Announcements & Such

- Fleet Foxes
- Administrative Stuff
 - Take-Home Mid-Term re-subs are due Thursday.
 - When you turn in resubmissions, make sure that you staple them to your original homework submission.
 - I will be discussing the grade curve for the course as soon as all of the mid-term grades are in (both the take-home and the in-class).
 - Branden will not be holding office hours this week.
- Today: Chapter 4 Natural Deduction Proofs for LSL
 - We'll be done with the LSL-natural deduction rules for \vdash this week.
 - **MacLogic** a useful computer program for natural deduction.
 - * See http://fitelson.org/maclogic.htm.
 - Natural deductions are the most challenging topic of the course.

The Elimination Rule for \sim

Rule of \sim -**Elimination**: For any formula q, if $\lceil \sim q \rceil$ has been inferred at a line j in a proof and q at line k (j < k or j > k) then we may infer ' \land ' at line m, labeling the line 'j, $k \sim E$ ' and writing on its left the numbers on the left at j and on the left at k. Schematically (with j < k):

$$a_1, \ldots, a_n$$
 (j) $\sim q$
 \vdots
 b_1, \ldots, b_u (k) q
 \vdots
 $a_1, \ldots, a_n, b_1, \ldots, b_u$ (m) \land j, k \sim E

• Note: we have *added* the symbol ' λ ' to the language of LSL. It is treated as if it were an *atomic sentence* of LSL. We can now use it in compound sentences (*e.g.*, ' $A \rightarrow \lambda$ ', ' $\sim \sim \lambda$ ', *etc.*).

The Introduction Rule for \sim

Rule of \sim -**Introduction**: If ' \curlywedge ' has been inferred at line k in a proof and $\{a_1, \ldots, a_n\}$ are the assumption and premise numbers ' \curlywedge ' depends upon, then if p is an assumption (or premise) at line j, $\lceil \sim p \rceil$ may be inferred at line m, labeling the line 'j, k \sim I' and writing on its left the numbers in the set $\{a_1, \ldots, a_n\}/j$.

:

$$a_1,\ldots,a_n$$
 (k) \wedge

:

$$\{a_1,\ldots,a_n\}/j$$
 (m) $\sim p$ j, k $\sim I$

• ~I is used (typically with ~E) to deduce $\lceil \sim p \rceil$ via reductio ad absurdum, by (i) assuming p, (ii) deducing ' \curlywedge ', and (iii) discharging the assumption.

The Rule of Double Negation (DN)

- Negation is an odd connective in our system. It not only has an introduction rule and an elimination rule, but it also has an additional rule called the *double negation* (DN) rule.
- The DN rule says that we may infer p from $\lceil \sim \sim p \rceil$. Without this DN rule, we would not be able to prove certain valid LSL argument forms e.g., $\sim (A \& \sim B) : (A \to B)$.

Rule of Double Negation: For any formula p, if $\lceil \sim \sim p \rceil$ has been inferred at a line j in a proof, then at line k we may infer p, labeling the line 'j' and writing on its left the numbers to the left of j.

$$a_1,\ldots,a_n$$
 (j) $\sim \sim p$

$$a_1,\ldots,a_n$$
 (k) p j DN

Example Proof of a *Theorem*

- Using only the rules we have learned so far, we should be able to prove the following *theorem*: $\vdash \sim (A \& \sim A)$. Let's do this one by hand first.
- Here's a simple proof, generated using MacLogic (I'll show how):

• This proof makes use of *no premises*, and its final line has *no numbers* to its left — indicating that we have succeeded in proving ' $\sim (A \& \sim A)$ ' from *nothing at all*. It's a *theorem* (i.e., a sequent with no premises)!

