Definition 3.7 Let AEKnm, BEKP9 be matrices $A = \begin{pmatrix} a_{11} & -a_{1m} \\ \vdots & \vdots \\ a_{n1} & -a_{nm} \end{pmatrix}$ The Kronecker product (also, tensor product) of A and B is the block matrix $A \otimes B = \begin{pmatrix} a_{11}B & --- & a_{1m}B \\ \vdots & & \vdots \\ a_{n1}B & --- & a_{nm}B \end{pmatrix} \in K^{np \times mq}$ Proposition 3.8 Let Kush and a, BEZ eigenvalues OF matrices AGKnxn and BEKmxm respectively. Then (i) - \times is an eigenvalue of -A (11) 1/x is an eigenvalue of A-1; F A invertible is an eigenvalue of ASB (iii) aB (IV) a+B is an eigenvalue of A@Im+In&B where Ineknin Ineknin are identity matrices. Proof Let UEL and VEL be the corresponding agentators Au= au and Bv= Bv.

(1)
$$(-A)u = -Au = -\alpha u$$
 $\Rightarrow u$ eigenvector of $-A$ with eigenvalue $-\alpha$

(ii) $A^{-1}u = \frac{1}{\alpha}A^{-1}(\alpha u) = \frac{1}{\alpha}A^{-1}Au = \frac{1}{\alpha}u$
 $\Rightarrow u$ eigenvector of A^{-1} with eigenvalue $1/\alpha$

(iii) Consider the column vector

 $U \otimes V = \begin{pmatrix} U_1 \\ V_2 \\ U_1 \end{pmatrix} \otimes \begin{pmatrix} V_1 \\ V_2 \\ U_1 \end{pmatrix} = \begin{pmatrix} U_1V \\ U_1V \\ U_2V \end{pmatrix} \in L^{nm}$

By block-metrix multiplication

 $(A \otimes B)(u \otimes V) = \begin{pmatrix} a_{11}B(u_1v)+...+a_{1n}B(u_nv)\\ (a_{n1}B(u_1v)+...+a_{nn}B(u_nv)\\ (a_{n1}u_1+...+a_{nn}u_n)Bv \end{pmatrix}$
 $= \begin{pmatrix} a_{11}U_1+...+a_{nn}u_n \end{pmatrix}Bv \\ (a_{n1}u_1+...+a_{nn}u_n)Bv \end{pmatrix}$
 $= (Au)\otimes(Bv)$
 $= (\alpha u)\otimes(Bv)$
 $= (\alpha u)\otimes(Bv)$
 $= (Au)\otimes(Iv) + (Iu)\otimes(Bv)$
 $= (Au)\otimes(Iv) + (Iu)\otimes(Bv)$
 $= (Au)\otimes(Iv) + (Iu)\otimes(Bv)$
 $= (Au)\otimes(Iv) + (Iu)\otimes(Bv)$

 $=(\alpha+\beta)(U\otimes V)$

Example 3.9

Let
$$\alpha = i$$
, $\beta = \sqrt[3]{2}$. Their minimal polynomials over Q and corresponding companion matrices are

$$P_{x} = 1 + 0 \cdot t + t^{2}$$

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0$$

$$B = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A \otimes B = \begin{pmatrix} 0 & -B \\ B & 0 \end{pmatrix} = \begin{pmatrix} -7 \\ 0 & 1 \end{pmatrix}$$

$$det(kT - A \otimes B) = t + 4$$

$$(i \sqrt[3]{2})^6 = i^6 \cdot (\sqrt[3]{2})^6 = 4$$

$$A \otimes T_3 + T_2 \otimes B = \begin{pmatrix} 0 & -T_3 \\ T_3 & 0 \end{pmatrix} + \begin{pmatrix} B & 0 \\ 0 & B \end{pmatrix}$$

+ D.t + t2

$$\Rightarrow \det(t I_6 - A \otimes I_3 - I_2 \otimes B)$$

$$= t^6 + 3t^4 - 4t^3 + 3t^2 + 12t + 5$$
is a polynomial with next it $3\sqrt{2}$.

(ako happens to be its minimal polynomial)

3B CONSTRUCTIBLE NUMBERS

Constructible refers to ruler and compass constructions.

Operations:

(1) Given two points ZNEC, ZXN constact the (infinite) line L(Z, W)

Definition 3,10

· Let Pn, In, Cn, nEN, be the recursively defined sets of n-constructible points, lines, circles:

P = {0,13cc, L=0, C=0 1,1= { L(z,w): Z,WGPn}

Cn+1 = { C(Z, IW-UI), Z, W, UEPn}

Pn+1 = "intersections of distinct objects of In+1 UCn+1"

= {ZGC: JA,BE EntiUCnti, A+B, ZEANB F

· An elenent ZEC is constructible if ZE WIN Pn.

Denote by P the set of constructible numbers.

The elementary line and circle constructions lead to increasingly complicated constructions, Search for "Euclid: The Game" to try a digital veron Some possible constructions: 1. Line Disection

2. Angle birection

3. Angle repositioning

a, b, c, Z, w ~> U s.t. & bac = & w Zu

4. Perpendeuka line

5. Parallel line

7. Complex Conjugate

Proposition 3.11

Suppose Z, well are constructible. Then all of the following are constructible

Proof by picture

(1) (parallel line) Note coloner cases need to be handled separately: ((Z, IW-Z)) (6,121) (11) (iii) Simikar triangle: liv) sinikr triangle $\frac{|w|}{1} = \frac{1}{|z|}$ & w colinear with Z \Rightarrow $W = \frac{\overline{Z}}{|\overline{Z}|} \cdot M = \frac{\overline{Z}}{|\overline{Z}|^2} = Z^{-1}$ W=1/2

Using the previous constructions 1-7:

bisect segment -12/ to 1 ~> W C(w, W-11) & perpendicular line to L(0,1) through 0 intersect at u.

Geometric mean theorem => lul= J1-21. [= J12]

Bisect angle \$10% & intersection is $\sqrt{r}e^{i\Theta x} = \sqrt{z}$

De Finition 3.12

A field K is quadratically closed

if every pEK[t] with deg p=2 hers a root.

Proposition 3.11 =) the set of constructible numbers is a quadratically closed field.

Theorem 3.13

The field of constructible numbers P is the quadratic closure of Q, i.e., the union of all subfields $K_{n}\subset C$ st. $\exists a$ chain of extensions $Q=K_{0}\hookrightarrow K_{1}\hookrightarrow \cdots \hookrightarrow K_{n}$, $[k_{i+1}:k_{i}]=2$.

Proof

Let $0=k_s \longrightarrow --- \longrightarrow K_n$ be a chain of quadratic extensions. Since each $[K_{jei}: K_j]=2$, $K_{jei}=K_j(\alpha_{jei})$ with $\alpha_{jei}=K_j(\alpha_{jei})$ with $\alpha_{jei}=K_j(\alpha_{jei})$ with $\alpha_{jei}=K_j(\alpha_{jei})$ with $\alpha_{jei}=K_j(\alpha_{jei})$ is also constructible by Proposition 3.11, since $\alpha_i=\pm \sqrt{\alpha_i^2}$, $\alpha_i^2=0$ constructible. By induction each K_j is constructible.

→ P contains the quadrate dosure.

For the converse, we will use the following:

Lemma 3,14

If ZGC is n-constructible, i.e. ZGPn, then ZGPn.

Proof of Lemma

Consider the mirror image of the construction.