MTH 674 DIFFERENTIAL GEOMETRY OF MANIFOLDS

Midterm Sample Problems

Problem I. Homework assignments I and II.

Problem II. Define in detail

- a) A topological manifold M.
- **b)** A differentiable manifold M.
- c) Transition functions.
- d) An atlas of coordinate charts.
- e) Real and complex projective spaces $\mathbb{R}P^n$ and $\mathbb{C}P^n$.
- f) Grassmannians Gr(m, k).
- g) The product manifold $M_1 \times M_2$ of two differentiable manifolds M_1, M_2 .
- **h)** Coordinate representation of a mapping $F: M_1 \to M_2$ from M_1 into M_2 , where M_1, M_2 are topological manifolds.
- i) A smooth mapping $F: M_1 \to M_2$ from a differentiable manifold M_1 into a differentiable manifold M_2 .
- **j)** A diffeomorphism $F: M_1 \to M_2$ between two manifolds M_1 and M_2 .
- k) A bump function.
- 1) Partition of unity subordinate to a cover.
- **m)** A derivation at a point $p \in M$, where M is a differentiable manifold.
- **n)** The tangent space $T_p(M)$ to a manifold M at point p.
- o) The pushforward $F_*(\mathbf{v})$ of a tangent vector $\mathbf{v} \in T_pM$ under a mapping $F: M \to N$.
- **p)** Coordinate vectors $\partial/\partial x^i$, where $(\mathcal{U}, \mathbf{x} = (x^1, \dots, x^m))$ is a coordinate chart on a differentiable manifold.
- q) A smooth vector field X on a differentiable manifold M.
- r) The rank of a mapping $F: M_1 \to M_2$.
- s) The Lie bracket [X, Y] of two smooth vector fields on M.
- t) F-related vector fields on M_1 , M_2 , where $F: M_1 \to M_2$ is a smooth mapping.
- **u)** Quotient topology
- v) Immersion, submersion
- w) Immersed, embedded submanifold.
- x) Slice coordinates
- y) Lie group and the Lie algebra of a Lie group.
- **z**) The Einstein summation convention.

Problem III.

a) Let $M_1 = \mathbb{R}$ with the coordinate map $\phi(x) = x$ and let $M_2 = \mathbb{R}$ with the coordinate map $\psi(x) = x^{1/3}$. Show that M_1 and M_2 are not equal as manifolds but that they are diffeomorphic as manifolds.

b) The figure eight is the image of the mapping

$$F: (-\pi, \pi) \to \mathbb{R}^2, \qquad F(t) = (2\cos(t - \frac{\pi}{2}), \sin 2(t - \frac{\pi}{2})).$$

Show that F is an injective immersion but not an embedding.

Problem IV.

- a) Let M_1 , M_2 be smooth manifolds. Show that $M_1 \times M_2$ is diffeomorphic with $M_2 \times M_1$ in the standard product manifold structure.
- b) Let $F: \mathbb{R}P^2 \to \mathbf{Gr}(3,2)$ map a line in \mathbb{R}^3 to the plane perpendicular to it. Show that F is a diffeomorphism.

Problem V. Let M be a differentiable manifold.

- a) State the *n*-submanifold property for a subset $N \subset M$.
- **b)** Let $F: M \to P$ be a smooth mapping with constant rank k. Starting from the rank theorem, show that for any $p \in P$ the level set $N_p = \{q \in M \mid f(q) = p\}$ satisfies the n submanifold property (provided it is not empty).
- c) Show that the 3-dimensional unit sphere

$$S^{3} = \{(x, y, z, u) \in \mathbb{R}^{4} \mid x^{2} + y^{2} + z^{1} + u^{2} = 1\}$$

is an embedded submanifold of \mathbb{R}^4 .

- d) Show that the subgroup $SL(n) \subset Gl(n)$ of matrices with unit determinant is an embedded submanifold of Gl(n).
- e) Show that the group $SO(n) \subset Gl(n)$ of orthogonal matrices with unit determinant is an embedded submanifold of Gl(n).
- f) Let M, N be differentiable manifolds and let $b \in N$. Show that the mapping $i_b \colon M \to M \times N, i_b(p) = (p, b)$ is an embedding.

