Einführung in die Informationssicherheit

Florian Mendel

Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology

Inffeldgasse 16a, A-8010 Graz, Austria

http://www.iaik.tugraz.at/

L5 – Operating System Security

Einführung in die Informationssicherheit

Übersicht

- Authentication und Zugangskontrolle
- Windows Security
 - Authentication/Login
 - Access Control
 - Features und Probleme
- Unix/Linux Security
 - Authentication/Login
 - Access Control
 - Features und Probleme
- Security Enhancing Techniques

Motivation

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

source: http://xkcd.com/936/

MEMORIZED IT

Motivation

Your password must be at least 18770 characters and cannot repeat any of your previous 30689 passwords. Please type a different password. Type a password that meets these requirements in both text boxes

- Microsoft Knowledge Base Article Q276304

⇒ Es gibt Raum für Verbesserungen ...

Entity Authentication

Authentication

Definition (HAC)

Entity Authentication (identification) is the process whereby one party is assured of the identity of a second party involved in the protocol, and that the second party has actually participated.

- Der erste Schritt wenn man einen Computer benutzt
 - Log in
- Authentication ist ein "real-time" Prozess
 - Die authentifizierte Partei ist aktiv beteiligt . . .

Prinzipien für Authentifizierung

- Ein Geheimnis, das man kennt:
 - PIN, Passwort
- Etwas, das man besitzt:
 - Smartcard, Passwort-Generator
- Etwas, das uns inherent ist:
 - Fingerabdruck, Stimme, Iris
- ⇒ In der Praxis benutzt man oft eine Kombination dieser Prinzipien!

Passwort-basierte Authentifizierung

- Passwort
 - Ein gemeinsames Geheimnis zwischen User und System
- Passwort-basierte Authentifizierung
 - User beweist Kenntnis des Passworts beim Login
 - System vergleicht das Passwort mit gespeicherten Werten
 - Es muss gewährleistet sein, dass das Passwort nicht für einen Angreifer sichtbar ist . . .

Wie werden Passwörter gespeichert

- Passwort-File
 - Passwörter werden im Klartext gespeichert (nur root hat r/w-Rechte)
- "Encrypted" Passwort-File
 - Hashwerte werden gespeichert anstatt des Passworts
- Salting Passwords
 - Im Encrypted Passwort-File wird noch ein *t*-bit Salt benutzt
 - → gegen Wörterbuchattacken

Attacken

- Exhaustive Search
 - Durchsuchen aller Passwort-Kombinationen
- Wörterbuch-Attacken
 - Benutzen nur die "plausibelsten" Passwörter
 - Das Wörterbuch enthält die Hashwerte dieser Passwörter
 - Salting macht die (offline) Wörterbuch-Attacke erheblich schwieriger

Passwort-Policy

Eine gute Passwort-Policy die die User zwingt, gute/ sichere Passwörter zu wählen ist entscheidend für ein sicheres System!

Weak vs. Strong Authentication

- Schwache Authentifizierung
 - Replay-Attacken sind möglich
 - Einfache Passwort-basierte Systeme

- Starke Athentifizierung
 - Challenge-Response Prinzip
 - Wie schon in unserem ursprünglichen Beispiel der Authentifizierung Bankomat ↔ Karte!

Access Control

- Management von Usern und Prozess-Privilegien
 - Wer darf auf welche Files und Folders zugreifen?
 - Wer darf welche Applikationen (Prozesse) starten?
 - Wer darf das System konfigurieren?
- Access Control List (ACL)
 - Liste für Files (Prozesse), User und Privilegien
- Tickets

Security Mechanismen in Windows

Windows Login

- Einfache Folge von Schritten
 - Drücke Ctrl+Alt+Del
 - Eingabe von Username und Passwort
- Es gibt unterschiedliche Logins
 - Interactive, non-interactive
 - Batch, service
- Schutz vor Spoofing

Windows Login

Spoofing

- Angreifer schreibt ein Programm um das Login zu simulieren
- Unachtsamer User gibt sein Passwort preis . . .
- Wird verhindert durch die Secure Attention Sequence (SAS)
 - Ctrl+Alt+Del ist die SAS
 - Die SAS wird vom Keyboard Treiber abgefangen
 - Der Treiber startet das Programm für den Windows-eigenen Login

Windows Authentifizierung

- Abgehandelt durch die Authentication Authority
 - Lokaler Login: Local Security Authority (LSA)
 - Domänen Login: LSA des Domain Controller (DC)
 - DC ist der zentrale Server der die Network Resourcen, security policies und User verwaltet
- Verschiedene Authentication-Protocols möglich:
 - NTLM (NT LAN Manager)
 - Kerberos → default
 - SSL, etc.

