Cody Kesler CS 312 Section 2 Lab 2 – Convex Hull

Code:

```
#!/usr/bin/python3
from PyQt5.QtCore import QLineF, QPointF
import time
class ConvexHullSolver:
    def __init__( self, display ):
        self.points = None
        self.gui_display = display
    # Time Complex: 0(n) Space Complexity: 0(n/2)
    def findRightMostPoint(self, hull):
        rightmost = -10
        index = 0
        for i in range(len(hull)):
            if(hull[i].x() > rightmost):
                 rightmost = hull[i].x()
                 index = i
        return index
    def findLeftMostPoint(self, hull):
        leftmost = 10
        index = 0
        for i in range(len(hull)):
            if (hull[i].x() < leftmost):</pre>
                 leftmost = hull[i].x()
                 index = i
        return index
    def angleBetween(self, point1, point2):
    return ((point2.y() - point1.y()) / (point2.x() - point1.x()))
    def getUpperTangents(self, leftHull, rightHull, rightmostIndex, leftmostIndex):
        upperTangents = [0,0]
        curUpperLeftTangent = rightmostIndex
        curUpperRightTangent = leftmostIndex
        # Whol loop max O(n) times
while(True):
            # Time Complex: 0(n)
            newUpperRightTangent = self.upperRight(leftHull, rightHull,
                                            curUpperLeftTangent, curUpperRightTangent)
            newUpperLeftTangent = self.upperLeft(leftHull, rightHull,
                                            curUpperLeftTangent, curUpperRightTangent)
            if (curUpperRightTangent == newUpperRightTangent and
                 curUpperLeftTangent == newUpperLeftTangent):
                 break
            curUpperRightTangent = newUpperRightTangent
            curUpperLeftTangent = newUpperLeftTangent
        upperTangents[0] = curUpperRightTangent
        upperTangents[1] = curUpperLeftTangent
        return upperTangents
```

CS 312 Section 2

```
# Time Complex: O(c*n = n) Space Complexity: O(n)
def upperRight(self, leftHull, rightHull, rightmostIndex, leftmostIndex):
    # Time Complex: 0(c)
    curAngle = self.angleBetween(leftHull[rightmostIndex],
                      rightHull[leftmostIndex])
    while(True):
    # Time Complex: 0(c)
        nextAngle = self.angleBetween(leftHull[rightmostIndex],
                      rightHull[(leftmostIndex+i+1) % len(rightHull)])
        if(nextAngle < curAngle):</pre>
            break
        curAngle = nextAngle
    return ((leftmostIndex+i))
# Time Complex: O(c*n = n) Space Complexity: O(n)
def upperLeft(self, leftHull, rightHull, rightmostIndex, leftmostIndex):
    curAngle = self.angleBetween(leftHull[rightmostIndex],
                      rightHull[leftmostIndex])
    i = 0
    localAngle = curAngle
        # Time Complex: 0(c)
        nextAngle = self.angleBetween(leftHull[((rightmostIndex - i - 1) %
                      len(leftHull))], rightHull[leftmostIndex])
        if (nextAngle > localAngle):
            break
        localAngle = nextAngle
    return (rightmostIndex - (i)) % len(leftHull) # Time Complex: 0(kn)
# Time Complex: O(n) Space Complexity: O(5)
def getLowerTangents(self, leftHull, rightHull, rightmostIndex, leftmostIndex):
    lowerTangents = [0,0]
    curLowerLeftTangent = rightmostIndex
    curLowerRightTangent = leftmostIndex
    while(True):
        # Time Complex: O(c*n)
        newLowerRightTangent = self.lowerRight(leftHull, rightHull,
                               curLowerLeftTangent, curLowerRightTangent)
        newLowerLeftTangent = self.lowerLeft(leftHull, rightHull,
                               curLowerLeftTangent, curLowerRightTangent)
        if (curLowerRightTangent == newLowerRightTangent and
             curLowerLeftTangent == newLowerLeftTangent):
        curLowerRightTangent = newLowerRightTangent
        curLowerLeftTangent = newLowerLeftTangent
    lowerTangents[0] = curLowerRightTangent
lowerTangents[1] = curLowerLeftTangent
    return lowerTangents
```

```
def lowerRight(self, leftHull, rightHull, rightmostIndex, leftmostIndex):
    # Time Complex: 0(c)
    curAngle = self.angleBetween(leftHull[rightmostIndex],
                      rightHull[leftmostIndex])
        # Time Complex: 0(c)
        nextAngle = self.angleBetween(leftHull[rightmostIndex],
                      rightHull[((leftmostIndex -i - 1) % len(rightHull))])
        if(nextAngle > curAngle):
            break
        curAngle = nextAngle
    return ((leftmostIndex - i)) % len(rightHull) # Time Complex: 0(kn)
def lowerLeft(self, leftHull, rightHull, rightmostIndex, leftmostIndex):
    # Time Complex: 0(c)
    curAngle = self.angleBetween(leftHull[rightmostIndex],
                      rightHull[leftmostIndex])
        # Time Complex: 0(c)
        nextAngle = self.angleBetween(leftHull[((rightmostIndex + i + 1) %
                      len(leftHull))], rightHull[leftmostIndex])
        if (nextAngle < curAngle):</pre>
            break
        curAngle = nextAngle
    return ((rightmostIndex + i) % len(leftHull)) # Time Complex: 0(kn)
```

```
Time Complex: 0(5n = n) Space Complexity: 0(n+6)
 def mergeHulls(self, leftHull, rightHull):
     # Time Complex O(n)
     rightmostIndex = self.findRightMostPoint(leftHull)
     # Time Complex O(n)
     leftmostIndex = self.findLeftMostPoint(rightHull)
     # Time Complex O(n)
     uppers = self.getUpperTangents(leftHull, rightHull, rightmostIndex,
                       leftmostIndex)
     rightUpper = uppers[0]
     leftUpper = uppers[1]
     # Time Complex O(n)
     lowers = self.getLowerTangents(leftHull, rightHull, rightmostIndex,
                       leftmostIndex)
     rightLower = lowers[0]
     leftLower = lowers[1]
     newHullPoints = list()
     for i in range(len(leftHull)):
         newHullPoints.append(leftHull[i]) 0(1)
         if((i % len(leftHull)) == leftUpper):
             for j in range(rightUpper, len(rightHull)+rightUpper):
                 newHullPoints.append(rightHull[j % len(rightHull)]) 0(1)
                 if ((j % len(rightHull)) == rightLower):
                      for k in range(leftLower, len(leftHull)+leftLower):
                          if(k % len(leftHull) == 0):
                         newHullPoints.append(leftHull[k % len(leftHull)])
             break
     return newHullPoints
# Time Complex O(log(n)n) Space Complexity O(n)
 def convexHullRecurse(self, points):
     if (len(points) == 3):
         hull = [QLineF(points[i], points[(i + 1) % len(points)]) for i in
                       range(len(points))]
         assert (type(hull) == list and type(hull[0]) == QLineF)
         self.gui_display.addLines(hull, (255, 0, 0))
         returnList = [points[i] for i in range(len(points))]
         if(self.angleBetween(returnList[0],returnList[1]) <</pre>
              self.angleBetween(returnList[0], returnList[2])):
             temp = returnList[1]
             returnList[1] = returnList[2]
             returnList[2] = temp
         return returnList
     elif (len(points) == 2):
         hull = [QLineF(points[i], points[(i + 1) % len(points)]) for i in
              range(len(points)-1)]
         assert (type(hull) == list and type(hull[0]) == QLineF)
         self.gui_display.addLines(hull, (255, 0, 0))
         return [points[i] for i in range(len(points))]
```

