Relatório 11 de TCC2/IC

Ly Sandro Amorim de Campos Salles Departamento de Física Universidade Federal do Paraná

23 de Maio de 2019

Desde o último encontro foram realizadas as seguintes atividades:

Considerando que computadores geram números aleatórios a partir de uma *seed*, foi verificada a presença de caos nas simulações com vizinhança de Moore utilizando o seguinte método:

- 1. Geração da matriz inicial com a seed 156501936 (gerada em uma calculadora Casio);
- 2. Inversão de estado e limiar de n células em posições aleatórias geradas com *seed* baseada no horário mundial;
- 3. Execução da simulação para 10000 ciclos utilizando L = 100, limiar igual a q e *seed* igual a 2376222 (gerada em uma Casio);

Esse procedimento foi feito para $n \in \{0, 1, 10, 100, 1000, 10000\}$ e $q \in \{0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

A verificação da existência de caos foi feita considerando o coeficiente de Lyapunov

$$\lambda = \frac{1}{n} \ln \left| \frac{f^{n}(x+\varepsilon) - f^{n}(x_{0})}{\varepsilon} \right| = \frac{1}{n} \ln(\Delta)$$
 (1)

Porém, considerando que $\ln(0) = -\infty$ e que computadores não lidam muito bem com infinito, foram feitas as seguintes observações com o intuito de desenvolver um coeficiente equivalente:

a)
$$\forall \Delta > 0$$
 tem-se que $\lambda < 0 \Leftrightarrow e^{\lambda} < 1 \Leftrightarrow \Delta^{\frac{1}{n}} < 1 \Leftrightarrow \Delta^{\frac{1}{10}} < 1 \Rightarrow$ sistema estável

b)
$$\forall \Delta > 0$$
 tem-se que $\lambda = 0 \Leftrightarrow e^{\lambda} = 1 \Leftrightarrow \Delta^{\frac{1}{n}} = 1 \Leftrightarrow \Delta^{\frac{1}{10}} = 1$

c)
$$\forall \Delta > 0$$
 tem-se que $\lambda > 0 \Leftrightarrow e^{\lambda} > 1 \Leftrightarrow \Delta^{\frac{1}{n}} > 1 \Leftrightarrow \Delta^{\frac{1}{10}} > 1 \Rightarrow$ sistema caótico

(O número 10 foi tomado arbitrariamente com a finalidade de diminuir números grandes). Portanto, é suficiente mostrar que $\Delta^{\frac{1}{10}} > 1$. A tabela 1 lista os valores médios de $\Delta^{\frac{1}{10}}$ para matrizes iniciais que tiveram até $10^x\%$ de suas células modificadas, com $x \in \{-2, -1, 0, 1, 2\}$.

Para os próximos dias, estas serão as tarefas realizadas:

- 1. Verificação de comportamento caótico para o autômato celular considerando a vizinhança Von Neumann;
- 2. Demonstração matemática do Algoritmo de Contagem de Aglomerados utilizado;
- 3. Desenvolvimento da explicação que considera q como liquidez;

q	Valor médio de $\Delta^{\frac{1}{10}}$ para $arepsilon$ máximo de				
	0.01%	0.1%	1%	10%	100%
0.1	1.8794	1.8456	1.7018	1.4393	1.8960
1.0	1.8958	1.7182	1.5883	1.4302	1.2938
2.0	2.0125	2.3890	1.6698	1.6073	1.5662
3.0	1.2384	1.7053	1.9184	1.4607	1.4430
4.0	1.3701	2.4282	1.9308	1.7997	1.3555
5.0	1.8896	1.6471	1.5051	2.2331	1.2264
6.0	1.5401	1.3400	1.4389	1.0733	1.1573
7.0	1.5848	1.4721	1.3281	1.1638	1.1869
8.0	1.3449	1.3471	1.2113	1.2330	1.0450
9.0	1.4383	1.4295	1.2436	1.0116	1.0921
10.0	1.3170	1.7878	1.2356	1.2074	1.2092

Tabela 1: Valores médios para $\Delta^{\frac{1}{10}}$ obtidos na simulação com Vizinhança de Moore. Apesar de todos serem positivos, indicando a presença de cáos, alguns são próximos de 1, indicando sistemas menos caóticos no intervalo de ciclos observado.

- 4. Desenvolvimento da explicação que considera q como volatilidade;
- Explicação do porquê de o limiar intrínseco a cada célula ser considerado como um determinador do momento certo para vender ou comprar, no caso de q ser considerado como liquidez;
- 6. Leitura de Referênciais Teóricos apropriados para os trabalhos desenvolvidos;
- 7. Escrita do TCC.

Figura 1: $\Delta^{\frac{1}{10}}$ ao longo de 10000 ciclos de uma simulação com L = 100, q = 0.1, vizinhança de Moore, e ϵ de até 0.1% de diferença com a matriz inicial. O sistema tende a se comportar de forma parecida com o original durante os primeiros 1500 ciclos, tendo um ponto crítico a partir do ciclo 1500, a partir do qual o sistema fica totalmente caótico.