X1520 IoT Application Processor

Data Sheet

Release Date: Mar. 28, 2019

X1520 IoT Processor

Data Sheet

Copyright © 2005-2019 Ingenic Semiconductor Co. Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the

usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this

document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, Zhongguancun Software Park,

Dongbeiwang West Road, Haidian District, Beijing, China,

Tel: 86-10-56345000

Fax: 86-10-56345001

Http://www.ingenic.com

CONTENTS

1 Overview	1
1.1 Block Diagram	2
1.2 Features	2
1.2.1 CPU	2
1.2.2 ISP	3
1.2.3 Image post processor(IPU)	3
1.2.4 Camera interfaces	3
1.2.5 Audio	4
1.2.6 Memory Interface	4
1.2.7 System Functions	4
1.2.8 Peripherals	5
1.2.9 Bootrom	7
1.3 Characteristic	8
2 Packaging and Pinout Information	9
2.1 Overview	g
2.2 Solder Process	9
2.3 Moisture Sensitivity Level	9
2.4 X1520 Package	9
2.5 Pin Description [1][2]	10
2.5.1 DDR	10
2.5.2 I2C1	11
2.5.3 DVP	11
2.5.4 MSC1	12
2.5.5 PWM	12
2.5.6 UART	12
2.5.7 SFC/SSI0	13
2.5.8 System	14
2.5.9 Digital power/ground	14
2.5.10 Analog - USB	14
2.5.11 Analog - SAR ADC	14
2.5.12 Analog - CODEC	15
2.5.13 Analog - MIPI-CSI	15
2.5.14 Analog - EFUSE	
2.5.15 Analog - CPM	
2.5.16 Analog - RTC	16
3 Electrical Specifications	17
3.1 Absolute Maximum Ratings	
3.2 Recommended operating conditions	17
3.3 DC Specifications	18

CONTENTS

3.4 Audio codec	21
3.4.1 Microphone input	21
3.4.2 ALC	21
3.4.3 Headphone output	21
3.5 Power On, Reset and BOOT	
3.5.1 Power-On Timing	22
3.5.2 Reset procedure	23
3.5.3 BOOT	23

1 Overview

X1520 is a low power consumption, high performance and high integrated application processor focus on IoT devices like bar-code scanner devices and square-code scanner devices. X1520 provides high-speed CPU computing power and excellent image signal process. And it can match the requirements of many other embedded products.

The CPU (Central Processing Unit) core, equipped with 32kB instruction and 32kB data level 1 cache, and 128kB level 2 cache, operating at 1.2GHz, and full feature MMU function performs OS related tasks. At the heart of the CPU core is XBurst® processor engine. XBurst® is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption. A hardware floating-point unit which compatible with IEEE754 is also included. The MXU2.0(SIMD128) instruction set has been implemented by XBurst® engine, and is one part of the CPU.

With the powerful CPU, X1520 supports various computer vision applications, such as face detection, human detection, gesture recognition, and etc. Also people can develop new computer vision application using the MXU2.0 to accelerate it.

The ISP (Image signal processor) core supports excellent image process with the image coming from raw sensors. It supports DVP interface. With the functions, such as 3A, 2D and 3D denoise, WDR/HDR, lens shading, it can supply maximum resolution 2048x1536 resolution image for view or encoding to store or transfer.

For more quickly and easily to use X1520, one 32Mbit DDR2 is integrated.

On-chip modules such as audio CODEC, multi-channel SAR-ADC controller and camera interfaces offer designers a economical suite of peripherals for scanner application. WLAN, Bluetooth and expansion options are supported through high-speed SPI and MMC/SD/SDIO host controllers. Other peripherals such as USB OTG, UART and SPI as well as general system resources provide enough computing and connectivity capability for many applications.

1.1 Block Diagram

Figure 1-1 X1520 Diagram

1.2 Features

1.2.1 CPU

- XBurst®-1 core
 - XBurst® RISC instruction set
 - XBurst® SIMD128 instruction set
 - XBurst[®] FPU instruction set supporting both single and double floating point format which are IEEE754 compatible
 - XBurst® 9-stage pipeline micro-architecture, the operating frequency is 1.2GHz
- MMU
 - 32-entry joint-TLB
 - 8-entry Instruction TLB
 - 8-entry data TLB
- L1 Cache
 - 32KB instruction cache
 - 32KB data cache
- Hardware debug support
- 16KB tight coupled memory
- L2 Cache
 - 128KB unified cache

1.2.2 ISP

- Max input resolution 2048x1536 @30fps, 1080p @45fps,720p @60fps.
- Input image up to 12bit RAW or Up to 24bit RGB. Both RGB and YCbCr are supported from sensor.
- Up to 2 output channel. Image crop and downscaler.
- 2-D and 3-D noise reduction filter lead to high levels of noise reduction with minimal effect on edges and textures.
- Single frame and multi frame WDR/HDR provide high dynamic range in both still and video capture modes.
- Advanced demosaic, colour processing, lens shading, defog, glare, static/dynamic defect pixel and other modules provide high image quality.
- 3A supported.
- Flash timer

1.2.3 Image post processor(IPU)

- AXI Bus for data transaction
- Input data format:
 - ARGB, RGB, NV12/NV21
- Output data format:
 - ARGB, RGB
 - NV12/NV21
 - HSV
- Color conversion feature: input and output format can be chosen freely from input and output data format.
- Minimum input image size (pixel): 4x4
- Maximum input image size (pixel): 2047x2047
- Minimum output image size (pixel): 4x4
- Maximum output image size (pixel): 2047x2047
- Background channel OSD function:
 - Support 4 layers OSD
 - Support whole background picture into OSD process and partial picture into OSD process
 - Support 12 port-duff OSD modes
 - Support 5 input format in background channel: ARGB8888, ARGB1555, RGB888, NV12, NV21. RGB can be in following sequence: RGB, RBG, BRG, BGR, GRB, GBR. Specifically, RGB888 format data occupy 4 bytes when stored in memory, RGB occupy three bytes, and the forth byte can be any value, as it will never be used in IPU.
 - Output picture format must be the same with the input picture format of separated background channel.

1.2.4 Camera interfaces

- DVP input
 - DVP Input data format: YUV422, RGB565, RGB555, RAW8, RAW10, RAW12.

- MIPI CSI2 2-lane input
 - MIPI CSI-2 input format: RAW8, RAW10, RAW12, RGB555, RGB565, RGB666, RGB888, YUV422

1.2.5 Audio

- Integrated Audio codec.
 - 24 bits DAC with 93dB SNR
 - 24 bits ADC with 92dB SNR
 - Support signal-ended and differential microphone input and line input
 - Automatic Level Control (ALC) for smooth audio recording
 - Pure logic process: no need for mixed signal layers and less mask cost
 - Programmable input and output analog gains
 - Digital interpolation and decimation filter integrated
 - Sampling rate 8K/12K/16K/24K/32/44.1K/48K/96K

1.2.6 Memory Interface

• Integrated 32Mbits DDR2

1.2.7 System Functions

- Clock generation and power management
 - On-chip 12/24/48MHZ oscillator circuit
 - External 32.768KHZ input
 - One three-chip phase-locked loops (PLL) with programmable multiplier
 - CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK, HELIX_CLK frequency can be changed separately for software by setting registers
 - SSI clock supports 50M clock
 - MSC clock supports 100M clock
 - Functional-unit clock gating
- Timer and counter unit with PWM output and/or input edge counter
 - Provide four separate channels, two of them have input signal transition edge counter
 - 16-bit A counter and 16-bit B counter with auto-reload function every channel
 - Support interrupt generation when the A counter underflows
 - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - Every channel has PWM output
- OS timer
 - 64-bit counter and 32-bit compare register
 - Support interrupt generation when the counter matches the compare register
 - Two clock sources: RTCLK (real time clock), HCLK (system bus clock) selected with 1, 4,
 16, 64, 256 and 1024 clock dividing selected
- Interrupt controller
 - Total 64 interrupt sources
 - Each interrupt source can be independently enabled

- Priority mechanism to indicate highest priority interrupt
- All the registers are accessed by CPU
- Unmasked interrupts can wake up the chip in sleep mode
- Another set of source, mask and pending registers to serve for PDMA
- Watchdog timer
 - Generates WDT reset
 - A 16-bit Data register and a 16-bit counter
 - Counter clock uses the input clock selected by software
- PCLK, EXTAL and RTCCLK can be used as the clock for counter
- The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software
- Direct memory access controllers
 - Support up to 32 independent DMA channels
 - Descriptor or No-Descriptor Transfer mode compatible with previous JZ SOC
 - Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte
 - Transfer number of data unit: 1 ~ 2²⁴ 1
 - Independent source and destination port width: 8-bit, 16-bit, 32-bit
 - Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest
 - An extra INTC IRQ can be bound to one programmable DMA channel
- SAR A/D Controller
 - 2 Channels
 - Resolution: 10-bit
 - Integral nonlinearity: ±2 LSB
 - Differential nonlinearity: ±1 LSB
 - Resolution/speed: up to 1Msps
 - Max Clock Frequency: 24MHz
 - Low power dissipation: 1.5mW(worst)
 - Support two auxiliary input (Through pin ADC AIN0 to AIN1)
 - Pin Description
- RTC (Real Time Clock)
 - Need external 32768Hz oscillator for 32k clock generation
 - 32-bits second counter
 - Programmable and adjustable counter to generate accurate 1 Hz clock
 - Alarm interrupt, 1Hz interrupt

1.2.8 Peripherals

- General-Purpose I/O ports
 - Each port can be configured as an input, an output or an alternate function port
 - Each port can be configured as an interrupt source of low/high level or rising/falling edge triggering. Every interrupt source can be masked independently
 - Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled
 - GPIO output 3 interrupts, each interrupt corresponds to the group, to INTC
- SMB Controller

- Two-wire SMB serial interface consists of a serial data line (SDA) and a serial clock (SCL)
- Two speeds
 - Standard mode (100 Kb/s)
 - Fast mode (400 Kb/s)
- Device clock is identical with pclk
- Programmable SCL generator
- Master or slave SMB operation
- 7-bit addressing/10-bit addressing
- 16-level transmit and receive FIFOs
- Interrupt operation
- The number of devices that you can connect to the same SMB-bus is limited only by the maximum bus capacitance of 400pF
- APB interface
- 2 independent SMB channels (SMB0, SMB1)
- One High Speed Synchronous serial interfaces (SFC0)
 - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
 - transmit-only or receive-only operation
 - MSB first for command and data transfer, and LSB first for address transfer
 - 64 entries x 32 bits wide data FIFO
 - one device select
 - Configurable sampling point for reception
 - Configurable timing parameters: tSLCH, tCHSH and tSHSL
 - Configurable flash address wide are supported
 - 7 transfer formats: Standard SPI, Dual-Output/Dual-Input SPI, Quad-Output/Quad-Input SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O SPI
 - two data transfer mode: slave mode and DMA mode
 - Configurable 6 phases for software flow
- One Normal Speed Synchronous serial interfaces (SSI0)
 - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
 - Full-duplex or transmit-only or receive-only operation
 - Programmable transfer order: MSB first or LSB first
 - 128 entries deep x 32 bits wide transmit and receive data FIFOs
 - Configurable normal transfer mode or Interval transfer mode
 - Programmable clock phase and polarity for Motorola's SSI format
 - Back-to-back character transmission/reception mode
- Two Universal Asynchronous Receiver/Transmitter interfaces (UART0, UART1)
 - Full-duplex operation
 - 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½, or 2 stop bits
 - 64x8 bit transmit FIFO and 64x11bit receive FIFO
 - Independently controlled transmit, receive (data ready or timeout), line status interrupts
 - Internal diagnostic capability Loopback control and break, parity, overrun and

