

Reference manual

The BlueNRG-LPS radio IP

Introduction

This document describes the MR_BLE/radio IP embedded in the BlueNRG-LPS device.

The MR_BLE/radio IP manages the Bluetooth® Low Energy protocol with hardware add-on to support some new Bluetooth® Low Energy v5.3 features and controls the RF analog module.

1 BlueNRG-LPS radio IP features

This document describes the Radio IP/MR BLE embedded in the BlueNRG-LPS product.

1.1 Architecture overview of the MR_BLE IP

As shown in Figure 2. RRM overview, the MR BLE IP contains:

- A Bluetooth® Low Energy subsystem dedicated to Bluetooth protocol (IP_BLE block) and containing:
 - a Bluetooth® Low Energy link layer. This sub block is an AHB master
 - a demodulator
 - a modulator
- An RRM (radio resource manager) block contains:
 - a UDRA (unified direct register access) executing link list command in RAM to read/write radio register.
 This sub-block is an AHB master
 - Direct radio register access allowing read/write access to radio registers through APB
- A wakeup/always-on block contains:
 - a wake-up block for IP_BLE including a time interpolator and sleep request / wake-up request management and a few enhanced features
- A radio FSM controlling the RF2G4 analog radio.
- A radio registers block (to program the analog radio parameters).
- Some small blocks used for calibrations, PLL control, Rx data path interface (AGC, FIFO ADC).

The MR_BLE IP supports two system clock frequencies: 16 MHz and 32 MHz.

RM0498 - Rev 1 page 2/115

page 3/115

Figure 1. MR BLE architecture overview

1.2 Global scenario for Bluetooth® Low Energy protocol usage

The Bluetooth® Low Energy link layer always needs a trigger event to start a sequence. This trigger event has three possible timer sources (Wake-up timer, Timer1, or Timer2).

Basically, a Bluetooth sequence follows the steps described below:

- 1. The CPU needs to prepare in RAM (through different tables) all information needed for the coming transfer:
 - for radio programming (channel number, reception, or transmission, calibration feature, etc.)
 - for a packet to transmit or receive (contents, ADV, or data, encryption, etc.)
 - for interrupt mask selection

RM0498 - Rev 1

- to prepare the trigger event that schedules the sequence after this one
- 2. Then the CPU has to program the chosen timer (except if already done through a table for timer2 inside the previous sequence).
- Once the Bluetooth® Low Energy link layer receives the trigger event from the programmed timer, it gets all the information in the RAM table and launches the requested transfer.
- 4. At the end of the sequence (and not before), the Bluetooth® Low Energy link layer writes back in RAM tables some information, updates the status/error flags and generates an interrupt towards the CPU according to the interrupt mask programming.
- 5. The CPU has to treat the RAM table updated information (including packet payload after a reception) to decide what is the next wanted sequence. Then a cycle restarts from step 1.

Note:

• The RAM tables are located in a retention area. So, the data is kept even during low-power modes that switch off the digital 1.2 V power domain. This allows the Bluetooth® Low Energy link layer to start a transmission/reception while the CPU is not yet available as rebooting from a wake-up reset.

1.3 Miscellaneous features: RF activity monitoring

1.3.1 On-going Tx sequence information (to control an external power amplifier (PA))

The MR_BLE is able to control an external power amplifier (located on the board to increase the Tx power) through a signal provided to the SoC to be connected directly on an external GPIO or to be managed with an additional logical mechanism. The external PA can be useful to extend the Tx power.

The external power amplifier components have quite a long latency to establish and consume a lot of current (several mA) which could lead to unlocking the MR_BLE PLL. For this reason, the control signal is anticipated as soon as the system knows it starts a Tx sequence and stops as soon as possible (at the same time as the internal PA).

The MR_BLE outputs a signal to the SoC, which is high as soon as a Tx sequence is requested to the radio FSM up to the return to ACTIVE2 or less state. To be more precise, the information is provided as soon as the radio FSM is starting to treat a Tx request (leaving ACTIVE2 state for EN_LDO state) and goes down as soon as the system switches off the internal PA (for example, leaving Tx state at the end of the transmission or during EN_PA in case of PLL lock fail).

The information is available in two different ways in the BlueNRG-LPS:

- directly output on a GPIO (TX SEQUENCE)
- flags and associated interrupt available in the system controller (SYSCFG block)

1.3.2 On-going Rx sequence information (to control an external low noise amplifier (LNA))

The MR_BLE is able to control an external low noise amplifier (located on the board) through a signal provided to the SoC to be connected directly on an external GPIO or to be managed with additional logical mechanism.

The MR_BLE outputs a signal to the SoC, which is high as soon as an Rx sequence is requested to the radio FSM up to the return to ACTIVE2 or less state.

The information is available in two different ways in the BlueNRG-LPS:

- directly output on a GPIO (RX_SEQUENCE)
- flags and associated interrupt available in the system controller (SYSCFG block).

1.3.3 RF activity information

An additional signal is available on the device pin to inform either an Rx or a Tx sequence is active. This pin called RF_ACTIVITY is a logical OR between the TX_SEQUENCE and RX_SEQUENCE mentioned in the two previous sections.

1.4 Bluetooth® Low Energy standard 5.1 additional support

The BlueNRG-LPS Radio IP supports the angle of arrival (AoA) and angle of departure (AoD) feature by managing:

- the constant tone extension (CTE) inside the packet
- the antenna switching mechanism for both AoA and AoD

In transmission, the MR BLE is able:

- to append the constant tone extension at the end of the packet
- and, if AoD mode is selected, to manage the antenna switching according to CTEInfo parameters (duration and switching slots definition) and following a pattern provided by the SW
- The SW has to provide to the IP_BLE the CTE information (CTE time, CTE type, slot width) and the antenna pattern if antenna switching in AoD has to be managed

In reception, the MR_BLE is able:

- · to detect and decode CTEInfo bit field from the received frame
- to store the IQ samples in RAM according to sampling time slots
- and, if AoA mode is selected, manage the antenna switching according to CTEInfo parameters (duration and switching slots definition)

The SW has only to provide the slot width information if the configuration is an AoA configuration as this is the only information not available in the received frame and the antenna pattern.

The CTE/antenna switching mechanism of the MR_BLE provides to the external world a 7-bit antenna identifier (ANT_ID[6:0]) indicating the antenna number to be used.

RM0498 - Rev 1 page 4/115

The CTE/antenna switching feature implies:

- · adding few bit fields in the RAM tables
 - CTE information when hardware cannot extract them by itself
 - A pointer on a RAM buffer where to store the IQ sampling for CTE reception
 - Antenna pattern length and a pointer on the RAM buffer containing the antenna pattern
- adding a status register in the IP_BLE APB registers (STATUS2REG) providing information on the IQ sampling and antenna switching sequence that just occurred
- · adding some radio registers to tune timing delays on antenna switching control and IQ sampling

Those new features support can be disabled by SW through the StatMach.CTEDisable bit.

RM0498 - Rev 1 page 5/115

Interfacing with the MR_BLE IP

The MR BLE IP interfaces with several blocks in the system:

- CPU through interrupts
- RAM through an AHB interface either initiated by the RRM or by the Bluetooth® Low Energy link layer
- Power controller block and clock and reset controller block
- Specific signals to propagate to the pads of the device to manage inside the Soc.

2.1 Interruption lines to the CPU

The MR BLE IP provides several interruption lines to the CPU, issued by different sub-blocks:

- 2 interrupt lines from the Bluetooth® Low Energy link layer
- · 2 interrupt lines from the wake-up block
- 1 interrupt line from the RRM
- 2 interrupt lines from the radio controller.

Line number on Interrupt name Description SoC NVIC 18 BLE TXRX (int BLE irg1) Indicate that a Bluetooth sequence occurred 19 BLE_AES (int_BLE_irq2) Indicate that an AES LE privacy or manual operation ended RADIO_CTRL (int_mr_syst) Indicate that the slow clock measurement result is ready 21 MR_BLE (irq_rrm + Combine information related to RRM-UDRA operations and radio FSM 22 irq_radio_fsm) analog feedback (PLL lock and calibration) Indicate a CPU wake-up timer match 23 CPU_WKUP (irq_wakeup_cpu)

Indicate a wake-up timer trigger occurred on the sequencer

Table 1. Interruption summary

2.1.1 IP_BLE interrupt lines

24

irq_BLE_int1 (aka BLE_TXRX):

- This interrupt line is triggered when a Bluetooth sequence has been executed. It informs the CPU that status/error flags and RAM tables may have been updated
- Mapped on CPU interrupt line 18.

irq_BLE_int2 (aka BLE_AES):

- This interrupt line is dedicated to an embedded AES block and combines both AES LE privacy and AES manual encryption information
- Mapped on CPU interrupt line 19.

See Section 8.3 IP_BLE interrupts for details on interrupt sources.

BLE_WKUP (irq_wakeup_ble)

2.1.2 Wake-up block interrupt lines

irq wakeup ble (aka BLE WKUP):

- This interrupt line indicates to the CPU that the IP_BLE receives a wake-up request from the MR_BLE IP wake-up block. The wake-up request source is the wake-up timer.
- Mapped on CPU line 24

irq_wakeup_cpu:

- This interrupt line indicates that the wake-up timer reaches the programmed value to trigger an interrupt towards the CPU (dedicated slice in the wake-up block design in parallel with the IP BLE slice).
- Mapped on CPU line 23.

See Section 9 Wakeup block for more details.

RM0498 - Rev 1 page 6/115

2.1.3 RRM interrupt line

This interrupt line is dedicated to the RRM block. It is triggered on semaphore and UDRA sub-block activities. See Section 4 Radio resource manager (RRM) for more details.

2.1.4 Radio controller interrupt lines

irq rf fsm:

This interrupt line indicates events and errors detected by the radio state machine.

irq_mr_syst:

This interrupt line is dedicated to the counter measuring the slow clock period and frequency. It indicates
when the calculated values are available.

See Section 7 Radio controller for more details.

2.2 Interface with the RAM embedded in the SoC

The MR BLE IP is an AHB master on the bus matrix as the CPU or a DMA.

Two of its internal blocks access the RAM of the system:

- the Bluetooth® Low Energy link layer to read the sequence information and Tx/Rx configuration parameters, to read the data to transmit or to write the received data in the RAM tables, to store the IQ samples during a CTE reception
- the RRM UDRA block to get commands structure in RAM, used to program the radio registers while the CPU is not available (potentially rebooting after a low-power mode).

Both internal blocks may need to access the RAM in parallel. An arbiter is located inside the IP.

2.3 Interface with the power clock and reset controllers

The MR_BLE receives several clocks from the SoC:

- the system clock that can be 16 or 32 MHz
- an always 16 MHz clock
- an always 32 MHz clock
- a slow clock (called 32 kHz clock in this document) that needs to be in the always-on power domain as it corresponds to the clock used to wake up the radio link layers from sleep state.

The fast clocks (system, 16 MHz, and 32 MHz) must be accurate when the radio is used (for the transmission/reception).

The MR_BLE IP communicates with the power controller of the system to indicate when the MR_BLE IP is ok to go to low-power modes and when it requests a wakeup.

The MR_BLE IP says it is ready to sleep when:

- no sequence is on-going (a sequence starts with a trigger event and the IP BLE interrupt rising edge)
- no timer1 or timer2 selected to generate the next trigger event on the Sequencer
- no pending interrupt in the INTERRUPT1REG APB register.

The MR_BLE IP also proposes an embedded always-on timer that may generate a programmed wakeup for the CPU.

RM0498 - Rev 1 page 7/115

3 Warning for users

Note:

- If some radio registers are modified in the RRM commands, they should not be also modified by the CPU through direct access. Indeed, there is no way to keep coherency and know which master last modified the concerned radio register.
- Accurate system clock must be present during all scenarios where the IP_BLE Sequencer uses the Timer1 (from trigger event).
- On the fly, CCM encryption does not work if TxRxPack.NS_EN bit is low.

RM0498 - Rev 1 page 8/115

4 Radio resource manager (RRM)

The Radio Resource Manager (RRM) is a hardware block managing the radio access to one unique controller at a time.

It is the block that manages the requests performed by the Bluetooth® Low Energy link layer of the IP_BLE and the CPU to access the radio resources. The requests pass through a semaphore and only one of the two can take control of the radio at a time. The arbitration behaves as follows:

- check the priority value to choose between the IP_BLE or the CPU
- · if the same, then the arbiter eliminates the requester that has been served more recently.

The two controllers can request access to the radio resources through a dedicated port:

- Port 0 for the IP BLE
- Port 1 for the CPU (it is a virtual port in this case)

The Bluetooth® Low Energy link layer does not have access to the radio resources until it requests a token to the RRM and the RRM grants it. For the CPU, only RRM commands require to get a token, the direct APB access to the Radio registers is always possible. The token is requested by software for the CPU while it is done by hardware for the Bluetooth® Low Energy link layer each time a timer trig event starts a sequence. Nevertheless, the firmware can release the token granted by the Bluetooth® Low Energy link layer writing inside the CMDREG APB register. Once the requester has the token, its port is granted, and it can access the radio resources.

Figure 2. RRM overview

RM0498 - Rev 1 page 9/115

4.1 Semaphore

The semaphore grants the access to the radio resources control to the radio controller or to the CPU depending on the demand.

An arbitration system is in place to manage conflicts when a token request is raised simultaneously by the IP BLE controller and the CPU. In this case, the arbiter:

- checks the priority programmed for the CPU virtual port to choose between the two requesters (IP_BLE has priority=0)
- if the same, eliminates the requester that has been served more recently.

The CPU is a virtual port and must provide the token request through an APB registers bit field (see Section 4.4.1 RRM registers list). The Bluetooth® Low Energy link layer controller uses hard wired signals to communicate with the RRM and the request is managed directly by the Bluetooth® Low Energy link layer each time a timer trig event starts a Bluetooth® Low Energy sequence.

As soon as the IP_BLE port is granted, the Radio FSM block is informed by the semaphore that the radio is about to be used. The goal is to switch off the analog as much as possible when not used and switch it on only when needed (for power consumption)

Some interruptions are linked to the semaphore block in the RRM:

- on a port grant event
- · on a port release event

See Section 4.4 RRM registers.

4.2 UDRA

The "Unified Direct Register Access" block allows the software to prepare some commands in a command link list located in the retention RAM. Those commands execute read from and write into the radio registers.

Some interruptions are linked to the UDRA block in the RRM:

- · on a command start event
- · on a command end event.

See Section 4.4 RRM registers for more details.

The main goal of this block is to allow the Bluetooth® Low Energy link layer to reinitialize the radio registers after a low power mode sequence to start an RF communication while the CPU is still being booted and not yet available to manage.

Note:

The read command embeds some limitations. However, the radio registers can be read directly through the APB by the CPU so the read command of the UDRA is useless.

4.2.1 RAM command link list information

The mapping in RAM for the commands for each port is the following:

- the RadioConfigPtr field of the GlobalStateMachGlobalStatMach contains the start address of the command start list (this address must be 32-bit aligned)
- the command start list is a 32-bit element table containing the first command addresses of each command number of each port
- each command of each port contains some read and/or write actions on radio registers.

An overview of this indirect mapping is represented in Figure 3. UDRA command list mapping in RAM (example)

RM0498 - Rev 1 page 10/115

Figure 3. UDRA command list mapping in RAM (example)

The RadioConfigPtr value is loaded by the RRM-UDRA automatically when the radio IP reset is released. If the software did not initialize this RAM address supposed to point on the command_start_list address before this first automatic load, a "reload pointer" command is available by writing 1 in the UDRA_CTRL0[0] APB register (this bit is auto-cleared immediately).

Note:

The RadioConfigPtr pointer value loaded and used by the RRM-UDRA block can be read in the UDRA_RADIO_CFG_PTR APB register.

The port mapping has been defined as follows:

- 2 ports (port0=IP_BLE, port1= VP_CPU)
- port0 supports 3 commands (command 0/1/2)
- port1 supports 4 commands (command 0/1/2/3)

This leads to a command start list table as presented below:

Table 2. Command start list details

Address in RAM	Meaning	Comments
@RadioConfigPtr(value) + 0x00	port0->command0 base address	Command requested by the Bluetooth® Low Energy link layer on wake-up timer trigger event if RadioComListEna bit = 1 in on-going StateMach.
@RadioConfigPtr(value) + 0x04	port0->command1 base address	Command requested by the Bluetooth® Low Energy link layer on Timer1 trigger event if RadioComListEna bit = 1 in on-going StateMach.
@RadioConfigPtr(value) + 0x08	port0->command2 base address	Command requested by the Bluetooth® Low Energy link layer on Timer2 trigger event if RadioComListEna bit = 1 in on-going StateMach.
@RadioConfigPtr(value) + 0x0C	port1->command0 base address	VP_CPU: if the software needs to use an RRM-UDRA command to access the radio register instead of a direct access through APB.
@RadioConfigPtr(value) + 0x10	port1->command1 base address	VP_CPU: if the software needs to use a second RRM-UDRA command to access the radio register instead of a direct access through APB.

RM0498 - Rev 1 page 11/115

Address in RAM	Meaning	Comments
@RadioConfigPtr(value) + 0x14	port1->command2 base address	VP_CPU: if the software needs to use a third RRM-UDRA command to access the radio register instead of a direct access through APB.
@RadioConfigPtr(value) + 0x18	port1->command3 base address	VP_CPU: if the software needs to use a fourth RRM-UDRA command to access the radio register instead of a direct access through APB.

4.2.2 UDRA command format in RAM

The write and read command format are described in the following table. Note that only one radio register address is entered for a write or a read. Then, if the number of data to write/read is more than one, the address is incremented automatically by 1.

Table 3. UDRA command format in RAM

Byte number	Address in RAM	Byte value	Description
			bit7: 0=write / 1=read
1	command_base_addr	0x	bit[6:0] = number of data to write or to read.
			n = number of data for the example in this table.
2	command_base_addr+1	8-bit address	Address of a Radio register following the 8-bit address mapping (see Section 5.1 Radio register list)
3	command_base_addr+2	1 st data	If write command: write first 8-bit data to be written. If read command: location where the first 8-bit read datum is available.
			Optional (depends on number of data to write/read).
4	command_base_addr+3	2 nd data	If write command: write second 8-bit data to be written.
			If read command: location where the second 8-bit read datum is available.
n+2	command_base_addr+(n+1)	n th data	Optional (depends on number of data to write/read). If write command: write n th 8-bit data to be written.
			If read command: location where the n th 8-bit read datum is available.
		0x	Optional: possible to chain other commands.
n+3	command_base_addr+n+2		bit7: 0=write / 1=readbit
			[6:0] = number of data to write or to read.
n+4	command_base_addr+n+3	8-bit address	Address of a radio register following the 8-bit address mapping (see)
n+5	command base addr+n+4	1 st data	If write command: write first 8-bit data to be written.
11+3	n+5 command_base_addr+n+4		If read command: location where the first 8-bit read datum is available.
			MANDATORY.
last	command_base_addr+last-1	0x00 / 0x80	The null command (command with null length) must be added at the end of the command list. This is needed by the state machines of the UDRA to be informed they reached the end of the list.

