

Mechanical, Automotive, & Materials Engineering

401 Sunset Avenue Windsor, Ontario, Canada N9B 3P4 519 253 3000 (2616) www.uwindsor.ca/mame

EoM Analysis Spring Mass Damper

John Smith: ID 12345678 Jane Smith: ID 87654321

January 11, 2017

Contents

1	Introduction	1
	1.1 System Description	1
2	Analysis	3
	2.1 Eigenvalue Analysis	3
	2.2 Frequency Response Plots	4
	2.3 Steady State Gains	5
	2.4 Hankel Singular Value Analysis	5
	2.5 Equilibrium Analysis	5
3	Conclusion	6
A	Equations of Motion	7

\mathbf{T}			\mathbf{T}			
1	JST	\mathbf{OE}	ΗT	\sim 1	TD	TC
•	11.7	\ <i>)</i>		(T I		$\Gamma \cup J$

	Engagement recommended activator													
2.1	Frequency response: actuator	Ι.				 		 						

List of Tables

1.1	Body CG Locations and Mass	1
1.2	Body Inertia Properties	1
1.3	Connection Location and Direction	1
1.4	Connection Locations	2
1.5	Connection Properties	2
2.1	Eigenvalues	3
2.2	Eigenvalue Analysis	3
2.3	Steady State Gains	5
2.4	Hankel Singular Values	5
2.5	System Static Deflections	5
2.6	System Preloads	5

CHAPTER 1

Introduction

Replace this text with the introduction of your report.

1.1 System Description

The properties of the bodies are given in Tables 1.1 and 1.2. The properties of the connecctions are given in Tables 1.3, 1.4, and 1.5.

Table 1.1: Body CG Locations and Mass

No.	Body Name	Location [m]	Mass [kg]
1	block	0.000, 0.000, 1.000	1.000

Table 1.2: Body Inertia Properties

No.	Body Name	Inertia [†] [kg m ²] (I_{xx} , I_{yy} , I_{zz} ; I_{xy} , I_{yz} , I_{zx})
1	block	0.000, 0.000, 0.000; 0.000, 0.000, 0.000

[†]Inertias are defined as the positive integral over the body, e.g., $I_{xy} = + \int r_x r_y dm$.

Table 1.3: Connection Location and Direction

No.	Connection Name	Location [m]	Unit Axis		
1	slider 1	0.000, 0.000, 1.000	0.000, 0.000, 1.000		
2	spring 1	0.000,0.000,0.500	0.000,0.000,1.000		

Table 1.4: Connection Locations

|--|

 Table 1.5: Connection Properties

No.	Connection Name	Stiffness [N/m]	Damping [Ns/m]
1	spring 1	100	2

CHAPTER 2

ANALYSIS

Replace this text with the body of your report. Add sections or subsections as appropriate.

2.1 Eigenvalue Analysis

The eigenvalue properties are given in Tables 2.1 and 2.2.

Table 2.1: Eigenvalues

No.	Real [rad/s]	Imaginary [rad/s]	Real [Hz]	Imaginary [Hz]
1	$-1.00000000000 \times 10^{0}$	$9.9498743711 \times 10^{0}$	$-1.5915494309 \times 10^{-1}$	$1.5835716893 \times 10^{0}$
2	$-1.00000000000 \times 10^{0}$	$-9.9498743711 \times 10^{0}$	$-1.5915494309 \times 10^{-1}$	$-1.5835716893 \times 10^{0}$

Note: oscillatory roots appear as complex conjugates.

Table 2.2: Eigenvalue Analysis

No.	Frequency (ω_n) [Hz]	Damping Ratio (ζ)	Time Constant (τ) [s]	Wavelength (λ) [s]
1	$1.5915494309 \times 10^{0}$	$1.000000000000 \times 10^{-1}$	$1.000000000000 \times 10^{0}$	$6.3148388340 \times 10^{-1}$
2	$1.5915494309 \times 10^{0}$	$1.000000000000 \times 10^{-1}$	$1.000000000000 \times 10^{0}$	$6.3148388340\times 10^{-1}$

Notes: a) oscillatory roots are listed twice, b) negative time constants denote unstable roots.

