Using Neural Networks for Time-Series Prediction

Joe Jevnik

March 1, 2018

QuanTech NYC

Disclaimer

This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. ("Quantopian"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Additionally, this presentation is being provided on the express basis that it and any related communications (whether written or oral) will not cause Quantopian to become an investment advice fiduciary under ERISA or the Internal Revenue Code with respect to any retirement plan or IRA investor. as the recipients are fully aware that the Quantopian (i) is not undertaking to provide impartial investment advice, make a recommendation regarding the acquisition, holding or disposal of an investment, act as an impartial adviser, or give advice in a fiduciary capacity, and (ii) has a financial interest in the offering and sale of one or more products and services, which may depend on a number of factors relating to Quantopian's internal business objectives, and which has been disclosed to the recipient. Nothing set forth herein or any information conveyed (in writing or orally) in connection with this presentation is intended to constitute a recommendation that any person take or refrain from taking any course of action within the meaning of U.S. Department of Labor Regulation \$2510.3-21(b)(1), including without limitation buying, selling or continuing to hold any security. No information contained herein should be regarded as a suggestion to engage in or refrain from any investment-related course of action as none of Quantopian nor any of its affiliates is undertaking to provide investment advice, act as an adviser to any plan or entity subject to the Employee Retirement Income Security Act of 1974, as amended, individual retirement account or individual retirement annuity, or give advice in a fiduciary capacity with respect to the materials presented herein. You are advised to contact your own financial advisor or other fiduciary unrelated to Quantopian about whether any given course of action may be appropriate for your circumstances. The information provided herein is intended to be used solely by the recipient in considering the products or services described herein and may not be used for any other reason, personal or otherwise. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.

Outline

- 1. Introduce problem
- 2. Phrase problem as an ML problem
- 3. Collect and apply data
- 4. Select features
- 5. Train the model
- 6. Improve the model
- 7. Tips

Who am I?

- Works with storage and manipulation of time series data
- Integrates third-party data sets

The Problem

Elements

Figure 1: A hit circle

Elements

Figure 1: A hit circle

Figure 2: A slider

Elements

Figure 1: A hit circle

Figure 2: A slider

Figure 3: Mouse cursor

Scoring

300 points if on the beat

Scoring

- 300 points if on the beat
- 100 points if slightly off the beat

Scoring

300 points if on the beat

100 points if slightly off the beat

Scoring

300 points if on the beat

100 points if slightly off the beat

50 points if really off the beat

Scoring

300 points if on the beat

100 points if slightly off the beat

50 points if really off the beat

Scoring

- 300 points if on the beat
- 100 points if slightly off the beat

50 points if really off the beat

0 points for missing entirely

Scoring

- 300 points if on the beat
- 100 points if slightly off the beat

50 points if really off the beat

0 points for missing entirely

Sample
\$ mpv videos/osu-example.avi

Improve my rank quickly

Improve my rank quickly Many new songs a week

Improve my rank quickly

Many new songs a week

Songs award a variable amount of points

Improve my rank quickly

Many new songs a week

Songs award a variable amount of points

Particular playstyle

Improve my rank quickly
Many new songs a week
Songs award a variable amount of points
Particular playstyle
Arbitrage opportunity?

Phrasing the Problem

Predict my score on a beatmap

Predict my score on a beatmap

Need to compute accuracy %

Predict my score on a beatmap

Need to compute accuracy %

Temporal Accuracy

Predict my score on a beatmap

Need to compute accuracy %

Temporal Accuracy

Aim Accuracy

Machine Learning Models

Classifiers

Label a sample as a member of one of a finite set of classes.

Machine Learning Models

Regressors Approximate a numerical function.

LSTM Models

Order dependent data

LSTM Models

Order dependent data
Sequence of observations

LSTM Models

Order dependent data

Sequence of observations

Uses windows of time-sorted observations

Our Problem

For each hit-object, predict..

Our Problem

For each hit-object, predict..

Classifier A label.

