SPRAWDZIAN I

Imię i nazwisko:

Nr indeksu:

Nr grupy:

Uwaga! Sprawdzian jest testem wielokrotnego wyboru, gdzie wszystkie możliwe kombinacje odpowiedzi są dopuszczalne (tj. zarówno wszystkie odpowiedzi poprawne, część odpowiedzi poprawna jak i brak odpowiedzi poprawnych). Poprawne odpowiedzi należy zaznaczyć, z lewej strony kartki, symbolem "+". Natomiast symbol "-" jak i brak symbolu przy odpowiedzi oznacza odpowiedź niepoprawną. Pytanie jest uznane za poprawnie rozwiązane (tj. +1pkt) wtedy i tylko wtedy gdy wszystkie jego odpowiedzi zaznaczone są poprawnie. Życzymy powodzenia ...

- 1. Niech $f(n) = \sqrt{n} \lg n!$, wtedy prawdą jest, że:
 - (a) $[+] f(n) = O(n^2),$
 - (b) $[+] f(n) = \Omega(n\sqrt{n}),$
 - (c) $[+] f(n) = \Theta\left(2^{\lg \sqrt{n}} n \lg n\right)$
- 2. Rozważmy funkcję $f: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$ postaci $f(n) = 2^n$, wtedy:
 - (a) $[+] f(n) = \Theta(c \cdot f(n) + 1)$, gdzie c jest pewną dodatnią stałą,
 - (b) $[-] f(n) = O(\frac{1}{n!} \cdot f(n)),$
 - (c) $[-] f(n) = \Omega(f(n)^2).$
- 3. Które z poniższych zdań jest prawdziwe:
 - (a) [+] jeżeli f(n) = O(n) i g(n) = O(n), to $f(n) + g(n) = O(n^2)$,
 - (b) [+] jeżeli $f(n) = O(n^2)$ i $g(n) = O(n^2)$, to $f(n) + g(n) = O(n^2)$,
 - (c) [-] jeżeli $f(n) = \Omega(n)$ i $g(n) = \Omega(n)$, to $f(n) + g(n) = \Omega(n^2)$.
- 4. Załóżmy, że złożoność czasową pewnego algorytmu A określa funkcja $T(A, n) = \sqrt{n}$, gdzie n jest rozmiarem danych wejściowych. Komputer K wykonuje rozważany algorytm dla danych rozmiaru 36 w ciągu 12 sekund, tj. $T_K(A, 36) = 12$. Stąd:
 - (a) [-] $T_K(A, 49) = 16,$
 - (b) [-] $T_K(A, 49) = 18,$
 - (c) [+] w ciągu 100 sekund komputer K wykona rozważany algorytm dla danych wejściowych rozmiaru co najwyżej 2500.
- 5. Rozważmy następujący algorytm

```
void Algorytm(int n) {
   Alg1(n);
   for (i=0;i<n*n;i++) {
        Alg2(n);
   }
}</pre>
```

gdzie Alg_1 oraz Alg_2 są algorytmami o złożoności czasowej odpowiednio $T(Alg_1n) = O(n \lg n!)$ oraz $A(Alg_2, n) = \Theta(n)$, $W(Alg_2, n) = \Theta(n^2)$, stąd:

(a) $[-] T(Algorytm, n) = \Theta(n^2 \lg n!),$

- (b) $[+] A(Algorytm, n) = O(n^2 \lg n!),$
- (c) [+] $W(Algorytm, n) = \Omega(n^2 \lg n!).$
- 6. Rozważmy następujący algorytm

```
int Cos(int n) { // wp: n \in \mathbb{N}
   int i=10;
   while (i\geq 0) i=i+1;
   return n; // wk: n \in \mathbb{N}
```

wtedy:

- (a) [-] program Cos jest całkowicie poprawny w strukturze liczb naturalnych,
- (b) [+] program Cos jest częściowo poprawny w strukturze liczb naturalnych,
- (c) [+] program Cos jest całkowicie poprawny w strukturze liczb naturalnych przy założeniu, że operator dodawania zdefiniujemy jak odejmowanie, tj. $+ =_{def} -$
- 7. Rozważmy następujący algorytm

```
int Cos(int n, int k) {
   int i=k, wynik=1;
   while (i\leqn) {
      i=i*k;
      wynik=wynik+1;
   return wynik; // wk: wynik=\log_k n+1
```

wtedy:

- (a) [-] program Cos jest częściowo poprawny dla warunku poczatkowego $k, n \in \mathbb{N}$,
- (b) [+] program Cos jest częściowo poprawny dla warunku początkowego $n=k^c$, dla $c\in\mathbb{N}^+$ i $k \in \mathbb{N} \setminus \{0, 1\},\$
- (c) [+] program Cos jest całkowicie poprawny dla warunku początkowego $n=k^c$, dla $c\in\mathbb{N}\setminus$ $\{0, 1, 2, \dots, k\}$ i $k \in \mathbb{N} \setminus \{0, 1\}$.
- 8. Rozważmy następujący algorytm

```
int Cos(int n) { // wp: n \in \mathbb{N}
   int i=0, s=0;
   while (i<n) {
       i=i+1;
       s=s+i;
    return s;
}
```

wtedy:

- (a) [+] niezmiennikiem pętli w programie Cos jest formuła $s = \frac{i(i+1)}{2}$,
- (b) [-] niezmiennikiem pętli w programie Cos jest formuła $s = \frac{i(i-1)}{2}$,
- (c) [+] niezmiennikiem pętli w programie Cos jest formuła $i \in \mathbb{N}$, a warunkiem końcowym s=
- 9. Które ze zdań jest prawdziwe:
 - (a) [-] sprawdzenie, czy dany element należy do nieuporządkowanego uniwersum rozmiaru n wymaga $O(\sqrt{n})$ porównań,
 - (b) [+] sprawdzenie, czy dany element należy do nieuporządkowanego uniwersum rozmiaru \sqrt{n} wymaga O(n) porównań,

- (c) [+] koszt czasowy sekwencyjnego algorytmu wyszukania elementu minimalnego w nieuporządkowanym uniwersum rozmiaru 10^6 wynosi $10^6 - 1$.
- 10. Rozważny algorytm "turniej" dla danych rozmiaru $n=2^k$, gdzie $k\in\mathbb{N}^+$. Które z poniższych stwierdzeń jest zawsze spełnione:
 - (a) [-] koszt budowy drzewa turnieju wynosi dokładnie n+1 porównań,
 - (b) [-] element 2-gi co do wielkości "pojedynkował się" dokładnie z $\lg n 1$ elementami,
 - (c) [+] element 1-szy co do wielkości "pojedynkował się" dokładnie z $\lg n$ elementami.
- 11. Rozważny iteracyjny algorytm dla problemu min-max i danych rozmiaru $n=2^k$, gdzie $k\in\mathbb{N}^+$, wtedy:
 - (a) [+] algorytm ten jest optymalnym rozwiązaniem dla rozważanego problemu,
 - (b) [+] złożoność czasową algorytmu można oszacować przez $\frac{3}{5}n \pm c$, gdzie $c \le 3$,
 - (c) [+] złożoność pamięciowa algorytmu jest rzędu $O(\lg n)$.
- 12. Które ze zdań jest prawdziwe:
 - (a) [-] sprawdzenie algorytmem BinSearch, czy dany element należy do nieuporządkowanego uniwersum rozmiaru n wymaga O(1) porównań,
 - (b) [+] sprawdzenie algorytmem BinSearch, czy dany element należy do uporządkowanego uniwersum rozmiaru n wymaga $O(\lg n)$ porównań,
 - (c) [+] koszt czasowy algorytmu BinSearch dla poprawnych danych rozmiaru 1111 wynosi co najwyżej 12 porównań.
- 13. Załóżmy, że pewien algorytm Alg dla danych wejściowych rozmiaru n składa się z dwóch części:
 - \sqrt{n} -krotne wyszukanie elementu minimalnego metodą sekwencyjną,
 - lg n-krotne wyszukanie elementu minimalnego algorytmem Hoare'a.

Które z oszacowań jest poprawne:

- (a) $[+] A(Alg, n) = \Omega(n\sqrt{n}),$
- (b) $[-] W(Alg, n) = O(n\sqrt{n} \lg n),$
- (c) $[+] S(Alg, n) = \Theta(1)$.
- 14. Który z poniższych ciągów jest poprawnym rezultatem wykonania procedury Split dla danych wejściowych

- (a) [-] 4,2,3,11,9,5,7,
- (b) [-] 2,3,4,5,7,9,11,
- (c) [+] 3,2,4,11,9,5,7.
- 15. Rozważmy wyszukiwanie elementu n-tego co do wielkości, w n-elementowej uporzadkowanej rosnaco tablicy wejściowej, przy zastosowaniu algorytmu Hoare'a z procedurą podziału zgodną z metodą Partition, wtedy:
 - (a) [-] złożoność czasową rozwiązania w tym przypadku szacujemy przez O(1),
 - (b) [-] złożoność czasową rozwiązania w tym przypadku szacujemy przez O(n),
 - (c) [+] złożoność czasową rozwiązania w tym przypadku szacujemy przez $O(n^2)$.
- 16. Prowadzący zajęcia ćwiczeniowe z ASD jest:
 - (a) leworęczny,
 - (b) praworęczny,
 - (c) nie wiem, ale z dokładnością do notacji $\Theta(1)$ używa jednej ręki.