หน่วยที่ 2 อัตราส่วนตรีโกณมิติ

ก่อนที่จะได้ศึกษาเรื่องอัตราส่วนตรีโกณมิติ ควรจะได้ทราบ ความสัมพันธ์ระหว่าง ด้านทั้งสามของรูปสามเหลี่ยมมุมฉาก ดังนี้

กำหนดให้

ແຄະ

จากรูป ABC เป็นรูปสามเหลี่ยมมุมฉาก มุม C เป็นมุมฉาก มุม A และ มุม B เป็นมุมแหลม

เป็นความยาวด้าน BC ซึ่งเป็นด้าน

ตรงข้ามมุม **A**

เป็นความยาวด้าน AC ซึ่งเป็นด้าน ตรงข้ามมุม B

เป็นความยาวด้าน AB ซึ่งเป็นด้าน ตรงข้ามมุม C หรือตรงข้ามมุมฉาก

ความสัมพันธ์ระหว่างความยาวด้านทั้ง 3 ของรูปสามเหลี่ยมมุมฉาก เป็นไปตามทฤษฎีพีทาโกรัส (Pythagorean theorem) ดังนี้

$$c2 = a2 + b2$$

$$a2 = c2 - b2$$

$$b2 = c2 - a2$$

จากทฤษฎีทาโกรัส หากเราทราบความยาว ของด้านของรูปสามเหลี่ยมมุมฉากสองด้าน จะ สามารถหาความยาวด้านที่ 3 ได้

ตัวอย่างที่ 🚺 จากรูปสามเหลี่ยมมุมฉาก ABC จงหาความยาวด้าน AB

วิธีทำ

จากทฤษฎีพีทาโกรัส

ดังนั้น ความยาวด้าน AB เท่ากับ 6.40 หน่วย

อัตราส่วนเพลิ่มมนุมฉาก

อัตราส่วนตรีโกณมิติ เป็นอัตราส่วนระหว่างความยาวของด้านของรูปสามเหลี่ยม มุมฉาก ซึ่งมี 6 ชนิด ได้แก่ sine , cosine , tangent , cosecant , secant , และ cotangent

พิจารณาที่มุม A

ด้าน BC เป็นด้านตรงข้าม มุม A

ด้าน AC เป็นด้านประชิด มุม A

พิจารณาที่มุม B

ແລະ

ด้าน AC เป็นด้านตรงข้าม มุม B

ด้าน BC เป็นด้านประชิด มุม B

ด้าน AB ด้านตรงข้ามมุมฉากหรือด้าน

ตรงข้ามมุม C

เขียนอัตราส่วนตรีโกณมิติจากรูปสามเหลี่ยมมุมฉาก ดังนี้

sine A	เขียนแทนด้วย sin A	=	ด้านตรงข้ามมุม A ด้านตรงข้ามมุมฉาก
cosine A	เขียนแทนด้วย cos A	=	ด้านประชิดมุม A ด้านตรงข้ามมุมฉาก
tangent A	เขียนแทนด้วย tan A	=	ด้านตรงข้ามมุม A ด้านประชิดมุม A
cosecant A	เขียนแทนด้วย cosec A หรือ csc A	=	ด้านตรงข้ามมุมฉาก ด้านตรงข้ามมุม A
secant A	เขียนแทนด้วย sec A	=	ด้านตรงข้ามมุมฉาก ด้านประชิดมุม A
cotangent A	เขียนแทนด้วย cot A	=	ด้านประชิดมุม A ด้านตรงข้ามมุม A

ตัวอย่างที่ 2

กำหนด ABC เป็นรูปสามเหลี่ยมมุมฉาก มุม C เป็นมุมฉาก ด้าน AC ยาว 8 หน่วย ด้าน BC ยาว 6 หน่วย จงหา อัตราส่วนตรีโกณมิติทั้งหมดของมุม A

วิธีทำ

ู่ขุ่มุม A

$$\sin A = \frac{6}{10} = 0.6$$

$$\cos A = \frac{8}{10} = 0.8$$

$$\tan A = \frac{6}{8} = 0.75$$

$$\csc A = \frac{10}{6} = 1.67$$

$$\sec A = \frac{10}{8} = 1.25$$

$$\cot A = \frac{8}{6} = 1.33$$

กำหนด PQR เป็นรูปสามเหลี่ยมมุมฉาก ดังรูป

โดยที่ $\sin P = \frac{2}{3}$ และด้าน RQ ยาว 8 เซนติเมตร

8 ซม.

