Relación de prácticas de la asignatura METODOLOGÍA DE LA PROGRAMACIÓN Segundo Cuatrimestre Curso 2018-2019

1º Grado en Informática

Práctica 2: Memoria dinámica, Bibliotecas

Objetivos

- Practicar conceptos básicos sobre memoria dinámica. Se hará uso de directivas de compilación para incluir de forma adecuada los ficheros de cabecera.
- Se hará uso de bibliotecas ya creadas y se crearán otras nuevas.

Recomendaciones

- No se podrá hacer uso de memoria estática.
- Dividir todos los ejercicios en varios ficheros y utilizar las directivas de inclusión condicional de código.

Temporización recomendada

2 sesiones de prácticas

¿Qué hay que entregar?

El ejercicio 1 y el análisis y diseño de la función minCol (ejercicio. 4)

El análisis consistirá en el estudio del problema que plantea el ejercicio.

- Qué datos de entrada necesita y de qué tipo son
- Cómo van a llegar esos datos
- Qué resultado se va a obtener y de qué tipo es
- Cómo se obtiene el resultado a partir de los datos de entrada
- Cómo se va a presentar al usuario el resultado final
- Ejemplo de que la solución propuesta funciona, utilizando los nombres dados a los datos

El diseño incluirá un algoritmo en pseudocódigo o diagrama de flujo que resuelva el problema y que servirá como base para la posterior codificación. Recordad que el diseño es independiente del lenguaje de programación utilizado.

¿Cuándo hay que entregar el ejercicio 1?

Grupo	GM1-GM2	GM3 -GM4	GM5
Fecha	12/03/19	13/03/19	15/03/19

¿Cuándo hay que entregar el análisis y el diseño de la función minCol?

Grupo	GM1-GM2	GM3 -GM4	GM5
Fecha	19/03/19	20/03/19	22/03/19

Memoria Dinámica

1. Supón una matriz dinámica (*float* ** *tabla*) de 2x3 elementos, con los siguientes valores.

```
{ {1.1, 1.2, 1.3}, {2.1.,2.2, 2.3}}
```

- ¿Cual es el significado de *tabla*?
- ¿Cual es el significado de (tabla+1)?
- ¿Cual es el significado de *(tabla+1)?
- ¿Cual es el significado de (*(tabla+1)+1)?
- ¿Cual es el significado de (*(tabla)+1)?
- ¿Cual es el valor de *(*(tabla+1)+1)?
- ¿Cual es el valor de *(*(tabla)+1)?
- ¿Cual es el valor de *(*(tabla+1))?
- 2. Escribe una función que, dado un vector dinámico, su longitud y un número entero (num), devuelva dos vectores dinámicos. Uno contendrá los elementos mayores que num y otro los elementos menores o iguales que num. Implementa un pequeño programa para probar la función.
- 3. Escribe un programa que permita gestionar los jugadores de baloncesto del equipo de una ciudad. Para ello se guardará la información de cada jugador en la siguiente estructura:

El programa realizará <u>secuencialmente</u> las siguientes operaciones:

- a) Crear un vector dinámico de jugadores.
- b) Listar los jugadores registrados en el equipo, con las características de cada uno de ellos (dorsal, peso, estatura).
- c) Borrar todos los jugadores con una 'a' en su nombre.
- d) Listar de nuevo los jugadores.
- e) Liberar memoria al terminar.

Deberás implementar al menos las siguientes funciones (también puede utilizar otras funciones auxiliares que considere oportunas):

- Función para reservar memoria para un vector de estructuras de jugador.
- Función para leer un nuevo jugador. La función pedirá al usuario los datos de un jugador y los devolverá en una estructura *struct Ficha jugador*.
- Función para rellenar un vector de jugadores usando la función para leer un jugador.
- Función para listar los jugadores del equipo.
- Función para borrar jugadores cuyo nombre contenga un carácter que se pasará como argumento.
 - Al terminar la ejecución, el vector de jugadores habrá reducido su tamaño usando la función *realloc*.
 - La función devolverá el número de jugadores que quedan en el vector.

Ejemplo: se desea borrar los jugadores cuyo nombre contenga el carácter 'a'

<u> </u>					
Pablo	4	80.5	192		
Luis	5	90.2	201		
Antonio	6	112.0	214		
Rodrigo	7	85.7	194		
Juan	8	93.0	198		
Miguel	9	101	205		

Vector después de realizar la eliminación de los jugadores con una 'a' en su nombre:

Luis	5	90.2	201
Rodrigo	7	85.7	194
Miguel	9	101	205

- 4. Escribe un programa que implemente las siguientes funciones sobre matrices dinámicas y las llame de manera <u>secuencial</u> mostrando, de manera adecuada, la salida por pantalla.
 - int ** reservarMemoria (int nFil, int nCol). Reserva memoria para una matriz de nFil filas y nCol columnas.
 - void rellenaMatriz (int **matriz, int nFil, int nCol). Rellena una matriz con valores aleatorios en el intervalo [1,20].
 - *void imprimeMatriz (int **matriz, int nFil, int nCol)*. Imprime una matriz por pantalla. Usa la notación de aritmética de punteros para recorrer la matriz.
 - int * minCol (int **matriz, int nFil, int nCol). Devuelve un vector dinámico con los mínimos de cada columna.
 - *void liberarMemoria(int ***matriz, int nFil)*. Libera la memoria de una matriz reservada dinámicamente. La función pondrá el puntero *matriz* a NULL antes de terminar.
- 5. Escribe un programa que lea una frase y, a partir de ella, cree un vector dinámico de cadenas con las diferentes palabras de la frase. A partir de este vector, el programa deberá:
 - Calcular la longitud media de las palabras de la frase, así como la longitud mayor y menor (usando paso de parámetros por referencia).
 - Construir un vector dinámico con la frecuencia de aparición de cada longitud.

Realiza una adecuada modularización, implementando todas las funciones que sean necesarias.

Bibliotecas y Doxygen

- 6. Crea una biblioteca (*libMatrices.a*) a partir de las cuatro funciones del ejercicio 4 (*reservarMemoria*, *liberarMemoria*, *rellenaMatriz* e *imprimeMatriz*) y su correspondiente fichero de cabecera. Reproduce los resultados del ejercicio 4, pero esta vez haciendo uso de la biblioteca creada (por tanto sólo necesitarás un *main()*, la inclusión del .h de la biblioteca y enlazar con ella). Utiliza Doxygen para documentar todas las funciones de la biblioteca.
- 7. Implementa una función que permita multiplicar matrices dinámicas. Utiliza las funciones incluidas en la biblioteca *libMatrices.a* para implementar el programa que te permita probar la función.