

Curso de Engenharia de Computação

Disciplina: Inteligência Artificial Professora: Alexandra Zimpeck

Prova – Valor: 5 pontos

Data de realização: 16 de junho de 2021. Entrega: Google *Classroom* até às 23h em formato PDF.

1) (Valor: 1,0) A figura abaixo representa o fluxo simplificado de treinamento em aprendizado de máquina supervisionado. Os atributos estão nomeados como V1, V2, ..., e a saída é representada pela coluna Y.

- a) Em que consiste a etapa de treinamento? Cite e explique um algoritmo que pode ser utilizado nesta etapa.
- b) Em que consiste a etapa de avaliação? Cite e explique uma melhoria que pode ser utilizada a fim de aumentar a acurácia do modelo.
- c) Suponha que os mesmos dados foram aplicados nas etapas 2 e 3, o que você mudaria para reduzir as chances de *overfitting*?
- 2) (Valor: 1,0) Considere as tarefas listadas abaixo e classifique cada uma delas como aprendizado supervisionado, não supervisionado ou por reforço. Justifique seu raciocínio em cada item e descreva quais são as entradas X (atributos) e a saída Y (desfecho), quando houver, que você julga adequado para cada situação.
 - a) Prever a probabilidade de chuva de acordo com as medições meteorológicas.
 - b) Separar e-mails recebidos a fim de definir quais são SPAM.
 - c) Aprender as ações mais adequadas para treinar um veículo autônomo.
 - d) Agrupar usuários do Instagram para definir recomendação de marketing.
 - e) Prever diagnóstico de COVID-19 com base em sintomas do paciente.
- (Valor: 1,0) Construa uma árvore de decisão para decidir se você vai viajar ou não de avião de acordo com o conjunto de treinamento apresentado na tabela.
 O atributo "Aparência" deve ser considerado o mais importante, por isso, deve estar no topo da árvore.

Exemplo	Aparência	Temperatura	Umidade	Ventando	Viajar
T1	sol	25	72	sim	VAI
T2	sol	28	91	sim	NÃO_VAI
T3	sol	22	70	não	VAI
T4	sol	23	95	não	NÃO_VAI
T5	sol	30	85	não	NÃO_VAI
T6	nublado	23	90	sim	VAI
T7	nublado	29	78	não	VAI
T8	nublado	19	65	sim	NÃO_VAI
Т9	nublado	26	75	não	VAI
T10	nublado	20	87	sim	VAI
T11	chuva	22	95	não	VAI
T12	chuva	19	70	sim	NÃO_VAI
T13	chuva	23	80	sim	NÃO_VAI
T14	chuva	25	81	não	VAI
T15	chuva	21	80	não	VAI

- 4) (Valor: 1,0) As retas abaixo implementam modelos de regressão linear para os pontos de treino representados. Para cada reta, apresente:
 - a) Coeficiente linear e angular do modelo.
 - b) Erro Quadrático Médio (MSE) do modelo.
 - c) Coeficiente linear e angular do modelo ideal (pontos de treino).

- 5) (Valor: 1,0) Considere os neurônios abaixo com entradas x_1 e x_2 e saídas y_1 e y_2 . Suponha que w_{11} =1,66; w_{12} =10; w_{21} =0,83; w_{22} =-7, que ambos os neurônios têm limiar θ = 1 e uma taxa de aprendizagem η = 0.1. Após, faça o que se pede:
 - a) Determine os valores de Y_1 e Y_2 .
 - b) Substitua por 1 os valores de Y que forem maiores que o limiar e substitua por 0 os valores de Y que forem menores que o limiar. O Y_1 corresponde a uma porta lógica AND e o Y_2 corresponde a uma porta XOR? Caso negativo, o que há de errado?
 - c) Recalcule os pesos até que tenhamos a representação correta da tabela verdade das portas lógicas.

X1	X2	Y1	Y2
0.0	0.5		
0.3	0.6		
0.7	0.3		
0.6	0.9		