PS2

Sam Olson

Problem 1

Suppose $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

$$\mu^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 and $\Sigma = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix}$

Further, define a 3×3 matrix A and a 2×3 matrix B as follows

$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

a)

Determine the distribution of $u = \mathbf{1}_3^T \mathbf{y}$.

Mean of u:

$$E[u] = \mathbf{1}_3^T \boldsymbol{\mu} = [1, 1, 1] \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 2 + 3 = 6$$

Variance of u:

$$Var(u) = \mathbf{1}_{3}^{T} \mathbf{\Sigma} \mathbf{1}_{3} = \begin{bmatrix} 1, 1, 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1, 1, 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = 2 + 4 + 3 = 9$$

Since u is a linear combination of normally distributed variables, it follows a normal distribution with mean 6 and variance 9, i.e. the distribution of u as defined is:

$$u \sim \mathcal{N}(6,9)$$

b)

Determine the distribution of $\mathbf{v} = \mathbf{A}\mathbf{y}$.

As defined, we start by substituting the givens, specifically using $\mathbf{v} = \mathbf{A}\mathbf{y}$:

$$\mathbf{v} \sim \mathcal{N} \left(\begin{bmatrix} 9 \\ -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 13 & 3 & -1 \\ 3 & 5 & -2 \\ -1 & -2 & 6 \end{bmatrix} \right)$$

Mean of \mathbf{v} :

$$E[\mathbf{v}] = \mathbf{A}\boldsymbol{\mu} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \\ -1 \end{bmatrix}$$

Covariance of \mathbf{v} :

$$Cov(\mathbf{v}) = \mathbf{A} \mathbf{\Sigma} \mathbf{A}^T$$

Taking the first part of this expression and evaluating $A\Sigma$:

$$\mathbf{A}\mathbf{\Sigma} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 7 & 3 \\ 3 & 0 & -4 \\ -2 & 1 & -2 \end{bmatrix}$$

Then, we take that matrix to get $\mathbf{A}\Sigma\mathbf{A}^{T}$:

$$\mathbf{A}\mathbf{\Sigma}\mathbf{A}^T = \begin{bmatrix} 5 & 7 & 3 \\ 3 & 0 & -4 \\ -2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 27 & 2 & 4 \\ 2 & 7 & 4 \\ 4 & 4 & 3 \end{bmatrix}$$

Since \mathbf{v} is a linear transformation of \mathbf{y} , it follows a multivariate normal distribution with the above mean and covariance, i.e. we may describe the distribution of \mathbf{V} as:

$$\mathbf{v} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$$

 $\mathbf{c})$

Determine the distribution of \mathbf{w} , where $\mathbf{w}^T = [\mathbf{A}\mathbf{y} \ \mathbf{B}\mathbf{y}]$.

We start by using the given information, specifically:

$$\mathbf{w} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{A} \boldsymbol{\mu} \\ \mathbf{B} \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^T & \mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^T \\ \mathbf{B} \boldsymbol{\Sigma} \mathbf{A}^T & \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^T \end{bmatrix} \right)$$

We just need to calculate some unknown quantities, the mean and covariance matrices of \mathbf{w} . To that end, we note:

The mean of **w** can be taken from part (b), $\mathbb{E}[\mathbf{A}\mathbf{y}] = \begin{bmatrix} 9 \\ -2 \\ -1 \end{bmatrix}$.

We then compute $\mathbb{E}[\mathbf{B}\mathbf{y}] = \mathbf{B}\boldsymbol{\mu}$:

$$\mathbf{B}\boldsymbol{\mu} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

Taken together this gives us:

$$E[\mathbf{w}] = \begin{bmatrix} \mathbf{A}\boldsymbol{\mu} \\ \mathbf{B}\boldsymbol{\mu} \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$$

We then calculate the covariance of **w**:

Again, taking information from part (b), we already know $Cov(\mathbf{A}\mathbf{y}) = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T = \begin{bmatrix} 27 & 2 & 4 \\ 2 & 7 & 4 \\ 4 & 4 & 3 \end{bmatrix}$.

Compute $Cov(\mathbf{By}) = \mathbf{B}\Sigma\mathbf{B}^T$:

$$\mathbf{B}\mathbf{\Sigma} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 3 \\ -1 & 1 & 0 \end{bmatrix}$$

Using this, we then have:

$$\mathbf{B}\mathbf{\Sigma}\mathbf{B}^T = \begin{bmatrix} 2 & 4 & 3 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 2 \\ 2 & 2 \end{bmatrix}$$

We then compute $Cov(\mathbf{Ay}, \mathbf{By}) = \mathbf{A} \mathbf{\Sigma} \mathbf{B}^T$:

```
A <- matrix(c(5, 7, 3,

3, 0, -4,

2, 1, -2),

nrow = 3, byrow = TRUE)

B <- matrix(c(1, 1, 1,

-1, 1, 0),

nrow = 2, byrow = TRUE)

ASigmaBT <- A %*% t(B)
ASigmaBT
```

$$\mathbf{A}\boldsymbol{\Sigma}\mathbf{B}^T = \begin{bmatrix} 5 & 7 & 3 \\ 3 & 0 & -4 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 15 & 2 \\ -1 & -3 \\ 1 & -1 \end{bmatrix}$$

