חלוקה הוגנת של שכר דירה Fair Rent Division

אראל סגל-הלוי

חלוקת שכר דירה: מודל קרדינלי

הנחות:

- "חדרים סבירים" כל דייר מייחס ערך כספי לכל חדר, סכום הערכים ≥ מחיר הדירה.
- "קוואזי-ליניאריות" התועלת של דייר שמקבל חדר = ערך החדר פחות המחיר שלו.
 - הנחת "הדיירים העניים" בדרך-כלל לא
 מתקיימת: אם חדר א = 100 וחדר ב = 50,
 נעדיף חדר א במחיר 5 מחדר ב בחינם.

חלוקת שכר דירה: סכום הערכים משפט: בכל השמה ללא קנאה, סכום הערכים של

משפט: ב*ׄכל* השמה ללא קנאה, סכום הערכים של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

הוכחה: תהיX השמת-חדרים ללא קנאה. תהיY השמה אחרת כלשהי. לפי הגדרת קנאה, לכל i:

$$V_{i}(X_{i}) - P(X_{i}) \ge V_{i}(Y_{i}) - P(Y_{i})$$

i בין i לכל הדיירים, i בין i

$$\sum (V_i(X_i) - P(X_i)) \ge \sum (V_i(Y_i) - P(Y_i))$$

$$\sum V_i(X_i) - \sum P(X_i) \ge \sum V_i(Y_i) - \sum P(Y_i)$$

בשני הצדדים, סכום המחירים שווה למחיר הדירה:

$$\sum V_i(X_i) \geq \sum V_i(Y_i)$$

מיקסום סכום הערכים

משפט: *בכל* השמה ללא קנאה, סכום הערכים של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

מסקנות:

בל השמת-חדרים ללא קנאה היא יעילה פארטו. (1

2)כדי למצוא חלוקת שכ"ד ללא קנאה, צריך אלגוריתם ל**השמה ממקסמת-סכום-ערכים**.

בעיית מיקסום סכום הערכים ידועה בשמות שונים:

- Assignment problem בעיית ההשמה
 - שידוך עם משקל מקסימלי Maximum-weight matching

שידוך עם משקל מקסימלי

: גרף דו-צדדי עם משקלים על הקשתות: • **הקלט**: גרף דו

שידוך עם משקל מקסימלי

• הפלט: שידוך מושלם שמשקלו גדול ביותר:

שידוך עם משקל מקסימלי

- מספר השידוכים האפשריים: המון (כמה?).
- יש הרבה אלגוריתמים יעילים לפתרון הבעיה.
- אנחנו נראה איך להפוך אותה לבעיית
 Mathematica אופטימיזציה שאפשר לפתור ב
- x[i,j]: יהיה **משתנה** (j i i d j). יהיה משתנה • לכל קשת בגרף (בין i d j). יהיה משתנה • לכל קשת בשידוך. 1 אם הקשת לא בשידוך. 1
 - For all i: Sum $_j x[i,j] = 1$; For all j: Sum $_i x[i,j] = 1$
- $Sum_{i,j}$ w[i,j] * x[i,j] : המשקל הכולל של שידוך •

שידוך עם משקל מקסימלי - תוכנית

לסיכום, זו התוכנית שיש לפתור:

```
Maximize Sum w[i,j] * x[i,j]
```

Such that For all i: $Sum_i x[i,j] = 1$

For all j: $Sum_i x[i,j] = 1$

For all i,j: $1 \ge x[i,j] \ge 0$

For all i,j: x[i,j] in Z

הבעיה היחידה היא האילוץ האחרון – כל המשתנים חייבים להיות מספרים שלמים.

אופטימיזציה עם משתנים שלמים היא בעיה NP-קשה!

שידוך עם משקל מקסימלי - תוכנית

משפט: בבעיית מציאת שידוך מקסימלי דו-צדדי, *אם* קיים פתרון אופטימלי עם משתנים לא שלמים, אז קיים פתרון אופטימלי שבו כל המשתנים שלמים.

הוכחה: יהי x פתרון אופטימלי עם משתנים "שבורים". נבחר משתנה אחד שבור x = x = x

סכום המשתנים הסמוכים לצומת j2 הוא שלם.

.x[i3,j2] – לכן חייב להיות משתנה שבור נוסף

.x[i3,j4] - לכן חיייב להיות משתנה שבור נוסף

מספר המשתנים סופי - יש "מעגל" משתנים שבורים.

