SU1 001 bwiedermann

1 Folgen und Reihen

1.1 Grundidee

Baggersee $1500\mathrm{m}^2$ Fläche er wird so ausgehoben, dass er jede Woche um $200\mathrm{m}^2$ wächst Algen breiten sich aus.

Am Beginn: 1m² ->Verdreifacht sich wöchentlich

	(n)Wochen	0	1	2	3	4	8
Γ	See Fläche	1500	1700	1900	2500	2300	3100
	Algen Fläche	1	3	9	27	81	6561

Gesetz: Seefläche: 1500 + 200n

Algenfläche: $i*3^n$

 $n\epsilon \mathbb{N}_0$

1.2 Definition

Eine Folge ist eine Abbildung: f: $\mathbb{N} \to \mathbb{R}$ bzw. f: $\mathbb{N} \to \mathbb{C}$ (\mathbb{N} manchmal)

Abbildung 1: Darstellung einer Folge

SU1 002 mwelsch

1.3 Schreibweise:

 $a_n = \dots$ (ähnlich zu a(n)) Erzeugender Term: $a_n = \frac{n^2}{n+1}$

Bedeutet so viel wie das Folgeglied an der Stelle n; zB: $a_8 \cdots$ Folgeglied an der Stelle 8.

Allerdings is das Folgelied an der Stelle 8 nicht zwangsweise das 8. Folgeglied!

Beispiele:

$$\begin{array}{l} a_n = <1,1,1,1,1,1,\dots> \\ b_n = <1,0,-1,0,1,0,-1,0,1,\dots> \\ c_n = 2+\frac{1}{n} = <3,\frac{5}{2},\frac{7}{3},\frac{9}{4},\dots> \\ d_{n+1} = d_n + d_{n-1}, d_0 = 1, d_1 = 1 \Longleftrightarrow <1,1,2,3,5,8,13,\dots> \end{array}$$

1.4 Definition:

(a) $a_n = c$ heißt konstante Folge

Abbildung 2: Darstellung einer konstanten Folge

(b) $a_n = c * (-1)^n$ heißt alternierende Folge

Abbildung 3: Darstellung einer alternierenden Folge

(c) $a_n = a_0 + d * n$ heißt arithmetische Folge, wobei d für die Differenz steht

Abbildung 4: Darstellung einer arithmetischen Folge

(d) $a_n = b_0 * q^n$ heißt geometrische Folge, wobei q für den Quotient steht

Abbildung 5: Darstellung einer geometrischen Folge

SU1 004 swahl

Konvergenz / Divergenz

2.1 **Definition:**

Eine Folge a_n heißt konvergent, falls eine Zahl a existiert, soo dass die folgende Bedingung erfüllt ist:

Zu jedem $\epsilon > 0$ existiert ein $N \in \mathbb{N}$, so dass ab diesem Folgeglied alle Folgeglieder innerhalb der ϵ -Umgebung um a liegen.

D.h.
$$\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n > N : |a_n - a| < \epsilon$$

aheißt Grenzwert von \boldsymbol{a}_n

Schreibweise: $\lim_{n\to\infty}a_n=a$ Ist a_n nicht konvergent, dann heißt a_n divergent.

2.2 Erklärung:

Abbildung 6: Darstellung anhand eines Graphen

Wichtigster Grenzwert:

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Wie viele Grenzwerte kann eine Folge besitzen? \Rightarrow Es kann nur einen Grenzwert geben!

SU1 005 lpay

3 Grenzwertsätze

3.1 Definition:

Seien a_n und b_n Folgen, sowie $\lambda \in \mathbb{R}$

- i) Eine Folge besitzt höchstens einen Grenzwert.
- ii) Jede Folge, die konvergiert, ist notwendigerweise beschränkt.
- iii) Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$
 - (a) $\lim_{n \to \infty} (a_n + b_n) = a + b$
 - (b) $\lim_{n \to \infty} (\lambda a_n) = \lambda a$
 - (c) $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
 - (d) Falls $b \neq 0$ $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$
- 1. Ist a_n konvergent gegen a und $a_n\geqslant c \forall n\in\mathbb{N},$ dann ist auch $a\geqslant c.$ Analog für $a_n\leqslant c$

Sandwich-Lemma:

Sein a_n und b_n zwei reelle konvergente Folgen mit dem selben Grenzwert a (also $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = a$) so gilt: $a_n \le c_n \le b_n$, dass $\lim_{n\to\infty} c_n = a$

Bsp:

$$a_n = \sqrt[n]{4^n + 7^n}$$
 sicher kleiner: $\sqrt[n]{7^n}$ sicher größer: $\sqrt[n]{7^n + 7^n}$

$$\underbrace{\sqrt[n]{7^n}}_{7} \geqslant \sqrt[n]{4^n + 7^n} \geqslant \underbrace{\sqrt[n]{7^n + 7^n}}_{7 \cdot \sqrt[n]{2} = 7}$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{4^n + 7^n} = 7$$

SU2 001 mwustinger

Reihen 5

Definition 5.1

Folge der Partialsummen heißt Reihe. Reihe konvergent, wenn eine Summe existiert.

Reihe divergent, wenn die Folge der Partialsummen divergent.

5.2 Absolute Konvergenz

5.2.1 Definition

Eine Reihe $\sum_{k=1}^{\infty}a_k$ heißt genau dann absolut konvergent, wenn die zugehörige Reihe $\sum_{k=1}^{\infty} |a_k|$ konvergiert.

Bsp

$$\begin{split} &\sum_{k=1}^{\infty} (-1)^k \tfrac{1}{k} \\ &a_k = -\tfrac{1}{2k-1} < - \text{ ungeraden} \\ &b_k = \tfrac{1}{2k} < - \text{ geraden} \end{split}$$

 b_k ist harmonische Reihe $\frac{1}{2}\sum_{k=1}^{\infty}\frac{1}{k}=\infty$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{1}{k}=\infty$$

$$a_k : a_k = -\frac{1}{2k-1}$$

$$M := 1 + \left| \lim_{n \to \infty} \sum_{k=1}^n (-1)^k \frac{1}{k} \right|$$

Umsortieren der Glieder von a_k und b_k . Anfang aller Glieder von b_k kommen bis die Summe größer als M+1 ist, dann das nächste a_k wählen, so ist die nächste Partialsumme größer als M.

SU2 004 kurbaniec

Wurzelkriterium 5.3

Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe, $r := \lim_{k \to \infty} \sqrt[k]{|a_k|}$ r existiert.

- (a) r < 1:
- (b) r > 1:

Beispiel

$$\sum_{k=1}^{\infty} \left(\frac{2}{k}\right)^k$$

WT:
$$r = \lim_{k \to \infty} \sqrt[k]{(\frac{2}{k})^k} = \lim_{k \to \infty} \frac{2}{4} = 0$$

 $0 < 1 \Longrightarrow$ Reihe absolut konvergent.

5.4 Leibniz-Kriterium

Ist $(a_k)_{k=1}^{\infty}$ (unendliche Folge) eine monoton fallende Nullfolge (Grenzwert 0), dann ist die (alternierende) Reihe $\sum_{k=1}^{\infty} (-1)^k a_k$ konvergent.

Beispiel

$$\sum_{k=1}^{\infty} (-1)^k \frac{k+7}{k^2}$$

$$\begin{array}{l} \frac{k+7}{k^2} = a_k \longrightarrow \lim_{k \to \infty} a_k = 0 \\ \mathrm{Lk} \sqrt{\Longrightarrow} \ \mathrm{Reihe} \ \mathrm{konvergiert} \end{array}$$

Monotonie:

$$\begin{aligned} a_k &= \frac{k+7}{k^2} \\ a_{k+1} &= \frac{k+8}{(k+1)^2} = \frac{(k+1)+7}{(k+1)^2} = \frac{(k+1)\cdot(1+\frac{7}{k+1})}{(k+1)^2} \\ &= \frac{1+\frac{7}{k+1}}{k+1} \leq \frac{1+\frac{7}{k}}{k+1} \leq \frac{1+\frac{7}{k}}{k} \\ &= \frac{k+7}{k^2} = a_k \end{aligned}$$

$$a_{k+1} \le a_k$$

SU3 004 bwiedermann

Bsp:

$$a_n = (-1)^{n+1} * \frac{3}{7n^2+3}$$

 $\epsilon = \frac{1}{40}$

$$\lim_{n \to \infty} a_n = ?$$

$$\lim_{n \to \infty} (-1)^n + 1 * \frac{3}{7n^2 + 3} = \lim_{n \to \infty} (-1)^n + 1 * \lim_{n \to \infty} \frac{3}{7n^2 + 3} = 0$$

$$|a_n - a| < \epsilon$$

$$\left| (-1)^{n+1} * \frac{3}{7n^2+3} \right|$$

Fall Unterscheidung:

1.Fall: n ... grade

$$\left| -\frac{3}{7n^2+3} \right| < \frac{1}{40}$$

$$\begin{array}{l} 120 < 7n^2 + 3 \\ 117 < 7n^2 \\ \frac{117}{7} < n^2 \end{array}$$

$$117 < 7n^2$$

$$\frac{117}{7} < n^2$$

$$n > \sqrt{\frac{117}{7}}$$

Antwort: Für n gerade sind bis zum 7ten Glied alle Folfeflierder ausßerhalb der ϵ -Umgebung.

2.Fall: n ... ungerade

$$\left|\frac{3}{7n^2+3}\right| < \frac{1}{40}$$
 wie oben

SU3 005 mwelsch

Differenzengleichung

Beispiel:

Ein Wald wächst jährlich
g um 12% und hat momentan 12~000Bäume. Jährlich werden 500 Bäume geschlägert.

 $B_0 = 12000$

 $B_1 = 12000 * 1, 12 - 500$ $B_2 = B_1 * 1, 12 - 500 = 1200 * 1, 12^2 - 500 * 1, 12 - 500$

Wird angewandt bei beschänktem und logistischem Wachstum.

Abbildung 7: Darstellung von begrenztem Wachstum

Abbildung 8: Darstellung von logistischem Wachstum

diff1 002 swahl

6.1 Berechnung des Differentialquotient

Beispiel:

Funktion für dieses Beispiel: $f(x) = x^3 + x^2 - x - 1$ Steigung von f(x) an der Stelle 2

Differential quotienten: $k = \lim_{\triangle x \to 0} \frac{\triangle f(x)}{\triangle x} \Rightarrow \lim_{\triangle x \to 0} \frac{f(x + \triangle x) - f(x)}{\triangle x}$

Abbildung 9: Darstellung der Funktion

$$\Rightarrow \lim_{\triangle x \to 0} \frac{(x + \triangle x)^3 + (x + \triangle x)^2 - (x + \triangle x) - 1 - (x^3 + x^2 - x - 1)}{\triangle x}$$

$$\Rightarrow \lim_{\triangle x \to 0} \frac{x^3 + 3x^2 * \triangle x + 3x * (\triangle x)^2 + (\triangle x)^3 + x^2 + 2x * \triangle x + (\triangle x)^2 - x - \triangle x - 1 - x^3 - x^2 + x + 1}{\triangle x}$$

$$\Rightarrow \lim_{\triangle x \to 0} \frac{3x^2 * \triangle x + 3x * (\triangle x)^2 + (\triangle x)^3 + 2x * \triangle x + (\triangle x)^2 - \triangle x}{\triangle x}$$

$$\Rightarrow \lim_{\triangle x \to 0} \frac{\Delta x * (3x^2 + 3x * \triangle x + (\triangle x)^2 + 2x + \triangle x - 1)}{\triangle x}$$

$$\Rightarrow k = 3x^2 + 2x - 1 \Rightarrow k \text{ an } 2 \Rightarrow 12 + 4 - 1 = 15$$

6.2 Definition:

Eine Funktion heißt differenzierbar, wenn der Grenzwert $\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$ existiert. Dieser Grenzwert heißt erste Ableitung. $f'(x) \Rightarrow \frac{dy}{dx}$

Bemerkung:

- i) $f'(x_0)$ heißt erste Ableitung an der Stelle x_0
- ii) Eine differenzierbar Funktion ist dort im Intervall stetig. Das heißt eine stetige Funktion kann differenzierbar sein, muss es aber nicht.

diff1 003 lpay

6.3 Tabelle wichtiger 1. Ableitungen

f(x) =	f'(x) =
c	0
x^n	$n \cdot x^{n-1}$
sin x	cos x
cos x	-sin x
e^x	e^x
a^x	$log(a) \cdot a^x$
log a	$\frac{1}{x}$
$log_a x$	$\frac{1}{\log(a) \cdot x}$

