# THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

# 1. Introduction

Aquí va la introducción.

#### 2. Preliminaries

### 3. HAUSDORFF PROPERTIES IMPLIES PATCH TRIVIALITY

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 $A^{\wedge}$ .

The preframe of open filters of  $\Omega(S)$ .

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter  $F\in A^\wedge$  has three faces, that is, determines (and its determine) by :

- The compact saturated  $Q \in \mathcal{Q}S$ .
- $\nabla \in \Omega(S)^{\wedge}$ .
- The compact quotient  $A \to A_F$ .
- The fitted nucleus  $v_F$ .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

#### 4. COMPACT QUOTIENTS

**Definition 4.1.** A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is closed.

Denote by  $\Re rm$  the subcategory of Frm of Hausdorff frames in the sense of Johnstone and Shu.

If  $f^* \colon A \to B$  is a frame morphism and  $F \subseteq A$ ,  $G \subseteq B$  filters in A, B, respectively, we can produce new filters as follows

(1) 
$$b \in f^*F \Leftrightarrow f_*(b) \in F$$
 and  $a \in f_*G \Leftrightarrow f^*(a) \in G$ 

where  $a \in A, b \in B$  and  $f_*$  is the right adjoint of  $f^*$ . Here  $f^*F \subseteq B$  and  $f_*G \subseteq A$  are filters on B and A, respectively.

**Proposition 4.2.** For  $f = f^* \colon A \to B$  a frame morphism and  $G \in B^{\wedge}$ , then  $f_*G \in A^{\wedge}$ .

*Proof.* By (1),  $f_*G$  is a filter on A. We need  $f_*G$  to satisfy the open filter condition. Let  $X \subseteq A$  be such that  $\bigvee X \in f_*G$ , with X directed. Then

$$Y = \{ f(x) \mid x \in X \}$$

is directed and  $f(\bigvee X) = \bigvee f[X] = \bigvee Y \in G$ . Since G is a open filter, exists  $y = f(x) \in Y$  such that  $y \in G$ . Thus  $x \in f_*G$ , so that,  $f_*G \in A^{\wedge}$ .

In [Sex03], the autor says that  $A \in \mathbf{Frm}$  is *tidy* if for all  $F \in A^{\wedge}$ 

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$

where  $d = d(\alpha) = f^{\alpha}(0)$ ,  $f = \dot{\bigvee} \{v_y \mid y \in F\}$ ,  $v_y \in NA$  and  $0 = 0_A$  (the reason for the last two clarifications will be understood later).

We want translate this same notion, but for  $A_j$  when  $j \in NA$ , so that, for all  $F \in A_j^{\wedge}$ , if  $x \in F$  then  $d \vee x = 1$ , with d similar to before, because for this case we have that  $v_y \in NA_j$  and  $0_{A_j} = j(0)$ .

Simmons proves in [Sim04] (Lamma 8.9 and Corollary 8.10), that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f^{\infty}} & A \\
U_A \downarrow & & \downarrow U_A \\
\mathcal{O}S & \xrightarrow{F^{\infty}} & \mathcal{O}S
\end{array}$$

commutes laxly, so that,  $U_A \circ f^{\infty} \leq F^{\infty} \circ U_A$ . In this diagram  $U_A$  is the spatial reflection morphism,  $f^{\infty}$  and  $F^{\infty}$  represent the associated nuclei to the filters  $F \in A^{\wedge}$  and  $\nabla \in \mathcal{O}S^{\wedge}$ . Also  $f^{\infty}$  and  $F^{\infty}$  are idempotent closeds associated to the prenuclei f and F respectively.

We prove something more general here, since we consider the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\hat{f}^{\infty}} & A \\
\downarrow j & & \downarrow j \\
A_j & \xrightarrow{f^{\infty}} & A_j
\end{array}$$

where  $\hat{f}^{\infty}$  is the nuclei associated to the filter  $j_*F \in A^{\wedge}$  and  $j \in NA$ .

**Lemma 4.3.** For j, f and  $\hat{f}$  as above, it holds that  $j \circ \hat{f} \leq f \circ j$ .

*Proof.* By (1) is true that

$$\hat{f} = \bigvee \{v_y \mid y \in j_*F\} \quad \text{ and } \quad f = \bigvee \{v_{j(y)} \mid j(y) \in F\}.$$

then, for  $a \in A$  it is hold

$$v_y(a) = (y \succ a) \le \hat{f}(a) \le j(\hat{f}(a)).$$

Also, for all  $a, y \in A$ ,  $(y \succ a) \land y = y \land a$  and

$$j((y \succ a) \land y) \le j(a) \Leftrightarrow j(y \succ a) \land j(y) \le j(a)$$
$$\Leftrightarrow j(y \succ a) \le (j(y) \succ j(a)).$$

Thus

$$v_y(a) \le j(\hat{f}(a)) \le (j(y) \succ j(a)) = v_{j(y)}(j(a)) \le f(j(a)).$$

Therefore  $j \circ \hat{f} \leq f \circ j$ .

