1. Opis techniczny

1.1. Podstawa opracowania

Podstawę opracowania stanowi temat ćwiczenia projektowego nr 40 2015/16 z przedmiotu Konstrukcje Metalowe- Elementy i Hale wydany przez dr inż. Pawła Lorkowskiego.

1.2 Podstawa formalna

Podstawę formalną stanowią następujące dokumenty:

- PN-EN 1990:2004 Podstawy projektowania konstrukcji
- PN-EN 1991-1-1 :2004 Oddziaływania na konstrukcje. Oddziaływania ogólne.
- PN-EN 1991-1-6:2007 Oddziaływania na konstrukcje. Oddziaływania ogólne. Oddziaływania w czasie wykonywania konstrukcji.
- PN-EN 1993-1-1:2006 Projektowanie konstrukcji stalowych. Reguły ogólne i reguły dla budynków.
- PN-EN 1993-1-5:2008 Projektowanie konstrukcji stalowych. Blachownice.
- PN-EN 1993-1-8:2006 Projektowanie konstrukcji stalowych. Projektowanie węzłów.
- PN-EN 1993-1-10:2007 Projektowanie konstrukcji stalowych. Dobór stali ze względu na odporność na kruche pękanie i ciągliwość międzywarstwową
- PN-EN 1996-1-1:2010 Projektowanie konstrukcji murowych. Reguły ogólne dla zbrojonych i niezbrojonych konstrukcji murowych.
- Dz. U. Poz. 1422 Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie

1.3. Podstawa merytoryczna

Podstawę merytoryczną stanowią następujące publikacje:

- Bogucki W., Żyburtowicz M., "Tablice do projektowania konstrukcji metalowych", Arkady, Warszawa 1996
- Rykaluk K., "Konstrukcje stalowe. Podstawy i elementy", Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 2006, Wydanie drugie zmienione
- Kozłowski A., "Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1. Cz. 1. Wybrane elementy i połączenia", 2010, Wydanie drugie poprawione

1.4. Przedmiot opracowania

Przedmiotem opracowania jest stalowa konstrukcja stropu budynku przemysłowego.

1.5. Cel i zakres opracowania

Celem jest wykonanie projektu stropu stalowego.

Zakres opracowania to:

- Opis techniczny

- Obliczenia statyczno- wytrzymałościowe
- Rysunki wykonawcze
- Zestawienie stali

1.6. Opis rozwiązań konstrukcyjnych

Projektowana konstrukcja to strop na belkach stalowych na blasze stalowej budynku przemysłowego o obciążeniu stropu 6,3 kPa.

Strop składa się z belek stalowych drugorzędnych A1, A3, podciągu drugorzędnego P1, blachownicy pierwszorzędnej P1 oraz słupa stalowego S1.

<u>Belka A1</u> to belka o profilu dwuteowym IPE360 i długości 6300 mm. Połączenie z blachownicą przewidziano jako połączenie śrubowe zakładkowe kategorii A na śruby zwykłe wykonane przy pomocy 3 śrub M20 klasy 8.8. Zostanie ono zrealizowane poprzez żebro pośrednie o grubości 12 mm przyspawane do blachownicy spoiną pachwinową. Liczba belek drugorzędnych A1 wynosi 12 (po 6 z każdej strony), a ich rozstaw to 3300 mm. Belki skrajne odległa od lica ściany lub od podciągu P1 o 3200 mm.

<u>Belka A3</u> to belka o profilu dwuteowym IPE360 i długości 5700 mm. Połączenie z podciągiem P1 przewidziano jako połączenie śrubowe zakładkowe kategorii A na śruby zwykłe wykonane przy pomocy 3 śrub M20 klasy 8.8. Zostanie ono zrealizowane poprzez blachę węzłową o grubości 8 mm przyspawaną do podciągu P1 spoiną pachwinową. Liczba belek drugorzędnych A3 wynosi 2, a ich rozstaw to 4000 mm. Belki skrajne odległa od lica ściany o 4000 mm.

<u>Podciąg P1</u> to belka o profilu dwuteowym IPE450 i długości 6300 mm. Połączenie z blachownicą przewidziano jako połączenie śrubowe zakładkowe kategorii A na śruby zwykłe wykonane przy pomocy 3 śrub M20 klasy 8.8. Zostanie ono zrealizowane poprzez żebro podporowe o grubości 12 mm przyspawane do blachownicy spoiną pachwinową. Liczba podciągów drugorzędnych P1 wynosi 2 (po 1 z każdej strony). Oparcie na murze zostanie zrealizowane poprzez podlewkę cementową o grubości 30 mm.

Blachownica jest podzielona na 3 elementy wysyłkowe: B1, B2, B3 o długościach kolejno 8500 mm, 6200 mm, 8500 mm. Wykonana zostanie z blach stalowych spawanych. Wysokość środnika wynosi 1395 mm, a jego grubość to 8 mm. Grubości pasów są zróżnicowane i wynoszą 16 mm, 25 mm oraz 28 mm. Zaprojektowano użebrowanie blachownicy. Zarówno żebra podporowe, jak i pośrednie mają grubość 12 mm. Żebra pośrednie rozmieszczono w rozstawie 1650 mm, znajdują się one w miejscu przyłożenia belek A1 oraz w połowie ich rozstawu. Blachownica będzie opierała się z jednej strony na słupie, z drugiej na murze. Oparcie na murze zaprojektowano poprzez łożysko o wymiarach 330 mm x 100 mm, wysokości 18 mm i promieniu krzywizny 500 mm, które zostanie ułożona na 30 mm warstwie podlewki cementowej. Oparcie na słupie zaprojektowano poprzez łożysko o wymiarach 330 mm x 100 mm, wysokości 18 mm i promieniu krzywizny 500 mm oraz głowicę wykonaną z blachy o wymiarach 400 mm x 300 mm oraz grubości 23 mm.

<u>Słup S1</u> zaprojektowano jako słup dwugałęziowy z przewiązkami podparty przegubowo. Jako gałęzie słupa dobrano 2 ceowniki C200 o długości 9684 mm. Przewidziano przewiązki w

rozstawie 1370 mm, skrajne o wymiarach 210 mm x 150 mm i grubości 10 mm oraz pośrednie o wymiarach 210 mm x 100 mm i grubości 7 mm. Zostanie umieszczony na blasze podstawy o wymiarach 410 mm x 300 mm, zakotwionej do betonu. Przy przewiązce znajdującej się najbliżej połowy wysokości słupa zaprojektowano przeponę poziomą zapobiegającą skręceniu.

1.7. Wytyczne realizacji montażu

Montaż należy rozpocząć od ustawienia słupa S1, który po złożeniu u umiejscowieniu należy tymczasowo zabezpieczyć. Następnie należy zmontować elementy wysyłkowe blachownicy B1, B2, B3 i ułoży blachownicę na słupie i murze poprzez łożyska wraz blachami podkładowymi. Do blachownicy następnie należy zamontować podciągi P1, P1* oraz belki A1, A1*. Do podciągów P1, P1* należy przymocować belki A3. Kolejnym krokiem jest ułożenie blachy trapezowej na belkach A1, A1*, A3 oraz montaż sufitów podwieszanych. Ostatecznie należy wykonać warstwy podłogi. Należy pamiętać o odpowiednim zabezpieczeniu przeciwpożarowym i antykorozyjnym elementów.

1.8. Zabezpieczenia przeciwpożarowe

Zgodnie z Dz. U. Poz. 1422 Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, strop budynku przemysłowego powinien spełniać wymagania klasy REI60. Zabezpieczenie zostanie zrealizowane przy pomocy farby pęczniejącej Flame Stal.

1.9. Zabezpieczenia antykorozyjne

Zabezpieczenie zostanie zrealizowane przy pomocy powłoki malarskiej, przy czym należy wykonać 2 warstwy podkładowe oraz 1 warstwę nawierzchniową.

1.10. Uwagi

Na każdym etapie montażu stropu wymagana jest kontrola geodezyjna ustawienia słupa i blachownicy.

Na każdym etapie wymagany jest nadzór osoby uprawnionej do kierowania robotami budowlanymi w odpowiednim zakresie.

2. Obliczenia statyczno- wytrzymałościowe

2.1. Rozmieszczenie belek stropowych

Rozmieszczenie belek stropowych - wariant A

Przyjęto wariant A

${\bf 2.2~Zestawienie~obciąże\acute{n}~stropu~[kN/m^2]~(charakterystyczne,~obliczeniowe,~montażowe)}$

LP	Obciążenie	Grubość	Ciężar	Wartość	Charakter			
	·	[m]	objętościowy	charakterystyczna	obciążenia			
			$[kN/m^3]$	$[kN/m^2]$	·			
Faza	Faza użytkowania							
1	płytki ceramiczne	0,01	21	0,21	stałe			
2	gładź cementowa	0,045	21	0,95	stałe			
3	styropian	0,05	0,45	0,023	stałe			
4	beton	0,05	24	1,2	stałe			
5	blacha trapezowa 3 przęsłowa układana zakładkowo na pozytyw	0,015	-	0,19	stałe			
6	Sufit podwieszany Rigips Quattro 40	-	-	0,12	stałe			
Raze	em	2,69	-					
7	Obciążenie użytkowe	-	-	6,3	zmienne			
Faza	Faza montażu							
1	beton	0,05	25	1,25	stałe			
2	blacha trapezowa 3 przęsłowa układana zakładkowo na pozytyw	0,015	-	0,19	stałe			
Razem				1,44	-			
3	Obciążenie montażowe	-	-	1,5	zmienne			

2.3. Obliczenia belki A1

2.3.1. Schemat statyczny

2.3.2. Wstępny dobór przekroju belki (ze wzgl. Na SGN i SGU)

Przyjęto stal S235 o $f_y = 235$ MPa i E = 210 GPa

Obszar oddziaływania obciążenia – rozstaw belek – 3,3m

Kombinacja obciążeń dla SGN (na podstawie wzoru 6.10 PN-EN 1990) – faza użytkowania: $q_d = (1,35*2,69+1,5*6,3)*3,3=43,17$ kN/m

Kombinacja obciążeń dla SGU (na podstawie wzoru 6.14b PN-EN 1990) – faza użytkowania: $q_k = (2,69+6,3)*3,3 = 29,67 \text{ kN/m}$

$$\begin{split} M_{\rm Ed} &= M_{\rm max} = \frac{q_d * l_0^2}{8} = \frac{43,17*6,15^2}{8} = 204,01 \ kNm \\ M_{\rm max} &\leq M_{\rm c,Rd} \\ M_{\rm c,Rd} &= \frac{W*f_y}{\gamma_{M0}} \\ W_y &\geq \frac{M_{c,Rd}*\gamma_{M0}}{f_y} = \frac{204,01*1}{235000} = 0,00087 \ m^3 = 870 \ cm^3 \end{split}$$

$$\begin{split} u &\leq u_{dop} = \frac{1}{250} l_0 \\ u &= \frac{5}{384} * \frac{q_k * l_0^4}{\mathit{EI}} \leq u_{dop} \end{split}$$

$$I_{y} \ge \frac{625}{192} * \frac{q_{k} * l_{0}^{3}}{E} = \frac{625 * 29,67 * 6,15^{3}}{192 * 210000000} = 0,00011 \, m^{4} = 11000 \, cm^{4}$$

Dobrano belkę IPE360 o następujących charakterystykach:

h = 360 mm

 $h_w = 299 \ mm$

 $t_w = 8 \ mm$

 $b_{\rm f}=170\;mm$

 $t_f = 12,7 \text{ mm}$

 $A = 72,7 \text{ cm}^2$

c = 63 mm

 $r=18\;mm$

g = 0.571 kN/m

 $W_y = 904 \ cm^3$

 $W_z = 123 \ cm^3$

 $I_y = 16270 \ cm^4$

 $I_z=1040\ cm^4$

 $I_{\omega}=313600\;cm^6$

 $I_T = 38,30 \text{ cm}^4$

 $W_{y,pl}=1020\ cm^3$

2.3.3. Zestawienie obciążeń

LP	Obciążenie	Grubość [m]	Ciężar objętościowy	Wartość charakterystyczna	Wartość charakterystyczna	Charakter obciążenia		
			$[kN/m^3]$	[kN/m ²]	[kN/m]			
	Faza użytkowania							
1	płytki ceramiczne	0,01	21	0,21	0,69	stałe		
2	gładź cementowa	0,045	21	0,95	3,14	stałe		
3	styropian	0,05	0,45	0,023	0,076	stałe		
4	beton	0,05	24	1,2	3,96	stałe		
5	blacha trapezowa 3 przęsłowa układana zakładkowo na pozytyw	0,015	-	0,19	0,63	stałe		
6	Belka stalowa IPE360	-	-		0,57	stałe		
7	Sufit podwieszany Rigips Quattro 40	-	-	0,12	0,40	stałe		
						_		
8	Obciążenie użytkowe	-	-	6,3	20,79	zmienne		
Faza	Faza montażu							
1	beton	0,05	25	1,25	4,13	stałe		
2	blacha trapezowa 3 przęsłowa układana zakładkowo na pozytyw	0,015	-	0,19	0,63	stałe		
3	Belka stalowa IPE360	-	-		0,57	stałe		
Razem			5,33	-				
4	Obciążenie montażowe	-	-	1,5	4,95	zmienne		

```
Kombinacja obciążeń dla SGN (faza użytkowania): 
 q_d=1,35*9,47+1,5*1*20,79=43,97 kN/m (wzór 6.10a PN-EN 1990) 
 q_d=1,15*9,47+1,5*20,79=42,08 kN/m (wzór 6.10b PN-EN 1990) 
 Przyjęto q_d=43,97 kN/m
```

Kombinacja obciążeń dla SGU (faza użytkowania): $q_k = 9,47 + 20,79 = 30,26 \ kN/m$ (wzór 6.14b PN-EN 1990)

Kombinacja obciążeń dla SGN (faza montażu): $q_m = 1,35*5,33+1,5*1*4,95 = 7,20$ kN/m + 7,43 kN/m (wzór 6.10a PN-EN 1990)

2.3.4. Obliczenie sił wewnętrznych

2.3.4.1. Siły wewnętrzne dla obciążeń użytkowych

Dla SGN:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

Dla SGU:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

2.3.4.2. Siły wewnętrzne dla obciążeń w fazie montażu

Dla SGN:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

2.3.5. Sprawdzenie nośności belki

2.3.5.1. Sprawdzenie nośności dla obciążenia użytkowego

Wyznaczenie klasy przekroju:

Środnik:

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

$$\frac{h_w}{t_w} = \frac{299}{8} = 37,38 < 72\varepsilon = 72$$

Jest to klasa I.

$$\frac{c}{t_f} = \frac{63}{12,7} = 4,96 < 9\varepsilon = 9$$

Jest to klasa I.

Cały przekrój jest klasy I.

Sprawdzenie nośności przekroju na zginanie:

$$M_{Ed} = M_{max} = 207,88 \ kNm$$

$$M_{c,Rd} = \frac{W_{y,pl*}f_y}{\gamma_{Mo}} = \frac{0,001020*235000}{1} = 239,7 \ kNm$$

$$\frac{M_{Ed}}{M_{c,Rd}} = \frac{207,88}{239,7} = 0,87 < 1$$

Sprawdzenie nośności przekroju na ścinanie:

$$\begin{aligned} \frac{\dot{V}_{Ed}}{V_{C,Rd}} &\leq 1\\ \frac{h_w}{t_w} &= \frac{299}{8} = 37,38 < 72 \frac{\varepsilon}{\eta} = 72 * \frac{1}{1,2} = 60\\ V_{C,Rd} &= V_{pl,Rd} = \frac{A_V * \frac{f_y}{\sqrt{3}}}{\gamma_{M0}}\\ A_V &= A - 2 * b_f * t_f + (t_w + 2r) * t_f \geq \eta * h_w * t_w \end{aligned}$$

$$A_V = 7270 - 2 * 170 * 12,7 + (8 + 2 * 18) * 12,7 = 3510,8 \text{ } mm^2 > 1,2 * 299 * 8$$

= 2870,4 mm²

$$A_{V} = 7270 - 2 * 170 * 12,7 + (8 + 2 * 18) * 12,7 = 3510,8 mn$$

$$= 2870,4 mm^{2}$$

$$V_{C,Rd} = V_{pl,Rd} = \frac{A_{V} * \frac{f_{y}}{\sqrt{3}}}{\gamma_{M0}} = \frac{0,0035108 * \frac{235000}{\sqrt{3}}}{1} = 476,34 kN$$

$$V_{Ed} = 135,21 kN$$

$$V_{Ed} = 135,21 c 328 c 4$$

$$V_{Ed} = 135,21 \text{ kN}$$

$$\frac{V_{Ed}}{V_{C,Rd}} = \frac{135,21}{476,34} = 0,28 < 1$$

$$\frac{V_{C,Rd}}{V_{C,Rd}} = \frac{476,34}{476,34} = 0,28 < 1$$

$$\frac{V_{Ed}}{V_{C,Rd}} = \frac{135,21}{476,34} = 0,28 < \frac{1}{2} - \text{można rozpatrywać przekrój niezależnie na ścinanie i zginanie}$$

Sprawdzenie środnika pod obciążeniem skupionym:

$$\begin{split} S_s &= \frac{h}{3} + 50 = \frac{36}{30} + 50 = 170 \ mm \\ F_{Ed} &= R = 135, 21 \ kN \\ \frac{F_{Ed}}{F_{Rd}} &\leq 1 \\ F_{Rd} &= \frac{f_{yw} * l_{eff} * t_{w}}{\gamma_{M1}} \\ l_{eff} &= \frac{f_{yw} * l_{eff} * t_{w}}{\gamma_{M1}} \\ l_{eff} &= \frac{0.5}{\tilde{l}_F} \leq 1 \\ \bar{\lambda}_F &= \sqrt{\frac{l_y * f_{yw} * t_{w}}{F_{Cr}}} \\ F_{Cr} &= 0.9 * k_F * E * \frac{t_{w}^3}{h_w} \\ k_F &= 2 + 6 * \left(\frac{S_s + c}{h_w}\right) \leq 6 \\ k_F &= 2 + 6 * \left(\frac{S_s + c}{h_w}\right) = 2 + 6 * \left(\frac{170 + 0}{299}\right) = 5.41 < 6 \\ F_{Cr} &= 0.9 * k_F * E * \frac{t_{w}^3}{h_w} = 0.9 * 5.41 * 210000000 * \frac{(0.008)^3}{0.299} = 1750.89 \ kN \\ \end{split}$$

$$l_y &= \min \begin{cases} l_e + t_f * \sqrt{\frac{m_1}{2} + \left(\frac{l_e}{l_f}\right)^2 + m_2} \\ l_e + t_f * \sqrt{m_1 + m_2} \\ l_e &= \frac{k_F * E * t_{w}^2}{2 * f_{yw} * h_w} \leq S_s + c \\ l_e &= \frac{2k_F * E * t_{w}^2}{2 * f_{yw} * h_w} = \frac{5.41 * 210000000 * 0.008^2}{2 * 235000 * 0.299} = 0.52 \ m > 0.17 \ m \\ l_e &= 0.17m \\ m_1 &= \frac{f_{yx} * b_f}{f_{yw} * t_w} = \frac{235 * 0.170}{235 * 0.008} = 21.25 \\ m_2 &= \begin{cases} 0.02 * \left(\frac{h_w}{t_f}\right)^2 \ dla \ \bar{h}_F > 0.5 \\ 0 \ dla \ \bar{h}_F \leq 0.5 \end{cases} \\ 0 \ dla \ \bar{h}_F \leq 0.5 \\ m_2 &= 0.02 * \left(\frac{h_w}{t_f}\right)^2 = 0.02 * \left(\frac{0.299}{0.0127}\right)^2 = 11.09 \\ l_{y1} &= l_e + t_f * \sqrt{\frac{m_1}{2} + \left(\frac{l_e}{t_f}\right)^2 + m_2} = 0.17 + 0.0127 * \sqrt{\frac{21.25}{2} + \left(\frac{0.17}{0.0127}\right)^2 + 11.09} \\ l_{y2} &= l_e + t_f * \sqrt{m_1 + m_2} = 0.17 + 0.0127 * \sqrt{21.25 + 11.09} = 0.35m \\ l_{y2} &= l_e + t_f * \sqrt{m_1 + m_2} = 0.17 + 0.0127 * \sqrt{21.25 + 11.09} = 0.35m \end{cases}$$

$$\begin{split} \bar{\lambda}_F &= \sqrt{\frac{l_y * f_{yw} * t_w}{F_{Cr}}} = \sqrt{\frac{0.35 * 235000 * 0.008}{1750.89}} = 0.61 > 0.5 \\ \chi_F &= \frac{0.5}{\bar{\lambda}_F} = \frac{0.5}{0.61} = 0.82 \\ l_{eff} &= \chi_F * l_y = 0.82 * 0.35 = 0.29 \ m \\ F_{Rd} &= \frac{f_{yw} * l_{eff} * t_w}{\gamma_{M1}} = \frac{235000 * 0.29 * 0.008}{1} = 545.2kN \\ \frac{F_{Ed}}{F_{Rd}} &= \frac{135.21}{545.2} = 0.25 < 1 \end{split}$$

Nośność elementu z uwzględnieniem zwichrzenia:

$$\begin{split} \frac{M_{Ed}}{M_{b,Rd}} &\leq 1 \\ M_{b,Rd} &= \chi_{LT} * \frac{W_{y,pl} * f_y}{\gamma_{M1}} = 1 * \frac{0,001020 * 235000}{1} = 239,7 \ kNm \\ M_{Ed} &= M_{max} = 207,88 \ kNm \\ \frac{M_{Ed}}{M_{b,Rd}} &= \frac{207,88}{239,7} = 0,87 < 1 \end{split}$$

Belka spełnia wymagania stanu granicznego nośności w fazie użytkowania.

2.3.5.2. Sprawdzenie nośności dla obciążenia w fazie montażu

Przekrój spełnia wymagania stanu granicznego nośności w fazie montażu ze względu na mniejsze obciążenia niż w fazie użytkowania.

