01 October 2023 08:53

-: meilgran anot

Let (G,*) and (H,0) be groups Then a function f: 6 > H Tu a homomorphism if tabe 6, f(a*b) = f(a)of(b) EH

pliem. - It is a honomorphism which is a bijection >> 6 = H

f (ab) = f (a) f (b) f(a,a2a3. an) = f(a1) f(a2) --- f(an)

Theorem: Let f: (G,*) -> (H, 0) be a homomorphism

- (i) f(e) = e', where e' is the identity of H
- (ii) If $a \in G$ then $f(\alpha^{-1}) = (f(\alpha))^{-1}$
- (iii) If a ∈ G and u ∈ Z/ then f(an) = (f(a))

f(ab1)=f(a)f(b) -> to prove homomorphism

a> f:x>> > be a bijection and x, Y are set. Show that x >> fox of is on isomorphism on $S_X \rightarrow S_Y$.

Ami- Support, = fox10f] = fox10f] = fox10f] = fox10f]

$$|X| = |Y|$$
 $\Rightarrow |X| = |X|$ and one -are \Rightarrow outo

$$\phi(\alpha_1 \alpha_1) = f \circ \alpha_1 \circ \alpha_2 \circ f^{-1} = f \circ \alpha_1 \circ f^{-1} \circ f \circ \alpha_2^{-1} \circ f^{-1}$$

$$= \phi(\alpha_1) \circ \phi(\alpha_2)$$

9) Let G be a group and x be a set and f. G > x be a bijection Show that there is a unique operation on x so that X is a group and f is on isomorphism

Ans:-
$$|G_1| = |X|$$

 $G_1 = \{\alpha_1, \alpha_2, \dots, \gamma_n\}$ $X = \{\alpha_1, \alpha_2, \dots, \gamma_n\}$ converse pointing sight fair $\{\alpha_1 * \alpha_2\} = \{\alpha_1, \alpha_2\} = \{\alpha_1$

Suppose another operation emists, let it be

for som i j we oush how
$$f(a; *a;) + x; *x;$$

$$f(a;) = x, \qquad f(a; *a;) + f(a;) *f(a;)$$
So not homomorphis in

B) For ony elements a, b in a group and ony integer n,

Prove that $(a^{-1}ba)^n = a^{-1}b^n a$

Ausi-
$$(a^{\dagger}ba)^{\prime\prime} = a^{\dagger}baa^{\dagger}ba - ...a^{\dagger}ba = a^{\dagger}b^{\prime\prime}a$$

Prove that if $(ab)^2 = a^2b^2$ then ab = ba, $a, b \in G$ Aw: - $(ab)^2 = ab ab = aabb$

$$Aw' - (ab)^2 = abab = aabb$$

 $ba = ab$

1) Let 6 be a group of exactly 4 demonly Proxie that G is obdion

$$eb = b = be$$

be ex box

but
$$ab$$
, $ba \in G \Rightarrow ab = ba$

G	a, a ₂	an	
۵ ₁	0,*0, 0,*0, 0,*0, 0,*0,	anxa,	≥ This has all the elements of
On	; axan azzan	Qu Aan	

8> If G is a multiplicative group of all positive real numbers, show that $h: C_1 \rightarrow (\mathbb{R}, +)$ is an isomorphism.

Ans;
$$-a \rightarrow ln(a) \Rightarrow one-one$$

 $(m)^{-1}(b) \in G \Rightarrow onto \Rightarrow bijection$
 $(m)^{-1}(b) \in G \Rightarrow onto \Rightarrow bijection$
 $ln(ab) = ln(a) + ln(b) \Rightarrow homo marphism$

B) Prove that a group G is abelien iff the faction f: G > G offred by f(a) = a-1 is a homomorphism Hus: Suppose Gis obdien, バッ アカラ

Hw: Suppose G is obclien, $ab = ba + a,b \in G$ $f(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = f(a)f(b)$ Suppose, $f(a) = a^{-1}$ is homoporphism, $f(ab) = f(a)f(b) \Rightarrow (ab)^{-1} = a^{-1}b^{-1} \Rightarrow (ab)^{-1} = (ba)^{-1}$ $\Rightarrow ab = ba$