Module-5 Linear Algebra

Introduction of liner algebra:

Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector problems.

1. Determine the rank of the following matrices:

1)
$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$
 2) $A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}$ 3) $A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$

$$4) A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix} 5) A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} 6) A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

7)
$$A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$

Test for consistency and solve.

2.

1)
$$x + y + z = 6$$
 $x - y + 2z = 5$ $3x + y + z = 8$

2)
$$x + 2y + 3z = 14$$
 $4x + 5y + 7z = 35$ $3x + 3y + 4z = 21$

3)
$$x - 4y + 7z = 14$$
 $3x + 8y - 2z = 13$ $7x - 8y + 26z = 5$

4)
$$4x - 5y + z = -3$$
 $2x + 3y - z = 3$ $3x - y + 2z = 5$ $x + 2y - 5z = -9$

5)
$$5x_1 + x_2 + 3x_3 = 20$$
 $2x_1 + 5x_2 + 2x_3 = 18$ $3x_1 + 2x_2 + x_3 = 14$

6)
$$5x + 3y + 7z = 5$$
 $3x + 26y + 2z = 9$ $7x + 2y + 10z = 5$

7)
$$3x + 3y + 2z = 1$$
 $x + 2y = 4$ $2x - 3y - z = 5$

8) Investigate the values of λ and μ such that the system is consistent

$$x + y + z = 6$$
 $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu$ may have

- i) no solution ii) a unique solution and iii) an infinite number of solutions.
- 9) Find all the values of μ and λ for which the system has i) no solution ii) a unique solution

iii) Infinitely many solution.
$$x+y+z=2$$
, $x+2y+z=3$, $x+2y+(\mu^2-5)z=\lambda$.

1)
$$x + y + z = 6$$
 $x - y + 2z = 5$ $3x + y + z = 8$

1)
$$x + y + z = 6$$
 $x - y + 2z = 8$ $2x + y - z = 3$
2) $x + y + z = 9$ $x - 2y + 3z = 8$ $2x + y - z = 3$

2)
$$x + y + z = 9$$
 $x - 2y + 3z = 8$ $2x + y = 2$
3) $2x_1 + x_2 + 4x_3 = 12$ $4x_1 + 11x_2 - x_3 = 33$ $8x_1 - 3x_2 + 2x_3 = 20$
3) $2x_1 + x_2 + 4x_3 = 12$ $4x_1 + 11x_2 - x_3 = 33$ $4x_1 + x_2 + 6x_3 + x_4 = 12$

3)
$$2x_1 + x_2 + 4x_3 = 12$$
 $4x_1 + 11x_2 - x_3 = 33$ $6x_1 - 6x_2 + 23$
4) $5x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 7x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + 6x_3 + x_4 = -5$

$$x_1 + x_2 + x_3 + 4x_4 = -6$$

$$x_1 + x_2 + x_3 + 4x_4 = -6$$

5) $x + 2y + 3z = 14$ $4x + 5y + 7z = 35$ $3x + 3y + 4z = 21$

6)
$$x - 4y + 7z = 14$$
 $3x + 8y - 2z = 13$ $7x - 8y + 26z = 5$

7)
$$2x+y+z=10$$
: $3x+2y+3z=18$: $x+4y+9z=16$

8)
$$2x+2y+z=12$$
: $3x+2y+2z=8$: $5x+10y-8z=10$

9)
$$2x-y+3z=9$$
: $x+y+z=6$: $x-y+z=2$

10)
$$2x+2y+z=3$$
: $3x+2y+2z=-2$: $x-y+z=6$

Apply Gauss Jordan method to solve the following equations.

1)
$$x + y + z = 9$$
 $x - y + 2z = 5$ $3x + y + z = 8$

2)
$$x + y + z = 9$$
 $x - 2y + 3z = 8$ $2x + y - z = 3$

3)
$$2x + 5y + 7z = 52$$
 $2x + y - z = 0$ $x + y + z = 9$

i)
$$2x+y+z=10$$
: $3x+2y+3z=18$: $x+4y+9z=16$

ii)
$$2x-3y+z==1$$
: $x+4y+5z=25$: $3x-4y+z=2$

i)
$$x+3y+3z=16$$
: $x+4y+3z=18$: $x+3y+4z=19$

11)
$$2x+y+5z+w=5$$
: $x+y-3z+4w=-1$: $3x+6y-2z+w=8$: $2x+2y+2z-3w=2$

5. Apply Gauss – Seidal iterative method to solve the following equations.

1)
$$10x + y + z = 12$$
 $x + 10y + z = 12$ $x + y + 10z = 12$

2)
$$x + y + 54z = 110$$
 $27x + 6y - z = 85$ $6x + 15y + 2z = 72$

3)
$$20x + y - 2z = 17$$
 $3x + 20y - z = 18$ $2x - 3y + 20z = 25$

Find the eigen values and eigen vectors of the following:

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} A = \begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix} \quad A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix} A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix} A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

$$\lambda^3 - (\sum d) \lambda^2 + (\sum md)\lambda - |A| = 0$$

- 1) Find the largest (Dominant) eigen value and the corresponding eigen vector of the matrix by power method $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ taking the initial eigen vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

 - 2) Find the largest (Dominant) eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 6 & 2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by power method taking the initial eigen vector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
 - 3) Find the largest (Dominant) eigen value and the corresponding eigen vector of the matrix by power method $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ taking the initial eigen vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
 - 4) Find the largest (Dominant) eigen value and the corresponding eigen vector of the matrix by power method $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ taking the initial eigen vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
 - 5) Find the largest (Dominant) eigen value and the corresponding eigen vector of the matrix by power method $A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$ taking the initial eigen vector $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$
 - 6) Find the largest (Dominant) eigen value and the corresponding eigen vector of the matrix by power method $A = \begin{bmatrix} 10 & 2 & 1 \\ 2 & 10 & 1 \\ 2 & 1 & 10 \end{bmatrix}$ taking the initial eigen vector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$