PROGRAMAÇÃO LINEAR UERJ/2024

02 - Método das Duas Fases

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

Introdução

2 Fase I

Fase II

Exemplo: Considere o problema a seguir:

max
$$z = -2x_1 - 4x_2$$

s.a.
$$x_1 + 5x_2 \le 80$$
$$4x_1 + 2x_2 \ge 20$$
$$x_1 + x_2 = 10$$
$$x_1, x_2 > 0$$

Passando para a forma padrão, temos:

max
$$z = -2x_1 - 4x_2 + 0s_1 + 0s_2$$

s.a.
$$x_1 + 5x_2 + s_1 = 80$$

$$4x_1 + 2x_2 - s_2 = 20$$

$$x_1 + x_2 = 10$$

$$x_1, x_2, s_1, s_2 \ge 0$$

Em outros termos:

$$\max z = \begin{bmatrix} -2 & -4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix}$$

s.a.

$$\begin{bmatrix} 1 & 5 & 1 & 0 \\ 4 & 2 & 0 & -1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 80 \\ 20 \\ 10 \end{bmatrix}$$

$$x, s \ge 0$$

Note que nos problemas de maximização, nem sempre podemos trabalhar com restrições somente do tipo $A_jx_j \leq b_j$. Neste exemplo, temos uma restrição do tipo $A_jx_j \geq b_j$ e outra do tipo $A_jx_j = b_j$.

Assim, na matriz do sistema de restrições, não é possível ter vetores colunas formando uma matriz identidade para a base inicial B do método Simplex.

Para resolver esse problema de não conseguir formar uma matriz identidade para a base inicial B, a ideia do **Método das Duas Fases** é acrescentar para cada restrição do tipo \geq ou = uma variável artificial $\mathfrak{a}_{\mathfrak{i}}$.

Neste exemplo, o sistema de restrições se torna

$$x_1 + 5x_2 + s_1 = 80$$

 $4x_1 + 2x_2 - s_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$
 $x_1, x_2, s_1, s_2, a_2, a_3 \ge 0$

Em outros termos:

$$\begin{bmatrix} 1 & 5 & 1 & 0 & 0 & 0 \\ 4 & 2 & 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 80 \\ 20 \\ 10 \end{bmatrix}$$

Assim, as colunas A_3 , A_5 e A_6 formam uma base do sistema de restrições.

A solução básica inicial fica:

$$\begin{aligned} x_B &= \begin{bmatrix} s_1 & \alpha_2 & \alpha_3 \end{bmatrix}^T = \begin{bmatrix} 80 & 20 & 10 \end{bmatrix}^T; \\ x_N &= \begin{bmatrix} x_1 & x_2 & s_2 \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T. \end{aligned}$$

O método consiste em:

Fase I: Resolver o subproblema P^{α} , que tem por objetivo eliminar as variáveis artificiais, isto é, reduzi-las a zero. Assim, a Fase I consiste em

$$\max z^{a} = \sum_{k} -a_{k}$$
s.a.
$$A'x' = b$$

$$x' > 0$$

Como $a_k \ge 0$, logo $z^a \le 0$. Ou seja, $\max z^a = 0$. Portanto, as variáveis a_k devem sair da base neste subproblema P^a . Isso é o mesmo que tornar $a_k = 0$.

No exemplo que estamos vendo, o subproblema P^{α} da Fase I fica assim:

$$\max \ z^{\alpha} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}$$

s.a.

$$\begin{bmatrix} 1 & 5 & 1 & 0 & 0 & 0 \\ 4 & 2 & 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 80 \\ 20 \\ 10 \end{bmatrix}$$

$$x_1, x_2, s_1, s_2 a_1, a_2 \ge 0$$

No tableau inicial da Fase I, colocamos na linha L_1 os coeficientes com sinal trocado da função objetivo do subproblema P^{α} e na linha L_2 , os coeficientes com sinal trocado da função objetivo do problema original.

(1)

	z	χ_1	x_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{a}	1	0	0	0	0	1	1	$0 = \bar{z}^{\alpha}$	(L_1)
z	1	2	4	0	0	0	0	$0=\bar{z}$	(L_2)
s_1	0	1	5	1	0	0	0	80	(L_3)
\mathfrak{a}_2	0	4	2	0	-1	1	0	20	(L_4)
\mathfrak{a}_3	0	1	1	0	0	0	1	10	(L_5)

Note que não faz nenhum sentido começarmos com $\bar{z}^{\alpha}=0$ na linha L_1 do tableau, já que o objetivo da Fase I é eliminar as variáveis artificiais e consequentemente tornar $\bar{z}^{\alpha}=0$ ao longo das iterações.

