[Karras19-CVPR] A Style-Based Generator Architecture for Generative Adversarial Networks

Abstract

- 1. 본 논문은 GAN 을 위한 새로운 generator 를 제안한다.
- 2. Interpolation quality 와 disentanglement 를 정량화 하기 위해 두 가지 새로운 기법을 제안한다.
- 3. 새로운 데이터셋을 만들었다.

• GAN 의 한계점

- Generator 가 동작하는 원리를 구체적으로 알기 어렵다.
- Latent space 와 관련된 연구가 부족하다.
- 일반적으로 입증된 latent space interpolation 방법들은 서로 다른 generator 들을 비교할 수 있는 **정량적인 방법**이 없다.

• StyleGAN 의 특징1

- (1) 이미지 합성을 control (2) Generator 구조만 설계
 - 본 논문은 style transfer 논문[27]에서 영감을 받아 generator 가 이미지 합성 과정을 control 할 수 있도록 만들었다.
 - 본 논문은 generator 의 구조에만 신경 썼고, discriminator 와 loss function 은 건드리지 않았다.

• StyleGAN 의 특징2

Disentanglement

- 본 논문의 generator 는 중간 latent space 에 input latent code 를 삽입하는데, 이것은 **variation 을 control** 하는 것과 밀접한 관련이 있다.
- Input latent space 는 training data 의 확률 밀도를 따라야 하고, 이것은 곧 entanglement 를 이끈다.
- 그러나 본 논문은 input latent space 가 training data 의 확률 밀도를 따르도록 설계하지 않았다.
- Disentanglement 에 대한 자세한 설명은 나중에 그림과 함께 하겠다.

- StyleGAN 의 특징3
 - (1) 새로운 Disentanglement 측정방법 제시 (2) Dataset 제작
 - latent space disentanglement 를 측정하는 새로운 두 가지 방법을 제시한다.
 - FFHQ dataset 을 제안한다.

Traditional Generator

Latent code z 는 오직 feed-forward network 의 첫 번째 레이어 만을 통과한다.

Style-based generator

학습된 constant 가 입력으로 들어간다.

Style-based generator

- Mapping network 인 $f: \mathcal{Z} \to \mathcal{W} \vdash_{\mathcal{Z}} \in \mathcal{Z}$ 로 $w \in \mathcal{W}$ 를 만든다.
- *2* 와 *№* 는 모두 512차원이고, *f* 는 8-layer MLP 로 이루어진다.

Style-based generator

• w는 학습된 affine transformation(A) 을 통해서 'style' 이라고 불리는 $y=(y_s,y_b)$ 를 생성하고, 생성 된 y는 AdalN 을 control 한다. (i는 channel)

AdaIN(
$$\mathbf{x}_i, \mathbf{y}$$
) = $\mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$,

Style-based generator

- 확률적인 변이(주근깨, 주름, 머리카락 등)를 생성하기 위해 noise를 도입했다.
- 노이즈는 상관관계가 없는 가우시안 노이즈로 구성된 1개의 channel 을 가진 이미지이다.
- 학습된 per-channel scaling factors 를 노이즈 이미 지에 적용(B)한 결과는 합성곱의 출력과 더해진다.

Style-based generator

- g는 18개의 레이어로 이루어진다. $(4^2 1024^2 \rightarrow$ 각 resolution 당 2개의 convolution = $9 \times 2 = 18$)
- 마지막 레이어의 출력은 분리된 1×1 합성곱을 사용하여 RGB 로 변환된다.

2.1. Quality of generated images

2.1. Quality of generated images

- 다양한 generator 들을 사용해서 FID 를 계산하였다.
- Truncation trick 을 사용하지 않았다.

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

- (A) PGGAN
- (B) Bilinear up/downsampling operations
- (C) Mapping Network + AdalN
- (D) 4 x 4 x 512 상수 텐서를 입력으로 사용
- (E) 노이즈 입력 사용
- (F) Mixing Regularization

2.1. Quality of generated images

- 본 논문에서 제안한 style-based generator 를 사용해서 생성한 이미지들이다.
- Truncation trick 를 사용했다.

