Statistics: Parameter Estimation

Parametric Statistics

- Estimation of the Mean
- Estimation of the Variance
- ullet Confidence interval on the Mean of Normal RV with known σ (Normal Statistics)
- Confidence interval on the Mean of Normal RV with unknown σ (T_{n-1} Statistics)
- Confidence interval on the Variance of Normal RV with known/unknown μ (χ^2 Statistics)
- Estimation of the Standard Deviation and the Covariance
- Estimation of Non-Gaussian Parameters from Large Samples
- Maximum Likelihood Estimator

Statistics: Parameter Estimation

Non-parametric Statistics

- Sample Median Estimator
- Ordered RVs and Area RVs
- Estimating Percentile Points
- Confidence Interval for the Percentile Point
- Confidence Interval for the Median When *n* is Large
- Estimation of Vector Means and Covariance Matrices
- Least-Squares Estimator
- Parametric statistics: We know/assume pdf, PMF, or CDF and use it in computing probabilities, estimating parameters, and making decisions
- Non-Parametric (or distribution-free) statistics: Estimation of the properties and parameters of a population without any assumption on the form or knowledge of the population distribution

Definitions

- An estimator $\hat{\Theta}$ is a function of the observation vector $\mathbf{X} \triangleq [X_1, X_2, \dots, X_n]^T$ that estimates θ but is not a function of θ .
- An estimator $\hat{\Theta}$ for θ is unbiased if and only if $E[\hat{\Theta}] = \theta$. The bias is $E[\hat{\Theta}] \theta$.
- An estimator $\hat{\Theta}$ is a linear estimator of θ if $\hat{\Theta} = \boldsymbol{b}^T \boldsymbol{X}$ where \boldsymbol{b} is an $n \times 1$ vector that does not depend on \boldsymbol{X} .
- Let $\hat{\Theta}_n$ be an estimator computed from X_1, \ldots, X_n . Then $\hat{\Theta}_n$ is said to be consistent if

$$\lim_{n\to\infty} P[|\hat{\Theta}_n - \theta| > \epsilon] = 0$$
 for every $\epsilon > 0$. (convergence in prob.)

- $\hat{\Theta}$ is a minimum-variance unbiased (MVU) estimator if $E[|\hat{\Theta} \theta|^2] \le E[|\hat{\Theta}' \theta|^2]$ where $\hat{\Theta}'$ is any other estimator and $E[\hat{\Theta}] = E[\hat{\Theta}'] = \theta$.
- $\hat{\Theta}$ is a minimum mean-square error (MMSE) estimator if $E[|\hat{\Theta} \theta|^2] \le E[|\hat{\Theta}' \theta|^2]$ where $\hat{\Theta}'$ is any other estimator.

Estimation of the Mean

• Mean-Estimator Function (MEF): For i.i.d. observations $\{X_i : i = 1, ..., n\}$ of a random variable X with mean μ_X , the MEF (a.k.a the sample mean estimator) is

$$\hat{\mu}_X(n) \triangleq \frac{1}{n} \sum_{i=1}^n X_i$$

Properties of the MEF:

$$\begin{split} &E[\hat{\mu}_X(n)] = \mu_X, \quad \text{(unbiased)} \\ &\sigma_{\hat{\mu}}^2(n) = \sigma_X^2/n \\ &P[|\hat{\mu}_X(n) - \mu_X| \ge \delta] \le \frac{\sigma_{\hat{\mu}}^2(n)}{\delta^2} = \frac{\sigma_X^2}{n\delta^2} \stackrel{n \to \infty}{\longrightarrow} 0. \quad \text{(consistent)} \end{split}$$

Variance-Estimator Function (VEF)

• Two VEF (a.k.a. sample variance estimator) definitions are

$$\hat{\sigma}_X^2(n) \triangleq \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_X(n))^2, \quad \text{(unbiased : } E[\hat{\sigma}_X^2(n)] = \sigma_X^2)$$

$$\hat{\sigma}_X^2(n) \triangleq \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_X(n))^2, \quad \text{(biased : } E[\hat{\sigma}_X^2(n)] \neq \sigma_X^2)$$

Consistency of unbiased VEF:

$$\operatorname{Var}[\hat{\sigma}_{X}^{2}(n)] = E[(\hat{\sigma}_{X}^{2}(n) - \sigma_{X}^{2})^{2}] \approx \frac{E[(X_{i} - \hat{\mu})^{4}]}{n}$$

$$P[|\hat{\sigma}_{X}^{2}(n) - \sigma_{X}^{2}| > \varepsilon] \leq \frac{\operatorname{Var}[\hat{\sigma}_{X}^{2}(n)]}{\varepsilon^{2}} \approx \frac{E[(X_{i} - \hat{\mu})^{4}]}{n\varepsilon^{2}} \xrightarrow{n \to \infty} 0.$$

Confidence Interval

• δ -confidence interval on μ_{\times} is defined by

$$P[-\gamma_{1,\delta} \leq \hat{\mu}_X(n) - \mu_X \leq \gamma_{2,\delta}] = \delta, \quad (e.g., \delta = 0.95)$$

With a $100\delta\%$ confidence level, μ_X will be in the interval $[\hat{\mu}_X[n] - \gamma_{2,\delta}, \ \hat{\mu}_X[n] + \gamma_{1,\delta}].$

• For $\hat{\mu}_X$ with pdf $\mathcal{N}(\mu_X, \sigma_X^2/n)$, $Y \triangleq \frac{\hat{\mu}_X(n) - \mu_X}{\sigma_X/\sqrt{n}}$ has a standard Normal pdf $\mathcal{N}(0,1)$ and its CDF is denoted by $F_{\mathrm{SN}}(z_{[u]}) = u$ where $z_{[u]}$ is called the 100u-percentile of the standard Normal RV. Due to symmetry of the pdf, $\gamma_{1,\delta} = \gamma_{2,\delta} = \gamma_{\delta}$. Then,

$$P[-\gamma_{\delta}\sqrt{n}/\sigma_{X} \leq Y \leq \gamma_{\delta}\sqrt{n}/\sigma_{X}] = 2F_{SN}(\gamma_{\delta}\sqrt{n}/\sigma_{X}) - 1 = \delta$$

$$F_{SN}(\gamma_{\delta}\sqrt{n}/\sigma_{X}) = (1+\delta)/2$$

$$\Rightarrow \gamma_{\delta}\sqrt{n}/\sigma_{X} = z_{[(1+\delta)/2]} \text{ and } \gamma_{\delta} = z_{[(1+\delta)/2]} \frac{\sigma_{X}}{\sqrt{n}}$$

δ -confidence interval on the Mean of Normal RV X with known σ_X

- The sample average (mean estimate): $\hat{\mu}_X(n) = \frac{1}{n} \sum_{i=1}^n X_i$.
- From the standard Normal CDF table, find $z_{[(1+\delta)/2]}$ such that $F_{\mathrm{SN}}(z_{[(1+\delta)/2]}) = (1+\delta)/2$.
- Then, the interval is $\left[\hat{\mu}_X(n) z_{[(1+\delta)/2]} \frac{\sigma_X}{\sqrt{n}}, \quad \hat{\mu}_X(n) + z_{[(1+\delta)/2]} \frac{\sigma_X}{\sqrt{n}}\right]$.
- Note: Given an RV X with CDF $F_X(x)$, the 100u-percentile of X is the number $x_{[u]}$ such that $F_X(x_{[u]}) = u$. (i.e., $x_{[u]} = F_X^{-1}(u)$).
- Note: The 100u-percentile of a standard Normal RV is $z_{[u]} = F_{\rm SN}^{-1}(u)$. The 100u-percentile of an RV X with $f_X(x) = \mathcal{N}(\mu, \sigma^2)$ is $x_{[u]} = \mu + \sigma z_{[u]}$.

• Example 6.3-1

Compute $P[|\hat{\mu}_X(n) - \mu_X| \le 0.1]$ when X is Normal with $\sigma_X = 3$ for two sample size: n = 64 and n = 3600.

Solution: We have $Y \triangleq (\hat{\mu}_X - \mu_X)/(\sigma_X/\sqrt{n}) \sim N(0,1)$. Hence,

$$P[-0.1 < \hat{\mu}_X(n) - \mu_X < 0.1] = P[-0.1\sqrt{n}/\sigma_X < Y < 0.1\sqrt{n}/\sigma_X]$$

$$= 2F_{\rm SN} \left(\frac{0.1\sqrt{n}}{\sigma_X}\right) - 1$$

$$= 2F_{\rm SN} \left(0.0333\sqrt{n}\right) - 1$$

When n = 64, $P[|\hat{\mu}_X(n) - \mu_X| \le 0.1] \approx 0.2$.

When n = 3600, $P[|\hat{\mu}_X(n) - \mu_X| \le 0.1] \approx 0.95$.

In a single trial, the event $\{|\hat{\mu}_X(n) - \mu_X| \le 1\}$ will almost certainly happen when n = 3600.

• Example: How many samples needed to get a δ -confidence interval on μ_X of a Normal RV X with known σ_X^2 ?

The shortest δ -confidence interval on μ_X is

$$\left[-z_{[(1+\delta)/2]}\frac{\sigma_X}{\sqrt{n}}+\hat{\mu}_X(n),\ z_{[(1+\delta)/2]}\frac{\sigma_X}{\sqrt{n}}+\hat{\mu}_X(n)\right]$$

where $z_{[u]}$ is the 100u-percentile of the standard Normal. The width of the confidence interval is

$$W_{\delta} = 2 z_{[(1+\delta)/2]} \sigma_X / \sqrt{n}$$

For a desired width of the δ -confidence interval W_{δ} , the number of samples required is

$$n = \left\lceil \left(\frac{2 \sigma_X Z_{[(1+\delta)/2]}}{W_{\delta}} \right)^2 \right\rceil$$

δ -confidence interval on the Mean of Normal RV X with unknown σ_X

• Replace σ_X with $\hat{\sigma}_X$ (from the unbiased VEF)

$$\hat{\sigma}_X(n) = \left(\frac{1}{n-1}\sum_{i=1}^n (X_i - \hat{\mu}_X(n))^2\right)^{1/2}$$

in Y to get a new RV T_{n-1} as

$$T_{n-1} \triangleq \frac{\hat{\mu}_X(n) - \mu_X}{\hat{\sigma}_X/\sqrt{n}}.$$

• T_{n-1} has a t-distribution with n-1 degrees of freedom (DoF) for $n=2,3,\ldots$ and its pdf and CDF are denoted by $f_T(t;n-1)$ and $F_T(t;n-1)$. Then, we have

$$P[-\gamma_{\delta} \leq \hat{\mu}_{X}(n) - \mu_{X} \leq \gamma_{\delta}] = P[-\frac{\gamma_{\delta}}{\hat{\sigma}_{X}/\sqrt{n}} \leq T_{n-1} \leq \frac{\gamma_{\delta}}{\hat{\sigma}_{X}/\sqrt{n}}] = \delta,$$

$$2F_{T}(\frac{\gamma_{\delta}}{\hat{\sigma}_{X}/\sqrt{n}}; n-1) - 1 = \delta \quad \Rightarrow \quad F_{T}(\frac{\gamma_{\delta}}{\hat{\sigma}_{X}/\sqrt{n}}; n-1) = (1+\delta)/2$$

Then,
$$\frac{\gamma_\delta}{\hat{\sigma}_X/\sqrt{n}} = t_{[(1+\delta)/2]}$$
 or $\gamma_\delta = t_{[(1+\delta)/2]}\hat{\sigma}_X/\sqrt{n}$.

δ -confidence interval on the Mean of Normal RV X with unknown σ_X

Procedure:

- The mean estimate: $\hat{\mu}_X(n) = \frac{1}{n} \sum_{i=1}^n X_i$
- The σ estimate:

$$\hat{\sigma}_X(n) = \left(\frac{1}{n-1}\sum_{i=1}^n (X_i - \hat{\mu}_X(n))^2\right)^{1/2}$$

• From the student-t CDF table,

find
$$t_{[(1+\delta)/2]}$$
 such that $F_T(t_{[(1+\delta)/2]}; n-1) = (1+\delta)/2$.

• Then, the δ -confidence interval is

$$\left[\hat{\mu}_X(n)-t_{[(1+\delta)/2]}\frac{\hat{\sigma}_X}{\sqrt{n}}, \quad \hat{\mu}_X(n)+t_{[(1+\delta)/2]}\frac{\hat{\sigma}_X}{\sqrt{n}}\right]$$

• Example 6.3-3

n=21 i.i.d. observations are made on a Gaussian RV X, denoting as X_1, X_2, \ldots, X_{21} . Based on the data, $\hat{\mu}_X(n)=3.5$, $\hat{\sigma}_X(n)/\sqrt{n}=0.45$. Find the 90 percent confidence interval on $\hat{\mu}_X(n)$.

Solution:

$$P[-t_{[0.95]} \le T_{20} \le t_{[0.95]}] = 0.9 \Rightarrow$$
 $F_T(t_{[0.95]}, 20) = 0.5(1 + 0.9) = 0.95.$

From student-t table, we obtain $t_{[0.95]} = 1.725$.

The corresponding interval is

$$[\hat{\mu}_X(n) - t_{[(1+\delta)/2]} \frac{\hat{\sigma}_X}{\sqrt{n}}, \quad \hat{\mu}_X(n) + t_{[(1+\delta)/2]} \frac{\hat{\sigma}_X}{\sqrt{n}}]$$

$$= [3.5 - 1.725 \times 0.45, 3.5 + 1.725 \times 0.45] = [2.72, 4.28]$$

The width of the interval is $W_{\sigma} \approx 2 \times 1.725 \times 0.45 = 1.55$.

Estimation of the Variance of a Normal RV X

• If μ_X is known, the unbiased VEF is

$$\hat{\sigma}_X^2(n) = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_X)^2$$

• If μ_X is unknown, the unbiased VEF is

$$\hat{\sigma}_X^2(n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_X(n))^2$$

- Note: $U_i \triangleq (X_i \mu_X)/\sigma_X$ is $\mathcal{N}(0,1)$ and $Z_n \triangleq \sum_{i=1}^n U_i^2$ has a Chi-square (χ^2) pdf $f_{\chi^2}(z;n)$ with DoF of n.
- Note: For $V_i \triangleq (X_i \hat{\mu}_X(n))/\sigma_X$, $Z_{n-1} \triangleq \sum_{i=1}^n V_i^2$ has a χ^2 pdf $f_{\chi^2}(z; n-1)$ with DoF of n-1.

Figure: The central Chi-square pdf with *n* degrees of freedom

δ -confidence interval on the Variance of a Normal RV X

• Let $Z \triangleq \sum_{i=1}^n U_i^2$ for known μ_X and $Z \triangleq \sum_{i=1}^n V_i^2$ for unknown μ_X . Then, the pdf of Z is $f_{\chi^2}(z;k)$ with the

DoF k=n for known μ_X and k=n-1 for unknown μ_X

• Note that $Z = \hat{\sigma}_X^2 k / \sigma_X^2$ and hence

$$P[a \le Z \le b] = P[a \le \hat{\sigma}_X^2 k / \sigma_X^2 \le b] = P[(1/b) \le \sigma_X^2 / (k\hat{\sigma}_X^2) \le (1/a)]$$

$$= P[\frac{k\hat{\sigma}_X^2}{b} \le \sigma_X^2 \le \frac{k\hat{\sigma}_X^2}{a}] = F_{\chi^2}(b; k) - F_{\chi^2}(a; k) = \delta$$

• A simple equal error probability approach for finding *a* and *b* with near-shortest interval:

$$P[Z < a] = F_{\chi^2}(a; k) = (1 - \delta)/2 \Rightarrow a = x_{[(1 - \delta)/2]}$$
 $P[Z > b] = 1 - F_{\chi^2}(b; k) = (1 - \delta)/2$
 $\Rightarrow F_{\chi^2}(b; k) = (1 + \delta)/2 \Rightarrow b = x_{[(1 + \delta)/2]}$

• The δ -confidence interval for σ_X^2 is $\left[\frac{k\hat{\sigma}_X^2}{x_{[(1+\delta)/2]}}, \frac{k\hat{\sigma}_X^2}{x_{[(1-\delta)/2]}}\right]$.

δ -confidence interval on the Variance of Normal RV X with known μ_X

Procedure for the equal error probability approach:

• The statistic is χ^2 with n DoF and the steps are:

$$\hat{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_X)^2$$

$$F_{\chi^2}(a; n) = (1 - \delta)/2 \implies a = x_{[(1 - \delta)/2]}$$

$$F_{\chi^2}(b; n) = (1 + \delta)/2 \implies b = x_{[(1+\delta)/2]}$$

The confidence interval is

$$\left[\frac{n \ \hat{\sigma}_X^2}{b}, \quad \frac{n \ \hat{\sigma}_X^2}{a}\right]$$

δ -confidence interval on Variance of Normal RV X with unknown μ_X

Procedure for the equal error probability approach:

• The statistic is χ^2 with (n-1) DoF and the steps are:

$$\hat{\mu}_X = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\hat{\sigma}_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_X)^2$$

$$F_{\chi^2}(a; n-1) = (1-\delta)/2 \implies a = x_{[(1-\delta)/2]}$$

$$F_{\chi^2}(b; n-1) = (1+\delta)/2 \implies b = x_{[(1+\delta)/2]}$$

The confidence interval is

$$\left[\frac{(n-1) \hat{\sigma}_X^2}{b}, \frac{(n-1) \hat{\sigma}_X^2}{a}\right]$$

• Example 6.4-3 (extended) 16 i.i.d. observations are made on $X: N(\mu_X, \sigma_X^2)$. Find the numbers a, b that will give a near-shortest 95 percent confidence interval on σ_X^2 using the "equal error probability" rule. Given the observations X_1, \ldots, X_{16} , find the above confidence interval.

Solution: Statistics for confidence interval on σ_X^2 of Gaussian RV with unknown mean: Chi-square with n-1 DoF

$$F_{\chi^2}(a;k) = (1-\delta)/2 \implies F_{\chi^2}(x_{[0.025]};15) = 0.025$$

$$F_{\chi^2}(b;k) = (1+\delta)/2 \implies F_{\chi^2}(x_{[0.975]};15) = 0.975$$

From the table of the Chi-square distribution, we find

$$a = x_{[0.025]} = 6.26$$
 and $b = x_{[0.925]} = 27.5$.

As μ_X is unknown, the unbiased variance estimate is

$$\hat{\sigma}_X^2 = \frac{1}{15} \sum_{i=1}^{16} (X_i - \hat{\mu}_X)^2$$
 where $\hat{\mu}_X = \frac{1}{16} \sum_{i=1}^{16} X_i$

The corresponding confidence interval is $\left[\frac{15 \hat{\sigma}_X^2}{b}, \frac{15 \hat{\sigma}_X^2}{a}\right]$.

Estimation of the Standard Deviation

• Standard Deviation Estimating Function (SDEF) based on VEF:

$$\hat{\sigma}_X(n) = \left(\frac{1}{n-1}\sum_{i=1}^n (X_i - \hat{\mu}_X(n))^2\right)^{1/2}$$

• A Pair-wise based SDEF (with an even n):

$$\hat{\sigma}_X(n) = \frac{2}{n} \sum_{i=1}^{n/2} \sqrt{\pi} \left(\max(X_{2i-1}, X_{2i}) - 0.5(X_{2i-1} + X_{2i}) \right)$$

and its variance is $Var(\hat{\sigma}_X(n)) = \frac{\pi-2}{n} \sigma_X^2$.

Estimation of the Covariance $c_{11} \triangleq Cov[X, Y]$

- $Cov[X, Y] = E[(X \mu_X)(Y \mu_Y)]$
- Covariance estimating function (CEF):

$$\hat{c}_{11} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\mu}_X(n))(Y_i - \hat{\mu}_Y(n))$$

• The correlation coefficient $\rho_{XY} \triangleq c_{11}/\sqrt{\sigma_X^2 \sigma_Y^2}$ can be estimated as

$$\hat{
ho}_{XY} riangleq \hat{c}_{11}/\sqrt{\hat{\sigma}_X^2\hat{\sigma}_Y^2}$$

Estimation of Non-Gaussian Parameters from Large Samples

- Based on n i.i.d. observations $\{X_i\}$ of an RV X with mean μ and finite variance σ^2 , the sample mean estimator $\hat{\mu}(n) = \frac{1}{n} \sum_{i=1}^n X_i$ has approximately Normal distribution as $\mathcal{N}(\mu, \sigma^2/n)$ for large n, due to the Central Limit Theorem.
- The δ -confidence interval can be obtained from

$$P[-a \le rac{\hat{\mu} - \mu}{\sigma/\sqrt{n}} \le a] pprox 2F_{\mathrm{SN}}(a) - 1 = \delta$$
 $P[\hat{\mu} - (a\sigma/\sqrt{n}) \le \mu \le \hat{\mu} + (a\sigma/\sqrt{n})] = \delta$

• $F_{\rm SN}(a)=(1+\delta)/2\Rightarrow a=z_{[(1+\delta)/2]}$ which yields the confidence interval as

$$[\hat{\mu} - (z_{[(1+\delta)/2]} \sigma/\sqrt{n}), \hat{\mu} + (z_{[(1+\delta)/2]} \sigma/\sqrt{n})]$$

• Example 6.6-1 Confidence interval for λ in the exponential pdf $f_X(x) = \lambda e^{-\lambda x} u(x)$.

Solution: We have $\mu \triangleq E[X] = \lambda^{-1}$ and $\sigma^2 = \lambda^{-2}$.

Inserting these results into $P[-a \le \frac{\hat{\mu} - \mu}{\sigma/\sqrt{n}} \le a] = \delta$ yields

$$P\left[\frac{(-a/\sqrt{n})+1}{\hat{\mu}} \leq \lambda \leq \frac{(a/\sqrt{n})+1}{\hat{\mu}}\right] = \delta.$$

We can obtain a by approximating $Z \triangleq (\hat{\mu} - \mu)\sqrt{n}/\sigma$ as N(0,1) RV.

This yields $a = z_{[(1+\delta)/2]}$.

Thus, a $100 \times \delta$ percent confidence interval for λ is

$$\left[rac{(-z_{[(1+\delta)/2]}/\sqrt{n})+1}{\hat{\mu}},\;rac{(z_{[(1+\delta)/2]}/\sqrt{n})+1}{\hat{\mu}}
ight]$$

and its width is

$$W_{\delta} = 2z_{[(1+\delta)/2]}/(\hat{\mu}\sqrt{n})$$

• Example 6.6-2

Find a 95 percent confidence interval on the parameter λ of the exponential distribution from 64 i.i.d. observations on an exponential RV X. The estimate is $\hat{\mu}_X = 3.5$.

Solution:

From
$$P[-a \le \frac{\hat{\mu} - \mu}{\sigma / \sqrt{n}} \le a] = \delta$$
, we obtain

$$F_{\rm SN}(z_{[(1+\delta)/2]}) = (1+\delta)/2 = 0.975 \Rightarrow a = z_{[0.975]} = 1.96.$$

Then, from

$$P\left[rac{(-a/\sqrt{n})+1}{\hat{\mu}} \leq \lambda \leq rac{(a/\sqrt{n})+1}{\hat{\mu}}
ight] = \delta \ \ ext{and} \ \ W_\delta = 2z_{[(1+\delta)/2]}/(\hat{\mu}\sqrt{n}),$$

we compute that the 95 percent confidence interval for λ is

$$\left[\frac{(-a/\sqrt{n})+1}{\hat{\mu}}, \frac{(a/\sqrt{n})+1}{\hat{\mu}}\right] = [0.22, 0.36]$$

and it has an approximate width of $W_{\delta}=0.14$.

Maximum Likelihood Estimator (MLE)

- Likelihood function $L(\theta; \mathbf{X})$ or simply $L(\theta)$ is the joint pdf $f_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n; \theta)$ considered as a function of the unknown parameter θ .
- MLE of θ for a given observation $\mathbf{x} = [x_1, x_2, \cdots, x_n]^T$:

$$\theta^*(\mathbf{x}) = \arg_{\theta} \max L(\theta; \mathbf{x})$$

- In many cases, θ^* can be obtained by solving $\frac{dL(\theta)}{d\theta} = 0$ or $\frac{d\log_e L(\theta)}{d\theta} = 0$ where $\log_e L(\theta)$ is called the log-likelihood function.
- MLE Properties:
 - Squared-error consistency
 - Invariance: If $\hat{\theta}$ is MLE for θ , then $h(\hat{\theta})$ is the MLE for $h(\theta)$.
 - No guarantee for unbiasedness.

• Example 6.7-2

Consider a Bernoulli RV $X \sim P_X(k) = p^k(1-p)^{1-k}$, where P[X=1] = p, and P[X=0] = 1-p. Find the ML estimation of p using likelihood function, with n i.i.d. observations X_1, \ldots, X_n on X.

Solution: The likelihood function is

$$L(p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} \times (1-p)^{n-\sum_{i=1}^n x_i}.$$

By setting dL(p)/dp = 0, we obtain three roots:

$$p = 0, \ p = 1, \ p = \sum_{i=1}^{n} x_i/n.$$

The first two roots yield a minimum, while the last root yields a maximum.

Thus, $p^*(\mathbf{x}) = \sum_{i=1}^n x_i/n$ and the MLE of p is

$$\hat{p} = p^*(X_1, X_2, \dots, X_n) = \sum_{i=1}^n X_i / n.$$

• Example 6.7-3 Assume $X : N(\mu, \sigma)$, where σ is known. Compute the MLE of the mean μ with n realizations of X.

Solution: The likelihood function is

$$L(\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2\right).$$

The maximum of $L(\mu)$ is also that of $\log L(\mu)$. Hence

$$\log L(\mu) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu)^2.$$

Setting $\partial \log L(\mu)/\partial \mu = 0$ yields

$$\sum_{i=1}^{n} (X_i - \mu) = 0$$
 and $\mu^* = \frac{1}{n} \sum_{i=1}^{n} X_i$.

This implies the MLE of μ should be

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

• Example 6.7-5. Consider the Normal pdf

$$f_X(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) - \infty < x < \infty.$$

Compute the MLE of μ and σ^2 with n realizations of X.

Solution: The log-likelihood function is

$$\bar{L}(\mu,\sigma) \triangleq \log L = -\frac{n}{2}\log 2\pi - n\log \sigma - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2.$$

Solving $\partial \bar{L}/\partial \mu = 0, \ \partial \bar{L}/\partial \sigma = 0$ gives

$$\sum_{i=1}^{n} (x_i - \mu) = 0, \quad -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (x_i - \mu)^2 = 0.$$

which yields

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2$.

Example 6.7-6 (Application of Invariance property of MLE)

Consider *n* observations on a Normal RV. Assume that it is known that the mean is zero.

The MLE of the variance is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.

Hence, by applying the invariance property of MLE, the MLE of the standard deviation is

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} X_i^2}.$$

Parametric versus Non-Parametric Statistics

- Parametric statistics: We know/assume pdf, PMF, or CDF and use it in computing probabilities, estimating parameters, and making decisions
- Non-Parametric (or distribution-free) statistics: Estimation of the properties and parameters of a population without any assumption on the form or knowledge of the population distribution
- Mean and standard deviation indicate the center and the dispersion of the population in the parametric case while the median and the range play a comparable role in the non-parametric case.
- Median of the population X is the point $x_{[0.5]}$ such that $F_X(x_{[0.5]}) = 0.5$

Sample Median Estimator

- Order the observations X_1, X_2, \dots, X_n to get $Y_1 < Y_2 < \dots < Y_n$.
- The sample median estimator is

$$\hat{x}_{[0.5]} = \begin{cases} Y_{k+1}, & \text{if } n = 2k+1 \pmod{n} \\ 0.5(Y_k + Y_{k+1}), & \text{if } n = 2k \pmod{n} \end{cases}$$

- The sample median estimate is not unbiased but becomes nearly so when *n* is large.
- The dispersion in the nonparametric case is measured from an appropriate range, e.g., $\Delta x_{[0.50]} \triangleq x_{[0.75]} x_{[0.25]}$ for the 50% range and $\Delta x_{[0.90]} \triangleq x_{[0.95]} x_{[0.05]}$ for the 90% range.

These percentile points (e.g., $x_{[0.95]}$, $x_{[0.05]}$) have to be estimated from the observations (to be discussed in Estimating Percentile Points).

Ordered RVs and Area RVs

- Let Y_1, Y_2, \dots, Y_n be the ordered RVs of i.i.d. RVs X_1, X_2, \dots, X_n with pdf $f_{X_i}(x) = f_X(x)$ such that $Y_1 < Y_2 < \dots < Y_n$.
- The joint pdf of $\{Y_i\}$ is

$$f_{Y_1,\dots,Y_n}(y_1,\dots,y_n) = \begin{cases} n! \prod_{i=1}^n f_X(y_i), & -\infty < y_1 < \dots < y_n < \infty \\ 0, & \text{else} \end{cases}$$

Area RVs are defined as

$$Z_i \triangleq \int_{-\infty}^{Y_i} f_X(x) dx = F_X(Y_i), \quad i = 1, \dots, n$$

• The joint pdf of $\{Z_i\}$ (where $0 < Z_1 < \cdots < Z_n < 1$) is

$$f_{Z_1,\cdots,Z_n}(z_1,\cdots,z_n) = \left\{ egin{array}{ll} n!, & 0 < z_1 < \cdots < z_n < 1 \ 0, & ext{else} \end{array}
ight.$$

with
$$E[Z_i] = \frac{i}{n+1}$$
 and $\sigma_{Z_i}^2 = \frac{i(i+1)}{(n+1)(n+2)} - \frac{i^2}{(n+1)^2} \approx \frac{i}{(n+1)^2}$, $n \gg 1$.

