Input VdN.txt The EnergyPLAN model 12.0														
Electricity demand (GWh/year): Flexible demand0.00	Capacities Efficiencies Group 2: kW-e kJ/s elec. Ther COP CHP 0 0 0.40 0.50 Heat Pump 0 0 3.00 Boiler 0 0.90 Group 3: CHP 0 0 0.40 0.50 Heat Pump 100 300 3.00 Boiler 0 0.90	Regulation Strate(Technical regulation no. 1 KEOL regulation 00000000 Minimum Stabilisation share 0.00 Stabilisation share of CHP 0.00 Minimum CHP gr 3 load 300 kW Minimum PP 0 kW Heat Pump maximum share 0.50 Maximum import/export 65000 kW Distr. Name: const.txt	kW-e MV Hydro Pump: 0 Hydro Turbine: 0 Electrol. Gr.2: 0 Electrol. Gr.3: 0 Electrol. trans.: 0	Storage Efficiencie Wh elec. Ther. 0 0.80 0.90 0 0.80 0.10 0 0.80 0.10 0 0.80										
Demand after solar and CSHP 0.00 0.00 0.00 0.00 Photo Voltaic 936 kW 1.22 GWh/year 0.00 Grid Photo Voltaic 0 kW 0 GWh/year 0.00 stabili-Offshore Wind 0 kW 0 GWh/year 0.00 sation River Hydro 0 kW 0 GWh/year 0.00 share Hydro Power 105000 kW 311 GWh/year Geothermal/Nuclear 0 kW 0 GWh/year	Condensing 0 0.45 Heatstorage: gr.2: 0 MWh gr.30 MWh Fixed Boiler: gr.2: 0.0 Per cent gr.0.0 Per cent Electricity prod. from CSHP Waste (GWh/year) Gr.1: 0.00 0.00 Gr.2: 0.00 0.00 Gr.3: 0.00 0.00	CAES fuel ratio: 0.00 (GWh/year) Coal Oil Transport 0.00194.69	0 0.80 Ngas Biomass 2.50 0.00 95.88 72.02 0.00 0.00 0.00 0.00											
Output														
District Heating		Electricity		Exchange										
Demand Production	Consumption	Production	Balance											
Distr. Waste- heating Solar CSHP DHP CHP HP ELT Boiler EH kW kW kW kW kW kW kW kW kW		,		Payment Imp Exp 1000 EUR										
February 0 0 0 0 0 0 0	0 0 23713 0 0 0 0 0 0 0 0 0 22571 0 0 0 0 0 0 0 0 20978 0 0 0 0 0		9843 31 0 31	833 147 1391 4 832 84										

