

Bangladesh University of Engineering & Technology

Course No: CSE 318

Course Title: Artificial Intelligence

Offline-3:Solving Max-Cut Problem by GRASP

Submitted By:

Name: Fatema Tuj Johora

Department: CSE

Section: A1

Roll: 1905022

Date of submission:08.18.2023

Title: Solving Max-Cut problem using Local Search

Abstract: Max-cut problem is a NP Hard problem; so no known polynomial-algorithm can give the optimized result. It involves partitioning the vertices of an undirected graph into two disjoint sets such that the number of edges between two sets(known as the "cuts"), is maximized.

In our assignment, we solved the Max-cut problem using different algorithms; full randomized approach, semi-greedy, full greedy and GRASP(Greedy Randomized Adaptive Search Procedure) and compared them.

1. Introduction:

As no polynomial-algorithm can give the optimized result for this problem, we implemented different algorithms and compared them to check which one gives the better result.

In this assignment we implemented four different types of algorithms including GRASP which use local search to improve its result.

2. Algorithm:

In our algorithm we maintain an RCL(Restricted Candidate List) from which we select an edge and add its vertices to two partitions. Our optimized result varies with this RCL. The less the size of RCL, the more optimized the result will be. And the RCL is selected by a

threshold value, which is determined by alpha. So, alpha controls the randomness.

• Simple - Randomized:

This algorithm randomly partitioned vertices into two disjoint sets and then evaluated the cut value. This is basically a semi-greedy approach with alpha =0. So, it will consider all the vertices into RCL, which will give the least optimized result.

• Semi-Greedy:

In this algo, a vertex is chosen randomly and in a greedy way more vertices are added to the partition to maximize the cut value. It keeps alternating vertices between two sets until no further improvement is possible. In this algo, to maintain the randomness, we use an "alpha", by varying this randomness is controlled and so is RCL. Randomness decreases with the value of alpha. The more value of alpha is, the less size will be of RCL and the more optimized the result will be.

• Full-Greedy:

It is a semi-greedy algo with alpha=1. If alpha becomes one, then the most optimized result will be found; which is a greedy approach. So, it always keeps adding the max-weighted edge to the partition.

GRASP:

In a greedy approach, it starts from the same vertex.

But this algorithm is a multistart algorithm, so if we run this algorithm multiple times, it will start from multiple vertices and we will get more optimized result. So, in our algorithm, we set an iteration count, in each iteration it will apply semi-greedy and then local search on that result to make it more optimized.

• Local Search:

In GRASP, we used local search in each iteration to get the local maxima value. In local search, we keep alternating vertices of max-weighted edges between two partitions until we get stuck at local maxima.

3. Analysis:

a. Part One:

Problem			Constructive A	Algorithm	Local S	Search	Grasp		
FileName	Vertex	Edge	Simple Randomized	Simple Greedy	Simple Local Search		Grasp-1		
					No of Iterations	Best Value	No of Iterations	Best Value	
G1	800	19176	11036	11289	64	11461	50	11461	
G2	800	19176	11036	11248	74	11449	50	11449	
G3	800	19176	11074	11257	66	11473	50	11473	
G4	800	19176	11128	11326	72	11453	50	11453	
G5	800	19176	11009	11275	75	11476	50	11476	

G6 800 19176 1520 1778 80 2003 50 200 G7 800 19176 1417 1652 70 1829 50 182 G8 800 19176 1340 1629 101 1858 50 185 G9 800 19176 1396 1686 86 1861 50 186 G10 800 19176 1401 1572 109 1806 50 180 G11 800 1600 410 478 6 490 50 490 G12 800 1600 402 472 11 484 50 484 G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964	9 8 1 6 0
G8 800 19176 1340 1629 101 1858 50 185 G9 800 19176 1396 1686 86 1861 50 186 G10 800 19176 1401 1572 109 1806 50 180 G11 800 1600 410 478 6 490 50 490 G12 800 1600 402 472 11 484 50 484 G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	8 1 6 0
G9 800 19176 1396 1686 86 1861 50 186 G10 800 19176 1401 1572 109 1806 50 180 G11 800 1600 410 478 6 490 50 490 G12 800 1600 402 472 11 484 50 484 G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	1 6)
G10 800 19176 1401 1572 109 1806 50 180 G11 800 1600 410 478 6 490 50 490 G12 800 1600 402 472 11 484 50 484 G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	6) 4
G11 800 1600 410 478 6 490 50 490 G12 800 1600 402 472 11 484 50 484 G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	1
G12 800 1600 402 472 11 484 50 484 G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	4
G13 800 1600 400 506 8 508 50 508 G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	
G14 800 4694 2876 2948 20 2984 50 298 G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	······
G15 800 4661 2854 2924 20 2964 50 296 G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	,
G16 800 4672 2856 2912 18 2978 50 297 G17 800 4667 2851 2919 26 2973 50 297	4
G17 800 4667 2851 2919 26 2973 50 297	4
	8
G18 800 4694 732 863 49 901 50 90°	3
	l
G19 800 4661 627 787 44 796 50 796	;
G20 800 4672 666 816 50 863 50 863	3
G21 800 4667 635 786 41 836 50 836	3
G22 2000 19990 12372 12781 97 13001 50 1300)1
G23 2000 19990 12314 12855 116 12990 50 1299) 0
G24 2000 19990 12402 12804 94 13019 50 130 ⁴	19
G25 2000 19990 12359 12844 115 13014 50 130 ⁻⁷	14
G26 2000 19990 12421 12790 112 13005 50 1300)5
G27 2000 19990 2295 2832 177 2983 50 298	3
G28 2000 19990 2311 2689 174 2932 50 293	2
G29 2000 19990 2358 2784 146 3022 50 302	

