# Bài 2. TOA ĐỘ CỦA VÉC TƠ TRONG KHÔNG GIAN

# A. LÝ THUYẾT CẦN NHỚ

## 1. Hệ tọa độ trong không gian

Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi  $\overrightarrow{i}$ ,  $\overrightarrow{j}$ ,  $\overrightarrow{k}$  lần lượt là các véc-tơ đơn vị trên các trục Ox, Oy, Oz.

- ❷ Hệ ba trực như vậy được gọi là hệ trực toạ độ Descartes vuông góc Oxyz, hay đơn giản là hệ toạ độ Oxyz. Điểm O được gọi là gốc toạ độ.
- $oldsymbol{\Theta}$  Các mặt phẳng (Oxy),~(Oyz),~(Ozx) đôi một vuông góc với nhau được gọi là các mặt phẳng toạ độ.



Không gian với hệ toạ độ Oxyz còn được gọi là không gian Oxyz.

# 2. Tọa độ của điểm

Trong không gian với hệ tọa độ Oxyz, cho điểm M. Tọa độ điểm M được xác định như sau:

- $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}$
- $oldsymbol{\Theta}$  Xác định hình chiếu P của điểm M trên trục cao Oz, điểm P ứng với số c trên trục Oz. Số c là cao độ của điểm M.

Bộ số (a;b;c) là toạ độ của điểm M trong không gian với hệ toạ độ Oxyz, kí hiệu là M(a;b;c).



# 3. Tọa độ của vectơ

Trong không gian Oxyz:

- igotimes Toạ độ của điểm M cũng là toạ độ của vectơ  $\overrightarrow{OM}$ .
- $m{\Theta}$  Cho  $\overrightarrow{u}$ . Dựng điểm M(a;b;c) thỏa  $\overrightarrow{OM} = \overrightarrow{u}$  thì tọa độ của điểm M là tọa độ của  $\overrightarrow{u}$ . Theo hình vẽ thì

$$\overrightarrow{u} = \overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{OK} + \overrightarrow{OP} = a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k}.$$

Suy ra

$$\overrightarrow{u} = (a;b;c) \Leftrightarrow \overrightarrow{u} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}.$$



**A** Tọa độ các véc tơ đơn vị lần lượt là:  $\vec{i} = (1;0;0), \quad \vec{j} = (0;1;0), \quad \vec{k} = (0;0;1).$ 



ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

| ٠. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| ٠. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

|  | • | • | • | • |  |  |  |  |  | • | • | • | • | • |  |  |  |  |  | • |  |
|--|---|---|---|---|--|--|--|--|--|---|---|---|---|---|--|--|--|--|--|---|--|
|  |   |   |   |   |  |  |  |  |  |   |   |   |   |   |  |  |  |  |  |   |  |
|  |   |   |   |   |  |  |  |  |  |   |   |   |   |   |  |  |  |  |  |   |  |
|  |   |   |   |   |  |  |  |  |  |   |   |   |   |   |  |  |  |  |  |   |  |

| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

| <br> |   |
|------|---|
|      |   |
|      | Ī |
|      | Ī |
|      | Ī |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      | Ī |
|      | Ī |
|      | Ī |
|      | Ī |
|      | Ī |
|      | Ī |
|      | Ī |
|      | Ī |
|      | Ī |
|      |   |
|      | Ī |
|      |   |
|      |   |
|      |   |
|      |   |
|      |   |
|      | Ī |
|      |   |

| • |  |  | • | • | • | • | • | • | • | • | • | • | • |  |  | • | • | • | • | • | • | • | • | • |  |
|---|--|--|---|---|---|---|---|---|---|---|---|---|---|--|--|---|---|---|---|---|---|---|---|---|--|
|   |  |  |   |   |   |   |   |   |   |   |   |   |   |  |  |   |   |   |   |   |   |   |   |   |  |
|   |  |  |   |   |   |   |   |   |   |   |   |   |   |  |  |   |   |   |   |   |   |   |   |   |  |
|   |  |  |   |   |   |   |   |   |   |   |   |   |   |  |  |   |   |   |   |   |   |   |   |   |  |
|   |  |  |   |   |   |   |   |   |   |   |   |   |   |  |  |   |   |   |   |   |   |   |   |   |  |

| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |

| QUICK NOTE |     |                    |     | _ | _ |
|------------|-----|--------------------|-----|---|---|
| BUICK NOTE | ΔШ  | $\sim$ $^{\prime}$ | NIZ |   |   |
|            | SUI | $c_{\kappa}$       | N   | м | • |

# B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN

#### ► Dạng 1. Tọa độ điểm, tọa độ vec tơ

Khi xác định tọa độ điểm, tọa độ véc tơ ta chú ý các kết quả sau:

a) 
$$\vec{u} = a \vec{i} + b \vec{j} + c \vec{k} \Leftrightarrow \vec{u} = (a; b; c).$$

b) 
$$\vec{u}(u_1; u_2; u_3) = \vec{v}(v_1; v_2; v_3) \Leftrightarrow \begin{cases} u_1 = v_1 \\ u_2 = v_2 \\ u_3 = v_3 \end{cases}$$

- c)  $\overrightarrow{OM} = (a; b; c)$  thì M(a; b; c).
- d)  $\overrightarrow{AB} = (x_B x_A; y_B y_A; z_B z_A).$
- e) Chiếu điểm M(a;b;c) lên mặt phẳng tọa độ (hoặc trục tọa độ) thì "thành phần bị khuyết" bằng 0. Chẳng hạn: M(1;2;3) chiếu lên (Oxy) thì z=0. Suy ra hình chiếu là  $M_1(1;2;0)$ .
- f) Tứ giác ABCD là hình bình hành khi và chỉ khi

$$\overrightarrow{AD} = \overrightarrow{BC}$$

# BÀI TẬP TỰ LUẬN TRẢ LỜI NGẮN

**VÍ DỤ 1.** Trong không gian Oxyz, cho A(3;-2;-1). Gọi  $A_1,A_2,A_3$  lần lượt là hình chiếu của điểm A trên các mặt phẳng toạ độ (Oxy),(Oyz),(Oxz). Tìm toạ độ của các điểm  $A_1,A_2,A_3$ .

**VÍ DỤ 2.** Trong không gian Oxyz, cho A(-2;3;4). Gọi H,K,P lần lượt là hình chiếu của điểm A trên các trục Ox,Oy,Oz. Tìm tọa độ của các điểm H,K,P.

**VÍ DỤ 3.** Trong không gian Oxyz, cho A(1;1;-2), B(4;3;1) và C(-1;-2;2).

- a) Tìm tọa độ của véct<br/>ơ $\overrightarrow{AB}$ .
- b) Tìm toạ độ của điểm D sao cho ABCD là hình bình hành.

**VÍ DỤ 4.** Trong không gian Oxyz, cho hình hộp  $ABCD \cdot A'B'C'D'$  có A(4;6;-5), B(5;7;-4), C(5;6;-4), D'(2;0;2). Tìm tọa độ các đỉnh còn lại của hình hộp  $ABCD \cdot A'B'C'D'$ .

# BÀI TẬP TRẮC NGHIỆM 4 PHƯƠNG ÁN

**CÂU 1.** Trong không gian Oxyz, cho  $\vec{a} = -2\vec{i} + 3\vec{j} + 5\vec{k}$ . Toạ độ của véc-tơ  $\vec{a}$  là (2; -3; -5). **(B)** (2; 3; -5). **(C)** (-2; 3; 5). **(D)** (2; 3; 5).

**CÂU 2.** Trong không gian Oxyz, cho véc-tơ  $\overrightarrow{u} = 3\overrightarrow{i} + 4\overrightarrow{k} - \overrightarrow{j}$ . Tọa độ của véc-tơ  $\overrightarrow{u}$  là (3; -1; 4). (B)(3; 4; -1). (C)(4; -1; 3). (D)(4; 3; -1).

**CÂU 3.** Trong không gian Oxyz, điểm nào sau đây thuộc truc Oz?

- (A) M(1;0;0). (B) M(1;0;2).
- $\mathbf{C}M(1;2;0).$
- $\bigcirc M(0;0;-2).$

**CÂU 4.** Trong không gian Oxyz, cho điểm M thỏa  $\overrightarrow{OM} = 2\overrightarrow{i} + \overrightarrow{j}$ . Tọa độ điểm M là  $(\mathbf{A})M(0;2;1)$ .  $(\mathbf{B})M(1;2;0)$ .  $(\mathbf{C})M(2;0;1)$ .  $(\mathbf{D})M(2;1;0)$ .

