Методы машинного обучения. Обобщения линейных моделей регрессии и классификации

Воронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-25-26 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 21 октября 2025

Содержание

- Нелинейная регрессия
 - Нелинейная модель регрессии
 - Логистическая регрессия
 - Обобщённая аддитивная модель
- Обобщённая линейная модель
 - Экспоненциальное семейство распределений
 - Максимизация правдоподобия для GLM
 - Логистическая регрессия как частный случай GLM
- 3 Неквадратичные функции потерь
 - Квантильная регрессия
 - Робастная регрессия
 - SVM-регрессия

Нелинейная модель регрессии

Дано: обучающая выборка $X^\ell=(x_i,y_i)_{i=1}^\ell, \ x_i\in\mathbb{R}^n, \ y_i\in\mathbb{R}$ $y_i=y(x_i), \ y\colon X\to Y$ — неизвестная регрессионная зависимость Найти: параметры $\alpha\in\mathbb{R}^p$ модели регрессии $f(x,\alpha)$ Критерий: метод наименьших квадратов (МНК)

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha}$$

Метод Ньютона–Рафсона: итерационный процесс стартует из начального приближения $\alpha^0 = (\alpha^0_1, \dots, \alpha^0_p)$:

$$\alpha^{t+1} := \alpha^t - h_t (Q''(\alpha^t))^{-1} \nabla Q(\alpha^t),$$

 $abla Q(lpha^t)$ — градиент функционала Q в точке $lpha^t$, вектор из \mathbb{R}^p $Q''(lpha^t)$ — гессиан функционала Q в точке $lpha^t$, матрица из $\mathbb{R}^{p imes p}$ h_t — величина шага (можно полагать $h_t=1$).

Метод Ньютона-Рафсона

Компоненты градиента:

$$\frac{\partial Q(\alpha)}{\partial \alpha_j} = 2 \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i) \frac{\partial f(x_i, \alpha)}{\partial \alpha_j}$$

Компоненты гессиана:

$$\frac{\partial^2 Q(\alpha)}{\partial \alpha_j \partial \alpha_k} = 2 \sum_{i=1}^{\ell} \frac{\partial f(\mathbf{x}_i, \alpha)}{\partial \alpha_j} \frac{\partial f(\mathbf{x}_i, \alpha)}{\partial \alpha_k} - \underbrace{2 \sum_{i=1}^{\ell} \left(f(\mathbf{x}_i, \alpha) - \mathbf{y}_i \right) \frac{\partial^2 f(\mathbf{x}_i, \alpha)}{\partial \alpha_j \partial \alpha_k}}_{\text{при линеаризации полагается} = 0}$$

Не хотелось бы обращать гессиан на каждой итерации...

Линеаризация $f(x_i, \alpha)$ в окрестности текущего α^t :

$$f(x_i, \alpha) = f(x_i, \alpha^t) + \sum_{j=1}^{p} \frac{\partial f(x_i, \alpha^t)}{\partial \alpha_j} (\alpha_j - \alpha_j^t) + o(\|\alpha - \alpha^t\|)$$

Метод Ньютона-Гаусса

Матричные обозначения:

$$F_t = \left(rac{\partial f}{\partial lpha_j}(x_i,lpha^t)
ight)_{\ell imes p}$$
 — матрица первых производных; $f_t = \left(f(x_i,lpha^t)
ight)_{\ell imes 1}$ — вектор значений f .

Формула t-й итерации метода Ньютона-Гаусса:

$$\alpha^{t+1} := \alpha^t - h_t \underbrace{(F_t^{\mathsf{T}} F_t)^{-1} F_t^{\mathsf{T}} (f_t - y)}_{\beta}$$

eta — это решение задачи многомерной линейной регрессии

$$\|F_t\beta-(f_t-y)\|^2\to \min_{\beta}$$

Нелинейная регрессия сведена к серии линейных регрессий.

Скорость сходимости — как и у метода Ньютона—Рафсона, но для вычислений можно применять линейные методы.

