

RÉSEAUX DE NEURONES RÉCURRENTS RECURRENT NEURAL NETWORKS (RNN)

Projet de Traitement de l'Écrit

20 février 2015

NET OUTPUT OUTPUT GATE CEC FORGET GATE INPUT GATE NET INPUT

G4E Thomas Robert

Université de Rouen

Sommaire

- 1 Architectures classiques de RNN
 - Historique
 - Architectures
 - Apprentissage
 - Applications
- 2 Nouvelles architectures de RNN
 - Historique
 - Principe
 - Architectures
 - Apprentissage
 - Applications
- 3 Conclusion
- 4 BIBLIOGRAPHIE

Architectures classiques de RNN

Architectures classiques de RNN

Historique

- 1943 : Le neurone formel [McCulloch43] Une représentation mathématique d'un neurone biologique.
- 1949: Loi d'adaptation [Hebb49]
- 1958 : Le perceptron [Rosenblatt58]
- 1986 : Le réseau récurrent de Jordan et Elman [Jordan86]

Le neurone formel

FIGURE 1: Le neurone formel – Source :

- \mathbf{x}_i : entrées
- \blacksquare w_i : poids
- \blacksquare f : fonction d'activation
- **■** *b* : biais
- \hat{y} : sortie du neurone

Architectures classiques de RNN 00000000000

Réseau de neurones non-récurrent

FIGURE 2: Réseau de neurones feed-forward - Source : Cours R. HÉRAULT & P. LERAY

Architecture générale

FIGURE 3: Réseau de neurones récurrent - Source : Cours R. HÉRAULT & P. LERAY

Architectures classiques de RNN 000000000000

RNN d'Elman

FIGURE 4: RNN d'Elman - Source : wikimedia.org

■ La couche $u_1...u_n$ sert de mémoire pour l'état précédent

Architectures classiques de RNN

Echo State Networks

FIGURE 5: Echo State Network - Source: Université de Ulm

- Par JAEGER en 2001 [Jaeger01]
- Pas d'architecture précise
- Réservoir de neurones faiblement connectés aléatoirement entre eux (*Reservoir computing*)

Architectures classiques de RNN

Liquid State Machines

FIGURE 6: Liquid State Machine - Source : F. PONULAK

- Par Maass, Natschläger et Markram en 2002 [Maass02]
- Principe proche des *Echo State Network*
- Réseau de neurones à décharge (spiking neural network)
- Pas d'architecture précise
- Réservoir de neurones connectés aléatoirement entre eux

- Les deux méthodes les plus communes
 - Real Time Recurrent Learning (RTRL) [Robinson87]
 - BackPropagation Through Time (BPTT) [Williams89]

Architectures classiques de RNN 000000000000

Apprentissage

RTRL

- On calcul le gradient de l'erreur par rapport aux poids et on met à jour les poids à chaque pas de temps en conséquence
- Complexité $\mathcal{O}((n+l)^4)$ (*n* entrées, *l* sorties)

Apprentissage

BPTT 1/2

- Déplier le réseau pour l'approximer par un réseau non récurrent
- On applique une backprogation classique sur le réseau déplié

FIGURE 7: Exemple de RNN à l'instant t

FIGURE 8: RNN déplié jusqu'à l'instant t-1

000000000000

BPTT 2/2

- Défaut : Difficile d'utiliser cette méthode sur toute la période
 - On limite aux k dernières itérations : on oublie des informations
- Complexité $\mathcal{O}(t \times n^2)$ (*n* neurones, *t* étapes temporelles)

Architectures classiques de RNN

Application

- Très peu d'applications publiées basées sur des RNN simples
 - Apprentissage de trajectoires d'espace d'état dans un RNN [Pearlmutter89]
 - Résolution de l'équation de Sylvester à coefficients variables dans le temps [Zhang02]
 - Modélisation prosodique du Mandarin et application à la reconnaissance de la parole [Wang02]

Nouvelles architectures de RNN

Motivation

- Les réseaux de neurones récurrents classiques conservent l'information sur une courte durée (une dizaine d'itérations maximum)
- 1991 : Démonstration de ce problème par la thèse de Sepp Hochreiter (encadré par Jürgen Schmidhuber) [Hochreiter91]
- Recherche de solutions à ce problème par Schmidhuber & Hochreiter

Apparition des LSTM

- **1997**: Hochreiter et Schmidhuber publient un article nommé "Long short-term memory" [Hochreiter97] (fig. 9)
- 2000 : Ajout de la « forget gate » au modèle par Gers, Schmidhuber et Cummins [Gers00] (fig. 10)

FIGURE 9: LSTM orignal

FIGURE 10: Ajout de la « forget gate »

Développement des LSTM

Le travail sur les LSTM a été poursuivi par Schmidhuber et ses thésards et collaborateurs, en particulier Alex Graves.

