

FACULTAD DE CIENCIAS E INGENIERÍA CARRERA DE INGENIERÍA DE SOFTWARE

TEMA:

Ficha Técnica

AUTORES:

ARELLANO URGILES RONNY ISAAC

ASIGNATURA:

MODELOS MATEMATICOS

DOCENTE:

Morales Torres Fabricio

PERIODO:

Abril 2025 a Julio 2025

MILAGRO-ECUADOR

NeuroMate - Sistema Matemático Inteligente

1. RESUMEN

NeuroMate es una aplicación de escritorio interactiva desarrollada en Python con PyQt5. Su propósito es facilitar el aprendizaje, análisis y solución de problemas matemáticos en áreas como álgebra lineal, cálculo, ecuaciones diferenciales y estadística computacional. El sistema integra módulos funcionales para trabajar con matrices, vectores, polinomios, gráficos bidimensionales y tridimensionales, ecuaciones diferenciales ordinarias (EDO), generación de números, simulación Monte Carlo, modelos predictivos avanzados, y más, todo dentro de una interfaz moderna, intuitiva y modular.

2. OBJETIVOS DEL PROYECTO

Objetivo general:

Desarrollar una herramienta matemática visual que integre varias áreas de las matemáticas aplicadas en un entorno amigable de escritorio.

Objetivos específicos:

- Facilitar la resolución y manipulación de operaciones con matrices, vectores y polinomios.
- Proporcionar soporte para la visualización gráfica 2D y 3D de funciones matemáticas.
- Implementar métodos numéricos para la resolución de ecuaciones diferenciales ordinarias.
- Ofrecer herramientas para generación y análisis de números aleatorios.

- Implementar simulación Monte Carlo para integración y cálculo probabilístico.
- Incorporar un modelo matemático predictivo basado en investigación científica reciente.
- Integrar un módulo para cálculos relacionados con valores propios y vectores propios ("W Propios").
- Ofrecer una navegación sencilla mediante botones laterales y paneles dinámicos utilizando QStackedWidget.
- Mejorar la experiencia de aprendizaje mediante una interfaz visual clara, responsiva y profesional.

3. DISEÑO E IMPLEMENTACIÓN DEL SISTEMA

3.1. Arquitectura General

NeuroMate está diseñado con una arquitectura modular basada en un *QStackedWidget*, que permite mostrar distintas vistas dinámicamente según el botón seleccionado. Cada módulo está encapsulado en su propio archivo Python.

3.2. Módulos Principales

MÓDULO	FUNCIONALIDAD
Inicio	Panel principal con resumen, acceso rápido y navegación hacia los demás módulos.
Matrices	Operaciones básicas con matrices, cálculo de determinantes, inversas y solución de sistemas lineales.
Polinomios	Operaciones algebraicas, derivación e integración simbólica, evaluación y renderizado en LaTeX.
Vectores	Operaciones vectoriales como suma, resta, producto punto, producto cruzado y cálculo de magnitudes.
Funciones	Graficación avanzada en 2D y 3D de funciones matemáticas definidas por el usuario, con teclado de funciones integrado.

EDO	Implementación de métodos numéricos (Euler, Runge-Kutta) para solución de ecuaciones diferenciales ordinarias.
V&V Propios	Cálculo de valores y vectores propios de matrices, útil para análisis espectral y aplicaciones en álgebra lineal.
Generacion de numeros	Herramientas para generar números aleatorios, secuencias numéricas y análisis estadístico básico.
Simulación Montecarlo	Simulación Monte Carlo para integración numérica y cálculo probabilístico aplicado a funciones matemáticas.
Sistema de predicción	Modelo matemático predictivo basado en un artículo científico sobre COVID-19, con cuarentena y vacunación.
Acerca de	Información institucional, créditos y autores del proyecto.

3.3. Lenguaje y Herramientas

- Lenguaje principal: Python 3.x
- Framework GUI: PyQt5
- Dependencias adicionales: NumPy, SymPy, SciPy, Matplotlib, mpl_toolkits.mplot3d, entre otras.
- Empaquetado: Compatible con Pylnstaller

3.4. Interfaz Gráfica

Diseñada con estilos CSS personalizados para lograr una apariencia profesional. Utiliza íconos representativos para cada sección y botones con retroalimentación visual.

4. FUNCIONAMIENTO GENERAL

Estructura de navegación:

- Navegación: El usuario accede a los módulos mediante un panel lateral con botones, que cargan dinámicamente cada módulo en el área principal de trabajo.
- Diseño modular: Cada módulo tiene su propia lógica, diseño y funcionalidad encapsulada, permitiendo fácil mantenimiento y escalabilidad.
- Gestión de errores: Uso extensivo de manejo de excepciones y mensajes claros para asegurar estabilidad y usabilidad.

5. SIMULACIONES Y RESULTADOS

A continuación, se muestran los resultados de las pruebas en cada módulo:

Matrices:

Operaciones con matrices y solución de sistemas lineales.

Sistemas Lineales:

Vectores:

Manipulación simbólica, evaluación y renderizado.

Polinomios:

Operaciones vectoriales con validación de entradas.

$$\int \frac{5xy}{6} \, dx = \frac{5x^2y}{12} + C$$

Gráficas 2D:

Visualización gráfica 2D y 3D de funciones matemáticas.

GRAFICA 3D:

EDO:

Solución numérica de ecuaciones diferenciales con métodos estándar.

V&V Propios:

Cálculo exitoso de valores y vectores propios.

Generación de Números:

Producción y análisis de números aleatorios.

MonteCarlo:

Simulación y cálculo probabilístico aplicado a integrales.

Modelo matemático predictivo:

Resultados alineados con el modelo epidemiológico basado en la investigación.

6. ANÁLISIS Y DISCUSIÓN

- Su estructura modular permite agregar nuevas funciones fácilmente.
- El diseño visual mejora la comprensión de los resultados obtenidos.
- El uso de estilos y animaciones brinda una experiencia moderna y profesional.

7. REQUISITOS DEL SISTEMA

- Sistema operativo: Windows 10 o superior
- Resolución mínima: 1366x768 px
- Entorno de desarrollo: Python 3.10+
- Dependencias: PyQt5, NumPy, SciPy, Matplotlib, SymPy

8. CONCLUSIONES

NeuroMate representa una herramienta robusta e integral que combina matemáticas aplicadas, visualización y predicción. Su diseño modular, interfaz moderna y fundamento científico permiten una experiencia efectiva tanto en el aprendizaje como en el análisis matemático.