МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ» КАФЕДРА № 51

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНК ПРЕПОДАВАТЕЛЬ	сой			
Профессор, д.т.н.			Н. Н. Мошак	
должность, уч. степен звание	пь,	подпись, дата	инициалы, фамил	пия
C	ЭТЧЕТ О ЛАІ	БОРАТОРНОЙ РАБ	SOTE №3	
Админ		и настройка политик еляционной базы дан		
по курсу:	БЕЗОПАСНО	СТЬ ИНФОРМАЦИС	ОННЫХ СИСТЕМ	
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ ГР. №	5712		Коваленко Д	
		подпись, дата	инициалы, фам	ИЛИЯ

Санкт-Петербург 2020

1. Цель работы

Изучение команд MySQL и системы привилегий (privilege system). Научиться устанавливать и администрировать SQL-сервер на примере сервера MySQL, а также настраивать его параметры безопасности.

Используемое программное обеспечение: ОС версии не ниже WindowsXP. А именно Windows 7 Professional (x64).

Тип ИС закрытого контура: 1Г.

2. Теоретические сведения

Реляционные базы данных. Общие сведения.

Задача длительного хранения и обработки информации появилась практически сразу с появлением первых компьютеров. Для решения этой задачи в конце 60-х годов были разработаны специализированные программы, получившие название систем управления базами данных (СУБД).

СУБД проделали длительный путь эволюции от системы управления файлами, через иерархические и сетевые базы данных. В конце 80-х годов доминирующей стала система управления реляционными базами данных (СУРБД). С этого времени такие СУБД стали стандартом де-факто, и для того, чтобы унифицировать работу с ними, был разработан структурированный язык запросов (SQL), который представляет собой язык управления именно реляционными базами данных.

Существуют следующие разновидности баз данных:

- 1. Иерархические база данных, основанная на древовидной структуре хранения информации;
- 2. Реляционные базы данных, данные в которых собраны в таблицы, которые в свою очередь состоят из столбцов и строк, на пересечении которых расположены ячейки. Запросы к таким базам данных возвращает таблицу, которая повторно может участвовать в следующем запросе. Данные в одних таблицах, как правило, связаны с данными других таблиц, откуда и произошло название «реляционные»;
- 3. Объектно-ориентированные базы данных, в которых данные хранятся в виде объектов. С объектно-ориентированными базами данных удобно работать, применяя объектно-ориентированное программирование. Однако, на сегодняшний день такие базы данных еще не достигли популярности реляционных, поскольку пока значительно уступают им в производительности;
- 4. Гибридные СУБД, совмещающие в себе возможности реляционных и объектно-ориентированных баз данных. Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Кратко особенности реляционной базы данных можно описать следующим образом:

- Данные хранятся в таблицах, состоящих из столбцов и строк;
- На пересечении каждого столбца и строчки стоит в точности одно значение;

- У каждого столбца есть своё имя, которое служит его названием, и все значения в одном столбце имеют один тип.
- > Столбцы располагаются в определённом порядке, который определяется при создании таблицы, в отличие от строк, которые располагаются в произвольном порядке. В таблице может не быть не одной строчки, но обязательно должен быть хотя бы один столбец;
- ➢ Запросы к базе данных возвращают результат в виде таблиц, которые тоже могут выступать как объект запросов.

Для работы с базами данных используется язык SQL (Structured Query Language — язык структурированных запросов). Стандарт SQL определен ANSI (American National

Standart Institute). SQL предназначен для манипуляции данными, которые хранятся в Системах управления реляционными базами данных (RDBMS). SQL имеет команды, с помощью которых данные можно извлекать, сортировать, обновлять, удалять и добавлять.

SQL можно использовать с такими базами RDBMS как MySQL, mSQL, PostgreSQL, Oracle, Microsoft SQL Server, Access, Sybase, Ingres. Эти системы RDBMS поддерживают все важные и общепринятые операторы SQL, однако каждая из них имеет множество своих собственных патентованных операторов и расширений.

База данных MySQL. Общие сведения.

