Zapiski za 2. kolokvij - 5. predavanje

Tilen Pintarič

9. januar 2023

Iztočnice

Piezouporovni učinek

Primarna in hkrati najbolj pomembna merilna zaznavala za merjenje neelektričnih mehanskih veličin so **piezouporovna merilna zaznavala**, ki temeljijo na **piezouporovnem merilnem učinku**.

Piezouporovni merilni učinek je sprememba električne upornosti polprevodnika ali kovine pri mehanski obremenitvi.

Za razliko od piezoelektričnega učinka piezouporovni učinek povzroči spremembo le v specifični električni upornosti, ne pa tudi v električnem potencialu merilnega zaznavala.

Blokovni prikaz merilnega zaznavala

Figure 1: piezouporovno merilno zaznavalo

Mehanska napetost, ki nastane npr. zaradi delovanja sile se prenese na piezouporovno merilno zaznavalo in povzroči spremembo električne upornosti zaznavala za ΔR .

Piezouporovni učinek kovin v splošnem temelji na dveh temeljnih fizikalnih zakonitostih in sicer:

- Hookovem zakonu iz mehanike,
- specifični električni upornosti iz elektrotehnike, ki izhaja iz Ohmovega zakona.

Natezna obremenitev merjenca in merilnega zaznavala

Figure 2: natezna obremenitev

Pomemben del v strukturi piezouporovnega merilnega zaznavala je **merilna mrežica zaznavala**, ki se nahaja na posebej tanki elastični podlagi ali nosilni membrani. V njo so vdelani **mikro majhni piezoupori**, ki zagotavljajo generiranje izhodnih merilnih sestavov.

Piezouporovni učinek je odvisen od raztezka ali skrčka nosilne membrane na katero deluje mehanska obremenitev, ter od vrste in velikosti dopiranja polprevodnika.

Piezouporovna zaznavala

To so pasivna merilna zaznavala, ki za svoje delovanje potrebujejo kontrolirano tokovno napajanje.

Imenska upornost neobremenjenega merilnega zaznavala, je od 120 Ω do 1000 Ω .

Lastna frekvenca zaznaval je do 60 kHz, delovno frekvenčno območje je torej do 20 kHz (cca. 1/3 območja lastne frekvence).

Zaznavala so 50 do 100 krat bolj občutljiva od piezoelektričnih merilnih zaznaval.

Posebej težavno pri obdelavi merilnih signalov dobljenih z uporabo uporovnih merilnih lističev je upoštevanje **termičnega šuma**, ki je značilen za tanke

Polprevodniško piezouporovno merilno zaznavalo - UML

Figure 3: polprevodniško piezouporovno merilno zazvanalo

električno prevodne žice. **Johnsonov termični** šum je elektronski šum, ki se v električnem vodniku pojavi zaradi temperaturno pogojenega nihanja prostih elektronov.

Merilna veriga pri uporabi piezouporovnih merilnih zaznaval

Poenostavljen blokovni prikaz merilne verige

Piezouporovna merilna zaznavala ali uporovne merilne lističe vežemo v Wheatstonovo mostično vezavo ali merilni mostič.

Vezalna shema merilne verige

Figure 4: wheatstonov merilni mostič

V vsakdanji merilni praksi se uporabljata dve vrsti mostičnih ojačevalnikov in sicer: * Enosmerni ojačevalnik * Izmenični mostični ojačevalnik.

Enosmerni merilni mostični ojačevalniki so napajani z enosmerno napetostjo, imajo visoko stopnjo ojačenja signala ter so zelo občutljivi na elektromagnetne motnje.

Izmenični merilni mostični ojačevalniki so napajani z izmenično napetostjo, ki ima značilno nosilno amplitudno modulirano frekvenco 5 kHz.

Vpliv temperature na delovanje piezouporovnih merilnih zaznaval

Zaradi **samosegrevanja** uporovnega merilnega lističa se upornost na uporovnem merilnem lističu dodatno poveča, kar se pozna kot se dodatno **navidezno povečanje mehanske napetosti**.

Vprašanja in odgovori

V sliki in besedi pojasnite pojem piezouporovnega učinka ter na kratko komentirajte temeljne razlike med piezoelektričnimi ter piezouporovnimi merilnimi zaznavali.

Figure 5: piezouporovni učinek skica

Piezouporovni merilni učinek je sprememba električne upornosti polprevodnika ali kovine pri mehanski obremenitvi.

Piezouporovni učinek - spremeni samo specifično električno upornost, katero lahko zaznamo le, če merilnik napajamo z zunanjim napajanjem.

Piezoelektrični pa spremeni še električni potencial merilnega zaznavala - generira izmerljivo električno napetost brez zunanjega napajanja.

Faktor občutljivosti K merilnega zaznavala predstavlja zvezo med spremembo električne upornosti na merilnem zaznavalu in specifično deformacijo:

$$\frac{\Delta R}{R_0} = K * \frac{\Delta L}{L_0} = K * \epsilon_L$$

Faktor občutljivosti merilnega zaznavala je funkcija uporovno-geometrijskih karakteristik uporovne žičke zaznavala.

Sprememba geometrije merilne žičke po mehanski obremenitvi

Figure 6: merilna žička

Sprememba izhodnega merilnega signala torej nastopi zaradi:

- Spremembe geometrije zaznavala $\frac{dL}{L}$
- Spremembe specifične električne upornosti $\frac{d\rho}{\rho}$

Občutljivost piezouporovnega merilnega zaznavala K je v splošnem definirana kot razmerje:

$$K = \frac{\frac{\Delta R}{R_0}}{\frac{\Delta L}{L_0}} = \frac{\frac{\Delta R}{R_0}}{\epsilon_L} = GF$$

Kako je določimo občutljivost uporovnih merilnih lističev pri merjenju mehanskih nateznih napetosti? Ponazorite to tudi s skico.

Občutljivost piezouporovnega merilnega zaznavala K je v splošnem definirana kot razmerje električne upornosti in raztezka:

$$K = \frac{\frac{\Delta R}{R_0}}{\frac{\Delta L}{L_0}} = \frac{\frac{\Delta R}{R_0}}{\epsilon_L} = GF$$

Sprememba geometrije merilne žičke po mehanski obremenitvi

Figure 7: merilna žička

Na kratko pojasnite pomen in definicijo termičnega šuma.

Johnsonov termični šum je elektronski šum, ki se v električnem vodniku pojavi zaradi temperaturno pogojenega nihanja prostih elektronov, ki je značilen za tanke električno prevodne žice.

Pojasnite kakšen vpliv ima temperatura ter napajanje na izhodno napetost uporovnega merilnega lističa.

V sliki in besedi komentirajte možnosti za temperaturno kompenzacijo uporovnih merilnih lističev.

V sliki in besedi pojasnite kakšen pomen ima namestitev uporovnih merilnih lističev na merilno mesto.

Narišite shemo merilne verige za četrtmostično vezavo uporovnega merilnega lističa pri merjenju natezne napetosti ter zapišite in komentirajte pripadajoči merilni model.

Narišite shemo merilne verige za polmostično vezavo uporovnih merilnih lističev pri merjenju upogibnih momentov ter zapišite in komentirajte pripadajoči merilni model