Chapitre 14 : Systèmes différentiels

1 Rappels

1.1 Équations différentielle d'ordre 1

Définition 1

Soient I un intervalle de \mathbb{R} , a un réel et b une fonction continue sur I à valeurs dans \mathbb{R} . Soit J un intervalle de \mathbb{R} inclus dans I et y une fonction définie sur J. On dit que y **est une solution sur** J **de l'équation différentielle d'ordre 1**

$$y' + ay = b$$

si et seulement si y est dérivable sur J et pour tout $t \in J$:

$$y'(t) + ay(t) = b(t).$$

Proposition 1

Soient I un intervalle de \mathbb{R} , a un réel et b une fonction continue sur I à valeurs dans \mathbb{R} .

• Les solutions sur \mathbb{R} de l'équation y' + ay = 0 sont les fonctions de la forme :

$$t \in \mathbb{R} \mapsto ce^{-at}, c \in \mathbb{R}.$$

• Soit y_0 une solution sur I de l'équation y' + ay = b. Alors les solutions de l'équation y' + ay = b sont les fonctions de la forme :

$$t \in I \mapsto ce^{-at} + y_0(t), c \in \mathbb{R}.$$

Démonstration:

1.2 Équations différentielle d'ordre 2

Définition 2

Soient I un intervalle de \mathbb{R} , a et b deux réels et c une fonction continue sur I à valeurs dans \mathbb{R} . Soit J un intervalle de \mathbb{R} inclus dans I et y une fonction définie sur J. On dit que y **est une solution sur** J **de l'équation différentielle d'ordre 2**

$$y'' + ay' + by = c$$

si et seulement si y est deux fois dérivable sur I et pour tout $t \in I$:

$$y''(t) + ay'(t) + by(t) = c(t).$$

Proposition 2

Soient a et b deux réels.

• Si l'équation $r^2 + ar + b = 0$ d'inconnue $r \in \mathbb{R}$ possède deux racines réelles distinctes, notées r_1 et r_2 , alors les solutions de l'équation différentielle y'' + ay' + by = 0 sont les fonctions de la forme :

$$t\in\mathbb{R}\mapsto\lambda_1e^{r_1t}+\lambda_2e^{r_2t},\;(\lambda_1,\lambda_2)\in\mathbb{R}^2.$$

• Si l'équation $r^2 + ar + b = 0$ d'inconnue $r \in \mathbb{R}$ possède une unique racine, notée r_0 , alors les solutions de l'équation différentielle y'' + ay' + by = 0 sont les fonctions de la forme :

$$t \in \mathbb{R} \mapsto (\lambda_1 + t\lambda_2)e^{r_0t}, \ (\lambda_1, \lambda_2) \in \mathbb{R}^2.$$

L'équation $r^2 + ar + b = 0$ est appelée l'**équation caractéristique** de l'équation différentielle.

$D\'{e}monstration:$

2 Systèmes différentiels linéaires à coefficients constants

2.1 Résolutions

Définition 3

Soient $n \in \mathbb{N}^*$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. Soient $y_1, ..., y_n$ des fonctions dérivables définies sur \mathbb{R} et à valeurs dans \mathbb{R} .

On dit que (y_1, \ldots, y_n) est solution du système différentiel linéaire à coefficients constants

$$\begin{cases} a_{1,1}y_1 + a_{1,2}y_2 + \dots + a_{1,n}y_n = y'_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1}y_1 + a_{n,2}y_2 + \dots + a_{n,n}y_n = y'_n \end{cases}$$

si pour tout réel t on a :

$$\begin{cases}
a_{1,1}y_1(t) + a_{1,2}y_2(t) + \dots + a_{1,n}y_n(t) = y'_1(t) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n,1}y_1(t) + a_{n,2}y_2(t) + \dots + a_{n,n}y_n(t) = y'_n(t)
\end{cases}$$

Résoudre un système différentiel linéaire à coefficients constants consiste à déterminer **tous** les *n*-uplets de fonctions (y_1, \ldots, y_n) solutions du système.

