Имя, ф	амилия	и номе	р групі	ім:							
• • • • • •				• • • • • • •				• • • • • • •			• • • • • •
1a	b	c	d	e		16. a	b	c	d	e	
2. a	b	c	d	e		17. a	b	c	d	e	
3. a	b	c	d	e		18. a	b	c	d	e	
4. a	b	c	d	e		19. a	b	c	d	e	
5. a	b	c	d	e		20. a	b	c	d	e	
6. a	b	c	d	e		21. a	b	c	d	e	
7. a	b	c	d	e		22. a	b	c	d	e	
8. a	b	c	d	e		23. a	b	c	d	e	
9. a	b	c	d	e		24. a	b	c	d	e	
10. a	b	c	d	e		25. a	b	c	d	e	
11. a	b	c	d	e		26. a	b	c	d	e	
12. a	b	c	d	e		27. a	b	c	d	e	
13. a	b	c	d	e	f	28. a	b	\Box c	d	e	
14. a	b	\Box c	d	e	f	29. a	b	\Box c	d	e	
15. a	b	\Box c	d	e	\bigcap f	30. a	b	\Box c	d	e	$\bigcap f$

Удачи!

- 1. Какая зависимость математического ожидания исходного процесса от времени предполагается в альтернативной гипотезе ADF-теста с константой?
 - а) нет верного ответа
- c) $\mathbb{E}(y_t) = \mu + \alpha t + \beta t^2$
- e) $\mathbb{E}(y_t) = \mu + \alpha t$

- b) $\mathbb{E}(y_t)$ строго возрастает
- d) $\mathbb{E}(y_t)$ строго монотонна f) $\mathbb{E}(y_t) = \mu$
- 2. У меня набор данных из трёх наблюдений: x = (1, 2, 3), y = (5, 6, 10).Чему равна МНК-оценка $\hat{\beta}$ в модели $y_i = \beta + u_i$?
- 3. Леонардо оценил логит-регрессию $\hat{\mathbb{P}}(y_i=1)=\Lambda(0.3-0.6x_i+0.5z_i)$. Для некоторого наблюдения прогноз вероятности равен $\mathbb{P}(y_i = 1) = 0.7$. Оцените предельный эффект увеличения z_i для этого наблюдения.
 - a) 0.105

c) 0.5

e) 0.35

- b) недостаточно информа-
- d) 0.15

- f) 0.7
- 4. Метод максимального правдоподобия для оценки коэффициентов регрессии $Y = X\beta + u$ HE MO-ЖЕТ быть применён, если
 - a) $u \sim \mathcal{N}(0; \Omega)$ и $\Omega = 2017 \cdot I$, где I — единичная матри-
- c) $u \sim \mathcal{N}(0;\Omega)$ и $\Omega = b \cdot I$, где b — неизвестный параметр
- набора неизвестных параметров

- b) $u \sim \mathcal{N}(0;\Omega)$ и структура Ω неизвестна
- d) $u \sim \mathcal{N}(0;\Omega)$ и структура Ω известна, но зависит от
- е) закон распределения вектора u известен, но не является нормальным
- 5. Чудо-швабры производятся на разных заводах по одной из двух технологий, A или B. Исследователь оценил две модели зависимости выпуска, Y, от количества сырья, X, и технологии:

$$\hat{Y}_{i} = \hat{\alpha}_{0} + \hat{\alpha}_{1} A_{i} + \hat{\alpha}_{2} X_{i} + \hat{\alpha}_{3} A_{i} X_{i};
\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} B_{i} + \hat{\beta}_{2} X_{i} + \hat{\beta}_{3} B_{i} X_{i}.$$

Переменная A_i равна единице для заводов с технологией A и нулю иначе, а переменная B_i равна единице для заводов с технологией B и нулю иначе.

Оценки коэффициентов связаны соотношением

a) $\hat{\alpha}_1 = \hat{\beta}_0$

c) $\hat{\alpha}_2 = \hat{\beta}_2$

e) $\hat{\alpha}_0 = \hat{\beta}_0 + \hat{\beta}_1$

b) $\hat{\alpha}_0 = \hat{\beta}_0$

- d) $\hat{\alpha}_0 + \hat{\alpha}_1 = \hat{\beta}_0$
- 6. Рассмотрим алгоритм градиентного бустинга над решающими деревьями для задачи регрессии. Каждое дерево даёт свой прогноз.

Выберите верное утверждение о механизме агрегирования прогнозов отдельных деревьев в прогноз всего алгоритма.

- а) прогнозы деревьев складываются и домножаются на темп обучения
- b) вес, с которым прогноз дерева учитывается в итоговом прогнозе, нелинейно убывает по номеру дерева
- с) вес, с которым прогноз дерева учитывается в итоговом прогнозе, линейно убывает по номеру дере-
- d) вес, с которым прогноз дерева учитывается в итоговом прогнозе, линейно

растёт по номеру дерева

- е) нет верного ответа
- f) вес, с которым прогноз дерева учитывается в итоговом прогнозе, нелинейно растёт по номеру дерева

положные знаки

b) оценки логит моделей

всегда выше, чем пробит

	1		
7.	При оценивании модели $Y_t = X_t$ -0.6 . Чтобы провести корректное преобразованным данным. При з	е оценивание, можно применить м	метод наименьших квадратов к
	a) $\sqrt{0.6}$	c) $\sqrt{0.84}$	e) 0.6
8.	b) 0.8 Чебурашка оценил модель $Y_i = 0$ Оказалось, что $\hat{\gamma}_1 = 0.25/\hat{\beta}_1$. Вели		
	a) 0.5	c) 0.75	e) 0
9.	b) 0.25 Рассмотрим модель	d) 1	
		$y_i = \beta_1 + \beta_2 x_i + u_i.$	
	Буквой X обозначена матрица все ку $\mathbb{E}(u_i \mid X) = 0$, $\mathrm{Var}(u_i \mid X) = \sigma^2$ По 100 наблюдениям оказалось, ч Найдите величину $\mathrm{Var}(\hat{\beta}_2 \mid X)/\sigma^2$ Ответ вводите с точность до двух	x_i , $Cov(u_i \mid X) = 0$. $x_i = \sum_i x_i^2 = 40, \sum_i (x_i - \bar{x})^2 = 20$.	ические предпосылки на ошиб-
10.	Рассмотрим логистическую моде шансов как $h(x_i) = \ln(\mathbb{P}(y_i = 1)/\mathbb{I}$ Найдите верное утверждение про	$\mathbb{P}(y_i=0)).$	сором x_i . Обозначим логарифм
	а) Производная $h'(x_i)$ линейна по x_i .	с) Производная $h'(x_i)$ равна константе.	е) Производная $h'(x_i)$ про- извольным образом зави- сит от x_i .
11.	b) Производная $h'(x_i)$ равна логистической функции от x_i . Известно, что регрессоры X и Z о $Y_i=\alpha_1+\alpha_2X_i+\alpha_3Z_i+u_i$. Исследи $\hat{Y}_i=\hat{\gamma}_1+\hat{\gamma}_2Z_i$. При этом	d) Производная $h'(x_i)$ достигает максимума только при $x_i=0$. Ортогональны, а истинная зависим ователь оценивает с помощью МН	f) Производная $h'(x_i)$ достигает минимума только при $x_i=0$. Мость описывается уравнением $\hat{Y}_i=\hat{eta}_1+\hat{eta}_2X_i$
	а) \hat{eta}_2 — смещённая оценка для $lpha_2$; $\hat{\gamma}_2$ — несмещённая оценка для $lpha_3$	оценка для α_3 c) \hat{eta}_2 — несмещённая оценка для α_2 ; $\hat{\gamma}_2$ — несмещённая	для $\alpha_2;\ \hat{\gamma}_2$ — смещённая оценка для α_3 e) $\hat{\beta}_2$ — эффективная оценка
12.	b) \hat{eta}_2 — несмещённая оценка для $lpha_2$; $\hat{\gamma}_2$ — смещённая При оценивании коэффициентов	оценка для α_3 d) \hat{eta}_2 — смещённая оценка моделей бинарного выбора	су $ ho_2$ — эффективная оценка для $lpha_2$; $\hat{\gamma}_2$ — эффективная оценка для $lpha_3$
	 а) оценки логит и пробит молелей имеют противо- 	с) оценки логит и пробит молелей всегла совпала-	е) нет верного ответа

d) оценки пробит моделей

всегда выше, чем логит

ЮТ

f) оценки пробит модели

имеют более высокую

значимосить, чем логит

- 13. Модель коррекции ошибками имеет следующий вид
- a) $\Delta Y_t = \delta \gamma (Y_{t-1} \alpha \alpha \beta X_{t-1}) + u_t$ c) $\Delta Y_t = \delta + \phi \Delta X_{t-1} \gamma (Y_{t-1} \alpha \beta X_{t-1}) + u_t$ e) $Y_t = \delta \gamma (Y_{t-1} \alpha \alpha \beta X_{t-1}) + u_t$
- $\gamma(Y_{t-1}) + u_t$
- b) $\Delta Y_t = \delta + \phi \Delta X_{t-1}$ d) $Y_t = \delta + \phi \Delta X_{t-1} \gamma (Y_{t-1} \gamma (Y_{t-1}) + y_t)$ $\alpha - \beta X_{t-1} + u_t$
- 14. В линейной модели $Y_i = \beta_0 + \beta_1 X_i + u_i$ стохастический регрессор и случайный член u_i коррелированы. Состоятельные оценки коэффициентов можно получить с помощью
 - а) метода главных компонент
- с) метода инструментальных переменных
- е) метода наименьших квадратов

- b) обобщённого MHK
- d) взвешенного МНК
- 15. Пантелеймон предполагает, что зависимость y от x линейная. У Пантелеймона данные по 10 городам. Он считает, что коэффициент наклона не зависит от города, а вот константа в каждом городе может быть своя.

Всего у Пантелеймона 200 наблюдений.

Сколько дамми-переменных понадобиться ввести Пантелеймону в дополнение к модели парной регрессии?

- 16. Если квадраты остатков оценённой с помощью МНК регрессионной модели линейно и значимо зависят от квадрата регрессора Z, то гетероскедастичность можно попытаться устранить,
 - а) поделив исходное уравнение на Z
- с) поделив исходное уравнение на \mathbb{Z}^2
- е) умножив исходное уравнение на Z

- b) поделив исходное уравнение на \sqrt{Z}
- d) умножив исходное уравнение на \mathbb{Z}^2
- f) умножив исходное уравнение на \sqrt{Z}

17. Какой период у функции $\sin(5\pi t/365)$?

Ответ укажите с точностью до двух знаков после десятичной точки.

18. Рассмотрим уравнение

$$y_t = 14y_{t-1} + 19y_{t-2} + u_t,$$

где (u_t) — белый шум.

При каких начальных условиях получится нестационарное решение?

 u_1

- а) только при $y_0 = 1$ и $y_1 = 1$
- c) только при $y_0 = 0$ и $y_1 = 1$
- е) только при $y_0 = 0$ и $y_1 = 0$

b) нет верного ответа

- d) только при $y_0 = u_0$ и $y_1 =$
- f) только при $y_0 = 1$ и $y_1 = 0$
- 19. В рамках ETS(AAN) модели постройте 95%-й предиктивный интервал на один шаг вперёд, Последнее значение сглаженного ряда (тренда) равно 100, последний наклон сглаженного ряда (тренда) равен 5, $\alpha = \beta = 0.3$, $u_t \sim \mathcal{N}(0; 16)$.

В ответ введите правую границу предиктивного интервала с точностью до двух знаков после десятичной точки.

- 20. Крокодил Гена оценил с помощью МНК зависимость $Y_i = \beta_0 + \beta_1 X_i + u_i$. Оказалось, что $\hat{\beta}_0 = 90$, а $\beta_1=3$. Чебурашка увеличил переменные X и Y на 10% и снова оценил уравнение регрессии. В результате этой корректировки
 - a) оценки $\hat{\beta}_0$ и $\hat{\beta}_1$ увеличи-
- оценка $\hat{\beta}_1$ не изменилась
- c) оценка \hat{eta}_0 уменьшилась, а e) оценки \hat{eta}_0 и \hat{eta}_1 не измени-
- b) оценка $\hat{\beta}_0$ увеличилась, а оценка $\hat{\beta}_1$ не изменилась
- d) оценки \hat{eta}_0 и \hat{eta}_1 уменьши-
- 21. Крокодил Гена оценивает модель регрессии $Y_i = \beta_0 + \beta_1 X_i + u_i$ с помощью МНК. Чебурашка получит такую же оценку коэффициента β_1 , если будет минимизировать
 - а) выборочную дисперсию объясняемой

ной

ции

- переменной
- с) выборочную дисперсию остатков
- е) выборочную ковариацию регрессора и объясняемой переменной

b) выборочную дисперсию объясняющей перемен-

регрессию без константы, то окажется, что

- d) коэффициент детермина-
- 22. Джеймс Бонд оценил парную регрессию и оказалось, что $\hat{Y}_i = 5 + 6X_i$. Если Джеймс Бонд оценит
 - a) $\hat{Y}_i = 6X_i$ b) нет верного ответа
- d) $\hat{Y}_i = 11X_i$

g) $\hat{Y}_i = 5$

e) $\hat{Y}_i = 5.5$

c) $\hat{Y}_i = 5.5X_i$

- f) $\hat{Y}_i = 11$
- 23. Известно, что $y_t = 5 + u_t + 9u_{t-1}$, где (u_t) белый шум с дисперсией 8. Найдите частную автокорреляцию второго порядка ϕ_{22} процесса (y_t) с точностью до двух знаков после десятичной точки.
- 24. Рассмотрим логит-модель $\hat{Y}_i^*=\hat{eta}_1+\hat{eta}_2X_i+\hat{eta}_3D_i$, и $Y_i=1$, если $Y_i^*>0$. Если переменная X_i является количественной, то предельный эффект увеличения X_i можно посчитать по формуле
 - a) $\hat{\beta}_2/f^2(\hat{Y}_i^*)$

c) $\hat{\beta}_2 f(\hat{Y}_i^*)$

e) $\hat{\beta}_2/f(\hat{Y}_i^*)$

b) $\hat{\beta}_2/F(\hat{Y}_i^*)$

- d) $\hat{\beta}_2/F^2(\hat{Y}_i^*)$
- 25. Выберите верное утверждение про стационарный ARMA(p,q) процесс относительно белого шума (u_t) .
 - а) является частным случаем AR(p) процесса относительно (u_t) .
- с) является частным случаем AR(q) процесса относительно (u_t) .
- е) является частным случаем MA(q) процесса относительно (u_t) .

- b) является частным случаем $MA(\infty)$ процесса относительно (u_t) .
- d) является частным случаем MA(p) процесса относительно (u_t) .
- f) нет верного ответа

- 26. Из откровений внеземного разума известно, что эндогенности в модели $Y_i = \beta_0 + \beta_1 X_i + u_i$ нет. Однако Вовочка нашёл хороший инструмент z_i , отвечающий всем требованиям, предъявляемым к инструментам, и оценил β_1 методом инструментальных переменных. Его оценка β_1 окажется
 - а) несостоятельной
- с) состоятельной и эффективной
- е) невозможно сказать по имеющимся данным

- b) состоятельной, но не эффективной
- d) состоятельной
- 27. Известны 95%-ые доверительные интервалы для коэффициентов регрессии: $\beta_1 \in [-4; 10], \beta_2 \in$ [2; 10]. На уровне значимости 5%

 - а) $\hat{\beta}_1$ значим, $\hat{\beta}_2$ значим с) $\hat{\beta}_1$ не значим, $\hat{\beta}_2$ не значимость чим невозможно
 - проверить
 - b) $\hat{\beta}_1$ значим, $\hat{\beta}_2$ не значим d) $\hat{\beta}_1$ не значим, $\hat{\beta}_2$ значим
- 28. Условием теоремы Гаусса-Маркова, необходимым для несмещённости оценок коэффициентов регрессии в модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ является
 - а) некоррелированность случайных ошибок
- с) гетероскедастичность случайных ошибок
- е) нормальность случайных ошибок

- b) гомоскедастичность случайных ошибок
- d) $\mathbb{E}(u_i) = 0$

- f) $\mathbb{E}(u_i) \neq 0$
- 29. Найдите наименьшее возможное значение p, если известно, что SARIMA(2,0,2)(3,0,3)[12]модель является частным случаем ARMA(p,q)-модели.
- 30. Оценка регрессионной зависимости с помощью МНК по 1234 наблюдениям имеет вид $\hat{Y}_i = 1$ $3X_i + 4Z_i$. Оценка ковариационной матрицы имеет вид

$$\operatorname{Var}(\hat{\beta}) = \begin{pmatrix} 1 & 0.1 & 0.2 \\ 0.1 & 4 & 1.5 \\ 0.2 & 1.5 & 18 \end{pmatrix}.$$

Длина 95%-го доверительного интервала для $eta_2 + eta_3$ примерно равна

a) 5

c) 10

e) 20

b) 25

d) 1.96

31. По 546 наблюдениям за 1987 г. оценили зависимость стоимости частных домов в Канаде price (измеряемой в долларах США) от общей площади square (измеряемой в кв. м.) наличия подъездного пути driveway (1 - если есть, 0 - если нет):

переменная	коэффициент	ст. ошибка	t-статистика	<i>P</i> -значение
square	2.724	2.15	1.27	0.206
driveway	-922.563	8602.312	-0.11	0.915
square*driveway	3.479	1.43	2.42	0.016
const	38731.07	8156.39	4.75	0.000

Согласно полученным результатам, при уровне значимости 5%, наличие подъездного пути увеличивает стоимость каждого квадратного метра жилья на

a) 6.203 \$

c) 2.724 \$

e) 0

b) 3.479 \$

d) -922.563 \$

32. Рассмотрим модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + u_i.$$

Оценка ковариационной матрицы коэффициентов равна

$$\begin{pmatrix} 10 & -2 & -1 \\ ? & 20 & 2 \\ ? & ? & 30 \end{pmatrix}$$

Найдите оценку дисперсии $\widehat{\operatorname{Var}}(\hat{\beta}_2 \mid X)$.

