Package 'eSIR'

March 5, 2020

Type Package
Title Extended state-space SIR models
Version 0.2.5
Date 2020-03-05
Author Song Lab (http://www.umich.edu/~songlab/)
Maintainer Lili Wang <lilywang@umich.edu></lilywang@umich.edu>
Description An implementation of extended state- space SIR models developed by Song Lab at UM school of Public Health
License CC BY 4.0
Encoding UTF-8
Depends rjags, scales, ggplot2, chron, gtools, data.table, stats
RoxygenNote 6.1.1
qh.eSIR
qh.eSIR Extended state-space SIR with quarantine
Description Fit an extended state-space SIR model being reduced by in-home hospitalization.
-

gamma0 = 0.0821, R0 = beta0/gamma0, gamma0_sd = 0.1, R0_sd = 1, file_add = character(0), add_death = FALSE, save_files = FALSE,

save_mcmc = FALSE, save_plot_data = FALSE, eps = 1e-10)

qh.eSIR

Arguments

Y the time series of daily observed infected compartment proportions.

R the time series of daily observed removed compartment proportions, including

death and recovered.

phi0 a vector of values of the dirac delta function ϕ_t . Each entry denotes the propor-

tion that will be qurantined at each change time point. Note that all the entries

lie between 0 and 1, its default is NULL.

change_time the change points over time corresponding to phi0, to formulate the dirac delta

function ϕ_t ; its defalt value is NULL.

begin_str the character of starting time, the default is "01/13/2020".

T_fin the end of follow-up time after the beginning date begin_str, the default is 200.

nchain the number of MCMC chains generated by rjags, the default is 4.

nadapt the iteration number of adaptation in the MCMC. We recommend using at least

the default value 1e4 to obtained fully adapted chains.

M the number of draws in each chain, with no thinning. The default is M=5e2 but

suggest using 5e5.

thn the thinning interval between mixing. The total number of draws thus would

become round(M/thn)*nchain. The default is 10.

nburnin the burn-in period. The default is 2e2 but suggest 2e5.

dic logical, whether compute the DIC (deviance information criterion) for model

selection.

death_in_R the numeric value of average of cumulative deaths in the removed compart-

ments. The default is 0.4 within Hubei and 0.02 outside Hubei.

casename the string of the job's name. The default is "qh.eSIR".

beta0 the hyperparameter of average transmission rate, the default is the one estimated

from the SARS first-month outbreak (0.2586).

gamma0 the hyperparameter of average removed rate, the default is the one estimated

from the SARS first-month outbreak (0.0821).

R0 the hyperparameter of the mean reproduction number R0. The default is thus

the ratio of beta0/gamma0, which can be specified directly.

gamma0_sd the standard deviation for the prior distribution of the removed rate γ , the default

is 0.1.

R0_sd the standard deviation for the prior disbution of R0, the default is 1.

file_add the string to denote the location of saving output files and tables.

add_death logical, whether add the approximate death curve to the plot, default is false.

save_mcmc logical, whether save (TRUE) all the MCMC outputs or not (FALSE). The out-

put file will be an .RData file named by the casename. We include arrays of prevalence values of the three compartments with their matrices of posterior draws up to the last date of the collected data as $theta_p[,,1]$ and afterwards as $theta_p[,,1]$ for θ_t^S , $theta_p[,,2]$ and $theta_p[,,2]$ for θ_t^I , and $theta_p[,,3]$ and $theta_p[,,3]$ for θ_t^R . The posterior draws of the prevalence process of the quarantine compartment can be obtained via $theta_0p$ and $theta_0p$. Moreover, the input and predicted proportions Y, Y_pp, R and R_pp can also be retrieved. The prevalence and predicted proportion matrices have rows for MCMC replicates, and columns for days. The MCMC posterior draws of other parameters including beta, gamma, R0, and variance controllers

k_p, lambdaY_p, lambdaR_p are also available.

qh.eSIR 3

save_plot_data logical, whether save the plotting data or not.

esp a non-zero controller so that all the input Y and R values would be bounded above

0 (at least eps). Its default value is 1e-10

Details

In this function we allow it to characterize time-varying proportions of susceptible due to government-enforced stringent in-home isolation. We expanded the SIR model by adding a quarantine compartment with a time-varying rate of quarantine ϕ_t , the chance of a susceptible person being willing to take in-home isolation at time t.

