

《拓扑学》学习笔记

基于庄晓波老师的教学视频 and 一些不知道从哪里来的

idea

作者:张博涵 组织:张博涵 起著重庄赤奋若

版本: August 6, 2022

Github 地址: www.github.com/BHanZhang

目录

第1章	拓扑空间	1
1.1	拓扑空间,开集	1
1.2	更多的拓扑空间与子空间拓扑	2
1.3	开集的反面,闭集	3
	1.3.1 闭集之刻画	3
	1.3.2 稠密	5
	1.3.3 集合之解体	7
1.4	拓扑空间的砖头—拓扑基	8
第2章	连续映射	11
2.1	连续映射	11
	2.1.1 连续映射与其等价刻画	11
	2.1.2 拓扑空间中的极限与 Hausdorff 空间	13
2.2	充满整个空间的曲线-Peano 曲线	16
第3章	紧性	19
第4章	连通性	20
第5章	符号说明	21
5.1	符号说明	21
5.2	连 注说明	2.1

第1章 拓扑空间

1.1 拓扑空间,开集

定义 1.1 (拓扑空间, 开集)

设X 为一个集合 $\mathcal{F} \in \mathcal{P}(X)$ (把 \mathcal{F} 中的元素称为X 中的**开集**),满足:

- 1. $\emptyset, X \in \mathscr{F}$
- 2. U,V 是开集,那么 $U \cap V$ 是开集
- 3. $U_{\alpha}, \alpha \in I$ 是开集, $\bigcup U_{\alpha}$ 是开集。

则称 \mathscr{F} 为 X 上的一个 $\overline{\mathbf{A}}$ $\overline{\mathbf{h}}$, (X,\mathscr{F}) 为一个 $\overline{\mathbf{A}}$ $\overline{\mathbf{h}}$ 空间 。

- $\widehat{\Sigma}$ 注: 有时候这样写:"设 X 为拓扑空间",这就意味着"X 为一个集合,且规定了 X 上的一个拓扑(指定了那些子集为开集)"。
- ullet 注: 这里第二点可以更换为"有限个开集的交仍为开集",这样的定义也与我们熟知的开集的性质相一致。 例 1.1(欧氏拓扑) 对于 n 维欧氏空间 \mathbb{R}^n , $\mathscr{F} = \{\mathbb{R}^n$ 在通常意义下的开集, $\emptyset\}$ 构成一个拓扑空间。
 - 1. 第一条显然成立: $\emptyset, \mathbb{R}^n \in \mathcal{F}$;

证: 验证其为拓扑空间,就是要验证三条:

- 2. 设 U, V 为 \mathbb{R}^n 中开集, 要证 $U \cap V$ 为开集。任取 $x_0 \in U \cap V$, 就有:
 - (a). $x_0 \in U$, 有 $\exists \delta_1, s.t. x_0 \in B(x_0, \delta_1) \subset U$
 - (b). $x_0 \in V$, $f_1 \exists \delta_2, s.t. x_0 \in B(x_0, \delta_2) \subset V$

3. 任取 $x_0 \in \bigcup_{\alpha \in I} U_\alpha$,则必 $\exists \alpha_0 \in I \ s.t. \ x_0 \in U_{\alpha_0}$,则 $\exists \delta \ s.t. \ x_0 \in B(x_0, \delta) \subset U_{\alpha_0} \subset \bigcup_{\alpha \in I} U_\alpha$,于是 $\bigcup_{\alpha \in I} U_\alpha$ 是开集。

例 1.2(平凡拓扑) 设 X 是一个集合, $\mathscr{F} = \{\emptyset, X\}$,则 \mathscr{F} 显然是 X 上一个拓扑,称之为 **平凡拓扑**。**例 1.3(离散拓扑**) 设 X 是一个集合, $\mathscr{F} = \mathscr{P}(X)$,则 \mathscr{F} 显然是 X 上一个拓扑,称之为 **离散拓扑**。

注: 以上两个例子说明,对于同一个集合,我们可以定义不同的拓扑,拓扑并不是唯一的,可以证明,平 见拓扑是 X 上最弱的拓扑,离散拓扑是 X 上最强的拓扑 。

通过以后的学习可以知道,平凡拓扑具有较为"刚性"的拓扑结构,而离散拓扑具有较为"柔性"的拓扑结构。

定义 1.2 (度量空间)

设X为一个集合, $\rho: X \times X \to \mathbb{R}$ 满足以下三条:

- 1. $\rho(x,y) = \rho(y,x);$
- 2. $\rho(x,y) \ge 0, \forall x,y \in X, \rho(x,y) = 0 \iff x = y;$
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y), \forall x,y,z \in X$

¹如果 X,Y 是 T 上的两个拓扑,且 X ⊂ Y 那么就称拓扑 X 弱 于拓扑 Y,反之拓扑 Y 强 于拓扑 X。

那么就称 X, ρ 为一个 度量空间, ρ 为 X 上的一个 度量。

例 1.4(度量空间诱导的拓扑) 设 (X, ρ) 为一个度量空间, 定义 X 上开集 U 为:

$$x_0 \in U \iff \forall x_0 \in U, \exists \delta > 0, \ s.t. \ B(x_0, \delta) \subset U$$

定义拓扑 $\mathscr{F} = \mathscr{P}(X)$,则 \mathscr{F} 给出了 X 上的一个拓扑 (称之为 **度量** ρ **诱导的拓扑**)。

注: 这个例子说明了度量可以诱导拓扑,"赋范出度量,天然诱拓扑"。

例 1.5 (\mathbb{R} 上连续函数空间上的连续度量诱导的拓扑) 定义 X = C([a,b]) 上的连续度量 ρ :

$$\rho: C([a,b]) \times C([a,b]) \longrightarrow \mathbb{R}$$

$$(f,g) \longmapsto \rho(f,g) := \max_{x \in [a,b]} |f(x) - g(x)|$$

此时 ρ 诱导了 C([a,b]) 上的一个拓扑。

例 1.6 (除了"最大"和"最小"的拓扑之外,还存在"适中"的拓扑) 设 $X = \{0,1\}$, $\mathscr{F} = \{\emptyset, \{0\}, \{0,1\}\}$ 是一个拓扑, (X,\mathscr{F}) 是一个拓扑空间。

