PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-216791

(43) Date of publication of application: 29.08.1990

(51)Int.CI.

H05B 33/14 CO9K 11/06

(21)Application number: 01-037742

(71)Applicant: PIONEER ELECTRON CORP

(22)Date of filing:

17.02.1989

(72)Inventor: NAKADA HITOSHI

WAKIMOTO TAKEO **MAGAI TAKENAO**

(54) ELECTRIC FIELD LUMINOUS ELEMENT

(57)Abstract:

PURPOSE: To make luminous in a blue color efficiently at a low voltage and at a high brightness by arranging a phosphor layer which consists of a specific organic compound and laminated each other, and a hole transport layer between a cathode and an anode, to form a luminous element.

CONSTITUTION: Between a metal electrode 1 to be a cathode and a transparent electrode 2 to be an anode, a phosphor luminous layer 7 which consists of an organic compound shown in the formula I and laminated each other, and a hole transport layer 4 are arranged in order to form a luminous element. In the formula I, A1 and A2 are shown in the formula II independently, and n is 0, 1, 2 or 3, R1, R2, R3, and R4 include independently an oxadiazol system compound to be a functional radical selected from -H, -CZH2Z+1 (Z is an integral number), -OCYH2Y+1 (Y is a integral number), -X, -N, H2, and -NRR' (R is dialkyl amino radical, and R' is alkyl radical). By such a constitution, the element can be made luminous in a blue color efficiently at a low voltage, and a high brightness.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(B) 日本国特許庁(JP) (D) 特許出願公開

^⑫ 公 開 特 許 公 報 (A) 平2-216791

fint. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)8月29日

H 05 B 33/14 C 09 K 11/06

6649-3K 7043-4H Z

審査請求 未請求 請求項の数 3 (全4頁)

会発明の名称 電界発光素子

> ②特 頭 平1-37742

@出 願 平1(1989)2月17日

⑩発 明 H 埼玉県入間郡鶴ケ島町富士見6丁目1番1号 パイオニア

株式会社総合研究所内

@発 健 夫 埼玉県入間郡鶴ケ島町富士見6丁目1番1号 パイオニア

株式会社総合研究所内

70 発 明

岡 直 埼玉県入間郡鶴ケ島町富士見6丁目1番1号 バイオニア 株式会社総合研究所内

勿出 願 人 パイオニア株式会社

東京都目黒区目黒1丁目4番1号

個代 理 人 弁理士 藤村 元彦

1. 発明の名称

范界宛光索子

2. 特許請求の範囲

(1) 有機化合物からなり互いに積層された蛍光 体発光層及び正孔輸送層が陰極及び陽極間に配さ れた構成の電界発光素子であって、前記蛍光体発 光層は、下記納造式 (XIII) で示され、

上記構造式 (XIV)中A,及びA。は独立に、

であり、nはO. 1. 2又は3であり、R;, R2, R, 及びR。は独立に、-H(水素原子), - C z H zz・1 (アルキル茲: Z は整数) , - O C y H 27・1 (アルコキシ茲:Yは整数), - X (ハ

ロゲン盐)、-NH2(アミノ盐)及び-NR R'(ジアルキルアミノ茲:R、 R' はアルキル 益)から選ばれる官能茲であるオキサジアゾール 系化合物を含む蛍光体薄膜からなることを特徴と する框界発光素子。

- (2) 前記陰極及び前記蛍光体層間に有機電子輪 送暦が配されたことを特徴とする請求項 1 記載の **犯界発光素子。**
- (3) 前記オキサジアソール系化合物が下記構造 式 (XIV)、

の化合物からなることを特徴とする請求項1記載 の世界発光素子。

3. 発明の詳細な説明

技術分野

本苑明は世界苑光索子に関し、特に有機化合物 を発光体として構成される電界発光素子に関する。

特開平2-216791(2)

背景技術

これら電界発光索子において、透明電極2の外側にはガラス基板6が配されており、金属電極1から注入された電子と透明電極2から注入された正孔との再結合によって励起子が生じ、この励起子が放射失活する過程で光を放ち、この光が透明電極2及びガラス基板6を介して外部に放出されることになる。

しかしながら、上述した構成の従来の有機蛍光体薄膜3を配した電界発光素子においては、限定された発光スペクトル例えば波長530 n m程度の緑色発光しか得られておらず、色純度が高い骨色を高輝度にて発光させるものがないという問題があった。

免明の概要

本発明は、上述した従来のものの問題を解消すべくなされたものであって、蛍光体を効率良く高 輝度にて発光させることができる電界発光素子を 促供することを目的とする。

本発明による電界発光素子においては、有機化合物からなり互いに積層された蛍光体発光層及び正孔輸送層が陰極及び陽極間に配された構成の電界発光素子であって、前記蛍光体発光層は、下記構造式 (XII) で示され、

$$\begin{array}{c|c}
R_1 & & \\
\hline
R_1 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_2 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_3 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R_4 & & (XIII)$$

