

REPORT SENTIMENT ANALYSIS

Created by:

Bianda, Syarifudin, Ruben, Vieri

26/02/2024

Tweet Sentiment Analysis

Twitter atau X merupakan platform untuk mengekspresikan pendapat, ide, dan sentimen user terhadap berbagai topik.

Pentingnya melakukan Sentiment Analysis:

Mengukur dan memahami sentimen publik terhadap suatu topik, produk atau peristiwa

Mengidentifikasi tren dan pola dalam publik

Memperoleh wawasan atau insight untuk pengembalian keputusan dan strategi

Metode Penelitan

01

LSTM (Long Short-Term Memory)

LSTM adalah jenis jaringan saraf tiruan yang dirancang untuk mempelajari ketergantungan jangka panjang dalam data, sehingga sangat cocok untuk tugas-tugas seperti: Pengenalan suara, penerjemahaan bahasa, dan analisis sentiment

02

MLP(Multi-layer Perceptron)

MLP adalah jenis jaringan saraf tiruan yang terdiri dari beberapa lapisan neuron yang saling terhubung satu sama lain. MLP digunakan untuk mempelajari pola-pola yang kompleks dan non-linear pada data input seperti, pengenalan wajah, prediksi harga saham, dan pengenalan pola pada teks

Dataset memiliki 11000 rows, dengan label (Negative, Neutral, dan Positive)

Average Text Length: 32,9 Words Median Text Length: 28.0

```
print("Average Text Length ==>", data_df['Length'].mean())
print("Median Text Length ==>", data_df['Length'].median())

Average Text Length ==> 32.931272727273
```

Median Text Length ==> 28.0

Sebaran Sentiment pada data yang

akan di proses:

Positive: 6416

Negative: 3436

Neutral: 1148

Word Clouds pada text yang bersentimen positive

WordCloud of Positive Sentiment

Word Clouds pada text yang bersentimen neutral

WordCloud of Neutral Sentiment

Word Clouds pada text yang bersentimen Negative

WordCloud of Negative Sentiment

LSTM

Model Development

MLP Classifier

Parameter											
Layer	Output Layer	Activati on	dropou t	optimiz er	Loss	Learnin g Rate	Epochs	Batch Size			
64,32	3	Softma x	0.5	Adam	Categor ical Crosse ntropy	0.0001	30	64			

Parameter										
Hideen Layer	Max_Itter	Activation	Alpha	Solver	epsilon	Learning Rate				
30	100	Relu	0.008	Adam	1-e5	0.01				

Visualiasi Training and Validation

HASIL SENTIMENT ANALYSIS

MLP

Average Accuracy: 0.8245

Sentiment Percentage in Tweets Datatest (MLP)

LSTM

Average Accuracy: 0.91

API

Project: Text and Tweets Sentiment Analysis

/docs.jsor

API Documentation for Text and Tweets Sentiment Analysis

Bianda Shafira, Syarifudien Zuhdi, Vieri Valerian, Ruben Setiawan

GET

get_

 \vee

 \vee

 \vee

 \vee

 \vee

Tweet Sentiment Analysis Using LSTM

POST

/Tweet_Sentiment_LSTM

post_Tweet_Sentiment_LSTM

Tweet Sentiment Analysis Using MLP

POST

/Tweet_Sentiment_MLP

post_Tweet_Sentiment_MLP

Text Sentiment Analysis Using LSTM

/text_sentiment_LSTM

post_text_sentiment_LSTM

Text Sentiment Analysis Using MLP

API for Text Sentiment

MLP

```
Medaest OVE
 http://127.0.0.1:5000/text_sentiment_MLP
Server response
Code
            Details
200
            Response body
                "Description": "Text Sentiment Analysis",
                "Input_Text": "Saya Bangga Menjadi Orang Indonesia !!!",
                "Sentiment": "Positive"
            Response headers
               connection: close
               content-length: 133
               content-type: application/json
               date: Tue27 Feb 2024 13:41:52 GMT
               server: Werkzeug/3.0.1 Python/3.10.2
```

LSTM

```
Request UKL
 http://127.0.0.1:5000/text_sentiment_LSTM
Server response
Code
             Details
200
             Response body
                "Description": "Text Sentiment Analysis",
                "Input_Text": "Saya Bangga Menjadi Orang Indonesia",
                "Sentiment": "Positive"
             Response headers
               connection: close
               content-length: 129
               content-type: application/json
               date: Tue27 Feb 2024 13:41:34 GMT
               server: Werkzeug/3.0.1 Python/3.10.2
```


API for File Tweet Sentiment

Code

Details

200

Response body

```
"Tweet": "apa iya islam itu tidak boleh di lokalisasi lah kristen saja mas ada nusantaranya mas lihat saja di gereja di bandung ada yang pakai gamelan dan ada yang khotbah pakai bahas sunda jawa ada huria kristen batak protestan juga kurang nusantara apa",
   "Tweet_Sentiment": "Negative"
},
{
   "Tweet_Sentiment": "Neutral"
},
{
   "Tweet_Sentiment": "Neutral"
},
{
   "Tweet_Sentiment": "Negative"
},
{
   "Download
```

Response headers

connection: close content-length: 2211636 content-type: application/json date: Tue27 Feb 2024 05:45:31 GMT server: Werkzeug/3.0.1 Python/3.10.2

KESIMPULAN

- Model LSTM memiliki akurasi paling tinggi sekitar 91 %, sedangkan model MLP memilki akurasi sekitar 82 %
- Model LSTM memiliki keunggulan untuk mempertimbangkan ketergantungan jangka panajng, dan lebih akurat untuk data panjang atau berjumlah besar
 - Model MLP lebih mudah untuk diterapkan dan cepat dari segi komputasi, dan efektif untuk data yang berukuran pendek.

