МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.7.1 **Скин-эффект в полом цилиндре**

Б03-102 Куланов Александр

- **Цель работы:** исследование проникновения переменного магнитного поля в медный полый цилиндр.
- В работе используются: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

1 Теоретические сведения

В работе изучается Скин-эффект в длинном тонкостенном медном цилиндре, помещенном внутрь соленоида.

Теоретически такая задача сложнее, чем рассмотренный в п. 3.1 скин-эффект в полубесконечном пространстве: здесь требуется совместное решение уравнений скин-эффекта (уравнение диффузии поля) (7.22/23) в стенке цилиндра и квазистационарных уравнений поля в его полости.

Пусть цилиндр достаточно длинный, так что в нём можно пренебречь краевыми эффектами. В этом приближении магнитное поле Н всюду направлено по оси системы, а вихревое электрическое поле Е будет всюду перпендикулярно радиусу, то есть линии поля образуют соосные окружности. Все величины будем считать колеблющимися по гармоническому закону с некоторой частотой ω , задаваемой частотой колебания тока в соленоиде. Тогда для ненулевых компонент поля можно записать

$$H_z = H(r)e^{i\omega t}, E_{\phi} = E(r)e^{i\omega t}$$

где H(r) и E(r) — комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты E и B, поэтому функции непрерывны во всей исследуемой области.

Пусть длинный полый цилиндр имеет радиус а и толщину стенки h « а. Последнее условие позволяет для описания полля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным (аналогично полю внутри пустого соленоида): $H_z(r,t) = H_1 e^{i\omega t}$, где $H_1 = const$ — амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции в интегральной форме:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \rightarrow E(r) = -\frac{1}{2} \mu_0 r \cdot i\omega H_1.$$

Отсюда получим связь амплитуд колебаний электрического и магнитного полей на внутренней границе цидиндра:

$$E_1 = -\frac{1}{2}i\omega a\mu_0 H_1 \tag{1}$$

Поле внутри тонкой стенки цилиндра («экрана») описывается уравнением скинэффекта (7.25) (уравнением диффузии поля) в плоской геометрии (рис. 2). Поместим начало отсчёта на внешнюю поверхность цилиндра и направим ось x к оси системы, и аналогично (7.26) запишем дифференциальное уравнение для комплексной амплитуды магнитного поля:

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H\tag{2}$$

(для медного цилиндра можно положить $\mu \approx 1$).

Граничные условия для (2) зададим в виде

$$H(0) = H_0, \quad H(h) = H_1$$
 (3)

Здесь H_0 - амплитуда колебаний магнитного поля на внешней границе цилиндра. Её значение определяется только током в обмотке соленоида, и совпадает с полем внутри соленоида в отсутствие цилиндра. Величина H_1 также поддаётся непосредственному измерению это азплитуда колебаний однородного поля внутри цилиндра. Поля H_0 и H_1 не являются независимыми - они связаны через решение уравнений поля вне проводника, т. е. внутри «экрана». Эта связь выражена соотношением (1). Решение (2) ищем в виде

$$H(x) = Ae^{\alpha x} + Be^{-\alpha x} \tag{4}$$

где A, B - определяемые из граничных условий константы,

$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\pi/4} \tag{5}$$

- один из корней уравнения (7.28), δ - глубина скин-слоя (7.30). Заметим, что это решение немного отличается от (7.29): ранее мы использовали только один корень уравнения (7.28), однако здесь мы имеем дело уже не с полупространством, а с конечной областью в виде плоского слоя h, поэтому решение должно содержать оба корня.

Первое условие (3) даёт $A + B = H_0$, тто позволяет исключить A из (4):

$$H(x) = H_0 e^{-\alpha x} + 2B \sin \alpha x,$$

Выразим электрическое поле из закона Ампера (7.21), В одномерном случае

$$E(x) = \frac{1}{\sigma} \frac{dH}{dx} = \frac{\alpha}{\sigma} \left(-H_0 e^{-\alpha x} + 2B \operatorname{ch} \alpha x \right),$$

Делее полояим x=h, воспользуемся условием (1), и, исключив константу B получим после преобразований связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{\operatorname{ch} \alpha h + \frac{1}{2} \alpha a \operatorname{sh}(\alpha h)} \tag{6}$$

Рассмотрим предельшые случаи (6).

