# COMS 331: Theory of Computing, Fall 2021 Semester Notes

#### Aaron Hanrahan

## 1 Alphabets and Strings

**Def:** an alphabet is a finite set of objects that we regard as symbols

ex: 0,1, a,b

**Def:** a string is over an alphabet

ex: 1101 is a string over 0,1

**Notation:**  $\Sigma^*$  is the set of strings over  $\Sigma$ 

ex:  $\{0,1\}^*$  is the set of binary strings

the length of a string  $x \in \{0,1\}^*$  is the total number of occurrences of symbols in x

ex: |1101| = 4

**Question:** What is  $\emptyset^*$ ? **Answer:**  $\emptyset^* = \{\lambda\}$ 

Intelligent first answer:  $\emptyset^* = \emptyset$  (wrong)

 $\Sigma^* = \{a_1, a_2, \cdots, a_n | n \geqslant 0 \text{ and each } a_i \in \Sigma\}$ 

Further cautions:  $\{a,b\} = \{b,a\}$ , but  $ab \neq ba$  (unless a = b)

 $\{a, a, b\} = \{a, b\}, \text{ but } aab \neq ab$ 

**Def:** The <u>concatenation</u> of two strings  $x, y \in \Sigma^*$  is the string xy

ex: the concatenation of 1101 and 001 is 1101001

- not an invertable operation, can't ask which strings were concatenated

**Properties of Concatenation:** - Associative: x(yz) = (xy)z

- Identity:  $\lambda x = x\lambda$ 

- Additivity of length: |xy| = |x| + |y|

- Not commutative

**Notation:** for  $x \in \Sigma^*$  and  $a \in \Sigma$ 

 $\#(a,x) = \#_a(x) =$ the number of a's in x

**Def:** If x and y are strings, then x is a prefix of y ( $x \subseteq y$ ),

if there exists  $z \in \Sigma^*$  such that xz = y

**Remarks:** For all  $x \in \Sigma^*$ ,  $\lambda \sqsubseteq x$  (because you can take z = x), and

 $x \sqsubseteq x$  (because can take  $z = \lambda$ )

**Def:** x is a proper prefix of  $y \Rightarrow x \not\subseteq y$ , if  $x \subseteq y$  and  $x \neq y$ 

**Notation:** the standard enumeration of  $\{0,1\}^*$  is

 $\lambda$ , 0, 1, 00, 01, 11, 000, 001, ...

 $s_0, s_1, s_2, \cdots$ 

The natural number represented by a string  $x \in \{0,1\}^*$  is the number bnum(x)

defined by the following recursion:

 $bnum(\lambda) = 0$ 

bnum(x0) = 2bnum(x)bnum(x1) = 2bnum(x) + 1

### 2 Sets

**Set Operations:** If A and B are sets, then

 $A \cup B = \{x | x \in A \text{ or } x \in B\}$   $A \cap B = \{x | x \in A \text{ and } x \in B\}$  $A - B = \{x | x \in A \text{ and } x \notin B\}$ 

 $A \subseteq B = \text{every element of } A \text{ is an element of } B$ 

 $A \not\subseteq B = A$  is a proper subset of  $B \Rightarrow A \subseteq B$  and  $A \neq B$ 

**Def:** A language over an alphabet  $\Sigma$  is a set of  $A \subseteq \Sigma^*$ 

ex: The set

PRIMES =  $\{x \in \{0,1\}^* | x \text{ is the binary representation of a prime number}\}$ 

is a language over  $\{0,1\}$ 

**Def:** The <u>concatenation</u> of two languages  $A, B \subseteq \Sigma^*$  is the language

 $AB = \{xy | x \in A \text{ and } y \in B\}$ 

Note: If A and B are finite, then  $|AB| \leq |A| * |B|$ ,

has to be  $\leq$  because there could be repeats.

**Def:** A prefix set is a language  $A \subseteq \{0,1\}^*$  with the property that no element of A

is a prefix of another element of A.

Kraft's inequality proves that this is true.

# 3 Finite Automata and Regular Sets

**Def:** A deterministic finite automata (or DFA) is a 5-tuple

 $M = (Q, \Sigma, \delta, s, F)$  where

- $\cdot$  Q is a finite set whose elements are states
- $\cdot$   $\Sigma$  is an alphabet, called the input alphabet
- $\cdot$   $s \in Q$  is the start state
- $\cdot F \subseteq Q$  is the set of accepting states
- $\cdot$   $\delta: Q \times E \rightarrow Q$  is the transition function

The set of strings L(M) accepted by M is a language over  $\Sigma$ 

**Example:** Let  $M=(Q,\Sigma,\delta,s,F)$  where  $Q=\{0,1,2,3\},\,\Sigma=\{0,1\},\,F=\{3\}$  and  $\delta$  is given by the following table:

| $\delta(q, a)$ | 0 | 1 |
|----------------|---|---|
| 0              | 0 | 1 |
| 1              | 1 | 2 |
| 2              | 2 | 3 |
| 3              | 3 | 3 |

The DFA can also be represented as:



M accepts the language  $L(M) = \{x \in \{0,1\}^* | \#(1,x) \geqslant 3\}$ 

**Def:** The <u>extended transition function</u>  $\hat{\delta}: Q \times \Sigma^* \to Q$  intuitively defines a path for an arbitrary string x from  $q \in Q$  to  $\hat{\delta}(q, x)$ .

