

Transmisión de Datos y Redes de Computadores

TEMA 5. REDES MULTIMEDIA

(2020-2021)

Multimedia y aplicaciones multimedia

• Multimedia significa literalmente "muchos medios" para mostrar o interactuar con un sistema.

En nuestro ámbito y por simplicidad, diremos que una **aplicación multimedia** es aquella que emplea **audio y/o vídeo**.

Clasificación

- Contenido almacenado (en un servidor).
 - El usuario descarga el contenido y luego lo va reproduciendo.
 - El control (play, pause, forward, rewind) se hace a través de interfaz web.
 - Poco sensible al número de usuarios conectados.
- Contenido en directo (streaming).
 - El contenido se va transmitiendo en tiempo real.
 - Sólo hay control de play y pause.
 - Sensible al número de usuarios (salvo aplicaciones P2P Vídeo, que implica cierto retardo en su inicio)
- Aplicaciones interactivas (videoconferencia, voip).
 - Bidireccional.
 - No debe haber retardos.

Clasificación

Asimétricas.

- Volumen de tráfico diferente en cada sentido.
- Ej: en vídeo bajo demanda, hacia el usuario se envía el vídeo y hacia la web se envían comandos de control sobre el vídeo.

Simétricas.

- Se envía una cantidad de datos similar en ambos sentidos.
- Todos los participantes tienen un rol activo.
- Ej: videoconferencia

Clasificación

Multicast.

- Punto a multipunto.
- Hay un emisor y múltiples receptores.
- Ej: vídeo en streaming, videoconferencia múltiple.

Unicast.

- Punto a punto (Ej: audioconferencia).
- Un emisor y un receptor.
- Puede haber múltiples punto a punto (vídeo o audio bajo demanda).

Flujos de audio/vídeo almacenados

Flujos de audio/vídeo en directo

Conversaciones de voz/vídeo sobre IP

Google Meet

Impacto

- En 2018 → 58% del tráfico en Internet fue vídeo
- En 2019 → 80% del tráfico en Internet fue vídeo
- En 2020 → 82% del tráfico en Internet fue vídeo (Cisco)
- En 2022 → se estima que el 85% del tráfico en Internet será vídeo
- Youtube es la segunda web más visitada de todo Internet, sólo por detrás de Google (Alexa)
- Los usuarios ven más de 1000 millones de horas de vídeo en Youtube cada día (YouTube)
- En 2020 hubo más de 1 millón de minutos de vídeo cruzando Internet cada segundo (Cisco)
- Un ejecutivo de **Facebook** predijo en 2019 que en **2021** dicha red social **sólo contendrá vídeo** y **nada de texto** (Quartz)

Durante COVID-19

La pandemia ha cambiado las cifras

Impacto

- En 2018 el 58% del tráfico de descarga en Internet era vídeo.
- La mayor parte de ese tráfico se repartía entre unos pocos servicios/empresas.
- Netflix y Youtube copan ese tráfico.
- En España, en 2021, en torno al 70% del tráfico de descarga es vídeo.

Impacto

En 2018 Netflix era el responsable del 15% de todo el tráfico de descarga en Internet

Figura: PCMag – Reparto de tráfico en Internet (2018)

Aplicaciones de vídeo

- En general requieren una alta tasa de bits T (bps) para vídeo en directo y visualización fluida.
- Gran capacidad de compresión.
- Permite definir distintas calidades según circunstancias

- Baja calidad: T = 100 Kbps

- Alta calidad: T = 3 Mbps

Aplicaciones de audio

- Requiere menor tasa de bits
- Los usuarios son más sensibles a cortes/alteraciones
 - Retardo (*delay*)
 - Retardo variable (*jitter*)
 - Interrupciones de la transmisión

Tasa constante

- CBR (Constant Bit Rate)
- No se envía a ráfagas (de distinto tamaño)
- Usualmente en el audio y sólo algunos codificadores de vídeo

Tasa variable

- VBR (Variable Bit Rate)
- El envío se hace a ráfagas
- Lo hacen casi todos los codificadores (codecs)

