Stochastik 1 für Studierende der Informatik Modul: MATH3-Inf

Veranstaltung: 65-832

Übungsgruppe 2 Dienstag, 14.15 - 15.00 Geom 431

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

7. Juni 2016

Punkte für die Hausübungen:

8.1 | 8.2 | 8.3 | Σ

Zettel Nr. 8 (Ausgabe: 31. Mai 2016, Abgabe: 7. Juni 2016)

Hausübung 8.1

[| 7]

(Bedingte Wahrscheinlichkeiten, 4+3 Punkte). Bei der digitalen Datenübertragung können aufgrund verrauschter Kanäle auf der physikalischen Ebene Fehler auftreten, die sich dann als Verfälschung übermittelter Datenpakete auswirken. Das neu entwickelte Verfahren DEPP (Detection of Error-in-Packet Probabilities), ein Verfahren zur Erkennung von Datenübertragungsfehlern, zeigt 99% aller auftretenden Übertragungsfehler richtigerweise als Fehler an. Leider weist das Verfahren fälschlicherweise 0.1% aller korrekten Datenübertragungen als fehlerhaft aus. Das Verfahren wird nun zur Prüfung eines Nachrichtenübertragungskanals eingesetzt, bei dem 1% Übertragungsfehler auftreten.

- a) Wie groß ist die Wahrscheinlichkeit, dass das Verfahren bei einer Datenübertragung einen Fehler anzeigt?
- b) Wie groß ist die Wahrscheinlichkeit, dass eine Datenübertragung tatsächlich fehlerhaft ist, falls das Verfahren einen Fehler anzeigt?

A := "Es liegt ein Fehler vor."

B := "Das System erkennt einen Fehler."

a) Mit einer Wahrscheinlichkeit von 1% tritt ein Fehler auf, welcher mit einer Wahrscheinlichkeit von 99% erkannt wird $\Rightarrow 0.01 \cdot 0.99$

Mit einer Wahrscheinlichkeit von 99% tritt kein Fehler auf, welcher mit einer Wahrscheinlichkeit von 0.1% trotzdem als Fehler erkannt wird $\Rightarrow 0.99 \cdot 0.001$

$$P(B) = 0.99 \cdot 0.01 + 0.99 \cdot 0.001 \approx 0.01089 \hat{\approx} 1.1\%$$

b) Formel von Bayes:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

P(B|A) liegt bei 99% (vlg. Aufgabenstellung).

P(A) ist 1% (vlg. Aufgabenstellung).

P(B) wurde in a) ausgerechnet.

$$P(A|B) = \frac{0.99 \cdot 0.01}{0.01089} = \frac{10}{11} \hat{\approx} 91\%$$

Hausübung 8.2

 $\begin{bmatrix} & 5 \end{bmatrix}$

(Stochastische Unabhängigkeit, 2+3 Punkte). Im Folgenden sind jeweils zwei Ereignisse A, B gegeben. Überprüfen Sie auf stochastische Unabhängigkeit.

- a) Es wird ein fairer Würfel geworfen. A sei das Ereignis, dass die Augenzahl gerade ist, B sei das Ereignis, dass die Augenzahl durch drei teilbar ist.
- b) Es werden zwei faire Würfel geworfen. A sei das Ereignis, dass die Augensumme 6 ist, B sei das Ereignis, dass mindestens ein Würfel eine 3 zeigt.

a) P(A|B) ist die Wk. dafür, dass die Augenzahl sowohl gerade, als auch durch drei Teilbar ist. Dafür gibt es bei einem Würfel nur einen Fall, nämlich gerade die Augenzahl $6 = 2 \cdot 3$. Da der Würfel fair ist, gilt $P(A \cap B) = P(X = 6) = \frac{1}{6}$.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{3}{6} = \frac{1}{2} = P(A)$$

Definition von stoch. Unabhängigkeit:

$$P(A|B) = P(A) \Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$$

$$P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \stackrel{nach\ oben}{=} P(A \cap B)$$

Damit ist die Definition erfüllt, A und B sind also stoch. unabhängig.

b)
$$P(B) = \frac{11}{36}, P(A) = \frac{5}{36}.$$

 $P(B|A) = \frac{1}{5}$, da es 5 Fälle für A gibt, von denen jedoch nur einer für B günstig ist.

 $P(A|B) = \frac{1}{11}$, da es 11 Fälle für B gibt, von denen jedoch nur einer für A günstig ist.

Da $P(A|B) \neq P(A)$, sind sie nach Definition (vgl. oben) nicht stochastisch unabhängig.