**CÂU 5.** Trong không gian Oxyz, cho vectơ  $\overrightarrow{OA} = \overrightarrow{j} - 2\overrightarrow{k}$ . Tọa độ điểm A là

- (1;0;-2). (0;1;-2).
- (0;-1;2).
- (1; -2; 0).

**CÂU 6.** Trong không gian Oxyz, xác định toạ độ của điểm A biết A nằm trên tia Ox và OA = 2.

- (A) A(0;0;2).
- $left{B}A(2;2;0).$
- $\mathbf{C}$ A(0;2;0).
- $\bigcirc A(2;0;0).$

**CÂU 7.** Trong không gian Oxyz, xác định toạ độ của điểm A biết A nằm trên tia đối của tia Oy và OA = 3.

- (A)A(0;3;0).
- $(\mathbf{B})A(0;-3;0).$
- $(\mathbf{C})A(0;-9;0).$
- $(\mathbf{D})A(3;-3;0).$

**CÂU 8.** Trong không gian Oxyz, cho hai điểm A(1;-1;2) và B(2;1;-4). Véc-tơ  $\overrightarrow{AB}$  có tọa đô là

- $(\mathbf{A})(-1;-2;6).$
- **(B)**(3;0;-2).
- $(\mathbf{C})(1;0;-6).$
- $(\mathbf{D})(1;2;-6).$

**CÂU 9.** Trong không gian Oxyz, cho hai điểm A(1;3;-2), B(3;-2;4). Véc-tơ  $\overrightarrow{AB}$  có tọa

- (A)(2;5;6).
- $(\mathbf{B})(4;1;2).$
- $(\mathbf{C})(2; -5; 6).$
- $(\mathbf{D})(-2;5;6).$

**CÂU 10.** Cho hai điểm A, B thỏa mãn  $\overrightarrow{OA} = (2; -1; 3)$  và  $\overrightarrow{OB} = (5; 2; -1)$ . Tìm tọa độ véc-to  $\overrightarrow{AB}$ .

- $(\mathbf{A}) \overrightarrow{AB} = (2; -1; 3).$   $(\mathbf{B}) \overrightarrow{AB} = (3; 3; -4).$   $(\mathbf{C}) \overrightarrow{AB} = (7; 1; 2).$
- $(\mathbf{D})\overrightarrow{AB} = (3: -3: 4).$

**CÂU 11.** Trong không gian Oxyz, cho hai điểm M và N biết M(2;1;-1) và  $\overline{MN}=(-1;2-1;1;-1)$ 3). Tọa độ N là

- (A)N(1;-3;-4).
- **(B)**N(1;3;-4).
- $(\mathbf{C})N(-1;3;-4).$
- $(\mathbf{D})N(1;3;4).$

**CÂU 12.** Hình chiếu vuông góc của điểm A(3; -4; 5) trên mặt phẳng (Oxz) là điểm

- **(B)**M(0; -4; 5).
- $(\mathbf{C})M(0;0;5).$
- $(\mathbf{D})M(3;0;5).$

**CÂU 13.** Hình chiếu vuông góc của điểm A(1;2;3) trên mặt phẳng (Oxy) là điểm

- (A)M(0;0;3).
- **(B)**N(1;2;0).
- $(\mathbf{C})Q(0;2;0).$
- $(\mathbf{D})P(1;0;0).$

**CÂU 14.** Hình chiếu vuông góc của điểm M(2;1;-3) lên mặt phẳng (Oyz) có tọa độ là

- $(\mathbf{A})(2;0;0).$
- $(\mathbf{B})(2;1;0).$
- $(\mathbf{C})(0;1;-3).$
- $(\mathbf{D})(2;0;-3).$

**CÂU 15.** Hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là

- $(\mathbf{B})(0;2;0).$
- $(\mathbf{C})(3;0;0).$
- $(\mathbf{D})(0;0;1).$

**CÂU 16.** Hình chiếu của điểm M(2;3;-2) trên trục Oy có tọa độ là

- $(\mathbf{A})(2;0;0).$
- $(\mathbf{B})(0;3;0).$
- $(\mathbf{C})(0;0;-2).$
- $(\mathbf{D})(2;0;-2).$

#### CÂU 17.

Trong không gian Oxyz, cho hình bình hành ABCD với A(-2;3;1), B(3;0;-1), C(6;5;0). Tọa độ đỉnh D là

- $(\mathbf{A})D(11;2;2).$
- **(B)**D(1; 8; 2).
- $(\mathbf{C})D(11;2;-2).$
- $(\mathbf{D})D(1;8;-2).$



#### CÂU 18.

Trong không gian Oxyz, cho các điểm A(1;0;3), B(2;3;-4),C(-3;1;2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

- (A) D(4; 2; 9).
- **(B)**D(-2;4;-5).
- $(\mathbf{C})D(6;2;-3).$
- $(\mathbf{D})(-4;-2;9).$



#### CÂU 19.

Cho hình hộp ABCD.A'B'C'D' có A(1;0;1), B(2;1;2), D(1;-1;1), C'(4;5;-5). Tìm tọa độ đỉnh C của hình hộp.

- $(\mathbf{A})C(2;0;2).$
- **(B)**C(2;0;2).
- $(\mathbf{C})C(2;0;2).$
- $(\mathbf{D})C(2;0;2).$



**CÂU 20.** Cho hình hộp ABCD.A'B'C'D' có A(1;0;1), B(2;1;2), D(1;-1;1), C'(4;5;-5).Tìm tọa độ đỉnh  $A^\prime$  của hình hộp.

- $(\mathbf{A})A'(-1;-5;8).$
- $(\mathbf{B})A'(-1;-5;8).$
- $(\mathbf{C})A'(-1;-5;8).$
- $(\mathbf{D})A'(-1;-5;8).$

CÂU 21.

| All | IICK | N |      |
|-----|------|---|------|
|     | пск  | N | 9112 |

Cho hình hộp ABCD.A'B'C'D' có A(1;0;1), B(2;1;2), D(1;-1;1), C'(4;5;-5). Tìm tọa độ đỉnh D' của hình hộp.

- $\triangle D'(-1;-6;8).$
- $(\mathbf{B})D'(-1;-6;8).$
- $\bigcirc D'(-1;-6;8).$
- (D)D'(-1;-6;8).



# BÀI TẬP TRẮC NGHIỆM ĐÚNG SAI

**CÂU 22.** Trong không gian Oxyz, cho  $\vec{a} = \vec{i} + 3\vec{k} - 4\vec{j}$  và  $\vec{b} = (m - n; 4m - 6n; n^2 - 3m + 2)$ , với m, n là tham số.

| Mệnh đề                                                                                     | Ð | S |
|---------------------------------------------------------------------------------------------|---|---|
| <b>a)</b> Tọa độ $\vec{a} = (1; 3; -4)$ .                                                   |   |   |
| <b>b)</b> Dựng điểm $A$ thỏa $\overrightarrow{OA} = \overrightarrow{a}$ thì $A(1; -4; 3)$ . |   |   |
| c) Tồn tại giá trị của $m$ và $n$ để $\overrightarrow{b} = \overrightarrow{0}$ .            |   |   |
| d) Nếu $\vec{a} = \vec{b}$ thì $m + n = 9$ .                                                |   |   |

#### **CÂU 23.**

Trong không gian Oxyz, cho  $\overrightarrow{a} = (2; 2; 0)$ ,  $\overrightarrow{b} = 2\overrightarrow{j} + 2\overrightarrow{k}$ . Dựng  $\overrightarrow{OA} = \overrightarrow{a}$  và  $\overrightarrow{OB} = \overrightarrow{b}$ .

| Mệnh đề                                        | Ð | S |
|------------------------------------------------|---|---|
| $\mathbf{a)} \ \vec{a} = 2\vec{i} + 2\vec{k}.$ |   |   |
| <b>b)</b> Toạ độ $\vec{b} = (0; 2; 2)$ .       |   |   |
| c) Toạ độ $\overrightarrow{AB} = (-2; 2; 0)$ . |   |   |
| d) Góc $\widehat{AOB} = 45^{\circ}$ .          |   |   |



#### CÂU 24.

Trong không gian Oxyz, cho hình hộp  $\overrightarrow{OABC}.O'A'B'C'$  có A(1;1;-1), B(0;3;0),  $\overrightarrow{BC'}=(2;-6;6)$ . Gọi H,~K lần lượt là trọng tâm của tam giác OA'O' và CB'C'.

