Exploiting Edge Features for Graph Neural Networks

基于边特征的图神经网络

CVPR 2019

GAT和GCN的局限性

- 没有充分使用边的特征
 - GAT只用到了连接与否
 - GCN只用到一维边的特征
- 原始邻居矩阵可能存在噪声

EGNN的创新点

- 新的注意力机制:
 - 利用多维的边的特征
- 新的网络结构:
 - 跨神经网络层的基于注意的 边的自适应能力
- 去噪改讲:
 - 双随机边归一化
- 有向图处理:
 - 对有向边编码多维边的特征

双随机归一化

 $\tilde{E}_{ijp} = \frac{E_{ijp}}{\sum_{k=1}^{N} \hat{E}_{ikn}}$

EGNN(A)

$$\begin{split} X^l &= \sigma \left[\prod_{p=1}^P \left(\alpha^l_{\cdot \cdot \cdot p}(X^{l-1}, E^{l-1}_{\cdot \cdot \cdot p}) g^l(X^{l-1}) \right) \right] \\ g^l(X^{l-1}) &= X^{l-1} W^l, \end{split}$$

$$E_{ijp} = \sum_{k=1}^{N} \frac{\tilde{E}_{ikp} \tilde{E}_{jkp}}{\sum_{v=1}^{N} \tilde{E}_{vkp}} \hat{E}_{vkp}^{l} \qquad \hat{\alpha}_{ijp}^{l} = f^{l}(X_{i.}^{l-1}, X_{j.}^{l-1}) E_{ijp}^{l-1},$$

$$\alpha_{..p}^{l} = DS(\hat{\alpha}_{..p}^{l}),$$

$$f^{l}(X_{i\cdot}^{l-1},X_{j\cdot}^{l-1}) = \exp\left\{\mathbf{L}\left(a^{T}[X_{i\cdot}^{l-1}W^{l}\|X_{j\cdot}^{l-1}W^{l}]\right)\right\} \quad \left[\hat{E}_{ijp} \quad \hat{E}_{jip} \quad \hat{E}_{ijp} + \hat{E}_{jip}\right]$$

EGNN(C)

$$X^{l} = \sigma \left[\prod_{p=1}^{P} \left(E_{\cdots p} X^{l-1} W^{l} \right) \right]$$

有向图边特征

$$\hat{E}_{ijp}$$
 \hat{E}_{jip} \hat{E}_{jip} $\hat{E}_{ijp} + \hat{E}_{jip}$

- X是一个 $N \times F$ 的矩阵,表示全图的节点的特征
- X_{ij} 表示第i个节点的第j个特征
- X_i 表示第i个节点的F维的特征
- E是一个 $N \times N \times P$ 的tensor , 表示图上边的特征
- E_{ij} 表示连接节点i和节点j的边的P维的特征向量
- E_{ijp} 表示 E_{ij} 中的第p个通道
- $E_{ij}=\mathbf{0}$ 表示节点i和节点j之间没有边连接
- N_i表示节点i的邻居集合

引文网络(分类)

对于节点分类问题,沿着最后一个维度,每个节点embedding vector XiL都应用一个softmax operator

Table 1: Summary of citation network datasets

	Cora	Citeseer	Pubmed
# Nodes	2708	3327	19717
# Edges	5429	4732	44338
# Node Features	1433	3703	500
# Classes	7	6	3

