Structured Data: Dependency, Testing (Kernel, RKHS)

Zoltán Szabó

zoltan (dot) szabo (at) polytechnique (dot) edu

∈ Structured Data: Learning, Prediction, Dependency, Testing
 M2 Data Science, University of Paris-Saclay
 Paris, France
 February 25, 2019

Overview

- Concepts from functional analysis:
 - normed-, inner product space,
 - convergent-, Cauchy sequence,
 - complete spaces: Banach-, Hilbert space,
 - continuous/bounded linear operators.

Overview

- RKHS:
 - different views:
 - continuous evaluation functional,
 - reproducing kernel,
 - positive definite function,
 - 4 feature view (kernel).
 - equivalence, explicit construction.

We define the 'length' of a vector.

 \mathcal{F} : vector space over \mathbb{R} . $\|\cdot\|:\mathcal{F}\to[0,\infty)$ is norm on \mathcal{F} , if

• ||f|| = 0 iff. f = 0 (norm separates points),

We define the 'length' of a vector.

 \mathcal{F} : vector space over \mathbb{R} . $\|\cdot\|:\mathcal{F}\to[0,\infty)$ is norm on \mathcal{F} , if

- ||f|| = 0 iff. f = 0 (norm separates points),
- $\|\lambda f\| = |\lambda| \|f\| \ \forall \lambda \in \mathbb{R}, \forall f \in \mathcal{F}$ (positive homogenity),

We define the 'length' of a vector.

 \mathcal{F} : vector space over \mathbb{R} . $\|\cdot\|:\mathcal{F}\to[0,\infty)$ is norm on \mathcal{F} , if

- ||f|| = 0 iff. f = 0 (norm separates points),
- ② $\|\lambda f\| = |\lambda| \|f\| \ \forall \lambda \in \mathbb{R}, \forall f \in \mathcal{F}$ (positive homogenity),

We define the 'length' of a vector.

 \mathcal{F} : vector space over \mathbb{R} . $\|\cdot\|:\mathcal{F}\to[0,\infty)$ is norm on \mathcal{F} , if

- ||f|| = 0 iff. f = 0 (norm separates points),
- $\|\lambda f\| = |\lambda| \|f\| \ \forall \lambda \in \mathbb{R}, \forall f \in \mathcal{F} \ (\text{positive homogenity}),$

Note:

- norm \Rightarrow metric: $d(f,g) = ||f g|| \Rightarrow$
- study continuity, convergence.

Normed space: examples

- $(\mathbb{R}, |\cdot|)$,
- $\left(\mathbb{R}^d, \|\mathbf{x}\|_p = \left[\sum_i |x_i|^p\right]^{\frac{1}{p}}\right), 1 \leq p.$
 - p = 1: $\|\mathbf{x}\|_1 = \sum_i |x_i|$ (Manhattan),
 - p = 2: $\|\mathbf{x}\|_2 = \sqrt{\sum_i x_i^2}$ (Euclidean),
 - $p = \infty$: $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$ (maximum norm).
- $\left(C[a,b], \|f\|_{p} = \left[\int_{a}^{b} |f(x)|^{p} dx\right]^{\frac{1}{p}}\right), 1 \leq p.$

 \mathcal{F} : vector space over \mathbb{R} . $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ is an inner product on \mathcal{F} if for $\forall \alpha_i \in \mathbb{R}, f_i, f, g \in \mathcal{F}$

 \mathcal{F} : vector space over \mathbb{R} . $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ is an inner product on \mathcal{F} if for $\forall \alpha_i \in \mathbb{R}, f_i, f, g \in \mathcal{F}$

- $\langle f,g\rangle=\langle g,f\rangle$ (symmetry),

 \mathcal{F} : vector space over \mathbb{R} . $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ is an inner product on \mathcal{F} if for $\forall \alpha_i \in \mathbb{R}, f_i, f, g \in \mathcal{F}$

- $\langle f,g\rangle=\langle g,f\rangle$ (symmetry),

 \mathcal{F} : vector space over \mathbb{R} . $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ is an inner product on \mathcal{F} if for $\forall \alpha_i \in \mathbb{R}, f_i, f, g \in \mathcal{F}$

- $\langle f,g\rangle=\langle g,f\rangle$ (symmetry),

Notes:

- 1, $2 \Rightarrow$ bilinearity.
- inner product \Rightarrow norm: $||f|| = \sqrt{\langle f, f \rangle}$.
- 1,2,3' ($\langle f, f \rangle \ge 0$) is called semi-inner product.

Inner product space: examples

- $(\mathbb{R}^d, \langle \mathbf{x}, \mathbf{y} \rangle = \sum_i x_i y_i).$
- $\left(\mathbb{R}^{d_1 \times d_2}, \langle \mathbf{A}, \mathbf{B} \rangle_F = tr(\mathbf{A}^T \mathbf{B}) = \sum_{ij} A_{ij} B_{ij}\right)$.
- $(C[a,b], \langle f,g \rangle = \int_a^b f(x)g(x)dx).$

Norm vs inner product

Relations:

- $|\langle f, g \rangle| \le ||f|| \cdot ||g||$ (CBS),
- $4\langle f, g \rangle = \|f + g\|^2 \|f g\|^2$ (polarization identity),
- $||f + g||^2 + ||f g||^2 = 2 ||f||^2 + 2 ||g||^2$ (parallelogram law).

Norm vs inner product

Relations:

- $|\langle f, g \rangle| \le ||f|| \cdot ||g||$ (CBS),
- $4\langle f, g \rangle = \|f + g\|^2 \|f g\|^2$ (polarization identity),
- $||f + g||^2 + ||f g||^2 = 2 ||f||^2 + 2 ||g||^2$ (parallelogram law).

Notes:

- CBS holds for semi-inner products.
- parallelogram law = characterization of ' $\|\cdot\| \leftarrow \langle \cdot, \cdot \rangle$ '.

Convergent-, Cauchy sequence

 \mathcal{F} : normed space, $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}, f \in \mathcal{F}$,

• Convergent sequence: $f_n \xrightarrow{\mathcal{F}} f$ if $\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}$, s.t. $\forall n \geq N, \|f_n - f\|_{\mathcal{F}} < \epsilon$.

Convergent-, Cauchy sequence

 \mathcal{F} : normed space, $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}, f \in \mathcal{F}$,

- Convergent sequence: $f_n \xrightarrow{\mathcal{F}} f$ if $\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}$, s.t. $\forall n \geq N, \|f_n f\|_{\mathcal{F}} < \epsilon$.
- Cauchy sequence: $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence if $\forall \epsilon > 0$ $\exists N = N(\varepsilon) \in \mathbb{N}$, s.t. $\forall n, m \geq N$, $\|f_n f_m\|_{\mathcal{F}} < \epsilon$.

Convergent-, Cauchy sequence

 \mathcal{F} : normed space, $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}, f \in \mathcal{F}$,

- Convergent sequence: $f_n \xrightarrow{\mathcal{F}} f$ if $\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}$, s.t. $\forall n \geq N, \|f_n f\|_{\mathcal{F}} < \epsilon$.
- Cauchy sequence: $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence if $\forall \epsilon > 0$ $\exists N = N(\varepsilon) \in \mathbb{N}$, s.t. $\forall n, m \geq N$, $\|f_n f_m\|_{\mathcal{F}} < \epsilon$.

Note:

• convergent \Rightarrow Cauchy: $||f_n - f_m||_{\mathcal{F}} \le ||f_n - f||_{\mathcal{F}} + ||f - f_m||_{\mathcal{F}}$.

Kernel, RKHS

Not every Cauchy sequence converges

Examples:

- 1, 1.4, 1.41, 1.414, 1.4142, ...: Cauchy in \mathbb{Q} , but $\sqrt{2} \notin \mathbb{Q}$.
- $(C[0,1], \|\cdot\|_{L^2[0,1]})$:

But a Cauchy sequence is bounded.

