MATRICES

1. If the matrix A is a scalar matrix, then the value of a + 2b + 3c + 4d is

$$A = \begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- a) 0
- b) 5
- c) 10
- d) 25
- **2.** Given that $A^{-2} = \frac{1}{7} \cdot \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$, matrix A is.
 - a) $A = 7 \cdot \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$
 - b) $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$
 - c) $A = \frac{1}{7} \cdot \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$
 - d) $A = \frac{1}{49} \cdot \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$
- **3.** If $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$, then find the value of $I A + A^{-2} A^{-3} + \dots$
 - a) $\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$
 - b) $\begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$
 - c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - $d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- **4.** If $A = \begin{bmatrix} -2 & 0 & 0 \\ 1 & 2 & 3 \\ 5 & 1 & -1 \end{bmatrix}$, then find the value of |A(adj.A)|.
 - a) 1001
 - b) 101

- c) 10
- d) 1000
- **5.** Given that $\begin{bmatrix} 1 & x \end{bmatrix}$. $\begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = 0$, the value of x is:
 - a) -4
 - b) -2
 - c) 2
 - d) 4
- **6.** If $A = \begin{bmatrix} 2 & 1 & -3 \\ 3 & 2 & 1 \\ 1 & 2 & -1 \end{bmatrix}$, find A^{-1} and hence solve the following system of equations:
 - (a) 2x + y 3z = 13
 - (b) 3x + 2y + z = 4
 - (c) x + 2y z = 8

COORDINATE GEOMETRY

- 1. The line $\frac{1-x}{2} = \frac{y-1}{3} = \frac{z}{1}$ and $\frac{2x-3}{2p} = \frac{y}{-1} = \frac{z-4}{7}$ are perpendicular to each other for p equal to
- 2. Solve
 - a) Find the distance between the line $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1}$ and another line parallel to it passing through the point (4,0,-5).
 - b) If the lines $\frac{x}{2} = \frac{2y-6}{4} = \frac{z-6}{-7}$ and $\frac{x-1}{3k} = \frac{y-1}{3k} = \frac{z-6}{-7}$ are perpendicular to each other, find the value of k and hence write the vector equation of a line perpendicular to these two lines and passing through the point (3, -4, 7).

DIFFERENTIATION

- 1. Derivative of e^{2x} with respect to e^x is
 - a) e^x
 - b) $2e^x$
 - c) $2e^{2x}$
 - d) $2e^{3x}$

2. Determine the value of k for which the following function is continuous at x=0:

$$f(x) = \begin{cases} \frac{\sqrt{4+x}-2}{x}, & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$$

- a) 0
- b) $\frac{1}{4}$
- c) 1
- d) 4
- **3.** The general solution of the differential equation x dy + y dx = 0 is
 - a) xy = c
 - b) x + y = c
 - c) $x^2 + y^2 = e^2$
 - d) $\log y = \log x + c$
- 4. Solve
 - a) If $y = \cos^3(\sec^2 2t)$, find $\frac{dy}{dt}$
 - b) If $y = e^{x-y}$, prove that $\frac{dy}{dt} = \frac{\log x}{(1+\log x)^2}$
- **5.** Find the interval in which the function $f(x) = x^4 4x^3 + 10$ is strictly decreasing.
- **6.** The volume of a cube is increasing at the rate of $6 \text{ cm}^3/\text{s}$. How fast is the surface area increasing when the length of an edge is 8 cm?
- 7. Given that $y = (\sin x)^x \cdot x^{\sin x} + a^x$, find $\frac{dy}{dx}$.
- 8. Solve
 - a) Find the particular solution of the differential equation $\frac{dy}{dx} = y \cot(2x)$, given that $y\left(\frac{\pi}{4}\right) = 2$.
 - b) Find the particular solution of the differential equation $(xe^x + y) dx = x dy$ given that y = 1 when x = 1.

TRIGONOMETRY

Solve

a) Express $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$, where $-\frac{\pi}{2} < x < \frac{\pi}{2}$, in its simplest form.

ΩR

b) Find the principal value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.

INTEGRATION

- 1. The value of $\int_0^3 \frac{dx}{\sqrt{9-x^2}}$ is:
 - a) $\frac{\pi}{6}$
 - b) $\frac{\pi}{4}$
 - c) $\frac{\pi}{2}$
 - d) $\frac{\pi}{18}$
- **2.** The integrating factor of the differential equation $(x+2y^2)\frac{dy}{dx}=y \quad (y>0)$ is:
 - a) $\frac{1}{x}$
 - b) x
 - c) y
 - d) $\frac{1}{y}$
- **3.** Find: $\int \frac{1}{x(x^2-1)} dx$
- 4. Solve
 - a) Evaluate: $\int_0^{\frac{\pi}{4}} \frac{x \, dx}{1 + \cos 2x + \sin 2x}$ or
 - b) Find: $\int e^x \left[\frac{1}{(1+x^2)^{5/2}} + \frac{x}{\sqrt{1+x^2}} \right] dx$
- **5.** Find: $\int \frac{3x+5}{\sqrt{x^2+2x+4}} \, dx$
- 6. Solve
 - a) Sketch the graph of $y=x\,|x|$ and hence find the area bounded by this curve, X-axis, and the ordinates x=-2 and x=2, using integration or
 - b) Using integration, find the area bounded by the ellipse $9x^2 + 25y^2 = 225$ and the lines x = -2 and x = 2

RELATIONS

- 1. Assertion (A) : The relation R = (x,y) : (x+y) is a prime number and x,y $x \in A$ N is not a reflexive relation.
 - Relation (R): The number '2n' is composite for all natural numbers n.

