1. Étude des fonctions f et g

a.
$$f(x) = exe^{-x}$$
 et $g(x) = ex^2e^{-x}$.

On a
$$\lim_{x \to -\infty} x = -\infty$$
.

 $\lim_{x \to -\infty} 1 - x = +\infty \text{ et } \lim_{T \to +\infty} e^T = +\infty \text{ donc par composition des limites on a } \lim_{x \to -\infty} e^{1-x} = +\infty \text{ et donc par produit des limites :}$

$$\lim_{x\to -\infty} f(x) = -\infty$$

De même
$$\lim_{x \to -\infty} x^2 = +\infty$$
.

De même $\lim_{x \to -\infty} x^2 = +\infty$. $\lim_{x \to -\infty} 1 - x = +\infty$ et $\lim_{T \to +\infty} e^T = +\infty$ donc par composition des limites on a $\lim_{x \to -\infty} e^{1-x} = +\infty$ et donc par produit des limites :

$$\lim_{x\to -\infty}g(x)=-\infty$$

b.
$$f(x) = exe^{-x} = e \times \frac{x}{e^x}$$
.

Or $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ (limite de cours) et donc par inverses des limites : $\lim_{x \to +\infty} \frac{x}{e^x} = 0$: on en déduit que $\lim_{x \to +\infty} f(x) = 0$. Faire de même pour g(x).

c. f est dérivable sur \mathbb{R} est dérivable et pour tout réel x,

$$f'(x) = e^{1-x} - xe^{1-x}$$

= $(1-x)e^{1-x}$

 $\forall x \in \mathbb{R} e^{-x} > 0$ donc f'(x) a le même signe que 1 - x (fonction affine de racine 1) : on en déduit le tableau de variations de f sur \mathbb{R} :

x	$-\infty$ 1 $+\infty$
Signe de $f'(x)$	+ 0 -
Variation de <i>f</i>	$+\infty$ \longrightarrow 0

g est dérivable sur \mathbb{R} et pour tout réel x on a :

$$g'(x) = 2xe^{1-x} - x^2e^{1-x}$$

= $x(2-x)e^{1-x}$

Comme $e^{-x} > 0$ quel que soit le réel x, le signe de g'(x) est celui du trinôme x(2-x) qui est négatif sauf entre les racines 0 et 2.

D'où le tableau de variations de g :

x	$-\infty$		0		2		+∞
Signe de $g'(x)$		_	0	+	0	_	
Variation de g	+∞		· 0 -		$\rightarrow \frac{4}{e}$		<u> </u>

1

2. Calcul d'intégrales

a. On a:

$$I_0 = \int_0^1 e^{1-x} dx$$

= $[-e^{1-x}]_0^1$
= $e-1$

b. On pose:

$$\begin{cases} u(x) = x^{n+1} \\ v'(x) = e^{1} - x \end{cases} \begin{cases} u'(x) = (n+1)x^{n} \\ v(x) = -e^{1-x} \text{ par exemple} \end{cases}$$

Toutes les fonctions sont continues car dérivables sur \mathbb{R} , on peut donc faire une intégration par parties :

$$I_{n+1} = \left[-x^{n+1} e^{1-x} \right]_0^1 + (n+1) \int_0^1 (-x)^n e^{1-x} dx$$
$$= -1 + (n+1) I_n$$

c. La formule précédente donne pour n = 0, $I_1 = -1 + I_0$ soit $I_1 = -1 + e - 1 = e - 2$. Pour n = 1, $I_2 = -1 + 2I_1$ soit $I_2 = -1 + 2(e - 2) = 2e - 5$.

3. Calcul d'une aire plane

a. Soit d la fonction définie sur \mathbb{R} par $d(x) = f(x) - g(x) = xe^{1-x} - x^2e^{1-x} = xe^{1-x}(1-x)$. Comme $e^{1-x} > 0$ quel que soit le réel x, le signe de f(x) est celui du trinôme x(1-x), soit négatif sauf entre les racines du trinôme 0 et 1.

Ceci montre que la courbe \mathscr{C} est au dessus de la courbe \mathscr{C}' sur]0; 1[et au dessous sur $]-\infty$; 0[et sur]1; $+\infty[$.

b. On vient de voir que sur l'intervalle [0; 1] $f(x) \ge g(x)$, donc l'aire de la partie du plan comprise d'une part entre les courbes \mathscr{C} et \mathscr{C}' , d'autre part entre les droites d'équations respectives x = 0 et x = 1 est égale à la différence des intégrales :

$$\mathscr{A} = \int_0^1 f(x) dx - \int_0^1 g(x) dx = \int_0^1 [f(x) - g(x)] dx = I_1 - I_2 = e - 2 - (2e - 5) = 3 - e.$$

par linéarité de l'intégrale.

4. Étude de l'égalité de deux aires

a. On a $S_a = \mathcal{A} \iff 3 - e^{1-a} (a^2 + a + 1) = 3 - e \iff -e^{1-a} (a^2 + a + 1) = -e \iff e \times e^{-a} (a^2 + a + 1) = e \iff e^{-a} (a^2 + a + 1) = 1 \iff a^2 + a + 1 = e^a$.

b. Il reste à résoudre l'équation $e^x = x^2 + x + 1$ équivalente à $e^x - x^2 - x - 1 = 0$ sur l'intervalle $[1; +\infty[$.

2

Si on pose, pour tout x réel : $h(x) = e^x - x^2 - x - 1$, cela revient à chercher un zéro de la fonction h sur \mathbb{R} .

Cette fonction est deux fois dérivable sur \mathbb{R} et sur cet intervalle $h'(x) = e^x - 2x - 1$ qui elle-même est dérivable sur \mathbb{R} et :

$$h''(x) = e^x - 2$$

On a
$$h''(x) = 0 \iff e^x - 2 = 0 \iff e^x = 2 \iff x = \ln 2$$

Donc
$$h''(x) > 0 \iff e^x - 2 > 0 \iff e^x > 2 \iff x > \ln 2$$
.

h' est continue et strictement croissante sur $[\ln 2 ; +\infty[$ et à fortiori sur $[1 ; +\infty[$ puisque $\ln 2 \approx 0.69 < 1.$

On a
$$h'(1) = e^1 - 2 - 1 = e - 3 < 0$$
.

De plus $\lim_{x \to +\infty} h'(x) = +\infty$ (limite obtenue en factorisant e^x .)

Donc, d'après un corollaire du théorème des valeurs intermédiaires, il existe un réel unique α , $1 < \alpha$ tel que $h'(\alpha) = 0$.

On en déduit que h est strictement négative sur]1 ; α [et strictement positive sur] α ; $+\infty$ [.

h est donc strictement décroissante sur]1; α [et strictement croissante sur] α ; $+\infty$ [.

D'autre part, $\lim_{\substack{x\to 1\\x>1}}h(x)=\mathrm{e}-3\approx -0,28$ et $\lim_{x\to +\infty}h(x)=+\infty.$ Ainsi h est strictement négative sur

]1; α [.

Enfin, h étant continue est strictement croissante sur $[\alpha ; +\infty[$, il existe $\beta \in]\alpha ; +\infty[$, unique, tel que $h(\beta) = 0$.

Avec une table de valeurs ou le solveur de la calculatrice on trouve aisément : $\alpha \approx 1,26$ et $\beta \approx 1,79$. (Voir la figure ci-dessous)

