

MATH - 1

B4

DR. ADEL MORAD

<u>Aims and Objectives</u>

- (1) Understand the notion of the area.
- (2) Use the concepts of integration.
- (3) Understand the concepts of finite sums.
- (4) Learn the definite integral as a limit of a sum.
- (5) Gain experience in evaluating finite sums.
- (6) Have a strong intuitive feeling for these important concepts.

• CALCULUS IN COMPUTER SCIENCE

Integral calculus

In this Lecture you will learn the concept which is the basis for *integral calculus*:

the definite integral and related topics.

Consider the area of a region in a plane:

The area of the region S lies under the curve y=f(x) from a to b, which is bounded by the graph of a continuous function $f(x) \ge 0$, the vertical lines x=a and x=b, and the x-axis.

1. The area of a region with straight sides

$$A = lw$$

The area of a rectangle is defined as the product of the length and the width.

$$A = \frac{1}{2}bh$$

The area of a triangle is half the base times the height.

The area of a polygon is the sum of the triangles' areas.

2. The area of a region with curved sides

We first approximate the region S by rectangles and then we take the limit of the areas of these rectangles as we increase the number of rectangles.

We start by subdividing into n strips S_1, S_2, \dots, S_n of equal width

$$x_i - x_{i-1} = \Delta x = \frac{b-a}{n},$$

such that the width of the interval [a, b] is b-a. These strips divide the interval [a, b] into n subintervals

$$[x_0, x_1], [x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, x_n],$$

where $x_0 = a$, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$,, $x_i = a + i\Delta x$,, $x_n = a + n\Delta x = b$.

The area of the i^{th} rectangle is $f(u_i)\Delta x$. The boundary of the region formed by the totality of these rectangles is called the inscribed rectangle polygon associated with the subdivision of [a, b] into n subintervals.

The area of this inscribed polygon is the sum of the areas of the rectangles, that is,

$$R_n = f(u_1)\Delta x + f(u_i)\Delta x + \dots + f(u_n)\Delta x = \sum_{i=1}^n f(u_i)\Delta x$$

We can see that the area of S appears to become better and better as the number of strips increases, that is, as $n \to \infty$. Therefore we define the area A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(u_1)\Delta x + f(u_i)\Delta x + \dots + f(u_n)\Delta x]$$
$$= \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(u_i)\Delta x$$

The statement $A=\lim_{\Delta x\to 0}\sum_{i=1}^n f(u_i)\Delta x$ means that for every $\varepsilon>0$ there corresponds a $\gamma>0$ such that if $0<\Delta x<\gamma$, then $A-\lim_{\Delta x\to 0}\sum_{i=1}^n f(u_i)\Delta x<\varepsilon$

we can observe that as Δx getting smaller, the value of the summation converges to the true value of the area.

Theorem If f is integrable on [a, b], then

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \, \Delta x$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i \Delta x$

Finite Sum Concept:

It is convenient to use summation notation, to illustrate, given a collection of numbers $\{1, 2, \dots, a_n\}$, the symbol $\sum_{i=1}^n a_i$ represent their sum, that is $\sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$

Where the Greek capital letter Σ indicates a sum, and the symbol a_i represent the ith term. The letter i is called the index of summation or the summation variable, and the numbers 1 and n indicates the extreme values of the summation variable.

A theorem concerning finite sums:

Theorem

If n is any positive integer and $\{a_1, a_2, \ldots, a_n\}$,

 $\{\underline{b}_1, \underline{b}_2, \ldots, \underline{b}_n\}$ are sets of numbers, then

$$(i)\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$ii)\sum_{i=1}^{n} ca_i = c(\sum_{i=1}^{n} a_i)$$
, for any number c ;

$$iii)\sum_{i=1}^{n}c=nc$$

Now, the following definition will be useful in some illustrations.

$$(i)\sum_{i=1}^{n} i = 1+2+3+...+n = \frac{n(n+1)}{2}$$

$$(ii)\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$(iii)$$
 $\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$

Example 1:

Find $\sum_{i=1}^{4} i^{2} (i-3)$

Solution:

we merely substitute, in succession, the integers 1,2,3, and 4 for i and add the resulting terms. thus,

$$\Sigma_{i=1}^{4} i^{2} (i-3) = 1^{2}(1-3)+2^{2}(2-3)+3^{2}(3-3)+4^{2}(4-3)$$
$$= (-2) + (-4) + (0) + (16) = 10$$

Example 2:

Find $\sum_{i=0}^{3} \frac{2^{i}}{(i+1)}$

Solution:

$$\sum_{i=0}^{3} \frac{2^{i}}{(i+1)} = \frac{2^{0}}{(0+1)} + \frac{2^{1}}{(1+1)} + \frac{2^{2}}{(2+1)} + \frac{2^{3}}{(3+1)}$$

$$= 1 + 1 + \frac{4}{3} + 2 = \frac{16}{3}$$

Example 3:

If $f(x) = 16 - x^2$, find the area of the region under the graph of f from 0 to 3.

