Final Year Projects

(also Year 3 MEng projects)

Presentation: 27th September 2016

Agenda

- Assignment of projects to bands
- Project specification
- Log books
- Preliminary Report
 - Appendices: required
 - Structure: suggested
- Common mistakes in English grammar
- Common mistakes with Graphs
- Literature review and referencing
- Finally!

Group	Research Themes	Staff Members
BAND A	SIGNAL & IMAGE PROCESSING, AVIONICS	Simon Maskell * Jason Ralph Louise Dennis Richard Sloan Roberta Piroddi Jeyan Jeyarajan
BAND B	DIGITAL & EMBEDDED SYSTEMS	Ali Al Ataby Saqib Khursheed John Marsland * Waleed Al Nuaimy Jeremy Smith
BAND C	MICROELECTRONICS	Steve Hall * Ivona Mitrovic Ian Sandall Munira Raja Kai Hoettges
BAND D	MONITORING, COMPLEX SYSTEMS, POWER & CONTROL	Lin Jiang * Yihua Hu Jim Humphries Roberto Ferrero Joe Spencer Joseph Yan

Group	Research Themes	Staff Members
BAND E	BIO/NANOENGINEERING AND RADIO FREQUENCY DEVICES	Paul Bryant Steve Taylor Harm van Zalinge Jiafeng Zhou * Simon Maher
BAND F	TECHNOLOGICAL PLASMAS	Mark Bowden James Bradley * Xin Tu James Walsh Kirsty McKay
BAND G	WIRELESS ENGINEERING, COMMUNICATIONS AND NETWORKING	Yi Huang * Alan Marshall Judy Zhu Yaochun Shen Miguel Lopez-Benitez

Project Specification

- Project specification should be completed as soon as possible.
- Specification includes sections:
 - Project Description and Methodology
 - Project Tasks and Milestones
 - Project Deliverables
- Must be completed with the agreement and signature of your project supervisor.
- Scan and upload to VITAL (either ELEC340 or ELEC440).

Log Books

- Log books are <u>compulsory</u> and will be marked at the Bench Inspection stage.
- You can select either a physical log book or a virtual log book – consult your supervisor who may have a preference.
- Virtual log books must be completed on VITAL so that your project supervisor can view and comment upon them.

Preliminary Report

- Appendices: required
 - 1. Scan of completed specification report form.
 - 2. Gantt chart (using MS Excel or MS Project).
 - 3. Scan of completed risk assessment form.
 - 4. Scan of completed ethical approval questionnaire.

Preliminary Report

- Structure: suggested
 - Declaration of academic integrity
 - Abstract (short summary of report not an introduction)
 - 1. Introduction (of the report)
 - 2. Project description (introduce the project)
 - 3. Methodology (what are you going to do?)
 - 4. Project plan (refer to GANTT chart in appendix)
 - 5. Project rationale (why are you doing this?)
 - 6. Literature review
 - 7. Results (if any, could be designs)
 - 8. Conclusion (conclude the report)
 - Reference List

Preliminary Report

- The deadline
 - midnight on Friday 14th Oct.
 - Paperless submission only: a soft copy uploaded to VITAL.
- Marking
 - By supervisor
 - Risk assessment incomplete: pass/fail
 - Ethical approval incomplete: pass/fail
 - Poor use of English including grammar and/or spelling: pass/fail
 - By assessor
 - numerical mark
 - Project specification not suitable for a BEng / MEng degree project: pass/fail

Resubmission of Preliminary Report

- Resubmission
 - By Friday 18th November if either
 (a) it fails on one of the 4 pass/fail criteria given above or
 - (b) the mark is less than 40% i.e. a fail.
 - The mark for a resubmission will be capped at 40% or the original mark if referred for pass/fail criteria above (whichever is greater).
 - Failure to resubmit will result in a mark of 0% for this component of the project

Resubmission of poor use of English

- Additional English Language Support
 - 4 Classes on Wednesday 2 p.m. to 3.30 p.m.
 - Starts October 26th
 - November 2nd
 - November 9th
 - November 16th
 - Starts week 5, ends week 8
 - Failure to resubmit will result in a mark of 0% for the preliminary report

Use of English: common mistakes

- Spelling
 - including autocorrect giving the wrong word
- Singular / plural
- Definite and indefinite article: 'the' or 'a'.
 - '<u>The</u> project was previously undertaken by a Mechanical Engineering student.' <u>Definite</u> article, '<u>the</u>'. Only one.
 - <u>'A</u> project must be completed by all final year engineering students.' <u>Indefinite</u> article, 'a'. One of many.
- Verb endings
 - 'The project <u>requires</u> an allocated lab bench position.'
 - 'All projects <u>require</u> a completed risk assessment form.'

