

PROJECT DESCRIPTION IMDB Movie Analysis

This project involves analyzing an IMDB movie dataset to identify the factors influencing the success of movies, measured by their IMDB ratings. The analysis covers various aspects such as movie genres, durations, languages, directors, budgets, and their relationships to ratings and financial success.

DATASET

Link to the Dataset (Please open on MS Excel)

APPROACH

The Approach taken for this project

Data Cleaning

Cleaned the data by identifying and handling missing values

Exploratory Data Analysis (EDA)

Using Excel and descriptive statistics (mean, median, mode, variance, standard deviation). Pivot tables and formulas like COUNTIF(), AVERAGEIF(), and CORREL() were also used

Visualizations

Bar graphs, scatter plots with trendlines, and pie charts were created to visualize distributions and correlations

Reporting:

Key findings were compiled into a structured report supported by visual evidence, aiming to offer practical recommendations to guide future movies.

TECH STACK

The Tech-Stacks Used

Microsoft Excel 2025

Used for the cleaning of data, pivot table, calculations and chart visualizations

Microsoft Word / Adobe Acrobat / Canva

Microsoft Word Used for preparing and structuring the report and converting to PDF. Canva used for the title page.

Data Cleaning

There are too many columns and there are some which are not required for this analysis, like the color of the movie, imdb link, facebook likes, etc.

The only columns needed for this analysis are -

- Director Name
- Duration
- Gross
- Genres
- Movie_Title
- Language
- Country
- Budget
- IMDB Score

There are blanks present in the dataset. The blanks can either be filled with data from the internet or completely removed. But in this case, there are far too many blanks, so we delete the entire rows with blanks.

There are duplicate rows present as well that needs to be removed.

Some values in the Country column has been replaced after verifying with Google:

- New Line = USA
- Official Site = USA
- West Germany = Germany

A. MOVIE GENRE ANALYSIS

Analyze the distribution of movie genres and their impact on the IMDB score.

Determine the most common genres of movies in the dataset. Then, for each genre, calculate descriptive statistics (mean, median, mode, range, variance, standard deviation) of the IMDB scores.

The Genre column is split with '|' delimiter and then the number of movies corresponding to that Genre is to be found with the following formula

```
=COUNTIF(IMDB_Movie_Data!D:D,"*" & A2 & "*")
```

('IMDB_Movie_Data' is the name of the data sheet)

Then the Mean is found using the AVERAGEIF() formula

```
=AVERAGEIF(IMDB_Movie_Data!D:D, "*" & A2 & "*", IMDB Movie Data!I:I)
```

Then Median is found using the formula

```
=MEDIAN(FILTER(IMDB_Movie_Data!I:I, ISNUMBER(SEARCH(A2, IMDB_Movie_Data!D:D))))
```

(Since I'm using Excel 2025 I can use the FILTER formula)

Then Mode with the similar formula

```
=MODE(FILTER(IMDB_Movie_Data!I:I, ISNUMBER(SEARCH(A2, IMDB_Movie_Data!D:D))))
```

Now to find the Range, the difference between the Minimum and Maximum value is found using the formula

```
=MIN(FILTER(IMDB_Movie_Data!I:I, ISNUMBER(SEARCH(A2, IMDB_Movie_Data!D:D))))
```

```
=MAX(FILTER(IMDB_Movie_Data!I:I, ISNUMBER(SEARCH(A2, IMDB_Movie_Data!D:D))))
```

Then finally the Variance and Standard Deviation

```
=VAR.P(FILTER(IMDB Movie Data!I:I, ISNUMBER(SEARCH(A2, IMDB Movie Data!D:D))))
```

=STDEV.P(FILTER(IMDB Movie Data!I:I, ISNUMBER(SEARCH(A2, IMDB Movie Data!D:D))))

