Analiza Matematyczna

Ziemowit Wójcicki

20 listopada 2020

Streszczenie

Wprowadzenie do analizy matematycznej, z uwzględnieniem elementów topologii przestrzeni metrycznych, rachunku różniczkowego i całkowego funkcji jednej zmiennej i podstaw analizy, różniczkowania i całkowania funkcji wektorowych. Początek pisany z myślą o kompletnym laiku lub entuzjaście nauk ścisłych, rozdziały dalsze obejmują możliwie szeroki zestaw przykładów twierdzeń i pojęć, które wydały się autorowi (w jego matematycznych zabawach i subjektywnym odczuciu) edukacyjne, przydatne i ciekawe.

 $\mathbf{5}$

Spis treści

1 Preliminaria

	1.1	Dwa słowa o logice i metodzie matematyki	5
	1.2	Elementy Teorii mnogości i "żargon matematyczny"	
	1.3	Relacje, funkcje i zasada abstrakcji	10
		1.3.1 Teoria mocy	10
		1.3.2 Funkcje	11
		1.3.3 Złożenie funkcji	15
		1.3.4 Obraz i przeciwobraz zbioru przez funkcję	17
		1.3.5 Wielomiany	18
		1.3.6 Funkcje cyklometryczne, uzupełnienia z trygonometrii	20
		1.3.7 Zasada Abstrakcji	21
	1.4	Liczby	23
		1.4.1 Liczby naturalne. Zasada Indukcji Matematycznej	23
	1.5	Przydatne twierdzenia i tożsamości arytmetyczne:	26
		1.5.1 Krótko o liczbach rzeczywistych	27
2	Gra	nica ciągu liczbowego	36
	2.1	Twierdzenia przydatne w badaniu zbieżności ciągu i szukaniu granic	39
	2.2	Własności ciągów liczbowych	42
	2.3	Granice ekstremalne	
	2.4	*Proste zagadnienia interpolacyjne	

3	Elei	menty topologii przestrzeni metrycznych i algebry liniowej	55
	3.1	Zbiory otwarte i domknięte	57
	3.2	Operacje na przestrzeniach metrycznych	60
	3.3	Brzeg zbioru i zbiory brzegowe	62
	3.4	Granica ciągu w przestrzeni metrycznej	64
	3.5	*Przestrzenie liniowe i unormowane. Przestrzeń \mathbb{R}^n	67
	3.6	Różne własności przestrzeni metrycznych	69
		3.6.1 Zupełność	69
		3.6.2 Zwartość	70
		3.6.3 Spójność	76
4	Gra	mica funkcji	76
	4.1	Granica w przestrzeni metrycznej	76
	4.2	Przypadek rzeczywisty	76
		4.2.1 Granica funkcji w nieskończoności	76
		4.2.2 Granica niewłaściwa	77
		4.2.3 Granice lewo i prawostronne	77
		4.2.4 Obliczanie granic, symbole nieoznaczone	79
5	Cia	głość funkcji	80
		5.0.1 Ciągłość bezwzględna	91
		5.0.2 Półciągłość	91
	5.1	*Twierdzenia o punkcie stałym	93
6	Poc	hodna funkcji jednej zmiennej, różniczkowalność funkcji	94
	6.1	Pochodna funkcji jednej zmiennej	94
	6.2	Różniczka funkcji jednej zmiennej	97
	6.3	Podstawowe reguły i przykłady różniczkowania:	
	6.4	Pochodna w badaniu przebiegu zmienności funkcji	
	6.5	Wypukłość funkcji	
		6.5.1 Pochodne w badaniu wypukłości funkcji	109
	6.6	Twierdzenia o wartości średniej	
	6.7	Różniczkowalność a ciągłość funkcji	
7	*Za	stosowanie różniczki do rachunków przybliżonych	114
8	*Uv	vagi o pochodnych cząstkowych i różniczce zupełnej funkcji	115
	8.1	Regula de l'Hospitala	116
9	Fun	kcje hiperboliczne	118

10	Antypochodna albo inaczej całka nieoznaczona	120
	10.1 Całki funkcji wymiernych	125
	10.2 Całki wyrażeń zawierających funkcje trygonometryczne	126
	10.3 Całki funkcji niewymiernych	126
	10.3.1 Podstawienia Eulera:	126
	10.3.2 Metoda współczynników nieoznaczonych:	126
	10.4 Funkcje hiperboliczne	127
11	Całka oznaczona	128
	11.1 Całka Darboux	128
	11.2 Klasyczna całka Riemanna	130
	11.3 Równoważność całki Riemanna i całki Darboux	130
	11.4 Twierdzenia o całkowaniu	133
	11.4.1 Kryteria całkowalności	133
	11.4.2 Własności całki Riemanna	135
	11.5 Klasy funkcji całkowalnych	138
	11.6 Wzór Newtona-Leibniza	141
	11.7 Twierdzenia o wartości średniej dla całek	146
	11.8 *Całkowanie przybliżone	149
	11.9 *Uwagi o całkowaniu funkcji wektorowych	
12	Zastosowania geometryczne rachunku różniczkowego i całkowego	151
	12.1 Zastosowania geometryczne całki oznaczonej	151
	12.1.1 Pole i objętość bryły obrotowej	151
	12.2 Krzywe w przestrzeni	
	12.3 Pochodna funkcji określonej równaniami parametrycznymi	
	12.4 Współrzędne biegunowe	
	12.5 Długość krzywej	
	12.6 Pole figury ograniczonej krzywą opisaną we współ rzędnych biegunowych	
13	Całka niewłaściwa	160
	13.1 Kryteria zbieżności całek niewłaściwych	160
14	Szeregi liczbowe	163
	14.1 Kryteria zbieżności szeregów	167
15	Aproksymacja funkcji (n+1)-krotnie różniczkowalnych	176
16	Ciągi funkcyjne	181
	16.1 Całkowanie i różniczkowanie ciągów funkcyjnych	185

17 Szereg	gi funkcyjne	187
17.1 K	Tryteria zbieżności szeregów funkcyjnych	189
17.2 W	Vłasności szeregów funkcyjnych	191
17.3 S	zeregi potęgowe	191
Dodatek	A Aproksymacja funkcji ciągiem wielomianów	200
Dodatek	B Struktury algebraiczne, ciała uporządkowane	203
	Siało liczb rzeczywistych	
В	3.1.1 Konstrukcja Dedekinda	
В	3.1.2 Konstrukcja poprzez ciągi Cauchy'ego	
	3.1.3 Dowody własności specyficznych dla l. rzeczywistych	
	Siało liczb zespolonych	
	3.2.1 Własności liczb zespolonych i najważniejsze pojęcia z nimi związane.	
	3.2.2 Wzory Eulera	
В	3.2.3 Zastosowania liczb zespolonych i wzorów Eulera	215
Dodatek	C Elementy topologii	217
Dodatek	D Wprowadzenie do równań różniczkowych zwyczajnych	219
D.1 N	Jajprostsze typy równań	221
D.2 R	Cównania liniowe wyższych rzędów	223
D	0.2.1 Równania liniowe jednorodne	223
	0.2.2 Równania liniowe niejednorodne	
	Równanie różniczkowe Bernoulliego	
D.4 R	Równanie różniczkowe Clairauta	223
	Jkłady równań liniowych	223
D	0.5.1 Metoda Eulera rozwiązywania jednorodnych układów równań róż-	
	niczkowych	
D	0.5.2 Twierdzenia o istnieniu równania różniczkowego	224
Dodatek	E Całka Riemanna-Stieltjesa	225
Dodatek	F Iloczyny nieskończone	22 9
Dodatek	G Dowód niewymierności liczby π	229

1 Preliminaria

Ten dokument zaczął swoje życie jako moje osobiste notatki elektroniczne, w oparciu o wykłady na które uczęszczałem oraz literaturę i służył głównie utrwalaniu i przypominaniu sobie szczególnie istotnych faktów z analizy. Ćwiczyłem też formułowanie i redagowanie twierdzeń i ich dowodów. W pewnym momencie język zaczął przypominać skrypt pisany do neutralnego czytelnika a nie notatki osobiste. Jest to w 100% amatorski "skrypt studencki", a ja nie jestem ani wybitnym studentem a już tym bardziej żadnym autorytetem w dziedzinie. Proszę mieć to na uwadze.

Uwagi: rozdział o ciągłości funkcji to na razie szczególny "szkicobałagan". Dowodzę twierdzeń powołując się na twierdzenia, które wprowadzam później, albo jeszcze nie wskazałem, etc. Ciągły Work-in-progress i nie mogę tego poukładać tak jak chcę.

Klasycznie - gwiazdką "*" oznaczone są paragrafy, punkty, podpunkty, przykłady, twierdzenia i zadania a nawet rozdziały, których lektura jest opcjonalna/niezalecana podczas "pierwszego czytania", gdyby patrzeć na ten dokument jak na podręcznik, czego nie zalecam studentom(, ale wierzę w istnienie entuzjastów-amatorów matematyki :)).

Krótki esej o poznawaniu matematyki i w szczególności Analizy Matematycznej:

1.1 Dwa słowa o logice i metodzie matematyki

1.2 Elementy Teorii mnogości i "żargon matematyczny"

Na początku spędzimy trochę czasu przyzwyczajając się do "matematycznego żargonu", terminologii i stylu zapisywania matematycznych rozumowań. Niestety, z tego względu dla nawet **odrobinę** doświadczonego studenta (a nawet ambitnego ucznia lub (o zgrozo) matematycznego olimpijczyka który by sięgnąłby po mój tekst), rozdział ten będzie niestrawny, stąd nie jest on dobrym wprowadzeniem ani przypomnieniem teorii mnogości. Dobre przypomnienie stanowi pierwszy rozdział z *Wykładów z analizy matematycznej* profesora Ryszarda Rudnickiego. Świetną książką wprowadzającą w Teorię Mnogości jako "wstęp do matematyki" są *Wykłady ze wstępu do matematyki, wprowadzenie do teorii mnogości* (Wojciech Guzicki, Piotr Zakrzewski).

- Twierdzenie ...
- Lemat(gr. $\lambda\nu\mu\mu\alpha$) twierdzenie pomocnicze, wprowadzane celem uproszczenia dowodów innych twierdzeń.

Zbiór i należenie do zbioru. Typowe zbiory przeważnie będziemy oznaczać dużymi literami alfabetu łacińskiego, np. $A,\,B,\,X,\,Y,\,Z.$ Zdanie

"element a należy do zbioru A"

zapisujemy symbolicznie następująco:

$$a \in A$$

Mówimy też wtedy, że a jest "elementem zbioru A". Elementami zbiorów mogą być inne zbiory. a w powyższym przykładzie może jest jakimś zbiorem. Możemy napisać $B \in A$ i mieć na myśli "jakieś" zbiory A i B. To na razie nie jest ważne.

Zbiory skończone (o skończonej liczbie elementów) możemy opisać wypisując ich elementy, otoczone nawiasami klamrowymi $\{,\}$, np. moglibyśmy zdefiniować następujące zbiory A, B:

$$A = \{1, 2, 3, 4\}$$

$$B = \{\alpha, 1, x, A\}$$

$$C = \{a, b, c, d, \dots, x, y, z\}$$

W ostanim przypadku nie wypisaliśmy wszystkich elementów zbioru C ale zasugerowaliśmy (wielokropkiem "..."), że chodzi o wszystkie litery od a do z alfabetu. Z takim zapisem musimy być ostrożni: czy np. ś $\in C$? Czyli, czy uwzględniamy w naszym zbiorze "polskie" znaki? Stosowanie polskich znaków diaktrycznych (liter z ogonkami i kropkami) jako symbole matematyczne nie jest przyjęte, jednak realnie można mieć wątpliwości co autor (w tym wypadku ja) miał na myśli.

Przypomnijmy znane ze szkoły zbiory liczb:

- ullet Zbiór liczb **r**zeczywisych, oznaczany $\mathbb R$
- Zbiór liczb **n**aturalnych, oznaczany $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
- Zbiór liczb całkowitych, oznaczany $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ (takie jest niestety oznaczenie międzynarodowe, od niemieckiego Zahlen).

W dalszym ciągu poznamy również liczby zespolone, których zbiór oznacza się... literą $\mathbb C$ (możemy skojarzyć np. z ich angielską nazwą "Complex numbers").

Definicja 1.1. Mówimy, że zbiór A zawiera się w zbiorze B, gdy każdy element zbioru A należy również do zbioru B, czyli gdy

dla każdego
$$a \in A$$
 zachodzi $a \in B$.

Widzimy też, że $\mathbb{N}\subseteq\mathbb{Z}$. Wystarczy rozpisać: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}\subseteq\{0,1,2,\ldots\}=\mathbb{N}$ Ogólnie:

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$

Uwaga 1.1. Nie należy mylić pojęć **zawierania** się zbiorów (\subseteq) oraz **należenia do** zbioru (\in).

Np. w poprzednim przykładzie, określiliśmy zbiory $A = \{1, 2, 3, 4\}$ i $B = \{\alpha, 1, x, A\}$. Zbiór A należy do zbioru B ale nie zawiera się w tym zbiorze. Np. $2 \in A$ ale $2 \notin B$ - a według definicji, aby $A \subseteq B$ to $2 \in A$ musiałoby pociągać, że również $2 \in B$.

Symbol tego typu: $\varphi(x)$ (dowolna (tutaj - grecka) litera i zmienna (tutaj x) w nawiasie) jest oznaczeniem na pewne "zdanie logiczne" o obiekcie x. Możemy np. umówić się w ramach danego rozumowania, że $\delta(y)$ oznacza "y jest liczbą wymierną" (cokolwiek to znaczy). Znaczek \equiv oznacza "równoważność" różnych zdań. Np. moglibyśmy zdefiniować i oznaczyć:

- $\varphi(x) \equiv x$ jest figura geometryczna",
- $\Psi(x) \equiv x$ jest większe od zera x > 0,
- $\psi(n) \equiv n$ jest liczba naturalna" $\equiv n \in \mathbb{N}$.
- $\Xi(p) \equiv p$ jest prosta na płaszcyźnie".

W tej chwili może się to wydawać skomplikowane i być może zbędnie, ale wielokrotnie zobaczymy, że zapis symboliczny pozwala nam wyrażać i analizować ogólne struktury, podstawiając odpowiedni symbol za "nieokreślone zdanie logiczne". Na przykład, omówimy przy jego pomocy kolejną konwencję notacyjną.

Zapis $x \in X$: $\varphi(x)$ czytamy "x należące do X takie, że $\varphi(x)$ ". Przy czym, każdy element x z osobna spełnia warunek φ . Wcześniej wypisywaliśmy elementy zbiorów w nawiasach klamrowych $\{,\}^1$. Zapis $\{x \in X : \varphi(x)\}$ oznacza "zbiór, którego elementami są x należące do X takie, że $\varphi(x)$ ".

Przykład. Zapis

$$A = \{ n \in \mathbb{N} : n = 2k, \text{ dla pewnego } k \in \mathbb{N} \}$$

można wyrazić jako

- "A jest zbiorem liczb $n \in \mathbb{N}$ takich, że n = 2k dla pewnego $k \in \mathbb{N}$ "
- "A jest zbiorem liczb n należących do zbioru liczb naturalnych i takich, że każda (z osobna) liczba n jest równa 2k dla pewnego $k \in \mathbb{N}$ "
- A jest zbiorem liczb naturalnych n takich, że n=2k dla pewnego $k \in \mathbb{N}$.
- A jest zbiorem liczb naturalnych podzielnych przez 2.

ale oczywiście wszystko to znaczy to samo: A jest zbiorem liczb parzystych:

$$A = \{0, 2, 4, 8, 10, 12, \ldots\}.$$

Zbiór parzystych liczb naturalnych bywa oznaczany przez 2N, tzn.:

$$2\mathbb{N} := \{ n \in \mathbb{N} : n = 2k, \text{ dla pewnego } k \in \mathbb{N} \}.$$

¹pieszczotliwie nazywanych też "wąsaczami".

Definicja 1.2. Sumą zbiorów A i B nazywamy zbiór

$$A \cup B = \{a \colon a \in B \text{ lub } a \in B\}.$$

A więc zbiór elementów a takich, że a należy do chociaż jednego ze zbiorów A, B.

Przykład.
$$A = \{1, 2, b, \alpha\}, B = \{1, \alpha, 3, 5\}.$$
 Wtedy $A \cup B = \{1, 2, 3, 5, b, \alpha\}.$

Definicja 1.3. *Iloczynem* albo *przekrojem* zbiorów A i B nazywamy zbiór

$$A \cap B = \{a \colon a \in A \text{ i } a \in B\}.$$

A więc zbiór elementów wspólnych zbiorów A i B.

Przykład.
$$A = \{1, 2, b, \alpha\}, B = \{1, \alpha, 3\}.$$
 Wtedy $A \cap B = \{1, \alpha\}.$

Definicja 1.4. Różnicą zbiorów A i B nazywamy zbiór

$$A \setminus B = \{a : a \in A \text{ i } a \notin B\}.$$

A więc zbiór powstający przez usunięcie ze zbioru A elementów, które należą też do zbioru B.

Przykład. $A = \{1, 2, b, \alpha\}, B = \{1, \alpha, 3\}.$ Wtedy $A \setminus B = \{2, b\}.$

Ćwiczenie. $A = \{f, g, h, \delta\}, B = \{\delta, f, g, 1, 2, 3\}.$ Wyznaczyć zbiory $A \cap B, A \cup B, A \setminus B$ oraz $B \setminus A$.

Twierdzenie 1.1. Zbiór $A \cap B$ jest największym (w sensie zawierania albo inaczej inkluzji, tzn. ze względu na relację porządku " \subseteq ") zbiorem zawartym zarówno w zbiorze A jak i w zbiorze B, czyli

- $A \cap B \subseteq A \ i \ A \cap B \subseteq B$,
- Jeżeli C jest takim zbiorem, że $C \subseteq A$ i $C \subseteq B$, $to^2 C \subseteq A \cap B$.

Dowód. Ponieważ $x\in A\cap B$ pociąga, że $x\in A$, to $A\cap B\subseteq A$. Analogicznie $A\cap B\subseteq B$. Niech teraz C będzie dowolnym zbiorem takim, że $C\subseteq A$ oraz $C\subseteq B$. Ustalmy $x\in C$. Wówczas z określenia zbioru C mamy, że $x\in A$ oraz $x\in B$. Czyli $x\in A\cap B$. Pokazaliśmy, więc że

$$x \in C \implies x \in A \cap B$$
.

Pokazaliśmy w ten sposób, że $C \subseteq A \cap B$, co kończy dowód.

 $\acute{C}wiczenie$. Udowodnić, że zbiór $A \cup B$ jest najmniejszym (w sensie zawierania) zbiorem zawierającym zarówno zbiór A jak i zbiór B.

 $^{^2}$ właśnie jest "mniejszy" w "sensie zawierania" od $A\cap B.$

Definicja 1.5. Para uporządkowaną liczb a i b nazywamy zbiór (a,b) taki, że

$$(a,b) = (x,y)$$
 wtedy i tylko wtedy, gdy $x = a$ oraz $y = b$.

a nazywamy poprzednikiem pary (a,b) a b następnikiem tej pary.

Para uporządkowana różni się od zbioru $\{a,b\}$ np. tym, że $(a,b) \neq (b,a)$, gdy $a \neq b$, a już powinniśmy wiedzieć, że $\{a,b\} = \{b,a\}$. Ponadto, $(a,a) \neq \{a\}$ podczas, gdy $\{a,a\} = \{a\}$.

Twierdzenie 1.2. Parę uporządkowaną (a,b) można zdefiniować przy pomocy **zbiorów** w ten sposób:

$$(a,b) = \{\{a,b\},\{b\}\}.$$

Tzn. zbiór zdefiniowany w powyższy sposób spełnia założenia poprzedniej definicji.

Dowód. Chcemy pokazać, że $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$ wtedy i tylko wtedy, gdy a=c i b=d. Dowód implikacji "w lewo". Załóżmy, że $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$. Mamy dwa przypadki:

1. a = b. Wtedy

$$\{\{a\},\{a,b\}\} = \{\{a\},\{a,a\}\} = \{\{a\},\{a\}\} = \{\{a\}\}.$$

Z założenia $\{c,d\} \in \{\{a\}\}$ a stąd $\{c,d\} = \{a\}$, czyli c=a i d=a. A więc c=d=a=b.

2. $a \neq b$. Mamy $\{c\} \in \{\{a\}, \{a, b\}\}$. Ale $a \neq b$ czyli $\{c\} \neq \{a, b\}$. Zatem $\{c\} = \{a\}$. Mamy więc, że a = c. Dalej: $\{a, b\} \in \{\{c\}, \{c, d\}\}$. Ponieważ $a \neq b$, to $\{a, b\} = \{c, d\}$. Wiemy, że

$$a = c \text{ oraz } a \neq b.$$

Wniosek: b = d.

Poprzednie twierdzenie służy głównie zademonstrowaniu, że różne pojęcia matematyczne mogą być zdefiniowane przy pomocy niewielkiego zestawu prostszych pojęć pierwotnych. Nie będziemy szerzej dyskutować metodologicznych (albo filozoficznych) zalet takiego postępowania, warto jednak mieć świadomość że wiele objektów, którymi będziemy się posługiwać, na odpowiednim poziomie ma bardziej abstrakcyjne definicje. Nie omówimy np. jak w ramach teorii mnogości definiuje się wszystkie liczby jako pewne zbiory, ale tak właśnie są one określone w ramach współczesnej matematyki. Informacje na ten temat może czytelnik znaleźć w świetnej książce Wykłady ze wstępu do matematyki. Wprowadzenie do teorii mnogości. (Wojciech Guzicki, Piotr Zakrzewski.)

Definicja 1.6. Dla dowolnych zbiorów A, B zbiór

$$A \times B = \{(a, b) : a \in A \text{ oraz } b \in B\}$$

nazywamy iloczynem kartezjańskim (albo produktem kartezjańskim zbiorów A, B. Definicję możemy uogólnić indukcyjnie na dowolną skończoną ilość zbiorów: Ustalmy dow. rodzinę $\{A_n \colon n \in \mathbb{N}\}$, wtedy uogólniony iloczyn kartezjański n zbiorów określamy następująco:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) : a_1 \in A_1, \ldots, a_n \in A_n\}.$$

Przykład. Niech a_1, a_2, \ldots, a_n i b_1, b_2, \ldots, b_n będą takimi liczbami, że $a_i < b_i, i = 1, \ldots, n$. Wtedy zbiór $X_{i=1}^n[a_i, b_i] = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$ nazywamy kostką n-wymiarową.

1.3 Relacje, funkcje i zasada abstrakcji

Relacje - podstawowe intuicje Definicja okazuje się śmiesznie prosta:

Definicja 1.7. Zbiór $R\subseteq X\times X$ nazywamy relacjq na zbiorze X. Zatem relacja R na zbiorze X jest więc po prostu podzbiorem iloczynu kartezjańskiego zbioru X z samym sobą.

Mówimy, że relacja R jest

- zwrotna, $gdy \forall_{x \in X} (x, x) \in R$.
- przechodnia, gdy $\forall_{x,y,z\in X}$ jeśli $(x,y)\in R$ i $(y,z)\in R$, to $(x,z)\in R$.
- symetryczna, gdy $\forall_{x,y\in X}$. jeśli $(x,y)\in R$, to $(y,x)\in R$.
- antysymetryczna, gdy $\forall_{x,y \in X}$ jeśli $(x,y) \in R$ oraz $(y,x) \in R$, to x = y.
- $sp\acute{o}jna$, $gdy \forall_{x,y\in X}$. x=y lub $(x,y)\in R$ lub $(y,x)\in R$.

Zbiór X nazywa się też czasem polem relacji $R \subseteq X^2$. Relacja R spójna to relacja taka, że dowolne dwa elementy należące do jej pola są ze sobą w tej relacji (lub ew. są tym samym elementem.)

1.3.1 Teoria mocy

UWAGA, ten rozdział jest nie tylko (jeszcze) prawie pusty ale absolutnie niedopracowany.

Definicja 1.8. Mówimy, że zbiory A i B są równoliczne, gdy istnieje bijekcja $f: A \xrightarrow[1-1]{\text{na}} B$. Piszemy wtedy $A \sim B$.

Definicja 1.9. Mówimy, że zbiór A jest przeliczalny, gdy jest równoliczny ze zbiorem liczb naturalnych: $A \sim \mathbb{N}$. Mówimy, że zbiór jest co najwyżej przeliczalny, gdy jest przeliczalny lub skończony.

Definicja 1.10. Mówimy, że zbiór A jest mocy continuum, gdy jest równowliczny ze zbiorem liczb rzeczywistych, czyli $A \sim \mathbb{R}$.

Nieformalnie i bardzo nieściśle mówiąc, "mocą" zbioru nazywamy "liczbę" tudzież "liczność" jego elementów. Moc zbioru $\mathbb N$ oznacza się w teorii mnogości przez \aleph_0 (\aleph to hebrajska litera - "alef") a moc zbioru $\mathbb R$ przez $\mathfrak c$.

W teorii mnogości definiuje się $liczby\ kardynalne$. \aleph_0 i $\mathfrak c$ są przykładami tzw. liczb kardynalnych. Przez |A| lub card A oznaczamy liczbę elementów zbioru A. Ten drugi zapis wiąże się ze wspomnianymi l. kardynalnymi - tematu tego nie będziemy zgłębiać, ale ten popularny w teorii mnogości zapis pozwoli w dalszej częsci lektury nie mylić liczby elementów zbioru A z jego tzw. miarq - również często oznaczaną przez |A|. Temat stanie się jasny dopiero na zaawansowanym etapie lektury - na razie nie należy się tym przejmować. Czytelnikowi wystarczy przyjąć, że card A to "liczba" mówiąca "ile elementów ma zbiór A".

Zatem, gdy zbiór A jest mocy continuum, to piszemy card $A = \mathfrak{c}$ a gdy jest przeliczalny, to wówczas piszemy card $A = \aleph_0$. Jeżeli zbiór A jest co najwyżej przeliczalny, to możemy napisać, że card $A \leq \aleph_0$.

Twierdzenie 1.3. Niech X będzie dowolnym zbiorem. Relacja $\sim \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$, czyli relacja równoliczności określona na iloczynie wszystkich podzbiorów zbioru X jest relacją równoważności.

Podajemy kilka bez dowodu kilka ważnych twierdzeń, których sens jest intuicyjny, jednak ścisłe dowody nie są wcale oczywiste. Po odpowiedni wykład ponownie odsyłam do książek wprowadzających do teorii mnogości albo przedmiotu "wstęp do matematyki" jaki obecnie realizuje się na kierunkach matematycznych. Zainteresowani znajdą też w tej literaturze więcej nt. liczb kardynalnych.

Twierdzenie 1.4 (Cantora o przekątni). Dla dowolnego zbioru X, zachodzi $|\mathcal{P}(X)| \neq |X|$.

Twierdzenie 1.5. Dla dowolnego zbioru skończonego $X: |\mathcal{P}(X)| = 2^{|X|}$.

Twierdzenie 1.6 (Cantora-Bernsteina). Dla dowolnych zbiorów X, Y zachodzi implikacja

$$je\acute{s}li \; |X| \leqslant |Y| \; oraz \; |Y| \leqslant |X| \; to \; |X| = |Y|.$$

1.3.2 Funkcje

Intuicie:

Scisłe określenie pojęcia funkcji jako zbioru.

Definicja 1.11. Relację $f\subseteq X\times Y$ nazywamy funkcją albo odwzorowaniem między zbiorami X i Y, gdy

Dla każdych $x \in X$ i $y, z \in X$ jeśli $(x, y) \in f$ oraz $(x, z) \in f$ to z = y.

Zapis $X \to Y$ czytamy "ze zbioru X w zbiór Y". Zapis $f: X \to Y$ mówi nam, że f jest funkcją ze zbioru X w zbiór Y.

Uwaga 1.2. Warunek powyższy nazywa się prawostronną jednoznacznością relacji f. Zauważmy, że nazawa ta jest intuicyjna, oraz że warunek ten dobrze oddaje naszą intuicję, że przyporządkowanie elementowi $x \in X$ elementu ze zbioru Y jest jednoznaczne.

Uwaga 1.3 (Konwencja notacyjna 1). Piszemy y = f(x), $\varphi(x)$ gdy **dla każdego** x spełniającego $\varphi(x)$ zachodzi y = f(x). Najczęściej warunek φ będzie w postaci "x należy do pewnego podzbioru D_f ".

Np. mówimy, że funkcja jest "nieujemna", gdy $f(x)>0, x\in D_f$ (tzn. "f(x)>0 dla każdego $x\in D_f$ ").

Przykład. Zdefiniujmy funkcję $f : \mathbb{N} \to \mathbb{N}$ wzorem $f(x) = (-1)^x$. Wtedy możemy napisać:

$$f(x) > 0$$
, x parzyste

albo

$$f(x) = 1, x \in \{0, 2, 4, \ldots\}.$$

Obydwa wyrażenia są poprawne i dla naszej funkcji prawdziwe.

Uwaga 1.4 (Konwencja notacyjna 2). Gdy funkcja określona na liczbach rzeczywistych dla wszystkich argumentów przyjmuje wartości dodatnie (nieujemne), tzn. $f(x) \ge 0, x \in D_f(f(x) > 0)$, to fakt ten w tekście dla uproszczenia zapisujemy $f \ge 0$ (f > 0). Analogicznie gdy funkcja jest "ujemna" (tzn. $f(x) < 0, x \in D_f$), to piszemy f < 0.

Definicja 1.12. Niech $f: X \to Y$. Zbiór X nazywamy dziedziną funkcji a zbiór Y jego przeciwdziedziną. Zbiór Y w powyższym zapisie nie musi być $zbiorem\ wartości\ funkcji\ f$, tj. zbiorem $\{y \in Y: (x,y) \in f \subseteq Y\}$. Dziedzinę funkcji f oznaczamy czasami jako D_f albo dom(f) a przeciwdziedzinę jako R_f lub range(f) - od angielskiego "range", czyli "zasięg" funkcji.

Z powyższego określenia, dwie funkcje fi gsą równe (piszemy wtedy f=g) wtedy i tylko wtedy gdy

- 1. $D_f = D_g$
- 2. f(x) = g(x) dla każdego $x \in D_f(=D_g)$.

Z warunku drugiego wynika, że musi być również $R_f = R_g$. Stwierdzenie, że f(x) = g(x) dla x należącego do $D_f \cup D_g$ nie pozwala nam uznać, że f = g!

Przykład. Niech f i g będą dane wzorami:

$$f(x) = \frac{x^2}{x}$$
 oraz $g(x) = x$.

Czy f=g? Odpowiedź brzmi nie! Otóż $f(x)=\frac{x^2}{x}=x$ dla $x\neq 0$. Dla x=0 funkcja f nie jest w ogóle określona, gdyż nie możemy dzielić przez 0. Dla każdego $x\in\mathbb{R}\setminus\{0\}$ mamy więc f(x)=g(x), jednak g(0)=0 a f(0) nie istnieje i stąd $\mathbb{R}\setminus\{0\}=D_f\neq D_g=\mathbb{R}$.

Definicja 1.13. Mówimy, że funkcja $f: X \to Y$ jest **monotoniczna**, gdy spełnia jeden z poniższych (wzajemnie się wykluczających) warunków:

- Dla każdych $x_1, x_2 \in X$, jeśli $x_1 < x_2$, to $f(x_1) \le f(x_2)$ i wtedy mówimy, że funkcja f jest nierosnąca albo slabo malejąca;
- Dla każdych $x_1, x_2 \in X$, jeśli $x_1 > x_2$, to $f(x_1) \ge f(x_2)$ i wtedy mówimy, że funkcja f jest niemalejąca albo stabo rosnąca.

Gdy nierówność w \leq pierwszym punkcie zamienimy na nierówność ostrą: <, to oczywiście mówimy, że funkcja f jest malejąca a gdy nierówność \geq w drugim punkcie na >, to mówimy, że funkcja f jest rosnąca. W obu przypadkach powiemy, że funkcja f jest scisle monotoniczna.

Uwaga 1.5. Niektórzy autorzy przyjmują inne definicje:

- Funkcję (przy naszej definicji) monotoniczną określają jako słabo monotoniczną,
- a funkcję (w naszym rozumieniu) ściśle monotoniczną określają jako monotoniczną.

Można by więc też przyjąć, że funkcja monotoniczna to: albo "ściśle monotoniczna" albo "słabo monotoniczna" i operować wszystkimi trzema pojęciami w sposób jednoznaczny...

Definicja 1.14. Funkcję $f: X \to Y$ nazywamy *różnowartościową* i zapisujemy też jako $f: X \stackrel{1-1}{\to} Y$, gdy dla każdych $x_1, x_2 \in X$ takich, że $x_1 \neq x_2$, zachodzi $f(x_1) \neq f(x_2)$.

Uwaga 1.6. Poprzez kontrapozycję równoważnie powyższej definicji funkcja $f: X \to Y$ jest różnowartościowa, gdy gdy

dla każdych $x_1, x_2 \in X$ takich, że $f(x_1) = f(x_2)$, zachodzi $x_1 = x_2$.

Uwaga 1.7. Łatwo zapamiętać, że funkcja różnowartościowa, to taka, która

różnym argumentom przyporządkowuje różne wartości.

Definicja 1.15. Funkcję $f: X \to Y$ nazywamy funkcją "na" (zbiorze Y) i zapisujemy też jako $f: X \stackrel{\text{na}}{\to} Y$, gdy **dla każdego** $y \in Y$ istnieje $x \in X$ takie, że y = f(x).

Inaczej mówiąc: gdy $f\colon X\to Y$ jest funkcją "na" zbiór Y, to znaczy, że $R_f=Y$. Surjekcja jest to zatem funkcja która "pokrywa" całą przeciwdziedzinę albo taką, że jej przeciwdziedzina i zbiór wartości są tym samym zbiorem.

Przykładami surjekcji jest funkcja identycznościowa

Definicja 1.16. Funkcję $f\colon X\to Y$, która jest zarówno funkcją "na" jak i funkcją różnowartościową nazywamy wzajemnie jednoznaczną i zapisujemy też jako $f\colon X\stackrel{1-1}{\underset{\text{na}}{\longrightarrow}} Y$ (lub $f\colon X\stackrel{\text{na}}{\underset{\text{1-}1}{\longrightarrow}} Y$).

Uwaga 1.8. Funkcja wzajemnie jednoznaczna jest inaczej nazywana *bijekcją*. Bijekcje mają szczególne znaczenie w matematyce i w niektórych dziedzinach matematyki, bijekcje między szczególnymi zbiorami mają swoje własne nazwy i określenia. Np. jako "izomorfizmy" w topologii i algebrze.

Historycznie młodsze są określenia: surjekcja na funkcję "na" oraz injekcja na funkcję różnowartościową. Trzeba je niestety znać ze względu na ich obecność matematyce (tym samym w literaturze matematycznej), natomiast autor skryptu postara się ich unikać, więc czytelnik na początku nie musi się nimi przejmować i ograniczyć do (chyba) intuicyjnych określeń podanych w definicjach.

Ćwiczenie. Zauważmy, że definicję 1.14 mogliśmy zapisać za pomocą kwantyfikatorów:

funkcja f jest róznowartościowa, gdy
$$\forall_{x_1,x_2 \in X}$$
 $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Zapisać kolejno definicje funkcji różnowartościowej i funkcji wzajemnie jednoznacznej przy pomocy kwantyfikatorów.

Definicja 1.17. Niech $f\colon X\overset{1-1}{\underset{\mathrm{na}}{\longrightarrow}}Y$ będzie dowolną bijekcją. Funkcję $g\colon Y\to X$ taką, że

jeśli
$$(x, y) \in f$$
, to $(y, x) \in g$

nazywamy funkcją odwrotną do funkcji f i przyjmujemy oznaczenie $g = f^{-1}$.

Zatem dla bijekcji $f: X \to Y$ jej funkcja odwrotna f^{-1} to funkcja taka, że dla każdego $y \in Y$ zachodzi: $f^{-1}(y) = x$ dla pewnego $x \in X$ spełniającego: y = f(x).

Zauważmy, że funkcja f^{-1} odwrotna do $f: X \to Y$ jest również bijekcją: $f^{-1}: Y \stackrel{1-1}{\underset{n}{\longrightarrow}} X$.

Przykład. Niech $X \neq \emptyset$. Funkcję $f \colon X \to X$ daną wzorem f(x) = x nazywamy identycznością na zbiorze X. Łatwo zauważyć, że tak zdefiniowana f jest różnowartościowa i określona **na** zbiorze X. Zatem jest to bijekcja i ma funkcję odwrotną: $f^{-1} \colon X \to X$. W tym wypadku oczywiście $f^{-1} = f$, gdyż $f^{-1}(x) = x = f(x)$ dla dowolnego $x \in X$. Zwykle identyczność na zbiorze X oznaczamy Id_X . Możemy zatem napisać:

$$\mathrm{Id}_X\colon X\to X,$$

$$\operatorname{Id}_{X}(x) = x, \ x \in X.$$

Znanymi ze szkoły funkcjami ze zbioru \mathbb{R} na zbiór \mathbb{R} są funkcje sin i cos natomiast funkcje tan i cot są tylko funkcjami w zbiór \mathbb{R} . Za to tan i cot są różnowartościowe, w przeciwieństwie do funkcji sin i cos. Wszystkie te własności widać na wykresach tych funkcji. Jeszcze jednym prostym przykładem bijekcji będzie dowolna funkcja liniowa, tj. funkcja f dana zależnością f(x) = ax + b dla pewnych ustalonych $a, b \in \mathbb{R}$. Przyjmując b = 0 i a = 1 widzimy, że oczywiście identyczność na \mathbb{R} jest funkcją liniową.

Przykład (homografia). Funkcją homograficzną nazywamy funkcję $f\colon \mathbb{R} \to \mathbb{R}$ zadaną wzorem

$$f(x) = \frac{ax+b}{cx+d}.$$

gdzie $a,b,c,d\in\mathbb{R}$ spełniają warunek $ad-bc\neq 0$. Funkcja homograficzna jest funkcją różnowartościową.

1.3.3 Złożenie funkcji

Definicja 1.18. Niech $f: P \to Y$ i $g: X \to P$ będą dowlnymi funkcjami na dow. zbiorach X, Y, P. Złożeniem funkcji g z funkcją f nazywamy zbiór (relację na zbiorze $X \times Y$)

$$f \circ g = \{(x, y) : \text{ istnieje } p \in P \text{ takie, } \text{że } (x, p) \in g \text{ oraz } (p, y) \in f \}.$$

Jeżeli $(x,y) \in f \circ g$, to zapis zgodnie z dotychczasową konwencją wygląda tak: $y = f \circ g(x)$ ale bardziej elegancko przyjęło się pisać w ten sposób: $y = (f \circ g)(x)$.

Zauważmy, że dla $x\in X$ oraz $y\in Y$ takich, że $(x,y)\in f\circ g$ "poprawnym" jest wyrażenie y=f(g(x)), z którego możemy "obliczać y-ka w zależności od x-a". Możemy więc pisać, że

$$f \circ g = \{(x, y) : \exists_{p \in P} g(x) = p \text{ oraz } f(p) = y\}.$$

Fakt, że f jest funkcją odwzorowującą zbiór X w zbiór Y możemy też zilustrować w formie diagramu:

$$X \xrightarrow{f} Y$$

Relacje³ między funkcjami f, g i $f \circ g$ ilustruje poniższy diagram:

$$X \xrightarrow{f \circ g} Y$$

Albo taki:

$$X \xrightarrow{g} P \xrightarrow{f} Y$$

Teraz zapowiedziane

³Nieformalnie mowiąc!

Twierdzenie 1.7. Niech $g: X \to P$ if: $P \to Y$. Złożenie $f \circ g$ funkcją g: Z funkcją $f: P \to Y$.

$$f \circ g \colon X \to Y$$
.

Dowód.Z definicji mamy, że $f\circ g\subseteq X\times Y.$ Pokażemy, że relacja $f\circ g$ jest prawostronnie jednoznaczna. [TO-DO]

Twierdzenie 1.8. Składanie funkcji jest łączne, tj. dla odwzorowań $h: X \to U$, $g: U \to V$, $f: V \to Y$ zachodzi tożsamość

$$f \circ (g \circ g) = (f \circ g) \circ h.$$

Tożsamość tę można obrazowo zilustrować kolejnym diagramem:

$$\begin{array}{ccc}
X & Y \\
\downarrow h & f \uparrow \\
U & \xrightarrow{g} V
\end{array}$$

Dowód. Ustalmy funkcje pomocnicze: niech $G = g \circ h$ oraz $F = f \circ g$. G i F są poprawnie zdefiniowanymi funkcjami na mocy twierdzenia 1.7. Uzupełnijmy nasz diagram:

Widzimy, że $G\colon X\to V$ oraz $F\colon U\to Y.$ Wtedy $G\circ f\colon X\to Y$ oraz $h\circ F\colon X\to Y.$ Z definicji złożenia

$$f \circ$$

$$[TO-DO]$$

Składanie odwzorowań $X \to X$ na ogół nie jest przemienne, czyli zdarzyć się może, że $f \circ g \neq g \circ f$ dla pewnych funkcji $f,g\colon X \to Y$.

Przykład. Niech $X = \{a, b\}$, gdzie $a \neq b$ oraz f(a) = b, f(b) = a, g(a) = a, g(b) = a.

Twierdzenie 1.9. Dla dowolnej funkcji $f: X \to Y$ zachodzą tożsamości:

$$f^{-1} \circ f = Id_X$$

$$f \circ f^{-1} = Id_Y$$

Dowód. Powyższe twierdzenia można by skwitować stwierdzeniem, że są oczywiste. Spójrzmy jednak na diagram:

$$\operatorname{Id}_X \stackrel{f^{-1}}{\smile} X \stackrel{f}{\smile} \operatorname{Id}_Y$$

Mamy:

$$f^{-1} \circ f = \{(x, y) \in X \times X : \exists_{z \in X} (x, z) \in f, (z, y) \in f^{-1}\} \subseteq X \times X$$

Niech $(x,y) \in X \times X$, to z definicji $(x,y) \in f$ oraz $(y,x) \in f^{-1}$, czyli $(x,x) \in f^{-1} \circ f$ i z prawostronnej jednoznaczności relacji $f^{-1} \circ f$ dla każdego $z \in X$, jeśli $(x,z) \in f^{-1} \circ f$, to z = x. Zatem $f^{-1} \circ f = X \times X = \operatorname{Id}_X$. Analogicznie można rozumowanie przeprowadzić dla złożenia $f \circ f^{-1}$.

Twierdzenie 1.10. Dla dowolnych funkcji f,g zachodzi $(g\circ f)^{-1}=f^{-1}\circ g^{-1}.$

Zwróćmy uwazę na zmianę porządku funkcji f i g w powyższym twierdzeniu!

1.3.4 Obraz i przeciwobraz zbioru przez funkcję

Niech w całym tym paragrafie $f: X \to Y$ oraz $B \subseteq X, C \subseteq Y$.

Definicja 1.19. Obrazem zbioru B przez funkcję f nazywamy zbiór f[B] zdefiniowany następująco:

$$f[B] = \{ y \in Y : y = f(x) \text{ dla pewnego } x \in X \} = \{ f(x) \in Y : x \in B \}.$$

Przeciwobrazem zbioru C przez funkcję f nazywamy zbiór f[B] zdefiniowany następująco:

$$f^{-1}[C] = \{ x \in X \colon f(x) \in C \} .$$

Przykład. Niech A = (-1, 2] i $f: \mathbb{R} \to \mathbb{R}$ dane będzie wzorem:

- 1. f(x) = x; wówczas: f[A] = (-1, 2],
- 2. f(x) = 2x + 1; wówczas: f[A] = (-1, 5],
- 3. $f(x) = x^2$; wówczas: f[A] = [0, 4].

(W tych prostych przypadkach łatwo odczytać z wykresu.)

Ćwiczenie. Napisz, jakim zbiorem jest obraz $\mathrm{Id}_{\mathbb{R}}[[0,1)]$.

Przykład. $\sin \left[\left(-\frac{\pi}{2}, \frac{\pi}{2} \right] \right] = (-1, 1].$

Twierdzenie 1.11. Dla dowolnych zbiorów A, B i dla dowolnej indeksowanej rodziny zbiorów $\{A_i : i \in I\}$:

1.
$$f\left[\bigcup_{i\in I}A_i\right] = \bigcup_{i\in I}f[A_i]$$

2. jeżeli
$$I \neq \emptyset$$
, to $f\left[\bigcap_{i \in I} A_i\right] \subseteq \bigcap_{i \in I} f[A_i]$,

3.
$$f[A] \setminus f[B] \subseteq f[A \setminus B]$$
.

Twierdzenie 1.12. Jeżeli f jest funkcją różnowartościową, to dla dowolnych zbiorów A, B i dla dowolnej indeksowanej rodziny zbiorów $\{A_i : i \in I\}$:

1. Jeżeli
$$I \neq \emptyset$$
, to $f\left[\bigcap_{i \in I} A_i\right] = \bigcap_{i \in I} f[A_i]$,

2.
$$f[A] \setminus f[B] = f[A \setminus B]$$
.

1.3.5 Wielomiany

Wielomiany⁴ bada dziedzina znana jako algebra, ale są bardzo ważne w wielu gałęziach matematyki. My wielomiany będziemy rozumieć jako pewne szczególne funkcje.

Definicja 1.20. Niech a_0, a_1, \ldots, a_n będą ustalonymi liczbami, $a_n \neq 0$. Wielomianem stopnia n nazywamy funkcję⁵ W postaci

$$W(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_n \cdot x^n = \sum_{k=0}^{n} a_k x^k.$$

Stopień wielomianu oznaczamy następująco⁶: $\deg W = n$. Każdą liczbę $a \in X$ taką, że W(a) = 0 nazywamy pierwiastkiem wielomianu W.

Jeśli wielomiany W i Q mają te same współczynniki przy odpowiadających potęgach parametru, to oczywiście W(x) = Q(x) dla każd. x. W drugą stronę: zachodzi następujące

Twierdzenie 1.13. Niech dane będą wielomiany W i Q:

$$W(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

$$Q(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1} + b_n x^n.$$

Jeżeli dla każdego $x \in \mathbb{R}$ wielomiany W(x) i Q(x) przyjmują te same wartości to $a_i = b_i$ dla każdego $i = 0, 1, \ldots, n$.

⁴Znane też jako sumy algebraiczne

 $^{{}^5}W \colon \mathbb{K}_1 \to \mathbb{K}_2$, gdzie \mathbb{K}_1 , \mathbb{K}_1 mogą być dowolnymi ciałami (patrz dodatek) - na razie czytelnik może przyjąć, że \mathbb{K}_1 , \mathbb{K}_1 są po prostu pewnymi zbiorami. W naszym przypadku: zazwyczaj liczb rzeczywistych (ogólniej: zespolonych).

⁶Od ang. "degree" - stopień.

Dowód. Indukcja względem stopni wielomianu.

Twierdzenie 1.14 (Bezouta). Dla każdego W liczba $a \in \mathbb{R}$ jest pierwiastkiem wielomianu W wtedy i tylko wtedy, gdy istnieje taki wielomian P, że dla każdego $x \in \mathbb{R}$ prawdziwa jest równość

$$W(x) = (x - a)P(x).$$

Ponadto stopień wielomianu P jest niższy niż wielomianu W.

Dowód. Musimy skorzystać z twierdzenia 1.24, które udowodnimy omawiając zasadę indukcji matematycznej. We wzorze (1.7) przyjmujemy inne oznaczenia: $a=x,\ b=a$ i przemnażamy ją obustronnie przez (x-a). W ten sposób mamy, że

$$x^{n} - a^{n} = (x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}).$$

Gdy W(a) = 0, to

$$W(x) = W(x) - W(a) = (a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n) - (a_0 + a_1 a + a_2 a^2 + \dots + a_n a^n) =$$

$$= a_1(x - a) + a_2(x^2 - a^2) + a_3(x^3 - a^3) + \dots + a_{n-1}(x^{n-1} - a^{n-1}) + a_n(x^n - a^n) =$$

$$= (x - a)[a_1 + a_2(x + a) + \dots + a_{n-1}(x^{n-2} + x^{n-3}a + \dots + xa^{n-3} + a^{n-2}) +$$

$$+ a_n(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + x^2a^{n-3} + xa^{n-2} + a^{n-1})]$$

Stąd W(x) = (x - a)P(x), gdzie P jest wielomianem i deg P < n.

Twierdzenie 1.15 (Viete'a). Niech x_1, x_2, \ldots, x_n będą pierwiastkami wielomianu $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_n \neq 0$. Wówczas:

$$\sum_{k=1}^{n} x_k = x_1 + x_2 + \dots + x_{n-1} + x_n = -\frac{a_{n-1}}{a_n}$$

$$\sum_{j=1}^{n-1} \sum_{k=j+1}^{n} x_j x_k = x_1 x_2 + x_1 x_3 + \ldots + x_1 x_n + x_2 x_3 + x_2 x_4 + \ldots + x_2 x_n + \ldots + x_{n-1} x_n = \frac{a_{n-2}}{a_n}$$

$$\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+2}^{n} x_i x_j x_k = -\frac{a_{n-3}}{a_n}$$

:

$$\prod_{k=1}^{n} x_k = x_1 x_2 \cdots x_n = (-1)^n \frac{a_0}{a_n}$$

Albo inaczej:

$$\sum_{1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n}^n x_{i_1} x_{i_2} x_{i_3} \cdots x_{i_k} = (-1)^k a_{n-k}, \quad dla \ każdego \ k \in \mathbb{N}, 1 \leqslant k \leqslant n.$$

(Bez dowodu)

Twierdzenie 1.16. Jeżeli ułamek nieskracalny $\frac{p}{q}$ jest pierwiastkiem wielomianu W danego:

$$W(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n,$$

przy czym $a_0, \ldots, a_n \in \mathbb{Z}$, to:

- a_n jest podzielne przez q,
- a₀ jest podzielne przez p.

Dowód.

Jeśli
$$W\left(\frac{p}{q}\right) = 0$$
, to: $a_0 + a_1 \frac{p}{q} + \ldots + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + a_n \left(\frac{p}{q}\right)^n = 0$.

Mnożąc obydwie strony przez q^n otrzymujemy, że

$$a_0q^n + a_1q^{n-1}p + \dots + a_{n-1}qp^{n-1} + a_np^n = 0.$$

a więc $a_n p^n = q(aq^{n-1} + \ldots + a_{n-1}p^{n-1})$, czyli $a_n p^n$ jest podzielne przez q. Podobnie $a_0 q^n$ jest podzielne przez p. W teorii liczb dowodzi się, że:

jeżeli liczby całkowite a, b nie mają wspólnego dzielnika innego niż 1 oraz a dzieli bc (c - całkowite), to a dzieli c.

Ułamek $\frac{p}{q}$ z założenia jest nieskracalny, czyli pi qnie mają wspólnego dzielnika innego niż 1 i:

q nie dzieli p a więc również nie dzieli p^n

więc q musi dzielić a_n . Podobnie wywnioskujemy, że p dzieli a_0 .

1.3.6 Funkcje cyklometryczne, uzupełnienia z trygonometrii

Funkcje cyklometryczne. Reszta paragrafu będzie stanowiła przykład do definicji 1.17.

Definicja 1.21. Funkcje

$$\arcsin: [-1,1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$\arccos: [-1,1] \longrightarrow [0,\pi],$$
$$\arctan: \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \to \mathbb{R}$$
$$\operatorname{arcctg}: (0,\pi) \longrightarrow \mathbb{R}$$

są funkcjami odwrotnymi odpowiednich funkcji trygonometrycznych, obciętych do przedziałów w którym sa one funkcjami wzajemnie jednoznacznymi. Tak więc

(1.1)
$$\arcsin := \left(\sin\left|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right)^{-1},$$

$$(1.2) \qquad \operatorname{arccos} := \left(\cos\big|_{[0,\pi]}\right)^{-1},$$

(1.3)
$$\arctan := \left(\tan \left|_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} \right)^{-1},$$

(1.4)
$$\operatorname{arc} \operatorname{ctg} := \left(\operatorname{ctg} \big|_{(0,\pi)}\right)^{-1}$$

1.3.7 Zasada Abstrakcji

Definicja 1.22. Mówimy, że relacja $R \subseteq X \times X$ (na ustalonym zbiorze X) jest relacjq równoważności, gdy jest zwrotna, symetryczna i przechodnia.

Definicja 1.23. Zbiór $\Pi = \{P_t : t \in T\}$ nazywamy rozbiciem albo podziałem (a czasem jeszcze partycją) zbioru $X \neq \emptyset$, gdy

1.
$$X = \bigcup \Pi = \bigcup_{t \in T} P_t$$
,

2. $P_k \cap P_l = \emptyset$ dla każdych $k, l \in T$ takich, że $k \neq l$.

Zbiory $P_t, t \in T$ nazywamy klasami podziału Π .

Definicja 1.24. Załóżmy, że Rjest relacją równoważności w zbiorze $X \neq \varnothing.$ Dla każdego $x \in X$ zbiór

$$[x]_R := \{ y \in X \colon (y, x) \in R \}$$

nazywamy klasą abstrakcji wyznaczoną przez element x. Rodzinę wszystkich klas abstrakcji relacji równoważności R w zbiorze X oznaczamy symbolem X/R i nazywamy ją przestrzenią ilorazową zbioru X względem relacji R. Zatem

$$X/R = \{ [x]_R \colon x \in X \}.$$

Przykład. Jeżeli X jest zbiorem wszystkich prostych na płaszczyźnie, a R relacją równoległości, to klasami abstrakcji względem tej relacji są kierunki.

Przykład. Jeżeli X jest zbiorem wszystkich trójkątów, jakie można narysować na płaszczyźnie, a R relacją przystawania trójkątów, to każda klasa tej abstrakcji jest zbiorem wszystkich trójkątów przystających. Np. jeżeli ΔABC jest pewnym trójkątem o kątach o miarach kolejno 90°, 60°, 30°, to $[\Delta ABC]_R$ jest zbiorem wszystkich trójkątów prostokątnych takich, że jeden z pozostałych kątów ma miarę 30° a drugi 60°.

Twierdzenie. Niech X będzie dowolnym zbiorem niepustym a $R\subseteq X^2$ relacją równoważności w tym zbiorze. Wówczas

- 1. $X = \bigcup \{ [x]_R : x \in X \},$
- 2. dla dowolnych $x, y \in X$, jeżeli $[x]_R \cap [y]_R \neq \emptyset$, to $[x]_R = [y]_R$.

 $Czyli\ X/R\ jest\ rozbiciem\ zbioru\ X.$

Dowód. Ustalmy dowolne $z \in [x]_R \cap [y]_R$. Jeżelu $t \in [x]_R$, to tRx. Wówczas tRy z przechodniości relacji, bo xRz i zRy. Zatem $t \in [y]_R$, a więc $[x]_R \subseteq [y]_R$. Analogcznie dowodzimy, że $[y]_R \subseteq [x]_R$. Pokazaliśmy zatem prawdziwość warunku 1. Warunek 2. jest oczywisty, gdyż z definicji $x \in [x]_R$ dla każdego $x \in X$ oraz $[x]_R \subseteq X$.

Zachodzi twierdzenie odwrotne:

Twierdzenie. Jeżeli Π jest rozbiciem zbioru $X \neq \emptyset$, to istnieje taka relacja równoważności R w zbiorze X, że zbiór klas abstrakcji relacji R jest równy rodzinie Π .

Dwa powyższe twierdzenia możemy zapisać razem:

Twierdzenie 1.17 (Zasada Abstrakcji). Niech X będzie dowolnym zbiorem. Jeżeli R jest relacją równoważności w zbiorze $X \neq \emptyset$, to X/R jest rozbiciem zbioru X. W drugą stronę: jeżeli Π jest rozbiciem zbioru X, to istnieje taka relacja równoważności $R \subseteq X^2$ w zbiorze X, że $X/R = \Pi$.

Definicja 1.25. Relacja równoważności R na zbiorze X wyznacza jednoznacznie odwzorowanie $\kappa \colon X \xrightarrow{\mathrm{na}} X/R$ dane wzorem $\kappa(x) = [x]_R$. Nazywamy je odwzorowaniem kanonicznym.

Przykład. Niech $X = \mathcal{P}(\{1, 2, \dots, n\})$. Definiujemy rodzinę zbiorów:

$$P_k = \{A \in X : \text{ card } A = k\}, k = 0, 1, \dots, n.$$

Wówczas $\Pi = \{P_k : k \in \{0, ..., n\}\}$ jest podziałem zbioru X. Z drugiej strony, niech $R \subseteq X \times X$ będzie relacją taką, że

$$ARB \iff A \sim B$$
, dla dowolnych $A, B \subseteq \{1, \dots, n\}$.

Wówczas widzimy, że $\Pi = A/R$.

1.4 Liczby

1.4.1 Liczby naturalne. Zasada Indukcji Matematycznej

Dobry Bóg stworzył liczby naturalne, reszta jest dziełem człowieka.

Leopold Kronecker

Zasada Indukcji Matematycznej

Twierdzenie 1.18 (Zasada Minimum). Jeżeli $A \subseteq \mathbb{N}$ jest zbiorem niepustym, to istnieje w nim liczba najmniejsza min A czyli taka, że dla każdego $a \in A$ zachodzi $a \geqslant \min A$.

Definicja 1.26. Mówimy, że zbiór A jest ograniczony z góry w zbiorze B, gdy istnieje $b \in B$ takie, że dla każdego $a \in A$ mamy $a \leq b$. Analogicznie określamy ograniczenie z dołu.

Twierdzenie 1.19 (Zasada Maksimum). *Jeżeli* $A \subseteq \mathbb{N}$ *jest zbiorem niepustym i ograni-* czonym z góry w zb. \mathbb{N} , to istnieje w nim liczba największa max A czyli taka, że dla każdego $a \in A$ zachodzi $a \leq \max A$.

Twierdzenie 1.20 (Zasada Indukcji Matematycznej). Niech $S \subseteq \mathbb{N}$ będzie zbiorem o następujących własnościach:

1. $1 \in S$,

2. $n \in S$ pociaga, $\dot{z}e \ n+1 \in S$ dla ka \dot{z} dego $n \in \mathbb{N}$;

Wtedy $\mathbb{N} \subseteq S$. (Czyli $S = \mathbb{N}$)

Możemy zamiast 1 przyjąć w powyższym twierdzeniu dowolne $n_0 \in \mathbb{N}$ i wtedy otrzymamy, że $S = \{n_0, n_0 + 1, n_0 + 2, \ldots\}$.

Prostą konsekwencją (właściwie przeformułowaniem powyższego twierdzenia) jest następujące

Stwierdzenie: Niech φ będzie dowolnym zdaniem logicznym o liczbach naturalnych. Jeżeli

- 1. $\varphi(n_0)$ dla pewnego $n_0 \in \mathbb{N}$ (tzn. zdanie φ jest prawdziwe dla n_0),
- 2. $\varphi(n)$ pociąga, że $\varphi(n+1)$ dla każdego $n \in \mathbb{N}$;

to $\varphi(n), n \in \mathbb{N}$ (tzn. zdanie φ jest prawdziwe dla dowolnej liczby naturalnej).

Powyższa procedura stanowi jedną z metod dowodzenia twierdzeń dotyczących liczb naturalnych.

Przykład. Udowodnić, że liczba $n^3 + 5n$ jest podzielna przez 3 dla dowolnego $n \in \mathbb{N}$.

Dwa przydatne twierdzenia. Przećwiczymy dowodzenie tożsamości na dwóch użytecznych twierdzeniach.

Twierdzenie 1.21. $2^{n-1} < n!$ dla dowolnej liczby naturalnej n > 4.

Dowód. Dla n=5 nierówność przyjmuje postać $2^4=2^3\cdot 2<5!=2^3\cdot 15$ - oczywiście prawda. Załóżmy, że $2^{k-1}< k!$ dla pewnego $k\in\mathbb{N}$. Wówczas:

$$2^{k-1} < k! / \cdot 2$$

$$2^k < 2k!$$

$$2^k < 2 \cdot k! = k! + k! < k! + k \cdot k! = (1+k)k! = (k+1)!$$

Zatem z założenia indukcyjnego wynikło iż $2^k < (k+1)!$. Na mocy Zasady Indukcji Matematycznej teza jest prawdziwa dla dowolnego $n \in \mathbb{N}$.

Twierdzenie 1.22. Dla dowolnej liczby naturalnej $n \in \mathbb{N}$:

(1.5)
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

 $Dow \acute{o}d$. Dla n=0 mamy $0=\frac{0\cdot(0+1)}{2}$. Załóżmy, że teza jest prawdziwa dla pewnego $m\in\mathbb{N}$. Chcemy udowodnić, że równość 1.5 zachodzi dla m+1. Nasze założenia ma postać:

(1.6)
$$\sum_{k=0}^{m} k = \frac{m(m+1)}{2}.$$

Mamy

$$\sum_{k=0}^{m+1} k = \sum_{k=0}^{m} k + (m+1) = \frac{m(m+1)}{2} + m + 1.$$

Druga równość wynika właśnie z założenia 1.6. Trzeba sprawdzić, że

$$\frac{m(m+1)}{2} + m + 1 = \frac{(m+1)((m+1)+1)}{2}.$$

Liczymy:

$$\frac{m(m+1)}{2} + m + 1 = \frac{m^2 + m + 2m + 2}{2} = \frac{m(m+1) + 2(m+1)}{2} = \frac{(m+1)(m+2)}{2} = \frac{(m+1)((m+1) + 1)}{2}.$$

A więc pokazaliśmy, że

$$\sum_{k=0}^{m} k = \frac{m(m+1)}{2} \implies \sum_{k=0}^{m+1} k = \frac{(m+1)((m+1)+1)}{2}.$$

Na mocy Zasay Indukcji Matematycznej twierdzenie jest prawdziwe dla dowolnego $n \in \mathbb{N}$.

Przykład. Udowodnić, że $(1 + 2 + ... + n)^2 = 1^3 + 2^3 + ... + n^3$.

Twierdzenie 1.23. Zasada Indukcji Matematycznej, Zasada Minimum i Zasada Maksimum są równoważne.

Dowód. Załóżmy prawdziwość Zasady Minimum. Wykażemy, że stąd wynika Zasada Indukcji Matematycznej. Niech φ będzie pewnym zdaniem dotyczącym liczb naturalnych i niech $\varphi(m) \Rightarrow \varphi(m+1), m \in \mathbb{N}$ oraz $\varphi(1)$. Zdefinujmy: $S = \{n \in \mathbb{N} : \varphi(n)\}$. Oczywiście $S \subseteq \mathbb{N}$. Sprawdzimy, że $\mathbb{N} \subseteq S$. Niech

$$\overline{S} = \{ n \in \mathbb{N} : \neg \varphi(n) \} = \{ n \in \mathbb{N} : \text{Nieprawda, że } \varphi(n) \}.$$

Wtedy $\overline{S} = \mathbb{N} \setminus S \subseteq \mathbb{N}$. Jeżeli \overline{S} jest niepusty, to istnieje liczba $n_0 = \min \overline{S}, n_0 \neq 1 \notin \overline{S}$. Wtedy oczywiście $n_0 - 1 \notin \overline{S}$, czyli $\varphi(n_0 - 1)$ a więc $n_0 - 1 \in S$. Ale wtedy, z założenia zachodzi również $\varphi(n_0)$, czyli $n_0 \in S$ - sprzeczność, bo $S \cap \overline{S} = \emptyset$ z definicji. Zatem $\mathbb{N} \setminus S = \emptyset$ i $S \subseteq \mathbb{N}$ a stąd już $S = \mathbb{N}$.

Teraz załóżmy prawdziwość Zasady Indukcji Matematycznej. Niech $\varphi(m)$ oznacza, że "każdy zbiór niepusty, zawierający liczby niewiększe niż m ma element największy". $\varphi(1)$ - oczywiste. Załózmy, że $\varphi(n)$ dla pewnego $n \in \mathbb{N}$. Pokażemy, że stąd wynika iż $\varphi(n+1)$. Niech A będzie zbiorem takim, że

- 1. $A \neq \emptyset$
- 2. $A \subseteq \mathbb{N}$
- 3. $a \in A \Rightarrow a \leqslant n+1$

Jeżeli $n+1 \in A$, to $n+1 = \max A$ z definicji. Załóżmy, że $n+1 \notin A$. Wtedy A zawiera liczby niewiększe niż $n < n+1 \notin A$ i na mocy założenia indukcyjnego ma element największy. Zatem $\varphi(1)$ oraz $\varphi(n) \Rightarrow \varphi(n+1), n \in \mathbb{N}$ i stąd na mocy Zasady Indukcji Matematycznej $\varphi(n)$ dla dowolnego $n \in \mathbb{N}$, co oznacza, że Zasada Maksimum jest prawdziwa.

Na koniec załóżmy, że Zasada Maksimum jest prawdziwa i pokażemy, że wynika stąd Zasada Minimum. Ustalmy dowolny zbiór $A\subseteq \mathbb{N}$ i niech $S=\{n\in \mathbb{N}\colon \forall_{a\in A}.\ n\leqslant a\}$. Jeżeli $1\in A$, to po prostu $S=\varnothing$ i $1=\min A$, gdyż $A\subseteq \mathbb{N}$. Zbiór S jest więc ograniczony z góry, przez każdy element zbioru A. Z Zasady Maksimum istnieje liczba $s_0=\max S$. Załóżmy, że byłoby $s_0\notin A$. Wtedy s_0+1 jest liczbą naturalną taką, że $s_0< s_0+1\leqslant a,a\in A$, czyli $s_0+1\in S$ i $s_0+1>\max S$ - sprzeczność. Zatem musi być $s_0\in A$ i każda liczba $a\in A$ jest większa lub równa od s_0 . Na mocy definicji $s_0=\min A$. Z dowolności zbioru A wynika prawdziwość Zasady Minimum.

Ostatecznie mamy, że Zasada Minimum pociąga Zasadę Indukcji Matematycznej, z Zasady Indukcji wynika Zasada Maksimum a z niej Zasada Minimum. Czyli twierdzenia te są równoważne.

1.5 Przydatne twierdzenia i tożsamości arytmetyczne:

Również w dowodach twierdzeń z tego paragrafu często korzysta się z indukcji matematycznej.

Twierdzenie 1.24. Jeżeli a,b są dowolnymi liczbami **rzeczywistymi** i $a \neq b$, to dla dowolnej liczby naturalnej n prawdziwa jest równość:

(1.7)
$$a^n + a^{n-1}b + a^{n-2}b^2 + \ldots + ab^{n-1} + b^n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Dowód. Dla n = 1 wzór (1.7) przyjmuje postać

$$a+b = \frac{a^2 - b^2}{a-b},$$

i po przekształceniu przyjmuje postać znanego wzoru na różnicę kwadratów dwóch liczb 7 $a^2-b^2=(a+b)(b-a)$. Łatwo go sprawdzić wymnażając nawiasy. Załóżmy, że wzór (1.7) jest prawdziwy dla pewnego $m\in\mathbb{N}$, tzn. zachodzi: $a^m+a^{m-1}b+a^{m-2}b^2+\ldots+ab^{m-1}+b^m=\frac{a^{m+1}-b^{m+1}}{a-b}$. Pomnóżmy tę nierówność obustronnie przez b, a następnie dodajmy do obydwu stron a^{m+1} . Mamy wtedy

$$a^{m+1} + a^m b + a^{m-1} b^2 + \dots + a^2 b^{m-1} + a b^m + a^{m+1} = a^{m+1} + b \cdot \left(\frac{a^{m+1} - b^{m+1}}{b - a}\right) =$$

$$= \frac{a^{m+1} (a - b) + b(m+1 - b^{m+1})}{a - b} = \frac{a^{m+1} + b^{m+1}}{a - b}.$$

Zatem nasz wzór jest prawdziwy również dla m+1. Na mocy Zasady Indukcji Matematycznej wzór (1.7) zachodzi dla **dowolnej** liczby naturalnej n.

Wzór (1.7) nazywamy po prostu wzorem na różnice n-tych poteg.

Twierdzenie 1.25. Dla dowolnych $a, b \in \mathbb{R}$ i $n \in \mathbb{N}$ zachodzi tożsamość

(1.8)
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Równanie (1.8) nazywamy wzorem dwumiennym newtona. Indukcyjnie możemy udowodnić, że dla dowolnego $x \ge -1$ oraz $n \in \mathbb{N}$:

$$1 + nx \leqslant (1+x)^n.$$

Jest to szczególny przypadek nierówności Bernoullegio:

⁷to jeden ze szkolnych wzorów skróconego mnożenia

Twierdzenie 1.26 (Nierówność Bernoulliego). Niech $x \ge -1$. Wówczas

$$(1.9) 1 + ax \leq (1+x)^a, dla \ x \geq 1,$$

oraz

$$(1.10) (1+x)^a \le 1 + ax, \ dla \ 0 < x \le 1.$$

Dla a=1 obie strony nierówności są oczywiście równe, natomiast dla $a \neq 1$ równości zachodzą wtedy i tylko wtedy, $gdy \ x=0$.

1.5.1 Krótko o liczbach rzeczywistych.

Definicja 1.27. Liczbę nazywamy wymierną, jeśli jest (czyli, gdy daje się przedstawić w postaci) ułamka dwóch liczb całkowitych.

Np. liczba $0, 5 = \frac{1}{2}$ - jest liczbą wymierną. Podobnie $5 = \frac{5}{1}$ i ogólnie: każda liczba całkowita $c \in \mathbb{Z}$, gdyż można ją przedstawić jako $\frac{c}{1}$. Zbiór liczb wymiernych oznaczamy jako \mathbb{Q} . Zauważmy, że z powyższych obserwacji wynika iż $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$. Ciekawszy będzie następny

Przyklad. Liczba 8,3333...=8,(3) jest liczbą wymierną. Daje się on sprowadzić do postaci ułamka liczb całkowitych:

Niech
$$x = 8$$
, (3). Wtedy $10x = 83$, (3).

$$9x = 10x - x = 83, (3) - 8, (3) = 72$$

Czyli $x = \frac{75}{9} = \frac{25}{3}$ - ułamek liczb całkowitych, a więc liczba wymierna. Inne uzasadnienie zobaczymy w rozdziałe poświęconym szeregom liczbowym.

Szybko odkryjemy, że w zastosowaniach, niezależnie czy w czystej matematyce czy np. fizyce, pojawiają się liczby, które nie są liczbami wymiernymi.

Przykład. Rozważmy trójkąt prostokątny o przyprostokątnych długości 1 i przez p oznaczmy długość przeciwprostokątnej. Wtedy z twierdzenia Pitagorasa $p^2 = 1^2 + 1^2 = 2$. Czyli $p = \sqrt{2}$.

Przykład. Rozważmy wielomian (funkcję) wyrażoną równaniem $f(x)=x^2-2$. Funkcja ta przyjmuje wartość ujemną dla x=1 oraz dodatnią dla x=2 oraz wartość równą zero dla $x=\sqrt{2}$. Gdybyśmy jednak przyjęli, że $D_f=\mathbb{Q}$, to równanie f(x)=0 nie ma rozwiązania.

Liczba $\sqrt{2}$ nie jest jest jednak liczbą wymierną. Dla dowodu, załóżmy nie wprost, że byłoby $\sqrt{2} \in \mathbb{Q}$ - wtedy $\sqrt{2} = \frac{p}{q}$ dla pewnych $p, q \in \mathbb{Z}$ oraz ułamek $\frac{p}{q}$ jest nieskracalny. Dalej, przekształcamy równoważnie:

$$2 = \frac{p^2}{q^2}$$

$$p^2 = 2 \cdot q^2$$

$$p = \left(2 \cdot \frac{q}{p}\right) \cdot q \in \mathbb{Z}$$

Sprzeczność z założeniem - $\left(2 \cdot \frac{q}{p}\right) \cdot q$ nie jest liczbą niepodzielną przez q. Zatem nie może być $\sqrt{2} = r/s$ dla r, s całkowiych, co było do udowodnienia.

Pokażemy jeszcze jedno ogólne twierdzenie. Przy pierwszej lekturze dowód można pominą ϵ^8 . Najpierw jednak przyda nam się

Lemat 1.1 (Zasada dodawania proporcji stronami). Niech $n \in \mathbb{N}$. Jeżeli liczby rzeczywiste a_1, \ldots, a_n i b_1, \ldots, b_n spełniają równości $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \ldots = \frac{a_n}{b_n}$ oraz $b_1 + b_2 + \ldots + b_n \neq 0$, to wówczas

$$\frac{a_1 + a_2 + \ldots + a_n}{b_1 + b_2 + \ldots + b_n} = \frac{a_1}{b_1}.$$

Dowód. Niech najpierw $\frac{a_1}{b_1}=\frac{a_2}{b_2}$. Wówczas przemnażając obustronnie $\frac{a_1+a_2}{b_1+b_2}=\frac{a_1}{b_1}$ przez $b_1(b_1+b_2)$ dostajemy równoważną postać tej równości: $a_1b_1+a_2b_1=a_1b_1+a_1b_2$. Wyraz a_1b_1 występujący po obu stronach skróci się i zostaje $a_2b_1=a_1b_2$ co jest równoważne założeniu. Ogólnie: zauważmy, że z założenia istnieje po prostu liczba rzeczywista:

$$s = \frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}.$$

Mamy więc $a_1 = sb_1, a_2 = sb_2, \dots, a_n = sb_n$. Dodajemy równania stronami i mamy, że

$$a_1 + a_2 + \ldots + a_n = sb_1 + sb_2 + \ldots + sb_n = s(b_1 + b_2 + \ldots + b_n).$$

Stąd już $s=\frac{a_1+a_2+\ldots+a_n}{b_1+b_2+\ldots+b_n}$ a porównując tę równość z definicją liczby s otrzymujemy tezę twierdzenia.

Oczywiście poprzedni lemat mówi nam, że proporcje możemy też **odejmować** stronami.

Twierdzenie 1.27. Jeżeli liczba $n \in \mathbb{N}$ nie jest kwadratem żadnej liczby całkowitej, to nie jest też kwadratem żadnej liczby wymiernej.

Dowód. Załóżmy, nie wprost, że teza nie jest prawdziwa. Oznacza to, że zbiór M zdefiniowany następująco:

$$M = \left\{ q \in \mathbb{N} \setminus \{0\} \colon \sqrt{n} = \frac{p}{q} \text{ dla pewnego } p \in \mathbb{N} \right\}$$

jest niepusty. Zauważmy też, że jest ograniczony z dołu. Istnieje więc $q=\min M$ i wtedy $\sqrt{n}=\frac{p}{q}$ dla pewnego $p\in\mathbb{N}$. Przedstawmy n na dwa sposoby:

$$n = \frac{n \cdot pq}{pq}$$
 oraz $n = \frac{k \cdot p^2}{k \cdot q^2}$.