Proposition 3 (Écriture matricielle)

Soient $n \in \mathbb{N}^*$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. Soient $y_1, ..., y_n$ des fonctions dérivables définies sur \mathbb{R} et à valeurs dans \mathbb{R} .

On pose :
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 et $Y' = \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}$. Alors (y_1, \dots, y_n) est solution du système différentiel

$$\begin{cases}
a_{1,1}y_1 + a_{1,2}y_2 + \dots + a_{1,n}y_n = y'_1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n,1}y_1 + a_{n,2}y_2 + \dots + a_{n,n}y_n = y'_n
\end{cases}$$

si et seulement si Y' = AY.

Théorème 1 (de Cauchy)

Soient $n \in \mathbb{N}^*$ et $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$. Soient $t_0 \in \mathbb{R}$ et $(b_1, \dots, b_n) \in \mathbb{R}^n$. Alors le système différentiel

$$\begin{cases}
a_{1,1}y_1 + a_{1,2}y_2 + \dots + a_{1,n}y_n = y'_1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n,1}y_1 + a_{n,2}y_2 + \dots + a_{n,n}y_n = y'_n
\end{cases}$$

possède une unique solution vérifiant les conditions initiales suivantes :

$$\forall i \in [1, n], \ y_k(t_0) = b_k.$$

Remarque 1

Ce théorème ne permet pas de trouver explicitement une solution!

Exemple 1

On considère le système suivant :

$$\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 2y_1 + y_2 \end{cases}.$$

1. Mettre ce système sous forme matricielle.

2.	On pose x_1	$=\frac{1}{2}(y_1-y_2)$	$et x_2 =$	$\frac{1}{2}(y_1+y_2)$

(a) Montrer que $x'_1 = -x_1$. En déduire la forme de x_1 .

(b) Montrer que
$$x_2' = 3x_2$$
. En déduire la forme de x_1 .

(c) En déduire l'ensemble des solutions du système.

(d) Déterminer l'unique solution (y_1, y_2) du système vérifiant :

$$y_1(0) = 1$$
 et $y_2(0) = -1$.

La méthode utilisée dans l'exemple ci-dessus est en fait un cas particulier du résultat suivant lorsque A est diagonalisable:

5

Proposition 4

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ une **matrice diagonalisable** dont on note $\lambda_1, \ldots, \lambda_n$ les valeurs propres (non nécessairement distinctes).

On considère (e_1, \ldots, e_n) une base de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres de A associés respectivement aux valeurs propres $\lambda_1, \ldots, \lambda_n$.

L'ensemble des solutions du système Y' = AY est :

$$\left\{t\mapsto c_1e^{\lambda_1t}e_1+\cdots+c_ne^{\lambda_nt}e_n\;;\;(c_1,\ldots,c_n)\in\mathbb{R}^n\right\}.$$

Nous allons voir pourquoi ce résultat est vrai sur un exemple. La méthode est à savoir : vous devez être capable de refaire le raisonnement.

Méthode 1

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une **matrice diagonalisable**. Il existe donc une matrice diagonale D (dont les coefficients diagonaux sont les valeurs propres de A) et une matrice inversible P telle que :

$$D = P^{-1}AP.$$

On s'intéresse au système différentiel Y' = AY.

1. On pose $X = P^{-1}Y$. Alors:

$$Y' = AY \iff Y' = PDP^{-1}Y \iff P^{-1}Y' = DP^{-1}Y$$

$$\iff X' = DX.$$

Ainsi, Y est solution du système Y' = AY si et seulement si X est solution du système X' = DX.

2. Comme D est diagonale le système X' = DX est :

$$\begin{cases} \lambda_1 x_1 &= x_1' \\ \vdots &\vdots &\vdots \\ \lambda_n x_n &= x_n' \end{cases}$$

Il s'agit simplement de n équations linéaires d'ordre 1 à coefficients constants que vous savez résoudre depuis l'an dernier.

