Sciences Industrielles de

but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

Interface maître et esclave d'un robot **

CCP PSI 2015

Savoirs et compétences :

• Res2.C18: principe fondamental de la statique;

1

- Res2.C19: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$, $\overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}$.
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}), \overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} = \overrightarrow{DC}$ $L_2 \overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3})$.
- On notera $\{\mathcal{T}(S_i \to S_j)\} = \left\{ \begin{array}{cc} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array} \right\}_{P,\mathcal{B}_0}$

pression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée par le solide S_i sur le solide S_i ; toutes les inconnues seront exprimées dans la base \mathcal{B}_0 .

- L'action mécanique exercée par le moteur sur S₁ sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- L'accélération de la pesanteur sera représentée par le vecteur $\overrightarrow{g} = -g \overrightarrow{z_0}$.
- · Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCMP Proposer une démarche permettant d'exprimer le couple moteur en fonction de l'effort de l'opérateur et des parmètres géométriques.

Question 3 #CCMP Mettre en œuvre cette démarche et montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

(a) Rapport couple/effort

Question 4 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous?

Question 5 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

Il faut peut-être utiliser le premier devoir de vacances.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

Sciences

TD 03

Interface maître et esclave d'un robot *

CCP PSI 2015

Savoirs et compétences :

- Res2.C18: principe fondamental de la statique;
- *Res2.C19*: équilibre d'un solide, d'un ensemble de solides;
- Res2.C20: théorème des actions réciproques.

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- Solide S_0 , repère $\mathcal{R}_0(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50 \, \text{mm}.$
- Solide S_1 , repère $\mathcal{R}_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}), \overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25 \,\mathrm{mm}, \; \theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}).$
- Solide S_2 , repère $\mathcal{R}_2(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}), \overrightarrow{AD} = L_2 \overrightarrow{x_2}$ avec $L_2 = 62.5 \,\mathrm{mm}, \; \theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- Solide S_3 , repère $\mathcal{R}_3(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0})$, $\overrightarrow{ED} = \overrightarrow{DC} =$ $L_2 \overrightarrow{x_3}$ avec $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = (\overrightarrow{y_0}, \overrightarrow{y_3}).$
- On notera $\{\mathcal{T}(S_i \to S_j)\} = \begin{cases} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{cases}$

pression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée par le solide S_i sur le solide S_i ; toutes les inconnues seront exprimées dans la base \mathcal{B}_0 .

- L'action mécanique exercée par le moteur sur S₁ sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- L'accélération de la pesanteur sera représentée par le vecteur $\overrightarrow{g} = -g \overrightarrow{z_0}$.
- · Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

Question 2 #CCINP Déterminer les équations algébriques issues du développement des 4 relations suivantes :

- théorème du moment statique en B appliqué à l'équilibre de S_1 , en projection sur $\overrightarrow{z_0}$;
- théorème du moment statique en A appliqué à l'équilibre de S_2 , en projection sur $\overrightarrow{z_0}$;
- théorème du moment statique en D appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{z_0}$;
- théorème de la résultante statique appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{y_2}$.

Montrer que

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} (\sin \theta_1 \sin(\theta_2 + \theta_3) - 2\cos \theta_1 \sin \theta_2 \sin \theta_3).$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E Q6.

(a) Rapport couple/effort

(b) $X_E \in [-60 \,\mathrm{mm}, 40 \,\mathrm{mm}]$

Question 3 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

Question 4 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)