Quantum Field Theory on a Highly Symmetric Lattice

Marco Aliberti

Università degli Studi di Torino

July 11, 2023

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated.

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated. There are two possible approaches:

Perturbative

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated. There are two possible approaches:

Perturbative

Perturbative

• Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated

Perturbative

- Straightforward series expansion in powers of small g ⇔
 Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

Non-Perturbative

No straightforward approach

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

- No straightforward approach
- Can have a natural cut-off for high momenta ⇒ No UV divergencies

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

- No straightforward approach
- Can have a natural cut-off for high momenta ⇒ No UV divergencies
- Can predict quantities with essential singularities as $g \to 0$

What is a Lattice?

Definition: Lattice Λ

$$\Lambda = \{ \sum_{i=1}^{n} a_i e_i \mid a_i \in \mathbb{Z} \}, \text{ with } \{e_i\}$$
any basis of \mathbb{R}^n

Figure: A bidimensional lattice.

What is a Lattice?

Definition: Lattice Λ

 $\Lambda = \{ \sum_{i=1}^{n} a_i e_i \mid a_i \in \mathbb{Z} \}, \text{ with } \{e_i\}$ any basis of \mathbb{R}^n

Figure: A bidimensional lattice.

Hypercubic lattice

 $\{e_i\}$ is the canonical basis of \mathbb{R}^n a is called *lattice spacing*.

Figure: A square lattice.

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

• Scalar fields $\Phi(x) \to \Phi(n)$ on sites

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $U_{\mu}(x) o U_{\mu}(n)$ on links

Parallel Transporter

$$U_{\mu}(x) = \exp(igaA_{\mu}(x))$$

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $U_{\mu}(x) \to U_{\mu}(n)$ on links
- Object with k indices on k-symplexes

Parallel Transporter

$$U_{\mu}(x) = \exp(igaA_{\mu}(x))$$

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $U_{\mu}(x) o U_{\mu}(n)$ on links
- Object with k indices on k-symplexes

Beware!

Spinorial fields are trickier to be discretized.

Parallel Transporter

$$U_{\mu}(x) = \exp(igaA_{\mu}(x))$$

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Gauge-Invariant Observables and Wilson Action

The Yang-Mills continuum action is $S_E = \frac{1}{4} \int d^4x F^{a\mu\nu}(x) F^a_{\mu\nu}(x)$.

On the lattice, every closed path is gauge-invariant.

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Gauge-Invariant Observables and Wilson Action

The Yang-Mills continuum action is $S_E = \frac{1}{4} \int d^4x F^{a\mu\nu}(x) F^a_{\mu\nu}(x)$.

On the lattice, every closed path is gauge-invariant.

Definition: Plaquette $U_{\mu\nu}(n)$

$$U_{\mu}(n)U_{
u}(n+\mu)U_{\mu}^{\dagger}(n+
u)U_{
u}^{\dagger}(n)$$

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Gauge-Invariant Observables and Wilson Action

The Yang-Mills continuum action is $S_E = \frac{1}{4} \int d^4x F^{a\mu\nu}(x) F^a_{\mu\nu}(x)$.

Definition: Plaquette $U_{\mu\nu}(n)$

$$U_{\mu}(n)U_{
u}(n+\mu)U_{\mu}^{\dagger}(n+
u)U_{
u}^{\dagger}(n)$$

On the lattice, every closed path is gauge-invariant.

Wilson's Idea

$$S = \frac{\beta}{2N} \sum_{n,\mu,\nu} \mathfrak{Re} \operatorname{Tr} \left(\mathbb{1} - U_{\mu\nu}(n) \right)$$

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Polyakov Loops and Potential

If the time coordinate is taken to be periodic, more closed paths arise.

Polyakov Loop

$$P(n) = \operatorname{Tr} \prod_{t=0}^{T-1} U_t(n)$$

Figure: Gauge-invariant paths on a bidimensional lattice. [1]

Polyakov Loops and Potential

If the time coordinate is taken to be periodic, more closed paths arise.

Polyakov Loop

$$P(n) = \operatorname{Tr} \prod_{t=0}^{T-1} U_t(n)$$

The expectation value of two Polyakov loops is the potential.