| Mệnh đề                                                       | Ð | S |
|---------------------------------------------------------------|---|---|
| <b>a)</b> Tọa độ điểm $C'$ là $(2; -3; 6)$ .                  |   |   |
| <b>b)</b> Tọa độ điểm $O'$ là $(3; -5; 5)$ .                  |   |   |
| c) Tọa độ véc tơ $\overrightarrow{AB'} = (-2; 3; -6)$ .       |   |   |
| <b>d)</b> Tọa độ véc tơ $\overrightarrow{HK} = (-1; 2; -1)$ . |   |   |



## Dạng 2. Tọa độ hóa một số hình không gian

- ① Chọn một điểm mà từ đó có ba đường đôi một vuông góc nhau làm gốc tọa độ.
- 2 Xây dựng tọa độ các điểm trên hình đã cho tương ứng với hệ trực vừa chọn.
- 2 Tọa độ các điểm đặc biệt:

- $\bullet \ \ M \in Ox \quad \Rightarrow \quad \bullet \ \ M \in Oy \quad \Rightarrow \quad \bullet \ \ M \in Oz \quad \Rightarrow \\ M(x;0;0). \qquad \qquad M(0;y;0). \qquad \qquad M(0;0;z).$

## BÀI TẬP TỰ LUẬN TRẢ LỜI NGẮN

### VÍ DỤ 1.

Cho hình hộp chữ nhật ABCD.A'B'C'D' có cạnh AB = AA' = 2, AD = 4. Gọi E là tâm của hình chữ nhật ABCD, F là trung điểm AC'. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với A), hãy xác định tọa độ các đỉnh của hình hộp chữ nhật và tọa độ hai điểm E, F.



#### VÍ DU 2.

Một máy bay M đang cất cánh từ phi trường. Với hệ toạ độ Oxyz được thiết lập như Hình bên, cho biết M là vị trí của máy bay với OM=14,  $\widehat{NOB}=32^{\circ}, \widehat{MOC}=65^{\circ}$ . Tính toạ độ điểm M.



# BÀI TẬP TRẮC NGHIỆM 4 PHƯƠNG ÁN

#### CÂU 1.

Hình bên mô tả một sân cầu lông với kích thước theo tiêu chuẩn quốc tế. Với hệ toạ độ Oxyz được thiết lập như hình bên (đơn vị trên mỗi trục là mét), giả sử AB là một trụ cầu lông để căng lưới, hãy xác định tọa độ của B

- $(6,1;6,7;1,55). \quad (6,7;6,1;1,55).$
- (6,1;0;1,55). (0;6,7;1,55).



#### CÂU 2

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với điểm A), tọa độ điểm B' là

- (A)B(0;2;0).
- **(B)**B(2;2;2).
- $\mathbf{C}$ B(2;2;0).
- $(\mathbf{D})B(2;0;2).$



#### CÂU 3.

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với điểm A), tọa độ điểm C' là

- $\triangle C'(2;2;0).$
- **B**C'(2;2;2).
- $\mathbf{C}C'(2;2;0).$
- $(\mathbf{D})C'(2;0;2).$



#### CÂU 4.

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng  $a\sqrt{2}$ , cạnh bên bằng  $a\sqrt{5}$ . Gọi O là tâm của hình vuông ABCD. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với tâm hình vuông ABCD), tọa độ  $\overrightarrow{SC}$  là

$$(\mathbf{A})\overrightarrow{SC} = (2a; 0; -2a).$$

$$(\overrightarrow{\mathbf{B}})\overrightarrow{SC} = (2a; -a; -2a).$$

$$(\mathbf{C})\overrightarrow{SC} = (a; 0; -2a).$$

$$(\overrightarrow{\mathbf{D}})\overrightarrow{SC} = (a; 0; 2a).$$



#### CÂU 5.

Cho tứ diện SABC có ABC là tam giác vuông tại B, BC = 3, BA = 2, SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với điểm B), tìm khẳng định  $\mathbf{sai}$ .

- (A) A(0; 2; 0).
- **(B)**B(0;0;0).
- $\mathbf{C}$ C(0;0;3).
- $(\mathbf{D})S(-2;2;2).$



#### CÂU 6.

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2, SA vuông góc với đáy và SA=1. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với trung điểm của đoạn BC), hãy tìm toạ độ điểm S.

- (A)  $S(0; \sqrt{3}; 1)$ .
- **(B)** $S(0; \sqrt{3}; 1)$ .
- $\mathbf{C}$  $S(0; \sqrt{3}; 1)$ .
- $(\mathbf{D})S(0;\sqrt{3};1).$



#### CÂU 7.

 $\mathring{O}$  một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyz như hình bên. Gọi H là hình chiếu vuông góc của M xuống mặt phẳng (Oxy). Cho biết OM = 50,  $(\overrightarrow{i}, \overrightarrow{OH}) = 64^{\circ}$ ,  $(\overrightarrow{OH}, \overrightarrow{OM}) = 48^{\circ}$ . Tìm toạ độ của điểm M.

- (A) M(14,7;30,1;37,2).
- $(\mathbf{B})M(14,7;30,1;37,2).$
- $(\mathbf{C})M(14,7;30,1;37,2).$
- $(\mathbf{D})M(14,7;30,1;37,2).$



# BÀI TẬP TRẮC NGHIỆM ĐÚNG SAI

#### CÂU 8.

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=1, AD=2, SA vuông góc với mặt đáy và SA=3. Với hệ toạ độ Oxyz được thiết lập như sau: Gốc tọa độ O trùng với điểm A, các véc tơ  $\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AS}$  lần lượt cùng hướng với  $\overrightarrow{i}, \overrightarrow{j}$  và  $\overrightarrow{k}$ . Xét tính đúng sai của các khẳng định sau

| Mệnh đề                         | Ð | S |
|---------------------------------|---|---|
| <b>a)</b> Tọa độ $D(0; 2; 0)$ . |   |   |
| <b>b)</b> Tọa độ $C(1; 2; 3)$ . |   |   |
| <b>c)</b> Tọa độ $S(2;0;0)$ .   |   |   |
| d) Tọa độ $I(1;1;0)$ .          |   |   |



#### CÂU 9.

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2. Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với tâm hình vuông ABCD), hãy xét tính đúng sai của các khẳng định sau:

| Mệnh đề                                               | Ð | S |
|-------------------------------------------------------|---|---|
| <b>a)</b> Tọa độ $A(-1;0;0)$ .                        |   |   |
| <b>b)</b> $\overrightarrow{AC'} = (2\sqrt{2}; 0; 2).$ |   |   |
| c) Tọa độ $D'(0; \sqrt{2}; 2)$ .                      |   |   |
| <b>d)</b> $\overrightarrow{BD'} = (0; 0; 2).$         |   |   |



#### CÂU 10.

| $\sim$ III | ICK | NΙ | $\triangle$ |   |
|------------|-----|----|-------------|---|
| ωu         |     | IN | ΟI          | - |

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng 2 như hình vẽ. Hình chiếu vuông góc của A' lên (ABC) trùng với trung điểm cạnh AB, góc  $\widehat{A'AO} = 60^{\circ}$ . Với hệ toạ độ Oxyz được thiết lập như hình bên (gốc tọa độ O trùng với trung điểm của đoạn BC), hãy xét tính đúng sai của các khẳng định sau:

| Mệnh đề                                             | Ð | $\mathbf{S}$ |
|-----------------------------------------------------|---|--------------|
| <b>a)</b> Tọa độ điểm $A(-1;0;0)$ .                 |   |              |
| <b>b)</b> Tọa độ điểm $C(0; \sqrt{3}; 0)$ .         |   |              |
| <b>c)</b> Tọa độ điểm $A'(0;-1;\sqrt{3})$ .         |   |              |
| <b>d)</b> Tọa độ điểm $C'(1; \sqrt{3}; \sqrt{3})$ . |   |              |



# Bài 3. BIỂU THỰC TỌA ĐỘ CỦA CÁC PHÉP TOÁN VECTO

# A. LÝ THUYẾT CẦN NHỚ

1. Biểu thức tọa độ của phép toán cộng, trừ, nhân một số thực với một véctơ

Trong không gian Oxyz, cho hai véc-tơ  $\vec{a}=(a_1;a_2;a_3), \ \vec{b}=(b_1;b_2;b_3)$  và số k. Khi đó

