Beyond CPLEX and Optim A Guide to Optimization Algorithms and Software

Jamie Fairbrother¹

¹STOR-i Centre for Doctoral Training, Lancaster University

STOR-i Seminar, 2016-06-02

Disclaimer

This talk is not an exhaustive overview.

Problem Types and Examples

Mixed Integer Linear Programs (MILPs) I

$$\begin{aligned} & \underset{x \in \mathbb{R}^n}{\text{minimize}} \ c^{\mathsf{T}} x \\ & \text{subject to} \ Ax \leq b \\ & x_i \in \{0,1\}, \ \text{for} \ i \in \mathcal{F} \\ & x_i \in \mathbb{R}_+, \ \text{for} \ i \notin \mathcal{F} \end{aligned}$$

where
$$c \in \mathbb{R}^n$$
, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
 $\mathcal{F} \subseteq \{1, \dots, n\}$

Special cases:

- Linear Program (LP) when $\mathcal{F} = \emptyset$
- Integer Program (IP) when $\mathcal{F} = \{1, \dots, n\}$

Mixed Integer Linear Programs (MILPs) II

Algorithms:

- LP: Simplex, interior point
- MILP: Branch-and-bound, cutting plane, heuristics

Problem contexts:

Knapsack, Networks, Regression, Portfolio Selection, Markov Decision Processes etc.

Example: k-partition problem I

Input:

- An undirected graph G = (V, E)
- A (rational) weight w_e for each edge $e \in E$

Aim: Partition nodes of a graph into k or fewer clusters such that the total weight of edges whose ends are in the same cluster is minimized

Example: k-partition problem I

Input:

- An undirected graph G = (V, E)
- A (rational) weight w_e for each edge $e \in E$

Aim: Partition nodes of a graph into k or fewer clusters such that the total weight of edges whose ends are in the same cluster is minimized

Example: k-partition problem II

IP formulation:

min
$$\sum_{e \in E} w_e y_e$$

s.t. $\sum_{c=1}^k x_{vc} = 1$ $(v \in V)$
 $y_{uv} \ge x_{uc} + x_{vc} - 1$ $(\{u, v\} \in E, c = 1, ..., k)$
 $x_{uc} \ge x_{vc} + y_{uv} - 1$ $(\{u, v\} \in E, c = 1, ..., k)$
 $x_{vc} \ge x_{uc} + y_{uv} - 1$ $(\{u, v\} \in E, c = 1, ..., k)$
 $x_{vc} \in \{0, 1\}$ $(v \in V, c = 1, ..., k)$
 $y_{uv} \in \{0, 1\}$ $(\{u, v\} \in E)$.

where
$$x_{vc} = \begin{cases} 1 & \text{if node } v \text{ assigned to subset c} \\ 0 & \text{otherwise} \end{cases}$$

$$y_{uv} = \begin{cases} 1 & \text{if nodes } u, \ v \text{ in same subset} \\ 0 & \text{otherwise} \end{cases}$$

Example: k-partition problem III

Applications:

- VLSI circuit design (Barahona et al 1988)
- Statistical physics (Barahona et al 1988)
- Scheduling (Carlson and Nemhauser 1966)
- Telecommunications (Resend and Pardalos 2008)
- Numerical linear algebra
- Statistical clustering/data mining

Second-order cone programs (SOCPs) I

minimize
$$c^T x$$

subject to
 $\|A_i x + b_i\|_2 \le c_i^T x + d_i$ for $i = 1, ..., m$
 $Fx \le g$

Second-order cone programs (SOCPs) II

Special cases:

• Quadratic Programs (QP)

$$\underset{x \ge 0}{\text{minimize}} \ \frac{1}{2} x^T P_0 x + q_0^T x + r_0$$
subject to $Ax \le b$

Quadratically Constrained Quadratic Programs (QCQP)

minimize
$$\frac{1}{2}x^T P_0 x + q_0^T x + r_0$$
subject to
$$\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0 \text{ for } i = 1, \dots, p.$$

where $q_i \in \mathbb{R}^n$ and $P_i \in \mathbb{S}^n$ are positive semidefinite (PSD)

Second-order cone programs (SOCPs) III

Extension: Mixed integer second-order cone program (MISOCP)

minimize
$$c^T x$$

subject to
$$\|A_i x + b_i\|_2 \le c_i^T x + d_i \qquad \text{for } i = 1, \dots, m$$

$$Fx \le g$$

$$x_i \in \{0, 1\}, \text{ for } i \in \mathcal{F}$$

$$x_i \in \mathbb{R}, \text{ for } i \notin \mathcal{F}$$

which has as special cases mixed integer quadratic programs (MIQP) and mixed integer quadratically constrained quadratic programs (MIQCQP).

