FIG. I.

FIG. 2.

Klassierung: Int. Cl.:

59 b, 3

F 05 c

Gesuchsnummer: Anmeldungsdatum: 1737/62

12. Februar 1962, 18

Großbritannien,

13. Februar 1961 (5337/61)

Patent erteilt:

Priorität:

15. Mai 1965

Patentschrift veröffentlicht: 30. September 1965

HAUPTPATENT

Lyon Nicoll Limited, Crieff (Pertshire, Großbritannien)

Zentrifugal-Umwälzpumpe

Walter Lyon Gordon Nicoll, London (Großbritannien), ist als Erfinder genannt worden

Gegenstand vorliegender Erfindung ist eine Zentrifugal-Umwälzpumpe mit mindestens einem am einen Ende einer Welle angeordneten Pumpenrad, wohei diese Welle auch die Motorwelle bildet. Derars tige Pumpen können z. B. in Zentralheizungsanlagen verwendet werden.

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Bei derartigen Pumpen ist üblicherweise eine Seite des Pumpenrades bzw. der Pumpenräder dem Pumpeneinlaß und die andere dem Pumpenauslaß 10 zugekehrt, so daß beim Betrieb der Pumpe zufolge des durch die Pumpe erzeugten Druckanstieges ein axialer Schub auf die Antriebswelle ausgeübt wird. Es ist daher für die Antriebswelle sowohl ein Drucklager wie auch andere Lager erforderlich. Es ist 15 üblich, ein derartiges Drucklager zwischen Pumpe und Motor anzuordnen, wo es aber praktisch unzugänglich ist und auch ohne weitgehende Demontage von Pumpenrad und/oder Motor nicht verstellt werden kann.

Die Erfindung gestattet, diese Nachteile zu vermeiden, und die erfindungsgemäße Pumpe ist demgemäß dadurch gekennzeichnet, daß das Pumpenrad mit seiner Einlaßseite gegen den Motor gekehrt auf der Welle angeordnet ist und daß am anderen Wel-25 lenende ein einziges Drucklager für die Welle vorgesehen ist, und zwar auf der vom Pumpenrad abgekehrten Seite des Motors, wobei dieses Drucklager einstellbar ist, so daß die axiale Lage der Welle und des Pumpenrades verändert werden kann.

Bei dieser Ausbildung der Pumpe ist das Drucklager leicht zugänglich, und es kann mühelos eingestellt werden, und zwar nicht nur ohne Demontage des Pumpenrades und des Motors, sondern sogar während des Betriebes derselben. Bei dieser leichten 35 Zugänglichkeit des Drucklagers kann dasselbe immer dann verstellt werden, wenn es erwünscht ist, die eine Veränderung der axialen Lage des Pumpenrades Charakteristiken der Pumpe zu verändern, da ja den Zwischenraum zwischen dem letzteren und dem Gehäuse verändert, so daß die Pumpenleistung und 40 der Ausgangsdruck auf die gewünschten Werte eingestellt werden können.

Ein weiterer Vorteil einer zweckmäßigen Ausführungsform der erfindungsgemäß ausgebildeten Pumpe ist darin zu sehen, daß die Welle zwischen 45 dem Antriebsmotor und der Pumpenradanlage in einer Zone minimalen Druckes durch den Pumpeneinlaß verläuft. Wird dann in einer Wand zwischen dem Motorgehäuse und dem Pumpeneinlaß ein Lager vorgesehen, das zur Wellenachse parallele Nuten so besitzt, so kann ein Flüssigkeitsstrom vom Motor weggezogen werden. In der genannten Wand sind dann Schlitze vorgesehen, welche mit einem Sieb bedeckt sind. Es kann bei dieser Ausführungsform erreicht werden, daß zirkulierende Flüssigkeit zum ss Motor gelangt, der somit nicht in stagnierende Flüssigkeit eingetaucht ist, sondern im Gegenteil einem ständigen Strom von zirkulierender Flüssigkeit ausgesetzt ist. Durch das Sieb werden alle festen Bestandteile am Zutritt zum Motor gehindert. Der so Flüssigkeitsstrom führt auch die Motorwärme ab, was besonders dann vorteilhaft ist, wenn ein Elektromotor verwendet ist.

Bei zweckmäßiger Ausführung der erfindungsgemäßen Pumpe kann die Welle kürzer gehalten wer- ss den, als wenn das Drucklager zwischen Pumpenrad und Motor angeordnet ist. Es ist auch keine separate Motortragplatte nötig, so daß das ganze Aggregat kompakter ist. Dies ist sogar der Fall, wenn größere Wellenlager als üblich verwendet werden, um einen 10 besseren Lauf zu erzielen und die Betriebsdauer zwischen den Überholungsarbeiten zu verlängern.

In der Zeichnung sind zwei beispielsweise Ausführungsformen des Erfindungsgegenstandes dargestellt, und zwar zeigt:

Fig. 1 eine bevorzugte Ausführungsform, teilweise im Schnitt und in schematischer Darstellung, und Fig. 2 eine ähnliche, leicht geänderte Ausführungsform in analoger Darstellung.