3. Properties of the style-based generator

- 인접한 style 사이의 연관성을 없애기 위해 Mixing regularization 을 사용했다.
- Training 동안에 "머리가 검은색인 사람은 항상 안경을 꼈다"와 같은 작은 artifact 가 만들어졌다고 하자.
 - 하나의 z 에서 나온 하나의 w 로만 계속 학습을 하면 안경을 낀 사람은 머리색을 전부 검은색으로 만들어버린다. 검은색 머리와 안경 사이의 correlation 이 생긴 것이다.
 - 작은 스케일의 style 과 큰 스케일의 style 이 w 단에서 correlation 이 생기는 것을 방지하기 위해 style mixing 연산을 사용해 머리가 노란색인 사람도 안경을 낄 수 있게 만들었다.

Mixing	Number of latents during testing			Number of latent	
regularization	1	2	3	4	
Е 0%	4.42	8.22	12.88	17.41	
50%	4.41	6.10	8.71	11.61	
F 90%	4.40	5.11	6.88	9.03	
100%	4.83	5.17	6.63	8.40	

• Mixing regularization 을 많이 사용할 수록 FID 값이 작아진다.

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

각 latent code 를 사용해서 두 개의 이미지 집합을 만들었다. Source A & Source B

Source B 의 특정 style 을 복사하고 나머지 부분에는 source A 의 style 을 복사해서 이미지들을 생성했다.

Coarse spatial resolutions $(4^2 - 8^2)$ 의 styles 을 B 에서 복사

- High-level aspects (pose, general hair style, face shape, and eyeglasses)을 B 에서 복사했다.
- Finer facial features (eyes, hair, lighting 의 color)는 A 에서 복사했다.

Middle resolutions $(16^2 - 32^2)$ 의 styles 를 B 에서 복사

- Smaller scale facial features, hair style, eyes open/closed 를 B 에서 복사했다.
- Pose, general face shape, and eyeglasses 를 A 에서 복사했다.

Fine styles $(64^2 - 1024^2)$ 를 B 에서 복사

• 주로 color scheme 과 microstructure 를 B 에서 복사했다.

• 이미지를 건드리지 않고 stochastic variation 을 랜덤으로 이미지에 추가할 수 있다.

- Stochastic variation 의 예시를 나타낸다.
 - (b) 다양한 입력 노이즈를 적용한 결과이다. 전체적인 외모는 거의 동일하지만, 머리카락이 다르다.
 - (c) 100 개의 다른 realizations 을 통해 각 픽셀의 표준편차를 구하고, 노이즈에 영향을 받는 부분을 강조했다. 머리카락, 실루엣, 배경, 눈 반사 등이 영향을 받는다. Identity 나 pose 같은 전체적인 측면은 stochastic variation 에 영향을 받지 않는다.

- 본 논문의 generator 의 여러 레이어에 noise 를 넣었을 때의 효과를 나타낸다.
 - (a) Noise 가 모든 레이어에 적용되었다.
 - (b) Noise 가 사용되지 않았다.
 - (c) Noise 가 fine layer 인 $64^2 1024^2$ 레이어에서 사용되었다.
 - (d) Noise 가 course layer $9 \cdot 4^2 32^2$ 레이어에서 사용되었다.
 - Coarse noise 는 머리카락에서 굵은 곱슬을 만들고 배경이 더 크게 나타난다.
 - 반면 fine noise 는 머리카락에 얇은 곱슬을 만들고, 더 자세한 배경을 만들고, 모공도 만든다.

3.3. Separation of global effects from stochasticity

3.3. Separation of global effects from stochasticity

- Style 을 바꾸는 것
 - 이미지의 전체적인 부분에 영향을 미친다.
- Noise 를 추가하는 것
 - 중요하지 않은 stochastic variation에 영향을 미친다.