Напоминание. Двухклассовая логистическая регрессия

Дано: обучающая выборка $(x_i,y_i)_{i=1}^\ell, \;\; x_i \in \mathbb{R}^n, \;\; y_i \in \{-1,+1\}$

Найти: параметр $w \in \mathbb{R}^n$ линейной модели $a(x, w) = \operatorname{sign}(w^{\mathsf{T}} x)$

$$M = (w^{\mathsf{T}}x)y$$
 — отступ (margin)

Логарифмическая функция потерь:

$$\mathscr{L}(M) = \ln(1 + e^{-M})$$

3.0 2.5 2.0 1.5 1.0 3.0 25 20 15 10 4.5 0 0.5 10 15 20 25 3.0

Модель условной вероятности:

$$P(y|x,w) = \sigma(M) = \frac{1}{1+e^{-M}},$$
 $\sigma(M)$ — сигмоидная функция,

Критерий максимума log правдоподобия, без регуляризации:

$$Q(w) = \sum_{i=1}^{\ell} \ln P(y_i|x_i, w) = \sum_{i=1}^{\ell} \ln \left(1 + \exp(-w^{\mathsf{T}}x_iy_i)\right) \rightarrow \min_{w}$$

Метода Ньютона-Рафсона

Метода Ньютона-Рафсона для минимизации функционала Q(w):

$$w^{t+1} := w^t - h_t \big(Q''(w^t) \big)^{-1} \nabla Q(w^t)$$

Элементы градиента — вектора первых производных $abla Q(w^t)$:

$$\frac{\partial Q(w)}{\partial w_j} = -\sum_{i=1}^{\ell} (1 - \sigma_i) y_i f_j(x_i), \quad j = 1, \ldots, n,$$

 $\sigma_i = \sigma(y_i w^\intercal x_i) = \mathsf{P}(y_i | x_i, w)$ — вероятность верной классификации

Элементы гессиана — матрицы вторых производных $Q''(w^t)$:

$$\frac{\partial^2 Q(w)}{\partial w_i \partial w_k} = \sum_{i=1}^{\ell} (1 - \sigma_i) \sigma_i f_j(x_i) f_k(x_i), \quad j, k = 1, \dots, n,$$

Снова сведение к многомерной линейной регрессии

Матричные обозначения:
$$F = \left(f_j(x_i)\right)_{\ell \times n'} D = \operatorname{diag}\left(\sqrt{(1-\sigma_i)\sigma_i}\right)$$

$$-\big(Q''(w)\big)^{-1}\nabla Q(w) = \underbrace{\big(F^{\mathsf{T}}DDF\big)^{-1}F^{\mathsf{T}}D}_{\tilde{F}^{+} = (\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}} \Big(\underbrace{y_{i}\sqrt{\frac{1-\sigma_{i}}{\sigma_{i}}}}_{\tilde{y}_{i}}\Big)_{\ell \times 1}$$

Это совпадает с МНК-решением задачи линейной регрессии со взвешенными объектами и модифицированными ответами:

$$\|\tilde{F}w - \tilde{y}\|^2 = \sum_{i=1}^{\ell} (1 - \sigma_i)\sigma_i \left(w^{\mathsf{T}}x_i - \frac{y_i}{\sigma_i}\right)^2 \to \min_{w}$$

Интерпретация:

- чем выше вероятность ошибки, тем больше $\frac{1}{\sigma_i}$
- ullet чем ближе x_i к границе, тем больше вес $(1-\sigma_i)\sigma_i$

Таким образом, на каждой итерации происходит более точная настройка на «наиболее трудных» объектах.

MHK с итерационным перевзвешиванием объектов Метод IRLS — Iteratively Reweighted Least Squares

Вход: F, y — матрица «объекты—признаки» и вектор ответов; **Выход**: w — вектор коэффициентов линейной комбинации.