MySQL, которая является RDBMS с открытым исходным кодом, доступна для загрузки на сайте MySQL.com. Разработчиком MySQL является компания MySQL AB. В настоящее время компания куплена корпорацией Oracle, которой и принадлежит теперь продукт. Свое происхождение MySQL ведет от продукта mSQL, разработанного в конце 1970-х гг. компанией TeX и использовавшемуся для доступа к таблицам, для которых использовались собственные быстрые подпрограммы низкого уровня. Однако после тестирования был сделан вывод, что скорость и гибкость mSQL недостаточны. В результате для базы данных был разработан новый SQL-интерфейс. Новый продукт получил название MySQL. Вот как характеризуют MySQL её разработчики.

- 1. MySQL это система управления реляционными базами данных.
- 2. Программное обеспечение MySQL это ПО с открытым кодом.
- 3. Внутренние характеристики и переносимость:
 - 3.1. Написан на С и С++. Протестирован на множестве различных компиляторов.
 - 3.2. Работает на различных аппаратных платформах и разных операционных системах.
 - 3.3. Высокая производительность за счет максимально оптимизированного кода, эффективной системы распределения памяти и продуманной системы дисковых таблиц.

4. Масштабируемость:

- 4.1. Способность работать с очень большими базами данных (десятки и сотни миллионов записей).
- 4.2. Возможность кластеризации серверов и распределения обработки информации между серверами
- 5. Технические возможности СУБД:
 - 5.1. MySQL является системой клиент-сервер, которая содержит многопоточный SQL-сервер, обеспечивающий поддержку различных вычислительных машин баз данных, а также несколько различных клиентских программ и библиотек, средства администрирования и широкий спектр программных интерфейсов (API).

6. Безопасность:

6.1. Система безопасности основана на привилегиях и паролях с возможностью верификации с удаленного компьютера, за счет чего обеспечивается гибкость и безопасность. Пароли при передаче по сети при соединении с сервером шифруются.

3. Ход работы

3.1 Подготовка к выполнению работы

В первую очередь была произведена установка макета для лабораторной работы, представляющего собой виртуальную машину на ОС Windows 7 для VirtualBox.

Рис. 1 – Макет лабораторной работы

Рис. 2 – Рабочий стол

3.2 Установка MySQL

Для успешной установки необходимого ПО, учетная запись, под которой выполняются данные действия, должна входить в локальную группу «Администраторы» на локальном компьютере.

Чтобы удостовериться в этом: необходимо открыть «Учетные записи пользователей», перейдя по адресу: Пуск \rightarrow Панель управления \rightarrow Учетные записи пользователей и узнать, какие пользователи существует на данном APM.

Рис. 3 – Учетная запись пользователя

Далее переходим непосредственно к установке ΠO , скачанного с официального сайта www.mysql.com.

Обязательно должны быть установлены:

- В группе «MySQL Server 5.6.11» MySQL Server, Client Programs, Server Data Files.
- В группе Applications MySQL Notifier.
- Группу MySQL Connectors не устанавливать
- Группу Documentation рекомендуется установить полностью.

Рис. 4 – Выбор устанавливаемых продуктов

После окончания установки запустился Мастер настроек MySQL (он также доступен пользователю и после инсталляции).

В окне настроек выберем конфигурацию «Development Machine» — этот тип установки предназначен для разработки и тестирования сайтов, в этом случае ресурсы компьютера будут подвергаться минимальной нагрузке.

Рис. 5 – Окно настройки серверной части

Далее переходит к настройке пароля главного администратора сервера. Установим пароль, отвечающий следующему требованию к классу защищенности 2A:

– Должны осуществляться идентификация и проверка подлинности субъектов доступа при входе в систему по паролю условно-постоянного действия длиной не менее шести буквенно-цифровых символов.

Рис. 6 – Установка пароля администратора сервера

Далее автоматическая настройка сервера в соответствии с заданной конфигурацией применит все раннее указанные настройки и автоматически применяет их на сервере. В результате выполнения показывает выполненные этапы и создает журнал применения изменений.

Рис. 7 – Успешное применение настроек

Для дальнейшего управления сервером используется утилита «MySQL Notifier» (вызывается из меню программ).

