Notes perso : Géométrie algébrique

Table des matières

1	Out	tils
	1.1	La définition de base
	1.2	Plan tangent de Zariski
	1.3	Cadre de base avec la nouvelle définition
	1.4	Critère jacobien
	1.5	Ouvert des points non singuliers
		1.5.1 Cas d'une hypersurface affine séparable
		1.5.2 Cas général
2	Uti	lisations et cadre
	2.1	En résumé
		2.1.1 Si dim $X = n$ alors dim $T_{X,P} \le n$
		2.1.2 Singularités aux intersections des composantes

. . .

TABLE DES MATIÈRES

Chapitre 1

Outils

1.1 La définition de base

Étant donné un affine $Z(I)=Z(F_1,\ldots,F_m)\subset \mathbb{A}^n$ on peut définir le plan tangent via

$$(D_P I)^{\perp} = \{t | D_P(F)(t) = 0 \forall F \in I\}$$

1.2 Plan tangent de Zariski

Question 1. $T_{X,p} \simeq (\mathfrak{m}/\mathfrak{m}^2)$

Pour rappel on a un diagramme

$$0 \longrightarrow I/I \cap \mathfrak{n}^2 \longrightarrow \mathfrak{n}/\mathfrak{n}^2 \longrightarrow \mathfrak{m}/\mathfrak{m}^2 \longrightarrow 0$$

$$\downarrow_{D_P} \qquad \qquad \downarrow_{D_P} \qquad \qquad \downarrow$$

qui devient en passant au dual

$$0 \longleftarrow (D_P I)^{\vee} \longleftarrow (E^{\vee})^{\vee} \longleftarrow (\mathfrak{m}/\mathfrak{m}^2)^{\vee} \longleftarrow 0$$

mais en regardant $(E^{\vee})^{\vee}$ comme l'ensemble des morphismes d'évaluations $ev_Q \colon f \mapsto f(Q)$, le noyau a droite c'est les $ev_Q = g \in (E^{\vee})^{\vee}$ tels que

$$g|_{D_PI} = 0$$

autrement dit tels que $D_P(F)(Q) = 0$ pour tout $F \in I$.

Réponse 1. Pour conclure le noyau à droite bah c'est exactement $T_{X,P}$ par l'identification.

1.3 Cadre de base avec la nouvelle définition

Définition 1.3.1. On définit $\dim_P X := \inf \{ \dim U | P \in U \subset X \}$. En particulier si $X = \bigcup_i Z_i$,

$$\dim_P X = \sup_{P \in Z_i} \dim Z_i$$

vu que un ouvert qui croise Z_i est dense dedans.

Maintenant

Définition 1.3.2. On définit la lissité de X en P via $\dim_P X = \dim_P T_{P,X}$.

Note 1. Cette définition est une conséquence de la dernière déf psq on peut dire que

$$\dim T_{X,P} \ge \dim T_{Z_X(f),P} - 1$$

en prenant $f \in \mathfrak{m} - \mathfrak{m}^2$ (d'où une récurrence).

1.4 Critère jacobien

Si on identifie maintenant E a E^{\vee} par la base canonique, i.e.

$$D_P(F_j) \sim \begin{pmatrix} \partial_1 F_j \\ \vdots \\ \partial_n F_j \end{pmatrix}$$

alors

$$J(X)_P = (D_P(F_1)| \dots |D_P(F_m)).$$

D'où

$$rk(J(X)_P) = \dim_k(D_P I)$$

et en passant à l'orthogonal

$$\dim_k(T_{X,P}) = n - rk(J(X)_P).$$

1.5 Ouvert des points non singuliers

1.5.1 Cas d'une hypersurface affine séparable

Dans le cas d'une hypersurface Z(H) où H est séparable pour l'une des variables :

Outils

- 1. On peut montrer que Z(H) a un point lisse. On note $H(T_1, \ldots, T_n)(S)$ séparable en S.
- 2. $\Delta \in k[T_1, \ldots, T_n]$ le discriminant en S.
- 3. $Z(H) \subset \mathbb{A}^n \times A^1$ et si $(q,s) \in D(\Delta) \times p_S(Z(H))$ alors

$$\frac{\partial H}{\partial S}(q,s) = (H(q)')(s) \neq 0$$

d'où H est lisse en (q, s). $(D(\Delta) \cap p_T(Z(H))$ est non vide.

1.5.2 Cas général

Toute variété de dim r est birationnelle a une hypersurface de \mathbb{P}^{r+1} . I.e. $k(X) \simeq k(T_1, \ldots, T_r, z)$ avec z séparable sur $k(T_1, \ldots, T_n)$. Comme on doit juste montrer que tout les ouverts contiennent un point lisse c'est fini.

1.5 Ouvert des points non singuliers

Chapitre 2

Utilisations et cadre

2.1 En résumé

De $T_{X,P} \simeq (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ de manière fonctorielle on peut faire de l'algèbre pour obtenir des injections/surjections de $T_{X,P}$ dans d'autres espaces tangents. Je pense qu'on a un foncteur donc

$$k\text{-Var}_* \to \mathrm{Mod}_k$$

où à gauche c'est les variétés pointées.

2.1.1 Si dim X = n alors dim $T_{X,P} \le n$

on peut se ramener au cas affine. Alors $X \hookrightarrow \mathbb{A}^n$ donne $\mathfrak{n}_P/\mathfrak{n}_P^2 \to \mathfrak{m}_P/\mathfrak{m}_P^2 \to 0$ est exacte avec $\mathfrak{m}_P \subset A(X)$ et $\mathfrak{n}_P \subset A(\mathbb{A}^m)$ $(m \leq n)$. Ça donne

$$0 \to T_{X,P} \hookrightarrow T_{\mathbb{A}^m,P}$$

avec celui de droite de dimension $m \leq n$.

2.1.2 Singularités aux intersections des composantes

Si on a $X = \bigcup_i Z_i$ alors un point P est non singulier seulement si une seule composante passe par lui. Pour le prouver, plusieurs approches :

- 1. Via le critère jacobien : On peut supposer X affine $dim_p X = dim X$ et garder que les composantes qui passent par P.
- 2. Alors $I(X) = \cap I(Z_i)$. Idée : si on montre que X pas irred implique son idéal est engendré par des produits. Alors on a fini car y'a des colonnes nulles en plus sur l'intersection. Problème : c'est faux.

3. Directement : on se met à nouveau dans le cas affine $Z(I) = Z(\cap_i \mathfrak{p}_i)$:

$$\mathfrak{m}_{\cap_i \mathfrak{p}_i}/\mathfrak{m}_{\cap_i \mathfrak{p}_i}^2 \to \mathfrak{m}_{\mathfrak{p}_i}/\mathfrak{m}_{\mathfrak{p}_i}^2 \to 0$$

qui est exacte et un noyau non trivial : suffit de prendre $Q \in \mathfrak{p}_i - \bigcup_{j \neq i} \mathfrak{p}_j$ irréductible, alors $Q \notin \mathfrak{m}^2_{\cap_i \mathfrak{p}_i}$ et $Q \in \mathfrak{m}_{\cap \mathfrak{p}_i}$. Donc dans le noyau. Enfin en passant au dual :

$$0 \to T_{Z(\mathfrak{p}_i),P} \to T_{X,P}$$

est une injection stricte!

Remarque 1. Pas besoin de considérer $T_{P,\cap Z(\mathfrak{p}_i)}$.