csv_files/test.csv')
  print(train.shape, test.shape)

(7352, 564) (2947, 564)
```

In [25]: train.head(3)

Out[25]:

	tBodyAccmeanX	tBodyAccmeanY	tBodyAccmeanZ	tBodyAccstdX	tBodyAccstdY	tBodyAccstdZ	tBodyAccmad
0	0.288585	-0.020294	-0.132905	-0.995279	-0.983111	-0.913526	-0.995112
1	0.278419	-0.016411	-0.123520	-0.998245	-0.975300	-0.960322	-0.998807
2	0.279653	-0.019467	-0.113462	-0.995380	-0.967187	-0.978944	-0.996520

3 rows × 564 columns

```
In [28]: # get x_train and y_train from csv files
    x_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
    y_train = train.ActivityName

# get x_test and y_test from test csv file
    x_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
    y_test = test.ActivityName

    print('x_train and y_train : ({},{})'.format(x_train.shape, y_train.shape))
    print('x_test and y_test : ({},{})'.format(x_test.shape, y_test.shape))

x_train and y_train : ((7352, 561),(7352,))
    x_test and y_test : ((2947, 561),(2947,))
```

Labels that are useful in plotting confusion matrix

```
In [30]: labels=['LAYING', 'SITTING','STANDING','WALKING','WALKING_DOWNSTAIRS','WALKING_UPSTAIRS']
```

Function to plot the confusion matrix

```
In [31]: def plot_confusion_matrix(cm, classes,
                                   normalize=False,
                                   title='Confusion matrix',
                                   cmap=plt.cm.Blues):
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=90)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
             plt.tight_layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
```

Generic function to run any model specified

```
In [33]: def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_normalize=True, \
                         print_cm=True, cm_cmap=plt.cm.Greens):
             # to store results at various phases
             results = dict()
             # time at which model starts training
             train_start_time = datetime.now()
             print('training the model..')
             model.fit(X_train, y_train)
             print('Done \n \n')
             train_end_time = datetime.now()
             results['training_time'] = train_end_time - train_start_time
             print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
             # predict test data
             print('Predicting test data')
             test_start_time = datetime.now()
             y_pred = model.predict(X_test)
             test_end_time = datetime.now()
             print('Done \n \n')
             results['testing_time'] = test_end_time - test_start_time
             print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time']))
             results['predicted'] = y_pred
             # calculate overall accuracty of the model
             accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
             # store accuracy in results
             results['accuracy'] = accuracy
            print('----')
print('| Accuracy |')
             print('----')
             print('\n {}\n\n'.format(accuracy))
             # confusion matrix
             cm = metrics.confusion_matrix(y_test, y_pred)
             results['confusion_matrix'] = cm
             if print_cm:
                print('----')
                print('| Confusion Matrix |')
                print('----')
                print('\n {}'.format(cm))
             # plot confusin matrix
             plt.figure(figsize=(8,8))
             plt.grid(b=False)
             plot_confusion_matrix(cm, classes=class_labels, normalize=True, title='Normalized confusion matri
         x', cmap = cm_cmap)
             plt.show()
             # get classification report
             print('----')
             print('| Classifiction Report |')
             print('----')
             classification_report = metrics.classification_report(y_test, y_pred)
             # store report in results
             results['classification_report'] = classification_report
             print(classification_report)
             # add the trained model to the results
             results['model'] = model
             return results
```

Method to print the gridsearch Attributes

```
In [35]: def print_grid_search_attributes(model):
          # Estimator that gave highest score among all the estimators formed in GridSearch
          print('----')
          print('| Best Estimator |')
          print('----')
          print('\n\t{}\n'.format(model.best_estimator_))
          # parameters that gave best results while performing grid search
          print('----')
          print('| Best parameters |')
          print('----')
          print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best_params_))
          # number of cross validation splits
          print('----')
          print('| No of CrossValidation sets |')
          print('----')
          print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n_splits_))
          # Average cross validated score of the best estimator, from the Grid Search
          print('----')
          print('| Best Score |')
          print('----')
          print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.format(model.best_score_
       ))
```

1. Logistic Regression with Grid Search

```
In [42]: # start Grid search
         parameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalty':['12','11']}
         log_reg = linear_model.LogisticRegression()
         log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-1)
         log_reg_grid_results = perform_model(log_reg_grid, x_train, y_train, x_test, y_test, class_labels=lab
        training the model..
        Fitting 3 folds for each of 12 candidates, totalling 36 fits
         [Parallel(n_jobs=-1)]: Using backend LokyBackend with 6 concurrent workers.
         [Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 46.4s finished
        Done
        training_time(HH:MM:SS.ms) - 0:00:52.450343
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:00
           Accuracy
            0.9626739056667798
         | Confusion Matrix |
         [[537 0 0 0 0 0]
         [ 1 428 58 0 0 4]
         [ 0 12 519 1 0 0]
         [ 0 0 0 495 1 0]
         [ 0 0 0 3 409 8]
         [ 0 0 0 22 0 449]]
```


| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.87	0.92	491
STANDING	0.90	0.98	0.94	532
WALKING	0.95	1.00	0.97	496
WALKING_DOWNSTAIRS	1.00	0.97	0.99	420
WALKING_UPSTAIRS	0.97	0.95	0.96	471
micro avg	0.96	0.96	0.96	2947
macro avg	0.97	0.96	0.96	2947
weighted avg	0.96	0.96	0.96	2947

```
In [44]: plt.figure(figsize=(8,8))
         plt.grid(b=False)
         plot_confusion_matrix(log_reg_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm.Greens)
         plt.show()
```


2. Linear SVC with GridSearch