Sprawdzenie nośności elementu z uwzględnieniem zwichrzenia:

$$M_{cr} = C_{1} * \frac{\pi^{2} * E * I_{z}}{(k * l)^{2}} * \left[\sqrt{\left(\frac{k}{k_{\omega}}\right)^{2} \frac{I_{\omega}}{I_{z}}} + \frac{(k * l)^{2*}G * I_{T}}{\pi^{2} * E * I_{z}}} + \left(C_{2} * z_{g} - C_{3} * z_{j}\right)^{2} - \left(C_{2} * z_{g} - C_{3} * z_{j}\right)\right]$$

$$z_{g} = z_{a} \cdot z_{s}$$

$$z_{a} = 180 \text{ mm}$$

$$z_{s} = 0$$

$$z_{g} = z_{a} \cdot z_{s} = 180 - 0 = 180 \text{ mm}$$

$$z_{j} = z_{s} - 0.5 * r_{y}$$

$$z_{s} = 0$$

$$r_{y} = 0$$

$$z_{j} = z_{s} - 0.5 * r_{y} = 0$$

$$C_{1} = 1.132$$

$$C_{2} = 0.459$$

$$C_{3} = 0.525$$

$$k = 1.0$$

$$\begin{split} & \frac{M_{cr}}{c} = C_1 * \frac{\pi^2 * E * I_z}{(k * l)^2} \\ * & \left[\sqrt{\left(\frac{k}{k_o}\right)^2 \frac{I_{ob}}{I_z}} + \frac{(k * l)^{2*}G * I_T}{\pi^2 * E * I_z}} + (C_2 * z_g - C_3 * z_j)^2 - (C_2 * z_g - C_3 * z_j) \right] \\ &= 1,132 * \frac{\pi^2 * 210000000 * 0,00001040}{(1 * 6)^2} \\ * & \left[\sqrt{\left(\frac{1}{1}\right)^2 * \frac{0,000000313600}{0,00001040}} + \frac{(1 * 6)^{2*}81000000 * 0,0000003830}{\pi^2 * 210000000 * 0,00001040} + (0,459 * 0,18 - 0,525 * 0)^2 \right] \\ &- (0,459 * 0,18 - 0,525 * 0) \right] = 677,79 * \left[\sqrt{1 * 0,0302} + 0,0518 + 0,006826} - 0,0826 \right] \\ &= 146,02 \; kNm \\ \bar{\lambda}_{LT} &= \sqrt{\frac{W_y * f_y}{M_{cr}}} = \sqrt{\frac{0,000904 * 235000}{146,02}} = 1,21 \right. \\ \psi_{LT} &= 0,5 * \left[1 + \alpha_{LT} * \left(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0} \right) + \beta * \bar{\lambda}_{LT}^2 \right] \\ \bar{\lambda}_{LT,0} &= 0,49 \\ \psi_{LT} &= 0,5 * \left[1 + \alpha_{LT} * \left(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0} \right) + \beta * \bar{\lambda}_{LT}^2 \right] \\ &= 0,5 * \left[1 + 0,49 * (1,21 - 0,4) + 0,75 * 1,21^2 \right] = 1,25 \right. \\ \chi_{LT} &= \min \left\{ \sqrt{\frac{1}{k_{LT}} + \sqrt{\phi_{LT}^2 - \beta * \bar{\lambda}_{LT}^2}} \right. \\ \chi_{LT} &= \min \left\{ \sqrt{\frac{1}{k_{LT}} + \sqrt{\phi_{LT}^2 - \beta * \bar{\lambda}_{LT}^2}} \right. \\ \chi_{LT} &= \frac{1}{k_{LT}} + \frac{1}{\sqrt{2}} \frac{1}{2} - \frac{1}{1,21^2} = 0,68 \right. \\ \chi_{LT} &= 0,52 \\ \frac{M_{Ed}}{M_{Ed}} &\leq 1 \\ M_{b,Rd} &= \chi_{LT} * \frac{W_{y,pl} * f_y}{\gamma_{M_1}} = 0,52 * \frac{0,001020 * 235000}{1} = 124,64 \; kNm \right. \\ M_{Ed} &= 66,86 \; kNm \\ M_{Ed} &= 66,86 \; kNm \\ M_{Ed} &= 66,86 \; 6Nm \\ M_{Ed} &= 66,86 \; 6Nm \\ M_{Ed} &= 66,86 \; 0,54 < 1 \\ \end{array}$$

Belka spełnia wymagania stanu granicznego nośności w fazie montażu.

2.3.6. Sprawdzenie ugięcia belki

Sprawdzenie stanu granicznego użytkowalności:

$$u \leq u_{\text{dop}}$$

$$u_{\text{dop}} = \frac{1}{250} l_0 = \frac{1}{250} * 6,15 = 0,025 m$$

$$u = \frac{5}{384} * \frac{q_k * l_0^4}{E * I_y} = \frac{5}{384} * \frac{30,26 * 6,15^4}{210000000 * 0,00016270} = 0,016 m < 0,025m = u_{dop}$$

Pollic analyje symmetrie stany grapicznego wiytkowalneści

Belka spełnia wymagania stanu granicznego użytkowalności.

2.4. Obliczenia belki A3

2.4.1. Schemat statyczny

$$b = 5.4 \text{ m} - \text{rozpiętość belki w świetle}$$

 $l_0 = b * 1.025 = 5.4 * 1.025 = 5.54 \text{ m}$

2.4.2. Wstępny dobór przekroju belki (ze wzgl. Na SGN i SGU)

Przyjęto stal S235 o $f_y = 235$ MPa i E = 210 GPa

Obszar oddziaływania obciążenia – rozstaw belek – 4 m

Kombinacja obciążeń dla SGN (na podstawie wzoru 6.10 PN-EN 1990) – faza użytkowania: $q_d = (1,35*2,69+1,5*6,3)*4=52,33$ kN/m

Kombinacja obciążeń dla SGU (na podstawie wzoru 6.14b PN-EN 1990) – faza użytkowania: $q_k = (2,69+6,3)*4 = 35,96 \text{ kN/m}$

$$\begin{split} M_{Ed} &= M_{max} = \frac{q_d * l_0^2}{8} = \frac{52,33*5,54^2}{8} = 200,76 \ kNm \\ M_{max} &\leq M_{c,Rd} \\ M_{c,Rd} &= \frac{W*f_y}{\gamma_{M0}} \\ W_y &\geq \frac{M_{c,Rd}*\gamma_{M0}}{f_y} = \frac{200,76*1}{235000} = 0,00085 \ m^3 = 850 \ cm^3 \end{split}$$

$$\begin{split} u &\leq u_{dop} = \frac{1}{250} l_0 \\ u &= \frac{5}{384} * \frac{q_k * l_0^4}{EI} \leq u_{dop} \end{split}$$

$$I_y \ge \frac{625}{192} * \frac{q_k * l_0^3}{E} = \frac{625 * 35,96 * 5,54^3}{192 * 210000000} = 0,000095 \, m^4 = 9500 \, cm^4$$

Dobrano belkę IPE360 o następujących charakterystykach:

h = 360 mm

 $h_w = 299 \text{ mm}$

 $t_w = 8 \ mm$

 $b_f = 170 \ mm$

 $t_f = 12,7 \text{ mm}$

 $A = 72,7 \text{ cm}^2$

c = 63 mm

 $r=18\;mm$

g = 0.571 kN/m

 $W_y = 904 \ cm^3$

 $W_z = 123 \ cm^3$

 $I_y = 16270 \ cm^4$

 $I_z=1040\ cm^4$

 $I_{\omega}=313600\;cm^6$

 $I_T = 38,30 \text{ cm}^4$

 $W_{y,pl}=1020\ cm^3$

2.4.3. Zestawienie obciążeń

LP	Obciążenie	Grubość	Ciężar	Wartość	Wartość	Charakter	
	Obciązenie	[m]	objętościowy	charakterystyczna	charakterystyczna	obciążenia	
		[111]	[kN/m ³]	[kN/m ²]	[kN/m]	Obciązcina	
Fozo	użytkowanie		[KIN/III]	[KIN/III]	[KIN/III]		
	Faza użytkowania						
1	płytki	0,01	21	0,21	0,84	stałe	
_	ceramiczne	0.045	21	0.05	2.0	. 1	
2	gładź	0,045	21	0,95	3,8	stałe	
	cementowa	0.05	0.45	0.000	0.002	. 1	
3	styropian	0,05	0,45	0,023	0,092	stałe	
4	beton	0,05	24	1,2	4,8	stałe	
5	blacha	0,015	-	0,19	0,76	stałe	
	trapezowa 3						
	przęsłowa						
	układana						
	zakładkowo na						
	pozytyw						
6	Belka stalowa	-	-		0,57	stałe	
	IPE360						
7	Sufit	-	-	0,12	0,48	stałe	
	podwieszany						
	Rigips Quattro						
	40						
Raze		ı.	T		11,34	-	
8	Obciążenie	-	-	6,3	25,2	zmienne	
	użytkowe						
Faza	montażu						
1	beton	0,05	25	1,25	5	stałe	
2	blacha	0,015	-	0,19	0,76	stałe	
	trapezowa 3						
	przęsłowa						
	układana						
	zakładkowo na						
	pozytyw						
3	Belka stalowa	-	-		0,57	stałe	
	IPE360						
				6,33	-		
4	Obciążenie	_	_	1,5	6	zmienne	
	montażowe			, -			
		<u> </u>	I	l	ı	l .	

Kombinacja obciążeń dla SGN (faza użytkowania): $q_d = 1,35*11,34+1,5*1*25,2=53,11$ kN/m (wzór 6.10a PN-EN 1990) $q_d = 1,15*11,34+1,5*25,2=50,84$ kN/m (wzór 6.10b PN-EN 1990) Przyjęto $q_d = 53,11$ kN/m

Kombinacja obciążeń dla SGU (faza użytkowania): q_k = 11,34 + 25,2 = 36,54 kN/m (wzór 6.14b PN-EN 1990)

Kombinacja obciążeń dla SGN (faza montażu): $q_m = 1,35*6,33+1,5*1*6=8,55$ kN/m + 9 kN/m (wzór 6.10a PN-EN 1990)

2.4.4. Obliczenie sił wewnętrznych

2.4.4.1. Siły wewnętrzne dla obciążeń użytkowych

Dla SGN:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

Dla SGU:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

2.4.4.2. Siły wewnętrzne dla obciążeń w fazie montażu

Dla SGN:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

2.4.5. Sprawdzenie nośności belki

2.4.5.1. Sprawdzenie nośności dla obciążenia użytkowego

Wyznaczenie klasy przekroju:

Środnik:

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

$$\frac{h_w}{t_w} = \frac{299}{8} = 37,38 < 72\varepsilon = 72$$

Jest to klasa I.

$$\frac{c}{t_f} = \frac{63}{12,7} = 4,96 < 9\varepsilon = 9$$

Jest to klasa I.

Cały przekrój jest klasy I.

Sprawdzenie nośności przekroju na zginanie:

$$M_{Ed} = M_{max} = 203,75kNm$$

$$M_{c,Rd} = \frac{W_{y,pl}*f_y}{\gamma_{Mo}} = \frac{0,001020*235000}{1} = 239,7 kNm$$

$$\frac{M_{Ed}}{M_{c,Rd}} = \frac{203,75}{239,7} = 0,85 < 1$$

Sprawdzenie nośności przekroju na ścinanie:

$$\begin{split} \frac{\dot{V}_{Ed}}{V_{C,Rd}} &\leq 1\\ \frac{h_w}{t_w} &= \frac{299}{8} = 37,38 < 72 \frac{\varepsilon}{\eta} = 72 * \frac{1}{1,2} = 60\\ V_{C,Rd} &= V_{pl,Rd} = \frac{A_V * \frac{f_y}{\sqrt{3}}}{\gamma_{M0}}\\ A_V &= A - 2 * b_f * t_f + (t_w + 2r) * t_f \geq \eta * h_w * t_w \end{split}$$

$$A_V = 7270 - 2 * 170 * 12,7 + (8 + 2 * 18) * 12,7 = 3510,8 \ mm^2 > 1,2 * 299 * 8 = 2870,4 \ mm^2$$

$$A_{V} = 7270 - 2*170*12,7 + (8+2*18)*12,7 = 3310,8 \text{ m/s}$$

$$= 2870,4 \text{ mm}^{2}$$

$$V_{C,Rd} = V_{pl,Rd} = \frac{A_{V} * \frac{f_{y}}{\sqrt{3}}}{\gamma_{M0}} = \frac{0,0035108 * \frac{235000}{\sqrt{3}}}{1} = 476,34 \text{ kN}$$

$$V_{Ed} = 147,11 \text{ kN}$$

$$V_{Fd} = 147,11$$

$$V_{Ed} = 147,11 \text{ kN}$$

$$\frac{V_{Ed}}{V_{CRd}} = \frac{147,11}{476,34} = 0,31 < 1$$

$$\frac{\overline{V_{C,Rd}}}{\overline{V_{C,Rd}}} = \frac{476,34}{476,34} = 0.31 < 1$$

$$\frac{\overline{V_{Ed}}}{\overline{V_{C,Rd}}} = \frac{147,11}{476,34} = 0.31 < \frac{1}{2} - \text{można rozpatrywać przekrój niezależnie na ścinanie i zginanie}$$

Sprawdzenie środnika pod obciążeniem skupionym:

$$\begin{split} S_{S} &= \frac{h}{3} + 50 = \frac{36}{30} + 50 = 170 \, mm \\ F_{Ed} &= R = 147,111 \, kN \\ \frac{F_{Ed}}{F_{Rd}} &\leq 1 \\ F_{Rd} &= \frac{f_{yw} * l_{eff} * t_{w}}{\gamma_{M1}} \\ l_{eff} &= \frac{f_{yw} * l_{eff} * t_{w}}{\gamma_{M1}} \\ l_{eff} &= \frac{0.5}{\tilde{l}_{F}} &\leq 1 \\ \bar{\lambda}_{F} &= \frac{0.5}{\tilde{l}_{F}} &\leq 1 \\ \bar{\lambda}_{F} &= \sqrt{\frac{l_{y} * f_{yw} * t_{w}}{F_{Cr}}} \\ F_{Cr} &= 0.9 * k_{F} * E * \frac{t_{w}^{3}}{h_{w}} \\ k_{F} &= 2 + 6 * \left(\frac{S_{S} + c}{h_{w}}\right) \leq 6 \\ k_{F} &= 2 + 6 * \left(\frac{S_{S} + c}{h_{w}}\right) = 2 + 6 * \left(\frac{170 + 0}{299}\right) = 5.41 < 6 \\ F_{Cr} &= 0.9 * k_{F} * E * t_{w}^{3} \\ l_{y} &= \min \begin{cases} l_{e} + t_{f} * \sqrt{\frac{m_{1}}{2} + \left(\frac{l_{e}}{l_{f}}\right)^{2} + m_{2}} \\ l_{e} + t_{f} * \sqrt{m_{1} + m_{2}} \\ l_{e} &= \frac{k_{F} * E * t_{w}^{2}}{2 * f_{yw} * h_{w}} \leq S_{S} + c \\ l_{e} &= \frac{k_{F} * E * t_{w}^{2}}{2 * f_{yw} * h_{w}} = \frac{5.41 * 210000000 * 0.008^{2}}{2 * 235000 * 0.299} = 0.52 \, m > 0.17 \, m \\ L_{c} &= 0.17m \\ m_{1} &= \frac{f_{yx} * b_{f}}{f_{yw} * t_{w}} = \frac{235 * 0.170}{235 * 0.008} = 21.25 \\ m_{2} &= \begin{cases} 0.02 * \left(\frac{h_{w}}{t_{f}}\right)^{2} \, dla \, \bar{A}_{F} > 0.5 \\ 0 \, dla \, \bar{A}_{F} \leq 0.5 \end{cases} \\ 0 \, dla \, \bar{A}_{F} \leq 0.5 \\ m_{2} &= 0.02 * \left(\frac{h_{w}}{t_{f}}\right)^{2} = 0.02 * \left(\frac{0.299}{0.0127}\right)^{2} = 11.09 \\ l_{y1} &= l_{e} + t_{f} * \sqrt{\frac{m_{1}}{2} + \left(\frac{l_{e}}{t_{f}}\right)^{2} + m_{2}} = 0.17 + 0.0127 * \sqrt{\frac{21.25}{2} + \left(\frac{0.17}{0.0127}\right)^{2} + 11.09} \\ l_{y2} &= l_{e} + t_{f} * \sqrt{m_{1} + m_{2}} = 0.17 + 0.0127 * \sqrt{21.25 + 11.09} = 0.35m \end{cases}$$

$$\begin{split} \bar{\lambda}_{F} &= \sqrt{\frac{l_{y} * f_{yw} * t_{w}}{F_{Cr}}} = \sqrt{\frac{0.35 * 235000 * 0.008}{1750.89}} = 0.61 > 0.5 \\ \chi_{F} &= \frac{0.5}{\bar{\lambda}_{F}} = \frac{0.5}{0.61} = 0.82 \\ l_{eff} &= \chi_{F} * l_{y} = 0.82 * 0.35 = 0.29 \, m \\ F_{Rd} &= \frac{f_{yw} * l_{eff} * t_{w}}{\gamma_{M1}} = \frac{235000 * 0.29 * 0.008}{1} = 545.2 \, kN \\ \frac{F_{Ed}}{F_{Rd}} &= \frac{147.11}{545.2} = 0.27 < 1 \end{split}$$

Nośność elementu z uwzględnieniem zwichrzenia:

$$\begin{split} \frac{M_{Ed}}{M_{b,Rd}} &\leq 1 \\ M_{b,Rd} &= \chi_{LT} * \frac{W_{y,pl} * f_y}{\gamma_{M1}} = 1 * \frac{0,001020 * 235000}{1} = 239,7 \ kNm \\ M_{Ed} &= M_{\max} = 203,75 \ kNm \\ \frac{M_{Ed}}{M_{b,Rd}} &= \frac{203,75}{239,7} = 0,85 < 1 \end{split}$$

Belka spełnia wymagania stanu granicznego nośności w fazie użytkowania.

2.4.5.2. Sprawdzenie nośności dla obciążenia w fazie montażu

Przekrój spełnia wymagania stanu granicznego nośności w fazie montażu ze względu na mniejsze obciążenia niż w fazie użytkowania.

Sprawdzenie nośności elementu z uwzględnieniem zwichrzenia:

$$M_{cr} = C_{1} * \frac{\pi^{2} * E * I_{z}}{(k * l)^{2}} * \left[\sqrt{\left(\frac{k}{k_{\omega}}\right)^{2} \frac{I_{\omega}}{I_{z}} + \frac{(k * l)^{2*}G * I_{T}}{\pi^{2} * E * I_{z}}} + \left(C_{2} * z_{g} - C_{3} * z_{j}\right)^{2} - \left(C_{2} * z_{g} - C_{3} * z_{j}\right)\right]$$

$$z_{g} = z_{a} \cdot z_{s}$$

$$z_{a} = 180 \text{ mm}$$

$$z_{s} = 0$$

$$z_{g} = z_{a} \cdot z_{s} = 180 - 0 = 180 \text{ mm}$$

$$z_{j} = z_{s} - 0.5 * r_{y}$$

$$z_{s} = 0$$

$$r_{y} = 0$$

$$z_{j} = z_{s} - 0.5 * r_{y} = 0$$

$$C_{1} = 1.132$$

$$C_{2} = 0.459$$

$$C_{3} = 0.525$$

$$k = 1.0$$

$$\begin{split} & \frac{M_{CT}}{C} = C_1 * \frac{\pi^2 * E * I_Z}{(k * l)^2} \\ * & \left[\sqrt{\left(\frac{k}{k_o}\right)^2 I_{oo}} + \frac{(k * l)^{2 \circ} G * I_T}{\pi^2 * E * I_Z} + (C_2 * z_g - C_3 * z_j)^2 - (C_2 * z_g - C_3 * z_j) \right] \\ &= 1,132 * \frac{\pi^2 * 210000000 * 0,00001040}{(1 * 5,4)^2} \\ * & \left[\sqrt{\left(\frac{1}{1}\right)^2} * \frac{0,000000313600}{0,00001040} + \frac{(1 * 5,4)^{2 \circ} 81000000 * 0,0000003830}{\pi^2 * 210000000 * 0,00001040} + (0,459 * 0,18 - 0,525 * 0)^2 \right. \\ &- (0,459 * 0,18 - 0,525 * 0) \right] = 836,78 * \left[\sqrt{1 * 0,0302 + 0,0420 + 0,006826} - 0,0826 \right] \\ &= 166,11 kNm \\ \bar{\lambda}_{LT} = \sqrt{\frac{W_y * f_y}{M_{CT}}} = \sqrt{\frac{0,000904 * 235000}{166,11}} = 1,13 \\ \phi_{LT} = 0,5 * (1 + \alpha_{LT} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2) \\ \bar{\lambda}_{LT,0} = 0,5 * (1 + \alpha_{LT} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2) \\ \bar{\nu}_{LT} = 0,75 * \left[1 + \alpha_{LT} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2 \right] \\ &= 0,5 * \left[1 + 0,49 * (1,13 - 0,4) + 0,75 * 1,13^2 \right] = 1,16 \\ \chi_{LT} = \min \left\{ \frac{1}{\phi_{LT}} + \sqrt{\phi_{LT}^2 - \beta * \bar{\lambda}_{LT}^2} \right. \\ \chi_{LT} = \min \left\{ \frac{1}{\phi_{LT}} + \sqrt{\phi_{LT}^2 - \beta * \bar{\lambda}_{LT}^2} \right. \\ \chi_{LT} = 0,56 * \frac{1}{M_{DRd}} \le 1 \\ M_{DRd} \le 1 \\ M_{DRd} = \chi_{LT} * \frac{W_{y,pt} * f_y}{\gamma_{M1}} = 0,56 * \frac{0,001020 * 235000}{1} = 134,23 kNm \\ M_{Ed} = 65,52 kNm \\ M_{$$

Belka spełnia wymagania stanu granicznego nośności w fazie montażu.

2.4.6. Sprawdzenie ugięcia belki

Sprawdzenie stanu granicznego użytkowalności:

$$u \leq u_{\text{dop}}$$

$$u_{\text{dop}} = \frac{1}{250} l_0 = \frac{1}{250} * 5,54 = 0,022 m$$

$$u = \frac{5}{384} * \frac{q_k * l_0^4}{E * I_y} = \frac{5}{384} * \frac{36,54 * 5,54^4}{210000000 * 0,00016270} = 0,013 m < 0,022m = u_{dop}$$

Pally analysis symmetric starts graphical visit by the value of signs of the symmetric starts are signed as t

Belka spełnia wymagania stanu granicznego użytkowalności.