1.2 更多的拓扑空间与子空间拓扑

定义 1.3 (子空间拓扑)

设X是一个拓扑空间, $Y \subset X$ 为X的一个子集,则Y上可以如下定义一个拓扑结构:

$$\mathscr{F} = \{U \cap Y | U \subset_{open} X\}$$

则 \mathscr{P} 定义了 Y 上的一个拓扑空间结构,此结构成为 X 在 Y 上诱导的拓扑,或称 Y 被赋予 子空 **间拓扑** 。

证: 取大集合为小集合即可,证明显然。

例 1.7 (n 维单位球面) n 维单位球面 $S^n \subset \mathbb{R}^n$ 赋予欧氏拓扑,其中 $S^n = \{x \in \mathbb{R}^n | ||x|| = 1\}$ 。

例 1.8(谈开集一定要说是在哪个拓扑的意义下是开集) 设 $[0,1) \subset \mathbb{R}$,赋予 [0,1) 子空间拓扑,因为 $(-\frac{1}{2},\frac{1}{2})$ 是 \mathbb{R} 中开集, $(\frac{1}{2},1)$ 也是 \mathbb{R} 中开集,那么有以下结论成立:

- $[0,\frac{1}{2}) := (-\frac{1}{2},\frac{1}{2}) \cap [0,1)$ 是开集。
- $(\frac{1}{2},1) := (\frac{1}{2},1) \cap [0,1)$ 是开集。

正如我们在 ℝ 中所规定的那样,上述两个例子分别应该不为开集和为开集,但是在子空间拓扑的意义下均为开集。这就说明了谈开集一定要说在哪个拓扑的意义下是开集。

定义 1.4 (连续性)

例 1.9 (离散拓扑为原像集的映射一定是连续映射) 设 X 为一个集合, $\mathscr{F} = \mathscr{P}(X)$,是 X 上的离散拓扑,假设 $f: X \longrightarrow Y$,那么对于 $\forall U \subset_{open} Y, f^{-1}(U) \subset X$ 而 X 的所有子集都是开集(因为 X 的拓扑 \mathscr{F} 是离散拓扑)。因此我们得知:X 上的任意映射都是连续的。

例 1.10 (平凡拓扑上的连续映射只能到平凡拓扑) 设 X 为一个集合, $\mathscr{F} = \{\emptyset, X\}$, 是 X 上的平凡拓扑,

设 Y 为一个拓扑空间, $f: X \longrightarrow Y$ 为一个连续映射, $f(X) := \{f(x) | x \in X\} \subset Y$ (此处 f(X) 作为子空间赋予子空间拓扑),则 $f: X \longrightarrow f(X)$ 仍是连续映射。下断言: f(X) **在子空间拓扑下只能为平凡拓扑空间**。

假设 f(X) 不是平凡拓扑空间,那么 $^2\exists U \sqsubset f(X)$,并且 $U \neq \emptyset$ 且为 f(X) 中开集,即 $f^{-1}(U) \subset_{open} X$ 。但是 X 中开集只有两种可能,即 X 和 \emptyset ,因为 $f: X \longrightarrow f(X)$ 是满射,因此 U 中的任何一点都有原像(但是原像不一定唯一),因此 $f^{-1}(U) \neq \emptyset$ 。因此 $f^{-1}(U) = X$ 。因此 $f(X) = U \sqsubset f(X)$ 相矛盾,因此:若 $f: X \longrightarrow Y$ 是连续映射,则 f(X) 一定为平凡拓扑空间。

1.3 开集的反面, 闭集

定义 1.5 (闭集)

设 X 是拓扑空间, $F \subset X$, 如果 $X \setminus F$ 是 X 中开集,则 F 称为 X 中的 闭集。

根据开集的性质(定义1.1)可立马得到闭集的性质:

命题 1.1 (闭集的性质)

- 1. ∅, X 是闭集
- 2. F,G 是闭集,那么 $F \cup F$ 是闭集
- 3. $F_{\alpha}, \alpha \in I$ 是开集, $\bigcap_{\alpha \in I} F_{\alpha}$ 是闭集。

1.3.1 闭集之刻画

定义 1.6 (极限点)

设 X 是一个拓扑空间, $A \subset X$, $\forall p \in X$, 若 \forall 包含 p 的开集 U 都有:

 $(U\backslash\{p\})\cap A\neq\emptyset$

则称 p 为 A 的一个 极限点。而将集合 $\overline{A} = A \cup \{A$ 的极限点} 称为 A 的 闭包。

例 1.11(欧式空间中有理点的极限点集为欧氏空间) $X = \mathbb{R}^3$, $A \in X$ 中的有理点(即 $A \in \{(x, y, z) | x, y, z \in \mathbb{Q}\}$), 那么 X 就是 A 的极限点集。

例 1.12(欧式空间中整数点的极限点集为空集) $X = \mathbb{R}^3$, $A = \mathbb{Z}$, 那么 A 的极限点集为 \emptyset 。

例 1.13(**点集的极限点**) 设 $X = \{0,1\}$, $\mathscr{F} = \{\{0\},\{0,1\},\emptyset\}$ 则 X 的子集 A 有以下两种情况:

- 1. $A = \{0\}$:
 - 0 :∀ 包含 $\{0\}$ 的开集 U, $(U \setminus \{0\}) \cap A = \emptyset$, 说明 0 不是 A 的极限点。
 - 1 :∀包含 {1} 的开集 $U = \{0,1\}$ (只有这一个), $(U \setminus \{1\}) \cap A \neq \emptyset$,说明 1 是 A 的极限点。 因此 1 为 $A = \{0\}$ 的极限点。
- 2. $A = \{1\}$:
 - 0:取包含 $\{0\}$ 的开集 $U = \{0\}$, $(U \setminus \{0\}) \cap A = \emptyset$, 说明 0 不是 A 的极限点。
 - 1 :包含 $\{1\}$ 的 X 中开集 $U = \{0,1\}$, $(U \setminus \{1\}) \cap A = \emptyset$, 说明 1 也不是 A 的极限点。

²这里符号 □ 表示真被包含。

命题 1.2 (闭集的等价刻画)

设X为拓扑空间, $A \subset X$ 则:

A是闭集 $\iff \overline{A} = A$

证: $[\Rightarrow]$ 设 A 是闭集,要证 $\overline{A} = A$,显然 $A \subset \overline{A}$,下只需证 $\overline{A} \subset A$,即证 $X \setminus A \subset X \setminus \overline{A}$,因此对于 $p \in X \setminus A$ 都有 $p \in X \setminus \overline{A}$,因此即证: $\forall p \notin A$,p 不是 A 的极限点。

事实上,A 闭集 \Rightarrow $X \setminus A$ 开集 \iff \exists 开集 $U \subset A \setminus A, p \in U \Rightarrow (U \setminus \{p\}) \cap A = \emptyset \Rightarrow p$ 不是 A 的极限点。

[←] 设 $\overline{A} = A$, 要证A是闭集。只要证 $X \setminus A$ 是开集,即:

$$\forall p \in X \backslash A, \exists \mathcal{H} \not\equiv U, \ s.t. \ p \in U \subset X \backslash A$$

由于 $p \notin A \Rightarrow p \notin \overline{A}$,则 p 不为 A 的极限点。因此 \exists 开集 $U \subset X(p \in U)$ s.t. $(U) \cap A = (U \setminus \{p\}) \cap A = \emptyset$,即 $p \in U \subset X \setminus A$

推论 1.1

A 为一个闭集。

 \bigcirc

证: 只要证 $X \setminus \overline{A}$ 为开集。由于 $\forall p \in X \setminus \overline{A}, p$ 不为A的极限点 则 \exists 开集 $U \subset X$ s.t. $p \in U$ 且由于 $p \notin A$ 则 $U \cap A = (U \setminus \{p\}) \cap A = \emptyset$

 $\mathbb{M}\ p \in U \subset X \backslash A$

则 $\forall q \in U$, U 为包含 q 的开集,又由于 $U \cap A = \emptyset$, 因此 q 不是 A 的极限点,所以 $q \notin \overline{A}$,故 $U \subset X \setminus \overline{A}$ 。

因此 $X\setminus \overline{A}$ 为开集。

推论 1.2

$$\overline{A} = \bigcap_{F \supset_{closed} A} F$$

 $\stackrel{f C}{f Z}$: 由上推论可以知道,任何一个包含 A 的闭集都包含 \overline{A} ,而根据 $\overline{A}=A\cup\{A$ 的所有极限点 $\}$ 。因此 \overline{A} 为包含 A 的最小的闭集。

证: [\supset]: 由于 $\overline{A} \supset_{closed} A$, 那么必然可以取到 $F_0 =_{closed} \overline{A}$, 此时 $\bigcap_{F \supset_{closed} A} F = F_0 \cap \left(\bigcap_{F_0 \neq F \supset_{closed} A} F\right) \subset A$ 。

[\subset]: 只要证 $\forall F \supset_{closed} A$ 都有 $F \supset \overline{A}$,即证 $X \backslash F \subset X \backslash \overline{A}$ 。

只要证 $\forall x \notin F, x$ 不为 A 的极限点。

事实上,F 是闭集,根据命题1.2可知 $F = \overline{F} \Rightarrow x \notin \overline{F}$,因此x 不为F 的极限点,而 $F \supset A$ 因此得证。

命题 1.3 (闭包运算的性质)

- 1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 2. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$

证: 额,不知道什么高级方法,于是采用土办法就好了。

1. 只需要证明 $A \cup B$ 的极限点和 A 的极限点或 B 的极限点一致就好,事实上我们有如下的推理 3 :

$$x_0$$
是 $A \cup B$ 的极限点 $\iff \forall x_0 \in A \cup B, \exists_{open} V(x_0 \in V) \ s.t. \ (V \setminus \{x_0\}) \cap (A \cup B) \neq \emptyset$ $\iff ((V \setminus \{x_0\}) \cap A) \cup ((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\iff ((V \setminus \{x_0\}) \cap A) \neq \emptyset \ \text{或} \ ((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\iff x_0 \in A$ 的极限点,或 B 的极限点

2. 只需要证明 $A \cap B$ 的极限点就是 A 的极限点和 B 的极限点就好, 事实上:

$$x_0$$
是 $A \cap B$ 的极限点 $\iff \forall x_0 \in A \cap B, \exists_{open} V(x_0 \in V) \ s.t. \ (V \setminus \{x_0\}) \cap (A \cap B) \neq \emptyset$ $\iff ((V \setminus \{x_0\}) \cap A) \cap ((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\implies ((V \setminus \{x_0\}) \cap A) \neq \emptyset$ 且 $((V \setminus \{x_0\}) \cap B) \neq \emptyset$ $\iff x_0 \in A$ 的极限点,且是 B 的极限点

这一部分不是等号的问题主要出现在倒数第二步,因为两个非空集合的交不一定非空,而两个非空集合的并,一定非空。 □

例 1.14(上命题第二部分不能取等) 若 A = [0,1), B = (1,2] 那么 $\overline{A \cap B} = \emptyset \subset \{1\} = \overline{A} \cap \overline{B}$ 例 1.15(单点集不一定是闭集,稠密)设 $X = \{0,1\}, \mathscr{F} = \{\{0\}, \{0,1\}, \emptyset\},$ 于是拓扑空间的闭集就是直接取 \mathscr{F} 在 X 中的补集,即 $\{\{1\}, \emptyset, \{0,1\}\},$ 对比之后明显可以看出来 $A = \{0\}$ 不是闭集(其他几个都是既开又闭)。根据我们前面例1.13的经验, $\{0\}$ 的极限点是 1,因此 $\overline{A} = A \cup \{A$ 的极限点 $\} = \{0,1\} = X$ 。即取了闭包之后就取到全集,这种现象我们称之为**稠密**。

1.3.2 稠密

定义 1.7 (稠密)

设 X 为一个拓扑空间, $A \subset X$,若 $\overline{A} = X$ 则称 A 在 X 中 稠密。如果 $Y \subset X$ 是 X 的拓扑子空间,如果还有 Y 的拓扑子空间 $Z \subset Y$ 那么我们分别记:

 $\overline{Z_Y}$: $Z \in Y$ 中取闭包。 $\overline{Z_X}$: $Z \in X$ 中取闭包。

例 1.17(有理数集 $\mathbb Q$ 在实数集 $\mathbb R$ 中稠密) 因为有理数集 $\mathbb Q$ 的极限点集为实数集 $\mathbb R$,因此 $\overline{\mathbb Q} = \mathbb R$ 。 那么很自然就产生疑问,是否取闭包的运算和子空间拓扑存在很多联系? 这就是下面命题所解决的:

命题 1.4

设X是拓扑空间,Y是X的拓扑子空间,Z是Y的拓扑子空间。我们有:

$$\overline{Z_Y} = \overline{Z_X} \cap Y$$

证: 验证这一问题,仍然从土方法走:

 $^{^3}$ 这里会利用到集合运算的分配律 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 和 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- [C] 即证 $\forall x \in \overline{Z_Y}$, s.t. $x \in \overline{Z_X} \cap Y$, 首先因为 $x \in \overline{Z_Y}$, 因此 $x \in Y$ 于是只需证 $x \in \overline{Z_Y}$:
 - (a). $x \in Z$ 显然成立
 - (b). $x \notin Z$,此时意味着 $x \to Z$ 在 Y 中的极限点,只需证 $x \in \overline{Z_X}$,即证 $x \to Z$ 在 X 中的极限点。 事实上 $\forall x$ 在 X 中的开邻域 V,有:对于 X 在 Y 中的去心开邻域 $((V \cap Y) \setminus \{x\})$ 有:

$$((V \cap Y) \setminus \{x\}) \cap Z$$
$$= ((V \setminus \{x\}) \cap Z) \cap Y$$
$$\subset (V \setminus \{x\}) \cap Z \neq \emptyset$$

图 1.1: 命题 1.4 之集合关系图

- [\supset] 即证 $\forall x \in \overline{Z_X} \cap Y$, $s.t. x \in \overline{Z_Y}$, 首先明显有 $x \in Y$ 于是仍分类讨论:
 - (a). $x \in Z$ 显然成立
 - (b). $x \notin Z$,此时意味着 x 为 Z 在 X 中的极限点,只需证 $x \in \overline{Z_X}$,即证 x 为 Z 在 Y 中的极限点。事实上,任意在 Y 中的包含 x 的开集,由子空间拓扑,不妨设之为 $V \cap Y$,其中 $V \subset_{open} X(x \in V)$,因为 x 为 Z 在 X 中的极限点,所以 $(V \setminus \{x\}) \cap Z \neq \emptyset$,又由于 $x \in Y$,所以 $(V \setminus \{x\}) \cap Z \cap Y = (V \cap (Y \setminus \{x\})) \cap Z \neq \emptyset$

更进一步,我们问以下的问题:

问题 1.1 设 X 是拓扑空间, $F \subset X$ 稠密, $U \subset X$,问: $F \cap U$ 是否在 U 中稠密?

答案是否定的,因为如果偷鸡取 $U=X\backslash F$ 这件事就算寄了。于是为了排除这个情况,我们必须要求 U 是开集。如下命题:

命题 1.5

设X 是拓扑空间, $F \subset X$ 稠密, $U \subset_{open} X$ 是X 且赋予子空间拓扑, 则 $F \cap U$ 在U 中稠密。

证: 要证 $\overline{(F \cap U)_U} = U$ 根据命题1.4, 即要证 $\overline{(F \cap U)_U} \cap U = U$, 即要证 $U \subset \overline{(F \cap U)_X}$ 。 即对 $\forall x \in U$ 要证 $x \in \overline{(F \cap U)_X}$ 。则分两类讨论:

- 1. x ∈ F ∩ U 显然成立
- 2. $x \notin F \cap U$,又由于 F 在 X 中稠密,那么 x 是 F 的极限点,任取 X 中开集 $V(x \in V)$,由于 U 是 X 中开集,因此 $V \cap U$ 也是 X 中开集,因为 x 是 F 的极限点,所以有:

$$((V \cap U) \setminus \{x\}) \cap F \neq \emptyset$$

 \iff $(V \setminus \{x\}) \cap (F \cap U) \neq \emptyset$

1.3.3 集合之解体

为了更好说话,引入以下概念:

定义 1.8 (内点, 外点, 边界点)

设X为一个拓扑空间, $A \subset X$ 定义:

- 定义 A 的 内点集: $int(A) := \{ p \in A | \exists X \text{ 中开集} V (p \in V), V \subset A \}$
- 定义 A 的 **外点集**: $ext(A) := \{ p \notin A | \exists X \in \mathcal{F}, V(p \in V), V \subset X \setminus A \} \iff int(X \setminus A)$
- 定义 A 的 **边界点集**: $\partial(A) := \{ p \in X | \forall p$ 的开邻域 $V, V \cap A \neq \emptyset. V \cap (X \setminus A) \neq \emptyset \}$

注:根据以上定义、我们显然有:

$$X = int(A) \sqcup ext(A) \sqcup \partial(A)$$

例 1.18 (一些显然的例子)

- 1. 设 $A = [0,1) \subset \mathbb{R}$ 那么: $\partial(A) = \{0,1\}, int(A) = (0,1), ext(A) = (-\infty,0) \cup (1,+\infty)$
- 2. (a). $\exists A = (0,1) \subset [0,1) \ \mathbb{R} \ \Delta \colon \ \partial(A) = \{0\}, int(A) = (0,1), ext(A) = \emptyset$
- 3. 设 $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ 于是:
 - (a). $\partial(D) = S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$
 - (b). int(D) = D
 - (c). $ext(D) = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 > 1 \}$

图 1.2: 例 1.18.3 之拓扑空间 D

4. 设 $A = [0,1] \subset \mathbb{R}^2$, 此时 $\partial(A) = A, int(A) = \emptyset, ext(A) = X \setminus A$

图 1.3: 例 1.18.4 之拓扑空间 A

1.4 拓扑空间的砖头—拓扑基

定义 1.9 (拓扑基)

设X是拓扑空间, \mathcal{B} 是一个由一些X中开集构成的集族,如果对 $\forall X$ 中开集U,U均可表为 \mathcal{B} 中一些元素之并,则称 \mathcal{B} 构成了X的一个 $\overline{\mathbf{K}}$ 种基。

例 1.19(\mathbb{R}^1 中的欧氏拓扑可以有不同的拓扑基) 很明显, \mathbb{R}^1 有一个拓扑基为 $\mathcal{B} = \{(a,b)|a < b\}$ 。

