General Mathematics

J. Rodríguez

November 2, 2022

Contents

Chapter 1	Exponential Function	Page 2
1.1	Definition of an exponential function	2
1.2	Properties	2
1.3	Graphs	3
1.4	Intercepts and asymptotes	4
1.5	Solved exercises	4
Chapter 2	Logarithmic Function	Page 5
-		
2.1	Definition of a logarithmic function	5
2.2	Properties	5
2.3	Domain and Range	5
2.4	Solved exercises	6
Chapter 3	Trigonometric Ratios	Page 12
3.1	Introduction	12
	Pythagorean Theorem — $12 \bullet$ Fundamental Identities — 12	

Chapter 1

Exponential Function

1.1 Definition of an exponential function

Definition 1.1.1

Let a > 0 and $x \in \mathbb{R}$. The function $f(x) = a^x$ is called the exponential function with base a.

Based on the above definition we have:

- 1. $f(x) = 2^x$ is the exponential function with base 2.
- 2. $f(x) = e^x$ is the exponential function with base e.

Definition 1.1.2

Consider the exponential function with the form $f(x) = b * a^{x-h} + k$ with $f : \mathbb{R} \to \mathbb{R}$; f is an exponential function if and only if $a \in]0,1[$ or $a \in]1,\infty[$.

Some exponential functions with the form $f(x) = b * a^{x-h} + k$ are:

- $f(x) = 2^{x-1} + 1$
- $f(x) = \frac{1}{2}^{x-1} 8$

1.2 Properties

Theorem 1.2.1

If the base is negative, the function is not defined for all real numbers. Let's consider a function $f(x) = (-3)^x$.

At $x = \frac{1}{2}$.

$$f\left(\frac{1}{2}\right) = (-3)^{\frac{1}{2}} = \sqrt{-3} = \pm i\sqrt{3}$$
 (1.1)

Hence, the base of an exponential function cannot be negative.

Theorem 1.2.2

If the function is in the form $f(x) = a^x$, then the function is not transformed, and doesn't have a vertical or horizontal shift.

This also means that the function doesn't have an intersection with the x-axis and the asymptoten is y = 0.

Theorem 1.2.3

When x = 0 or x = 1 the function is constant. It means that isn't an exponential function at these x

values. For this is why the domain of the exponential function is defined like this: $D_f:]0,1[\cup]1,\infty[$

- \bullet If the function base is 1, then the function is constant and y=1.
- If the function base is 0, then the function is constant and equal to 0.

1.3 Graphs

Consider the graph of the function $f(x) = a^x$, $f: \mathbb{R} \to \mathbb{R}^+$.

- The figure 1.1 shows the graph of the function, where a is defined in the interval]0,1[.
- The figure 1.2 shows the graph of the function, where a is defined in the interval $]1,\infty[$.

Figure 1.1: Case in which 0 < a < 1.

Figure 1.2: Case in which a > 1.

1.4 Intercepts and asymptotes

Theorem 1.4.1

The function $f(x) = a^x$ has no intercepts with the x-axis and the asymptoten is y = 0.

The function $f(x) = b * a^{x-h} + k$ has an asymptoten in y = k, and if k is negative the function has an intersection with the x-axis.

Figure 1.3: Asymptote in y = -3 for $f(x) = 2^{x-1} - 3$.

1.5 Solved exercises

Chapter 2

Logarithmic Function

2.1 Definition of a logarithmic function

Definition 2.1.1

Let a > 0 and $x \in \mathbb{R}$. The function $f(x) = \log_a(x)$ is called the logarithmic function with base a.

Based on the above definition we have:

- 1. $f(x) = \log_2(x)$ is the logarithmic function with base 2.
- 2. $f(x) = \log_e(x)$ is the logarithmic function with base e.