The Introduction Rule for \vee (\vee I)

Rule of \vee -**Introduction**: For any formula p, if p has been inferred at line j, then, for any formula q, $either \lceil p \vee q \rceil$ or $\lceil q \vee p \rceil$ may be inferred at line k, labeling the line 'j \vee l' and writing on its left the same premise and assumption numbers as appear on the left of j.

$$a_1, \dots, a_n$$
 (j) p a_1, \dots, a_n (j) q
$$\vdots$$
 OR
$$\vdots$$

$$a_1, \dots, a_n$$
 (k) $p \lor q$ j \lor I
$$a_1, \dots, a_n$$
 (k) $p \lor q$ j \lor I

- The \vee I rule is very simple an intuitive. Basically, it says that you may infer a disjunction from *either* of its disjuncts.
- The *elimination* rule (\vee E) for \vee , on the other hand, is considerably more complex to state and apply. It's the hardest of our rules.

The Elimination Rule for \vee (\vee E)

- First, the idea *behind* the \vee -elimination rule.
- The following argument form is valid (easily verified *via* truth-table):

$$p \vee q$$

$$p \rightarrow r$$

$$q \rightarrow r$$

.. Y

- This argument form is called the *constructive dilemma*. In essence, the VE rule reflects the constructive dilemma form of reasoning and implements it in our system of natural deduction rules.
- The \vee E rule is trickier than our other rules because it requires us to make *two* assumptions. This can make it rather complicated to keep track of all of our assumptions and premises during an \vee E proof.
- Now, the official definition of $\vee E \dots$

Rule of \vee -**Elimination**: If a disjunction $\lceil p \vee q \rceil$ occurs at line g of a proof, p is assumed at line h, r is derived at line i, q is assumed at line j, and r is derived at line k, then at line m we may infer r, labeling the line 'g, h, i, j, k \vee E' and writing on its left every number on the left at line g, and at line i (except h), and at line k (except j).

$$a_1, \ldots, a_n$$
 (g) $p \vee q$
 \vdots
 h (h) p Assumption
 \vdots
 b_1, \ldots, b_u (i) r
 \vdots
 j (j) q Assumption
 \vdots
 c_1, \ldots, c_w (k) r
 \vdots
 \mathscr{A} (m) r g, h, i, j, k \vee E

where \mathscr{A} is the set: $\{a_1, ..., a_n\} \cup \{b_1, ..., b_u\}/h \cup \{c_1, ..., c_w\}/j$.

An Example Involving VE and DN

• Here's a proof of the sequent: $A \vee B$, $\sim B \vdash A$.

Problem is: $A \vee B$, $\sim B + A$

3,4 6

2,6 1,2,3

1,2

1,2

(3) ~A

(4) A

(5) Λ

(6) B

 Λ (8)

(9) ~~A

(10) A

Premise

Premise

Assumption (for ~I)

Assumption (for √E)

3,4 ~E

Assumption (for √E)

2,6 ~E

1,4,5,6,7 \vee E

3,8 ~1

9 DN

A Simple Example Involving VI and VE

• Here's a proof of the sequent: $A \vee B \vdash B \vee A$.

Problem is: A∨B + B∨A

1

2

4

4

(1) A \vee B

(2) A

(3) B \checkmark A

(4) B

(5) B \checkmark A

(6) B \checkmark A

Premise

Assumption (VE)

2 \

Assumption (VE)

4 \

1,2,3,4,5 ∨E

Another Example Involving VI and Negation

• Here's a proof of the *theorem*: $\vdash A \lor \sim A$.

Problem is: ⊦ A∨~A

2

2

1,2

1

1

1

- $(1) \sim (A \vee \sim A)$
- (2) A
- (3) $A \sim A$
- (4) A
- (5) ~A
- (6) A \checkmark ~A
- (7) A
- (8) $\sim \sim (A_{\vee} \sim A)$
- (9) Av~A

Assumption (~I)

Assumption (~I)

A Third Example Involving VE

• Here's a proof of the sequent: $A \vee B$, $\sim B \vdash A$.