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta \gg h$. Тогда $|\alpha h| \ll 1$, поэтому сh $\alpha h \approx 1$, sh $\alpha h \approx \alpha h$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\hbar^2}} \tag{7}$$

Заметим, что величина ah/δ^2 в общем случае не мала, поскольку при $h\ll a$ возможна ситуањия $h\ll \delta\ll a$. Отношение модулей амплитуд здесь будет равио

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4} \left(ah\sigma\mu_0\omega\right)^2}} \tag{8}$$

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый равенством $\operatorname{tg} \psi = \frac{ah}{\delta^2}$.

2. При достаточно больших частотах толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $|\alpha h| \gg 1$ и $|\alpha a| \gg 1$, а также $\mathrm{sh}(\alpha h) \approx \mathrm{ch}(\alpha h) \approx \frac{1}{2}e^{\alpha h}$. Выражение (6) с учётом (5) переходит в

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}} e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)} \tag{9}$$

Как видно из формулы (9), в этом пределе поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a}e^{-h/\delta}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{10}$$

2 Экспериментальная установка

Рис. 1: Схема установки

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 1. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3. Необходимые параметры соленоида, экрана и измерительной катушки указаны на установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое

пропорционально току, а на вход второго канала - напряжение с измерительной катушки. Измерение отношения амплитуд магнитного поля внутри и вне экрана. С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t},$$

где SN - произведение площади витка на число витков измерительной катушки. Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SN\omega}{\sqrt{2}} \mu_0 |H_1|.$$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала $\nu = \omega/2\pi$:

$$|H_1| \propto \frac{U}{\nu}$$
.

При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A:

$$|H_0| \propto I$$
.

Следовательно,

$$\frac{|H_1|}{|H_0|} = \text{const } \cdot \frac{U}{\nu I} \tag{11}$$

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана (коэффициент ослабления) может быть измерено по отношению $U/\nu I$ при разных частотах. Неизвестная константа в соотношении (11) может быть определена по измерениям при малых частотах $\nu \to 0$, когда согласно (8) $|H_1|/|H_0| \to 1$.

3 Обработка результатов

Низкие частоты

В области низких частот от $0,01\nu_h$ до $0,05\nu_h(\nu_h\approx 2200~\Gamma \text{ц})$ получим зависимость отношения $\xi=U/\nu I$ от частоты ν . Полученные данные занесем в таблицу 1.

Построим график зависимости $1/\xi^2 = k\nu^2$, по графику определим величину ξ_0 и проводимость меди σ : $\xi_0 = 0.0145 \; \mathrm{B/\Gamma} \mathrm{u}^* \mathrm{A}$.

Из формулы, учитывая данные, полученные из графика

$$\sigma = \frac{\xi_0 \sqrt{k}}{ah\mu_0 \pi} = (4, 6 \pm 0, 1) \cdot 10^7 \text{ Cm/m}$$
 (12)

Рис. 2: $1/\xi^2 = k\nu^2$

Низкие частоты (фазовый сдвиг)

Данные зависимости ξ и фазового сдвига ψ от частоты ν при низких частотах в диапазоне от $0,05\nu_h$ до $0,5\nu_h$ занесем в таблицу 2.

Построим график зависимости тангенса угла сдвига от частоты. По наклону прямой на линейной участке определим коэфф. проводимости

$$\sigma = \frac{k}{ah\pi\mu_0} = (5, 8 \pm 0, 3) \cdot 10^7 \text{Cm/m}$$
 (13)

Рис. 3: $\tan \psi(\nu)$

Высокие частоты

Полученные данные при частотах от $0,5\nu_h$ до $15\nu_h$ занесем в таблицу 3. Построим график частотной зависимости фазового сдвига $\psi-\pi/4=f(\sqrt{\nu})$ для данных для низких и высоких частот. Проведем прямую, проходящую через начало координат и через линейный участок графика. По наклону прямой определим проводимость материала экрана.

$$\sigma = \frac{k^2}{\pi \mu_0 h^2} = (5, 4 \pm 0, 2) \cdot 10^7 \text{Cm/m}$$
 (14)

Рис. 4: $\psi - \pi/4 = f(\sqrt{\nu})$

Индуктивность катушки

Зависимость индуктивности катушки от частоты занесем в таблицу 4. Построим график зависимости индуктивности катушки от частоты $L(\nu)$. Определим максимальное и минимальное значение индуктивности.