Now, we prove the above, but for all  $\alpha$ -ordinals.

**Corollary 4.4.** For j, f and  $\hat{f}$  as before, it is hold that  $j \circ \hat{f}^{\alpha} < f^{\alpha} \circ j$ 

*Proof.* For an ordinal  $\alpha$  we will check that  $j \circ \hat{f}^{\alpha} < f^{\alpha} \circ j$ . We will do it by transfinite induction.

If  $\alpha = 0$ , it is trivial.

For the induction step, we assume that for  $\alpha$  it holds. Then

$$j \circ \hat{f}^{\alpha+1} = j \circ \hat{f} \circ \hat{f}^{\alpha} \le f \circ j \circ \hat{f}^{\alpha} \le f \circ f^{\alpha} \circ j = f^{\alpha+1} \circ j,$$

where the first inequality is Lemma 4.3 and the second is true by the induction hypothesis.

If  $\lambda$  is a limit ordinal, then

$$\hat{f}^{\lambda} = \bigvee \{ \hat{f}^{\alpha} \mid \alpha < \lambda \}, \quad f^{\lambda} = \bigvee \{ f^{\alpha} \mid \alpha < \lambda \}$$

and

$$j\circ \hat{f}^{\lambda}=j\circ\bigvee_{\alpha<\lambda}\hat{f}^{\alpha}\leq\bigvee_{\alpha<\lambda}j\circ \hat{f}^{\alpha}.$$

Thus, by the induction hypothesis, we have that

$$j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j \Rightarrow \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha} \leq \bigvee_{\alpha < \lambda} f^{\alpha} \circ j.$$

Therefore  $j \circ \hat{f}^{\lambda} \leq f^{\lambda} \circ j$ .

By the Corollary 4.4, we have that  $j \circ \hat{f}^{\infty} \leq f^{\infty} \circ j$  is true. Futhermore, by H-M Theorem(preliminares con la idea de la prueba nueva),  $f^{\infty} = v_F$  and  $\hat{f}^{\infty} = v_{j_*F}$ . With this in mind, we have the following diagram

$$A \xrightarrow{(v_{j*F})^*} A_{j*F}$$

$$\downarrow \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

ES este diagrama hay que poner punteada la flehca que iria en los cocientes Here,  $A_F$  and  $A_{j_*F}$  are the compact quotients produced by  $v_F$  and  $v_{j_*F}$ , respectively. The morfism  $H:A\to A_F$  is defined by  $H=v_F\circ j$ . Futhermore,  $(v_F)_*$  and  $(v_{j_*F})_*$  are inclusions.

Let  $h: A_{j_*F} \to A_j$  be such that, for  $x \in A_{j_*F}$ , h(x) = H(x). Therefore, if  $h = H_{|A_{j_*F}}$ , then the above diagram commutes.

We need that h to be a frame morphism. First, by the difinition of h, this is  $\land$ -morphism. It remains to be seen that h is  $\bigvee$ -morphism.

The joins in  $A_{j_*F}$  and  $A_F$  are calculated differently. Thus, let  $\hat{V}$  be join in  $A_{j_*F}$  and let  $\hat{V}$  be join in  $A_F$ . Therefore

$$\hat{\bigvee} = v_{j_*F} \circ \bigvee$$
 and  $\tilde{\bigvee} = v_F \circ \bigvee$ ,

that is, for  $X \subseteq A$ ,  $Y \subseteq A_i$ ,

$$\hat{\bigvee} X = v_{j_*F}(\bigvee X)$$
 and  $\tilde{\bigvee} Y = v_F(\bigvee Y)$ 

Since H is a frame morphism, then  $H \circ \bigvee = \tilde{\bigvee} \circ H$ . Let us get something similar to h.