Note:

If any error information is put in the RAM command list (bad command number, lack of null command, etc.), the RRM-UDRA does not return to an IDLE state and cannot accept new commands until a reset is done on the full MR_BLE IP.

Basic examples:

1) Write AAC0_DIG_ENG=0x12 and AAC1_DIG_ENG=0x34 (grouped registers) through port1.command0:

@port1.command0_addr = 0x02; Write 2 data

@port1.command0_addr+1 = 0x AAC0_DIG_ENG_ADDR;

@port1.command0_addr+2 = 0x12; 1st data to write in AAC0_DIG_ENG

@port1.command0_addr+3 = 0x34; 2nd data to write in AAC1_DIG_ENG

RM0498 - Rev 1 page 12/115

@port1.command0 addr+4 = 0x00; null command

At the end of command execution, the 2 radio registers have been modified with a new value.

4.3 Direct register access

The direct register access block allows the software to access the radio registers directly through an APB access. To do a direct read or write access to the radio registers, the software just has to read/write them through the APB at address mapping described in Section 5.1 Radio register list.

Note:

The radio registers are 8-bit only so the APB register bit field [31:8] part is padded with 0. An 8-bit address mapping column is provided to be used in the RRM UDRA command list as the address of the radio register in this specific case.

An internal arbiter manages the case of concurrent accesses on radio registers by both UDRA (executing a command) and direct register access block (on a CPU read/write APB request). The arbitration is based on a round-robin priority mechanism.

Note:

The software must not write any radio registers through direct APB access if they are also modified through commands in RAM (through UDRA block). In this case, there is a risk of multi drivers in parallel and loss of coherency (no way to know which requester wrote the last one).

4.4 **RRM** registers

4.4.1 **RRM** registers list

The RRM registers are accessible through the APB interface.

All non-listed addresses must be considered as RESERVED.

The RRM BLOCKBaseAddress keyword used for all the register base address information corresponds to the RRM registers base address in the SoC when integrating the IP.

RRM_BLOCKBaseAddress is 0x6000_1400 in the BlueNRG-LPS product.

offset	Name	RW	Reset	Description
0x10	UDRA_CTRL0	RW	0x00000000	UDRA_CTRL0 register
0x14	UDRA_IRQ_ENABLE	RW	0x00000000	UDRA_IRQ_ENABLE register
0x18	UDRA_IRQ_STATUS	RW	0x00000000	UDRA_IRQ_STATUS register
0x1C	UDRA_RADIO_CFG_PTR	R	0x00000000	UDRA_RADIO_CFG_PTR register
0x20	SEMA_IRQ_ENABLE	RW	0x00000000	SEMA_IRQ_ENABLE register
0x24	SEMA_IRQ_STATUS	R	0x00000000	SEMA_IRQ_STATUS register
0x28	BLE_IRQ_ENABLE	RW	0x00000000	BLE_IRQ_ENABLE register
0x2C	BLE_IRQ_STATUS	RW	0x00000000	BLE_IRQ_STATUS register
0x60	VP_CPU_CMD_BUS	RW	0x00000000	VP_CPU_CMD_BUS register
0x64	VP_CPU_SEMA_BUS	RW	0x0000000	VP_CPU_SEMA_BUS register
0x68	VP_CPU_IRQ_ENABLE	RW	0x00000000	VP_CPU_IRQ_ENABLE register
0x6C	VP_CPU_IRQ_STATUS	RW	0x00000000	VP_CPU_IRQ_STATUS register

Table 4. RRM registers list

Table 5. UDRA_CTRL0 register description

Bit	Field name	Reset	RW	Description
0	RELOAD_RDCFGPTR	0x0	RW	Reload the radio configuration pointer from RAM. This bit is auto-cleared by hardware.
31:1	RESERVED31_1	0x0	R	Reserved.

RM0498 - Rev 1 page 13/115

Table 6. UDRA_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	RADIO_CFG_PTR_RELOADED	0x0	RW	UDRA interrupt enable (reload radio config pointer).
1	CMD_START	0x0	RW	UDRA interrupt enable (command start).
2	CMD_END	0x0	RW	UDRA interrupt enable (command end).
31:3	RESERVED31_3	0x0	R	Reserved.

Table 7. UDRA_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description
0	RADIO_CFG_PTR_RELOADED	0x0	RW	On read, returns the UDRA reload radio configuration pointer interrupt status. Write '1' to clear IRQ status bit.
1	CMD_START	0x0	RW	On read, returns the UDRA command start interrupt status. Note: this flag is located at global UDRA level and is raised only at the beginning of the command list execution (not raised again at start of all sub-commands chained in the command number under execution before the NULL command). Write '1' to clear IRQ status bit.
2	CMD_END	0x0	RW	On read, return the UDRA command end interrupt status. Write '1' to clear IRQ status bit.
31:3	RESERVED31_3	0x0	R	Reserved.

Table 8. UDRA_RADIO_CFG_PTR register description

Bit	Field name	Reset	RW	Description
				UDRA radio configuration address.
31:0	RADIO_CONFIG_ADDRESS	0x0	R	This field contains the value contained by the RadioConfigPtr bit field in the GlobalStatMach RAM table when the MR_BLE exits the reset state.
				This field is updated after a reload configuration pointer command.

Table 9. SEMA_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	LOCK	0x0	RW	Semaphore locked (= one port granted) interrupt enable.
1	UNLOCK	0x0	RW	Semaphore unlocked (= no port selected) interrupt enable.
31:2	RESERVED31_2	0x0	R	Reserved.

Table 10. SEMA_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description
0	LOCK	0x0	RW	On read, returns the semaphore locked interrupt status. Write '1' to clear this IRQ status bit.
1	UNLOCK	0x0	RW	On read, returns the semaphore unlocked interrupt status. Note: this flag reacts only on Bluetooth® Low Energy link layer token release but not on VP_CPU token release (which is useless as the SW is responsible for the action by clearing the take_req bit. Write '1' to clear this IRQ status bit.
31:2	RESERVED31_2	0x0	R	Reserved.

RM0498 - Rev 1 page 14/115

Table 11. BLE_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	PORT_GRANT	0x0	RW	IP_BLE port grant interrupt enable.
1	PORT_RELEASE	0x0	RW	IP_BLE port release interrupt enable.
2	RESERVED2	0x0	RW	Reserved
3	PORT_CMD_START	0x0	RW	IP_BLE port command start interrupt enable.
4	PORT_CMD_END	0x0	RW	IP_BLE port command end interrupt enable.
31:5	RESERVED31_5	0x0	R	Reserved

Table 12. BLE_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description					
				IP_BLE hardware port granted interrupt status.					
				- 0: the IP_BLE request to semaphore is not granted.					
0	PORT_GRANT	0x0	RW	- 1: the IP_BLE request to take the semaphore is granted: the RF registers access and the radio Tx and the radio Rx data path are selected for that controller. The port stays granted as long as it requests the token and the semaphore is not preempted by another port.					
				Write '1' to clear this IRQ status bit.					
				IP_BLE hardware port released interrupt status.					
				When read:					
1	PORT_RELEASE	0x0	RW	- 0: the IP_BLE controller has not been released (due to take_req=1'b1).					
	TORT_RELEASE 000		1: the IP_BLE controller has been released by the semaphore due to take_req=1'b0 (requested by Bluetooth® Low Energy link layer).						
				Write '1' to clear this IRQ status bit.					
2	RESERVED_2	0x0	R	Reserved					
				IP_BLE hardware port command start interrupt status.					
				When read:					
				- 0: the IP_BLE port command requested by the Bluetooth® Low Energy link layer is not started.					
3	CMD_START 0x0	RW	- 1: the IP_BLE port command requested by the Bluetooth® Low Energy link layer is started. Note: this flag is raised at the beginning of any chained sub-command inside the command number under execution (so can be raised several times if more than one command before the NULL command).						
				Write '1' to clear this IRQ status bit.					
				IP_BLE hardware port command end interrupt status.					
				When read:					
4	CMD END	0x0	RW	- 0: the IP_BLE port command requested by the Bluetooth® Low Energy link layer is not completed.					
		0,0		- 1: the IP_BLE port command requested by the Bluetooth® Low Energy link layer is completed. Note: this flag is raised only when the UDRA reaches the NULL command (not as CMD_START).					
				Write '1' to clear this IRQ status bit.					
31:5	RESERVED31_5	0x0	R	Reserved					

Note:

The Bluetooth® Low Energy link layer receives the previous information directly by hardware wires and manages the sequence through them. The interrupt mechanism is there in case the CPU needs to monitor the activity between the Bluetooth® Low Energy link layer and the RRM block.

RM0498 - Rev 1 page 15/115

Table 13. VP_CPU_CMD_BUS register description

Bit	Field name	Reset	RW	Description
2:0	COMMAND	0x0	RW	Command number.
				CPU Virtual port command request:
3	3 COMMAND REQ	0x0	RW	- 0: the RRM command request is released.
3	COMMAND_NEQ			- 1: request a command to the RRM-UDRA block.
				This bit is cleared by hardware once the command is ended.
31:4	RESERVED31_4	0x0	R	Reserved.