There are 1 degrees of freedom. There are 1 oscillatory modes, 1 damped modes, 0 unstable modes, and 0 rigid body modes.

2.2 Frequency Response Plots

Figure 2.1: Frequency response: actuator 1

2.3 Steady State Gains

The steady state gains are given in Table 2.3.

Table 2.3: Steady State Gains

No.	Output/Input	Gain
1	sensor 1/actuator 1	$1.00000000000 \times 10^{-2}$

2.4 Hankel Singular Value Analysis

The Hankel singular values are given in Table 2.4.

Table 2.4: Hankel Singular Values

No.	Hankel SV					
1	$2.7624689053 \times 10^{-2}$					
2	$2.2624689053 \times 10^{-2}$					
3	$0.00000000000 \times 10^{0}$					

2.5 Equilibrium Analysis

The results of the equilibrium load analysis are given in Tables 2.5 and 2.6.

Table 2.5: System Static Deflections

No.	Body Name	Type	Deflection [m] or [rad]
1	block		$0.0000 \times 10^{0}, 0.0000 \times 10^{0}, -9.8100 \times 10^{-2}$
	_	rotation	$0.0000 \times 10^{0}, 0.0000 \times 10^{0}, 0.0000 \times 10^{0}$

Table 2.6: System Preloads

No.	Connector Name	Type	Load [N] or [Nm] (Components; Magnitude)		
1	slider 1	force	0.0000×10^{0} , 0.0000×10^{0} , 0.0000×10^{0} ; 0.0000×10^{0}		
2	spring 1	force	0.0000×10^{0} , 0.0000×10^{0} , 9.8100×10^{0} ; 9.8100×10^{0}		

CHAPTER 3

Conclusion

Replace this text with the conclusion to your report.

APPENDIX A

EQUATIONS OF MOTION

The equations of motion are of the form

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} & -\mathbf{G} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{Bmatrix} \dot{\mathbf{p}} \\ \dot{\mathbf{w}} \\ \dot{\mathbf{u}} \end{Bmatrix} + \begin{bmatrix} \mathbf{V} & -\mathbf{I} & \mathbf{0} \\ \mathbf{K} & \mathbf{L} & -\mathbf{F} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{Bmatrix} \mathbf{p} \\ \mathbf{w} \\ \mathbf{u} \end{Bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{I} \end{bmatrix} \begin{Bmatrix} \mathbf{u} \end{Bmatrix}$$

The system is subject to constraints

$$\begin{bmatrix} J_h & 0 & 0 \\ -J_h V & J_h & 0 \\ 0 & J_{nh} & 0 \end{bmatrix} \begin{bmatrix} \dot{p} & p \\ \dot{w} & w \\ \dot{u} & u \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The mass matrix of the system is

```
1.0000000 \times 10^{0}
                            0.000000 \times 10^{0}
                                                        0.000000 \times 10^{0}
                                                                                   0.000000 \times 10^{0}
                                                                                                               0.000000 \times 10^{0}
                                                                                                                                          0.0000000 \times 10^{0}
                                                                                                                                          0.000000 \times 10^{0}
0.0000000 \times 10^{0}
                            1.0000000 \times 10^{0}
                                                        0.000000 \times 10^{0}
                                                                                   0.000000 \times 10^{0}
                                                                                                               0.000000 \times 10^{0}
0.0000000 \times 10^{0}
                            0.0000000 \times 10^{0}
                                                        1.0000000 \times 10^{0}
                                                                                                               0.000000 \times 10^{0}
                                                                                                                                          0.0000000 \times 10^{0}
                                                                                   0.0000000 \times 10^{0}
0.000000 \times 10^{0}
                            0.0000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                   0.0000000\times 10^{0}
                                                                                                               0.000000 \times 10^{0}
                                                                                                                                          0.000000 \times 10^{0}
0.000000 \times 10^{0}
                            0.0000000 \times 10^{0}
                                                        0.000000 \times 10^{0}
                                                                                   0.000000 \times 10^{0}
                                                                                                               0.000000 \times 10^{0}
                                                                                                                                          0.000000 \times 10^{0}
0.000000 \times 10^{0}
                            0.0000000 \times 10^{0}
                                                        0.000000 \times 10^{0}
                                                                                   0.0000000 \times 10^{0}
                                                                                                               0.0000000 \times 10^{0}
                                                                                                                                          0.0000000 \times 10^{0}
```