3. On en déduit les solutions Y à l'aide de la formule Y = PX.

Exemple 2

On considère le système suivant :

$$\begin{cases} y_1' = 2y_1 + y_2 + y_3 \\ y_2' = y_1 + 2y_2 + y_3 \\ y_3' = y_1 + y_2 + 2y_3 \end{cases}.$$

1. Mettre le système sous torme matricielle. On note A la matrice détern	iinée.
--	--------

2. Justifier que A est diagonalisable.

3. Déterminer une matrice P inversible et une matrice D diagonale telles que $D = P^{-1}AP$.

	1	On pose $X = P^{-1}Y$. Montrer que X est solution du système $X' = DX$ puis résoudre ce système.
	4.	On pose $X = P^{-1}$. Montrer que X est solution au système $X = DX$ puis resolutre ce système.
	5.	En déduire les solutions Y du système initial.
Te		pir solution.)
	On re	eprend le système $ \begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 2y_1 + y_2 \end{cases} $
	do l'a	$y_2'=2y_1+y_2$ xemple 1.
		Résoudre ce système à l'aide de la méthode 1.
		Comparer avec l'exemple 1.
Te	st 2 (V	pir solution.)
	Réso	udre le système
		$\left\{egin{array}{l} y_1' = y_1 + y_2 + y_3 \ y_2' = -y_3 \ y_3' = -2y_1 - 2y_2 - y_3 \end{array} ight$

2.2 Lien avec les équations différentielles d'ordre 2

Soient *a* et *b* deux réels. On considère l'équation différentielle d'ordre 2 suivante :

$$y'' + ay' + by = 0.$$

Soit y une fonction définie et deux fois dérivable sur \mathbb{R} . On pose $Y = \begin{pmatrix} y \\ y' \end{pmatrix}$ et $A = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix}$. Alors on a les équivalences suivantes :

Ainsi l'équation différentielle d'ordre 2 y'' + ay' + by = 0 est équivalente au système différentiel Y' = AY. Soit $r \in \mathbb{R}$. On a :

Or, un calcul direct donne :

On obtient finalement

$$r \in \operatorname{Sp}(A) \Longleftrightarrow r^2 + ar + b = 0$$

et on retrouve l'équation caractéristique de l'équation différentielle d'ordre 2. En particulier, si l'équation caractéristique **possède deux solutions distinctes** r_1 et r_2 alors A possède deux valeurs propres distinctes r_1 et r_2 donc est diagonalisable.

• Déterminons le sous-espace propre associé à la valeur propre r_1 . Soit $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R})$. Alors :

Ainsi
$$E_{r_1}(A) = \text{Vect}\left(\begin{pmatrix} 1 \\ r_1 \end{pmatrix}\right)$$
.

- De même, $E_{r_2}(A) = \text{Vect}\left(\begin{pmatrix} 1 \\ r_2 \end{pmatrix}\right)$.
- D'après la propriété 4 les solutions Y sont les fonctions de la forme :

$$Y = \begin{pmatrix} y \\ y' \end{pmatrix} : t \longmapsto e^{r_1 t} \begin{pmatrix} 1 \\ r_1 \end{pmatrix} + e^{r_2 t} \begin{pmatrix} 1 \\ r_2 \end{pmatrix}.$$

8

On retrouve donc le résultat de la proposition 2.

Exemple 3

On considère l'équation différentielle d'ordre 2 suivante :

$$y'' + 2y' - 3y = 0.$$

- 1. Soit y une solution de cette équation. On pose $Y = \begin{pmatrix} y \\ y' \end{pmatrix}$. Déterminer une matrice A telle que Y' = AY.
- 2. Déterminer les valeurs propres de A et les sous-espaces propres associés.
- 3. En déduire les solutions du système Y' = AY puis les solutions de y'' + 2y' 3y = 0.

Test 3 (Voir solution.)

