	CRF Errors Corrected by the STIC Systems Branch CRF Processing Date:	2/2//20
	imber: Ct//S/, 103/1 Edited by:	(STIC s
	Changed a file from non-ASCII to ASCENTERED Verified by:	•
	Changed the margins in cases where the sequence text was "wrapped" down to the next line.	IIUEI
	Edited a format error in the Current Application Data section, specifically:	MAR 0 4
	Edited the Current Application Data section with the actual current number. The number inputtapplicant was the prior application data; or other	ed by the
•	Added the mandatory heading and subheadings for "Current Application Data".	
Į	Edited the "Number of Sequences" field. The applicant spelled out a number instead of using a	ın integer.
(Changed the spelling of a mandatory field (the headings or subheadings), specifically:	
(Corrected the SEQ ID NO when obviously incorrect. The sequence numbers that were edited v	vere:
-	nserted or corrected a nucleic number at the end of a nucleic line. SEQ ID NO's edited:	73
(Corrected subheading placement. All responses must be on the same line as each subheading applicant placed a response below the subheading, this was moved to its appropriate place.	. If the
	Inserted colons after headings/subheadings. Headings edited included:	
	Deleted extra, invalid, headings used by an applicant, specifically:	
	Deleted: non-ASCII "garbage" at the beginning/end of files; secretary initials/filename page numbers throughout text; other invalid text, such as	at end of fi
	Inserted mandatory headings, specifically:	
	Corrected an obvious error in the response, specifically:	
-	Edited identifiers where upper case is used but lower case is required, or vice versa.	•
	Corrected an error in the Number of Sequences field, specifically:	
	A "Hard Page Break" code was inserted by the applicant. All occurrences had to be deleted.	
	releted ending stop codon in amino acid sequences and adjusted the "(A)Length:" field accordule to a Patentin bug). Sequences corrected:	
	Other:	

2900

^{*}Examiner: The above corrections must be communicated to the applicant in the first Office Action. DO NOT send a copy of this form.

3/1/95

OIPE

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/904,485A

DATE: 02/21/2002
TIME: 08:21:19

```
1 <110> APPLICANT: Genentech, Inc.
             Ashkenazi, Avi
             Botstein, David
     3
             Desnoyers, Luc
     4
     5
             Eaton, Dan L.
             Ferrara, Napoleone
     7
             Filvaroff, Ellen
     8
             Fong, Sherman
             Gao, Wei-Qiang
     9
             Gerber, Hanspeter
    10
             Gerritsen, Mary E.
    11
    12
             Goddard, A.
             Godowski, Paul J.
    13
             Grimaldi, Christopher J.
    14
    15
             Gurney, Austin L.
    16
             Hillan, Kenneth, J.
             Kljavin, Ivar J.
    17
             Mather, Jennie P.
    18
             Pan, James
     19
             Paoni, Nicholas F.
     20
              Roy, Margaret Ann
     21
              Stewart, Timothy A.
     22
              Tumas, Daniel
     23
             Williams, P. Mickey
     24
             Wood, William, I.
     25
     26 <120> TITLE OF INVENTION: Secreted and Transmembrane Polypeptides and Nucleic
             Acids Encoding the Same
     27
     28 <130> FILE REFERENCE: 10466-14
C--> 29 <140> CURRENT APPLICATION NUMBER: US/09/904,485A
     30 <141> CURRENT FILING DATE: 2001-07-13
     31 <150> PRIOR APPLICATION NUMBER: PCT/US00/04414
     32 <151> PRIOR FILING DATE: 2000-02-22
     33 <150> PRIOR APPLICATION NUMBER: US 60/143,048
     34 <151> PRIOR FILING DATE: 1999-07-07
     35 <150> PRIOR APPLICATION NUMBER: US 60/145,698
     36 <151> PRIOR FILING DATE: 1999-07-26
     37 <150> PRIOR APPLICATION NUMBER: US 60/146,222
     38 <151> PRIOR FILING DATE: 1999-07-28
     39 <150> PRIOR APPLICATION NUMBER: PCT/US99/20594
     40 <151> PRIOR FILING DATE: 1999-09-08
     41 <150> PRIOR APPLICATION NUMBER: PCT/US99/20944
     42 <151> PRIOR FILING DATE: 1999-09-13
     43 <150> PRIOR APPLICATION NUMBER: PCT/US99/21090
```

