CPSC 304 – Administrative notes October 10 & October 15, 2024

- Project:
 - October 15: <u>Milestone 2</u> due
 - Start thinking about Milestone 3
 - Sign up coming next week
- October 22: Midterm @ 6PM
 - Those who registered conflicts have been notified of the time for that exam. if you registered conflicts and can't make that time or did not register a conflict, please see the policy in the syllabus.

About equijoins and the number of columns returned...

- Some of the examples on the slides were inconsistent with the book
- I have fixed the "post" class slides to be correct, and will fix the "pre" class slides to be correct soon
- Since I confused you, I will not ask you any relational algebra questions where knowing how many columns are returned in a (non-natural) equi-join
 - Natural joins and cross products are fair game, though.

Now where were we...

- We'd been discussing relational algebra
- We'd covered a whole bunch of operators

Reminder: Relational Algebra (RA) all in one place

- Basic operations:
 - Selection (σ): Selects a subset of rows from relation.
 - <u>Projection</u> (π) : Deletes unwanted columns from relation.
 - Cross-product (x): Allows us to combine two relations.
 - Set-difference (-): Tuples in relation 1, but not in relation 2.
 - <u>Union</u> (\cup): Tuples in relation 1 and in relation 2.
 - Rename (ρ): Assigns a (another) name to a relation
- Additional, inessential but useful operations:
 - Intersection (\cap) , join (\bowtie) , division (/), assignment (\leftarrow)
- All operators take one or two relations as inputs and give a new relation as a result
- For the purposes of relational algebra, relations are sets
- Operations can be composed. (Algebra is "closed")

Remember this one?

 Find the names of all Movie Stars who were in any Movie

 $\pi_{\text{name}}(MovieStar \bowtie StarsIn)$

What if we wanted all Movies Stars who were in all movies?

Division

- Notation: r/s or $r \div s$
- Useful for expressing queries that include a notion of "for all" or "for every", e.g., Find movie stars who were in all movies.
- Let r and s be relations on schemas R and S respectively where
 - $r = (A_1, ..., A_m, B_1, ..., B_n)$
 - $s = (B_1, ..., B_n)$

Then r / s is a relation on schema

$$r/s = (A_1, ..., A_m)$$

defined as

$$r/s = \{ t \mid t \in \prod_{r-s}(r) \land \forall u \in s (tu \in r) \}$$

• i.e., A/B contains all x tuples (MovieStars) such that for <u>every</u> y tuple (movies) in B, there is an x,y tuple in A.

Examples of Division A/B

	1
Γ	7

sno	pno
s1	p1
s1	p2
s1	р3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

*B*1

pno	
p2	

A/B1

*B*2

B3

pno	
p1	
p2	
p4	

A/B2

sno
s1
s4

A/B3

sno	
s1	

Division Clicker Question Consider the relations

R	С	D	Е	S	A	В	Т	???
	1	2	1		1	2	•	2
	2	2	1		2	2		
	3	2	1		3	2		
					1	1		

Which of the following is a possible expression for creating T? R(C,D) means $\pi_{CD}(R)$

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. $Z(C) \leftarrow \pi_A S$ R(E,C)/Z
- D. All of the above
- E. None of the above

Division Clicker Question Consider the relations

R	С	D	Е	S	Α	В	Т	???
	1	2	1		1	2	•	2
	2	2	1		2	2		
	3	2	1		3	2		
					1	1		

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. $Z(C) \leftarrow \pi_A S$ R(E,C)/Z
- D. All of the above
- E. None of the above

nothing

right

No, 1

Division Clicker Question Answer A exposed

R

С	D	Е
1	2	1
2	2	1
3	2	1

S

Α	В	Т	???
1	2	•	2
2	2		
3	2		
1	1		

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. $Z(C) \leftarrow \pi_A S$ R(E,C)/Z
- D. All of the above
- E. None of the above

C	D
1	2
2	2
3	2

D	
1	
2	
3	

Result is empty!

Division Clicker Question Answer B exposed

R

С	D	E
1	2	1
2	2	1
3	2	1

S

Α	В
1	2
2	2
3	2
1	1

???

• •

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. $Z(C) \leftarrow \pi_A S$ R(E,C)/Z
- D. All of the above
- E. None of the above

В	A
2	1
2	2
2	3
1	1

A	
1	
2	
3	

Result is 2

Division Clicker Question Answer C exposed

R

С	D	E
1	2	1
2	2	1
3_	2	1

S

A	В	Т	???
1	2	•	2
2	2		
3	2		
1	1		

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. $Z(C) \leftarrow \pi_A S$ R(E,C)/Z
- D. All of the above
- E. None of the above

E	С
1	1
1	2
1	3

C	
1	
2	
3	

Result is 1

Find the name of actors who have been in **all** movies

Be careful in choosing the input relations! InAII $\leftarrow \pi_{StarID, MovieID}$ StarsIn/ $\pi_{MovieID}$ (Movie) π_{Name} (InAII \bowtie MovieStar)

Find the names of actors who have been in all movies after 1950

```
LateMovieIds \leftarrow \pi_{MovieID}(\sigma_{year > 1950}(Movie))

InAll \leftarrow (\pi_{StarID, MovieID}(StarsIn)/LateMovieIds)

\pi_{Name}(InAll \bowtie MovieStar)
```

Case study of complex relational algebra: build up division of r/s from other operators

- Let X be attributes not in R and Y be attributes in S
- Idea: compute all values that are "disqualified" by some value in s.
 - value x is disqualified if by attaching y value from s, we obtain an xy tuple that is not in r.
- Take difference from all values

Expressing r/s Using Basic Operators

- Like a join, can be computed from basic operators
- Idea:
 - let X the set of attributes of r that are not in s
 - (1) compute the X-projection of r
 - (2) compute all X-projection values of r that are "disqualified" by some value in s.
 - value x is disqualified if by attaching y value from s, we obtain an xy tuple that is not in r.
 - result is (1)-(2)
- So,
 - Disqualified x values: $\pi_X((\pi_X(r)\times S)-r)$

• r/s is
$$\pi_X(r) - \pi_X((\pi_X(r) \times s) - r)$$

Example: building up division subtract off disqualified answers

$$\pi_X(R) - \pi_X(\pi_X(R) \times S - R) = A/B2$$

$$A/B2 = S1$$
 $S4$

Answers not disqualified

Learning Goals Revisited

- Identify the basic operators in RA.
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.

The midterm covers all course material through relational algebra

If you want more practice...

Try this site:

https://dbis-uibk.github.io/relax/

You can play with RA queries and see the results.

In class exercise

- Relational Algebra 1 not for credit, but do it anyway
- Relational Algebra 2 for credit