On considère l'équation différentielle d'ordre 2 suivante :

$$y'' - y' - 2y = 0.$$

- 1. Soit y une solution de cette équation. On pose $Y = \begin{pmatrix} y \\ y' \end{pmatrix}$. Déterminer une matrice A telle que Y' = AY.
- 2. Déterminer les valeurs propres de A et les sous-espaces propres associés.
- 3. En déduire les solutions du système Y' = AY puis les solutions de y'' y' 2y = 0.

3 Trajectoires et états stables

3.1 États d'équilibre

Définition 4 (États d'équilibre)

On appelle **état d'équilibre** ou **point d'équilibre** d'un système différentiel toute solution formée de fonctions constantes.

Méthode 2

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$. On considère le système Y' = AY. Soit (y_1, \ldots, y_n) un n-uplet de fonctions constantes :

$$\forall i \in [1, n] \quad \exists c_i \in \mathbb{R} \quad \forall t \in \mathbb{R}, \quad y_i(t) = c_i.$$

La dérivée d'une fonction constante étant nulle, on a :

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \text{est solution du système} \Longleftrightarrow A \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0.$$

Ainsi, déterminer les états d'équilibres revient à trouver le noyau de A.

En particulier, si A est inversible le seul point d'équilibre est $(0, \dots, 0)$.

Exemple 4

On reprend le système de l'exemple 2 :

$$\left\{ \begin{array}{l} y_1' = 2y_1 + y_2 + y_1 \\ y_2' = y_1 + 2y_2 + y_3 \\ y_3' = y_1 + y_2 + 2y_3 \end{array} \right. \quad \text{ou encore} \quad Y' = \left(\begin{matrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{matrix} \right) Y.$$

Déterminons les états d'équilibres.

Exemple 5

On considère le système :

$$\begin{cases} y_1' = y_1 + y_2 + y_1 \\ y_2' = 2y_1 + y_2 + 3y_3 \\ y_3' = y_1 + y_2 + 2y_3 \end{cases} \quad \text{ou encore} \quad Y' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix} Y.$$

Déterminons les états d'équilibres.

Test 4 (Voir solution.)

- 1. Déterminer les états d'équilibre du système du test 1.
- 2. Déterminer les états d'équilibre du système du test 2.

3.2 Trajectoires

Définition 5 (Trajectoires)

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$.

On appelle **trajectoire** du système différentiel Y' = AY tout sous-ensemble de \mathbb{R}^n de la forme

$$\{(y_1(t),\ldots,y_n(t)) : t \in \mathbb{R}\}$$

où $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ est une solution du système.

Remarque 2

- 1. Si A est une matrice carrée de taille n alors une trajectoire est un sous-ensemble de \mathbb{R}^n .
- 2. Il s'agit d'une courbe qui peut être réduite à un point.
- 3. D'après le théorème 1, deux trajectoires distinctes ne s'intersectent jamais.

Définition 6

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$.

On dit qu'une trajectoire $\{(y_1(t),\ldots,y_n(t)):t\in\mathbb{R}\}$ du système différentiel Y'=AY **converge** (quand t tend vers $+\infty$) si pour tout $i\in [1,n]$ la fonction y_i possède une limite finie quand t tend vers $+\infty$.

Dans les autres cas, on dit que la trajectoire diverge.

Exemple 6

On considère le système différentiel suivant :

$$Y' = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix} Y.$$

1.	Déterminer les valeurs propres et les sous-espaces propres de $\begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}$.
2.	En déduire les solutions du système.
3.	Donner une trajectoire convergente et une trajectoire divergente.

Théorème 2

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice **diagonalisable**.

- Si toutes les valeurs propres de A sont négatives ou nulles alors toutes les trajectoires du système Y' = AY converge vers un point d'équilibre.
- Sinon, il existe des trajectoires divergentes.

