Ouest	Har	ر ر
WUES.	1101	10

A) if a=b=c

 $\mathbb{D} f(x) \longrightarrow postitive$ ron negative

: for $0 \le x \le 1$ by as a > 0therefore it is non negative.

As ucilos, b > 0 and c > 0 bothase non-negative

- After satisfying given conditions

 1+ is PDf of X and Value of a = 1/3 = 0.333
- (ii) Area Under curve is must be I.

 The integral of f(x) over the entire real line must be equal to I.

- For f(x) to be PDF. It must statisfy both conditions $\int_{-\infty}^{\infty} F(x) \cdot dx = \int_{0}^{\infty} a \cdot dx + \int_{0}^{\infty} a \cdot dx = \int_{0}^{$

solving of 9, we get 0 + 0 + 9 = 1 30 = 1 9 = 1/3 = 0.333

B)	if $a = 0.7$ and $b > C$
	total Area:
	2 3
	$(0.7 dx + \int b. dx + \int C. dx = 1$
	0 1 2
	: 0.7 + b+C =1
	1. b+c = 0.3
	7. BIC - 0.3
	as c < b,
	us c v b ₁
	0 6 9
	as well as c < 0.3
	2
	. C < 0/15
	calculations ofter these
	C = 0·1
	b = 0.2
C ·	Given in question
	'
	a = 1 $b = 1$ $c = 1$
	6 3 2
	Area =
	ر ع
	- (a.dx + (b.dx + (c.dx
	7
	$= \left[QX \right]_{0}^{2} + \left[bX \right]_{1}^{2} + \left[CX \right]_{2}^{3}$
	- L7~Jo , LD~J ₁ T L~J ₂
	= 1 , 1
	$\frac{1}{6} + \frac{1}{3} + \frac{1}{2}$
	$=\frac{6}{6}=\boxed{1}$
	6

here a, b, c all are positive values and Above 2 properties true for this to be PDF i yes, I be the PDF ofX D. \overrightarrow{J} P(1.5 < X < 2.5)

2 2.5

2 C. dx $= \begin{bmatrix} bx \end{bmatrix}^2 + \begin{bmatrix} cx \end{bmatrix}^2$ [2b-1.5b] + [2.5 C-2C]= 0.5 b + 0.5 C - <u>0.5</u> + <u>0.5</u> 2.5 = 0.4167 π) P(x=2) $f(2) = \frac{1}{2}$

quartiles 1 and quartile 3

$$IOR = 93-91$$

$$= 3.5 - 1.5$$

IQR = 2

$$Ex = \int x \cdot f(x) \cdot dx$$

$$= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{3}{2}\right) + \left(\frac{1}{2} \times \frac{5}{2}\right)$$

E>	Values $-9,b,c$ $x \rightarrow random variable$
	- smallest Expected Value - smallest Voriance
	condition (
	Van X
	Var X $Q = b = C = 1$ 3
	by condition 1
	$EX = \int x \cdot fx \cdot dx$
	$= \int_{0}^{3} \frac{1}{3} \cdot 2 \cdot d2$
	$= \left[\frac{\chi^2}{6}\right]_0^3$
	<u>- 9</u>
	EX = 1.5