Também não faz sentido que a_2 e a_3 , duas variáveis básicas, tenham coeficientes iguais a 1 na linha L_1 , pois variáveis básicas têm coeficientes nulos na linha da função objetivo.

Então, a primeira tarefa é eliminar os coeficientes iguais a ${\color{red}1}$ na linha L_1 através de operações elementares nas linhas.

No tableau, notamos que na coluna de α_2 , há um elemento igual a 1 na linha L_4 , enquanto na coluna de α_3 , há um elemento igual a 1 na linha L_5 .

Logo, para eliminar os coeficientes iguais a 1 em L_1 , devemos subtrair de L_1 as linhas L_4 e L_5 . Ou seja, realizamos a operação:

$$L_1 \leftarrow L_1 - L_4 - L_5. \\$$

Assim, o tableau resultante fica:

(2)

	z	χ_1	χ_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	-5	-3	0	1	0	0	$-30 = \bar{z}^{\alpha}$	(L_1)
z	1	2	4	0	0	0	0	$0=ar{z}$	(L ₂)
s_1	0	1	5	1	0	0	0	80	(L_3)
\mathfrak{a}_2	0	4	2	0	-1	1	0	20	(L_4)
\mathfrak{a}_3	0	1	1	0	0	0	1	10	(L_5)

Agora, podemos aplicar o algoritmo Simplex no tableau resultante. (2)

	z	ψx_1	χ_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	-5	-3	0	1	0	0	$-30 = \bar{z}^{\alpha}$	(L_1)
z	1	2	4	0	0	0	0	$0=\bar{z}$	(L_2)
s ₁	0	1	5	1	0	0	0	80	(L ₃)
$\Leftarrow \mathfrak{a}_2$	0	4	2	0	-1	1	0	20	(L_4)
\mathfrak{a}_3	0	1	1	0	0	0	1	10	(L_5)

Quem entra na base:

$$z_1 - c_1 = -5 < 0$$
 e $z_2 - c_2 = -3 < 0$
Como $z_1 - c_1 < z_2 - c_2$, então x_1 entra na base .

Quem sai da base:

$$\begin{aligned} &a_{11} = 1 > 0 \text{ (OK); } a_{21} = 4 > 0 \text{ (OK); } a_{31} = 1 > 0 \text{ (OK).} \\ &\min\left\{\frac{b_1}{a_{11}}, \frac{b_2}{a_{21}}, \frac{b_3}{a_{31}}\right\} = \min\left\{\frac{80}{1}, \frac{20}{4}, \frac{10}{1}\right\} = \frac{20}{4} = 5 \Rightarrow a_2 \text{ sai da base.} \end{aligned}$$

Pivô: $a_{21} = 2$;

Linha do pivô: L₄;

Operações nas linhas para eliminar os elementos da coluna do pivô, exceto o pivô:

$$L_{1} \leftarrow L_{1} - \left(\frac{-5}{4}\right)L_{4} = L_{1} + \frac{5}{4}L_{4};$$

$$L_{2} \leftarrow L_{2} - \frac{2}{4}L_{4} = L_{2} - \frac{1}{2}L_{4};$$

$$L_{3} \leftarrow L_{3} - \frac{1}{4}L_{4};$$

$$L_{5} \leftarrow L_{5} - \frac{1}{4}L_{4};$$

$$L_4 \leftarrow \frac{1}{4}L_4$$
.

E o novo tableau fica:

(3)

	z	χ_1	ψx_2	s ₁	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
z^{α}	1	0	-1/2	0	-1/4	5/4	0	$-5 = \bar{z}^{\alpha}$	(L_1)
z	1	0	3	0	1/2	-1/2	0	$-10 = \bar{z}$	(L ₂)
81	0	0	9/2	1	1/4	-1/4	0	75	(L_3)
x_1	0	1	1/2	0	-1/4	1/4	0	5	(L_4)
$\Leftarrow \mathfrak{a}_3$	0	0	1/2	0	1/4	-1/4	1	5	(L_5)

Quem entra na base:

$$z_2-c_2=-1/2<0\Rightarrow x_2$$
 entra na base .

Quem sai da base:

$$\begin{split} &\alpha_{12} = 9/2 > 0 \text{ (OK); } \alpha_{22} = 1/2 > 0 \text{ (OK); } \alpha_{32} = 1/2 > 0 \text{ (OK).} \\ &\min\left\{\frac{\bar{x}_1}{\alpha_{12}}, \frac{\bar{x}_2}{\alpha_{22}}, \frac{\bar{x}_3}{\alpha_{32}}\right\} = \min\left\{\frac{75}{9/2}, \frac{5}{1/2}, \frac{5}{1/2}\right\} = \frac{5}{1/2} = 10. \end{split}$$

Houve empate para a escolha de x_1 e a_3 . Como o objetivo na Fase I é eliminar as variáveis artificiais, logo a_3 sai da base.