Hausübung 8.3

 $[\quad | \quad 8 \]$

(Smileys revisited, 3+3+2 Punkte). In einer früheren Aufgabe wurde folgendes Glücksspiel beschrieben:

Ihnen stehen geometrische Objekte zur Verfügung, die mit Wahrscheinlichkeit $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$... jeweils einen Smiley anzeigen. Der Ablauf des Spiels sieht wie folgt aus: In der ersten Runde wird das Objekt mit Smiley-Wahrscheinlichkeit $\frac{1}{2}$ gewürfelt, in der zweiten Runde das mit Smiley-Wahrscheinlichkeit $\frac{1}{3}$, ..., allgemein wird in der n-ten Runde das Objekt mit Smiley-Wahrscheinlichkeit $\frac{1}{n+1}$ gewürfelt. Das Spiel endet, sobald zum ersten Mal ein Smiley erscheint. Sie bezeichnen mit X die Runde, in der zum ersten Mal ein Smiley gewürfelt wird.

Anschließend wurde ohne Beweis $P(X=k)=\frac{1}{k(k+1)}$ behauptet. Dies soll hier nun begründet werden.

a) Begründen Sie zunächst anhand der Beschreibung

$$P(X = k | X > k - 1) = \frac{1}{k + 1}$$

und folgern Sie daraus

$$P(X > k | X > k - 1) = \frac{k}{k+1}$$

- b) Zeigen Sie $P(X > k) = \frac{1}{k+1}$ für alle $k \in \mathbb{N}$ per Induktion.
- c) Folgern Sie schließlich $P(X=k)=\frac{1}{k(k+1)}$ für alle $k\in\mathbb{N}.$

a) X>k-1 bedeutet, dass wir mindestens k Runden brauchen. Die Wahrscheinlichkeit, in der k-ten Runde zu gewinnen, beträgt $\frac{1}{k+1}$.

Somit schließt

$$\Rightarrow P(X = k | X > k - 1) = (X = k) = \frac{1}{k + 1}$$

P(X > k) meint die Wahrscheinlichkeit, in einer späteren als der k-ten Runde zu gewinnen.

$$\sum_{i=k+1}^{\infty} \left(\frac{1}{k+i}\right) = \sum_{i=1}^{\infty} \left(\frac{1}{2k+1}\right)$$

Aus der Divergenz der harmonischen Reihe folgt:

$$\sum_{k=1}^{\infty} \left(\frac{1}{2k+1} \right) = \infty$$

$$\Rightarrow P(X > k | X > k - 1) = \frac{k}{k + 1}$$

Hausübung 8.4

| 5]

(Minimum und Maximum, 5 Punkte). Betrachten Sie einmal mehr den gleichzeitigen Wurf zweier fairer Würfel. X sei die minimale Augenzahl, Y die maximale Augenzahl. Charakterisieren Sie die gemeinsame Verteilung von (X,Y) durch Ausfüllen der Tabelle.

Annahme: Tupel $(x,y) \vee (y,x)$

$Y \setminus X$	1	2	3	4	5	6
1	$^{1}/_{36}$	0	0	0	0	0
2	$^{2}/_{36}$	$^{1}/_{36}$	0	0	0	0
3	$^{2}/_{36}$	$^{2}/_{36}$	$^{1}/_{36}$	0	0	0
4	$^{2}/_{36}$	$^{2}/_{36}$	$^{2}/_{36}$	$^{1}/_{36}$	0	0
5	$\frac{2}{36}$	$^{2}/_{36}$	$^{2}/_{36}$	$^{2}/_{36}$	$^{1}/_{36}$	0
6	$^{2}/_{36}$	$^{2}/_{36}$	$^{2}/_{36}$	$^{2}/_{36}$	$^{2}/_{36}$	$^{1}/_{36}$

Annahme: Tupel (i,j); $x \le i,j \le y$

$Y \setminus X$	1	2	3	4	5	6
1	1/36	0	0	0	0	0
2	$\frac{4}{36}$	$^{1}/_{36}$	0	0	0	0
3	9/36	$\frac{4}{36}$	$^{1}/_{36}$	0	0	0
4	$^{16}/_{36}$	$^{9}/_{36}$	$\frac{4}{36}$	$^{1}/_{36}$	0	0
5	$\frac{25}{36}$	$^{16}/_{36}$	$^{9}/_{36}$	$\frac{4}{36}$	$^{1}/_{36}$	0
6	$\frac{36}{36}$	$^{25}/_{36}$	$^{16}/_{36}$	$^{9}/_{36}$	$^{4}/_{36}$	$^{1}/_{36}$