- framing-error is provided
- Separate DMA requests for transmit and receive data services in FIFO mode
- Supports modem flow control by software or hardware
- Slow infrared asynchronous interface that conforms to IrDA specification
- One MMC/SD/SDIO controllers (MSC1)
 - Fully compatible with the MMC System Specification version 4.2
 - Support SD Specification 3.0
 - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
 - Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
 - Maximum data rate is 50MBps
 - Support MMC data width 1bit and 4bit
 - Built-in programmable frequency divider for MMC/SD bus
 - Built-in Special Descriptor DMA
 - Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status
 - 128 x 32 built-in data FIFO
 - Multi-SD function support including multiple I/O and combined I/O and memory
 - IRQ supported enable card to interrupt MMC/SD controller
 - Single or multi block access to the card including erase operation
 - Stream access to the MMC card
 - Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access
 - Supports CE-ATA digital protocol commands
 - Support Command Completion Signal and interrupt to CPU
 - Command Completion Signal disable feature
 - The maximum block length is 4096bytes

USB 2.0 interface

- Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the
 On-The-Go supplement to the USB 2.0 specification
- Operates either as the function controller of a high- /full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions
- Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
- UTMI+ Level 3 Transceiver Interface
- Soft connect/disconnect
- 16 Endpoints:
- Dedicate FIFO
- Supports control, interrupt, ISO and bulk transfer
- Digital True Random Number Generator (DTRNG)
 - Pure digital logic circuits
 - True random number
 - Interrupt mode and no interrupt mode

1.2.9 Bootrom

16kB Boot ROM memory

1.3 Characteristic

Item	Characteristic
Process Technology	40nm CMOS low power
Power supply voltage	General purpose I/O: 3.0~3.6V
	DVP I/O: 1.6~3.6V
	DDR I/O for DDR2: 1.8V ± 0.1V
	EFUSE programming: 2.5V ± 10%
	Analog power supply 1: 2.5V ± 10%
	Analog power supply 2: 3.3V ± 10%
	Core: 1.1V ± 0.1V
Package	BGA104 6mm x 8mm x 1.27mm, 0.65mm pitch
Operating frequency	1.2 GHz

2 Packaging and Pinout Information

2.1 Overview

X1520 processor is offered in 104-pin LFBGA package, which is 6mm x 8mm x 1.27mm outline, 9 x 12 matrix ball grid array and 0.65mm ball pitch, show in Figure 2-1. The X1520 pin to ball assignment is show in Figure 2-2. The detailed pin description is listed in Table 2-1~Table 2-16.

2.2 Solder Process

X1520 package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in <u>J-STD-020E</u>.

2.3 Moisture Sensitivity Level

X1520 package moisture sensitivity is level 3.

2.4 X1520 Package

symbol -	Dime	ension i	n mm	Dimension in inch			
Symbol	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.270			0.050	
A1	0.160	0. 210	0.260	0.006	0.008	0.010	
A2	0.910	0.960	1.010	0.036	0.038	0.040	
c	0.220	0.260	0.300	0.009	0.010	0.012	
D	5. 900	6.000	13. 100	0. 232	0.236	0.516	
Е	5. 900	8.000	13. 100	0. 232	0.315	0.516	
D1		5.200		[0.205		
E1		7.150			0. 281		
е		0.650			0.026		
b	0.250	0.300	0.350	0.010	0.012	0.014	
aaa		0.100		0.004			
bbb		0.100		0.004			
ddd		0. 100		0.004			
eee		0.150			0.006		
fff		0.080		0.003			
Ball Diam		0.300		0.012			
N		104		104			
MD/ME		9/12		9/12			

TECHNOLOGY SPECIFICATION[技术要求]

1. BALL PAD OPENING: 0.27m; [球形防焊开口: 0.27mm;] APRIMARY DATUM C AND SEATING PLANE ARE THE SOLDER BALLS:

[主要基准C和底面是锡球;]

⚠ DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL

TO PRIMARY DATUM C; [尺寸b是测量最大锡球直径,平行于主要基准C;]

[PIN 1 标识仅供参考;]

6. BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES;

[禁止使用一级环境管理物质;]

Figure 2-1 X1520 package outline drawing

				X1520 Ball	Assignment	Ver1.0			
		_		04, 6mm X 8m					
	1	2	3	4	5	6	7	8	9
Α	MSC1_D0_P C04	SSIO_CLK_ PC15	SSIO_CEO_ PC16	VSS	VREF	ZQ	SMBO_SDA_ PA12	DVP_D7_PA 07	DVP_D11_P A11
В	MSC1_D1_P C05	SSIO_DT_P C12	SSIO_DR_P C11	VDDMEM	VDDMEM	VSS	SMBO_SCK_ PA13	DVP_D8_PA 08	DVP_D9_PA 09
С	MSC1_CMD_ PC03	MSC1_D2_P C06	MSC1_D3_P C07	VDDMEM	VDDMEM	VDDMEM	DVP_D6_PA 06	DVP_D2_PA 02	DVP_D10_P A10
D	SMB1_SCK_ PB26	SMB1_SDA_ PB25	MSC1_CLK_ PC02	VSS	VSS	VSS	VSS	DVP_D3_PA 03	DVP_D4_PA 04
Е	PWMO_PB17	PWM1_CLK3 2K_OUT_PB 18	BOOT_SEL1 _PCO1	VDD	VSS	VSS	DVP_D5_PA 05	MIPI_DATA PO	MIPI_DATA NO
F		ADC_AVDD	EFUSE_AVD D	VDD	VDD	VSS	MIPI_CLKP	MIPI_CLKN	
G		ADC_VIN1	ADC_VINO	VDD	VSS	VSS	MIPI_DATA N1	MIPI_DATA P1	
Н	EXCLK_IN	EXCLK_OUT	PLL_AVDDH V	VDD	VSS	VDDIO	VDDIO_D	MIPI_REXT	MIPI_AVDD
J	PLL_AVSS	PLL_AVDD	PPRST_	VDD	VSS	VDDIO	DVP_DO_PA 00	DVP_PCLK_ PA14	DVP_MCLK_ PA15
K	USB_USBRB IAS	USB_DP0	CODEC_HPO UT	CODEC_AVS S	UARTO_RXD _PB19	DVP_D1_PA 01	SFC_DR_PA 24	DVP_VSYNC _PA17	DVP_HSYNC _PA16
L	USB_DMO	OSC32_IN	CODEC_AVD D	CODEC_MIC N	UARTO_RTS _PB21	UART1_TXD _PB23	SFC_CE0_P A28	SFC_CE1_P A26	SFC_GPC_P A25
М	USB_VCCA3 P3	OSC32_OUT	CODEC_VCM	CODEC_MIC	UARTO_CTS _PB20	UARTO_TXD _PB22	UART1_RXD _PB24	SFC_CLK_P A27	SFC_DT_PA 23

