Regularization Operators

Aditya Ganeshan

Indian Institute of Technology, Roorkee

December 13, 2016

Table of Content

Definitions and Basic Results

Introduction Regularization Methods Parameter Choice rule

Order Optimality

Introduction Propositions Source Sets

Regularization by Projection

Introduction
Propositions
Stability Analysis

Regularization

It is the approximation of a well-posed problem by neighboring well-posed problems.

We want to find the best-approximate solution $x^{\dagger} = T^{\dagger}y$, but only y^{δ} is known, with,

$$||y^{\delta} - y|| \leq \delta$$

Regularization

In Ill-posed problems, $T^{\dagger}y^{\delta}$ is unbounded(It might not even exist!).

Hence, we look for am approximation x_{α}^{δ} , which

- depends continuously on the noisy data y^{δ} .
- tends to x^{\dagger} as noise level decreases to zero (if regularization parameter α is selected appropriately).

Regularization Operators

Regularization

- As we look not for specific values of y, rather for every $y \in R(T^{\dagger})$, we regularize the solution operator T^{\dagger} .
- A simple regularization of T^{\dagger} is replacement of unbounded operator T^{\dagger} by a parameter-dependant family $\{R_{\alpha}\}$, taking $x_{\alpha}^{\delta} = R_{\alpha}y^{\delta}$.
- This way we define the regularization operator for the whole collection of equations.

$$Tx = y \quad y \in D(T^{\dagger})$$

Definition (3.1)

Let $T: X \to Y$ be a a bounded linear operator between Hilbert spaces X and Y, $\alpha_0 \in (0, +\infty)$. for every $\alpha \in (0, \alpha_0)$, let

$$R_{\alpha}: Y \to X$$

be a continuous(not necessarily linear) operator. The family $\{R_{\alpha}\}$ is called a regularization or a regularization operator for T^{\dagger} , if , for all $y \in D(T^{\dagger})$, there exists a parameter choice rule $\alpha = \alpha(y^{\delta}, \delta)$ such that

$$\lim_{\delta \to 0} \sup\{ \left\| R_{\alpha(y^{\delta}, \delta)} y^{\delta} - T^{\dagger} y \right\| \mid y^{\delta} \in Y, \left\| y^{\delta} - y \right\| \leqslant \delta \} = 0$$
 (1)

holds.

000

Definition (continued)

Here,

$$\alpha: R^+ \times Y \to (0, \alpha_0) \tag{2}$$

is such that

$$\lim_{\delta \to 0} \sup \{\alpha(y^{\delta}, \delta) \mid y^{\delta} \in Y, \|y^{\delta} - y\| \le \delta\} = 0$$
 (3)

For a specific $y \in D(T^{\dagger})$, a pair (R_{α}, α) is called a convergent regularization method if 1 and 3 holds.

Remark

• We can extend Definition 1 to include perturbations in the operator. For this we assume that only approximation T_{η} of T is known with

$$||T-T_{\eta}|| \leq \eta$$

Then, we model the parameter rule to depend upon δ , η , y^{δ} , and T_{η} .

• We do not require the regularization operators $\{R_{\alpha}\}$ to be a family of linear operators.

•00000

Definition (3.2)

Let α be a parameter choice rule according to definition 3.1. If α does not depend on y^{δ} , but only on δ , then we call α an a-priori parameter choice rule and write $\alpha = \alpha(\delta)$.

Otherwise, we call it a a-posteriori parameter choice rule.

(If $\alpha = \alpha(y^{\delta})$, α is called an error-free parameter choice rule)

o●oooo Parameter Choice rule

Theorem (3.3)

Let $T: X \to Y$ be a bounded linear operator and assume that there is a regularization $\{R_{\alpha}\}$ for T^{\dagger} with a error free paramter choice rule, such that the regularization method is convergent for every $y \in D(T^{\dagger})$. Then T^{\dagger} is bounded.

Parameter Choice rule

Remark

• The Theorem does not say that error-free parameter choice rule cannot behave well for finite noise levels δ .