 $^{^{8}}$ a na pewno nie należy się przejmować, jeśli w tej chwili prześledzenie rozumowania jest trudne.

(k może być na razie dobrane dowolnie.) Na mocy poprzedniego lematu możemy odjąć proporcje stronami; mamy wówczas

$$n = \frac{npq - kp^2}{pq - kq^2} = \frac{p}{q} \left(\frac{nq - kp}{p - kq} \right) = \sqrt{n} \frac{nq - kp}{p - kq}.$$

Podnosząc obustronnie do kwadratu i dzieląc przez n powyższą równość otrzymujemy, że

$$n = \left(\frac{nq - kp}{p - kq}\right)^2.$$

Weźmy k takie, że $k^2 < n < (k+1)^2$. Taka liczba jest wyznaczona jednoznacznie. Wtedy widzimy, że

$$kq .$$

Ale q jest najmniejszą liczbą, która może być mianownikiem takiego ułamka - sprzeczność.

Łatwo pokazać, że suma, różnica a także iloczyn i iloraz dwóch liczb wymiernych jest również liczbą wymierną (dobre ćwiczenie).

Stwierdzenie. Między dowolnymi liczbami wymiernymi istnieje trzecia l. wymierna. Jeżeli np. $r, s \in \mathbb{Q}$, to $r < \frac{r+s}{2} < s$ oraz zgodnie z tym co powiedzieliśmy $\frac{r+s}{2} \in \mathbb{Q}$.

Wobec tego, mówimy że liczby wymierne są geste. Własność tę mają również liczby rzeczywiste:

Stwierdzenie. Między dowolnymi liczbami rzeczywistymi istnieje trzecia l. rzeczywista. Jeżeli np. $r, s \in \mathbb{R}$, to $r < \frac{r+s}{2} < s$ oraz niewątpliwie $\frac{r+s}{2} \in \mathbb{R}$.

Definicja 1.28. Mówimy, że zbiór $A \subseteq \mathbb{R}$ jest ograniczony z góry [z dołu], gdy istnieje taka liczba M > 0, że

$$a \in A \Rightarrow a \leq M [a \in A \Rightarrow a \geq M]$$

Liczbę M nazywamy ograniczeniem górnym [dolnym] zbioru A. Gdy zbiór A jest ograniczony równocześnie z góry i z dołu, to mówimy po prostu, że jest ograniczony.

Definicja 1.29. Ustalmy zbiór $A \subseteq \mathbb{R}$.

Kresem górnym nazywamy **najmniejsze** z ograniczeń górnych zbioru A. Czyli M jest kresem górnym zbioru $A\subseteq \mathbb{R}$, gdy

 $\forall_{M' \in \mathbb{R}}$. Jeżeli M' jest ograniczeniem górnym zb. A, to $M \leq M'$.

 $Kresem\ dolnym$ nazywamy **największe** z ograniczeń dolnych zbioru A. Czyli M jest kresem dolnym zbioru $A\subseteq \mathbb{R},$ gdy

 $\forall_{M' \in \mathbb{R}}$. Jeżeli M' jest ograniczeniem dolnym zb. A, to $M' \leq M$.

Uwaga 1.9. M jest kresem górnym zbioru $A \subseteq \mathbb{R}$, gdy

M jest ograniczeniem górnym zbioru A oraz $\forall_{\varepsilon} \exists_{a \in A}$, $a > M - \varepsilon$.

Podobnie M jest kresem dolnym zbioru $A \subseteq \mathbb{R}$, gdy

M jest ograniczeniem dolnym zbioru A oraz $\forall_{\varepsilon} \exists_{a \in A} \ a < M + \varepsilon$.

Kres górny zbioru A oznaczamy przez supA - od łac. supremum - i tak też czasem będziemy kres górny nazywać. Kres dolny zbioru A oznaczamy inf A od łac. infimum.

Twierdzenie 1.28. Dla dowolnego zbioru $A \subseteq \mathbb{R}$ możemy przyjąć oznaczenie: $-A := \{-a \in \mathbb{R} : a \in A\}$. Wówczas

$$\inf(-A) = -\sup A,$$

$$\sup(-A) = -\inf A.$$

Omówiny teraz bardzo ważną własność liczb rzeczywistych.

Aksjomat (Aksjomat ciągłości). *Jeśli zbiór* $A \subseteq \mathbb{R}$ *jest niepusty i ograniczony z góry, to ma kres górny.*

Łatwo pokazać, że powyższe jest równoważne następującemu twierdzeniu

Twierdzenie 1.29. Jeśli zbiór $A \subseteq \mathbb{R}$ jest niepusty i ograniczony z dołu, to ma kres dolny.

Aksjomat ciągłości liczb rzeczywistych ma intuicyjny równoważnik:

Twierdzenie 1.30. Jeżeli A i B są niepustymi podzbiorami \mathbb{R} takimi, że

- $\mathbb{R} = A \cup B$. $A \cap B = \emptyset$:
- $Je\dot{z}eli\ x \in A\ oraz\ y \in B$, to x < y;

to albo zbiór A ma element największy, albo zbiór B ma element najmniejszy.

Dowód. Zbiór B jest ograniczony z dołu, więc ma kres dolny. Niech $b = \inf B$. Ponieważ dowolny element $a \in A$ ogranicza zbiór B z dołu, to $a \leq b$.

Jeżeli $b \in A$, to z ostatniej nierówności wynika, że b jest elementem największym zbioru A. Jeżeli $b \in B$, to z definicji kresu dolnego b jest elementem najmniejszym zbioru B. \square

W ten sposób widzimy, że aksjomat ciągłości w istocie wyraża fakt, że zbiór liczb rzeczywistych w pewnym sensie "nie ma dziur". Ciągłość to własność mocniejsza od ęstości. Liczby rzeczywiste tak jak liczby wymiere, są gęste, czyli dla dowolnych $x, y \in \mathbb{R}$ istnieje $r \in (a,b) \subseteq \mathbb{R}$. Jednak zbiór \mathbb{Q} nie ma własności zbioru \mathbb{R} określonych w twierdzeniu 1.30:

Niech
$$A = \{x \in \mathbb{Q} : x^2 < 2\}$$
 a $B = \{x \in \mathbb{Q} : 2 < x^2\}$. Wówczas

- $A \cap B = \emptyset$, $A \cap B = \mathbb{Q}$,
- jeżeli $x \in A$, $y \in B$, to x < y.

Ale ani w zbiorze A nie istnieje element największy ani w zbiorze B nie istnieje element najmniejszy (pokazaliśmy już wcześniej, że $\sqrt{2}$ nie jest liczbą wymierną, więc nawet jeśli taka możliwość jest dla czytelnika kusząca - w tym rzecz, że $\sqrt{2}$ nie jest pożądanym ograniczeniem).

Lemat 1.2. Jeżeli $\frac{m}{n}$ oraz $\frac{r}{s}$ są liczbami wymiernymi oraz $\frac{r}{s} \neq 0$, to $\frac{m}{n} + \left(\frac{r}{s}\right)\sqrt{2}$ jest liczbą niewymierną.

Dowód. Załóżmy, że $\frac{m}{n} + \left(\frac{r}{s}\right)\sqrt{2}$ jest liczbą wymierną. Czyli jest równa $\frac{p}{q}$ dla pewnych liczb $p,q\in\mathbb{Z}$. Ale wtedy $\sqrt{2}=\frac{s(pn-mq)}{qnr}$ a stąd $\sqrt{2}$ jest liczbą wymierną - sprzeczność.

Twierdzenie 1.31. Między dowolnymi dwiema różnymi liczbami wymiernymi istnieje liczba niewymierna.

Dowód. Ustalmy liczby wymierne $\frac{m}{n}$ oraz $\frac{r}{s}$ tak, że $\frac{m}{n} < \frac{r}{s}$. Wtedy

$$\frac{m}{n} < \frac{m}{n} + \frac{\sqrt{2}}{2} \left(\frac{r}{s} - \frac{m}{n} \right) < \frac{r}{s}$$
. (Ponieważ $\frac{\sqrt{2}}{2} < 1$).

Na mocy poprzedniego lematu - liczba pomiędzy nierównościami jest niewymierna.

Twierdzenie 1.32. Pomiędzy dowolnymi dwiema różnymi liczbami niewymiernymi istnieje liczba wymierna.

Dowód. Ustalmy liczby niewymierne a i b takie, że a < b. Rozważmy ich rozwinięcia dziesiętne i niech n-te miejsce dziesiętne będzie pierwszym, w którym a i b się różnią. Wtedy

$$a = a_0, a_1 a_2 \dots a_{n-1} a_n \dots,$$

 $b = a_0, a_1 a_2 \dots a_{n-1} b_n \dots,$

gdzie $a_n \neq b_n$. Niech $x = a_0, a_1 \dots a_{n-1} b_n$. Wtedy x jest liczbą wymierną oraz oczywiste jest, że $a < x \le b$. Jednak b jest liczbą niewymierną, zatem musi być $x \neq b$ i stąd mamy, że a < x < b.

Ogólnie: czytelnik musi wiedzieć, że między dowolnymi liczbami rzeczywistymi znajduje się liczba wymierna oraz liczba niewymierna. Należy również wiedzieć, że

• suma jak i różnica liczby wymiernej i liczby niewymiernej jest l. niewymierna.

- iloczyn liczby wymiernej (różnej od zera) i niewymiernej jest l. niewymierną.
- suma, różnica jak i iloczyn (a tym samym iloraz) dwóch liczb niewymiernych **nie** musi być l. niewymierną!

Np.
$$\underbrace{(1+\sqrt{2})}_{\mbox{liczba}} - \sqrt{2} = 1 \in \mathbb{Q}.$$

Podobnie mamy $(1 - \sqrt{2}) + \sqrt{2} = 1$.

Iloczyn/iloraz:
$$\frac{\sqrt{2}}{\sqrt{2}} = 1$$
 i $\sqrt{2} \cdot \sqrt{2} = 2$.

Definicja 1.30. Modułem albo wartością bezwzględną liczby $x \in \mathbb{R}$ nazywamy liczbę |x| daną w następujący sposób:

$$|x| = \begin{cases} x & \text{dla } x \geqslant 0, \\ -x & \text{dla } x < 0. \end{cases}$$

Możemy rozważyć funkcję $x\mapsto |x|$. Jej wykres wygląda następująco:

Twierdzenie 1.33. Dla dowolnych liczb rzeczywisych $x, y, z \in \mathbb{R}$:

$$(1.11) |x| \geqslant 0$$

$$(1.12) |x| \leqslant a \text{ wtedy } i \text{ tylko wtedy, } gdy - a \leqslant x \leqslant a$$

$$(1.13) |x+y| \le |x| + |y|$$

$$(1.14) ||x| - |y|| \le |x - y|$$

$$(1.15) |xy| = |x| \cdot |y|$$

 $Dow \acute{o}d.$ Własności 1.11, 1.12 oraz 1.15 wynikają wprost z definicji. Dla dowolnych $x,y\in\mathbb{R}$ mamy

$$-|x| \leqslant x \leqslant |x| \text{ oraz } -|y| \leqslant y \leqslant |y|.$$

Dodając te nierówności stronami, otrzymujemy że

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

i na mocy wzoru 1.12 mamy $|x+y| \leq |x| + |y|$. Teraz korzystając z tej własności, możemy napisać, że

$$|x| = |(x - y) + y| \le |x - y| + |y|.$$

Stąd $|x| - |y| \le |x - y|$. Analogicznie możemy pokazać, że

$$|y - x| = -|x - y| \le |x| - |y|$$

czyli razem:

$$-|x-y| \leqslant |x| - |y| \leqslant |x-y|$$

i ponownie z własności 1.12 otrzymujemy, że $||x| - |y|| \le |x - y|$.

Zauważmy, że |x| mówi nam, jakiej długości jest odcinek o końcach 0 i x położonym na prostej $\mathbb R$. Moduł pozwala nam określać odległość między punktami na osi liczbowej. Otóż:

$$|x-a|=b$$
 oznacza, że odległość liczby x od a na osi $\mathbb R$ jest równa b .

Ćwiczenie. Niech $f(x) = |x-3|, x \in \mathbb{R}$. Wyznaczyć $f^{-1}[\{7,3\}]$.

Rozwiązanie. Tak naprawdę musimy rozwiązać równania 7=f(x) i 3=f(x).

- |x-3|=7. Rozważmy dwa przypadki:
 - 1. $x \ge 3$. Wówczas $x 3 \ge 0$ i stąd: |x 3| = x 3 = 7 a więc x = 10.
 - 2. x < 3. Wówczas x 3 < 0 i ponownie z definicji 1.30:

$$|x-3| = -(x-3) = -x + 3 = 10$$

a więc x = -4.

Mamy więc, że $x \in \{-4, 10\}$. Można też napisać, że $f^{-1}[\{7\}]$.

• |x-3|=3. Moglibyśmy dokonać rachunków jak powyżej. Możemy też skorzystać z *interpretacji* geometrycznej modułu. Można narysować oś, zaznaczyć punkt 3 i przesunąć się o 3 na podziałce "w lewo od liczby 3" - wpadniemy na liczbę 0 i "w prawo od liczby 3" - do liczby 6.

Czyli $x \in \{0, 6\}$. Moglibyśmy też napisać, że $f^{-1}[\{3\}] = \{0, 6\}$.

Podsumowując, odpowiedź: $x \in \{-4, 10, 0, 6\}$.

Możemy też powtórzyć sobie własności przeciwobrazów:

$$f^{-1}[\{7,3\}] = f^{-1}\big[\{7\} \cup \{3\}\big] = f^{-1}[\{7\}] \cup f^{-1}[\{3\}] = \{-4,10\} \cup \{0,6\} = \{-4,10,0,6\}.$$

Definicja 1.31. Funkcje min: $\mathbb{R}^2 \to \mathbb{R}$ i max: $\mathbb{R}^2 \to \mathbb{R}$ dane są w następujący sposób:

$$\min(x,y) = \begin{cases} y, & \text{dla } x \geqslant y; \\ x, & \text{dla } y > x. \end{cases}$$

$$\max(x, y) = \begin{cases} x, & \text{dla } x \ge y; \\ y, & \text{dla } y > x. \end{cases}$$

Ćwiczenie. Sprawdzić, że $|x| = \max(-x, x) = -\min(-x, x)$.

Ćwiczenie. Udowodnić, że

$$\min(x,y) = \frac{x+y-|x-y|}{2},$$

$$\max(x,y) = \frac{x+y+|x-y|}{2}.$$

Ćwiczenie. Udowodnić, że

$$\max(x, y) = x + y - \min(x, y),$$

$$\min(x, y) = x + y - \max(x, y).$$

Definicja 1.32. Definujemy funkcję sgn: $\mathbb{R} \to \{-1,0,1\}$ (signum - znak liczby x) wzorem:

$$\operatorname{sgn} x = \begin{cases} -1 & \operatorname{dla} x < 0, \\ 0 & \operatorname{dla} x = 0, \\ 1 & \operatorname{dla} x > 0. \end{cases}$$

 $\acute{C}wiczenie$. Niech |x|>|y|. Udowodnić, że wtedy $\mathrm{sgn}(x-y)=\mathrm{sgn}\,x$.

Definicja 1.33. Dla funkcji $f: A \to \mathbb{R}$ oznaczamy:

$$\sup_{x\in A} f(x) := \sup\{f(x)\colon x\in A\},$$

$$\inf_{x \in A} f(x) := \inf\{f(x) \colon x \in A\}.$$

 $\acute{C}wiczenie.$ Udowodnić, że jeżeli $f,g\colon A\to \mathbb{R}$ są funkcjami ograniczonymi z góry, to

$$\sup_{x \in A} f(x) + \sup_{x \in A} g(x) \leqslant \sup_{x \in A} \left(f(x) + g(x) \right).$$

Twierdzenie 1.34. Niech $f,g:A\to\mathbb{R}$ będą funkcjami ograniczonymi z góry. Wówczas

$$|\sup_{x \in A} f(x) - \sup_{x \in A} g(x)| \leqslant \sup_{x \in A} |f(x) - g(x)|.$$

 $Dow \acute{o}d.$ Zauważmy, że $f(x) = (f(x) - g(x)) + g(x) \leqslant |f(x) - g(x)| + g(x).$ Wówczas

$$\sup_{x \in A} f(x) = \sup_{x \in A} \left((f(x) - g(x)) + g(x) \right) \leqslant \sup_{x \in A} \left(|f(x) - g(x)| + g(x) \right) \leqslant$$

$$\leqslant \sup_{x \in A} |f(x) - g(x)| + \sup_{x \in A} g(x)$$

a stąd $\sup_{x\in A}f(x)-\sup_{x\in A}g(x)\leqslant \sup_{x\in A}|f(x)-g(x)|.$ Podobnie $g(x)=(g(x)-f(x))+f(x)\leqslant |g(x)-f(x)|+f(x)$ i stąd otrzymamy

$$\sup_{x\in A}g(x)\leqslant \sup_{x\in A}|g(x)-f(x)|+\sup_{x\in A}f(x)=\sup_{x\in A}|f(x)-g(x)|+\sup_{x\in A}f(x),$$

i stąd $-\sup_{x\in A}|f(x)-g(x)|\leqslant \sup_{x\in A}f(x)-\sup_{x\in A}g(x),$ czyli . Łącząc obydwie uzyskane nieróności otrzymujemy tezę twierdzenia. $\hfill\Box$

2 Granica ciagu liczbowego

Intuicje Rozważmy dowolny zbiór elementów. Np. zbiór $\{1, 2, 4\}$ albo zbiór $\{a, b, c, \dots, x, y, z\}$. Ustawmy np. wyrazy pierwszego zbioru następująco:

$$1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, \dots$$

Albo tak:

$$1, 2, 4, 1, 2, 4, 1, 2, 4, \dots$$

Obydwa te "ciągi" składają się z elementów takiego samego zbioru, ale są to różne "byty", gdyż określiliśmy pewną kolejność występowania elementów. Podobnie ciąg wyrazów drugiego z naszych zbiorów: $a,b,c,d,x,y,z,a,b,c,d,\ldots$ jest innym ciągiem niż ciąg $x,z,x,y,b,a,c,x,z,x,y,b,a,c,\ldots$; chociaż mają ten sam zbiór "wyrazów".

Przykład. Rozważmy ciąg $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots$ Domyślamy się, jaka jest **reguła**, według której określa się następny wyraz ciągu. Mianowicie: n-ty wyraz ciągu ma postać $\frac{1}{n}$. I tak np. dla n=1 mamy

$$\frac{1}{n} = \frac{1}{1} = 1.$$

a dla n=2:

$$\frac{1}{n} = \frac{1}{2}.$$

Kiedy rozważamy różne ciągi, często chcemy nadać im nazwy albo symboliczne oznaczenia podobnie jak funkcjom. Rozważamy np. ciąg elementów a_1, a_2, a_3, \ldots W powyższym przykładzie $a_n = \frac{1}{n}, n \in \mathbb{N}$.

Przyklad. Zdefiniujmy taki ciąg $b_1, b_2, b_3 \ldots$, że $b_n = 2n, n \in \mathbb{N}$. Pierwsze wyraz tego ciągu są następujące:

W ciągach zatem, w przeciwieństwie do zbiorów, ważna jest kolejność elementów. Żeby zdefiniować ciąg przy pomocy już znanych pojęć matematycznych, możemy przyjąć $f: \mathbb{N} \to Y$ tak, że $a_n = f(n)$. Ciąg jest zatem funkcją określoną na zbiorze liczb naturalnych. Lepiej, niech oznacznie dla wyrazu ciągu i dla funkcji będzie tożsame:

Definicja 2.1. Ciągiem nazywamy funkcję $a: \mathbb{N} \to Y$ i przyjmujemy oznaczenie: $a(n) = a_n$. Ciąg jest tożsamy z nieskończoną krotką (a_1, a_2, \ldots) . Sam ciąg oznaczamy symbolicznie jako $(a_n)_{n\in\mathbb{N}}$.

W tym rozdziale rozważamy ciągi "liczbowe" i mamy na myśli liczby rzeczywiste, zatem $Y=\mathbb{R}$. Zajmiemy się teraz kluczowym pojęciem **granicy** ciągu. Zauważmy, że każdy kolejny wyraz ciągu $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ jest coraz mniejszy, ale zawsze pozostaje większy od zera. W tym wypadku "granicą" do której dążą wyrazy ciągu jest właśnie zero. Mówimy też, że ciąg "dąży" do zera. Np. ciąg $\left(\cos\left(\frac{1}{n}\right)\right)_{n\in\mathbb{N}}$ dąży do 1, ciąg $(n)_{n\in\mathbb{N}}$ dąży do nieskończoności.

Definicja 2.2. Mówimy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest *zbieżny* do granicy g lub ma *granicę* g i piszemy $\lim_{n\to\infty}a_n=g$, gdy dla dla dowolnej liczby rzeczywistej $\varepsilon>0$ istnieje taka liczba naturalna N, że dla każdej liczby naturalnej $n\geqslant N$ zachodzi $|a_n-g|<\varepsilon$. Możemy zapisać ten warunek symbolicznie:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{\substack{n\in\mathbb{N}\\n\geqslant N}}|a_n-g|<\varepsilon.$$

W praktyce warunek w powyższej definicji pisze się pomijając " $n \in \mathbb{N}$ " pod kwantyfikatorem, mając w domyśle, że "wskaźnik" n wyrazu ciągu jest liczbą naturalną. Możemy też powiedzieć, że:

Mówimy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest *zbieżny* do granicy g i piszemy $\lim_{n\to\infty} a_n = g$, gdy dla dowolnego $\varepsilon > 0$ począwszy od pewnego n zachodzi nierówność $|a_n - g| < \varepsilon$.

Spróbujmy jeszcze wzbogacić nasz język i wyrazić definicję w jeszcze bardziej naturalny a mniej symboliczny sposób. Weźmy takie nieprecyzyjne, niematematyczne wręcz stwierdzenie:

Prawie wszystkie liczby ze zbioru A mają własność \mathcal{X} .

Nie ważne co to za hipotetyczny zbiór A i tajemnicza własność X. Może A jest zbiorem kotów w domu pewnego matematyka a \mathcal{X} to "jest czarny". Problem: co to znaczy "prawie wszystkie"? 90%? Czy może "prawie wszystkie" zaczyna się dopiero od 99%? W tekście matematycznym i ścisłych definicjach nie używamy takich nieprecyzyjnych stwierdzeń. Ale np. A mogłoby być zbiorem liczb naturalnych, a własność \mathcal{X} oznaczać "jest większa od 1000". Rzeczywiście, tylko skończona liczba elementów zbioru A nie posiada tej własności, więc istotnie - jak wielka by ona nie była, jest "znacząco" mniejsza od nieskończoności, a tyle jest elementów zbioru A mających tę własność.

Umówmy się więc, że dla zbioru nieskończonego A zdanie prawie wszystkie elementy zbioru A spełniają własność \mathcal{X} oznacza, że "własność \mathcal{X} zachodzi dla wszystkich elementów zbioru A za wyjątkiem pewnej skończonej ilości".

Pamiętając, że |x-y| wyraża odległość między liczbami na osi rzeczywistej, możemy teraz napisać, że $\lim_{n\to\infty}a_n=g$, gdy dla dowolnego $\varepsilon>0$ odległość między liczbą g a prawie wszystkimi wyrazami ciągu $(a_n)_{n\in\mathbb{N}}$ jest mniejsza od ε .

Uwaga 2.1. Nie należy mylić ciągu $(a_n)_{n\in\mathbb{N}}$ ze zbiorem jego wartości $\{a_n \colon n\in\mathbb{N}\}$ (oznaczanym czasem $\{a_n\}_{n\in\mathbb{N}}$ ale w starszych książkach w ten sposób oznaczano też sam ciąg, więc będziemy tego unikać. My w każdym razie staramy się rezerwować symbole otoczone nawiasami klamrowymi $\{,\}$ dla zbiorów.). Ciąg $(a_n)_{n\in\mathbb{N}}$ jest odwzorowaniem, funkcją. Zbiór wartości... cóż, zbiorem.

Przykład. Pokażemy z definicji, że $\lim_{n\to\infty}\frac{1}{n}=0$. Ustalmy dowolną liczbę rzeczywistą $\varepsilon>0$. Musimy znaleźć taką liczbę naturalną $N\in\mathbb{N}$,

żе

$$\left|\frac{1}{n} - 0\right| = \left|\frac{1}{n}\right| = \frac{1}{n} < \varepsilon \text{ dla } n \geqslant N.$$

Ale gdy tylko pomnożymy powyższą nierówność obustronnie przez n i podzielimy przez ε (możemy to zrobić, gdyż z założenia $\varepsilon > 0$), to mamy, że

$$\frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}.$$

Wystarczy więc przyjąć np. $N=\lfloor\frac{1}{\varepsilon}\rfloor+1$ - jest to liczba naturalna, większa od $\frac{1}{\varepsilon}$. Zatem dla tak dobranego N dla każdego $n\geqslant N$ mamy $\frac{1}{n}<\varepsilon$. Z dowolności wyboru $\varepsilon>0$ (tzn. nie poczyniliśmy żadnych dodatkowych założeń co do ε i stąd wiemy, że dla każdej takiej liczby znajdziemy odpwiadającą mu liczbę N według powyższej procedury) mamy, że $\lim_{n\to\infty}\frac{1}{n}=0$.

Ćwiczenie. Udowodnić, że jeżeli p>0, to $\lim_{n\to\infty}\frac{1}{n^p}=0$.

Twierdzenie 2.1. Ciąg nie może być zbieżny do dwóch różnych granic. Innymi słowy granica ciągu jest wyznaczona jednoznacznie.

Dowód. Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem zbieżnym. Załóżmy nie wprost, że byłoby $\lim_{n\to\infty}a_n=g_1$ i równocześnie $\lim_{n\to\infty}a_n=g_2$ oraz $g_1\neq g_2$. Ustalmy dowolny $\varepsilon>0$. Wtedy istnieją takie $N_1,N_2\in\mathbb{N}$, że

$$|a_n - g_1| < \varepsilon \text{ dla } n \geqslant N_1$$

$$|a_n - q_2| < \varepsilon \text{ dla } n \geqslant N_2$$

Przyjmijmy $N = \max\{N_1, N_2\}$. Wtedy dla każdego $n \ge N$ prawdziwe są nierówności:

$$|g_1 - a_n| < \varepsilon$$
.

$$|a_n - g_2| < \varepsilon.$$

Rozważmy teraz, co by było dla $\varepsilon = \frac{1}{2}|g_1 - g_2|$. Korzystając z nierówności trójkąta otrzymujemy wtedy

$$|g_1-g_2| \leq |g_1-a_n| + |a_n-g_2| < 2\varepsilon = |g_1-g_2|$$
 - oczywista sprzeczność.

Zatem ciąg nie może mieć dwóch różnych granic.

Twierdzenie 2.2 (O zachowaniu nierówności przy przejściu do granicy). Ustalmy dwa ciągi $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ tak, że $a_n < b_n$ począwszy od pewnego wyrazu. Wówczas,

$$\lim_{n \to \infty} a_n \leqslant \lim_{n \to \infty} b_n,$$

jeśli tylko obydwie granice istnieją.

Dowód. TO-DO □

Uwaga 2.2. Możemy w tezie powyższego twierdzenia przyjąć oczywiście $a_n \leq b_n$ zamiast ostrej nierówności.

Wniosek 1. Jeżeli $a_n \leqslant A, n \in \mathbb{N}$, to $\lim_{n \to \infty} a_n \leqslant A$ (jeśli taka granica istnieje). Wystarczy w powyższym twierdzeniu przyjąć ciąg $(b_n)_{n \in \mathbb{N}}$ stały: $b_n = A, n \in \mathbb{N}$.

Definicja 2.3. Mówimy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest ograniczony z góry [z dołu], gdy istnieje taka liczba $M\in\mathbb{N}$, że

$$a_n \leqslant M \ [M \leqslant a_n]$$
 dla każdego $n \in \mathbb{N}$.

Gdy ciąg jest ograniczony i z góry i z dołu to mówimy po prostu, że "jest ograniczony".

Ciągi rozbieżne do nieskończoności:

Definicja 2.4. Mówimy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest *rozbieżny do plus-nieskończoności* i piszemy $\lim_{n\to\infty} a_n = +\infty$, gdy

$$\forall_{E>0} \exists_{N \in \mathbb{N}} \forall_{n \geqslant N}. \ a_n > E.$$

Definicja 2.5. Mówimy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest rozbieżny do minus-nieskończoności i piszemy $\lim_{n\to\infty}a_n=-\infty$, gdy

$$\forall_{E>0} \exists_{N \in \mathbb{N}} \forall_{n \geq N} \ a_n < E.$$

Definicja 2.6. Jeżeli ciąg $(a_n)_{n\in\mathbb{N}}$ jest rozbieżny do plus albo minus-nieskończoności, to mówimy też, że ma *granicę niewłaściwą* równą odpowiednio $+\infty$ albo $-\infty$.

Definicja 2.7. Jeżeli ciąg ma granicę **skończoną**, to mówimy że jest *zbieżny*. W przeciwnym wypadku, gdy granica ta nie istnieje lub jest nieskończona, to mówimy że jest *rozbieżny*.

2.1 Twierdzenia przydatne w badaniu zbieżności ciągu i szukaniu granic

Twierdzenie 2.3 (arytmetyka granic). Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ będą ciągami liczb rzeczywistych i niech $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, tak $\dot{z}e$ $a,b\in\mathbb{R}$. Wówczas

$$1. \lim_{n \to \infty} (a_n + b_n) = a + b,$$

$$2. \lim_{n \to \infty} (a_n - b_n) = a - b,$$

3.
$$\lim_{n \to \infty} a_n \cdot b_n = a \cdot b,$$

4.
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$$
 o ile $b\neq 0$ i $b_n\neq 0, n\in\mathbb{N}$.

Bezpośrednio z 2. w poprzednim twierdzeniu wynika

Twierdzenie 2.4. $\lim_{n\to\infty} a_n = g$, dla $g \in \mathbb{R}$ wtedy i tylko wtedy, $gdy \lim_{n\to\infty} |a_n - g| = 0$.

Twierdzenie 2.5 (O zachowaniu nierówności przy przejściu do granicy). Niech $(a_n)_{n\in\mathbb{N}}$ i $(b_n)_{n\in\mathbb{N}}$ będą ciągami zbieżnymi. Wówczas, jeżeli $a_n \leq b_n, n \geq k$ dla pewnego $k \in \mathbb{N}$, to

$$\lim_{n\to\infty}a_n\leqslant\lim_{n\to\infty}b_n.$$

Uwaga 2.3. W szczególności, jeżeli ciąg $(x_n)_{n\in\mathbb{N}}$ spełnia $a_n \leq c$ dla pewnej stałej $c \in \mathbb{R}$ od pewnego n, to $\lim_{n\to\infty} x_n \leq c$. Analogicznie gdy $x_n \geq c$, to granica omawianego ciągu jest niemniejsza niż c. Dla uzasadnienia wystarczy w poprzednim twierdzeniu przyjąć za jeden z ciągów ciąg stały, zależnie od kierunku nierówności, której dowodzimy.

Twierdzenie 2.6. Każdy ciąg monotoniczny i ograniczony jest zbieżny.

Ćwiczenie. Udowodnić, że z twierdzenia 2.6 wynika Aksjomat 1.5.1 ciągłości.

Przykład (Ciąg określony rekurencyjnie). Zdefiniujmy ciąg następująco

$$\begin{cases} a_1 = 1 \\ a_n = \frac{1}{2}a_n \end{cases}$$

Oczywiście łatwo zauważyć, że jest to ciąg geometryczny i $a_n = \frac{1}{2^{n-1}} \to 0$ ale zapomnijmy o tym na chwilę: spróbujemy znaleźć metodę, która pozwoli nam radzić sobie również z bardziej skomplikowanymi ciągami zadanymi rekurencyjnie. Zauważmy, że $a_n \leqslant a_{n-1}$ oraz $1 \geqslant a_n \geqslant 0$, zatem ciąg jest monotoniczny i ograniczony. Wiemy, że granica istnieje - oznaczmy ją a:

$$\lim_{n\to\infty} a_n = a$$

Ale również

$$\lim_{n \to \infty} a_{n-1} = a.$$

Układamy równanie:

$$a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2} a_{n-1} = \frac{1}{2} a$$

zatem 2a = a - jedyna liczba rzeczywista spełniająca to równanie to 0. Zauważmy, że gdybyśmy nie sprawdzili, że ciąg w ogóle jest zbieżny, nie moglibyśmy posługiwać się założeniem, że istnieje skończona granica "a", którym posłużyliśmy się aby ją wyliczyć.

Twierdzenie 2.7. Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem.

1. Jeżeli $(a_n)_{n\in\mathbb{N}}$ jest niemalejący (tj. słabo rosnący), to $(a_n)_{n\in\mathbb{N}}$ ma granicę (własciwą lub niewłaściwą) oraz

$$\lim_{n\to\infty} a_n = \sup\{a_n \colon n\in\mathbb{N}\};$$

2. Jeżeli $(a_n)_{n\in\mathbb{N}}$ jest nierosnący (tj. słabo malejący), to $(a_n)_{n\in\mathbb{N}}$ ma granicę (własciwą lub niewłaściwą) oraz

$$\lim_{n \to \infty} a_n = \inf\{a_n \colon n \in \mathbb{N}\}.$$

Twierdzenie 2.8. Niech $(a_n)_{n\in\mathbb{N}}$ będzie zbieżnym do zera, a $(b_n)_{n\in\mathbb{N}}$ ciągiem ograniczonym. Wtedy

$$\lim_{n \to \infty} a_n \cdot b_n = 0.$$

Dowód. Niech M będzie ograniczeniem ciągu $(b_n)_{n\in\mathbb{N}}$, tzn. $|b_n| \leq M, n \in \mathbb{N}$. Ustalmy dowolny $\varepsilon > 0$. Istnieje $N \in \mathbb{N}$ takie, że $a_n < \frac{\varepsilon}{M}, n \ge N$. Wówczas $a_n \cdot b_n < \frac{\varepsilon}{M} \cdot M = \varepsilon, n \ge N$, czyli (z dowolności wyboru ε) oznacza to, że $\lim_{n\to\infty} a_n b_n = 0$. □

Zauważmy, że powyższe twierdzenie można również zastosować do poprzedniego przykładu. Podamy jeszcze jeden:

Przykład.

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

Zauważmy, że $\sin n \le 1$ oraz oczywiście $\frac{1}{n} \to 0$.

Przykład (Iteracyjne obliczanie pierwiastków). Ustalmy liczbę a>0 i zdefiniujmy rekurencyjnie ciąg $(a_n)_{n\in\mathbb{N}}$ biorąc **dowolne** $a_1>0$ oraz

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$
dla $n \geqslant 1$.

Pokażemy, że wtedy

$$\lim_{n \to \infty} a_n = \sqrt{a}.$$

Twierdzenie 2.9 (O trzech ciągach). Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ będą ciągami liczb rzeczywistych, tak że $a_n \leq b_n \leq c_n$ od pewnego miejsca, tzn. istnieje $N \in \mathbb{N}$, że nierówności te zachodzą dla każdego $n \geq N$. Wówczas, jeżeli $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$, to

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = g.$$

 $Dow \acute{o}d$. TO-DO

Przykład. Udowodnimy, że $\lim_{n\to\infty} \sqrt[n]{q} = 1$ dla dowolnego q > 0, q = constans. Skorzystamy z twierdzeń 2.9 oraz 2.4. Najpierw weźmy q < 1. Niech $a_n := 1 - \sqrt[n]{q}$. Chcemy pokazać, że $\lim_{n\to\infty} a_n = 0$. (Wówczas $\lim_{n\to\infty} |1 - \sqrt[n]{q}| = 0$ i stąd $\sqrt[n]{q} \to 1$.) Z nierówności Bernoulliego:

$$1 - n \cdot a_n \leqslant (1 - a_n)^n = q$$

i stąd $0 \le a_n \le \frac{1-q}{n}, \ n \in \mathbb{N}$. Oczywiście $\lim_{n \to \infty} \frac{q-1}{n} = 0$ i stąd $a_n \ge 0$ i wówczas $a_n \to 0$ na mocy twierdzenia o trzech ciągach. Jeżeli q > 1, to bierzemy $a_n := \sqrt[n]{q} - 1$ i wówczas mamy $a_n \ge 0$ i ponownie szacujemy: $1 + na_n \le (1 + a_n)^n = q$ a stąd $0 \le a_n \le \frac{q-1}{n} \xrightarrow{n \to \infty} 0$. Zatem $\lim_{n \to \infty} a_n = 0$, gdzie $a_n = 1 - \sqrt[n]{q}$, czyli $\lim_{n \to \infty} \sqrt[n]{q} = 1$.

Twierdzenie 2.10. Jeżeli $\lim_{n\to\infty} a_n = g$, to $\lim_{n\to\infty} |a_n| = |g|$.

Dowód. Ze wzoru 1.14:

$$0 \leqslant ||a_n| - |g|| \leqslant |a_n - g|.$$

Stąd i z twierdzenia o trzech ciągach (2.9):

$$\lim_{n \to \infty} |a_n - g| = 0 \Longrightarrow \lim_{n \to \infty} ||a_n| - |g|| = 0.$$

Z twierdzenia 2.4:

$$\lim_{n \to \infty} a_n = a \Longrightarrow \lim_{n \to \infty} |a_n - a| = 0.$$

Łącząc dwa poprzednie fakty:

$$\lim_{n \to \infty} a_n = a \Longrightarrow \lim_{n \to \infty} ||a_n| - |a|| = 0 \Longrightarrow \lim_{n \to \infty} |a_n| = |g|.$$

2.2 Własności ciągów liczbowych

Definicja 2.8. Niech $(x_n)_{n\in\mathbb{N}}$ będzie dowolnym ciągiem oraz $(n_k)_{k\in\mathbb{N}}$ rosnącym ciągiem liczb rzeczywistych. Ciąg $(x_{n_k})_{k\in\mathbb{N}}$ nazywamy podciągiem ciągu $(x_n)_{n\in\mathbb{N}}$ wyznaczonym przez ciąg wskaźników $(n_k)_{k\in\mathbb{N}}$.

Przykład. Niech $x_n = \frac{1}{n}, n \in \mathbb{N}$ a $n_k = 2k$. Wtedy $x_{n_k} = \frac{1}{2k}, k \in \mathbb{N}$. Czyli mamy ciąg $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$ a wybrany przez nas podciąg tego ciągu to ciąg $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots$

Lemat 2.1. Dla dowolnego ciągu wskaźników $(n_k)_{k\in\mathbb{N}}$ zachodzi $n_k \geqslant k$.

Dowód. Dowód przeprowadzimy indukcyjnie. TODO

Twierdzenie 2.11. Podciąg ciągu zbieżnego jest zbieżny do tej samej granicy.

Dowód. Ustalmy ciąg $(x_n)_{n\in\mathbb{N}}$ zbieżny do granicy g, ciąg wskaźników $(n_k)_{k\in\mathbb{N}}$ i dowolny jego podciąg $(x_{n_k})_{k\in\mathbb{N}}$. TODO

Udowodnimy teraz bardzo pożyteczny lemat, z którego kilkukrotnie potem skorzystamy.

Lemat 2.2 (O przedziałach zstępujących). Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ będą takimi ciągami liczb rzeczywistych, że

$$a_n \leqslant a_{n+1}, n \in \mathbb{N},$$

 $b_n \geqslant b_{n+1}, n \in \mathbb{N},$
 $a_n < b_n, n \in \mathbb{N}.$

Wówczas, jeżeli

$$\lim_{n \to \infty} (b_n - a_n) = 0,$$

to istnieje wspólna granica skończona c tych ciągów:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c.$$

Dowód. Najpierw zauważmy, że ciągi $(a_n)_{n\in\mathbb{N}}$ i $(b_n)_{n\in\mathbb{N}}$ są w istocie zbieżne:

 $a\leqslant a_n\leqslant b_n, n\in\mathbb{N}$ - zatem ciąg $(b_n)_{n\in\mathbb{N}}$ jest ograniczony z dołu. Z założenia jest też malejący,

zatem na mocy twierdzenia 2.6 jest zbieżny. Analogicznie możemy pokazać, że zbieżny jest ciąg $(a_n)_{n\in\mathbb{N}}$.

Dalej
$$\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}b_n-\lim_{n\to\infty}b_n=0$$
 z założenia i stąd już $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

Granica jest wyznaczona jednoznacznie (własności granic) i twierdzenie jest udowodnione.

Powyższe stwierdznie możemy zinerpretować bardziej "geometrycznie": jeżeli mamy ciąg $([a_n,b_n])_{n\in\mathbb{N}}$ przedziałów spełniających następujące warunki:

- $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], n \in \mathbb{N}$ (mówimy wtedy, że ciąg jest zstępujący),
- długości $|b_n a_n|$ kolejnych przedziałów dążą do zera;

to istnieje dokładnie jeden punkt wspólny c wszystkich przedziałów ciągu:

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}.$$

Za chwilę wprowadzimy twierdzenie Bolzano-Weierstrassa - bardzo ważny klasyczny wynik w analizie matematycznej. Jeden z "tradycyjnych" dowodów tego twierdzenia opiera się o Lemat 2.2 - i ten dowód pokażemy. Lemat ten okazuje się użyteczny w klasycznej analizie dość często i sama metoda dowodzenia w oparciu o "przedziały zstępujące" nazywa się metodą Bolazno-Weierstrassa.

Pokażemy, że $|\mathbb{R}| \neq \aleph_0$, tj. że zbiór liczb rzeczywistych i zbiór liczb naturalnych nie są równoliczne. Klasyczny dowód tego faktu podał Georg Cantor w 1891 roku, stosując tzw. "Metodę przekątniową", wiązaną do dziś z jego nazwiskiem. Ważne narzędzie w teorii mnogości. My jednak, dla ćwiczenia, dowiedziemy tego twierdzenia korzystając z naszego lematu.

Lemat 2.3. Przedział [0, 1] nie jest równoliczny ze zbiorem liczb naturalnych.

Dowód. Niech $f: \mathbb{N} \to [0,1]$ będzie dowolną funkcją. Niech $f(k) = c_k$ dla $k \in \mathbb{N}$. Widzimy, że funkcja ta jest ciągiem. Podzielmy przedział [0,1] na trzy domknięte podprzedziały, długości $\frac{1}{3}$ każdy i niech $[a_0,b_0]$ będzie tym z nich, do którego należy c_0 .

Tak więc $[a_0,b_0]\subseteq [0,1]$, $b_0-a_0=\frac{1}{3}$ oraz $c_0\notin [a_0,b_0]$. Załóżmy, że dla pewnego $k\in\mathbb{N}$ zdefiniowaliśmy już przedział $[a_k,b_k]$ tak, że $[a_k,b_k]\subseteq [0,1]$, $b_k-a_k=\frac{1}{3^{k+1}}$ oraz $c_k\notin [a_k,b_k]$. Wówczas dzielimy przedział $[a_k,b_k]$ na trzy domknięte podprzedziały równej długości i definiujemy $[a_{k+1},b_{k+1}]$ jako ten podprzedział, do którego nie należy c_{k+1} . Mamy wtedy:

$$[a_{k+1}, b_{k+1}] \subseteq [a_k, b_k], \ b_{k+1} - a_{k+1} = \frac{1}{3^{k+2}}$$

oraz
$$c_{k+1} \notin [a_{k+1}, b_{k+1}].$$

Mamy zatem zdefiniowany indukcyjnie ciąg przedziałów $[a_n, b_n]$ taki, że dla każdej liczby naturalnej $n \in \mathbb{N}$:

$$[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], \ b_{n+1} - a_{n+1} = \frac{1}{3^{n+1}}$$

oraz $c_{n+1} \notin [a_n, b_n].$

Zauważmy, że $\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}\frac{1}{3^{n+1}}=0$. Na mocy lematu 2.2 o przedziałach zstępujących ciągi $(a_n))_{n\in\mathbb{N}}$ i $(b_n)_{n\in\mathbb{N}}$ są zbieżne do tej samej granicy. Przyjmijmy

$$c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n.$$

Zauważmy teraz, że dla każdej liczby naturalnej n mamy $c \in [a_n, b_n]$, podczas gdy $c_n \notin [a_n, b_n]$. Zatem $c \neq c_n$ dla każdego n.

Z dowolności f, nie istnieje funkcja z \mathbb{N} w [0,1], w której zbiór wartości wyczerpywałby przedział [0,1] (inaczej: nie istnieje surjekcja \mathbb{N} na [0,1]); tym bardziej nie istnieje funkcja z \mathbb{N} na całe \mathbb{R} .

Twierdzenie 2.12. Zbiór wszystkich liczb rzeczywistych \mathbb{R} nie jest równoliczny ze zbiorem wszystkich liczb naturalnych \mathbb{N} .

Dowód. Korzystając z poprzedniego lematu i faktu, że $|[0,1]|=|\mathbb{R}|$ o czym świadczy chociażby funkcja tg: $(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$, będąca bijekcją. (I oczywiście $[0,1]\subseteq(-\frac{\pi}{2},\frac{\pi}{2})$).

Twierdzenie 2.13 (Bolzano-Weierstrassa). Z dowolnego ciągu ograniczonego można wybrać podciąg zbieżny.

Dowód. Rozważmy dowolny ciąg $(x_n)_{n\in\mathbb{N}}$ ograniczony. Istnieją zatem liczby rzeczywiste a i b takie, że $x_n\in[a,b], n\in\mathbb{N}$. Skorzystamy z lematu o przedziałach zstępujących. Indukcyjnie określmy ciągi liczb $(a_n)_{n\in\mathbb{N}}$ i $(b_n)_{n\in\mathbb{N}}$:

Przyjmujemy $a_0 = a$ i $b_0 = b$.

Dzielimy przedział [a,b] na połowy. Co najmniej jedna połowa musi zawierać nieskończenie wiele wyrazów ciągu $(x_n)_{n\in\mathbb{N}}$ - w przeciwnym razie wyrazów ciągu byłoby skończenie wiele - sprzeczność z definicją ciągu. Wybieramy tę połowę, która zawiera nieskończenie wiele wyrazów (dowolną, jeśli w obydwu mieści się nieskończenie wiele wyrazów ciągu) i dzielimy ponownie na połowy. Dostajemy np. przedział $[a, \frac{a+b}{2}] = [a_0, \frac{a_0+b_0}{2}]$ i przyjmujemy $a_1 = a_0, b_1 = \frac{a_0+b_0}{2}$. Otrzymany przedział $[a_1,b_1]$ ponownie dzielimy na połowy i wybieramy tę, która zawiera nieskończenie wiele wyrazów ciągu $(x_n)_{n\in\mathbb{N}}$.

Postępując w ten sposób nieskończnie wiele razy dostajemy ciągi $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ (zarazem ciąg przedziałów $([a_n,b_n])_{n\in\mathbb{N}}$) o następujących własnościach:

- 1. $a_n \leqslant a_{n+1}, n \in \mathbb{N}$
- 2. $b_{n+1} \leqslant b_n, n \in \mathbb{N}$

3. Dla każdego $n \in \mathbb{N}$ istnieje $m \in \mathbb{N}$, że $a_n \leqslant x_k \leqslant b_n$ dla $k \geqslant m$.

4.
$$b_n - a_n = \frac{a_{n-1} + b_{n-1}}{2^n}$$

Z punktów 1, 2 i 4 na mocy lematu o przedziałach zstępujących istnieje granica $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n\in\mathbb{R}$. W podpunkcie trzecim dla każdego $n\in\mathbb{N}$ bieżemy np. x_m i oznaczamy jako y_n . W ten sposób otrzymujemy podciąg $(y_n)_{n\in\mathbb{N}}$ ciągu $(x_n)_{n\in\mathbb{N}}$ taki, że $a_n\leqslant y_n\leqslant b_n$ i na mocy twierdzenia o trzech ciągach

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \in \mathbb{R}.$$

Czyli podciąg ten jest zbieżny, koniec dowodu.

Zauważmy, że własność 4. naszego ciągu przdziałów w powyższym dowodzie jest intuicyjna, jednak dla formalności moglibyśmy przeprowadzić łatwy dowód indukcyjny. Oczywiście połowa długości przedziału [a,b] wynosi $\frac{b-a}{2}$. Czyli:

dla dla n = 1 mamy $[a_1, b_1]$ - wybrana połowa przedziału [a, b] i stąd

$$b_1 - a_1 = \frac{b - a}{2} = \frac{b_0 - a_0}{2}.$$

Załóżmy, że dla pewnego $m \in \mathbb{N}$ zachodzi $b_m - a_m = \frac{b_{m-1} - a_{m-1}}{2^m}$.

Dzielimy przedział $[a_m, b_m]$ na połowy i zgodnie z definicją naszego ciągu podziałów wybieramy jedną, zawierającą nieskończenie wiele wyrazów ciągu $(x_n)_{n\in\mathbb{N}}$. Np. niech to będzie "prawa" połówka i mamy:

$$[a_{m+1}, b_{m+1}] = \left[\frac{a_m + b_m}{2}, b_m\right]$$

Obliczamy długość przedziału: $b_{m+1} - a_{m+1} =$

$$=b_m-\frac{a_m+b_m}{2}=\frac{2b_m-a_m-b_m}{2}=\frac{1}{2}(b_m-a_m)=\frac{1}{2}\left(\frac{b_{m-1}-a_{m-1}}{2^m}\right)=\frac{b_{m-1}-a_{m-1}}{2^{m+1}}.$$

Analogicznie postąpimy jeśli nieskończenie wiele wyrazów ciągu będzie leżało w lewej połowie przedziału. Z Zasady Indukcji Matematycznej nasz wzór na odległość między wyrazami ciągu jest prawdziwy dla każdej liczby naturalnej. Podobne rozumowanie można by przeprowadzić w dowodzie lematu 2.3

Dla ćwiczenia, pokażemy też inny dowód - bez korzystania z lematu o przedziałach zstępujących.

Lemat 2.4. Dowolny ciąg liczbowy zawiera podciąg monotoniczny.

Dowód. Ustalmy ciąg $(a_n)_{n\in\mathbb{N}}$. Wykażemy, że jeżeli z tego ciągu nie można wybrać podciągu niemalejącego, to można wybrać z niego podciąg malejący. Najpierw pokażemy, że jeśli z ciągu nie można wybrać podciągu ściśle rosnącego, to ciąg ten ma wyraz największy. Załóżmy nie wprost, że byłoby przeciwnie. Załóżmy, że z ciągu $(a_n)_{n\in\mathbb{N}}$ nie można wybrać podciągu ściśle rosnącego. Wtedy a_1 nie nie jest największym wyrazem ciągu $(a_n)_{n\in\mathbb{N}}$. Przyjmujemy $n_1=1$. Istnieje $n_2\in\mathbb{N}$ takie, że $a_{n_2}>a_{n_1}$. Jeżeli dla każdego $n>n_2$ zachodzi nierówność $a_n\leqslant a_{n_2}$, to największy z wyrazów a_1,a_2,\ldots,a_{n_2} jest największym wyrazem ciągu $(a_n)_{n\in\mathbb{N}}$. Jeśli nie, to istnieje taka liczba naturalna $n_3>n_2$, że $a_{n_3}>a_{n_2}$. Podobne rozumowanie doprowadzi nas do wniosku, że musi istnieć taka liczba naturalna $n_4>n_3$, że $a_{n_4}>a_{n_3}$. Powtarzając to rozumowanie nieskończenie wiele razy, dochodzimy do wniosku, że z ciągu $(a_n)_{n\in\mathbb{N}}$ można wybrać podciąg ściśle rosnący, wbrew założeniu. Zatem procedura nie może być kontynuowana bez ograniczeń, musimy więc trafić na największy wyraz.

Załóżmy teraz, że ciąg $(a_n)_{n\in\mathbb{N}}$ nie zawiera ciągu niemalejącego. Niech a_{m_1} będzie największym wyrazem ciągu $(a_n)_{n\in\mathbb{N}}$. Z ciągu $a_{m_1+1}, a_{m_1+2}, \ldots$ nie można wybrać podciągu niemalejącego bo byłby to również podciąg niemalejący ciągu $(a_n)_{n\in\mathbb{N}}$. Wobec tego ten ciąg ma wyraz największy. Niech a_{m_2} będzie największym spośród wyrazów $a_{m_1+1}, a_{m_1+2}, \ldots$ Dalej, niech a_{m_3} będzie największym spośród wyrazów $a_{m_2+1}, a_{m_2+2}, \ldots, a_{m_4}$ największym spośród wyrazów $a_{m_3+1}, a_{m_3+2}, \ldots$ itd. Mamy zatem $a_{m_1} \geqslant a_{m_2} \geqslant a_{m_3} \geqslant \ldots$ Przy czym nieskończenie wiele razy muszą wystąpić równości, w przeciwnym razie możliwe byłoby wybranie podciągu stałego, który jest niemalejący i jednocześnie nierosnący. Stąd mamy, że istnieje podciąg ściśle rosnący ciągu a_{m_1}, a_{m_2}, \ldots i jest on oczywiście również podciągiem ciągu $(a_n)_{n\in\mathbb{N}}$.

Teraz zapowiedziany

Dowód. Oczywiście dla ciągu ograniczonego, dowolny jego podciąg również jest ograniczony. Z poprzedniego lematu wynika, że można wybrać taki podciąg aby był monotoniczny i jako również ograniczony - jest on zbieżny.

Liczba e Eulera:

Definicja 2.9. Przyjmijmy $e_n := \left(1 + \frac{1}{n}\right)^n$. Liczbą e Eulera nazywamy granicę ciągu e_n .

Oczywiście wypada udowodnić, że taka granica w ogóle istnieje! Tzn. zbadać zbieżność ciągu $(e_n)_{n\in\mathbb{N}}$.

Twierdzenie 2.14. $Ciqg\ (e_n)_{n\in\mathbb{N}}\ jest\ zbieżny.\ Ponadto\ 2\leqslant e<3,\ gdzie\ e=\lim_{n\to\infty}e_n.$

 $Dow \acute{o}d.$ Najpierw zauważmy, że na mocy nierówności Bernoulliego mamy oszacowanie wartości ciągu z dołu

$$2 = 1 + 1 = 1 + n \frac{1}{n} \le \left(1 + \frac{1}{n}\right)^n, \ n \in \mathbb{N}.$$

Nam oszacowanie z góry będzie potrzebne do dowodu zbieżności. Korzystając z dwumianu newtona 1.8

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} \cdot \left(\frac{1}{n}\right)^k = \underbrace{\sum_{k=0}^n \frac{n!}{(n-k)!k!n^k}}_{\text{Gdvž } n^k \geqslant n!} \leqslant \underbrace{\sum_{k=0}^n \frac{n!}{(n-k)!k!n!}}_{\text{Gdvž } n^k \geqslant n!} = \underbrace{\sum_{k=0}^n \frac{n!}{(n-k)!k!n!}}_{\text{Gdvž } n^k \geqslant n!}$$

$$= \sum_{k=0}^{n} \frac{1}{(n-k)!k!} \leqslant \sum_{k=0}^{n} \frac{1}{k!}.$$

Zauważmy, że $e_1=2, e_2=2+\frac{1}{4}<3$ a dla n>2 mamy z powyższego oszacowania:

$$\sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \sum_{k=2}^{n} \frac{1}{k!} = 2 + \underbrace{\sum_{k=2}^{n} \frac{1}{k!}}_{\leq 1} < 3.$$

Wiemy zatem, że ciąg jest ograniczony. Wykażemy, że jest on monotoniczny a z tąd już zbieżność wynika z twierdzenia 2.6. Chcemy pokazać, że $e_{n+1}>e_n$ a łatwiej pokazać równoważną nierówność: $\frac{e_{n+1}}{e_n}>1$. Mamy

$$\frac{e_{n+1}}{e_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{(1 + \frac{1}{n})^n} = \left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right) \cdot \frac{n+2}{n+1} = \left(\frac{n^2 + 2n + 1 - 1}{n^2 + 2n + 1}\right)^n \frac{n+2}{n+1}$$
$$= \left(1 + \frac{-1}{n^2 + 2n + 1}\right)^n \frac{n+2}{n+1}.$$

Po ostatniej równości korzystamy znowu z nierównośc Bernoulliego i otrzymujemy, że

$$\frac{e_{n+1}}{e_n} \geqslant \left(1 + n\frac{-1}{n^2 + 2n + 1}\right)\frac{n+2}{n+1} = \left(\frac{n^2 + n + 1}{n^2 + 2n + 1}\right)^n\frac{n+2}{n+1} = \frac{n^3 + 3n^2 + 3n + 2}{n^3 + 3n^2 + 3n + 1} > 1.$$

A więc ciąg $(e_n)_{n\in\mathbb{N}}$ jest zbieżny, do liczby z przedziału [2,3), co było do udowodnienia. \square

Liczba Eulera jest ważną stałą matematyczną, pojawiającą się w wielu zagadnieniach, szczególnie w analizie matematycznej, podobnie jak liczba π jest stałą naturalnie pojawiającą się w wielu zagadnieniach geometrycznych. W przybliżeniu:

$$e \approx 2.71828182845904523536.$$

Ciekawostka - zauważmy, że łatwo zapamiętać aż dziewięć miejsc po przecinku przybliżenia liczby e, gdyż charakterystyczny czterocyfrowy ciąg "jeden-osiem-dwa-osiem" powtarza się dwukrotnie: $e\approx 2,718281828$. Zasadniczo warto pamiętać, że e to około 2,72, podobnie jak powinniśmy pamiętać, że π to około 3,14.

Ćwiczenie. Udowodnić, że ciąg $(a_n)_{n\in\mathbb{N}}$ określony wzorem $a_n=\left(1+\frac{1}{n}\right)^{n+1}$ jest zbieżny. Wywnioskować, że dla $n=1,2,3,\ldots$:

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}.$$

Przykład. Pokażemy, że $\lim_{n\to\infty} (1+n)^{\frac{1}{n}} = e$. Podstawmy $t = \frac{1}{n}, n \in \mathbb{N}$, to wtedy $n = \frac{1}{t}, n \in \mathbb{N}$ oraz gdy $n \to 0$, to $t \to \infty$ (gdyż $t = \frac{1}{n} \stackrel{n \to \infty}{\longrightarrow} \infty$).

$$\lim_{n \to 0} (1+n)^{\frac{1}{n}} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t = e.$$

Przykład. Zobaczymy przykład typowej klasy zadań "na liczenie ciągów".

Obliczmy granicę
$$\lim_{n\to\infty}\left(\frac{n-3}{n+2}\right)^{2n+1}$$
 Mamy $\lim_{n\to\infty}\left(\frac{n-3}{n+2}\right)^{2n+1}=\lim_{n\to\infty}\left(\frac{n+2-5}{n+2}\right)^{2n+1}=$

$$\lim_{n \to \infty} \left(1 + \frac{-5}{n+2}\right)^{2n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n+2}{-5}}\right)^{2n+1} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{\frac{n+2}{-5}}\right)^{\frac{n+2}{-5}}\right]^{\frac{-5(2n+1)}{n+2}}$$

Teraz zauważmy, że część w nawiasach kwadratowych dąży do e (jest to granica pewnego podciągu ciągu wyrazów $e_n = (1 + \frac{1}{n})^n$ - porównaj twierdzenie 2.11). Zatem nasza granica jest postaci

$$e^{\lim_{n\to\infty} a_n}$$
, gdzie $a_n = \frac{-5(2n+1)}{n+2}$.

Łatwo obliczamy, że $\lim_{n\to\infty}a_n=-10$ i stąd szukana granica wynosi $e^{-10}.$

Można spotkać sporo "granic prowadzących do liczby e", jak w powyższym przykładzie. Bynajmniej nie jest to tylko jakiś dziwny rodzaj zadań służący męczeniu studentów, ale jak najbardziej takie granice występują w rachunkach dotyczących fizyki, ekonomii i innych zastosowań "realistycznych" i trzeba umieć sobie z nimi radzić. Warto mieć w pamięci następujące

Twierdzenie 2.15.

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}$$

Dowód.

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{-n} \right)^{-(-n)} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{-n} \right)^{-n} \right]^{-1} =$$

$$= \left[\lim_{n \to \infty} \left(1 + \frac{1}{-n} \right)^{-n} \right]^{-1} = [e]^{-1} = \frac{1}{e}.$$

Fakt, że mogliśmy wejśc z granicą "pod nawias $(\cdots)^{-1}$ " wynika właściwie z twierdzenia 5.2, które poznamy na dalszym etapie.

Ponadto w tym miejscu lektury, dla wprawy proponuję od razu proste $\acute{C}wiczenie$ (1). Obliczyć granicę

$$\lim_{n \to \infty} \left(\frac{n+7}{n-2} \right)^{4n-2}$$

Zachęcam też spróbować nieco inne rachunkowo

Ćwiczenie (2). Obliczyć granicę

$$\lim_{n\to\infty} \left(\frac{n^2+3}{n^2+1}\right)^{2n^2+1}$$

Twierdzenie 2.16. Niech $(a_n)_{n\in\mathbb{N}}$ będzie dowolnym ciągiem liczb rzeczywistych, zbieżnym. Oznaczmy $\lim_{n\to\infty} a_n = a$. Wówczas

$$\lim_{n \to \infty} \left(1 + \frac{a_n}{n} \right)^{a_n} = e^a.$$

Dowód. Ćwiczenie.

Twierdzenie 2.17. $e^x > x + 1$ dla dowolnego $x \in \mathbb{R}$.

Dowód. Dla x<-1nierówność jest oczywista. Przypomnijmy nierówność Bernoulliego, zmieniając trochę oznaczenia:

$$1 + na \le (1+a)^n, \ x \ge -1.$$

Podstawiamy $a = \frac{x}{n}$ i mamy

$$1 + x \leqslant \left(1 + \frac{x}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} e.$$

Zatem nierówność wynika z twierdzenia 2.5 o zachowaniu nierówności przy przejściu do granicy. $\hfill\Box$

2.3 Granice ekstremalne

Możemy wprowadzić dodatkowe narzędzie, pozwalające na badanie podciągów, granic i ganic podciągów różnych ciągów liczb **rzeczywistych**. Określmy teraz działania na symbolach $-\infty, +\infty$ i liczbach rzeczywistych (czyli przypomnijmy: elementach **ciała** \mathbb{R})

$$-(+\infty) = -\infty - (-\infty) = +\infty$$

$$c + (+\infty) = c + \infty = +\infty + c = +\infty, \ c \in \mathbb{R}$$

$$c + (-\infty) = c - \infty = -\infty + c = -\infty, \ c \in \mathbb{R}$$

$$c \cdot (\pm \infty) = \pm \infty \cdot c = \pm \infty, \ c \in \mathbb{R}, c > 0$$

$$c \cdot (\pm \infty) = \pm \infty \cdot c = \mp \infty, \ c \in \mathbb{R}, c < 0$$

$$\frac{c}{\pm \infty} = 0, \ c \in \mathbb{R}$$

$$\left| \frac{c}{0} \right| = +\infty \text{ dla l. rzeczywistej } c \neq 0$$

Wyrażenia $(-\infty) + (+\infty)$, $+\infty + (-\infty)$ oraz $\frac{0}{0}$ pozostają niezdefiniowane, podobnie jak $0 \cdot (\pm \infty) \cdot (0)$. Porównaj: symbole nieoznaczone.

Uwaga 2.4. Nawet dwa ostatnie z powyższych symboli można zdefiniować w użyteczny sposób: np. w teorii miary i teorii prawdopodobieństwa jako 0. Wszystko zależy od kontekstu. W przypadku obliczania granic, są to "symbole nieoznaczone".

Definicja 2.10. Zbiór $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ będziemy nazywali *rozszerzonym zbiorem liczb rzeczywistych*.

Uwaga 2.5. Powyższa struktura nie jest już ciałem!

Definicja 2.11. Ustalmy dowolny ciąg $(a_n)_{n\in\mathbb{N}}$. Niech

$$E = \left\{ g \in \overline{\mathbb{R}} \colon \text{ istnieje taki podciąg } (a_{n_k})_{k \in \mathbb{N}} \text{ ciągu } (a_n)_{n \in \mathbb{N}}, \text{ że } \lim_{k \to \infty} a_{n_k} = g. \right\}.$$

Definiujemy granicę dolną $\liminf_{n\to\infty} a_n$ ciągu $(a_n)_{n\in\mathbb{N}}$ wzorem

$$\liminf_{n \to \infty} a_n = \inf E$$

oraz granicę górną $\limsup_{n\to\infty} a_n$ ciągu $(a_n)_{n\in\mathbb{N}}$ wzorem

$$\limsup_{n \to \infty} a_n = \sup E.$$

Sam zbiór nazywamy zbiorem punktów skupienia ciągu $(a_n)_{n\in\mathbb{N}}$ albo jego granic częściowych.

Twierdzenie 2.18. Niech $(a_n)_{n\in\mathbb{N}}$ będzie dowolnym ograniczonym ciągiem liczb rzeczywistych. Wtedy

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \left(\inf_{k \geqslant n} a_k \right) = \sup_{n \geqslant 0} \inf_{k \geqslant n} a_k$$

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sup_{k \geqslant n} a_k \right) = \inf_{n \geqslant 0} \sup_{k \geqslant n} a_k$$

Twierdzenie 2.19. Dla dowolnego ciągu $(a_n)_{n\in\mathbb{N}}$ liczb rzeczywistych

$$\liminf_{n \to \infty} a_n \leqslant \limsup_{n \to \infty} a_n.$$

Twierdzenie 2.20. Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ będą ciągami liczb rzeczywistych takimi, że dla pewnego $N\in\mathbb{N}$: $a_n\leqslant b_n$ o ile tylko $n\geqslant N$. Wówczas

$$\liminf_{n \to \infty} a_n \leqslant \liminf_{n \to \infty} b_n, \ \limsup_{n \to \infty} a_n \leqslant \limsup_{n \to \infty} b_n.$$

Najważniesze twierdzenie z tej części, to

Twierdzenie 2.21. Dla dowolnego ciągu $(a_n)_{n\in\mathbb{N}}$ liczb rzeczywistych granica $\lim_{n\to\infty} a_n$ właściwa (tj. skończona) istnieje wtedy i tylko wtedy, gdy

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Jeżeli granica ta istnieje, to $\lim_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$.

Przykład. Zbadamy granicę ciągu $(a_n)_{n\in\mathbb{N}}$ danego wzorem

$$a_n = \left(1 + (-1)^n \frac{1}{n}\right)^n.$$

Dla $n = 2k, k \in \mathbb{N}$ mamy podciągi wyrazów $(a_n)_{n \in \mathbb{N}}$ postaci $a_{2k} = \left(1 + \frac{1}{2k}\right)^{2k}$. Wtedy z twierdzenia 2.16 mamy, że $\lim_{k \to \infty} a_{2k} = e$.

Z kolei dla n = 2k - 1 otrzymujemy podciągi w postaci

$$a_{2k+1} = \left(1 - \frac{1}{2k-1}\right)^{2k-1} \stackrel{n \to \infty}{\to} \frac{1}{e}.$$

Wtedy mamy zbiór granic częściowych $E=\left\{e,\frac{1}{e}\right\}$ (wyczerpaliśmy wszystkie możliwe podciągi, gdyż każda liczba naturalna $n\in\mathbb{N}$ jest liczbą parzystą lub nieparzystą, czyli: postaci 2k lub 2k-1). Widzimy teraz, że

$$\limsup_{n \to \infty} a_n = e \text{ oraz } \liminf_{n \to \infty} a_n = \frac{1}{e}.$$

Granice górna i dolna są różne, zatem granica $\lim_{n\to\infty} a_n$ nie istnieje.

Twierdzenie 2.22. Dla dowolnego ciągu liczb dodatnich $(x_n)_{n\in\mathbb{N}}$ zachodzi

$$(2.1) \qquad \qquad \liminf_{n \to \infty} \frac{x_{n+1}}{x_n} \leqslant \liminf_{n \to \infty} \sqrt[n]{x_n} \leqslant \limsup_{n \to \infty} \sqrt[n]{x_n} \leqslant \limsup_{n \to \infty} \frac{x_{n+1}}{x_n}$$

Dowód. Środkowa nierówność jest powtórzeniem twierdzenia 2.19. Udowodnimy prawą nierówność. Niech $g:=\limsup_{n\to\infty}\frac{x_{n+1}}{x_n}$. Jeżeli $g=+\infty$, to nierówność oczywiście zachodzi.

Niech więc $g \in \mathbb{R}$. Weźmy dowolne $\alpha > g$. Istnieje (lemat 3.3) $N \in \mathbb{N}$ takie, że $\frac{x_{n+1}}{x_n} \le \alpha$, $n \ge N$. Inaczej mówiąc $x_{N+k+1} \le x_{N+k}\alpha$ dla $k \in \mathbb{N}$. Możemy napisać, że dla każdego p > 0 i dla kolejnych $k = 0, 1, 2, \ldots, p-1$ mamy:

$$x_{N+1} \leqslant x_N \alpha$$

$$x_{N+2} \leqslant x_{N+1} \alpha$$

$$x_{N+3} \leqslant x_{N+2} \alpha$$
:

Mnożąc kolejne nierówności stronami otrzymujemy:

$$x_{N+1} \leqslant x_N \alpha$$

$$x_{N+2} \leqslant x_{N+1} \alpha \leqslant x_N \alpha^2$$

$$x_{N+3} \leqslant x_{N+2} \alpha \leqslant x_{N+1} \alpha^2 \leqslant x_N \alpha^3$$

$$\vdots$$

$$x_{N+p} \leqslant x_{N+p-1} \alpha \leqslant \dots \leqslant x_{N+1} \alpha^{p-1} \leqslant x_N \alpha^p.$$

Mamy zatem $x_{N+p} \le x_N \alpha^p$. Możemy wyrazić dowolne $n \ge N$ jako n = N + p dla odpowiedniego p > 0 i wtedy p = n - N. Nasze oszacowanie ma zatem postać

$$x_n \leqslant x_N \alpha^{n-N}, \ n \geqslant N.$$

Dalej $\sqrt[n]{x_n} \leqslant \sqrt[n]{x_N \alpha^{-N}} \alpha$. Przechodząc do granicy otrzymujemy, że

$$\limsup_{n \to \infty} \sqrt[n]{x_n} \leqslant \alpha$$

Z dowolności α i $g < \alpha$ możemy przyjąć $\alpha \to g$ i wtedy mamy, że

$$\limsup_{n \to \infty} \sqrt[n]{x_n} \leqslant g.$$

Lewą nierówność można udowodnić analogicznie.

Wniosek 2. Jeżeli dla pewnego ciągu $(a_n)_{n\in\mathbb{N}}$ istnieje granica $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$, to istnieje również granica ciągu $(\sqrt[n]{a_n})_{n\in\mathbb{N}}$ oraz $\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$.

Ćwiczenie. Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem takim, że $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q\in\mathbb{R},\ q=\mathrm{const.}$ Pokazać, że jeżeli q<1, to $\lim_{n\to\infty}a_n=0$.

Sugestia: najpierw zająć się przypadkiem $a_n \ge 0, n \in \mathbb{N}$ a potem uzupełnić dowód do a_n dowolnego. Można przeprowadzić bardzo podobne rozumowanie jak w dowodzie poprzedniego twierdzenia.

Ćwiczenie. Wykazać, że $\lim_{n\to\infty} \frac{a^n}{n!} = 0, a \in \mathbb{R}, a = \text{const.}$

Lemat 2.5. Dla dowolnych ciągów liczb rzeczywistych: $(a_n)_{n\in\mathbb{N}}$ i $(b_n)_{n\in\mathbb{N}}$ ściśle rosnącego zachodzi:

$$\liminf_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\leqslant \liminf_{n\to\infty}\frac{a_n}{b_n}\leqslant \limsup_{n\to\infty}\frac{a_n}{b_n}\leqslant \limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$

Dowód. W opracowaniu! TO-DO

Bezpośrednio z powyższego oszacowania mamy wniosek:

Twierdzenie 2.23 (Stolza). Niech $(x_n)_{n\in\mathbb{N}}$ będzie dowolnym ciągiem, a $(y_n)_{n\in\mathbb{N}}$ ciągiem monotonicznym i $\lim_{n\to\infty} y_n = \infty$. Wtedy,

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}},$$

o ile granica po prawej stronie istnieje (skończona lub nie).

Ćwiczenie. Obliczyć $\lim_{n\to\infty} \frac{\ln n}{n}$.

2.4 *Proste zagadnienia interpolacyjne

Definicja 2.12. Zagadnienie *interpolacji* w naukach ścisłych i - szczególnie - technicznych, polega na znalezieniu funkcji y = f(x), która w danych z góry, różnych od siebie punktach (np. wynikach pomiaru, rezultatach przeprowadzonego wielokrtotnie doświadczenia)

$$x_0, x_1, \ldots, x_n;$$

przybiera dane wartości

$$y_0, y_1, \ldots, y_n,$$

tj. funkcji
$$f: X \to Y$$
, $\{x_0, x_1, \dots, x_n\} \subseteq X$, $\{y_0, y_1, \dots, y_n\} \subseteq Y$ takiej, że $f(x_k) = y_k, k \in \{1, \dots, n\}$.

Postawiony powyżej problem ma nieskończenie wiele rozwiązań, ponieważ można poprowadzić nieskończenie wiele krzywych, przechodzących przez skończoną ilość punktów x_0, x_1, \ldots, x_n . Załóżmy jednak, że chcemy, aby funkcja f była wielomianem najniższego stopnia. Zachodzi następujące

Twierdzenie 2.24. Istnieje dokładnie jeden wielomian stopnia co najwyżej n-tego, który w punktach $\{x_0, x_1, \ldots, x_n\}$ przybiera wartości $\{y_0, y_1, \ldots, y_n\}$.

Dowód. Zauważmy, że wyrażenie

$$\frac{(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)(x_i-x_1)\cdot(x_i-x_{i-1})(x_i+x_{i+1})\cdots(x_i-x_n)}$$

jest wielomianem stopnia n, przyjmującym w punkcie $x=x_i$ wartość 1, a w pozostałych punktach wartość 0. Wobec tego wyrażenie, dane sumą:

$$W(x) = \sum_{i=0}^{n} f(x_i) \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{x - x_j}{x_i - x_j} =$$

$$(2.2) \qquad = \sum_{i=0}^{n} f(x_i) \frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdot(x_i-x_{i-1})(x_i+x_{i+1})\cdots(x_i-x_n)}.$$

jest wielomianem stopnia co najwyżej n-tego (pewne wyrazy mogą ulec redukcji), który dla $x=x_i$ przybiera wartość $y_i=f(x_i), i\in\{0,1,\ldots,n\}$. Gdyby istniał inny wielomian, np. P o tej samej własności, to wielomian W-P byłby wielomianem stopnia co najwyżej n-tego mającym n+1 punktów zerowych $W(x_0)-P(x_0), W(x_1)-P(x_1),\ldots,W(x_n)-P(x_n)$. \square

Wzór 2.2 nazywamy wzorem interpolacyjnym Lagrange'a.

