Hamlet R-package: step-by-step user instructions

Teemu Daniel Laajala

$March\ 1,\ 2016$

Contents

1	Inti	roduction	2
	1.1	Analysis workflow	2
2	\mathbf{Pre}	-intervention analyses	2
	2.1	Loading data into R	2
	2.2	Excel format data	4
		2.2.1 CSV-files	4
	2.3	Distance and dissimilarity functions	5
	2.4	Non-bipartite optimal matching of animals at baseline (BB)	6
	2.5	Non-bipartite optimal matching of animals at baseline (GA)	7
	2.6	Randomization based on matched individuals	9
	2.7	Visualizations for pre-clinical data	10
3	Pov	ver analysis	13
	3.1	An artificial example	13
		3.1.1 Structure of a mixed-effects model	15
		3.1.2 Bootstrap simulations	17
	3.2		19
4	Pos	t-intervention analyses	22
	4.1	Long format and the presented datasets	22
	4.2	Collating to pairwise submatched observations	23
	43	Fitting conventional and pairwise matched mixed-affects models	23

1 Introduction

Hamlet is an R package intended for the statistical analysis of pre-clinical studies. This document is a basic introduction to the functionality of hamlet and a general overview to the analysis workflow of preclinical studies.

This document is structured as follows: First, a general overview to inputting and processing the raw data is presented. Second, functionality is presented for the processing of pre-intervention data. Finally, functionality is presented for the post-intervention period, along with brief discussion on the differences between non-matched and matched statistical approaches. Each section comes with a list of useful functions specific for the subtask.

Latest version of hamlet is available in the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/). CRAN mirrors are by default available in the installation of R, and the hamlet package is installable using the R terminal command: install.packages("hamlet"). This should prompt the user to select a nearby CRAN mirror, after which the installation of hamlet is automatically performed. After the install.packages-call, the hamlet package can be loaded with either command library("hamlet") or require("hamlet").

The following notation is used in the document: R commands, package names and function names are written in typewriter font. The notation of format pckgName::funcName indicates that the function funcName is called from the package pckgName. If only the function name is given, this indicates that it is located in the base package in R and is thus always available.

1.1 Analysis workflow

Two different types of case-control setups for the analysis of pre-clinical are presented in Fig. 1.

The type A experiment design in Fig. 1 is preferred, as matching is performed before allocation to the experiment groups, and therefore improves the balance and power of the experiment. The alternate experiment type B requires the bipartite matching task, where suitable pairs of individuals are identified over two or more groups that existed prior to matching. This document focuses on experiment design of type A, where similarity information is utilized readily before interventions.

2 Pre-intervention analyses

2.1 Loading data into R

The hamlet package comes pre-installed with the VCaP dataset, which is used here to illustrate the workflow. Two different formats of the data are provided. First one is available in data(vcapwide), which includes the data in the so-called *wide* format. In this data format the columns are indicators for different variables available for the experimental unit (here animal). For example, the two first rows of observations are extracted with:

- > require(hamlet)
- > data(vcapwide)

Figure 1: Analysis workflow for pre-clinical experiments

> vcapwide[1:2,]

	Castratio	onDate C	ageAtAl]	Location	Group	Treatment	Initiation	Week S	ubmatch
ID003	1	.00413		13489	Vehicle		We	ek10 Sub	$\mathtt{match} \mathtt{_1}$
ID007	1	70413		13810	MDV		We	ek10 Subm	atch_10
	ID PSA	Week2 P	SAWeek3	PSAWeek4	PSAWeek	5 PSAWeek	6 PSAWeek7	PSAWeek8	PSAWeek9
ID003	ID003	7.67	14.76	24.78	2.0	3 5.9	7 8.16	13.72	16.57
ID007	ID007	2.01	5.17	8.59	14.6	1.9	9 2.81	4.23	5.38
	PSAWeek10) PSAWeel	k11 PSAV	Veek12 PS	AWeek13	PSAWeek14	BWWeek0 B	WWeek1 BW	Week2
ID003	21.30	45	.69	54.50	53.55	27.64	30.5	31.7	32.6
ID007	7.55	5 9	.70	17.45	22.79	21.88	28.8	30.0	30.6
	BWWeek3 E	BWWeek4	BWWeek5	BWWeek6	BWWeek7	BWWeek8 B	WWeek9 BWW	eek10 BWW	eek11
ID003	33.8	33.9	32.2	32.6	32.6	33.2	34.2	35.0	36.1
ID007	31.6	32.9	32.4	32.0	31.1	30.3	30.5	31.6	31.7
	BWWeek12	BWWeek1	3 BWWeel	x14					
ID003	37.9	37.	5 39	9.7					
ID007	32.4	33.	5 33	3.3					

An another format of the same dataset is provided in data(vcaplong). This is the data from the same experiment in the so-called *long* format, where only few column variables are available (here PSA or body weight), and the different observations belonging to a single experimental unit (here animal) are distinguished using the measurement time (variable *Week* or *DrugWeek*). Again, first few rows of the dataset:

- > data(vcaplong)
- > vcaplong[1:3,]

1	А	В	С	D
1	Animal	PSA week 10 [ug/l]	PSA week 9 [ug/I]	Body weight week 10 [g]
2	ID003	21,3	16,57	35
3	ID007	7,55	5,38	31,6
4	ID008	23,58	17,4	33,6
5	ID009	13,17	11,14	31,7
6	ID010	9,9	9,33	34,1
7	ID016	15,05	15,29	39,6
8	ID018	13,53	12,14	34
9	ID025	13,13	10,91	33,3
10	ID027	9,59	8,79	32
11	ID031	7,04	6,95	36,6
12	ID032	8,49	8,02	34,9
13	ID037	13,74	13,38	32,4
14	ID040	23,62	19,15	35,9
15	ID045	14,27	9,8	34,8
16	ID047	6,57	6,28	31,9
17	ID054	34,72	27,14	32,1
18	ID056	28,15	22,05	32,2
19	ID058	9,74	7,68	34

Figure 2: Example Excel-format data, where rows correspond to individuals and columns to different characteristics at baseline. The single sheet data can be easily exported in a text-based format such as CSV.

