

Finanzmathematik

Mathematik 1 für Wirtschaftsinformatiker

Prof. Dr. Jonas Offtermatt — 19. Oktober 2023

Einfache Zinsrechnung

Der einfache Zins I kann mit der Formel $I=P\cdot r\cdot t$ berechnet werden, wobei P den Anfangskapitalbetrag, r den Zinssatz und t die Laufzeit in Jahren darstellt.

Beispiel: Ein Betrag von 1000 EUR wird zu einem Zinssatz von 5% für 3 Jahre angelegt. Wie hoch ist der einfache Zins?

Lösung: $I=1000\cdot 0.05\cdot 3=150$ EUR.

Zinseszinsrechnung

Bei der **Zinseszinsrechnung** werden die Zinsen auf den Anfangskapitalbetrag sowie auf die bereits angefallenen Zinsen berechnet und addiert.

Die Formel für den Endbetrag ${\cal A}$ unter Berücksichtigung von Zinseszinsen lautet:

$$A = P \cdot (1+r)^t$$

wobei P den Anfangskapitalbetrag, r den Zinssatz und t die Laufzeit in Jahren darstellen.

Beispiel: Ein Betrag von 1000 EUR wird zu einem jährlichen Zinssatz von 5% für 3 Jahre angelegt. Wie hoch ist der Endbetrag mit Zinseszinsen?

Lösung: $A = 1000 \cdot (1 + 0.05)^3 \approx 1157.63$ EUR.

Bundesschatzbrief / interner Zins

Angenommen, Sie haben einen Bundesschatzbrief mit einem Anfangskapital von $10,000~{\rm EUR}$ und folgenden jährlichen Zinssätzen:

Jahr	Zinssatz (%)	Zinsbetrag (€)
1	2	200
2	2.5	250
3	3	300
4	3.5	350
5	4	400

Um den Gesamtzins (internen Zins) zu berechnen, müssen wir die Gleichung:

$$A = P(1+r)^t$$

nach r auflösen, mit $A=11.500,\,P=10.000$ und t=5. Ergibt:

$$r \approx 2.8\%$$

Jährliche und Unterjährliche Zinszahlungen

Wird ein Kapital P m-mal unterjährig verzinst, so wird der Jahreszins r (auch nomineller Zins genannt) durch die Anzahl an Zinszahlungen m geteilt. Für den unterjährigen Zins gilt also $r_u = \frac{r}{m}$.

Der Endbetrag A nach t Jahren ergibt sich dann als:

$$A_t = P(1 + r_u)^{m \cdot t}$$

Der interne Jahreszins, bzw. effektive Jahreszins ergibt sich dann als:

$$r_{eff} = (1 + r_u)^m - 1$$

Stetiger Zins - $m \to \infty$

Was passiert, wenn wir $m \to \infty$ gehen lassen? Also sozusagen kontinuierlich Zinsen zahlen?

$$A_t = \lim_{m \to \infty} P(1 + r_u)^{m \cdot t} = P\left[\lim_{m \to \infty} (1 + \frac{r}{m})^m\right]^t$$
$$= P \cdot e^{r \cdot t}$$

Ohne Beweis verwenden wir $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$, bzw. $\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x$.

Barwertmethode

Der Barwert BW einer Investition wird berechnet, indem die zukünftigen Zahlungen abgezinst und auf den aktuellen Zeitpunkt diskontiert werden.

Die Formel für den Barwert lautet:

$$BW = \sum_{t=1}^{n} \frac{Z_t}{(1+r)^t}$$

wobei Z_t die Zahlung zum Zeitpunkt t, r der Diskontierungssatz und n die Laufzeit darstellen.

Barwertmethode

Beispiel: Eine Investition erfordert Zahlungen von 2,000 EUR pro Jahr für die nächsten fünf Jahre. Der Diskontierungssatz beträgt 6%. Wie hoch ist der Barwert der Investition?

