Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Write a proof for the following theorem:

Theorem 1. Let $n \in \mathbb{Z}$. Prove that $2n^2 + n$ is odd if and only if $\cos(\frac{n\pi}{2})$ is even.

Proof. Because of the nature of the *if and only if* it must be proven bidirectionally. First, consider: $2n^2 + n$ is odd $\Rightarrow cos(\frac{n\pi}{2})$ is even.

Case 1: n is odd.

Let n = 2m + 1 where $m \in \mathbb{Z}$.

$$2n^{2} + n = 2(2m + 1)^{2} + (2m + 1)$$

$$= 2(4m^{2} + 4m + 1) + (2m + 1)$$

$$= 8m^{2} + 8m + 2 + 2m + 1$$

$$= 8m^{2} + 10m + 2 + 1$$

$$= 2(4m^{2} + 5m + 1) + 1$$

This an odd number by definition.

Case 2: n is even.

Let n = 2m where $m \in \mathbb{Z}$.

$$2n^{2} + n = 2(2m)^{2} + (2m)$$
$$= 2(4m^{2}) + 2m$$
$$= 8m^{2} + 2m$$
$$= 2(4m^{2} + m)$$

This is an even number by definition. Since we want $2n^2 + n$ to be odd for this implication, we can see that n must be odd as well. Now let n = 2m + 1 where $m \in \mathbb{Z}$. Therefore,

$$cos(\frac{n\pi}{2}) = cos(\frac{(2m+1)\pi}{2})$$
$$= cos(\frac{2m\pi + \pi}{2})$$
$$= cos(m\pi + \frac{\pi}{2})$$

This evaluates to $0 \forall m \in \mathbb{Z}$.

The other direction of the implication that needs to be proven is: $cos(\frac{n\pi}{2})$ is even $\Rightarrow 2n^2 + n$ is odd. Once again if $cos(\frac{n\pi}{2})$ is even, then it must evaluate to 0 which means n must be odd. And because of case 1 previously shown, it is known that $2n^2 + n$ will always be odd as well.

2: Write a proof for the following theorem:

Theorem 2. Let $x, y \in \mathbb{Z}$. Prove that if xy is odd, then $x^2 + y^2$ is even.

Proof. Because xy is odd, then x and y must be odd numbers. To show this, we can break it into cases.

Case: x, y are both odd.

Let x = 2m + 1 and y = 2n + 1 where $m, n \in \mathbb{Z}$.

$$xy = (2m+1)(2n+1)$$

$$= 4mn + 2m + 2n + 1$$

$$= 2(2mn + m + n) + 1$$

This is the definition of an odd number.

Case: x is odd and y is even.

Let x = 2m + 1 and y = 2n where $m, n \in \mathbb{Z}$.

$$xy = (2m+1)(2n)$$
$$= 2(2mn+n)$$

This is the definition of an even number.

Case: x is even and y is odd.

Mutatis mutandis for the previous case.

Case: x, y are both even.

Let x = 2m and y = 2n where $m, n \in \mathbb{Z}$.

$$xy = (2m)(2n)$$
$$= 4mn$$
$$= 2(2mn)$$

This is the definition of an even number.

Since it is shown that both x and y must both be odd for xy to be odd, we can define x=2m+1 and 2n+1 where $m,n\in\mathbb{Z}$.

$$x^{2} + y^{2} = (2m + 1)^{2} + (2n + 1)^{2}$$

$$= (4m^{2} + 4m + 1) + (4n^{2} + 4n + 1)$$

$$= 4m^{2} + 4n^{2} + 4m + 4n + 2$$

$$= 2(2m^{2} + 2n^{2} + 2m + 2n + 1)$$

This is the definition of an even number.

3: Write a proof for the following theorem:

Theorem 3. Prove that there is a student S in MA 240 for whom the following is true: If S eats a chocolate on Valentine's Day, then everyone in MA 240 will eat a chocolate on Valentine's Day.

Proof. (Contrapositive) Let S be the student who eats a chocolate on Valentine's Day and E be everyone eating a chocolate on Valentine's Day. Instead of proving $S \Rightarrow E$, this can be proven by rewriting it as $\neg E \Rightarrow \neg S$.

Case: No one in the class will eat a chocolate on Valentine's Day.

Since no one in the class will be eating any chocolate on Valentine's Day, then there exists the student S in the class who will not be eating chocolate on Valentine's Day either. This means $\neg E$ and $\neg S$ are both true making the implication $\neg E \Rightarrow \neg S$ true.

Case: Everyone in the class will eat a chocolate on Valentine's Day.

Since everyone in the class will eat a chocolate on Valentine's Day, then there exists the student S in the class who will be eating a chocolate on Valentine's Day. This means $\neg E$ and $\neg S$ are both false making the implication $\neg E \Rightarrow \neg S$ true.