Table 14. VP_CPU_SEMA_BUS register description

Bit	Field name	Reset	RW	Description
2:0	TAKE_PRIO	0x0	RW	Semaphore priority value (between 0 and 7) of the take request.
	_			The higher the value, the higher priority is the request.
				Semaphore token request:
		0x0		- 0: the CPU virtual port releases the semaphore or does not request to take the RRM semaphore.
3	TAKE REQ		0x0 RW	- 1: the CPU virtual port requests to take or to keep the RRM semaphore.
				The SW must set this bit to request the token and reset it to 0 to release the token.
				Note: the VP_CPU belongs to the token only once VP_CPU_IRQ_STATUS[0] = PORT_GRANT bit is 1 (same for PORT_RELEASE bit when TAKE_REQ bit is written to 0).
31:4	RESERVED31_4	0x0	R	Reserved

Table 15. VP_CPU_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	PORT_GRANT	0x0	RW	CPU virtual port grant interrupt enable.
1	PORT_RELEASE	0x0	RW	CPU virtual port release interrupt enable.
2	RESERVED2	0x0	RW	Reserved
3	PORT_CMD_START	0x0	RW	CPU virtual port command start interrupt enable.
4	PORT_CMD_END	0x0	RW	CPU virtual port command end interrupt enable.
31:5	RESERVED31_5	0x0	R	Reserved

RM0498 - Rev 1 page 16/115

Table 16. VP_CPU_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description			
				CPU virtual port granted interrupt status.			
				- 0: the CPU virtual port token request is not granted.			
				- 1: the CPU virtual port token request is granted by the semaphore:			
0	PORT_GRANT	0x0	RW	 the Radio registers access through a UDRA command is possible for that port (direct APB access is not concerned, always accessible), 			
				 prevents the Bluetooth® Low Energy link layer from having access to the Radio Tx and the Radio Rx data path. 			
				Write '1' to clear this IRQ status bit.			
				CPU virtual port released interrupt status.			
				- 0: the CPU virtual port has not been released (due to TAKE_REQ=1'b1).			
1	PORT_RELEASE	0x0	RW	- 1: the CPU virtual port has been released by the semaphore due to TAKE_REQ=1'b0 (requested by CPU virtual port).			
				Write '1' to clear this IRQ status bit.			
2	RESERVED2	0x0	R	Reserved			
				CPU virtual port command start interrupt status.			
				When read:			
				- 0: the command requested by the CPU virtual port (port1) is not started.			
3	CMD_START	0x0 F	0x0 R	0x0 R	0x0 RW		- 1: the command requested by the CPU virtual port (port1) is started. Note: this flag is raised at the beginning of any chained command inside the command number under execution (so can be raised several times if more than one command before the NULL command).
				Write '1' to clear this IRQ status bit.			
				CPU virtual port command end interrupt status.			
				When read:			
4	CMD_END	0x0	RW	- 0: the command requested by the CPU virtual port (port1) is not completed.			
	_			- 1: the command requested by the CPU virtual port (port1) is completed. Note: this flag is raised only when the UDRA reaches the NULL command (not as CMD_START).			
				Write '1' to clear this IRQ status bit.			
31:5	RESERVED31_5	0x0	R	Reserved			

RM0498 - Rev 1 page 17/115

5 Radio registers

The Radio registers are 8-bit registers mainly used to control the RF2G4 analog IP and the Radio FSM. They also allow taking control for validation/test purposes.

They can be accessed through two different mappings:

- as 32-bit APB registers (address incremented by 4 between each register) through RRM Direct Access interface
 - this mapping is used by the CPU
- as 8-bit register (address incremented by 1 between each register) through RRM UDRA command list in RAM
 - this mapping is used by the RRM

Caution: the radio registers are used to control the analog and few modulator/demodulator features. They are not supposed to be modified directly by the user. The potential modifications are provided by STMicroelectronics in the SDK boot code.

5.1 Radio register list

The **RF_REG_BLOCKBaseAddress** keyword used for all the register base address information corresponds to the Radio registers base address decided by the SoC when integrating the IP.

RF_REG_BLOCKBaseAddress is 0x6000_1500 in the BlueNRG-LPS product.

Table 17. Radio register list

Address Offset		Register name	Description	Bogo link
8-bit	APB	Register name	Description	Page link
0x00	0x00	AA0_DIG_USR	AA0_DIG_USR register	0
0x01	0x04	AA1_DIG_USR	AA1_DIG_USR register	0
0x02	80x0	AA2_DIG_USR	AA2_DIG_USR register	0
0x03	0x0C	AA3_DIG_USR	AA3_DIG_USR register	0
0x04	0x10	DEM_MOD_DIG_USR	DEM_MOD_DIG_USR register	0
0x05	0x14	RADIO_FSM_USR	RADIO_FSM_USR register	0
0x06	0x18	PHYCTRL_DIG_USR	PHYCTRL_DIG_USR register	0
0x12	0x48	AFC1_DIG_ENG	AFC1_DIG_ENG register	0
0x15	0x54	CR0_DIG_ENG	CR0_DIG_ENG register	0
0x1A	0x68	CR0_LR	CR0_LR register	0
0x1B	0x6C	VIT_CONF_DIG_ENG	VIT_CONF_DIG_ENG register	0
0x21	0x84	LR_PD_THR_DIG_ENG	LR_PD_THR_DIG_ENG register	0
0x22	0x88	LR_RSSI_THR_DIG_ENG	LR_RSSI_THR_DIG_ENG register	0
0x23	0x8C	LR_AAC_THR_DIG_ENG	LR_AAC_THR_DIG_ENG register	0
0x2A	0xA8	SYNTHCAL0_DIG_ENG	SYNTHCAL0_DIG_ENG register	0
0x3C	0xF0	DTB5_DIG_ENG	DTB5_DIG_ENG register	0
0x52	0x148	RXADC_ANA_USR	RXADC_ANA_USR register	0
0x55	0x154	LDO_ANA_ENG	LDO_ANA_ENG register	0
0x5D	0x174	CBIAS0_ANA_ENG	CBIAS0_ANA_ENG register	0
0x5E	0x178	CBIAS1_ANA_ENG	CBIAS1_ANA_ENG register	0
0x60	0x180	SYNTHCAL0_DIG_OUT	SYNTHCAL0_DIG_OUT register	0
0x61	0x184	SYNTHCAL1_DIG_OUT	SYNTHCAL1_DIG_OUT register	0

RM0498 - Rev 1 page 18/115

Address Offset		Register name	Description	Page link
8-bit	APB	Register Hame	Description	I age iiik
0x62	0x188	SYNTHCAL2_DIG_OUT	SYNTHCAL2_DIG_OUT register	0
0x63	0x18C	SYNTHCAL3_DIG_OUT	SYNTHCAL3_DIG_OUT register	0
0x64	0x190	SYNTHCAL4_DIG_OUT	SYNTHCAL4_DIG_OUT register	0
0x65	0x194	SYNTHCAL5_DIG_OUT	SYNTHCAL5_DIG_OUT register	0
0x66	0x198	FSM_STATUS_DIG_OUT	FSM_STATUS_DIG_OUT register	0
0x69	0x1A4	RSSI0_DIG_OUT	RSSI0_DIG_OUT register	0
0x6A	0x1A8	RSSI1_DIG_OUT	RSSI1_DIG_OUT register	0
0x6B	0x1AC	AGC_DIG_OUT	AGC_DIG_OUT register	0
0x6C	0x1B0	DEMOD_DIG_OUT	DEMOD_DIG_OUT register	0
0x6F	0x1BC	AGC2_ANA_TST	AGC2_ANA_TST register	0
0x70	0x1C0	AGC0_DIG_ENG	AGC0_DIG_ENG register	0
0x71	0x1C4	AGC1_DIG_ENG	AGC1_DIG_ENG register	0
0x7A	0x1E8	AGC10_DIG_ENG	AGC10_DIG_ENG register	0
0x7B	0x1EC	AGC11_DIG_ENG	AGC11_DIG_ENG register	0
0x7C	0x1F0	AGC12_DIG_ENG	AGC12_DIG_ENG register	0
0x7D	0x1F4	AGC13_DIG_ENG	AGC13_DIG_ENG register	0
0x7E	0x1F8	AGC14_DIG_ENG	AGC14_DIG_ENG register	0
0x7F	0x1FC	AGC15_DIG_ENG	AGC15_DIG_ENG register	0
0x80	0x200	AGC16_DIG_ENG	AGC16_DIG_ENG register	0
0x81	0x204	AGC17_DIG_ENG	AGC17_DIG_ENG register	0
0x82	0x208	AGC18_DIG_ENG	AGC18_DIG_ENG register	0
0x83	0x20C	AGC19_DIG_ENG	AGC19_DIG_ENG register	0
0x89	0x224	RXADC_HW_TRIM_OUT	RXADC HW trimming register	0
0x8A	0x228	CBIAS0_HW_TRIM_OUT	CBIAS HW trimming register	0
0x8C	0x230	AGC_HW_TRIM_OUT	AGC antenna HW trimming register	0
0x90	0x240	ANTSW_DIG0_USR	Antenna switching settings register	0
0x91	0x244	ANTSW_DIG1_USR	Antenna switching settings register	0
0x92	0x248	ANTSW_DIG2_USR	Antenna switching settings register	0
0x93	0x24C	ANTSW_DIG3_USR	Antenna switching settings register	0