Formally,  $\hat{\delta}$  is defined recursively as follows:

- $\cdot \ \hat{\delta}(q,\lambda) = q$
- · For  $x \in \Sigma^*$  and  $a \in \Sigma$ ,  $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$

**Def:** Let  $M = (Q, \Sigma, \delta, s, F)$  be a DFA, and let  $x \in \Sigma^*$ ,

- 1. M accepts x if  $\hat{\delta}(s,x) \in F$
- 2. M rejects x if  $\hat{\delta}(s,x) \notin F$
- 3.  $L(M) = \{x \in \Sigma^* | M \text{ accepts } x\}$

## 4 Regular Languages

**Def:** A language  $A \subseteq \Sigma^*$  is regular if there is a DFA M such that L(M) = A.

**Example:** Prove that the language  $A = \{x \in \{0, 1\}^* | 3| bnum(x)\}$ 

(i.e. num divisible by 3) is regular.

To prove that a language is regular, construct a DFA for it, as seen below:



**Product Construction:** Let  $M = (Q_A \times Q_B, \Sigma, \delta, s, F)$  where

 $\delta: (Q_A \times Q_B) \times \Sigma \to Q_A \times Q_B$  is defined by

 $\delta((q,r),a) = (\delta_A(q,a), \delta(r,a))$  for all  $q \in Q_A, r \in Q_B$ , and  $a \in \Sigma$ .

 $s = (s_A, s_B)$  and  $F = \{(q, r) \in Q_A \times Q_B | q \in F_A \text{ or } r \in F_B\}$ 

for intersection, can use and instead of or for F.

When proving a language is regular, if you can split it up and prove each part is regular, then you can declare the combined language regular per the product construction.

## 4.1 Singleton Languages

- Given regular languages A and B,  $A \cup B$ ,  $A \cap B$  and A complements B are all regular.
- It is true that every singleton language is regular by problem 16 on homework 3.
- It is also true that any finite language is regular by problem 17 on homework 3.

**Example 1.** Prove that for all  $x \in \Sigma^*$ , the singleton language  $\{x\}$  is regular.

 $\Sigma^*$  is an infinitely long set of *finite* strings. Given any  $x \in \Sigma^*$  it is true that x is of finite length. Furthermore,  $\{x\}$  is a finite language consisting of a finite string. You can always construct a DFA for a finitely long string, and for every language that you can make a DFA for, it is regular. Therefore,  $\{x\}$  is regular.

**Example 2.** Prove that every finite language  $A \subseteq \Sigma^*$  is regular.

A finite language means that it is a finite set of a finite number of inputs (i.e. each input is of finite length). Consider the finite set  $Z = \{s_1, s_2, \dots, s_n\} \subseteq \Sigma^*$ . Split Z into singleton languages  $Z_1 = \{s_1\}, Z_2 = \{s_2\}, \dots, Z_n = \{s_n\}$ . By the example above, each singleton language  $Z_1, Z_2, \dots, Z_n$  is regular. It is known that the union of two regular languages is a regular language. Therefore, by performing a union on all  $Z_1, Z_2, \dots, Z_n$ , this shows that Z is regular. Thus, every finite language is regular.

## 5 Equivalence Relations

### 5.1 Review of Equivalence Relations

- An equivalence relation on a set X is a binary relation  $\equiv$  on X that is reflexive, symmetric, and transitive.
- If  $\equiv$  is an equivalence relation on X and  $x \in X$ , then the  $\equiv$  equivalence class of x is the set  $[x]_{\equiv} = [x] = \{y \in X | x \equiv y\}$
- If X is a set and  $\equiv$  is an equivalence relation on X, then the <u>quotient</u> of X by  $\equiv$  is the set  $X/_{\equiv} = \{[x]_{\equiv} | x \in X\}$
- a partition of a set X is a collection P of subsets B of X with properties:
  - each element of P is nonempty
  - $-\bigcup_{B\in P}B=X$
  - For all  $B_1, B_2 \in P, B_1 \neq B_2 \Rightarrow B_1 \cap B_2 = \emptyset$

### 5.2 Fundamental Theorem of Equivalence Relations

Let X be a set.

- 1. For every equivalence relation  $\equiv$  on  $X, X/_{\equiv}$  is a partition of X.
- 2. For every partition P of X, the relation  $\equiv$  on X defined by  $x \equiv y$  if and only if there exists a  $B \in P$  such that  $x, y \in B$ .
- **Def:** If  $\equiv$  is an equivalence relation on a set S, then a set  $A \subseteq S$  respects  $\equiv$  if for all  $x, y \in S$ ,  $x \equiv y \Rightarrow [x \in A \text{ iff } y \in A]$
- **Obs:** If  $\equiv$  is an equivalence relation on a set S, then  $\forall A \subseteq S$ , the following conditions are equivalent:
  - (1) A respects  $\equiv$
  - (2) There is a set  $I \subseteq S/_{\equiv}$  such that  $A = \bigcup_{C \in I} C$
- **Def:** For a DFA  $M = (Q, \Sigma, \delta, s, F)$ , define the relation  $\equiv_M$  on  $\Sigma^*$  by  $x \equiv_M y$  iff  $\hat{\delta}(s, x) = \hat{\delta}(s, y)$

**Observation 1:** For each  $q \in Q$ , let  $C_{m,q} = \{x \in \Sigma^* | \hat{\delta}(s,x) = q\}$ 

Define a state  $q \in Q$  to be <u>reachable</u> in M if  $C_{m,q} \neq \emptyset$ .