	PSA	log2PSA	BW	Submatch	ID	Week	DrugWeek	Group	Vehicle	ARN	MDV	
11	21.30	4.412782	35.0	$Submatch_1$	ID003	10	0	Vehicle	1	0	0	
12	45.69	5.513807	36.1	$Submatch_1$	ID003	11	1	Vehicle	1	0	0	
13	54.50	5.768184	37.9	Submatch_1	ID003	12	2	Vehicle	1	0	0	

The former *wide* format is useful for summarizing multiple variables when constructing distance matrices for the data. The latter *long* format is typically used for longitudinal mixed-effects modeling where observations are correlated through time.

2.2 Excel format data

An example view of a pre-clinical dataset is given in Fig. 2. Such a dataset can be saved in an R-friendly format by selecting option File > Save As and CSV (Comma delimited) as the save format in MS Excel.

2.2.1 CSV-files

CSV (Comma Delimited Values) is a suitable text-based format for the data to be read into R using either the function read.table or read.csv. The above presented example CSV file can be opened with the following command:

```
> ex <- read.table(file="example.csv", sep=";", dec=",", stringsAsFactors=F, header=T) > ex
```

```
Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g. 1 ID003 21.30 16.57 35.0
```

2	ID007	7.55	5.38	31.6
3	ID008	23.58	17.40	33.6
4	ID009	13.17	11.14	31.7
5	ID010	9.90	9.33	34.1
6	ID016	15.05	15.29	39.6
7	ID018	13.53	12.14	34.0
8	ID025	13.13	10.91	33.3
9	ID027	9.59	8.79	32.0
10	ID031	7.04	6.95	36.6
11	ID032	8.49	8.02	34.9
12	ID037	13.74	13.38	32.4
13	ID040	23.62	19.15	35.9
14	ID045	14.27	9.80	34.8
15	ID047	6.57	6.28	31.9
16	ID054	34.72	27.14	32.1
17	ID056	28.15	22.05	32.2
18	ID058	9.74	7.68	34.0

The above presented CSV file was read into R using read.table with the following parameters: file="example.csv" is the first parameter and indicates the input file from our current working directory. The working directory may be changed using the command setwd or by including its path in the file parameter, i.e. file="D://my//current//windows//working//directory//example.csv" sep=";" indicates that the values on each line are separated with the symbol ';', as is the format defined for the CSV delimited files with ","-decimals. This could also be a value such as \tab or " " (space). dec="," indicates that the "," symbol is used for decimals. The default value for indicating decimals is "." otherwise. stringsAsFactors=F indicates that strings should not be handled as factors. Factors are an R class, where a character string may only take instances of a predetermined set of strings. As each of our animal IDs - which are read as strings - are unique, it is generally more flexible to conserve them as character strings. Lastly, header=T indicates that the text CSV file has a header row as the first row, which includes names for each column. If this value is set to header=F or header=FALSE, the first row of the text file is read as the first observation and the columns are left unnamed.

Depending on the country of origin, the CSV files may use "." decimals and "," separator, or alternatively (as assumed here) "," decimals" and ";" separators. List of useful functions:

- read.table, read.csv
- data: data(vcaplong), data(vcapwide)

2.3 Distance and dissimilarity functions

A distance or dissimilarity function is used to describe the amount of dissimilarity between two experimental units. Common choices for computing the amount of similarity between two vectors \mathbf{x} and \mathbf{y} include:

• Euclidean distance:
$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
.

- Standardized Euclidean distance: $\sqrt{\sum_{i=1}^{P} \frac{(x_i-y_i)^2}{s_i^2}}$
- Mahalanobis distance: $\sqrt{(x-y)^T S^{-1}(x-y)}$