PATENT APPLICATION: US/09/904,485A TIME: 08:21:19

DATE: 02/21/2002

```
44 <151> PRIOR FILING DATE: 1999-09-15
45 <150> PRIOR APPLICATION NUMBER: PCT/US99/21547
46 <151> PRIOR FILING DATE: 1999-09-15
47 <150> PRIOR APPLICATION NUMBER: PCT/US99/23089
48 <151> PRIOR FILING DATE: 1999-10-05
49 <150> PRIOR APPLICATION NUMBER: PCT/US99/28214
50 <151> PRIOR FILING DATE: 1999-11-29
51 <150> PRIOR APPLICATION NUMBER: PCT/US99/28313
52 <151> PRIOR FILING DATE: 1999-11-30
53 <150> PRIOR APPLICATION NUMBER: PCT/US99/28564
54 <151> PRIOR FILING DATE: 1999-12-02
55 <150> PRIOR APPLICATION NUMBER: PCT/US99/28565
56 <151> PRIOR FILING DATE: 1999-12-02
57 <150> PRIOR APPLICATION NUMBER: PCT/US99/30095
58 <151> PRIOR FILING DATE: 1999-12-16
59 <150> PRIOR APPLICATION NUMBER: PCT/US99/30911
60 <151> PRIOR FILING DATE: 1999-12-20
61 <150> PRIOR APPLICATION NUMBER: PCT/US99/30999
62 <151> PRIOR FILING DATE: 1999-12-20
63 <150> PRIOR APPLICATION NUMBER: PCT/US00/00219
64 <151> PRIOR FILING DATE: 2000-01-05
65 <160> NUMBER OF SEQ ID NOS: 423
67 <210> SEQ ID NO: 1
68 <211> LENGTH: 1825
69 <212> TYPE: DNA
70 <213> ORGANISM: Homo sapiens
71 <400> SEQUENCE: 1
         actgcacete ggttctateg attgaattee eeggggatee tetagagate eetegacete 60
72
         gacccacgcg teegggeegg ageageaegg eegcaggace tggageteeg getgegtett 120
73
         ceegeagege taceegecat gegeetgeeg egeegggeeg egetgggget cetgeegett 180
74
         ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
75
         egggggetgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
76
         ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
77
         ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
78
         gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
79
         ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540
80
         eccgaetgte tegeatgeea gggeggatee cagaggeeet geagegggaa tggeeaetge 600
81
         ageggagatg ggagcagaca gggcgaeggg teetgeeggt gecaeatggg gtaecaggge 660
82
         cegetgtgca etgactgcat ggacggctae tteagetege teeggaaega gaceeacage 720
83
         atctgcacag cctgtgacga gtcctgcaag acgtgctcgg gcctgaccaa cagagactgc 780
84
          ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
 85
          geggeegage egecteetg eagegetgeg eagttetgta agaaegeeaa eggeteetae 900
 86
          acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960
 87
          aaagagtgta tototggota ogcgagggag cacggacagt gtgcagatgt ggacgagtgc 1020
 88
          teactageag aaaaaacetg tgtgaggaaa aacgaaaact getacaatae teeagggage 1080
 89
          tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccggca 1140
 90
          gaggetgaag ccacagaagg agaaageeeg acacagetge eeteeegega agaeetgtaa 1200
 91
          tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260
 92
          ggatgccgtc tcctgcagtg gacagcggcg gggagaggct gcctgctctc taacggttga 1320
 93
```

PATENT APPLICATION: US/09/904,485A TIME: 08:21:19

DATE: 02/21/2002

```
ttctcatttg tcccttaaac agctgcattt cttggttgtt cttaaacaga cttgtatatt 1380
94
         ttgatacagt tctttgtaat aaaattgacc attgtaggta atcaggagga aaaaaaaaa 1440
95
         aaaaaaaaa aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500
96
         geceaacttg tttattgeag ettataatgg ttacaaataa ageaatagea teacaaattt 1560
97
         cacaaataaa gcatttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620
98
         atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680
99
         tgaaagagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740
100
          tcagttaggg tgtggaaagt ccccaggctc cccaqcaggc agaagtatgc aagcatgcat 1800
101
                                                                              1825
          ctcaattagt cagcaaccca gtttt
102
104 <210> SEQ ID NO: 2
105 <211> LENGTH: 353
106 <212> TYPE: PRT
107 <213> ORGANISM: Homo sapiens
108 <400> SEQUENCE: 2
          Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu
109
110
          Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
111
                                            25
                       20
112
          Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
113
                                        40
114
          Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
115
                                    55
116
          Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu
117
                                                    75
                                70
118
          Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala
119
                                                90
                            85
120
          Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
121
                                           105
122
          Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys
123
                                       120
                                                            125
124
          Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser
125
                                   135
126
          Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
127
                                                   155
                               150
128
          Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
129
                                               170
                           165
130
          Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
131
                                                                190
                                           185
132
          His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
133
                                                            205
                                       200
                  195
134
          Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
135
                                                        220
136
                                   215
          Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro
137
                                                    235
                               230
138
           Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
139
                                                                    255
                                                250
140
                           245
           Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
141
                                           265
142
           Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
143
```