```
training_time(HH:MM:SS.ms) - 0:00:16.079952
```

Predicting test data Done

testing time(HH:MM:SS:ms) - 0:00:00

Accuracy |

0.9650492025788938

| Confusion Matrix |

[[537 0 0 0 0 0 0]
[2 424 60 0 0 5]
[0 11 520 1 0 0]
[0 0 0 496 0 0]
[0 0 0 2 413 5]
[0 0 0 16 1 454]]

| Classifiction Report |

precision recall f1-score support LAYING 1.00 1.00 1.00 537 SITTING 0.97 0.92 491 0.86 STANDING 0.90 0.98 0.94 532 WALKING 0.96 1.00 0.98 496 WALKING_DOWNSTAIRS 0.98 0.99 420 1.00 WALKING_UPSTAIRS 0.98 0.96 0.97 471 micro avg 0.97 0.97 0.97 2947 0.97 0.96 0.97 2947 macro avg 0.97 2947 weighted avg 0.97 0.96

```
In [47]: plt.figure(figsize=(8,8))
    plt.grid(b=False)
    plot_confusion_matrix(lr_svc_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm.Greens)
    plt.show()
```



```
In [48]: print_grid_search_attributes(lr_svc_grid_results['model'])

| Best Estimator |
| LinearSVC(C=2, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=5e-05, verbose=0)

| Best parameters |
| Parameters of best estimator :
| {'C': 2}
| No of CrossValidation sets |
| Total numbre of cross validation sets: 3

| Best Score |
| Average Cross Validate scores of best estimator :
| 0.9461371055495104
```

3. RBF Kernel SVM with GridSearch

0.9626739056667798

| Confusion Matrix |

[[537 0 0 0 0 0 0] [0 441 48 0 0 2] [0 12 520 0 0 0] [0 0 0 489 2 5] [0 0 0 4 397 19] [0 0 0 17 1 453]]

| Classifiction Report |

recall f1-score precision support LAYING 1.00 1.00 1.00 537 SITTING 0.97 0.90 0.93 491 0.98 0.95 STANDING 0.92 532 496 WALKING 0.99 0.97 0.96 WALKING_DOWNSTAIRS 0.95 420 0.99 0.97 WALKING_UPSTAIRS 0.95 0.96 0.95 471 0.96 0.96 0.96 2947 micro avg 0.96 0.96 0.96 2947 macro avg 0.96 weighted avg 0.96 0.96 2947

```
In [50]: plt.figure(figsize=(8,8))
    plt.grid(b=False)
    plot_confusion_matrix(rbf_svm_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm.Greens)
    plt.show()
```


4. Decision Tree with GridSearch

```
In [53]: parameters = {'max_depth':np.arange(3,10,2)}
    dt = DecisionTreeClassifier()
    dt_grid = GridSearchCV(dt,param_grid=parameters, n_jobs=-1)
    dt_grid_results = perform_model(dt_grid, x_train, y_train, x_test, y_test, class_labels=labels)
```

| Accuracy | -----

0.8642687478791992

| Confusion Matrix |

[[537 0 0 0 0 0 0] [0 385 106 0 0 0] [0 93 439 0 0 0] [0 0 0 472 16 8] [0 0 0 18 340 62] [0 0 0 78 19 374]]

| Classifiction Report |

precision recall f1-score support LAYING 1.00 1.00 1.00 537 SITTING 0.81 0.78 0.79 491 0.83 STANDING 0.81 0.82 532 WALKING 0.95 0.89 496 0.83 WALKING_DOWNSTAIRS 420 0.91 0.81 0.86 WALKING_UPSTAIRS 0.84 0.79 0.82 471 micro avg 0.86 0.86 0.86 2947 0.86 0.86 2947 macro avg 0.87 2947 weighted avg 0.87 0.86 0.86

```
In [54]: plt.figure(figsize=(8,8))
   plt.grid(b=False)
   plot_confusion_matrix(dt_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm.Greens)
   plt.show()
```



```
In [55]: print_grid_search_attributes(dt_grid_results['model'])
            Best Estimator
                DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=7,
                   max_features=None, max_leaf_nodes=None,
                   min_impurity_decrease=0.0, min_impurity_split=None,
                   min_samples_leaf=1, min_samples_split=2,
                   min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                   splitter='best')
           Best parameters
                Parameters of best estimator :
                {'max_depth': 7}
           No of CrossValidation sets
                Total numbre of cross validation sets: 3
           Best Score
            _____
                Average Cross Validate scores of best estimator :
                0.8403155603917302
```

5. Random Forest Classifier with GridSearch

```
In [56]: params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
    rfc = RandomForestClassifier()
    rfc_grid = GridSearchCV(rfc, param_grid=params, n_jobs=-1)
    rfc_grid_results = perform_model(rfc_grid, x_train, y_train, x_test, y_test, class_labels=labels)
```

training the model..

Done

training_time(HH:MM:SS.ms) - 0:02:11.295306

Predicting test data
Done

testing time(HH:MM:SS:ms) - 0:00:00.039897

Accuracy |

0.9114353579911775

| Confusion Matrix |

[[537 0 0 0 0 0 0] [0 424 67 0 0 0] [0 47 485 0 0 0] [0 0 0 480 11 5] [0 0 0 36 338 46] [0 0 0 43 6 422]]

| Classifiction Report |

recall f1-score precision support LAYING 1.00 1.00 1.00 537 SITTING 0.90 0.86 0.88 491 0.91 0.89 STANDING 0.88 532 WALKING 0.97 0.91 496 0.86 WALKING_DOWNSTAIRS 0.80 420 0.95 0.87 WALKING_UPSTAIRS 0.89 0.90 0.89 471 0.91 0.91 0.91 2947 micro avg 0.91 0.91 0.91 2947 macro avg weighted avg 0.91 0.91 0.91 2947

```
In [57]: plt.figure(figsize=(8,8))
   plt.grid(b=False)
   plot_confusion_matrix(rfc_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm.Greens)
   plt.show()
```



```
In [58]: print_grid_search_attributes(rfc_grid_results['model'])
               Best Estimator
                RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                    max_depth=7, max_features='auto', max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min_weight_fraction_leaf=0.0, n_estimators=130, n_jobs=None,
                    oob_score=False, random_state=None, verbose=0,
                    warm_start=False)
              Best parameters
         ----
                Parameters of best estimator :
                {'max_depth': 7, 'n_estimators': 130}
           No of CrossValidation sets
                Total numbre of cross validation sets: 3
            Best Score
                Average Cross Validate scores of best estimator :
```

6. Gradient Boosted Decision Trees With GridSearch

0.9163492927094669

```
training the model..