- 1: $w := (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y$ нулевое приближение, обычный МНК;
- 2: для $t := 1, 2, 3, \ldots$
- 3: $\sigma_i = \sigma(y_i w^{\mathsf{T}} x_i)$ для всех $i = 1, \ldots, \ell$;
- 4: $\tilde{F} := \operatorname{diag}(\sqrt{(1-\sigma_i)\sigma_i})F;$
- 5: $ilde{y}_i := y_i \sqrt{rac{1-\sigma_i}{\sigma_i}}$ для всех $i=1,\ldots,\ell$;
- 6: выбрать градиентный шаг h_t ;
- 7: $w := w + h_t(\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}\tilde{y};$
- 8: если $\{\sigma_i\}$ мало изменились то выйти из цикла;

Обобщённая аддитивная модель (Generalized Additive Model)

Дано: обучающая выборка $(x_i,y_i)_{i=1}^\ell$, $x_i\in\mathbb{R}^n$, $y_i\in\mathbb{R}$ **Найти**: нелинейные преобразования признаков $\varphi_j(f_j,\alpha_j)$ (в частности, при $\varphi_j(f_j(x),\alpha_j)=\alpha_j f_j(x)$ это линейная модель):

$$f(x, \alpha) = \sum_{j=1}^{n} \varphi_j(f_j(x), \alpha_j)$$

Критерий: метод наименьших квадратов

Идея 1: поочерёдно уточнять $arphi_j$ по выборке $(f_j(x_i),z_i)_{i=1}^\ell$:

$$\sum_{i=1}^{\ell} \left(\varphi_j(f_j(x_i), \alpha_j) - \underbrace{\left(y_i - \sum_{k \neq j} \varphi_k(f_k(x_i), \alpha_k) \right)}_{T_i} \right)^2 + \tau R(\alpha_j) \rightarrow \min_{\alpha_j}$$

Идея 2: используя в качестве φ_j ядерное сглаживание или сплайны, постепенно уменьшать τ у регуляризатора гладкости

$$R(\alpha_j) = \int (\varphi_j''(\zeta, \alpha_j))^2 d\zeta$$

Метод backfitting [Хасти, Тибширани, 1986]

Многомерная задача сводится к серии одномерных задач.

Вход: F, y — матрица «объекты—признаки» и вектор ответов; Выход: $\varphi_j(f_j, \alpha_j)$ — обучаемые преобразования признаков.

- 1: начальное приближение: $\alpha := (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y;$ $\varphi_j(f_j,\alpha_j) := \alpha_j f_j(x), \ \ j=1,\ldots,n;$
- 2: повторять
- 3: для $j = 1, \ldots, n$

4:
$$z_i := y_i - \sum_{k=1, k \neq j}^n \varphi_k(f_k(x_i), \alpha_k), \quad i = 1, \ldots, \ell;$$

5:
$$\alpha_j := \arg\min_{\alpha} \sum_{i=1}^{\ell} (\varphi(f_j(x_i), \alpha) - z_i)^2 + \tau R(\alpha);$$

- 6: уменьшить коэффициент регуляризации τ ;
- 7: пока $Q(\alpha, X^\ell)$ и/или $Q(\alpha, X^k)$ заметно уменьшаются;

Напоминание. Вероятностная постановка задачи регрессии

Дано: выборка
$$(x_i, y_i)_{i=1}^{\ell}$$
, $x_i \in X$, $y_i \in \mathbb{R}$ Найти: параметр w модели регрессии $y_i = a(x_i, w) + \varepsilon_i$, где шум $\varepsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ гауссовский, некоррелированный $\mathsf{E}\varepsilon_i \varepsilon_k = 0$: $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $\mu_i = \mathsf{E} y_i = a(x_i, w)$, $i = 1, \ldots, \ell$

Критерий максимума правдоподобия эквивалентен МНК:

$$p(\varepsilon_1, \dots, \varepsilon_\ell | w) = \prod_{i=1}^\ell \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2} \varepsilon_i^2\right) \to \max_w$$

$$-\ln p(\varepsilon_1,\ldots,\varepsilon_\ell|w) = \operatorname{const} + \frac{1}{2} \sum_{i=1}^\ell \frac{1}{\sigma_i^2} (a(x_i,w) - y_i)^2 \to \min_w$$

Что использовать вместо метода наименьших квадратов, если y_i не гауссовские, в частности, если y_i дискретнозначные?

