Laboratorijska vježba 5

Cilj vježbe je upoznavanje sa drugim tipom nadziranog učenja - regresijom. Studenti se upoznaju sa razlikama pri dizajniranju arhitekture neuronske mreže za regresiju u odnosu na klasifikaciju te rješavaju jednostavan zadatak regresije koristeći Keras razvojni okvir.

Zadaci za rad u laboratoriji

Zadatak 1 - Predviđanje cijene kuća u Boston

U ovom zadatku cilj je izvršiti predikciju cijene prilikom kupovine kuće u Bostonu na bazi podataka iz 1970. godine. Za potrebe vježbe koristiti će se historijski podaci, a oni uključuju informacije kao što je nivo kriminala u regiji, lokalni porez, itd. Ciljne (eng. target) vrijednosti su izražene u hiljadama dolara.

a) Učitati The Boston Housing Price skup podataka. Skup podataka je dio Keras biblioteke te se može učitati sljedećim kodom:

b) Koji je oblik podataka za treniranje, a koji za testiranje? Koliko ima ukupno atributa (značajki)?

```
1 print("Oblik podataka za treniranje je ",train_data.shape)
2 print("Oblik podataka za testiranje je ",test_data.shape)
3 print("Ukupno atributa (znacajki) je ", train_data.shape[1])
4

Oblik podataka za treniranje je (404, 13)
Oblik podataka za testiranje je (102, 13)
Ukupno atributa (znacajki) je 13
```

c) Koji je opseg vrijednosti (min i max) za svaki atribut u skupu podataka? A koji je opseg vrijednosti za ciljne (eng. target) vrijednosti?

```
1 import pandas as pd
2 data_frame_train=pd.DataFrame(train_data)
3 data_frame_test=pd.DataFrame(test_data)
4 data_frame_targets_train=pd.DataFrame(train_targets)
5 data_frame_targets_test=pd.DataFrame(test_targets)
6 data_frame=pd.concat([data_frame_train, data_frame_test,], axis=0)
7 data_frame_targets=pd.concat([data_frame_targets_train, data_frame_targets_test,], axis=1)
8
9 print("Opseg vrijednosti za svaki atribut u skupu podataka: ")
10 data_frame.describe()
11
12
13
14
```

Opseg vrijednosti za svaki atribut u skupu podataka:

	0	1	2	3	4	5	6
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000
4							>

```
1 print("Opseg vrijednosti za ciljne (eng.target) vrijednosti: ")
```

² data_frame_targets.describe()

```
Opseg vrijednosti za ciljne (eng.target) vrijednosti:
```

d) S obzirom da podaci zauzimaju široke spektre vrijednosti, izvršiti skaliranje korištenjem MinMaxScaler-a. Obavezno povesti računa da se parametri scaler-a za skaliranje izračunaju nad trening skupom podataka, a da se skaliranje izvrši i nad trening i nad test skupom.

```
std 9.210442 9.168863

1 from sklearn.preprocessing import MinMaxScaler
2 scaler = MinMaxScaler().fit(train_data)
3 train_data = scaler.fit_transform(train_data)
4 test_data = scaler.fit_transform(test_data)
5
```

e) Napisati pomoćnu funkciju def model_mreze() koja će vraćati model mreže (return model) opisan u nastavku. Model treba da ima 2 skrivena Dense sloja sa po 64 neurona sa relu aktivacijskim funkcijama. Dimenzije ulaznog sloja odrediti na osnovu broja atributa skupa podataka. Treći, koji je i posljednji sloj, treba imati samo jedan neuron i ne treba imati aktivacijsku funkciju.

```
1 from keras import models
2 from keras import layers
3 def model_mreze():
4    n=train_data.shape[1]
5    model = models.Sequential()
6    model.add(layers.Dense(64, activation='relu', input_shape=(n,)))
7    model.add(layers.Dense(64, activation='relu'))
8    model.add(layers.Dense(1))
9    return model
10
```

f) Kompajlirati model da koristi mse funkciju gubitka, adam optimizator i mae metriku. S obzirom da su ciljne vijednosti izražene u hiljadama dolara, metrika MAE govori koliko model griješi u hiljadama dolara. Na primjer, ukoliko je vrijednost MAE = 4.2, to znači da predviđanja modela odstupaju u prosjeku za \$4200;

```
1 model=model_mreze()
2 model.compile(optimizer='adam',loss='mse',metrics=['mae'])
```

g) Izvršiti treniranje modela na 100 epoha, sa veličinom batch-a jednakoj 1. Koristiti 10% trening skupa za validaciju. Kolika je postignuta vrijednost funkcije gubitka na kraju treniranja, a kolika je vrijednost metrike MAE? Grafički prikazati.