Figure 2-2 X1520 pin to ball assignment

2.5 Pin Description [1][2]

2.5.1 DDR

Table 2-1 DDR2 Pins (2)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
VREF	AI	A5		VREF: DDR2 input reference voltage	VDDMEM/2
ZQ	AIO	A6		ZQ: DDR2 External reference which is connected to a 240ohm resister to VSS	

2.5.2 I2C1

Table 2-2 I2C0/I2C1 Pins(4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SMB0_SDA PA12	00	A7	8mA pullup-pe rst-pe	SMB0_SDA: I2C 0 serial data PA12: GPIO group A bit 12	VDDIO_D
SMB0_SCL PA13	10 10	В7	8mA pullup-pe rst-pe	SMB0_SCL: I2C 0 serial clock PA13: GPIO group A bit 13	VDDIO_D
SMB1_SDA PB25	10 10	D2	8mA pullup-pe rst-pe	SMB1_SDA: I2C 1 serial data PB25: GPIO group B bit 25	VDDIO
SMB1_SCL PB26	10 10	D1	8mA pullup-pe rst-pe	SMB1_SCL: I2C 1 serial clock PB26: GPIO group B bit 26	VDDIO

2.5.3 DVP

Table 2-3 DVP Pins (16)

Pin Names	10	Loc	IO Cell Char.	Pin Description	Power
DVP_D0 PA00	I IO	J7	8mA pullup-pe	DVP_D0: DVP data bit 0 PA00: GPIO group A bit 00	VDDIO_D
DVP_D1 PA01	I IO	K6	8mA pullup-pe	DVP_D1: DVP data bit 1 PA01: GPIO group A bit 01	VDDIO_D
DVP_D2 PA02	I IO	C8	8mA pullup-pe	DVP_D2: DVP data bit 2 PA02: GPIO group A bit 02	VDDIO_D
DVP_D3 PA03	I IO	D8	8mA pullup-pe	DVP_D3: DVP data bit 3 PA03: GPIO group A bit 03	VDDIO_D
DVP_D4 PA04	I IO	C9	8mA pullup-pe	DVP_D4: DVP data bit 4 PA04: GPIO group A bit 04	VDDIO_D
DVP_D5 PA05	I IO	E7	8mA pullup-pe	DVP_D5: DVP data bit 5 PA05: GPIO group A bit 05	VDDIO_D
DVP_D6 PA06	I IO	C7	8mA pullup-pe	DVP_D6: DVP data bit 6 PA06: GPIO group A bit 06	VDDIO_D
DVP_D7 PA07	I IO	A8	8mA pullup-pe	DVP_D07: DVP data bit 7 PA07: GPIO group A bit 07	VDDIO_D
DVP_D8 PA08	I IO	B8	8mA pullup-pe	DVP_D08: DVP data bit 8 PA08: GPIO group A bit 08	VDDIO_D
DVP_D9 PA09	I IO	В9	8mA pullup-pe	DVP_D09: DVP data bit 9 PA09: GPIO group A bit 09	VDDIO_D
DVP_D10 PA10	I IO	C9	8mA pullup-pe	DVP_D10: DVP data bit 10 PA10: GPIO group A bit 10	VDDIO_D
DVP_D11 PA11	I IO	A9	8mA pulldown-pe	DVP_D11: DVP data bit 11 PA11: GPIO group A bit 11	VDDIO_D
DVP_PCLK PA14	I IO	J8	8mA pullup-pe rst-pe	DVP_PCLK: DVP pixel clock input PA14: GPIO group A bit 14	VDDIO_D

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
DVP_MCLKP A15	0 0	J9	8mA pullup-pe rst-pe	DVP_MCLK: DVP master clock output PA15: GPIO group A bit 15	VDDIO_D
DVP_HSYNC PA16	I IO	K9	8mA pulldown-pe rst-pe	DVP_HSYNC: DVP line horizonal sync input PA16: GPIO group A bit 16	VDDIO_D
DVP_VSYNC PA17	I IO	K8	8mA pullup-pe rst-pe	DVP_VSYNC: DVP vertical sync input PA17: GPIO group A bit 17	VDDIO_D

2.5.4 MSC1

Table 2-4 MSC0/MSC1 Pins (6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC1_CLK PC02	0 10	D3	8mA pullup-pe	MSC1_CLK: MSC (MMC/SD) 1 clock output PC02: GPIO group C bit 02	VDDIO
MSC1_CMD PC03	10 10	C1	8mA pullup-pe	MSC1_CMD: MSC (MMC/SD) 1 command PC03: GPIO group C bit 03	VDDIO
MSC1_D0 PC04	10 10	A1	8mA pullup-pe	MSC1_D0: MSC (MMC/SD) 1 data bit 0 PC04: GPIO group C bit 04	VDDIO
MSC1_D1 PC05	10 10	A2	8mA pullup-pe	MSC1_D1: MSC (MMC/SD) 1 data bit 1 PC05: GPIO group C bit 05	VDDIO
MSC1_D2 PC06	10 10	C2	8mA pullup-pe	MSC1_D2: MSC (MMC/SD) 1 data bit 2 PC06: GPIO group C bit 06	VDDIO
MSC1_D3 PC07	10 10	C3	8mA pullup-pe	MSC1_D3: MSC (MMC/SD) 1 data bit 3 PC07: GPIO group C bit 07	VDDIO

2.5.5 PWM

Table 2-5 PWM Pins (2)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PWM0 PB17	IO IO	E1	8mA pulldown-pe rst_pe	PWM0: PWM output or pulse input 0 PB17: GPIO group B bit 17.	VDDIO
PWM1 CLK32K_OUT PB18	10 0 10	E2	8mA pulldown-pe rst_pe	PWM1: PWM output or pulse input 1 CLK32K_OUT: 32.768K clock out PB18: GPIO group B bit 18.	VDDIO

