

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

Escola de Engenharia Engenharia de Controle e Automação Engenharia Elétrica

DISCIPLINA: TÓPICOS EM INTELIGÊNCIA ARTIFICIAL – ENG1010		DATA: 2/09/2021	
PROFESSOR: Dr. MARCOS ANTÔNIO DE SOUSA		TURMA: A01	VALOR: 10,0
ALUNO(A):			
ATIVIDADE: DESAFIO 1 [Individual – com consulta] MA	TRÍCULA:		

DESAFIO 1

Implementação e simulação computacional de um SAD.

Uma empresa de artigos de couro fabrica dois tipos de produtos: malas e mochilas.

As malas são vendidas com um lucro de R\$ 50,00 por unidade e o lucro unitário por mochila é igual a R\$ 40,00.

A quantidade de horas necessárias para confeccionar cada produto, assim como o número total de horas disponíveis em cada departamento, são apresentados na tabela.

A modelagem matemática do SAD também está indicada, onde x1= quantidade de malas e x2= quantidade de mochilas.

Sabe-se que, atualmente, a empresa produz diariamente 120 unidades de malas e 30 unidades de mochilas.

Departamento	Capacidade por departamento (horas por dia)	Horas necessárias	
		Mala	Mochila
1) Corte	300	2	0
2) Tingimento	540	0	3
3) Costura	440	2	2
4) Embalagem	300	1,2	1,5

Maximizar:

Lucro = $50.x_1 + 40.x_2$ Sujeito a: $2.x_1 + 0.x_2 \le 300$ $0.x_1 + 3.x_2 \le 540$ $2.x_1 + 2.x_2 \le 440$ $1,2.x_1 + 1,5.x_2 \le 300$ $x_1 \ge 0$ $x_2 \ge 0$

RESPONDA:

- 1 Indique o planejamento ótimo obtido com a utilização do SAD. Utilizar o software LINDO (ou similar) para implementar e executar computacionalmente o modelo de otimização do SAD.
- 2 Indique o aumento (percentual) de lucro da empresa caso adote a solução do SAD frente aquela praticada atualmente pela empresa.
- 3 Apresente uma proposta de cenário de atuação da empresa com o acréscimo de um novo produto ao mix de produção. Devem ser indicados os dados, a nova modelagem, a nova implementação computacional e a nova solução proposta pelo SAD.