МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)»

Высшая школа электроники и компьютерных наук Кафедра системного программирования

Обучение и качество модели для компьютерного зрения

Выполнил:
студент группы КЭ-404
Емельянова А.Ю.
Проверил:
Доцент кафедры СП
Сухов М.В.
Дата:
Оценка:

ОГЛАВЛЕНИЕ

1. ОСНОВНАЯ ИНФОРМАЦИЯ О ПРОЕКТЕ	3
2. ОБУЧЕНИЕ МОДЕЛИ ДЛЯ КОМПЬЮТЕРНОГО ЗРЕНИЯ И ОЦЕ	НКА ЕЕ
КАЧЕСТВА	4
2.1 Оптимизатор	4
2.2 Функция потерь	4
2.3 Метрики	4
2.4 Параметры обучения модели	4
3. ОПТИМИЗАЦИЯ СЕТИ	6
ЗАКЛЮЧЕНИЕ	7
ЛИТЕРАТУРА	8

1. ОСНОВНАЯ ИНФОРМАЦИЯ О ПРОЕКТЕ

В данной работе основной задачей является разработка модели глубокого обучения для классификации фотографий мусора, используя заранее подготовленный датасет. Данный датасет включает в себя изображения различных типов мусора, которые распределены по категориям, что позволяет более эффективно распределять данные для дальнейшего обучения модели нейронной сети и оценки ее точности.

Используемый набор данных называется «Garbage Classification». Он представляет собой коллекцию фотографий типов мусора, предназначенную для их анализа, обработки, а в дальнейшем для обучения и тестирования моделей глубокого обучения, выполняющих классификацию изображений. Датасет включает в себя 15,5 тысяч файлов, размеченных по категориям: батареи, биологические отходы, коричневое стекло, картонные коробки, одежда, зеленое стекло, металл, бумага, пластик, обувь, мусор, белое стекло. Общий набор данных составляет около 268 Мб. Этот набор данных был загружен с платформы Kaggle [1].

Набор данных был переработан, чтобы убрать «тяжелые» категории файлов и оптимизировать обучение модели, позволяя получить работающую нейросеть в сжатые сроки и обработать файлы, не перегружая систему персонального компьютера.

Переработанный набор данных состоит из таких категорий как: батареи, биологические отходы, картонные коробки, металл, бумага, пластик. Общий набор данных составляет около 70 Мб.

2. ОБУЧЕНИЕ МОДЕЛИ ДЛЯ КОМПЬЮТЕРНОГО ЗРЕНИЯ И ОЦЕНКА ЕЕ КАЧЕСТВА

2.1 Оптимизатор

При реализации модели использовался оптимизатор «AdamW» – это модификация оптимизатора градиентного спуска Adam, которая учитывает весовые штрафы для улучшения обобщающей способности модели. Основными преимуществами AdamW являются эффективное обучение, адаптивная скорость обучения и лучшее предотвращение переобучения благодаря регуляризации.

2.2 Функция потерь

Для оптимизации разрабатываемой модели была использована функция потерь категориальной кроссэнтропии — это широко используемая функция потерь для задач многоклассовой классификации. Она измеряет разницу между истинными вероятностями классов и предсказанием модели. Основная цель функции потерь — минимизировать расхождение между этими двумя распределениями. Поскольку выходные значения модели являются вероятностным распределением по нескольким классам, то была выбрана именно эта функция потерь.

2.3 Метрики

Для контроля процесса обучения и тестирования модели была использована метрика точности предсказания «ассигасу». Эта метрика представляет собой отношение числа правильно классифицированных примеров к общему количеству примеров. Она отражает, насколько эффективно модель различает классы.

2.4 Параметры обучения модели

Для данной задачи использовался размер батча равный 32, и количество эпох, равно 10. В результате модель обучалась 23 минуты. В среднем на одну

эпоху уходило 130 секунд. На рисунке 1 представлены результаты обучения нейронной сети.

Рисунок 1 – Результаты обучения нейронной сети

На рисунке 1 видно, что точность обучения на валидационном наборе достигла 73%.

3. ОПТИМИЗАЦИЯ СЕТИ

Оптимизация проводилась путем изменения параметров нейронной сети и оценки качества при их различных комбинациях. В таблице 1 представлено сравнение наборов параметров нейронной сети.

Таблица 1 – Сравнение наборов параметров нейронной сети

Но- мер этапа	Оптимизатор	Функции по- терь	Мет- рики	Раз- мер батчей	Количе- ство эпох обучения	Точность обуче- ния, %
1	Adam	Категориаль- ная кроссэн- тропия	Точность	32	10	71
2	AdamW	Категориальная кроссэнтропия	Точность	32	10	68
3	Adam	Категориальная кроссэнтропия	Точность	64	15	76
4	SGD	Категориальная кроссэнтропия	Точность	32	10	51
5	AdamW	Категориаль- ная кроссэн- тропия	Точность	64	15	74

Основными изменяемыми параметрами были оптимизатор, размер батчей и количество эпох обучения. На основе таблицы 1 можно сделать вывод о том, что наиболее эффективным параметром оказался оптимизатор.

ЗАКЛЮЧЕНИЕ

В рамках данной работы была разработана и протестирована модель нейронной сети для классификации фотографий типов мусора. В процессе исследования были изучены основные концепции и методы глубокого обучения, проведена подготовка данных, а также реализована архитектура модели с использованием сверточных слоев. Результаты тестирования показали, что разработанная модель достигает высокой точности в задаче классификации, что подтверждает её эффективность для решения поставленной задачи.

ЛИТЕРАТУРА

1. Garbage Classification [Электронный ресурс] URL: https://www.kaggle.com/datasets/mostafaabla/garbage-classification