COM1006 Devices and Networks (Autumn) COM1090 Computer Architectures

Lecture #2

Computer arithmetic: Integers

Dr Dirk Sudholt Department of Computer Science University of Sheffield

d.sudholt@sheffield.ac.uk
https://staffwww.dcs.shef.ac.uk/people/D.Sudholt/campus_only/COM1006.htm
Partly based on 4.7-4.8 in Clements, Principles of Computer Hardware
(we'll talk about adders and other hardware implementations later)

Aims of this lecture

- To explain how binary numbers are added.
- To explain sign-and-magnitude and complementary representations for negative numbers.
- To introduce two's complement numbers.
- To show how arithmetic overflow can occur when adding two's complement numbers, and to explain how overflow can be detected.

Binary arithmetic

 Binary arithmetic can be described by addition, subtraction and multiplication tables in the same way as decimal arithmetic (but the tables are much simpler).

Addition	Subtraction	Multiplication
0 + 0 = 0	0 - 0 = 0	$0 \times 0 = 0$
0 + 1 = 1	0 - 1 = 1 borrow 1	$0 \times 1 = 0$
1 + 0 = 1	1 - 0 = 1	$1 \times 0 = 0$
1 + 1 = 0 carry 1	1 - 1 = 0	1 x 1 = 1

Subtraction can be implemented by addition and negation:

$$X - Y = X + (-Y).$$

• If we can do addition and negation, we can do subtraction.

Adding binary numbers

- To add m-bit binary numbers we need to consider the carry out to the left and carry in from the right.
- Example: 00110111 + 01010110

```
00110111
+01010110
111 11 ← carries
10001101
```

Note on *m*-bit arithmetic

- Computers do arithmetic on a fixed word length.
- m-bit arithmetic: all numbers have exactly m bits (no less, no more)
- might have to fill up with leading zeros, e.g. in 8-bit arithmetic we write 3_{10} as 0000011_2 .
- the result of an *m*-bit addition is an *m*-bit number:

$$0011 + 0100 = 0111$$

- correct result may not fit in m bits, still we only have m bits available!
- we'll be using fixed numbers of bits in the remainder of this course!

► Signed numbers

- An n-bit word has 2^n possible values from 0 to 2^n -1 (e.g., 8-bit word has values from 0-255).
- How should we represent negative numbers?
- One way is to use the most significant bit to indicate the sign of the number (0 for positive, 1 for negative numbers).
- Example:

$$00001101_2 = +13_{10}$$

 $10001101_2 = -13_{10}$

- This is a **sign and magnitude** representation.
- Negation: flip (invert) sign bit.

Problems with sign and magnitude form

- The sign and magnitude representation amounts to using 1 bit of an n-bit number to represent the sign, so that the remaining n-1 bits represent a magnitude in the range -(2^{n-1} -1) to +(2^{n-1} -1), e.g. 8-bit word has range -127 to +127.
- In practice there are objections to this approach:
 - There are two values for zero:

```
00000000_2 = +0

10000000_2 = -0
```

- Addition requires a case distinction: operands have the same sign \rightarrow add n-1 bits, take over sign operands have different signs \rightarrow need to do subtraction
- Complementary arithmetic provides a better solution.

► A Wall Clock for Planet Neptune (1 day=16hrs)

- Assume hour hand can only go forward.
- Add 3 hours: 3 + 3 = 6.
- Subtract 2 hours:
 3 + (16 2)
 = 1 (modulo 16).
- "-2" is expressed as
 16 2 (16=#hours on clock)
- Transition from 15 to 0 is harmless here.

►Two's complement representation

- In the two's complement system both positive and negative numbers are represented in the same form.
- Half the numbers are negative.
- First bit indicates the sign.
- Numbers increase in clockwise direction (unlike sign & magnitude).
- Subtraction by addition still works like on Neptune:
 X Y = X + (16-Y)
- Allows to add positive and negative numbers.

Two's complement of an *n*-bit number

- How can we negate a number, e.g. turn +6 into -6?
- Looking for definitions that work for n-bit numbers.
- The **two's complement** of an n-bit binary number N is 2^n -N.
 - two's complement of N represents -N using the binary number for 2^n -N
 - similar to going from N to -N, but we add 2^n to get a positive number 2^n -N (which is positive since $N < 2^n$)
- Example for 4 bits:

The two's complement of $N=6_{10}=0110_2$ is $2^4-6=10_{10}=1010_2$

Note that 1010₂ can be interpreted either as the two's complement integer -6 or the unsigned integer +10.

