



Bryan Lewis, Paradigm4 blewis@paradigm4.com



- 1. Brief Introduction to SciDB & SciDB-R
- 2. Demos



Open-source high-performance database

Data organized in multi-dimensional sparse arrays

Distributed storage, parallel processing

Excels at parallel linear algebra

ACID, data replication, versioned data





### Paradigm4 develops & supports SciDB

### CTO is database researcher Mike Stonebraker

 Force behind many major advances in commercial database products (Postgres, Ingres, Vertica, et al)

### Community edition: fully scalable, unrestricted

### Enterprise edition

- More functionality
- Fault tolerance and system management tools



#### The NCBI 1K Genome Browser Runs on SciDB



http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/

http://www.ncbi.nlm.nih.gov/variation/tools/get-rm/browse

# **SciDB Arrays**

# Each cell in a SciDB array consists of a fixed number of typed values

Here is an example cell:

| X        | У            | Z |
|----------|--------------|---|
| 3.141593 | "When human" | 2 |

# Cells are ordered along coordinate axes. A 1-D array looks like an R data frame.



## SciDB arrays can be multi-dimensional



# Arrays can be sparse and values may be explicitly marked missing in several ways.

| i      | X                      | y                                  | Z            |
|--------|------------------------|------------------------------------|--------------|
| 1      | NA                     | "When human"                       | 0            |
| 2      |                        |                                    |              |
|        |                        |                                    |              |
| 3      | Missing(1)             | "big data interact"                | Missing(7)   |
| 3<br>4 | Missing(1)<br>0.577215 | "big data interact" "funny things" | Missing(7) 3 |

# SciDB Arrays



## Arrays are chunked .... with optional overlap

### Chunk 1

### Chunk 2

| U    | l .  | 1    | i .  |
|------|------|------|------|
| 0.02 | 0.01 | 0.01 | 0.02 |
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

### Chunk 3

#### Chunk 4

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

### Data are distributed across SciDB instances

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |

| 0.02 | 0.01 | 0.01 | 0.02 |
|------|------|------|------|
|      |      |      |      |
| 0.01 | 0.01 | 0.5  | 0.02 |
| 0.01 | 0.02 | 0.01 | 0.01 |
| 0.02 | 0.01 | 0.02 | 0.02 |









# **SciDB Arrays**

Arrays can be joined along dimensions or subsets of dimensions

Values can be aggregated along dimensions and optionally over windows

Functions can be **applied** over values in arrays

Arrays can be sparse

Linear algebra operations, matrix decompositions, and other interesting operations are defined for matrices and vectors

# The SciDB package for R

### Defines two main ways to interact with SciDB:

- 1. Iterable data frame interface using SciDB query language
- 2. N-dimensional sparse/dense array class for R backed by SciDB arrays



## Taxonomy of out-of-core packages

#### List/Dataframe-like

RObjectTables, g.data, filehash, ff, DBI (RPgSQL, RMySQL, ROracle, ...), Vertica/R, Netezza/R, rredis, **scidb**, RBerkeley, RCassandra, LaF, lazy.frames

### Hadoop

rmr, HadoopStreaming, RHIPE

### **Array-like**

ff, bigmemory, pbdR, scidb, Netezza

#### **Other**

rdsm, exciting work forthcoming from Simon, flexmem

```
library("scidb")
scidbconnect(host="localhost")

# An example reference to a SciDB matrix:
A <- scidb("A")
dim(A)
[1] 50000 50000</pre>
```

# Subarrays return new SciDB array objects:

A[c(0,49000,171), 5:8]

Reference to a 3x4 SciDB array

# Use [] to materialize data to R:

### A[c(0,49000,171), 5:8][]

```
[,1] [,2] [,3] [,4] [1,] [1,] 0.9820799 -0.4563357 -1.2947495 -0.8085465 [2,] -1.5090126 0.1547963 -0.2435732 -0.1836875 [3,] 1.3296710 -1.5006536 -0.5980172 0.3752186
```

# Arithmetic composed with subsetting:

 $X \leftarrow A \% \% A[,1:5]$ 

dim(X)

[1] 50000 5

```
\# Mixed SciDB and R object arithmetic
```

```
Z <- A[c(0,49000,171), 5:7]
(0.5*(Z + t(Z)) %*% rnorm(3)[, drop=FALSE]
```

```
[,1]
[1,] 3.707263
[2,] -2.833560
[3,] 3.518370
```



The SciDB array class facilitates exploration and analysis of large data in a familiar language.

## **Big Data Analytics with SciDB-R**

All of the work of parallelism, data distribution, and transactional integrity is handled by SciDB.

It is sometimes possible to use SciDB arrays in R packages with little (or sometimes even no) modification.

Let's see exactly what we had to do to use the s4vd and biclust packages...

Change:

to:

The trick here is to avoid a transpose of the large array... Optionally, use irlb package instead of P4 svd.

# How I see this package evolving ....

More data frame (1-D array) integration

- Natural R syntax aggregate and apply
- and join, tabulation, tapplys and plyR support

Continuing addition of core matrix decompositions as they become available

Continuing addition of new modeling methods as they become available

Improved hybrid R/SciDB algorithm efficiency



# SciDB-R makes Big Data Analytics easy to use from R



## Tell us about your application

info@paradigm4.com

# Try our Quick Start at scidb.org/forum

- Read the SciDB-R QuickStart and SciDB-R docs
- Download a VM or EC2 AMI