Done

training_time(HH:MM:SS.ms) - 0:16:17.551946

Predicting test data
Done

testing time(HH:MM:SS:ms) - 0:00:00.046864
```

| Accuracy

0.9222938581608415

| Confusion Matrix |

[[537 0 0 0 0 0 0] [0 397 92 0 0 2] [0 37 495 0 0 0] [0 0 0 483 7 6] [0 0 0 10 374 36] [0 1 0 32 6 432]]

| Classifiction Report |

precision recall f1-score support LAYING 1.00 1.00 1.00 537 SITTING 0.91 0.81 0.86 491 0.93 0.88 STANDING 0.84 532 WALKING 0.92 0.97 0.95 496 WALKING_DOWNSTAIRS 0.89 0.93 420 0.97 WALKING_UPSTAIRS 0.91 0.92 0.91 471 micro avg 0.92 0.92 0.92 2947 0.92 0.92 0.92 2947 macro avg 0.92 0.92 2947 weighted avg 0.92

```
In [60]: plt.figure(figsize=(8,8))
    plt.grid(b=False)
    plot_confusion_matrix(gbdt_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm.Greens)
    plt.show()
```



```
In [61]: print_grid_search_attributes(gbdt_grid_results['model'])
               Best Estimator
                 GradientBoostingClassifier(criterion='friedman_mse', init=None,
                       learning_rate=0.1, loss='deviance', max_depth=5,
                      max_features=None, max_leaf_nodes=None,
                      min_impurity_decrease=0.0, min_impurity_split=None,
                      min_samples_leaf=1, min_samples_split=2,
                      min_weight_fraction_leaf=0.0, n_estimators=140,
                      n_iter_no_change=None, presort='auto', random_state=None,
                      subsample=1.0, tol=0.0001, validation_fraction=0.1,
                      verbose=0, warm_start=False)
              Best parameters
                Parameters of best estimator :
                 {'max_depth': 5, 'n_estimators': 140}
          No of CrossValidation sets
                 Total numbre of cross validation sets: 3
             Best Score
                 Average Cross Validate scores of best estimator :
                 0.9050598476605005
```

7. Comparing all models

```
Accuracy Error')
In [62]: print('\n
         print('
                                                 {:.04}%'.format(log_reg_grid_results['accuracy'] * 100,\
         print('Logistic Regression : {:.04}%
                                                          100-(log_reg_grid_results['accuracy'] * 100)))
                                   : {:.04}%
                                                  {:.04}% '.format(lr_svc_grid_results['accuracy'] * 100,\
         print('Linear SVC
                                                                100-(lr_svc_grid_results['accuracy'] * 100)))
         print('RBF SVM classifier : {:.04}%
                                                  {:.04}% '.format(rbf_svm_grid_results['accuracy'] * 100,\
                                                                 100-(rbf_svm_grid_results['accuracy'] * 100
         )))
         print('DecisionTree
                                  : {:.04}%
                                                 {:.04}% '.format(dt_grid_results['accuracy'] * 100,\
                                                                100-(dt_grid_results['accuracy'] * 100)))
                                   : {:.04}%
                                                  {:.04}% '.format(rfc_grid_results['accuracy'] * 100,\
         print('Random Forest
                                                                   100-(rfc_grid_results['accuracy'] * 100)))
                                                 {:.04}% '.format(rfc_grid_results['accuracy'] * 100,\
         print('GradientBoosting DT : {:.04}%
                                                               100-(rfc_grid_results['accuracy'] * 100)))
                             Accuracy
                                          Error
```

Logistic Regression: 96.27% 3.733%
Linear SVC : 96.5% 3.495%
RBF SVM classifier: 96.27% 3.733%
DecisionTree: 86.43% 13.57%
Random Forest: 91.14% 8.856%
GradientBoosting DT: 91.14% 8.856%

We can choose Logistic regression or Linear SVC or RBF SVM.

Apply Deep Learning Models

```
In [63]: # Activities are the class labels
         # It is a 6 class classification
         ACTIVITIES = {
             0: 'WALKING',
             1: 'WALKING_UPSTAIRS',
             2: 'WALKING_DOWNSTAIRS',
             3: 'SITTING',
             4: 'STANDING',
             5: 'LAYING',
         # Data directory
         DATADIR = 'UCI_HAR_Dataset'
         # Raw data signals
         # Signals are from Accelerometer and Gyroscope
         # The signals are in x,y,z directions
         # Sensor signals are filtered to have only body acceleration
         # excluding the acceleration due to gravity
         # Triaxial acceleration from the accelerometer is total acceleration
         SIGNALS = [
             "body_acc_x",
              "body_acc_y",
              "body_acc_z",
              "body_gyro_x",
              "body_gyro_y",
              "body_gyro_z",
              "total_acc_x",
              "total_acc_y",
              "total_acc_z"
```