The full covariance matrix is then given by:

$$Cov(\mathbf{w}) = \begin{bmatrix} \mathbf{A} \mathbf{\Sigma} \mathbf{A}^T & \mathbf{A} \mathbf{\Sigma} \mathbf{B}^T \\ \mathbf{B} \mathbf{\Sigma} \mathbf{A}^T & \mathbf{B} \mathbf{\Sigma} \mathbf{B}^T \end{bmatrix} = \begin{bmatrix} 27 & 2 & 4 & 15 & 2 \\ 2 & 7 & 4 & -1 & -3 \\ 4 & 4 & 3 & 1 & -1 \\ 15 & -1 & 1 & 9 & 2 \\ 2 & -3 & -1 & 2 & 2 \end{bmatrix}$$

Since \mathbf{w} is a joint linear transformation of \mathbf{y} , it follows a multivariate normal distribution with the derived mean and covariance.

Overall, this gives us the distribution of w:

$$\mathbf{w} \sim \mathcal{N} \left(\begin{bmatrix} 9 \\ -2 \\ -1 \\ 6 \\ 1 \end{bmatrix}, \begin{bmatrix} 27 & 2 & 4 & 15 & 2 \\ 2 & 7 & 4 & -1 & -3 \\ 4 & 4 & 3 & 1 & -1 \\ 15 & -1 & 1 & 9 & 2 \\ 2 & -3 & -1 & 2 & 2 \end{bmatrix} \right)$$

d)

Which of the distributions obtained in (a)–(c) are singular distributions? Recall that a distribution is singular if Σ is non-negative definite. Note that there are many algebraic properties of Σ that can be used to show that Σ is singular/nonsingular.

[1] 9

det_b

[1] 291

det_c

[1] -1.068891e-29

```
eigen_a <- eigen(Sigma_a)$values
eigen_b <- eigen(Sigma_b)$values
eigen_c <- eigen(Sigma_c)$values
eigen_a == 0</pre>
```

[1] FALSE

eigen_a > 0

[1] TRUE

eigen_b == 0

[1] FALSE FALSE FALSE

eigen_b > 0

[1] TRUE TRUE TRUE

eigen_c == 0

[1] FALSE FALSE FALSE FALSE

eigen_c > 0

[1] TRUE TRUE TRUE FALSE FALSE

Distribution in a):

 $u \sim \mathcal{N}(6,9)$.

The covariance matrix is a positive scalar, meaning it is positive definite, which implies non-negative definite. Thus, u is singular.

Given the distribution in b):

$$\mathbf{v} \sim \mathcal{N} \left(\begin{bmatrix} 9 \\ -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 13 & 3 & -1 \\ 3 & 5 & -2 \\ -1 & -2 & 6 \end{bmatrix} \right)$$

The covariance matrix is positive definite as all eigenvalues are strictly positive (and non-zero), implying non-negative definite. Thus, v is singular.

Given the distribution in c):

$$\mathbf{w} \sim \mathcal{N} \left(\begin{bmatrix} 9 \\ -2 \\ -1 \\ 6 \\ 1 \end{bmatrix}, \begin{bmatrix} 27 & 2 & 4 & 15 & 2 \\ 2 & 7 & 4 & -1 & -3 \\ 4 & 4 & 3 & 1 & -1 \\ 15 & -1 & 1 & 9 & 2 \\ 2 & -3 & -1 & 2 & 2 \end{bmatrix} \right)$$

The determinant is zero, meaning Σ is singular. Additionally, eigenvalues of the covariance matrix contain negative values, so the matrix is *not* non-negative definite, making w non-singular.

Summary:

All the distributions a) and b) are singular distributions, and c) is non-singular.

Problem 2

Suppose X and W are any two matrices with n rows for which $\mathcal{C}(\mathbf{X}) = \mathcal{C}(\mathbf{W})$. Show that $\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{W}}$.

I'm unsure which of these is preferred, and generally apprehensive about how solid the first approach is, so I have both a Linear Algebra proof and also a more analytic algebraic proof. To that end:

Approach 1

The projection matrix P_X projects any vector onto the column space C(X).

Similarly, $\mathbf{P}_{\mathbf{W}}$ projects any vector onto the column space $\mathcal{C}(\mathbf{W})$.

 $C(\mathbf{X}) = C(\mathbf{W})$, meaning the column spaces of \mathbf{X} and \mathbf{W} are identical.

Since $C(\mathbf{X}) = C(\mathbf{W})$, the projection matrices $\mathbf{P}_{\mathbf{X}}$ and $\mathbf{P}_{\mathbf{W}}$ must project onto the same subspace.

By the uniqueness property of projection matrices, $P_X = P_W$.

Approach 2 (The "better" way?)

The projection matrix P_X is given by:

$$\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

Similarly, $\mathbf{P}_{\mathbf{W}}$ is:

$$\mathbf{P}_{\mathbf{W}} = \mathbf{W}(\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T$$

Since $C(\mathbf{X}) = C(\mathbf{W})$, there exists a nonsingular matrix \mathbf{C} such that $\mathbf{W} = \mathbf{X}\mathbf{C}$.