3.3 Создание базы данных MySQL

Для того, чтобы можно было использовать возможности сервера, такие как создание и назначение прав пользователям на таблицы и базы данных, требуется, создать пользовательскую базу данных и таблицу в ней. Имеющиеся по умолчанию базы данных можно посмотреть с использованием команды: Имеющиеся по умолчанию базы данных можно посмотреть с использованием команды show databases:

Рис. 8 – Имеющиеся по умолчанию базы данных

Очевидно, что изменение данных в системных таблицах нежелательно (например, в базе данных mysql находится таблица user с перечнем всех пользователей, их паролей и способов подключения к базам данных). Для того, чтобы иметь возможность добавлять, обрабатывать и удалять данные, целесообразно создание собственной БД.

Haзовем ее *laboratoryWork3* и создадим с помощью следующей команды *create* database laboratoryWork3:

Рис. 9 – Создание собственной базы данных

Очевидно, база данных laboratoryWork3 успешно создана. Укажем серверу, что далее мы будем работать именно с ней, используя следующую команду use laboratoryWork3; .

Создадим пользовательскую таблицу с названием «phoneNumbers» и с параметрами, заданными в соответствии с условиями лабораторной работы: UserName — тип данных Text, UserAddress — тип данных Text, UserPhone — тип данных Text. Также добавим дополнительную колонку, в которой пропишем автоматический счетчик записей auto_increment primary key типа Integer — это значение будет увеличиваться с каждой новой записью и позволит более гибко оперировать содержимым таблицы.

Для этого используем команду:

- 1. create table phoneNumbers (id integer auto increment primary key,
- UserName text not null,
- UserAddress text not null,
- 4. UserPhone text not null);

```
mysql> create table phoneNumbers (id integer auto_increment primary key,

-> UserName text not null,

-> UserAdress text not null,

-> UserPhone text not null);

Query OK, O rows affected (0.12 sec)
```

Рис. 10 – Добавление таблицы в базу данных

Поскольку сейчас таблица пустая, заполним ее произвольными данными — в нашем примере это телефонная книга, поэтому добавим в нее записи, содержащие имя, адрес и телефонный номер абонентов с помощью команды *insert into phoneNumbers (UserName, UserAddress, User Phone) values ('Tom', 'Alabaeva st., 43', '777-88-99')*; :

```
mysql> insert into phoneNumbers (UserName, UserAdress, UserPhone) values ('Tom',
'Alabaeva st.', '777-88-99')
->;
->;
Query OK, 1 row affected (0.27 sec)
mysql> insert into phoneNumbers (UserName, UserAdress, UserPhone) values ('Arina', 'Rapova st.', '459-96-22');
Query OK, 1 row affected (0.13 sec)
```

Рис. 11 – Добавление данных в созданную таблицу

Просмотрим содержимое таблицы. Это можно сделать командой select * from phoneNumbers;:

Рис. 12 – Просмотр содержимого созданной таблицы

3.4 Создание нового пользователя и настройка его прав

Создадим локального, т.е. существующего на текущем APM, пользователя с именем LocalUser и установим ему пароль Pa\$sw0rd, таким, чтобы он соответствовал требованиям «Руководящего документа» для APM «1Г» класса.

Для этого выполним следующую команду:

```
1. create user 'LocalUser'@'localhost' identified by 'Pa$swOrd';
mysql> create user 'LocalUser'@'localhost' identified by 'Pa$swOrd';
Query OK, 0 rows affected (0.02 sec)
```

Рис. 13 – Создание нового пользователя

```
1. grant all privileges on lab3.* to 'LocalUser'@'localhost';

mysql> grant all privileges on lab3.* to 'LocalUser'@'localhost';

Query OK, 0 rows affected (0.01 sec)
```

Рис. 14 – Предоставление новому пользователю неограниченных прав

Теперь проверим, применились ли права, просмотрев их для пользователя с помощью команды show grants for 'LocalUser'@'localhost':

```
mysql> grant all privileges on laboratorywork3.* to 'LocalUser'@'localhost';
Query OK, 0 rows affected (4.25 sec)

mysql> show grants for 'LocalUser'@'localhost';

Grants for LocalUser@localhost

GRANT USAGE ON *.* TO 'LocalUser'@'localhost'

GRANT ALL PRIVILEGES ON 'laboratorywork3'.* TO 'LocalUser'@'localhost'

2 rows in set (0.46 sec)
```

