NAME	Combn
DEOGN	
P525/1	
CHEMISTRY	
PAPER 1	

UGANDA ADVANCED CERTIFICATE OF EDUCATION TERM TWO EXAMINATION, 2024 CHEMISTRY PAPER 1 2 HOURS 45 MINUTES

Instructions to Candidates:

- Answer all questions in sections A and 6 questions in section B.
- All questions must be answered in spaces provided.
- Illustrate your answers with equation(s) where applicable.

Where necessary use the following;

- Molar gas constant $R = 8.3iJK^{-1}mol^{-1}$
- Molar volume of a gas at s.t.pts 22.4 litres
- Standard temperature = 273*K*
- Standard pressure = $101325Nm^{-2}$

FOR EXAMINERS' USE ONLY

SECTION A	
SECTION B	
TOTAL	

SECTION A

1	Complete	tha	following	equations.
Ι.	Complete	uie	prilwoilor	equations.

iii)
$$^{238}_{92}U + ^{1}_{0}n \longrightarrow ^{239}_{93}Pu + \dots$$
 (01 mark)

b) The mass of a radioisotope, T, reduced by 32% in 40 days. Calculate the half life of T. $(2\frac{1}{2} \text{ marks})$

2. The first ionization energies of some elements are shown in the table below.

Elements	Ionization energies(KJ mol ⁻¹)				
	1	2	3	4	
Α	500	4600	6900	9500	
В	740	1500	7700	10,500	
С	630	1600	3000	4800	
D	900	1800	14,800	21,000	
E	580	1800	2700	11,600	

a)	What is meant by the term ionization energy?	(02 marks)

b) (i) State the element that is most likely to form an ion with unit positive. (01 mark)

ii) Identify two elements that are in the same group of the periodic table.	2
3. (a) Explain; i) The term acidic buffer	(01 mark)
ii) The mechanism of action of an acidic buffer.	$(2\frac{1}{2}$ marks)
(b) Calculate the P ^H of a solution formed by mixing 80cm³ of 0.1M sulphurion 0.1M potassium hydroxide.	

4. The table below shows the melting points of the oxides of group (II) elements.

Oxides	BeO	Mg0	СаО	SrO	ВаО
Melting points of oxides in (°C)	2530	2800	2580	2430	1928

Explair	n the trend in the melting points of these oxides.	$(5\frac{1}{2}$ marks)
5.	A compound Q contains 60% carbon, 33.3% hydrogen and the rest bei W 0.698 g of Q was dissolved in 100g of a solvent. (kf of the solvent = 1.63° C kg^{-1} mol^{-1} .	ng oxygen.
a)	Calculate the simplest formula of Q . (0-	3 marks)
b)	Determine the molecular formula of Q	$2\frac{1}{2}$ marks)

6.	(a) Explain what is meant by diagonal relationship.	(1 mark)
i) Bery		(2 marks)
ii) Alum	inium	
	(c) State any two reasons as to why beryllium resembles aluminium	in its properties. (2½ marks)
7.	(a) Define the term boiling point constant of a substance.	(¹ / ₂ mark)
(b) Stat		(01 mark)

(c) 2.00g	(c) 2.00g of phosphorus raise the boiling point of 37.4g of carbon disulphide by 1.003°C.			
i)	i) Calculate the molar mass of phosphorus in carbon disulphide . (kb for carbon			
	disulphide is 2.35° C $mol^{-1}kg^{-1}$.	$(01\frac{1}{2}$ marks)		
ii)	Hence determine the molecular formula of phosphorus in carbon	n disulphide (P= 31) (01 mark)		
		(or many		
iii)	Comment on the results in $C(iii)$ above.	(01 mark)		

8. The table below shows the ionization energies of group $\it VII\ elements$.

Element	F	Cl	Br	I
Atomic radius (nm)	0.072	0.099	0.114	0.133
Ionic radius (nm)	0.136	0.181	0.195	0.216

a) Define the term atomic radius.