Algorithms

QP: quadratic simplex, conjugate gradient

QCQP/SOCP: interior point (homogenous self-dual method)

Applications

Portfolio selection (Markowitz model), robust regression, robust linear programming, maxima/sums of Euclidean norms (e.g facility location)

Example: Sparse least-squares regression I

Let $X \in \mathbb{R}^{n \times p}$ be the design matrix, and $y \in \mathbb{R}^n$ the response vector.

$$\begin{aligned} & \underset{\beta \in \mathbb{R}^p}{\text{minimize}} & \left\| y - X\beta \right\|_2^2 \\ & \text{subject to} & \left\| \beta \right\|_0 \leq k \end{aligned}$$

where
$$\|\beta\|_0 = \#\{i : |\beta_i| > 0\}.$$

Example: Sparse least-squares regression II

Introduce variables z_i to indicate whether component i is used:

$$\label{eq:subject_equation} \begin{split} & \underset{\beta,z}{\text{minimize}} & \|y - X\beta\|_2^2 \\ & \text{subject to} & \sum_{i=1}^p z_i \leq k \\ & - \mathcal{M} z_i \leq \beta_i \leq \mathcal{M} z_i \text{ for } i = 1, \dots, p \\ & z_i \in \{0,1\} \text{ for } i = 1, \dots, p \\ & \beta \in \mathbb{R}^p \end{split}$$

which is an MIQP.

Semidefinite Programs (SDPs) I

Recall: A symmetric matrix $A \in \mathbf{S}^n$ is called *positive semidefinite* (psd) if one of the following equivalent conditions holds:

- A = P^TP for some $P \in \mathbb{R}^{n \times n}$
- $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$
- A has non-negative eigenvalues

If A is psd we write $A \geq 0$

Semidefinite Programs (SDPs) II

minimize
$$c^T x$$

subject to $x_1 F_1 + \ldots + x_n F_n + G \geq 0$
 $Ax = b$,

where $G, F_1, \ldots, F_n \in \mathbf{S}^k$.

Algorithms: interior point

Applications: combinatorial optimization, robust optimization

Example: k-partition relaxation I

For a given partition, let $X \in \{0,1\}^{n \times n}$ be the matrix such that for each $u, v \in V$:

$$X_{uv} = \begin{cases} 1 & \text{if } u, v \text{in same subset} \\ 0 & \text{otherwise} \end{cases}$$

then, it can be shown that:

$$X \succcurlyeq 0$$
$$kX - J \succcurlyeq 0$$

where J is the all-ones $n \times n$ matrix.

Example: k-partition relaxation II

This motivates that following SDP relaxation:

minimize
$$\sum_{u,v\in V} X_{uv}$$
 subject to $X_{vv}=1$ for all $v\in V$ $kX-J\succcurlyeq 0$ $X\succcurlyeq 0$.

Non-linear programs

Two different types of problem:

- Unconstrained/box-constrained
- Constrained

Unconstrained/Box Constrained NLPs

```
minimize f(x)

subject to

l_i \le x_i \le u_i for i = 1, ..., n.
```

Algorithms:

Gradient-free: Nelder-Mead, simulated-annealing, Baysian global

optimization, Brent (1D bisection-based)

Gradient based: Gradient-descent, Conjugate gradient, BFGS,

L-BFGS, Newton

Constrained NLPs

minimize
$$f(x)$$

subject to
$$f_i(x) \leq 0 \qquad \text{for } i = 1, \dots, k,$$

$$h_i(x) = 0 \qquad \text{for } i = 1, \dots, I,$$

Algorithms: Interior Point, Lagrangian, COBYLA (gradient-free), Heuristics

Applications: MLEs, experimental design, physical problems, (all of the above)

Solvers

Modelling and Solver Landscape

User-friendliness

High-level language bindings

Solver API (C/C++)

Control and Flexibility

"One-shot" optimizers

- Some languagess provide "one-shot" functions for solving simple problem classes:
 - optim in R for solving unconstrained NLPs
 - linprog and quadprog in Matlab for solving LPs and QPs
- These functions are convenient for simple problems but much less well-developed than solver APIs
 - Bad at modelling complicated problems
 - Limited customizability
 - Slow
- Use dedicated solver packages for difficult research problems!

Considerations for choosing a Solver API I

- Speed
- Open source/commercial
- Modelling capabilities
- Solver customization:
 - Available algorithms
 - Warm-starts
 - Call-backs

Considerations for choosing a Solver API II

- Ease of use:
 - Interface
 - Installation
 - Language bindings
- Support

Solvers and Problem-Types

Solver	Open/Commercial	LP	MILP	SOCP	SDP	NLP
CPLEX	Commerical	Χ	Х	Χ		
Gurobi	Commercial	Χ	Х	Χ		
CLP/CBC	Open	Χ	Х			
GLPK	Open	Χ	Х			
Mosek	Commercial	Χ	Х	Χ	X	Х
Ipopt	Open	Χ				Х
NLOpt	Commercial					Х

Table : Solver modelling capabilities

 All of these solvers have interfaces for Python, R, Julia and Matlab.

