Functions

By: Dr. T. Sritharan

Functions

Definition: Let X and Y be nonempty sets. A function f from X to Y is an assignment of exactly one element of Y to each element of X. We write f(a) = b if b is the unique element of Y assigned by the function f to the element a of X. If f is a function from X to Y, we write $f: X \to Y$.

Functions are sometimes also called mappings or transformations.

Terminology

If f(a) = b, we say that b is the **image** of a and a is a **pre-image** of b.

The **range**, or image, of *f* is the set of all images of elements of *X* and is denoted by Range(f).

 $Range(f) = \{ y \in Y | y = f(x) \text{ for some } x \in X \}.$

Examples

Find the domain, codomain and range of the following functions:

- 1. Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that string. For example, f(11010) = 10.
 - The domain of f is the set of all bit strings of length 2 or greater.
 - The codomain and range are the set $\{00,01,10,11\}$.
- 2. Let $f: Z \to Z$ assign the square of an integer to this integer. Then, $f(x) = x^2$, for all $x \in Z$.

One to one function

Some functions never assign the same value to two different domain elements. These functions are said to be one-to-one.

Definition: A function f is said to be one—to-one, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

Remark: We can express that f is one-to-one using quantifiers as follows:

$$f$$
 is one – to – one $\Leftrightarrow \forall a, \forall b \ (f(a) = f(b) \rightarrow a = b)$

$$\Leftrightarrow \forall a, \forall b \ (a \neq b \rightarrow f(a) \neq f(b))$$

where the universe of discourse is the domain of the function.

Examples

- 1. Determine whether the function f from $\{a, b, c, d\}$ to $\{1,2,3,4,5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.
- 2. Determine whether the function f(x) = x + 1 from the set of real numbers to itself is one-to-one.
- 3. Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

Onto Functions

Definition: A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ such that f(a) = b.

That is;

 $f: A \to B$ is onto $\Leftrightarrow \forall y \in B \ \exists x \in A \ \text{such that} \ f(x) = y$.

Examples:

- 1. Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?
- 2. Is the function f(x) = x + 1 from the set of integers to the set of integers onto?
- 3. Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

Bijection

Definition: A function $f: A \rightarrow B$ is a one-to-one correspondence, or a bijection, if and only if it is both one-to-one and onto.

Example:

- **1.** Let f be the function from $\{a, b, c, d\}$ to $\{1,2,3,4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a bijection?
- 2. Give an example of a function from $\mathbb N$ to $\mathbb N$ that is
 - a. one-to-one but not onto
 - b. onto but not one-to-one
 - c. both onto and one-to-one (but different from the identity function)
 - d. neither one-to-one nor onto.

Inverse Functions

An interesting property of bijections is that they have an **inverse function**.

Definition: Let f be a one-to-one correspondence (bijection) from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

10/21/2015

Examples

- 1. Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?
- 2. Let $f: Z \to Z$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?
- 3. Let f be the function from R to R with $f(x) = x^2$. Is f invertible?

Compositions of Functions

The **composition** of two functions $g: A \rightarrow B$ and $f: B \rightarrow C$, denoted by $f \circ g$, is defined by

$$(f \circ g)(a) = f(g(a))$$
 for all $a \in A$.

Note that the composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Example 1: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the composition of g and g?

Example 2: Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

More Examples

Example: Let $f: A \to B$ and $g: B \to C$ be both one-to-one functions. Show that $g \circ f: A \to C$ is one-to-one.

Solution: Assume that
$$(g \circ f)(a) = (g \circ f)(b)$$
 for $a, b \in A$. $\Rightarrow g(f(a)) = g(f(b))$ (\because Def. of $g \circ f$) $\Rightarrow f(a) = f(b)$ (\because g is $1-1$) $\Rightarrow a = b$ (\because g is $1-1$) Hence, $\forall a, b \in A$ $[(g \circ f)(a) = (g \circ f)(b) \rightarrow a = b]$ Therefore $g \circ f$ is one-to-one.

Example: Let $f: A \to B$ and $g: B \to C$ be both onto functions. Show that $g \circ f: A \to C$ is onto.

Identity Function

Definition: Let A be a non-empty set. The **identity function** on A is the function $i_A \colon A \to A$, where $i_A(x) = x$ for all $x \in A$. In other words, the identity function i_A is the function that assigns each element to itself.

The function i_A is one-to-one and onto, so it is a bijection.

When the composition of a function $f: A \to B$ and its inverse $f^{-1}: B \to A$ is formed, in either order, an identity function is obtained.

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = i_A \text{ for all } a \in A, and$$

$$(f \circ f^{-1})(b) = f(f^{-1}(a)) = i_B \text{ for all } b \in B.$$

Hence
$$f^{-1} \circ f = i_A$$
, $f \circ f^{-1} = i_B$ and $(f^{-1})^{-1} = f$.

10/21/2015 Dr. T. Sritharan 13

The Graphs of Functions

Definition: Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Example-1: Display the graph of the function f(n) = 2n + 1 from the set of integers to the set of integers.

Example-2: Display the graph of the function f(x) = 2x + 1 from the set of real numbers to the set of real numbers.

Example-3: Display the graph of the function $f(x) = x^2$ from the set of real numbers to the set of real numbers.

The Image of a Subset of the Domain

Let $f: A \to B$ be a function and let $S \subseteq A$. The image of S under f is the subset of B that consists of the images of the elements of S, and is denoted by f(S).

$$f(S) = \{ t \mid \exists s \in S (t = f(s)) \} = \{ f(s) \mid s \in S \}$$

Example: Let f(x) = 2x where the domain is the set of real numbers. What is

- a. f(Z)?
- b. f(N)?
- c. f(R)?

Example: Let $f: A \to B$ be a function. Let $S, T \subseteq A$. Show that

- a. $f(S \cup T) = f(S) \cup f(T)$
- $b. f(S \cap T) \subseteq f(S) \cap f(T)$.

Partial Functions

Definition: A partial function f from a set A to a set B is an assignment to each element a in a subset of A, called the domain of definition of f, of a unique element b in B. The sets A and B are called the domain and codomain of f, respectively. We say that f is undefined for elements in A that are not in the domain of definition of f. When the domain of definition of f equals A, we say that f is a total function.

Example: The function $f: Z \to R$ where $f(n) = \sqrt{n}$ is a partial function from Z to R where the domain of definition is the set of nonnegative integers. Note that f is undefined for negative integers. $\left(\sqrt{n} \right) \text{ if } n > 0$

 $f(n) = \begin{cases} \sqrt{n} & \text{if } n \ge 0 \\ \uparrow & \text{if } n < 0. \end{cases}$