Trying to De-Anonymize I2P Network Participants

Thesis

- Title
 - De-anonymization of participants of the I2P-based trading network for digital assets ("DIVA.EXCHANGE")
- Students
 - Brian Boss & Marco Purtschert
- Initiator
 - Konrad Bächler (DIVA.EXCHANGE)

Depth of this Presentation

- Simplified
 - Trade-off between profound and understandability
- Main scope of research
- Focus on I2Pd (C++ Implementation)

Problem

- A service stores the B32-address of its participants.
- Storage is public available.
- Is it possible to infer the IP address from the B32-address?

What is I2P

- Invisible Internet Project
- Decentralized & distributed P2P Overlay Network
- Multiple Implementations (Java & C++)
- Provides Security Anonymisation
 - Communication
 - Source & Destination

What is I2P not

- Disguise that you are a participant of the I2P network
- Completely decentralized & distributed
 - 13 Reseed Server for bootstrapping

Unidirectional Tunnels

 Participants not knowing their position

- Default Length
 - 2-3 Hops
- Default Amount
 - 2 IN & OUT

- Tunnel Renewal
 - 10 Minutes

What is I2P NetDB

- Distributed Network Database
 - DHT (distributed hash table)
 - Kademlia
- RouterInfo
 - Contact information for individual routers
 - IP Addresses of Individual Routers
- LeaseSet
 - Contact information for Services inside I2P
 - B32-Address
 - IP Addresses & Tunnel IDs of IN-Gateways

Attacks

- Analysed multiple P2P-attacks
 - No malware injection involved
- All attacks were covered theoretically
 - Starting to build a test-net for attack simulation
- Main scope of research
 - Tunnel takeover (sybil & intersection attack)

In a nutshell

- It's about mass-attacking a Network
- Attack is based on statistical probability
 - No 100% guarantee, but repeating the attack will increase probability

Main Idea: two colluding routers

Evil participant knows RouterInfo of Bob

Evil Gateway knows his IP-Address & Tunnel ID

With enough Information, Analyse Server can recreate Tunnel

(Revers-Lookup) of LeaseSet

LeaseSet-->Tunnel-->Routerinfo --> Deanonymisation

Mathematical Simulation

 To estimate the behaviour of various parameters, we have established the following formula.

$$I \approx \left(\frac{R}{N+R} \cdot p\right)^h \cdot \frac{a}{\frac{t!}{h! \cdot (t-h)!}} \cdot T \cdot r \cdot d$$

Influence of tunnel length

Influence of tunnel Amount

Especially useful, if B32-Address already is known

Identify Inbound-gateway

DDoS Inbound-gateway

Repeat until done

Tunnel Takeover - Mitigation

- Longer Tunnels
- Less Tunnels
- Variable Tunnel lengths

Conclusion

- Resistant against «common» Attacks
 - Various mitigations.
- De-anonymization within the I2P cannot be ruled out
 - Two colluding routers inside a tunnel
 - Traffic analysis on ISP / state-level-actor
- More research needed