① 
$$\vec{a} + \vec{b} = (a_1 + b_1; a_2 + b_2; a_3 + b_3);$$

$$(2) \vec{a} - \vec{b} = (a_1 - b_1; a_2 - b_2; a_3 - b_3);$$

$$3 \ k\vec{a} = (ka_1; ka_2; ka_3).$$

 $\textbf{ Cho hai v\'ec-to } \overrightarrow{a} = (a_1; a_2; a_3), \ \overrightarrow{b} = (b_1; b_2; b_3), \ \overrightarrow{b} \neq \overrightarrow{0}. \ Hai v\'ec-to \ \overrightarrow{a}, \ \overrightarrow{b} \ c\`ung \ phương$  khi và chỉ khi tồn tại một số thực k sao cho  $\begin{cases} a_1 = kb_1 \\ a_2 = kb_2 \\ a_3 = kb_3. \end{cases}$ 

2. Biểu thức toa đô của tích vô hướng hai véctơ

Trong không gian Oxyz, tích vô hướng của hai véc-tơ  $\vec{a}=(a_1;a_2;a_3)$  và  $\vec{b}=(b_1;b_2;b_3)$  được xác định bởi công thức

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3.$$

① 
$$\vec{a} \perp \vec{b} \Leftrightarrow a_1b_1 + a_2b_2 + a_3b_3 = 0;$$

② 
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2};$$
  $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}.$ 

$$(3) \cos\left(\vec{a}; \vec{b}\right) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}} (v\acute{o}i \ \vec{a} \neq \vec{0} \ v\grave{a} \ \vec{b} \neq \vec{0}).$$

3. Biểu thức tọa độ của tích có hướng hai véctơ

Cho hai véc-tơ  $\vec{a}=(a_1;a_2;a_3)$  và  $\vec{b}=(b_1;b_2;b_3)$  không cùng phương. Khi đó vec tơ

$$\overrightarrow{w} = \left(a_2b_3 - b_2a_3; a_3b_1 - b_3a_1; a_1b_2 - b_1a_2\right)$$

vuông góc với cả hai véc tơ  $\overrightarrow{a}$  và  $\overrightarrow{b}$ .

A

① Véc tơ  $\vec{w}$  xác định như trên còn gọi là **tích có hướng** của hai véc tơ  $\vec{a}$ ,  $\vec{b}$ , ki hiệu  $\vec{w} = [\vec{a}, \vec{a}]$ .

$$\ \ \, \text{ Quy w\'oc} \, \left| \begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| = a_1b_2 - a_2b_1 \, \text{ thi }$$

$$\left[ \vec{a}, \vec{b} \right] = \left( \left| \begin{array}{ccc} a_2 & a_3 \\ b_2 & b_3 \end{array} \right| ; \left| \begin{array}{ccc} a_3 & a_1 \\ b_3 & b_1 \end{array} \right| ; \left| \begin{array}{ccc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right) = \left( a_2b_3 - b_2a_3 \; ; \; a_3b_1 - b_3a_1 \; ; \; a_1b_2 + b_1a_2 \right)$$

 $\ \, \vec{a} \ \, \textit{không cùng phương với} \ \, \vec{b} \Leftrightarrow \left[ \vec{a}, \vec{b} \right] \neq \vec{0} \, .$ 

# 4. Biểu thức tọa độ trung điểm đoạn thẳng, trọng tâm tam giác

Trong không gian Oxyz, tọa độ trung điểm và trong tâm được xác định như sau:

① Tọa độ trung điểm M của đoạn thẳng AB là

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right).$$



$$G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}; \frac{z_A + z_B + z_C}{3}\right).$$



Dạng 1. Tọa độ của các phép toán vec tơ, tọa độ điểm, độ dài đoạn thẳng

# BÀI TẬP TỰ LUẬN TRẢ LỜI NGẮN

**VÍ DỤ 1.** Cho  $\vec{a} = (-2; 3; 2), \vec{b} = (2; 1; -1), \vec{c} = (1; 2; 3).$  Tính tọa độ của mỗi vecto sau:

a) 
$$3\vec{a}$$
;

b) 
$$2\vec{a} - \vec{b}$$
;

c) 
$$\vec{a} + 2\vec{b} - \frac{3}{2}\vec{c}$$
.

**VÍ DỤ 2.** Trong không gian Oxyz, cho các véc-tơ  $\vec{u}=3\vec{i}-2\vec{j}+\vec{k}$ ,  $\vec{v}=-\frac{3}{2}\vec{i}+\vec{j}-\frac{1}{2}\vec{k}$ ,  $\vec{w}=6\vec{i}+m\vec{j}-n\vec{k}$ .

- a) Chứng minh  $\vec{u}$  và  $\vec{v}$  cùng phương.
- b) Tìm giá tri của m và n để véc-to  $\vec{u}$  và  $\vec{w}$  cùng phương.

**VÍ DU 3.** Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;-1;2), B(1;2;3), C(4;-2;1)

- a) Chứng minh ba điểm A,B,C không thẳng hàng. Xác định tọa độ trọng tâm tam giác ABC.
- b) Tìm tọa độ điểm D biết ABCD là hình bình hành.
- c) Tìm toa đô giao điểm E của đường thẳng BC với mặt phẳng toa đô (Oxz).

**VÍ DỤ 4.** Trong không gian Oxyz, cho ba điểm A(5; -3; 0), B(2; 1; -1), C(4; 1; 2).

- a) Tìm tọa độ của vecto  $\overrightarrow{u} = 2\overrightarrow{AB} + \overrightarrow{AC} 5\overrightarrow{BC}$ .
- b) Tìm tọa độ điểm N sao cho  $2\overrightarrow{NA} = -\overrightarrow{NB}$ .

# VÍ DŲ 5.

Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8 m, chiều rộng là 6 m và chiều cao là 3 m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét  $(Hình\ minh\ họa\ bên)$ . Hãy tìm toạ độ của điểm treo đèn.



+0<sub>1</sub>a<sub>2</sub>.)....

.....

.....