Otherwise, q is unreachable in M.

**Observation 2:** An equivalence class  $\equiv$  on a set S has <u>finite index</u> if

 $|S/\equiv <\infty$ , i.e. if it has only finitely many equivalence classes.

Otherwise,  $\equiv$  has infinite index.

**Observation 3:** For every DFA M, the equivalence relation  $\equiv_M$  has finite index.

An equivalence relation  $\equiv$  is right-invariant if, for all  $x, y, z \in \Sigma^*$ 

 $x \equiv y \Rightarrow xz \equiv yz$ .

**Observation 4:** For every DFA M,  $\equiv_M$  is right-invariant.

**Observation 5:** For every DFA M,  $L(M) = \bigcup_{q \in F} C_{m,q}$ .

**Note:** Observations 2 and 5 tell us that L(M) respects  $\equiv_M$ . Taken together,

observations 1-5 tell us that every regular language  $A \subseteq \Sigma^*$  respects

a right-invariant equivalence relation of finite index on  $\Sigma^*$ , namely the relation

 $\equiv_M$ , where M is any DFA deciding A.

**Def:** The canonical equivalence relation of a language  $A \subseteq \Sigma^*$ 

is the relation  $\equiv_A$  on  $\Sigma^*$  defined by:

 $x \equiv_A y$  iff for all  $z \in \Sigma^*$ ,  $xy \in A \Leftrightarrow yz \in A$ , i.e., if you can attach

a z to x, y that can distinguish x, y, you cannot decide the language.

**Observation 6:** For every language  $A \subseteq \Sigma^*$ ,  $\equiv_A$  is a right-invariant equivalence relation on  $\Sigma^*$ 

**Def:** If  $\equiv$  and  $\approx$  are equivalence relations on a set S, then  $\equiv$  refines  $\approx$  if,

 $\forall x, y \in S, x \equiv y \Rightarrow x \approx y.$ 

**Remarks:** - every equivalence relation defines itself

- every equivalence relation refines  $\forall x, y, x \approx y$ 

- equality refines every equivalence relation

**Observation 7:** Let  $\equiv$  and  $\approx$  be equivalence relations on S. If  $\equiv$  refines  $\approx$ ,

 $\equiv$  has finite index  $\Rightarrow \approx$  has finite index.

**Lemma 8:** Let  $A \subseteq \Sigma^*$ , and let  $\equiv$  be a right-invariant equivalence relation on  $\Sigma^*$ ,

The following conditions are equivalent:

(1) A respects  $\equiv$ 

 $(2) \equiv \text{refines} \equiv_A$ 

## 6 Proving Languages Not Regular

### 6.1 Myhill-Nerode

**Theorem 9:** For every language  $A \subseteq \Sigma^*$ , the following conditions are equivalent:

- (1) A is regular
- (2) The relation  $\equiv_A$  has finite index.
- (3) A respects some right-invariant equivalence relation of finite index on  $\Sigma^*$

The Myhill-Nerode relation for A satisfies:

- (1)  $x \equiv y \Rightarrow xa \equiv ya$  for  $x, y \in \Sigma^*$  and  $a \in \Sigma$
- (2)  $x \equiv y \Rightarrow (x \in A \Leftrightarrow y \in A)$
- $(3) \equiv \text{is of finite index.}$
- (4) Let M be a DFA with no inaccessible states.  $x \equiv_M y \Leftrightarrow \hat{\delta}(s,x) = \hat{\delta}(s,y)$

**Example:** The language  $A = \{0^n 1^n | n \in \mathbb{N}\}$  is not regular. Proof:

Let A be as given. It suffices by Myhill-Nerode to prove that  $\equiv_A$  has infinite index.

Let  $m, n \in \mathbb{N}$ . Since  $0^m 1^m \in A$  and  $0^n 1^n \notin A$ , and A respects  $\equiv_A$ ,

it must be the case that  $O^m 1^m \not\equiv_A 0^n 1^m$ . Since  $\equiv_A$  is right-invariant,

it follows that  $0^m \not\equiv 0^n$ . Thus,  $\equiv_A$  does not have finite index.

#### 6.2 Ordinal Extensions

- For each set  $A \in \Sigma^*$  and each  $j \in \mathbb{Z}^+$  not exceeding |A|, the jth element of A is thus unambiguously defined.
- For each  $A \subseteq \Sigma^*$  and  $x \in \Sigma^*$ , let  $A_x = \{y \in \Sigma^* | xy \in A\}$  be the set of all <u>A-extensions</u> of x.  $A_x$  is the set of all strings you can add to x and still be in A.
- Define the set  $A_x^{(j)}$  as follows:
  - If  $j \leq |A|$ , then  $A_x^{(j)} = \{y\}$ , where y is the jth A-extension of x.
  - If j > |A|, then  $A_x^{(j)} = \emptyset$
  - Note that  $|A_x^{(j)}| \leq 1$  in any case.
- For each  $A, B \subseteq \Sigma^*$  and  $j \in \mathbb{Z}^+$ , let  $A_B^{(j)} = \bigcup_{x \in B} A_x^{(j)}$  be the set of all jth extensions of elements of B, and let  $A^{(j)} = A_{\Sigma^*}^{(j)}$  be the set of all jth A-extensions.