So, given this, we may substitute W = XC into P_W :

$$\mathbf{P}_{\mathbf{W}} = \mathbf{X}\mathbf{C} \left((\mathbf{X}\mathbf{C})^T (\mathbf{X}\mathbf{C}) \right)^{-1} (\mathbf{X}\mathbf{C})^T$$

Simplifying gives us:

$$\mathbf{P}_{\mathbf{W}} = \mathbf{X}\mathbf{C} \left(\mathbf{C}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{C}\right)^{-1}\mathbf{C}^{T}\mathbf{X}^{T}$$

Using the property of inverses, $(\mathbf{ABC})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$ when $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are invertible (which we assume under the premise), we then have:

$$\mathbf{P}_{\mathbf{W}} = \mathbf{X}\mathbf{C}\mathbf{C}^{-1}(\mathbf{X}^T\mathbf{X})^{-1}(\mathbf{C}^T)^{-1}\mathbf{C}^T\mathbf{X}^T$$

Since $\mathbf{CC}^{-1} = \mathbf{I}$ and $\mathbf{C}^T(\mathbf{C}^T)^{-1} = \mathbf{I}$, it follows:

$$\mathbf{P}_{\mathbf{W}} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \mathbf{P}_{\mathbf{X}}$$

Conclusion

Regardless of approach, but with preference to [Approach 2], suffice to say $C(\mathbf{X}) = C(\mathbf{W})$, then $\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{W}}$.

Problem 3

Consider a competition among 5 table tennis players labeled 1 through 5. For $1 \le i < j \le 5$, define y_{ij} to be the score for player i minus the score for player j when player i plays a game against player j. Suppose for $1 \le i < j \le 5$,

$$y_{ij} = \beta_i - \beta_j + \epsilon_{ij},$$

where β_1, \ldots, β_5 are unknown parameters and the ϵ_{ij} terms are random errors with mean 0. Suppose four games will be played that will allow us to observe y_{12}, y_{34}, y_{25} , and y_{15} . Let

$$\mathbf{y} = \begin{bmatrix} y_{12} \\ y_{34} \\ y_{25} \\ y_{15} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix}, \quad \text{and} \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{12} \\ \epsilon_{34} \\ \epsilon_{25} \\ \epsilon_{15} \end{bmatrix}$$

a)

Define a model matrix **X** so that model (1) may be written as $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.

For our the observed games y_{12}, y_{34}, y_{25} , and y_{15} , we model for each game with the form:

$$y_{ij} = \beta_i - \beta_j + \epsilon_{ij}$$

Each game is denoted y_{ij} , the corresponding row of **X** will have a 1 in the *i*-th column (for β_i), a -1 in the *j*-th column (for β_j), and 0 otherwise.

The model matrix **X** will have 4 rows (one for each game) and 5 columns (one for each player's parameter $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5$). The rows of **X** are constructed as:

Observation 1, for y_{12} :

 β_1 has a coefficient of 1, β_2 has a coefficient of -1, β_3 , β_4 , β_5 have coefficients of 0.

The row in the matrix **X** is [1, -1, 0, 0, 0].

Observation 2, for y_{34} :

 β_3 has a coefficient of 1, β_4 has a coefficient of -1, $\beta_1, \beta_2, \beta_5$ have coefficients of 0.

The row in the matrix **X** is [0, 0, 1, -1, 0].

Observation 3, for y_{25} :

 β_2 has a coefficient of 1, β_5 has a coefficient of -1, β_1 , β_3 , β_4 have coefficients of 0.

The row in the matrix **X** is [0, 1, 0, 0, -1].

Observation 4, for y_{15} :

 β_1 has a coefficient of 1, β_5 has a coefficient of -1, β_2 , β_3 , β_4 have coefficients of 0.

The row in the matrix **X** is [1, 0, 0, 0, -1].

Assembling the rows defined above, we have our overall model matrix X as:

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

The model can now be written as:

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where:

$$\mathbf{y} = \begin{bmatrix} y_{12} \\ y_{34} \\ y_{25} \\ y_{15} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix}, \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{12} \\ \epsilon_{34} \\ \epsilon_{25} \\ \epsilon_{15} \end{bmatrix}$$

And the model matrix X is:

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

b)

Is $\beta_1 - \beta_2$ estimable? Prove that your answer is correct.

To determine whether $\beta_1 - \beta_2$ is estimable, we need to check if the vector $\mathbf{c} = [1, -1, 0, 0, 0]^{\top}$ lies in the row space of the model matrix \mathbf{X} . A linear function $\mathbf{c}^{\top}\boldsymbol{\beta}$ is estimable if and only if \mathbf{c} can be expressed as a linear combination of the rows of \mathbf{X} .

From part a), the model matrix X is:

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

The vector **c** corresponding to $\beta_1 - \beta_2$ is:

$$\mathbf{c} = [1, -1, 0, 0, 0]^{\top}$$

We need to determine if **c** can be written as a linear combination of the rows of **X**. That is, we need to find scalars a_1, a_2, a_3, a_4 such that:

$$a_1[1, -1, 0, 0, 0] + a_2[0, 0, 1, -1, 0] + a_3[0, 1, 0, 0, -1] + a_4[1, 0, 0, 0, -1] = [1, -1, 0, 0, 0]$$

This gives the system of equations:

1.
$$a_1 + a_4 = 1$$
 (for β_1),

2.
$$-a_1 + a_3 = -1$$
 (for β_2),

- 3. $a_2 = 0$ (for β_3),
- 4. $-a_2 = 0$ (for β_4),
- 5. $-a_3 a_4 = 0$ (for β_5).