RM0498 - Rev 1 page 19/115

5.2 Radio registers description

Table 18. AA0_DIG_USR register description

Bit	Field name	Reset	RW	Description
7:0	AA_7_0	0xD6	RW	Least significant byte of the Bluetooth LE Access Address code. This register is (over)written by the Sequencer during 2 nd INIT step with the StatMach.accaddr[7:0] bit field.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 19. AA1_DIG_USR register description

Bit	Field name	Reset	RW	Description
7:0	AA_15_8	0xBE	RW	Next byte of the Bluetooth LE access address code. This register is (over)written by the Sequencer during 2 nd INIT step with the StatMach.accaddr[15:8] bit field.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 20. AA2_DIG_USR register description

Bit	Field name	Reset	RW	Description
7:0	AA_23_16	0x89	RW	Next byte of the Bluetooth LE access address code This register is (over)written by the Sequencer during 2 nd INIT step with the StatMach.accaddr[23:16] bit field.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 21. AA3_DIG_USR register description

Bit	Field name	Reset	RW	Description
7:0	AA_31_24	0x8E	RW	Next byte of the Bluetooth LE access address code. This register is (over)written by the Sequencer during 2 nd INIT step with the StatMach.accaddr[31:24] bit field.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 22. DEM_MOD_DIG_USR register description

Bit	Field name	Reset	RW	Description
0	RESERVED0	0x0	R	Reserved.
				Index for internal lock-up table in which the synthesizer setup is contained.
			0.40 514	Formula for programmed frequency is: 2402 + (CHANNEL_NUM x 2).
				Default value (0x13=19) corresponds to the Bluetooth LE RF channel 19:
7:1	CHANNEL_NUM	0x13		→ ≥2402 + (19 x 2) = 2440 MHz.
			This bit field is (over)written by the Sequencer during the 1st INIT. The value copied here is the output of the channel Incr and Hopping hardware block.	
				Note: This bit field is used to generate the physical frequency on the antenna.
31:8	RESERVED31_8	0x0	R	Reserved.

RM0498 - Rev 1 page 20/115

Table 23. RADIO_FSM_USR register description

Bit	Field name	Reset	RW	Description
0	RESERVED0	0x0	R	Reserved.
1	EN_CALIB_CBP	0x0	RW	CBP calibration enable bit. This bit is (over)written by the Bluetooth LE Sequencer with the TxRxPack.CalReq bit during the 1 st INIT step. Note: Both EN_CALIB_xx must be set or reset together (mixed configuration not recommended).
2	EN_CALIB_SYNTH	0x1	RW	SYNTH calibration enable bit. This bit is (over)written by the Bluetooth LE Sequencer with the TxRxPack.CalReq bit during the 1st INIT step.
7:3	PA_POWER	0x0	RW	PA power coefficient. This bit is (over)written by the Bluetooth LE Sequencer with the StatMach.PAPower bit field during the 1st INIT step.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 24. PHYCTRL_DIG_USR register description

Bit	Field name	Reset	RW	Description
2:0	RXTXPHY	0x0	RW	RXTXPHY selection. This bit field is (over)written by the Bluetooth LE Sequencer during the 1st INIT using the StatMach.RxPhy[2:0] or StatMach.TxPhy[2:0], depending on whether the transfer is a reception or a transmission. - 000: uncoded PHY 1 Mb/s - 001: uncoded PHY 2 Mb/s - 100: coded PHY S=8 1 Mb/s - 110: coded PHY S=2 1 Mb/s
31:3	RESERVED31_3	0x0	R	Reserved.

Table 25. AFC1_DIG_ENG register description

Bit	Field name	Reset	RW	Description	
3:0	AFC_DELAY_AFTER	0x4	RW	Set the decay factor of the AFC loop after Access Address detection.	
7:4	AFC_DELAY_BEFORE	0x4	RW	Set the decay factor of the AFC loop before Access Address detection .	
31:8	RESERVED31_8	0x0	R	Reserved.	

Table 26. CR0_DIG_ENG register description

Bit	Field name	Reset	RW	Description
3:0	CR_GAIN_AFTER	0x4	RW	Set the gain of the clock recovery loop before Access Address detection when the Coded PHY is in use
7:4	CR_GAIN_BEFORE	0x4	RW	Set the gain of the clock recovery loop after Access Address detection when the Coded PHY is in use
31:8	RESERVED31_8	0x0	R	Reserved.

RM0498 - Rev 1 page 21/115

Table 27. CR0_LR register description

Bit	Field name	Reset	RW	Description
3:0	CR_LR_GAIN_AFTER	0x6	RW	Set the gain of the clock recovery loop after Access Address detection when the Coded PHY is in use
7:4	CR_LR_GAIN_BEFORE	0x6	RW	Set the gain of the clock recovery loop before Access Address detection when the Coded PHY is in use
31:8	RESERVED31_8	0x0	R	Reserved.

Table 28. VIT_CONF_DIG_ENG register description

Bit	Field name	Reset	RW	Description
0	VIT_EN	0x0	RW	VIT_EN: Viterbi enable 0: Viterbi is disabled 1: Viterbi is enabled
1	RESERVED_1	0x0	RW	Reserved
7:2	SPARE	0x0	RW	Spare
31:8	RESERVED31_8	0x0	R	Reserved

Table 29. LR_PD_THR_DIG_ENG register description

Bit	Field name	Field name Reset RW		Description	
7:0	LR_PD_THR	0x50	RW	Preamble detect threshold value.	
31:8	RESERVED31_8	0x0	R	Reserved.	

Table 30. LR_RSSI_THR_DIG_ENG register description

Bit	Field name	Field name Reset RW		Description	
7:0	LR_RSSI_THR	0x1B	RW	RSSI or peak threshold value.	
31:8	RESERVED31_8	0x0	R	Reserved.	

Table 31. LR_AAC_THR_DIG_ENG register description

Bit	Field name	Field name Reset		Description		
7:0	LR_AAC_THR	0x38	RW	Address coded correlation threshold.		
31:8	RESERVED31_8	0x0	R	Reserved.		

RM0498 - Rev 1 page 22/115

Table 32. SYNTHCAL0_DIG_ENG register description

Bit field	Field name	Reset	RW	Description
3:0	SYNTHCAL_DEBUG_BUS_SEL	0x0	RW	For debug purposes. Program 0xC to get the PLL calibration reason in SYNTHCAL3_DIG_OUT.
5:4	RESERVED5_4	0x0	RW	Reserved.
7:6	SYNTH_IF_FREQ_CAL	0x0	RW	Define the frequency applied on the PLL during calibration phase. • 00 (default): calibration is done between Rx and Tx frequencies (at freq_channel – 0.8MHz) • 01: calibration is done at Tx frequency (at freq_channel) • 10: calibration is done at Rx frequency (at freq_channel – 1.6 MHz) • 11: reserved
31:8	RESERVED31_8	0x0	R	Reserved.

Table 33. DTB5_DIG_ENG register description

Bit	Field name	Reset	RW	Description	
0	RXTX_START_SEL	0x0	RW	It enables the possibility to control some signals by the other register bits instead of system design: 0: the Radio FSM is controlled by the signals generated by the RRM and Sequencer	
				1: the Radio FSM is controlled by the bits of this register.	
1	TX_ACTIVE	0x0	RW	Force TX_ACTIVE signal.	
2	RX_ACTIVE	0x0	RW	Force RX_ACTIVE signal.	
3	INITIALIZE	0x0	RW	Force INITIALIZE signal (emulate a token request of the IP_BLE).	
4	PORT_SELECTED_EN	0x0	RW	Enable port selection.	
5	PORT_SELECTED_0	0x0	RW	Force port_selected[0] signal.	
31:6	RESERVED31_6	0x0	R	Reserved.	

Table 34. RXADC_ANA_USR register description

Bit	Field name	Reset	RW	Description		
2:0	RFD_RXADC_DELAYTRIM_I	0x3	RW	ADC loop delay control bits for I channel to apply when SW overload is enabled		
5:3	RFD_RXADC_DELAYTRIM_Q	0x3	RW	ADC loop delay control bits for Q channel to apply when SW overload is enabled		
6	RXADC_DELAYTRIM_I_TST_SEL 0x0 RV		RW	Enable the SW overload on RXADX delay trimming. 0: trimming applied on the analog block are the hardware loaded ones 1: trimming applied on the analog block are provided by the RFD_RXADC_DELAYTRIM_I[2:0] bit field (SW values)		
7	RXADC_DELAYTRIM_Q_TST_SEL (RW	Enable the SW overload on RXADX delay trimming. 0: trimming applied on the analog block are the hardware loaded ones 1: trimming applied on the analog block are provided by the RFD_RXADC_DELAYTRIM_Q[2:0] bit field (SW values)		
31:8	RESERVED31_8	0x0	R	Reserved.		

RM0498 - Rev 1 page 23/115

Table 35. LDO_ANA_ENG register description

Bit	Field name	Reset	RW	Description
		00	DW	RF_REG level bypass mode:
0	RFD_RF_REG_BYPASS	0x0	RW	- 0: bypass mode disabled - 1: RF_REG in bypass mode
1	RFD_LDO_TRANSFO_BYPASS	0x0	RW	VDD level bypass mode - 0: bypass mode disabled - 1: LDO in bypass mode
31:2	RESERVED31_2	0x0	R	Reserved.