6.4 Ableitungsregeln: (!!!)

i) Faktorregel:

$$f(x) = c \cdot g(x)$$
 $(c \in \mathbb{R})$

$$f'(\mathbf{x}) = c \cdot g'(x)$$

Konstanter Faktor darf vorgezogen werden

Bsp

$$\overline{f(x)} = 2x^2$$

$$f'(x) = (2x^2)' = 2 \cdot 2x = 4x$$

ii) Summenregel:

$$f(x) = g(x) + h(x) \Rightarrow f'(x) = g'(x) + h'(x)$$

Bsp

$$\overline{f(x)} = x^3 + x^2 - x - 1 \leftarrow \text{fällt weg } (-1 \cdot x^0 \rightarrow 0 \cdot (-1) \cdot x^{-1})$$

$$f'(x) = 3x^2 + 2x - 1$$

iii) Produktregel:

$$f(x) = g(x) \cdot h(x) \Rightarrow f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

Bsp:

$$\overline{f(x)} = x \cdot sin(x)$$

$$f'(x) = 1 \cdot \sin(x) + x \cos(x)$$

${\rm diff}~006~{\rm mwustinger}$

7 Kurvendiskussion (extended)

Gegeben: f(x)

- 1) Definitionsmenge (+ Polstelllen/Lücken)
- 2) Nullstellen: f(x) = 0
- 3) Extremstellen:
 - Notwendige: f'(x) = 0
 - Hinreichende: $f''(x) \neq 0$

$$f''(x) > 0 \Longrightarrow Minimum$$

$$f''(x) < 0 \Longrightarrow Maximum$$

- 4) Monotonieverhalten (tabellarisch)
- 5) Wendestellen: $f''(x) = 0 \land f'''(x) \neq 0$
- 6) Krümmungsverhalten (tabelarisch)
- 7) Wendetangenten : t(x) = kx + d

- 8) Graph
- 9) Symmetrie
- 10) Periodizität

Bsp:

$$f(x) = x^3 + x^2 - x - 1$$

- 1) Definitionsmenge: $D = \mathbb{R}$
- 2) Nullstellen: f(x) = 0N = +1, -1, -1
- 3) Extremstellen:
 - Notwendige:

$$f'(x) = 0$$

$$f'(x) = 3x^{2} + 2x - 1$$

$$f'(x) = 0 \Rightarrow 0 = 3x^{2} + 2x - 1$$

$$1x_{2} = \frac{-2 + \sqrt{4 - (-12)}}{6} x_{1} = \frac{1}{3} x_{2} = -1$$

- Hinreichende:

$$f''(x) = 6x + 2$$

 $f''(\frac{1}{3}) = 6 * \frac{1}{3} + 2 > 0 => Minimum$
 $f''(-1) = 6 * (-1) + 2 < 0 => Maximum$

4) Monotonieverhalten
$$\frac{(-\infty,-1) \quad -1 \quad \left(-1,\frac{1}{3}\right) \quad \frac{1}{3} \quad \left(\frac{1}{3}\right),+\infty)}{\nearrow \quad Max \quad \searrow \quad Min \quad \nearrow}$$

diff1 009 kurbaniec

7.1 Extremwertaufgaben

Beispiel	Theorie
An eine Mauer soll mit 20m Maschendrahtzaun ein rechteckiges Areal begrenzt werden, sodass das Areal möglichst Flächengroß ist. Wie sind die Maße zu wählen?	Angabe
b Mauer	Skizze
$A \to Max$ $A(l,b) = b \cdot l$	Hauptbedingung aufstellen(HB)
2b + l = 20	Nebenbedingung aufstellen (NB)
$l = 20 - 2b$ $A(b) = b(20 - 2b)$ $A(b) = 20b - 2b^2$	Nebenbedingung in Hauptbedingung einsetzen (NB \rightarrow HB)
A'(b) = 20 - 4b $A''(b) = -4$	Ableiten
$A'(b) = 0$ $0 = 20 - 4b$ $\implies b = 5$ $A''(b) < 0$ $\implies b = 5 \text{ Maximum}$	Extremstellen bestimmen

$l = 20 - 2 \cdot 5 = 10$	Andere Variable berechnen
/	Randwerte betrachten
Das ideal an die Mauer angelehnte Areal besitzt die Maße 10x5.	Antwort