

Computer Vision

Lecture 04: Object detection pipeline - 1

Computer vision applications

Detecting object locations. [Faster-RCNN NIPS'15]

Computer vision applications

Detecting object locations and segmentation. [Mask RCNN ICCV'17]

Object detection

Considering the multi-scales, sliding window is too slow.

Face detection (2001)

Viola & Jones, CVPR'01

Face detection (2001)

Viola & Jones, CVPR'01

Find image regions that are likely to contain objects.

E.g. Selective search. (1000 regions in a few seconds on CPU).

Oversegmented Image

Considering Color, Texture, Size, Shape similarities.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image

Output: Set of object location hypotheses L

Obtain initial regions $R = \{r_1, \dots, r_n\}$ using [13]

Initialise similarity set $S = \emptyset$

foreach *Neighbouring region pair* (r_i, r_j) **do**

Calculate similarity $s(r_i, r_j)$ $S = S \cup s(r_i, r_j)$

 $S = S \cup s(r_i, r_j)$

while $S \neq \emptyset$ do

Get highest similarity $s(r_i, r_j) = \max(S)$

Merge corresponding regions $r_t = r_i \cup r_j$

Remove similarities regarding $r_i : S = S \setminus s(r_i, r_*)$

Remove similarities regarding $r_j : S = S \setminus s(r_*, r_j)$

Calculate similarity set S_t between r_t and its neighbours

 $S = S \cup S_t$

 $R = R \cup r_t$

Extract object location boxes L from all regions in R


```
import cv2
from google.colab.patches import cv2 imshow
import random
image = cv2.imread("/content/unist.jpg")
ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation()
ss.setBaseImage(image)
ss.switchToSelectiveSearchFast()
rects = ss.process()
for i in range(0, len(rects), 100):
  output = image.copy()
  for (x, y, w, h) in rects[i:i + 100]:
    color = [random.randint(0, 255) for j in range(0, 3)]
    cv2.rectangle(output, (x, y), (x + w, y + h), color, 2)
cv2 imshow(output)
```


R-CNN (CVPR'13)

R-CNN (CVPR'13)

Regions of interest From selective search (~2000).

R-CNN (CVPR'13)

Classify each region with SVMs.

Forward with ImageNet-trained CNNs.

Regions of interest From selective search (~2000).

Limitations:

- 1) Not end-to-end trainable.
- 2) Still slow.

Fast R-CNN (ICCV'15)

Fast R-CNN (ICCV'15)

Fast R-CNN (ICCV'15)

$$L(p, u, t^u, v) = L_{cls}(p, u) + \lambda [u \ge 1] L_{loc}(t^u, v),$$

$$p=(p_0,\ldots,p_K).$$

$$t^u = (t_{\mathsf{x}}^u, t_{\mathsf{y}}^u, t_{\mathsf{w}}^u, t_{\mathsf{h}}^u)$$

$$L_{\rm cls}(p,u) = -\log p_u$$

$$L_{\text{loc}}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \text{smooth}_{L_1}(t_i^u - v_i),$$

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise,} \end{cases}$$

Faster R-CNN (NIPS'15)

Solve the bottleneck in the region proposal of the Fast-RCNN

Comparisons

R-CNN

- Extract image regions
- 1 CNN per region (2000 CNNs)
- Classify region-based features

SPP-net & Fast R-CNN (the same forward pipeline)

- 1 CNN on the entire image
- Extract features from feature map regions
- Classify region-based features

System	Time	07 data	07 + 12 data
R-CNN	~ 50s	66.0	-
Fast R-CNN	~ 2s	66.9	70.0
Faster R-CNN	~ 198ms	69.9	73.2

Detection mAP on PASCAL VOC 2007 and 2012, with VGG-16 pre-trained on ImageNet Dataset

Recurrent Neural Network

Limitations of RNN

- Non-trivial to parallelize
- Vanishing gradient

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \ ilde{C} = tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * tanh(C_t)$$

LSTM

- Forget gate: How much retain past info.
- Input gate: How much use the new info.
- Output gate: How much use the new output.

 Become robust by learning how to forget and retain.

Seq2seq using LSTMs

https://wikidocs.net/31379

Figure 1: The Transformer - model architecture.

Attention is all you need, NIPS, 2017

Self-attention

Self-attention

https://wikidocs.net/31379

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_\text{h}) W^O \\ \text{where head}_\text{i} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

Self-attention

https://wikidocs.net/31379

• Multi-head results are concatenated and they are multipled with $W^{\cal O}$ to output the final attention matrix.

Masked attention

Figure 1: The Transformer - model architecture.

Cross attention

Figure 1: The Transformer - model architecture.

DETR

- Applying the Transformer for Object Detection Task.
- Better performance than Faster RCNN without any post-processing.

Input Image : (3, H, W)

Image feature : $(2048, H_0, W_0)\,$, $\,H_0, W_0 = H/32, W/32\,$

ightharpoonup Flatten and projection (d, H_0W_0)

object queries : (d, N)

output: N sets of <class, bbox>

End-to-end object detection with Transformers, ECCV'20

DETR

DETR Transformer

Decoder Structure

Bipartite matching

출처: https://www.youtube.com/watch?v=hCWUTvVrG7E

Bipartite matching

1) Find the optimal prediction set:

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)}),$$

$$\mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)}) = -\mathbb{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)})$$

2) Minimize the loss for the optimal prediction set:

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

Result

Model	GFLOPS/FPS	#params	AP	AP ₅₀	AP ₇₅	AP_{S}	AP_{M}	$\overline{\mathrm{AP_L}}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

