

Math Methods for Political Science

Lecture 12: Integral Calculus I

An introducing example

Suppose:

- A country's population growth at time t is given by f(t) = 3t.
- The population is initially 2 at time t = 0.

Questions:

- What is the country's population at time t = 10?
- How much does the country's population change between time t = 5 and time t = 10?

Introducing example cont'd

Suppose:

- A country's population growth at time t is given by f(t) = 3t.
- The population is initially 2 at time t = 0.

Questions:

- What is the country's population at time t = 10?
- Now much does the country's population change between time t=5 and time t=10?

Area under the curve

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and [a, b] be a closed interval in \mathbb{R} .

Definition 1 (Definite integral)

The **definite integral** of f over [a, b] is $\int_a^b f(x)dx$ is the area under the curve f between a and b.

Indefinite integral

Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

Can we find $F: \mathbb{R} \to \mathbb{R}$ such that F'(x) = f(x)?

Definition 2 (Indefinite integral)

The indefinite integral (or antiderivative) of f is $F: \mathbb{R} \to \mathbb{R}$ defined as $F(x) + C = \int f(x) dx$ with $C \in \mathbb{R}$.

Example 1 (Indefinite integral)

- $f(x) = x^r \text{ for } r \in \mathbb{R}$
- f(x) = 1/x
- $f(x) = e^{ax}$
- $f(x) = x^{k-1}e^{x^k}$
- f(x) = ah(x) + bg(x)

The fundamental theorem of calculus © COLUMBIA UNIVERSITY

Theorem 1 (First fundamental theorem of calculus)

Let f be continuous on [a, b] and F be defined, for all $x \in [a, b]$, by

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then F is uniformly continuous on [a, b], differentiable on (a, b)and F'(x) = f(x) for all $x \in (a, b)$.

Corollary 1

If $f: \mathbb{R} \to \mathbb{R}$ is continuous on [a, b] and $F: \mathbb{R} \to \mathbb{R}$ is an antiderivative of f on [a, b], then $\int_a^b f(t) dt = F(b) - F(a)$.

Theorem 2 (Second fundamental theorem of calculus)

If f is the derivative of F "almost everywhere" on [a, b] and f is "Riemann integrable", then $\int_{a}^{b} f(t) dt = F(b) - F(a)$.

Riemann integrability

Definition 3 (Riemann integrability)

f has Riemann integral $\int_a^b f(t) dt$ over [a, b] if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. for any $a = x_0 < x_1 < x_2 < \dots < x_n = b$ with $x_i - x_{i+1} < \delta$ and $t_0 < t_1 < \cdots < t_{n-1}$ with $t_i \in [x_i, x_{i+1}]$,

$$\left|\sum_{i=1}^{n-1} f(t_i)(x_{i+1}-x_i) - \int_a^b f(t) dt\right| < \epsilon.$$

Integration by parts

Theorem 3 (Integration by parts)

Let f and g be two differentiable functions, then

Example 2 (Integration by parts)

- $\int log(x)dx$
- $\int xe^x dx$
- $\int x^2 e^x dx$
- $\int \sin(x)e^x dx$