The damping matrix is

```
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                      0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                              0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                      0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                              0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                                                                              0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
                                                      2.0000000 \times 10^{0}
                                                                                  0.0000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.0000000 \times 10^{0}
                                                      0.0000000 \times 10^{0}
                                                                                  0.0000000 \times 10^{0}
                                                                                                              0.0000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                      0.000000 \times 10^{0}
                                                                                  0.0000000 \times 10^{0}
                                                                                                              0.0000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                      0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                              0.0000000 \times 10^{0}
                                                                                                                                         0.0000000 \times 10^{0}
```

The stiffness matrix is

The velocity matrix is

```
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                             0.000000 \times 10^{0}
0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
                           0.0000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                             0.000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                             0.000000 \times 10^{0}
                                                                                                                                         0.0000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                             0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                             0.000000 \times 10^{0}
0.000000 \times 10^{0}
                           0.000000 \times 10^{0}
                                                       0.000000 \times 10^{0}
                                                                                  0.000000 \times 10^{0}
                                                                                                             0.000000 \times 10^{0}
                                                                                                                                         0.000000 \times 10^{0}
```

The input force matrix is

$$F = \begin{bmatrix} 0.000000 \times 10^{0} \\ 0.000000 \times 10^{0} \\ 1.000000 \times 10^{0} \\ 0.000000 \times 10^{0} \\ -5.000000 \times 10^{-2} \\ 0.000000 \times 10^{0} \end{bmatrix}$$

The input force rate matrix is

$$G = \begin{bmatrix} 0.000000 \times 10^0 \\ \end{bmatrix}$$

Row	Column	Value	Row	Column	Value
2	1	$-1.000000000 \times 10^{0}$	7	7	$-1.000000000 \times 10^{0}$
1	2	$1.000000000 \times 10^{0}$	6	8	$1.000000000 \times 10^{0}$
3	4	$1.000000000 \times 10^{0}$	8	10	$1.000000000 \times 10^{0}$
4	5	$1.000000000 \times 10^{0}$	9	11	$1.000000000 \times 10^{0}$
5	6	$1.000000000 \times 10^{0}$	10	12	$1.000000000 \times 10^{0}$

The full state space equations:

$$\begin{bmatrix} E & 0 \\ 0 & I \end{bmatrix} \begin{Bmatrix} \dot{x} \\ y \end{Bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{Bmatrix} x \\ u \end{Bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} -2.00000000 \times 10^0 & 1.00000000 \times 10^2 & -1.00000000 \times 10^0 & 0.00000000 \times 10^0 \\ -1.00000000 \times 10^0 & 0.00000000 \times 10^0 & 0.00000000 \times 10^0 & 0.00000000 \times 10^0 \\ 0.00000000 \times 10^0 & 0.00000000 \times 10^0 & -1.00000000 \times 10^0 & 1.00000000 \times 10^0 \\ \hline 0.00000000 \times 10^0 & 1.00000000 \times 10^0 & 0.00000000 \times 10^0 & 0.00000000 \times 10^0 \\ \hline 0.00000000 \times 10^0 & 1.00000000 \times 10^0 & 0.00000000 \times 10^0 & 0.00000000 \times 10^0 \\ 0.00000000 \times 10^0 & 1.000000000 \times 10^0 & 0.00000000 \times 10^0 \\ 0.00000000 \times 10^0 & 1.000000000 \times 10^0 & 0.000000000 \times 10^0 \\ 0.00000000 \times 10^0 & 0.00000000 \times 10^0 & 0.000000000 \times 10^0 \\ 0.00000000 \times 10^0 & 0.000000000 \times 10^0 & 0.000000000 \times 10^0 \\ 0.000000000 \times 10^0 & 0.000000000 \times 10^0 & 0.000000000 \times 10^0 \\ \end{bmatrix}$$

The reduced state space equations: