Algorithmic Trading Strategies¹

Jing Guo

Strats Associate, Goldman Sachs
PhD in Financial Engineering, Columbia University

November 5, 2017

¹Reference: Avellaneda (2011), Maglaras (2015)

Our primary focus is on limit order book dynamics

- Limit order book behavior affects:
 - Algorithmic trade execution systems & performance
 - Trading signals & execution for MMs
 - Regulatory implications

Algorithmic Trading

- algorithmic trading strategies
- typical architecture of algo trading systems
- implementation shortfall
- VWAP

Algo Trading Strategies (90+% of institutional flow)

- VWAP (Volume-Weighted-Average-Price): Trades according to forecasted volume profile to achieve (or beat) the market VWAP
 - Passive strategy
 - Subject to significant market risk

0

$$VWAP(t_1, t_2) = \frac{\sum_{t=t_1}^{t_2} \delta V(t) P(t)}{\sum_{t=t_1}^{t_2} \delta V(t)}$$

- TWAP (Time-Weighted-Average-Price): Trades uniformly over time to achieve (or beat) TWAP benchmark
 - Passive strategy
 - Market risk
 - Not very popular in practice

Volume-Weighted Average Price

• Algorithm:

- Estimate the average volume traded in every 5-min interval.
- Within interval, execute amount proportional to the normative volume.
- Properties:
 - Trade sizes are known in advance.
 - Volume function is estimated using historical data.

VWAP vs. TWAP

• 2

 During a slow trading day, the TWAP may be very similar to the VWAP, even to the penny at times. However, in a volatile session, or when volume is higher than usual, the two indicators may diverge.

²Yang (n.d.)

Algo Trading Strategies (Cont'd)

- POV (Percent-of-Volume): Executes while tracking the realized volume profile at a target participation rate, e.g., buy IBM at 15% participation rate
 - Controls behavior during volume spikes to avoid excessive cost
 - Popular in practice $\sim 5\% 30\%$ participation rates
 - Participation rate is highly related to transaction cost
- **IS** (Implementation Shortfall): Schedules trade so as to optimally tradeoff expected shortfall (cost) against execution risk
 - Variable execution speed; adapts wrt changes in market conditions
 - Popular, especially with portfolios with intricate cost/risk tradeoff

VWAP, XLY, 07/22/2013 (.15%ADV)

VWAP, XLY, 07/22/2013 (cumulative quantity)

POV 20% ACT, 07/08/2013

POV, ACT, 07/08/2013 (cumulative quantity)

Schematic of execution profiles: TWAP, XLY, 07/02/2013

TWAP, XLY, 07/02/2013 (cumulative quantity)

Algo Trading Systems: Typically Decomposed into 3 Steps

- ullet Trade scheduling (macro-trader): splits parent order into ~ 5 min slices
 - Relevant time-scale: minutes-hours
 - Schedule follows user selected strategy (VWAP, POV, IS, ...)
 - Reflects urgency, alpha, risk/return tradeoff
 - Schedule updated during execution to reflect price/liquidity/...
- Optimal execution of a slice (micro-trader): further divides slice into child orders
 - Relevant time-scale: secondsminutes
 - Strategy optimizes pricing and placing of orders in the LOB
 - Execution adjusts to speed of LOB dynamics, price momentum, ...
- Order routing: decides where to send each child order
 - Relevant time-scale: $\sim 1-50$ ms
 - Optimizes fee/rebate tradeoff, liquidity/price, latency, etc

Algorithmic Trading Systems: basic building blocks

- forecasts for intra-day trading patterns
 - volume
 - volatility
 - bid-ask spread
 - **–** ...
- real-time market data analytics
- market impact model
- risk model
 - of the shelf risk models calibrated using EOD closing price data do not incorporate intra-day correlation structure
 - intra-day data? (tractable for liquid securities, e.g., S&P500 universe)
 - cross-asset liquidity model & market impact model

Essential building block: market impact model

- Optimizing the trade schedule, i.e., how to split a large trade over smaller waves to be executed over time, requires a cost function for:
 - immediate costs due to current trading decisions (e.g., next 3 min)
 - impact of current decisions on future prices (and future trades)
- Key considerations:
 - transient costs: impact of current trading decisions on price
 - decay of transient costs: instantaneous? impact decays over time?
 - permanent costs: is there a permanent cost (information content)?
 - time-scales: interpretation of transient, decay, permanent
- Calibration
 - how to model? functional forms? (depends on relevant time-scale)
 - what data is needed
 - stock segmentation

References I

- $\label{eq:avellaneda} A vellaneda, M. (2011). Algorithmic and high-frequency trading: an overview. \\ https://www.math.nyu.edu/faculty/avellane/QuantCongressUSA2011AlgoTrading. \\ \label{eq:avellaneda}$
- Maglaras, C. (2015). Limit order book markets: a queueing systems perspective. https://www0.gsb.columbia.edu/faculty/cmaglaras/papers/IC-Lectures-2015.pdf.
- Yang, S. (n.d.). Fe670 algorithmic trading strategies. http://personal.stevens.edu/ syang14/fe670/presentation-fe670-lecture10.pdf.