Interactive Login – Winlogon

- Startet wenn der User die SAS drückt
- Winlogon Service startet GINA (Graphical Identification and Authentication)
- GINA
 - Zeigt das Login Interface
 - Gibt die User Eingaben an die LSA weiter
- LSA führt die Authentifizierung durch

Authentication Packages

- MSV1_0 und Kerberos
 - Kerberos ist Netzwerk-basiert, es kann keine lokalen Logins behandeln
 - Kerberos benötigt ein Key Distribution Center (KDC) das normalerweise auf einem DC läuft
- User credentials werden am Domain Controller in einer Datenbank gespeichtert
 - Active Directory (SAM Security Accounts Manager)
- Das System kann beliebig komplex werden:
 - Viele User wollen eine große Zahl an Netzwerk-Resourcen benutzen, auch aus fremden Netzen ...

Credential Provider Architecture

- New: LogonUI + Credential Providers API
- Credential providers must be registered on a Windows computer and are responsible for:
 - Describing the credential information required for authentication
 - Handling communication and logic with external authentication authorities
 - Packaging credentials for interactive and network logon

Credential Provider Architecture

Kerberos

- Symmetrische Kryptographie
 - Alice, Bob
 - KDC (Trusted third Party)
- Langzeit-Schlüssel
 - Alice, KDC: KAT
 - Bob, KDC: KBT

■ KDC erzeugt Schlüssel K für Alice und Bob

----- shared information

Ticket Granting Server

Figure 1: Kerberos operation (C. Lederer)

Kerberos in Windows Login

- Offensichtlich komplexer als lokales Login
- Erlaubt "single-sign on"
 - User authentifiziert sich nur einmalig:
 - Erhält ein "Ticket" um Resourcen zu benutzen beim Login
 - Kann diese Resourcen für die Dauer der Gültigkeit des Tickets behalten

Access Control in Windows

- DACL (Discretionary ACL)
 - Für jedes File (Resource) wird eine Liste von Usern und Rechten gespeichert
 - Der Besitzer des Objekts vergibt die Rechte
- SID (security identifier)
 - Datenstruktur die User/Group/Computer-Accounts identifiziert
- Access token eines Prozesses
 - Beinhaltet SID und zusätzliche Info (Privilegien)
- SACL (System ACL)
 - Gibt an, welche Zugriffe auf ein Objekt mitgeloggt werden

Encrypted File System (EFS)

- Unterstützt vom NTFS
- Seit Win2000:
 - Default Algorithmus: DES (56 bit key)
 - 128-bit Encryption pack: DESX wird benutzt
- WinXP
 - Default Algorithmus ist AES-256
 - 3DES kann benutzt werden
- Bis WinXP: Nur Microsoft Cryptographic Providers können für EFS benutzt werden

Encrypted File System (EFS)

- Verschiedene Schlüssel:
 - Für jedes verschlüsselte File, legt die LSA einen File Encryption Key (FEK) an
 - Diese Schlüssel werden wiederum verschlüsselt auf der Festplatte abgelegt
- Schlüssel-Verschlüsselung
 - Basiert auf Asymetrischer Kryptographie
 - Der FEK wird mit dem EFS Public Key des Users verschlüsselt
 - Zum Entschlüsseln muss der korrespondierende private Key vorhanden sein

Encrypted File System (EFS)

- Sicheres Speichern des privaten EFS-Keys
 - Auf Smartcard (seit Vista möglich)
 - Wiederum verschlüsselt (und wo speichern wir nun den Encryption Key?)

- Passwort-basierte Verschlüsselung
 - Definiert in PKCS#5
 - Encryption Key wird (mit einer Einweg-Funktion) von einem Passwort abgeleitet
 - www.emc.com/emc-plus/rsa-labs/standards-initiatives/

EFS Probleme

- Windows gibt "Hinweise" darauf, ob User EFS benutzen (oder benutzt haben)
 - Registry Einträge
- Windows ermöglicht Datenwiederherstellung
 - Die Security Policy legt fest, ob das auch von anderen Usern für die eigenen Daten passieren kann
- Verlorene Passwörter (reset)
 - Daten sind weg (ohne Data Recovery)

Disk Encryption

- Full (whole) disk encryption
 - Software basiert
 - Hardware-basiert innerhalb / außerhalb des Devices
 - Alles ist verschlüsselt (Swap, temp files)
- Boot key problem
 - Die Datenblöcke, die das OS enthalten müssen entschlüsselt werden, um zu booten.
 - Pre-Boot Authentication (mini-OS, integrity protected)
 - Usr/Pwd, PIN/Smartcard, USB-Dongle, ...
 - MS Bitlocker benutzt z.B. TPM Modul
- Data recovery mechanisms

Attacken auf Disk Encryption

- Cold boot attack (Keys bleiben im SRAM, DRAM)
 - Unmounten von Vaults
 - Two-factor authentications
- Watermarking-Attack
 - CBC mode anfällig (mit vorhersagbaren IVs)
 - NIST: AES-XTS mode

Disk Encryption

- Tools:
 - Bitlocker (Windows)
 - dm-crypt (Linux)
 - MacOS FileVault
 - . . .