2.5.6 UART

Table 2-6 UART Pins (6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
UART0_RXD PB19	0 –	K5		UART0_RXD: uart 0 receive data PB19: GPIO group B bit 19	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
UART0_CTS PB20	I 10	M5	8mA pullup-pe	UART0_CTS: uart 0 clear to send input PB20: GPIO group B bit 20	VDDIO
UART0_RTS PB21	00	L5	8mA pullup-pe	UART0_RTS:uart 0 request to send PB21: GPIO group B bit 21	VDDIO
UART0_TXD PB22	0 0	M6	8mA pullup-pe	UART0_TXD: UART 0 transmit data PB22: GPIO group B bit 22	VDDIO
UART1_TXD PB23	00	L6	8mA pullup-pe	UART1_TXD: UART 1 transmit data PB23: GPIO group B bit 23	VDDIO
UART1_RXD PB24	I IO	M7	8mA pullup-pe rst-pe	UART1_RXD: UART 1 receive data PB24: GPIO group B bit 24	VDDIO

2.5.7 SFC/SSI0

Table 2-7 SFC/SSI0 Pins (12)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SFC_DT PA23	10 10	M9	8mA pullup-pe rst_pe	SFC_DT: high speed ssi transmit data PA23: GPIO group A bit 23	VDDIO
SFC_DR PA24	10 10	K7	8mA pullup-pe rst_pe	SFC_DR: high speed ssi receive data PA24: GPIO group A bit 24	VDDIO
SFC_GPC PA25	10 10	L9	8mA pullup-pe rst-pe	SFC_GPC: high speed ssi general-purpose control PA25: GPIO group A bit 25	VDDIO
SFC_CE1 PA26	10 10	L8	8mA pulldown-pe rst-pe	SFC_CE1: high speed ssi chip 1 select PA26: GPIO group A bit 26	VDDIO
SFC_CLK PA27	10 10	M8	8mA pullup-pe rst-pe	SFC_CLK: high speed ssi clock PA27: GPIO group A bit 27	VDDIO
SFC_CE0 PA28	10 10	L7	8mA pullup-pe rst-pe	SFC_CE0: high speed ssi chip 0 select PA28: GPIO group A bit 28	VDDIO
SSI0_DR PC11	10 10	В3	8mA pullup-pe	SSI0_DR: normal speed ssi 0 receive data PC11: GPIO group C bit 11	VDDIO
SSI0_DT PC12	10 10	B2	8mA pullup-pe	SSI0_DT: normal speed ssi 0 transmit data PC12: GPIO group C bit 12	VDDIO
SSI0_CLK PC15	10 10	A2	8mA pullup-pe	SSI0_CLK: normal speed ssi 0 clock PC15: GPIO group C bit 15	VDDIO
SSI0_CE0 PC16	10 10	A3	8mA pulldown-pe rst-pe	SSI0_CE0: normal speed ssi 0 chip 0 select PC16: GPIO group C bit 16	VDDIO

2.5.8 **System**

Table 2-8 System Pins(1)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PC01 (BOOT_SEL1)	-0	E3		PC01: GPIO group C bit 01 It is taken as BOOT select bit 1 by Boot ROM code	VDDIO

2.5.9 Digital power/ground

Table 2-9 IO/Core power supplies for FBGA (30)

Pin Names	10	Loc	IO Cell Char.	Pin Description	Power
VDDMEM	Р	B4,B5,C4, C5,C6		VDDMEM: IO digital power for DDR PHY, 1.8V ± 0.1V	-
VDDIO_D	Р	H7		VDDIO_D: IO digital power for DVP power domain, 1.8V~3.3V	-
VDDIO	Р	H6,J6		VDDIO: IO digital power for none DRAM/NAND, 3.3V	-
VSS	Р	A4,B6,D4, D5,D6,D7, E5,E6,F6,G 5,G6,H5,J5		VSS: Digital ground, 0V	-
VDD	Р	E4,F4,F5,G 4,H4,J4		VDD: CORE digital power, 1.1V	-

2.5.10 Analog - USB

Table 2-10 USB 2.0 (4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
USB_DP0	AIO	K2		USB_DP0: OTG data plus	USB_VC CA3P3
USB_DM0	AIO	M1		USB_DM0: OTG data minus	USB_VC CA3P3
USB_USBRBI AS	AIO	K1		USB_USBRBIAS: Transmitter resister tune. It connects to an external resistor of 270Ω with 1% tolerance to ground VSS, that adjusts the OTG 2.0 high-speed source impedance	USB_VC CA3P3
USB_VCCA3P 3	Р	L1		USB_VCCA3P3: OTG 2.0 host & OTG analog power, 3.3V	-

2.5.11 Analog - SAR ADC

Table 2-11 SAR ADC Pins (3)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
ADC_VIN0	Al	J3		ADC_AIN0: ADC general purpose input 0	ADC_AVDD

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
ADC_VIN1	Al	J2		ADC_AIN1: ADC general purpose input 1	ADC_AVDD
ADC_AVDD	Р	F2		ADC_AVDD: ADC analog power, 3.3 V	-

2.5.12 Analog - CODEC

Table 2-12 CODEC Pins (6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
CODEC_MICP	Al	M4		CODEC_MICP: differential microphone input	CODEC_ AVDD
CODEC_MIC N	Al	L4		CODEC_MICN: differential microphone input	CODEC_ AVDD
CODEC_VCM	AO	М3		CODEC_VCM: Reference voltage output	CODEC_ AVDD
CODEC_HPO UT	AO	K3		CODEC_HPOUT: headphone output	CODEC_ AVDD
CODEC_AVD D	Р	L3		CODEC_AVDD:3.3v analog supply	-
CODEC_AVS S	Р	K4		CODEC_AVSS: Analog ground	-

