Ejemplo 1

Sea D el rectángulo en el plano $\theta\phi$ definido por

$$0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi,$$

y sea S la superficie definida por la parametrización $\Phi \colon D \to \mathbb{R}^3$ dada por

$$x = \cos \theta \sin \phi$$
, $y = \sin \theta \sin \phi$, $z = \cos \phi$

 $(\theta \ y \ \phi \ son \ los \ ángulos de las coordenadas esféricas y S es la esfera unidad parametrizada por <math>\Phi$.) Sea \mathbf{r} el vector posición $\mathbf{r}(x,y,z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Calcular $\iint_{\Phi} \mathbf{r} \cdot d\mathbf{S}$.

Solución

En primer lugar calculamos

$$\begin{aligned} \mathbf{T}_{\theta} &= (-\sin\phi\sin\theta)\mathbf{i} + (\sin\phi\cos\theta)\mathbf{j} \\ \mathbf{T}_{\phi} &= (\cos\theta\cos\phi)\mathbf{i} + (\sin\theta\cos\phi)\mathbf{j} - (\sin\phi)\mathbf{k}, \end{aligned}$$

y por tanto

$$\mathbf{T}_{\theta} \times \mathbf{T}_{\phi} = (-\sin^2\phi\cos\theta)\mathbf{i} - (\sin^2\phi\sin\theta)\mathbf{j} - (\sin\phi\cos\phi)\mathbf{k}.$$

A continuación evaluamos

$$\mathbf{r} \cdot (\mathbf{T}_{\theta} \times \mathbf{T}_{\phi}) = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (\mathbf{T}_{\theta} \times \mathbf{T}_{\phi})$$

$$= [(\cos \theta \sin \phi)\mathbf{i} + (\sin \theta \sin \phi)\mathbf{j} + (\cos \phi)\mathbf{k}]$$

$$\cdot (-\sin \phi)[(\sin \phi \cos \theta)\mathbf{i} + (\sin \phi \sin \theta)\mathbf{j} + (\cos \phi)\mathbf{k}]$$

$$= (-\sin \phi)(\sin^{2} \phi \cos^{2} \theta + \sin^{2} \phi \sin^{2} \theta + \cos^{2} \phi) = -\sin \phi.$$

Luego,

$$\iint_{\mathbf{\Phi}} \mathbf{r} \cdot d\mathbf{S} = \iint_{D} -\operatorname{sen} \phi \, d\phi \, d\theta = \int_{0}^{2\pi} (-2) \, d\theta = -4\pi.$$

Orientación

Podemos establecer una analogía entre la integral de superficie $\iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S}$ y la integral de línea $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$. Recordemos que la integral de línea es una integral orientada. La noción de orientación de una curva era necesaria para ampliar la definición de $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$ a integrales de línea $\int_{C} \mathbf{F} \cdot d\mathbf{s}$ sobre curvas orientadas. Ampliamos la definición de $\iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S}$ a superficies orientadas de forma similar; es decir, dada una superficie S parametrizada por una aplicación $\mathbf{\Phi}$, queremos definir $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S}$ y demostrar que es independiente de la parametrización, excepto posiblemente por el signo. Para conseguir esto, necesitamos la noción de orientación de una superficie.

Definición Superficies orientadas Una superficie orientada es una superficie con dos caras en la que se especifica una de ellas como la cara exterior o positiva y la otra como cara interior

Contin'ua