Assignment 3

2.9 Let $G = \{V, \Sigma, R, S\}$, We know that $\Sigma = \{a, b, c\}.R$ is following rules:

$$S \rightarrow U|V$$

 $U \rightarrow Uc|A$

 $A \rightarrow aAb | \varepsilon$

 $V \rightarrow aV|B$

 $B \to bBc | \varepsilon$

G is ambiguity. For abc, we have

$$S \Rightarrow U \Rightarrow Uc \Rightarrow Ac \Rightarrow aAbc \Rightarrow a\varepsilon bc \Rightarrow abc$$

and

$$S \Rightarrow V \Rightarrow aV \Rightarrow aB \Rightarrow abBc \Rightarrow ab\varepsilon c \Rightarrow abc$$

We have two different path.

Problem 2.14

- 1) We find there are two rules from S, $S \to TT$ and $S \to U$. From T we can get the language $L_1 = 0^i \# 0^j, i, j \ge 0$, so from $S \to TT$ we get $L_2 = L_1 L_1$. From $S \to U$ we have $L_3 = 0^p \# 0^{2p}, p \ge 0$. So the language is $L(G) = L_2 \cup L_3$.
- 2) Let's prove L is not regular. Now we assume L is regular. Because of pumping lemma, if we let p be the pumping length given by the pumping lemma and $s=0^p\#0^{2p}\in L$, we should have that s can be split in three pieces: s=xyz. Because $|xy|\leq p$, so y must all 0, that means $y=0^k, k>0$, so the string $xy^0z=0^{p-k}\#0^{2p}$. It doesn't belong to L, so the language must be not regular.

Problem 4.3

To prove it, we construct the following TM:

M="on input $\langle A \rangle$ where $A = (Q, \Sigma, \delta, q, F)$ is a DFA,

- 1. Constract a new DFA $B = (Q, \Sigma, \delta, q, Q F)$.
- 2. Run TM T in Theorem 4.4 on B to see if $L(B) = \emptyset$
- 3. If T accept, then accept
- 4. If *T* reject, then reject."

From the constraction we know that $L(B)=\emptyset$ iff $L(B)=\Sigma^*$. So we use TM in Theorem 4.4 to find if $L(B)=\emptyset$.

Problem 5.1

To prove it, construct as follows: assume that D decides EQ_{CFG}

M="on input CFG G:

- 1. Construct CFG G_0 and $L(G_0) = \Sigma^*$.
- 2. Run D on input $\langle G, G_0 \rangle$.
- 3. If D accept, accept. Otherwise, reject

We find that D determines if $L(G) = L(G_0)$, but $L(G_0) = \Sigma^*$. So it determines if $L(G) = \Sigma^*$. So it means D decides ALL_{CFG} , but we know that ALL_{CFG} is undecidable, so EQ_{CFG} must undecidable.