Reinforcement Learning Formulation and Training for the Advanced Network Environment

April 2025

Contents

1	MDP Formulation	2
2		3
3		4 4 5
4	Reinforcement Learning Objective and PPO Formulation 4.1 Policy and Value Function	5 5 6
	PPO-based Training Algorithm	6
6	Summary of Learning Dynamics	7

1 MDP Formulation

We model the problem as a Markov Decision Process (MDP) defined by the tuple

$$(\mathcal{S}, \mathcal{A}, T, R, \gamma),$$

where:

- S: The state space,
- \mathcal{A} : The action space,
- T: The state transition dynamics,
- R: The reward function,
- γ : The discount factor.

2 Environment and State Space

2.1 Environment Details

Common ports:

$$\mathcal{P}_{common} = \{80, 443, 8080, 22, 53\}.$$

Suspicious ports:

$$\mathcal{P}_{\text{suspicious}} = \{4444, 31337, 6667\}.$$

The agent's suspicion level is capped (e.g., at 100) and an episode terminates either upon detection or after a maximum of T_{max} steps.

2.2 State Space \mathcal{S}

At time step t, the state $s_t \in \mathcal{S}$ is represented as a 16-dimensional vector:

Component Descriptions:

- Suspicion Level, quantifies the proximity to detection.
- Current Port $_t$ denotes the port currently used by the agent.
- Packet Mean_t and Packet Max_t are normalized by a maximum packet size (e.g., 1500).
- Fraction of Large Packets_t is the ratio of packets in the recent history that exceed a size threshold (e.g., 1200 bytes).
- Normalized Unique Port Count_t represents the diversity of port usage.
- Time Normalization_t indicates the relative progress within the episode.
- The one-hot encoded actions represent the last executed action (from 5 possible actions).
- p_{t-k} for k = 0, 1, 2, 3 are the most recent port values (normalized by 65535).

2.3 Action Space A

The discrete action space is defined as:

$$\mathcal{A} = \{0, 1, 2, 3, 4\},\$$

with the following interpretations:

0: Send small packet (size = 200),

1: Send large packet (size = 1500),

2: Delay (record packet size as 0),

3: Change port (choose new port from $\mathcal{P}_{common} \setminus \{Current Port\}\}$,

4: Stealth combo (a sequence comprising delay, small packet, and port change).

3 Transition Dynamics and Reward Function

3.1 Transition Dynamics T

The transition function $T(s_{t+1} \mid s_t, a_t)$ is defined by the following updates:

1. Packet History Update:

$$packet_history_{t+1} = Append(packet_history_t, f_{pkt}(a_t)),$$

where

$$f_{\text{pkt}}(a_t) = \begin{cases} 200, & a_t = 0, \\ 1500, & a_t = 1, \\ 0, & a_t = 2, \\ \text{(a combination for } a_t = 4), \end{cases}$$

2. Port History Update: When $a_t \in \{3, 4\}$,

$$\operatorname{port_history}_{t+1} = \operatorname{Append}\!\!\left(\operatorname{port_history}_t,\, p_{\operatorname{new}}\right)\!,$$

where

$$p_{\text{new}} \in \{ p \in \mathcal{P}_{\text{common}} : p \neq \text{Current Port}_t \}$$

is chosen uniformly at random.

- 3. Action History Update: The current action a_t is appended to a fixed-length action history.
- 4. **Detection Mechanism:** The environment evaluates detection by checking:
 - a. Packet Size Check: If in the last N_p packets (e.g., $N_p = 10$), at least k_p (e.g., $k_p = 4$) packets exceed a threshold $S_{\text{th}} = 1200$:

$$\sum_{i=1}^{N_p} \mathbb{1}_{\{\text{packet}_i > 1200\}} \ge k_p,$$

then detection is triggered.

b. Port Scan Check: If the number of unique ports in the last $N_{\rm port}$ entries (e.g., $N_{\rm port}=5$) exceeds

$$port_scan_threshold + 2$$
,

detection is triggered.

c. Suspicious Port Check: If Current $Port_t \in \mathcal{P}_{suspicious}$, then with probability

$$\delta_t = \min \left\{ \text{base_detection_probability} + 0.1 \left(\frac{\text{Episode Count}}{10} \right), 1 \right\},$$

detection is triggered.

Define the detection indicator d_t as:

$$d_t = \begin{cases} 1, & \text{if any detection condition is met,} \\ 0, & \text{otherwise.} \end{cases}$$

5. **Termination:** The episode terminates if $d_t = 1$ or when $t = T_{\text{max}}$.

