

结构拓扑优与材料设计

第7次课回顾

- 产拓扑优化中的灵敏度分析
 - ■直接法
 - ■伴随法
 - ■柔顺性问题的灵敏度分析

第8次课主要内容

- ▶调用MMA优化子程序
- ▶结构应力拓扑优化
 - ■基本列式
 - ■应力约束优化问题中的奇异现象
 - ■放松方法

MMA程序介绍

- ▶移动渐近算法 (Method of Moving Asymptotes) 优化程序由瑞典皇家工学院Krister Svanberg教授于1987年开发。
- ▶ 后为使用于MBB梁问题及其他算例,对程序进行了重写。
- ▶ 2002年发布GCMMA, 增强算法的全局收敛性。
- [1] K. Svanberg, The method of moving asymptotes { a new method for structural optimization, International Journal for Numerical Methods in Engineering, 1987, 24, 359-373.
- [2] K. Svanberg, A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM Journal of Optimization, 2002, 12, 555-573.

MMA程序介绍

- ▶MMA的程序代码mmasub.m和subsolv.m可以免费用于教育及科研。可以通过向Svanberg教授发邮件的形式获取。
- http://www.math.kth.se/~krille/
- ▶求解相同的MBB梁问题, OC算法和MMA算法表现 上有什么不同?
- ▶目标函数? 计算时间?

OC VS MMA

	Time s	Number of iterations
OC	18.86	41
MMA	96.36	97

➤ MBB problem 60x20 elements

Time pr. optimization iteration

▶对于相同的简单问题OC 计算效率高于 MMA.

2010-11-3

计算结构力学

OC VS MMA

➤ MBB problem 60x20 elements

MMA优化结果

0C优化结果

MMA优化模型

$$\min_{x,y,z} : f_0(x) + a_0 z + \sum_{i=1}^{m} \left(c_i y_i + \frac{1}{2} d_i y_i^2 \right)
S.t. : f_i(x) - a_i z - y_i \le 0, \quad i = 1, ..., m
: x_j^{\min} \le x_j \le x_j^{\max}, \quad j = 1, ..., m
: y_i \ge 0, \quad i = 1, ..., m
: z \ge 0$$

▶m,n分别表示约束和设计变量的个数,x表示设计变量向量,y和z是正的优化变量。f0表示目标函数,f1...fm约束函数,ai,ci,di为正常数。

-11-3 计算结构

MMA优化原模型

$$\min_{x,y,z} : f_0(x)
S.t. : f_i(x) \le 0, \quad i = 1,..., m
: x_i^{\min} \le x_i \le x_i^{\max}, \quad j = 1,...n$$

▶当优化变量y和z趋近于0的时候,MMA优化模型趋近于原始模型。Svanberg教授建议:

$$a_0 = 1$$
, $a_i = 0$, $c_i = 1000$, $d = 0$

99行程序调用MMA

- ▶99行程序中调用MMA需要MMA的程序代码mmasub.m和 subsolv.m
- 》调用过程中需要提供灵敏度信息df 0dx, df 0dx2, df dx, df dx2。对应 $\frac{\partial f_0}{\partial x_j}, \frac{\partial^2 f_0}{\partial x_j^2}, \frac{\partial f_i}{\partial x_j}, \frac{\partial^2 f_i}{\partial x_j^2}$
- ▶由于拓扑优化问题的二阶导数很难获得,调用MMA过程中仅需将df0dx2, dfdx2赋0值。

基于MMA程序的结构柔顺性优化程序实现

```
%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE
SIGMUND, JANUARY 2000 %%%
%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002,
BY OLE SIGMUND %%%
function top (nelx, nely, volfrac, penal, rmin);
global time
global cvec
tic
% INITIALIZE
n = nelx*nely;
```

初始化

```
x(1:nely, 1:nelx) = volfrac;
xold1 = reshape(x, n, 1);
xo1d2 = xo1d1;
1oop = 0;
change = 1.;
c = 1e6;
xmin = 0.001;
xmax = 1;
dfdx2 = zeros(1, n);
low = zeros(n, 1);
    = 1ow;
upp
```

初始化,有限元分析

```
a0 = 1;
a = 0;
cmma = 1000;
d = 0;
move = 0.5;
% START ITERATION
while change > 0.01
  100p = 100p + 1;
% FE-ANALYSIS
  [U] = FE (ne1x, ne1y, x, pena1);
```