4. Disentanglement studies

4. Disentanglement studies

- Disentanglement 는 선형적으로 잘 분리되어 있는 것을 말한다.
- 예: 성별 & 머리카락 길이
 - (a) "긴 머리의 남성"이 training set 에 없다.
 - (b) Training set 의 분포를 그대로 고정된 분포인 Z 에 매핑했다. 억지로 training set 의 분포를 Z 에 매핑하다 보니 Z 와 image feature 의 매핑 이 곡선이 되었다. Latent space 의 차원을 조금씩 움직였을 때, 짧은 머리 다음에 바로 긴 머리가 나오는 등 매우 예측하기 힘든 일이 일어난다.
 - (c) 중간 latent space \mathcal{W} 는 고정된 분포에 따라 샘플링 할 필요가 없다. \mathcal{W} 는 학습된 매핑 f(z) 에 의해 유도되고, 이 맵핑은 latent space 의 subspace 를 선형적을 만든다.

4. Disentanglement studies

- Disentanglement 를 정량화 하기 위해 최근에 제안된 방법들은 input images 를 latent codes 로 매핑하는 encoder network 를 요구한다. 이 방법들은 본 논문의 baseline GAN 이 그러한 encoder 가 부족하기 때문에 본 논문의 목적에는 부적합하다.
- 본 논문은 두 개의 새로운 disentanglement 를 정량화 하는 방법을 제안한다.

4.1. Perceptual path length

4.1. Perceptual path length

• Latent-space vectors 를 interpolation 을 하면, 이미지에서 non-linear 한 변화를 만든다.

- 이것은 latent space 가 entangled 되어 있고 variation 의 요인이 적절히 분리되어 있지 않다는 것을 의미한다.
- Disentanglement 를 정량화 하기 위해, latent space 에서 **interpolation** 을 수행할 때 이미지가 얼마나 변하는지 측정할 것이다.

4.1. Perceptual path length

Perceptually-based pairwise image distance

- 두 개의 VGG16 embeddings 사이에서 weighted difference 를 계산한다.
- 먼저, Latent space interpolation path 를 linear segments 로 나눈다.
- Total perceptual length 는 각 segment 에 대한 perceptual differences 의 합으로 정의한다.

• 모든 가능한 endpoints 에 대해 latent space Z 에서 perceptual path length 이 평균은 다음과 같다.

$$l_Z = \mathbb{E}\left[\frac{1}{\epsilon^2}d(G(slerp(z_1, z_2; t)), G(slerp(z_1, z_2; t + \epsilon)))\right]$$

•
$$\epsilon = 10^{-4}$$

- $z_1, z_2 \sim P(z)$
- $t \sim U(0, 1)$
- *G* ≒ generator
- *d*(·,·) 는 perceptual distance 계산

- *slerp* 는 spherical interpolation 이다. 이것은 normalized input latent space 에서 가장 적절한 interpolation 방법이다.
- Pairwise image metric 을 계산하기 전에 생성된 이미지가 오직 face 만을 가지도록 crop 했다.
- d 가 quadratic [65] (모든 식이 2차 항)하기 때문에, ϵ^2 로 나누었다.
- 100,000 개의 샘플들을 가지고 기댓값을 계산했다.

4.1. Perceptual path length

• W 에서의 average perceptual path length 도 역시 비슷한 방식으로 계산한다.

$$l_W = \mathbb{E}\left[\frac{1}{\epsilon^2}d(g(\operatorname{lerp}(f(z_1), f(z_2); t)), g(\operatorname{lerp}(f(z_1), f(z_2); t + \epsilon)))\right]$$

4.1. Perceptual path length

Mathad	Path	Separa-	
Method	full	end	bility
B Traditional generator \mathcal{Z}	412.0	415.3	10.78
D Style-based generator ${\cal W}$	446.2	376.6	3.61
E + Add noise inputs \mathcal{W}	200.5	160.6	3.54
+ Mixing 50% W	231.5	182.1	3.51
F + Mixing 90% W	234.0	195.9	3.79