2.5. Obliczenia belki P1

2.5.1. Schemat statyczny

$$\begin{split} c &= 6 \text{ m} - \text{rozpiętość belki w świetle} \\ l_0 &= c * 1,025 = 6 * 1,025 = 6,15 \text{ m} \\ c_1 &= 2 \text{ m} \\ P_{1d} &= R(A3) = 147,11 \text{ kN} \\ P_{1k} &= R(A3) = 101,22 \text{ kN} \end{split}$$

2.5.2. Wstępny dobór przekroju belki (ze wzgl. Na SGN i SGU)

Przyjęto stal S235 o $f_v = 235$ MPa i E = 210 GPa

Obszar oddziaływania obciążenia – 1,6 m

Ciężar IPE400 - 0,66 kN/m

 $M_{Ed} = M_{max} = 289,09 \text{ kNm}$

Kombinacja obciążeń dla SGN (na podstawie wzoru 6.10 PN-EN 1990) – faza użytkowania: $q_d = (1,35*2,69+1,5*6,3)*1,6+1,35*0,66=21,82$ kN/m

Kombinacja obciążeń dla SGU (na podstawie wzoru 6.14b PN-EN 1990) – faza użytkowania: $q_k = (2,69+6,3)*1,6+0,66=15,04$ kN/m

$$\begin{split} &M_{\text{max}} \leq M_{\text{c,Rd}} \\ &M_{\text{c,Rd}} = \frac{W * f_y}{\gamma_{M0}} \\ &W_y \geq \frac{M_{\text{c,Rd}} * \gamma_{M0}}{f_y} = \frac{289,09 * 1}{235000} = 0,00123 \ m^3 = 1230 \ cm^3 \\ &u = u^q + u^P \\ &u \leq u_{\text{dop}} = \frac{1}{350} \, l_0 \\ &u^q = \frac{5}{384} * \frac{q_k * l_0^4}{El} \\ &u^P = \frac{1}{48} * \frac{P * l_0^3}{El} \\ &\xi = \frac{c_1}{l_0} = \frac{2}{6,15} = 0,33 \\ &\eta = \xi * (3 - 4 * \xi^2) = 0,33 * (3 - 4 * 0,33^2) = 0,85 \\ &P = \eta * P_1 = 0,85 * 101,22 = 86,04 \ kN \\ &u = u^q + u^P = \frac{5}{384} * \frac{q_k * l_0^4}{El} + \frac{1}{48} * \frac{P * l_0^3}{El} = \frac{5 * q_k * l_0^4 + 8 * P * l_0^3}{384 * E * l} \leq u_{\text{dop}} = \frac{1}{350} \, l_0 \end{split}$$

$$I_{y} \ge 350 * \frac{5 * q_{k} * l_{0}^{4} + 8 * P * l_{0}^{3}}{384 * E * l_{0}} = 350 * \frac{5 * 15,04 * 6,15^{4} + 8 * 86,04 * 6,15^{3}}{384 * 2100000000 * 6,15} = 0,000189 \ m^{4} = 18900 \ cm^{4}$$

Dobrano belkę IPE450 o następujących charakterystykach:

 $h = 450 \ mm$

 $h_w = 379 \text{ mm}$

 $t_w = 9,4 \text{ mm}$

 $b_f = 190 \ mm$

 $t_f = 14,6 \text{ mm}$

 $A = 98.82 \text{ cm}^2$

c = 69,3 mm

 $r = 21 \ mm$

g = 0,776 kN/m

 $W_y = 1499,6 \text{ cm}^3$

 $W_z = 176.8 \text{ cm}^3$

 $I_y = 33740 \ cm^4$

 $I_z=1680\ cm^4$

 $I_{\omega}=791000\;cm^6$

 $I_T = 68,9 \text{ cm}^4$

 $W_{y,pl} = 1701,3 \text{ cm}^3$

2.5.3. Zestawienie obciążeń

LP	Obciążenie	Grubość [m]	Ciężar objętościowy [kN/m³]	Wartość charakterystyczna [kN/m²]	Wartość charakterystyczna [kN/m]	Charakter obciążenia		
Faza	Faza użytkowania							
1.	płytki ceramiczne	0,01	21	0,21	0,34	stałe		
2.	gładź cementowa	0,045	21	0,95	1,52	stałe		
3.	styropian	0,05	0,45	0,023	0,037	stałe		
4.	beton	0,05	24	1,2	1,92	stałe		
5.	blacha trapezowa 3 przęsłowa układana zakładkowo na pozytyw	0,015	-	0,19	0,30	stałe		
6.	Belka stalowa IPE450	-	-		0,78	stałe		
7.	Sufit podwieszany Rigips Quattro 40	-	-	0,12	0,19	stałe		
Razem				5,09	_			
8.	Obciążenie użytkowe	-	-	6,3	10,08	zmienne		
Faza	a montażu	l	l			•		
1.	beton	0,05	25	1,25	2	stałe		
2.	blacha trapezowa 3 przęsłowa układana zakładkowo na pozytyw	0,015	-	0,19	0,30	stałe		
3.	Belka stalowa IPE450	-	-		0,78	stałe		
Razem 3,08 -					-			
4.	Obciążenie montażowe	-	-	1,5	2,40	zmienne		

Reakcja z belki A3: SGN (faza użytkowania) – 147,11 kN SGN (faza montażu) – 45,76 kN SGU – 101,22 kN

Kombinacja obciążeń dla SGN (faza użytkowania): $q_d=1,35*5,09+1,5*1*10,08=21,99$ kN/m (wzór 6.10a PN-EN 1990) $q_d=1,15*5,09+1,5*10,08=20,97$ kN/m (wzór 6.10b PN-EN 1990) Przyjęto $q_d=21,99$ kN/m

Kombinacja obciążeń dla SGU (faza użytkowania): $q_k = 5.09 + 10.08 = 15.17 \text{ kN/m} \text{ (wzór } 6.14\text{b PN-EN } 1990)$

Kombinacja obciążeń dla SGN (faza montażu): $q_m = 1,35 * 3,08 + 1,5 * 1 * 2,4 = 7,76 kN/m (wzór 6.10a PN-EN 1990)$

2.5.4. Obliczenie sił wewnętrznych

2.5.4.1. Siły wewnętrzne dla obciążeń użytkowych

Dla SGN:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

Dla SGU:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

2.5.4.2. Siły wewnętrzne dla obciążeń w fazie montażu

Dla SGN:

Schemat statyczny:

Wykres momentów zginających M [kNm]:

Wykres sił tnących V [kN]:

2.5.5. Sprawdzenie nośności belki

2.5.5.1. Sprawdzenie nośności dla obciążenia użytkowego

Wyznaczenie klasy przekroju: Środnik:

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

$$\frac{h_w}{t_w} = \frac{379}{9.4} = 40.32 < 72\varepsilon = 72$$
Jest to klasa I.

$$\frac{c}{t_f} = \frac{69,3}{14,6} = 4,75 < 9\varepsilon = 9$$

Jest to klasa I.

Cały przekrój jest klasy I.

Sprawdzenie nośności przekroju na zginanie:

$$M_{Ed} = M_{max} = 289,80 \ kNm$$

$$M_{c,Rd} = \frac{W_{y,pl*}f_y}{\gamma_{M0}} = \frac{0,0017013*235000}{1} = 399,81 \ kNm$$

$$\frac{M_{Ed}}{M_{c,Rd}} = \frac{289,8}{399,81} = 0,72 < 1$$

Sprawdzenie nośności przekroju na ścinanie:

$$\begin{aligned} \frac{\dot{V}_{Ed}}{V_{C,Rd}} &\leq 1\\ \frac{h_w}{t_w} &= \frac{379}{9,4} = 40,32 < 72\frac{\varepsilon}{\eta} = 72 * \frac{1}{1,2} = 60\\ V_{C,Rd} &= V_{pl,Rd} = \frac{A_V * \frac{f_y}{\sqrt{3}}}{\gamma_{M0}}\\ A_V &= A - 2 * b_f * t_f + (t_w + 2r) * t_f \geq \eta * h_w * t_w \end{aligned}$$

$$A_V = 9882 - 2 * 190 * 14,6 + (9,4 + 2 * 21) * 14,6 = 5084,44 mm^2 > 1,2 * 379 * 9,4$$

= 4275,12 mm²

$$V_{C,Rd} = V_{pl,Rd} = \frac{A_V * \frac{f_y}{\sqrt{3}}}{\gamma_{M0}} = \frac{0,00508444 * \frac{235000}{\sqrt{3}}}{1} = 689,84 \text{ kN}$$

$$V_{Ed} = 166.89 \text{ kN}$$

$$V_{Ed} = 166.89 \, kN$$

$$V_{Ed} = 166,89 \, kN$$

$$\frac{V_{Ed}}{V_{C,Rd}} = \frac{166,89}{689,84} = 0,24 < 1$$

$$\frac{V_{Ed}}{V_{CRd}} = \frac{166,89}{689,84} = 0.24 < \frac{1}{2}$$
 można rozpatrywać przekrój niezależnie na ścinanie i zginanie

Sprawdzenie środnika pod obciążeniem skupionym w przekroju podporowym:

$$S_{s} = \frac{h}{3} + 150 = \frac{450}{3} + 150 = 300 \text{ mm}$$

$$F_{Ed} = R = 166,89 \text{ kN}$$

$$\frac{F_{Ed}}{F_{Rd}} \le 1$$

$$F_{Rd} = \frac{f_{yw} * l_{eff} * t_{w}}{\gamma_{M1}}$$

$$l_{eff} = \chi_{F} * l_{y}$$

$$\chi_{F} = \frac{0,5}{\bar{\lambda}_{F}} \le 1$$

$$\bar{\lambda}_{F} = \sqrt{\frac{l_{y} * f_{yw} * t_{w}}{F_{Cr}}}$$

$$\begin{split} F_{Cr} &= 0.9*k_F*E*\frac{t_w^3}{h_w} \\ k_F &= 2+6*\left(\frac{S_s+c}{h_w}\right) \leq 6 \\ k_F &= 2+6*\left(\frac{S_s+c}{h_w}\right) = 2+6*\left(\frac{300+0}{379}\right) = 6.75 > 6 \\ k_F &= 6 \\ F_{Cr} &= 0.9*k_F*E*\frac{t_w^3}{h_w} = 0.9*6*210000000*\frac{(0.0094)^3}{0.379} = 2485.18 \, kN \\ \\ l_y &= \min \begin{cases} l_e+t_f*\sqrt{\frac{m_1}{2}+\left(\frac{l_e}{l_f}\right)^2+m_2} \\ l_e+t_f*\sqrt{m_1+m_2} \end{cases} \\ l_e &= \frac{k_F*E*t_w^2}{2*f_{yw}*h_w} \leq S_s+c \\ l_e &= \frac{k_F*E*t_w^2}{2*f_{yw}*h_w} = \frac{6*210000000*0.0094^2}{2*235000*0.379} = 0.63 \, m > 0.3 \, m \end{cases} \\ l_e &= 0.3m \\ m_1 &= \frac{f_{yz}*b_f}{f_{yw}*t_w} = \frac{235*0.190}{235*0.0094} = 20.21 \\ m_2 &= \begin{cases} 0.02*\left(\frac{h_w}{t_f}\right)^2 \, dla \, \bar{\lambda}_F > 0.5 \\ 0 \, dla \, \bar{\lambda}_F \leq 0.5 \end{cases} \\ m_2 &= 0.02*\left(\frac{h_w}{t_f}\right)^2 = 0.02*\left(\frac{0.379}{0.0146}\right)^2 = 13.48 \\ l_{y1} &= l_e+t_f*\sqrt{\frac{m_1}{T_f}+l_e}\left(\frac{l_e}{t_f}\right)^2 + m_2 = 0.3+0.0146*\sqrt{\frac{20.21}{2}+\left(\frac{0.3}{0.0146}\right)^2+13.48} \\ l_y &= 0.61m \\ l_y &= 0.38m \\ \bar{\lambda}_F &= \sqrt{\frac{y_Ff_{w}*t_w}{f_Fc_C}} = \sqrt{\frac{0.36*235000*0.0094}{2485.18}} = 0.58 > 0.5 \\ \chi_F &= \frac{0.5}{0.5} = \frac{0.5}{0.58} = 0.86 \\ l_{eff} &= \chi_F*l_y = 0.86*0.38 = 0.33 \, m \\ F_{Rd} &= \frac{f_{yw}*l_{eff}*t_w}{f_{N11}} = \frac{235000*0.33*0.0094}{1} = 728.97kN \\ \frac{F_{Ed}}{F_{Dd}} &= \frac{166.89}{728.97} = 0.23 < 1 \end{cases}$$

Sprawdzenie środnika pod obciążeniem skupionym w miejscu przyłożenia reakcji z belki A3: $S_s = 12 mm$

$$F_{Ed} = R = 166,89 \text{ kN}$$

$$\frac{F_{Ed}}{F_{Rd}} \le 1$$

$$F_{Rd} = \frac{f_{yw} * l_{eff} * t_w}{\gamma_{M1}}$$
$$l_{eff} = \chi_F * l_y$$

$$l_{eff} = \chi_F *$$

$$\chi_F = \frac{0.5}{\bar{\lambda}_E} \le 1$$

$$\bar{\lambda}_F = \sqrt{\frac{l_y * f_{yw} * t_w}{F_{Cr}}}$$

$$F_{Cr} = 0.9 * k_F * E * \frac{t_w^3}{h_w}$$

$$k_F = 6 + 2 * \left(\frac{h_w}{a}\right)^2$$

$$a = 4 \text{ m}$$

$$k_F = 6 + 2 * \left(\frac{h_w}{a}\right)^2 = 6 + 2 * \left(\frac{0.379}{4}\right)^2 = 6.02$$

$$F_{Cr} = 0.9 * k_F * E * \frac{t_w^3}{h_w} = 0.9 * 6.02 * 210000000 * \frac{(0.0094)^3}{0.379} = 2493.46 \text{ kN}$$

$$l_y = s_s + 2 * t_f * (1 + \sqrt{m_1 + m_2})$$

$$l_y = s_s + 2 * t_f * (1 + \sqrt{m_1 + m_2})$$

$$m_1 = \frac{f_{yt} * b_f}{f_{yw} * t_w} = \frac{235 * 0,190}{235 * 0,0094} = 20,21$$

$$m_{2} = \begin{cases} 0.02 * \left(\frac{h_{w}}{t_{f}}\right)^{2} dla \,\bar{\lambda}_{F} > 0.5 \\ 0 \ dla \,\bar{\lambda}_{F} \leq 0.5 \end{cases}$$

$$m_2 = 0.02 * \left(\frac{h_w}{t_f}\right)^2 = 0.02 * \left(\frac{0.379}{0.0146}\right)^2 = 13.48$$

$$l_y = s_s + 2 * t_f * (1 + \sqrt{m_1 + m_2}) = 0.012 + 2 * 0.0146 * (1 + \sqrt{20.21 + 13.48})$$

$$\bar{\lambda}_F = \sqrt{\frac{l_y * f_{yw} * t_w}{F_{Co.}}} = \sqrt{\frac{0.21 * 235000 * 0.0094}{249346}} = 0.43 < 0.5 \text{ zatem } m_2 = 0.43$$

$$l_{y} = s_{s} + 2 * t_{f} * (1 + \sqrt{m_{1} + m_{2}}) = 0,012 + 2 * 0,0146 * (1 + \sqrt{20,21 + 13,48})$$

$$= 0,21m < a = 4m$$

$$\bar{\lambda}_{F} = \sqrt{\frac{l_{y}*f_{yw}*t_{w}}{F_{Cr}}} = \sqrt{\frac{0,21*235000*0,0094}{2493,46}} = 0,43 < 0,5 \text{ zatem } m_{2} = 0$$

$$l_{y} = s_{s} + 2 * t_{f} * (1 + \sqrt{m_{1} + m_{2}}) = 0,012 + 2 * 0,0146 * (1 + \sqrt{20,21 + 0}) = 0,17m$$

$$< a = 4m$$

$$\bar{\lambda}_F = \sqrt{\frac{l_y * f_{yw} * t_w}{F_{Cr}}} = \sqrt{\frac{0,17 * 235000 * 0,0094}{2493,46}} = 0,39$$

$$\chi_F = \frac{\dot{0.5}}{\bar{\lambda}_F} = \frac{0.5}{0.39} = 1.28 > 1 \text{ zatem } \chi_F = 1$$

$$l_{eff} = \chi_F * l_y = 1 * 0.17 = 0.17 m$$

$$l_{eff} = \chi_F * l_y = 1 * 0.17 = 0.17 m$$

$$F_{Rd} = \frac{f_{yw} * l_{eff} * t_w}{\gamma_{M1}} = \frac{235000 * 0.17 * 0.0094}{1} = 375.53 kN$$

$$\frac{F_{Ed}}{F_{Rd}} = \frac{166,89}{375,53} = 0,44 < 1$$

Nośność elementu z uwzględnieniem zwichrzenia:

$$\begin{split} \frac{M_{Ed}}{M_{b,Rd}} &\leq 1 \\ M_{b,Rd} &= \chi_{LT} * \frac{W_{y,pl} * f_y}{\gamma_{M1}} = 1 * \frac{0,0017013 * 235000}{1} = 399,81 \, kNm \\ M_{Ed} &= M_{\max} = 289,80 \, kNm \\ \frac{M_{Ed}}{M_{b,Rd}} &= \frac{289,80}{399,81} = 0,72 < 1 \end{split}$$

Belka spełnia wymagania stanu granicznego nośności w fazie użytkowania.

2.5.5.2. Sprawdzenie nośności dla obciążenia w fazie montażu

Przekrój spełnia wymagania stanu granicznego nośności w fazie montażu ze względu na mniejsze obciążenia niż w fazie użytkowania.

Sprawdzenie nośności elementu z uwzględnieniem zwichrzenia:

$$M_{cr} = C_1 * \frac{\pi^2 * E * I_z}{(k * l)^2} * \sqrt{\left(\frac{k}{k_\omega}\right)^2 \frac{I_\omega}{I_z} + \frac{(k * l)^{2*} G * I_T}{\pi^2 * E * I_z}}$$

$$\Psi = 0$$

 $k = 1,0$
 $C_1 = 1,879$

$$\begin{split} M_{cr} &= C_1 * \frac{\pi^2 * E * I_Z}{(k * l)^2} * \sqrt{\frac{k}{k_\omega}} \frac{I_\omega}{I_Z} + \frac{(k * l)^2 * G * I_T}{\pi^2 * E * I_Z} \\ &= 1,879 * \frac{\pi^2 * 210000000 * 0,00001680}{(1*4,15)^2} \\ * \sqrt{\frac{1}{1}}^2 * \frac{0,0000007910000}{0,00001680} + \frac{(1*4,15)^2 * 81000000 * 0,00000068,9}{\pi^2 * 210000000 * 0,00001680} \\ &= 3798,91 * \sqrt{1*0,047} + 0,0276 = 1037,60 \ kNm \\ \bar{\lambda}_{LT} &= \sqrt{\frac{W_y * f_y}{M_{cr}}} = \sqrt{\frac{0,0014996 * 235000}{1037,60}} = 0,58 \\ \phi_{LT} &= 0,5 * [1 + \alpha_{LT} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2] \\ \bar{\lambda}_{LT,0} &= 0,4 \\ \beta &= 0,5 * [1 + \alpha_{LT} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2] \\ &= 0,5 * [1 + \alpha_{LT} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2] \\ &= 0,5 * [1 + \alpha_{LH} * (\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta * \bar{\lambda}_{LT}^2] \\ &= 0,5 * [1 + 0,49 * (0,58 - 0,4) + 0,75 * 0,58^2] = 0,67 \\ \chi_{LT} &= \min \begin{cases} \frac{1}{\phi_{LT}} + \sqrt{\phi_{LT}^2 - \beta * \bar{\lambda}_{LT}^2} \\ \frac{1}{\bar{\lambda}_{LT}^2} \\ \frac{1}{0,58^2} = 2,97 > 1 \end{cases} \\ \chi_{LT2} &= \frac{1}{\bar{\lambda}_{LT}^2} = \frac{1}{0,58^2} = 2,97 > 1 \\ \chi_{LT} &= 0,90 \\ \frac{M_{Ed}}{M_{b,Rd}} &\leq 1 \end{cases} \\ M_{B,Rd} &= M_{\max} &= 93,96 \ kNm \\ \frac{M_{Ed}}{M_{B,Rd}} &= \frac{93,96}{359,82} = 0,26 < 1 \end{cases}$$

Belka spełnia wymagania stanu granicznego nośności w fazie montażu.

2.5.6. Sprawdzenie ugięcia belki

Sprawdzenie stanu granicznego użytkowalności:

$$\begin{split} \mathbf{u} &\leq \mathbf{u}_{\text{dop}} \\ \mathbf{u}_{\text{dop}} &= \frac{1}{350} l_0 = \frac{1}{350} * 6,15 = 0,018 \, m \\ \mathbf{u} &= \mathbf{u}^{q} + \mathbf{u}^{P} \\ \mathbf{u}^{q} &= \frac{5}{384} * \frac{q_{k} * l_{0}^{4}}{EI} \\ \mathbf{u}^{P} &= \frac{1}{48} * \frac{P * l_{0}^{3}}{EI} \\ \xi &= \frac{C_{1}}{l_{0}} = \frac{2}{6,15} = 0,33 \\ \eta &= \xi * (3 - 4 * \xi^{2}) = 0,33 * (3 - 4 * 0,33^{2}) = 0,85 \\ P &= \eta * P_{1} = 0,85 * 101,22 = 86,04 \, \text{kN} \\ \mathbf{u} &= \mathbf{u}^{q} + \mathbf{u}^{P} = \frac{5}{384} * \frac{q_{k} * l_{0}^{4}}{EI} + \frac{1}{48} * \frac{P * l_{0}^{3}}{EI} = \frac{5}{384} * \frac{15,17 * 6,15^{4}}{210000000 * 0,00033740} + \frac{1}{48} * \frac{86,04 * 6,15^{3}}{210000000 * 0,00033740} = 0,00399 + 0,00588 = 0,0099 \, m < 0,018 \, m = u_{dop} \end{split}$$

Belka spełnia wymagania stanu granicznego użytkowalności.

2.5.7. Sprawdzenie oparcia belki na murze

2.5.7.1. Sprawdzenie muru na docisk

Wytrzymałość muru na ściskanie

$$f_k = K * f_b^{0,7} * f_m^{0,3}$$

 $f_b = 7.5 MPa$

$$J_b - 7.5 MF a$$

$$f_m = 12 MPa$$

K = 0.45 Elementy murowe I kategorii.

$$f_k = K * f_b^{0,7} * f_m^{0,3} = 0.45 * 7.5^{0,7} * 12^{0,3} = 3.89 MPa$$

$$f_d = \frac{f_k}{\gamma_M}$$

 $\gamma_M = 1.7$ Przyjęto klasę robót A oraz zaprawę projektowaną.

$$f_d = \frac{f_k}{\gamma_M} = \frac{3,89}{1,7} = 2,29 MPa$$

Sprawdzenie nośności muru na docisk

$$\begin{split} N_{Edc} &\leq N_{Rdc} \\ N_{Edc} &= 115,46 \; kN \\ N_{Rdc} &= \beta * A_b * f_d \\ \beta &= \left(1 + 0,3 * \frac{a_1}{h_c}\right) * \left(1,5 - 1,1 * \frac{A_b}{A_{ef}}\right) \leq min \begin{cases} 1,5 \\ 1,25 + \frac{a_1}{2 * h_c} \end{cases} \\ h_c &= 3,5 \; m \\ t &= 0,51 \; m \\ a_1 &= 5,815 \; m \\ A_{ef} &= l_{efm} * t \end{split}$$

$$\begin{split} l_{efm} &= 2{,}211\,m \\ A_{ef} &= l_{efm} * t = 2{,}211 * 0{,}51 = 1{,}13\,m^2 \\ A_{b} &= b_{f} * S_{s} \\ S_{s} &= \frac{h}{3} + 150 = \frac{450}{3} + 150 = 300\,mm \\ b_{f} &= 190\,mm \\ A_{b} &= b_{f} * S_{s} = 0{,}19 * 0{,}3 = 0{,}057\,m^{2} \\ \beta &= \left(1 + 0{,}3 * \frac{a_{1}}{h_{c}}\right) * \left(1{,}5 - 1{,}1 * \frac{A_{b}}{A_{ef}}\right) = \left(1 + 0{,}3 * \frac{5{,}815}{3{,}5}\right) * \left(1{,}5 - 1{,}1 * \frac{0{,}057}{1{,}13}\right) = 2{,}16 \\ &\leq min \left\{ \begin{array}{c} 1{,}5 \\ 1{,}25 + \frac{a_{1}}{2 * h_{c}} = 1{,}25 + \frac{5{,}815}{2 * 3{,}5} = 2{,}08 = 1{,}5 \end{array} \right. \\ \beta &= 1{,}5 \\ N_{Rdc} &= \beta * A_{b} * f_{d} = 1{,}5 * 0{,}057 * 2290 = 195{,}80\,kN \\ \frac{N_{Edc}}{N_{Rdc}} &= \frac{115{,}46}{195{,}80} = 0{,}59 \end{split}$$

Mur spełnia wymagania stanu granicznego nośności bez podkładki.

