Prezime i ime	br. indeksa:
Prezime i ime	br. indeksa:

2. jun 2020. MATEMATIČKA ANALIZA - PREDISPITNE OBAVEZE (15 poena)

Osvojeni poeni: ____ ___

1. GRANIČNE VREDNOSTI (5 poena):

- a) [1 poen] Napisati definiciju adherentne tačke skupa A u metričkom prostoru $\mathbb R.$
- b) [1 poen] Definisati konvergentan niz u metričkom prostoru (\mathbb{R}, e) sa metrikom $e(x, y) = \frac{|y x|}{1 + |y x|}$.
- c) [1 poen] Ako je (X, \preceq) totalno uređen skup i $\{a_n\} \subset X$, kada kažemo da je niz $\{a_n\}$ ograničen sa gornje strane?
- d) [1 poen] Kada za niz $\{a_n\} \subset R$ kažemo da teži ∞ , kad $n \to \infty$?
- e) [1 poen] Da li se može odrediti vrednost konstante A tako da funkcija $f(x) = \begin{cases} 3\cos x + A &, x < 0 \\ x^2 + 1 &, x \ge 0 \end{cases}$ bude neprekidna? Obrazložiti odgovor.

2. FUNKCIJE JEDNE PROMENLJIVE (5 poena):

a) [1 poen] Izračunati po definiciji izvod funkcije f(x) = 5x + 3 u tački $x_0 \in \mathbb{R}$.

$$f'(x_0) =$$

b) [1 poen] Dati geometrijsku interpretaciju prvog izvoda funkcije.

c) [1 poen] Formulisati teoremu o prvom izvodu složene funkcije.

- d) [1 poen] Pokazati po definiciji da je funkcija f(x) = 5x diferencijabilna.
- e) [1 poen] Odrediti jednačine tangente i normale na krivu $y = \frac{3x x^2}{x 4}$ u tačkama $A(2, y_0)$ i $B(6, y_1)$.

3. FUNKCIJE VIŠE PROMENLJIVIH (5 poena):

a) [1 poen] Odrediti totalni diferencijal drugog reda funkcije $f(x,y,z)=x^3-9xy+y^3+9$ u tački A(3,3).

- b) [1 poen] Napisati izraz za totalni diferencijal prvog reda za funkciju f(x, y, z, u, w).
- c) [1 poen] Kada kažemo da funkcija $f:D\to\mathbb{R},\,D\subset\mathbb{R}^n,\,n\geq 2$ definisana na nekoj okolini $L(A,\varepsilon)$ tačke $A\in D$ ima lokalni maksimum u tački A?
- d) [1 poen] Ako je $u(x,y)=xf\left(\frac{y}{x}\right)$, gde je f(t) dva puta diferencijabilna funkcija, odrediti $\frac{\partial^2 u}{\partial y^2}$.
- e) [1 po
en] Odrediti tangentnu ravan i normalu površi $2^{\frac{x}{z}}+2^{\frac{y}{z}}=8$ u tački
 P(2,2,1).