Determining DNA Health

DNA is a nucleic acid present in the bodies of living things. Each piece of DNA contains a number of *genes*, some of which are beneficial and increase the DNA's *total health*. Each gene has a *health value*, and the *total health* of a DNA is the sum of the health values of all the beneficial genes that occur as a substring in the DNA. We represent genes and DNA as non-empty strings of lowercase English alphabetic letters, and the same gene may appear multiple times as a susbtring of a DNA.

Given the following:

- An array of beneficial gene strings, $genes = [g_0, g_1, \dots, g_{n-1}]$. Note that these gene sequences are *not* guaranteed to be distinct.
- An array of gene health values, $health = [h_0, h_1, \dots, h_{n-1}]$, where each h_i is the health value for gene g_i .
- A set of s DNA strands where the definition of each strand has three components, first, last, and d, where string d is a DNA for which genes $g_{start}, \ldots, g_{end}$ are healthy.

Find and print the respective total healths of the *unhealthiest* (minimum total health) and *healthiest* (maximum total health) strands of DNA as two space-separated values on a single line.

Input Format

The first line contains an integer, n, denoting the total number of genes.

The second line contains n space-separated strings describing the respective values of $g_0, g_1, \ldots, g_{n-1}$ (i.e., the elements of genes).

The third line contains n space-separated integers describing the respective values of $h_0, h_1, \ldots, h_{n-1}$ (i.e., the elements of health).

The fourth line contains an integer, s, denoting the number of strands of DNA to process.

Each of the s subsequent lines describes a DNA strand in the form $\frac{1}{start} = \frac{1}{start} + \frac{$

Constraints

- $1 \le n, s \le 10^5$
- $0 \leq h_i \leq 10^7$
- $0 \le first \le last < n$
- $1 \leq$ the sum of the lengths of all genes and DNA strands $\leq 2 imes 10^6$
- It is guaranteed that each q_i consists of lowercase English alphabetic letters only (i.e., a to z).

Output Format

Print two space-separated integers describing the respective total health of the *unhealthiest* and the *healthiest* strands of DNA.

Sample Input 0

```
6
a b c aa d b
1 2 3 4 5 6
3
1 5 caaab
0 4 xyz
```

Sample Output 0

0 19

Explanation 0

In the diagrams below, the ranges of beneficial genes for a specific DNA on the left are highlighed in $\ green$ and individual instances of beneficial genes on the right are bolded. The total healths of the $\ s=3$ strands are:

1.

d = caaab, first = 1, last = 5												
indices	0	1	2	3	4	5						
genes	а	b	С	aa	d	b	gene	c aaab	c aa ab	ca aa b	caaa b	caaa b
health	1	2	3	4	5	6	value	3	4	4	2	6

The total health of caaab is 3+4+4+2+6=19.

2.

d = xyz, first = 0, last = 4											
indices	0	1	2	3	4	5					
genes	а	b	С	aa	d	b	gene	xyz			
health	1	2	3	4	5	6	value	0			

The total health of xyz is 0, because it contains no beneficial genes.

3.

d = bcdybc, first = 2, last = 4												
indices	0	1	2	3	4	5] .					
genes	а	b	С	aa	d	b	gene	b c dybc	bc d ybc	bcdyb c		
health	1	2	3	4	5	6	value	3	5	3		

The total health of bcdybc is 3 + 5 + 3 = 11.

The unhealthiest DNA strand is xyz with a total health of 0, and the healthiest DNA strand is $\frac{caaab}{caaab}$ with a total health of 19. Thus, we print $\frac{0}{19}$ as our answer.