Banach space, Hilbert space

• Complete space: ∀ Cauchy sequence converges.

Banach space, Hilbert space

- Complete space: ∀ Cauchy sequence converges.
- Banach space = complete normed space, e.g.
 - **1** Let $p \in [1, \infty)$, $L^p(\mathcal{X}, \mathcal{A}, \mu) :=$

$$\left\{f: (\mathcal{X}, \mathcal{A}) \to \mathbb{R} \text{ measurable}: \left\|f\right\|_{\rho} = \left[\int_{\mathcal{X}} |f(x)|^{\rho} \mathrm{d}\mu(x)\right]^{1/\rho} < \infty\right\}.$$

$$(C[a,b], ||f||_{\infty} = \max_{x \in [a,b]} |f(x)|).$$

Banach space, Hilbert space

- Complete space: ∀ Cauchy sequence converges.
- Banach space = complete normed space, e.g.
 - ① Let $p \in [1, \infty)$, $L^p(\mathcal{X}, \mathcal{A}, \mu) :=$

$$\left\{f: (\mathcal{X}, \mathcal{A}) \to \mathbb{R} \text{ measurable}: \left\|f\right\|_{p} = \left[\int_{\mathcal{X}} |f(x)|^{p} \mathrm{d}\mu(x)\right]^{1/p} < \infty\right\}.$$

- $(C[a,b], ||f||_{\infty} = \max_{x \in [a,b]} |f(x)|).$
- Hilbert space = complete inner product space; $L^2(\mathcal{X}, \mathcal{A}, \mu)$.

Linear-, bounded operator

 \mathcal{F} , \mathcal{G} : normed spaces. $A:\mathcal{F}\to\mathcal{G}$ is called

- linear operator:
 - **1** $A(\alpha f) = \alpha(Af) \quad \forall \alpha \in \mathbb{R}, f \in \mathcal{F}, \text{ (homogeneity)},$

 $\mathcal{G} = \mathbb{R}$: linear functional.

Linear-, bounded operator

 \mathcal{F} , \mathcal{G} : normed spaces. $A:\mathcal{F}\to\mathcal{G}$ is called

- linear operator:
 - **1** $A(\alpha f) = \alpha (Af) \quad \forall \alpha \in \mathbb{R}, f \in \mathcal{F}, \text{ (homogeneity)},$

 $\mathcal{G} = \mathbb{R}$: linear functional.

• bounded operator: A is linear & $||A|| = \sup_{f \in \mathcal{F}} \frac{||Af||_{\mathcal{G}}}{||f||_{\mathcal{F}}} < \infty$.

Unbounded linear functional: example

$$(C^1[0,1], ||f||_{\infty} := \max_{x \in [0,1]} |f(x)|), A(f) = f'(0) \in \mathbb{R}$$
:

- A: linear ← differentiation & evaluation are linear,
- ② $f_n(x) = e^{-nx} \ (n \in \mathbb{Z}^+)$:
 - $\|f_n\|_{\infty} \leq 1$, but
 - $|A(f_n)| = |f'_n(0)| = \Big| ne^{-nx} \Big|_{x=0} \Big| = |-n| = n \to \infty.$

Continuous operator

- Def.: *A* is
 - continuous at $f_0 \in \mathcal{F}$: $\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon, f_0) > 0$, s.t.

$$\|f - f_0\|_{\mathcal{F}} < \delta$$
 implies $\|Af - Af_0\|_{\mathcal{G}} < \epsilon$.

• continuous: if it is continuous at $\forall f_0 \in \mathcal{F}$.

Continuous operator

- Def.: A is
 - continuous at $f_0 \in \mathcal{F}$: $\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon, f_0) > 0$, s.t.

$$\|f - f_0\|_{\mathcal{F}} < \delta$$
 implies $\|Af - Af_0\|_{\mathcal{G}} < \epsilon$.

- continuous: if it is continuous at $\forall f_0 \in \mathcal{F}$.
- Example:
 - Let $A_g(f) := \langle f, g \rangle_{\mathcal{F}} \in \mathbb{R}$, where $f, g \in \mathcal{F}$.
 - A_g is Lipschitz continuous:

$$|A_{g}(f_{1}) - A_{g}(f_{2})| \stackrel{\langle \cdot, \cdot \rangle_{\stackrel{\longrightarrow}{=}}: \text{lin.}}{=} |\langle f_{1} - f_{2}, g \rangle_{\mathcal{F}}| \stackrel{\mathsf{CBS}}{\leq} \|g\|_{\mathcal{F}} \|f_{1} - f_{2}\|_{\mathcal{F}}.$$

Continuous-bounded relations

Theorem:

- A: linear operator. Equivalent: A is
 - continuous,
 - 2 continuous at one point,
 - Obounded.

Continuous-bounded relations

Theorems:

- A: linear operator. Equivalent: A is
 - continuous.
 - 2 continuous at one point,
 - bounded.
- Riesz representation (\mathcal{F} : Hilbert, $\mathcal{G} = \mathbb{R}$):

```
continuous linear functionals =\{\langle\cdot,g
angle_{\mathcal{F}}:g\in\mathcal{F}\} .
```

Let us switch to RKHS-s!

Kernel examples on \mathbb{R}^d

$$\begin{aligned} k_G(a,b) &= e^{-\frac{\|a-b\|_2^2}{2\theta^2}}, & k_e(a,b) &= e^{-\frac{\|a-b\|_2}{2\theta^2}}, \\ k_C(a,b) &= \frac{1}{1 + \frac{\|a-b\|_2^2}{\theta^2}}, & k_t(a,b) &= \frac{1}{1 + \|a-b\|_2^\theta}, \\ k_p(a,b) &= (\langle a,b\rangle + \theta)^p, & k_i(a,b) &= \frac{1}{\sqrt{\|a-b\|_2^2 + \theta^2}}, \\ k_{M,\frac{3}{2}}(a,b) &= \left(1 + \frac{\sqrt{3}\|a-b\|_2}{\theta}\right) e^{-\frac{\sqrt{3}\|a-b\|_2}{\theta}}, \\ k_{M,\frac{5}{2}}(a,b) &= \left(1 + \frac{\sqrt{5}\|a-b\|_2}{\theta} + \frac{5\|a-b\|_2^2}{3\theta^2}\right) e^{-\frac{\sqrt{5}\|a-b\|_2}{\theta}}. \end{aligned}$$

Zoltán Szabó

Kernel, RKHS

View-1: continuous evaluation.

- Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in \mathcal{H} \mapsto f(x) \in \mathbb{R}$ map.

View-1: continuous evaluation.

- Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in \mathcal{H} \mapsto f(x) \in \mathbb{R}$ map.
- The (Dirac) evaluation functional is linear:

$$\delta_{x}(\alpha f + \beta g) = (\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$$
$$= \alpha \delta_{x}(f) + \beta \delta_{x}(g) \quad (\forall \alpha, \beta \in \mathbb{R}, f, g \in \mathcal{H}).$$

View-1: continuous evaluation.

- Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in \mathcal{H} \mapsto f(x) \in \mathbb{R}$ map.
- The (Dirac) evaluation functional is linear:

$$\delta_{x}(\alpha f + \beta g) = (\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$$
$$= \alpha \delta_{x}(f) + \beta \delta_{x}(g) \quad (\forall \alpha, \beta \in \mathbb{R}, f, g \in \mathcal{H}).$$

• Def.: \mathcal{H} is called RKHS if δ_x is continuous $\forall x \in \mathcal{X}$.

Example for non-continuous $\delta_{\scriptscriptstyle X}$

$$\mathcal{H} = L^2[0,1] \ni f_n(x) = x^n$$
:

• $f_n \to 0 \in \mathcal{H}$ since

$$\lim_{n \to \infty} \|f_n - 0\|_2 = \lim_{n \to \infty} \left(\int_0^1 x^{2n} dx \right)^{1/2} = \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = 0,$$

Example for non-continuous δ_{x}

$$\mathcal{H} = L^2[0,1] \ni f_n(x) = x^n$$
:

$$\lim_{n \to \infty} \|f_n - 0\|_2 = \lim_{n \to \infty} \left(\int_0^1 x^{2n} dx \right)^{1/2} = \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = 0,$$

2 but $\delta_1(f_n) = 1 \rightarrow \delta_1(0) = 0$.

In L^2 : norm convergence \neq pointwise convergence.

View-1: convergence

In RKHS: convergence in norm \Rightarrow pointwise convergence!

• Result: $f_n \xrightarrow{\mathcal{H}} f \Rightarrow f_n \xrightarrow{\forall x} f$.

View-1: convergence

In RKHS: convergence in norm \Rightarrow pointwise convergence!

- Result: $f_n \xrightarrow{\mathcal{H}} f \Rightarrow f_n \xrightarrow{\forall x} f$.
- Proof: For any $x \in \mathcal{X}$,

$$|f_{n}(x) - f(x)| \stackrel{\delta_{x} \text{ def}}{=} |\delta_{x}(f_{n}) - \delta_{x}(f)| \stackrel{\delta_{x} \text{ lin}}{=} |\delta_{x}(f_{n} - f)|$$

$$\stackrel{\delta_{x}: \text{ bounded}}{\leq} \underbrace{\|\delta_{x}\|}_{<\infty} \underbrace{\|f_{n} - f\|}_{\mathcal{H}}.$$

- Let \mathcal{H} be a Hilbert space of $\mathcal{X} \to \mathbb{R}$ functions.
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if for $\forall x \in \mathcal{X}$
 - $k(\cdot, x) \in \mathcal{H}$ ('generators'),

- Let \mathcal{H} be a Hilbert space of $\mathcal{X} \to \mathbb{R}$ functions.
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if for $\forall x \in \mathcal{X}, f \in \mathcal{H}$
 - \bullet $k(\cdot, x) \in \mathcal{H}$ ('generators'),
 - ② $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (reproducing property).

- Let \mathcal{H} be a Hilbert space of $\mathcal{X} \to \mathbb{R}$ functions.
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if for $\forall x \in \mathcal{X}, f \in \mathcal{H}$
 - \bullet $k(\cdot, x) \in \mathcal{H}$ ('generators'),
 - $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (reproducing property).

Specifically: $\forall x, y \in \mathcal{X}$,

$$k(x, y) = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}.$$

- Let \mathcal{H} be a Hilbert space of $\mathcal{X} \to \mathbb{R}$ functions.
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if for $\forall x \in \mathcal{X}, f \in \mathcal{H}$
 - \bullet $k(\cdot, x) \in \mathcal{H}$ ('generators'),
 - $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (reproducing property).

Specifically: $\forall x, y \in \mathcal{X}$,

$$k(x, y) = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}.$$

Questions

Uniqueness, existence?

Reproducing kernel: uniqueness

Reproducibility & norm definition \Rightarrow uniqueness.

• Let k_1 , k_2 be r.k.-s of \mathcal{H} . Then for $\forall f \in \mathcal{H}, \forall x \in \mathcal{X}$

$$\langle f, k_1(\cdot, x) - k_2(\cdot, x) \rangle_{\mathcal{H}} \stackrel{\langle \cdot, \cdot \rangle_{\mathcal{H}}}{=} \stackrel{\text{lin, } k_i \text{ r.k.}}{=} f(x) - f(x) = 0.$$

Reproducing kernel: uniqueness

Reproducibility & norm definition \Rightarrow uniqueness.

• Let k_1 , k_2 be r.k.-s of \mathcal{H} . Then for $\forall f \in \mathcal{H}, \forall x \in \mathcal{X}$

$$\langle f, k_1(\cdot, x) - k_2(\cdot, x) \rangle_{\mathcal{H}} \stackrel{\langle \cdot, \cdot \rangle_{\mathcal{H}}}{=} \stackrel{\text{lin, } k_i \text{ r.k.}}{=} f(x) - f(x) = 0.$$

• Choosing $f = k_1(\cdot, x) - k_2(\cdot, x)$, we get

$$\|k_1(\cdot,x)-k_2(\cdot,x)\|_{\mathcal{H}}^2=0,\quad (\forall x\in\mathcal{X})$$

i.e., $k_1 = k_2$.

• Result: \mathcal{H} has a r.k. $(k) \Leftrightarrow \mathcal{H}$ is a RKHS.

- Result: \mathcal{H} has a r.k. $(k) \Leftrightarrow \mathcal{H}$ is a RKHS.
- Proof (⇒):

$$|\delta_{x}(f)| \leq \sqrt{k(x,x)} \|f\|_{\mathcal{H}},$$

i.e. $\delta_{\mathsf{x}}: \mathcal{H} \to \mathbb{R}$ is bounded (hence continuous).

- Result: \mathcal{H} has a r.k. $(k) \Leftrightarrow \mathcal{H}$ is a RKHS.
- Proof (⇒):

$$|\delta_{x}(f)| \stackrel{\delta_{x} \text{ def}}{=} |f(x)| \stackrel{k: r. k.}{=} |\langle f, k(\cdot, x) \rangle_{\mathcal{H}}| \leq \sqrt{k(x, x)} \|f\|_{\mathcal{H}},$$

i.e. $\delta_{\mathsf{x}}: \mathcal{H} \to \mathbb{R}$ is bounded (hence continuous).

- Result: \mathcal{H} has a r.k. $(k) \Leftrightarrow \mathcal{H}$ is a RKHS.
- Proof (⇒):

$$\begin{aligned} |\delta_{x}(f)| &\overset{\delta_{x} \text{ def}}{=} |f(x)| \overset{k: \text{ r.k.}}{=} |\langle f, k(\cdot, x) \rangle_{\mathcal{H}}| \overset{CBS}{\leq} \|k(\cdot, x)\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \\ &\overset{k: \text{ r.k.}}{=} \sqrt{k(x, x)} \|f\|_{\mathcal{H}}, \end{aligned}$$

i.e. $\delta_{\mathsf{x}}: \mathcal{H} \to \mathbb{R}$ is bounded (hence continuous).

- Result: \mathcal{H} has a r.k. $(k) \Leftrightarrow \mathcal{H}$ is a RKHS.
- Proof (⇒):

$$|\delta_{x}(f)| \stackrel{\delta_{x} \text{ def}}{=} |f(x)| \stackrel{k: r.k.}{=} |\langle f, k(\cdot, x) \rangle_{\mathcal{H}}| \stackrel{CBS}{\leq} ||k(\cdot, x)||_{\mathcal{H}} ||f||_{\mathcal{H}}$$

$$\stackrel{k: r.k.}{=} \sqrt{k(x, x)} ||f||_{\mathcal{H}},$$

i.e. $\delta_{\mathsf{x}}: \mathcal{H} \to \mathbb{R}$ is bounded (hence continuous).

Convergence in RKHS \Rightarrow uniform convergence! (k: bounded).

View-2 (r.k.) \Leftrightarrow view-1 (RKHS): \Leftarrow , existence of r.k.

Proof (\Leftarrow): Let δ_x be continuous for all $x \in \mathcal{X}$.

1 By the Riesz repr. theorem $\exists f_{\delta_x} \in \mathcal{H}$

$$\delta_{\mathsf{x}}(f) = \langle f, \underbrace{f_{\delta_{\mathsf{x}}}}_{\mathsf{H}} \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H}.$$

View-2 (r.k.) \Leftrightarrow view-1 (RKHS): \Leftarrow , existence of r.k.

