Colon Cancer Subtypes from Gene Expression Data OxWaSP Module 3: Applied Statistics

Emmanuelle Dankwa Natalia Garcia Martin William Thomas

16 November 2018

- 1 Introduction and data pre-processing
- 2 Clustering
- 3 Classification
- 4 Discussion

Background and Data

The Data

- Gene expression data for 54,675 genes from 90 patients
- Patients have stage II colon cancer and underwent curative surgery
- Samples taken in Amsterdam, The Netherlands

- Use clustering to identify colon cancer subtypes
- Assess the robustness of the clustering procedures
- Build a classification rule for new patients

Data Processing

We want to:

- Reduce the dimensionality of the data.
- Identify the most informative genes.

Processing Steps

- Normalise and summarise the raw data using fRMA.
- Adjust for any batch effects.
- Apply the barcode algorithm to determine which genes are expressed.
- Select the most informative genes using median absolute deviance.

Algorithm 1 k-means Clustering

- Initialise a set of *k* means.
- Using Euclidean distance, assign each observation to the cluster with the nearest mean.
- Recompute cluster means as the centroids of the clusters.
- Repeat the allocation procedure.
- 5 End algorithm when no observations are re-allocated.

k-medoids Clustering

Definition

A medoid is a point whose average dissimilarity to all other points in a cluster is minimal i.e. the central-most point in a cluster.

Figure: Sensitivity of the mean to outliers. Original image from Jin and Han (2010).

k-medoids Clustering

Algorithm 2 k-medoids Clustering

- Initialise a set of k medoids.
- Assign each observation to the nearest medoid.
- Within each cluster, make each observation in turn the medoid and evaluate some cost function.
- If the cost decreases, take the corresponding observation to be the new medoid. Else retain the previous medoid.
- Reassign based on the new medoids and repeat until the cost function cannot be reduced further.

- Agglomerative vs. divisive
- Average linkage dist_{AL} $(C_r, C_s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} d(x_{ri}, x_{sj})$

Clustering

Figure: Heatmap of hierarchical clustering of the 90 patients (columns) using the 146 classifying genes (rows).

Points correspond to median-centered log2 gene expression values (orange, high expression; blue, low expression).

E. Dankwa N. Garcia Martin W. Thomas

Algorithm 3 Consensus clustering with hierarchical clustering

Clustering

For $K \in \mathcal{K}$, for $h \in 1, ..., H$:

- **I** Bootstrap original data D to obtain perturbed dataset $D^{(h)}$
- **2** Compute indicator matrix: $I^{(h)}(i,j) = 1$ if patients i and j are both in $D^{(h)}$
- 3 Cluster $D^{(h)}$ into K clusters using hierarchical clustering
- **4** Construct connectivity matrix: $M^{(h)}(i,j) = 1$ if patients i and j are in the same cluster
- **Solution** At iteration H, construct the consensus matrix given by $\mathcal{M}^{(K)}(i,j) = \frac{\sum_h M^{(h)}(i,j)}{\sum_h I^{(h)}(i,j)}$

Choose best K based on the $\mathcal{M}^{(K)}{}'s$ and partition D into \hat{K} clusters

Definition

$$\mathsf{Gap}(k) = E^*\{\mathsf{log}(W_k)\} - \mathsf{log}(W_k)$$

$$\hat{K} = \mathsf{min}\{K \in 1, \dots K_{max} : \mathsf{Gap}(k) \ge \mathsf{Gap}(k+1) - s.e._{k+1}\}$$

Notation

- Sum of pairwise distances $D_r = \sum_{i,i' \in C_r} d_{ii'}$
- Pooled within-cluster sum of squares $W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r$

Figure: Values of the gap statistic for different numbers of clusters with 100 Bootstrap iterations.

Clustering Classification

Results

Figure: Consensus matrices for K=2 to K=5 produced with hierarchical clustering with 0.98 subsampling ratio and 1000 iterations using the selected 7,747 genes.

Clustering

Figure: (Left) Consensus CDF for $K_{max} = 15$. (Right) Consensus tracking plot for $K_{max} = 15$.

Model-based Clustering

Introduction and data pre-processing

Concept

■ Entire dataset $\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_i, \dots, \mathbf{x}_n\}$ as coming from a mixture distribution with each component modelling a particular cluster

Classification

- Mixture Density: $f(\mathbf{x}_i; \mathbf{\Psi}) = \sum_{k=1}^{G} \pi_k f_k(\mathbf{x}_i; \boldsymbol{\theta}_k)$
 - \blacksquare Ψ denotes the set of parameters for the mixture
 - \blacksquare π_k represents a mixing weight for the k^{th} component where $\sum_{k=1}^{G} \pi_k = 1$
 - $f_k(\mathbf{x}_i; \boldsymbol{\theta}_k)$ is the density function for the kth cluster
- Each cluster is modelled by a component of the mixture distribution.

