

Faculty of Engineering
Mechanical Engineering Department

Cash Flow and Compound Interest Factors

Terminology and Symbols

- The equations and procedures of engineering economy utilize the following terms and symbols:
 - P = value or amount of money at a time designated as the present or time o. Also, P is referred to as present worth (PW), present value (PV), net present value (NPV), discounted cash flow (DCF), and capitalized cost (CC);
 - F = value or amount of money at some future time. Also, F is called future worth (FW) and future value (FV);
 - A = series of consecutive, equal, end-of-period amounts of money.
 Also, A is called the annual worth (AW) and equivalent uniform annual worth (EUAW);
 - n = number of interest periods;
 - *i* = interest rate or rate of return per time period.

A new college graduate plans to borrow \$10,000 now to help in buying a car. She has arranged to repay the entire principal plus 8% per year interest after 5 years. Identify the engineering economy symbols involved and their values for the total owed after 5 years.

Solution

In this case, P and F are involved, since all amounts are single payments, as well as n and i. Time is expressed in years.

$$P = \$10,000$$
 $i = 8\%$ per year $n = 5$ years $F = ?$

The future amount F is unknown.

On July 1, 2018, your new employer deposits \$5000 into your money market account, as part of your employment bonus. The account pays interest at 5% per year. You expect to withdraw an equal annual amount each year for the following 10 years. Identify the symbols and their values.

Solution

Cash Flow Diagram

- The cash flow diagram is a very important tool in an economic analysis, especially when the cash flow series is complex.
- It is a graphical representation of cash flows drawn on a time scale. The diagram includes what is known, what is estimated and what is needed.

Cash Flow Diagram

- The direction of the arrows on the cash flow diagram is important.
 - A vertical arrow pointing up indicates a positive cash flow.
 - An arrow pointing down indicates a negative cash flow.

Reread Example 1, where P = \$10,000 is borrowed at 8% per year and F is sought after 5 years. Construct the cash flow diagram.

Solution

The present sum P is a cash inflow of the loan principal at year o, and the future sum F is the cash outflow of the repayment at the end of year 5.
The interest rate should be indicated on the diagram.

Single-Payment Formulas

The most fundamental equation in engineering economy is the one that determines the amount of money F accumulated after n years (or periods) from a single present worth P, with interest compounded one time per year.

$$F = P(1+i)^n$$

The term (1+i)ⁿ is called a factor and is known as the single-payment compound amount factor, but it is usually referred to as the F/P factor.

Single-Payment Formulas

• Single-payment present worth factor, or the P/F factor.

$$P = F\left[\frac{1}{(1+i)^n}\right]$$

Single-Payment Formulas

- A standard notation has been adopted for all factors. It is always in the general form (X/Y,i,n). The letter X represents what is sought, while the letter Y represents what is given.
- For example, FIP means find F when given P. The i is the interest rate in percent, and n represents the number of periods involved.
- Thus, (F/P,6%,20) represents the factor that is used to calculate the future amount F accumulated in 20 periods if the interest rate is 6% per period. The P is given.

An engineer received a bonus of \$12,000 that he will invest now. He wants to calculate the equivalent value after 24 years. Assume a rate of return of 8% per year for each of the 24 years. Find the amount he can pay down.

Solution

The symbols and their values are:

$$P = \$12,000$$
 $F = ?$ $i = 8\%$ per year $n = 24$ years $F = P(1 + i)^n = 12,000(1 + 0.08)^{24}$ $= 12,000(6.341181)$ $= \$76,094.17$

Uniform Series Formulas

- There are four uniform series formulas that involve A, where A means the cash flow occurs in consecutive interest periods, and in same amount in each period.
- The formulas relate a present worth P or a future worth F to a uniform series amount A. The two equations that relate P and A are as follows:

$$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

$$A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$

How much money should you be willing to pay now for a guaranteed \$600 per year for 9 years starting next year, at a rate of return of 16% per year?

Solution

The present worth is:

$$P = 600(P/A, 16\%, 9)$$

= $600(4.6065) = 2763.90

Uniform Series Formulas

The uniform series formulas that relate A and F follow.

$$A = F\left[\frac{i}{(1+i)^n - 1}\right]$$
$$F = A\left[\frac{(1+i)^n - 1}{i}\right]$$

- How much money must an electrical contractor deposit every year in his savings account starting 1 year from now at 5.5% per year in order to accumulate \$6000 seven years from now?
- Solution

A = \$6000(A/F, 5.5%, 7) = 6000(0.12096) = \$725.76 per year $i = 5\frac{1}{2}\%$ $0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$ A = ?

Gradient Formulas

- Sometimes the cash flows that occur in consecutive interest periods are not the same amount (not an A value), but they do change in a predictable way. These cash flows are known as gradients, and there are two general types: arithmetic and geometric.
- An arithmetic gradient is one wherein the cash flow changes (increases or decreases) by the same amount in each period.

