Writing Assignment 1. Let $\phi \colon \mathbf{R}^2 \to \mathbf{C}$ be given by $\phi(x,y) = x + iy$ and let $f \colon \mathbf{C} \to \mathbf{C}$ be given by $f(z) = ze^{i\theta_0}$, where θ_0 is a fixed real constant. Find a nice way to write $\hat{f} \colon \mathbf{R}^2 \to \mathbf{R}^2$, where $\hat{f} = \phi^{-1} \circ f \circ \phi$. The goal of this writing is not just to write down a correct expression for \hat{f} , but also to explain how you derive it and why it is natural.

Sample solution. Let f, ϕ be as given above, and let $(x, y) \in \mathbf{R}^2$. The heart of the calculation is the evaluation of f in Cartesian form. Using Euler's formula to write $e^{i\theta_0} = \cos \theta_0 + i \sin \theta_0$, we have

$$f(x+iy) = (x+iy)(\cos\theta_0 + i\sin\theta_0)$$

= $(x\cos\theta_0 - y\sin\theta_0) + i(x\sin\theta_0 + y\cos\theta_0).$ (1)

Now we evaluate \hat{f} .

$$\hat{f}(x,y) = \phi^{-1}(f(\phi(x,y)))$$

$$= \phi^{-1}(f(x+iy)) \quad \text{(evaluating } \phi)$$

$$= \phi^{-1}((x\cos\theta_0 - y\sin\theta_0) + i(x\sin\theta_0 + y\cos\theta_0)) \quad \text{(substituting } (1))$$

$$= (x\cos\theta_0 - y\sin\theta_0, x\sin\theta_0 + y\cos\theta_0) \quad \text{(evaluating } \phi^{-1})$$

Thus we have the desired formula for \hat{f} .

$$\hat{f}(x,y) = (x\cos\theta_0 - y\sin\theta_0, x\sin\theta_0 + y\cos\theta_0)$$

We know that the effect of f is rotation of the complex plane \mathbf{C} about 0 by θ_0 radians. The function ϕ matches our usual picture of \mathbf{R}^2 with the usual picture of \mathbf{C} , so \hat{f} is rotation of the real plane \mathbf{R}^2 about the origin by θ_0 radians.