Final Report

1. Overview

This project uses PyTorch and the ResNet18 architecture to classify images. The process begins with loading and concatenating npy.npy files containing data and labels, followed by creating a custom dataset, applying transformations/augmentations, and finally training and validating a model. Below is a detailed explanation of each step in the workflow.

2. Data Import and Concatenation

- Data Files and Label Files: The script specifies multiple __npy files for the images (data0.npy, data1.npy, data2.npy) and corresponding label files (lab0.npy, lab1.npy, lab2.npy).
- Loading and Merging: Each file is loaded with NumPy's np.load. The resulting arrays are concatenated along the first axis. This results in two large NumPy arrays: one containing all the images (data) and the other containing all the labels (labels).
- **Shape Verification**: After concatenation, the script prints out the shapes of the data and labels arrays to confirm that everything loaded correctly.

3. Custom Dataset Class

• **Purpose**: A <u>CustomDataset</u> class, extending PyTorch's <u>Dataset</u>, is defined to handle the data in a convenient way for DataLoader.

Key Steps:

- 1. The dataset stores data and labels.
- 2. The <u>__getitem__</u> method:

- Reshapes the sample from (40, 168) to maintain its single-channel (grayscale) format.
- Converts it to float32.
- Optionally applies a transformation pipeline if provided.
- 3. The __len_ method returns the total number of samples in the dataset.

4. Data Transformations (Augmentations)

• Training Transform:

- Converts the NumPy array to a PIL image.
- Resizes it to 224×224 (matching ResNet18 input size).
- Applies random horizontal flips, random rotations, and random affine transformations to augment the dataset.
- Converts the image back to a PyTorch tensor and normalizes pixel values (mean=0.5, std=0.5).

Validation Transform:

 Similar to the training transform, but typically without random augmentations (so the evaluation data remains consistent).

These transformations help improve generalization by exposing the model to a variety of augmented samples during training.

5. Splitting the Dataset

- Train, Validation, and Test Sets:
 - The first 20,000 samples are designated for training, with full augmentations.

- The next 4,000 samples (from index 20,000 to 24,000) are for validation,
 with a simpler transform (no random augmentations).
- All remaining samples (index 24,000 onwards) form the test set, often with either no transform or only basic normalization.

6. DataLoaders

• **Creation**:Three DataLoaders (train_loader, val_loader, and test_loader) wrap the custom datasets.

• Parameters:

- Batch size is 32 for all sets.
- Training data is shuffled at every epoch (shuffle=True), while validation and test sets are not shuffled (shuffle=False).

7. Model Definition (ResNet18)

- **Pretrained Model**: A pre-trained ResNet18 from torchvision.models is loaded with pretrained=True, which initializes weights from ImageNet.
- Input Channel Modification: The original ResNet expects 3 input channels (RGB). Here, the first convolution layer is replaced to accept a single grayscale channel.
- Output Layer Modification: The final fully connected layer (fc) is replaced with a new layer whose output size matches the number of classes in the dataset. This is determined by the unique labels.

8. Loss Function, Optimizer, and Scheduler

• Loss Function: nn. CrossEntropyLoss is used for multi-class classification.

- **Optimizer**: An Adam optimizer is chosen, starting with a learning rate of 0.001.
- **Scheduler**: A StepLR scheduler reduces the learning rate by a factor (gamma=0.1) every 5 epochs (set by step_size=5).

9. Training Loop

• **Function**: A function train_model encapsulates the training/validation procedure.

• Training Phase:

- 1. model.train() is called to set the model to training mode.
- 2. For each batch, images and labels are moved to the device (GPU/CPU).
- 3. The optimizer gradients are zeroed.
- 4. A forward pass computes predictions, and the cross-entropy loss is calculated.
- 5. A backward pass (loss.backward()) updates the model's weights via optimizer.step().
- 6. Accumulates training loss and the number of correct predictions.

Validation Phase:

- 1. model.eval() is called, and gradients are not computed (with torch.no_grad()).
- 2. Validation loss and accuracy are computed over the validation set.
- **Scheduler Step:**The learning rate is updated at the end of each epoch via the scheduler.
- Saving the Best Model: The best validation accuracy observed across epochs
 is stored, and the model's weights are saved to best_model.pth if an
 improvement occurs.

10. Model Training and Future Testing

- **Model Training**: The script trains for 10 epochs. During each epoch, it prints training/validation losses and accuracies.
- **Model Testing**: A test model function could then be applied to the test set to measure final performance. This step is commented out in the code, but can be implemented similarly to validation.