```
In [88]: # Utility function to print the confusion matrix
         def confusion_matrix_dl(Y_true, Y_pred):
             Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_true, axis=1)])
             Y_pred = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_pred, axis=1)])
             return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
         # Utility function to read the data from csv file
         def _read_csv(filename):
             return pd.read_csv(filename, delim_whitespace=True, header=None)
         # Utility function to load the load
         def load_signals(subset):
             signals_data = []
             for signal in SIGNALS:
                 filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subset}.txt'
                 signals_data.append(
                      _read_csv(filename).as_matrix()
                  )
             # Transpose is used to change the dimensionality of the output,
             # aggregating the signals by combination of sample/timestep.
             # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
             return np.transpose(signals_data, (1, 2, 0))
         def load_y(subset):
             The objective that we are trying to predict is a integer, from 1 to 6,
             that represents a human activity. We return a binary representation of
             every sample objective as a 6 bits vector using One Hot Encoding
             (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
             filename = f'UCI_HAR_Dataset/{subset}/y_{subset}.txt'
             y = _read_csv(filename)[0]
             return pd.get_dummies(y).as_matrix()
         def load_data():
             Obtain the dataset from multiple files.
             Returns: X_train, X_test, y_train, y_test
             X_train, X_test = load_signals('train'), load_signals('test')
             y_train, y_test = load_y('train'), load_y('test')
             return X_train, X_test, y_train, y_test
         # Utility function to count the number of classes
         def _count_classes(y):
             return len(set([tuple(category) for category in y]))
In [67]: # Configuring a session
         session_conf = tf.ConfigProto(
             intra_op_parallelism_threads=1,
             inter_op_parallelism_threads=1
         sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
         K.set_session(sess)
In [68]: # Initializing parameters
         epochs = 30
         batch_size = 16
         n_hidden = 32
In [69]: # Loading the train and test data
         x_train, x_test, y_train, y_test = load_data()
In [70]: timesteps = len(x_train[0])
         input_dim = len(x_train[0][0])
         n_classes = _count_classes(y_train)
         print(timesteps)
         print(input_dim)
         print(len(x_train))
         128
         7352
```

1-Layer of LSTM

```
In [71]: # Initiliazing the sequential model
    model = Sequential()
    # Configuring the parameters
    model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
# Adding a dropout Layer
    model.add(Dropout(0.5))
# Adding a dense output layer with sigmoid activation
    model.add(Dense(n_classes, activation='sigmoid'))
    model.summary()
```

```
Layer (type)
                      Output Shape
                                          Param #
______
lstm_1 (LSTM)
                      (None, 32)
                                           5376
dropout_1 (Dropout)
                                           0
                      (None, 32)
dense_1 (Dense)
                      (None, 6)
                                          198
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
```

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
713 - val_acc: 0.4713606 - ETA: 3s - loss: 1.3514 - acc: 0.42 - ETA: 3s - loss: - ETA: 1s - loss: 1.3
4 - ETA: 0s - loss: 1.3374 - acc: - ETA: 0s - loss: 1.3341 - acc: 0.
Epoch 2/30
255 - val_acc: 0.4835
Epoch 3/30
061 - val_acc: 0.6047
Epoch 4/30
685 - val_acc: 0.6064c:
Epoch 5/30
847 - val_acc: 0.6420
Epoch 6/30
7352/7352 [================ ] - 31s 4ms/step - loss: 0.6041 - acc: 0.6970 - val_loss: 1.5
301 - val_acc: 0.51680.6003 - acc: 0.69 - ETA: 1s - loss: 0.60
Epoch 7/30
781 - val_acc: 0.7180
Epoch 8/30
712 - val_acc: 0.7408
Epoch 9/30
915 - val_acc: 0.7523
Epoch 10/30
229 - val acc: 0.7343
Epoch 11/30
334 - val_acc: 0.7333
Epoch 12/30
140 - val_acc: 0.7523
Epoch 13/30
954 - val_acc: 0.7553
Epoch 14/30
033 - val_acc: 0.7343
Epoch 15/30
350 - val_acc: 0.7408
Epoch 16/30
219 - val_acc: 0.7533
Epoch 17/30
023 - val_acc: 0.7777 - loss: 0.30
Epoch 18/30
013 - val_acc: 0.8286
Epoch 19/30
954 - val_acc: 0.8744
Epoch 20/30
708 - val acc: 0.8795
Epoch 21/30
103 - val_acc: 0.8945
Epoch 22/30
197 - val_acc: 0.8728
Epoch 23/30
270 - val acc: 0.8945
Epoch 24/30
359 - val_acc: 0.8843
Epoch 25/30
397 - val_acc: 0.8867
Epoch 26/30
7352/7352 [=============== ] - 35s 5ms/step - loss: 0.2000 - acc: 0.9431 - val loss: 0.4
584 - val_acc: 0.8860
Epoch 27/30
7352/7352 [=============== ] - 34s 5ms/step - loss: 0.1695 - acc: 0.9455 - val loss: 0.5
922 - val_acc: 0.8853ss: 0.1688 - ETA: 0s - loss: 0.1707 - ac
Epoch 28/30
488 - val acc: 0.8945
```

Epoch 29/30

```
201 - val acc: 0.8999
      Epoch 30/30
      736 - val_acc: 0.9053
Out[73]: <keras.callbacks.History at 0x15847c8b4e0>
In [89]: # Confusion Matrix
      print(confusion_matrix_dl(y_test, model.predict(x_test)))
                    LAYING SITTING STANDING WALKING WALKING_DOWNSTAIRS \
      True
                     510
                            0
                                   0
                                          0
      LAYING
                                                        0
                      0 407
0 103
                                   80
                                          0
      SITTING
                                                        1
      STANDING
                                  429
                                         0
                                                        0
                           0
      WALKING
                                   0 464
                                                        25
                            0
                                   0
      WALKING_DOWNSTAIRS
                                                       419
                      0
                                         0
                   0
      WALKING_UPSTAIRS
                                                        25
                    WALKING_UPSTAIRS
      Pred
      True
      LAYING
                              27
      SITTING
      STANDING
                              0
                              7
      WALKING
      WALKING_DOWNSTAIRS
                              1
      WALKING_UPSTAIRS
                             439
In [78]: | score = model.evaluate(x_test, y_test)
      2947/2947 [=========== ] - 1s 281us/step
In [79]: score
Out[79]: [0.3735676897443261, 0.9053274516457415]
```

