Un Modelo de Referencia para la Generación de Informes

Alejandro García Marra, Padrón Nro. 91.516
alemarra@gmail.com
Sebastián Javier Bogado, Padrón Nro. 91.707
sebastian.j.bogado@gmail.com
Grupo Nro. 0 - 2do. Cuatrimestre de 2012
66.20 Organización de Computadoras
Facultad de Ingeniería, Universidad de Buenos Aires

Resumen

El presente trabajo busca crear un programa que permita el ordenamiento de archivos a través de dos implementaciones distinta, una utilizando el algoritmo Quicksort y la otra el algoritmo Stooge sort. Sobre este programa, luego, se realizarán una serie de mediciones con el fin de determinar los desempeños relativos de cada implementación y las posibles mejoras a realizar. Para esto haremos uso de los programas **time y gprof.**

1. Introducción

Este artículo es un modelo que proporciona a los alumnos las instrucciones necesarias para preparar sus informes para la asignatura 66.20 Organización de Computadoras. Además de la estructura presentada, el informe podría contener otras secciones y subsecciones, a continuación de la introducción. Podrá incluir (se recomienda) gráficos ilustrativos y/o tablas. El informe finaliza con una sección de conclusiones, y las citas bibliográficas consultadas siguiendo, rigurosamente, el formato presentado al final de este modelo. También se recomienda respectar el estilo tipográfico mostrado aquí (fuente Times Roman de 10 puntos, u otras similares)

2. Mediciones

2.1. Valores Obtenidos

En la tabla 1 BLABLALFSDFASDFASDFASDFASDFASDFASDFASDFAMFG-MADFKG.

Además de los archivos indicados en el enunciado, se realizaron mediciones sobre archivos con tamaños arbitrarios, con el fin de mostrar de mejor manera las mediciones realizadas.

		Quicksort			Stooge sort		
		Ordenado	Invertido	Aleatorio	Ordenado	Invertido	Aleatorio
1kb	real*	0.00	0.00	0.00	0.00	0.00	0.00
	user*	0.00	0.00	0.00	0.00	0.00	0.00
	sys*	0.00	0.00	0.00	0.00	0.00	0.00
8kb	real	0.00	0.00	0.00	0.02	0.02	0.01
	user	0.00	0.00	0.00	0.01	0.01	0.01
	sys	0.00	0.00	0.00	0.00	0.00	0.00
16kb	real	0.00	0.00	0.00	0.00	0.02	0.02
	user	0.00	0.00	0.00	0.00	0.01	0.02
	sys	0.00	0.00	0.00	0.00	0.00	0.00
32kb	real	0.00	0.00	0.00	0.17	0.17	0.17
	user	0.00	0.00	0.00	0.17	0.17	0.17
	sys	0.00	0.00	0.00	0.00	0.00	0.00
64kb	real	0.00	0.00	0.00	1.44	1.44	1.44
	user	0.00	0.00	0.00	1.44	1.43	1.44
	sys	0.00	0.00	0.00	0.00	0.00	0.00
1024kb	real	0.04	0.03	0.03	>1500	>1500	>1500
	user	0.03	0.02	0.03	>1500	>1500	>1500
	sys	0.00	0.00	0.00	0.00	0.00	0.00

Cuadro 1: Resultados comando Time

- * Referencia:
- real: %e, tiempo total real usado por el proceso.
- user: %U, total de segundos-CPU usados por el proceso directamente.
- \blacksquare sys : %S, total de segundos-CPU utilizados por el systema en nombre del proceso.

2.2. Análisis de los datos

Texto de la subsección...

3. Profiling

Texto de la otra sección. En la figura 1 se muestra un ejemplo de cómo presentar las ilustraciones del informe.

Figura 1: Facultad de Ingeniería — Universidad de Buenos Aires.

4. Conclusiones

Se presentó un modelo para que los alumnos puedan tomar como referencia en la redacción de sus informes de trabajos prácticos.

Referencias

- [1] Intel Technology & Research, "Hyper-Threading Technology," 2006, http://www.intel.com/technology/hyperthread/.
- [2] J. L. Hennessy and D. A. Patterson, "Computer Architecture. A Quantitative Approach," 3ra Edición, Morgan Kaufmann Publishers, 2000.
- [3] J. Larus and T. Ball, "Rewriting Executable Files to Mesure Program Behavior," Tech. Report 1083, Univ. of Wisconsin, 1992.