2.5.13 Analog - MIPI-CSI

Table 2-13 MIPI CSI(8)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MIPI_CLKP	AIO	F7		Positive DPHY differential clock line transceiver output	MIPI_AV DD
MIPI_CLKN	AIO	F8		Negative DPHY differential clock line transceiver output	MIPI_AV DD
MIPI_DATAP0	AIO	E8		Positive DPHY differential data line transceiver output,lane0	MIPI_AV DD
MIPI_DATAN0	AIO	E9		Negative DPHY differential data line transceiver output,lane0	MIPI_AV DD
MIPI_DATAP1	AIO	G8		Positive DPHY differential data line transceiver output,lane1	MIPI_AV DD
MIPI_DATAN1	AIO	G7		Negative DPHY differential data line transceiver output,lane1	MIPI_AV DD
MIPI_REXT	AIO	Н8		Analog Probing Pin. It connects to an external resistor of $6.04 \text{K}\Omega$ with 1% tolerance to ground VSS	MIPI_AV DD
MIPI_AVDD	Р	Н9		MIPI_AVDD: mipi phy analog power, 2.5V	-

2.5.14 Analog - EFUSE

Table 2-14 EFUSE Pins for Two EFUSE (1)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
EFUSE_AVDD	Р	F3		AVDEFUSE: EFUSE programming power, 0V/2.5V	-

2.5.15 Analog - CPM

Table 2-15 CPM Pins (5)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
EXCLK_IN	Al	H1		EXCLK_XIN: OSC input or 24MHz clock input	VDDIO
EXCLK_OUT	AO	H2	Oscillator, OSC on/off	EXCLK_XOUT: OSC output	VDDIO
PLL_AVDDHV	Р	НЗ		PLL_AVDDHV: PLL analog power, 1.8V	-
PLL_AVDD	Р	J2		PLL_AVDD: PLL analog power, 1.1V	-
PLL_AVSS	Р	J1		AVSPLL: PLL analog ground	-

2.5.16 Analog - RTC

Table 2-16 RTC Pins (3)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
OSC32_IN	Al			OSC32_IN: 32768 clock input or OSC input	VDDIO
OSC32_OUT	AO	M2	Oscillator	OSC32_OUT: OSC output	VDDIO
PPRST_	I	J3		PPRST_: RTC power on reset and RESET-KEY reset input	VDDIO

NOTES:

- 1 The meaning of phases in IO cell characteristics are:
 - pull-up: The IO cell contains a pull-up resistor and the pull-up resistor cannot be enabled or disabled by setting corresponding register.
 - pull-down: The IO cell contains a pull-down resistor and the pull-down resistor cannot be enabled or disabled by setting corresponding register.
 - pullup-pe: The IO cell contains a pull-up resistor and the pull-up resistor can be enabled or disabled by setting corresponding register.
 - pulldown-pe: The IO cell contains a pull-down resistor and the pull-down resistor can be enabled or disabled by setting corresponding register.
 - rst-pe: these pins are initialed (during reset and after reset) to IO internal pull (up or down) enabled. Otherwise, the pins are initialed to pull disabled
 - Schmitt: The IO cell is Schmitt trigger input.
- 2 All GPIO shared pins are reset to GPIO input.

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

Table 3-1 Absolute Maximum Ratings

Parameter	Min	Max	Unit
Storage Temperature	-65	150	°C
Operation Temperature	-40	125	°C
VDDMEM DDR PHY and SDRAM power supplies voltage	-0.5	1.98	V
VDDIO power supplies voltage	-0.5	3.6	V
VDDIO_D power supplies voltage	-0.5	3.6	V
VDD power supplies voltage	-0.2	1.21	V
PLL_AVDD power supplies voltage	-0.2	1.21	V
PLL_AVDDHV power supplied voltage	-0.5	3.6	V
EFUSE_AVDD power supplies voltage	-0.5	2.75	V
USB_VCCA3P3 power supplies voltage	-0.5	3.63	V
ADC_AVDD power supplies voltage	-0.5	3.63	V
CODEC_AVDD power supplies voltage	-0.5	3.63	V
MIPI_AVDD power supplies voltage	-0.1	2.75	V
Maximum ESD stress voltage, Human Body Model; Any pin to any			
supply pin, either polarity, or Any pin to all non-supply pins together,	-	2000	V
either polarity. Three stresses maximum.			

3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

Symbol	Description	Min	Typical	Max	Unit
VDDMEM	VDDMEM voltage for SSTL18 (DDR2)	1.7	1.8	1.9	V
VDDIO	VDDIO voltage	3	3.3	3.6	V
VDDIO_D	VDDIO_D voltage	1.62	1.8	3.6	V
VDD	VDD core voltage	0.99	1.1	1.21	V
PLL_AVDD	AVDPLL analog voltage	1.08	1.1	1.21	V
PLL_AVDDHV	AVDPLL analog IO voltage	1.62	1.8	3.63	V
EFUSE_AVDD	AVDEFUSE voltage	2.25	2.5	2.75	V
USB_VCCA3P	AVDUSB33 voltage	3.0	3.3	3.6	V
3	Avbosbss vollage	3.0	ა.ა	3.0	V

ADC_AVDD	AVDAD voltage	3.0	3.3	3.6	V
CODEC_AVDD	CODEC_AVDD voltage	2.97	3.3	3.63	V
MIPI_AVDD	MIPI voltage	2.25	2.5	2.75	V

Table 3-3 Recommended operating conditions for VDDIO/VDDIO_D supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{IH18}	Input high voltage for 1.8V I/O application	1.17		3.6	V
V _{IL18}	Input low voltage for 1.8V I/O application	-0.3		0.63	V
V _{IH25}	Input high voltage for 2.5V I/O application	1.7		3.6	V
V _{IL25}	Input low voltage for 2.5V I/O application	-0.3		0.7	V
V _{IH33}	Input high voltage for 3.3V I/O application	2		3.6	V
V _{IL33}	Input low voltage for 3.3V I/O application	-0.3		0.8	V

Table 3-4 Recommended operating conditions for others

Symbol	Description	Min	Typical	Max	Unit
T _A	Ambient temperature	-20		85	°C

Table 3-5 Recommended operating conditions for ADC pins

Symbol	Description	Min	Typical	Max	Unit
V _{IADC}	ADC_AIN0/ADC_AIN1 input voltage range	0		AVD _{AD}	V

3.3 DC Specifications

The DC characteristics for each pin include input-sense levels and output-drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. All DC specification values are valid for the entire temperature range of the device.