_				Dist	trict He	ating					Electricity														Excl	hange				
	Demand	nand Production										С	onsu	umption					F	Producti	ion				E	Balance)		D	
	Distr.			Ва-				Elec- Hy		Hydro			Ну-	Geo-	Waste			Stab-				,	Paym Imp	nent Ex						
	heating	Solar	CSHP I		CHP	HP	ELT	Boiler		l i		dTransp F		trolyser		Pump	-	_		hermal		CHP	PP	Load	Imp	Exp	CEEP E	EP	•	
	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW k	(W	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	%	kW	kW	kW k	W	1000	0 EUF
January	0	0	0	0	0	0	0	0	0		3713	0	0	0	0	0	0		19077	0	0	0	0		5518	971			833	1-
February	0	0	0	0	0	0	0	0	0		2571	0	0	0	0	0	0	-	12628	0	0	0	0	100	9843	31		- 1	391	
March	0	0	0	0	0	0	0	0	0		0978	0	0	0	0	0	0		15864	0	0	0	0	100	5507	556		- 1	832	
April	0	0	0	0	0	0	0	0	0	- 7	8197	0	0	0	0	0	0		31975	0	0	0	0	100	-	14687	0 146		109	21
Мау	0	0	0	0	0	0	0	0	0		5402	0	0	0	0	0	0		54802	0	0	0	0	100		39574	0 395	- 1	0	59
June	0	0	0	0	0	0	0	0	0		3132	0	0	0	0	0	0		53533	0	0	0	0	100	0 4	40574	0 405	574	0	59
July	0	0	0	0	0	0	0	0	0		3870	0	0	0	0	0	0		19095	0	0	0	0	100		35406	0 354		0	53
August	0	0	0	0	0	0	0	0	0	0 1	2022	0	0	0	0	0	0	167 3	33670	0	0	0	0	100	0 2	21814	0 218	314	0	32
Septembe	r 0	0	0	0	0	0	0	0	0		6692	0	0	0	0	0	0		34017	0	0	0	0	100		17501	0 175	- 1	3	25
October	0	0	0	0	0	0	0	0	0		7107	0	0	0	0	0	0	-	11475	0	0	0	0	100		14607	0 146	- 1	18	22
November	. 0	0	0	0	0	0	0	0	0	0 2	0025	0	0	0	0	0	0	84 4	16694	0	0	0	0	100	1 2	26754	0 267	754	0	39
December	0	0	0	0	0	0	0	0	0	0 1	9606	0	0	0	0	0	0	73 3	31357	0	0	0	0	100	33	11856	0 118	356	5	17
Average	0	0	0	0	0	0	0	0	0		8605	0	0	0	0	0	0		35405	0	0	0	0		1790		0 187	- 1	Averaç	٠.
Maximum	0	0	0	0	0	0	0	0	0	- 1	0057	0	0	0	0	0	0	523 6		0	0	0	0		25531 !		0 554	- 1	,	R/MW
Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3929	0	0	0	0	100	0	0	0	0	203	2
GWh/year	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.001	3.43	0.00 0	.00	0.00	0.00	0.00	0.00	1.223	11.00	0.00	0.00	0.00	0.00		15.721	64.51	0.00164	.51 3	319100	ე 333
FUEL BA	LANCE	(GWh/	year):								CAES BioCon-Synthetic												try	Imp	CO2	emiss	sion (l			
	DHP	CHP	2 CHP	3 Bo	iler2 B	oiler3	PP	Geo/N	Nu.Hydr	o Was	ste Ele	c.ly. versi	on F	uel l	PV	PV	Offsh	. Hyd	lro S	olar.Th	Transp	.housel	h.Vario	us Tot	al li	mp/Exp	Netto	To	tal N	etto
Coal	-	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0.0	0 -51	.58	-51.58	0.0	00 -17.	.64
Oil	-	-	-		-	-	-	-	-	-				-	-	-	-	-		- 194	.69 12	23.76	-	318.4	5 -20).50 2	297.95		34 79.	-
N.Gas	-	-	-		-	-	-	-	-	-				-	-	-	-	-		- 5	5.47	95.88	-	101.3	5 -165	5.66	-64.30	20.7	72 -12.	49
Biomass	-	-	-		-	-	-	-	-	-				-	-	-	-	-		-	- 7	72.02	-	72.0			-20.89		0 0.	
Renewab	ole -	-	-		-	-	-	-	311.00	-				-	1.22	-	-	-	9.	.42	-	-	-	321.6	4 0	0.00	321.64	0.0		00.0
H2 etc.	-	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0.0	0 0	0.00	0.00	0.0		00.0
Biofuel	-	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0.0	0 0	0.00	0.00	0.0	0 0.	00.0
Nuclear/C	CCS -				-	-	-	-						-	-	-	-			-	-	-	-	0.0	0 0	0.00	0.00	0.0	00 0.	.00
Total	-	-	-		-	-	-	-	311.00	-				-	1.22	-	-	-	9.	.42 200	.16 29	91.66	-	813.4	6 -330	0.65 4	182.81	105.5	56 49.	.25
	22-December-20																													