2.5.8. Wymiarowanie połączenia belek z podciągiem

Połącznie zakładkowe niesprężone kategorii A.

Przyjęto blachę węzłową o grubości 8 mm.

Przyjęto 3 śruby M20 klasy 8.8:

 $f_{ub} = 800 \; MPa$

 $f_{yb} = 640 \text{ MPa}.$

d = 20 mm

 $d_0 = 20 + 2 = 22 \text{ mm}$

 $1,2 * d_0 = 1,2 * 22 = 26,4 \text{ mm}$

Przyjęto odległości $e_1 = 35 \text{ mm i } e_2 = 35 \text{ mm oraz } p_2 = 122,2 \text{ mm}$

Przyjęto podkładkę okrągłą klasy C:

średnica otworu $d_1 = 22$ mm, średnica zewnętrzna $d_2 = 37$ mm, grubość h = 3 mm

Obliczenie sił w najbardziej wytężonej śrubie

$$V_{Ed} = R(A3) = 147,11 \text{ kN}$$

$$e = 49,7 \text{ mm}$$

$$M_{Ed} = V_{Ed} * e = 147,11 * 0,0497 = 7,31 \text{ kNm}$$

$$M_{\text{Ed}} = V_{\text{Ed}} * e = 147,11 * 0,0497 = 7,$$

$$F_{v,Ed} = \frac{V_{Ed}}{n} = \frac{147,11}{3} = 49,04 \, kN$$

$$F_{M,Ed} = \frac{M_{Ed}}{r} = \frac{7,31}{0,2444} = 29,91 \, kN$$

$$F_{M,Ed} = \frac{M_{Ed}}{r} = \frac{7.31}{0.2444} = 29.91 \text{ kN}$$

$$F_{Ed} = \sqrt{F_{M,Ed}^2 + F_{v,Ed}^2} = \sqrt{29,91^2 + 49,04^2} = 57,44 \text{ kN}$$

Sprawdzenie nośności na ścinanie

$$F_{v,Rd} = \frac{\alpha_v * f_{ub} * A_s}{\gamma_{M2}}$$

 $\alpha_v = 0.6$ dla śruby klasy 5.6 gdy płaszczyzna ścinania przechodzi przez gwintowaną część śruby

$$A_s = 2,45 \text{ cm}^2$$

$$f_{ub} = 800 MPa$$

$$\gamma_{M2} = 1,25$$

$$F_{v,Rd} = \frac{\alpha_v * f_{ub} * A_s}{\gamma_{M2}} = \frac{0.6 * 800000 * 0.000245}{1.25} = 94,08 \text{ kN}$$

$$\frac{F_{Ed}}{F_{v,Rd}} = \frac{57,44}{94,08} = 0,61 < 1$$

Sprawdzenie nośności na docisk
$$F_{b,Rd} = \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}}$$

 $f_u = 800 \text{ MPa}$

t = 8 mm

d = 20 mm

$$\gamma_{M2} = 1,25$$

Dla sił działających prostopadle do osi belki A3

Dla śrub skrajnych

$$\alpha_b = \min\left\{\frac{e_1}{3d_0}; \frac{f_{ub}}{f_u}; 1, 0\right\} = \min\left\{\frac{35}{3*22}; \frac{800}{800}; 1, 0\right\} = \min\{0, 53; 1, 0; 1, 0\} = 0, 53$$

$$k_1 = \min\left\{2, 8\frac{e_2}{d_0} - 1, 7; 2, 5\right\} = \min\left\{2, 8*\frac{35}{22} - 1, 7; 2, 5\right\} = \min\{2, 75; 2, 5\} = 2, 5$$

$$F_{b,Rd,1} = \frac{k_1*\alpha_b*f_u*d*t}{\gamma_{M2}} = \frac{2, 5*0, 53*800000*0, 02*0, 008}{1, 25} = 135, 68 \, kN$$

$$\alpha_{b} = \min\left\{\frac{p_{1}}{3d_{0}} - \frac{1}{4}; \frac{f_{ub}}{f_{u}}; 1,0\right\} = \min\left\{\frac{122,2}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{1,85; 1,0; 1,0\} = 1,0$$

$$k_{1} = \min\{2,8\frac{e_{2}}{d_{0}} - 1,7; 2,5\} = \min\left\{2,8*\frac{35}{22} - 1,7; 2,5\right\} = \min\{2,75; 2,5\} = 2,5$$

$$F_{b,Rd,2} = \frac{k_{1}*\alpha_{b}*f_{u}*d*t}{\gamma_{M2}} = \frac{2,5*1,0*800000*0,02*0,008}{1,25} = 256 \, kN$$

$$F_{b,Rd} = 135,68 \, kN$$

$$F_{b,Rd} = 135,68 \, kN$$

$$\frac{F_{v,Ed}}{F_{b,Rd}} = \frac{49,04}{135,68} = 0,36 < 1$$

Dla sił działających równolegle do osi belki A3

$$\alpha_b = \min\left\{\frac{e_1}{3d_0}; \frac{f_{ub}}{f_u}; 1,0\right\} = \min\left\{\frac{35}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{0,53; 1,0; 1,0\} = 0,53$$

$$k_1 = \min\{2,8\frac{e_2}{d_0} - 1,7; 2,5\} = \min\left\{2,8*\frac{35}{22} - 1,7; 2,5\right\} = \min\{2,75; 2,5\} = 2,5$$

$$F_{b,Rd} = \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}} = \frac{2,5 * 0,53 * 800000 * 0,02 * 0,008}{1,25} = 135,68 \, kN$$

$$\frac{F_{M,Ed}}{F_{b,Rd}} = \frac{29,91}{135,68} = 0,22 < 1$$

Sprawdzenie nośności na rozerwanie blokowe

$$\begin{split} V_{eff,2,Rd} &= 0.5*A_{nt}*\frac{f_u}{\gamma_{M2}} + \frac{1}{\sqrt{3}}*A_{nv}*\frac{f_y}{\gamma_{M0}} \\ A_{nv} &= 0.2294*0.008 = 0.0018 \ m^2 \\ A_{nt} &= 0.0025*0.008 = 0.00002 \ m^2 \\ V_{eff,2,Rd} &= 0.5*0.00002*\frac{360000}{1.25} + \frac{1}{\sqrt{3}}*0.0018*\frac{235000}{1.000} = 247.1 \ kN \\ \frac{V_{Ed}}{V_{eff,2,Rd}} &= \frac{147.11}{247.1} = 0.60 < 1 \end{split}$$

$$\begin{split} &(\frac{\sigma_{Ed}}{f_y/\gamma_{M0}})^2 + 3*(\frac{\tau_{Ed}}{f_y/\gamma_{M0}})^2 \leq 1 \\ &\sigma_{Ed} = \frac{M}{W_y} \\ &M = M_{\rm Ed} + V_{\rm Ed} * e = 7,31 + 147,11 * 0,035 = 12,46 \; \rm kNm \\ &I_y = \frac{0,008*0,1984^3}{12} + 0,008*0,1984*0,0992^2 + \frac{0,008*0,116^3}{12} + 0,008*0,116*0,058^2 \\ &\quad + \frac{0,081*0,0127^3}{12} + 0,081*0,0127*0,1097^2 = 0,0000374 \; m^4 \\ &W_y = \frac{I_y}{z} = \frac{0,0000374}{0,1984} = 0,000189 \; m^3 \\ &A_v = 0,3144*0,008 = 0,00252 \; m^2 \\ &M = M_{Ed} + V_{Ed} * e = 7,31 + 147,11*0,0035 = 7,82 \; kNm \\ &\sigma_{Ed} = \frac{M}{W_y} = \frac{7,82}{0,000189} = 41375,66 \; kPa \\ &\tau_{Ed} = \frac{V_{Ed}}{A_v} = \frac{147,11}{0,00252} = 58376,98 \; kPa \\ &(\frac{\sigma_{Ed}}{f_y/\gamma_{M0}})^2 + 3*\left(\frac{\tau_{Ed}}{\frac{f_y}{\gamma_{VH0}}}\right)^2 = \left(\frac{41375,66}{235000}\right)^2 + 3*\left(\frac{58376,98}{235000}\right)^2 = 0,22 < 1 \end{split}$$

Sprawdzenie nośności połączenia spawanego pomiędzy środnikiem, a blachą węzłową

$$V_{Ed} = 147,11 \, kN$$

$$M = M_{Ed} + V_{Ed} * e = 7,31 + 147,11 * 0,0045 = 7,97 \, kNm$$

$$a_{w} = 0,003 \, m$$

$$l_{w} = 0,3444 \, m$$

$$A_{w} = a_{w} * l_{w} * 2 = 0,003 * 0,3444 * 2 = 0,00207 \, m^{2}$$

$$W_{y} = \frac{0,003 * 0,3444^{2}}{6} * 2 = 0,000119 \, m^{3}$$

$$\sqrt{\sigma_{\perp}^{2} + 3 * (\tau_{\perp}^{2} + \tau_{\parallel}^{2})} \le \frac{f_{u}}{\beta_{w} * \gamma_{M2}}$$

$$\sigma_{\perp} \le 0,9 * \frac{f_{u}}{\gamma_{M2}}$$

$$\beta_{w} = 0,8 \, \text{dla stali S235}$$

$$\tau = \frac{V_{Ed}}{A_{w}} = \frac{147,11}{0,00207} = 71067,63 \, kPa$$

$$\tau = \tau_{\parallel} = 71067,63 \, kPa$$

$$\sigma = \frac{M}{W_{y}} = \frac{7,97}{0,000119} = 66974,79 \, kPa$$

$$\sigma_{\perp} = \tau_{\perp} = \frac{\sigma}{\sqrt{2}} = \frac{66974,79}{\sqrt{2}} = 47358,33 \, kPa$$

$$\sqrt{\sigma_{\perp}^{2} + 3 * (\tau_{\perp}^{2} + \tau_{\parallel}^{2})} = \sqrt{47358,33^{2} + 3 * (47358,33^{2} + 71067,63^{2})} = 155316,03 \, kPa$$

$$< 360000 \, kPa = \frac{360000}{0,8 * 1,25} = \frac{f_{u}}{\beta_{w} * \gamma_{M2}}$$

$$\sigma_{\perp} = 47358,33 \, kPa < 259200 \, kPa = 0,9 * \frac{360000}{1,25} = 0,9 * \frac{f_{u}}{\gamma_{M2}}$$

Połącznie belki A3 z podciągiem P1 spełnia wymagania nośności.

3. Obliczenia blachownicy

3.1. Schemat statyczny

$$a = 22.9 m$$

 $l_0 = a * 1,025 = 22.9 * 1,025 = 23,47 m$

3.2. Zestawienie obciążeń

Ciężar własny
$$g_k = (0,7+0,1*l_0)*\beta$$

$$\beta = 0,85$$

$$g_k = (0,7+0,1*l_0)*\beta = (0,7+0,1*23,47)*0,85 = 2,59 \frac{kN}{m}$$

$$g_d = 1,35*g_k = 1,35*2,59 = 3,50 \frac{kN}{m}$$

Reakcje z belek

Faza użytkowania
$$N_{A1d}=135,21\,kN$$
 $N_{A1k}=93,05\,kN$ $N_{A1d}=\frac{e^*}{e}*N_{A1d}=\frac{3,3925}{3,3}*135,21=139\,kN$ $N_{A1k}^*=\frac{e^*}{e}*N_{A1k}=\frac{3,3925}{3,3}*93,05=95,66\,kN$ $N_{P1d}=166,89\,kN$ $N_{P1k}=114,95\,kN$

Faza montażu
$$N_{A1d}=42,06~kN$$
 $N_{A1d}^*=\frac{e^*}{e}*N_{A1d}=\frac{3,3925}{3,3}*42,06=43,24~kN$ $N_{P1d}=54,74~kN$

3.3. Obliczenie sił wewnętrznych

3.3.1. Siły wewnętrzne dla obciążeń użytkowych

Dla SGN

Schemat statyczny

Wykres momentów zginających M [kNm]

Wykres sił tnących V [kN]

Dla SGU

Schemat statyczny

Wykres momentów zginających M [kNm]

Wykres sił tnących V [kN]

3.3.2. Siły wewnętrzne dla obciążeń w fazie montażu

Schemat statyczny

Wykres momentów zginających M [kNm]

Wykres sił tnących V [kN]

3.4. Optymalizacja wymiarów przekroju poprzecznego blachownicy

$$\begin{split} \frac{M_{Ed}}{M_{c,Rd}} &\leq 1 \\ M_{c,Rd} &= \frac{W_y * f_y}{\gamma_{M0}} \\ f_y &= 235 \; MPa \; \text{Przyjęto stal S235.} \\ \gamma_{M0} &= 1.0 \\ W_{y,pot} &= \frac{M_{c,Rd} * \gamma_{M0}}{f_y} = \frac{3006,40 * 1.0}{235000} = 0,01279 \; m^3 \end{split}$$

LP	h _{w,opt}	h _w	t _w	h _w /t _w	b _f	t _f	c/t	Wy	W _y /W _{y,pot}	А	G
	[m]	[m]	[m]	[-]	[m]	[m]	[-]	[m ³]	[-]	[m ²]	[kN/m]
1.	1,48689	1,49	0,007	212,86	0,302	0,03	4,916667	0,015996	1,250686	0,02855	2,19835
2.	1,48689	1,49	0,007	212,86	0,314	0,029	5,293103	0,016068	1,256263	0,028642	2,205434
3.	1,48689	1,49	0,007	212,86		0,028	5,660714	0,01602	1,252518	0,028574	2,200198
4.	1,48689	1,49	0,007	212,86	0,336	0,027	6,092593	0,016023	1,252738	0,028574	2,200198
5.	1,48689	1,49	0,007	212,86	0,348	0,026	6,557692	0,01599	1,250163	0,028526	2,196502
6.	1,48689	1,49	0,007	212,86	0,362	0,025	7,1	0,015995	1,250619	0,02853	2,19681
7.	1,48689	1,49	0,007	212,86	0,378	0,024	7,729167	0,016031	1,253408	0,028574	2,200198
8.	1,48689	1,49	0,007	212,86	0,394	0,023	8,413043	0,016019	1,25247	0,028554	2,198658
9.	1,48689	1,49	0,007	212,86	0,412	0,022	9,204545	0,016025	1,252932	0,028558	2,198966
10.	1,48689	1,49	0,007	212,86	0,432	0,021	10,11905	0,01604	1,254095	0,028574	2,200198
11.	1,39086	1,395	0,008	174,38	0,308	0,03	5	0,015385	1,202902	0,02964	2,28228
12.	1,39086	1,395	0,008	174,38	0,318	0,029	5,344828	0,015363	1,201168	0,029604	2,279508
13.	1,39086	1,395	0,008	174,38	0,33	0,028	5,75	0,015391	1,203363	0,02964	2,28228
14.	1,39086	1,395	0,008	174,38	0,342	0,027	6,185185	0,015386	1,202942	0,029628	2,281356
15.	1,39086	1,395	0,008	174,38	0,356	0,026	6,692308	0,015419	1,205578	0,029672	2,284744
16.	1,39086	1,395	0,008	174,38	0,37	0,025	7,24	0,015414	1,20516	0,02966	2,28382
17.	1,39086	1,395	0,008	174,38	0,384	0,024	7,833333	0,01537	1,20169	0,029592	2,278584
18.	1,39086	1,395	0,008	174,38	0,4	0,023	8,521739	0,01535	1,200186	0,02956	2,27612
19.	1,39086	1,395	0,008	174,38	0,42	0,022	9,363636	0,015409	1,204793	0,02964	2,28228
20.	1,39086	1,395	0,008	174,38	0,438	0,021	10,2381	0,015354	1,200456	0,029556	2,275812
21.	1,24402	1,245	0,01	124,50	0,328	0,03	5,3	0,014724	1,151247	0,03213	2,47401
22.	1,24402	1,245	0,01	124,50	0,34	0,029	5,689655	0,014753	1,153445	0,03217	2,47709
23.	1,24402	1,245	0,01	124,50	0,352	0,028	6,107143	0,014751	1,153309	0,032162	2,476474
24.	1,24402	1,245	0,01	124,50	0,364	0,027	6,555556	0,014719	1,150836	0,032106	2,472162
25.	1,24402	1,245	0,01	124,50	0,378	0,026	7,076923	0,014722	1,151094	0,032106	2,472162
26.	1,24402	1,245	0,01	124,50	0,394	0,025	7,68	0,014753	1,153496	0,03215	2,47555
27.	1,24402	1,245	0,01	124,50	0,41	0,024	8,333333	0,014744	1,152785	0,03213	2,47401
28.	1,24402	1,245	0,01	124,50	0,428	0,023	9,086957	0,014752	1,153439	0,032138	2,474626
29.	1,24402	1,245	0,01	124,50	0,446	0,022	9,909091	0,014716	1,15059	0,032074	2,469698
30.	1,24402	1,245	0,01	124,50	0,468	0,021	10,90476	0,014739	1,152417	0,032106	2,472162
31.	1,13563	1,140	0,012	95,00	0,34	0,03	5,466667	0,014107	1,103005	0,03408	2,62416
32.	1,13563	1,140	0,012		0,352	0,029	5,862069	0,01412	1,10399	0,034096	2,625392
33.	1,13563	1,140	0,012		0,364	0,028	6,285714	0,014105	1,102837	0,034064	2,622928
34.	1,13563	1,140	0,012		0,378	0,027	6,777778	0,014125	1,104363	0,034092	2,625084
35.	1,13563	1,140	0,012	95,00		0,026	7,307692	0,014112	1,103393	0,034064	2,622928
36. 37.	1,13563 1,13563	1,140 1,140	0,012		0,408 0,424	0,025	7,92 8,583333	0,014125 0,014101	1,104389 1,102533	0,03408 0,034032	2,62416 2,620464
38.	1,13563	1,140	0,012	95,00	0,442	0,023	9,347826	0,014094	1,101929	0,034012	2,618924
39.	1,13563	1,140	0,012	95,00	0,462	0,022	10,22727	0,014095	1,102041	0,034008	
40.	1,13563	1,140	0,012	95,00	0,484	0,021	11,2381	0,014099	1,102335	0,034008	2,618616

Przyjęto następujące charakterystyki blachownicy:

 $h_w = 1,395 m$ $t_w = 0,008 m$ $b_f = 0,33 m$ $t_f = 0,028 m$ $W_y = 0,01539 m^3$ $A = 0,02964 m^2$ G = 2,28 kN/m

Wstępne sprawdzenie ugięcia

$$\begin{split} I_y^* &= k*I_y \\ k &= 1, 2-0, 033*\lambda_w^* \leq 1 \\ \lambda_w^* &= \frac{h_w}{t_w}*\sqrt{\frac{f_y}{E}} = \frac{1,395}{0,008}*\sqrt{\frac{235000}{210000000}} = 5,83 \\ k &= 1, 2-0, 033*\lambda_w^* = 1, 2-0, 033*5, 83 = 1,01 > 1 \\ k &= 1 \\ I_y^* &= k*I_y = 1*I_y = I_y \\ I_y &= \frac{t_w*h_w^3}{12} + 2*(\frac{b_f*t_f^3}{12} + b_f*t_f*(\frac{h_w}{2} + \frac{t_f}{2})^2 \\ &= \frac{0,008*1,395^3}{12} + 2*(\frac{0,33*0,028^3}{12} + 0,33*0,028*(\frac{1,395}{2} + \frac{0,028}{2})^2 \\ &= 0,01117 \, m^4 \end{split}$$

$$u \le u_{\text{dop}} = \frac{1}{350} l_0 = \frac{1}{350} * 23,47 = 0,067 m$$

$$u = u^q + u^P$$

$$u^q = \frac{5}{384} * \frac{q_k * l_0^4}{EI}$$

$$u^P = \frac{1}{48} * \frac{P * l_0^3}{EI}$$

$$\xi = \frac{C}{l_0}$$

$$\eta = \xi * (3 - 4 * \xi^2)$$

$$P_k = \sum_{n} \eta_i * P_i$$

ι-1					
n	c _i	ξ_i	η_i	P_1	$P_i * \eta_i$
1	3,485	0,148	0,432	95,66	41,360
2	6,785	0,289	0,771	93,05	71,708
3	10,085	0,430	0,972	93,05	90,420
4	10,085	0,430	0,972	93,05	90,420
5	6,785	0,289	0,771	93,05	71,708
6	3,485	0,148	0,432	95,66	41,360
				Σ	406,975

$$\begin{array}{l} {\bf u} = {\bf u}^{\bf q} + {\bf u}^{\bf P} = \frac{5}{384} * \frac{q_k * l_0^4}{EI} + \frac{1}{48} * \frac{P * l_0^3}{EI} = \frac{5}{384} * \frac{2,59 * 23,47^4}{210000000 * 0,01117} + \frac{1}{48} * \frac{406,975 * 23,47^3}{210000000 * 0,01117} = 0,004362 + 0,04673 = 0,0511 \, m < 0,067 \, m = u_{dop} \end{array}$$

3.5. Kształtowanie podłużne blachownicy

3.5.1. Dobór rodzaju i układu żeber

Przyjęto wszystkie żebra pełne

Rozstaw żeber skrajnych: $a_{skr} = 1550 \text{ mm}$ Rozstaw żeber wewnętrznych a = 1650 mm

3.5.2. Kształtowanie stref podziału

Przyjęto następujące grubości pasów zgodnie ze szkicem:

h _w [m]	t _w [m]	b _f [m]	t _f [m]	W _y [m ³]	M _{c,Rd} [kNm]
			0,028	0,01539	3618,89
1,395	0,008	0,33	0,025	0,01402	3294,33
			0,016	0,009903	2327,29

Blachownicę podzielono na 3 elementy wysyłkowe o długościach odpowiednio 8500 mm, 6200 mm oraz 8500 mm. Miejsca podziału pokrywają się z miejscami zmiany grubości pasów z 28 mm na 25 mm.

