Outline

- Data Models and Their Categories
- History of Data Models
- Schemas, Instances, and States
- Three-Schema Architecture
- Data Independence
- DBMS Languages and Interfaces
- Database System Utilities and Tools
- Classification of DBMSs

Data Models (continued)

Data Model Operations:

- These operations are used for specifying database retrievals and updates by referring to the constructs of the data model.
- Operations on the data model may include basic model operations (e.g. generic insert, delete, update) and user-defined operations (e.g. compute_student_gpa, update_inventory)

Categories of Data Models

Conceptual (high-level, semantic) data models:

- Provide concepts that are close to the way many users perceive data.
 - (Also called *entity-based* or *object-based* data models.)

Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored in the computer. These are usually specified in an ad-hoc manner through DBMS design and administration manuals

Implementation (representational) data models:

 Provide concepts that fall between the above two, used by many commercial DBMS implementations (e.g. relational data models used in many commercial systems).

Schemas versus Instances

- Database Schema:
 - The description of a database.
 - Includes descriptions of the database structure, data types, and the constraints on the database.
- Schema Diagram:
 - An *illustrative* display of (some aspects of) a database schema.
- Schema Construct:
 - A component of the schema or an object within the schema, e.g., STUDENT, COURSE.

Schemas versus Instances

Database State:

- The actual data stored in a database at a
 particular moment in time. This includes the
 collection of all the data in the database.
- Also called database instance (or occurrence or snapshot).
 - The term *instance* is also applied to individual database components, e.g. *record instance, table instance, entity instance*

Database Schema vs. Database State

Database State:

 Refers to the *content* of a database at a moment in time.

Initial Database State:

 Refers to the database state when it is initially loaded into the system.

Valid State:

 A state that satisfies the structure and constraints of the database.

Database Schema vs. Database State

- Distinction
 - The database schema changes very infrequently.
 - The database state changes every time the database is updated.

- Schema is also called intension.
- State is also called extension.

Example of a Database Schema

STUDENT

Name Student_number Class Major

Figure 2.1

Schema diagram for the database in Figure 1.2.

COURSE

Course_name	Course_number	Credit_hours	Department
-------------	---------------	--------------	------------

PREREQUISITE

Course_number	Prerequisite_number
---------------	---------------------

SECTION

Section_identifier	Course_number	Semester	Year	Instructor	
--------------------	---------------	----------	------	------------	--

GRADE_REPORT

Student_number Section_identifier Grade

Example of a database state

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

 Course_number
 Prerequisite_number

 CS3380
 CS3320

 CS3380
 MATH2410

 CS3320
 CS1310

Figure 1.2A database that stores student and course information.

Three-Schema Architecture

- Proposed to support DBMS characteristics of:
 - Program-data independence.
 - Support of multiple views of the data.
- Not explicitly used in commercial DBMS products, but has been useful in explaining database system organization

Three-Schema Architecture

- Defines DBMS schemas at three levels:
 - Internal schema at the internal level to describe physical storage structures and access paths (e.g indexes).
 - Typically uses a physical data model.
 - Conceptual schema at the conceptual level to describe the structure and constraints for the whole database for a community of users.
 - Uses a conceptual or an implementation data model.
 - External schemas at the external level to describe the various user views.
 - Usually uses the same data model as the conceptual level.

The three-schema architecture

Three-Schema Architecture

- Mappings among schema levels are needed to transform requests and data.
 - Programs refer to an external schema, and are mapped by the DBMS to the internal schema for execution.
 - Data extracted from the internal DBMS level is reformatted to match the user's external view (e.g. formatting the results of an SQL query for display in a Web page)

Data Independence

Logical Data Independence:

 The capacity to change the conceptual schema without having to change the external schemas and their associated application programs.

Physical Data Independence:

- The capacity to change the internal schema without having to change the conceptual schema.
- For example, the internal schema may be changed when certain file structures are reorganized or new indexes are created to improve database performance

Data Independence (continued)

- When a schema at a lower level is changed, only the mappings between this schema and higher-level schemas need to be changed in a DBMS that fully supports data independence.
- The higher-level schemas themselves are unchanged.
 - Hence, the application programs need not be changed since they refer to the external schemas.