(01 mark)

b)	State and explain the trend in atomic radius of the elements.	(02 ¹ / ₂ marks)
c)	Explain why the ionic radius is larger than the atomic radius of the coatom for each element.	orresponding neutral (2 marks)
9.	(a)(i) What is meant by stability of nucleus?	(01 mark)

(ii) Explain the factors that determine the stability of a nucleus

•••••		 		• • • • • • • • • • • • • • • • • • • •			•••••
		 		•••••		•••••	
•••••	•••••	 •••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••

b(i) State what lines A and B represent.	$(1\frac{1}{2}$ marks)
(ii) Explain element x and y can gain stability.	(03 marks)
SECTION B	
10. A compound ${\it Q}$ contains 54.5% carbon, 9.09% hydrogen and the resa. Calculate the empirical formula.	st being oxygen. (04 ¹ / ₂ marks)
b) 0.542g of Q occupies 148cm 3 at a temperature of 20°C and a 740m 3 molecular of Q .	mHg. Determine the (04½ marks)

11. (a)(i) Write electronic configuration of chromium (atomic number = 24)	(01 mark)
(ii) Give the common oxidation states exhibited by chromium and in each case, write	the formula of
	(03 marks)
(b) Discuss the reactions of chromium with	
i) Sodium hydroxide	(03 marks)
ii) Air	(03 marks)

12. (a) The graph below shows the variation in melting point of a mixture of zinc and cadmium with composition.

i)	Determine the eutectics point of the system.	(02 marks)
ii)	Name the phases in the region <i>A</i> , <i>B</i> and <i>C</i> .	$(01\frac{1}{2} marks)$
b) De	scribe the changes that take place when a mixture containing 88% zinc i	s cooled from
450°C	C to 280°C	$(5\frac{1}{2})$ marks)

13. (a) The table

Chain alkanes

Alkane	CH_4	C_2H_0	C_3H_8	$C_4 H_{10}$	C_8H_{12}	$C_6 H_{14}$	C_9H_{16}
Boiling point (°C)	-62	-89	-42	-0.5	36	69	98

i) Plot a graph of boiling point against molecular mass of alkane, (03 marks)

ii)	From your graph in (i) above, determine the boiling of octane.	(02 marks)
iii)	Explain the trend in boiling points of alkane.	(04 marks)
	Explain the following phenomenones. The first electron affinity of magnesium is lower than the rest.	(03 marks)
b)	The first electron affinity of aluminium is higher than that of magne	sium. (03 marks)
 c)	The first electron affinity of phosphorus is lower than that of sulphu	(3 marks)
\sim	The met distant aming of phosphoras is lower than that of sulphu	······································

15. The phase diagram below is of water system.

a) (i) i) Name the phases , K, P and R (01 $\frac{1}{2}$ marks)

(ii) ii) Explain why line OB slopes upwards and to the left. (02 marks)

b) Explain what happens to phase at N when it is being changed to phase at M.

 $(05\frac{1}{2} marks)$

16. Distinguish the following solutions consisting o	
a) $Ba(NO_3)_2$ and Ba_2CO_3	(03 marks)
Reagent:	
Observation:	
b) $Zn(NO_3)_2$ Reagent:	(03 marks)
Observation:	
c) $Al_2(CO_3)_3$ and $PbCO_3$	(03 marks)

Reagent:	
Observation:	
17. 0.539g of a vapourised sample of gas <i>X</i> occupies 200cm ³ at a temper pressure of 0.938 atm. Calculate the relative molecular mass of X.	
(b) For the reaction; $CO_{(g)} + NO_{2(g)} \longrightarrow CO_{2(g)} + NO_{(g)}^{-DH}$	
i) Draw a well labeled energy level diagram for the reaction.	(04 marks)
ii) The activation energies for the forward and reverse reactions are known to	be respectively
32KJ mol ⁻¹ and 82.1KJmol ⁻¹ . Calculate the activation energy.	(03 marks)

<u>END</u>