Project quotation

The projects intention is to create a video tracking solution which can identify and follow customers path in a small store. The project solution provides the customer tracking framework for a cashierless store, and when connected to a product identification and tracking system, the solution can cut employment cost, raise customer satisfaction and provide a technological advantage over the competitors who do not have a similar system.

We are planning with 20 cameras in this quotation, but this number can change based on the assignment and what the optimal solution is. The video material is collected first, then sent to an API to get back data on the customer, id, path and actions.

The delivery includes a Machine Learning algorithm, to identify, track and keep an account of the customers actions and the list of what they bought, plus to provide an API link where the real time collected data should be sent for analysis of the AI model.

<u>Project outlines</u> Identified tasks.

Task	Complexity	Description	Considerations
Requirement analysis	Medium	Careful planning stage	-Domain expert from the customers
		about what are the	side must be involved.
		requirements of the	-Concrete expectations, deadlines and
		model, the accuracy, the	evaluation goals need to be set.
		scale, the hardware and	
		the data quality.	
Train object detector	Hard	Gathering training data	- Data needs to be relevant, correctly
and ReID algorithm and train		and training an object	labeled, diverse and include edge
		detector and ReID	cases.
		algorithm on it.	- Data needs to be relevant to the
			hardware we will be using.
			- Consider using existing OD and ReID
			solutions.
Create tracking	Medium	Developing an	- Consider using existing tracking
algorithm and merge		identification solution,	solutions.
between cameras		which can track a person	- By this time consider the accuracy of
		through the whole store	the prototype system, and see if the
		using several cameras.	goals are realistic and reachable.
Develope API			-Consider the circumstances of
		network system for the	internet connection on site compared
		on-site hardware to	to the amount of data traffic.
		communicate with the id	- Consider the scale of the API system
		and tracking algorithms.	(1 store or 1000 stores)
Improvement of	Medium	Further improving both	-Make clear and consensus-based
algorithms and API		the models and the	priorities, first implement / improve
		communication between	the necessary components, and add
		the hardware and the	extra features after.
		models based on	- Constantly monitor the systems
		customer feedback on	performance
		prototype.	- Have a backup, in case of
			unsuccessful "improvements".

Identified risks.

Risk	Cause	Effect	Countermeasure
Prolonged project	Preliminary metric	More time/resources	Set very clear timeframes
duration	results are not	allocated away from	and a minimum expected
	sufficient.	other parts of the	requirement for the project,
		project.	based on a metric that
			makes sense for our
			purpose. If the
			requirements are not met
			until the timeframe, we
			move on to another project.
Low model accuracy	Low model quality,	Model sends wrong	Diversifying the training
	low quality	bill to a person	data (skin color, seasonal
	training/inference		clothes, different lighting),
	data.		including edge cases and in-
			store images.
Choosing the wrong	Evaluating models	We might end up	Careful planning and
metric	on wrong metrics	choosing a metric	communication about what
	can have very	which does not	metrics are important to our
	undesirable effects	represent our case	case and why will help to
	in inference.	and question well, and	deliver a relevant model
		thus leads us to	solution to our question.
		succeeding at the	
		wrong question and	
		failing to answer the	
		right question.	
Legal issues	GDPR : The EU	Limited amount and	Discuss with legal team
	market has strict	quality of data	what is exactly allowed and
	regulations about	available to use, and	what is not. See if our
	how online data,	constant legal	products terms could
	and information	considerations. Slows	include data storage.
	about people is	down our process and	Find a solution to
	stored and	limits our possibilities,	anonymize the people in
	processed.	creates disadvantage	inference stage.
		compared to	
		companies in other	
	16	regions.	
Lack of quality in	If our training data is	Our model will be	-Aim to find varied datasets
training data	badly labelled, the	much less successful	online.
	model will learn	in doing its job on a	-Purchase a dataset.
	ambiguous or wrong	variety of unseen	-Create own dataset and
	answers.	data, ex.: people in different clothes	annotations.
	If the data has low		-Start to collect data from
	variety, the model will have a narrow	based on time of the	the store ASAP to help the
		year.	model learn the local
	knowledge of the		patterns.
	subject.		

