生成模型与判别模型

主要参考:

CSDN@zouxy09 生成模型与判别模型

1. 生成方法和判别方法

监督学习方法又分生成方法(Generative approach)和判别方法(Discriminative approach),所学到的模型分别称为生成模型(Generative Model)和判别模型(Discriminative Model)。

- 判别方法: 由数据**直接学习决策函数**Y = f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别方法包括K近邻、逻辑回归、决策树、感知机、支持向量机等。
- **生成方法**: 由数据学习联合概率密度分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型: P(Y|X) = P(X,Y)/P(X)。基本思想是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类。这整个过程还涉及到对训练数据的概率分布P(X)的建模。典型的生成模型包括朴素贝叶斯、混合高斯、隐马尔科夫模型等。

2. 生成模型与判别模型的优缺点

生成方法的特点:生成方法学习联合概率密度分布P(X,Y),所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。但它不关心到底划分各类的那个分类边界在哪。生成方法可以还原出联合概率分布,而判别方法不能。生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型,当存在隐变量时,仍可以用生成方法学习。此时判别方法就不能用。但生成方法估计数据分布P(X)时需要使用大量的样本才能保证结果的准确性,对P(X)建模也引入了额外的工作量。

判别方法的特点:由于判别方法直接学习条件概率分布P(Y|X),因此不能反映训练数据本身的特性。但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。事实上,对于分类任务而言,描述数据本身的分布是没有必要的。判别模型面对预测,往往学习的准确率更高,大大简化了学习问题。

另外, **由生成模型可以得到判别模型, 但由判别模型得不到生成模型**。

更具体的优缺点总结见下列表格(来自于http://blog.csdn.net/wolenski/article/details/7985426)

	判別式模型(discriminative model)	产生式模型(generative model)
	寻找不同类别之间的最优分类面,反	对后验概率建模,从统计的角度表示
特点	映的是异类数据之间的差异	数据的分布情况,能够反映同类数据
		本身的相似度
区别(假定输入x,	估计的是条件概率分布(conditional	估计的是联合概率分布(joint
类别标签y)	distribution) : P(y x)	probability distribution: P(x, y),
联系	由产生式模型可以得到判别式模型,但	由判别式模型得不到产生式模型。
	– logistic regression	-Gaussians, Naive Bayes
常见模型	- SVMs	–Mixtures of Gaussians, Mixtures of
	– traditional neural networks	experts, HMMs
	– Nearest neighbor	–Sigmoidal belief networks, Bayesian
		networks
		– Markov random fields
优点	1) 分类边界更灵活,比使用纯概率	1) 实际上带的信息要比判别模型丰
	方法或产生式模型更高级;	富;
	2) 能清晰的分辨出多类或某一类与	2)研究单类问题比判别模型灵活性
	其他类之间的差异特征;	强;
	3)在聚类、viewpoint changes, partial	3)模型可以通过增量学习得到;
	occlusion and scale variations中的效果	4)能用于数据不完整(missing
	较好;	data)情况。
	4)适用于较多类别的识别;	
	5) 判别模型的性能比产生式模型要	
	简单,比较容易学习。	
	1)不能反映训练数据本身的特性。	1) Tend to produce a significant number
缺点	能力有限,可以告诉你的是1还是2,	of false positives. This is particularly
	但没有办法把整个场景描述出来;	true for object classes which share a
	2) Lack elegance of generative: Priors,	high visual similarity such as horses and
	结构,不确定性;	cows;
	3) Alternative notions of penalty	2)学习和计算过程比较复杂。
	functions, regularization, 核函数;	
	4)黑盒操作:变量间的关系不清楚,	
	不可视。	12.24
1,176	★ 较好 (性能比生成模型稍好些,因为 また)	较差
性能	利用了训练数据的类别标识信息,缺	
	点是不能反映训练数据本身的特性)	august street to
+#÷n	Image and document classification	NLP(natural language processing)
主要应用	Biosequence analysis	Medical Diagnosis
	Time series prediction	

3. 例子与总结

举个形象的例子, 假如你的任务是识别一段话属于汉语、英语、法语中的哪种语言, 有两种方法可以达到这个目的:

- 1、学习每一种语言,如果你花费了大量精力把中英法三种语言都学会了,那么分辨一段话属于哪种语言就是一件很显然的事情,同时你还可以说出新的句子;
- 2、不去学习每一种语言,只学习这些语言之间的差别(比如字形、发音等的区别),然后再进行判别,那么就要轻松许多。

上述的第一种方法就是生成方法, 第二种方法就是判别方法。

最后简单总结一下:

生成算法尝试去找到数据是怎么生成的(产生的),然后再对一个信号进行分类。基于生成假设,哪个类别最有可能产生这个信号,这个信号就属于那个类别。而判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类。