Příklad výrobní firmy, zpracování a analýza dat, test Logio s.r.o.

K testu lze přistupovat různě. Není nezbytně nutné dosáhnout u jednotlivých úkolů kompletního řešení, ale lze prezentovat myšlenku postupu k dosažení řešení.

Zadání

Zobrazit zadání 🗸

Řešení 🔍

Náklady na výrobu jednotlivých náhradních dílů

Předpříprava dat

1. příprava dat pro analýzu nákladů na výrobu jednotlivých náhradních dílů:

```
#creating df_ciselnky and df_kusovnik dataframe
df_ciselniky = pd.read_excel(excel_file, sheet_name='ciselniky',usecols='G:H', ski
df_kusovnik = pd.read_excel(excel_file, sheet_name='matice_vyroby')
```

2. spojení tabulek ciselniky a matice výroby + přídání částečného součtu nákladů komponent:

 $\label{eq:df_naklady} $$ df_naklady = pd.merge(df_kusovnik, df_ciselniky, how="left", on = "ID_komponenty") $$ df_naklady['Celkova_cena_komponenty'] = df_naklady['Mnozstvi'] * df_naklady['Poriz df_naklady['Nnozstvi'] * df_naklady['Nnozstvi'] *$

	ID_produktu	ID_komponenty	Mnozstvi	Porizovaci_cena	Celkova_cena_komponenty
14	MDT02	VOTA2	2	0,800	13,000
15	ND105	KO111	3	4,650	13,950
16	ND105	KO135	3	8,150	24,450
17	ND106	KO028	3	11,300	33,900
18	ND106	KO040	2	600	1,200
19	ND106	KO094	1	13,350	13,350
20	ND106	KO019	2	7,800	15,600
21	ND107	KO029	2	11,400	22,800
22	ND107	KO021	3	14,200	42,600
23	ND108	KO108	2	10,650	21,300
24	ND108	KO196	3	7,900	23,700

3. groupby funkce a agregace pro celkovou cenu komponenty:

df_naklady.groupby('ID_produktu')[['Mnozstvi', 'Celkova_cena_komponenty']].sum().r

	ID_produktu	Mnozstvi	Celkova_cena_komponenty
0	ND101	7	29,650
1	ND102	3	12,650
2	ND103	8	52,650
3	ND104	4	20,600
4	ND105	8	52,000
5	ND106	8	64,050
6	ND107	5	65,400
7	ND108	5	45,000
8	ND109	10	64,800
9	ND110	8	43,600

Vývoj výroby za poslední rok po měsících v jednotlivých závodech

1. příprava dat - tabulka výroba:

```
# extracting manufacturing data from csv_excel file
wb = op.load_workbook(excel_file)
sheet = wb['vyroba_text']
#creating data frame vyroba
csv_data = get_csv_data(sheet)
df_vyroba = pd.DataFrame(csv_data[1:], columns=csv_data[0])
```

jelikož data byla ve formátu csv, bylo nutné je přeformátovat do tabulky. K tomu jsem použil custom funkce která vytvořila list listů, kde každý list obsahoval jeden řádek z csv souboru.

```
def get_csv_data(sheet):
     csv_data = []
```

1 of 3 10/7/24, 6:31 PM

```
for row in sheet.iter_rows(values_only=True):
    row_list = []
    for element in row(0).split(';'):
        row_list.append(element)
    csv_data.append(row_list)
return csv_data
```

2. přidání sloupce 'Rok-Mesic' a převedení dat do formátu datetime

```
# Converting datatypes (default is object)
df_vyroba['Datum'] = df_vyroba['Datum'].apply(date_parser)
df_vyroba['Mnozstvi'] = pd.to_numeric(df_vyroba['Mnozstvi'],).astype('Int64')
# Adding colum 'mesic;
df_vyroba['Mesic'] = df_vyroba['Datum'].dt.month
df_vyroba['Rok'] = df_vyroba['Datum'].dt.year
df_vyroba['Rok-Mesic'] = df_vyroba['Datum'].dt.strftime('%Y-%m')
```

3. grouby (ID_zavodu, Rok-mesic) --> unikátní záznamy pro měsíc a danou továrnum aggregace množství vyrobených dílů pro danouu továrnu

```
\label{eq:df_vyroba_mesice} \begin{split} & df\_vyroba\_mesice = df\_vyroba\_groupby(['ID_zavodu', 'Rok', 'Rok-Mesic'])['Mnozstvi' \\ & df\_vyroba\_mesice\_tovarny = pd.merge(df\_vyroba\_mesice, df\_tovarny, on="ID_zavodu", \\ & df\_tovarny, \\ & df\_tovarn
```

4. join s číselníky --> pro název továrny dle lokality

	ID_zavodu	Místo	Rok-Mesic	Mnozstvi
0	ZP10	Plzeň	2017-01	518
1	ZP10	Plzeň	2017-02	600
2	ZP10	Plzeň	2017-03	751
3	ZP10	Plzeň	2017-04	454
4	ZP10	Plzeň	2017-05	826
5	ZP10	Plzeň	2017-06	534
6	ZP10	Plzeň	2017-07	574
7	ZP10	Plzeň	2017-08	482
8	ZP10	Plzeň	2017-09	601
9	ZP10	Plzeň	2017-10	564

Celková výroba po měsících ve všech závodech

Celková výroba po měsících v jednotlivých závodech

Dodávky se zpožděním

1. Načtení dat z excelu do pandas dataframe 2. Přidání sloupce 'Zpozdeno', 'Deadline' a 'Dodaci_doba'

```
df_dodavky['Zpozdeno'] = (df_dodavky['Datum_dodani'] - df_dodavky['Datum_objednani
df_dodavky['Deadline'] = (df_dodavky['Datum_objednani'] + pd.Timedelta(days=7))
df_dodavky['Dodaci_doba'] = df_dodavky['Datum_dodani'] - df_dodavky['Datum_objedna
df_dodavky_zpozdene = df_dodavky.query('Zpozdeno == True')
```

Časové období: 2017-01-01 00:00:00 2018-08-31 00:00:00

Celkový počet dodávek v datasetu: 2058

2 of 3 10/7/24, 6:31 PM

Počet dodávek od dodavetele a počet zpožděných dodávek

$$\label{local-decomposition} \begin{split} & df_dodavky.groupby('ID_dodavatele')['ID_komponenty'].count().reset_index(name='Pocdf_dodavky_zpozdene.groupby('ID_dodavatele').size().reset_index(name= 'Pocet_zpozdene.groupby('ID_dodavatele').size().reset_index(name= 'Pocet_zpozd$$

Počet náhradních dílů od každého dodavatele

df_dodavky.groupby('ID_dodavatele')['Mnozstvi'].sum().reset_index(name='Celkove_mn

	ID_dodavatele	Celkove_mnozstvi
0	102ADF	5,698
1	25KOL9	5,527
2	47EFKT	5,325
3	999DJT8	4,955

Statistický popis zpoždění

 $\verb|st.dataframe(df_dodavky_zpozdene['Dodaci_doba'].describe())|\\$

3 of 3 10/7/24, 6:31 PM