Teorema multinomial e relações de recorrência

Samuel Lopes

M2007-Algoritmos em Matemática Discreta

27 de setembro de 2019

Sumário:

Partições etiquetadas de um conjunto. Teorema multinomial. Relações de recorrência. Prova combinatória da relação de Pascal para os coeficientes binomiais. Condições iniciais.

Partições etiquetadas

Uma partição etiquetada de [n] de tipo (m_1, \ldots, m_k) , onde $m_1 + \cdots + m_k = n$, é uma lista (B_1, \ldots, B_k) de k subconjuntos disjuntos de [n] tais que $|B_i| = m_i$. Logo, $[n] = \bigcup_{i=1}^k B_i$.

Pelo que foi visto na última aula, o número de partições etiquetadas de [n] de tipo (m_1, \ldots, m_k) é $\binom{n}{m_1, \ldots, m_k}$.

Exemplos I

Queremos distribuir 11 brinquedos por 4 crianças. De quantas formas o podemos fazer se a criança mais velha receber 2 brinquedos e as restantes 3 brinquedos?

Resolução: O problema é equivalente a uma partição etiquetada de tipo (2,3,3,3), onde n=11 é o número de brinquedos e os conjuntos da partição correspondem às crianças (que são distintas, daí termos uma partição etiquetada).

Resposta:
$$\binom{11}{2,3,3,3} = 92400.$$

Exemplos II

Quantas palavras de k letras podemos formar com as letras de ALADA?

Resolução: Sejam $m_1 = n^o$ de A's, $m_2 = n^o$ de D's e $m_3 = n^o$ de L's. A resposta é a soma de coeficientes multinomiais $\binom{k}{m_1, m_2, m_3}$ sobre todas as possibilidades para m_1, m_2 e m_3 satisfazendo:

 $m_1 + m_2 + m_3 = k$, $0 \le m_1 \le 3$, $0 \le m_2$, $m_3 \le 1$.

Resposta:
$$k = 1 \quad (1,0,0) \text{ e as 2 permutações desta solução} \quad 3\binom{1}{1,0,0} = 3$$

$$(0,1,0) \text{ e } (0,0,1)$$

$$k = 2 \quad (2,0,0); \ (1,1,0) \text{ e as 2 permutações desta} \quad \binom{2}{2,0,0} + 3\binom{2}{1,1,0} = 7$$
 solução : $(1,0,1) \text{ e } (0,1,1)$
$$k = 3 \quad (3,0,0); \ (2,1,0) \text{ & a permutação } (2,0,1); \quad \binom{3}{3,0,0} + 2\binom{3}{2,1,0} + \binom{3}{1,1,1} = 13$$

$$k = 4 \quad (3,1,0) \text{ & permutação; } (2,1,1) \qquad 2\binom{4}{3,1,0} + \binom{4}{2,1,1} = 20$$

$$k = 5 \quad (3,1,1) \qquad (\frac{5}{3,1,1}) = 20$$

Exemplos III

De quantas formas é possível formar 4 equipas de 3, de um conjunto de 12 pessoas?

- ▶ Partições etiquetadas de tipo (3,3,3,3): $\binom{12}{3,3,3,3}$.
- Na resposta anterior assumimos que as equipas eram distinguíveis (equipa A, Equipa B, etc.) uma vez que considerámos partições etiquetadas. E se não forem?

Resposta: $\frac{1}{4!} \binom{12}{3.3.3.3}$.

Exemplos III (cont.)

► E se quiséssemos emparelhar as equipas (indistinguíveis) duas-a-duas para uma competição?