จงหา cos P, tan P และ sin R

วิธีทำ

จากรูปสามเหลี่ยมมุมฉาก PQR

$$\sin P = \frac{RQ}{PR}$$

$$\frac{2}{3} = \frac{8}{PR}$$

$$PR = \frac{3 \times 8}{2}$$

จากทฤษฎีของพีทาโกรัส

$$PR^{2} = PQ^{2} + RQ^{2}$$

$$PQ^{2} = PR^{2} - RQ^{2}$$

$$PQ = \sqrt{(12)^{2} - (8)^{2}}$$

$$= \sqrt{80} \approx 8.94$$

$$\cos P = \frac{PQ}{PR} = \frac{8.94}{12} = 0.745$$

$$\tan P = \frac{RQ}{PQ} = \frac{8}{8.94} \approx 0.8949$$

$$\sin R = \frac{PQ}{PR} = \frac{8.94}{12} = 0.745$$

อัตราส่วนตรีโกณมิติทั้ง 6 อัตราส่วนมีความสัมพันธ์ที่เป็นส่วนกลับกันดังนี้ พิจารณา รูปสามเหลี่ยมมุมฉาก ต่อไปนี้

คลามสัมพันธ์ตริโกณมิติที่เป็นส่วนกลับกัน

เนื่องจาก
$$\sin A = \frac{a}{c}$$
 และ $\csc A = \frac{c}{c}$

$$\sin A \times \csc A = \frac{a}{c} \times \frac{c}{a} = 1$$

นั่นคือ

$$\sin A \times \csc A = 1$$

$$\sin A = \frac{1}{\csc A}$$

$$\csc A = \frac{1}{\sin A}$$

$$\cos A = \frac{b}{c}$$
 และ $\sec A = \frac{c}{b}$
 $\cos A \times \sec A = \frac{b}{c} \times \frac{c}{b} = 1$

นั่นคือ

$$\cos A \times \sec A = 1$$

$$\cos A = \frac{1}{\sec A}$$

$$\sec A = \frac{1}{\cos A}$$

tan A =
$$\frac{a}{b}$$
 และ cot A = $\frac{b}{a}$ tan A × cot A = $\frac{a}{b} \times \frac{b}{a}$ =

นั่นคือ

$$\tan A \times \cot A = 1$$

$$\tan A = \frac{1}{\cot A}$$

$$\cot A = \frac{1}{\tan A}$$

c b a a 2 + b 2 = c 2

$$\frac{\sin A}{\cos A} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{a}{b} = \tan A$$

$$\frac{\cos A}{\sin A} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{b}{a} = \cot A$$

นั่นคือ

$$tan A = \frac{sin A}{cos A}$$

$$\cot A = \frac{\cos A}{\sin A}$$

ตัวอย่างที่ 4 กำหนดให้ ABC เป็นรูปสามเหลี่ยมมุมฉาก โดยมีมุม B เป็นมุมฉาก ถ้า tan A = $\frac{5}{12}$ จงหาค่าของ

1)
$$\frac{\sec A - 1}{\tan A}$$

2) $sec^2A - tan^2A$

วิธีทำ

1) จาก tan A = $\frac{5}{12}$ สามารถเขียนรูปสามเหลี่ยมมุมฉาก โดยให้ด้านตรงข้ามมุม A ยาว 5 หน่วย และด้านประชิดมุม A ยาว 12 หน่วย ดังรูป

จากทฤษฎีของพีทาโกรัส หาความยาวด้าน AC

AC =
$$\sqrt{AB^2 + BC^2}$$

= $\sqrt{(12)^2 + (5)^2}$
= $\sqrt{144 + 25}$
= $\sqrt{169}$
AC = 13
จากรูป sec A = $\frac{13}{12}$
แทนค่า $\frac{\sec A - 1}{\tan A}$ = $\frac{\frac{13}{12} - 1}{\frac{5}{12}}$ = $\frac{\frac{1}{12}}{\frac{5}{12}}$ = $\frac{1}{5}$

