Introduction to Computer Vision

Matthieu Baudry - Nov. 2020 matthieu.baudry@airbus.com

Objectives and Directives

- Understand the basis of Computer Vision
- Be able to
 - Modify images
 - Extract information
 - Apply Fourier Transform
 - Filter images
 - Apply deblurring
- Evaluation:
 - Report & clear code
 - Date: in 2 weeks (13th of December)
 - Notation:
 - Quality of redaction, form (put clear illustrations!)
 - Quality and pertinence of comments
 - "Extra work" for bonus (test other images, filters, applications, etc.)

Framework

I – Basics

- GrayScale Image
- Coloured Image
- Histogram
- Filtering

II – Fourier Transform

I – Basics

- GrayScale Image
- Coloured Image
- Histogram
- Filtering

- GrayScale Image I of size (N^*M) = Matrix of N^*M^*1 elements, whose values belongs to [0:255] (for UINT8, [0:1] for double)
- Lowest value = Dark, Highest value = white
- Ex: N = 4, M = 6

Convention depends on languages

- in C, indexes begin at 0 and end at N-1;
- In MatLab, indexes begin at 1 and end at N;
- access might be I(x,y) instead of I(y,x);
- etc.

Matlab commands:

help imwrite;

doc imwrite;

```
Create an image:
  I = zeros(N,M); % if N=M, I = zeros(N)
  I = ones(N,M); % Matrix filled with 1
  I = eye(N); % Diagonal matrix
   I = ones(N,M,3); % N*M*3 matrix (for RGB or HSV images for instance)
   Modify pixels value:
  I(n,m) = new_value; % row n, column m
  I = 255*I; % Multiplies all elements of I by 255 (as a scalar)
 > 13 = 11.*12; % Element per element operation
  I(n1:n2:m1:m2) = I2; \% Put I2 in I. be careful to have correct sizes
   Load an image:
  I = imread('path/image.png');
   Display an image:
  figure, imshow(I); or imagesc(I); % imagesc scales the color levels to values of I
   close all
   Save an image:
   imwrite(I,'MyImage.png','png');
                                                                      See Code section 1 (and video 1)
   Help:
```

6

- Coloured Image I of size (N^*M) = Matrix of N^*M^*3 elements
- Different color-spaces exist: (RGB), (HSV), (CMYK), ...
- Ex: RGB

Principle: 1 Matrix for each Red, Green or Blue component

- > $I_{red} = I(:,:,1)$ > $I_{green} = I(:,:,2)$
- $ightharpoonup I_{blue} = I(:,:,3)$

- Coloured Image I of size (N*M) = Matrix of N*M*3 elements
- Different color-spaces exist: (RGB), (HSV), (CMYK), ...
- Ex: RGB

Principle: 1 Matrix for each Red, Green or Blue component

- $ightharpoonup I_{red} = I(:,:,1)$
- $I_{green} = I(:,:,2)$
- $I_{hlue} = I(:,:,3)$

Acquisition of RGB Image: Bayer matrix + interpolation

Acquisition of multispectral Image: Rotating wheel

RGB to Gray

$$I_g = \alpha I_{red} + \beta I_{green} + \gamma I_{blue}$$

This transformation is not bijective (loss of information)

$$\succ I_g = rgb2gray(I_{RGB})$$

HSV (Hue Saturation Value) Color space

Hue \approx Pure color (wavelength) [teinte in French] Saturation \approx Intensity of coloration Value \approx The brightness

 $ightharpoonup I_{HSV} = rgb2hsv(I_{RGB})$

https://en.wikipedia.org/wiki/HSL_and_HSV

Histogram

 \rightarrow Hist = $imhist(I_g)$

Hist(i) = number of pixels of I that have a value equals to iGives information about the contrast of the image

 \triangleright $I_{eq} = histeq(I_g)$

Filtering

Important part of Image Processing -> modify intensity of **each pixel** in accordance with some rule (locally or globally)

Where: $\widetilde{I_{ij}} = f(I, ...)$

Used to remove noise, sharpen edges, blur areas, etc.

Ex:

Non linear Filtering (1/2)

Apply a non linear operation to the image

Ex:

$$I_{loc_{min}}(i,j) = \min_{(k,l)\in H} (I(i+k:j+l))$$

$$H: \{(i, j) \& 4 \ closest \ neighbours\}$$

$$I_{min}(i,j) = \min(I_1(i,j), I_2(i,j), ...)$$

Other non linear filters:

- max,
- median,
- bilateral filter,
- etc.