3.6. Sprawdzenie SGN blachownicy

Wyznaczenie klasy przekroju Środnik:

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

$$\frac{h_w}{t_w} = \frac{1,395}{0,008} = 174,38 > 124\varepsilon = 124$$

Jest to klasa IV.

$$\frac{c}{t_f} = \frac{0,161}{0,028} = 5,75 < 9\varepsilon = 9$$

Jest to klasa I.

Przekrój jest klasy IV.

Efekt szerokiego pasa

$$b_o \le \frac{l_e}{50}$$
 $l_e = 23,47 m$
 $b_0 = 0,161 m$
 $0,161 m < \frac{23,46}{50} = 0,469 m$
Efekt szerokiego pasa nie wyst

Efekt szerokiego pasa nie wystąpi.

3.6.1. Sprawdzenie nośności przekroju blachownicy z warunku na zginanie

Lokalna utrata stateczności

$$\begin{split} \Psi &= \frac{\sigma_2}{\sigma_1} = -1 \\ k_{\delta} &= 23.9 \\ \bar{\lambda}_p &= \frac{\bar{b}}{28.3 * \varepsilon * \sqrt{k_{\delta}}} \\ \bar{b} &= h_w = 1,395 \, m \\ t &= t_w = 0,008 \, m \\ \bar{\lambda}_p &= \frac{\bar{b}}{28.3 * \varepsilon * \sqrt{k_{\delta}}} = \frac{1,395}{28.3 * 1 * \sqrt{23.9}} = 1,26 \\ \rho &= 1,0 \, dla \, \bar{\lambda}_p \leq 0,5 + \sqrt{0,085 - 0,055\Psi} = 0,87 \\ \rho &= \frac{\bar{\lambda}_p - 0,055 * (3 + \Psi)}{\bar{\lambda}_p^2} = \frac{1,26 - 0,055 * (3 - 1)}{1,26^2} = 0,72 < 1 \, dla \, \bar{\lambda}_p \\ &> 0,5 + \sqrt{0,085 - 0,055\Psi} = 0,87 \\ \rho &= 0,72 \\ b_{eff} &= b_c * \rho = \rho * \frac{\bar{b}}{1 - \Psi} = 0,72 \cdot \frac{1,395}{1 - (-1)} = 0,5022 \, m \\ b_{e1} &= 0,4 * b_{eff} = 0,4 * 0,5022 = 0,2009 \, m \\ b_{e2} &= 0,6 * b_{eff} = 0,6 * 0,5022 = 0,3013 \, cm \\ A_{eff} &= 0,028 * 0,33 * 2 + 0,008 * (0,6975 + 0,2009 + 0,3013) = 0,02808 \, m^2 \\ S_{y1} &= 0,6975 * 0,008 * (-0,3488) + 0,33 * 0,028 * (-(0,014 + 0,6975)) + 0,33 * 0,028 \\ &\quad * (0,014 + 0,6975) + 0,008 * 0,3013 * 0,1507 + 0,008 * 0,2009 \\ &\quad * (0,1005 + 0,1953 + 0,3013) = -0,0006234 \, m^3 \\ z_c &= \frac{S_{y1}}{A_{eff}} = -\frac{0,0006234}{0,02808} = -0,02221 \, m \end{split}$$

		Ψ	k_{σ}	$\overline{\lambda_p}$	ρ	$b_{\rm eff}$	b _{e1}	b_{e2}	$\Delta_{ m y}$
_		[-]	[-]	[-]	[-]	[m]	[m]	[m]	[m]
	1.	-1	23,9	1,260	0,72	0,5022	0,2009	0,3013	-0,02221
	2.	-0,938	22,31	1,304	0,70	0,5039	0,2015	0,3023	-0,02202
	3.	-0,939	22,33	1,304	0,70	0,5037	0,2015	0,3022	-0,02204
	4.	-0,939	22,33	1,304	0,70	0,5037	0,2015	0,3022	-0,02204

Przekrój niebezpieczny: maksymalny moment zginający $t_f = 28 \ mm$

$$I_{y,eff} = \frac{0,33 * 0,028^{3}}{12} + 0,028 * 0,33 * 0,68946^{2} + \frac{0,33 * 0,028^{3}}{12} + 0,028 * 0,33$$

$$* 0,73354^{2} + \frac{0,008 * 0,67546^{3}}{12} + 0,008 * 0,67546 * 0,32873^{2}$$

$$+ \frac{0,008 * 0,32424^{3}}{12} + 0,008 * 0,32424 * 0,16212^{2} + \frac{0,008 * 0,2015^{3}}{12}$$

$$+ 0,008 * 0,2015 * 0,61879^{2} = 0,01087 m^{4}$$

$$z_{max} = 0,748 m$$

$$I_{y} = 0,01087$$

$$z_{max} = 0,748 m$$

$$W_{eff} = \frac{I_y}{z_{max}} = \frac{0,01087}{0,748} = 0,01453 m^3$$

$$M_{c,Rd} = \frac{W_{eff} * f_y}{\gamma_{M0}} = \frac{0,01453 * 235000}{1} = 3414,55 kNm$$

$$M_{Ed} = 3006,40 kNm$$

$$\eta_1 = \frac{M_{Ed}}{M_{c,Rd}} = \frac{3006,40}{3414,55} = 0,88 < 1$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na zginanie.

Przekrój niebezpieczny: maksymalna siła tnąca

$$\begin{split} t_f &= 16 \ mm \\ I_{y,eff} &= \frac{0,33*0,016^3}{12} + 0,016*0,33*0,68346^2 + \frac{0,33*0,016^3}{12} + 0,016*0,33 \\ &* 0,72754^2 + \frac{0,008*0,67546^3}{12} + 0,008*0,67546*0,32873^2 \\ &+ \frac{0,008*0,32424^3}{12} + 0,008*0,32424*0,16212^2 + \frac{0,008*0,2015^3}{12} \\ &+ 0,008*0,2015*0,61879^2 = 0,006764 \ m^4 \end{split}$$

$$z_{max} &= 0,736 \ m \\ W_{eff} &= \frac{I_y}{z_{max}} = \frac{0,006764}{0,736} = 0,009190 \ m^3 \\ M_{c,Rd} &= \frac{W_{eff}*f_y}{\gamma_{M0}} = \frac{0,009190*235000}{1} = 2159,65 \ kNm \end{split}$$

$$M_{Ed} &= 0 \\ \eta_1 &= \frac{M_{Ed}}{M_{c,Rd}} = \frac{0}{2159,65} = 0,88 < 1 \end{split}$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na zginanie.

Przekrój niebezpieczny: zmiana grubości pasów z 28 mm na 25 mm

$$\begin{split} I_{y,eff} &= \frac{0.33*0.025^3}{12} + 0.025*0.33*0.68796^2 + \frac{0.33*0.025^3}{12} + 0.025*0.33\\ &* 0.73204^2 + \frac{0.008*0.67546^3}{12} + 0.008*0.67546*0.32873^2\\ &+ \frac{0.008*0.32424^3}{12} + 0.008*0.32424*0.16212^2 + \frac{0.008*0.2015^3}{12}\\ &+ 0.008*0.2015*0.61879^2 = 0.009830\ m^4 \end{split}$$

$$z_{max} &= 0.745\ m\\ W_{eff} &= \frac{l_y}{z_{max}} = \frac{0.009830}{0.745} = 0.01319\ m^3\\ M_{c,Rd} &= \frac{W_{eff}*f_y}{\gamma_{M0}} = \frac{0.01319*235000}{1} = 3099.65\ kNm\\ M_{Ed} &= 2793.12\ kNm\\ \eta_1 &= \frac{M_{Ed}}{M_{c,Rd}} = \frac{2793.12}{3099.65} = 0.90 < 1 \end{split}$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na zginanie.

Przekrój niebezpieczny: zmiana grubości pasów z 25 mm na 16 mm

$$\begin{split} t_f &= 16 \ mm \\ I_{y,eff} &= \frac{0,33*0,016^3}{12} + 0,016*0,33*0,68346^2 + \frac{0,33*0,016^3}{12} + 0,016*0,33 \\ &\quad * 0,72754^2 + \frac{0,008*0,67546^3}{12} + 0,008*0,67546*0,32873^2 \\ &\quad + \frac{0,008*0,32424^3}{12} + 0,008*0,32424*0,16212^2 + \frac{0,008*0,2015^3}{12} \\ &\quad + 0,008*0,2015*0,61879^2 = 0,006764 \ m^4 \end{split}$$

$$z_{max} &= 0,736 \ m \\ W_{eff} &= \frac{I_y}{z_{max}} = \frac{0,006764}{0,736} = 0,009190 \ m^3 \\ M_{c,Rd} &= \frac{W_{eff}*f_y}{\gamma_{M0}} = \frac{0,009190*235000}{1} = 2159,65 \ kNm \\ M_{Ed} &= 1608,30 \\ \eta_1 &= \frac{M_{Ed}}{M_{c,Rd}} = \frac{1608,30}{2159.65} = 0,74 < 1 \end{split}$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na zginanie.

Przekrój niebezpieczny: 0,2 rozpiętości belki od podpory (0,2*23470=4694 mm od podpory)

$$\begin{split} I_{y,eff} &= \frac{25 \, mm}{12} \\ I_{y,eff} &= \frac{0,33*0,025^3}{12} + 0,025*0,33*0,68796^2 + \frac{0,33*0,025^3}{12} + 0,025*0,33 \\ &\quad * 0,73204^2 + \frac{0,008*0,67546^3}{12} + 0,008*0,67546*0,32873^2 \\ &\quad + \frac{0,008*0,32424^3}{12} + 0,008*0,32424*0,16212^2 + \frac{0,008*0,2015^3}{12} \\ &\quad + 0,008*0,2015*0,61879^2 = 0,009830 \, m^4 \\ z_{max} &= 0,745 \, m \\ W_{eff} &= \frac{l_y}{z_{max}} = \frac{0,009830}{0,745} = 0,01319 \, m^3 \\ M_{c,Rd} &= \frac{W_{eff}*f_y}{\gamma_{M0}} = \frac{0,01319*235000}{1} = 3099,65 \, kNm \\ M_{Ed} &= 1908,09 \, kNm \\ \eta_1 &= \frac{M_{Ed}}{M_{a,Rd}} = \frac{1908,09}{3099,65} = 0,62 < 1 \end{split}$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na zginanie.

3.6.2. Sprawdzenie nośności przekroju blachownicy z warunku na ścinanie

$$\begin{split} &\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \leq 1 \\ &\frac{h_w}{t_w} \leq 31 * \frac{\epsilon}{\eta} * \sqrt{k_\tau} \\ &\frac{a}{h_w} = \frac{1650}{1395} > 1 \rightarrow k_\tau = 5,34 + 4 * \left(\frac{h_w}{a}\right)^2 \\ &k_\tau = 5,34 + 4 * \left(\frac{1395}{1650}\right)^2 = 8,20 \\ &\eta = 1,2 \\ &\epsilon = \sqrt{\frac{235}{235}} = 1 \\ &\frac{h_w}{t_w} = \frac{1395}{8} = 174,38 > 31 * \frac{\epsilon}{\eta} * \sqrt{k_\tau} = 31 * \frac{1}{1,2} * \sqrt{8,20} = 73,98 \end{split}$$

Należy zastosować żebra poprzeczne przy podporach i sprawdzić niestateczność przy ścinaniu..

$$V_{b,Rd} = V_{b_w,Rd} + V_{bf,Rd} \le \frac{\eta * f_{yw} * t_w * h_w}{\sqrt{3} * \gamma_{M1}}$$

Nośność środnika na ścinanie

$$V_{b_{w}rd} = \chi_{w} * \frac{f_{yw} * t_{w} * h_{w}}{\sqrt{3} * \gamma_{M1}}$$

$$\overline{\lambda_{w}} = \frac{h_{w}}{37,4 * t_{w} * \epsilon * \sqrt{k_{\tau}}} = \frac{1395}{37,4 * 8 * 1 * \sqrt{8,20}} = 1,628$$

$$\overline{\lambda_{w}} > 1,08, \text{ żebro podporowe sztywne, } \eta = 1,2$$

$$\chi_{w} = \frac{1,37}{0,7 + \overline{\lambda_{w}}} = \frac{1,37}{0,7 + 1,628} = 0,588$$

$$V_{b_{w},Rd} = \chi_{w} * \frac{f_{yw} * t_{w} * h_{w}}{\sqrt{3} * \gamma_{M1}} = 0,588 * \frac{235000 * 0,008 * 1,395}{\sqrt{3} * 1} = 890,33 \ kN$$

Przekrój niebezpieczny: maksymalny moment zginający

$$t_f = 28 \ mm$$

Nośność pasa na ścinanie

$$V_{b_f,Rd} = \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{M_{Ed}}{M_{f,Rd}} \right)^2 \right]$$

$$b_f = 15 * \epsilon * t_f = 15 * 1 * 0,028 = 0,42 > 0,33$$

$$M_{f,Rd} = \frac{M_{f,Rk}}{\gamma_{M0}}$$

$$M_{f,Rk} = W_y * f_{yt}$$

$$W_y = \frac{2 * \left(\frac{0,33 * 0,028^3}{12} + 0,33 * 0,028 * (0,6975 + 0,014)^2 \right)}{0,6975 + 0,028} = 0,01290 \, m^3$$

$$\begin{split} M_{f,Rk} &= W_y * f_{yt} = 0.01290 * 235000 = 3031.5 \, kNm \\ M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} = \frac{3031.5}{1} = 3031.5 \, kNm \\ c &= a * \left(0.25 + \frac{1.6 * b_f * t_f^2 * f_{yt}}{t_w * h_w^2 * f_{yw}}\right) = 1.65 * \left(0.25 + \frac{1.6 * 0.33 * 0.028^2 * 235000}{0.008 * 1.395^2 * 235000}\right) \\ &= 0.4564 \\ V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{M_{Ed}}{M_{f,Rd}}\right)^2\right] = \frac{0.33 * 0.028^2 * 235000}{0.4564 * 1} * \left[1 - \left(\frac{3006.40}{3031.5}\right)^2\right] \\ &= 132.23 \, kN \\ V_{b,Rd} &= V_{b_w,Rd} + V_{bf,Rd} = 890.33 + 132.23 = 1022.56 \, kN < \frac{\eta * f_{yw} * t_w * h_w}{\sqrt{3} * \gamma_{M1}} \\ &= \frac{1.2 * 235000 * 0.008 * 1.395}{\sqrt{3} * 1} = 1816.99 \, kN \end{split}$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na ścinanie.

Przekrój niebezpieczny: maksymalna siła tnąca

$$\begin{split} t_f &= 16 \ mm \\ \text{Nośność pasa na ścinanie} \\ V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{\mathsf{M}_{\mathrm{Ed}}}{\mathsf{M}_{\mathrm{f,Rd}}}\right)^2\right] \\ b_f &= 15 * \varepsilon * t_f = 15 * 1 * 0,016 = 0,24 \\ M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} \\ M_{f,Rk} &= W_y * f_{yt} \\ W_y &= \frac{2 * (\frac{0,24 * 0,016^3}{12} + 0,24 * 0,016 * (0,6975 + 0,008)^2)}{0,6975 + 0,016} = 0,005358 \ m^3 \\ M_{f,Rk} &= W_y * f_{yt} = 0,005358 * 235000 = 1259,13 \ kNm \\ M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} = \frac{1259,13}{1} = 1259,13 \ kNm \\ c &= a * \left(0,25 + \frac{1,6 * b_f * t_f^2 * f_{yt}}{t_w * h_w^2 * f_{yw}}\right) = 1,65 * \left(0,25 + \frac{1,6 * 0,24 * 0,016^2 * 235000}{0,008 * 1,395^2 * 235000}\right) \\ &= 0,4229 \\ V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{\mathsf{M}_{\mathrm{Ed}}}{\mathsf{M}_{f,\mathrm{Rd}}}\right)^2\right] = \frac{0,24 * 0,016^2 * 235000}{0,4229 * 1} * \left[1 - \left(\frac{0}{1259,13}\right)^2\right] \\ &= 34,14 \ kN \\ V_{b,Rd} &= V_{b_w,Rd} + V_{bf,Rd} = 890,33 + 34,14 = 924,47 \ kN < \frac{\eta * f_{yw} * t_w * h_w}{\sqrt{3} * \gamma_{M1}} \\ &= \frac{1,2 * 235000 * 0,008 * 1,395}{\sqrt{3} * 1} = 1816,99 \ kN \end{split}$$

$$V_{Ed} = 450,49 \text{ kN}$$

 $\eta_3 = \frac{V_{Ed}}{V_{b.Rd}} = \frac{450,49}{924,47} = 0,49 < 1$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na ścinanie.

Przekrój niebezpieczny: zmiana grubości pasów z 28 mm na 25 mm

$$t_f = 25 mm$$

Nośność pasa na ścinanie
$$\begin{split} V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{\mathsf{M}_{\mathrm{Ed}}}{\mathsf{M}_{\mathrm{f,Rd}}}\right)^2\right] \\ b_f &= 15 * \varepsilon * t_f = 15 * 1 * 0,025 = 0,38 > 0,33 \\ M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} \\ M_{f,Rk} &= W_y * f_{yt} \\ W_y &= \frac{2 * (\frac{0,33 * 0,025^3}{12} + 0,33 * 0,025 * (0,6975 + 0,0125)^2)}{0,6975 + 0,025} = 0,01151 \, m^3 \\ M_{f,Rk} &= W_y * f_{yt} = 0,01151 * 235000 = 2704,85 \, kNm \\ M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} = \frac{2704,85}{1} = 2704,85 \, kNm \\ c &= a * \left(0,25 + \frac{1,6 * b_f * t_f^2 * f_{yt}}{\mathsf{t}_w * h_w^2 * f_{yw}}\right) = 1,65 * \left(0,25 + \frac{1,6 * 0,33 * 0,025^2 * 235000}{0,008 * 1,395^2 * 235000}\right) \\ &= 0,4475 \\ V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{\mathsf{M}_{\mathrm{Ed}}}{\mathsf{M}_{\mathrm{f,Rd}}}\right)^2\right] = \frac{0,33 * 0,025^2 * 235000}{0,4475 * 1} * \left[1 - \left(\frac{2793,12}{2704,85}\right)^2\right] < 0 \end{split}$$

Pasy są w pełni wykorzystane przy przenoszeniu momentu zginającego

$$\begin{split} V_{b,Rd} &= V_{b_w,Rd} = 890,33 = 890,33 \ kN < \frac{\eta * f_{yw} * t_w * h_w}{\sqrt{3} * \gamma_{M1}} \\ &= \frac{1,2 * 235000 * 0,008 * 1,395}{\sqrt{3} * 1} = 1816,99 \ kN \\ V_{Ed} &= 146,07 \ kN \\ \eta_3 &= \frac{V_{Ed}}{V_{b,Rd}} = \frac{146,07}{890,33} = 0,16 < 1 \end{split}$$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na ścinanie.

Przekrój niebezpieczny: zmiana grubości pasów z 25 mm na 16 mm

$$t_f = 16 \ mm$$

Nośność pasa na ścinanie

$$V_{b_f,Rd} = \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{M_{Ed}}{M_{f,Rd}} \right)^2 \right]$$

$$b_f = 15 * \epsilon * t_f = 15 * 1 * 0.016 = 0.24$$

$$\begin{split} M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} \\ M_{f,Rk} &= W_y * f_{yt} \\ W_y &= \frac{2 * (\frac{0,24 * 0,016^3}{12} + 0,24 * 0,016 * (0,6975 + 0,008)^2)}{0,6975 + 0,016} = 0,005358 \, m^3 \\ M_{f,Rk} &= W_y * f_{yt} = 0,005358 * 235000 = 1259,13 \, kNm \\ M_{f,Rd} &= \frac{M_{f,Rk}}{\gamma_{M0}} = \frac{1259,13}{1} = 1259,13 \, kNm \\ c &= a * \left(0,25 + \frac{1,6 * b_f * t_f^2 * f_{yt}}{t_w * h_w^2 * f_{yw}}\right) = 1,65 * \left(0,25 + \frac{1,6 * 0,24 * 0,016^2 * 235000}{0,008 * 1,395^2 * 235000}\right) \\ &= 0,4229 \\ V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{M_{\rm Ed}}{M_{\rm f,Rd}}\right)^2\right] = \frac{0,24 * 0,016^2 * 235000}{0,4229 * 1} * \left[1 - \left(\frac{1608,30}{1259,13}\right)^2\right] < 0 \end{split}$$

Pasy są w pełni wykorzystane przy przenoszeniu momentu zginającego

$$V_{b,Rd} = V_{b_w,Rd} = 890,33 = 890,33 \ kN < \frac{\eta * f_{yw} * t_w * h_w}{\sqrt{3} * \gamma_{M1}}$$
$$= \frac{1,2 * 235000 * 0,008 * 1,395}{\sqrt{3} * 1} = 1816,99 \ kN$$
$$V_{rd} = 298.60 \ kN$$

$$V_{Ed} = 298,60 \text{ kN}$$

 $\eta_3 = \frac{V_{Ed}}{V_{b.Rd}} = \frac{298,60}{890,33} = 0,34 < 1$

 $t_f = 25 mm$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na ścinanie.