Gradient Formulas

$$P = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right]$$

- This equation finds the present worth of the *gradient only*. It does not include the base amount of money that the gradient was built upon.
- The general equation to find P of an arithmetic gradient is:

```
P = \text{Present worth of base amount} + \text{present worth of gradient amount}
= A(P/A, i\%, n) + G(P/G, i\%, n)
```

where A = amount in period 1

G = amount of *change* in cash flow between periods 1 and 2

n = number of periods from 1 through n of gradient cash flow

i = interest rate per period

The Highway Department expects the cost of maintenance for a piece of heavy construction equipment to be \$5000 in year 1, to be \$5500 in year 2, and to increase annually by \$500 through year 10. At an interest rate of 10% per year, determine the present worth of 10 years of maintenance costs.

Solution

The cash flow includes an increasing gradient with G = \$500 and a base amount of \$5000 starting in year 1.

$$P = 5000(P/A,10\%,10) + 500(P/G,10\%,10)$$

= 5000(6.1446) + 500(22.8913)
= \$42,169

Relations for Cash Flows with End-of-Period Compounding

Туре	Find/Given	Factor Notation and Formula	Relation	Sample Cash Flow Diagram		
Single Amount	F/P Compound amount P/F Present worth	$(F/P,i,n) = (1+i)^n$ $(P/F,i,n) = \frac{1}{(1+i)^n}$	F = P(F/P,i,n) $P = F(P/F,i,n)$	0 P		
Uniform	P/A Present worth	$(P/A, i, n) = \frac{(1+i)^n - 1}{i(1+i)^n}$	P = A(P/A,i,n)	A A ··· A A		
	A/P Capital recovery	$(P/A,i,n) = \frac{(1+i)^n}{i(1+i)^n}$ $(A/P,i,n) = \frac{i(1+i)^n}{(1+i)^n - 1}$	A = P(A/P,i,n)	1 2 n-1 n		
Series	F/A Compound amount	$(F/A,i,n) = \frac{(1+i)^n - 1}{i}$	F = A(F/A,i,n)	0 1 2 n-1 n A A ··· A A		
	A/F Sinking fund	$(A/F,i,n) = \frac{i}{(1+i)^n - 1}$	A = F(A/F, i, n)			
Arithmetic	P _G /G Present worth	$(P/G,i,n) = \frac{(1+i)^n - in - 1}{i^2(1+i)^n}$ $(A/G,i,n) = \frac{1}{i} - \frac{n}{(1+i)^n - 1}$	$P_G = G(P/G,i,n)$	P_G A_G A_G A_G A_G A_G		
Gradient	A_G/G Uniform series	$(A/G,i,n) = \frac{1}{i} - \frac{n}{(1+i)^n - 1}$ (Gradient only)	$A_G = G(A/G,i,n)$	0 1 2 3 n G 2G (n-1) G		