Die in Fig. 1 dargestellte Pumpe umfaßt ein Pumpenrad 1 mit radialen Flügeln 2, die durch eine Mutter 3 auf einem Teil 4 von vermindertem Durchmesser der Welle 5 befestigt sind. Wie ersichtlich, befindet sich dieser Teil 4 nahe dem einen Wellenende. Das Pumpenrad 1 ist in einem Gehäuse 6 untergebracht. Dasselbe umfaßt eine spiralförmige Auslaßkammer 7 und eine Einlaßkammer 8. Praktisch kann das Gehäuse aus mehreren Gußstücken gebildet sein, die miteinander verschraubt oder sonstwie verbunden sind. In der Zeichnung ist jedoch die genaue Ausbildung des Gehäuses nicht dargestellt.

Das äußerste Ende 9 der Welle 5 ist nach dem Pumpenrad 1 in einem Lager 10 gelagert, das auf der unteren Wand der Auslaßkammer 7 angeordnet ist. Dieses Lager ist von Vorteil, aber es ist nicht wesentlich. Die Welle 5 erstreckt sich vom Pumpen-25 rad 1 durch eine verhältnismäßig große Öffnung 11 in der Wand zwischen der Kammer 7 und der Einlaßkammer 8, durch diese letztere Kammer und durch ein weiteres Lager 12 in einer anderen Wand der Einlaßkammer 8 hindurch in eine Motorkam-30 mer 13. Die Öffnung 11 nimmt eine Nabe 2a des Pumpenrades 1 auf. Die Kammer 13 enthält einen Elektromotor, dessen Rotor 14 durch die erwähnte Welle 5 getragen wird. Die erwähnte Motorkammer 13 ist von einer Motorschale 15 umgeben, welche 35 auf ihrer Außenfläche, koaxial zum Rotor 14, die Feldwicklungen und Pole 16 trägt.

An ihrem dem Pumpenrad 1 abgekehrten Ende endigt die Welle 5 innerhalb eines Lagers 17, welches im verdickten mittleren Teil einer Stirnplatte 18 40 angeordnet ist. Diese letztere besitzt koaxial zur Welle 5 ein Loch, welches eine Stellschraube 20 aufnimmt. Diese Stellschraube wird durch eine Sicherungsmutter 21 in der eingestellten Lage gesichert, und sie liegt gegen die Rückseite eines Drucklagers 19 für die 45 Welle 5 an, dessen Lage durch Drehen der Stellschraube eingestellt werden kann. Dadurch kann die Leistung der Pumpe verändert werden, da sich beim Einschrauben der Stellschraube das Pumpenrad 1 axial nach abwärts bewegt. Infolgedessen entsteht so ein größerer Zwischenraum zwischen dem Pumpenrad und der Zwischenwand zwischen den Kammern 7 und 8 und umgekehrt. Die Stellschraube 20 kann auch verwendet werden, um die Pumpe zu entlüften, wenn die Anlage, in welche sie eingebaut ist, mit ss Flüssigkeit gefüllt wird, oder um zu verhindern, daß die Welle nach einer Periode des Nichtgebrauchs in ihren Lagern festsitzt.

Es sei noch darauf hingewiesen, daß die Büchse oder Schale 15 durch eine Mehrzahl von Schrauben60 bolzen 22 und Muttern 23, die über den Umfang

der Büchse 15 verteilt sind, gegen die oberste Wand der Einlaßkammer 8 gehalten wird. Diese oberste Wand der Einlaßkammer 8 ist mit Schlitzen 24 versehen, welche mit einem Sieb 25 bedeckt sind, so daß Flüssigkeit aus der Einlaßkammer in die Motor- 65 kammer 13 fließen kann. Tatsächlich wird eine derartige Strömung während des Betriebes dadurch erzwungen, daß die Arbeitsfläche des Lagers 12 mit einer Anzahl nicht dargestellter Nuten versehen ist, welche sich parallel zur Welle 5 erstrecken. Auf 70 diese Weise wird eine Verbindung zwischen der Motorkammer 13 und der Einlaßkammer 8 hergestellt. Da derjenige Teil der Einlaßkammer 8, der sich in der Nähe der Welle 5 befindet, den Bereich des minimalen Druckes darstellt (infolge der Flüssig- 75 keitsströmung durch die Öffnung 11 im Pumpenrad 1), wird eine Flüssigkeitsströmung aus der Motorkammer 13 durch die erwähnten Nuten erzeugt. Die so austretende Flüssigkeit wird durch solche ersetzt, welche durch die Schlitze 24 in die Motor- 80 kammer 13 eintritt.