Here, \mathbf{x} and \mathbf{y} are expected to be observation vectors of length P, where each dimension describes the measured value for a particular covariate. S describes the covariance-variance matrix between covariates, and therefore incorporates inter-correlations between variables. The standard deviation s may be used to standardize differences in variation over the dimensions.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.00	18.05	2.80	10.32	13.53	7.87	9.00	10.08	14.38	17.28	15.40	8.61	3.58	9.76	18.23	17.33	9.21	14.62
2	18.05	0.00	20.14	8.05	5.23	14.78	9.34	8.04	3.99	5.27	4.33	10.15	21.60	8.66	1.36	34.81	26.51	3.98
3	2.80	20.14	0.00	12.29	15.89	10.64	11.35	12.30	16.50	19.79	17.82	10.70	2.89	12.08	20.39	14.87	6.67	16.92
4	10.32	8.05	12.29	0.00	4.44	9.12	2.53	1.62	4.29	8.90	6.47	2.42	13.82	3.55	8.20	26.84	18.54	5.39
5	13.53	5.23	15.89	4.44	0.00	9.61	4.59	3.68	2.19	4.48	2.08	5.83	16.97	4.45	5.02	30.61	22.33	1.66
6	7.87	14.78	10.64	9.12	9.61	0.00	6.60	7.91	11.39	11.95	10.86	7.56	10.10	7.33	14.57	24.16	16.49	10.84
7	9.00	9.34	11.35	2.53	4.59	6.60	0.00	1.47	5.54	8.71	6.57	2.04	12.43	2.58	9.34	26.03	17.75	5.85
8	10.08	8.04	12.30	1.62	3.68	7.91	1.47	0.00	4.33	7.98	5.70	2.70	13.59	2.19	8.15	27.04	18.73	4.73
9	14.38	3.99	16.50	4.29	2.19	11.39	5.54	4.33	0.00	5.57	3.20	6.20	17.87	5.55	3.93	31.12	22.81	2.29
10	17.28	5.27	19.79	8.90	4.48	11.95	8.71	7.98	5.57	0.00	2.48	10.19	20.60	7.98	4.77	34.56	26.32	3.82
11	15.40	4.33	17.82	6.47	2.08	10.86	6.57	5.70	3.20	2.48	0.00	7.91	18.81	6.05	3.96	32.58	24.30	1.58
12	8.61	10.15	10.70	2.42	5.83	7.56	2.04	2.70	6.20	10.19	7.91	0.00	11.96	4.34	10.10	25.09	16.82	7.14
13	3.58	21.60	2.89	13.82	16.97	10.10	12.43	13.59	17.87	20.60	18.81	11.96	0.00	13.27	21.73	14.19	6.53	18.11
14	9.76	8.66	12.08	3.55	4.45	7.33	2.58	2.19	5.55	7.98	6.05	4.34	13.27	0.00	8.95	26.95	18.69	5.07
15	18.23	1.36	20.39	8.20	5.02	14.57	9.34	8.15	3.93	4.77	3.96	10.10	21.73	8.95	0.00	35.04	26.73	4.05
16	17.33	34.81	14.87	26.84	30.61	24.16	26.03	27.04	31.12	34.56	32.58	25.09	14.19	26.95	35.04	0.00	8.31	31.72
17	9.21	26.51	6.67	18.54	22.33	16.49	17.75	18.73	22.81	26.32	24.30	16.82	6.53	18.69	26.73	8.31	0.00	23.42
18	14.62	3.98	16.92	5.39	1.66	10.84	5.85	4.73	2.29	3.82	1.58	7.14	18.11	5.07	4.05	31.72	23.42	0.00

Table 1: Euclidean distance matrix D for 18 animals

Table 1 shows the Euclidean distance matrix for the 18 animals presented in Figure 2.

List of useful functions:

- dist includes many common distance and dissimilarity functions (Euclidean by default, others: method="manhattan", method="maximum", method="minkowski"
- cluster::daisy, daisy includes Gower's dissimilarity for mixed data (parameter metric="gower")

2.4 Non-bipartite optimal matching of animals at baseline (BB)

The non-bipartite optimal matching problem may be solved using the provided branch and bound algorithm:

> sol.bb <- match.bb(d, g=3)

- [1] "Performing initial sorting for a good initial guess"
- [1] "Computing boundaries for minimum distances in possible combinations..."
- [1] "Starting branch and bound"
- [1] "Branches: 272" [1] "Bounds: 7140"
- [1] "Ends visited: 25"

```
[1] "Solution cost 169.62"
[1] "Solution: 5,3,5,6,4,5,6,4,3,2,2,6,1,4,3,1,1,2"
> submatches <- paste("Submatch_", LETTERS[1:6][sol.bb$solution], sep="")
> names(submatches) <- names(sol.bb$solution)</pre>
> submatches
           1
                                      3
                                                                  5
                                                                               6
"Submatch_E" "Submatch_C" "Submatch_E" "Submatch_F" "Submatch_D"
                                                                    "Submatch_E"
           7
                        8
                                      9
                                                   10
                                                                 11
                                                                              12
"Submatch_F"
             "Submatch_D"
                           "Submatch_C"
                                        "Submatch_B"
                                                      "Submatch_B"
                                                                    "Submatch_F"
                        14
          13
                                     15
                                                   16
                                                                 17
                                                                              18
"Submatch_A" "Submatch_D" "Submatch_C" "Submatch_A" "Submatch_A" "Submatch_B"
```

The match.bb function returns the solution to the optimal matching task. It takes as input a distance matrix $\tt d$, as is indicated in the function call match.bb(d, g=3) (notice that d was defined before). Furthermore, the size of the submatches is defined using the parameter g=3. This value indicates that the optimal matching algorithm minimizes edges within triplets. Each observation has to belong to a triplet called a submatch.

List of useful functions:

- Multigroup non-bipartite matching: hamlet::match.bb
- Paired non-bipartite matching: hamlet::match.bb, nbpMatching::nonbimatch
- Paired bipartite matching: optmatch::fullmatch

2.5 Non-bipartite optimal matching of animals at baseline (GA)

While the above described Branch and Bound algorithm is guaranteed to identify the global optimum, in some cases it is not feasible due to size of the search tree. In such cases, a feasible optimum is easily detected using a Genetic Algorithm implemention provided in hamlet::match.ga.

The Genetic Algorithm (GA) commonly includes many parameters, as it aims to mimic evolutionary processes in solving a problem, here a non-bipartite multigroup matching problem. The basic parameters that should be considered include generations, which indicates for how many generations the simulation is run for and thus increases run time approximately linearly, and the parameter popsize, which indicates how many solutions should be "living" inside the whole population at a given generation. A thumb rule is that many solutions are easily solvable by the 1,000th generation, if the population size is at least 100, but the user may want to use the visualizations and diagnostic plots to see how well the GA has managed to solve the optimization problem. The convergence happens over the generations similarly as presented in Figure 3.

```
> sol.bb[["cost"]] # Guaranteed global optimum
[1] 169.62
> sol.ga[[3]] # Identified solution by GA
```

> set.seed(1) # GA is a stochastic algorithm, fixing the seed for reproducibility > sol.ga <- match.ga(d, g=3, generations=100, popsize=100)

- [1] "Best found solution vector:"
- [1] 5 6 5 3 1 5 1 3 6 2 2 3 4 1 6 4 4 2
- [1] "Best found solution cost:"
- [1] 171.72

Figure 3: Convergence of the GA in the given optimization problem. The minimum shows the best identified optimization solution, while the quantiles give insight to the solution heterogeneity living in the solution space.