Value

casename the predefined casename.

incidence_mean mean incidence.

incidence_ci 2.5%, 50%, and 97.5% quantiles of the incidences.

out_table summary tables including the posterior mean of the prevalance processes of the 3 states compartments $(\theta_t^S, \theta_t^I, \theta_t^R, \theta_t^H)$ at last date of data collected ((t') decided by the lengths of your input data Y and R), and their respective credible increvals

(ci); the respective means and ci's of the reporduction number (R0), removed

rate (γ) , transmission rate (β) .

plot_infection plot of summarizing and forecasting for the infection compartment, in which

the vertial blue line denotes the last date of data collected (t'), the vertial darkgray line denotes the deacceleration point (first turning point) that the posterior mean first-derivative of infection prevalence $\dot{\theta}_t^I$ achieves the maximum, the vertical purple line denotes the second turning point that the posterior mean firstderivative infection proportion $\dot{\theta}_t^I$ equals zero, the darkgray line denotes the posterior mean of the infection prevalence θ_t^I and the red line denotes its posterior

median.

plot_removed plot of summarizing and forecasting for the removed compartment with lines

similar to those in the plot_infection. The vertical lines are identical, but the horizontal mean and median correspond to the posterior mean and median of the removed process θ_t^R . An additional line indicates the estimated death prevalence

from the input death_in_R.

spaghetti_plot 20 randomly selected MCMC draws of the first-order derivative of the posterior

prevalence of infection, namely θ_t^I . The black curve is the posterior mean of the derivative, and the vertical lines mark times of turning points corresponding respectively to those shown in plot_infection and plot_removed. Moreover, the 95% credible intervals of these turning points are also highlighted by semi-

transparent rectangles.

first_tp_mean the date t at which $\ddot{\theta}_t^I = 0$, calculated as the average of the time points with

maximum posterior first-order derivatives $\dot{\theta}_t^I$; this value may be slightly different from the one labeled by the "darkgreen" lines in the two plots plot_infection and plot_removed, which indicate the stationary point such that the first-order

derivative of the averaged posterior of θ_t^I reaches its maximum.

first_tp_mean the date t at which $\ddot{\theta}_t^I=0$, calculated as the average of the time points with maximum posterior first-order derivatives $\dot{\theta}_t^I$; this value may be slightly different

from the one labeled by the "darkgreen" lines in the two plots plot_infection and plot_removed, which indicate the stationary point such that the first-order

derivative of the averaged posterior of θ_t^I reaches its maximum.

first_tp_ci fwith first_tp_mean, it reports the corresponding credible interval and median. second_tp_mean the date t at which $\theta_t^I=0$, calculated as the average of the stationary points of all of posterior first-order derivatives $\dot{\theta}_t^I$; this value may be slightly different from the one labeled by the "pruple" lines in the plots of plot_infection and plot_removed. The latter indicate stationary t at which the first-order derivative of the averaged posterior of θ_t^I equals zero. second_tp_ci with second_tp_mean, it reports the corresponding credible interval and median. dic_val the output of dic.sample() in dic.sample, computing deviance information criterion for model comparison.

Examples

```
NI_complete <- c( 41,41,41,45,62,131,200,270,375,444,549, 729,
            1052,1423,2714,3554,4903,5806,7153,9074,11177,
            13522, 16678, 19665, 22112, 24953, 27100, 29631, 31728, 33366)
252, 345, 417, 561, 650, 811, 1017, 1261, 1485, 1917, 2260,
            2725,3284,3754)
N=58.5e6
R <- RI_complete/N</pre>
Y <- NI_complete/N- R #Jan13->Feb 11
change_time <- c("01/23/2020","02/04/2020","02/08/2020")
phi0 < -c(0.1, 0.4, 0.4)
res.q <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
                phi0=phi0, change_time=change_time,
               casename="Hubei_q",save_files = T,save_mcmc = F,
                M=5e2, nburnin = 2e2)
res.q$plot_infection
#res.q$plot_removed
res.noq <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
                   T_fin=200, casename="Hubei_noq",
                   M=5e2, nburnin = 2e2)
res.noq$plot_infection
```

tvt.eSIR

Fit extended state-space SIR model with time-varying transmission rates

Description

Fit extended state-space SIR model with prespecified changes in the transmission rate, either stepwise or continuous, accomodating time-varying quaratine protocols.