2)
$$\sec^2 A - \tan^2 A = \left(\frac{13}{12}\right)^2 - \left(\frac{5}{12}\right)^2$$

$$= \frac{169}{144} - \frac{25}{144}$$

$$= \frac{144}{144}$$

 $sec^2A - tan^2A = 1$

การหาค่าอัตราล่วนตรีโกณมิติ ของมุม 30 องคา 45 องคา และ 60 องคา

ค่าอัตราส่วนตรีโกณมิติของมุม 30 องศา 45 องศา และ 60 องศา เป็นค่าที่ควรทราบ ซึ่งจะเป็น ประโยชน์อย่างยิ่งในการคำนวณต่อไป

ທາອກາຢ່າອັຫອາສ່ານຫລືໃຫໝູ່ມີຫຼືນອວນຸມູມ 30 ອວຸศາ ແລະ 60 ອວຸศາ

จากรูป ABC เป็นรูปสามเหลี่ยมด้านเท่ากำหนดให้ แต่ละด้านยาวด้านละ 2 หน่วย มีเส้น CD ลากจากจุดยอด C มาตั้งฉากกับฐาน AB ที่จุด D เส้น CD จะแบ่งด้าน AB ออกเป็น สองส่วนเท่าๆ กัน และแบ่งครึ่งมุม ACB

ดังนั้น มุม ACD เท่ากับมุม BCD เท่ากับ 30 องศา

เนื่องจาก รูปสามเหลี่ยม ACD เป็นรูปสามเหลี่ยมมุมฉาก

$$AC^{2} = CD^{2} + AD^{2}$$

$$CD^{2} = AC^{2} - AD^{2}$$

$$CD = \sqrt{AC^{2} - AD^{2}}$$

$$= \sqrt{2^{2} - 1^{2}}$$

จากรูปสามเหลี่ยมมุมฉาก ACD หาค่าอัตราส่วนตรีโกณมิติ ได้ดังนี้

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$\sin 30^{\circ} = \frac{1}{2}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

$$\sin 30^{\circ} = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$tan 60^{\circ} = \sqrt{3}$$

$$tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$cosec 60^{\circ} = \frac{2}{\sqrt{3}}$$

$$cosec 30^{\circ} = 2$$

$$sec 60^{\circ} = 2$$

$$\sec 30^{\circ} = \frac{2}{\sqrt{3}}$$

$$\cot 60^{\circ} = \frac{1}{\sqrt{3}}$$

$$\cot 30^{\circ} = \sqrt{3}$$

√√ การหาค่าอัตราส่วนตรีโกณมิติของมุม 45 องศา

จากรูป ABC เป็นรูปสามเหลี่ยมมุมฉาก กำหนดให้ด้านประกอบ มุมฉากแต่ละด้านยาว 1 หน่วย มุม ACB และมุม BAC เท่ากับ 45 องศา

จากรูปสามเหลี่ยมมุมฉาก ABC ข้างต้น หาค่าอัตราส่วนตรีโกณมิติ ได้ดังนี้

$$\sin 45^{\circ}$$
 = $\frac{1}{\sqrt{2}}$ cosec 45° = $\sqrt{2}$ cos 45° = $\frac{1}{\sqrt{2}}$ sec 45° = $\sqrt{2}$ tan 45° = 1 cot 45° = 1

สรุป : อัตราส่วนตรีโทนมิติขอบมุม 30°, 60° และ 45°

	2 30° √3	2 /3	1 1 1	
มุม ฟังก์ชัน	30°	60°	45°	
sin	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1	
cosec	2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	
sec	$\frac{2}{\sqrt{3}}$	2	$\sqrt{2}$	
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1	

ตัวอย่างที่ 5 จงหาค่าของ (sin $45^{\circ} \times \text{sec } 45^{\circ}$) + (tan $60^{\circ} \times \text{cos } 30^{\circ}$)