Exemple 7

On considère le système différentiel Y'=AY où $A=\begin{pmatrix}3&-1\\3&-1\end{pmatrix}$. Il est facile de voir que :

$$\operatorname{Sp}(A) = \{0,2\} \quad ; \quad E_0(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\3\end{pmatrix}\right) \quad ; \quad E_2(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\1\end{pmatrix}\right).$$

1. Rappeler la forme des solutions.

2. Déterminer l'ensemble des points d'équilibre. Ce sont des trajectoires convergentes.

3. La trajectoire $Y: t \mapsto e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est-elle convergente?

Test 5 (Voir solution.)

Soit A la matrice de l'exemple précédent. Montrer :

$$\operatorname{Sp}(A) = \{0,2\}$$
 ; $E_0(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\3\end{pmatrix}\right)$; $E_2(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$.

3.3 Trajectoires en dimension 2

Soit $A \in \mathcal{M}_2(\mathbb{R})$. On suppose que A est diagonalisable et on note λ_1, λ_2 ses valeurs propres (non nécessairement distinctes) et (e_1, e_2) une base de $\mathcal{M}_{2,1}(\mathbb{R})$ formée de vecteurs propres. L'ensemble solutions du système Y' = AY est alors :

$$\left\{t\mapsto c_1 e^{\lambda_1 t} e_1 + c_2 e^{\lambda_2 t} e_2\; ;\; (c_1,c_2)\in \mathbb{R}^2\right\}.$$

• Cas où $\lambda_1 \neq \lambda_2$, $\lambda_1 > 0$ et $\lambda_2 > 0$: A est alors inversible donc (0,0) est le seul état d'équilibre. Il s'agit d'un équilibre instable car les trajectoires non nulles divergent.

Figure 1 – Cas où $\lambda_1 \neq \lambda_2$, $\lambda_1 > 0$ et $\lambda_2 > 0$.

• Cas où $\lambda_1 \neq \lambda_2$, $\lambda_1 < 0$ et $\lambda_2 < 0$: A est alors inversible donc (0,0) est le seul état d'équilibre. Il s'agit d'un équilibre stable car les trajectoires convergent toutes vers (0,0).

Figure 2 – Cas où $\lambda_1 \neq \lambda_2$, $\lambda_1 < 0$ et $\lambda_2 < 0$.

• Cas où $\lambda_1 < 0 < \lambda_2$: A est alors inversible donc (0,0) est le seul état d'équilibre. Il s'agit d'un équilibre instable.

Figure 3 – Cas où $\lambda_1 < 0 < \lambda_2$.

• Cas où $\lambda_1=0$ et $\lambda_2\neq 0$. Les états d'équilibres sont les éléments de $\text{Vect}(e_1)$. Si $\lambda_2<0$ ce sont des états stables. Si $\lambda_2>0$ il existe des trajectoires divergentes.

Figure 4 – À gauche : cas où $\lambda_2 < \lambda_1 = 0$. À droite : cas où $\lambda_1 = 0 < \lambda_2$.

- Cas où $\lambda_1 = \lambda_2$: dans ce cas $A = \lambda_1 I_2$.
 - Si $\lambda_1=\lambda_2=0$ alors toutes les solutions sont des états d'équilibres.
 - Si $\lambda_1 = \lambda_2 < 0$ alors (0,0) est une équilibre stable.
 - Si $\lambda_1 = \lambda_2 > 0$ les trajectoires non nulles divergent.

Figure 5 – À gauche : cas où $\lambda_2=\lambda_1<0$. À droite : cas où $\lambda_1=\lambda_2>0$.

4 Objectifs

1. Savoir résoudre une équation différentielle du premier ordre, une équation différentielle à coefficients constants du second ordre.

- 2. Savoir mettre un système différentiel sous forme matricielle.
- 3. Savoir résoudre un système différentiel dans le cas où la matrice est diagonalisable.
- 4. Savoir résoudre une équation différentielle à coefficients constants du second ordre en se ramenant à un système.
- 5. Savoir déterminer les états d'équilibre d'un système différentiel.
- 6. Savoir étudier la convergence de trajectoires.