Olimpiada de Fizică Etapa pe județ 14 februarie 2015

Barem

Pagina 1 din 8

Subiect I: O combinație de Optică geometrică	Parţial	Punctaj
Barem subject I		10 p
A. O oglindă sferică cu ecran înclinat		4,50 p
1) Desen cu imaginea A_1 pentru A și B_1 pentru B , în care $CV = R = 2f$. Fie H piciorul perpendicularei coborâte din B pe axul optic principal și H_1 piciorul perpendicularei coborâte din B_1 pe axul optic	0,25 p	
principal. Notăm $BH = x$ și $B_1H_1 = y$ Conform enunțului, $AV = a = 4f/3$ și unghiul $VAB \equiv \varphi = 60^\circ$. Notăm $VA_1 = b$. Formula	0,25p	
punctelor conjugate ne dă $b = af/(a-f)$	0,75 p	4,50 p
punctelor conjugate obținem $b_1 = a_1 f/(a_1 - f)$. Din aceste relații rezultă că $b/b_1 = (a/a_1) \cdot [(a_1 - f)/(a - f)]$ Conform desenului $tg\varphi = x/(a - a_1)$, $tg\psi = y/(b_1 - b)$.	0,75 p 0,25 p 0,50 p	
Din asemănarea unor triunghiuri sau, ținând cont că unghiurile din V sunt egale (raza de lumină BV se reflectă pe direcția VB_1) avem $y/x = b_1/a_1$, adică $y = xb_1/a_1$	0,50 p	
Înlocuind acest y în expresia lui $tg\psi$ și ținând cont că $x=(a-a_1)tg\phi$ obținem: $tg\psi=(a/f-1)tg\phi$. Cu $a/f=4/3$ rezultă $tg\psi=(1/3)tg60^\circ=1/\sqrt{3}$, adică $\psi=30^\circ$. 2) Formula lui b ne dă $b=f/(1-f/a)=f/(1-3/4)=4f$.	0,75 p 0,25 p 0,25 p	
B. Convergența unei lentile subțiri		4,50 p
Imaginile captate pe ecran fiind reale tragem concluzia că lentila este una convergentă. Dacă $-x_1$ este distanța lentilă-obiect (vezi figura), putem spune că $-x_1 = x_1 > f$ în ambele situații. Cele două posibilități sunt:	0,25 p	,,e
a) $f < x_1 < 2f$, imaginea obiectului este mărită; b) $2f < x_1 < \infty$, imaginea obiectului este micșorată Fie x_2 distanța de la lentilă la imagine (ecran). Avem	0,25 p	
relația $-x_1 + x_2 = x_1 + x_2 = L$. Cu $x_2 = L + x_1 = L - x_1 $, din formula $1/(-x_1) + 1/x_2 = 1/ x_1 + 1/x_2 = 1/f$ a punctelor (planelor)	0,25 p	4,50 p
conjugate optic rezultă ecuația de gradul doi $ x_1 ^2 - L x_1 + Lf = 0$ 0,50+0,50=1,00 p	1,00 p	
cu soluțiile $ x_1 _{a,b} = (L/2)[1 \pm \sqrt{1 - 4f/L}]$ (*).	0,25 p	
Soluția cu (+) corespunde cazului b) - imagine micșorată. O notăm cu $ x_1 _b$	0,25 p 0,25 p	
Mărirea transversală (în modul) este dată de formula $m = x_2 / x_1 = (L/ x_1) - 1$	0,25 p 0,25 p	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

