Last name	
First name	

LARSON—OPER 731—CLASSROOM WORKSHEET 16 Minkowski's Theorem & Totally Unimodular Matrices

- 1. What is Weyl's Theorem?

 2. What is Minkowski's Theorem?
- 3. Argue that if $x \in \mathcal{P}$, a bounded polyhedron defined by a system of linear inequalities $Ax \leq b$, with extreme points X, x is a convex combination of extreme points of face \mathcal{F}_1 of \mathcal{P} , and x is a convex combination of extreme points of face \mathcal{F}_2 of \mathcal{P} , then x is a convex combination of points of X.

4. Given a bounded polyhedron \mathcal{P} defined by a system of linear inequalities $Ax \leq b$, extreme points $X, x \in \mathcal{P}$, how can we show that $x \in conv(X)$?

Totally Unimodular Matrices

5. Check that the following matrix A is totally unimodular. $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.

6. Let b be any vector in \mathbb{R}^3 with integer components. Use Cramer's rule to show that any extreme point of the polyhedron \mathcal{P} defined $Ax \leq b$ (and x_i nonnegative) has integer coordinates.

7. Draw a directed graph with 4 vertices and 5 edges. Label the vertices.

8. Find its directed vertex-edge incidence matrix.

9. Show that this matrix is totally unimodular (List all its square submatrices and find the determinant of each, or make an *argument*.)