Lycée Buffon DM 7
MPSI Année 2020-2021

Devoir à rendre le 4/01/2021

Exercice 1

Soit $(a, b, c, d) \in \mathbb{C}^4$ tel que $c \neq 0$ et $ad - bc \neq 0$. On définit la suite u par $u_0 \in \mathbb{C}$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \quad \text{avec} \quad f : \mathbb{C} \setminus \{-d/c\} \to \mathbb{C} \setminus \{a/c\}, \ z \mapsto \frac{az+b}{cz+d}$$

On suppose que u_0 est tel que la suite soit bien définie.

- 1. On suppose que u converge.
 - (a) Montrer que si u converge alors sa limite est racine d'une équation du second degré (*).
 - (b) Soit r une racine de (*). Montrer que $u_{n+1} r = (u_n r) \frac{ad bc}{(cu_n + d)(cr + d)}$
 - (c) En déduire que u est constante si et seulement si un de ses terme est racine de (*)

Désormais on suppose que u n'est pas constante.

- 2. On suppose que (*) a deux racines distinctes r_1 et r_2 .
 - (a) Montrer que la suite $v = \left(\frac{u_n r_1}{u_n r_2}\right)_{n \in \mathbb{N}}$ est bien définie et géométrique de raison λ .
 - (b) En déduire u en fonction de λ
 - (c) En déduire la nature convergente ou divergente de u.
- 3. On suppose que (*) a une seule racine r_0 .
 - (a) Montrer que si $w = (\frac{1}{u_n r_0})_{n \in \mathbb{N}}$ alors

$$\forall n \in \mathbb{N}, \ w_{n+1} = w_n + \frac{2c}{a+d}$$

(b) En déduire la nature de u.

Exercice 2:

Soit u la suite définie par $u_0 \in \mathbb{R}^+$ et $\forall n \in \mathbb{N}^*$, $u_n = \sqrt{u_{n-1} + n}$.

- 1. Montrer que la suite u est bien définie et que : $\forall n \in \mathbb{N}, u_n \geq \sqrt{n}$.
- 2. (a) Montrer que : $\forall x \in \mathbb{R}^+, \sqrt{x} \le \frac{1}{2} (1+x)$.
 - (b) En déduire que $\forall n \in \mathbb{N}, u_n \leq n + \frac{u_0}{2^n}$ puis que $u_n = o(n^2)$.
 - (c) Montrer que $u_n = o(n)$ et en déduire un équivalent de u_n .
- 3. Soit $v = (u_n \sqrt{n})_{n \in \mathbb{N}}$. Prouver que la suite v converge et donner sa limite.
- 4. Calculer $\lim_{n \to +\infty} \sqrt{n} \sqrt{n-1}$ puis $\lim_{n \to +\infty} u_n u_{n-1}$.
- 5. Montrer que $u_{n+1} u_n$ est de même signe que $1 + u_n u_{n-1}$ et en déduire que la suite u est monotone à partir d'un certain rang.

Exercice 3:

- 1. Prouver que, pour tout entier n non nul, l'équation $\frac{e^{-x^2}}{x} = \frac{1}{n}$ admet sur \mathbb{R}^{+*} une unique solution que l'on notera x_n .
- 2. Montrer que $\lim_{n \to +\infty} x_n = +\infty$.
- 3. Montrer que $\forall n \in \mathbb{N}^*$, on a $x_n^2 + \ln x_n = \ln n$. En déduire un équivalent de x_n .
- 4. Soit $u = \left(x_n \sqrt{\ln n}\right)_{n \in \mathbb{N}}$. Trouver un équivalent de u et sa limite.