Table 36. CBIAS0_ANA_ENG register description

Bit	Field name	Reset	RW	Description
3:0	RFD_CBIAS_IBIAS_TRIM	0x8	RW	Ibias current trimming to apply when SW overload is enabled
7:4	RFD_CBIAS_IPTAT_TRIM	0x8	RW	Ibias current trimming to apply when SW overload is enabled
31:8	RESERVED31_8	0x0	R	Reserved.

Table 37. CBIAS1_ANA_ENG register description

Bit	Field name	Reset	RW	Description
4:0	RESERVED4_0	0x0	R	Reserved.
6:5	SPARE	0x0	R	Reserved.
7	CBIAS0_TRIM_TST_SEL	0x0	RW	Enable the SW overload on the CBIAS IPTAT and IBIAS trimming: - 0: trimming applied on the analog block are the hardware loaded ones - 1: trimming applied on the analog block are provided by the CBIASO_ANA_ENG bit fields (SW values).
31:8	RESERVED31_8	0x0	R	Reserved.

Table 38. SYNTHCAL0_DIG_OUT register description

Bit	Field name	Reset	RW	Description
6:0	VCO_CALAMP_OUT_6_0	0x0	R	VCO CALAMP value.
31:7	RESERVED31_7	0x0	R	Reserved.

Table 39. SYNTHCAL1_DIG_OUT register description

Bit	Field name	Reset	RW	Description
3:0	VCO_CALAMP_OUT_10_7	0x1	R	VCO CALAMP value.
1:4	RESERVED31_4	0x0	R	Reserved.

Table 40. SYNTHCAL2_DIG_OUT register description

Bit	Field name	Reset	RW	Description
6:0	VCO_CALFREQ_OUT	0x40	R	VCO CALFREQ value.
31:7	RESERVED31_7	0x0	R	Reserved.

RM0498 - Rev 1 page 24/115

Table 41. SYNTHCAL3_DIG_OUT register description

Bit	Field name	Reset	RW	Description
				Calibration debug bus.
				Provide PLL calibration error details when SYNTHCAL0_DIG_ENG = 0xC:
				- bit[7:4]: 0000
7:0	SYNTHCAL_DEBUG_BUS	0x0	R	- bit3: CAL_ERROR
				- bit2: CALAMP_ERROR
				- bit1: CALFREQ_ERROR
				- bit0: CALKVCO_ERROR
31:8	RESERVED31_8	0x0	R	Reserved.

Table 42. SYNTHCAL4_DIG_OUT register description

Bit	Field name	Reset	RW	Description
5:0	MOD_REF_DAC_WORD_OUT	0x18	R	Calibration word.
7:6	RESERVED7_6	0x0	R	Reserved.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 43. . SYNTHCAL5_DIG_OUT register description

Bit	Field name	Reset	RW	Description
3:0	CBP_CALIB_WORD	0x7	R	CBP calibration word.
31:4	RESERVED31_4	0x0	R	Reserved.

RM0498 - Rev 1 page 25/115

Table 44. FSM_STATUS_DIG_OUT register description

Bit	Field name	Reset	RW	Description
4:0	STATUS	0x0	R	STATUS: RF FSM state: - 00000: IDLE - 00001: ACTIVE1 - 00010: ENA_RF_REG - 00011: ENA_CURR - 00100: ACTIVE2 - 00101 to 01111: Not used - 10000: ENA_TRANSFO_LDO - 10001: SYNTH_SETUP - 10010: CALIB10 - 10011: CALIB01 - 10100: CALIB11 - 10101: LOCKRXTX - 10110: Not used - 10111: Not used - 11000: EN_RX - 11001: EN_PA - 11010: Rx - 11010: Tx - 11101: Not used - 11110: Not used - 11111: Not used
6:5	RESERVED6_5	0x0	R	Reserved.
7	SYNTH_CAL_ERROR	0x0	R	PLL calibration error.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 45. RSSI0_DIG_OUT register description

Bit	Field name	Reset	RW	Description
7:0	RSSI_MEAS_OUT_7_0	0x8	R	Measure of the received signal strength.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 46. RSSI1_DIG_OUT register description

Bit	Field name	Reset	RW	Description
7:0	RSSI_MEAS_OUT_15_8	0x8	R	Measure of the received signal strength.
31:8	RESERVED31_8	0x0	R	Reserved.

Table 47. AGC_DIG_OUT register description

Bit	Field name	Reset	RW	Description
3:0	AGC_ATT_OUT	0x0	R	AGC attenuation value.
31:4	RESERVED31_4	0x0	R	Reserved.

RM0498 - Rev 1 page 26/115

Table 48. DEMOD_DIG_OUT register description

Bit	Field name	Reset	RW	Description
1:0	CI_FIELD	0x0	R	CI field
2	AAC_FOUND	0x0	R	aac_found
3	PD_FOUND	0x0	R	pd_found
4	RX_END	0x0	R	rx_end
31:5	RESERVED31_5	0x0	R	Reserved.

Table 49. AGC2_ANA_TST register description

Bit	Field name	Reset	RW	Description
0	AGC2_ANA_TST_SEL	0x0	RW	Selection - 0: default value is 0 (normal mode): the AGC antenna trimming value comes from the SoC integrating the MR_BLE IP - 1: forced by this register (test mode): the AGC antenna trim value comes from the AGC2_ANA_TST[3:1] bit field value.
3:1	AGC_ANTENNAE_USR_TRIM	0x0	RW	AGC trimming.
31:4	RESERVED31_4	0x0	R	Reserved.

Table 50. AGC0_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	AGC_THR_HIGH	0xA	RW	High AGC threshold.
6	AGC_ENABLE	0x0	RW	Enable AGC.
31:7	RESERVED31_7	0x0	R	Reserved.

Table 51. AGC1_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	AGC_THR_LOW_6	0x04	RW	Low threshold for 6dB steps.
6	AGC_AUTOLOCK	0x0	RW	AGC locks when level is steady between high threshold and lock threshold.
7	AGC_LOCK_SYNC	0x0	RW	AGC locks when Access Address is detected (recommended).
31:8	RESERVED31_8	0x0	R	Reserved.

Table 52. AGC10_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_0	0x0	RW	Mapping for AGC step 0.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 53. AGC11_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_1	0x10	RW	Mapping for AGC step 1.
31:6	RESERVED31_6	0x0	R	Reserved.

RM0498 - Rev 1 page 27/115

Table 54. AGC12_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_2	0x0	RW	Mapping for AGC step 2.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 55. AGC13_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_3	0x10	RW	Mapping for AGC step 3.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 56. AGC14_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_4	0x18	RW	Mapping for AGC step 4.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 57. AGC15_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_5	0x19	RW	Mapping for AGC step 5.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 58. AGC16_DIG_ENG register description

Bit		Field name	Reset	RW	Description
5:0		ATT_6	0x1A	RW	Mapping for AGC step 6.
31:6	3	RESERVED31_6	0x0	R	Reserved.

Table 59. AGC17_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_7	0x1B	RW	Mapping for AGC step 7.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 60. AGC18_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_8	0x1C	RW	Mapping for AGC step 8.
31:6	RESERVED31_6	0x0	R	Reserved.

Table 61. AGC19_DIG_ENG register description

Bit	Field name	Reset	RW	Description
5:0	ATT_9	0x1D	RW	Mapping for AGC step 9.
31:6	RESERVED31_6	0x0	R	Reserved.

RM0498 - Rev 1 page 28/115

Table 62. RXADC_HW_TRIM_OUT register description

Bit	Field name	Reset	RW	Description	
2:0	HW_RXADC_DELAYTRIM_I	0x3	R	Control bits of the Rx ADC loop delay for I channel (provided by the hardware trimming, automatically loaded on POR).	
5:3	HW_RXADC_DELAYTRIM_Q	0x3	R	Control bits of the Rx ADC loop delay for Q channel (provided by the hardware trimming, automatically loaded on POR).	
31:6	RESERVED31_6	0x0	R	Reserved.	

Table 63. CBIAS0_HW_TRIM_OUT register description

Bit	Field name	Reset	RW	Description
3:0	HW_CBIAS_IBIAS_TRIM	0x8	R	CBIAS current trimming (provided by the hardware trimming, automatically loaded on POR).
7:4	HW_CBIAS_IPTAT_TRIM	0x7	R	CBIAS current trimming (provided by the hardware trimming, automatically loaded on POR).
31:8	RESERVED31_8	0x0	R	Reserved.

Table 64. AGC_HW_TRIM_OUT register description

Bit	Field name	Reset	RW	Description	
0	RESERVED	0x0	R	Reserved.	
3:1	HW_AGC_ANTENNAE_TRIM	0x3	R	AGC trim value (provided by the hardware trimming, automatically loaded on POR). Note: This value depends on the RF BOM on the board. Value provided by engineering is based on a dedicated BOM and must be overloaded by SW if the user selects/defines another BOM.	
31:4	RESERVED31_4	0x0	R	Reserved.	

Table 65. ANTSW0_DIG_USR register description

Bit	Field name	Reset	RW	Description
				Specifies the exact timing of the first I/Q sampling in the reference period. Time unit is 250 ns.
7:0	RX_TIME_TO_SAMPLE	0x1C	RW	Note: the value of this register is an offset to apply to a hard-coded 4.5 us delay. The global delay (4.5 us + programmable offset) is started from an internal trigger occurring before the Guard period on the air. The RX_TIME_TO_SAMPLE and RX_TIME_TO_SWITCH share the same internal trigger.
31:8	RESERVED	0x0	R	Reserved.

