2.8.39

Sai Krishna Bakki - EE25BTECH11049

Question

Find the angle between the lines whose direction cosines are given by the equations l+m+n=0, $l^2+m^2-n^2=0$.

Setting Up the Equations in Matrix Form

We begin by representing the given system of equations using vectors and matrices. Let the direction cosines be represented by the column vector \mathbf{x} :

$$\mathbf{x} = \begin{pmatrix} I \\ m \\ n \end{pmatrix} \tag{1}$$

The three conditions on the direction cosines can be written in matrix form:

$$l+m+n=0 \implies \mathbf{C}^T\mathbf{x}=0, \mathbf{C}=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
 (2)

$$l^2 + m^2 - n^2 = 0 \implies \mathbf{x}^T \mathbf{A} \mathbf{x} = 0, \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 (3)

Setting Up the Equations in Matrix Form

$$l^2 + m^2 + n^2 = 1 \implies \mathbf{x}^T \mathbf{I} \mathbf{x} = 1, \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (4)

Solving for the Direction Cosine Vectors

Our goal is to find the two vectors, \mathbf{D}_1 and \mathbf{D}_2 , that satisfy these matrix equations. We can efficiently find the value of n by subtracting the two quadratic form equations:

$$\mathbf{x}^{\mathsf{T}}\mathbf{I}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = 1 \implies \mathbf{x}^{\mathsf{T}}(\mathbf{I} - \mathbf{A})\mathbf{x} = 1$$
 (5)

The matrix $(\mathbf{I} - \mathbf{A})$ is:

$$\mathbf{I} - \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 (6)

Substituting this back into the equation (0.5) gives:

$$\begin{pmatrix} I & m & n \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} I \\ m \\ n \end{pmatrix} = 1$$
 (7)

$$2n^2 = 1 \implies n = \pm \frac{1}{\sqrt{2}} \tag{8}$$

Solving for the Direction Cosine Vectors

Let's choose $n = -\frac{1}{\sqrt{2}}$. Substituting this into the remaining linear and normalization equations gives a system for l and m:

$$\begin{pmatrix}
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
I \\
m \\
\frac{-1}{\sqrt{2}}
\end{pmatrix} = 0 \implies I + m = \frac{1}{\sqrt{2}}$$
(9)

$$\begin{pmatrix} I & m & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} I & m & \frac{-1}{\sqrt{2}} \end{pmatrix} \implies I^2 + m^2 = \frac{1}{2}$$
 (10)

Squaring the first part gives

$$(l+m)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 \implies l^2 + 2lm + m^2 = \frac{1}{2}$$
 (11)

substituting equation (0.10) in equation (0.11), we get

$$2lm = 0 (12)$$

so we get l=0 and m=0.

Sai Krishna Bakki - EE25BTECH11049

6/22

Assembling the Direction Cosine Vectors

Combining our results, the two direction cosine vectors are:

$$\mathbf{D}_1 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \quad \text{and} \quad \mathbf{D}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \tag{14}$$

Calculating the Angle Between the Direction Cosines

The cosine of the angle θ between the lines is the dot product of their direction cosine vectors. Using matrix multiplication, this is

$$\cos \theta = \mathbf{D}_1^T \mathbf{D}_2 \tag{15}$$

$$\cos \theta = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$
 (16)

$$\cos \theta = 0 + 0 + \frac{1}{2} = \frac{1}{2} \tag{17}$$

Therefore, the angle is:

$$\theta = cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ}$$
 or $\frac{\pi}{3}$ radians (18)

C Code

```
#include <math.h>
 #ifndef M PI
 #define M_PI 3.14159265358979323846
 #endif
/ /* --- Helper Function --- */
 // Calculates the Euclidean norm (magnitude) of a 3D vector.
 | static inline double calculate_norm(const double vec[3]) {
     return sqrt(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec
         [2]):
 /* --- Core Logic Function --- */
 // This function is exported so it can be called from other
     programs.
 #ifdef __cplusplus
 extern C {
 #endif
```

```
double get_angle_between_lines() {
   // Direction ratios derived from solving the system of
       equations.
   double d1 ratios[] = \{0.0, 1.0, -1.0\};
   double d2 ratios[] = {1.0, 0.0, -1.0};
   double d1_cosines[3], d2_cosines[3];
   // Calculate the magnitude (norm) of each direction ratio
       vector.
   double norm_d1 = calculate_norm(d1_ratios);
   double norm d2 = calculate norm(d2 ratios);
   // Calculate the direction cosines by normalizing the vectors
   for (int i = 0; i < 3; ++i) {
       d1_cosines[i] = d1_ratios[i] / norm_d1;
       d2 cosines[i] = d2 ratios[i] / norm d2;
   }
```

C Code

```
// Calculate the dot product of the two direction cosine
       vectors.
   double cos_theta = 0.0;
   for (int i = 0; i < 3; ++i) {</pre>
       cos_theta += d1_cosines[i] * d2_cosines[i];
   }
   // Calculate the angle in radians and convert to degrees.
   double angle rad = acos(cos theta);
   return angle rad * (180.0 / M PI);
#ifdef __cplusplus
#endif
```

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import ctypes
import os
# --- Load the C Shared Library using ctypes ---
try:
   # Construct the full path to the library file, assuming it's
       in the same directory.
   lib_path = os.path.join(os.path.dirname(os.path.abspath(
       file )), 'angle calculator lib.so')
   angle lib = ctypes.CDLL(lib path)
except OSError:
   print(Error: 'angle calculator lib.so' not found.)
   print(Please compile the C library by running this command in
        your terminal:)
```