**Example.** Prove that the language  $\{0^k 1^m 0^n \mid n = k + m\}$  is not regular.

 $Let A=\{0^k1^m0^n\mid n=k+m\}, \text{ and } k=m=p,\ p\in\mathbb{N}. \text{ Let } n=2p. \text{ Consider an } x\text{ s.t. } x=0^p1^p, \text{ and the first extension of } x\text{ is } xA_x^1\in A.$ 

Then consider y s.t.  $y = 0^{2p}$ , and concur that  $xy \in A$  is accepted. It is true that for every p, there is one y, and y is dependent on p. Because p is infinite, y is also infinite. Then,  $|y| = |A_x^1| = \infty$ , showing that A is not regular.

#### 6.2.1 Terminology

**Def:** A language  $A \subseteq \Sigma^*$  has bounded ordinal extensions if there exists  $m \in \mathbb{Z}^+$  such that,

for all  $j \in \mathbb{Z}^+$ ,  $|A^{(j)}| \leq m$ . Otherwise, A has <u>unbounded ordinal extensions</u>.

**Def:** A language A has infinite ordinal extensions if there exists  $i \in \mathbb{Z}^+$  such that  $|A^{(j)}| = \infty$ .

Clearly, a language with infinite ordinal extensions must have unbounded ordinal extensions.

**Example:**  $A = \{0^n 1^n | n \in \mathbb{N}\}$  is not regular. Proof:

For each  $n \in \mathbb{N}$ ,  $1^n \in A^{(1)}$ , because  $1^n$  is the first A-extension of  $0^n$ .

**Theorem:** Every regular language has bounded ordinal extensions.

To prove that A is not regular, it suffices to show that A has unbounded ordinal extensions.

 $\therefore$  For this, it suffices to show that A has infinite ordinal extensions.

**Theorem:** If A has unbounded ordinal extensions, then A is not regular.

**Lemma:** Let  $\approx$  be a right-invariant equivalence relation on  $\Sigma^*$ , and let  $A \subseteq \Sigma^*$ .

If A respects  $\approx$ , then  $\forall j \in \mathbb{Z}, |A^{(j)}| \leq |\Sigma^*/_{\approx}$ .

## 7 Computability

## 7.1 Turing Machines

**Def:** Per the Church-Turing thesis, a function is computable if and only if there is a Turing machine that computes it.

**Def:** A Turing machine TM is a 9-tuple  $M = (Q, \Sigma, \Gamma, \vdash, \Box, \delta, s, t, r)$ 

Q a finite set of states

 $\vdash$  is the left end marker

 $\square$  is the empty cell

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ 

 $\Sigma \cup \{\vdash, \Box\} \subseteq \Gamma$ , and no transition changes  $\vdash$ 

For all  $a \in \Gamma$ ,  $\delta(t, a) = (t, a, R)$  and  $\delta(r, a) = (r, a, R)$ , i.e.

whether it accepts/rejects, goes endlessly anyways.

**Example.** Give the formal description for a Turing machine that accepts the language

$$\{x \mid \text{the } \#(1, x)\text{-th symbol of } x \text{ is } 1\}$$

with 
$$\Sigma = \{0, 1\}.$$

Let 
$$\Gamma = \Sigma \cup \{\vdash, \bot, \#, 1^*, A, A^*, \emptyset\}$$

Intuition (informal description):

Read until first blank, replace with #

Go back to beginning (⊢)

(1) Go right until reach a 1

When reach a 1, change the 1 to  $1^*$ 

Go to first \_ after #, change to a 1

Go back to last 1\*

Repeat (1)

Go right until # (have covered all the original ones by now)

Go right to first 1 after #

Change to 1

Go back to start symbol or last canceled symbol

After canceling all 1's, go to last canceled and accept if one, reject if not.

#### Formal description:



Five methods for proving a language not regular.

- (1) Brute force: Find inequivalent x,y that DFA must confuse
- (2) Myhill-Nerode
- (3) Pumping Lemma
- (4) Kolmogorov Complexity
- (5) Ordinal Extensions

In principle, (1) and (2) always work with extra ad hoc cleverness.

(3), (4), (5) are systematic, and usually work.