Method	FID	Path length		Separa-
Method	FID	full	end	bility
B Traditional 0 $\mathcal Z$	5.25	412.0	415.3	10.78
Traditional 8 \mathcal{Z}	4.87	896.2	902.0	170.29
Traditional 8 \mathcal{W}	4.87	324.5	212.2	6.52
Style-based 0 \mathcal{Z}	5.06	283.5	285.5	9.88
Style-based 1 ${\cal W}$	4.60	219.9	209.4	6.81
Style-based 2 \mathcal{W}	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

• Method name 의 숫자는 mapping network 의 **depth** 를 나타낸다.

- Latent space 가 충분히 disentangled 되었다면, 각 factors of variation 당 상응하는 방향 벡터가 있어야 한다.
- 본 논문은 latent-space points 가 linear hyperplane 을 통해서 얼마나 잘 두 개의 구별된 sets 로 분리될 수 있는지 측정함으로써 이 효과를 정량화 하는 또다른 기법을 제안한다.

- 이미지를 생성하고, 생성된 이미지들에 label 을 붙이기 위해 이진 분류를 수행하는 하나의 classification network 를 train 했다.
- 이 classifiers 는 우리의 discriminator 와 같은 구조를 가졌고, **40 개의 attributes 를 가진 CELEBA-HQ 데이터셋**을 사용해서 train 했다.

• 하나의 attribute 에 대해 separability 를 측정하기 위해, $z \sim P(z)$ 로 200,000 개의 이미지를 생성하고 classification network 를 사용해서 분류했다.

- Classifier confidence 에 따라 샘플들을 정렬하고 신뢰도가 가장 낮은 샘플 수의 ½을 제거했다.
- 그래서 100,000개의 labeled latent space vectors 를 만들었다.

Traditional generator

z_1	z_2	z_3	•••	$z_{100,000}$
남	여	여		남

Style-based generator

w_1	w_2	w_3	•••	$w_{100,000}$
남	여	여	•••	남

- 각 attribute 에 대해서, latent-space point 에 기반한 label 을 예측하기 위해 linear SVM 을 적용했다.
- 그리고 조건부 엔트로피 H(Y|X) 를 계산한다. (Z와 W에 대해 계산했다.)
 - *X* 는 SVM 에 의해 예측된 classes 이다.
 - Y는 pre-trained classifier 에 의해 결정된 classes 이다.
 - 조건부 엔트로피는 어떤 확률 변수 X가 다른 확률변수 Y의 값을 예측하는데 도움이 되는지를 측정하는 방법 중의 하나이다.
- $\exp(\sum_i H(Y_i|X_i))$ 로 final separability score 를 계산하고, i 는 40 attributes 를 순회한다.

Method	Path	Separa-	
Method	full	end	bility
B Traditional generator $\mathcal Z$	412.0	415.3	10.78
D Style-based generator ${\cal W}$	446.2	376.6	3.61
E + Add noise inputs W	200.5	160.6	3.54
+ Mixing 50% W	231.5	182.1	3.51
F + Mixing 90% W	234.0	195.9	3.79

Method	FID	Path l	length	Separa-
Method	FID	full	end	10.78 170.29 6.52 9.88 6.81
B Traditional 0 \mathcal{Z}	5.25	412.0	415.3	10.78
Traditional 8 \mathcal{Z}	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 \mathcal{Z}	5.06	283.5	285.5	9.88
Style-based 1 \mathcal{W}	4.60	219.9	209.4	6.81
Style-based 2 W	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

- W 가 Z 보다 훨씬 특징 분류를 잘 하는 것을 보여준다. (Separability가 낮다.)
- 더욱이, Mapping network 의 depth 를 증가시키는 것은 image quality 와 W 에서의 separability 를 향상시킨다.

Thank you for listening