Formale Grundlagen der Informatik II 6. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer Pavol Safarik SS 2012

Gruppenübung

Aufgabe G1

Welche der folgenden Mengen sind entscheidbar, welche sind rekursiv aufzählbar?

- (a) $SAT(AL) := \{ \varphi \in AL : \varphi \text{ erfullbar} \}$
- (b) $\{(\varphi, \psi) \in AL : \varphi \models \psi\}$
- (c) $SAT(FO) := \{ \varphi \in FO : \varphi \text{ erfullbar} \}$
- (d) $VAL(FO) := \{ \varphi \in FO : \varphi \text{ all gemeing \"ultig} \}$
- (e) UNSAT(FO) := $\{\varphi \in FO : \varphi \text{ unerfüllbar}\}\$
- (f) $\{(\varphi, \psi) \in FO : \varphi \models \psi\}$

Lösungsskizze:

- (a) entscheidbar
- (b) entscheidbar
- (c) nicht rekursiv aufzählbar
- (d) rekursiv aufzählbar
- (e) rekursiv aufzählbar
- (f) rekursiv aufzählbar

Aufgabe G2

- (a) Leiten Sie die folgenden Sequenzen her:
 - i. $\forall x R x f x \vdash \exists x R f x f f x$
 - ii. $\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx$
 - iii. $\forall x f x x = x \vdash \forall x (Px \lor \neg Pf xx)$
- (b) Beweisen Sie die Korrektheit der folgenden Regel:

$$\frac{\varGamma \vdash \varDelta, \forall x R x f x}{\varGamma \vdash \varDelta, \forall x \exists y R x y}$$

Beachten Sie, daß sich diese Regel nicht in \mathcal{SK}^{\neq} (auch nicht in \mathcal{SK}) herleiten läßt (warum?).

Lösungsskizze:

(a) i.

$$\frac{Rfcffc \vdash Rfcffc}{\forall xRxfx \vdash Rfcffc} \\ \hline \forall xRxfx \vdash \exists xRfxffx}$$

ii.

$$\frac{Rac, \neg Pc \vdash Rac}{Rac \lor Pc, \neg Pc \vdash Rac} \frac{Pc \vdash Pc}{Pc, \neg Pc \vdash}$$

$$\frac{Rac \lor Pc, \neg Pc \vdash Rac}{\forall y (Ray \lor Py), \neg Pc \vdash Rac}$$

$$\frac{\forall x \forall y (Rxy \lor Py), \neg Pc \vdash Rac}{\forall x \forall y (Rxy \lor Py), \neg Pc \vdash \forall y Ryc}$$

$$\frac{\forall x \forall y (Rxy \lor Py), \neg Pc \vdash \exists x \forall y Ryx}{\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx}$$

iii.

(b) Angenommen, $\Gamma \vdash \Delta$, $\forall x Rx fx$ ist allgemeingültig. Um zu zeigen, dass dann auch die Sequenz $\Gamma \vdash \Delta$, $\forall x \exists y Rxy$ allgemeingültig ist, betrachten wir ein Modell $\mathfrak{J} \models \Gamma$. Nach Voraussetzung gibt es dann eine Formel $\delta \in \Delta \cup \{\forall x Rx fx\}$ mit $\mathfrak{J} \models \delta$. Falls $\delta \in \Delta$, so sind wir fertig. Falls $\mathfrak{J} \models \forall x Rx fx$, dann gilt auch $\mathfrak{J} \models \forall x \exists y Rxy$ und wir sind ebenfalls fertig.

Aufgabe G3

Wir betrachten die Signatur $S=\{f,0\}$ mit einem einstelligen Funktionssymbol f und einer Konstanten 0. Beginnend mit einem Element x einer S-Struktur betrachten wir die Folge $x, f(x), f^2(x), \ldots$ und untersuchen, wie lange es dauert bis der Wert 0 erreicht wird.

- (a) Geben Sie für jedes n>0 eine Formel $\varphi_n(x)$ an, die sagt, dass in der Folge $x,f(x),\ldots,f^{n-1}(x)$ der Wert 0 nicht vorkommt.
- (b) Geben Sie eine Satzmenge Φ an, welche besagt, dass es für jedes n > 0 ein x gibt, so dass, wenn wir mit x beginnen, der Wert 0 frühestens nach n Schritten erreicht.
- (c) Beweisen Sie mit Hilfe des Kompaktheitssatzes, dass es keine Satzmenge Φ gibt, welche ausdrückt, dass für jedes x schließlich die 0 erreicht wird, d.h., dass es kein x gibt, so dass $f^n(x) \neq 0$ für alle n.

