Decision Rates Model

Brent Eskridge

January 21, 2018

1 Initiation/Navigation

1.1 Parameters

- Relative direction of patch $i: \Theta_i$
- Value of patch i: v_i
- Max sensing distance: d_{sense}
- Mean resultant vector of individual relative to group: MRV

1.2 Derived Values

- Relative position in group: $p_{rel} = \frac{|MRV|}{d_{sense}}$
- Difference in direction to patch i and current group: $d_g = \frac{|\Theta_i MRV|}{\pi}$
- K-value to initiate/navigate to patch i: $1 p_{rel} \times d_g \times v_i$

2 Follow

2.1 Parameters

- Value of patch i: v_i
- Agent heading: Θ_h
- Patch i direction: Θ_i
- Max sensing distance: d_{sense}
- Distance to current group: d_c
- Distance to initiator's group: d_i

Derived Values 2.2

- Difference in heading and patch *i* direction: $\Theta_{diff} = 1 \frac{|\Theta_h \Theta_i|}{\pi}$
- Normalized difference in distance to current group and initiator's group: $d_{diff} = \frac{d_c - d_i}{d_{sense}}$
- K-value to follow group heading to patch i: $\Theta_{diff} \times d_{diff} \times v_i$

3 Forage

Parameters 3.1

• ToDo t: R_t

Derived Values

• ToDo
$$t$$
: $D_t = \frac{R_t}{A_p}$

Misc 4

• Two-dimensional Gaussian function:
$$f(x,y) = A \exp \left(-\left(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2} \right) \right)$$

https://en.wikipedia.org/wiki/Gaussian_function#Two-dimensional_Gaussian_ function