Aus der vorstehenden Beschreibung ergibt sich, daß eine Pumpe von wesentlich verbesserter Form erhalten wird, welche, obwohl sie kompakter ausgebildet werden kann als bekannte Pumpen des- 85 selben allgemeinen Types, doch einen leichten Zugang zu dem wichtigen Drucklager gewährleistet. In der Zeichnung wurde eine ganz einfache Ausführung eines Drucklagers gezeigt. Selbstverständlich könnten auch andere Drucklager verwendet werden, » wobei aber immer ein leichter Zugang zu ihnen gewährleistet ist. Pumpen der beschriebenen Art können in irgendeiner Lage und unter jedem beliebigen Winkel montiert werden, so z. B. auch in umgekehrter Stellung, wie in der Zeichnung dargestellt, 95 ohne daß dadurch die Wirkungsweise irgendwie beeinträchtigt würde.

Fig. 2 zeigt eine leicht geänderte Ausführungsform der Pumpe. Viele Teile der hier dargestellten Pumpe sind praktisch identisch mit den entsprechen- 100 den Teilen der Ausführung gemäß Fig. 1. Diese Teile sind in der Zeichnung nicht mehr bezeichnet und im folgenden nicht mehr beschrieben. Es ist jedoch ersichtlich, daß die Pumpe gemäß Fig. 2 ein äußeres Gehäuse 30 von etwa konischer Form auf- 108 weist. Einzelne Pumpenteile sind denn auch so angeordnet, daß dieser Gehäuseform Rechnung getragen wird. Ein besonderer Unterschied zwischen den Pumpen gemäß Fig. 1 und 2 liegt in der Ausbildung des Drucklagers. Bei der Ausführung nach Fig. 2 110 ist eine Druckscheibe 31 vorgesehen, die zweckmäßig einen Stahlkern und einen Überzug aus Polytetrafluoräthylen aufweist. Diese Druckscheibe wird durch einen Lagerbolzen 32 in Berührung mit dem oberen Ende der Welle 5 gehalten, wobei der Kopf 33 auf 115 der Scheibe 31 aufliegt. Der Lagerbolzen 32 ist in einer zentralen Bohrung der Kappe 34 gehalten. Die Seitenflächen des Bolzens 32 weisen eine oder mehrere Nuten oder ebene Flächen auf, um eine Entlüftung zu bewirken, wenn der dargestellte, zweck- 120 mäßig mit Gewinde versehene Zapfen vom oberen Ende der zentralen Bohrung in der Kappe 34 entfernt wird.

Die Kappe 34 ist durch ein Gewinde 35 in einer Ausnehmung eines ortsfesten Blockes 36 gehalten, der durch den Stator des Motors gehalten wird. Die Gewindeverbindung zwischen der Kappe 34 und dem Block 36 wird durch ein Polytetrafluoräthylen-Band abgedichtet, das in die zusammenwirkenden Gewindegänge eingelegt wird, und überdies durch einen Dichtungsring 37, der in einer Ringnut im unteren Teil der Ausnehmung untergebracht ist. Der Dichtungsring 37 liegt am unteren Teil der Kappe 34 an.

In der Zeichnung ist die Kappe 34 in ihrer obersten Stellung dargestellt, und es ist sofort ersichtlich, daß eine Drehung der Kappe vermittels des auf sie aufgekeilten Knopfes 38 eine Abwärtsbewegung der Scheibe 31 und damit der Welle 5 und des Pumpenrades 1 bewirkt, wodurch der Zwischenraum zwischen der oberen (Einlaß-)Seite des Pumpenrades und seinem Gehäuse vergrößert wird.

Es sind noch weitere Anderungen gegenüber den dargestellten Ausführungen möglich. Da, wo höhere Pumpendrücke benötigt werden, kann ein zweites Pumpenrad angeordnet werden, so daß eine zweistufige Pumpe erhalten wird.

PATENTANSPRUCH

Zentrifugal-Umwälzpumpe mit mindestens einem am einen Ende einer Welle angeordneten Pumpenrad, wobei diese Welle auch die Motorwelle bildet. dadurch gekennzeichnet, daß das Pumpenrad (1) mit seiner Einlaßseite gegen den Motor gekehrt auf der Welle (5) angeordnet ist und daß am anderen Wellenende ein einziges Drucklager für die Welle vorgesehen ist, und zwar auf der vom Pumpenrad abgekehrten Seite des Motors, wobei dieses Drucklager einstellbar ist, so daß die axiale Lage der Welle und des Pumpenrades verändert werden kann.

UNTERANSPRÜCHE

- 1. Pumpe nach Patentanspruch, dadurch gekennzeichnet, daß Mittel vorgesehen sind, um zu erreichen, daß Flüssigkeit zwischen der Pumpe und dem Motor zirkulieren kann.
- 2. Pumpe nach Unteranspruch 1, dadurch gekennzeichnet, daß die genannten Mittel durch ein
 mit Nuten versehenes Lager für die Welle (5) gebildet sind, wobei dieses Lager in einer mit Schlitzen
 (24) versehenen Wand angeordnet ist, die sich zwischen dem Pumpenrad und dem Motor befindet. 50
- 3. Pumpe nach Patentanspruch, dadurch gekennzeichnet, daß ein Elektromotor vorgesehen ist.

Lyon Nicoll Limited Vertreter: Fritz Isler, Zürich