From equation 1: $a_1 + a_4 = 1$. From equation 2: $-a_1 + a_3 = -1$. From equation 3: $a_2 = 0$. From equation 4: $-a_2 = 0$, which is consistent with equation 3. From equation 5: $-a_3 - a_4 = 0$, which implies $a_3 = -a_4$.

Solving the system of equations, let $a_3 = -a_4$ into equation 2, giving:

$$-a_1 + (-a_4) = -1 \rightarrow -a_1 - a_4 = -1 \rightarrow a_1 + a_4 = 1$$

This is consistent with equation 1. Thus, the system has infinitely many solutions.

For example: Let $a_4 = 0$. Then $a_1 = 1$ and $a_3 = 0$. Let $a_4 = 1$. Then $a_1 = 0$ and $a_3 = -1$.

In either case, c can be expressed as a linear combination of the rows of X.

Since **c** lies in the row space of **X**, and the linear function $\beta_1 - \beta_2$ is estimable.

c)

Is $\beta_1 - \beta_3$ estimable? Prove that your answer is correct.

To determine whether $\beta_1 - \beta_3$ is estimable, we need to check if there exists a linear combination of the observed data $y_{12}, y_{34}, y_{25}, y_{15}$ that can express $\beta_1 - \beta_3$.

The model is given as it has previously, i.e., by:

$$y = X\beta + \epsilon$$

And with the design matrix X:

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

By definition, a linear combination $\mathbf{c}^T \boldsymbol{\beta}$ is estimable if there exists a vector \mathbf{a} such that:

$$\mathbf{c}^T = \mathbf{a}^T \mathbf{X}$$

For $\beta_1 - \beta_3$, the vector **c** is:

$$\mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$

Such that we must identify/find a vector **a** such that:

$$\mathbf{c}^T = \mathbf{a}^T \mathbf{X}$$

To that end, we end up solving the system of equations given by:

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

This gives us the following equations:

```
1. a_1 + a_4 = 1 (for \beta_1),

2. -a_1 + a_3 = 0 (for \beta_2),

3. a_2 = -1 (for \beta_3),

4. -a_2 = 0 (for \beta_4),

5. -a_3 - a_4 = 0 (for \beta_5).
```

From equation 3, $a_2 = -1$. From equation 4, $-a_2 = 0$, which implies $a_2 = 0$. This is a contradiction, meaning there is no solution for **a** that satisfies all the equations, meaning that the linear combination $\beta_1 - \beta_3$ is not estimable based on the observed data $y_{12}, y_{34}, y_{25}, y_{15}$.

d)

Find a generalized inverse of $\mathbf{X}^{\top}\mathbf{X}$.

Start by noting again the design matrix X defined previously:

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Note, the transpose of X is:

$$\mathbf{X}^{\top} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$

Computing $\mathbf{X}^{\top}\mathbf{X}$, we have:

```
[,1] [,2] [,3] [,4] [,5]
##
## [1,]
                -1
                       0
                            0
            1
  [2,]
            0
                                  0
## [3,]
            0
                       0
                                 -1
                            0
                 1
   [4,]
```

XT

```
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 1
## [2,] -1 0 1 0
## [3,] 0 1 0 0
## [4,] 0 -1 0 0
## [5,] 0 0 -1 -1
```

XTX

$$\mathbf{X}^{\top}\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ -1 & -1 & 0 & 0 & 2 \end{bmatrix}$$

Using the above, then note, by definition, a generalized inverse G satisfies the relation:

$$\mathbf{X}^{\top}\mathbf{X}\mathbf{G}\mathbf{X}^{\top}\mathbf{X} = \mathbf{X}^{\top}\mathbf{X}$$

And

$$\mathbf{G} = (\mathbf{X}^{\top}\mathbf{X})^{-}$$

Note the method used in the previous problemset for calculating a generalized inverse (might be above, maybe below, knitr can be weird):

Using the above method gives us:

Finding a Generalized Inverse of a Matrix A.

- Find any $n \times n$ nonsingular submatrix of \boldsymbol{A} where $n = \text{rank}(\boldsymbol{A})$. Call this matrix \boldsymbol{W} .
- Invert and transpose W, i.e., compute $(W^{-1})^{\top}$.
- Replace each element of W in A with the corresponding element of $(W^{-1})^{\top}$.
- \bullet Replace all other elements in \boldsymbol{A} with zeros.
- Transpose the resulting matrix to obtain G, a generalized inverse for A.