<u>.</u>

```
Epoch 65/100
Epoch 66/100
Epoch 67/100
Epoch 68/100
Epoch 69/100
363/363 [=============== ] - 1s 2ms/step - loss: 6.9041 - mae: 1.8747 -
Epoch 70/100
Epoch 71/100
363/363 [================ ] - 1s 2ms/step - loss: 7.2828 - mae: 1.8884 -
Epoch 72/100
Epoch 73/100
363/363 [=============== ] - 1s 2ms/step - loss: 6.7225 - mae: 1.8767 -
Epoch 74/100
Epoch 75/100
Epoch 76/100
Epoch 77/100
Epoch 78/100
Epoch 79/100
Epoch 80/100
Epoch 81/100
Epoch 82/100
Epoch 83/100
Epoch 84/100
363/363 [============ ] - 1s 2ms/step - loss: 6.1364 - mae: 1.8202 -
Epoch 85/100
Epoch 86/100
Epoch 87/100
Epoch 88/100
Epoch 89/100
Epoch 90/100
Epoch 91/100
363/363 [=============== ] - 1s 2ms/step - loss: 5.7739 - mae: 1.7595 -
```

```
1 import math
 2 import matplotlib.pyplot as plt
 4 #citanje potrebnih vrijednosti iz history objekta
 5 acc = history.history['mae']
 6 loss values = history.history['loss']
 7 val loss values = history.history['val loss']
 8 \text{ epochs} = \text{range}(1, \text{len(acc)} + 1)
10 #pripremanje za crtanje grafa
11 plt.plot(epochs, loss_values, 'bo', label='Training loss')
12 plt.plot(epochs, val loss values, 'b', label='Validation loss')
13 plt.title('Training and validation loss')
14 plt.xlabel('Epochs')
15 plt.ylabel('Loss')
16 plt.legend()
17 plt.show()
18 plt.clf()
19
20 #citanje potrebnih vrijednosti iz history objekta
21 acc values = history.history['mae']
22 val acc values = history.history['val mae']
23 plt.plot(epochs, acc values, 'bo', label='Training mae')
24 plt.plot(epochs, val acc values, 'b', label='Validation mae')
25 plt.title('Training and validation mae')
26 plt.xlabel('Epochs')
27 plt.ylabel('Loss')
28 plt.legend()
```


h) U prethodnom grafičkom prikazu problem predstavlja skala i visoka varijansa nad validacijskim skupom po- dataka. Iz tog razloga je korisno prikazati usrednjene vrijednosti i zanemariti prvih 10 uzoraka radi visoke skale u početnim epohama. Ovakav prikaz nad validacijskim skupom podataka se može postići sljedećim kodom:

```
1 def smooth_curve(points, factor=0.9):
    smoothed points = []
    for point in points:
      if smoothed_points:
 4
 5
          previous = smoothed points[-1]
          smoothed_points.append(previous * factor + point * (1 - factor))
 7
      else:
 8
           smoothed points.append(point)
    return smoothed points
10 mae history = history.history['val mae']
11
12 smooth mae history = smooth curve(mae history[10:])
13 plt.plot(range(1, len(smooth mae history) + 1), smooth mae history)
14 plt.xlabel('Epochs')
15 plt.ylabel('Validation MAE')
16 plt.show()
17
```