**Lemma 4.5.**  $h \circ \hat{\bigvee} = \tilde{\bigvee} \circ h$ .

*Proof.* It is enough to check the comparison  $h \circ \hat{V} \leq \tilde{V} \circ h$ . Thus

$$h \circ \hat{\bigvee} = H \circ v_{j_*F} \circ \bigvee = v_F \circ j \circ v_{j_*F} \circ \bigvee \leq v_F \circ v_F \circ j \circ \bigvee$$

where the inequality is the Corollary 4.4. Futhermore,  $v_F \circ v_F = v_F$ , then

$$h \circ \hat{\bigvee} \leq v_F \circ j \circ \bigvee = H \circ \bigvee = \tilde{\bigvee} \circ H = \tilde{\bigvee} \circ h.$$

Therefore 
$$h \circ \hat{V} = \tilde{V} \circ h$$
.

With this we prove the following.

# **Proposition 4.6.** The diagram

$$\begin{array}{ccc}
A & \xrightarrow{v_{j*F}} & A_{j*F} \\
\downarrow \downarrow & & \downarrow h \\
A_j & \xrightarrow{v_F} & A_F
\end{array}$$

is commutative.

HAY QUE PONER LA PRUEBA With the above diagram, we could analyze some compact quotients, for example, closed compact quotients.

**Definition 4.7.** Let A be a frame and  $F \in A^{\wedge}$ . The compact quotient  $A_F$  is closed if  $A_F = A_{u,d}$  for some  $d \in A$ .

**Proposition 4.8.** If A is a tidy frame, then  $A_i$  is tidy.

*Proof.* It is easy to prove that  $F \subseteq j_*F$ . Since A is tidy and  $F \in A^{\wedge}$ , it is true that

$$x \in F \Rightarrow \hat{d} \lor x = 1,$$

where  $\hat{d} = d(\alpha) = f^{\alpha}(0)$ . If  $\hat{d} \leq d$ , then  $d \vee x = 1$ , for  $d = d(\alpha) = f^{\alpha}(j(0))$ .

Thus, for Corollary 4.4

$$\hat{d} = \hat{d}(\alpha) \le j(\hat{d}(\alpha)) = j(\hat{f}^{\alpha}(0)) \le f^{\alpha}(j(0)) = d(\alpha) = d.$$

Therefore if  $x \in F$ , then  $d \lor x = 1$  and  $A_j$  is tidy.

**Proposition 4.9.** If A has KC, then  $A_j$  has KC for every  $j \in N(A)$ .

*Proof.* We consider  $k \in NA_j$  such that  $(A_j)_k$  is compact. Since any open filter is admissible, we have  $\nabla(k) \in A_j^{\wedge}$  and by Proposition 4.2  $j_*\nabla(K) \in A^{\wedge}$ .

Let  $l = j_* \circ k \circ j^* \in NA$  be, then  $A_l$  is a compact quotient of A and exists  $a \in A$  such that  $l = u_a$ . Thus, we have

$$A \xrightarrow{j^*} A_j \xrightarrow{k} (A_j)_k \xrightarrow{j_*} A_j \subseteq A$$

and  $a \vee x = k(j(x))$ . Therefore, if x = a, k(j(x)) = a.

We need that  $k = u_b$  for some  $b \in A_j$ . For  $x \in A_j$  and b = j(a)

$$u_b(x) = b \lor x = b \lor j(x) = j(j(a) \lor j(x))$$

$$= j(k(j(a)) \lor x)$$

$$= j(u_a(x))$$

$$= j(k(x))$$

$$= k(x).$$

Therefore  $u_b = k$ .

**Proposition 4.10.** If A is a KC frame, the A is a  $T_1$  frame.

*Proof.* A frame is  $T_1$  if and only if for all  $p \in \operatorname{pt} A$ , p is maximal. Let  $p \in \operatorname{pt} A$  and  $a \in A$  be such that  $p \le a \le 1$ . We consider

$$w_p(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ p & \text{si} \quad x \le p \end{cases}$$

for  $x \in A$ .  $P = \nabla(w_p) = \{x \in A \mid x \nleq p\}$  is a filter completely prime (in particular,  $P \in A^{\wedge}$ ). Since A is KC, then  $A_{w_p}$  is a closed compact quotient. Thus  $u_p = w_p$ , futhermore

$$u_p(a) = a$$
 and  $w_p(a) = 1$ .

that is, a = 1. Therefore p is maximum.

# 5. Admissibility intervals

The block structure on a frame is an important problem and its related with some separation properties of frames.

**Proposition 5.1.** For  $F \in A^{\wedge}$  and  $Q \in \mathcal{Q}S$ , if  $j \in [v_Q, w_Q]$ , then  $U_*jU^* \in [v_F, w_F]$ , where  $U^*$  is the morfism spatial reflection  $U_*$  is the right adjoint.