令 $\mathcal{B}' = \{(a,b)|a < b, a, b \in \mathbb{Q}\}, \ \mathbb{B}'$ 也是 \mathbb{R}^1 的一个拓扑基。

证: $\forall U \subset_{open} \mathbb{R}^1, \forall p \in U$,则存在 $a 使得 <math>(a,b) \subset U$,从而由有理数集的稠密性可知, $\exists (a_p,b_p) \in \mathcal{B}', \ s.t. \ p \in (a_p,b_p) \subset U$ 即 $U = \bigcap_{p \in U} (a_p,b_p)$ 。

图 1.4: 例 1.19 之数轴

☆ 注: 由此可见,一个拓扑空间可以有诸多拓扑基,但是一个拓扑基是否唯一确定一个拓扑空间呢?答案是肯定的,这个结论将由以下讨论给出。

了解了定义,我们就需要探究一个拓扑基 β 之所以为拓扑基的等价条件。很明显,由拓扑基我们可以知道拓扑基的必要条件,如下面这个命题:

命题 1.6

设X为拓扑空间,B为X的一个拓扑基,那么:

TB1 . $\bigcup_{U \in \mathcal{P}} U = X$

TB2 . $\forall U_1, U_2 \in \mathcal{B}$ s.t. $U_1 \cap U_2$ 可以表示为 \mathcal{B} 中一些元素之并。

证: 显然。

这个命题反过来也是正确的,即有以下的命题:

命题 1.7

设X为一个集合, \mathcal{B} 为X的一个由一些子集构成的集族,若 \mathcal{B} 满足以上 $\mathsf{TB1}$ 、 $\mathsf{TB2}$ 两条,则 \mathcal{B} 必为X上某个拓扑 \mathcal{B} 的拓扑基。而且, \mathcal{B} 是唯一的,称之为由拓扑基 \mathcal{B} 生成的拓扑。

证: 定义 $\mathscr{F} = \{\emptyset\} \cup \{\mathcal{B}$ 中若干元素之并 $\} = \{\bigcup_{\alpha} |U_{\alpha} \in \mathcal{B}\} \cup \{\emptyset\}$, 我们所要证明的是以下两点:

- 1. \mathscr{F} 是 X 上的一个拓扑。事实上,我们有:
 - (a). $\emptyset, X \in \mathcal{F}$ (显然,由定义和条件 TB1 可以保证。)
 - (b). 罗对于任意并封闭是显然的(因为就是这样定义的。)
 - (c). 对于 $\forall \bigcup_{\alpha \in I} U_{\alpha}, \bigcup_{\beta \in J} V_{\beta} \in \mathscr{F}$, 其中 $U_{\alpha}, V_{\beta} \in \mathcal{B}, \forall \alpha \in I, \beta \in J$ 那么有:

$$\left(\bigcup_{\alpha\in I} U_{\alpha}\right) \cap \left(\bigcup_{\beta\in J} V_{\beta}\right) = \bigcap_{\alpha,\beta} (U_{\alpha} \cap V_{\beta}) \in \mathscr{F}$$

2. B为拓扑 罗上的一个拓扑基。

根据定义可知 \mathcal{B} 也确实为拓扑 \mathscr{D} 上的一个拓扑基。从构造来看,我们并没有规定在拓扑基 \mathcal{B} 中的并是哪些,因此 \mathscr{D} 是唯一的,因此命题得证。

例 1.20 (\mathbb{R}^2 的另一拓扑基) 明显来看,欧氏空间 \mathbb{R}^2 中的开球的全体构成的集合是 \mathbb{R}^2 的一个拓扑基,根据我们在度量空间中所积攒的经验, \mathbb{R}^2 中的开球和邻域是等价的,很自然的我们可以考虑 \mathbb{R}^2 中的开矩体的全体构成的集合 $\mathcal{B}' = \{(a,b) \times (c,d) | a < b,c < d\} \cup \{\emptyset\}$:

图 1.5: 例 1.20 之开矩体

很明显 \mathcal{B}' 是 \mathbb{R}^2 上某拓扑的拓扑基。

为了更好地描述两个拓扑基之间的关系,以便更加方便地研究两个拓扑基生成的拓扑空间之间的关系,我们对拓扑基引入如下的定义:

定义 1.10 (拓扑基之间的等价)

设 \mathcal{B},\mathcal{B}' 满足TB1、TB2, 称 \mathcal{B} 与 \mathcal{B}' 是等价的, 若:

- 1. $\forall U \in \mathcal{B}, p \in U, \ \text{at } \exists U' \in \mathcal{B}', \ s.t. \ p \in U' \subset U$
- 2. $\forall V \in \mathcal{B}', p' \in V'$, $\forall V \in \mathcal{B}', s.t. p \in V \subset V'$

图 1.6: 定义 1.10 之说明

命题 1.8

设 \mathcal{B} 与 \mathcal{B}' 满足 $\mathsf{TB1}$ 、 $\mathsf{TB2}$,且 \mathcal{B} 与 \mathcal{B}' 等价,则 \mathcal{B} 生成的拓扑 \mathscr{F} 与 \mathcal{B}' 生成的拓扑 \mathscr{F}' 相同。

证: 证明很简单, $\forall U \in \mathscr{F} \Rightarrow U = \bigcup_{\alpha \in I} U_{\alpha}, U_{\alpha} \in \mathcal{B}$, 又因为两个拓扑基等价,则有:

$$\forall U_{\alpha}, \forall p \in U_{\alpha} \Rightarrow \exists V_{p} \in \mathcal{B}', \ s.t. \ p \in V_{p} \subset U_{\alpha}$$

即: $U_{\alpha} = \bigcup_{p \in U_{\alpha}} V_p \in \mathscr{F}'$,即 $U = \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{F}'$,则 $\mathscr{F} \subset \mathscr{F}'$ 同理, $\mathscr{F} \subset \mathscr{F}'$,因此 $\mathscr{F} = \mathscr{F}'$

为了更好的使用以上拓扑基的等价条件, 我们可以篡改 TP2 为以下的 TP2':

 $\mathbf{TP2'} \quad . \ \forall U_1, U_2 \in \mathcal{B}, \forall p \in U_1 \cap U_2, \exists U_p \in \mathcal{B}, \ s.t. \ p \in U_p \subset U_1 \cap U_2$