```
print(gcc -shared -o angle_calculator_lib.so -fPIC
       angle calculator lib.c)
   exit()
# --- Define the function signature from the C library ---
# Tell ctypes that the function returns a C double. This is
    crucial for correctness.
angle_lib.get_angle_between_lines.restype = ctypes.c_double
# --- Call the C function ---
angle deg = angle lib.get angle between lines()
angle rad = np.deg2rad(angle deg)
# --- For Plotting Purposes (re-defining vectors in Python) ---
# Direction ratios
d1 ratios = np.array([0, 1, -1])
d2 \text{ ratios} = \text{np.array}([1, 0, -1])
```

```
# Direction cosines (unit vectors)
 d1 = d1_ratios / np.linalg.norm(d1_ratios)
 d2 = d2_ratios / np.linalg.norm(d2_ratios)
 print(--- Calculation performed by standard C library via ctypes
print(fThe angle between the lines is {angle_rad:.4f} radians.)
 print(fThe angle between the lines is {angle_deg:.2f} degrees.)
 print(- * 55)
 # --- Plotting the vectors in 3D ---
 fig = plt.figure(figsize=(8, 8))
 ax = fig.add subplot(111, projection='3d')
 # Origin point
 origin = [0, 0, 0]
```

```
# Plot the direction cosine vectors
label1 = f'Line 1 DC: (\{d1[0]:.2f\}, \{d1[1]:.2f\}, \{d1[2]:.2f\})'
label2 = f'Line 2 DC: ({d2[0]:.2f}, {d2[1]:.2f}, {d2[2]:.2f})'
ax.quiver(*origin, *d1, color='r', label=label1)
ax.quiver(*origin, *d2, color='b', label=label2)
# Set plot limits
ax.set_xlim([-1.5, 1.5])
ax.set_ylim([-1.5, 1.5])
ax.set_zlim([-1.5, 1.5])
# Add labels and title
ax.set xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set zlabel('Z axis')
ax.set title('Visualization of the Two Lines in 3D (Angle from C
    Library)')
ax.legend()
```

```
ax.grid(True)

# Equal aspect ratio
ax.set_box_aspect([1,1,1])

plt.show()
```

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# From the mathematical derivation, we found the direction ratios
     for the two lines.
|# Case 1 (l=0) gives direction ratios proportional to (0, 1, -1)
d1 ratios = np.array([0, 1, -1])
# Case 2 (m=0) gives direction ratios proportional to (1, 0, -1)
d2 \text{ ratios} = \text{np.array}([1, 0, -1])
print(fDirection ratios for Line 1: {d1 ratios})
print(fDirection ratios for Line 2: {d2 ratios})
print(- * 30)
# --- Calculate Direction Cosines ---
# To get the direction cosines, we normalize the direction ratio
    vectors (divide by their magnitude).
```

```
norm_d1 = np.linalg.norm(d1_ratios)
 norm_d2 = np.linalg.norm(d2_ratios)
 # The direction cosines are the components of the unit vectors.
 d1 = d1_ratios / norm_d1
 d2 = d2 ratios / norm d2
 print(fDirection cosines for Line 1: [{d1[0]:.4f}, {d1[1]:.4f}, {
     d1[2]:.4f}])
print(fDirection cosines for Line 2: [{d2[0]:.4f}, {d2[1]:.4f}, {
     d2[2]:.4f
print(- * 30)
 # --- Calculate the angle using the dot product of direction
     cosines ---
 # The dot product of two unit vectors (direction cosines) is the
     cosine of the angle between them.
 cos theta = np.dot(d1, d2)
```

```
# Calculate the angle in radians
angle_rad = np.arccos(cos_theta)
# Convert the angle to degrees
angle_deg = np.degrees(angle_rad)
print(fCosine of the angle (from dot product of cosines): {
    cos theta:.4f})
print(- * 30)
print(fThe angle between the lines is {angle_rad:.4f} radians.)
print(fThe angle between the lines is {angle deg:.2f} degrees.)
# --- Plotting the vectors in 3D ---
fig = plt.figure(figsize=(8, 8))
ax = fig.add subplot(111, projection='3d')
# Origin point
origin = [0, 0, 0]
```

```
# Plot the direction cosine vectors (unit vectors) as arrows from
     the origin
label1 = f'Line 1 DC: (\{d1[0]:.2f\}, \{d1[1]:.2f\}, \{d1[2]:.2f\})'
label2 = f'Line 2 DC: ({d2[0]:.2f}, {d2[1]:.2f}, {d2[2]:.2f})'
ax.quiver(*origin, *d1, color='r', label=label1)
ax.quiver(*origin, *d2, color='b', label=label2)
# Set the plot limits to be consistent
ax.set_xlim([-1.5, 1.5])
ax.set ylim([-1.5, 1.5])
ax.set zlim([-1.5, 1.5])
# Add labels and title
ax.set xlabel('X axis')
ax.set ylabel('Y axis')
ax.set zlabel('Z axis')
ax.set title('Visualization of the Two Lines in 3D')
ax.legend()
```

```
ax.grid(True)

# To make the aspect ratio equal
ax.set_box_aspect([1,1,1])

# Show the plot
plt.show()
```

Plot By C code and Python Code