- 2001 : Apprentissage des langues [Gers01]
- 2003 : Apprentissage de timings [Gers03]
- 2005 : Reconnaissance de phonèmes [Graves05a; Graves05b]
- 2006 : Apprentissage de données non-segmentées [Graves06]
- 2009 : Reconnaissance de l'écriture [Graves09a; Graves09b]
- 2013 : Reconnaissance de la parole [Graves13a]

Livre de référence : Graves, Supervised sequence labelling with recurrent neural networks [Graves12]

Principe

Cellule d'un LSTM

- Cellule mémoire au centre
- Portes controllant le flux d'information entrant / sortant / restant dans la cellule.
- Permettent de conserver de l'information durablement si besoin.
- Peuvent être vues comme des opérations :
 - Ecriture (input gate)
 - Lecture (output gate)
 - Réinitialisation (forget gate)

FIGURE 11: Cellule LSTM – Source : [Graves 13b]

Principe

Exemple de comportement possible

FIGURE 12: Exemple pour un RNN - Source : [Graves 12]

FIGURE 13: Exemple pour un LSTM - Source : [Graves 12]

Architectures classiques de RNN

RNN

FIGURE 14: RNN classique - Source : [Graves 13b]

Architectures classiques de RNN

RNN bidirectionnel

FIGURE 15: RNN bidirectionnel - Source: [Graves 13b]

RNN bidirectionnel profond

FIGURE 16: RNN bidirectionnel profond - Source : [Graves 13b]

Architecture LSTM

FIGURE 17: Architecture LSTM - Source : [Graves 12]

LSTM bidirectionnel profond

FIGURE 18: LSTM bidirectionnel profond (DB-LSTM) - Source : [Graves 13b]

Apprentissage

- Utilisation de méthodes d'apprentissage classique adaptées :
 - Real Time Recurrent Learning (RTRL) [Robinson87]
 - BackPropagation Through Time (BPTT) [Williams95]
- Possibilité d'approximer le gradient à chaque instant indépendamment des autres avec le RTRL
- Possibilité de calculer le gradient exact avec la BPTT [Graves05b]

Applications

Applications

- Prédiction de la structure de protéines [Sonderby14]
- Génération de musique [Eck02]
- Reconnaissance de l'écriture [Graves09a; Graves09b]
 - Meilleure performance à l'état de l'art. Gain de 3 compétitions à l'ICDAR 2009.
- Reconnaissance de la parole [Graves13a; Graves13b]
- Reconnaissance d'objets [Ciresan11a]
 - Gain de la compétition IJCNN 2011 en reconnaissance de panneaux de signalisation [Ciresan11b]
- Etc. (voir l'interview de Schmidhuber [Angelica12])

Conclusion

- Les réseaux de neurones sont apparus dans les années 1950-60, et les RNN dans les années 1980.
- Premiers résultats peu concluants
- Regain d'intérêt avec :
 - Augmentation de la puissance de calcul
 - Nouvelles méthodes (Deep Learning, LSTM, ...)
- Les LSTM offrent actuellement les meilleures performances à l'état de l'art sur de nombreux problèmes
- Méthodes jeunes, peu sorties des labos, recherche active

Bibliographie

Bibliographie I

Architectures classiques de RNN

Amara D. Angelica et Jürgen Schmidhuber. How bio-inspired deep learning keeps winning competitions. 2012. URL: http://www.kurzweilai.net/how-bio-inspireddeep-learning-keeps-winning-competitions.

Dan C CIREŞAN et al. "High-performance neural networks for visual object classification". In: arXiv preprint arXiv:1102.0183 (2011).

Dan CIREŞAN et al. "A committee of neural networks for traffic sign classification". In: Neural Networks (IJCNN), The 2011 International Joint Conference on. IEEE. 2011, p. 1918-1921.

D. Eck et J. Schmidhuber. "Finding temporal structure in music: blues improvisation with LSTM recurrent networks". In: Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing, 2002. 2002, p. 747-756. DOI: 10.1109/NNSP.2002.1030094.

Felix A Gers, Jürgen Schmidhuber et Fred Cummins. "Learning to forget: Continual prediction with LSTM". In: Neural computation 12.10 (2000), p. 2451-2471. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.5709& rep=rep1&type=pdf.

Bibliographie II

Architectures classiques de RNN

Felix A Gers et Jürgen Schmidhuber. "LSTM recurrent networks learn simple context-free and context-sensitive languages". In: Neural Networks, IEEE Transactions on 12.6 (2001), p. 1333-1340.