Figure 1: CocoMelon

```
XTX <- XT %*% X
# Did a whole roundabout calculation, but this proved easiest
library(MASS)
qr(X) $rank
## [1] 3
G <- ginv(XTX)
round(G, digits = 2)
                    [,3] [,4] [,5]
##
         [,1]
              [,2]
## [1,] 0.22 -0.11
                    0.00 0.00 -0.11
## [2,] -0.11
               0.22
                     0.00 0.00 -0.11
## [3,] 0.00 0.00 0.25 -0.25 0.00
## [4,] 0.00 0.00 -0.25
                          0.25 0.00
## [5,] -0.11 -0.11 0.00 0.00 0.22
# Verify generalized inverse property
XTX
        [,1] [,2] [,3] [,4] [,5]
##
               -1
                              -1
## [1,]
           2
                     0
## [2,]
          -1
                2
                     0
                          0
                              -1
## [3,]
           0
                0
                     1
                         -1
                               0
## [4,]
                    -1
                               0
## [5,]
                               2
               -1
          -1
mult <- XTX %*% G %*% XTX
round(mult, digits = 2)
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
               -1
           2
                     0
                              -1
## [2,]
          -1
                2
                     0
                          0
                              -1
## [3,]
                               0
          0
                0
                     1
                         -1
## [4,]
           0
                    -1
                               2
## [5,]
          -1
               -1
                     0
```

all.equal(mult, XTX)

[1] TRUE

As a result of the above, one (of many) possible generalized inverse(s) of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is:

$$\mathbf{G} = \begin{bmatrix} \frac{2}{9} & -\frac{1}{9} & 0 & 0 & -\frac{1}{9} \\ -\frac{1}{9} & \frac{2}{9} & 0 & 0 & -\frac{1}{9} \\ 0 & 0 & \frac{1}{4} & -\frac{1}{4} & 0 \\ 0 & 0 & -\frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{9} & -\frac{1}{9} & 0 & 0 & \frac{2}{9} \end{bmatrix}$$

Note: I did use the manual algorithm method to derive a generalized inverse. I just included the R for ease of reading and to easily validate that it is in fact a generalized inverse.

Another possible generalized inverse is:

For parts e), f), and g), I will use the latter matrix, primarily because it's much easier to use when multiplying/doing other matrix operations on it.

e)

Find a solution to the normal equations in this particular problem involving table tennis players.

The normal equations are given by:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

From part d), we have:

$$\mathbf{X}^{\top}\mathbf{X} = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 \\ 0 & 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 & 2 \end{bmatrix}$$

Now, we compute:

$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} y_{12} \\ y_{34} \\ y_{25} \\ y_{15} \end{bmatrix} = \begin{bmatrix} y_{12} + y_{15} \\ -y_{12} + y_{25} \\ y_{34} \\ -y_{34} \\ -y_{25} - y_{15} \end{bmatrix}$$

Using the generalized inverse from part d), we have::

Computing β then:

$$\boldsymbol{\beta} = \mathbf{G} \mathbf{X}^{\top} \mathbf{y}$$

Computing:

Thus, the solution to the normal equations is:

$$\boldsymbol{\beta} = \mathbf{G}\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} \frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55} \\ -\frac{1}{3}y_{12} + \frac{2}{3}y_{25} + \frac{1}{3}y_{55} \\ y_{34} \\ 0 \\ 0 \end{bmatrix}$$

As defined above.

f)

Find the Ordinary Least Squares (OLS) estimator of $\beta_1 - \beta_5$.

From the results of part e), we note:

$$\beta_1 = \frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55}, \quad \beta_5 = 0$$

Thus, we compute:

$$\beta_1 - \beta_5 = \left(\frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55}\right) - (0) = \frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55}$$

So the OLS estimator for $\beta_1 - \beta_5$ as defined is:

$$\theta_{OLS} = \hat{\beta}_1 - \hat{\beta}_5 = \frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55}$$

 $\mathbf{g})$

Give a linear unbiased estimator of $\beta_1 - \beta_5$ that is not the OLS estimator.

Note our results from part e):

$$\beta_1 = \frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55}, \quad \beta_5 = 0 \rightarrow \theta_{OLS} = \hat{\beta}_1 - \hat{\beta}_5 = \frac{1}{3}y_{12} + \frac{1}{3}y_{25} + \frac{2}{3}y_{55}$$

To construct/give an alternative and unbiased estimator that is not OLS, consider the expression:

$$\hat{\theta} = ay_{12} + by_{25} + cy_{55}$$

Where:

$$E[\hat{\theta}] = \beta_1 - \beta_5$$

This motivates potential values of a, b, and c to consider.

One combination to consider, one different from what would give us the results from part f), is: $a = \frac{1}{4}, b = \frac{1}{4}, c = \frac{1}{2}$. Using these values in the above expression gives us:

$$\hat{\theta} = \frac{1}{4}y_{12} + \frac{1}{4}y_{25} + \frac{1}{2}y_{55}$$

Which is an alternative non-OLS estimator of $\beta_1 - \beta_5$.

A Quick Proof of Unbiasedness

Let's make sure that alternative estimator is unbiased.

