Label Embedding Online Hashing for Cross-Modal Retrieval

Yongxin Wang, Xin Luo, Xin-Shun Xu; School of Software, Shandong University, China

CONTRIBUTIONS

- A novel supervised online cross-modal hashing framework is presented. It can not only fully exploit the semantic information by label embedding, but also consider the correlation between new and existing data.
- A discrete and efficient optimization algorithm is proposed for LEMON. The binary codes can be generated discretely without relaxation. And, it efficiently updates hash functions by keeping old hash codes unchangeable.
- Extensive experiential results demonstrate the superiority of LEMON.

PROPOSED METHOD

>Label Embedding

- binary codes should preserve the semantic similarity $\min_{\mathbf{B}^{(t)}} ||\mathbf{B}^{(t)\top}\mathbf{B}^{(t)} r\mathbf{S}^{(t)}||^2, \ s.t. \mathbf{B}^{(t)} \in \{-1,1\}^{r \times N_t},$
- labels could be reconstructed from binary codes

$$\min_{\{\mathbf{B},\mathbf{P}\}^{(t)}} ||\mathbf{L}^{(t)} - \mathbf{P}^{(t)}\mathbf{B}^{(t)}||^2 + \gamma ||\mathbf{P}^{(t)}||^2, \ s.t. \mathbf{B}^{(t)} \in \{-1,1\}^{r \times N_t},$$

- jointly considering above functions

$$\min_{\{\mathbf{B},\mathbf{P}\}^{(t)}} \alpha \|\mathbf{B}^{(t)\top}\mathbf{B}^{(t)} - r\mathbf{S}^{(t)}\|^2 + \beta \|\mathbf{L}^{(t)} - \mathbf{P}^{(t)}\mathbf{B}^{(t)}\|^2 + \beta \gamma \|\mathbf{P}^{(t)}\|^2, \quad s.t. \quad \mathbf{B}^{(t)} \in \{-1,1\}^{r \times N_t},$$

>Efficient Discrete Optimization

- alternatively and iteratively update $\{\vec{\mathbf{B}}, \vec{\mathbf{V}}, \mathbf{P}, \mathbf{R}\}^{(t)}$
- auxiliary variables $C_*^{(t-1)}$

E.g. $\mathbf{C}_{1}^{(t)} = \vec{\mathbf{L}}$	$\mathbf{V}^{(t)} \mathbf{V}^{(t)\top} + \mathbf{L}^{(t)} \mathbf{V}^{(t)\top}$
;	$\mathbf{L}^{(t)}\mathbf{V}^{(t)\top}$
$\mathbf{C}_1^{(t-1)} \in \mathbb{R}^{c \times r}$ is calculated at the previous round.	$= [\mathbf{L}^{(t-1)}, \overrightarrow{\mathbf{L}}^{(t-1)}] [\mathbf{V}^{(t-1)}, \overrightarrow{\mathbf{V}}^{(t-1)}]^{\top}$
$C_1^{(t)}$ is only relevant to new data, i.e., nt .	$= \mathbf{L}^{(t-1)} \mathbf{V}^{(t-1)\top} + \overrightarrow{\mathbf{L}}^{(t-1)} \overrightarrow{\mathbf{V}}^{(t-1)\top}$
110 ** aata, 1.0., 711.	$\mathbf{C}_1^{(t)} = \overrightarrow{\mathbf{L}}^{(t)} \overrightarrow{\mathbf{V}}^{(t) \top} + \mathbf{C}_1^{(t-1)}$

>Online Learning

- define a block similarity matrix $\mathbf{S}^{(t)} = \begin{bmatrix} \mathbf{S}_{oo}^{(t)} & \mathbf{S}_{oc}^{(t)} \\ \mathbf{S}_{co}^{(t)} & \mathbf{S}_{cc}^{(t)} \end{bmatrix}$, $\mathbf{S}^{(t)} = 2\mathbf{U}^{(t)\top}\mathbf{U}^{(t)} \mathbf{1}\mathbf{1}^{\top}$,
- $-\text{keep }\mathbf{B}^{(t)}$ unchanged and only update $\mathbf{\vec{B}}^{(t)}$

solve update-imbalance problem

$$\min_{\{\vec{\mathbf{B}},\vec{\mathbf{V}},\mathbf{P},\mathbf{R}\}^{(t)}} \alpha \| \mathbf{V} - \mathbf{I} \mathbf{S}_{co} \| + \alpha \| \mathbf{V} - \mathbf{I} \mathbf{S}_{oc} \| + \alpha \| \mathbf{V} - \mathbf{I} \mathbf{S}_{cc} \|$$