- Smartphones
 - Hohe Mobilität → Schutz der Daten noch wichtiger!

Security Mechanismem in Unix/Linux

Unix User Authentication (Historisch)

- Login-Prozess fragt nach Username und Passwort
 - Früher wurden Encrypted Passwort-Files benutzt
 - Login "verschlüsselt" das Passwort und vergleicht es mit dem Eintrag für den jeweiligen User
- "Encryption" crypt
 - User Passwort wird als Schlüssel
 - Plaintext = '00...0'
 - Modifizierte Version des DES wurde oft benutzt
 - Mit Salt!

Unix Login

■ Login-Prozess läuft mit SETUID root

- Nach erfolgreicher Verifikation des Passworts
 - Login ändert die User ID (UID) und Group ID (GID) auf die UID und GID des Users
 - Login aktiviert Standard IO (Keyboard, Monitor)
 - Login öffnet Shell und terminiert

Linux – PAM

- Pluggable Authentication Modules for Linux
- Eine Suite von shared-libs
 - Admin/System Setup legt fest, wie App. einen User authentifiziert
 - Der Auth-Mechanismus kann gewechselt werden, ohne die Applikation (z.B. login/ssh) neu kompilieren/installieren zu müssen
- Große Flexibilität
 - Smartcard, passwd-check, etc.

Access Control in Unix

- User, Prozesse, Resourcen haben
 - UID
 - GID
- UID und GID werden vom Owner übertragen
- Resourcen haben auch Permissions (vom Owner gesetzt)
 - Read, Write, Execute (Search)

Access Control in Unix

- Root (Superuser)
 - User mit hohen Privilegien

SETUID

- Prozess l\u00e4uft mit den Privilegien seines Owners statt mit denen des Users, der ihn gestartet hat
- Real UID (owner), effective UID (access control), saved UID (previous UID)
- UIDs ändern sich kurzzeitig, damit Prozesse mit h\u00f6heren Privilegien laufen k\u00f6nnen (Bsp. lpd)

Angriffe auf Betriebssysteme

- Weniger "large scale" Vulnerabilities seit 2005
 - vgl. Blaster, etc.
 - Mehr Antivirus-Schutz
- Starker Anstieg in Client-Vulnerabilities:
 - Browsers, office software, media players, desktop apps.
- Web-Applikationen
 - ≈ 50% der Vulnerabilities in 2007
 - PHP, SQL, Cross Site Scripting, Cross Site Req. Forgery

Angriffe auf Betriebssysteme

- Default Konfiguration von OS
 - Weiterhin viele schwach
 - Default Passwörter (brute force, Wörterbuch-Attacken)
 - Würmer/Viren die Passwort-Cracker inkludieren!
- SmartPhones: Attacken am Vormarsch!

Security Enhancing Technologies

Security Enhancing Techniques

- Windows Update (daily updates)
 - Wenn man das Problem nicht umgehen kann, dann zumindest den Schaden begrenzen!
- Sandboxing
 - Restricted execution environment
 - JVM ist ein Bsp.
- Code Signing
 - Authentizität des Codes durch Public-Key Cryptography
 - Vertrauen in welche CAs?

Security Enhancing Techniques

- Data Execution Prevention
 - non-executable stack
- SELinux (NSA/RedHat)
 - Mandatory Access Control
 - AppArmor
- grsecurity
 - Web servers mit Linux
 - Role Based Access Control (viel mehr "Rollen" für User/Prozesse)

Trusted Computing

- Trusted Computing
 - User vertrauen ihrem OS?
 - Vertraut OS (Hersteller) den Usern?
- User vertraut OS
 - Grundsätzlich nützlich
 - Voraussetzung für Verlässlichkeit, Produktivität, ...
- OS Hersteller kontrollieren User
 - DRM

Trusted Computing

- TCG (Trusted Computing Group)
 - Unter anderem: AMD, HP, IBM, Intel, MS, Sony, Sun, Atmel, Ericsson Mobile, Nokia, . . .
- TPM (Trusted Platform Module)
 - Microcontroller für das sichere Speichern/Behandeln von krypto.
 Schlüsselen, Passwörter, Zertifikaten, ...
 - Spezifikation ist öffentlich
- Open TC (EU Project)

Zusammenfassung

- Unsichere OS führen zu unsicheren Computern
 - OS ist einer der Kern-Bereiche für sichere Systeme
 - Login und Access Control sind wichtige Teile bei OS Sicherheit

■ Immer mehr Zugänge zur Verbesserung von OS Sicherheit

Vielen Dank für Ihre Aufmerksamkeit!