PATENT APPLICATION: US/09/904,485A TIME: 08:21:19

DATE: 02/21/2002

		_						205						
144	27			280	. 1 . 2 . 1	-	m to co	285	77- 3	7	T			
145	_	l Asp Glu C		Leu F	Ala Giu	Lys		Cys	val	Arg	цуѕ			
146	290		295				300	G		C	Dwo			
147		n Cys Tyr A		Pro G	Hy Ser		vaı	Cys	vaı	Cys	320			
148	305		10			315	D	D	a 1 -	61				
149	Asp Gly Ph	e Glu Glu T	hr Glu	Asp F		val	Pro	Pro	Ala		Ald			
150		325		_	330	_	_			335	3			
151	Glu Ala Th	ir Glu Gly G	lu Ser			Leu	Pro	ser			Asp			
152		340		3	345				350					
153	Leu													
	SEQ ID NO:													
	LENGTH: 2206													
	TYPE: DNA													
158 <213>	ORGANISM: Homo sapiens													
159 <400>	SEQUENCE: 3 caggtecaac tgcacetegg ttetategat tgaatteece ggggateete tagagateec 60													
160	caggtccaac	: tgcacctcgg	ttctat	cgat	tgaatt	cccc	gggg	gate	ctc	tagag	gatece	60		
161	tcgacctcga	cccacgcgtc	cgccag	idccd	ggaggc	gacg	cgcc	ccago	ccg	tctaa	aacggg	120		
162	aacaqccctq gctgagggag ctgcagcgca gcagagtatc tgacggcgcc aggttgcgta								tgcgta	180				
163	ggtgeggeac gaggagtttt eccggeageg aggaggteet gageageatg geeeggagg								ggagga	240				
164	qcqccttccc tqccqccqcq ctctggctct ggagcatcct cctgtgcctg ctggcactg								cactgc	300				
165	gggcggaggc	cgggccgccg	caggag	ggaga	gcctgta	acct	atgg	gate	gat	gctca	accagg	360		
166	caagagtact	cataggattt	gaagaa	agata	tcctga	ttgt	ttca	agag	ggg	aaaa	tggcac	420		
167	cttttacaca	ı tgatttcaga	aaagcg	gcaac	agagaa	tgcc	agct	catto	cct	gtcaa	atatcc	480		
168	attccatgaa	ttttacctgg	caagct	gcag	ggcagg	caga	atac	ette	tat	gaati	tcctgt	54 0		
169	ccttgcgctc	cctggataaa	ggcato	catgg	cagato	caac	cgto	caat	gtc	cctc	tgctgg	600		
170	gaacagtgcc	tcacaaggca	tcagtt	gttc	aagttg	gttt	ccca	atgt	ctt	ggaaa	aacagg	660		
171	atggggtggc	agcatttgaa	gtggat	gtga	ttgtta	tgaa	ttct	gaa	ggc	aaca	ccattc	720		
172	tccaaacacc	tcaaaatgct	atcttc	cttta	aaacat	gtca	acaa	agct	gag	tgcc	caggcg	780		
