ISA 444: Business Forecasting

14 - Autocorrelation and Seasonality

Fadel M. Megahed

Associate Professor
Department of Information Systems and Analytics
Farmer School of Business
Miami University

Email: fmegahed@miamioh.edu Office Hours: Click here to schedule an appointment

Fall 2020

Outline

- Preface
- 2 Partial Autocorrelation
- 3 Stationarity
- 4 Recap

Quick Refresher on What we Covered in Chapter 06 so Far

Main Learning Outcomes Discussed in Chapter 06

- \square Define the population mean, and variance of a random variable.
- \square Define the population covariance, and correlation between two random variables.
- ✓ Define the population autocovariance and autocorrelation of a random variable.
- \square Use sample estimates of the population mean, variance, covariance, and correlation.
- \square Explain the properties of the large sample distribution of the sample ACF.
- \square Use the large sample distribution of the sample ACF to identify significant autocorrelation in a time series.
 - ☑ Determine if a sample ACF plot "cuts off" or "dies down".

Some Time Series and their ACF Plots [1]

Some Time Series and their ACF Plots [2]

Some Time Series and their ACF Plots [3]

Some Time Series and their ACF Plots [4]

Some Time Series and their ACF Plots [5]

Learning Objectives for Today's Class

Main Learning Outcomes

- Determine if a sample ACF plot "cuts off" or "dies down".
- Explain how sample partial autocorrelation is calculated.
- Define the term "weakly stationary" and recognize time series that do not fit this definition.
- Use the sample ACF plot to identify a nonstationary time series.

Outline

- Preface
- 2 Partial Autocorrelation
- 3 Stationarity
- 4 Recap

Definition: General

Statistical Definition: Let us say that we have three variables, X, Y, and Z, all correlated, and we want to know how X and Y are correlated after we remove the effects of Z on each.

Computation Approach:

$$\hat{X} = a_1 + b_1 Z;$$
 $X^* = X - \hat{X}$
 $\hat{Y} = a_2 + b_2 Z;$ $Y^* = Y - \hat{Y}$

 $Corr(X^*, Y^*)$ is the Partial Autocorrelation between X and Y. It is the correlation that remains after we remove the effect of Z.

PACF in the Context of Time-Series Analysis

The Partial Autocorrelation between Y_t and Y_{t+k} is the correlation between Y_t and Y_{t+k} after removing the effects of Y_{t+1} , Y_{t+2} , Y_{t+3} , ..., Y_{t+k-1} .

- We plot the partial autocorrelation over multiple lags just like the autocorrelation function (ACF).
- We refer to the plotted partial autocorrelations as the PACF.

Some Time Series and their PACF Plots [1]

Some Time Series and their PACF Plots [2]

Some Time Series and their PACF Plots [3]

Some Time Series and their PACF Plots [4]

Lag

Some Time Series and their PACF Plots [5]

What we have learned from the GOOG Example [1]

What we have learned from the GOOG Example [2]

	$Dependent\ variable:$
	adjusted
lag1price	0.985***
	(0.008)
Constant	20.607**
	(10.390)
Observations	439
\mathbb{R}^2	0.972
Adjusted R ²	0.972
Residual Std. Error	25.897 (df = 437)
F Statistic	$15,001.350^{***} (df = 1; 437)$
Note:	*p<0.1; **p<0.05; ***p<0.01

What we have learned from the GOOG Example [3]

What we have learned from the GOOG Example [4]

Outline

- Preface
- 2 Partial Autocorrelation
- 3 Stationarity
- 4 Recap

Stationarity: A Formal Definition

Weak Stationarity: A weakly stationary time series is a finite variance process such that:

- **1** The mean, μ_t , is constant and does not depend on the time t; and
- ② The autocovariance function, $\gamma(s,t)$ depends on s and t only through their difference |s-t|.

We will use the term "stationary" to refer to weak stationarity.

- The concept of weak stationarity forms the basis of much of the foundation for time series modeling.
- The fundamental properties (1 & 2) required for weak stationarity are satisfied by many of the models that are widely used.

Stationarity: A Visual Explanation

Non-Stationarity: A Visual Explanation

Stationarity: Some Thoughts??

Based on the five examples depicted in Slides 4-8 (or alternatively 13-17), please identify which of the five series are stationary and which are not!!

Outline

- Preface
- 2 Partial Autocorrelation
- 3 Stationarity
- 4 Recap

Summary of Main Points

Main Learning Outcomes

- Determine if a sample ACF plot "cuts off" or "dies down".
- Explain how sample partial autocorrelation is calculated.
- Define the term "weakly stationary" and recognize time series that do not fit this definition.
- Use the sample ACF plot to identify a nonstationary time series.

Things to Do for Next Class

- Thoroughly read Chapter 6.1 of our textbook.
- Go through the slides, examples and make sure you have a good understanding of what we have covered.

ISA 444: Business Forecasting

14 - Autocorrelation and Seasonality

Fadel M. Megahed

Associate Professor
Department of Information Systems and Analytics
Farmer School of Business
Miami University

 ${\bf Email: fmegahed@miamioh.edu}$ Office Hours: Click here to schedule an appointment

Fall 2020