Messbericht Spannungsteiler festes Widerstandsverhältnis

Felix Schiller Sebastian Littau E1FS2

Reutlingen, am 25. Januar 2016

Inhaltsverzeichnis

1	Messaufgabe							
2	2 Messung							
	2.1	Spannungsteiler unbelastet						
		2.1.1	Spannungsteiler aus zwei in Reihe geschalteten Widerständen	2				
		2.1.2	Aufbau der Schaltung	3				
		2.1.3	Berechnung und Messung der Spannung an R_2	3				
		2.1.4	Merksatz zum Spannungsteiler	3				
	2.2	Spannungsteiler belastet						
	2.3	3 Schaltung mit belastetem Spannungsteiler						
	2.4	Aufba	u der Schaltung	4				
		2.4.1	Berechnung und Messung der Ausgangsspannung	4				
		2.4.2	Wie ändert sich die Ausgangsspannung? Warum ändert sie sich? .	4				
	2.5	Spann	ungsteiler mit veränderbarer Belastung	4				
		2.5.1	Messschaltung	4				
		2.5.2	Durchführung der Messung	4				
		2.5.3	Belastungskennlinie	5				

1 Messaufgabe

An einem Spannungsteiler mit festen Widerständen sollen die Spannungen im unbelasteten und im belasteten Zustand untersucht werden.

2 Messung

2.1 Spannungsteiler unbelastet

2.1.1 Spannungsteiler aus zwei in Reihe geschalteten Widerständen

2.1.2 Aufbau der Schaltung

In der oben skizzierten Schaltung sind die Widerstände R_1 und R_2 in Reihe an die Spannungsquelle angeschlossen und bilden einen Spannungsteiler. Die Widerstandswerte betragen $R_1 = 1k\Omega$ und $R_2 = 330\Omega$. Als Speisespannung wird $U_b = 20V$ angelegt. Mit den Messgeräten, die parallel zu den Widerständen angeschlossen sind können die Spannugnen U_1 und U_2 gemessen werden. I_G ist der Gesamtstrom durch die Schaltung.

2.1.3 Berechnung und Messung der Spannung an R_2

Die Ausgangsspannung an \mathbb{R}_2 wurde zu 999999V gemessen.

Die selbe Spannung kann über den Gesamtstrom I_G in der Schaltung berechnet werden.

$$I_G = \frac{U_G}{R_G} = \frac{U_G}{R_1 + R_2}$$

$$U_A = U_2 = R_2 \cdot \frac{U_G}{R_1 + R_2} = 330\Omega \cdot \frac{20V}{1000\Omega + 330\Omega} = 4.96V$$

Alternativ kann die Ausgangsspannung über das Teilerverhältnis des Spannungsteilers ausgerechnet werden.

$$\frac{U_G}{R_G} = \frac{U_A}{R_2} \Rightarrow U_2 = U_G \cdot \frac{R_1}{R_G} = 4.96V$$

2.1.4 Merksatz zum Spannungsteiler

bla bla hab ich mir leider nicht aufgeschrieben. bitte ersetzen

2.2 Spannungsteiler belastet

2.3 Schaltung mit belastetem Spannungsteiler

2.4 Aufbau der Schaltung

bla bla blub

2.4.1 Berechnung und Messung der Ausgangsspannung

In dieser Schaltung wurde eine Ausgangsspannung von 99999V gemessen.

$$U_{2} = U_{G} \cdot \frac{\frac{R_{2} \cdot R_{L}}{R_{2} + R_{L}}}{R_{1} + fracR_{2} \cdot R_{L}R_{2} + R_{L}}$$

$$= 20V \cdot \frac{\frac{330\Omega \cdot 220\Omega}{330\Omega + 220\Omega}}{1000\Omega + \frac{330\Omega \cdot 220\Omega}{330\Omega + 220\Omega}}$$

$$= 2,33V \tag{1}$$

2.4.2 Wie ändert sich die Ausgangsspannung? Warum ändert sie sich?

Die Ausgangsspannung U_A sinkt, da der Ersatzwiderstand aus R_2 und R_L kleiner ist als der ursprüngliche R_2 . bla bla

2.5 Spannungsteiler mit veränderbarer Belastung

2.5.1 Messschaltung

2.5.2 Durchführung der Messung

In der Schaltung werden laufend der Strom I_L und die Spannung U_L gemessen. Der Laststrom I_L wird über den $10k\Omega$ -Drehwiderstand eingestellt und in 1mA-Schritten von 0-15mA erhöht.

Spannungsteiler, festes Widerstandsverhältnis

Strom I_L in mA	0	1	2	3	4	5	6	7
Spannung U_L in V	4,97	4,72	4,47	4,22	3,98	3,72	3,74	3,21
Strom I_L in mA	8	9	10	11	12	13	14	15
Spannung U_L in V	2,96	2,74	2,51	2,20	1,95	1,70	1,44	1,20

2.5.3 Belastungskennlinie

Die gemessenen Werte lassen sich in einem Diagramm darstellen.

Abbildung 1: Belastungskennlinie