Wzór interpolacyjny Newtona. Każdy wielomian stopnia mniejszego lub równego n można zapisać w postaci

$$(2.3) W(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

dobierając odpowiednio współczyniki c_1, \ldots, c_n . Wyznaczamy je z warunków $W(x_k) = y_k$ dla $k = 0, 1, \ldots, n$. W tym celu przyjmujemy oznaczenia:

$$w_1(x) = \frac{W(x) - W(x_0)}{(x - x_0)}, w_2(x) = \frac{W_1(x) - W_1(x_1)}{(x - x_1)}, \dots, w_n(x) = \frac{W_{n-1}(x) - W_{n-1}(x_{n-1})}{(x - x_{n-1})}.$$

Łatwo sprawdzić, że funkcje w_1, w_2, \dots, w_n są znowu wielomianami, bo zgodnie ze wzorem 2.3

$$w_k(x) = c_1^{(k)} + c_2^{(k)}(x - x_1) + \dots + c_n^{(k)}(x - x_1) \dots (x - x_{n-1}), k \in \{1, \dots, n\}.$$

Zatem $c_0^{(k)} = W(x_0)$, $c_1 = w_1(x_1), \ldots, c_n = w_n(x_n)$. Podstawiając te wyniki do wzoru 2.3 otrzymujemy

(2.4)
$$W(x) = W(x_0) + w_1(x_1)(x - x_0) + w_2(x_2)(x - x_0)(x - x_1) + \dots + w_n(x_n)(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Wzór 2.4 nazywamy wzorem interpolacyjnym Newtona. Wzór ma nad wzorem Lagrange'a np. taką przewagę, że gdybyśmy odrzucili z punktów x_0, x_1, \ldots, x_n ostatni, to we wzoreze 2.4 zniknąłby tylko ostatni wyraz, a inne wyrazy pozostałyby niezmienione.

W praktyce obliczanie współczynników $w_k(x_k)$ wzoru 2.4 wygodnie wykonuje się tworząc następuącą tabelę (wypisujemy dla przypadku n=4):

Dwie pierwsze kolumny tabeli są z góry dane. Kolumny dalsze obliczamy kolejno dzieląc, zgodnie ze wzorami, różnicę dwu wyrazów kolumny poprzedniej przez różnicę odpowiadających wyrazów kolumny pierwszej. Górne wyrazy wszystkich kolumn, poza pierwszą, są szukanymi współczynnikami.

3 Elementy topologii przestrzeni metrycznych i algebry liniowej

Intuicje:

Ścisłe określenie:

Definicja 3.1. Mówimy, że para (X, ρ) jest przestrzenią metryczną, gdzie X jest dowolnym zbiorem a $\rho: X \times X \to [0, +\infty)$ odwzorowaniem, gdy ρ spełnia nast. własności

- 1. $\rho(x,x) = 0, x \in X$;
- 2. $\rho(x,y) = \rho(y,x)$ dla dowolnych $x,y \in X$ (symetria);
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ dla dow. $x,y,z \in X$ (warunek trójkata).

Przykład. Przestrzeń $(\mathbb{R},|\cdot|)$, gdzie $|\cdot|$ oznacza metrykę daną jako $(x,y)\mapsto |x-y|$ nazywamy ją metryką naturalną na prostej. Łatwo to sprawdzić porównując twierdzenie 1.33 i własności przestrzeni metrycznej.

Ćwiczenie. Niech X będzie dowolnym niepustym zbiorem. Określ
my funkcję $d\colon X\to\{0,1\}$ wzorem

$$d(x,y) = \begin{cases} 0, & \text{gdy } x = y, \\ 1, & \text{gdy } x \neq y. \end{cases}$$

Udowodnić, że para (X,d) jest przestrzenią metryczną.

Przykład. Przestrzenią metryczną jest para (S^1,ℓ) , gdzie $S^1=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2=1\}$ oraz $\ell(a,b)=\{|\stackrel{\frown}{ab}|\colon |\stackrel{\frown}{ab}|\leqslant \pi\}$ $(|\stackrel{\frown}{ab}|$ oznacza długość łuku, którego końcami są punkty $a,b\in\mathbb{R}^2$ i zawartego w S^1).

A więc przestrzenią jest okrąg jednostkowy (tzn. o promieniu równym jeden) o środku w punkcie (0,0) wraz z odległością między dwoma leżącymi na nim punktami określoną jako długość łuku, jaki oddzielają od okręgu, przy czym zawsze wybieramy krótszy z dwóch łuków w ten sposób wyznaczonych.

Produkt kartezjański przestrzeni metrycznych: Niech $(X_1, \rho_1), (X_2, \rho_2), \dots, (X_n, \rho_n)$ będą przestrzeniami metrycznymi. Wówczas zbiór $X_1 \times X_2 \times \dots \times X_n$ jest przestrzenią metryczną o metryce ρ danej wzorem

$$\rho(x,y) = \rho((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{\sum_{k=1}^n (\rho(x_k,y_k))^2}$$

Dowód tego faktu podamy w paragrafie nt. przestrzeni unormowanych.

Przykład. Przestrzeń (\mathbb{R}^n, d_e), gdzie d_e nazywamy metryką euklidesową i dla dow. punktów $x, y \in \mathbb{R}^n$ czyli $x = (x_1, x_2, \dots, x_n)$ i $y = (y_1, y_2, \dots, y_n)$ przy czym $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$; jest ona określona wzorem:

$$d_e(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2},$$

Zauważmy, że przy n=1 tak naprawdę otrzymujemy metrykę naturalną, czyli jest ona szczególnym przypadkiem metryki euklidesowej.

Sprawdzenie, że d_e jest metryką na \mathbb{R}^n wymaga skorzystania z tzw.: Nierówności Cauchy'ego-Buniakowskiego-Schwarza (w skrócie "nierówność CBS"), najczęściej w polskiej literaturze występującej jako "nierówność Cauchy'ego-Schwarza".

Twierdzenie 3.1 (Nierówność Cauchy'ego-Buniakowskiego-Schwarza). *Jeśli* $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$, to zachodzi nierówność

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \leqslant \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right).$$

 $Dow \acute{o}d$. Ustalmy funkcję $f: \mathbb{R} \to \mathbb{R}$ daną wzorem:

$$f(t) = \left(\sum_{k=1}^{n} a_k^2\right) t^2 - 2\left(\sum_{k=1}^{n} a_k b_k\right) t + \sum_{k=1}^{n} b_k^2.$$

Zauważmy, że $f \ge 0$, gdyż $f(t) = \sum_{k=1}^{n} (a_k t - b_k)^2 \ge 0, t \in \mathbb{R}$. Stąd wyróżnik Δ równania kwadratowego f(t) = 0 jest mniejszy lub równy zero:

$$\Delta = 4 \left(\sum_{k=1}^{n} a_k b_k \right)^2 - 4 \left(\sum_{k=1}^{n} a_k^2 \right) \left(\sum_{k=1}^{n} a_k b_k^2 \right) \le 0.$$

Ale stąd już widać, że jest to nasza dowodzona nierówność. Koniec dowodu.

Ćwiczenie. Korzystająć z nierówności Cauchy'ego-Schwarza udowodnić, że jeżeli $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$, to

$$\sqrt{\sum_{k=1}^{n} (a_k + b_k)^2} \leqslant \sqrt{\sum_{k=1}^{n} a_k^2} + \sqrt{\sum_{k=1}^{n} b_k^2}.$$

 $\acute{C}wiczenie$. Korzystając z poprzedniego ćwiczenia, sprawdzić, że w istocie odwzorowanie ρ określone na początku paragrafu jest metryką na $X_1 \times \ldots \times X_n$.

3.1 Zbiory otwarte i domkniete

Ustalmy dla tego paragrafu przestrzeń metryczną (X, ρ) . Dla każdego zbioru $A \subseteq X$ oznaczamy przez A' jego dopełnienie $X \setminus A$ względem przestrzeni X.

Definicja 3.2. Dla dow. $x \in X$ oraz l. rzeczywistej r > 0 zbiór

$$K(x,r) = \{ y \in X \colon \rho(x,y) < r \}$$

nazywamy kulq otwartą w przestrzeni X o środku x oraz promieniu r.

Kulę otwartą o środku w punkcie x nazywamy też otoczeniem punktu x. Zbiór $K(x,r) \setminus \{x\}$ nazywamy sąsiedztwem punktu x.

Kulę w literaturze światowej często oznacza się $B(x,\varepsilon)$ (od ang. ball). My będziemy też oznaczać sąsiedztwo przez $S(x,\varepsilon)$ - jednak uwaga: czasami tak oznaczana jest sfera, czyli zbiór $\{y\in X\colon \rho(x,y)=r\}$. Często w rozumowaniach teoretycznych rozważamy otoczenia lub sąsiedztwa ustalonego punktu i nie potrzebujemy oznaczenia na promień. Będziemy wtedy oznaczać odpowiednio otoczenie punktu $x\in X$ przez K_x , B_x , U_x , etc. oraz sąsiedztwo przez S_x przy czym zawsze z kontekstu będzie wiadomo o czym mowa.

Definicja 3.3. Mówimy, że zbiór $U \subseteq X$ jest zbiorem *otwartym* (w przetrzeni X), gdy dla każdego $x \in U$ istnieje otoczenie tego punktu zawarte w zbiorze U, tzn. $\exists_{\varepsilon>0}$. $K(x,\varepsilon) \subseteq U$.

Definicja 3.4. Mówimy, że zbiór $F \subseteq X$ jest zbiorem domkniętym (w przetrzeni X), gdy zbiór $F' := X \setminus F$ jest zbiorem otwartym.

Uwaga 3.1. Zbiór $\overline{K}(x,r) = \{y \in X : \rho(x,y) \leq r\}$ często nazywany "kulą domkniętą" nie jest zbiorem domkniętym przy *dowolnej* metryce.

Definicja 3.5. Punkt $x \in X$ nazywamy punktem skupienia zbioru $A \subseteq X$, gdy dla każdego sąsiedztwa S_x punktu x zachodzi

$$S_x \cap A \neq \emptyset$$

Zbiór wszystkich punktów skupienia zbioru Anazywamy pochodnązbioru Ai oznaczamy $A^d.$

Twierdzenie 3.2. Niech $A, B \subseteq X$ i A^d , B^d będą pochodnymi tych zbiorów. Wtedy

- 1. $(A \cup B)^d = A^d \cup B^d$.
- 2. $(A^d)^d \subseteq A^d$.

3.
$$\bigcup_{i \in I} A_i^d \subseteq \left(\bigcup_{i \in I} A_i\right)^d$$
 dla dowolnej rodziny $\{A_n \colon n \in I\}$.

Twierdzenie 3.3. Jeżeli x jest punktem skupienia zbioru A, to dowolne otoczenie punktu x zawiera nieskończenie wiele punktów zbioru A.

Dowód. Ustalmy zbiór A i jego punkt skupienia x. Załóżmy, że istnieje otoczenie $K(x,\epsilon)$ punktu x takie, że $K(x,\epsilon)\cap A=\{a_1,a_2,\ldots,a_n\}$. Przyjmijmy $\varepsilon=\min_{1\leqslant k\leqslant n}\rho(x,a_k)$. Oczywiście $\varepsilon>0$. Wtedy otoczenie $K(x,\varepsilon)$ nie zawiera ani jednego punktu zbioru A różnego od x - sprzeczność.

Wniosek 3. Skończony zbiór nie ma punktów skupienia.

Czasem przydaje się proste stwierdzenie:

Lemat 3.1 (Hausdorffa). Jeżeli (X, ρ) jest przestrzenią metryczną, to dla każdych $x, y \in X$, $x \neq y$ istnieją takie zbiory otwarte $U, V \subseteq X$, że

- 1. $U \cap V = \emptyset$,
- $2. x \in U, y \in V.$

Dowód. Wystarczy przyjąć $\varepsilon = \frac{\rho(x,y)}{2}$. Wówczas oczywiście $K(x,\varepsilon) \cap K(y,\varepsilon) = \emptyset$.

Twierdzenie 3.4.

- 1. Dla dowolnej rodziny $\{U_t : t \in T\}$ zbiorów otwartych zbiór $\bigcup_{t \in T} U_t$ jest otwarty.
- 2. Dla dowolnej rodziny $\{F_t : t \in T\}$ zbiorów domkniętych zbiór $\bigcap_{t \in T} F_t$ jest domknięty.
- Dowód. 1. Niech $x \in \bigcup_{t \in T} U_t$. Oznacza to, że istnieje $t_0 \in T$ iż $x \in U_{t_0}$. A z otwartości zbioru $x \in U_{t_0}$ istnieje r > 0 iż $K(x,r) \subseteq U_{t_0}$. A więc $K(x,r) \subseteq U_{t_0} \subseteq \bigcup_{t \in T} U_t$ z dowolności wyboru x wynika otwartość naszej sumy.
 - 2. Zauważmy, że jeżeli $\{F_t\colon t\in T\}$ jest rodziną zbiorów domkniętych, to $\{X\backslash F_t\colon t\in T\}$ jest rodziną zbiorów otwartych. $\bigcup_{t\in T}X\setminus F_t$ jest zbiorem otwartym na mocy poprzedniego punktu. Ale w takim razie zbiór $\bigcup_{t\in T}X\setminus F_t=X\setminus\bigcap_{t\in T}F_t$ jest otwarty, czyli zbiór $\bigcap_{t\in T}F_t$ jest domknięty.

Twierdzenie 3.5.

- 1. Dla dowolnej skończonej rodziny $U_1, U_2, \dots U_n$ zbiorów otwartych zbiór $\bigcap_{t=1}^n U_t$ jest otwarty.
- 2. Dla dowolnej skończonej rodziny $F_1, F_2, \dots F_n$ zbiorów domkniętych zbiór $\bigcup_{t=1}^n F_t$ jest domknięty.

Dowód. 1. Niech $x \in \bigcap_{t=1}^{n} U_t$. Oznacza to, że istnieją takie liczby $r_1, r_2, \dots, r_n > 0$, że

$$K(x, r_t) \subseteq U_t, \ t = 1, 2, \dots, n.$$

Niech $r = \min\{r_1, r_2, \dots, r_n\}$. Wówczas $K(x, r) \subseteq K(x, r_t) \subseteq U_t$ dla dowolnego $t = 1, \dots, n$. Wnioskujemy:

$$y \in K(x,r) \implies \left(\forall_{t \in \{1,\dots,n\}.} \ y \in K(x,r_t) \right) \implies \left(\forall_{t \in \{1,\dots,n\}.} \ y \in U_t \right) \implies y \in \bigcap_{t=1}^n U_t.$$

A więc $K(x,r) \subseteq \bigcap_{t=1}^{n} U_t$ czyli suma jest otwarta i teza została udowodniona.

2.
$$F_1, F_2, \dots, F_n$$
 - domknięte $\implies X \setminus F_1, X \setminus F_2, \dots, X \setminus F_n$ - otwarte.

$$\underbrace{\bigcap_{t=1}^n X\setminus F_t}_{n} - \text{otwarty (z poprzedniego punktu)}$$

$$X\setminus \bigcup_{t=1}^n F_t - \text{otwarty} \implies \bigcup_{t=1}^n F_t - \text{domknięty.}$$

3.2 Operacje na przestrzeniach metrycznych

Ustalmy przestrzeń metryczną (X, ρ) .

Definicja 3.6. Wnętrzem zbioru $A \subseteq X$ w przestrzeni X nazywamy zbiór

int
$$A = \bigcup \{U \subseteq X \colon U \text{ jest zbiorem otwartym i } U \subseteq A\}$$
 .

Zbiór int A jest więc największym (w sensie inkluzji) zbiorem otwartym, zawartym w zbiorze A. Zauważmy, że $x \in \text{int } A$ wtedy i tylko wtedy, gdy istnieje otoczenie U_x punktu a, takie że $U_x \subseteq A$.

Przykład. W przypadku przestrzeni \mathbb{R}^n z naturalną metryką, łatwo o intuicyjne przykłady:

- int[0,2] = (0,2),
- int[-1,1) = (-1,1),
- int(-1,1) = (-1,1),
- $\operatorname{int}\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$

Twierdzenie 3.6.

- 1. int $A \subseteq A$, dla dow. $A \subseteq X$.
- 2. $int(int A) = int A dla dow. A \subseteq X$.
- 3. int X = X.
- 4. int A = A dla dow. zbioru otwartego $A \subseteq X$.
- 5. $\operatorname{int}(A \cap B) = \operatorname{int} A \cap \operatorname{int} B \ dla \ dow. \ A, B \subseteq X$.

60

Dowód. 1. Niech $x \in \text{int } A$, to $x \subseteq U \subseteq A$ dla pewn. otoczenia U - czyli $x \in A$.

Definicja 3.7. Domknięciem zbioru $A \subseteq X$ w przestrzeni X nazywamy zbiór

$$\operatorname{cl} A = \bigcap \{ F \subseteq X \colon F \text{ jest zbiorem domkniętym i } A \subseteq F \}$$

П

Zbiór clA jest zatem najmniejszym (w sensie inkluzji) zbiorem domkniętym, zawierającym zbiór A. Domknięcie zbioru A bywa też często oznaczane: \overline{A} .

Uwaga 3.2. $x \in \operatorname{cl} A$ wtedy i tylko wtedy, gdy $A \cap U_x \neq \emptyset$ dla każdego otoczenia U_x punktu x.

Dowód. $x \in \operatorname{cl} A$ gdy x nie jest punktem wewnętrznym zbioru $X \setminus A$, czyli w każdym otoczeniu U_x punktu x istnieje punkt nienależący do $X \setminus A$ (a więc należący do A). \square

Zauważmy, że powyższa charakteryzacja jest bardzo podobna do definicji punktu skupienia. Jednak punktx jest punktem skupienia zbioru A, gdy przecięcie każdego **sąsiedzta** punktu x ze zbiorem A jest niepuste, podczas gdy aby x należał do domknięcia potrzeba i wystarcza aby przecięcie każdego **otoczenia** punktu x ze zbiorem A było niepuste. Podsumowując:

$$x \in \operatorname{cl} A \iff \forall_{\varepsilon > 0} K(x, \varepsilon) \cap A \neq \emptyset.$$

 $x \in A^d \iff \forall_{\varepsilon > 0} K(x, \varepsilon) \setminus \{x\} \cap A \neq \emptyset$

 $Przykład. \ cl(-1,3) = [-1,3].$

Definicja 3.8. Mówimy, że zbiór $A \subseteq X$ jest *gęsty* (w X), gdy cl A = X.

Przykład. Zbiór liczb wymiernych jest gesty w zbiorze liczb rzeczywistych.

Ćwiczenie. Udowodnić, że zbiór $A \subseteq X$ jest gęsty w X wtedy i tylko wtedy, gdy $U \cap A \neq \emptyset$ dla dowolnego niepustego zbioru otwartego $U \subseteq X$.

Twierdzenie 3.7.

- 1. $A \subseteq \operatorname{cl} A$ dla dow. $A \subseteq X$.
- 2. $\operatorname{cl}(\operatorname{cl} A) = \operatorname{cl} A \ dla \ dow. \ A \subseteq X$.
- 3. $\operatorname{cl} F = F$ dla dow. zbioru domkniętego $F \subseteq X$.
- $4. \operatorname{cl} \emptyset = \emptyset.$
- 5. cl X = X.
- 6. $\operatorname{cl}(A \cup B) = \operatorname{cl} A \cup \operatorname{cl} B$ dla dow. $A, B \subseteq X$.

- Dowód. 1. Niech $x \in A$. Wówczas $x \in F$ dla każdego F zawierającego A a w szczególności gdy F jest zbiorem domkniętym. Czyli $x \in \operatorname{cl} A$ z definicji domknięcia.
 - 2. Z poprzedniego punktu cl $A\subseteq\operatorname{cl}(\operatorname{cl} A)$. Niech więc $x\in\operatorname{cl}(\operatorname{cl} A)$. Z drugiej strony, cl $A\subseteq\operatorname{cl} A$ zbiór domknięty, czyli $x\in\operatorname{cl} A$ z definicji domknięcia zbioru. A więc również $\operatorname{cl}(\operatorname{cl} A)\subseteq\operatorname{cl} A$.

Ćwiczenie. Pokazać, że $\operatorname{cl}(A\cap B)\subseteq\operatorname{cl} A\cap\operatorname{cl} B$ dla dow. $A,B\subseteq X$, gdzie X - prz. metryczna. Podać przykład pokazujący, że inkluzja nie zachodzi w drugą stronę.

Twierdzenie 3.8. Dla dowolnego zbioru $A \subseteq X$ zachodzi cl $A = A \cup A^d$.

Definicja 3.9. Średnicą zbioru $A \subseteq X$ nazywamy liczbę

$$\operatorname{diam} A = \sup \{ \rho(x, y) \colon x, y \in A \}$$

Definicja 3.10. Odległością zbiorów $A, B \subseteq X$ nazywamy liczbę

$$dist(A, B) = \inf \{ \rho(a, b) \colon a \in A, b \in B \}.$$

Analogicznie odległością punktu $x \in X$ od zbioru $A \subseteq X$ określamy liczbę

$$dist(x, A) = \inf \{ \rho(x, a) \colon a \in A \}.$$

Uwaga 3.3. diam $A = \operatorname{diam} \operatorname{cl} A, A \subseteq X$ dla dow. prz. metrycznej X.

3.3 Brzeg zbioru i zbiory brzegowe

Definicja 3.11. Brzegiem zbioru $A \subseteq X$ nazywamy zbiór

$$\Big\{x\in X\colon \forall_{r>0.}\ K(x,r)\cap A\neq\varnothing \text{ oraz } K(x,r)\cap (X\setminus A)\neq\varnothing\Big\},$$

który oznaczamy przez frA od ang. frontier. Zauważmy, że jest to po prostu taki zbiór, że w otoczeniu dowolnego jego elementy leżą zarówno punkty należące do A jak i punkty należące do jego dopełnienia A' względem przestrzeni X.

Mówimy, że zbiór A jest brzegowy, gdy int $A = \emptyset$. Gdy int $cl A = \emptyset$, to mówimy, że zbiór A jest nigdziegesty.

Brzeg zbioru A oznaczany jest w literaturze także przez ∂A oraz Bd A od ang. boundary. Przykład. Niech $x \in \mathbb{R}$. Wówczas int $\operatorname{cl}\{x\} = \operatorname{int}\{x\} = \emptyset$ zatem zbiór $\{x\}$ jest nigdziegęsty. Przykład. fr $\mathbb{Q} = \mathbb{R}$.

Twierdzenie 3.9. Niech $A \subseteq X$. Wówczas

- 1. fr $A = \operatorname{cl} A \setminus \operatorname{int} A$,
- 2. fr A jest zbiorem domknietym,
- 3. $\operatorname{cl} A = \operatorname{int} A \cup \operatorname{fr} A$,
- 4. int $A = A \setminus \operatorname{fr} A$,
- 5. $fr(X \setminus A) = fr A$,
- 6. $\operatorname{fr}\operatorname{cl} A\subseteq\operatorname{fr} A$.

Dowód.

1. Niech $x \in \operatorname{fr} A$. Wówczas dla każdego otoczenia U_x punktu x mamy $U_x \cap A \neq \emptyset$, zatem $x \in \operatorname{cl} A$. Załóżmy, że byłoby x int A. Wówczas musiałoby istnieć otoczenie U_x punktu x takie, czyli zbiór otwarty tak, że $x \in U_x \subseteq A$. Ale z założenia w każdym otoczeniu x istnieją punkty nie należące do A. Sprzeczność dowodzi, że $x \notin \operatorname{int} A$. Mamy więc, że $\operatorname{fr} A \subseteq \operatorname{cl} A \setminus \operatorname{int} A$.

W drugą stronę, niech $x \in \operatorname{cl} A \setminus \operatorname{int} A$. Oczywiście wtedy w każdym otoczeniu punktu x znajdują się punkty należące do A a z drugiej strony żadne takie otoczenie nie zawiera się w A, czyli istnieją w nim również punkty leżące w A'. Stąd wynika, że $x \in \operatorname{fr} A$.

2. Musimy wykazać, że zbiór $X \setminus \operatorname{fr} A$ jest zbiorem otwartym w X. Niech $x \in X \setminus \operatorname{fr} A$. To znaczy, że

$$x \in X$$

oraz istnieje r > 0 takie, że

$$K(x,r) \cap A = \emptyset$$
 lub $K(x,r) \cap (X \setminus A) = \emptyset$.

Gdyby było $K(x,r) \cap (X \setminus A) = \emptyset$, to $K(x,r) \nsubseteq X$ - sprzeczność, bo $x \in X$. A więc $K(x,r) \cap A = \emptyset$, a to oznacza że $K(x,r) \subseteq X \setminus A \subseteq X$. Z dowolności wyboru x wynika, że zbiór $X \setminus \text{fr } A$ jest zbiorem otwartym w X, czyli fr A jest w X domknięty.

- 3. Z 1. mamy fr $A = \operatorname{cl} A \setminus \operatorname{int} A$, wiec fr $A \cup \operatorname{int} A = (\operatorname{cl} A \setminus \operatorname{int} A) \cup \operatorname{int} A = \operatorname{cl} A$.
- 4. Niech $x \in \text{int } A$. Z jednej strony $x \in A$, gdyż $\int A \subseteq A$. Z drugiej, ponieważ istnieje takie otoczenie U_x punktu x, że $U_x \subseteq A$, to nie istnieją punkty należące do $(X \setminus A) \cap U_x$ a stąd x nie może należeć do fr A. Czyli $x \in A \setminus \text{fr } A$. W drugą stronę [TO-DO]
- 5. $\operatorname{fr}(X \setminus A) = \{x : \forall_{r>0} K(x,r) \cap A \neq \emptyset \text{ i } K(x,r) \cap (X \setminus A) \neq \emptyset\} = \operatorname{fr} A \text{ z samej definicji. Powinno to być oczywiste.}$

Twierdzenie 3.10. Niech $A \subseteq X$, gdzie X jest przestrzenią metryczną. Wówczas następujące warunki są równoważne

- 1. A jest zbiorem brzegowym,
- 2. $A \subseteq \operatorname{fr} A$,
- 3. $\operatorname{cl}(X \setminus A) = X$.

Dowód. Załóżmy, że zbiór A jest brzegowy, czyli int $A=\varnothing$. Wówczas fr $A=\operatorname{cl} A\setminus\operatorname{int} A=\operatorname{cl} A$. Ale $A\subseteq\operatorname{cl} A$ z własności domknięcia. A więc $A\subseteq\operatorname{fr} A$.

Załóżmy więc teraz, że $A \subseteq \operatorname{fr} A$ i pokażemy, że wówczas $X = \operatorname{cl}(X \setminus A)$. Niech $x \in X$. Jeżeli $x \notin A$, to $x \in X \setminus A \subseteq \operatorname{cl}(X \setminus A)$. Załóżmy więc, że $x \in A$. Wówczas, z założenia $x \in \operatorname{fr} A$, czyli w dowolnym otoczeniu punktu x leżą punkty należące do $X \setminus A$. Jest więc x punktem skupienia zbioru $X \setminus A$, a stąd $x \in \operatorname{cl}(X \setminus A)$. Wykazaliśmy, że $X \subseteq (X \setminus A)$. W drugą stronę: jeżeli $x \in \operatorname{cl}(X \setminus A)$, to albo $x \in X \setminus A$ i wtedy $x \in X$, albo x jest punktem skupienia zbioru $X \setminus A$ w przestrzeni X, czyli i tak należy do X.

Pozostaje wykazać, że jeżeli $\operatorname{cl}(X\setminus A)=X$, to zbiór A jest brzegowy. Niech ponownie $x\in X$. Wówczas z założenia $x\in (X\setminus A)$ lub x jest punktem skupienia zbioru $X\setminus A$, czyli w dowolnym sąsiedztwie punktu x leżą punkty należące do $X\setminus A$. Załóżmy, że byłoby $x\in \operatorname{int} A$. Wtedy istnieje zbiór otwarty $U_x\subseteq A$, $x\in U_x$. Ale $U_x\cap (X\setminus A)=\varnothing$ - sprzeczność z założeniem, że $U_x\subseteq A$. Czyli $x\notin A$ dla każdego $x\in X$ oraz int $A\subseteq A\subseteq X$. Stąd już wynika, że koniecznie int $A=\varnothing$, czyli zbiór A jest brzegowy. \square

Twierdzenie 3.11. Niech $A \subseteq X$. Wówczas $X = \text{int } A \cup \text{fr } A \cup \text{int}(X \setminus A)$ i zbiory te są parami rozłączne.

3.4 Granica ciągu w przestrzeni metrycznej

Definicja 3.12. Mówimy, że ciąg $(x_n)_{n\in\mathbb{N}}$ wyrazów przestrzeni metrycznej (X,ρ) jest zbieżny do granicy $x\in X$, gdy

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n\geqslant N}.\ \rho(x_n,x)<\varepsilon.$$

Analogicznie jak dla ciągów rzeczywistych określamy podciąg $(x_{n_k})_{k\in\mathbb{N}}$ ciągu $(x_n)_{n\in\mathbb{N}}$ w przestrzeni metrycznej, poprzez pewien ciąg $(n_k)_{k\in\mathbb{N}}$ liczb naturalnych.

Definicja 3.13. Niech dany będzie ciąg $(x_n)_{n\in\mathbb{N}}$ w przestrzeni metrycznej (X,ρ) oraz podciąg $(x_{n_k})_{k\in\mathbb{N}}$ zbieżny do pewnej granicy w przestrzeni X. Wówczas $\lim_{k\to\infty} x_{n_k}$ nazywamy punktem skupienia ciągu $(x_n)_{n\in\mathbb{N}}^{10}$.

Definicja 3.14. Mówimy, że ciąg $(x_n)_{n\in\mathbb{N}}$ wyrazów przestrzeni metrycznej (X,ρ) jest ograniczony, gdy wszystkie jego wyrazy są zawarte w pewnej kuli. Tzn. istnieją takie $s \in X$, $r \in \mathbb{R}$, r > 0, że $\{x_n : n \in \mathbb{N}\} \subseteq K(s,r)$.

Zbadamy związek między ograniczonością a zbieżnością ciągu w przestrzeni metrycznej.

 $^{^{10}}$ nazywa się je też $\mathit{granicami}\ częściowymi$

Stwierdzenie 1. Jeżeli ciąg $(x_n)_{n\in\mathbb{N}}$ jest zbieżny, to jest ograniczony.

Dowód. Rozważmy dowolny ciąg $(x_n)_{n\in\mathbb{N}}\subseteq X$ taki, że $x_n\to x$ dla pewnego $x\in X$. Wtedy dla pewnego $N\in\mathbb{N}$ $\rho(x_n,x)<1$ o ile $n\geqslant N$. Niech

$$M = \max\{\rho(x_1, x), \rho(x_2, x), \dots, \rho(x_{N-1}, x), \rho(x_N, x), 1\}.$$

Wtedy dla
$$n < N$$
 mamy $x_n \in K(x, M)$ a dla $n \ge N$ $x_n \in K(x, 1) \subseteq K(x, M)$.

Analogicznie jak pokazaliśmy dla ciągów liczb rzeczywistych można wykazać

Stwierdzenie 2. W przestrzeni metrycznej ciąg monotoniczny i ograniczony jest zbieżny.

Biorac pod uwagę dwa poprzednie fakty możemy sformułować pojedyńcze

Twierdzenie 3.12. Ciąg monotoniczny jest zbieżny wtedy i tylko wtedy, gdy jest ograniczony.

Twierdzenie 3.13 (O trzech ciągach). Niech $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}$ będą ciągami elementów przestrzeni metrycznej (X, ρ) , tak że

$$x_n \leqslant y_n \leqslant z_n, \ n \geqslant N$$

dla pewnego $N \in \mathbb{N}$. Wówczas, jeżeli $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n$, to

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = \lim_{n \to \infty} x_n.$$

Dowód. Łatwe ćwiczenie (porównaj twierdzenie 2.9).

Związki między ciągami a własnościami przestrzeni metrycznych i ich podzbiorów.

Definicja 3.15. Niech $\rho_1: X \times X \to X$, $\rho_2: X \times X \to X$ będą metrykami w ustalonym zbiorze X. Mówimy, że metryki ρ_1 i ρ_2 są *równoważne*, gdy dowolny zbieżny ciąg $(x_n)_{n \in \mathbb{N}}$ wyrazów zbioru X jest zbieżny do tej samej granicy $x \in X$ w obydwu metrykach.

Twierdzenie 3.14. Niech X będzie dowolnym zbiorem a $\rho_1: X \times X \to X$, $\rho_2: X \times X \to X$ będą metrykami. Jeżeli istnieją takie liczby $\alpha > 0$ i $\beta > 0$, że

$$\alpha \cdot \rho_1(x,y) \leqslant \rho_2(x,y) \leqslant \beta \cdot \rho_1(x,y),$$

dla dowolnych $x, y \in X$, to metryki ρ_1 i ρ_2 są równoważne.

 $Dow \acute{o}d$. Łatwe ćwiczenie - korzystamy dwukrotnie z twierdzenia o trzech ciągach.

Twierdzenie 3.15. Dla dowolnego zbioru $A \subseteq X$, gdzie X jest prz. metryczną $x \in A$ jest punktem skupienia zbioru A wtedy i tylko wtedy, gdy jest granicą pewnego ciągu $(x_n)_{n\in\mathbb{N}}$ takiego, że $x_n \in A \setminus \{x\}, n \in \mathbb{N}$.

Lemat 3.2. Jeżeli (X, ρ) jest przestrzenią metryczną, $A \subseteq X$, to $x \in \operatorname{cl} A$ wtedy i tylko wtedy, gdy istnieje taki ciąg $(x_n)_{n \in \mathbb{N}}$ elementów należących do A, że

$$x = \lim_{n \to \infty} x_n.$$

Dowód. Załóżmy, że $A \subseteq X$ oraz, że $(x_n)_{n \in \mathbb{N}}$ jest ciągiem elementów należących do A zbieżnym do x. Dla dowolnego otoczenia otwartego U_x punktu x istnieje $n_0 \in \mathbb{N}$ takie, że $x_n \in U_x$ dla $n \leq n_0$. Wobec tego $U \cap A \neq \emptyset$. Z dowolności U wynika, że $x \in \operatorname{cl} A$.

Załóżmy teraz, że $x \in cl A$. Dla każdego $n \in \mathbb{N}$ kula otwarta $B(x, \frac{1}{n})$ przecina niepusto zbiór A. Wybierzmy (korzystając z pewnika wyboru) z każdego zbioru $A \cap B(x, \frac{1}{n})$ element x_n . Ponieważ $\rho(x, x_n) \leq \frac{1}{n}$, to

$$\lim_{n\to\infty} x_n = x.$$

Twierdzenie 3.16. Jeżeli X jest przestrzenią metryczną, to zbiór $F \subseteq X$ jest domknięty wtedy i tylko wtedy, gdy dla dowolnego zbieżnego ciągu $(x_n)_{n\in\mathbb{N}}$ wyrazów ze zbioru F jego granica należy do F:

$$\lim_{n\to\infty} x_n \in F.$$

Dowód. Załóżmy najpierw, że F jest domkniętym podzbiorem przestrzeni metrycznej X. Weźmy dowolny ciąg $(x_n)_{n\in\mathbb{N}}$ zbieżny.

Niech $\lim_{n\to\infty} x_n = x$. Wtedy na mocy poprzedniego lematu $x \in F$.

Załóżmy teraz, że dla każdego zbieżnego ciągu elementów ze zbioru F, jego granica leży w zbiorze F. Weźmy dowolny $x \in \operatorname{cl} F$. Z lematu, istnieje ciąg $(x_n)_{n \in \mathbb{N}}$ elementów zbioru F zbieżny do x. Czyli $x \in F$ z założenia i stąd mamy, że $\operatorname{cl} F \subseteq F$. Czyli $F = \operatorname{cl} F$ i F jest zbiorem domkniętym.

 $\acute{C}wiczenie$. Niech (X, ρ) będzie przestrzenią metryczną, $x \in A \subseteq X$ i istnieją takie ciągi $(\alpha_n)_{n \in \mathbb{N}}, \ (\beta_n)_{n \in \mathbb{N}}, \ \text{że } \alpha_n \in A, \ \beta_n \in X \setminus A$ dla każdego $n \in \mathbb{N}$ i

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = x.$$

- Czy A = X?
- Czy int $A = \emptyset$?
- \bullet Czy A jest zbiorem brzegowym?

Na koniec jeszcze użyteczny lemat, z którego skorzystamy w rozdziale dotyczącym szeregów (można go opuścić przy pierwszym czytaniu i wrócić kiedy będzie potrzeba).

Lemat 3.3. Niech $(x_n)_{n\in\mathbb{N}}$ będzie ciągiem liczb rzeczywistych, E zbiorem jego granic częściowych oraz oznaczmy $\bar{x} = \limsup x_n = \sup E$. Wówczas:

- 1. $\bar{x} \in E$,
- 2. Jeżeli $\mathbb{R} \ni \alpha > \bar{x}$, to istnieje $n_0 \in \mathbb{N}$ taka, że $x_n < \alpha, n \ge n_0$.
- 3. \bar{x} jest jedyną liczbą spełniającą warunki 1. i 2.

Dowód. Niech więc $\bar{x} = \sup E$.

- 1. Jeżeli $\bar{x} = +\infty$, to istnieje $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ tak, że $x_{n_k} \stackrel{k \to \infty}{\longrightarrow} +\infty$, czyli $+\infty \in E$ i oczywiście $\bar{x} \in E$. Załóżmy więc, że $\bar{x} \in \mathbb{R}$. Czyli istnieje przynajmniej jedna liczba $g \in \mathbb{R}$ będąca granicą pewnego podciągu ciągu $(x_n)_{n \in \mathbb{N}}$. Zbiór granic częściowych ciągu jest zbiorem domkniętym, zatem $\bar{x} = \sup E \in E$.
- 2. Przypuśćmy, nie wprost, że istnieje liczba $\alpha > \bar{x}$ taka, że $x_n \geqslant \alpha$ dla nieskończenie wielu n. Niech $\{x_{n_k} \colon k \in \mathbb{N}\}$ będzie zbiorem tych wyrazów ciągu $(x_n)_{n \in \mathbb{N}}$, to wtedy $\lim_{k \to \infty} x_{n_k} \geqslant \alpha > \bar{x}$ sprzeczność z definicją liczby \bar{x} .
- 3. Dla dowodu jedyności liczby \bar{x} załóżmy, że $p,q\in\mathbb{R}$ spełniają 1. i 2. Dla ustalenia uwagi możemy przyjąć, że p< q. Weźmy α leżące między p i q: $p<\alpha< q$. Istnieje więc n_p takie, że $x_n<\alpha, n\geqslant n_p$ gdyż p spełnia 2. Ale wówczas q nie może należeć do E: $q>x_n, n\geqslant n_p$ a E jest zbiorem granic częściowych ciągu $(x_n)_{n\in\mathbb{N}}$.

Można (ćwiczenie) sformułować analogiczne stwierdzenie dla granicy dolnej.

3.5 *Przestrzenie liniowe i unormowane. Przestrzeń \mathbb{R}^n

TO-DO:

- 1. Ogólna dyskusja przestrzeni współrzędnych.
- 2. Wzmianka o przestrz. liniowych.
- 3. Przestrzenie unormowane. (w trakcie)
- 4. Norma wyznaczona przez metrykę. (w trakcie)
- 5. Przestrzeń \mathbb{R}^n .
- 6. Zbieżność ciągów w \mathbb{R}^n .

Definicja 3.16. Niech X będzie przestrzenią liniową nad ciałem $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Odwzorowanie $\|\cdot\|: X \to [0, \infty)$ nazywamy normq przestrzeni X, jeśli dla dowolnych elementów $x, y \in X$ oraz skalarów $a \in \mathbb{K}$:

- $||x|| = 0 \Rightarrow x = \theta$, $(\theta \text{wektor zerowy w prz. } X)$
- $\bullet \|ax\| = |a| \cdot \|x\|,$
- $||x + y|| \le ||x|| + ||y||$.

Wówczas $(X, \|\cdot\|)$ nazywamy przestrzenią unormowaną.

Definicja 3.17. Jeżeli $(X, \|\cdot\|)$ jest przestrzenią metryczną, to odwzorowanie $\rho \colon X^2 \to \mathbb{R}$ dane wzorem

$$\rho(x,y) = ||x - y||$$

jest przestrzenią metryczną. Mówimy, że (X, ρ) jest przestrzenią metryczną z normą wyznaczoną (zadaną) przez metrykę ρ .

Definicja 3.18. Niech $(x_n)_{n\in\mathbb{N}}$ będzie ciągiem wyrazów przestrzeni unormowanej X i $x\in X$. Przyjmujemy że $\lim_{n\to\infty}x_n=x$, gdy

$$\lim_{n\to\infty} ||x_n - x|| = 0.$$

Zauważmy: $(\|x_n - x\|)_{n \in \mathbb{N}}$ jest po prostu ciągiem liczb rzeczywistych.

Twierdzenie 3.17. Niech $(\bar{x}_k)_{k\in\mathbb{N}} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})_{k\in\mathbb{N}}$ będzie ciągiem wyrazów przestrzeni \mathbb{R}^n oraz $\bar{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Wówczas $\lim_{k\to\infty} \bar{x}_k = \bar{x}$ wtedy i tylko wtedy, gdy

$$\lim_{k \to \infty} x_j^{(k)} = x_j, \quad dla \ każdego \ j \in \{1, \dots, n\}.$$

 $Dow \acute{o}d$. Jeżeli $\bar{x}_k \to \bar{x}$, to z oszacowania

$$|x_j^{(k)} - x_j| \le \|\bar{x}_k - \bar{x}\| = \sqrt{\sum_{i=1}^n (x_i^{(k)} - x_i)^2}$$

i twierdzenia o trzech ciągach wynika, że $x_j^{(k)} \to x_j, j=1,\dots,n.$

Teraz załóżmy, że $x_j^{(k)} \to x_j, j=1,\ldots,n$. Ustalmy $\varepsilon>0$. Istnieje $N\in\mathbb{N}$ takie, że dla $k\geqslant N$ zachodzi

$$|x_j^{(k)} - x_j| < \frac{\varepsilon}{\sqrt{n}}, \ 1 \leqslant j \leqslant k.$$

Stąd mamy, że $\|\bar{x}_k - \bar{x}\| = \sqrt{\sum_{i=1}^n (x_i^{(k)} - x_i)^2} < \varepsilon$ i ostatecznie $\bar{x}_k \to \bar{x}$.

Ćwiczenie. Uogólnić twierdzenie 2.3 o arytmetyce granic na przestrzenie \mathbb{R}^n .

Granica w nieskończoności w przestrzeni unormowanej:

$$\lim_{\|\bar{x}\| \to \infty} f(\bar{x}) = g \in \overline{\mathbb{R}} \iff \forall_{U_g \text{ - otoczenie } g} \ \exists_{E > 0} \forall_{\bar{x} \in D_f}. \ \|\bar{x}\| > E \Rightarrow f(\bar{x}) \in U_g.$$

3.6 Różne własności przestrzeni metrycznych

3.6.1 Zupełność

Definicja 3.19. Ciągiem Cauchy'ego nazywamy ciąg $(x_n)_{n\in\mathbb{N}}$ wyrazów danej przestrzeni metrycznej (X, ρ) spełniający następujący warunek Cauchy'ego:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{\substack{n,m\in\mathbb{N}\\n,m\geqslant N}}\rho(a_n,a_m)<\varepsilon.$$

Inaczej mówiąc, ciąg $(x_n)_{n\in\mathbb{N}}$ jest zbieżny, gdy:

$$\lim_{n\to\infty} \operatorname{diam} \left\{ x_m \colon m \geqslant n \right\} = 0.$$

Jeśli ciąg $(x_n)_{n\in\mathbb{N}}$ jest ciągiem Cauchy'ego, to prawie wszystkie jego wyrazy leżą w kuli o dowolnie małym promieniu (tzn. tylko skończona ilość wyrazów leży poza kulą o zadanym promieniu). Zatem jest to ciąg ograniczony.

Definicja 3.20. Przestrzeń metryczną nazywamy *zupelną*, gdy każdy ciąg spełniający warunek Cauchy'ego jest w niej ciągiem zbieżnym.

Podstawowy przykład zapewnia następujące

Twierdzenie 3.18. Przestrzeń $(\mathbb{R}, |\cdot|)$ jest zupełna.

Dowód. Ustalmy dowolny ciąg $(a_n)_{n\in\mathbb{N}}$ spełniający warunek Cauchy'ego. Istnieje $N\in\mathbb{N}$ takie, że $|a_n-a_N|<1$ dla dowolnego $n\in\mathbb{N}$. A więc

$$1 - a_N \leq a_n \leq 1 + a_N$$
, dla każdego $n \in \mathbb{N}$

gdzie a_N jest pewnym konkretnym wyrazem ciągu. Czyli ciąg $(a_n)_{n\in\mathbb{N}}$ jest ograniczony. Na mocy twierdzenia 2.13 Bolzano-Weierstrassa, istnieje podciąg (a_{n_k}) zbieżny, np. do granicy g. Ponieważ $n_k \geqslant k$ dla każdego $k \in \mathbb{N}$ (patrz lemat 2.1), to $|a_k - a_{n_k}| \leqslant \varepsilon$. Z dowolności ε wnosimy, że $\lim_{k\to\infty} (a_k - a_{n_k}) = 0$, czyli $\lim_{k\to\infty} a_k = \lim_{k\to\infty} a_{n_k} = g^{11}$.

 $\acute{C}wiczenie$. Udowodnić następujące twierdzenie Cantora (zauważmy, że jest to pewne uogólnienie lematu 2.2):

 $^{^{11}}$ w wyrażeniu po lewej stronie ostatniej równości oczywiście bez znaczenia jest, że dla przejrzystości wskaźnik ciągu oznaczyliśmy jako k zamiast n

Twierdzenie. Niech (X, ρ) będzie przestrzenią metryczną zupełną i niech $(H_n)_{n \in \mathbb{N}}$ będzie ciągiem podzbiorów niepustych i ograniczonych¹² w X takim, że $H_{n+1} \subseteq H_n, n \in \mathbb{N}$ oraz $\lim_{n \to \infty} \operatorname{diam} H_n = 0$. Wówczas zbiór $\bigcap_{n=1}^{\infty} H_n$ składa się dokładnie z jednego punktu.

3.6.2 Zwartość

Ustalmy przestrzeń metryczna (X, ρ) .

Definicja 3.21. Mówimy, że rodzina $\mathcal{U} \subseteq \mathcal{P}(X)$ **zbiorów otwartych** jest *pokryciem* zbioru $A \subseteq X$ jeżeli $A \subseteq \bigcup \mathcal{U}$.

Definicja 3.22. Dowolną podrodzinę pokrycia \mathcal{U} przestrzeni X nazywamy podpokryciem przestrzeni X.

Definicja 3.23. Mówimy, że podzbiór $A \subseteq X$ przestrzeni metrycznej jest *zwarty*, jeżeli z każdego podpokrycia tego zbioru można wybrać jego podpokrycie skończonym.

Definicja 3.24. Mówimy, że podzbiór $A \subseteq X$ przestrzeni metrycznej jest *ciągowo zwarty*, jeżeli z każdego ciągu wyrazów tego zbirou można wybrać podciąg zbieżny do granicy leżącej w tym zbiorze.

Możemy rozważać zbiory zwarte same w sobie jako przestrzenie metryczne:

Uwaga 3.4. Niech $X \subseteq Y \subseteq Z$. Zbiór X jest zwarty względem Z wtedy i tylko wtedy, gdy jest zwarty względem Y.

Pojęcia "przestrzeni otwartej" lub "przestrzeni domkniętej" nie mają zastosowania, gdyż każda przestrzeń metryczna jest swoim podzbiorem otwartym i domkniętym zarazem.

Twierdzenie 3.19 (O liczbie Lebesgue'a). Dla każdego pokrycia otwartego przestrzeni metrycznej zwartej istnieje taka liczba $\delta > 0$, że dowolny podzbiór tej przestrzeni, o średnicy mniejszej niż δ jest zawarty w pewnym elemencie tego pokrycia.

Dowód. Ustalmy przestrzeń metryczną zwartą (X,d) i dowolne pokrycie \mathcal{U} tej przestrzeni. Bez straty ogólności, wystarczy udowodnić, że istnieje taka liczba $\delta > 0$, że każda kula o promieniu $\delta > 0$ jest w całości zawarta w którymś zbiorze pokrycia \mathcal{U} .

Uwaga 3.5. Gdy istnieje największa liczba λ spośród liczb spełniających tezę powyższego twierdzenia, to nazywamy ją liczbą Lebesgue'a. Gdy pokrycie przestrzeni jest skończone, to taka liczba na pewno istnieje. W wypadku pokrycia nieskończonego liczba Lebesgue'a dla danej przestrzeni nie musi istnieć.

¹²można udowodnić dla zbiorów niepustych i **domkniętych** zamiast ograniczonych.

Twierdzenie 3.20. Przestrzeń metryczna (X, ρ) jest zwarta wtedy i tylko wtedy, gdy dla każdej rodziny $\mathcal{R} \subseteq \mathcal{P}(X)$ zbiorów domkniętych, takiej że $X \subseteq \bigcup \mathcal{R}^{13}$ istnieje podrodzina skończona.

Twierdzenie 3.21 (Borela-Lebesgue'a). Niech (X, ρ) będzie przestrzenią metryczną. Wówczas X jest zwarta wtedy i tylko wtedy, gdy jest ciągowo zwarta.

Dowód. Najpierw załóżmy, że X jest ciągowo zwarta. Niech $\{A_i : i \in I\}$ będzie pokryciem otwartym przestrzeni X. Wykażemy, że istnieje liczba $\lambda > 0$ taka, że

$$\forall_{x \in X} \exists_{i \in I}. K(x, \lambda) \subseteq A_i.$$

Przypuśćmy, że powyższe zdanie nie jest prawdziwe, czyli

$$(*) \forall_{n \in \mathbb{N}} \exists_{x_n \in X} \forall_{i \in I}. K\left(x_n, \frac{1}{n}\right) \subseteq A_i.$$

Z ciągu można jednak wybrać podciąg $(x_{n_k})_{k\in\mathbb{N}}$ zbieżny do $x_0\in X$. Ponieważ $\{A_i\colon i\in I\}$ jest pokryciem otwartym, więc istnieje $r_0>0$ oraz $i_0\in I$ takie, że $K(x_0,r_0)\subseteq A_{i_0}$. Ze zbieżności $(x_{n_k})_{k\in\mathbb{N}}$ mamy, że

$$\exists_{k \in \mathbb{N}} \forall_{k > k_0} |x_{n_k} - x_0| < \frac{1}{2} r_0.$$

Zatem, dobierając k tak, by było $k>k_0$ oraz $n_k>2/r_0$ otrzymujemy następujący ciąg inkluzji:

$$K\left(x_{n_k}, \frac{1}{n_k}\right) \subseteq K\left(x_{n_k}, \frac{1}{2}r_0\right) \subseteq K(x_0, r_0) \subseteq A_{i_0},$$

co przeczy (*).

Mając $\lambda > 0$ o podanej wyżej własności, postępujemy następująco:

- wybieramy $y_1 \in X$;
- następnie przyjmujemy $y_2 \in X \setminus K(y_1, \lambda)$;
- $y_3 \in X \setminus (K(y_1, \lambda) \cup K(y_2, \lambda));$
- itd. indukcyjnie przyjmujemy

$$y_n \in X \setminus \bigcup_{k=1}^{n-1} K(y_k, \lambda)$$

 $^{^{13}}$ nazywa się też taką rodzinę pokryciem domkniętego przestrzeni X, wówczas jednak musimy nazywać pokryciem otwar1tym, to co my nazwaliśmy po prostu pokryciem.

otrzymujemy ciąg $(y_n)_{n\in\mathbb{N}}$ taki, że $|y_n-y_m| \ge \lambda$ dla dowolnych $n,m\in\mathbb{N}$. Ale ciąg taki nie posiada podciągów zbieżnych. Sprzeczność. Zatem nasza konstrukcja może być powtórzona tylko skończoną ilość kroków, tj. dla pewnego $k\in\mathbb{N}$ istnieją y_1,\ldots,y_k takie, że

$$\bigcup_{n=1}^{k} K(y_n, \lambda) = X.$$

Ale każda kula $K(y_n, \lambda)$ zawarta jest w pewnym zbiorze A_{i_n} , czyli

$$\bigcup_{n=1}^{k} A_{i_n} = X.$$

Załóżmy teraz, że przestrzeń X jest zwarta.

Rozważmy ciąg $(x_n)_{n\in\mathbb{N}}$, który nie posiada żadnego podciągu zbieżnego. Zatem jego zbiór wyrazów $A = \{x_n : n \in \mathbb{N}\}$ jest zbiorem domkniętym. Ponieważ $X \setminus A$ jest zbiorem otwartym, to

$$\forall_{x \in X \setminus A} \exists_{r_x > 0}. \ K(x, r_x) \subseteq X \setminus A.$$

Z drugiej strony dla każdego x_n istnieje $\varepsilon_n > 0$ taki, że $K(x_n, \varepsilon_n) \cap A$ jest zbiorem skończonym. Oczywiście zbiór

$$\{K(x, r_x) \colon x \in X \setminus A\} \cup \{K(x_n, \varepsilon_n) \colon n \in \mathbb{N}\}$$

jest pokryciem otwartym przestrzeni X. Gdy jednak wybierzemy z niego dowolne skończone podpokrycie X, to jego suma będzie zawierać tylko skończoną liczbę kul $K(x_n, \varepsilon_n)$ a zatem tylko skończoną liczbę punktów zbioru A. Ale A jest zbiorem nieskończonym - sprzeczność.

Jak widzimy, w wypadku przestrzeni metrycznych zwartość i ciągowa zwartość są równoważne (nie jest tak w przypadku ogólniejszych struktur - topologii; przy czym każda przestrzeń metryczna jest przestrzenią topologiczną ale nie odwrotnie - istnieją topologie "niemetryzowalne", tj. nie dające się zdefiniować jako pewna przestrzeń metryczna).

Twierdzenie 3.22. Domknięta podprzestrzeń zwartej przestrzeni metrycznej jest zwarta.

Dowód 1. Ustalmy przestrzeń metryczną X zwartą i niech $F\subseteq X$ będzie zbiorem domkniętym. Weźmy dowolne pokrycie $\{U_t\colon t\in T\}$ przestrzeni F (z metryką indukowaną z X). Chcemy pokazać, że istnieje podpokrycie skończone przestrzeni F. Zauważmy, że $\{U_t\}_{t\in T}\cup F'$ jest pokryciem otwartym przestrzeni X. Ze zwartości X istnieje podpokrycie $U_{t_1},U_{t_2},\ldots,U_{t_n}\in \{U_t\}_{t\in T}\cup F'$ i

$$F \subseteq X \subseteq \bigcup_{i=1}^{n} U_{t_i}.$$

Jeżeli F' znajduje się wśród zbiorów $U_{t_1}, U_{t_2}, \ldots, U_{t_n}$, to po prostu odrzucamy ten zbiór. Szukanym podpokryciem jest więc rodzina $\{U_{t_1}, U_{t_2}, \ldots, U_{t_n}\}$ lub $\{U_{t_1}, \ldots, U_{t_n}\} \setminus \{F'\}$.

Dowód 2. Niech X będzie przestrzenią metryczną zwartą oraz $F \subseteq X$ zbiorem domkniętym. Ustalmy dowolny ciąg $(x_n)_{n \in \mathbb{N}}$ tak, że

$$x_n \in F \subseteq X, \ n \in \mathbb{N}$$

i już widzimy, że ze zwartości X musi istnieć podciąg $(x_{n_k})_{k\in\mathbb{N}}$ zbieżny. Ale $\lim_{k\to\infty}x_{n_k}\in F$ z domkniętości F (twierdzenie 3.16). Zatem dowolny ciąg wyrazów przestrzeni F ma podciąg zbieżny do granicy leżącej w F i twierdzenie jest udowodnione.

Twierdzenie 3.23. Zwarty podzbiór przestrzeni metrycznej jest domknięty.

Dowód. Niech X będzie przestrzenią zwartą oraz $F \subseteq X$ będzie zbiorem domkniętym. Ustalmy pokrycie otwarte \mathcal{U} zbioru F. Wtedy $\mathcal{U} \cup \{X \setminus F\}$ jest pokryciem otwartym X. Ze zwartości X istnieje podpokrycie skończone $\mathcal{U}_0 \subseteq \mathcal{U} \cup \{X \setminus F\}$. Wtedy rodzina $\mathcal{U}_0 \setminus \{X \setminus F\} \subseteq \mathcal{U}$ jest podpokryciem skończonym \mathcal{U} . Pokazaliśmy dla dowolnego pokrycia otwartego zbioru F istnieje podpokrycie skończone, co oznacza, że F jest zwarty.

Ćwiczenie. Udowodnić twierdzenie 3.23 w oparciu o ciągową definicję zwartości.

Przykład. Dowolny przedział domknięty $[a,b] \subseteq \mathbb{R}$ jest zbiorem zwartym na mocy twierdzenia 2.13 Bolzano-Weierstrassa, gdyż jeżeli wyrazy ciągu leżą w przedziałe [a,b], to znaczy że jest on ograniczony. Zauważmy, że granica taka może leżeć na krańcu przedziału (tj. być równa a lub b), zatem wnętrze (a,b) tego przedziału nie musi (i nie jest) być zbiorem zwartym.

Twierdzenie 3.24. Iloczyn (produkt) kartezjański n przestrzeni metrycznych zwartych jest przestrzenią metryczną zwartą.

Dowód. Niech X_1,X_2,\ldots,X_k będą przestrzeniami metrycznymi zwartymi. Dla k=1 twierdzenie jest prawdziwe w sposób oczywisty. Załóżmy jego prawdziwość dla k-1. Ustalmy ciąg $(x_n)_{n\in\mathbb{N}},$ tak że $x_n=\left(x_1^{(n)},x_2^{(n)},\ldots,x_k^{(n)}\right)\in X_1\times X_2\times\ldots\times X_k.$ Z założenia ciąg punktów $y_n=\left(x_1^{(n)},x_2^{(n)},\ldots,x_{k-1}^{(n)}\right)\in X_1\times X_2\times\ldots\times X_{k-1}$ zawiera podciąg zbieżny $(y_{n_i})_{i\in\mathbb{N}}$ - zatem jego ciągi składowe $\left(x_j^{(n_i)}\right)_{i\in\mathbb{N}},\ j=1,\ldots,k-1$ są zbieżne z definicji. Ze zwartości przestrzeni X_k z ciągu $(x_k^{(n)})_{n\in\mathbb{N}}$ można wybrać podciąg zbieżny $(x_k^{(n_i)})_{i\in\mathbb{N}}.$ Mamy zatem, że zbieżne są ciągi

$$(x_1^{(n_i)})_{i\in\mathbb{N}}, (x_2^{(n_i)})_{i\in\mathbb{N}}, \ldots, (x_k^{(n_i)})_{i\in\mathbb{N}}$$

Stąd, z definicji zbieżny jest ciąg $(x_{n_i})_{i\in\mathbb{N}}$, gdzie

$$x_{n_i} = \left(\left(x_1^{(n_i)} \right)_{i \in \mathbb{N}}, \left(x_2^{(n_i)} \right)_{i \in \mathbb{N}}, \dots, \left(x_k^{(n_i)} \right)_{i \in \mathbb{N}} \right)$$

będący podciągiem ciągu $(x_n)_{n\in\mathbb{N}}$. Na mocy Zasady Indukcji Matematycznej twierdzenie jest prawdziwe dla dowolnego k.

Przykład. Kostka n-wymiarowa $[a_1,b_1]\times\ldots\times[a_n,b_n]\subseteq\mathbb{R}^n$, jest prz. metryczną zwartą.

Twierdzenie 3.25. Podzbiór zwarty dowolnej przestrzeni metrycznej jest domknięty i ograniczony (tj. zawarty w pewnej kuli).

Dowód. Ustalmy przestrzeń metryczną (X, ρ) . Niech $A \subseteq X$ będzie podzbiorem zwartym - wtedy musi on być też domknięty. Wybierzmy punkt $a_0 \in A$ i rozważmy funkcję $x \mapsto \rho(a_0, x) \ (X \to \mathbb{R})$. Ponieważ A jest zbiorem zwartym, istnieje E > 0 takie, że dla każdego $a \in A$ zachodzi nierówność $\rho(a_0, a) \leqslant E$, stąd zbiór A jest zawarty w kuli $K(a_0, E)$.

Twierdzenie 3.26 (Charakteryzacja zbiorów zwartych w przestrzeni \mathbb{R}^n). *Jeżeli* $E \subseteq \mathbb{R}^n$, to następujące warunki są równoważne:

- 1. E jest zwarty,
- 2. Każdy nieskończony podzbiór¹⁴ zbioru E ma punkt skupienia należący do E,
- 3. E jest ograniczony i domknięty.

Dowód. TO-DO: jeszcze raz przejrzeć i poprawić dowód.

- (1) \Rightarrow (2). Niech $A \subseteq E$ będzie zbiorem nieskończonym. Załóżmy, że żaden punkt zbioru E nie jest punktem skupienia zbioru A. x jest punktem skupienia zbioru A, gdy każde otoczenie punktu x zawiera co najmniej jeden punkt $y \neq x$ taki, że $y \in A$. Zatem z naszego założenia wynka, że każdy punkt $x \in E$ ma otoczenie $K(x, \varepsilon)$ zawierające nie więcej niż jeden punkt zbioru A (jeśli $x \in A$ to właśnie x jest tym jedynym punktem). Żadna skończona podrodzina rodziny $\{K(x, \varepsilon) : x \in E, \varepsilon \text{ dowolne}\}$ nie może pokryć zbioru A, więc również jego nadzbioru E. Sprzeczność, gdyż zbiór E jest zwarty¹⁵.
- (2) \Rightarrow (3). Załóżmy, że zbiór E nie jest ograniczony. Wtedy istnieje ciąg $(x_n)_{n\in\mathbb{N}}$ punktów, takich że $|x_n| > n$, $n \in \mathbb{N}$. Zbiór $\{x_n \colon n \in \mathbb{N}\}$ jest nieskończony i z założeń nie ma punktów skupienia w \mathbb{R}^n a więc tym bardziej w E. Mamy, że E musi być ograniczony. Załóżmy, że E nie byłby domknięty. Wtedy istnieje $x_0 \in \mathbb{R}^n$, taki że $x_0 \in E^d$ i $x_0 \notin E$. Istnieje ciąg $(x_n)_{n\in\mathbb{N}}$ wyrazów zbioru E taki, że $|x_n-x_0|<\frac{1}{n}, n\in\mathbb{N}$. Niech S będzie zbiorem tych punktów. Wówczas S jest zbiorem nieskończonym (w przeciwnym razie wyrażenie $|x_n-x_0|$ byłoby od pewnego n stałą). x_0 jest punktem skupienia zbioru S i jedynym takim punktem skupienia S, który równocześnie należy do \mathbb{R}^n . Gdyby np. $x_1 \in \mathbb{R}^n$, $x_1 \neq x_0$, to

$$|x_n - x_1| \ge |x_0 - x_1| - |x_n - x_0| \ge |x_0 - x_1| - \frac{1}{n} \ge \frac{1}{2}|x_0 - x_1|$$
, od pewnego n ,

co dowodzi, że $x_1 \not \in S^d.$ Snie ma punktów skupienia w E i E jest domknięty.

 $^{^{14}}$ niejawnie zakładamy, że dodatkowo E jest nieskończony.

 $^{^{15}}$ Możemy zauważyć, że nie korzystamy tu właściwie z własności specyficznych dla przestrzeni \mathbb{R}^n . Implikacja ta zachodzi tak naprawdę dla dowolnej przestrzeni zwartej.

• (3) \Rightarrow (1). Niech $E \subseteq \mathbb{R}^n$ będzie domkniętym i ograniczonym podzbiorem przestrzeni euklidesowej. Wtedy istnieje odcinek [a,b] taki, że $E \subseteq [a,b]^n \subseteq \mathbb{R}^n$. Ponieważ kostka $[a,b]^n$ jest zwarta, to E jako jej podzbiór domknięty jest zbiorem zwartym (na mocy twierdzenia 3.25).

Mamy, że $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. Możemy jeszcze dodatkowo zauważyć, że $(1) \Rightarrow (3)$ wynika z poprzedniego twierdzenia (3.25).

Twierdzenie 3.27. Każdy nieskończony i ograniczony podzbiór przestrzeni \mathbb{R}^n ma punkt skupienia w \mathbb{R}^n .

Dowód. Niech $E \subseteq \mathbb{R}^n$ będzie nieskończony i ograniczony. Ograniczony, zatem zawarty w pewnej kuli otwartej. Możemy wziąć n-wymiarową kostkę K zawierającą tę kulę i wtedy, mamy że E jest zwarty w zbiorze zwartym. Z poprzedniego twierdzenia wynika, że E ma punkt skupienia należący do K.

Twierdzenie 3.28. Przestrzeń metryczna zwarta jest zupełna.

Twierdzenie 3.29. Jeżeli $\{K_t: t \in T\}$ jest rodziną zwartych podzbiorów ustalonej przestrzeni metrycznej X, taką że iloczyn dowolnej skończonej podrodziny rodziny $\{K_t\}_{t\in T}$ jest niepusty, to zbiór $\bigcap_{t\in T} K_t$ jest niepusty.

Dowód. Ustalmy zbiór K_j rodziny $\{K_t\}_{t\in T}$ i zdefiniujmy kolejną rodzinę zbiorów przyjmując $G_i=K_i'$. Przypuśćmy, że w K_j nie ma takiego punktu, który należałby do wszystkich zbiorów $K_t, t\in T$. Wówczas zbiory $G_t, t\in T$ tworzą pokrycie zbioru K_j . Ze zwartości tego ostatniego, znajdziemy skończoną ilość wskaźników t_1, t_2, \ldots, t_n takich, że $K_j\subseteq G_{t_1}\cup G_{t_2}\cup\ldots\cup G_{t_n}$. Ale to oznacza, że zbiór

$$K_i \cap K_{t_1} \cap K_{t_2} \cap \ldots \cap K_{t_n}$$

jest pusty. Sprzeczność z założeniem.

Ćwiczenie. W oparciu o twierdzenie 3.29 uzasadnić, że jeżeli $(K_n)_{n\in\mathbb{N}}$ jest ciągiem zstępującym (tzn. $K_{n+1}\subseteq K_n, n\in\mathbb{N}$) zbiorów zwartych i niepustych, to zbiór $\bigcap_{n=1}^{\infty}K_n$ jest niepusty.

 $\acute{C}wiczenie$. Uogólnić lemat 2.2 o przedziałach zstępujących, w następujący sposób: $Niech~k~będzie~liczbą~naturalną.~Jeżeli~(K_n)_{n\in\mathbb{N}}~jest~ciągiem~kostek~k-wymiarowych, <math>K_{n+1}\subseteq K_n,~n\in\mathbb{N},~to~zbi\'or\bigcap_{n=1}^{\infty}K_n~jest~niepusty.$

 $\acute{C}wiczenie$. Udowodnić, że nie istnieje pokrycie przestrzeni $\mathbb R$ (z metryką naturalną) przeliczalną liczbą rozłącznych odcinków domkniętych.

3.6.3 Spójność

Definicja 3.25. Mówimy, że dwa zbiory $A, B \subseteq X$ ustalonej przestrzeni metrycznej X są oddzielone, jeżeli

$$A \cap \operatorname{cl} B = \emptyset \text{ oraz } \operatorname{cl} A \cap B = \emptyset$$

Mówimy, że zbiór $C \subseteq X$ jest *spójny*, gdy **nie** jest sumą dwóch zbiorów oddzielonych.

Uwaga 3.6. Zbiory rozłączne nie muszą być oddzielone. Np. przedziały [-1,0) i [0,1] nie są oddzielone, bo $0 \in \text{cl}[-1,0)$:

$$cl[-1,0) \cap [0,1] = [-1,0] \cap [0,1] = \{0\} \neq \emptyset.$$

Ćwiczenie. Podać przykład zbiorów oddzielonych.

Twierdzenie 3.30. Zbiór $C \subseteq \mathbb{R}$ jest spójny wtedy i tylko wtedy, gdy

$$\forall_{x,y \in C} \forall_{z \in \mathbb{R}}$$
, $je\dot{z}eli \ x < z < y \ to \ z \in C$.

4 Granica funkcji

Intuicje:

4.1 Granica w przestrzeni metrycznej

Definicja 4.1. Mówimy, że funkcja $f: X \to Y$ ma granicę $g \in Y$ w punkcie skupienia x_0X przestrzeni X w sensie Cauchy'ego, gdy

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in X} 0 < \rho(x,x_0) < \delta \Rightarrow \sigma(f(x),g) < \varepsilon.$$

Definicja 4.2. Mówimy, że funkcja $f: X \to Y$ ma granicę $g \in Y$ w punkcie skupienia x_0 przestrzeni X w sensie Heinego, gdy dla każdego ciągu $(x_n)_{n \in \mathbb{N}}$ wyrazów przestrzeni X takiego, że $x_n \neq x_0, n \in \mathbb{N}$, $\lim_{n \to \infty} x_n = x_0$ zachodzi $\lim_{n \to \infty} f(x_n) = g$.

4.2 Przypadek rzeczywisty

$$\rho \colon D \to \mathbb{R}$$
, gdzie $D \subseteq \mathbb{R}$ i $\rho(x,y) = |x-y|$.

4.2.1 Granica funkcji w nieskończoności

Definicja 4.3. Mówimy, że funkcja $f:(a,+\infty)\to\mathbb{R}$ ma granicę $g\in\mathbb{R}$ w plus nieskończoności (w sensie Cauchy'ego) i piszemy $\lim_{x\to+\infty}f(x)=g$ albo, że $f(x)\to g$, przy $x\to\infty$, gdy

$$\forall_{\varepsilon>0} \exists_{A \in (a,+\infty)} \forall_{x>A.} |f(x) - g| < \varepsilon.$$

Analogicznie, mówimy że funkcja $f:(-\infty,b)\to\mathbb{R}$ ma granicę $g\in\mathbb{R}$ w minus nieskończoności i piszemy $\lim_{x \to -\infty} f(x) = g$, gdy

$$\forall_{\varepsilon>0} \exists_{A \in (-\infty,b)} \forall_{x < A.} |f(x) - g| < \varepsilon.$$

W powyższych przypadkach, mówimy też, że f ma granicę skończoną (w odpowiednio plus/minus nieskończoności).

Definicja 4.4. Mówimy, że funkcja $f:(a,\infty)\to\mathbb{R}$ ma granicę $g\le plus$ nieskończoności (w sensie Heinego) i piszemy $\lim_{n\to+\infty} f(x) = g$ albo, że $f(x)\to g$, przy $x\to\infty$, gdy dla każdego ciągu $(x_n)_{n\in\mathbb{N}}$ takiego, że $x_n>a, n\in\mathbb{N}$ oraz $\lim_{n\to\infty} x_n=\infty$ ciąg $(f(x_n))_{n\in\mathbb{N}}$ wartości funkcji dąży do g przy $n \to \infty$, czyli

$$\lim_{n \to \infty} f(x_n) = g.$$

Analogicznie mówimy, że $f:(-\infty,b)$, gdy dla każdego ciągu $(x_n)_{n\in\mathbb{N}}$ takiego, że $x_n<$ $b, n \in \mathbb{N}$ oraz $\lim_{n \to \infty} x_n = \infty$ zachodzi $\lim_{n \to \infty} f(x_n) = g$.

4.2.2 Granica niewłaściwa

Definicja 4.5. Mówimy, że funkcja $f: D \to \mathbb{R}$ dąży do $\pm \infty$ gdy x dąży do $x_0 \in D$ albo, że ma w punkcie $x_0 \in D$ granicę $\pm \infty$, gdy dla każdego ciągu $(x_n)_{n \in \mathbb{N}}$, $\lim_{n \to \infty} x_n =$ x_0 zachodzi $\lim_{n\to\infty} f(x_n) = \pm \infty$. Mówimy wtedy, że f ma w x_0 granicę niewłaściwą i piszemy $\lim_{x\to x_0} \tilde{f}(x) = \pm \infty$. Przez $\pm \infty$ rozumiemy, że w powyższej definicji można przyjąć (równocześnie za każde wystąpienie tego symbolu) plus albo minus nieskończoność.

 \acute{C} wiczenie. Zdefiniować granicę **niewłaściwą** funkcji $f: D \to \mathbb{R}$ w (plus/minus) **nieskoń**czoności.

Granice lewo i prawostronne 4.2.3

Definicja 4.6. Mówimy, że funkcja¹⁶ $f:(a,b)\to\mathbb{R}$ ma granicę lewostronną (właściwą) w punkcie $x_0 \in (a, b)$, gdy istnieje taka liczba $g \in \mathbb{R}$, że

$$\forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in (a, x_0)}$$
 jeśli $x_0 - \delta < x < x_0$ to $|g - f(x)| < \varepsilon$.

Piszemy wtedy $f(x-) = \lim_{x \to x_0-} f(x) = g$.

Zauważmy, że $\lim_{\varepsilon \to 0} f(x - \varepsilon) = \lim_{x \to x_0 -} f(x)$. Stąd czasem widujemy też w literaturze zapis $\lim_{x\to x_0-\varepsilon} f(x) \text{ albo} \lim_{x\to x_0-0} f(x).$ Analogicznie mamy definicję granicy prawostronnej:

 $^{^{16}}$ w szczególności może być $(a,b)=(-\infty,+\infty)=\mathbb{R}$

Definicja 4.7. Mówimy, że funkcja $f:(a,b)\to\mathbb{R}$ ma granicę prawostronną (właściwą) w punkcie $x_0\in(a,b)$, gdy istnieje taka liczba $g\in\mathbb{R}$, że

$$\forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in (a, x_0)}$$
 jeśli $x_0 < x < x_0 + \delta$ to $|g - f(x)| < \varepsilon$.

Piszemy wtedy $f(x+) = \lim_{x \to x_0+} f(x) = g$.