- 33. Храбрый исследователь Вениамин оценил регрессию $\hat{Y}_i = \underset{(5)}{23} + \underset{(2)}{10} X_i$, в скобках приведены стандартные ошибки. Доверительный интервал для свободного члена равен [14; 32]. Доверительный интервал для коэффициента наклона при том же уровне доверия будет равен
 - a) [6.4; 13.6]

c) [6.08; 13.92]

e) [5; 15]

b) [6; 14]

- d) [1; 19]
- 34. У Винни-Пуха был временной ряд из 200 наблюдений. Винни использует алгоритм градиентного бустинга над деревьями, причем в качестве предикторов он берёт лаги $y_{t-1},...,y_{t-8}$. По скольки наблюдениям обучается каждое из деревьев?
- 35. Стьюдентизированные остатки регрессии используются
 - а) в методе главных компонент
- с) на первом шаге двухшагового МНК
- е) на первом шаге при проведении теста Годфельда-Квандта

- b) в тесте Саргана
- d) для выявления выбросов

с) Сумма весов равна 0.

- 36. Рассмотрим веса, с которыми исходные переменные входят в первую главную компоненту. Выберите верное утверждение.
 - а) Веса могут быть абсолютно произвольными.
- d) Сумма весов равна 1, веса могут быть отрицатель-
- е) Сумма модулей весов равна 1.

- b) Сумма квадратов весов равна 1.
- ными.
- f) Сумма весов равна 1, веса неотрицательные.

37. У Агнессы 120 наблюдений и она оценивает качество прогнозов на два шага вперёд с помощью кросс-валидации растущим окном. Стартовая ширина окна равна 70.

Сколько раз будет оценена каждая модель при выполнении кросс-валидации?

38. У ARMA(2,3)-модели с нулевым ожиданием и нормально распределенными ошибками логарифм правдоподобия оказался равен -130.

Найдите значение информационного критерия Акаике.

39. Аркадий оценил модель множественной регрессии с константой, а Борислав добавил в эту модель ещё два предиктора.

Они, соответственно, получили суммы квадратов остатков RSS_a и RSS_b , общие суммы квадратов TSS_a и TSS_b , и оценённые суммы квадратов ESS_a , ESS_b .

Выберите верное утверждение.

a)
$$TSS_a = TSS_b$$
, $RSS_a \ge RSS_b$.

a)
$$TSS_a = TSS_b$$
, $RSS_a \ge$ c) $ESS_a = ESS_b$, $TSS_a \le$ e) $ESS_a = ESS_b$, $TSS_a \ge TSS_b$.

e)
$$ESS_a = ESS_b$$
, $TSS_a \ge TSS_b$.

b)
$$TSS_a = TSS_b$$
, $RSS_a \le RSS_c$

d)
$$RSS_a = RSS_b$$
, $ESS_a \ge ESS_b$.

b)
$$TSS_a = TSS_b$$
, $RSS_a \le$ d) $RSS_a = RSS_b$, $ESS_a \ge$ f) $RSS_a = RSS_b$, $ESS_a \le ESS_b$.

40. Гипотеза о неадекватности множественной регрессии проверяется с помощью статистики равной

a)
$$\frac{RSS}{TSS}$$

c)
$$\frac{ESS/(k-1)}{RSS/(n-k)}$$

e)
$$\frac{\hat{\beta}-\beta}{se(\hat{\beta})}$$

b)
$$\frac{TSS/(n-1)}{ESS/(k-1)}$$

d)
$$\frac{TSS/(n-1)}{RSS/(n-k)}$$

f)
$$\frac{ESS}{TSS}$$

b) $\frac{TSS/(n-1)}{ESS/(k-1)}$ d) $\frac{TSS/(n-1)}{RSS/(n-k)}$ 41. Рассмотрим короткий ряд из четырех наблюдений: 5,4,6,5.

Предположим, что ряд описывается моделью $y_t = \mu + u_t$, где величины (u_t) независимы и нормально распределены $\mathcal{N}(0; \sigma^2)$.

Найдите оценку $\hat{\sigma}^2$ методом максимального правдоподобия с точностью до двух знаков после десятичной точки.

42. В модели парной регрессии $R^2=0.9, TSS=100$ и 12 наблюдений. Несмещённая оценка дисперсии случайной ошибки равна

- 43. Найдите коэффициент при y_{t-2} в выражении $(7+7L^2+(1+L)^3)y_t$.
- 44. Арамис построил регрессию по 66 наблюдениям:

$$\hat{Y}_i = \underbrace{4}_{(0.4)} + \underbrace{6}_{(5)} X_i + \underbrace{4.4Z_i}_{(2)} - \underbrace{3}_{(2)} Q_i - \underbrace{9}_{(3)} R_i + \underbrace{16}_{(10)} S_i.$$

Показатель R^2_{adj} может увеличиться при удалении из модели группы факторов

a) X, Q, S

c) Q, S

e) X. Q

b) *X*, *S*

- d) S
- 45. Процесс u_t является белым шумом. Нестационарным является процесс
 - a) $Y_t = -Y_{t-1} + u_t$
- c) Y_t независимо и одинаково распределены $\mathcal{N}(7; 16)$
- e) $Y_t = 5 + 0.1Y_{t-1} + u_t + 0.1Y_{t-1} + 0.1Y_{$ $0.2u_{t-1}$

- b) $Y_t = 7 + u_t + 0.2u_{t-1}$ $1.2u_{t}-2$
- d) $Y_t = u_t + 2u_{t-1}$

еория вероятностей, ВШЭ		
	$x_i + u_i$ оценивают с помощью МНК са пересечения линии регрессии с в	\hat{x} . Известно, что $\bar{x}=2, \bar{y}=4, \mathbf{u} \hat{eta}_x=5.$ вертикальной осью Oy ?
-	их из трёх наблюдений: $x=(0,1,1)$, оогноз \hat{y}_3 в модели $y_i=eta_1+eta xx_i+$	
48. Если $\mathbb{E}(X) = 4$, $\mathbb{E}(Y)$	= 3, Var(X) = 6, Var(Y) = 7, Cov(X) = 6	(X,Y) = -1, то $Cov(1 - X + 2Y, X)$ равна
a) -4	c) 4	e) -8
b) -9	d) 8	f) 9
		авна 100, выборочная дисперсия суммы с
зонной и остаточно	й компоненты равна 150.	

ы се-

Найдите силу выраженности сезонности с точностью до двух знаков после десятичной точки.

50. Известно два значения автоковариационной функции стационарного процесса $\gamma_0 = 500$ и $\gamma_7 =$ 200.

Найдите точное значение автокорреляционной функции ρ_7 .

Ответ вводите с точностью до двух знаков после десятичной точки.

51. В множественной регрессии с константой матрица X имеет размер 55×5 , TSS = 600, ESS = 100. Несмещённая оценка для дисперсии случайных ошибок модели равна

a) 30 c) 20 e) 10 b) 5.48 d) 4.47 f) 9

- 52. Укажите число параметров в ARIMA(2,2,2) модели с ненулевым математическим ожиданием и нормально распределенными ошибками.
- 53. Для набора панельных данных истинна спецификация модели со случайными эффектами, однако Вовочка оценивает модель с фиксированными эффектами. Вовочкины оценки коэффициентов β окажутся
 - а) несмещёнными и эффек-

фективными

d) состоятельными и эффективными

тивными

- b) состоятельными и неэф
 - тивными
- е) несостоятельными
- 54. Используя метод наименьших квадратов в задаче парной регрессии, исследователь
 - а) может найти оценки коэффициентов, но не истинные значения коэффициентов.
 - b) может найти и оценки коэффициентов, и истинные значения коэффици-

ентов.

с) может найти истинные значения коэффициентов и построить доверительный интервал для них.

с) смещёнными и неэффек-

d) может найти истинные коэффициензначения

тов, но не оценки коэффициентов.

е) не может найти оценки коэффициентов, но может построить доверительный интервал для них.

55. По набору данных cars из R оцените модель

$$dist_i = \beta_1 + \beta_2 speed_i + u_i$$
.

Ошибки модели нормально распределены и удовлетворяют классическим предпосылкам.

Для машины со стартовой скоростью 20 миль в час постройте 95%-й предиктивный интервал для фактической длины тормозного пути в футах.

В ответе укажите правую границу интервала с точностью до двух знаков после десятичной точки.

Набор данных встроен в R и доступен по ссылке: https://github.com/vincentarelbundock/Rdatasets/raw/maste

- 56. Если гипотеза $\beta_2+\beta_3=1$ верна, то модель $\ln Y_i=\beta_1+\beta_2\ln X_i+\beta_3\ln Z_i+u_i$ совпадает с моделью
- a) $\ln(Y_i/Z_i) = \beta_1 + c$) $\ln(Y_i/Z_i) = \beta_1 + e$) $\ln Y_i = \beta_1 + \beta_2 \ln(Z_i/Y_i) + \beta_2 \ln(X_i/Z_i) + u_i$
- $\beta_2 \ln(Y_i/X_i) + u_i$
- b) $\ln(Y_i/Z_i)$ = β_1 + d) $\ln Y_i = \beta_1 + \beta_2 \ln(X_i/Z_i)$ +
- 57. У меня набор данных из трёх наблюдений: x = (1, 2, 3), y = (5, 6, 10).

Чему равна МНК-оценка $\hat{\beta}$ в модели $y_i = 3 + \beta x_i + u_i$?

Ответ вводите с точностью до двух знаков после запятой.

- 58. Сколько свободных параметров оценивается в ETS(ANA) модели по квартальным данным?
- 59. Оценка $\hat{\beta}_{2SLS}$ модели $Y=X\beta+u$ получена двухшаговым МНК с матрицей инструментальных переменных Z. Если число инструментов превышает количество включенных в модель факторов, то β_{2SLS} имеет вид
 - a) $(Z'X)^{-1}Z'Y$

c) $Z(Z'Z)^{-1}Z'X$

e) $(X'Z(Z'Z)^{-1}Z'X)^{-1}Z'Z(Z'Z)^{-1}$

- b) $(X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)d' Z'Z'Z)^{-1}Z'Y$
- 60. Сколько свободных параметров оценивается в ETS(MAdM) модели на квартальных данных?
- 61. Основная гипотеза модели адаптивных ожиданий состоит в том, что
- a) $X_{t+1}^e X_t^e = \lambda(X_t c)$ $X_t^e X_{t-1}^e = (1 \lambda)(X_t e)$ $Y_t^e = (1 \frac{1}{\delta})Y_{t-1} + X_t^e), \ 0 \le \lambda < 1$ $(1 \frac{1}{\delta})Y_{t-1} + \frac{1}{\delta}Y_t, \ 0 < \delta \le 1$
- b) $Y_t Y_{t-1} = \delta(Y_t^e d) Y_t Y_{t-1}^e = \delta(Y_t^e Y_{t-1}), \ 0 < \delta \le 1$
- 62. Винни-Пух пытается понять, от каких переменных может зависеть его потребление мёда. Собрав 100 разных переменных, он построил 100 парных регрессий и проверил в них значимость коэффициента при каждой из переменных на уровне значимости 0.05. Пятачок понимает, что все 100 переменных не имеют никакого отношения к потреблению мёда и на самом деле просто случайные числа. Помогите Пятачку определить, сколько значимых переменных скорее всего найдёт Винни-Пух.
 - а) Не хватает данных для от-
- b) 5

d) 100

c) 10

- 63. Известно, что $y_t = 5 + u_t + 9u_{t-1}$, где (u_t) белый шум с дисперсией 7.

Найдите автокорреляцию первого порядка ρ_1 процесса (y_t) с точностью до двух знаков после десятичной точки.

	а) регрессии на константу	с) только модели без огра- ничений	и модели без ограниче-
	b) регрессии на все факторы кроме константы	d) только модели с ограни- чениями	ний
65.	Рассмотрим два процесса. Первый, $y_t = 5 + u_t + 9u_{t-1}$, где ($v_t = 5 + v_t + kv_{t-1}$, где $k = 0$ Известно, что у процессов $k = 0$ и ($k = 0$ ностью до двух знаков после деся	(u_t) — белый шум с дисперсией 3 . $ eq 9$ и (v_t) — белый шум с дисперо (x_t) одинаковые автоковариацион	
66.	Известно, что $y_1 = 6$, $y_{10} = 30$, а об С помощью линейной интерполяной точки.	= *	
67.	Рассмотрим $MA(2)$ процесс $y_t =$ корни характеристического уравн В каком из предложенных случае (u_t) ?	иения MA -части, $\lambda_2+lpha_1\lambda+lpha_2=$	· 0.
	a) $\lambda_1 = 1.3, \lambda_2 = 1.8$	c) $\lambda_1 = 0.3, \lambda_2 = 1.8$	e) $\lambda_1 = 1, \lambda_2 = -1$
68.	b) $\lambda_1=0.3,\lambda_2=-0.8$ Рассмотрим лаговые многочлены При каком значении α многочлен Ответ вводите с точностью до дву	ны будут сократимыми?	$L + \alpha L^2$.
69.	Рассмотрим модель $Y_i=\beta_0+\beta_z Z_i$ стандартную ошибку $se(\hat{\beta}_w)$ по форегрессоров. Эта стандартная ошибка является	ррмуле $se(\hat{\beta}_w) = \sqrt{RSS \cdot (X'X)_{33}^{-1}}$	ичности. Василий рассчитывает $\frac{1}{N}/(n-3)$, где $X-$ матрица всех
	а) смещённой	с) несмещённой	е) состоятельной
70.	b) смещённой вниз Для регрессии $Y=\beta_0+\beta_1X_1+\beta_2X_1$ тестовой статистики для проверки		
	a) 32/27	c) 11/9	по имеющимся данным
	b) 96	d) невозможно вычислить	e) 99
71.	При оценивании регрессионной изначение статистики Дарбина-Уол		
	а) Тест Дарбина-Уотсона во-	ции	е) Попадании в зону неопре-
	обще не проверяет нали- чие автокорреляции	с) 3 и 4	деленности
	b) Отсутствии автокорреля-	d) Отрицательной автокор- реляции	f) Положительной автокор- реляции
		Don't panic	12

64. Уоррен Баффет проверяет гипотезу H_0 : $g(\beta)=0$ для модели $Y_i=\beta_0+\beta_1X_{i1}+\ldots+\beta_kX_{ik}+u_i$ с помощью теста множителей Лагранжа. Для теста Уоррену необходимо знать оценки параметров

13

72.	Для модели $Y_i=eta_1+eta_2 X_i+u_i$, гр	це $u_i \sim \mathcal{N}(0, \sigma_u^2)$ тес	товая статистика $rac{\hat{eta}_2 -}{se(eta)}$	$rac{eta_2^0}{\hat{eta}_2)}$ имеет распределение
	a) χ^2_{n-2}	c) χ_1^2	e) Л	$\mathcal{N}(0,\sigma_u^2)$
	b) $\mathcal{N}(0,1)$ Логарифм наблюдаемой величинь медиана y_{T+1} в два раза меньше у Найдите ширину 95%-го предикта запятой.	словного ожидани ивного интервал д	я. ля $\ln y_{T+1}$ с точность	ью до двух знаков после
74.	Общеизвестно, что потребление м ства стихов, сочинённых им за ден сочинённых им стихов с ошибкого окажется	нь. К сожалению, В	инни-Пух забывчив :	и всегда называет число
	а) Несостоятельной	с) Смещённой,	но состоя-	гоятельной
	b) Несостоятельной, заниженной	тельной d) Несмещенной	•	lecoстоятельной, завы- іенной
/5.	В парной регрессии величина \bar{Y} —	$-\beta_1 - \beta_2 \Lambda$		
	а) не существуетb) равна 0	неотрицатель: ние	ное значе- е) ра	авна (-1)
76.	с) может принимать любое Рассмотрим модель без константь обозначим \hat{u} , а вектор из единичен Выберите верное утверждение	т $y_i = \beta x_i + u_i$, оце	П	ожет принимать любое оложительное значение ю МНК. Вектор остатков
	a) $\hat{u} \perp s$	c) $\hat{y} \perp x$	e) \hat{u}	$\perp x$
	b) $\hat{x} \perp \hat{u}$	d) $x \perp u$	f) \hat{y}	$\perp u$
	Исследовательница Надежда по п помощью МНК. И получила вектор остатков $(5,4,3)$ Чему равен пропущенный остатов По данным 570 индивидуумов ог длительности обучения индивиду $ASVABC$, и пола индивидуума, $ASVABC$	(3,2,?), а последний $(3,2,?)$, а последний $(3,2,?)$, а последний $(3,2,?)$, от $(3,2,?)$, от	й остаток Надежда за ть почасовой оплаты результата тестирова	была записать. α в долларах, $EARN$, от ания индивида в баллах,
	$ \widehat{\ln EARN}_i = \underset{(0.12)}{0.90} $	0.015004 + 0.0150000000000000000000000000000000000	$57ASVABC_i + 0.27M_{(0.1)}$	$AALE_i$
	Почасовая оплата труда мужчин			
79.	а) больше на 0.27 доллара $ \label{eq:bound} \text{b) больше на 0.27 процента} $ Найдите коэффициент при y_{t-2} в п	с) не отличается труда женщин выражении (7 + 6 <i>I</i>	е) бо	ольше на 27 долларов ольше на 27 процентов

Don't panic

80. Капитолина оценила регрессию $\hat{y}_i = 0.7 + 2x_i + 3w_i$ с помощью МНК по 10 наблюдениям. Классические стандартные ошибки коэффициентов равны 0.1, 0.2 и 0.3 соответственно.