Felix A Gers, Nicol N Schraudolph et Jürgen Schmidhuber. "Learning precise timing with LSTM recurrent networks". In: The Journal of Machine Learning Research 3 (2003), p. 115-143. URL: http://machinelearning.wustl.edu/mlpapers/paper_files/GersSS02.pdf.

Alex Graves, Santiago Fernández et Jürgen Schmidhuber. "Bidirectional LSTM networks for improved phoneme classification and recognition". In: Artificial Neural Networks: Formal Models and Their Applications-ICANN 2005. Springer, 2005, p. 799-804. URL: http://www6.in.tum.de/pub/Main/Publications/Graves2005c.pdf.

Alex Graves et Jürgen Schmidhuber. "Framewise phoneme classification with bidirectional LSTM and other neural network architectures". In: Neural Networks 18.5 (2005), p. 602-610. URL: http://www.cs.toronto.edu/~graves/nn_2005.pdf.

Alex GRAVES et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks". In: Proceedings of the 23rd international conference on Machine learning. ACM, 2006, p. 369-376.

Bibliographie III

Architectures classiques de RNN

Alex Graves et Jürgen Schmidhuber. "Offline handwriting recognition with multidimensional recurrent neural networks". In: Advances in Neural Information Processing Systems. 2009, p. 545-552.

Alex Graves et al. "A novel connectionist system for unconstrained handwriting recognition". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 31.5 (2009), p. 855-868.

Alex Graves. Supervised sequence labelling with recurrent neural networks. T. 385. Springer, 2012.

Alex Graves, A-R Mohamed et Geoffrey Hinton. "Speech recognition with deep recurrent neural networks". In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE. 2013, p. 6645-6649.

Alex Graves, Navdeep Jaitly et A-R Mohamed. "Hybrid speech recognition with deep bidirectional LSTM". In: Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE. 2013, p. 273-278.

Donald Hebb. "0.(1949) The organization of behavior: A neuropsychological theory". In: New York ().

Bibliographie IV

Architectures classiques de RNN

Sepp Hochreiter. "Untersuchungen zu dynamischen neuronalen Netzen". In: Master's thesis, Institut fur Informatik, Technische Universitat, Munchen (1991).

Sepp Hochreiter et Jürgen Schmidhuber. "Long short-term memory". In: Neural computation 9.8 (1997), p. 1735-1780. URL: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97 lstm.pdf.

Herbert JAEGER. "The "echo state" approach to analysing and training recurrent neural networks-with an erratum note". In: Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 (2001), p. 34.

Michael I JORDAN. "Serial Order: A Parallel Distributed Processing Approach." In: (1986).

Wolfgang Maass, Thomas Natschläger et Henry Markram. "Real-time computing without stable states: A new framework for neural computation based on perturbations". In: Neural computation 14.11 (2002), p. 2531-2560.

Warren S McCulloch et Walter Pitts. "A logical calculus of the ideas immanent in nervous activity". In: The bulletin of mathematical biophysics 5.4 (1943), p. 115-133.

Bibliographie V

Architectures classiques de RNN

Barak A Pearlmutter. "Learning state space trajectories in recurrent neural networks". In: Neural Computation 1.2 (1989), p. 263–269.

Al Robinson et Frank Fallside. The utility driven dynamic error propagation network. University of Cambridge Department of Engineering, 1987.

F. ROSENBLATT. "The perceptron: A probabilistic model for information storage and organization in the brain". In: Psychological Review 65.6 (1958), p. 386–408.

Søren Kaae Sønderby et Ole Winther. "Protein Secondary Structure Prediction with Long Short Term Memory Networks". In: arXiv:1412.7828 [cs, q-bio] (déc. 2014). arXiv: 1412.7828. URL: http://arxiv.org/abs/1412.7828.

Wern-Jun Wang, Yuan-Fu Liao et Sin-Horng Chen. "RNN-based prosodic modeling for mandarin speech and its application to speech-to-text conversion". In: Speech Communication 36.3 (2002), p. 247-265.

Ronald J WILLIAMS et David ZIPSER. "A learning algorithm for continually running fully recurrent neural networks". In: Neural computation 1.2 (1989), p. 270-280.

Bibliographie VI

Architectures classiques de RNN

Ronald J WILLIAMS et David ZIPSER. "Gradient-based learning algorithms for recurrent networks and their computational complexity". In: Back-propagation: Theory, architectures and applications (1995), p. 433–486.

Yunong Zhang, Danchi Jiang et Jun Wang. "A recurrent neural network for solving Sylvester equation with time-varying coefficients". In: Neural Networks, IEEE Transactions on 13.5 (2002), p. 1053-1063.