

Taller #3

- 1. Demuestre o refute: Si u y v son los únicos vértices de grado impar en un grafo simple G, entonces G contiene un u, v-camino.
- 2. Sea G un grafo simple. Encuentre una fórmula para calcular $d_{\overline{G}}(v)$ (el grado de un vértice v en \overline{G}) en función de $d_G(v)$ (el grado de v en G).
- 3. ¿Cuál es el orden de un grafo 4-regular de tamaño 10? Después de obtener analíticamente la respuesta, dibuje un ejemplo.
- 4. Un conjunto de vértices V' de un grafo G = (V, E) es un corte por vértices o un conjunto de separación si G V' es disconexo. Demuestre que todo grafo conexo, excepto K_n , tiene un conjunto de separación.
- 5. Si G es un grafo no completo, la conectividad por vértices de G, notada $\kappa(G)$, es el mínimo número de vértices en un corte por vértices. Se define $\kappa(K_n) = n-1$, el número necesario de vértices que se deben remover para producir un vértice aislado. Así, $\kappa(G)$ es el número mínimo de vértices que se deben remover para desconectar G o para producir un grafo con un solo vértice. Se dice que un grafo es k-conexo o k-conexo por vértices si $\kappa(G) \geq k$.
 - Verifique que $0 \le \kappa(G) \le n(G) 1$
 - Verifique que $\kappa(G) = 0$ sii G es disconexo o $G = K_1$.
 - Verifique que $\kappa(G) = n 1$ sii $G = K_n$.
- 6. Calcule $\kappa(G)$ para los siguientes grafos:

7. Escriba (si es posible) un circuito o un sendero euleriano en el siguiente grafo:

