Semi-supervised Relation Extraction via Incremental Meta Self-Training

Xuming Hu¹, Chenwei Zhang², Fukun Ma¹, Chenyao Liu¹, Lijie Wen¹, Philip S. Yu^{1,3}

¹ Tsinghua University
 ² Amazon
 ³ University of Illinois at Chicago

11/7/21

Relation Extraction

Sentence

<u>Derek Bell</u> was born in <u>Belfast</u>. <u>Donald Trump</u> was born in <u>America</u>.

•••••

Thomson is based in **Toronto**. **Beijing** is located in **China**.

••••

Born In

Located in

(Stanovsky et al., 2018; Saha et al., 2018; Yu et al., 2017)

Semi-supervised Relation Extraction

Leverage unlabeled data

Self-Ensembling

- Robust in model parameters
- **lnsufficient supervision**

- Supervision from unlabeled data
- **Gradual drift problem**

Gold Label

annotations

Final

Model

Self-Training

How to alleviate the gradual drift problem?

- Task: Solve the gradual drift problem.
- Goal: Generate high-quality pseudo label from the unlabeled data.
- Methods:
 - 1 Meta Learning: Learn to assess the quality of pseudo labels by (meta) learning from the successful and failed attempts.
 - 2 Pseudo Label Selection: Select informative and high-quality pseudo labels.
 - 3 Pseudo Label Exploitation: Exploit pseudo labels with confidence.

Framework (MetaSRE)

- Relation Classification Network
 - (1) Contextualized Relation Encoder
 - 2 Relation Classification
- Relation Label Generation
 Network
- Pseudo Label Selection and Exploitation

Relation Classification Network

Contextualized Relation Encoder

 $[E1_{start}]$ Derek Bell $[E1_{end}]$ was born in $[E2_{start}]$ Belf ast $[E2_{end}]$

Get the relation representation of two entities corresponding to $[E1_{start}]$, $[E2_{start}]$ from BERT.

$$\mathbf{h} = [\mathbf{h}_{[E1_{start}]}, \mathbf{h}_{[E2_{start}]}]$$

Relation Classification

Classifiy Labeled data and Pseudo label data representations into specific relations with a fully connected network $C_{\tau}(X_{n.E1.E2})$.

Relation Label Generation Network

Purpose:

Prevent the noise contained in the pseudo labels.

 Updated Relation Classification Network:

$$\tau^+ \leftarrow \tau - \alpha \nabla_{\tau} \mathcal{L}_{C_{\tau}}$$

Meta Objective:

Perform a derivative over the parameters on the updated Relation Classification Network using labeled data g_n .

$$\underset{\eta}{\operatorname{argmin}} loss\left(C_{\tau^{+}}(X_{n,E1,E2}), \operatorname{one_hot}(g_{n})\right)$$

Pseudo Label Selection and Exploitation

Pseudo Label Selection

We treat maximum probability after softmax as the confidence score. Sort them in a descending order and select top Z%.

$$\operatorname{argmax}\left(C_{\eta}(X_{m',E1,E2})\right)$$

Pseudo Label Exploitation

We use the maximum probability value as the weight of the pseudo label data to optimize Relation Classification Network.

$$w_m = \max_{m} (C_{\eta}(X_{m,E1,E2}))$$

Experiments

Datasets

Datasets	SemEval	TACRED
Relation mentions	7199/800/1864	75049/25763/18659
Relation	19	42
No_relation rate	17.4%	78.7%

Implementations

Datasets	SemEval	TACRED
Labeled set	5%/10%/30%	3%/10%/15%
Unlabeled set	50%	50%

Baselines

- Relation Encoders
 LSTM (Hochreiter and Schmidhuber, 1997)
 PCNN (Zeng et al., 2015)
 PRNN (Zhang et al., 2017)
 BERT (Devlin et al., 2019)
- Self-Training (Rosenberg et al., 2005)
- Mean-Teacher (Tarvainen and Valpola, 2017)
- DualRE (Lin et al., 2019)
- MRefG (Li and Qian, 2020)
- BERT w. gold labels

Does meta learning and pseudo label better quality pseudo labels?

Figure 2: Pseudo label F₁Performance with different modules based on SemEval (left) and TACRED (right).

Does meta learning prevent the gradua.

Yes!

Red line is the pseudo label distribution.

Yellow line is the gold label distribution.

0.12 0.10 0.06 0.04 0.07 0.0 18 16 14 12 10 8 Relation

0.14

MetaSRE w/o Meta Learning

MetaSRE

2

How much unlabeled data is needed?

Figure 4: F₁Performance with various unlabeled data and 10% labeled data on SemEval (left) and TACRED (right).

13

THANK YOU!

Code + Data are Available at:

http://github.com/THU-BPM/MetaSRE https://arxiv.org/abs/2010.16410