

Trabajo Práctico 1

 [75.12 - 95.04] Análisis Numérico Curso 5Primer cuatrimestre de 2020

De Angelis Riva, Lukas	103784
Gomez, Joaquín	103735
Grassano, Bruno	103855
Guillemi, Andrés	104006
Rodriguez, Ezequiel	103976
Romero, Adrián	103371

$\mathbf{\acute{I}ndice}$

1.	Intro	ducci	ión		2
2.	Objet	ivos			2
3.	Gráfic	cos de	le las funciones		3
4.	Búsqu	ıeda	de raíces		5
	4.1. B	Bisecci	ión		 5
	4	.1.1.	Primera función		 5
	4	.1.2.	Segunda función		 6
	4	.1.3.	Tercera función		 6
	4.2. N	Vewtor	on-Raphson		 7
	4	.2.1.	Primera función		 7
	4	.2.2.	Segunda función		 7
	4	.2.3.	Tercera función		 7
	4.3. N	Vewtor	on-Raphson modificado		 8
			Primera función		
	4	.3.2.	Segunda función		 8
	4	.3.3.	Tercera función		 8
	4.4. S	ecante	te		 8
	4	.4.1.	Primera función		 9
	4	.4.2.	Segunda función		 9
	4	.4.3.	Tercera función		 9
5.	Comp	araci	ción de resultados		10
	5	.0.1.	Primera función		 10
	5	.0.2.	Segunda función		 12
	5				
6.	Concl	usion	nes		16

1. Introducción

En este trabajo práctico creamos un programa para la búsqueda de raíces de funciones a través de los siguientes métodos numéricos aprendidos en la materia:

- Bisección
- Newton-Raphson
- Newton-Raphson modificado
- Secante

Con este fin, primero graficamos las funciones en Geogebra para tener una idea sobre ellas, corroborando que los intervalos brindados en el enunciado eran válidos para los métodos. Luego, obtenemos las raíces y con la historia de los resultados pasamos a analizar los distintos métodos analizando los ordenes de convergencia, su conveniencia en tiempos de cómputo y error en el resultado.

Para verificar los resultados, calculamos las raíces mediante la biblioteca de Python 'SciPy'. De esta manera pudimos corroborar el correcto funcionamiento de las funciones programadas.

2. Objetivos

El objetivo del trabajo práctico es obtener la raíz de las tres funciones dadas mediante los métodos numéricos indicados, para luego analizar el orden de convergencia P y la constante asintótica de cada método. λ

3. Gráficos de las funciones

Figura 1: Gráfico correspondiente a la primera función en el intervalo [0;2].

Figura 2: Gráfico correspondiente a la segunda función en el intervalo [0;2].

Figura 3: Gráfico correspondiente a la tercera función en el intervalo [0;2].

4. Búsqueda de raíces

4.1. Bisección

El método de bisección halla la raíz mediante la siguiente fórmula por métodos iterativos hasta que $|p_{n+1}-p_n|<\epsilon$, tomando los límites iniciales de intervalo a_n y b_n :

Sea $p_n = \frac{a_n + b_n}{2}$, entonces, en la siguiente iteración

$$a_{n+1} = \begin{cases} a_n & \text{si } f(a_n) \cdot f(r_n) < 0 \\ p_n & \text{si } f(a_n) \cdot f(r_n) > 0 \end{cases} \qquad b_{n+1} = \begin{cases} b_n & \text{si } f(b_n) \cdot f(r_n) < 0 \\ p_n & \text{si } f(b_n) \cdot f(r_n) > 0 \end{cases}$$

Los resultados obtenidos fueron los siguientes:

Para las tres funciones, observamos que la cota $1*10^-5$ se alcanza en la iteración 18

4.1.1. Primera función

Iteración	Resultado
0	1.0
1	1.5
2	1.25
3	1.375
4	1.4375
5	1.40625
6	1.421875
7	1.4140625
8	1.41796875
9	1.416015625
10	1.4150390625
11	1.41455078125
12	1.414306640625
13	1.4141845703125
14	1.41424560546875
15	1.414215087890625
16	1.4141998291015625
17	1.4142074584960938
18	1.4142112731933594
19	1.4142131805419922
20	1.4142141342163086
21	1.4142136573791504
22	1.4142134189605713