G30	2000	19990	2452	2715	153	3017	50	3017
G31	2000	19990	2280	2692	125	2922	50	2922
G32	2000	4000	1022	1182	17	1194	50	1194
G33	2000	4000	996	1180	21	1192	50	1192
G34	2000	4000	966	1182	22	1184	50	1184
G35	2000	11778	7193	7340	48	7479	50	7479
G36	2000	11766	7163	7374	53	7471	50	7471
G37	2000	11785	7193	7404	63	7473	50	7473
G38	2000	11779	7180	7383	37	7482	50	7482
G39	2000	11778	1667	1995	105	2140	50	2140
G40	2000	11766	1596	2016	112	2108	50	2108
G41	2000	11785	1620	1995	137	2123	50	2123
G42	2000	11779	1751	2047	157	2191	50	2191
G43	1000	9990	6150	6401	50	6508	50	6508
G44	1000	9990	6189	6352	63	6511	50	6511
G45	1000	9990	6172	6392	44	6499	50	6499
G46	1000	9990	6242	6403	43	6506	50	6506
G47	1000	9990	6194	6393	47	6515	50	6515
G48	3000	6000	4972	6000	0	6000	50	6000
G49	3000	6000	4910	6000	0	6000	50	6000
G50	3000	6000	4850	5880	0	5880	50	5880
G51	1000	5909	3597	3694	35	3753	50	3753
G52	1000	5916	3604	3699	35	3751	50	3751
G53	1000	5914	3602	3723	22	3751	50	3751

G54	1000	5916	3596	3698	32	3753	50	3753

In this table, we compare between fully randomized ,fully greedy and GRASP results. We also compared the required iteration number to reach the optimized result and total iteration number. In this assignment, I used 50 as an iteration number. If iteration number is increased, then more optimized result will be found. Now, from this table, it can be said that

- Greedy algorithm gives better results than randomized ones.
- GRASP (which uses Local search) gives better than full greedy algorithm.
- Iteration count for local search may be less, equal or more than total iteration count.

b. Part 2:

Problem			Constructive Algorithm										
FileNa me	Vertex	Edge		Semi-Greedy Approach									
			α=0.1	α=0.2	α=0.3	α=0.4	α=0.5	α=0.6	α=0.7	α=0.8	α=0.9		
G1	800	19176	11000	11061	10990	11070	11172	11149	11249	11255	11245		
G2	800	19176	10989	10997	11034	11082	11116	11167	11192	11226	11344		
G3	800	19176	10996	11054	11028	11093	11189	11175	11166	11278	11227		
G4	800	19176	11040	10974	11082	11084	11206	11229	11263	11246	11313		
G5	800	19176	11040	11084	11031	11197	11181	11238	11262	11288	11234		
G6	800	19176	1541	1555	1568	1579	1632	1663	1758	1786	1770		
G7	800	19176	1323	1371	1362	1379	1403	1560	1549	1548	1674		
G8	800	19176	1405	1405	1394	1363	1391	1473	1577	1557	1611		
G9	800	19176	1398	1427	1442	1454	1437	1523	1569	1689	1669		
G10	800	19176	1376	1380	1408	1365	1411	1578	1474	1535	1630		
G11	800	1600	412	404	420	424	420	442	482	482	488		
G12	800	1600	394	400	412	416	424	436	452	464	468		
G13	800	1600	396	436	420	406	430	460	482	510	516		
G14	800	4694	2924	2917	2942	2934	2945	2931	2960	2933	2956		
G15	800	4661	2901	2902	2911	2910	2916	2919	2920	2918	2927		
G16	800	4672	2895	2904	2934	2933	2923	2913	2938	2907	2921		
G17	800	4667	2897	2918	2892	2904	2917	2914	2932	2928	2923		
G18	800	4694	713	745	682	692	726	755	810	804	837		
G19	800	4661	628	577	592	647	637	674	713	692	712		
G20	800	4672	669	641	656	655	673	761	755	753	773		
G21	800	4667	627	635	641	658	675	696	714	769	781		
G22	2000	19990	12334	12394	12588	12529	12647	12719	12725	12754	12723		
G23	2000	19990	12328	12472	12515	12614	12636	12734	12707	12773	12821		
G24	2000	19990	12415	12468	12463	12579	12685	12658	12751	12802	12785		

