Discrete Distributions

Distribution	Notation and parameters	P(X=x)	Summaries
Binomial	$X \sim \text{Bin}(n, p)$ n > 0 integer: number of trials $0 \le p \le 1$ probability of success	$\binom{n}{x}p^x(1-p)^{n-x}$ $x = 0, 1, \dots, n$	$E[X] = np$ $var(X) = np(1-p)$ $mode(X) = \lfloor (n+1)p \rfloor$
Geometric	$X \sim \text{Geo}(p)$ 0	$p(1-p)^x$ $x = 0, 1, 2, \dots$	$E[X] = \frac{1-p}{p}$ $var(X) = \frac{1-p}{p^2}$
Poisson	$X \sim \text{Po}(\lambda)$ rate $\lambda > 0$	$\frac{\frac{1}{x!}\lambda^x \exp(-\lambda)}{x = 0, 1, 2, \dots}$	$E[X] = \lambda$ $var(X) = \lambda$ $mode(X) = \lfloor \lambda \rfloor$

Continuous Distributions

Distribution	Notation and parameters	Density	Summaries
Beta	$X \sim \operatorname{Beta}(\alpha, \beta)$ a > 0, b > 0	$\frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}}{0 \le x \le 1}$	$E[X] = \frac{\alpha}{\alpha + \beta}$ $var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$ $mode(X) = \frac{\alpha - 1}{\alpha + \beta - 2}$
Exponential	$X \sim \text{Exp}(\lambda)$ $\lambda > 0$ inverse scale The Exponential distribution is equivalent to Gan	$ \lambda \exp(-\lambda x) x > 0 nma(1, \lambda) $	$E[X] = \frac{1}{\lambda}$ $var(X) = \frac{1}{\lambda^2}$ $mode(X) = 0$
Chi-Squared	$X \sim \chi^2_{\nu}$ $\nu > 0$ degrees of freedom The Chi-squared distribution is equivalent to Gan	$\frac{\frac{2^{-\nu/2}}{\Gamma(\nu/2)}x^{\nu/2-1}e^{-x/2}}{x>0}$ $nma(\frac{\nu}{2},\frac{1}{2})$	$E[X] = \nu$ $var(X) = 2\nu$ $mode(X) = \nu - 2, \ \nu \ge 2$

Distribution	Notation and parameters	Density	Summaries
Gamma	$X \sim \text{Gamma}(\alpha, \beta)$ $\alpha > 0 \text{ shape}$ $\beta > 0 \text{ inverse scale}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$ $x > 0$	$E[X] = \frac{\alpha}{\beta}$ $var(X) = \frac{\alpha}{\beta^2}$ $mode(X) = \frac{\alpha - 1}{\beta}, \ \alpha \ge 1$
Inverse-Gamma	$X \sim \text{Inv-gamma}(\alpha, \beta)$ $\alpha > 0 \text{ shape}$ $\beta > 0 \text{ scale}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} e^{-\beta/x}$ $x > 0$	$E[X] = \frac{\beta}{\alpha - 1} \text{ for } \alpha > 1$ $\text{var}(X) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)} \text{ for } \alpha > 2$ $\text{mode}(X) = \frac{\beta}{\alpha + 1}$
Normal - univariate	$X \sim N(\mu, \sigma^2)$ μ location $\sigma > 0$ scale	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\} \\ -\infty < x < \infty$	$E[X] = \mu$ $var(X) = \sigma^2$ $mode(X) = \mu$
Normal - multivariate	$\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ $\mathbf{X} = (X_1, X_2, \dots, X_p)^T$ Σ symmetric, positive definite $p \times p$ matrix	$(2\pi)^{-p/2} \Sigma ^{-1/2} \times \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$	$E[\mathbf{X}] = \boldsymbol{\mu}$ $\operatorname{var}(\mathbf{X}) = \Sigma$ $\operatorname{mode}(\mathbf{X}) = \boldsymbol{\mu}$
${ m t\text{-}distribution} \ { m (non\text{-}central)}$	$X \sim t_{\nu}(\mu, \sigma^2)$ $\nu > 0$ degrees of freedom μ location $\sigma > 0$ scale	$\frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sigma\sqrt{\nu\pi}} \left(1 + \frac{1}{\nu} \left(\frac{x-\mu}{\sigma}\right)^2\right)^{-(\nu+1)/2} - \infty < x < \infty$	$E[X] = \mu, \nu > 1$ $var(X) = \frac{\nu}{\nu - 2} \sigma^2, \nu > 2$ $mode(X) = \mu$
Uniform	$X \sim U(a, b)$ boundaries a, b b > a	$a \le x \le b$	$E[X] = \frac{1}{2}(a+b)$ var(X) = $\frac{1}{12}(b-a)^2$

Based on Appendix A of Bayesian Data Analysis, A. Gelman, J. Carlin, H. Stern and D. Rubin