universidade do minho miei

introdução aos sistemas dinâmicos autómatos celulares elementares — um

1.

Considere o autómato celular elementar cuja evolução temporal é definida pela função booleana ϕ dada por $\phi(x,y,z)=(\neg(x\vee y)\vee z)$. Mostre que $N_{\phi}=205$.

2.

Considere o autómato celular elementar cuja evolução temporal é definida pela função booleana ϕ , com código de Wolfram N_{ϕ} , escolhidas condições de fronteira periódicas.

- Mostre que a configuração homogénea C_0 é um ponto fixo de Φ se e somente se N_ϕ é um número par.
- Descreva as diferentes possibilidades para a dinâmica da configuração homogénea C_0 quando N_ϕ é um número ímpar.

_ 3

Considere o autómato celular elementar cuja evolução temporal é definida pela regra ϕ com código de Wolfram $N_{\phi}=146$, escolhidas condições de fronteira periódicas.

- Mostre que a configuração C=110100 pertence à bacia de atracção da configuração homogénea C_0 . Apresente o resultado graficamente.
- 3.2 Determine a dinâmica do sistema a partir da configuração inicial C=110101. Apresente o resultado graficamente.

4

Considere o autómato celular elementar cuja evolução temporal é definida pela regra ϕ com código de Wolfram $N_{\phi}=53$, escolhidas condições de fronteira periódicas.

- 4.1 Determine $\phi(0, 1, 0)$.
- 4.2 Mostre que as duas configurações homogéneas formam um ciclo de período 2 de Φ.
- Suponha que num certo instante o sistema assume a configuração C = 0111010010010011. Determine a configuração do sistema nos dois instantes seguintes. Apresente o resultado graficamente.

Considere o autómato celular elementar cuja evolução temporal é definida pela regra ϕ com código de Wolfram $N_{\phi}=38$, escolhidas condições de fronteira nulas.

- 5.1 Determine $\phi(1, 0, 1)$.
- 5.2 Mostre que ambas as configurações homogéneas do sistema são pontos fixos.
- Suponha que num certo instante o sistema assume a configuração C=00101101110011. Determine a configuração do sistema nos dois instantes seguintes. Apresente o resultado graficamente.

6.

Desenhe o diagrama de Wuensche do autómato celular elementar, com N=5 elementos, cuja evolução temporal é definida pela regra ϕ , escolhidas condições de fronteira periódicas, sabendo que:

$\Phi(00000) = 00000$	$\Phi(00001) = 00010$	$\Phi(00010) = 00100$	$\Phi(00011) = 00100$
$\Phi(00100) = 01000$	$\Phi(00101) = 01010$	$\Phi(00110) = 01000$	$\Phi(00111) = 01010$
$\Phi(01000) = 10000$	$\Phi(01001) = 10010$	$\Phi(01010) = 10100$	$\Phi(01011) = 10100$
$\Phi(01100) = 10000$	$\Phi(01101) = 10010$	$\Phi(01110) = 10100$	$\Phi(01111) = 10110$
$\Phi(10000) = 00001$	$\Phi(10001) = 00010$	$\Phi(10010) = 00101$	$\Phi(10011) = 00101$
$\Phi(10100) = 01001$	$\Phi(10101) = 01010$	$\Phi(10110) = 01001$	$\Phi(10111) = 01011$
$\Phi(11000) = 00001$	$\Phi(11001) = 10010$	$\Phi(11010) = 00101$	$\Phi(11011) = 10101$
$\Phi(11100) = 01001$	$\Phi(11101) = 11010$	$\Phi(11110) = 01101$	$\Phi(11111) = 11111$

7.

Descreva os diferentes atractores do autómato celular elementar com N=6 elementos, cuja evolução temporal é definida pela regra $N_{\phi}=144$, escolhidas condições de fronteira periódicas, quando o seu diagrama de Wuensche (incompleto) é dado na seguinte figura.

