Équations différentielles - Partie 2 : Notion d'équation différentielle

Exercice 1.

Vérifier que les fonctions f suivantes sont solutions de l'équation différentielle donnée.

- 1. $f(x) = -e^{2x}$, y' = 2y.
- 2. $f(x) = \frac{1}{2-x}$, $y' = y^2$.
- 3. $f(x) = (3+2x)e^x$, y'' 2y' + y = 0.
- 4. $f(x) = Ce^{-x} + \sin(x) \cos(x)$ (quelle que soit la constante C), $y' + y = 2\sin(x)$

Indications 1.

Il faut calculer la dérivée f'(x) (et si besoin la dérivée seconde f''(x)) et vérifier que f et f' (et éventuellement f'') satisfont la relation donnée par l'équation différentielle (en remplaçant y par f, y' par f'...).

Correction 1.

- 1. $f(x) = -e^{2x}$, $f'(x) = -2e^{2x}$ donc on a bien f'(x) = 2f(x).
- 2. $f(x) = \frac{1}{2-x}$, $f'(x) = \frac{1}{(2-x)^2}$ donc on a bien $f'(x) = f(x)^2$.
- 3. $f(x) = (3+2x)e^x$, $f'(x) = (5+2x)e^x$, $f''(x) = (7+2x)e^x$ donc on a bien $f''(x) 2f'(x) + f(x) = ((3+2x) 2(5+2x) + (7+2x))e^x = 0 \cdot e^x = 0$.
- 4. $f(x) = Ce^{-x} + \sin(x) \cos(x)$, $f'(x) = -Ce^{-x} + \cos(x) + \sin(x)$, donc on a bien $f'(x) + f(x) = 2\sin(x)$.

Exercice 2.

Déterminer toutes les solutions constantes des équations différentielles suivantes.

- 1. y' + y = 5
- 2. $y' = y^2 y$
- 3. $y' = y^2 4y + 1$
- 4. y' = y + x

Indications 2.

Si f(x) = k est une fonction constante, alors f'(x) = 0 pour tout x. Une des équations n'admet aucune solution constante!

Correction 2.

1. Si f est une fonction constante, alors f(x) = k pour tout x, donc f'(x) = 0 pour tout x. Si f est solution de l'équation différentielle y' + y = 5, alors f'(x) + f(x) = 5 pour tout x, donc 0 + k = 5, donc k = 5. La seule solution constante est la solution f(x) = 5 pour tout x.

- 2. Si f(x) = k est solution de l'équation différentielle $y' = y^2 y$, alors $f'(x) = f(x)^2 f(x)$ pour tout x, donc $0 = k^2 k$, donc k(k-1) = 0, donc k = 0 ou k = 1. Il y a deux solutions constantes f(x) = 0 pour tout x (la fonction nulle) et f(x) = 1 pour tout x.
- 3. Si f(x) = k est solution de l'équation différentielle $y' = y^2 4y + 1$, alors $f'(x) = f(x)^2 4f(x) + 1$, donc $0 = k^2 4k + 1$. Les solutions de $k^2 4k + 1 = 0$ sont $k_1 = 2 \sqrt{3}$ et $k_2 = 2 + \sqrt{3}$ qui définissent les deux solutions constantes.
- 4. Si f(x) = k est solution de l'équation différentielle y' = y + x, alors f'(x) = f(x) + x donc 0 = k + x et alors k = -x. Ceci est une contradiction car k doit être une constante (un nombre fixé!). Ainsi cette équation différentielle n'admet aucune solution constante.

Exercice 3.

Le dessin représente quelques solutions de l'équation différentielle y' = y - 1.

- 1. Répondre graphiquement aux questions suivantes :
 - (a) Quelle est la limite d'une solution en $-\infty$?
 - (b) Quelle est la solution constante?
 - (c) En fonction de la valeur f(0) d'une solution f, discuter si f est croissante ou décroissante et déterminer la limite en $+\infty$.

- (d) Tracer la tangente à la courbe solution qui passe par le point (0,2); en déduire une équation approchée de cette tangente.
- (e) Tracer la tangente à la courbe solution qui passe par le point (1,-1); en déduire une équation approchée de cette tangente.
- 2. Répondre par le calcul aux questions suivantes (il n'y a pas besoin de résoudre l'équation) :
 - (a) Soit f la solution dont le graphe passe par le point (0,0). Combien vaut f(0)? Combien vaut f'(0)? En déduire la pente de la tangente en ce point, puis l'équation de cette tangente.
 - (b) Soit g la solution dont le graphe passe par le point (1,2). Combien vaut g(1)? Combien vaut g'(1)? En déduire l'équation de la tangente en ce point.