Given:

$$E[y_{12}] = \beta_1 - \beta_2 + \epsilon_{12}, \quad E[y_{25}] = \beta_2 - \beta_5 + \epsilon_{25}, \quad E[y_{55}] = \beta_1 - \beta_5 + \epsilon_{55}$$

and assuming $E[\epsilon_{12}] = E[\epsilon_{25}] = E[\epsilon_{55}] = 0$,

Let us consider the expectation of the estimator:

$$E[\hat{\theta}] = E\left[\frac{1}{4}y_{12} + \frac{1}{4}y_{25} + \frac{1}{2}y_{55}\right] = \frac{1}{4}E[y_{12}] + \frac{1}{4}E[y_{25}] + \frac{1}{2}E[y_{55}] = \frac{1}{4}(\beta_1 - \beta_2) + \frac{1}{4}(\beta_2 - \beta_5) + \frac{1}{2}(\beta_1 - \beta_5)$$

After some more simplifying, we have:

$$E[\hat{\theta}] = \frac{1}{4}\beta_1 - \frac{1}{4}\beta_2 + \frac{1}{4}\beta_2 - \frac{1}{4}\beta_5 + \frac{1}{2}\beta_1 - \frac{1}{2}\beta_5 = \left(\frac{1}{4}\beta_1 + \frac{1}{2}\beta_1\right) - \left(\frac{1}{4}\beta_5 + \frac{1}{2}\beta_5\right) = \beta_1 - \beta_5$$

So the new non-OLS estimator we created is unbiased, as:

$$E[\hat{\theta}] = \beta_1 - \beta_5$$

Problem 4

Consider a linear model for which

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix}, \quad \text{and} \quad \mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$

a)

Obtain the normal equations for this model and solve them.

By the definition of normal equations:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}$$

And given the design matrix as specified above,

 \mathbf{X}^{\top} is:

We then compute $\mathbf{X}^T\mathbf{X}$:

This is a good matrix for us! Good in the sense that the diagonal elements are all 8 and 0 elsewhere (on the off diagonal).

We then note the given response vector and compute $\mathbf{X}^T\mathbf{y}$:

This results in:

$$\mathbf{X}^T \mathbf{y} = \begin{bmatrix} y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8 \\ y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8 \\ y_1 + y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8 \\ -y_1 - y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 \end{bmatrix}$$

Returning then to the normal equations:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}$$

We use the above calculations to derive:

$$\begin{bmatrix} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = \begin{bmatrix} y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8 \\ y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8 \\ y_1 + y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8 \\ -y_1 - y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 \end{bmatrix}$$

Taking advantage of only diagonal elements being non-zero, we thus have:

$$\beta_1 = \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8}{8}$$

$$\beta_2 = \frac{y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8}$$

$$\beta_3 = \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8}{8}$$

$$\beta_4 = \frac{-y_1 - y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8}{8}$$

The least squares estimates of β are:

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = \begin{bmatrix} \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8}{y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8} \\ \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8}{8} \\ \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8}{4} \end{bmatrix}$$

b)

Are all functions $\mathbf{c}^{\top}\boldsymbol{\beta}$ estimable? Justify your answer.

By definition, a linear function $\mathbf{c}^{\top}\boldsymbol{\beta}$ is estimable if and only if \mathbf{c} lies in the row space of the design matrix \mathbf{X} . Hand-in-hand (equally true) is: a linear function $\mathbf{c}^{\top}\boldsymbol{\beta}$ is estimable implies that \mathbf{c} can be expressed as a linear combination of the rows of \mathbf{X} .

We are given the design matrix, X:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$

By definition, the rank of \mathbf{X} is the number of linearly independent rows (or columns). In the above design matrix, we have 4 unique rows and 4 unique columns, making the rank of \mathbf{X} is 4. This means that \mathbf{X} has full column rank.

This is a desired property to have (helpful for our purposes)! The implications of \mathbf{X} having full column rank, is that: The normal equations $\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^T\mathbf{y}$ have a unique solution for $\boldsymbol{\beta}$, the row space of \mathbf{X} spans the entire \mathbb{R}^4 space (since \mathbf{X} has 4 linearly independent columns), and finally that any vector $\mathbf{c} \in \mathbb{R}^4$ can be expressed as a linear combination of the rows of \mathbf{X} .

Since **X** has full column rank, the row space of **X** spans \mathbb{R}^4 . It then follows that any vector $\mathbf{c} \in \mathbb{R}^4$ can be expressed as a linear combination of the rows of **X**. Therefore, all linear functions $\mathbf{c}^{\top}\boldsymbol{\beta}$ are estimable, i.e. under our assumption we ensure the definition of estimability.

 $\mathbf{c})$

Obtain the least squares estimator of $\beta_1 + \beta_2 + \beta_3 + \beta_4$.

From part a), the least squares estimates of β are:

$$\beta_1 = \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8}{8}$$

$$\beta_2 = \frac{y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8}$$

$$\beta_3 = \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 + y_7 + y_8}{8}$$

$$\beta_4 = \frac{-y_1 - y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8}{8}$$

Then we note that the least squares estimator of a linear combination of the parameters is the same linear combination of the least squares estimates of the individual parameters. So for our purposes, we evaluate $\beta_1 + \beta_2 + \beta_3 + \beta_4$ using these estimates.

