Research in Al

Daochang Liu

- 2022 Now, Postdoc Researcher at University of Sydney
- 2017 2022, Ph.D. at Peking University, China
- 2013 2017, B.E at Tongji University, China

Research interests:

Generative learning using diffusion models

Computer vision in surgeries

Video understanding and action analysis

Roadmap

- Introduction to AI and Deep Learning
- Research Methods in Al and Deep Learning
- Recent Large Models and Paradigm Shift

Roadmap

- Introduction to Al and Deep Learning
- Research Methods in AI and Deep Learning
- Recent Large Models and Paradigm Shift

Exciting Time ...

ChatGPT

Stable Diffusion

AlphaFold

What is Artificial Intelligence (AI)?

Artificial intelligence

Human intelligence exhibited by machines

Machine learning

An approach to achieve artificial intelligence

Deep learning

A technique for implementing machine learning

What is Artificial Intelligence (AI)?

ChatGPT: "Artificial Intelligence (AI) refers to the ability of machines to perform tasks that would normally require human intelligence to complete"

Artificial Intelligence (AI) refers to the ability of machines to mimic or surpass human intelligence in different ways by learning from different sources.

Intelligence from Different Sources

Human Learning

Learn with existing knowledge

Find patterns without guidance

Learn from iteraction with environment

Intelligence from Different Sources

Human Learning

Learn with existing knowledge

Find patterns without guidance

Learn from iteraction with environment

Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learning

Intelligence in Different Ways

Human Learning

Learn by asking questions

Learn with only a few examples

Learn how to learn better

Update your knowledge over time

Apply learned knowledge to new cases

Intelligence in Different Ways

Human Learning

Learn by asking questions

Learn with only a few examples

Learn how to learn better

Update your knowledge over time

Apply learned knowledge to new cases

Machine Learning

Active learning

Few-shot learning

Meta learning

Continuous learning

Transfer learning

. . .

Intelligence in Different Ways

Natural Language Processing

Read like human

Computer Vision

See like human

Robotics

Act like human

Artifical Intelligence

Machine Learning

Think like human

Audio and Speech

Listen/Speak like human

Topics in Computer Vision

High-level tasks:

- Image classification
- Object detection
- Semantic segmentation
- Image captioning
- •

Low-level tasks:

- Super-resolution
- Denosing
- Depth estimation
- ...

Topics in Natural Language Processing

Token1 Token2 Token3 Label Document classification, Sentiment Analysis, ... Label1 Label2 Label3 Token1 Token2 Token3 Sentence Tagging, Named Entity Recognition, ... Token4 Token5 Token6 Token1 Token2 Token3 **Machine Translation, Text Summarization, ...** Token1 Token2 Token3 Label Token1 Token2 Token3

Natural Language Inference, Extraction-Based Question Answering, ...

A Common Pipeline

How to process the data

How to design the model

How to define the target

How to optimize the model

Roadmap

- Introduction to AI and Deep Learning
- Research Methods in Al and Deep Learning
- Recent Large Models and Paradigm Shift

Research Methods from My Experience

- An Al Research Cycle
- Think Like a Machine
- Find a Topic on Grid

Research Methods from My Experience

- An Al Research Cycle
- Think Like a Machine
- Find a Topic on Grid

An Al Research Cycle

- 1. Choose a topic
- 2. Literature review
- 3. Identify a baseline
- 4. Find codes and reproduce baseline
- 5. Make some improvement

. . .

- 6. Debug and tune
- 7. Spend some GPU hours
- 8. Debug and tune
- 9. Spend more GPU hours

- 10. Design experiments
- 11. Write a paper and submit
- 12. Response or rebuttal
- 13. Present the outcome, or go back to 11 / 10 / 5 / 3 / 1

An Al Research Cycle

- **1. Choose a topic:** *Trade-offs: impact-competition, significance-risk, novelty-feasibility*
- 2. Literature review
- 3. Identify a baseline: Need to be recent SOTA, well-recognized, adaptable, easy to use
- **4. Find codes and reproduce baseline:** *Github, PaperWithCodes, Benchmarks*
- 5. Make some improvement

. . .