Pivô: $a_{32} = 1/2$;

Linha do pivô: L₅;

Operações nas linhas para eliminar os elementos da coluna do pivô, exceto o pivô:

$$L_1 \leftarrow L_1 - \left(\frac{-1/2}{1/2}\right) L_5 = L_1 + L_5;$$

$$L_2 \leftarrow L_2 - \frac{3}{1/2}L_5 = L_2 - 6L_5;$$

$$L_3 \leftarrow L_3 - \frac{9/2}{1/2} L_5 = L_3 - 9L_5;$$

$$L_4 \leftarrow L_4 - \frac{1/2}{1/2}L_5 = L_4 - L_5;$$

$$L_5 \leftarrow 2L_5$$
.

E o novo tableau fica:

(4)

	z	x_1	x_2	s_1	s_2	\mathfrak{a}_2	\mathfrak{a}_3		
		l						$0 = \bar{z}^{\alpha}$,
								$-40 = \bar{z}$	(L_2)
s_1	0	0	0	1	-2	2	-9	30	(L ₃)
x_1	0	1	0	0	-1/2	1/2	-1	0	(L_4)
x_2	0	0	1	0	1/2	-1/2	2	10	(L_5)

Na linha L_1 , $z_j-c_j\geq 0, \forall j\in I_N$, onde I_N é o conjunto dos índices das variáveis não básicas. Em particular, para a_2 , temos $z_5-c_5=1$, e para a_3 , temos $z_6-z_6=1$.

Logo, o valor ótimo da função objetivo z^{a} na Fase I é: $z^{a*}=0$.

Note que α_2 e α_3 saíram da base e, consequentemente, $\alpha_2=\alpha_3=0$. Assim, eliminamos as variáveis artificiais na Fase I.

Solução ótima do subproblema P^{α} da Fase I:

$$\mathbf{x}^{\mathbf{B}^{\alpha}} = \begin{bmatrix} s_1 & \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 30 & 0 & 10 \end{bmatrix}^\mathsf{T}; \mathbf{x}^{\mathbf{N}^{\alpha}} = \begin{bmatrix} a_2 & a_3 & s_2 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$$

Rodrigo Madureira (IME-UERJ) Método das Duas Fases 3 de abril de 2024

Agora, começamos a **Fase II** do método: tomamos a solução básica ótima da **Fase I** como a solução básica inicial da **Fase II**.

Para o tableau inicial da Fase II, é necessário eliminar as colunas correspondentes às variáveis artificiais α_k e a linha da função objetivo z^{α} .

No exemplo que estamos vendo, o tableau inicial da Fase II fica assim: (1)

	z	x_1	χ_2	s_1	s_2		
z	1	0	0	0	-1	$-40 = \bar{z}$	(L ₁)
s_1	0	0	0	1	-2	30	(L ₂)
χ_1	0	1	0	0	-1/2	0	(L_3)
χ_2	0	0	1	0	1/2	10	(L_4)

E assim, iniciamos o algoritmo Simplex na Fase II com o novo tableau: (1)

	z	x_1	x_2	s_1	$\Downarrow s_2$		
z	1	0	0	0	-1	$-40 = \bar{z}$	(L_1)
S 1	0	0	0		-2		(L ₂)
x_1	0	1	0	0	-1/2	0	(L_3)
$\Leftarrow x_2$	0	0	1	0	1/2	10	(L_4)

Quem entra na base:

$$z_4 - c_4 = -1 < 0 \Rightarrow s_2$$
 entra na base.

Quem sai da base:

$$a_{14} = -2 < 0$$
 (×); $a_{24} = -1/2 < 0$ (×); $a_{34} = 1/2 > 0$ (OK). $\min\left\{\frac{b_3}{a_{34}}\right\} = \min\left\{\frac{10}{1/2}\right\} = \frac{10}{1/2} = 20 \Rightarrow x_2 \text{ sai da base.}$

Pivô: $a_{34} = 1/2$; Linha do pivô: L_4 ;

Operações nas linhas para eliminar os elementos da coluna do pivô, exceto o pivô:

$$L_1 \leftarrow L_1 + 2L_4; \qquad L_2 \leftarrow L_2 + 4L_4; \quad L_3 \leftarrow L_3 + L_4; \qquad L_4 \leftarrow 2L_4.$$

E o novo tableau é dado por:

(2)

Na linha L_1 , $z_j - c_j \ge 0, \forall j \in I_N$. Logo, temos:

Solução ótima do PPL original: $(x_1^*, x_2^*) = (10, 0)$.

Valor ótimo da função objetivo: $z^* = -20$.