Twierdzenie 4.1. Funkcja $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ ma granicę w punkcie $x_0 \in \operatorname{cl} D$ wtedy i tylko wtedy, gdy istnieją w tym punkcie granica lewo i prawostronna oraz są sobie równe. Wtedy

$$\lim_{x \to x_0 -} f(x) = \lim_{x \to x_0 +} f(x) = \lim_{x \to x_0} f(x).$$

Przykład. Funkcja $f(x) = \frac{1}{x}$ określona jest na $D = \mathbb{R} \setminus \{0\}$ oraz $0 \in \operatorname{cl} D = \mathbb{R}$. Mamy

$$\lim_{x \to 0-} \frac{1}{x} = -\infty \neq +\infty = \lim_{x \to 0+} \frac{1}{x}$$

zatem f nie ma granicy w 0.

Rozważmy funkcję $g(x) = \frac{1}{|x|}$. Jest ona również określona na D oraz

$$\lim_{x \to 0-} \frac{1}{|x|} = \lim_{x \to 0+} \frac{1}{|x|} = +\infty,$$

zatem $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{1}{|x|} = +\infty.$

Definicja 4.8. Mówimy, że funkcja $f:(a,b)\to\mathbb{R}$ ma granicę lewostronną niewłaściwą $+\infty$ $[-\infty]$ w punkcie $x_0\in(a,b)$, gdy

$$\forall_{E>0} \exists_{\delta>0} \forall_{x \in (a,b)}, x_0 - \delta < x < x_0 \Rightarrow f(x) > E[f(x) < -E].$$

Z twierdzenie o równoważności definicji granicy ciągu mamy dwa oczywiste twierdzenia.

Twierdzenie 4.2. Funkcja $f:(a,b)\to\mathbb{R}$ ma granicę lewostronną w punkcie $x_0\in(a,b)$ równą $g\in\overline{\mathbb{R}}$, gdy dla każdego ciągu $(x_n)_{n\in\mathbb{N}}$ takiego, że

- 1. $x_n < x_0, n \in \mathbb{N}$,
- 2. $\lim_{n\to\infty} x_n = x_0;$

 $zachodzi \lim_{n\to\infty} f(x_n) = g.$

Twierdzenie 4.3. Funkcja $f:(a,b)\to\mathbb{R}$ ma granicę lewostronną w punkcie $x_0\in(a,b)$ równą $g\in\overline{\mathbb{R}}$, gdy dla każdego ciągu $(x_n)_{n\in\mathbb{N}}$ takiego, że

1.
$$x_n > x_0, n \in \mathbb{N}$$
,

$$2. \lim_{n \to \infty} x_n = x_0;$$

 $zachodzi \lim_{n\to\infty} f(x_n) = g.$

Twierdzenie 4.4. Funkcja f rosnąca w przedziale $(a,b) \subseteq \mathbb{R}$ ma w każdym punkcie tego przedzialu granice jednostronne (skończone lub nie).

Dowód. Z założenia, zbiór $\{f(t)\colon a < t < x\}$ jest ograniczony z góry, przez liczbę f(x). Niech więc $A = \sup_{a < t < x} f(t).$ Oczywiście $f(x) \leqslant A.$ Musimy udowodnić, że f(x-) = A. Ustalmy $\varepsilon > 0.$ Z definicji kresu górnego wynika, że istnieje $x-\delta,$ dla pewn. $\delta > 0,$ że $a < x-\delta < x$ oraz

$$A - \varepsilon < f(x - \delta) \leqslant A$$
.

Z monotoniczności f mamy, że

$$f(x-\delta) \leqslant f(t) \leqslant A$$
, dla $t \in (x-\delta,x)$.

Porównując nasze oszacowania, wnioskujemy iż

$$|f(t) - A| < \varepsilon$$
, gdy $x - \delta < t < x$.

Stąd
$$f(x-) = A = \sup_{a < t < x} f(t)$$
. Analogicznie dowodzimy, że $f(x+) = \inf_{x < t < b} f(t)$.

4.2.4 Obliczanie granic, symbole nieoznaczone.

Definicja 4.9. Następujące wyrażenia nazywamy symbolami nieoznaczonymi.

$$\frac{0}{0}, \ \frac{\infty}{\infty}, \ 0^0, \ \infty^0, \ \infty^0, \ 1^\infty, \ \infty-\infty, \ 0\cdot\infty.$$

Np. $(-n) \cdot (-1/n) = 1$ jest ciągiem stałym zbieżnym do 1. Mimo, że $n \to \infty, \frac{1}{n} \to 0$.

Granice specjalne: Wyróżnia się jeszcze kilka tożsamości, do których daje się sprowadzić niektóre trudniejsze granice:

(4.1)
$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a.$$

$$\lim_{x \to \pm \infty} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\log_{a}(x+1)}{x} = \log_{a} e \text{ dla } a > 0 \text{ i } a \neq 1.$$

$$\lim_{x \to 0} \frac{(1+x)^{a} - 1}{x} = a.$$

5 Ciągłość funkcji

Intuicje: Pojęcie ciągłości funkcji bieże się od próby sformalizowania tej własności funkcji, że jej wykres jest ciąglq linią, nie mającą nigdzie przerw - w zadanym przedziale, w przypadku funkcji jednej zmiennej, określonej na \mathbb{R} . Uogólnia się to również na wykresy funkcji wielu zmiennych (różne powierzchnie w przestrzeni, etc.). Jak to zwykle bywa, intuicje mogą się okazać zawodne w przypadku skomplikowanych obiektów matematycznych. Ale dla "prostych" funkcji:

Rysunek 1: Funkcja y = f(x) jest ciągła w widocznym przedziale.

Rysunek 2: Funkcja y = f(x) nie jest ciągła w punkcie x = -1.

Niech $(X, \rho), (Y, \sigma)$ będą przestrzeniami metrycznymi.

Definicja 5.1. Mówimy, że funkcja $f: X \to Y$ jest ciągła w punkcie $x_0 \in X$ w sensie Heinego, gdy dla każdego ciągu $(x_n)_{n\in\mathbb{N}}$ wyrazów X zbieżnego do x_0 ciąg wartości $(f(x_n))_{n\in\mathbb{N}}$ jest zbieżny do $f(x_0)$.

Definicja 5.2. Mówimy, że funkcja $f: X \to Y$ jest ciqgla w sensie Cauchy'ego w punkcie $x_0 \in X$, gdy

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in X}. \ \rho(x_0,x) < \delta \Rightarrow \sigma(f(x_0),f(x)) < \varepsilon.$$

Definicja 5.3. Mówimy, że funkcja $f: X \to Y$ jest ciagla w sensie Cauchy'ego (Heinego), gdy jest ciągla w każdym punkcie $x \in X$ w sensie Cauchy'ego (Heinego).

Twierdzenie 5.1. Definicje Cauchy'ego i Heinego ciągłości funkcji są równoważne.

Dowód.Rozważamy dowolną funkcję $f\colon X\to Y$ między przestrzeniami metrzycznymi $(X,\rho),\,(Y,\sigma).$

Załóżmy najpierw, że funkcja f jest ciągła w sensie Heinego. Ustalmy dowolny $\varepsilon>0.$

Przykład. Funkcje trygonometryczne są ciągłe w swoich dziedzinach. Dla przykładu pokażemy, że sinus jest funkcją ciągłą. Ustalmy $x_0 \in \mathbb{R}$. Z podstaw trygonometrii wiadomo, że

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}, \alpha, \beta \in \mathbb{R},$$

Biorąc pod uwagę, że $\cos(\alpha) \leq 1$ dla dowolnego α , mamy oszacowanie

$$|\sin x - \sin x_0| \le 2 \left| \sin \frac{x - x_0}{2} \right|$$
, dla dowolnego $x \in \mathbb{R}$.

Weźmy dowolny ciąg $(x_n)_{n\in\mathbb{N}}$ zbieżny do x_0 . Wówczas $\lim_{n\to\infty}\frac{x_n-x_0}{2}=0$ a więc

$$0 \leqslant \lim_{n \to \infty} |\sin x_n - \sin x_0| \leqslant 2 \lim_{n \to \infty} \left| \sin \frac{x_n - x_0}{2} \right| = 0.$$

A więc $\lim_{n\to\infty} \sin x_n = \sin x_0$, czyli funkcja sin jest ciągła w x_0 . Punkt ten wybraliśmy dowolnie, więc wnioskujemy że jest ciągła w całej dziedzinie.

 $\acute{C}wiczenie$. Niech $A\subseteq X$. Wykazać, że funkcja $x\mapsto \mathrm{dist}(x,A)$ jest ciągła oraz $\mathrm{dist}(x,A)=0$ wtedy i tylko wtedy, gdy $x\in\mathrm{cl}\,A$.

Twierdzenie 5.2. Niech X będzie przestrzenią metryczną, Y dowolnym zbiorem i $f: X \to Y$ będzie funkcją ciąglą. Dla dowolnego ciągu $(x_n)_{n\in\mathbb{N}}$ wyrazów przestrzeni X, zachodzi:

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

Dowód. Ćwiczenie. □

Punkty nieciągłości: Ustalmy funkcję $f: X \to Y$. Wyróżnimy dwie sytuacje, w których funkcja f nie spełnia warunku ciągłości w zadanym punkcie $x_0 \in X$.

Definicja 5.4. Mówimy, że $x_0 \in X$ jest punktem nieciągłości pierwszego rodzaju funkcji f, jeżeli istnieją skończone granice $\lim_{x \to x_0^-} f(x)$ oraz $\lim_{x \to x_0^+} f(x)$ ale są one różne lub $f(x+) = f(x-) \neq f(x)$.

Definicja 5.5. Mówimy, że $x_0 \in X$ jest punktem nieciągłości drugiego rodzaju funkcji f, gdy nie istnieje choć jedna z granic $\lim_{x\to x_0^-} f(x)$ lub $\lim_{x\to x_0^+} f(x)$.

Przykład. Funkcja $f: \mathbb{R} \to \mathbb{R}$ dana wzorem

$$f(x) = \begin{cases} \frac{1}{x}, & \text{dla } x \neq 0\\ 0, & \text{dla } x = 0 \end{cases}$$

ma w punkcie x=0 nieciągłość pierwszego rodzaju, gdyż

$$f(0-) = \lim_{x \to 0-} f(x) = -\infty \neq +\infty = \lim_{x \to 0+} f(x) = f(0+).$$

Ponadto również $f(0) = 0 \neq f(0+)$ i $f(0) \neq f(0-)$.

Prostym wnioskiem z twierdzenia 4.4 jest, że funkcja rosnąca (malejąca) nie ma nieciągłości drugiego rodzaju.

Definicja 5.6. Mówimy, że funkcja $f\colon X\to Y$ jest jednostajnie ciągła, gdy

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x_1,x_2 \in X}. \ \rho(x_1,x_2) < \delta \Rightarrow \sigma(f(x_1),f(x_2)) < \varepsilon.$$

Przykład. Funkcja $x \mapsto x^2$ jest ciągła na \mathbb{R} ale nie jest jednostajnie ciągła.

Przykład. Funkcja $x \mapsto \sqrt{x}$ jest jednostajnie ciągła na $[1, +\infty)$.

Istotnie: niech $\varepsilon > 0$. Weźmy $x, y \in [1, \infty)$ i x > y tak aby $x - y < 2\varepsilon$. Zauważmy, że

$$\frac{\sqrt{x} - \sqrt{y}}{x - y} = \frac{1}{\sqrt{x} + \sqrt{y}} < \frac{2\varepsilon}{\sqrt{x} + \sqrt{y}} \leqslant \frac{2\varepsilon}{2} = \varepsilon.$$

Przyjmijmy $\delta=2\varepsilon$ i widzimy, że warunek jednostajnej ciągłości jest spełniony dla $x-y<\delta$. Ćwiczenie. Pokazać, że warunek jednostajnej ciągłości funkcji f można sformułować następująco:

Funkcja $f: X \to Y$ jest jednostajnie ciągła wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0}\exists_{\delta>0}\forall_{E\subset X}$$
 diam $E<\delta\Rightarrow$ diam $f[E]<\varepsilon$.

Przy pomocy twierdzeń o arytmetyce granic możemy udowodnić

Twierdzenie 5.3. Niech $f,g: X \to Y$ będą funkcjami ciąglymi określonymi na przestrzni metrycznej X. Wówczas ciągle są funkcje f+g, $f\cdot g$ oraz $\frac{f}{g}$ (pod warunkiem, że $g(x) \neq 0, x \in X$).

Twierdzenie 5.4. Niech X, Y, Z będą przestrzeniami metrycznymi, $A \subseteq X$ oraz

$$f: A \to Y, g: f[A] \to Z.$$

Wówczas funkcja $h := g \circ f$ jest ciągła w punkcie $x \in A$, gdy f jest ciągła w punkcie x a funkcja g jest ciągła w punkcie f(x).

Twierdzenie 5.5. Niech $f: X \to Y$ będzie różnowartościowa i ciągła. Wówczas f^{-1} jest funkcją ciągłą.

Następne twierdzenie daje nam do dyspozycji szeroką klasę funkcji, dla których możemy stosować warunek jednostajnej ciągłości; jednak za chwilę pokażemy twierdzenie ogólniejsze, zatem poniższy dowód ma wyłącznie charakter przykładowy i dydaktyczny

Twierdzenie (Heinego-Cantora - przypadek szczególny). Jeżeli funkcja f jest określona i ciągła w przedziale domkniętym [a,b], to jest ona również jednostajnie ciągła w tym przedziale.

Dowód. Dowód poprowadzimy nie wprost. Załóżmy, że dla pewnego $\varepsilon>0$ nie istnieje takie $\delta>0$, żeby spełniona była definicja jednostajnej ciągłości. W takim przypadku dla dowolnej liczby $\delta>0$ istnieją w przedziale [a,b] takie dwie liczby $x_0^{(1)}$ i $x^{(1)}$, że

$$|x^{(1)}-x_0^{(1)}|<\delta, \text{ a równocześnie } |f\left(x^{(1)}\right)-f\left(x_0^{(1)}\right)|\geqslant \varepsilon.$$

Weźmy teraz ciąg $(\delta_n)_{n\in\mathbb{N}}$ liczb dodatknich, $\delta_n\to 0$.

Jak pokazaliśmy wyżej, dla każdego δ_n znajedziemy w przedziale [a,b] wartości $x_0^{(n)}$ i $x^{(n)}$ takie, że

$$|x^{(n)} - x_0^{(n)}| < \delta_n$$
, a równocześnie $|f(x^{(n)}) - f(x_0^{(n)})| \ge \varepsilon$.

Na mocy twierdzenia 2.13 Bolzano-Weierstrassa z ciągu ograniczonego $(x^{(n)})_{n\in\mathbb{N}}$ można wybrać podciąg zbieżny do pewnego punktu x_0 przedziału [a,b]. Oznaczmy go $(x^{(n_k)})_{k\in\mathbb{N}}$. Mamy $|x^{(n_k)}-x_0^{(n_k)}|<\delta_{n_k}\stackrel{k\to\infty}{\longrightarrow}\lim_{n\to\infty}\delta_n=0$ i stąd $x^{(n_k)}-x_0^{(n_k)}\to 0$. W takim razie ciąg $x_0^{(n_k)}$ również dąży do x_0 . W takim razie na mocy ciągłości funkcji w punkcie x_0 powinno być

$$f(x^{n_k}) \to f(x_0) \text{ oraz } f(x_0^{(n)}) \to f(x_0), \text{ czyli } f(x^{n_k}) - f(x_0^{(n_k)}) \to 0,$$

co przeczy temu, że dla wszystkich $n |f(x^{(n_k)}) - f(x_0^{(n_k)})| \ge \varepsilon$.

Przykład. Funkcja $f:[0,+\infty)\to\mathbb{R}$ dana wzorem $f(x)=\sqrt{x}$ jest jednostajnie ciągła na $[0,+\infty)$. Istotnie: pokazaliśmy już wcześniej, że f jest jednostajnie ciągła na $[1,+\infty)$. Z poprzedniego twierdzenia, wynika, że f jest jednostajnie ciągła również np. na przedziale [0,2]. Ustalmy $\varepsilon>0$. Weźmy takie $\delta_1>0$ i takie $\delta_2>0$, że

dla każdych
$$x,y \in [0,2]$$
: $|x-y| < \delta_1$ pociąga, że $|f(x)-f(y)| < \varepsilon$; dla każdych $x,y \in [1,+\infty)$: $|x-y| < \delta_2$ pociąga, że $|f(x)-f(y)| < \varepsilon$.

Bierzemy $\delta = \min\{\delta_1, \delta_2, 1\}$. Wówczas, gdy $|x - y| < \delta$, to |x - y| < 1 a więc nie jest możliwe¹⁷, aby x i y nie leżały razem w przedziale [0, 2] lub $[1, +\infty)$ - mamy dwa przypadki:

- 1. $x, y \in [1, \infty)$ i wówczas $|x y| < \delta_2$ pociąga, że $|f(x) f(y)| < \varepsilon$;
- 2. $x, y \in [0, 2]$ i wtedy $|x y| < \delta_1$ pociaga, że $|f(x) f(y)| < \varepsilon$.

Widzimy, że gdy $|x-y| < \delta$ to musi być $|f(x)-f(y)| < \delta$, czego chcieliśmy dowieść.

Definicja 5.7. Niech (X, ρ) , (Y, σ) będą przestrzeniami metrycznymi. Mówimy, że funkcja $f \colon X \to Y$ spełnia warunek Lipschitza ze stałą $L \geqslant 0$, gdy dla dowolnych $x_1, x_2 \in X$ zachodzi

(5.1)
$$\sigma(f(x_1), f(x_2)) \leqslant L \cdot \rho(x_1, x_2).$$

Najmniejszą liczbą L (o ile istnieje) dla której spełniona jest powyższa nierówność dla dowolnych $x_1, x_2 \in X$ nazywamy stalą Lipschitza funkcji f. Funkcję spełniającą warunek Lipschitza ze stałą L < 1 nazywamy kontrakcją albo odwzorowaniem zwężającym.

Twierdzenie 5.6. Funkcja spełniająca warunek Lipschitza jest jednostajnie ciągła.

Dowód. Niech $(X, \rho), (Y, \sigma)$ - przestrzenie metryczne i $f: X \to Y$ sp. warunek Lipschitza z ustaloną stałą $L \leqslant 0$. Weźmy dowolne $\varepsilon > 0$. wówczas dla $\delta = \frac{\varepsilon}{L}$ dostajemy, że dla dowolnych $x, y \in X$ spełniających $\rho(x, y) < \delta$ zachodzi

$$\sigma(f(x),f(y)) \leqslant L\rho(x,y) < L\delta = L\frac{\varepsilon}{L} = \varepsilon.$$

czyli f jest jednostajnie ciągła na X.

 $\acute{C}wiczenie$. Niech $I\subseteq\mathbb{R}$ będzie przedziałem. Udowodnić, że funkcja $f\colon I\to\mathbb{R}$ spełniająca dla pewnych $L\geqslant 0$ i $\alpha\in(0,1]$, warunek 18

$$|f(x) - f(y)| \le L|x - y|^{\alpha}, \ x, y \in I$$

jest jednostajnie ciągła na I.

 $^{^{17}}$ zwróćmy uwagę, na długośc przedziału: $|[0,2]\cap[1,+\infty)|=|[1,2]|=1.$

 $^{^{18}}$ mówimy wtedy, że funkcja fspełnia warunek Höldera ze stałą Li wykładnikiem $\alpha.$

Twierdzenie 5.7 (Heinego-Cantora). Każda funkcja ciągła na przestrzeni zwartej jest jednostajnie ciągła.

Dowód. Niech $f: X \to Y$ będzie funkcją ciągłą działającą z przestrzeni zwartej (X, ρ) w przestrzeń metryczną (Y, σ) . Ustalmy dowolny $\varepsilon > 0$. Z ciągłości f dla każdego $x \in X$ istnieje liczba $\delta_x > 0$ taka, że $\sigma(f(x), f(y)) < \varepsilon/2$ dla każdego $y \in K(x, \delta_x)$.

Ze zwartości X z pokrycia $\left\{K\left(x,\frac{\delta_x}{2}\right):x\in X\right\}$ można wybrać podpokrycie skończone

$$K\left(x_1, \frac{\delta_{x_1}}{2}\right), K\left(x_2, \frac{\delta_{x_2}}{2}\right), \dots, K\left(x_m, \frac{\delta_{x_m}}{2}\right).$$

Niech $\delta = \frac{1}{2} \min\{\delta_{x_1}, \delta_{x_2}, \dots, \delta_{x_m}\}$. Wówczas dla dowolnych $x, y \in X$ takich, że $\rho(x, y) < \delta$ istnieje punkt x_k taki, że $x \in K\left(x_k, \frac{\delta_{x_k}}{2}\right)$. Wtedy

$$\rho(y, x_k) \leqslant \underbrace{\rho(y, x)}_{<\delta \leqslant \frac{\delta_{x_k}}{2}} + \underbrace{\rho(x, x_k)}_{<\delta \leqslant \frac{\delta_{x_k}}{2}} < \underbrace{\frac{\delta_{x_k}}{2}}_{z \text{ galdenia}} + \underbrace{\frac{\delta_{x_k}}{2}}_{z \text{ galdenia}} = \delta_{x_k},$$

zatem $x, y \in K(x_k, \delta_{x_k})$ (x również należy do tej kuli, ponieważ $K\left(x_k, \frac{\delta_{x_k}}{2}\right) \subseteq K\left(x_k, \delta_{x_k}\right)$). Możemy już obliczyć

$$\sigma(f(x), f(y)) \le \sigma(f(x), f(x_i)) + \sigma(f(x_i), f(y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Stąd mamy, że $f\colon X\to Y$ jest jednostajnie ciągła, co było do okazania.

Dowód można też przeprowadzić, przy pomocy ciągowej definicji zwartości:

Dowód. Niech $f: X \to Y$ będzie funkcją ciągłą działającą z przestrzeni zwartej (X, ρ) w przestrzeń metryczną (Y, σ) .

Przypuśćmy, że f nie jest jednostajnie ciągła, tzn.:

$$(*) \qquad \exists_{\varepsilon>0} \forall_{\delta>0} \exists_{x_1,x_2 \in X} \rho(x_1,x_2) < \delta \text{ i } \sigma\left(f(x_1),f(x_2)\right) \geqslant 0.$$

Weźmy ε spełniający *. Niech $\delta=\frac{1}{n}$, gdzie $n\in\mathbb{N}$. Wtedy istnieją $x_n,x_n'\in X$ takie, że $\rho(x_n,x_n')<\frac{1}{n}$ oraz $\sigma\left(f(x_n),f(x_n')\right)\geqslant 0$. Ze zwartości przestrzeni X istnieje $a\in X$ oraz ciąg $(n_k)_{k\in\mathbb{N}}$ liczb naturalnych taki, że $\lim_{k\to\infty}x_{n_k}=a$.

$$\rho(x'_{n_k}, a) \leqslant \rho(x'_{n_k}, x_{n_k}) + \rho(x_{n_k}, a) < \frac{1}{n} + \rho(x_{n_k}, a) \longrightarrow 0.$$

W takim razie $x_{n_k} \to 0$ i $x'_{n_k} \to 0$. Ale f jest funkcją ciągła w a. Wówczas $f(x_{n_k}) \to f(a)$ i $f(x'_{n_k}) \to f(a)$. Stąd wynika, że

$$0 = \sigma\left(f(x), f(a)\right) = \lim_{k \to \infty} \sigma\left(f(x_{n_k}), f(x'_{n_k})\right) \geqslant \varepsilon > 0 \text{ - sprzeczność}.$$

Funkcja f musi być jednostajnie ciągła.

Wniosek 4. Jeżeli funkcja ciągła f jest określona na przedziale domkniętym [a, b], to jest również jednostajnie ciągła w tym przedziale.

Definicja 5.8. Mówimy, że funkcja $f: [a,b] \to \mathbb{R}$ ma własność Darboux, gdy dla dowolnego $y \in [f(a), f(b)]$ istnieje takie $c \in (a,b)$, że f(c) = y.

Lemat 5.1 (Bolzano). Niech $f:[a,b] \to \mathbb{R}$, a < b będzie funkcją ciąglą oraz $f(a) \cdot f(b) < 0$. Wtedy istnieje takie $c \in (a,b)$, że f(c) = 0.

Dowód. Dla ustalenia uwagi przyjmijmy, że f(a) < 0 a f(b) > 0. Podzielimy przedział [a,b] na połowy punktem $c_0 = \frac{a+b}{2}$. Jeśli $f(c_0) = 0$, to $c = c_0$ i twierdzenie jest udowodnione. Jeśli $f(c_0) \neq 0$, to na końcach jednego z przedziałów $[a,c_0]$, $[c_0,b]$ funkcja przyjmuje wartości różnych znaków - na lewym końcu wartość ujemną, a na prawym dodatnią. Oznaczając ten przedział przez $[a_1,b_1]$, mamy $f(a_1) < 0$, $f(b_1) > 0$ i $[a_1,b_1] \subseteq [a,b]$. Dzielimy ten nowy przedział na połowy punktem $c_1 = \frac{a_1+b_1}{2}$. Jeśli $f(c_1) = 0$, to twierdzenie jest udowodnione. Kontynuujemy ten proces:

Jeśli dla $m \in \mathbb{N}$ mamy przedział $[a_m, b_m] \subseteq [a_{m-1}, b_{m-1}]$ taki, że $f(a_m) < 0$ i $f(b_m) > 0$, to dzielimy go punktem $c_m = \frac{a_m + b_m}{2}$. Jeśli $f(c_m) = 0$ - twierdzenie jest udowodnione. W przeciwnym wypadku, wybieramy ten z przedziałów $[a_m, c_m]$, $[c_m, b_m]$ na końcach którego funkcja f przyjmie wartości różnych znaków.

Albo po skończonej liczbie kroków trafimy w punkt, w którym f przyjmuje wartość zero, albo otrzymamy zdefiniowany indukcyjnie nieskończony ciąg $([a_n,b_n])_{n\in\mathbb{N}}$ niepustych przedziałów zstępujących a dla n-tego przedziału, jego długość wynosi $b_n-a_n=\frac{b-a}{2^n}\stackrel{n\to\infty}{\longrightarrow} 0$. Wtedy na mocy lematu 2.2 o przedziałach zstępujących istnieje taki punkt $c\in[a,b]$, dla którego $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$. Zauważmy teraz, że

$$f(a_n) < 0, \ f(b_n) > 0, \ n \in \mathbb{N}, \ \text{i stad } \lim_{n \to \infty} f(a_n) \le 0, \ \lim_{n \to \infty} b_n \ge 0.$$

Korzystając z ciągłości funkcji f: $f(c) = \lim_{n \to \infty} f(a_n)$ i $f(c) = \lim_{n \to \infty} f(b_n)$, czyli $f(c) \le 0$ i zarazem $f(c) \ge 0$. Ostatecznie f(c) = 0.

Twierdzenie 5.8 (Darboux I). *Każda funkcja ciągła f* : $[a,b] \to \mathbb{R}$ ma własnośc Darboux.

Dowód. Weźmy dowolny $y \in (f(a)), f(b))$. Zdefinujmy funkcję pomocniczą $F: [a,b] \to \mathbb{R}$ wzorem F(x) = f(x) - y. Funkcja ta jest oczywiście ciągła. Poniważ f(a) < y < f(b), to F(b) = f(a) - c < 0, zaś F(b) = f(b) - c > 0. Zatem na mocy lematu Bolzano, istnieje punkt $x \in [a,b]$ taki, że F(x) = 0, czyli f(x) = y.

Uwaga 5.1. Twierdzenie nie zachodzi w drugą stronę. Np. funkcja $f: [-1,1] \to [-1,1]$ określona wzorem

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{dla } x \neq 0; \\ 0 & \text{dla } x = 0. \end{cases}$$

ma własność Darboux ale nie jest ciągła w punkcie x=0. Podobnie funkcja $f\colon [-1,1]\to [0,2]$ dana wzorem

$$f(x) = \begin{cases} -x, & x \in [-1, 0]; \\ x+1, & x \in (0, 1]; \end{cases}$$

ma własność Darboux ale nie jest ciągła w punkcie x=0 (ćwiczenie).

Uwaga 5.2. Twierdzenie, często określane jako tw. Darboux jako pierwszy w istocie udowodnił Bernard Bolzano - matematyk, który pracował samotnie i nie opublikował swoich prac, które doczekały się dopiero wydania po śmierci autora. Ponadto w literaturze występuje ono czasem jako twierdzenie Bolzano-Cauchy'ego. Możemy sformułować:

Twierdzenie (Bolzano-Cauchy'ego). Jeżeli $f: D \to \mathbb{R}$ jest funkcją ciąglą, a zbiór $D \subseteq \mathbb{R}$ przedziałem, to zbiór wartości funkcji jest także przedziałem.

Widzimy, że tak naprawdę powyższe twierdzenie wyraża dokładnie tę samą treść, co twierdzenie 5.8.

Uwaga 5.3. Jeszcze ogólniej, na gruncie topologii twierdzenie Darboux przyjmuje postać stwierdzenia:

Twierdzenie. Jeśli $f: X \to Y$ jest ciągłą funkcją różnowartościową między przestrzeniami metrycznymi (topologicznymi) X i Y, oraz X jest zb. spójnym, to przestrzeń Y również jest zbiorem spójnym.

Dowód. Ćwiczenie. Wskazówka: założyć nie wprost, że f[X] nie jest spójny.

 $\acute{C}wiczenie.$ Podać dowód faktu z poprzedniej uwagi, dla przypadku $Y=\mathbb{R}$ (z metryką naturalną).

Ćwiczenie. Wykazać, że każde ciągłe odzworowanie f przedziału $[a,b] \subseteq \mathbb{R}$ w siebie ma co najmniej jeden punkt stały, tj. punkt $x \in [a,b]$ taki, że f(x) = x.

Twierdzenie 5.9. Jeśli funkcja jest ściśle monotoniczna w przedziale domkniętym i ma własność Darboux, to jest ciągła w tym przedziale.

Dowód. **TO-DO:WIP** Niech $y \in [f(a), f(b)]$, to z założenia istnieje $x \in [a, b]$ takie, że y = f(x). Załóżmy najpierw, że $x \in (a, b)$. Z twierdzenia 4.4 granice f(x-), f(x+) istnieją i

$$f(x-) \leqslant f(x) \leqslant f(x+).$$

Ustalmy $\varepsilon > 0$. Wówczas mamy:

dla pewn.
$$\delta_1 > 0 : x - \delta_1 < t < x \implies |f(x) - f(t)| < \varepsilon$$
, dla pewn. $\delta_2 > 0 : x < t < x + \delta_2 \implies |f(x) - f(t)| < \varepsilon$.

Niech $\delta = \min\{\delta_1, \delta_2\}$, to dla $t \in (x - \delta, x + \delta)$ zachodzi $|f(x) - f(t)| < \varepsilon$ czyli

$$\lim_{t \to x} f(t) = f(x).$$

Funkcja f jest ciągła w x.

Uwaga 5.4. Założenie zwartości (ograniczoności i domkniętości) dziedziny funkcji w powyższym twierdzeniu nie może być pominięte. Np. funkcja $f: (0,1] \to \mathbb{R}$ określona wzorem

$$f(x) = \frac{1}{x}$$

jest ciągła, ale nie jest ograniczona. Podobnie funkcja $f: \mathbb{R} \to \mathbb{R}$ dana jako $f(x) = e^x$ nie jest ograniczona, mimo że jej dziedzina - cała prosta rzeczywista - jest domknięta. Klasycznie twierdzenie dotyczy funkcji $f: [a,b] \to \mathbb{R}, [a,b] \subseteq \mathbb{R}$.

Twierdzenie 5.10. Funkcja $f: X \to Y$, gdzie X, Y są przestrzeniami metrycznymi, jest ciągla wtedy i tylko wtedy, gdy dla dowolnego zbioru otwartego $U \subseteq X$ zbiór $f^{-1}[U]$ jest otwarty.

 $Dow \acute{o}d.$ Najpierw przeprowadzimy dowód w lewo: rozważmy dowolny $x \in X.$ Chcemy sprawdzić, że

$$(*) \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x'}. x' \in K(x,\delta) \Rightarrow f(x') \in K(f(x),\varepsilon)$$

Ustalmy więc dowolny $\varepsilon > 0$. Zbiór $K(f(x), \varepsilon)$ jest otwarty, zatem z założenia zbiór $f^{-1}[K(f(x), \varepsilon)]$ jest również otwarty i stąd istnieje pewne otoczenie $K(x, \delta) \subseteq f^{-1}[K(f(x), \varepsilon)]$ punktu x. Ale z definicji przeciwobrazu dla każdego punktu $x' \in K(x, \delta)$ mamy $f(x') \in K(f(x), \varepsilon)$ czyli inaczej mówiąc zachodzi warunek (*). W drugą stronę: ustalmy dowolny zbiór otwarty $U \subseteq X$. Rozważmy dowolny $x \in f^{-1}[U]$. Istnieje $y = f(x) \in U$ wraz z otoczeniem (otwartość U) $K(y, \varepsilon) \subseteq U$. Z ciągłości f dla otoczenia $K(f(x), \varepsilon)$ istnieje takie otoczenie $K(x, \delta)$ punktu x, że dla każdego $x' \in K(x, \delta)$ zachodzi $f(x') \in K(f(x), \varepsilon) = K(y, \varepsilon)$. Czyli $K(x, \delta) \subseteq f^{-1}[K(y, \varepsilon)] \subseteq f^{-1}[U]$. Stąd zbiór $f^{-1}[U]$ jest otwarty. \square

Łatwo pokazać, że zachodzi

Twierdzenie 5.11. Funkcja $f: X \to Y$ określona na przestrzeniach metrycznych $(X, \rho), (X, \sigma)$ jest ciągla wtedy i tylko wtedy, gdy dla dowolnego zbioru domkniętego $F \subseteq Y$ zbiór $f^{-1}[F]$ jest domknięty.

Ćwiczenie. Sprawdzić, że $f^{-1}[X\setminus B]\subseteq X\setminus f^{-1}[B],\ B\subseteq Y$ i udowodnić poprzednie twierdzenie.

Ćwiczenie. Udowodnić, że jeżeli $f: X \to Y$, gdzie X, Y są przestrzeniami metrycznymi, jest funkcją ciągłą, to $f[\operatorname{cl} E] \subseteq \operatorname{cl} f[E]$ dla dowolnego zb. $E \subseteq X$.

Rozwiązanie. Niech $y \in f[\operatorname{cl} E]$. Wówczas y = f(x) dla pewnego $x \in \operatorname{cl} E$. Istnieje ciąg $(x_n)_{n \in \mathbb{N}}$ wyrazów zbioru $E, x_n \to x$. Zauważmy, że $f(x_n) \in f[E]$, $n \in \mathbb{N}$. Z ciągłości funkcji f musi być $f(x_n) \to f(x)$. Czyli $y = f(x) \in \operatorname{cl} f[E]$. A więc $y \in f[\operatorname{cl} fE] \Rightarrow y \in \operatorname{cl} f[E]$. \square

Twierdzenie 5.10 może stanowić punkt wyjścia dla topologicznej definicji ciągłości. Albo przynajmniej dla omówienia tego tematu. Tak naprawdę, w przestrzeni metrycznej "nasze" definicje ciągłości (Cauchy'ego, Heinego) pokrywają się z definicją topologiczną. Topologią $\mathcal T$ na zbiorze X jest wyróżniona rodzina jego podzbiorów, spełniających pewne "aksjomaty". Parę $(X,\mathcal T)$ nazywamy przestrzenią topologiczną. Zbiory rodziny $\mathcal T$ nazywają się zbiorami otwartymi tej przestrzeni. Czytelnik może się już domyślać, że zbiory otwarte w przestrzeni metrycznej wyznaczają na niej topologię. Przestrzenie metryczne są szczególnym przypadkiem przestrzeni topologicznej. Równoważnik ciągłości w twierdzeniu 5.10 jest prawdziwy dla funkcji określonej między przestrzeniami topologicznymi, również nie będącymi przestrzeniami metrycznymi. Mógłby on więc również stanowić definicję ciągłości.

Twierdzenie 5.12. Obraz ciągły przestrzeni zwartej jest przestrzenią zwartą.

Dowód. Niech $f: X \to Y$ będzie odwzorowaniem ciągłym przestrzeni zwartej X na przestrzeń Y. Rozważmy dowolne pokrycie \mathcal{V} przestrzeni Y. Rodzina

$$\{f^{-1}[V]\colon V\in\mathcal{V}\}$$

jest pokryciem przestrzeni X na mocy tego, że f jest na Y oraz składa się ze zbiorów otwartych, gdyż f jest ciągłe. Ze zwartości przestrzeni X wynika, że istnieje skończenie wiele zbiorów $f^{-1}[V_1], \ldots, f^{-1}[V_n]$, gdzie $V_i \in \mathcal{V}$, które pokrywają przestrzeń X. Stąd

$$Y = f[X] = f[f^{-1}[V_1] \cup \dots \cup f^{-1}[V_n]] = V_1 \cup \dots \cup V_n.$$

Koniec dowodu.

Twierdzenie 5.13 (Weierstrassa). Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ciąłą. Wtedy jej obraz jest zbiorem ograniczonym, tzn. $m \le f(x) \le M$ dla pewnych stałych m i M. Ponadto funkcja f osiąga swoje kresy, tzn. istnieją takie $\underline{x}, \overline{x} \in X$, że

$$f(\underline{x}) = \inf_{x \in X} f(x), \ f(\overline{x}) = \sup_{x \in X} f(x).$$

Wtedy oczywiście

$$f(\underline{x}) \leqslant f(x) \leqslant f(\overline{x}), \ dla \ każdego \ x \in [a, b].$$

Klasyczne twierdzenie 5.13 Weierstrassa jest wnioskiem z twierdzenia 2.13 Bolzano-Weierstrassa. Czytelnik może spróbować udowodnić to twierdzenie wychodząc właśnie z tego twierdzenia. Jednak, po dawce topologii przestrzeni metrycznych, pozwólmy sobie skorzystać z naszej ciężko zdobytej wiedzy i udowodnić ogólniejsze, uwspółcześnione:

Twierdzenie 5.14 (Weierstrassa). Funkcja ciągła na przestrzeni zwartej o wartościach $w \mathbb{R}$ jest ograniczona i przyjmuje swoje kresy.

Dowód. Niech $f: \mathbb{R}$ będzie funkcją ciągłą, określoną na przestrzeni zwartej X. Wówczas f[X] jest zwarty jako ciągły obraz przestrzeni zwartej. Na mocy twierdzenia 3.25 f[X] jest domknięty i ograniczony. Zatem f jest funkcją ograniczoną. Z definicji supremum i infimum oraz domkniętości f[X] mamy, że inf f[X], sup $f[X] \in f[X]$.

Kilka faktów ciekawych z punktu widzenia teorii mnogości.

Twierdzenie 5.15. Jeżeli f jest funkcją monotoniczną o wartościach rzeczywistych, to zbiór jej punktów nieciągłości jest co najwyżej przeliczalny.

Dowód. Dla ustalenia uwagi, przypuśćmy, że $f:(a,b)\to\mathbb{R}$ jest niemalejąca, i niech $K=\{x\in(a,b)\colon f \text{ jest nieciągła w }x\}$. Dla każdego $x\in K$ mamy f(x-)< f(x+). Dla każdego takiego x istnieje więc taka liczba $r_x\in\mathbb{Q}$, że

$$f(x-) < r_x < f(x+).$$

Oczywiste jest, że dla $x_1 \neq x_2$: $r_x \neq r_x$. Niech np. $x_1 < x_2$, to wówczas

$$f(x_1-) < r_{x_1} < f(x_1+) \le f(x_2-) < r_{x_2} < f(x_2+).$$

Oznacza to, że istnieje wzajemnie jednoznaczne odwzorowanie między K a pewnym podzbiorem zbioru \mathbb{Q} , a ten musi być oczywiście co najwyżej przeliczalny.

Lemat 5.2. Ustalmy X, Y - prz. metryczne. Niech $f, g: X \to Y$ będą funkcjami ciąglymi $i \ E \subseteq X$ będzie zbiorem gęstym w X. Wówczas, jeżeli $f(x) = g(x), x \in E$, to f = g (tzn. $f(x) = g(x), x \in X$)

Dowód. Załóżmy nie wprost, że $f(x)\neq g(x)$ dla pewnego $x\in X\setminus E.$ Niech $U,V\subseteq Y$ tak, że

U, V - są zbiorami otwartymi;

$$U\cap V=\varnothing,$$

$$f(x) \in U, \ g(x) \in V.$$

(Zbiory takie istnieją na mocy 3.1.) Wówczas $x \in f^{-1}[U] \cap g^{-1}[V] \subseteq X$. Z gęstości zbioru $E \colon X = E \cup E^d$. $x \notin E$ z założenia, więc x jest punktem skupienia zbioru E. Zatem istnieje w $E \cap f^{-1}[U] \cap g^{-1}[V]$ (otoczenie punktu x!) pewien punkt c. Ale wówczas $f(c) \neq g(c)$. Ale $c \in E$ - sprzeczność z założeniem.

Twierdzenie 5.16. Zbiór funkcji ciągłych jest mocy continuum.

Dowód. Niech $C = \{f \in \mathbb{R}^{\mathbb{R}} : f \text{ jest ciągła.} \}$. Określamy $F : C \xrightarrow{\text{na}}_{1-1} \mathbb{R}^{\mathbb{Q}}$ wzorem $F(f) = f|_{\mathbb{Q}}$. Z teorii mnogości wiadomo, że card $\mathbb{R}^{\mathbb{Q}} = \mathfrak{c}$ i stąd wynika teza. □

5.0.1 Ciągłość bezwzględna.

Ten temat można pominąć w pierwszym czytaniu.

Definicja 5.9. Niech $I \subseteq \mathbb{R}$ będzie przedziałem i dana będzie funkcja $f: I \to \mathbb{R}$. Funkcję f nazywamy **bezwzględnie ciągłą na przedziałe** I, gdy dla każdego $\varepsilon > 0$ istnieje takie $\delta > 0$, że dla każdego **skończonego** ciągu $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$ przedziałów otwartych i rozłącznych i takich, że

1.)
$$(a_k, b_k) \subseteq I, k \in \{1, \dots, n\},\$$

$$2.) \quad \sum_{k=1}^{n} (b_k - a_k) \leqslant \delta;$$

zachodzi nierówność

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| \leqslant \varepsilon.$$

Uwaga 5.5. Złożenie dwóch funkcji bezwzględnie ciągłych nie musi być funkcją bezwzględnie ciągłą!

Twierdzenie 5.17. Każda funkcja bezwzględnie ciągła $f: I \to \mathbb{R}$, gdzie $I \subseteq \mathbb{R}$ jest przedziałem, jest jednostajnie ciągła.

Powyższe twierdzenie nie zachodzi w drugą stronę.

Twierdzenie 5.18. Niech $f: I \to \mathbb{R}$, gdzie $I \subseteq \mathbb{R}$ jest przedziałem. Jeżeli f spełnia warunek Höldera dla stałej $L \geqslant 0$ i wykładnika $\alpha \in (0,1]$, czyli:

$$|f(x) - f(y)| \le L|x - y|^{\alpha}, \ x, y \in I,$$

to jest bezwzględnie ciągła.

5.0.2 Półciągłość.

Ten rozdział jest w dużej mierze opcjonalny.

Twierdzenie 5.19. Funkcja $f: X \to \mathbb{R}$, X - prz. metryczna; jest ciągla wtedy i tylko wtedy, gdy zachodzą równocześnie <math>warunki

(1) dla dow. $c \in \mathbb{R}$ zbiór $\{x \in X : f(x) > c\}$ jest zbiorem otwartym;

(2) dla dow. $c \in \mathbb{R}$ zbiór $\{x \in X : f(x) < c\}$ jest zbiorem otwartym.

Dowód. Implikacja w prawo wynika z twierdzenia 5.10. W drugą stronę: ustalmy dow. $x_0 \in X$. Rozważmy dowolny $\varepsilon > 0$. Niech $c_1 = f(x_0) - \varepsilon$ i $c_2 = f(x_0) + \varepsilon$. Wtedy, z założenia istnieją takie $r_1, r_2 > 0$, że

$$K(x_0, r_1) \subseteq \{x \in X : f(x) > f(x_0) - \varepsilon\},\$$

$$K(x_0, r_2) \subseteq \{x \in X : f(x) < f(x_0) + \varepsilon\},\$$

Przyjmijmy $r = \min\{r_1, r_2\}$ i wtedy

$$K(x_0, r) \subseteq K(x_0, r_1) \cap K(x_0, r_2) = \{x \in X : |f(x) - f(x_0)| < \varepsilon\}.$$

Pokazaliśmy zatem, że $\forall_{\varepsilon>0}\exists_{r>0}\forall_{x\in X}x\in K(x_0,r)\Rightarrow f(x)\in K(f(x_0),\varepsilon)$. f jest ciągła w punkcie x_0 a z dowolności wyboru tego punktu: jest ciągła w X.

Definicja 5.10. Ustalmy funkcję $f: X \to \mathbb{R}$, gdzie X - prz. metryczna. Jeżeli f spełnia warunek (1) z poprzedniego twierdzenia, to mówimy, że jest półciągła z góry. Jeżeli f spełnia warunek (2) to mówimy, że jest półciągła z dołu.

Z poprzedniego twierdzenia wynika w sposób oczywisty

Twierdzenie 5.20. Funkcja jest ciągła wtedy i tylko wtedy, gdy jest równocześnie półciągła z dołu i z góry.

Przykład. Ustalmy a > 0. Funkcja $f: \mathbb{R} \to \mathbb{R}$ dana wzorem

$$f(x) = \begin{cases} a, & x \geqslant 0, \\ -a, & x < 0. \end{cases}$$

jest półciągła z góry w x = 0.

Przykład. Funkcja $x \mapsto |x|$ jest półciągła z góry. Podobnie $x \mapsto [x]$ jest półciągła z dołu.

5.1 *Twierdzenia o punkcie stałym

Twierdzenie 5.21 (Banacha o punkcie stałym). Niech (X, ρ) będzie przestrzenią metryczną zupelną a $T: X \to X$ odzworowaniem zwężającym. Wówczas istnieje dokładnie jeden punkt $a \in X$ taki, że T(a) = a. Ponadto ciąg $(T^n(x))_{n \in \mathbb{N}}$ dla dowolnego $x \in X$ jest zbieżny do a oraz $\rho(T^n(x), a) \leq L^n \cdot \rho(x, a)$, gdzie L jest stałą, dla której T spełnia warunek Lipschitza.

Dowód. Niech $a \in X$. Pokażemy, że ciąg $(T^n(a))_{\mathbb{N}}$ spełnia warunek Cauchy'ego. Indukcyjnie udowodnimy najpierw, że

$$\rho\left(T^{n+1}(x), T^n(x)\right) \leqslant L^n \rho(T(x), x)$$

Dla n=0: $\rho\left(T^1(x),T^0(x)\right)=\rho(T(x),x)$. Dla n=1 mamy $\rho\left(T^2(x),T^1(x)\right)=\rho(T\left(T(x)\right),T(x))\leqslant L\rho\left(T(x),x\right)$. Załóżmy, że dla pewnego $m\in\mathbb{N}$ zachodzi:

$$\rho\left(T^{m+1}(x),T^m(x)\right)\leqslant L^m\rho(T(x),x).$$

Pokażemy, że

$$\rho\left(T^{m+2}(x),T^{m+1}(x)\right)\leqslant L^{m+1}\rho(T(x),x).$$

Mamy:

$$\begin{split} \rho\left(T^{m+2}(x),T^{m+1}(x)\right) &= \rho\left(T(T^{m+1}(x)).T(T^m(x))\right) \leqslant L\rho\left(T^{m+1}(x),T^m(x)\right) \leqslant \\ &\leqslant L\cdot L^m\rho(T(x),x) = L^{m+1}\rho(T(x),x). \end{split}$$

Ustalmy teraz dowolne $m, n \in \mathbb{N}, m > n$. Wtedy

$$\begin{split} \rho\left(T^{m}(x), T^{n}(x)\right) &\leqslant \rho\left(T^{m}(x, T^{m-1})(x)\right) + \rho\left(T^{m-1}(x, T^{m-2})(x)\right) + \ldots + \rho\left(T^{n+1}(x, T^{n})(x)\right) \leqslant \\ &\leqslant L^{m-1}\rho(T(x), x) + L^{m-2}\rho(T(x), x) + \ldots + L^{n}\rho(T(x), x) = (L^{m-1} + L^{m-2} + \ldots + L^{n}) \cdot \rho(T(x), x) \leqslant \\ &\leqslant \rho(T(x), x) \cdot \sum_{k=n}^{\infty} L^{k} = L^{n}\frac{\rho(T(x), x)}{1 - L} = C \cdot L^{n}. \end{split}$$

Ustalmy $\varepsilon>0$. Wtedy istnieje $n_0\in\mathbb{N}$ takie, że $C\cdot L^{n_0}<\varepsilon$. Biorąc dowolne $m,n\geqslant n_0$ mamy

$$\rho(T^m(x), T^n(x)) \leqslant C \cdot L^{\min(n,m)} \leqslant C \cdot L^{n_0} < \varepsilon.$$

Stąd mamy już, że ciąg $(T^n(x))_{n\in\mathbb{N}}$ spełnia warunek Cauchye'go, a zatem z zupełności przestrzeni X jest zbieżny. Niech

$$a = \lim_{n \to \infty} T^n(x).$$

T jest ciągła (gdyż spełnia warunek Lipschitza), zatem

$$T(a) = T\left(\lim_{n \to \infty} T^n(x)\right) = \lim_{n \to \infty} T(T^n(x)) = \lim_{n \to \infty} T^{n+1}(x) = a.$$

Indukcyjnie możemy pokzać, że $\rho(T^n(x), a) \leq L^n \rho(x, a), n \in \mathbb{N}$ dla dowolnego $x \in X$. (ćwiczenie)

Twierdzenie 5.22 (Brouwera o punkcie stałym). Niech K jest n-wymiarową kulą domkniętą w przestrzeni \mathbb{R}^n oraz $T \colon K \to K$ będzie odwzorowaniem ciągłym. Wówczas istnieje taki punkt $a \in K$, że T(a) = a.

6 Pochodna funkcji jednej zmiennej, różniczkowalność funkcji

6.1 Pochodna funkcji jednej zmiennej

Definicja 6.1 (Pochodna funkcji jednej zmiennej w punkcie). Niech $f:(a,b)\to\mathbb{R}$ oraz $x_0\in(a,b)$. Pochodną funkcji f w punkcie x_0 nazywamy granicę

(6.1)
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

i oznaczamy ją $f'(x_0)$.

Wyrażenie $\frac{f(x)-f(x_0)}{x-x_0}$ oznaczamy czasem przez $\frac{\Delta f}{\Delta x}$ i nazywamy ilorazem różnicowym. Pochodną oznaczamy też czasem jako $\frac{\mathrm{d}x}{\mathrm{d}y}$ - jest to oznaczenie pochodzące od Leibniza¹⁹.

Definicja 6.2. Jeżeli funkcja $f: D \to \mathbb{R}$, gdzie D jest zbiorem otwartym, jest różniczkowalna w każdym punkcie swojej dziedziny, to mówimy że jest różniczkowalna a jej pochodną nazywamy funkcję g taką, że

$$g(x) = f'(x), x \in D$$

i przyjmujemy oznaczenie g = f'.

Przykład. Obliczmy pochodną funkcji $\mathbb{R} \to \mathbb{R}$ danej wzorem $y = x, \ x \in \mathbb{R}$ (czyli identyczności na \mathbb{R}). Ustalmy $x_0 \in \mathbb{R}$. Wtedy

$$\frac{dx}{dy} = (x)' = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = \lim_{x \to x_0} 1 = 1$$

¹⁹Gottfried Wilhelm Leibniz (1646-1716) - niemiecki polihistor: matematyk i fizyk ale także filozof, inżynier, historyk, prawnik i dyplomata. Niezależnie od Isaaca Newtona wynalazca rachunku różniczkowego i całkowego. Jako osobisty asystent księcia Hanoweru - Jerzego Ludwika podróżował po całej Europie z tajnymi misjami dyplomatycznymi, które nie tylko przysparzały mu licznych przygód ale też dały okazję poznać wszystkich ważniejszych filozofów i naukowców swoich czasów. Był też twórcą jednej z pierwszych koncepcji "maszyny liczącej", czyli proto-komputera.

Uwaga 6.1. Pochodna z dowolnej stałej jest równa 0 (ćwiczenie).

Ćwiczenie. Udowodnić z definicji pochodnej, że $(x^n)' = nx^{n-1}$ dla dowolnej liczby naturalnej n. Wskazówka: skorzystać ze wzoru (1.24) na różnicę n-tych potęg.

Interpretacja fizyczna pochodnej Niech x(t) oznacza położenie na osi OX punktu materialnego w chwili $t \in [0, +\infty)$. Ustalmy pewną chwilę t_0 . Średnią prędkość punktu w przedziale czasu $[t_0, t]$ (dla $t > t_0$) definiuje się jako $v_{\text{sr}} := \frac{x(t) - x(t_0)}{t - t_0}$. Prędkość chwilową $v(t_0)$ w chwili t_0 definijemy jako granicę:

$$v(t_0) = x'(t_0) = \lim_{t \to t_0} \frac{x(t) - x(t_0)}{t - t_0}.$$

Interpretacja geometryczna pochodnej: Ustalmy funkcję f określoną w otoczeniu pewnego $x_0 \in \mathbb{R}$. Oznaczmy punkt $P = (x_0, f(x_0))$. Niech dodatkowo $H = (x_1, f(x_1))$ będzie dowolnym punktem położonym na wykresie funkcji f. Prostą przechodzącą przez punkty P i H nazywamy siecznq. Równanie siecznej PH ma więc postać (porównaj wzór (??))

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

Wyrażenie $\frac{f(x_1)-f(x_0)}{x_1-x_0}$ jest tu współczynnikiem kierunkowym. Zbliżając się punktem H do punktu P, czyli przechodząc do granicy przy $x_1 \to x_0$ otrzymujemy styczną do wykresu funkcji f w punkcie $(x_0, f(x_0))$. Jeżeli istnieje pochodna funkcji f w punkcie x_0 , to mamy

$$\lim_{x \to x} y = \lim_{x \to x} \left(\frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_1 - x_0) + f(x_0) \right) = f'(x_0)(x - x_0) + f(x_0).$$

Uzasadniliśmy następujące

Twierdzenie 6.1. Jeżeli funkcja f jest różniczkowalna w punkcie x_0 swojej dziedziny, to prosta o równaniu

$$y = f(x_0) + f'(x_0)(x - x_0)$$

jest styczną do wykresu funkcji w punkcie $(x_0, f(x_0))$.

Z drugiej strony:

Twierdzenie 6.2. Jeżeli funkcja f jest ciągła w punkcie x_0 i istnieje taka liczba $c \in \mathbb{R}$, że prosta o równaniu

$$y = f(x_0) + c(x - x_0)$$

jest styczną do wykresu funkcji f w punkcie x_0 , to funkcja f jest w tym punkcie różniczkowalna oraz $f'(x_0) = c$. Jak później zobaczymy, pochodne są narzędziem służącym do dokładnego badania tego jak zachowuje się "wykres" funkcji. Korzystając z pochodnych jesteśmy w stanie przynajmniej naszkicować wykres funkcji $\mathbb{R} \to \mathbb{R}$, włącznie z funkcjami zadanymi względnie skomplikowanymi równaniami. Pomaga nam to określić zachowanie funkcji. Kiedy funkcja rośnie, maleje, gdzie osiąga największe wartości, etc. Pochodne mają więc duże znaczenie praktyczne.

6.2 Różniczka funkcji jednej zmiennej

Definicja 6.3 (Różniczka funkcji rzeczywistej jednej zmiennej). Różniczką w punkcie $x_0 \in (a,b)$ funkcji $f:(a,b) \to \mathbb{R}$ różniczkowalnej (w punkcie x_0) nazywamy wyrażenie $f'(x_0)\Delta x$ i oznaczamy $\mathrm{d} f_x(x_0,\Delta x)$. Czyli

$$df_x(x_0, \Delta x) = f'(x_0)\Delta x$$

Tradycyjnie różniczkę oznacza się jako df lub dy i wtedy piszemy

$$\mathrm{d}f = \mathrm{d}y = f'(x_0)\Delta x$$

Rozważać będziemy dowolną funkcję różniczkowalną f. Ustalmy dowolny punkt $x_0 \in D_f$ oraz rozważmy przyrost Δx zmiennej x w okolicy x_0 . Tzn. x wyraża się: $x = x_0 + \Delta x$.

Rysunek 3: Przyrost Δy zależy od przyrostu Δx .

Z powyższego wykresu widzimy, że dla ustalonego przyrostu Δx ustalonego argumentu x_0 odpowiadająca im zmiana (przyrost) argumentu y wynosi $\Delta y = f(x + \Delta x) - f(x)$:

 $x_0 + \Delta x - x_0 = \Delta x$ - długość przedziału $[x_0, x_0 + \Delta x]$ w którym rozpatrujemy zachowanie funkcji f.

$$f(x_0 + \Delta x) - f(x_0) = y_2 - y_1 = \Delta y$$
 - o tyle zmienia się y w przedziale $[x_0, x_0 + \Delta x]$. Wyrażenie

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

nazywamy ilorazem różnicowym (i czasem oznaczamy też np. $\frac{\Delta f}{\Delta x}$. Zauważmy, że jeżeli oznaczamy $x=x_0+\Delta x$ to mamy

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{x_0 + \Delta x - x_0} = \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}.$$

Przechodząc do granicy otrzymujemy pochodną, zatem mamy inny zapis definicji 6.1:

(6.2)
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x_0}.$$

Ta postać definicji bywa często wygodniejsza w rachunkach.

W starszych podręcznikach można zetknąć się z następującym zapisem różniczki.

$$dy = f'(x_0) dx.$$

Niegdyś pochodną próbowano zdefiniować przy pomocy różniczek (nie różniczkę przy pomocy pochodnej jak właśnie to czynimy) jednak rozumiejąc różniczkę w zupełnie inny sposób: jako nieskończenie małą zmianę (przyrost) danej zmiennej. Pochodną rozumiano jako iloraz różniczek zmiennej zależnej y i zmiennej wolnej x funkcji f.

Jak wspominaliśmy, wciąż stosuje się zapis

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$

Jest on spotykany w fizyce, inżynierii a także w pewnych działach matematyki. Symbol $\frac{\mathrm{d}y}{\mathrm{d}x}$ na oznaczenie pochodnej wprowadził Leibniz, rozumiejąc go jako dosłowny iloraz dwóch "różniczek" rozumianych jako właśnie "nieskończenie małe" - "infinitezymalne" przyrosty Δy , Δx . W XVII-XVIII wieku nie operowano jeszcze ścisłym pojęciem granicy!

Niestety próby ścisłego zdefiniowania różniczki prowadziły do licznych sprzeczności logicznych i zakończyły się fiaskiem.

My jednak możemy spróbować tradycyjny zapis uzasadnić następująco

$$\mathrm{d}x \stackrel{\mathrm{def}}{=} (x)' \Delta x = 1 \cdot \Delta x = \Delta x,$$

gdzie x rozumiemy jako funkcję identycznościową $x\mapsto x$. Wcześniej już pokazaliśmy, że pochodna takiej funkcji jest funkcją stale równą jeden. Możemy też stąd przyjąć, że pochodną daje się wyrazić jako iloraz:

$$f'(x) = \frac{\mathrm{d}y}{\mathrm{d}x}.$$

Podkreślmy jeszcze raz, że powyższa równość to co najwyżej tożsamość wynikająca z definicji różniczki a nie definicja pochodnej.

Przykład. Weźmy funkcję wyznaczoną przez równanie $y=f(x)=\sin^2(x)$. Obliczmy pochodną f' funkcji f:

$$\frac{\sin^2(x+\Delta x) - \sin^2(x)}{\Delta x} = \frac{1}{\Delta x} \left((\sin(x)\cos(\Delta x) + \sin(\Delta x)\cos(x))^2 - \sin^2 x \right) =$$

$$= \frac{1}{\Delta x} \left(\sin^2(x)\cos^2(\Delta x) + 2\sin(x)\sin(\Delta x)\cos(x)\cos(\Delta x) + \sin^2(\Delta x)\cos^2(x) - \sin^2 x \right)$$

Zauważmy, że

$$\lim_{\Delta x \to 0} \underbrace{\frac{\sin(\Delta x)}{\Delta x}}_{\text{cos}(0)=1} \underbrace{\cos(\Delta x)}_{\text{cos}(0)=1} 2\sin(x)\cos(x) = 2\sin(x)\cos(x).$$

Pozostałe składniki dążą do zera:

$$\frac{1}{\Delta x} \left(\sin^2(x) \cos^2(\Delta x) + \sin^2(\Delta x) \cos^2(x) - \sin^2 x \right) =$$

$$= \frac{1}{\Delta x} \left(\sin^2 x \left(\underbrace{\cos^2(\Delta x) - 1}_{\text{sin}^2(\Delta x)} \right) + \sin^2(\Delta x) \cos^2 x \right) = \frac{\sin^2(\Delta x)}{\Delta x} \left(\sin^2 x + \cos^2 x \right) =$$

$$\frac{\sin^2(\Delta x)}{\sin^2(\Delta x)} \left(\underbrace{\sin^2 x + \cos^2 x}_{\text{jedynka tryg.}} \right) =$$

$$= \frac{\sin(\Delta x)}{\Delta x} \sin(\Delta x) \xrightarrow{\Delta x \to 0} 1 \cdot \sin(0) = 0.$$

Wszystkie poniższe równości są prawdą w świetle przyjętych oznaczeń i definicji i przeprowadzonych powyżej rachunków:

$$y' = f'(x) = (\sin^2 x)' = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin^2(x)\right) = 2\sin(x)\cos(x).$$

6.3 Podstawowe reguły i przykłady różniczkowania:

W ostatnim przykładzie widzieliśmy, że obliczanie pochodnych z definicji może być nader uciążliwe. A obliczaliśmy pochodną bardzo prostej funkcji $x\mapsto\sin^2x$. Istnieje niewielki zestaw rachunkowych własności pochodnych, które pozwalają obliczać pochodne będące złożeniem, sumą bądź różnicą, ilorazem i iloczynem funkcji, których pochodne już znamy, bez korzystania z definicji pochodnych. Istnieje też wiele "standardowych pochodnych". Znajomość wzorów na te pochodne (lub tablica takowych pod ręką) i tych podstawowych reguł rachunkowych jest podstawą w posługiwaniu się pochodnymi.

Twierdzenie 6.3. Niech $f:(a,b)\to\mathbb{R}$ będdzie funkcją różniczkowalną a $c\in\mathbb{R}$ dowolną stałą. Wtedy

$$(c \cdot f)' = c \cdot f'.$$

Dowód. Oczywisty - z definicji i własności granic.

Twierdzenie 6.4. Niech $f, g: (a, b) \to \mathbb{R}$ będą funkcjami różniczkowalnymi. Wtedy

$$(f+g)' = f' + g'.$$

Dowód. Ćwiczenie. □

Z powyższych dwóch twierdzeń wynika, że operacja różniczkowania jest liniowa, tzn. $(a \cdot f + b \cdot g)' = a \cdot (f') + b \cdot (g')$ dla dowolnych funkcji różniczkowalnych f, g oraz $a, b \in \mathbb{R}$.

Twierdzenie 6.5. Niech $f,g\colon (a,b)\to \mathbb{R}$ będą funkcjami różniczkowalnymi oraz $g\neq 0$ $(g(x)\neq 0, x\in (a,b)).$ Wtedy

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}.$$

Dowód. Załóżmy, że funkcje f, g są różniczkowalne w punkcie $x_0 \in (a, b)$. Ponieważ

$$\frac{\frac{1}{g}(x) - \frac{1}{g}(x_0)}{x - x_0} = -\frac{g(x) - g(x_0)}{x - x_0} \cdot \frac{1}{g(x)g(x_0)}.$$

to uwzględniając ciągłość funkcji g w punkcie x_0 otrzymujemy

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{((g(x_0))^2}.$$

Z poprzedniego twierdzenia i powyższego wzrou otrzymujemy równość z tezy.

Twierdzenie 6.6 (o pochodnej złożenia funkcji). Niech g będzie funkcją różniczkowalną w punkcie x_0 , a f funkcją różniczkowalną w punkcie $y_0 = g(x_0)$. Wówczas funcja $f \circ g$ jest różniczkowalna w x_0 oraz

(6.3)
$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

Dowód. Obliczamy

$$(f \circ g)'(x_0) = \lim_{\Delta x \to 0} \frac{(f \circ g)(x_0 + \Delta x) - f(f \circ g)(x_0)}{\Delta x}.$$

Niech $\Delta y = g(x_0 + \Delta x) - g(x_0)$. Wtedy $\Delta y \xrightarrow{\Delta x \to 0} 0$ oraz

$$(f \circ g)'(x_0) = \lim_{\Delta x \to 0} \frac{f(y_0 + \Delta y) - f(x_0)}{\Delta x}.$$

Jeśli dodatkowo założymy, że $\Delta y \neq 0$, to z powyższego mamy

$$(f \circ g)'(x_0) = \lim_{\Delta x \to 0} \frac{f(y_0 + \Delta y) - f(y_0)}{\Delta y} \cdot \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} =$$

$$= \lim_{\Delta y \to 0} \frac{f(y_0 + \Delta y) - f(y_0)}{\Delta y} \cdot g'(x_0) = f'(y_0)g'(x_0) = f'(g(x_0))g'(x_0).$$

więc funkcja $f \circ g$ jest różniczkowalna w x_0 i zachodzi wzór (6.3).

Powyższe twierdzenie jest znane jako reguła łańcuchowa.

 $\acute{C}wiczenie$. Niech f(x) = ...

Przykład (Pochodna logarytmiczna). Pochodna funkcji złożonej $y = \ln f(x), x \in D_f$ dow. funkcji f z funkcją $x \mapsto \ln x$ wyraża się w myśl twierdzenia o poch. funkcji złożonej wzorem

(6.4)
$$\frac{\mathrm{d}}{\mathrm{d}y} \ln f(x) = (\ln f(x))' = \frac{f'(x)}{f(x)}.$$

Czasem łatwiej jest obliczyć pochodną logarytmiczną niż pochodną f'. Wówczas obliczamy f' z wzoru (6.4) w postaci $f'(x) = f(x) \cdot (\ln f(x))'$, $x \in D_f$.

Ćwiczenie. Obliczyć pochodną funkcji f danej wzorem $f(x) = x^x, x \in \mathbb{R}$.

Twierdzenie 6.7 (o pochodnej funkcji odwrotnej). Jeżeli funkcja f jest ciągla i ściśle monotoniczna w otoczeniu $(x_0 - \delta, x_0 + \delta)$ pewnego punktu $x \in D_f$ oraz ma pochodną właściwą $f'(x_0) \neq 0$. Wtedy

(6.5)
$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

 $gdzie \ y_0 = f(x_0) \ (czyli \ x_0 = f^{-1}(y_0)).$

Podstawowe pochodne: Znając już nasze reguły rachunkowe, możemy przytoczyć podstawowe pochodne:

$$(6.6) (x^a)' = a \cdot x^{a-1}, a \in \mathbb{R}$$

(6.7)
$$(\ln x)' = \frac{1}{x}, x \neq 0$$

$$(6.8) (a^x)' = a^x \ln a, a \in \mathbb{R}$$

$$(6.9) (e^x)' = e^x$$

(6.10)
$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(6.11) \qquad (\sin x)' = \cos x$$

$$(6.12) \qquad (\cos x)' = -\sin x$$

(6.13)
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

(6.14)
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

(6.15)
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

(6.16)
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

(6.17)
$$(\operatorname{arctg})' = \frac{1}{1+x^2}$$

(6.18)
$$(\operatorname{arcctg})' = -\frac{1}{1+x^2}$$

Uzasadnimy, że

$$\frac{\mathrm{d}(a^x)}{\mathrm{d}y} = \frac{\mathrm{d}}{\mathrm{d}y}a^x = (a^x)' = a^x \ln a.$$

Lemat 6.1.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

 $Dow \acute{o}d.$ Podstawmy $e^x-1=\frac{1}{t}.$ Wted
y $x=\ln\left(1+\frac{1}{t}\right)$ a ponadto przy $t\to\pm\infty,\,x$ dąży do zera i otrzymujemy

$$\lim_{t \to \pm \infty} \frac{1 + \frac{1}{t} - 1}{\ln\left(1 + \frac{1}{t}\right)} = \lim_{t \to \pm \infty} \frac{1}{t \ln\left(1 + \frac{1}{t}\right)} = \lim_{t \to \pm \infty} \frac{1}{\ln\left(1 + \frac{1}{t}\right)^t} =$$

$$= \frac{1}{\ln\left[\lim_{t \to \pm \infty} \left(1 + \frac{1}{t}\right)^t\right]} = \frac{1}{\ln e} = 1.$$

Mamy

$$\lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h}.$$

Zauważmy, że $a^h = e^{h \ln a}$. Zatem

$$\lim_{h\to 0}\frac{e^{h\ln a}-1}{h}=\ln a\lim_{h\to 0}\frac{e^{h\ln a}-1}{h\ln a}.$$

Podstawmy $t = h \ln a$, wtedy $t \to 0$ i z poprzedniego lematu

$$\ln a \cdot \lim_{t \to 0} \frac{e^t - 1}{t} = \ln a \cdot 1 = \ln a.$$

Zatem

$$(a^x)' = a^x \ln a.$$

Teraz wystarczy przyjąć a=e i mamy, że $(e^x)'=e^x$ - i liczba e jest jedyną taką liczbą, dla której pochodna funkcji wykładniczej jest równa wyjściowej funkcji. Można też było skorzystać ze wzoru (4.2.4).

Niech $f(x) = \ln x$. Zauważmy, że traktując w tym wzorze x jako funkcję identycznościową, możemy sztucznie potraktować to wyrażenie jako złożenie funkcji identycznościowej $x \mapsto x$ z funkcją $x \mapsto \ln x$ i zastosować regułę łańcuchową. Porównaj tw. 6.3 i wzór (6.4) z przykładu do twierdzenia. Mamy zatem

$$(\ln x)' = \frac{x'}{x} = \frac{1}{x}.$$

Pamiętamy, że policzyliśmy już pochodną (x)' = 1.

Dalej niech $f(x) = x^a$, $a \in \mathbb{R}$. Stosując ponownie wzór (6.4) możemy otrzymać, że

$$(x^a)' = x^a (a \ln x)' = ax^a \frac{1}{x} = ax^{a-1}.$$

(zauważmy, że proponowaliśmy jako ćwiczenie wykazać prawdziwość powyższego wzoru, dla a naturalnych - wciąż po można się tego podjąć. Ponadto z tego wzoru wynika, że $(x)'=(x^1)'=1\cdot x^{1-1}=1\cdot x^0=1\cdot 1=1.)$ Teraz niech $f(x)=a^x$. Skorzystamy z twierdzenia 6.7. Jeżeli y=f(x), to $f^{-1}(y)=\frac{\ln y}{\ln a}$ - wystarczy zlogarytmować obustronnie równanie y=f(x):

$$y = a^{x}$$

$$\ln y = \ln a^{x} = x \ln a$$

$$x = \frac{\ln y}{\ln a} = f^{-1}(y).$$

Zatem

$$f'(x) = \frac{1}{(f^{-1}(y))'}.$$

$$(a^x)' = \frac{1}{\left(\frac{\ln y}{\ln a}\right)'} = y \ln a.$$

Ostatnia równość wynika z tego, że $(\frac{\ln y}{\ln a})' = \frac{1}{\ln a} \cdot (\ln y)' = \frac{1}{\ln a} \cdot \frac{1}{y}^{20}$ Zauważmy jeszcze, że $y = a^x$ a więc $y \ln a = a^x \ln a$ i ostatecznie $(a^x)' = a^x \ln a$.

Pochodne funkcji trygonometrycznych:

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2}{\Delta x} \sin\left(\frac{x + \Delta x - x}{2}\right) \cos\left(\frac{x + \Delta x + x}{2}\right) = \lim_{\Delta x \to 0} \frac{2}{\Delta x} \sin\left(\frac{\Delta x}{2}\right) \cos\left(\frac{x + \Delta x + x}{2}\right) = \lim_{\Delta x \to 0} \frac{\sin\left(\frac{\Delta x}{2}\right)}{\frac{\Delta x}{2}} \cos\left(\frac{2x + \Delta x}{2}\right) = \lim_{\Delta x \to 0} \cos(x + \frac{\Delta x}{2}) = \cos x \text{ (ostatnia równość z ciągłości funkcji cos.)}$$

Analogicznie obliczamy pochodną funkcji cos (ćwiczenie). Pozostaje obliczyć tg' i ctg'.

Pochodne funkcji cyklometrycznych: Skorzystamy z twierdzenia o pochodnej funkcji odwrotnej. Funkcja arcsin: $(-1,1) \rightarrow \left(-\frac{1}{2}\pi, \frac{1}{2}\pi\right)$ jest funkcją odwrotną funkcji

$$\sin\left|_{\left(-\frac{\pi}{2},\frac{\pi}{2}\right)}\right|$$

czyli obcięcia funkcji sin: $\mathbb{R} \to : (-1,1)$. Zatem niech $y = \arcsin x$ i ze wzoru 6.7:

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}, \ (x = \sin y \text{ skoro } y = \arcsin x!)$$

przy czym $\cos y>0$, ponieważ pamiętamy, że $y\in\left(-\frac{1}{2}\pi,\frac{1}{2}\pi\right)$ i z tego samego powodu pozwalamy sobie dla uproszczenia napisać $\sin y$ zamiast $\sin\left|_{\left(-\frac{1}{2}\pi,\frac{1}{2}\pi\right)}(y)\right.$ Analogicznie otrzymamy pozostałe wzory. Np.

$$(\arctan x)' = \frac{1}{(\operatorname{tg} y)'} = \cos^2 x = \frac{1}{1 + \operatorname{tg}^2 y} = \frac{1}{1 + x^2}.$$

a jest po prostu stałą, gdyż a jest ustalone a nie jest żadną zmienną, natomiast pokazaliśmy już, że $(\ln x)' = \frac{1}{x}$ dla zmiennej x. Tutaj zmienną było po prostu y.

Ciekawe przypadki:

Przykład. Rozważmy funkcję $f: \mathbb{R} \to [0, +\infty)$ daną wzorem f(x) = |x|. Funkcja f nie jest różniczkowalna w punkcie x = 0:

$$f'(0+) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0} \frac{x}{x} = 1.$$

$$f'(0-) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0-} \frac{-x}{x} = -1.\text{Gdyż } x < 0 \text{ gdy } x \to 0 - .$$

Zatem $f'(0+) \neq f'(0-)$ czyli pochodna funkcji f w zerze nie istnieje.

