

Linear Algebra (5th edition)

Stephen Friedberg, Arnold Insel, Lawrence Spence

Chapter 03: Elementary matrix operations and systems of linear equations

Jihwan Moon

Table of Contents

- 3.1 Elementary matrix operations and elementary matrices
- 3.2 The rank of a matrix and matrix inverses
- 3.3 Systems of linear equations Theoretical aspects
- 3.4 Systems of linear equations Computational aspects

3.1 Elementary matrix operations and elementary matrices

- Objectives
 - 1 The study of certain "rank-preserving" operations in matrices
 - Obtaining a simple method for computing the rank of a linear transformation between finitedimensional vector spaces
 - ② The application of these operations and the theory of linear transformations to the solution of systems of linear equations
 - The most important application of linear algebra
 - 3 Elementary row operations to simplify the system
 - Interchanging any two equations in the system
 - Multiplying any equation in the system by a non-zero constant
 - Adding a multiple of one equation to another

Elementary operations

Elementary operations:

Let **A** be an $m \times n$ matrix.

Any one of the following 3 operations on the rows (columns) of **A** is called an elementary row (column) operation:

- 1 Interchanging any two rows (columns) of A
- 2 Multiplying any row (column) of A by a non-zero scalar
- 3 Adding any scalar multiple of a row (column) of A to another row (column)
- Example 3.1.1

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\text{Row1} \rightleftharpoons \text{Row2}} \begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & 4 \\ 4 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\text{Row2} \leftarrow \text{Row2} + 4 \times \text{Row3}} \begin{bmatrix} 2 & 1 & -1 & 3 \\ 17 & 2 & 7 & 12 \\ 4 & 0 & 1 & 2 \end{bmatrix}$$

Elementary operations

Elementary operations:

Let **A** be an $m \times n$ matrix.

Any one of the following 3 operations on the rows (columns) of A is called an elementary row (column) operation:

- 1 Interchanging any two rows (columns) of A
- 2 Multiplying any row (column) of A by a non-zero scalar
- 3 Adding any scalar multiple of a row (column) of A to another row (column)
- Example 3.1.1

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\text{Coll} \rightleftharpoons \text{Col2}} \begin{bmatrix} 2 & 1 & 3 & 4 \\ 1 & 2 & -1 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix} \xrightarrow{\text{Col2} \leftarrow \text{Col2} + 4 \times \text{Col3}} \begin{bmatrix} 2 & 13 & 3 & 4 \\ 1 & -2 & -1 & 3 \\ 0 & 8 & 1 & 2 \end{bmatrix}$$

Elementary operations

Elementary matrix:

An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on I_n .

The elementary matrix is said to be of type (1), (2), or (3) according to whether the elementary operation performed on I_n is a type (1), (2), or (3) operation, respectively.

Example

Type ①: Interchanging the first two rows of I₃

$$\mathbf{E} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies \mathbf{E}\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & 4 \\ 4 & 0 & 1 & 2 \end{bmatrix}$$

Elementary operations

Elementary matrix:

An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on \mathbf{I}_n .

The elementary matrix is said to be of type 1, 2, or 3 according to whether the elementary operation performed on \textbf{I}_n is a type 1, 2, or 3 operation, respectively.

Example

• Type 1: Interchanging the first two columns of I_4

$$\mathbf{E} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \implies \mathbf{A}\mathbf{E} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 2 & -1 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix}$$

Elementary operations

Elementary matrix:

An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on I_n .

The elementary matrix is said to be of type (1), (2), or (3) according to whether the elementary operation performed on I_n is a type (1), (2), or (3) operation, respectively.

- Example
 - Type ③: Row1←Row1-2×Row3 of I₃

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies \mathbf{E}\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -7 & 2 & 1 & 0 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix}$$

Elementary operations

Elementary matrix:

An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on \mathbf{I}_n .

The elementary matrix is said to be of type (1), (2), or (3) according to whether the elementary operation performed on I_n is a type (1), (2), or (3) operation, respectively.

Example

• Type ③: Col1←Col1-2×Col3 of I₄

$$\mathbf{E} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \implies \mathbf{A}\mathbf{E} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 2 & 3 & 4 \\ 4 & 1 & -1 & 3 \\ 2 & 0 & 1 & 2 \end{bmatrix}$$

Elementary row operations

Theorem 3.1:

Let $\mathbf{A} \in M_{m \times n}(F)$ and suppose that \mathbf{B} is obtained from \mathbf{A} by performing an elementary row (column) operation.

Then there exists an $m \times m$ $(n \times n)$ elementary matrix **E** such that **B** = **EA** (**B** = **AE**).

In fact, **E** is obtained from I_m (I_n) by performing the same elementary row (column) operation as that which was performed on **A** to obtain **B**.

Conversely, if **E** is an elementary $m \times m$ ($n \times n$) matrix, then **EA** (**AE**) is the matrix obtained from **A** by performing the same elementary row (column) operation as that which produces **E** form I_m (I_n).

Elementary row operations

Theorem 3.2:

Elementary matrices are invertible, and the inverse of an elementary matrix is an elementary matrix of the same type.

- Proof)
 - Let **E** be an elementary $n \times n$ matrix.
 - Then, **E** can be obtained by an elementary row operation on I_n .
 - By reversing the steps, we can transform \mathbf{E} back into \mathbf{I}_n .
 - By Theorem 3.1,
 - There exists an elementary matrix $\overline{\mathbf{E}}$ such that $\overline{\mathbf{E}}\mathbf{E} = \mathbf{I}_n$.
 - $\therefore \mathbf{E}^{-1} = \overline{\mathbf{E}}$
 - ∴ Q.E.D.