目标函数及敏度计算

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

```
[KE] = 1k;
  c = 0.;
  dc = zeros(nely, nelx);
  for j=1:1
      for ely = 1: nely
           for e1x = 1: ne1x
               n1 = (ne1y+1) * (e1x-1) + e1y;
               n2 = (ne1y+1) * e1x +e1y;
               Ue = U([2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2;
2*n1+1; 2*n1+2], j);
               c = c + x (e1y, e1x) ^pena1*Ue'*KE*Ue;
               dc(ely, elx) = dc(ely, elx) + -
pena1*x (e1y, e1x) ^ (pena1-1) *Ue' *KE*Ue;
           end
      end
  end
```

最小柔顺性问题的伴随法灵敏度分析

$$\Phi = \mathbf{F}^T \mathbf{U}(\boldsymbol{\rho}), \qquad \mathbf{K}(\boldsymbol{\rho})\mathbf{U} = \mathbf{F}$$

Adjoint method

 $\hat{\Phi}' = \lambda^T K' U$

$$\hat{\Phi} = \Phi + \lambda^{T} (KU - F)$$

$$\hat{\Phi}' = \frac{\partial \Phi}{\partial U} U' + \lambda^{T} (K'U + KU')$$

$$\left(\lambda^{T} K + \frac{\partial \hat{\Phi}}{\partial U}\right) U' = 0 \Rightarrow$$

$$K^{T} \lambda = -\left(\frac{\partial \hat{\Phi}}{\partial U}\right)^{T} \Rightarrow$$

Compliance obj.

$$egin{aligned} \left(rac{\partial \hat{\Phi}}{\partial oldsymbol{U}}
ight)^T &= F \Rightarrow \ K \lambda = -F \Rightarrow \ \lambda = -U \Rightarrow \ \hat{\Phi}' &= -U^T K' U = \ -rac{p}{
ho_e} oldsymbol{U}_e^T K_e^0 U_e \end{aligned}$$

$$K = \sum_{e} K_{e}$$
$$K_{e} = \rho_{e}^{p} K_{e}^{0}$$

滤波,MMA优化参数的准备

```
% FILTERING OF SENSITIVITIES
  [dc] = check (nelx, nely, rmin, x, dc);
% MMA
  x = reshape(x, n, 1);
  xold1 = reshape(xold1, n, 1);
  xo1d2 = reshape(xo1d2, n, 1);
  dc = reshape(dc, n, 1);
  df 0dx2 = 0*dc;
  fval = sum(x) / (volfrac*nelx*nely) -1;
  dfdx = 1/(volfrac*nelx*nely)*ones(1, n);
  xmax = min(1, x+move);
  xmin = max(0.001, x-move);
```

调用MMA

```
[xmma, ymma, zmma, lam, xsi, eta, mu, zet, s, low, upp] =
mmasub(m, n, loop, x, xmin, xmax, xoldl, xold2, ...
c, dc, df 0dx2, fval, dfdx, dfdx2, low, upp, a0, a, cmma, d);

change = max(max(abs(xmma-xoldl)));
  disp([' It.: ' sprintf('%4i', loop) ' 0bj.: '
  sprintf('%10.4f', c) ' Vol.: '
  sprintf('%6.3f', sum(sum(x)) / (nelx*nely)) ' ch.: '
  sprintf('%6.3f', change)])
```

```
xold2 = xold1;
xold1 = x;
x = xmma;
x = reshape(xmma, nely, nelx);
% PLOT DENSITIES
figure(1)
colormap(gray); imagesc(-x); axis equal; axis tight;
axis off; pause(1e-6);
end
```

应力约束下的桁架拓扑优化

应力约束下桁架拓扑优化问题的提法 To Find Ai, i = 1, 2, ...N

$$Min \quad W = \sum_{i=1}^{N} A_i \rho l_i$$

St.
$$\sigma_{ij}^{C} \leq \sigma_{ij} \leq \sigma_{ij}^{T}, A_{i} > 0,$$

 $i = 1, 2, ..., N; i = 1, 2, ..., L$

$$0 \le A_i \le A_i^U$$
, $i = 1, 2, ... N$

 A_i 为杆件断面积, W为桁架重量, ρ 为材料比重, I_i 为杆件长度, σ_{ij} 为杆件应力,上标 C, T分别为压缩和拉伸许用应力, U为断面积上限