3.2 Reward Function R

The immediate reward is defined as:

$$R(s_t, a_t) = \begin{cases} -100 - 0.5 (T_{\text{max}} - t), & \text{if } d_t = 1, \\ r_{\text{survival}}(s_t, a_t), & \text{if } d_t = 0, \end{cases}$$

where the survival reward is given by

$$r_{\text{survival}}(s_t, a_t) = 0.2 + 0.5 \, \mathbb{1}_{\{\text{Current Port} \in \mathcal{P}_{\text{common}}\}} - 0.5 \, \mathbb{1}_{\{a_t = 3\}} + 0.2 \, \mathbb{1}_{\{\text{diverse action history}\}},$$

with an additional bonus of 10 if the agent reaches $t = T_{\text{max}}$ without detection:

if
$$t = T_{\text{max}}$$
 and $d_t = 0$, $r(s_t, a_t) \leftarrow r(s_t, a_t) + 10$.

4 Reinforcement Learning Objective and PPO Formulation

4.1 Policy and Value Function

The agent learns a stochastic policy

$$\pi(a \mid s) : \mathcal{S} \to \Delta(\mathcal{A}),$$

parameterized by a neural network. In addition, a value function V(s) approximates the expected return from state s.

4.2 Objective

The learning objective is to maximize the expected cumulative discounted reward:

$$J(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T_{\text{max}}} \gamma^{t} R(s_{t}, a_{t}) \right],$$

with $\gamma \in [0, 1)$ denoting the discount factor.

4.3 Advantage Estimation

Using Generalized Advantage Estimation (GAE) [?], the advantage function is computed as:

$$\hat{A}_t = \sum_{l=0}^{T-t-1} (\gamma \lambda)^l \delta_{t+l},$$

where

$$\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t),$$

and $\lambda \in [0, 1]$ is the GAE parameter.

4.4 PPO Surrogate Objective

The Proximal Policy Optimization (PPO) algorithm optimizes the following clipped surrogate objective:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}_t \Big[\min \Big(r_t(\theta) \hat{A}_t, \text{ clip} \big(r_t(\theta), \, 1 - \epsilon, \, 1 + \epsilon \big) \hat{A}_t \Big) \Big],$$

where

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

is the probability ratio, and ϵ is a hyperparameter (e.g., 0.2).

4.5 Total Loss Function

The complete loss combines the policy loss, value function loss, and an entropy bonus:

$$L(\theta) = L^{\text{CLIP}}(\theta) - c_1 L^{\text{VF}}(\theta) + c_2 S[\pi_{\theta}],$$

with:

- $L^{\text{VF}}(\theta) = \mathbb{E}_t \left[\left(V_{\theta}(s_t) R_t^{\text{target}} \right)^2 \right]$, the value function loss,
- $S[\pi_{\theta}]$ is the entropy bonus,
- c_1 and c_2 are coefficients balancing the losses (e.g., $c_1 = 0.7$, $c_2 = 0.02$).

5 PPO-based Training Algorithm

The training process follows the PPO framework as detailed in the pseudo-code below.

Algorithm 1 PPO Training for the Advanced Network Environment

- 1: Input: Total timesteps T_{total} , update frequency K, clip parameter ϵ
- 2: Initialize policy parameters θ and value function parameters
- 3: Initialize environment and corresponding histories
- 4: **for** $t = 0, 1, ..., T_{\text{total}} 1$ **do**
- 5: Observe current state s_t
- 6: Sample action $a_t \sim \pi_{\theta}(\cdot \mid s_t)$
- 7: Execute action a_t in the environment
- 8: Observe reward $r_t = R(s_t, a_t)$, next state s_{t+1} , detection flag d_t
- 9: Store transition $(s_t, a_t, r_t, s_{t+1}, d_t)$
- 10: **if** episode terminates (i.e., $d_t = 1$ or $t = T_{\text{max}}$) **then**
- 11: Compute returns and advantages $\{\hat{A}_t\}$ using GAE
- 12: **for** epoch = 1 to K **do**
- 13: Update policy using the PPO surrogate loss:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}_t \Big[\min \Big(r_t(\theta) \hat{A}_t, \, \text{clip} \big(r_t(\theta), 1 - \epsilon, 1 + \epsilon \big) \hat{A}_t \Big) \Big]$$

14: Update value function by minimizing:

$$L^{\mathrm{VF}}(\theta) = \mathbb{E}_t \left[\left(V_{\theta}(s_t) - R_t^{\mathrm{target}} \right)^2 \right]$$

- 15: Incorporate an entropy bonus $S[\pi_{\theta}]$ to encourage exploration.
- 16:17: Reset episode-specific histories and update environment (curriculum adjustments, etc.)
- 18: end if
- 19: end for
- 20: Save the trained model parameters θ

6 Summary of Learning Dynamics

At each iteration:

- 1. The agent observes s_t and selects an action a_t according to the policy $\pi_{\theta}(a_t \mid s_t)$.
- 2. The environment applies the action, updates histories (packet, port, and action histories), and transitions to a new state s_{t+1} .
- 3. The immediate reward r_t is computed, and the detection mechanism evaluates the current state.
- 4. When an episode terminates, GAE computes the advantages, and PPO performs multiple epochs of updates on the policy and value function using the clipped surrogate objective.
- 5. The procedure continues until a predefined total timestep limit is reached.