Przekrój niebezpieczny: 0,2 rozpiętości belki od podpory (0,2*23470=4694 mm od podpory)

Nośność pasa na ścinanie
$$V_{b_f,Rd} = \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{\mathsf{M}_{\mathrm{Ed}}}{\mathsf{M}_{\mathrm{f,Rd}}}\right)^2\right]$$

$$b_f = 15 * \varepsilon * t_f = 15 * 1 * 0,025 = 0,38 > 0,33$$

$$M_{f,Rd} = \frac{M_{f,Rk}}{\gamma_{M0}}$$

$$M_{f,Rk} = W_y * f_{yt}$$

$$W_y = \frac{2 * (\frac{0,33 * 0,025^3}{12} + 0,33 * 0,025 * (0,6975 + 0,0125)^2)}{0,6975 + 0,025} = 0,01151 \, m^3$$

$$M_{f,Rk} = W_y * f_{yt} = 0,01151 * 235000 = 2704,85 \, kNm$$

$$M_{f,Rd} = \frac{M_{f,Rk}}{\gamma_{M0}} = \frac{2704,85}{1} = 2704,85 \, kNm$$

$$c = a * \left(0,25 + \frac{1,6 * b_f * t_f^2 * f_{yt}}{t_w * h_w^2 * f_{yw}}\right) = 1,65 * \left(0,25 + \frac{1,6 * 0,33 * 0,025^2 * 235000}{0,008 * 1,395^2 * 235000}\right)$$

$$\begin{split} V_{b_f,Rd} &= \frac{b_f * t_f^2 * f_{yt}}{c * \gamma_{M1}} * \left[1 - \left(\frac{\mathsf{M}_{Ed}}{\mathsf{M}_{f,Rd}} \right)^2 \right] = \frac{0.33 * 0.025^2 * 235000}{0.4475 * 1} * \left[1 - \left(\frac{1908.09}{2704.85} \right)^2 \right] \\ &= 54.41 \; kN \\ V_{b,Rd} &= V_{b_w,Rd} + V_{bf,Rd} = 890.33 + 54.41 = 944.74 \; kN < \frac{\eta * f_{yw} * t_w * h_w}{\sqrt{3} * \gamma_{M1}} \\ &= \frac{1.2 * 235000 * 0.008 * 1.395}{\sqrt{3} * 1} = 1816.99 \; kN \\ V_{Ed} &= 944.74 \; kN \end{split}$$

$$V_{Ed} = 944,74 \text{ kN}$$

 $\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} = \frac{295,06}{944,74} = 0.31 < 1$

Przekrój spełnia wymagania stanu granicznego nośności ze względu na ścinanie.

3.6.3. Sprawdzenie nośności przekroju blachownicy z warunku na obciążenie skupione Nie ma potrzeby sprawdzania warunku z uwagi na obecność żeber poprzecznych pełnych w miejscach przyłożenia wszystkich sił skupionych.

3.6.4. Sprawdzenie interakcyjnych warunków nośności

W każdym przypadku $\overline{\eta_3}$ < 0,5 – nie ma potrzeby sprawdzać interakcyjnych warunków nośności.

3.6.5. Sprawdzenie stateczności pasa przy smukłym środniku

$$\frac{h_w}{t_w} \le k * \frac{E}{f_{yf}} \sqrt{\frac{A_w}{A_{fc}}}$$

$$k=0,55$$

$$\frac{h_w}{t_w} = \frac{1,395}{0,008} = 174,38 < k * \frac{E}{f_{yf}} \sqrt{\frac{A_w}{A_{fc}}} = 0,55 * \frac{210000000}{235000} \sqrt{\frac{1,395*0,008}{0,33*0,028}} = 540,14$$
Pas ściskany nie utraci stateczności.

3.6.6. Sprawdzenie stateczności blachownicy z warunku na zwichrzenie

$$\begin{split} M_{cr} &= C_1 * \frac{\pi^2 * E * I_Z}{(k*l)^2} * \sqrt{\left(\frac{k}{k_\omega}\right)^2 \frac{I_\omega}{I_Z} + \frac{(k*l)^{2*} G * I_T}{\pi^2 * E * I_Z}} \\ I_z &= 0,00016777 \ m^4 \\ I_T &= 0,0000048168 \ m^4 \\ I_\omega &= 0,000084928 \ m^6 \end{split}$$

$$\begin{split} \Psi &= 1 \\ k &= 1,0 \\ C_1 &= 1,0 \\ M_{CT} &= C_1 * \frac{\pi^2 * E * I_Z}{(k * l)^2} * \sqrt{\left(\frac{k}{k_\omega}\right)^2 \frac{I_\omega}{I_Z} + \frac{(k * l)^{2*}G * I_T}{\pi^2 * E * I_Z}} \\ &= 1,0 * \frac{\pi^2 * 210000000 * 0,00016777}{(1 * 3,3)^2} \\ * \sqrt{\left(\frac{1}{1}\right)^2 * \frac{0,000084928}{0,00016777} + \frac{(1 * 3,3)^2 * 81000000 * 0,0000048168}{\pi^2 * 210000000 * 0,00016777}} = \\ &= 22990,74 \ kNm \\ \bar{\lambda}_{LT} &= \sqrt{\frac{W_y * f_y}{M_{CT}}} = \sqrt{\frac{0,01453 * 235000}{22990,74}} = 0,39 \\ \bar{\lambda}_{LT,0} &= 0,4 \\ \bar{\lambda}_{LT} &= 0,39 < \bar{\lambda}_{LT,0} = 0,4 \\ \chi_{LT} &= 1,0 \\ \frac{M_{Ed}}{M_{b,Rd}} &\leq 1 \\ M_{b,Rd} &= \chi_{LT} * \frac{W_y * f_y}{\gamma_{M1}} = 1,0 * \frac{0,01453 * 235000}{1} = 3414,55 \ kNm \\ M_{Ed} &= M_{\max} = 1101,24 \ kNm \\ \frac{M_{Ed}}{M_{b,Rd}} &= \frac{1101,24}{3414,55} = 0,32 < 1 \end{split}$$

Blachownica spełnia wymagania stanu granicznego nośności w fazie montażu.

3.7. Sprawdzenie spoin pasowych blachownicy

$$\begin{split} \tau &= \frac{V * \bar{S}}{I * b} \\ V_{max} &= 450,49 \ kN \\ \bar{S} &= 0,33 * 0,028 * \left(0,6975 + \frac{0,028}{2}\right) = 0,006574 \ m^3 \\ I_{y,min} &= \frac{0,33 * 0,016^3}{12} + 0,016 * 0,33 * 0,68346^2 + \frac{0,33 * 0,016^3}{12} + 0,016 * 0,33 \\ &\quad * 0,72754^2 + \frac{0,008 * 0,67546^3}{12} + 0,008 * 0,67546 * 0,32873^2 \\ &\quad + \frac{0,008 * 0,32424^3}{12} + 0,008 * 0,32424 * 0,16212^2 + \frac{0,008 * 0,2015^3}{12} \\ &\quad + 0,008 * 0,2015 * 0,61879^2 = 0,006764 \ m^4 \end{split}$$

$$\tau &= \frac{V * \bar{S}}{I * b} = \frac{450,49 * 0,006574}{0,006764 * b} = \frac{437,836}{b} \frac{kN}{m} \\ b &= 2 * a_w \\ \sqrt{\sigma_{\perp}^2 + 3 * \left(\tau_{\perp}^2 + \tau_{\parallel}^2\right)} \leq \frac{f_u}{\beta_w * \gamma_{M2}} \\ \sigma_{\perp} &= 0 \\ \tau_{\perp} &= 0 \\ \tau_{\parallel} &= \tau \\ a_w \\ \sqrt{3 * \left(\frac{437,836}{2 * a_{vv}}\right)^2} \leq \frac{360000}{0.8 * 1.25} \end{split}$$

$$\sqrt{3 * \left(\frac{437,836}{2 * a_w}\right)^2} \le \frac{360000}{0.8 * 1,25}$$

 $a_w \ge 0.001053 \ m = 1.05 \ mm$

$$0.2 * t_f = 0.2 * 28 = 5.6 \ mm \le a_w \le 0.7 * t_w = 0.7 * 8 = 5.6 \ mm$$

Przyjęto $a_w = 5 mm$

3.8. Wymiarowanie styku montażowego blachownicy (środnika i pasa)

Przyjęto odległość spoin pasowych od styku montażowego

$$c = 20 * t_f = 20 * 0.028 = 0.56 m$$

Dla łączonych pasów przyjęto spoinę typu V

3.9. Sprawdzenie SGU blachownicy

Sprawdzenie ugięcia

$$\begin{split} I_y^* &= k * I_y \\ k &= 1, 2 - 0,033 * \lambda_w^* \leq 1 \\ \lambda_w^* &= \frac{h_w}{t_w} * \sqrt{\frac{f_y}{E}} = \frac{1,395}{0,008} * \sqrt{\frac{235000}{210000000}} = 5,83 \\ k &= 1, 2 - 0,033 * \lambda_w^* = 1, 2 - 0,033 * 5,83 = 1,01 > 1 \\ k &= 1 \end{split}$$

$$\begin{split} I_y^* &= k * I_y = 1 * I_y = I_y \\ I_{y,eff} &= 0.01087 \ m^4 \\ u &\leq u_{dop} \\ u_{dop} &= \frac{1}{350} l_0 = \frac{1}{350} * 23,47 = 0.067 \ m \\ u &= u^q + u^P \\ u^q &= \frac{5}{384} * \frac{q_k * l_0^4}{EI} \\ u^P &= \frac{1}{48} * \frac{P * l_0^3}{EI} \\ \xi &= \frac{C}{l_0} \\ \eta &= \xi * (3 - 4 * \xi^2) \\ P_k &= \sum_{i=1}^n \eta_i * P_i \end{split}$$

n	Ci	ξ_i	η_i	\mathbf{P}_1	$P_i * \eta_i$
1	3,485	0,148	0,432	95,66	41,360
2	6,785	0,289	0,771	93,05	71,708
3	10,085	0,430	0,972	93,05	90,420
4	10,085	0,430	0,972	93,05	90,420
5	6,785	0,289	0,771	93,05	71,708
6	3,485	0,148	0,432	95,66	41,360
				Σ	406,975

$$u = u^{q} + u^{P} = \frac{5}{384} * \frac{q_{k}*l_{0}^{4}}{EI} + \frac{1}{48} * \frac{P*l_{0}^{3}}{EI} = \frac{5}{384} * \frac{2,59*23,47^{4}}{210000000*0,01087} + \frac{1}{48} * \frac{406,975*23,47^{3}}{210000000*0,01087} = 0,004483 + 0,04802 = 0,0525 \, m < 0,067 \, m = u_{dop}$$

Sprawdzenie częstotliwości drgań własnych

$$\omega_0 = \frac{k^2 * \pi^2}{l^2} * \sqrt{\frac{E * I_y}{\mu}}$$

$$k = 1$$

$$\mu = \frac{2,28}{9,81} * 1000 = 232,42 \frac{kg}{m}$$

$$\omega_0 = \frac{k^2 * \pi^2}{l^2} * \sqrt{\frac{E * I_y}{\mu}} = \frac{1^2 * \pi^2}{23,47^2} * \sqrt{\frac{210000000000 * 0,00683}{232,42}} = 44,51 \text{ Hz}$$

$$\omega_0 = 44,51 \text{ Hz} > 5 \text{ Hz}$$

Blachownica spełnia wymagania stanu granicznego użytkowalności.

3.10. Wymiarowanie żebra podporowego

3.10.1. Ustalenie przekroju żebra

3.10.2. Obliczenie momentu bezwładności żebra

$$I_{s} = \frac{0,252 * 0,008^{3}}{12} + \frac{0,012 * 0,208^{3}}{12} - \frac{0,012 * 0,008^{3}}{12} = 0,000009009 m^{4}$$

$$\begin{split} I_T &= \frac{\alpha}{3} * \sum_{i=1}^n b_i * t_i^3 \\ \alpha &= 1 \\ I_T &= \frac{1}{3} * b_s * t_s^3 = \frac{1}{3} * 0,1 * 0,012^3 = 0,0000000576 \, m^4 \\ I_0 &= I_y + I_z \\ I_y &= \frac{b_s * t_s^3}{12} = \frac{0,1 * 0,012^3}{12} = 0,0000000144 \, m^4 \\ I_z &= \frac{t_s * b_s^3}{12} + \left(\frac{b_s}{2}\right)^2 * t_s * b_s = \frac{0,012 * 0,1^3}{12} + \left(\frac{0,1}{2}\right)^2 * 0,012 * 0,1 = 0,0000004 \, m^4 \\ I_0 &= I_y + I_z = 0,00000000144 + 0,0000004 = 0,0000004014 \, m^4 \end{split}$$

Skrętna utrata stateczności

$$\frac{I_T}{I_0} = \frac{0,0000000576}{0.000004014} = 0,01435 > 5,3 * \frac{f_y}{E} = 5,3 * \frac{235000}{210000000} = 0,005931$$

Skrętna utrata stateczności nie nastąpi.

3.10.3. Sprawdzenie nośności żebra na ściskanie z wyboczeniem

$$\begin{split} &\frac{N_{Ed}}{N_{b,Rd}} \le 1 \\ &N_{b,Rd} = \chi * \frac{A * f_y}{\gamma_{M1}} \\ &\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + \bar{\lambda}^2}} \\ &\Phi = 0.5 * \left[1 + \alpha * \left(\bar{\lambda} - 0.2 \right) + \bar{\lambda}^2 \right] \end{split}$$

$$\begin{split} \bar{\lambda} &= \sqrt{\frac{A*f_y}{N_{cr}}} \\ N_{cr} &= \frac{\pi^2 * E * I}{(k*l)^2} \\ k &= 0.75 \\ l &= 1.395 \, m \\ I &= \frac{0.252 * 0.008^3}{12} + \frac{0.012 * 0.208^3}{12} - \frac{0.012 * 0.008^3}{12} = 0.000009009 \, m^4 \\ A &= 0.252 * 0.008 + 2 * 0.012 * 0.1 = 0.004416 \, m^2 \\ N_{cr} &= \frac{\pi^2 * E * I}{(k*l)^2} = \frac{\pi^2 * 2100000000 * 0.000009009}{(0.75 * 1.395)^2} = 17057.87 \, kN \\ \bar{\lambda} &= \sqrt{\frac{A*f_y}{N_{cr}}} = \sqrt{\frac{0.004416 * 235000}{17057.87}} = 0.25 \\ \alpha(c) &= 0.49 \\ \Phi &= 0.5 * \left[1 + \alpha * (\bar{\lambda} - 0.2) + \bar{\lambda}^2\right] = 0.5 * \left[1 + 0.49 * (0.25 - 0.2) + 0.25^2\right] = 0.54 \\ \chi &= \frac{1}{\Phi + \sqrt{\Phi^2 + \bar{\lambda}^2}} = \frac{1}{0.54 + \sqrt{0.54^2 + 0.25^2}} = 0.88 \\ N_{b,Rd} &= \chi * \frac{A*f_y}{\gamma_{M1}} = 0.88 * \frac{0.004416 * 235000}{1.0} = 913.23 \, kN \\ N_{Ed} &= 617.38 \, kN \\ N_{Ed} &= 617.38 \, kN \\ \frac{N_{Ed}}{N_{b,Rd}} &= \frac{617.38}{913.23} = 0.68 < 1 \end{split}$$

Warunek nośności na ściskanie z wyboczeniem jest spełniony.

3.10.4. Sprawdzenie docisku żebra do pasa

$$\begin{split} \frac{N_{Ed,s}}{A_s} &\leq f_y \\ N_{Ed,s} &= \frac{1}{2} * \frac{2*0,1*0,012}{0,252*0,008+2*0,012*0,1}*617,38 = 167,77 \ kN \\ A_s &= (b_s - c_s) * t_s = (0,1-0,025)*0,012 = 0,0009 \ m^2 \\ \frac{N_{Ed,s}}{A_s} &= \frac{167,77}{0,0009} = 186411,11 \ kPa < f_y = 235000 \ kPa \\ \textbf{Warunek jest spelniony.} \end{split}$$

3.11. Wymiarowanie żeber pośrednich

3.11.1. Ustalenie przekroju żebra

3.11.2. Obliczenie momentu bezwładności żebra

$$\frac{a}{h_w} = \frac{1650}{1395} = 1,18 < \sqrt{2}$$

$$I_{st} \ge 1,5 * \frac{h_w^3 * t_w^3}{a^2} = 1,5 * \frac{1,395^3 * 0,008^3}{1,65^2} = 0,0000007658 \, m^4$$

$$I_{st} = \frac{0,252 * 0,008^3}{12} + \frac{0,012 * 0,208^3}{12} - \frac{0,012 * 0,008^3}{12} = 0,000009009 \, m^4$$

$$0,000009009 \, m^4 > 0,0000007658 \, m^4$$
We remark jest spalnions

Warunek jest spełniony

$$\begin{split} I_T &= \frac{\alpha}{3} * \sum_{i=1}^n b_i * t_i^3 \\ \alpha &= 1 \\ I_T &= \frac{1}{3} * b_s * t_s^3 = \frac{1}{3} * 0.1 * 0.012^3 = 0.0000000576 \ m^4 \\ I_0 &= I_y + I_z \\ I_y &= \frac{b_s * t_s^3}{12} = \frac{0.1 * 0.012^3}{12} = 0.0000000144 \ m^4 \\ I_z &= \frac{t_s * b_s^3}{12} + \left(\frac{b_s}{2}\right)^2 * t_s * b_s = \frac{0.012 * 0.1^3}{12} + \left(\frac{0.1}{2}\right)^2 * 0.012 * 0.1 = 0.0000004 \ m^4 \\ I_0 &= I_y + I_z = 0.00000000144 + 0.000004 = 0.0000004014 \ m^4 \end{split}$$

Skrętna utrata stateczności

$$\frac{I_T}{I_0} = \frac{0,0000000576}{0,000004014} = 0,01435 > 5,3 * \frac{f_y}{E} = 5,3 * \frac{235000}{210000000} = 0,005931$$

Skrętna utrata stateczności nie nastąpi.

$$\begin{array}{l} \mathbf{3.11.3. Sprawdzenic nošności żebra na ściskanie z wyboczeniem} \\ N_{Ed.s} F + N_{Ed.s} F \\ F = 139 \, kN \\ N_{Ed.s} = V_{Ed} - \frac{1}{\lambda_w} * \frac{f_{yw} * h_w * t_w}{\sqrt{3} * \gamma_{M1}} > 0 \\ V_{Ed} = 438,30 \, kN \\ \bar{\lambda}_w = \frac{h_w}{37,4 * t_w * \varepsilon * \sqrt{k_\tau}} \\ k_\tau = 5,34 + 4 * \left(\frac{h_w}{a}\right)^2 = 5,34 + 4 * \left(\frac{1395}{1650}\right)^2 = 8,20 \\ \bar{\lambda}_w = \frac{h_w}{37,4 * t_w * \varepsilon * \sqrt{k_\tau}} = \frac{1,395}{37,4 * 0,008 * 1 * \sqrt{3.20}} = 1,63 \\ N_{Ed.s} = V_{Ed} - \frac{1}{\lambda_w^2} * \frac{f_{yw} * h_w * t_w}{\sqrt{3} * \gamma_{M1}} = 438,30 - \frac{1}{1,632} * \frac{235000 * 1,395 * 0,008}{\sqrt{3} * 1} = -131,60 \\ < 0 \\ \text{Przyjcto } N_{Ed.s} = 0 \\ N_{Ed} = F = 139 \, kN \\ q = \frac{\pi}{4} * \sigma_m * (w_0 + w_{el}) \\ w_0 = \frac{1}{300} \\ s = \min\{1,65;1,395\} = 1,395 \, m \\ w_0 = \frac{1}{300} = 0,00465 \, m \\ w_{el} = \frac{b}{300} = \frac{1,395}{300} = 0,00465 \, m \\ w_{el} = \frac{b}{300} = \frac{1,395}{300} = 0,00465 \, m \\ \sigma_{m} = \frac{\sigma_{Cr.c}}{\sigma_{Cr.p}} * \frac{N_{Ed}}{b} * (\frac{1}{a_1} + \frac{1}{a_2}) \\ \sigma_{Cr.p} = k_\sigma * \sigma_E \\ \sigma_{Cr.p} = k_\sigma * \sigma_E \\ z = 21,77 \\ \sigma_E = \frac{\pi^2 * E * t_w^2}{12 * (1 - v^2) * h_w^2} = \frac{\pi^2 * 210000000 * 0,008^2}{12 * (1 - 0,3^2) * 1,395^2} = 6242,06 \, kPa \\ \sigma_{Cr.p} = k_\sigma * \sigma_E = 21,77 * 6242,06 = 135889,65 \, kPa \\ N_{Ed}^2 = \frac{1}{2} * \sigma_1 * b_{eff} * t_w \\ \sigma_1 = 1,044 * \sigma = 1,044 * \frac{M}{W} = 1,044 * \frac{1548,71}{0,009903} = 163269 \, kPa \\ b_{eff} = 15 * \varepsilon * t_f = 15 * 1 * 1 * 0,016 = 0,24 m \\ N_{Ed}^2 = \frac{1}{2} * \sigma_1 * b_{eff} * t_w = \frac{1}{2} * 163269 * 0,24 * 0,008 = 156,74 \, kN \\ \sigma_m = \frac{\sigma_{Cr.c}}{\sigma_{Cr.p}} * \frac{N_{Ed}^2}{b} * \left(\frac{1}{a_1} + \frac{1}{a_2}\right) = \frac{4461,78}{435889,65} * \frac{156,74}{1,395} * \left(\frac{1}{1,65} + \frac{1}{1,65}\right) = 4,47 \, kPa \\ \sigma_{m} = \frac{\sigma_{Cr.c}}{\sigma_{Cr.c}} * \frac{N_{Ed}^2}{b} * \left(\frac{1}{a_1} + \frac{1}{a_2}\right) = \frac{4461,78}{135889,65} * \frac{156,74}{1,395} * \left(\frac{1}{1,65} + \frac{1}{1,65}\right) = 4,47 \, kPa \\ \sigma_{m} = \frac{\sigma_{Cr.c}}{\sigma_{Cr.c}} * \frac{N_{Ed}^2}{b} * \left(\frac{1}{a_1} + \frac{1}{a_2}\right) = \frac{1356,74}{13589,65} * \frac{1}{1,395} * \left(\frac{1}{1,65} + \frac{1}{1,65}\right) = 4,47 \, kPa \\ \sigma_{m} = \frac{\sigma_{Cr.c}}{\sigma_{Cr.c}} * \frac{N_{Ed}^2}{b} * \left(\frac{1}{a_1} + \frac{1}{a_2}\right) = \frac{1356,74}{135889,65} * \frac{1}{1,395} * \left(\frac{1}{1,65} + \frac{1}{$$

Warunek nośności na ściskanie z wyboczeniem jest spełniony.

3.11.4. Sprawdzenie docisku żebra do pasa

$$\begin{split} \frac{N_{Ed,s}}{A_s} &\leq f_y \\ N_{Ed,s} &= \frac{1}{2} * \frac{2 * 0.1 * 0.012}{0.252 * 0.008 + 2 * 0.012 * 0.1} * 139 = 37,77 \, kN \\ A_s &= (b_s - c_s) * t_s = (0.1 - 0.025) * 0.012 = 0.0009 \, m^2 \\ \frac{N_{Ed,s}}{A_s} &= \frac{37,77}{0.0009} = 41966,67 \, kPa < f_y = 235000 \, kPa \end{split}$$

Warunek jest spełniony.