Use of English: more advanced

- In academic report writing:
 - Avoid first person (both singular and plural)
 - try not to use 'I', 'We', 'my', 'our', 'mine'.....
 - 'I will measure the voltage gain of the op-amp.' Avoid
 - 'The voltage gain of the op-amp will be measured.' Better
 - Use passive voice
 - Active voice describes a sentence where the subject performs the action stated by the verb. In the passive voice, the subject is acted upon by the verb.
 - 'An oscilloscope displays the modulated signal.' (Active)
 - 'The modulated signal is displayed by an oscilloscope.' (Passive)

Graphs – common mistakes

Axes scale values – make font size big enough to read

Label both axes

Label all curves (if more than one)

Title: Excess noise factor versus avalanche multiplication from McIntyre's theory

What is k?

Excess noise factor versus multiplication from McIntyre's theory

k is the ratio of impact ionization co-efficients for holes & electrons

Not your work? include reference

Excess noise factor versus multiplication from McIntyre's theory

k is the ratio of impact ionization co-efficients for holes & electrons

Reference: R. J. McIntyre, IEEE Transactions on Electron Devices, vol. ED-13, p.164-168, Jan. 1966

Use appropriate units

IV characteristic of a $20k\Omega$ resistor

IV characteristic of a $20k\Omega$ resistor

Literature Review

- All projects should include a literature review although some projects e.g. related to academic research, may have many more referenced academic papers than others.
- Use the library web pages to access a database to search.
- Good databases for Electrical and Electronic Engineering are 'Web of Science' and 'Compendex'.
- Never pay to download. Using your University account, you should be able to download for free.
- Live demonstration.....

Reference list (using IEEE standard)

Reference List (include section headings)

Books

[1] R. Tressell, "The Ragged Trousered Philanthropists". London, UK: Penguin Books, 2004, ISBN 9780141187693

Periodicals and academic journals articles

J. S. Marsland, "On the effect of ionization dead spaces on avalanche multiplication and noise for uniform electric fields", *J. Appl. Phys.* vol. 67, no.4, pp. 1929 – 1933, Feb. 1990, DOI: 10.1063/1.345596

Conference articles (if any)

[3] J. S. Marsland, "Resonance effects on gain and noise in avalanche photodiodes", in 2nd Int. Conf. on Optical and Optoelectronic Properties of Materials and Applications, London, England, 2007, pp. 514 – 518, DOI: 10.1007/s10854-008-9714-1

Reference list (using IEEE standard)

Reference List (include section headings)

Patents, Standards, Theses, Unpublished (if any)

- [4] J. Bardeen, W. Shockley, W. Brattain, "Three-electrode circuit element utilizing semiconductive materials", US Patent 2524033 A, October 3, 1950.
- [5] J. S. Marsland, "Experimental and theoretical ionization coefficients in semiconductors", PhD dissertation, Dept. Electronic & Elec. Eng., Univ. of Sheffield, Sheffield, UK, 1988.

Online material

- The University of Liverpool. (2015/16) CoPA appendix L: Academic Integrity Policy [online]. Available: https://www.liv.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf (accessed 26th September 2016)
- [7] D. Graffox. (2009 Sept.) *IEEE Citation Reference* [online]. Available: http://www.ieee.org/documents/ieeecitationref.pdf (accessed 26th September 2016)

Finally!

- ELEC340 and ELEC440 are 30 credit modules
- They count for 25% of the marks for your year of study
- 30 credits = 300 hours = 15 hours per week for 20 weeks
- Timetabled hours from 11 to 5 on a Tuesday: less than the minimum required
- 4th floor lab is available throughout the week, not just a Tuesday
- Enjoy your project