2-Layer of LSTM with more hyperparameter tunning

Tuning the Number of neurons with dropout of 0.50

Configuration:

```
In [126]: # Initializing parameters
          n_{epochs} = 30
          n_batch = 16
          n_classes = _count_classes(y_train)
          # Bias regularizer value - we will use elasticnet
          reg = L1L2(0.01, 0.01)
In [158]: # Plot Confusion Matrix
          def plot_confusion_matrix_lstm(y_test, y_predict):
              result = confusion_matrix(y_test, y_predict)
              plt.figure(figsize=(12, 10))
              sns.heatmap(result,
                           xticklabels= list(ACTIVITIES.values()),
                           yticklabels=list(ACTIVITIES.values()),
                           annot=True, fmt="d");
              plt.title("Confusion matrix")
              plt.ylabel('True label')
              plt.xlabel('Predicted label')
              plt.show()
          # Plot train and cross validation loss
          def plot_train_cv_loss(trained_model, epochs, colors=['b']):
              fig, ax = plt.subplots(1,1)
              ax.set xlabel('epoch')
              ax.set_ylabel('Categorical Crossentropy Loss')
              x_axis_values = list(range(1,epochs+1))
              validation_loss = trained_model.history['val_loss']
              train_loss = trained_model.history['loss']
              ax.plot(x_axis_values, validation_loss, 'b', label="Validation Loss")
              ax.plot(x axis values, train loss, 'r', label="Train Loss")
              plt.legend()
              plt.grid()
              fig.canvas.draw()
```

32 neurons in LSTM Layer with dropout of 0.50

print("\n Time Taken: ",datetime.now() - start)

```
In [137]: # Model execution
          model = Sequential()
          model.add(LSTM(32, input_shape=(timesteps, input_dim), return_sequences=True,bias_regularizer=reg ))
          model.add(BatchNormalization())
          model.add(Dropout(0.50))
          model.add(LSTM(32))
          model.add(Dropout(0.50))
          model.add(Dense(n_classes, activation='sigmoid'))
          print("Model Summary: ")
          model.summary()
          Model Summary:
                                                                  Param #
          Layer (type)
                                        Output Shape
          1stm_26 (LSTM)
                                        (None, 128, 32)
                                                                  5376
          batch_normalization_4 (Batch (None, 128, 32)
                                                                  128
          dropout_26 (Dropout)
                                        (None, 128, 32)
                                                                  0
          1stm_27 (LSTM)
                                        (None, 32)
                                                                  8320
          dropout_27 (Dropout)
                                        (None, 32)
                                                                  0
          dense_14 (Dense)
                                                                  198
                                        (None, 6)
          Total params: 14,022
          Trainable params: 13,958
          Non-trainable params: 64
In [138]: model.compile(loss='categorical_crossentropy',
                     optimizer='adam',
                    metrics=['accuracy'])
In [139]: start = datetime.now()
          # Training the model
          trained_model = model.fit(x_train,
                                      y_train,
                                      batch_size=n_batch,
                                      validation_data=(x_test, y_test),
                                      epochs=n_epochs)
```

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
0906 - val_acc: 0.7092
Epoch 2/30
103 - val acc: 0.8117
Epoch 3/30
852 - val_acc: 0.8595
Epoch 4/30
3838 - val_acc: 0.8856
Epoch 5/30
3206 - val_acc: 0.9023
Epoch 6/30
3773 - val_acc: 0.8721
Epoch 7/30
3121 - val_acc: 0.9050
Epoch 8/30
3884 - val_acc: 0.8887
Epoch 9/30
3678 - val_acc: 0.8884
Epoch 10/30
3182 - val acc: 0.9046
Epoch 11/30
3272 - val_acc: 0.9050
Epoch 12/30
115 - val_acc: 0.9094
Epoch 13/30
3579 - val_acc: 0.9006
Epoch 14/30
184 - val_acc: 0.9189
Epoch 15/30
548 - val_acc: 0.9036
Epoch 16/30
145 - val_acc: 0.9131
Epoch 17/30
338 - val_acc: 0.8839
Epoch 18/30
3146 - val_acc: 0.9097
Epoch 19/30
101 - val_acc: 0.9063
Epoch 20/30
990 - val_acc: 0.9121
Epoch 21/30
3504 - val_acc: 0.9094
Epoch 22/30
2676 - val_acc: 0.9158
Epoch 23/30
3174 - val acc: 0.9152
Epoch 24/30
4106 - val acc: 0.9046
Epoch 25/30
737 - val_acc: 0.9101
Epoch 26/30
4395 - val_acc: 0.8724
Epoch 27/30
930 - val_acc: 0.8948
Epoch 28/30
628 - val acc: 0.9094
Epoch 29/30
```

```
Time Taken: 0:35:06.953677

In [141]: print()
    print()

# Plot train and cross validation error
    plot_train_cv_loss(trained_model, n_epochs)
```


From epoch 10, we starts to overfit the model, so best value for epoch is 10

```
In [150]: print()
    scores = model.evaluate(x_test, y_test, verbose=0)
    print("Test Accuracy: %f%%" % (scores[1]*100))
    print()

Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(y_test, axis=1)])
    Y_predictions = pd.Series([ACTIVITIES[y] for y in np.argmax(model.predict(x_test), axis=1)])

# Confusion Matrix
    plot_confusion_matrix_lstm(Y_true, Y_predictions)
```

Test Accuracy: 88.530709%

020 - val_acc: 0.9036

351 - val_acc: 0.8853