2.2 Properties

Theorem 2.2.1

The logarithmic function is the inverse function of the exponential function.

$$\log_a(x) = y \Leftrightarrow a^y = x \tag{2.1}$$

Example 2.2.1

$$\log_2(8) = y$$

$$2^y = 8$$

$$2^y = 2^3$$

$$y = 3$$
(2.2)

$$\therefore \log_2(8) = 3$$

2.3 Domain and Range

Theorem 2.3.1

The domain of the logarithmic function is defined like this: $D_f : \mathbb{R}^+$ The range of the logarithmic function is defined like this: $D_f : \mathbb{R}^+$

2.4 Solved exercises

Question 1

Simplify the following expression:

$$\log_3(5) * \log_2(3) * \log_5(6) * \log_2(6)$$

Solution:

$$\begin{split} \log_3(5)*\log_2(3)*\log_5(6)*\log_2(6) &= \frac{\log(5)}{\log(3)}*\frac{\log(3)}{\log(2)}*\frac{\log(6)}{\log(5)}*\frac{\log(6)}{\log(2)} \\ &= \frac{\log(6)}{\log(2)}*\frac{\log(6)}{\log(2)} \\ &= \frac{\log^2(6)}{\log^2(2)} \\ &= \left[\frac{\log(6)}{\log(2)}\right]^2 \\ &= [\log_2(6)]^2 \\ &= \log_2^2(6) \end{split}$$

Question 2

Check the identity

$$\ln(x*\sqrt[3]{2x+1}*\sqrt[5]{(3x+1)^2}) = \ln(x) + \frac{1}{3}\ln(2x+1) + \frac{2}{5}\ln(3x+1)$$

Solution:

$$\ln(x * \sqrt[3]{2x+1} * \sqrt[5]{(3x+1)^2}) = \ln(x) + \ln(\sqrt[3]{2x+1}) + \ln(\sqrt[5]{(3x+1)^2})$$

$$= \ln(x) + \ln((2x+1)^{\frac{1}{3}}) + \ln((3x+1)^{\frac{2}{5}})$$

$$= \ln(x) + \frac{1}{3}\ln(2x+1) + \frac{2}{5}\ln(3x+1)$$

Question 3

Check the identity

$$\frac{1}{4}\log(x^2 + 4x + 3) + \frac{1}{4}\log\left(\frac{x+1}{x+3}\right) = \log\sqrt{x+1}$$

Solution:

$$\frac{1}{4}\log(x^2+4x+3) + \frac{1}{4}\log\left(\frac{x+1}{x+3}\right) = \frac{1}{4}\log\left[(x+1)(x+3)\right] + \frac{1}{4}\log\left(\frac{x+1}{x+3}\right)$$

$$= \frac{1}{4}\log\left[(x+1)(x+3)\right] + \frac{1}{4}\left[\log(x+1) - \log(x+3)\right]$$

$$= \frac{1}{4}\log(x+1) + \frac{1}{4}\log(x+3) + \frac{1}{4}\log(x+1) - \frac{1}{4}\log(x+3)$$

$$= \frac{1}{4}\log(x+1) + \frac{1}{4}\log(x+1)$$

$$= \frac{1}{2}\log(x+1)$$

$$= \log\sqrt{x+1}$$

☺

☺

Question 4

Check the identity

$$\log\left(\frac{x\sqrt{x+1}}{x^2 - 1}\right) = \log(x) - \frac{1}{2}\log(x+1) - \log(x-1)$$

Solution:

$$\log\left(\frac{x\sqrt{x+1}}{x^2-1}\right) = \log\left(\frac{x\sqrt{x+1}}{(x+1)(x-1)}\right)$$

$$= \log(x\sqrt{x+1}) - \log((x+1)(x-1))$$

$$= \log(x\sqrt{x+1}) - \log(x+1) - \log(x-1)$$

$$= \log(x) + \log((x+1)^{\frac{1}{2}}) - \log(x+1) - \log(x-1)$$

$$= \log(x) + \frac{1}{2}\log(x+1) - \log(x+1) - \log(x-1)$$

$$= \log(x) - \frac{1}{2}\log(x+1) - \log(x-1)$$

⊜

⊜

Question 5

Solve in \mathbb{R} the following equation applying power laws:

$$2^x \left(\frac{2^{2x}}{4^{-3+x}} \right)^{x+1} = \sqrt{4^{6-x}}$$

Solution:

$$2^{x} \left(\frac{2^{2x}}{4^{-3+x}}\right)^{x+1} = \sqrt{4^{6-x}}$$

$$2^{x} \left(\frac{2^{2x}}{(2^{2})^{-3+x}}\right)^{x+1} = \sqrt{(2^{2})^{6-x}}$$