Наблюдения являются независимыми, на ошибки выполнены классические предпосылки и предпосылка о нормальности, $u_i \sim \mathcal{N}(0; \sigma^2)$, $Cov(u_i, u_i \mid X) = 0$ для $i \neq j$.

Найдите 80% доверительный интервал для коэффициента β_x .

Можно использовать функции из статистических пакетов или таблицы.

В ответе укажите левую границу интервала с точнотью до двух знаков после десятичной точки.

81. Рассмотрим модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + u_i.$$

Все предпосылки классической регрессионной модели выполнены. По 25 наблюдениям оказалось, что сумма квадратов остатков равна RSS=60.

В регрессии z на остальные предикторы оказалось, что $RSS_z=30.$

Найдите оценку дисперсии $\widehat{\mathrm{Var}}(\hat{\beta}_3 \mid X)$.

Ответ вводите с точность до двух знаков после десятичной точки.

82. По данным для 27 фирм была оценена зависимость выпуска Y от труда L и капитала K с помощью моделей:

$$\ln Y_i = b_1 + b_2 \ln L_i + b_3 \ln K_i + u_i$$
 (1)

$$\ln Y_i = b_1 + b_2(\ln L_i + \ln K_i) + u_i$$
 (2)

Суммы квадратов остатков в этих моделях известны, $RSS_1 = 8$ и $RSS_2 = 10$. F-статистика для проверки гипотезы о равенстве эластичностей по труду и по капиталу равна

a) 6

c) 4

e) 8

b) 12

d) 2

83. В модели множественной регрессии с константой оказалось, что сумма квадратов остатков равна 100, а общая сумма квадратов равна 1000.

Найдите $\sum_i (y_i - \hat{y}_i)^2$.

84. Рассмотрим уравнение

$$y_t = 3 + 0.7y_{t-1} + u_t + 6u_{t-1},$$

где (u_t) — белый шум.

Определите, являются ли верными утверждения А и В.

A: уравнение имеет одно стационарное решение вида $MA(\infty)$ относительно (u_t) .

В: для MA-части уравнения выполнено условие обратимости.

- а) А верно, В неверно.
- с) А верно, В верно.
- b) А неверно, В верно.
- d) A неверно, В неверно.

85. Рассмотрим модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2 + u_i \cdot x_i.$$

Буквой X обозначена матрица всех предикторов. Выполнены классические предпосылки на ошибку $\mathbb{E}(u_i\mid X)=0$, $\mathrm{Var}(u_i\mid X)=\sigma^2$, $\mathrm{Cov}(u_i\mid X)=0$.

Найдите условную дисперсию $\mathrm{Var}(y_i \mid X)$.

a) σ^2

c) $\sigma^2 \cdot x_i^2$

e) u_i^2

b) σx_i

d) x_i

 $f) x_i^2$

- 86. Инструмент Z_t для состоятельной оценки динамической модели $Y_t = \alpha + \beta_0 X_t + \beta_1 Y_{t-1} + u_t$, где $u_t = u_t + \lambda_1 u_{t-1} + \lambda_2 u_{t-2},$
 - а) удовлетворяет условию

 $Corr(Z_t, X_t) = 0$

d) удовлетворяет условию $Corr(Z_t, Y_{t-1}) \neq 0$

 $Corr(Z_t, Y_{t-1}) = 0$

- с) удовлетворяет условию $Corr(Z_t, u_t) \to 1$
- е) не требуется
- b) удовлетворяет условию 87. Рассмотрим алгоритм градиентного бустинга над решающими деревьями для задачи регрессии. Выберите верное утверждение о том, какие наблюдения используются для обучения каждого дерева.
 - а) нет верного ответа

между деревьями случайным образом

рево использует всё больше и больше наблюдений

- b) каждое дерево использует свою бутстрэп-реплику исходных наблюдений
- d) каждое дерево использует все исходные наблюдения
- f) каждое последующее дерево использует всё меньше и меньше наблюдений

- с) наблюдения распределяются примерно поровну
- е) каждое последующее де-
- 88. Перед Винни-Пухом временной ряд потребления мёда без тренда и сезонными колебаниями постоянной амплитуды. Какая модель из предложенных лучше подходит для описания данного ряда?
 - a) ETS(MNM)

c) ETS(MAM)

e) ETS(ANA)

b) ETS(AAN)

d) ETS(AAA)

- f) ETS(AAdA)
- 89. Какая модель простому экспоненциальному сглаживанию?
 - a) ETS(ANA)

c) ETS(ANN)

e) ETS(AAA)

b) ETS(AAdA)

d) ETS(AAN)

f) нет верного ответа

90. По n=450 наблюдениям была оценена регрессия:

$$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + u_i.$$

Затем была оценена регрессия $|\hat{u}_i| = \alpha_1 + \alpha_2 \frac{1}{Z_i} + \nu_i$. Оказалось, что $\hat{\alpha}_2 = 20$ и $se(\hat{\alpha}_2) = 5$. Согласно этим данным, на уровне значимости 5% гипотеза о

- а) пропущенной переменной $1/Z_i$ отвергается
- с) пропущенной переменной $1/Z_i$ не отвергается
- е) гомоскедастичности не отвергается

- b) гомоскедастичности отвергается
- d) верной функциональной форме отвергается
- f) верной функциональной форме не отвергается

- 91. Выберите верное утверждение про модели бинарного выбора.
 - а) Модели бинарного выбора предназначены для выбора одного из двух возможных предикторов.
 - b) Модели бинарного выбора предназначены для включения предиктора, принимающего два значения.
 - с) Модели бинарного выбо-

- ра предназначены для моделирования зависимой переменной, принимающей счетноё число значений.
- d) Модели бинарного выбора предназначены для выбора одной из двух возможных линейных моделей.
- е) Модели бинарного выбора предназначены для моделирования зависимой переменной, принимающей два значения.
- f) Модели бинарного выбора предназначены для моделирования зависимой переменной с пропущенными значениями.
- 92. Если процесс является стационарным в широком смысле, то
 - а) он является стационарным в узком смысле
- с) его приращения являются стационарным процессом
- d) его автоковариационная
- е) это AR процесс с корнями характеристического уравнения, меньшими 1

- b) для него выполняется ocновная гипотеза в тесте Дикки-Фуллера
- функция является постоионня
- 93. Если нулевая гипотеза в расширенном тесте Дики-Фуллера с константой отвергается, то исходный ряд можно считать
 - а) стационарным в первых разностях

разностях

d) возрастающим

f) это белый шум

- b) стационарным во вторых
- с) нестационарным
- е) стационарным
- 94. В исходной выборке 9 наблюдений. Найдите вероятность того, что второе наблюдение из исходной выборки попадёт в очередную бутстрэп выборку ровно 3 раз.

Ответ укажите с точностью до двух знаков после десятичной точки.

95. У Маши две монетки: медная и серебряная. Маша подкинула каждую монетку 100 раз. Затем с помощью метода максимального правдоподобия Маша трижды оценила вероятность выпадения орла: для медной монетки, для серебряной и по объединённой выборке. Значения функции правдоподобия равны $\ell_{copper} = -300$, $\ell_{silver} = -200$ и $\ell_{common} = -510$.

LR статистика, проверяющая гипотезу о равенстве вероятностей выпадения орла для двух монеток, равна

a) 10

c) 5

e) 20

b) 1010

d) 500

96. Исследователь Феофан оценил с помощью МНК модель $Y=\beta_0I+\beta_1Z+\beta_2W+u$, где I- столбец из единиц. Для матрицы факторов, X=(IZW), известно, что

$$(X'X)^{-1} = \begin{pmatrix} 0.04 & 0.012 & -0.008 \\ 0.012 & 0.03 & -0.007 \\ -0.008 & -0.007 & 0.02 \end{pmatrix}$$

Предпосылки теоремы Гаусса-Маркова выполнены. Отношение дисперсии оценки $\hat{\beta}_0$ к дисперсии оценки $\hat{\beta}_2$ равно

a) 3/2

c) 1/2

e) 10/3

b) 2

- d) -5/1
- 97. Рассмотрим модель, стоящую за тета-методом,

$$\begin{cases} y_t = \ell_{t-1} + 2 + u_t \\ \ell_t = \ell_{t-1} + 2 + 0.3u_t \end{cases}.$$

Перепишите эту модель в виде

$$\Delta y_t = \theta_1 + \theta_2 u_{t-1} + u_t.$$

В ответ укажите коэффициент θ_2 .

98. Исследователь Винни-Пух оценил регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$ с помощью LASSO с очень-очень большим штрафом.

Известно, что $\bar{x}=10, \bar{y}=20, n=100.$

Найдите полученную им оценку $\hat{\beta}_2$.

- 99. Какие последствия имеет нестрогая мультиколлинеарность?
 - а) Оценки коэффициентов остаются несмещёнными, однако доверительные интервалы шире по сравнению с отсутствием мультиколлинеарности.
 - b) Оценки коэффициентов становятся несостоятельными.
- с) Предиктивные интервалы резко сужаются по сравнению с отсутствием мультиколлинеарности.
- d) Предиктивные интервалы резко расширяются по сравнению с отсутствием мультиколлинеарности.
- e) Оценки коэффициентов становятся смещёнными.
- б) Оценки коэффициентов остаются несмещёнными, однако доверительные интервалы уже по сравнению с отсутствием мультиколлинеарности.
- 100. Василий сменил единицы измерения ряда с рублей на тысячи рублей.

На какое число при этом домножится средняя абсолютная процентная ошибка наивной модели?

101. Василий хочет оценить константу μ в модели $Y_i = \mu + u_i$, где $\mathbb{E}(u_i) = 0$, $\mathbb{E}(u_i u_j) = 0$ при $i \neq j$, $\mathrm{Var}(u_i) = \sigma^2 X_i$ и $X_i > 0$.

В классе линейных несмещенных оценок наиболее эффективной является:

a) $(I'I)^{-1}I'Y$

c) $\frac{\sum Y_i/X_i}{\sum 1/X_i}$

e) $\frac{\sum Y_i/X_i}{\sum 1/X_i^2}$

b) \bar{Y}

d) $\frac{\sum Y_i X_i}{\sum X_i^2}$

f) $\frac{\sum Y_i X_i}{\sum X_i}$

- 102. Выберите верное утверждение про мультиколлинеарность.
 - а) Мультиколлинеарность— это линейная зависимость между регрессорами.
 - b) Мультиколлинеарность это нелинейная зависимость между регрессорами.
 - с) Мультиколлинеарность

- это линейная зависимость между зависимой переменной и случайной ошибкой.
- d) Мультиколлинеарность
 это линейная зависимость между регрессорами и случайной ошиб-кой
- е) Мультиколлинеарность это нелинейная зависимость между зависимой переменной и случайной ошибкой.
- f) Мультиколлинеарность

 это линейная зависи мость между зависимой переменной и регрессорами.
- 103. Тест Саргана для проверки валидности инструментов можно использовать только в том случае, если число инструментов
 - а) больше числа эндогенных переменных
 - b) совпадает с числом эндогенных переменных
- с) совпадает с числом экзогенных переменных
- d) меньше числа экзогенных переменных
- e) меньше числа эндогенных переменных
- 104. Капитолина оценила регрессию $\hat{y}_i = 0.7 + 2x_i + 3w_i$ с помощью МНК по 1000 наблюдениям. Она хочет проверить гипотезу $\beta_x = \beta_w$, однако не хочет ничего рассчитывать руками. Как поступить Капитолине, чтобы легко проверить желаемую гипотезу по стандартной табличке, выдаваемой статистическими программами?
 - а) Оценить регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2(x_i w_i) + \hat{\beta}_3 w_i$, посмотреть на значимость коэффициента $\hat{\beta}_2$.
 - b) Оценить регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2(x_i + w_i) + \hat{\beta}_3 w_i$, посмотреть на значимость коэффициента $\hat{\beta}_2$.
- с) Оценить регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2(x_i + w_i) + \hat{\beta}_3 w_i$, посмотреть на значимость коэффициента $\hat{\beta}_3$.
- d) Оценить регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2(x_i + w_i) + \hat{\beta}_3(x_i w_i)$, посмотреть на значимость коэффициента $\hat{\beta}_2$.
- е) Оценить регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2(x_i w_i) + \hat{\beta}_3(w_i x_i)$, посмотреть на значимость коэффициента $\hat{\beta}_3$.
- f) Оценить регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2(x_i w_i) + \hat{\beta}_3 w_i$, посмотреть на значимость коэффициента $\hat{\beta}_3$.
- 105. Выберите верное утверждение про оценки коэффициентов логит-модели.
 - а) Оценки коэффициентов не являются случайными.
 - b) Оценки коэффициентов являются асимптотически нормальными.
- с) Доверительный интервал для коэффициентов строится с помощью tраспределения.
- d) Оценки коэффициентов строго больше соответ-
- ствующих оценок модели линейной регрессии.
- е) Оценки коэффициентов строго меньше соответствующих оценок модели линейной регрессии.

- 106. На панельных данных коэффициенты при факторах, постоянных во времени, НЕ могут быть оценены с помощью
 - а) метода максимального правдоподобия
- с) МНК для модели с полным набором даммипеременных для каждого
- d) сквозной регрессии

b) RE-оценки

индивида

- e) between-регрессии
- 107. Капитолина оценила регрессию $\hat{y}_i = 0.7 + 2x_i + 3w_i$ с помощью МНК по 1000 наблюдениям. Оценённая ковариационная матрица оценок коэффициентов равна

$$Var(\hat{\beta}) = \begin{pmatrix} 4 & 1 & -1 \\ 1 & 9 & 0 \\ -1 & 0 & 16 \end{pmatrix}.$$

Наблюдения являются независимыми, на ошибки выполнены классические предпосылки, $\mathbb{E}(u_i \mid X) = 0$, $\mathrm{Var}(u_i \mid X) = \sigma^2$, $\mathrm{Cov}(u_i, u_j \mid X) = 0$ для $i \neq j$.

Постройте 95%-й доверительный интервал для разницы $\beta_x - \beta_w$.

Можно использовать функции из статистических пакетов или таблицы.

В ответ введите правую границу с точностью до двух знаков после десятичной точки.

- 108. При работе с панельными данными для выбора между моделью с фиксированными эффектами и моделью со случайными эффектами используется
 - а) тест отношения правдоподобия
- b) поиск на сетке

- d) тест Хаусмана
- с) тест Голдфелда-Квандта
- е) тест Бройша-Пагана
- 109. У Агнессы 120 наблюдений и она оценивает качество прогнозов на один шаг вперёд с помощью кросс-валидации скользящим окном. Ширина окна равна 70.

Сколько раз будет оценена каждая модель при выполнении кросс-валидации?

110. Пантелеймон оценил парную регрессию по 50 наблюдениям

$$\hat{y}_i = 8.9 + 12.9x_i.$$

Оценка ковариационной матрицы оценок коэффициентов имеет вид

$$\begin{pmatrix} 16.7 & -4.6 \\ -4.6 & 1.74 \end{pmatrix}$$
.

Величина суммы квадратов остатков равна 10871.

Предпосылки классической линейной модели выполнены, ошибки имеют нормальное распределение.

Оцените дисперсию прогноза для x = 1.

Ответ вводите с точностью до двух знаков после десятичной точки.

111. Пантелеймон оценил парную регрессию по 50 наблюдениям

$$\hat{y}_i = 8.9 + 12.9x_i$$
.

Оценка дисперсии прогноза при x=1 равна 100. Оценка дисперсии случайной ошибки равна 400. Предпосылки классической линейной модели выполнены, ошибки имеют нормальное распределение.

Постройте 95%-й предиктивный интервал для y_i при $x_i = 1$.

В ответе укажите правую границу интервала с точностью до двух знаков после десятичной точки.

