3 ESTRUCTURAS DEL SISTEMA OPERATIVO

- 1 COMPONENTES DEL SISTEMA
- 2 SERVICIOS DEL SISTEMA OPERATIVO
- 3 LLAMADAS AL SISTEMA
- 4 PROGRAMAS DEL SISTEMA
- 5 ESTRUCTURAS DEL SISTEMA
- 6 MÁQUINAS VIRTUALES
- 7 DISEÑO E IMPLEMENTACIÓN DE SISTEMAS
- 8 GENERACIÓN DEL SISTEMA

Perspectivas

Existen varias perspectivas:

- Examinar sevicios que provee
- Interfaz que ofrece
- Desglosar en componentes y estudiar sus interconecciones.

3.1 COMPONENTES DEL SISTEMA

- 1 Administración de Procesos
- 2 Administración de Memoria Principal
- 3 Administración de Almacenamiento Secundario
- 4 Administración de Entrada/Salida
- 5 Administración de Archivos
- 6 Sistema de Protección
- 7 Redes y Sistemas Distribuidos
- 8 Intérprete de Comandos del Sistema

3.1.1 Administración de Procesos

- Un proceso es un programa en ejecución. Un proceso necesita ciertos recursos, incluyendo tiempo de CPU, memoria, archivos y dispositivos de E/S, para llevar a cabo su tarea.
- El sistema operativo es responsable de las siguientes actividades en relación con la administración de procesos:
 - Creación y eliminación de un proceso.
 - Suspensión y reanudación de un proceso.
 - Provisión de mecanismos para:
 - Sincronización entre procesos
 - Comunicación entre procesos
 - Bloqueos mutuos (deadlocks)

3.1.2 Administración de Memoria Principal

- La Memoria es un gran arreglo de palabras o bytes, cada uno con sus propias direcciones. Es un repositorio de datos rápidamente accesibles, compartidos por la CPU y los dispositivos de E/S.
- La Memoria Principal es volátil. Pierde su contenido en caso de una caída del sistema.
- El SO es responsable de las siguientes actividades de administración de memoria:
 - Preocuparse de qué partes de la memoria están siendo usadas actualmente y por quién.
 - Decidir qué procesos cargar cuando algún espacio de memoria queda disponible.
 - Asignar y desasignar espacio de memoria cuando se necesite.

3.1.3 Administrac. de Memoria Secundaria

- Ya que la memoria 1º es volátil e insuficiente para acomodar todos los datos y programas en forma permanente, el sistema debe proporcionar almacenamiento 2º como respaldo a ésta.
- La mayoría de los sistemas modernos usa al disco como el principal medio de almacenamiento on-line, para programas y datos.
- El sistema operativo es responsable de las siguientes actividades en relación con la administración de disco:
 - Administración de espacio libre
 - Asignación del almacenamiento
 - Itineración de disco

3.1.4 Administración del Sistema de E/S

- El sistema de E/S consiste de:
 - Un sistema de buffer caching
 - Una interfaz general de manejo de dispositivos
 - Manejadores (drivers) para dispositivos de hardware específicos

3.1.5 Administración de Archivos

- Un archivo es una colección de información relacionada, definida por su creador. Comúnmen-te, los archivos contienen programas y/o datos.
- El sistema operativo es responsable de las siguientes actividades en relación con la administración de archivos:
 - Creación y eliminación de archivos.
 - Creación y eliminación de directorios.
 - Soporte de primitivas para manipular archivos y directorios.
 - Mapear archivos en almacenamiento secundario.
 - Respaldo de archivos en medio de almacenamiento estable (no volátil).

3.1.6 Sistema de Protección

- Protección se refiere a mecanismos para controlar el acceso de los programas, procesos o usuarios a los recursos del sistema y de los usuarios.
- El mecanismo de protección debe:
 - Distinguir entre uso autorizado y no autorizado.
 - Especificar los controles a ser impuestos.
 - Proporcionar un medio de fuerza.

3.1.7 Redes y Sistemas Distribuidos • Un sistema distribuido es una colección

- Un sistema distribuido es una colección de procesadores que no comparten memoria ni reloj. Cada procesador tiene su propia memoria local.
- Los procesadores en el sistema están conec-tados a través de una red de comunicaciones.
- Un sistema distribuido provee acceso a los usuarios a los distintos recursos del sistema.
- El Acceso a recursos compartidos permite:
 - Aceleramiento en los cálculos
 - Mayor disponibilidad de datos
 - Mayor confiabilidad

3.1.8 Intérprete de Comandos

- Muchos comandos son dados al sistema operativo mediante sentencias de control, las cuales tratan de:
 - Creación y administración de procesos
 - Manejo de Entrada/Salida
 - Administración de almacenamiento secundario
 - Administración de memoria principal
 - Acceso al sistema de archivos
 - Protección
 - Redes

3.1.8 Intérprete de Comandos

- El programa que lee e interpreta sentencias de control es llamado:
 - Intérprete de tarjetas de control
 - Intérprete de línea de comando
 - Shell (en UNIX)
- Su función es obtener y ejecutar el siguiente comando.

```
| State | Day | Da
```

3.2 SERVICIOS DEL SISTEMA OPERATIVO

FUNCIONES PRINCIPALES:

- 1 Ejecución de programas: capacidad de cargar un programa en la memoria principal y ejecutarlo.
- 2 Operaciones de E/S: ya que los programas de usuario no pueden ejecutar operaciones de E/S directamente, el sistema operativo debe proveer algún medio para ello.
- 3 Sistema de manipulación de Archivos: capacidad de leer, escribir, crear y eliminar archivos.