Barem

Pagina 2 din 8

Cu ajutorul relațiilor (*) obținem $k = \left[(L - 2f) + \sqrt{L^2 - 4Lf} \right] / \left[(L - 2f) - \sqrt{L^2 - 4Lf} \right]$	0,50 p	
Ultima formulă se poate scrie și astfel: $k = (1/f^2) \left[(L/2 - f) + \sqrt{(L/2)^2 - fL} \right]^2$.		
Izolând radicalul şi ridicând la pătrat, pentru a-l putea explicita pe f , obținem		
$f = L \frac{\sqrt{k}}{(1 + \sqrt{k})^2}$, adică $C = \frac{1}{f} = \frac{(1 + \sqrt{k})^2}{L\sqrt{k}}$	0,75 p	
Numeric $C = 5$ dioptrii.	0,25 p	
Oficiu	D 1	1
Subject II: Hochei pe gheață	Parţial	Punctaj
Barem subject II 1)		10
În cazul ciocnirii perfect elastice se conservă energia cinetică și impulsul mecanic: înainte de ciocnire \vec{v}_0 1 2 1 2		
$\frac{mv_0^2}{2} = \frac{mv_1^2}{2} + \frac{mv_2^2}{2}, \text{ deci:} v_0^2 - v_1^2 = v_2^2. \text{ Din relațiile } v_0 \pm v_1 = v_2 \text{ rezultă:} v_1 = 0 \\ mv_0 = mv_1 + mv_2 v_0 - v_1 = v_2. \text{ Din relațiile } v_0 \pm v_1 = v_2 \text{ rezultă:} v_2 = v_0. \text{ (pucul 1)} $ se oprește, iar pucul 2, inițial în repaus, se deplasează cu v_0).	0,50 p	1,00 p
În cazul ciocnirii plastice se conservă numai impulsul mecanic: $mv_0 = 2mv$, v_0 1 2 după ciocnire v_0 1 2		
deci cele două corpuri se		
vor deplasa împreună cu $v = \frac{v_0}{2}$.	0,50 р	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 14 februarie 2015

Barem

Pagina 3 din 8

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

14 februarie 2015

Barem

Pagina 4 din 8

3)

a) În cazul ciocnirilor perfect elastice: $t_{elastic} = \frac{(n-1)d}{v_1}$.

0,25 p

b) În cazul ciocnirilor plastice:

- după prima ciocnire: $mv_1 = 2mv_2 \Rightarrow v_2 = \frac{v_1}{2}$;
- după a doua ciocnire: $2mv_2 = 3mv_3 \Rightarrow v_3 = \frac{2}{3}v_2 = \frac{2}{3}\frac{v_1}{2} = \frac{v_1}{3}$;
- după a treia ciocnire: $3mv_3 = 4mv_4 \Rightarrow v_4 = \frac{3}{4}v_3 = \frac{3}{4}\frac{v_1}{3} = \frac{v_1}{4}$;

1,50 p

-
- după a "n-1"-a ciocnire:

-
$$(n-1)mv_{n-1} = nmv_n \Rightarrow v_n = \frac{n-1}{n}v_{n-1} = \frac{n-1}{n}\frac{v_1}{n-1} = \frac{v_1}{n}$$
.

Intervalul de timp după care este lovit pucul n este:

$$t_{plastic} = \frac{d}{v_1} + \frac{d}{v_2} + \frac{d}{v_3} + \dots + \frac{d}{v_{n-1}} = d(\frac{1}{v_1} + \frac{2}{v_1} + \frac{3}{v_1} + \dots + \frac{n-1}{v_1}) = \frac{d}{v_1} \sum_{i=1}^{n-1} i = \frac{d}{v_1} \frac{(n-1)n}{2}.$$
 1,00 p

Se observă că:

$$\frac{t_{plastic}}{t_{elastic}} = \frac{\frac{d}{v_1} \frac{(n-1)n}{2}}{\frac{d}{v_1} (n-1)} = \frac{n}{2}.$$

$$\mathbf{0,25 p}$$

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporţional cu
conţinutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a
ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

