Национальный исследовательский университет "Высшая Школа Экономики" Московский институт электроники и математики Департамент Прикладной математики

# МАГНИТНЫЕ И ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА МОДЕЛИ ИЗИНГА НА СЛУЧАЙНЫХ БЛУЖДАНИЯХ НА РЕШЕТКЕ

Пчелинцев Илья

Научный руководитель: доцент, Буровский Е.А.

#### ЛИНЕЙНЫЕ ПОЛИМЕРЫ



# МОДЕЛЬ ИЗИНГА НА СЛУЧАЙНОМ БЛУЖДАНИИ БЕЗ CAMOПЕРЕСЕЧЕНИЙ (Ising-ISAW)

$$E(s,u) = -J \sum_{\langle i,j \rangle} s_i s_j, \qquad i,j \in u$$

$$Z = \sum_{S} \sum_{u} \exp(\frac{-E}{kT}), \qquad kT = 1$$

#### Исследуемые решётки:

- Квадратная
- Треугольная
- Кубическая
- 4D-Гиперкубическая



Предельные геометрические состояния модели – фазовый переход "Клубок-Глобула"

#### ЛОКАЛЬНОЕ КООРДИНАЦИОННОЕ ЧИСЛО МОДЕЛИ НА КВАДРАТНОЙ РЕШЁТКЕ



- Границы кластеров (3 соседа)
- Одномерные цепочки между кластерами (2 соседа)

#### РАННИЕ ИССЛЕДОВАНИЯ ЛКЧ



Зависимость долей узлов с 2-4-мя соседями от Ј на квадратной решётке – взято из:

*K. Faizullina, IP, E. Burovski* Critical and geometric properties of magnetic polymers across the globule-coil transition //Phys. Rev. E **104**, 054501, 2021

- 1. Нетривиальное поведение доли поверхностных узлов
- 2. Шкалирование долей ЛКЧ при J=0



#### АТМОСФЕРЫ БЛУЖДАНИЙ

- Изучалось на невзаимодействующем блуждании без самопересечений в:
  - A. Owczarek, T. Prellberg Scaling of the atmosphere of self-avoiding walks. Journal of Physics A: Mathematical and Theoretical, 41(37):375004, 2008
- Рассматривалась вероятность атмосферы К у сгенерированного блуждания
- Определен **линейный характер** шкалирования вер-сти относительно длины блуждания

Сходство/различие поведения внутренних и граничных узлов цепочки





Схема предполагаемого перехода от свойства атмосферы блуждания длины N к числу соседей узлов блуждания длины N+1

## ИССЛЕДУЕМЫЕ РЕШЁТКИ В J=0 – УНИВЕРСАЛЬНЫ ЛИ СВОЙСТВА?







#### СРАВНЕНИЕ ТРЕУГОЛЬНОЙ И КУБИЧЕСКОЙ РЕШЕТОК





### СЛУЧАЙ НЕВЗАИМОДЕЙСТВУЮЩИХ БЛУЖДАНИЙ

 Определён линейный характер шкалирования долей ЛКЧ:

$$\langle n_i \rangle = a * (1/N) + b$$

|            | $\langle n_2 \rangle$ |            |  |
|------------|-----------------------|------------|--|
| Lattice    | а                     | b          |  |
| Square     | -0.473(6)             | 0.71299(2) |  |
| Triangular | 0.492(2)              | 0.35989(1) |  |
| Cubic      | 0.42(1)               | 0.67429(3) |  |
| Hypercubic | 0.26(1)               | 0.71957(3) |  |
|            | $\langle n_3 \rangle$ |            |  |
| Lattice    | а                     | b          |  |
| Square     | -0.809(4)             | 0.25291(1) |  |
| Triangular | -0.519(3)             | 0.37410(1) |  |
| Cubic      | -1.270(7)             | 0.26012(3) |  |
| Hypercubic | -1.27(1)              | 0.22721(2) |  |



#### СРАВНЕНИЕ ПОВЕДЕНИЯ ВНУТРЕННИХ И КРАЕВЫХ УЗЛОВ

| k | p <sup>(k)</sup> | j | b((n <sub>i</sub> )) |
|---|------------------|---|----------------------|
| 3 | 0.711 14(3)      | 2 | 0.71299(2)           |
| 2 | 0.225 00(2)      | 3 | 0.25291(1)           |
| 1 | 0.054 76(1)      | 4 | 0.03410(1)           |

 Свойства атмосфер блуждания и локального координационного числа внутренних узлов определяют разные аспекты геометрического поведения модели

#### ПРОСТОЕ СЛУЧАЙНОЕ БЛУЖДАНИЕ (RW)



Сгенерированное блуждание **без эффектов исключенного объёма** 

Влияние эффектов исключённого объёма на поведение ЛКЧ и атмосферы блуждания



#### РЕЗУЛЬТАТЫ ДЛЯ $\langle n_i \rangle$

- Степенной характер шкалирования долей узлов, как от числа шагов блуждания, так и числа уникальных узлов
- Степенной закон шкалированния доли уникальных узлов RW
- Схожее численное поведение и равные пределы функций разных аргументов (в пределах ошибок метода аппроксимации)
- У функций от N\_unique степенные коэффициенты соразмерно выше чем у функций от N