G25	2000	19990	12374	12390	12614	12641	12670	12799	12753	12842	12784
G26	2000	19990	12340	12399	12458	12689	12663	12837	12824	12732	12810
G27	2000	19990	2273	2318	2312	2281	2272	2586	2671	2667	2683
G28	2000	19990	2291	2338	2276	2256	2476	2587	2591	2632	2687
G29	2000	19990	2316	2373	2453	2446	2497	2547	2666	2666	2786
G30	2000	19990	2375	2382	2421	2371	2520	2627	2630	2750	2753
G31	2000	19990	2286	2375	2310	2337	2363	2448	2587	2721	2713
G32	2000	4000	996	978	1030	1052	976	1098	1168	1162	1196
G33	2000	4000	994	1002	954	990	990	1106	1160	1164	1208
G34	2000	4000	1006	1000	978	952	1012	1100	1148	1146	1180
G35	2000	11778	7309	7318	7339	7353	7390	7369	7377	7384	7393
G36	2000	11766	7301	7331	7361	7334	7347	7364	7397	7357	7349
G37	2000	11785	7319	7350	7372	7365	7352	7394	7370	7366	7362
G38	2000	11779	7293	7313	7375	7333	7359	7398	7383	7400	7389
G39	2000	11778	1690	1638	1651	1678	1700	1833	1952	1987	2019
G40	2000	11766	1662	1652	1648	1653	1786	1887	1929	1935	1964
G41	2000	11785	1629	1625	1607	1733	1753	1897	1877	1996	1993
G42	2000	11779	1804	1666	1721	1713	1829	1907	2067	2063	2113
G43	1000	9990	6174	6251	6268	6265	6279	6312	6326	6413	6373
G44	1000	9990	6198	6194	6229	6308	6322	6307	6359	6356	6390
G45	1000	9990	6155	6219	6249	6295	6331	6365	6364	6352	6400
G46	1000	9990	6176	6221	6210	6306	6316	6352	6403	6376	6356
G47	1000	9990	6129	6162	6245	6294	6302	6352	6364	6405	6418
G48	3000	6000	6000	6000	6000	6000	6000	6000	6000	6000	6000
G49	3000	6000	6000	6000	6000	6000	6000	6000	6000	6000	6000
G50	3000	6000	5824	5804	5840	5866	5856	5880	5880	5880	5880
G51	1000	5909	3659	3677	3683	3680	3707	3653	3704	3691	3717
G52	1000	5916	3675	3670	3700	3702	3703	3690	3700	3712	3706
G53	1000	5914	3678	3664	3656	3703	3696	3701	3693	3705	3712
G54	1000	5916	3684	3672	3684	3674	3691	3684	3705	3692	3689

In this table, we showed semi-greedy results with all possible alpha.

We know, if alpha increases, randomness decreases. And so, result will be more optimized. But as randomness is included, this is not always guaranteed.

4. Discussion:

In semi-greedy approach, as randomness is always included, it does not guarantee that more alpha will always give more optimized result. So, here random result is found. In GRASP, we set alpha=0.6 and then applied GRASP. From our observation, we noticed GRASP gives the most optimized result, as it every time starts from different vertices and continues iterations, and whenever it gets the better result, it updates its

value. Here, alpha=0.6 is used in GRASP. If we increase alphas value, then more optimized result will be found. So, yes GRASP is a better algorithm to solve Max-cut Problem.

5. Conclusion:

In this assignment, we implemented randomized algo, semi-greedy, greedy and GRASP and compared their results. By comparing, it is found that GRASP always gives the most optimized result, though less than the upper bound. As Max-cut is an NP-Hard problem, so no polynomial algorithm can provide the most optimized result which is equal to the upper bound. So, the solution by GRASP algorithm is acceptable.