Problem is: $A \lor B$, $\sim B + A$

1,2,3 1,2

1,2

(1) A \vee B

(2) ~B

(3) ~A

(4) A

(5) Λ

(6) B

 Λ (8)

(9) ~~A

(10) A

Premise

Premise

Assumption (for ~I)

Assumption (for \sqrt{E})

3,4 ~E

Assumption (for ∨E)

2,6 ~E

 $1,4,5,6,7 \lor E$

3,8 ~1

9 DN

A Fourth Example Involving VI and VE

• Here's a proof of the sequent: $A \vee (B \& C) \vdash (A \vee B) \& (A \vee C)$.

(1) A~(B&C)
(2) A
(3) A~B
(4) A~C
(5) (A~B)&(A~C)
(6) B&C
(7) B
(8) A~B
(9) C
(10) A~C
(11) (A~B)&(A~C)
(12) (A~B)&(A~C)

Premise
Assumption (~E)
2 ~I
2 ~I
3,4 &I
Assumption (~E)
6 &E
7 ~I
6 &E
9 ~I
8,10 &I
1,2,5,6,11 ~E

6

6

Another Example Involving \vee

• Let's do a proof of: $(A \& B) \lor (A \& C) \vdash A \& (B \lor C)$

1

2

2

4

4

1

2

2

4

4

1

1

(1) $(A\&B)_{\checkmark}(A\&C)$

(2) A&B

(3) A

(4) A&C

(5) A

(6) A

(7) B

(8) B_VC

(9) C

(10) B_VC

(11) $B_{V}C$

(12) $A&(B_{\vee}C)$

Premise

Ass (\sqrt{E})

2 &E

Ass (\sqrt{E})

4 &E

1,2,3,4,5 \vee E

2 &E

7 \

4 &E

9 \

1,2,8,4,10 VE

6,11 &1

A Final Example Involving \vee and \sim

• Let's do a proof of: $\sim A \vee B \vdash A \rightarrow B$

Problem is: ~A∨B + A→B

7

3

4

2,3

2,3

2,3 8

1,2

1

 $(1) \sim A \vee B$

(2) A

(3) ~A

(4) ~B

(5) Λ

(6) ~~B

(7) B

(8) B

(9) B

(10) A→B

Premise

Assumption (→I)

Assumption (VE)

Assumption (~I)

3,2 ~E

4,5 ~I

6 DN

Assumption (VE)

1,3,7,8,8 ∨E

2,9 →

General Tips on Proof Strategy and Planning

- As a first line of attack, always try to prove your conclusion by using the introduction rule for its main connective as the main strategy.
- This will indicate what assumptions, if any, need to be made and what other formulae will need to be derived. This is "working backward".
- If these other formulae also contain connectives, then try to prove them by introducing their main connectives. Work backward, as far as possible.
- When this technique can no longer be applied, inspect your current stock of premises and assumptions to see if they have any *obvious* consequences.
- If your current premises and assumption contain a disjunction $\lceil r \lor s \rceil$, see if you can prove your current goal formula p from each of its disjuncts r and s (using your current premises and assumptions). If you think you can, then try using \lor E to prove p. If no disjunction appears anywhere in your current of premises/assumptions, then \lor E is probably not a good strategy.
- If you have tried everything you can think of to prove your current goal p, try assuming $\lceil \sim p \rceil$ and aim for $\lceil \sim \sim p \rceil$ by \sim E, \sim I; then use DN.

