# Bump Tracker

**Change You Can See** 

By Garrett Cox and Jk Jensen

# Tracking Pregnancy - A Journey to Parenthood

The Gestational Period is a time full of emotion and as the woman's belly starts to grow, that's when the family first starts to realize the family is slowly growing too.

It's a precious piece of family history!





## 1. Goal

**Process photos in a new way** that allows the progress to be better recognized with:

- → Image Alignment Highlight what's new, unusual, or surprising.
- → Ease
  Give people a reason to care.
- → Organization

  Compile the photos in a way that effectively illustrates the growth

# But wait, isn't that what people are doing already?









#### **Not Quite**

Attempts are already made to document progress, but **no tool exists** to make the desired outcome.

While making a collage is possible, it requires a lot of user intuition to perfect alignment

# Until Now! Bump Tracker.

(With a little help from your smart phone)



#### **Note**

Bump Tracker is only available on iOS at this time.

Bump Tracker takes your pregnancy images and makes them

# **BEAUTIFUL**



1



- → Contours, Moments, Best-Fit
  Finding edges to detect body shape/similarity.
- → Chamfer Matching, Homography Morphing and matching images via features.
- → OpenCV Object detection.
- → Human Pose Evaluation with Deep Neural Networks
  Using machine learning to evaluate what pose a person is in.
- → Profiling Summing across axes to analyze image similarity.



- → Contours, Moments, Best-Fit

  Not enough resolution. The belly is not the only part of the body growing.
- → Chamfer Matching, Homography Morphing and matching images via features.
- → OpenCV Object detection.
- → Human Pose Evaluation with Deep Neural Networks
  Using machine learning to evaluate what pose a person is in.
- → Profiling Summing across axes to analyze image similarity.



- Contours, Moments, Best-Fit
  Not enough resolution. The belly is not the only part of the body growing.
- → Chamfer Matching, Homography

  Still required finding static points to match from.
- → OpenCV Object detection.
- → Human Pose Evaluation with Deep Neural Networks
  Using machine learning to evaluate what pose a person is in.
- Profiling
  Summing across axes to analyze image similarity.



- Contours, Moments, Best-Fit
  Not enough resolution. The belly is not the only part of the body growing.
- → Chamfer Matching, Homography

  Still required finding static points to match from.
- → OpenCV
  Was ideal for analyzing static video, not the camera feed.
- → Human Pose Evaluation with Deep Neural Networks
  Using machine learning to evaluate what pose a person is in.
- Profiling
  Summing across axes to analyze image similarity.



- Contours, Moments, Best-Fit
  Not enough resolution. The belly is not the only part of the body growing.
- → Chamfer Matching, Homography

  Still required finding static points to match from.
- OpenCV Was ideal for analyzing static video, not the camera feed.
- → Human Pose Evaluation with Deep Neural Networks

  Overkill for this project, would take significant time to learn and adjust parameters.
- Profiling
  Summing across axes to analyze image similarity.



- → Contours, Moments, Best-Fit

  Not enough resolution. The belly is not the only part of the body growing.
- → Chamfer Matching, Homography

  Still required finding static points to match from.
- → OpenCV

  Was ideal for analyzing static video, not the camera feed.
- → Human Pose Evaluation with Deep Neural Networks

  Overkill for this project, would take significant time to learn and adjust parameters.
- → Profiling Summing across axes to analyze image similarity.

- Elegant and simple solution.
- Quick to set up.



# Approach.

- Sum previous image across x,y axis
- Sum current camera image similarly
- 3. Extract absolute difference between summed arrays
- 4. Sum absolute difference array

Without Algorithm



With Algorithm



# Approach.

- Sum previous image across x,y axis
- Sum current camera image similarly
- 3. Extract absolute difference between summed arrays
- Sum absolute difference array

# **User Timeline**

#### **First Time**

User sets week and takes first photo using template

#### Repeat

Repeat photoshoot process

#### Beginning

#### Pregnancy

#### **Progress**

Takes photos as bump progresses with previous photo overlay

#### Create

Compile a gif of the progress and share with friends!

# DEMO

Bump Tracker takes your pregnancy images and makes them

# BEAUTIFUL





# 3. Next Baby Steps

Polish up the UI and functionality

#### → Fine Tune

Tune the thresholding, morph images for smooth transitions



### 3. Next Baby Steps

Polish up the UI and functionality

#### → Fine Tune

Tune the thresholding, morph images for smooth transitions

#### → UI

Add instructions to new users and real-time instructions during photoshoot

#### **→** Sharing Capabilities

Make it easier to share the gif images,



### 3. Next Baby Steps

Polish up the UI and functionality

#### → Fine Tune

Tune the thresholding, morph images for smooth transitions

#### → UI

Add instructions to new users and real-time instructions during photoshoot

#### → Sharing Capabilities

Make it easier to share the gif images