

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

3ª Lista de Física Geral IV

Horários e salas		
Terça-Feira	17:15 - 19:15	Bloco C34 - Sala 105
Quinta-Feira	17:15 - 19:15	Bloco C34 - Sala 101
Sexta-Feira	17:15 - 19:15	Bloco C34 - Sala 101

- ${f 1}$ Se recorde de Lei de Gauss e calcule o campo elétrico dentro e fora de uma esfera maciça de densidade de carga ρ . Além disso, se recorde da Lei de Gauss para o magnetismo e argumente a impossibilidade da existência de monopolos magnéticos.
- 2 Se recorde da Lei de Ampère e calcule o campo magnético produzido por uma corrente em um fio infinito.
- $\bf 3$ Se recorde da Lei de Faraday e calcule a feminduzida em N espiras de área S rodando com velocidade ω em um campo uniforme \vec{B}
 - 4 Explique de forma simples qual foi a correção de Maxwell na Lei de Ampère.
- **5 -** Quais são as equações de Maxwell (já com a correção na lei de Ampere) e qual a interpretação física de cada uma? Utilizando os teoremas de *Stokes* (rotacional) e Gauss (divergente), passe as equações de Maxwell da forma integral para a diferencial.
- 6 Utilizando as equações de Maxwell obtenha a equação de onda para o campo elétrico \vec{E} , para o campo magnético \vec{B} e para o caso geral unidimensional.
- 7 Mostre matematicamente que a luz é uma onda eletromagnética com velocidade $v=1/\sqrt{\mu_0\epsilon_0}$.
- 8 Supondo que as ondas de \vec{B} e \vec{E} se propaguem ao longo da direção \hat{z} (ou \hat{k}). Nesse caso, temos

$$\vec{E} = \vec{E}(z - ct)$$

$$\vec{B} = \vec{B}(z - ct)$$

Suponha ainda que o campo \vec{E} esteja ao longo de \hat{i} . Nesa condição, mostre que o campo \vec{B} fica determinado e pode ser escrito como $\vec{B} = \frac{1}{c}\hat{k} \times \vec{E}$

9 - A densidade de energia armazenada eletromagnética pode ser escrita como

$$U = \frac{1}{2}\varepsilon_o \vec{E}^2 + \frac{1}{2}\frac{\vec{B}^2}{\mu_o}$$

Sendo a taxa de variação temporal de U expressa por

$$-\frac{\partial U}{\partial t} = \vec{J} \cdot \vec{E} + \nabla \cdot \vec{S}$$

com $\vec{S} = \frac{1}{\mu_o} \vec{E} \times \vec{B}$ sendo o vetor de *Poynting*. (a) Argumente que o primeiro termo dessa expressão $(\vec{J} \cdot \vec{E})$ representa o trabalho por unidade de tempo e volume realizado pelo campo

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

 \vec{E} sobre as cargas. (b) Integrando a expressão para $-\frac{\partial U}{\partial t}$ em um volume V e usando o Teorema da Divergência, mostre que \vec{S} deve representar um fluxo de energia eletromagnética para fora do volume V.

10 - Para uma onda eletromagnética plana ($\vec{E} = \vec{\epsilon} E$ e $\vec{B} = \frac{1}{c} \hat{v} \times \vec{E}$) calcule a densidade de energia U. Observe que, em cada instante de tempo, metade dessa densidade de energia encontra-se na forma magnética e metade na forma elétrica. Aproveite e calcule também o vetor de *Poynting*.