

K. N. Toosi University of Technology

Faculty of Physics
Educational Group of
Atomic-Molecular and Astronomy

Special Topics I Final Projects (Project 8 - UV Radiation on Mars)

Ali Bagheri Koochaksaraei

Teacher

Dr. Mohammad Hossein Zhoolideh

Academic Year 1402-1403 (First Semester)

Overview

REMS¹ is a weather station on Mars provided by Finland and Spain. This meteorological station measures humidity, pressure, temperature, wind speed and ultraviolet radiations on Mars. We have prepared a dataset of the data collected by this weather station for you that it contains environmental factors. Now we ask you to use this dataset and build a model to classify the amount of UV radiations on Mars. You can download the dataset needed to answer this question from this link.² The information provided to you is as follows:

Columns	Description
Earth Date Time	Earth date time
Mars Date Time	Mars date time
Sol Number	days on Earth $=$ sol on Mars
Max Ground Temp (°C)	maximum ground temperature on Mars
Min Ground Temp (°C)	minimum ground temperature on Mars
Max Air Temp (°C)	maximum air temperature on Mars
Min Air Temp (°C)	minimum air temperature on Mars
Mean Pressure (Pa)	mean pressure on Mars
Wind Speed (m/h)	wind speed on Mars
Humidity (%)	humidity percentage on Mars
Sunrise	sunrise time on Mars
Sunset	sunset time on Mars
UV Radiation	UV radiation amount on Mars
Weather	weather on Mars

Note: The given data is raw. To answer this question, you must first preprocess the data using the Pandas package.

Important Points

Be sure to

- Leave appropriate comments for different parts of your code.

 $^{^1}$ Rover Environmental Monitoring Station

 $^{^2\}mathrm{To}$ save the dataset, you need to press Ctrl+S on the opened page and save the .csv file

- Completely explain about the algorithm(s) you use to answer this question.
- Use model selection, feature engineering and feature scaling in your code.
- Measure your model performance using model evaluation metrics and interpret the obtained $\operatorname{result}(s)$.
- If you used a specific book or article in your project, mention it in your notebook.

A part of your score will be allocated to these items.

* You should write all the steps of your project in the **Jupyter notebook** and upload it as a file with the **.ipynb** extension on the vc site.