Aplicaciones de vídeo

• Ejemplos de información transferida y tasas recomendadas:

Aplicación	Características	Т	Información transferida (1 hora)
Facebook	Acceso a 1 foto cada 10 s.Tamaño foto: 200KB	160 Kbps	70 MB
Spotify	Descarga de canciones de la nubeCodificación MP3	128 kbps	56 MB
Netflix	Vídeo codificado	2 Mbps	900MB

Aplicaciones de vídeo

Dadas las capacidades de canal de transmisión de las tecnologías de acceso actuales, el envío de vídeo no sería posible sin compresión.
Figuras: Sapec (2015)

- Un vídeo es una secuencia de imágenes (array de píxeles) mostradas con una tasa constante (fotogramas por segundo).
- La compresión reduce algún factor del vídeo (de las imágenes que lo componen).
- Permite crear distintas versiones/calidades del vídeo en función del grado de compresión.

Se reducen

- FPS (frames per second)
- Resolución
- Redundancia
 - Espacial
 - Temporal

Reducción de FPS

 Se graban o se envían un número menor de frames por segundo.

- WebCam: 30 fps

- Cámara deportiva: 60 fps

- TV/Monitor (juegos): 120 fps

 Capacidad de refresco → Hz del Monitor/TV que indican el número de veces que se actualiza la pantalla por segundo

Reducción de FPS

 A menor número de FPS se pueden dar problemas, por ejemplo en retransmisiones deportivas.

EJEMPLO:

A 30 fps, los fotogramas se presentan cada 33.3 ms. En un programa deportivo de motor, a 300 Km/h, sólo veríamos lo que pasa cada 3 metros.

Reducción de FPS

 A mayor número de FPS se tendrían ventajas, por ejemplo en juegos: Menor Input Lag

EJEMPLO: A 250 fps un nuevo fotograma se renderiza cada 4 ms mientras que a 100 fps es cada 10 ms. Por ello, a 250 fps una acción se presenta 6 ms antes. En juegos como Counter Strike es vital.

O desventajas: Mayor Tearing

EJEMPLO: Si se generan más fps que los Hz de refresco del monitor. Se empieza a mostrar un frame siguiente mientras aún no se ha terminado el anterior.

Reducción de Resolución

Reduciendo el tamaño de los frames (número de pixels por fotograma)

Reducción de Resolución

Se calcula cada pixel como la media de los de alrededor

Reducción de Redundancia Espacial

- Se comprime cada frame individualmente.
- Se encuentra información similar en un conjunto de píxeles que promedia y unifica, quitando leves diferencias de color que no son detectadas por la percepción humana. Así, cada frame termina teniendo un tamaño muy inferior al original.
- O se hace una transformada discreta aplicando alguna función, como el coseno (DCT) sobre bloques de NxN píxeles (Ej: 8x8)

ALGORITMO RLE (Run Length Encoding)

Figura: Stoimen.com

Reducción de Redundancia Temporal

- Tasa de compresión mayor que en la espacial.
- Sólo se guardan/envían las diferencias entre un frame y el siguiente en la secuencia.
- También se añade predicción del frame siguiente.

Figura: imagenysonido8m

SECUENCIA ORIGINAL

COMPRESIÓN CON REDUCCIÓN DE REDUNDANCIA TEMPORAL

Reducción de Redundancia Temporal

- Se eligen algunos frames (S frames) y se generan por interpolación los que habrá entre ellos. FRC (frame rate converter).
- Predicción de frames en base a anterior y posterior:
 - Frame I, está completo. Son los usados para predecir.
 - Frame P, sólo guarda las diferencias con el frame anterior (MPEG-1).
 - *Frame B*, guarda las diferencias con el frame anterior y el siguiente. El resto se predice. (MPEG-2)

Reducción de Redundancia Temporal

- Estándares
 - H.264 o MPEG-4 AVC (Advanced Video Coding): Más avanzado que MPEG-2. Mejores ratios de compresión.
 - H.265 HEVC (High Efficiency Video Coding): Mejora en un 50% el H.264. Permite ratios 500:1
- Resumen de tasas requeridas para la transmisión de vídeo tras comprimir.

