# Projektowanie Efektownych Algorytmów Projekt 23/01/2024

## 259113 Hubert Belkot

## (6) Genetic algorithm

| Spis streści          | strona |
|-----------------------|--------|
| Sformułowanie zadania | 2      |
| Metoda                | 3      |
| Algorytm              | 4      |
| Dane testowe          | 5      |
| Procedura badawcza    | 6      |
| Wyniki                | 7      |
| Analiza wyników       | 13     |

#### 1. Sformulowanie Zadania

Zadanie polega na opracowaniu i zaimplementowaniu algorytmu algorytmu genetycznego, rozwiązującego problem komiwojażera(eng. tsp- travelling salesman problem). Problem polega na znalezieniu w grafie minimalnego cyklu, w którym każdy wierzchołek jest odwiedzany dokładnie raz (cykl Hamiltona). Należy zbadać złożoność czasową oraz zależność zużycia pamięci w zależności od wielkości instancji.

#### 2. Metoda

Algorytm genetyczny jest jedną z metaheurestyk zainspirowana biologiczną ewolucją. Obecnie zaliczany jest do algorytmów ewolucyjnych. Algorytm genetycznych próbuje otrzymać jak najlepsze rozwiązanie za pomocą wybierania jak najlepszych cech rozwiązań z określonej puli. Zakładamy, że z każdym pokoleniem rozwiązania będą coraz lepsze. W algorytmie dla przypadku rozwiązania problemu komiwojażera, pokoleniem nazywamy populacje chromosomów w danej iteracji. Pojedynczy chromosom jest pojedynczym cyklem Hamiltona, natomiast populacja zbiorem chromosomów o zadanej liczebności.

Na algorytm genetyczny składają się operację:

- Tworzenie populacji początkowej random polega na losowym wybraniu losowej pierwszej ścieżki.
- Selekcja Metoda turniejowa / rankingowa. Metoda turniejowa polega na wylosowaniu pary osobników z której lepsza zostaje wybrana do krzyżowania. Metoda rankingowa polega na wybraniu najlepszych osobników.
- Krzyżowanie budowanie potomstwa poprzez kopiowanie części rozwiązania z jednego rodzica, a następnie uzupełnianie brakujących liczb poprzez wstawiane w takiej kolejności, w jakiej występowały w drugim rodzicu.
- Mutacja operacja 2-swap/invert. Mutacja ma za zadanie dokonać losowej zmiany na którymś z osobników. Do tego zostaje wykorzystana metoda 2-swap, czyli wylosowanie dwóch wierzchołków i zamiana ich, oraz metoda invert, która wybiera dwa wierzchołki i odwraca kolejnością dany odcinek ścieżki.
- Sukcesja (stworzenie nowej populacji) –metoda rankingowa. Wybranie najlepszych osobników z otrzymanych chromosomów i zastąpienie nimi nowej populacji
- Warunek stopu liczba generacji / liczba iteracji bez poprawy wyniku / osiągnięcie pewnego błędu / przekroczenie czasu.

### 3. Algorytm start Wczytanie danych początkowych takich jak: instancja w formie macierzy, wielkość instancji Wczytaj dane wielkość populacji, ilość generacji ilość dozwolonych powtórzeń prawdopodobieństwo krzyżowania i mutacji Utwórz populację Tworzenie pierwszej populacji początkową za pomocą algorytmu greedy Warunkiem stopu może być: przekroczony czas wykonywania instancji, Zwróć wynik Warunek stopu znaleziono rozwiązanie równe najlepszemu Tak wykonano przyjętą ilość generacji za dużo literacji bez poprawy wyniku Nie Wybranie rodziców metodą turniejową lub rankingową Wybierz rodziców Stop Krzyżowanie wybranych wcześniej rodziców metodą OrderCrossover z Krzyżowanie prawdopodobieństwem krzyżowania w celu utworzenia dzieci oraz wprowadzenie nowej populacji ; Mutacja za pomocą metody 2swap lub invert z wcześniej ustalonym prawdopodobieństwem mutacji. Mutacja Zwraca nową populację po zmutowaniu niektórych chromosomów ! Sprawdzenie minimum każdego chromosomu Sprawdź koszt minimalny w populacji i zapisanie go jako koszt minimalny