| QUICK NOTE |                                                                                               | BÀI TẬP TRẮC NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GHIỆM 4 PHƯƠNG                          | ÁN                                                       |
|------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|
|            | Các câu hỏi sau đ                                                                             | ều xét trong không gian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oxyz.                                   |                                                          |
|            |                                                                                               | $\vec{b} = (1; 2; -3), \vec{b} = (-2; -4; \vec{b}) \vec{b} = 2\vec{a}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                          |
|            | CÂU 2. Cho hai v                                                                              | véc-to $\overrightarrow{x}=(2;1;-3), \overrightarrow{y}=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : (1;0;-1). Tìm tọa độ c                | $\vec{a}$ véc-to $\vec{a} = \vec{x} + 2\vec{y}$ .        |
|            |                                                                                               | <b>B</b> $\vec{a}(4;1;-1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                       | _                                                        |
|            | _                                                                                             | $\vec{b} = (1; -1; 3), \ \vec{b} = (2; 0; -1)$<br>$\vec{c} = (2; 9). \ \vec{b} \vec{u} = (4; 2; -9).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                       | _                                                        |
|            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | a véc-to $\overrightarrow{b}$ thỏa mãn biểu              |
|            | $\frac{1}{1}$ + by $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ | $= \vec{0}$ .<br>-1). $(\mathbf{B})\vec{b} = (-1; 2; -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                          |
|            |                                                                                               | $\vec{a} = (1; -3; 4)$ . Vecto n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | _                                                        |
|            |                                                                                               | $\vec{c} = (-2; 6; -8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8). $(\mathbf{c})\vec{d} = (-2; 6; 8).$ | $ \mathbf{D}\vec{m} = (2; -6; -8). $                     |
|            |                                                                                               | $\vec{a} = (m; 2; 3) \ \text{và} \ \vec{b} = (m; 2; 3) \ b$ |                                         |                                                          |
|            | $\int m = \frac{1}{2}$                                                                        | $\mathbf{B} \begin{cases} m = \frac{3}{2} \\ n = \frac{4}{2} \end{cases}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\int m = \frac{3}{2}$                  | $\int m = \frac{2}{3}$                                   |
|            | $n=\frac{4}{2}$ .                                                                             | $n = \frac{4}{2}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $n = \frac{2}{2}.$                      | $n = \frac{4}{2}.$                                       |
|            | CÂU 7. Cho hai                                                                                | điểm $A(2;3;1)$ và $B(3;1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5). Tính đô dài đoạn tl                 | hẳng AB.                                                 |
|            | $\mathbf{A} AB = \sqrt{21}.$                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{C}AB = 2\sqrt{5}.$             | $\mathbf{D}AB = \sqrt{13}.$                              |
|            | CÂU 8. Cho hai                                                                                | điểm $M(3;-2;1)$ và $N(0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;1;-1). Tính độ dài đo                  | ạn thẳng $MN$ .                                          |
|            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\bigcirc MN = \sqrt{22}.$              |                                                          |
|            | l                                                                                             | điểm $A(-1;1;2)$ và $B(3;2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (-5;0). Tọa độ trung d                  | liểm của đoạn thẳng $AB$                                 |
|            | (1; -2; 1).                                                                                   | <b>B</b> $(4; -6; 2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2; -3; -1).                            | $\bigcirc$ (2; -4; 2).                                   |
|            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | cho $B$ là trung điểm của                                |
|            | đoạn $AC$ là                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                          |
|            |                                                                                               | <b>B</b> $C(4; -3; 5)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                          |
|            | <b>CAU 11.</b> Cho tan tam giác $ABC$ là                                                      | m giác $ABC$ với $A(0; -1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3), B(2;1;1), C(1;0;-                   | 1). Tọa độ trọng tâm của                                 |
|            |                                                                                               | <b>B</b> $(-1;0;1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\bigcirc$ (0; 1; 1).                   | $\bigcirc$ (1; 1; 0).                                    |
|            |                                                                                               | $\vec{A} = \vec{i} - 2\vec{j} + 3\vec{k}$ , điểm .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B(3; -4; 1) và $C(2; 0; -1)$            | 1). Tọa độ trọng tâm của                                 |
|            | tam giác $ABC$ là $(1:-2:3)$                                                                  | <b>B</b> $(-1;2;-3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\bigcirc$ $(2\cdot -2\cdot 1)$         | $(\mathbf{D})(-2\cdot 2\cdot -1)$                        |
|            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | -1; 2), G(1; 1; 1). Khi đó                               |
|            | $\overrightarrow{\text{diểm }}C$ có tọa độ                                                    | là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |
|            | (2;2;4).                                                                                      | <b>B</b> $(-2;0;2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\bigcirc$ $(-2; -3; -2).$              | (2;2;0).                                                 |
|            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | (6;0) tạo thành một hình                                 |
|            | G của đoạn $MN$ .                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ). Tìm tọa độ trung điểm                                 |
|            | $ \qquad \qquad \mathbf{A} G\left(\frac{4}{3}; \frac{8}{3}; 0\right). $                       | $left{B}G(2;4;0).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\bigcirc G(1;2;0).$                    | $\bigcirc G(4;8;0).$                                     |
|            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | nỏa mãn đẳng thức $\overrightarrow{CE}=$                 |
|            | $2\overrightarrow{EB}$ thì tọa độ đi                                                          | ểm $E$ là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | -                                                        |
|            | $(3; \frac{8}{3}; \frac{8}{3}).$                                                              | <b>B</b> $\left(1; 2; \frac{1}{3}\right)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bigcirc$ $(3; 3; -\frac{8}{3}).$      | $\bigcirc$ $\left(\frac{8}{3}; 3; -\frac{8}{3}\right)$ . |
|            | CÂU 16. Cho các                                                                               | c điểm $A(1;-1;0),\ B(0;1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2;0), C(2;1;3) và $M$ là               | ı điểm thỏa mãn hệ thức                                  |
|            | $\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}$                             | $\vec{t} = \vec{0}$ . Khi đó điểm $M$ có                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ó tọa độ là                             |                                                          |
|            | $\mathbf{A}(3;2;3).$                                                                          | <b>(B)</b> $(3;-2;-3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(\mathbf{C})(3;-2;3).$                 | $(\mathbf{D})(3;2;-3).$                                  |

**CÂU 17.** Cho tọa độ các điểm A(-1;3); B(2;-2) và C(m;1). Tìm m để 3 điểm A,B,Cthẳng hàng.

$$\bigcirc m = \frac{1}{5}$$

$$\bigcirc m = -\frac{1}{3}$$

**(B)** 
$$m = \frac{1}{5}$$
. **(C)**  $m = -\frac{1}{3}$ .

**CÂU 18.** Cho ba điểm A(-1;1;2), B(0;1;-1), C(x+2;y;-2) thẳng hàng. Tổng x+y

**B**
$$-\frac{8}{3}$$
.

$$\bigcirc$$
  $-\frac{2}{3}$ .

$$\bigcirc$$
  $-\frac{1}{3}$ .

**CÂU 19.** Tứ giác ABCD là hình bình hành, biết A(1;0;1), B(2;1;2), D(1;-1;1). Tìm tọa độ điểm C.

$$(0; -2; 0).$$

$$\bigcirc$$
 (2; 0; 2).

$$(\mathbf{D})(2;-2;2).$$

**CÂU 20.** Cho hình hộp ABCD.A'B'C'D' có  $A(0;0;0), B(a;0;0), D(0;2a;0), A'(0;0;2a), a \neq 0.$ Tính độ dài đoạn thẳng AC'.



**(B)**2|a|.

$$\mathbf{C}$$
3|a|.

$$\bigcirc \frac{3|a|}{2}$$



**CÂU 21.** Cho hình hộp ABCD.A'B'C'D' có A(0;0;1), B'(1;0;0), C'(1;1;0). Tìm tọa độ của điểm D.

- (A) D(0;-1;1).
- **(B)**D(0;1;1).
- $\bigcirc D(0;1;0).$
- $(\mathbf{D})D(1;1;1).$



# BÀI TẬP TRẮC NGHIỆM ĐÚNG SAI

**CÂU 22.** Cho các điểm A(1; -2; 3), B(-2; 1; 2), C(3; -1; 2).

| Mệnh đề                                        | Ð | S |
|------------------------------------------------|---|---|
| <b>a)</b> $\overrightarrow{AB} = (-3; 3; -1).$ |   |   |
| <b>b)</b> $\overrightarrow{AC} = (-2; -1; 1).$ |   |   |
| $\overrightarrow{AB} = 3\overrightarrow{AC}.$  |   |   |
| <b>d)</b> Ba điểm $A, B, C$ không thẳng hàng.  |   |   |

|  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|  |   | • |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

| • | • | • | • | • | • |   | • |   |   |   |   |   |   | • | • | • | • | • | • | • | • | • | • | • | • | • |   |   |   | • |   |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  |
| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  |



| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

|                                         | <br> |
|-----------------------------------------|------|
|                                         | <br> |
|                                         | <br> |
| • • • • • • • • • • • • • • • • • • • • | <br> |

| <br> |
|------|
| <br> |
| <br> |
| <br> |
| <br> |

| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |

| ~  |     |    | _   |
|----|-----|----|-----|
| ລມ | ICK | NC |     |
| ΞU | ICK |    | 41- |

**CÂU 23.** Cho ba điểm A(3;3;-6), B(1;3;2)và C(-1; -3; 1). Gọi M, N, K lần lượt là trung điểm của AB, BC và CA.

| Mệnh đề                                                       | Ð | S |
|---------------------------------------------------------------|---|---|
| a) Tọa độ $M(2;3;2)$ .                                        |   |   |
| b) Với $G$ là trọng tâm tam giác $ABC$ thì $GC = 2\sqrt{5}$ . |   |   |
| c) Trọng tâm tam giác $MNK$ là $E(1;1;-1)$ .                  |   |   |
| d) Với $D(-3; -3; 9)$ thì tứ giác $ABDC$ là hình bình hành.   |   |   |



**CÂU 24.** Cho hình hộp ABCD.A'B'C'D', biết điểm A(0;0;0), B(1;0;0), C(1;2;0), D'(-1;3;5). Gọi M, N là tâm của các hình bình hành ABB'A', ADD'A'.

| Mệnh đề                                                                           | Ð | S |
|-----------------------------------------------------------------------------------|---|---|
| <b>a)</b> Tọa độ $D(0; 2; 0)$ .                                                   |   |   |
| <b>b)</b> Tọa độ $A'(-1;1;5)$ .                                                   |   |   |
| c) Tọa độ $\overrightarrow{MN} = (-1;1;0)$ .                                      |   |   |
| $ \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CC'}  = \sqrt{29}.$ |   |   |



CÂU 25. Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. Chiếc thứ hai nằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 km.