Potential

$$V(R) = -\frac{1}{T}\log \langle P(0)P^{\dagger}(R) \rangle$$

Figure: Gauge-invariant paths on a bidimensional lattice. [1]

Poincaré Group can be divided in:

Translations

Rotations

Poincaré Group can be divided in:

Translations

$$x^{\mu} \rightarrow x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \rightarrow n + a\hat{\mu}$$

Rotations

Poincaré Group can be divided in:

Translations

$$x^{\mu} \to x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \to n + a\hat{\mu}$$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

Poincaré Group can be divided in:

Translations

$$x^{\mu} \to x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \to n + a\hat{\mu}$$

$$a\hat{\mu}
ightarrow arepsilon^{\mu}$$
 for $a
ightarrow 0$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \downarrow$$

$$n \rightarrow \Gamma n \quad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

Poincaré Group can be divided in:

Translations

$$a\hat{\mu}
ightarrow \varepsilon^{\mu}$$
 for $a
ightarrow 0$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \downarrow$$

$$n \rightarrow \Gamma n \quad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

$$\Gamma \times R$$
 for $a \to 0$

Poincaré Group can be divided in:

Translations

$$x^{\mu} \rightarrow x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \rightarrow n + a\hat{\mu}$$

$$a\hat{\mu} \rightarrow \varepsilon^{\mu}$$
 for $a \rightarrow 0$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \downarrow$$

$$n \rightarrow \Gamma n \quad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

$$\Gamma \times R$$
 for $a \to 0$

Important:

Rotational invariance seems to be broken.

Rotational Invariance Restoration - Lang and Rebbi

Equipotential surfaces become spheres as the continuum limit is approached.

Figure: Restoration of rotational invariance from (a) $\beta = 2$, $n_s = 8$, $n_t = 4$ to (b) $\beta = 2.25$, $n_s = 16$, $n_t = 6$; the curves represent equipotential curves. [2]

Rotational Invariance Restoration

Values of β are slightly different from Lang and Rebbi's because $a(\beta) \approx \Lambda e^{-b_0 \beta}$, with Λ , $b_0 > 0^1$.

Figure: Potential from $\beta = 2.20$, $n_s = 8$, $n_t = 4$.

Figure: Potential from $\beta = 2.35$, $n_s = 16$, $n_t = 6$.

¹The simulation code is based on the code presented in refs. [3, 4].

Higher Symmetry Lattices

Other, more rotational-symmetric, lattices have been used:

Body Centered Tesseract [5]

- 24 nearest neighbours
- 1152-element symmetry group

Figure: Two-dimensional projection of a BCT. [5]

The SH lattice has 8 nearest neighbours and a 384-element symmetry group.

Higher Symmetry Lattices

Other, more rotational-symmetric, lattices have been used:

Body Centered Tesseract [5]

- 24 nearest neighbours
- 1152-element symmetry group

Figure: Two-dimensional projection of a BCT. [5]

F_4 coroots lattice [6]

- 48 nearest neighbours
- 2304-element symmetry group

Figure: Two-dimensional projection of a F_4 coroots lattice. [7]

The SH lattice has 8 nearest neighbours and a 384-element symmetry group.

Obtained from the roots lattice of the exceptional Lie algebra F₄ and its dual;

Figure:

- Obtained from the roots lattice of the exceptional Lie algebra F₄ and its dual;
- Has 48 nearest neighbours:
 - The 24 roots are all possible permutations of coordinate positions of $(\pm 1, \pm 1, 0, 0)$

Figure: The 24 roots (red) of the F_4 lattice, projected on a bidimensional plane.

- Obtained from the roots lattice of the exceptional Lie algebra F₄ and its dual;
- Has 48 nearest neighbours:
 - The 24 roots are all possible permutations of coordinate positions of $(\pm 1, \pm 1, 0, 0)$
 - The 24 dual roots (coroots) are:
 - The 8 possible permutations of $(\pm 1, 0, 0, 0)$
 - O The 16 possible permutations of $(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2})$

Figure: The 24 roots (red) and the 24 coroots (yellow) of the F_4 lattice, projected on a bidimensional plane.

