Relatório de Análise de Algoritmos de Ordenação

Nomes: Bryan e Victor Luis

Neste relatório, nós analisamos o desempenho dos algoritmos Insertion Sort, Quick Sort e Bubble Sort. Para isso, realizamos testes com conjuntos de dados de diferentes tamanhos e com ordens iniciais variadas (aleatória, crescente e decrescente). O objetivo foi observar como cada algoritmo se comporta em diferentes situações e comparar o tempo de execução entre eles.

Resultados de Tempo de Execução

Arquivo	Insertion Sort	Quick Sort	Bubble Sort
aleatorio_100.csv	1637600	39300	230400
aleatorio_1000.csv	3868000	539000	6209500
aleatorio_10000.csv	22241200	1482200	155771200
crescente_100.csv	2800	25700	2200
crescente_1000.csv	1500	943200	1000
crescente_10000.csv	18900	85218800	7100
decrescente_100.csv	4200	27500	67700
decrescente_1000.csv	225600	1355600	3832200
decrescente_10000.csv	15761600	46231600	105017000

Ao analisar os resultados, percebemos que o Quick Sort foi o mais eficiente em dados grandes e desordenados. O Insertion Sort teve melhor desempenho em listas pequenas ou quase ordenadas, enquanto o Bubble Sort apresentou o pior desempenho na maioria dos casos. Concluímos que o desempenho dos algoritmos varia conforme o tamanho e a ordem inicial dos dados, sendo importante escolher o mais adequado para cada situação.