- 112. При проверке гипотезы о значимости коэффициента линейной регрессии р-значение, соответствующее тестовой статистике, оказалось равным 0.07. Отсюда следует, что
 - а) длина 95% доверительного интервала для этого коэффициента больше 0.07

эффициента меньше 0.07

с) соответствующий коэф-

фициент не значим при

фициент значим при уровне значимости 1%

- b) длина 95% доверительного интервала для этого ко-
- d) соответствующий коэф-

уровне значимости 5%

- е) длина 95% доверительного интервала для этого коэффициента равна 0.07
- 113. У меня набор данных из трёх наблюдений: x = (2, 2, 2), y = (3, 6, 12).Чему равен МНК-прогноз \hat{y}_3 в модели $y_i = \beta x_i + u_i$?
- 114. Сколько свободных параметров оценивается в ETS(MNM) модели на квартальных данных?
- 115. У меня набор данных из трёх наблюдений: x = (1, 2, 3), y = (5, 6, 10).Чему равна МНК-оценка β в модели $y_i = \beta x_i + u_i$? Ответ вводите с точностью до двух знаков после запятой.
- 116. В рамках ETS(ANN) модели найдите точечный прогноз на три шага вперёд, Последнее значение уровня (сглаженного ряда) равно 200, $\ell_t = \ell_{t-1} + 0.3u_t$, $u_t \sim \mathcal{N}(0; 16)$, $y_t = \ell_{t-1} + u_t$. Ответ введите с точностью до двух знаков после десятичной точки.
- 117. Исследовательница Клеопатра оценила модель $\ln Y_i = \beta_0 + \beta_1 \ln X_i + \beta_2 \ln Z_i + \beta_3 \ln W_i + u_i$. Клеопатра хочет протестировать гипотезу H_0 : $\beta_3 + 2\beta_1 = 1$. Для этой цели можно оценить вспомогательную регрессию
 - a) $\ln(Y_i/W_i) = \gamma_0 + c$ $\ln(Y_i/W_i^2) = \gamma_0 + e$ $\ln(Y_i \cdot W_i) = \gamma_0 + \gamma_1 \ln(X_i \cdot W_i^2) + \gamma_2 \ln Z_i + u_i$ e $\ln(Y_i \cdot W_i) = \gamma_0 + \gamma_1 \ln(X_i \cdot W_i^2) + \gamma_2 \ln Z_i + u_i$
- b) $\ln(Y_i/W_i) = \gamma_0 + \gamma_1 \ln(X_i \cdot d) \ln(Y_i \cdot W_i) = \gamma_0 + \gamma_0$ W_i^2) + $\gamma_2 \ln Z_i + u_i$
 - $\gamma_1 \ln(X_i/W_i^2) + \gamma_2 \ln Z_i + u_i$
- 118. Рассмотрим две конкурирующие модели: ARMA(2,1) с ненулевым ожиданием и ARIMA(0,1,2)с нулевым ожиданием.

Каким способом разумно выбрать наилучшую из них?

- а) нет верного ответа
- c) KPSS тест с константой
- e) ADF тест с трендом

- b) ADF тест без константы
- d) KPSS тест с трендом
- f) критерий Акаике

119. Для регрессионной модели со свободным членом известно, что

$$X'X = \begin{pmatrix} 20 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 3 & 5 \end{pmatrix}, \quad X'Y = \begin{pmatrix} 40 \\ 10 \\ 13 \end{pmatrix}, \quad \sum_{i=1}^{n} Y_i^2 = 140.$$

Коэффициент \mathbb{R}^2 в этой модели равен

- а) недостаточно информации, чтобы вычислить R^2
- b) 0.5

d) 0.6

c) 9/35

e) 13/14

120. Рассеянная исследовательница Надежда ошибочно оценила модель $y_i = \beta_1 + \beta_x x_i + \beta_w w_i + u_i$ и получила неверные оценки β .

А затем, используя неверные оценки коэффициентов, посчитала $\sum \hat{u}_i^2$ и $\sum \hat{u}_i$. Сравните эти две суммы с верно рассчитанными.

- а) $\sum \hat{u}_i^2$ занижена, а $\sum \hat{u}_i$ за-
- с) обе суммы могут быть и завышены, и занижены.
- e) $\sum \hat{u}_i^2$ завышена, а $\sum \hat{u}_i$ за-

- шена, и занижена, а $\sum \hat{u}_i$ занижена.
- b) $\sum \hat{u}_i^2$ может быть и завы-шена, и занижена, а $\sum \hat{u}_i$ может быть и завышена, а $\sum \hat{u}_i$ б) $\sum \hat{u}_i^2$ может быть и завышена, и занижена, а $\sum \hat{u}_i$ шена, и занижена, а $\sum \hat{u}_i$ и занижена.
 - шена, и занижена, а $\sum \hat{u}_i$
- 121. У исследователя всего четыре наблюдения, y = (1, 3, 5, 7). Найдите общую сумму квадратов TSS.
- 122. Выберите верное утверждение про главные компоненты.
 - а) Главные компоненты сохраняют среднее значение исходных переменных.
- с) Первая главная компонента имеет наименьшую выборочную дисперсию.
- е) Главные компоненты имеют единичную дли-Hy.

- b) Первая главная компонента совпадает с зависимой переменной.
- d) Главные компоненты некоррелированны.
- f) Первая главная компонента имеет наибольшее среднее значение.
- 123. Пантелеймон включил в модель 200 совершенно бессмысленных регрессоров, которые никак не влияют на переменную у. Пантелеймон не знает этого и проверяет значимость коэффициента при каждом коэффициенте на уровне значимости $\alpha=0.02.$

Сколько ложно значимых регрессоров в среднем обнаружит Пантелеймон?

124. Для регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 W_i$, оценённой по 24 наблюдениям, $R^2 = 0.9$. При проверке гипотезы о неадекватности модели F-статистика равна

a) 189/2

c) 5/9

e) 200.27

b) 60

d) 45

- 125. В парной регрессии на уровне значимости 5%-ов гипотеза H_0 : $\beta_2=2016$ не отвергается. Из этого можно сделать вывод, что на соответствующем уровне значимости
 - а) H_a : $\beta_2 \neq 0$ отвергается
- c) H_a : $\beta_2 \neq 0$ не отвергается
- е) H_0 : $\beta_2 = 0$ отвергается

- b) нет верного ответа
- 126. Рассмотрим уравнение
- d) доверительный интервал для β_2 не содержит ноль
- f) $H_0: \beta_2 = 0$ не отвергается

$$y_t = 3 + 0.7y_{t-1} + u_t + 0.6u_{t-1},$$

где (u_t) — белый шум.

Определите, являются ли верными утверждения А и В.

А: уравнение имеет одно стационарное решение вида $MA(\infty)$ относительно (u_t) .

B: для MA-части уравнения выполнено условие обратимости.

- а) А верно, В верно.
- с) А неверно, В неверно.
- b) А верно, В неверно.
- d) А неверно, В верно.
- 127. Выборочная корреляция между регрессорами X и Z равна 0.5. В регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$ показатель VIF для регрессора X равен
 - a) 1/2

c) 3/4

e) 1/4

b) 2

- d) 4/3
- 128. Использование скорректированных стандартных ошибок Уайта при гомоскедастичности приведет к
 - а) получению состоятельной оценки дисперсии случайной ошибки
- циентов

оценок коэффициентов

- b) понижению эффективности МНК оценок коэффи-
- с) смещённости МНК оценок коэффициентов

d) несостоятельности МНК

- е) повышению эффективности МНК оценок коэффициентов
- 129. Рассмотрим модель множественной регрессии $Y=X\beta+u$, где $\hat{Y}=X\hat{\beta},\,e=Y-\hat{Y}.$ Величина RSS- это квадрат длины вектора
 - a) $\hat{Y} \bar{Y}$

c) \hat{Y}

e) $Y - \bar{Y}$

b) 6

- d) *u*
- 130. Коэффициент ${\mathbb R}^2$ может быть представлен в виде
 - a) $\sum_{j=2}^{k} \beta_j \frac{\text{sVar}(Y)}{\text{sCov}(X_i,Y)}$
- c) $\sum_{j=2}^{k} \hat{\beta}_j \frac{\operatorname{sCorr}(X_j, Y)}{\operatorname{sVar}(\hat{Y})}$
- e) $\sum_{j=2}^{k} \beta_j \frac{\operatorname{sCorr}(X_j, Y)}{\operatorname{sVar}(\hat{Y})}$

- b) $\sum_{j=2}^{k} \hat{\beta}_{j} \frac{\operatorname{sCov}(X_{j}, Y)}{\operatorname{sVar}(Y)}$
- d) $\sum_{j=2}^{k} \hat{\beta}_{j} \frac{\operatorname{sCorr}(X_{j}, Y)}{\operatorname{sVar}(Y)}$
- f) $\sum_{j=2}^{k} \hat{\beta}_{j} \frac{\text{sVar}(Y)}{\text{sCov}(X_{j}, Y)}$

131. Рассмотрим модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2 + u_i.$$

Буквой X обозначена матрица всех предикторов. Выполнены классические предпосылки на ошиб- $\operatorname{Ky} \mathbb{E}(u_i \mid X) = 0, \operatorname{Var}(u_i \mid X) = \sigma^2, \operatorname{Cov}(u_i \mid X) = 0.$

Найдите условное ожидание $\mathbb{E}(y_i \mid X)$.

- a) $\beta_1 + \beta_2 x_i + \beta_3 x_i^2 + u_i$ c) $\hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 x_i^2$
- **e**) 0

b) \hat{y}_i

d) $\beta_1 + \beta_2 x_i$

f) $\beta_1 + \beta_2 x_i + \beta_3 x_i^2$

132. В модели парной регрессии выборочная корреляция между зависимой переменной и предиктором равна -0.7.

Найдите выборочную корреляцию между зависимой переменной и прогнозами.

- 133. Случайные величины r и s независимы и равновероятно равны 0 или 1. Чему равна условная дисперсия $Var(r + s^2 \mid r)$?
 - a) r + 0.25

c) 1

e) 0.5

b) r

d) r + 0.5

f) 0.25

134. Рассмотрим ETS модель с мультипликативной сезонностью для месячных данных. Известно, что $s_5 = 0.8, u_{17} = 1, \gamma = 0.3.$

На сколько процентов сезонный эффект увеличивает значение наблюдаемого ряда в момент времени t = 17?

В ответе укажите целое число процентов.

- 135. Если оценивается модель $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$, а истинной является модель $Y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + u_i$, то МНК-оценка $\hat{\beta}_2$ оказывается
 - а) всегда несмещённой

вой выборочной ковариа-

е) всегда смещённой

- b) несмещённой при $\beta_1 = 0$
- с) несмещённой при нуле-
- d) эффективной

ции X и Z

f) равной нулю

136. По 20 наблюдениям Чебурашка оценил модель $Y_i = \beta_0 + \beta_1 X_i + u_i$. Известно, что $\sum X_i = -10$, $\sum X_i^2 = 40, \sum X_i Y_i = 10, \sum Y_i = 50.$

Сумма оценок МНК коэффициентов $\hat{\beta}_0 + \hat{\beta}_1$ равна

a) 3

c) 4

e) 2

b) 5

d) 1

137. Ряд (u_t) — белый шум с дисперсией равной 25. Найдите дисперсию $Var(2u_t + 2u_{t-1} + \sqrt{2}u_{t-2})$.

138. Корни характеристического многочлена AR-части уравнения равны $\lambda_1 = 0.02$ и $\lambda_2 = 0.28$. Найдите наименьший корень лагового многочлена AR-части.

Ответ вводите с точностью до двух знаков после десятичной точки.

139. Рассмотрим два процесса.

Первый, $y_t = 5 + u_t + 2u_{t-1}$, где (u_t) — белый шум с дисперсией 8.

Второй, $x_t = 5 + v_t + kv_{t-1}$, где $k \neq 2$ и (v_t) — белый шум с дисперсией σ^2 .

Известно, что у процессов (y_t) и (x_t) одинаковые автоковариационные функции. Найдите σ^2 с точностью до двух знаков после десятичной точки.

140.	Рассмотрим логистическую регрестодом максимального правдоподочимости коэффициента β_3 имеет		
	а) t -распределение с $n-5$ степенями свободы	c) t -распределение с n степенями свободы	e) χ^2 -распределение с одной степенью свободы
141.	b) t -распределение с $n-6$ степенями свободы Процесс u_t является белым шумом	мальное распределение	цесс
	a) $Y_t = -1Y_{t-1} + u_t$	c) $Y_t = 0.1Y_{t-1} + u_t$	e) $Y_t = 2017u_t$
142.	b) $Y_t = u_t + 0.1u_{t-1} + 1.5u_{t-2}$ Обобщенный МНК служит для оц щего условия теоремы Гаусса-Мар	енивания регрессионных моделе	й в случае нарушений следую-
	a) $rank X = k$	c) Величина Y_i линейна по β_1,β_2,\dots	e) u_i распределены нормально
143.	b) $\mathrm{Var}(u) = \sigma^2 I$ При выполненных условиях регу. HE являться	, (0)	ального правдоподобия могут
	а) состоятельными	с) асимптотически нор-	е) инвариантными
	b) асимптотически эффек-	мальными	
144.	тивными Выберите верное утверждение о с	d) несмещёнными итуации, в которой оценки логит	-модели не существуют.
	а) Нужно рассмотреть пробит-модель вместо логит-модели.	c) Разумно исключить из модели константу.	шить введением в целе- вую функцию дополни-
	b) Такая ситуация невоз- можна, оценки макси- мального правдоподобия всегда существуют.	d) Разумно включить квадраты и кросс- произведения исходных переменных.	тельного штрафа за от- клонение оценок коэффи- циентов от нуля.
145.	Исследовательница Надежда оцен Известно, что $\bar{Y}=5, \bar{X}=6, \bar{Z}=-\hat{\beta}_2 Z_i$, оценка коэффициента $\hat{\beta}_0$ рав	2. В регрессии нецентрированны	
	a) 2	c) 5	e) 4
	b) 3	d) 1	
146.	Известны средние $\bar{x}=3$, $\bar{y}=2$ и с Определим $a_i=x_i-\bar{x}$ и $b_i=y_i$ — Чему равно скалярное произведен	$ar{y}.$).

147. У ARMA(4,1)-модели с ненулевым ожиданием и нормально распределенными ошибками лога-

рифм правдоподобия оказался равен -190.

Найдите значение информационного критерия Акаике.

148. Исследователь Борис оценил параметры нескольких моделей:

Модель Уравнение

- 1 $Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$
- $2 \quad \ln Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$
- $Y = \beta_1 + \beta_4 X_4 + \beta_5 X_5 + u$

 $\frac{4 \quad Y/X_2 = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u}{\text{C помощью } R_{adj}^2 \text{ можно выбрать лучшую из пар моделей}}$

а) 2 и 4

с) 1и3

е) 1 и 2

b) 1 и 4

d) 2 и 3

- f) 3и4
- 149. Рассмотрим ETS модель с мультипликативной сезонностью и мультипликативной ошибкой для месячных данных. Известно, что $s_5=0.8,\,u_{17}=1.2,\,u_{29}=-1,\,\gamma=0.5.$

На сколько процентов сезонный эффект уменьшает значение наблюдаемого ряда в момент времени t = 41?

В ответе укажите целое число процентов.

- 150. Выберите верное утверждение про стационарный ARMA(3,2) процесс.
 - а) нет верного ответа

функция зануляется начиная с лага 4.

е) частная автокорреляционная функция зануляется начиная с лага 2.

- b) автокорреляционная функция зануляется начиная с лага 3.
- d) частная автокорреляционная функция зануляется начиная с лага 4.
- f) частная автокорреляционная функция зануляется начиная с лага 3.

- с) автокорреляционная
- 151. Выберите стационарный процесс (уравнение, которое имеет стационарное решение, не заглядывающее в будущее), если u_t — белый шум.

a)
$$y_t = 1.2y_{t-1} + u_t$$

c)
$$y_t = tu_t$$

$$0.12y_{t-2} + u_t - 3u_{t-1}$$

b)
$$y_t = u_1 + u_2 + \ldots + u_t$$

b)
$$y_t = u_1 + u_2 + \ldots + u_t$$
 d) $y_t = 1.2 + 0.8y_{t-1}$ - e) $y_t = 2 + 3t + u_t + u_{t-1}$

e)
$$y_t = 2 + 3t + u_t + u_{t-1}$$

152. Оценка максимального правдоподобия параметра λ по случайной выборке $X_1,...,X_n$ из распределения с функцией плотности

$$f(x|\lambda) = \begin{cases} \lambda^{-1} x^{-1+1/\lambda}, \text{ если } 0 < x < 1; \\ 0, \text{ иначе.} \end{cases}$$

имеет вид:

a)
$$\hat{\lambda}_{ML} = \frac{X_1^2 + ... + X_n^2}{n}$$

c)
$$\hat{\lambda}_{ML} = \frac{X_1 + \dots + X_n}{n}$$

e)
$$\hat{\lambda}_{ML} = -\frac{X_1 + \dots + X_n}{n}$$

b)
$$\hat{\lambda}_{ML} = -\frac{\ln X_1 + ... + \ln X_n}{n}$$

d)
$$\hat{\lambda}_{ML} = \frac{\ln X_1 + \dots + \ln X_n}{n}$$

153.	Что показывает коэффициент вздути	я дисперсии VIF оценки коэф	официента регрессии?
------	-----------------------------------	-------------------------------	----------------------

- а) Во сколько раз дисперсия оценки коэффициента больше по сравнению с идеальной ситуацией с некоррелированными предикторами.
- b) Во сколько раз дисперсия оценки коэффициента больше по сравнению с идеальной ситуацией со

стандартизированными предикторами.

- с) Во сколько раз дисперсия оценки коэффициента больше по сравнению с идеальной ситуацией с одинаковыми предикторами.
- d) Во сколько раз диспер-

сия оценки коэффициента больше по сравнению с идеальной ситуацией с несмещёнными предикторами.

 е) Во сколько раз дисперсия оценки коэффициента больше по сравнению с идеальной ситуацией парной регрессии.

154. Известно значение автоковариационной функции стационарного процесса $\gamma_9=120$ и значение его автокорреляционной функции $\rho_9=0.6$. Найдите дисперсию случайного процесса.