Zobaczmy, co się dzieje, gdy $x \neq 0$. Niech najpierw x > 0, to wtedy możemy obliczyć $(f|_{(0,+\infty)})' = (|x|)' = 1$. Dla x < 0 mamy funkcję $f|_{(-\infty,0)}$ i jej pochodną: (|x|)' = (-x)' = -1.

W ten sposób możemy przyjąć, że
$$(|x|)' = \frac{\mathrm{d}|x|}{\mathrm{d}y} = \begin{cases} 1, & \text{dla } x > 0; \\ -1, & \text{dla } x < 0. \end{cases}$$

Zauważmy jeszcze, że
$$\frac{|x|}{x} = \begin{cases} 1, & \text{dla } x > 0; \\ -1, & \text{dla } x < 0. \end{cases}$$

Możemy więc przyjąć

$$(|x|)' = \frac{|x|}{x}, \ x \neq 0$$

6.4 Pochodna w badaniu przebiegu zmienności funkcji

Pochodne są w istocie narzędziem służącym głównie badaniu *przebiegu zmienności* funkcji, tj. jej *monotoniczności* w danych podzbiorach dziedziny.

Monotoniczność funkcji:

Definicja 6.4. Mówimy, że funkcja f przechodząc przez punkt $x_0 \in D_f$:

- rośnie gdy w pewnym otoczeniu punktu x funkcja f jest rosnąca;
- \bullet maleje gdy w pewnym otoczeniu punktu x funkcja f jest malejąca.

Zatem funkcja maleje (w dotychczasowym rozumieniu, patrz monotoniczność funkcji 1.13) w przedziale (a,b), gdy maleje przechodząc przez każdy punkt $x_0 \in (a,b)$. Analogicznie mówimy, że funkcja rośnie w przedziale (a,b), gdy rośnie przechodząc przez każdy punkt $x_0 \in (a,b)$.

Twierdzenie 6.8. Niech funkcja f ma w pewnym otoczeniu punktu $x_0 \in D_f$ pochodną skończoną. Jeśli

- $f'(x_0) > 0$, to funkcja f przechodząc przez punkt x_0 rośnie.
- $f'(x_0) < 0$, to funkcja f przechodząc przez punkt x_0 maleje.

Dowód. Rozpatrzymy przypadek, gdy $f'(x_0) > 0$.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0$$
, zatem można znaleźć takie otoczenie $(x_0 - \delta, x_0 + \delta)$

punktu x_0 , w którym przy $x \neq x_0$:

$$\frac{f(x) - f(x_0)}{x - x_0} > 0.$$

Niech najpierw $x_0 < x < x_0 + \delta$, tak że $x - x_0 > 0$. Z powyższej nierówności wynika wtedy, że $f(x) - f(x_0) > 0$, czyli $f(x) > f(x_0)$. Analogicznie, jeżeli $x_0 - \delta < x < x_0$ i $x - x_0 < 0$, to mamy, że $f(x) > f(x_0)$. Koniec dowodu.

Definicja 6.5.

Definicja 6.6. Mówimy, że funkcja $f: I \to \mathbb{R}$ $(I \subseteq \mathbb{R} - \text{przedział})$ ma w punkcie $x_0 \in I$:

1. minimum lokalne, jeżeli istnieje takie otoczenie U_{x_0} punktu x_0 , że

$$f(x_0) \leqslant f(x), \ x \in U_{x_0} \cap I,$$

2. $maksimum\ lokalne$, jeżeli istnieje takie otoczenie U_{x_0} punktu x_0 , że

$$f(x_0) \geqslant f(x), x \in U_{x_0} \cap I.$$

Czyli minimum/maksimum to wartość funkcji w punkcie spełniającym odpowiednią z powyższych własności. Ponadto, jeżeli nierówności w obydwu definicjach zastąpimy nierównościami ostrymi a otoczenie U_{x_0} sąsiedztwem $U_{x_0} \setminus \{x_0\}$, to powiemy, że dane minimum/maksimum jest wlaściwe.

Warto jeszcze wspomnieć, że największy element w zbiorze maksimów lokalnych nazywa się, całkiem logicznie, $maksimum\ globalnym$ lub po prostu wartością największą funkcji f. Analogicznie określa się minimum globalne a punkt który jest globalnym maksimum/minimum nazywa się ekstremum globalnym.

Ćwiczenie. Udowodnić, że zbiór ekstremów funkcji ciągłej o wartościach rzeczywistych jest co najwyżej przeliczalny.

Lemat 6.2 (Fermata). Niech $f: [a,b] \to \mathbb{R}$ osiąga w pewnym $x_0 \in (a,b)$ minimum lub maksimum lokalne oraz istnieje pochodna funkcji f w tym punkcie. Wtedy $f'(x_0) = 0$.

Dowód. Niech na przykład f osiąga w punkcie c maksimum lokalne. Załóżmy, że byłoby $f'(c) \neq 0$. Wtedy albo f'(c) > 0 i wtedy, jeśli x > c jest dostatecznie bliskie c, to f(x) > f(c), albo f'(c) < 0 i wtedy, jeśli x < c jest dostatecznie bliskie c, to f(x) > f(c). W obu wypadkach mamy sprzeczność, bo f(c) nie może być wtedy największą wartością funkcji f w przedziale [a, b].

Twierdzenie 6.9 (Rolle'a). Niech $f: [a,b] \to \mathbb{R}$ będzie ciągła w przedziałe domkniętym [a,b] oraz różniczkowalna w przedziałe (a,b). Jeżeli f(a) = f(b), to istnieje taki punkt $c \in (a,b)$, że f'(c) = 0.

Dowód. Z ciągłości funkcji f w przedziale [a,b] na mocy twierdzenia 5.13 Weierstrassa przyjmuje ona wartości najmniejszą $f(\underline{x})$ i największą $f(\overline{x})$ w tym przedziale. Rozpatrzmy dwa przypadki:

- 1. $f(\underline{x}) = f(\overline{x})$. Wtedy w przedziale [a, b] funkcja f zachowuje stałą wartość: $f(\underline{x}) \leq f(x) \leq f(\overline{x}), x \in [a, b]$ i $f(\underline{x}) = f(\overline{x})$. Stąd f'(x) = 0 w całym przedziale, a za c możemy przyjąć dowolny punkt z przedziału (a, b).
- 2. $f(\underline{x}) < f(\overline{x})$. Wiemy, że funkcja osiąga obydwie te wartości, ponieważ jednak f(a) = f(b), to z ciągłości choćby jedna z nich jest osiągnięta w pewnym punkcie $c \in (a, b)$. W takim razie z lematu 6.2 Fermata wynika, że f'(c) = 0.

Geometrycznie powyższe twierdzenie oznacza, że jeżeli skrajne rzędne krzywej y=f(x) są równe, to na krzywej znajdzie się punkt, w którym styczna jest równoległa do osi Ox. Przykład. Pokażemy, że

Ekstrema funkcji:

Definicja 6.7. Ustalmy $x_0 \in \mathbb{R}$. Na "prostej rzeczywistej", tj. zbiorze \mathbb{R} otoczenie $K(x_0, \varepsilon)$ punktu x_0 jest postaci $(x_0 - \varepsilon, x_0 + \varepsilon)$ - przedział. Lewostronnym sąsiedztwem punktu $x_0 \in \mathbb{R}$ o promieniu $\varepsilon > 0$ nazwiemy przedział $(x_0 - \varepsilon, x_0)$. Prawostronnym sąsiedztwem punktu $x_0 \in \mathbb{R}$ o promieniu $\varepsilon > 0$ nazwiemy przedział $(x_0, x_0 + \varepsilon)$. Sąsiedztwem $U(x_0, \varepsilon)$ nazwiemy przedział $K(x_0, \varepsilon) \setminus \{x_0\}$. Zatem punkt należy do swojego otoczenia ale nie należy do swojego sąsiedztwa.

6.5 Wypukłość funkcji

Niech X będzie przestrzenią liniową (wektorową) nad ciałem liczb rzeczywistych. (do końca paragrafu)

Definicja 6.8. Zbiór $W \subseteq X$ nazywamy wypukłym, gdy

$$\forall_{x,y \in W} \forall_{\substack{\alpha,\beta \geqslant 0 \\ \alpha+\beta=1.}} \alpha x + \beta y \in W.$$

Oznacza to po prostu, że dla dowolnych dwóch punktów $x,y\in W$ odcinek \overline{xy} zawiera się w zbiorze W.

Twierdzenie 6.10. Przekrój dowolnej rodziny zbiorów wypukłych jest zbiorem wypukłym.

Dowód. Niech $\mathcal{R} \subseteq \mathcal{P}(X)$ będzie dowolną rodziną zbiorów wypukłych. Ustalmy $x, y \in \bigcap \mathcal{R}$. Wtedy dla każdego $R \in \mathcal{R}$ i dowolnych $\alpha, \beta \geqslant 0$ mamy $\alpha x + \beta y \in R$, gdyż R jest wypukły z założenia. Z dowolności R wnosimy, że $\alpha x + \beta y \in \bigcap \mathcal{R}$. Zatem przekrój ten jest wypukły.

Definicja 6.9. Niech $W \subseteq \mathbb{R}$ będzie zbiorem wypukłym. Funkcję $f: W \to \mathbb{R}$ nazywamy wypukłą, gdy dla dowolnych $x, y \in W$ i $\alpha, \beta \ge 0$ takich, że $\alpha + \beta = 1$ zachodzi nierówność

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y).$$

Jeżeli powyższa nierówność jest ostra, to mówimy, że f jest ściśle wypukła.

Podstawiając $\alpha = \lambda$, $\beta = (1 - \lambda)$, mamy że funkcja f jest wypukła, gdy dla dow. $\lambda \in (0,1)$ zachodzi $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$.

Uwaga 6.2. Jeżeli odwrócimy nierówność w powyższej definicji, to dostaniemy definicję funkcji "wklęsłej".

Twierdzenie 6.11. Dowolna funkcja $f: I \to \mathbb{R}$ wypukła ($I \subseteq \mathbb{R}$ - przedział) spełnia następujący warunek

(6.19)
$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}, \ x, y \in I$$

Dowód. f jest wypukła, więc: $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$, dla dowolnego $\lambda \in (0,1)$. Wystarczy podstawić $\lambda = \frac{1}{2}$.

Nierówność 6.19 nazywamy $nierównością\ Jensena$. Jest to przykład nierówności funkcyjnej. Dla funkcji wklęsłej otrzymamy analogiczne twierdzenie zmieniając kierunek znaku nierówności w 6.19.

 $\acute{C}wiczenie$. Ustalmy liczby $t_1, t_2, \ldots, t_n \in [0,1]$ takie, że $t_1, \ldots t_n = 1$. Udowodnić, że dla dowolnego przedziału $I \subseteq \mathbb{R}$ i funkcji wypukłej $f \colon I \to \mathbb{R}$ prawdziwa jest uogólniona nierówność Jensena:

$$f\left(\sum_{k=1}^{n} t_k x_k\right) \leqslant \sum_{k=1}^{n} t_k f(x_k), \ x_1, \dots, x_n \in I.$$

Napisać jak wygląda powyższa nierówność dla $t_1=t_2=\ldots=t_n=\frac{1}{n}.$

Przy pomocy nierówności Jensena można wyprowadzić wiele bardzo ważnych nierówności, wykorzystywanych w różnych działach matematyki.

6.5.1 Pochodne w badaniu wypukłości funkcji

Wprost z definicji (i interpretacji geometrycznej) wyukłości funkcji mamy:

Twierdzenie 6.12. Jeżeli $f:(a,b) \to \mathbb{R}$ jest różniczkowalna na przedziale (a,b), to f jest wypukla, gdy dla każdych $x, x_0 \in (a,b)$ zachodzi nierówność $f'(x_0)(x-x_0) \leqslant f(x) - f(x_0)$.

Twierdzenie 6.13. Niech $D \subseteq \mathbb{R}$. Funkcja $f: D \to \mathbb{R}$ jest [ściśle] wypukła wtedy i tylko wtedy, gdy jest różniczkowalna w zbiorze D i f' jest niemalejąca [rosnąca].

Stąd wynika kilka oczywistych wniosków:

Twierdzenie 6.14. Funkcja $f:(a,b)\to\mathbb{R}$ wypukła jest ciągła w(a,b).

Twierdzenie 6.15. Jeżeli $f:(a,b) \to \mathbb{R}$ jest dwukrotnie różniczkowalna na przedziale (a,b), to f jest wypukła, gdy dla każdego $x \in (a,b)$ zachodzi $f''(x) \ge 0$.

Punkty przegięcia funkcji:

Definicja 6.10. Niech $f: D \to \mathbb{R}$ będzie funkcją, $D \subseteq \mathbb{R}$ oraz $x_0 \in D$ będzie takim punktem, że f jest określona w pewnym otoczeniu tegu punktu. Punkt x_0 nazywamy punktem przegięcia wykresu funkcji f, jeżeli w sąsiedztwie lewostronnym punktu x_0 funkcja f jest wypukła, a w prawostronnym sąsiedztwie p. x_0 jest odwrotnie wypukła albo na odwrót - wypukła odwrotnie w lewostronnym sąsiedztwie i wypukła w prawostronnym.

6.6 Twierdzenia o wartości średniej

Twierdzenie 6.16 (Lagrange'a o wartości średniej). Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ciąglą w przedziale domkniętym [a,b], a < b oraz różniczkowalną w przedziale otwartym (a,b). Wtedy istnieje taki punkt $\xi \in (a,b)$, że dla niego spełniona będzie nierówność

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Dowód. Zdefinujmy funkcję pomocniczą $F: [a, b] \to \mathbb{R}$ wzorem

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Łatwo zauważyć, że funkcja ta spełnia wszystkie założenia twierdzenia Rolle'a. Rzeczywiście jest ona ciągła w [a,b], jako różnica funkcji ciągłej i funkcji liniowej. W przedziale (a,b) ma ona pochodną skończoną, równą

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Podstawiając pod x kolejno a i b sprawdzamy, że F(a) = F(b) = 0, czyli F przyjmuje na końcach przedziału tę samą wartość.

Z twierdzenia Rolle'a wynika więc, że istnieje taki punkt $c \in (a, b)$, że F'(c) = 0. Tak więc

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 czyli szukane $\xi = c$.

Ćwiczenie. Korzystając z twierdzenia Lagrange'a o wartości średniej, udowodnić że

$$\sin(x+h) - \sin x = h \cos \xi$$
 dla pewnego $x < \xi < x+h$.

Twierdzenie 6.17 (Cauchy'ego o wartości średniej). Niech $f, g: [a, b] \to \mathbb{R}$ będą ciągłe w przedziałe domkniętym [a, b] oraz różniczkowalne w przedziałe (a, b). Wówczas istnieje takie $\xi \in (a, b)$, że

$$g'(\xi) \cdot (f(b) - f(a)) = f'(\xi) \cdot (g(b) - g(a)).$$

Dowód. Zdefiniujmy funkcję pomocniczą $\varphi \colon [a,b] \to \mathbb{R}$ w następujący sposób:

$$\varphi(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x), x \in [a, b].$$

 φ jest różniczkowalna na (a,b)oraz h(a)=h(b)i z twierdzenia Rolle'a istnieje takie $\xi\in(a,b),$ że $\varphi'(\xi)=0.$ Ale

$$0 = \varphi'(\xi) = (f(b) - f(a))g'(\xi) - (g(b) - g(a))f'(\xi)$$

co kończy dowód.

6.7 Różniczkowalność a ciągłość funkcji

Twierdzenie 6.18. Funkcja $f:(a,b) \to \mathbb{R}$ różniczkowalna w przedziale (a,b) jest w tym przedziale ciągła.

 $Dow \acute{o}d$. Rozważmy dowolny $x_0 \in (a,b)$. Zauważmy, że $\frac{f(x_0+h)-f(x_0)}{h}h = f(x_0+h)-f(x_0)$. Przechodząc do granicy mamy

$$\lim_{h \to 0} (f(x_0 + h) - f(x_0)) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} h = f'(x_0) \cdot \lim_{h \to 0} h = 0$$

Zatem $\lim_{h\to 0} (f(x_0+h)-f(x_0))=0 \Leftrightarrow f(x_0)=\lim_{h\to 0} f(x_0+h)$. Dowolny $x\neq x_0$ przedstawiamy jako x_0+h i wtedy dla $h\to 0$ zachodzi $x\to x_0$. Ostatecznie mamy, że $\lim_{x\to x_0} f(x)=f(x_0)$. Z dowolności wyboru $x_0\in (a,b)$ f jest ciągła w całym przedziale (a,b).

Twierdzenie odwrotne nie jest prawdziwe.

Jak wspominaliśmy, twierdzenie znane jako tw. Darboux pochodzi od Bolzano. Podamy drugie bardzo ważne twierdzenie - do którego będziemy odnosić sią jako do "drugiego twierdzenia Darboux" dla porządku; ale w literaturze możemy się spotkać po prostu z określeniem "twierdzenie Darboux".

Twierdzenie 6.19 (Darboux II). Niech $f: D \to \mathbb{R}$ będzie funkcją różniczkowalną w przedziale $D \subseteq \mathbb{R}$. Wówczas pochodna f' tej funkcji ma w tym przedziale własność Darboux.

Dowód. Niech $D \subseteq \mathbb{R}$ będzie przedziałem, a $f: D \to \mathbb{R}$.

Ustalmy $a, b \in D$, a < b. Dla dalszych rozważań możemy przyjąć, że $f'(a) \neq f'(b)$. Weźmy teraz punkt y z przedziału (f'(a), f'(b)) i zdefiniujmy dwie funkcje $f_a, f_b : D \to \mathbb{R}$ następująco

$$f_a(t) = \begin{cases} f'(a), & \text{gdy } t = a, \\ \frac{f(t) - f(a)}{t - a}, & \text{gdy } t \in D \setminus \{a\}; \end{cases}$$

$$f_b(t) = \begin{cases} f'(b), & \text{gdy } t = b, \\ \frac{f(b) - f(t)}{b - t}, & \text{gdy } t \in D \setminus \{b\}; \end{cases}$$

Zauważmy, że $f_a(a) = f'(a)$, $f_a(b) = f_b(a)$, $f_b(b) = f'(b)$. Zatem element y leży pomiędzy liczbami $f_a(a)$ a $f_a(b)$ lub pomiędzy liczbami $f_b(a)$ a $f_b(b)$. Jeżeli y leży pomiędzy liczbami $f_a(a)$ oraz $f_b(b)$, to ponieważ funkcja f_a jako ciągła ma własność Darboux, więc istnieje taki element $s \in (a, b]$, że $y = f_a(s)$, tj.

(6.20)
$$y = \frac{f(s) - f(a)}{s - a}.$$

Z twierdzenia Lagrange'a o wartości średniej istnieje taki punkt $\xi \in (a, s)$, że

(6.21)
$$\frac{f(s) - f(a)}{s - a} = f'(\xi).$$

Z równości 6.20 i 6.21 wynika zatem, że $y=f'(\xi)$ dla pewnej liczby $\xi\in(a,s)\subseteq(a,b)$, co kończy dowód w rozważanym przypadku. Jeżeli y leży pomiędzy liczbami $f_b(a)$ i $f_b(b)$, to postępujemy analogicznie. \square

Ćwiczenie. Udowodnić powyższe twierdzenie, korzystając z lematu 6.2 Fermata. Wska-zówka: dobrać odpowiednią funkcję pomocniczą.

Twierdzenie 6.20. Niech $f:(a,b) \to \mathbb{R}$ będzie funkcją różniczkowalną. Wówczas f spełnia warunek Lipschitza ze stałą Lipschitza L wtedy i tylko wtedy, gdy jej pochodna jest ograniczona przez L.

Dowód. Załóżmy, że f spełnia warunek Lipschitza ze stałą L. Niech $x_0 \in (a, b)$. Wówczas dla $x \in (a, b), x \neq x_0$:

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| = \frac{|f(x) - f(x_0)|}{|x - x_0|} \leqslant L.$$

Stąd $|f'(x_0)| \leq L$. Dla dowodu w drugą stronę załóżmy, że $|f'(x)| \leq L$ dla wszystkich $x \in (a, b)$. Niech $x_1, x_2 \in (a, b)$. Możemy przyjąć, że $x_1 < x_2$. Z twierdzenia Lagrange'a o wartości średniej wynika, że istnieje takie $\xi \in (x_1, x_2)$, że

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1).$$

Ponieważ $|f'(\xi)| \leq L$, to

$$|f(x_2) - f(x_1)| = |f'(\xi)||x_2 - x_1| \leqslant L|x_2 - x_1|,$$

i stąd f spełnia warunek Lipschitza ze stałą L.

Definicja 6.11. Definiujemy C^n jako zbiór funkcji mających n-tą pochodną **ciągłą**. Gdy $f \in C^n$, to mówimy, że funkcja f jest klasy C^n . Przyjmujemy też, dla dow. przedziału $D \subseteq \mathbb{R}$:

$$C^nD = \{f \colon D \to \mathbb{R} \colon f \text{ ma } n\text{-tą pochodną ciągłą w przedziale } D\}$$

Jeżeli $n=\infty$, to C^∞ jest zbiorem funkcji nieskończenie wiele razy różniczkowalnych w swojej dziedzinie, a $C^\infty D$ funkcji, których obcięcie do zbioru D jest nieskończenie wiele razy różczniczkowalne.

Przykład. $C^2(0,1)$ jest zbiorem wszystkich funkcji $f\colon (0,1)\to \mathbb{R}$ dwukrotnie różniczkowalnych w (0,1) tak, że f'' jest ciągła.

 $Przykład. \sin, \cos \in C^{\infty}.$

Przykład. Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R}$ daną wzorem:

$$f(x) = \begin{cases} \delta(x) & \text{dla } x \in [0, 1] \\ \sin x & \text{dla } x \in \mathbb{R} \setminus [0, 1] \end{cases}$$

Wtedy $f|_{(-\infty,0)}\in C^\infty(-\infty,0)$ oraz $f|_{(1,+\infty)}\in C^\infty(1,+\infty)$ natomiast $f|_{[0,1]}$ nie jest różniczkowalna.

Twierdzenie 6.21. Jeżeli funkcja f jest klasy $C^2(a,b)$, to punkt $(x_0, f(x_0))$ jest punktem przegięcia wykresu funkcji f wtedy i tylko wtedy, gdy $f''(x_0) = 0$ oraz f'' zmienia znak przy przejściu przez punkt x_0 .

7 *Zastosowanie różniczki do rachunków przybliżonych

Różniczkę w punkcie możemy definiować jako część liniową przyrostu funkcji w otoczeniu punktu x_0 .

Rysunek 4: Porównanie przyrostu Δy wartości funkcji f i przyrostu dy.

Jak widzimy $\Delta y \approx \mathrm{d}y$ dla odpowiednio "małego" przyrostu y.

Twierdzenie 7.1. Niech $f:(a,b)\to\mathbb{R}$ będzie funkcją ciągłą oraz $x\in(a,b)$ - ustalone.

(7.1)
$$f(x + \Delta x) \approx f'(x) \cdot \Delta x + f(x).$$

Dowód. Równość z tezy możemy inaczej zapisać jako $f(x+\Delta x)-f(x)=f'(x)\cdot \Delta x+o(\Delta x),$ gdzie $\frac{o(\Delta x)}{\Delta x}\xrightarrow{\Delta x\to 0} 0$. Przy $\Delta x\to 0$, korzystając z ciągłości funkcji uzyskujemy $f(x+\Delta x)\to f(x)$ oraz x jest ustalone, zatem f'(x) jest stałą i $f'(x)\cdot \Delta x\to 0$.

$$\lim_{\Delta x \to 0} (f(x + \Delta x) - f(x)) = 0 = \lim_{\Delta x \to 0} f'(x) \cdot \Delta x.$$

Warto przywyknąć do powyższej tożsamości i różnych wygodnych (równoważnych) sposobów jej wyrażenia:

$$f(x + \Delta x) \approx \mathrm{d}f + f(x)$$

$$\Delta f = f(x + \Delta x) - f(x) \approx f'(x)\Delta x = f'(x) dx.$$

Przykład. Obliczymy w przybliżeniu liczbę $\sqrt{4,3}$. Zgodnie ze wzorem 7.1 mamy

$$\sqrt{x + \Delta x} \approx (\sqrt{x})' \cdot \Delta x + \sqrt{x} = \frac{1}{2\sqrt{x}} \cdot \Delta x + \sqrt{x}.$$

Podstawmy x = 4 i $\Delta x = 0, 3$. Wtedy

$$\sqrt{x + \Delta x} = \sqrt{4 + 0.3} = \sqrt{4.3} \approx \frac{1}{2\sqrt{4}} \cdot 0.3 + \sqrt{4} = \frac{0.3}{4} + 2 = \frac{3}{40} + 2 = \frac{83}{40}$$

Zatem $\sqrt{4,3} \approx \frac{83}{40}$. Porównajmy jeszcze wynik z obliczeniami kalkulatora: $\sqrt{4,3} = 2,0736\dots$, podczas gdy $\frac{83}{40} = 2,075$.

Przykład. Pokażemy, że tg $x \approx x$ dla x bliskich zeru. We wzorze

$$f(x + \Delta x) \approx f'(x)\Delta x + f(x)$$

za punkt x, w pobliżu którego szukamy przybliżenia funkcji tg przyjmujemy 0 oraz przyrost Δx oznaczać będziemy jako x (zmieniamy tylko oznaczenia, zaraz zobaczymy dlaczego). Mamy $f(0+x) \approx f'(0) \cdot x + f(0)$ czyli kładąc f= tg mamy tg $(0+x) \approx [{\rm tg}(0)]'x + {\rm tg}(0)$. Dalej $[{\rm tg}(x)]' = \frac{1}{\cos^2(x)}$ oraz $\cos^2(0) = 1$ i tg(0) = 0 zatem

$$tg(x+0) = tg(x) \approx \frac{1}{\cos^2(0)} \cdot x + tg(0) = 1 \cdot x + 0 = x.$$

Ćwiczenie. Uzasadnić, że $\sin x \approx x$ dla x bliskich zeru.

8 *Uwagi o pochodnych cząstkowych i różniczce zupełnej funkcji

Definicja 8.1. Pochodną cząstkową funkcji $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^n$ po zmiennej x_k definiujemy jako granicę (jeśli istnieje)

$$\lim_{\Delta x_k \to 0} \frac{f(x_1, x_2, \dots, x_k + \Delta x_k, \dots, x_n) - f(x_1, x_2, \dots, x_k, \dots, x_n)}{\Delta x_k}$$

i oznaczamy jako

$$\frac{\partial f}{\partial x_k}(x_1,\ldots,x_n)$$
 lub $\frac{\partial f(x_1,\ldots,x_n)}{\partial x_k}$

Definicja 8.2. Różniczką zupełną $df(a_1, \ldots, a_n, \Delta a_1, \ldots, \Delta a_n)$ funkcji $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^n$ w punkcie (a_1, \ldots, a_n) nazywamy wyrażenie

$$\frac{\partial f(a_1,\ldots,a_n)}{\partial x_1}\Delta a_1+\cdots+\frac{\partial f(a_1,\ldots,a_n)}{\partial x_n}\Delta a_n.$$

Ponownie różniczkę zupełną funkcji wielu zmiennych f będziemy często oznaczać po prostu df. Niech $\overrightarrow{x} = (a_1, \dots, a_n)$. Przyrost \overrightarrow{x} zapiszemy jako $\Delta \overrightarrow{x} = (\Delta a_1, \dots, \Delta a_n)$. Wtedy stosujemy zapis $f(a_1,\ldots,a_n)=f(\overrightarrow{x})$. Odpowiadający przyrost wartości Δf funkcji f wyraża się wzorem

$$\Delta f = f(\overrightarrow{x} + \Delta \overrightarrow{x}) - f(\overrightarrow{x}) = \frac{\partial f(\overrightarrow{x})}{\partial x_1} \Delta a_1 + \dots + \frac{\partial f(\overrightarrow{x})}{\partial x_n} \Delta a_n + o(\Delta \overrightarrow{x}),$$

gdzie $\frac{o(\Delta x)}{\Delta x} \xrightarrow{\Delta x \to 0} 0$. Zatem $f(\overrightarrow{x} + \Delta \overrightarrow{x}) \approx df(\overrightarrow{x}, \Delta \overrightarrow{x}) + f(\overrightarrow{x})$. Ponadto, jeżeli przyjmie-

$$\mathrm{d}f(\overrightarrow{x}) = \left[\frac{\partial f(\overrightarrow{x})}{\partial x_1}, \cdots, \frac{\partial f(\overrightarrow{x})}{\partial x_n}\right],$$

to $df(\vec{x}, \Delta \vec{x}) = df(\vec{x}) \circ \Delta \vec{x}$, gdzie o oznacza zwykły iloczyn skalarny. Mamy postać różniczki zupełnej funkcji analogiczną do równości 7.1.

$$f(\overrightarrow{x} + \Delta \overrightarrow{x}) \approx df(\overrightarrow{x}) \circ \Delta \overrightarrow{x} + f(\overrightarrow{x})$$

Regula de l'Hospitala

Regula de l'Hospitala: jeżeli dla pewnego wyrażenia $\frac{f}{g}$ przy przejściu do granicy otrzymujemy symbol nieoznaczony $\left\lceil \frac{0}{0}\right\rceil$ lub $\left\lceil \frac{\infty}{\infty}\right\rceil$, to pod pewnymi warunkami możemy obliczyć pochodne f' i g' i wtedy $\lim \frac{f}{g} = \lim \frac{f'}{g'}$. Szczegóły zawierają częściowo następujące twierdzenia:

Lemat 8.1. Niech $f:(0,d)\to\mathbb{R}$ będzie ciągła, istnieje granica $\lim_{x\to 0^+}f(x)=0$, oraz istnieje pochodna $f'\colon(0,d)\to\mathbb{R}$ funkcji f i jej granica $\lim_{x\to 0^+}f'(x)$. Wówczas

$$\lim_{x \to 0+} \frac{f(x)}{x} = \lim_{x \to 0+} f'(x).$$

 $Dow \acute{o}d.$

$$\frac{f(x) - f(0)}{x - 0} = f'(\lambda x), \text{ gdzie } 0 < \lambda < 1.$$

Jeśli $x \to 0^+$, to $\lambda x \to 0^+$, a zatem

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} f'(x).$$

Twierdzenie 8.1. Niech $f, g: (a, b) \to \mathbb{R}$ są ciągłe w całej dziedzinie, oraz

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} g(x) = 0.$$

Dalej, niech istnieją pochodne $f', g': (a,b) \to \mathbb{R}$ odpowiednio funkcji f i g, $g' \neq 0$ oraz istnieje granica $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$. Wówczas

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}.$$

Dowód. Zdefiniujmy f(a) = g(a) = 0. Oznaczmy u = f(x). Wówczas mamy $x = \varphi(u)$, $f(x) = f(\varphi(x)) = F(u)$,

$$F'(u) = \frac{f'(x)}{g'(x)}.$$

Jeżeli $x \to a^+$, to $u \to 0^+$ i na odwrót, zatem

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{F(u)}{u} = \lim_{x \to a^+} F'(u) = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

Twierdzenie 8.2. Niech $f,g:(a,+\infty)\to\mathbb{R}$ są ciągłe dla x>a, oraz $\lim_{x\to\infty}f(x)=\lim_{x\to\infty}g(x)=0$. Niech ponadto istnieją w (a,∞) pochodne f', g' funkcji f i g oraz $g'\neq 0$. Wówczas, jeżeli istnieje

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)},$$

to

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Dowód. Niech $x = \frac{1}{u}$. Wtedy

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{u \to 0^+} \frac{f(1/u)}{g(1/u)} = \lim_{u \to 0^+} \frac{f'(1/u)(-1/u^2)}{g'(1/u)(-1/u^2)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Uwaga 8.1. W twierdzeniu 8.2 założenie

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$

można zastąpić założeniem

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty.$$

Dowód pomijamy (ćwiczenie).

Przykład. Obliczymy $\lim_{x\to 0}\frac{e^x-1}{x}$. Zauważmy, że $\lim_{x\to 0}(e^x-1)=0$ oraz $\lim_{x\to 0}x=0$ zatem nie zastosujemy twierdzeń o arytmetyce granic, gdyż mamy do czynienia z symbolem nieoznaczonym $\left[\frac{0}{0}\right]$. Jednak stosując naszą regułę łatwo dostajemy:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{(e^x - 1)'}{(x)'} = \lim_{x \to 0} \frac{e^x}{1} = \lim_{x \to 0} e^x = 1.$$

Zdarza się, że również pochodne przy przejściu do granicy dają nam jeden z wymienionych symboli nieoznaczonych - czasem regułę daje się zastosować kilka razy aż pozbędziemy się symbolu nieoznaczonego.

9 Funkcje hiperboliczne

Definicja 9.1. Sinusem hiperbolicznym nazywamy funkcję sinh: $\mathbb{R} \to \mathbb{R}$ określoną jako

$$\sinh x = \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}$$

a $cosinusem\ hiperbolicznym\ funkcję\ cosh:\mathbb{R}\to\mathbb{R}$ określoną jako

$$\cosh x = \frac{e^x + e^{-x}}{2}, x \in \mathbb{R}$$

Funkcje te narodziły się w trakcie rozważań geometrycznych, zbiór $\{(\cosh(t), \sinh(t)) : t \in \mathbb{R} \text{ jest wykresem (w tej postaci, tzw. parametryzacją) prawej (dodatniej) gałęzi hiperboli o równaniu <math>x^2-y^2=1$. (o parametryzacji krzywych powiemy trochę w rozdziale o całkowaniu). Oprócz tego używa się funkcji $tangensa\ hiperbolicznego\ tanh\ i\ cotangensa\ hiperbolicznego\ coth\ danych wzorami <math>tanh\ x=\frac{\sinh x}{\cosh x}\ i\ coth\ x=\frac{\cosh x}{\sinh x}\ dla\ dowolnych\ x\in\mathbb{R}.$

Twierdzenie 9.1. Funkcje sinh, cosh spełniają nast. tożsamości hiperboloczne

- 1. $\cosh^2 x \sinh^2 x = 1, x \in \mathbb{R}$;
- 2. $\cosh 0 = 1 \ i \sinh 0 = 0;$
- 3. $\cosh(-x) = \cosh x \ i \sinh(-x) = -\sinh x, \ x \in \mathbb{R};$
- 4. $(\sinh)' = \cosh \ oraz \ (\cosh') = \sinh$.

Dowód. Proste ćwiczenie.

Uwaga 9.1. Sinus hiperboliczny jest funkcją odwracalną. Rzeczywiście: $(\sinh x)' = \cosh x > 0$ zatem sinh jest f. ściśle monotoniczną \Rightarrow różnowartościową \Rightarrow odwracalną (uwzgl. jeszcze że $D_{\rm sinh} = R_{\rm sinh}$. Podobnie cosinus hiperboliczny jest f. odwracalną. Te funkcje odwrotne do sinusa i cosinusa hiperbolicznego nazywane są *funkcjami polowymi* lub funkcjami area i bywają w polskiej literaturze oznaczane odpowiednio arcsinh i arccosh, ale np. w literaturze anglojęzycznej przeważnie oznaczane są po prostu jako sinh⁻¹ i cosh⁻¹.

Lemat 9.1. Funkcje odwrotne do funkcji hiperbolicznych spełniają tożsamości:

$$\sinh^{-1}(y) = \ln\left(y + \sqrt{y^2 + 1}\right)$$

$$\cosh^{-1}(y) = \ln\left(y + \sqrt{y^2 - 1}\right)$$

 $Dow \acute{o}d$. Niech $y=\sinh x, x\in \mathbb{R}$ $(x=\sinh^{-1}y)$. Czyli $y=\frac{e^x-e^{-x}}{2}$. Podstawmy $t=e^x$, wówczas $y=\frac{1}{2}\left(\frac{t-1}{t}\right)$ i stąd mamy równanie $t^2-2yt-1=0$, o dwóch rozwiązaniach:

$$t = y \pm \sqrt{y^2 + 1}$$

Uwzględniając, że $t=e^x>0$ możemy wziąć $t=y+\sqrt{y^2+1}$ i stąd już logarytmując równość

 $e^x = y + \sqrt{y^2 + 1}$

otrzymujemy, że

$$\sinh^{-1} = x = \ln\left(y + \sqrt{y^2 + 1}\right).$$

Druga tożsamość z tezy dowodzimy analogicznie (ćwiczenie).

Twierdzenie 9.2. Pochodzne funkcji odwrotnych do funkcji hiperbolicznych mają postać:

$$(\sinh^{-1}(y))' = \frac{1}{\sqrt{y^2 + 1}},$$

$$(\cosh^{-1}(y))' = \frac{1}{\sqrt{y^2 - 1}}.$$

 $Dow \acute{o}d$. W oparciu o porzedni lemat i reguły różniczkowania - proste ćwiczenie.

Definicja 9.2. Tangensem hiperbolicznym nazywamy funkcję tanh określoną wzorem

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Cotangensem hiperbolicznym nazywamy funkcję coth określoną wzorem coth $x = \frac{1}{\tanh x}$.

Twierdzenie 9.3. Zachodzą tożsamości:

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

Dowód. Łatwe ćwiczenie.

10 Antypochodna albo inaczej całka nieoznaczona

Definicja 10.1. Niech $D\subseteq\mathbb{R}$ będzie przedziałem niezdegenerowanym i $f\colon D\to\mathbb{R}$. Mówimy, że funkcja $F\colon D\to\mathbb{R}$ jest funkcją pierwotną funkcji f, jeżeli funkcja F jest różniczkowalna w F oraz

$$F'(x) = f(x), x \in D.$$

Przykład. Funckja $F(x)=2x,\ x\in\mathbb{R}$ jest funkcją pierwotną funkcji $f(x)=x^2,\ x\in\mathbb{R},$ ponieważ

$$F'(x) = \left(x^2\right)' = 2x, \ x \in \mathbb{R}$$

Przykład. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie dana wzorem $f(x) = 3x - \sin(x)$. Funkcja F dana wzorem $F(x) = x^3 + \cos(x)$, $x \in \mathbb{R}$ jest funkcją pierwotną funkcji f.

Łatwo zauważyć, że każda funkcja musi mieć funkcję pierwotną.

Uwaga 10.1. Jeżeli $F_1, F_2 \colon D \to \mathbb{R}$ są funkcjami pierwotnymi funkcji f, to istnieje taka stała $C \in \mathbb{R}$, że

$$F_2(x) = F_1(x) + C, x \in D.$$

Dowód. Rozważmy funkcję $\varphi \colon D \to \mathbb{R}$ określoną wzorem $\varphi(x) = F_2(x) - F_1(x), x \in D$. Wtedy funkcja φ jest różniczkowalna, oraz $\varphi'(x) = F_2'(x) - F_1'(x) = f(x) - f(x) = 0, x \in D$. Zatem funkcja φ jest stała, tzn. istnieje $C \in \mathbb{R}$, że $\varphi(x) = C$ dla każdego $x \in D$. Stąd $F_2(x) = F_1(x) + C, x \in D$.

Definicja 10.2. Jeżeli $f: \mathbb{R} \to \mathbb{R}$ ma funkcję pierwotną, to zbiór wszystkich funkcji pierwotnych funkcji f nazywamy calka nieoznaczona albo antypochodna funkcji f i oznaczamy

$$\int f \text{ lub } \int f(x) \, \mathrm{d}x.$$

Zauważmy, że wobec poprzedniej uwagi mamy

$$\int f = \{\Phi \colon D : D \to \mathbb{R} \text{ i } \exists_{C \in \mathbb{R}} \forall_{x \in D}. \Phi(x) = F(x) + C\} = \{F + C \colon C \in \mathbb{R}\},\$$

gdzie $F\colon D\to\mathbb{R}$ jest dowolną funkcją pierwotną funkcji f. Będziemy często dla uproszczenia pisać:

$$\int f(x) dx = F(x) + C, C - dowolna stała.$$

lub

$$\int f(x) \, \mathrm{d}x = F(x) + constans.$$

Szczególnie tak "się pisze" przeprowadzając rachunki w poszukiwaniu ogólnej postaci funkcji pierwotnej z zadanej funkcji f.

Przypomnijmy, że $(\ln x)' = \frac{1}{x}$. Funkcja $x \mapsto \ln x$ jest określona tylko dla x > 0, podczas gdy funkcja $x \mapsto \frac{1}{x}$ jest określona dla wszystkich x rzeczywistych różnych od zera. Na dla jakich x możemy obliczyć $\int \frac{1}{x} dx$?

- 1.) x > 0, to oczywiście $(\ln x)' = \frac{1}{x}$.
- 2.) x<0,to wtedy |x|=-x>0i korzystając z reguły łańcuchowej oraz przykładu 6.3 możemy obliczyć

$$(\ln|x|)' = \frac{1}{|x|} \left(\frac{|x|}{x}\right)' = \frac{1}{|x|} \cdot \frac{|x|}{x} = \frac{1}{x}.$$

Zatem i w tym przypadku istnieje funkcja pierwotna dla funkcji $x \mapsto \frac{1}{x}$.

Do tego oczywiście $\ln |x| = \ln x$ dla x > 0. Zatem funkcja $F(x) = \ln |x|, x \in (-\infty, 0) \cup (0, +\infty)$ jest funkcją pierwotną funkcji $f(x) = \frac{1}{x}, x \in (-\infty, 0) \cup (0, +\infty)$ i stąd:

$$\int \frac{1}{x} \, dx = \ln|x| + C, \ x \in (-\infty, 0) \cup (0, +\infty)$$

Opierając się na wzorach podstawowych pochodnych, możemy podać listę "podstawowych" całek, z których można korzystać obliczając całki bardziej złożonych funkcji:

$$\int x^{a} dx = \frac{1}{a+1}x^{a+1} + C, C \in \mathbb{R}, dla \ a \neq 1$$

$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + C, C \in \mathbb{R}, dla \ x \in \mathbb{R} \setminus \{0\}$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, C \in \mathbb{R} (dla \ dow. \ a \in \mathbb{R})$$

$$\int e^{x} dx = e^{x} + C, C \in \mathbb{R}$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, C \in \mathbb{R}$$

$$\int \sin x dx = -\cos x + C, C \in \mathbb{R}$$

$$\int \cos x dx = \sin x + C, C \in \mathbb{R}$$

$$\int \frac{1}{\sin^{2} x} dx = -\cot x + C, C \in \mathbb{R}$$

$$\int \frac{1}{\cos^{2} x} dx = \tan x + C, C \in \mathbb{R}$$

$$\int \frac{1}{1+x^{2}} dx = \arctan x + C, C \in \mathbb{R}$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \arctan x + C, C \in \mathbb{R}$$

Sprawdzenie powyższych wzorów zalacam czytelnikowi.

Twierdzenie 10.1 (O liniowości całki). Niech $f: D \to \mathbb{R}$ oraz $g: I \to D$ będą funkcjami ciągłymi w przedziałe $D \subseteq \mathbb{R}$ a $a, b \in \mathbb{R}$ będą dane. Wówczas

$$\int (a \cdot f + b \cdot g) = a \cdot \int f + b \cdot \int g,$$

gdzie

$$a \cdot \int f + b \cdot \int g = \{a \cdot F + b \cdot G \colon F' = f \ i \ G' = g\}.$$

Twierdzenie 10.2 (O całkowaniu przez podstawienie). Niech $f: D \to \mathbb{R}$ będzie funkcją ciąglą w przedziałe $D \subseteq \mathbb{R}$ oraz niech $g: I \to D$ będzie funkcją klasy C^1 w przdziałe $I \subseteq D$. Wtedy

$$\int (f \circ g) \cdot g' = \left(\int f \right) \circ g,$$
$$gdzie \left(\int f \right) \circ g = \left\{ F \circ g \colon F \in \int f \right\}.$$

Metoda oparta o powyższe twierdzenie jest podstawą obliczania prostych całek, ale sztuka znajdywania odpowiedniego podstawienia wymaga wpary i doświadczenia. Aby sprawnie opanować tego typu rachunki, warto przeliczyć wiele przykładów.

Przykład (trywialny).

Obliczymy
$$\int \cos(2x) dx$$
. Podstawmy $t = 2x$. Wtedy $\frac{dt}{dx} = (2x)' = 2$ i stąd $dx = \frac{1}{2}t$.

Łatwo obliczamy całkę:

$$\int \cos(2x) \, dx = \int \cos(t) \frac{1}{2} \, dt = \frac{1}{2} \int \cos(t) \, dt = \frac{1}{2} \sin(t) + C$$

i pamiętając, że t = 2x mamy

$$\int \cos(2x) \, \mathrm{d}x = \frac{1}{2}\sin(2x) + C$$

Przykład (trudny).

Obliczymy
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx$$
. Podstawmy $t = x + \sqrt{a + x^2}$.

Wtedy

$$\frac{\mathrm{d}t}{\mathrm{d}x} = (x + \sqrt{a + x^2})'$$

i dalej

$$dt = \left(1 + \frac{2x}{2\sqrt{a + x^2}}\right) dx = \left(1 + \frac{x}{\sqrt{a + x^2}}\right) dx$$

czyli

$$\mathrm{d}t = \frac{\sqrt{a+x^2} + x}{\sqrt{a+x^2}} \, \mathrm{d}x.$$

Mamy

$$\int \frac{1}{\sqrt{a^2 + x^2}} \, \mathrm{d}x = \int \frac{\sqrt{a + x^2} + x}{\sqrt{a + x^2}} \left(\frac{1}{x + \sqrt{a + x^2}} \right) \, \mathrm{d}x = \int \frac{\mathrm{d}t}{t} = \ln|t| + C = \ln|x + \sqrt{a + x^2}| + C$$

Ćwiczenie. Pokazać, że

$$\int e^{ax} \, \mathrm{d}x = \frac{1}{a} e^{ax} + C, \text{ dla } a \in \mathbb{R}.$$

Przykład. Pokażemy, że jeżeli $\int f(x) dx = F(x) + C$, to $\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C$. Podstawmy t = ax + b, to wówczas $\frac{dt}{dx} = a$, czyli

$$\frac{1}{a} dt = dx.$$

Mamy $f(ax + b) dx = f(t) \frac{1}{a} dt$, czyli

$$\int f(ax+b) \, dx = \frac{1}{a} \int f(t) \, dt = \frac{1}{a} F(t) + C = \frac{1}{a} F(ax+b) + C.$$

Podstawiając $f(t)=e^t$ i t=ax otrzymujemy rozwiązanie poprzedniego ćwiczenia. A jak wygląda rozwiązanie całki $\int e^{2x+1} dx$? A dla całki $\int \sin(7x+1) dx$?

Ćwiczenie. Udowodnić, że:

1.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$
,

2.
$$\int \frac{f'(x)}{2\sqrt{f(x)}} dx = \sqrt{f(x)} + C,$$

3.
$$\int f'(x)f(x) dx = \frac{1}{2}f^2(x) + C.$$

Twierdzenie 10.3 (O całkowaniu przez części). Niech $f, g: D \to \mathbb{R}$ będą funkcjami klasy C^1 w przedziałe $D \subseteq \mathbb{R}$. Wtedy

$$\int f \cdot g' = f' \cdot g - \int f' \cdot g, \ gdzie$$

$$f' \cdot g - \int f' \cdot g = \left\{ f \cdot g - \Psi \colon \Psi \in \int f' \cdot g \right\}.$$

Przykład.

$$\int 2x \ln x \, dx = \int (x^2)' \ln x \, dx = 2x \ln x - \int x^2 (\ln x)' \, dx = 2x \ln x - \int x^2 \cdot \frac{1}{x} \, dx =$$

$$= 2x \ln x - \int x \, dx = 2x \ln x - \frac{1}{3}x^3 + C$$

Przykład.

$$\int \ln x \, dx = \int 1 \cdot \ln x \, dx = \int (x)' \cdot \ln x \, dx = x \ln x - \int x (\ln x)' \, dx =$$

$$= x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - \int dx = x \ln x - x + C$$

Przykład.

Obliczymy
$$\int x^2 \sin x \, dx$$
. Podstawmy $f'(x) = \sin x$, $g(x) = x^2$. Wtedy

$$g'(x)=2x$$
 oraz $f(x)=\int f'(x)\,\mathrm{d}x=-\cos x$ - zapominamy na chwilę o stałej.
$$\int x^2\sin x\,\mathrm{d}x=\cos x\cdot x^2+\int 2x\cos x\,\mathrm{d}x$$

zatem dalej po prawej stronie występuje całka - nie możemy tego uznać za końcowy wynik. Zatem całkujemy przez części po raz kolejny:

$$\int 2x \cos x \, dx = 2 \int x(\sin x)' \, dx = 2 \left(x \sin x - \int (x)' \sin x \, dx \right) = 2 \left(x \sin x - \int 1 \cdot \sin x \, dx \right) =$$

$$= 2(x \sin x - (-\cos x)) + C = 2(x \sin x + \cos x) + C.$$

Ostatecznie:

$$\int x^2 \sin x \, \mathrm{d}x = x^2 \cos x + 2(x \sin x + \cos x) + C.$$

Przykład (Całka "pętląca się").

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx = e^x \sin x - \left(-e^x \cos x - \int -e^x \cos x \, dx \right) = 0$$

$$e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$
. - Zauważmy, że obl
czanie po raz kolejny całki z

 $e^x \cos x$ jest bezcelowe - moglibyśmy tak obliczać w nieskończoność. Możemy jednak dodać do całego rócenania obustronnie $\int e^x \cos x \, dx$ i wtedy mamy, że

$$2\int e^x \cos x \, \mathrm{d}x = e^x (\sin x + \cos x) + C \Rightarrow \int e^x \cos x \, \mathrm{d}x = \frac{e^x}{2} (\sin x + \cos x) + C$$

Zauważmy, że nie podzieliliśmy C przez 2. Jest to zbyteczne z powodu dowolności stałej (dla stałej $\frac{1}{2}C$ przyjmujemy nową stałą $C:=\frac{1}{2}C$ - 1/2 poprzedniej stałej).

Przykład (Całkowanie "tabelkowe").

Obliczymy teraz $\int x^3 \sin x \, dx$. Tym razem pokażemy nową sztuczkę. Utwórzmy następującą tabelkę:

Uważamy na znak \downarrow	Liczymy pochodne	Liczymy całki
+	x^3	$\sin x$
_	$3x^2$	$-\cos x$
+	6x	$-\sin x$
_	6x	$\cos x$
$Koniec! \rightarrow$	0	$\sin x$

Rozwiązanie jest pewną sumą 4 iloczynów wyrażeń z tabeli (gdyż piąta pochodna funkcji $x \mapsto x^3$ jest równa zero i wszystkie pozostałe iloczyny się zerują). k-ty składnik tej sumy powstaje przez pomnożenie pochodnej z pierwszej komórki k-tego wiersza z całką z drugiej komórki (k+1)-szego(!) wiersza:

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C.$$

Przykład (Iloczyn $e^x \cdot f(x)$).

Obliczymy
$$\int e^x x^2 dx$$
.

Uważamy na znak $\ \downarrow$	Liczymy pochodne	Liczymy całki
+	x^2	e^x
_	2x	e^x
+	2	e^x
$Koniec! \rightarrow$	0	e^x

Zatem:
$$\int e^x x^2 dx = x^2 e^x - 2x \cdot e^x + 2e^x + C = e^x (x^2 - 2x + 2) + C.$$

Ćwiczenie. Obliczyć następujące trzy, proste całki:

(a)
$$\int e^x (x^3 - 1) dx$$
. (b) $\int \cos^2 x dx$. (c) $\int tg x dx$.

10.1 Całki funkcji wymiernych

Rozkład na ułamki proste:

Przykład. Obliczymy całkę $\int \frac{\mathrm{d}x}{1+x^4}.$ Zauważmy, że

$$\frac{1}{1+x^4} = \frac{1}{2} \left(\frac{1-x^2}{1+x^4} + \frac{1+x^2}{1+x^4} \right).$$

Z liniowości całki wynika, że mamy do policzenia dwie całki: $\int \frac{1-x^2}{1+x^4} \, \mathrm{d}x \quad \mathrm{i} \int \frac{1+x^2}{1+x^4} \, \mathrm{d}x.$

 $\acute{C}wiczenie.$ Udowodnić, że $\pi<\frac{22}{7}$ dowodząc, że

$$0 < \int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \, \mathrm{d}x = \frac{22}{7} - \pi.$$

Wzór redukcyjny:

$$\int \frac{\mathrm{d}x}{(1+x^2)^n} = \frac{1}{(2n-2)(1+x^2)^{n-1}} - \frac{2n-3}{2n-2} \int \frac{\mathrm{d}x}{(1+x^2)^{n-1}}, \ n \geqslant 2 \ (n \in \mathbb{N}).$$

10.2 Całki wyrażeń zawierających funkcje trygonometryczne

Podstawienie uniwersalne:

Wzory redukcyjne: Podamy jeszcze kilka wzorów rekurencyjnych, na całki z potęg funkcji trygonometrycznych. Niech $n \in \mathbb{N}$, $n \ge 2$. Wtedy

$$\int \sin^n x \, dx = \frac{n-1}{n} \int \sin^{n-2} x \, dx - \frac{1}{n} \sin^{n-1} x \cos x$$
$$\int \cos^n x \, dx = \frac{n-1}{n} \int \cos^{n-2} x \, dx - \frac{1}{n} \cos^{n-1} x \sin x$$
$$\int tg^n x \, dx = \frac{1}{n-1} tg^{n-1} x - \int tg^{n-2} x \, dx$$

10.3 Całki funkcji niewymiernych

10.3.1 Podstawienia Eulera:

I podstawienie

$$\sqrt{ax^2 + bx + c} = t \pm x\sqrt{a}, \ a > 0$$

II podstawienie

$$\sqrt{ax^2 + bx + c} = xt \pm \sqrt{c}, \ c > 0$$

III podstawienie

$$\sqrt{a(x-x_1)(x-x_2)} = |x-x_1|t, \ \Delta > 0$$

10.3.2 Metoda współczynników nieoznaczonych:

$$\int \frac{W_n(x)}{\sqrt{ax^2 + bx + c}} \, dx = (a_{n-1}x^{n-1} + \dots + a_1x + a_0)\sqrt{ax^2 + bx + c} + A \int \frac{dx}{\sqrt{ax^2 + bx + c}}.$$

$$\int \sqrt{ax^2 + bx + c} \, dx = \int \frac{ax^2 + bx + c}{\sqrt{ax^2 + bx + c}} \, dx$$

10.4 Funkcje hiperboliczneCałki funkcji hiperbolicznych

11 Całka oznaczona

11.1 Całka Darboux

Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją ograniczoną na [a,b] oraz niech

$$m = \inf \{ f(x) \colon x \in [a, b] \}$$

$$M = \sup \{ f(x) \colon x \in [a, b] \}$$

Mówimy, że $\pi = \{x_0, x_1, \dots, x_n\}$, $n \in \mathbb{N}$ jest podziałem przedziału [a, b], jeżeli $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$.

Zbiór wszystkich podziałów przedziału [a,b] oznaczamy symbolem $\mathcal{P}[a,b]$. Ustalmy $\pi = \{x_0, x_1, \dots, x_n\} \in \mathcal{P}[a,b]$. Niech

$$m_k = \inf \{ f(x) \colon x \in [x_{k-1}, x_k] \}$$

$$M_k = \sup \{ f(x) \colon x \in [x_{k-1}, x_k] \}$$

$$\Delta x_k = x_k - x_{k-1} \text{ dla } k = 1, 2, \dots, n.$$

Określamy sumę dolną

$$\underline{S}(f,\pi) = \sum_{k=1}^{n} m_k \Delta x_k$$

oraz sumę górną

$$\overline{S}(f,\pi) = \sum_{k=1}^{n} M_k \Delta x_k$$

Zauważmy, że

$$\sum_{k=1}^{n} \Delta x_k = \sum_{k=1}^{n} (x_k - x_{k-1}) = x_n - x_0 = b - a$$

oraz $m \leqslant M_k \leqslant M_k \leqslant M$, $k=1,2,\ldots,n$. Zatem $m\Delta x_n \leqslant m_k \Delta x_k \leqslant M_k \Delta x_k \leqslant M \Delta x_n$, $k=1,2,\ldots,n$. Stąd

$$\sum_{k=1}^{n} m\Delta x_{k} \leqslant \sum_{k=1}^{n} m_{k} \Delta x_{k} \leqslant \sum_{k=1}^{n} M_{k} \Delta x_{k} \leqslant \sum_{k=1}^{n} M \Delta x_{k}$$

$$m(b-a) \leqslant \underline{S}(f,\pi) \leqslant \overline{S}(f,\pi) \leqslant M(b-a).$$

Uwaga 11.1. Jeżeli $\tilde{\pi}=\{y_0,y_1,\ldots,y_m\}\in\mathcal{P}[a,b]$ jest zagęszczeniem podziału $\pi=\{x_0,x_1,\ldots,x_n\}$, tzn.

$$\{x_0, x_1, \dots, x_n\} \subseteq \{y_0, y_1, \dots, y_m\}, \ n, m \in \mathbb{M}; \ n \leqslant m,$$

to

$$S(f,\pi) \leqslant S(f,\widetilde{\pi}) \leqslant \overline{S}(f,\widetilde{\pi}) \leqslant \overline{S}(f,\pi)$$

 $Dow \acute{o}d.$

$$a = y_0 = x_0 \le y_1 \le \dots y_{j_1} = x_1 < y_{j+1} < \dots < y_{j_n} = x_2 < y_{j_{n+1}} < \dots < y_m = x_m = b.$$

 $\forall_{0 \leqslant k \leqslant n} \exists_{1 \leqslant j_k \leqslant m}. \ x = y_{j_k}$

$$\forall_{1 \leqslant k \leqslant n} \forall_{j_{k+1} \leqslant j \leqslant j_k} \cdot [y_{j-1}, y_j] \subseteq [x_{k-1}, x_k]$$

ponieważ

$$y_{j-1} \geqslant y_{k-1} \geqslant x_{k-1}$$
$$y_j \leqslant j_k = x_k.$$

Zatem

$$\begin{split} \widetilde{m}_j &= \inf \left\{ f(x) \colon x \in [y_{j-1}, y_j] \right\} \geqslant \inf \left\{ f(x) \colon x \in [x_{n-1}, x_n] \right\}, \\ \widetilde{M}_j &= \sup \left\{ f(x) \colon x \in [y_{j-1}, y_j] \right\} \leqslant \sup \left\{ f(x) \colon x \in [x_{n-1}, x_n] \right\}. \\ &\underline{S}(f, \widetilde{\pi}) \leqslant \underline{S}(f, \pi) \end{split}$$

Całka dolna

$$\underline{\int_a^b} f(x) \, \mathrm{d}x = \sup \left\{ \underline{S}(f,\pi) \colon \pi \in \mathcal{P}[a,b] \right\} = \underline{\int_a^b} f$$

Całka górna

$$\overline{\int_a^b} f(x) dx = \inf \left\{ \overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \right\} = \overline{\int_a^b} f$$

Wtedy

$$\int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \overline{\int_{a}^{b}} f(x) \, \mathrm{d}x$$

Definicja 11.1. Mówimy, że ograniczona funkcja $f:[a,b]\to\mathbb{R}$ jest całkowalna w sensie Riemanna w przedziale [a,b], jeżeli

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \overline{\int_{a}^{b}} f(x) \, \mathrm{d}x$$

Tę wspólną wartość oznaczamy

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

i nazywamy całką ozaczoną Riemanna (całką Darboux) dla funkcji f w przedziale [a,b]. Piszemy też $f \in \mathcal{R}[a,b]$.

11.2 Klasyczna całka Riemanna

Klasyczną definicję całki Riemann podał w 1854 w swojej pracy doktorskiej, a drukiem w czasopiśmie naukowym opublikowano ją w 1868 roku. Jean Darboux swoją konstrukcję całkie przedstawił w pracy z 1870, a w 1875 wykazał jej równoważność z całką Riemanna - w swojej "Rozprawie o teorii funkcji nieciągłych", w której podał też twierdzenie, które wiążemy z jego nazwiskiem.

Niech $\pi_n = \{x_0, x_1, \dots, x_n\}$ będzie podziałem przedziału [a, b]. Określmy średnicę podziału diam (π_n) następująco:

$$\operatorname{diam}(\pi_n) = \max_{k \in \{1, \dots, n\}} \Delta x_k.$$

Definicja 11.2. Ciąg podziałów $(\pi_k)_{k\in\mathbb{N}}$ nazywamy normalnym ciągiem podziałów, jeżeli

$$\lim_{k\to\infty} \operatorname{diam}(\pi_k) = 0.$$

Definicja 11.3. Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ograniczoną. Jeżeli dla dowolnego ciągu normalnego podziałów $(\pi_k)_{k\in\mathbb{N}}$ przedziału [a,b] oraz dowolnego ciągu punktów pośrednich $\xi_i \in [x_{i-1},x_i], i \in \{1,\ldots,n_k\}$ istnieje granica

$$(*)$$
 $\lim_{k\to\infty}\sum_{i=1}^{n_k}f(\xi_i)\Delta x_i$

to funkcję f nazywamy całkowalną w sensie Riemanna a granicę (*) nazywamy całką Riemanna funkcji f na przedziale [a, b].

11.3 Równoważność całki Riemanna i całki Darboux

Lemat 11.1. Sumy calkowe Riemanna zawsze leżą między odpowiadającymi im sumami górnymi i dolnymi Darboux. (Oczywiste)

Twierdzenie 11.1. Definicje całki Riemanna i Darboux są równoważne.

Dowód. Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją ograniczoną. Załóżmy, że f jest całkowalna w sensie Darboux. Ustalmy ciąg normalny podziałów $(\pi_k)_{k\in\mathbb{N}}$ przedziału [a,b] i punkty pośrednie $\xi_i, i\in\{1,\ldots,n_k\}$. Mamy

$$\sum_{i=1}^{n_k} \inf \{ f(x_i) \colon x \in [x_{i-1}, x_i] \} \Delta x_i =$$

$$\underline{S}(f, \pi_k) \leqslant \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \leqslant \overline{S}(f, \pi_k) =$$

$$= \sum_{i=1}^{n_k} \sup \{ f(x_i) \colon x \in [x_{i-1}, x_i] \} \Delta x_i \to \overline{\int_a^b} f.$$

$$\left(i \sum_{i=1}^{n_k} \inf \{ f(x_i) \colon x \in [x_{i-1}, x_i] \} \Delta x_i \to \underline{\int_a^b} f \right)$$

Z twierdzenia o trzech ciągach mamy już, że $\sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \to \int_a^b f$

W drugą stronę. Załóżmy, że funkcja fjest całkowalna w sensie Riemanna. Dla dowolnego podziału π

$$\sum_{i=1}^{n_k} \inf\{f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i \leqslant \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \leqslant \sum_{i=1}^{n_k} \sup\{f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i.$$

(Można dobrać ξ_i aby odległości były dowolnie małe.)

Jeśli weźmiemy ciąg normalny podziałów $(\pi_k)_{k\in\mathbb{N}}$, to dla każdego k wybieramy takie punkty pośrednie ξ_i , żeby spełniało nierówność

$$\overline{S}(f, \pi_k) - \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i < \frac{1}{k}.$$

Jeżeli $k \to \infty$, to

$$\lim_{k \to \infty} \left(\overline{S}(f, \pi_k) - \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \right) = 0.$$

Granica $\lim_{k\to\infty}\sum_{i=1}^{n_k}f(\xi_i)\Delta x_i=I$ istnieje z założenia o całkowalności w sensie Riemanna.

Czyli istnieje granica $\lim_{k\to\infty} \overline{S}(f,\pi_k) = \overline{\int_a^b} f = I$. Analogicznie dla dowolnego k dobieramy ξ_i , żeby zachodziło

$$\sum_{i=1}^{n_k} f(\xi_i) \Delta x_i - \underline{S}(f, \pi_k) < \frac{1}{k}.$$

W ten sposób analogicznie otrzymaliśmy $\int_a^b f = I$. Ostatecznie $\int_a^b f = \overline{\int_a^b} f$.

Uwaga 11.2 (Jeszcze jedno równoważne podejście). Ustalamy ciąg normalny $(\pi_n)_{n\in\mathbb{N}}$ podziałów funkcji ograniczonej $f: [a,b] \to \mathbb{R}$.

$$\lim_{n\to\infty} \operatorname{diam}(\pi_n) = 0.$$

Wtedy istnieją granice

$$\lim_{n\to\infty} \underline{S}(f,\pi_n), \lim_{n\to\infty} \overline{S}(f,\pi_n)$$

Całka dolna

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \underline{S}(f, \pi_n)$$

Całka górna

$$\overline{\int_a^b} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \overline{S}(f, \pi_n)$$

Z definicji wynika nierówność $\underline{\int_a^b} f(x) \, \mathrm{d}x \leq \overline{\int_a^b} f(x) \, \mathrm{d}x$. Gdy całki górna i dolna w powyższym sensie są sobie równe, to ponownie mówimy, że f jest całkowalna w sensie Riemanna i przyjmujemy $\int_a^b f(x) \, \mathrm{d}x = \underline{\int_a^b} f(x) \, \mathrm{d}x = \overline{\int_a^b} f(x) \, \mathrm{d}x$.

W ogólności wyznaczanie całek Riemanna z definicji jest bardzo trudne. Po omówieniu twierdzeń o całkowaniu podamy kilka skromnych, łatwiejszych przykładów takich rozumowań. Istnieje wiele metod rachunkowych liczenia całek z pominięciem definicji, w oparciu o tablice znanych całek (podobnie jak korzystamy z pewnych "standardowych" pochodnych) - zademonstrujemy jednak tylko kilka z nich. Niestety, takie metody rachunkowe stosują się tylko do pewnych klas funkcji i na dodatek - są trudniejsze od metod wyznaczania pochodnych. Podamy za to przykład funkcji niecałkowalnej w sensie Riemanna i uzasadnimy ten fakt z definicji Darboux.

Przykład. Funkcja $D: [a, b] \to \mathbb{R}$ (przedz. $[a, b] \subseteq \mathbb{R}$ jest dowolny) określona wzorem

$$D(x) = \begin{cases} 0 & \text{dla } x \in \mathbb{R}; \\ 1 & \text{dla } x \in \mathbb{Q}. \end{cases}$$

(znana jako Funkcja Dirichleta) nie jest całkowalna w sensie Riemanna. Rzeczywiście, łatwo zauważymy, że dla **każdego** podziału π przedziału [a,b] musi być $\overline{S}(f,\pi)=1$ i $\underline{S}(f,\pi)=0$. Zatem

$$0 = \int_a^b D(x) \, \mathrm{d}x \neq \overline{\int_a^b} D(x) \, \mathrm{d}x = 1.$$

Interpretacja geometryczna całki Riemanna: Jeżeli funkcja $f:[a,b] \to \mathbb{R}$ jest w [a,b] nieujemna, to:

$$\int_a^b f(x) \, \mathrm{d}x \text{ jest polem figury } \{(x,y) \in \mathbb{R} \colon 0 \leqslant y \leqslant f(x), x \in [a,b]\}$$

tj. obszaru ograniczonego osią OX, prostymi x=a, x=b i wykresem (krzywą) funkcji f.

Przykład. W oparciu o to co powiedzieliśmy, możemy np. nie przeprowadzając żadnych rachunków i ścisłych rozważań teoretycznych uzasadnić, że

$$\int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x = \frac{\pi}{4}.$$

Zauważmy, że ponieważ $y^2+x^2=1$ jest równaniem wyznaczającym okrąg o środku w punkcie (0,0) i promieniu długości 1, to po przekształceniu tego równania do postaci: $y=\pm\sqrt{1-x^2},$ wykres funkcji f(x)=y jest górną lub dolną połową okręgu (zależnie od wybranego znaku). Czyli nasza całka wyraża pole **ćwiartki** okręgu $(x\in[0,1],y\geqslant0,$ *ćwiczenie*: wykonać rysunek tej sytuacji) a więc wynosi $\frac{\pi}{4}$.

11.4 Twierdzenia o całkowaniu

11.4.1 Kryteria całkowalności

Twierdzenie 11.2 (I kryterium całkowalności w sensie Riemanna). Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ograniczoną. Funkcja f jest całkowalna w sensie Riemanna wtedy i tylko wtedy, gdy

$$(*) \ \forall_{\varepsilon>0} \exists_{\pi \in \mathcal{P}[a,b]}. \ \overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$$

 $Dow \acute{o}d$. Najpierw załóżmy, że $f \in \mathcal{R}[a,b]$, czyli

$$I = \underbrace{\int_{\underline{a}}^{b} f} = \overline{\int_{a}^{b} f}$$

$$\underbrace{\frac{\int_{\underline{a}}^{b} f}{\int_{a}^{b} f}} = \sup \{\underline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b]\}$$

$$\overline{\int_{a}^{b} f} = \inf \{\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b]\}$$

Ustalmy dowolne $\varepsilon > 0$. Istnieje $\pi_1 \in \mathcal{P}[a, b]$ takie, że

$$I - \frac{\varepsilon}{2} < \underline{S}(f, \pi_1)$$

oraz $\pi_2 \in \mathcal{P}[a,b]$, że

$$\overline{S}(f, \pi_2) < I + \frac{\varepsilon}{2}$$

Niech $\pi = \pi_1 \cup \pi_2$. Wtedy π jest zagęszczeniem podziałów π_1 oraz π_2 i mamy

$$I - \frac{\varepsilon}{2} < \underline{S}(f, \pi_1) \leqslant \underline{S}(f, \pi) \leqslant \overline{S}(f, \pi) \leqslant \overline{S}(f, \pi_2) < I + \frac{\varepsilon}{2}.$$

Zatem $\overline{S}(f,\pi) - \underline{S}(f,\pi) \leqslant I + \frac{\varepsilon}{2} - \underline{S}(f,\pi)$ ale $\underline{S}(f,\pi) > I - \frac{\varepsilon}{2}$ i $I + \frac{\varepsilon}{2} \geqslant 0$ wiec

$$I + \frac{\varepsilon}{2} - \underline{S}(f, \pi) < I + \frac{\varepsilon}{2} - \left(I - \frac{\varepsilon}{2}\right) = \varepsilon$$

i stąd

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$$

Teraz załóżmy, że spełniony jest warunek (*). Ustalmy $\varepsilon > 0$. Z (*) istnieje taki podział $\pi \in \mathcal{P}[a,b]$, że

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$$

Ale

$$\underline{S}(f,\pi) < \varepsilon \leqslant \underline{\int_a^b} f \leqslant \overline{\int_a^b} f \leqslant \overline{S}(f,\pi)$$

$$\overline{\int_a^b} f - \underline{\int_a^b} f < \varepsilon$$

Z dowolności wybour ε otrzymujemy, że

$$0\leqslant \overline{\int_a^b}f-\int_a^bf\leqslant 0\Rightarrow \overline{\int_a^b}f=\int_a^bf.$$

Twierdzenie 11.3 (II kryterium całkowalności w sensie Riemanna). Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ograniczoną. Funkcja f jest całkowalna wtedy i tylko wtedy, gdy

$$(*) \ \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{\pi \in \mathcal{P}[a,b]}. \ \mathrm{diam}(\pi) < \delta \Rightarrow \overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$$

Dowód. Pracujemy nad tym...

Twierdzenie 11.4 (III kryterium całkowalności w sensie Riemanna). Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ograniczoną, a $\pi = \{x_0, x_1, \dots, x_n\}$ podziałem przedziału [a,b]. Liczbę $\omega_i := \|a\| \|b\|$

 $M_i - m_i$ nazwiemy "oscylacją" funkcji f na przedziale $[x_{i-1}, x_i]$, $i \in \{1, ..., n\}$. Funkcja f jest całkowalna w sensie Riemanna na przedziale [a, b] wtedy i tylko wtedy, gdy

$$\lim_{\delta_n \to 0} \sum_{i=1}^n \omega_i \Delta x_i = 0.$$

11.4.2 Własności całki Riemanna

Twierdzenie 11.5. Jeżeli f jest funkcją całkowalną w przedziale [a, b], to

$$m(b-a) \leqslant \int_a^b f \leqslant M(b-a).$$

(prosty dowód, z definicji.)

