

CPE/EE 695: Applied Machine Learning

Lecture 5-2: Ensemble Learning

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

Classification formulation

- Given
 - an input space \mathbb{R}
 - a set of classes $\omega = \{\omega_1, \omega_2, \dots \omega_n\}$
- the Classification Problem is
 - to define a mapping f: $\Re \rightarrow \omega$ where each x in \Re is assigned to one class
- This mapping function is called a Decision Function

Single Classifier

- Most popular single classifiers:
 - Minimum Distance Classifier
 - Bayes Classifier
 - K-Nearest Neighbor
 - Decision Tree
 - Neural Network
 - Support Vector Machine

Drawback of Single Classifier

The "best" classifier not necessarily the ideal choice

- Problems:
 - Which one is the best?
 - Maybe more than one classifiers meet the criteria (e.g. same training accuracy), especially in the following situations:
 - » Without sufficient training data
 - » The learning algorithm leads to different local optima easily
 - Potentially valuable information may be lost by discarding the results of less-successful classifiers
 - E.g., the discarded classifiers may correctly classify some samples
 - The trained classifier may not be complex enough to handle the problem

Motivations for classifier ensemble

- Combining a number of trained classifiers lead to a better performance than any single one
 - Errors can be complemented by other correct classifications
 - Different classifiers have different knowledge regarding the problem
- To decompose a complex problem into subproblems for which the solutions obtained are simpler to understand, implement, manage and update

Classifier ensemble

- Classifier ensemble consists of
 - > a set of individual classifiers
 - a fusion/selection method: to combine/select individual classifier outputs to give a final decision
- Types of ensemble:
 - Classifier Selection
 - Classifier Fusion

Classifier Selection

- The input sample space is partitioned into smaller areas and each classifier learns the sample in each area
- For each sample, identify a single classifier which is most likely to produce the correct classification label
- Only the output of the selected classifier is taken as a final decision
- It is similar to the "Divide and Conquer" approach

Classifier Selection

Classifier Fusion

- Mixing many different classifiers instead of extracting a single best classifier
- Each individual classifier tries to solve the same classification problem using different methods
 - E.g. Different training sets, different classifiers or different parameters
- The final output of a classifier ensemble system is determined by fusing the outputs of the individual classifiers

Classifier Fusion

Classifier ensemble MUST be better than Single?

In all cases? NO!

 But in many cases, a ensemble learning can have a better performance than a single classifier

Affecting Factors

Three factors affecting the accuracy:

- Accuracy of individual classifiers
 How good are the individual classifiers?
- Fusion Methods How to combine classifiers?
- Diversity among classifiersWhat are the differences among different classifiers?

Accuracy of individual classifier

- The performance of an individual classifier is affected by
 - Training Dataset (sample and feature)
 - Learning Model (types of classifier)
 - Model's Parameters (e.g. the number of neurons in NN)

Fusion method

- A method to combine individual classifier outputs to reach the final decision for the classifier ensemble learning
- Since different fusion methods may have different final outputs for the same individual classifier outputs, MCS error is affected by its fusion method
- For Example

Sample x	Class1	Class2
Classifier 1	0.2	0.8
Classifier 2	0.7	0.3
Classifier 3	0.7	0.3

average	Class 1: 0.53 Class 2: 0.47
max	Class 1: 0.7 Class 2: 0.8

Fusion method

- Two popular fusion methods based on individual classifier outputs types:
 - Soft Output: soft type rules
 - Class Label: hard type rules

Soft Output

- For each sample, the classifier outputs a value representing the confidence of this sample belonging to each class
- The output of a classifier *i* is a c-dimensional vector
 [d_{i,1},d_{i,2},...,d_{i,c}]^T, where c is number of classes
- It is called decision profile

	ω_1	ω_2
Classifier 1	0.5	0.5
Classifier 2	0.2	0.8
Classifier 3	0.6	0.4

Class Label

A classifier outputs only one class label

Classifier	output
Classifier 1	$ \omega_1 $
Classifier 2	ω_2
Classifier 3	ω_1

Fusion method for Soft Output

- Popular methods:
 - Simple Summary Function (SSF)
 - Weighted Average (WA)

Simple Summary Function (SSF)

- Average (AVR), Maximum (MAX), Minimum (MIN), Product (PRO)
 - These fusion methods calculate the support $(\mu_j(x))$ for class j

AVR:
$$\mu_j(x) = \frac{1}{L} \sum_{i=1}^{L} d_{i,j}(x)$$

MIN:

$$\mu_j(x) = \min \{d_{i,j}(x)\}$$

$$i$$

MAX:

$$\mu_{j}(x) = \max_{i=1,...,L} \{d_{i,j}(x)\}$$

PRO:

$$\mu_{j}(x) = \prod_{i=1}^{L} d_{i,j}(x)$$

Simple Summary Function (SSF)

