Aluno(a):

1. O que será impresso pelo programa abaixo?

```
#include <stdio.h>
int main() {
   int x, *y, z;
   x = 2;
   y = &x;
   (*y)++;
   z = (x++)*2;
   printf("%d,%d,%d",x,*y,z);
}
Resposta:
```

2. No programa abaixo, o usuário informa o tamanho de um vetor a ser criado. Esse tamanho é armazenado na variável ${\bf q}$. O vetor deve armazenar os "q" múltplos de 5 $(5\times 1, 5\times 2, \cdots, 5\times q)$. Em seguida o programa deve imprimir os elementos do vetor. Preencha as lacunas abaixo para que o programa tenha esse comportamento.

```
1 int main(){
   int *v, q, i;
printf("Tamanho do vetor: ");
3
    scanf("%d",&q);
4
    v = _____
    for(int i=0;i<q;i++){</pre>
6
7
     _{----} = (q+1)*5;
    for(i=0;i<q;i++){
9
       printf("%d\n", ____);
10
11
12 }
  Linha 5: ______
  Linha 7: _____
  Linha 10: ______
```

3. Complete as lacunas da função a seguir para que ela faça a inserção de um elemento ao fim da lista. Assuma que a lista $n\tilde{ao}$ está vazia.

```
1 typedef struct lstItem{
    int dado;
    struct lstItem *next;
4 }listaItem;
6 listaItem *ins_fim(listaItem *lista,
                      int dado){
    listaItem *novo = ____;
    novo->dado = dado;
9
    novo->next = NULL;
10
    if(lista==NULL){
11
       lista = novo;
12
13
15
       listaItem *ultimo = lista;
16
        while(_____){
17
        ultimo = ultimo->next;
18
19
        -----;
20
    return lista:
21
  Linha 8: ______
  Linha 16: _____
```

Linha 19: ______

- 4. Considere a seguinte sequência de operações: push(9), push(3), pop(), push(2), pop(), push(4), push(7), pop(), pop(), push(6), push(1), pop(), push(2), push(5), pop().
 - A soma dos elementos remanescentes em uma *fila*, inicialmente vazia, após essa seguência de operações será _____.
 - A soma dos elementos remanescentes em uma *pilha*, inicialmente vazia, após essa sequência de operações será ______.
- 5. Considere uma tabela hash com 23 espaços indexados de 0 a 22, utilizando a função hash $h(x) = x \mod 23$ (método da divisão). Nesta tabela, são inseridas, na ordem dada, as seguntes chaves: 44, 46, 49, 70, 27, 71, 90, 97, 95. Responda:

(a)	Quais	chaves	serão	envolvidas	em	colisão?	

(b)	Esboce a tabela hash apos a inserção das chaves. Utilize o formato [indice]:{chaves}.

6. Considere a árvore a seguir:

Escreva abaixo a sequência de números que será impressa caso a árvore seja percorrida

۵)	Γ_{m}	pré-ordem:	
<i>a.</i> i	17/111	Dre-Orden:	

b)	Em	ordem:	
----	---------------------	--------	--

~ `	1 Fm	nóg ordom	
· C	, בווב	pos-ordem:	

7. Desenhe a árvore AVL gerada pela inserção, em sequência, dos seguintes números: 20, 30, 10, 25, 35, 28, 23, 22, 38, 21.

8.	Considere o vetor $v = [2, 6, 18, 19, 24, 27, 37, 43, 56, 99]$. Escreva a sequência de elementos avaliados na busca binária pelos seguintes números:	10.	Aplique o algoritmo de ordenação $Quick\ sort$ no veto $v = [30, 68, 36, 49, 61, 58, 94, 78]$ utilizando como pivô p o elemento central do vetor (ou seja, sendo l e r os índices das extremidades esquerda e direita do vetor
	• 19:		respectivamente, considera-se $p = \lfloor \frac{l+r}{2} \rfloor$). Durante a
	• 37:		ordenação, o subvetor mais à esquerda do pivô deve
	• 47:		ser ordenado antes do subvetor mais à direita. Mostre
	Escreva o estado do vetor $v=[74,91,5,3,9,43,55,71,58,20]$ após cada um dos passos da execução do algoritmo de ordenação por seleção.		cada um dos passos da ordenação que levaram a obter o vetor ordenado. Considere que um passo de ordenação está completo quando o pivô está em sua posição definitiva.

Informações úteis

- Em vetores com número par de elementos, considerar, como elemento central, o último elemento da primeira metade.
- Quando dois subvetores precisarem ser ordenados, considerar que o subvetor da esquerda é ordenado antes do subvetor da direita.
- Ao dividir um vetor $v = [v_0, \cdots, v_n]$ pela metade, sendo 0 (zero) o índice do primeiro elemento e n o índice do último elemento, considerar que (i) a primeira metade é $[v_0, \cdots, v_c]$ e (ii) a segunda metade é $[v_{c+1}, \cdots, v_n]$, onde $c = \lfloor \frac{0+n}{2} \rfloor$.
- Em um algoritmo de ordenação, um passo completo acontece quando um determinado número do vetor é colocado em sua posição apropriada. Por exmplo, considerando o número 90 no vetor v = [90, 50, 30], ao final de um passo completo, o vetor teria a seguinte ordem: v = [50, 30, 90].