Genres	Movies	Mean	Median	Mode	Min	Max	Range	Variance	Standard_Deviation
Action	935	6.285989305	6.3	6.6	2.1	9	6.9	1.077033647	1.037802316
Adventure	766	6.454960836	6.6	6.6	2.3	8.9	6.6	1.245895756	1.116197006
Drama	1911	6.789115646	6.9	6.7	2.1	9.3	7.2	0.793581165	0.890831726
Animation	197	6.700507614	6.8	7.3	2.8	8.6	5.8	0.982284006	0.99110242
Comedy	1492	6.183310992	6.3	6.3	1.9	8.8	6.9	1.080706732	1.039570455
Mystery	377	6.469496021	6.5	6.6	3.1	8.6	5.5	1.01214643	1.006054884
Crime	702	6.548148148	6.6	6.6	2.4	9.3	6.9	0.967083465	0.983404019
Biography	242	7.140082645	7.2	7	4.5	8.9	4.4	0.502153712	0.708628049
Fantasy	496	6.285080645	6.4	6.7	2.2	8.9	6.7	1.297922574	1.139264049
Documentary	67	7.011940299	7.2	6.6	1.6	8.5	6.9	1.418364892	1.190951255
Sci-Fi	484	6.327272727	6.4	7	1.9	8.8	6.9	1.359504132	1.165977758
Horror	379	5.903957784	5.9	6.2	2.3	8.6	6.3	0.979535787	0.989715003
Romance	866	6.426212471	6.5	6.5	2.1	8.5	6.4	0.937869488	0.968436621
Family	441	6.2	6.3	5.4	1.9	8.6	6.7	1.364807256	1.168249655
Western	58	6.765517241	6.8	6.8	4.1	8.9	4.8	0.979845422	0.989871417
Musical	102	6.550980392	6.7	7.1	2.1	8.5	6.4	1.29485198	1.13791563
Thriller	1087	6.372309108	6.4	6.5	2.7	9	6.3	0.938248854	0.968632466
History	152	7.131578947	7.2	7.7	5.5	8.9	3.4	0.448608033	0.669782079
Music	247	6.456680162	6.7	6.2	1.6	8.5	6.9	1.407637562	1.186439026
War	159	7.048427673	7.1	7.1	4.3	8.6	4.3	0.648283691	0.805160662
Sport	147	6.601360544	6.8	7.2	2	8.4	6.4	1.091290666	1.044648585
Short	2	6.8	6.8	0	6.5	7.1	0.6	0.09	0.3
Film-Noir	1	7.7	7.7	0	7.7	7.7	0	0	0

The top 5 Genres are Drama, Comedy, Thriller, Action and Romance

The descriptive statistics of the top 5 genres are almost at the highest level

B. MOVIE DURATION ANALYSIS

Analyze the distribution of movie durations and its impact on the IMDB score.

Analyze the distribution of movie durations and identify the relationship between movie duration and IMDB score.

The Mean, Median and Standard Deviation of the duration table is found

=AVERAGE(IMDB_Movie_Data!B:B)

=MEDIAN(IMDB Movie Data!B:B)

=STDEV.P(IMDB Movie Data!B:B)

	Mean	Median	Standard_Deviation
Movie Duration	109.808505	105	22.76019457

This scatter plot shows that the Movie Duration and IMDB Score have a positive relationship

C. LANGUAGE ANALYSIS

Examine the distribution of movies based on their language.

Determine the most common languages used in movies and analyze their impact on the IMDB score using descriptive statistics.

The number of movies of that specific language, Mean, Median and Standard Deviation is found

=COUNTIF(IMDB_Movie_Data!F:F,D5)

=AVERAGEIF(IMDB Movie Data!F:F,D5,IMDB Movie Data!I:I)

=MEDIAN(FILTER(IMDB_Movie_Data!I:I, ISNUMBER(SEARCH(D5, IMDB_Movie_Data!F:F))))

=STDEV.P(FILTER(IMDB_Movie_Data!I:I, ISNUMBER(SEARCH(D5, IMDB_Movie_Data!F:F))))

Languages	Movies	Mean	Median	Standard Deviation
English	3606	6.42143649	6.5	1.052352956
Mandarin	14	7.02142857	7.25	0.737930089
Aboriginal	2	6.95	6.95	0.55
Spanish	26	7.05	7.15	0.810151933
French	37	7.28648649	7.2	0.553691378
Filipino	1	6.7	6.7	0
Maya	1	7.8	7.8	0
Kazakh	1	6	6	0
Telugu	1	8.4	8.4	0
Cantonese	8	7.2375	7.3	0.412121038
Japanese	12	7.625	7.8	0.861321659
Aramaic	1	7.1	7.1	0
Italian	7	7.18571429	7	1.069617517
Dutch	3	7.56666667	7.8	0.329983165
Dari	2	7.5	7.4	0.709065186
German	13	7.69230769	7.7	0.615769111
Mongolian	1	7.3	7.3	0
Thai	3	6.63333333	6.6	0.368178701
Bosnian	1	4.3	4.3	0
Korean	5	7.7	7.7	0.509901951
Hungarian	1	7.1	7.1	0
Hindi	10	6.76	7.05	1.05470375
Icelandic	1	6.9	6.9	0
Danish	3	7.9	8.1	0.43204938
Portuguese	5	7.76	8	0.875442745
Norwegian	4	7.15	7.3	0.497493719
Czech	1	7.4	7.4	0
Russian	1	6.5	6.5	0
None	1	8.5	8.5	0
Zulu	1	7.3	7.3	0
Hebrew	3	7.5	7.3	0.355902608
Dzongkha	1	7.5	7.5	0
Arabic	1	7.2	7.2	0
Vietnamese	1	7.4	7.4	0
Indonesian	2	7.9	7.9	0.3
Romanian	1	7.9	7.9	0
Persian	3	8.13333333	8.4	0.449691252
Swedish	1	7.6	7.6	0

English is the most common language of the movies then comes French and Spanish

D. DIRECTOR ANALYSIS

Influence of directors on movie ratings.

