MEK-4420 - Marin hydrodynamikk- Obligatorisk oppgave 1

Ana Costa Conrado

June 4, 2018

Introduksjon- Addert masse

Added mass can be interpreted as a particular volume of fluid particles that are accelerated with the body. Strictly, however, the particles of fluid adjacent to the body will accelerate to varying degrees, depending on their position relative to the body. In principle, every fluid particle will accelerate to some extent as the body moves, and the added mass is a weighted integration of this entire mass. The added mass tensor is defined as:

$$m_{ji} = \rho \iint_{S_B} \phi_i \frac{\partial \phi_j}{\partial n} \, dS \tag{1}$$

 S_B is the wetted body surface, ϕ is the velocity potential. The added mass coefficients are symmetric

$$m_{ij} = m_{ji} \tag{2}$$

which is proven with Green's theorem

$$\iint\limits_{S_{D}} \left[\phi_{i} \frac{\partial \phi_{j}}{\partial n} - \phi_{j} \frac{\partial \phi_{i}}{\partial n} \right] dS = 0.$$
 (3)

addert masse

Other properties derive from the relation between the tensor of added mass and the kinetic energy of the volume of fluid.

$$m_{ji} = \rho \iint_{S_B} \phi_i \frac{\partial \phi_j}{\partial n} dS = \rho \iiint_V \nabla \cdot (\phi_j \nabla \phi_i) dV$$
 (4)

$$= \rho \iiint\limits_{V} \nabla \phi_{j}.\nabla \phi_{i} + \phi_{j} \nabla^{2} \phi_{i} \, dV = \rho \iiint\limits_{V} \nabla \phi_{j}.\nabla \phi_{i} \, dV \quad (5)$$

since $\nabla^2 \phi_i = 0$. The kinetic energy of the fluid is

$$T = \frac{1}{2}\rho \iiint (\nabla \phi. \nabla \phi) dV = \frac{1}{2}\rho \iiint (U_i \nabla \phi_i).(U_j \nabla \phi_j) dV \quad (6)$$
$$= \frac{1}{2}\rho U_i U_j \iiint \nabla \phi_i. \nabla \phi_j dV. \quad (7)$$

Hva vi har gjort, m_{11}

Vi har regnet addert mass $(m_{11}, m_{22} \text{ og } m_{66})$ for sirkel, ellipse og firkant i diskret form

$$m_{ji} = \rho \iint_{S} \phi_{j} n_{i} dS \simeq \rho \sum_{m=1}^{N} [\phi_{j}]_{m} [n_{i}]_{m} \triangle S_{m}$$
 (8)

hvor $\triangle S_m$ er lengde til segment m mellom punkter (x_{m-1}, y_{m-1}) og (x_m, y_m) . $[\phi_j]_m$ er potensialet til segmenten m.

Vi har diskretisert geometrien (sirkel, ellipse og firkant) i *N* punkter og sjekket konvergensen til addert mass regnet med (8) sammenlignet med analytiske verdier for addert masse. Integralet i (8) blir regnet med 2 punkts Gauss kvadratur.

For a regne m_{11} , (8) blir

$$m_{11} = \rho \iint_{S} \phi_{1} n_{1} dS \simeq \rho \sum_{m=1}^{N} [\phi_{1}]_{m} [n_{1}]_{m} \triangle S_{m}$$
 (9)

hvor $[n_1]_m$ er komponeten i x retningen til normalt vektor i punkt m, m = 1, 2, ..., N.

Hva vi har gjort - m_{22} , m_{66}

 m_{22} blir

$$m_{22} = \rho \iint_{S} \phi_2 n_2 dS \simeq \rho \sum_{m=1}^{N} [\phi_2]_m [n_2]_m \triangle S_m$$
 (10)

hvor $[n_2]_m$ er komponeten i y retningen til normalt vektor i punkt $m,\ m=1,2,...,N.$ m_{11} og m_{22} har dimensjon $[\rho L^2]$. m_{66} blir

$$m_{66} = \rho \iint_{S} \phi_6 n_6 dS \simeq \rho \sum_{m=1}^{N} [\phi_6]_m [n_6]_m \triangle S_m$$
 (11)

hvor $n_6 = xn_2 - yn_1$. m_{66} har dimensjon $[\rho L^4]$ og er en addert treghetsmoment eller rotasjons addert masse.

Hva vi har gjort, sirkel ϕ_1

analytisk potensialet ϕ_1 til en sirkel

$$\phi_1 = -R_0^2 \frac{\partial}{\partial x} \log \sqrt{x^2 + y^2} = -\frac{R_0^2 x}{x^2 + y^2}$$
 (12)

Boundary value problem in 2D, geometry moving in unbounded fluid

når (\bar{x},\bar{y}) er på S

$$-\pi\phi(\bar{x},\bar{y}) + \iint_{S} \phi \frac{\partial}{\partial n} \log r \, dS = \iint_{S} \frac{\partial \phi}{\partial n} \log r \, dS \qquad (13)$$

hvor $\frac{\partial \phi}{\partial n} = n_1$ på S. En numerisk løsning blir

$$-\pi\phi(\bar{x},\bar{y}) + \sum_{m=1}^{N} \phi_m \iint_{S_m} \frac{\partial}{\partial n} \log r \, dS = \sum_{m=1}^{N} \left[\frac{\partial \phi}{\partial n} \right]_j \iint_{S_m} \log r \, dS$$
(14)

hvis overflate S blir diskretisert i segmenter S_j og det blir antatt at potensialet og normal derivert er konstant i hvert segment.