3.12. Wymiarowanie łożyska podporowego

3.12.1. Wymiarowanie poduszki

$$\begin{split} &\sigma_{bH} = 0.42 \left(\frac{PE}{b_w r}\right)^{0.5} \leq 3.6 f_y \\ &P = 617,38 \ kN \\ &b_w = 0.33 \ m \\ &r \geq \frac{0.42^2}{3.6^2} * \frac{PE}{b_w f_y^2} = \frac{0.42^2}{3.6^2} * \frac{617,38 * 210000000}{0.33 * 235000^2} = 0.0968 \ m \\ &\text{Przyjęto } r = 0.5 \ m \\ &a_2 = 3.052 * \left(\frac{Pr}{b_w E}\right)^{0.5} = 3.052 * \left(\frac{617,38 * 0.5}{0.33 * 210000000}\right)^{0.5} = 0.00644 \ m \\ &h_1 = 15 \ mm > 0.75 h = 0.75 * 18 = 13.5 \ mm \end{split}$$

3.12.2 Wymiarowanie płyty poziomej

Beton C20/25, $f_{cd} = 14,29$ MPa.

$$P = 617,38 \text{ kN}$$

$$A_0 = \frac{P}{f_{cd}} = \frac{617,38}{14290} = 0,0432 \, m^2 = 432 \, cm^2$$

Przyjęto blachę o wymiarach 500mm x 200mm o A = 1000 cm²

Ustalenie grubości

$$M = \frac{ql^2}{2}$$

$$M_{c,Rd} = \frac{Wf_y}{\gamma_{M0}}$$

$$W = \frac{bt^2}{6}$$

$$q = \frac{P}{0,2} = \frac{617,38}{0,2} = 3086,90 \frac{kN}{m}$$

$$M = \frac{ql^2}{2} = \frac{3086,90*0,05^2}{2} = 3,86 kNm$$

$$t \ge \left(6*\frac{M}{b*f_y}\right)^{0,5} = \left(6*\frac{3,86}{0,2*235000}\right)^{0,5} = 0,022 m = 22 mm$$
Przyjęto blachę o t = 22 mm

Wymiarowanie sworzni utrzymujących blachownicę na poduszce.

Założono sworznie klasy 5.6

$$F_{V,Rd} = \frac{\alpha_v * f_{ub} * A}{\gamma_{M2}}$$

$$\alpha_v = 0.6$$

$$f_{ub} = 500 MPa$$

$$\gamma_{M2} = 1.25$$

$$F_{Ed} = 0.05 * 617.38 kN = 30.87 kN$$

$$A \ge \frac{F_{Ed}\gamma_{M2}}{\alpha_v f_{ub}} = \frac{30.87 * 1.25}{0.6 * 500000} = 0.000129 m^2 = 129 mm^2$$

$$d \ge \left(\frac{4A}{\pi}\right)^{0.5} = \left(\frac{4 * 129}{\pi}\right)^{0.5} = 12.8 mm$$
Przyjęto sworznie M14 $d = 14 mm$

Przyjęto kotwy Hilti HST3 M16 (obliczono przy pomocy programu Hilti Anchor)

Przyjęto grubość podlewki cementowej, na której zostanie ułożona płyta pozioma 30 mm.

3.13. Wymiarowanie połączeń belek z blachownicą

Połączenie belki A1 z blachownicą B1.

Połącznie zakładkowe niesprężone kategorii A.

Przyjęto blachę węzłową o grubości 8 mm.

Przyjęto 3 śruby M20 klasy 8.8:

 $f_{ub} = 800 \; MPa$

 $f_{yb} = 640 \text{ MPa}.$

 $d = 20 \ mm$

 $d_0 = 20 + 2 = 22 \ mm$

 $1,2 * d_0 = 1,2 * 22 = 26,4 \text{ mm}$

Przyjęto odległości $e_1 = 35 \text{ mm}$ i $e_2 = 35 \text{ mm}$ oraz $p_2 = 120 \text{ mm}$

Przyjęto podkładkę okrągłą klasy C:

średnica otworu $d_1 = 22$ mm, średnica zewnętrzna $d_2 = 37$ mm, grubość h = 3 mm

Obliczenie sił w najbardziej wytężonej śrubie

$$V_{Ed} = R(A1) = 135,21 \text{ kN}$$

e = 49 mm

$$M_{Ed} = V_{Ed} * e = 135,21 * 0,049 = 6,63 \text{ kNm}$$

$$F_{v,Ed} = \frac{V_{Ed}}{n} = \frac{135,21}{3} = 45,07 \text{ kN}$$

$$F_{M,Ed} = \frac{M_{Ed}}{r} = \frac{6,63}{0,240} = 27,63 \text{ kN}$$

$$F_{Ed} = \sqrt{F_{M,Ed}^2 + F_{v,Ed}^2} = \sqrt{27,63^2 + 45,07^2} = 52,87 \text{ kN}$$

Sprawdzenie nośności na ścinanie

$$F_{v,Rd} = \frac{\alpha_v * f_{ub} * A_s}{\gamma_{M2}}$$

 $\alpha_{\nu} = 0.6$ dla śruby klasy 5.6 gdy płaszczyzna ścinania przechodzi przez gwintowaną część śruby $A_s = 2,45 \text{ cm}^2$

$$f_{ub} = 800 MPa$$

$$\gamma_{M2}^{ab}=1,25$$

$$F_{v,Rd} = \frac{\alpha_v * f_{ub} * A_s}{\gamma_{M2}} = \frac{0.6 * 800000 * 0.000245}{1.25} = 94.08 \, kN$$

$$\frac{F_{Ed}}{F_{v,Rd}} = \frac{52,87}{94,08} = 0,56 < 1$$

Sprawdzenie nośności na docisk
$$F_{b,Rd} = \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}}$$

 $f_u = 800 \text{ MPa}$

t = 8 mm

d = 20 mm

$$\gamma_{M2} = 1,25$$

Dla sił działających prostopadle do osi belki A3

Dla śrub skrajnych

$$\alpha_b = \min\left\{\frac{e_1}{3d_0}; \frac{f_{ub}}{f_u}; 1,0\right\} = \min\left\{\frac{35}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{0,53; 1,0; 1,0\} = 0,53$$

$$k_1 = \min\{2,8\frac{e_2}{d_0} - 1,7; 2,5\} = \min\left\{2,8*\frac{35}{22} - 1,7; 2,5\right\} = \min\{2,75; 2,5\} = 2,5$$

$$F_{b,Rd,1} = \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}} = \frac{2,5 * 0,53 * 800000 * 0,02 * 0,008}{1,25} = 135,68 \text{ kN}$$

$$\alpha_b = \min\left\{\frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1,0\right\} = \min\left\{\frac{120}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{1,82; 1,0; 1,0\} = 1,0$$

$$k_{1} = \min\{2, 8\frac{e_{2}}{d_{0}} - 1,7; 2,5\} = \min\{2, 8*\frac{35}{22} - 1,7; 2,5\} = \min\{2,75; 2,5\} = 2,5$$

$$F_{b,Rd,2} = \frac{k_{1}*\alpha_{b}*f_{u}*d*t}{\gamma_{M2}} = \frac{2,5*1,0*800000*0,02*0,008}{1,25} = 256 kN$$

$$F_{b,Rd,2} = \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}} = \frac{2,5 * 1,0 * 800000 * 0,02 * 0,008}{1,25} = 256 \, kN$$

$$F_{b,Rd} = 135,68 \, kN$$

$$\frac{F_{v,Ed}}{F_{h,Rd}} = \frac{45,07}{135,68} = 0.33 < 1$$

Dla sił działających równolegle do osi belki A3

$$\begin{split} \alpha_b &= \min \left\{ \frac{e_1}{3d_0}; \frac{f_{ub}}{f_u}; 1,0 \right\} = \min \left\{ \frac{35}{3*22}; \frac{800}{800}; 1,0 \right\} = \min \{0,53; \ 1,0; 1,0\} = 0,53 \\ k_1 &= \min \{ 2,8 \frac{e_2}{d_0} - 1,7; 2,5 \} = \min \left\{ 2,8 * \frac{35}{22} - 1,7; 2,5 \right\} = \min \{2,75; 2,5 \} = 2,5 \\ F_{b,Rd} &= \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}} = \frac{2,5 * 0,53 * 800000 * 0,02 * 0,008}{1,25} = 135,68 \, kN \\ \frac{F_{M,Ed}}{F_{b,Rd}} &= \frac{27,63}{135,68} = 0,22 < 1 \end{split}$$

Sprawdzenie nośności na rozerwanie blokowe

$$\begin{split} V_{eff,2,Rd} &= 0.5*A_{nt}*\frac{f_u}{\gamma_{M2}} + \frac{1}{\sqrt{3}}*A_{nv}*\frac{f_y}{\gamma_{M0}} \\ A_{nv} &= 0.225*0.008 = 0.0018\,m^2 \\ A_{nt} &= 0.025*0.008 = 0.0002\,m^2 \\ V_{eff,2,Rd} &= 0.5*0.0002*\frac{360000}{1.25} + \frac{1}{\sqrt{3}}*0.0018*\frac{235000}{1.00} = 273.02\,kN \\ \frac{V_{Ed}}{V_{eff,2,Rd}} &= \frac{135.21}{273.02} = 0.50 < 1 \end{split}$$

Sprawdzenie nośności przekroju osłabionego

$$(\frac{\sigma_{Ed}}{f_y/\gamma_{M0}})^2 + 3 * (\frac{\tau_{Ed}}{f_y/\gamma_{M0}})^2 \le 1$$

$$\sigma_{Ed} = \frac{M}{W_y}$$

$$M = M_{Ed} + V_{Ed} * e = 6,63 + 135,21 * 0,035 = 11,36 \text{ kNm}$$

$$I_y = 0,00003170 \text{ } m^4$$

$$W_y = \frac{I_y}{z} = \frac{0,00003170}{0,1904} = 0,000166 \text{ } m^3$$

$$A_v = 0,310 * 0,008 = 0,00248 \text{ } m^2$$

$$\sigma_{Ed} = \frac{M}{W_y} = \frac{11,36}{0,000166} = 68433,73 \text{ } kPa$$

$$\tau_{Ed} = \frac{V_{Ed}}{A_v} = \frac{135,21}{0,00248} = 57782,05 \text{ } kPa$$

$$(\frac{\sigma_{Ed}}{f_y/\gamma_{M0}})^2 + 3 * (\frac{\tau_{Ed}}{\frac{f_y}{\gamma_{VO}}})^2 = (\frac{68433,73}{\frac{235000}{1}})^2 + 3 * (\frac{57782,05}{\frac{235000}{1}})^2 = 0,27 < 1$$

Sprawdzenie nośności połączenia spawanego pomiędzy środnikiem, a blachą węzłową

$$V_{Ed} = 135,21 \, kN$$

$$M = M_{Ed} + V_{Ed} * e = 6,63 + 135,21 * 0,045 = 12,71 \, kNm$$

$$a_{w} = 0,003 \, m$$

$$l_{w} = 0,33 \, m$$

$$A_{w} = a_{w} * l_{w} * 2 = 0,003 * 0,33 * 2 = 0,001872 \, m^{2}$$

$$W_{y} = \frac{0,003 * 0,33^{2}}{6} * 2 = 0,00009734 \, m^{3}$$

$$\sqrt{\sigma_{\perp}^{2} + 3 * (\tau_{\perp}^{2} + \tau_{\parallel}^{2})} \le \frac{f_{u}}{\beta_{w} * \gamma_{M2}}$$

$$\sigma_{\perp} \le 0,9 * \frac{f_{u}}{\gamma_{M2}}$$

$$\beta_{w} = 0,8 \, \text{dla stali S235}$$

$$\tau = \frac{V_{Ed}}{A_{w}} = \frac{135,21}{0,001872} = 72227,56 \, kPa$$

$$\tau = \tau_{\parallel} = 72227,56 \, kPa$$

$$\sigma = \frac{M}{W_{y}} = \frac{12,71}{0,00009734} = 130573,2 \, kPa$$

$$\sigma_{\perp} = \tau_{\perp} = \frac{\sigma}{\sqrt{2}} = \frac{130573,2}{\sqrt{2}} = 92329,20 \, kPa$$

$$\sqrt{\sigma_{\perp}^{2} + 3 * (\tau_{\perp}^{2} + \tau_{\parallel}^{2})} = \sqrt{92329,20^{2} + 3 * (92329,20^{2} + 72227,56^{2})} = 223045,3 \, kPa$$

$$< 360000 \, kPa = \frac{360000}{0,8 * 1,25} = \frac{f_{u}}{\beta_{w} * \gamma_{M2}}$$

$$\sigma_{\perp} = 92329,20 \, kPa < 259200 \, kPa = 0,9 * \frac{360000}{1,25} = 0,9 * \frac{f_{u}}{\gamma_{M2}}$$

Połącznie belki A1 z blachownicą B1 spełnia wymagania nośności.

Połączenie podciągu P1 z blachownicą B1.

Połącznie zakładkowe niesprężone kategorii A.

Przyjęto blachę węzłową o grubości 10 mm.

Przyjęto 3 śruby M20 klasy 8.8:

 $f_{ub} = 800 \text{ MPa}$

 $f_{yb} = 640 \text{ MPa}.$

d = 20 mm

 $d_0 = 20 + 2 = 22 \ mm$

 $1,2 * d_0 = 1,2 * 22 = 26,4 \text{ mm}$

Przyjęto odległości $e_1 = 35 \text{ mm i } e_2 = 35 \text{ mm oraz } p_2 = 165 \text{ mm}$

Przyjęto podkładkę okrągłą klasy C:

średnica otworu $d_1 = 22$ mm, średnica zewnętrzna $d_2 = 37$ mm, grubość h = 3 mm

Obliczenie sił w najbardziej wytężonej śrubie

$$V_{Ed} = R(P1) = 166,89 \text{ kN}$$

e = 49 mm

$$M_{Ed} = V_{Ed} * e = 166,89 * 0,049 = 8,18 \text{ kNm}$$

$$F_{v,Ed} = \frac{V_{Ed}}{n} = \frac{166,89}{3} = 55,63 \text{ kN}$$

 $M_{Ed} = 8.18$

$$F_{M,Ed} = \frac{M_{Ed}}{r} = \frac{8,18}{0,33} = 26,22 \text{ kN}$$

$$F_{Ed} = \sqrt{F_{M,Ed}^2 + F_{v,Ed}^2} = \sqrt{26,22^2 + 55,63^2} = 61,50 \text{ kN}$$

Sprawdzenie nośności na ścinanie

$$F_{v,Rd} = \frac{\alpha_v * f_{ub} * A_s}{\gamma_{M2}}$$

 $\alpha_{\nu} = 0.6$ dla śruby klasy 5.6 gdy płaszczyzna ścinania przechodzi przez gwintowaną część śruby $A_s = 2,45 \text{ cm}^2$

$$f_{ub} = 800 \, MPa$$

$$\gamma_{M2} = 1.25$$

$$\gamma_{M2} = 1,25$$

$$F_{v,Rd} = \frac{\alpha_v * f_{ub} * A_s}{\gamma_{M2}} = \frac{0,6 * 800000 * 0,000245}{1,25} = 94,08 \, kN$$

$$\frac{F_{Ed}}{F_{v,Rd}} = \frac{61,50}{94,08} = 0,65 < 1$$

Sprawdzenie nośności na docisk
$$F_{b,Rd} = \frac{k_1*\alpha_b*f_u*d*t}{\gamma_{M2}}$$

 $f_u = 800 \text{ MPa}$

t = 10 mm

d = 20 mm

$$\gamma_{M2} = 1,25$$

Dla sił działających prostopadle do osi belki A3

Dla śrub skrajnych

$$\alpha_b = \min\left\{\frac{e_1}{3d_0}; \frac{f_{ub}}{f_u}; 1,0\right\} = \min\left\{\frac{35}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{0,53; 1,0; 1,0\} = 0,53$$

$$k_1 = \min\{2.8 \frac{e_2}{d_0} - 1.7; 2.5\} = \min\{2.8 * \frac{35}{22} - 1.7; 2.5\} = \min\{2.75; 2.5\} = 2.5$$

$$k_{1} = \min\{2,8\frac{e_{2}}{d_{0}} - 1,7;2,5\} = \min\left\{2,8*\frac{35}{22} - 1,7;2,5\right\} = \min\{2,75;2,5\} = 2,5$$

$$F_{b,Rd,1} = \frac{k_{1}*\alpha_{b}*f_{u}*d*t}{\gamma_{M2}} = \frac{2,5*0,53*800000*0,02*0,01}{1,25} = 169,60 \text{ kN}$$

$$\alpha_b = \min\left\{\frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1,0\right\} = \min\left\{\frac{165}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{2,5; 1,0; 1,0\} = 1,0$$

$$k_1 = \min\{2.8 \frac{e_2}{d_0} - 1.7; 2.5\} = \min\{2.8 * \frac{35}{22} - 1.7; 2.5\} = \min\{2.75; 2.5\} = 2.5$$

$$F_{b,Rd,2} = \frac{k_1 * \alpha_b * f_u * d * t}{\gamma_{M2}} = \frac{2,5 * 1,0 * 800000 * 0,02 * 0,01}{1,25} = 320 \, kN$$

$$F_{b.Rd} = 169,60 \, kN$$

$$\frac{F_{v,Ed}}{F_{h,Rd}} = \frac{55,63}{169,60} = 0,33 < 1$$

Dla sił działających równolegle do osi belki A3

$$\alpha_b = \min\left\{\frac{e_1}{3d_0}; \frac{f_{ub}}{f_u}; 1,0\right\} = \min\left\{\frac{35}{3*22}; \frac{800}{800}; 1,0\right\} = \min\{0,53; 1,0; 1,0\} = 0,53$$

$$k_1 = \min\{2,8\frac{e_2}{d_0} - 1,7; 2,5\} = \min\left\{2,8*\frac{35}{22} - 1,7; 2,5\right\} = \min\{2,75; 2,5\} = 2,5$$

$$F_{b,Rd} = \frac{k_1*\alpha_b*f_u*d*t}{\gamma_{M2}} = \frac{2,5*0,53*800000*0,02*0,01}{1,25} = 169,60 \, kN$$

$$\frac{F_{M,Ed}}{F_{b,Rd}} = \frac{26,22}{169,60} = 0,15 < 1$$

Sprawdzenie nośności na rozerwanie blokowe

$$\begin{split} V_{eff,2,Rd} &= 0.5*A_{nt}*\frac{f_u}{\gamma_{M2}} + \frac{1}{\sqrt{3}}*A_{nv}*\frac{f_y}{\gamma_{M0}} \\ A_{nv} &= 0.315*0.008 = 0.0025\,m^2 \\ A_{nt} &= 0.025*0.008 = 0.0002\,m^2 \\ V_{eff,2,Rd} &= 0.5*0.0002*\frac{360000}{1.25} + \frac{1}{\sqrt{3}}*0.0025*\frac{235000}{1.00} = 259.45\,kN \\ \frac{V_{Ed}}{V_{eff,2,Rd}} &= \frac{135.21}{259.45} = 0.52 < 1 \end{split}$$

Sprawdzenie nośności przekroju osłabionego

$$\begin{split} &(\frac{\sigma_{Ed}}{f_y/\gamma_{M0}})^2 + 3*(\frac{\tau_{Ed}}{f_y/\gamma_{M0}})^2 \leq 1 \\ &\sigma_{Ed} = \frac{M}{W_v} \end{split}$$

$$M = M_{Ed} + V_{Ed} * e = 8.18 + 166.89 * 0.035 = 14.02 \text{ kNm}$$

$$I_{\rm sc} = 0.00007865 \, m^4$$

$$W_y = \frac{I_y}{I_y} = \frac{0,00007865}{0.2427} = 0,0003241 \, m^3$$

$$A_n = 0.400 * 0.0094 = 0.003591 m^2$$

$$\sigma_{Ed} = \frac{M}{W_V} = \frac{14,02}{0,0003241} = 43258,25 \text{ kPa}$$

$$W_y$$

$$M = M_{Ed} + V_{Ed} * e = 8,18 + 166,89 * 0,035 = 14,02 \text{ kNm}$$

$$I_y = 0,00007865 m^4$$

$$W_y = \frac{I_y}{z} = \frac{0,00007865}{0,2427} = 0,0003241 m^3$$

$$A_v = 0,400 * 0,0094 = 0,003591 m^2$$

$$\sigma_{Ed} = \frac{M}{W_y} = \frac{14,02}{0,0003241} = 43258,25 \text{ kPa}$$

$$\tau_{Ed} = \frac{V_{Ed}}{A_v} = \frac{166,89}{0,003591} = 46474,52 \text{ kPa}$$

$$\left(\frac{\sigma_{Ed}}{f_y/\gamma_{M0}}\right)^2 + 3 * \left(\frac{\tau_{Ed}}{\frac{f_y}{\gamma_{M0}}}\right)^2 = \left(\frac{43258,25}{\frac{235000}{1}}\right)^2 + 3 * \left(\frac{46474,52}{\frac{235000}{1}}\right)^2 = 0,15 < 1$$

Sprawdzenie nośności połączenia spawanego pomiędzy środnikiem, a blachą węzłową

$$V_{Ed} = 166,89 \ kN$$

$$M = M_{Ed} + V_{Ed} * e = 8,18 + 166,89 * 0,045 = 15,69 \ kNm$$

$$a_w = 0,003 \ m$$

$$l_w = 0,42 \ m$$

$$A_w = a_w * l_w * 2 = 0,003 * 0,42 * 2 = 0,002412 \ m^2$$

$$W_y = \frac{0,003 * 0,42^2}{6} * 2 = 0,000162 \ m^3$$

$$\sqrt{\sigma_{\perp}^2 + 3 * (\tau_{\perp}^2 + \tau_{\parallel}^2)} \le \frac{f_u}{\beta_w * \gamma_{M2}}$$

$$\sigma_{\perp} \le 0,9 * \frac{f_u}{\gamma_{M2}}$$

$$\beta_w = 0,8 \ dla \ stali \ S235$$

$$\tau = \frac{V_{Ed}}{A_w} = \frac{166,89}{0,002412} = 69191,54 \ kPa$$

$$\tau = \tau_{\parallel} = 69191,54 \ kPa$$

$$\sigma = \frac{M}{W_y} = \frac{15,69}{0,000162} = 96851,85 \ kPa$$

$$\sigma_{\perp} = \tau_{\perp} = \frac{\sigma}{\sqrt{2}} = \frac{96851,85}{\sqrt{2}} = 68484,60 \ kPa$$

$$\sqrt{\sigma_{\perp}^{2} + 3 * (\tau_{\perp}^{2} + \tau_{\parallel}^{2})} = \sqrt{68484,60^{2} + 3 * (68484,60^{2} + 69191,54^{2})} = 181997,17 \ kPa$$

$$< 360000 \ kPa = \frac{360000}{0,8 * 1,25} = \frac{f_{u}}{\beta_{w} * \gamma_{M2}}$$

$$\sigma_{\perp} = 68484,60 \ kPa < 259200 \ kPa = 0,9 * \frac{360000}{1,25} = 0,9 * \frac{f_{u}}{\gamma_{M2}}$$

Połącznie podciągu P1 z blachownicą B1 spełnia wymagania nośności.

