

Symmetric Multiprocessors (SMPs)Limitations

- Bus does scale
 - per core bandwidth decreases as more nodes are added
 - latency increases with length
- Solution
 - use multiple buses
 - crossbar
 - small point-to-point network
- SMP with 4-8 cores feasibility

SMP Limitations

- Each bus transaction must check tags
- Could interfere with processor cache access
- Solutions
 - duplicate tags; snoop in duplicate tags
 - ∘ > 1 private \$ levels
 - oprocessor accesses L1
 - ∘ snoop in L2
 - inclusion

SMP Limitations

- How to increase memory bandwidth?
- Multi-banked shared +
 high speed interconnect
 between LL private
 caches and multi-banked
 shared cache

Implementing Cache coherence

- Write misses and invalidate are not atomic
- P1 and P2 simultaneously issue invalidates to block B present in both caches

Limitations of Snooping Protocols

- Snooping cache coherence relies on broadcast
 - Requires communication with all caches on every cache misses
- Bus does not scale
- When adding cores
 - length-> latency increases
 - per core bandwidth decreases

Increasing Bandwidth

- Replace bus by scalable interconnect
- Distribute memory across nodes
 - local access faster than remote access
 - cc-NUMA architecture

Scalable Cache Coherence

- Distributing memory gains little if every cache miss still requires broadcast
- Solution: Directory protocol
- Directory keeps track of the state of every block
 - which cache have copies
 - o if it is dirty/modified

directory entry for B

Node 1 and Node 3 has a copy of this block, while Node 0, 2 and 4 does not have

Basic Full Directory Protocol General (Scalable) Interconnect Directory NI NI p[i] = processor i has a copy • d=1 -> copy is dirty/modified memory block • only 1 p[i] set P presence bits Dirty bit

Distributed Directory - Home Node

- Directory is distributed along with memory
- Node I contains directory entries for memory blocks mapped onto its part of physical shared memory
 - Home node of those blocks
 - Home node ID can be found during virtual to physical address translation

Full Directory Protocols – Types of Nodes

- 3 types of nodes
 - local/requesting nodes: node that makes request
 - home node: node where memory block (and directory entry) resides
 - remote node: node(s) that contain(s) copy of block
- Example-Read miss to block dirty at remote node

Thank You