Solution:

For the given region, the interval [0,3] is divided into n equal subintervals, then the length Δx of a typical subinterval is $\Delta x = b - a / n = 3/n$.

Since
$$x_0 = 0$$
, $x_1 = \Delta x$, $x_2 = 2\Delta x$,..., $x_i = i\Delta x$,..., $x_n = n\Delta x = 3$

Using the fact that $\Delta x = 3/n$ we may write

$$x_i = i(\Delta x) = i(\frac{3}{n}) = \frac{3i}{n}$$

Since f is decreasing on [0,3], the number u_i in $[x_{i-1}, x_i]$ at which f takes on its minimum value is always at the

right-hand
$$f(u_i) = f(\frac{3i}{n}) = 16 - \left(\frac{3i}{n}\right)^2 = 16 - \frac{9i^2}{n^2}$$

Using the idea of finite sum to approximate an area by dividing the area into a group of rectangles each has a small area and summing the areas of these rectangles.

$$\sum_{i=1}^{n} f(u_i) \Delta x = \sum_{i=1}^{n} (16 - \frac{9i^2}{n^2}) (\frac{3}{n})$$

$$= \sum_{i=1}^{n} (\frac{48}{n} - \frac{27i^2}{n^3}) = (\frac{48}{n})n - \frac{27}{n^3} \sum_{i=1}^{n} i^2.$$

Remember that $\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$

In order to find the area, we must now let Δx approach 0. Since $\Delta x = (b-a)/n$, this can be accomplished by letting n increase without bound. And we can replace $\Delta x \to 0$ by $n \to \infty$, we have

$$\lim_{\Delta x \to 0} \sum_{i=1}^{n} f(u_i) \Delta x = \lim_{n \to \infty} \left\{ 48 - \frac{9}{2n^3} \left[2n^3 + 3n^2 + n \right] = \lim_{n \to \infty} 48 - \frac{9}{2} \lim_{n \to \infty} \left[\frac{2n^3 + 3n^2 + n}{n^3} \right] \right\}$$

$$= 48 - \frac{9}{2} \lim_{n \to \infty} \left[2 + \frac{3}{n} + \frac{1}{n^2} \right] = 48 - \frac{9}{2} \left[2 + 0 + 0 \right] = 48 - 9 = 39$$

Definition introducing the main concepts of definite integral:

Definition (4.2):

Let f be a function that is defined on a closed interval and let be a partition of [a, b].

A Riemann sum of f for ${\cal P}$ is any expression of ${\cal R}_{\!\scriptscriptstyle {\cal P}}$

the form
$$R_P = \sum_{i=1}^n f(w_i) \Delta x_i$$

Example 4:

Suppose $f(x) = 8 - (x^2/2)$ and \mathbf{P} is the partition of

[0,6] into the five subintervals determined by

$$x_0 = 0, x_1 = 1.5, x_2 = 2.5, x_3 = 4.5, x_4 = 5, \text{ and } x_5 = 6$$

Find (a) the norm of the partition and (b) the

Riemann sum

$$R_P$$
 if $w_1 = 1, w_2 = 2, w_3 = 3.5, w_4 = 5, w_5 = 5.5.$

Solution: the graph of f is sketched in figure 4.5.

Also shown in the figure are the points on the x-axis that correspond to x_i and the rectangles of lengths $|f(w_i)|$ for i = 1, 2, 3, 4, and 5.

Thus,
$$\Delta x_1 = 1.5$$
, $\Delta x_2 = 1$, $\Delta x_3 = 2$, $\Delta x_4 = 0.5$, $\Delta x_5 = 1$

And hence the norm $P \parallel$ of the partition is Δx_3 , or 2.

By definition 4.2,

$$\begin{split} R_P &= f \ (w_1) \Delta x_1 + f \ (w_2) \Delta x_2 + f \ (w_3) \Delta x_3 + f \ (w_4) \Delta x_4 + f \ (w_5) \Delta x_5 \\ &= f \ (1)(1.5) + f \ (2)(1) + f \ (3.5)(2) + f \ (5)(0.5) + f \ (5.5)(1) \\ &= (7.5)(1.5) + (6)(1) + (1.875)(2) + (-4.5)(0.5) + (-7.125)(1) \end{split}$$
 Which reduces to $R_P = 11.625$

THANK YOU