

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Praca dyplomowa inżynierska

Implementacja maszyny wirtualnej dla funkcyjnych języków programowania wspierających przetwarzanie współbieżne.

Implementation of a virtual machine for functional programming languages with support for concurrent computing.

Autor: Kajetan Rzepecki Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Piotr Matyasik

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałem osobiście i samodzielnie i nie korzystałem ze źródeł innych niż wymienione w pracy.

Serdecznie dziękuję opiekunowi pracy za wsparcie merytoryczne oraz dobre rady edytorskie pomocne w tworzeniu pracy.

Spis treści

\mathbf{Sp}	is tr	$\operatorname{e\acute{s}ci}$	5
1.	Wst	ęp	7
	1.1.	Problemy przetwarzania współbieżnego	8
	1.2.	Próby rozwiązania problemu	8
	1.3.	Cel i zawartość pracy	8
2.	Pro	jekt i implementacja ThesisVM	9
	2.1.	Reprezentacja pośrednia programów	9
	2.2.	Reprezentacja prostych obiektów ThesisVM	9
	2.3.	Reprezentacja obiektów funkcyjnych ThesisVM	9
	2.4.	Reprezentacja kodu bajtowego ThesisVM	9
	2.5.	Ewaluacja argumentów i aplikacja funkcji	9
	2.6.	Operacje arytmetyczne	9
	2.7.	Implementacja wbudowanych operatorów	9
	2.8.	Kompilator kodu bajtowego ThesisVM	9
3.	Mod	del zarządzania pamięcią	11
	3.1.	Organizacja pamięci ThesisVM	11
	3.2.	Alokacja obiektów	11
	3.3.	Kolekcja nieosiągalnych obiektów	11
	3.4.	Kolekcja obiektów cyklicznych	11
4.	Mod	del przetwarzania współbieżnego	13
	4.1.	Model Aktorowy	13
	4.2.	Notacja procesu w ThesisVM	13
	4.3.	Harmonogramowanie procesów	13
	4.4.	Przesyłanie wiadomości	13
5 .	Pod	sumowanie i analiza wydajności ThesisVM	15
	5.1.	Leniwe zliczanie referencji	15
	5.2.	Przesyłanie wiadomości	15

6 SPIS TREŚCI

5.3. Porównanie szybkości działania ThesisVM	15
Bibliografia	17
A. Wizualizacja stanu maszyny wirtualnej	19
B. Przykładowe programy	21
C. Spisy rysunków i tablic	23

1. Wstęp

Celem pracy i powiązanego z nią projektu jest implementacja oraz ewaluacja maszyny wirtualnej dla funkcyjnych języków programowania, które umożliwiają przetwarzanie współbieżne wykorzystując Model Aktorowy ([Tes00]) oraz asynchroniczne przekazywanie wiadomości 1 .

Rysunek 1.1: Logo AGH

Rysunek 1.2: Logo inne

 $^{^1{}m Test}$

Tablica 1.1: Tabelka jakaś.

Tabelka	Hurr
Hurr	durr
Herp	derp

Tabl<u>ica 1.2: Tabelka i</u>nna.

Tabelka	Hurr
Hurr	durr
Herp	derp

1.1. Problemy przetwarzania współbieżnego

– Opisać problemy Erlanga,

1.2. Próby rozwiązania problemu

– opisać próby ich rozwiązania w Erlangu,

1.3. Cel i zawartość pracy

- opisać proponowany sposób ich rozwiązania,
- umotywować powstanie ThesisVM.

2. Projekt i implementacja ThesisVM

TODO: Opisać ogólną strukturę maszyny wirtualnej (z GC i SMP) i opisać o czym będzie niniejsza sekcja.

- 2.1. Reprezentacja pośrednia programów
- 2.2. Reprezentacja prostych obiektów ThesisVM
- 2.3. Reprezentacja obiektów funkcyjnych ThesisVM
- 2.4. Reprezentacja kodu bajtowego ThesisVM
- 2.5. Ewaluacja argumentów i aplikacja funkcji
- 2.6. Operacje arytmetyczne
- 2.7. Implementacja wbudowanych operatorów
- 2.8. Kompilator kodu bajtowego ThesisVM

Opisać pipeline kompilatora.

2.8. Kompilator kodu bajtowego ThesisVM

3. Model zarządzania pamięcią

- 3.1. Organizacja pamięci ThesisVM
- 3.2. Alokacja obiektów
- 3.3. Kolekcja nieosiągalnych obiektów
- 3.4. Kolekcja obiektów cyklicznych

4. Model przetwarzania współbieżnego

- 4.1. Model Aktorowy
- 4.2. Notacja procesu w ThesisVM
- 4.3. Harmonogramowanie procesów
- 4.4. Przesyłanie wiadomości

5. Podsumowanie i analiza wydajności Thesis ${ m VM}$

Przeanalizować wydajność GC i SMP.

5.1. Leniwe zliczanie referencji

Przeanalizować szybkość, pauzy, zużycie pamięci.

5.2. Przesyłanie wiadomości

Przeanalizować szybkość przesyłania wiadomości/konieczność czekania procesów/wątków.

5.3. Porównanie szybkości działania ThesisVM

Porównać kilka implementacji prostych programów (z Haskell'em, leniwym Lispem itp).

5.3. Porównanie szybkości działania ThesisVM

Bibliografia

[Tes00] T. Test. Test title of a test BibTeX position. Test, Test, 2000.

18 BIBLIOGRAFIA

A. Wizualizacja stanu maszyny wirtualnej

Opisać narzędzie do rysowania grafów stanu.

B. Przykładowe programy

 $\operatorname{Da\acute{c}}$ kilka przykładów prostych programów razem z grafami stanów.

C. Spisy rysunków i tablic

Spis	rysunków
	Logo AGH
1.2	Logo inne
Spis	tablic
1.1	Tabelka jakaś
1.2	Tabelka inna