上記構造式 (XIV) 中A,及びA2は独立に、

であり、nは0,1、2又は3であり、R₁,R₂,R₃及びR₄は独立に、-H(水素原子),C₂H_{22·1}(アルキル基: Zは整数),OC₇H_{27·1}(アルコキシ基: Yは整数),-X(ハロゲン基),-NH₂(アミノ基)及び-NRR'(ジアルキルアミノ基:R,R'はアルキル基)から退ばれる官能基であるオキサジアゾール系化合物を含む蛍光体薄膜からなることを特徴とする。

実 施 例

以下、本発明の実施例を図に基づいて詳細に説明する。

第1図は本発明の一実施例を示す構造図であり、 図中第2図及び第3図と同等部分には同一符号が 付されている。

図において、陰極である金属電極1には、アル ミニウムの1500人膜厚の薄膜を用いる。また、 陸極1には、仕事関数が小さな金属、例えば厚さが約500人以上のアルミニウム、マグネシウム、インジウム又は倒が用い得る。

関係である透明電板2には、インジウムすず酸化物(I.T.O.)の2000人膜厚の薄膜を用いる。また、関板2には、仕事関数の大きな導電性材料、例えば厚さが1000~3000人程度のI.T.O.又は厚さが800~1500人程度の金が用い得る。なお、金を電極材料として用いた場合には、電板2は半透明の状態となる。

金属電極1と透明電極2との間には、図の上から順に積層された有機蛍光体薄膜7及び有機正孔輸送階4が配されている。

有級正孔輪送暦4には、ピスジフェニルアミン誘導体、例えば下記式(1)の化合物の800A 腹厚の薄膜を用いる。

特開平2-216791(3)

また、有機正孔輪送路4には、更に下記式(II) ~ (XII)のCTM (Carrier Transmitting Mate rials) として知られる化合物を用い得る。

$$E_{42}N \longrightarrow CH = NN \longrightarrow (X)$$

$$R \longrightarrow N \longrightarrow N \longrightarrow R$$

$$(X)$$

有機蛍光体薄膜7としては、オキサジアソール 系化合物を含む500人膜厚の薄膜が用いられる。 オキサジアソール系化合物は、下記構造式 (XIII) アポネれ

$$R_1$$
 A_1
 A_2
 R_4
 A_2
 A_3
 A_4
 A_4
 A_4
 A_4
 A_4
 A_4
 A_5

上記構造式 (XII) 中A,及びA。は独立に、

であり、nは0, 1, 2又は3であり、R₁, R₂, R₃及びR₄は独立に、-H(水素原子), C₂H₂₂₊₁(アルキル基: Zは整数), OC₇H₂₇₊₁(アルコキシ茲: Yは整数), -X(ハロゲン茲), -NH₂(アミノ茲)及び-NRR⁷(ジアルキルアミノ茲: R, R⁷はアルキル茲)から選ばれる官能基である化合物である。例えば、有機蛍光体薄膜7として下記(XIV)式の2-(4⁷-t-ブチルフェニル)-5-(4⁷-ビ

特閒平2-216791(4)

フェニル) 1. 3. 4 - オキサジアソールが用いられる。また、この有模蛍光体薄膜7の膜厚は1 μm以下に設定されることが好ましい。

尚、ピスジフェニルアミン誘導体の有機正孔輪送層4は蒸着速度3 [A/sec] の条件下で、オキサジアゾール系化合物の有機蛍光体薄膜7は蒸着速度3.4 [A/sec] の条件下で、金属電低1は、蒸着速度10.5 [A/sec] の条件下で各々順に成膜された。

かかる構成の電界発光素子の各薄膜は、真空蒸 着法によって真空度 2 × 1 0 ⁵ [Torr] 以下、 満者速度 0.1~20.0 [A/sec] の条件 下で成膜され得る。

上記の如く製造された電界免光素子においては、 駆動電圧20【V】の印加によって、最大輝度 37【cd/m¹】にて波長430ヵmの発光を 得ることができる。

また、上記実施例においては陰極1及び隔極2間に有機蛍光体薄膜7及び有機正孔輸送暦4を配した2階構造としたが、従来の陰極1及び蛍光体薄膜7層間にペリレンテトラカルボキシル誘導体または下記(XX)式のペリレン誘導体からなる有機電子輸送暦5を配した3層構造としても同様の効果を奏する。

以上説明したように、本発明による電界発光業子においては、有機化合物からなり互いに積層された蛍光体発光層及び正孔輸送層が陰極及び陽極間に配された構成の電界発光素子であって、蛍光体発光層はオキサジアゾール系化合物を含む蛍光体薄膜からなるので、低電圧にて効率良く高輝度で青色発光させることができる。

4. 図面の簡単な説明

第1図は本発明の実施例を示す構造図、第2図 及び第3図は従来例を示す構造図である。

主要部分の符号の説明

1 ……金属電極(陰極)

2 … … 透明電極 (陽極)

4 ……有機正孔輪送曆

6 ……ガラス基板

7 … … 有機蛍光体薄膜

第 1 図

3 4 2 2 7 8 #

第2図

出願人 パイオニア株式会社 代理人 弁理士 藤 村 元 彦