Programação Paralela

T4: Geração de Fractais de Mandelbrot em OpenMP

Rafael Vales Bettker

Fractais de Mandelbrot

O Conjunto de Mandelbrot é um tipo de fractal obtido a

partir da fórmula recursiva:

$$Z(0) = 0$$

 $Z(n+1) = Z(n)^2 + c$

A partir dela pode ser obtida uma representação gráfica que consiste em um cardióide tangenciado por quase-círculos que variam de tamanho e com raio, tendendo a zero. Lógica que se repete para cada um desses quase-círculos infinitamente.

Estratégias

Particionamento

A divisão de tarefas entre as threads foram feitas de duas maneiras: entre frames e entre linhas de um frame.

Escalonamento

Foi testado escalonamento estático e dinâmico para os dois casos de particionamento.

fractalpar1.cpp

O particionamento é feito nos frames com escalonamento dinâmico. Cada thread fica responsável por um frame do fractal, e assim que termina a execução de um, pega o próximo.

```
#pragma omp parallel for schedule(dynamic) num_threads(threads)
for (int frame = 0; frame < frames; frame++) {
   double delta = Delta * pow(0.98, frame);
   const double xMin = xMid - delta;
   const double yMin = yMid - delta;
   const double dw = 2.0 * delta / width;
   for (int row = 0; row < width; row++) {
      // ...
}</pre>
```

fractalpar2.cpp

O particionamento é feito entre as linhas de cada frame. Os frames são executados em sequência, durante a execução de cada iteração é feita a divisão do trabalho, com cada thread ficando responsável por uma linha diferente do frame em questão.

```
double delta = Delta;
for (int frame = 0; frame < frames; frame++) {
   const double xMin = xMid - delta;
   const double yMin = yMid - delta;
   const double dw = 2.0 * delta / width;
   #pragma omp parallel for schedule(dynamic) num_threads(threads)
   for (int row = 0; row < width; row++) {
      // ...
   }
   delta *= 0.98;
}</pre>
```

Experimentos

Variações de entrada

- Width: 128, 256, 512, 1024 e 2048;
- o Frames: 32, 64, 128, 256 e 384;
- o Threads: 1, 2, 4, 8, 16 e 32.

Foram realizadas 10 execuções de cada, e então feita a média.

Speedup/eficiência do primeiro caso é maior para tamanho de imagens menores.

width	frames	threads	segs (1)	efficiency	segs (2)	efficiency
128	32	1	0.6729		0.6807	
128	32	2	0.3493	96.31%	0.3681	92.45%
128	32	4	0.1812	82.85%	0.1935	87.93%
128	32	8	0.1159	72.60%	0.1068	79.67%
128	32	16	0.0683	61.54%	0.0604	70.49%
128	32	32	0.0396	53.10%	0.0936	22.73%

width	frames	threads	segs (1)	efficiency	segs (2)	efficiency
128	128	1	2.7338		2.7310	
128	128	2	1.3989	97.71%	1.3974	97.72%
128	128	4	0.7227	94.57%	0.7518	90.82%
128	128	8	0.4190	81.55%	0.4061	84.06%
128	128	16	0.2277	75.03%	0.2272	75.13%
128	128	32	0.1321	64.69%	0.3587	23.79%
128	384	1	9.5169		9.2288	
128	384	2	4.8321	98.48%	4.7601	96.94%
128	384	4	2.5267	94.16%	2.5793	89.45%
128	384	8	1.3526	87.95%	1.3456	85.73%
128	384	16	0.7263	81.89%	0.7432	77.61%
128	384	32	0.3918	75.90%	0.5747	50.19%

Quanto maior o tempo de execução, maior o speedup para valores de threads altos.

width	frames	threads	segs (1)	efficiency	segs (2)	efficiency
128	32	1	0.6729		0.6807	
128	32	2	0.3493	96.31%	0.3681	92.45%
128	32	4	0.1812	82.85%	0.1935	87.93%
128	32	8	0.1159	72.60%	0.1068	79.67%
128	32	16	0.0683	61.54%	0.0604	70.49%
128	32	32	0.0396	53.10%	0.0936	22.73%

width	frames	threads	segs (1)	efficiency	segs (2)	efficiency
512	128	1	43.7582		42.8347	
512	128	2	21.9686	99.59%	21.9297	97.66%
512	128	4	11.6953	93.54%	11.0744	96.70%
512	128	8	6.2843	87.04%	5.9167	90.50%
512	128	16	3.3847	80.80%	3.0553	87.62%
512	128	32	1.8706	73.10%	1.7612	76.00%
2048	384	1	2366.0652		2413.7174	
2048	384	2	1189.8515	99.43%	1214.8666	99.34%
2048	384	4	619.5239	95.48%	624.3399	96.65%
2048	384	8	329.6238	89.73%	329.2729	91.63%
2048	384	16	166.7988	88.66%	167.3842	90.13%
2048	384	32	87.6265	84.38%	87.9374	85.78%

Diferença significativa do tempo de execução apenas percebida com width grandes.

width	frames	threads	segs (1)	efficiency	segs (2)	efficiency
2048	32	1	153.4127		163.1400	
2048	32	2	77.1797	99.39%	80.8667	100.87%
2048	32	4	40.6883	94.26%	41.8862	97.37%
2048	32	8	21.5039	89.18%	22.4192	90.96%
2048	32	16	11.4599	83.67%	11.4918	88.73%
2048	32	32	6.4693	74.11%	5.8037	87.84%

width	frames	threads	segs (1)	efficiency	segs (2)	efficiency
2048	128	1	644.2625		679.7192	
2048	128	2	323.2579	99.65%	344.7152	98.59%
2048	128	4	171.9104	93.69%	175.6997	96.72%
2048	128	8	91.3834	88.13%	94.3166	90.08%
2048	128	16	48.6451	82.78%	48.4765	87.64%
2048	128	32	25.4944	78.97%	25.3737	83.71%
2048	384	1	2366.0652		2413.7174	
2048	384	2	1189.8515	99.43%	1214.8666	99.34%
2048	384	4	619.5239	95.48%	624.3399	96.65%
2048	384	8	329.6238	89.73%	329.2729	91.63%
2048	384	16	166.7988	88.66%	167.3842	90.13%
2048	384	32	87.6265	84.38%	87.9374	85.78%

Escalonamento estático possui speedup/eficiência menor em relação ao dinâmico para grande maioria dos testes.

width	frames	threads	segs (D)	efficiency	segs (S)	efficiency
1024	384	1	605.8476		597.3818	
1024	384	2	307.7439	98.43%	323.4291	92.35%
1024	384	4	163.1463	92.84%	175.8729	84.92%
1024	384	8	86.0075	88.05%	94.2501	79.23%
1024	384	16	44.9966	84.15%	48.5512	76.90%
1024	384	32	22.9888	82.36%	25.7994	72.36%

Referências

- Fractal Foundation. Mandelbrot Magic.
 https://fractalfoundation.org/OFC/OFC-5-5.html.
- FCUP. Introdução ao OpenMP.
 https://www.dcc.fc.up.pt/~fds/aulas/PPD/0708/intro_ openmp-1x2.pdf.
- CECI. Slurm Quick Start Tutorial.
 https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html.