Обобщение: экспоненциальное распределение шума

Дано: выборка $(x_i,y_i)_{i=1}^\ell, \ x_i \in X, \ y_i \in \mathbb{R}$

Найти: параметр w при более общем предположении о шуме:

$$y_i \sim \mathsf{Exp}(\theta_i, \phi_i), \qquad \theta_i = g(\mathsf{E}y_i) = a(x_i, w), \quad i = 1, \dots, \ell$$

 Exp — экспоненциальное семейство распределений с параметрами θ_i , ϕ_i и параметрами-функциями $c(\theta)$, $h(y,\phi)$:

$$p(y_i|\theta_i,\phi_i) = \exp\left(\frac{y_i\theta_i - c(\theta_i)}{\phi_i} + h(y_i,\phi_i)\right)$$

Математическое ожидание и дисперсия с.в. $y_i \sim \mathsf{Exp}(\theta_i,\phi_i)$:

$$\mu_i = \mathsf{E} y_i = c'(\theta_i) \Rightarrow \theta_i = [c']^{-1}(\mu_i) = \mathsf{g}(\mathsf{E} y_i)$$

$$\mathsf{D} y_i = \phi_i c''(\theta_i)$$

 $\mathbf{g}(\mu) = [c']^{-1}(\mu)$ — монотонная функция связи (link function)

Примеры распределений из экспоненциального семейства

Нормальное (гауссовское) распределение, $y_i \in \mathbb{R}$:

$$p(y_i|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2\sigma_i^2} (y_i - \mu_i)^2\right) =$$

$$= \exp\left(\frac{y_i \mu_i - \frac{1}{2}\mu_i^2}{\sigma_i^2} - \frac{y_i^2}{2\sigma_i^2} - \frac{1}{2}\ln(2\pi\sigma_i^2)\right);$$

$$\theta_i = g(\mu_i) = \mu_i, \qquad c(\theta_i) = \frac{1}{2}\mu_i^2 = \frac{1}{2}\theta_i^2, \qquad \phi_i = \sigma_i^2.$$

Распределение Бернулли, $y_i \in \{0,1\}$:

$$p(y_i|\mu_i) = \mu_i^{y_i} (1-\mu_i)^{1-y_i} = \exp\left(y_i \ln \frac{\mu_i}{1-\mu_i} + \ln(1-\mu_i)\right);$$

$$heta_i = g(\mu_i) = \ln \frac{\mu_i}{1-\mu_i}, \qquad c(\theta_i) = -\ln(1-\mu_i) = \ln(1+e^{\theta_i}).$$

Примеры распределений из экспоненциального семейства

Биномиальное распределение, $y_i \in \{0,1,\ldots,n_i\}$:

$$p(y_{i}|\mu_{i}, n_{i}) = C_{n_{i}}^{y_{i}} \left(\frac{\mu_{i}}{n_{i}}\right)^{y_{i}} \left(1 - \frac{\mu_{i}}{n_{i}}\right)^{n_{i} - y_{i}} =$$

$$= \exp\left(y_{i} \ln \frac{\mu_{i}}{n_{i} - \mu_{i}} + n_{i} \ln(n_{i} - \mu_{i}) + \ln C_{n_{i}}^{y_{i}} - n_{i} \ln n_{i}\right);$$

$$\theta_i = g(\mu_i) = \ln \frac{\mu_i}{n_i - \mu_i}, \qquad c(\theta_i) = -n_i \ln (n_i - \mu_i) = n_i \ln \frac{1 + e^{\theta_i}}{n_i}.$$

Пуассоновское распределение, $y_i \in \{0,1,2,\dots\}$:

$$p(y_i|\mu_i) = \frac{e^{-\mu_i}\mu_i^{y_i}}{y_i!} = \exp\left(\frac{y_i\ln(\mu_i) - \mu_i}{1} - \ln y_i!\right);$$

$$\theta_i = g(\mu_i) = \ln(\mu_i), \qquad c(\theta_i) = \mu_i = e^{\theta_i}, \qquad \phi_i = 1.$$

Примеры распределений из экспоненциального семейства

- нормальное (гауссовское)
- распределение Пуассона
- биномиальное и мультиномиальное
- геометрическое
- \bullet χ^2 -распределение
- бета-распределение
- гамма-распределение
- распределение Дирихле
- распределение Лапласа с фиксированным матожиданием

Контр-примеры не экспоненциальных распределений:

• t-распределение Стьюдента, Коши, гипергеометрическое

Обобщённая линейная модель (Generalized Linear Model, GLM)

Дано: выборка $(x_i, y_i)_{i=1}^\ell$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$