Problem VI. Let D be a derivation at $p \in M$.

- a) Suppose that $f: M \to \mathbb{R}$ is zero in some neighborhood of the point p. Show that Df = 0 (that is, that D is a local operator).
- **b)** Let $M = \mathbb{R}^n$ with the coordinates $x^1, \dots x^n$, and let D be a derivation at $0 \in \mathbb{R}^n$. Show that D can be expressed as a linear combination of the coordinate differentials $\partial/\partial x^i$, $i = 1, 2, \dots, n$. You may assume without proof that given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ with $f(0, \dots, 0) = 0$ then there are smooth functions $g_i: \mathbb{R}^n \to \mathbb{R}$ such that $f(x^1, \dots, x^n) = \sum_{i=1}^n x^i g_i(x^1, \dots, x^n)$.

Problem VII.

- a) Let $\pi_P \colon S^2 \to \mathbb{R}P^2$, $\pi_P(x, y, z) = [x, y, z]$, be the natural projection, where S^2 is the unit sphere and $\mathbb{R}P^2$ the projective space. Show that open sets in $\mathbb{R}P^2$ are precisely the images of open sets in S^2 under the mapping π_P .
- b) Show that the projection $\pi_P \colon S^2 \to \mathbb{R}P^2$ is smooth and everywhere of rank 2.
- c) Let $F: \mathbb{R}^2 \to \mathbb{R}P^2$ be the smooth map F(x,y) = [x,y,1], and let $X = x\partial_x y\partial_y$ be a smooth vector field on \mathbb{R}^2 . Prove that there is a smooth vector field on $\mathbb{R}P^2$

that is F-related to X, and find its coordinate expressions in the standard charts for $\mathbb{R}P^2$.

Solution. (4c) Let (\mathcal{U}_x, ψ_x) , (\mathcal{U}_y, ψ_y) , (\mathcal{U}_z, ψ_z) be the standard charts on $\mathbb{R}P^2$. Note that $F(\mathbb{R}^2) \subset \mathcal{U}_z$ and that $\psi_z \circ F(x,y) = (x,y)$. Hence we can define a vector field Y on \mathcal{U}_z that is F-related to X by $Y = (\psi_z^{-1})_*(X)$. We need show that Y can be extended to a smooth vector field on $\mathbb{R}P^2$.

The coordinate expression for Y in ψ_z coordinates is simply $X = x\partial_x - y\partial_y$. We will use coordinates (u^1, u^2) and (v^1, v^2) on the images $(= \mathbb{R}^2)$ of ψ_x and ψ_y , respectively. The u^1 -component of Y in ψ_x coordinates is given by

$$Y(\psi_x^1) = X(\psi_x^1 \circ \psi_z^{-1}) = X(\frac{y}{x}) = -2\frac{y}{x} = -2u^1.$$

Also,

$$Y(\psi_x^2) = X(\frac{1}{x}) = -\frac{1}{x} = -u^2.$$

Thus the coordinate expression for Y in ψ_x coordinates is

$$Y = -2u^1 \partial_{u^1} - u^2 \partial_{u^2}.$$

Note that the above expression defines a smooth vector field on all of \mathcal{U}_x . Similarly, the coordinate expression of Y in ψ_y coordinates is given by

$$Y = 2v^1 \partial_{v^1} + v^2 \partial_{v^2}.$$

It follows that Y extends to a smooth vector field on all of $\mathbb{R}P^2$.

Problem VIII.

- a) Let $X = x^2y\partial_y z\partial_z$, $Y = xy\partial_x + y\partial_y z^2\partial_z$ be vector fields on \mathbb{R}^3 . Compute [X,Y].
- b) Let (\mathcal{U}, ϕ) , (\mathcal{U}, ψ) be two coordinate systems on a 2-dimensional manifold M with the same domain $\mathcal{U} \subset M$, and suppose that the transition function is given by $(u^1, u^2) = \psi \circ \phi^{-1}(x^1, x^2) = ((x^1)^2 (x^2)^2, 2x^1x^2)$. A vector field X on M has the coordinate expression $X = x^2 \partial_{x^1}$ in the chart (\mathcal{U}, ϕ) . Find its coordinate expression in the chart (\mathcal{U}, ψ) .
- c) Find the expression for the vector field $X = y\partial_x$ in polar coordinates.

