A 卷

○ B卷

重庆大学《概率论与数理统计I》课程试卷

2017 — 2018 学年 第二学期

开课学院: <u>数统学院</u> 课程号: <u>MATH20041</u> 考试日期: <u>2018.6.10</u> 考试方式: ○开卷 ⊙闭卷 ○其他 考试时间: 120 分钟

题 号	_	=	=	四	五	六	七	八	九	+	总分
得 分											

考试提示

1.严禁随身携带通讯工具等电子设备参加考试;

2.考试作弊,留校察看,毕业当年不授学位;请人代考、 替他人考试、两次及以上作弊等,属严重作弊,开除学籍。

分位数: $u_{0.95} = 1.64$, $u_{0.975} = 1.96$, $t_{0.95}(7) = 1.895$, $t_{0.975}(7) = 2.365$,

 $\chi^2_{0.025}(8) = 2.18$, $\chi^2_{0.975}(8) = 17.53$

一、填空题(每空3分,共42分)

- 1. \Box \Box $\Box P(A) = 0.3, P(B) = 0.4, P(B|A) = 0.5, <math>\Box P(A \cup B) = 0.55$
- 2. 设某地夏季天气只有三种状态: 晴天、阴天(多云)和雨天,已知晴天的可能性是阴天的 2 倍,雨天的可能性是阴天的一半,则该地某日为雨天的概率为 1/7 。
- 3. 据统计,某小区在网购消费中,食品、图书、日用品、服饰类商品的包裹数比例分别占 20%,30%,40%,10%。又知这四类网购商品是通过京东配送的概率分别为 24%,21%,23%,18%。今天有一快递送达小区的

- 4. 某城市有三条地铁线,各条线路独立运行,三条线每月发生故障的次数分别服从参数为1,2,3的泊松分布,则本月该城市地铁发生故障次数的期望为 6 ,某月该城市发生故障为3次的概率为 36e⁻⁶ 。
- 4. 设连续型随机变量 X 的分布函数为: $F(x) = \begin{cases} 1 (1+x)e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$, 则

$$X$$
的密度函数为 $f_X(x) = _____ f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$

$$P\{X > 2\} = __3e^{-2}$$
_______,请写出 $Y = 2X - 1$ 的密度函数 $f_Y(y) = ______$

$$f_{Y}(y) = \begin{cases} \frac{y+1}{4}e^{-\frac{y+1}{2}} & y > -1 \\ 0 & y \le -1 \end{cases}$$

5. 设二维随机变量(X,Y): N(3,16;3,9;0.5), 若Z = X - Y, 则Z的密度函数

6. X_1, X_2, L L X_{10} 是来自正态总体 N(3,4) 的样本, \overline{X}, S^2 为其样本均值和

- 7. $X_1, X_2, L L, X_{16}$ 是来自正态总体 $N(\mu, 4)$ 的样本,对统计假设问题 $H_0: \mu = 1, H_1: \mu \neq 1$ 的拒绝域为 $\{|\bar{X} - 1| > 0.98\}$,则在判断中犯弃真错误的 概率为___0.05__。
- 二、(12) 随机变量 X,Y 独立同分布,且 X 的分布律为 $X:\begin{pmatrix}1&2\\2/3&1/3\end{pmatrix}$

设 $U = \max\{X,Y\}, V = \min\{X,Y\}$ 。

- 求: (1) (U,V) 的联合分布律;
 - (2) 判断(U,V)的独立性;
 - (3) 求U,V的协方差。
- 解: (1) (U,V) 有三种可能取值: (1,1), (2,1), (2,2)

$$P\{U=1, V=1\} = P\{X=1, Y=1\} = P\{X=1\}P\{Y=1\} = \frac{4}{9}$$

$$P\{U=2, V=1\} = P\{X=1, Y=2\} + P\{X=2\}P\{Y=1\} = \frac{4}{9}$$

$$P\{U=2, V=2\} = P\{X=2, Y=2\} = P\{X=2\}P\{Y=2\} = \frac{1}{9}$$

(U,V)的联合分布律为:

U	V	1	2	
	1	4/9	0	4/9
	2	4/9	1/9	5/9
		8/9	1/9	
		8/9	1/9	

(2) 因为 $P\{U=1,V=1\}=4/9 \neq P\{U=1\}P\{V=1\}=32/81$

所以(U,V)不独立:

(3) EU = 14/9, EV = 10/9, EUV = 16/9

 $cov(U,V) = EUV - EU \cdot EV = 4/81$

三、(18 %) 设随机变量(X,Y)的概率密度

$$f(x,y) = \begin{cases} A(y-x)e^{-y}, & -y < x < y, 0 < y < +\infty \\ 0, & 其他. \end{cases}$$

求:(1) 常数 A; (2)随机变量 X,Y 的边缘密度函数 $f_{x}(x),f_{y}(y)$;

- (**3**) 判断 *X*, *Y* 的独立性;
- (4) 求 Z = X + Y 的密度函数。
- **解** (1) 由 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dxdy = \int_{0}^{+\infty} \int_{-y}^{y} A(y-x)e^{-y} dxdy = 4A = 1$, 得 $A = \frac{1}{4}$.

