Šprinty

Celkový pokrok práce a vývoj úloh možno vidieť na nasledujúcom grafe:

https://drive.google.com/file/d/1hxJ-sRTlOnNS75TZ7NfIGWV-iGpGFfZh/view?usp=sharing

Šprint číslo 1:

Dátum - October 11th, 2023 - October 25th, 2023

Hlavný cieľ šprintu - spoznať Jiru a zorientovať sa v problematike.

Výsledky šprintu

V tomto šprinte sme mali nasledovné úlohy a výsledky:

Všetky úlohy (6)

- Naštudovať si OECD guidelines
- Vytvoriť Jiru
- Rozdelit' si role kto sa bude venovat' datasetu a kto QSARu
- Vytvoriť vyrovnaný dataset
- Nájsť čo najviac molekulárnych deskriptorov RDKit / CDKit
- Vytvoriť webovú stránku pre tímak

Dokončené úlohy (3)

- Naštudovať si OECD guidelines
- Vytvoriť Jiru
- Nájsť čo najviac molekulárnych deskriptorov RDKit / CDKit

Rozrobené úlohy (3)

- Rozdeliť si role kto sa bude venovať datasetu a kto QSARu
- Vytvoriť vyrovnaný dataset
- Vytvoriť webovú stránku pre tímak

Poznámky k šprintu

Výzvy

- Najväčší problém bolo nájsť in vivo datasety alebo údaje na vytvorenie in vivo datasetu.
- Výber deskriptorov a identifikácia ich významu podľa ich názvov
- Niektoré dáta mali viacero mien, čo robilo problémy pri vytváraní SMILES kódov
- Malá dostupnosť negatívnych výsledkov pre Amesov test

Poznatky

- Zistili sme, ako z kódov v datasete vytvárať SMILES kódy
- Práca s datasetmi

Zhrnutie

V období od 11. októbra 2023 do 25. októbra 2023 sme si stanovili konkrétne úlohy. Medzi naše hlavné ciele patrilo štúdium smerníc OECD, vytvorenie projektu v Jira, rozdelenie rolí v tíme pre spracovanie dátových sád a prácu s QSAR (kvantitatívna štruktúrovaná-vzťahová analýza). Rovnako sme si kladli za úlohu vytvoriť vyváženú sadu dát a identifikovať čo najviac molekulárnych deskriptorov pomocou nástrojov RDKit a CDKit. Okrem toho sme sa venovali aj vytváraniu webovej stránky pre efektívnu komunikáciu v tíme.

Počas tohto šprintu sme úspešne dokončili niekoľko kľúčových úloh, vrátane štúdia smerníc OECD, vytvorenia projektu v Jira a identifikácie molekulárnych deskriptorov pomocou RDKit a CDKit. Napriek tomu sme čelili niekoľkým výzvam, ako napríklad hľadanie in vivo dátových sád a identifikácia deskriptorov na základe ich názvov. Niektoré údaje mali viacero názvov, čo komplikovalo proces vytvárania SMILES kódov. Taktiež sme sa stretli s obmedzenou dostupnosťou negatívnych výsledkov pre Amesov test.

Napriek tomu sme získali cenné poznatky, najmä v oblasti tvorby SMILES kódov z kódov v dátových sadách a práce s rôznymi typmi datasetov. Tento sprint nám poskytol pevné základy pre budúcu prácu a zdokonalenie našich metód v oblasti chemoinformatiky a kvantitatívnej analýzy štruktúry.