Problem IX. Let $M \subset \mathbb{R}^3$ be the paraboloid determined by the equation $z = x^2 + y^2$ with the subspace topology.

- a) Let $\varphi \colon M \to \mathbb{R}^2$ be given by $\varphi(x, y, z) = (x, y)$. Show that φ provides a global coordinate map for M.
- b) Let $F: M \to S^2$ be the map

$$F(x, y, z) = (1 + 4x^{2} + 4y^{2})^{-1/2}(-2x, -2y, 1).$$

Is F smooth?

c) Let $\mathbf{v} = \partial/\partial \varphi^1_{|(x,y,z)=(0,1,1)}$. Compute a coordinate expression for $F_*(\mathbf{v})$, where F is as in part b.

d) Let $f: M \to \mathbb{R}$, $f(x, y, z) = xyz^2$. Find the coordinate derivative

$$\frac{\partial}{\partial \varphi^1}_{|(1,-1,2)} f$$

at the indicated point.

Problem X. The equations $x = \rho \cos \theta \sin \phi$, $y = \rho \sin \theta \sin \phi$, $z = \rho \cos \phi$ define spherical coordinates ρ , θ , ϕ on \mathbb{R}^3 .

- a) Let $\mathbf{V} = \partial/\partial \phi$, $\mathbf{W} = \partial/\partial \rho$ be the coordinate partial derivative vector fields. Express \mathbf{V} , \mathbf{W} in Cartesian coordinates x, y, z.
- b) Let $\pi_P : \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}P^2$ be the projection. Find an expression for $\pi_{P*}(\mathbf{V})$ in suitable coordinates for $\mathbb{R}P^2$.

Problem XI. The complex projective space $\mathbb{C}P^1$ is defined as the set of all 1 dimensional complex subspaces of $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$, or alternatively, the orbit space of the action of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ on $\mathbb{C}^{2^*} = \mathbb{C}^2 \setminus \{(0,0)\}$ by multiplication. Write $\pi_P \colon \mathbb{C}^{2^*} \to \mathbb{C}P^1$ for the projection. Endow $\mathbb{C}P^1$ with the usual quotient topology so that a set $U \subset \mathbb{C}P^1$ is open if and only if the union of all lines constituting U (with the origin removed!) is open in \mathbb{C}^{2^*} .

- a) Explain why the quotient topology on $\mathbb{C}P^1$ is second countable and Hausdorff, and show that the projection map π_P is open.
- b) Define an atlas of coordinate charts on $\mathbb{C}P^1$ in analogy with the standard coordinate charts for $\mathbb{R}P^1$ constructed in class, and show that these are homeomorphisms. Also identify the image of each coordinate map.
- c) Find the transition functions (a.k.a. the change of coordinate maps) for the atlas for \mathbb{CP}^1 constructed in part b.
- d) Compute the rank of the projection π_P at every point in \mathbb{C}^{2^*} .
- e) Use part c to show that $\mathbb{C}P^1$ is diffeomorphic to the unit sphere S^2 .

Problem XII. Let Gr(n, 2) denote the Grassmannian space of 2-dimensional (vector) subspaces in \mathbb{R}^n .

a) Let $\mathcal{P} \in \mathbf{Gr}(n,2)$. Then any two bases $\{\mathbf{v}_1,\mathbf{v}_2\}$, $\{\mathbf{w}_1,\mathbf{w}_2\}$ for \mathcal{P} are related by

$$\mathbf{w}_i = \sum_{j=1,2} a_i^j \mathbf{v}_j, \qquad i = 1, 2, \tag{1}$$

where $(a_i^j) \in GL(2)$ is an invertible 2×2 matrix. Conclude that $\mathbf{Gr}(n,2)$ can be identified with the equivalence classes of linearly independent pairs of vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$, where $\{\mathbf{v}_1, \mathbf{v}_2\} \sim \{\mathbf{w}_1, \mathbf{w}_2\}$ provided that equation (1) holds for some $(a_i^j) \in GL(2)$.

b) Let GL(2) act on the space \mathcal{T} of $2 \times n$ matrices of rank 2 by left multiplication. Use part a to show that the orbit space $\mathcal{T}/GL(2)$ of the action can be identified with $\mathbf{Gr}(n,2)$.