Table 66. ANTSW1_DIG_USR register description

Bit	Field name	Reset	RW	Description
7:0	RX_TIME_TO_SWITCH	0xB	RW	Specifies the exact timing of the antenna switching at receiver level (in AoA). Time unit is 250 ns. Note: the timing defined in this register is a delay from an internal trigger occurring before the Guard period on the air. The RX_TIME_TO_SAMPLE and RX_TIME_TO_SWITCH share the same internal trigger.
31:8	RESERVED	0x0	R	Reserved.

Table 67. ANTSW2_DIG_USR register description

Bit	Field name	Reset	RW	Description
7:0	TX_TIME_TO_SWITCH	0x29	RW	Specifies the exact timing of the antenna switching during transmission at LE_1M baud rate (in AoD).

RM0498 - Rev 1 page 29/115

Bit	Field name	Reset	RW	Description	
				Time unit is 125 ns.	
				Note: the timing defined in this register is a delay from an internal trigger occurring before the Guard period on the air (when transmit block starts sending the CTE to the modulator).	
31:8	RESERVED	0x0	R	Reserved.	

Table 68. ANTSW3_DIG_USR register description

Bit	Field name	Reset	RW	Description			
				Specifies the exact timing of the antenna switching during transmission at LE_2M baud rate (in AoD).			
				Time unit is 125 ns.			
7:0	TX_TIME_TO_SWITCH_2M	0x23	0x23 RW	0x23 RW	0x23 RW	0x23 RW	Note: the timing defined in this register is a delay from an internal trigger occurring before the Guard period on the air (when transmit block starts sending the CTE to the modulator).
				The modulator latency differs between 1 Mb/s and 2 Mb/s baud rate so 2 different delays need to be managed.			
31:8	RESERVED31_8	0x0	R	Reserved.			

5.3 Trimming information

The MR_BLE loads automatically hardware trimming information located in the flash memory of the SoC.

The trimmed information is:

- Rx ADC delay for I and for Q channels
- IPTAT and BIAS current trimming for CBIAS block
- AGC trimming

Those trimming values are automatically loaded by the hardware on reset and low-power mode exit.

The loaded values are readable in dedicated radio registers (xx HW TRIM OUT).

The AGC user trimming can be impacted by the BOM on the user board and may need to be overloaded. The SW can overload / replace the hardware value.

The AGC trimming consists of 1 piece of information:

- AGC_ANTENNAE_TRIM_I
 - Hardware value readable in AGC HW TRIM OUT[3:1] = HW AGC ANTENNAE TRIM[2:0]
 - SW value writable in AGC2_ANA_TST[3:1] = AGC_ANTENNAE_USR_TRIM[2:0]
 - SW overload feature activation through AGC2_ANA_TST[0] = AGC2_ANA_TST_SEL

The hardware values are reloaded on any reset and low-power mode exit.

The SW values must be re-written after any reset or low-power mode.

RM0498 - Rev 1 page 30/115

6 Radio FSM

The Radio FSM manages the analog radio block startup and stop sequences depending on requesting RF transfer.

6.1 Radio FSM sequences

This section lists the main steps in the radio FSM sequence.

- The radio FSM stays in IDLE as long as the IP_BLE does not request the RRM token to indicate that the
 radio is about to be used.
- Once the token is requested, the radio FSM switches to ACTIVE1.
- When the device switches on the accurate fast clock (external XO) AND if the RRM semaphore granted one
 port (whatever the port), the radio FSM goes to ACTIVE2 (through a few intermediate steps to start RF LDO
 and central bias current).
- Once an Rx or Tx request is received, the radio FSM switches to the Rx or Tx through intermediate steps to set up properly the analog.
- The radio FSM goes back:
 - to ACTIVE2 as soon as Rx or Tx request is cleared and back to ACTIVE1 if the accurate clock is replaced by the dirty one
 - to IDLE if no more ports request a token to the RRM semaphore.

Figure 4. Radio FSM overview provides an overview of the RF FSM states sequence.

Some transitions are triggered by hardware signals, but others are managed through timeout. Section 6.2 Radio FSM states overview lists the different timeouts.

RM0498 - Rev 1 page 31/115

Figure 4. Radio FSM overview

6.2 Radio FSM states overview

The table below lists, for each state, the exit condition and the duration in the state when there is a deterministic one.

RM0498 - Rev 1 page 32/115

Table CO Dedia	ECM states summent	/including oxit	aanditiana and timinga\	
Table 05. Raul) FOW States Summary	(IIICIUUIIIU EXIL	conditions and timings)	

Radio FSM state	State description	Condition to exit and duration in the state
Radio FSIVI State	State description	Condition to exit and duration in the state
IDLE	No RF activity requested: the analog RF IP is OFF	The Bluetooth® Low Energy link layer requests a token to the RRM semaphore
ACTIVE1	Wait for port granted and SoC accurate clock indication	Both hardware conditions are fulfilled
ENA_RF_REG	Enable the RF LDO	Timeout = 25 us
ENA_CURR	Enable the reference current block inside the RF2G4	Timeout = 20 us
ACTIVE2	This state confirms that all clock and power conditions are OK to accept an RF transfer request	Tx or Rx request occurrence
ENA_TRANSFO_LDO	Enable the LDO for the power amplifier	Timeout = 0 us
SYNTH_SETUP	Start the RF PLL block	No timeout. Exit immediately (1 MR_BLE clock cycle duration)
CALIB11	Start the PLL calibration block	End of calibration hardware information
LOCKRXTX (1)	Wait for RF PLL lock	Timeout = • 40 us when no PLL calibration • 80 us when PLL calibration
EN_RX	Enable the analog Rx chain	Timeout = 10 us
Rx	Radio is in reception mode	End of Rx event (Rx timeout, Rx done)
EN_PA ⁽¹⁾	Start the power ramp-up sequence (8 steps) up to targeted power on the antenna	Ready signal informing targeted Tx power is reached on the antenna (8 steps of 1.5 us = 12 us)
Tx	Radio is in transmission mode	End of Tx event (Tx done or skipped)
PA_DWN_ANA	Disable the power amplifier block	Timeout = 5 us

The radio FSM may abort the sequence and return to ACTIVE2 from those two states depending on RF PLL lock information:

- LOCKRXTX: the decision occurs at the very end of the state to decide if the sequence should continue (PLL locked) or abort (PLL lock failed)
- EN_PA: the decision to abort can occur at any time inside this state as soon as the RF PLL is no longer locked (PLL unlocked)

If the PLL unlock event occurs outside those two states, the radio FSM does not interfere. The SW is informed through an interrupt and is in charge of managing the situation.

The current state information is available in the FSM_STATUS_DIG_OUT radio register accessible by direct APB access (see Section 5.1 Radio register list).

The radio FSM uses timeout to exit states linked to analog block settlement to guarantee a deterministic duration between ACTIVE2 and Tx or Rx state at any occurrence. This is mandatory to be able to fit with Bluetooth protocol timings requirements in a peer-to-peer communication flow.

Those deterministic durations are presented in the table below.

Table 70. ACTIVE2 to Tx or Rx state duration

Sequence	Duration	Comments
ACTIVE2 → Tx with RF PLL calibration	92 us	To be used when the Tx is done on a new frequency (channel) versus the previous RF transfer
ACTIVE2 → Tx without RF PLL calibration	52 us	To be used when the Tx is done on the same frequency (channel) as the previous RF transfer
ACTIVE2 → Rx with RF PLL calibration	90 us	To be used when the Rx is done on a new frequency (channel) versus the previous RF transfer
ACTIVE2 → Rx without RF PLL calibration	50 us	To be used when the Rx is done on the same frequency (channel) as the previous RF transfer

RM0498 - Rev 1 page 33/115

6.3 Radio FSM interrupts

The Radio FSM provides a dedicated interrupt output signal to the system.

The Radio FSM generates 6 (2 are reserved) individually maskable interrupts grouped in an RfFsm_event[5:0] list:

- RfFsm_event[0] = PLL Lock timeout
 - set when the counter to exit LOCKRXTX expires
 - whatever the lock status (PLL locked or not locked at timer expiration)
- RfFsm event[3] = PLL unlock detection
 - set when the PLL lock signal falls after the lock detection step.
- RfFsm_event[4] = PLL lock failed
 - set if the PLL lock is not high when the Radio FSM exits the LOCKRXTX state
 - or set if the PLL is no more locked during EN PA state or on exit of EN PA state
- RfFsm_event[5] = PLL calibration error
 - set if a PLL calibration error occurs during PLL calibration step.
 - Problems can concern the amplitude calibration and/or the frequency calibration and/or the KVCO calibration.
 - In this case, the detail can be read in SYNTH3 DIG OUT[3:0] if SYNTHCAL0 DIG ENG[3:0] = 0xC:
 - SYNTHCAL3 DIG OUT[3] = CAL ERROR
 - SYNTHCAL3_DIG_OUT[2] = CALAMP_ERROR
 - SYNTHCAL3_DIG_OUT[1] = CALFREQ_ERROR
 - SYNTHCAL3 DIG OUT[0] = CALKVCO ERROR

All the sources are combined into a single signal to be connected outside the IP_BLE to the interrupt controller of the SoC (see Table 1. Interruption summary for mapping in BlueNRG-LPS).

