NOTIZEN ZU DEN STATISTISCHEN METHODEN II *

Contents

I	Grundlagen	1
2	Schätztheorie	2
3	Testtheorie	2
4	Lineare Modelle	2

1 Grundlagen

Die Preiserhöhung eines Gutes hat zwei Effekte: Einen Einkommenseffekt und einen Substitutionseffekt.

$$\pi(p) = D(p) \times p - D(p) \times c$$

$$\pi(p) = 56p - 2p^2 - 224 + 8p$$
Notw. Bed.
$$\pi'(p) = 56 - 4p + 8 \stackrel{!}{=} 0$$

$$\iff 16 = p$$

$$(1)$$

Yes, a convex preference relation implies that the corresponding utility function is quasi-concave. Here's why:

1. **Convex Preference Relation** A preference relation is convex if, for any two bundles x and y, and any $\lambda \in [0, 1]$, the following holds:

$$x \succeq y$$
 and $y \succeq x \Rightarrow \lambda x + (1 - \lambda)y \succeq y$.

This means that the consumer weakly prefers a convex combination of x and y to either x or y.

2. **Quasi-Concave Utility Function** A utility function u(x) is quasi-concave if, for any two bundles x and y, and any $\lambda \in [0, 1]$, the following holds:

$$u(\lambda x + (1 - \lambda)y) \ge \min(u(x), u(y)).$$

^{*}Allgemeines, Beispiele, Nice to know

This means that the utility of the convex combination of x and y is at least as large as the smaller of the utilities of x and y.

3. **Connection Between Convex Preferences and Quasi-Concave Utility** - If preferences are convex, then for any two bundles x and y with $u(x) \ge u(y)$, the convex combination $\lambda x + (1 - \lambda)y$ is weakly preferred to y. This implies:

$$u(\lambda x + (1 - \lambda)y) \ge u(y).$$

- Since $u(x) \ge u(y)$, this satisfies the definition of quasi-concavity:

$$u(\lambda x + (1 - \lambda)y) \ge \min(u(x), u(y)).$$

2 Schätztheorie

Yes, a convex preference relation implies that the corresponding utility function is quasi-concave. Here's why: A preference relation is convex if, for any two bundles Yes, a convex preference relation implies that the corresponding utility function is quasi-concave. Here's why: A preference relation is convex if, for any two bundles

3 Testtheorie

4 Lineare Modelle