Adding the four estimates together:

$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 + y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_4 - y_5 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8} + \frac{y_1 + y_2 - y_3 - y_6 - y_7 - y_8}{8}$$

Combining the terms:

$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = \frac{(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 - y_7 - y_8) + (y_1 + y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8) + (y_1 + y_2 - y_3 - y_4 + y_5 - y_6 + y_7 + y_8) + (y_1 + y_2 - y_3 - y_4 + y_5 - y_6 - y_7 - y_8)}{8}$$

Sorry, I think this runs off the page, and I couldn't manage text wrapping in an R Markdown pdf file. Simplifying terms:

$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = \frac{2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8)}{8} = \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8}{4}$$

So the least squares estimator of $\beta_1+\beta_2+\beta_3+\beta_4$ is:

$$\beta_1 + \widehat{\beta_2 + \beta_3} + \beta_4 = \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8}{4}$$

Problem 5

Suppose the Gauss-Markov model with normal errors (GMMNE) holds.

The *t*-Test $(H_0: \mathbf{c}^{\top}\boldsymbol{\beta} = d)$ for estimable $\mathbf{c}^{\top}\boldsymbol{\beta}$

The test statistic

$$t \equiv \frac{\boldsymbol{c}^{\top}\widehat{\boldsymbol{\beta}} - d}{\sqrt{\widehat{\mathrm{Var}}(\boldsymbol{c}^{\top}\widehat{\boldsymbol{\beta}})}} = \frac{\boldsymbol{c}^{\top}\widehat{\boldsymbol{\beta}} - d}{\sqrt{\widehat{\sigma}^2 \boldsymbol{c}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-}\boldsymbol{c}}}.$$

t has a non-central t-distribution with non-centrality parameter

$$\frac{\boldsymbol{c}^{\top}\boldsymbol{\beta} - d}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}$$

and df= n-r.

Copyright ©2020 Dan Nettleton (Iowa State University) with modifications and updates by Ulrike Genschel 29 of

Figure 2: CocoMelon

a)

Suppose $\mathbf{C}\boldsymbol{\beta}$ is estimable. Derive the distribution of $\mathbf{C}\boldsymbol{\hat{\beta}}$, the OLSE of $\mathbf{C}\boldsymbol{\beta}$.

Given the Gauss-Markov model with normal errors, i.e., assuming:

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

It follows that $C\beta$ is estimable, which by the definition of estimability means C = AX for some matrix A.

The OLS equation of β is given by the expression:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top}\mathbf{y}$$

where $(\mathbf{X}^{\top}\mathbf{X})^{-}$ is a generalized inverse.

Since $\hat{\boldsymbol{\beta}}$ is a linear transformation of \mathbf{y} , by the normality assumption:

$$\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

We then know:

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-}\right)$$

Because $\mathbf{C}\boldsymbol{\beta}$ is estimable, $\mathbf{C}\hat{\boldsymbol{\beta}}$ is also a linear transformation of $\hat{\boldsymbol{\beta}}$.

Consider then a linear combination with \mathbf{C} , where $\mathbf{C} = \mathbf{A}\mathbf{X}$:

For the mean calculation, we have:

$$AP_XX\beta = AX\beta = C\beta$$

For the variance calculation, we have:

$$\boldsymbol{AP_{X}\sigma^{2}I(AP_{X})}^{\top} = \sigma^{2}\boldsymbol{AP_{X}P_{X}^{\top}A}^{\top} = \sigma^{2}\boldsymbol{AP_{X}A}^{\top} = \sigma^{2}\boldsymbol{AX(X^{\top}X)^{\top}X}^{\top}\boldsymbol{A}^{\top} = \sigma^{2}\boldsymbol{C(X^{\top}X)^{\top}C}^{\top}$$

Furthermore, knowing the distribution of $\hat{\beta}$ is normal, we not only know that $C\hat{\beta}$ is also normally distribution, but has parameters given from the above calculations, namely:

$$\mathbf{C}\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\mathbf{C}\boldsymbol{\beta}, \sigma^2 \mathbf{C} (\mathbf{X}^{\top} \mathbf{X})^{-} \mathbf{C}^{\top}\right)$$

b)

Now suppose $\mathbf{C}\boldsymbol{\beta}$ is NOT estimable. Provide a fully simplified expression for $\mathrm{Var}\left(\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{\top}\mathbf{X}^{\top}\mathbf{y}\right)$.

To determine the variance of $C(X^{T}X)^{-1}X^{T}y$, via our model assumptions, we still assume that:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

However, since my assumption $\mathbf{C}\boldsymbol{\beta}$ is not estimable, there does not exist a matrix \mathbf{A} such that $\mathbf{C} = \mathbf{A}\mathbf{X}$.

However, let us consider the variance of the linear transformation. For any linear transformation, regardless of our assumption of estimability, we may write:

$$\mathrm{Var}(\mathbf{A}\mathbf{y}) = \mathbf{A}\mathrm{Var}(\mathbf{y})\mathbf{A}^{\top}$$

Let:

$$\mathbf{A} = \mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top}$$

As $Var(\mathbf{y}) = \sigma^2 \mathbf{I}$, it then follows:

$$\operatorname{Var}\left(\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}\right) = (\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top})\sigma^{2}\mathbf{I}(\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top})^{\top} = \sigma^{2}\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{C}^{\top}$$

And we cannot simplify any further and hence we cannot the distribution of $\mathbf{C}\hat{\boldsymbol{\beta}}$, the OLSE of $\mathbf{C}\boldsymbol{\beta}$.

This is all assuming generalized inverse, not inverse in particular.

