Project Development Phase Model Performance Test

Date	19/11/2023	
Team ID	Team- 592406	
Project Name	Project - RECASEA	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.N	Parameter	Values	Screenshot
0.			
1.	Metrics	Regression Model: MAE - MSE - 0.00045258 RMSE - 0.0063617 R2 score - 0.9997101	# Define the parameter grid for GridSearchCV param_grid = { 'n_estimators': [50, 80, 100], 'nax_depth': [5, 10, 15] } # GridSearchCV for hyperparameter tuning grid_search = GridSearchCV(model, param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=-1) grid_search_fit(_Kreain, y_train) # Get the best parameters best_parame = grid_search_best_params_ print('Best_Parameters', best_params) # Get the best_model = best_model = grid_search_best_params Best_Parameters'
2.	Tune the Model	Hyperparameter Tuning - max_depth= 15 n_estimators= 100 n_jobs= -1 Validation Method - Cross Validation Mean CV score: 0.00066788	from sklearn.model_selection import cross_val_score # Perform cross_validation with the best model cv_scores = cross_val_score(best_model, features, target, cv=5, scoring='reg_mean_squared_error') # Concert negative MES scores to positive cv_scores = -cv_scores print("Cross-Validation Scores:", cv_scores) print("Cross-Validation Scores:", cv_scores) print("Meso (V Scores", cv_scores.mem()) Cross-Validation Scores: (0.0000066 0.00068057 0.0005358 0.00043496 0.00077843) Mean CV Score: 0.0006678839361575977

```
from sklearn.model_selection import GridSearchCV

# Define the parameter grid for GridSearchCV

param_grid = {
    'n_estimators': [50, 80, 100],
    'max_depth': [5, 10, 15]
}

# GridSearchCV for hyperparameter tuning
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=-1)
grid_search.fit(X_train, y_train)

# Get the best parameters
best_params = grid_search.best_params_
print("Best Parameters:", best_params)

# Get the best model
best_model = grid_search.best_estimator_
```

Best Parameters: {'max_depth': 15, 'n_estimators': 100}

```
from sklearn.model_selection import cross_val_score

# Perform cross-validation with the best model
cv_scores = cross_val_score(best_model, features, target, cv=5, scoring='neg_mean_squared_error')

# Convert negative MSE scores to positive
cv_scores = -cv_scores

print("Cross-Validation Scores:", cv_scores)
print("Mean CV Score:", cv_scores.mean())
```

Cross-Validation Scores: [0.00080966 0.00068057 0.0006358 0.00043496 0.00077843]
Mean CV Score: 0.0006678839361575977