证: 这个的验证也十分显然。

第2章 连续映射

研究点集拓扑的主要动机就是从更加一般的观点来定义连续性、紧性和连通性。下面三章就是在做 这个工作。这一章,先研究一般的连续映射¹。

2.1 连续映射

2.1.1 连续映射与其等价刻画

首先,我们重申连续性的定义:

定义 2.1 (连续映射)

若 f 是拓扑空间 $X \longrightarrow Y$ 的映射,如果 $\forall U \subset_{open} Y, f^{-1}(U)$ 为 X 中开集,则称映射 f 是 **连续映射** 。

我们有下面这俩显然的命题:

命题 2.1 (连续映射之复合是连续映射)

设 X,Y,Z 是三个拓扑空间,定义连续映射 $f:X\longrightarrow Y,\ g:X\longrightarrow Y,\ 则\ gf:X\longrightarrow Z$ 是连续映射。

证: 对于 $\forall U \subset_{open} Z$, 我们有 $(g \cdot f)^{-1}(U) = f^{-1}(g^{-1}(U))$, 由于 g 是连续映射,则 $g^{-1}(U)$ 是 Y 中的开集;又由 f 是连续映射,所以 $f^{-1}(g^{-1}(U))$ 是 X 中开集。

命题 2.2 (连续映射之限制是连续映射)

设 $f: X \longrightarrow Y$ 是连续映射, $A \subset X$ 并赋予 A 以子空间拓扑, 那么 $f|_A: A \longrightarrow Y$ 是连续映射。

证: $\forall U \subset_{open} Y$, 因为赋予 A 以子空间拓扑,所以有 $(f|_A)^{-1}(U) = A \cap f^{-1}(U)$ 又由于 $f \not\in X \longrightarrow Y$ 的连续映射,所以 $f^{-1}(U) \not\in X$ 中开集,所以 $A \cap f^{-1}(U)$ 就为 A 中开集。

命题 2.3 (连续映射之嵌入是连续映射)

因此得证。

设 $f: X \longrightarrow Y$ 是连续映射、像集 f(X) 赋予子空间拓扑、则 $f: X \longrightarrow f(X)$ 也是连续映射。

证: $\forall f(X)$ 中开集,由于子空间拓扑,则可设其形如 $U \cap f(X), U \subset_{men} Y$,那么自然有:

$$f^{-1}(U \cap f(X)) = f^{-1}(U) \subset_{open} X$$

例 2.1(**拓扑上的恒等变换是连续映射**) 设 X 为拓扑空间, X 上的恒等映射:

$$\mathrm{id}_X:X\longrightarrow X$$

 $x \longmapsto x$

¹值得强调的是,在尤承业老师的《基础拓扑学》中 36 页提到,除此之外还有**可数性、分离性**,以之来弥补拓扑空间的一些不足。这些也贯穿在这几章中出现。

这个映射显然是个连续映射。

例 2.2(拓扑上的嵌入映射是连续映射) 设 X 为拓扑空间, $A \subset X$ 并赋予子空间拓扑,那么映射:

$$i_A: A \longrightarrow X$$

$$a \longmapsto a$$

这个映射显然也是个连续映射。

例 2.3 (constant map 是连续映射) 设 X 为拓扑空间, Y 是一个单点集, 那么映射

$$f: X \longrightarrow Y$$

是一个连续映射。

为了更好地刻画连续映射,我们有连续映射的以下等价命题:

命题 2.4

下列命题等价:

- 1. $f: Z \longrightarrow Y$ 是连续映射。
- 2. $\forall U \subset_{open} Y, f^{-1}(U)$ 是开集。
- 3. 设 \mathcal{B} 为 Y 的一个拓扑基, $\forall U \in \mathcal{B}, f^{-1}(U)$ 是开集。
- 4. $f(\overline{A}) \subset \overline{f(A)}, A \subset X$
- 5. $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B}), \forall B \subset Y$
- 6. $\forall F \subset_{closed} Y, f^{-1}(F)$ 是闭集。

注: 以上命题说明了对于一个连续映射,开集的原像是开集,闭集的原像是闭集。并且对于其拓扑基也是适用的。

证: 下面开始着手证明这个命题, 我们采取循环的办法进行证明:

 $[2 \Rightarrow 3]$ 记然的。

[3 \Rightarrow 4]: $\forall y \in f(\overline{A})$ 要证 $y \in \overline{f(A)}$ 。那么对与 $\forall y = f(x), x \in \overline{A}$ 作以下讨论:

- (a). $x \in A$, 此时 $y \in f(A) \subset \overline{f(A)}$, 显然成立。
- (b). $x \notin A$, 这时就说明 $x \notin A$ 的一个极限点。那么我们再对到达域进行讨论:
 - I. $y \in f(A)$, 此时的证明依旧是显然的。
 - II. $f(x) = y \notin f(A)$, 此时要证 $y \ni f(A)$ 的一个极限点。如上图, $\forall U \subset_{open} \mathcal{B}(y \in U)$,

图 2.1: 命题 2.3 之证明图示

由 2 可知 $f^{-1}(U)$ 是开集,又由于 $x \in f^{-1}(U)$ s.t. $f(x) = y \in U$,因此 $x \in f^{-1}(U)$ 。另外由于 $\exists x \in f^{-1}(U)$,则有:

$$(f^{-1}(U)\backslash\{x\})\cap A\neq\emptyset$$

这说明除了x 外, $\exists a \in (f^{-1}(U)) \cap A$,即 $f(a) \in U, f(a) \in f(A)$,因此 $U \cap f(A) \neq \emptyset$,又由于 $y \notin f(A)$,即 $(U \setminus \{y\}) \cap f(A) \neq \emptyset$,因此 $y \notin f(A)$ 的极限点。

[4 \Rightarrow 5]: 直接在 4 中取 $A = f^{-1}(B)$, 那么立马有:

$$f(\overline{f^{-1}(B)}) \subset \overline{f(f^{-1}(B))} = B \subset \overline{B}$$

