



Steht uns das Wasser bis zum Hals? Oder doch nur bis zu den Knien? -Modellierung und Visualisierung der Wasserstandsveränderungen am Neusiedler See mit SAS Viya





Gerhard Svolba, Data Scientist SAS, DACH Region

Data Scientist @SAS - <u>Medium</u> <u>LinkedIn</u> <u>Github</u> <u>SAS-Books</u> <u>SAS Articles</u> Youtube <u>DataPreparation4DataScience</u> <u>Data Science Use Cases</u>



#### Überblick

- Den fachlichen Hintergrund verstehen! (Auch in Zeiten von Deep Learning, GPUs, und Container Deployments 

  )
- Feature Engineering (auch bei scheinbar einfachen statistischen Fragestellungen)
- Warum auch ein langjähriger (SAS) Programmierer ab und zu gerne zu visuellen und interaktiven Oberflächen greift
- Manchmal darf es auch eine (einfache) Regressionsanalyse sein
- Bereitstellung und Illustration der Ergebnisse



Simulations-Szenarien für den Wasserstand des Neusiedler... SAS Software D-A-CH

**SAS Communities Library** We're smarter together. Learn from this collection of

Artikel-

DataPreparation4DataScience Data Science Use Cases

#### Historischer Tiefststand am Neusiedler See





21. Mai 2020 / BURGENLAND 1 619

#### Neusiedler See trocknet zunehmend aus

Der mittlere Wasserstand liegt unter dem langjährigen Tiefstwert. Nun wird wieder über eine Wasserzufuhr diskutiert



29. Mai 2020 / NEUSIEDLER SEE T 333

#### Grüne und WWF gegen Wasserzufuhr in den Neusiedler See

Landtagsabgeordneter Spitzmüller spricht von einer Gefahr für ein sensibles Natursystem, der WWF gar eine ökologische Katastrophe



26. Mai 2020 / KLIMASTATUSBERICHT \$\square\$ 823

#### Wie die Klimakrise Österreich erfasst: Dürre, Hitze und Starkregen häufen sich

Hitzesommer und Rekordniederschläge sind längst keine Ausnahme mehr. Künftig werden lange und extreme Wetterperioden laut Klimaforschern zunehmen









#### Wie kommt das?

- 80% -90% des Wasserhaushalts wird durch Regenwasser gespeist
- Jänner bis Mai 2020 waren extrem trocken.
- Karl Maracek (Hydrologie Burgenland): Niederschlag im Winter fördert den Aufbau von Wasserreserven (nur geringe Verdunstung)







### Wie ist der Autor involviert?









## Analyse der hydrologischen Daten zum Neusiedler See im Rahmen meiner Lehrveranstaltung an der FH-Burgenland











### Überblick über die Vorgangsweise

### Laden der Daten von der Hydrologie Burgenland



### Verknüpfen, Aggregieren Plausbilitätsprüfung, Aufbereiten



#### Deskriptive Statistiken, Kausalitätsanalysen, Simulationen





### Wie wollen wir die Daten anordnen?

Wasser - Apetlon

Wasser - Illmitz

Temperatur - Illmitz

Wasser - Neusiedl (t)

Wasser – Neusiedl (t+1)

Niederschlag - Illmitz



### (LONG) Longitudinal, Transactional

Wasser - Apetlon

Wasser - Illmitz

Wasser - Neusiedl

Temperatur - Illmitz

Niederschlag - Illmitz





# Wie sieht unsere Datenstruktur (z.B für Korrelationsanalysen) aus? – WIDE Format

Wasser - Neusiedl

Wasser - Illmitz

Wasser - Apetlon

Temperatur - Illmitz

Niederschlag - Illmitz





#### Wie sieht unsere Datenstruktur aus?

| Mess-Stations Daten | Mess-Größen Daten | Wasser - Neusiedl      |
|---------------------|-------------------|------------------------|
| Mess-Stations Daten | Mess-Größen Daten | Wasser - Illmitz       |
| Mess-Stations Daten | Mess-Größen Daten | Wasser - Rust          |
| Mess-Stations Daten | Mess-Größen Daten | Temperatur - Illmitz   |
| Mess-Stations Daten | Mess-Größen Daten | Niederschlag - Illmitz |

Aggregations-Level?
15 min
Stündlich
Täglich
Monat



# Use a regression model to explain and quantify the relationshiop between different factors







#### Daily data in a WIDE format

Wasser - Neusiedl

Wasser - Illmitz

Wasser - Apetlon

Temperatur - Illmitz

Niederschlag - Illmitz

#### **Feature Engineering**

```
*** Temperature;
Temp GT30 = (TempMax > 30);
Temp GT25 = (TempMax > 25);
*** Days Since Last Rain;
retain DaysSinceLastRain 0;
if RainSum > 0 then DaysSinceLastRain = 0;
else DaysSinceLastRain + 1;
*** Water Shift between North/South, East/West;
WShift N A = Water N - Water A;
WShift B P = Water B - Water P;
WShift R P = Water R - Water P;
WShift B I = Water B - Water I;
```



#### Aggregate from daily to a monthly level

```
select intnx('month', date, 0, 'Begin') as YYMM format = yymmp7.,
       month as month,
       mean (WaterLevel) as WaterLevelMean format=8.2,
       sum(WaterLevel*(day(date)=1)) as WaterLevel lofMonth format =8.2,
       sum(RainSum) as RainSum format = 8.,
       sum(RainSum > 0) as Cnt RainDays,
       max(DaysSinceLastRain) as MaxDaysSinceLastRain,
                                                             Observe which
       mean (TempMean) as TempMean format = 8.1,
       sum (Temp GT30) as Cnt TmpGT30 ,
                                                             aggregation
       sum (Temp GT25) as Cnt TmpGT25,
                                                             statistic you
       max (WShift N A) as WShift N A format=8.2,
                                                             should use for
       max (WShift B P) as WShift B P format=8.2,
                                                             each feature!
       max (WShift R P) as WShift R P format=8.2,
       max (WShift B I) as WShift B I format=8.2
```

#### **Defining the Target Variable: Water\_Level\_Change**

Sounds simple:
 The change between the actual and the next month ☺



Or rather the value on the first day of the respective months?