^

i) Ponovo definisati model i istrenirati ga na 500 epoha. Ostale parametre ostaviti nepromijenjenim. Izvršiti grafički prikaz usrednjenih vrijednosti kao u prethodnom zadatku. Uporediti ova dva grafička prikaza. Šta se može zaključiti iz ovih grafika?

```
ati
1 model=model mreze()
2 model.compile(optimizer='adam',loss='mse',metrics=['mae'])
4 #stavljamo treniranje na 500 epoha
5 history = model.fit(train_data, train_targets, epochs=500, batch_size=1, validation_split
  Epoch 376/500
  363/363 [============== ] - 1s 2ms/step - loss: 1.8477 - mae: 1.0045 -
  Epoch 377/500
  363/363 [============== ] - 1s 2ms/step - loss: 1.6620 - mae: 0.9580 -
  Epoch 378/500
  363/363 [============== ] - 1s 2ms/step - loss: 1.8920 - mae: 1.0282 -
  Epoch 379/500
  363/363 [================ ] - 1s 2ms/step - loss: 2.5112 - mae: 1.1283 -
  Epoch 380/500
  363/363 [=========== ] - 1s 2ms/step - loss: 1.7905 - mae: 1.0142 -
  Epoch 381/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.7633 - mae: 0.9809 -
  Epoch 382/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.9399 - mae: 1.0383 -
  Epoch 383/500
  363/363 [============== ] - 1s 2ms/step - loss: 1.9300 - mae: 1.0388 -
  Epoch 384/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.8418 - mae: 1.0350 -
  Epoch 385/500
  363/363 [=============== ] - 1s 2ms/step - loss: 2.2120 - mae: 1.0826 -
  Epoch 386/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.8456 - mae: 1.0112 -
  Epoch 387/500
  Epoch 388/500
  Epoch 389/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.8240 - mae: 0.9901 -
  Epoch 390/500
  363/363 [=============== ] - 1s 2ms/step - loss: 2.2807 - mae: 1.1413 -
  Epoch 391/500
  Epoch 392/500
  363/363 [============== ] - 1s 2ms/step - loss: 1.6987 - mae: 1.0003 -
  Epoch 393/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.7686 - mae: 0.9500 -
  Epoch 394/500
  363/363 [=============== ] - 1s 2ms/step - loss: 1.7932 - mae: 0.9892 -
  Epoch 395/500
```

```
Epoch 396/500
363/363 [============ ] - 1s 2ms/step - loss: 2.0742 - mae: 1.0602
Epoch 397/500
363/363 [=============== ] - 1s 2ms/step - loss: 2.1038 - mae: 1.0684 -
Epoch 398/500
363/363 [=============== ] - 1s 2ms/step - loss: 1.8119 - mae: 1.0056 -
Epoch 399/500
363/363 [============== ] - 1s 2ms/step - loss: 1.6924 - mae: 0.9951 -
Epoch 400/500
363/363 [============= ] - 1s 2ms/step - loss: 2.2882 - mae: 1.1399 -
Epoch 401/500
363/363 [============= ] - 1s 2ms/step - loss: 1.6688 - mae: 0.9540 -
Epoch 402/500
Epoch 403/500
363/363 [========
                  ======== ] - 1s 2ms/step - loss: 1.7311 - mae: 0.9925 -
                                    Text
                          Code
```

```
1 def smooth_curve(points, factor=0.9):
    smoothed points = []
 2
    for point in points:
 3
 4
       if smoothed_points:
 5
          previous = smoothed points[-1]
          smoothed_points.append(previous * factor + point * (1 - factor))
 6
 7
       else:
 8
           smoothed points.append(point)
    return smoothed points
10 mae history = history.history['val mae']
11
12 smooth mae history = smooth curve(mae history[10:])
13 plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
14 plt.xlabel('Epochs')
15 plt.ylabel('Validation MAE')
16 plt.show()
```


j) Izvršiti evaluaciju modela nad testnim skupom podataka. Koja je postignuta vrijednost funkcije gubitka, a koja vrijednost metrike MAE? Koliko prosječno u dolarima griješi model u svojim

predikcijama?

```
1 results = model.evaluate(test_data,test_targets)
4/4 [===========] - 0s 3ms/step - loss: 33.4500 - mae: 4.8708

1 import math
2 print("Funkcija gubitka: ", results[0])
3 print("Vrijednost metrike MAE: ", results[1])
4 print("Model prosječno griješi {} u dolarima".format(math.floor(10000000*results[1])/1000.0

Funkcija gubitka: 33.44998550415039
   Vrijednost metrike MAE: 4.870757579803467
   Model prosječno griješi 4870.757 u dolarima
```