SYLLABUS Fall semester 2024-2025 academic year Educational program "7M06116 – Computer science and technology"

ID	Independent w	ork	Number of	f credits		General	Independent work of	
and name	of the master student		Lectures	Practical	Lab.	number of	the master student	
of course	(IWMS)		(L)	classes	classes	credits	under the guidance of a	
				(PC)	(LC)		teacher (IWMST)	
103543,	2		1.70	3.30	0	5	6	
Algorithms								
Tunining former			IC INFORM				C	
Training format	Cycle, component	Lecture	etypes	Types of p	racucai	Form and platform final control		
Offline	B, EC	Intro	ductory,	Practical	classes	Standard oral, offline		
			anatory,					
I antonio (a)	Iniu Daduiga I a		cluding	ing				
Lecturer - (s) e-mail :	Jair Rodrigo Lor gilgameshjw@p					-		
Phone :	+7 705 152 98 1		1.00111					
Assistant - (s)								
e-mail :						_		
Phone :		A.C.A	DEMIC CO	LIDGE BDE		ON		
Purpose	Evr		DEMIC CO arning outcome		SENTATI		f LO achievement (ID)	
of the course	As a result of st				uate will	indicators	i LO deinevement (ID)	
			be able to:					
Develop the	1. Formulate and apply fundamental algorithmic			gorithmic	1.1 Explain core algorithmic concepts such			
ability to understand,	techniques					as divide and conquer, dynamic programming, and greedy strategies.		
design, analyze,						1.2 Analyze time and space complexity of		
and implement						implemented algorithms for efficiency.		
advanced	2. Analyze the Complexity of Computational Problems			ems		ncepts of NP-completeness		
algorithms, while applying these					and computational intractability, identifying problems that are computationally hard.			
concepts to solve								
complex real-						2.2 Classifies problems as solvable,		
world problems						intractable, o		
efficiently.	3. Design and In	anlamant	Advanced Co	raph Algorith	mc		outational models. and implements graph	
	3. Design and in	пртеппепі	Auvanceu G	iapii Aigoriu	11115	algorithms, including minimum spanning trees, shortest paths, and network flow. 3.2 Analyzes the computational complexity of graph-based algorithms in various applications.		
	4. Implement a	nd Evalı	late Algorith	mic Solutio	ns Using			
	Advanced Data				0			
						algorithmic efficiency.		
							data structures in practical using them to optimize	
						problem-solving		
5. Solve Real-World Problems Using Algorithm D			n Design	<u> </u>				
	Techniques						s, utilizing backtracking,	
						branch-and-bou	nd, and approximation	
					methods. 5.2 Applies graph algorithms to solver.			
					complex problems.			
Prerequisites	Algorithms and Data Structures[21126]							
Post-requisites	Advanced Operating Systems[103529],							
T	Advanced Desig			orithms[1023	329]			
Learning Resources	Literature: about the main one. 1. Dasgupta, Sanjoy. Algorithms Illuminated (Part 4): Algorithms for NP-Hard Problems.							
resont ces	1. Dasgupia, Sai	ijoy. Aigo	oriumns mulli	mateu (Part	+). Aiguill	IIII 101 INF-IIdlU	r routeins.	

Soundlikeyourself Publishing, 2023. 275 pp.

- 2. Skiena, Steven S. The Algorithm Design Manual. 3rd ed. Springer, 2020. 793 pp.
- 3. Bello, Marco, and Robert Sedgewick. Algorithms and Data Structures: The Science of Computing. Addison-Wesley, 2021. 608 pp.
- 4. Mehlhorn, Kurt, and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox. 2nd ed. Springer, 2019. 407 pp.
- 5. Kleinberg, Jon, and Éva Tardos. Algorithm Design and Applications. Addison-Wesley, 2020. 1065 pp. **Literature:** additional.
- 1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. MIT Press, 2009. 1312 pp.
- 2. Goodrich, Michael T., and Roberto Tamassia. Algorithm Design and Applications. Wiley, 2014.736 pp.
- 3. Erickson, Jeff. Algorithms. Independently published, 2019. 472 pp.

Research infrastructure

1. Personal laptops

Internet resources

- 1. LeetCode Platform for coding practice, challenges: https://leetcode.com/
- 2. VisuAlgo Visualizing data structures and algorithms through animations: https://visualgo.net/en

Academic discipline policy

The academic policy of the discipline is determined by the Academic Policy <u>and</u> the Academic Integrity Policy of Al-Farabi KazNU.

Documents are available on the main page of the Univer IS.

Integration of science and education. Research work of students, undergraduates and doctoral students is a deepening of the educational process. It is organized directly in departments, laboratories, scientific and design departments of the university, and in student scientific and technical associations. Independent work of students at all levels of education is aimed at developing research skills and competencies based on acquiring new knowledge using modern research and information technologies. A teacher at a research university integrates the results of scientific activity into the topics of lectures and seminar (practical) classes, laboratory classes and into the tasks of the IWST, IWS, which are reflected in the syllabus and are responsible for the relevance of the topics of training sessions and tasks.