Chọn hệ trục Oxyz với gốc O đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía nam, trục Oy hướng về phía đông và trục Oz hướng thẳng đứng lên trời (Hình bên dưới), đơn vị đo lấy theo kilomet.



|            | Mệnh đề                                                                                          | Đ | S |
|------------|--------------------------------------------------------------------------------------------------|---|---|
| <b>a</b> ) | Với hệ tọa độ đã chọn, toạ độ khinh khí cầu thứ nhất là $(2;1;0,5)$ .                            |   |   |
| b)         | Với hệ tọa độ đã chọn, toạ độ khinh khí cầu thứ hai là $(-1,5;-1;0,8)$ .                         |   |   |
| <b>c</b> ) | Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng $\sqrt{21}$ km.                    |   |   |
| d)         | Khoảng cách hai chiếc khinh khí cầu là 3,92 km ( $K\acute{e}t$ quả làm tròn đến hàng phần trăm). |   |   |

Dạng 2. Tích vô hướng, tích có hướng hai vec tơ và ứng dụng

## BÀI TẬP TỰ LUẬN TRẢ LỜI NGẮN

**VÍ DU 1.** Cho ba véc-to  $\vec{a} = (3;0;1), \vec{b} = (1;-1;-2), \vec{c} = (2;1;-1), \vec{d} = (1;7;-3).$ 

- a) Tính  $\vec{a} \cdot \vec{b}$ ,  $\vec{b} \cdot \vec{c}$ .
- b) Tính  $|\vec{a}|$ ,  $|\vec{b}|$ ,  $\cos(\vec{a}, \vec{b})$ . c) Chứng minh  $\vec{d} \perp \vec{a}$ .

**VÍ DU 2.** Trong không gian Oxyz, cho  $\vec{a} = (1;0;1), \vec{b} = (1;1;0)$  và  $\vec{c} = (-4;3;m)$ .

- a) Tính góc giữa hai vecto  $\vec{a}$  và  $\vec{b}$ .
- b) Tìm m để vecto  $\vec{d} = 2\vec{a} + 3\vec{b}$  vuông góc với  $\vec{c}$ .

**VÌ DU 3.** Trong không gian Oxyz, cho tam giác ABC có A(-1;0;2), B(0;4;3) và C(-2;1;2).

- a) Chỉ ra tọa độ một véc tơ (khác  $\vec{0}$ ) vuông góc với hai véc tơ  $\overrightarrow{AB}$ ,  $\overrightarrow{AC}$ .
- b) Tính chu vi tam giác ABC.
- c) Tính  $\cos \widehat{BAC}$ .
- d) Tìm độ dài đường phân giác trong AD của tam giác ABC.

**VÌ DỤ 4.** Trong không gian Oxyz, cho 3 điểm A(0;1;-2); B(3;0;0) và điểm C thuộc trục Oz. Biết ABC là tam giác cân tại C. Tìm toa độ điểm C.

**VÌ DU 5.** Trong không gian Oxyz, cho ba điểm M(2;3;-1), N(-1;1;1), P(1;m-1;2). Với những giá trị nào của m thì tam giác MNP vuông tại N?

**VÍ DU 6.** Cho hai điểm A(2,-1,1); B(3,-2,-1). Tìm điểm N trên trục Ox cách đều Avà B.

#### VÍ DU 7.

Trong Hóa học, cấu tạo của phân tử ammoniac (NH<sub>3</sub>) có dạng hình chóp tam giác đều mà đỉnh là nguyên tử nitrogen (N) và đáy là tam giác  $H_1H_2H_3$  với  $H_1$ ,  $H_2$ ,  $H_3$  là vị trí của ba nguyên tử hydrogen (H). Góc tạo bởi liên kết H-N-H, có hai cạnh là hai đoạn thẳng nối N với hai trong ba điểm  $H_1, H_2, H_3$  (chẳng hạn  $H_1NH_2$ ), gọi là góc liên kết của phân tử  $NH_3$ . Góc này xấp xỉ  $107^\circ$ .

Trong không gian Oxyz, cho một phân tử  $NH_3$  được biểu diễn bởi hình chóp tam giác đều  $N.H_1H_2H_3$  với O là tâm của đáy. Nguyên tử nitrogen được biểu diễn bởi điểm Nthuộc trực Oz, ba nguyên tử hydrogen ở các vị trí  $H_1, H_2$ ,  $H_3$  trong đó  $H_1(0; -2; 0)$  và  $H_2H_3$  song song với trục Ox(Hình bên).



- a) Tính khoảng cách giữa hai nguyên tử hydrogen.
- b) Tính khoảng cách giữa hai nguyên tử nitrogen với mỗi nguyên tử hydrogen.

#### VÍ DU 8.

Một châu cây được đặt trên một giá đỡ có bốn chân với điểm đặt S(0;0;20) và các điểm cham mặt đất của bốn chân lần lượt là A(20;0;0), B(0;20;0), C(-20;0;0), D(0;-20;0) (đơn vị cm). Cho biết trọng lực tác dụng lên chậu cây có độ lớn 40(N) và được phân bố thành bốn lực  $\overrightarrow{F_1}$ ,  $\overrightarrow{F_2}$ ,  $\overrightarrow{F_3}$ ,  $\overrightarrow{F_4}$  có độ lớn bằng nhau như Hình 4. Tìm toạ độ của các lực nói trên (mỗi centimét biểu diễn 1 N).