Рис. 15 – Права нового пользователя

Теперь попробуем подключиться к серверу MySQL с помощью утилиты «MySQL Workbench». Дополнительно установим ее с помощью той же программы, которой мы устанавливали «MySQL Server»:

Рис. 16 – Установка утилиты MySQL Workbench

Чтобы запустить командную строку под новым пользователем необходимо зайти в интерфейс программы «MySQL Workbench» и создать новое подключение, вызвав *Manage Server Connections*, для которого настроить следующие параметры, а остальные оставить по умолчанию:

• Connection Name: LocalUser

• Password: *password*

Standard (TCP/IP)			
		× (**)	Method to use to connect to the RDBM
Advanced			
127.0.0.1	Port: 3306	Name or IP a TCP/IP port.	ddress of the server host - and
LocalUser		Name of the	user to connect with.
Store in Vault	Clear	The user's pa	assword. Will be requested later if it's
		The schema blank to sele	to use as default schema. Leave ct it later.
	127.0.0.1 LocalUser	127.0.0.1 Port: 3306 LocalUser	127.0.0.1 Port: 3306 Name or IP a TCP/IP port. LocalUser Name of the The user's pant set. Store in Vault Clear The schema

Рис. 17 — Настройка подключения для нового пользователя

После чего настройка нового соединения будет успешно завершена, а в утилите «MySQL Workbench» появится новое доступное соединение за нашего созданного не привилегированного пользователя.

Попробуем подключиться к серверу с использованием этого нового соединения, выполнив следующие действия: Кликнуть на подключение LocalUser правой кнопкой мыши \rightarrow Start Command Line Client:

Рис. 18 – Подключение к серверу от лица нового пользователя

MySQL позволяет назначать права доступа с помощью следующей команды:

GRANT [тип прав] ON [имя базы данных].[имя таблицы] ТО 'имя пользователя' (20) 'тип доступа на сервер';

Нужно заменить значение «тип прав» на тот вид прав доступа, который необходимо предоставить новому пользователю, кроме того, необходимо указать базу данных и имена таблиц, доступ к которым предоставляется.

В MySQL есть несколько типов прав доступа, опишем некоторые из них:

CREATE – Позволяет пользователям создавать базы данных/таблицы;

SELECT – Позволяет пользователям делать выборку данных;

INSERT – Позволяет пользователям добавлять новые записи в таблицы;

UPDATE – Позволяет пользователям изменять существующие записи в таблицах;

DELETE – Позволяет пользователям удалять записи из таблиц;

DROP – Позволяет пользователям удалять записи в базе данных/таблицах.

С целью обеспечения безопасности информации, содержащейся в других БД, а также обеспечения принципа разделения доступа к защищаемой информации, разрешим пользователю только просмотр записей остальных баз данных, имеющихся в файловой системе SQL.

Для этого выполним следующую команду:

```
1. grant SELECT on *.* to 'LocalUser'@'localhost';
```

```
mysql> grant SELECT on *.* to 'LocalUser'@'localhost';
ERROR 2006 (HY000): MySQL server has gone away
No connection. Trying to reconnect...
Gonnection id: 12
Current database: laboratorywork3
Query OK, 0 rows affected (7.37 sec)
```

Рис. 19 – Предоставление пользователю прав

Установим права **SELECT** и **INSERT** на базу данных *laboratoryWork3* и непосредственно для таблицы phoneNumbers для пользователя *LocalUser* следующими командами:

- grant SELECT, INSERT on laboratoryWork3.* to 'LocalUser'@'loclhost';
- grant SELECT, INSERT on laboratoryWork3.phoneNumbers to 'LocalUser'@','loclhost';

```
mysql> grant SELECT, INSERT on laboratoryWork3.* to 'LocalUser'@'localhost';
Query OK, D rows affected (0.13 sec)
mysql> grant SELECT, INSERT on laboratoryWork3.phoneNumbers to 'LocalUser'@'loca
lhost';
Query OK, D rows affected (0.08 sec)
```

Рис. 20 – Предоставление пользователю прав

Теперь проверим, применились ли права, просмотрев их для пользователя с помощью команды show grants for 'LocalUser' (a) 'localhost'; :

Рис. 21 – Просмотр прав пользователя

Запрос выборок из таблицы

Проверим корректность настроенных прав для пользователя «LocalUser», а также ознакомимся с механизмом запроса записей из таблицы в SQL.