- (5) short easy proofs.
- (4) intuitive (talks about information)

#### 7.2Two string-pairing functions

```
\langle x, y \rangle = 0^{|x|} 1xy
\langle x, y \rangle = bd(x)01y, where bd(1101) = 11110011 (bit double)
```

#### Cantor space 7.3

```
P(\{0,1\}^*) = \{\text{languages over alphabet } \{0,1\}\}
\{0,1\}^* = \{s_0, s_1, s_2, \cdots\}
A \subseteq \{0,1\}^* = \{s_0, s_1, s_2, \cdots\}
x_A \in \{0,1\}^{\infty} = 0 \ 1 \ 1 \ 0 \ 1 (bitmap of decisions made in A (no, yes, yes, no, yes, ...)
```

#### Reductions

**Def:** Let  $A, B \subseteq \{0, 1\}^*$ . A many-one reduction (a.k.a. m-reduction, or  $\leq_m$ -reduction) of A to B is a computable function  $f:\{0,1\}^* \to \{0,1\}^*$  s.t. for all  $x \in \{0,1\}^*$ ,  $x \in A \Leftrightarrow f(x) \in B$ .

- We say that A is  $\leq_m$ -reducible to B, and we write  $A \leq_m B$  if there exists  $\leq_m$ -reduction f of A to B

Reducibilities:  $\leq_T$  Turing reducibilities

 $\leq_T^p$  polynomial time Turing reducibility  $\leq_m^p$  polnomial  $\leq_m$ 

#### **Decidability** and Computability 7.5

Def: A language  $A \subseteq \Sigma^*$  is decidable if there is a TM that (halts on every input and)

decides A.

A function  $f: \{0,1\}^* \to \{0,1\}^*$  is computable if there is a TM that computes it. Def:

Def: A partial function  $f :\subseteq \{0,1\}^* \to \{0,1\}^*$  is computable if there is a TM that define it.

It might not be defined on all inputs.

Def: For each  $i \in \mathbb{N}$ , the *i*-th TM is the TM  $M_i$  s.t.  $\#(M_i) = u_i$ , then

 $M_0, M_1, M_2, \cdots$  is the standard enumeration of all TMs

**Note** that a minor variant of U, say  $\hat{U}$ , has the property that

$$\forall (i \in \mathbb{N} \land x \in \{0,1\}^*), \, \hat{U}(\langle i, x \rangle) \cong M_i(x)$$

**Notation:**  $\phi_i \subseteq \{0,1\}^* \to \{0,1\}^*$  is the partial-function computed by  $M_i$ , then

 $\phi_0, \phi_1, \phi_2, \cdots$  is the standard enumeration of all computable partial functions.

**Notation:**  $M(x) \downarrow$ , M halts on input x,  $M(x) \uparrow$ , M doesn't halt on input.

**Def:** The rapidly growing function (Note:  $\max \emptyset = 0$ )  $G : \mathbb{N} \to \mathbb{N}$ , is defined by

 $G(N) = 1 + max\{\phi_k(l) \text{ s.t. } 0 \le k \le n, \ 0 \le l \le n, \text{ and } \phi_k(l) \downarrow \}$ 

**Observation 1:** G is <u>total</u>, i.e., G(n) is defined for all n.

**Observation 2:** G is non-decreasing, i.e.,  $G(n) \leq G(n+1)$  for all n.

**Def:** The halting problem is the set  $H = \{(k, l) \in \mathbb{N} \times \mathbb{N} | M_k(l) \downarrow \}$ 

**Observation 3:** If H is undecidable, then G is computable.

**Lemma 4:** G grows faster than any computable function. That is, for every

computable function  $f: \mathbb{N} \to \mathbb{N}$ , we have G(n) > f(n) for all but

infinitely many n.

Corollary 5: G is not computable.

**Theorem 6:** H is undecidable.

**Lemma 4 Proof:** Let  $f: \mathbb{N} \to \mathbb{N}$  be computable. Then, there is an index  $i \in \mathbb{N}$  s.t.

 $\phi_i = f$ . Then, for all  $n \ge i$ , G(n) is defined as previously,

 $n \geqslant i \Rightarrow \phi_i(n)$  is in the G(n) table.

 $G(n) \geqslant 1 + \phi_i(n)$   $> \phi_i(n)$   $= f(n) \square$ 

Note: Once you know that the halting problem H is undecidable, you usually

prove that other languages A are undecidable by proving that  $H \leq_m A$ .

**Def:** A language  $A \subseteq \{0,1\}$  is computable enumerable (CE) if

there is a TM M s.t. L(M) = A where L(M) is the set of all strings accepted

by M (M is not required to halt on strings not in A)

**Def:** A language  $A \subseteq \{0,1\}^*$  is co-computably enumerable (co-CE) if  $\{0,1\}^* - A$  is CE

(i.e. the complement of A is CE)

The classes DEC (decidable), CE, and co-CE are defined in the now-obvious ways:

 $DEC \subseteq CE$ 

 $H \in CE$  - DEC (H is in CE, not decidable)

co-DEC = DEC

 $DEC \subseteq co-CE$ 

 $\mathcal{C} \subseteq \mathcal{D} = \text{co-}\mathcal{C} \subseteq \text{co-}\mathcal{D}$ , where  $\mathcal{C}, \mathcal{D}$  are classes

 $CE \cap co-CE = DEC$ 

**Fact:** For every language  $A \subseteq \{0,1\}^*$ , the following conditions are equivalent:

(1) A is CE

(2) There is a DEC language  $B \subseteq \{0,1\}^*$  s.t. for all  $x \in \{0,1\}^*$ ,

 $x \in A \Leftrightarrow (\exists w \in \{0,1\}^*)\langle x,w \rangle \in B$ 

(3) There is a CE language  $B \subseteq \{0,1\}^*$  s.t. for all  $x \in \{0,1\}^*$ ,

 $x \in A \Leftrightarrow (\exists w \in \{0,1\}^*)\langle x,w\rangle \in B$ 

Fact: CE is close (downward) under  $\leq_m$ , meaning that  $A \leq_m B \subseteq CE \Rightarrow A \in CE$ .