$$+ \beta \| \vec{\mathbf{L}}^{(t)} - \mathbf{P}^{(t)} \vec{\mathbf{V}}^{(t)} \|^{2} + \beta \| \mathbf{L}^{(t)} - \mathbf{P}^{(t)} \mathbf{V}^{(t)} \|^{2} + \beta \gamma \| \mathbf{P}^{(t)} \|^{2}$$

$$+ \| \vec{\mathbf{B}}^{(t)} - \mathbf{R}^{(t)} \vec{\mathbf{V}}^{(t)} \|^{2} + \| \mathbf{B}^{(t)} - \mathbf{R}^{(t)} \mathbf{V}^{(t)} \|^{2}, s.t. \vec{\mathbf{B}}^{(t)} \in \{-1,1\}^{r \times n_{t}}, \mathbf{R}^{(t)} \mathbf{R}^{(t) \top} = \mathbf{I}, \vec{\mathbf{V}}^{(t)} \vec{\mathbf{V}}^{(t) \top} = n_{t} \mathbf{I}, \vec{\mathbf{V}}^{(t)} \mathbf{1} = \mathbf{0}.$$

>Out-of-Sample

- Hash Mapping: linear regression

$$\min_{\mathbf{W}^{(t)}} ||\mathbf{B}^{(t)} - \mathbf{W}_m^{(t)} \mathbf{X}_m^{(t)}||^2 + \xi ||\mathbf{W}_m^{(t)}||^2,$$

-Online Learning: $\mathbf{B}^{(t)} = [\mathbf{B}^{(t)}, \mathbf{\vec{B}}^{(t)}]$

$$\min_{\mathbf{W}^{(t)}} \left| \left| \mathbf{B}^{(t)} - \mathbf{W}_m^{(t)} \mathbf{X}_m^{(t)} \right| \right|^2 + \left| \left| \mathbf{\overline{B}}^{(t)} - \mathbf{W}_m^{(t)} \mathbf{\overline{X}}_m^{(t)} \right| \right|^2 + \xi \left| \left| \mathbf{W}_m^{(t)} \right| \right|^2.$$

- Efficient Optimization
- auxiliary variables $\mathbf{H}_{*}^{(t-1)}$ and $\mathbf{F}_{*}^{(t-1)}$
- Out-of-Sample $H_m^{(t)}(\mathbf{x}_m) = \text{sign}(\mathbf{W}_m^{(t)}\mathbf{x}_m)$.

EXPERIMENTS

>MAP results on MIRFlickr-25K, and NUS-WIDE

Table 1: The MAP results of all methods on MIRFlickr-25K. Table 3: The MAP results of all methods on NUS-WIDE.

Task	Method	8-bit	16-bit	32-bit	64-bit	128-bit	Task	Method	8-bit	1
$I \rightarrow T$	SCM-seq	0.6307	0.6457	0.6455	0.6629	0.6148		SCM-seq	0.4636	0.
	DCH	0.6739	0.7093	0.6774	0.7219	0.7424		DCH	0.6309	0.
	LCMFH	0.6796	0.6750	0.6896	0.6898	0.7002		LCMFH	0.5903	0.
	SCRATCH	0.6870	0.7084	0.7136	0.7234	0.7256		SCRATCH	0.6116	0.
	DLFH	0.7102	0.7076	0.7182	0.7188	0.7254	$I \rightarrow T$	DLFH	0.5789	0.
	OCMH	0.5484	0.5515	0.5578	0.5565	0.5536		OCMH	0.3447	0.
	OLSH	0.5791	0.5778	0.6008	0.5971	0.5935		OLSH	0.4872	0.
	LEMON	0.7272	0.7258	0.7476	0.7474	0.7485		LEMON	0.6389	0.
$T \rightarrow I$	SCM-seq	0.6151	0.6257	0.6245	0.6512	0.6010		SCM-seq	0.4812	0.
	DCH	0.7388	0.7649	0.7410	0.7786	0.8010		DCH	0.7615	0.
	LCMFH	0.7332	0.7293	0.7528	0.7627	0.7740		LCMFH	0.6807	0.
	SCRATCH	0.7446	0.7692	0.7727	0.7810	0.7877		SCRATCH	0.7241	0.
	DLFH	0.7235	0.7836	0.8066	0.8225	0.8285	$T \rightarrow I$	DLFH	0.6779	0.
	OCMH	0.5500	0.5530	0.5547	0.5565	0.5533		OCMH	0.3454	
	OLSH	0.5801	0.5829	0.6094	0.6038	0.6024		OLSH	0.5167	0.
	LEMON	0.7924	0.8166	0.8238	0.8298	0.8327		LEMON	0.7778	0.

Training time-round curves on MIRFlickr-25K

CONTRACT

Yongxin Wang: yxinwang@hotmail.com

Xin-Shun Xu: xuxinshun@sdu.edu.cn

MIMA Group: http://mima.sdu.edu.cn/