```
In [151]: # Model execution
    model = Sequential()
    model.add(LSTM(48, input_shape=(timesteps, input_dim), return_sequences=True, bias_regularizer=reg))
    model.add(BatchNormalization())
    model.add(Dropout(0.50))
    model.add(LSTM(32))
    model.add(Dropout(0.50))
    model.add(Dense(n_classes, activation='sigmoid'))
    print("Model Summary: ")
    model.summary()
```

Model Summary:

Layer (type)	Output	Shape	Param #
lstm_28 (LSTM)	(None,	128, 48)	11136
batch_normalization_5 (Batch	(None,	128, 48)	192
dropout_28 (Dropout)	(None,	128, 48)	0
lstm_29 (LSTM)	(None,	32)	10368
dropout_29 (Dropout)	(None,	32)	0
dense_15 (Dense)	(None,	6)	198
Total params: 21,894			

Trainable params: 21,798 Non-trainable params: 96

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
2299 - val_acc: 0.6675
Epoch 2/30
7532 - val_acc: 0.7988
Epoch 3/30
5955 - val_acc: 0.7876
Epoch 4/30
5667 - val_acc: 0.7798
Epoch 5/30
4487 - val_acc: 0.8361
Epoch 6/30
3606 - val_acc: 0.8850
Epoch 7/30
3307 - val_acc: 0.8816
Epoch 8/30
3285 - val_acc: 0.8945
Epoch 9/30
3539 - val acc: 0.8992
Epoch 10/30
3110 - val_acc: 0.8653
Epoch 11/30
3019 - val_acc: 0.9046
Epoch 12/30
3255 - val_acc: 0.8951
Epoch 13/30
2671 - val_acc: 0.9135
Epoch 14/30
3065 - val_acc: 0.9091
Epoch 15/30
4938 - val_acc: 0.8103
Epoch 16/30
3573 - val_acc: 0.9087
Epoch 17/30
6563 - val_acc: 0.7448
Epoch 18/30
2671 - val_acc: 0.9097
Epoch 19/30
269 - val_acc: 0.8924
Epoch 20/30
2347 - val_acc: 0.9206
Epoch 21/30
2634 - val acc: 0.9128
Epoch 22/30
3107 - val acc: 0.9087
Epoch 23/30
3459 - val acc: 0.8985
Epoch 24/30
2876 - val_acc: 0.8999
Epoch 25/30
2597 - val acc: 0.9192
Epoch 26/30
5151 - val acc: 0.8649
Epoch 27/30
4152 - val_acc: 0.9013
Epoch 28/30
2544 - val acc: 0.9152
Epoch 29/30
```

```
Time Taken: 0:35:34.397904

In [155]: print()
    print()

# Plot train and cross validation error
    plot_train_cv_loss(trained_model, n_epochs)
```


From epoch 7, we starts to overfit the model, so best value for epoch is 7

```
In [156]: print()
    scores = model.evaluate(x_test, y_test, verbose=0)
    print("Test Accuracy: %f%%" % (scores[1]*100))
    print()

Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(y_test, axis=1)])
    Y_predictions = pd.Series([ACTIVITIES[y] for y in np.argmax(model.predict(x_test), axis=1)])

# Confusion Matrix
    plot_confusion_matrix_lstm(Y_true, Y_predictions)
```

Test Accuracy: 91.482864%

2718 - val_acc: 0.9148

2508 - val_acc: 0.9148


```
In [159]: # Model execution
    model = Sequential()
    model.add(LSTM(64, input_shape=(timesteps, input_dim), return_sequences=True, bias_regularizer=reg))
    model.add(BatchNormalization())
    model.add(Dropout(0.50))
    model.add(LSTM(48))
    model.add(Dropout(0.50))
    model.add(Dense(n_classes, activation='sigmoid'))
    print("Model Summary: ")
    model.summary()
```

Model Summary:

Layer (type)	Output Shape	Param #
lstm_30 (LSTM)	(None, 128, 64)	18944
batch_normalization_6 (Batch	(None, 128, 64)	256
dropout_30 (Dropout)	(None, 128, 64)	0
lstm_31 (LSTM)	(None, 48)	21696
dropout_31 (Dropout)	(None, 48)	0
dense_16 (Dense)	(None, 6)	294
Total params: 41,190 Trainable params: 41,062 Non-trainable params: 128		

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
2404 - val_acc: 0.7421
Epoch 2/30
6518 - val_acc: 0.8283
Epoch 3/30
3260 - val_acc: 0.8914
Epoch 4/30
3009 - val_acc: 0.8968
Epoch 5/30
2761 - val_acc: 0.8999
Epoch 6/30
2250 - val acc: 0.9223
Epoch 7/30
2251 - val_acc: 0.8968
Epoch 8/30
2093 - val_acc: 0.9186
Epoch 9/30
2415 - val_acc: 0.9087
Epoch 10/30
2813 - val_acc: 0.9192
Epoch 11/30
2343 - val_acc: 0.9141
Epoch 12/30
2111 - val_acc: 0.9243
Epoch 13/30
2430 - val_acc: 0.9040
Epoch 14/30
1944 - val_acc: 0.9253
Epoch 15/30
4028 - val_acc: 0.8802
Epoch 16/30
1834 - val_acc: 0.9216
Epoch 17/30
2034 - val_acc: 0.9216
Epoch 18/30
2169 - val_acc: 0.9152
Epoch 19/30
2097 - val_acc: 0.9287
Epoch 20/30
2505 - val_acc: 0.9196
Epoch 21/30
3290 - val_acc: 0.9053
Epoch 22/30
2355 - val_acc: 0.9192
Epoch 23/30
3125 - val acc: 0.8880
Epoch 24/30
2643 - val_acc: 0.9175
Epoch 25/30
2125 - val_acc: 0.9253
Epoch 26/30
2134 - val_acc: 0.9274
Epoch 27/30
2304 - val_acc: 0.9125
Epoch 28/30
2339 - val_acc: 0.9223
Epoch 29/30
```

```
2014 - val_acc: 0.9311
    Time Taken: 0:37:39.334980

In [162]: print()
    print()

# Plot train and cross validation error
    plot_train_cv_loss(trained_model, n_epochs)
```


From epoch 8, we starts to overfit the model, so best value for epoch is 8

```
In [163]: print()
    scores = model.evaluate(x_test, y_test, verbose=0)
    print("Test Accuracy: %f%%" % (scores[1]*100))
    print()

Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(y_test, axis=1)])
    Y_predictions = pd.Series([ACTIVITIES[y] for y in np.argmax(model.predict(x_test), axis=1)])