שידוך עם משקל מקסימלי - דוגמה

בגרף למטה מצוייר מעגל של משתנים "שבורים". במעגל מספר זוגי של קשתות – כי הגרף דו-צדדי:

שידוך עם משקל מקסימלי - דוגמה

e מכל קשת *איזוגית* במעגל – נוריד לכל קשת *זוגית* במעגל – נוסיף .e לכל קשת *זוגית* במעגל

נבחר את e כך שמשתנה אחד לפחות יהפוך לשלם, e ובחר את e כך שמשתנה אחד לפחות יהפוך לשלם, e והשאר יישארו בין 0 ל-1 (בדוגמה למטה e=0.1):

שידוך עם משקל מקסימלי - השלמה

משפט: בבעיית מציאת שידוך מקסימלי דו-צדדי, *אם* קיים פתרון אופטימלי עם משתנים לא שלמים, אז קיים פתרון אופטימלי שבו כל המשתנים שלמים.

- e הוספנו e מקשתות איזוגיות והוספנו לקשתות זוגיות. התוצאה:
 - סכום המשתנים ליד כל צומת נשאר 1.
- הפתרון עדיין אופטימלי אילו ערך הפתרון היה נמוך יותר, היה אפשר להוסיף מינוס e ולקבל פתרון עם ערך גבוה יותר, בסתירה לאופטימליות של x

אם נמשיך כך, כל המשתנים השבורים יהפכו לשלמים!

שידוך עם משקל מקסימלי - חלופות

יש עוד אלגוריתמים לפתרון בעיית ההשמה. לדוגמה: **האלגוריתם ההונגרי**.

https://en.wikipedia.org/wiki/Hungarian_algorithm

רוב המימושים שלו (ראו בתחתית העמוד) דורשים מאות שורות קוד.

לעומת זאת, פתרון בעיית האופטימיזציה ב-Mathematica דורש בערך 10 שורות קוד.

חלוקת שכר-דירה – קביעת המחירים

- מצאנו השמה ממקסמת-ערכים. צריך לקבוע מחירים כך שההשמה תהיה ללא קנאה, וסכום המחירים יהיה שווה לשכר-הדירה. איך?
 - אפשר לפתור בעיית אופטימיזציה! •

חלוקת שכר-דירה – קביעת המחירים

- x_j -לj חדר j ל-
- משוים את סכום המחירים למחיר הכולל של הדירה.
 - מחלקים את העודף / גירעון שווה בשווה בין כולם.
 - קיבלנו חלוקה ללא קנאה!

חלוקת שכר-דירה – מימושים והדגמות

- (אלגוריתם הונגרי) rent-division.ods גליון אלקטרוני
 - http://tora.us.fm/fairness/home/ אתר לקבוצות רכישה •
 - http://tora.us.fm/fairness/home/ab.html אתר לחלוקת ירושות •
- http://www.spliddit.org/apps/rent אלג. גל-מש-פרוקצ'יה-זיק: •

חלוקת שכר-דירה – בעיית הטרמפיסט

מרתף	סלון	
0	150	דייר א
10	140	דייר ב

משפט: במודל הקרדינלי, ייתכן שבכל חלוקה ללא קנאה, אחד הדיירים ישלם מחיר שלילי (*צריך* לשלם לו שיסכים לגור איתנו...)

הוכחה: נניח שיש שני דיירים ושני חדרים, הדירה עולה 100 והערכים הם כמו בטבלה למעלה. כל חלוקה ללא-קנאה ממקסמת סכום ערכים, לכן יש לתת את הסלון לדייר א ואת המרתף לדייר ב. כדי ש-ב לא יקנא, המחיר של הסלון חייב להיות גבוה יותר ב-130 (לפחות). הסכום הוא 100 ולכן: (price_martef + 130) + price martef = 100 price martef = -15 המחיר של המרתף חייב להיות שלילי! ***

חלוקת שכר-דירה – בעיית הטרמפיסט

אותו משפט

					רכון אם
חדר	חדר	חדר ג	חדר		כשסכום
X	ב		Т		הערכים של כל
36	34	30	0	דייר א	דייר שווה למחיר הכולל:
31	36	33	0	דייר ב	$p_c \ge 35$ [d envies]
34	30	36	0	דייר ג	$p_b \ge 33$ [d envies] $p_a \ge 33$ [c envies]
32	33	35	0	דייר ד	$p_d \le -1/4 \text{ [sum=100]}$

חלוקת שכר דירה – טרילמה

דיירים שמקבלים כסף	קנאה	עובד רק עם "דיירים עניים"	
לא	לא	J	אלגוריתם סוּ והמשולשים
J	לא	לא	שידוך מקסימלי
לא	J	לא	שידוך מקסימלי עם מחיר מינ. 0