Šprint číslo 2:

Dátum - October 25th, 2023 - November 7th, 2023

Hlavný cieľ šprintu - hľadanie dát

Výsledky šprintu

V tomto šprinte sme mali nasledovné ciele a výsledky:

Nové úlohy (7)

- Dať preč 3D a 4D deskriptory
- Nájsť články a dáta, ktoré majú priložené na konci ako supplement data + pozieť vedecké články o QSARoch, kde bude genotoxicita - aspoň 3
- K datasetu pozrieť, ktoré parametre má RDkit a nemá CDkit
- Zistiť korelácie medzi hodnotami genotoxicita vs deskriptor treba spraviť korelácie / regriesie a nájsť najvyššie R (spraviť: support vector machine, lineárne regresia, random forest, gradient boosting machine, knn, shapley value).
- Pozrieť článok o LamPS na Githube či nemá 2D deskriptory
- Založiť GitHub repo
- Pridať biogénne látky ako proteín a aminokyseliny, cukry, vodu atd

Úlohy z predchádzajúceho šprintu (3)

- Rozdeliť si role kto sa bude venovať datasetu a kto QSARu
- Vytvoriť vyrovnaný dataset
- Vytvoriť webovú stránku pre tímak

Dokončené úlohy (7)

- Rozdeliť si role kto sa bude venovať datasetu a kto QSARu
- Dat' preč 3D a 4D deskriptory
- Nájsť články a dáta, ktoré majú priložené na konci ako supplement data + pozieť vedecké články o QSARoch, kde bude genotoxicita - aspoň 3
- K datasetu pozrieť, ktoré parametre má RDkit a nemá CDkit
- Zistiť korelácie medzi hodnotami genotoxicita vs deskriptor treba spraviť korelácie / regriesie a nájsť najvyššie R (spraviť: support vector machine, lineárne regresia, random forest, gradient boosting machine, knn, shapley value).
 - o Korelácie deskriptory rdkit, cdkit (1d,2d) vs. Ames
 - SVM, LR, RF, GBM, KNN a shapley value (treba tuning + oversampling, výsledky modelov zatial' nedostačujúce)
 - o Feature selection, oversampling, evaluation metrics
- Pozrieť článok o LamPS na Githube či nemá 2D deskriptory

• Založiť GitHub repo

Rozrobené úlohy (3)

- Vytvoriť webovú stránku pre tímak
- Vytvoriť vyrovnaný dataset
- Pridať biogénne látky ako proteín a aminokyseliny, cukry, vodu atd

Poznámky k šprintu

Výzvy

• Hodnoty pre in vivo dataset nie sú v dostatočnej miere dostupné na internete

Poznatky

- Mutagenita = genotoxicita
- In vivo dataset je možné poskladať z biogénnych látok
- Robiť modely má zmysel až s dostatočným množstvom dát
- Vytvorili sme si základ pre dataset v Excel tabuľke
- 3D a 4D deskriptory pre náš účel nie sú vhodné
- Našli sme užitočné zdroje:
 - o https://www.ebi.ac.uk/chembl/
 - https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291098-2280%282000%2935%3A3%3C206%3A%3AAID-EM8%3E3.0.CO%3B2-J
 - PaDEL descriptor software https://github.com/ecrl/padelpy#padelpy-a-python-wrapper-for-padel-descriptor-software
 - o https://docs.lammps.org/dimension.html

Zhrnutie

Šprint číslo 2, ktorý prebiehal od 25. októbra 2023 do 7. novembra 2023, bol zameraný na dôležité hľadanie dát a vývoj v projekte. Hlavným cieľom bolo rozšírenie našich poznatkov o QSAR (kvantitatívna štruktúrovaná-vzťahová analýza) s dôrazom na genotoxicitu. Vytýčili sme si 7 nových úloh, vrátane odstránenia 3D a 4D deskriptorov (ktoré sme zistili, že pre náš účel nie sú vhodné), vyhľadávania vedeckých článkov o QSAR s genotoxickým obsahom, a skúmania parametrov RDKit a CDKit v datasete. Dôležitou úlohou bolo aj hľadanie korelácií medzi genotoxicitou a deskriptormi, vrátane implementácie rôznych modelov ako support vector machine, lineárna regresia, random forest a ďalšie.

V priebehu šprintu sme úspešne dokončili 7 úloh vrátane rozdelenia rolí v tíme, odstránenia 3D a 4D deskriptorov a skúmania vedeckých článkov. Zároveň sme čelili výzvam, ako je nedostatok hodnôt pre in vivo dataset dostupných na internete. Získali sme ďalšie poznatky o genotoxicite a zistili sme, že je možné zostaviť in vivo dataset z biogénnych látok.