- An example:
 - Average
 - Class 1: 0.5
 - Class 2: 0.5
 - Minimum
 - Class 1: 0.2
 - Class 2: 0.3
 - Maximum
 - Class 1: 0.7
 - Class 2: 0.8
 - Product
 - Class 1: 0.084
 - Class 2: 0.096

Sample x	Class1	Class2
Classifier 1	0.2	0.8
Classifier 2	0.6	0.4
Classifier 3	0.7	0.3

Weighted Average (WA)

The Weighted Average (WAVR)
 The support for class j :

$$\mu_{j}(x) = \frac{1}{L} \sum_{i=1}^{L} w_{i} d_{i,j}(x)$$
where
$$\sum_{i=1}^{L} w_{i} = 1$$

Usually, the weight is calculated using the accuracy of the individual classifier

Weighted Average (WA)

- An example:
 - Case 1:
 - Assume that the weight of
 - Classifier 1: 0.7
 - Classifier 2: 0.2
 - Classifier 3: 0.1
 - Class 1: 0.33
 - Class 2: 0.67
 - Case 2:
 - Assume that the weight of
 - Classifier 1: 0.2
 - Classifier 2: 0.3
 - Classifier 3: 0.5
 - Class 1: 0.57
 - Class 2: 0.43

X	Class1	Class2
Classifier 1	0.2	0.8
Classifier 2	0.6	0.4
Classifier 3	0.7	0.3

Fusion method for Class Label

- Popular methods:
 - Majority Vote (MV)
 - Weighted Majority Vote (WMV)
 - Naïve Bayes (NB)

Majority Vote (MV)

- This method may be the oldest and the most well known strategy for decision making
- Assume that the label outputs of the classifiers are given as c-dimensional binary vectors [d_{i,1},d_{i,2},...,d_{i,c}]^T in {0,1}^c
- i = 1,...,L where d_{i,j} =1 if label x in class j, and 0 otherwise
- The majority vote results in an ensemble decision for class k if

$$\sum_{i=1}^{L} d_{i,k} = \max_{i=1}^{C} \sum_{i=1}^{L} d_{i,j}$$

$$j = 1$$

Majority Vote (MV)

• An example:

- Class 1: 2 votes

Class 2: 3 votes

Sample x	Result
Classifier 1	1
Classifier 2	2
Classifier 3	1
Classifier 4	2
Classifier 5	2

Weighted Majority Vote (WMV)

- Similar to majority vote method but the influence of each vote to the final decision is not the same
- The weighted majority vote results in an ensemble decision for class k if

$$\sum_{i=1}^{L} w_{i} d_{i,k} = \max \sum_{i=1}^{L} w_{i} d_{i,j}$$

$$j = 1$$

Weighted Majority Vote (WMV)

- An example:
 - Case 1:
 - Assume that the weight of
 - Classifier 1: 0.1
 - Classifier 2: 0.2
 - Classifier 3: 0.2
 - Classifier 4: 0.3
 - Classifier 5: 0.2
 - Class 1: 0.3
 - Class 2: 0.7
 - Case 2:
 - Assume that the weight of
 - Classifier 1: 0.4
 - Classifier 2: 0.2
 - Classifier 3: 0.2
 - Classifier 4: 0.1
 - Classifier 5: 0.1
 - Class 1: 0.6
 - Class 2: 0.4

Sample x	Result
Classifier 1	1
Classifier 2	2
Classifier 3	1
Classifier 4	2
Classifier 5	2

Naïve Bayes (NB)

 The term "naïve" is used since this method relies on the assumption that the classifiers are mutually independent but this situation does not occur normally

$$\mu_j(x) \propto \prod_{i=1}^L \hat{P}(\omega_j \mid d_{i,j}(x) = 1)$$

• $\hat{P}(\omega_j \mid d_{i,j}(x) = 1)^{i=1}$ is learned from training samples

Naïve Bayes (NB)

An example:

 The outputs of individual classifiers are 1 2 1.

$$\hat{P}(\omega_{1} \mid d_{1,1}(x) = 1) = \frac{40}{70}$$

$$\hat{P}(\omega_{1} \mid d_{2,2}(x) = 1) = \frac{30}{60}$$

$$\hat{P}(\omega_{1} \mid d_{2,2}(x) = 1) = \frac{50}{90}$$

$$\hat{P}(\omega_{1} \mid d_{3,1}(x) = 1) = \frac{50}{90}$$

$$\hat{P}(\omega_{2} \mid d_{3,1}(x) = 1) = \frac{40}{90}$$

Class 1: 0.16

- Class 2: 0.10

Classifier1 Decision

		Class1	Class2
ne	Class1	40	10
Ţ	Class2	30	20

Classifier2 Decision

		Class1	Class2
rue	Class1	20	30
T	Class2	20	30

Classifier3 Decision

		Class1	Class2
ne	Class1	50	0
Tr	Class2	40	10

Major methods

- Bootstrap aggregating (Bagging)
- Boosting (AdaBoost)
- Random subspace method
- Stacked generalization
- Mixture of experts

Bootstrap aggregating - Bagging

- Several classifiers are trained independently by using different bootstrap sample sets from the original dataset
- Combine outputs by voting (e.g., majority vote)
- Key Insight:

Decreases error by decreasing the variance in the results due to **unstable learners**, algorithms (like decision trees and neural networks) whose output can change dramatically when the training data is slightly changed.