Найти: $w \in \mathbb{R}^n$ линейной модели $\theta_i = \langle x_i, w \rangle = \sum_{j=1}^n w_j f_j(x_i)$

Критерий максимума правдоподобия для оценивания *w*:

$$Q(w) = \ln \prod_{i=1}^{\ell} p(y_i | \theta_i, \phi_i) = \sum_{i=1}^{\ell} \frac{y_i \theta_i - c(\theta_i)}{\phi_i} \to \max_{w},$$

Метод Ньютона-Рафсона: $w^{t+1} := w^t + h_tig(Q''(w^t)ig)^{-1}
abla Q(w^t)$

Компоненты вектора градиента $\nabla Q(w)$:

$$\frac{\partial Q(w)}{\partial w_j} = \sum_{i=1}^{\ell} \frac{y_i - c'(\theta_i)}{\phi_i} f_j(x_i).$$

Компоненты матрицы Гессе Q''(w):

$$\frac{\partial^2 Q(w)}{\partial w_i \partial w_k} = -\sum_{i=1}^{\ell} \frac{c''(\theta_i)}{\phi_i} f_j(x_i) f_k(x_i).$$

Матричные обозначения

$$F = \left(f_j(x_i)\right)_{\ell imes n}$$
 — матрица «объекты—признаки» $ilde{F} = DF$, $D = \mathrm{diag}\left(\sqrt{rac{1}{\phi_i}}c''(heta_i)
ight)$ — веса объектов, $heta_i = \langle x_i, w^t
angle$ $ilde{y} = \left(ilde{y}_i
ight)_{\ell imes 1}$, $ilde{y}_i = rac{y_i - c'(heta_i)}{\sqrt{\phi_i}c''(heta_i)}$ — модифицированный вектор ответов

Тогда метод Ньютона-Рафсона снова приводит к IRLS:

$$w^{t+1} := w^t - h_t \underbrace{\left(F^{\mathsf{T}}DDF\right)^{-1}F^{\mathsf{T}}D}_{\tilde{F}^+ = (\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}} \left(\underbrace{\sqrt{\frac{\phi_i}{c''(\theta_i)}} \frac{y_i - c'(\theta_i)}{\phi_i}}_{\tilde{y}_i}\right)_{\ell \times 1}$$

Это совпадает с МНК-решением линейной задачи регрессии со взвешенными объектами и модифицированными ответами:

$$\|\tilde{F}w - \tilde{y}\|^2 \to \min_{w}$$

MHK с итерационным перевзвешиванием объектов Meтод IRLS — Iteratively Reweighted Least Squares

Вход: F, y — матрица «объекты—признаки» и вектор ответов; **Выход**: w — вектор коэффициентов линейной комбинации.

- 1: начальное приближение: $w := (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y$;
- 2: для $t := 1, 2, 3, \ldots$
- 3: $\theta_i = \langle x_i, w^t \rangle$ для всех $i = 1, \ldots, \ell$;
- 4: $\tilde{F} := \operatorname{diag}\left(\sqrt{\frac{1}{\phi_i}c''(\theta_i)}\right)F;$
- 5: $ilde{y}_i := rac{y_i c'(heta_i)}{\sqrt{\phi_i c''(heta_i)}}$ для всех $i=1,\ldots,\ell$;
- 6: выбрать градиентный шаг h_t ;
- 7: $w := w + h_t(\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}\tilde{y};$
- 8: если $\{\theta_i\}$ мало изменились то выйти из цикла;

Двухклассовая логистическая регрессия

Распределение Бернулли,
$$y_i \in \{0,1\}$$
: $p(y_i|\mu_i) = \mu_i^{y_i} (1-\mu_i)^{1-y_i}$ $\theta_i = g(\mu_i) = \ln \frac{\mu_i}{1-\mu_i} = \langle x_i, w \rangle$, $\mu_i = g^{-1}(\theta_i) = \frac{1}{1+e^{-\theta_i}} \equiv \sigma(\theta_i) = \mathsf{E} y_i$

Дано: выборка
$$(x_i, y_i)_{i=1}^\ell$$
, $x_i \in \mathbb{R}^n$, $y_i \in \{0, 1\} \sim p(y_i | \mu_i)$

