7. Обработка и анализ результатов моделирования систем на ЭВМ

Успех имитационного эксперимента с моделью системы существенным образом зависит от правильного решения вопросов обработки и последующего анализа и интерпретации результатов моделирования.

При выборе методов обработки следует учитывать особенности машинного эксперимента с моделью системы.

Особенности машинного эксперимента с моделью системы

1. Возможность получения на ЭВМ больших выборок позволяет количественно оценить характеристики процесса функционирования системы,

HO

создает проблему хранения промежуточных результатов.

Способ решения проблемы: использование рекуррентных алгоритмов обработки.

При этом большой объем выборки дает возможность использовать асимптотические формулы.

2. Сложность исследуемой системы часто приводит к невозможности априорного суждения о характеристиках процесса функционирования системы (например, о виде законов распределения выходных переменных).

Поэтому при моделировании систем широко используются оценки моментов распределения и непараметрические оценки.

3. Блочность конструкции машинной модели и раздельное исследование блоков связаны с программной имитацией входных переменных для одной частичной модели по оценкам выходных переменных, полученных на другой частичной модели.

Следует представить эти переменные в форме, удобной для построения алгоритма их имитации.

2

Статистические методы обработки результатов моделирования

Если при моделировании системы учитываются случайные факторы, то в качестве оценок искомых величин используются

- средние значения,
- дисперсии,
- др. вероятностные оценки

СВ, полученных по результатам многократного моделирования.

Оценки формируются таким образом, что в памяти ЭВМ для хранения самой оценки используется только одна ячейка (иногда две-три ячейки).

м

Примеры.

1. Пусть искомая величина — вероятность некоторого события.

Оценка искомой вероятности — относительная частота наступления соответствующего события **А** при некотором количестве испытаний.

Выделим ячейку памяти, в которую будем записывать количество наступлений события *A*.

Если в результате N реализаций процесса получено m случаев наступления события A, то оценка вероятности p(A) события A — величина

$$p^*(A) = \frac{m}{N}.$$

2. Пусть требуется получить оценки вероятностей возможных значений СВ (оценку закона распределения).

Разобьем область возможных значений СВ на *п* интервалов.

Выделим \mathbf{n} ячеек памяти, в которых будем записывать количества $\mathbf{m}_{\mathbf{k}}$, $\mathbf{k} = 1, 2, ..., \mathbf{n}$, попаданий СВ в \mathbf{k} -й интервал.

По результатам *N* реализаций оценкой вероятности попадания СВ в *k*-й интервал является величина

$$p_k^* = \frac{m_k}{N}.$$

3. Пусть искомая величина — среднее значение СВ ξ .

Выделим ячейку памяти, в которой будем накапливать сумму $\sum x_k$

значений СВ, которые она примет в различных реализациях процесса.

По результатам **N** реализаций оценкой среднего значения CB является величина

$$\bar{x} = \frac{1}{N} \sum_{k=1}^{N} x_k .$$

В курсе матем. статистики показано, что эта оценка является несмещенной и состоятельной

4. Пусть искомая величина — дисперсия СВ *§*.

Несмещенной и состоятельной оценкой дисперсии может служить величина

$$s^2 = \frac{1}{N-1} \sum_{k=1}^{N} (x_k - \overline{x})^2$$
.

Использование этой формулы неудобно, т. к. \bar{x} изменяется в процессе накопления значений x_k

требует хранения всех значений x_k .

Формула для вычисления **s**² может быть легко преобразована к виду

$$s^{2} = \frac{1}{N-1} \sum_{k=1}^{N} x_{k}^{2} - \frac{1}{N(N-1)} \left(\sum_{k=1}^{N} x_{k}\right)^{2}$$

для определения **s**² достаточно накапливать значения

$$\sum x_k$$
 N $\sum x_k^2$

(две ячейки памяти).

м

5. Пусть искомая величина — корреляционный момент $K_{\xi n}$ СВ ξ и η .

Оценка корреляционного момента – величина

$$\widetilde{K} = \frac{1}{N-1} \sum_{k=1}^{N} (x_k - \overline{x})(y_k - \overline{y}).$$

Ее можно преобразовать к виду

$$\tilde{K} = \frac{1}{N-1} \sum_{k=1}^{N} x_k y_k - \frac{1}{N(N-1)} \sum_{k=1}^{N} x_k \sum_{k=1}^{N} y_k.$$

Достаточно накапливать значения $\sum x_k$, $\sum y_k$ и $\sum x_k y_k$.

Задачи обработки результатов моделирования

Основные задачи при обработке результатов машинного эксперимента:

- □ определение эмпирического закона распределения СВ,
- □ проверка однородности распределений,
- □ сравнение средних значений и дисперсий величин, полученных в результате моделирования, и др.

С точки зрения математической статистики это типовые задачи проверки статистических гипотез

 Задача определения эмпирического закона распределения СВ – наиболее общая из перечисленных.

Для решения требует большого числа реализаций *N*.

По результатам машинного эксперимента находят значения эмпирической функции распределения $F^*(y)$ (или плотности $f^*(y)$) и выдвигают гипотезу H_0 : полученное эмпирическое распределение согласуется с каким-либо теоретическим распределением.

1

Проверка нулевой гипотезы — с помощью статистических критериев согласия

- Колмогорова,
- Пирсона,
- Смирнова.

При этом необходимая статистическая обработка результатов проводится, по возможности, в процессе моделирования системы на ЭВМ.

М

Задача проверки однородности распределений.

При оценке адекватности машинной модели реальной системе S возникает необходимость проверки гипотезы, состоящей в том, что две выборки принадлежат одной и той же генеральной совокупности (однородность выборок).

Если гипотеза об однородности справедлива, то рассматриваемые СВ имеют одинаковые (но неизвестные) функции распределения.

Нулевая гипотеза H_0 : $F_1(x) = F_2(x)$.

В качестве конкурирующей может рассматриваться одна из следующих гипотез:

$$F_1(x) \neq F_2(x)$$
,

$$F_1(x) < F_2(x),$$

$$F_1(x) > F_2(x)$$
.

Проверка нулевой гипотезы – например, с помощью критерия Вилкоксона (в случае непрерывных СВ).

 Задача сравнения средних значений и дисперсий величин, полученных в результате моделирования.

Сводится к проверке нулевой гипотезы о равенстве средних или о равенстве дисперсий двух генеральных совокупностей.

В случае нормального распределения – проверка нулевой гипотезы с помощью

- критерия Фишера (равенство двух дисперсий),
- критерия Стьюдента (равенство двух средних).

Анализ и интерпретация результатов машинного моделирования

Статистическая обработка результатов моделирования позволяет провести анализ связей между характеристиками исследуемой системы.

Для решения этой задачи – методы

- корреляционного,
- регрессионного,
- дисперсионного

анализа.

Выбор метода зависит от целей исследования и вида получаемых в результате моделирования характеристик

Корреляционный анализ результатов моделирования

Позволяет установить, насколько тесна связь между двумя (или более) СВ, наблюдаемыми и фиксируемыми при моделировании системы *S*.

Если изменение одной СВ приводит к изменению распределения другой СВ, то между этими величинами существует *статистическая зависимость*.

В частности, если при изменении одной СВ изменяется среднее значение другой СВ, то между этими СВ существует корреляционная зависимость.

Степень тесноты <u>линейной</u> зависимости между СВ можно выразить с помощью коэффициента корреляции

$$r_{\xi\eta} \,=\, rac{Migl[(\xi-M(\xi))(\eta-M(\eta))igr]}{\sigma_\xi\,\sigma_\eta}\,.$$
 Для любых СВ $|r_{\xi\eta}|\leq 1$

При $r_{\xi\eta} = 0$ СВ ξ и η некоррелированы, при $r_{\xi\eta} \neq 0$ СВ ξ и η коррелированы.

В случае нормально распределенных СВ некоррелированность равносильна независимости СВ.

Различные случаи корреляции нормально распределенных СВ.

По результатам машинного эксперимента можно получить оценку коэффициента корреляции (выборочный коэффициент корреляции)

$$\widetilde{r}_{\xi\eta} = \frac{\sum_{k=1}^{N} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{N} (x_k - \bar{x})^2 \sum_{k=1}^{N} (y_k - \bar{y})^2}} = \frac{\sum_{k=1}^{N} x_k y_k - N \bar{x} \cdot \bar{y}}{\sqrt{\left(\sum_{k=1}^{N} x_k^2 - N(\bar{x})^2\right) \left(\sum_{k=1}^{N} y_k^2 - N(\bar{y})^2\right)}}.$$

Если выборочный коэффициент корреляции отличен от нуля, то еще нельзя заключить, что $r_{\xi\eta} \neq 0$.

Требуется проверить статистическую гипотезу о значимости выборочного коэффициента корреляции.

Нулевая гипотеза $\mathbf{H_0}$: $\mathbf{r}_{\xi\eta}=0$, конкурирующая гипотеза $\mathbf{H_1}$: $\mathbf{r}_{\xi\eta}\neq 0$.

Если нулевая гипотеза отвергается, то это значит, что выборочный коэффициент корреляции значимо отличается от нуля, а исследуемые СВ коррелированы.

Если нулевая гипотеза принимается, то выборочный коэффициент корреляции незначим, а исследуемые CB некоррелированы.

Важно:

возможна ситуация, когда СВ ξ и η статистически зависимы, хотя для системы S отсутствует их причинно-следственная взаимообусловленность.

При статистическом моделировании это может иметь место, например, из-за коррелированности последовательностей псевдослучайных чисел, используемых для имитации рассматриваемых событий.

Регрессионный анализ результатов моделирования

Позволяет построить математическую модель, наилучшим образом соответствующую набору данных, полученных в ходе машинного эксперимента.

Под наилучшим соответствием понимается минимизированная функция ошибки, характеризующая различие между прогнозируемой моделью и данными эксперимента.

Такой функцией в регрессионном анализе является сумма квадратов отклонений экспериментальных значений от прогнозируемых.

Метод наименьших

квадратов

×

Пусть исследуется зависимость некоторой величины **у** от величины **х**.

Зависимость y от x предполагается описывать с помощью модели

$$y = \varphi(x)$$
.

Вид функциональной зависимости (линейная, квадратичная, экспоненциальная и т. д.) может быть выбран исходя из

- априорных сведений об исследуемой системе;
- характера расположения экспериментальных точек на плоскости.

По результатам машинного эксперимента требуется установить *параметры* этой зависимости.

Пусть в результате машинного эксперимента получены точки (x_i, y_i) , i = 1, 2, ..., N.

Обозначим числовые параметры функции ϕ через a, b, c, ...

Метод наименьших квадратов:

параметры **a**, **b**, **c**, ... следует выбрать так, чтобы

$$\sum_{i=1}^{N} (y_i - \varphi(x_i, a, b, c, ...))^2 \to \min.$$

ε_i – ошибка *i*-й экспериментальной точки

Для отыскания искомых значений **a**, **b**, **c**, ... – приравнять к нулю частные производные минимизируемой функции по аргументам **a**, **b**, **c**, ... :

$$\begin{cases} \sum_{i=1}^{N} [y_i - \varphi(x_i, a, b, c, \dots)] \cdot \left(\frac{\partial \varphi}{\partial a}\right) \Big|_{(x_i, y_i)} = 0, \\ \sum_{i=1}^{N} [y_i - \varphi(x_i, a, b, c, \dots)] \cdot \left(\frac{\partial \varphi}{\partial b}\right) \Big|_{(x_i, y_i)} = 0, \\ \sum_{i=1}^{N} [y_i - \varphi(x_i, a, b, c, \dots)] \cdot \left(\frac{\partial \varphi}{\partial c}\right) \Big|_{(x_i, y_i)} = 0, \end{cases}$$

$$(*)$$

■ Примеры.

1. Построение линейной регрессионной модели.

Прогнозируемая модель

$$y = ax + b$$
 $(\varphi(x, a, b) = ax + b).$

Тогда $\boldsymbol{\varepsilon}_i = \boldsymbol{y}_i - (\boldsymbol{a}\boldsymbol{x}_i + \boldsymbol{b})$ и система (*) имеет вид:

$$\begin{cases} \sum_{i=1}^{N} [y_i - (ax_i + b)] \cdot x_i = 0, \\ \sum_{i=1}^{N} [y_i - (ax_i + b)] \cdot 1 = 0, \\ i = 1 \end{cases}$$

ИЛИ

$$\begin{cases} a \sum_{i=1}^{N} x_i^2 + b \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} x_i y_i, \\ a \sum_{i=1}^{N} x_i + b \cdot N = \sum_{i=1}^{N} y_i. \end{cases}$$

Искомые значения:

$$a = \frac{N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} y_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

Требуют минимального объема памяти ЭВМ для обработки результатов моделирования

$$b = \frac{\sum_{i=1}^{N} x_i^2 \cdot \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \cdot \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

2. Построение квадратичной регрессионной модели.

Прогнозируемая модель

$$y = ax^2 + bx + c$$
 $(\varphi(x, a, b, c) = ax^2 + bx + c).$

Тогда $\boldsymbol{\varepsilon}_i = \boldsymbol{y}_i - (\boldsymbol{a}\boldsymbol{x}_i^2 + \boldsymbol{b}\boldsymbol{x}_i + \boldsymbol{c})$ и система (*) имеет вид:

$$\begin{cases} \sum_{i=1}^{N} \left[y_i - \left(ax_i^2 + bx_i + c \right) \right] \cdot x_i^2 = 0, \\ \sum_{i=1}^{N} \left[y_i - \left(ax_i^2 + bx_i + c \right) \right] \cdot x_i = 0, \\ \sum_{i=1}^{N} \left[y_i - \left(ax_i^2 + bx_i + c \right) \right] \cdot 1 = 0, \end{cases}$$

ИЛИ

$$\begin{cases} a \sum_{i=1}^{N} x_i^4 + b \sum_{i=1}^{N} x_i^3 + c \sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i^2 y_i, \\ a \sum_{i=1}^{N} x_i^3 + b \sum_{i=1}^{N} x_i^2 + c \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} x_i y_i, \\ a \sum_{i=1}^{N} x_i^2 + b \sum_{i=1}^{N} x_i + c \cdot N = \sum_{i=1}^{N} y_i. \end{cases}$$

Искомые значения – решение полученной системы.

В обоих случаях коэффициенты при неизвестных в полученных системах уравнений — статистические моменты системы СВ \boldsymbol{X} и \boldsymbol{Y} , умноженные на \boldsymbol{N} .

r,

Дисперсионный анализ результатов моделирования

При обработке и анализе результатов моделирования часто возникает задача сравнения средних выборок: требуется установить, значимо или незначимо различаются выборочные средние.

Попарное сравнение средних с помощью критерия Стьюдента при большом числе выборок неэффективно

используется метод, основанный на сравнении дисперсий – *дисперсионный анализ*.

м

Дисперсионный анализ применяется в следующих случаях.

- □ Требуется установить, оказывает ли существенное влияние некоторый *качественный* фактор *F*, который имеет *p* уровней *F*₁, *F*₂, ..., *F*_p на изучаемую величину *Y*.

 Однофакторный анализ
- Требуется проверить однородность нескольких совокупностей.

Дисперсии этих совокупностей одинаковы по предположению; если анализ покажет, что и средние одинаковы, то в этом смысле совокупности однородны. Тогда их можно объединить в одну и получить более надежные выводы.

В более сложных случаях — исследование воздействий нескольких факторов на нескольких постоянных или случайных уровнях и выяснение влияния отдельных уровней и их комбинаций.

Многофакторный анализ

Основная идея дисперсионного анализа — сравнение «факторной дисперсии», порождаемой воздействием фактора, и «остаточной дисперсии», обусловленной случайными причинами.

Пусть генеральные совокупности $Y_1, Y_2, ... Y_N$ имеют нормальное распределение и одинаковую дисперсию.

Имеются результаты машинного моделирования:

Номер испытания	Уровни фактора			
	F ₁	F ₂	•••	F _p
1	У ₁₁	y ₁₂	•••	У _{1р}
2	y ₂₁	y ₂₂	•••	y _{2p}
•••	•••	•••	•••	•••
N	У _М 1	У _{N2}		У _{Np}
Групповая средняя	\bar{y}_{cp1}	\overline{y}_{cp2}	***	\overline{y}_{ipp}

По определению,

Общая сумма квадратов отклонений наблюдаемых значений от общей средней

Факторная сумма квадратов отклонений групповых средних от общей средней

 $S_{o \delta u i} = \sum_{j=1}^{p} \sum_{i=1}^{N} (y_{ij} - \overline{y})^2,$

$$S_{\phi a\kappa m} = N \sum_{j=1}^{p} (\bar{y}_{zpj} - \bar{y})^2,$$

$$S_{ocm} = S_{oom} - S_{\phi a\kappa m}$$
.

Остаточная сумма квадратов отклонений наблюдаемых значений от своей групповой средней

Формулы, преобразованные для эффективных расчетов:

$$S_{oбщ} = \sum_{j=1}^{p} \sum_{i=1}^{N} y_{ij}^2 - \frac{1}{pN} \left(\sum_{j=1}^{p} \sum_{i=1}^{N} y_{ij} \right)^2$$
, Отражает влияние и фактора, и случайных причин

Отражает влияние и

$$S_{\phi a \kappa m} = \frac{1}{N} \sum_{j=1}^{p} \left(\sum_{i=1}^{N} y_{ij} \right)^2 - \frac{1}{pN} \left(\sum_{j=1}^{p} \sum_{i=1}^{N} y_{ij} \right)^2,$$

$$S_{ocm} = S_{oom} - S_{\phi a\kappa m}.$$

Характеризует воздействие фактора

Отражает влияние случайных причин

Общая дисперсия:

$$s_{o \delta u i}^2 = \frac{S_{o \delta u i}}{p N - 1} ,$$

факторная дисперсия:

$$s_{\phi a \kappa m}^2 = \frac{S_{\phi a \kappa m}}{p-1} ,$$

остаточная дисперсия:

$$s_{ocm}^2 = \frac{S_{ocm}}{p(N-1)}.$$

10

Сравнение нескольких средних методом дисперсионного анализа.

Для проверки нулевой гипотезы о равенстве групповых средних достаточно проверить гипотезу о равенстве факторной и остаточной дисперсий с помощью критерия Фишера.

В качестве критерия рассматривается СВ

$$F = \frac{s_{\phi a \kappa m}^2}{s_{ocm}^2}$$

Обработка результатов машинного эксперимента при синтезе систем

Синтез системы S на базе машинной модели — задача поиска оптимального варианта системы при выбранном критерии оценки эффективности и заданных ограничениях.

Решение: анализ характеристик процесса функционирования различных вариантов системы, их сравнительная оценка и выбор наилучшего варианта.

Элементарная операция – сравнение статистически усредненных критериев оценки эффективности вариантов систем.

Особенности машинного синтеза

Конкурирующие варианты системы S отличаются друг от друга

- структурой,
- алгоритмами поведения,
- параметрами

число таких вариантов велико.

Важно минимизировать затраты ресурсов на получение характеристик каждого варианта системы.

M

При синтезе системы обработку и анализ результатов моделирования каждого варианта системы следует рассматривать не автономно, а во взаимосвязи.

Методами матем. статистики можно показать: при положительно коррелированных критериях q_1 и q_2 выигрыш в точности оценки средних значений, вероятностей и дисперсий можно получить за счет искусственной организации статистической зависимости между выходными характеристиками сравниваемых вариантов S_1 и S_2 системы.

×

Пусть случайные векторы

$$\vec{v}^{(1)} = \begin{pmatrix} v_1, v_2, \dots, v_k, v_{k+1}^{(1)}, \dots, v_n^{(1)} \end{pmatrix}$$
 и $\vec{v}^{(2)} = \begin{pmatrix} v_1, v_2, \dots, v_k, v_{k+1}^{(2)}, \dots, v_m^{(2)} \end{pmatrix}$ Общие составляющие

описывают воздействие внешней среды на варианты S_1 и S_2 синтезируемой системы,

составляющие

$$(v_{k+1}^{(1)}, \ldots, v_n^{(1)})$$
 и $(v_{k+1}^{(2)}, \ldots, v_m^{(2)})$

статистически независимы.

Обозначим

$$ec{v} = (v_1, v_2, \dots, v_k),$$
 Условные средние q_1 и q_2 $\mu_1(ec{v}) = M(q_1|ec{v}), \quad \mu_2(ec{v}) = M(q_2|ec{v}).$

Достаточное условие неотрицательной корреляции \mathbf{q}_1 и \mathbf{q}_2 — одинаковая упорядоченность условных средних $\mu_1(\vec{v})$ и $\mu_2(\vec{v})$ относительно векторного аргумента $\vec{v} = (v_1, v_2, \dots, v_k)$,

т. е. выполнение неравенства

$$[\mu_1(\vec{v}_1) - \mu_1(\vec{v}_2)] \cdot [\mu_2(\vec{v}_1) - \mu_2(\vec{v}_2)] \ge 0$$

для любых значений \vec{v}_1 и \vec{v}_2 векторного аргумента \vec{v} .

■ Пример.

Для скалярного аргумента **v** одинаково упорядоченными являются

- монотонно возрастающие функции $\mu_1(ec{v})$ и $\mu_2(ec{v}),$
- монотонно убывающие функции $\mu_1(\vec{v})$ и $\mu_2(\vec{v})$,
- функции $\mu_1(\vec{v}) = \mu_2(\vec{v})$.

м

Пример.

Пусть методом статистического моделирования на ЭВМ необходимо сравнить результаты моделирования двух вариантов S_1 и S_2 системы, составленных из одинаковых блоков $B_1 - B_4$:

Сравнение – по критерию надежности с учетом случайных изменений внешней температуры.

м

Вероятность безотказной работы блока \mathbf{B}_i в течение заданного времени T при заданной температуре \mathbf{v} определяется как

$$P(B_i|v) = e^{-\frac{\lambda_i}{vT}}, \quad i = 1, 2, 3, 4,$$

где $\lambda_i(v)$ — интенсивности потоков отказов, которые являются возрастающими функциями температуры.

'n

Обозначим:

события A_1 и A_2 — безотказная работа исследуемых вариантов системы в течение заданного времени T.

Вероятности $P(A_1)$ и $P(A_2)$ — значения критерия эффективности вариантов системы.

По условию, функции $P(B_i|v)$ – одинаково упорядоченные убывающие функции.

Т. к.

$$P(A_{1}|v) = [1 - (1 - P(B_{1}|v)) \cdot (1 - P(B_{2}|v))] \times$$

$$\times [1 - (1 - P(B_{3}|v)) \cdot (1 - P(B_{4}|v))],$$

$$P(A_{2}|v) = 1 - (1 - P(B_{1}|v) \cdot P(B_{3}|v)) \cdot (1 - P(B_{2}|v) \cdot P(B_{4}|v)),$$

M

то $P(A_1|v)$ и $P(A_2|v)$ — тоже одинаково упорядоченные функции, убывающие с ростом температуры v.

Использование в машинном эксперименте с вариантами S_1 и S_2 системы одних и тех же реализаций случайной температуры \mathbf{v} позволяет получить в результате моделирования большую точность сравнения вероятностей $\mathbf{P}(\mathbf{A}_1)$ и $\mathbf{P}(\mathbf{A}_2)$, чем при раздельном моделировании с использованием независимых реализаций \mathbf{v} .

Замечание.

Условия одинаковой упорядоченности являются достаточными, но не необходимыми условиями неотрицательности корреляции.

Анализ чувствительности модели

Под анализом чувствительности машинной модели понимают проверку устойчивости результатов моделирования (характеристик функционирования системы, полученных при проведении имитационного эксперимента) по отношению к возможным отклонениям параметров машинной модели

$$\Delta \vec{h} = (\Delta h_1, \Delta h_2, \ldots, \Delta h_n)$$

от истинных их значений

$$\vec{h} = (h_1, h_2, \ldots, h_n).$$

M

Анализ чувствительности позволяет сравнивать методические погрешности, полученные при построении машинной модели, с неточностями задания исходных данных.

Особенно важно при практической реализации модели для целей синтеза системы.

×

В практических расчетах для оценки изменения характеристик $\vec{q}(\vec{h})$ системы при малых отклонениях $\Delta \vec{h}$ используется величина

$$\Delta \vec{q} = \vec{q}' (\vec{h}) \Delta \vec{h} + \vec{r}_0 ,$$

где

$$\vec{q}'(\vec{h}) = \left(\frac{\partial q(\vec{h})}{\partial h_1}, \frac{\partial q(\vec{h})}{\partial h_2}, \dots, \frac{\partial q(\vec{h})}{\partial h_n}\right),$$

 r_0 — остаточный член второго порядка.

Частные производные вычисляются в точках, соответствующих номинальным значениям параметров.

M

Если номинальные значения совпадают с оптимальными параметрами системы по показателю $\vec{q}(\vec{h})$, то

$$\vec{q}'(\vec{h}_{HOM})=0$$
,

и необходимо проводить оценку с использованием второй производной.

Большие отклонения характеристик $\vec{q}(\vec{h})$ при малых вариациях $\Delta \vec{h}$ свидетельствуют о неустойчивости модели.

v

Для получения оценок $\vec{q}(\vec{h})$ показателя $\vec{q}(\vec{h})$ удобно рассматривать зависимые реализации внешних воздействий при различных \vec{h} и проводить соответствующую обработку результатов машинного эксперимента.

Итог:

результаты машинного эксперимента с моделью системы

- обрабатываются с учетом целей моделирования,
- находятся в тесной связи с вопросами, решаемыми при планировании экспериментов.