H.P. Кудлай За редакцией А.А.Акимова

Конспект по материалу "Аналитическая геометрия" Лекция №6

Санкт-Петербург

2021

МИНИСТР ОБРАЗОВАНИЯ И НАУКИ РЗ111

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "ИНСТИТУТ ТЕПЛЫХ МУЖСКИХ ОТНОШЕНИЙ"

Н.Р. Кудлай

За редакцией А.А.Акимова

Конспект по материалу "Аналитическая геометрия" Лекция №6

УНИВЕРСИТЕТ ИТМО

Санкт-Петербург

2021

Поверхности второго порядка

Составить общее представление о большинстве поверхностей второго порядка можно, рассматривая их как точки поверхности, образованной вращением линии второго порядка вокруг оси симметрии.

Для определния геометрического вида поверхности можно применить *метод* сечений: рассмотрение сечения поверхности плоскостью, перпендикулярной одной из координатных осей.

Эллипсоид

Эллипсоид получается из вращения эллипса вокруг его осей симметрии.

Каноническое уравнение эллипсоида имеет вид $\left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, (a, b, c) > 0 \right|$

Параметры a, b и c являются *полуосями эллипсоида*.

Сечение эллипсоида плоскостью z = h, $h \in R$ – кривая $\begin{vmatrix} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2} \\ z = h \end{vmatrix}$

1) Если
$$|h| > c => \frac{x^2}{a^2} + \frac{y^2}{b^2} < 0 => \emptyset$$

2) Если $|h| = c = > \frac{x^2}{a^2} + \frac{y^2}{b^2} = 0 = >$ решением являются две точки **мнимого** *пересечения* с координатами $(0,0,\pm c)$

3) Если
$$|h| < c >> \frac{x^2}{a^2} + \frac{y^2}{b^2} > 0 >> \left[\frac{x^2}{a^2*(1-\frac{h^2}{c^2})} + \frac{y^2}{b^2*(1-\frac{h^2}{c^2})} = 1\right]$$
 - это эллипс. Аналогичные результаты будут при $x = h$ и $y = h$

Замечание: При a = b = c: Эллипсоид превращается в сферу; если равны любые две полуоси, то эллипсоид становится эллипсоидом вращения **Центром симметрии** эллипсоида является центр координат.

Однополостный гиперболоид

Однополостный гиперболоид получен вращением гиперболы вокруг мнимой оси и имеет только одну полость, откуда и идёт название.

Каноническая форма -
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
, $(a, b, c) > 0$

В сечении имеет разный вид, в зависимости от того, какая координата секущей плоскости фиксирована:

1)
$$z = h \Rightarrow \begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2} - \text{ это эллипс} \\ z = h \end{cases}$$
2) $\begin{bmatrix} x = h \\ y = h \end{bmatrix} \Rightarrow \begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{h^2}{b^2} \\ - \text{ пример сечения в виде гиперболы для } y = h \end{cases}$

У всех однополостных гиперболоидов есть *прямолинейные образующие* – кривые прямые, которые полностью принадлежать гиперболоиду, причем для каждой его точки существуют две такие образующие.

Двухполостный гиперболоид

Двухполостный гиперболоид получается вращением гиперболы вокруг

действительной оси $\left[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1, (a, b, c) > 0\right]$

a)
$$z = h = \begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1 \\ z = h \end{cases}$$

- 1) Если $|h| < c => \emptyset$
- 2) Если |h| = c => пл-ти $z = \pm c$ касаются поверхности в $(0,0,\pm c)$
- 3) Если |h| > c => эллипсы, полуоси которых $\sim |h|$

б)
$$x=h$$
 или $y=h=>$ гиперболы:
$$\begin{bmatrix} \frac{y^2}{b^2}-\frac{z^2}{c^2}=-1-\frac{h^2}{a^2}\\ \frac{x^2}{a^2}-\frac{z^2}{c^2}=-1-\frac{h^2}{b^2} \end{bmatrix}$$

Эллиптический параболоид

Эллиптический парабалоид получается вращением параболы вокруг её оси симметрии, каноническая формула - $\left[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z, (a, b) > 0\right]$

a)
$$z = h = \begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 2h \\ z = h \end{cases}$$

- 1) Если $h < 0 = > \emptyset$
- 2) Если h=0=> плоскость z=0 касается поверхности в (0,0,0)