Indications 3.

La pente de la tangente en x_0 est $f'(x_0)$.

Correction 3.

- 1. (a) Graphiquement on note que toutes les solutions tendent vers 1 en $-\infty$. (Cela s'explique par le calcul, mais ce n'est pas ce qui est demandé ici.)
 - (b) La fonction égale à 1 est la seule solution constante.
 - (c) Si f(0) = 1, la fonction est constante égale à 1. Si f(0) > 1, la fonction est croissante et tend vers $+\infty$ en $+\infty$. Si f(0) < 1, la fonction est décroissante et tend vers $-\infty$ en $+\infty$.
 - (d) La tangente est tracée ci-dessous, par lecture graphique elle a pour équation y = x + 2.
 - (e) La tangente est tracée ci-dessous, par lecture graphique elle a pour équation y = -2x + 1.

- 2. (a) Si le graphe de f passe par (0,0), alors f(0) = 0. Comme f est solution de l'équation différentielle y' = y 1 alors pour tout x, f'(x) = f(x) 1, donc en particulier pour x = 0 on obtient f'(0) = f(0) 1, donc f'(0) = -1. La pente de la tangente au graphe de f en (0,0) est donc -1. L'équation de cette tangente est donc y = -x (cf graphique ci-dessous).
 - (b) Si le graphe de g passe par (1,2), alors g(1)=2. Comme g vérifie l'équation différentielle alors g'(x)=g(x)-1, donc pour x=1, g'(1)=g(1)-1=2-1=1. La pente de la tangente au graphe de g en (1,2) est donc 1 et comme la droite passe par le point (1,2), l'équation de la tangente est y=x+1 (cf graphique ci-dessous).

Exercice 4.

Une tasse de café de température $T_0=100$ degrés Celsius est posée dans une pièce de température $T_\infty=20$ degrés. La loi de Newton affirme que la vitesse de décroissance de la température est proportionnelle à l'écart entre sa température T(t) et la température ambiante T_∞ .

Sachant qu'au bout de 3 minutes la température du café est passée à 80 degrés, quelle sera sa température au bout de 5 minutes?

Les questions détaillent les étapes de la résolution de ce problème :

- 1. Justifier que la fonction température T(t) satisfait l'équation différentielle y' = -k(y-20) pour une certaine constante k > 0.
- 2. Vérifier que $T(t) = Ce^{-kt} + 20$ est solution de cette équation différentielle pour toute constante C.
- 3. Calculer C en fonction de T(0).
- 4. Quelle est la température au bout d'un temps très long?
- 5. Déterminer la constante k en utilisant que T(3) = 80.
- 6. Trouver la solution du problème.

Correction 4.

- 1. y' mesure la vitesse de croissance (ou de décroissance selon le signe) de la température; (y-20) traduit l'écart entre la température du café et la température ambiante. Le coefficient k exprime la proportionnalité, le signe moins venant de la décroissance de la température (le café refroidit).
- 2. Pour $T(t) = Ce^{-kt} + 20$, on a $T'(t) = -kCe^{-kt}$. Donc $-k(T(t) 20) = -kCe^{-kt} = T'(t)$ et ainsi T(t) satisfait l'équation différentielle.
- 3. $T(0) = Ce^{-k \cdot 0} + 20 = C + 20$. Comme T(0) = 100, alors C = 80.
- 4. Comme $\lim_{t\to+\infty} Ce^{-kt} = 0$, on a $\lim_{t\to+\infty} T(t) = 20$. La température du café tendra vers 20 degrés (c'est normal, c'est la température de la pièce).
- 5. Comme T(3) = 80 alors $80e^{-k \cdot 3} + 20 = 80$ donc $e^{-3k} = \frac{3}{4}$. On compose par le logarithme des deux côtés : $\ln(e^{-3k}) = \ln(\frac{3}{4})$ donc $-3k = \ln(\frac{3}{4})$ et ainsi $k = -\frac{1}{3}\ln(\frac{3}{4}) = \frac{1}{3}\ln(\frac{4}{3}) \simeq 0,096$.
- 6. Ainsi $T(t) \simeq 80e^{-0.096 \cdot t} + 20$, donc pour t = 5 on obtient $T(5) \simeq 80e^{-0.096 \times 5} + 20 \simeq 69,5$ degrés Celsius.