4. Obliczenia słupa

$$\begin{split} &l_y = 9,738 \ m \\ &l_z = 10,980 \ m \\ &L_{cr,y} = 1*l_y = 1*9,738 = 9,738 \ m \\ &L_{cr,z} = 1*l_z = 1*10,980 = 10,980 \ m \end{split}$$

Wstępny dobór przekroju trzonu słupa

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1$$

$$N_{b,Rd} = \chi_y * \frac{A * f_y}{\gamma_{M1}}$$
Przyjęto $\chi_y = 0.5$

$$f_y = 235000 \ kPa$$

$$N_{Ed} = 617.38 \ kN$$

$$A \ge \frac{N_{Ed} * \gamma_{M1}}{\chi_y * f_y} = \frac{617.38 * 1}{0.5 * 235000} = 0.005254 \ m^2 = 52.54 \ cm^2$$

Przyjęto 2 ceowniki C200

 $A = 32,20 \ cm^2$

 $i_y = 0.0771 \, m$

 $i_z = 0.0214 m$ $I_y = 0.0000191m^4$

 $I_z = 0.00000148 \, m^4$

 $y_s = 20,1 mm$

 $W_z = 0.0000512 \ m^3$

 $t_f = 11,5 mm$

 $t_w = 8.5 mm$

 $h = 200 \, mm$

b = 75 mm

$$\begin{split} \lambda_y &= \frac{l_{cr,y}}{i_y} \\ \lambda_y &= \frac{l_{cr,y}}{i_y} = \frac{9,738}{0,0771*2} = 63,15 < 150 \\ \overline{\lambda_y} &= \frac{\lambda_y}{\lambda_1} \\ \lambda_1 &= 93,9\varepsilon = 93,9 \\ \overline{\lambda_y} &= \frac{\lambda_y}{\lambda_1} = \frac{63,15}{93,9} = 0,67 \\ \chi &= \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} \\ \Phi &= 0,5* \left[1 + \alpha * (\bar{\lambda} - 0,2) + \bar{\lambda}^2 \right] \\ \alpha(c) &= 0,49 \\ \Phi &= 0,5* \left[1 + \alpha * (\bar{\lambda} - 0,2) + \bar{\lambda}^2 \right] = 0,5* \left[1 + 0,49 * (0,67 - 0,2) + 0,67^2 \right] = 0,84 \\ \chi_y &= \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} = \frac{1}{0,84 + \sqrt{0,84^2 - 0,67^2}} = 0,74 \\ N_{b,Rd} &= \chi_y * \frac{A * f_y}{\gamma_{M1}} = 0,74 * \frac{2 * 0,003220 * 235000}{1} = 1119,92 \, kN \\ \frac{N_{Ed}}{N_{b,Rd}} &= \frac{617,38}{1119,92} = 0,55 < 1 \end{split}$$

Warunek nośności spełniony.

Rozstaw osiowy gałęzi

$$h_0 \approx 2 \left(\frac{1,1I_{y1} - I_{z1}}{A_h}\right)^{0,5} = 2 \left(\frac{1,1*0,0000191 - 0,00000148}{0,003220}\right)^{0,5} = 0,156 m = 156 mm$$

$$H = h_0 + 2y_s = 156 + 2*20,1 = 196,2 mm$$

$$Przyjęto H = 250 mm, h_0 = 209,8 mm$$

Rozstaw osiowy przewiązek

$$\begin{split} I_z &= 2*I_{z1} + 2*A_h*\left(\frac{h_0}{2}\right)^2 = 2*0,00000148 + 2*0,003220*\left(\frac{0,2098}{2}\right)^2 = 0,00007383 \, m^4 \\ i_z &= \left(\frac{I_z}{A}\right)^{0,5} = \left(\frac{0,00007383}{2*0,003220}\right)^{0,5} = 0,107 \, m \\ \lambda_z &= \frac{L_{cr,z}}{i_z} = \frac{10,980}{0,107} = 102,62 \\ \lambda_{z1} &= \frac{a}{i_{z1}} \leq 0,8\lambda_z \\ a &\leq 0,8*\lambda_z*i_{z1} = 0,8*102,62*0,0214 = 1,757 \, m \\ \mathbf{Przyjeto} \, a &= 1,370 \, m \end{split}$$

Geometria przewiązek

Przewiązki pośrednie

$$b_{p,min} = 100 mm$$

Przyjęto $b_p = 100 mm$

$$t_p \ge \frac{b_p}{15} = \frac{100}{15} = 6,67 \ mm$$

Przyjęto $t_p = 7 mm$

Przewiązki skrajne

Przyjęto
$$b_p = 1,5 * 100 = 150 \ mm$$

$$t_p \ge \frac{b_p}{15} = \frac{150}{15} = 10 \ mm$$

Przyjęto $t_n = 10 mm$

$$S_v = \frac{24 * E * I_{z1}}{a^2 * \left[1 + \frac{2 * I_{z1} * h_0}{n * I_h * a}\right]} \le \frac{2 * \pi^2 * E * I_{z1}}{a^2}$$

$$I_b = \frac{t_b * h_b^3}{12} = \frac{0,007 * 0,1^3}{12} = 0,0000005833 m^4$$

$$n = 2$$

$$n = 2$$

$$S_{v} = \frac{24 * E * I_{z1}}{a^{2} * \left[1 + \frac{2 * I_{z1} * h_{0}}{n * I_{b} * a}\right]} = \frac{24 * 210000000 * 0,00000148}{1,370^{2} * \left(1 + \frac{2 * 0,00000148 * 0,2098}{2 * 0,0000005833 * 1,370}\right)} = 2862,12 kN$$

$$< \frac{2 * \pi^{2} * E * I_{z1}}{a^{2}} = \frac{2 * \pi^{2} * 2100000000 * 0,00000148}{1,370^{2}} = 3268,66 kN$$

$$S_{v} = 3263,13 kN$$

$$S_v = 2862,12 \, kN$$

Efektywny moment bezwładności

$$I_{eff} = 0.5 * h_0^2 * A_{ch} + 2 * \mu * I_{z1}$$

$$\mu = 2 - \frac{\lambda_z}{75} = 2 - \frac{102,62}{75} = 0.63$$

$$I_{eff} = 0.5 * h_0^2 * A_{ch} + 2 * \mu * I_{z1} = 0.5 * 0.2098^2 * 0.003220 + 2 * 0.63 * 0.00000148$$

$$= 0.00007273 m^4$$

$$\begin{split} \frac{\text{Siła krytyczna wyboczenia giętnego}}{N_{Cr,z}} &= \frac{\pi^2 * E * I_{eff}}{L_{cr,z}^2} = \frac{\pi^2 * 210000000 * 0,00007273}{10,980^2} = 1250,34 \, kN \\ N_{ch,Ed} &= 0,5 * N_{Ed} + \frac{M_{Ed} * h_0 * A_{ch}}{2 * I_{eff}} \\ M_{Ed} &= \frac{N_{Ed} * e_0 + M_{Ed}'}{1 - \frac{N_{Ed}}{N_{Cr,z}} - \frac{N_{Ed}}{S_v}} \\ e_0 &= \frac{l_{cr}}{500} = \frac{10,980}{500} = 0,022 \, m \\ M_{Ed} &= \frac{N_{Ed} * e_0 + M_{Ed}'}{1 - \frac{N_{Ed}}{N_{Cr,z}} - \frac{N_{Ed}}{S_v}} = \frac{617,38 * 0,022}{1 - \frac{617,38}{1250,34} - \frac{617,38}{2862,12}} = 46,75 \, kNm \\ N_{ch,Ed} &= 0,5 * N_{Ed} + \frac{M_{Ed} * h_0 * A_{ch}}{2 * I_{eff}} = 0,5 * 617,38 + \frac{46,75 * 0,2098 * 0,003220}{2 * 0,00007273} \\ &= 525.81 \, kN \end{split}$$

$$\frac{N_{ch,Ed}}{N_{b,z1,Rd}} \le 1$$

$$\begin{split} N_{b,z1,Rd} &= \chi_{z1} * \frac{A_{ch} * f_y}{\gamma_{M1}} \\ \bar{\lambda}_{z1} &= \frac{\lambda_z}{\lambda_1} = \frac{\frac{a}{i_{z1}}}{\lambda_1} = \frac{\frac{1,370}{0,0214}}{93,9} = 0,68 \\ \chi &= \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} \\ \Phi &= 0,5 * \left[1 + \alpha * (\bar{\lambda} - 0,2) + \bar{\lambda}^2\right] \\ \alpha(c) &= 0,49 \\ \Phi &= 0,5 * \left[1 + \alpha * (\bar{\lambda} - 0,2) + \bar{\lambda}^2\right] = 0,5 * \left[1 + 0,49 * (0,68 - 0,2) + 0,68^2\right] = 0,85 \\ \chi_{z1} &= \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} = \frac{1}{0,85 + \sqrt{0,85^2 - 0,68^2}} = 0,74 \\ N_{b,z1,Rd} &= \chi_{z1} * \frac{A_{ch} * f_y}{\gamma_{M1}} = 0,74 * \frac{0,003220 * 235000}{1} = 559,96 \, kN \\ \frac{N_{ch,Ed}}{N_{b,z1,Rd}} &= \frac{525,81}{559,96} = 0,94 < 1 \\ \textbf{Warunek nośności spelniony.} \end{split}$$

Nośność słupa w przekroju przypodporowym

$$V_{Ed} = \frac{\pi * M_{Ed}}{L_{cr,z}} = \frac{\pi * 46,75}{10,98} = 13,38 \text{ kN}$$

$$\begin{split} &N_{ch,Ed} = \frac{N_{Ed}}{2} = \frac{617,38}{2} = 308,69 \ kN \\ &M = \frac{V_{Ed}*a}{4} = \frac{13,38*1,370}{4} = 4,58 \ kNm \\ &2M = \frac{V_{Ed}*a}{2} = 2*4,58 = 9,16 \ kNm \\ &\frac{N_{ch,Ed}}{X_y*N_{Rk}} + k_{yz}*\frac{M_{z1,Ed}}{M_{z1,Rk}} \leq 1 \\ &\frac{N_{ch,Ed}}{Y_{M1}} + k_{zz}*\frac{M_{z1,Ed}}{M_{z1,Rk}} \leq 1 \\ &\frac{N_{ch,Ed}}{Y_{M1}} + k_{zz}*\frac{M_{z1,Ed}}{M_{z1,Rk}} \leq 1 \\ &\frac{N_{ch,Ed}}{Y_{M1}} + k_{zz}*\frac{M_{z1,Ed}}{M_{z1,Rk}} \leq 1 \\ &\frac{N_{z1,Rk}}{Y_{M1}} = \frac{0,0003220*235000}{1} = 756,70 \ kN \\ &M_{z1,Rk} = \frac{4c*f_y}{Y_{M0}} = \frac{0,0000512*235000}{1} = 12,03 \ kNm \\ &\psi = \frac{-M}{M} = -1 \\ &C_{mz} = 0,6 + 0,4*\psi \geq 0,4 \\ &C_{mz} = 0,6 - 0,4 = 0,2 \leq 0,4 \\ &C_{mz} = 0,6 + 0,4*\psi \geq 0,4 \\ &C_{mz} = 0,6 + 0,4*\psi \geq 0,4 \\ &C_{mz} = 0,6 + 0,2*\psi \geq 0,4 \\ &C_{mz} = 0,6 + 0,2*\psi \geq 0,4 \\ &K_{zz} = C_{mz}*\left[1+(2*\bar{\lambda}_{z1}-0,6)*\frac{N_{ch,Ed}}{X_{z1}*N_{Rk}}\right] \leq C_{mz}*\left[1+1,4*\frac{N_{ch,Ed}}{X_{z1}*N_{Rk}}\right] \\ &k_{zz} = C_{mz}*\left[1+(2*\bar{\lambda}_{z1}-0,6)*\frac{N_{ch,Ed}}{X_{z1}*N_{Rk}}\right] = 0,4*\left[1+(2*0,68-0,6)*\frac{525,81}{0,74*756,70}\right] \\ &= 0,69 < C_{mz}*\left[1+1,4*\frac{N_{ch,Ed}}{X_{z1}*N_{Rk}}\right] = 0,4*\left[1+1,4*\frac{525,81}{0,74*756,70}\right] = 0,93 \\ &k_{zz} = 0,69 \\ &k_{z$$

Warunek nośności spełniony.

Obliczenia przewiązek

$$\overline{M_{b,Ed}} = 0.25 * V_{Ed} * a = \frac{13,38 * 1,370}{4} = 4,58 \text{ kNm}$$

$$V_{b,Ed} = 0.5 * \frac{V_{Ed} * a}{h_0} = 0.5 * \frac{13,38 * 1,37}{0,2098} = 43,69 \text{ kN}$$

$$\sqrt{\left(\frac{\sigma}{\frac{f_y}{\gamma_{M0}}}\right)^2 + 3 * \left(\frac{\tau}{\frac{f_y}{\gamma_{M0}}}\right)^2} \le 1$$

$$A_p = b_p * t_p = 0.15 * 0.01 = 0.0015 \text{ } m^2$$

$$\tau = \frac{V_{b,Ed}}{A_p} = \frac{43,69}{0,0015} = 29126,67 \, kPa$$

$$W_p = \frac{t_p * b_p^2}{6} = \frac{0,01 * 0,15^2}{6} = 0,0000375 \, m^3$$

$$\sigma = \frac{M_{b,Ed}}{W_p} = \frac{4,58}{0,0000375} = 122133,33 \, kPa$$

$$\left(\frac{\sigma}{\frac{f_y}{\gamma_{M0}}}\right)^2 + 3 * \left(\frac{\tau}{\frac{f_y}{\gamma_{M0}}}\right)^2 = \sqrt{\left(\frac{122133,33}{\frac{235000}{1}}\right)^2 + 3 * \left(\frac{29126,67}{\frac{235000}{1}}\right)^2} = 0,56 < 1$$

Warunek nośności spełniony.

Połączenie spawane przewiązki z gałęzią słupa

Przyjęto grubość spoin $a_w = 7 mm$

$$V_{b,Ed} = 43,69 \, kN$$

Pole przekroju kładu spoin

$$A_{w,v} = 0.1 * 0.007 = 0.0007 m^2$$

$$A_{w,h} = 2 * 0.0549 * 0.007 = 0.0007686 m^2$$

$$A_w = A_{w,v} + A_{w,h} = 0.0007 + 0.0007686 = 0.001469 m^2$$

Położenie środka ciężkości kładu spoin

$$e_1 = \frac{S_{z1}}{A_w} = \frac{0,03095 * 0,1 * 0,007}{0,001469} = 0,01475 m$$

Moment bezwładności

$$\begin{split} I_0 &= I_y + I_z \\ I_y &= \frac{0,007*0,1^3}{12} + 2*\left(\frac{0,0549*0,007^3}{12} + 0,007*0,0549*0,0535^2\right) \\ &= 0,000002786\,m^4 \\ I_z &= \frac{0,1*0,007^3}{12} + 0,1*0,007*0,01602^2 + 2 \\ &*\left(\frac{0,007*0,0549^3}{12} + 0,007*0,0549*0,01475^2\right) = 0,0000005428\,m^4 \\ I_0 &= I_y + I_z = 0,0000002786 + 0,0000005428 = 0,000003329\,m^4 \\ e &= 0,0922\,m \\ r &= \sqrt{0,054^2 + 0,0422^2} = 0,0685\,m \\ M &= V_{b,Ed}*e + e + 43,69*0,0685 = 2,99\,kNm \\ \tau_M &= \frac{M*r}{I_0} = \frac{2,99*0,0685}{0,000003329} = 61524,48\,kPa \\ \tau_F &= \frac{V_{b,Ed}}{A_v} = \frac{43,69}{0,0007} = 62414,29\,kPa \\ \tau_{M,z} &= \tau_M*\sin\alpha = 61524,48*\frac{0,0422}{0,0685} = 37902,67\,kPa \\ \tau_{H,z} &= \tau_{M,y} = \tau_M*\cos\alpha = 61524,48*\frac{0,0422}{0,0685} = 48501,05\,kPa \\ \sigma_{\perp} &= \tau_{\perp} = \frac{\tau_{M,z} + \tau_F}{\sqrt{2}} = \frac{37902,67 + 62414,29}{\sqrt{2}} = 70934,80\,kPa \\ &< 360000\,kPa = \frac{360000}{0,8*1,25} = \frac{f_u}{f_w*\gamma_{M2}} \\ \sigma_{\perp} &= 70934,80\,kPa < 259200\,kPa = 0,9*\frac{360000}{1,25} = 0,9*\frac{f_u}{\gamma_{M2}} \\ \mathbf{Warunek nośności spelniony}. \end{split}$$

$$\begin{split} & \int_{N_{Ed}} A_b \leq f_{cd} \\ & A_b \geq \frac{N_{Ed}}{f_{cd}} = \frac{617,38}{14290} = 0,043 \ m^2 \\ & A_b = B * L \\ & \text{Przyjęto } B = \textbf{0,41} \ m, L = \textbf{0,3} \ m, A_b = 0,41*0,3 = 0,12 \ m^2 \\ & c = -\frac{x_2 - \sqrt{x_2^2 - 4*x_1*x_3 + 4*x_1*N_{Rd}}}{2*x_1} \\ & x_1 = -8*f_{cd} = -8*14290 = -114320 \ kPa \\ & x_2 = 4*f_{cd}*\left(b+h+2*l_b - 2*t_f - t_w\right) \\ & = 4*14290*\left(0,250 + 0,200 + 2*0,07 - 2*0,0115 - 0,0085\right) \\ & = 31923,36 \ kPa*m \\ & x_3 = 2*f_{cd}*\left(b*t_b + b*t_f + h*t_w + 2*l_b*t_f + 2*l_b*t_b - 2*t_f*t_w\right) \\ & = 2*14290 \\ & *\left(0,250*0,01 + 0,250*0,0115 + 0,200*0,0085 + 2*0,07*0,0115 + 2*0,0085\right) \\ & = 0,007*0,01 - 2*0,0115*0,0085\right) = 282,64 \ kPa*m \\ & c = -\frac{x_2 - \sqrt{x_2^2 - 4*x_1*x_3 + 4*x_1*N_{Rd}}}{2*x_1} \\ & = -\frac{31923,86 - \sqrt{31923,86^2 - 4*\left(-114320\right)*282,64 + 4*\left(-114320\right)*1119,92}}{2*\left(-114320\right)} \\ & = 0,0293 \ m \\ & t_{p,min} = \frac{c}{\sqrt{\frac{f_y}{3*f_{cd}*\gamma_{M0}}}} = \frac{0,0293}{\sqrt{\frac{235000}{3*14290*1}}} = 0,013 \ m \\ & A_{eff} = (2*c+t_b)*\left(b+2*l_b)*2 + \left(h-2*c\right)*\left(t_w + 2*c\right)*2 \\ & = (2*0,03+0,01)*\left(0,0250 + 2*0,074*m^2\right) \\ & N_{Rd} = \frac{A_{eff}*f_{cd}}{\gamma_{M0}} = \frac{0,074*14290}{1} = 1057,46 \ kN \\ & \frac{N_{Ed}}{N_{Rd}} = \frac{617,38}{1057,46} = 0,58 < 1 \\ \end{split}$$

Warunek nośności spełniony.

Sprawdzenie spoin pionowych

$$\begin{split} \tau_{II} &= \frac{N_{Ed}}{A_w} \leq \frac{f_u}{\sqrt{3}\beta_w \gamma_{M2}} \\ A_w &= 4l_s a \\ a &\geq \frac{N_{Ed} * \sqrt{3}\beta_w \gamma_{M2}}{4l_s f_u} \\ l_s &= 0.114 \ m \\ a &\geq \frac{N_{Ed} * \sqrt{3}\beta_w \gamma_{M2}}{4l_s f_u} = \frac{617.38 * \sqrt{3} * 0.8 * 1.25}{4 * 0.150 * 360000} = 0.0065 \ m \end{split}$$

Przyjęto grubość spoin a = 7 mm

Sprawdzenie spoin poziomych

$$\begin{split} &\tau_{II} = \frac{V_{Ed}}{\sum l_w a_w} + \frac{T^{\alpha - \alpha} * \bar{S}}{l_y * 4 * a_w} \\ &l_w = 0.39 \, m \\ &\text{Przyjęto } a_w = 0.007 \, m \\ &\bar{S} = 0.3 * 0.013 * 0.023 = 0.0000897 \, m^3 \\ &l_y = 0.000008326 \, m^4 \\ &\tau_{II} = \frac{V_{Ed}}{\sum l_w a_w} + \frac{T^{\alpha - \alpha} * \bar{S}}{l_y * 4 * a_w} = \frac{13.38}{4 * 0.39 * 0.007} + \frac{308.69 * 0.0000897}{0.000008326 * 4 * 0.007} = 119999,1 \, kPa \\ &A_w = 4 * a_w * l_w = 4 * 0.007 * 0.39 = 0.011 \, m^2 \\ &\sigma = \frac{N_{Ed}}{A_w} = \frac{617.38}{0.011} = 56125,45 \, kPa \\ &\sigma_{\perp} = \tau_{\perp} = \frac{\sigma}{\sqrt{2}} = \frac{56125,45}{\sqrt{2}} = 39686,69 \, kPa \\ &\sqrt{\sigma_{\perp}^2 + 3 * (\tau_{\perp}^2 + \tau_{\parallel}^2)} = \sqrt{39686,69^2 + 3 * (39686,69^2 + 119999,1^2)} = 222484,80 \, kPa \\ &< 360000 \, kPa = \frac{360000}{0.8 * 1.25} = \frac{f_u}{\beta_w * \gamma_{M2}} \\ &\sigma_{\perp} = 39686,69 \, kPa < 259200 \, kPa = 0.9 * \frac{360000}{1,25} = 0.9 * \frac{f_u}{\gamma_{M2}} \end{split}$$
 Warunek zostal spelniony.

Głowica słupa

Blacha podkładowa

$$q = \frac{N_{Ed}}{0.4} = \frac{617.38}{0.4} = 1543.45 \frac{kN}{m}$$

$$\frac{M}{W} \le \frac{f_y}{\gamma_{M0}}$$

$$t_g \ge \sqrt{\frac{6M\gamma_{M0}}{b * f_y}} = \sqrt{\frac{6 * 6.48 * 1}{0.3 * 235000}} = 0.023 m$$

Przyjęto $t_g = 0,023 m$

Przepona pozioma

$$\begin{aligned} &\frac{h}{t} \le 50 \sqrt{\frac{235}{f_y}} \\ &h = 0.233 \ m \\ &t \ge \frac{h}{50} = \frac{0.233}{50} = 0.0047 \ m \\ &\textbf{Przyjęto} \ t = 0.005 \ m \end{aligned}$$