Table 3-6 DC characteristics for V_{REFMEM} and V_{TT}

S	ymbol	Parameter	Min	Typical	Max	Unit
VR	REFM	Reference voltage supply	0.49	0.5	0.51	VMEM
VT	Т	Terminal Voltage	VREFM – 0.4	VREFM	VREFM + 0.4	V

Table 3-7 DC characteristics for VDDIO_D supplied pins for 1.8V application

Symbol	Parameter	Min	Typical	Max	Unit
V _T	Threshold point	0.77	0.84	0.92	V
V _{T+}	Schmitt trig low to high threshold point	0.99	1.1	1.19	V
V _T	Schmitt trig high to low threshold point	0.62	0.73	0.82	V

Threshold point with pull-up resistor ena	bled	0.77	0.84	0.91	V
Threshold point with pull-down resistor enabled		0.77	0.85	0.92	V
Schmitt trig low to high threshold point w pull-up resistor enabled	rith	0.99	1.1	1.19	V
Schmitt trig high to low threshold point w pull-down resistor enabled	rith	0.62	0.73	0.81	V
Schmitt trig low to high threshold point with pull-down resistor enabled		0.99	1.1	1.2	V
Schmitt trig high to low threshold point with pull-up resistor enabled		0.62	0.73	0.82	V
Input Leakage Current @ V _I =1.8V or 0V				±10	μA
Tri-State output leakage current @ V _I =1.	8V or 0V			±10	μA
Pull-up Resistor		79	129	218	kΩ
Pull-down Resistor		73	127	233	kΩ
Output low voltage				0.45	V
Output high voltage		1.35			V
	8mA	6.9	12.5	20.1	mA
Low level output current @ VoL(max)	16mA	11.5	20.8	33.5	mA
High level cutrust compart (2)// (citr)	8mA	4.9	11.6	22.6	mA
High level output current @ V _{OH} (min)	16mA	8.4	19.9	38.8	mA
	Threshold point with pull-down resistor en Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled Input Leakage Current @ V _I =1.8V or 0V Tri-State output leakage current @ V _I =1. Pull-up Resistor Pull-down Resistor Output low voltage	Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled Input Leakage Current @ V _I =1.8V or 0V Tri-State output leakage current @ V _I =1.8V or 0V Pull-up Resistor Pull-down Resistor Output low voltage Output high voltage Low level output current @ V _{OL} (max) 8mA 16mA 8mA	Threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled Input Leakage Current @ V _I =1.8V or 0V Tri-State output leakage current @ V _I =1.8V or 0V Pull-up Resistor Pull-down Resistor Output low voltage Output high voltage Output high voltage Low level output current @ V _{OL} (max) High level output current @ V _{OH} (min) 8mA 4.9	Threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled Input Leakage Current @ V _i =1.8V or 0V Tri-State output leakage current @ V _i =1.8V or 0V Pull-up Resistor Pull-down Resistor Output low voltage Output high voltage Low level output current @ V _{OL} (max) BmA 6.9 12.5 16mA 11.5 20.8 High level output current @ V _{OH} (min)	Threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-up resistor enabled Schmitt trig high to low threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig low to high threshold point with pull-down resistor enabled Schmitt trig high to low threshold point with pull-up resistor enabled Input Leakage Current @ Vi=1.8V or 0V Tri-State output leakage current @ Vi=1.8V or 0V Pull-up Resistor Pull-down Resistor 79 129 218 Pull-down Resistor 73 127 233 Output low voltage Output high voltage Low level output current @ VoL(max) High level output current @ VoH(min)

Table 3-8 DC characteristics for VDDIO_D supplied pins for 2.5V application

Symbol	Parameter	Min	Typical	Max	Unit
V _T	Threshold point	1.03	1.13	1.23	V
V _{T+}	Schmitt trig low to high threshold point	1.32	1.45	1.56	V
V _{T-}	Schmitt trig high to low threshold point	0.92	1.01	1.12	V
V _{TPU}	Threshold point with pull-up resistor enabled	1.03	1.13	1.23	V
V _{TPD}	Threshold point with pull-down resistor enabled	1.05	1.14	1.23	V
V _{TPU+}	Schmitt trig low to high threshold point with	1.32	1.45	1.55	V
VIFOT	pull-up resistor enabled	1.02	1.10	1.00	
V _{TPU}	Schmitt trig high to low threshold point with	0.91	1	1.12	V
VIPU-	pull-down resistor enabled	0.51	'	1.12	V
V _{TPD+}	Schmitt trig low to high threshold point with	1.33	1.46	1.56	V
V IPD+	pull-down resistor enabled	1.33	1.40	1.50	
V	Schmitt trig high to low threshold point with	0.92	1.01	1 12	V
V _{TPD} _	pull-up resistor enabled	0.92	1.01	1.13	V
I _L	Input Leakage Current @ V _I =1.8V or 0V			±10	μA
l _{OZ}	Tri-State output leakage current @ V _I =1.8V or 0V			±10	μA
R _{PU}	Pull-up Resistor	53	82	132	kΩ
R _{PD}	Pull-down Resistor	51	82	143	kΩ

V _{OL}	Output low voltage				0.7	V
V _{OH} Output high voltage		1.7			V	
	Low level output current @ V _{OL} (max)	8mA	15.1	25.3	37.3	mA
IOL		16mA	25.1	42.2	62.2	mA
	High level output current @ V _{OH} (min)	8mA	13.3	26.6	46.4	mA
Іон		16mA	22.8	45.7	79.6	mA

Table 3-9 DC characteristics for VDDIO/VDDIO_D supplied pins for 3.3V application

