CS 513: Knowledge Discovery in Databases

Instructor
Khasha Dehnad
kdehnad@stevens.edu
Khasha.dehnad@aimsinfo.com
Teaching Assistant
TBD

Course Requirements

Prerequisites:

- Familiarity with the principals of statistics and probabilities; for example, completion of MGT 502 (no credit).
- Instructor's permission is required for this course.

Hardware and Software:

- Lap top with Excel.
- Internet access and ability to install software (admin rights). Students will be installing R on their computers

Books, Notes, and Manuals:

- Discovering Knowledge in Data: An introduction to Data Mining, Daniel T. Larose, John Wiley, latest edition
- Lecture Notes and Handouts
- Internet Based Papers, Manuals and Documentation

Course Schedule

Housekeeping, Schedule, and Probability Review Week 1

Probability Review Week 2

Introduction to R Additional Class

DM Lifecycle: Six Phases, Five Case Studies

& Data Preprocessing Week 3

Deriving Rules from Data: ML Algorithms

(Data Preprocessing Week 4

Data Transformation &

Exploratory data analysis Week 5

Course Schedule (Continued)

Naive Bayes classifier	Week 6
k-Nearest Neighbor Algorithm	
& Case Study	Week 7
Decision Trees: CART & C4.5 Algorithm	
& Case Study	Week 8
Random Forest	
Artificial Neural Networks (ANN)	Week 9
k- Means Clustering Algorithm	
& Case Study (Guest speaker)	Week 11
Special Topics	Week 12
Student Projects and Presentations	Week 13 &14

Assignments and Grading

Assignments	Grade Percent
Exercises (4% each – Best 10 out of 12)	25%
Mid-term	20%
Final	20%
Final project /research paper	35%
Total Grade	100%

Project Case Study

Project:

A real world data mining project (problem statement, data, methodology/algorithm), software, execution and analysis, references, documentation, and presentation). The problem statement, sample data, relevant methodology/algorithm).

Case Study:

A case study from literature/books, prepare and deliver a comprehensive presentation including, problem statement ('profound question'), data source(s), methodology, data mining, result, suggestions for future work, and references.

- The novelty of the project idea(s).
- Techniques used.
- Comparison of the results of the above techniques applied to the data.
- Uniqueness of the data source(s). For example, UCI data gets lower ranking
- Additional techniques extending those studied in the class
- Quality of the presentation material and presentations.
- Timing/sequence of the presentation. (Week1 vs Week2)
- Team