Calculating two's complements in binary

- The two's complement system is attractive because it is easy to form two's complement numbers in binary.
- Note $2^n N = 2^n 1 N + 1$ and $2^n 1 = 1111...1_2$
- 1111...1₂ N inverts all bits in N (swapping 0s and 1s), e.g.:

- Algorithm for complementing N: invert bits and add 1.
- Example: $0110_2 \rightarrow \text{invert} \rightarrow 1001_2 \rightarrow \text{add } 1 \rightarrow 1010_2$

Properties of two's complement numbers

• The two's complement system is a true complement system, in that X+(-X) = 0 (the digit 2^n leads to a carry-out, which is ignored).

3 Show that this is true for the 4-bit number 0011₂

- There is one unique zero.
- If the number is positive the most significant bit is 0, and if it is negative the most significant bit is 1.
- The range of two's complement numbers in n bits is from -2^{n-1} to $+2^{n-1}$ -1. For an 8-bit word, this range is -128 to +127.
- It holds that --X = X.

Θ Show that this is true for the 4-bit number 0101_2

Decimal to two's complement

- How to convert a decimal number to two's complement representation, assuming it's in range?
- Positive numbers (e.g. +6):
 - 1. Convert to binary, done.
- Negative numbers (e.g. -6):
 - 1. Invert sign to get +6.
 - 2. Convert +6 to binary.
 - 3. Take two's complement in binary (invert, add 1). Yields binary representation of -6.

	decimal	binary
Positive	+6 —	→ 0110 ₂
Negative	-6	1010 ₂

Addition in two's complement system

- Adding X, Y in *n*-bit two's complement system:
 - 1. add bit strings bit by bit.
 - that's it! Works in the same way for positive and negative Y. (Unless an overflow occurs, see later)
- Examples for 5-bit numbers:

$$(+9) + (+4) = 01001_2 + 00100_2 = 01101_2$$
 (13₁₀)
 $(+9) + (-4) = 01001_2 + 11100_2 = 00101_2$ (5₁₀)

 Note that any carry out after adding the most significant bits is always ignored. Spelling the above calculation out,

$$9 + (-4) = 9 + (2^5-4) = (9-4) + 2^5 = 9-4 \pmod{2^5}$$

Think of 2^5 or 2^n as extra loop round the clock.

Subtraction in two's complement

- Take the two's complement of Y, which represents –Y.
- Add X + (-Y) bit-wise as before.
- Disambiguation:

Two's complement representation	Two's complement of a number
A system for representing positive and negative numbers.	The negative of a number, e.g. two's complement of 6_{10} represents -6_{10} (and two's complement of -3_{10} represents 3_{10})
Analogy: $\mathbb{Z} = \{2, -1, 0, 1, 2,\}$	Analogy: minus sign, 6 → -6

► Arithmetic overflow

• Add the 5-bit two's complement numbers 12 and 13:

```
01100_2 + 01101_2 = 11001_2 (-7<sub>10</sub> two's complement)
```

- We expected the answer 25.
- Note that 11001₂ is 25 if we interpret it as unsigned binary, but if using two's complement then all numbers must be interpreted in the same way!
- An arithmetic overflow has occurred.
- Arithmetic overflow occurs in two's complement when addition of two positive numbers gives a negative result, or addition of two negative numbers gives a positive result.

Detecting arithmetic overflow

- Consider addition on a bitby-bit basis.
- We compare the carry-in C_{in} to the last stage (most significant bit, MSB) and the resulting carry-out C_{out} from that stage.
- If C_{in} = C_{out} then there is no overflow.
- If $C_{in} \neq C_{out}$ then overflow has occurred.
- This check can be done easily in circuits (see later)

Example: no overflow

Example: overflow

▶Summary

- Adding unsigned binary numbers works like in decimal.
- Two's complement representation: an elegant representation of positive and negative numbers in binary.
- Addition in two's complement works bit by bit, regardless of the signs of operands.
- Subtraction can be done by adding the two's complement of the subtrahend: $X+(2^n-Y)$, ignoring carry-out of 2^n .
- The two's complement of a number X gives -X. Can be done in decimal: $-X = 2^n X$ or in binary: invert bits and add 1.
- Arithmetic overflow can occur in two's complement representation, but is straightforward to detect.