- 6. Debug and tune
- 7. Spend some GPU hours
- 8. Debug and tune
- 9. Spend more GPU hours

• • •

- 10. Design experiments
- 11. Write a paper and submit: Story-telling, exploration is bottom-up, story is top-down
- 12. Response or rebuttal: Clarify misunderstandings, provide new information
- 13. Present the outcome, or go back to 11 / 10 / 5 / 3 / 1

OpenReview

A good learning source

To know how it works

Accepted papers:
Promising ideas
Experiment designs
Successful rebuttal

Rejected papers: Things to avoid

Look at Reviewer Guideline

Reviewer guidelines of conferences or journals are also good learning sources

- CVPR
- NeurIPS
- MICCAI

CVPR Reviewer Guideline

What should be included in the review?

- A concise summary of the paper
 - What problem is addressed in the paper?
 - Is it a new problem? If so, why does it matter? If not, why does it still matter?
 - What is the key to the solution? What is the main contribution?
 - Do the experiments sufficiently support the claims?
- A clear statement of strengths and weaknesses
 - What are the key contributions and why do they matter?
 - What aspects of the paper most need improvement?
- A comprehensive check of potential fundamental flaws in the paper
 - Are the assumptions and theories (mathematically) sound?
 - Are the experiments scientifically sound and valid?
 - Is the problem addressed trivial?
 - Did the paper miss important prior work? Has it been done before? If yes, where?

NeurlPS Reviewer Guideline

Originality: Are the tasks or methods new? Is the work a novel combination of well-known techniques? (This can be valuable!) Is it clear how this work differs from previous contributions? Is related work adequately cited?

Quality: Is the submission technically sound? Are claims well supported (e.g., by theoretical analysis or experimental results)? Are the methods used appropriate? Is this a complete piece of work or work in progress? Are the authors careful and honest about evaluating both the strengths and weaknesses of their work?

Clarity: Is the submission clearly written? Is it well organized? (If not, please make constructive suggestions for improving its clarity.) Does it adequately inform the reader? (Note that a superbly written paper provides enough information for an expert reader to reproduce its results.)

Significance: Are the results important? Are others (researchers or practitioners) likely to use the ideas or build on them? Does the submission address a difficult task in a better way than previous work? Does it advance the state of the art in a demonstrable way? Does it provide unique data, unique conclusions about existing data, or a unique theoretical or experimental approach?

https://neurips.cc/Conferences/2021/PaperInformation/PaperChecklist https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

for self-check

MICCAI Reviewer Guideline

MIC-based papers: When reviewing MIC based MICCAI papers, we would like to see: whether the proposed methods are innovative or whether the application is innovative.

In particular the following questions should be asked when evaluating MIC-based papers: Is the topic of paper clinically significant?

Do the authors clearly explain data collection, processing, and division methods?

Do the data appropriately represent the range of possible patients and disease manifestations? Are the data labels (if applicable) of sufficient quality to support the claimed performance of the algorithms?

Do the authors report a sufficient number and type of performance measures to accurately represent strengths and weaknesses of the algorithms? Are performance measures reported with confidence intervals? Are the results and comparison with prior art placed in the context of a clinical application in terms of significance and impact? Have they performed a proper statistical significance analysis of results? Does the work make a significant contribution to the field or the society, or is it just incremental over previous work?

Do the authors discuss limitations of their methods and directions for future research?

Different conferences or journals have different tastes

Research Methods from My Experience

- An Al Research Cycle
- Think Like a Machine
- Find a Topic on Grid

Machine may behave not as you expect.

Machine may behave not as you expect.

Source Source

What you expect: Tank vs. No Tank

What the machine learn: Cloudy vs. Sunny Many Trees vs. Single Tree

Machine may behave not as you expect.

SimSiam for Self-Supervised Representation Learning

What you expect:

To make augmentations of the same image have similar feature representations

What the machine learn:

Output an all-zero feature all the time to take a shortcut to the learning target (Collapse)

Machine may behave not as you expect.

SimSiam for Self-Supervised Representation Learning

What you expect:

To make augmentations of the same image have similar feature representations

What the machine learn:

Output an all-zero feature all the time to take a shortcut to the learning target (Collapse)

If you want to make the machine think like human, you need to make yourself think like the machine first.

Imagine yourself as the AI model you are training.

- Visualize what the model sees (Input and Intermediate Results)
- How would you achieve the learning target if you are the model? Any shortcut?
- Test on some toy data or mental experiments
- Unexpected biases in the predictions?

