Assignment Project Exam Help Principal Component Analysis https://powcoder.com

Add WeChat powcoder

Goals

- Restructure interrelated variables
- Simplify designation Project Exam Help
- Reduce Dimensionality wcoder.com
- Avoid multi-collinearity problems in regression Add WeChat powcoder

Basic Idea

X₁, X₂ – correlated

Transform them into:

Assignment Project Exam Help
Into:

https://powcoder.com

• C₁, C₂ – uncorrelated Add WeChat powcoder

Geometric Concept

2 Principal Components: C₁, C₂ (p 361)

Plot of Principal Components: C₁, C₂ (p 362)

Equations for Principal Components: C_1 , C_2

- $C_1 = 0.85X_1 + 0.53X_2$
- $C_2 = -0.53$ kg nment Rroject Exam Help
- Var $C_1 = 1351$ powcoder.com
- Var C₂ = 224dd WeChat powcoder

- Note: Dot Product of C₁, C₂ = 0
 - Hence they are orthogonal, therefore uncorrelated, and Var C₁ > Var C₂

Principal Component Model

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Matrix Equation

Principal Components: C₁,..., C_p

- From P original variables: X₁,..., X_p derive P principal components Project Exam Help
- Each C_i is attime a posmodication of the X_i 's
- C_j = a _{j1} X ₁Atdel _j We Chat powgoder

Properties of Principal Components:

Coefficients are chosen to satisfy:

- Variance istance asome of enformation:
 - For ExampleMacPraspate Cancer:
- Any two principal components are orthogonal, hence uncorrelated

Calculation of Principal Components

- Let S be the Covariance Matrix of S = $S_{11} S_{12} S_{1p}$ Let S be the Covariance Matrix of S = $S_{21} S_{22} S_{2p}$ the X variable ment Project Exam
- Then a_{ij} 's alettere/powcoder.com solution to the equation:
 (S λI)a = 0
 (Hotelling 1933)

Recall Some Terminology

- Solutions to $(S \lambda I)a = 0$ are:
 - λ a scalar known as the eigenvalue
- a a vector known as the eigenvector https://powcoder.com
 a is not unique. There are an infinite
- **a** is not unique. There are an infinite number of possibilities, societ
 - Choose a such that the sum of the squares of coefficients for each eigenvector is = 1.
 - This yields: P unique eigenvalues and P corresponding eigenvectors.

Then

- The eigenvectors are the Principal Components
 - λ a scalar known as the eigenvalue
- a a vector known as the eigenvector
 a is not unique. There are an infinite number of possibilities, lstops://powcoder.com
 - Choose a such that the sum of the squares of coefficients for each eigenvector is = 1.
 - This yields: P unique eigenvalues and P corresponding eigenvectors.

Review

- Principal Components are the eigenvectors,
 - and their variances are the eigenvalues Assignment Project Exam Help
 - of the covariance matrix S of the X's https://powcoder.com
- Variances of the C; 's add to the sum of the Add WeChat powcoder variances of the original variables (total variances)

Example Revisited (p 361)

- Var $X_1 = 104.0$ Var $X_2 = 53.5$ sum = 157.5
- Var C₁ Assignment Project Examulatelp 157.5 https://powcoder.com
- Total Variance is received is the received of the

Choosing m

- Rely on existing theory
- Kaiser's Rule:
 - S: choose λ_i > sum of variance of X's/P
 - R: chooseths: //powcoder.com

Add WeChat powcoder

- We need to explain a given %
- Elbow Rule

Cumulative Percentages of Total Variance for Depression Data (p 368)

Eigenvalues for Depression Data – Scree Plot (p 368)

Depression, CESD, Example

- Using R (Correlation, Not Language):
 - **Choose Eigenvalues** > 1
- Assignment Project Exam Help
 Hence choose 5 Principal Components

https://powcoder.com

Add WeChat powcoder

Elbow Rule for Choosing m

- Start with the scree plot
- Choose a cutoff point where:
 - Assignment Project Exam Help
 Lines joining consecutive points are "steep"
 left of the cutoff point, and
 - · "flat" rightldf Whe Cluttoffopointler
- The point where the two slopes meet is the cutoff point

Eigenvalues for Depression Data – Scree Plot (p 368)

M = 2

Principal Components for standardized CESD scale items (p 369)

Reading the Output

Here: X₁ = "I felt that I could not shake ..."
 X₂ = "I felt depressed, ..."
 The Principan componing take and Help
 Catta 0./2774X pde 0.3132X₂ + ...
 Catta 0./450X₁ to 0.02714X₂ + ...

etc.

Coefficients as Correlations

- Recall: Correlation (C_i , X_j) = $a_{ij} * \lambda_i *^2$
- · Choose where Corelation Help
 - Examplettps://powcoder.com
 - For C₁, Ald W56 hat powerder
 - Correlation > $0.5 => a_{1j} > 0.5/2.656 = 0.188$
- Similarly for other Principal Components