

BS(Artificial Intelligence)

Fall-2025

Data Structures (Theory + Lab)

Course Title: Data Structures (Theory + Lab)

Course Code: CSC-221 Credit Hours: (3+1)

Course Instructor: Abdul Khalique

Electronic mail: <u>akhalique.faculty@aror.edu.pk</u>

Course Objectives

The objective of this course is to make students familiar with the concepts of the way data is stored inside computer and its manipulation using different algorithms. Students will learn different data structures such as array, stack, queue, linked list, trees, graphs, sorting algorithm etc. Since Programming fundamentals is the pre-requisite of this course, therefore, in class we would be using java language to implement all the data structures. However students may use any programming language.

Assessment:

S. No	Assessment Activities	Percentage	Total Activities
1.	Sessional: Quizzes/ Assignments (Quizzes, Assignments, & Test)	30%	4
2.	Mid Term Exam	30%	1
3.	Final Exam	40%	1

Course content:

Week No		Tonics	Chapters
		Topics	31.3 p 33.3
1,2		Introduction to the course	
	• '	What is data structure? O Need of data structures	
	Elementary data structures		See the chapter 3.1 in Michael
	• /	Arrays	T. Goodrich, Data Structures &
		 Review of single-dimension arrays 	Algorithms in Java
		 Concept and implementation of 2D arrays 	
		 Manipulating matrices using arrays 	
		 Basic concepts of Multi-dimensional arrays 	
		What are limitations of Arrays?	
3	•	Linked lists	See the chapter 3.2, 3.3, 3.4
		 Arrays vs. Linked list 	in Michael T. Goodrich, Data
	•	Types of linked list	Structures & Algorithms in
		 Singly linked list 	Java
		 Circular singly linked list 	See the chapter 10.2 in [CLRS]
		 Doubly linked list 	Thomas H. Cormen,
		 Circular doubly linked list 	Introduction to Algorithms
	• 1	Defining the Node class	
	•	Linked Lists Functions	
	Prin	ting linked list in reverse order using recursion	
4	• ,	Applying dictionary operations on linked lists	
		 Traversing a linked list 	
		 Inserting new node 	
		at the head	Handouts
		at any location	
		 Searching a node 	
		o Removing a node	
		from the head	
		 from anywhere 	
	•	Clearing a linked list	

OKKUR, SI	NU						
5	•	Introduction to Queues					
	•	The Queue data structure See the chapter 6.2 in Mich					
	•	Application of queues T. Goodrich, Data Structure					
	•	Array Representation of Queue	Algorithms in Java				
	•	 Algorithm for Addition of an Element to the Queue Algorithm for Deletion of an Element to the Queue Dynamic Representation of Queues Using Linked Lists 	See the chapter 10.1 in [CLRS] Thomas H. Cormen, Introduction to Algorithms				

	• Circi	ular Queue-Array Representation			
6	•	The FIFO structure			
	• (Queue operations			
	• [Extended queue operations			
	• [Dictionary operations on queues			
	•	The priority queues			
	•	The LIFO structure			
		ntroduction to the stack data structure Applications of stack	See the chapter 6.1 in Michael T. Goodrich, Data Structures & Algorithms in Java		
	• 9	Stack operations	Algoritimis in Java		
	• 9	Stack specifications	See the chapter 10.1 in [CLRS]		
		 List and arrays 	Thomas H. Cormen,		
		Stacks	Introduction to Algorithms		
		 Reversing a list 			
	• 9	Stack implementation			
		Using arrays			
		 Using linked list 			
	• 1	Methods of stack			
		o Push			
		o Pop			
	• [Push down stack			
7	• Wha	at is algorithm?			
	• Com	plexity of algorithm			
	(Time complexity			
	(Space complexity			
	Analysis of algorithms Handout				
	• Big (O Notation			
	(Best-case analysis			
	(Worst-case analysis			
	Aver	rage-case analysis			
	• Recu	ursion			

ARUR, SI		
8-9	 Trees Introduction 	
	 Tree terminology 	See the chapter 8 in Michael T.
	Tree Traversal	Goodrich, Data Structures &
	 Concept of Binary Trees 	Algorithms in Java
	 Why use binary trees 	See the chapter 10.4 and 6 in
	Basic Operations	[CLRS] Thomas H. Cormen,
	 Complete Binary Tree 	Introduction to Algorithms
	Priority Queues: Heaps	
	• Мах-Неар	
10-11	 Concept of Binary Search trees and how they work Finding a node in a binary search tree 	See the chapter 12 in [CLRS] Thomas H. Cormen, Introduction to Algorithms
	Inserting a node	
	 Recursively traversing the tree in In order, Pre 	

	and Post orderApplications of tree traversing in sorting	See the chapter 11.1 in Michael T. Goodrich, Data Structures & Algorithms in Java
12-13	 Deleting a node in a Binary Tree with all three cases Efficiency of Binary Trees Handling duplicate nodes in BST Applications of BST Coding a complete message Balanced and unbalanced trees The AVL trees Overview 	See the chapter 11.3 in Michael T. Goodrich, Data Structures & Algorithms in Java
14-15	 Simple sorting Understanding why sorting is important Bubble sort Selection sort Insertion sort Merge Sort Quicksort Efficiency of Quicksort 	See the chapter 7 in [CLRS] Thomas H. Cormen, Introduction to Algorithms See the chapter 12 in Michael T. Goodrich, Data Structures & Algorithms in Java
16	 Hashing Applications of Hashing Direct Address Chain based Scheme Hash Tables 	See the chapter 11 in [CLRS] Thomas H. Cormen, Introduction to Algorithms See the chapter 10.2 in Michael T. Goodrich, Data Structures & Algorithms in Java
	GraphsIntroductionSearches (DFS & BFS)	See the chapter in Michael T. Goodrich, Data Structures & Algorithms in Java

Text Book

- · Introduction to Algorithms by Thomas H. Cormen, 3rd edition.
- Data Structures & Algorithms in Java by Michael T. Goodrich, 6th edition.

Think Data Structures: Algorithms and Information Retrieval in Java by Allen B. Downey

Course	Learning	\mathbf{C})utco	mes
Course	Learning	\sim	uico	111103

Course Learning Outcomes (CLO)

CLO	Aror University of Art, Architecture	, Design	& Herit	age	
WHATE ON	ment various data Structures and their algorithms pply them in implementing simple applications.	С	2,3		
2	complexities	С	4,5		
3	Apply the knowledge of data structures to another application's domain.	С	3		
*BT=Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A=Affective domain					

PROGRAM LEARNING OUTCOMES (PLOs)

	1	2	3	4	5	6	7	8	9
CLO.1)	<							
CLO.2			Χ						
CLO.3			Χ						

Approvals

Prepared By	Mr. Abdul Khalique
Approved By	Not Specified
Last Update	27/8/2025

Program Learning Outcomes

GA: Graduate Attributes

S#	Program Learning	Computing Professional Graduate
	Outcomes (PLOs)	
1	Academic Education	To prepare graduates as computing professionals
2	Knowledge for Solving Computing Problems	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
3	Problem Analysis	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
4	Design/ Development of Solutions	Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
5	Modern Tool Usage	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
6	Individual and Team Work	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.