 $\mathbf{c})$

Now suppose $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ is testable and that \mathbf{C} has only one row and \mathbf{d} has only one element so that they may be written as \mathbf{c}^{\top} and \mathbf{d} , respectively. Prove the result on slide 29 of slide set 2 of Key Linear Model Results.

Given the hypothesis $H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = d$ is testable, this implies that $\mathbf{c}^{\top} \boldsymbol{\beta}$ is estimable (linear transformation combination of estimable functions is itself estimable).

Under the assumption of GMMNE:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

The test statistic for testing $H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = \mathbf{d}$ is given by:

$$t = \frac{\mathbf{c}^{\top} \hat{\boldsymbol{\beta}} - d}{\sqrt{\widehat{\operatorname{Var}}(\mathbf{c}^{\top} \hat{\boldsymbol{\beta}})}}$$

We'll return to the above shortly, but before then, note that under H_0 , the test statistic t defined above follows a t-distribution with n-r degrees of freedom, where r is the rank of \mathbf{X} .

Furthermore, from part a), we know:

$$\mathbf{c}^{\top} \hat{\boldsymbol{\beta}} \sim \mathcal{N} \left(\mathbf{c}^{\top} \boldsymbol{\beta}, \sigma^2 \mathbf{c}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-} \mathbf{c} \right)$$

Thus,

$$\frac{\boldsymbol{c}^{\top} \hat{\boldsymbol{\beta}} - \boldsymbol{d}}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}} \sim \mathcal{N} \left(\frac{\boldsymbol{c}^{\top} \boldsymbol{\beta} - \boldsymbol{d}}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}, 1 \right)$$

The estimated variance is given by:

$$t = \frac{\mathbf{c}^{\top} \hat{\boldsymbol{\beta}} - d}{\sqrt{\widehat{\operatorname{Var}}(\mathbf{c}^{\top} \hat{\boldsymbol{\beta}})}} \to \widehat{\operatorname{Var}}(\mathbf{c}^{\top} \hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 \mathbf{c}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-} \mathbf{c}$$

where $\hat{\sigma}^2$ is the unbiased estimator of σ^2 .

The above assumed the type of distribution for the test statistic t. To explicitly show it is in fact t-distributed, Define:

$$u = \frac{\boldsymbol{c}^{\top} \hat{\boldsymbol{\beta}} - d}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}$$

$$\delta = \frac{\boldsymbol{c}^{\top} \boldsymbol{\beta} - \boldsymbol{d}}{\sqrt{\sigma^2 \boldsymbol{c}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-} \boldsymbol{c}}}$$

Noting prior results of the proof thus far, $u \sim \mathcal{N}(\delta, 1)$ and δ is our non-centrality parameter (Euclidean distance .

Additionally, note the difference between u and δ is $\hat{\beta}$ and β respectively.

Then:

$$\frac{\hat{\sigma}^2}{\sigma^2} \sim \frac{\chi_{n-r}^2}{n-r} \to w = \frac{(n-r)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-r}^2$$

 $c^{\mathsf{T}}\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ are independent, so u and w are independent (interpretation being the mean and variance, parameters of interest, are independent of one another).

Referring back to our initial test statistic:

$$t = \frac{u}{\sqrt{w/(n-r)}} = \frac{\mathbf{c}^{\mathsf{T}} \hat{\boldsymbol{\beta}} - d}{\sqrt{\hat{\sigma}^2 \mathbf{c}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{\mathsf{T}} \mathbf{c}}} \sim t_{n-r}(\delta)$$

Under H_0 , $\delta = 0$, we can simplify the expression as:

$$t = \frac{\mathbf{c}^{\top} \hat{\boldsymbol{\beta}} - d}{\sqrt{\hat{\sigma}^2 \mathbf{c}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-} \mathbf{c}}}$$

I am assuming from here on that the proof is complete. Otherwise I would be replicating information from the Slides.

Problem 6

Provide an example that shows that a generalized inverse of a symmetric matrix need not be symmetric. (Comment: For this reason, we cannot assume that $(\mathbf{X}^{\top}\mathbf{X})^{-} = [(\mathbf{X}^{\top}\mathbf{X})^{-}]^{\top}$.)

A generalized inverse A^- of a matrix A satisfies the condition:

$$AA^-A = A$$

However, \mathbf{A}^- need not be symmetric even if \mathbf{A} is symmetric.

We start with a Symmetric Matrix A:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Then, we have a Generalized Inverse A^- (that is not A!). We need to ensure the generalized inverse property holds, $AA^-A = A$.

One possible generalized inverse we may have is:

$$\mathbf{A}^{-} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

First, we check that the necessary property of a generalized inverse holds:

$$\mathbf{A}\mathbf{A}^{-} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Followed by AA^-A :

$$\mathbf{A}\mathbf{A}^{-}\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{A}$$

So our chosen A^- satisfies the generalized inverse condition.

Let us then consider whether A^- is symmetric

The transpose of \mathbf{A}^- is:

$$(\mathbf{A}^{-})^{\top} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Notably,

$$\mathbf{A}^{-} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = (\mathbf{A}^{-})^{\top}$$

So A^- is not symmetric, even though A is symmetric!

This counterexample shows that a generalized inverse of a symmetric matrix need not be symmetric. Ding dang!