Package 'GCalcium'

October 12, 2022

Type Package
Title A Data Manipulation and Analysis Package for Calcium Indicator Data
Version 1.0.0
Author Andrew Tamalunas
Maintainer Andrew Tamalunas <atamalu@g.clemson.edu></atamalu@g.clemson.edu>
Description Provides shortcuts in extracting useful data points and summarizing waveform data. It is optimized for speed to work efficiently with large data sets so you can get to the analysis phase more quickly. It also utilizes a user-friendly format for use by both beginners and seasoned R users.
Depends R (>= 2.10)
Imports stats, graphics, caTools, dplyr
License GPL-3
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 6.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2019-03-06 16:53:27 UTC
R topics documented:
averaged_trials2avg_curve_slope3between_trial_change3centered_AUC4consecutive_trial_change5find_peaks5

2 averaged_trials

	format_data	6
	GCaMP	7
	inflect_points	7
	inflect_points_df	8
	moving_window	8
	perc_baseline	9
	plot_trials	10
	within_trial_change	10
	z_score	11
Index		13

averaged_trials

Averages signals across trials

Description

'averaged_trials' averages values over each time point, across the specified trials

Usage

```
averaged_trials(Dataframe, Trials)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Trials numbers of trials to be averaged across

Value

a data frame with observation times and averaged values

```
### Format data frame
df.new <- format_data(GCaMP)

### Plot the average fluorescence signal across trials 1-5
df.1thru5 <- averaged_trials(df.new, 1:5)

plot(x = df.1thru5$Time, df.1thru5$Values)</pre>
```

avg_curve_slope 3

avg_curve_slope	Get average curve slopes
-----------------	--------------------------

Description

'avg_curve_slope' finds the average curve slopes for a trial using inflect_points_df and lm

Usage

```
avg_curve_slope(Dataframe, Trial)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Trial a single trial number

Value

vector of average rate of change for each curve

Note

curves of a single value will result in the average slope being labeled as NA

Examples

```
df.new <- format_data(data = GCaMP)
avg_curve_slope(Dataframe = df.new, Trial = 1)</pre>
```

Description

'between_trial_change' finds the difference in means during same time range between sets of trials.

Usage

```
between_trial_change(Dataframe, TrialRange1, TrialRange2,
   Time.period = c(min(Dataframe[1]), max(Dataframe[1])))
```

Arguments

Dataframe a GCaMP-format data frame or matrix

TrialRange1 range of trial numbers to be compared to second set of trials

TrialRange2 range of trial numbers to be compared to first set of trials

Time.period range of time to be compared between sets of trials

4 centered_AUC

Value

Number representing mean difference of trial set 2 and trial set 1

Examples

```
# How much did the mean value change 2s after epoc between trials 1-5 and trials 6-10? df.new <- format_data(data = GCaMP) between_trial_change(Dataframe = df.new, TrialRange1 = c(1, 5), TrialRange2 = c(6, 10), Time.period = c(0, 2))
```

centered_AUC

Compute centered area under curve

Description

'centered_AUC' computes the area under the curve (AUC) after centering values using a specified function, such as mean or min. Computed using trapezoidal integration.

Usage

```
centered_AUC(Dataframe, Trial, FUN = mean)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Trial a single trial number

FUN a function to apply to each window

Value

Data frame of AUCs and curve number for each curve

```
# Get AUCs for trial 2, centered at the mean
df.new <- format_data(data = GCaMP)
centered_AUC(Dataframe = df.new, Trial = 2, FUN = mean)</pre>
```

consecutive_trial_change

Compare mean activity in consecutive trials

Description

'consecutive_trial_change' finds the change in means between consecutive trials.

Usage

```
consecutive_trial_change(Dataframe, Trials, Time.period)
```

Arguments

Dataframe a GCaMP-format data frame or matrix

Trials range of trial numbers to be compared

Time.period range of time to be compared

Value

Data frame with the "Mean.Change" column representing differences in means between trial n and trial n + 1 for the user-inputted range of trials.

Examples

```
### How much did the mean value change after epoc between consecutive trials in trials 1-10? df.new \leftarrow format_data(data = GCaMP) consecutive_trial_change(Dataframe = df.new, Trials = c(1, 10), Time.period = c(0, 4))
```

find_peaks

Get peaks/valleys in waveform data

Description

'find_peaks' finds peaks or valleys in waveform by using inflection points, with filter of 'n' increasing/decreasing points on both sides of each inflection point.

Usage

```
find_peaks(x, n.points = 3)
```

Arguments

x vector of numbers

n.points the number of decreasing (peaks) or increasing (valleys) data points on left and

right of inflection point required to be considered a "peak". A positive number

as an input finds peaks, and a negative number finds valleys.

6 format_data

Value

a numeric vector of indices

Examples

```
### Format data frame
df.new <- format_data(GCaMP)

### How many peaks are there in trial 1 with 10 decreasing data points on each side?
peak.indices <- find_peaks(df.new$Trial1, n.points = 10)

### When do they occur?
data.frame(times = df.new$Time[peak.indices], vals = df.new$Trial1[peak.indices])</pre>
```

format_data

Reformat and label data into GCalcium format

Description

'format_data' changes the format of data from wide time series to long format with labeled columns. If data is already in long format, the function simply re-labels the columns

Usage

```
format_data(data)
```

Arguments

data

A data set with observation times in the first row or column, and observed values from trials in each following row or column.

Value

Data frame with labeled time and trial columns