Attendance. The deadline for each task is indicated in the calendar (schedule) for the implementation of the discipline content. Failure to meet deadlines will result in loss of points.

Academic integrity. Practical/laboratory classes and SRL develop the student's independence, critical thinking, and creativity. Plagiarism, forgery, use of cheat sheets, and cheating at all stages of assignments are unacceptable.

In addition to the main policies, the observance of academic integrity during theoretical training and exams is regulated by the "Rules for conducting final control", "Instructions for conducting final control of the autumn/spring semester of the current academic year", "Regulations on checking students' text documents for the presence of borrowings".

Documents are available on the main page of the Univer IS .

Basic principles of inclusive education. The educational environment of the university is conceived as a safe place where there is always support and equal treatment on the part of the teacher towards all students and students towards each other, regardless of gender, race/ethnicity, religious beliefs, socio-economic status, physical health of the student, etc. All people need the support and friendship of peers and fellow students. For all students, making progress is more about what they can do than what they can't do. Variety enhances all aspects of life.

All students, especially those with disabilities, can receive advice by phone/e- mail +77759295274 / mussina.aigerim95@gmail.com , or via video call in MS Teams https://teams.microsoft.com/l/team/19%3AEXobN2cQvJpEY0Z6XkVPfMuU_rMyQ-Pwn3fFsUhLcGo1%40thread.tacv2/conversations?groupId=776342c7-342f-453a-a5bd-332259d38eac&tenantId=b0ab71a5-75b1-4d65-81f7-f479b4978d7b.

INFORMATION ABOUT TEACHING, LEARNING AND ASSESSMENT

Score-rating letter system of assessment of accounting for educational achievements		ing for educational	Assessment Methods	
Grade	Digital equivalent points	points, % content	Assessment according to the traditional system	Criteria-based assessment is the process of correlating actual learning outcomes with expected learning outcomes based on clearly defined criteria. Based on formative and summative assessment. Formative assessment is a type of assessment that is carried out in the
A A-	4.0 _ 3.67	95-100 90-94	Great	course of daily learning activities. It is the current measure of progress. Provides an operational relationship between the student and the teacher. It
B+	3.33	85-89	Fine	allows you to determine the capabilities of the student, identify difficulties, help achieve the best results, timely correct the educational process for the teacher. The performance of tasks, the activity of work in the classroom during lectures, seminars, practical exercises (discussions, quizzes, debates, round tables, laboratory work, etc.) are evaluated. Acquired knowledge and competencies are assessed. Summative assessment - type of assessment, which is carried out upon

				course. Conducted 3-4 times per seme the assessment of mastering the expe	in accordance with the program of the ester when performing IWMS. This is cted learning outcomes in relation to ine and fix the level of mastering the utcomes are evaluated.
В	3.0	80-84		Formative and summative	Points % content
				assessment	
B-	2.67	75-79		Activity in lectures	5
C+	2.33	70-74		Work in practical classes	20
С	2.0	65-69	Satisfactorily	Independent work	25
C-	1.67	60-64		Project and creative activities	10
D+	1.33	55-59		Final control (exam)	40
D	1.0	50-54		TOTAL	100
FX	0,5	25-49	Unsatisfactory		
F	0	0-24]		

C-1 d (1 d1-	\ C 41 !1	- C al C al	M-41-1-C41
- Gaiendar (schedi)ie	i for the imblementation	of the content of the course.	. Methods of teaching and learning.