[1] 171.72

The GA algorithm, with a linear run time, has resulted in a very close optimum to the guaranteed global optimum identified using BB, which may in return have some cases lead to drastic increases in run times. Both algorithms may thus be applicable where appropriate.

2.6 Randomization based on matched individuals

The submatches identified in the above section should not be mistaken for the randomly allocated intervention groups. The final intervention groups are obtained by dividing members of each submatch in the found solution to a separate treatment arm. Since the within-submatch distances are minimized, this guarantees that comparable individuals are randomly divided to separate arms:

```
> ex[,"Submatch"] <- submatches</pre>
```

- > set.seed(1) # for reproducibility
- > ex[,"AllocatedGroups"] <- match.allocate(ex[,"Submatch"])</pre>
- > ex <- ex[order(ex[,"Submatch"]),] # Sort for submatches

	Animal	PSA.week.10ug.l.	PSA.week.9ug.l.	Body.weight.week.10g.	Submatch	AllocatedGroups
13	ID040	23.62	19.15	35.90	Submatch_A	Group_B
16	ID054	34.72	27.14	32.10	Submatch_A	Group_C
17	ID056	28.15	22.05	32.20	$Submatch_A$	Group_A
10	ID031	7.04	6.95	36.60	$Submatch_B$	Group_C
11	ID032	8.49	8.02	34.90	$Submatch_B$	Group_A
18	ID058	9.74	7.68	34.00	$Submatch_B$	Group_B
2	ID007	7.55	5.38	31.60	$Submatch_C$	Group_C
9	ID027	9.59	8.79	32.00	$Submatch_C$	Group_A
15	ID047	6.57	6.28	31.90	Submatch_C	Group_B
5	ID010	9.90	9.33	34.10	$Submatch_D$	Group_A
8	ID025	13.13	10.91	33.30	$Submatch_D$	Group_C
14	ID045	14.27	9.80	34.80	$Submatch_D$	Group_B
1	ID003	21.30	16.57	35.00	$Submatch_E$	Group_A
3	ID008	23.58	17.40	33.60	$Submatch_E$	Group_C
6	ID016	15.05	15.29	39.60	$Submatch_E$	Group_B
4	ID009	13.17	11.14	31.70	$Submatch_F$	Group_C
7	ID018	13.53	12.14	34.00	$Submatch_F$	Group_B
12	ID037	13.74	13.38	32.40	$Submatch_F$	Group_A

Table 2: The result table in variable **ex** after performing the optimal matching and allocation.

As is seen Table 2, each submatch (column Submatch) consists of similar experimental units in terms of the baseline characteristics (i.e. PSA and body weight). Furthermore, the baseline data has now been allocated in such a manner, that each submatch evenly distributes to the proposed intervention groups (column AllocatedGroup), resulting in balanced baseline intervention groups. These artificial labels A, B, and C may then be given to an external experimenter in a blinded manner, and allocated to the true labels in any fashion without any pre-fixed control group, as all pairwise contrasts have been considered in the submatching procedure.

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb, hamlet::match.ga

> boxplot(PSA.week.10..ug.l. ~ AllocatedGroups, data = ex, range=0,
+ xlab="Group", ylab="PSA week 10 ul/g")

Figure 4: Boxplots for the week 10 PSA in the example allocation

- Paired non-bipartite matching: hamlet::match.bb, hamlet::match.ga, nbpMatching::nonbimatch
- Paired bipartite matching: optmatch::fullmatch

2.7 Visualizations for pre-clinical data

Various visualization functions are available to illustrate baseline balance. For example, the boxplots in respect to allocation groups can be plotted using a command such as boxplot, which is illustrated in Figure 4.

Mixed variable scatterplots with annotations for the submatches or allocation groups are plotted using the function hamlet::mixplot, which can be seen in Figures 5 or 6 respectively.

List of useful functions:

- Scatterplots etc: hamlet::mixplot, plot, boxplot
- Heatmaps: hamlet::hmap, heatmap, gplots::heatmap.2

> mixplot(ex[,2:5], pch=16)

Figure 5: Test mixplot with submatch labels

> mixplot(ex[,c(2:4,6)], pch=16)

Figure 6: Test mixplot with allocation group labels

3 Power analysis

The power simulations provided by the hamlet-package are conducted through bootstrap (sampling with replacement) simulations using a pre-fitted mixed-effects model. For this purpose, it is essential that the user pre-defines a suitable mixed-effects model in the lmer-function of the lme4-package, as this will be used in the sampling process. The function mem.powersimu is the main hamlet function that performs this sampling, and it automatically identifies the suitable experimental unit from the lme4-object, and then re-fits the model structure a pre-defined amount of times at given N values.

3.1 An artificial example

In a situation where the user wishes to generate artificial data, it is important for the experimenter to evaluate such factors as:

- How many measurement points time will be available
- What is the expected effect size
- Will right-censoring (death or sacrifice) occur and what are the risk criteria
- Are there baseline differences or is there a correlation between the initial baselinse response level and intervention efficacy

The user is encouraged to creatively produce such expert curated data either by hand, or through a tailored simulation function. As a practical example, an example function will be constructed below (mainly utilizing normal distributions). In order for the artificial data to be modeled using <code>lme4-package</code>, it should follow the long format.