(Die Collatz-Vermutung behauptet, dass die durch die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit

$$f(n) := \begin{cases} 3n+1 & \text{für ungerade } n \,, \\ n/2 & \text{für gerade } n \,, \end{cases}$$

erzeugte Folge für jede natürliche Zahl >0 schließlich 1 ergibt. Bis jetzt konnte diese Vermutung weder bewiesen noch widerlegt werden.)

Lösungsskizze:

- (a) $\varphi_n(x) := \bigwedge_{i < n} \neg (f^i x = 0).$
- (b) $\Phi := \{ \exists x \, \varphi_n(x) : n > 0 \}.$
- (c) Angenommen es gäbe eine Satzmenge Φ mit der gewünschten Eigenschaft. Sei c ein neues Konstantensymbol. Wir definieren

$$\Psi := \Phi \cup \{ \varphi_n(c) : n > 0 \}.$$

Diese Menge ist unerfüllbar, da es in jedem Model $(A, f, 0, c) \models \Psi$ eine Zahl n geben muss, so dass $f^n(c) = 0$ ist. Dies widerspricht aber $\varphi_{n+1}(c)$.

Nach dem Kompaktheitssatz gibt es also eine endliche Teilmenge $\Psi_0 \subseteq \Psi$, welche unerfüllbar ist. Sei m eine Zahl, so dass

$$\Psi_0 \subseteq \Phi \cup \{ \varphi_n(c) : 0 < n < m \}.$$

Die Struktur $(\mathbb{N}, f, 0, m)$ mit f(0) = 0 und f(x) = x - 1 für x > 0 ist ein Modell von Ψ_0 . Widerspruch.

Hausübung

Aufgabe H1 (8+4 Punkte)

Betrachten Sie die Signatur $S=(0,m,\leq,L)$, wobei 0,m Konstanten sind, \leq ein 2-stelliges und L ein 1-stelliges Relationssymbol ist.

Wir modellieren in dieser Signatur einen Datenspeicher. Die Konstante 0 steht für die Adresse des ersten Speicherblocks, m für die letzten, \leq bezeichnet die Ordnung der Speicheradressen und Lx steht dafür, dass der Speicherblock mit der Adresse x gesperrt ist.

- (a) Formalisieren Sie die folgenden Aussagen in FO:
 - i. Kein Speicherblock ist gesperrt.
 - ii. Nicht mehr als 3 Speicherblöcke sind gesperrt.
 - iii. Es gibt genau 5 Speicherblöcke.
 - iv. Ein Anfangsstück des Speichers ist gesperrt.
- (b) Zeigen Sie, dass es keine Formel $\varphi(x)$ in FO gibt, die aussagt, dass es nur endlich viele Speicherblöcke gibt.

Lösungsskizze:

- (a) i. $\forall x \neg Lx$
 - ii. $\forall x_1 \forall x_2 \forall x_3 \forall x_4 \left(\bigwedge_{i=1}^3 \bigwedge_{j=i+1}^4 x_i \neq x_j \rightarrow \bigvee_{i=1}^4 \neg Lx_i \right)$
 - iii. Definiere $\varphi_n := \exists x_1, \dots, x_n \left(\bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^n x_i \neq x_j \right)$ Lösung: $\varphi_5 \land \neg \varphi_6$
 - iv. Triviale Lösung: L0.

Nicht-triviale Lösung: $\exists x \, (0 \neq x \land \forall y \, (y \leq x \rightarrow Ly))$

(b) Angenommen es gäbe solch einen Satz ψ der besagt, dass es nur endlich viele Speicherblöcke gibt. Dann ist $\Gamma:=\{\psi\}\cup\{\varphi_n:n\in\mathbb{N}\}$ nicht erfüllbar. Aus dem Kompaktheitssatz folgt, dass es eine endliche Formelmenge Γ_0 gibt, die unerfüllbar ist. D.h. es gibt ein k, so dass $\Gamma_0\subseteq\{\psi\}\cup\{\varphi_n:n\in\mathbb{N}\land n< k\}$.

Betrachte das Modell $\mathcal{M} = (\{0,\ldots,k\},0^{\mathcal{M}},m^{\mathcal{M}},\leq^{\mathcal{M}},L^{\mathcal{M}}))$ mit $0^{\mathcal{M}}=0$, $m^{\mathcal{M}}=k$, $\leq^{\mathcal{M}}=\leq^{\mathbb{N}}$, $L^{\mathcal{M}}=\emptyset$. Dann $\mathcal{M}\models\{\psi\}\cup\{\varphi_n:n\in\mathbb{N}\land n< k\}$ und damit auch $\mathcal{M}\models\Gamma_0$, d.h. Γ_0 ist erfüllbar.