Solutions to Sheet 2

Exercise 1

Determine the nilradical, the Jacobson radical and the units for each ring A below:

- 1. k a field and A = k[T],
- 2. k a field and $A = k[\epsilon, T]/(\epsilon^2)$,
- 3. $n \ge 1$, k a field and $A = k[[T_1, \dots, T_n]]$.

Solution.

zero divisors. Indeed, if $f, g \in B[T]$ with fg = 0, we can look at the leading terms of f and g, obtaining f = 0 or g = 0. We now obtain Nil(A) = (0) as every element in the nilradical is a zero divisor.

Units. Obviously, $k^{\times} \subset k[T]^{\times}$. We have the additive degree map $\deg: k[T]^{\times} \to \mathbb{N}_0$. If we have elements $f, g \in k[T]$ with fg = 1, then $0 = \deg(fg) = \deg(f) + \deg(g)$, thereby $\deg(f) = \deg(g) = 0$ and $f, g \in k^{\times}$. This shows that $k^{\times} \supset k[T]^{\times}$, and we have equality. Jacobson radical. Note that if B is any commutative ring and $f \in Jac(B)$, then $1+f \in B^{\times}$. Indeed, if we had $1+f \notin B^{\times}$, we'd find some maximal ideal \mathfrak{m} containing 1+f (by Zorn's lemma). But now $f \in \mathfrak{m}$ (as $f \in Jac(B)$) and $1+f \in \mathfrak{m}$, hence $1 \in \mathfrak{m}$. This is a

1. Nilradical. If B is any commutative ring without zero divisors, then B[T] doesn't have

2. Nilradical. We claim that if $I \subset \text{Nil}(A)$, there is an equality Nil(A)/I = Nil(A/I). Indeed, we have Indeed, this can be seen Same works with Jacobson.

we find Jac(A) = 0. As $Jac(A) \supset Nil(A)$, this is stronger than Nil(A) = 0.

contradiction. Thereby we obtain that every $f \in \operatorname{Jac}(A)$ has degree 0. As $A^{\times} \cap \operatorname{Jac}(A) = \emptyset$,

3. For A is inverse limit (i.e., can be described by comp systems). Hence Units are power series whose first term is invertible. For units: Claim: If $I \subset \text{Nil}(B)$ then $B^{\times} = \pi^{-1}((B/I)^{\times})$. Take $I = (T_1, \ldots, T_n)$.

Exercise 2

Prove the *Chinese remainder theorem*: Let A be a ring and $\mathfrak{a}, \mathfrak{b} \subset A$ two ideals such that $\mathfrak{a} + \mathfrak{b} = A$. Then the map

$$A/\mathfrak{a} \cap \mathfrak{b} \to A/\mathfrak{a} \times A/\mathfrak{b}, \quad r + \mathfrak{a} \cap \mathfrak{b} \mapsto (r + \mathfrak{a}, r + \mathfrak{b})$$

is an isomorphism. Moreover, show that $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \cdot \mathfrak{b}$, where $\mathfrak{a} \cdot \mathfrak{b}$ is the smalles ideal in A containing all products ab wth $a \in A$, $b \in B$. Show $a \cap b = ab$. Show that map has kernel $a \cap b$ and that homomorphism is surjective.

Solution. We first show that this map is well-defined, and indeed a homomorphism of rings. This is evident for the reduction-mod- \mathfrak{a} and reduction-mod- \mathfrak{b} maps $A \to A/\mathfrak{a}$ and A/\mathfrak{b} . By the universal property of the product of rings we obtain the map $A \to A/\mathfrak{a} \times A/\mathfrak{b}$. The kernel of

this homomorphism is given by the elements in A which lie simultaneously in \mathfrak{a} and \mathfrak{b} , hence we obtain an injective map

$$A/(\mathfrak{a} \cap \mathfrak{b}) \to A/\mathfrak{a} \times A/\mathfrak{b}$$
.

To show surjectivity, it suffices to construct elements $a, b \in A$ such that $a \mapsto (0, 1)$ and $a \mapsto (1, 0)$. As $\mathfrak{a} + \mathfrak{b} = A$, there are elements $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ such that a + b = 1. These are the elements we are looking for! Indeed, as a = 1 - b we find that a reduces to 1 mod \mathfrak{b} , and as $a \in \mathfrak{a}$ we find $(a + \mathfrak{a}, a + \mathfrak{b}) = (\mathfrak{a}, 1 + \mathfrak{b})$.

We now show that $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \cdot \mathfrak{b}$. The inclusion $\mathfrak{a} \cap \mathfrak{b} \supset \mathfrak{a} \cdot \mathfrak{b}$ is obvious, as all products ab lie in both \mathfrak{a} and \mathfrak{b} . To show the reverse inclusion, let $f \in \mathfrak{a} \cap \mathfrak{b}$. Again, let a + b = 1 with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Then fa + fb = f, and the left hand side lies in $\mathfrak{a} \cdot \mathfrak{b}$ by definition.

Exercise 3

- 1. okay. How to make sense of "decompositions": $\{(A_1, A_2, \alpha : A \cong A_1 \times A_2)\}$. Weddeburn's theorem.
- 2. $133 = 7 \cdot 19$. We have $1 = 3 \times 19 8 \cdot 7$. Hence the idempotents are (57, 77, 0, 1).

Exercise 4

- 1. Integral domain => mult by $x \in A \setminus \{0\}$ injective => Mult surjective => Field
- 2. Apply 1) to A/\mathfrak{p} .
- 3. Use $0 = \text{Nil}(A) = \bigcap_i \mathfrak{m}_i$. Generalize CRT to get $A/\bigcap_i \mathfrak{m}_i \cong \prod_i A/\mathfrak{m}_i$. By A finite dimensional, there are only finitely many factors.