Сделаем несколько выборок из таблицы «phoneNumbers»:

1. Выборка из таблицы «phoneNumbers» значений адреса и телефона для пользователей 'Danya' и 'Tanya' с помощью следующих команд

Проверим корректность настроенных прав для пользователя *LocalUser*. Сделаем несколько выборок из таблицы *phoneNumbers*.

- select UserAddress, UserPhone from phoneNumbers where UserName='Tom';
- select UserAddress, UserPhone from phoneNumbers where UserName='Arina';

Рис. 22 – Результаты выборки из таблицы телефонных номеров

Выборка всех записей из таблицы phoneNumbers с сортировкой по полю UserName в алфавитном порядке с использованием команды select * from phoneNumbers order by UserName asc;:

id	UserName	UserAddresss	UserPhone	
3	Alex	Zhykhova st., 24	999-521-64-09	
1	Danya	Zverevoy st., 6	981-187-01-12	
2	Tanya	Deputatskaya st., 34	952-235-39-50	
4	Yana	Parfenovskaya st., 5	911-753-55-11	

Рис. 23 – Результаты выборки из таблицы телефонных номеров

Очевидно, что запросы пользователя *LocalUser* к таблице *phoneNumbers* успешно выполняются.

Проверим, корректно ли работает механизм задания прав пользователя, попробовав удалить таблицу *phoneNumbers* с использованием команды *drop table phoneNumbers*; :

```
mysql> drop table phoneNumbers;
ERROR 1142 (42000): DROP command denied to user 'LocalUser'@'localhost' for tabl
e 'phonenumbers'
```

Рис. 24 – Отказ пользователю при попытке удалить таблицу

3.5 Удаление таблиц, базы данных и пользователей

Рассмотрим механизм удаления таблиц, баз данных и пользователей из файловой системы SQL. Это можно сделать только привилегированным-гоот пользователем, поэтому дальнейшая работа будет осуществляться из его терминала.

Удалим таблицу phoneNumbers с помощью команды drop table phoneNumbers; :

```
mysql> drop table phoneNumbers;
Query OK, O rows affected (0.30 sec)
mysql>
```

Рис. 25 – Удаление таблицы

```
mysql> show tables;
Empty set (0.00 sec)
mysql>
```

Рис. 26 – Результат удаление таблицы

Удалим базу данных *laboratoryWork3* с помощью команды *drop database laboratoryWork3*; :

Рис. 27 – Удаление базы данных

Удалим все права доступа пользователя LocalUser с помощью команды revoke all privileges on *.* from 'LocalUser'@'localhost';:

```
mysql> revoke all privileges on *.* from 'LocalUser'@'localhost';
Query OK, O rows affected (0.06 sec)

mysql> show grants for 'LocalUser'@'localhost';

Grants for LocalUser@localhost

GRANT USAGE ON *.* TO 'LocalUser'@'localhost';

Tow in set (0.00 sec)
```

Рис. 28 – Удаление всех прав созданного нами пользователя

Посмотрим список всех пользователей до удаления *LocalUser*, обратившись к таблице *mysql.user* и запросив из нее всех пользователей и их способ подключения к серверу с помощью команды *select User*, *Host from mysql.user*; :

Рис. 29 - Список всех имеющихся пользователей

Удалим пользователя LocalUser с помощью команды drop user 'LocalUser' (a)'localhost'; :

Рис. 30 – Удаление пользователя

Очевидно, что удаление баз данных, пользователей и таблиц успешно осуществлено.

Выводы

В ходе выполнения лабораторной работы были выполнены установка MySQL на макет для лабораторной работы, представляющего собой виртуальную машину на ОС Windows 7, и настройка собственной базы данных базы в MySQL.

Была создана собственная база данных с таблицей, хранящей информацию о телефонных номерах сотрудников. Для работы с этой базой данных был создан новый пользователь, права которого были ограничены просмотром содержимого таблицы и добавлением в нее новых записей. Так же выполнили проверку корректности работы механизма задания прав пользователей.