Bakgrund(Raviolimaskin)

Reshad Ahmadi, Maryam Bayat

9 oktober 2015

Examensarbete (Raviolimaskin)

Handledare: Kenneth Nilsson

Examinator: Björn Åstrand

HÖGSKOLAN I HALMSTAD Sektionen för Informationsvetenskap, Data- och Elektroteknik

Innehåll

1. 1.	.1 .2	Syfte o Avgrä	och mål
		grund	
2.	.1	Existe	rande Raviolimaskiner
2.			
		2.2.1	Pump för fyllning
		2.2.2	Motordriven degform
		2.2.3	Styrenhet

Inledning

Detta projekt ämnat till att utveckla en Raviolimaskin. Ravioli är en traditionell italiensk maträtt bestående av runda eller kvadratiska pastadeg med fyllning [1]. Fyllningen kan bestå av till exempel köttfärs, skinka och ost. Raviolin serveras ofta i en tomatsås eller köttfärssås. Vegetarisk ravioli kan exempelvis fyllas med purjolök eller spenat.

Att laga Ravioli hemma manuellt har varit jobbigt och tidskrävande. Det finns olika typer av Raviolimaskiner på marknaden just nu som hjälper med Raviolis ifyllnings process.

Den enklaste typen av Raviolimaskin(Ravioliplatta) visas på figue 1.1. Den underlättar processen, men ifyllning av Raviolin görs manuellt som medför att det tar tid och använda det.

Figur 1.1: Ravioliplatta för manuell ifyllning

En annan typ av maskin som illustreras på figur 1.2, är väldigt stor och priset är högt som medför att de inte kan användas av hushåll.

Idén bakom detta projekt baseras på behovet av en Raviolimaskin hemma. Tanken är att utveckla en liten och relativ billig Raviolimaskin som kan vara användbar hemma.

Figur 1.2: Industriell Pasta-/Raviolimaskin

1.1 Syfte och mål

Detta projekt syftar på att utveckla en Raviolimaskin som ska fylla i Raviolidegen med ifyllningsmaterial och tillsluta degen automatiskt. Maskinen ska vara rätt anpassad till hushåll i storlek, pris och användbarhet.

Följande krav har ställts på maskinen:

- Maskinen ska automatisk applicera fyllningsmaterialet på Raviolideg.
- Användaren ska kunna ha vilken fyllningsmaterial som helst för att fylla på raviolin.
- Maskinen ska automatisk tillsluta degen.
- Raviolideg ska placeras manuellt på maskinens degform.
- Raviolin ska plockas bort manuellt ur maskinen.
- Maskinen ska kommunicera med användaren via en display.
- Det ska vara lätt att rengöra maskinen.

1.2 Avgränsningar

Eftersom tiden är låst till en deadline som inte kan flyttas och personalresurser är begränsande, kommer vi inte bygga maskinen i metall.

En avgränsning ska vara att alla maskinens delar kommer att konstrueras med användning av 3D-skrivare och plast som material. I slutet av projektet ska en plastmodell av maskinen utvecklas. Detta för att det tar mycket tid och resurser om man vill konstruera maskinen med t.ex. stål.

Backgrund

2.1 Existerande Raviolimaskiner

De Raviolimaskiner som finns på marknad innehåller två huvuddelar, en pump för fyllning och en motor-driven degform.

Ett exempel på en Raviolimaskin visas på Figuren 2.1. Den består av två cylindriska degformar och en lucka där man fyller maskinen med fyllningsmaterial. Maskinens degfomar fungerar även som pump genom att de drar in fyllningsmaterialet när man snurrar dem m.h.a. ett handtag eller en motor.

Figur 2.1: Raviolimaskin bestående av två cylindriska degformar

Ett annat exempel på en industriell Raviolimaskin visas på figur 2.2. Denna maskin består av en pump, två cylindriska degformar och en rullbana. Maskinen fungerar med samma princip som maskinen på det första exemplet gör och den fyller Raviolin oavbrutet under tiden som Raviolidegen eller fyllningsmaterialet i pumpen inte har tagit slut.

2.2 Teori

Gruppmedlemmar har undersökt olika typer av pumpar för fyllning och olika sätt som degformen kan drivas med motor. Det finns olika modeller av pumpar och två av dem är Kolvdriven

Figur 2.2: Industriell Raviolimaskin som gör en Ravioli i tag(ref)

och kugghjul pump. För att driva degformen med motor analyserades två typer av motorer, likströmsmotor och stegmotor. De två typer av motorer lämpar detta projekt p.g.a. de är lätt att styra, plus tidigare erfarenhet att använda dem i ett projekt.

En undersökning gjordes på hur man kan detektera när degformen har pressat nog Raviolidegen för att tillsluta det med tillämpning av likströmsmotor eller stegmotor.

2.2.1 Pump för fyllning

Kolvpump

Första modellen är en kolvpump som pumpar ingredienserna med hjälp av en kolv som rör sig fram och tillbaka i en cylinder. Pumpen är utformad för att hantera vätskor, halvfasta och trögflytande produkter. Med hjälp av en munstycken häller ingredienserna på degen. Doseringsvolymen på matrialet kan bestämmas genom att helt enkelt öka eller minska kolvens rörelse. Figuren 2.3.

Födelar med pumptekniken:

- Påfyllningsvolymen är exakt doserad för att minska slöseriet.
- Fördelningen av olika produkter och halvfasta ämnen i samma behållare är korrekt repeterbar.
- Pumptekniken mäter ingredienserna med precision, tack vare servodrivenkolv.
- Pumpen kan rengöras på plats utan nedmontering.

