Connexions module: m12022

FAST CONVOLUTION*

Douglas L. Jones

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

Abstract

Efficient computation of convolution using FFTs.

1 Fast Circular Convolution

Since,

$$\sum_{m=0}^{N-1}\left(x\left(m\right) \left(h\left(n-m\right) \right) modN\right) =y\left(n\right) \text{is equivalent to}Y\left(k\right) =X\left(k\right) H\left(k\right)$$

y(n) can be computed as y(n) = IDFT[DFT[x(n)]DFT[h(n)]]

\mathbf{Cost}

- Direct
 - · N^2 complex multiplies.
 - · N(N-1) complex adds.

Via FFTs

- \bullet · 3 FFTs + N multiples.
 - · $N + \frac{3N}{2} \log_2 N$ complex multiplies.
 - · $3(N\log_2 N)$ complex adds.

If H(k) can be precomputed, cost is only 2 FFts + N multiplies.

2 Fast Linear Convolution

 $\mathrm{DFT^1}$ produces cicular convolution. For linear convolution, we must zero-pad sequences so that circular wrap-around always wraps over zeros.

^{*}Version 1.5: Jun 21, 2004 12:00 pm GMT-5

[†]http://creativecommons.org/licenses/by/1.0

¹"Spectrum Analysis Using the Discrete Fourier Transform", (3) http://cnx.org/content/m12032/latest/#DFTequation

To achieve linear convolution using fast circular convolution, we must use zero-padded DFTs of length $N \ge L + M - 1$

Figure 2

Choose shortest convenient N (usually smallest power-of-two greater than or equal to L+M-1)

$$y(n) = IDFT_N [DFT_N [x(n)] DFT_N [h(n)]]$$

NOTE: There is some inefficiency when compared to circular convolution due to longer zero-padded DFTs². Still, $O\left(\frac{N}{\log_2 N}\right)$ savings over direct computation.

3 Running Convolution

Suppose $L = \infty$, as in a real time filter application, or $(L \gg M)$. There are efficient block methods for computing fast convolution.

3.1 Overlap-Save (OLS) Method

Note that if a length-M filter h(n) is circularly convulved with a length-N segment of a signal x(n),

Figure 3

the first M-1 samples are wrapped around and thus is **incorrect**. However, for $M-1 \le n \le N-1$, the convolution is linear convolution, so these samples are correct. Thus N-M+1 good outputs are produced for each length-N circular convolution.

The Overlap-Save Method: Break long signal into successive blocks of N samples, each block overlapping the previous block by M-1 samples. Perform circular convolution of each block with filter h(m). Discard first M-1 points in each output block, and concatenate the remaining points to create y(n).

²"Spectrum Analysis Using the Discrete Fourier Transform", (3) http://cnx.org/content/m12032/latest/#DFTequation

Connexions module: m12022

Figure 4

Computation cost for a length-N equals 2^n FFT per output sample is (assuming precomputed $H\left(k\right)$) 2 FFTs and N multiplies

$$\frac{2\left(\frac{N}{2}\mathrm{log}_2N\right)+N}{N-M+1} = \frac{N\left(\mathrm{log}_2N+1\right)}{N-M+1} \text{complex multiplies}$$

$$\frac{2\left(N{\log_2}N\right)}{N-M+1} = \frac{2N{\log_2}N}{N-M+1} \text{complex adds}$$

Compare to M mults, M-1 adds per output point for direct method. For a given M, optimal N can be determined by finding N minimizing operation counts. Usually, optimal N is $4M \le N_{\rm opt} \le 8M$.

3.2 Overlap-Add (OLA) Method

Zero-pad length-L blocks by M-1 samples.

Figure 5

Add successive blocks, overlapped by M-1 samples, so that the tails sum to produce the complete linear convolution.

Figure 6

Computational Cost: Two length N=L+M-1 FFTs and M mults and M-1 adds per L output points; essentially the sames as OLS method.