ANSWER KEY

- **Q.1** (a) $X(f) = 4\operatorname{sinc}(f)\cos(\pi f)$
 - (b) 8 J
 - (c) 0.5 Hz
- **Q.2** (a) X(f) = sinc(2f + 0.5) + sinc(2f 0.5)
 - (b) 1 J
 - (c) Power signal with average power 4 W
- **Q.3** (a) Zero: s = 1 Poles: $s_1 = -2$ and $s_2 = -0.2$
 - (b) Yes (Why?)
 - (c) No (Why?)
 - (d) $\lim_{s\to\infty} \tilde{H}(s) \to -\frac{4}{s}$, which is an inverting integrator of gain 4.

High-frequency asymptotic slope of Bode magnitude plot = -20 dB/decade.

High-frequency asymptotic value of Bode phase plot = 90° .

Q.4 (a) 12 Hz

Not identical to X(f).

(c) 15 Hz

(b) $y_{ss}(t) = 5\sin(t + 30^\circ)$

(c) $\tilde{H}_1(s) = \frac{2s}{1-s^2}$

(d)

Magnitude (dB) → Frequency (rad/s) \rightarrow

 $\tilde{H}_2(s)$ stabilizes $\tilde{H}_1(s)$ by reflecting its unstable pole from the right-half to the left-half s-plane.

10¹

Q.6 (a)
$$S_d(f) = 2\text{rect}(f+50) + 2\text{rect}(f-50) + \text{tri}(\frac{f+100}{4}) + \text{tri}(\frac{f-100}{4})$$

(b) $B_1 = 0.5 \text{ Hz}$, $B_2 = 4 \text{ Hz}$, $f_1 = 50 \text{ Hz}$ and $f_2 = 100 \text{ Hz}$