Usage

```
tvt.eSIR(Y, R, pi0 = NULL, change_time = NULL, exponential = FALSE,
  lambda0 = NULL, begin_str = "01/13/2020", T_fin = 200,
```

```
nchain = 4, nadapt = 10000, M = 500, thn = 10, nburnin = 200,
dic = FALSE, death_in_R = 0.02, beta0 = 0.2586, gamma0 = 0.0821,
R0 = beta0/gamma0, gamma0_sd = 0.1, R0_sd = 1,
casename = "tvt.eSIR", file_add = character(0), add_death = FALSE,
save_files = FALSE, save_mcmc = FALSE, save_plot_data = FALSE,
eps = 1e-10)
```

Arguments

Υ the time series of daily observed infected compartment proportions. R the time series of daily observed removed compartment proportions, including death and recovered. pi0 the time-dependent transission rate modifier $\pi(t)$ between 0 and 1. change_time the change points over time for step function pi, defalt value is NULL. exponential logical, whether $\pi(t)$ is exponential $\exp(-\lambda_0 t)$ or not; the default is FALSE. lambda0 the rate of decline in the exponential survival function in $\exp(-\lambda_0 t)$. the character of starting time, the default is "01/13/2020". begin_str T fin the end of follow-up time after the beginning date begin_str, the default is 200. the number of MCMC chains generated by rjags, the default is 4. nchain the iteration number of adaptation in the MCMC. We recommend using at least nadapt the default value 1e4 to obtained fully adapted chains. М the number of draws in each chain, with no thinning. The default is M=5e2 but suggest using 5e5. the thinning interval between mixing. The total number of draws thus would thn become round(M/thn)*nchain. The default is 10. nburnin the burn-in period. The default is 2e2 but suggest 2e5. dic logical, whether compute the DIC (deviance information criterion) for model selection. death_in_R the numeric value of average of cumulative deaths in the removed compartments. The default is 0.4 within Hubei and 0.02 outside Hubei. beta0 the hyperparameter of average transmission rate, the default is the one estimated from the SARS first-month outbreak (0.2586). gamma0 the hyperparameter of average removed rate, the default is the one estimated from the SARS first-month outbreak (0.0821). RØ the hyperparameter of the mean reproduction number R0. The default is thus the ratio of beta0/gamma0, which can be specified directly. the standard deviation for the prior distribution of the removed rate γ , the default gamma0_sd R0_sd the standard deviation for the prior disbution of R0, the default is 1. casename the string of the job's name. The default is "tvt.eSIR". file_add the string to denote the location of saving output files and tables. logical, whether add the approximate death curve to the plot, default is false. add_death save_files logical, whether save (TRUE) results or not (FALSE). This enables to save summary tables, trace plots, and plots of the posterior means of the first-order deriva-

tives of the infection prevalence process θ_t^I .

save_mcmc

logical, whether save (TRUE) all the MCMC outputs or not (FALSE). The output file will be an .RData file named by the casename. We include arrays of prevalence values of the three compartments with their matrices of posterior draws up to the last date of the collected data as theta_p[,,1] and afterwards as theta_pp[,,1] for θ_t^S , theta_p[,,2] and theta_pp[,,2] for θ_t^I , and theta_pp[,,3] and theta_pp[,,3] for θ_t^R . Moreover, the input and predicted proportions Y, Y_pp, R and R_pp can also be retrieved. The prevalence and predicted proportion matrices have rows for MCMC replicates, and columns for days. The MCMC posterior draws of other parameters including beta_p, gamma_p, R0_p, and variance controllers k_p, lambdaY_p, lambdaR_p are also available.

save_plot_data logical, whether save the plotting data or not.

esp a non-zero controller so that all the input Y and R values would be bounded above

0 (at least eps). Its default value is 1e-10

Details

We fit a state-space model with extended SIR, in which a time-varying transmission rate modifier $\pi(t)$ (between 0 and 1) is introcuded to model. This allows us to accommodate quarantine protocol changes and ignored resources of hospitalization. The form of reducing rate may be a step-function with jomps at times of big policy changes or a smooth exponential survival function $\exp(-\lambda_0 t)$. The parameters of the function and change points, if any, should be predefined.