- c) Equip \mathcal{T} with the subspace topology as an open subset of \mathbb{R}^{2n} , and equip $\mathbf{Gr}(n,2)$ with the usual quotient topology. Conclude that the projection $\pi_{Gr} \colon \mathcal{T} \to \mathbf{Gr}(n,2)$ is an open mapping and that $\mathbf{Gr}(n,2)$ is Hausdorff.
- d) Let $\mathcal{T}(i,j) \subset \mathcal{T}$ denote the set of rank 2 matrices whose minor consisting of the ith and jth columns is invertible. Show that the action of GL(2) on \mathcal{T} preserves the sets $\mathcal{T}(i,j)$ and that every GL(2) orbit in $\mathcal{T}(i,j)$ contains a unique matrix whose i,j-minor is the identity matrix.
- e) Conclude that every plane $\mathcal{P} \in \mathcal{T}(i,j)$ can be identified with a unique $(n-2) \times 2$ matrix. (For example, with n=4 and i=1, j=3, the 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ would correspond to the plane admitting the basis $\mathbf{v}_1 = (1, a, 0, b)$, $\mathbf{v}_2 = (0, c, 1, d)$.)
- f) Show that each $\mathbf{G}_{ij} = \pi_{Gr}(\mathcal{T}(i,j)) \subset \mathbf{Gr}(n,2)$ is open, and use part e to define coordinate maps φ_{ij} in each \mathbf{G}_{ij} . In particular, show that each $\varphi_{ij} \colon \mathbf{G}_{ij} \to \mathbb{R}^{2n-4}$ is a homeomorphism.
- g) Finally compute a representative sample of transition functions to conclude that $\mathbf{Gr}(n,2)$ forms a differentiable manifold.

Problem XIII. Let $\mathbb{C}P^n$ and $\mathbf{Gr}(n,2)$ denote the complex projective space and Grassmann manifold constructed in problems XI and XII.

- a) Let S^3 be the unit sphere in \mathbb{C}^2 identified with \mathbb{R}^4 , and let the Hopf map π_H : $S^3 \to S^2$ be the restriction of the projection π_P to S^3 . Describe the inverse image $\pi_H^{-1}(p)$ of a point $p \in S^2$.
- **b)** Show that the projection $\pi_{Gr}: \mathcal{T} \to \mathbf{Gr}(n,2)$ is differentiable.
- c) Show that each Gr(n, 2) is compact.

Problem XIV.

- a) Let φ_3 denote the standard coordinates on $\mathcal{U}_3 = \{[x, y, z] \in \mathbb{R}P^2 \mid z \neq 0\}$ given by $(u^1, u^2) = \varphi_3([x, y, z]) = (x/z, y/z)$. The coordinate differential $\mathbf{v} = \partial/\partial u^1$ corresponds to the directional derivative under some curve $\boldsymbol{\alpha}$ in $\mathbb{R}P^2$. Geometrically, a curve represents a 1-parameter family of lines in \mathbb{R}^3 . Describe this family for a curve $\boldsymbol{\alpha}$ of your choice.
- b) Let φ_{34} , $\begin{pmatrix} u_1^1 & u_1^2 \\ u_2^1 & u_2^2 \end{pmatrix} = \varphi_{34}(\mathcal{P})$, denote the coordinates for $\mathbf{Gr}(4,2)$ as constructed in problem XII. The coordinate differential $\mathbf{v} = \partial/\partial u_2^2$ corresponds to the directional derivative along some curve $\boldsymbol{\alpha}$ in $\mathbf{Gr}(4,2)$, that is, 1-parameter family of planes in \mathbb{R}^4 . Describe this family for a curve $\boldsymbol{\alpha}$ of your choice.

Problem XV.

- a) Let $L_A: Gl(m) \to Gl(m)$, $A \in Gl(m)$, be the left translation $L_A(X) = AX$. Describe $L_{A*}: T_{\mathbb{I}}Gl(m) \to T_AGl(m)$.
- **b)** Let $\Psi: Gl(m) \to Gl(m)$ be the mapping $\Psi(X) = X^T X$. Describe $\Psi_*: T_{\mathbb{I}}Gl(m) \to T_{\mathbb{I}}Gl(m)$.