# BÀI TẬP TRẮC NGHIỆM 4 PHƯƠNG ÁN

**CÂU 1.** Tích vô hướng của hai vecto  $\vec{u} = (3;0;1)$  và  $\vec{v} = (2;1;0)$  là

| Cac        |   |
|------------|---|
| <b>B</b> ) | 6 |

| <b>C</b> 8 |
|------------|
|------------|

| $(\mathbf{D})$ | -6 |
|----------------|----|
| $\sim$         |    |

|       |      | _    |
|-------|------|------|
| GV.VÜ | NGOC | PHÁT |

| QUICK NOTE | <b>CÂU 2.</b> Tích vô h<br><b>(A)</b> −4.                                                                                        | nướng của hai vecto $\vec{u}$ :                               | $= \vec{i} + 2\vec{j} - \vec{k} \text{ và } \vec{v} =$ $\bigcirc \bullet 4.$ | $(0;1;-2)$ bằng $\bigcirc$ $-2.$                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|            | CÂU 3. Cho các y                                                                                                                 | $\overrightarrow{a} = (1:2:1) \text{ và } \overline{b}$       | $\vec{b} = (2:2:1)$ . Tính tích                                              | vô hướng $\vec{a} \cdot (\vec{a} - \vec{b})$ .                                         |
|            | $\bigcirc$ <b>A</b> ) -1.                                                                                                        | (2, 2, 2) to $(3, 2, 2)$                                      | $(\mathbf{C})_2$ .                                                           | ( <b>D</b> )1.                                                                         |
|            |                                                                                                                                  |                                                               |                                                                              |                                                                                        |
|            |                                                                                                                                  |                                                               |                                                                              | $\vec{f} = (5; 4; -2) \text{ (don vi: N)}$                                             |
|            | grup thiet bị thực $\bigcirc$ | hiện độ dời $\vec{a} = (70; 20)$ $(\textbf{B})530 (J).$       | $(\mathbf{C})510 (\mathrm{J}).$                                              | on cong sinn boi iţic $f$ . $(\mathbf{D})500 (J).$                                     |
|            |                                                                                                                                  | <u> </u>                                                      | <u> </u>                                                                     | <b>D</b> )300 (3).                                                                     |
|            |                                                                                                                                  | hai véc-to $\vec{i}$ và $\vec{u} = (-1)^{1200}$               |                                                                              | <b>(D</b> )30°.                                                                        |
|            | <b>(A</b> ) 60°.                                                                                                                 | <b>B</b> )120°.                                               | <b>(C</b> )150°.                                                             |                                                                                        |
|            | l - \                                                                                                                            | véc-to $\vec{u} = (-1; 1; 0)$ v                               | $\vec{v} = (0; -1; 0)$ . Góc                                                 | hợp bởi hai véc-tơ $\overrightarrow{u}$ và $\overrightarrow{v}$                        |
|            | băng (A) 60°.                                                                                                                    | <b>B</b> )45°.                                                | <b>(C</b> )135°.                                                             | ( <b>D</b> )120°.                                                                      |
|            |                                                                                                                                  |                                                               |                                                                              |                                                                                        |
|            |                                                                                                                                  | véc-to $\overrightarrow{a}(-2; -3; 1)$ và                     |                                                                              |                                                                                        |
|            | $igatharpoons \cos(\vec{a}, \vec{b}) =$                                                                                          | $-\frac{1}{2\sqrt{7}}$ .                                      | $(\mathbf{B})\cos(\vec{a},\vec{b}) = 0$                                      | $-\frac{1}{2\sqrt{7}}$ .                                                               |
|            | $\mathbf{C}\cos(\vec{a},\vec{b}) =$                                                                                              | <u>1</u>                                                      | $igotimes_{\cos(ec{a},\ ec{b})} =$                                           | 3                                                                                      |
|            |                                                                                                                                  | 2 V 1                                                         |                                                                              | - <b>v</b> ·                                                                           |
|            | CÂU 8. Cho $\overrightarrow{a}=$                                                                                                 | $(3;2;1), \vec{b} = (-2;2;-$                                  | 4). Giá trị của $ \vec{a} - \vec{b} $                                        | bằng                                                                                   |
|            | $\bigcirc$ $5\sqrt{2}$ .                                                                                                         | <b>B</b> 50.                                                  | $\bigcirc 2\sqrt{5}$ .                                                       | <b>D</b> 3.                                                                            |
|            | CÂU 9. Cho hai                                                                                                                   | $\overrightarrow{u} = (-1; 0; 2)$ vě                          | $\vec{v} = (x; -2; 1)$ . Biết n                                              | rằng $\overrightarrow{u} \cdot \overrightarrow{v} = 4$ . Khi đó $ \overrightarrow{v} $ |
|            | bằng                                                                                                                             | ( =, 0, =)                                                    | (**, =, =): ====                                                             |                                                                                        |
|            | $\mathbf{A}\sqrt{21}$ .                                                                                                          | <b>B</b> 2.                                                   | <b>©</b> 3.                                                                  | <b>D</b> 5.                                                                            |
|            | CÂU 10. Tìm số                                                                                                                   | thực $a$ để vec-to $\overrightarrow{u} = ($                   | a;0;1) vuông góc với v                                                       | vec-to $\vec{v} = (2; -1; 4)$ .                                                        |
|            | $\mathbf{A} a = -2.$                                                                                                             | $\mathbf{B}a = -4.$                                           | $\mathbf{C}a = 4.$                                                           | $\mathbf{D}a=2.$                                                                       |
|            | <b>CÂU 11.</b> Tìm <i>x o</i>                                                                                                    | $\overrightarrow{a}$ hai véc-to $\overrightarrow{a} = (x; x)$ | $-2:2)$ và $\vec{b} = (x:1:-1)$                                              | 2) vuông góc với nhau.                                                                 |
|            | _                                                                                                                                | _                                                             | x = 2                                                                        | $\int x = -2$                                                                          |
|            |                                                                                                                                  |                                                               | x = -3                                                                       | $ \bigcirc \begin{bmatrix} x = -2 \\ x = 3 \end{bmatrix}. $                            |
|            | CÂU 12. Cho hai                                                                                                                  | i véc-to $\vec{u} = (1; -2; 1)$                               | và $\vec{v} = (2; 1; -1)$ . Véc-                                             | tơ nào dưới đây vuông góc                                                              |
|            | với cả hai véc-tơ $\overline{u}$                                                                                                 | $\vec{t}$ và $\vec{v}$ ?                                      |                                                                              |                                                                                        |
|            | $(\mathbf{A})\overrightarrow{w_2} = (1; 3; 5)$                                                                                   | <b>B</b> ) $\overrightarrow{w_3} = (1; -4; '$                 | 7). $(\mathbf{C})\overrightarrow{w_4} = (1; 4; 7)$                           | . $\mathbf{D}\overrightarrow{w_1} = (1; -3; 5).$                                       |
|            | CÂU 13. Tích có                                                                                                                  | hướng của hai véc-tơ đ                                        | $\vec{i} = (-1; 2; 0) \text{ và } \vec{b} = ($                               | (0;4;-3) có tọa độ là                                                                  |
|            | (-6; 3; -4).                                                                                                                     | <b>B</b> $(6; -3; 4)$ .                                       | $\bigcirc$ (6; 3; 4).                                                        | $(\mathbf{D})(-6;-3;-4).$                                                              |
|            | <b>CÂU 14.</b> Cho A(                                                                                                            | 2; 1; 4), B(-2; 2; -6), C                                     | (6;0;-1). Tính tích vô                                                       | hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$ .                                |
|            |                                                                                                                                  |                                                               |                                                                              | 3. $(\mathbf{D})\overrightarrow{AB} \cdot \overrightarrow{AC} = 65.$                   |
|            | <b>CÂU 15.</b> Cho <i>A</i> (                                                                                                    | 1; -2; 3), B(2; -4; 1), C                                     | -<br>((2:0:2) khi đó tích vô                                                 | hướng $\overrightarrow{AB} \cdot \overrightarrow{AC}$ bằng                             |
|            | <b>A</b> 4.                                                                                                                      |                                                               | <b>(C)</b> 7.                                                                | $(\mathbf{D})$ -5.                                                                     |
|            |                                                                                                                                  | <u> </u>                                                      | <u> </u>                                                                     |                                                                                        |
|            | giác $ABC$ là                                                                                                                    | II grac ADC voi A(8;9                                         | (2), B(3;3;1), C(11;1)                                                       | 0;4). Số đo góc $A$ của tam                                                            |
|            | (A)60°.                                                                                                                          | <b>(B</b> )150°.                                              | <b>(C</b> )30°.                                                              | <b>(D</b> )120°.                                                                       |
|            | CÂU 17 Cho điể                                                                                                                   | <u> </u>                                                      | <u> </u>                                                                     | $\stackrel{\smile}{}$ trị của $m$ để độ dài đoạn                                       |
|            | AB = 7.                                                                                                                          | D(m, 2, m, 1, 0), D(m, 2, 1, 0)                               | 1). I'm tat ca cac gie                                                       | i tiị của m ác độ đại đoại.                                                            |
|            | $\mathbf{A}m = 3 \text{ hoặc}$                                                                                                   | m=-3.                                                         | $\bigcirc \mathbf{B} m = 9 \text{ hoặc } r$                                  |                                                                                        |
|            | $\mathbf{C}m = -3 \text{ hoặ}$                                                                                                   | m = -9.                                                       | $\bigcirc m = 9 \text{ hoặc } r$                                             | n=3.                                                                                   |
|            | CÂU 18. Cho ba                                                                                                                   | điểm $A(3;2;8), B(0;1;$                                       | 3) và $C(2; m; 4)$ . Tìm                                                     | m để tam giác $ABC$ vuông                                                              |
|            | tai B.                                                                                                                           |                                                               |                                                                              |                                                                                        |
|            |                                                                                                                                  | <b>(B)</b> $m = -10$ .                                        | $\bigcirc m = 25.$                                                           | $(\mathbf{D})m = -1.$                                                                  |
|            | <b>CÂU 19.</b> Cho ba                                                                                                            | điểm $M(2; 3; -1), N(-$                                       | 1;1;1) và $P(1;m-1;2)$                                                       | ). Tìm $m$ để tam giác $MNP$                                                           |
|            | vuông tại $N$ .                                                                                                                  |                                                               |                                                                              |                                                                                        |
|            | $(\mathbf{A})m=0$ .                                                                                                              | (B)m = -4.                                                    | $(\mathbf{C})m=2$ .                                                          | $(\mathbf{D})m = -6.$                                                                  |

| CÂU 20.   | Cho tam giác $ABC$ có $A(7;3;3)$ , | B(1;2;4), C(2;3;5). | Tìm toạ độ điểm | H là chân |
|-----------|------------------------------------|---------------------|-----------------|-----------|
| đường cao | kẻ từ $A$ của tam giác $ABC$ .     |                     |                 |           |

(A) H(3; 4; 6).

$$\mathbf{B}H(-3;4;7).$$

$$(\mathbf{C})H(2;4;1).$$

$$(\mathbf{D})H(2;-4;3).$$

**CÂU 21.** Cho hai điểm A(1;1;0), B(2;-1;2). Gọi M(0;0;z) là điểm thuộc trực Oz sao cho  $MA^2 + MB^2$  nhỏ nhất. Khẳng định nào sau đây là đúng?