应力约束下的奇异最优解

奇异最优解最早是由Gino, Sved (1960) 在优化三杆桁架时发现

最小重量设计,三个荷载工况,全局最优解为W=12.0 (8.0, 1.5, 0.0),局部最优解为W=15.15(7.24, 2.135, 2.767);从相当任意的初始解出发,用数学规划法无法得到全局最优解。

应力约束下的奇异最优解

奇异最优解产生的原因可用应力函数不连续,或应力约束是依赖于拓扑的约束来解释。

可行区的正确表示和错误表示

错误的图示

正确的图示

ε-relaxed approach(Cheng, Guo, 1997)

Cheng and Guo proposed a ε -relaxed approach in which the stress constraint is replaced by internal force constraints, and then internal force constraints were relaxed to eliminate possible singularities.

1. Replace
$$\sigma_{i} \leq \sigma_{i}^{U}$$

by $A_{i}\sigma_{i} - A_{i}\sigma_{i}^{U} \leq 0$;

2. Relax $A_{i}\sigma_{i} - A_{i}\sigma_{i}^{U} \leq 0$

by $A_{i}\sigma_{i} - A_{i}\sigma_{i}^{U} \leq \varepsilon$

ε-relaxed方法可使可行域的形状正则化

Before and after relaxation of constraints

由点集映射原理,可以证明在如下两个结论:

- 1. 应力约束下的原始优化问题存在一个最优边界解 Wopt
- 2. 每一个迭代步中,可以获得 $\{\varepsilon_k\}, \varepsilon_k > \varepsilon_{k+1} > 0$ and $\lim_{k \to \infty} \varepsilon_k = 0$

序列的变化对应的放松问题的全局最优解 Wopt

这样:
$$\lim_{k \to \infty} W_{\varepsilon_k}^{opt} = W_O^{opt}$$

A three bar truss subjected to three load cases is optimized.

 $E=1.0,h=1.0,\rho=1.0.$

The three loading cases are

(a)
$$P=40,c=45^{\circ}$$
; (b) $P=30,c=90^{\circ}$; (c) $P=20,c=135^{\circ}$.

The allowable stress are : $\sigma_{ia} = \pm 5.0, i = 1, 3$ $\sigma_{2a} = \pm 20.0$

初始设计与不同优化列式所得优化结果的影响

Ini. Design	Relaxed Formulation	Stress	
A1 A2 A3	A1 A2 A3 W		
8.0 2.4 3.2	7. 0242. 1352. 76715. 97	W=15.97	
0.0 12.0 18.0	0. 0002. 8288. 00014. 14	W=15.97	
0.7 4.0 10.0	0.0002.8288.00014.14	W=15.97	
1.0 1.0 1.0	7. 0242. 1352. 76715. 97	W=15.97	
10.0 10.0 10.0	7. 0242. 1352. 76715. 97	W=15.97	
1.0 1.0 0.1	8.00 1.50 0.00 12.81	W=15.97	
10.0 10.0 0.1	8.00 1.50 0.00 12.81	W=15.97	
G1. Opt	8.00 1.50 0.00 12.81		

- $\triangleright \varepsilon$ -relaxed方法对原问题有较好的近似
- ▶但获得全局最优解仍然是困难的
- ▶初始解的选择对于获得全局最优解非常重要
- \triangleright 为了拓展对全局最优解的吸引,进一步使用连续化策略改善 ε -relaxed算法。

Iteration history by Continuation method

- 》通过ε-松弛延拓算法,可以有效解决应力约束下桁架拓扑优化奇异性困难,以桁架构件截面积为设计变量,将拓扑优化与尺寸优化统一实现。
- 定-松弛延拓算法可以显著的提高基于梯度的优化算法,从任意给定的均匀解收敛到全局最优解的概率。