Value

casename the predefined casename.

incidence_mean mean incidence.

incidence_ci 2.5%, 50%, and 97.5% quantiles of the incidences.

out_table summary tables including the posterior mean of the prevalance processes of the

3 states compartments $(\theta_t^S, \theta_t^I, \theta_t^R)$ at last date of data collected ((t') decided by the lengths of your input data Y and R), and their respective credible inctervals (ci); the respective means and ci's of the reporduction number (R0), removed

rate (γ) , transmission rate (β) .

plot_infection plot of summarizing and forecasting for the infection compartment, in which

the vertial blue line denotes the last date of data collected (t'), the vertial dark-gray line denotes the deacceleration point (first turning point) that the posterior mean first-derivative of infection prevalence $\dot{\theta}_t^I$ achieves the maximum, the vertical purple line denotes the second turning point that the posterior mean first-derivative infection proportion $\dot{\theta}_t^I$ equals zero, the darkgray line denotes the posterior mean of the infection prevalence θ_t^I and the red line denotes its posterior

median.

plot_removed plot of summarizing and forecasting for the removed compartment with lines

similar to those in the plot_infection. The vertical lines are identical, but the horizontal mean and median correspond to the posterior mean and median of the removed process θ_t^R . An additional line indicates the estimated death prevalence

from the input death_in_R.

spaghetti_plot 20 randomly selected MCMC draws of the first-order derivative of the posterior

prevalence of infection, namely $\dot{\theta}_t^I$. The black curve is the posterior mean of the derivative, and the vertical lines mark times of turning points corresponding respectively to those shown in plot_infection and plot_removed. Moreover,

> the 95% credible intervals of these turning points are also highlighted by semitransparent rectangles.

first_tp_mean

the date t at which $\hat{\theta}_t^I = 0$, calculated as the average of the time points with maximum posterior first-order derivatives $\dot{\theta}_t^I$; this value may be slightly different from the one labeled by the "darkgreen" lines in the two plots plot_infection and plot_removed, which indicate the stationary point such that the first-order derivative of the averaged posterior of θ_t^I reaches its maximum.

fwith first_tp_mean, it reports the corresponding credible interval and median. first_tp_ci

second_tp_mean the date t at which $\theta_t^I = 0$, calculated as the average of the stationary points of all of posterior first-order derivatives $\dot{\theta}_t^I$; this value may be slightly different from the one labeled by the "pruple" lines in the plots of plot_infection and plot_removed. The latter indicate stationary t at which the first-order derivative of the averaged posterior of θ_t^I equals zero.

with second_tp_mean, it reports the corresponding credible interval and mesecond_tp_ci dian.

dic_val the output of dic.sample() in dic.sample, computing deviance information criterion for model comparison.

Examples

```
NI_complete <- c( 41,41,41,45,62,131,200,270,375,444,549, 729,
                   1052,1423,2714,3554,4903,5806,7153,9074,11177,
               13522, 16678, 19665, 22112, 24953, 27100, 29631, 31728, 33366)
RI_{complete} \leftarrow c(1,1,7,10,14,20,25,31,34,45,55,71,94,121,152,213,
                  252,345,417,561,650,811,1017,1261,1485,1917,2260,
                  2725, 3284, 3754)
N=58.5e6
R \leftarrow RI\_complete/N
Y <- NI_complete/N- R #Jan13->Feb 11
### Step function of pi(t)
change_time <- c("01/23/2020","02/04/2020","02/08/2020")
pi0 < -c(1.0, 0.9, 0.5, 0.1)
res.step <-tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,
         T_fin=200,pi0=pi0,change_time=change_time,dic=T,
         casename="Hubei_step",save_files = T,
         save_mcmc=F,M=5e2,nburnin = 2e2)
res.step$plot_infection
res.step$plot_removed
res.step$dic_val
### continuous exponential function of pi(t)
res.exp <- tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,
           T_fin=200, exponential=TRUE, dic=F, lambda0=0.05,
           casename="Hubei_exp",save_files = F,save_mcmc=F,
           M=5e2, nburnin = 2e2)
res.exp$plot_infection
#res.exp$plot_removed
### without pi(t), the standard state-space SIR model without intervention
res.nopi <- tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,
                T_fin=200,casename="Hubei_nopi",save_files = F,
                M=5e2, nburnin = 2e2)
res.nopi$plot_infection
#res.nopi$plot_removed
```

Index

```
dic.sample, 4, 7
qh.eSIR, 1
rjags, 2, 5
tvt.eSIR, 4
```