 $(A)z \in (0;1].$ 

$$(\mathbf{B})z \in (1;2].$$

$$(\mathbf{C})z \in (-1;0].$$

$$(\mathbf{D})z \in (-2; -1].$$

# BÀI TẬP TRẮC NGHIỆM ĐÚNG SAI

## **CÂU 22.** Cho ba vec-to $\vec{a} = (-1; 1; 0), \vec{b} = (1; 1; 0)$ và $\vec{c} = (1; 1; 1).$

| Mệnh đề                             | Đ | S |
|-------------------------------------|---|---|
| a) $ \vec{a}  = 2$ .                |   |   |
| <b>b</b> ) $ \vec{c}  = \sqrt{3}$ . |   |   |

| Mệnh đề                                            | Đ | S |
|----------------------------------------------------|---|---|
| c) $\cos(\vec{a}, \vec{c}) = \frac{2}{\sqrt{5}}$ . |   |   |
| d) $\vec{b} \perp \vec{c}$ .                       |   |   |

### **CÂU 23.** Cho hai vécto $\vec{u} = (0; 2; 3)$ và $\vec{v} = (m - 1; 2m; 3)$ .

| Mệnh đề                                                             | Đ | $\mathbf{S}$ |
|---------------------------------------------------------------------|---|--------------|
| $ \mathbf{a})  \vec{u}  = \sqrt{13}.$                               |   |              |
| <b>b)</b> $ \vec{u}  =  \vec{v}  \Leftrightarrow m = -\frac{3}{5}.$ |   |              |

| Mệnh đề                                                                | Ð | S |
|------------------------------------------------------------------------|---|---|
| $\mathbf{c)} \ \vec{u} = \vec{v} \Leftrightarrow m = 1.$               |   |   |
| $\mathbf{d)} \ \vec{u} \perp \vec{v} \Leftrightarrow m = \frac{9}{4}.$ |   |   |

# **CÂU 24.** Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ $\vec{a}(1;2;3)$ , $\vec{b}(2;2;-1)$ , $\vec{c}(4;0;-4)$ .

| Mệnh đề                                                                                              | Ð | S |
|------------------------------------------------------------------------------------------------------|---|---|
| a) Tọa độ của vectơ $\vec{x} = \vec{a} + \vec{b}$ là $\vec{x} = (3; 4; 2)$ .                         |   |   |
| <b>b)</b> Tọa độ của vectơ $\vec{y} = \vec{a} + \vec{c}$ là $\vec{y} = (5; 2; 1)$ .                  |   |   |
| c) Tọa độ của vectơ $\vec{z} = \vec{b} + \vec{c}$ là $\vec{z} = (6; -2; -5)$ .                       |   |   |
| <b>d)</b> Vector $\vec{k} = (7; 4; -2)$ thỏa mãn đẳng thức $\vec{k} = \vec{a} + \vec{b} + \vec{c}$ . |   |   |

# **CÂU 25.** Trong không gian Oxyz, cho hai vecto $\overrightarrow{a}(1;-1;5), \overrightarrow{b}(3;2;-1).$

| Mệnh đề                                                                                                    | Ð | S |
|------------------------------------------------------------------------------------------------------------|---|---|
| $\mathbf{a}) \ \vec{a} + \vec{b} \neq \vec{0}.$                                                            |   |   |
| <b>b)</b> $\vec{a} - \vec{b} = (-2; -3; 4).$                                                               |   |   |
| c) $\vec{v} = \vec{b} - \vec{a}$ có tung độ âm.                                                            |   |   |
| d) Xét $\vec{x}$ thỏa $\vec{a} - \vec{x} = \vec{b}$ . Hoành độ của vectơ $\vec{x}$ thuộc khoảng $(-3;1)$ . |   |   |

# **CÂU 26.** Trong không gian Oxyz, cho điểm D(4;-1;3) và các điểm M, N, P lần lượt thuộc các trực Ox, Oy, Oz sao cho DM, DN, DP đôi một vuông góc với nhau

| Mệnh đề                                                                                                                                                                                                                                     | Ð | S |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| <b>a)</b> Tung độ của điểm $N$ bằng 13.                                                                                                                                                                                                     |   |   |
| <b>b)</b> Cao độ của điểm $P$ bằng $\frac{13}{4}$ .                                                                                                                                                                                         |   |   |
| c) $V_{DMNP} > 29$ .                                                                                                                                                                                                                        |   |   |
| d) Gọi $\vec{x}$ là vectơ thỏa $\vec{x} \cdot \overrightarrow{DM} = 1$ ; $\vec{x} \cdot \overrightarrow{DN} = 2$ ; $\vec{x} \cdot \overrightarrow{DP} = -3$ thì tổng hoành độ, tung độ và cao độ của vectơ $\vec{x}$ thuộc khoảng $(3;7)$ . |   |   |

### **CÂU 27.** Cho tam giác ABC có A(1;2;0), B(0;1;1), C(2;1;0).

| VIVITIANT 0702740017 V |
|------------------------|
| QUICK NOTE             |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |

| Mệnh đề                                                                          | Ð | S |
|----------------------------------------------------------------------------------|---|---|
| a) Tam giác $ABC$ vuông tại $A$ .                                                |   |   |
| <b>b)</b> Chu vi tam giác là $\sqrt{7} + \sqrt{3} + \sqrt{2}$ .                  |   |   |
| c) Diện tích tam giác $ABC$ là $\sqrt{6}$ .                                      |   |   |
| d) Tâm đường tròn ngoại tiếp tam giác $ABC$ là $I\left(1;1;\frac{1}{2}\right)$ . |   |   |

**CÂU 28.** Hình minh họa sơ đồ một ngôi nhà trong hệ trục tọa độ Oxyz, trong đó nền nhà, bốn bức tường và hai mái nhà đều là hình chữ nhật.

| Mệnh đề                                                                                                                                                                                                            | Ð | S |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| a) Tọa độ của các điểm $A(5;0;0)$ .                                                                                                                                                                                |   |   |
| <b>b)</b> Tọa độ của các điểm $H(0;5;3)$ .                                                                                                                                                                         |   |   |
| c) Góc nhị diện có cạnh là đường thẳng $FG$ , hai mặt lần lượt là $(FGQP)$ và $(FGHE)$ gọi là góc dốc của mái nhà. Số đo của góc dốc của mái nhà bằng $26.6^{\circ}$ (làm tròn kết quả đến hàng phần mười của độ). |   |   |
| d) Chiều cao của ngôi nhà là 4.                                                                                                                                                                                    |   |   |



# BÀI TẬP TỰ LUẬN TRẢ LỜI NGẮN

**CÂU 29.** Trong không gian Oxyz, cho hai vecto  $\overrightarrow{a}=(1;2;-3);$   $\overrightarrow{b}=(-1;-2;z).$  Tìm giá trị z sao cho  $\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}$ 

**CÂU 30.** Trong không gian Oxyz, cho hai vectơ  $\vec{a}=2\vec{i}-3\vec{j}+6\vec{k}$  và  $\vec{b}=6\vec{j}+\vec{k}$ . Khi đó độ dài của  $\vec{a}-2\vec{b}$  (làm tròn đến hàng phần mười)

**CÂU 31.** Trong không gian Oxyz, cho các vecto  $\overrightarrow{a}=(1;0;-2), \ \overrightarrow{b}=(-2;1;3), \overrightarrow{c}=(3;2;-1), \ \overrightarrow{d}=(9;0;-11)$  và 3 số thực m,n,p thỏa  $m\cdot\overrightarrow{a}+n\cdot\overrightarrow{b}+p\overrightarrow{c}=\overrightarrow{d}$ . Tính giá tri biểu thức T = m + n + p.

# 

| Bài 2.       | TỌA ĐỘ CỦA VÉC TƠ TRONG KHÔNG GIAN         | 1 |
|--------------|--------------------------------------------|---|
| A            | LÝ THUYẾT CẦN NHỚ                          | 1 |
| $\mathbf{B}$ | PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN         | 2 |
|              | ► Dạng 1.Tọa độ điểm, tọa độ vec tơ        | 2 |
|              | ► Dạng 2.Tọa độ hóa một số hình không gian | 4 |
| Rài 3        | BIỂU THỰC TỌA ĐỘ CỦA CÁC PHÉP TOÁN VECTƠ   | S |
| Dai J.       | BLO THOS TOA BO COA CAST HELT TOAK VESTO   | C |
|              | LÝ THUYẾT CẦN NHỚ                          | 8 |
|              | ·                                          |   |
| A            | LÝ THUYẾT CẦN NHỚ                          | g |