Rysunek 1: Schemat działania algorytmu genetycznego

#### 4. Dane testowe

Do sprawdzenia poprawności algorytmu posłużyły następujące zestawy danych:

- tsp\_6\_2.txt
- tsp\_10.txt
- tsp\_15.txt
- gr21.tsp.txt

Do wykonania pomiarów wykorzystano:

- tsp\_6\_2.txt
- tsp\_10.txt
- tsp\_15.txt
- gr21.tsp.txt
- gr24.tsp.txt
- ftv38.atsp
- ftv64.atsp
- ftv170.atsp
- gr229.txt
- rbg323.atsp
- pcb442.tsp.txt
- rbg443.atsp
- tsp666.tsp.txt

#### Ze źródeł:

- http://jaroslaw.mierzwa.staff.iiar.pwr.wroc.pl/pea-stud/tsp/
- Teaching (uni-heidelberg.de)

#### 5. Procedura badawcza

Należało zbadać zależność czasu rozwiązania problemu od wielkości instancji, czyli złożoność czasową oraz zużycie pamięci od wielkości instancji(złożoność pamięciową). Na początku procedury badawczej uruchamialiśmy plik ini (format\_pliku: nazwa\_instancji liczba\_wykonań rozwiązanie optymalne [ścieżka\_optymalna] nazwa\_pliku.csv).

```
Treść pliku tsp.ini:

tsp_6_2.txt 5 80 [0 5 1 2 3 4 0]

tsp_10.txt 5 212 [0 3 4 2 8 7 6 9 1 5 0]

tsp_15.txt 5 291 [0 10 3 5 7 9 13 11 2 6 4 8 14 1 12 0 ]

gr21.tsp.txt 5 2707 [0 6 7 5 15 4 8 2 1 20 14 13 12 17 9 16 18 19 10 3 11 0 ]

gr24.tsp.txt 5 1272 [?]

ftv38.atsp 5 1530 [?]

ftv64.atsp 5 1839 [?]

ftv170.atsp 5 2755 [?]

gr229.txt 5 134602 [?]

rbg323.atsp 5 1326 [?]

pcb442.tsp.txt 5 50778 [?]

rbg443.atsp 5 2720 [?]tsp666.tsp.txt 5 194358 [?]

output.csv
```

Przy próbie zbadania instancji pr1002, nie zdołałem otrzymać kosztu poniżej błędu procentowego 150% w czasie poniżej 10 minut, dlatego zrezygnowałem z badania tej instancji.

Każda instancja rozwiązywana była zgodnie z przyjętą liczbą jej wykonań, dla przykładu gr21.tsp.txt została wykonana 5 razy. Do pliku wyjściowego był zapisywany: jako nagłówek, dane odczytywane z pliku .init dla konkretnej instancji, pod spodem czas wykonania [ms], znalezione optymalne rozwiązanie oraz ścieżka. Poniżej fragment pliku wyjściowego zapisanego w formacie .csv dla gr21.tsp.tx:

| gr21.tsp.txt | 5    | 2707 [ 0 6 7 5 15 4 8 2 1 20 14 13 12 17 9 16 18 19 10 3 11 0 ] |
|--------------|------|-----------------------------------------------------------------|
| 144,2261     | 2707 | [067515482120141312179161819103110]                             |
| 72,8875      | 2707 | [ 0 11 3 10 19 18 16 9 17 12 13 14 20 1 2 8 4 15 5 7 6 0 ]      |
| 155,9816     | 2707 | [067515482120141312179161819103110]                             |
| 160,4757     | 2707 | [067515482120141312179161819103110]                             |
| 137,0401     | 2707 | [067515482120141312179161819103110]                             |

Tabela 1: wyniki dla instancji wielkości 21 wykonane przy badaniu poprawności algorytmu

• Obliczanie błędu dla instancji:

$$\delta = \frac{|x - x_0|}{x} \cdot 100\%$$

Gdzie x jest optymalnym kosztem, a  $x_0$  średnim kosztem zmierzonej instancji.