3.2 SERVICIOS DEL SISTEMA OPERATIVO

- 4 Comunicación: intercambio de información entre procesos en ejecución, ya sea en el mismo computador o en diferentes sistemas conectados mediante una red. Implementado vía memoria compartida o traspaso de mensajes.
- 5 Detección de errores: asegurar un ambiente libre de errores, detectándolos en la CPU y memoria, dispositivos de E/S o en programas de usuario.

3.2 SERVICIOS DEL SISTEMA OPERATIVO

FUNCIONES ADICIONALES: Las funciones adicionales existen no para ayudar al usuario, sino más bien para asegurar la operación eficiente del sistema:

- Asignación de recursos: asignar recursos a múltiples usuarios o Jobs ejecutándose al mismo tiempo.
- Contabilidad (accounting): verificar y registrar qué, cuánto y cuándo usan los usuarios los recursos del computador, para posterior cobro o estadística.
- Protección: asegurar que todos los accesos a los recursos del sistema estén bajo control.

- Las llamadas al sistema (system calls) proveen la interfaz entre un programa en ejecución y el sistema operativo.
 - Generalmente, están disponibles como instrucciones del lenguaje assembler.
 - En los lenguajes definidos para reemplazar al lenguaje assembler en la programación de sistemas, se permite que las llamadas al sistema se hagan directamente (ej. en C).

- Hay tres métodos generales para traspasar parámetros entre un programa en ejecución y el sistema operativo:
 - Pasar parámetros en registros.
 - Almacenar los parámetros en una tabla en memoria y la dirección de la tabla es pasada como parámetro en un registro.
 - Almacenar los parámetros en el stack (push) por parte del programa y sacarlos del stack (pop) por parte del sistema operativo.

Ej. Traspaso de Parámetros en una Tabla. Parámetros en un bloque y la dir del bloque se pasa como par en un reg

Tipos de llamadas al sistema:

- 1 Control de Procesos
- 2 Manipulación de Archivos
- 3 Manipulación de Dispositivos
- 4 Mantención de Información
- 5 Comunicaciones

3.3.1 Control de Procesos

- terminar, abortar
- cargar, ejecutar
- crear/terminar proceso
- obtener/establecer atributos de proceso
- esperar un tiempo
- esperar/indicar ocurrencia de suceso
- asignar/liberar/memoria

3.3.1 Control de Procesos

Ejecución de MS-DOS En la

partida del sistema

Memoria libre

intérprete de comandos

núcleo

En la ejecución de un programa

Memoria libre

programa de usuario

intérprete de comandos

núcleo

3.3.1 Control de Procesos

Ejecución de varios programas en UNIX

Proceso D

Memoria Libre

Proceso C

Intérprete

Proceso B

Núcleo

3.3.2 Manipulación de Archivos

- crear/eliminar archivo
- abrir, cerrar
- leer, escribir, reposicionar
- obtener/establecer atributos de archivo

3.3.3 Manipulación de Dispositivos

- solicitar/liberar dispositivo
- leer, escribir, reposicionar
- obtener/establecer atributos de dispositivo
- conectar/desconectar lógicamente dispositivo

3.3.4 Mantención de Información

- obtener/establecer hora o fecha
- obtener/establecer datos del sistema
- obtener/establecer atributos de un proceso, archivo o dispositivo

3.3.5 Comunicaciones

- crear/eliminar conexión de comunicación
- enviar/recibir mensajes
- transferir información de estado
- conectar/desconectar dispositivos remotos

3.3.5 Comunicaciones

Modelos de Comunicación

a)Traspaso de mensajes b) Memoria compartida

3.4 PROGRAMAS DEL SISTEMA

- Los programas del sistema proveen un ambiente conveniente para el desarrollo y ejecución de programas. Se pueden dividir en:
 - Manipulación de archivos
 - Obtención de información de estado
 - Modificación de archivos
 - Soporte para lenguajes de Programación
 - Carga y ejecución de programas
 - Comunicación
 - Programas de aplicación
- La mayoría de los usuarios ve al sistema operativo a través de los programas del sistema, en vez de las llamadas al sistema.

