Fitting_2

Lisa Rosenthal

4/7/2020

Simple SIR model

Let's say there are 3 types of plants: those that are inoculated/challenged (C), susceptible (S), and infected (I). We can observe the states of individuals i=1...n at times $t=1...T_f$. The total number of individuals in each state at time t are C_t , S_t , and I_t . Challenged individuals can become infected either through inoculum-plant transmission at a rate α or plant-plant transmission at a rate βI . Since we assume that inoculum can only infect individuals a short distance away (i.e. the "challenged" individuals), susceptible individuals can only be infected through plant-plant transmission.

We need to model the transitions $C \to I$ and $S \to I$. For now, I'm going to model the population and in the next model, I'll track transitions in individuals. The approximated probability of either a challenged or susceptible individual i becoming infected at time t conditional upon I_{t-1} , the infectious population from the previous time step, are

$$P(i \in I_t | i \in C_{t-1}, I_{t-1}) = 1 - \exp(-(\alpha + \beta I_{t-1}))$$
(1)

$$P(i \in I_t | i \in S_{t-1}, I_{t-1}) = 1 - \exp(-\beta I_{t-1}).$$
(2)