Jeżeli ponadto $f \geqslant 0$ to z powyższej równości natychmiast mamy, że

$$\int_{a}^{b} f \geqslant 0.$$

Twierdzenie 11.6. Jeżeli f, g są funkcjami całkowalnymi w przedziale [a, b] oraz $f \leq g$, to

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

 $Dow \acute{o}d.$ Ustalamy π - podział przedziału [a,b]. Dla każdego $i \in \{1,\ldots,n\}$ oznaczamy

$$m_i(f) = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

$$M_i(g) = \sup_{x \in [x_{i-1}, x_i]} g(x)$$

Mamy

$$\sum_{i=1}^n m_i(f) \Delta x_i \leqslant \sum_{i=1}^n M_i(g) = \underline{S}(g,\pi) \leqslant \underline{\int_a^b} g = \int_a^b g. \text{ (g jest całkowalna)}$$

Zatem:

$$\forall_{\pi \in \mathcal{P}[a,b]}.\ \underline{S}(f,\pi) \leqslant \int_a^b g.$$

$$\int_a^b f = \int_{\underline{a}}^b f = \sup\{\underline{S}(f,\pi)\colon \pi \in \mathcal{P}[a,b]\} \leqslant \int_a^b g.$$

Twierdzenie 11.7. Jeżeli f jest funkcją całkowalną w na przedziale [a,b] a λ dowolną liczbą rzeczywistą, to funkcja λf jest całkowalna na przedziale [a,b] oraz

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

Dowód. Przypomnijmy, że

$$\sup \lambda A = \lambda \sup A,$$
$$\inf \lambda A = \lambda \inf A$$

dla dow. zbioru
 $A\subseteq\mathbb{R}$ i $\lambda\geqslant 0.$ Rozważymy przypadki:

1) $\lambda > 0$. Niech $\pi \in \mathcal{P}[a, b]$.

$$\overline{S}(\lambda f, \pi) - \underline{S}(\lambda f, \pi) = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left(\sup \{ \lambda f(x) \colon x \in [x_i$$

$$= \lambda \left(\overline{S}(f, \pi) - \underline{S}(f, \pi) \right)$$

$$\int_a^b \lambda f = \sup\{\overline{S}(\lambda f, \pi) \colon \pi \in \mathcal{P}\} = \sup\{\lambda \overline{S}(f, \pi)\} = \lambda \int_a^b f = \lambda \int_a^b f, \text{ bo } f \text{ jest całkowalna.}$$

Analogicznie pokazujemy, że $\underline{\int_a^b \lambda f} = \lambda \underline{\int_a^b f} = \lambda \int_a^b f$. Mamy, że $\underline{\int_a^b \lambda f} = \overline{\int_a^b \lambda f}$ i ostatecznie

 λf jest całkowalna a ponadto z wyprowadzonych po drodze równości wynika, że

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

2) $\lambda = -1$. Przypomnijmy jeszcze wzory

$$\sup(-A) = -\inf A$$

$$\inf(-A) = -\sup A$$

dla dow. $A \subseteq \mathbb{R}($, gdzie $-A = \{-a \colon a \in A\})$.

$$\underline{S}(-f,\pi) = \sum_{i=1}^{n} \inf\{-f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i = -\sum_{i=1}^{n} \sup\{f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i = -\overline{S}(f,\pi).$$

Podobnie $\overline{S}(-f,\pi) = -\underline{S}(f,\pi)$.

$$\int_{a}^{b} (-f) = \sup \{ \underline{S}(-f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \sup \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \lim_{a \to \infty} \{ -\overline{S}($$

$$-\inf\{\overline{S}(f,\pi)\colon \pi\in\mathcal{P}[a,b]\} = -\int_{a}^{b} f = -\int_{a}^{b} f.$$

Analogicznie

$$\overline{\int_a^b}(-f) = -\underline{\int_a^b}f = -\int_a^bf.$$

-fjest całkowalna ponieważ $\overline{\int_a^b}(-f)=\underline{\int_a^b}(-f).$

 $^{^{21}\}lambda A := \{\lambda a \colon a \in A\}$

3) $\lambda < 0$. Wtedy $-\lambda > 0$.

$$\underline{\int_a^b} \lambda f = \underline{\int_a^b} \left(-(-\lambda) f \right) = -\overline{\int_a^b} \left((-\lambda) f \right) = -(-\lambda) \int_a^b f = \lambda \int_a^b f.$$

Analogicznie możemy pokazać, że również

$$\overline{\int_a^b} \lambda f = \overline{\int_a^b} (-(-\lambda)f) = \lambda \int_a^b f.$$

Ostatecznie λf jest całkowalna w przedziale [a, b] i

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

Twierdzenie 11.8 (Addytywność całki). Niech f_1, f_2 będą funkcjami całkowalnymi w przedziale [a,b]. Wówczas funkcja $f_1 + f_2$ jest również całkowalna w przedziale [a,b] oraz

$$\int_{a}^{b} (f_1 + f_2) = \int_{a}^{b} f_1 + \int_{a}^{b} f_2.$$

Dowód.Ćwiczenie. Całkowalność z pomocą I-szego kryterium całkowalności, równość w tezie z definicji. $\hfill\Box$

Dla swobody rachunków, z poprzednich dwóch twierdzeń należy po prostu zapamiętać, że

$$\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g, \ \alpha, \beta \in \mathbb{R} \text{ - dowolne stałe.}$$

Twierdzenie 11.9. Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ograniczoną oraz niech $c \in (a,b)$. Wówczas f jest całkowalna w przedziałe [a,b] wtedy i tylko wtedy, gdy $f|_{[a,c]}$ i $f|_{[c,b]}$ są całkowalne odpowiednio w przedziałach [a,c] i [c,b]. Wtedy

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Uogólniając powyższe twierdzenie dostajemy

Twierdzenie 11.10. Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ograniczoną oraz P_j będą takimi przedziałami domkniętymi, że

$$[a,b] = \bigcup_{j=1}^{m} P_j$$

oraz inf $P_i \cap \inf P_j = \emptyset, i \neq j$. Wówczas f jest całkowalna w przedziale [a,b] wtedy i tylko wtedy, gdy dla każdego $j \in \{1,\ldots,m\}$ $f|_{P_i}$ jest całkowalna w przedziale P_j . Ponadto

$$\int_a^b f = \sum_{j=1}^m \int_{P_j} f.$$

Twierdzenie 11.11. *Jeżeli f jest całkowalna na przedziale* [a,b] *to jest całkowalna w dowolnym przedziale* $[\alpha,\beta] \subseteq [a,b]$.

Twierdzenie 11.12. Niech f będzie całkowalna w przedziale [a,b] oraz g: $[\inf f[a,b], \sup f[a,b]] \rightarrow \mathbb{R}$ będzie funkcją ciąglą. Wówczas $g \circ f$ jest całkowalna w przedziale [a,b].

11.5 Klasy funkcji całkowalnych

Twierdzenie 11.13. Każda funkcja ciągła $f:[a,b] \to \mathbb{R}$ jest całkowalna w sensie Riemanna.

Dowód. Funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła i określona na przedziale domkniętym (czyli zbiorze zwartym) a stąd jest jednostajnie ciągła na mocy twierdzenia 5.7 Heinego-Cantora. Pokażemy, że funkcja spełnia warunek (*) z I-szego kryterium całkowalności (tw. 11.2). Ustalmy $\varepsilon>0$. Z jednostajnej ciągłości istnieje $\delta>0$ takie, że

$$\forall_{x,y\in[a,b]}\left(|x-y|<\delta\Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{b-a}\right).$$

Niech $\pi = \{x_0, \dots, x_n\}$ będzie takim podziałem przedziału [a, b], że diam $(\pi) < \delta$. Wtedy

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) = \sum_{k=1}^{n} (M_k - M_k) \Delta x_k < \sum_{k=1}^{n} \frac{\varepsilon}{b-a} \Delta x_k = \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

Z I-szego kryterium całkowalności wynika, że funkcja f jest całkowalna w przedziale [a,b].

Twierdzenie 11.14. *Każda funkcja monotoniczna* $f:[a,b] \to \mathbb{R}$ *jest całkowalna w sensie Riemanna.*

Dowód. Jeżeli funkcja f jest funkcją stałą, to teza wynika natychmiastowo. Załóżmy, że f jest funkcją niemalejącą, różną od stałej - $f(a) \neq f(b)$.

Ustalmy $\varepsilon > 0$. Weźmy podział $\pi = \{x_0, \dots, x_n\}$ przedziału [a, b], że diam $(\pi) < \frac{\varepsilon}{f(b) - f(a)}$. Wówczas

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \left(\sum_{k=1}^{n} (M_k - m_k)\right) \cdot \frac{\varepsilon}{f(b) - f(a)}.$$

Ale $M_i = f(x_i), m_i = f(x_{i-1})$. Czyli

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) < \frac{\varepsilon}{f(b) - f(a)} \cdot \underbrace{(f(x_n) - f(x_0))}_{\parallel} = \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon.$$

$$\sum_{k=1}^{n} (f(x_k) - f(x_{k-1}))$$

Twierdzenie 11.15. Każda funkcja wypukła jest całkowalna w sensie Riemanna.

Dowód. Wynika z twierdzeń 6.14 i 11.13.

Przykład. Obliczymy całkę funkcji $f\colon [0,1]\to \mathbb{R}$ określonej jako $f(x)=x, x\in [0,1]$. Funkcja ta jest ciągła, więc całka jest równa **dowolnej** sumie całkowej (dolnej/górnej sumie Darboux, sumie Riemanna): Podzielmy przedział [0,1] na n równych części uzyskując podział

$$\pi = \left\{ \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} \right\}.$$

Czyli punkty $x_k = \frac{k-1}{n}$ dla $k = 1, 2, \dots, n$ stanowią punkty podziału π . Łatwo też sprawdzimy, że długości przedziałów się zgadzają: $\frac{1}{n}$. $\Delta x_k = x_k - x_{k-1} = \frac{k}{n} - \frac{k-1}{n} = \frac{1}{n}$ (tak jak już powiedzieliśmy - przedział podzieliliśmy na n równych części.) Dalej, weźmy $\xi_k = \frac{k}{n} \in [x_{k-1}, x_k]$ i wówczas $f(\xi_k) = \xi_k = \frac{k}{n}$. Czyli mamy

$$\int_0^1 f(x) dx = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \Delta x_k = \lim_{n \to \infty} \sum_{k=1}^n \frac{k}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n k =$$

$$= \lim_{n \to \infty} \frac{1}{n^2} \frac{n(n+1)}{2} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} = \frac{1}{2}.$$

Przykład. Obliczymy całkę funkcji $f: \mathbb{R} \to [-1,1]$ określonej jako $f(x) = \sin x, x \in \mathbb{R}.$ Przykład. Obliczymy całkę funkcji $f: \mathbb{R} \to \mathbb{R}$ określonej wzorem $f(x) = x^2, x \in \mathbb{R}$ w przedziałe [0,a], gdzie a>0 jest dane. Przyjmujemy $\pi_n:=\left\{\frac{a}{n},\frac{2a}{n},\ldots,\frac{(n-1)a}{n},\frac{na}{n}\right\}$ i

$$\Delta x_k := \frac{a}{n}, \quad \xi_k := x_k$$

Wówczas

$$\lim_{n \to \infty} \operatorname{diam}(\pi_n) = \lim_{n \to \infty} \frac{a}{n} = 0.$$

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k = \sum_{k=1}^{n} f\left(\frac{ka}{n}\right) \frac{a}{n} = \sum_{k=1}^{n} \left(\frac{ka}{n}\right)^2 \frac{a}{n} =$$

$$= \sum_{k=1}^{n} k^2 \left(\frac{a}{n}\right)^3 = \left(\frac{a}{n}\right)^3 \frac{n(n+1)(2n+1)}{6} \xrightarrow{n \to \infty} \frac{a^3}{6}$$

Ćwiczenie. Obliczyć **z definicji** całkę funkcji $f:[0,2]\to\mathbb{R}$ (na przedziale [1,10]) danej wzorem f(x)=x+1.

Przykład. Pokażemy, że następująca funkcja $f:[0,1] \to \mathbb{R}$ (f. Riemanna) jest niemalejącą, nieciągłą w całej dziedzinie funkcją całkowalną w sensie Riemanna:

$$f(x) = \begin{cases} 0 & \text{dla } x \in [0,1] \setminus \mathbb{Q}; \\ \frac{1}{q} & \text{dla } x = \frac{p}{q}, p, q \in \mathbb{N}, NWD(p,q) = 1; \\ 1 & \text{dla } x = 0. \end{cases}$$

- 1. Z własności liczb rzeczywistych i określenia funkcji, oczywiste jest że nie jest ona monotoniczna w przedziale [0, 1].
- 2. Rozważmy dowolny $a \in [a,b] \cap \mathbb{Q}$. Każda liczba rzeczywista jest granicą pewnego ciągu liczb rzeczywistych, ale weźmy np. ciąg $(x_n)_{n \in \mathbb{N}}$ określony wzorem $x_n = \frac{p}{q} + \frac{1}{n}$ dla pewnych $p,q \in \mathbb{Z}$. Wtedy $x_n \to \frac{p}{q} \in \mathbb{Q}$ i $x_n \in \mathbb{Q}, n \in \mathbb{N}$ ale $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{nq} = 0 \neq f(\frac{p}{q}) = \frac{1}{q}$. Zatem f nie jest ciągła w przedziale [0,1] (aczkolwiek można pokazać, że jest ciągła w punktach niewymiernych swojej dziedziny!)
- 3. Oczywiste jest, że $\underline{S}(f,\pi)=0$ dla dowolnego podziału π odcinka [0,1]. (W każdym podprzedziale $[x_{k-1},x_k]$ prz. [0,1] znajdziemy liczbę niewym. i $m_k=0$). Zatem

$$\underline{\int_0^1} f = 0.$$

 $f\geqslant 0, \int\limits_0^{\overline{1}}f\geqslant 0.$ Pokażemy, że dla dowolnego $\varepsilon>0$ istnieje $\overline{S}(f,\pi)<\varepsilon$ i tym samym $\overline{1}\int\limits_0^{\overline{1}}f=0.$ Ustalmy $\varepsilon>0.$ Weźmy $N\in\mathbb{N}$ takie, że $\frac{1}{N}<\frac{\varepsilon}{2}.$ Rozważmy zbiór

$$A = \left\{ \frac{p}{q} \colon p \leqslant q, \ q < N, p, q \in \mathbb{N} \right\}.$$

Zbiór A jest skończony. Niech m=|A|. Podzielmy przedział [0,1] na $n=m\cdot N$ równych części. Wybieramy punkty podziału $0=\frac{0}{n}<\frac{1}{n}<\frac{1}{n}<\frac{2}{n}<\ldots<\frac{n-1}{n}<\frac{n}{n}=1$ uzyskując podział π_k przedziału [0,1]. Określamy $S(f,\pi_k)$:

$$\overline{S}(f, \pi_k) = \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A = \varnothing}} M_k \Delta x_k + \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A \neq \varnothing}} M_k \Delta x_k \leqslant$$

$$\leqslant \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A = \varnothing}} 1 \cdot \frac{1}{n} + \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A \neq \varnothing}} \frac{1}{N} \cdot \frac{1}{n} \leqslant$$

$$\leqslant \frac{m}{n} + n \cdot \frac{1}{N} \cdot \frac{1}{n} = \frac{m}{n} + \frac{1}{N} = \frac{m}{m \cdot N} + \frac{1}{N} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Z dowolności wyboru ε mamy $\inf\{\overline{S}(f,\pi)\colon \pi$ jest podziałem przedziału $[0,1]\}=0.$ Zatem

$$\overline{\int_0^1} f = \int_0^1 f = 0 \text{ i stad } \int_0^1 f = 0.$$

11.6 Wzór Newtona-Leibniza

Definicja 11.4. Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją całkowalną w sensie Riemanna oraz niech $F:[a,b]\to\mathbb{R}$ będzie dana wzorem

(11.1)
$$F(x) = \int_{a}^{x} f(t) dt, x \in [a, b]$$

Funkcję F nazywamy funkcją $g\'{o}rnej$ granicy całkowania.

Twierdzenie 11.16 (Zasadnicze Twierdzenie Rachunku Całkowego). Niech $f \in \mathcal{R}[a,b]$ oraz $F: [a,b] \to \mathbb{R}$ będzie dana wzorem 11.1. Wówczas

- F jest ciaqla:
- jeżeli f jest ciągła w $x_0 \in [a, b]$, to F jest różniczkowalna w x_0 oraz zachodzi wzór

$$F'(x_0) = f(x_0).$$

Dowód. Załóżmy, że f jest całowalna na przedziale [a,b]. Ustalmy $x,y \in [a,b], \ x < y$. Wtedy

$$|F(y) - F(x)| = \left| \int_a^y f(t) dt - \int_a^x f(t) dt \right| =$$

$$\left| \int_a^x f(t) \, \mathrm{d}t + \int_x^y f(t) \, \mathrm{d}t - \int_a^x f(t) \, \mathrm{d}t \right| = \left| \int_x^y f(t) \, \mathrm{d}t \right| \leqslant \int_x^y |f(t)| \, \mathrm{d}t \leqslant \int_x^y M \, \mathrm{d}t = M(x - y).$$

Czyli $|F(y) - F(x)| \le M|x - y|$; $x, y \in [a, b]$. Funkcja F spełnia warunek Lipschitza, ze stałą M > 0, zatem jest jednostajnie ciągła.

Załóżmy, że f jest ciągła w punkcie x_0 .

Ustalmy $\varepsilon > 0$. Mamy

$$\exists_{\delta>0} \forall_{x \in [a,b]} (|x-x_0| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon).$$

$$\forall_{x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]}. f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon.$$

Ustalmy $h \in \mathbb{R}$, $|h| < \delta$. Rozważmy przypadki:

• h > 0. Ze stosownych własności całki:

$$\int_{x_0}^{x_0+h} (f(x_0) - \varepsilon) \, \mathrm{d}x \le \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x \le \int_{x_0}^{x_0+h} (f(x_0) + \varepsilon) \, \mathrm{d}x$$
$$(f(x_0) - \varepsilon)h \le \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x \le (f(x_0) + \varepsilon)h$$

Dzielimy obustronnie przez h i mamy

$$f(x_0) - \varepsilon \leqslant \frac{1}{h} \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x \leqslant f(x_0) + \varepsilon.$$

• h < 0. Mamy

$$\int_{x_0+h}^{x_0} (f(x_0) - \varepsilon) \, \mathrm{d}x \le \int_{x_0+h}^{x_0} f(x) \, \mathrm{d}x \le \int_{x_0+h}^{x_0} (f(x_0) + \varepsilon) \, \mathrm{d}x$$
$$(f(x_0) - \varepsilon)(-h) \le \int_{x_0+h}^{x_0} f(x) \, \mathrm{d}x \le (f(x_0) + \varepsilon)(-h)$$

Pamiętamy (własność), że gdy zamieniamy granice całkowania to zmieniamy znak całki. Mamy

$$f(x_0) - \varepsilon \leqslant \frac{1}{h} \int_{x_0}^{x_0+h} f(x) dx \leqslant f(x_0) + \varepsilon.$$

Zatem, dla każdego
$$h \in (-\delta, \delta) \setminus \{0\}, \ \left| \frac{1}{h} \int_{x_0}^{x_0 + h} f(x) \, \mathrm{d}x - f(x_0) \right| \leqslant \varepsilon \text{ czyli}$$
$$\lim_{h \to 0} \frac{1}{h} \int_{x_0}^{x_0 + h} f(x) \, \mathrm{d}x = f(x_0).$$

$$F(x_0 + h) - F(x_0) = \int_a^{x_0 + h} f(x) \, \mathrm{d}x - \int_a^{x_0} f(x) \, \mathrm{d}x = \int_{x_0}^{x_0 + h} f(x) \, \mathrm{d}x.$$
 Jest $\frac{1}{h} \int_{x_0}^{x_0 + h} f(x) \, \mathrm{d}x = \frac{F(x_0 + h) - F(x_0)}{h}$ i dalej $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$. Zatem F jest różniczkowalna w x_0 oraz $F'(x_0) = f(x_0)$.

Zatem, jeżeli f jest ciągła w zadanym przedziale (a,b), to F jest funkcją pierwotną funkcji f w tym przedziale (funkcją pierwotną funkcji $f|_{(a,b)}$).

Twierdzenie (Wzór Newtona Leibniza). Załóżmy, że $f:[a,b] \to \mathbb{R}$ jest całkowalna w sensie Riemanna oraz ma funkcję pierwotną $\Phi:[a,b] \to \mathbb{R}$. Wówczas

(11.2)
$$\int_{a}^{b} f(x) \, \mathrm{d}x = \Phi(b) - \Phi(a).$$

Dowód. Ustalmy $\varepsilon > 0$. f jest całkowalna, czyli istnieje taki podział $\pi = \{x_0, \dots, x_n\}$ przedziału [a, b], że

(11.3)
$$\overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon.$$

Ponadto mamy

(11.4)
$$\underline{S}(f,\pi) \leqslant \int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \overline{S}(f,\pi).$$

f ma funkcję pierwotną. $\Phi'(x) = f(x), x \in [a, b]$. Z twierdzenia Lagrange'a o wartości średniej dla każdego $i \in \{1, \ldots, n\}$ istnieje $\xi \in (x_{i-1}, x_i)$.

(11.5)
$$\frac{\Phi(x_i) - \Phi(x_{i-1})}{x_i - x_{i-1}} = \Phi'(\xi_i) = f(\xi_i).$$

Mamy $m_i \leqslant f(\xi_i) \leqslant M_i$,

$$\underline{S}(f,\pi) \leqslant \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant \overline{S}(f,\pi)$$

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i \stackrel{\text{(11.5)}}{=} \sum_{i=1}^{n} (\Phi(x_i) - \Phi(x_{i-1})) = \Phi(x_n) - \Phi(x_0) = \Phi(b) - \Phi(a) \text{ zatem}$$

(11.6)
$$\underline{S}(f,\pi) \leqslant \Phi(b) - \Phi(a) \leqslant \overline{S}(f,\pi).$$

Z równości 11.3, 11.4, 11.6 mamy

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - (\Phi(b) - \Phi(a)) \right| < \varepsilon.$$

Z dowolności wyboru ε mamy, że

$$\int_{a}^{b} f(x) dx = \Phi(b) - \Phi(a).$$

Rozważmy funkcję f - ciągłą i niech Φ będzie jakąkolwiek jej funkcją pierwotną. Wtedy również funkcja górnej granicy całkowania F funkcji f jest jej funkcją pierwotną. Istnieje takie $C \in \mathbb{R}$, że dla każdego $x \in [a,b]$ $F(x) = \Phi(x) + C$.

$$F(b) - F(a) = \int_{a}^{b} f(x) dx - \int_{a}^{a} f(x) dx = \int_{a}^{b} f(x) dx.$$
$$F(b) - F(a) = \Phi(b) + C - \Phi(a) - C = \Phi(b) - \Phi(a).$$

Wniosek 5. Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją ciągłą. Wówczas

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

gdzie $F: [a, b] \to \mathbb{R}$ jest jakąkolwiek funkcją pierwotną funkcji f.

Uwaga 11.3. Istnieją funkcje całkowalne w sensie, które Riemanna nie mają funkcji pierwotnej i odwrotnie - istnieją funkcje mające f. pierwotne ale nie będące całkowalnymi w sensie Riemanna.

Przykład.
$$\int_0^T (v_0 + gt) dt = \left[v_0 t + \frac{1}{2} g t^2 \right]_0^T = v_0 T + \frac{1}{2} g T^2.$$

Twierdzenie 11.17 (O całkowaniu przez części). Załóżmy, że $f,g:[a,b]\to\mathbb{R}$ są takimi funkcjami różniczkowalnymi, że f',g' są całkowalne w przedziałe [a,b]. Wówczas

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx.$$

Dowód. f, g jako różniczkowalne są też ciągłe a stąd całkowalne (tw. 11.13). Do tego f', g' są ciągłe z założenia i mamy, że

ciągłe są funkcje f'g, fg' oraz f'g + fg'.

Dalej (fg)' = f'g + fg', zatem fg jest funkcją pierwotną dla funkcji f'g + fg'. Ostatecznie

$$\int_{a}^{b} \left(f'g + fg' \right) = f(x)g(x) \Big|_{a}^{b}.$$

Twierdzenie 11.18 (O całkowaniu przez podstawienie). $Załóżmy, że f \colon [a,b] \to \mathbb{R}$ jest $funkcją\ ciąglą,\ a\ \varphi\colon [\alpha,\beta]\to [a,b]\ jest\ taką\ funkcją\ różniczkowalną,\ że\ \varphi'\ jest\ całkowalna$ $w \ przdziale \ [a,b]. \ W\'owczas$

$$\int_{a}^{b} f(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(x)) \varphi'(x) dx.$$

Dowód. f jest ciągła, więc całkowalna w przedz. [a,b]. φ jest różniczkowalna, stąd ciągła i również różniczkowalna w $[\alpha, \beta]$.

 $f \circ \varphi$ jest całkowalna w $[\alpha, \beta]$,

 $(f \circ \varphi) \circ \varphi'$ jest całkowalna w $[\alpha, \beta]$.

F - funkcja pierwotna dla f.

$$(F \circ \varphi)'(x) = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x).$$

 $F \circ \varphi$ jet funkcją pierwotną dla $(f \circ \varphi)\varphi'$, czyli

$$\int_{\alpha}^{\beta} f(\varphi(x)) \varphi'(x) dx = F(\varphi(\beta)) - F(\varphi(\alpha)) = (*).$$

Jeżeli
$$\varphi(\alpha) < \varphi(\beta)$$
, to $(*) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt$.

Dla
$$\varphi(\alpha) = \varphi(\beta) = 0 = (*) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt.$$

Jeśli $\varphi(\alpha) > \varphi(\beta)$, to $(*) = -(F(\varphi(\alpha)) - F(\varphi(\beta))) =$

Jeśli
$$\varphi(\alpha) > \varphi(\beta)$$
, to $(*) = -(F(\varphi(\alpha)) - F(\varphi(\beta))) =$

$$= - \int_{\varphi(\beta)}^{\varphi(\alpha)} f(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt.$$

 $\acute{C}wiczenie$. Niech $f:[0,1] \to \mathbb{R}$ będzie funkcją ciągłą i taką, że dla dowolnego $x \in \mathbb{R}$:

$$\int_0^1 f(xt) \, \mathrm{d}t = 0.$$

Wykazać, że f = 0.

Rozwiązanie. Podstawmy u=xt, to wówczas $\frac{\mathrm{d}u}{\mathrm{d}t}=x$, czyli mamy

$$\mathrm{d}t = \frac{\mathrm{d}u}{r}$$

Ponadto t = 0, to u = 0 a gdy t = 1, to u = x. Zatem

$$\int_0^1 f(xt) \, dt = \int_0^x f(u) \frac{du}{x} = \frac{1}{x} \int_0^x f(u) \, du = 0, \ x \in \mathbb{R} \setminus \{0\}.$$
$$F(x) := \int_0^x f(u) \, du = 0 \cdot x = 0, \ d\text{la} \ x \neq 0.$$

Z ciągłości funkcji f i twierdzenia 11.6: $F'(x) = f(x), x \in (0,1]$. Mamy więc, że $f(x) = F'(x) = 0, x \in (0,1]$. Zatem f(x) = 0 dla $x \in [0,1]$, czyli f = 0.

Przykład. Wyznaczymy funkcję F daną wzorem $F(x) = \int_{-1}^{x} f(t) dt, x \in [-1, 2],$ gdzie

$$f(x) = \begin{cases} -1 & \text{dla } x \in [-1, 0), \\ \sin x & \text{dla } x \in [0, \frac{\pi}{2}], \\ x & \text{dla } \left(\frac{\pi}{2}, 1\right]. \end{cases}$$

[TO-DO]

 $\acute{C}wiczenie$. Niech $f:[0,3]\to\mathbb{R}$ będzie funkcją daną wzorem:

$$f(t) = \begin{cases} x+1 & \text{dla } x \in [0,1), \\ -3x+1 & \text{dla } x \in [1,2), \\ 1 & \text{dla } x \in [2,3]. \end{cases}$$

Wyznaczyć jawny wzór funkcji $F(x) = \int_0^x f(t) dt, x \in [0,3].$

Logarytm naturalny jako funkcja górnej granicy całkowania. Logarytm naturalny liczby x można zdefiniować jako całka funkcji $x\mapsto \frac{1}{x}$ w granicach od 1 do x:

$$\ln(x) = \int_1^x \frac{1}{t} \, \mathrm{d}t.$$

Okazuje się, że w tej postaci łatwo udowodnić podstawowe własności logarytmu.

11.7 Twierdzenia o wartości średniej dla całek

Twierdzenie 11.19. Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją ciągłą. Wówczas istnieje $\xi\in[a,b]$ takie, że

$$f(\xi) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

Dowód. Mamy $m \leq f(x) \leq M$, $x \in [a, b]$. Z ciągłości funkcji f:

$$m=\inf f\left[\left[a,b\right]\right]=\min f\left[\left[a,b\right]\right]$$

$$M = \sup f[[a, b]] = \max f[[a, b]]$$

oraz z własności całki

$$m(b-a) \leqslant \int_{a}^{b} f(x) dx \leqslant M(b-a)$$

$$m \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) dx \leqslant M$$

Z własności Darboux wynika, że istnieje $\xi \in [a,b]$ spełniające tezę twierdzenia.

Twierdzenie 11.20. Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ciąglą, a $g:[a,b] \to \mathbb{R}$ funkcją całkowalną stalego znaku. Wówczas istnieje $\xi \in [a,b]$ takie, że

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx.$$

Dowód. Mamy

$$\min_{[a,b]} f = m \leqslant f(x) \leqslant M = \max_{[a,b]} f.$$

gjest stałego znaku; załóżmy, że $g(x)\geqslant 0, x\in [a,b].$

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x)$$
.

Z odpowiednich właności całki

$$m \cdot \int_a^b g(x) dx \leqslant \int_a^b f(x)g(x) dx \leqslant \int_a^b g(x) dx \cdot M.$$

Z własności Darboux istnieje $\xi \in [a,b]$ takie, że

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx.$$

Twierdzenie 11.21. Niech $f:[a,b] \to \mathbb{R}$ będzie funkcją ciągłą, a $g:[a,b] \to \mathbb{R}$ funkcją monotoniczną klasy C^1 . Wówczas istnieje $\xi \in [a,b]$ takie, że

$$\int_{a}^{b} f(x)g(x) dx = g(a) \int_{a}^{\xi} f(x) dx + g(b) \int_{\xi}^{b} f(x) dx.$$

Dowód. f jest ciągła, niech F będzie funkcją pierwotną funkcji f.

$$\int_{a}^{b} f(x)g(x) dx = \int_{a}^{b} F'(x)g(x) dx =$$

$$= F(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} F(x)g'(x) dx = I$$

Z poprzedniego twierdzenia istnieje $\xi \in [a, b]$ takie, że

$$\int_{a}^{b} F(x)g'(x) dx = F(\xi) \int_{a}^{b} g'(x) dx = F(\xi)g(x)|_{a}^{b} = F(\xi)(g(b) - g(a)).$$

Dalej

$$\begin{split} I &= \int_a^b f(x)g(x) \, \mathrm{d}x = F(b)g(b) - F(a)g(a) - F(\xi)g(b) + F(\xi)g(a) = \\ &= g(a) \left(F(\xi) - F(a) \right) + g(b) \left(F(b) - F(\xi) \right) = \\ &= g(a) \int_a^\xi f(x) \, \mathrm{d}x + g(b) \int_\xi^b f(x) \, \mathrm{d}x. \end{split}$$

 $\acute{C}wiczenie.$ Udowodnić, że dla każdego $\varepsilon>0$ i każdych $a,b\in\mathbb{R}$ spełniajacych $a>b>\frac{4}{\varepsilon}$ zachodzi nierównośc:

 $\left| \int_{a}^{b} \frac{\sin x}{x} \, \mathrm{d}x \right| < \varepsilon.$

Rozwiązanie. Ustalmy $\varepsilon>0$ oraz $a>b>\frac{4}{\varepsilon}$. Z twierdzenia 11.21 istnieje $x_1\in[a,b]$ takie, iż

$$\int_{a}^{b} \frac{\sin x}{x} dx = \frac{1}{a} \int_{a}^{\xi} \sin x dx + \frac{1}{b} \int_{\xi}^{b} \sin x dx.$$

$$\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \leqslant \frac{1}{a} \left| \left[-\cos x \right]_{a}^{\xi} \right| + \frac{1}{b} \left| \left[-\cos x \right]_{\xi}^{b} \right| = \frac{1}{a} \left| -\cos \xi + \cos a \right| + \frac{1}{b} \left| -\cos b + \cos \xi \right| \leqslant$$

$$\leqslant \frac{1}{a} \left(\left| \cos \xi \right| + \left| \cos a \right| \right) + \frac{1}{b} \left(\left| \cos b \right| + \left| \cos \xi \right| \right) \leqslant \frac{2}{a} + \frac{2}{b} \leqslant \frac{2}{4} \varepsilon + \frac{2}{4} \varepsilon = \varepsilon; \quad \text{c. b. d. o.}$$

Ćwiczenie. Wykazać, że dla pewnego $y \in (0, \frac{\pi}{2})$ zachodzi $\int_{0}^{\frac{\pi}{2}} e^{x} \cos x \, dx = e^{y}$.

11.8 *Całkowanie przybliżone

Wprost z definicji całki Riemanna widzimy, że całkę $\int_a^b f(x) \, \mathrm{d}x$ z funkcji nieujemnej f możemy aproksymować biorąc podział $\{x_0,\ldots,x_n\}$ przedziału [a,b] i sumując prostokąty $[x_{k-1},x_k]\times[0,\xi_k],\ k=1,\ldots,n,$ gdzie ξ_k są punktami pośrednimi. Dokładniejsze przybliżenie dostaniemy w oparciu o nast. metodę:

Metoda trapezów: Będziemy przybliżać całkę

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

funkcji $f \ge 0$, sumą pól n trapezów. Przedział całkowania [a,b] dzielimy na n przedziałów częściowych, wszystkich tej samej długości (b-a)/n. Kolejne punkty podziału na osi OX oznaczamy

$$a = x_0, x_1, \dots, x_{n-1}, x_n = b$$

zaś odpowiadające im wartości na osi OY jako

$$y_k = f(x_k), k = 0, \dots, n.$$

Wtedy

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2n} (y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1})),$$

a błąd Δ bezwzględny przybliżenia spełnia:

$$\Delta \leqslant \frac{(b-a)^3}{12n^2}M,$$

gdzie $M = \sup_{x \in [a,b]} |f''(x)|$.

Przykład. Dla n = 1 mamy

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2} \left(f(a) + f(b) \right)$$

 $\acute{C}wiczenie.$ Obliczyć $\int_{0}^{1}e^{x^{2}}\,\mathrm{d}x$ metodą trapezów przyjmującn=5. Oszacować błąd.

Metoda prostokątów: Dzielimy przedział [a,b] na 2n (parzystą liczbę) podprzedziałów.

$$h := \frac{b-a}{2n}, \ x_i := a+ih, i=1,2,\ldots,2n.$$

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx$$

$$\approx \frac{h}{3} \left(f(x_0) + 4(f(x_1) + f(x_3) + \ldots + f(x_{2n-1})) + 2(f(x_2) + f(x_4) + \ldots + f(x_{2n-2})) + f(x_{2n}) \right).$$

Błąd bezwzględny Δ w tym wypadku ma oszacowanie:

$$\Delta \leqslant \frac{(b-a)^3}{24n^2}M,$$

gdzie $M = \sup_{x \in [a,b]} |f''(x)|$.

Przykład. Dla n = 1 mamy

$$\int_{a}^{b} f(x) dx \approx (b - a) f\left(\frac{a + b}{2}\right).$$

Dla n = 3 mamy TO-DO

11.9 *Uwagi o całkowaniu funkcji wektorowych

Ustalmy

$$f\colon [a,b]\to\mathbb{R}^n, f=(f_1,\dots,f_n)$$

$$f_i\colon [a,b]\to\mathbb{R}, f_i\text{całkowalna na } [a,b];\ i\in\{1,\dots,n\}$$

Definiujemy

$$F(x) := \int_a^x f(t) dt = \left(\int_a^x f_1(t_1) dt_1, \dots, \int_a^x f_n(t_n) dt_n \right) \text{ gdzie } t = (t_1, \dots, t_n) \in \mathbb{R}^n.$$

Twierdzenie 11.22. F jest funkcją ciąglą. Ponadto, jeżeli f_1, \ldots, f_n są ciągle w punkcie $x_0 \in (a,b)$, to F jest różniczkowalna w x_0 .

Twierdzenie 11.23. Jeżeli f ma funkcję pierwotną F, to

$$\int_{a}^{b} f = F(b) - F(a).$$

Przykład. Niech
$$f(x) = (2x, \cos x)$$
, to $\int_0^{\pi} f(x) dx = \left(\int_0^{\pi} 2x dx, \int_0^{\pi} \cos x dx \right) = \left(x^2 \Big|_0^{\pi}, \sin x \Big|_0^{\pi} \right) = (\pi^2, 1)$

Funkcje zespolone: funkcje postaci $f = \Re f + i\Im f$.

Funkcję $f:[a,b]\to\mathbb{C}$ całkowalną możemy zapisać jako $f=f_1+if_2$, gdzie

 $f_1, f_2 \colon [a, b] \to \mathbb{R}$ pewne funkcje całkowalne na [a, b].

Przykład. Niech
$$f(x) = 2x - i7x$$
. Wówczas $\int_0^1 f(x) dx = \left(x, i(-\frac{7}{2})x\right)$.

12 Zastosowania geometryczne rachunku różniczkowego i całkowego

12.1 Zastosowania geometryczne całki oznaczonej

Wprost definicji, łatwo zauważyć że:

Pole |D| obszaru D ograniczonego krzywymi ciągłymi y = f(x) i y = g(x), gdzie $f(x) \ge g(x)$, $x \in [a, b]$ i prostymi x = a, x = b wyraża się wzorem

$$|D| = \int_a^b (f(x) - g(x)) \, \mathrm{d}x.$$

12.1.1 Pole i objętość bryły obrotowej

Załóżmy, że funkcja $f \colon [a,b] \to \mathbb{R}$ ma ciągłą pochodną na przedziale [a,b]. Po obrocie krzywej $y=f(x), \ a \leqslant x \leqslant b$ dookoła osi OX otrzymujemy bryłę obrotową o objętości V i polu powierzchni P i zachodzi:

$$V = \pi \int_{a}^{b} (f(x))^{2} dx,$$
$$P = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} dx.$$

12.2 Krzywe w przestrzeni

Niech $\Phi: [a,b] \to \mathbb{R}^n$, $\Phi = (x_1, \dots, x_n)$ gdzie x_i jest funkcją ciągłą dla $i \in \{1, \dots, n\}$.

Definicja 12.1. Zbiór K wartości funkcji Φ , czyli

$$K = \{(x_1(t), \dots, x_n(t)) : t \in [a, b]\}$$

nazywamy krzywq o początku w punkcie $\Phi(a)$ i końcu w punkcie $\Phi(b)$.

Jeżeli w $\Phi(a) = \Phi(b)$, to krzywą będziemy nazywali krzywzą zamkniętq. Φ nazywamy parametryzacją krzywej i zwykle zakładamy, że $\Phi|_{[a,b]}$ oraz $\Phi|_{(a,b]}$ - mówimy wtedy, że krzywa jest tukiem (Jordana).

Przykład. Korzystając z twierdzenia pitagorasa, łatwo sprawdzić, że wszystkie punkty okręgu So środku w punkcie (0,0)i promieniu długości rotrzymamy z następujących równości:

$$\begin{cases} x = r \cos t, \\ y = r \sin t \end{cases}$$

Zatem odwzorowanie $\Psi \colon \mathbb{R} \to \mathbb{R}^2$ dane jako $\Psi(t) = (r \cos t, r \sin t)$ jest parametryzacją S:

$$S = \{(x, y) \in \mathbb{R} : \Psi(t)\} = \{(x, y) \in \mathbb{R} : x = r \cos t, y = r \sin t\}$$

Przyklad. Ustalmy dwa punkty $P_1 = (x_1, y_1), P_1 = (x_2, y_2)$. Łatwo możemy wskazać parametryzacje prostej przechodzącej przez te dwa punkty:

$$\begin{cases} x = x_1 + (x_2 - x_1)t, \\ x = y_1 + (y_2 - y_1)t \end{cases}$$

Czyli odwzorowanie $T: \mathbb{R} \to \mathbb{R}^2$ dane jako $(x, y) = T(t) = P_1 + (P_2 - P_1)t = tP_1 + (1-t)P_2$ jest równaniem prostej przechodzącej przez punkty P_1 i P_2 . Zbiór

$$K = \{(x,y) \in \mathbb{R} : x = tx_1 - (1-t)x_2 \text{ i } y = ty_1 - (1-t)y_2\}$$

czyli nasza "prosta" jest formalnie "krzywą". Dla $t \in [0,1]$ równanie (x,y) = T(t) daje wszystkie punkty odcinka o końcach w punktach P_1 i P_2 .

Definicja 12.2. Jeżeli

$$\begin{cases} x_i \in C^1([a,b]), i \in \{1,\dots,n\}, \\ \sum_{i=1}^n [x_i'(t)]^2 > 0 \end{cases}$$

to mówimy, że krzywa jest gładka.

 $\acute{C}wiczenie$. Czy okrąg o równaniu $x^2+y^2=1$ jest krzywą gładką? (Oczywista wskazówka: rozważyć jego równanie parametryczne).

Ćwiczenie. Liść Kartezjusza jest krzywą o parametryzacji danej jako:

$$\begin{cases} x = \frac{6t}{1+t^3}, \\ y = \frac{6t^2}{1+t^3}. \end{cases}$$

Wyznaczyć kilka punktów tej krzywej dla ćwiczenia i spróbować narysować wykres. Czy krzywa ta jest gładka?

Definicja 12.3. Krzywą *regularną* nazywamy krzywą złożoną ze skończonej liczby krzywych (łuków) gładkich.

Definicja 12.4. Jeżeli krzywa $K \subseteq \mathbb{R}^n$ (ewentualnie, gdy pewien jej spójny podzbiór) jest zbiorem rozwiązań równania postaci

$$(12.1) F(x_1, \dots, x_n) = 0$$

to równanie 12.1 nazywamy jej *równaniem uwikłanym* i mówimy, że jest ona (ew. pewien jej podzbiór) "dana w sposób uwikłany".

12.3 Pochodna funkcji określonej równaniami parametrycznymi.

Krzywa na płaszczyźnie. Niech dany będzie układ $\begin{cases} x=\varphi(t), \\ y=\psi(t); \end{cases}$ gdzie φ i ψ są ciągłe.

Oczywiście jest to parametryzacja pewnej krzywej K w przestrzeni \mathbb{R}^2 . Niech $(x_0, y_0) = (\varphi(t_0), \psi(t_0))$ dla pewnego $t_0 \in \mathbb{R}$ będzie punktem nieosobliwym krzywej K. Załóżmy, że $\varphi'(t_0) \neq 0$. Pochodna φ' zachowuje więc znak w pewnym otoczeniu punktu t_0 a funkcja φ na mocy ciągłości jest wówczas w tym otoczeniu różnowartościowa. Istnieje zatem funkcja odwrotna $\Phi := \varphi^{-1}$. Podsumujmy:

 $t = \Phi(x)$, dla t w pewnym otoczeniu punktu t_0 , Φ jest różnowartościowa funkcja klasy C^1 .

Podstawmy $y = \psi(t) = \psi(\Phi(x))$. Widzimy, że w otoczeniu punktu t_0 , y jest dana funkcją zmiennej x. Przyjmijmy $f = \psi \circ \Phi$ i wówczas możemy (w pewnym otoczeniu t_0 !) posługiwać się zależnością y = f(x). Ponadto funkcja f jest również klasy C^1 , gdyż f' jest ciągła, jako iloraz funkcji ciągłych, co za chwilę udowodnimy. Punkt $\varphi(t_0)$, $\psi(t_0)$ krzywej K, w którym $\varphi'(t_0) = 0$ i równocześnie $\psi'(t_0) = 0$ może nie dać się wyrazić zależnością y = f(x). Punkt taki nazywamy też puntkem osobliwym.

Definicja 12.5. Jeżeli krzywą $K \subseteq \mathbb{R}^2$ w otoczeniu punktu t_0 można przedstawić w postaci równania y = f(x), tzn. w pewnym otoczeniu t_0 krzywa pokrywa się z wykresem funkcji f, to mówimy, że można ją przedstawić w postaci nieuwiklanej (w danym otoczeniu).

Twierdzenie 12.1. Niech $x = \varphi(t)$, $y = \psi(t)$, $gdzie \varphi i \psi są funkcjami ciągłymi. Wówczas, jeżeli <math>\varphi'(t_0) \neq 0$ dla pewnego t_0 , to istnieje takie otoczenie U punktu t_0 , że

$$y' = f'(x) = \frac{\psi'(t)}{\varphi'(t)}, \ dla \ t \in U$$

Dowód. Obliczamy pochodną funkcji f, tzn. pochodną y w otoczeniu U wzgl. zmiennej x.

$$y' = \left(\psi\left((\Phi(x))\right)' = \Psi'\left(\Phi(x)\right) \cdot \Phi'(x) = \psi'(t)\Phi'(x).$$

Korzystając ze wzoru 6.7 otrzymujemy, że $\Phi'(t) = \frac{1}{(\Phi^{-1}(t))'} = \frac{1}{(\phi(t))'}$ dla $t \in U$. Stąd już wystarczy podstawić

$$y' = \psi'(t)\Phi'(x) = \psi'(t)\frac{1}{\varphi'(t)} = \frac{\psi'(t)}{\varphi'(t)}$$

Oznaczając $\frac{dy}{dt} = \psi'(t)$ oraz $\frac{dx}{dt} = \varphi'(t)$ łatwo zapamiętać powyższy wzór:

(12.2)
$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

12.4 Współrzędne biegunowe

Współrzędne (x,y) dowolnego punktu $P\in\mathbb{R}^2$ można przedstawić podając odległość r punktu P od początku układu współrzędnych oraz kąt α nachylenia prostej o początku w punkcie (0,0) i końcu w punkcie P - np. do osi OX. Wówczas mamy

$$\begin{cases} x = r \cos \alpha, \\ y = r \sin \alpha. & r \ge 0, \alpha \in [0, 2\pi). \end{cases}$$

Rysunek 5: Współrzędne punktu P = (x, y) związane są z kątem α i promieniem r.

Formalnie: Układ współrzędnych kartezjańskich to w istocie dane na płaszczyźnie dwie proste prostopadłe, przechodzące przez zadany punkt O zwany środkiem układu współrzędnych i arbitralnie nazywane osią OX i OY. Taki układ nazywamy też prostokątnym. Niech $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ dane będzie wzorem $\varphi(r,\alpha) = (r\cos\alpha,r\sin\alpha)$. Zauważmy, że przekształcenie takie przyporządkowuje każdemu punktowi $(x,y) \in \mathbb{R}^2$ wzajemnie jednoznacznie punkt $(x^*,y^*) \in \mathbb{R}^2$. Odwzorowanie φ nazywamy odwzorowaniem biegunowym. Układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt O zwany biegunem oraz pewną półprostą o początku w punkcie O zwaną osiq biegunowq nazywamy układem współrzędnych biegunowych. Zwykle przechodząc między układem prostokątnym a biegunowym przyjmujemy, że środek (biegun, w przypadku układu biegunowego) nowo wprowadzonego układu pokrywa się ze środkiem już adanego "starego" układu.

12.5 Długość krzywej

Definicja 12.6. *Długością krzywej* nazywamy kres górny długości łamanych wpisanych w krzywą.

Długość krzywej K oznaczamy L(K) (od ang. lenght - długość) albo przez |K|.

Uwaga 12.1. Nie każda krzywa ma długość. Przykładem jest np. tzw. *krzywa Peano*. Krzywą, która ma długość nazywamy *prostowalną*.

Twierdzenie 12.2. Jeżeli K jest krzywą gładką o parametryzacji $\Phi: [a,b] \to \mathbb{R}^n$, $\Phi(t) = (x_1(t), x_2(t), \dots, x_n(t))$, $t \in [a,b]$, to długość L(K) krzywej dana jest wzorem

$$L(K) = \int_a^b \sqrt{[x_1'(t)]^2 + \ldots + [x_n'(t)]^2} \, dt.$$

Dowód. Przeprowadzimy najpierw dowód dla n=2. Ustalmy krzywą K oraz dowolną parametryzację $\Psi\colon [a,b]\to K$. Zatem możemy przyjąć $(x(t),y(t))=\Psi(t)$. Ustalmy $\varepsilon>0$. Niech $\delta>0$ będzie taką stałą, że

$$(*) \forall_{s,t \in [a,b]} |s-t| < \delta \Rightarrow \left| [y'(t)]^2 - [y'(s)]^2 \right| < \varepsilon^2.$$

Niech $\pi \in \mathcal{P}[a,b]$ będzie takim podziałem przedziału [a,b], że $\pi = \{x_0, x_1, \dots, x_n\}$,

$$a = x_0 < x_1 < \ldots < x_n = b, \operatorname{diam}(\pi) < \delta.$$

Obliczymy długość łamanej ℓ_{π} wpisanej w krzywą K.

$$\ell_{\pi} = \sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 - (y(t_i) - y(t_{i-1}))^2}.$$

Z twierdzenia Lagrange'a istnieje takie $\xi_i \in [t_{i-1}, t_i]$, że

$$x'(\xi_i) = \frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}},$$

oraz takie $\zeta_i \in [t_{i-1}, t_i]$, że

$$y'(\zeta_i) = \frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}.$$

Dalej

$$\ell_{\pi} = \sum_{i=1}^{n} \sqrt{[x'(\xi_{i})^{2} \Delta t_{i}]^{2} + [y'(\zeta_{i}) \Delta t_{i}]^{2}} =$$

$$= \sum_{i=1}^{n} \sqrt{([x'(\xi_{i})]^{2} + [y'(\xi_{i})]^{2}) + ([y'(\zeta_{i})]^{2} - [y'(\xi_{i})]^{2})} \Delta t_{i} \leqslant$$

$$\leqslant \sum_{i=1}^{n} \sqrt{[x'(\xi_{i})]^{2} + [y'(\xi_{i})]^{2}} \Delta t_{i} + \sum_{i=1}^{n} \sqrt{[y'(\zeta_{i})]^{2} - [y'(\xi_{i})]^{2}} \Delta t_{i} \leqslant$$

$$\leqslant \sum_{i=1}^{n} \varphi(\xi_{i}) \Delta t_{i} + \varepsilon \sum_{i=1}^{n} \Delta t_{i} \leqslant \overline{S}(\varphi, \pi) + \varepsilon(b - a)$$

gdzie $\varphi(t) := \sqrt{[x'(t)]^2 + [y'(t)]^2}$ i stąd $\varphi(\xi_i) \leq \sup \varphi([t_{i-1}, t_i])$.

Podobnie:

$$\ell_{\pi} \geqslant \sum_{i=1}^{n} \varphi(\xi_i) \Delta t_i - \varepsilon \sum_{i=1}^{n} \Delta t_i \geqslant \underline{S}(\varphi, \pi) - \varepsilon(b-a).$$

Mamy zatem

$$\underline{S}(\varphi,\pi) - \varepsilon(b-a) \leqslant \ell_{\pi} \leqslant \overline{S}(\varphi,\pi) + \varepsilon(b-a)$$

o ile diam $(\pi) < \delta$.

$$\int_{a}^{b} \varphi = \sup_{\pi \in \mathcal{P}[a,b]} \underline{S}(\varphi,\pi) \leqslant \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \operatorname{diam}(\pi) < \delta}} \underline{S}(\varphi,\pi) \leqslant \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \operatorname{diam}(\pi) < \delta}} \ell_{\pi} + \varepsilon(b-a) = L(K) + \varepsilon(b-a).$$

$$\int_{a}^{b} \varphi \leqslant L(K) + \varepsilon(b - a).$$

Przy $\varepsilon \to 0$ dostajemy, że

$$\int_{a}^{b} \varphi \leqslant L(K).$$

Z drugiej strony - ustalmy $\gamma > 0$. Niech $\pi_0 \in \mathcal{P}[a,b]$ będzie takim przedziałem, że

$$(**) \int_{a}^{b} \varphi + \gamma > \overline{S}(\varphi, \pi_{0})$$

$$L(K) = \sup_{\pi \in \mathcal{P}[a,b]} \ell_{\pi} = \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \operatorname{diam}(\pi) < 0}} \ell_{\pi} \leqslant \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \operatorname{diam}(\pi) < 0}} \left(\overline{S}(\varphi, \pi) + \varepsilon(b-a) \right) \leqslant$$

$$\overline{S}(\varphi, \pi) + \varepsilon(b-a) \stackrel{(**)}{\leqslant} \int_{a}^{b} \varphi + \gamma + \varepsilon(b-a).$$

Mamy

$$L(K) < \int_{a}^{b} \varphi + \gamma + \varepsilon(b - a)$$

i przy $\varepsilon \rightarrow 0,\, \gamma \rightarrow 0$ otrzymujemy, że

$$\int_a^b \varphi \leqslant L(K) \leqslant \int_a^b \varphi \text{ i ostatecznie } L(K) = \int_a^b \varphi.$$

Dla krzywej K o parametryzacji $\Phi\colon [a,b]\to\mathbb{R}^n;$ dla każdego podziału $\pi=\{t_0,\dots,t_m\}$ odcinka [a,b] określmy

$$L(K,\pi) := \sum_{i=1}^{m} \|\Phi(t_i) - \Phi(t_{i-1})\|$$

 $(\|\cdot\|)$ oznacza normę) Widzimy, że jest to długość łamanej o wierzchołkach $\Phi(t_1), \ldots, \Phi(t_n)$ wpisanej w krzywą. Zatem długość L(K) możemy wyrazić następująco:

$$L(K) = \sup_{P \in \mathcal{P}[a,b]} L(K,\pi),$$

a gdy $L(K) < \infty$, to krzywa K jest prostowalna. Teraz przeprowadzimy pełny

Dowód twierdzenia 12.2. Jeżeli $a \leq t_{i-1} < t_i \leq b$, to

$$\|\Phi(t_i) - \Phi(t_{i-1})\| = \left\| \int_{t_{i-1}}^{t_i} \Phi'(t) dt \right\| \le \int_{t_{i-1}}^{t_i} \|\Phi'(t)\| dt.$$

Stąd dla dowolnego podziału $\pi \in \mathcal{P}[a,b]$ mamy

$$L(K,\pi) \leqslant \int_a^b \|\Phi'(t)\| dt$$

i stąd

$$L(K) \leqslant \int_a^b \|\Phi'(t)\| \, \mathrm{d}t.$$

Pokażemy, że nierówność w drugą stronę też zachodzi. Ustalmy dowolne $\varepsilon > 0$. Φ jest klasy C^1 , zatem Φ' jest ciągła jednostajnie (tw. Heinego-Cantora) i stąd istnieje $\delta > 0$ taka, że

$$|x - y| < \delta \Rightarrow \|\Phi'(x) - \Phi'(y)\| < \varepsilon.$$

Niech $\pi = \{t_0, \dots, t_m\} \in \mathcal{P}[a, b]$ tak, że $\Delta t_i < \delta, \ 1 \leqslant i \leqslant m$. Wówczas

$$\|\Phi'(x)\| \le \|\Phi'(t_i)\| + \varepsilon$$
, dla $x \in [t_{i-1}, t_i]$.

Mamy

$$\int_{t_{i-1}}^{t_i} \|\Phi'(x)\| dt \le \|\Phi'(t_i)\| \Delta t_i + \varepsilon \cdot \Delta t_i = \left\| \int_{t_{i-1}}^{t_i} (\Phi'(x) + \Phi'(t_i) - \Phi'(x)) dt \right\| + \varepsilon \Delta t_i \le \left\| \int_{t_{i-1}}^{t_i} (\Phi'(x)) + \left\| \Phi'(t_i) - \Phi'(x) \right\| dt \right\| + \varepsilon \Delta t_i \le \left\| \Phi(t_i) - \Phi(t_{i-1}) \right\| + 2\varepsilon \Delta t_i.$$

Sumując nierówności po wszystkich i = 1, ..., n otrzymujemy, że

$$\int_{a}^{b} \|\Phi'(t)\| \, \mathrm{d}t \leqslant L(K,\pi) + 2\varepsilon(b-a) \leqslant L(K) + 2\varepsilon(b-a).$$

Przy $\varepsilon \to 0$ dostajemy, że $\int_a^b \|\Phi'(t)\| dt \leqslant L(K)$, czyli ostatecznie $L(K) = \int_a^b \|\Phi'(t)\| dt$.

Inne przypadki obliczania długości krzywej – Jeżeli funkcja $f:[a,b]\to\mathbb{R}$ ma ciągłą pochodną na przedziale [a,b], to długość L(K) łuku krzywej

$$K: y = f(x), \ x \in [a, b]$$

jest równa

$$L(K) = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Jeżeli krzywa K zadana jest parametrycznie:

$$\begin{cases} x = \varphi(t), \\ y = \psi(t); \end{cases} \quad t \in [a, b]$$

gdzie x, y są funkcjami różniczkowalnymi w przedz. [a, b], to

$$L(K) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

12.6 Pole figury ograniczonej krzywą opisaną we współrzędnych biegunowych.

Jeżeli krzywa K zadana jest parametrycznie:

$$\begin{cases} x = \varphi(t), \\ y = \psi(t); \end{cases} \quad t \in [a, b]$$

gdzie funkcje φ , ψ są ciągłe w przedziale [a,b] oraz ψ ma ciągłą pochodną w tym przedziale, to wzór na pole |D| obszaru D ogracznionego łukiem krzywej K, osią OX oraz prostymi $x=\varphi(a),\ y=\psi(b)$ ma postać:

$$|D| = \int_a^b |\varphi(t)| \cdot |\psi'(t)| \, \mathrm{d}t.$$

Pole bszaru płaskiego D ograniczonego łukiem AB o równaniu biegunowym $r = f(\varphi) \ge 0$ dla $a \le \varphi \le b$ oraz $b-a \le 2\pi$ i promieniu wodzącym OA i OB o długościach odpowiednio f(a), f(b), to o ile f jest funkcją ciągłą na przedziale [a,b] wyraża się wzorem:

$$|D| = \frac{1}{2} \int_{a}^{b} (f(\varphi))^{2} d\varphi$$

13 Całka niewłaściwa

Dotychczas określaliśmy całki Riemanna jedynie po podzbiorach zwartych 22 przestrzeni \mathbb{R} . Teraz ustanowimy sposoby całkowania po zbiorach niezwartych.

Definicja 13.1. Załóżmy, że funkcja $f:[a,b)\to\mathbb{R}$ $[f:(a,b]\to\mathbb{R}]$ jest całkowalna w sensie Riemanna na każdym przedziale [a,c] [[c,b]] dla $c\in(a,b)$. Jeżeli $b=+\infty$ $[a=+\infty]$ lub $\lim_{c\to b^-} f(x)=\pm\infty$ $[\lim_{c\to a^+} f(x)=\pm\infty]$, to całkę

$$\int_{a}^{b} f(x) \, dx := \lim_{c \to b^{-}} \int_{a}^{c} f(x) \, dx \, \left[\int_{a}^{b} f(x) \, dx := \lim_{c \to a^{+}} \int_{a}^{c} f(x) \, dx \right]$$

nazywamy całką niewłaściwą z funkcji f na przedziale [a,b) [(a,b]] a punkt b [punkt a] nazywamy punktem osobliwym.

Jeżeli granica w powyższej definicji istnieje i jest skończona, to o całce niewłaściwej mówimy, że jest zbieżna. W przeciwnym wypadku - rozbieżna. Jeżeli $f:(a,b) \to \mathbb{R}$ oraz f jest całkowalna na każdym przedziale $[\alpha,\beta] \subseteq (a,b)$ oraz a,b są punktami osobliwymi, to

$$\int_a^b f(x) dx = \int_a^b f(x) dx + \int_c^b f(x) dx,$$

gdzie c jest dowolnym punktem przedziału (a, b).

Definicja 13.2 (Zbieżność bezwzględna całki niewłaściwej). Jeżeli dla całki niewłaściwej $\int_a^b f$ mamy, że całka $\int_a^b |f|$ jest zbieżna to $\int_a^b f$ nazywamy bezwzględnie zbieżną. W **przeciwnym wypadku**, jeżeli $\int_a^b f$ **jest** zbieżna, to nazywamy ją zbieżną względnie lub warunkowo.

13.1 Kryteria zbieżności całek niewłaściwych

Twierdzenie 13.1. Załóżmy, że funkcja $f:[a,b) \to \mathbb{R}$ jest całkowalna w sensie Riemanna na każdym przedziale [a,c] dla $c \in (a,b)$ oraz b jest punktem osobliwym. Wówczas dla dowolnego ciągu $(x_n)_{n \in \mathbb{N}}$ spełniającego warunek

$$a = x_0 < x_1 < x_2 < \dots < x_n < \dots < b,$$

$$\lim_{n \to \infty} x_n = b,$$

całka $\int_a^b f$ jest zbieżna wtedy i tylko wtedy, gdy zbieżny jest szereg $\sum_{n=1}^\infty a_n$, gdzie

$$a_n = \int_{x_{n-1}}^{x_n} f(x) \, \mathrm{d}x.$$

 $[\]overline{\ ^{22}\text{przypomnijmy}},$ że w $\mathbb R$ to oznacza: domkniętych i ograniczonych

Dowód.

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x) \, \mathrm{d}x = \int_a^{x_n} f(x) \, \mathrm{d}x.$$

Twierdzenie 13.2. Niech $f, g: [a, b) \to \mathbb{R}$ będą funkcjami całkowalnymi na każdym przedziałe [a,c) dla każdego $c \in (a,b)$, b-punktem osobliwym oraz

$$|f(x)| \leqslant g(x), \ x \in [a, b).$$

Wówczas jeżeli $\int_a^b g$ jest zbieżna, to $\int_a^b f$ jest **bezwzględnie** zbieżna.

Dowód. Ustalmy ciąg $(x_n)_{n\in\mathbb{N}}$ rosnący taki, że $\lim_{n\to\infty} x_n = b$. Oznaczmy:

$$a_n := \int_{x_{n-1}}^{x_n} f(x) \, dx, \ b_n := \int_{x_{n-1}}^{x_n} |f(x)| \, dx,$$
$$c_n := \int_{x_{n-1}}^{x_n} g(x) \, dx, \ n \in \mathbb{N}.$$

Mamy $|a_n| \leq b_n \leq c_n, n \in \mathbb{N}$.

$$\int_a^b g \text{ - zbieżna} \xrightarrow{f_a |f| \text{ - zbieżna}} \int_n^b g \text{ - zbieżna} \xrightarrow{\text{Kryterium}} \sum_{n=1}^\infty \sum_{n=1}^\infty b_n \text{ - zbieżny i}$$

$$\sum_{n=1}^\infty a_n \Leftarrow \sum_{n=1}^\infty a_n \text{ - bezwzgl. zbieżny} \Leftarrow \sum_{n=1}^\infty |a_n| \text{ - zbieżny.}$$

$$\int_a^b f \text{ - zbieżna}$$

Czyli $\int_a^b f$ jest bezwzględnie zbieżna.

W powyższym twierdzeniu oczywiście wystarczy aby funkcje f i g były ciągłe.

Twierdzenie 13.3. Niech $f:[a,+\infty)\to [0,+\infty)$ będzie funkcją całkowalną na każdym przedziałe $[a,c),\ c\in (a,b).$ Wówczas $\int_a^\infty f$ jest zbieżna wtedy i tylko wtedy, gdy funkcja

$$F(x) = \int_{a}^{x} f(t) dt$$
 jest ograniczona.

Dowód. Najpierw implikacja "w lewo".

$$F(x) = \int_{a}^{x} f(t) dt$$
, $x \in [a, +\infty)$ jest rosnąca.

Niech x < y. $F(y) - F(x) = \int_a^y f(t) \, \mathrm{d}t - \int_a^x f(t) \, \mathrm{d}t = \int_x^y f(t) \, \mathrm{d}t \geqslant 0$ (gdyż $f \geqslant 0$). Jeżeli F jest ograniczona i monotoniczna (rosnąca), to istnieje granica $\lim_{x \to +\infty} F(x)$ i jest ona skończona. Mamy $\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \int_a^x f(t) \, \mathrm{d}t$, czyli $\int_a^{+\infty} f$ jest skończona. W drugą stronę: jeżeli F jest nieograniczona (i rosnąca), to $\lim_{x \to +\infty} \int_a^x f(t) \, \mathrm{d}t = +\infty$. Stąd $\int_a^\infty f$ jest rozbieżna.

Twierdzenie 13.4 (Kryterium porównawcze dla całek niewłaściwych). Niech $f, g: [a, +\infty) \rightarrow [0, \infty)$ będą funkcjami całkowalnymi na każdym przedziałe $[a, c), c \in (a, b)$ oraz istnieje takie $A \geqslant a$, że dla każdego $x \in [A, \infty)$ zachodzi $f(x) \leqslant g(x)$. Wówczas

- 1. jeżeli $\int_a^\infty g$ jest zbieżna, to zbieżna jest $\int_a^\infty f$,
- 2. jeżeli $\int_a^\infty f$ jest rozbieżna, to rozbieżna jest $\int_a^\infty g$

Dowód.

$$\int_a^A f$$
, $\int_a^A g$ - skończone, jako całkie Riemanna.

1. Zdefiniujmy $G(x) := \int_A^x g(t) dt, x \ge A$.

Jeśli
$$\int_a^{+\infty} g$$
jest zbieżna, to f. G jest ograniczona.

Ale
$$0 \leqslant F(x) = \int_A^x f(t) dt \leqslant G(x), x \geqslant A.$$

Fjest ograniczona na $[A.+\infty).$

$$\int_A^{+\infty} f$$
jest zbieżna, stąd $\int_a^{+\infty} f$ jest zbieżna.

2. Załóżmy, że $\int\limits_a^{+\infty} f$ jest rozbieżna. Wtedy

$$\int_A^{+\infty} f$$
jest rozbieżna i stąd F jest nieograniczona na $[A,+\infty) \Rightarrow$

G jest nieogranczona na $[A, +\infty) \Rightarrow \int_A^{+\infty} g$ jest rozbieżna $\Rightarrow \int_a^{+\infty} g$ jest rozbieżna.

14 Szeregi liczbowe

Definicja 14.1 (Szereg). Niech $(a_n)_{n\in\mathbb{N}}$ będzie dowolnym ciągiem. Wyrażenie

$$S_n = a_0 + a_1 + \ldots + a_{n-1} + a_n$$

nazywamy n-tą sumq częściową szeregu. Szeregiem nazywamy ciąg $(S_n)_{n\in\mathbb{N}}$, a sumą szeregu (jeśli istnieje) granicę

$$\lim_{n\to\infty} S_n$$

Jeśli powyższa granica nie istnieje, to mówimy, że dany szereg jest *rozbieżny*, w przeciwnym wypadku nazywamy *zbieżnym*. Sumę szeregu będziemy na ogół oznaczać

$$\sum_{n=0}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=0}^{n} a_k = \lim_{n \to \infty} S_n.$$

Zwyczajowo tym samym symbolem co sumę: $\sum_{n=0}^{\infty} a_n$, oznacza się też sam **szereg** $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$. W rachunkach towarzyszących zastosowaniom zazwyczaj nie prowadzi to do nieporozumień. Zauważmy, że sumowanie możemy rozpoczynać od dowolnego indeksu, niekoniecznie k=0 albo 1 oraz, że pominięcie skończonej liczby początkowych wyrazów szeregu (czyli wyrazów w każdej sumie częściowej!) nie wpływa na to jaką szereg ma granicę.

Przykłady szeregów rozbieżnych.

- 1. Szereg $\sum_{n=1}^{\infty} 1$ jest oczywiście rozbieżny do nieskończoności, jak podpowiada nam zdrowy rozsądek. Zauważmy też, że formalnie $S_n = \underbrace{1+1+1+\ldots+1}_{n\text{-razy}} = n$. A więc $\lim_{n\to\infty} S_n = \lim_{n\to\infty} n = +\infty$ zgodnie z intuicją.
- 2. Podobnie $\sum_{n=1}^{\infty} n = +\infty$. Mamy:

$$S_n = 1 + 2 + 3 + \ldots + (n-1) + n = \frac{n(n+1)}{2} = \frac{n^2 + n}{2} \xrightarrow{n \to \infty} +\infty.$$

Przykład. Obliczymy sumę szeregu $\sum_{k=1}^{\infty} \frac{1}{n(n+1)}$. Zauważmy, że wyrażenie $\frac{1}{n(n+1)}$ ma łatwy rozkład na ułamki proste: $\frac{1}{n} - \frac{1}{n+1}$ (ćwiczenie). Zatem obliczmy:

$$\sum_{k=1}^{\infty} \frac{1}{n(n+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1.$$

Mamy więc pierwszy przykład szeregu, który ma skończoną wartość.

Przykład (Szereg geometryczny). Szereg

$$\sum_{n=0}^{\infty} x^n, \ x \in \mathbb{R}$$

jest zbieżny gdy $0 \le x < 1$ oraz rozbieżny dla $x \ge 1$.

Dowód. Przypomnijmy, że

$$\sum_{k=1}^{n} x^{k-1} = \sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}.$$

Dla $0 \leqslant x < 1$ przy $n \to \infty$ mamy $x^n \to 0$ i

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} x^k = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \in \mathbb{R}.$$

Przykład. Pokażemy ponownie (patrz, przykład 1.5.1), że liczba 8, (3) jest wymierna. Niech x=8,(3). Mamy

$$x = 8,3333... = 8 + 3 \cdot \frac{1}{10^1} + 3 \cdot \frac{1}{10^2} + 3 \cdot \frac{1}{10^3} + 3 \cdot \frac{1}{10^4} + \dots =$$
$$= 8 + 3 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$$

Obliczmy sumę szeregu:

$$\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n = \frac{1}{10} \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^{n-1} = \frac{1}{1-\frac{1}{10}} = \frac{10}{9} \text{ skorzystaliśmy z wzoru na sumę szeregu}$$

gemoetrycznego - patrz wyżej (podstaw $x=\frac{1}{10}$. Uwaga: sumowanie rozpoczyna się od n=1 - wyciągnij 1/10 przed nawias aby otrzymać właściwy wykładnik). Zatem

$$3 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n = \frac{3}{10} \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^{n-1} = \frac{3}{10} \cdot \frac{10}{9} = \frac{1}{3}$$

Ostatecznie $x=8+\frac{1}{3}=\frac{25}{3}$ - jest to oczywiście liczba wymierna.

Twierdzenie 14.1 (Warunek konieczny zbieżności szeregu). Jeżeli szereg $\sum_{n=0}^{\infty} a_n$ jest zbieżny, to

$$\lim_{n\to\infty} a_n = 0.$$

Dowód. Niech S_n będzie n-tą sumą częściową szeregu i S będzie sumą szeregu:

$$\sum_{n=0}^{\infty} a_n = S$$
 Wtedy $\lim_{n \to \infty} S_n = S$ ale również $\lim_{n \to \infty} S_{n-1} = S$. Zauważmy, że $S_n - S_{n-1} = a_n$. Stąd
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$$

Uwaga 14.1. Twierdzenie nie zachodzi w drugą stronę. Np. $\frac{1}{n} \xrightarrow{n \to \infty} 0$ ale szereg $\sum_{n=1}^{\infty} \frac{1}{n}$ jest rozbieżny.

Twierdzenie 14.2 (Warunek Cauchy'ego dla szeregów).

Szereg $\sum_{n=0}^{\infty} a_n$ jest zbieżny wtedy i tylko wtedy, gdy dla każdego $\varepsilon > 0$ istnieje $N \in \mathbb{Z}$ takie, że

$$\left| \sum_{k=n}^{m} a_k \right| < \varepsilon, \ dla \ m \geqslant n \geqslant N.$$

Dowód. Zauważmy, że dla m=n dostajemy warunek konieczny zbieżności szeregów (poprzednie twierdzenie). Warunek Cauchy'ego zbieżności ciągów zastosowany do sum częściowych szeregu ma postać:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{m,n\in\mathbb{N},m\geqslant n\geqslant N}.|S_m-S_n|<\varepsilon.$$

Wystarczy zauważyć, że

$$\sum_{k=n}^{m} a_k = S_m - S_n.$$

Twierdzenie 14.3. Szereg o wyrazach nieujemnych jest zbieżny wtedy i tylko wtedy, gdy ciąg jego sum częściowych jest ograniczony.

Definicja 14.2 (Zbieżność bezwzględna).

Mówimy, że szereg $\sum_{n=0}^{\infty} a_n$ jest bezwzględnie zbieżny, gdy zbieżny jest szereg $\sum_{n=0}^{\infty} |a_n|$.

Twierdzenie 14.4. Każdy szereg bezwzględnie zbieżny, jest zbieżny.

Mówimy też, że szereg **zbieżny**, który **nie** jest zbieżny **bezwzględnie** jest zbieżny warunkowo.

Twierdzenie 14.5 (Riemanna). Mając dany szereg zbieżny warunkowo, można przez zamianę porządku jego składników uzyskać szereg rozbieżny lub zbieżny do z góry zadanej granicy (skończonej lub nieskończonej).

Dowód powyższego twierdzenia pomijamy. Można go znaleźć np. w *Podstawach Analizy Matematycznej* Waltera Rudina. W szeregu bezwzględnie zbieżnym (w szczególności: szeregu zbieżnym o wyrazach nieujemnych) możemy dowolnie zamieniać kolejność wyrazów nie wypływając na jego granicę (sumę).

Twierdzenie 14.6. $e = \sum_{n=1}^{\infty} \frac{1}{n!}$, gdzie e oznacza oczywiście liczbę Eulera.

Dowód. Niech $s_n = \sum_{k=1}^n \frac{1}{k!}$ oraz $e_n := \left(1 + \frac{1}{n}\right)^n$. Wiemy, że $\left(1 + \frac{1}{n}\right)^n \leqslant \sum_{k=1}^n \frac{1}{k!}$ (porównaj dowód tw. 2.14). Czyli $e_n \leqslant s_n, n \in \mathbb{N}$. Dalej, korzystając z twierdzenia o dwumianie newtona:

$$e_n = 1 + \underbrace{\frac{n!}{(n-1)!1!n}}_{1} + \frac{n!}{(n-2)!2!n^2} + \dots + \frac{n(n-1)\cdots(n-k+1)}{k!n^k} + \dots + \underbrace{\frac{n!}{(n-n)!n!n^n}}_{\frac{1}{n^n}}$$

$$e_n = 1 + 1 + \frac{1}{2!} \left(\frac{n(n-1)}{n^2} \right) + \frac{1}{3!} \left(\frac{n(n-1)(n-2)}{n^3} \right) + \ldots + \frac{1}{n!} \left(\frac{\overbrace{n(n-1)\cdots(n-k+1)}^{n-\text{wyrazów}}}{n^n} \right)$$

$$e_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{n-1}{n} \right)$$

Zauważmy, że $e_n > 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \ldots + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$ dla k < n. Korzystając z twierdzenia o zachowaniu nierówności przy przejściu do granicy:

$$\lim_{n \to \infty} e_n \geqslant 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{k!} = s_k, \ k < n.$$

Mamy więc tak naprawdę, że $s_n \leq e, n \in \mathbb{N}$. Łącząc ten fakt z poprzednim oszacowaniem, mamy iż

$$e_n \leqslant s_n \leqslant e, \ n \in \mathbb{N}.$$

Przy $n \to \infty$ na mocy twierdzenia o trzech ciągach dostajemy, że $s_n \to e$, co było do okazania.

14.1 Kryteria zbieżności szeregów

Omówimy teraz szereg przydatnych twierdzeń, w większości określanych jako "kryteria zbieżności szeregów". Dzięki nim będziemy w stanie rozstrzygnąć, czy dany szereg ma skończoną sumę czy też jest rozbieżny. Szczególnie liczne są metody dotyczące szeregów o wyrazach dodatnich lub przynajmniej nieujemnych, a podstawą jest tu porównywanie badanego szeregu z innymi szeregami, o których zbieżności/rozbieżności już wiemy. Jedną ze skuteczniejszych metoda badania szeregów nieujemnych podamy na końcu i będzie ona oparta na porównywaniu szeregu z całką niewłaściwą.

Twierdzenie 14.7 (Kryterium Leibniza). *Jeżeli ciąg liczbowy* $(a_n)_{n\in\mathbb{N}}$ *spełnia nast. warunki:*

- 1. $a_n \geqslant 0, n \in \mathbb{N}$,
- $2. \lim_{n \to \infty} a_n = 0,$
- 3. $ciag \ a_n \ jest \ nierosnacy;$

to szereg

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

jest zbieżny.

