In Search of Spending

Jim Fay

Table of Contents

The Problem

Identifying the problem and project goals

The Data
Exploring the data and its limits

Data Analysis
Showcasing the model and conclusions

Gan better solutions be achieved?

The Problem

What is the problem? How can we solve it with data science?

The Market

\$602B

Online Spending

Consumer online spending with U.S. merchants in 2019.

16%

% of Total Retail

Percent of total U.S. retail sales conducted online in 2019.

75%

Frequent Shoppers

% of shoppers who make a purchase at least once per month.

Our Goal

- Offer customers personalized incentives buy.
 - Prioritize high spending customers.
- Determine **which factors** influence consumer spending.

The Data

Exploring the data and its limits

Limitations

The Data

- Missing data points.
- Unavailable data.
- Not generalizable to all stores.

Sampling

- Was there a pattern to how this data was collected?
- Is it **exhaustive**?

The Model

- Limited predictive power.
- Limited computer power.

The Data

Breakdown

- 717k visits to Google's online store
- Data recorded between 2016-2018
- Types of factors used in the model:
 - Geographical
 - Device
 - Traffic Source
 - Page Views
 - o Time
 - Price
- Made available through Kaggle.

Breakdown: Purchases

- 2.46% of visits result in a purchase.
- Most purchases are small.
- Average Purchase: \$124

Purchases Over Time

- Visits increase with launch of new products.
- New visitors don't make purchases at the same rate.

Data Analysis

Our model, results, and recommendations

The Model

Random Forest Performance

- Cross Validation:
 - R-Squared = 8.5%
 - o RMSE = 68
- Test Data Evaluation:
 - R-Squared = 0.9%

Predicting Spending

Model Results

Interpretation:

- Activity and time spent on the site are key factors.
- Which **products** were viewed is also important.

Number of Visits Influence on Spending

- Customers that make a purchase have visited the site more.
- Most customers make a purchase within their first 25 visits.

Channel Grouping How Did the User Find the Store?

- Referrals lead to purchases.
- Banner ads lead to fewer, but larger purchases.

Recommendations Tailor Marketing Efforts for High vs Low Spenders

- Offer better prices for bulk purchases.
- Incentivise purchases of any size with loyalty programs or one-time discounts.
- Continue to update model as new data is gathered.

Future Improvements

How can our solution be improved?

Improvements

Additional Data

Incorporate **economic** data

Gain access to additional data from Google

Deployment

Deploy the model as a web application

Improve Model

Use different ML models.

Generalize model to work with other online stores.

Questions?

jrf6xh@virginia.edu

* All images in this slideshow are available royalty free from <u>pexels</u>