Proof (\Leftarrow): Let δ_x be continuous for all $x \in \mathcal{X}$.

1 By the Riesz repr. theorem $\exists f_{\delta_x} \in \mathcal{H}$

$$\delta_{x}(f) = \langle f, f_{\delta_{x}} \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H}.$$

$$= k(\cdot, x)?$$

2 Let $k(x',x) = f_{\delta_x}(x')$, $\forall x, x' \in \mathcal{X}$, then

$$k(\cdot, x) = f_{\delta_x} \in \mathcal{H},$$

 $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = \delta_x(f) = f(x).$

Thus, k is the reproducing kernel.

View-3: positive definiteness.

• Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric function.

View-3: positive definiteness.

- Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric function.
- $G := [k(x_i, x_j)]_{i,j=1}^n$: Gram matrix.

View-3: positive definiteness.

- Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric function.
- $G := [k(x_i, x_j)]_{i,j=1}^n$: Gram matrix.
- *k* is called positive definite, if

$$a^TGa \ge 0$$

for
$$\forall n \geq 1$$
, $\forall \mathbf{a} \in \mathbb{R}^n$, $\forall (x_1, \dots, x_n) \in \mathcal{X}^n$.

View-4: 'kernel as inner product' view.

- Def.: A $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ function is called kernel, if
 - \bullet $\exists \phi : \mathcal{X} \to \mathcal{F}$, where \mathcal{F} is a Hilbert space s.t.
 - $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}.$
- Intuition: k is inner product in \mathcal{F} .

Reproducing kernel \Rightarrow kernel \Rightarrow positive definiteness

- Every r.k. is a kernel: $\phi(x) := k(\cdot, x), \ k(x, y) = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}$.
- Every kernel is positive definite:

$$\mathbf{a}^{\mathsf{T}}\mathsf{G}\mathbf{a} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k(x_{i}, x_{j})$$

$$\stackrel{k \text{ def }, \langle \cdot, \cdot \rangle_{\mathcal{F}} \text{ lin }}{=} \left\langle \sum_{i=1}^{n} a_{i} \phi(x_{i}), \sum_{j=1}^{n} a_{j} \phi(x_{j}) \right\rangle_{\mathcal{F}}$$

$$\| \cdot \|_{\mathcal{F}} = \sqrt{\langle \cdot, \cdot \rangle_{\mathcal{F}}} \left\| \sum_{i=1}^{n} a_{i} \phi(x_{i}) \right\|_{\mathcal{F}}^{2} \geq 0.$$

Until now

- Result-1 (proved): $\mathsf{RKHS}\ (\delta_{\scriptscriptstyle X}\ \mathsf{continuous}) \Leftrightarrow \mathsf{reproducing}\ \mathsf{kernel}.$
- Result-2 (proved):
 reproducing kernel ⇒ kernel ⇒ positive definite.

Until now

- Result-1 (proved): $\mathsf{RKHS}\ (\delta_x\ \mathsf{continuous}) \Leftrightarrow \mathsf{reproducing}\ \mathsf{kernel}.$
- Result-2 (proved): reproducing kernel \Rightarrow kernel \Rightarrow positive definite.

Moore-Aronszajn theorem (follows)

positive definite \Rightarrow reproducing kernel.

Until now

- Result-1 (proved): $\mathsf{RKHS}\ (\delta_x\ \mathsf{continuous}) \Leftrightarrow \mathsf{reproducing}\ \mathsf{kernel}.$
- Result-2 (proved): reproducing kernel \Rightarrow kernel \Rightarrow positive definite.

Moore-Aronszajn theorem (follows)

positive definite \Rightarrow reproducing kernel.

 \Rightarrow the 4 notions are exactly the same!

- Given: a $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ positive definite function.
- We construct a pre-RKHS \mathcal{H}_0 :

$$\mathcal{H}_0 = \left\{ f = \sum_{i=1}^n \alpha_i k(\cdot, x_i) : \alpha_i \in \mathbb{R}, x_i \in \mathcal{X} \right\} \supseteq \{ k(\cdot, x) : x \in \mathcal{X} \},$$
$$\langle f, g \rangle_{\mathcal{H}_0} = k(x, y),$$

where
$$f = k(\cdot, x)$$
, $g = k(\cdot, y)$.

- Given: a $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ positive definite function.
- We construct a pre-RKHS \mathcal{H}_0 :

$$\mathcal{H}_{0} = \left\{ f = \sum_{i=1}^{n} \alpha_{i} k(\cdot, x_{i}) : \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{X} \right\} \supseteq \left\{ k(\cdot, x) : x \in \mathcal{X} \right\},$$

$$\left\langle f, g \right\rangle_{\mathcal{H}_{0}} = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k(x_{i}, y_{j}),$$

where
$$f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$$
, $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$.

- \mathcal{H}_0 will satisfy:
 - **1** Innear space (\checkmark) ; $\langle f, g \rangle_{\mathcal{H}_0}$: well-defined & inner product.
 - \bullet δ_x -s are continuous on \mathcal{H}_0 $(\forall x)$.
 - ② For any $\{f_n\} \subset \mathcal{H}_0$ Cauchy seq.:

$$f_n \xrightarrow{\forall x} 0 \quad \Rightarrow \quad f_n \xrightarrow{\mathcal{H}_0} 0.$$

- From \mathcal{H}_0 we construct \mathcal{H} as:
 - \bullet $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$, for which

Let

$$\langle f, g \rangle_{\mathcal{H}} := \lim_{n \to \infty} \langle f_n, g_n \rangle_{\mathcal{H}_0},$$
 (1)

where $f_n \xrightarrow{\forall x} f$, $g_n \xrightarrow{\forall x} g \mathcal{H}_0$ -Cauchy sequences.

- H will satisfy:
 - $\mathcal{H}_0 \subset \mathcal{H}$: $\checkmark [f_n \equiv f \in \mathcal{H}_0]$.
 - \mathcal{H} is a RKHS with r.k. k:
 - **4**: linear space (\checkmark) ,
 - \bigcirc $\langle f, g \rangle_{\mathcal{H}}$: well-defined & inner product.
 - \bigcirc \mathcal{H} is complete.
 - 2 δ_x -s are continuous on \mathcal{H} $(\forall x)$.
 - \bullet \bullet has r.k. k (used to define \bullet 0).

$$\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$$
: well-defined, k reproducing on \mathcal{H}_0

• Recall: if $f = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$, $g = \sum_{j=1}^m \beta_j k(\cdot, y_j)$, then

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j).$$

• $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ is independent of the particular $\{\alpha_i\}$ and $\{\beta_j\}$:

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \alpha_i \sum_{j=1}^m \beta_j k(x_i, y_j) = \sum_{i=1}^n \alpha_i g(x_i) \left[= \sum_{j=1}^m \beta_j f(y_j) \right].$$

$\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$: well-defined, k reproducing on \mathcal{H}_0

• Recall: if $f = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$, $g = \sum_{j=1}^m \beta_j k(\cdot, y_j)$, then

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j).$$

• $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ is independent of the particular $\{\alpha_i\}$ and $\{\beta_j\}$:

$$\langle f,g\rangle_{\mathcal{H}_0} = \sum_{i=1}^n \alpha_i \sum_{j=1}^m \beta_j k(x_i,y_j) = \sum_{i=1}^n \alpha_i g(x_i) \left[= \sum_{j=1}^m \beta_j f(y_j) \right].$$

• \Rightarrow reproducing property on \mathcal{H}_0 :

$$\langle f, k(\cdot, x) \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \alpha_i k(x_i, x) = f(x).$$

$$\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$$
: inner product

• The 'tricky' property to check:

$$||f||_{\mathcal{H}_0} := \langle f, f \rangle_{\mathcal{H}_0} = 0 \implies f = 0.$$

