Hi!

Introducing SModelS

Suchita Kulkarni (LPSC, Grenoble)

based on:

work in progress with W. Waltenberger, U. Laa, A. Lessa, D. Proschofsky, S. Kraml, W. Magerl

Status: SUSY 2013

full data

partial data

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7.8 \text{ TeV}$

Is this the most generic scenario?

- Interpretation of LHC searches are model dependent
- Model dependence comes while converting the number of events observed to a limit on particle masses
- For a more generic case, either reinterpret the results yourself, or use simplifies Models results

- Re-interpreting the results yourself involves re-implementing the analysis, requires expertise, large computing power, time consuming
- We stick to simplified models results

What is an SMS result?

 SMS are an effective-Lagrangian description of BSM involving a limited set of new particles.

What is an SMS result?

What is an SMS result?

Note: the grid numbers on the plot are more important than the exclusion lines

 Every SMS interpretation is based on a set of assumptions and is applicable for specific topologies e.g. ttbar + MET

 A generic point in e.g. SUSY parameter space contains many topologies and is sensitive to more than one SMS interpretation e.g. ttbar + MET, bbar + MET

How to read an SMS result

 95% CL UL is the unfolded maximum amount of cross-section allowed for a specific decay chain and a mass combination

Is sigmaXBR(ttbat + MET) of your model for a given mass > the number on the plot? -- Yes, point excluded; No, point allowed

Can we have a centralized database of all the SMS results to check a given SUSY point in parameter space by decomposing it into SMS topologies?

Central concept of

SModelS framework

 It assumes, for most experimental searches, the BSM model can be approximated by a sum over effective simplified models

Current implementation assumes R-parity is conserved

Given Spectra

 $\tilde{\chi}_1^+, \tilde{\chi}_2^0$

- $\tilde{\chi}_1^0$

Decomposition

Given \tilde{e}_R $ilde{ au}_R$ \tilde{e}_R $\tilde{\chi}_2^0$ Spectra $\tilde{\chi}_1^+, \tilde{\chi}_2^0$ $ilde{\mu}_R$ $\tilde{e}_R, \tilde{\mu}_R, \tilde{ au}_R$ $ilde{\mu}_R$ $ilde{ ilde{\mu}}_R$ $ilde{\mu}_R$ $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_2^0$ μ μ μ $ilde{ au}_R$ $\dot{ ilde{ au}}_R$ $\dot{\tilde{ au}}_R$ $\tilde{\chi}_2^0$

Look-up experimental limits

Is theory prediction > experimental limit?

SModelS framework

Consider:

 The framework does not depend on characteristics of SUSY particles, can also be applied to decompose any BSM spectra of arbitrary complexity

How do we know it works?

 The code has been validated through the reproduction of various SMS exclusion curves

Typical examples of validation plot For a real life application of the code c.f. B. Dumont's talk

SMS approach - what's next?

- SMS approach is not perfect yet
- Not all SMS topologies are present
- Need more information from experiments, getting more and more help from experimentalists
- Likelihood information and efficiency maps can be used to combine different SMS results, they should be built or provided
- Many groups are thinking in these directions to improve upon current results

Conclusions

- SMS results are a good way to test BSM theories and can have a good constraining power
- SModelS is designed to utilize this power and constrain BSM scenarios
- The formalism of the code in generic and can be applied to any BSM spectra for which SMS results are applicable
- It can also be used when there will be signal for BSM at the LHC
- There is still room for improvement
- Stay tuned applying LHC searches to your favorite BSM model is being made easy!