DEC, and co-CE are also closed in this manner.

**Def:** Languages  $A, B \in \{0, 1\}^*$  are  $\leq_m$ -equivalent, and we write  $A \equiv_m B$ , if

 $A \leqslant_m B \text{ and } B \leqslant_m A.$ 

Equivalence classes of  $\equiv_m$  are called  $\equiv_m$ -degrees.

**Def:** Let  $A \subseteq \{0,1\}^*$  be a language, and let  $\mathcal{C}$  be a class of languages.

(1) A is  $\leq_m$ -hard for C if, for ever  $B \in C$ , C.

(at least as hard as anything in C w/ respect to this reducibility)

(2) A is  $\leq_m$ -complete for C if  $A \in C$  and A is  $\leq_m$ -hard for C.

Corollary: Recall that the halting problem  $H = \{(k, l) \in N \times N | M_k(l) \downarrow \}$  is CE.

H is not co-CE.

**Theorem:**  $H ext{ is } \leq_m ext{-complete for } \mathcal{C}.$ 

**Def:** An input/output property of TMs is a set  $I \in \mathbb{N}$  s.t., for all

 $i, j \in \mathbb{N}, \, \phi_i = \phi_j \Rightarrow [i \in I \Leftrightarrow j \in I]$ 

An I/O property I of TMs is trivial if  $I = \emptyset$  or  $I = \mathbb{N}$ . Otherwise, I is non-trivial.

**Theorem:** (Rice's Theorem) states that every non-trivial I/O property of TMs is  $\leq_m$ -hard

for CE or  $\leq_m$ -hard for co-CE hence undecidable in any case.

**Example 1.** Let  $f : \mathbb{N} \longrightarrow \mathbb{N}$  be computable. Prove: If f(n) < f(n+1) for all  $n \in \mathbb{N}$ , then  $\{f(n) \mid n \in \mathbb{N}\}$  is decidable.

```
Need to show that f(n) is decidable when f(n) < f(n+1). TM: on input x
(1) Enumerate n (implies that n=0,1,2,\cdots)
Compute f(n)
if f(n) < x then
repeat (1)
else if f(n) == x then
accept
else if f(n) > x then
reject
end if
```

Thus constructing a decider for it and accepting when x = f(n).

Recall that a real number  $x \in \mathbb{R}$  is *computable* if there is a computable function  $f : \mathbb{N} \longrightarrow \mathbb{Q}$  such that, for all  $r \in \mathbb{N}$ ,

$$|f(r) - x| \le 2^{-r}.$$

**Example 2.** Let  $x, y \in \mathbb{R}$ . Prove: If x and y are computable, then x+y is computable.

With x being computable, there is a computable function  $|f(r) - x| \le 2^{-r}$ . The same applies for y,  $|g(r) - y| \le 2^{-r}$ . To show that x + y is also computable, define h(r) = f(r) + g(r) and show that  $|h(r) - (x + y)| \le 2^{-r}$  holds. For this problem, consider r + 1, h(r) = f(r + 1) + g(r + 1).  $|f(r + 1) + g(r + 1) - (x + y)| \le 2 \cdot 2^{-(r+1)}$   $\le 2^1 \cdot 2^{-r-1}$   $\le 2^{-r}$ 

Considering that x, y and their respective functions are computable, we needed to show that for x + y and respectively h(r) is computable. Because h(r) holds as shown above, x + y is computable.

## 8 Algorithmic Information Theory

#### 8.1 Kolmogorov Complexity

**Def:** Let M be a TM and  $x \in \{0,1\}^*$ . The (plain) Kolmogorov Complexity of x with

respect to M is  $C_m(x) = \min\{|\pi| \text{ s.t. } \pi \in \{0,1\}^* \text{ and } M(\pi) = x\}$  where  $\min\emptyset = \infty$ .

**Intuition:**  $\pi$  is a description of a program for x in the "language of M".  $C_m(x)$  is the information

content of x with respect to the algorithm M.

**Def:** A TM U is optimal if, for every TM M, there is a constant  $c_m \in \mathbb{N}$  s.t.  $\forall x \in \{0,1\}^*$ ,

 $C_U(x) \leqslant C_m(x) + c_m$ .

 $c_m$  is (in practice) never more than a few thousand bits (a trivial amount).