Рис. 5: $L(\nu)$

Построим график зависимости $(L_{max}-L_{min})/(L-L_{min})(\nu^2)$, по наклону определим проводимость материала экрана

$$\sigma = \frac{\sqrt{k}}{\pi a \mu_0 h} = (5, 0 \pm 0, 3) \cdot 10^7 \text{Cm/m}$$
 (15)

Рис. 6: $(L_{max} - L_{min})/(L - L_{min})(\nu^2)$

По полученному ранее коэффициенту ξ_0 определим коэффициенты ослабления поля $|H_1|/|H_0|$. Изобразим на графике зависимость $|H_1|/|H_0|$ от ν в логарифмическом масштабе. Также построим теоретическую кривую.

Рис. 7: $|H_1|/|H_0|$ от ν

4 Выводы

Приведем сводную таблицу для всех полученных данных:

$\sigma, 10^7 \mathrm{Cm/m}$	$\epsilon,\%$
4,6	2
5,8	5
5,4	4
5,0	6

Таблица 1: Итоги

Теоритеичское значение проводимости меди $5-6\cdot 10^7~{\rm Cm/m}.$ Полученные значения совпадают в пределах погрешности.

5 Приложения

U, V	I, mA	ν , Hz
0.131	467	20
0.194	464.6	29
0.2494	460.65	38
0.3014	455.82	47
0.3494	450.30	56
0.3934	444,32	65
0.4333	438.08	74
0.4695	431.85	83
0.5020	425.74	92
0.5311	419.8	101
0.5571	414.05	110
0.5802	408.59	119

Таблица 2: Данные для зависимости $\xi = U/\nu I$

ψ	ν, Гц	U, B	І, мА
0.333	100.000	0.527	418.630
0.311	112.000	0.561	411.060
0.300	124.000	0.591	403.970
0.297	136.000	0.616	397.380
0.265	148.000	0.638	391.380
0.258	160.000	0.657	385.780
0.250	172.000	0.672	380.750
0.231	184.000	0.686	376.150
0.200	196.000	0.698	371.940
0.205	220.000	0.717	364.490
0.156	305.000	0.752	346.570
0.127	390.000	0.763	333.470
0.109	475.000	0.764	327.200
0.091	560.000	0.760	320.160
0.066	645.000	0.753	313.610
0.061	730.000	0.742	307.260
0.050	815.000	0.731	300.960
0.045	900.000	0.718	294.630
0.020	985.000	0.704	288.250
0.000	1070.000	0.689	281.870

Таблица 3: Данные для V,I,ψ

ψ	ν, Гц	U, B	І, мА
0.000	1100.000	0.684	279.710
0.133	3300.000	0.368	153.400
0.200	5500.000	0.224	98.510
0.281	7700.000	0.152	71.040
0.400	9900.000	0.109	54.510
0.500	12100.000	0.080	42.770
0.563	14300.000	0.062	34.660
0.643	16500.000	0.050	28.268
0.750	18700.000	0.040	23.001
0.783	20900.000	0.034	18.507
0.810	23100.000	0.029	14.551
0.895	25300.000	0.025	11.000
0.889	27500.000	0.022	7.780
0.939	29700.000	0.017	4.900
1.065	31900.000	0.014	2.700

Таблица 4: Данные для V,I,ψ

ν, Гц	L, мГн
50.00	10.37
150.00	7.56
250.00	5.63
400.00	4.28
500.00	3.86
750.00	3.41
800.00	3.35
1000.00	3.23
600.00	3.62
1500.00	3.09
4000.00	0.12
5000.00	3.04
7500.00	3078.00
10000.00	3158.00
15000.00	3473.00
16200.00	3.59
20000.00	4102.00

Таблица 5: Данные для L