

Why join GSU Student Chapter of ACM?

- Add to your **resume**: membership in a professional society!
 +You will be listed as a member on our chapter website.
- **Members-only** events: field trips, tailgating, movie outings
- Very COOL-looking t-shirt! ©
- Eligibility to be an **ACM officer**. Serving as an officer is an ideal way to meet other students and faculty, and it looks great on a **resume** as a "**leadership** role"!
- Email notifications of: ACM upcoming events, scholarships, summer jobs, internships, job postings, hackathons and other special events of interest to ACM members.

georgiastateuacm

gsuacm

WORKSHOP STRUCTURE

- 1. Introduction
 About Me
 What is Data Science?
- 2. Linear Regression
- 3. Logistic Regression
- 4. Resampling Methods
- 5. Case Study
- 6. Questions?

INTRODUCTION

About Me

- Graduated from Georgia State in Spring 2018 – B.S. in Mathematics
- Data Scientist at Xylem Inc. in Research Triangle Park, NC
- Will be pursuing an M.S. in Statistics soon at North Carolina State University

INTRODUCTION

What is Data Science?

200000000

Business / Domain Expertise

INTRODUCTION

A Typical Project Breakdown

REGRESSION

You Must Know It!

A Foundation of Data Science

• Assumes a linear relationship between predictors X_{1...n} and a response Y

$$Y = \beta_0 + \beta_1 X_1 + \epsilon + \beta_2 X_2 + ... + \beta_n X_n$$
Simple

Multiple

- β₀, β₁...β_n are known as regression coefficients
 - $\beta_0 \rightarrow$ expected mean when predictors = 0
 - $\beta_1...\beta_n \rightarrow$ association between predictor and response
- $\epsilon \rightarrow$ error (the residual)

A Foundation of Data Science

- Coefficients are estimated by least squares method
- How accurate is our model? We can assess our model using:
 - R-Squared and Adjusted R-Squared
 - Residual Standard Error (RSE)
 - F-statistics

200000000

All values can be called using the summary() function in R

A Foundation of Data Science

R² and Adjusted-R² Values

- Represents the proportion of variation in the response that can be explained by the predictors
- $R^2 \in [0,1]$; the closer to 1, the better
- R² IS NOT ALWAYS RELIABLE
 It increases when you add more predictors –
 predictors could be weakly related to the response
- Adjusted- R² corrects for the additional predictors

$$R^2 = 0.15$$
 $R^2 = 0.85$

 $R^2 = 0.99$

Bias!

A Foundation of Data Science

Residual Standard Error (RSE)

- Represents roughly the average difference between the true response values and the predicted values by the model
- The smaller, the better!

200000000

 Dividing the RSE by the average value of the response will give you the prediction error rate

A Foundation of Data Science

F-statistic

- Gives the overall significance of the model assesses whether at least one predictor variable has a non-zero coefficient
- Useful for multiple regression
- We want a large F-statistic, which gives a statistically significant p-value for a confidence level α (e.g. at α = 95%, we want p < 0.05)

CASE STUDY

In the Market

Let's predict the prices of homes in Boston.

Bedooodoo

RESAMPLING METHODS

- Involves repeatedly drawing samples from a training set and refitting a model of interest on each sample in order to obtain additional information about the fitted model
- Can our model generalize to new data?
- Two ways: cross-validation and bootstrap
 Cross-validation is used to assess model performance

Bootstrap can estimate confidence intervals, accuracy of parameter estimate, etc.

TRAIN / TEST SPLIT

The simplest resampling method

200000000

- You just need to make sure the sets are not overlapping
- NOT THE BEST
 Subsets may not be completely randomized
 Training set could have people with same age,
 people who live in the same state, etc.
 OVERFITTING!

Also, it causes a reduction in training data size UNDERFITTING!

K-FOLD CROSS VALIDATION

Train/test split → 2 groups
 k-fold cross validation → k # of groups

Essentially an iterative / repeated train/test split

- Average the resulting accuracies after repeating k times
- Reduces OVERFITTING
 Most data is being used in the test set
- Reduces UNDERFITTING
 Most data is being used in the training set

Final Accuracy = Average(Round 1, Round 2, ...)