As an example, data with an initial baseline level of response values with $\mu=5$ and $\sigma=2$ will be generated from the normal distribution. 4 follow-up time points will be available after the initial baseline, and the expected control growth will be 2 per time point and in turn the intervention effect to have an effect of -1 to growth per time point. Furthermore, we simulate a right-censoring that has 20% chance to occur for individuals reaching above response values > 10. In this artificial example, 5 individuals will be available for both the control and the intervention group. Each measurement will have measurement error with no bias ($\mu=0$) and $\sigma=2$.

```
> # Baseline characteristics and time follow-up
> basemu <- 5
> basesigma <- 2
> ttime <- 4
> # Growth characteristics and group size
> growth <- 2
> interv <- -1
> ngroup <- 5
> # Measurement error and right-censoring
> measerror <- 2
> censthreshold <- 10
> censchance <- 0.2</pre>
```

```
> # Artificial data simulation with a set seed
> set.seed(1)
> # 2 experiment groups
> artdat <- do.call("rbind", lapply(c("Control", "Intervention"), FUN=function(group){
  # Simulated individuals
  do.call("rbind", lapply(1:ngroup, FUN=function(i){
   # Baseline time = 0 and 5 follow up points
   y <- rnorm(n = 1, mean=basemu, sd = basesigma)
   # Growth as a function of time, with a possible intervention effect
   measurements <- unlist(lapply(0:ttime, FUN=function(t){</pre>
    y + growth*t + ifelse(group=="Intervention", interv*t, 0)
   }))
    # Random chance of censoring for response above >10,
          # 20\% chance per time point to right-censor
   for(index in 1:length(measurements)){
    if(!is.na(measurements[index]) & measurements[index]>censthreshold)
    if(rbinom(n=1, size=1, prob=censchance))
           measurements[index:(length(measurements))] <- NA</pre>
    # Add random measurement error
   measurements <- measurements +
    rnorm(n=length(measurements), mean=0, sd=measerror)
          # Collect all data to a long format data.frame
   data.frame(
           Response = measurements,
           ID = paste(group, i, sep="_"),
           Group = ifelse(group=="Intervention", 1, 0),
           Time = 0:ttime)
+ }))
+ }))
```

The above generated simulation script captures some key elements in a preclinical longitudinal intervention study, but should be naturally refined more precisely if more complex interactions are to be incorporated. To give insight into the overall structure of the long-format data, here are the so-called head and tail of the artificially generated data.frame:

> head(artdat)

```
Response
                  ID Group Time
1 6.406691 Control_1
                         0
2 8.291951 Control_1
                         0
                               1
3 8.576375 Control_1
                               2
                         0
4 6.667192 Control_1
                         0
                              3
5 9.889958 Control_1
                         0
                              4
6 9.219866 Control_2
> tail(artdat)
   Response
                        ID Group Time
45 7.593970 Intervention_4
```

```
46 6.856897 Intervention_5 1 0
47 7.117348 Intervention_5 1 1
48 6.258141 Intervention_5 1 2
49 8.907789 Intervention_5 1 3
50 8.509502 Intervention_5 1 4
```

After a suitable long-format data frame has been generated (variable artdat here), one has to specify and fit a preliminary mixed-effects model that will be used as a base for power simulations. The generated artificial data is presented in Figure 7.

3.1.1 Structure of a mixed-effects model

A standard mixed-effects model would, for example, include the following coefficients, given the input data artdat (the formula coefficients need to corresponds to column names in the input data.frame):

```
> f1a <- as.formula(Response ~ 1 + Time + Time:Group + (1 + Time|ID))
> f1b <- as.formula(Response ~ 1 + Time + Time:Group + (1|ID) + (0 + Time|ID))</pre>
```

This formula is structured as follows:

- The left hand side Response is our response vector y.
- The non-parenthesis coefficients following the tilde are the so called *fixed* effects, which are here population-wise parameters
- The first right hand side coefficient 1 stands for standard model intercept, i.e. y level when x=0
- Coefficient Time captures natural growth of the tumors as a function of time
- Coefficient Time: Group introduces grouping information as an interaction with the growth coefficient, and thus tests whether the intervention gives a growth inhibition advantage.
- The terms in parenthesis are random effects with analogous counterparts to their fixed effects. The difference is that the grouping variable, indicated here with |ID, is gives flexibility for the each experimental unit to have deviating intercepts and growth slopes. Separate value from a normal distribution with mean 0 and an estimated standard deviation are identified when fitting the mixed-effects model. The random effects allow individualized response curves, while controlling that multiple observations belong to a single individual (ID).
- An alternate non-correlated random-effects structure is given in f1b, indicated by separating the two random effects terms without a cross-correlation.

Fixed effects are typically utilized in inference of possible intervention effects, and here the term Time:Group will estimate possible intervention effects. A linear mixed-effects model of the above structure can be fitted using:

Artificially generated data

Figure 7: Visualization of the artificially generated data, with two experimental groups.

```
> library(lme4)
> # We defined formulae already before
> fit1 <- lmer(f1b, data = artdat)</pre>
> library(lmerTest)
> summary(fit1)
Linear mixed model fit by REML ['lmerMod']
Formula: Response ~ 1 + Time + Time:Group + (1 | ID) + (0 + Time | ID)
  Data: artdat
REML criterion at convergence: 204.8
Scaled residuals:
                Median
             10
-1.6891 -0.6997
                0.1232 0.5499
                                  2.3074
Random effects:
                      Variance Std.Dev.
 Groups
 ID
          (Intercept) 1.207
                                1.099
                      0.000
                                0.000
 ID.1
          Time
 Residual
                      2.830
                                1.682
Number of obs: 50, groups: ID, 10
Fixed effects:
            Estimate Std. Error t value
                         0.5390 10.556
(Intercept)
              5.6894
```

5.964

Correlation of Fixed Effects:

1.2732

-0.5251

(Intr) Time

Time -0.492

Time

Time:Group

Time:Group 0.000 -0.616

3.1.2 Bootstrap simulations

The package lmerTest is used to provide Satterthwaite approximation for the p-values for fixed effects in the linear mixed-effects model. Albeit the p-values are provided here for the model coefficients, we are interested in how power in such a study would develop as a function of animal numbers N. For this purpose we can perform power simulations, which bootstraps the pre-fitted mixed-effects model on our artificial data:

0.2135

0.2629 -1.998

Notice that the artificial data simulations were run with a very limited bootstrap sample size, in order to save time in generation of this vignette. A better estimate for the power as well as more exact N would be given e.g. by setting boot=1000 and N=3:20. Furthermore, we indicated with level that our experimental unit is defined by the individual indicator ID, and that we want to subsample evenly over the intervention groups through strata. The resulting power curve is shown in Figure 8, suggesting that in order to achieve sufficient statistical power, our experiment should include at least $N_{arm} = 9$ individuals

```
> set.seed(1)
 pow <- mem.powersimu(fit1,</pre>
          N=c(3, 5, 7, 9, 11, 13, 15), boot=20,
          level="ID", strata="Group")
> abline(h=0.8, col="grey")
> pow
                     (Intercept) Time Time:Group
GroupN_3_TotalN_6
                                1
                                     1
                                             0.35
GroupN_5_TotalN_10
                                1
                                     1
                                             0.25
GroupN_7_TotalN_14
                                1
                                     1
                                             0.70
GroupN_9_TotalN_18
                               1
                                     1
                                             0.80
GroupN_11_TotalN_22
                               1
                                     1
                                             0.80
GroupN_13_TotalN_26
                               1
                                     1
                                             1.00
                                1
                                     1
GroupN_15_TotalN_30
                                             0.95
```


Figure 8: Preliminary power curve for all the fixed effects, with a limited number of bootstrapped datasets (20).

in both intervention arms, and total experiment size consisting of $N_{total}=18$ individuals.

3.2 An ARN-509 example

The longitudinal intervention observations of the ARN-509 / MDV3100 -study and ORX / ORX+Tx -study are provided inside the hamlet-package with the commands data(vcaplong) and data(orxlong), respectively. Here we will provide a model fit to the ARN-509 -study, as well as show how its power curve behaves in respect to different fixed effects. Load the ARN-509 / MDV3100 -study and constraint to ARN-509 by:

```
> data(vcaplong)
> arndat <- vcaplong[</pre>
          # Select observations only from the vehicle or ARN-509 groups
          vcaplong[,"Group"] %in% c("Vehicle", "ARN"),
          # Select columns (=features) that are required for the conventional MEM
          c("PSA", "DrugWeek", "ARN", "ID")]
> head(arndat)
     PSA DrugWeek ARN
                          ID
11 21.30
                0
                    0 ID003
12 45.69
                    0 ID003
                1
13 54.50
                2
                    0 ID003
                    0 ID003
14 53.55
                3
15 27.64
                    0 ID003
                4
71 13.17
                0
                    0 ID009
```

Similarly as for the artificial data example, this study could be be representative for estimating power for interventions with similar effect sizes, censoring, follow-up periods etc. The conventional non-matched modeling process and corresponding preliminary power curve would be computed using:

Max

```
Random effects:
```

Min

```
Groups Name Variance Std.Dev. ID (Intercept) 67.80 8.234
```

-3.4768 -0.3911 -0.0044 0.3425 3.1437

1Q Median

3Q

```
ID.1 DrugWeek 26.65 5.163
Residual 33.05 5.749
Number of obs: 150, groups: ID, 30
```

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 14.311 1.709 29.587 8.374 2.68e-09 ***

DrugWeek 10.062 1.407 28.206 7.150 8.47e-08 ***

DrugWeek:ARN -7.627 1.982 27.792 -3.849 0.000636 ***

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Correlation of Fixed Effects:

(Intr) DrugWk

DrugWeek -0.092

DrugWek: ARN 0.000 -0.704

As is seen in Figure 9, the power curves become smoother with higher bootstrap rates. Here a highly narrowed N vector was tested (values 5 to 9), due to a priori knowledge that the power 0.8 would be achieved at N=7.

```
> set.seed(123)
 arnpow <- mem.powersimu(arnfit,</pre>
          level = "ID", strata = "ARN",
          N = c(5,6,7,8,9), boot = 100)
> abline(h=0.8, col="grey")
> arnpow
                    (Intercept) DrugWeek DrugWeek:ARN
GroupN_5_TotalN_10
                                    0.98
                                                  0.68
                              1
                                                  0.75
GroupN_6_TotalN_12
                              1
                                    1.00
GroupN_7_TotalN_14
                                                  0.90
                              1
                                    1.00
GroupN_8_TotalN_16
                                    1.00
                                                  0.83
                              1
GroupN_9_TotalN_18
                              1
                                    1.00
                                                  0.93
```


Figure 9: ARN-509 fixed effects power curves, estimated using the conventional model with 100 bootstrapped data sets.

4 Post-intervention analyses

The presented pre-intervention submatching procedure provides a unique opportunity to utilize this predictive power to improve accuracy in the post-intervention inference. We here provide the datasets from both the ARN-509 / MDV3100-study and the ORX / ORX+Tx-study, by typing data(vcaplong) and data(orxlong), respectively. Alternatively, the pre-intervention data is also available in data(vcapwide) and data(orxwide), respectively.