# Confusion Matrix
    plot_confusion_matrix_lstm(Y_true, Y_predictions)
```

Test Accuracy: 93.111639%

2231 - val_acc: 0.9260

Tuning the number of neurons with dropout of 0.70

Configuration:

```
In [164]: # Initializing parameters
    n_epochs = 30
    n_batch = 16
    n_classes = _count_classes(y_train)

# Bias regularizer value - we will use elasticnet
    reg = L1L2(0.01, 0.01)
```

32 neurons in LSTM Layer with dropout of 0.70

```
In [165]: # Model execution
    model = Sequential()
    model.add(LSTM(32, input_shape=(timesteps, input_dim), return_sequences=True, bias_regularizer=reg))
    model.add(BatchNormalization())
    model.add(Dropout(0.70))
    model.add(LSTM(32))
    model.add(Dropout(0.70))
    model.add(Dense(n_classes, activation='sigmoid'))
    print("Model Summary: ")
    model.summary()
```

Model Summary:

Layer (type)	Output Shape	Param #
lstm_32 (LSTM)	(None, 128, 32)	5376
batch_normalization_7 (Batch	(None, 128, 32)	128
dropout_32 (Dropout)	(None, 128, 32)	0
lstm_33 (LSTM)	(None, 32)	8320
dropout_33 (Dropout)	(None, 32)	0
dense_17 (Dense)	(None, 6)	198

Total params: 14,022 Trainable params: 13,958 Non-trainable params: 64

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
1351 - val_acc: 0.6637
Epoch 2/30
715 - val_acc: 0.6783
Epoch 3/30
218 - val_acc: 0.6709
Epoch 4/30
077 - val acc: 0.6461
Epoch 5/30
514 - val_acc: 0.7346
Epoch 6/30
943 - val_acc: 0.7557
Epoch 7/30
387 - val_acc: 0.7577
Epoch 8/30
696 - val_acc: 0.7913
Epoch 9/30
086 - val_acc: 0.7530
Epoch 10/30
960 - val_acc: 0.7604
Epoch 11/30
277 - val_acc: 0.7557
Epoch 12/30
197 - val_acc: 0.7981
Epoch 13/30
7352/7352 [=============== ] - 68s 9ms/step - loss: 0.4947 - acc: 0.8025 - val loss: 0.4
442 - val_acc: 0.7845
Epoch 14/30
606 - val_acc: 0.7930
Epoch 15/30
424 - val_acc: 0.7794
Epoch 16/30
382 - val_acc: 0.7967
Epoch 17/30
946 - val_acc: 0.7937
Epoch 18/30
426 - val_acc: 0.6230
Epoch 19/30
112 - val_acc: 0.8819
Epoch 20/30
774 - val_acc: 0.8996
Epoch 21/30
153 - val_acc: 0.8836
Epoch 22/30
281 - val_acc: 0.7913
Epoch 23/30
721 - val acc: 0.9111
Epoch 24/30
527 - val_acc: 0.9067
Epoch 25/30
106 - val_acc: 0.9121
Epoch 26/30
447 - val_acc: 0.9118
Epoch 27/30
284 - val acc: 0.9009
Epoch 28/30
278 - val_acc: 0.9148
Epoch 29/30
```

```
190 - val_acc: 0.9189

Time Taken: 0:33:54.897715

In [168]: print()
    print()

# Plot train and cross validation error
    plot_train_cv_loss(trained_model, n_epochs)
```


From epoch 9, we starts to overfit the model, so best value for epoch is 9

```
In [169]: print()
    scores = model.evaluate(x_test, y_test, verbose=0)
    print("Test Accuracy: %f%%" % (scores[1]*100))
    print()

Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(y_test, axis=1)])
    Y_predictions = pd.Series([ACTIVITIES[y] for y in np.argmax(model.predict(x_test), axis=1)])

# Confusion Matrix
    plot_confusion_matrix_lstm(Y_true, Y_predictions)
```

Test Accuracy: 91.890058%

101 - val_acc: 0.9145


```
In [170]: # Model execution
    model = Sequential()
    model.add(LSTM(48, input_shape=(timesteps, input_dim), return_sequences=True, bias_regularizer=reg))
    model.add(BatchNormalization())
    model.add(Dropout(0.70))
    model.add(LSTM(32))
    model.add(Dropout(0.70))
    model.add(Dense(n_classes, activation='sigmoid'))
    print("Model Summary: ")
    model.summary()
```

Model Summary:

Layer (type)	Output Shape	Param #
lstm_34 (LSTM)	(None, 128, 48)	11136
batch_normalization_8 (Batch	(None, 128, 48)	192
dropout_34 (Dropout)	(None, 128, 48)	0
lstm_35 (LSTM)	(None, 32)	10368
dropout_35 (Dropout)	(None, 32)	0
dense_18 (Dense)	(None, 6)	198
Total params: 21,894		

Total params: 21,894
Trainable params: 21,798
Non-trainable params: 96

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
3936 - val_acc: 0.6882
Epoch 2/30
9176 - val_acc: 0.7645
Epoch 3/30
7071 - val_acc: 0.7448
Epoch 4/30
6015 - val_acc: 0.7350
Epoch 5/30
4896 - val_acc: 0.8392
Epoch 6/30
4949 - val_acc: 0.7879
Epoch 7/30
5374 - val_acc: 0.7211
Epoch 8/30
3574 - val_acc: 0.8897
Epoch 9/30
3277 - val_acc: 0.8921
Epoch 10/30
3366 - val acc: 0.8853
Epoch 11/30
2939 - val_acc: 0.9046
Epoch 12/30
2789 - val_acc: 0.8996
Epoch 13/30
2476 - val_acc: 0.9091
Epoch 14/30
2914 - val_acc: 0.8979
Epoch 15/30
2870 - val_acc: 0.8965
Epoch 16/30
2583 - val_acc: 0.9023
Epoch 17/30
2921 - val_acc: 0.9009
Epoch 18/30
2917 - val_acc: 0.8884
Epoch 19/30
2725 - val_acc: 0.9060
Epoch 20/30
3569 - val_acc: 0.8782
Epoch 21/30
3168 - val_acc: 0.9043
Epoch 22/30
3559 - val_acc: 0.9050
Epoch 23/30
3761 - val acc: 0.8677
Epoch 24/30
2570 - val acc: 0.9135
Epoch 25/30
4753 - val_acc: 0.8799
Epoch 26/30
2638 - val_acc: 0.9128
Epoch 27/30
1990 - val_acc: 0.9243
Epoch 28/30
2272 - val_acc: 0.9213
Epoch 29/30
```