**Theorem 1:** (optimality theorem) Every universal TM is optimal.

**Theorem 2:** For every TM M, there is an <u>optimality constant</u>  $c_m \in \mathbb{N}$  s.t. for all  $x \in \{0,1\}^*$ ,  $C(x) \leq C_m(x) + c_m$ 

**Theorem 3:** There is a constant  $a \in \mathbb{N}$  s.t.  $\forall x \in \{0,1\}^*, C(x) \leq |x| + a$ .

Corollary 4: For all  $x \in \{0,1\}^*$ ,  $C(x) < \infty$ 

**Theorem 5:** Let  $n, r \in \mathbb{N}$ . If we choose  $x \in \{0, 1\}^n$  uniformly at random, then the  $\operatorname{Prob}[C(x) \geqslant n - r] > 1 - 2^{-r}$ 

Corollary 6: For every  $n \in \mathbb{N}$ ,  $\exists x \in \{0,1\}^n$  s.t.  $C(x) \ge n$ .

**Intuition:** We call a string  $x \in \{0,1\}^*$  random if  $C(x) \approx |x|$ . Sometimes we impose a precise, yet arbitrary threshold and call x random if  $C(x) \geqslant |x|$ . In this latter sense, correlation 6 tells us that there are random strings of every length. Note that this notion identifies randomness with incompressibility.

**Theorem 7:** (conservation of information) For every computable partial function  $f:\subseteq \{0,1\}^* \to \{0,1\}^*$ , there is a constant  $c_f \in \mathbb{N}$  s.t. for all x in the domain of f,  $C(f(x)) \leq C(x) + c_f$ .

The intuition is that whatever you are doing when you compute, you are not creating new information. The amount of information in the output is never more than the input.

**Notation:** Recall the standard enumeration  $s_n$ , and recall  $|s_n| = \lfloor \log_2(n+1) \rfloor$ . The Kolmogorov complexity of a natural number  $n \in \mathbb{N}$  is  $C(n) = C(s_n)$ .

**Observation 8:** There is a constant  $a \in \mathbb{N}$  s.t.  $\forall n \in \mathbb{N}, C(n) \leq \log(n+1) + a$ .

**Corollary 9:** For every computable partial function  $f :\subseteq \mathbb{N} \to \{0,1\}^*$ , there is a constant  $b_f \in \mathbb{N}$  s.t. for every n in the domain of f,  $C(f(n)) \leq \log(n+1) + b_f$ .

**Observation 10:**  $\lim_{n\to\infty} C(n) = \infty$ . That is, for every  $m \in \mathbb{N}$ , the condition C(x) > m holds for all but finitely many  $x \in \{0, 1\}^*$ .

**Theorem 11:** The Kolmogorov complexity function C is not computable. In fact, if  $f:\subseteq \{0,1\}^* \to \mathbb{N}$  is any computable partial function that is a lower bound for C on its domain (i.e. f(x) < C(x) for all x in domain f), then f is bounded (i.e. there is a constant  $m \in \mathbb{N}$  s.t.  $f(x) \leq m$  holds for all x in the domain of f).

C(x) =plain Kolmogorov complexity of x

K(x) = Kolmogorov complexity of x

**Fact:** A sequence  $s \in \{0,1\}^{\infty}$  is <u>random</u> if there is a constant  $c \in \mathbb{N}$  such that for all  $n \in \mathbb{N}$ ,  $K(s[0 \cdots n-1]) \geqslant n-c$ .

**Example.** Prove: For every lossless data compression scheme (f, g), there is a constant  $c_{(f,g)} \in \mathbb{N}$  such that, for all  $x \in \{0,1\}^*$ ,

$$C(x) \leq |f(x)| + c_{(f,q)}$$

Given a TM M and that (f,g) are both computable, M(f(x)) = g(f(x)). Theorem 2 is defined as  $C(x) \leq C_m(x) + c_m$ . Thus,  $C(x) \leq C_m(x) + c_{(f,g)}$ , and then  $C(x) \leq |f(x)| + c_{(f,g)}$ . This proves that there is a constant  $c_{(f,g)} \in \mathbb{N}$  such that the original proposition is true.

## 8.2 Number Theory

**Notation:**  $p_0, p_1, p_2, \cdots$  is the enumeration of all prime numbers in order. Thus,  $p_0 = 2, p_1 = 3, p_2 = 5,$  etc..

· For  $n \in \mathbb{Z}^+$ ,  $\pi(n) = |\{i|p_i \leq n\}|$  is the number of prime numbers  $\leq n$ . We thus have the values...

which just keeps track of the number of primes.

· Gauss conjectured  $\lim_{n\to\infty} \frac{\pi(n)}{\frac{n}{\ln(n)}} = 1$ 

**Lemma 14:** There is a constant  $c \in \mathbb{N}$  s.t., for all n > 1,  $C(n) \le \pi(n)[3 + 2\log\log(n)] + c$ .

**Obs. 15:** There exists infinitely many n s.t.  $C(n) \ge \log(n) - 1$ .

**Theorem 16:** There exists infinitely many n s.t.  $\pi(n) > \frac{\log(N)}{3 \log \log(n)}$ .

Corollary 17: There are infinitely many prime numbers.

## 9 Nondeterministic Finite Automata

**Example:** For each  $k \in \mathbb{Z}^+$ , let  $A_k = \{x \in \{0,1\}^* | \text{the } k\text{-th to last bit is } 1\}$ .