Dowód. Zauważmy, że $S_{2^{n+1}} = S_{2^n} + (a_{2^{n+1}} - a_{2^{n+2}})$ oraz $a_{2^{n+}} - a_{2^{n+2}} \ge 0$ z założenia, że ciąg jest malejący. Krótko mówiąc: podciąg $(S_{2^n})_{n \in \mathbb{N}}$ jest rosnący. Zauważmy, że jest też ograniczony:

$$S_{2^n} = a_0 - a_1 + a_2 - \ldots + a_{2^n} = a_0 - (\underbrace{(a_1 - a_2)}_{\geqslant 0} + \underbrace{(a_3 - a_4)}_{\geqslant 0} + \ldots + \underbrace{(a_{2^n - 1} - a_{2^n})}_{\geqslant 0}) \leqslant a_0.$$

Ciąg $(S_{2^n})_{n\in\mathbb{N}}$ jest zbieżny. Musimy teraz pokazać, że $\lim_{n\to\infty}S_{2^{n+1}}=\lim_{n\to\infty}S_{2^n}$. Wystarczy zauważyć, że $S_{2^{n+1}}=S_{2^n}+a_{2^{n+1}}$ a $\lim_{n\to\infty}a_{2^{n+1}}=0$ z założenia a więc

$$\lim_{n \to \infty} S_{2^{n+1}} = \lim_{n \to \infty} (S_{2^n} + a_{2^{n+1}}) = \lim_{n \to \infty} S_{2^n}.$$

Twierdzenie 14.8 (Kryterium Abela). Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ będą ciągami liczb rzeczywistych. Jeżeli szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny a ciąg $(b_n)_{n\in\mathbb{N}}$ monotoniczny i ograniczony, to szereg $\sum_{n=1}^{\infty} a_n b_n$ jest zbieżny.

Twierdzenie 14.9 (Kryterium Dirichleta). Jeżeli ciąg sum częściowych szeregu $\sum_{n=0}^{\infty} a_n$ jest ograniczony, a $(b_n)_{n\in\mathbb{N}}$ jest ciągiem liczb rzeczywistych, który jest monotoniczny i zbieżny do zera, to szereg $\sum_{n=1}^{\infty} a_n b_n$ jest zbieżny.

Szeregi o wyrazach nieujemnych:

Twierdzenie 14.10 (Kryterium porównawcze). Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ będą pewnymi ciągami o wyrazach nieujemnych. Załóżmy, że dla pewnego $n_0 \in \mathbb{N}$ zachodzi $a_n \leqslant b_n, n \geqslant n_0$. Wówczas

- jeżeli szereg $\sum_{n=1}^{\infty} b_n$ jest zbieżny, to zbieżny jest szereg $\sum_{n=1}^{\infty} a_n$,
- jeżeli szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny, to rozbieżny jest szereg $\sum_{n=1}^{\infty} b_n$.

Dowód. Załóżmy, że szereg $\sum_{n=1}^{\infty}b_n$ jest zbieżny i $a_n\leqslant b_n,\ n\geqslant n_0$ dla pewnego $n_0\in\mathbb{N}$. Istnieje $n_1\in\mathbb{N}$ takie, iż $B_m-B_n<\varepsilon$ dla $m\geqslant n\geqslant n_1$. Niech $N=\max\{n_0,n_1\}$. Wówczas

$$A_m - A_n \leqslant B_m - B_n < \varepsilon \text{ dla } m \geqslant n \geqslant N.$$

Szereg $\sum\limits_{n=1}^{\infty}a_n$ jest zbieżny na mocy twierdzenia 14.2. W drugą stronę: jeżeli $0\leqslant a_n\leqslant b_n,\ n\geqslant n_0$ i szereg $\sum\limits_{n=1}^{\infty}a_n$ jest rozbieżny, to $\lim_{n\to\infty}a_n>0$ i stąd również $\lim_{n\to\infty}b_n>0$ zatem szereg $\sum\limits_{n=1}^{\infty}b_n$ nie może być zbieżny.

Przykład. Wróćmy jeszcze raz do liczby e. W różnych działach analizy, autorzy dla wygody przyjmują sumę szeregu $\sum_{n=1}^{\infty} \frac{1}{n!}$ za definicję liczby e. Wtedy oczywiście trzeba udowodnić zbieżność tego szeregu. Zauważmy jednak, że

$$\frac{1}{n!} \leqslant \frac{1}{2^{n-1}}, \text{ dla } n > 4.$$

Wystarczy skorzystać z nierówności $2^{n-1} \leqslant n!, \ n>4$ - porównaj tw. 1.21. Szereg $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ jest zbieżny, gdyż jest to szereg geometryczny (porównaj przykład 14) o wyrazie $x=\frac{1}{2}$. Stąd na mocy kryterium porównawczego szereg $\sum_{n=1}^{\infty} \frac{1}{n!}$ jest zbieżny. Korzystając z tej zbieżności i wychodząc od tak zdefiniowanej liczby e, można oczywiście w drugą stronę dowodzić, że $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n=e$ - czyli że taka granica istnieje. Zasadniczo, jeśli wrócimy do dowodu twierdzenie 2.14 to bardziej elegancko, w miejscu, gdzie szukaliśmy ograniczenia ciągu z góry, posłużyć się właśnie oszacowaniem $2^{n-1}\leqslant n!, \ n>4$ i nawet uzasadnić od razu, że po prawej stronie mamy szereg zbieżny.

Ćwiczenie. Zbadać zbieżność szeregu $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}.$

Przytoczymy jeszcze poprzednie twierdzenie w innej wersji:

Twierdzenie 14.11 (Kryterium graniczne). Niech $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ będą pewnymi ciągami tak, że $a_n \geqslant 0$ oraz $b_n > 0$ dla każdego $n \in \mathbb{N}$. Jeżeli istnieje granica $G = \lim_{n\to\infty} \frac{a_n}{b_n}$, to:

- $qdy G < \infty$, to

zbieżność szeregu
$$\sum_{n=1}^{\infty} b_n$$
 pociąga zbieżność szerergu $\sum_{n=1}^{\infty} a_n$.

- gdy G > 0, to

rozbieżność szeregu
$$\sum_{n=1}^{\infty} a_n$$
 pociąga rozbieżność szerergu $\sum_{n=1}^{\infty} b_n$.

Warto z powyższego twierdzenia wyciągnąć i zapamiętać przynajmniej następującą regułę: gdy

$$\lim_{n \to \infty} \frac{a_n}{b_n} \in (0, \infty),$$

to obydwa szeregi $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ są albo równocześnie rozbieżne, albo równocześnie zbieżne. Następne kryterium jest bardzo wygodne ze względu na swoją prostotę, ale często pomijane w standardowym kursie analizy ze względu na ograniczone zastosowania.

Twierdzenie 14.12 (Kryterium kondensascyjne Cauchy'ego). Załóżmy, że $(a_n)_{n\in\mathbb{N}}$ jest nierosnący, $a_n \ge 0$. Wówczas

szereg
$$\sum_{n=1}^{\infty} a_n$$
 jest zbieżny wtedy i tylko wtedy, gdy zbieżny jest szereg $\sum_{n=0}^{\infty} 2^n a_{2^n}$

Przykład. Szereg $\sum_{n=0}^{\infty} \frac{1}{n^p}$ jest zbieżny, jeżeli p>1 i rozbieżny, jeżeli $p\leqslant 1$.

Dowód. Jeśli $p\leqslant 0,$ to szereg oczywiście jest rozbieżny, bo nie jest spełniony warunek konieczny 14.1 zbieżności szeregu. Dla p>0 zastosujmy kryterim kondensacyjne 14.12. Przejdźmy do szeregu

$$\sum_{n=0}^{\infty} 2^n \frac{1}{2^{np}} = \sum_{n=0}^{\infty} 2^{(1-p)n}.$$

Teraz: $2^{1-p}<1$ wtedy i tylko wtedy, gdy 1-p<0 i wystarczy przyjąć $q=2^{1-p}$ aby uzyskać zbieżny szereg geometryczny.

Twierdzenie 14.13 (Kryterum Cauchy'ego). Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem nieujemnym.

- $Je\dot{z}eli \limsup_{n\to\infty} \sqrt[n]{a_n} < 1$, to $szereg \sum_{n=1}^{\infty} a_n \ jest \ zbie\dot{z}ny$.
- Jeżeli $\limsup_{n\to\infty} \sqrt[n]{a_n} > 1$, to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.

 $Dow \acute{o}d.$ Niech $D=\limsup_{n\to\infty} \sqrt[n]{a_n}$ i rozpatrzymy przypadki.

- 1. Niech najpierw D<1. Weźmy $\alpha\in\mathbb{R}$ tak, że $D<\alpha<1$. Istnieje (lemat 3.3) $N\in\mathbb{N}$ takie, że $\sqrt[n]{a_n}<\alpha,\ n\geqslant N$. Szereg $\sum\limits_{n=0}^{\infty}\alpha^n$ jest zbieżny, gdyż $\alpha\in[0,1)$ i zbieżność szeregu $\sum\limits_{n=1}^{\infty}a_n$ wynika z kryterium porównawczego.
- 2. D > 1. Weźmy ciąg $(n_k)_{k \in \mathbb{N}}$ l. naturalnych tak, że $\lim_{k \to \infty} \sqrt[n_k]{a_{n_k}} = D$. A więc $a_{n_k} > 1$ dla nieskończenie wielu $k \in \mathbb{N}$. Czyli $\lim_{n \to \infty} a_n \geqslant 1$ i nie może być spełniony warunek konieczny (14.1) zbieżności szeregu.

Uwaga 14.2. Jeżeli $\limsup_{n\to\infty} \sqrt[n]{a_n}=1$ to kryterium **nie** rozstrzyga zbieżności szeregu!

Uwaga 14.3. Oczywiście, jeżeli ciąg $(\sqrt[n]{a_n})_{n\in\mathbb{N}}$ jest zbieżny, to $\limsup_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{a_n}$ i możemy po prostu obliczać granicę.

Twierdzenie 14.14 (Kryterium d'Alemberta). Załóżmy, że $(a_n)_{n\in\mathbb{N}}$ jest ciągiem nie-ujemnym.

Jeżeli istnieje granica
$$D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
, to wtedy:

-
$$gdy \ D < 1$$
, to $szereg \sum_{n=1}^{\infty} a_n \ jest \ zbieżny$,

-
$$gdy \ D > 1$$
, to $szereg \sum_{n=1}^{\infty} a_n \ jest \ rozbieżny$.

Dowód. Załóżmy najpierw, że D<1. Weźmy dow. liczbę rzeczywistą $\alpha\in(D,1)$ Istnieje $N\in\mathbb{N}$ takie, że $\frac{a_{n+1}}{a_n}<\alpha$ dla $n\geqslant N.$ Czyli

$$a_n < a_{n-1}\alpha, \ a_{n+1} < a_n\alpha, \dots \ \text{dla } n \geqslant N.$$

Możliwe do otrzymania nierówności możemy mnożyć stronami przez α (> 0!)

$$a_{n+1}\alpha < a_n\alpha^2 < a_{n-1}\alpha^3.$$

$$a_{N+2}\alpha < a_{N+1}\alpha^2 < a_N\alpha^3.$$

:

$$a_n < a_{n-1}\alpha < a_{n-2}\alpha^2 < \dots < a_{N-2}\alpha^{n-N+2} < a_{N-1}\alpha^{n-N+1} < a_N\alpha^{n-N}, \ n > N.$$

Uzyskaliśmy oszacowanie $a_n < a_N \alpha^{n-N}, n > N$ a ponieważ $\alpha \in [0,1)$, to szereg

$$\sum_{n=1}^{\infty}\underbrace{\left(a_N\alpha^{-N}\right)}_{\text{constans}}\alpha^n \text{ jest zbieżny (szereg geometryczny) i zbieżność szeregu }\sum_{n=1}^{\infty}a_n \text{ wynika z}$$

kryterium porównawczego.

Teraz załóżmy, że D>1. Jeżeli $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}>1$, to ciąg $(a_n)_{n\in\mathbb{N}}$ jest od pewnego miejsca niemalejący a ponadto jego wyrazy są nieujemne, zatem warunek 14.1 konieczny zbieżności szeregu nie może być spełniony.

Uwaga 14.4. Jeżeli w powyższym twierdzeniu D=1, to kryterium **nie** rozstrzyga zbieżności szeregu.

Uwaga 14.5. Jeżeli

$$D = 1$$

to podobnie jak poprzednio kryterium nie rozstrzyga zbieżności szeregu.

Uwaga 14.6. Kryterium d'Alemberta jest na ogół łatwiejsze w zastosowaniu niż Kryterium Cauchy'ego, ponieważ łatwiej jest obliczyć ułamki niż pierwiastki n-tego stopnia. Jednak Kryterium Cauchy'ego jest "silniejsze" w tym sensie, że w wielu przypadkach kryterium d'Alemberta nie daje żadnego rozstrzygnięcia podczas gdy kryterium Cauchy'ego wskazuje na zbieżność. Z drugiej strony, gdy kryterium Cauchy'ego nie daje rozstrzygnięcia, to również kryterium d'Alemberta nie daje rozstrzygnięcia zbieżności szeregu. Wystarczy przypomnieć oszacowanie (twierdzenie 2.1):

$$\liminf_{n\to\infty}\frac{x_{n+1}}{x_n}\leqslant \liminf_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\frac{x_{n+1}}{x_n}.$$

Przykład. Zbadamy zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

Mamy

$$\frac{n+1}{2^{n+1}} \frac{2^n}{n} = \frac{1}{2} \left(\frac{n+1}{n} \right)$$

$$\lim_{n \to \infty} \frac{1}{2} \left(\frac{n+1}{n} \right) = \frac{1}{2} \lim_{n \to \infty} \frac{1+\frac{1}{n}}{1} = \frac{1}{2} < 1$$

Zatem na mocy kryterium d'Alemberta szereg ten jest zbieżny. Akurat sumę szeregu jesteśmy w tanie w miarę łatwo obliczyć. Rozpiszmy $\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots = S$. Przyjrzyjmy się sumom częściowym S_3 i S_4 .

$$S_3 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8}$$

$$S_4 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16}$$

Stąd można zauważyć, że $S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{2} \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} \right) = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{2} S_3$. Ogólnie:

$$S_n = \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n} + \frac{1}{2}S_{n-1}.$$

Zauważmy, że

$$2\left(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n}\right) = 1 + \frac{1}{2} + \ldots + \frac{1}{2^{k+1}} = \sum_{k=1}^n 2^{k+1} = \sum_{k=0}^{n-1} 2^k.$$

Zatem

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{2} \sum_{k=0}^{n-1} 2^k - \frac{1}{3} S_{n-1} \right) = \frac{1}{2} \sum_{n=0}^{\infty} 2^n - \frac{1}{2} S_{n-1}$$

$$\frac{3}{2} \sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=0}^{\infty} 2^n = \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}} \right) = 1.$$
$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{2}{3}.$$

Widzimy jednak, że musieliśmy "pokombinować" aby uzyskać wynik. Tak jak mówiliśmy, w ogólności szukanie sumy szeregu nie jest łatwe i nie dysponujemy arsenałem metod, pozwalających wyznaczać sumy różnych szeregów. Trochę się to zmieni, gdy zapoznamy się z szeregami funkcyjnymi.

Ćwiczenie. Zbadać zbieżność szeregu
$$\sum_{n=1}^{\infty}\frac{2^n\cdot n!}{n^n}.$$

Twierdzenie 14.15 (Kryterium całkowe zbieżności szeregów). Załóżmy, $\dot{z}e\ f: [N, +\infty) \rightarrow [0, +\infty)$ jest funkcją całkowalną na każdym przedziale [N, M], $M \in (N, +\infty)$ i nierosnącą. Wówczas

szereg
$$\sum_{n=1}^{\infty} f(n)$$
 jest zbieżny wtedy i tylko wtedy, gdy całka $\int_{N}^{+\infty} f$ jest zbieżna.

Ponadto

$$\int_{N}^{n} f(x) dx + f(n) \le \sum_{k=N}^{n} f(k) \le \int_{N}^{n} f(x) dx + f(N), \ n > N.$$

Dowód. Z twierdzenia 11.5 mamy oszacowanie:

$$f(k) \le \int_{k-1}^{k} f(x) \, \mathrm{d}x \le f(k-1), \ k > N.$$

Sumujemy stronami nierówności dla wszystkich k>N:

$$\sum_{k=N+1}^{n} f(k) \leqslant \sum_{k=N+1}^{n} \int_{k-1}^{k} f(x) \, \mathrm{d}x \leqslant \underbrace{\sum_{k=N+1}^{n} f(k-1)}_{\sum_{k=N}^{n-1} f(k)}, \ n > N.$$

$$\sum_{k=N}^{n} f(k) - f(N) \leqslant \int_{N}^{n} f(x) \, \mathrm{d}x \leqslant \sum_{k=N}^{n} f(k) - f(n)$$

Zauważmy, że stąd już widać, iż:

$$\sum_{k=N}^{\infty} f(k)$$
jest zbieżny $\Leftrightarrow \int_{N}^{n} f(x) \, \mathrm{d}x$ jest zbieżna

Ponadto z poprzedniego oszacowania można przejść do:

$$\int_{N}^{n} f(x) dx + f(n) \leqslant \sum_{k=N}^{n} f(k) \leqslant \int_{N}^{n} f(x) dx + f(N)$$

Wniosek 6. Ponownie, niech $f: [N, +\infty) \to [0, +\infty)$ jest funkcją całkowalną na każdym przedziale $[N, M), M \in (N, +\infty)$ i (słabo) malejącą. Wówczas ciąg

$$\left(\sum_{k=N}^{n} f(k) - \int_{N}^{n} f(x) \, \mathrm{d}x\right)_{n \in \mathbb{N}}$$

jest zbieżny do liczby z przedziału [0, f(N)].

Dowód. Przyjmijmy $y_n = \sum_{k=N}^n f(k) - \int_N^n f(x) dx, n \in \mathbb{N}.$

$$y_n \geqslant 0 \ (y_n \geqslant f(n) \geqslant 0)$$

$$y_{n+1} - y_n = \sum_{k=N}^{n+1} f(k) - \int_N^{n+1} f(x) \, dx - \sum_{k=N}^n f(k) + \int_N^n f(x) \, dx = f(n+1) - \int_n^{n+1} f(x) \, dx \le 0.$$

Ciąg $(y_n)_{n\in\mathbb{N}}$ jest malejący i ograniczony z dołu, stąd zbieżny. Z drugiej strony

$$y_n \leqslant f(N)$$
.

Przykład. Ciąg $\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln n\right)_{n\in\mathbb{N}}$ jest zbieżny do liczby z przedziału [0,1].

Wystarczy przyjąć $x_n = \left(\sum_{k=1}^n \frac{1}{k} - \int_1^n \frac{1}{x} dx\right)$ i z naszego wniosku mamy $\lim_{n \to \infty} x_n = \gamma \in [0, 1]$.

Liczba γ nazywana jest stałą Eulera (nie mylić z liczbą e Eulera) albo stałą Mascheroniego (albo stałą Eulera-Mascheroniego) i wynosi około 0,5772156649. Liczba ta ma wiele zastosowań w różnych gałęziach matematyki, np. teorii równań różniczkowych. Nie wiadomo, czy liczba ta jest wymierna, czy też niewymierną.

Przykład.

Twierdzenie 14.16 (Kryterium zagęszczające Schlömilcha). Ustalmy szereg liczbowy $\sum_{n=1}^{\infty} a_n \ o \ wyrazach \ nieujemnych \ taki, \ \dot{z}e \ ciąg \ jego \ wyrazów \ jest \ nierosnący. Niech \ dana będzie funkcja <math>f \colon \mathbb{N} \to \mathbb{N} \ o \ tej \ własności, \ \dot{z}e$

$$\frac{f(n+1)-f(n)}{f(n)-f(n-1)} = \frac{\Delta f(n)}{\Delta f(n-1)} < N, \ n \in \mathbb{N}$$

dla pewnego N > 0. Wówczas szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny wtedy i tylko wtedy, gdy zbieżny jest szereg

$$\sum_{n=0}^{\infty} \Delta f(n) a_{f(n)} = \sum_{n=1}^{\infty} \left(f(n+1) - f(n) \right) a_{f(n)}.$$

Zauważmy, że przyjmując $f(n) = 2^n$ w powyższym twierdzeniu, otrzymamy kryterium zagęszczające Cauchy'ego.

Ćwiczenie. Korzystając z kryterium Schlömilcha udowodnić, że szereg $\sum_{n=1}^{\infty} \frac{1}{2^{\sqrt{n}}}$ jest zbieżny. Wskazówka: przyjąć $f(n) = n^2$.

15 Aproksymacja funkcji (n+1)-krotnie różniczkowalnych

Przypomnijmy, że n-tą pochodną funkcji f oznaczamy jako $f^{(n)}$ i $f = f^0$. Niech $W(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$. Zauważmy, że

$$W(0) = a_0, W^{(1)}(0) = a_1, W^{(2)}(0) = 2!a_2, W^{(3)}(0) = 3!a_3, \dots, W^{(n)}(0) = n!a_n.$$

Wnioskiem jest, że wielomian W można przedstawić w postaci:

$$W(x) = W(0) + \frac{W^{(1)}(0)x}{1!} + \frac{W^{(2)}(0)x^2}{2!} + \frac{W^{(3)}(0)x^3}{3!} + \dots + \frac{W^{(n)}(0)x^n}{n!}.$$

Okazuje się, że dowolną funkcję (n+1)-krotnie różniczkowalną daje się przedstawić w ten sposób - jednak przedstawienie będzie obarczone pewnym błędem.

Twierdzenie 15.1 (Taylora). Niech $f: [a,b] \to \mathbb{R}$ będzie funkcją klasy C^n w przedziale (a,b), $f^{(k)}$ jest ciągła w [a,b], $k=0,1,\ldots,n$ i istnieje $f^{(n+1)}$ w przedziale (a,b). Ustalmy też $x_0 \in (a,b)$. Wtedy dla każdego $x \in (a,b)$ zachodzi następujący wzór:

(15.1)
$$f(x) = \sum_{k=0}^{n} \left(\frac{(x-x_0)^k}{k!} f^{(k)}(x_0) \right) + R_n(x, x_0),$$

gdzie funkcja $R_n(x,x_0)$ nazywana resztą we wzorze Taylora spełnia warunek

$$\lim_{x \to x_0} \frac{R_{n,x_0}(x)}{(x - x_0)^n} = 0.$$

Wzór 15.1 nosi nazwę wzoru Taylora. Mówimy, że funkcję przedstawiliśmy przy pomocy wzoru Taylora albo rozwinęliśmy we wzór Taylora w otoczeniu punktu x_0 . Często posługujemy się wzorem Taylora dla $x_0 = 0$ - tę szczególną postać nazywamy wzorem Maclaurina. Twierdzenie 15.1 można krótko podsumować: $f(x) \approx \sum_{n=1}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$. Reszta $R_n(x,x_0)$ wyraża tutaj błąd przybliżenia. Zauważmy, że przybliżenie $\sin x \approx x$, dla x "bliskich zeru" możemy uzyskać rozwijając funkcję $x \mapsto \sin x$ przedstawiając ją przy pomocy wzoru Maclaurina (wzoru Taylora w otoczeniu punktu x=0).

Uwaga 15.1. Jeżeli funkcja f spełnia założenia twierdzenia 15.1, a $M \geqslant 0$ jest liczbą taką, że

$$|f^{n+1}(x)| \leq M$$
, dla każdego $x \in [a, b]$,

to

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}, x \in [a, b].$$

Uwaga 15.2. Twierdzenie Taylora można też udowodnić dla $f: [a, b] \to Y$, gdzie $(Y, \| \cdot \|)$ jest dowolną przestrzenią unormowaną. W poprzedniej uwadze zastępujemy wówczas $|f^{n+1}(x)|$ przez $||f^{n+1}(x)||$ i $||R_n(x)||$ i pozostaje ona w mocy.

Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją spełniającą założenia twierdzenia Taylora. Istnieje wiele znanych jawnych postaci reszty $R_n(x,x_0)$, ze wzoru 15.1. Twierdzenie 15.1 najłatwiej udowodnić, wychodząc od postaci wzoru 15.1 z resztą wyrażoną jawnym wzorem.

Podamy kilka jawnych postaci reszty $R_n(x, x_0)$.

Twierdzenie 15.2 (Reszta w postaci Lagrange'a). *Istnieje takie* $\xi \in [\min\{x, x_0\}, \max\{x, x_0\}], \dot{z}e$

$$R_{n,x_0}(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Inaczej: istnieje takie $\theta \in [0,1]$, że

$$R_{n,x_0}(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x_0 + \theta(x-x_0)).$$

Dowód. WORK-IN-PROGRESS:TO-DO Dla ustalniea uwagi, załóżmy, że $x < x_0$. Niech $T(x) = \sum_{k=0}^{n} \left(\frac{(x-x_0)^k}{k!} f^{(k)}(x_0)\right)$. Chcemy pokazać, że istnieje $\xi \in (a,b)$ takie, że

$$f(x) = T(x) + \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Niech $M = \frac{f(x) - T(x)}{(x - x_0)^{n+1}}$. To znaczy, że

(15.2)
$$f(x) = T(x) + M(x - x_0)^{n+1}.$$

Określamy funkcję g:

$$g(x) = f(x) - T(x) - M(x - x_0)^{n+1}, x \in [a, b].$$

Chcemy pokazać, że dla pewnego $\xi \in (x, x_0)$ zachodzi równość $(n+1)!M = f^{(n+1)}(\xi)$. Z definicji T i g:

$$g^{(n+1)}(x) = f^{(n+1)}(x) - n!M.$$

Dalej, mamy $T^{(k)}(x_0) = f^{(k)}(x_0), k = 0, 1, \dots, n-1$ więc

$$g(x_0) = g^{(1)}(x_0) = \dots = g^{(n)}(x_0) = 0.$$

Z definicji liczby M wynika, że g(x)=0 i na mocy twierdzenia o wartości średniej, $g(\xi_0)=0$ dla pewnego $x\in (x,x_0)$. Ogólne, dla każdego $k=0,\ldots,n+1$ znajdziemy $\xi_k\in (x,x_0)$ takie, że $g^{(k)}(\xi_k)=0$, co kończy dowód równości 15.2. Trzeba jeszcze pokazać, że

$$\lim_{n \to \infty} \frac{x - x_0}{(n+1)!} f^{(n+1)}(\xi) = 0.$$

Twierdzenie 15.3 (Reszta w postaci całkowej).

$$R_{n,x_0}(x) = \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Chcąc zatem znaleźć przybliżenie w otoczeniu zadanego punktu x_0 funkcji f wzorem Taylora **z zadaną dokładnością** η , musimy znaleźć rozwiązanie n_0 równania sup $|R_n(x,x_0)| \le \eta$ względem n. Oznaczmy raz jeszcze: $T_n(x) = \sum_{k=0}^n \left(\frac{(x-x_0)^k}{k!} f^{(k)}(x_0)\right)$ i niech $\Delta(x) := |f(x) - T_{n_0}(x)|$ - czyli błąd przybliżenia. Zakładając, że pochodna n_0 -tego rzędu istnieje - wzór 15.1 przy $n = n_0$ przybliża funkcję f z zadaną dokładnością, tzn. $\Delta(x) \le \eta$. Przykład. Niech $f(x) = e^x, x \in \mathbb{R}$. Chcemy przybliżyć funkcję f z dokładnością do 0,001 wartości liczby e. **TO-DO**

Zauważmy teraz jeszcze, że również z twierdzenia 15.1 można udowodnić nierówność $e^x > x+1$.

Przykład. Pokażemy, że $\sqrt{1+x}\approx 1+\frac{x}{2}, x\geqslant 0$ i oszacujemy błąd przybliżenia. Niech $f(x)=\sqrt{1+x}, x\geqslant 0$. Skorzystamy ze wzoru Taylora 15.1 przy n=1 i $x_0=0$.

$$f(x) = \sqrt{1+x},$$

$$f'(x) = \frac{1}{2\sqrt{1+x}},$$

$$f''(x) = -\frac{1}{4\sqrt{(1+x)^3}}.$$

$$f(x) = (x-0)^0 \frac{\sqrt{1+0}}{1!} + (x-0)^1 \frac{1}{2!} \cdot \frac{1}{2\sqrt{1+0}} + R_2(x) = 1 + \frac{x}{2} + R_2(x).$$

Uprościliśmy też notację błędu. Zajmijmy się jego oszacowaniem. Skorzystamy z postaci Lagrange'a (15.2) reszty:

$$R_2(x) = \frac{x^2}{2!} \frac{1}{4\sqrt{(1+\xi)^3}}$$

dla pewnego $\xi \in (0, x)$. Szacujemy:

$$\left| \sqrt{1+x} - 1 - \frac{x}{2} \right| = |R_3(x)| = \left| \frac{x^2}{8} \frac{1}{\sqrt{(1+\xi)^3}} \right| \leqslant \frac{x^2}{8}$$

Zatem np. dla $x \in [0,1]$ błąd przybliżenia jest mniejszy lub rowny $\frac{1}{8}$. Ćwiczenie Rozwinać funkcie $f(x) = \sqrt{1+x}$ przy n=2 we wzorze Taylora i osza

 $\acute{C}wiczenie$. Rozwinąć funkcję $f(x)=\sqrt{1+x}$ przy n=2 we wzorze Taylora i oszacować błąd przybliżenia.

Jeżeli funkcja $f:[a,b]\to\mathbb{R}$ jest klasy C^∞ (na (a,b)), to możemy rozważać następujący szereg Taylora

(15.3)
$$\sum_{n=1}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$$

Zachodzi następujące

Twierdzenie 15.4. Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją klasy C^∞ w przedziale (a,b). Wówczas

(15.4)
$$f(x) = \sum_{n=1}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$$

wtedy i tylko wtedy, gdy ciąg reszt $(R_{n,x_0}(x))_{n\in\mathbb{N}}$ we wzorze 15.1 jest zbieżny do zera:

$$\lim_{n\to\infty} R_{n,x_0}(x) = 0.$$

Mówimy wtedy, że funkcja f jest analityczna.

Twierdzenie 15.5. Dla dowolnej liczby $x \in \mathbb{R}$

$$e^x = \sum_{n=1}^{\infty} \frac{x}{n!}.$$

Dowód. Wystarczy rozwinać funkcję $x \mapsto e^x$ w szereg Maclaurina (ćwiczenie).

Bywa, że liczbę e definiuje się jako sumę szeregu $\sum_{n=1}^{\infty} \frac{1}{n!}$. Korzystając z powyższego twierdzenia możemy udowodnić ważne

Twierdzenie 15.6. Liczba e jest liczba niewymierną.

Dowód. Załóżmy nie wprost, że $e=\frac{p}{q}$ przy czym $p,q\in\mathbb{Z}$. Wiemy też, że $2<\frac{p}{q}<3$ oraz, że $\frac{p}{q}=\sum\limits_{n=0}^{\infty}\frac{1}{n!}$. Pomnóżmy tę równość obustronnie przez q!. Mamy

$$p(q-1)! = \sum_{n=0}^{\infty} \frac{q!}{n!} = \sum_{n=0}^{q} \frac{q!}{n!} + \sum_{n=q+1}^{\infty} \frac{q!}{n!}$$

$$= q! + \frac{q!}{1!} + \frac{q!}{2!} + \frac{q!}{3!} + \ldots + \frac{q!}{q!} + \left(\frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \ldots\right).$$

Zatem pierwsza część sumy $(\sum_{n=0}^q \frac{q!}{n!})$ jest oczywiście liczbą naturalną. Oszacujmy z góry drugą część sumy $(\sum_{n=q+1}^\infty \frac{q!}{n!})$:

$$\sum_{n=q+1}^{\infty} \frac{q!}{n!} = \frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \ldots = \sum_{n=q+1}^{\infty} \frac{1}{(q+1)^n} = \frac{1}{q} \leqslant 1.$$

Ale p(q-1)! jest liczbą naturalną a z powyższego wynika, że liczba po prawej stronie równania nie może być naturalna. \Box

Niech $\exp(x):=\sum\limits_{n=1}^\infty\frac{x}{n!}$. Czyli $\exp x=e^x$ - funkcja exponent (ang. wykładnik) - funkcja wykładnicza. Korzystająć z rozwinięcia funkcji $x\mapsto e^x$ w szereg łatwo udowodnić

Twierdzenie 15.7. Funkcja exp: $\mathbb{R} \to \mathbb{R}$ jest

- 1. ciągła i różniczkowalna w każdym punkcie swojej dziedziny,
- 2. ściśle rosnąca,

3.
$$\frac{\mathrm{d}}{\mathrm{d}x} \exp(x) = \exp(x)$$
,

4.
$$\exp(0) = 1$$
, $\exp(x) \neq 0$, $x \in \mathbb{R}$,

5.
$$\exp(z+w) = \exp(x)\exp(y), x, y \in \mathbb{R}$$

6.
$$(\exp(x))^n = \exp(xn), n \in \mathbb{N}, x \in \mathbb{R}$$

7.
$$\lim_{x \to \infty} \exp(x) = \infty$$
 $i \lim_{x \to -\infty} \exp(x) = 0$,

8.
$$\lim_{x \to \infty} x^n \exp(-x) = 0.$$

Ćwiczenie. Sprawdzić wzory

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \ x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \ x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, \ -1 < x \le 1$$

16 Ciągi funkcyjne

Definicja 16.1. Niech X będzie dowolnym zbiorem, (Y, σ) przestrzenią metryczną oraz $f_n \colon X \to Y, n \in \mathbb{N}, \ f \colon X \to Y$ dowolnymi funkcjami.

Mówimy, że ciąg $(f_n)_{n\in\mathbb{N}}$ jest zbieżny punktowo do f, jeżeli dla każdego $x\in X$

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Piszemy wtedy

$$\lim_{n \to \infty} f_n = f, \ f_n \xrightarrow{n \to \infty} f \text{ lub } f_n \to f.$$

Definicja 16.2. Niech X będzie dowolnym zbiorem, (Y, σ) przestrzenią metrycznyną oraz $f_n \colon X \to Y, n \in \mathbb{N}, \ f \colon X \to Y$ dowolnymi funkcjami.

Mówimy, że ciąg $(f_n)_{n\in\mathbb{N}}$ jest *zbieżny jednostajnie* do f, jeżeli

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n\geqslant N}\forall_{x\in X}.\ \sigma(f_n(x),f(x))<\varepsilon$$

Piszemy wtedy $f_n \stackrel{X}{\Rightarrow} f$.

Definicja 16.3. Niech (X, ρ) (Y, σ) będą przestrzeniami metrycznynymi oraz $f_n \colon X \to Y, n \in \mathbb{N}, f \colon X \to Y$ dowolnymi funkcjami.

Mówimy, że ciąg $(f_n)_{n\in\mathbb{N}}$ jest prawie (lub niemal) zbieżny jednostajnie do f, jeżeli dla dowolnego zbioru zwartego $K\subseteq A$:

$$f_n|_K \stackrel{K}{\Rightarrow} f|_K$$

Zauważmy, że jeżeli zapiszemy definicję zbieżności punktowej zachodzącej na całym zbioreze X symbolicznie, za pomocą kwantyfikatorów:

$$\forall_{x \in X} \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} \ \sigma(f_n(x), f(x)) < \varepsilon,$$

to wystarczy przestawić pierwszy kwantyfikator w odpowiednie miejsce by uzyskać definicję zbieżności jednostajnej.

Twierdzenie 16.1. Niech X będzie pewnym zbiorem niepustym, (Y, σ) przestrzenią metryczną, $f_n, f: X \to Y, n \in \mathbb{N}$.

Ciąg $(f_n)_{n\in\mathbb{N}}$ jest zbieżny jednostajnie do f wtedy i tylko wtedy, gdy

(16.1)
$$\lim_{n \to \infty} \sup_{x \in X} \sigma\left(f_n(x), f(x)\right) = 0.$$

Przykład. Niech $D \subseteq \mathbb{R}$ i $f_n \colon D \to \mathbb{R}$ będą dane wzorem

$$f_n(x) = \frac{x}{n}, \ x \in D, n \in \mathbb{N}.$$

Oczywiście dla dowolnego $x \in \mathbb{R}$ zachodzi $\frac{x}{n} \xrightarrow{n \to \infty} 0$ zatem $f_n \to 0$, gdzie 0 rozumiemy jako **funkcję** stałą $x \mapsto 0$.

Jeżeli zatem $f_n \stackrel{D}{\rightrightarrows} f$ dla pewnej funkcji f, to musi być f = 0.

Rozważmy $D = \mathbb{R}$:

$$\sup_{x \in \mathbb{R}} |f_n - 0| = \sup_{x \in \mathbb{R}} \left| \frac{x}{n} \right| = \infty$$

zatem nie może zachodzić równość

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |f_n - 0| = 0.$$

Czyli $(f_n)_{n\in\mathbb{N}}$ nie jest zbieżny jednostajnie do 0 na całym zb. \mathbb{R} .

Twierdzenie 16.2. Ciąg $(f_n)_{n\in\mathbb{N}}$, $f_n\colon X\to Y$ zbieżny jednostajnie spełnia następujący warunek Cauchy'ego:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{x\in X}.\ \sigma(f_n(x),f(x))<\varepsilon.$$

Dowód. Oznaczmy przez f granicę ciągu $(f_n)_{n\in\mathbb{N}}$. Ustalmy $\varepsilon>0$. Istnieje $n_0\in\mathbb{N}$ takie, że dla $n\geqslant N$ mamy $\sigma\left(f_n(x),f(x)\right)<\frac{\varepsilon}{2}$. Dla dowolnych $n,m\geqslant N$ mamy następujące oszacowanie:

$$\sigma(f_n(x), f_m(x)) \leqslant \sigma(f_n(x), f(x)) + \sigma(f(x), f_m(x)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Twierdzenie 16.3. Niech (Y, σ) będzie przestrzenią metryczną zupelną. Wówczas $(f_n)_{n \in \mathbb{N}}$, $f_n \colon X \to Y$ jest zbieżny wtedy i tylko wtedy, gdy spelnia warunek Cauchy'ego.

Dowód. Załóżmy, że $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{x\in X}$. $\sigma(f_n(x),f(x))<\varepsilon$. Wówczas $\lim_{n\to\infty}f_n(x)=f(x),x\in X$. Pokażemy, że zbieżność jest jednostajna. Weźmy dowolne $\varepsilon>0$. Wówczas istnieje $N\in\mathbb{N}$ tak, że

$$\forall_{n,m \geqslant N} \sigma(f_n(x), f_m(x)) < \varepsilon, x \in X.$$

Ustalmy $n \in \mathbb{N}$. Mamy $\lim_{m \to \infty} \sigma(f_n(x), f_m(x)) = \sigma(f_n(x), f(x)) \leq \varepsilon, x \in X$. Czyli ciąg $(f_n)_{n \in \mathbb{N}}$ jest zbieżny jednostajnie z dowolności wyboru ε i n. Z poprzedniego twierdzenia dowód wynika w drugą stronę.

Twierdzenie 16.4. Niech (X, ρ) , (Y, σ) będą przestrzeniami metrycznymi, $\emptyset \neq A \subseteq X$, $f_n, f \colon A \to Y, n \in \mathbb{N}$.

Jeżeli $f_n \stackrel{A}{\rightrightarrows} f$ oraz f_n , $n \in \mathbb{N}$ są funkcjami ciągłymi, to f jest funkcją ciągłą.

Dowód. Niech $x_0 \in A$. Ustalmy $\varepsilon > 0$. Istnieje $n_0 \in \mathbb{N}$ takie, że dla każdego $n \ge n_0$

$$\sigma(f_n(x), f(x)) < \frac{\varepsilon}{3}, x \in X.$$

W szczególności

$$(*) \ \sigma(f_{n_0}(x), f(x)) < \frac{\varepsilon}{3}.$$

Funkcja f_{n_0} jest ciągła zatem istnieje $\delta>0$ taka, że

$$(**) \forall_{x \in A} \rho(x, x_0) < \delta \Rightarrow \sigma(f_{n_0}(x), f_{n_0}(x_0)) < \frac{\varepsilon}{3}.$$

Ustalmy $x \in A$ i załóżmy, że $\rho(x, x_0) < \delta$. Obliczamy:

$$\sigma(f(x), f(x_0)) \leq \sigma(f(x), f_{n_0}(x)) + \sigma(f_{n_0}(x), f_{n_0}(x_0)) + \sigma(f_{n_0}(x_0), f(x_0)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Twierdzenie 16.5. Niech (X, ρ) , (Y, σ) będą przestrzeniami metrycznymi, $\emptyset \neq A \subseteq X$, $f_n, f \colon A \to Y, n \in \mathbb{N}$.

Jeżeli $f_n, n \in \mathbb{N}$ są ciągłe oraz ciąg $(f_n)_{n \in \mathbb{N}}$ jest prawie jednostajnie zbieżny do f, to f jest ciągła.

Zatem, jeżeli znajdziemy granicę punktową ciągu funkcji ciągłych, nim podejmiemy się sprawdzania jego zbieżności jednostajnej, warto zwrócić uwagę, czy sama granica jest funkcją ciągłą. Jeśli nie, to ciąg nie jest zbieżny jednostajnie i sprawa jest rozstrzygnięta. Jednakże uwaga: twierdznie **nie** zachodzi w drugą stronę.

Przykład. TODO

Poniższe twierdzenie może być w oczywisty sposób użyteczne, do określania zbieżności jednostajnej niektórych ciągów funkcyjncyh, ale jest też wykorzystywany dla przeniesienia niektórych twierdzeń dotyczących całkowania ciągów funkcyjnych (do których zaraz przejdziemy) na całki niewłaściwe.

Twierdzenie 16.6 (Diniego). Niech E jest zwartym podzbiorem pewnej przestrzeni metrycznej. Ponadto niech $(f_n)_{n\in\mathbb{N}}$ będzie ciągiem funkcyjnym takim, że

- $(f_n)_{n\in\mathbb{N}}$ jest niemalejący lub nierosnący,
- f_n są ciągłe dla każdego n,
- $\text{-} \lim_{n\to\infty}=f.$

 $W\'owczas\ f_n \stackrel{E}{\rightrightarrows} f.$

Dowód. Załóżmy, że $f_n \geqslant f_{n+1}, n \in \mathbb{N}$. Ustalmy $\varepsilon > 0$. Przyjmijmy $g_n = f_n - f$ a wówczas g jest funkcją ciągłą dla dowolnego n oraz $g_n \geqslant g_{n+1}, n \in \mathbb{N}$. Oznaczmy

$$E_n = \{ x \in E \colon g_n(x) \geqslant \varepsilon \}.$$

Z ciągłości g_n wynika, że E_n jest zbiorem domkniętym dla dowolnego n, gdyż

zbiór domkn.
$$E_n = g_n^{-1} [[\varepsilon, \infty)] \subseteq E.$$

Ponieważ $\lim_{n\to\infty}g_n(x)=0$, więc istnieje $N\in\mathbb{N}$ takie, że $g_n(x)<\varepsilon$ dla $n\geqslant N$, czyli $\bigcap_{n=0}^N E_n=\varnothing$. Dowolny skończony przekrój rodziny $\{E_n\}_{n\in\mathbb{N}}$ będzie pusty, więc ze zwartości zbioru E i twierdzenia 3.29 wynika, że $\bigcap_{n\in\mathbb{N}} E_n=\varnothing$, czyli dla dowolnego $x\in E$ mamy, że:

dla każdego $n \in \mathbb{N}$ zachodzi $g_n(x) < \varepsilon$.

A więc ciąg $(f_n)_{n\in\mathbb{N}}$ jest zbieżny jednostajnie. Rozważając ciąg $(-f_n)_{n\in\mathbb{N}}$ otrzymamy twierdzenie dla ciągu nierosnącego.

Przestrzeń funkcji ciągłych: Niech (X,d) będzie przestrzenią metryczną. Oznaczamy przez $\mathcal{C}(X)$ zbiór wszystkich funkcji ciągłych określonych na przestrzeni X o wartościach rzeczywistych:

$$\mathcal{C}(X) = \left\{ f \in \mathbb{R}^X : \text{ f jest funkcją ciągłą.} \right\}.$$

Definicja 16.4. Niech $f \in \mathcal{C}(X)$. Supremum normą nazywamy wartość

$$||f||_{\infty} := \sup_{x \in X} |f(x)|.$$

Wówczas funkcja $\rho \colon \mathcal{C}(X) \times \mathcal{C}(X) \to \mathbb{R}$ dana wzorem $\rho(f,g) := \|f - g\|_{\infty}, \ f,g \in \mathcal{C}(X)$ jest metryką:

Twierdzenie 16.7. Przestrzeń $(C(X), \rho)$ jest przestrzenią metryczną zupełną.

Możemy teraz sformułować twierdzenie 16.1 w alternatywny sposób (po prawdzie w szczególnym przypadku):

Twierdzenie. Ciąg $(f_n)_{n\in\mathbb{N}}$ $(f_n\colon X\to\mathbb{R})$ jest zbieżny do $f\colon X\to\mathbb{R}$ w sensie metryki $\rho\colon \mathcal{C}(X)^2\to\mathbb{R}$ wtedy i tylko wtedy, gdy $f_n\stackrel{X}{\rightrightarrows} f$.

16.1 Całkowanie i różniczkowanie ciągów funkcyjnych

Twierdzenie 16.8. Niech $f_n: [a, b] \to \mathbb{R}, n \in \mathbb{N}$. Załóżmy, że

- f_n są różniczkowalne dla $n \in \mathbb{N}$,
- istnieje takie \bar{x} , $\dot{z}e$ ciąg $(f_n(\bar{x}))_{n\in\mathbb{N}}$ jest zbieżny do pewnej funkcji $f:[a,b]\to\mathbb{R}$,
- $ciag\ (f'_n)_{n\in\mathbb{N}}$ pochodnych jest jednostajnie zbieżny do pewnej funkcji $g\colon [a,b]\to\mathbb{R}$.

W'owczas

- (i) Ciąg $(f_n)_{n\in\mathbb{N}}$ jest jednostajnie zbieżny do $f:(a,b)\to\mathbb{R}$,
- (ii) funkcja f jest różniczkowalna,
- (iii) f' = g.

Dowód. Ustalmy $\varepsilon > 0$. Istnieje takie $N \in \mathbb{N}$, że

$$|f_m(\bar{x}) - f_n(\bar{x})| < \frac{\varepsilon}{2}, \ m, n \geqslant N$$

i równocześnie

$$\forall_{\substack{n,m\in\mathbb{N}\\m,n\geqslant N}} |f_m'(x) - f_n'(x)| < \frac{\varepsilon}{2(b-a)}, \ x \in (a,b).$$

Funkcja $f_n - f_m$ spełnia założenia twierdzenia Lagrange'a i stąd istnieje $\xi \in (\bar{x}, x)$ $(\bar{x}, x \in (a, b))$ takie, że

$$\frac{(f_n(x) - f_m(x)) - (f_n(\bar{x}) - f_m(\bar{x}))}{x - \bar{x}} = f'_n(\xi) - f'_m(\xi).$$

Ustalmy $n, m \ge n_0, x \in (a, b)$.

$$f_n(x) - f_m(x) = (f'_n(\xi) - f'_m(\xi))(x - \bar{x}) + f_n(\bar{x}) - f_m(\bar{x}).$$

$$|f_n(x) - f_m(x)| \leq |f_n(\bar{x}) - f_m(\bar{x})| + \underbrace{|x - \bar{x}|}_{<(b-a)} |f'_n(\xi) - f'_m(\xi)| \leq \frac{\varepsilon}{2} + (b-a)\frac{\varepsilon}{2(b-a)} = \varepsilon.$$

Mamy, że ciąg $(f_n)_{n\in\mathbb{N}}$ jest jednostajnie zbieżny.

Ustalmy $x_0 \in (a, b)$. Zdefinujmy funkcję $\varphi_n : (a, b) \to \mathbb{R}$ następująco:

$$\varphi_n(x) = \begin{cases} \frac{f_n(x) - f_n(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0. \end{cases} \quad n \in \mathbb{N}, x \in (a, b).$$

Oraz funkcję $\varphi \colon (a,b) \setminus \{x_0\} \to \mathbb{R}, \ \varphi(x) = \frac{f(x) - f(x_0)}{x - x_0}.$

$$\varphi_n$$
 - ciągłe, $n \in \mathbb{N}$.

Sprawdzimy, że $\varphi_n \rightrightarrows \varphi$. Ustalmy $\varepsilon > 0$. Wówczas, korzystając ponownie z tw. Lagrange'a, dla pewnego ξ mamy

$$|\varphi_n(x) - \varphi_m(x)| = \left| \frac{f_n(x) - f_n(x_0) - f_m(x) + f_m(x_0)}{x - x_0} \right| = |f'_n(\xi) - f'_m(\xi)|.$$

 $(f'_n)_{n\in\mathbb{N}}$ jest jednostajnie zbieżny. Istnieje $n_0\in\mathbb{N}$ tak, że

$$\forall_{\substack{n,m\in\mathbb{N}\\n,m\geqslant n_0}} |f'_n(x) - f'_n(x)| < \varepsilon, \ x \in (a,b).$$

Ustalmy $n, m \ge n_0, x \in (a, b)$. Mamy

$$|\varphi_n(x) - \varphi_m(x)| = |f'_n(\xi) - f'_m(\xi)| < \varepsilon.$$

Zatem ciąg $(\varphi)_{n\in\mathbb{N}}$ jest jednostajnie zbieżny.

Pokażemy, że f jest różniczkowalna w x_0 .

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \left(\lim_{n \to \infty} \varphi_n(x) \right) =$$
$$= \lim_{n \to \infty} \left(\lim_{x \to x_0} \varphi_n(x) \right) = \lim_{n \to \infty} f'_n(x_0) = \varphi(x_0) = g.$$

Czyli
$$\left(\lim_{n\to\infty} f_n(x)\right)' = (f(x))' = g(x) = \lim_{n\to\infty} f'_n(x) = f(x).$$

Twierdzenie 16.9. Załóżmy, że $f_n \colon [a,b] \to \mathbb{R}, \ n \in \mathbb{N}$ są funkcjami całkowalnymi w sensie Riemanna. Jeżeli $f_n \stackrel{[a,b]}{\rightrightarrows} f, \ f \colon [a,b] \to \mathbb{R}$, to

- (i) f jest całkowalna w sensie Riemanna,
- (ii) zachodzi wzór

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x.$$

Dowód. Przyjmijmy $\varepsilon_n := \sup_{x \in [a,b]} |f_n(x) - f(x)|$. Wówczas

$$f_n(x) - \varepsilon_n \leqslant f(x) \leqslant f_n(x) + \varepsilon_n, \ n \in \mathbb{N}.$$

Z definicji całki górnej i dolnej:

(16.2)
$$\int_{\underline{a}}^{b} (f_n(x) - \varepsilon_n) \, \mathrm{d}x \leqslant \int_{\underline{a}}^{\underline{b}} f(x) \, \mathrm{d}x \leqslant \overline{\int_{\underline{a}}^{b}} f(x) \, \mathrm{d}x \leqslant \overline{\int_{\underline{a}}^{b}} (f_n(x) + \varepsilon_n) \, \mathrm{d}x.$$

Stąd otrzymamy, że

$$0 \leqslant \int_{a}^{b} f(x) dx - \overline{\int_{a}^{b}} f(x) dx \leqslant 2\varepsilon_{n}(b - a).$$

Ponieważ $f_n \stackrel{[a,b]}{\rightrightarrows} f$, to na mocy twierdzenia 16.1 $\lim_{n \to \infty} \varepsilon_n = 0$ a więc z twierdzenia o trzech ciągach całka górna i dolna funkcji są sobie równe. Korzystając z tej wiedzy, tym razem z równania 16.2 dostaniemy, że

$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} f_{n}(x) dx \right| \leq \varepsilon_{n}(b - a).$$

Stąd już przy $n \to \infty$ dostajemy, że $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$.

17 Szeregi funkcyjne

W tej części będziemy zakładać, że $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definicja 17.1. Niech $X \neq \emptyset$ będzie dowolnym zbiorem, $f_n \colon X \to \mathbb{K}, n \in \mathbb{N}$. Ciąg sum częściowych (S_n) zdefiniujemy jako

$$S_n(x) := f_0(x) + f_1(x) + f_2(x) + \ldots + f_{n-1}(x) + f_n(x).$$

Ciąg $(S_n)_{n\in\mathbb{N}}$ nazywamy szeregiem funkcyjnym i oznaczamy

$$\left(\sum_{k=0}^{n} f_k\right)_{n \in \mathbb{N}}$$

zaś sumę $\lim_{n\to\infty} S_n$ tego szeregu:

$$\sum_{n=0}^{\infty} f_n$$

przy czym podobnie jak w przypadku szeregów najczęściej utożsamiamy symbol sumy szeregu z oznaczeniem samego szeregu.

Mówimy, że szereg funkcyjny jest

- zbieżny punktowo, gdy odpowiedni ciąg $(S_n)_{n\in\mathbb{N}}$ jest zbieżny punktowo;
- zbieżny jednostajnie, gdy ciąg $(S_n)_{n\in\mathbb{N}}$ jest jednostajnie zbieżny;
- prawie (niemal) jednostajnie zbieżny, gdy ciąg $(S_n)_{n\in\mathbb{N}}$ jest niemal jednostajnie zbieżny;

i nazywamy odpowiednio szeregiem zbieżnym punktowo, szeregiem zbieżnym jednostajnie, szeregiem prawie (niemal) jednostajnie zbieżnym.

Twierdzenie 17.1. Jeżeli szereg funkcyjny jest jednostajnie zbieżny, to jest zbieżny punktowo. Jeżeli (X, ρ) jest przestrzenią metryczną to każdy szereg jednostajnie zbieżny jest prawie jednostajnie zbieżny a każdy szereg prawie jednostajnie zbieżny jest zbieżny punktowo.

Twierdzenie 17.2. Jeżeli (X, ρ) jest przestrzenią metryczną, $f_n: X \to \mathbb{K}, n \in \mathbb{N}$ są funkcjami ciągłymi a szereg $\sum_{n=0}^{\infty} f_n$ jest (prawie) jednostajnie zbieżny, to jego suma jest funkcją ciągłą.

Dowód. (ćwiczenie)

Z twierdzenia o całkowaniu ciągów funkcyjnych, wynika że jeżeli szereg $\sum_{n=1}^{\infty} f_n$ jest zbieżny jednostajnie do funkcji $f:[a,b]\to\mathbb{R}$ na odp. przedziale, to

$$\int_{a}^{b} f = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n} = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}.$$

17.1 Kryteria zbieżności szeregów funkcyjnych

Twierdzenie 17.3 (Kryterium jednostajne Cauchy'ego dla szeregów funkcyjnych). *Niech* $X \neq \emptyset$, $f_n \colon X \to \mathbb{K}$, $n \in \mathbb{N}$.

Wówczas szereg $\sum_{n=1}^{\infty} f_n$ jest zbieżny jednostajnie wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m\geqslant N}\forall_{x\in X}\left|\sum_{k=n+1}^{m}f_k(x)\right|<\varepsilon.$$

Dowód.

$$\sum_{n=1}^{\infty} f_n \text{ jednostajnie zbieżny.} \Leftrightarrow (S_n)_{n \in \mathbb{N}} \text{ jedn. zbieżny.} \Leftrightarrow$$

$$\forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n,m \geqslant N} \forall_{x \in X} |S_m(x) - S_n(x)| < \varepsilon \Leftrightarrow$$

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m\geqslant N}\forall_{x\in X}\left|\sum_{k=n+1}^{m}f_k(x)\right|<\varepsilon$$

Twierdzenie 17.4 (Kryterium Weierstrassa). Niech $X \neq \emptyset$, $f_n \colon X \to \mathbb{K}$, $n \in \mathbb{N}$. Jeżeli istnieje taki ciąg liczbowy $(a_n)_{n \in \mathbb{N}}$ o wartościach dodatnich, że

$$\forall_{x \in X} \forall_{n \in \mathbb{N}} |f_n(x)| \leqslant a_n;$$

oraz $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to szereg funkcyjny $\sum_{n=1}^{\infty} f_n$ jest jednostajnie zbieżny.

 $Dow \acute{o}d.$

Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny, zatem dla ustalonego $\varepsilon > 0$ istnieje taki n_0 , że dla każdych

 $n, m \ge n_0$ oraz m > n zachodzi

$$\sum_{k=n+1}^{m} a_n < \varepsilon.$$

Wykorzystamy kryterium jednostajne Cauchy'ego. Ustalmy $n,m\geqslant n_0,\,m>n$ oraz $x\in X.$ Mamy

$$\left| \sum_{k=n+1}^{m} f_k(x) \right| \leqslant \sum_{k=n+1}^{m} |f_k(x)| \leqslant \sum_{k=n+1}^{m} a_n < \varepsilon.$$

Twierdzenie odwrotne nie jest prawdziwe.

Twierdzenie 17.5 (Kryterium Abela). Niech $X \neq \emptyset$, $A \subseteq X$ oraz $f_n \colon X \to \mathbb{K}, n \in \mathbb{N}$, $g_n \colon X \to \mathbb{K}, n \in \mathbb{N}$. Jeżeli szereg

$$\sum_{n=1}^{\infty} g_n$$

jest zbieżny jednostajnie na zbiorze A, dla każdego $x \in A$ ciąg $(f_n(x))_{n \in \mathbb{N}}$ jest monotoniczny oraz istnieje taka liczba M, że dla prawie wszystkich n zachodzi

$$\forall_{x \in A} |f_n(x)| \leq M,$$

to szereg funkcyjny

$$\sum_{n=1}^{\infty} f_n \cdot g_n$$

jest zbieżny na zbiorze A.

Zastosowanie szeregów funkcyjnych - przykład:

Twierdzenie 17.6. Istnieje funkcja $\mathbb{R} \to \mathbb{R}$ ciągła na \mathbb{R} ale nie różniczkowalna w żadnym punkcie.

Dowód. Zdefiniujmy funkcję $g: \mathbb{R} \to \mathbb{R}$ następująco:

$$g(x) = \begin{cases} |x|, & x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \\ g(x+1), & \text{w pozost. przypadkach.} \end{cases}$$

Definiujemy ciąg $(g_n)_{n\in\mathbb{N}}$:

$$g_1(x) \colon = \frac{g(2x)}{2}, x \in \mathbb{R},$$

Wówczas: $|g_n(x)| \leq \frac{1}{2^n}, x \in \mathbb{R}$. Każda funkcja g_n jest ciągłą i okresowa - o okresie $\frac{1}{2^n}$. Zdeiniujmy funkcję f w następujący sposób:

$$f(x) = \sum_{n=0}^{\infty} g_n(x) = \sum_{n=1}^{\infty} \frac{g(2^n x)}{2^n}, x \in \mathbb{R}.$$

Z twierdzenia
17.4 szereg $\sum_{n=0}^{\infty}g_n$ jest jednostajnie zbieżny, gdyż zbieżny jest szereg
 $\sum_{n=0}^{\infty}\frac{1}{2^{n-1}}$. Z twierdzenie 17.2 funkcja f jest ciągła. Teraz ch
cemy uzasadnić, że funkcja fnie może być różniczkowalna w żadnym punkcie prz
. \mathbb{R} . Weźmy dowolne $x\in\mathbb{R}$. Wówczas istnieje ciąg
 $(h_n)_{n\in\mathbb{N}}, \lim_{n\to\infty}h_n=0,$ że

$$\lim_{n \to \infty} \left| \frac{f(x + h_n) - f(x)}{h_n} \right| = +\infty,$$

czyli funkcja f nie jest różniczkowalna w x.

17.2 Własności szeregów funkcyjnych

17.3 Szeregi potęgowe

Definicja 17.2. Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem liczb zespolonych. Szereg funkcyjny

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

nazywamy szeregiem potęgowym o środku w punkcie x_0 .

Najczęściej rozważamy szereg o środku w zerze - $x_0 = 0$, $\sum_{n=1}^{\infty} a_n x^n$.

Dla uproszczenia wykładu w dalszej części przyjmujemy, że $0^0 = 1$.

Definicja 17.3. Wartość

$$R = \sup \left\{ x \geqslant 0 \colon \text{ szereg } \sum_{n=0}^{\infty} |a_n| (x - x_0)^n \text{ jest zbieżny.} \right\}$$

nazywamy promieniem zbieżności szeregu potęgowego $\sum_{n=0}^{\infty} a_n x^n$.

Zatem jeśli R jest promieniem zbieżności szeregu potęgowego $\sum_{n=0}^{\infty} a_n x^n$, to szereg ten jest zbieżny dla |x| < R, a dla |x| > R jest rozbieżny. Np. dla szeregu geometrycznego $\sum_{n=0}^{\infty} n x^n$ mamy oczywiście R=1 i zwróćmy uwagę, że dla x=1 albo x=-1 szereg geometryczny jest rozbieżny. Zbieżność w krańcach przedziału zbieżności, tj. zbieżność dla punktów x=R, x=-R musimy sprawdzać oddzielnie (podstawić R, -R pod x i zbadać uzyskany szereg).

Twierdzenie 17.7. Jeżeli szereg $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ jest zbieżny w pewnym punkcie $x_0 \neq x_1 \in \mathbb{C}$, to jest zbieżny prawie jednostajnie i bezwzględnie w kole

$$K(x_0, |x_0 - x_1|) = \{x \in \mathbb{C} : |x - x_0| < |x_0 - x_1|\}.$$

Jeżeli szereg ten jest rozbieżny w pewnym punkcie x_2 , to jest on rozbieżny w zbiore $\mathbb{C} \setminus \overline{K}(x_0, |x - x_0|)$.

Pokażemy, że jeżeli szereg $\sum_{n=0}^{\infty} a_n x^n$ jest zbieżny w pewnym punkcie $x_0 \neq x_1 \in \mathbb{C}$, to jest zbieżny jednostajnie i bezwzględnie w kole $K(0,x_1)=\{x\in\mathbb{C}\colon |x|< x_1\}$. Z warunku koniecznego zbieżności szeregu wynika, że $a_n x^n \stackrel{n\to\infty}{\longrightarrow} 0$. Ciąg ten jest zatem ograniczony, np. przez M>0. Niech $x\in K(0,x_1)$, to

$$|a_n x^n| < |a_n| x_1^n = |a_n x^n| \cdot \frac{x_1^n}{|x|^n} \le M \left(\frac{x_1}{|x|}\right)^n.$$

Przyjmując $q := x_1/|x|$ otrzymujemy szereg $\sum_{n=0}^{\infty} Mq^n$ geometryczny, zbieżny, którego wyraz ogólny ograniczającza szereg $\sum_{n=0}^{\infty} a_n x^n$ i na mocy kryterium Weierstrassa zbieżności szeregów funkcyjnych, szereg ten również jest zbieżny.

Twierdzenie 17.8 (Cauchy'ego-Hadamarda). Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem liczb zespolonych oraz niech

$$\lambda = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

Wówczas promień zbieżności szeregu $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ wynosi:

- 0, $je\dot{z}eli\ \lambda = +\infty$,
- $+\infty$, $je\dot{z}eli\ \lambda=0$,
- $\frac{1}{\lambda}$, $je\dot{z}eli\ \lambda \in (0,\infty)$.

Dowód. Zastosujemy kryterium Cauchy'ego zbieżności szeregów. Zgodnie z oznaczeniami w tezie twierdzenia

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = \lim_{n \to \infty} \sqrt[n]{|(x - x_0)^n| \cdot |a_n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} = |x - x_0| \lambda.$$

Rozważmy trzy przypadki

1. $\lambda = 0$.

W tym wypadku szereg jest zbieżny, dla każdego $x \in \mathbb{R}$. Rzeczywiście, dla dowolnego $x \in \mathbb{R}$ mamy wówczas

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0|\lambda = 0 < 1.$$

Na mocy kryterium Cauchy'ego szereg $\sum\limits_{n=0}^{\infty}a_{n}(x-x_{0})^{n}$ jest bezwzględnie rozbieżny.

2. $\lambda = +\infty$.

W tym wypadku oczywiście szereg jest zbieżny tylko dla $x=x_0$. Jeśli $x\neq x_0$, to

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0|\lambda = \infty.$$

Na mocy kryterium Cauchy'ego szereg $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ jest rozbieżny.

3. $\lambda \in (0, +\infty)$.

Mamy wówczas

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0|\lambda < \infty.$$

Na mocy kryterium Cauchy'ego wnioskujemy, że

- szereg $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ jest bezwględnie zbieżny, jeżeli $|x-x_0|\lambda < 1$, czyli kiedy

$$|x - x_0| < \frac{1}{\lambda}$$

- szereg $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ jest rozbieżny, jeżeli $|x-x_0|\lambda > 1$, czyli kiedy

$$|x - x_0| > \frac{1}{\lambda}$$

Czyli mamy, że szereg jest zbieżny, dla $x \in \left(x_0 - \frac{1}{\lambda}, x_0 + \frac{1}{\lambda}\right)$, natomiast **nie** wiemy jak szereg zachowuje się w krańcach przedziału (punktach $x = x_0 - \frac{1}{\lambda}$ i $x = x_0 + \frac{1}{\lambda}$)

Uwaga 17.1. Oczywiście, możemy w powyższym twierdzeniu stosować również granicę $\lambda = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Patrz - wzór 2.1.

Przykład. Rozważmy szereg $\sum_{n=0}^{\infty} x^{2n} = 1 + x^2 + x^4 + \dots$ Możemy określić ciąg $(a_n)_{n \in \mathbb{N}}$ następująco:

 $a_n = \begin{cases} 1, & \text{gdy } n \text{ jest parzyste;} \\ 0, & \text{gdy } n \text{ jest nieparzyste.} \end{cases}$

Wtedy

$$\sum_{n=0}^{\infty} x^{2n} = \sum_{n=0}^{\infty} a_n x^n.$$

Dalej, badamy podciągi ciągu $(a_n)_{n\in\mathbb{N}}$.

$$\lim_{k \to \infty} \sqrt[2k]{|a_{2k}|} = 1,$$

$$\lim_{k \to \infty} \sqrt[2k-1]{|a_{2k-1}|} = 0.$$

Zatem $\limsup_{n\to\infty} \sqrt[n]{|a_n|}=1$, więc szereg jest zbieżny dla |x|<1. R=1. Można też było oczywiście zauważyć, że nasz szereg jest szeregiem geometrycznym o ilorazie równym x^2 .

Twierdzenie 17.9. Jeśli $\sum_{n=0}^{\infty} a_n x^n$ jest szeregiem potęgowym o dodatnim promieniu zbieżności, to funkcja

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

jest ciągła w przedziale (-R,R).

Różniczkowanie i całkowanie szeregów potęgowych.

Twierdzenie 17.10. Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem rzeczywistym, oraz niech szereg

$$\sum_{n=0}^{\infty} a_n x^n, x \in \mathbb{R}$$

ma dodatni promień zbieżności R. Wówczas szereg

$$\sum_{n=1}^{\infty} n a_n x^n$$

ma również promień zbieżności R, funkcja $f(x)=\sum\limits_{n=0}^{\infty}a_nx^{n-1}, x\in (-R,R)$ jest różniczkowalna oraz

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Dowód. $\limsup_{n\to\infty} \sqrt[n]{|na_n|} = \lim_{n\to\infty} \sqrt[n]{n} \limsup_{n\to\infty} \sqrt[n]{|a_n|} = \limsup_{n\to\infty} \sqrt[n]{|a_n|} = R$ - pr. zb. szeregu $\sum_{n=0}^{\infty} a_n x^n$. Z twierdzenia o różniczkowaniu ciągów funkcyjnych

- (1) $\sum_{n=1}^{\infty} na_n x^{n-1}$ jest prawie jednostajnie zbieżny.
- (2) $\sum_{n=0}^{\infty} a_n x^n$ jest zbieżny przynajmniej w jednym punkcie.

Z (1) i (2)
$$f$$
 jest różniczkowalna i $\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} (a_n x^n)'$.

Przykład. Możemy obliczyć sumę szeregu $\sum_{n=1}^{\infty} (-1)^n nx^n$. Oznaczamy:

$$f(x) = \sum_{n=1}^{\infty} (-1)^n nx^n, |x| < 1;$$

Mamy
$$f(x) = x \sum_{n=1}^{\infty} (-1)^n x^{n-1} = x \sum_{n=1}^{\infty} (-1)^n (x^n)' = x \left(\sum_{n=1}^{\infty} (-x)^n \right)' = x \left(\frac{-x}{1+x} \right)' =$$

$$= x \frac{-1 - x + x}{(1+x)^2} = \frac{-x}{(1+x)^2}$$

(17.1)
$$\sum_{n=1}^{\infty} (-1)^n n x^n = \frac{-x}{(1+x)^2}$$

Szereg Taylora a szereg potęgowy.

Niech $f(x) = \sum_{n=0}^{\infty} a_n x^n$, oraz $f(0) = a_0$. Zbadajmy kolejne pochodne funkcji f:

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, f'(0) = a_1,$$

$$f''(x) = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}, f''(0) = 2a_2,$$

$$f'''(x) = \sum_{n=3}^{\infty} n(n-1)(n-2) a_n x^{n-3}, f'''(0) = 6a_3$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdot \dots \cdot (n-k+1) a_n x^{n-k}, f^{(k)}(0) = k! a_k$$

Zauważmy, że $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$. Ponadto widzimy, że f jest klasy C^{∞} . I oczywiście

można uogólnić i pokazać, że również:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Widzimy, że powyższe wyrażenie, to znany nam szereg Taylora.

Twierdzenie 17.11 (O całkowaniu funkcji analitycznej). Funkcje analityczne posiadają funkcje pierwotne wewnątrz swojego obszaru zbieżności. W szczególności dla funkcji f:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

funkcja

$$F(x) = \int_0^x f(t) dt = \int_0^x \sum_{n=0}^\infty a_n t^n dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$$

ma ten sam promień zbieżności co f.

Przykład. Ponownie obliczymy sumę szeregu $\sum_{n=1}^{\infty} \frac{n}{2^n}$. Tym razem rozważając szereg potęgowy $\sum_{n=0}^{\infty} x^n$.

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \ |x| < 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} x^n = \sum_{n=1}^{\infty} nx^{n-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \ |x| < 1$$
 Zatem
$$\sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}, \ \mathrm{dla} \ |x| < 1$$

Podstawmy $x = \frac{1}{2}$. |x| < 1 i wtedy z powyższej równości mamy

$$\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2.$$

Przykład. Znajdziemy rozwinięcie funkcji $f(x) = \ln(1+x)$ w szereg potęgowy. Zauważmy, że $\ln(1+x) = \int \frac{1}{1+x} dx$ (całka elementarna). Korzystając z wzoru na sumę szeregu geometrycznego obliczamy

$$\ln(1+x) = \int_0^x \frac{dt}{1+t} = \int_0^x \frac{dt}{1-(-t)} = \int_0^x \sum_{n=1}^\infty (-t)^{n-1} dt = \sum_{n=1}^\infty \int_0^x (-1)^{n-1} t^{n-1} dt =$$

$$= \sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n} \text{ i jak widzimy, jest to szereg potęgowy.}$$

Przykład. Podobnie jak powyżej, korzystając z sumy $\sum_{n=1}^{\infty}x^n=\frac{1}{1-x},\ |x|<1$ otrzymać możemy też, że:

$$\ln \frac{1}{1-x} = \sum_{n=1}^{\infty} \frac{x^n}{n}, \text{ dla } |x| < 1.$$

Sumując wzory z poprzednich dwóch przykładów dostajemy kolejny wzór:

$$\frac{1}{2}\ln\frac{1+x}{1-x} = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}, \text{ dla } |x| < 1.$$

Twierdzenie 17.12 (Abela). Załóżmy, że $(a_n)_{n\in\mathbb{N}}$ jest ciągiem rzeczywistym. Jeżeli szereg potęgowy $\sum_{n=0}^{\infty}a_nx^n$, $x\in\mathbb{R}$ o dodatnim promieniu zbieżności R jest zbieżny w jednym z końców przedziału zbieżności, to suma szeregu jest w tym punkcie ciągła.

Dowód. Pokażemy, że funkcja fjest ciągła w R,czyli $\lim_{R-}f(x)=\sum_{n=0}^{\infty}a_nR^n.$ Mamy przypadki

1. R=1: Ustalmy $\varepsilon > 0$. Chcemy pokazać, że istnieje $\delta > 0$ takie iż

$$\left| f(x) - \sum_{n=0}^{\infty} a_n \right| < \varepsilon, \text{ dla } x > 1 - \delta.$$

Obliczamy

$$\sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} (S_k - S_{k-1}) x^k = \sum_{k=0}^{n} S_k x^k - \sum_{k=0}^{n} S_{k-1} x^k =$$

$$= \sum_{k=0}^{n-1} S_k x^k - S_n x^n - \sum_{k=0}^{n-1} S_k x^{k+1} = \sum_{k=0}^{n-1} S_k (x^k - x^{k+1}) + S_n x^n =$$

$$= (1 - x) \sum_{k=0}^{n-1} S_k x^x + S_n x^n.$$

Przy $n \to \infty$ dla |x| < 1 mamy $S_n x^n \to 0$ a stąd $x^n \to 0$, bo $(S_n)_{n \in \mathbb{N}}$ jest ciągiem niemalejącym, ograniczonym. Mamy

$$\sum_{n=0}^{\infty} a_n x^n = (1-x) \sum_{n=0}^{\infty} S_n x^n.$$

 $S = \lim_{n \to \infty} S_n$ czyli istnieje $n_0 \in \mathbb{N}$ takie, że

$$(17.2) (*) |S_n - S| < \frac{\varepsilon}{2}, n \geqslant n_0$$

Przeprowadzamy obliczenia dla $x \in [0, 1)$:

$$|f(x) - S| = |\sum_{n=0}^{\infty} a_n x^n - S| \stackrel{??}{=} \left| (1 - x) \sum_{n=0}^{\infty} S_n x^n - (1 - x) \sum_{n=0}^{\infty} S x^n \right| \le$$

$$\le (1 - x) \sum_{n=0}^{\infty} |S_n - S| x^n = (1 - x) \sum_{n=0}^{n_0 - 1} |S_n - S| x^n + \underbrace{(1 - x) \sum_{n=n_0}^{\infty} \sum_{n=n_0}^{\infty} |S_n - S| x^n}_{\le (1 - x) \sum_{n=0}^{\infty} x^n = 1}$$

$$< (1 - x) \sum_{n=0}^{\infty} |S_n - S| x^n + \underbrace{\varepsilon}_{2}.$$
Funkcja ograniczona na [0,1]

Zatem istnieje takie $\delta > 0$, że dla dowolnego x, jeżeli $1 - x < \delta$, to

$$(1-x)\sum_{n=0}^{n_0-1} |S_n - S| x^n < \frac{\varepsilon}{2}.$$

2. $R \neq 1$: Rozważmy funkcję $g \colon [0,1] \to \mathbb{R}$ daną wzorem $g(t) = f(Rt), t \in [0,1]$.

$$g(t) = \sum_{n=0}^{\infty} a_n R^n t^n.$$

Oznaczmy
$$\lambda_f=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$$
i $\lambda_g=\limsup_{n\to\infty}\sqrt[n]{|a_nR^n|}.$ Wówczas

$$\lambda_g = \limsup_{n \to \infty} \sqrt[n]{|a_n R^n|} = R \limsup_{n \to \infty} \sqrt[n]{|a_n|} = R \cdot \lambda_f = 1.$$

Promieniem zbieżności szeregu $\sum_{n=0}^{\infty}a_nR^nt^n \text{ jest 1 oraz } g \text{ jest ciągła w 1. Ale } f(x)=g\left(\frac{x}{R}\right),$ $x\in(-R,R],$ czyli f jest ciągła w R.