- 155. Известно, что $y_3=2$, а соответствующий остаток равен 5. Чему равен прогноз \hat{y}_3 в модели множественной регрессии?
- 156. Какая зависимость математического ожидания исходного процесса от времени предполагается в нулевой гипотезе ADF-теста с константой?
 - а) $\mathbb{E}(y_t)$ строго возрастает
- c) $\mathbb{E}(y_t) = \mu$

e) $\mathbb{E}(y_t)$ строго монотонна

- b) $\mathbb{E}(y_t) = \mu + \alpha t$
- d) $\mathbb{E}(y_t) = \mu + \alpha t + \beta t^2$
- f) нет верного ответа
- 157. Для регрессии $Y_i=\beta_1+\beta_2 X_i+u_i$, оценённой по 30 наблюдениям с суммой квадратов остатков, равной 15, несмещенная оценка дисперсии случайной составляющей равна
 - a) 15/32

c) 13/30

e) 2

b) 15/28

d) 13/28

- f) 0.5
- 158. Случайная величина X имеет t-распределение с пятью степенями свободы. Найдите вероятность $\mathbb{P}(X>1)$.

Можно использовать статистические функции в R/Python или других программах. Ответ вводите с точностью до двух знаков после десятичной точки.

- 159. В регрессии с константой и тремя объясняющими переменными сумма квадратов остатков равна 162, а число наблюдений равно 31. Точечная оценка дисперсии случайной составляющей равна
 - a) 2.83

c) 8

e) 2.65

b) 7

d) 2.45

- f) 6
- 160. Использование робастных стандартных ошибок в форме Уайта при гетероскедастичности позволяет
 - а) получить эффективные оценки коэффициентов
 - b) увеличить точность прогнозов
- с) строить корректные доверительные интервалы для коэффициентов
- d) устранить смещённость

оценок коэффициентов

e) сузить доверительные интервалы для коэффициентов

161. Эконометресса Агнесса была очень недовольна тем, что оценили регрессию

$$\hat{y}_i = 5.42 + 3.25 \cdot x_i - 2.51 male_i$$
.

Ведь переменная $male_i$ равна единице для мужчин и нулю для женщин.

Поэтому Агнесса переоценила модель с помощью переменной $female_i$, которая равна нулю для мужчин и единице для женщин:

$$\hat{y}_i = \hat{\alpha}_1 + \hat{\alpha}_2 x_i + \hat{\alpha}_3 female_i.$$

Какую оценку $\hat{\alpha}_1$ получила Arнecca?

Ответ вводите с точностью до двух знаков после десятичной точки.

162. Оценка МНК неизвестного параметра θ для модели $Y_i = \theta X_{1i} + (1+\theta)X_{2i} + u_i, i=1,\ldots,n$ равна

a)
$$\sum_{i=1}^{n} (X_{1i} + X_{2i})(Y_i - X_{2i}) \\ \sum_{i=1}^{n} (X_{1i} + X_{2i})^2$$

c)
$$\frac{\sum_{i=1}^{n}(X_{1i}+X_{2i})(Y_i-X_{2i})}{\sum_{i=1}^{n}(X_{1i}-Y_i)^2}$$

e)
$$\frac{\sum_{i=1}^{n}(X_{1i}+X_{2i})(Y_i-X_{1i})}{\sum_{i=1}^{n}(X_{1i}+X_{2i})^2}$$

b)
$$\frac{\sum_{i=1}^{n} (X_{1i} - Y_i)(Y_i - X_{2i})}{\sum_{i=1}^{n} (X_{1i} + X_{2i})^2}$$

d)
$$\sum_{i=1}^{n} (X_{1i} + X_{2i})(Y_i - X_{2i}) \sum_{i=1}^{n} (Y_i - X_{2i})^2$$

b) $\frac{\sum_{i=1}^{n}(X_{1i}-Y_i)(Y_i-X_{2i})}{\sum_{i=1}^{n}(X_{1i}+X_{2i})^2}$ d) $\frac{\sum_{i=1}^{n}(X_{1i}+X_{2i})(Y_i-X_{2i})}{\sum_{i=1}^{n}(Y_i-X_{2i})^2}$ 163. Метод наименьших квадратов в задаче парной регрессии подбирает оценки коэффициентов так, чтобы

- а) прогнозы зависимой переменной были наименее похожими на фактические значения регрессора
 - ременной были наиболее похожими на фактические значения регрессора
- переменной

- b) прогнозы регрессора были наиболее похожими на фактические значения регрессора
- d) прогнозы зависимой переменной были наименее похожими на фактические значения зависимой

с) прогнозы зависимой пе-

е) прогнозы зависимой переменной были наиболее похожими на фактические значения зависимой переменной

164. Имеются данные по доходу жены, мужа и продолжительности брака. Доход семьи складывается из дохода жены и мужа. Вася оценил зависимость дохода семьи от продолжительности брака и получил регрессию $\hat{Y}_i = 20 + 3X_i$, Петя оценил зависимость дохода мужа от продолжительности брака и получил регрессию $\hat{Y}_i = 10 + 2X_i$. Маша оценивает зависимость дохода жены от продолжительности брака. Она получит регрессию:

a)
$$\hat{Y}_i = 20 + 3X_i$$

c)
$$\hat{Y}_i = 15 + 2.5X_i$$

e)
$$\hat{Y}_i = 30 + 5X_i$$

b) недостаточно данных для

d)
$$\hat{Y}_i = 10 + X_i$$

f)
$$\hat{Y}_i = 10 - X_i$$

165. При отсутствии автокорреляции в регрессии по n наблюдениям статистика Дарбина-Уотсона имеет

а) нет верного ответа

c) t_n -распределение

e) $F_{k,n}$ -распределение

b) $\mathcal{N}(\mu; \sigma^2)$ -распределение

d) $\mathcal{N}(0;1)$ -распределение

f) t_{n-k} -распределение

- 166. Рассмотрим алгоритм случайного леса для задачи регрессии. Выберите верное утверждение о том, какие наблюдения используются для обучения каждого дерева.
 - а) каждое дерево использует свою бутстрэп-реплику исходных наблюдений
- ет все исходные наблюдения

ний

е) наблюдения распределяются примерно поровну между деревьями случайным образом

ше и больше наблюдений

- каждое последующее дерево использует всё меньше и меньше наблюде-
- d) каждое последующее дерево использует всё боль-

с) каждое дерево использу-

- f) нет верного ответа
- 167. Леонардо оценил модель логистической регрессии $\hat{\mathbb{P}}(y_i=1)=\Lambda(2+0.05x_i-0.07z_i).$ Найдите предел прогноза вероятности $\hat{\mathbb{P}}(y_i=1)$ при z_i стремящемся к плюс бесконечности.
- 168. Выберите утверждение про модель локальной линейной регрессии LOESS.
 - а) В качестве ядерной функции разумно взять периодическую функцию.
 - b) Существует единственный канонический вариант выбора ядерной функции.
- ных данных.

 d) В качестве ядерной функ-

вать только на перекрест-

- d) В качестве ядерной функции разумно взять функцию дающую меньший вес для наблюдений вдали от рассматриваемого значения аргумента.
- е) Ядерная функция должна принимать как положительные, так и отрицательне значения.
- f) Обычная парная регрессия не может быть реализована как частный случай LOESS.

- с) LOESS можно использо-
- 169. Как изменятся оценки логистической регрессии, если заменить у зависимой переменной нули единицами, а единицы нулями?
 - a) Оценки коэффициентов увеличатся.
- с) Оценки коэффициентов поменяют знак.
- e) Оценки коэффициентов уменьшатся.

- b) Оценки коэффициентов не изменятся.
- d) Новые оценки коэффициентов будут обратными к старым.
- f) Оценки коэффициентов изменятся непредсказуемым образом.
- 170. Сулейман оценил две модели множественной регрессии по 304 наблюдениям. Модель А:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + u_i, RSS_a = 150.$$

Модель Б:

$$y_i = \beta_1 + \beta_4 w_i + u_i, RSS_b = 200.$$

Найдите значение F-статистики для проверки гипотезы об истинности ограниченной модели.

171. Рассмотрим две конкурирующие модели: ARMA(2,1) с ненулевым ожиданием и ARMA(1,2) с нулевым ожиданием.

Каким способом разумно выбрать наилучшую из них?

- a) ADF тест с трендом
- с) критерий Акаике
- e) KPSS тест с константой

- b) нет верного ответа
- d) ADF тест с константой
- f) ADF тест без константы

172. Процесс случайного блуждания с дрейфом описывается уравнением

a)
$$X_t = \mu + u_t$$

c)
$$X_t = X_{t-1} + u_t$$

e)
$$X_t = \mu + X_{t-1} + u_t$$

b)
$$X_t = \mu + 0.7X_{t-1} + u_t$$

d)
$$X_t = 0.7X_{t-1} + u_t$$

- 173. При наличии сильной практической мультиколлинеарности нарушается следующее свойство МНК-оценок параметров классической регрессии:
 - а) эффективность в классе линейных и несмещенных оценок

мой переменой

МНК не существует

- с) несмещённость
- е) равенство нулю суммы

b) линейность по зависи-

174. Рассмотрим уравнение

$$y_t = 8 + 18y_{t-1} + u_t + 0.3u_{t-1},$$

где (u_t) — белый шум.

Сколько стационарных решений вида $MA(\infty)$ относительно шума (u_t) имеет это уравнение?

a) 1

- с) бесконечно много
- e) 0

b) 3

d) 2

ва

- f) 4
- 175. Рассмотрим алгоритм случайного леса для задачи регрессии. Каждое дерево даёт свой прогноз. Выберите верное утверждение о механизме агрегирования прогнозов отдельных деревьев в прогноз леса.
 - а) вес, с которым прогноз дерева учитывается в прогнозе леса, линейно растёт по номеру дерева
- с) вес, с которым прогноз дерева учитывается в про-

прогнозов отдельных деревьев

- b) вес, с которым прогноз дерева учитывается в прогнозе леса, нелинейно убывает по номеру дере-
- гнозе леса, нелинейно растёт по номеру дерева
- е) нет верного ответа
- d) прогноз леса равен среднему арифметическому
- f) вес, с которым прогноз дерева учитывается в прогнозе леса, линейно убывает по номеру дерева
- 176. В рамках ETS(ANN) модели найдите точечный прогноз на один шаг вперёд, Последнее значение уровня (сглаженного ряда) равно 100, $\ell_t = \ell_{t-1} + 0.3u_t$, $u_t \sim \mathcal{N}(0; 16)$, $y_t = \ell_{t-1} + u_t$. Ответ введите с точностью до двух знаков после десятичной точки.
- 177. Винни-Пух построил классический доверительный интервал для коэффициента eta_z в модели $y_i =$ $\beta_1 + \beta_x x_i + \beta_z z_i + u_i$. Интервал получился широкий, [-20; 40]. Какую оценку β_z получил Винни-Пух?
- 178. Какой период у функции $\cos(2\pi t/365)$? Ответ укажите с точностью до двух знаков после десятичной точки.
- 179. Рассмотрим модель ETS(AAdN). Для последнего наблюдения $\ell_{100}=100,\,b_{100}=4,\,\phi=0.5.$ Найдите точечный прогноз для y_{104} . Ответ укажите с точностью до двух знаков после запятой.

180. Агнесса оценила регрессию $\hat{y}_i = 0.7 + 2x_i + 3w_i$ с помощью МНК по 1000 наблюдений. Классические стандартные ошибки коэффициентов равны 0.1, 0.2 и 0.3 соответственно.

Наблюдения являются независимыми, на ошибки выполнены классические предпосылки, $\mathbb{E}(u_i)$ (X) = 0, $Var(u_i \mid X) = \sigma^2$, $Cov(u_i, u_i \mid X) = 0$ для $i \neq j$.

Найдите 80% доверительный интервал для коэффициента β_x .

Можно использовать функции из статистических пакетов или таблицы.

В ответе укажите правую границу интервала с точнотью до двух знаков после десятичной точки.

181. Процесс (y_t) стационарный.

Найдите максимальное значение t, при котором гарантированно выполнено условие

$$Cov(y_{106}, y_{113}) = Cov(y_{120}, y_t).$$

- 182. Рассмотрим модель ETS(AAdN). Для последнего наблюдения $\ell_{100}=100,\,b_{100}=2,\,\phi=0.5.$ Найдите точечный прогноз для y_{103} . Ответ укажите с точностью до двух знаков после запятой.
- 183. Выберите верное утверждение о модели бинарного выбора:
 - а) значимость коэффициентов проверяется с помощью статистики, имеющей t-распределение
 - b) нельзя включать в качестве независимых даммипеременные
- с) недостатком линейной вероятностной модели является возможная нереалистичность значений вероятности
- d) оценки коэффициентов логит и пробит моделей
- всегда имеют один и тот же знак
- е) ROC кривая является выпуклой для любой логит-
- 184. Рассмотрим временной ряд из 100 наблюдений, оканчивающийся наблюдениями 6 и 5.

Ряд описывается моделью $y_t = y_{t-1} + 2 + u_t$, где величины (u_t) независимы и нормально распределены $\mathcal{N}(0;4)$.

Постройте 95%-й предиктивный интервал для y_{101} . В ответе укажите правую границу интервала с точностью до двух знаков после запятой.

185. Рассмотрим временной ряд из 100 наблюдений, оканчивающийся наблюдениями 6 и 5. Ряд описывается моделью $y_t = 6 + u_t$, где величины (u_t) независимы и нормально распределены $\mathcal{N}(0;4)$.

Постройте 95%-й предиктивный интервал для y_{101} . В ответе укажите правую границу интервала с точностью до двух знаков после запятой.

186. Величины $X_1, ..., X_{17}$ одинаково распределены и независимы. Обозначим их сумму буквой S. Найдите частную корреляцию $pCorr(X_1, X_2; S)$.

Ответ вводите с точностью до двух знаков после десятичной точки.

- 187. По одним и тем же наблюдениям оценили две регрессии: $\hat{y} = 1 + 3X_1$ и $\hat{y} = 2 + 5X_2$. Известно, что $Cov(X_1, X_2) > 0$. Оценки МНК коэффициентов регрессии $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$:
 - a) $\hat{\beta}_0 = 1.5, \hat{\beta}_1 = 3, \hat{\beta}_2 = 5$
- c) $\hat{\beta}_0 = 3, \hat{\beta}_1 = 3, \hat{\beta}_2 = 5$
- b) $\hat{\beta}_1, \hat{\beta}_2$ найти невозможно, d) $\hat{\beta}_0$ найти невозможно, $\hat{\beta}_0 = 3$ $\hat{\beta}_1 = 3, \hat{\beta}_2 = 5$
- е) оценки коэффициентов невозможно найти имеющимся данным

188. Выберите верную формулу

a)
$$\sum (y_i - \bar{y})(x_i - \bar{x})$$

c)
$$\sum (y_i - \bar{y})(x_i - \bar{x}) = \bar{y}\bar{x}$$

a)
$$\sum (y_i - \bar{y})(x_i - \bar{x}) =$$
 c) $\sum (y_i - \bar{y})(x_i - \bar{x}) = \bar{y}\bar{x}$ e) $\sum (y_i - \bar{y})(x_i - \bar{x}) =$ b) $\sum (y_i - \bar{y})(x_i - \bar{x}) = \sum y_i x_i$ d) $\sum (y_i - \bar{y})(x_i - \bar{x}) =$ $\sum y_i(x_i - \bar{x})$

b)
$$\sum (y_i - \bar{y})(x_i - \bar{x}) = \sum y_i x_i$$

d)
$$\sum (y_i - \bar{y})(x_i - \bar{x}) = \sum y_i(x_i - \bar{x})$$

- 189. Оценки коэффициентов линейной регрессии, полученные методом максимального правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей, будут совпадать
 - а) если ковариационная матрица случайной составляющей нулевая

матрица случайной составляющей пропорциональна единичной

матрица случайной составляющей диагональна

- d) никогда
- b) если ковариационная с) если 190. Показатель R_{adj}^2 можно вычислить по формуле
 - ковариационная
- е) всегда

a)
$$R_{adi}^2 = \frac{k-1}{n-k} - R^2 \cdot \frac{n-1}{n-k}$$

c)
$$R_{adj}^2 = \frac{k-1}{n-k} + R^2 \cdot \frac{n-1}{n-k}$$

e)
$$R_{adj}^2 = (-1) \cdot \frac{k-1}{n-k} + R^2 \cdot \frac{n-1}{n-k}$$

b)
$$R_{adj}^2 = \frac{k-1}{n-k} + R^2 \cdot \frac{n-k}{n-1}$$

d)
$$R_{adi}^2 = \frac{n-k}{k-1} + R^2 \cdot \frac{n-1}{n-k}$$

f)
$$R_{adj}^2 = \frac{k}{n-k} + R^2 \cdot \frac{n-1}{n-k}$$

b) $R_{adj}^2=rac{k-1}{n-k}+R^2\cdotrac{n-k}{n-1}$ d) $R_{adj}^2=rac{n-k}{k-1}+R^2\cdotrac{n-1}{n-k}$ f) $R_{adj}^2=rac{k}{n-k}+R^2\cdotrac{n-1}{n-k}$ 191. Найдите наибольший корень характеристического уравнения AR-части рекуррентного уравнения

$$y_t = y_{t-1} + 4y_{t-2} + u_t.$$

Ответ вводите с точностью до двух знаков после десятичной точки.