Requirements from the customer

Requirement	Value	Request
A responsible contact	The project status can be	At least one domain expert person
person in the company.	updated and discussed, plus	from the customers who is accessible
	system critical questions can	during the project.
	be asked from the domain	
	experts / representatives.	
Access to the store facilities	By accessing the store	Access to the store at pre planned
	facilities, the team can	times.
	familiarize themselves with	Access to the store at night according
	the circumstances and plan	to pre-planned times (max 10 times).
	ahead accordingly, plus try	
	mock-ups and prototypes on	
	site.	
Accepting guidelines about	By conforming to the	Cameras should be able to record
camera, lighting and store	recommended picture	1920*1080-pixel size images, 30
layout specifications	quality, lighting and store	frames per second.
	layout requirements, we can	The camera focus area has to be well
	drastically increase the	lit, with a minimum of 500 lux.
	success chance for our	Store layout needs to be grid-like or
	project.	laid out by mutual agreement (or
		eventually raise the number of
		cameras.

Delivery requirements

Requirement	Value	Test method	
High accuracy on identifying	Lower limit = 98%	10x1 minutes test on a recorded video	
a person		with single and multiple people.	
		3x5 minutes test on a live video with	
		multiple people.	
		Different time of day, types of	
		clothing and ethnicity must be tested.	
High precision (based on	Lower limit for precision =	10x3 minutes test on a recorded video	
frame-by-frame bounding	98%	with single and multiple people.	
box proximity) and low	Higher limit for latency = 0.5s	10x3 minutes test on a live video	
latency of reidentification		feed, preferably on-site with multiple	
		people.	
		Different time of day, types of	
		clothing and ethnicity must be tested.	
Person tracking with low	Higher limit for	10x3 minutes test on a recorded video	
track fragmentation, high	fragmentation= 4 (we "lose"	with single and multiple people.	
correctly detected track	track of a person maximum 3	10x5 minutes test on a live video	
	times, that creates 4 part of	feed, preferably on- site with multiple	
	the same track).	people.	
	Lower limit for correctly	Different time of day, types of	
	detected track = 95%	clothing and ethnicity must be tested.	

Deliveries

#	Delivery	Delivery date	Handover
D1	Demo on video with single	1/4/2023	Object detection-; ReID-; Interaction detection-;
	camera		Tracking algorithms working on a live camera
			feed.
D2	In-store PoC	1/7/2023	Merging the tracks between several cameras.
			Up and running cloud pipeline and API.
			Previous algorithms are fine-tuned.
			The prototype system deployed on site in one
			store.
D3	Beta release	1/10/2023	Further improvement of the deployed
			algorithms.
			Evaluation of the system happens live.
			Improving infrastructure before coming scale-
			up.
D4	Release v1.0	1/1/2024	Delivery of the system to many stores.
			Providing cloud pipelines and API access on
			scale.
			Crash-course on the system, its importance and
			application for the client.

Project cost

Description	Amount	Price per unit	Price
Requirement analysis (1 week – 1 pers)	40 h	1,000 kr	40,000 kr
Data exploration (4 weeks – 4 pers)	640 h	1,000 kr	640,000 kr
Least effort model training (5 weeks – 3 pers)	600 h	1,000 kr	600,000 kr
Feasibility check (2 week – 2 pers)	160 h	1,000 kr	160,000 kr
D1 Delivery	1440 h		1,440,000 kr
Model improvement (6 weeks – 3 pers)	720 h	1,000 kr	720,000 kr
Proof-of-concept installation (6 weeks – 3 pers)	720 h	1,000 kr	720,000 kr
D2 Delivery	1440 h		1,440,000 kr
Model improvement (12 weeks – 2 pers)	960 h	1,000 kr	960,000 kr
D3 Delivery	960 h		960,000 kr
Model improvement (12 weeks – 2 pers)	960 h	1,000 kr	960,000 kr
D4 Delivery	960 h		960,000 kr
	Total price:		4,800,000 kr

Other project costs:

- Cost table does NOT include the cloud data storage / data download and cloud computing costs.
- Cost for the hardware (cameras), and their installation costs are not included.
- Cost for a product identification and purchased product tracking is not included.