DEFINITION: Let G be a group. A nonempty subset H of G is a **subgroup** of G if it is a group under the the same operation as H (i.e., $h \cdot_H h' = h \cdot_G h'$ for $h, h' \in H$). We write $H \leq G$ to indicate that H is a subgroup of G.

Any group G has two **trivial subgroups** $\{e\}$ and G.

LEMMA 1: Let H be a subset of G.

- TWO STEP TEST: If H is nonempty, H is closed under multiplication and H is closed under inverses, then H is a subgroup of G.
- ONE STEP TEST: If H is nonempty, and for all $x, y \in H$, $xy^{-1} \in H$, then H is a subgroup of G.

LEMMA 2 (GENERAL RECIPES FOR SUBGROUPS): Let G be a group.

- (1) If $H \leq G$ and $K \leq H$, then $H \leq G$.
- (2) If $\{H_{\alpha}\}_{{\alpha}\in J}$ is a collection of subgroups of G, then $\bigcap_{{\alpha}\in J}H_{\alpha}\leq G$.
- (3) If $f: G \to H$ is a group homomorphism, then $im(G) \leq H$.
- (4) If $f: G \to H$ is a group homomorphism, and $K \leq G$, then $f(K) = \{f(k) \mid k \in K\} \leq H$.
- (5) If $f: G \to H$ is a group homomorphism, and $K \leq G$, then $\ker(f) \leq G$.
- (6) The center Z(G) is a subgroup of G.
- (1) Proving subsets are subgroups:
 - (a) Choose a couple of parts of Lemma 2 and prove them; you can use Lemma 1.
 - **(b)** Let $n \ge 3$ and consider the dihedral group D_n of symmetries of the n-gon.
 - (i) Is the set of all reflections in D_n a subgroup?
 - (ii) Is the set of all rotations in D_n a subgroup?
 - (c) Let $n \in \mathbb{Z}_{\geq 1}$, and define $\mathrm{SL}_n(\mathbb{R})$ to be the set of $n \times n$ real matrices with determinant 1. Show² that $\mathrm{SL}_n(\mathbb{R}) \leq \mathrm{GL}_n(\mathbb{R})$. (SL_n(\mathbb{R}) is called the **special linear group**.)
 - (d) Let $n \in \mathbb{Z}_{\geq 1}$. Recall from linear algebra that an $n \times n$ matrix Q is *orthogonal* if $Q^TQ = I$, where T denotes transpose and I denotes the identity matrix. Define $O_n(\mathbb{R})$ to be the set of $n \times n$ real orthogonal matrices. Show that $O_n(\mathbb{R}) \leq \operatorname{GL}_n(\mathbb{R})$. $(O_n(\mathbb{R})$ is called the **orthogonal group**.)
 - (e) Define $SO_n(\mathbb{R})$ to be the set of $n \times n$ real orthogonal matrices that have determinant 1. Show that $SO_n(\mathbb{R}) \leq GL_n(\mathbb{R})$. ($SO_n(\mathbb{R})$ is called the **special orthogonal group**.)
- (2) Prove or disprove: The union of two subgroups of a group is a subgroup.
- (3) Prove Lemma 1.

¹A subset $H \subseteq G$ is closed under multiplication if $x, y \in H \Rightarrow xy \in H$ and closed under inverses if $x \in H \Rightarrow x^{-1} \in H$.

²Hint: This becomes very quick with a proper use of Lemma 2.

DEFINITION: Let G be a group, and $S \subseteq G$ be a subset. The **subgroup of** G **generated by** S is the intersection of all subgroups of G that contain S:

$$\langle S \rangle := \bigcap_{\substack{H \le G \\ S \subseteq H}} H$$

PROPOSITION: Let G be a group, and $S \subseteq G$ be a subset. Then

$$\langle S \rangle = \{ x_1^{j_1} \cdots x_m^{j_m} \mid x_i \in S, j_i \in \mathbb{Z} \}.$$

- **(4)** Explain why $\bigcap_{\substack{H \leq G \\ S \subseteq H}} H$ is a subgroup of G, and why it is the unique smallest subgroup of H that contains G.
- (5) Proof of the Proposition: Let $K = \{x_1^{j_1} \cdots x_m^{j_m} \mid x_i \in S, j_i \in \mathbb{Z}\}$ as in the Proposition.
 - (a) What concrete things do you need to show about K, S, and subgroups $H \leq G$ to prove this equality?
 - (b) Complete the proof.

CAYLEY'S THEOREM: Let G be a finite group of order n. Then G is isomorphic to a subgroup of S_n .

(6) Prove³ Cayley's Theorem.

³Hint: Let G act on G by left multiplication.