因此两边作用 f^{-1} 则得证。

- [5 ⇒ 6]: $\forall F \subset_{closed} Y$,根据 5,然后由于 F 是闭集,所以 $\overline{f^{-1}(F)} \subset f^{-1}(\overline{F}) = f^{-1}(F)$,而这一等式的 反向是自然成立的,所以有 $\overline{f^{-1}(F)} = f^{-1}(F)$ 。因此 $f^{-1}(F)$ 是闭集。
- [6 \Rightarrow 2]: 任取 $U \subset_{open} Y$, 注意到 $f^{-1}(U) \sqcup f^{-1}(Y \backslash U) = X$, 这里的无交并是因为 f 是映射。因此立马可以得到

$$f^{-1}(U) = X \backslash f^{-1}(Y \backslash U)$$

由于 $f^{-1}(Y \setminus U)$ 是闭集,因此 $f^{-1}(U) = X \setminus f^{-1}(Y \setminus U)$ 是开集。

2.1.2 拓扑空间中的极限与 Hausdorff 空间

研究连续性, 是和极限密不可分的, 下面开始定义极限。

定义 2.2 (极限)

设X是一个拓扑空间, $\{x_n\}\subset X$ 是X内的一个序列,如果对于 $\forall U\subset_{open}X(x\in U)$, $\exists N,\,s.t.\,\forall n>N, x_n\in U$,则把 $x\in X$ 称为 $\{x_n\}$ 的一个极限。

 \hat{Y} 注: 以上之所以说定义出来的极限是"一个"极限。是因为由此定义出的极限不唯一,其根本在于拓扑空间 X 中的点不一定可以分离,也就是所谓的分离性不一定存在。下面给出一个例子来说明这点。

例 2.4(定义2.2中定义出的极限并不唯一) 设 $X = \{0,1\}, \mathscr{F} = \{\{0\}, \{0,1\}, \emptyset\}$,设 $x_n = 0, n = 1, 2, \cdots$,因此: $\lim_n x_n = 0$ 是显然的,并且由于 $U = \{0,1\}$ 是唯一包含 1 的开集,所以 $\lim_n x_n = 1$ 。因此这个极限有两个值。

这样就非常的不好啊,仔细想来,在 \mathbb{R} 中我们可以有唯一的极限,这是因为 \mathbb{R} 很牛,里面有很多结构,比如有欧氏度量,而且还是全序域,还有线性结构。一般的拓扑空间不能做到极限唯一,肯定是因为其少了什么东西,这种东西就是所谓的**分离性**。增加的方法有很多,比如下面的 \mathbb{R} 分离公理。

定义 2.3 (Hausdorff 空间)

设X 为一个拓扑空间,如果 $\forall x_1, x_2 \in X, x_1 \neq x_2, \exists$ 开集 $U_1, U_2, s.t. x_1 \in U_1, x_2 \in U_2$ 且 $U_1 \cap U_2 = \emptyset$,则称X 为一个 Hausdorff 空间 a 。

 a 这也称为拓扑空间 X 满足 T2 分离公理。

4

命题 2.5

设 X 为一个 Hausdorff 空间, $\{x_n\}\subset X$ 则若 x_n 的极限存在,则 $\{x_n\}$ 的极限唯一,并记之为 $\lim_n x_n$ 。

例 2.6 (度量空间都是 Hausdorff 空间) 设 (X, ρ) 为一个度量空间, $x_1, x_2 \in X, x_1 \neq x_2$, 设 $\rho = \rho(x_1, x_2) > 0$, 令 $U_1 = B(x_1, \frac{\rho}{2}), U_2 = B(x_2, \frac{\rho}{2})$, 那么 $U_1 \cap U_2 = \emptyset$ 。更加准确一点儿说就是,反设 $x \in U_1 \cap U_2$,

图 2.2: 例 2.6 之图示

在分析学中,如果一个函数连续,^{*}那么说明函数符号和极限号是可以交换的,即极限号可以取到函数里面去。即:

$$f(x)$$
连续 $\Rightarrow \lim_{\mathcal{B}} f(x) = f(\lim_{\mathcal{B}} x)$

命题 2.6

设 X,Y 皆为 Hausdorff 空间,映射 $f:X\longrightarrow Y$ 是连续映射, $\{x_n\}\subset X, \lim_n x_n=x_0, \lim_n f(x_n)=y_0$,则 $\lim_n f(x_n)=f(\lim_n x_n)\in Y$

证: 这个证明很显然,根据定义,我们只需要证明 $\forall U \subset_{open} Y(f(\lim_n x_n) \in U)$,则 $\exists N, n > N, f(x_n) \in U$ 。 任取 $U \subset_{open} Y(f(\lim_n x_n) \in U)$,由于 f 是连续映射,所以必然 $\lim_n x_n \in f^{-1}(U) \subset_{open} X$,所以就有: $\exists N, s.t. \ n > N, x_n \in f^{-1}(U)$ 即 $f(x_n) \in U$ 。

定义 2.4 (同胚)

设X,Y是两个拓扑空间, $f:X \longrightarrow Y$ 如果:

- 1. f 是双射。
- 2. f 连续。
- 3. f^{-1} 连续。

那么就称映射 f 为一个 **同胚** (homeomorphism)。

在这个定义中, 2 和 3 真是十分奇怪,怎么会有连续映射的逆映射不连续的呢?下面给出了一个复变函数中的例子来进行说明。

例 2.7 (存在连续映射之逆映射不连续) 设映射为:

$$f:[0,1)\longrightarrow \mathbb{C}$$

 $t\longmapsto e^{2\pi it}$

该映射之逆映射不连续。

图 2.3: 例 2.7 中的映射

这是为什么呢,很显然,该映射 f 是一个连续映射,但是 f^{-1} 不连续,这是因为从 t=0 按照逆时针走,是 t 自 0 增大的过程,但是若顺时针走动,幅角从 0 突然变到比 2π 小一点点,t 会由 0 瞬间变到 1 的周围,导致不连续的事情发生。

例 2.8 (球极投影) 考虑 $S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$, 北极点为 P = (0, 0, 1)。映射:

$$h: S^2 \backslash P \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (u, v)$

其中 \mathbb{R}^2 赋予欧氏拓扑,而 $S^2 \setminus P$ 赋予子空间拓扑。下面说明映射 h 是一个同胚,需说明三点:

图 2.4: 球极投影

- 1. 从 h 的构造来看, h 显然是双射。
- 2. 从 h 的构造来看,h 也是连续映射(把 $S^2 \setminus P$ 中的开集映为 \mathbb{R}^2 中的开球)
- 3. 下说明 h^{-1} 也是连续映射,观察到 (0,0,1),(x,y,z),(u,v,0) 是三点共线,因此 $\exists \lambda \neq 0$,并且有关

系式:

$$\lambda(x, y, z - 1) = \lambda(u, v, -1)$$

解出 $x = \lambda u, y = \lambda v, z = 1 - \lambda$, 并考虑 (x, y, z) 在球 $x^2 + y^2 + z^2$ 上, 就有:

$$\lambda^{2}u^{2} + \lambda^{2}v^{2} + (1 - \lambda)^{2} = 1$$

因此同除 $\lambda \neq 0$,得到:

$$\lambda = \frac{2}{u^2 + v^2 + 1}$$

这样就知道了 h^{-1} 应该满足下关系式:

$$h^{-1}: \mathbb{R}^2 \longrightarrow S^2 \setminus \{P\}$$

$$(u, v) \longmapsto \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

现考虑映射 f:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 $(u, v) \longmapsto \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$

很明显 f 是一个连续映射。根据我们的命题2.3可知, h^{-1} 也是连续映射。

2.2 充满整个空间的曲线-Peano²曲线

本节将给出一个在分析学、拓扑学中都很重要且著名的例子—Peano 曲线。

例 2.9(Peano 曲线) 设 $f:[0,1] \longrightarrow X$ 是一个连续映射,称之为一个 **曲线** 。其中 X 设定为三角形 \triangle (边长为 1),取 \mathbb{R}^2 的子空间拓扑。按照如下方式对 Peano 曲线进行绘制:

$$f:[0,1]\longrightarrow X$$

 f_1 是这副德行(让点"匀速率游走为红色的线"):

图 2.5: Peano 曲线第一步 f₁

接着,把整个三角形按照中点进行连接起来,这样就形成了 4 个小的并且全等的三角形。然后在每一个三角形里填充 f_1 ,但是要注意顺序, f_2 如下所示:

 $^{^2}$ 朱寨佩·皮亚诺(意大利语:Giuseppe Peano;1858 年 8 月 27 日 $^-$ 1932 年 4 月 20 日)是意大利数学家、逻辑学家、语言学家。

图 2.6: Peano 曲线第二步 f_2

然后对其中每一个小三角形按照如下替换规则进行替换:

图 2.7: Peano 曲线构筑规则

这样我们就得到了 f_3 ,以此类推...

图 2.8: Peano 曲线第三步 f_3

这样一直下去,由于匀速率, f_n 中小三角形的边长为 $\frac{1}{2^{n-1}}$,那么我们有以下断言:

命题 2.7 (Peano 曲线)

- 1. $f_n:[0,1]\longrightarrow \triangle$ 并且有: $f_n\rightrightarrows:[0,1]\to \triangle$,映射 f 是连续映射,将之称为 Peano **曲线** 。
- 2. $f([0,1]) = \triangle$

- 证: 我们来一条一条证明:
 - 1. f(t) 是匀速率进行移动,相比较 f_{n+1} 和 f_n ,在 f_{n+1} 中的某一点一定要落入比它大四倍的 f_n 中。 因此我们有 $||f_{n+1}(t)-f_n(t)|| \leq \frac{1}{2^{n-1}}$ 。

而 f_n 的边长为 $\frac{1}{2^{n-1}}$,这就说明在时刻 t,点一定移动到某个小三角形里,三角形中两点的欧氏距离不超过三角形的边长,即: $\forall m \geq n+1, ||f_m(t)-f_n(t)|| \leq \frac{1}{2^{n-1}}, \forall t \in [0,1]$ 。即:

$$\forall \varepsilon > 0, \exists N, \ s.t. \ \forall n,m > N, ||f_m(t) - f_n(t)|| \leq \varepsilon, \forall t \in [0,1]$$

因此在 \mathbb{R}^2 中, $\{f_n(t)\}$ 是一致收敛的。那么 f 是一个连续映射。

2. $\forall P \in \triangle, \forall n \in \mathbb{N}$,通过对 \triangle 的边长进行 2^{n-1} 等分,就得到边长为 $\frac{1}{2^{n-1}}$ 的小三角形。则 P 必然落在一个这样的小三角形里,对于 f_n ,必 $\exists t_n, ||f_n(t_n) - P|| < \frac{1}{2^{n-1}}$,根据第一点的议论,我们又有 $\forall m \geq n+1, ||f_m(t) - f_n(t)|| \leq \frac{1}{2^{n-1}}, \forall t \in [0,1]$,因此:

$$0 \le ||f(t_n) - P|| \le ||f(t_n) - f_n(t_n)|| + ||f_n(t_n) - P||$$
$$\le \frac{1}{2^{n-1}} + \frac{1}{2^{n-1}} = \frac{1}{2^n}$$

当 $n \to +\infty$ 时, $f(t_n) \to P(n \to +\infty)$, 因此 $P \ni f([0,1])$ 的极限点。

事实上,在欧氏空间 \mathbb{R}^2 中,闭区间 [0,1] 是紧集,因此连续映射 f 映射紧集得到的项还是紧集,即欧氏空间 \mathbb{R}^2 的闭集。因此 $P \in f([0,1])$,即 $f([0,1]) = \Delta$ 。

第3章 紧性

第4章 连通性

第5章 符号说明

本讲义有以下符号说明,便于我自己看不明白的时候过来回顾一下(

5.1 符号说明

- 1. $O \subset_{open} X$ 的含义是 $O \in X$ 的开子集。
- 2. $F \subset_{closed} X$ 的含义是 $F \in X$ 的闭子集。
- 3. F = closed X 的含义是 F 和 X 相等, 且均为闭集。
- 4. 所有的弯体(比如 ⊂)变直之后就表示更加强的区分效果(比如 ⊏,表示真被包含)。
- 5. 所有的包含采用类似 C 的符号, 若出现 C (一般不会), 表示同一意思。

5.2 语法说明

- 1. 数学逻辑语言同国际标准。
- 2. 外加一些张氏古代汉语和标准中式英语(虽然掺杂一些少量标准英式英语)。