

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regression

Parameter Identification Single-Region

Multi-Region

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

Virginia Tech Bioimaging Systems Lab

February 24, 2010

Outline

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

FMRI Revie

Statistical Parametric Mapping

Nonlinear Regressio

Identification
Single-Region
Multi-Region

- 1 FMRI Review
- 2 Statistical Parametric Mapping
- 3 Nonlinear Regression
- 4 Parameter Identification
 - Single-Region
 - Multi-Region
- **5** Conclusion

The BOLD Response

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regressio

Parameter Identification Single-Region Multi-Region

Figure: [Riera et al.(2004)Riera, Watanabe, Kazuki, Naoki, Aubert, Ozaki, and Kawashima]

BOLD Signal Properties

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regression

Identification
Single-Region

Multi-Region

- Exact variables and parameters are unknown and are difficult to calculate.
- Significant Amount of Lag between activation and a measurable output
 - can be as much as 8 seconds.
- Slow Temporal Resolution
- Noise characterized by brownian motion, which clashes with low frequency elements.

Preprocessing

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regression

Identification
Single-Region
Multi-Region

- Low Pass Filter (Gaussian Filter, not recommended)
- Drift Removal (not always performed)
 - High Pass Filter
 - Linear
 - Quadratic
 - Wavelet
 - Spline (Which I am using)

Figure: [Tanabe et al.(2002)Tanabe, Miller, Tregellas, Freedman, and Meyer]

Method

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regressior

Parameter Identification Single-Region Multi-Region

Conclusion

Figure: [Klaas(2009)]

Limitations

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Revie

Statistical Parametric Mapping

Nonlinear Regressio

Parameter Identification Single-Region Multi-Region

Conclusion

- Linear, for a signal which is known to be nonlinear
- Essentially the weighted sum of a set of "expected" responses.
- Parametric
 - Forced to make assumptions about underlying distributions
 - No time-scaling.

$$y = x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + e$$

Figure: [Klaas(2009)]

Equations

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regression

Identification
Single-Region
Multi-Region

Conclusion

■ Normalized Cerebral Blood Flow:

$$\ddot{f}(t) = \epsilon u(t) - \dot{f}(t)/\tau_s - (f(t)/\tau_f - 1)$$

■ Normalized Cerebral Blood Volume:

$$\dot{v}(t) = (1/ au_0)(f(t) - v(t)^{1/lpha})$$

■ Normalized Deoxyhaemoglobin Content:

$$\dot{q}(t) = rac{1}{ au_0} \left(rac{f(t)(1-(1-E_0)^{1/f(t)})}{E_0} - rac{q(t)}{
u(t)^{1-1/lpha}}
ight)$$

■ Hemodynamic Response - BOLD Signal

$$v(t) = V_0(a_1(1-Q(t)) - a_2(1-V(t)))$$

Model Comparison

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

EMRI Review

Statistical Parametric

Nonlinear Regression

Parameter Identification Single-Region Multi-Region

Conclusion

Figure: [Deneux and Faugeras(2006)]

Particle Filters

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear

Parameter Identification Single-Region

Multi-Region
Conclusion

- Non-parametric, no assumptions are violated
- Model based, fit parameters to input, constrained by physical variables
- Fits a mixture PDF to the posterior of all parameters
- Non-trivial computation cost
- I use a Regularized Particle Filter
 - Regularized Re-sampling prevents particles from de-generating into a small number of unique particles
 - 2 Allows distributions to move more freely

Particle Filter

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regression

Parameter Identification Single-Region Multi-Region

Conclusion

- $S_t = \{p_{0,t}, ..., p_{N,t}\},$ the set of particles
- $w_{i,t}$, weight of particle $p_{i,t}$
- y_t, measurement at time t, there is not a y_t for every t.
- $f(p_{i,t}, y_t)$, weighting function
- $s(p_{i,t})$, step function

Draw S_0 from prior distribution for t = 0: t_{step} : t_{end} do for each $p_{i,t-1} \in S_{t-1}$ do $p_{i,t} = s(p_{i,t-1})$ if There is a measurement at time t then for every $p_{i,t}$ do $w_{i,t} = w_{i,t-1} f(p_{i,t}, y_t)$ end for Resample if weights are unevenly

distributed

end if

end for

end for

Single Timeseries Results

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

EMPI Paviou

Statistical Parametric

Nonlinear

Parameter

Single-Region Multi-Region

Single Timeseries Results, Measurement Convergence

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric

Nonlinear

Parameter

Single-Region Multi-Region

Single Timeseries Results, State Convergence

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

EMRI Review

Statistical Parametric

Nonlinear

Parameter

Identification
Single-Region

Multi-Region

Factors Affecting Convergence

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regressio

Parameter Identificatio

Single-Region Multi-Region

Conclusion

Weighting function

- Needs to be continuous and defined for any input, should go to 0
- Too wide a weighting function results in under-sensitivity, slow or no convergence
- Too thin a weighting function reduces robustness to noise
- 2 How often re-sampling is done, re-sampling should be minimized
 - Stratified Resampling can result in truncated tails on posterior
 - Regularized Resampling can result in reduced robustness to noise
- Number of particles
 - More particles give higher fidelity of posterior

Parameter Map Generation/Simulation

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

FMRI Review

Statistical Parametric Mapping

Nonlinear Regressio

Parameter Identification Single-Region

Multi-Region
Conclusion

- Generate a parameter map, with a set of parameters for each voxel
- Simulate every set of parameters, and use as input to possum
- Perform preprocessing (de-trend and normalize)
- Run particle filter on every grey matter voxel in image, generating a new parameter map

Figure

Simulation Results, τ_0

Simulation Results, multiple

BOLD
Parameter
Estimation using
Sequential
Monte Carlo
Methods

Micah Chambers

EMRI Review

Statistical Parametric

Nonlinear Regressio

Parameter Identification

Single-Region Multi-Region

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

For Further Reading

T. Deneux and O. Faugeras.

Using nonlinear models in fMRI data analysis: Model selection and activation detection

NEUROIMAGE, 32(4):1669–1689, OCT 1 2006.

ISSN 1053-8119.

doi: {10.1016/j.neuroimage.2006.03.006}.

S. Klaas.

General Linear Model. 2009.

URL http://www.sciencedirect.com/science/article/ B6WNP-47DKV9V-2/2/ccfad2db718319db51008a47c71ca54a.

BOLD Parameter Estimation using Sequential Monte Carlo Methods

Micah Chambers

For Further Reading

J. Riera, J. Watanabe, T. Kazuki, M. Naoki, E. Aubert, T. Ozaki, and R. Kawashima.

A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals.

NEUROIMAGE, 21(2):547-567, FEB 2004.

ISSN 1053-8119.

doi: {10.1016/j.neuroimaging.2003.09.052}.

J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. Meyer. Comparison of detrending methods for optimal fMRI preprocessing. NEUROIMAGE, 15(4):902-907, APR 2002.

ISSN 1053-8119.

doi: {10.1006/nimg.2002.1053}.