

Genome-Wide Association Study (GWAS): Association Analysis

Segun Fatumo PhD

Associate Professor, Department of Non-Communicable Disease Epidemiology, LSHTM, UK Group Leader, The African Computational Genomics Group, MRC/UVRI and LSHTM, Uganda

Outline (Four Videos)

Genome-Wide Association Studies

General Overview

Resources & Workflow

Quality Control Association Analysis

Intended Learning Outcomes

By the end of the session, students will be able to

 Describe the statistical models for identifying phenotype-genotype associations.

- Identify appropriate model for adjusting for potential confounding when performing genetic association study.
- Interpret plots from genetics association study

Genotype-Phenotype Associations

Case-control GWAS

 Identify SNPs where one allele is significantly more common in cases than controls

rs334

- The SNP is associated with disease
- Logistic regression

rs334 HbA1c

T₂D

Type 2 Diabetes

Continuous trait GWAS

Fit linear regression model for each (SNP, phenotype) pair

Mixed Model

- A major concern in GWAS is the need to account for the complicated dependence-structure of the data both between loci as well as between individuals. (Adjust for the confounding variable)
- For example, ethnic groups (and subgroups) often share distinct dietary habits and other lifestyle characteristics that leads to many traits of interest being correlated with ancestry and/or ethnicity
- The linear mixed model (LMM) is a powerful way to control covariation arising from complex correlation

Testing for association

- All methods produce a test statistic and a p value indicating how significant the association/correlation appears to be
 - ◆ i.e. how likely it was to have occurred by chance

- In GWAS, we require stringent significance levels (e.g. $p = 5 \times 10^{-8}$) to overcome the multiple testing problem incurred when we test many SNPs throughout the genome
 - If testing 1 million SNPs using p = 0.05, we would obtain 50,000 'significant' results just by chance!
 - Bonferroni correction

Useful software

- PLINK (Standard tool for QC and association analysis)
- http://pngu.mgh.harvard.edu/~purcell/plink

- GEMMA (Association) Implemented Mixed Model
- http://home.uchicago.edu/xz7/software

- SNPTEST (Association)
- https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html

Manhattan Plot

Close-up of hit region

Quantile-Quantile (QQ) Plot

Conclusions

- In designing GWAS, the selection of the appropriate association test depends on a number of factors:
 - type of phenotype,
 - control for covariates eg population structure.
 - etc
- Visualisation of GWAS output is key
 - Manhattan
 - QQ Plot
 - Regional plot

Further Reading

Pearson, T.A. and Manolio, T.A., 2008. How to interpret a genome-wide association study. *Jama*, 299(11), pp.1335-1344.

http://www.biostat.jhsph.edu/~iruczins/teaching/misc/gwas/papers/pearson2008.pdf