General guideline is k=5 or k=10

LEAVE ONE OUT

- A special case of k-fold cross validation
- We have n # of observations
 Repeat train/test split n times
 Only one element in the test set
- Great if you have small data sets
- Computationally eXpEnSiVe

	✓ total samples →
iteration 1/N:	
iteration 2/N:	
iteration 3/N:	
	:
iteration N/N:	

- 1. The true relationship is linear
- 2. Errors are normally distributed
- 3. Homoscedasticity of errors

- 4. Observations are independent
- 5. Variables are not correlated with one another

VIOLATION in this residual plot!

There is an obvious curvature in the plot → non-linear relationship

A nonlinear regression would be more informative than a linear one

Under-predicts and over-predicts values → model bias

VIOLATION in this residual plot!

We have heteroscedasticity

Variance is unequal across the range of values

Predicting low values = high accuracy High values = low accuracy Model should not be trusted!

Collinearity (violation)

- Occurs when predictors are highly correlated with each other
- Classic symptom:
 Small change in data can cause big change in coefficients
 OVERFITTING
- Tell-tale signs:
 High R² but low t-scores
 Variation Inflation Factor (VIF) > 5
- You may be able to ignore it if you are just worried about prediction accuracy

RIDGE REGRESSION

- To address collinearity, ridge regression adds a bias term to our standard equation Reduces variance
 - Least squares will want to minimize residual sum of squares (RSS)

$$\mathrm{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$
 The summation is called the shrinkage penalty

shrinkage penalty

- λ is the tuning parameter Higher $\lambda \rightarrow$ more shrinkage, and coefficients shrink towards 0
- λ is determined through cross-validation 200000000

THE LASSO

- Very similar to ridge regression except we have the ability to set coefficients to zero if irrelevant – HUGE effect on variance
- Bias term:

200000000

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

This is my preferred shrinkage method

CASE STUDY

In the Market

Revisiting our Boston home price prediction....

CASE STUDY

Ka-Chow!

Let's fit some regression models to predict MPG for different cars

A Foundation of Data Science

A Foundation of Data Science

Additional *Important* Topics:

- Residual Analysis
 - Normal Q-Q
 - Leverage
 - Cook's Distance
- Nonlinear Regression
 - Regression Splines
- Model/Variable Selection
 - AIC, BIC, Cp
 - Subsetting
- Dimensionality Reduction
- Principal Components Analysis

What about qualitative responses?

I want to perform a linear regression to predict if I'll get accepted into a college or not. Y=1 if YES and Y=0 if NO.

What could be wrong with this approach?

LOGISTIC REGRESSION

Classification

- A simple classification method for binary categorical responses
- Predicts the probability of an outcome that can only have two values
- Linear regression is unbounded; logistic regression only falls within [0,1]
- Typically for predicting a TRUE/FALSE or YES/NO problem
 - An email is spam (1) or not spam (0)
- Will I get accepted into a college (1) or not (0)?

LOGISTIC REGRESSION

Odds and Log-Odds

- I will derive the logistic regression equations on the board
- The Odds
 - Value of odds close to 0 = very low probabilities $\infty = \text{very high probabilities}$
- The Log-Odds / Logit
 - Coefficients are estimated by the maximum likelihood estimation
 - Essentially, β_0 , β_1 are determined such that p(x) = 1 when an observation belongs to a class p(x) = 0 when it does NOT belong to a class
- Not all values of p(x) = 0 or 1; we need to define a threshold. Usually, it's 0.5
- If p(x) < 0.5, we round down to p(x) = 0 and state that the observation does NOT belong to a class

CASE STUDY

Sinking Ship

Would you survive the Titanic?

200000000

MARTIN

CONNECT WITH ME

www.linkedin.com/in/andira-putri/

200000000

@diramputri

THAT'S ALL FOLKS!

Thank You

200000000

Association for Computing Machinery