#### 6. Wyniki

#### Parametry dla badań początkowych algorytmu:

- Prawdopodobieństwo krzyżowania = 90%
- Prawdopodobieństwo mutacji = 5%
- Wielkość populacji = 1000
- o Liczba generacji = 1000
- Dozwolonych powtórzeń = 150
- o Populacja początkowa algorytm Greedy
- o Metoda mutacji Invert

#### • Badanie wpływu wielkości prawdopodobieństwa krzyżowania

|                                                                                                                                                                                                                                                          | Pk=90%  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| 21     2707     2707     0%     140     2707     0%     135     2707     0%       64     1839     2530     38%     406     2534     38%     422     2531     38%       170     2755     3894     41%     2425     3887     41%     2148     3894     41% |         |  |  |
| 64         1839         2530         38%         406         2534         38%         422         2531         38%           170         2755         3894         41%         2425         3887         41%         2148         3894         41%       | as [ms] |  |  |
| 170 2755 3894 41% 2425 3887 41% 2148 3894 41%                                                                                                                                                                                                            | 265     |  |  |
|                                                                                                                                                                                                                                                          | 770     |  |  |
| 229 134602 142394 6% 6836 144928 8% 7611 144484 7%                                                                                                                                                                                                       | 2674    |  |  |
|                                                                                                                                                                                                                                                          | 8492    |  |  |
| 323         1326         1716         29%         10014         1729         30%         9849         1723         30%                                                                                                                                   | 11046   |  |  |
| 442         50778         57690         14%         22843         56920         12%         24560         56933         12%                                                                                                                              | 26635   |  |  |
| 666         194358         352409         81%         57013         352543         81%         58440         349501         80%                                                                                                                          | 61987   |  |  |

Tabela 2: Wyniki badania dla zmiany wielkości prawdopodobieństwa krzyżowania



Rysunek 2: Wykres błędu procentowego w zależności od wielkości prawdopodobieństwa krzyżowania

Jak widać na powyższym rysunku oraz *tabeli 2,* średni błąd jest najmniejszy dla prawdopodobieństwa krzyżowania równego 90%, z tego względu je wybieramy do następnych testów.

• Badanie wpływu zmiany wielkości prawdopodobieństwa mutacji

|           |                 |              | Pm=1%   |           |              | Pm=5%   |           | Pm=10%       |         |           |  |
|-----------|-----------------|--------------|---------|-----------|--------------|---------|-----------|--------------|---------|-----------|--|
| instancja | koszt optymalny | średni koszt | błąd[%] | czas [ms] | średni koszt | błąd[%] | czas [ms] | średni koszt | błąd[%] | czas [ms] |  |
| 21        | 2707            | 2725         | 1%      | 193       | 2707         | 0%      | 125,42    | 2753         | 2%      | 669       |  |
| 64        | 1839            | 2562         | 39%     | 661       | 2545         | 38%     | 1015,75   | 2516         | 37%     | 1087      |  |
| 170       | 2755            | 3909         | 42%     | 1688      | 3887         | 41%     | 3616,63   | 3856         | 40%     | 4259      |  |
| 229       | 134602          | 147190       | 9%      | 7719      | 142218       | 6%      | 8573,55   | 144244       | 7%      | 8703      |  |
| 323       | 1326            | 1731         | 31%     | 9924      | 1731         | 31%     | 11780,03  | 1726         | 30%     | 13133     |  |
| 442       | 50778           | 58891        | 16%     | 25299     | 57021        | 12%     | 26877,90  | 57170        | 13%     | 26782     |  |
| 666       | 194358          | 359926       | 85%     | 62389     | 349343       | 80%     | 63491,35  | 347193       | 79%     | 63357     |  |

Tabela 3: Wyniki badania zmiany wielkości prawdopodobieństwa mutacji



Rysunek 3: Wykres błędu procentowego w zależności od wielkości prawdopodobieństwa mutacji.

Patrząc na *tabelę 3* musimy wybrać prawdopodobieństwo mutacji równe 5% ze względu na warunek zadania, który mówi o zerowej wartości błędu dla instancji do wielkości 21.