3) Если
$$h > 0 => \begin{cases} \frac{x^2}{a^2h} + \frac{y^2}{b^2h} = 1\\ z = h \end{cases}$$
 – эллипс

б)
$$x=h$$
 или $y=h=>\begin{bmatrix}z=rac{y^2}{2b^2}-rac{h^2}{2a^2}\\z=rac{x^2}{2a^2}-rac{h^2}{2b^2}\end{bmatrix}$ парабола

Замечание При |a| = |b|, то это параболоид вращения

Гиперболический параболоид

Гиперболический параболоид имеет формулу виду $\left[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z, (a, b) > 0\right]$

а)
$$z=h=>egin{cases} rac{x^2}{a^2h}-rac{y^2}{b^2h}=1 \ z=h \end{cases}$$
 - гиперболы $(h
eq 0)$

- 1) Если h > 0 = > действительная ось гиперболы || Ox
- 2) Если h < 0 = > действительная ось гиперболы || Oy

2) Если
$$h < 0 = >$$
 деиствительная ось гипероолы $\| Oy \|$
3) Если $h = 0 = >$ пара перескающихся прямых $\begin{bmatrix} \frac{x}{a} - \frac{y}{b} = 0 \\ \frac{x}{a} + \frac{y}{b} = 0 \end{bmatrix}$

б) y=
$$h = > \begin{cases} x^2 = -2a^2(z + \frac{h^2}{b^2}) \\ y = h \end{cases}$$
 - параболы

в)
$$x = h = > \begin{cases} y^2 = -2b^2(z + \frac{h^2}{a^2}) - \text{параболы} \\ x = h \end{cases}$$

Замечание: фактически гиперболический параболоид представляет из себя перевернутую параболу, параллельную Oyz, чья вершина скользит по параболе в плоскости Oxz. Такая плоскость имеет 2 группы образующих

Цилиндр второго порядка

Цилиндрической поверхностью или **цилиндром** можно представить в виде прямой или кривой второго порядка, называемой **образующей**, которая скользит вдоль **направляющих**. Если образующая является кривой 2 порядка, то и цилиндр является поверхностью 2 порядка. Если напраявлющие параллельны одной из осей, то такой цилиндр **прямой**.

$$x^2 = 2pz$$
 — параболический цилиндр

Конус

Канонической поверхностью называют поверхность, получаемым при вращении наклонной прямой и имеет формулу $a^2x^2 + b^2y^2 - c^2z^2 = 0$

Поверхность вращения

Поверхность вращения задается вращением кривой второго порядка относительно прямой. Найдем правило получения уравнения поверхности.

Пусть кривая \boldsymbol{L} лежит в Oxy. Её уравнение имеет вид ${F(y,z)=0\choose x=0}$

Найдем уравнение плоскости S, образованной вращением L вокруг оси Oz. Пусть $M_1 \in L$, M — любая точка $\in S$, проведем через M плоскость α : $\alpha \perp Oz$ => $M_1 = L \cap \alpha$, $N = Oz \cap \alpha$

$$\begin{cases} N(0,0,z) \\ M(x,y,z) \end{cases} = > \boxed{|NM| = \sqrt{x^2 + y^2}}$$

$$\begin{cases} M_1 \epsilon L \\ M_1 \epsilon \text{ окружности сечения} => \boxed{r_{\text{окр. сечения}} = |NM| = |y_1|}, \text{где} \boxed{y_1 \colon M_1(0,y_1,z)} \\ => \sqrt{x^2 + y^2} = |y_1| => \boxed{y_1 = \pm \sqrt{x^2 + y^2}} \end{cases}$$

Это было лишь доказательство, но нужна лишь итоговая

формула
$$F(y,z)$$
по $Oz o F(\pm \sqrt{x^2 + y^2};z) = 0$

Чтобы получить уравнение поверхности вращения нужно заменить

y на $\pm \sqrt{x^2 + y^2}$, только нужно правильно выбрать знак, он определяется знаком перед y в исходной кривой

Если вращение идет относительно 0y, то итоговая формула

$$F(y;\pm\sqrt{x^2+z^2})=0$$
, для Ox : $F(x;\pm\sqrt{y^2+z^2})=0$

Все пособия под авторством Никиты Кудлая распространяются на бесплатной основе, так как они помогают усваивать материал и созданы не для капитализации, но тираж уже вскоре достигнет полусотни, а сбестоимость составляет 5р, и если есть желание поддержать авторов, то вот счет Сбера:

40817810552097130180