Mis 2 E(E236A) Sharge Ye 20541f959 Problem | 1) C= { x = 1/2" | 1/x/10 = h} 11×110 = max {/x1/,/x2/, ...,/xn/} = max 5x1, -x1, x2, -x2, -.., xn, -xn) //x// w < r => Xi < N for i=1, >, -...n j=1,7,...r could be expressed as a set of Linear inequalities It's linearity space only rontain (u) =) pointed polyhedror in 112" The vertices should satisfy n equalities $\dot{X} = \bar{b} + \bar{b} + \bar{b}$ pach position has 2 choices => > r vertices

we can find matrix A. and column vector b

$$5. \pm = 7 = \{x \in \mathbb{P}^3 \mid A \times > b\}$$

we check $xo = (1.1.1)^7$

row 1, 2, 3 are active roustraints

$$A_{J}(\hat{x}) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad rank(A_{J}(\hat{x})) = 2 + 3$$

$$3 + 2 + 1 = 3$$

.. Xu is not a vertex

- (ii) The minimal face of a polyhodron is always a single
 - False. The minimal face is defined for a pulyhedron, if the linearity space of that polyhedron contains a line, its minimal face also contains a line
- (iii) $P \subseteq \mathbb{R}^d$ and $Z \subseteq \mathbb{R}^e$ he polytopes. The the following $S \subseteq \mathbb{R}^{2d+e+1}$ is also a polytope

$$S = \begin{cases} 2 \in \mathbb{N}^{d+e+1} | 2 = \begin{pmatrix} y \\ 0 \end{pmatrix} + \begin{pmatrix} y \\ 1 \end{pmatrix} & x \in \mathbb{P} \text{ and } y \in \mathbb{R} \end{cases}$$

True. polytopes are bounded polyhodron, so they are affine Set. we need to prove that \text{\$\frac{1}{21.22}\$} H121+6/22 ES H+6)= (-) need to prove S is un affine set) $\frac{\operatorname{Suppose}}{\operatorname{Suppose}} \quad 21 = \begin{pmatrix} x_1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_1 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix}$ $2) = \begin{pmatrix} 42 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 32 \\ 1 \end{pmatrix} = \begin{pmatrix} 42 \\ 41 \\ 1 \end{pmatrix}$ H121+0157= | A1XH A>XZ | A1XH A>XZ U11U2

· X = P P is a puly tope (affine set) ··· UIXITULX2 = X3 EP

y C U U is an affine set ... Ulyit U> 92 = 43 CO 01762=1

.. set s is an offine set, and z = (y)

herause P. w are polytope (bounded) x = P, y = w count he infinity number 2 < S. S is also a polytope Problem 3 prove the two program (4) and (5) are equivalent min - c7(x,-x2)
71,121/1/2 S.t A(x1-x2) + y1-4> =0 (4) y 1ty2 = 入 I 170, 4270, 4,70. y,70. max 2 c12 (2) S.t 1/A21/0 E> minimize a value is equivalent to maximize its negative value $M \sigma \times C^{T}(\chi_{1}-\chi_{2})$ 71, x21 y1, y2 Sit A(x1-x2) + y1-y2 = 0 (1) 71+Y2 = >Z 1170 14270, UKIY, UFIK (4) is equivalent to (1) consider a mapping 2=X1-X2

=) max
$$c^{\dagger} g$$
 $\frac{2}{2}191.92$
 5.4
 $A = 491.92 = 0$
 1192.92
 1192.92
 1192.92

Assume 11.12 is a freshle paint in (1)

 $2 = 11.42$

frequible 11.12

Assume 11.12
 11.12
 11.12

Assume 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11.12
 11

Then we notice that the constraints $A2 + y_1 - y_2 = 0$ $A2 = y_2 - y_1$

and
$$y_1+y_2=\lambda 1$$

$$y_1+y_2=\lambda 1$$

$$y_1+y_2=\lambda 1$$

$$\vdots$$

$$\lambda = x^2 + y_2-y_1=\lambda 1-2y_1$$

$$A_2=y_2-y_1=\lambda 1-2y_1$$

$$A_2 = y_2 - y_1 = \lambda 1 - 2y_1$$

$$A_2 = 17 - 291$$
 ... 9170

we notice that 2y, here is the slock variable

$$A_2 = \lambda 1 - y_1$$

$$y_1 > 0$$

$$A_2 = \lambda 1$$

standard form

in equality form

.. (2) is equivalent to max
$$c^{7}$$
?

$$A \ge \le \lambda$$
 $A \ge \le \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ $A \ge A \ge A$

