

Departamento de Matemática

Versão A 1. (a) A B C D E (b) A B C D E (c) A B C D E (d) A B C D E	2. (a) A B C D E (b) A B C D E (c) A B C D E	3. (a) A B C D E (b) A B C D E (c) A B C D E	4. (a) A B C D E (b) A B C D E	
Versão B 1. (a) A B C D E (b) A B C D E (c) A B C D E (d) A B C D E	2. (a) A B C D E (b) A B C D E (c) A B C D E	3. (a) A B C D E (b) A B C D E (c) A B C D E	4. (a) A B C D E (b) A B C D E	

(b)
$$P(Y > X) = 0.75$$

 $Cov(X, Y) = 0$

- (c) X e Y não são independentes. Note que $P(X=-1,Y=-2)\neq P(X=-1)P(Y=-2)$.
- 6. (a) Como $\frac{3}{4}x^2 \geq 0$ se $0 < x \leq 1$, $\frac{3}{4} \geq 0$ se 1 < x < 2 e $0 \geq 0$ para outros valores de x, concluímos que $f(x) \geq 0$. Como também se verifica $\int_{\mathbb{R}} f(x) dx = 1$, f(x) é uma função densidade de probabilidade.

(b) Se
$$x < 0$$
, $F(x) = \int_{-\infty}^{x} 0 du = 0$.
Se $x \in [0, 1[$,

$$F(x) = \int_{-\infty}^{0} 0du + \int_{0}^{x} \frac{3}{4}u^{2}du = \frac{x^{3}}{4}.$$

Se $x \in [1, 2[$,

$$F(x) = \int_{-\infty}^{0} 0du + \int_{0}^{1} \frac{3}{4}u^{2}du + \int_{1}^{x} \frac{3}{4}du = \frac{3x-2}{4}.$$

Se
$$x \ge 2$$
, $F(x) = \int_{-\infty}^{0} 0 du + \int_{0}^{1} \frac{3}{4} u^{2} du + \int_{1}^{2} \frac{3}{4} du + \int_{2}^{x} 0 du = 1$.

(c)
$$P(X < 0.5 | X < 1) = \frac{P(X \le 0.5)}{P(X \le 1)} = \frac{F(0.5)}{F(1)} = 0.125.$$

(d)
$$\mathbb{E}(X) = \int_{\mathbb{R}} x f(x) dx = \frac{21}{16}$$
. $\mathbb{E}(Y) = \mathbb{E}(X) - 1 = \frac{5}{16}$.

Departamento de Matemática

Versão A			
1.	2.	3.	
(a) A B C D E	(a) A B C D E	(a) A B C D E	
(b) V F	(b) A B C D E	(b) A B C D E	
(c) V F	(c) A B C D E	(c) A B C D E	
(d) A B C D E		(d) A B C D E	
		(e) A B C D E	
		(f) V F	
Versão B			
Versão B 1.	2.	3.	
	2. (a) A B C D E	3. (a) A B C D E	
1.			
1. (a) A B C D E	(a) A B C D E	(a) A B C D E	
1. (a) A B C D E (b) A B C D E	(a) A B C D E (b) V F	(a) A B C D E (b) A B C D E	
1. (a) A B C D E (b) A B C D E	(a) A B C D E (b) V F (c) V F	(a) A B C D E (b) A B C D E (c) A B C D E	
1. (a) A B C D E (b) A B C D E	(a) A B C D E (b) V F (c) V F	(a) A B C D E (b) A B C D E (c) A B C D E (d) A B C D E	

4. Seja $T=\sum_{i=1}^{64} X_i$ (soma de variáveis aleatórias independentes e idênticamente distribuídas) a variável aleatória que representa a quantidade de energia gerada pelo aerogerador durante 64 horas. Usando o Teorema Limite Central, podemos garantir que $\frac{T-64\sqrt{\frac{\pi}{2}}}{8\sqrt{\frac{4-\pi}{2}}}$ converge (em distribuição) para a distribuição Normal reduzida. Então,

$$P(T > 82) = 1 - P(T \le 82) = 1 - P\left(\frac{T - 64\sqrt{\frac{\pi}{2}}}{8\sqrt{\frac{4-\pi}{2}}} \le \frac{82 - 64\sqrt{\frac{\pi}{2}}}{8\sqrt{\frac{4-\pi}{2}}}\right) \approx 1 - \Phi(0.34) = 0.3669$$

