1. Theoretical Question on Ridge Regression:

Grouping 1:

1st cluster: m samples at $x = -2 \rightarrow J_1 = -2$

 2^{nd} cluster: m samples at x = 0 and 1 at $x = a \rightarrow J_2 = \frac{a}{m+1}$

$$J = m * (-2 - (-2))^2 + m * (0 - \frac{a}{m+1})^2 + (a - \frac{a}{m+1})^2 = \frac{m}{m+1}a^2$$

Grouping 2:

1st cluster: m samples at x=-2 and m samples at $x=0 \Rightarrow J_1=\frac{-2m+0m}{2m}=1$

 $2^{\rm nd}$ cluster: 1 sample at $x = a \rightarrow J_2 = a$

$$J' = m * (-2 - (-1))^2 + m * (0 - (-1))^2 + (a - a)^2 = 2m$$

Since I < I:

$$\frac{m}{m+1}a^2 < 2m$$

$$a^2 < 2m(m+1)$$

$$f(m) = 2m + 2$$

2. On Regularization in Logistic Regression

A)

- I. Yes.
- I. No, since it does not pass through (0,0).
- II. No, since more optimal solution available, where soft-margin crossover happens.

B)

- II. No, since it does not pass through (0,0).
- III. Yes
- IV. No, since it does not pass through (0,0).

C)

- I. No, since soft margin is not allowed.
- II. No, since soft margin is not allowed.
- III. Yes.