Iteración	Resultado
23	1.4142135381698608
24	1.4142135977745056
25	1.4142135679721832
26	1.414213553071022
27	1.4142135605216026
28	1.414213564246893
29	1.4142135623842478
30	1.4142135614529252
31	1.4142135619185865
32	1.4142135621514171
33	1.4142135622678325
34	1.4142135623260401
35	1.414213562355144
36	1.4142135623696959
37	1.4142135623769718
38	1.4142135623733338
39	1.4142135623715149
40	1.4142135623724243
41	1.414213562372879
42	1.4142135623731065
43	1.4142135623729928
44	1.4142135623730496

4.1.2. Segunda función

Iteración	Resultado
0	1.0
1	1.5
2	1.25
3	1.125
4	1.1875
5	1.21875
6	1.203125
7	1.1953125
8	1.19921875
9	1.201171875
10	1.2001953125
11	1.19970703125
12	1.199951171875
13	1.2000732421875
14	1.20001220703125
15	1.199981689453125
16	1.1999969482421875
17	1.2000045776367188
18	1.2000083923339844
19	1.2000064849853516
20	1.2000055313110352
21	1.200005054473877
22	1.200005292892456

Iteración	Resultado
23	1.2000051736831665
24	1.2000051140785217
25	1.2000051438808441
26	1.2000051587820053
27	1.2000051513314247
28	1.2000051476061344
29	1.2000051457434893
30	1.2000051466748118
31	1.2000051471404731
32	1.2000051473733038
33	1.200005147489719
34	1.2000051475479268
35	1.2000051475770306
36	1.2000051475624787
37	1.2000051475552027
38	1.2000051475588407
39	1.2000051475570217
40	1.2000051475561122
41	1.2000051475556575
42	1.2000051475558848
43	1.2000051475559985
44	1.2000051475559417

4.1.3. Tercera función

Iteración	Resultado
0	1.0
1	1.5
2	1.25
3	1.375
4	1.4375
5	1.46875
6	1.484375
7	1.4921875
8	1.49609375
9	1.498046875
10	1.4990234375
11	1.49951171875
12	1.499755859375
13	1.4998779296875
14	1.49993896484375
15	1.499969482421875
16	1.4999847412109375
17	1.4999923706054688
18	1.4999961853027344
19	1.4999980926513672
20	1.4999990463256836
21	1.4999995231628418
22	1.499999761581421

Iteración	Resultado
23	1.4999998807907104
24	1.4999999403953552
25	1.4999999701976776
26	1.4999999850988388
27	1.4999999925494194
28	1.4999999962747097
29	1.4999999981373549
30	1.4999999990686774
31	1.4999999995343387
32	1.4999999997671694
33	1.4999999998835847
34	1.4999999999417923
35	1.4999999999708962
36	1.499999999985448
37	1.49999999992724
38	1.49999999996362
39	1.49999999998181
40	1.4999999999990905
41	1.499999999995453
42	1.499999999997726
43	1.499999999998863
44	1.499999999999432

4.2. Newton-Raphson

El método de Newton-Raphson halla la raíz a partir de una semilla inicial, iterando la siguiente sucesión $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$ hasta que $p_n - p_{n-1} < \epsilon$ Para el cálculo de las derivadas, utilizamos el método 'Derivative' de la biblioteca 'Sympy'. De

Para el cálculo de las derivadas, utilizamos el método 'Derivative' de la biblioteca 'Sympy'. De esa manera, logramos realizar un programa más escalable debido a que no es necesario conocer las derivadas de la función a evaluar.

Los resultados obtenidos fueron los siguientes:

4.2.1. Primera función

En la iteración 3 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.0
1	1.5
2	1.4166666666666667
3	1.4142156862745099
4	1.4142135623746899
5	1.4142135623730951
6	1.414213562373095

4.2.2. Segunda función

Ambas cotas de error se alcanzan en la última iteración.

