

у2020-4-4. Математика, криптография

А. Разложение на множители

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дано число. Требуется разложить его на простые множители.

Входные данные

Вводится число $n \ (2 \le n \le 10^9)$.

Выходные данные

Выведите через пробел разложение на простые множители в порядке неубывания множителей.

Примеры Скопировать входные данные Скопировать выходные данные 17 Скопировать входные данные Скопировать выходные данные 2 2 3 5

В. Большая проверка на простоту больших чисел

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число n, $1 \le n \le 5000$ и далее n чисел a_i , $1 \le a_i \le 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

Пример

Скопировать входные данные 10 239 Скопировать выходные данные YES NO YES

С. Китайская теорема

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

Решите в целых числах систему уравнений

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m ($1 \le n, m \le 10^6, 0 \le a < n, 0 \le b < m$).

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число x.

Примеры

Скопировать входные данные 1 0 2 3 Скопировать выходные данные Скопировать входные данные 3 2 5 9 Скопировать выходные данные 38

D. Взлом RSA

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта ввод: стандартный ввод вывод: стандартный вывод

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $ed \mod (p-1)(q-1)=1$ (заметим, что $(p-1)(q-1)=\varphi(n)$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M- исходное сообщение. Для его шифрования вычисляется значение $C = M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M = C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Программа получает на вход три натуральных числа: n, e, C, $n \le 10^9$, $e \le 10^9$, C < n. Числа n и e являются частью какой-то реальной

Входные данные

схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M .

Выходные данные

Выведите одно число M ($0 \le M < n$), которое было зашифровано такой криптосхемой. Примеры

Скопировать входные данные 143 113 41 Скопировать выходные данные 123 Скопировать входные данные 9173503 4051753 Скопировать выходные данные 111111

> Е. Перемножение полиномов ограничение по времени на тест: 1 секунда

ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод Даны два полинома $A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ и $B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$. Найдите их произведение в виде

 $C(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2n} x^{2n}$ Входные данные

Первая строка содержит число n ($1 \le n \le 10^5$). Вторая строка содержит n+1 число $-a_0, a_1, \ldots, a_n$, третья строка содержит n+1целое число $-b_0, b_1, \ldots, b_n$ ($0 \le a_i, b_i \le 100$).

Выходные данные Выведите 2n + 1 число $-c_0, c_1, \ldots, c_{2n}$.

Пример входные данные

1 4 2 2 5 6 Скопировать выходные данные 2 13 30 34 12 **F.** Дуэль

Скопировать

Скопировать

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево

выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга. Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты —

символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Примеры входные данные

101010101 Скопировать выходные данные Скопировать входные данные 101001 Скопировать выходные данные

101010101, 10**10101**01, 1010**10101** и **1**010**1**0101.

Примечание В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом):