互联网数据库应用实践和趋势

杨尚刚 zolker

个人简介

- > 2011年加入新浪
- ▶ 负责新浪微博核心数据库架构设计
- ▶ 负责新浪数据库平台底层软硬件平台优化
- > 2015年加入美图网
- > 理念:设计简洁的架构

数据库排名

				283 systems in r	anking No	vembe	r 2015	
Rank					Score			
Nov 2015			DBMS	Database Model	Nov 2015	Oct 2015	Nov 2014	
1.	1.	1.	Oracle	Relational DBMS	1480.95	+13.99	+28.82	
2.	2.	2.	MySQL	Relational DBMS	1286.84	+7.88	+7.77	
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1122.33	-0.90	-97.87	
4.	4.	↑ 5.	MongoDB 🔠	Document store	304.61	+11.34	+59.87	
5.	5.	4 4.	PostgreSQL	Relational DBMS	285.69	+3.56	+28.33	
6.	6.	6.	DB2	Relational DBMS	202.52	-4.28	-3.71	
7.	7.	7.	Microsoft Access	Relational DBMS	140.96	-0.87	+2.12	
8.	8.	1 9.	Cassandra 🚨	Wide column store	132.92	+3.91	+40.93	
9.	9.	4 8.	SQLite	Relational DBMS	103.45	+0.78	+8.17	
10.	10.	1 1.	Redis 🚨	Key-value store	102.41	+3.61	+20.06	

如何选择数据库

- ▶应用场景
- >数据量
- 可用性要求
- >数据安全性要求
- 运维复杂度

数据库对比

数据库	优点	缺点	场景
MySQL	结构简单,部署方便,社区成熟,稳定性非常好, 良好的事务和SQL支持	扩展性差,软件本身性能瓶颈大, 没有成熟的集群方案,schema限 制	百亿以内的数据存储,对数据安全 性和事务支持有要求
MongoDB	Schema-free,快速开发,本身支持集群和 sharding,支持空间索引	锁的粒度大,并发性能差,性能受 限于内存,解决方案上有待考验	LBS,缓存,小文件存储
HBase	类Bigtable系统,基于Hadoop生态系统,良好的扩展性,高写入能力,数据自动分片	架构复杂,运维成本高	搜索,数据写入非常高,监控数据
Redis	高性能,部署简单,丰富的数据类型支持,支持 数据特久化,集群方案支持	性能受限于内存,单进程问题	适合小数据高读写场景

数据库架构

- >shared noting
- > shared everything
- > module

MySQL当前存在问题

- ▶优化器对复杂SQL支持不好
- ≥对SQL标准支持不好
- >大规模集群方案不成熟,主要指中间件
- >逻辑复制
- ➤Online DDL
- > HA方案不完善
- 备份和恢复方案还是比较复杂,需要依赖外部组件展现给用户信息过少
- 众多分支

PostgreSQL VS MySQL?

MySQL优势

- ▶扩展性
- > 可维护性好
- > 良好的生态环境
- > 性能并不差

DBA Life

- ▶满足各种各样的开发需求
- >各式各样的Schema审核
- ➤SQL优化
- >各种救火和处理报警:主库故障,缓存"雪崩"
- >各种业务和项目上线
- ▶业务沟通

解放DBA的双手

- 〉制定运维规范
- >流程自动化
- ▶减少沟通成本

规范化

- ▶部署规范
- >软件规范
- >业务开发规范
- ▶日常运维规范

软件规范

- >操作系统
- ➤MySQL版本
- ▶相关工具版本

我的建议

MySQL社区版>Percona Server

>MariaDB>MySQL企业版

业务开发规范

>数据库开发规范:

开发规范是针对内部开发的一系列建议或规则

由DBA制定,如果有DBA的话

开发规范也包含几部分:基本命名和约束规范,字段设计规范,索引规范,使用规范

▶意义:

保证线上数据库schema规范

减少出问题概率

方便自动化管理

需要长期坚持,是一个双赢的事情

开发规范示例

- ▶表字符集选择UTF8 ,如果需要存储emoj表情,需要使用 UTF8mb4(MySQL 5.5.3以后支持)
- ▶存储引擎使用InnoDB
- >变长字符串尽量使用varchar 和varbinary
- >不在数据库中存储图片、文件等
- >每张表数据量控制在1亿以下

运维自动化

- ➤DDL自动化
- ▶备份系统
- 〉慢日志系统

DDL自动化

- >建表自动化
- ▶审表自动化
- > 改表自动化

Online DDL

- ▶原生MySQL执行DDL是需要锁表的
- ▶对服务影响很大
- ▶MySQL在这方面支持的是比较差的,对DBA来说是很 痛苦的,
- ➤如何做到Online DDL呢,是不是就无解了呢

可选DDL方案

Online Schema Change原理

Online DDL 对比

	ONLINE DDL			PT-ONLINE- SCHEMA- CHANGE		
CHANGE OPERATION	ROW(S) AFFECTED	IS TABLE LOCKED?	TIME (SEC)	ROW(S) AFFECTED	IS TABLE LOCKED?	TIME (SEC)
Add Index	0	No	3.76	All rows	No	38.12
Drop Index	0	No	0.34	All rows	No	36.04
Add Column	0	No	27.61	All rows	No	37.21
Rename Column	0	No	0.06	All rows	No	34.16
Rename Column + change its data type	All rows	Yes	30.21	All rows	No	34.23
Drop Column	0	No	22.41	All rows	No	31.57
Change table ENGINE	All rows	Yes	25.30	All rows	No	35.54

OSC的一些坑

- >添加唯一键,导致数据丢失
- ▶延时备份
- ▶行格式下,只在从库使用OSC,丢数据

备份系统

- >数据库数据安全性是首先要保证的,也是最核心的
- > 备份的意义是什么呢
- >数据恢复!
- >数据恢复!
- >数据恢复!

DROP DATABASE

备份方式

- ▶全量备份 VS 增量备份
- ▶热备 VS 冷备
- ▶物理备份 VS 逻辑备份
- >延时备份
- ▶全量binlog备份
- >建议方式
- 热备+物理备份,核心业务:延时备份+逻辑备份

备份框架

备份优化

- ➤MyISAM表多flush tables with read lock时间过长问题
- ➤Binlog备份

未来备份优化

- ➤ 采用分布式文件系统原因解决存储分配的问题解决存储NFS备份效率低问题存储集中式管理数据可靠性更好
- ➤使用分布式文件系统优化点 Pbzip压缩降低网络带宽消耗 erasure code方案

慢日志系统

- ▶慢日志是MySQL内部提供的SQL执行的统计日志
- ▶用于线上数据库性能诊断
- ▶为SQL性能优化提供依据

依赖组件

- >pt-query-digest
- Logstash
- ➤ Anemometer

系统界面

	** E	Box Anemo	meter	Datasource	is .	<u>I</u>	Graph	Search 🗏 Table S	earch	checksum		Q Find Query	
	From 2015-08-2	0 18:09:49	iii	To 2015-0	08-21 18:09:49			Query fir	st seen since				
	Table Field	s		Filter B	y Host			Where					
	Custom F					(2)							
	date hour hour_ts			Filter B	y Port		1						
	minute			Group	Bv		_		Nt 52 U.W		1		
	minute snippet			checks				Query Sa	ample Contains				
	index_r	atio ime_avg		Order E	By			Reviewe	el Chabria				
	rows_s	ent_avg		Query,	time_sum DESC			Heviewe	o Status	-			
	global_query_review checksum		Having				Charles	Checksum					
	fingerpr sample	fingerprint sample						Checksu	CHECKSUM				
	first_sec	en		Limit									
	reviewe	d_by		5									
	reviewe				Se	earch							
	reviewe	d_status			3								
	+ Show I	Raw SQL	Permalink	• JSON									
0													
Showing 5 results checksum	snippet	index ratio	query_time	avo	rows_sent_avg	dh max	ts ent	Query_time_sum	Lock_time_su	m Rows	sent_sum	Rows examin	ned sum
2181DD697BD2268F	SELECT	18.12	1.05493124		4990			194890.107971191				16702121652	
FD25C60B1AD3B4DE	SELECT	13093.05	0.74996857	75483659	32		72907	54677.9590833187	1 4.7882580115	76545 230595	8	30192023432	

一些优化

- >Anemometer加入端口过滤条件支持
- >后续会加入对产品线和业务过滤
- ▶实时分析

性能优化

- ➤MySQL优化 ➤系统优化
- >硬件优化

MySQL优化

- ▶更大的redo日志
- >bufferpool dump
- ▶禁用Query Cache
- **≻InnoDB**
- >jemalloc
- group commit
- >transportable tablespace

sharding

- Sharding is very complex, so it's best not to shard until it's obvious that you will actually need to!
- > 垂直拆分和水平拆分
- > 拆分前提: 单表写入瓶颈或容量瓶颈

新浪微博单表60亿问题

- > 单一业务,实例级别拆分,单表依然有60亿+
- > 单表文件大小1.2TB+
- > 没有可靠中间件,拆分成本高
- > 增加业务复杂度
- > 运维成本高
- > 评估TB级单表的风险
- > 随着Online DDL等特性的成熟,这种大表以后也是一个趋势

MySQL 5.6 VS 5.7

VARIABLE	5.6.26	5.7.8		
binlog_error_action	IGNORE_ERROR	ABORT_SERVER		
binlog_format	STATEMENT	ROW		
binlog_gtid_simple_recovery	OFF	ON		
eq_range_index_dive_limit	10	200		
innodb_buffer_pool_dump_at_shutdown	OFF	ON		
innodb_buffer_pool_instances	8	1		
innodb_buffer_pool_load_at_startup	OFF	ON		
innodb_checksum_algorithm	innodb	crc32		
innodb_file_format	Antelope	Barracuda		
innodb_large_prefix	OFF	ON		
innodb_log_buffer_size	8388608	16777216		
innodb_purge_threads	1	4		
innodb_strict_mode	OFF	ON		
sync_binlog	0	1		

MySQL复制

- **>**GTID
- ▶ loss-less semi-replication
- group replication

		Where are transactions run?	
		Primary Copy	Update Everywhere
When does synchronizatio n happen?	Eager	(MySQL semi- synch Replication)	MySQL Cluster MySQL Group 3 rd party: Galera
	Lazy	MySQL Replication/Fabric 3 rd party: Tungsten	MySQL Cluster Replication

Loss-less

MySQL 5.5: semi-synchronous replication

- Master commit
- Slave receive
- Client ack

MySQL 5.7.2:

loss-less semi-sync replication

- Slave receive
- Master commit
- Client ack

系统优化

- ▶NUMA问题,建议关闭
- ▶调整swappiness
- ▶修改IO调度算法为noop/deadline
- ▶文件系统XFS/Ext4
- >系统limits限制
- >网卡多队列,当然一般可能遇不到这种场景

硬件优化

- ▶硬件发展很快,反而现在软件是瓶颈
- ▶使用SSD, SATA 或者PCIe
- ▶CPU多核
- >大内存,单机多实例
- >blk-mq
- >scsi-mq

block-mq

硬件发展

人还是比机器贵的

Cost of human: HIGH

Cost of computer: LOW

Good!!

未来发展

- > 软硬件结合
- >软件优化

定制

- >Amazon Aurora
- ➤ Compatible with the open source MySQL
- ➤ Most of the smarts are in the storage
- ➤ A data insert in MySQL requires six writes, Aurora requires only two
- ▶软硬件结合
- >最重要的地方就是可用性的提升, 性能是其次

Amazon Aurora

分布式存储

- 按照提供接口主要分成两类:基于文件接口和基于块设备
- > 考虑到数据库场景的需求,使用分布式块设备接口是一个比较合理的选择
- > 目前分布式块设备存储方案
 - Sheepdog
 - GlusterFS
 - Ceph

数据库的可伸缩性

高性能,相对而言,目前看性能在数据库上并不理想

提高整体资源利用率

简化存储管理

数据整合

- ▶多引擎
- ▶多种数据格式
- > 异构数据同步

RocksDB

- > LSM Tree
- > LevelDB
- > SSD
- > MyRocks: MySQL + RocksDB
- > MongoRocks : MongoDB+RocksDB

MyRocks

总结

- ▶优化是无止境的
- ▶服务可控
- ≻长远眼光
- ➤One Size Doesn`t Fit All

Q & A

联系方式

zolker (Lv.26)

598 关注 5507

3121 微博

zolker 🎎

北京 海淀

扫一扫上面的二维码图案,加我微信