- Obtained from the roots lattice of the exceptional Lie algebra F₄ and its dual;
- Has 48 nearest neighbours:
 - The 24 roots are all possible permutations of coordinate positions of $(\pm 1, \pm 1, 0, 0)$
 - The 24 dual roots (coroots) are:
 - O The 8 possible permutations of $(\pm 1, 0, 0, 0)$
 - O The 16 possible permutations of $(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2})$
- Exists only in 4 dimensions;

Figure: The 24 roots (red) and the 24 coroots (yellow) of the F_4 lattice, projected on a bidimensional plane.

- Obtained from the roots lattice of the exceptional Lie algebra F₄ and its dual;
- Has 48 nearest neighbours:
 - The 24 roots are all possible permutations of coordinate positions of $(\pm 1, \pm 1, 0, 0)$
 - The 24 dual roots (coroots) are:
 - The 8 possible permutations of $(\pm 1, 0, 0, 0)$
 - O The 16 possible permutations of $(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2})$
- Exists only in 4 dimensions;
- Contains the Simple Hypercubic lattice and the BCT;

Figure: The 24 roots (red) and the 24 coroots (yellow) of the F_4 lattice, projected on a bidimensional plane.

- Obtained from the roots lattice of the exceptional Lie algebra F₄ and its dual;
- Has 48 nearest neighbours:
 - The 24 roots are all possible permutations of coordinate positions of $(\pm 1, \pm 1, 0, 0)$
 - The 24 dual roots (coroots) are:
 - The 8 possible permutations of $(\pm 1, 0, 0, 0)$
 - O The 16 possible permutations of $(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2})$
- Exists only in 4 dimensions;
- Contains the Simple Hypercubic lattice and the BCT;
- Has been used only to simulate scalar fields, in [6].

Figure: The 24 roots (red) and the 24 coroots (yellow) of the F_4 lattice, projected on a bidimensional plane.

Work in Progress

• Implement the F_4 lattice in the simulation program and make efficiency studies;

Work in Progress

• Implement the F_4 lattice in the simulation program and make efficiency studies;

 Make a rotational invariance study on the new lattice, hoping to get better results than the Simple Hypercubic lattice.

Grazie per l'attenzione!

Bibliography I

- [1] Dibakar Sigdel. "Two Dimensional Lattice Gauge Theory with and without Fermion Content". In: FIU Electronic Theses and Dissertations 3224 (2016). DOI: 10.25148/etd.FIDC001748. URL: https://digitalcommons.fiu.edu/etd/3224?utm_source= digitalcommons.fiu.edu%2Fetd%2F3224&utm_medium=PDF&utm_campaign=PDFCoverPages.
- [2] C. B. Lang and C. Rebbi. "Potential and Restoration of Rotational Symmetry in SU(2) Lattice Gauge Theory". In: *Phys. Lett.* B115 (1982). [, 322 (1982)], p. 137. DOI: 10.1016/0370-2693(82)90813-9.
- [3] Marco Panero. "Thermodynamics of the QCD plasma and the large-N limit". In: *Phys. Rev. Lett.* 103 (2009), p. 232001. DOI: 10.1103/PhysRevLett.103.232001. arXiv: 0907.3719 [hep-lat].

Bibliography II

- [4] Anne Mykkänen, Marco Panero, and Kari Rummukainen. "Casimir scaling and renormalization of Polyakov loops in large-N gauge theories". In: JHEP 1205 (2012), p. 069. DOI: 10.1007/JHEP05 (2012) 069. arXiv: 1202.2762 [hep-lat].
- [5] William Celmaster. "Gauge Theories on the Body Centered Hypercubic Lattice". In: Phys. Rev. D26 (1982), p. 2955. DOI: 10.1103/PhysRevD.26.2955.
- [6] Herbert Neuberger. "SPINLESS FIELDS ON F(4) LATTICES". In: Phys. Lett. B 199 (1987), pp. 536–540. DOI: 10.1016/0370-2693(87)91623-6.
- [7] URL: https://en.wikipedia.org/wiki/F4_%28mathematics%29.