Symbol	Parameter		Min	Typical	Max	Unit
V _T	Threshold point		1.34	1.46	1.6	V
V _{T+}	Schmitt trig low to high threshold point		1.69	1.83	1.96	V
V _T _	Schmitt trig high to low threshold point		1.21	1.32	1.46	V
V _{TPU}	Threshold point with pull-up resistor enal	oled	1.33	1.44	1.59	V
V _{TPD}	Threshold point with pull-down resistor e	nabled	1.36	1.47	1.6	V
V _{TPU+}	Schmitt trig low to high threshold point with pull-up resistor enabled		1.69	1.82	1.94	V
V _{TPU} _	Schmitt trig high to low threshold point with pull-down resistor enabled		1.2	1.31	1.45	V
V _{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled		1.71	1.84	1.97	V
V _{TPD}	Schmitt trig high to low threshold point with pull-up resistor enabled		1.23	1.33	1.46	V
IL	Input Leakage Current @ V _I =1.8V or 0V				±10	μA
loz	Tri-State output leakage current @ V _I =1.	8V or 0V			±10	μA
R _{PU}	Pull-up Resistor		41	60	92	kΩ
R _{PD}	Pull-down Resistor		43	64	104	kΩ
V _{OL}	Output low voltage				0.4	V
V _{OH}	Output high voltage		2.4			V
	Laveland autout auront @V (com)	8mA	13.1	20.2	27.4	mA
I _{OL}	Low level output current @ V _{OL} (max) 16mA		21.9	33.8	45.7	mA
	Link land outsit comment (C) / (min)	8mA	19.3	38.2	64.5	mA
Іон	High level output current @ V _{OH} (min)	16mA	33.1	65.4	110.5	mA

3.4 Audio codec

3.4.1 Microphone input

There are two microphone input channels, MICR and MICN. They can be configured as either single-ended input or differential inputs by the microphone PGA(MIC).

In single-ended mode., MICN is input to MIC, respectively. In differential mode, MICP is also input to MIC to form a differential input pair with MICN.

Microphone PGA has two gains to amplify the input signal, that is, 0dB and +20dB.

3.4.2 ALC

Automatic Level Control (ALC) function is included to adjust the signal level, which is input into ADC. ALC will measure the signal magnitude and compare it to defined threshold. Then it will adjust the ALC controlled PAG (ALC) gain according to the comparison result.

The programmable gain range of ALC controlled PAG is from -18dB to +28.5dB. The tuning step is 1.5dB.

3.4.3 Headphone output

DAC output can drive 16 Ohm or 32 Ohm headphone load through DC-blocking capacitor.

In the configuration using DC-blocking capacitor, shown in following figure, the headphone ground is connected to the real ground. The capacitance and the load resistance determine the lower cut-off frequency. For instance, if 16 Ohm headphone and 100uF DC-blocking capacitor are used, the lower cut-off frequency is

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 16 \times 100 \times 10^{-6}} = 99.5Hz$$

The DC-blocking capacitor can be increased to lower the cut-off frequency for better bass response.

The headphone driver chooses DAC output as input. It has a gain rang from -39dB to +6dB with a tuning step of 1.5dB..

3.5 Power On, Reset and BOOT

3.5.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the X1520 processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1 shows this sequence and Table 3-10 gives the timing parameters. Following are the name of the power.

- AVDAUD: CODEC_AVDD
- VDD11: all 1.1V power supplies, include VDD, PLL_AVDD
- VDDIO: all other digital IO, include DDR power supplies: VDDMEM, VDDIO, VDDIO_D
- AVD: all other analog power supplies: ADC_AVDD, USB_VCCA3P3, MIPI_AVDD, PLL_AVDDHV
- EFUSE_AVDD

Table 3-10 Power-On Timing Parameters

Symbol	Parameter	Min	Max	Unit
t _{R_VDDIO}	VDDIO rise time ^[1]	0	5	ms
t _{R_VDD11}	VDD11 rise time ^[1]	0	5	ms
t _{D_VDD11}	Delay between VDDIO arriving 50% (or 90%) to VDD11 arriving 50% (or 90%)	-1	1	ms
t _{R_AVDAUD}	AVDAUD rise time ^[1]	0	5	ms
t _{D_AVDAUD}	Delay between VDD11 arriving 50% (or 90%) to AVDAUD arriving 50% (or 90%)	0	1	ms
t _{R_AVD}	AVD rise time ^[1]	0	5	ms
t _{D_AVDA}	Delay between VDDIO arriving 50% to AVD arriving 50%	-1	1	ms
t _{D_PPRST_}	Delay between VDDAUD stable and PPRST_ deasserted	TBD ^[3]	_	ms ^[2]
t _{D_VPEFUSE}	Delay between PPRST_ finished and E-fuse programming power apply	0	-	ms

NOTES:

• The power rise time is defined as 10% to 90%.

- The PPRST_ must be kept at least 100us. After PPRST_ is deasserted, the corresponding chip reset will be extended at least 40ms.
- It must make sure the EXCLK is stable and all power(except AVDEFUSE) is stable.

Figure 3-1 Power-On Timing Diagram

3.5.2 Reset procedure

There 2 reset sources: 1 PPRST pin reset; 2 WDT timeout reset. After reset, program start from boot.

- PPRST_ pin reset.
 - This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST_.
- WDT reset.

This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles. After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "2.5Pin Description [1][2]" for details. 1. The oscillators are on. The USB 2.0 OTG PHY and USB 1.1 PHY, the audio CODEC DAC/ADC, the SAR-ADCs is put in suspend mode.

3.5.3 **BOOT**

The boot sequence of the X1520 is controlled by boot_sel1. The configuration is shown as follow:

Table 3-11 Boot Configuration of X1520

boot_sel1	Boot method
0	SFC boot @ CS4 (SPI boot)
1	USB boot @ USB 2.0 device, EXTCLK=24MHz

The boot procedure is showed in the following flow chart:

As shown in Figure 3-2 boot sequence Block Diagram, after reset, the boot program on the internal boot ROM executes as follows:

- 1 Disable all interrupts and read boot sel1 to determine the boot method.
- 2 There 26KB backup reading failed, the 26KB backup at 128th, 256th, ..., and finally 1024th page will be tried in consecutive order.
- 3 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in cache. Then branch to this area in cache.
- 4 If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK,SFC_CE, SFC_DR,SFC_DT, SFC_WP,SFC_HOLD are initialized,the boot program loads the 12kB code from SPI NAND/NOR flash to cache and jump to it.

When SFC boot start failure, the program in bootrom will go into USB boot.

Figure 3-2 Boot sequence diagram of X1520