ДИСКРЕТНАЯ MATEMATUKA

Раздел 1 Множества и отношения

Практическое занятие 1 Операции над множествами

Литература:

- Кривцова И.Е., Лебедев И.С., Настека А.В. Основы дискретной математики. Часть 1. Университет ИТМО, СПб, 2016.
- Белоусов А.И. Дискретная математика. Издво МГТУ им. Н.Э. Баумана, М., 2002.

© I.Krivtsova ITMO University

Обозначения:

- ⇒ следовательно
- ⇔ тогда и только тогда, когда
- ∃ существует
- ∀ любой, каждый
- ! единственный

Георг Кантор (1845-1918)

« Под многообразием или множеством я понимаю вообще все многое, которое возможно мыслить как единое, т. е. такую совокупность определенных элементов, которая посредством одного закона может быть соединена в одно целое».

Георг Кантор

Обозначение: А, В, С, ..., Х, У, ...

Отдельные объекты, из которых состоит множество, называются элементами множества.

Обозначение: *а, b, c,..., x, y,...*

Символ \in – символ *принадлежности* элемента a множеству A:

 $a \in A$ – элемент a принадлежит множеству A;

 $a \notin A$ – элемент a не принадлежит множеству A.

Стандартные обозначения числовых множеств

N – множество натуральных чисел,

Z — множество целых чисел,

 $oldsymbol{Q}$ – множество рациональных чисел,

 $oldsymbol{R}$ — множество действительных чисел,

C – множество комплексных чисел.

Пустым множеством называется множество, не содержащее ни одного элемента.

Обозначение: Ø

Универсальным множеством или универсумом в теории множеств является совокупность всех множеств, рассматриваемых в данной задаче.

Обозначение: I или U.

Способы задания множеств

- Перечисление или рекурсия
- Описание

Графическое изображение множества – *диаграмма Эйлера-Венна*.

Два множества называются равными, если они состоят из одних и тех же элементов.

Обозначение: A = B

Множество B называется подмножеством или частью множества A, если каждый элемент множества B является элементом множества A.

Обозначение: $B \subseteq A$ (нестрогое включение)

Если $B\neq\varnothing$, $B\subseteq A$ и $B\neq A$, то множество B называется истинным или собственным подмножеством множества A.

Обозначение: $B \subset A$ (строгое включение)

Множество всех подмножеств множества B называется множеством-степенью или булеаном множества B.

Обозначение: 2^B или P(B).

$$P(B) = \{X: X \subseteq B\}$$

Операции над множествами

1. Объединение:

$$A \cup B = \{x: x \in A \text{ или } x \in B\};$$

2. Пересечение:

$$A \cap B = \{x: x \in A \mid x \in B\};$$

3. Разность:

$$A \mid B = \{x: x \in A \ \mathsf{u} \ x \notin B\};$$

4. Симметрическая разность:

$$A \Delta B = (A|B) \cup (B|A);$$

5. Дополнение множества A до универсального:

$$\overline{A} = I \setminus A$$

Свойства

- 1. $A \cup B = B \cup A$ коммутативный закон,
- 2. $(A \cup B) \cup C = A \cup (B \cup C)$ ассоциативный закон,
- 3. $A \cup A = A$ идемпотентность,
- 4. $A \cup \emptyset = ?$,
- 5. $A \cup I = ?$, где I универсальное множество.

Множества A и B называются непересекающимися, если они не имеют общих элементов, т.е. $A \cap B = \emptyset$.

Свойства

6.
$$A \cap B = B \cap A$$
;

7.
$$(A \cap B) \cap C = A \cap (B \cap C)$$
;

8.
$$A \cap A = A$$
;

9.
$$A \cap \emptyset = ?$$
;

10.
$$A \cap I = ?$$
.

Дистрибутивные законы:

11.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
;

12.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
;

Законы поглощения:

13.
$$A \cup (B \cap A) = A$$
;

14.
$$A \cap (B \cup A) = A$$
;

Свойства

15.
$$A \triangle B = B \triangle A$$
,

16.
$$(A \Delta B) \Delta C = A \Delta (B \Delta C)$$
,

17.
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$
;

18.
$$A \cap (B\Delta C) = (A \cap B) \Delta (A \cap C)$$
.

Свойства

Законы де Моргана:

19.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
;

20.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
;

21.
$$A \cup \overline{A} = ?$$
;

22.
$$A \cap \overline{A} = ?$$
;

23.
$$\overline{\overline{A}} = ?$$
 — закон двойного отрицания.

Каждое из равенств 1-23 верно для любых подмножеств A, B, C универсального множества I.

Равенства 1 – 23 называются основными тождествами алгебры множеств.

Способы доказательства основных тождеств

- Метод двух включений
- Метод эквивалентных преобразований
- Метод характеристических функций

Метод двух включений

$$X = Y \Leftrightarrow \begin{cases} X \subseteq Y \\ Y \subseteq X \end{cases}$$

Характеристической функцией

множества $X \subseteq I$ называется функция

$$\forall x \in I$$
 $\chi_X(x) = \begin{cases} 1, \text{ если } x \in X \\ 0, \text{ если } x \notin X \end{cases}$

Свойства

1.
$$\chi_X^-(x) = 1 - \chi_X(x)$$

$$2. \chi_{X \cap Y}(x) = \chi_X(x) \cdot \chi_Y(x)$$

3.
$$\chi_{X \cup Y}(x) = \chi_X(x) + \chi_Y(x) - \chi_X(x) \cdot \chi_Y(x)$$

$$\forall x \in I \qquad \chi_X(x) = \chi_Y(x) \iff X = Y$$

Прямым (декартовым) произведением

множеств A и B называется множество, состоящее из всех тех и только тех упорядоченных пар, первая компонента которых принадлежит множеству A, а вторая — множеству B:

$$A \times B = \{(x,y): x \in A, y \in B\}.$$

k–й декартовой степенью множества A называется декартово произведение k сомножителей, каждый из которых равен A:

$$A^k = A \times A \times ... \times A$$
.

При k=2 получаем A^2 – декартов квадрат;

при k=3 получаем A^3 – декартов куб.

Свойства

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
;

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
;

3.
$$A \times \emptyset = \emptyset \times A = ?$$
.

Джордж Буль (1815-1864)

© I.Krivtsova ITMO University

Булева алгебра множеств

Пусть S – некоторое множество, P(S) – булеан множества S; на множестве P(S) определены операции \cup и \cap .

 $\forall A, B, C \in P(S)$ выполняются следующие свойства:

- 1. коммутативность операций;
- 2. ассоциативность операций;
- 3. идемпотентность;
- 4. дистрибутивность;

- 5. \exists элемент $\varnothing \in P(S)$ такой, что $\forall A \in P(S)$ $A \cup \varnothing = A$;
- 6. \exists элемент $I \in P(S)$ такой, что $\forall A \in P(S)$ $A \cap I = A$;
- 7. $\forall A \in P(S)$ $\exists \overline{A} \in P(S)$ такое, что $A \cup \overline{A} = I$, $A \cap \overline{A} = \emptyset$. I = ?

Алгебраическая структура $< P(S), \cup, \cap >$ называется булевой алгеброй множеств.

© I.Krivtsova ITMO University

Множество \varnothing называется *нулем* алгебры;

множество I называется единицей алгебры.

Замечание:

множество P(S) замкнуто относительно операций \cup и \cap , т.е. $\forall A, B \in P(S)$ выполняется $A \cup B \in P(S)$, $A \cap B \in P(S)$.

