

Agenda

- . What is Data Visualization?
- II. Main types of visualization plots
- III. Exploratory Data Analysis (EDA)

<u>Data visualization</u> is the representation of data through the use of graphics, such as **charts/plots**, **maps**, and **interactive dashboards**

<u>Data visualization</u> is the representation of data through the use of graphics, such as **charts/plots**, **maps**, and **interactive dashboards**

- 1 Identify Patterns and Trends
 Detect trends or anomalies that aren't apparent when looking at raw data
- 2 Easily communicate insights
 Summarize data into visual representations that are easier to comprehend
- Support Decision-Making
 Absorb information quickly and make informed decisions based on the information provided.

Charts and plots

Summarize data in a **graphical form** and display it along **two or three axes**.

Data can be represented as points, lines, curves, areas, bars...

Technology Markets In North America

While San Francisco is still the largest market for technology jobs, Toronto is the fatest growing and it offers companies significantly lower wage costs.

Maps and geospatial plots

Represent data on a map, with geographical information and spatial relationships.

Types of geospatial plots: choropleth, locator, symbol ...

Population growth per region with a choropleth map

Interactive dashboards

Collection of charts that summarize **key indicators** and display data **interactively**

- Get a real-time snapshot of KPIs and other important metrics.
- Users can personalize the information shown

Dashboard with marketing KPIs (Ad Spent, cost per thousand, ...)

Visualization tools: Plotting libraries (Python)

Advantages:

Widely used, many tools to customize plots (titles, legends, labels,...)

Disadvantages:

Verbose syntax, aesthetically lacking

Visualization tools: Plotting libraries (Python)

- Less customizable but better aesthetics
- Many statistical plots & charts
- Better suited for datasets

- Easy API to create plots with Series/Dataframes
- Interface to Matplotlib plots

Visualization tools: Interactive plotting library

Interactive plotting library

Create interactive plots & dashboards

Key features:

- Wide range of plots: charts, maps, ...
- High-level plotting library: plotly express
- Web application framework: Dash

Interactive Choropleth map

Map of average unemployment rate per US county (FIPS)

Visualization tools: Dashboard apps

Plotly framework for web apps

Interactive dashboards with plotly components

Key features:

- Build a web interface without full-stack development
- Deploy open-source apps with external hosting platforms
- Dash Entreprise: Create, share and deploy apps at scale

Visualization tools: Other frameworks

Tableau Power BI

Business Analytics Softwares

- Histograms are graphs that represent the distribution of a single variable.
- They show how frequently each range of values, or "bins", appear in the dataset

- Histograms are graphs that represent the distribution of a single variable.
- They show how frequently each range of values, or "bins", appear in the dataset

Histogram of Temperature Each bin represents a 9 range of values (65-70, 5 70-75, ...) Frequency 7 0 95 65 Temperature

- They are useful to study the location, range and skewness of a distribution
- They can help identify biases or extreme values in the data

- They are useful to study the location, range and skewness of a distribution
- They can help identify <u>biases</u> or <u>extreme values</u> in the data

Histograms with Matplotlib


```
x = np.random.normal(170, 10, 250)
plt.hist(x)
plt.show()
```


<u>Boxplots</u> are statistical plots that represent the distribution of a variable around its <u>median value</u>

<u>Boxplots</u> are statistical plots that represent the distribution of a variable around its <u>median value</u>

What is the median value?

The median divides the data into two equal halves

- 50% of values are less than or equal to it
- 50% are greater than or equal to it.

Isn't as sensitive to extreme values as the mean

<u>Boxplots</u> are statistical plots that represent the distribution of a variable around its <u>median value</u>

<u>Boxplots</u> are statistical plots that represent the distribution of a variable around its <u>median value</u>

Boxplots are statistical plots that represent the distribution of a variable around its **median value**

Boxplots with Pandas


```
df.boxplot(by ='day', column =['total_bill'], grid = False)
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Relationship plots: Scatter plot

<u>Scatter plots</u> show the <u>relationship between two numerical variables</u> with dots (or any symbols)

Relationship plots: Scatter plot

<u>Scatter plots</u> show the relationship between two numerical variables with dots (or any symbols)

Each point represents a pair of values, one for each variable plotted

Happiness index versus Income per person

Relationship plots: Scatter plot

They can help identify **patterns within the data**, such as <u>linear</u> or <u>non-linear</u> relationships (or correlation).

Scatter plots with Seaborn

sns.scatterplot(data=tips, x="total_bill", y="tip")

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Comparison plots: Line plot

<u>Line plots</u> show the <u>evolution of numerical data</u> by building line segments between points

You can add multiple variables to a line plot using color

Comparison plots: Line plot

Line plots are used to identify **trends** and **seasonal patterns** in time series data (indexed by time)

Line plot with Seaborn

sns.lineplot(data=flights, x="year", y="passengers", hue="month")

	year	month	passengers
0	1949	Jan	112
1	1949	Feb	118
2	1949	Mar	132
3	1949	Apr	129
4	1949	May	121

Comparison plots: Bar plot

<u>Bar plots</u> represent categorical data with rectangular bars. Each bar usually represents a potential value of the data.

Comparison plots: Bar plot

<u>Bar plots</u> represent categorical data with rectangular bars. Each bar usually represents a potential value of the data.

Make numerical comparisons between different categories

Bars can be represented horizontally or vertically

Comparison plots: Stacked bar plot

<u>Stacked bar plots</u> extend standard bar plot by looking at numerical values across two categorical variables

Sub-bars (colors) represent the categories of the second variable

Revenue per store and product type

More plots: Python graph gallery

Exploratory Data Analysis (EDA)

What is Exploratory Data Analysis (EDA)?

<u>Exploratory Data Analysis</u> is the process of performing initial investigations on data with the help of <u>summary statistics</u> and <u>graphical representations</u>

What is Exploratory Data Analysis (EDA)?

<u>Exploratory Data Analysis</u> is the process of performing initial investigations on data with the help of <u>summary statistics</u> and <u>graphical representations</u>

Why is it useful?

- Understand the data better
- Uncover underlying patterns or biases
- Detect anomalies or extreme values
- Check assumptions before building a predictive model

What is Exploratory Data Analysis (EDA)?

We will use the **titanic prediction** dataset as an example for Exploratory Data Analysis (EDA).

Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000

Univariate Analysis

Study the characteristics of the dataset's variables individually

Examples:

- Number of missing values
- Data types (int/float, object, ...)
- Frequency of possible values (categorical data)
- Summary statistics (continuous data)

Univariate Analysis

Frequency of each category

Get the number of passenger that died
and survived

Number of nonmissing values

Missing values & data types

Get general information on the data

Univariate Analysis

	Age	Fare
count	889.000000	889.000000
mean	29.336524	32.096681
std	13.226753	49.697504
min	0.420000	0.000000
25%	22.000000	7.895800
50%	27.000000	14.454200
75%	36.000000	31.000000
max	80.000000	512.329200

Statistical analysis

Compute summary statistics for Age and Fare

Individual distribution

Study the range skewness of ages in the data

Bivariate Analysis

Analyze the relationship between two variables in the dataset

- Detect unknown patterns/trends between two variables
- Understand how a variable could explain the variable you are trying to predict (for a predictive analysis)

Bivariate Analysis

1 continuous and 1 categorical Split the Fare distribution based on the "Survived" values

2 categorical variables
Plot the number of passengers that
"Survived" based on the passenger's class

Bivariate Analysis

Correlation analysis

Detect redundant variables or strong correlations with the variable to predict

Pair plot

Build bivariate scatter plots for each continuous variable

Thank you for listening! Do you have any questions?