Bagging

Input: sequence of m examples $\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle$ with labels $y_i \in Y = \{1, \ldots, k\}$ weak learning algorithm **WeakLearn** integer T specifying number of iterations

- Do t=1, 2, ...T
 - Obtain bootstrap sample S_t by randomly drawing <u>m</u>
 instances, with replacement, from the original training set;
 - Call the WeakLearn based on the S_t to build a hypothesis;
- Using majority voting to combine these T individual hypothesis

Adaptive boosting - AdaBoost

- Similar to bagging method, each individual classifier is also trained using a different training set
- But the training set is selected based on the error of the trained hypothesis: more weights given to the "difficult" examples!
- Finally, Weight Majority Voting (WMV) will be used as a fusion method
- Key Insights
- Instead of sampling (as in bagging) re-weigh examples!
- Examples are given weights. At each iteration, a new hypothesis is learned (weak learner) and the examples are reweighted to focus the system on examples that the most recently learned classifier got wrong.
- Final classification based on weighted vote of weak classifiers

Yoav Freund and Robert E. Schapire, "Experiments with a new boosting algorithm," In the ICML'96, pages 148--156, 1996.

AdaBoost.M1

Algorithm AdaBoost.M1

Input: sequence of m examples $\langle (x_1, y_1), \dots, (x_m, y_m) \rangle$ with labels $y_i \in Y = \{1, \dots, k\}$ weak learning algorithm **WeakLearn** integer T specifying number of iterations

Initialize $D_1(i) = 1/m$ for all i. **Do for** t = 1, 2, ..., T

- 1. Call **WeakLearn**, providing it with the distribution D_t .
- 2. Get back a hypothesis $h_t: X \to Y$.
- 3. Calculate the error of h_t : $\epsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$. If $\epsilon_t > 1/2$, then set T = t-1 and abort loop.
- 4. Set $\beta_t = \epsilon_t/(1-\epsilon_t)$.
- 5. Update distribution D_t : $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$ where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis: $h_{fin}(x) = \arg \max_{y \in Y} \sum_{t:h_t(x)=y} \log \frac{1}{\beta_t}$.

AdaBoost.M2

Algorithm AdaBoost.M2

Input: sequence of m examples $\langle (x_1, y_1), \dots, (x_m, y_m) \rangle$ with labels $y_i \in Y = \{1, \dots, k\}$ weak learning algorithm **WeakLearn** integer T specifying number of iterations

Let
$$B = \{(i, y) : i \in \{1, ..., m\}, y \neq y_i\}$$

Initialize $D_1(i, y) = 1/|B|$ for $(i, y) \in B$.
Do for $t = 1, 2, ..., T$

- 1. Call **WeakLearn**, providing it with mislabel distribution D_t .
- 2. Get back a hypothesis $h_t: X \times Y \to [0,1]$.
- 3. Calculate the pseudo-loss of h_t : $\epsilon_t = \frac{1}{2} \sum_{(i,y) \in B} D_t(i,y) (1 h_t(x_i,y_i) + h_t(x_i,y)).$
- 4. Set $\beta_t = \epsilon_t/(1-\epsilon_t)$.
- 5. Update D_t : $D_{t+1}(i,y) = \frac{D_t(i,y)}{Z_t} \cdot \beta_t^{(1/2)(1+h_t(x_i,y_i)-h_t(x_i,y))}$ where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Output the hypothesis:
$$h_{fin}(x) = \arg\max_{y \in Y} \sum_{t=1}^{T} \left(\log \frac{1}{\beta_t}\right) h_t(x, y).$$

Random Subspace method

- To choose a group of features for each classifier
- Each individual classifier is then trained on the randomly selected group of features
- Their results are combined by a fusion rule.

Sample: Random forests.

What is a Random Forest

A random forest is a collection of CART-like trees following specific rules for

- Tree growing
- Tree combination
- Self-testing
- Post-processing

Tree growing/Split

- Binary partitioning
- Each tree is grown at least partially at random
 - growing each tree on a different random subsample of the training data
 - splitting at any node from the eligible random subset

Prediction Mechanism

- Grow many trees.
- Each tree casts a vote at its terminal nodes. For a binary target the vote will be YES or NO
- Count up the YES votes. The percent YES votes received is the predicted probability

Acknowledgement

Part of the slide materials were based on Dr. Rong Duan's Fall 2016 course CPE/EE 695A Applied Machine Learning at Stevens Institute of Technology.

stevens.edu