Computer modeling in biochemistry and cell biology & "What do professors do all day?"

Daniel M. Zuckerman

Department of Biomedical Engineering

OHSU Center for Spatial Systems Biomedicine

Cells are like magic

"cyto" = cell

- 48 hour movie
- MCF10A cells in EGF treatment
- Phase contrast only.
- Automated segmentation shown
- Experiment performed by Prof. Laura Heiser's lab

The cell 'runs' using protein 'machines': Kinesin on microtubule (artistic, not realistic)

Timescale: ~0.01s per step

Molecular Dynamics

Newton: $f = m \cdot a$

x3, v3

Trajectory Algorithm

 $x_new = x_old + v_old*\Delta t$ $v_new = v_old + (f_old/m)*\Delta t$

Key application – Drug design on/off rates

Key limitations: Computers are too slow!

Estrogen Recepter LBD with estradiol

The problem with too-short movies

Data is not reliable if timescales are inadequate

MD Simulation (100 ns)

Showing all atoms

Estrogen receptor alpha (ligand-binding domain) with estrogen

Energy landscape: Downhill easier than uphill! Transitions over barriers are rare

Weighted Ensemble (WE) – "statistical ratchet"

[Original Weighted Ensemble: Huber & Kim, *Biophys J.* 1996; Figure from Donovan et al., J Chem Phys 2013]

Weighted ensemble can sample "rare events" with high precision – and no bias

Super-Parallelism a.k.a. Super-linear performance

Schematic of time for estimating observables to targeted precision

Protein Folding by Weighted Ensemble

[Adhikari et al., Journal of the American Chemical Society, 2019]

A glycan gate at N343 controls opening of the spike

[Amaro, Chong & co, *Nature Chemistry*, 2021; Delta variant:

https://www.nytimes.com/interactive/2021/12/01/science/coronavirus-aerosol-simulation.html]

How to become a Scientist

- Figure out what you like
 - Classes: Seek best teachers
 - Research: Seek best mentors ask other group members
- Do research in college
 - Paid programs available
 - Get to know multiple professors
 - [Full disclosure: I didn't major in scient
- Apply to graduate school
 - Seek the best mentor!
 - Best = ? Most accomplished, best connected, healthiest group environment, best research topic
 - Do something you love to do well
 - Get to know multiple professors
- How to 'do good' as a scientist
 - Be a great teacher
 - Be a great mentor (even working for industry)
 - Solve an important problem (even working for industry)

NOTE: You can leave academia at any time to work in industry, and make more money!

How Academic Science Works: Follow the money!

What does a professor do all day?

- Overall: a lot of independence aside from required teaching
- Classroom teaching varies significantly by institution
- Research
 - Think up questions and solutions have an idea and see it through plan years ahead
 - Direct research (mostly) actually do it (a little)
 - Supervise postdocs and graduate students: meet once a day or once a week
- Write grant applications for funding
- Attend local meetings to decide policies and directions for department and/or university
- Peer-review articles, grant applications
- Present at conferences ... travel!
- The proportions of these activities depend on the institution, department and individual!

What does a graduate student do all day?

- First year or two: Mostly required classes (choose a program you like!)
- Later years: Transition to more **research** ... and eventually more research independence
 - Generate and analyze data
 - Write and publish papers
 - Make presentations, some under pressure ... confidence grows over time ... sometimes travel
- Attend seminars
- Train junior group members, help others
- Decide whether to do a postdoc or go to industry
- 5-6 years total for a Ph.D.

Masters degree (MS) vs doctorate (PhD)

MS

- Usually the student pays
- Research not very in depth
- Middle of the 'food chain'
- 1-2 years

PhD

- The student gets paid, typically from day 1
- In-depth research; add to knowledge
- Top of the food chain ... access to leadership positions in academia and industry and government
- 5-6 years, typically

What does a postdoc do all day?

- Research!
 - Generate and analyze data
 - Write articles
 - Make presentations ... some travel
- Mentor others in group
- Little teaching unless sought out
- Plan for next step of career
- 2-5 years

end

Molecular dynamics (MD)

$$x(t+\Delta t) = x(t) + v(t)\Delta t$$

$$v(t+\Delta t) = v(t) + (f/m)\Delta t$$

- Time between frames is about $\Delta t = 1$ fs = 10^{-15} sec
- Biology: 100 μ s and beyond $\sim 10^{11}$ frames!

Empirical Potential Energy Function