应用ε-松弛和延拓算法在不同约束处理下 求解四杆桁架的优化结果

SF-stress constraint; IF-internal force constraint; uniform initial design

3	A1	A2	A3	A4	W
2.0	0.0529	0.1451	0.1521	0.1592	79.39
1.5	0.0481	0.2083	0.2586	0.2021	105.79
1.0	0.0372	0.2757	0.3361	0.2483	132.66
0.5	0.0210	0.3480	0.4109	0.2969	159.42
0.1	0.0046	0.4115	0.4653	0.3373	180.48
0.01	0.0000	0.4274	0.4757	0.3471	185.15
0.001	0.0000	0.4286	0.4773	0.3476	185.62
Hoback	0.0000	0.5600	0.3980	0.3620	191.00
SF	1.0157	1.0115	0.4939	0.4886	410.69
IF	0.0000	1.2500	0.0000	2.1479	500.08

考虑应力约束的拓扑优化问题—连续体

$$\min_{oldsymbol{
ho}}: \sum_{e=1}^N v_e
ho_e$$

s.t.:
$$(\sigma_e)_{VM} \leq \rho_e^p \sigma^*$$
, if $\rho_e > 0$, $e = 1, ..., N$

$$0 \le \rho \le 1$$

$$: K(\rho)U = F$$

应力约束的 ε-relaxation方法

Original Constraint
$$(\sigma_e)_{VM} \leq \rho_e^p \sigma^*$$
 if $\rho_e > 0$

Rewritten
$$\left(\frac{(\sigma_e)_{VM}}{\rho_e^p\sigma^*}-1\right)\leq 0$$
 if $\rho_e>0$

Reformulation

$$\rho_e \left(\frac{(\sigma_e)_{VM}}{\rho_e^p \sigma^*} - 1 \right) \le 0$$

应力约束的 ε-relaxation方法

Original Constraint

$$(\sigma_e)_{VM} \leq \rho_e^p \sigma^*$$
 if $\rho_e > 0$

Rewritten

$$\left(rac{(\sigma_e)_{VM}}{
ho_e^p \sigma^*} - 1
ight) \leq 0 \quad \text{if }
ho_e > 0$$

Reformulation

$$\rho_e \left(\frac{(\sigma_e)_{VM}}{\rho_e^p \sigma^*} - 1 \right) \le 0$$

Relaxed constraint, Cheng and Guo (1997):

$$\rho_e \left(\frac{(\sigma_e)_{VM}}{\rho_e^p \sigma^*} - 1 \right) \le \varepsilon (1 - \rho_e), \quad \varepsilon^2 = \rho_{min} \le \rho_e$$

最大应力最小的拓扑优化问题—连续体

$$\min_{oldsymbol{
ho}}: \max_{e}(\sigma_e)_{VM}$$
 $s.t.: \sum_{e=1}^N v_e
ho_e \leq V^*$

$$0 \le \rho \le 1$$

:
$$K(\rho)U = F$$

最大应力最小的可微化处理

$$\min_{oldsymbol{
ho}}: \max_{e}(\sigma_e)_{VM}$$

$$\rho$$
 e
 SVM
 $s.t.: \sum_{e=1}^{N} v_e \rho_e \le V^*$

$$: 0 \le \rho \le 1$$

:
$$K(\rho)U = F$$

Multi objectives=> multiple constraints

$$\min_{\boldsymbol{\rho}}: \quad \left(\sum_{e=1}^{N} \sigma_e^q\right)^{1/q}$$

$$s.t.: \quad \sum_{e=1}^{N} v_e \rho_e \leq V^*$$

$$: \quad \mathbf{0} \leq \boldsymbol{\rho} \leq \mathbf{1}$$

$$: \quad \mathbf{K}(\boldsymbol{\sigma}) \mathbf{H} = \mathbf{E}$$

:
$$\mathbf{K}(\boldsymbol{\rho})\mathbf{U} = \mathbf{F}$$

One objective

应力优化结果

Le et al. (2009) WCSMO

THE END

应力约束的奇异最优解

$$E = 1, P = 1$$

 $\rho_1 = 2, \rho_2 = 1$
 $\sigma_1^{Y} = \frac{1}{5\sqrt{2}}, \sigma_2^{Y} = \frac{1}{5}$

min
$$4A_1 + 2A_2$$

st.: $A_1 + A_2 - 5\sqrt{2} \ge 0$ if $A_1 \ne 0$
 $A_1 + A_2 - 5 \ge 0$ if $A_2 \ne 0$
 $A_1 \ge 0$, $A_2 \ge 0$

应力约束的 ε-relaxation方法

计算结构力学