Deep Hallucination Classification

- Documentație -

Dacă mai multe versiuni ale unui model prezintă aceleași caracteristici ca și o versiune anterioară, atunci caracteristicile respective vor fi precizate doar în cadrul acelei versiuni anterioare

Modelul CNN

La baza sa se află funcționalități din librăriile Tensorflow și Keras

Versiunea I (acuratețe: ~0.51 - 0.54):

Imaginile au fost transformate în imagini alb-negru.

A fost realizată normalizarea imaginilor.

Pe tot parcursul modelului, cu excepția ultimului strat, funcția de activare folosită este "relu". Modelul este alcătuit din 3 straturi convoluționale (numărul de filtre ale straturilor convoluționale, de la primul strat până la ultimul: 32, 64, 64), iar pentru fiecare dintre aceste straturi se realizează operația de pooling. Apoi, datele (colecții multi-dimensionale) sunt convertite în colecții 1-dimensionale, prin intermediul unei funcții de aplatizare (Flatten), și sunt introduse printr-un strat cu conexiuni complete (fully connected layer, implementat prin funcția Dense). În cele din urmă, datele sunt trecute printr-un strat de ieșire (output layer, implementat prin funcția Dense), pentru care este folosită funcția de activare "softmax".

Pentru straturile convoluționale, mărimea kernel-ului a fost setată la 3, iar căptușeala (padding) a primit valoarea "same" și stride-urile au primit valoarea (1, 1) (pentru ca input-ul straturilor convoluționale sa aibă aceeași dimensiune ca și output-ul lor).

În cadrul compilării modelului, a fost utilizat algoritmul de optimizare Adam, alături de funcția de pierdere SparseCategoricalCrossentropy.

Pentru a antrena modelul, au fost folosite 10 epoci.

Matricea de confuzie pentru o clasificare cu acuratețea 0.537:

CP CA	0	1	2	3	4	5	6
0	151	21	13	8	8	7	8
1	27	76	10	32	18	11	27
2	9	9	98	10	10	4	2
3	5	11	15	88	10	2	19
4	6	6	8	7	105	4	7
5	8	23	12	34	17	39	12
6	14	12	8	48	14	7	73

Versiunea II (acuratețe: ~0.59 - 0.62):

Imaginile au fost păstrate în format color (RGB).

A fost adăugat încă un strat convoluțional, și modificat numărul de filtre ale straturilor (numărul de filtre ale straturilor convoluționale, de la primul strat până la ultimul: 32, 32, 64, 128).

A fost eliminată operația de pooling dintre primul și al doilea strat convoluțional, pentru a nu se elimina prea multe dintre trăsăturile imaginilor.

Pentru a evita problema de overfitting, au fost realizate următoarele:

- s-a renunțat la 30% din neuronii care trec din stratul cu conexiuni complete în stratul de output, prin funcția Dropout;
- s-au augmentat datele de antrenare, prin modificarea aleatoare a caracteristicilor lor: shiftare la stânga/dreapta și sus/jos cu 10%, schimbarea luminozității cu 0% 100%, efectuarea zoom-ului între 0% 30%, și inversarea pe orizontală.

Matricea de confuzie pentru o clasificare cu acuratețea 0.615:

($CA \rightarrow Clasa \ Actuală ; CP \rightarrow Clasa \ Prezisă)$

CP CA	0	1	2	3	4	5	6
0	149	17	6	6	10	16	12
1	20	101	14	16	5	25	20
2	5	5	112	7	8	5	0
3	5	17	13	84	8	6	17
4	5	2	8	2	112	6	8
5	3	33	8	13	10	68	10
6	21	12	5	22	6	14	96

Versiunea III (acuratețe: ~0.60 - 0.63):

A fost modificat numărul de filtre ale straturilor convoluționale (numărul de filtre, de la primul strat până la ultimul: 32, 64, 128, 256).

Pentru a preveni overfitting-ul, s-a renunțat la mai mulți neuroni la trecerea dintre straturi (prin funcția Dropout): 10% între stratul 2 și stratul 3, 20% între stratul 3 și stratul 4, 30% între stratul 4 și stratul cu conexiuni complete.

Pentru ca imaginile sa păstreze niște caracteristici cât mai uniforme, s-a realizat normalizarea acestora între oricare două straturi, prin funcția BatchNormalization.

A fost inițializată matricea de ponderi a kernel-ului cu valoarea "random_normal", pentru a se genera tensori prin intermediul unei distribuții normale.

A fost crescut numărul de epoci realizate de către model la 50.

