# PLSC 502 – Autumn 2016 Measures of Association Ordinal Variables

November 3, 2016

### Ordinal Variates

- Key issue: how to retain the information present in the ordering of the categories without giving the numerical values assigned to them cardinal content.
- Key concept: Concordance

For a pair of values on two observations  $i = \{1, 2\}$  and two variables X and Y, a *concordant pair* has:

$$\operatorname{sign}(X_2 - X_1) = \operatorname{sign}(Y_2 - Y_1)$$

and a discordant pair has:

$$\operatorname{sign}(X_2 - X_1) = -\operatorname{sign}(Y_2 - Y_1).$$

# A(nother) Contingency Table

### Consider:

|   |   |                 | X               |                 |          |
|---|---|-----------------|-----------------|-----------------|----------|
|   |   | 1               | 2               | 3               |          |
|   | 1 | n <sub>11</sub> | n <sub>12</sub> | n <sub>13</sub> | $n_{1X}$ |
| Y | 2 | $n_{21}$        | $n_{22}$        | $n_{23}$        | $n_{2X}$ |
|   | 3 | $n_{31}$        | $n_{32}$        | $n_{33}$        | $n_{3X}$ |
|   |   | $n_{Y1}$        | n <sub>Y2</sub> | n <sub>Y3</sub> | Ν        |

### Concordance with $\{1,1\}$ observations:

|   |   |                    | X                      |                        |          |
|---|---|--------------------|------------------------|------------------------|----------|
|   |   | 1                  | 2                      | 3                      |          |
|   | 1 | (n <sub>11</sub> ) | n <sub>12</sub>        | n <sub>13</sub>        | $n_{1X}$ |
| Y | 2 | $n_{21}$           | <i>n</i> <sub>22</sub> | <i>n</i> <sub>23</sub> | $n_{2X}$ |
|   | 3 | $n_{31}$           | <i>n</i> <sub>32</sub> | <i>n</i> <sub>33</sub> | $n_{3X}$ |
|   |   | $n_{Y1}$           | n <sub>Y2</sub>        | n <sub>Y3</sub>        | Ν        |

Concordance with  $\{1,2\}$  observations:

|   |   |                 | X                  |                 |          |
|---|---|-----------------|--------------------|-----------------|----------|
|   |   | 1               | 2                  | 3               |          |
|   | 1 | n <sub>11</sub> | (n <sub>12</sub> ) | n <sub>13</sub> | $n_{1X}$ |
| Y | 2 | $n_{21}$        | $n_{22}$           | n <sub>23</sub> | $n_{2X}$ |
|   | 3 | $n_{31}$        | $n_{32}$           | n <sub>33</sub> | $n_{3X}$ |
|   |   | $n_{Y1}$        | $n_{Y2}$           | n <sub>Y3</sub> | Ν        |

Discordance with  $\{1,2\}$  observations:

|   |   |                 | X                  |                 |          |
|---|---|-----------------|--------------------|-----------------|----------|
|   |   | 1               | 2                  | 3               |          |
|   | 1 | n <sub>11</sub> | (n <sub>12</sub> ) | n <sub>13</sub> | $n_{1X}$ |
| Y | 2 | $n_{21}$        | $n_{22}$           | $n_{23}$        | $n_{2X}$ |
|   | 3 | $n_{31}$        | n <sub>32</sub>    | $n_{33}$        | $n_{3X}$ |
|   |   | $n_{Y1}$        | n <sub>Y2</sub>    | n <sub>Y3</sub> | Ν        |

Discordance with  $\{1,3\}$  observations:

|   |   |                 | X                      |                    |          |
|---|---|-----------------|------------------------|--------------------|----------|
|   |   | 1               | 2                      | 3                  |          |
|   | 1 | n <sub>11</sub> | n <sub>12</sub>        | (n <sub>13</sub> ) | $n_{1X}$ |
| Y | 2 | $n_{21}$        | <i>n</i> <sub>22</sub> | $n_{23}$           | $n_{2X}$ |
|   | 3 | n <sub>31</sub> | n <sub>32</sub>        | n <sub>33</sub>    | $n_{3X}$ |
|   |   | n <sub>Y1</sub> | n <sub>Y2</sub>        | пүз                | N        |

For a  $3 \times 3$  table, the total number of *concordant pairs* is:

$$N_c = n_{11}(n_{22} + n_{23} + n_{32} + n_{33}) + n_{12}(n_{23} + n_{33}) + n_{21}(n_{32} + n_{33}) + n_{22}(n_{33})$$

and the total number of discordant pairs is:

$$N_d = n_{13}(n_{21} + n_{22} + n_{31} + n_{32}) + n_{12}(n_{21} + n_{31}) + n_{23}(n_{31} + n_{32}) + n_{22}(n_{31}).$$

This extends to a table of arbitrary size  $M \times N$  straightforwardly...

# Gamma $(\gamma)$

Gamma  $(\gamma)$  is the normed difference between the number of concordant and discordant pairs in the data:

$$\gamma = \frac{N_c - N_d}{N_c + N_d}$$

Equivalently:

$$\gamma = \frac{N_c}{N_c + N_d} - \frac{N_d}{N_c + N_d}$$

### About $\gamma$

#### Gamma:

- does not count "ties."
- $\gamma \in [-1, 1]$ .
- $\gamma=0 \leftrightarrow$  no association between X and Y, though it can also happen whenever  $N_c=N_d$ . That is,  $\gamma=0$  is necessary but not sufficient for statistical independence.
- Higher absolute values of γ correspond to stronger associations between X and Y.
- $\gamma=\pm 1.0$  under conditions of (at least) weak monotonicity (e.g.,  $\gamma$  will equal 1.0 whenever, as X increases, Y only increases or stays the same).

### Inference on $\gamma$

Can be shown that:

$$\hat{\gamma} \sim \mathcal{N}(\gamma, \sigma_{\gamma}^2)$$

where

$$\sigma_{\gamma}^2 = \frac{N(1-\hat{\gamma}^2)}{N_c + N_d}$$

So

$$t \approx (\hat{\gamma} - \gamma) \sqrt{\frac{N_c + N_d}{N(1 - \hat{\gamma}^2)}}.$$

(Goodman-Kruskal's) "Tau-a":

$$\tau_{\mathsf{a}} = \frac{\mathsf{N}_{\mathsf{c}} - \mathsf{N}_{\mathsf{d}}}{\frac{1}{2} \mathsf{N} (\mathsf{N} - 1)}$$

(Kendall's) "Tau-b":

$$\tau_b = \frac{N_c - N_d}{\sqrt{[(N_c + N_d + N_{Y^*})(N_c + N_d + N_{X^*})]}}$$

where  $N_{Y^*}$  and  $N_{X^*}$  are the number of pairs not tied on Y and X, respectively.

(Stuart's) "Tau-c":

$$\tau_c = (N_c - N_d) \times \left\{ \frac{2m}{[N^2 2(m-1)]} \right\}$$

where m is the number of rows or columns, whichever is smaller.

# au Traits & Tips

- All except  $\tau_a$  have  $\tau_{(\cdot)} \in [-1, 1]$
- ullet For all aus, the numerator signs the statistic.
- Like  $\gamma$ ,  $\tau_a$  doesn't do "ties"  $\rightarrow$  attenuated range
- $|\tau_b| = 1.0$  only under strict monotonicity
- $au_b 
  ightarrow$  "square" tables
- $au_c 
  ightarrow$  "rectangular" (asymmetrical) tables
- $\gamma \geq \tau \ \forall \ \tau_{(\cdot)}$

# $\gamma$ and the $\tau \mathrm{s}$ Compared





## Example: Sarah Palin Support...

### September 2008 "Battleground" Poll in PA:

```
> summary(MamaGriz)
     caseid
                    female
                                                 palin
                 Female:2370
 Min.
                                Very Unfavorable
                                                     :1200
                                Somewhat Unfavorable: 739
 1st Qu.:30034
                 Male :2221
 Median :31831
                                Somewhat Favorable :1132
 Mean
        :36776
                                Very Favorable
                                                    :1520
 3rd Qu.:60674
 Max.
        :62125
          pid
            :1709
 Democrat.
 Independent: 1391
 GOP
            :1491
```

# Palin Approval and Party ID

```
> palinpid<-with(MamaGriz, xtabs(~palin+pid))</pre>
```

> addmargins(palinpid)

| ]                    | pid              |                     |      |      |
|----------------------|------------------|---------------------|------|------|
| palin                | ${\tt Democrat}$ | ${\tt Independent}$ | GOP  | Sum  |
| Very Unfavorable     | 881              | 282                 | 37   | 1200 |
| Somewhat Unfavorable | 441              | 245                 | 53   | 739  |
| Somewhat Favorable   | 291              | 412                 | 429  | 1132 |
| Very Favorable       | 96               | 452                 | 972  | 1520 |
| Sum                  | 1709             | 1391                | 1491 | 4591 |

# Estimating $\gamma$ and the $\tau$ s

```
> # Gamma:
> GoodmanKruskalGamma(palinpid,conf.level=0.95)
  gamma lwr.ci ups.ci
0.73376 0.71529 0.75223
> #Tau-A:
> KendallTauA(palinpid,conf.level=0.95)
 tau_a lwr.ci ups.ci
0.38762 0.38639 0.38884
> # Tau-B:
> KendallTauB(palinpid,conf.level=0.95)
 tau_b lwr.ci ups.ci
0.55453 0.53784 0.57121
> # Tau-C:
> StuartTauC(palinpid,conf.level=0.95)
  tauc lwr.ci ups.ci
0.58130 0.56401 0.59859
```

### Men vs. Women on Palin

- > palinfemale<-with(MamaGriz, xtabs(~palin+female))</pre>
- > addmargins(palinfemale)

| :                    | female |                |      |  |  |  |
|----------------------|--------|----------------|------|--|--|--|
| palin                | Male   | ${\tt Female}$ | Sum  |  |  |  |
| Very Unfavorable     | 508    | 692            | 1200 |  |  |  |
| Somewhat Unfavorable | 328    | 411            | 739  |  |  |  |
| Somewhat Favorable   | 575    | 557            | 1132 |  |  |  |
| Very Favorable       | 810    | 710            | 1520 |  |  |  |
| Sum                  | 2221   | 2370           | 4591 |  |  |  |

### Men vs. Women on Palin