<u>Раздел 1</u>. Введение в дисциплину. Общие по<mark>нятия</mark>

Тема 2.

Общие принципы построения информационных сетей. Основные понятия информационной сети. Классификация информационных сетей. Физическая и логическая топология сетей. Муниципальные сети. Глобальные сети. Беспроводные сети. Домашние сети. Объединение сетей.

Тема 2. Общие принципы построения информационной сети

Модель, в которой один компьютер выполнял всю необходимую работу по обработке данных, уступила место модели, состоящей из большого количество отдельных, но связанных между собой компьютеров. Такие системы называются компьютерными сетями.

Компьютерная сеть (вычислительная сеть, сеть передачи данных)— это совокупность узлов и телекоммуникационного оборудования, объединенных между собой каким-либо способом с целью совместного доступа к ресурсам и обмена информацией обеспечивающая информационный обмен компьютеров в сети.

Компьютерные сети — объединение компьютеров и средств связи.

Типичная сеть небольшого офиса

Тема 2. Основные понятия информационной сети

- **1.** Узел, абонент, хост устройство, непосредственно подключенное к сети.
- 2. <u>Телекоммуникационное оборудование</u> концентраторы, хабы (Hub's), коммутаторы (switch's), маршрутизаторы (router's), устройства первичной сети (мультиплексоры и пр. устройства операторов телефонных сетей), модемы (аналоговые и цифровые ADSL).
- 3. <u>Сервер</u> специально выделенный высокопроизводительный компьютер, оснащенный соответствующим программным обеспечением.
- **4.** <u>Клиентский компьютер (рабочая станция)</u> компьютер пользователя сети, получающий доступ к ресурсам сервера (серверов).
- 5. <u>Среда передачи (канал связи, линия связи)</u> физическая среда распространения сигналов от источника к приемнику.

Тема 2. Основные понятия информационной сети

•

- **6.** Пропускная способность максимально возможная скорость передачи данных по линии связи.
- 7. <u>Сегмент сети</u> логически или физически обособленная часть сети.
- 8. <u>Сегментация сети</u> разделения сети на сегменты с целью уменьшения в них количества узлов, увеличения пропускной способности в расчете на один узел и повышения безопасности.

Тема 2. Классификация информационных сетей

Единой классификации не существует, но есть ряд параметров:

- По типу технологии передачи;
- По типу среды передачи;
- По скорости передачи информации;
- По типу функционального взаимодействия;
- По типу сетевой топологии;
- По функциональному назначению;
- По сетевым операционным системам;
- По территориальному признаку;

Тема 2. Классификация информационных сетей

- 1. По типу технологии передачи:
- Широковещательные сети;

• Сети с передачей от узла к

- 2. По типу среды передачи:
- Проводные;

• Беспроводные;

Тема 2. Классификация информационных сетей. По территориальному признаку. Признаки персональной сети (PAN):

- 1. Малое число абонентов
- 2. Не критичность к наработке на отказ.
- 3. Все устройства входящие в РАМ-сеть можно контролировать.
- 4. Узкий радиус действия (100 футов (30 метров))
- 5. Сеть должна поддерживать до 8 участников.

Локальная сеть (Local Area Network, LAN) - группа компьютеров, связанных друг с другом и расположенных на небольшой территории.

Муниципальные, региональные или городские сети (Metropolitan Area Network, MAN) - объединяют компьютеры в пределах города. Самым распространенным примером муниципальной сети является система кабельного телевидения.

Глобальная сеть (Wide Area Network, WAN) - сеть, объединяющая компьютеры разных городов, регионов, государств.

Расстояние между процессами	Процессы расположены	Пример
1 м.	На одном квадратном метре	Персональная сеть.
10 м.	Комната	
100 м.	Здание.	Локальная сеть
1 км.	Кампус.	
10 км.	Город.	
100 км.	Страна.	Глобальная сеть
1000 км.	Континент.	
10 000 км.	Планета.	Интернет

Тема 2. Классификация информационных сетей

Рис 1-02.2 Пример объединения сетей в иерархическую структуру

Тема 2. Классификация информационных сетей

Рис 1-02.3. Виртуальная частная сеть (VPN) - крупного предприятия, организованная через Интернет.

Для организации комп-х сетей используя различные среды доступа:

В проводных сетях

используется:

- •телефонный кабель,
- •витая пара,
- •коаксиальный кабель
- •оптический кабель.

Проводные сети используют технологии Ethernet, Token Ring, FDDI (оптические линии связи). Для соединения устройств проводных сетей часто используют телефонные линии и каналы связи, а также технологии SONET/SDH, DWDM с оптическим кабелем.

Беспроводные:

Передача информации происходит по радиоволнам в определенном частотном диапазоне.

Беспроводные технологии сетей - Wi-Fi, Bluetooth, GPRS, WiMax, 3G, 4G-модемы, а также радиорелейные и спутниковые каналы связи.

Тема 2. Классификация информационных сетей

Фрагмент сети смешанного типа с использованием проводных и беспроводных технологий.

Тема 2. Классификация информационных сетей

- 3. По скорости передачи информации:
- Низкоскоростные (до 10 Мбит/с);
- Среднескоростные (до 100 Мбит/с);
- Высокоскоростные (свыше 100 Мбит/с);

- · 4. По типу функционального взаимодействия:
 - Одноранговая сеть
- Клиент-сервер
- Смешанная сеть
- Точка-точка
- Многоранговые сети.

Тема 2. Классификация информационных сетей

5. По типу сетевой топологии:

Сетевая топология (от <u>греч.</u> τόπος, - место) — способ описания конфигурации <u>сети</u>, схема расположения и соединения сетевых устройств, схема прохождения электрических сигналов, описывающая направление потоков информации и принцип предоставления доступа к сети.

Сетевая топология может быть:

- Физической описывает реальное расположение и связи между узлами сети;
- Логической описывает прохождение сигнала в рамках физической топологии. проводников. Подразделяется на:
 - информационную описывает направление потоков информации, передаваемых по сети;
 - управления обменом это принцип передачи права на пользование сетью.

Тема 2. Классификация информационных сетей

6. По сетевым операционным системам:

• Ha основе Windows

Ha основе UNIX

• На основе NetWare Novell.

NetWare

Смешанные

(установлены разные сетевые ОС)

7. По территориальному признаку:

Расстоян ия между процесса ми	Процессы расположены	Пример
1 M	Один кв. м.	Персональная сеть
10 м	Комната	
100 м	3дание	Локальная сеть
1 км	Кампус	
10 км	Город	Муниципальная сеть
100 км	Страна	Глобальная сеть
1 000км	Континент	
10 000 км	Планета	Интернет

Тема 2. Классификация информационных сетей

5. По типу сетевой топологии:

Выделяют 3 базовых топологии:

- И дополнительные (производные):
- Дерево
- Двойное кольцо
- Решётка
- Полно связная
- Ячеистая топология
- Fat Tree

- Шина
- Звезда
- Кольцо

Тема 2. Классификация информационных сетей

Топология типа шина:

Топология типа общая **шина**, представляет собой общий кабель (называемый **шина** или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Тема 2. Классификация информационных сетей

Топология типа шина:

Существует ограничения на длину связи между первым и последним узлами. Например, технология Ethernet 10Base-2 позволяет использовать кабель длиной не более 185 метров. Для построения большой сети, её разбивают на сегменты, каждый допустимой длины. Сегменты соединяются между собой повторителями сигналов, которые усиливают и восстанавливают ослабленный сигнал.

Топология шина –«Тонкий Ethernet» 10Base-2

Тема 2. Классификация информационных сетей

Топология типа шина:

Достоинства:

- Небольшое время установки сети;
- Дешевизна (требуется меньше кабеля и сетевых устройств);
- Простота настройки;
- Выход из строя рабочей станции не отражается на работе сети;

Недостатки

- Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью останавливает работу всей сети;
- Сложная локализация неисправностей;
- С добавлением новых рабочих станций падает производительность сети.

Тема 2. Классификация информационных сетей.

Топология типа звезда:

Звезда — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор, коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево").

А) Активная звезда

Б) Пассивная звезда

Тема 2. Классификация информационных сетей

Топология типа звезда:

Достоинства:

- Выход из строя одной рабочей станции не отражается на работе всей сети в целом;
- Хорошая масштабируемость сети;
- Лёгкий поиск неисправностей и обрывов в сети;
- Высокая производительность сети;
- Гибкие возможности администрирования.

Недостатки

- Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;
- Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
- Конечное число рабочих станций в ограничено количеством портов в центральном концентраторе.

Тема 2. Классификация информационных сетей

Топология типа кольцо:

Кольцо — базовая топология компьютерной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть

Тема 2. Классификация информационных сетей

Топология типа кольцо:

Достоинства:

- Простота установки;
- Практически полное отсутствие дополнительного оборудования;
- Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки

- Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
- Сложность конфигурирования и настройки;
- Сложность поиска неисправностей;

Тема 2. Классификация информационных сетей

Топология «решетка»:

Решётка — понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная «решётка» — это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа — слева и справа). При соединении обоих внешних узлов получается топология «кольцо».

Одномерная решетка решетка

Тема 2. Классификация информационных сетей

Смешанная топология:

Смешанная топология — топология преобладающая в крупных сетях с произвольными связями между компьютерами. В таких сетях можно отдельные произвольно выделить связанные фрагменты (подсети).

Тема 2. Классификация информационных сетей

Полносвязная топология:

Полносвязная топология — компьютерной сети - когда каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту

Д/3: Кратко охарактеризуйте следующие топологии: дерево, двойное кольцо, ячеистая топология и Fat Tree. Нарисуйте рисунки.

Тема 2. Классификация информационных сетей

6. По функциональному назначению:

- Сети хранения данных (Storage Area Network) (SAN) -архитектурное решение для подключения внешних устройств хранения данных, таких как дисковые массивы, ленточные библиотеки, оптические накопители к серверам
- Серверные фермы это ассоциация серверов, соединенных сетью передачи данных и работающих как единое целое. Один из видов серверной фермы определяет метакомпьютерная обработка. Серверная ферма является ядром крупного центра обработки данных
- Сети управления процессом Process Control Network (PCN) это сеть, которая используется для передачи команд и данных между измерительными приборами и системой диспетчерского управления и сбора данных (SCADA)
- Сети SOHO (Small Office, Home Office) локальная компьютерная сеть. Сеть обычно представлена одним кабинетом или комнатой. В сети используются сетевые коммутаторы Ethernet или повторители и кабель 5-той категории, или беспроводная сеть Wi-Fi.

SOHO— название сегмента рынка электроники, предназначенного для домашнего использования.

Курс Лекций: «Аппаратное и программное обеспечение ЭВМ и сетей По сетевым операционным системам ОС

Ha ochobe Windows, Ha ochobe UNIX, Ha ochobe NetWare Смешанные

UNIX— группа переносимых, многозадачных и многопользовательских операционных систем.

Первая система UNIX была разработана в 1969 г. в подразделении Bell Labs компании AT&T. С тех пор было создано большое количество различных UNIX-систем. Юридически лишь некоторые из них имеют полное право называться «UNIX»; остальные же, хотя и используют сходные концепции и технологии, объединяются термином «UNIX-подобные» (Unix-like).

Некоторые отличительные признаки UNIX-систем включают в себя:

- 1. использование простых текстовых файлов для настройки и управления системой;
- 2. широкое применение утилит, запускаемых в командной строке;
- 3. взаимодействие с пользователем посредством виртуального устройства терминала;
- 4. представление физических и виртуальных устройств и некоторых средств межпроцессового взаимодействия как файлов;
- 5. использование конвейеров из нескольких программ, каждая из которых выполняет одну задачу.

В настоящее время UNIX используются в основном на серверах, а также как встроенные системы для различного оборудования. На рынке ОС для рабочих станций и домашнего применения UNIX уступили другим операционным системам, таким как Microsoft Windows и Mac OS, хотя существующие программные решения для Unix-систем позволяют реализовать полноценные рабочие станции как для офисного, так и для домашнего использования.

В ходе разработки Unix-систем был создан язык Си.

NetWare — сетевая операционная система и набор сетевых протоколов, которые используются в этой системе для взаимодействия с компьютерами-клиентами, подключёнными к сети. Операционная система NetWare создана компанией Novell. NetWare является закрытой операционной системой, использующей кооперативную многозадачность выполнения различных служб на компьютерах с архитектурой Intel x86. В основе сетевых протоколов системы лежит стек протоколов Xerox XNS. В настоящее время поддерживает протоколы TCP/IP и IPX/SPX. NetWare является одним из семейств XNS-систем.