• The pdf of the area $V_{l,m} \triangleq Z_m - Z_l = \int_{Y_l}^{Y_m} f_X(x) dx$ between any ordered RVs with m > l is

$$f_{V_{l,m}}(v) = \begin{cases} \frac{n!}{(m-l-1)!(n-m+l)!} v^{m-l-1} (1-v)^{n-m+l}, & 0 < v < 1 \\ 0, & \text{else} \end{cases}$$

• For l=1 and m=n, the pdf (a beta pdf with $\alpha=n-2$ and $\beta=1$) and CDF are

$$f_{V_{1,n}}(v) = \left\{ egin{array}{ll} n(n-1) \ v^{n-2}(1-v), & 0 < v < 1, \ n \geq 2 \\ 0, & ext{else} \end{array}
ight.$$
 $F_{V_{1,n}}(v) = \left\{ egin{array}{ll} nv^{n-1} - (n-1)v^n, & 0 < v < 1, \\ 1, & v \geq 1 \\ 0, & ext{else} \end{array}
ight.$

• The pdf of $V_{i,i+1}$ is

$$f_{V_{i,i+1}}(v) = \left\{ egin{array}{ll} n(1-v)^{n-1}, & 0 < v < 1, \ 0, & ext{else} \end{array}
ight.$$

with
$$E[V_{i,i+1}] = \frac{1}{n+1}$$
 and $E[V_{i,i+1}^2] = \frac{2}{(n+2)(n+1)}$.

Estimating Percentile Points

- Recall $Z_i = F_X(Y_i)$, $E[Z_i] = \frac{i}{n+1}$ and $\sigma_{Z_i}^2 \approx \frac{i}{(n+1)^2}$ for $n \gg 1$. Thus, for $n \gg 1$, $Z_i \approx E[Z_i]$ and hence $F_X(Y_i) \approx E[Z_i]$.
- Given i.i.d Observations x_1, \dots, x_n and associated ordered observations y_1, \dots, y_n , for large n, we can estimate the percentile points from $\hat{F}_X(y_i) = E[Z_i] = \frac{i}{n+1}$, i.e., (here, u = i/(n+1)),

the $\frac{100i}{n+1}$ percentile point $x_{[i/(n+1)]}$ is estimated to be y_i .

• For a 100u percentile with $\frac{i}{n+1} < u < \frac{i+1}{n+1}$, the estimate of the percentile point $x_{[u]}$ can be obtained by interpolation as

$$\hat{x}_{[u]} = y_i + \frac{(y_{i+1} - y_i)(u - \frac{i}{n+1})}{1/(n+1)}$$

• Note: The index of Y in finding 100u percentile point: |i| = |(n+1)u|

$$i = \lfloor (n+1) \ u \rfloor$$

Confidence Interval for the Percentile Point

• Recall the notation $P[X \le x_{[u]}] \triangleq u$. Then

$$P[Y_{k} \le x_{[u]}] = P[\text{at least } k \text{ of } \{X_{i}\} \text{ are } \le x_{[u]}]$$

$$= \sum_{i=k}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

$$P[Y_{k+r} > x_{[u]}] = P[\text{no more than } (k+r-1) \text{ of } \{X_{i}\} \text{ are } \le x_{[u]}]$$

$$= \sum_{i=0}^{k+r-1} \binom{n}{i} u^{i} (1-u)^{n-i}$$

• Since $\{Y_k \le x_{[u]}\} \cap \{Y_{k+r} > x_{[u]}\} = \{Y_k \le x_{[u]} < Y_{k+r}\}$, we have

$$P[Y_k \le x_{[u]} < Y_{k+r}] = \sum_{i=k}^{k+r-1} \binom{n}{i} u^i (1-u)^{n-i}$$

which can be computed without knowledge of $f_X(x)$.

• Example 6.8-5 We seek the end points Y_1, Y_n of a random interval $[Y_1, Y_n]$ so that the event $\{Y_1 < x_{[0.5]} < Y_n\}$ occurs with probability ~ 0.95 . Here $Y_1 \triangleq \min(X_1, X_2, \dots, X_n), Y_n \triangleq \max(X_1, X_2, \dots, X_n)$. How large should n be?

Solution: The answer is furnished by computing

$$P[Y_1 \le x_{[0.5]} < Y_n] = \sum_{i=1}^{n-1} \binom{n}{i} (1/2)^n \approx 0.95$$

and find that for n = 5, $P[Y_1 \le x_{[0.5]} < Y_n] \approx 0.94$.

• Example 6.8-6. We have a set of ordered samples $\{Y_1, Y_2, \ldots, Y_n\}$ and wish to find the pair $\{Y_i, Y_{i+1}, i = 1, \ldots, n-1\}$ that maximizes the probability of covering the 33.33rd percentile point.

Solution: The 33.33rd percentile point is defined by $u = 1/3 = F_X(x_{[0.33]})$. For specificity we assume n = 10. Then

$$P[Y_k \le x_{[u]} < Y_{k+r}] = \sum_{i=k}^{k+r-1} {n \choose i} u^i (1-u)^{n-i},$$

$$P[Y_k \le x_{[0.33]} < Y_{k+1}] = \frac{10!}{k!(10-k)!} (1/3)^k (2/3)^{10-k}, k = 1, \dots, 9$$

Clearly the interval $[Y_3, Y_4)$ is most likely to cover $x_{[0.33]}$. The probability of the event $\{Y_3 \le x_{[0.33]} < Y_4\}$ is 0.26.