192. Имеются данные по 100 работникам: затраты на проезд в общественном транспорте (E_i , руб.), количество часов работы в день (WH_i , руб.), количество часов отдыха в день (LH_i , руб.) и количество часов сна в день (SH_i , руб.). Считая, что всё время суток распределяется между трудом, сном и отдыхом, оценка регрессии в виде

$$E_i = \beta_1 + \beta_2 W H_i + \beta_3 L H_i + \beta_4 S H_i + u_i$$

приведет к тому, что

а) МНК-оценки получить не удастся

ΜИ

с) коэффициент детерминации \mathbb{R}^2 окажется отрицательным

окажутся неэффективными в классе линейных и несмещённых

- b) МНК-оценки параметров регрессии будут несмещенными и эффективны-
- d) МНК-оценки параметров
- е) МНК-оценки параметров окажутся смещёнными

- 193. Если $\alpha = 0.05$ и P-значение равно 0.04, то
 - а) H_a отвергается
- с) недостаточно информации для ответа
- e) H_a не отвергается

- b) H_0 принимается
- d) H_a принимается
- f) H_0 отвергается

- 194. Выберите верное утверждение про штрафную функцию LASSO.
 - а) Растёт при росте RSS, но падает по мере удаление оценок коэффициентов от нуля.
 - b) Не зависит от RSS, падает по мере удаление оценок коэффициентов от нуля.
- с) Растёт при росте *RSS* и по мере удаление оценок коэффициентов от нуля.
- d) Падает при росте RSS, но растёт по мере удаление оценок коэффициентов от нуля.
- е) Растёт при росте RSS, не зависит от удалённости оценок коэффициентов от нуля.
- f) Падает при росте RSS и по мере удаление оценок коэффициентов от нуля.

195. Рассмотрим уравнение

$$y_t = 7 + 15y_{t-1} + u_t + 0.3u_{t-1},$$

где (u_t) — белый шум.

Сколько стационарных решений имеет это уравнение?

a) 1

c) 4

e) 2

b) 3

- d) бесконечно много
- f) 0
- 196. Известно, что $y_1=7,\ y_2=10,$ а остальные наблюдения пропущенные. Для восстановления наблюдений Винни-Пух использует модель $\mathbb{E}(y_t\mid y_{t-1},\dots,y_1)=4+0.4y_{t-1}.$ Помогите Винни-Пуху восстановить y_4 с точностью до двух знаков после десятичной точки.
- 197. Исследователь Пантелеймон оценивает парную регрессию $y_i = \beta_1 + \beta_2 x_i + u_i$. На ошибки выполнены классические предпосылки, $\mathbb{E}(u_i \mid X) = 0$, $\mathrm{Var}(u_i \mid X) = \sigma^2$, $\mathrm{Cov}(u_i, u_j \mid X) = 0$ для $i \neq j$. Пантелеймон знает, что сумма квадратов остатков в исходной регрессии оказалась равной 100, а во вспомогательной регрессии $\hat{x}_i = \hat{\gamma}$ сумма квадратов остатков равна 20. Обе регрессии построены по 102 наблюдениям.

Какую несмещённую оценку для $\mathrm{Var}(\hat{\beta}_2 \mid X)$ получит Пантелеймон? Ответ вводите с точностью до двух знаков после десятичной точки.

- 198. Свободно распространяемым программным обеспечением является
 - a) SPSS

c) Stata

e) Excel

b) R

d) Matlab

- f) Eviews
- 199. В модели 10 параметров и функция правдоподобия в точке максимума равна 10^{-10} . Найдите значение критерия Акаике с точностью до двух знаков после десятичной точки.
- 200. К несостоятельности МНК-оценок вектора коэффициентов приводит
 - a) корреляция ошибок по схеме AR(1)
- с) эндогенность одного из регрессоров
- e) корреляция ошибок по схеме MA(1)

- b) условная гетероскедастичность ошибок
- d) корреляция между регрессорами
- f) нестрогая мультиколлинеарность
- 201. Рассмотрим MA(1) модель $y_t = u_t + 8u_{t-1}$, где (u_t) белый шум с дисперсией 7. Найдите долгосрочную дисперсию процесса (y_t) .
- 202. Рассмотрим MA(1) модель $y_t = u_t + 7u_{t-1}$, где (u_t) белый шум с дисперсией 7. Найдите долгосрочную дисперсию процесса (y_t) .

203.	Если в регрессии обнаружена автокоэффициента автокорреляции $\hat{ ho}$	= =	_
	a) $\hat{\rho} \approx 2(1 - DW)$	c) $DW \approx \hat{\rho}$	e) $\hat{\rho} \approx DW/2$
204.	b) $DW \approx 2(1-\hat{ ho})$ Запись $3.20E-16$ означает	d) $DW \approx \hat{\rho}/2$	
	a) $3.2 \cdot e - 16$	c) 3.2^{e-16}	e) $3.2 \cdot (e - 16)$
205.	b) Ошибка с кодом 16 Если в уравнение регрессии не вк	d) $3.2 \cdot e^{-16}$ лючена константа, то	f) $3.2 \cdot 10^{-16}$
	a) \mathbb{R}^2 является показателем	Маркова	неотрицательный
	качества подгонки регрессии	c) Сумма остатков регрес- сии равна 0	e) Значимость коэффици ентов регрессии нельзя
206.	b) К этой модели применима теорема Гаусса- Если все Y_i в линейной регрессии	d) R^2_{adj} в этой модели всегда увеличить в два раза, то оценка	проверять при помощи t -статистики \hat{eta}_2
		-	
	а) изменится в произволь- ную сторону, в зависимо- сти от X_i	b) поделится на 4 c) не изменится	е) поделится на 2
207.	В модели парной линейной регре оценкой дисперсии оценки МНК		f) помножится на 2 = $eta_0 + eta_1 X_i + u_i$ несмещённой
	a) $RSS/(n-2)$	c) $\sum (Y_i - \bar{Y})^2/(n-1)$	$ar{X})^2)$
208.	b) $\sum (Y_i - \bar{Y})^2/(n-2)$ В модели множественной регресси Для оценивания использовали 200 Найдите сумму $\sum_i \hat{y}_i (\hat{y}_i - \bar{y})$.		
209.	Рассмотрим уравнение	$y_t = 8y_{t-1} + 4y_{t-2} + u_t,$	
	где (u_t) — белый шум. Сколько нестационарных решени		
	а) нет верного ответа	с) бесконечность	e) 2
210	b) 4	d) 3	f) 1

210. Исследователь Иа-Иа использует аддитивное разложение ряда. Очередное наблюдение равно 60, трендовая составляющая равна 40, сезонная составляющая 30. Найдите остаточную компоненту.

211. Пантелеймон оценил парную регрессию по 50 наблюдениям

$$\hat{y}_i = 8.9 + 12.9x_i$$
.

Оценка дисперсии прогноза при x=1 равна 100. Оценка дисперсии случайной ошибки равна 400. Предпосылки классической линейной модели выполнены, ошибки имеют нормальное распределение.

Постройте 95%-й доверительный интервал для $\mathbb{E}(y_i \mid x_i = 1)$.

В ответе укажите правую границу интервала с точностью до двух знаков после десятичной точки.

212. По набору данных cars из R оцените модель

$$dist_i = \beta_1 + \beta_2 speed_i + u_i$$
.

Ошибки модели нормально распределены и удовлетворяют классическим предпосылкам.

Для машины со стартовой скоростью 20 миль в час постройте 95%-й доверительный интервал для ожидаемой длины тормозного пути в футах.

В ответе укажите правую границу интервала с точностью до двух знаков после десятичной точки.

Набор данных встроен в R и доступен по ссылке: https://github.com/vincentarelbundock/Rdatasets/raw/maste

213. Методом максимального правдоподобия Гоша оценил модель

$$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_6 X_{i6} + u_i$$

где $u \sim \mathcal{N}(0, \sigma_u^2 I)$, по 12 наблюдениям. Оказалось, что RSS=24. Оценка дисперсии случайной составляющей равна

a) 2.4

c) 0.5

е) не существует

b) 0.48

d) 24/7

f) 2

214. Оценка ковариационной матрицы оценок коэффициентов $(\hat{eta}_1,\hat{eta}_2,\hat{eta}_3)$ имеет вид

$$\begin{pmatrix} 5 & 1 & 1 \\ 1 & 6 & -1 \\ 1 & -1 & 9 \end{pmatrix}.$$

Найдите стандартную ошибку $se(\hat{\beta}_2 - \hat{\beta}_3)$.

Ответ вводите с точностью до двух знаков после десятичной точки.

- 215. Найдите наименьшее возможное значение q, если известно, что SARIMA(3,0,3)(1,0,1)[12]- модель является частным случаем ARMA(p,q)-модели.
- 216. Ряд (u_t) белый шум с дисперсией равной 16. Найдите ковариацию $\mathrm{Cov}(u_t+2u_{t-1}+4u_{t-2},u_{t-1}+2u_{t-2}+7u_{t-3}).$
- 217. Инструмент Z_t для оценивания динамической модели $Y_t = \beta_1 + \beta_2 X_t + \beta_3 Y_{t-1} + u_t$ с экзогенным вектором X и AR(1) процессом в ошибках u_t должен удовлетворять требованию
 - a) $Corr(Y_{t-1}, Z_t) = 0$
- c) $Corr(X_t, Z_t) = 0$
- e) $Corr(Y_{t-1}, Z_t) \neq 0$

- b) $Corr(u_t, Z_t) \to 1$
- d) $Corr(u_t, Z_t) = 0$

- 218. В модели $Y_i = \beta_0 + \beta_1 X_i + u_i$ при выполненных предпосылках теоремы Гаусса-Маркова и нормальных ошибках тестовая статистика $(\hat{\beta}_1 - \beta_1)/se(\hat{\beta}_1)$ имеет распределение
 - a) $\mathcal{N}(0;\sigma^2)$

c) χ_{n-2}^2

e) t_{n-2}

b) χ_1^2

- d) $\mathcal{N}(0;1)$
- 219. Рассмотрим метод главных компонент для переменных с разными единицами измерения. Выберите верное утверждение.
 - а) Обязательно нужно привести переменные к общему масштабу.
- с) Необходимо и достаточно центрировать исходные переменные.
- е) Обязательно нужно сохранить исходные единицы измерения переменных.

- b) Важно убедиться в некоррелированности исходных переменных.
- d) Важно убедиться в ортогональности исходных переменных.
- 220. Рассеянная исследовательница Надежда ошибочно оценила модель $y_i=eta_1+eta_x x_i+eta_w w_i+u_i$ и получила неверные оценки коэффициентов \hat{eta}_{wrong} . Корректно используя неверные оценки коэффициентов, она нашла остатки \hat{u}_{wrong} и прогнозы \hat{y}_{wrong} . Верные величины обозначим $\hat{\beta}$, \hat{u} и \hat{y} .

Выберите верное утверждение.

- a) $\hat{u}_{wrong} \perp \hat{y}_{wrong}$
- c) $\hat{u} \perp \hat{\beta}_{wrong}$

e) $\hat{u} \perp \hat{y}_{wrong}$

- b) $\hat{\beta} \perp \hat{\beta}_{wrong}$
- d) $\hat{u}_{wrong} \perp \hat{y}$

- 221. С какой целью при оценивании модели MA(2) накладывают требование обратимости процесса?
 - а) чтобы гарантировать стационарность процесса
- с) чтобы обратить лаговый многочлен
- е) чтобы гарантировать единственность оценок

- b) чтобы обратить характеристический многочлен
- d) чтобы гарантировать неотрицательность дисперсии процесса
- f) чтобы гарантировать нулевые корреляции высоких порядков
- 222. Оценена зависимость расходов потребителей на газ и электричество Ү в США в 1977-1999 г. в постоянных ценах I квартала 1977 г. от времени (t=1 для 1977, t=2 для 1978 и т.д.) с учётом сезонных факторов ($D_i = 1$, если наблюдение относится к i-ому кварталу и 0 иначе, $i = 1, \ldots, 4$): $\hat{y} = 8 + 0.1t - 3D_2 - 2.6D_3 - 2D_4$

Если в качестве базовой категории будет принят не первый квартал, а третий, уравнение регрессии примет вид

- a) $\hat{y} = 8 + 0.1t + 3D_1 + 2.6D_2 +$ c) $\hat{y} = 5.4 + 0.1t 3D_1 0.4D_2 D_4$
- e) $\hat{y} = 8 + 0.1t 3D_1 2.6D_2 0.000$

- $2.6D_2 2D_4$
- b) $\hat{y} = 5.4 + 0.1t 3D_1$ d) $\hat{y} = 5.4 + 0.1t + 2.6D_1$ $0.4D_2 + 0.6D_4$

223. Рассмотрим модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + u_i.$$

Все предпосылки классической регрессионной модели выполнены. По 25 наблюдениям оказалось, что сумма квадратов остатков равна RSS=60.

Найдите несмещённую оценку для дисперсии случайной ошибки.

Ответ вводите с точность до двух знаков после десятичной точки.

- 224. По 52 наблюдениям студент построил две регрессии, $\hat{Y}_i=3.1+0.8X_i$ и $\hat{X}_i=-0.3+0.2Y_i$. Коэффициент R^2_{adj} для первой регрессии примерно равен
 - a) 0.40

c) 0.16

e) 0.37

b) 0.14

- d) 0.32
- 225. Для выбора между линейной и полулогарифмической моделями (где EARNINGS почасовая заработная плата в \$, S длительность обучения, ASVABC результаты тестов, характеризующие успеваемость) был проведен тест Дэвидсона, Уайта и МакКиннона и получены следующие результаты:

	Зависимая: Y	Зависимая: $\ln Y$
(Intercept)	-26.148	-1.941
-	(4.17)	(3.2499)
S	2.008	0.087
	(0.276)	(0.035)
ASVABC	0.393	0.017
	(0.079)	(0.007)
lin_add	-15.373	
	(5.984)	
semilog_add		-0.029
		(0.065)
R^2	0.2071	0.2212
F	46.59	50.74
Adj. R^2	0.2027	0.2168
Num. obs.	540	540
RSS	90975.57	148.1
$\hat{\sigma}$	13.04	0.5256

Где lin_add = ln(\hat{y}) — lnY, semilog_add = \hat{y} — exp(lnY) и в скобках указаны стандартные ошибки. На уровне значимости 5% можно сделать вывод, что

а) Лучше линейная модель

разницы

d) Невозможно выбрать лучшую модель

- b) Между линейной и полулогарифмической моделями нет статистической
- c) Лучше линейная в логарифмах модель
- e) Лучше полулогарифмическая модель

226.	Предпосылки теоремы Гаусса-Маркова выполнены, случайные ошибки нормально распределены,
	уровень доверия равен 80% , критическое значение t -статистики равно 1.64 , всего n наблюдений.
	Регрессия имеет вид $\hat{Y}_i = -4 + \mathop{5}\limits_{(0.2)} X_i$, в скобках указаны стандартные ошибки. Доверительный
	интервал для β_2 равен

a) [1.72; 8.28]

c) [4.27; 5.73]

e) [4.85; 5.15]

b) не существует

d) [4.67; 5.33]

- f) [3.36; 6.64]
- 227. Илон Маск по 100 наблюдениям оценил множественную регрессию с константой с помощью МНК. Оказалось, что $\sum (\hat{y}_i - \bar{y})^2 = 200$, и $\sum (y_i - \bar{y})^2 = 600$. Чему равна средняя величина квадрата остатка?
- 228. Гипотеза Алмон при оценивании модели с распределенными лагами $Y_t = lpha + \sum_{i=0}^J eta_i X_{t-j} + u_t$ состоит в том, что коэффициент β_j представим в виде
 - a) $\alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_i \lambda^j$
- c) $\alpha_0 + \alpha_1 j + \alpha_2 j^2 + \ldots + \alpha_r j^r$ e) $\alpha_0 + \alpha_1 j$

- d) $\alpha_0 \lambda^j$
- 229. Рассмотрим модель Y=Xeta+u. Условия теоремы Гаусса-Маркова выполнены, причём ${
 m Var}(u_i)=$ $\sigma_u^2,\,\hat{y}=PY,\,P=X(X'X)^{-1}X'$ и I - единичная матрица. Ковариационная матрица случайного вектора $e = Y - \hat{y}$ равна
 - a) $\sigma_u^2(I+P)$

c) $\sigma_u^2 P$

e) $\sigma_u^2 I$

b) $\sigma_n^2(P-I)$

- d) $\sigma_u^2(I-P)$
- 230. В исходной выборке 10 наблюдений. Найдите ожидаемое количество копий второго наблюдения в очередной бутстрэп выборке.

Ответ укажите с точностью до двух знаков после десятичной точки.

- 231. Логарифм наблюдаемой величины описывается ETS(AAN) моделью, $\ln y_t \sim ETS(AAN)$. Обычный 95%-й предиктивный интервал для $\ln y_{T+1}$ имеет вид [10; 20]. Найдите условное ожидание y_{T+1} с точностью до целых.
- 232. Петя и Вася проверяют гипотезу $\beta_x = 0$ против альтернативной $\beta_x \neq 0$ по одним и тем же данным, одни и тем же способом. Единственная разница в том, что Петя использует уровень значимости $\alpha = 0.01$, a Bacs -0.02.

Рассмотрим 4 ситуации:

- А. Петя отверг H_0 , Вася отверг H_0 .
- Б. Петя отверг H_0 , Вася не отверг H_0 .
- В. Петя не отверг H_0 , Вася отверг H_0 .
- Γ . Петя не отверг H_0 , Вася не отверг H_0 .

