Tutorium 8

Funktionentheorie

23. bis 25. Juni 2025

Theorem

Sei f holomorph in einer Umbegung einer Kreisscheibe \overline{D} , bis auf endlich viele Pole. Falls f auf $C=\partial D$ weder Pole noch Nullstellen hat, so gilt

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \#N - \#P,$$

wobei #N bzw. #P die Anzahl der Null- bzw. Polstellen von f innerhalb von C bezeichnet, jeweils mit Vielfachheit gezählt.

Theorem

Sei f holomorph in einer Umbegung einer Kreisscheibe \overline{D} , bis auf endlich viele Pole. Falls f auf $C=\partial D$ weder Pole noch Nullstellen hat, so gilt

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \#N - \#P,$$

wobei #N bzw. #P die Anzahl der Null- bzw. Polstellen von f innerhalb von C bezeichnet, jeweils mit Vielfachheit gezählt.

Merkhilfe: $\frac{f'}{f}$ heißt logarithmische Ableitung.

Theorem

Sei f holomorph in einer Umbegung einer Kreisscheibe \overline{D} , bis auf endlich viele Pole. Falls f auf $C = \partial D$ weder Pole noch Nullstellen hat, so gilt

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \#N - \#P,$$

wobei #N bzw. #P die Anzahl der Null- bzw. Polstellen von f innerhalb von C bezeichnet, jeweils mit Vielfachheit gezählt.

Merkhilfe: $\frac{f'}{f}$ heißt *logarithmische Ableitung*. Warum Argumentprinzip?

Theorem

Sei f holomorph in einer Umbegung einer Kreisscheibe \overline{D} , bis auf endlich viele Pole. Falls f auf $C=\partial D$ weder Pole noch Nullstellen hat, so gilt

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \#N - \#P,$$

wobei #N bzw. #P die Anzahl der Null- bzw. Polstellen von f innerhalb von C bezeichnet, jeweils mit Vielfachheit gezählt.

Merkhilfe: $\frac{f'}{f}$ heißt *logarithmische Ableitung*. Warum Argumentprinzip? \rightsquigarrow s. Animation.

Der Satz von Rouché

Der Satz von Rouché

Theorem

Seien f und g holomorph in Umgebung einer Kreisscheibe \overline{D} . Gilt zusätzlich

$$|f(z)| > |g(z)|$$
 für alle $z \in \partial D$,

so besitzen f und f+g (mit Vielfachheit) gleich viele Nullstellen innerhalb von D.

Offenheits- und Maximumprinzip

Offenheits- und Maximumprinzip

Theorem (Satz von der offenen Abbildung)

Seien $\Omega \subset \mathbb{C}$ offen und zusammenhängend und $f:\Omega \to \mathbb{C}$ eine holomorphe, nicht-konstante Funktion. Dann ist f eine offene Abbildung, d.h. f(U) ist offen für alle $U\subset \Omega$ offen.

Offenheits- und Maximumprinzip

Theorem (Satz von der offenen Abbildung)

Seien $\Omega \subset \mathbb{C}$ offen und zusammenhängend und $f:\Omega \to \mathbb{C}$ eine holomorphe, nicht-konstante Funktion. Dann ist f eine offene Abbildung, d.h. f(U) ist offen für alle $U \subset \Omega$ offen.

Theorem (Maximumprinzip)

Seien $\Omega\subset\mathbb{C}$ offen und zusammenhängend und $f:\Omega\to\mathbb{C}$ eine holomorphe, nicht-konstante Funktion. Dann nimmt |f| auf Ω nicht sein Maximum an. Insbesondere gilt, falls Ω beschränkt ist und f stetig auf $\overline{\Omega}$ fortgesetzt werden kann:

$$\sup_{\Omega} \lvert f \rvert = \sup_{\partial \Omega} \lvert f \rvert.$$

Theorem

Sei $\Omega \subset \mathbb{C}$ offen und einfach zusammenhängend und sei $f: \Omega \to \mathbb{C}$ holomorph mit $f(z) \neq 0$ für alle $z \in \Omega$. Dann existiert eine holomorphe Abbildung $g: \Omega \to \mathbb{C}$ mit

$$f(z) = e^{g(z)} \quad \forall z \in \Omega.$$

Theorem

Sei $\Omega \subset \mathbb{C}$ offen und einfach zusammenhängend und sei $f: \Omega \to \mathbb{C}$ holomorph mit $f(z) \neq 0$ für alle $z \in \Omega$. Dann existiert eine holomorphe Abbildung $g: \Omega \to \mathbb{C}$ mit

$$f(z) = e^{g(z)} \quad \forall z \in \Omega.$$

Die Funktion g ist eindeutig bis auf Addition von $2\pi i k$ mit $k \in \mathbb{Z}$.

Theorem

Sei $\Omega \subset \mathbb{C}$ offen und einfach zusammenhängend und sei $f: \Omega \to \mathbb{C}$ holomorph mit $f(z) \neq 0$ für alle $z \in \Omega$. Dann existiert eine holomorphe Abbildung $g: \Omega \to \mathbb{C}$ mit

$$f(z) = e^{g(z)} \quad \forall z \in \Omega.$$

Die Funktion g ist eindeutig bis auf Addition von $2\pi i k$ mit $k \in \mathbb{Z}$.

Corollary

Sei $\Omega \subset \mathbb{C}$ offen und einfach zusammenhängend mit $0 \notin \Omega$ und sodass ein $R \in \Omega \cap (0,\infty)$ existiert. Dann existiert eine holomorphe Funktion g in Ω mit $z = \mathrm{e}^{g(z)}$ für alle $z \in \Omega$ und sodass $g(r) = \log(r)$ für $r \in \Omega \cap (0,\infty)$ nahe R.

Theorem

Sei $\Omega \subset \mathbb{C}$ offen und einfach zusammenhängend und sei $f: \Omega \to \mathbb{C}$ holomorph mit $f(z) \neq 0$ für alle $z \in \Omega$. Dann existiert eine holomorphe Abbildung $g: \Omega \to \mathbb{C}$ mit

$$f(z) = e^{g(z)} \quad \forall z \in \Omega.$$

Die Funktion g ist eindeutig bis auf Addition von $2\pi i k$ mit $k \in \mathbb{Z}$.

Corollary

Sei $\Omega \subset \mathbb{C}$ offen und einfach zusammenhängend mit $0 \notin \Omega$ und sodass ein $R \in \Omega \cap (0,\infty)$ existiert. Dann existiert eine holomorphe Funktion g in Ω mit $z=\mathrm{e}^{g(z)}$ für alle $z\in \Omega$ und sodass $g(r)=\log(r)$ für $r\in \Omega \cap (0,\infty)$ nahe R.

Der sogenannte *Hauptzweig des Logarithmus* ist in der geschlitzten Ebene $\mathbb{C}\setminus (-\infty,0]$ definiert als

$$\operatorname{Log} z = \operatorname{In} r + i\theta \text{ für } z = re^{i\theta}, \ \theta \in (-\pi, \pi).$$