14 februarie 2015

Barem

Pagina 5 din 8

Pagina 5 din 8	-	
4) Considerăm energia potențială elastică nulă atunci când resortul nu este deformat, iar nivelul de zero al energiei potențiale gravitaționale la nivelul suprafeței orizontale pe care este așezat pucul inferior. Pucul inferior se va desprinde de suprafața orizontală atunci când		
forța cu care resortul acționează asupra sa anulează efectul greutății:		
$kx_b = mg$, unde x_b reprezintă alungirea resortului față de starea nedeformată, I_0 . În acest caz, energia potențială a sistemului are expresia:		
$E_{pb} = mg(I_0 + x_b) + \frac{k}{2}x_b^2$.	0,25 p	
Cazul a) din figură se referă la momentul în care vom înceta acțiunea forței.		1,50 р
Expresia energiei potențiale este: $E_{pa} = mg(I_0 - x_a) + \frac{k}{2}x_a^2$	0,25 p	2,5 ° P
Comprimarea x_a se datorează acțiunii forței F și a greutății pucului superior, deci		
$kx_a = F_{\min} + mg$.	0,25 p	
Deoarece în sistem acționează numai forțe conservative, energia mecanică se		
conservă: $E_{pa} = E_{pb} \Rightarrow mg(I_0 + x_b) + \frac{k}{2}x_b^2 = mg(I_0 - x_a) + \frac{k}{2}x_a^2$	0,25 p	
Înlocuind $x_a = \frac{F_{\min} + mg}{k}$ și $x_b = \frac{mg}{k}$ și efectuând calculele se obține: $F_{\min} = 2mg$,		
$\det m = \frac{F_{\min}}{2g}.$	0,50 p	
5) În cazul în care bucata de gheață este m ,;		
imobilă, din conservarea		
energiei se obține:		
$\frac{mv^2}{2} = mgh_1 \Rightarrow h_1 = \frac{v^2}{2g}, \text{ respectiv: } v = \sqrt{2gh_1}.$	0,75 p	
În cazul în care bucata de gheață se poate mișca, scriem relațiile legilor de conservare ale energiei mecanice și impulsului între starea inițială, în care pucul se îndreaptă spre		
bucata de gheață, și starea finală, în care pucul a ajuns la înălțimea maximă și este în		
repaus față de bucata de gheață: $\frac{mv^2}{2} = mgh_2 + \frac{(M+m)v'^2}{2}, \qquad \dots$	0,75 p	2,00 p
repaus față de bucata de gheață: $2 my = (M + m)v'$ 2 ,	0,75 p	
mv = (m + m)v unde am notat cu v' viteza comună a pucului și a blocului de gheață în momentul în		
care pucul se găsește la înălțimea maxima. Eliminând v, se obține:		
$h_2 = \frac{v^2}{2g} \frac{M}{M+m} = h_1 \frac{M}{M+m}$	0,25 p	
Se găsește imediat:		
$M = m \frac{h_2}{h_1 - h_2} . \qquad \dots$	0,25 p	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe judet