$$2^{x} \left(\frac{2^{2x}}{2^{-6+2x}}\right)^{x+1} = \sqrt{2^{12-2x}}$$

$$2^{x} (2^{2x-(-6+2x)})^{x+1} = 2^{\frac{12-2x}{2}}$$

$$2^{x} (2^{6})^{x+1} = 2^{6-x}$$

$$2^{x} (2^{6x+6}) = 2^{6-x}$$

$$2^{x+6x+6} = 2^{6-x}$$

$$x+6x+6=6-x$$

$$7x=-x$$

$$8x=0$$

$$x=0$$

Question 6

Solve in \mathbb{R} the following equation applying power laws:

$$2^{2x} - 6 \cdot 2^x + 8 = 0$$

Solution: With $u = 2^x$ we have

$$(2^{x})^{2} - 6 * 2^{x} + 8 = 0$$
$$u^{2} - 6u + 8 = 0$$
$$(u - 2)(u - 4) = 0$$

For
$$u = 2$$
:

$$2^x = 2$$
$$x = 1$$

For u = 4:

$$2^x = 4$$

$$2^x = 2^2$$

$$x = 2$$

Therefore, for u = 2 we have x = 1 and for u = 4 we have x = 2.

⊜

Question 7

Solve in \mathbb{R} the following equation:

$$e^{5x-2} - 7^{1-x} = 0$$

Solution:

$$e^{5x-2} = 7^{1-x}$$

$$\ln(e^{5x-2}) = \ln(7^{1-x})$$

$$5x - 2 * \ln(e) = (1-x)\ln(7)$$

$$5x - 2 = (1-x)\ln(7)$$

$$5x - 2 = \ln(7) - x\ln(7)$$

$$5x + x\ln(7) = \ln(7) + 2$$

$$x(5 + \ln(7)) = \ln(7) + 2$$

$$x = \frac{\ln(7) + 2}{5 + \ln(7)}$$

$$\therefore x = \frac{\ln(7) + 2}{5 + \ln(7)} \quad \textcircled{a}$$

Question 8

Solve in \mathbb{R} the following equation:

$$3 * 2^{2x} - 29 * 2^x = -40$$

Solution: With $u = 2^x$ we have:

$$3 * 2^{2x} - 29 * 2^x = -40$$

$$3u^2 - 29u = -40$$

$$3u^2 - 29u + 40 = 0$$

$$(3u - 5)(u - 8) = 0$$

For 3u = 5:

$$3u = 5$$

$$u = \frac{5}{3}$$

$$2^{x} = \frac{5}{3}$$

$$\log_{2}(2^{x}) = \log_{2}(\frac{5}{3})$$

$$x = \log_{2}(\frac{5}{3})$$

For u = 8:

$$u = 8$$

$$2^{x} = 8$$

$$2^{x} = 2^{3} \quad \textcircled{9}$$

$$x = 3$$

Question 9

Solve in \mathbb{R} the following equation:

$$\ln(x\sqrt[3]{4-2x}) = \ln(x) + \frac{1}{3}\ln(4-2x)$$

Solution:

$$\ln(x\sqrt[3]{4-2x}) = \ln(x) + \frac{1}{3}\ln(4-2x)$$

$$\ln(x) + \ln(\sqrt[3]{4-2x}) = \ln(x) + \frac{1}{3}\ln(4-2x)$$

$$\ln(x) + \frac{1}{3}\ln(4-2x) = \ln(x) + \frac{1}{3}\ln(4-2x)$$

$$\ln(x) + \frac{1}{3}\ln(4-2x) - \ln(x) - \frac{1}{3}\ln(4-2x) = 0$$

$$0 = 0$$

Domain of ln(x) is \mathbb{R}^+ , so $x \in \mathbb{R}^+$.

Domain of $\sqrt[3]{4-2x}$ is \mathbb{R}^+ , so for 4-2x>0 we have $x\in\mathbb{R}^+$.

$$4 - 2x > 0$$
$$-2x > -4$$
$$x < 2$$

Therefore, $x \in \mathbb{R}^+$ and x < 2, so D_f :]0,2[.