Найти: вероятностную модель
$$\mathsf{E}(y|x) = \mathsf{P}(y{=}1|x) = \sigma(\langle x,w \rangle)$$

Критерий: максимум log-правдоподобия (log-loss)

$$Q(w) = \sum_{i=1}^{\ell} \ln p(y_i|\mu_i) = \sum_{i=1}^{\ell} y_i \ln \mu_i + (1-y_i) \ln(1-\mu_i) \to \max_{w}$$

Альтернативная кодировка: $y_i \in \{0,1\} \ o \ ilde{y}_i = 2y_i - 1 \in \{\pm 1\}$

$$-\sum_{i=1}^{\ell} \ln p(\tilde{y}_i|x_i) = \sum_{i=1}^{\ell} \ln (1 + \exp(-\underbrace{\langle w, x_i \rangle \tilde{y}_i}_{\mathsf{margin}})) \ \rightarrow \ \min_{w}$$

Логистическая регрессия как частный случай GLM

Всего лишь из двух предположений:

- ullet y_i бернуллиевские случайные величины с $\mathsf{E} y_i = \mu_i$
- ullet параметр связан с линейной моделью: $heta_i = g(\mu_i) = \langle x_i, w
 angle$

следуют важнейшие свойства логистической регрессии:

- логарифмическая функция потерь $\ln(1 + \exp(-\langle x_i, w \rangle \tilde{y}_i));$
- сигмоидная функция связи $P(y_i|x_i) = \sigma(\langle x_i, w \rangle \tilde{y}_i);$
- связь линейной модели с отношением шансов (odds ratio):

$$\langle x_i, w \rangle = \ln \frac{\mu_i}{1 - \mu_i} = \ln \frac{P(y_i = 1|x_i)}{P(y_i = 0|x_i)}$$

Многоклассовая логистическая регрессия

Категориальное (дискретное) распределение,
$$y_i \in Y$$
, $|Y| < \infty$:
$$p(y_i|\mu_i) = \prod_{y \in Y} \mu_{yi}^{[y=y_i]} = \exp \Big(\sum_{y \in Y} [y=y_i] \ln \mu_{yi} \Big), \quad \mu_i = (\mu_{yi})_{y \in Y}$$

$$\theta_{yi} = g(\mu_{yi}) = \ln \mu_{yi} = \langle x_i, w_y \rangle, \quad \sum_y \mu_{yi} = 1, \quad \mu_{yi} > 0, \quad \varphi_i = 1$$

$$\mu_{yi} = g^{-1}(\theta_{yi}) = \frac{\exp(\theta_{yi})}{\sum_{z \in Y} \exp(\theta_{zi})} = \operatorname{SoftMax} \theta_{yi} = \operatorname{P}(y|x_i)$$

Дано: выборка
$$(x_i, y_i)_{i=1}^\ell$$
, $x_i \in \mathbb{R}^n$, $y_i \in Y \sim p(y_i|\mu_i)$

Найти: линейную вероятностную модель классификации

$$P(y|x,w) = \operatorname{\mathsf{SoftMax}}\langle w_y, x \rangle, \ \ a(x) = \arg\max_{y \in Y} \langle w_y, x \rangle, \ \ w = (w_y)_{y \in Y}$$

Критерий: максимум log-правдоподобия (log-loss)

$$Q(w) = \sum_{i=1}^{\ell} \ln P(y_i|x_i, w) \rightarrow \max_{w}$$

Метод наименьших модулей (Least Absolute Deviation Regression)

$$\mathscr{L}(arepsilon_i)$$
 — функция потерь; $arepsilon_i = ig(a(x_i,w)-y_iig)$ — ошибка;

$$Q = \sum\limits_{i=1}^\ell \mathscr{L}(arepsilon_i) o \min_w$$
 — критерий обучения модели по выборке.

Метод наименьших квадратов, $\mathscr{L}(\varepsilon) = \varepsilon^2$:

$$\sum_{i=1}^{\ell} (a - y_i)^2 \to \min_{a} \quad \Rightarrow \quad a = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i.$$

Метод наименьших модулей, $\mathscr{L}(\varepsilon) = |\varepsilon|$:

$$\sum_{i=1}^{\ell} |a-y_i| o \min_{a} \quad \Rightarrow \quad a = \mathsf{median}\{y_1, \dots, y_\ell\} = y^{(\ell/2)},$$

где $y^{(1)}, \dots, y^{(\ell)}$ — вариационный ряд значений y_i .

