Příklady z Diskrétní matematiky 2017-10-09

Indukce

Součet mocnin dvojky

Dokažte indukcí:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1.$$

Součet vážených mocnin dvojky

Dokažte indukcí:

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{n+1} + 2.$$

Součin zlomků

Dokažte indukcí:

$$\prod_{i=2}^{n} \frac{i-1}{i} = \frac{1}{n}.$$

Dělitelnost

Dokažte, že $4 \setminus (6n^2 + 2n)$ pro každé $n \ge 0$.

Dělitelnost podruhé

Dokažte, že $8 \setminus (n^2 - 1)$ pro každé liché n > 0.

Součin prvočísel

Dokažte, že každé celé kladné číslo lze vyjádřit jako součin prvočísel.

Vztahy pro Fibonacciho čísla

Definujme Fibonacciho čísla následovně: $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$. Dokažte, že platí:

$$\bullet \sum_{i=1}^{n} F_i = F_{n+2} - 1$$

•
$$F_n > 2^{(n-2)/2}$$
 pro $n > 2$

•
$$F_n \ge 2^{(n-2)/2}$$
 pro $n \ge 2$
• $(F_n)^2 = F_{n-1}F_{n+1} + (-1)^{n+1}$

$$\bullet \sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$$

Něco navíc:

Součet čtverců

Dokažte indukcí:

$$\sum_{i=1}^{n} i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n.$$

Pluska a minuska

Označme S_n množinu celých čísel, která lze zapsat ve tvaru $\pm 1 \pm 2 \pm 3 \dots \pm n$ (kde každé \pm nahradíme znaménkem + nebo – nezávisle na ostatních). Co tato množina obsahuje?

Egyptské zlomky

Obyvatelé staroegyptské říše zapisovali zlomky jako součty tzv. kmenových zlomků ve tvaru 1/n, například 3/5 = 1/2 + 1/10. Dokažte, že každý zlomek z intervalu (0,1) lze takto vyjádřit. Nápověda: rozklad zlomku m/n bude začínat zlomkem $1/\lceil n/m \rceil$.