⊜

Question 10

Solve in \mathbb{R} the following equation:

$$\log_3(x+7) + \log_3(x+1) = 1 + \log_3(11-x)$$

Solution: First, we need the domains of the function:

For $\log_3(x+7)$:

$$\log_3(x+7) > 0$$
$$x+7 > 0$$
$$x > -7$$

For $\log_3(x+1)$:

$$\log_3(x+1) > 0$$
$$x+1 > 0$$
$$x > -1$$

For $\log_3(11 - x)$:

$$\log_3(11 - x) > 0$$
$$11 - x > 0$$
$$x < 11$$

So, $D_f:]-1,11[.$

$$\log_3(x+7) + \log_3(x+1) = 1 + \log_3(11-x)$$

$$\log_3((x+7)(x+1)) - \log_3(11-x) = 1$$

$$\log_3\left(\frac{(x+7)(x+1)}{11-x}\right) = 1$$

$$3^1 = \frac{(x+7)(x+1)}{11-x}$$

$$3(11-x) = (x+7)(x+1)$$

$$33 - 3x = x^2 + 7x + x + 7$$

$$33 - 3x = x^2 + 8x + 7$$

$$0 = x^2 + 8x + 7 + 3x - 33$$

$$0 = x^2 + 11x - 26$$

$$0 = (x-2)(x+13)$$

Now we have x = 2 and x = -13, but $2 \in]-1,11[$ and $-13 \notin]-1,11[$, so x = 2 is the only solution.

Question 11

Solve in \mathbb{R} the following equation:

$$\log_2(5y - 6) - \log_2(5y + 1) = 3$$

Solution: First we need the domains of the function:

For $\log_2(5y - 6)$:

$$\log_2(5y - 6) > 0$$
$$5y - 6 > 0$$
$$y > \frac{6}{5}$$

For $\log_2(5y + 1)$:

$$\log_2(5y+1) > 0$$

$$5y+1 > 0$$

$$y > -\frac{1}{5}$$

So, $D_f:]^{\frac{6}{5}}, \infty[$. Now, we can solve the equation:

$$\begin{split} \log_2(5y-6) - \log_2(5y+1) &= 3 \\ \log_2\left(\frac{5y-6}{5y+1}\right) &= 3 \\ 2^3 &= \frac{5y-6}{5y+1} \\ 8(5y+1) &= 5y-6 \\ 40y+8 &= 5y-6 \\ 35y &= -14 \\ y &= -\frac{14}{35} \\ y &\approx -0.4 \end{split}$$

But $-0.4 \notin]\frac{6}{5}, \infty[$, so there is no solution. $\therefore S = \emptyset$

⊜

Question 12

Solve in \mathbb{R} the following equation:

$$\log_2(x) + 4 + \log_2(x+1) = \log_2(x+2) + 5$$

Solution: First we need the domains of the function:

For $\log_2(x)$:

 $\log_2(x)>0$

x > 0

For $\log_2(x+1)$:

 $\log_2(x+1)>0$

x + 1 > 0

x > -1

For $\log_2(x+2)$:

 $\log_2(x+2) > 0$

x + 2 > 0

x > -2

So, $D_f:]0,\infty[$. Now, we can solve the equation:

$$\log_2(x) + 4 + \log_2(x+1) = \log_2(x+2) + 5$$

 $\log_2(x) + \log_2(x+1) - \log_2(x+2) = 1$

$$\log_2\left(\frac{x(x+1)}{x+2}\right) = 1$$

$$2^1 = \frac{x(x+1)}{x+2}$$

$$2(x+2) = x(x+1)$$

$$2x + 4 = x^2 + x$$

$$2x = x^2 + x - 4$$

$$0 = x^2 - x - 4$$

We need to solve the quadratic equation $x^2 - x - 4 = 0$.

$$x^2 - x - 4 = 0$$

$$(x - \frac{1 + \sqrt{17}}{2})(x - \frac{1 - \sqrt{17}}{2}) = 0$$

Now we have $x=\frac{1+\sqrt{17}}{2}$ and $x=\frac{1-\sqrt{17}}{2}$, but $\frac{1-\sqrt{17}}{2}\notin]0,\infty[$, so $\frac{1+\sqrt{17}}{2}$ is the only solution.

$$\therefore S = \left\{ \frac{1 + \sqrt{17}}{2} \right\}$$

Chapter 3

Trigonometric Ratios

3.1 Introduction

3.1.1 Pythagorean Theorem

Sea $\triangle ABC$ un triángulo rectángulo, recto en B, como se muestra en la siguiente figura, entonces se cumple que $h^2=a^2+b^2$.

Figure 3.1: Triángulo rectángulo

3.1.2 Fundamental Identities

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

 $\cot \theta = \frac{1}{\tan \theta}$

 $\sec \theta = \frac{1}{\cos \theta}$

 $\csc \theta = \frac{1}{\sin \theta}$