DBMS Languages

- Data Definition Language (DDL)
- Data Manipulation Language (DML)
 - High-Level or Non-procedural Languages: These include the relational language SQL
 - May be used in a standalone way or may be embedded in a programming language
 - Low Level or Procedural Languages:
 - These must be embedded in a programming language

DBMS Languages

Data Definition Language (DDL):

- Used by the DBA and database designers to specify the conceptual schema of a database.
- In many DBMSs, the DDL is also used to define internal and external schemas (views).
- In some DBMSs, separate storage definition language (SDL) and view definition language (VDL) are used to define internal and external schemas.
 - SDL is typically realized via DBMS commands provided to the DBA and database designers

DBMS Languages

Data Manipulation Language (DML):

- Used to specify database retrievals and updates
- DML commands (data sublanguage) can be embedded in a general-purpose programming language (host language), such as COBOL, C, C++, or Java.
 - A library of functions can also be provided to access the DBMS from a programming language
- Alternatively, stand-alone DML commands can be applied directly (called a *query language*).

Types of DML

High Level or Non-procedural Language:

- For example, the SQL relational language
- Are "set"-oriented and specify what data to retrieve rather than how to retrieve it.
- Also called declarative languages.

Low Level or Procedural Language:

- Retrieve data one record-at-a-time;
- Constructs such as looping are needed to retrieve multiple records, along with positioning pointers.

DBMS Interfaces

- Stand-alone query language interfaces
 - Example: Entering SQL queries at the DBMS interactive SQL interface (e.g. SQL*Plus in ORACLE)
- Programmer interfaces for embedding DML in programming languages
- User-friendly interfaces
 - Menu-based, forms-based, graphics-based, etc.

DBMS Programming Language Interfaces

- Programmer interfaces for embedding DML in a programming languages:
 - Embedded Approach: e.g embedded SQL (for C, C++, etc.), SQLJ (for Java)
 - Procedure Call Approach: e.g. JDBC for Java,
 ODBC for other programming languages
 - Database Programming Language Approach: e.g.
 ORACLE has PL/SQL, a programming language based on SQL; language incorporates SQL and its data types as integral components

User-Friendly DBMS Interfaces

- Menu-based, popular for browsing on the web
- Forms-based, designed for naïve users
- Graphics-based
 - (Point and Click, Drag and Drop, etc.)
- Natural language: requests in written English
- Combinations of the above:
 - For example, both menus and forms used extensively in Web database interfaces

Other DBMS Interfaces

- Speech as Input and Output
- Web Browser as an interface
- Parametric interfaces, e.g., bank tellers using function keys.
- Interfaces for the DBA:
 - Creating user accounts, granting authorizations
 - Setting system parameters
 - Changing schemas or access path

Database System Utilities

- To perform certain functions such as:
 - Loading data stored in files into a database.
 Includes data conversion tools.
 - Backing up the database periodically on tape.
 - Reorganizing database file structures.
 - Report generation utilities.
 - Performance monitoring utilities.
 - Other functions, such as sorting, user monitoring, data compression, etc.

Other Tools

- Data dictionary / repository:
 - Used to store schema descriptions and other information such as design decisions, application program descriptions, user information, usage standards, etc.
 - Active data dictionary is accessed by DBMS software and users/DBA.
 - Passive data dictionary is accessed by users/DBA only.

Other Tools

- Application Development Environments and CASE (computer-aided software engineering) tools:
- Examples:
 - PowerBuilder (Sybase)
 - JBuilder (Borland)
 - JDeveloper 10G (Oracle)

DBMS Components

Figure 2.3

Classification of DBMSs

- Based on the data model used
 - Traditional: Relational, Network, Hierarchical.
 - Emerging: Object-oriented, Object-relational, NoSQL.
- Other classifications
 - Single-user (typically used with personal computers)
 vs. multi-user (most DBMSs).
 - Centralized (uses a single computer with one database)
 vs. distributed (uses multiple computers, multiple databases)

Variations of Distributed DBMSs (DDBMSs)

- Homogeneous DDBMS
- Heterogeneous DDBMS
- Federated or Multidatabase Systems
- Distributed Database Systems have now come to be known as client-server based database systems because:
 - They do not support a totally distributed environment, but rather a set of database servers supporting a set of clients.

Cost considerations for DBMSs

- Cost Range: from free open-source systems to configurations costing millions of dollars
- Examples of free relational DBMSs: MySQL, PostgreSQL, others
- Commercial DBMS offer additional specialized modules, e.g. time-series module, spatial data module, document module, XML module
 - These offer additional specialized functionality when purchased separately
- Different licensing options: site license, maximum number of concurrent users (seat license), single user, etc.