Dataset	Cora		CiteSeer		Pubmed	
Splitting	Sparse	Dense	Sparse	Dense	Sparse	Dense
GCN	$72.9 \pm 0.8\%$	$72.0 \pm 1.2\%$	$69.2 \pm 0.7\%$	$75.3 \pm 0.4\%$	$83.3 \pm 0.4\%$	$83.4 \pm 0.2\%$
GAT	$75.5 \pm 1.1\%$	$79.0 \pm 1.0\%$	$69.5 \pm 0.5\%$	$74.9 \pm 0.5\%$	$83.4 \pm 0.1\%$	$83.4 \pm 0.2\%$
EGNN(C)[W]	$82.7 \pm 0.6\%$	$87.6 \pm 0.6\%$	$69.3 \pm 0.6\%$	$76.0 \pm 0.5\%$	$84.5 \pm 0.2\%$	$84.3 \pm 0.4\%$
EGNN(A)[W]	$82.7 \pm 0.6\%$	$86.6 \pm 0.6\%$	$69.4 \pm 0.5\%$	$74.9 \pm 0.8\%$	$83.1 \pm 0.2\%$	$82.7 \pm 0.2\%$
EGNN(C)[D]	$81.8 \pm 0.5\%$	$85.1 \pm 0.5\%$	$70.6 \pm 0.3\%$	$75.0 \pm 0.3\%$	$84.3 \pm 0.1\%$	$84.1 \pm 0.1\%$
EGNN(C)[DW]	$83.2 \pm 0.3\%$	$87.4 \pm 0.4\%$	$70.3 \pm 0.3\%$	$75.4 \pm 0.5\%$	$84.1 \pm 0.1\%$	$84.1 \pm 0.1\%$
EGNN(C)[M]	$80.2 \pm 0.4\%$	$86.1 \pm 0.5\%$	$69.4 \pm 0.3\%$	$76.8 \pm 0.4\%$	$86.2 \pm 0.2\%$	$86.7 \pm 0.1\%$
EGNN(C)[MW]	$82.3 \pm 0.4\%$	$87.2 \pm 0.4\%$	$69.4 \pm 0.3\%$	$77.1 \pm 0.4\%$	$86.2 \pm 0.1\%$	$86.4 \pm 0.3\%$
EGNN(C)[DM]	$83.0 \pm 0.3\%$	$88.8 \pm 0.3\%$	$69.5 \pm 0.3\%$	$76.7 \pm 0.4\%$	$86.0 \pm 0.1\%$	$86.0 \pm 0.1\%$
EGNN(C)[DMW]	$83.4 \pm 0.3\%$	$88.5 \pm 0.4\%$	$69.5 \pm 0.3\%$	$76.6 \pm 0.4\%$	$85.8 \pm 0.1\%$	$85.6 \pm 0.2\%$
EGNN(A)[A]	$76.0 \pm 1.0\%$	$79.1 \pm 1.0\%$	$69.5 \pm 0.4\%$	$74.6 \pm 0.3\%$	$83.4 \pm 0.1\%$	$83.6 \pm 0.2\%$
EGNN(A)[AW]	$82.6 \pm 0.6\%$	$86.3 \pm 0.9\%$	$69.4 \pm 0.4\%$	$74.9 \pm 0.4\%$	$83.7 \pm 0.2\%$	$82.8 \pm 0.3\%$
EGNN(A)[D]	$80.1 \pm 1.0\%$	$85.4 \pm 0.5\%$	$70.1 \pm 0.4\%$	$74.7 \pm 0.4\%$	$84.3 \pm 0.2\%$	$84.2 \pm 0.1\%$
EGNN(A)[DW]	$82.7 \pm 0.4\%$	$87.2 \pm 0.5\%$	$69.5 \pm 0.3\%$	$74.5 \pm 0.5\%$	$83.9 \pm 0.2\%$	$83.3 \pm 0.2\%$
EGNN(A)[M]	$81.7 \pm 0.4\%$	$87.9 \pm 0.4\%$	$69.4 \pm 0.3\%$	$75.7 \pm 0.3\%$	$85.5 \pm 0.1\%$	$86.0 \pm 0.1\%$
EGNN(A)[MW]	$82.8 \pm 0.3\%$	$87.0 \pm 0.6\%$	$69.1 \pm 0.3\%$	$76.3 \pm 0.5\%$	$85.2 \pm 0.2\%$	$85.3 \pm 0.3\%$
EGNN(A)[ADM]	$82.5 \pm 0.3\%$	$88.4 \pm 0.3\%$	$69.4 \pm 0.4\%$	$76.5 \pm 0.3\%$	$85.7 \pm 0.1\%$	$86.7 \pm 0.1\%$
EGNN(A)[ADMW]	$83.1 \pm 0.4\%$	$88.4 \pm 0.3\%$	$69.3 \pm 0.3\%$	$76.3 \pm 0.5\%$	$85.6 \pm 0.2\%$	$85.7 \pm 0.2\%$

分子分析(全图预测:分类、回归)

对于整个图的预测(分类或者回归),在XL的第一个维度应用一个池化层pooling layer使得特征矩阵简化为一个整个图的单个vector embedding。然后一个全连接层应用于该向量上,全连接层的输出可以被用来做回归的预测,或者是分类。

Dataset	Tox21 (AUC)		Lipo (l	RMSE)	Freesolv (RMSE)	
	Validation	Test	Validation	Test	Validation	Test
RF Weave	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c } 1.98 \pm 0.07 \\ 1.35 \pm 0.22 \end{array}$	$\begin{array}{ c c } 1.62 \pm 0.14 \\ 1.37 \pm 0.14 \end{array}$
EGNN(C) EGNN(A)	0.82 ± 0.01 0.82 ± 0.01	0.82 ± 0.01 0.81 ± 0.01	0.80 ± 0.02 0.79 ± 0.02	0.75 ± 0.01 0.75 ± 0.01		1.09 ± 0.08 1.01 ± 0.12