```
df.new <- format_data(GCaMP)</pre>
```

GCaMP 7

GCaMP

Pre-filtered GCaMP calcium activity waveforms

Description

A dataset containing calcium activity and observed times during a behavioral paradigm pilot study; organized into 10 individual trials

Usage

```
data(GCaMP)
```

Format

A data frame with 11 rows and 814 columns

Time observed times of Trial.n values, in seconds

Trial.n values of calcium activity signals for trial n ...

Source

Dr. David Root, Maier-Watkins laboratory

inflect_points

Find inflection pooints

Description

'inflect_points' finds inflection points of waveform data

Usage

```
inflect_points(x)
```

Arguments

Χ

A vector of numbers

Value

Inflection points of the input vector

```
df.new <- format_data(GCaMP)
inflect_points(df.new$Trial1)</pre>
```

8 moving_window

inflect_points_df

Find inflection points and curve numbers

Description

'inflect_points_df' finds inflection points of activity waves, returning a summarized data frame

Usage

```
inflect_points_df(Dataframe, Trial)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Trial a single trial number

Value

data frame with variables indicating the time, raw values, curve numbers, and inflection points corresponding to each data point of the input

Examples

```
df.new <- format_data(GCaMP)
inflect_points_df(Dataframe = df.new, Trial = 1)</pre>
```

moving_window

Summarize data within windows of time

Description

'moving_window' summarizes data within windows of a certain length.

Usage

```
moving_window(Dataframe, Trial, Window.length, FUN = mean)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Trial a single trial number

Window.length length of time each window encompasses

FUN a function to apply to each window

perc_baseline 9

Value

a data frame with start and stop times of each window, the chronological number of each window, and summarized values

Examples

```
### Format data frame
df.new <- format_data(GCaMP)

### In trial 5, how does the average fluorescence change in 1 second time frames?
moving_window(Dataframe = df.new, Trial = 5, Window.length = 1, FUN = mean)</pre>
```

perc_baseline

Find the percent change from baseline

Description

'perc_baseline' calculates the percent change from a user-specified baseline period

Usage

```
perc_baseline(Dataframe, Baseline.times, Baseline.frame = FALSE)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Baseline.times range of time from Baseline.frame to compute the baseline value from

Baseline.frame a GCalcium-format data frame or matrix containing the baseline period. If frame

is not specified, Dataframe is automatically used

Value

a GCalcium-format data frame with values transformed to percent baseline

```
### Format data frame
df.new <- format_data(GCaMP)

### Transform into percent baseline: relative to -3s to -1s before epoc
perc_baseline(Dataframe = df.new, Baseline.times = c(-3, -1))</pre>
```

10 within_trial_change

plot_trials

Plot specified trials

Description

'plot_trials' plots the user-inputted trials. This function automatically adjusts the x- and y- axis limits to fit all data

Usage

```
plot_trials(Dataframe, Trials, ...)
```

Arguments

Dataframe a GCalcium-format data frame or matrix

Trials set of trials to be plotted

... extra commands to be called to the blank base plot

Value

a single plot of user-specified trials

Examples

```
### Format data frame
df.new <- format_data(GCaMP)

### Specify and plot trials
my.trials <- c(1, 2, 7, 8)
plot_trials(Dataframe = df.new, Trials = my.trials)</pre>
```

within_trial_change

Get mean activity change within a trial

Description

'within_trial_change' finds the change in mean values between beginning and end of entered time range.

Usage

```
within_trial_change(Dataframe, Trial, Beg.period = FALSE,
    End.period = FALSE)
```

z_score 11

Arguments

Dataframe a GCalcium-format data frame or matrix

Trial a single trial number

Beg.period time frame of period 1 to be compared to period 2

End.period time frame of period 2 to be compared to period 1

Value

vector with AUC for each curve in a trial

Examples

```
# In trial 1, how much did the mean value change between -2s and 0s, and 0 and 2s? df.new <- format_data(data = GCaMP) within_trial_change(Dataframe = df.new, Trial = 1, Beg.period = c(-2, 0), End.period = c(0, 2))
```

z_score

Transform values into z scores

Description

'z_score' transforms input values to z scores. Allows user input of mu and sigma values for comparing distributions.

Usage

```
z_score(xvals, mu = FALSE, sigma = FALSE)
```

Arguments

xvals vector of numbers
mu the population mean

sigma the population standard deviation

Value

a numeric vector of z scores

12 z_score

```
# Format data
df.new <- format_data(GCaMP)

# Split data
basevals <- df.new$Trial1[df.new$Time <= 0]
eventvals <- df.new$Trial1[df.new$Time > 0]

# Find baseline (pre-epoc) values
base.mu <- mean(basevals)
base.sigma <- sd(basevals)

# Compute values
z_score(x = eventvals, mu = base.mu, sigma = base.sigma)</pre>
```

Index

```
\ast datasets
    GCaMP, 7
averaged\_trials, \\ 2
avg_curve_slope, 3
\verb|between_trial_change|, 3
{\tt centered\_AUC, 4}
consecutive_trial_change, 5
find_peaks, 5
format_data, 6
GCaMP, 7
inflect_points, 7
inflect\_points\_df, 8
{\tt moving\_window}, \, {\tt 8}
perc_baseline, 9
plot_trials, 10
within_trial_change, 10
z_score, 11
```