A Aproksymacja funkcji ciągiem wielomianów

Definicja A.1. Niech $f:[0,1] \to \mathbb{R}$. Wielomianem Bernsteina stopnia n funkcji f nazywamy funkcję daną wzorem

$$\sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k}{n}\right) B_k^n(x), \ n \in \mathbb{N}, x \in [0, 1],$$

gdzie $B_k^n(x)$ to tak zwany wielomian bazowy Bernsteina dany wzorem

$$B_k^n(x) = \begin{cases} x^k (1-x)^{n-k} & \text{dla } k \in \{0, 1, \dots, n\}, \\ 0 & \text{dla } k < 0 \text{ lub } k > n. \end{cases}$$

Same wielomiany bazowe Bernsteina znajdują zastosowanie w grafice komputerowej i modelowaniu różnych powierzchni. Możemy się przyjżeć kilku pierwszym wielomianom bazowym:

$$B_0^0(x) = 1$$

$$B_0^1(x) = 1 - x$$

$$B_1^1(x) = x$$

$$B_0^2(x) = (1 - x)^2$$

$$B_1^2(x) = 2(1 - x)x$$

$$B_2^2(x) = x^2$$

$$B_0^3(x) = (1 - x)^3$$

$$B_1^3(x) = 3(1 - x)^2x$$

$$B_2^3(x) = 3(1 - x)x^2$$

$$B_3^3(x) = x^3$$

Zauważmy ponadto, że $B_k^n(x) \ge 0, x \in [0,1]$ i $B_k^n(x) = B_{n-k}^k(1-x)$.

Będziemy dla funkcji f jej wielomiany bernsteina stopnia n oznaczać w tym rozdziale przez f_n . Zapamiętajmy:

$$f_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

Lemat A.1. Dla dowolnych $n \in \mathbb{N}$, $x \in [0, 1]$:

1.
$$\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1$$

2.
$$\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx$$

3.
$$\sum_{k=0}^{n} k^2 \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2 + nx$$

4.
$$\sum_{k=0}^{n} (k - nx)^2 \binom{n}{k} x^k (1-x)^{n-k} = nx(1-x).$$

 $Dowód. \ 1. \ \text{Mamy } 1=1^n=(x+(1-x))^n=\sum_{k=0}^n\binom{n}{k}x^k(1-x)^{n-k}. \ \text{Dla dowodu wzoru } 2.$ Podstawmy w 1. n-1 za n. Wówczas

$$\sum_{k=0}^{n-1} n \binom{n-1}{k} x^k (1-x)^{n-1-k} = 1.$$

Mnożymy powyższą równość obustronnie przez nx i mamy:

$$\sum_{k=0}^{n} n \binom{n-1}{k} x^{k+1} (1-x)^{n-1-k} = \sum_{k=0}^{n} n \binom{n-1}{k-1} x^k (1-x)^{n-k} = nx.$$

Ponadto $n\binom{n-1}{k-1}=n\frac{(n-1)!}{(k-1)!(n-k)!}=k\frac{n!}{k!(n-k)!}=k\binom{n}{k}$. Podstawiając ten wynik do poprzedniego wzoru dowód równości 2. jest zakończony. Teraz podstawmy n-1 za n we wzrorze 2.. Wówczas mamy

$$\sum_{k=0}^{n-1} k \binom{n-1}{k} x^k (1-x)^{n-1-k} = (n-1)x.$$

Po przemnożeniu stronami przez nx:

$$\sum_{k=0}^{n-1} kn \binom{n-1}{k} x^{k+1} (1-x)^{n-k-1} = n(n-1)x^2$$

$$\sum_{k=1}^{n} (k-1)n \binom{n-1}{k-1} x^k (1-x)^{n-k} = n(n-1)x^2$$

$$\sum_{k=1}^{n} (k-1)k \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2$$

Do ostatniej równości dodajemy stronami równość 2.: $\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx$.

$$\sum_{k=1}^{n} \left((k-1)k \binom{n}{k} x^k (1-x)^{n-k} + k \binom{n}{k} x^k (1-x)^{n-k} \right) = n(n-1)x^2 + nx.$$

$$\sum_{k=1}^{n} \left(k^2 \binom{n}{k} x^k (1-x)^{n-k} - \left(k \binom{n}{k} x^k (1-x)^{n-k} \right) + k \binom{n}{k} x^k (1-x)^{n-k} \right) = n(n-1)x^2 + nx.$$
 Mamy 3.:

$$\sum_{k=1}^{n} k^2 \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2 + nx.$$

Postostało do udowodnienia już tylko 4.:

$$\sum_{k=0}^{n} (k - nx)^{2} B_{k}^{n}(x) = \sum_{k=0}^{n} k^{2} B_{k}^{n}(x) - \sum_{k=0}^{n} 2knx B_{k}^{n}(x) + \sum_{k=0}^{n} n^{2} x^{2} B_{k}^{n}(x) =$$

$$= n(n-1)x^{2} + nx - 2nx \cdot nx + n^{2} x^{2} \cdot 1 = -nx^{2} + nx = nx(1-x).$$

Twierdzenie A.1 (Stone'a-Weierstrassa). Dowolną funkcję ciąglą, określoną na przedziale zwartym można aproksymować ciągiem wielomianów, zbieżnym jednostajnie do tej funkcji.

Dowód. Ustalmy $f:[a,b] \to \mathbb{R}$. Chcemy sprawdzić, że $f_n \stackrel{[a,b]}{\Longrightarrow} f$. Rozpatrzmy najpierw szczególny przypadek, gdy a=0,b=1. Funkcja ciągła na przedziale [a,b] jest jednostajnie ciągła (twierdzenie 5.7). Ustalmy $\varepsilon > 0$. Istnieje $\delta > 0$ takie, że

$$\forall_{x,y\in[0,1]}$$
. $\left(|x-y|<\delta\Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{2}\right)$.

Funkcja f jest ograniczona, gdyż jest ciągła na [0,1]. Istnieje M>0 takie, ż

$$|f(x)| \le M, \ x \in [0,1].$$

Gdy

1.
$$\left| x - \frac{k}{n} \right| < \delta$$
, to $|f(x) - f(y)| < \frac{\varepsilon}{2}$;
2. $\left| x - \frac{k}{n} \right| \ge \delta$, to $\left(\frac{nx - k}{n} \right)^2 \ge \delta^2 \Leftrightarrow \left(\frac{nx - k}{n\delta} \right)^2 \ge 1$. Stad $\left| f(x) - f\left(\frac{k}{n} \right) \right| \le |f(x)| + \left| f\left(\frac{k}{n} \right) \right| \le 2M \le 2M \left(\frac{nx - k}{n\delta} \right)^2$.

Czyli w każdym przypadku $\left|f(x)-f\left(\frac{k}{n}\right)\right|<\frac{\varepsilon}{2}+2M\left(\frac{nx-k}{n\delta}\right)^2$. Korzystając z lematu A.1 uzyskujemy oszacowanie:

$$|f(x) - f_n(x)| = \left| \sum_{k=0}^n \binom{n}{k} f(x) x^k (1-x)^{n-k} - \sum_{k=0}^n f\left(\frac{n}{k}\right) x^k (1-x)^{n-k} \right| \le$$

$$\le \sum_{k=0}^n \left| f(x) - f\left(\frac{n}{k}\right) \right| x^k (1-x)^{n-k} < \sum_{k=0}^n \left(\frac{\varepsilon}{2} + 2M \left(\frac{nx-k}{n\delta}\right)^2\right) x^k (1-x)^{n-k} =$$

$$= \frac{\varepsilon}{2} \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} + 2M \sum_{k=0}^n \binom{n}{k} \frac{(nx-k)^2}{(n\delta)^2} x^k (1-x)^{n-k} =$$

$$= \frac{\varepsilon}{2} + \frac{2M}{(n\delta)^2} nx (1-x) = \frac{\varepsilon}{2} + \frac{2M}{n\delta^2} x (1-x).$$

 $\frac{2M}{n\delta^2} \xrightarrow{n \to \infty} 0$ a wartości ciągłego odwzorowania $x \mapsto x(1-x)$ zawężonego do przedziału [0,1] są ograniczone. Stąd $\frac{2M}{n\delta^2}x(1-x) \xrightarrow{n \to \infty} 0$. Istnieje zatem n_0 takie, że

$$\frac{2M}{n\delta^2}x(1-x)<\frac{\varepsilon}{2}, \text{ dla } n\geqslant n_0.$$

Aby udowodnić twierdzenie dla funkcji $f:[a,b]\to\mathbb{R}$ dowolnej (pozbyć się założenia, że $a=0,\,b=1$), wystarczy zdefiniować funkcję g(x)=(b-a)f(x)+a. Funkcja g jest ciąglą funkcją określoną na przedziale [0,1] i jak już udowodniliśmy istnieje ciąg wielomianów $(g_n)_{n\in\mathbb{N}},\,g_n\stackrel{[1,0]}{\rightrightarrows}g$. Ale $f(x)=\frac{g(x)-a}{b-a},x\in[a,b]$ jest wtedy funkcją jednostajnie ciągłą i ciąg wielomianów dany wzorem $f_n(x)=\frac{g_n(x)-a}{b-a},x\in[a,b]$ jest zbieżny jednostajnie do f.

B Struktury algebraiczne, ciała uporządkowane

Niech K będzie dowolnym zbiorem.

Definicja B.1. Działaniem wewnętrznym w zbiorze \mathbb{K} nazywamy każdą funkcję $f : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$.

Operacją jest np. dodawanie: $+: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ ale oczywiście przyjmujemy, że a+b oznacza +(a,b) dla $a,b \in \mathbb{K}$. Chodzi nam o to, by zdefiniować ściśle różnego rodzaju operacje na

dwóch argumentach zbioru, takie jak suma, iloczyn ale także np. składanie funkcji w określonym zbiorze funkcji. Działania na zbiorze oznaczamy często np. $+,-,\circ,\bullet,\star,*$ i piszemy np. $a-b,f\circ g,\bar{v}\bullet \bar{u},\alpha\star\beta,x*y$ dla różnych elementów zbiorów, na których działania są określone.

Definicja B.2. Uporządkowaną piątkę $(\mathbb{K}, \oplus, \bullet, \eta, \theta)$, gdzie $\oplus : \mathbb{K} \times \mathbb{K} \to \mathbb{K}, \bullet : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ nazywamy *ciałem*, gdy

- 1. spełnia aksjomaty dodawania:
 - 1.(a) przemienność dodawania: $a \oplus b = b \oplus a$, $a, b \in \mathbb{K}$,
 - 1.(b) laczność dodawania: $(a \oplus b) \oplus c = b \oplus (a \oplus c), a, b, c \in \mathbb{K},$
 - 1.(c) θ jest elementem neutralnym dodawania: $a \oplus \theta = a, a \in \mathbb{K}$,
 - 1.(d) dla każdego $a \in \mathbb{K}$ istnieje element przeciwny czyli $b \in \mathbb{K}$ takie, że $a+b=\theta$. (i przyjmujemy oznacznie b=-a)
- 2. spełnia aksjomaty mnożenia:
 - 2.(a) przemienność mnożenia: $a \bullet b = b \bullet a, a, b \in \mathbb{K}$,
 - 2.(b) laczność mnożenia: $(a \bullet b) \bullet c = b \bullet (a \bullet c), a, b, c \in \mathbb{K},$
 - 2.(c) η jest elementem neutralnym mnożenia: $a \bullet \eta = a, a \in \mathbb{K}$,
 - 2.(d) dla każdego $a \in \mathbb{K}$ istnieje element odwrotny czyli $b \in \mathbb{K}$ takie, że a+b=0. (i przyjmujemy oznaczenie $b=a^{-1}$)
- 3. aksjomat rozdzielności mnożenia względem dodawania: $a \bullet (b \oplus c) = a \bullet b \oplus a \bullet c$, $a, b, c \in \mathbb{K}$.

Działanie • nazywamy multiplikatywnym (mnożeniem) a \oplus addytywnym (dodawaniem) w ciele \mathbb{K} . Liczbę η nazywamy jedynkq \boldsymbol{w} \boldsymbol{ciele} \mathbb{K} a θ zerem \boldsymbol{w} \boldsymbol{ciele} \mathbb{K} .

Zbiór $\mathbb K$ nazywamy $\mathit{ciałem}$ $\mathit{uporządkowanym}$ gdy jest ciałem, które dodatkowo spełnia warunki

- 1.1. a + b < a + c, dla dowolnych $a, b, c \in \mathbb{K}$ takich, że b < c,
- 1.2. $a \bullet b > \theta$, jeżeli $a > \theta$, $b > \theta$,

Jeżeli $a > \theta$, to $a \in \mathbb{K}$ nazywamy elementem dodatnim, jeżeli $a < \theta$ to a nazywamy elementem ujemnym.

Struktura ilorazowa. Niech dane będą przestrzenie X, X^ oraz określone na nich relacje równoważności $R \subseteq X, R^* \subseteq X^*$.

Definicja B.3. Mówimy, że odwzorowanie $F: X \to X^*$ jest zgodne z relacjami R i R^* , gdy $xRy \Leftrightarrow F(x)R^*F(y)$, tj.

$$(x,y) \in R \Leftrightarrow (F(x),F(y)) \in R^*.$$

Gdy $F\colon X\to X^*$ jest zgodne z relacjami R i $R^*,$ to istnieje takie odwzorowanie $G\colon X/R\to X/R^*$ przestrzeni ilorazowych, że

$$H \circ \varphi = \varphi \circ F$$
,

gdzie $\varphi \colon X \to X/R$, $\varphi \colon X^* \to X/R^*$ są odwozorawniami kanonicznym między odpowiednimi przestrzeniami, co ilustruje następny diagram²³.

$$\begin{array}{ccc} X & \stackrel{F}{\longrightarrow} X^* \\ \downarrow^{\varphi} & & \downarrow^{\varphi^*} \\ X/R & \stackrel{G}{\longrightarrow} X^*/R^* \end{array}$$

B.1 Ciało liczb rzeczywistych

B.1.1 Konstrukcja Dedekinda

B.1.2 Konstrukcja poprzez ciągi Cauchy'ego

B.1.3 Dowody własności specyficznych dla l. rzeczywistych

Aksjomat (Archimedesa). *Każdy odcinek jest krótszy od pewnej wielokrotności długości dowolnego innego odcinka.*

Często posługujemy się arytmetyczną formą tego starożytnego "aksjomatu", jest to jednak we współczesnej matematyce jest to twierdzenie:

²³diagramy *skierowane*, w których wybierając dowolną drogę skierowaną między dwoma wierzchołkami, otrzymamy ten sam wynik względem składania morfizmów nazywamy *diagramami przemiennymi*.

Twierdzenie B.1. Jeżeli x, y > 0, to istnieje taka liczba naturalna n, że $n \cdot x < y$.

Dowód. Załóżmy nie wprost, że $nx \leq y$ dla każdego $n \in \mathbb{N}$. Oznaczmy

$$A = \{nx \colon n \in \mathbb{N}\}.$$

Zbiór $A \subseteq \mathbb{R}$ jest ograniczony z góry przez y zatem istnieje jego kres górny - oznaczmy $\alpha = \sup A$. Liczba $\alpha - x$ (bo x > 0) jest ściśle mniejsza od α więc nie może być ograniczeniem górnym zbioru A (z definicji α jest najmniejszym z ograniczeń górnych zbioru A). Istnieje zatem $mx \in A$ (dla pewnego $m \in \mathbb{N}$) takie, że $\alpha - x < mx$. Ale wówczas

$$\alpha < (m+1)x \le \alpha \text{ (gdyż } (m+1)x \in A).$$

Taka nierówność stanowi oczywistą sprzeczność. Koniec dowodu.

Mówi się, że liczby rzeczywsite spełniają własność lub aksjomat Archimedesa a także, że liczby rzeczywiste są archimedesowskie.

B.2 Ciało liczb zespolonych

Liczby zespolone stanowią rozszerzenie liczb rzeczywistych. Ciało liczb rzeczywistych jest podciałem ciała ($\mathbb{C},0,1,+,\cdot$) liczb zespolonych. Nim w ogóle zdefiniujemy ciało \mathbb{C} , nauczymy się podstaw rachunkowych i intuicji oraz zastosowań liczb zespolonych, które potem wyprowadzimy z definicji algebraicznej ciała.

Definicja B.4. Jednostką urojoną nazywamy pewien element $i \in \mathbb{C}$ taki, że

$$i^2 = 1.$$

 $0 \cdot i = i \cdot 0 = 0$, gdzie $0 \in \mathbb{R}$ jest el. neutralnym dodawania w ciele \mathbb{R} .

Liczbą zespoloną nazywamy:

- każdą liczbę rzeczywistą, ($\mathbb{R} \subseteq \mathbb{C}$.)
- liczbę i,
- ogólnie: liczbę postaci $z=x+yi,\ x,y\in\mathbb{R}.$ Gdy y=0, to $z=x\in\mathbb{R}.$ Wówczas x nazywamy częscią rzeczywistą liczby z a y jej częscią urojoną. Oznaczamy

$$\Re \mathfrak{e} z = x$$
, $\Im \mathfrak{m} z = y$.

Przykład. Rachunki na liczbach zespolonych wykonujemy identycznie jak na liczbach rzeczywistych, pamiętając że $i^2=-1$ a tym samym $\sqrt{-1}=i$ lub(!) $\sqrt{-1}=-i$ (gdyż $(-i)^2=(-1)^2\cdot i^2=1\cdot i^2=1\cdot (-1)=-1$). Szybko się z tym oswoimy:

- $(2+7i)3i = 6i + 21i^2 = 6i 21$,
- $2 \cdot (4 5i) = 4 10i$,
- $4i \cdot 12i = 48i^2 = -48$. W tym wypadku można napisać, że $\Im m \, 48i^2 = 0$.

Ogólnie, można powiedzieć, że jeżeli $z \in \mathbb{C} \cap \mathbb{R}$, to $\Im z = 0$. Gdy $\Im z \neq 0$, to $z \in \mathbb{C} \setminus \mathbb{R}$. Przykład. Niech $x, y, a, b \in \mathbb{R}$. Obliczymy iloczyn liczb $z, w \in \mathbb{C}$ określonych jako z = x + iy i w = a + ib. Mamy $(x + iy)(a + ib) = xa + ibx + iya + iyib = xa + i(bx + ya) + i^2yb = xa + i(bx + ya) - yb = xa - yb + i(bx + ya)$. Zatem $z \cdot w = xa - yb + i(bx + ya)$. Możemy napisać, że

$$\Re \mathfrak{e} \, z = x, \quad \Im \mathfrak{m} \, z = y.$$

$$\Re \mathfrak{e} \, w = a, \quad \Im \mathfrak{m} \, w = b.$$

$$\Re \mathfrak{e}(z \cdot w) = xa - yb$$
, oraz $\Im \mathfrak{m}(z \cdot w) = bx + ya$.

Przykład.

$$\frac{1}{2} \left(\frac{1}{1 - ix} + \frac{1}{1 + ix} \right) = \frac{1}{2} \left(\frac{1 + ix + 1 - ix}{(1 - ix)(1 + ix)} \right) = \frac{1}{2} \cdot \frac{2}{1^2 - (ix)^2} = \frac{1}{1 - i^2 x^2} = \frac{1}{1 - (-1)x^2} = \frac{1}{1 + x^2}.$$

Postać trygonometryczna liczby zespolonej. Każdą liczbę zespoloną z=x+iy możemy utożsamiać z punktem na płaszczyźnie o współrzędnych (x,y). Moglibyśmy pisać z=x+yi=(x,y) ale dla wygody będziemy pisać Z=(x,y). Punkt Z można opisać podając długość odcinka \overline{OZ} łączącego punkt (0,0) z punktem Z i kąta φ nachylenia odcinka \overline{OZ} do osi OX (porównaj - współrzędne biegunowe 12.4). Będziemy mówić o płaszczyźnie zespolonej a pierwszą oś oznaczać przez \Re i nazywać osią rzeczywistą. Drugą - pionową - oś oznaczymy przez \Im i będziemy nazywać osią zespoloną.

Rysunek 6: Współrzędne punktu Z=(x,y) związane są z kątem φ i promieniem |z|.

Modułemliczby zespolonej z nazywamy liczbę $|z|:=\sqrt{x^2+y^2}.$ Niech φ będzie takim kątem, że

$$\cos \varphi = \frac{x}{|z|}, \ \sin \varphi = \frac{y}{|z|}.$$

Kąt φ nazywamy argumentem liczby zespolonej z. Kąt ten jest oczywiście miarą kąta skierowanego, którego pierwszym ramieniem jest dodatnia półoś rzeczywista, a drugie ramię wyznaczone jest przez wektor \overrightarrow{OZ} , Z=(x,y). Jeżeli $\varphi\in[0,2\pi)$, to φ określamy argumentem głównym liczby z i oznaczamy $\varphi=\operatorname{Arg} z$.

Liczbę zespoloną z=x+iy, gdzie $\varphi=\operatorname{Arg} z$ możemy teraz zapisać w postaci trygonometrycznej:

$$z = x + iy = |z| \cos \varphi + i|z| \sin \varphi = |z| (\cos \varphi + i \sin \varphi).$$

Definicja B.5. Oznaczmy $\mathbb{C}=\mathbb{R}^2$. Ciałem \mathbb{C} liczb zespolonych nazywamy uporządkowaną czwórkę

$$(\mathbb{C}, \cdot, +, (0,0), (1,0)),$$

gdzie działania \cdot i+zdefiniowane są następująco:

$$(a,b) + (c,d) = (a+c,b+d), \ a,b,c,d \in \mathbb{R}$$

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc),\ a,b,c,d\in\mathbb{R}$$

Jeżeli przyjmiemy oznaczenie (a,b)=a+bi, to zauważmy, że definicja mnożenia dwóch liczb $(a,b),(x,y)\in\mathbb{C}$ odpowiada temu jak mnożyliśmy liczby zapisywane jako a+bi i x+yi w poprzednim przykładzie.

B.2.1 Własności liczb zespolonych i najważniejsze pojęcia z nimi związane.

Sprzężeniem liczby z = x + yi nazywamy liczbę $\overline{z} := x - yi$.

Twierdzenie B.2. Ustalmy dowolne $z, w \in \mathbb{C}$. Wówczas

1.
$$|z|^2 = z\bar{z}$$
,

2.
$$\overline{z+w} = \overline{z} + \overline{w}$$
,

3.
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$
,

4.
$$|z \cdot w| = |z| \cdot |w|$$
,

5.
$$|\bar{z}| = |z|$$
.

Ćwiczenie. Sprawdzić, że dla dowolnego $z \in \mathbb{C}$:

1.
$$z + \overline{z} = 2\Re \mathfrak{e} z$$
.

2.
$$\Re \mathfrak{e} z \leqslant |z|$$
.

Twierdzenie B.3 (Nierówność trójkąta w \mathbb{C}). Dla dowolnych $z, w \in \mathbb{C}$, zachodzi

$$|z + w| \leqslant |z| + |w|.$$

 $Dow \acute{o}d.$

$$0 \leqslant |z+w|^2 = (z+w)\overline{(z+w)} = z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w} =$$

$$= |z|^2 + (z\overline{w} + \overline{z}\overline{w}) + |w|^2 = |z|^2 + 2\Re\mathfrak{e}\,z\overline{w} + |w|^2 \leqslant$$

$$\leqslant |z|^2 + 2|z\overline{w}| + |w|^2 = |z|^2 + 2|z||\overline{w}| + |w|^2 = (|z| + |w|)^2.$$

Pierwiastkujemy obustronnie nierówność (zwracamy uwagę, że lewa strona jest nieujemna) i otrzymujemy tezę.

Twierdzenie B.4 (Nierówność Cauchy'ego-Buniakowskiego-Schwarza). *Jeżeli* $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$, to zachodzi nierówność

(B.1)
$$\left| \sum_{k=1}^{n} a_k \bar{b}_k \right|^2 \leqslant \left(\sum_{k=1}^{n} |a_k|^2 \right) \left(\sum_{k=1}^{n} |b_k|^2 \right).$$

Dowód. Niech $A=\sum\limits_{k=1}^n|a_k|^2,\ B=A=\sum\limits_{k=1}^n|b_k|^2$ oraz $A=\sum\limits_{k=1}^na_k\overline{b}_k$. Jeżeli B=0, to $b_1=\ldots=b_n=0$ i natychmiastowo otrzymujemy, że teza jest prawdziwa. Załóżmy więc, że B>0. Korzystając z własności liczb zespolonych (twierdzenie B.2 i następujące po nim ćwiczenia):

$$\sum_{k=1}^{n} |Ba_k - Cb_k|^2 = \sum_{k=1}^{n} (Ba_k - Cb_k)(B\overline{a}_k - \overline{C} \cdot \overline{b}_k) =$$

$$= B^2 \sum_{k=1}^{n} -B\overline{C} \sum_{k=1}^{n} a_k \overline{b}_k - BC \sum_{k=1}^{n} \overline{a}_k b_k + |C|^2 \sum_{k=1}^{n} |b_k|^2 =$$

$$= B^2 A - B|C|^2 = B(AB - |C|^2).$$

Ponieważ pierwsza suma po lewej jest nieujemna, więc wnioskujemy, że $B(AB-|C|^2)\geqslant 0$. Ponieważ B>0, więc wnioskujemy stąd, że

$$\left(\sum_{k=1}^{n} |a_k|^2\right) \left(\sum_{k=1}^{n} |b_k|^2\right) - \left|\sum_{k=1}^{n} a_k \bar{b}_k\right|^2 = AB - |C|^2 \geqslant 0.$$

Zauważmy, że jeżeli $z=a+bi\neq 0$ jest liczbą zespoloną, to odwrotność (to znaczy liczba z^{-1} taka, ze: $z^{-1}z=1$) tej liczby ma postać

$$z^{-1} = \frac{a}{|z|^2} + \frac{-b}{|z|^2}i = \frac{\overline{z}}{|z|^2}.$$

Skoro w ciele $\mathbb C$ istnieje element odwrotny dla każdego elementu tego ciała, to wykonalne jest dzielenie liczb, o ile dzielnik jest różny od zera. Rozważmy dwie liczby z=x+yi i $w=a+bi\neq 0$. Wówczas

$$\frac{x+yi}{a+bi} = \frac{(x+yi)(a-bi)}{(a+bi)(a-bi)} = \frac{xa+yb}{a^2+b^2} + \frac{ya-xb}{a^2+b^2}i.$$

Mnożenie liczb zespolonych w postaci trygonometrycznej. Zauważmy, że

$$|z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi) =$$

$$= |z| \cdot |w|((\cos\varphi\cos\psi - \sin\varphi\sin\psi) + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi)) =$$

$$= |zw|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Możemy stąd własność |zw|=|z||w|zinterpretować/uzasadnić geometrycznie oraz wyciągnąć

Wniosek 7. Dla dowolnych liczb zespolonych $z, w \in \mathbb{C}$:

1. $\operatorname{Arg}(z \cdot w) = \operatorname{Arg} z + \operatorname{Arg} w$,

2.
$$\operatorname{Arg}\left(\frac{z}{w}\right) = \operatorname{Arg} z - \operatorname{Arg} w$$
,

3. Arg $z^n = n \operatorname{Arg} z$.

Ważnym wnioskiem z tej zależności jest:

Twierdzenie B.5 (Wzór de Moivre'a).

(B.2)
$$(\cos \phi + i \sin \phi)^n = \cos(n\phi) + i \sin(n\phi).$$

Wzór B.2 pozwala na efektywne wykonywanie operacji potęgowania liczb zespolonych.

Niech $z = |z| (\cos \varphi + i \sin \varphi)$, to wówczas

$$z^{n} = |z|^{n} (\cos n\varphi + i \sin n\varphi)^{n}.$$

Definicja B.6. Pierwiastkiem stopnia $n \in \mathbb{N} \setminus \{1\}$ z liczby zespolonej z nazywamy każdą liczbę z_p taką, że $(z_p)^n = z$.

Twierdzenie B.6. Jeżeli $z \neq 0$ jest liczbą zespoloną i $z = |z|(\cos \phi + i \sin \phi)$, to istnieje dokładnie n różnych pierwiastków $z_0, z_2, \ldots, z_{n-1}$ z liczby z i wyrażają się one wzorem

$$z_k = \sqrt[n]{|z|} \left(\cos \frac{\phi + 2k\pi}{n} + i \sin \frac{\phi + 2k\pi}{n} \right), \ gdzie \ k = 0, 1, 2, \dots, n - 1.$$

 $\acute{C}wiczenie$. Zinterpretować powyższe twierdzenie graficznie - sporządzić rysunek i dokonać objaśnień.

Lemat B.1. Dla dowolnego $x \neq 2K\pi, K \in \mathbb{Z}$ zachodzi równość

$$\frac{1}{2} + \sum_{k=1}^{N} \cos(kx) = \frac{\sin\left(N + \frac{1}{2}\right)x}{2\sin\frac{x}{2}}.$$

Twierdzenie B.7. Dla dowolnego $x \neq 2K\pi, K \in \mathbb{Z}$ zachodzi równość

$$\sum_{k=0}^{N} \sin(kx) = \frac{\sin\left(\frac{Nx}{2}\right)\sin\left(\frac{(N+1)x}{2}\right)}{\sin\frac{x}{2}}.$$

Twierdzenie B.8. Dla każdego $n \in \mathbb{N}$ zachodzi równość

$$\sin((2n+1)x) = {2n+1 \choose 1} \cos^{2n} x \sin x - {2n+1 \choose 3} \cos^{2(n-1)} x \sin^3 x +$$

$$+ {2n+1 \choose 5} \cos^{2(n-2)} x \sin^5 x - \dots + (-1)^n \sin^{2n+1} x =$$

$$= \sum_{k=0}^n {2n+1 \choose 2k+1} (-1)^k \cos^{2(n-k)}(x) \sin^{2k+1}(x).$$

Więcej o geometrii liczb zespolonych. Odwzorowanie $z\mapsto uz+v$ dla pewnych $u,v\in\mathbb{C},\ u\neq 0$ jest przekształceniem geometrycznym²⁴ - złożniem:

- \bullet obrotu o kąt Arg u,
- jednokładności wzgledem środka układu współrzędnych o skali |u|,
- przesunięcia o v.

Przykład. Przez $\mu(\mathbb{C}_n)$ oznaczamy zbiór wszystkich pierwiastków n-tego stopnia z liczby 1 w ciele liczb zespolonych:

$$\mu(\mathbb{C}_n) := \{ z \in \mathbb{C} \colon z^n = 1 \}$$

Łatwo zauważyć, że $\left(\mu(\mathbb{C}_n), \cdot\right)$ jest grupą. Pierwiastki $z_k, k = 0, 1, 2, 3, 4, \dots, n-1$ z jedynki są postaci $z_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$. Zinterpretujmy zbiór $\mu(\mathbb{C}_n)$ geometrycznie:

TO-DO

Przykład. Funkcją homograficzną albo homografią nazywamy funkcję $f\colon \mathbb{C} \to \mathbb{C}$ zadaną wzorem

$$f(z) = \frac{az+b}{cz+d}, z \in \mathbb{C}$$

gdzie $a, b, c, d \in \mathbb{R}$ spełniają warunek $ad - bc \neq 0$.

Twierdzenie (Zasadnicze twierdzenie algebry). Każdy wielomian zespolony stopnia n > 0 ma dokładnie n pierwiastków zespolonych $z_1, z_2, \ldots, z_n \in \mathbb{C}$ a co za tym idzie daje się przedstawić w postaci $a(z-z_1) \cdot \cdots \cdot (z-z_n)$ dla pewn. $a \in \mathbb{C}$.

²⁴afinicznym

B.2.2 Wzory Eulera

Przypomnijmy, że dla dowolnej liczby rzeczywistej $x \in \mathbb{R}$:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!},$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!},$$

$$\exp x = \sum_{n=1}^{\infty} \frac{x^n}{n!}.$$

Przy czym $\exp(x) := e^x$. Pokażemy, że tożsamości te pozwalają rozszerzyć definicje funkcji sin, cos i exp na zbiór \mathbb{C} .

Określimy funkcje S, C i E wzorami:

$$S(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \ z \in \mathbb{C}$$

$$C(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \ z \in \mathbb{C}$$

$$E(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!}, \ z \in \mathbb{C}.$$

Szeregi po prawych stronach równości są zbieżne, więc funkcje te są poprawnie zdefiniowane i oczywiście $S|_{\mathbb{R}}=\sin,\,C|_{\mathbb{R}}=\cos$ i $E|_{\mathbb{R}}=\exp$. Możemy **przyjąć**, że

$$\sin z := S(z), \ z \in \mathbb{C};$$

 $\cos z := C(z), \ z \in \mathbb{C};$
 $\exp z := E(z), \ z \in \mathbb{C}.$

Twierdzenie B.9 (Eulera). Dla dowolnej liczby zespolonej z zachodzi tożsamość

(B.3)
$$e^{iz} = \cos z + i\sin z$$

Dowód. Korzystamy z naszych nowo przyjętych definicji funkcji sin, cos i exp jako zespolone szeregi potęgowe:

$$e^{iz} = \sum_{n=1}^{\infty} \frac{(iz)^n}{n!} = 1 + iz + \frac{(iz)^2}{2} + \frac{(iz)^3}{3!} + \frac{(iz)^4}{4!} + \frac{(iz)^5}{5!} + \frac{(iz)^6}{6!} + \dots =$$

$$= 1 + iz - \frac{z^{2}}{2} - \frac{iz^{3}}{3!} + \frac{z^{4}}{4!} + \frac{iz^{5}}{5!} - \frac{z^{6}}{6!} + \frac{iz^{7}}{7!} + \dots =$$

$$= \left(\frac{z^{0}}{0!} - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \frac{z^{6}}{6!} + \dots\right) + \left(\frac{iz^{1}}{1!} - \frac{iz^{3}}{3!} + \frac{iz^{5}}{5!} + \frac{iz^{7}}{7!} - \dots\right) =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{i(-1)^{n} x^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} + i\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}\right) =$$

$$= \cos x + i \sin x.$$

Historycznie wzór B.3 po raz pierwszy pojawił się w rozważaniach geometrycznych przez Rogera Cotesa ok. 1714 roku pod postacią:

$$ix = \ln(\cos x + i\sin x).$$

Dla $x=\pi$ otrzymujemy tożsamość $e^{i\pi}+1=0$, często nazywaną w popularnej kulturze matematycznej "najpiękniejszym równaniem matematyki", gdyż zawiera w sobie wyłącznie: dwie najważniejsze stałe matematyczne e i π , element neutralny 0 dodawania, element neutralny 1 mnożenia, jednostkę urojoną, działanie potęgowania oraz działania grupowe: mnożenie $(i\cdot\pi)$ i dodawanie - czyli w pewnym sensie najbardziej "podstawowe" działania oraz szczególne liczby i stałe.

Za pomocą naszego wzoru możemy wyprowadzić dwie ważne tożsamości trygonometryczne:

Twierdzenie B.10. Dla dowolnej liczby zespolonej z zachodzą wzory

(B.4)
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Dowód. Odejmijmy stronami równości $e^{i(-z)} = \cos(-z) + i\sin(z)$ i $e^{iz} = \cos z + i\sin z$ i wówczas korzystając z tego, że $\sin(-z) = -\sin z$ i $\cos z = \cos(-z)$ otrzymamy pierwszy wzór. Drugi otrzymujemy podobnie, dodając równości stronami.

W wzór B.3 i wzory B.4 nazywamy wzorami Eulera. Przypmnijmy, że funkcja sinh jest zdefiniowana wzorem sin $x = \frac{e^x - e^{-x}}{2} = \frac{1}{2} (\exp(x) - \exp(-x))$. Nic nie stoi na przeszkodzie, by teraz rozszerzyć jej definicję na liczby zespolone, teraz gdy uczyniliśmy to dla funkcji exp. Podstawmy z = ix. Mamy

$$\sinh z = \sinh(ix) = \frac{e^{ix} - e^{-ix}}{2} = i\sin(x).$$

Podobnie dostajemy, że

$$\cosh z = \cosh(ix) = \frac{e^{ix} + e^{-ix}}{2} = \cos x.$$

Otrzymaliśmy więc prosty związek między funkcjami trygonometrycznymi i hiperbolicznymi. Zauważmy, że $\cos^2 x + \sin^2 x = \cos^2 x - i^2 \sin^2 x = \cosh^2(ix) - \sinh^2(ix) = 1$.

Postać wykładnicza liczby zespolonej. Każda liczba $z \in \mathbb{C}$ różna od zera ma następujące przedstawienia:

$$z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}.$$

Dowolny punkt o współrzędnych $biegunowych~(r,\varphi)$ możnemy utożsamić z liczbą zespoloną $re^{i\varphi}$:

$$z = x + iy = r\cos\varphi + ir\sin\varphi = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}.$$

Z drugiej strony, niech z = x + yi. Wóczas

$$e^z = e^{x+yi} = e^x e^{yi} = e^x (\cos y + i \sin y).$$

Przykład. Łatwo pokazaać, że $|e^{ix}| = 1$. Otóż

$$|e^{ix}| = |\cos x + i\sin x| = \sqrt{\cos^2 x + \sin^2 x} = 1.$$

B.2.3 Zastosowania liczb zespolonych i wzorów Eulera.

Pokażemy różne zastosowania liczb zespolonych, ich związków z funkcjami trygonometrycznymi i współrzędnymi biegunowymi. W szczególności pokażemy jak postać trygonometryczna liczby zespolonej oraz wzoróy Eulera upraszczają niektóre rachunki oraz pozwalają łatwo wyprowadzić pewne podstawowe tożsamości trygonometryczne.

Przykład. Obliczymy całkę $\int \cos(3x)\sin(5x)\,\mathrm{d}x$. Moglibyśmy np. skorzystać z tożsamości

$$\sin(ax)\cos(bx) = \frac{1}{2}\left(\sin\left((a+b)x\right) + \sin\left((a-b)x\right)\right).$$

Jednak aby swobodnie rozwiązywać całki funkcji typu $\sin(ax)\sin(bx)$, $\cos(ax)\cos(bx)$ itd. musielibyśmy nauczyć się kolejnych wzorów. Metoda która pokażemy wymaga jedynie

pamiętania wzorów Eulera. Mamy

$$\begin{aligned} &\cos(3x)\sin(5x) = \frac{(e^{i3x} + e^{-i3x})(e^{i5x} - e^{-i5x})}{2 \cdot 2i} = \\ &= \frac{e^{3ix}e^{i5x} - e^{i3x}e^{-i5x} + e^{-i3x}e^{i5x} - e^{-i3x}e^{-i5x}}{2 \cdot 2i} = \frac{e^{i8x} - e^{-i8x} + e^{i2x} - e^{-i2x}}{2 \cdot 2i} = \\ &= \frac{1}{2} \bigg(\frac{e^{i(8x)} - e^{-i(8x)}}{2_i} + \frac{e^{i(2x)} - e^{-i(2x)}}{2i} \bigg) = \frac{1}{2} \big(\sin(8x) + \sin(2x) \big). \end{aligned}$$

Stad już

$$\int \cos(3x)\sin(5x)\,dx = \frac{1}{2}\int (\sin(8x) + \sin(2x))\,dx = -\left(\frac{1}{16}\cos(8x) + \frac{1}{4}\cos(2x)\right) + C.$$

Przykład. Wyznaczymy ogólną postać rozwiązania całki

$$\int e^{ax} \sin(bx) \, \mathrm{d}x.$$

Ze wzorów Eulera mamy

$$\int e^{ax} \sin(bx) \, \mathrm{d}x = \Im \mathfrak{m} \left(\int e^{ax} e^{ibx} \, \mathrm{d}x \right) =$$

$$= \Im \mathfrak{m} \left(\int e^{ax+ibx} \, \mathrm{d}x \right) =$$

$$= \Im \mathfrak{m} \left(\int e^{(a+ib)x} \, \mathrm{d}x \right) =$$

$$= \Im \mathfrak{m} \left(\frac{1}{a+ib} e^{(a+ib)x} \right) + C =$$

$$= \Im \mathfrak{m} \left(\frac{1}{a+ib} \left(\frac{a-ib}{a-ib} \right) e^{(a+ib)x} \right) + C =$$

$$= \Im \mathfrak{m} \left(\frac{a-bi}{a^2+b^2} e^{(a+ib)x} \right) + C =$$

$$= \Im \mathfrak{m} \left(\frac{a-bi}{a^2+b^2} e^{ax} (\cos(bx) + i\sin(bx)) \right) + C =$$

$$= \mathfrak{Im} \left(\frac{a}{a^2 + b^2} e^{ax} (\cos(bx) + i\sin(bx)) - \frac{bi}{a^2 + b^2} e^{ax} (\cos(bx) + i\sin(bx)) \right) + C =$$

$$= \frac{e^{ax}}{a^2 + b^2} \mathfrak{Im} \left(a\cos(bx) + b\sin(bx) + i(-b\cos(bx) + \sin(bx)) \right) + C =$$

$$= \frac{e^{ax}}{a^2 + b^2} \left(a\sin(bx) - b\cos(bx) \right) + C$$

Bez wzorów Eulera z całkami tej postaci radzimy sobie oczywiście całkując przez części.

 $\acute{C}wiczenie.$ Analogicznie do poprzedniego przykładu wyznaczyć ogólną postać rozwiązania całki

$$\int e^{ax} \cos(bx) \, \mathrm{d}x.$$

 $\acute{C}wiczenie$. Obliczyć $\int \sin^3(x) \, \mathrm{d}x$ korzystając z wzorów Eulera.

C Elementy topologii

Definicja C.1. Niech X będzie dowolnym zbiorem. Rodzinę $\mathcal{T} \subseteq \mathcal{P}(X)$ nazywamy topologią na X, gdy

- 1. $X, \emptyset \in \mathcal{T}$,
- 2. jeżeli $A, B \in \mathcal{T}$, to $A \cap B \in \mathcal{T}$,
- 3. jeżeli $\mathcal{R} \subseteq \mathcal{T}$, to $\bigcup \mathcal{R} \in \mathcal{T}$.

Pare (X, \mathcal{T}) nazywamy przestrzenią topologiczną.

Wprost z definicji widzimy, że topologia jest zbiorem niepustym. W przestrzeni w której nie mamy określonej metryki, ale mamy wprowadzoną topologię, dwa punkty leżą w pewnym sensie "blisko siebie", gdy należą do jednego zbioru otwartego (mimo, że bez metryki nie mamy pojęcia odległości między punktami). Najprostszą topologią na zbiorze $X \neq \emptyset$ jest rodzina $\{\emptyset, X\}$ - nazywamy ją topologią trywialną. Innym oczywistym przykładem topologii, którą można wprowadzić na dowolnym niepustym zbiorze X jest jej zbiór potęgowy $\mathcal{P}(X) = 2^X$.

Przyklad. Niech $a \neq b$. Rodzina $\tau = \{\{a,b\},\{b\},\varnothing\}$ jest topologią na zbiorze $X = \{a,b\}$. Przestrzeń (X,τ) nazywamy przestrzenią dwupunktową Aleksandrowa albo dwukropkiem Aleksandrowa.

Przykład. Jeżeli Xjest zbiorem z określoną na nim relacją liniowego częściowego porządku $\preceq,$ to przedziałem otwartym możemy nazwać każdy zbiór postaci

$$(a,b)_{\prec} = \{x \in X : a \leq x \leq b \text{ i } a \neq x \neq b\}$$

lub

$$(a,\rightarrow)_{\preceq}=\{x\in X\colon a\preceq x\ \mathrm{i}\ x\neq a\},\ (\leftarrow,a)_{\preceq}=\{x\in X\colon x\preceq a\ \mathrm{i}\ x\neq a\}.$$

Rodzinę wszystkich przedziałów otwartych na X oznaczymy przez Intv $\leq (X)$. Topologią porzadkową na X nazywamy rodzinę

$$\mathcal{T}_{\preceq} = \Big\{ U \subseteq X \colon \forall_{x \in U} \exists_{D \in \operatorname{Intv}_{\preceq}(X)} . x \in D \subseteq U \Big\}.$$

Definicja C.2. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną i $Y \subseteq X$. Rodzina

$$\mathcal{T}_Y := \{ U \cap Y \colon U \in \mathcal{T} \}$$

jest topologią na zbiorze Y. Mówimy, że \mathcal{T}_Y jest topologią dziedziczoną (z przestrzeni (X, \mathcal{T})), albo indukowaną w Y. Przestrzeń (Y, \mathcal{T}_Y) nazywamy podprzestrzenią przestrzeni (X, \mathcal{T}) .

Definicja C.3. Przestrzenią ośrodkową nazywamy przestrzeń metryczną X zawierającą przeliczalny podzbiór $O \subseteq X$, gęsty w X. Zbiór O nazywamy ośrodkiem przestrzeni X.

Definicja C.4. Przestrzeń ośrodkową metryczną zupełną nazywamy przestrzenią polską.

Definicja C.5. Zbiorem doskonalym nazywamy domknięty podzbiór D przestrzeni metrycznej, taki że każdy punkt $x \in D$ jest zarazem jego punktem skupienia: $x \in D^d$.

Widać, że zbiór A jest doskonały wtedy i tylko wtedy, gdy $A=A^d$. Niech (X,ρ) będzie przestrzenią metryczną. Wówczas, wprost z twierdzeń 3.15 i 3.16 zbiór $A\subseteq X$ jest doskonały wtedy i tylko wtedy, gdy

- 1. jeżeli $x \in A$, to $x = \lim_{n \to \infty} x_n$ dla pewnego ciągu $(x_n)_{n \in \mathbb{N}}$ takiego, że
 - (a) $x_n \in A, n \in \mathbb{N}$,
 - (b) $x_n \neq x, n \in \mathbb{N};$
- 2. jeżeli $(x_n)_{n\in\mathbb{N}}$ jest zbieżnym ciągiem, $x_n\in A, n\in\mathbb{N},$ to $\lim_{n\to\infty}x_n\in A.$

Twierdzenie C.1. Niech $D \subseteq \mathbb{R}^n$ będzie niepustym zbiorem doskonałym. Wówczas D jest nieprzeliczalny.

Twierdzenie C.2 (Cantora-Bendixsona). Niech X będzie przestrzenią polską. Wówczas X można jednoznacznie przedstawić w postaci $X = D \cup C$, gdzie D jest zbiorem doskonalym, a C zbiorem przeliczalnym i otwartym.

D Wprowadzenie do równań różniczkowych zwyczajnych

Rozważmy równanie:

$$f''(x) + f(x) = 0, x \in \mathbb{R}$$

Niewiadomą w tym równaniu jest funkcja f. Szukamy funkcji $f: \mathbb{R} \to \mathbb{R}$, dwukrotnie różniczkowalnej i takiej, że spełniona jest powyższa zależność. Niech $y=\sin x$. Wówczas $y'=\cos x$, $y''=-\sin x$. Wówczas mamy $y''+y=-\sin x+\sin x=0$. Przyjmujemy y=f(x)- znaleźliśmy rozwiązanie naszego pierwszego równania różniczkowego.

Równania różniczkowe nie sposób omawiać, nie zwróciwszy uwagi na ich liczne zastosoania. Pobieżnie omówimy kilka bardzo różnych problemów, prowadzących do sformułowania różnych równań różniczkowych.

Rozpad promieniotwórczy. Niech m(t) oznacza masę pierwiastka promieniotwórczego w chwili t. Przyjmijmy, że masa pierwiastka, która ulega rozpadowi w umownie "małym" przedziale czasowym $[t, t + \Delta t]$ jest proporcjonalna do iloczynu m(t) i Δt . Mamy zatem równanie w postaci:

(D.1)
$$\Delta m = -\lambda m(t) \Delta t.$$

Dzieląc obie strony równania przez Δt otrzymujemy, że $\frac{\Delta m}{\Delta t} = -\lambda m(t)$. Przechodząc do granicy z $\Delta t \to 0$ otrzymujemy, że $\frac{\mathrm{d}m}{\mathrm{d}t} = -\lambda m(t)$. Jest to nasze pierwsze równanie różniczkowe:

$$m'(t) = -\lambda m(t)$$
.

Łatwo zauważyć, że funkcja $m(t) = e^{-\lambda t}$ jest rozwiązaniem równania D.1:

$$m'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(e^{-\lambda t}) = -\lambda e^{-\lambda t} = -\lambda m(t).$$

Zauważmy jednak, że również $m(t) = Ce^{-\lambda t}$ jest rozwiązaniem równania D.1 dla **dowolnej** stałej $C \in \mathbb{R}$. $m(t) = e^{-\lambda t}$ jest **rozwiązaniem szczególnym** (albo inaczej calkq szczególnq) naszego równania. Jest to nasza pierwsza ważna lekcja: rozwiązania równania różniczkowego może stanowić nieskończona rodzina funkcji. Najczęściej spotkamy się z równaniami, które spełnia więcej niż jedna funkcja. Rozwiązaniem ogólnym równania będziemy nazywać rodzinę funkcji, zależnych od określonej liczby parametrów.

Spadek z małej wysokości. Na spadający punkt materialny działa siła ciężkości proporcjonalna do przyspieszenia ziemskiego oraz siła oporu powietrza proporcjonalna do

ciężkości punktu. Jeżeli y(t) oznacza odległość punktu od Ziemi, to funkcja y spełnia równanie

$$y''(t) = -g - Dy'(x),$$

gdzie $g \approx 9,80$ jest przyspieszeniem ziemskim, a D współczynnikiem oporu powietrza.

Rozwój populacji. *Model Malthusa* rozwoju populacji (1798). Thomas Malthus zakładał, że przyrost ludności jest proporcjonalny do liczby ludzi. Takie założenie wyraża się równaniem

$$P'(t) = \lambda P(t),$$

gdzie P(t) oznacza liczbę osobników populacji w chwili t a $\lambda > 0$ jest współczynnikiem proporcjonalności. Warto zauważyć, że ten naiwny model ten jest wysoce **nie**realistyczny, jeśli chcemy go odnosić - tak jak historycznie czynił to Malthus - do ludzkości. Założenie o proporcjonalności przyrostu do populacji nie uwzględnia szeregu czynników, które wpływają na złożone, rzeczywiste zjawiska populacyjne.

Koszt produkcji. Dla kosztu K(x) wyprodukowania x>0 jednostek towaru zachodzi zależność:

$$K'(x) = \lambda \frac{K(x)}{x}, K(x) > 0$$

gdzie λ jest współczynnikiem proporcjonalności, który może wynikać z teoretycznej analizy modelu produkcji lub obserwacji empirycznych.

Przyjmujemy y = K(x). Równanie można przepisać w postaci

$$(D.2) y' = \lambda \frac{y}{x}.$$

Jest to tzw. równanie o zmiennych rozdzielonych.

Definicja D.1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie postaci

(D.3)
$$F(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) = 0,$$

gdzie $F : D \to \mathbb{R}, D \subseteq \mathbb{R}^{n+2}$, dla pewnego $n \in \mathbb{N}$.

O równaniu D.3 mówimy, że jest w postaci uwikłanej. Gdy równanie różniczkowe jest postaci

$$y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t)),$$

to mówimy, że jest w postaci normalnej.

Definicja D.2. Funkcję y nazywamy rozwiązaniem (szczególnym) w przedziale $I \subseteq D \subseteq \mathbb{R}$ równania różniczkowego D.3, gdy

- y jest n-krotnie różniczkowalna;
- $(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) \in D$ dla każdego $t \in I$;
- $F(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) = 0$ dla każdego $t \in I$.

Definicja D.3. Rodzinę funkcji $y(t, C_1, C_2, \ldots, C_n)$, gdzie $(C_1, C_2, \ldots, C_n) \in \mathbb{R}^n$ (tj. funkcji zależących od n parametrów) nazywamy rozwiązaniem ogólnym albo całką ogólną, gdy dla każdego doboru parametrów funkcja $y(t, C_1, \ldots, C_n)$ jest rozwiązaniem równiania D.3.

Uwaga D.1 (Interpretacja geometryczna). Niech $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ oraz niech dane jest równanie różniczkowe postaci

$$y'(x) = f(x, y(x)).$$

Z każdym punktem $(x, y(x)) \in D$ możemy powiązać trójkę (x, y(x), a), gdzie a = f(x, y(x)) określa tangens nachylenia (współczynnik kierunkowy) prostej przechodzącej przez punkt (x, y(x)) do osi OX. Każdą taką prostą nazywamy kierunkiem równania w punkcie (x, y(x)). Polem kierunków równania D.3 nazywamy zbiór wszystkich kierunków równania dla $(x, y(x)) \in D$.

Jeśli y jest rozwiązaniem w I, to zbiór $\{(x,y(x),y'(x))\in\mathbb{R}^3\colon x\in I\}$ zawiera się w zbiorze $\{(x,y(x),a)\in\mathbb{R}^3\colon a=f(x,y(x)),(x,y(x))\in D\}$

Definicja D.4. Rozważmy rodzinę krzywych \mathcal{K} , będących wykresami funkcji postaci $f(x, C_1, C_2, \ldots, C_n)$ gdzie C_1, \ldots, C_n są pewnymi stałymi. Równanie różniczkowe F, którego rozwiązaniem są funkcje $f(x, C_1, C_2, \ldots, C_n)$ zależne od n parametrów C_1, \ldots, C_n nazywamy równaniem różniczkowym rodziny krzywych \mathcal{K} . W starszej literaturze polskojęzycznej bardzo często rodzinę \mathcal{K} nazywa się rodziną linii a równanie F oczywiście równaniem różniczkowym rodziny linii.

D.1 Najprostsze typy równań

Definicja D.5. Zagadnieniem Cauchy'ego albo zagadnieniem początkowym nazywamy układ równań

$$\begin{cases} y'(t) = f(t, y(t)), \\ y(0) = y_0. \end{cases}$$

dla pewnego danego y_0 .

Równania zależne tylko od zmiennej niezależnej. Rozwiążemy równanie $y'(x) = \frac{2x}{x^2 + 1}$.

$$y'(t) = \frac{2t}{t^2 + 1} / \int_0^x \mathrm{d}t$$

$$\int_0^x y'(t) \, \mathrm{d}t = \int_0^x \frac{2t}{t^2 + 1} \, \mathrm{d}t$$

Podstawmy $t^2 + 1 = s$ i wówczas

$$2t \, \mathrm{d}t = \mathrm{d}s.$$

Gdy t=0, to s=1 a gdy t=x to $s=x^2+1$. Mamy wiec do policzenia całkę

$$\int_{1}^{x^{2}+1} \frac{\mathrm{d}s}{s} = [\ln|s|]_{1}^{x^{2}+1} = \ln(x^{2}+1) - \ln 1 = \ln(x^{2}+1).$$

Ostatecznie $y(x)-y(0)=\ln(x^2+1)$. Gdybyśmy mieli do czynienia np. z Zagadnieniem Cauchy'ego

$$\begin{cases} y'(x) = \frac{2x}{x^2 + 1}, \\ y(0) = 1. \end{cases}$$

to rozwiązaniem byłaby funkcja y dana wzorem $y(x) = \ln(x^2 + 1) - 1$.

Równania o zmiennych rozdzielonych: równanie postaci

$$(D.4) g(y)y'(x) = f(x),$$

gdzie f i g są znanymi funkcjami określonymi i ciągłymi w pewnym przedziale. Przykład. Przypomnijmy równanie D.2:

$$y' = \lambda \frac{y}{x}$$
. (y jest funkcją zmiennej x)

Przerzucamy się na inny zapis pochodnej i przekształcamy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda \frac{x}{y}$$

$$\frac{\mathrm{d}y}{y} = \lambda x \, \mathrm{d}x$$

Całkujemy obustronnie:

$$\int \frac{\mathrm{d}y}{y} = \lambda \int x \, \mathrm{d}x$$
$$\ln y + C_1 = \frac{\lambda}{2} x^2 + C_2.$$

Możemy przyjąć $C_0 = C_2 - C_1$ i mamy

$$\ln y = \frac{\lambda}{2}x^2 + C_0.$$

$$e^{\ln y} = y = \exp\left(\frac{\lambda}{2}x^2 + C_0\right).$$

Przykład. Rozwiążemy równanie y'(x) = y(x)(1 - y(x)).

Równania różniczkowe jednorodne:

- D.2 Równania liniowe wyższych rzędów
- D.2.1 Równania liniowe jednorodne
- D.2.2 Równania liniowe niejednorodne
- D.3 Równanie różniczkowe Bernoulliego
- D.4 Równanie różniczkowe Clairauta
- D.5 Układy równań liniowych

Przykład.

$$\begin{cases} x'(t) = -x(t) \\ y'(t) = x(t) + y(t) \end{cases}$$

Przykład. Rozwiązać układ równań:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3x + 1, \ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y$$

Metoda d'Alemberta:

D.5.1Metoda Eulera rozwiązywania jednorodnych układów równań różniczkowych

D.5.2Twierdzenia o istnieniu równania różniczkowego.

Lemat D.1 (Gronwalla). Niech $u, g: [0, +\infty) \to [0, +\infty)$ będą funkcjami ciągłymi, spełniającymi nierówność

$$u(t) \leqslant \delta + \int_{a}^{t} g(s)u(s) \,\mathrm{d}s, t \in [a, +\infty),$$

 $gdzie \delta jest nieujemną stałą. Wtedy$

$$u(t) \le \delta \exp\left(\int_a^t g(s) \, \mathrm{d}s\right), t \in [a, +\infty).$$

Twierdzenie D.1 (Picarda-Lindelöfa). Rozważmy zagadnienie początkowe

(*)
$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = s_0 \end{cases}$$

gdzie $t_0, y_0 \in \mathbb{R}, f: D \to \mathbb{R}, D \subseteq \mathbb{R}^2, (t_0, s_0) \in \mathbb{R}^2.$

Niech $\mathbf{P} = [t_0 - b, t_0 + b] \times [y_0 - b, y_0 + b], \ a, b \in (0, +\infty).$ Załóżmy, że $f|_{\mathbf{P}}$ jest ciągła oraz spełnia warunek Lipschitza ze stałą L względem drugiej zmiennej.

Oznaczmy $M = \max\{|f(t,s)|: (t,s) \in \mathbf{P}\}$. Niech

$$0<\delta<\min\left\{a,\frac{b}{M},\frac{1}{L}\right\},$$

przy czym jeśli M=0, to przyjmujemy, że $\frac{b}{M}=\infty$. Wówczas istnieje dokładnie jedna funkcja $y\colon [t_0-\delta,t_0+\delta]\to \mathbb{R}$, będąca rozwiązaniem zagadnienia początkowego (*).

Twierdzenie D.2 (Peana). Niech $f: [a,b] \times \mathbb{R} \to \mathbb{R}$. Jeżeli istnieje kula $K(y_0,x_0) \subseteq \mathbb{R}$ $taka,\ \dot{z}e\ f|_{[a,b]\times K(y_0,x_0)}$ jest ciągła, to istnieje $\delta>0,\ \dot{z}e$ zagadnienie Cauchy'ego

$$\begin{cases} y'(x) = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}$$

ma przynajmniej jedno rozwiązanie w przedziałe $(x_0 - \delta, x_0 + \delta)$.

Twierdzenie D.3 (Peana). Jeżeli funkcje $x, y: [0, T] \to \mathbb{R}$ są różniczkowalne i spełniają $dla \ 0 \leqslant t \leqslant T \ warunki$:

$$x'(t) = f(t, x(t)),$$

$$y'(t) < f(t, y(t)),$$

$$y(0) \leqslant x(0)$$
,

to $y(t) \leqslant x(t)$ dla $0 \leqslant t \leqslant T$.

E Całka Riemanna-Stieltjesa

Definicja E.1. Niech $f:[a,b] \to \mathbb{R}$ bedzie funkcją ograniczoną a $\mu:[a,b] \to \mathbb{R}$ funkcją niemalejącą. Jeżeli dla dowolnego ciagu normalnego $(\pi_k)_{k\in\mathbb{N}}$ przedziału [a,b] oraz dowolnego ciągu punktów pośrednich $\xi_i \in [x_{i-1},x_i], i \in \{1,\ldots,n_k\}$ istnieje granica

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} f(\xi_i) \Delta \mu_i, \text{ gdzie } \Delta \mu_i := \mu(x_i) - \mu(x_{i-1}),$$

to granicę tę oznaczamy

$$\int_a^b f(x) \, \mathrm{d}\mu(x)$$

i nazywamy całką ozaczoną Riemanna-Stieltjesa dla funkcji f w przedziale [a,b]. Całka bywa też oznaczana

$$\int_a^b f \, \mathrm{d}\mu \, \mathrm{lub} \, \int_a^b f(x) \mu(\mathrm{d}x)$$

przy czym drugiego oznaczenia autor nie stosuje. Będziemy też pisać, że funkcja f jest "całkowalna w sensie R-S" względem funkcji μ .

Całka Riemanna-Stieltjesa ma bardzo silny związek z całkowaniem całki Riemmana przez podstawienie.

Twierdzenie E.1. Niech $\mu: [a,b] \to \mathbb{R}$ będzie niemalejąca i różniczkowalna w [a,b] oraz $f: [a,b] \to \mathbb{R}$ będzie funkcją ograniczoną. f jest całkowalna w sensie Riemanna-Stieltjesa na [a,b] względem μ wtedy i tylko wtedy, gdy funkcja $f\mu'$ jest całkowalna w sensie **Riemanna** na przedziale [a,b]. Wtedy

$$\int_a^b f(x) d\mu(x) = \int_a^b f(x)\mu'(x) dx.$$

Dowód. Wystarczy spojrzeć na postać sum całkowych i zastosować twierdzenie Lagrange'a o wartości średniej do funkcji μ' .

Ciekawą postać przyjmie uogólnienie twierdzenia o zamianie zmiennych:

Twierdzenie E.2 (Zamiana zmiennych w całce Riemanna-Stieltjesa). Niech $\varphi: [A, B] \xrightarrow{na} [a, b]$ będzie funkcją rosnącą, $\mu: [a, b] \to \mathbb{R}$ funkcją niemalejącą i $f: [a, b] \to \mathbb{R}$ całkowalną w sensie R-S wzgl. funkcji μ na przedziale [a, b]. Określimy funkcje $g, \nu: [A, B] \to \mathbb{R}$ wzorami

$$\nu(y) = \mu(\varphi(y)), \ g(y) = f(\varphi(y)).$$

Wówczas g jest całokwalna w sensie R-S względem funkcji ν i

$$\int_{a}^{b} f \, \mathrm{d}\mu = \int_{A}^{B} g \, \mathrm{d}\nu$$

Czyli

$$\int_a^b f(x) d\mu(x) = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} g(t) d\nu(t).$$

Całka Riemanna-Stieltjesa spełnia analogiczne do całki Riemanna własności:

Twierdzenie E.3. Jeżeli f, g są funkcjami całkowalnymi w przedziałe [a, b] względem f. μ oraz $f \leq g$, to

$$\int_a^b f \, \mathrm{d}\mu \leqslant \int_a^b g \, \mathrm{d}\mu.$$

Twierdzenie E.4. Jeżeli f, g są funkcjami całkowalnymi w przedziałe [a, b] względem f. μ a $u, v \in \mathbb{R}$ dowolnymi stałymi, to

$$\int_a^b (u \cdot f + v \cdot g)(x) d\mu(x) = u \int_a^b f(x) d\mu(x) + v \int_a^b g(x) d\mu(x).$$

Twierdzenie E.5. Jeżeli $f:[a,b] \to \mathbb{R}$ jest funkcją całkowalną na [a,b] w sensie Riemanna-Stieltjesa względem funkcji niemalejącej $\mu:[a,b] \to \mathbb{R}$, to

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}\mu(x) \right| \leqslant \int_{a}^{b} |f(x)| \, \mathrm{d}\mu(x)$$

Twierdzenie E.6. Jeżeli $f:[a,b] \to \mathbb{R}$ jest funkcją całkowalną na [a,b] w sensie Riemanna-Stieltjesa względem funkcji niemalejącej $\mu:[a,b] \to \mathbb{R}$ oraz $|f(x)| \leq M, x \in [a,b]$, to

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}\mu(x) \right| \le M \left(\mu(b) - \mu(a) \right)$$

Dowód. Będzie w przyszłości...

Możemy łatwo określić dwie szerokie klasy funkcji całkowalnych w sensie R-S.

Twierdzenie E.7. Jeżeli $f:[a,b] \to \mathbb{R}$ jest funkcją monotoniczną a $\mu:[a,b] \to \mathbb{R}$ funkcją niemalejącą i ciąglą, to f jest całkowalna w sensie Riemanna-Stieltjesa względem funkcji μ .

Twierdzenie E.8. Jeżeli $f:[a,b] \to \mathbb{R}$ jest funkcją ciągłą na [a,b] to jest całkowalna w sensie Riemanna-Stieltjesa względem dowolnej funkcji niemalejącej $\mu:[a,b] \to \mathbb{R}$.

Przykłady.

Przykład. Niech $E = \{y_1, \dots, y_k\}$ oraz funkcja $\mu \colon \mathbb{R} \to E$ będzie dla pewnych ustalonych $a_1, \dots, a_k \in [0, 1]$ dana wzorem

$$\mu(x) = \begin{cases} y_i, & \text{dla } x = a_i, i \in \{1, \dots, k\}; \\ 0, & \text{dla } x \notin \{a_1, \dots, a_k\}. \end{cases}$$

Wówczas funkcja μ jest oczywiście niemalejąca i mamy:

$$\int_0^1 x^2 \, \mathrm{d}\mu(x) = \sum_{i=1}^k a_i^2 y_i^2.$$

Powyższy przykład ma zgrabną interpretację fizyczną. Moment bezwładności prostego drugu o jednostkowej długości dany jest względem osi przechodzącej przez koniec drutu i prostopadłej do niego dany jest wzorem $\int_0^1 x^2 \, \mathrm{d}m$, gdzie m(x) oznacza masę odcinka [0,x]. Jeżeli gęstość masy odcinka [0,x] jest dana funkcją ciągła ϱ - to oznacza: $m'(x) = \varrho(x)$ - to moment bezwładności jest dany jako całka:

$$\int_0^1 x^2 \varrho(x) \, \mathrm{d}x.$$

Jeżeli drut składa się z mas m_i skoncentrowanych w punktach a_i , to powyższa całka przyjmuje postać:

$$\int_0^1 x^2 \varrho(x) \, \mathrm{d}x = \sum_{i=1}^k a_i^2 m_i.$$

Wahanie funkcji.

Definicja E.2 (Wahanie funkcji). Niech $D \subseteq \mathbb{R}$ i $f: D \to \mathbb{R}$ będzie funkcją ograniczoną na przedziale $[a,b] \subseteq D$. Ustalmy $m \ge 2$ elementowy podział π przedziału [a,b]. Wahaniem funkcji $f: [a,b] \to \mathbb{R}$ względem podziału π nazywamy liczbę

$$V_a^b(f,\pi) := \sum_{k=1}^m |f(x_k) - f(x_{k-1})|.$$

Gdy wiadomo, że funkcja jest określona na [a,b] (albo wcześniej powiedziane, że rozważamy jej zacieśnienie do tego przedziału) to oczywiście możemy pomijać w zapisie indeksy: $V_a^b(f,\pi) = V(f,\pi)$.

Wahaniem funkcji f na przedziale [a, b] nazywamy wielkość

$$V_a^b(f) := \sup_{P \in \mathcal{P}[a,b]} V_a^b(f,\pi).$$

Z definicji wahanie jest liczbą nieujemną. Jeżeli $V_a^b(f) < \infty$, to mówimy, że funkcja $f|_{[a,b]}$ jest funkcją o wahaniu ograniczonym albo, że ma wahanie skończone w przedziale [a,b].

Twierdzenie E.9. Niech $f, g: [a, b] \to \mathbb{R}$ będą funkcjami o wahaniu ograniczonym. Wówczas

1. funkcja f + g jest funkcją o wahaniu skończonym oraz

$$V_a^b(f+g) \leqslant V_a^b(f) + V_a^b(g);$$

2. dla dow. $\lambda \in \mathbb{R}$ funkcja λf jest funkcją o wahaniu skończonym oraz

$$V_a^b(\lambda f) = |\lambda| V_a^b(f);$$

3. dla dow. $x, y \in [a, b], x < y$ zachodzi

$$|f(y) - f(x)| \leq V_x^y(f);$$

4. dla dowolnej liczby $\xi \in \mathbb{R}$, $a < \xi < b$:

$$V_a^b(f) = V_a^{\xi}(f) + V_{\xi}^b(f);$$

5. funkcja fg jest funkcją o wahaniu ograniczonym.

Twierdzenie E.10. Dowolna funkcja $f:[a,b] \to \mathbb{R}$ monotoniczna jest funkcją o wahaniu ograniczonym oraz

$$V_a^b(f) = |f(b) - f(a)|.$$

Twierdzenie E.11 (Jordana o rozkładzie). Każda funkcja $f: [a,b] \to \mathbb{R}$ ma wahanie skończone w [a,b] wtedy i tylko wtedy, gdy daje się przedstawić w postaci różnicy dwóch funkcji niemalejących na przedziałe [a,b].

Twierdzenie E.12. Każda funkcja o wahaniu skończonym ma przeliczalnie wiele punktów nieciągłości.

Twierdzenie E.13. Dla dow. funkcji $f:[a,b] \to \mathbb{R}$:

$$V_a^b(f) = \int_a^b \mathrm{d}f(x).$$

F Iloczyny nieskończone

Twierdzenie F.1. Jeżeli iloczyn nieskończony $\prod_{n=1}^{\infty} a_n$ jest zbieżny, to $\lim_{n\to\infty} a_n = 1$.

Twierdzenie F.2. Jeżeli $(a_n)_{n\in\mathbb{N}}$ jest ciągiem liczb rzeczywistych z przedziału (0,1), to następujące warunki są równoważne:

1. szereg
$$\sum_{n=1}^{\infty} a_n$$
 jest zbieżny,

2.
$$iloczyn \prod_{n=1}^{\infty} (1+a_n) jest zbieżny,$$

3.
$$iloczyn \prod_{n=1}^{\infty} (1 - a_n) jest zbieżny.$$

Twierdzenie F.3 (Wzór Wallisa).

$$\prod_{n=1}^{\infty} \frac{2n}{2n-1} \cdot \frac{2n}{2n+1} = \frac{\pi}{2}.$$

G Dowód niewymierności liczby π

Twierdzenie. Liczba π jest niewymierna.

 $Dow \acute{o}d.$ Załóżmy, nie wprost, że $\pi=\frac{a}{b}$ dla pewnych $a,b\in\mathbb{Z}.$ Definiujemy wielomiany

$$f(x) = \frac{x^n (a - bx)^n}{n!},$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x),$$

dla pewnej liczby n. Łatwo widzimy, że $x\mapsto n!f(x)$ jest całkowala oraz, że $f^{(k)}(0)$ istnieje. Podobnie $f^{(k)}\left(\frac{a}{b}\right)$, gdyż $f(x)=f\left(\frac{a}{b}-x\right)$. Obliczamy

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(F'(x)\sin x - F(x)\cos x \right) = F''(x)\sin x + F(x)\sin x = f(x)\sin x,$$

(G.1)
$$\int_0^{\pi} f(x) \sin x \, dx = \left[F'(x) \sin x - F(x) \cos x \right]_0^{\pi} = F(\pi) + F(0).$$

 $F(\pi)+F(0)$ jest liczbą całkowitą, gdyż $f^{(k)}(\pi)$ i $f^{(k)}(0)$ są liczbami całkowitymi. Ale dla $0< x<\pi$ mamy:

 $0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$

więc całka G.1 jest dodatnia, chociaż dowolnie mała - wystarczy dobrać odpowiednio duże n. Stąd G.1 jest sprzeczne - π nie może być liczbą wymierną.

Bibliografia i literatura

Literatura

- [1] Walter Rudin, *Podstawy analizy matematycznej*, Wydawnictwo Naukowe PWN (2020).
- [2] Witold Kołodziej, Analiza matematyczna, Wydawnictwo Naukowe PWN.
- [3] Kazimierz Kuratowski, *Rachunek różniczkowy i całkowy*, Wydawnictwo Naukowe PWN.
- [4] Marek Kordos, Wykłady z historii matematyki.
- [5] Ryszard Rudnicki, Wykłady z analizy matematycznej, Wydawnictwo Naukowe PWN (2012).
- [6] G.M. Fichtenholz, Rachunek rózniczkowy i całkowy Tom 1, Wydawnictwo Naukowe PWN.
- [7] G.M. Fichtenholz, *Rachunek rózniczkowy i całkowy Tom 2*, Wydawnictwo Naukowe PWN.
- [8] Krzysztof Maurin, Analiza Część 1 Elementy, Wydawnictwo Naukowe PWN.
- [9] Aleksander Błaszczyk, Sławomir Turek, *Teoria Mnogości*, Wydawnictwo Naukowe PWN.
- [10] Andrzej Białynicki-Birula, Algebra, Wydawnictwo Naukowe PWN.
- [11] I.N. Bronsztejn, H. Muhlig, G. Musiol, K.A. Siemiendiajew, *Nowoczesne kompendium matematyki*.
- [12] Ryszard Rudnicki, Dynamika populacyjna.
- [13] William Moebs, Samuel J. Ling, Jeff Sanny, Fizyka dla szkół wyższych. Tom 1.
- [14] Andrzej Ostrowski, Matematyka z przykladami zastosowa w naukach ekonomicznych.
- [15] E. H. Lockwood A Book of Curves, Cambridge University Press (1961).
- [16] Andreescu T. Problems in Real Analysis Advanced Calculus on the Real Axis, Springer (2009).
- [17] Bernard R. Gelbaum, John M. H. Olmsted, Counterexamples in Analysis.
- [18] L. Olsen, A new proof of Darboux's theorem, Amer. Math. Monthly 111 (2004).

- [19] J. A. Oguntuase, On an inequality of Gronwall, J. Inequal. Pure and App. Math. 2 (2001).
- [20] Ivan Niven, A simple proof that π is irrational.
- [21] https://mathworld.wolfram.com/BernsteinPolynomial.html
- $[22] \ https://mathworld.wolfram.com/EulerFormula.html$