Iteración	Resultado
0	1.0
1	1.0670391061452542
2	1.1115008625849883
3	1.141056567216851
4	1.1607272681472196
5	1.173827768369476
6	1.182555936035766
7	1.1883723914181477
8	1.192249031513553
9	1.1948330257346942
10	1.1965554994363112
11	1.1977037321147688
12	1.1984691839006911
13	1.198979468821718
14	1.199319651930617

Iteración	Resultado
15	1.1995464373959681
16	1.1996976269098787
17	1.1997984196033389
18	1.1998656232066638
19	1.1999104313717341
20	1.1999402942189605
21	1.1999602375275107
22	1.1999735424884255
23	1.199982724803287
24	1.1999885987867616
25	1.1999930940510006
26	1.1999971781007444
27	1.20002163874357
28	1.2000145671108424
29	1.2000118134555946
30	1.200009022124353

4.2.3. Tercera función

En la iteración 3 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.3
1	1.5941176470588234
2	1.4928216542091288
3	1.5000029603439848
4	1.499999999999998
5	1.5

4.3. Newton-Raphson modificado

El método de Newton-Raphson modificado le aplica el método de Newton-Raphson a la función $\mu=\frac{f(x)}{f'(x)}$, obteniendo la derivada con la función derivar (biblioteca 'Sympy') y halla la raíz a partir de una semilla inicial, iterando la siguiente sucesión $p_{n+1}=p_n-\frac{f(p_n).f'(p_n)}{f'(p_n)^2-f(p_n).f''(p_n)}$ hasta que $p_n-p_{n-1}<\epsilon$

Los resultados obtenidos fueron los siguientes:

4.3.1. Primera función

En la iteración 3 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.0
1	1.3333333333333333
2	1.4117647058823528
3	1.41421143847487
4	1.4142135623715002
5	1.414213562373095
6	1.4142135623730951

4.3.2. Segunda función

Ambas cotas de error se alcanzan en la última iteración.

Iteración	Resultado
0	1.0
1	1.198429561200951
2	1.1999999596424822

4.3.3. Tercera función

En la iteración 4 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.3
1	1.403030303030303
2	1.4864315963929944
3	1.4999600913460671
4	1.499999999998983
5	1.5

4.4. Secante

El método de la secante halla la raíz a partir de dos semillas iniciales, iterando la siguiente sucesión $p_n = p_{n-1} - \frac{f(p_{n-1})*(p_{n-1}-p_{n-2})}{f(p_{n-1})-f(p_{n-2})}$ hasta que $p_n - p_{n-1} < \cot$ de error

Los resultados obtenidos fueron los siguientes:

4.4.1. Primera función

En la iteración 4 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.0
1	1.3846153846153846
2	1.4193548387096775
3	1.4141592920353983
4	1.414213463902154
5	1.4142135623749845
6	1.4142135623730951
7	1.414213562373095

4.4.2. Segunda función

En la iteración 35 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.0
1	1.0655021834061167
2	1.0943398952179324
3	1.1215850325280734
4	1.1404772887106263
5	1.1551937245338697
6	1.1661565358156876
7	1.1744671484356637
8	1.1807264667044532
9	1.1854534082642374
10	1.1890198994831873
11	1.19171200301767
12	1.1937438805214264
13	1.195277583160919
14	1.1964352549762844
15	1.197309112780888
16	1.197968742660849
17	1.1984666682043323
18	1.1988425329007377
19	1.1991262601453252

Iteración	Resultado
20	1.1993404372360148
21	1.1995021126720737
22	1.1996241562355223
23	1.199716287429286
24	1.1997858306793374
25	1.1998383355364535
26	1.1998779580183785
27	1.1999079106133839
28	1.1999304889638724
29	1.1999475560634543
30	1.1999603693570613
31	1.1999701623743182
32	1.1999775472725775
33	1.1999837505871154
34	1.1999875680114462
35	1.199991385435777
36	1.2000028377087697
37	1.200025742254755
38	1.200004315421414
39	1.200004315421414