Confidence Interval for the Median When n is Large

• If n is large, we can use Normal approximation to Binomial as

$$P[\alpha \leq S_n \leq \beta] \approx F_{\rm SN}(\beta_n) - F_{\rm SN}(\alpha_n)$$

where
$$P[\alpha \leq S_n \leq \beta] = \sum_{i=\alpha}^{\beta} \binom{n}{i} p^i (1-p)^{n-i}$$

$$\alpha_n \triangleq \frac{\alpha - np - 0.5}{\sqrt{np(1-p)}}$$
 and $\beta_n \triangleq \frac{\beta - np + 0.5}{\sqrt{np(1-p)}}$

ullet δ -confidence interval for the median is obtained from

$$P[Y_r \le x_{[0.5]} < Y_{n-r+1}] = \sum_{i=r}^{n-r} \binom{n}{i} (1/2)^n \approx F_{SN}(\beta_n) - F_{SN}(\alpha_n) = \delta$$

$$(\alpha_n = -\beta_n \text{ due to symmetry}),$$

$$2F_{\mathrm{SN}}(\beta_n)-1=\delta \Rightarrow \beta_n=z_{[(1+\delta)/2]}$$

and with $\alpha = r$, $\beta = n - r$, p = 0.5, we can find r as:

$$\beta_n = z_{[(1+\delta)/2]} = \frac{n-r-0.5n+0.5}{\sqrt{n}/2} \Rightarrow r = \lfloor (n-\sqrt{n} z_{[(1+\delta)/2]} + 1)/2 \rfloor$$

and the confidence interval for the median is

$$|[Y_r, Y_{n-r+1})|.$$

37

• Example 6.8-7 Find the 95 percent confidence interval for the median for n = 20.

Solution:

We make 20 observations on an RV X and label these $\{X_i, i=1,\ldots,20\}$.

We order them by signed magnitude so that $Y_1 < Y_2 < \ldots < Y_n$. Then, we have

$$P[Y_r \le x_{[0.5]} < Y_{n-r+1}] = \sum_{i=r}^{n-r} {n \choose i} (1/2)^n$$

$$\approx F_{SN}(\beta_n) - F_{SN}(\alpha_n) = \delta = 0.95$$

$$(\alpha_n = -\beta_n \text{ due to symmetry}), \ 2F_{SN}(\beta_n) - 1 = \delta = 0.95$$

$$\Rightarrow \beta_n = z_{[(1+\delta)/2]} = 1.96$$

We use $r = \lfloor (n - \sqrt{n} z_{\lfloor (1+\delta)/2 \rfloor} + 1)/2 \rfloor$ to obtain r = 6.

Then,
$$P[Y_6 \le x_{[0.5]} < Y_{15}] \ge 0.95$$
,

i.e., the 95% confidence interval is $[Y_6, Y_{15})$.

Estimation of Vector Means and Covariance Matrices

- Consider a real-valued random vector $\mathbf{X} \triangleq [X_1, \dots, X_p]^T$ with the mean vector $\boldsymbol{\mu_X} \triangleq E[\mathbf{X}]$ and the covariance matrix $\boldsymbol{K_{XX}} \triangleq E[(\mathbf{X} \boldsymbol{\mu_X})(\mathbf{X} \boldsymbol{\mu_X})^T]$. Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ denote the n i.i.d. observations of \mathbf{X} .
- The unbiased mean vector estimator is

$$\hat{\boldsymbol{\mu}}_{\boldsymbol{X}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}$$

• The unbiased covariance matrix estimator with known μ_X is

$$\hat{\mathbf{K}}_{\mathbf{X}\mathbf{X}} \triangleq \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_{i} - \boldsymbol{\mu}_{\mathbf{X}}) (\mathbf{X}_{i} - \boldsymbol{\mu}_{\mathbf{X}})^{T}$$

• The unbiased covariance matrix estimator with unknown μ_X is

$$\hat{\mathbf{K}}_{\mathbf{X}\mathbf{X}} \triangleq \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \hat{\boldsymbol{\mu}}_{\mathbf{X}}) (\mathbf{X}_{i} - \hat{\boldsymbol{\mu}}_{\mathbf{X}})^{T}$$

Least-Squares (LS) Estimator

Consider the following (real-valued) linear signal model

$$Y = H\theta + N$$

where Y is the $n \times 1$ observation vector, θ is the $k \times 1$ unknown parameter vector $(k \le n)$, H is a known $n \times k$ matrix, and N is the random noise (measurement error) vector with E[N] = 0.

• The LS estimator for θ minimizes $\|\mathbf{Y} - \mathbf{H}\hat{\boldsymbol{\theta}}\|^2$ (i.e., least-squares fit to the data) and is given by

$$\hat{oldsymbol{ heta}}_{\mathrm{LS}} = (oldsymbol{H}^Toldsymbol{H})^{-1}oldsymbol{H}^Toldsymbol{Y}$$

• If $K_{NN} = \sigma^2 I$, then $\hat{\theta}_{LS}$ is a minimum variance unbiased estimator.