• Badanie wpływu wielkości populacji – n,

|           |                 | n=500        |         |           |              | n= 1000 |           | n =2000    |         |           |  |
|-----------|-----------------|--------------|---------|-----------|--------------|---------|-----------|------------|---------|-----------|--|
| instancja | koszt optymalny | średni koszt | błąd[%] | czas [ms] | średni koszt | błąd[%] | czas [ms] | średni kos | błąd[%] | czas [ms] |  |
| 21        | 2707            | 2707         | 0%      | 114       | 2707         | 0%      | 176       | 2707       | 0%      | 292       |  |
| 64        | 1839            | 2547         | 39%     | 220       | 2541         | 38%     | 715       | 2522       | 37%     | 1632      |  |
| 170       | 2755            | 3887         | 41%     | 2011      | 3887         | 41%     | 2402      | 3883       | 41%     | 4102      |  |
| 229       | 134602          | 144957       | 8%      | 5616      | 143889       | 7%      | 8558      | 140711     | 5%      | 16334     |  |
| 323       | 1326            | 1727         | 30%     | 4608      | 1724         | 30%     | 9995      | 1727       | 30%     | 22800     |  |
| 442       | 50778           | 58418        | 15%     | 13214     | 57413        | 13%     | 26536     | 55850      | 10%     | 54215     |  |
| 666       | 194358          | 356488       | 83%     | 32020     | 352920       | 82%     | 62973     | 345863     | 78%     | 126196    |  |

Tabela 4: Wyniki badania zmiany wielkości populacji



Wykres 4: wykres zależności błędu procentowego od wielkości populacji



Wykres 5: Wykres zależności czasu wykonywania algorytmu od wielkości populacji.

Analizując wyniki pokazane na wykres 4 oraz tabela 4, widzimy, że najmniejsza wartość błędu procentowego jest po stronie populacji równej 2000. Niestety ze względu bardzo dużą różnicę czasów wykonywania się algorytmu, pokazanych na wykresie 5, w następnych badaniach postanowiłem przyjąć wielkość populacji równą 500, której wyniki czasowe są bardzo korzystne a błąd procentowy nie ulega bardzo dużej zmianie.

Badanie wpływu metody selekcji na czas i jakość wykonywania algorytmu.

#### Parametry dla algorytmu zmieniono na:

- Prawdopodobieństwo krzyżowania = 90%
- Prawdopodobieństwo mutacji = 5%
- Wielkość populacji = 500
- o Liczba generacji = 1000
- Dozwolonych powtórzeń = 150
- o Populacja początkowa algorytm Greedy
- Metoda mutacji Invert

|           |                 |              |         |           |              | 1       |           |
|-----------|-----------------|--------------|---------|-----------|--------------|---------|-----------|
|           |                 |              | Turniej |           |              |         |           |
| instancja | koszt optymalny | średni koszt | błąd[%] | czas [ms] | średni koszt | błąd[%] | czas [ms] |
| 6         | 80              | 80           | 0%      | 5         | 80           | 0%      | 9         |
| 10        | 212             | 212          | 0%      | 7         | 212          | 0%      | 25        |
| 15        | 291             | 291          | 0%      | 4         | 291          | 0%      | 16        |
| 21        | 2707            | 2707         | 0%      | 111       | 2707         | 0%      | 65        |
| 24        | 1272            | 1315         | 3%      | 236       | 1319         | 4%      | 142       |
| 38        | 1530            | 1670         | 9%      | 234       | 1678         | 10%     | 206       |
| 64        | 1839            | 2535         | 38%     | 379       | 2557         | 39%     | 264       |
| 170       | 2755            | 3901         | 42%     | 1484      | 3915         | 42%     | 1033      |
| 229       | 134602          | 144391       | 7%      | 4177      | 143961       | 7%      | 4123      |
| 323       | 1326            | 1728         | 30%     | 4641      | 1732         | 31%     | 3456      |
| 442       | 50778           | 58244        | 15%     | 13079     | 58537        | 15%     | 13447     |
| 443       | 2720            | 3765         | 38%     | 11607     | 3848         | 41%     | 8739      |
| 666       | 194358          | 359553       | 85%     | 32354     | 358925       | 85%     | 32146     |