Matricea de confuzie pentru o clasificare cu acuratețea 0.631:

CP CA	0	1	2	3	4	5	6
0	159	18	7	7	10	9	6
1	23	100	16	6	6	26	24
2	5	4	116	5	4	7	1
3	2	14	10	86	7	10	21
4	4	5	4	2	118	6	4
5	7	43	11	7	7	60	10
6	15	14	5	21	4	15	102

Versiunea IV (acuratețe: ~0.62 - 0.66):

Au fost adăugate încă două straturi convoluționale, și a fost modificat numărul de filtre ale straturilor convoluționale (numărul de filtre, de la primul strat până la ultimul: 32, 32, 32, 64, 64, 128).

S-a realizat operația de pooling între straturile: 4 și 5, 5 și 6, 6 și stratul cu conexiuni complete; eliminându-se operațiile de pooling din versiunile anterioare.

S-a renunțat la și mai mulți neuroni la trecerea dintre straturi (prin funcția Dropout): 30% între stratul 4 și stratul 5, 30% între stratul 5 și stratul 6, 30% între stratul 6 și stratul cu conexiuni complete; și au fost excluse renunțările la neuroni precizate în versiunea anterioară.

S-a realizat normalizarea imaginilor și între straturile noi adăugate (prin BatchNormalization).

A fost scăzut numărul de epoci la 20.

Matricea de confuzie pentru o clasificare cu acuratețea 0.649:

($CA \rightarrow Clasa \ Actuală ; CP \rightarrow Clasa \ Prezisă)$

CP CA	0	1	2	3	4	5	6
0	135	32	13	8	9	15	4
1	6	122	12	12	3	34	12
2	3	2	112	10	6	7	2
3	1	14	12	93	6	13	11
4	2	3	7	4	119	5	3
5	1	32	10	7	5	83	7
6	10	14	6	26	4	18	98

Modelul Random Forest + Grid Search CV (acuratețe: ~0.43)

Imaginile au fost transformate în imagini alb-negru.

A fost realizată normalizarea imaginilor.

Pentru a configura modelul Random Forest, a fost utilizată funcția RandomForestClassifier, cu un factor de randomizare ridicat, egal cu 8 (random_state = 8).

Pentru a configura modelul Grid Search, a fost folosit modelul Random Forest deja configurat, alături de o listă de parametrii, care specifică numărul arborilor din pădure ('n_estimators': [16, 32, 64, 128, 256]) și caracteristicile funcției care măsoara calitatea ramificării arborilor ('criterion': ["gini", "entropy"]).

Matricea de confuzie pentru o clasificare cu acuratețea 0.439:

CP CA	0	1	2	3	4	5	6
0	120	22	8	9	25	20	12
1	25	64	14	26	28	15	29
2	1	8	81	12	30	5	5
3	3	23	16	59	20	7	22
4	6	7	5	15	89	5	16
5	11	23	13	23	16	39	20
6	15	23	9	24	24	18	63

Modelul K-NN pentru regresie (acuratețe: ~0.26)

Imaginile au fost transformate în imagini alb-negru.

A fost realizată normalizarea imaginilor.

Pentru a genera și configura modelul, a fost utilizată doar funcția KNeighborsRegressor, căreia ia fost transmisă o singură valoare, anume numărul de vecini implicați în model (2 vecini).

Matricea de confuzie pentru o clasificare cu acuratețea 0.267:

CP CA	0	1	2	3	4	5	6
0	109	20	36	30	15	6	0
1	22	25	63	45	27	12	7
2	3	17	89	21	11	0	1
3	0	19	53	37	30	6	5
4	3	9	48	49	27	7	0
5	7	18	47	36	24	11	2
6	11	8	47	36	40	18	16

Modelul SVM (acuratețe: ~0.39)

Imaginile au fost transformate în imagini alb-negru.

A fost realizată normalizarea imaginilor.

Pentru a genera și configura modelul, a fost utilizată doar funcția SVC, care primește puterea de regularizare a modelului (C = 25), cât și tipul de kernel care va fi folosit (kernel = "linear").

Matricea de confuzie pentru o clasificare cu acuratețea 0.393:

CP CA	0	1	2	3	4	5	6
0	112	20	14	11	13	27	19
1	25	61	33	21	13	31	17
2	5	9	84	14	10	11	9
3	2	18	22	61	13	18	16
4	6	5	23	9	78	9	13
5	14	26	18	16	16	25	30
6	21	25	27	34	12	17	40

Sasu Alexandru-Cristian Grupa 242