Resposta: resposta à
$$(2,2) \times \frac{1}{2!} = \frac{1}{(2!)^3} (\frac{12}{3,3,3,3})$$
 partições não etiquetadas de tipo $(2,2)$

OU

escolher o oponente da equipa 1 no problema inicial (3) e desetiquetar $(\frac{1}{41})$

OU

$$\begin{cases} \text{equipas (sem etiqueta)} \\ \text{emparelhadas} \end{cases} \times \\ \begin{cases} \text{etiquetar} \\ \text{"bloco 1", "bloco 2"} \end{cases} \times \\ \begin{cases} \text{etiquetar dentro} \\ \text{de cada bloco} \end{cases}$$

$$= \\ \begin{cases} \text{partições etiquetadas} \end{cases}$$

$$\begin{pmatrix} 12 \\ 3,3,3,3 \end{pmatrix}$$

O que justifica o nome coeficiente multinomial?

Consideremos o multinómio

$$(x_1+x_2+\cdots+x_k)^n.$$

Usando a propriedade distributiva (e a propriedade comutativa), ao expandir a expressão acima obtemos monómios da forma

$$x_1^{m_1} x_2^{m_2} \cdots x_k^{m_k}, \quad \text{com } m_i \ge 0 \text{ e } m_1 + \cdots + m_k = n.$$

De quantas formas é que podemos obter um tal monómio? Por aplicação da propriedade distributiva a

$$(x_1 + x_2 + \cdots + x_k) \cdot (x_1 + x_2 + \cdots + x_k) \cdots (x_1 + x_2 + \cdots + x_k)$$

devemos escolher em cada fator (i.e. para cada posição entre 1 e n) uma das variáveis (i.e., um índice entre 1 e k), repetindo m_1 vezes a variável x_1 , m_2 vezes a variável x_2 , ..., m_k vezes a variável x_k . cf. problema MISSISSIPI com variáveis=letras.

Função geradora dos coeficientes multinomiais

Logo o coeficiente de
$$x_1^{m_1}x_2^{m_2}\cdots x_k^{m_k}$$
 em $(x_1+x_2+\cdots+x_k)^n$ é $\binom{n}{m_1,\ldots,m_k}$. Daqui obtemos:

Teorema (Teorema multinomial)

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{m_i \ge 0 \\ m_1 + \dots + m_k = n}} {n \choose m_1, \dots, m_k} x_1^{m_1} x_2^{m_2} \cdots x_k^{m_k}.$$

Dizemos também que $(x_1 + x_2 + \cdots + x_k)^n$ é a função geradora dos coeficientes multinomiais $\binom{n}{m_1,\dots,m_k}$.

Relações de recorrência

Vejamos outra forma de calcular os coeficientes binomiais

$$\binom{n}{k} = n^{\circ}$$
 de subconjuntos de $[n]$ com k elementos

Seja $S \subseteq [n]$. Há duas possibilidades mutuamente exclusivas:

- $n \notin S$ Logo S é um subconjunto de [n-1] com k elementos e há exatamente $\binom{n-1}{k}$ possibilidades para S.
- $n \in S$ Logo S obtém-se acrescentando n a um subconjunto de [n-1] com k-1 elementos e há exatamente $\binom{n-1}{k-1}$ possibilidades para $S \setminus \{n\}$.

Logo:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
relação de recorrência (*)

Relações de recorrência (cont.)

Assim, usando a relação de recorrência (*), podemos obter $\binom{n}{k}$ à custa de termos inferiores desta sucessão (i.e., termos da forma $\binom{m}{\ell}$ com m < n).

Iterando, conseguimos obter o valor de $\binom{n}{k}$ à custa da relação de recorrência (*) e das condições iniciais:

$$\binom{n}{k} = 0$$
 se $k > n$ e $\binom{n}{0} = 1$, $\forall n \ge 0$.

Triângulo de Pascal

$$\binom{n}{k}$$

n k	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
2	1	2	1	0	0	0	0	0
3	1	3	3	1	0	0	0	0
4	1	4	6	4	1	0	0	0
5	1	5	10	10	5	1	0	0
6	1	6	15	20	15	6	1	0

Exemplo: transposição da recursividade para a geração de subconjuntos

Exemplo:

subconjuntos de [3] \longleftrightarrow caminhos na árvore de [3] a \emptyset

(árvore binária completa, com 2³ folhas)