

Leis Básicas para Análise de Circuitos Elétricos

JOÃO PAULO ASSUNÇÃO DE SOUZA

Introdução

- Leis básicas de circuitos elétricos
 - Lei de Ohm
 - Lei de Kirchhoff da tensão
 - Lei de Kirchhoff das correntes
- Técnicas básicas de circuitos elétricos
 - Divisor de tensão
 - Divisor de corrente

Resistência

Em geral, materiais possuem a propriedade de resistir ao fluxo de carga elétrica (corrente elétrica). Essa propriedade é conhecida como Resistância.

A resistência de um material de área A, comprimento ℓ e resistividade ρ é dado pela equação a seguir:

$$R = \rho \frac{\ell}{A}$$

Onde ρ é a resistividade do material em Ω^* m

Resistividade dos materiais

Material	Resistividade (Ω · m)	Emprego
Prata	$1,64 \times 10^{-8}$	Condutor
Cobre	$1,72 \times 10^{-8}$	Condutor
Alumínio	2.8×10^{-8}	Condutor
Ouro	$2,45 \times 10^{-8}$	Condutor
Carbono	4×10^{-5}	Semicondutor
Germânio	47×10^{-2}	Semicondutor
Silício	$6,4 \times 10^{2}$	Semicondutor
Papel	10 ¹⁰	Isolante
Mica	5 × 10 ¹¹	Isolante
Vidro	10 ¹²	Isolante
Teflon	3×10^{12}	Isolante

Resistores

Resistores

Lei de Ohm

A lei de Ohm diz que a corrente *i* que passa por um resistor é proporcional a tensão *V* que é aplicada sobre o mesmo.

$$V \propto i$$

A relação de proporcionalidade é a resistência R do material

$$V = R \cdot i$$

Lei de Ohm

Como a resistência é a capacidade que o resistor tem de resistir ao fluxo de corrente, quanto menor o resistência, maior o fluxo de corrente e, quando maior a resistência, menor o fluxo de corrente.

Nós, ramos e loops

Um ramo representa um único elemento do circuito, como um resistor ou uma fonte.

Um nó representa um ponto de conexão entre dois ou mais ramos.

Um *loop* é qualquer caminho fechado dentro do circuito.

Leis de Kirchhoff

• Lei de Kirchhoff das Correntes: $I_3 + I_5 = I_1 + I_2 + I_4 + I_6$

$$\sum_{k=1}^{n} I_k = 0$$

•Lei de Kirchhoff das Tensões: $V=V_1+V_2+V_3+V_4+V_5$ $\sum_{k=1}^n V_k=0$

Resistores em série e divisão da tensão

Resistência equivalente em série

$$R_{eq} = \sum_{k=1}^{n} R_k$$

Divisor de tensão

$$v_k = v \cdot \frac{R_k}{R_1 + R_2 + \dots + R_N}$$

Resistores em série e divisão da corrente

Resistência equivalente em paralelo

$$R_{eq} = \sum_{k=1}^{n} \frac{1}{R_k}$$

Divisor de corrente

$$i_k = i \cdot \frac{R_{eq}}{R_k}$$

- **2.4** (a) Calcule a corrente *i* na Figura 2.68 quando a chave se encontra na posição 1.
 - (b) Calcule a corrente quando a chave estiver na posição 2.

2.7 Determine o número de ramos e nós no circuito da Figura 2.71.

2.10 Determine i_1 e i_2 no circuito da Figura 2.74.

2.11 No o circuito da Figura 2.75, determine V_1 e V_2 .

2.12 No circuito da Figura 2.76, calcule v_1 , v_2 e v_3 .

2.16 Determine V_o no circuito da Figura 2.80.

2.26 Para o circuito da Figura 2.90, $i_o = 3$ A. Calcule i_x e a potência total dissipada pelo circuito.

2.29 Todos os resistores na Figura 2.93 são de 5 Ω cada. Determine $R_{\rm eq}$.

Bibliografia

- [1] SADIKU, M.N.O; ALEXANDER, A, K. Fundamentos de Circuitos Elétricos. 5ª edição, AMGH Editora LTDA, 2013. 840 p.
- [2] David E. Johnson. Fundamentos de Análise de Circuitos Elétricos. Ed: LTC ISBN-10: 8521612389. 539 p. 2000