Report on User Adoption Rate

We're given a table of 12000 users who registered in the last two years, along with important features for each user's registration. We're also given all the time-logins for all the users (accounting for a total of 207917 logins) and our first step is to find the users who have been **adopted** (13.3% of them are adopted users). Once this is taken care of, we remove some of the irrelevant features - names, email addresses, last time of login - and generate new ones. In the end, we found ourselves with a table containing our target 'adoption_user' and the other relevant feature variables: creation source, the week day they created the account, whether they opted in to the mailing list and whether they are on the regular marketing email drip.

Basic Statistical Analysis

At first, I looked for how each feature individually impacted the target variable. We notice that the 'creation_source' and whether the user was invited (as shown on this table) have a significant impact on the

i	adopted_user	0	1
	was_invited		
	0	0.876411	0.123589
	1	0.857722	0.142278

rate of adoption. Still though, those are univariate analyses, so we now look to build a more complex classifier model which will account for all variables at once. Note, 'creation_source' and 'was_invited' are collinear features, so we drop 'was_invited' from our model.

Machine Learning Classifier

While I attempted multiple classifier fitted through a pipeline (LogisticRegression, KneighborsClassifier RandomForestClassifier), I ended up choosing the logistic regressor from Scikit-learn to build a predictive model aimed at classify adopted vs non-adopted users, based on the features mentioned above. The model is built against the recall of the target variable, since our interest is to capture as many adopted users as possible. Once the model is built (with a precision score of 68%) we rank the importance of each feature by sorting the respective odds ratio against the default user: one invited by guest, that did not opt-to the mailing list, that did not enable for market drip and that created their account on a sunday. The features are ranked by importance and we note that those with odds' ratio > 1 positively correlate with the adoption rate.

ratio odds	features
1.007098	SIGNUP_GOOGLE_AUTH
1.002682	opted_in_to_mailing_list
1.002551	enabled_for_marketing_drip
1.002515	creation_saturday
1.001635	creation_wednesday
1.001572	SIGNUP
0.999540	creation_tuesday
0.999206	creation_thursday
0.998641	creation_friday
0.998444	ORG_INVITE
0.998335	creation_monday
0.979154	PERSONAL_PROJECTS

Other features that were not considered in this model but that could have been implemented are: whether the user was invited (as long as we remove the 'creation_source' variable), the number of referrals sent per user and finally the organization group the user belongs to. Implementing those to the model may improve its performance and give us a better idea on more relevant features.