Interest Factor Tables

5%		TABLE 10 Discrete Cash Flow: Compound Interest Factors 59										
	Single Pay	Single Payments		Uniform Series Payments				Arithmetic Gradients				
n	F/P Compound Amount	P/F Present Worth	A/F Sinking Fund	F/A Compound Amount	A/P Capital Recovery	P/A Present Worth	P/G Gradient Present Worth	A/G Gradient Uniform Serie				
1	1.0500	0.9524	1.00000	1.0000	1.05000	0.9524						
2	1.1025	0.9070	0.48780	2.0500	0.53780	1.8594	0.9070	0.4878				
3	1.1576	0.8638	0.31721	3.1525	0.36721	2.7232	2.6347	0.9675				
4	1.2155	0.8227	0.23201	4.3101	0.28201	3.5460	5.1028	1.4391				
5	1.2763	0.7835	0.18097	5.5256	0.23097	4.3295	8.2369	1.9025				
6	1.3401	0.7462	0.14702	6.8019	0.19702	5.0757	11.9680	2.3579				
7	1.4071	0.7107	0.12282	8.1420	0.17282	5.7864	16.2321	2.8052				
8	1.4775	0.6768	0.10472	9.5491	0.15472	6.4632	20.9700	3.2445				
9	1.5513	0.6446	0.09069	11.0266	0.14069	7.1078	26.1268	3.6758				
10	1.6289	0.6139	0.07950	12.5779	0.12950	7.7217	31.6520	4.0991				
11	1.7103	0.5847	0.07039	14.2068	0.12039	8.3064	37.4988	4.5144				
12	1.7959	0.5568	0.06283	15.9171	0.11283	8.8633	43.6241	4.9219				
13	1.8856 1.9799	0.5303 0.5051	0.05646 0.05102	17.7130 19.5986	0.10646 0.10102	9.3936 9.8986	49.9879 56.5538	5.3215 5.7133				
15	2.0789	0.5051	0.05102	21.5786	0.10102	10.3797	63.2880	6.0973				
16	2.1829	0.4581	0.04227	23.6575	0.09034	10.8378	70.1597	6.4736				
17	2.1829	0.4363	0.04227	25.8404	0.09227	11.2741	77.1405	6.8423				
18	2.4066	0.4303	0.03555	28.1324	0.08870	11.6896	84.2043	7.2034				
19	2.5270	0.3957	0.03333	30.5390	0.08275	12.0853	91.3275	7.5569				
20	2.6533	0.3769	0.03273	33.0660	0.08024	12.4622	98.4884	7.9030				
21	2.7860	0.3589	0.03024	35.7193	0.07800	12.8212	105.6673	8.2416				
22	2.9253	0.3418	0.02597	38.5052	0.07597	13.1630	112.8461	8.5730				
23	3.0715	0.3256	0.02414	41.4305	0.07414	13.4886	120.0087	8.8971				
24	3.2251	0.3101	0.02247	44.5020	0.07247	13.7986	127.1402	9.2140				
25	3.3864	0.2953	0.02095	47.7271	0.07095	14.0939	134.2275	9.5238				
26	3.5557	0.2812	0.01956	51.1135	0.06956	14.3752	141.2585	9.8266				
27	3.7335	0.2678	0.01829	54.6691	0.06829	14.6430	148.2226	10.1224				
28	3.9201	0.2551	0.01712	58.4026	0.06712	14.8981	155.1101	10.4114				
29	4.1161	0.2429	0.01605	62.3227	0.06605	15.1411	161.9126	10.6936				
30	4.3219	0.2314	0.01505	66.4388	0.06505	15.3725	168.6226	10.9691				
31	4.5380	0.2204	0.01413	70.7608	0.06413	15.5928	175.2333	11.2381				
32	4.7649	0.2099	0.01328	75.2988	0.06328	15.8027	181.7392	11.5005				
33	5.0032	0.1999	0.01249	80.0638	0.06249	16.0025	188.1351	11.7566				
34	5.2533	0.1904	0.01176	85.0670	0.06176	16.1929	194.4168	12.0063				
35	5.5160	0.1813	0.01107	90.3203	0.06107	16.3742	200.5807	12.2498				
40 45	7.0400 8.9850	0.1420 0.1113	0.00828	120.7998 159.7002	0.05828	17.1591 17.7741	229.5452	13.3775				
45 50	8.9850 11.4674	0.1113	0.00626	159.7002 209.3480	0.05626	17.7741	255.3145 277.9148	14.3644 15.2233				
55	14.6356	0.0872	0.00478	272.7126	0.05478	18.6335	297.5104	15.2253				
60	18.6792	0.0083	0.00367	353.5837	0.05283	18,9293	314.3432	16,6062				
65	23.8399	0.0333	0.00283	456.7980	0.05219	19.1611	328.6910	17.1541				
70	30.4264	0.0329	0.00219	588.5285	0.05219	19.3427	340.8409	17.6212				
75	38.8327	0.0258	0.00170	756.6537	0.05170	19.4850	351.0721	18.0176				
80	49.5614	0.0202	0.00103	971.2288	0.05103	19.5965	359.6460	18.3526				
85	63.2544	0.0158	0.00080	1245.09	0.05080	19.6838	366.8007	18.6346				
90	80.7304	0.0124	0.00063	1594.61	0.05063	19.7523	372.7488	18.8712				
95	103.0347	0.0097	0.00049	2040.69	0.05049	19.8059	377.6774	19.0689				
96	108.1864	0.0092	0.00047	2143.73	0.05047	19.8151	378.5555	19.1044				
98	119.2755	0.0084	0.00042	2365.51	0.05042	19.8323	380.2139	19.1714				
100	131.5013	0.0076	0.00038	2610.03	0.05038	19.8479	381.7492	19.2337				

Shifted Series

When a uniform series begins at a time other than at the end of period 1, it is called a shifted series. In this case use the P/A factor to compute the "present worth", and then find the present worth in year o by using the (P/F,i,n) factor.

Shifted Series

- To determine a future worth or F value, recall that the F/A factor has the F located in the same period as the last uniform-series amount.
- Renumbering the cash flow diagram to avoid errors in counting.

An engineering technology group just purchased new CAD software for \$5000 now and annual payments of \$500 per year for 6 years starting 3 years from now for annual upgrades. What is the present worth of the payments if the interest rate is 8% per year?

Solution

• First, find the value of the shifted series $P_A' = \$500(P/A, 8\%, 6)$

Solution

Since is located in year 2, now find in year o.

$$P_A = P_A'(P/F, 8\%, 2)$$

$$P_T = P_o + P_A$$

= 5000 + 500(P/A,8%,6)(P/F,8%,2)
= 5000 + 500(4.6229)(0.8573)
= \$6981.60