Model-based Clustering

Finite Gaussian mixture models

- Assumes a multivariate Gaussian distribution for each component (cluster); $f_k(\mathbf{x}; \boldsymbol{\theta}_k) \sim N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
 - \blacksquare μ_k center of cluster

 - Σ_k covariance matrix
- Aim is to estimate parameters such that the likelihood is maximized.
 - Issues with non-uniqueness of maxima (Neal, 2011)

Clustering

■ EM algorithm offsets this

Model-based Clustering

Finite Gaussian Mixture Model applied in the clustering of 7,747 genes from AMC-AJCCII-90 series dataset: R -output using 'mclust' package

```
> summary(FGM_Classif)
```

Clustering

Gaussian finite mixture model fitted by EM algorithm

Mclust VEI (diagonal, equal shape) model with 4 components:

```
log.likelihood n df
                          BIC
                                  ICL
    -672251.4 90 38741 -1518830 -1518830
```


Figure: Plot indicating Bayesian Information Criterion (BIC) values for varying numbers of mixture components

Rand Index

- Computes a measure of agreement between two clustering assignments
- Given *n* observations $x_1, ..., x_n$ the rand index (RI) is given by

$$R=\frac{a+b}{\binom{n}{2}},$$

where a = number of pairs of observations which are clustered together by both methods:

b = denotes the number of pairs of observations which are not clustered together by both methods.

- Assumes values from 0 to 1 no agreement to perfect agreement.
- Downside: Non-constant expected value since 'by-chance agreements' are unaccounted for.

References

Rand Index

- Computes a measure of agreement between two clustering assignments
- Given *n* observations $x_1, ..., x_n$ the rand index (RI) is given by

$$R=\frac{a+b}{\binom{n}{2}},$$

where a = number of pairs of observations which are clustered together by both methods:

b = denotes the number of pairs of observations which are not clustered together by both methods.

- Assumes values from 0 to 1 no agreement to perfect agreement.
- Downside: Non-constant expected value since 'by-chance agreements' are unaccounted for.
- Solution: Adjusted Rand Index (ARI)!

Comparison of Clustering Methods

Classification methods	RI (Rand index)	ARI (adjusted RI)
HC with and without consensus	0.829	0.646
K means with and without consensus	1	1 1
K-medoids clustering with and without consensus	1	1
Model-based clustering and HC with consensus	0.7583021	0.4546874

Table: Measures of agreement between different clustering methods.

References

Prediction Analysis for Microarrays (PAM) (Tibshirani et al., 2002)

Clustering

- Nearest shrunken centroid method:
- Define $\bar{x}_{ik} = \sum_{i \in G_k} x_{ij}/n_k$ as the i^{th} component of the centroid for class k and $\bar{x}_i = \sum_{i=1}^n x_{ii}/n$ as the i^{th} component of the overall centroid
- Class centroids are shrunk toward the overall centroid using a shrinkage parameter (threshold), Δ , which controls number of genes used in classifier.
- \blacksquare Optimal \triangle is chosen by cross-validation and chosen to have minimal cross-validation errors.

F. Dankwa N. Garcia Martin W. Thomas

Prediction Analysis for Microarrays (PAM) (Tibshirani et al., 2002)

- Nearest shrunken centroid method:
- Define $\bar{x}_{ik} = \sum_{i \in C_k} x_{ij}/n_k$ as the i^{th} component of the centroid for class k and $\bar{x}_i = \sum_{i=1}^n x_{ii}/n$ as the i^{th} component of the overall centroid
- Class centroids are shrunk toward the overall centroid using a shrinkage parameter (threshold), Δ , which controls number of genes used in classifier.
- \blacksquare Optimal \triangle is chosen by cross-validation and chosen to have minimal cross-validation errors.

Figure: Plot showing cross-validation errors for different threshold levels (Δ). Desired $\Delta = 4.625$ with 164 genes

E. Dankwa

N. Garcia Martin

W. Thomas

OxWaSP Module 3

References

Discussion

Introduction and data pre-processing

- Three subgroups of colon cancer were identified.
- Clustering procedures were robust and supported by other methods.
- We are able to classify patients into each cluster.
- There is a difference between the survival rates in each cluster.

Figure: Kaplan-Meier survival plots for each of the identified subgroups. Original image is from De Sousa E Melo et al. (2013).

References

- Felipe De Sousa E Melo et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nature medicine, 19 (5):614, 2013.
- Xin Jin and Jiawei Han. K-Medoids Clustering, pages 564–565. Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_426. URL https://doi.org/10.1007/978-0-387-30164-8_426.
- R. Neal. Clustering and mixture models. http://www.utstat.utoronto.ca/~radford/sta414.S11/week10a.pdf, 2011. [Online: Accessed 15-Nov-2018].
- R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences, 99(10):6567–6572, 2002.