Vytvorili sme základy pre dataset v Excel tabuľke a zhromaždili užitočné zdroje informácií vrátane PaDEL descriptor software. Napriek nedostatočným výsledkom modelov sme si uvedomili, že vytváranie efektívnych modelov vyžaduje dostatočné množstvo dát a že tieto výsledku sú ešte len v počiatočných štádiach. Zároveň sme rozpracovali úlohy, ktoré sa týkali vytvorenia webovej stránky pre tím, vytvorenia vyváženého datasetu a pridania biogénnych látok.

Celkovo sme dosiahli podstatný pokrok v smerovaní projektu a rozvíjali sme náš vhľad do oblasti QSAR s dôrazom na genotoxicitu. Šprint nám priniesol nové výzvy a poznatky, ktoré budú dôležité pre ďalší rozvoj a zdokonalenie našej práce.

Šprint číslo 3:

Dátum - November 8th, 2023 - November 21st, 2023

Hlavný cieľ šprintu - dokončenie in vivo datasetu

Výsledky šprintu

V tomto šprinte sme mali nasledovné ciele a výsledky:

Nové úlohy (10)

- Homolumo deskriptor zistiť ako sa počíta a spraviť kód pre výpočet deskriptora
- Webstranka pre tím vytvoriť nejaký nápad / návrh
- Pozrieť isomeric / caonical smiles (čo znamenajú zavináče v smiles kódoch)
- Integrácia cdkitu a padelu do kódu, ktorý generuje descriptory
- Pridať biogénne prvky Sacharóza a Erythritol
- Zistiť, či sú sladidlá negenotoxické a ak nie tak pridať do datasetu
- Pridat' roly členom tímu na stránke
- Pridať fotky členov tímu na stránku
- Skúsiť zistiť čo znamenajú Padel descriptory
- Začať trénovať model

Úlohy z predchádzajúceho šprintu (3)

- Vytvoriť webovú stránku pre tímak
- Vytvoriť vyrovnaný dataset
- Pridať biogénne látky ako proteín a aminokyseliny, cukry, vodu atd

Dokončené úlohy (6)

- Vytvoriť webovú stránku pre tímak
- Pridať biogénne látky ako proteín a aminokyseliny, cukry, vodu atd
- Pozriet' isomeric / caonical smiles (zavináče v smiles)
- Pridať biogénne prvky Sacharóza a Erythritol
- Zistiť, či sú sladidlá negenotoxické a ak nie tak pridať do datasetu
- Pridať roly členom tímu na stránke

Rozrobené úlohy (7)

- Vytvoriť vyrovnaný dataset
- Homolumo deskriptor zistiť ako sa počíta a spraviť kód pre výpočet deskriptora
- Webstranka pre tím vytvoriť nejaký nápad / návrh

- Integrácia cdkitu a padelu do kódu, ktorý generuje descriptory
- Pridať fotky členov tímu na stránku
- Skúsiť zistiť čo znamenajú Padel descriptory
- Začať trénovať model

Poznámky k šprintu

Výzvy

- TimeoutError v PaDELi pri "Isometric" SMILES kódoch
- Význam PaDEL deskriptorov nie je úplne jasný
- Náročné vyrovnávanie datasetu pozitívnych záznamov je dostupných výrozne viac, ako negatívnych - náš model stále nie je vyvážený
- Chýbalo nám asi 400 negenotoxických látok pre vyrovnaný dataset

Poznatky

- Namiesto vytvorenia funkcie pre výpočet HomoLumo deskriptora je možné nájsť iný parameter, ktorý súvisí so vzdialenosťami medzi elektrónmi
- Zistili sme, aký je rozdieľ medzi CanonicalSMILES a IsometricSMILES
- Pri zmene SMILES kódov z "Isometric" na "Canonical" PaDEL funguje bez TimeoutError-u
- Našli sme nové biogénne prvky do negatívneho datasetu postupne sa blížime k
 dostatočnému množstvu vzoriek pre vyvážený dataset
- Korelácie atd nie je vhodné robiť funkciami, ktoré programovali chemici
- Optická otáčavosť štruktúry chemickej látky má vplyv na toxicitu