Comparing the mean of the actual and the next month???



## What is the true water level of the lake at a certain point in time?

Our target variable is slightly biased by the water shift caused by the wind







#### Use SAS/STAT (or SAS Visual Statistics) to train the model

```
proc glmselect data=monthly abt month sort;
 model WaterLevelChange =
       WaterLevelMean RainSum Cnt Raindays
       MaxDaysSinceLastRain
       TempMean Cnt TmpGT30 Cnt TmpGT25
       WShift N A WShift B P WShift R P Shift B I
       /selection=backward;
 where month in (6,7,8,9) and year LE 2019;
 code file="&path.\Hydro WaterChange Mod1.0.sas";
run;
```



### Ways how to interact with the SAS Analytic Platform

| Graphical User Interface                                                                                 |                                                                                                                                                       | Programming/Coding                                                                                       |                                                                                     |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Visual Interface                                                                                         | Model Studio                                                                                                                                          | SAS                                                                                                      | OS Language                                                                         |  |
| Self-service analytical objects<br>with options<br>Easy integration with Model<br>Studio & Model Manager | Pipelines and Nodes, specific analytical data preprocessing, more options & flexibility, Open Source integration, Easy integration with Model Manager | Fully flexible Procs and actions/actionsets, Open Source integration Easy integration with Model Manager | Fully flexible, SAS Integration: Access to CAS Procs, actions and actionsets (SWAT) |  |





```
proc gradboost data=cas1.fc review
     earlystop(tolerance=0 stagnation=5)
     numBin=20 binmethod=BUCKET
     maxdepth=6
     maxbranch=2
     minleafsize=5
     assignmissing=USEINSEARCH minuseinsearch=1
     seed=12345
  partition rolevar=_partind_ (TRAIN='1' VALIDATE='0');
  autotune useparameters=CUSTOM tuningparameters=(
     lasso(LB=0 UB=10 INIT=0)
     learningrate(LB=0.01 UB=1 INIT=0.1)
     ntrees(LB=20 UB=150 INIT=100)
     ridge(LB=0 UB=10 INIT=0)
     samplingrate(LB=0.1 UB=1 INIT=0.5)
     vars_to_try(LB=1 UB=7 INIT=7)
     searchmethod=GA objective=KS maxtime=900
     maxevals=50 maxiters=5 popsize=10
     targetevent='1'
```





#### **Regression Results + Illustration**

| Parameter Estimates |    |            |                   |         |         |  |  |
|---------------------|----|------------|-------------------|---------|---------|--|--|
| Parameter           | DF | Estimate   | Standard<br>Error | t Value | Pr >  t |  |  |
| Intercept           | 1  | -58 153454 | 7.587593          | -7.66   | <.0001  |  |  |
| RainSum             | 1  | 1.096672   | 0.062758          | 17.47   | <.0001  |  |  |
| Cnt_TmpGT25         | 1  | -3.330063  | 0.338838          | -9.83   | <.0001  |  |  |

Average monthly water loss per summer month
Rain adds to the water level with a factor of ~ 1

Day >25 °C "costs" 3.3 mm of water level

#### Example:

July, with 12 days > 25°C 50 mm rain



## Using SAS Visual Analytics to interactively calculate prediction for different scenarios

Pre-Calculated Scenarios



Scenario calculated on-the-fly





## Pre-Calculate outcomes for all possible scenarios and filter according to the selected values





# Using SAS Visual Analytics to interactively calculate prediction for different scenarios





#### Rain (mm) per Month





Was wäre wenn, das Wetter im Sommerhalbjahr so ist, wie ...

- im extrem trockenen Jahr 2003,
- im niederschlagsreichen Jahr 2014,

- ...





# Interactive Display in SAS Visual Analytics: Selecting a bar on the left filters line chart on the right



#### Display Tipp: Use interpretable scales at your graph axes



#### Überblick

- Den fachlichen Hintergrund verstehen! (Auch in Zeiten von Deep Learning, GPUs, und Container Deployments 

  )
- Feature Engineering (auch bei scheinbar einfachen statistischen Fragestellungen)
- Warum auch ein langjähriger (SAS) Programmierer ab und zu gerne zu visuellen und interaktiven Oberflächen greift
- Manchmal darf es auch eine (einfache) Regressionsanalyse sein
- Bereitstellung und Illustration der Ergebnisse



Simulations-Szenarien für den Wasserstand des Neusiedler... SAS Software D-A-CH

**SAS Communities Library** We're smarter together. Learn from this collection of

Artikel-

DataPreparation4DataScience Data Science Use Cases

#### Zusammenfassung

- Den fachlichen Hintergrund verstehen!
   Für Feature Enginieerung, Modellbildung und Interpretation.
- Wer ist mein Auditorium? Wissenschafter, Data Scientists, Segler, ...
- Was ist die optimale Darstellungsart der Ergebnisse für diese Zielgruppe?
- SAS Visual Analytics unterstützt mich (> 25 Jahre SAS) in der Exploration der Daten und der Aufbereitung der Ergebnisse
- Und viele Fachanwender bei der kompletten Datenanalyse





Gerhard Svolba, Data Scientist @SAS mailto:sastools.by.gerhard@gmx.net



**Articles** and Blogs



**Webinars** 



Tipps &





Macros & **Downloads** 