วิธีทำ
$$(\sin 45^{\circ} \times \sec 45^{\circ}) + (\tan 60^{\circ} \times \cos 30^{\circ})$$

$$= (\frac{1}{\sqrt{2}} \times \sqrt{2}) + (\sqrt{3} \times \frac{\sqrt{3}}{2})$$

$$= 1 + \frac{3}{2}$$

$$(\sin 45^{\circ} \times \sec 45^{\circ}) + (\tan 60^{\circ} \times \cos 30^{\circ})$$

$$=$$
 $\frac{5}{2}$

จงหาค่า x จากสมการ

$$x \csc 30^{\circ} + \sin 60^{\circ} \cot 30^{\circ} = \cos 60^{\circ}$$

วิธีทำ

จากสมการ x cosec 30° + sin 60° cot 30°

$$=$$
 $\cos 60^{\circ}$

แทนค่า

$$\times (2) + (\frac{\sqrt{3}}{2} \times \sqrt{3}) \qquad = \qquad \frac{1}{2}$$

$$2x + \frac{3}{2} \qquad \qquad = \qquad \frac{1}{2}$$

$$= \frac{1}{2} - \frac{3}{2}$$

$$2x = -1$$

การหาค่าอัตราล่วน ตรีโกณมัติ โดยใช้ตาราช ค่าตรีโกณมัติ

การใช้ตารางค่าตรีโกณมิติ หาค่าอัตราส่วนตรีโกณมิติของมุมตั้งแต่ 0 องศา 90

องศา หรือมุมตั้งแต่ 0 เรเดียน ถึง 1.5708 เรเดียน มีวิธีอ่านค่าจากตารางตรีโกณมิติ ดังนี้

- 1. การอ่านค่าตรีโกณมิติของมุมที่น้อยกว่า 45 องศา หรือ 0.7854 เรเดียน ให้ อ่านค่ามุมจากคอลัมน์ ซ้ายสุดของตาราง อ่านค่าตรีโกณมิติ จากบรรทัดบนสุดของ ตาราง
- 2. การอ่านค่าตรีโกณมิติของมุมที่มากกว่า 45 องศา ให้อ่านค่ามุมจากคอลัมภ์ ขวาสุดของตาราง อ่านค่าตรีโกณมิติ จากบรรทัดล่างสุดของตาราง

Degrees	Radi-	sin θ	$cosec \theta$	tan θ	$\cot \theta$	sec θ	cos θ		
	ans								
24°00′	0.4189	0.4067	2.4586	0.4452	2.2460	1.0946	0.9135	1.1519	66°00′
10′	0.4218	0.4094	2.4426	0.4487	2.2286	1.0961	0.9124	1.1490	50′
20′	0.4247	<u>0.4120</u>	2.4269	0.4522	2.2113	1.0975	0.9112	1.1461	40′
30′	0.4276	0.4147	2.4114	0.4557	2.1943	1.0989	0.9100	1.1432	30′
40′	0.4305	0.4173	2.3961	0.4592	2.1715	1.1004	0.9088	1.1403	20′
50′	0.4334	0.4200	2.3811	0.4628	2.1609	1.1019	0.9075	1.1374	10′
25 [°] 00′	0.4363	0.4226	2.3662	0.4663	2.1445	1.1034	0.9063	1.1345	65 [°] 00′
	÷	÷	÷	÷	÷	÷	÷	÷	÷
		$\cos \theta$	sec θ	$\cot \theta$	tan θ	$cosec \theta$	$\sin \theta$	Radi-	Degrees
								ans	

เช่น $\sin 24^{\circ}20' = 0.4120$ $\tan 24^{\circ}50' = 0.4628$ $\sin 65^{\circ}10' = 0.9075$ $\tan 65^{\circ}40' = 2.2113$

จงใช้ตารางหาขนาดของมุม A เมื่อกำหนด tan A = 0.5543 และ 0° < A < 90°

วิธีทำ จาก tan A = 0.5543
จากตารางในคอลัมน์ tan ที่ค่า 0.5543 ตรงกับคอลัมน์ tan
จากส่วนบนของตาราง จึงอ่านค่ามุมจากซ้ายมือ
ซึ่ง tan29° = 0.5543
ดังนั้น มุม A เท่ากับ 29 องศา