• This holds by CBS (for the semi-inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$): $\forall x$

$$|f(x)| \stackrel{k \text{ r.k. on } \mathcal{H}_0}{=} |\langle f, k(\cdot, x) \rangle_{\mathcal{H}_0}| \stackrel{\text{CBS}}{\leq} \underbrace{\|f\|_{\mathcal{H}_0}}_{=0} \sqrt{k(x, x)} = 0.$$

Pre-RKHS: main property-1

 δ_x is continuous on \mathcal{H}_0 $(\forall x)$: Let $f,g\in\mathcal{H}_0$, then

$$\begin{split} \left| \delta_{x}(f) - \delta_{x}(g) \right| & \overset{\delta_{x} \text{ def, } k \text{ r.k., } \left\langle \cdot, \cdot \right\rangle_{\mathcal{H}_{0}} \text{lin}}{=} \left| \left\langle f - g, k(\cdot, x) \right\rangle_{\mathcal{H}_{0}} \right| \\ & \overset{\text{CBS, } k \text{ r.k.}}{\leq} \sqrt{k(x, x)} \left\| f - g \right\|_{\mathcal{H}_{0}}. \end{split}$$

Pre-RKHS: main property-2

```
f_n: \mathcal{H}_0-Cauchy \xrightarrow{(\forall x)} 0 \Rightarrow f_n \xrightarrow{\mathcal{H}_0} 0:
```

- f_n : Cauchy \Rightarrow bounded, i.e. $||f_n||_{\mathcal{H}_0} < A$.
- f_n : Cauchy $\Rightarrow n, m \geq \exists N_1$: $||f_n f_m||_{\mathcal{H}_0} < \epsilon/(2A)$.
- Let $f_{N_1} = \sum_{i=1}^r \alpha_i k(\cdot, x_i)$. $n \ge \exists N_2 : |f_n(x_i)| < \frac{\epsilon}{2r|\alpha_i|}$ $(i = 1, \dots, r)$.

For $n \geq \max(N_1, N_2)$:

$$||f_n||_{\mathcal{H}_0}^2 < \epsilon.$$

Pre-RKHS: main property-2

```
f_n: \mathcal{H}_0\text{-Cauchy} \xrightarrow{(\forall x)} 0 \Rightarrow f_n \xrightarrow{\mathcal{H}_0} 0:
```

- f_n : Cauchy \Rightarrow bounded, i.e. $||f_n||_{\mathcal{H}_0} < A$.
- f_n : Cauchy $\Rightarrow n, m \geq \exists N_1$: $||f_n f_m||_{\mathcal{H}_0} < \epsilon/(2A)$.
- Let $f_{N_1} = \sum_{i=1}^r \alpha_i k(\cdot, x_i)$. $n \ge \exists N_2 : |f_n(x_i)| < \frac{\epsilon}{2r|\alpha_i|} (i = 1, \dots, r)$.

For $n \geq \max(N_1, N_2)$:

$$\begin{aligned} \|f_{n}\|_{\mathcal{H}_{0}}^{2} &= \langle f_{n}, f_{n} \rangle_{\mathcal{H}_{0}} \leq |\langle f_{n} - f_{N_{1}}, f_{n} \rangle_{\mathcal{H}_{0}}| + |\langle f_{N_{1}}, f_{n} \rangle_{\mathcal{H}_{0}}| \\ &\leq \underbrace{\|f_{n} - f_{N_{1}}\|_{\mathcal{H}_{0}} \|f_{n}\|_{\mathcal{H}_{0}}}_{<[\epsilon/(2A)]A = \frac{\epsilon}{2}} + \sum_{i=1}^{r} \underbrace{|\alpha_{i} f_{n}(x_{i})|}_{<|\alpha_{i}| \frac{\epsilon}{2r|\alpha_{i}|}} < \epsilon. \end{aligned}$$

$$\langle \cdot, \cdot \rangle_{\mathcal{H}}$$
: well-defined

$$\alpha_{\it n} = \langle {\it f}_{\it n}, {\it g}_{\it n} \rangle_{{\mathcal H}_{\it 0}}$$
 is convergent by Cauchyness in ${\mathbb R}$:

$$|\alpha_n - \alpha_m| < \epsilon$$

$\langle \cdot, \cdot \rangle_{\mathcal{H}}$: well-defined

 $\alpha_n = \langle f_n, g_n \rangle_{\mathcal{H}_0}$ is convergent by Cauchyness in \mathbb{R} :

$$\begin{split} |\alpha_{n} - \alpha_{m}| &= \left| \langle f_{n}, g_{n} \rangle_{\mathcal{H}_{0}} - \langle f_{m}, g_{m} \rangle_{\mathcal{H}_{0}} \right| \\ &= \left| \langle f_{n}, g_{n} \rangle_{\mathcal{H}_{0}} - \langle f_{m}, g_{n} \rangle_{\mathcal{H}_{0}} + \langle f_{m}, g_{n} \rangle_{\mathcal{H}_{0}} - \langle f_{m}, g_{m} \rangle_{\mathcal{H}_{0}} \right| \\ &= \left| \langle f_{n} - f_{m}, g_{n} \rangle_{\mathcal{H}_{0}} + \langle f_{m}, g_{n} - g_{m} \rangle_{\mathcal{H}_{0}} \right| \\ &\leq \left| \langle f_{n} - f_{m}, g_{n} \rangle_{\mathcal{H}_{0}} \right| + \left| \langle f_{m}, g_{n} - g_{m} \rangle_{\mathcal{H}_{0}} \right| \\ &\leq \underbrace{\left\| g_{n} \right\|_{\mathcal{H}_{0}}}_{$$

 f_n, g_n : Cauchy \Rightarrow bounded, i.e. $||f_n||_{\mathcal{H}_0} < A, ||g_n||_{\mathcal{H}_0} < B$.

$\langle \cdot, \cdot \rangle_{\mathcal{H}}$: well-defined

The limit is independent of the Cauchy seq. chosen: let

- $f_n, f'_n \xrightarrow{\forall x} f$; $g_n, g'_n \xrightarrow{\forall x} g$: \mathcal{H}_0 -Cauchy seq.-s,
- $\alpha_n = \langle f_n, g_n \rangle_{\mathcal{H}_0}, \ \alpha'_n = \langle f'_n, g'_n \rangle_{\mathcal{H}_0}.$

$\langle \cdot, \cdot \rangle_{\mathcal{H}}$: well-defined

The limit is independent of the Cauchy seq. chosen: let

- $f_n, f'_n \xrightarrow{\forall x} f; g_n, g'_n \xrightarrow{\forall x} g: \mathcal{H}_0$ -Cauchy seq.-s,
- $\alpha_n = \langle f_n, g_n \rangle_{\mathcal{H}_0}, \ \alpha'_n = \langle f'_n, g'_n \rangle_{\mathcal{H}_0}.$
- 'Repeating' the previous argument:

$$|\alpha_{\textit{n}} - \alpha_{\textit{n}}'| \leq \underbrace{\|g_{\textit{n}}\|_{\mathcal{H}_0}}_{\text{bounded}} \underbrace{\|f_{\textit{n}} - f_{\textit{n}}'\|_{\mathcal{H}_0}}_{\rightarrow 0} + \underbrace{\|f_{\textit{n}}'\|_{\mathcal{H}_0}}_{\text{bounded}} \underbrace{\|g_{\textit{n}} - g_{\textit{n}}'\|_{\mathcal{H}_0}}_{\rightarrow 0}.$$