Parameter Choice rule

Let for all $\alpha > 0$, R_{α} be a continuous operator. Then, the family $\{R_{\alpha}\}$ is a regularization for T^{\dagger} if

$$R_{\alpha} \to T^{\dagger}$$
 pointwise on $D(T^{\dagger})$ as $\alpha \to 0$. (4)

In this case, there exists, for every $y \in D(T^{\dagger})$ *, an a-priori rule* α *such* that (R_{α}, α) is a convergent regularization method for solving Tx = y.

000000

Proposition (3.5)

Let $\{R_{\alpha}\}$ be a regularization, α be a linear be as defined in definition 3.1 for all $y \in Y$. Then

$$\{x_{\alpha}\}\ converges\ to\ T^{\dagger}y\ as\ \alpha \to 0\ for\ y\in D(T^{\dagger})$$
 (5)

and if,

$$\sup \{ \|TR_{\alpha}\| \mid \alpha > 0 \} < \infty \tag{6}$$

then

$$\|x_{\alpha}\| \to +\infty \text{ as } \alpha \to 0 \text{ for } y \notin D(T^{\dagger})$$
 (7)

Parameter Choice rule

Proposition (3.6)

Let $\{R_{\alpha}\}$ be a linear regularization; for every $y \in D(T^{\dagger})$, let $\alpha: \mathbb{R}^+ \to \mathbb{R}^+$ be an a-priori choice rule. Then $(\mathbb{R}_{\alpha}, \alpha)$ is a convergent regularization method if and only if,

$$\lim_{\delta \to 0} \alpha(\delta) = 0 \tag{8}$$

and

$$\lim_{\delta \to 0} \delta \left\| R_{\alpha(\delta)} \right\| = 0 \tag{9}$$

hold.

Table of Content

Definitions and Basic Results

Introduction

Regularization Methods

Parameter Choice rule

Order Optimality

Introduction

Propositions

Source Sets

Regularization by Projection

Introduction

Propositions

Stability Analysis

Order optimality

The rate at which

$$||x_{\alpha} - x^{\dagger}|| \to 0 \quad as \quad \alpha \to 0.$$
 (10)

or

$$\left\|x_{\alpha(\delta,y^{\delta})} - x^{\dagger}\right\| \to 0 \quad as \quad \delta \to 0.$$
 (11)

Definition (3.7)

For $M \subseteq X$, $\delta > 0$, let

$$\Omega(\delta, M) = \sup \{ \|x\| \mid x \in M, \|Tx\| \le \delta \}$$
 (12)

 $\boldsymbol{\Omega}$ is known as the modulus of continuity.

Remark

- ▶ In general $\Omega(\delta, M)$ will be infinite
- Let $M \cap N(T) = \{0\}$, then $\Omega(\delta, M)$ is finite if and only if T^{\dagger} is continuous on TM.

Definition (3.8)

The worst-case error under the information that $||y^{\delta} - y|| \le \delta$ and a-priori information that $x^{\dagger} \in M$ is given by

$$\triangle(\delta, M, R) = \sup\{\|Ry^{\delta} - x\| \mid x \in M, y^{\delta} \in Y, \|Tx - y^{\delta}\| \le \delta\}$$
(13)

Remark

An "optimal method" R_0 in a class of methods R would be one for which

$$\triangle(\delta, M, R_0) = \inf\{\triangle(\delta, M, R) \mid R \in R\}$$
 (14)

Propositions

Proposition (3.9)

Let $M \subseteq X$, $\delta > 0$, $R : Y \to X$ be an arbitrary map with R(0) = 0. Then

$$\triangle(\delta, M, R) \geqslant \Omega(\delta, M) \tag{15}$$

Proposition (3.10)

Let R(T) be a non-closed, $\{R_{\alpha}\}$ be an regularization operator for T^{\dagger} , with $R_{\alpha}(0)=0$, $\alpha=\alpha(\delta,y^{\delta})$ be a parameter choice rule. Then there can be no function $f:R^{+}\to R^{+}$ with $\lim_{\delta\to 0}f(\delta)=0$ such that,

$$\left\| R_{\alpha(\delta, y^{\delta})} y^{\delta} - T^{\dagger} y \right\| \leqslant f(\delta) \tag{16}$$

holds for all $y \in D(T^{\dagger})$ with $||y|| \le 1$ and all $\delta > 0$.