Outp	Output specifications VdN.txt														The EnergyPLAN model 12.0																	
District Heating Production Gr.1 Gr.2 Gr.3 RES specification															<u> </u>	_ 100																
		ìr.1								Gr.2									Gr.3						RES specification							
	District				District								Stor-	Ва-	District								Stor-	Ва-	RES1	RES2	RES3 F	RES T	otal			
	heating kW	Solar kW	CSHP kW	DHP kW	heating kW	Solar kW	CSHP kW	kW kW	HP kW	ELT kW	Boiler kW	EH kW	age kW	lance kW	heating kW	Solar kW	CSHF kW	P CHP kW	HP kW	ELT kW	Boiler kW	EH kW	age kW	lance kW	Photo kW	Photo (Offshc 4- kW	7 /in kW	kW			
January	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89		0	0	89			
February	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	131	0	0	0	131			
March	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0	163		0 0	0	163 163			
April May	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0	163 173	-	0	0	173			
June	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	173		0	0	173			
July	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	180		0	0	180			
August	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	167	-	0	0	167			
Septemb	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	155		0	0	155			
October	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	118		0	0	118			
Novembe	er 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	84	0	0	0	84			
Decembe	er 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	0	0	0	73			
Average	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	139		0	0	139			
Maximum		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	523		0	0	523			
Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Total for t GWh/yea		•	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	1.22	0.00	0.00	0.00	1.22			
Own use	of heat	from inc	dustrial	CH0.0	0 GWh/ye	ear																										
																		IATUD	A1 CA	c EVOI	IANIOE											
ANNUAL	СОСТС	(100)	0 EUR)							DHP &	CHP2	PP		Indi-	Trans	Indu.		mand I			HANGE CO2		SynHy	SynHy	Stor-	Sum	lm-		Ex-			
Total Fue		,			2					Boilers	CHP3			vidual	port	Var.	Su		gas	Syn- gas	gas	•	gas	SynHy gas	age	Suiii	port		port			
Uranium	_	is exeric	0		_					kW	kW	kW		kW	kW	kW	kW	•	kW	kW	kW		kW	kW	kW	kW	kW		kW			
Coal	=		0																													
FuelOil	=		0					Janua	•	0	0			6453	284	0	1673		0	0	(0	0	0	16738	16738		0			
Gasoil/Di	esel=	334	88					Febru	•	0	0			5767	284	0	1605		0	0	(0	0	0	16052	16052		0			
Petrol/JP	=	104	04					March	1	0	0			3234	284	0	1351		0	0	(0	0	0	13518	13518		0			
Gas hand	dling =		0					April May		0	0)805 3667	284 284	0	1109 895		0 0	0	(0 0	0	0 0	11090 8951	11090 8951		0 0			
Biomass	=	25	20					June		0	0			6476	284	0	676		0	0	(0	0	0	6760	6760		0			
Food inco	ome =		0					July		0	0			5864	284	0	614		0	0	(0	0	0	6149	6149		0			
Waste	=		0					Augus	st	0	0			8098	284	0	638		0	0	(0	0	0	6383	6383		0			
Total Nga	as Excha	ange co	sts =	619	8			Septe		0	0			7886	284	0	817		0	0	Ċ		0	Ö	0	8171	8171		0			
Marginal	oneratio	n costs	_	37	Ω			Octob		0	0			303	284	0	1058		0	0	()	0	0	0	10587	10587		0			
	•							Nover	mber	0	0			3313	284	0	1359		0	0	(,	0	0	0	13598	13598		0			
Total Ele	-	-		-3020	5			Decer	mber	0	0		0 16	3264	284	0	1654	9	0	0	()	0	0	0	16549	16549		0			
Import			91					Avera	age	0	0		0 10	915	284	0	1120	0	0	0	()	0	0	0	11200	11200		0			
Export		-333						Maxim	-	0	0			9611	284	0	1989		0	0	()	0	0	0	19896	19896		0			
Bottlened Fixed imp			0 0					Minim		0	0			1275	284	0	456		0	0	()	0	0	0	4560	4560		0			
					•			Total	for the	whole	year																					
Total CO			S =		0			GWh/			0.00	0.0	0 9	5.88	2.50	0.00	98.3	8 0	0.00	0.00	0.00) (0.00	0.00	0.00	98.38	98.38	0	0.00			
Total vari	able cos	sts =		2277																												

63660

66116

Fixed operation costs = Annual Investment costs =

TOTAL ANNUAL COSTS =