- c) Let $\iota: Gl(m) \to Gl(m)$ denote the inverse $\iota(X) = X^{-1}$. Describe $\iota_*: T_{\mathbb{I}}Gl(m) \to T_{\mathbb{I}}Gl(m)$.
- **d)** Let $m: Gl(m) \times Gl(m) \to Gl(m)$, m(A,B) = AB denote the multiplication map. Show that the differential $m_*: T_{\mathbb{I}}Gl(m) \oplus T_{\mathbb{I}}Gl(m) \to T_{\mathbb{I}}Gl(m)$ is given by $m_*(V,W) = V + W$.

Problem XVI.

- a) Show that [fX, gY] = fg[X, Y] + f(Xg)Y g(Yf)X, where $X, Y \in \mathcal{X}(M)$.
- **b)** Let $F: M \to N$ be smooth, where M, N are differentiable manifolds. Suppose that vector fields $X, Y \in \mathcal{X}(M)$ on M are F-related to vector fields $\widehat{X}, \widehat{Y} \in \mathcal{X}(N)$. Show that the bracket [X, Y] is F-related to $[\widehat{X}, \widehat{Y}]$.
- c) Let M, N be smooth manifolds and let $F: M \to N, G: N \to M$ be smooth maps satisfying $G \circ F = \text{id}$. Given $Y \in \mathcal{X}(N)$, define X_p by $X_p = G_*(Y_{F(p)})$. Show that the assignment $p \to X_p$ defines a smooth vector field on M.
- d) Let F and G be as in part c. Show that $F(M) \subset N$ is an embedded submanifold.

Problem XVII.

- a) Let $F: M \to N$ be smooth, where M, N are differentiable manifolds, and suppose that $F_*: T_pM \to T_{F(p)}N$ is an isomorphism for all $p \in M$. Prove that F is an open mapping. Show, in addition, that F must be surjective if M is compact and N is connected.
- b) Suppose that $F: M \to N$ is of constant rank and surjective. Prove that F is a smooth submersion.

Problem XVIII.

- a) Let $F: \mathbb{R}^m \to \mathbb{R}P^m$ be defined by $F(x^1, x^2, \dots, x^m) = [x^1, x^2, \dots, x^m, 1]$. Show that F is a smooth map onto a dense open subset of $\mathbb{R}P^m$.
- **b)** Define similarly $G: \mathbb{C}^m \to \mathbb{C}P^m$ by $G(z^1, z^2, \dots, z^m) = [z^1, z^2, \dots, z^m, 1]$. Show that G is a diffeomorphism onto a dense, open set of $\mathbb{C}P^m$.
- c) Let $\widehat{p}(z)$ be a complex polynomial in one variable and let $G \colon \mathbb{C}^1 \to \mathcal{U} \subset \mathbb{C}P^1$ be as in part b, where \mathcal{U} denotes the image of G. Define $p \colon \mathcal{U} \to \mathcal{U}$ by the condition that $p \circ G = G \circ \widehat{p}$. Show that p can be extended to a smooth map on the entire $\mathbb{C}P^1$.

Problem XIX. Let $\mathcal{U} \subset \mathbb{R}^2$ be an open set. A proper coordinate patch is a one-to-one immersion $\mathbf{x} \colon \mathcal{U} \to \mathbb{R}^3$ such that the inverse function $\mathbf{x}^{-1} \colon \mathbf{x}(\mathcal{U}) \to \mathcal{U}$ is continuous in the subspace topology of $\mathbf{x}(\mathcal{U})$. A surface is a subset $S \subset \mathbb{R}^3$ equipped with the subspace topology such that for each point $p \in S$, there is a proper coordinate patch whose image contains a neighborhood of p in S. Show that a surface is a differentiable manifold.

Problem XX.

a) Show that the set of all lines in \mathbb{R}^2 can be identified with an open subset of $\mathbb{R}P^2$.

- **b)** Show that the set of all planes in \mathbb{R}^3 can be identified with an open subset of $\mathbb{R}P^3$.
- c) Show that the space of all *oriented* lines in \mathbb{R}^3 can be identified with TS^2 .