Al researchers are the translator between our natural mind and the digital mind Formulate your expectations / domain knowledge in a computational way

Al researchers are the translator between our natural mind and the digital mind Formulate your expectations / domain knowledge in a computational way

Goal in *natural language*

Make two images more similar

Source

Source

Al researchers are the translator between our natural mind and the digital mind Formulate your expectations / domain knowledge in a computational way

Goal in *natural language*

Make two images more similar

What does 'similar' means?

Similar objects

Similar style

Similar colors

. . .

Source

Al researchers are the translator between our natural mind and the digital mind Formulate your expectations / domain knowledge in a computational way

Al researchers are the translator between our natural mind and the digital mind

- When interacting with machine, think like the machine.
 - Designing the model, Debugging, Experiments, Results Analysis, ...
- When interacting with people, think like human.
 - Reading a paper, Presenting your work, ...
 - Focus more on intuitive interpretations and physical meanings

Research Methods from My Experience

- An Al Research Cycle
- Think Like a Machine
- Find a Topic on Grid

Type 1: Propose new models / algorithms

Models / Algorithms / Ideas Type 3: Combining the models and task in a novel way

Type 2: Identify new tasks

Type 2: Identify new tasks

More significant: People usually care more about what you do rather than how you do

Type 1: Propose new models / algorithms

Models / Algorithms / Ideas

More significant

Tasks / Setting

Type 3: Combining the models and

task in a novel way

More practical. Insights matter.

Why is the new model especially suitable for this task?

Type 2: Identify new tasks

More significant

Suggestion: Read more papers outside your field to extend the grid

Roadmap

- Introduction to AI and Deep Learning
- Research Methods in AI and Deep Learning
- Recent Large Models and Paradigm Shift

Labor Market Impact of Large Models (GPTs)

Group	Occupations with highest exposure	% Exposure
Human α	Interpreters and Translators	76.5
	Survey Researchers	75.0
	Poets, Lyricists and Creative Writers	68.8
	Animal Scientists	66.7
	Public Relations Specialists	66.7
Human β	Survey Researchers	84.4
	Writers and Authors	82.5
	Interpreters and Translators	82.4
	Public Relations Specialists	80.6
	Animal Scientists	77.8
Human ζ	Mathematicians	100.0
	Tax Preparers	100.0
	Financial Quantitative Analysts	100.0
	Writers and Authors	100.0
	Web and Digital Interface Designers	100.0
	Humans labeled 15 occupations as "fully exposed	ł."

Model a	Mathematicians	100.0 95.2 94.1 92.9 90.9
	Correspondence Clerks	
	Blockchain Engineers	
	Court Reporters and Simultaneous Captioners	
	Proofreaders and Copy Markers	
Model β	Mathematicians	100.0
	Blockchain Engineers	97.1
	Court Reporters and Simultaneous Captioners	96.4
	Proofreaders and Copy Markers	95.5
	Correspondence Clerks	95.2
Model ζ	Accountants and Auditors	100.0
	News Analysts, Reporters, and Journalists	100.0
	Legal Secretaries and Administrative Assistants	100.0
	Clinical Data Managers	100.0
	Climate Change Policy Analysts	100.0
	The model labeled 86 occupations as "fully exposed."	
Highest variance	Search Marketing Strategists	14.5
	Graphic Designers	13.4
	Investment Fund Managers	13.0
	Financial Managers	13.0
	Insurance Appraisers, Auto Damage	12.6

Labor Market Impact of Large Models (GPTs)

Group	Occupations with highest exposure	6 Exposure	$\operatorname{Model} \alpha$	Mathematicians	100.0 95.2
Human α	Interpreters and Translators Survey Researchers Poets, Lyricists and Creative Writers	76.5 75.0 68.8 66.7 Model β		Correspondence Clerks Blockchain Engineers Court Reporters and Simultaneous Captioners Proofreaders and Copy Markers	
	Animal Scientists Public Relations Specialists		,	Mathematicians Blockchain Engineers Courters and Simultaneous Captioners	100.0 97.1 96.4
Human β	Survey Researchers Writers and Authors Al researche	ers are	impacte	Gougge Control of Copy Markers Correspondence Clerks	95.5 95.2
	Interpreters and Translators82.4Public Relations Specialists80.6Animal Scientists77.8		Model ζ	Accountants and Auditors News Analysts, Reporters, and Journalists Legal Secretaries and Administrative Assistants Clinical Data Managers	100.0 100.0 100.0 100.0
Human ζ	Mathematicians Tax Preparers	100.0 100.0		Climate Change Policy Analysts The model labeled 86 occupations as "fully exposed."	100.0
	Financial Quantitative Analysts Writers and Authors Web and Digital Interface Designers Humans labeled 15 occupations as "fully expose	100.0 100.0 100.0 d."	Highest variance	Search Marketing Strategists Graphic Designers Investment Fund Managers Financial Managers Insurance Appraisers, Auto Damage	14.5 13.4 13.0 13.0 12.6