Какие из этих ситуаций возможны?

а) только В, Г

с) все возможны

е) только А, Б

b) только A и Г

d) только A, Б, Г

f) только A, B и Г

- 233. Исследователь выполнил второй шаг в РЕ-тесте МакКиннона. В регрессии $\ln Y_i$ на исходные регрессоры и $Z_i = \hat{Y}_i \exp(\widehat{\ln Y}_i)$ коэффициент при Z_i оказался значимым. А в регрессии Y_i на исходные регрессоры и $W_i = \ln \hat{Y}_i \widehat{\ln Y}_i$ коэффициент при W_i оказался незначимым. Из результатов следует сделать вывод, что
 - a) следует предпочесть линейную модель

рифмическую модель

другу, ни одна из моделей не предпочитается

- b) в исходной модели пропущен регрессор Z_i
- d) в исходной модели пропущен регрессор W_i
- f) следует предпочесть полулогарифмеческую модель

- с) следует предпочесть лога-
- е) тесты противоречат друг
- 234. Частным случаем какой модели является модель за тета-методом?
 - a) ETS(MMM) c $\alpha = 1$
- c) ETS(AAN) c $\beta = 0$
- e) ETS(MMM) c $\beta = 1$

- b) нет верного ответа
- d) ETS(AAA) c $\alpha = 0$
- f) ETS(AAA) c $\gamma = 0$
- 235. Найдите наибольший корень характеристического уравнения AR-части рекуррентного уравнения

$$y_t = y_{t-1} + 10y_{t-2} + u_t.$$

Ответ вводите с точностью до двух знаков после десятичной точки.

- 236. Если основная гипотеза в тесте Дики-Фуллера отвергается, то временной ряд является
 - а) стационарным в первых разностях
- с) нормально распределён-
- е) стационарным

- b) нестационарным
- d) коинтегрированным
- 237. Выборочная дисперсия остаточной компоненты ряда равна 100, выборочная дисперсия суммы тренда и остаточной компоненты равна 90.

Найдите силу выраженности тренда с точностью до двух знаков после десятичной точки.

238. Спящая Красавица построила парную регрессию с $R^2=0.9$ по 99 наблюдениям. Злая Фея-Крестная Карабос добавляет Спящей Красавице ровно одно наблюдение, чтобы максимально снизить коэффициент детерминации.

Какого значения \mathbb{R}^2 сможет добиться Злая Фея?

239. Выберите верное равенство для множественной регрессии $y_i = \beta_x x_i + \beta z z_i + \beta_w w_i + u_i$, оцениваемой с помощью МНК.

Остатки обозначим \hat{u}_i .

a)
$$\sum \hat{u}_i = 0$$

c)
$$\sum \hat{u}_i y_i = 0$$

e)
$$\sum x_i z_i = 0$$

b)
$$\sum x_i u_i = 0$$

d)
$$\sum x_i y_i = 0$$

f)
$$\sum w_i \hat{u}_i = 0$$

- 240. Рассмотрим алгоритм случайного леса для задачи регрессии. Какую целевую переменную «учится» прогнозировать дерево номер 4?
 - а) разницу между исходной переменной y_t и суммой прогнозов первых трёх деревьев
 - b) нет верного ответа
 - с) разницу между исходной

переменной y_t и суммой прогнозов первых трёх деревьев, домноженной на темп обучения

- d) разницу между исходной переменной y_t и прогнозом третьего дерева
- e) исходную переменную y_t
- f) разницу между исходной переменной y_t и прогнозом третьего дерева, домноженным на темп обучения
- 241. Величины $X_1, ..., X_{20}$ одинаково распределены и независимы. Обозначим их сумму буквой S. Найдите частную корреляцию $pCorr(X_1, X_2; S)$. Ответ вводите с точностью до двух знаков после десятичной точки.
- 242. Для оцениваемой по 30 наблюдениям регрессии $Y_i=\alpha+\beta X_i+u_i, i=1,\ldots,n$ известны суммы $\sum_{i=1}^{30}X_i=-15, \sum_{i=1}^{30}X_i^2=60, \sum_{i=1}^{30}X_iY_i=15, \sum_{i=1}^{30}Y_i=75.$ Система нормальных уравнений для оценок коэффициентов регрессии α, β методом наименьших квадратов равносильна системе
 - a) $4\alpha 6\beta = 1$; $6\alpha + 60\beta = 75$
- c) $30\alpha + 15\beta = 75; 15\alpha +$ $60\beta = 15$
- e) $30\alpha 15\beta = 15; -15\alpha 12\beta = 1$

- b) $2\alpha \beta = 5; \alpha 4\beta = -1$
- d) $2\alpha \beta = -1; \alpha 4\beta = 5$
- 243. Два временных ряда могут быть коинтегрированными, только если
 - а) один ряд стационарен, а второй — нет
 - b) оба ряда нестационарны
- интегрирования
- с) оба ряда стационарны вокруг тренда
- d) оба ряда нестационарны и имеют одинаковый порядок интегрирования
- и имеют разные порядки е) оба ряда стационарны 244. Случайные величины r и s независимы и равновероятно равны 0 или 1. Чему равно условное
 - a) r + 0.5

c) $rs + s^2$

e) r + 1

b) 0.5r + 0.5

ожидание $\mathbb{E}(rs + s^2 \mid r)$?

- d) 0.5r + 0.25
- 245. Укажите число параметров в ARIMA(4,1,1) модели с ненулевым математическим ожиданием и нормально распределенными ошибками.
- 246. Совместное распределение случайных величин X и Y задано с помощью таблицы

<u> </u>				
X = 3	X = 4	X = 5		
0.1	0.3	0.1		
0.15	0.05	0.05		
0.05	0.15	0.05		
	0.1 0.15	0.15 0.05		

Математическое ожидание случайной величины Y при условии, что X=3, равно

a) 2

c) 6

e) 2.4

b) 3.4

d) 4

247.	Рассмотрим метод максимального правдоподобия для оценки одного параметра. Как можно полу-
	чить оценку дисперсии оценки параметра?

- а) Посчитать вторую производную лог-правдоподобия со знаком минус.
- с) Обратить первую производную логправдоподобия.
- е) Обратить первую производную лог-правдоподобия со знаком минус.

- b) Обратить вторую производную логправдоподобия.
- d) Обратить вторую производную лог-правдоподобия со знаком минус.
- f) Посчитать первую производную лог-правдоподобия со знаком минус.
- 248. Если в регрессии отсутствует свободный член, то в общем случае
 - a) $\sum_{i} \hat{Y}_{i} = \sum_{i} Y_{i}$

- c) $TSS \neq ESS + RSS$
- е) R^2 является мерой качества подгонки регрессии

- b) сумма остатков равна нулю
- d) сумма квадратов остатков равна нулю
- 249. Портос построил регрессию по 66 наблюдениям, $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 W_i + \hat{\beta}_3 Z_i$, RSS = 140. Затем Портос оценил вспомогательную регрессию, $\hat{Y}_i = \hat{\gamma}_0 + \hat{\gamma}_1 X_i + \hat{\gamma}_2 W_i + \hat{\gamma}_3 Z_i + \hat{\delta}_2 \hat{Y}_i^2 + \hat{\delta}_3 \hat{Y}_i^3$, RSS = 120. При проверке гипотезы о правильной спецификации модели в тесте Рамсея F-статистика равна
 - a) 6

c) 11/3

e) 5

b) 30/7

- d) 10/3
- 250. Условие порядка для любого уравнения из системы может быть сформулировано следующим образом. Число эндогенных переменных, включенных в уравнение, уменьшенное на 1, должно быть
 - а) не меньше числа экзогенных переменных, включенных в это уравнение
- с) не больше числа экзогенных переменных, включенных в это уравнение

ных переменных, исключенных из этого уравнения

- b) не меньше числа экзогенных переменных, исключенных из этого уравне-
- d) не больше числа эндогенных переменных, включенных в это уравнение

е) не больше числа эндоген-

- f) не больше числа экзогенных переменных, исключенных из этого уравнения
- 251. Выберите верное утверждение про ARDL модель с зависимой переменной y_t , предиктором x_t и ошибкой u_t .
 - а) u_t является ARMA(p,q) процессом с $p \ge 1$ и $q \ge 1$
- с) u_t является MA(q) процессом с $q \ge 1$
- е) нет верного ответа

- b) u_t является AR(p) процессом с $p \ge 1$
- d) Δy_t является нестационарным
- f) u_t является белый шумом
- 252. Сколько свободных параметров оценивается в ETS(AAA) модели по квартальным данным?

253. По исходному временному ряду была оценена множественная регрессия

$$\hat{y}_t = 3 + 0.6y_{t-1} - 0.09y_{t-2}.$$

Найдите второе значение выборочной частной автокорреляционной функции $PACF_2$ с точностью до двух знаков после десятичной точки.

254. Исследователь Ярополк хочет оценить коэффициент β_x в модели $y_i = \beta_1 + \beta_x x_i + u_i$. По исходным наблюдениям он рассчитал суммы $\sum (x_i - \bar{x})(y_i - \bar{y}) = 300$, $\sum (y_i - \bar{y})^2 = 1000$ и $\sum (x_i - \bar{x})^2 = 100.$

Чему равна МНК-оценка $\hat{\beta}_x$?

- 255. По данным для 27 фирм исследована зависимость прибыли Y от числа работников X вида $\setminus Y =$ eta_0+eta_1X+u и получено $\hat{eta}_0=8,\hat{eta}_1=2,\hat{\sigma}^2=25$ и матрица $(X'X)^{-1}=\begin{pmatrix}0.36&-0.03\\-0.03&0.09\end{pmatrix}$.\ 95% доверительный интервал для β_1 :
 - a) [-1.09; 5.09]

остаться

по имеющимся данным

d) Коэффициент R^2 обяза-

d) [-0.94; 4.94]

- b) невозможно вычислить
- c) [0.04; 3.96]

- e) [1.82; 14.18]
- 256. Что может произойти с \mathbb{R}^2 при добавлении нового наблюдения в модель множественной регрессии с константой?
 - а) Коэффициент R^2 может остаться неизменным или упасть.

или вырасти.

тельно вырастет.

с) Коэффициент R^2 обязательно упадёт. b) Коэффициент R^2 может

неизменным

- е) Коэффициент R^2 может измениться в любую сто-
- 257. Корни лагового многочлена AR-части уравнения равны $\ell_1=12$ и $\ell_2=28$. Найдите наибольший корень характеристического уравнения AR-части. Ответ вводите с точностью до двух знаков после десятичной точки.
- 258. В предположениях нормальности ошибок ширина 95%-го интервала для ожидаемого (среднего) значения Y_{n+1} равна 1200. Известно, что $\hat{\sigma}=400$ и n=60. Ширина 95%-го интервала для фактического (индивидуального) значения Y_{n+1} примерно равна
 - a) 1000

c) 1500

e) 1600

b) 2000

- d) 1400
- 259. Рассмотрим модель $Y_i=\beta_1+\beta_2 X_{i2}+\beta_3 X_{i3}+\beta_4 X_{i4}+\beta_5 X_{i5}+u_i$. Гипотезу

$$\begin{cases} \beta_2 + \beta_3 = 1 \\ \beta_5 = 0 \end{cases}$$

можно проверить с помощью оценки дополнительной модели

- $(X_{i3}) + \beta_4 X_{i4} + u_i$
- a) $Y_i X_{i3} = \beta_1 + \beta_2(X_{i2} + c)$ $Y_i X_{i3} = \beta_1 + \beta_2(X_{i2} e)$ $Y_i X_{i2} = \beta_1 + \beta_2(X_{i2} e)$ $(X_{i3}) + \beta_4 X_{i4} + u_i$
 - X_{i3}) + $\beta_4 X_{i4} + u_i$
- b) $Y_i \beta_2 = \beta_1 + \beta_2(X_{i2} + d)$ $Y_i = \beta_1 + \beta_2(X_{i2} + X_{i3} d) + \beta_4(X_{i4} + u)$ $(X_{i3}) + \beta_4 X_{i4} + u_i$
 - $1) + \beta_4 X_{i4} + u_i$

260. Рассмотрим короткий ряд из четырех наблюдений: 5, 4, 6, 5.

Предположим, что ряд описывается моделью $y_t = y_{t-1} + \mu + u_t$, где величины (u_t) независимы и нормально распределены $\mathcal{N}(0; \sigma^2)$.

Трактуя y_1 как фиксированную константу, найдите оценку $\hat{\sigma}^2$ методом максимального правдоподобия с точностью до двух знаков после десятичной точки.

 $261.\,$ Распределение случайной величины X задано таблицей

Вероятность $\mathbb{P}(X=1)$ равна

a) 0.5

c) 0.2

e) 0.4

b) 0.3

- **d**) 0
- 262. Какая зависимость математического ожидания исходного процесса от времени предполагается в нулевой гипотезе KPSS-теста с константой?
 - a) $\mathbb{E}(y_t) = \mu + \alpha t$

- с) нет верного ответа
- e) $\mathbb{E}(y_t)$ строго возрастает
- b) $\mathbb{E}(y_t)$ строго монотонна d) $\mathbb{E}(y_t) = \mu + \alpha t + \beta t^2$
- f) $\mathbb{E}(y_t) = \mu$
- 263. Исследователь Леонардо оценил модель логистической регрессии $\hat{\mathbb{P}}(y_i=1)=\Lambda(0.4-0.2x_i).$ Найдите по этой модели прогноз вероятности для $x_i = 2$.
 - a) $\exp(0.5)$

c) 1

e) 0

b) 0.75

d) 0.25

- f) 0.5
- 264. Переменная Y_i принимает значения 0 или 1. Логарифмическая функция правдоподобия, используемая для оценивания логит и пробит моделей, имеет вид

a)
$$\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta)$$

 $(1 - Y_i) \ln(1 - F(X_i \beta))$

a)
$$\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) -$$
 c) $\ln L = \sum_{i=1}^{n} Y_i \ln(1 - (1 - Y_i) \ln F(X_i \beta)) + (1 - Y_i) \ln F(X_i \beta)$
b) $\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) + (1 - Y_i) \ln F(X_i \beta)$

$$(1 - Y_i) \ln F(X_i \beta)$$

b) $\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) + (1 - Y_i) \ln(1 - F(X_i \beta))$ d) $\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) - (1 - Y_i) \ln(1 - F(X_i \beta))$

I)
$$\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) - \frac{1}{2} \frac{1}{2$$

e)
$$\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta)$$

 $(1 - Y_i) \ln(1 - F(X_i \beta))$

- 265. Эмманюэль и Владимир оценили зависимость стоимости подержанных Пежо (одной серии) Y от пробега X (измеряемого в км) с помощью модели парной регрессии $Y = \alpha + \beta X + u$ по по одной и той же выборке, однако Эмманюэль измерял стоимость машин в евро, а Владимир – в рублях, 1 евро = 65 рублей. Оценки МНК коэффициента наклона регрессии, полученные Эмманюэлем β_E и Владимиром β_B связаны следующим образом:
 - a) $\hat{\beta}_B = \hat{\beta}_E$

c) $\hat{\beta}_E = 65\hat{\beta}_B$

e) $\hat{\beta}_E = 4225 \hat{\beta}_B$

b) $\hat{\beta}_B = 4225 \hat{\beta}_E$

d) $\hat{\beta}_B = 65\hat{\beta}_E$

Геор	ия вероятностей, ВШЭ		1984-01-01
266.	По данным 500 индивидуумов оцен (1 фунт ≈ 0.5 кг) от его роста , измерост индивидуума будет измерен будет равен	ряемого в в футах (1 фут $pprox$ 30 см): $\hat{\ln}$	$\widehat{\mathbf{n}Y}_i = -4.4 + 2.4 \ln X_i$. Если
	a) 4.8	c) 2.4	
267.	b) 1.2 Какое условие НЕ требуется в теоре	d) 8 еме Гаусса-Маркова?	
	а) случайные ошибки u_i нормально распределены b) случайные ошибки u_i не коррелированы	c) случайные ошибки u_i имеют одинаковые дисперсии e d) матрица регрессоров X	имеет полный ранг $ \text{)} \ \ \text{модель} \ \ Y \ = \ X\beta \ + \ u $ правильно специфицирована

268. Винни-Пух оценил модель множественной регрессии с константой с помощью МНК. Выборочная корреляция между прогнозами \hat{y} и фактическим вектором y оказалась равной 0.7. Чему равно отношение $\sum (\hat{y}_i - \bar{y})^2 / \sum (y_i - \bar{y})^2$?

269. У Винни-Пуха есть четыре наблюдения 5, 6, 8, 9 и он оценивает модель вида $y_i = 1 + \beta + u_i$ с помощью МНК.

Оценка $\hat{\beta}$ окажется равна

a) 7

c) 9

e) 6

b) 8

d) 5

f) 10

270. Обобщенный МНК служит для оценивания регрессионной модели $Y = X\beta + u$ в случае нарушения следующего условия теоремы Гаусса-Маркова

a) $Cov(u_i, X_i) = 0$

c) $\mathbb{E}(u_i) = 0$

e) rank X = k

b) $Cov(Y_i, u_i) = 0$

d) $Var(u_i) = \sigma_u^2$

271. По исходному временному ряду была оценена парная регрессия

$$\hat{y}_t = 3 + 0.06y_{t-2}.$$

Найдите второе значение выборочной автокорреляционной функции ACF_2 с точностью до двух знаков после десятичной точки.