4.1 Long format and the presented datasets

As out-lined before, in order to perform regression modeling, R requires the observations to be in the so-called long format, where each row in a data.frame corresponds to a single measurement. These measurements are then usually uniquely defined using individual identification codes as well as time points. The presented datasets:

```
> data(vcaplong)
```

- > data(orxlong)
- > head(vcaplong)

```
PSA log2PSA
                    BW
                           Submatch
                                        ID Week DrugWeek
                                                            Group Vehicle ARN MDV
11 21.30 4.412782 35.0
                         Submatch_1 ID003
                                                       0 Vehicle
                                                                        1
                                                                            0
                                                                                 0
                                             10
                                                                                 0
12 45.69 5.513807 36.1
                         Submatch_1 ID003
                                             11
                                                       1 Vehicle
                                                                        1
                                                                             0
13 54.50 5.768184 37.9
                         Submatch_1 ID003
                                             12
                                                       2 Vehicle
                                                                        1
                                                                            0
                                                                                 0
                                                                                 0
14 53.55 5.742815 37.5
                         Submatch_1 ID003
                                             13
                                                       3 Vehicle
                                                                        1
                                                                                 0
15 27.64 4.788686 39.7
                         Submatch_1 ID003
                                             14
                                                       4 Vehicle
                                                                        1
                                                                            0
41 7.55 2.916477 31.6 Submatch_10 ID007
                                             10
                                                              MDV
                                                                        0
                                                                            0
                                                                                 1
```

> head(orxlong)

```
PSA
                                                       Submatch ORXTx ORX Intact
   TD
               log2PSA Day TrDay
                                        Date Group
1 ID1 0.368 -1.442223
                         0
                             -10 2015-01-12 ORX+Tx Submatch_11
2 ID1 1.524 0.6078629
                        10
                               0 2015-01-22 ORX+Tx Submatch_11
                                                                     1
                                                                         0
                                                                                0
3 ID1 0.034 -4.8783214
                        25
                              15 2015-02-06 ORX+Tx Submatch_11
                                                                         0
                                                                                0
4 ID1 0.100 -3.3219281
                        35
                              25 2015-02-16 ORX+Tx Submatch_11
                                                                     1
                                                                         0
                                                                                0
                        45
                                                                         0
                                                                                0
5 ID1 0.203 -2.3004484
                              35 2015-02-26 ORX+Tx Submatch_11
                                                                     1
                                                                                0
6 ID1 0.357 -1.4860040
                        56
                              46 2015-03-09 ORX+Tx Submatch_11
                                                                         0
```

Typically, an experimenter may model a single interesting contrast with a single model, thus we will split the vcaplong and orxlong into two separate data sets.

```
> # Interesting fields in the orthotopic VCaP study
> fields <- c('PSA', 'DrugWeek', 'ID', 'Submatch', 'Group', 'ARN', 'MDV')
> # ARN-509 vs Vehicle
> arndat <- vcaplong[vcaplong[,'Group'] %in% c('ARN', 'Vehicle'),fields]
> # MDV3100 vs Vehicle
> mdvdat <- vcaplong[vcaplong[,'Group'] %in% c('MDV', 'Vehicle'),fields]
> # Interesting fields in the subcutaneous VCaP study
> fields <- c('PSA', 'TrDay', 'ID', 'Submatch', 'Group', 'ORXTx', 'ORX')</pre>
```

```
> # ORX vs Intact
> orxdat <- orxlong[orxlong[,'Group'] %in% c('ORX', 'Intact'), fields]
> # ORX+Tx vs ORX
> xtxdat <- orxlong[orxlong[,'Group'] %in% c('ORX+Tx', 'ORX'), fields]</pre>
```

4.2 Collating to pairwise submatched observations

In order to fit pairwise matched mixed-effects models, the experimenter should utilize the baseline submatch information to subtract corresponding control growth from its intervened counterpart. For this, a field indicating *Submatch* should be available in the data frame, and subtraction in a pairwise manner per each time point *Time*. For example:

	PSA	DrugWeek	ID	${\tt Submatch}$	Group	ARN	MDV	PairPSA
Submatch_1.11	21.30	0	ID003	${\tt Submatch_1}$	${\tt Vehicle}$	0	0	0.00
Submatch_1.12	45.69	1	ID003	$Submatch_1$	Vehicle	0	0	0.00
Submatch_1.13	54.50	2	ID003	${\tt Submatch_1}$	Vehicle	0	0	0.00
Submatch_1.14	53.55	3	ID003	${\tt Submatch_1}$	Vehicle	0	0	0.00
Submatch_1.15	27.64	4	ID003	${\tt Submatch_1}$	Vehicle	0	0	0.00
Submatch_1.266	23.62	0	ID040	${\tt Submatch_1}$	ARN	1	0	2.32
$Submatch_1.267$	22.09	1	ID040	$Submatch_1$	ARN	1	0	-23.60
Submatch_1.268	30.95	2	ID040	${\tt Submatch_1}$	ARN	1	0	-23.55
Submatch_1.269	31.98	3	ID040	${\tt Submatch_1}$	ARN	1	0	-21.57
Submatch_1.270	41.54	4	ID040	Submatch_1	ARN	1	0	13.90

> # The vehicle observations are redundant (subtracted from themselves)
> arnpair <- arnpair[arnpair[,'Group']=='ARN',]</pre>

In the above example, first pairwise computed PSA results in 23.62-21.30=2.32 at time point DrugWeek=0 (baseline). The following time points, i.e. DrugWeek=1 result in turn a much more drastic growth in control tumor, i.e. 22.09-45.69=-23.60. In this particular example, the treated tumor seems to grow much slower for 3 weeks subsequently to the baseline, until it bounces back in the final time point.

4.3 Fitting conventional and pairwise matched mixed-effects models

Linear mixed-effects models compose of two main components:

• **Fixed effects**; Population effects, usually considered to cover either whole range of experimental units or a subpopulation such as an intervention group

• Random effects; Individual effects, that allows flexible model fits. Typical random effects include a random intercept (variation at baseline) and a random slope (individual variation in the growth coefficient).