PROBABILITY

1. The probability distribution of a random variable *X* is:

X	0	1	2	3	4
P(X)	0.1	k		2k	0.1

where k is some unknown constant. The probability that the random variable X takes the value 2 is:

- a) $\frac{1}{5}$ b) $\frac{2}{5}$ c) $\frac{4}{5}$
- d) 1

2. Solve:

a) A card from a well-shuffled deck of 52 playing cards is lost. From the remaining cards of the pack, a card is drawn at random and is found to be a King. Find the probability of the lost card being a King.

OR

- b) A biased die is twice as likely to show an even number as an odd number. If such a die is thrown twice, find the probability distribution of the number of sixes. Also, find the mean of the distribution.
- 3. Rohit, Jaspreet, and Alia appeared for an interview for three vacancies in the same post. The probability of Rohit's selection is $\frac{1}{5}$, Jaspreet's selection is $\frac{1}{3}$, and Alia's selection is $\frac{1}{4}$. The events of selection are independent of each other.

Based on the above information, answer the following questions:

- i) What is the probability that at least one of them is selected?
- ii) Find $P(G \mid \bar{H})$ where G is the event of Jaspreet's selection and \bar{H} denotes the event that Rohit is not selected.
- iii) i) Find the probability that exactly one of them is selected. or
 - ii) Find the probability that exactly two of them are selected.

ALGEBRA

- **1.** If \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{3}$, then the angle between $2\overrightarrow{a}$ and $-\overrightarrow{b}$ is:
 - a) $\frac{\pi}{6}$
 - b) $\frac{\pi}{3}$
 - c) $\frac{5\pi}{6}$

Figure 1: Enter Caption

- d) $\frac{11\pi}{6}$
- **2.** The vectors $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{b} = \hat{i} 3\hat{j} 5\hat{k}$, and $\vec{c} = -3\hat{i} + 4\hat{j} + 4\hat{k}$ represent the sides of:
 - a) an equilateral triangle
 - b) an obtuse-angled triangle
 - c) an isosceles triangle
 - d) a right-angled triangle
- **3.** Let \overrightarrow{a} be any vector such that $|\overrightarrow{a}| = a$. The value of

$$\left| \overrightarrow{a} \times \hat{i} \right|^2 + \left| \overrightarrow{a} \times \hat{j} \right|^2 + \left| \overrightarrow{a} \times \hat{k} \right|^2$$

is:

- a) a^2
- b) $2a^2$
- c) $3a^2$
- d) 0
- 4. The vector equation of a line passing through the point (1, -1, 0) and parallel to the Y-axis is:

a)
$$\vec{r} = \vec{i} - \vec{j} + \lambda(\hat{i} - \hat{j})$$

b)
$$\vec{r} = \vec{i} - \vec{j} + \lambda \hat{j}$$

- c) $\vec{r} = \vec{i} \vec{j} + \lambda \hat{k}$
- d) $\lambda \hat{j}$
- 5. An instructor at the astronomical center shows three among the brightest stars in a particular constellation. Assume that the telescope is located at O(0,0,0) and the three stars have their locations at the points D, A, and V having position vectors $2\hat{i} + 3\hat{j} + 4\hat{k}$, $7\hat{i} + 5\hat{j} + 8\hat{k}$, and $-3\hat{i} + 7\hat{j} + 11\hat{k}$, respectively.

Figure 2: (a) Example of star positions.

FUNCTIONS

- 1. The function $f(x) = kx \sin x$ is strictly increasing for
 - A) k > 1
 - B) k < 1
 - C) k > -1
 - D) k < -1

2. Solve

a) Let A = R- {5} and B = R- {1} . Consider the function f : $A\to B$, defined by $f(x)=\frac{x-3}{x-5}$. Show that f is one-one and onto.

OR

b) Check whether the relation S in the set of real numbers R defined by S=(a,b): where a-b+sqrt2 is an irrational number is reflexive, symmetric or transitive.

3. A store has been selling calculators at $\square 350$ each. A market survey indicates that a reduction in price p of the calculator increases the number of units x sold. The relation between the price and quantity sold is given by the demand function:

$$p = 450 - \frac{1}{2}x$$

Based on the above information, answer the following questions:

Figure 3: (a) Example of star positions.

- (a) Determine the number of units x that should be sold to maximize the revenue $R(x) = x \cdot p(x)$. Also, verify the result.
- (b) What rebate in the price of the calculator should the store give to maximize the revenue?

LINEAR PROGRAMMING PROBLEM

- 1. The maximum value of Z=4x+y for a linear programming problem (L.P.P) whose feasible region is given below is:
 - a) 50
 - b) 110
 - c) 120
 - d) 170

Figure 4: Feasible Region

Figure 5: .2

2. Assertion (A): The corner points of the bounded feasible region of an LPP are shown below. The maximum value of Z=x+2y occurs at infinite points.

Reason (R): The optimal solution of an LPP having a feasible region must occur at corner points.

3. Solve the following linear programming problem graphically:

$$\begin{array}{ll} \text{Maximize} & Z=2x+3y\\ \text{Subject to:} & x+y\leq 6\\ & x\geq 2\\ & y\leq 3\\ & x,y\geq 0 \end{array}$$