$\langle \cdot, \cdot \rangle_{\mathcal{H}}$: well-defined

The limit is independent of the Cauchy seq. chosen: let

- $f_n, f'_n \xrightarrow{\forall x} f$; $g_n, g'_n \xrightarrow{\forall x} g$: \mathcal{H}_0 -Cauchy seq.-s,
- $\alpha_n = \langle f_n, g_n \rangle_{\mathcal{H}_0}, \ \alpha'_n = \langle f'_n, g'_n \rangle_{\mathcal{H}_0}.$
- 'Repeating' the previous argument:

$$|\alpha_{\textit{n}} - \alpha_{\textit{n}}'| \leq \underbrace{\|g_{\textit{n}}\|_{\mathcal{H}_0}}_{\text{bounded}} \underbrace{\|f_{\textit{n}} - f_{\textit{n}}'\|_{\mathcal{H}_0}}_{\rightarrow 0} + \underbrace{\|f_{\textit{n}}'\|_{\mathcal{H}_0}}_{\text{bounded}} \underbrace{\|g_{\textit{n}} - g_{\textit{n}}'\|_{\mathcal{H}_0}}_{\rightarrow 0}.$$

• ' \rightarrow 0': $f_n, f'_n \xrightarrow{\forall x} f \Rightarrow f_n - f'_n \xrightarrow{\forall x} 0 \Rightarrow f_n - f'_n \xrightarrow{\mathcal{H}_0} 0 \ (g_n - g'_n \text{ similarly}).$

Zoltán Szabó

Kernel, RKHS

The 'tricky' bit:

$$\langle f, f \rangle_{\mathcal{H}} = 0 \Rightarrow \mathbf{f} = \mathbf{0}.$$

• Let $f_n \xrightarrow{\forall x} f \mathcal{H}_0$ -Cauchy, and $\langle f, f \rangle_{\mathcal{H}} = \lim_n \|f_n\|_{\mathcal{H}_0}^2 = 0$. Then

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| = \lim_{n \to \infty} |\delta_x(f_n)| \stackrel{(*)}{\leq} \lim_{n \to \infty} \underbrace{\|\delta_x\|}_{<\infty} \underbrace{\|f_n\|_{\mathcal{H}_0}}_{\to 0} = 0,$$

(*): δ_x is continuous on \mathcal{H}_0 .

Until now: $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is well-defined & inner product.

Remains:

- **1** δ_x -s are continuous on \mathcal{H} $(\forall x)$.
- ${f 2}$ ${\cal H}$ is complete.
- 3 The reproducing kernel on \mathcal{H} is k.

δ_{x} -s are continuous on \mathcal{H} : lemma

 \mathcal{H}_0 is dense in \mathcal{H} .

• Sufficient to show: $f_n \xrightarrow{\forall x} f \mathcal{H}_0$ -Cauchy $\Rightarrow f_n \xrightarrow{\mathcal{H}} f$.

δ_{x} -s are continuous on \mathcal{H} : lemma

 \mathcal{H}_0 is dense in \mathcal{H} .

- Sufficient to show: $f_n \xrightarrow{\forall x} f \mathcal{H}_0$ -Cauchy $\Rightarrow f_n \xrightarrow{\mathcal{H}} f$.
- Proof: Fix $\epsilon > 0$,
 - f_n : \mathcal{H}_0 -Cauchy $\Rightarrow \exists N \leq \forall m, n$: $\|f_m f_n\|_{\mathcal{H}_0} < \epsilon$.
 - Fix $n^* \geq N$, then $f_m f_{n^*} \xrightarrow{\forall x} f f_{n^*}$.
 - \bullet By the definition of $\left\| \cdot \right\|_{\mathcal{H}}$:

$$\|f - f_{n^*}\|_{\mathcal{H}}^2 = \lim_{m \to \infty} \|f_m - f_{n^*}\|_{\mathcal{H}_0}^2 \le \epsilon^2,$$

i.e.,
$$f_n \xrightarrow{\mathcal{H}} f$$
.

δ_{x} -s are continuous on \mathcal{H}

Sufficient to show: δ_x linear is continuous at $f \equiv 0$. Fix $x \in \mathcal{X}$.

• We have seen: δ_{x} is continuous on \mathcal{H}_{0} , i.e. $\exists \eta$

$$\|g - 0\|_{\mathcal{H}_0} = \|g\|_{\mathcal{H}_0} < \eta \Rightarrow |\delta_x(g) - \delta_x(0)| = |\delta_x(g) - 0| = |g(x)| < \epsilon/2.$$

δ_{x} -s are continuous on \mathcal{H}

Sufficient to show: δ_x linear is continuous at $f \equiv 0$. Fix $x \in \mathcal{X}$.

ullet We have seen: δ_{x} is continuous on \mathcal{H}_{0} , i.e. $\exists \eta$

$$\|g - 0\|_{\mathcal{H}_0} = \|g\|_{\mathcal{H}_0} < \eta \Rightarrow |\delta_x(g) - \delta_x(0)| = |\delta_x(g) - 0| = |g(x)| < \frac{\epsilon}{2}.$$

• Take $f \in \mathcal{H}$: $||f||_{\mathcal{H}} < \eta/2$. Since $\mathcal{H}_0 \subset \mathcal{H}$ dense, $\exists f_n \ \mathcal{H}_0$ -Cauchy, $\exists N$

$$|f(x) - f_{N}(x)| < \frac{\epsilon/2}{\epsilon} \quad [\Leftarrow f_{n} \xrightarrow{\forall x} f],$$

$$||f - f_{N}||_{\mathcal{H}} < \eta/2 \quad [\Leftarrow f_{n} \xrightarrow{\mathcal{H}} f] \Rightarrow$$

$$||f_{N}||_{\mathcal{H}_{0}} = ||f_{N}||_{\mathcal{H}} \le \underbrace{||f||_{\mathcal{H}}}_{<\frac{\eta}{2}} + \underbrace{||f - f_{N}||_{\mathcal{H}}}_{<\frac{\eta}{2}} < \eta.$$

δ_{x} -s are continuous on \mathcal{H}

Sufficient to show: δ_x linear is continuous at $f \equiv 0$. Fix $x \in \mathcal{X}$.

• We have seen: δ_{x} is continuous on \mathcal{H}_{0} , i.e. $\exists \eta$

$$\|g - 0\|_{\mathcal{H}_0} = \|g\|_{\mathcal{H}_0} < \eta \Rightarrow |\delta_x(g) - \delta_x(0)| = |\delta_x(g) - 0| = |g(x)| < \epsilon/2.$$

• Take $f \in \mathcal{H}$: $||f||_{\mathcal{H}} < \eta/2$. Since $\mathcal{H}_0 \subset \mathcal{H}$ dense, $\exists f_n \ \mathcal{H}_0$ -Cauchy, $\exists N$

$$|f(x) - f_{N}(x)| < \frac{\epsilon/2}{\epsilon/2} \quad [\Leftarrow f_{n} \xrightarrow{\forall x} f],$$

$$||f - f_{N}||_{\mathcal{H}} < \eta/2 \quad [\Leftarrow f_{n} \xrightarrow{\mathcal{H}} f] \Rightarrow$$

$$||f_{N}||_{\mathcal{H}_{0}} = ||f_{N}||_{\mathcal{H}} \le \underbrace{||f||_{\mathcal{H}}}_{<\frac{\eta}{2}} + \underbrace{||f - f_{N}||_{\mathcal{H}}}_{<\frac{\eta}{2}} < \eta.$$

• With $g = f_N$ we get $|f_N(x)| < \frac{\epsilon}{2} \Rightarrow |f(x)| \le \underbrace{|f(x) - f_N(x)|}_{<\frac{\epsilon}{2}} + \underbrace{|f_N(x)|}_{<\frac{\epsilon}{2}} < \epsilon$.

${\cal H}$ is complete

High-level idea: let $\{f_n\} \subset \mathcal{H}$ be any Cauchy seq.,

- $\exists f(x) := \lim_n f_n(x)$ since
 - δ_x cont. on $\mathcal{H} \Rightarrow \{f_n(x)\} \subset \mathbb{R}$ Cauchy seq. \Rightarrow convergent.

