Data Mining and Machine Learning

Assignment Project Exam Help

HMM Training

Add WeChat powcoder

Peter Jančovič

Objectives

- Reminder: Maximum Likelihood (ML) parameter estimation
 - ML for Assignment Project Exam Help

https://powcoder.com

- ML for HMMs
 - Viterbi-style training

 Add WeChat powcoder
 - Baum-Welch algorithm

Fitting a Gaussian PDF to Data

- Suppose $y = y_1, ..., y_n, ..., y_T$ is a sequence of T data values
- Given a Gasissiame PD Project Le Francian Heland variance σ, define:

https://powcoder.com $p(y | \mu, \sigma) = \prod_{t=0}^{t} p(y_t | \mu, \sigma)$ Add WeChat powcoder

- How do we choose μ and σ ?
- <u>Define</u> the best fitting Gaussian to be the one such that $p(y|\mu,\sigma)$ is maximised <u>Maximum Likelihood</u> (ML) estimation of μ,σ

ML estimation of μ , σ

- Intuitively:
 - The maximum likelihood estimate of μ should be the average saignment. Project Exame Help)
 - The maximum likelihood estimate of σ should be the variance of $y_1, ..., y_T$ (the <u>sample variance</u>)
- This turns out the true appropries maximised by setting:

$$\mu = \frac{1}{T} \sum_{t=1}^{T} y_t, \quad \sigma = \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu)^2$$

ML training for GMMs

- Now consider
 - A Gaussian Mixture Model with M components has
 - -M Assignment Project Exam Help
 - M variankespg₁//powcoder.com
 - M mixture weights w₁,...,w_M
 A training sequence y₁,...,y_T
- How do we find the maximum likelihood estimate of $\mu_1, ..., \mu_M, \sigma_1, ..., \sigma_M, w_1, ..., w_M$?

GMM Parameter Estimation

- If we knew which component each sample y_t came from, then parameter estimation would be easy
 - Set μ_m Associate agree is a second of the state of the second of t belong to the m^{th} component
 - Set σ_m to be the variance of the samples which belong to the m^{th} component.

 - Set w_m to be the proportion of samples which belong to
 - the mth component
- But we don't know which component each sample belongs to

Solution – the E-M Algorithm (1)

Guess initial values

1. For each
$$m$$
 calculate the probabilities $\mu_1^{(0)}, \dots, \mu_M^{(0)}, \sigma_1^{(0)}, \dots, \sigma_M^{(0)}, w_1^{(0)}, \dots, w_M^{(0)}$

$$p_m$$
 (yt) = p (yt) p (yt

2. Use these probabilities at postimate how much each sample y_t 'belongs to' the m^{th} component

$$\lambda_{m,t} = P(m \mid y_t)$$

Solution – the E-M Algorithm (2)

3. Calculate the new GMM parameters

Assignment Project Exampled p, 'belongs to' the
$$\mu_{m}^{(1)} = \frac{t-1}{T}$$
 This is a measure of how https://powcoder.com

Add WeChat powcoder

$$\sigma_{m}^{(1)} = \frac{t-1}{T}$$

$$\lambda_{m,t} (y_{t} - \mu_{m}^{(1)})^{2}$$

$$\tau_{m}^{(1)} = \frac{t-1}{T}$$

REPEAT steps 1-3

UNIVERSITY OF BIRMINGHAM

Calculation of $\lambda_{m,t}$

• In other words, $\lambda_{m,t}$ is the probability of the m^{th} component given the data point y_t

From Bayes theorem Project Exam Help

https://powcoder.eom mth
Gaussian component

mth weight

Add WeChat powcoder

$$\lambda_{m,t} = P(m \mid y_t) = \frac{p(y_t \mid m)P(m)}{p(y_t)} = \frac{p_m(y_t)w_m}{\sum_{k=1}^{M} p_k(y_t)w_k}$$

Sum over all components

UNIVERSITYOF BIRMINGHAM

ML training for HMMs

- Now consider
 - An N state HMM M, each of whose states is associated with a designament Project Exam Help
 - A training sequence y we'der.com
- For simplicity assume that each y_t is 1-dimensional Add WeChat powcoder

ML training for HMMs

- If we knew that:
 - $-y_1,...,y_{e(1)}$ correspond to state 1
 - $-y_{e(1)+1},...,y_{e(2)}$ correspond to state 2 — . Assignment Project Exam Help
 - $-y_{e(n-1)+1},...,y_{e(n)}$ ttpsrreppondoolstateom
 - Add WeChat powcoder
- Then we could set the mean of state n to the average value of $y_{e(n-1)+1}, ..., y_{e(n)}$

ML Training for HMMs

Unfortunately we <u>don't</u> know that $y_{e(n-1)+1}, ..., y_{e(n)}$ correspond to state n...

Solution

- 1. Define an initial HMM $-M_0$
- 2. Use the Viterbi algorithm to compute the optimal state sequence between M_0 and $y_1, ..., y_T$

Solution (continued)

Use optimal state sequence to segment y

• Reestimate parameters to get a new model M_1

Solution (continued)

- Now repeat whole process using M_1 instead of M_0 , to get a new model M_2
- Then repeat again using M_2 to get a new model M_3
- https://powcoder.com

Add WeChat powcoder

 $p(y | M_0) \le p(y | M_1) \le p(y | M_2) \le \ldots \le p(y | M_n) \ldots$

Local optimization

Baum-Welch optimization

- The algorithm just described is often called <u>Viterbi</u> training or <u>Viterbi reestimation</u>
- It is often used to train large sets of HMMs
- An alternative the three three woods of the Viterbi reestimation Ait is a soft version of the Viterbi estimation
- Reestimation of mean value associated with state *i*:

Baum-Welch Reestimation

$$P(x_t = i/Y) = \gamma_t(i)$$

'Forward' Probabilities

$$\alpha_t(i) = \text{Prob}(y_1, ..., y_t \text{ and } x_t = i \mid M) = \sum_j \alpha_{t-1}(j) \alpha_{ji} b_i(y_t)$$

'Backward' Probabilities

$$\beta_t(i) = \text{Prob}(y_{t+1}, ..., y_T \mid x_t = i, M) = \sum_j a_{ij} \beta_{t+1}(j) b_j(y_{t+1})$$

Assignment Project Exam Help

'Forward-Backward' Algorithm

$$\gamma_{t}(i) = P(x_{t} = i \mid Y) = \frac{P(Y, x_{t} = i)}{P(Y)} = \frac{P(Y, x_{t} = i)}{\sum_{i=1}^{N} P(Y, x_{t} = i)} = \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i)\beta_{t}(i)}$$

y₁ y₂ y₃ y₄ y₅ y_t y_{t+1} y_T Assignment Broject Exam Help

Notes on HMM parameter estimation

- The Baum-Welch/Viterbi algorithm is only guaranteed to find a **locally** optimal HMM set hence choice of M_0 can be important
- Baum-Weach ignered a society is the palgorithm which requires labelled speech data https://powcoder.com
 The labelling need not be at the same level as the HMM set
- The labelling need not be at the same level as the HMM set
 phoneme level HMMs Canabeptoxined desing data labelled orthographically at the phrase or sentence level
- For large applications B-W reestimation can be very computationally expensive

Summary

- Maximum Likelihood (ML) estimation
- Assignment Project Exam Help
 Viterbi HMM parameter estimation https://powcoder.com
- Baum-Welch HMM pacameter estimation
 - Forward and backward probabilities