272. Какая зависимость математического ожидания исходного процесса от времени предполагается в альтернативной гипотезе KPSS-теста с константой?

a) $\mathbb{E}(y_t) = \mu + \alpha t$

c) $\mathbb{E}(y_t)$ строго возрастает

e) $\mathbb{E}(y_t) = \mu + \alpha t + \beta t^2$

b) нет верного ответа

d) $\mathbb{E}(y_t)$ строго монотонна

f) $\mathbb{E}(y_t) = \mu$

273. На третьем шаге теста МакАлера исследователь получил следующие результаты:

$$\widehat{\ln Y_i} = 1.54 - 1.2 X_i + 3.1 \hat{v}_{\exp(\widehat{\ln Y}),i}$$

$$\hat{Y}_i = 1.24 + 1.1_{(0.03)} X_i + 2.4 \hat{v}_{\ln \hat{Y}, i}$$

На основании этих результатов исследователь

- а) должен сделать вывод об отсутствии пропущенных переменных
- с) не может выбрать ни логарифмическую, ни линейную модель
- е) должен предпочесть полулогарифмическую модель

- b) должен предпочесть линейную модель
- d) должен отвергнуть гипотезу об адекватности исходной модели
- f) должен сделать вывод о наличии пропущенных переменных
- 274. Выберите верное утверждение про ARDL модель с зависимой переменной y_t и предиктором x_t .
 - а) y_t является AR(p) процесcom c p > 1
- c) y_t является MA(q) процессом с q > 1
- e) y_t является стационарным

- b) y_t является ARMA(p,q)процессом с p > 1 и q > 1
- d) y_t является нестационар-
- f) нет верного ответа
- 275. Если для регрессора используется преобразование Бокса-Кокса с параметром heta=-1, а для зависимой переменной — с параметром $\lambda=1$, то регрессионное уравнение представимо в виде
 - a) $\ln Y_i = \beta_1 + \beta_2 \ln X_i + u_i$ c) $Y_i = \beta_1 + \beta_2 \ln X_i + u_i$ e) $Y_i = \beta_1 + \beta_2 \frac{1}{Y_i} + u_i$

- b) $\ln Y_i = \beta_1 + \beta_2 X_i + u_i$
- d) $Y_i = \beta_1 + \beta_2 X_i + u_i$
- f) $\ln Y_i = \beta_1 \beta_2 \ln X_i + u_i$
- 276. С помощью МНК оценена зависимость потребления Y_i от дохода X_i , $\hat{Y}_i = 0.5 0.3 X_i$. Если же использовать центрированные и нормированные переменные, то зависимость примет вид $\hat{Y}_i^{st} =$ $-0.7X_{i}^{st}$. Коэффициент множественной детерминации R^{2} для первой модели равен
 - a) 0.3

c) 0.21

e) 0.09

b) 0.49

- d) 0.7
- 277. В рамках ETS(AAN) модели постройте 95%-й предиктивный интервал на два шага вперёд, Последнее значение сглаженного ряда (тренда) равно 100, последний наклон сглаженного ряда (тренда) равен 5, $\alpha = \beta = 0.3$, $u_t \sim \mathcal{N}(0; 16)$.

В ответ введите левую границу предиктивного интервала с точностью до двух знаков после десятичной точки.

- 278. Зависимость спроса на некоторый вид услуг Y от его цены имеет вид $\widehat{\ln Y_i} = 30 0.03 P_i$. Чтобы спрос в среднем снизился на 3% цена должна увеличиться на
 - а) 10 единиц

c) 10%

е) 100 единиц

b) 1 единицу

d) 1%

- 279. Для модели $Y_i=\beta X_i+u_i$ с $\mathbb{E}(u_i)=0$ известно, что оценка $\hat{\beta}=\frac{\sum_{i=1}^nY_i}{\sum_{i=1}^nX_i}$ обладает наименьшей дисперсией среди линейных несмещённых оценок. Дисперсии $Var(u_i)$ пропорциональны
 - a) $1/X_i^2$

c) X_i

e) $1/X_{i}$

b) $\sqrt{X_i}$

- d) X_i^2
- 280. Оценка МНК коэффициента регрессии без свободного члена $Y_i = \beta X_i + u_i, i = 1, \dots, n$, где $x_i = 1, \dots, n$ $X_i - \bar{X}, y_i = Y_i - \bar{Y}$, находится по формуле
 - a) $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$

c) $\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$

e) $\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} Y_i^2}$

b) $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} X_i^2}$

- d) $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} y_i^2}$
- 281. Василий сменил единицы измерения ряда с тысяч рублей на рубли. На какое число при этом домножится средняя абсолютная ошибка наивной модели?
- 282. Выберите верное утверждение про метод максимального правдоподобия.
 - а) Метод подбирает значения параметров, минимизирующие вероятность наибольшей ошибки прогнозов.
- параметров.
- с) Метод подбирает чения параметров, максимизирующие вероятность наименьшей ошибки прогнозов.
- сумму квадратов ошибок прогнозов.
- е) Метод подбирает значения параметров, при которых вероятность имеющейся выборки максимальна.

- b) Метод подбирает наиболее вероятные значения
- d) Метод минимизирует
- 283. Рассмотрим лаговые многочлены P(L) = 1 0.2L и $Q(L) = 1 + 6L + \alpha L^2$. При каком значении α многочлены будут сократимыми? Ответ вводите с точностью до двух знаков после десятичной точки.
- 284. Элеонора исследует зависимость цены номера в отеле от звёздности отеля, star, (от 1 до 3 звёзд) и расстояния до моря, dist. Элеонора хочет оценить модель вида $price_i = \beta_1 + \beta_2 star_i + \beta_3 dist_i + u_i$. Чтобы считаться богиней эконометрики Элеоноре стоит
 - а) заменить переменную $star_i$ на даммипеременные one_i , two_i и $three_i$, равные 1 для отелей с одной, двумя и тремя звёздами соответственно
 - b) заменить переменную $star_i$ на даммипеременные one_i и two_i ,
- равные 1 для отелей с одной и двумя звёздами соответственно
- с) добавить даммипеременные one_i , two_i и $three_i$, равные 1 для отелей с одной, двумя и тремя звёздами соответственно
- d) добавить в модель переменную $z_i = star_i^2$, так как эффект звёздности наверняка нелинейный
- е) добавить в модель переменную $z_i = star_i \cdot dist_i$
- f) использовать МНК для оценки данной модели

285. Рассмотрим модель, стоящую за тета-методом,

$$\begin{cases} y_t = \ell_{t-1} + 2 + u_t \\ \ell_t = \ell_{t-1} + 2 + 0.3u_t \end{cases}$$

Перепишите эту модель в виде

$$\Delta y_t = \theta_1 + \theta_2 u_{t-1} + u_t.$$

В ответ укажите коэффициент θ_1 .

286. Исследователь Иа-Иа использует мультипликативное разложение ряда. Очередное наблюдение равно 60, трендовая составляющая равна 40, сезонная составляющая 2.

Найдите остаточную компоненту с точностью до двух знаков после десятичной точки.

287. Петя и Вася строят доверительные интервалы для коэффициента наклона в модели парной регрессии. Оба строят интервалы по общему набору данных в 1000 наблюдений. Петя строит 95%-й интервал, а Вася — в два раза более узкий.

Какую вероятность накрытия имеет Васин интервал?

Ответ вводите с точностью до двух знаков после десятичной точки.

Можно использовать функции из статистических пакетов или таблицы.

288. Пусть u_t - белый шум. Тогда стационарным будет следующий процесс

a)
$$Y_t = \sum_{i=0}^{10} u_{t-i}$$

c)
$$Y_t = 2018t + u_t$$

e)
$$Y_t = 2Y_{t-1} - u_t$$

b)
$$Y_t = Y_{t-1} - u_t$$

d)
$$Y_t = tu_t$$

- 289. Для какой цели используют LASSO?
 - а) Сильно увеличить дисперсию оценок за счёт небольшого смещения оценок.
 - b) Сильно уменьшить смещение оценок за счёт небольшого падения дисперсии оценок.
- с) Сильно уменьшить смещение оценок за счёт небольшого роста дисперсии оценок.
- d) Сильно уменьшить дисперсию оценок за счёт небольшого смещения оценок.
- e) Сильно увеличить дисперсию оценок без смещения оценок.
- f) Сильно уменьшить дисперсию оценок без смещения оценок.
- 290. Рассмотрим алгоритм градиентного бустинга над решающими деревьями для задачи регрессии. Какую целевую переменную «учится» прогнозировать дерево номер 4?
 - а) разницу между исходной переменной y_t и прогнозом третьего дерева, домноженным на темп обучения
- с) нет верного ответа
- прогнозов первых трёх деревьев
- d) разницу между исходной переменной y_t и прогнозом третьего дерева

е) разницу между исходной

переменной y_t и суммой

f) разницу между исходной переменной y_t и суммой прогнозов первых трёх деревьев, домноженной на темп обучения

- b) исходную переменную y_t
- 291. Случайная величина X имеет χ^2 -распределение с шестью степенями свободы.

Найдите число a, такое что $\mathbb{P}(X>a)=0.05$.

Можно использовать статистические функции в R/Python или других программах. Ответ вводите с точностью до двух знаков после десятичной точки.

- 292. В модели функция правдоподобия в точке максимума равна 10^{-10} а критерий Акаике равен 62.05. Сколько параметров оценивается в модели?
- 293. В модели множественной регрессии $\hat{y}_i = 2 + 3x_i + 7z_i 6w_i$ оценённая сумма квадратов равна 777. Для оценивания использовали 200 наблюдений. Остатки обозначим вектором \hat{u} . Найдите сумму $\sum_i \hat{y}_i \hat{u}_i$.
- 294. Выберите верный признак мультиколлинеарности.
 - а) Каждый регрессор незначим по отдельности, регрессия в целом не значима.
 - b) Часть регрессоров значима по отдельности, часть регрессоров — не значима

по отдельности.

- с) Каждый регрессор значим по отдельности, регрессия в целом значима.
- d) Каждый регрессор значим по отдельности, ре-
- грессия в целом не значима
- е) Каждый регрессор незначим по отдельности, однако регрессия в целом значима.

- 295. С помощью t-теста проверяется гипотеза о том, что
 - а) стандартная ошибка коэффициента регрессии равна единице
 - b) коэффициент регрессии

равен единице

- с) оценка стандартной ошибки коэффициента регрессии равна единице
- d) надо ходить на семинары по эконометрике
- е) оценка коэффициента регрессии равна единице
- 296. Истинной является модель $Y_i = \beta_1 + \beta_2 X_i + u_i$. Глафира оценивает две регрессии: $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$ и $\hat{Y}_i = \hat{\gamma}_1 + \hat{\gamma}_2 X_i + \hat{\gamma}_3 Z_i$ с помощью МНК. Для коэффициента β_2
 - а) оценки \hat{eta}_2 и $\hat{\gamma}_2$ являются неэффективными
 - b) оценка $\hat{\beta}_2$ является смещённой, а оценка $\hat{\gamma}_2$ —

несмещённой

- с) оценка $\hat{\beta}_2$ является несмещённой, а оценка $\hat{\gamma}_2$ смещённой
- d) оценки $\hat{\beta}_2$ и $\hat{\gamma}_2$ являются эффективными
- e) оценки $\hat{\beta}_2$ и $\hat{\gamma}_2$ являются несмещёнными
- 297. Взятием разностей может быть сведен к стационарному
 - а) как временной ряд с детерминированным трендом, так и со случайным трендом

ный ряд

- c) только временной ряд со случайным трендом
- d) только временной ряд с детерминированным
- е) ни временной ряд с детерминированным трендом, ни со случайным трендом

трендом

b) только коинтегрирован- с детерминированным 298. У меня набор данных из трёх наблюдений: x=(1,2,3), y=(5,6,10). Чему равна МНК-оценка $\hat{\beta}_x$ в модели $y_i=\beta_1+\beta_x x_i+u_i?$ Ответ вводите с точностью до двух знаков после запятой.

299. Пантелеймон оценил модель парной регрессии

$$\ln \hat{y}_i = 0.4 + 1.2 \ln x_i$$
.

Какая интерпретация уравнения является верной?

- а) с ростом x на один процент величина y растёт в среднем на 1.2 единицы
- b) с ростом x на один процент величина y растёт в среднем на 1.2 процента
- с) нет верного ответа
- d) с ростом x на единицу величина y растёт в среднем на 120 процентов
- е) с ростом x на единицу ве-
- личина y растёт в среднем на 1.2 процента
- f) с ростом x на единицу величина y растёт в среднем на 1.2 единицы
- 300. Исследовательница Василиса построила парную регрессию $\hat{y}_i = 2 3x_i$ с $R^2 = 0.64$. Найдите выборочную корреляцию между зависимой переменной y и предиктором x.
- 301. Гюльчатай оценила одну и ту же модель зависимости зарплаты от опыта работы по трём разным группам наблюдений.

Для 1000 сельских жителей:

$$wage_i = \beta_1 + \beta_2 exp_i + u_i, RSS_a = 150.$$

Для 2004 городских жителей:

$$wage_i = \gamma_1 + \gamma_2 exp_i + u_i, RSS_b = 200.$$

Для всех жителей сразу:

$$wage_i = \delta_1 + \delta_2 exp_i + u_i, RSS_c = 400.$$

Найдите значение F-статистики теста Чоу для проверки гипотезы об одинаковой зависимости для всех жителей.

Ответ укажите с точностью до двух знаков после десятичной точки.

302. Процесс (y_t) стационарный.

Найдите максимальное значение t, при котором гарантированно выполнено условие

$$Cov(y_{108}, y_{109}) = Cov(y_{120}, y_t).$$

- 303. Модель $y_i=\beta_1+\beta_x x_i+u_i$ оценивают с помощью МНК. Известно, что $\bar x=2,\,\bar y=4,$ и $\hat\beta_1=2.$ Чему равна МНК-оценка $\hat\beta_x$?
- 304. У Винни-Пуха был временной ряд из 1000 наблюдений. Винни использует алгоритм случайного леса, причем в качестве предикторов он берёт лаги $y_{t-1},...,y_{t-9}$. По скольки наблюдениям обучается каждое из деревьев?
- 305. Для модели парной регрессии $y=\beta_1 s+\beta_2 x+u$, где $y=(y_1,\dots,y_n), x=(x_1,\dots,x_n), s=(1,\dots,1), \hat{u}=(\hat{u}_1,\dots,\hat{u}_n), \hat{y}=\hat{\beta}_1 s+\hat{\beta}_2 x, \hat{u}=y-\hat{y}$ в пространстве \mathbb{R}^n ортогональны вектора
 - a) y и \hat{y}

c) x и \hat{y}

e) *уиs*

b) \hat{u} и s

d) u и \hat{y}

306.	. Перед Винни-Пухом временной ряд потребления мёда с восходящим трендом и сезонными ко лебаниями растущей амплитуды. Какая модель из предложенных лучше подходит для описания данного ряда?				
	a) ETS(MMN)	c)	ETS(MAM)	e)	ETS(AAN)
307.	b) ETS(AAA) Выберите утверждение про модель	,	ETS(MNM) кальной линейной регрессии l		ETS(AAdA) ESS.
308.	 а) LOESS можно оценить только для предикторов в малой окрестности нуля. b) В качестве ядерной функции разумно выбрать любую монотонно возраста-Гипотеза о том, что одновременно построенной по п наблюдениям пр 	d) β_1		f)	быстрее, чем аналогичная парная регрессия. LOESS можно использовать только на данных временных рядов. нной линейной регрессии
	a) t_{n-2}	c)	F	e)	Демешева-Мамонтова
309.	b) t_n Оценки МНК вектора коэффициент		N(0;1) регрессии $Y=Xeta+u$ находя		t_{n-k} и по формуле
	a) $(X'X)^{-1}YX$	c)	$(XX')^{-1}X'Y$	e)	$(XX')^{-1}Y'X$
310.	b) $X'Y(X'X)^{-1}$ Частным случаем какой модели яв		$(X'X)^{-1}X'Y$ тся модель за тета-методом?		
	a) ETS(MMM) c $\beta = 0$	c)	ETS(AAA) c $\gamma=1$	e)	ETS(AAA) c $\alpha=1$
311.	b) ETS(AAN) с $\beta=0$ Какая модель соответствует аддити			f)	ETS(MMM) c $\alpha=0$
	a) ETS(ANA)	c)	ETS(AAdA)	e)	ETS(AAN)
312.	b) ETS(AAA) Абу Али Яхья ибн Галиб аль-Хайят значим вектор остатков с помощью Выберите пары ортогональных век	гоц о \hat{u} .		,	ETS(ANN) $\hat{y}_i = \hat{eta}_1 + \hat{eta}_x x_i + \hat{eta}_z z_i$. Обо-
	a) $y\perp \hat{u}$ w $y\perp y+\hat{u}$	c)	$x\perp y \text{ if } x\perp y+z$	e)	$\hat{u}\perp y$ и $\hat{u}\perp y+z$
313.	b) $\hat{y} \perp x$ и $\hat{y} \perp x + z$ Рассмотрим процесс $Y_t = -0.2Y_{t-1}$		$\hat{u} \perp x$ и $\hat{u} \perp x + z$ u_t . 5-ое значение автокорреляц		$y\perp x$ и $y\perp x+z$ нной функции равно
	a) 0.2	c)	-0.2	e)	-0.00032
	b) 0.00032	d)	0		