Non linear Filtering (2/2)

Ex:

Median Filtering:

https://en.wikipedia.org/wiki/Median_filter

Bilateral Filtering:

Linear Filtering (1/8)

Apply a linear operation to the image: convolution by a kernel

Lets H be a kernel matrix (any matrix, size [2n+1,2m+1])

We have:

 $I_{filtered} = I * H$, where * is the convolution operator (2D)

Rem. Conv 1D:
$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt$$

$$I_{filtered}(i,j) = \sum_{k=1}^{2n+1} \sum_{l=1}^{2m+1} H(k,l) . I(i+n-k+1,j+m-l+1)$$

 \triangleright $I_{filtered} = imfilter(I, H, [options])$

Linear Filtering (2/8)

$$I_{filtered}(i,j) = \sum_{k=1}^{2n+1} \sum_{l=1}^{2m+1} H(k,l) . I(i+n-k+1,j+m-l+1)$$

$$I_{filtered}(2,2) = \underbrace{I_{11}H_{33}}_{11} + \underbrace{I_{12}H_{32}}_{12} + \underbrace{I_{13}H_{31}}_{11} + \underbrace{I_{21}H_{23}}_{12} + \underbrace{I_{22}H_{22}}_{12} + \underbrace{I_{23}H_{21}}_{13} + \underbrace{I_{31}H_{13}}_{13} + \underbrace{I_{32}H_{12}}_{13} + \underbrace{I_{33}H_{11}}_{13}$$

$$I_{corr}(i,j) = \sum_{k=1}^{2n+1} \sum_{l=1}^{2m+1} H(k,l) . I(i-n+k-1,j-m+l-1)$$

Linear Filtering (3/8)

Ex: simple kernels

• If H = h (ie scalar), then $I_{filtered} = H * I = h.I$

• If
$$H = \frac{1}{9} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, then $I_{filtered}(2,2) = \frac{1}{9}I_{11} + \frac{1}{9}I_{12} + \dots + \frac{1}{9}I_{33}$

 $= average(I_{11}:I_{33})$

<i>I</i> ₁₁	<i>I</i> ₁₂	
<i>I</i> ₂₁		

	H ₁₁	
*		
Ū		

L - Basics

Linear Filtering (4/8)

Ex: Smooth noise in image

$$I_{noisy} = I + I_{noise} \quad \text{with} \quad I_{noise}(i,j) \sim \mathcal{N}(0,\sigma^2) \ \forall i,j$$

How to retrieve I from I_{noisy} ?

→ Use properties:

If
$$(x_i)_{i \in [1,m]} \sim [\mathcal{N}(0,\sigma^2)]^m$$
 then: $\frac{1}{m} \sum x_i \sim \mathcal{N}(0,(\sigma')^2)$ with $\sigma' = \frac{\sigma}{\sqrt{m}} \to 0$ as $m \to \infty$

Linear Filtering (5/8)

Ex: Smooth noise in image

How to retrieve I from I_{noisy} ?

→ Average the image, for instance with a mean operator.

Concretely:

use
$$H = \frac{1}{m^2} * \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

→ Prefer Gaussian Kernels which better preserve edges

... See implemented code, section 3 (and video 3)

Linear Filtering (7/8)

Ex 2: Gradient of an image (vertical)

... See implemented code, section 4 (and videos 4 &4b)

Linear Filtering (7/8)

Property:

$$H_1 * (H_2 * I) = (H_1 * H_2) * I$$
 (here, * operator is still convolution)

For instance:

Instead of smoothing the image **and** generate gradient (which takes time), use one Kernel that combines both operations: $H_3 = H_2 * H_2$

$$H_1 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 (gradient)
$$H_2 = \frac{1}{3} * \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (smooth)
$$H_3 = \frac{1}{3} * \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
Noise Smoothing Edge detection

Linear Filtering (8/8)

Operation	Kernel ω	Image result g(x,y)
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$egin{bmatrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
Gaussian blur 5 × 5 (approximation)	$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Adapt your filters to your problems!

Ex: Smooth noise in image

with
$$H = \frac{1}{n} * [1, ..., 1]$$

Frequency analysis

Reminder: in 1 Dimension

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2k\pi t}{T}\right) + b_k \sin\left(\frac{2k\pi t}{T}\right)\right)$$

$$a_k = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2k\pi t}{T}\right) dt$$

$$b_k = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2k\pi t}{T}\right) dt$$

Reminder: in 1 Dimension

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2k\pi t}{T}\right) + b_k \sin\left(\frac{2k\pi t}{T}\right)\right)$$

Reminder: in 1 Dimension

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2k\pi t}{T}\right) + b_k \sin\left(\frac{2k\pi t}{T}\right)\right)$$

$$=\sum_{k=-\infty}^{\infty}r_k\cos(\frac{2k\pi t}{T}+\theta_k)$$

$$< x(t), \cos\left(\frac{2k\pi t}{T}\right) >$$

$$a_k = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2k\pi t}{T}\right) dt$$

$$b_k = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2k\pi t}{T}\right) dt$$