${\cal H}$ is complete

High-level idea: let $\{f_n\} \subset \mathcal{H}$ be any Cauchy seq.,

- $\exists f(x) := \lim_n f_n(x)$ since
 - δ_x cont. on $\mathcal{H} \Rightarrow \{f_n(x)\} \subset \mathbb{R}$ Cauchy seq. \Rightarrow convergent.
- Question: is the point-wise limit $f \in \mathcal{H}$?

${\cal H}$ is complete

High-level idea: let $\{f_n\} \subset \mathcal{H}$ be any Cauchy seq.,

- $\exists f(x) := \lim_n f_n(x)$ since
 - δ_x cont. on $\mathcal{H} \Rightarrow \{f_n(x)\} \subset \mathbb{R}$ Cauchy seq. \Rightarrow convergent.
- Question: is the point-wise limit $f \in \mathcal{H}$?
- Idea:
 - **1** \mathcal{H}_0 dense in $\mathcal{H} \Rightarrow \exists g_n \in \mathcal{H}_0$ s.t. $\|g_n f_n\|_{\mathcal{H}} < \frac{1}{n}$.
 - We show
 - $g_n \xrightarrow{\forall x} f$; $\{g_n\} \subset \mathcal{H}_0$: Cauchy seq. $\} \Rightarrow f \in \mathcal{H}$.
 - $\bullet \ f_n \xrightarrow{\mathcal{H}} f.$

• $g_n \xrightarrow{\forall x} f$:

$$|g_n(x) - f(x)| \leq |g_n(x) - f_n(x)| + |f_n(x) - f(x)|$$

$$= \underbrace{|\delta_x(g_n - f_n)|}_{\to 0; \ \delta_x \text{ cont. on } \mathcal{H}} + \underbrace{|f_n(x) - f(x)|}_{\to 0; \ f \text{ def.}}.$$

• $\{g_n\} \subset \mathcal{H}_0$ is Cauchy sequence:

$$\begin{split} \|g_m - g_n\|_{\mathcal{H}_0} &= \|g_m - g_n\|_{\mathcal{H}} \\ &\leq \|g_m - f_m\|_{\mathcal{H}} + \|f_m - f_n\|_{\mathcal{H}} + \|f_n - g_n\|_{\mathcal{H}} \\ &\leq \underbrace{\frac{1}{m} + \frac{1}{n}}_{g_m,g_n \text{ def.}} + \underbrace{\|f_m - f_n\|_{\mathcal{H}}}_{\rightarrow 0;f_n:\mathcal{H}\text{-Cauchy}} \,. \end{split}$$

• Finally, $f_n \xrightarrow{\mathcal{H}} f$:

Zoltán Szabó

Final property: the reproducing kernel on \mathcal{H} is k

- Let $f \in \mathcal{H}$, and $f_n \xrightarrow{\forall x} f \mathcal{H}_0$ -Cauchy sequence.
- Then,

$$\langle f, k(\cdot, x) \rangle_{\mathcal{H}} \stackrel{(a)}{=} \lim_{n \to \infty} \langle f_n, k(\cdot, x) \rangle_{\mathcal{H}_0} \stackrel{(b)}{=} \lim_{n \to \infty} f_n(x) \stackrel{(c)}{=} f(x),$$

where

- (a): definition of $\langle \cdot, \cdot \rangle_{\mathcal{H}}$,
- (b): k reproducing kernel on \mathcal{H}_0 ,
- (c): $f_n \xrightarrow{\forall x} f$.

Summary

We have shown that

• RKHS (δ_x continuous) \Leftrightarrow reproducing kernel \Leftrightarrow kernel (feature view) \Leftrightarrow positive definite.

- Moore-Aronszajn theorem:
 - RKHS construction for a *k* pos. def. function.
 - Idea:
 - ① pre-RKHS: $\mathcal{H}_0 = span[\{k(\cdot, x)\}_{x \in \mathcal{X}}],$
 - ② $\mathcal{H}:=$ pointwise limit of \mathcal{H}_0 -Cauchy sequences.

${\sf Appendix}$

Vector space axioms

$$(V,+,\lambda\cdot)$$
 is vector space if $[\forall \mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}\in V,\ a,b\in\mathbb{R}]$:
$$(\mathbf{v}_1+\mathbf{v}_2)+\mathbf{v}_3=\mathbf{v}_1+(\mathbf{v}_2+\mathbf{v}_3),\ (\text{associativity})$$

$$\mathbf{v}_1+\mathbf{v}_2=\mathbf{v}_2+\mathbf{v}_1,\ (\text{commutativity})$$

$$\exists \mathbf{0}:\mathbf{v}+\mathbf{0}=\mathbf{v},$$

$$\exists -\mathbf{v}:\mathbf{v}+(-\mathbf{v})=\mathbf{0},$$

$$a(b\mathbf{v})=(ab)\mathbf{v},$$

$$1\mathbf{v}=\mathbf{v},$$

$$a(\mathbf{v}_1+\mathbf{v}_2)=a\mathbf{v}_1+a\mathbf{v}_2,$$

$$(a+b)\mathbf{v}=a\mathbf{v}+b\mathbf{v}.$$

${\cal H}$ is a vector space

$$\mathcal{H} \subset \mathbb{R}^{\mathcal{X}} \Rightarrow \mathsf{Needed}$$
:

 $\bullet \ f \in \mathcal{H} \Rightarrow \lambda f \in \mathcal{H} \colon \exists \{f_n\} \subset \mathcal{H}_0\text{-Cauchy, } f_n \xrightarrow{\forall x} f.$

$$\{\lambda f_n\} \subset \mathcal{H}_0 \ (\Leftarrow \mathcal{H}_0: \text{ vector space}), \ \text{Cauchy},$$

 $(\lambda f_n)(x) \xrightarrow{\forall x} (\lambda f)(x).$

${\cal H}$ is a vector space

 $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}} \Rightarrow \mathsf{Needed}$:

•
$$f \in \mathcal{H} \Rightarrow \lambda f \in \mathcal{H}$$
: $\exists \{f_n\} \subset \mathcal{H}_0\text{-Cauchy}, \ f_n \xrightarrow{\forall x} f$. $\{\lambda f_n\} \subset \mathcal{H}_0 \ (\Leftarrow \mathcal{H}_0\text{: vector space}), \ \mathsf{Cauchy}$ $(\lambda f_n)(x) \xrightarrow{\forall x} (\lambda f)(x)$.

②
$$f,g \in \mathcal{H} \Rightarrow f+g \in \mathcal{H}$$
: $\exists \{f_n\}, \{g_n\} \subset \mathcal{H}_0$ -Cauchy, $f_n \xrightarrow{\forall x} f$, $g_n \xrightarrow{\forall x} g$

$$\{f_n+g_n\} \subset \mathcal{H}_0 \ (\Leftarrow \mathcal{H}_0: \text{ vector space}), \text{ Cauchy},$$

$$(f_n+g_n)(x) \xrightarrow{\forall x} (f+g)(x).$$

Needed: for $\forall f = \sum_{i} \alpha_{i} k(\cdot, x_{i}), g = \sum_{j} \beta_{j} k(\cdot, y_{j}) \in \mathcal{H}_{0}$

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_i \sum_j \alpha_i \beta_j k(x_i, y_j) = \sum_j \sum_i \beta_j \alpha_i k(y_j, x_i) = \langle g, f \rangle_{\mathcal{H}_0}.$$

Needed: for
$$\forall \lambda \in \mathbb{R}, f = \sum_{i} \alpha_{i} k(\cdot, x_{i}), g = \sum_{j} \beta_{j} k(\cdot, y_{j}) \in \mathcal{H}_{0}$$

$$2 \langle \lambda f, g \rangle_{\mathcal{H}_0} = \lambda \langle f, g \rangle_{\mathcal{H}_0} :$$

$$\langle \lambda f, g \rangle_{\mathcal{H}_0} = \sum_{i,j} (\lambda \alpha_i) \beta_j k(x_i, y_j) = \lambda \sum_{i,j} \alpha_i \beta_j k(x_i, y_j) = \lambda \langle f, g \rangle_{\mathcal{H}_0}.$$

Needed: for $\forall \lambda \in \mathbb{R}, f = \sum_{i} \alpha_{i} k(\cdot, x_{i}), g = \sum_{j} \beta_{j} k(\cdot, y_{j}) \in \mathcal{H}_{0}$

- $\langle \lambda f, g \rangle_{\mathcal{H}_0} = \lambda \langle f, g \rangle_{\mathcal{H}_0}:$ $\langle \lambda f, g \rangle_{\mathcal{H}_0} = \sum_{i,j} (\lambda \alpha_i) \beta_j k(x_i, y_j) = \lambda \sum_{i,j} \alpha_i \beta_j k(x_i, y_j) = \lambda \langle f, g \rangle_{\mathcal{H}_0}.$

Needed: for $\forall \lambda \in \mathbb{R}, f = \sum_{i} \alpha_{i} k(\cdot, x_{i}), g = \sum_{j} \beta_{j} k(\cdot, y_{j}) \in \mathcal{H}_{0}$

$$(f,g)_{\mathcal{H}_0} = \langle g,f \rangle_{\mathcal{H}_0} :$$

$$\langle f,g \rangle_{\mathcal{H}_0} = \sum_{i} \sum_{j} \alpha_i \beta_j k(x_i,y_j) = \sum_{j} \sum_{i} \beta_j \alpha_i k(y_j,x_i) = \langle g,f \rangle_{\mathcal{H}_0} .$$

② $\langle \lambda f, g \rangle_{\mathcal{H}_0} = \lambda \langle f, g \rangle_{\mathcal{H}_0}$: $\langle \lambda f, g \rangle_{\mathcal{H}_0} = \sum_{i,j} (\lambda \alpha_i) \beta_j k(x_i, y_j) = \lambda \sum_{i,j} \alpha_i \beta_j k(x_i, y_j) = \lambda \langle f, g \rangle_{\mathcal{H}_0}$.

where $f_1 + f_2 \leftrightarrow \alpha'_i, \alpha''_i, x'_i, x''_i$

$$f = 0 \Rightarrow \langle f, f \rangle_{\mathcal{H}_0} = 0:$$

$$f = 0 \times k(\cdot, x) \Rightarrow \langle f, f \rangle_{\mathcal{H}_0} = 0 \times 0 \times k(x, x) = 0.$$

Needed: for $\forall f, f_1, f_2, g \in \mathcal{H}$

$$\langle f, g \rangle_{\mathcal{H}} = \lim_{n} \langle f_n, g_n \rangle_{\mathcal{H}_0} \stackrel{\mathcal{H}_0: \checkmark}{=} \lim_{n} \langle g_n, f_n \rangle_{\mathcal{H}_0} = \langle g, f \rangle_{\mathcal{H}}.$$

Needed: for $\forall f, f_1, f_2, g \in \mathcal{H}, \lambda \in \mathbb{R}$

$$\langle f,g\rangle_{\mathcal{H}}=\lim_{n}\langle f_{n},g_{n}\rangle_{\mathcal{H}_{0}}\stackrel{\mathcal{H}_{0}}{=}\lim_{n}\langle g_{n},f_{n}\rangle_{\mathcal{H}_{0}}=\langle g,f\rangle_{\mathcal{H}}.$$

$$\langle \lambda f, g \rangle_{\mathcal{H}} = \lim_{n} \langle \lambda f_n, g_n \rangle_{\mathcal{H}_0} \stackrel{\mathcal{H}_0: \checkmark}{=} \lim_{n} \lambda \langle f_n, g_n \rangle_{\mathcal{H}_0} = \lambda \lim_{n} \langle f_n, g_n \rangle_{\mathcal{H}_0} = \lambda \langle f, g \rangle_{\mathcal{H}_0}$$

Needed: for $\forall f, f_1, f_2, g \in \mathcal{H}, \lambda \in \mathbb{R}$

$$\langle f, g \rangle_{\mathcal{H}} = \lim_{n} \langle f_n, g_n \rangle_{\mathcal{H}_0} \stackrel{\mathcal{H}_0: \checkmark}{=} \lim_{n} \langle g_n, f_n \rangle_{\mathcal{H}_0} = \langle g, f \rangle_{\mathcal{H}}$$

$$\langle \lambda f, g \rangle_{\mathcal{H}} = \lim_{n} \langle \lambda f_n, g_n \rangle_{\mathcal{H}_0} \stackrel{\mathcal{H}_0: \checkmark}{=} \lim_{n} \lambda \langle f_n, g_n \rangle_{\mathcal{H}_0} = \lambda \lim_{n} \langle f_n, g_n \rangle_{\mathcal{H}_0} = \lambda \langle f, g \rangle_{\mathcal{H}_0}$$

$$\begin{split} \langle f_1 + f_2, g \rangle_{\mathcal{H}} &= \lim_n \langle f_{1,n} + f_{2,n}, g \rangle_{\mathcal{H}_0} \overset{\mathcal{H}_0: \checkmark}{=} \lim_n [\langle f_{1,n}, g \rangle_{\mathcal{H}_0} + \langle f_{2,n}, g \rangle_{\mathcal{H}_0}] \\ &= \lim_n \langle f_{1,n}, g \rangle_{\mathcal{H}_0} + \lim_n \langle f_{2,n}, g \rangle_{\mathcal{H}_0} = \langle f_1, g \rangle_{\mathcal{H}} + \langle f_2, g \rangle_{\mathcal{H}}. \end{split}$$

Needed: for $\forall f, f_1, f_2, g \in \mathcal{H}, \lambda \in \mathbb{R}$

$$\langle f,g\rangle_{\mathcal{H}}=\lim_{n}\langle f_{n},g_{n}\rangle_{\mathcal{H}_{0}}\stackrel{\mathcal{H}_{0}:}{=}\lim_{n}\langle g_{n},f_{n}\rangle_{\mathcal{H}_{0}}=\langle g,f\rangle_{\mathcal{H}}.$$

$$\langle \lambda f, g \rangle_{\mathcal{H}} = \lim_{n} \langle \lambda f_n, g_n \rangle_{\mathcal{H}_0} \stackrel{\mathcal{H}_0: \checkmark}{=} \lim_{n} \lambda \langle f_n, g_n \rangle_{\mathcal{H}_0} = \lambda \lim_{n} \langle f_n, g_n \rangle_{\mathcal{H}_0} = \lambda \langle f, g \rangle_{\mathcal{H}_0}$$

$$\langle f_1 + f_2, g \rangle_{\mathcal{H}} = \lim_{n} \langle f_{1,n} + f_{2,n}, g \rangle_{\mathcal{H}_0} \stackrel{\text{r.o.v}}{=} \lim_{n} [\langle f_{1,n}, g \rangle_{\mathcal{H}_0} + \langle f_{2,n}, g \rangle_{\mathcal{H}_0}]$$

$$= \lim_{n} \langle f_{1,n}, g \rangle_{\mathcal{H}_0} + \lim_{n} \langle f_{2,n}, g \rangle_{\mathcal{H}_0} = \langle f_1, g \rangle_{\mathcal{H}} + \langle f_2, g \rangle_{\mathcal{H}}.$$

$$\langle f, f \rangle_{\mathcal{H}} = \lim_{n} \langle 0, 0 \rangle_{\mathcal{H}_0} \stackrel{\mathcal{H}_0:\checkmark}{=} \lim_{n} 0 = 0.$$