Identify the top directors based on their average IMDB score and analyze their contribution to the success of movies using percentile calculations.

First the Director_Name column is copied and then the duplicates were removed. And then the number of movies corresponding to that Director is found using

=COUNTIF(IMDB Movie Data!A:A, D5)

Then the Average IMDB Score for the movies of that Director is found using

=AVERAGEIF(IMDB_Movie_Data!A:A, D5, IMDB_Movie_Data!I:I)

Finally the Percentile is found using

=PERCENTRANK.EXC(F5:F1755, F5)

Director Name >	Movies √	Average_IMDE +1	Percentile *								
Christopher Nolan	8	8,425	0.999	Woody Allen	19	7	0.999	Barry Levinson	13	6.576923077	0.998
Ouentin Tarantino	8	8.2	0.999	Lasse HallstrĶm	8	6.9875		Martin Campbell	8	6.55	0.998
Peter Jackson	9	7.888888889	0.999	Sam Raimi	10	6.96		Harold Ramis	8	6.55	0.995
David Fincher	10	7.75	0.999	Antoine Fuqua	8	6.9375	0.999	Brett Ratner	9	6.455555556	0.998
Martin Scorsese	16	7.675	0.999	F. Gary Gray	8	6.9375		Joel Schumacher	12	6.341666667	0.998
Francis Ford Coppola	9	7.65555556	0.999	Ron Howard	13	6.930769231	0.999	Bobby Farrelly	9	6.24444444	0.998
Steven Spielberg	25	7.544	0.999	Oliver Stone	13	6.907692308		Roland Emmerich	8	6.1875	0.998
Danny Boyle	20	7.4375	0.999	Tony Scott	12	6.791666667	0.999	Shawn Levy	11	6.090909091	0.998
Richard Linklater	11	7.327272727	0.999	Kevin Smith	10	6.78	0.998	Ivan Reitman	8	6.075	0.995
				Phillip Noyce	9	6.766666667	0.999	M. Night Shyamalan	9	6.04444444	0.998
Robert Zemeckis	13	7.307692308	0.999	Neil Jordan	8	6.7625	0.999	Paul W.S. Anderson	10	5.99	0.998
Bryan Singer	8	7.2875	0.999	Spike Lee	15	6.733333333	0.995	Wes Craven	10	5.97	0.998
Ang Lee	8	7.25	0.999	John Carpenter	10	6.73	0.999	Adam Shankman	8	5.9625	0.998
Clint Eastwood	19	7.205263158	0.999	Steven Soderbergh	15	6.68	0.999	Garry Marshall	8	5.95	0.992
Ridley Scott	16	7.13125	0.999	Chris Columbus	11	6.654545455	0.999	Renny Harlin	15	5.746666667	0.997
Stephen Frears	8	7.0875	0.999	Richard Donner	9	6.633333333	0.999	Dennis Dugan	9	5.733333333	0.997
James Mangold	8	7.075	0.998	John McTiernan	10	6.63	0.999	Robert Rodriguez	13	5.692307692	0.997
Tim Burton	14	7.05	0.997	Michael Bay	12	6.616666667	0.999	Donald Petrie	8	5.6625	0.997
Rob Reiner	11	7.018181818	0.999	Brian De Palma	10	6.6	0.952	Rob Cohen	9	5.577777778	0.997

Only the Directors with movie count 8 or above are shown, otherwise it would be unfair to compare them with Directors with few good movies.

E. BUDGET ANALYSIS

Explore the relationship between movie budgets and their financial success.

Analyze the correlation between movie budgets and gross earnings, and identify the movies with the highest profit margin.

Movie_Title	Gross	Budget	Profit_Margin
AvatarÂ	760505847	237000000	523505847
Jurassic WorldÂ	652177271	150000000	502177271
TitanicÂ	658672302	200000000	458672302
Star Wars: Episode IV - A New HopeÂ	460935665	11000000	449935665
E.T. the Extra-TerrestrialÂ	434949459	10500000	424449459

These are the top 5 movies with highest profit margin, and the movie Avatar is the movie with the highest profit margin.

The Correlation between Gross and Budget is

Correlation 0.096569

The movies with higher budget tends have a higher chance to produce higher profit.

RESULT

This project helped me strengthen my skills in data cleaning, analysis, and statistics. By exploring factors like genre, duration, language, directors, and budget, I was able to identify patterns that influence a movie's success on IMDB. I learned that while high budgets and popular genres can play a role, strong direction often have a greater impact on ratings. Overall, this analysis gave me valuable insights into how data can guide creative and business decisions in the film industry.

THANK YOU