4.4.3. Tercera función

En la iteración 6 se llega a la cota $1*10^-5$

Iteración	Resultado
0	1.0
1	1.394130271809281
2	1.8764930021801223
3	1.549246841462836
4	1.4523931358165483
5	1.5000153797084042
6	1.4999998599846303
7	1.500000000000000000
8	1.5

5. Comparación de resultados

5.0.1. Primera función

Usando la biblioteca 'SciPy', las raíces halladas fueron:

- * Usando Newton Raphson: 1.414213562373095+-0.000000000000001

Los resultados obtenidos con las funciones programadas son congruentes con estos últimos, viendo que la convergencia más rápida se encontró con los métodos de Newton-Raphson, luego el método de la secante y por último el método de bisección.

Figura 4: Valor de la raíz según iteración.

Figura 5: Valor de λ según iteración.

Figura 6: Valor de P según iteración.

Podemos ver como los valores de P están de acuerdo con lo que se esperaba en base a la teoría, mostrando una convergencia lineal para la bisección, una cuadrática para los métodos Newton-Raphson y Newton-Raphson modificado y una convergencia supra-lineal para el método de la secante.

5.0.2. Segunda función

Usando la biblioteca 'SciPy', las raíces halladas fueron:

- * Usando bisección: 1.2000045776367188+-0.0000000000000001

Los resultados obtenidos con las funciones programadas son congruentes con estos últimos para la tolerancia $1*10^-5$, no así para la cota de error $1*10^-13$, se estima que esto se debe a como esta programado el método de la biblioteca. Para esta función, claramente el método de Newton-Raphson modificado fue el que mostró una convergencia más acelerada.

Analizando la diferencia en iteraciones para las dos cotas de error, se observa que prácticamente necesitaron la misma cantidad.

Figura 7: Valor de la raíz según iteración.

Figura 8: Valor de λ según iteración.

Figura 9: Valor de P según iteración.

5.0.3. Tercera función

Usando la biblioteca 'SciPy', las raíces halladas fueron:

Los resultados obtenidos con las funciones programadas son congruentes con estos últimos, viendo que la convergencia más rápida se encontró con los métodos de Newton-Raphson, luego el método de la secante y por último el método de bisección.

Algo que notamos en esta función para el método de bisección es que llega al valor correcto de la raíz en la segunda iteración, pero como el criterio de corte es la diferencia entre iteraciones, no sería correcto el corte en esa segunda iteración.

Figura 10: Valor de la raíz según iteración.

Figura 11: Valor de λ según iteración.

Figura 12: Valor de P según iteración.

6. Conclusiones

A modo de conclusión de este trabajo práctico, se destaca que la convergencia al resultado con la tolerancia dada con menos iteraciones fue utilizando el método de Newton-Raphson modificado, de acuerdo a la teoría.

Algo interesante que observamos fue que el método de la bisección converge siempre en la misma cantidad de iteraciones para una cota de error dada, comprobando en la práctica uno de los teoremas del método.

Además, se encontraron dificultades para hallar el orden de convergencia P y la constante asintótica λ . Estimamos que una posible fuente de este inconveniente es el error de redondeo proveniente del uso de notación de punto flotante. Además, al trabajar con números muy cercanos entre si, el error tiende a aumentar al dividir por un número muy pequeño o multiplicando por uno muy grande, siendo estos cálculos necesarios para encontrar los valores que buscamos. Este error se podría llegar a reducir anidando las funciones, lo que provocaría una reducción en la cantidad de operaciones a realizar en algunos casos. Otra fuente de error es que obtenemos el orden de convergencia vía una estimación y no vía un cálculo directo, es decir, le agregamos una incerteza más a un resultado con ya mucho error

Sobre la función 3, con los métodos NR y NR modificado, elegimos modificar la semilla inicial a 1,3, ya que observamos que con la semilla dada era imposible la convergencia (mediante iteraciones encontramos que el intervalo de convergencia es aproximadamente 1,26 <semilla <1,74). Nos pareció la decisión más adecuada elegir una semilla arbitrariamente dentro del intervalo de convergencia hallado para de esa manera mostrar el funcionamiento completo de los métodos.