University of British Columbia Department of Mechanical Engineering

MECH366 Modeling of Mechatronic Systems Homework 6

Due: November 12 (Tuesday), 2019, 6pm

Consider 2-DOF mass-spring-damper system in the figure below, where k [N/m] is the linear spring constant, b_1 [Ns/m] and b_2 [Ns/m] are viscous friction coefficients (between masses and ground), and b_3 [Ns/m] is the damping coefficient.

Obtain the transfer function:

- 1. from the input force f to the output displacement y_1 .
- 2. from the input force f to the output acceleration \ddot{y}_2 .
- 3. from the input force f to the output (displacement difference) $y_1 y_2$.
- 4. from the input displacement y_2 to the output displacement y_1 .
- 5. from the input displacement y_1 to the output displacement y_2 .

