Data Structures (in C++)

- Introduction -

Jinsun Park
Visual Intelligence and Perception Lab., CSE, PNU

Data & Data Structure

Data

Collection of (raw) information

Data Structure

- A systematic way of organizing and accessing data
- A set of data arrangement rules
- The most important goal is the efficient data processing (i.e., fast data access, searching, sorting, etc.)

What is a "Good" Data Structure?

Assume that we have three data structures:

	Data Structure A	Data Structure B	Data Structure C
Insertion	Very Fast	Slow	Fast
Searching	Slow	Very Fast	Fast
Memory Consumption	Low	Low	High

- What is a good (or bad) data structure for:
 - Search engines (e.g., Google)
 - Industrial machines with a limited memory size
 - Web browsing history

Classification of Data Structure

Abstraction & Abstract Data Type (ADT)

Abstraction

- Simple descriptions of fundamental parts of a (complicated) system
- Naming and explanation of a functionality
 - No internal details are given

Abstract Data Type (ADT)

- A mathematical model of a data structure
- Specifies what each operation does
- Does not specify how it does it
- ADT = Data + Operations

```
Data: Integers ∈ [1, INT_MAX]
```

Operations:

- add(x,y): return x+y if (x+y) <= INT_MAX, return INT_MAX otherwise
- distance(x,y): return |x-y|
- equal(x,y): return TRUE if x == y, return
 FALSE otherwise
- successor(x): return x+1 if (x+1) <=
 INT_MAX, return INT_MAX otherwise</pre>

Natural Number ADT

Algorithm & Program

Algorithm

- A step-by-step procedure for performing some task in a finite amount of time
- (Typical) Program = Data Structure + Algorithm

• All algorithms must satisfy the following criteria:

- Zero or more input values
- One or more output values
- Clear and unambiguous instructions
- Atomic steps that take constant time
- No infinite sequence of steps
- Feasible with specified computational device

Algorithm Analysis

Running Time

- Most algorithms transform input objects into output objects
- The running time of an algorithm typically grows with the input size
- Average case time is often difficult to determine
- We focus on the worst case running time
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like clock() to get an accurate measure of the actual running time

Limitations

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

What we are typically interested in

Time Complexity

The amount of time taken by an algorithm

Space Complexity

The amount of space or memory taken by an algorithm

Pseudocode

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Algorithm *arrayMax*(A, n)
Input array A of n integers
Output maximum element of A

 $currentMax \leftarrow A[0]$ $for i \leftarrow 1 \text{ to } n-1 \text{ do}$ if A[i] > currentMax then $currentMax \leftarrow A[i]$ $return \ currentMax$

Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log(n)$
 - Linear $\approx n$
 - $n-\log-n \approx n\log(n)$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$

Growth rates (plotted in a log-log chart)

Primitive Operations

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition is not important
- Assumed to take a constant amount of time

Examples

- Assigning a value to a variable
- Calling a function
- Arithmetic operation
- Comparison
- Indexing into an array
- Following an object reference
- Returning from a function

Estimating Running Time

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

- Indexing
- Assignment
- Comparison
- Arithmetics
- Returns

```
Algorithm arrayMax(A, n) # operations
currentMax \leftarrow A[0] 2
for i \leftarrow 1 \text{ to } n-1 \text{ do} 2
if A[i] > currentMax \text{ then} 2(n-1)
currentMax \leftarrow A[i] 2(n-1)
increment counter i \} 2(n-1)
return currentMax 1
Total 8n-3
```

Estimating Running Time

• Algorithm arrayMax executes 8n-3 primitive operations in the worst case

- Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then,

$$a(8n-3) < T(n) < b(8n-3)$$

Hence, the running time T(n) is bounded by two linear functions

Growth Rate

- The growth rate is not affected by:
 - constant factors
 - lower-order terms

Examples

- $10^2n + 10^5$ is a linear function
- $10^5n^2 + 10^8n$ is a quadratic function

Growth rates (plotted in a log-log chart)

15

Big-Oh Notation

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

$$f(n)$$
 is big-Oh of $g(n)$
or
 $f(n)$ is order of $g(n)$

- Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge \frac{10}{c-2}$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Notation

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

Big-Oh Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n-3 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Example: Computing Prefix Averages

 We further illustrate asymptotic analysis with two algorithms for prefix averages

■ The *i*-th prefix average of an array X is average of the first (i + 1) elements of X:

$$A[i] = \frac{(X[0] + X[1] + \dots + X[i])}{i+1}$$

Example: Computing Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time

- Indexing
- Assignment
- Comparison
- Arithmetics
- Returns

• Algorithm *prefixAverages1* runs in $O(n^2)$ time

Example: Computing Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time

- Indexing
- Assignment
- Comparison
- Arithmetics
- Returns

Algorithm prefixAverages2(X, n)			
Input array X of n integers			
Output array A of prefix averages of X	#operations		
$A \leftarrow$ new array of n integers	n		
$s \leftarrow 0$	1		
for $i \leftarrow 0$ to $n-1$ do	n		
$s \leftarrow s + X[i]$	n		
$A[i] \leftarrow s / (i+1)$	n		
return A	1		

• Algorithm prefixAverages2 runs in O(n) time

Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c>0 and an integer constant $n_0\geq 1$ such that

$$f(n) \ge cg(n)$$
 for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c'>0 and c''>0 and an integer constant $n_0\geq 1$ such that

$$c'g(n) \le f(n) \le c''g(n)$$
 for $n \ge n_0$

Intuition for Asymptotic Notation

- Big-Oh: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- Big-Omega: f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- Big-Theta: f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)

Summary

Data & Data Structure

Abstraction & Abstract Data Type (ADT)

- Asymptotic Algorithm Analysis
 - Pseudocode
 - **Primitive Operations**
 - Big-Oh, Big-Omega, and Big-Theta

and Engineering