Hvert segment S_m blir en rett linje mellom punkter (x_{m-1}, y_{m_1}) og (x_m, y_m) . Diskretisert integralligningen (14) tilfredstilles i centroid til hvert segment S_n på $(\bar{x}_n, \bar{y}_n) = (\frac{1}{2}(x_{n-1} + x_n), \frac{1}{2}(y_{n-1} + y_n))$ Flux integralet $\iint_{S_n} (\frac{\partial}{\partial n}) \log r \, dS$:

$$\iint_{S_m} \frac{\partial}{\partial n} \log r \, dS = \iint_{S_m} n_1 \frac{\partial}{\partial x} \log r \, dS + \iint_{S_m} n_2 \frac{\partial}{\partial y} \log r \, dS \quad (15)$$

$$= \iint_{S_m} \left(\frac{\partial}{\partial x} \log r (-dy) + \frac{\partial}{\partial y} \log r (dx) \right) \quad (16)$$

hvor normalet (n_1, n_2) peker ut av fluidet.

diskretisert ligningen -

med komplex variabel z = x + iy

$$\iint_{S_m} \frac{\partial}{\partial n} \log r \, dS = \iint_{S_m} Re \left(\frac{\partial}{\partial x} \log (z - \bar{z_i})(-dy) + \frac{\partial}{\partial y} \log (z - \bar{z_i})(dx) \right) \\
= -\iint_{S_m} Im \left(\frac{dz}{z - \bar{z_m}} \right) = -[Im \log (z - z_n)]_{z_{m-1}}^{z_m} \\
= -\Delta \Theta_{n,m}$$

hvis $(\bar{x_n}, \bar{y_n})$ er på S_m (n = m), fluks integralet er null.

diskretisert ligningen -

integralet $\iint_{S_m} \log r \, dS$ blir regnet med 2-punkter Gauss kvadratur

$$h_{n,m} = \iint_{S_m} \log r \, dS \approx \frac{1}{2} [\log ((x_m^{(1)} - \bar{x_n})^2 + (y_m^{(1)} - \bar{y_n})^2) + \log ((x_m^{(2)} - \bar{x_n})^2 + (y_m^{(2)} - \bar{y_n})^2)] (\frac{1}{2} \Delta S_m)$$

hvor ΔS_m er lengde av S_m og punktene til Gauss kvadraturen er

$$x_m^{(1,2)} = \pm \frac{1}{2} (x_m - x_{m-1}) \frac{\sqrt{3}}{3} + \frac{1}{2} (x_{m-1} + x_m),$$

$$y_m^{(1,2)} = \pm \frac{1}{2} (y_m - y_{m-1}) \frac{\sqrt{3}}{3} + \frac{1}{2} (y_{m-1} + y_m)$$

diskretisert ligningen

diskret integralligning:

$$-\pi\phi_{n} + \sum_{m=1}^{N} \phi_{m}(-\Delta\Theta_{n,m}) = \sum_{m=1}^{N} \left[\frac{\partial\phi}{\partial n}\right]_{m} h_{n,m}, \quad n = 1, 2, \dots, N$$
(17)

hvor normal derivert $[\frac{\partial \phi}{\partial n}]_m$ er spesifisert for hvert potensial hvor $\frac{\partial \phi_i}{\partial n} = n_i$ for i=1,2,6 i 2-D, hvor n_i er generalisert normal vektoret på S_m evaluert i $\bar{x_m} = \frac{1}{2}(x_{m-1},x_m)$ og $\bar{y_m} = \frac{1}{2}(y_{m-1},y_m)$.

Hva vi har gjort, Sirkel

m_{11}	$\pi \rho R_0^2$
m_{22}	$\pi \rho R_0^2$
m_{66}	0

Table: Addert masse til sirkel med radius R_0

Hva vi har gjort, Ellipse

m_{11}	$\pi ho b^2$
m ₂₂	$\pi ho a^2$
m ₆₆	$\frac{1}{8}\pi\rho(a^2-b^2)^2$

Table: Addert masse til ellipse med a > b halvakser

Hva vi har gjort, Firkant med sider 2a₀

m_{11}	$4.754 \rho a_0^2$
m_{22}	$4.754 \rho a_0^2$
m ₆₆	$0.725 \rho a_0^4$

Hva vi finner ut

- 1. Konvergensen av m_{11} er raskest.
- 2. m_{66} konvergerer langsammere for firkanten og ellipsen enn m_{11} og m_{22} .
- 3. Hvis man sammenlignet de to ellipser, ellipsen med $\frac{b_0}{a_0}=0.5$ får bedre konvergens til m_{22} og m_{66} men langsommere konvergens til m_{11} enn ellipsen med $\frac{b_0}{a_0}=0.1$.
- 4. Langsomste konvergensen har m_{22} og m_{66} for ellipsen med $\frac{b_0}{a_0} = 0.1$. Forskjellen i konvergensen kan bli forklart av hvordan punktene blir distribuert i geometrien i omkrets i forhold til aksene.
- 5. I sirkelen og firkanten, m_{11} er lik m_{22} .
- 6. For ellipsen, siden $a_0>b_0$, blir $m_{22}=\pi \rho a_0^2$ større enn $m_{11}=\pi \rho b_0^2$.