nvidia

May 19, 2023

```
[]: import pandas as pd
     import scipy.stats as stats
     from scipy.stats import beta
     import numpy as np
     import matplotlib.pyplot as plt
     import matplotlib as mpl
     from Binomial_Fixed import portfolio_cmds
     %matplotlib inline
     plt.style.use('seaborn')
     mpl.rcParams['font.family'] = 'serif'
     import quandl
     apikey = 'J_fXGeVW_zC6RaDeJSQv'
     quandl.ApiConfig.api_key = apikey
[]: class Price_DF:
         def __init__(self, asset:str,start_date=None,end_date = None):
             self.asset = asset
             self.start_date = start_date
             self.end_date = end_date
             if self.start_date == None:
                 self.start_date = '2018-01-01'
             else:
                 self.start_date = start_date
             if self.end_date != None:
                 self.end_dte = end_date
         def ret_df(self,log_normal=False,to_monthly=False,drop_price_col = False):
             df = quandl.get_table('QUOTEMEDIA/PRICES', ticker = [self.asset], qopts__
      Germanume = {"columns": ['date', 'adj_close']}, date = {'gte':self.start_date, 'lte':
      self.end_date}).set_index('date').sort_index()
             if log_normal:
                 df['rets'] = np.log(df['adj_close']/df['adj_close'].shift())
                 if to_monthly:
                     df = df.resample('m').last()[:-1]
```

df['rets'] = np.log(df['adj_close']/df['adj_close'].shift())

```
if not log_normal:
                 df['rets'] = df['adj_close'].pct_change()
                 if to_monthly:
                     df = df.resample('m').last()[:-1]
                     df['rets'] = df['adj_close'].pct_change()
             if drop_price_col:
                 df = df.drop(columns = {'adj_close'})
                 df.columns = [f"{self.asset}_rets"]
             if not drop price col:
                 df.columns = ["Price",f"{self.asset}_rets"]
            return df.dropna()
[]: tickers = ['SPY','NVDA','COST','TSLA','HD','XOM','MA']
     ret_df = pd.DataFrame(data = None)
     lognormal = False
     to_monthly = False
     drop_price_col = True
     start_date = '2018-01-01'
[]: for asset in tickers:
         object = Price_DF(asset = asset,start_date = start_date)
         temp_df = object.
      ret_df(log_normal=lognormal,to_monthly=to_monthly,drop_price_col=drop_price_col)
         ret_df = pd.concat([ret_df,temp_df],axis=1)
[]: ((1+ret_df).cumprod()).plot(title=f'Growth of 1 Dollar since {start_date}')
[]: <AxesSubplot:title={'center':'Growth of 1 Dollar since 2018-01-01'},
     xlabel='date'>
```


[]: portfolio_cmds.display_correlation(ret_df)

MIN Correlation pair is ('TSLA_rets', 'XOM_rets')
MAX Correlation pair is ('MA_rets', 'SPY_rets')

	α_i	$\beta_{i,spy}$	r-squared	Treynor Ratio	Info Ratio
NVDA_rets	0.386779	1.76091	0.519615	0.395436	0.896409
$COST_rets$	0.194122	0.739105	0.421812	0.438433	0.880296
$TSLA_rets$	0.617293	1.48804	0.232536	0.590625	0.896041
$\mathrm{HD}_\mathrm{rets}$	0.0356425	1.02048	0.575282	0.210716	0.15951
XOM_rets	0.0542095	0.918562	0.336359	0.234804	0.164868
MA_rets	0.122974	1.22922	0.646828	0.275831	0.531277

• Nividia earns 38.67% return in excess of the market. Its beta coefficient is large. If the market declines by 1%, then the expected return for Nividia on that particular day is -1.76%.

	μ_i	σ_i	Sharpe	Min	Max
SPY_rets	0.175789	0.254838	0.689805	-0.109424	0.0906033
$NVDA_rets$	0.696328	0.622533	1.11854	-0.187559	0.171564
$COST_rets$	0.324048	0.290009	1.11737	-0.124513	0.0995945

	μ_i	σ_i	Sharpe	Min	Max
TSLA_rets	0.878873	0.786383	1.11761	-0.210628	0.198949
$\mathrm{HD}_\mathrm{rets}$	0.215032	0.34287	0.627152	-0.197938	0.137508
XOM_rets	0.215682	0.403619	0.534371	-0.122248	0.126868
MA_rets	0.339056	0.389492	0.870509	-0.127255	0.166109

	Max Drawdown	Peak	Bottom	Recover	Duration (to Recover)
SPY_rets	-0.336999	2020-02-19 00:00:00	2020-03-23 00:00:00	2020-08-10 00:00:00	173 days 00:00:00
NVDA_rets	-0.663352	2021-11-29 00:00:00	2022-10-14 00:00:00	NaT	NaT
COST_rets	-0.314042	2022-04-07 00:00:00	2022-05-20 00:00:00	NaT	NaT
${\bf TSLA_rets}$	-0.736322	2021-11-04 00:00:00	2023-01-03 00:00:00	NaT	NaT
HD_rets	-0.379718	2020-02-20 00:00:00	2020-03-20 00:00:00	2020-05-18 00:00:00	88 days 00:00:00
XOM_rets	-0.609936	2018-09-24 00:00:00	2020-03-23 00:00:00	2022-01-11 00:00:00	1205 days 00:00:00
MA_rets	-0.409972	2020-02-19 00:00:00	2020-03-23 00:00:00	2020-08-24 00:00:00	187 days 00:00:00

[]: portfolio_cmds.tailMetrics(returns=ret_df)

[]:		Skewness	Kurtosis	VaR (0.05)	CVaR (0.05) I	Max Drawdown	\
	SPY_rets	-0.519693	10.498791	-0.020501	-0.032694	-0.336999	
	${\tt NVDA_rets}$	-0.166157	3.124234	-0.049924	-0.072944	-0.663352	
	COST_rets	-0.183400	8.512073	-0.021769	-0.034541	-0.314042	
	TSLA_rets	0.179972	3.376619	-0.063206	-0.090557	-0.736322	
	HD_rets	-0.994406	17.117933	-0.025269	-0.042548	-0.379718	
	XOM_rets	0.043817	4.859421	-0.031473	-0.047577	-0.609936	
	MA_rets	0.328850	7.805150	-0.031655	-0.046673	-0.409972	
		Peak	Bottom	Recover	Duration (to Re	ecover)	
	SPY_rets	2020-02-19	2020-03-23	2020-08-10	1	73 days	
	${\tt NVDA_rets}$	2021-11-29	2022-10-14	NaT		NaT	
	COCT+-						
	COSI_rets	2022-04-07	2022-05-20	NaT		NaT	
	_	2022-04-07 2021-11-04				NaT NaT	
	TSLA_rets		2023-01-03	NaT	8		
	TSLA_rets HD_rets	2021-11-04	2023-01-03 2020-03-20	NaT 2020-05-18		NaT	

	tangency weights
SPY_rets	-9.91899
$NVDA_rets$	1.50003
$COST_rets$	3.78646
$TSLA_rets$	0.911277
HD_rets	0.603612
XOM_rets	1.62024
MA_rets	2.49736

```
[]: tick = ['SPY', 'TWLO','PTLO']
  rt_df = pd.DataFrame(data =None)
  st_time = '2015-01-01'
  for asset in tick:
    object = Price_DF(asset = asset,start_date = st_time)
        temp_df = object.
        -ret_df(log_normal=lognormal,to_monthly=to_monthly,drop_price_col=drop_price_col)
        rt_df = pd.concat([rt_df,temp_df],axis=1)
[]: ((1+rt_df).cumprod()).plot(title = f"Growth of $1 dollar since {st_time}")
```

[]: <AxesSubplot:title={'center':'Growth of \$1 dollar since 2015-01-01'},
 xlabel='date'>

[]: portfolio_cmds.display_correlation(rt_df)

MIN Correlation pair is ('SPY_rets', 'TWLO_rets')
MAX Correlation pair is ('PTLO_rets', 'SPY_rets')

	alpha	SPY_rets	r-squared	Treynor Ratio	Info Ratio
TWLO_rets PTLO_rets	0.12446 0.0646066		0.187564 0.189894	0.200,02	0.178135 0.0882409

[]: portfolio_cmds.tailMetrics(returns=rt_df)

[]: Skewness Kurtosis VaR (0.05) CVaR (0.05) Max Drawdown \ -0.017729 SPY_rets -0.540731 -0.336999 12.337513 -0.028631 TWLO_rets 0.668329 13.885420 -0.060529 -0.084487 -0.903628 PTLO_rets 0.976350 5.948271 -0.066596 -0.083948 -0.723718

 Peak
 Bottom
 Recover Duration (to Recover)

 SPY_rets
 2020-02-19
 2020-03-23
 2020-08-10
 173 days

 TWLO_rets
 2021-02-18
 2022-11-04
 NaT
 NaT

PTLO_rets 2021-11-17 2022-06-16

 ${\tt NaT}$

 ${\tt NaT}$

	Mean	Vol	Sharpe	Min	Max
SPY_rets	0.173884	0.222537	0.78137	-0.109424	0.0906033
$TWLO_rets$	0.409755	0.775152	0.528613	-0.346083	0.39616
PTLO_rets	0.0348397	0.81346	0.0428291	-0.129571	0.286254

	tangency weights
SPY_rets	1.97935
$TWLO_rets$	-1.41956
PTLO_rets	0.440208

Max Drawdown	Peak	Bottom	Recover	Duration (to Recover)
SPY_rets -0.336999	2020-02-19 00:00:00	2020-03-23 00:00:00	2020-08-10 00:00:00	173 days 00:00:00
TWLO_rets -0.903628	2021-02-18 00:00:00	2022-11-04 00:00:00	NaT	NaT
PTLO_rets -0.723718	2021-11-17 00:00:00	2022-06-16 00:00:00	NaT	NaT