Question 34

Suppose $x = \frac{a}{b}$ where a and b are integers with $b \neq 0$. Then, $\frac{x}{2} = \frac{a}{2b}$, which is rational since a and 2b are both integers with $2b \neq 0$.

Suppose $\frac{x}{2} = \frac{a}{b}$ where a and b are integers with $b \neq 0$. Then $x = \frac{2a}{b}$, and $3x - 1 = \frac{6a}{b} - 1 = \frac{6a - b}{b}$. This is rational since 6a - b and b are integers with $b \neq 0$.

Suppose that $3x - 1 = \frac{a}{b}$ where a and b are integers with $b \neq 0$. Then $x = \frac{\frac{a}{b} + 1}{3} = \frac{a + b}{3b}$ and this is rational, since a + b and 3b are both integers with $3b \neq 0$.

This shows that (i) implies (ii), (ii) implies (iii) and (iii) implies (i), which is sufficient to show that these three statements are equivalent.