	C. A		
		1 1	

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2016/2017

EEE2146 – MICROELECTRONIC CIRCUIT ANALYSIS AND DESIGN

(All sections / Groups)

4 MARCH 2017 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This examination paper consists of 6 pages with 4 questions only.
- 2. Attempt ALL FOUR questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

Question 1

- (a) Compute the transistor base current, I_B , emitter current, I_E , emitter voltage, V_E and base voltage, V_B (with respect to ground) of the circuit shown in Figure Q1. Given that $V_{CC} = 9$ V and the transistor $V_{BE(active)} = 0.7$ V, current gain $\beta = 100$ and early voltage $V_A = \infty$.
- (b) Draw the small-signal equivalent circuit of the amplifier circuit in Figure Q1 using the simplified hybrid model. [5 marks]
- (c) From the small-signal equivalent circuit, determine the small signal input resistance, R_{IN} and the overall voltage gain. $\frac{v_0}{v_s}$. Given that voltage equivalence of temperature $V_T = 26 \text{ mV}$.

[13 marks]

Figure Q1

Continued...

Question 2

The circuit shown in Figure Q2 is a common-source amplifier. The transistor has V_t = 1.5V, $k_n(W/L)$ = 0.25 mA/V² and V_A = 50 V.

(a) From the DC analysis, compute the values for DC drain current, I_D and DC drain voltage, V_D . Assume the DC gate current, $I_G = 0$.

[7 marks]

(b) Draw a small-signal equivalent circuit for the circuit shown in Figure Q2 using the simplified hybrid model.

[5 marks]

(c) Derive and compute the small-signal voltage gain, $\frac{v_0}{v_l}$, then compute the input resistance R_{IN}. [13 marks]

Figure Q2

Question 3

Figure Q3 below shows a MOSFET current mirror and a MOSFET differential amplifier. The voltage supply $V_{DD} = V_{SS} = 1.5V$. Assume that all transistors are identical (same k_n and V_t) and the transistors are in saturation.

- (a) Find I_{REF} if $V_{GS4}=V_{GS3}=1~V$ and $R_1=2.5~k\Omega.$ Then, compute I_q when (W/L) $_4=2$, (W/L) $_3=4$, $k_n=200\mu$ A/V and $V_t=0.5~V$. [6 marks]
- (b) Draw the differential-mode small signal equivalent circuit for the differential amplifier below, then prove that the differential-mode voltage gain,

$$A_{d} = \frac{v_{od}}{v_{id}} = -g_{m} (R_{D} || r_{o}).$$
 [9 marks]

(c) Then, compute the values of R_{D1} and R_{D2} . Assume M1 and M2 are identical with $V_{OV}=0.5$, early voltage, $V_A=\infty$ and the differential-mode voltage gain, $A_d=-250$.

[10 marks]

Figure Q3

Continued...

Question 4

(a) Draw a low frequency small signal equivalent circuit of the circuit shown in Figure Q4 (a) using hybrid- π model. Ignore the effect of the transistor output resistance, r_0 . Then, derive the equations for the lower cutoff frequencies f_{C1} and f_{C2} of the circuits. Use necessary equivalent circuits to show in your derivations.

[11 marks]

(b) The non-inverting amplifier shown in Figure Q4 (b) is a series-series feedback transconductance amplifier. Derive the equations for gain A_f , output resistance R_{of} and input resistance R_{if} . Draw the amplifier equivalent circuit to assist the derivations.

[14 marks]

Figure Q4(b)

Continued...

Appendix: Useful formula

$$\begin{split} & V_T = \frac{kT}{q} \approx 26mV \\ & I_B = \frac{I_C}{\beta_F} \\ & I_E = \frac{-I_C}{\alpha_F} \\ & I_C = I_S \left(\exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \\ & g_m = \frac{\partial I_C}{\partial V_{BE}} = \frac{I_C}{V_T} \\ & C_b = \tau_F g_m \\ & F_a = \frac{\beta_B}{g_m} = \frac{\beta V_T}{I_C} = \frac{V_T}{I_B} \\ & F_a = \frac{I_D}{\partial V_{CE}} = \frac{V_A}{I_C} \\ & F_a = \frac{I_D}{\partial V_{CE}} = \frac{V_A}{I_C} \\ & F_a = \frac{I_D}{\partial V_{CE}} = \frac{V_A}{I_C} \\ & F_a = \frac{I_D}{I_C} = \frac{V_A}{I_C} \\ & F_a = \frac{I_D}{I_C} = \frac{I_D}{I_C} \\ & F_a = \frac{I_D}{I_D} = \frac{I_D}{I_D} \\ & F_a = \frac{I_D}{I_D} \\ & F_a = \frac{I_D}{I_D} = \frac{I_D}{I_D} \\ & F_a = \frac{I_D}{I$$

End of Paper