173	ggtgccgaaa	ı tggaggcttt	tgtaat	gaaa	gacgca	tctg	cgag	gtgt	cct	gatg	ggttcc	840		
174	acqqacctca	a ctgtgagaaa	gccctt	tgta	ccccac	gatg	tate	gaat	ggt	ggac	tttgtg	900		
175	tgactcctgg	tttctgcatc	tgccca	acctg	gattct	atgg	agto	gaac	tgt	gaca	aagcaa	960		
176	actoctcaac	cacctgcttt	aatgga	aggga	cctgtt	tcta	ccct	.gga	aaa	tgta	tttgcc	1020		
177	ctccaggact	agagggagag	cagtgt	tgaaa	tcagca	aatg	CCC	acaa	CCC	tgtc	gaaatg	1080		
178	gaggtaaato	g cattggtaaa	agcaaa	atgta	agtgtt	ccaa	aggt	ttac	cag	ggag	acctct	1140		
179	gttcaaagc	tgtctgcgag	cctqqc	ctgtg	gtgcac	atgg	aaco	ctgc	cat	gaac	ccaaca	1200		
180	aatgccaatg	g tcaagaaggt	tggcat	tggaa	gacact	gcaa	taaa	aagg	tac	gaag	ccagcc	1260		
181	tcatacatgo	cctgaggcca	gcaggo	cqccc	agctca	ggca	gcad	cacg	cct	tcac	ttaaaa	1320		
182	aggccgagga	gcggcgggat	ccacct	tgaat	ccaatt	acat	ctq	gtga	act	ccga	catctg	1380		
183	aaacgtttta	agttacacca	agttca	atage	ctttqt	taac	ctti	tcat	gtg	ttga	atgttc	1440		
184	aaataatgtt	cattacactt	aagaat	tacto	gcctga	attt	tati	tage	ttc	atta	taaatc	1500		
185	actgagetga	a tatttactct	teettt	ttaaq	ttttct	aaqt	acq	tctq	taq	catg	atggta	1560		
186	tagattttct	tgtttcagtg	ctttac	ggaca	gatttt	atat	tate	gtca	att	gato	aggtta	1620		
187	aaattttcac	g tgtgtagttg	gcagat	tattt	tcaaaa	ttac	aato	gcat	tta	tgat	gtctgg	1680		
188	adaceaaaaa	a acatcagaaa	gattaa	aatto	ggcaaa	aata	cata	aaqt	cac	aaqa	atttgg	1740		
189	ataatacaat	t taatgttgaa	gttaca	agcat	ttcaga	tttt	atte	gtca	gat	attt	agatgt	1800		
190	ttattacatt	tttaaaaatt	actett	taatt	tttaaa	ctct	caat	taca	ata	tatt	ttgacc	1860		
190	ttaccattat	t tocagagatt	cantat	ttaaa	аааааа	aaaa	ttac	cact	ata	gtag	tggcat	1920		
191	ttaaacaata	a taatatatto	taaaca	acaat	gaaata	agga	atat	taat	σta	tgaa	cttttt	1980		
192	acattaact	t gaagcaatat	aatat:	attat	aaacaa	ลลกล	Cad	atat	tac	ctaa	taaaca	2040		
173	gcartygett	gaagcaacat	. uutut	accyc	aaacaa		9							