- - 300
 - 100
 - 50
 - 0 (miss)

Our Problem

For each hit-object, predict..

Classifier A label.

- 300
- 100
- 50
- 0 (miss)

Regressor

A numeric error metric.

- 1. Aim Error ((x, y) error)
- 2. Accuracy Error (punctuality)

Data Collection

Hit objects in (x, y, time) space.

Hit objects in (x, y, time) space. Circle Size (CS)

Hit objects in (x, y, time) space. Circle Size (CS)Approach Rate (AR)

Hit objects in (x, y, time) space.

Circle Size (CS)

Approach Rate (AR)

Overall Difficulty (OD) (score thresholds)

Raw Data

Beatmap

```
[HitObjects]
103,272,52926,6,0,L|111:176,1,67.5000025749208
93,95,53279,1,2,0:3:0:0:
194,131,53455,2,0,B|263:160|264:100|337:135,1,135.000005149
437,204,53985,2,0,L|432:286,1,67.5000025749208
394,105,54338,6,0,L|399:17,1,67.5000025749208
286,62,54690,1,2,0:3:0:0:
177,54,54867,2,0,B|110:74|110:30|41:53,1,135.000005149842,0
70,213,55396,2,0,L|77:132,1,67.5000025749208
161,215,55749,6,0,P|175:273|247:314,1,135.000005149842,0|2
341.286.56279.1.0.0:0:0:0:
308,183,56455,2,0,P|268:201|245:238,1,67.5000025749208,0|2
```

• Hard Rock (HR)

- Hard Rock (HR)
- Double Time (DT)

- Hard Rock (HR)
- Double Time (DT)
- Hidden (HD)

- Hard Rock (HR)
- Double Time (DT)
- Hidden (HD)
- etc...

Time series of...

Time series of...

Cursor location

Time series of...

Cursor location

Keyboard state

I had about seven years of replays laying around!

Understanding our data

Accuracy thresholds (milliseconds)

OD	300	100	50
1	73.5	131.5	189.5
2	67.5	123.5	179.5
3	61.5	115.5	169.5
4	55.5	107.5	159.5
5	49.5	99.5	149.5
6	43.5	91.5	139.5
7	37.5	83.5	129.5
8	31.5	75.5	119.5
9	25.5	67.5	109.5
10	19.5	59.5	99.5

Understanding our data (cont.)

Joining Data

Joining Data

Find all clicks by taking times where key state changes

Joining Data

- Find all clicks by taking times where key state changes
 - Match click with the nearest hit object (ignores hit locking!)

Accuracy Error

Absolute difference in time.

Accuracy Error

Absolute difference in time.

Comparable across different OD

Aim Error

Euclidean distance between click and center of circle.

Aim Error

- Euclidean distance between click and center of circle.
- Comparable across different CS

Feature Selection

Numeric inputs to the ML model

Numeric inputs to the ML model

What are we observing

Numeric inputs to the ML model

What are we observing

Focus the model on aspects of the data

Numeric inputs to the ML model

What are we observing

Focus the model on aspects of the data

Chance to use domain knowledge

Raw Data

Beatmap

```
[HitObjects]
103,272,52926,6,0,L|111:176,1,67.5000025749208
93,95,53279,1,2,0:3:0:0:
194,131,53455,2,0,B|263:160|264:100|337:135,1,135.000005149
437,204,53985,2,0,L|432:286,1,67.5000025749208
394,105,54338,6,0,L|399:17,1,67.5000025749208
286,62,54690,1,2,0:3:0:0:
177,54,54867,2,0,B|110:74|110:30|41:53,1,135.000005149842,0
70,213,55396,2,0,L|77:132,1,67.5000025749208
161,215,55749,6,0,P|175:273|247:314,1,135.000005149842,0|2
341.286.56279.1.0.0:0:0:0:
308,183,56455,2,0,P|268:201|245:238,1,67.5000025749208,0|2
```

Simple Features

absolute_x
absolute_y
absolute_time

Domain Specific Features

time	X	У
00:37.366	372	94
00:37.763	447	205
00:38.027	217	299
00:38.291	229	171
00:38.424	274	358
00:38.688	149	221
00:38.952	330	186
00:39.217	233	127
00:39.481	233	127
00:39.613	198	303

time	X	У
00:37.366	372	94
00:37.763	447	205
00:38.027	217	299
00:38.291	229	171
00:38.424	274	358
00:38.688	149	221
00:38.952	330	186
00:39.217	233	127
00:39.481	233	127
00:39.613	198	303

time	X	У
00:37.366	372	94
00:37.763	447	205
00:38.027	217	299
00:38.291	229	171
00:38.424	274	358
00:38.688	149	221
00:38.952	330	186
00:39.217	233	127
00:39.481	233	127
00:39.613	198	303

time	X	у	relative x	relative y
00:37.366	372	94	-	-
00:37.763	447	205	298	-16
00:38.027	217	299	68	78
00:38.291	229	171	80	-50
00:38.424	274	358	125	137
00:38.688	149	221	0	0
00:38.952	330	186	181	-35
00:39.217	233	127	84	-94
00:39.481	233	127	-	-
00:39.613	198	303	_	-

time	Х	у	relative x	relative y
00:37.366	372	94	-	-
00:37.763	447	205	-	-
00:38.027	217	299	-113	113
00:38.291	229	171	-101	-15
00:38.424	274	358	-56	172
00:38.688	149	221	-181	35
00:38.952	330	186	0	0
00:39.217	233	127	-97	-59
00:39.481	233	127	-97	-59
00:39.613	198	303	-	-

time	X	у	relative x	relative y
00:37.366	372	94	-	-
00:37.763	447	205	-	-
00:38.027	217	299	-	-
00:38.291	229	171	-4	44
00:38.424	274	358	41	231
00:38.688	149	221	-84	94
00:38.952	330	186	97	59
00:39.217	233	127	0	0
00:39.481	233	127	0	0
00:39.613	198	303	-35	176

Osu! Features

- absolute_x
- absolute_y
- absolute_time
- relative_x
- relative_y
- relative_time

- is_slider_tick
- approach_rate
- distance_from_previous
- distance_to_next
- pitch
- roll
- yaw

Training

```
Feature array shape

( , , )
```

```
Feature array shape
( , number of features, )
```

```
Feature array shape
( , window length, number of features, )
```

Feature array shape

```
( number of windows, window length, number of features, )
```

```
Feature array shape

( number of windows, window length, number of features,

Label array shape
( number of windows, )
( number of windows, )
```

Keras

```
input_ = keras.layers.Input(
    shape=(window_length, len(features))
)
```

Keras

```
input_ = keras.layers.Input(
    shape=(window_length, len(features))
)
lstm = keras.layers.LSTM(lstm_layer_size)(input_)
```

```
input_ = keras.layers.Input(
    shape=(window_length, len(features))
lstm = keras.layers.LSTM(lstm_layer_size)(input_)
aim_error = keras.layers.Dense(
    1,
    activation='linear',
    name='aim_error',
)(lstm)
```

```
input_ = keras.layers.Input(
    shape=(window_length, len(features))
lstm = keras.layers.LSTM(lstm_layer_size)(input_)
aim_error = keras.layers.Dense(
    1,
    activation='linear',
    name='aim_error',
)(lstm)
accuracy_error = keras.layers.Dense(
    1,
    activation='linear',
    name='accuracy_error',
)(lstm)
```

```
model = keras.models.Model(
    inputs=input_,
    outputs=[aim_error, accuracy_error],
)
```

```
model = keras.models.Model(
    inputs=input_,
    outputs=[aim_error, accuracy_error],
)
model.compile(
    loss='mse',
    optimizer='rmsprop',
)
```

```
# compute features, aim_error, accuracy_error
model.fit(
    features,
    {
        'aim_error': aim_error,
        'accuracy_error': accuracy_error,
    },
)
```

```
# compute features, aim_error, accuracy_error
model.fit(
    features,
        'aim_error': aim_error,
        'accuracy_error': accuracy_error,
    },
model.predict(features)
```

How does it look?