Медиана более устойчива к редким большим выбросам y_i .

Кванти́льная регрессия (Quantile Regression)

$$\mathscr{L}(\varepsilon) = \begin{cases} C_{+}|\varepsilon|, & \varepsilon > 0 \\ C_{-}|\varepsilon|, & \varepsilon < 0; \end{cases}$$

$$\sum_{i=1}^{\ell} \mathcal{L}(a - y_i) \to \min_{a} \quad \Rightarrow \quad a = y^{(q)}, \quad q = \frac{\ell C_{-}}{C_{-} + C_{+}}$$

где $y^{(1)},\ldots,y^{(\ell)}$ — вариационный ряд значений y_i

Линейная модель регрессии: $a(x_i, w) = \langle x_i, w \rangle$.

Сведение к задаче линейного программирования:

замена переменных
$$\varepsilon_i^+ = (a(x_i, w) - y_i)_+, \ \varepsilon_i^- = (y_i - a(x_i, w))_+$$

$$\begin{cases} Q(w, \varepsilon^{+}, \varepsilon^{-}) = \sum_{i=1}^{\ell} C_{+} \varepsilon_{i}^{+} + C_{-} \varepsilon_{i}^{-} \to \min_{w, \varepsilon^{+}, \varepsilon^{-}} \\ \langle x_{i}, w \rangle - y_{i} = \varepsilon_{i}^{+} - \varepsilon_{i}^{-}; \quad \varepsilon_{i}^{+} \geqslant 0; \quad \varepsilon_{i}^{-} \geqslant 0 \end{cases}$$

Пример. Задача прогнозирования объёмов продаж

Робастная регрессия (Robust Regression)

a(x,w) — модель регрессии; $\varepsilon_i=\left(a(x_i,w)-y_i\right)$ — ошибка; $\mathscr{L}(\varepsilon)$ — функция потерь, устойчивая к большим выбросам ε

Функция Мешалкина: $\mathscr{L}(arepsilon) = b ig(1 - \expig(-rac{1}{b}arepsilon^2ig)ig)$

Постановка задачи:

$$\sum_{i=1}^{\ell} \exp\left(-\frac{1}{b}(a(x_i, w) - y_i)^2\right) \to \max_{w}.$$

Эта задача также решается методом Ньютона-Рафсона.

Функции потерь для робастной регрессии

Семейство функций потерь Баррона с параметром α :

$$\mathscr{L}_{lpha}(arepsilon) = rac{|lpha-2|}{lpha} igg(igg(rac{arepsilon^2}{|lpha-2|} + 1 igg)^{lpha/2} - 1 igg)$$

Jonathan T. Barron. A General and Adaptive Robust Loss Function. 2019.

Напоминание: SVM-регрессия. Тоже робастная регрессия

$$a(x,w,w_0)=\langle x,w
angle-w_0$$
 — модель регрессии, $w\in\mathbb{R}^n$, $w_0\in\mathbb{R}$ $\mathscr{L}(arepsilon)=ig(|arepsilon|-\deltaig)_+$ — кусочно-линейная функция потерь

Постановка задачи:

$$\sum_{i=1}^{\ell} (|\langle w, x_i \rangle - w_0 - y_i| - \delta)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}.$$

Задача решается путём замены переменных и сведения к задаче квадратичного программирования

Резюме в конце лекции

- Нелинейная регрессия
 - сводится к последовательности линейных регрессий
- Логистическая регрессия
 - не регрессия, а классификация
 - метод Ньютона-Рафсона приводит к IRLS
- Обобщённая линейная модель (GLM)
 - мощно обобщает обычную и логистическую регрессию
 - метод Ньютона-Рафсона приводит к IRLS
- Обобщённая аддитивная регрессия (GAM, backfitting)
 - сводится к серии одномерных сглаживаний
- Неквадратичные функции потерь
 - проблемно-ориентированные (зависят от задачи)
 - в том числе робастная регрессия
 - приводят к разным методам, отличным от МНК
 - в некоторых случаях к методу Ньютона-Рафсона и IRLS