When to Make Assumptions, and When *Not* to

- In constructing a proof, any assumptions you make must eventually be discharged, so you should only make assumptions in connection with the three rules which discharge assumptions.
- In other words, if you make an assumption *p* in a proof, you *must* be able to give one of the following three reasons:
 - 1. p is the antecedent of a conditional $\lceil p \rightarrow q \rceil$ you are trying to derive using the $\neg \mathbf{I}$ rule (then, try to prove q).
 - 2. You are trying to derive $\lceil \sim p \rceil$, so you assume p with an eye toward using the \sim **I** rule (then, try to prove \curlywedge).
 - 3. p is one of the disjuncts of a disjunction $\lceil p \lor q \rceil$ (somewhere in your current stock of premises and assumptions!) to which you will be applying $\lor \mathbf{E}$ (then, try to prove some r from each).
- Remember, only the three rules $\neg I$, $\sim I$, and $\vee E$ involve making assumptions. *No other rules can discharge assumptions*.

10 More Examples Involving $\vee I$ and $\vee E$

1.
$$(A \& B) \lor (A \& C) \vdash A$$

2.
$$(A \rightarrow \land) \lor (B \rightarrow \land), B \vdash \sim A$$

3.
$$(A \lor B) \lor C \vdash A \lor (B \lor C)$$

$$A. A \vee B \vdash (A \rightarrow B) \rightarrow B$$

5.
$$A \& B \vdash \sim (\sim A \lor \sim B)$$

6.
$$A \vee B \vdash \sim (\sim A \& \sim B)$$

7.
$$\sim (A \& B) \vdash \sim A \lor \sim B$$

8.
$$\sim C \vee (A \rightarrow B) \vdash (C \& A) \rightarrow B$$

9.
$$\vdash (A \rightarrow B) \lor (B \rightarrow A)$$

10.
$$\sim (A \vee B) \vdash \sim A \& \sim B$$

[p. 116, ex. 14
$$(\vdash)$$
]

[p. 116, ex. 16
$$(\dashv)$$
]

03/16/10

Problem is: $(A&B) \lor (A&C) \vdash A$

(1) $(A&B)_{\vee}(A&C)$

A&B

(3) Α

(4) A&C

(5) Α

(6)

Premise

Assumption (VE)

2 &E

Assumption (VE)

4 &E

1,2,3,4,5 ∨E

Problem is: $(A \rightarrow \Lambda) \vee (B \rightarrow \Lambda)$, B $\vdash \sim A$

3,4

6

2,6

1,2,3

1,2

(1) $(A \rightarrow \Lambda) \vee (B \rightarrow \Lambda)$

(2) B

(3) A

(4) $A \rightarrow \Lambda$

(5) Λ

(6) $B \rightarrow \Lambda$

(7) Λ

 Λ (8)

 $(9) \sim A$

Premise

Premise

Assumption (~I)

Assumption (VE)

4,3 →E

Assumption (√E)

6,2 →E

1,4,5,6,7 \vee E

3,8 ~1

Problem is: $(A \lor B) \lor C \vdash A \lor (B \lor C)$

233

55299

9

 $(1) (A \lor B) \lor C$

(2) A_VB

(3) A

(4) A \vee (B \vee C)

(5) В

(6) B \checkmark C

(7) A \vee (B \vee C)

(8) A \checkmark (B \checkmark C)

(9)

 $(10) B_{V}C$

(11) A_{\vee} $(B_{<math>\vee$}C)

(12) A $_{\vee}(B_{\vee}C)$

Premise

Assumption (VE)

Assumption (\sqrt{E})

 $3 \sqrt{1}$

Assumption (VE)

5 VI

6 \

2,3,4,5,7 VE

Assumption (VE)

9 \

10 VI

1,2,8,9,11 ∨E

Problem is: $A \lor B \vdash (A \rightarrow B) \rightarrow B$

1

2

3

2,3

5

1,2

1

(1) A \vee B

(2) A→B

(3) A

(4) B

(5) B

(6) B

 $(7) (A \rightarrow B) \rightarrow B$

Premise

Ass (→I)

Ass (√E)

2,3 →E

Ass (√E)

1,3,4,5,5 ∨E

2,6 →

Problem is: $A\&B \vdash \sim (\sim A \lor \sim B)$

l つ

2

1

1,3

6

1

1,6 1,2

1

(1) A&B

(2) ~A~~B

(3) ~A

(4) A

(5) Λ

(6) ~B

(7) B

 Λ (8)