How does it look?

bad

Feature Scaling

Sensitive to input ranges

Feature Scaling

```
Sensitive to input ranges
(data - data.mean()) / data.std()
```

Feature Scaling

```
Sensitive to input ranges
(data - data.mean()) / data.std()
Save the mean and std of the training data!
```

Data (again)

```
features:
    absolute_x:
      mean: 256.93
      std: 581144.54
     min: -26.25
      max: 42978020236964152.0
    absolute_y:
      mean: 188.67
      std: 96280.10
     min: -12.20
      max: 10754663190171874.0
```

Data (again)

```
osu! playfield: features: (512, 384)
absolute_x:
```

mean: 256.93 std: 581144.54

min: -26.25

max: 42978020236964152.0

absolute_y:

mean: 188.67

std: 96280.10

min: -12.20

max: 10754663190171874.0

Understanding our data

Accuracy thresholds (milliseconds)

OD	300	100	50
1	73.5	131.5	189.5
2	67.5	123.5	179.5
3	61.5	115.5	169.5
4	55.5	107.5	159.5
5	49.5	99.5	149.5
6	43.5	91.5	139.5
7	37.5	83.5	129.5
8	31.5	75.5	119.5
9	25.5	67.5	109.5
10	19.5	59.5	99.5

Data (again)

Data (again)

Fit a distribution

lain/lstm.py:605

Sample Weights

Sample Weights

Sample Weights (cont.)

```
model.fit(
    ...
    sample_weight={
        'aim_error:': aim_error_weights,
        'accuracy_error': accuracy_error_weights,
    },
)
```

Pessimism

Model thinks I am too good

Pessimism

Model thinks I am too good Bias in data collection

Pessimism

Model thinks I am too good Bias in data collection $\label{eq:Raise} {\sf Raise \ errors \ to \ a \ pre-decided \ power} \ (1.1)$

Pessimism

Model thinks I am too good Bias in data collection ${\it Raise errors to a pre-decided power (1.1)} \label{eq:continuous} \mbox{This is made up nonsense}$

Example Output (cont.)

Song	Stars	Predicted	Actual
CHiCO with HoneyWorks - Wolf	5.34	99.85%	99.13%
CHiCO with HoneyWorks - Wolf	5.34	99.85%	99.08%
CHiCO with HoneyWorks - Wolf	5.34	99.85%	98.51%
mimimemeMIMI - Sayonara Usotsuki	5.70	98.38%	98.68%
Kanon Wakeshima - Tsukinami	5.82	99.12%	99.87%

Tips

Understanding the process

 ${\tt verbose} \ {\sf flags} \ {\sf that} \ {\sf log} \ {\sf information}$

Understanding the process

verbose flags that log information
progress indicators (click.progressbar)

Understanding the process

verbose flags that log information
progress indicators (click.progressbar)
print summary statistics early in process

Group code into a domain-aware Model class.

Group code into a domain-aware Model class.

feature extraction

Group code into a domain-aware Model class.

feature extraction

feature scaling

Group code into a domain-aware Model class.

feature extraction

feature scaling

label extraction

Group code into a domain-aware Model class.

feature extraction

feature scaling

label extraction

managing keras

save models to disk

save models to disk train on ec2 and use locally

save models to disk train on ec2 and use locally train locally then deploy

save models to disk train on ec2 and use locally train locally then deploy supported by keras

Key Points

1. Most of the work is before or after keras

Key Points

- 1. Most of the work is before or after keras
- 2. Understand the data and the data collection processes

Key Points

- 1. Most of the work is before or after keras
- 2. Understand the data and the data collection processes
- 3. Osu! is a fun game

Thank You

Questions?

github.com/llllllllll (10 lowercase L's)

- /lain (model implementation)
- /slider (tools for working with osu! data and API)
- /combine (irc server running lain-as-a-service)