Source Sets

Convergence rates can only be on subsets of $D(T^{\dagger})$. i.e. under a-priori assumptions on the exact data. Hence, we consider subsets of the form

$$\{x \in X \mid x = Bw, \|w\| \leqslant \rho\}$$

where B is a linear operator from some Hilbert space into X. For the choice of B.

$$B = (T^*T)^{\mu}$$

for some $\mu > 0$, we denote the set formed by

$$X_{\mu,\rho} := \{ x \in X \mid x = (T^*T)^{\mu} w, \|w\| < \rho \}$$
 (17)

Source sets

We use further the notation,

$$X_{\mu} := \bigcup_{\rho > 0} X_{\mu,\rho} = R((T^{\perp}T)^{\mu})$$
 (18)

These are usually called Source sets, $x \in X_{\mu,\rho}$ is said to have a source representation.

This requirement can be considered as a smoothness condition.

Source Sets

Proposition (3.11)

Let K be compact with singular system $(\sigma_n; v_n, u_n)$. Then for $\mu > 0$

$$K^{\dagger} y \in R((K^* K)^{\mu}) \tag{19}$$

if and only if

$$\sum_{n=1}^{\infty} \frac{\left| \left\langle y, u_n \right\rangle \right|^2}{\sigma_n^{2+4\mu}} < \infty \tag{20}$$

Proposition (3.11)

Let K be compact with singular system $(\sigma_n; v_n, u_n)$. Then for $\mu > 0$

$$K^{\dagger} y \in R((K^*K)^{\mu}) \tag{19}$$

if and only if

$$\sum_{n=1}^{\infty} \frac{\left| \left\langle y, u_n \right\rangle \right|^2}{\sigma_n^{2+4\mu}} < \infty \tag{20}$$

Compared to Picard's Criterion, this can be seen as a condition on the decay rate of $\{\langle y, u_n \rangle\}$.

Proposition (3.12)

For any μ , $\rho > 0$, let $X_{\mu,\rho}$ be as earlier defined. Then for any $\delta > 0$

$$\Omega(\delta, X_{\mu,\rho}) \leqslant \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}} \tag{21}$$

holds.

Source Sets

Proposition

Let K be compact with non-closed range. Then, for any μ , $\rho > 0$, there is a sequence $\{\delta_k\}$ converging to 0 such that

$$\Omega(\delta_k, X_{\mu, \rho}) = \delta_k^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}}$$
 (22)

This tells us that there is a sequence $\{\delta_k\}$ converging to 0 such that $\Omega(\delta_k, X_{\mu, \rho})$ does not go faster to 0 than $\delta_k^{\frac{2\mu}{2\mu+1}}$

Definition (3.13)

Let R(T) be non-closed, $\{R_{\alpha}\}$ be a regularization operator for T_{\dagger} . For μ , $\rho > 0$ and $y \in TX_{\mu,\rho}$, let α be a parameter choice rule. We call (R_{α}, α) optimal in $X_{\mu,\rho}$ if

$$\triangle(\delta, X_{\mu,\rho}, R_{\alpha}) = \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}}$$
 (23)

holds for all $\delta > 0$. We call (R_{α}, α) of optimal order in $X_{\mu, \rho}$ if there exist a constant $c \ge 1$ such that

$$\triangle(\delta, X_{\mu,\rho}, R_{\alpha}) \leqslant c\delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}}$$
(24)

holds for all $\delta > 0$

Theorem (3.14)

If, for all $\tau > \tau_0 \geqslant 1$, the regularization method (R_α, α_τ) is of optimal order in $X_{\mu,\rho}$ for some $\mu > 0$ and all $\rho > 0$, with

$$\alpha_{\tau} = \alpha(y^{\delta}, \tau \delta), \quad \tau > 1$$
 (25)

then all regularization methods $(R_{\alpha}, \alpha_{\tau})$, with $\tau > \tau_0 \geqslant 1$ are convergent for $y \in R(T)$, and they are of optimal order for all $X_{v,\rho}$ with $0 < v \leqslant \mu$ and $\rho > 0$.