Figur 2.3: Kolvpump med exakt dosering av påfyllningsvolymet(ref)

Kugghjul pump

Figuren 2.4 visar en kugghjulspump som består av två kugghjul, ett drivande kugghjul och ett drivet kugghjul. Materialet följer luckorna mellan kuggarna genom pumpen. Kugghjulspumpar lämpar sig bäst för höga pumphöjder[10].

Figur 2.4: Kugghjul pump

2.2.2 Motordriven degform

Figuren 2.5 Visar en degform för manuell fyllning av en Ravioli. Den fungerar genom att man lägger Raviolidegen på formen, efter detta läggs fyllningsmaterial på degen och sist tillsluter man de-gen genom att pressa formens handtag mot varandra. Degformen kan sluta degen automatiskt med hjälp av motorer. Lämpliga typer av motorer är likströms- eller stegmotor.

Figur 2.5: Degform

Likströmsmotor

Likströmsmotorer är den vanligaste motor som sitter i många olika produkter som leksaker, dataspel mm[2]. Strömmen som en likströmsmotor förbrukar beror på belastningen. Denna egenskap kan användas som en sensor för att identifiera t.ex. hinder och i detta fall när degformen har pressat Raviolidegen nog för att tillsluta den.

Stegmotor

Den här typen av motor liknar likströmsmotor men den skiljer sig från likströmsmotor genom en unik egenskap: stegmotor roterar et steg vid en strömpuls. Steget minskar med ökat antal poler i statorn. Genom att beräkna antal pulsar som skickas till steg-motorn, kan man exakt positionera ett objekt [3].

2.2.3 Styrenhet

För att Ravioli maskinen ska fungera krävs en styrenhet. Det måste kunna driva motorer för att öppna och stänga degformen , hissa upp och ner formen och pumpa fram materialet. Det är betydelsfullt att kunna hålla sammanhag mellan olika delar för att varje del jobbar i sin tidpunkt. Det finns olika modeller av styrenheter. Här nämns några av dem.

Arduino due

Arduino är en plattform baserad på öppen källkod och hårdvara. Den består av en programmerbar kretskort (mikro) och programvara. Nedan listas några av Arduino fördelar.

- Gott om anslutningsmögligheter(många I/O, både analogt och digitalt).
- Det är relativt billigt samt är enkel att programmera.

- Bra för styrning av många motorer.
- Tillgång till Arduinos IDE och rik tillgång till Arduinos bibliotek.

Utvecklingsmjlö för Arduino är Arduino IDE (Integrated Development Environment) som körs på dator. Den används för att skriva och ladda upp programkod till plattformen [5]. Man programmerar i Arduinos egen miljö och programmeringsspråket bygger på wiring och C/C++ där man har färdigt många rutiner som gör det enkelt att programmera[6]. Editorn fungerar dessutom i alla operativsystem (Windows, MacOC och Linux).

På kortet finns olika typer av pinnar. Analog(kan läsa signalen från en analog givare och konvertera den till ett digital värde som kan läsas), digital(användes för både digital ingång som kan vara en knapp och digital utgång som kan vara en LED) och PWM (Pulse-Width Modulation)är några av pinnar på plattformen som användes för olika funktioner. Due har 54 digitala I/O pinnar(12 kan användes som PWM utgångar), 12 analoga ingångar, 4 UARTs (hardware serial ports) och en 84 MHz klocka[7]. Arduino Due kan interagera med knappar, lysdioder, motorer, högtalare, GPS-enheter, kameror och internet. Det finns inbyggt stöd för LCD, I2C, SPI, timers, Wifi, Ethernet, olika sensorer såsom accelerometrar, gyron, temperatursensorer.

Rassbery pi

Rasberry pi är enkortsdator som ansluts till en datorskärm eller TV, och använder ett vanligt tangentbord och mus. Den används som en vanlig dator och är kapabel att göra allt som en stationär dator. Raspberry Pi har inget inbyggt minne för operativsystemet och filer, istället används ett externt SD-kort för fillagring. På kortet sitter 26 stycken pinnar som kallas för GPIO(General purpose input/output) . Några av dessa pinar har extra funktioner såsom en I2C-buss, SPI buss och UART seriella anslutningar[9].

oprerativsystem för Rassbery pi heter Linux. Det finns möglighet att programmera språk som Scratch och Python.

Litteraturförteckning

- [1] http://www.wisegeek.com/what-is-ravioli.htm, Engproc
- [2] http://www.drivteknik.nu/skolan/motor/stegmotor, Likströmsmotor
- [3] http://www.ne.se.ezproxy.bib.hh.se/uppslagsverk/encyklopedi/l%C3%A5ng/stegmotor, Stegmotor

[4]

[5] https://learn.sparkfun.com/tutorials/what-is-an-arduino, Arduino1

[6]

- [7] https://learn.sparkfun.com/tutorials/what-is-an-arduino,Arduino3
- [8] https://www.raspberrypi.org/help/what-is-a-raspberry-pi/,Raspberry
- [9] http://computers.tutsplus.com/tutorials/controlling-dc-motors-using-python-with-a-raspberry-pi-cms-20051, Raspberry1
- [10] http://hj.diva-portal.org/smash/get/diva2:219806/FULLTEXT01.pdf,kugghjul pump