Zhrnutie

Šprint číslo 3, ktorý prebiehal od 8. novembra 2023 do 21. novembra 2023, bol zameraný na dokončenie in vivo datasetu a pokračovanie v ďalšom vývoji projektu. Hlavným cieľom bolo dosiahnuť pokrok v pridaní nových prvkov do datasetu a začatie trénovania modelu. Medzi nové úlohy patrilo napríklad zistenie spôsobu výpočtu a implementácia deskriptora Homolumo, integrácia nástrojov cdkit a PaDEL do kódu na generovanie deskriptorov, pridanie biogénnych prvkov ako sacharóza a erythritol, a skúmanie, či sú sladidlá genotoxické a ich prípadné pridanie do datasetu.

V priebehu šprintu sme úspešne dokončili 6 úloh, vrátane vytvorenia webovej stránky pre tím, pridania biogénnych prvkov a skúmania rôzností medzi isomeric a canonical SMILES. Rozpracovali sme aj ďalších 7 úloh, medzi ktorými bolo vytvorenie návrhu webovej stránky pre tím, začatie trénovania modelu a skúmanie významu PaDEL deskriptorov.

S konkrétnymi výzvami sme sa stretli v podobe TimeoutError v PaDEL pri "Isometric" SMILES kódoch a nejasného významu PaDEL deskriptorov. Vyrovnanie datasetu bolo náročné, pretože pozitívnych záznamov bolo výrazne viac ako negatívnych. Napriek tomu sme získali poznatky o

výpočte Homolumo deskriptora a zistili sme rozdiely medzi CanonicalSMILES a IsometricSMILES, čo nám umožnilo vyhnúť sa TimeoutError-u v PaDEL.

S postupným pridávaním nových biogénnych prvkov do negatívneho datasetu sme sa približovali k vytvoreniu vyváženého datasetu s dostatočným množstvom vzoriek.

Šprint číslo 4:

Dátum - November 22nd, 2023 - December 5th, 2023

Hlavný cieľ šprintu - pridať prvky pre Amesov test a práca na HomoLumo deskriptore

Výsledky šprintu

V tomto šprinte sme mali nasledovné ciele a výsledky:

Nové úlohy (12)

- Pozrieť ako sa v minulých rokoch robili zápisy zo šprintov
- Nájsť pozitívne látky pre In Vivo dataset
- Dať preč deskriptory, ktoré sú konštanty / rovnaké pre každý záznam / nedávajú zmysel
- Pridať negatívne látky k Amesovmu datasetu
- Pridať všetky doterajšie zápisy zo stretnutí na stránku
- Pridať na stránku krátky opis k zápisniciam zo stretnutí
- Spísať reporty zo šprintov
- Pridať reporty zo šprintov na tímovú stránku
- Skontrolovat CAS čísla / pridať chýbajúce
- Prihláška na TP cup a ITsrc
- Zmeniť Isomeric smiles kódy za Canonical smiles kódy
- Zistiť postup na deploy stránky na školský server

Úlohy z predchádzajúceho šprintu (7)

- Vytvoriť vyrovnaný dataset
- Homolumo deskriptor zistiť ako sa počíta a spraviť kód pre výpočet deskriptora
- Webstranka pre tím vytvoriť nejaký nápad / návrh
- Integrácia cdkitu a padelu do kódu, ktorý generuje descriptory
- Pridať fotky členov tímu na stránku
- Skúsiť zistiť čo znamenajú Padel descriptory
- Začať trénovať model

Dokončené úlohy (15)

- Nájsť pozitívne látky pre In Vivo dataset
 - o Pridanych 138 pozitívnych latok, dorovnané negatívnymi.
- Vytvoriť vyrovnaný dataset
- Webstranka pre tím vytvoriť nejaký nápad / návrh
- Integrácia cdkitu a padelu do kódu, ktorý generuje descriptory
- Pridať fotky členov tímu na stránku