Lösung:

$$BW = \sum_{t=1}^{n} \frac{Z_t}{(1+r)^t} = \sum_{t=1}^{5} \frac{2000}{(1+0,06)^t}$$
$$= \frac{2,000}{1.06} + \frac{2,000}{1.06^2} + \frac{2,000}{1.06^3} + \frac{2,000}{1.06^4} + \frac{2,000}{1.06^5}$$
$$\approx 8,715.55 \in .$$

Barwertmethode

Die Barwertmethode ermöglicht es verschiedene Zahlungsmodelle mit zukünftigen Zahlungen miteinander zu vergleichen.

Beispiel: Ein Unternehmen schafft fur die Produktion eine neue Fertigungsanlage an. Der Lieferant bietet uns drei Zahlungsvarianten zur Auswahl:

- sofortige Bezahlung von 90.000 €
- Bezahlung von 115.000 € in 5 Jahren
- Bezahlung von 50.000 € in 3 Jahren und weiteren 60.000 € in 6 Jahren

Welche Zahlungsvariante sollte, wenn ein risikoloser Zins von 4% vorliegt, unter Kostenaspekten gewählt werden? Was ändert sich bei 7% Zinsen?

Kreditarten

Es gibt verschiedene Arten von Krediten, die von Banken und anderen Finanzinstituten angeboten werden. Einige gängige Kreditarten sind:

- Annuitätendarlehen
- Ratenkredite
- Baufinanzierungen
- Überziehungskredite
- Hypothekendarlehen

Jede Kreditart hat spezifische Merkmale, Zinssätze und Tilgungsmodalitäten, die bei der Auswahl eines Kredits berücksichtigt werden sollten.

Tilgungsrechnung bei Annuitätendarlehen

Annuitätendarlehen sind eine häufige Form von Krediten, bei denen der Kreditbetrag K über einen festgelegten Zeitraum n (in Jahren) in gleichbleibenden Raten A (Annuitäten) zurückgezahlt wird.

Für die Restschuld R_n nach n Jahren gilt dann:

$$R_n = K \cdot q^n - A \cdot \frac{1 - q^n}{1 - q}$$

mit q = (1 + r).

Tilgungsrechnung

Mithilfe der Formel für die Restschuld, können nun die verschiedenen Anwendungsfälle berechnet werden.

Beispielfragen:

- Wie hoch muss die Annuität A sein, damit ein Kredit der Höhe K bei einem Zins von r nach n Jahren abgezahlt ist?
- Wie lange muss ein Kredit der Höhe K mit einem Zins von r und einer Annuität von A abgezahlt werden?
- Wie hoch kann der Kreditbetrag sein, wenn der Kredit mit Zins r nach n Jahren durch Annuitäten in Höhe A abgezahlt sein soll?

Für die Beantwortung der Fragen muss die Formel für die Restschuld entsprechend umgestellt werden.

Tilgungsrechnung

Berechnungsformeln

• Für die Annuität A gilt:

$$A = K \cdot q^n \cdot \frac{1 - q}{1 - q^n}$$

• Für den Kreditbetrag K gilt:

$$K = A \cdot \frac{1 - q^n}{(q^n - q^{n+1})}$$

• Für die Laufzeit n gilt:

$$n = \frac{\ln(A) - \ln(K(1 - q) + A)}{\ln(q)}$$

Berechnung von Renten

Eine Rente ist eine regelmäßige Zahlung R über einen bestimmten Zeitraum n aus einem Anfangskapital K. Dabei wird davon ausgegangen, dass das Kapital am Jahresende mit r verzinst wird und anschließend nachschüssig die Rentenzahlung entnommen wird.

Für das verbleibende Kapital K_n nach n Zinsperioden ergibt sich:

$$R_n = K \cdot q^n - R \cdot \frac{1 - q^n}{1 - q}$$

Soll das Kapital K nach n Rentenzahlungen aufgebraucht sein, so gilt fur den Rentenbetrag R, welcher aus einem Anfangskapital K genau n-mal nachschussig gezahlt werden kann:

$$R = K \cdot q^n \cdot \frac{1 - q}{1 - q^n}$$

$$q = (1+r)$$