*Proof.* Since N is a functor, we have

$$\begin{array}{ccc}
A & NA \\
U & & \downarrow & & \downarrow \\
OS & NOS
\end{array}$$

and  $N(U)_*$  is the right adjoint of  $N(U)^{\wedge}$ . Note the following:

- (1)  $N(U)(j) \le k \Leftrightarrow j \le N(U)_*k$ .
- (2) If  $k \in NOS$  then  $N(U)(j) < k \Leftrightarrow Uj < kU$ .
- (3)  $N(U)_*k = U_*kU^*$  and  $UN(U)_*k = k(U)$ .

In 3), if j = k,  $N(U)_*(j) = U_*jU^*$  and  $UN(U)_*j = jU$ . For  $x \in F$ 

$$x \in A \xrightarrow{U^*} \mathcal{O}S \xrightarrow{j} \mathcal{O}S \xrightarrow{U_*} A$$

and  $U_*(j(U(x))) = \bigwedge(S \setminus j(U(x)))$ . Note that  $U_*(j(U^*(x))) \subseteq \operatorname{pt} A$ . Thus

$$x \in F \Leftrightarrow Q \subseteq U(x) \Leftrightarrow U(x) \in \nabla(j) = \nabla(Q) \Leftrightarrow S \setminus j(U(x)) = \emptyset$$
$$\Leftrightarrow \bigwedge (S \setminus j(U(x))) = 1 = (U_*jU^*)(x)$$
$$\Leftrightarrow x \in \nabla(U_*jU^*)$$

Therefor  $F = \nabla (U_* j U^*)$ .

In this way we have a function

$$\mho \colon [V_Q, W_Q] \to [V_F, W_F]$$

Lo que sigue es lo que se debe comentar.

**Proposition 5.2.** For every  $A \in \mathcal{H}rm$  the interval corresponding to the block determined by a open filter  $F \in A^{\wedge}$  is trivial, that is,

$$[v_F, w_F] = \{*\}$$

*Proof.* We know that for all  $F \in A^{\wedge}$  the following holds:  $v_F \leq w_F$ . As a contradition, suppose that exists  $F \in A^{\wedge}$  such that  $w_F \nleq v_F$ , that is, exists  $a \in A$  such that  $w_F(a) \nleq v_F(a)$ .

Note that  $w_F(a) \neq 1$ , otherwise

$$1 = w_F(a) = \bigwedge \{ p \in M \mid a \le p \} \le p$$

and this is a contradition because  $p \neq 1$ .

Then  $1 \neq w_F(a) \nleq v_F(a)$  and for the property (H), exists  $u \in A$  such that

(2) 
$$u \nleq w_F(a) \text{ and } \neg u \nleq v_F(a)$$

Due to monotony,  $w_F(0) \le w_F(a)$  and  $v_F(0) \le v_F(a)$ . Thus, for (2) we have that

(3) 
$$i) u \nleq w_F(0)$$
 and  $ii) \neg u \nleq v_F(0)$ .

For (3)-(i) is true that  $u \nleq \bigwedge M$ , in particular,  $u \nleq p$  for some  $p \in M$ . Therefore,  $\neg u \leq p$  and  $\neg u \leq w_F(0)$ . If (3)-(ii) is true, then  $u \notin F$ , in otherwise

$$u \in F \Rightarrow v_u \le f \Rightarrow v_u(0) = \neg u \le f(0)$$

and this is a contradition. Thus, for the Birkhoff's separation Lemma, exists a completely prime filter G such that  $u \notin G \supseteq F$ . We take

$$q = \bigvee \{y \in A \mid y \notin G\}$$

the point corresponding to G. Thus,  $u \notin G$ ,  $u \leq q$ . If  $q \notin F$ , then  $q \in M$  and  $u \not \leq q$ . Hence  $u \leq q$ ,  $u \not \leq q$  and this is a contradition. 

EJEMPLOS DE marcos ptrivial que no sean KC

HAY que COMENTAR LAS COSAS QUE ESTAN MAL comentar me refiero a ponerlas entre

Following articulo de igor.,

8 THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

**Definition 5.3.** A frame A has *fitted points* (p-fit for short) if for every point  $p \in pt(A)$  the nucleus

 $w_p$  is fitted

that is to said for every point p the nucleus  $w_p$  is alone is tis block.

# AQUI LA BIBLIO EN BIBTEX O BIBLATEX

# REFERENCES

- [Sex03] Rosemary A Sexton, A point-free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- [Sim04] Harold Simmons, *The vietoris modifications of a frame*, Unpublished manuscript, 79pp., available online at http://www.cs. man. ac. uk/hsimmons (2004).