

- Logic effort is an assignment of a number to logic gate to describe
 the drive strength (current) of the gate relative to that of a
 reference inverter.
- A logic gate is characterized by:
 - Logical effort
 - Parasitic delay
- Logic effort definitions:
- Measure of how much worse the gate ability to deliver output current compare with an inverter with identical input capacitance
- The ratio of gate input capacitance to that of an inverter which deliver equal output current.
- The slope of the gate input capacitance vs. fanout curve divided by the slope of an inverter delay vs. fanout curve

Advanced Digital IC Design 🎏

- The capacitance C_A is combined input capacitive of every signal in the input group A.
- The capacitance C_{inv} is input capacitance of inverter designed to have the same drive capability of the digital gate.
- Assumption: mobility of pMOS is half of the nMOS

$$\gamma = \mu = \frac{\mu_n}{\mu_p}$$

- Capacitance is proportional to the width W.
- The conductance is proportional to the width W.

Advanced Digital IC Design

- The Inverter input low and output high.
- The mobility of pMOS is half of nMOS.
- Pullup input capacitance of an inverter is proportion to 2W
- Pulldown input capacitance of an inverter is proportion to W
- Total input capacitance of an inverter is proportion to 3W

• The Logical effort of an input group g_A

$$g_A = \frac{C_A}{C_{inv}} = \frac{\sum_{i}^{A} C_i}{C_{inv}}$$

- The capacitance C_A is combined input capacitive of every signal in the input group A.
- The capacitance C_{inv} is input capacitance of inverter designed to have the same drive capability of the digital gate.
- Assumption: mobility of pMOS is half of the nMOS

$$\gamma = \mu = \frac{\mu_n}{\mu_p}$$

- Capacitance is proportional to the width W.
- The conductance is proportional to the width W.

- The Inverter input low and output high.
- The mobility of pMOS is half of nMOS.
- Pullup input capacitance of an inverter is proportion to 2W
- Pulldown input capacitance of an inverter is proportion to W
- Total input capacitance of an inverter is proportion to 3W

Combinational Logic

Advanced Digital IC Design

- The 2-input NAND gate with two inputs low and output high
- The mobility of pMOS is half of nMOS.
- Pullup input capacitance of an inverter is proportion to 2W
- Pulldown input capacitance of an inverter is proportion to 2W
- the input capacitance of one input signal of 2-input NAND gate is proportion to the sum of the width of pullup transistors and pulldown transistors 2W + 2W = 4W
- Total input capacitance of an inverter is proportion to 3W
- The two pulldown transistors are in series
- The two pullup transistors are in parallel
- The logical effort $g_{NAND} = \frac{C_{NAND}}{C_{inv}} = \frac{4}{3}$

Combinational Logic

Advanced Digital IC Design

- The 2-input NOR gate with two inputs low and output high.
- The mobility of pMOS is half of nMOS.
- Pullup input capacitance of an inverter is proportion to 2W
- Pulldown input capacitance of an inverter is proportion to 2W
- the input capacitance of one input signal of 2-input NOR gate is proportion to the sum of the width of pullup transistors and pulldown transistors W + 4W = 5W
- Total input capacitance of an inverter is proportion to 3W

•

The logical effort $g_{NOR} = \frac{C_{NOR}}{C_{inv}} = \frac{5}{3}$

Normalized delay:

$$d = f + p$$

- Stage effort (f) depends on the load
- Intrinsic delay (p) of the logic gate
- Stage effort (f)
 - Logical effort (g)

$$g = \frac{C_{gate}}{C_{inv}}$$

Electrical effort (h)

$$h = \frac{C_{\text{in of load}}}{C_{\text{in of inv}}}$$

Stage effort

$$f = gh$$

- Multistage logic network:
- Normalized path delay

$$D = NF^{\frac{1}{N}} + P$$

- Parasitic path delay P.
- Path logical effort G(the productof the individual logical effors of the gates.
- Path electrical effort H is the ratio of th load of the path to its input.

$$F = GH$$

Path branching effort B is product of individual path effort.

$$F = GHB$$

Minimum delay:

$$f = F^{\frac{1}{N}}$$

- Number of stage N.
- Total normalized delay of an inverter

$$d = gh + p = (1)(1) + 1 = 2$$

Normalized parasitic delay of 2-input NAND gate

$$d = gh + p = \left(\frac{4}{3}\right)(1) + 2 = \frac{10}{3}$$

Normalized parasitic delay of 2-input NOR gate

$$d = gh + p = \left(\frac{5}{3}\right)(1) + 2 = \frac{11}{3}$$

Logic Gates

Gate Type	Logic Effort	Formula	$n = 2$ $\gamma = 2$	$n = 3$ $\gamma = 2$	$n = 4$ $\gamma = 2$
NAND	Total	$\frac{n(n+\gamma)}{1+\gamma}$	$\frac{8}{3}$	5	8
	per input	$\frac{\left(n+\gamma\right)}{1+\gamma}$	$\frac{4}{3}$	$\frac{5}{3}$	2
NOR	Total	$\frac{n(n+\gamma)}{1+\gamma}$	<u>10</u> 3	7	12
	per input	$\frac{(n+\gamma)}{1+\gamma}$	$\frac{5}{3}$	$\frac{7}{3}$	3

Logic Gates

Gate Type	Logic Effort	Formula	$n = 2$ $\gamma = 2$	$n = 3$ $\gamma = 2$	$n = 4$ $\gamma = 2$
XOR XNOR	Total	$n^2\left(2^{n-1}\right)$	8	36	128
	per boundle	$n(2^{n-1})$	4	12	32
MUX	Total	4 <i>n</i>	8	12	16
	d,s*	2,2	2,2	2,2	2,2

