Lecture 17. Greedy Algorithms

CpSc 8400: Algorithms and Data Structures
Brian C. Dean

School of Computing Clemson University Spring, 2016

Discrete Optimization

- Optimization problems are everywhere, and a significant fraction of computer science (and related disciplines) is devoted to the pursuit of simple and efficient algorithms for these problems.
- We'll tend to focus on discrete, or combinatorial optimization problems, where we want to choose the "best" answer from a finite set of alternatives.
 - E.g., shortest paths, minimum spanning trees, minimum cuts, optimal schedules (permutations) of jobs.
 - These problems are "easy" in the sense that we could solve them by enumerating all possible solutions, but the # of such solutions is usually exponentially large, so the goal is to develop more efficient approaches.

Greedy Algorithms

- "Incremental construction" approach: build a solution step by step, making near-sighted "greedy" decisions.
- We rarely go back and revise old decisions.
- Typically very simple to implement, and usually have very fast running times.
- Caution! Many students make the mistake of applying greedy methods when they ought not to be applied!
 - Careful analysis needed to convince oneself that a greedy solution is always optimal!

3

Example: Scheduling to Minimize Avg. Completion Time

- Input: n jobs with processing times p₁ ... p_n.
- Goal: Order the jobs so as to minimize their average completion time, (¹/_n)ΣC_i.
- Note that this is equivalent to minimizing ΣC_i.

Example: Scheduling to Minimize Avg. Completion Time

- Greedy Algorithm: order jobs in nondecreasing order of processing time.
- Since this just amounts to sorting, it takes only O(n log n) time.
- But why does it minimize ΣC_j? How would we prove this fact?

The Exchange Argument

- Claim: Our greedy algorithm always produces an optimal solution.
- Proof: By contradiction. Suppose it doesn't.
 Consider some instance where the greedy algorithm outputs a sub-optimal schedule.
 - Every optimal schedule for this instance contains an adjacent pair of jobs (j, j+1) satisfying $p_j > p_{j+1}$.
 - Suppose we were to swap these two jobs...

– This would improve the objective value $\Sigma C_{j},$ contradicting the fact that our solution was optimal!

Example: Scheduling to Minimize Weighted Avg. Completion Time

- Input:
 - n jobs, with processing times $p_1 \dots p_n$.
 - weights w₁...w_n.
- **Goal**: Order the jobs so as to minimize the average weighted completion time, $(^{1}/_{n})\Sigma w_{j}C_{j}$. (note: equivalent to minimizing $\Sigma w_{i}C_{i}$)
- What is a simple greedy algorithm for this problem?

7

Example: Scheduling to Minimize Weighted Avg. Completion Time

- Greedy algorithm: Order jobs in non-increasing order of w_i / p_i (weight over processing time).
- O(n log n) running time.
- Again, we can prove this is optimal using an exchange argument:
 - Suppose that greedy is not always optimal.
 - Consider an instance where the greedy solution is ≠ an optimal solution, and look at an "optimal" solution.
 - Find some place where the "optimal" solution does something different from greedy, and make an exchange to bring the "optimal" solution closer to agreement with the greedy solution.
 - Prove that this doesn't make the objective value of the "optimal" solution any worse.
 - Therefore, by repeated exchanges we can transform the "optimal" solution into the greedy solution without harming its objective value!

Example: Scheduling to Minimize Weighted Avg. Completion Time

- Two similar approaches:
 - Show how you can repeatedly make exchanges in optimal solution (that don't hurt its objective value) so as to transform it into the greedy solution. This leads to a contradiction to the fact that our greedy solution was not optimal.
 - Start by considering, among all possible optimal solutions, one that agrees the most with our greedy solution. Now our very first exchange leads to a contradiction, since it allows us to find an optimal solution that agrees even more with our greedy solution.

9

Example: Activity Selection

- Input: n intervals [a₁, b₁] .. [a_n, b_n].
- Goal: select a set S of disjoint intervals, where |S| is maximized.
- Think of the intervals as the times at which different activities are scheduled. We'd like to attend the maximum # of activities.
- What is a simple greedy algorithm for this problem, and why is it optimal?

Example: The Quiz Problem

- Input:
 - n quiz questions
 - values $v_1 \dots v_n$
 - probabilities of answering correctly $p_1 \dots p_n$
- Goal: Find an ordering of the quiz problems that maximizes the expected total point value you obtain.
- You keep answering questions the order you choose until the first incorrect answer, at which point the quiz stops (and no value is received for the incorrect answer).

11

Example: The Quiz Problem

- Is there a greedy algorithm for the quiz problem?
- Let's try to use an exchange argument to "reverseengineer" the right algorithm:
 - Suppose problems ordered 1, 2, ..., n.
 - $\mathbf{E}[\text{value}] = \Sigma_j \, \mathbf{v}_j \, \mathbf{Pr}[\text{problems 1...j answered correctly}]$ = $\mathbf{v}_1 \mathbf{p}_1 + \mathbf{v}_2 \mathbf{p}_1 \mathbf{p}_2 + \mathbf{v}_3 \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 + ...$
 - Consider swapping two adjacent problems j and j+1.
 - Change in E[value] =

$$[p_1p_2...p_{i-1}][v_ip_i(1-p_{i+1})-v_{i+1}p_{i+1}(1-p_i)].$$

– This change ought to be \leq 0, so:

$$v_j p_j / (1 - p_j) \ge v_{j+1} p_{j+1} / (1 - p_{j+1})$$

• Greedy algorithm: non-increasing by $v_i p_i / (1 - p_i)$.

Example: The Minimum Spanning Tree Problem

- **Goal:** Find a minimum-cost subset of the edges in a graph that forms a tree, and that connects together all nodes.
- Very well-studied problem, and can be solved very efficiently.