$$f_i(N) = k_i(1/N)^{a_i} + b_i, i \in \{1,2,3,4, \text{unique}\}\$$

|              | k         | a         | b         | N          |
|--------------|-----------|-----------|-----------|------------|
| $n_1$        | 0.3425(8) | 0.417(2)  | 0.014(1)  | 3000-10000 |
| $n_2$        | 0.573(4)  | 0.171(1)  | 0.037(2)  | 3000-10000 |
| $n_3$        | 0.588(3)  | 0.219(3)  | 0.202(3)  | 3000-10000 |
| $n_4$        | -1.239(9) | 0.189(3)  | 0.759(5)  | 500-10000  |
| $n_{unique}$ | 0.831(1)  | 0.2049(2) | 0.1616(4) | 500-10000  |

$$g_i(N_{\text{unique}}) = q_i(1/N_{\text{unique}})^{s_i} + d_i, \quad i \in \{1, 2, 3, 4\}$$

|       | q        | S        | d        | $N_{ m unique}$ |
|-------|----------|----------|----------|-----------------|
| $n_1$ | 0.313(1) | 0.479(2) | 0.015(1) | 967-2875        |
| $n_2$ | 0.567(3) | 0.214(1) | 0.053(2) | 967-2875        |
| $n_3$ | 0.542(5) | 0.244(2) | 0.203(2) | 967-2875        |
| $n_4$ | -1.20(1) | 0.225(4) | 0.741(5) | 197-2875        |

### РЕЗУЛЬТАТЫ ДЛЯ $\langle p^{(k)} \rangle$

#### Аналогично долям узлов:

- Степенной характер шкалирования
- сходство по поведению
- равенство пределов в границах погрешностей
- большая информативность аргумента числа уникальных узлов по сравнению с числом шагов

$$p^{(i)}(N) = k_i(1/N)^{a_i} + b_i, \quad i \in \{0,1,2,3\}$$

|           | $k_i$    | $a_i$    | $b_i$    | N          | start           |
|-----------|----------|----------|----------|------------|-----------------|
| $p^{(0)}$ | -1.17(1) | 0.202(7) | 0.62(1)  | 3000-10000 | -1, 1, 0.4      |
| $p^{(1)}$ | 0.54(1)  | 0.37(3)  | 0.213(6) | 3000-10000 | 0.5, 0.5, 0.245 |
| $p^{(2)}$ | 0.596(4) | 0.272(6) | 0.137(4) | 1000-10000 | 0.5, 0.5, 0.16  |
| $p^{(3)}$ | 0.613(5) | 0.259(6) | 0.092(4) | 750-10000  | 0.5, 0.5, 0.15  |

$$p^{(i)}(N_{\text{unique}}) = q_i(1/N_{\text{unique}})^{s_i} + d_i, \quad i \in \{0,1,2,3\}$$

|           | $q_i$     | $s_i$    | $d_i$    | $N_{ m unique}$ | start          |
|-----------|-----------|----------|----------|-----------------|----------------|
| $p^{(0)}$ | -1.142(9) | 0.25(1)  | 0.59(2)  | 1533-2875       | -1, 1, 0.7     |
| $p^{(1)}$ | 0.52(1)   | 0.44(4)  | 0.214(6) | 967-2875        | 0.5, 0.5, 0.23 |
| $p^{(2)}$ | 0.585(5)  | 0.323(7) | 0.141(3) | 363-2875        | 0.5, 0.5, 0.16 |
| $p^{(3)}$ | 0.604(5)  | 0.310(6) | 0.097(3) | 281-2875        | 0.5, 0.5, 0.15 |

### СРАВНЕНИЕ ВЕЛИЧИН ЛОКАЛЬНЫХ КООРДИНАЦИОННЫХ ЧИСЕЛ

- Коэффициенты шкалирующих функций, а также пределы долей ЛКЧ и атмосфер блуждания отличаются значительно сильнее погрешностей
- Между величинами заметно лишь знаковое свойство линейных коэффициентов
- Поведение простого случайного блуждания так же отлично от дочерней SAW-модели.

| v | $d(n_v)$ | $d(p^{(4-v)})$ |
|---|----------|----------------|
| 1 | 0.015(1) | 0.097(3)       |
| 2 | 0.053(2) | 0.141(3)       |
| 3 | 0.203(2) | 0.214(6)       |
| 4 | 0.741(5) | 0.59(2)        |

| v | $b(n_v)$ | $b(p^{(4-v)})$ |
|---|----------|----------------|
| 1 | 0.014(1) | 0.092(4)       |
| 2 | 0.037(2) | 0.137(4)       |
| 3 | 0.202(3) | 0.213(6)       |
| 4 | 0.759(5) | 0.62(1)        |

### КРИТИЧЕСКОЕ ПОВЕДЕНИЕ МОДЕЛЕЙ НА ТРЕУГОЛЬНОЙ РЕШЁТКЕ





#### ИССЛЕДОВАНИЕ КРИТИЧЕСКОГО ПОВЕДЕНИЯ МОДЕЛЕЙ НА ТРЕУГОЛЬНОЙ РЕШЁТКЕ



Шкалирование радиуса между концами блуждания модели ISAW

| Модель         | Ранние результаты |           | ВКР      |
|----------------|-------------------|-----------|----------|
|                |                   |           |          |
| ISAW           | 0.41(7)           | 0.6673(5) | 0.42(1)  |
| Ising-ISA<br>W | -                 | 0.8340(5) | 0.545(5) |

- 1. Оценки фазовых переходов треугольных моделей **отличаются** от квадратных
- 2. Критические экспоненты моделей оказались идентичны при разных решётках