A week	Topic name	Number	Max.
	MODULE 1	of hours	points
	MODULE 1 Fundamental Algorithmic Techniques	1	
1	L 1. Introduction to algorithms, importance in computing, analysis of algorithms (time and space complexity).	1	
	PC 1. Asymptotic notations and algorithm performance measurement.	2	10
2	L 2. The divide-and-conquer paradigm, solving recurrence relations, and the Master Theorem.	1	
	PC 2. Case study on Merge Sort and analysis of its complexity.	2	10
3	L 3. Heapsort, Quicksort, and the analysis of sorting algorithms.	1	
	PC 3. Problem-solving session on sorting algorithms and comparison of their efficiencies.	2	10
	IWMST 1. Consultations on implementation of IWS 1 "Analysis and implementation of fundamental algorithmic techniques"		
4	L 4. Introduction to dynamic programming, optimal substructure, and overlapping subproblems.	1	
	PC 4. Case study on the Fibonacci sequence, matrix chain multiplication, and longest common subsequence.	2	
5	L 5. The greedy algorithm paradigm, characteristics of greedy algorithms, and correctness proof techniques.	1	
	PC 5. Application of greedy algorithms to problems like the fractional knapsack and activity selection.	2	20
	IWMST 2. Consultations on implementation of IWMS 1 "Analysis and implementation of		
	fundamental algorithmic techniques"		
	MODULE 2 Advanced Data Structures and Graph Algorithms		
6	L 6. Graph Traversal.	1	
	PC 6. Flavors of Graphs	2	10
7	L 7. Data Structures for Graphs	1	0
	PC 7. Programming graph data structure. Performing basic operations	2	10
	IWMST 3. Reception and protection of IWMS 1.		30
	Consultations on the implementation of IWMS 2 "Real-world problems and advanced algorithms"		
Midtern	n control 1	•	100
8	L 8. Traversing a Graph. Breadth-First Search	1	
	PC 8. Breadth-First Search implementation	2	10
9	L 9. Applications of Breadth-First Search. Connected Components	1	
	PC 9. Two-Coloring Graphs implementation	2	10
	MODULE 3 Weighted Graph Algorithm	•	
10	L 10. Weighted Graph Algorithms. Minimum Spanning Trees	1	
	PC 10. Prim's Algorithm implementation	2	10
	IWST 4. Consultations on the implementation of IWMS 2 "Real-world problems and advanced algorithms"		
11	L 11. Kruskal's Algorithm	1	
	PC 11. Spanning Trees analysis	2	10
12	L12. Shortest Paths. Dijkstra's Algorithm	1	
	PC 12. Shortest paths algorithms analysis	2	10
13	L 13. Network Flows and Bipartite Matching	1	
	PC 13. Computing Network Flows implementation	2	10
	IWST 5. Reception and protection of IWMS 2.		30
14	L 14. Design Graphs. Part 1	1	

	PC 14. Computing Network Flows Implementation	2	10
	IWST 6. Consultation on exam		
15	L 15. Design Graphs. Part 2	1	
	PC 15. Graphs in real-world problems	2	10
Midterm	control 2	•	100
Final control (exam)			100
TOTAL for discipline			100

RUBRICATOR OF THE SUMMATIVE ASSESSMENT

CRITERIA EVALUATION OF LEARNING OUTCOMES

IWMS1 - "Analysis and implementation of fundamental algorithmic techniques" (30% of 100% MC)

Criterion	25 -30 %	20-24 %	10-19 %	0-9 %
Understanding Theories	Demonstrates a deep	Shows a good grasp of	Presents a basic	Fails to demonstrate a
and Concepts	understanding of	algorithmic concepts, with	understanding of the	clear understanding of the
	algorithmic theories and	mostly accurate	theories, but explanations	theories. Explanations are
	their practical	explanations.	lack depth or have	vague, incorrect, or
	implications.		noticeable inaccuracies.	missing.
				The code is incorrect or
Code Quality	efficient, and follows best	and functional, with some		incomplete, with
	practices.	minor inefficiencies or		significant logical errors,
		coding practice issues.	inefficiencies.	inefficiencies, or poor
				structure.

IWMS2 - "Real-world problems and advanced algorithms" (30% of 100% MC)

Criterion	25 -30 %	20-24 %	10-19 %	0-9 %
Application of	The group effectively	The group applies	Basic application of	The group fails to apply the
Advanced Algorithms	applies advanced	advanced algorithms and	advanced algorithms is	appropriate algorithms or data
and Data Structures			demonstrated, but the	structures correctly, resulting
	algorithms, network	but need improvements	solution may have	in an incomplete or incorrect
	flow) and data structures	in optimization or	inaccuracies or lack full	solution.
	to solve real-world	adaptation to specific	optimization.	
	problems.	problems.		
Problem-Solving and	The group demonstrates	The group explores	The group provides a	The group provides little to no
Experimentation	a strong problem-solving	problem-solving	basic problem-solving	experimentation or analysis,
	approach, experimenting			with a weak problem-solving
		level of experimentation,		approach.
		though analysis may lack		
		depth or be somewhat	understanding of	
		limited in scope.	variations.	
Theoretical	The group presents	The group provides	Theoretical analysis is	The group fails to provide
Justification and		mostly correct theoretical	present but incomplete or	meaningful theoretical
Analysis		analysis, with minor		analysis or justification, with
	including proofs,	inaccuracies or gaps.	The justification is	significant errors or
	complexity analysis, and		simplistic and lacks	omissions.
	well-founded		detailed exploration.	
	discussions.			
Collaboration and	The group works	The group shows good	Collaboration within the	The group demonstrates poor
Presentation	cohesively, dividing	collaboration, with some	group is basic, with some	collaboration, with little
	tasks efficiently and	unevenness in task	members not fully	evidence of teamwork.
	collaborating effectively.	distribution.	participating.	

acting Dean	O.N. Turar
Chair of the Academic Committee	
on the Quality of Teaching and Learning	Adilzhanova S.A.
acting Head of Department	M.N. Satymbekov
Lecturer	A.B. Mussina