RAW SEQUENCE LISTING DATE: 02/21/2002 PATENT APPLICATION: US/09/904,485A TIME: 08:21:19

194 195 196	ttttatactg tttgtatgta taaaataaag gtgctgcttt agttttttgg aaaaaaaaa aaaaaaaaaa															
	LENGTH: 379															
200 <212>																
201 <213>			omo .	sapie	ens											
202 <400>				L												
203	Met A		Arq	Ser	Ala	Phe	Pro	Ala	Ala	Ala	Leu	Trp	Leu	Trp	Ser	
204	1			5					10			•		15		
205	Ile Le	eu Leu	Cys	Leu	Leu	Ala	Leu	Arg	Ala	Glu	Ala	Gly	Pro	Pro	Gln	
206			20					25				_	30			
207	Glu G	lu Ser	Leu	Tyr	Leu	Trp	Ile	Asp	Ala	His	Gln	Ala	Arg	Val	Leu	
208		35					40					45				
209	Ile G	Ly Phe	Glu	Glu	Asp	Ile	Leu	Ile	Val	Ser	Glu	Gly	Lys	Met	Ala	
210		50				55					60					
211	Pro Pl	ne Thr	His	Asp	Phe	Arg	Lys	Ala	Gln	Gln	Arg	Met	Pro	Ala	Ile	
212	65				70					75					80	
213	Pro Va	al Asn	Ile		Ser	Met	Asn	Phe		Trp	Gln	Ala	Ala	_	Gln	
214				85					90					95		
215	Ala G	Lu Tyr		Tyr	Glu	Phe	Leu		Leu	Arg	Ser	Leu	_	Lys	Gly	
216	T1 14		100	.	m.1	** 1		105	ъ.	.	_	a 1	110	** - 1	.	
217	Ile Me		_	Pro	Thr	Va⊥		Val	Pro	Leu	Leu		Thr	Val	Pro	
218	Hio Tr	115		17 - 1	17 n 1	C1 n	120	C1.	Dho	Dro	Crra	125	C1	Tira	Cln	
219 220	His Ly	75 Ala 30	ser	val	val	135	val	СТУ	PHE	PIO	140	Leu	СТУ	ьуѕ	GIII	
221	Asp G		λla	Δla	Dho		Val	Aen	Val	Tlα		Mo+	Δen	Sor	Glu	
222	145	Ly Vai	AIG	AIU	150	GIU	Val	АЗР	Val	155	vai	Mec	ASII	Det	160	
223	Gly As	n Thr	Tle	Leu		Thr	Pro	Gln	Asn		Tle	Phe	Phe	Lvs		
224	011 111			165	0111			0111	170					175		
225	Cys G	ln Gln	Ala		Cvs	Pro	Glv	Glv		Arq	Asn	Glv	Glv		Cvs	
226	1		180		-		_	185	-	,		-	190		1	
227	Asn G	lu Arg	Arg	Ile	Cys	Glu	Cys	Pro	Asp	Gly	Phe	His	Gly	Pro	His	
228		195					200					205				
229	Cys G	lu Lys	Ala	Leu	Cys	Thr	Pro	Arg	Cys	Met	Asn	Gly	Gly	Leu	Cys	
230	23	L O				215					220					
231	Val Th	ır Pro	Gly	Phe	Cys	Ile	Cys	Pro	Pro	Gly	Phe	Tyr	Gly	Val	Asn	
232	225				230					235					240	
233	Cys As	sp Lys	Ala	Asn	Cys	Ser	Thr	Thr	Cys	Phe	Asn	Gly	Gly	Thr	Cys	
234														255		
235	Phe Ty	r Pro		Lys	Cys	Ile	Cys		Pro	Gly	Leu	Glu		Glu	Gln	
236			260					265					270			
237	Cys G		Ser	Lys	Cys	Pro		Pro	Cys	Arg	Asn	_	Gly	Lys	Cys	
238	-1 -1	275	~	_		_	280		_	a 3		285	a .	_	-	
239	Ile Gl		Ser	Lys	Cys		Cys	Ser	Lys	Gly		Gln	GLy	Asp	Leu	
240		90 T	ъ.	373	G	295	D	0.3	G	<i>a</i> 1	300	77.5	0.1	m1.	G	
241	Cys Se	er Lys	Pro	val		GLu	Pro	GTA	Cys		Ala	Hls	GTA	Tnr		
242	305	D	7 ~~	T ***	310	C1 ~	C	C1 =	a 1	315	TI	77.4 ~	Q1	7	320	
243	His G	Lu Pro	ASI	гàг	Cys	GTI	Cys	GIN	GIU	σтλ	тrр	HIS	σтλ	arg	HIS	

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/904,485A

DATE: 02/21/2002 TIME: 08:21:20

Input Set : N:\Crf3\02112002\I904485A.raw
Output Set: N:\CRF3\02212002\I904485A.raw

L:29 M:270 C: Current Application Number differs, Wrong Format L:403 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:404 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:405 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:406 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:614 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:26 L:1341 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:50 L:2841 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:113 L:3206 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:131 L:4238 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:174 L:4338 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:175 L:5176 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:206

OIPE

3 <110> APPLICANT: Genentech, Inc.

PATENT APPLICATION: US/09/904,485A

DATE: 02/11/2002 TIME: 13:00:47

Input Set : D:\sequence listing.txt

Output Set: N:\CRF3\02112002\I904485A.raw

```
4
              Ashkenazi, Avi
                                                             Does No Comph
      5
              Botstein, David
                                                         Corrected Discrette Napidal
              Desnoyers, Luc
      6
      7
              Eaton, Dan L.
      8
              Ferrara, Napoleone
      9
              Filvaroff, Ellen
     10
              Fong, Sherman
              Gao, Wei-Qiang
     11
     12
              Gerber, Hanspeter
              Gerritsen, Mary E.
     13
     14
              Goddard, A.
     15
              Godowski, Paul J.
              Grimaldi, Christopher J.
     16
              Gurney, Austin L.
     17
     18
              Hillan, Kenneth, J.
     19
              Kljavin, Ivar J.
              Mather, Jennie P.
     20
              Pan, James
     21
              Paoni, Nicholas F.
     22
     23
              Roy, Margaret Ann
              Stewart, Timothy A.
     24
     25
              Tumas, Daniel
     26
              Williams, P. Mickey
     27
              Wood, William, I.
     29 <120> TITLE OF INVENTION: Secreted and Transmembrane Polypeptides and Nucleic
              Acids Encoding the Same
     32 <130> FILE REFERENCE: 10466-14
C--> 34 <140> CURRENT APPLICATION NUMBER: US/09/904,485A
C--> 35 <141> CURRENT FILING DATE: 2001-07-13
     37 <150> PRIOR APPLICATION NUMBER: PCT/US00/04414
     38 <151> PRIOR FILING DATE: 2000-02-22
     40 <150> PRIOR APPLICATION NUMBER: US 60/143,048
     41 <151> PRIOR FILING DATE: 1999-07-07
     43 <150> PRIOR APPLICATION NUMBER: US 60/145,698
     44 <151> PRIOR FILING DATE: 1999-07-26
     46 <150> PRIOR APPLICATION NUMBER: US 60/146,222
     47 <151> PRIOR FILING DATE: 1999-07-28
     49 <150> PRIOR APPLICATION NUMBER: PCT/US99/20594
     50 <151> PRIOR FILING DATE: 1999-09-08
     52 <150> PRIOR APPLICATION NUMBER: PCT/US99/20944
     53 <151> PRIOR FILING DATE: 1999-09-13
     55 <150> PRIOR APPLICATION NUMBER: PCT/US99/21090
```

PATENT APPLICATION: US/09/904,485A TIME

DATE: 02/11/2002 TIME: 13:00:47

Input Set : D:\sequence listing.txt

Output Set: N:\CRF3\02112002\I904485A.raw

- 56 <151> PRIOR FILING DATE: 1999-09-15
- 58 <150> PRIOR APPLICATION NUMBER: PCT/US99/21547
- 59 <151> PRIOR FILING DATE: 1999-09-15
- 61 <150> PRIOR APPLICATION NUMBER: PCT/US99/23089
- 62 <151> PRIOR FILING DATE: 1999-10-05
- 64 <150> PRIOR APPLICATION NUMBER: PCT/US99/28214
- 65 <151> PRIOR FILING DATE: 1999-11-29
- 67 <150> PRIOR APPLICATION NUMBER: PCT/US99/28313
- 68 <151> PRIOR FILING DATE: 1999-11-30
- 70 <150> PRIOR APPLICATION NUMBER: PCT/US99/28564
- 71 <151> PRIOR FILING DATE: 1999-12-02
- 73 <150> PRIOR APPLICATION NUMBER: PCT/US99/28565
- 74 <151> PRIOR FILING DATE: 1999-12-02
- 76 <150> PRIOR APPLICATION NUMBER: PCT/US99/30095
- 77 <151> PRIOR FILING DATE: 1999-12-16
- 79 <150> PRIOR APPLICATION NUMBER: PCT/US99/30911
- 80 <151> PRIOR FILING DATE: 1999-12-20
- 82 <150> PRIOR APPLICATION NUMBER: PCT/US99/30999
- 83 <151> PRIOR FILING DATE: 1999-12-20
- 84 <150> PRIOR APPLICATION NUMBER: PCT/US00/00219
- 85 <151> PRIOR FILING DATE: 2000-01-05
- 87 <160> NUMBER OF SEQ ID NOS: 423

ERRORED SEQUENCES

- 5293 <210> SEQ ID NO: 173
- 5294 <211> LENGTH: 43
- 5295 <212> TYPE: DNA
- 5296 <213> ORGANISM: Artificial Sequence
- 5298 <220> FEATURE:
- 5299 <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
- 5300 oligonucleotide probe
- 5302 <400> SEQUENCE: 173
- E--> 5303 ggactcactg gcccaggcct tcaatatcac cagccaggac gat

VERIFICATION SUMMARY

DATE: 02/11/2002 TIME: 13:00:50 PATENT APPLICATION: US/09/904,485A

Input Set : D:\sequence listing.txt

Output Set: N:\CRF3\02112002\I904485A.raw

L:34 M:270 C: Current Application Number differs, Replaced Current Application Number L:35 M:271 C: Current Filing Date differs, Replaced Current Filing Date L:511 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:512 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:513 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:514 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 L:769 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:26 L:1701 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:50 L:3586 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:113 L:4040 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:131L:5303 M:254 E: No. of Bases conflict, LENGTH:Input:42 Counted:43 SEQ:173 L:5344 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:174 L:5479 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:175 L:6540 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:206