Distributed Systems

(3rd Edition)

Chapter 03: Processes

Version: February 25, 2017

Introduction to threads

Basic idea

We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of instructions can be executed. Saving a thread context implies stopping the current execution and saving all the data needed to continue the execution at a later stage.

Process: A software processor in whose context one or more threads may be executed. Executing a thread, means executing a series of instructions in the context of that thread.

Context switching

Contexts

- Processor context: The minimal collection of values stored in the registers of a processor used for the execution of a series of instructions (e.g., stack pointer, addressing registers, program counter).
- Thread context: The minimal collection of values stored in registers and memory, used for the execution of a series of instructions (i.e., processor context, state).
- Process context: The minimal collection of values stored in registers and memory, used for the execution of a thread (i.e., thread context, but now also at least MMU register values).

Context switching

Observations

- Threads share the same address space. Thread context switching can be done entirely independent of the operating system.
- Process switching is generally (somewhat) more expensive as it involves getting the OS in the loop, i.e., trapping to the kernel.
- Oreating and destroying threads is much cheaper than doing so for processes.

Why use threads

Some simple reasons

- Avoid needless blocking: a single-threaded process will block when doing I/O; in a multi-threaded process, the operating system can switch the CPU to another thread in that process.
- Exploit parallelism: the threads in a multi-threaded process can be scheduled to run in parallel on a multiprocessor or multicore processor.
- Avoid process switching: structure large applications not as a collection of processes, but through multiple threads.

Avoid process switching

Avoid expensive context switching

Trade-offs

- Threads use the same address space: more prone to errors
- No support from OS/HW to protect threads using each other's memory
- Thread context switching may be faster than process context switching

Threads and operating systems

Main issue

Should an OS kernel provide threads, or should they be implemented as user-level packages?

User-space solution

- All operations can be completely handled within a single process ⇒ implementations can be extremely efficient.
- All services provided by the kernel are done on behalf of the process in which a thread resides ⇒ if the kernel decides to block a thread, the entire process will be blocked.
- Threads are used when there are lots of external events: threads block on a per-event basis ⇒ if the kernel can't distinguish threads, how can it support signaling events to them?

Thread implementation 8 / 47

Lightweight processes

Principle operation

- User-level thread does system call ⇒ the LWP that is executing that thread, blocks. The thread remains bound to the LWP.
- The kernel can schedule another LWP having a runnable thread bound to it. Note: this thread can switch to any other runnable thread currently in user space.
- A thread calls a blocking user-level operation ⇒ do context switch to a runnable thread, (then bound to the same LWP).
- When there are no threads to schedule, an LWP may remain idle, and may even be removed (destroyed) by the kernel.

Note

This concept has been virtually abandoned – it's just either user-level or kernel-level threads.

Thread implementation 11 / 47

Using threads at the client side

Multithreaded web client

Hiding network latencies:

- Web browser scans an incoming HTML page, and finds that more files need to be fetched.
- Each file is fetched by a separate thread, each doing a (blocking) HTTP request.
- As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

- A client does several calls at the same time, each one by a different thread.
- It then waits until all results have been returned.
- Note: if calls are to different servers, we may have a linear speed-up.

Multithreaded clients 12 / 47

Using threads at the server side

Improve performance

- Starting a thread is cheaper than starting a new process.
- Having a single-threaded server prohibits simple scale-up to a multiprocessor system.
- As with clients: hide network latency by reacting to next request while previous one is being replied.

Better structure

- Most servers have high I/O demands. Using simple, well-understood blocking calls simplifies the overall structure.
- Multithreaded programs tend to be smaller and easier to understand due to simplified flow of control.

Multithreaded servers 14 / 47

Why multithreading is popular: organization

Dispatcher/worker model

Overview

Model	Characteristics
Multithreading	Parallelism, blocking system calls
Single-threaded process	No parallelism, blocking system calls
Finite-state machine	Parallelism, nonblocking system calls

Multithreaded servers 15 / 47