Distributed Real-time Cooperative Localization and Mapping

Using an Uncertainty-Aware Expectation-Maximization Approach

Jing Dong¹

Erik Nelson²

Vadim Indelman³

Nathan Michael²

Frank Dellaert¹

Distributed Mapping

Efficient to explore large area by deploying multiple robots.

Challenges

- Imperfect measurements.
- Asynchronously mapping: No rendezvous / direct views.
- No artificial landmarks.
- Failure of communication or even a robot.

Credit: Alex Cunningham and Frank Dellaert, Large-scale experimental design for decentralized SLAM, SPIE 2012

Our Work

- Distributed approach.
- Only base on natural features.
- No direct measurement needed between robots.
- Online and Real-time.

3 robots indoor

2 robots indoor+outdoor

Carnegie Mellon University
The Robotics Institute

Approach

- An EM approach to build a common reference.
- An EM approach to find correct loop closures between robot.

Robustness

Multi Indoor/outdoor datasets validated

Efficiency

Run 10~20Hz onboard

Accuracy

~1m in ~100m size map

Scalability

Up to 6~8 drones (current setting, limited by Network capacity)

Conclusion

We have a distributed / fast / robust approach to solve multirobot SLAM problem.

Thanks!

Backup Slides

Build Common Reference Frame

- Multi-robot correspondences: Loop closure between robots.
- Inliers have similar <u>initial relative</u>
 <u>poses</u>: cluster and optimize use EM.
- <u>Measurement aliasing</u> rejected by hypothesis selection

Uncertainty Aware Approach

- Drift of odometry causes the failure to identify inlier correspondences.
- Let the EM approach aware the uncertainty of current poses, accept more biased correspondences if uncertainty is large.

Real-time Implementation on Robot

Frontend

- Bag-of-Word + RANSAC based loop closing, using FLIRT 2D laser features
- Average runtime ~10ms when ~1e3 scans are indexed.

Backend

- iSAM2 incremental optimizer.
- UKF-based mapper.

Hardware

- CMU Quadrotor platform
- 2D laser scanner + IMU
- 1.86GHz Intel Core 2 Duo CPU