Paradigm Shift in Al Research

- One-by-one to All-in-one
- Model-centric to Computation-centric
- Decentralized to Centralized

Paradigm Shift in Al Research

- One-by-one to All-in-one
- Model-centric to Computation-centric
- Decentralized to Centralized

This has happened for languages, and is happening for images and multi-modality research

Many different tasks in CV / NLP / ML

Document classification, Sentiment
Analysis, Sentence Tagging, Named
Entity Recognition, Machine Translation,
Text Summarization, Natural Language
Inference, Image Captioning, Visual
Question Answering, Image Classification,
Object Detection, Image Segmentation, ...

Many different tasks in CV / NLP / ML

Large communities in CV / NLP / ML

Many different tasks in CV / NLP / ML

Document classification, Sentiment
Analysis, Sentence Tagging, Named
Entity Recognition, Machine Translation,
Text Summarization, Natural Language
Inference, Image Captioning, Visual
Question Answering, Image Classification,
Object Detection, Image Segmentation, ...

Polymeration Analysis, Sentence Tagging, Named

A Unified
Large Model

Large Model

e.g., ChatGPT

Learning strategies Many different tasks in CV / NLP / ML Supervised learning Unsupervised learning Document classification, Sentiment Reinforcement learning Analysis, Sentence Tagging, Named Entity Recognition, Machine Translation, **A Unified** Text Summarization, Natural Language **Large Model** Inference, Image Captioning, Visual Transfer learning Question Answering, Image Classification, Zero/Few-shot learning Object Detection, Image Segmentation, ... Continuous learning Meta learning

Versatile abilities

Techniques behind large models are not new
Attention > Transformer > Self-Supervised Learning > BERT > GPT 1 > GPT 2 > GPT 3 ...

Techniques behind large models are not new
Attention > Transformer > Self-Supervised Learning > BERT > GPT 1 > GPT 2 > GPT 3 ...

Performant large models = Existing models + More data + More Computation + More engineer

Techniques behind large models are not new
Attention > Transformer > Self-Supervised Learning > BERT > GPT 1 > GPT 2 > GPT 3 ...

Performant large models = Existing models + More data + More Computation + More engineer

Less Important

More Important

Decentralized to Centralized

Performant large models = Existing models + More data + More Computation + More engineer

Very important

Decentralized to Centralized

Performant large models =

Existing models + More data + More Computation + More engineer

Private in-house data

Very expensive

Many tricks not disclosed

It is only affordable for big companies
Winner takes all

A Unified Large Model

e.g., ChatGPT

AI + X

AI + Science, AI + Medical, AI + Social Computing, Embodied AI, ...

Machine Learning

New Problems

Prompt, RLHF,

Understand its behaviours

Large models without

human in loop?

AI + X

AI + Science, AI + Medical, AI + Social Computing, Embodied AI, ...

Machine Learning

New Problems

Prompt, RLHF,

Understand its behaviours

Large models without

human in loop?

AI + X

AI + Science, AI + Medical, AI + Social Computing, Embodied AI, ...

Machine Learning

New Problems

Prompt, RLHF,

Understand its behaviours

Large models without

human in loop?

Personal Workflow

Improve daily productivity

AI + Science, AI + Medical, AI + Social Computing, Embodied AI, ...

Help Current Research

A source of external knowledge,

"Feature extractor"

Machine Learning

Our Lab: Going Down

Diffusion Models: The technique behind Stable Diffusion and Midjourney

Stable Diffusion

Midjourney

We are making diffusion models:

- Faster
- Safer
- More controllable
- More flexible
- More balanced

• ...

Credit to: Dr. Chang Xu, Anh-Dung Dinh, Xiyu Wang, Junyu Zhang, Chen Chen

Our Lab: Going Up

Generating images for people with color vision deficiency

Credit to: Dr. Chang Xu, Shuyi Jiang

Our Lab: Going Up

Surgical skill assessment and feedback using computer vision

Thank You!

Questions?

daochang.liu@sydney.edu.au