1. (15 bodů) Náhodná veličina X má spojité rovnoměrné rozdělení v intervalu (-3, 4) a náhodná veličina Y = h(X) je definována pomocí funkce

$$h(x) = \begin{cases} -2, & x \le -2, \\ x, & -2 < x < 2, \\ 2, & x \ge 2. \end{cases}$$

- a) Vyjádřete náhodnou veličinu Y jako směs spojité a diskrétní náhodné veličiny. (11 bodů)
- b) Vypočtěte střední hodnotu EY. (4 body)

Řešení:

Náhodná veličina X má rozdělení určené distribuční funkcí F_X a náhodná veličina $Y \in \langle -2, 2 \rangle$ s distribuční funkcí F_Y , kde

$$F_X(u) = \begin{cases} 0, & u < -3, \\ \frac{u+3}{7}, & -3 \le u < 4, \\ 1, & u \le 4. \end{cases} \qquad F_Y(u) = \begin{cases} 0, & x < -2, \\ \frac{u+3}{7}, & -2 \le x < 2, \\ 1, & -2 \le x. \end{cases}$$

Odtud je
$$P(Y = -2) = P(X \le -2) = \frac{1}{7}$$
 a $P(Y = 2) = P(X \ge 2) = \frac{2}{7}$.

a) Označme $Y=\mathrm{Mix}_{\alpha}(U,V)$, kde U je náhodná veličina s diskrétním rozdělením a V je náhodná veličina, která má spojité rozdělení. Potom pro distribuční funkce platí:

$$F_Y(u) = \alpha F_U(u) + (1 - \alpha)F_V(u), \ u \in \mathbb{R}.$$

Je
$$U \in \{-2, 2\}$$
 a $P(Y = -2 \lor Y = 2) = \frac{3}{7} \Rightarrow \alpha = \frac{3}{7}$ a $1 - \alpha = \frac{4}{7}$.

Pro pravděpodobnostní funkci náhodné veličiny U a hustotu náhodné veličiny V dostaneme:

$$p_{U}(u) = \frac{7}{3} \left(F_{X}(u) - F_{X}(u) \right), \quad p_{U}(-2) = \frac{7}{3} \cdot \frac{1}{7} = \frac{1}{3}, \quad p_{U}(2) = \frac{7}{3} \cdot \frac{2}{7} = \frac{2}{3},$$

$$f_{V}(u) = \frac{7}{4} F'_{X}(u), \quad f_{V}(u) = \begin{cases} \frac{7}{4} \cdot \frac{1}{7} = \frac{1}{4}, & -2 < u < 2, \\ f_{V}(u) = 0, & \text{jinde.} \end{cases}$$

Pro distribuční funkce pak dostaneme

$$F_U(u) = \begin{cases} 0, & u < 2, \\ \frac{1}{3}, & -2 \le u < 2, \\ 1, & 2 \le u, \end{cases} F_V(u) = \begin{cases} 0, & u < 2, \\ \frac{u+2}{4}, & -2 \le u < 2, \\ 1, & 2 \le u. \end{cases}$$

Je tedy $Y = \text{Mix}_{3/7,4/7}(U, V)$. Potom je distribuční funkce náhodné veličiny Y rovna

$$F_Y(u) = \frac{3}{7} F_U(u) + \frac{4}{7} F_V(u), \ u \in \mathbb{R}.$$

b) Pro střední hodnotu náhodné veličiny Y dostaneme vzorec

$$EY = \frac{3}{7}EU + \frac{4}{7}EV.$$

$$EU = \sum_{u} u p_{U}(u) = -2 \cdot p_{U}(-2) + 2 \cdot p_{U}(2) = -2 \cdot \frac{1}{3} + 2 \cdot \frac{2}{3} = -\frac{2}{3} + \frac{4}{3} = \frac{2}{3},$$

$$EV = \int_{-\infty}^{\infty} u f_{V}(u) du = \int_{-2}^{2} \frac{u}{4} du = \left[\frac{u^{2}}{8}\right]_{u=-2}^{2} = 0.$$

Po dosazení do (🏚) dostaneme

$$EY = \frac{3}{7} \cdot \frac{2}{3} + \frac{4}{7} \cdot 0 = \frac{2}{7} \doteq 0.2857.$$

2. (15 bodů) Náhodný vektor (X,Y) má diskrétní rozdělení, četnosti jeho hodnot jsou uvedeny v tabulce.

