

California Polytechnic University San Luis Obispo

Masters Thesis

Artificial Neural Network-Based Robotics

Justin Ng

 $\begin{array}{c} \text{supervised by} \\ \text{Dr. Andrew Danowitz} \end{array}$

September 25, 2017

Contents

\mathbf{A}	cknowledgements	iv
\mathbf{A}	bstract	\mathbf{v}
1	Introduction	1
2	Project Plan (draft) 2.1 Problem 2.2 Solution 2.3 Objectives 2.4 Tasks and Timeline	2 2 2 2 3
3	LATEX Usage 3.1 Figures and Ref 3.2 Math 3.3 Citations 3.4 Accents 3.5 Dashes 3.6 Lists 3.7 Groups 3.8 Code highlighting	4 4 5 5 5 5 6 6 6
4	Control Problem	7
5	Training Algorithm	8
6	Implementation	9
7	Results	10
8	Conclusion	11
\mathbf{R}	eferences	12
\mathbf{A}	ppendices	13

List of Figures

3.1 Pad thai			4
--------------	--	--	---

List of Tables

Acknowledgements

I would like to thank everyone for everything.

Abstract

Note: All project files can be found at https://www.github.com/okayjustin/roborodentia2017

Artificial neural networks (ANNs) are highly-capable alternatives to traditional problem solving schemes due to their ability to solve non-linear systems with a non-algorithmic approach. The applications of ANNs range from process control to pattern recognition and, with increasing importance, robotics. A robot is created with multiple sensors and actuators for environment perception, movement and object manipulation while an on-board microcontroller processes the ANNs and provides the control interface. After training, the neural networks use the various sensor inputs to make the robot accomplish a series of tasks. The system demonstrates how effective and applicable ANNs are to robotic control.

Chapter 1 Introduction

Project Plan (draft)

2.1 Problem

Create a competition robot for Roborodentia and control it using neural networks.

2.2 Solution

Design and manufacture a robot. Write firmware with a neural network implementation and train it to perform competition tasks.

2.3 Objectives

- Select robot design criteria.
- Create several solutions and prototype a few proof-of-concepts.
- Design electrical systems:
 - Power systems: Batteries, regulation, distribution.
 - Microcontroller: sufficient processing power and IO.
 - Sensors: dependent on control strategy. What information needed?
 - Actuators
- Model robot in SolidWorks with attention to manufacturing.
- Order parts and manufacture robot.
- Bring up electrical system and perform functional checks.
- Design neural network and training plan.
- Develop firmware: neural network, FSM design, communications, debug code.

- Train network and tune.
- \bullet Revise mechanical/electrical/firmware and repeat.

2.4 Tasks and Timeline

LATEX Usage

3.1 Figures and Ref

This is where I introduce stuff. See Figure 3.1.

Figure 3.1: Pad thai

3.2 Math

$$f(x) = x^2 (3.1)$$

This is an equation that we don't want to number:

$$f(x) = x^2$$

Here's an in-line equation: $f(x) = x^2$.

Here's an aligned equation: Aligns at the &.

$$1 + 2 = 3$$

$$1 = 3 - 2$$

$$f(x) = x^{2}$$

$$g(x) = \frac{1}{x}$$

$$F(x) = \int_{b}^{a} \frac{1}{3}x^{3}$$

$$\frac{1}{\sqrt{x}}$$

$$\begin{bmatrix} a & \lambda \\ c & d \end{bmatrix}$$

3.3 Citations

Random citation [1] embeddeed in text.

Random citation [2] embeddeed in text.

Random citation [1] embeddeed in text.

3.4 Accents

Première \dot{x}

3.5 Dashes

The space is 3-dimensional.

Read pages 3–4.

I saw them—there were 3 men alive

The temperature dropped to -3 degrees.

3.6 Lists

- First Level
 - Second Level
 - * Third Level
 - · Fourth Level
- 1. First level item
- 2. First level item
 - (a) Second level item
 - (b) Second level item
 - i. Third level item
 - ii. Third level item
 - A. Fourth level item
 - B. Fourth level item

3.7 Groups

will produce a paragraph that is four (this is an easy mistake to make).

3.8 Code highlighting

```
class MyClass(Yourclass):
  def __init__(self, my, yours):
  bla = '5 1 2 3 4'
  print bla
```

Chapter 4
Control Problem

Chapter 5
Training Algorithm

Chapter 6 Implementation

Results

Conclusion

References

- [1] D. H. Nguyen and B. Widrow, "Neural networks for self-learning control systems," *IEEE Control Systems Magazine*, 1990. [Online]. Available: https://web.stanford.edu/class/ee373b/NNselflearningcontrolsystems.pdf.
- [2] J. Doe, The Book without Title. Dummy Publisher, 2100.

Appendices