CSE 132A

Database Systems Principles

Prof. Victor Vianu

Logistics

- Lectures: in person (WLH 2005), podcast
- Attendance optional but strongly recommended
- Slides posted prior to lecture
- Weekly discussion section: in person and podcast
- TA office hours and instructor office hours: in person and by zoom
- Discussion board (Piazza)
- Exams: in person only!
- Everything will be posted on Canvas or Piazza

Data Management

An evolving, expanding field:

- Classical stand-alone databases (Oracle, DB2, SQL Server)
- Computer science is becoming data-centric:

 data science, web knowledge harvesting, crowdsourcing, cloud computing, scientific databases, networks, data mining, streaming sensor monitoring, social networks, bioinformatics, geographic information systems, digital libraries, data-driven business processes, data analytics
- Classical database concepts and algorithms continue to provide the core technology → this course

CSE132A: Database Systems Principles

- Core concepts and techniques in database systems
- Databases from the viewpoint of user and designer
- A lot of SQL, but also peeks under the hood: query processing, schema design, transactions and concurrency control
- Some basic theory: formal languages underlying SQL relational algebra and relational calculus
- Basic background for follow-up courses

```
132B: Database applications (A. Deutsch)
```

132C: Database implementation (A. Kumar)

135: Online analytics applications (Y. Papakonstantinou)

190: Beyond relational databases (A. Deutsch)

Requirements

- Two Gradiance SQL Labs and 3 written homeworks (13%)
- Two programming assignments (SQL and JDBC) (27%)
- Midterm (30%)
- Final (30%)

Academic Integrity

Everyone taking the class is assumed familiar with the Integrity of Scholarship policy posted on the class Web site

What is a database?

- Persistent data
- Query and update language for accessing and modifying data
- Query optimization
- Transactions and concurrency control

What kind of data?

Emphasis: many instances of similarly structured data

Examples:

- Airline reservations: database (large set of similar records)
- Computerized library: information retrieval
- Medication advisor: expert system

Top Level Goals of a Database System

- Provide users with a meaning-based view of data
 - shield from irrelevant detail → abstract view
- Support operations on data
 - queries, updates
- Provide data control
 - integrity, security
 - concurrency, recovery

Levels of Abstraction

• Logical level: describes data stored in database in terms close to the application

flight	reservation	• • •
flight number	passenger name	
origin	flight number	
destination	class	
departure time	seat	

- Physical level: describes how the data is stored and processed.
- View level: customized, restructured information. Views can also hide information (such as an employee's salary) for security purposes.

Basic Architecture of a Database System

Data Independence – logical and physical levels are independent

Database System

Tailored to specific application

Database Management System

- Generalized DB system
 - used in variety of application environments
 - common approach to
 - data organization
 - data storage
 - data access
 - data control
 - e.g. Ingres/Postgres, DB2, Oracle, SQL Server, MySQL, etc.

Data Models

• A collection of concepts and tools for describing the data relationships, semantics, constraints...

+

• A language for querying and modifying the data

- Relational model
- Entity-Relationship data model (<u>mainly for database design</u>, no query language)
- Object-based data models (Object-oriented and Object-relational)
- Semi-structured data model (graphs, XML)
- Other older models:
 - Network model
 - Hierarchical model

Example: Entity-Relationship Model

- Models an application as a collection of *entities* and *relationships*
 - Entity: a "thing" or "object" that is distinguishable from other objects
 - Described by a set of *attributes*
 - Relationship: an association among several entities
- Represented diagrammatically by an *entity-relationship diagram*:

Schemas and Instances

Similar to types and values of variables in programming languages

- Schema the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them
 - Analogous to type of a variable in a program
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable

Example: Relational Model

Schema

Example: Relational Model

customer_id	customer_name	customer_street	customer_city	
192-83-7465	Johnson	12 Alma St.	Palo Alto	
677-89-9011	Hayes	3 Main St.	Harrison	
182-73-6091	Turner	123 Putnam Ave.	Stamford	
321-12-3123	Jones	100 Main St.	Harrison	
336-66-9999	Lindsay	175 Park Ave.	Pittsfield	
019-28-3746	Smith	72 North St.	Rye	
(a) The <i>customer</i> table				
account_number balance				
A-101 500				
	A-21			
	A-10			
	A-30	1 1		
	A-20	1 1		
	A-21	1 1		
	A-22			
(b) The account table				
	customer_id	account_number		
	192-83-7465	A-101		
	192-83-7465	A-201		
	019-28-3746	A-215		
	677-89-9011	A-102		
	182-73-6091	A-305		
	321-12-3123	1		
	336-66-9999	1		
	019-28-3746	A-201		
(c) The <i>depositor</i> table				

Instance

Data Definition Language (DDL)

• Specification language for defining the database schema

- DDL compiler generates a set of tables described in a *data dictionary*
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Authorization information

Data Manipulation Language (DML)

- Language for accessing and modifying data
 DML also known as query/update language
- Two main classes of query languages
 - Declarative (nonprocedural) user specifies what data is required without specifying how to get it
 - Procedural user specifies what data is required and how to get that data
- SQL is the most widely used query language primarily declarative

This course: core database issues

- The relational model
- Standard relational query language: SQL
- Formal query languages: relational algebra and calculus
- Query processing
- Schema design: normal forms and the ER model
- Concurrency control
- Other topics as time allows

Databases at UCSD

- Prof. Alin Deutsch
- Prof. Arun Kumar
- Prof. Yannis Papakonstantinou
- Prof. Victor Vianu

Database group Web site: https://dbucsd.github.io/papers, seminars, bragging....

- Intersections with other CSE groups
 - storage
 - multimedia
 - machine learning
 - networks
- Intersections with HDSI (e.g. Prof. Babak Salimi)