Formato	MPEG-2	MPEG-4 AVC	H.265 HEVC
SD	5 Mbps	1 Mbps	
HD	20 Mbps	6 Mbps	3 Mbps
4K			10-15 Mbps

Flujos de vídeo (HTTP)

DASH

- Dynamic Adaptive Streaming over HTTP
- Funciona sobre TCP.
- Servidor:
 - Divide el vídeo en múltiples segmentos (chunks).
 - Cada segmento se almacena con diferentes tasas de bits (diferente calidad).
 - Fichero "manifest" describe los segmentos y contiene la URL de cada uno.

Cliente:

- Tiene un buffer en el que va almacenando partes del vídeo antes de ser visualizadas.
- Mide periódicamente la capacidad (ancho de banda) del canal entre él y el servidor.
- Consulta *manifest* y solicita un segmento cada vez:
 - . Elige el que mayor tasa de bits tenga que sea soportable por el ancho de banda disponible.
 - . Puede elegir diferentes calidades (tasas de bits) en diferentes instantes.

Figura: [Kurose and Ross. Computer Networking: A top down Approach. Slides]

Flujos de vídeo (HTTP)

DASH - "Inteligencia" en el cliente (él determina)

- Cuándo se solicita el siguiente segmento → para que no se vacíe el buffer, ni se sature.
- Qué tasa de bits/Calidad debe solicitar → más calidad cuando haya mayor ancho de banda disponible.
- Dónde solicitar cada segmento → ante varias alternativas de servidores (URLs), elige la que es más cercana o la que ofrece mayor ancho de banda.

Content Distribution Networks (CDNs)

YouTube tiene más de 2000 millones de usuarios

 Hay que servir contenidos de entre millones de vídeos/audios disponibles a miles de millones de usuarios.

- ¿Usar un solo mega-servidor?
 - Único punto de fallo.
 - Congestión de la red.
 - Clientes lejanos con largo recorrido de red (alto retardo/ping).
 - múltiples copias del mismo vídeo enviadas por diversos enlaces.

... NO ES ESCALABLE

Content Distribution Networks (CDNs)

 Hay que servir contenidos de entre millones de vídeos/audios disponibles a miles de millones de usuarios.

CDNs

- Almacenan múltiples copias de los vídeos en diferentes localizaciones distribuidas geográficamente.
- Se dirige cada solicitud (de usuario) a un servidor de la CDN que le pueda proporcionar la mejor experiencia (menor latencia, más ancho de banda).
- CDNs privadas → propiedad del propio proveedor de contenidos (CDN Google para vídeos de YouTube).
- CDN comerciales distribuyen contenidos de múltiples proveedores (Akamai usa CDNs comerciales).

Content Distribution Networks (CDNs)

Ejemplo: Usuario quiere ver MadMen en Netflix.

Google (CDNs)

(Datos de 2017)

- Incluye contenidos de diverso tipo: mapas, correo, vídeos, documentos, etc.
- 14 mega centros de datos (en diversos países), cada uno con más de 100000 servidores. Sirven contenido dinámico ⇔ resultados de búsquedas, Gmail, Documentos.
- 50 clústeres (distribuidos por el mundo) con 100-500 servidores cada uno, para servir contenido estático ⇔ vídeos de YouTube.
- Cientos de clústeres de "introducción profunda" en ISPs. Éstos se montan dentro de la propia red de los ISPs, para estar más "cerca" (en número de saltos) de los usuarios.
- Tiene una red privada propia (mucho más eficiente que la Internet pública).

Ejemplo:

Las búsquedas se gestionan primero en los servidores de los ISPs, se coge el contenido estático de una caché, mientras se reenvía la consulta a los demás servidores para obtener el contenido dinámico.

Bibliografía

- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
- White Paper SAPEC -- Junio 2015 Tecnologías de compresión de vídeo
- P. García-Teodoro, J.E. Díaz-Verdejo, J.M. López-Soler. Transmisión de datos y redes de computadores, 2ª Edición. Editorial Pearson, 2014.
- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Editorial McGraw Hill 2007.

¿Alguna duda?