ESTRUCTURA SIMPLE

- MS-DOS: escrito para proveer la mayor funcionalidad en el menor espacio
 - No está dividido en módulos
 - A pesar que MS-DOS tiene alguna estructura, sus interfaces y niveles de funcionalidad no están bien separados

ESTRUCTURAS SIMPLES (cont)

Estructura de MS-DOS

ESTRUCTURAS SIMPLES (cont)

- UNIX: está limitado por la funcionalidad del hardware, el UNIX original tenía una estructuración limitada.
- El sistema operativo UNIX consiste en dos partes separables:
 - Programas del sistema
 - Kernel
 - Consiste en todo lo que está debajo de la interfaz de las llamadas al sistema y sobre el hardware
 - Provee el sistema de archivos, itineración de la CPU, administración de la memoria, y otras funciones del sistema operativo; un enorme número de funciones para un solo nivel.

ESTRUCTURAS SIMPLES (cont)

Sistema UNIX

(usuarios)

shells y órdenes compiladores e intérpretes bibliotecas del sistema

interfaz con el núcleo mediante llamadas al sistema

manejo de terminales por señales sistema de E/S por caracteres drivers de terminales sistema de archivos sistema de E/S por intercambio de bloques drivers de disco y cinta planificación de CPU reemplazo de páginas paginación por demanda memoria virtual

interfaz con el núcleo

controladores de terminales terminales

controladores de dispositivos discos y cintas

controladores de memoria memoria física

ENFOQUE POR CAPAS

- El sistema operativo está dividido en un número de capas (layers) o niveles, cada una construida sobre la capa inferior adyacente. La capa de más abajo (capa 0) es el hardware; la capa de más arriba (capa N) es la interfaz del usuario.
- Con este tipo de modularidad, las capas son seleccionadas de manera que cada una de ellas use las funciones (operaciones) y servicios de las capas de niveles inferiores.

ENFOQUE POR CAPAS (cont)

ENFOQUE POR CAPAS (cont)

Estructura en capas del sistema operativo THE (technische hogeschool eindhoven), que está diseñado en seis capas:

5	Programas de Usuario
4	Buffers para dispositivos de E/S
3	Driver para la Consola del
	Operador
2	Administración de Memoria
1	Itineración de la CPU
0	Hardware

ENFOQUE POR CAPAS (cont)

Estructur a de OS/2

- Una máquina virtual ocupa la aproximación en capas. Trata al hardware y al Kernel del sistema operativo como si todos fueran hardware.
- Una máquina virtual provee una interfaz idéntica al hardware subyacente.
- El sistema operativo crea la ilusión de múltiples procesos, cada uno ejecutándose sobre su propio procesador con su propia memoria (virtual).

- Los recursos del computador físico son compartidos para "crear" varias máquinas virtuales.
 - La itineración de la CPU crea la ilusión de que cada usuario tiene su propio procesador.
 - El Spooling y el sistema de archivos proveen dispositivos de E/S virtuales.

MODELOS DE SISTEMA

VENTAJAS Y DESVENTAJAS

- Provee protección completa a los recursos del sistema pues cada máquina está aislada de las demás. Este aislamiento, sin embargo, no permite la compartición directa de recursos.
- Un sistema de máquina virtual sirve en investigación y desarrollo de sistema operativos. Estos son hechos sobre la máquina virtual, en vez de la máquina física, lo cual no perturba la operación normal del sistema.
- El concepto es difícil de implementar, debido al esfuerzo requerido para proveer un duplicado de la máquina subyacente.

3.7 DISEÑO E IMPLEMENTACIÓN DE S.O.

OBJETIVOS EN EL DISEÑO DEL SISTEMA

- Desde el punto de vista del usuario: el sistema operativo debería ser conveniente de usar, fácil de aprender, confiable, seguro y rápido.
- Desde el punto de vista del sistema: el sistema operativo debería ser fácil de diseñar y mantener, al mismo tiempo que flexible, confiable, libre de errores y eficiente.

3.7 DISEÑO E IMPLEMENTACIÓN DE S.O.

MECANISMOS Y POLÍTICAS

- Los mecanismos determinan cómo hacer algo; las políticas deciden qué se hará.
- La separación entre política y mecanismo es un principio muy importante; permite máxima flexibilidad si las decisiones políticas van a ser cambiadas posteriormente.

3.7 DISEÑO E IMPLEMENTACIÓN DE S.O.

IMPLEMENTACIÓN DEL SISTEMA

- Tradicionalmente escritos en lenguaje assembler, los sistemas operativos ahora pueden ser escritos en lenguajes de alto nivel.
- El código escrito en un lenguaje de alto nivel:
 - Puede ser escrito más rápido.
 - Es más compacto.
 - Es más fácil de comprender y depurar.
- Un sistema operativo es mucho más fácil de portar (mover a otra plataforma de hardware) si es escrito en un lenguaje de alto nivel.

3.8 GENERACIÓN DEL SISTEMA

- Los sistemas operativos están diseñados para ejecutarse en cualquier clase de máquina; el sistema debe ser configurado para cada lugar específico.
- El programa SYSGEN obtiene información relativa a la configuración específica del hardware del sistema.
- El booting es la inicialización del computador, producto de cargar el kernel.
- El programa de bootstrap es el código almacenado en ROM que es capaz de ubicar el kernel, cargarlo en la memoria y comenzar su ejecución.