The formula interface in R for fitting linear mixed-effects models in lme4-package consists of three parts:

$$LFS \sim \mathbf{Xb} + \mathbf{Zu} + \epsilon$$
 (1)

where the LFS refers to left-hand side, i.e. the response vector \mathbf{y} which is usually a tumor growth feature such as serum PSA or tumor volume. The right hand side from \sim holds the fixed effects part (here $\mathbf{Z}\mathbf{b}$), random effects part (here $\mathbf{Z}\mathbf{u}$) and the normally distributed error term ϵ .

Fixed effects are separated using the + sign. A typical longitudinal preclinical model could be built on three fixed effects terms:

$$1 + Time + Time : Group$$
 (2)

where 1 refers to a common intercept, which could be alternatively omitted using either a 0 or a -1 sign instead of 1. Time typically is a running time point indicator, that starts from 0 at baseline and ranges to certain time units such as weeks or days, and tumor growth is computed a slope coefficient as a function of time. Furthermore, the term Time: Group adds a binary indicator Group that may be used to compare a subpopulation in comparison to control tumor growth.

Furthermore, random effects follow a notation:

$$\begin{cases} +(1+Time|GroupingFactor) \\ +(1|GroupingFactor) + (0+Time|GroupingFactor) \end{cases}$$
 (3)

where the notation indicates that each unique factor value within variable <code>GroupingFactor</code> is treated as an instance of the experimental unit. The upper notation indicates that both an individual-specific intercept as well as an individualized time-dependent slope are estimated along with a cross-covariance between the two normally distributed random effects. The lower notation in turn estimates these two effects, an individual-specific intercept and an individualized time-dependent slope, separately from each other. By default we utilized the lower notation approach, though the upper notation may offer an interesting alternative. The error term does not need to explicitly included in the model formula. In the ARN-509 -study, the presented mixed-effects models were fitted using:

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [lmerMod]

```
Formula: PSA ~ 1 + DrugWeek + DrugWeek: ARN + (1 | ID) + (0 + DrugWeek | ID)

Data: arndat
```

REML criterion at convergence: 1082.6

Scaled residuals:

Min 1Q Median 3Q Max -3.4768 -0.3911 -0.0044 0.3425 3.1437

Random effects:

 Groups
 Name
 Variance
 Std.Dev.

 ID
 (Intercept)
 67.80
 8.234

 ID.1
 DrugWeek
 26.65
 5.163

 Residual
 33.05
 5.749

 Number of obs:
 150, groups:
 ID, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 14.311 1.709 29.587 8.374 2.68e-09 ***
DrugWeek 10.062 1.407 28.206 7.150 8.47e-08 ***
DrugWeek:ARN -7.627 1.982 27.792 -3.849 0.000636 ***

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Correlation of Fixed Effects:

(Intr) DrugWk

DrugWeek -0.092

DrugWek:ARN 0.000 -0.704

> summary(fit_arn_matched)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [lmerMod]

Formula: PairPSA ~ 0 + DrugWeek + (1 | ID) + (0 + DrugWeek | ID)

Data: arnpair

REML criterion at convergence: 592.8

Scaled residuals:

Min 1Q Median 3Q Max -2.36132 -0.53405 -0.04075 0.34125 2.72586

Random effects:

 Groups
 Name
 Variance
 Std.Dev.

 ID
 (Intercept)
 49.74
 7.053

 ID.1
 DrugWeek
 79.11
 8.894

 Residual
 70.55
 8.399

 Number of obs: 75, groups: ID, 15

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) DrugWeek -7.962 2.366 13.770 -3.365 0.00472 **

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.05 Ś.Š 0.1 Ś Š 1

Alternate pairwise-matched longitudinal model formulations could include for example:

```
> # Paired model with correlated random effects
> fit_arn_matched2 <- lmer(PairPSA ~ 0 + DrugWeek</pre>
          + (1 + DrugWeek|ID), data = arnpair)
> # Paired model with an intercept fixed effect
> fit_arn_matched3 <- lmer(PairPSA ~ 1 + DrugWeek</pre>
          + (1|ID) + (0 + DrugWeek|ID), data = arnpair)
> # Paired model with an intercept fixed effect
> # and correlated random effects
> fit_arn_matched4 <- lmer(PairPSA ~ 1 + DrugWeek</pre>
          + (1 + DrugWeek|ID), data = arnpair)
> # Only fixed effects shown here to save space
> summary(fit_arn_matched2)$coefficients
          Estimate Std. Error df
                                    t value
                                              Pr(>|t|)
DrugWeek -5.840363
                     2.122596 14 -2.751519 0.01559838
> summary(fit_arn_matched3)$coefficients
             Estimate Std. Error
                                                         Pr(>|t|)
                                             t value
(Intercept) -4.305333
                         2.295298 14.28259 -1.875719 0.081283732
DrugWeek
            -7.302533
                         2.423880 14.28259 -3.012745 0.009142255
> summary(fit_arn_matched4)$coefficients
             Estimate Std. Error
                                        df
                                             t value
                                                         Pr(>|t|)
                         2.122769 13.99982 -2.028169 0.062013340
(Intercept) -4.305333
```

For fitted models, further functions are provided inside hamlet, both for visualization as well as diagnostics purposes. Examples:

2.241686 13.99999 -3.257608 0.005725389

DrugWeek

-7.302533

- hamlet::mem.plotresid for plotting residuals along with trend lines
- hamlet::mem.getcomp for extracting a data.frame containing observationspecific fixed effects fit, full model fit, response vector etc. These can be then used to visualize the corresponding model fits, for example by paneling for experimental groups or each individual participating in the study.