(9) A

(10) ~(~A~~B)

Premise

Assumption (~I)

Assumption (VE)

1 &E

3,4 ~E

Assumption (\vee E)

1 &E

6,7 ~E

2,3,5,6,8 VE

2,9 ~1

Problem is: $A \lor B \vdash \sim (\sim A \& \sim B)$

ı

2

3

2

2,3

6

2

2,6

1,2

1

(1) A_>B

(2) ~A&~B

(3) A

(4) ~A

(5) A

(6) B

(7) ~B

Λ (8)

(9) A

 $(10) \sim (\sim A\&\sim B)$

Premise

Ass (~I)

Ass (√E)

2 &E

4,3 ~E

Ass (\sqrt{E})

2 &E

7,6 ~E

1,3,5,6,8 VE

2,9 ~1

Problem is: \sim (A&B) $\vdash \sim A \sim \sim B$

8 8

2,8

 $(1) \sim (A\&B)$

(2) ~(~A~~B)

(3) ~A

(4) ~A~~B

(5) A

(6) ~~A

(7) A

(8) ~B

(9) ~A~~B

(10) Λ

(11) ~~B

(12) B

(13) A&B

(14) Λ

 $(15) \sim (\sim A \vee \sim B)$

(16) ~A~~B

Premise

Assumption (~I)

Assumption (~I)

 $3 \vee 1$

2,4 ~E

3,5 ~1

6 DN

Assumption (~I)

8 \

2,9 ~E

8,10 ~I

11 DN

7,12 &1

1,13 ~E

2,14 ~1

15 DN

Problem is: $\sim C_{\checkmark}(A \rightarrow B) + (C&A) \rightarrow B$

2

2,7

2,3,7

1,2,3

1,2

1,2

 $(1) \sim C_{\vee}(A \rightarrow B)$

(2) C&A

(3) ~B

(4) ~C

(5) C

(6) A

(7) A→B

(8) A

(9) B

(10) Λ

(11) Λ

(12) ~~B

(13) B

(14) (C&A)→B

Premise

Assumption (→I)

Assumption (~I)

Assumption (VE)

2 &E

4,5 ~E

Assumption (\vee E)

2 &E

7,8 →E

3,9 ~E

1,4,6,7,10 VE

3,11 ~I

12 DN

2,13 →

Problem is: $\vdash(A \rightarrow B) \lor (B \rightarrow A)$

1,2

(1) $\sim ((A \rightarrow B) \vee (B \rightarrow A))$ Assumption ($\sim I$)

(2) B $(3) \sim A$

(4) A

(5) A→B

(6) $(A \rightarrow B) \lor (B \rightarrow A)$

 $(7) \Lambda$

(8) ~~A

(9) A

(10) B→A

 $(11) (A \rightarrow B) \lor (B \rightarrow A)$

 $(12) \Lambda$

(13) $\sim \sim ((A \rightarrow B) \lor (B \rightarrow A))$ 1,12 $\sim I$

 $(14) (A \rightarrow B) \lor (B \rightarrow A)$

Assumption (→I)

Assumption (~I)

Assumption (→I)

4,2 →

5 vI

1,6 ~E

3,7 ~1

8 DN

2,9 →

10 VI

1,11 ~E

13 DN

Problem is : $\sim (A \lor B) \vdash \sim A \& \sim B$

ı

2

2

1,2

1

6

6

1,6

1

1

 $(1) \sim (A \vee B)$

(2) A

(3) A \vee B

(4) A

(5) ~A

(6) B

(7) A_VB

Λ (8)

(9) ~B

(10) ~A&~B

Premise

Ass (~I)

2 \

1,3 ~E

2,4 ~1

Ass (~I)

6 vI

1,7 ~E

6,8 ~I

5,9 &1