NFA:



Def: A nondeterministic finite automata (NFA) is a 5-tuple

 $N = (\overline{Q, \Sigma, \Delta, S, F})$  where

 $\cdot Q, \Sigma, F$  are the same as in DFA

 $\cdot$   $S \subseteq Q$  is the set of start states

 $\cdot \Delta: Q \times E \to P(Q)$  is the transition function

An NFA  $N = (Q, \Sigma, \Delta, S, F)$  may start in any state in S. Like a DFA, Intuition:

> it reads an input string  $x \in \Sigma^*$  one symbol at a time. If it is in state q at the time t and reads  $a \in \Sigma$ , then at time t+1 it may be in any state  $q' \in \Delta(q, a)$ .

"The magic:" If there is some way for N to accept, (proceeding as above) then it does so, and we say that N accepts x, otherwise N rejects x.

Example: Design an NFA that accepts the language

 $A = \{x \in \{0, 1\}^* \text{ s.t. } |x| \text{ is divisible by 3 or 5}\}.$ 



#### Formal Semantics of NFAs:

- Let  $N = (Q, \Sigma, \Delta, S, F)$  be an NFA. We define the <u>extended transition function</u>:  $\hat{\Delta}: P(Q) \times \Sigma^* \to P(Q)$  as follows.
- We want  $\hat{\Delta}(A, x)$  to be the set of all states that are reachable from A by processing x.
- The definition of  $\hat{\Delta}(A, x)$  is recursive.

$$\hat{\Delta}(A,\lambda) = A$$

$$\hat{\Delta}(A, xa) = \bigcup_{q \in \hat{\Delta}(A, x)} \Delta(q, a)$$

**Def:** An NFA N accepts a string  $x \in \Sigma^*$  if  $\hat{\Delta}(s,x) \cap F = \emptyset$ , otherwise N rejects x.

Fact: For every DFA M, there is an NFA N s.t. L(M) = L(N)

**Theorem:** For every NFA N, there is a DFA M s.t. L(M) = L(N).

## 10 Grammar

**Def:** A sequence  $S \in \{0,1\}^{\infty}$  is <u>normal</u> if and only if no finite-state gambler can make

unbounded money placing fair bets on it.

 $\therefore$  Normality is finite-state randomness.

**Def:** A context-free-grammar is a 4-tuple

 $G = (N, \Sigma, P, S)$  where

 $\cdot N$  is an alphabet of <u>non-terminal</u> symbols

 $\cdot \Sigma$  is an alphabet of <u>terminal</u> symbols

 $\cdot\ N\cap \Sigma=\emptyset$ 

 $\cdot$   $S \in \mathbb{N}$  is the start symbol

· P is a finite set of productions, each of which is of the form  $A \to \alpha$ , where

 $A \in N \text{ and } \alpha \in (N \cup \Sigma) *$ 

**Semantics:** Let  $G = (N, \Sigma, P, S)$  be a CFG. For  $\alpha, \beta \in (N \cup \Sigma)^*$ , we say that  $\beta$  is

<u>derivable</u> from  $\alpha$  in one step, and we write  $\alpha \frac{\bigcirc}{G} \beta$ . If there exists a production  $A \to \gamma$  in P and strings  $\alpha_1, \alpha_2 \in (N \cup \Sigma)^*$  such that

 $\alpha = \alpha_1 A \alpha_2$  and  $\beta = \alpha_1 \gamma \alpha_2$ .

For each  $n \in \mathbb{N}$ , define the relation  $\frac{n}{G}$  on  $(N \cup \Sigma)^*$ 

 $\cdot \alpha \frac{0}{G} \beta \Leftrightarrow \alpha = \beta$ 

 $\quad \cdot \ \alpha \frac{\widecheck{n}+1}{G}\beta \Leftrightarrow \exists \gamma \in (N \cup \Sigma)^* \text{ s.t. } \alpha \frac{n}{G}\gamma \text{ and } \gamma \frac{\textcircled{\mathbb{D}}}{G}\beta$ 

**Def:** If  $\alpha, \beta \in (N \cup \Sigma)^*$ , then  $\beta$  is <u>derivable</u> from  $\alpha$ , and we write

 $\alpha \frac{*}{G} \beta$  if there exists  $n \in \mathbb{N}$  s.t.  $\alpha \frac{n}{G} \beta$ .

**Def:** The <u>language</u> generated by G is  $L(G) = \{x \in \Sigma^* | S \frac{*}{G} x\}$ 

**Def:** A <u>context-free-language</u> is a language  $A \subseteq \Sigma^*$  for which there exists

a CFG G s.t. L(G) = A.

**Terminology:** Let  $G = (N, \Sigma, P, S)$  be a CFG.

· a <u>sequential form</u> of G is a string  $\alpha \in (N \cup \Sigma)^*$  s.t.  $S = \frac{*}{G} \alpha$ 

· a <u>sentence</u> of G is a terminal string  $x \in \Sigma^*$  s.t.  $S\frac{*}{G}x$ 

**Def:** A right-linear grammar is a CFG all of whose productions are of the form  $A \to xB$  or  $A \to x$  where  $A, B \in N$  and  $x \in \Sigma^*$ .

**Def:** A <u>strongly right-linear grammar</u> is a right-linear grammar, all of whose productions are of the form  $A \to aB$  or  $A \to \lambda$ , where  $A, B \in N$  and  $a \in \Sigma$ .