(2)
$$f_x(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{-x}^{+\infty} \frac{1}{4} (y - x) e^{-y} dy & x < 0 \\ \int_{x}^{+\infty} \frac{1}{4} (y - x) e^{-y} dy & x \ge 0 \end{cases}$$

$$= \begin{cases} \frac{(1-2x)e^x}{4} & x < 0\\ \frac{e^{-x}}{4} & x \ge 0 \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{-y}^{y} \frac{1}{4} (y - x) e^{-y} dx & y > 0 \\ 0 & y \le 0 \end{cases}$$

- (3)由 $f(x,y) \neq f(x)f(y)$,所以不独立;
- (5) 由卷积公式, $f(z-y,y) \neq 0$ 当且仅当(y,z)满足 $-y < z-y < y, 0 < y < +\infty$

即: $0 < z < 2y, 0 < y < +\infty$

$$f_{z}(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy = \begin{cases} \int_{\frac{z}{2}}^{+\infty} \frac{1}{4} (y - (z - y)) e^{-y} dy & z > 0 \\ 0 & z \le 0 \end{cases}$$
$$= \begin{cases} \frac{z + 1}{4} e^{-\frac{z}{2}} & z > 0 \\ 0 & z \le 0 \end{cases}$$

四、(12 分) 设总体 X 的分布函数为: $F(x;\theta) = \begin{cases} 1 - \frac{1}{x^{\theta}} & x > 1 \\ 0 & x \leq 1 \end{cases}$, $\theta > 1$ (未

- 知), X_1, X_2, LL, X_n 为来自总体的样本。求:
- (1). 参数 θ 的矩估计量 $\hat{\theta}$; (2). 参数 θ 的最大似然估计量 $\hat{\theta}$;

解:
$$X$$
的密度函数为 $f(x) = \begin{cases} \theta x^{-\theta-1} & x > 1 \\ 0 & x \le 1 \end{cases}$

1)
$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{1}^{+\infty} x \theta x^{-\theta - 1} dx = \frac{\theta}{\theta - 1}$$

 $\Leftrightarrow EX = \overline{X}$,即 $\frac{\theta}{\theta - 1} = \overline{X}$ 解得: $\hat{\theta}_{1} = \frac{\overline{X}}{\overline{X} - 1}$;

2) θ 的似然函数:

$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} \theta x_i^{-\theta - 1} = \theta^n (x_1 x_2 L x_n)^{-\theta - 1} \qquad x_i > 1 (i = 1, 2, L, n)$$

当
$$x_i > 1(i = 1, 2, L, n)$$
时, $L(\theta) > 0$ 且 $\ln L(\theta) = n \ln \theta - (\theta + 1) \sum_{i=1}^{n} \ln x_i$

由
$$\frac{d \ln(\theta)}{d \theta} = 0$$
 得: $\hat{\theta}_2 = \frac{n}{\sum_{i=1}^n \ln X_i}$

五、 $(10\,
m eta)$ 据报道: 高校大学生平均每周上网时间为 8 小时。某校统计小组随机调查了该校 $100\,
m$ 名学生,得知他们平均每周上网时间为 $6.5\,
m h$ 小时,样本标准差为 2 小时。设大学生每周上网时间服从正态分布,问在显著水平 $\alpha=0.05\,
m r$,能否认为该校学生每周上网时间明显低于 8 小时?

解:由题意知,设每周上网时间为X,则

$$X: N(\mu, \sigma^2) = \frac{1}{x} = 6.5, \quad s = 2, \quad \alpha = 0.05 \quad n = 100$$

设立统计假设: $H_0: \mu=8$ $H_1: \mu < 8$

$$\sigma^2$$
未知,选择检验统计量: $T = \frac{\overline{X} - 8}{S / \sqrt{n}}$

拒绝域
$$\chi_0 = \{t \mid t < -t_{1-\alpha}(n-1)\} = \{t < -t_{0.95}(99)\} = \{t < -u_{0.95}\} = \{t < -1.65\}$$

做出判断,检验统计量的样本值
$$t = \frac{6.5 - 8}{2/\sqrt{100}} = -7.5 \in \chi_0$$

所以拒绝原假设,该校学生上网时间明显低于8小时。

六、 $(6\ \%)$ 国内市场对某种进口原材料的需求是一随机变量 X,据调查 $X\sim U[1000,3000]$ (单位:吨),售出一吨该原材料可获利 2000 元,积压一吨则将产生 1000 元的亏损。问进口经销商应进口多少吨货源可使得平均利润达最大?

解: 设经销商应进口a吨该原材料,赢利Y元:

$$Y = g(X) = \begin{cases} 2a, & a \le X \\ 2X - (a - X), a > X \end{cases}$$

(3分)

X的密度函数为

$$f(x) = \frac{1}{2000}, \qquad 1000 \le x \le 3000 \qquad (1 \%)$$

则平均利润

$$EY = E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx \tag{1 \(\frac{1}{12}\)}$$

$$= \frac{1}{2000} \left[\int_{1000}^{a} (3x - a) dx + \int_{0}^{a} 2a dx \right] = \frac{1}{2000} \left[-\frac{3}{2} a^{2} + 7000 a - \frac{3}{2} \times 1000^{2} \right]$$
 (2 \(\frac{1}{27}\))

$$\Leftrightarrow (EY)_a = 0$$
,解出 $a \approx 2333.3$ (t) (1分)