	1	2	3	
1	20	40	30	
2	10	10	10	

Testujte na hladině významnosti $\alpha = 0.05$ hypotézu

 H_0 : náhodné veličiny X a Y jsou nezávislé

proti alternativě

 H_1 : náhodné veličiny X a Y jsou závislé.

Řešení:

Nejprve určíme odhady marginálních pravděpodobnostních funkcí, které zapíšeme do rozšířené tabulky

	1	2	3	q_j	
1	20	40	30	$q_1 = \frac{3}{4}$	
2	10	10	10	$q_2 = \frac{1}{4}$	
p_i	$p_1 = \frac{1}{4}$	$p_2 = \frac{5}{12}$	$p_3 = \frac{1}{3}$		

Použijeme testovací statistiku

$$T = \sum_{i=1}^{3} \sum_{j=1}^{2} \frac{(N_{ij} - np_i q_j)^2}{np_i q_j} \sim \chi^2(2).$$

Kritickou hodnotou testu je kvantil $q_{\chi^2(2)}(0.95) \doteq 5.99$.

Po dosazení hodnot z tabulky dostaneme pro realizaci testovací statistiky hodnotu

$$t = \frac{2}{45} \left(20 - \frac{45}{2} \right)^2 + \frac{2}{15} \left(10 - \frac{15}{2} \right)^2 + \frac{2}{75} \left(40 - \frac{75}{2} \right)^2 + \frac{2}{25} \left(10 - \frac{25}{2} \right)^2 + \frac{1}{30} \cdot 0 + \frac{1}{10} \cdot 0 =$$

$$= \frac{2 \cdot 25}{45 \cdot 4} + \frac{2 \cdot 25}{15 \cdot 4} + \frac{2 \cdot 25}{75 \cdot 4} + \frac{2 \cdot 25}{25 \cdot 4} = \frac{5}{18} + \frac{5}{6} + \frac{1}{6} + \frac{1}{2} = \frac{5 + 15 + 3 + 9}{18} = \frac{32}{18} \doteq 1.7778.$$

Protože je $t \doteq 1.778 < \mathbf{q}_{\chi^2(2)}(\mathbf{0.95}) \doteq \mathbf{5.99}$, hypotézu H_0 nezamítáme.

3. (15 bodů) Tři Markovovy řetězce jsou dány přechodovými diagramy na obrázcích. V každém uzlu jsou všechny z něj vycházející hrany stejně pravděpodobné. Ve 3 krocích jsme přešli ze stavu 1 do stavu 3. Který z daných Markovových řetězců nejlépe vyhovuje tomuto pozorování? (12 bodů)

Pro tento řetězec oklasifikujte všechny stavy. (3 body)

Řešení:

Tabulka ukazuje všechny posloupnosti stavů, které přicházejí v úvahu, a jejich pravděpodobnosti přechodů. První krok má vždy pravděpodobnost 1/2, což na porovnání věrohodností nemá vliv; analyzujeme jen zbývající dva kroky mezi stavy x_1, x_2, x_3 .

posloupnost	$p_{x_1x_2}$	$p_{x_2x_3}$	$p_{x_1x_2}$	$p_{x_1x_2}$	$p_{x_2x_3}$	$p_{x_1x_2}$	$p_{x_1x_2}$	$p_{x_2x_3}$	$p_{x_1x_2}$
stavů			$\cdot p_{x_2x_3}$			$\cdot p_{x_2x_3}$			$\cdot p_{x_2x_3}$
(1,3,1,3)	1/2	1/2	1/4	1/3	1/2	1/6	1/3	1/2	1/6
(1,3,5,3)	0	0	0	1/3	1/2	1/6	1/3	1/3	1/9
(1,2,1,3)	1/2	1/2	1/4	1/2	1/2	1/4	1/2	1/2	1/4
(1, 2, 4, 3)	1/2	1/2	1/4	1/2	1/3	1/6	1/2	1/3	1/6
(1, 3, 4, 3)	1/2	1/2	1/4	1/3	1/3	1/9	1/3	1/3	1/9
\sum			1			31/36			29/36
věrohodnost			1/2			31/72			29/72

Největší věrohodnost dává první řetězec. Všechny jeho stavy jsou trvalé s periodou 2 a tvoří jedinou komponentu.

_