#### 非定常热传导方程:

$$\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$$

初边值的有限差分求解,求解域为(x,t) ∈ [0,1] ×  $[0,\infty]$  初始条件和边界条件为:

$$u(x,0) = f(x),$$
  $u(0,t) = a(t),$   $u(1,t) = b(t)$ 

其中 $\nu = 1$ , 初值条件的具体取法为:

$$f(x) = \begin{cases} 0 & 0 < x < 0.3 \\ \frac{-10}{3}x + \frac{10}{3} & 0.3 \le x \le 0.7 \\ 0.7 \le x \le 1 \end{cases}$$

取均匀网格点数:

$$M = 100$$
,  $a(t) = b(t) = 0$ ,  $\sigma = 0.1, 0.5, 1.0$ 

### 一、题目说明

采用 FTCS 格式,BTCS 格式,CNCS 格式分别计算t=0.01时的数值解,计算的时间 步长取法为:

$$\sigma = \frac{\nu \Delta t}{(\Delta x)^2}$$

网格点数目M=100, 故 x 方向空间步长取法:  $\Delta x = \frac{1}{M} = 0.01$ ;

时间步长 $\Delta t$ 的取值由 $\sigma$ 的定义式规定:  $\Delta t = \sigma(\Delta x)^2$ ;

时间网格总数目N 由计算时间t与时间步长 $\Delta t$ 规定:  $N = \frac{1}{\Delta t}$ ;

表 1.t = 0.01, 时间步长 $\Delta t$ , 所对应的时间网格数目N

| σ          | 0.1                | 0.5                | 1.0                |
|------------|--------------------|--------------------|--------------------|
| $\Delta t$ | $1 \times 10^{-5}$ | $5 \times 10^{-5}$ | $1 \times 10^{-4}$ |
| t = 0.01   | $1\times10^3$      | 200                | 100                |

# 离散差分方程:



# 二、计算结果

#### FTCS 格式:



计算时间t=0.01,时间步长 $\sigma=1.0$ 时,方程的解出现震荡,差分方程得到稳定解的条件是方程中各项系数均大于零,当 $\sigma=1.0$ 时, $U^n_k$ 的系数 $1-2\sigma=-1$ ,出现震荡。



## BTCS 格式:



#### CNCS 格式:

