PCP FS2020: Scheme Zusammenfassung

Ist deklarativ funktional. (Wie auch LISP, ML basierende Sprachen (F#, OCaml), wie auch Haskell)

Literatur (online)

- The Scheme Programming Language, R. Kent Dybvig
 - www.scheme.com/tspl4/
- Structure and Interpretation of Computer Programs, Harold Abelson and Gerald Jay Sussman (also commonly known as "The Wizard Book" for programmers)
 - mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
- How to Design Programs, Matthias Felleisen u.a.
 - www.htdp.org

Lisp

Erste Deklarativ Funktionale Sprache.

- Inspiriert vom Lambda Kalkulus.
- Homoikonizität: Selbst-Abbildbarkeit, oder Selbst- Repräsentierbarkeit
 - Programme in einer Sprache sind gleichzeitig Datenstrukturen in derselben Sprache.
 - in lisp ist jedes Programm eine Liste

Es gibt viele verschiedene LISP dialekte:

- Aus Lisp enstand Common Lisp
- Scheme basiert auf Common Lisp
- Raket ist ein Scheme dialekt

Prinzipen der funktionalen Programmierung

Im Zentrum stehen

- Funktionen, und die
- Anwendung von Funktionen.

Das heisst:

- Keine Seiteneffekte
- Funktionen sind auch Datenobjekte (Values, Werte)
 - Dies erlaubt Funktionen höherer Ordnung (Funktionen die Funktionen als Parameter)
- Verschiedene Implementationen von Funktionen für verschiedene Typen
- kürzere klarere, einfacher wartbare, zuverlässigere und schnellere programme

Lösen einer Aufgabe anhand von Dekomposition und Komposition

- Zerlegung in Unterprobleme,
- Abtraktion/zusammenfassung ähnlicher Probleme

Racket

DrRacket ist eine IDE für racket und erlaubt es auch andere scheme dialekte auszuprobieren.

Scheme Basics

Ist dynamisch typisiert (typenprüfung findet während der Laufzeit statt).

Ein Programm:

```
; Mittelwert der Quadratzahlen 0..n-1
(define (mean-of-squares n)
  (/ (apply + (build-list n sqr)) n))
```

Primitive (Atomare) Ausdrücke: Werte

- Zahlen
 - sind selbst-auswertend (Werte der Ziffern sind die Zahl die sie bezeichnen)
 - integer: 23
 - rational: -3/4, 0.75
 - real: +inf.0
 - irrational: pi = #3.141592653...
 - komplexen Zahlen (complex), $\operatorname{sqrt}(-2) = \#i0 + 1.4121356$
- Booleans
 - sind selbst-auswertend
 - Werte true/false, #t, #f, #true, #false

Eingebaute Operatoren (built-in functions)

- Eine Auswertung ergibt den Wert derartigen Operation
- Die in Scheme eingebauten mathematischen Funktionen werden PRIM-OPS (Primitive operations) genannt.
- integer operations:
 - +, -, *, /
 - quotient (Ganzzahldivision), remainder, modulo (Rest)
 - expt, lcm
 - abs, max, min
 - numerator (Zähler), denominator (Nenner), gcd
- real and complex operations:
 - exp, sin, cos, tan, expt, log, sqr, sqrt

Form

Alles in Scheme ist eine Form.

```
`(operator operand1 operand2 ...)` -> `(+ 1 2)`
```

Eine Form:

- wird mit klammern umschlossen.
- verwendet Präfix-Notation, der operator (oder funktion) zuerst dann alle argumente

Auswertungsregeln

- Reihenfolge der Auswertung ist nicht festgelegt.
- Die Auswertung ist aber Rekursiv
- Jede sub-Form muss aber ausgewertet werden bevor die gesammte Form ausgewertet werden kann.

Kontrollfragen A

Was ist falsch an den folgenden Ausdrücken?

- (5 * 14), präfixnotation, operator zuerst -> (* 5 14)
- (* (5) 3), 5 ist kein definierter operator -> (* 5 14)
- (+ (* 2 4), klammer am ende vergessen -> (+ (* 2 4))
- (* + 3 5 2), jeder operator braucht wieder eine klammer -> (* (+ 3 5) 2)
- (/ 25 0), man kann nicht durch null teilen

Namen (define ...) und Konstanten

In funktionalen Sprachen wird der Bezeichner (name) an einen Ausdruck oder Wert gebunden.

In Scheme wird dafür (define ...) verwendet:

(define <identifier> <expression>)

- <identifier>: beliebiger Name, kann auch sonderzeichen enthalten
- <expression>: beliebiger Ausdruck, konstante/variable/funktionsaufruf
- bindet die <expresseion> an den Namen <identifier>

Example Constants:

```
(define pi 3.14159) (define PI 3.14159) # achtung: neudefinition da case insensitive
```

Auswertungsregeln

• Wertet den <identfier> nicht aus

- Der Rückgabewert von define ist nicht spezifiziert
- Scheme unterscheidet nicht zwischen Gross/Kleinschreibung
 - In Dr Racket kann man case-sensitivity aber einstellen

Kontrollfragen B

- Scheme ist dynamisch typisiert. Was bedeutet das? Die Typenprüfung findet während er Laufzeit statt.
- 2. Wie wird der folgende Ausdruck schrittweise ausgewertet? (* (- 6 4) (+ 3 2))
- 3. (* 2 (+ 3 2))
- 4. (* 2 5)
- 5. 10
- 6. Wie sehen die Auswertungsregeln für allgemeine Formen aus?
- Die Reihenfolge der Auswertung ist nicht festgelegt
- Die Auswertung ist rekursiv
- Jede sub-Form muss ausgewertet werden bevor die gesamte Form ausgewertet werden kann.
- 4. Wie sieht die Auswertungsregeln für die spezielle Form define aus?
- Der Zweite Ausdruck ist ein Name der gebunden wird an den Wert des dritten Ausdrucks
- Der Zweite Ausdruck wird nicht ausgewertet
- Der Dritte Ausdruck wird ausgewertet
- Der Rückgabewert von define ist nicht spezifiziert

Name (define ...) und Funktionsdefinitionen

- Funktionsdefinitionen bilden das Programm
- Es gibt keine Main Funktion

Definieren einer Funktion mittels (define ..):

```
(define (<identifier> <formal parameters>) <expression>)
```

Beim Aufruf einer Funktion müssen die aktuellen Parameter in

- Anzahl
- Datentyp (implizit; kann nicht angegeben werden, da dynamisch typisiert)
- Reihenfolge

mit den formalen parameter übereinstimmen.

Beispiel (Berechnung einer Kreisfläche/Ringfläche):

```
(define (area-of-disk r) (* PI (sqr r)))
(define (area-of-ring outer inner)
  (- (area-of-disk outer) (area-of-disk inner)))
```


Figure 1: Definition einer Funktion im Scheme

Konsole, Aufruf der Funktion:

```
> (area-of-disk 5)
78.53975
> (area-of-ring 5 3)
50.264
```

Auswertungsregeln für Funktionen

- Primitive Funktionen werden einfach ausgewertet die Anweisungen im Rumpf ausgeführt werden.
- Zusammengesetze oFunktionen werden ausgeweret. Werte den Rumpf der Funktion aus. Dabei werden alle formalen Parameter mit dem aktuellen Parameterwert ersetzt. Beispiel Trace:

```
(area-of-ring 5 3)
(- (area-of-disk 5) (area-of-disk 3))
(- (* pi (sqr 5)) (* pi (sqr 3)))
(- (* 3.14159 (sqr 5)) (* 3.14159 (sqr 3)))
(- (* 3.14159 25) (* 3.14159 9))
(- (78.5375) 28.2735)
50.264
```

Scheme-Interpreter verwenden die **strikte Auswertung**. Eine Form mit Schlüsselwort definiert somit eine eigene Auswertung.

Es gibt verschiedene Auswertungsstrategien, die jeweils verschiedene Ergebnisse liefern.

- Bei der **strikten Auswertung** werden alle Argumente ausgewertet bevor die Funktion aufgerufen wird.
- Bei der **Bedarfsauswertung (Lazy Evaluation)** werden die Argumente als unausgewertete Ausdrücke übergeben. Die Auswertung erfolgt erst dann, wenn deren Wert benötigt wird.
 - Funktionsaufrufe können ganz vermieden oder zumindest teilweise eingespart werden können.
- Ein auf logische Ausdrücke eingeschränkter Spezialfall ist die Kurzschlussauswertung.

Funktionale Modellierung

Ein programm besteht aus

- Funktionen
 - Hauptfunktion: Hauptziel der Berechnung
 - Hilfsfunktionen
- Variabeln
 - Vordefiniertes pi oder e
 - eigene Definitionen

Ziel ist es das Wesentliche darzustellen, während unnötige Details verborgen werden. Hierarchische struktur.

Top-Down verfahren/Abhänigkeits-Analyse zur Problemlösung.

Aufgabe: Profit eines Kinos

Ein Programm soll den Profit eines Kinobesitzers in Abhängigkeit vom Ticketpreis berechnen:

- Bei CHF 8.00 pro Ticket kommen 120 Leute
- Pro CHF 0.50 Rabatt kommen 15 Leute mehr
- Fixkosten einer Aufführung sind CHF 250
- Variablen Kosten eines Besuchers betragen CHF 0.75

Lösung:

```
(define (profit price)
  (- (revenue price) (cost price)))
(define (revenue price)
  (* (attendees price) price))
(define (attendees price)
  (+ 120 (* 15 (/ (- 8.00 price) 0.50))))
(define (cost price)
  (+ 250 (* 0.75 (attendees price))))
```

Kontrollfragen C

- 1. Worauf muss man achten bei der Funktionsdefinition mit Hilfe von define?
- dyanmisch typisiert
- keine typen angeben
- aufpassen beim Aufruf mit der Reihenfolge der Parameter
- 2. Gegeben sind die Funktionen:

```
(define (f x) (* x x)) (define (g x y) (+ x y))
Wie wird (g (g 1 3) (f 2)) ausgewertet?

1. (g (g 1 3) (f 2))
2. (g (+ 1 3) (f 2))
3. (g (+ 1 3) (* 2 2))
4. (g 4 (* 2 2))
5. (g 4 4)
6. (+ 4 4)
7 8
```

- 3. Ändern Sie das vorhergehende Programm entsprechen den neuen Angaben und ermitteln Sie den «optimalen» Preis.
- Der Besitzer erreicht durch Rationalisierungsmassnahmen, dass die Kosten pro Zuschauer einfach CHF 2.00 betragen. Ändern Sie das Programm entsprechen und ermitteln Sie den «optimalen» Preis

```
(define (profit price)
   (- (revenue price) (cost price)))
(define (revenue price)
   (* (attendees price) price))
(define (attendees price)
   (+ 120 (* 15 (/ (- 8.00 price) 0.50))))
(define (cost price)
   (* 2.00 (attendees price)))
• Der Optimale Preis ist 7
```

```
> (profit 8)
720.0
> (profit 6.5)
742.5
> (profit 7.1)
749.7
> (profit 6.9)
749.7
> (profit 7)
750.0
```