5. (a) Para obtermos o estimador dos momentos de θ , temos de resolver em ordem a θ a equação $E(X) = \bar{X}$. Como $E(X) = \bar{X} \Leftrightarrow \theta = \bar{X} \sqrt{\frac{2}{\pi}}$, o estimador dos momentos de θ é

$$\hat{\theta} = \bar{X}\sqrt{\frac{2}{\pi}}.$$

Como $E(\hat{\theta}) = E(\bar{X})\sqrt{\frac{2}{\pi}} = \theta\sqrt{\frac{\pi}{2}}\sqrt{\frac{2}{\pi}} = \theta$ e $EQM(\hat{\theta}) = V(\hat{\theta}) = \theta^2\left(\frac{4-\pi}{n\pi}\right) \underset{n\to\infty}{\to} 0$, o estimador $\hat{\theta}$ é centrado e consistente

- (b) $l(\theta) = \sum_{i=1}^{n} \ln f(x_i) = \dots = \sum_{i=1}^{n} \ln x_i 2n \ln(\theta) \frac{1}{2\theta^2} \sum_{i=1}^{n} x_i^2$
- (c) O valor de θ que maximiza $l(\theta)$ é a solução da equação $l'(\theta) = 0$. Resolvendo a equação obtemos o estimador de máxima verosimilhança do parâmetro θ é $\hat{\theta}^{MV} = \sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{2n}}$.
- (d) Temos $\bar{x}=1.34,$ s=0.67 e $\hat{cv}=0.5$. Se usarmos, por exemplo o estimador dos momentos, obtemos $\hat{\theta}=\bar{x}\sqrt{\frac{2}{\pi}}=1.069$

Departamento de Matemática

Versão A 1.	2.	
(a) A B C D (b) A B C D E (c) A B C D E (d) A B C D E (e) V F	(a) A B C D E (b) A B C D E (c) A B C D E (d) A B C D E (e) A B C D E (f) V F	
Versão B 1. (a) A B C D (b) A B C D E (c) A B C D E	2. (a) A B C D E (b) A B C D E (c) A B C D E	
(d) A B C D E (e) V F	(d) A B C D E (e) A B C D E (e) V F	

- 3. (a) $\hat{\beta}_1 = 3.2$ $\hat{\beta}_0 = 32.7$ $\hat{\sigma}^2 = 5.27$
 - (b) Pretende-se testar H_0 : $\beta_1 \leq 0$ vs. H_1 : $\beta_1 > 0$, ao nível de significância $\alpha = 0.1$.

$$T = \frac{\hat{\beta}_1 - 0}{\sqrt{\hat{\sigma}^2 / S_{xx}}} \sim t_6.$$

A região crítica do teste é $]t_{6;0.1},\infty[=]1.44;\infty[.$

O valor observado da estatística de teste, calculado com base na amostra, é $t_{obs}=4.409$. Este valor pertence à região crítica. Logo, existe evidência estatística para rejeitarmos H_0 , ao nível de significância $\alpha=0.1$.

(c) Vamos usar a variável pivot $X^2=\frac{(n-2)\hat{\sigma}^2}{\sigma^2}\sim\chi^2_{n-2}$, para deduzir o intervalo de 95% de confiança para σ^2 . Sejam a_1 e a_2 , tais que $a_1< a_2$ e $P(a_1\leq X^2\leq a_2)=0.95$. Vamos escolher a_1 e a_2 , tais que

$$P(X^2 < a_1) = 0.025$$
 e $P(X^2 > a_2) = 0.025$.

Temos $a_1 = 1.24$, $a_2 = 14.4$ e

$$P(1.24 \le X^2 \le 14.4) = 0.95 \Leftrightarrow P\left(\frac{6\hat{\sigma}^2}{14.4} \le \sigma^2 \le \frac{6\hat{\sigma}^2}{1.24}\right) = 0.95$$

Assim, o intervalo de 95% de confiança para σ^2 é dado por $IC_{95\%}(\sigma^2) = \left[\frac{6\hat{\sigma}^2}{14.4}; \frac{6\hat{\sigma}^2}{1.24}\right]$. Com base na amostra deste exercício, obtemos $IC_{95\%}(\sigma^2) = [2.19, 25.48]$

(d)
$$R^2 = 0.7642$$