```
Time Taken: 0:35:04.995551

In [173]: print()
    print()

# Plot train and cross validation error
    plot_train_cv_loss(trained_model, n_epochs)
```


From epoch 16, we starts to overfit the model, so best value for epoch is 16

```
In [174]: print()
    scores = model.evaluate(x_test, y_test, verbose=0)
    print("Test Accuracy: %f%%" % (scores[1]*100))
    print()

Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(y_test, axis=1)])
    Y_predictions = pd.Series([ACTIVITIES[y] for y in np.argmax(model.predict(x_test), axis=1)])

# Confusion Matrix
    plot_confusion_matrix_lstm(Y_true, Y_predictions)
```

Test Accuracy: 91.177469%

2637 - val_acc: 0.9067

2521 - val_acc: 0.9118


```
In [175]: # Model execution
    model = Sequential()
    model.add(LSTM(64, input_shape=(timesteps, input_dim), return_sequences=True, bias_regularizer=reg))
    model.add(BatchNormalization())
    model.add(Dropout(0.70))
    model.add(LSTM(48))
    model.add(Dropout(0.70))
    model.add(Dense(n_classes, activation='sigmoid'))
    print("Model Summary: ")
    model.summary()
```

Model Summary:

Layer (type)	Output Shape	Param #
lstm_36 (LSTM)	(None, 128, 64)	18944
batch_normalization_9 (Batch	(None, 128, 64)	256
dropout_36 (Dropout)	(None, 128, 64)	0
lstm_37 (LSTM)	(None, 48)	21696
dropout_37 (Dropout)	(None, 48)	0
dense_19 (Dense)	(None, 6)	294
Total params: 41,190		========

Total params: 41,190
Trainable params: 41,062
Non-trainable params: 128

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
6901 - val_acc: 0.4968
Epoch 2/30
9750 - val acc: 0.7438
Epoch 3/30
5763 - val_acc: 0.8164
Epoch 4/30
5221 - val acc: 0.7998
Epoch 5/30
4435 - val_acc: 0.8677
Epoch 6/30
4253 - val acc: 0.8453
Epoch 7/30
3199 - val_acc: 0.9030
Epoch 8/30
2672 - val_acc: 0.8955
Epoch 9/30
2276 - val_acc: 0.9189
Epoch 10/30
4161 - val acc: 0.8059
Epoch 11/30
2722 - val_acc: 0.9019
Epoch 12/30
2127 - val_acc: 0.9226
Epoch 13/30
2360 - val_acc: 0.9111
Epoch 14/30
2715 - val_acc: 0.9009
Epoch 15/30
2443 - val_acc: 0.9138
Epoch 16/30
2583 - val_acc: 0.9158
Epoch 17/30
3677 - val_acc: 0.9043
Epoch 18/30
2588 - val_acc: 0.9172
Epoch 19/30
3220 - val_acc: 0.9023
Epoch 20/30
3090 - val_acc: 0.8948
Epoch 21/30
3343 - val_acc: 0.9033
Epoch 22/30
2945 - val_acc: 0.9179
Epoch 23/30
3167 - val acc: 0.9189
Epoch 24/30
2791 - val acc: 0.9141
Epoch 25/30
3023 - val_acc: 0.9152
Epoch 26/30
2672 - val_acc: 0.9199
Epoch 27/30
4755 - val_acc: 0.8931
Epoch 28/30
3067 - val_acc: 0.9043
Epoch 29/30
```

```
2978 - val_acc: 0.8890

Time Taken: 0:37:18.885674

In [178]: print()
    print()

# Plot train and cross validation error
    plot_train_cv_loss(trained_model, n_epochs)
```


From epoch 7, we starts to overfit the model, so best value for epoch is 7

```
In [179]: print()
    scores = model.evaluate(x_test, y_test, verbose=0)
    print("Test Accuracy: %f%%" % (scores[1]*100))
    print()

Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(y_test, axis=1)])
    Y_predictions = pd.Series([ACTIVITIES[y] for y in np.argmax(model.predict(x_test), axis=1)])

# Confusion Matrix
    plot_confusion_matrix_lstm(Y_true, Y_predictions)
```

Test Accuracy: 88.903970%

2973 - val_acc: 0.9026

Conclusion

```
In [3]: from prettytable import PrettyTable
    ptable = PrettyTable()
    ptable.title = " Model Comparision "
    ptable.field_names = ["LSTM Layers",'No. of Neurons in LSTM Layer','Dropout', 'Best Epoch']
    ptable.add_row(["2","32","0.50","10"])
    ptable.add_row(["2","48","0.50","7"])
    ptable.add_row(["2","64","0.50","8"])
    ptable.add_row(["\n","\n","\n","\n"])
    ptable.add_row(["2","32","0.70","9"])
    ptable.add_row(["2","48","0.70","16"])
    ptable.add_row(["2","64","0.70","7"])
    print(ptable)
```

+ Model Comparision			
LSTM Layers	No. of Neurons in LSTM Layer	Dropout	Best Epoch
2 2 2	32 48 64 	0.50 0.50 0.50 	10 7 8
2 2 2	32 48 64	0.70 0.70 0.70	9 16 7

From all the plots, we have observed that 64 neurons with 0.50 dropout rate will be the good choice, among all the models.