14 februarie 2015

Barem

Pagina 6 din 8

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

14 februarie 2015 **Barem**

Pagina 7 din 8

$p = kV$ ne dă $p_2/V_2 = p_1/V_1$ și, astfel, termenii 2 și 3 din interiorul parantezei drepte se reduc.		
Rămâne $L_b = (1/2)[p_2V_2 - p_1V_1] = (\nu R/2)[T_2 - T_1] = (mR/2\mu)\Delta T = \delta Q$	1,00 p	
Masa kilomolară a gazului este $\mu = mR\Delta T/2\delta Q = 0.1 \cdot 8310 \cdot 4/(2 \cdot 831) = 2 \text{ kg/kmol}$		
Este vorba despre hidrogen molecular	0,25 p	
B. O succesiune de trei procese	0,25 p	4,00 p
1).Cele două reprezentări și relațiile dintre parametrii celor trei stări -		
1punct=0,25(reprezentarea.1)+0,25(reprezentarea.2)+0,25(relațiile dintre		
temperaturi)+0,25(relațiile dintre presiuni).	1,00 p	
Desenul din enunț ne spune următoarele: procesul 1-2 este $T_{3,4}$ $\frac{4}{1}$	1,00 p	
izobar, procesul 2-3 este izocor, iar procesul 3-4 este izoterm.		
Reprezentările (T, p) și (p, V) sunt cele din figurile alăturate.		
Din ecuația de stare a gazelor ideale, $pV = vRT$, și din graficul		
enunțului rezultă că $p_3 = 2p_{1,2,4}$, respectiv că $T_2 = 2T_1$, și		
$T_3 = T_4 = 4T_1$. Relația volumelor este cea preluată de pe		
desenul din enunț: $V_1 = V_0$, $V_2 = V_3 = 2V_0$, $V_4 = 4V_0$.		
2). Astfel $Q_{12} = \upsilon C_p(T_2 - T_1) = \upsilon C_p T_1 = \upsilon(\gamma C_v) T_1$, cu		
$\gamma = C_D / C_V > 1 $	0,50 p	
respectiv $Q_{23} = \nu C_{\nu} (T_3 - T_2) = \nu C_{\nu} (4T_1 - 2T_1) = 2\nu C_{\nu} T_1$	0,50 р	
În consecință, $Q_{23}/Q_{12} = 2/\gamma > 1$ (căci, pentru orice gaz ideal,	0,50 p	
coeficientul adiabatic γ nu poate fi mai mare decât 5/3≈1,67).		
Aşadar $Q_{23} > Q_{12}$	0,40 p	
În procesul izoterm 3-4 avem $\Delta U_{34} = 0$ și, în consecință		
$Q_{34} = L_{34} = \nu R T_{3,4} \ln(V_4 / V_3) = 4\nu R T_1 \ln 2$	0,50 p	
Evaluăm raportul $Q_{34}/Q_{23} = (2Rln 2)/(C_v)$, ținând cont de formula Robert-Mayer	0.50	
$R = C_p - C_v = (\gamma - 1)C_v$. Obţinem $Q_{34}/Q_{23} = 2(\gamma - 1)\ln 2$	0,50 p	
Cea mai mare valoare a acestui raport corespunde lui $\gamma = 5/3$ și este		
$[Q_{34}/Q_{23}]_{\text{max}} = (4/3) \ln 2 \approx 0.92$, adică o valoare subunitară. Prin urmare $Q_{23} > Q_{34}$	0,30 p	
Cea mai mare cantitate de căldură primită a fost cea din procesul izocor 2-3	0,30 p	
Observație: Compararea schimburilor de căldură din procesele izocor și izoterm se putea		
face și altfel. Pe al doilea grafic se vede că $Q_{34} = L_{34} < Aria trapez$. Putem scrie		
Aria $trapez = (1/2)(p_3 + p_4)(2V_0) = (2p_1 + p_1)V_0 = 3p_1V_0 = 3vRT_1$. Se majorează raportul		
$Q_{34}/Q_{23} < (Aria\ trapez)/(2\upsilon C_{v}T_{1}) = (3/2)(\gamma-1)$. $C\hat{a}nd \ \gamma = 5/3 \ (adic\check{a} \ \gamma \ are \ valoarea$		
$maxim\ posibil\ \ddot{a}\ -\ cazul\ gazelor\ monoatomice),\ raportul\ \left[(Aria\ trapez)/(2\upsilon C_{v}T_{1})\right] =1.\ \hat{I}n$		
toate celelalte cazuri, raportul este subunitar. Așadar, în general, $Q_{23} > Q_{34}$.		
Concluzia este aceeași: dintre cele trei, cea mai mare căldură primită este Q_{23} (în		
procesul izocor).		

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

14 februarie 2015 Barem

Pagina 8 din 8

Subiect propus de:

Prof. univ. dr. Uliu Florea, Craiova Prof. Pop Ioan, Colegiul Național "Mihai Eminescu" Satu Mare Prof. Solschi Viorel, Colegiul Național "Mihai Eminescu" Satu Mare

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.