Reminder: in 1 Dimension

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2k\pi t}{T}\right) + b_k \sin\left(\frac{2k\pi t}{T}\right)\right)$$

$$= \sum_{k=-\infty}^{\infty} r_k \cos(\frac{2k\pi t}{T} + \theta_k)$$

$$= \sum_{k=-\infty}^{\infty} c_k \exp(\frac{2ik\pi t}{T})$$

$$< x(t), \cos\left(\frac{2k\pi t}{T}\right) >$$

$$a_k = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2k\pi t}{T}\right) dt$$

$$b_k = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2k\pi t}{T}\right) dt$$

$$c_k = \frac{1}{T} \int_0^T x(t) \exp\left(\frac{-2i\pi kt}{T}\right) dt$$

Reminder: in 1 Dimension

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2k\pi t}{T}\right) + b_k \sin\left(\frac{2k\pi t}{T}\right)\right)$$

$$=\sum_{k=-\infty}^{\infty}r_k\cos(\frac{2k\pi t}{T}+\theta_k)$$

$$= \sum_{k=-\infty}^{\infty} c_k \exp(\frac{2ik\pi t}{T})$$

$$< x(t), \cos\left(\frac{2k\pi t}{T}\right) >$$

$$a_k = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2k\pi t}{T}\right) dt$$

$$b_k = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2k\pi t}{T}\right) dt$$

$$c_k = \frac{1}{T} \int_0^T x(t) \exp\left(\frac{-2i\pi kt}{T}\right) dt$$
$$= \langle x(t), \exp\left(\frac{-2i\pi kt}{T}\right) \rangle$$

Reminder: in 1 Dimension

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2k\pi t}{T}\right) + b_k \sin\left(\frac{2k\pi t}{T}\right)\right)$$

$$= \sum_{k=-\infty}^{\infty} r_k \cos(\frac{2k\pi t}{T} + \theta_k)$$

$$= \sum_{k=-\infty}^{\infty} c_k \exp(\frac{2ik\pi t}{T})$$

$$= \sum_{k=-\infty}^{\infty} c_k \exp(2i\pi k f_0 t)$$

$$< x(t), \cos\left(\frac{2k\pi t}{T}\right) >$$

$$a_k = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2k\pi t}{T}\right) dt$$

$$b_k = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2k\pi t}{T}\right) dt$$

$$c_k = \frac{1}{T} \int_0^T x(t) \exp\left(\frac{-2i\pi kt}{T}\right) dt$$
$$= \langle x(t), \exp\left(\frac{-2i\pi kt}{T}\right) \rangle$$
$$= \langle x(t), \exp(-2i\pi k f_0 t) \rangle$$

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \exp(\frac{2ik\pi t}{T})$$

$$c_k = < x(t), \exp\left(\frac{-2i\pi kt}{T}\right) >$$

 $angle(c_k)$ = phase between x(t) and $exp(2i\pi k f_0 t)$

 $|c_k|$ = intensity of frequency kf_0 in x(t)

In 2D: $TF: I \to TF(I) = \hat{I} \in \mathbb{C}$

2 main frequencies: $f_{0_{rows}} = \frac{1}{N}$ and $f_{0_{cols}} = \frac{1}{M}$

 $|B_{p,q}(n,m)|$

$$\hat{I}(p,q) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} I(n,m) \cdot e^{-j\left(\frac{2\pi}{N}\right)pn} e^{-j\left(\frac{2\pi}{M}\right)qm}$$

 $\hat{I}(p,q) = \sum_{m=0}^{N-1} \sum_{m=0}^{M-1} I(n,m).B_{p,q}(n,m)$

$$\hat{I}(p,q) = < I, B_{p,q} >$$

se du traitement des images, Nicolas Thome, p3²

Warning, conventionally, the low freq are in the middle, and high freq away from the center Done with function fftshit

See Code section 5 intro (and video 5 intro)

Why 2 points? see:

https://dsp.stackexchange.com/questions/4825/why-is-the-fft-mirrored

 $TF: I \to TF(I) = \hat{I} \in \mathbb{C}$

$$F(p,q) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} I(n,m) \cdot e^{-j(\frac{2\pi}{N})pn} \cdot e^{-j(\frac{2\pi}{M})qm}$$

Image u

Module $|\hat{u}|$ $\approx Main directions/Patterns$

Phase arg (\hat{u}) $\approx Texture$ spatial positionning

- $ightharpoonup I_{fft} = fftshift(fft2(I))$
- \triangleright imagesc(log(abs(I_{fft}))) % Log in order to see more details
- $ightharpoonup I = ifft2(fftshift(I_{fft}))$

III - Deblurring

$$I_{b} = H * I + N$$

$$\downarrow \textit{Filtering: N is attenuated}$$

$$I_{b_{filtered}} = H * I + n$$

$$\downarrow I_{deblurred} = \frac{I_{b_{filtered}}}{H_{est}}$$

Problems:

- How to efficiently remove N (filtering)?
- How to correctly model H?

Annexe – TF for non periodic signals

If x is not T-periodic, replace $\frac{k}{T} = kf_0$ with f, \sum_k with \int_f , and c_k with $\hat{X}(f)$

$$c_k = \langle x(t), \exp(-2i\pi k f_0 t) \rangle \longrightarrow \hat{X}(f) = \langle x(t), \exp(-2i\pi f t) \rangle$$

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \exp(2i\pi k f_0 t) \longrightarrow x(t) = \int_{f=-\infty}^{\infty} X(f) \exp(2i\pi f t) df$$

$$TF: x \to TF(x) = \hat{X} \in \mathbb{C}$$

$$|\hat{X}(f)|$$
 = intensity of frequency f in x(t)
 $angle(\hat{X}(f))$ = phase between x(t) and $exp(2i\pi ft)$