АСТРАДЬ

Содержание

1	He												2	
	1.1	Расстояние и размеры												2

1 Небесная механика

1.1 Расстояние и размеры

 Γ одичный параллакс — это угол, под которым видно орбиту Земли с какойлибо звезды.

$$\sin \pi = \frac{R}{r} \tag{1}$$

Где R и r имеют одинаковые еденицы измернеий, но так как в одном парсеке 206265 а.е. и в одном радиане 206265 секунд, то,записывая радиус орбиты Земли в а.е., а расстояние звезды в парсеках, параллакс получается в секундах. Также, можно изменить $\sin \pi$ на π , потому что угол π является малым углом. Таким образом, получается следующая формула:

$$r_{\text{IIK}} = \frac{1 \text{ a.e.}}{\pi_{\text{CEK}}} \tag{2}$$

Где r — расстояние до звезды (в парсеках), π — годичный параллакс звезды (в секундах).

Рис. 1: Параллакс

Если R_{\oplus} — радиус орбиты Земли, r — расстояние до объекта, π — годовой параллакс, то параллакс будет равен $\pi=1''$ с расстояния r=1пк.

 $Угловой \ pазмер \ oбъекта$ — это угол, под которым видно диаметр объекта с Земли.

$$\rho = 2\sin\left(\frac{1}{2}\rho\right) = \frac{D}{r} \tag{3}$$

Так как расстояние много больше размера объекта $(r\gg D)$, следовательно можно использовать приближение для малых углов в радианах $(\sin 1/2\rho\approx 1/2\rho)$:

Рис. 2: Угловой размер

$$\rho = \frac{D}{r} \tag{4}$$

Где R — радиус объекта, ρ — угловые размеры объекта, r — растояние до объекта.

Горизонтальный параллакс — это угол, под которым видно радиус Земли, при положении светила на горизонте.

$$\sin p_0 = \frac{R_3}{r} \tag{5}$$

Где R_3 — радиус Земли, p_0 — горизонтальный экваториальный параллакс, r — расстояние до объекта.

Правило Тициуса-Боде — эмпирическая формула приблизительно описывающая радиусы орбит планет от Солнца:

$$r = \frac{3 \cdot 2^n + 4}{10} \tag{6}$$

Где $n = -\infty, 0, 1, 2...$