- Skúsiť zistiť čo znamenajú Padel descriptory
- Začať trénovať model
- Pozrieť ako sa v minulých rokoch robili zápisy zo šprintov
- Nájsť pozitívne látky pre In Vivo dataset
- Dať preč deskriptory, ktoré sú konštanty / rovnaké pre každý záznam / nedávajú zmysel
- Pridať negatívne látky k Amesovmu datasetu
- Pridať všetky doterajšie zápisy zo stretnutí na stránku
- Spísať reporty zo šprintov
- Skontrolovať CAS čísla / pridať chýbajúce
- Prihláška na TP cup a ITsrc
- Zmeniť Isomeric smiles kódy za Canonical smiles kódy

Rozrobené úlohy (4)

- Zistiť postup na deploy stránky na školský server
- Pridať reporty zo šprintov na tímovú stránku
- Pridať na stránku krátky opis k zápisniciam zo stretnutí
- Homolumo deskriptor zistiť ako sa počíta a spraviť kód pre výpočet deskriptora

Poznámky k šprintu

Výzvy

- HomoLumo knižnica simulovala kvantové počítanie a pri pokuse o spustenie nezbehol ani prvý prvok nedostatok výpočtovej sily.
- Hľadať nové negatívne dáta už je ťažké
- Nie všetky deskriptory majú výpovednú hodnotu

Poznatky

- HomoLumo podla výsledkov testov zatiaľ vyzerá, že bude dôlezite ho mať (všetky najvýznamnejšie deskriptory nám hovoria o elektrónoch)
- Smiles kódy je možné získavať z PUGchemu podľa CAS čísiel
- Zistili sme, ako sa integruje Padel
- Vo finálnej verzií bude dôležitá "vysvetliteľ nosť explainability"

Zhrnutie

Šprint číslo 4, ktorý prebehol od 22. novembra 2023 do 5. decembra 2023, sa venoval cieľu rozšíriť náš in vivo dataset pridaním prvkov pre Amesov test a práci na Homolumo deskriptore.

V rámci tohto šprintu sme si stanovili 12 nových úloh, ktoré zahŕňali preskúmanie minuloročných zápisov zo šprintov na získanie perspektívy, hľadanie pozitívnych látok pre In Vivo dataset, elimináciu nezmyselných deskriptorov a doplnenie negatívnych látok do

Amesovho datasetu. Ďalej sme pracovali na integrácii nástrojov CDKit a PaDEL do nášho kódu na generovanie deskriptorov a snažili sme sa lepšie pochopiť význam PaDEL deskriptorov.

V rámci šprintu sme úspešne dokončili 7 úloh, vrátane nájdenia pozitívnych látok pre In Vivo dataset, vytvorenia vyrovnaného datasetu a ďalších aktivít smerujúcich k rozvoju tímovej webovej stránky a získavaniu vysvetlení pre deskriptory. Okrem toho sme rozrobili 4 úlohy, medzi ktoré patrilo zisťovanie postupu na nasadenie stránky na školský server a integrácia Homolumo deskriptora do projektu.

Napriek dosiahnutým úspechom sme sa stretli s niekoľkými výzvami, vrátane nedostatku výpočtovej sily pre simuláciu Homolumo knižnice a náročnosti hľadania nových negatívnych dát. Taktiež sme si uvedomili, že nie všetky deskriptory majú výpovednú hodnotu.

Získali sme významné poznatky o Homolumo deskriptore a jeho význame v kontexte elektrónovej štruktúry. Tiež sme sa naučili, ako integrovať nástroje PaDEL do projektu a zdôraznili dôležitosť vysvetliteľnosti v konečnej verzii projektu. Celkovo nám šprint číslo 4 poskytol pevný základ pre ďalší rozvoj projektu, a to nielen v oblasti rozširovania datasetu, ale aj v zdokonaľovaní nástrojov a procesov v našom tímovom prostredí.