Tabela 5: Wyniki badania wpływu metody selekcji na czas i jakość wykonania algorytmu



Wykres 6: Wykres zależności błędu rozwiązania od wielkości instancji porównująca metody selekcji



Wykres 7: Wykres zależności czasu wykonywania algorytmu od wielkości instancji porównująca metody selekcji

Zostały zbadane dwie metody selekcji: turniejowa oraz rankingowa. Na wykresie 6 i wykresie 7, można zobaczyć kolejno, porównanie tych metod pod względem wielkości błędu oraz czasu wykonywania algorytmu. Analizując wcześniej wymienione wykresy oraz tabelę 5, można dojść do wniosku, że obie metody zwracają podobne wyniki, jednak linie trendu metody turniejowej pokazują tendencje do uzyskiwania wyniku z mniejszym błędem, kosztem czasu wykonywania algorytmu.

• Badanie wpływu metody mutacji na czas i jakość wykonywania algorytmu

|           |                 |              | Invert  |           |              | 2-Swap  |           |
|-----------|-----------------|--------------|---------|-----------|--------------|---------|-----------|
| instancja | koszt optymalny | średni koszt | błąd[%] | czas [ms] | średni koszt | błąd[%] | czas [ms] |
| 6         | 80              | 80           | 0%      | 5         | 80           | 0%      | 5         |
| 10        | 212             | 212          | 0%      | 7         | 222          | 5%      | 97        |
| 15        | 291             | 291          | 0%      | 4         | 291          | 0%      | 7         |
| 21        | 2707            | 2707         | 0%      | 111       | 3086         | 14%     | 286       |
| 24        | 1272            | 1315         | 3%      | 236       | 1364         | 7%      | 216       |
| 38        | 1530            | 1670         | 9%      | 234       | 1662         | 9%      | 294       |
| 64        | 1839            | 2535         | 38%     | 379       | 2474         | 35%     | 403       |
| 170       | 2755            | 3901         | 42%     | 1484      | 3860         | 40%     | 1459      |
| 229       | 134602          | 144391       | 7%      | 4177      | 154001       | 14%     | 3823      |
| 323       | 1326            | 1728         | 30%     | 4641      | 1625         | 23%     | 7424      |
| 442       | 50778           | 58244        | 15%     | 13079     | 61299        | 21%     | 12001     |
| 443       | 2720            | 3765         | 38%     | 11607     | 3330         | 22%     | 13544     |
| 666       | 194358          | 359553       | 85%     | 32354     | 365794       | 88%     | 32152     |

Tabela 7: Wyniki badania dla wpływu metody mutacji



Wykres 8: Wykres zależności błędu od wielkości instancji dla różnych metod mutacji



Wykres 9: Wykres zależności czasu wykonywania algorytmu dla różnych metod mutacji

Jak można zauważyć analizując *wykres 8* oraz *wykres 9,* metoda mutacji Invert jest szybsza i lepsza jeśli chodzi o jakość rozwiązania. Linie trendu wskazują jej przewagę nad metodą 2-swap, która widocznie odstaje.

#### 7. Analiza wyników

#### Finalowe badanie:

Przetestowano po 10 razy każdą instancję, aby porównać ją z algorytmem symulowanego wyżarzania. Plik .INI wygląda dla tego badania następująco:

```
gr17.tsp.txt 10 2085 [?]
gr21.tsp.txt 10 2707 [0 6 7 5 15 4 8 2 1 20 14 13 12 17 9 16 18 19 10 3 11 0]
gr24.tsp.txt 10 1272 [?]
ftv33.atsp 10 1286 [?]
ftv44.atsp 10 1613 [?]
ftv55.atsp 10 1608 [?]
ftv70.atsp 10 2755 [?]
gr96.txt 10 55209 [?]
ftv170.atsp 10 2755 [?]
gr229.txt 10 134602 [?]
rbg323.atsp 10 1326 [?]
pcb442.tsp.txt 10 50778 [?]
tsp666.tsp.txt 10 194358 [?]
```

#### outputFinal.csv

Parametry dla algorytmu genetycznego zmienione dla:

- Prawdopodobieństwo krzyżowania = 90%
- Prawdopodobieństwo mutacji = 5%
- Wielkość populacji = 500
- o Liczba generacji = 1000
- Dozwolonych powtórzeń = 150
- Populacja początkowa algorytm Greedy
- o Metoda wyboru selekcji Invert

|                       |                 |              |         |          |           |                     | -            |         |          |  |  |  |
|-----------------------|-----------------|--------------|---------|----------|-----------|---------------------|--------------|---------|----------|--|--|--|
| Symulowane wyżarzanie |                 |              |         |          |           | Algorytm Genetyczny |              |         |          |  |  |  |
| instancja             | koszt optymalny | średni koszt | błąd[%] | czas[ms] | instancja | koszt optymalny     | średni koszt | błąd[%] | czas[ms] |  |  |  |
| 6                     | 132             | 132          | 0%      | 1352     | 17        | 2085                | 2085         | 0%      | 12       |  |  |  |
| 6                     | 80              | 80           | 0%      | 1497     | 21        | 2707                | 2707         | 0%      | 100      |  |  |  |
| 10                    | 212             | 212          | 0%      | 1541     | 24        | 1272                | 1309         | 3%      | 443      |  |  |  |
| 12                    | 264             | 277          | 5%      | 1661     | 33        | 1286                | 1504         | 17%     | 273      |  |  |  |
| 13                    | 269             | 307          | 14%     | 1684     | 44        | 1613                | 1999         | 24%     | 208      |  |  |  |
| 14                    | 282             | 340          | 21%     | 1724     | 55        | 1608                | 1941         | 21%     | 345      |  |  |  |
| 15                    | 291             | 360          | 24%     | 1735     | 70        | 2755                | 2505         | 9%      | 350      |  |  |  |
| 17                    | 2085            | 2452         | 18%     | 1901     | 96        | 55209               | 59181        | 7%      | 1433     |  |  |  |
| 21                    | 2707            | 4281         | 58%     | 2136     | 170       | 2755                | 3905         | 42%     | 1254     |  |  |  |
| 48                    | 5046            | 14302        | 183%    | 3290     | 229       | 134602              | 145489       | 8%      | 4153     |  |  |  |
| 96                    | 55209           | 280709       | 408%    | 5832     | 323       | 1326                | 1728         | 30%     | 4121     |  |  |  |
| 120                   | 6942            | 40987        | 490%    | 6850     | 442       | 50778               | 58385        | 15%     | 13381    |  |  |  |
| 137                   | 69853           | 506391       | 625%    | 8087     | 443       | 2720                | 3728         | 37%     | 12566    |  |  |  |
| 202                   | 40160           | 232270       | 478%    | 11271    | 666       | 194358              | 354291       | 82%     | 32030    |  |  |  |
| 229                   | 134602          | 1170554      | 770%    | 12803    |           |                     |              |         |          |  |  |  |
| 431                   | 171414          | 2172139      | 1167%   | 24157    |           |                     |              |         |          |  |  |  |

Tabela 8: Porównanie czasu wykonania i jakości rozwiązania algorytmów symulowanego wyżarzania oraz algorytmu genetycznego



Wykres 10: porównanie błędów procentowych dla algorytmów: symulowanego wyżarzania i algorytmu genetycznego



Wykres 11: porównanie czasu wykonywania algorytmów: symulowanego wyżarzania i algorytmu genetycznego

Po wszystkich przeprowadzonych badaniach, możemy stwierdzić, że algorytm genetyczny pozwala osiągnąć wyniki trudno osiągalne dla innych algorytmów. Porównując go z algorytmem symulowanego wyżarzania, jasno widzimy, że jakość wykonania, a także czas wykonywania algorytmu, jest dużo lepszy. W przypadku pracy z dużymi instancjami, ta różnica jest wyjątkowo widoczna, pokazują nam to *wykres 11* oraz *wykres 12*. Z tego wynika, że można go wykorzystać właśnie przy pracy z takimi instancjami. Oczywiście, nie są to dokładne wyniki ale dzięki odpowiedniemu dostosowywaniu parametrów, możemy uzyskać znacząco lepsze rezultaty niż w przypadku innych algorytmów.