Table of Content

Definitions and Basic Results

Introduction
Regularization Methods

Order Optimality

Introduction Propositions Source Sets

Regularization by Projection

Introduction Propositions Stability Analysis

Regularization by Projection

In regularization by projection, regularization is achieved by a finite-dimensional approximation.

In our first approach, we find the minimum-norm solution of Tx = y in a finite-dimensional subspace of X.

Regularization by Projection

In regularization by projection, regularization is achieved by a finite-dimensional approximation.

In our first approach, we find the minimum-norm solution of Tx = y in a finite-dimensional subspace of X.

Regularization by Projection

That is, given a sequence

$$X_1 \subset X_2 \subset X_3 \subset ...$$

of finite dimensional subspaces of X whose union is dense in X, x_n is the least-squares solution of minimal norm in the space X_n .

$$x_n = T_n^{\dagger} y, \tag{26}$$

$$T_n = TP_n \tag{27}$$

where P_n is the orthogonal projector onto X_n .

Remark

Without additional assumptions it cannot be guaranteed that x_n converges x^{\dagger} .

Theorem (3.15)

Let $y \in D(T^{\dagger})$ and let x_n be as discussed.

$$x_n \to x^{\dagger}$$
 if and only if $\{\|x_n\|\}$ is bounded. (28)

$$x_n \to x^{\dagger}$$
 if and only if $\lim_{n \to \infty} \sup \|x_n\| \le \|x^{\dagger}\|$ (29)

Proposition (3.16)

Let $y \in D(T^{\dagger})$ and x_n as discussed. If

$$\lim_{n\to\infty} \sup \left\| \left(T_n^{\dagger} \right)^* x_n \right\| = \lim_{n\to\infty} \sup \left\| \left(T_n^* \right)^{\dagger} x_n \right\| < \infty \tag{30}$$

holds, then $x_n \to x^{\dagger}$.

Proposition (3.17)

If T is compact and (30) *is satisfied, then* $x^{\dagger} \in R(T^*)$

Theorem (3.18)

Let $y \in D(T^{\dagger})$ and x_n as discussed. If T is compact and (30) holds, then

$$||x_n - x^{\dagger}|| = O(||(I - P_n)T^*||)$$
 (31)

Theorem (3.19)

Let $y \in D(T^{\dagger})$ and x_n as discussed. Then $x_n = P_n x^{\dagger}$, where P_n is a orthogonal projector onto $X_n = T^*Y_n$. Moreover,

$$x_n \to x^{\dagger} \quad as \quad n \to \infty$$
 (32)

Stability analysis

Theorem (3.20)

Let $y \in D(T^{\dagger})$ and let

$$\|Q_n(y - y^{\delta})\| \le \delta \tag{33}$$

If $\delta/\mu_n \to 0$ as $\delta \to 0$ and $n \to \infty$, where μ_n is the smallest singular value of T_n , then

$$x_n \to x^{\dagger} \quad as \quad \delta \to 0, n \to \infty.$$
 (34)

Stability Analysis

Proposition (3.21)

Let T be compact with singular system $(\sigma_n; v_n, u_n)$ and let Y_n be such that $dim(Y_n) = n$. Then

$$\mu_n \leqslant \sigma_n \tag{35}$$

Proposition (3.22)

Let T be compact with singular system $(\sigma_n; v_n, u_n)$ and let Y_n be such that $dim(Y_n) = n$. Then

$$||(I-P_n)T^*|| \geqslant \sigma_{n+1} \tag{36}$$

If $Y_n = U_n$, then equality holds.

Thus the convergence rate of

$$||x_n^{\delta} - x^{\dagger}|| = O(\sigma_{n+1} + \frac{\delta}{\sigma_n})$$
 (37)

is the best possible rate that one can expect for compact operator T, and $x^{\dagger} \in R(T^*)$.