CS170–Spring 2022 — Homework 0Solutions

RamezesDong, SID SID 20192203928

Collaborators: None

1. Study Group

(a) Has no friend in my study group.

2. Course Policies

(a) I have read and understood the course syllabus and policies.

3. Understanding Academic Dishonesty

- (a) Not OK.
- (b) Not OK.
- (c) Not OK.
- (d) OK.

4. In Between Function

Solution: $f(n) = 2^{(log n)^2}$.

- (a) For any $n^c=2^{clogn}$, this is eventually dominated by $2^{(logn)\cdot(logn)}$. So $f(n)=\Omega(n^c)$ for any c>0.
- (b) For any $\alpha^n = (2^{\log \alpha})^n$, this will dominate $f(n) = 2^{(\log n)^2}$ (so long as $\log \alpha$ is positive). So $f(n) = O(\alpha^n)$ for any $\alpha > 1$.

5. Asymptotic Bound Practice

Solution: we can prove this by proving $log x = o(x^{\epsilon})$. Here is an alternate argument, using I'Hopital's rule:

$$\lim_{x \to \infty} \frac{\log x}{x^{\epsilon}} = \lim_{x \to \infty} \frac{\frac{d}{dx} \log x}{\frac{d}{dx} x^{\epsilon}}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{\epsilon x^{\epsilon - 1}}$$

$$= \lim_{x \to \infty} \frac{1}{\epsilon x^{\epsilon}} = 0$$
(1)

And therefore $log x \in O(x^{\epsilon})$.

6. Conclusion

- (a) For me, using Latex to write the equation is hard. I need to put more effort into the cs170 and latex.
- (b) I fail to deal with the task 4 and task 5. I will write them down for reviewing in the future, which play a more significant status in my learning career.