Triangulations of \mathbb{CP}^2 and deformations

Fredrik Meyer

August 22, 2014

1 Approach 1

Let $X \subseteq \mathbb{P}^5$ we a smooth pfaffian cubic hypersurface, and let $F_1(X)$ be its Fano variety of lines. The latter is a reducible subvariety of the Grassmannian $\mathbb{G}(2,6)$.

If we assume that X is smooth, then it is known [[ref]] that $F_1(X)$ is deformation equivalent to the Hilbert scheme $S^{[2]}$ of pairs of points on S, where S is a K3 surface of degree 14 in \mathbb{P}^8 . By standard theory, a Stanley-Reisner degeneration of a K3 surface is a triangulated sphere, or just $\mathbb{P}^1_{\mathbb{C}}$. Thus, a Stanley-Reisner degeneration of $S^{[2]}$ should give a triangulation of $\mathbb{P}^1_{\mathbb{C}} * \mathbb{P}^1_{\mathbb{C}} \approx \mathbb{P}^2_{\mathbb{C}}$, the complex projective plane, as topological spaces. Since $F_1(X)$ is embedded in \mathbb{P}^{14} as a closed subscheme of the Grassman-

Since $F_1(X)$ is embedded in \mathbb{P}^{14} as a closed subscheme of the Grassmannian, finding such a triangulation is equivalent to finding a square-free initial ideal of the ideal of this embedding.

Since smooth hypersurfaces have too computationally consuming equations, we start naïvely with a singular hypersurface $X = V(f) = V(x_0x_2x_4 - x_1x_3x_5)$. This is both a toric variety and a pfaffian hypersurface. However, because of the form of f, $F_1(X)$ is reducible:

Proposition 1.1. If $X = V(x_0x_2x_4 - x_1x_3x_5)$, the variety of lines $F_1(X)$ is reducible. It decomposes into 15 components: 9 of them are copies of $\mathbb{G}(2,4)$, and the 6 other are toric varieties, all of them isomorphic.

Proof. The Grassmannian components are easy to see: if one of the even numbered coordinates are zero, then one of the odd must be too. Thus X contains 3×3 special copies of \mathbb{P}^3 . Lines in \mathbb{P}^3 are parametrized by Grassmannian $\mathbb{G}(2,4)$. This have dimension 4.

The other components are not that easy: Consider the rational map $\psi: \mathbb{P}^2_{abc} \times \mathbb{P}^2_{xyz} \xrightarrow{--} X$ given by sending $(a:b:c) \times (x:y:z)$ to (ax:bx:by:cy:cz:az). Then this map is well-defined outside the points (1:0:bx)

 $0) \times (0:1:0), (0:1:0) \times (0:0:1)$ and $(0:0:1) \times (1:0:0)$. Resolving the locuf of indeterminacy give an isomorphism of a desingularization of X with the blowup of $\mathbb{P}^2 \times \mathbb{P}^2$ in 3 points. There are six ways of choosing the map ψ , which gives the six different toric components of X.

Since the map is of bidegree (1,1), we have a well-defined induced map $(\mathbb{P}^2)^{\wedge} \times \mathbb{P}^2 \dashrightarrow F_1(X)$ given by

$$\ell \times p \mapsto \ell_p := [\psi(x, p), \psi(y, p)]_{x, y \in \ell},$$

where ℓ_p denotes the line connecting $\psi(x,p)$ and $\psi(y,p)$ in \mathbb{P}^5 . This gives one of the components in $F_1(X)$.

That these are all components can either be checked on a computer, or by degree considerations. [[unsure of the latter]] \Box

The equations of $F_1(X)$ inside \mathbb{P}^{14} are rather messy. The embedding is of degree 108 and there are 70 equations (15 quadrics corresponding to the inclusion in $\mathbb{G}(2,6)$ and 55 cubics, of which 6 are monomials).

However, the Hilbert polynomial is $h(t) = \frac{9}{2}t^4 + \frac{15}{2}i^2 + 3$, giving a topological Euler characteristic of 3, which agrees with the Euler characteristic of (the topological space) \mathbb{CP}^2 .

Thus, it is at least not totally unreasonable to predict that a Stanley-Reisner degeneration of $F_1(X)$ would correspond to a triangulation of \mathbb{CP}^2 .

2 Bad er good news

The article [[ref]] presents a triangulation T of \mathbb{CP}^2 having 15 vertices, and the same f-vector as the triangulation we're looking for. This gives us a Stanley-Reisner scheme X_T living in the same Hilbert scheme as $F_1(X)$. [[see the reference (for now) for a description]]

Now, the Hilbert scheme is a terribly lonely place, so it could be that this new triangulation lives in a completely different component than the one $F_1(X)$ lives in. However, if they do - we could hope for one particularly nice situation: $F_1(X)$ degenerates to X_T , and we would have another "algebrogeometric" explanation of the existence of T.

One way to find a degeneration is to try to deform X_T . First: \mathbb{CP}^2 have a cell structure consisting of three 4-cells, where their intersections are 3 different filled tori. The triple intersection is a 2-torus. Here's a surprising result:

Proposition 2.1. There exists a deformation of X_T , the Stanley-Reisner scheme of the triangulation of T, to the union of three toric varieties. Their

pairwise intersections are Stanley-Reisner schemes of affine dimension 4, corresponding to the product of two tori. [[... FILL IN THIS...]]

The question is now of course if this union of toric varieties is smoothable, and if so, does it smooth to $F_1(X)$?

Here is some information about the equations of the deformation: its degree is of course 108. The ideal is generated by 37 elements, a lot less than the 70 of $F_1(X)$. There are 15 quadrics (as with $F_1(X)$) and 22 cubics. The natural question now is of course: what can we say about the number of defining equations for deformation equivalent objects?

Remark. The quadric equations have four terms, whereas the Grassmannian terms in $F_1(X)$ have three terms. Unless there is some change of coordinate to decrease the number of terms, there is no way (?) this can deform to the Grassmannian.