Lab 2 - Convex Hull

```
leftHull = self.convexHullRecurse(points[:(len(points) // 2)])
    rightHull = self.convexHullRecurse(points[(len(points) // 2):])
    #Time Complex: 0(n)
    mergedHull = self.mergeHulls(leftHull, rightHull)
    return mergedHull
# Time Complex O(log(n)n) Space Complexity: O(2n)
def compute_hull( self, unsorted_points ):
    n = len(unsorted_points)
    print( 'Computing Hull for set of {} points'.format(n) )
    t1 = time.time()
    unsorted points.sort(key=lambda p: p.x())
    t2 = time.time()
    print('Time Elapsed (Sorting): {:3.3f} sec'.format(t2-t1))
    t3 = time.time()
    newHullPoints = self.convexHullRecurse(unsorted_points)
    hull = [QLineF(newHullPoints[i], newHullPoints[(i + 1) % len(newHullPoints)])
             for i in range(len(newHullPoints))]
    t4 = time.time()
    if(hull is None):
        hull = [QLineF(unsorted_points[i], unsorted_points[(i + 1) % 3])
             for i in range(3)]
        assert (type(hull) == list and type(hull[0]) == QLineF)
        assert (type(hull) == list and type(hull[0]) == QLineF)
    self.gui_display.addLines(hull, (0, 0, 255))
    print('Time Elapsed (Convex Hull): {:3.3f} sec'.format(t4-t3))
    self.gui_display.displayStatusText('Time Elapsed (Convex Hull): {:3.3f}
             sec'.format(t4-t3))
    self.gui_display.update()
```

Cody Kesler CS 312 Section 2 Lab 2 – Convex Hull

Complexity:

Time:

My algorithm divides the n into two different problems of which are size n/2. Thus a =2, b = 2 and d = 1 since combining the hulls is linear. Thus, by the master theorem $2/2^1 = 1$ so the theoretical time complexity is $O(n^*log(n))$.

Space:

The maximum space that it taken with the program is n number of dots plus the new hull of the border dots made in the merge hull function which cannot be more than n. Thus, the max space complexity is 2n.

Empirical Data:

Trials						
n	1	2	3	4	5	Avg
10	0	0	0	0	0	0
100	0.003	0.003	0.003	0.003	0.003	0.003
1000	0.025	0.027	0.024	0.024	0.027	0.0254
10000	0.204	0.206	0.201	0.214	0.207	0.2064
100,000	2.018	2.12	2.032	2.015	2.105	2.058
500,000	12.119	12.068	12.25	12.219	12.316	12.1944
1,000,000	24.321	24.925	24.458	24.601	24.337	24.5284

Cody Kesler CS 312 Section 2

Discussion:

The first table and the graph just show the data straight up. The second graph though is determined on a scale of log(n). As is apparent the graph is a linear graph on a log scale showing that it is a n*log(n) time complex.

Real vs Theoretical:

Finding the constant of proportionality:

time = k*nlog(n)

.2064 = k*10,000(log(10,000)) = 40,000

K = 0.00000516

2.058 = k*100,000(log(100,000)) = 100,000

K= 0.00002058

12.1944 = k*500,000(log(500,000)) = 500,000

K= 0.0000243888

24.5284 = k*1,000,000(log(1,000,000)) = 6,000,000

K= 0.000004088066667

Average k = 0.000013554216667 = 1.36 * 10^6

Since the constant of proportionality is so small, the difference of the theoretical and empirical estimates of time complexity is almost negligible.

Pictures:

100:

1000:

