主题3

1、解析磁盘访问时间的组成、举例说明如何计算。

假设计算机系统采用CSCAN(循环扫描)磁盘调度策略

(1) 设某单面磁盘旋转速度为**每分钟6000转**,每个**磁道有100个扇区**,相邻磁道间的**平均移动时间为1ms** 若在某时刻,**磁头位于100号磁道**处,并沿着**磁道号增大**的方向移动(如下图所示),磁道号请求队列为**50.90.30.120** 对请求队列中的每个磁道需读取1个随机分布的扇区,则读完这个扇区**共需要多少时间**?

(1) 每分钟6000转,转一圈时间是0.01,同时因为是100个扇区,通过一个扇区的时间是0.0001s。

SCAN算法是单方向的,因限定了只能沿着磁道号增大的方向移动

所以得出如下数序:100→120→30→50→90

寻道时间: (120-100+(120-30)+(50-30)+(90-50)) *1ms

=20+90+20+40=110+60=170ms

旋转延迟时间:0.01*0.5*4 = 20ms 读取时间:0.0001*4=0.4ms

磁盘访问时间是 170+20+0.4=192.4ms

2、某时刻的磁盘访问请求序列: 14、19、8、15、23、12、28, 磁头当前在14磁道, 向磁道号增加的方向移动。分别用SSTF和SCAN算法计算磁头移动的距离。通常情况下为何不用性能更好的SSTF算法 ?

SSTF算法:

SCAN算法:

某时刻的磁盘访问请求序列:14、19、8、15、23、12、28,磁头当前在14磁道,向磁道号增加的方向移动。使用SCAN算法计算磁头移动的距离。

SSTF是基于贪心策略的,其优点为平均寻道长度大大减少,但是其缺点为可能出现"饥饿"现象

假设有一个硬盘,磁头数为16,每个磁道的扇区数为64,每个扇区存放512个字节,磁盘转速为每分钟7200转。操作系统限定每一个分区大小不超过65536个柱面。

- 3、题干如上描述请分析解决如下问题:
- (1) 可设置分区的最大容量为多少(KB)?

存储容量 = 磁头数 × 磁道(柱面)数 × 每道扇区数 × 每扇区字节数

题目中:

- 磁盘磁头数为16
- 磁道数=柱面数, 故磁道数最大为65536, 即216个
- 每道扇区数为64
- 每扇区字节数为512B

故分区的最大容量:

16 * 2¹⁶ * 64 * 512B = 2³⁵B = 32GB

老式的硬盘每个磁道的扇 区数一样,外圈的密度小, 内圈的密度大,每圈可存 储的数据量是一样的。新 式的硬盘数据的密度都一 致,这样磁道的周长越长, 扇区就越多,存储的数据 量就越大。

(2) 访问磁盘的平均旋转延迟时间是多少(ms)?

数据存储在盘片上,盘片旋转。读写头不能同时定位在所有数据上,因此盘片以较快的速度旋转,以便将数据放在读写头下。盘片在磁头下旋转数据所花费的时间就是旋转延迟。

旋转延迟:盘片旋转**将请求数据所在扇区移至读写磁头下方**所需要的时间,旋转延迟取决于磁盘转速,平均旋转延迟时间通常使用**磁盘旋转一周所需时间的1/2表示**。

1/2 * 1/(7200/60) = 4.167ms

(3) 访问磁盘的传输时间是多少? (ms)

磁盘访问时间=寻道时间+旋转时间+传输时间

传输时间

传输时间指的是从磁盘读出或将数据写入磁盘的时间。指把数据从磁盘读出或向磁盘写入数据所经历的时间若每次读/写的字节数为b,磁盘每秒钟的转速为r,一条磁道上的字节数为N t=b/(rN)

传输速度 =
$$\frac{7200 \times 64 \times 512B}{60s}$$
 = 3840KB/s
传输时间 = $\frac{b}{3840 \text{KB/s}}$

(4) 若用位示图管理磁盘空闲分区、需要用多少个扇区存放位示图?

首先需要算出有多少个位示图,即先算出有多少个物理块需要管理

由于题目没有说明一个物理块含有多少个扇区,所以设一个物理块为2^n个扇区

总扇区数 = 磁头数 × 磁道(柱面)数 ×每道扇区数

由于一个扇区是512个字节,所以

所需扇区数 = 总扇区数/ 2^n / 8 / 512B

故所需扇区数:

16 * 2¹⁶ * 64 / 2ⁿ / 8 / 512B = 2¹⁴⁻ⁿ

位示图是利用二进制的一位来表示磁盘中一个盘块的使用情况。当其值为"0"时,表示对应的盘块空闲;为"1"时表示已分配。由所有盘块对应的位构成一个集合,称为位示图。

4、题干如上描述请分析解决如下问题:

(5) 若文件系统采用索引分配方式,则需要用几个字节表示索引项?

假设:磁盘块大小为nB,且磁盘块指针全部用于标识物理块。

补充练习1

一个索引节点所表示的UNIX文件的组织:有12个直接块指针,在每个索引节点中有一个一级、二级和三级间接指针。此外,假设系统块大小和磁盘扇面大小都是8K。如果磁盘块指针是32位,其中8位用于标识物理磁盘,24位用于标识物理块,那么

磁盘块数=磁盘总容量/磁盘块大小

磁盘块数: 33554432KB/n B=2³⁵/n块

索引项所需要的二进制位数: $\log_2 \frac{2^{35}}{n}$ =35- $\log_2 n$ 位

因此,需要 $\frac{35}{8}$ $\frac{1}{8}$ \log_2 n 个字节表示索引项

(6) 若采用UNIX混合索引方式,(索引表为13个单元,前10个为直接索引,这13个单元存放在磁盘inode中),则在这个系统中可以建立的最大文件的长度是多少(KB)?

索引块所存储的索引项的个数=磁盘块大小/索引项大小因为磁盘块大小为nB,索引项大小为 $\frac{35}{8}$ $\frac{1}{8}log_2$ n个字节

索引块所存储的索引项的个数: $n/(\frac{35}{8} - \frac{1}{8} \log_2 n) = \frac{8n}{35 - \log_2 n}$ 个

5、题干如上描述请分析解决如下问题:

(7) 若要存放一个文件长度为64208 KB的文件,此文件的文件体(文件本身的内容)需要多少个磁盘块?

磁盘块大小	所需磁盘块个数
512B	128416
1KB	64208
2KB	32104
4KB	16052
8KB	8026
16KB	4013
32KB	2007
64KB	1004
128KB	502

(8) 设某个文件长度为64208 KB,需要多少个磁盘块存放这个文件的索引表?

磁盘块大小	索引项大小	存放文件磁盘块个数	存放索引表磁盘块个数
512B	4B	128416	1018(三级索引)
1KB	4B	64208	252 (二级索引)
2KB	3B	32104	48 (二级索引)
4KB	3B	16052	22 (二级索引)
8KB	3B	8026	3 (二级索引)
16KB	3B	4013	1 (一级索引)
32KB	3B	2007	1 (一级索引)
64KB	3B	1004	1 (一级索引)
128KB	3B	502	1 (一级索引)

6、 比较书中讲述的I/O控制方式。PC中哪些设备使用了DMA方式?它们是如何工作的?

选择和衡量 I/0 控制方式有如下三条原则:

- 1. 数据传送速度足够快,能满足用户的需求但又不丢失数据;
- 2. 系统开销小, 所需的处理控制程序少
- 3. 能充分发挥硬件资源的能力, 使 I/O 设备尽可能忙, 而 CPU 等待时间尽可能少。

使用DMA的设备: 当下计算机中主要有磁盘控制器、显卡、声卡和网卡使用DMA技术。

声卡录制或播放数字音频时,将使用DMA通道,在其本身与RAM之间传送音频数据,而无需CPU干预,以提高数据传输率和CPU的利用率。16位声卡有两个DMA通道,一个用于8位音频数据传输,另一个则用于16位音频数据传输。

7、 为什么要进行缓冲管理? 讲述*Unix*字符设备和块设备的缓冲管理方法, 讲述缓冲池的工作原理。

缓冲管理作用:

- 1. 为了缓和解决CPU与I/O设备传输速度不匹配的问题, 使信息得以在系统中平滑传输
- 2. 提高了CPU、通道和设备之间的并行性,从而使系统的资源利用率及吞吐量增高
- 3. 减少中断次数和CPU的中断处理时间,放宽对中断响应时间的限制。没有缓冲,慢速I/0设备每传一个字节就要产生一个中断,CPU必须处理该中断。缓冲技术则让慢速I/0设备将缓冲区填满时,才向CPU发出中断,从而减少了中断次数和CPU的中断处理时间,降低了CPU的开销

设备分为字符设备和块设备两类:

- 字符设备只能以字节为最小单位访问。常见的如键盘、控制台。
 而块设备以块为单位访问,例如512字节,1024字节等。常见的如磁盘、光盘。
- 2. 块设备进行随机访问,而字符设备进行顺序访问。

设备号		
块号		
状态		
缓冲区指针		
散列队列的前向指针		
散列队列的后向指针		
空闲表上的前向指针		
空闲表上的后向指针		

缓冲首部

空闲队列(链)及散列队列

8、 回顾脱机I/0技术,谈谈SP00Ling技术的实现过程。

脱机 I/0 技术:

为了解决人机矛盾及*CPU*和*I/0*设备之间速度不匹配的矛盾,*20*世纪*50*年代末出现了脱机*I/0*技术。该技术是将事先装有用户程序和数据的纸袋装入纸带输入机,在一台外围机的控制下,把纸带(卡片)上的数据(程序)输入道磁带上。当 *CPU*需要这些程序和数据时,再从磁带上高速地调入内存。

假脱机管理进程:

- 1. 在磁盘缓冲区中为要打印的数据申请空闲盘块、并将要打印的数据送入盘块中暂存。
- 2. 为用户进程申请一张空白的用户请求打印表,并将用户的打印要求填入其中,再将该表挂入假脱机文件队列上。

假脱机打印进程:负责真正的打印输出。

SP00Ling技术实现过程:

9、设备分配时的数据结构有哪些?分配时会出现死锁吗? *Linux*中有哪些就数据结构?它是如何分配的?

操作系统中,设备分配时的数据结构主要有以下几种:

- 系统控制表
- 通道控制表
- 控制器控制表
- 设备控制表

其关系如下图所示:

从进程运行的安全性上考虑,设备分配有以下两种方式:

1. 安全分配方式

- 。 每当进程发出 I/O请求后,便进入阻塞状态,直到其 I/O操作完成时才被唤醒。
- 在采用该策略时,一旦进程已经获得某种设备后便阻塞,不能再请求任何资源,而在它阻塞时又不保持任何资源。

2. 不安全分配方式

- 。 进程在发出I/0请求后仍继续运行,需要时又发出第二个I/0 请求、第三个I/0请求等。
- 仅当进程所请求的设备已被另一进程占用时,才进入阻塞状态。