CPLEX

- Developed by Robert Bixby and released commercially in 1988.
- State-of-the-art solver for LPs, MILPs, SOCPs and SOCIPs.
- Free academic licence available
- Features: problem modification, warm-starts, multithread-support, call-backs

- Gurobi is named after its founders: Zonghao **Gu**, Edward **Ro**thberg and Robert **Bi**xby and released in 2009.
- State-of-the-art solver for LPs, MILPs, SOCPs and SOCIPs.
- Free academic licence easily available
- Features: problem modification, warm-starts, multithread-support, call-backs

COIN Solvers (CLP, and CBC)

- COIN-OR is an initiative founded in 2000 promoting the development of open source software for OR
- COIN-OR has a LP solver CLP and a MILP solver CBC
- Mature, well-supported libraries which are easily available
- Not under active development

GLPK

- GNU Linear Programming Kit (GLPK) was first released in 2000
- Mature, well-supported libraries which are easily available
- GNU MathProg modelling language
- Not as fast as COIN-OR solvers

Mosek

- First launched in 1997, MOSEK is a tool for solving a variety of optimization problems
- Free academic licence available
- LP and MILP solvers not as fast as CPLEX and Gurobi, but supports solution of SOCP, SDP and other convex problems (using interior point methods)

Ipopt

- IPopt (Interior Point optimization) is a COIN-OR project for solving constrained non-linear (convex) optimization problems
- Mature and well-supported library

NLOpt

- NLOpt (Non-Linear Optimization), initially released in 2008, provides a variety of algorithms for solving constrained and unconstrained non-linear optimization problems
- Algorithms for gradient-based and gradient free optimization
- Algorithms for local and global optimization

Remarks and Other Solvers

- Commercial solvers tend to be faster and more reliable
- Open solvers more transparent (can view source)

MILP and Conic Solvers: SCIP (open, MILP), SCS (open, SOCP, SDP), ECOS (open, SOCP)

Non-linear Solvers: KNITRO (commercial, NLP)

Modelling Tools

Modelling Languages (MLs)

- Implementing an optimization using a solver API can be tedious and error prone
- MLs are tools which make modelling much more intuitive
- Allow one to code a structured problem in a way which represents the algebraic model
- Independent of problem input data
- Often independent of solver

AMPL Example

```
set NUTR ordered:
  set FOOD ordered:
3
  param cost \{FOOD\} >= 0;
  param n_min\{NUTR\} >= 0, default 0;
  param n_max{i in NUTR} >= n_min[i], default Infinity;
  param amt{NUTR,FOOD} >= 0:
8
  var Buy{i in FOOD} integer;
  minimize Total_Cost: sum{j in FOOD} cost[j] * Buy[j];
12
  subject to Diet {i in NUTR}:
14 \mid n_{\min}[i] \le sum\{i \text{ in FOOD}\} \text{ amt}[i,i]*Buy[i] \le n_{\max}[i];
15
```

Listing 1: Diet problem in AMPL

JuMP Example

```
_{1}|_{m} = Model()
2
  @defVar(m, minNutrition[i] <= nutrition[i=1:</pre>
      numCategories | <= maxNutrition[i])</pre>
  QdefVar(m, buy[i=1:numFoods] >= 0)
5
  @setObjective(m, Min, dot(cost, buy))
7
  for j = 1: numCategories
    @addConstraint(m, sum{nutritionValues[i,j]*buy[i], i
9
      =1:numFoods == nutrition[i])
10 end
  status = solve(m)
13
```

Listing 2: A Diet problem in JuMP (Julia)

- Commercial MLs are stand-alone pieces of software and can lack flexibility
- Academic licences are available but can be quite restrictive
- Open source MLs are usually embedded in existing programming languages¹
- This additional flexibility can make them seem less user-friendly

Commercial MLs: Lindo, Xpress-Mobel, MPL, AMPL, AIMMS MathProg, FlopC++, Pyomo (Python), Open MLs: JuMP (Julia), CVX² (Matlab/Octave)

¹MathProg is stand-alone

²Tool primarily for convex optimization

Final Remarks

Tips

- Providing solvers with initial solutions can greatly improve running time and output
- More specific solvers are faster as they can exploit problem structure
- If problem seems intractible, try reparameterising or a different formulation
- Solver-independent modelling tools are less error-prone, more readable and portable

Conclusions

- Dedicated solvers are more suitable than "one-shot" optimizers for difficult research problems
- Solvers libraries are typically written in C/C++ but have bindings for high-level languages like R and Julia
- Choice of solver primarily determined by problem type, but other factors such as speed and licence are important
- Modelling tools simplify the task of implementing optimization problems