The interrupts can be enabled/disabled individually through the radio controller APB registers:

- Enable/disable through RADIO CONTROL IRQ ENABLE register
- Reading the RADIO CONTROL IRQ STATUS register returns the interrupts status
- Writing a '1' to the RADIO_CONTROL_IRQ_STATUS[x] clears the associated interrupt flag.

See Section 7.3 Radio controller registers for more details.

RM0498 - Rev 1 page 34/115

7 Radio controller

The radio controller is a small block in charge of two features:

- Slow clock period measurement
- Radio FSM interrupt management

7.1 Slow clock measurement

The radio controller contains a block dedicated to the slow clock measurement.

This measurement:

- is launched automatically by the hardware when the system clock switches on accurate clock (external XO).
- can be launched by the software when needed (by writing zero in CLK32K_PERIOD register)

The result provided by this block is both a period and a frequency information (in two separate results registers). The software can program the window of measurement (in slow clock cycle number) and the period result is provided in 16 MHz half-period unit.

7.2 Radio FSM interrupt management

During the sequences, the Radio FSM generates some interruptions to monitor some unexpected behavior at analog level. As the Radio FSM block does not have any APB interface, the interrupt control and status flags are managed inside the radio controller block through APB registers:

- RADIO_CONTROL_IRQ_ENABLE register to enable the wanted interrupt sources.
- RADIO_CONTROL_IRQ_STATUS register to get the status (on read) and to clear the interrupt (by writing '1' on the associated bit).

See Section 6.3 Radio FSM interrupts for more details on interrupt root causes.

7.3 Radio controller registers

7.3.1 Radio controller register list

The RADIO_CONTROL_BLOCKBaseAddress keyword used for all the register base address information corresponds to the Radio Controller registers base address decided by the SoC when integrating the IP.

Note: RADIO CONTROL BLOCKBaseAddress is 0x6000 1000 in BlueNRG-LPS product.

Table 71. Radio Controller registers list

Address offset	Name	RW	Reset	Description
0x00	RADIO_CONTROL_ID	R	0x00001000	MR_BLE ID/version register
0x04	CLK32COUNT_REG	RW	0x00000017	Window length register
0x08	CLK32PERIOD_REG	R	0x00000000	Slow clock period register
0x0C	CLK32FREQUENCY_REG	R	0x00000000	Slow clock frequency register
0x10	RADIO_CONTROL_IRQ_STATUS	RW	0x00000000	Radio controller interrupt status register
0x14	RADIO_CONTROL_IRQ_ENABLE	RW	0x00000000	Radio controller interrupt control register

RM0498 - Rev 1 page 35/115

7.3.2 Radio controller register description

Table 72. RADIO_CONTROL_ID register description

Bit	Field name	Reset	RW	Description
31:16	RESERVED31_16	0x0	R	Reserved
15:12	PRODUCT	0x02	R	Incremented on major features add-on like new Bluetooth® Low Energy SIG version support
11:8	VERSION	0x1	R	Cut number
7:4	REVISION	0x0	R	Incremented for metal fix version
3:0	RESERVED3_0	0x0	R	Reserved

Table 73. CLK32COUNT_REG register description

Bit	Field name	Reset	RW	Description
			Program the window length (in slow clock period) for slow clock measurement.	
8:0	SLOW_COUNT	0x17	RW	Slow clock is measured in a window of SLOW_COUNT+1 slow clock cycles. Note:
				- when programming 0xFF, the window is 256 slow clock cycles
				- to obtain a good behavior, using not less than 0x17 is recommended
31:9	RESERVED31_9	0x0	R	Reserved

Table 74. CLK32PERIOD_REG register description

Bit	Field name	Reset	RW	Description
18:0	SLOW_PERIOD	0x0	RW	Indicates slow clock period information. The result provided in this field corresponds to the length of SLOW_COUNT periods of the slow clock (32 kHz) measured in 16 MHz half-period unit. Example: if SLOW_COUNT=0x17=23d and SLOW_PERIOD=24000d -> slow clock period = SLOW_PERIOD / (16e6 x 2 x (SLOW_COUNT+1)) = 24000 / (16e6 x 2 x 24) = 31.25e-6 A new calculation can be launched by writing zero in the CLK32PERIOD register. In this case, the time window uses the value programmed in the SLOW_COUNT field.
31:19	RESERVED31_19	0x0	R	Reserved

Table 75. CLK32FREQUENCY_REG register description

Bit	Field name	Reset	RW	Description
26:0	SLOW_FREQUENCY	0x0	R	Value equal to (2^39 / SLOW_PERIOD).
31:27	RESERVED31_27	0x0	R	Reserved

RM0498 - Rev 1 page 36/115

Table 76. RADIO_CONTROL_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description
0	SLOW_CLK_IRQ	0x0	RW	Slow clock measurement end of calculation interrupt status When read: - 0: no pending interrupt - 1: pending interrupt: slow clock period/frequency values are available. Write '1' to clear the interrupt.
7:1	RESERVED7_1	0x0	R	Reserved
13:8	RADIO_FSM_IRQ	0x0	RW	Radio FSM interrupt status (aka RfFsm_event_irq). -0: no pending interrupt -1: pending interrupt RfFsm_event [5] = PLL calibration error RfFsm_event [4] = PLL lock failed RfFsm_event [3] = PLL unlock detection RfFsm_event [2] = reserved RfFsm_event [1] = reserved RfFsm_event [0] = lock_timeout Write '1' to clear the interrupt
31:14	RESERVED31_14	0x0	R	Reserved

Table 77. RADIO_CONTROL_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	SLOW_CLK_IRQ_MASK	0x0	RW	Mask slow clock measurement interrupt 0: interrupt disabled 1: interrupt enabled
7:1	RESERVED7_1	0x0	R	Reserved
13:8	RADIO_FSM_IRQ_MASK	0x0	RW	Mask for each RfFsm_event (Radio FSM) interrupt. - 0: Interrupt disabled - 1: Interrupt enabled.
31:14	RESERVED31_14	0x0	R	Reserved

RM0498 - Rev 1 page 37/115

8 IP BLE

The Bluetooth LE link layer of the IP_BLE is a programmable automate which can act as a central or a peripheral .

The Bluetooth LE link layer embeds a Sequencer which automatically reads data and job request from link tables and link lists prepared in advance by the CPU in retention RAM. This allows the Bluetooth LE link layer to start a Bluetooth LE reception or transmission directly at low-power mode exit while the CPU is still booting and not yet able to manage any firmware action.

8.1 Overview

The IP BLE embeds:

- a Bluetooth Link layer
- a modulator
- a demodulator

The Bluetooth LE link layer manages:

- the reception and transmission sequences including channel hopping,
- on-the-fly encryption thanks to an embedded AES (which can also be used by the SW to compute LE privacy and manual encryption),
- the antenna switching feature

The Bluetooth LE link layer embeds a Sequencer which uses information located in RAM tables to manage the RF transfer and part of the Bluetooth LE protocol. Those RAM tables need to be prepared by the SW.

In general, the process to generate a Bluetooth LE transfer is the following:

- the CPU prepares some tables in RAM containing information about the next Bluetooth LE transfer(s)
- the CPU programs one of the 3 possible timers that triggers/starts a sequence
- When the selected timer matches the programmed value, the Sequencer starts to execute a Bluetooth LE sequence. This implies:
 - to read the RAM table to know what to do,
 - to (re-)program the radio register if needed,
 - to launch the Radio FSM with an Rx or Tx request depending on requested transfer.
 - once the analog RF is ready to transmit (respectively receive), to read the data payload from RAM (respectively to write the data payload in RAM)
- Once the sequence is done (successfully or with errors), the Sequencer writes back in RAM updated information (flags, pointers, etc.)

Once RAM write-back is over, the Sequencer sends an interrupt to the CPU, related to interrupt mask programmed by the CPU (through the RAM table).

8.2 Bluetooth LE link layer Sequencer

The Sequencer needs a trigger event to start any action.

Then the Sequencer manages a transmission or reception (or no) sequence depending on the RAM table content it reads.

8.2.1 Possible trigger timers for the Sequencer

Three different timers can trigger a Bluetooth LE link layer sequence:

- 1. Wake-up timer event
- this timer is inside the wakeup block and is the only one able to wake up the IP_BLE (and the SoC) from a low-power state
- this timer is based on absolute time (slow clock granularity)
- this timer is enabled by setting the BLUE_SLEEP_REQUEST_MODE[30] = BLE_WAKEUP_EN bit and the trigger event time is programmed in the BLUE_WAKEUP_TIME[31:0]
- if an RRM command is enabled (through the StatMach table, RadioComListEna field), the sequencer requests the Command0 to the RRM-UDRA block during the sequence.

2. Timer1 timer

RM0498 - Rev 1 page 38/115

- · this timer is managed by the IP BLE Sequencer itself but using the interpolated time
- the granularity of this counter is 16 x slow clock period
- this timer is enabled by setting timeout
- the Timer1 trigs an event when the current interpolated time matches (or has gone past) the scheduled time programmed in the TIMEOUTREG APB register
- this timer cannot be used in low-power mode
- if an RRM command is enabled (through the StatMach table, RadioComListEna field), the Sequencer requests the Command1 to the RRM-UDRA block during the sequence.

3. Timer2 timer

- this timer is based on a relative time and starts counting at the end of the previous transmission/reception
- the granularity of this counter is 1 us
- this timer is a counter located inside the Sequencer of the Bluetooth LE link layer and cannot be used in low power mode
- the Timer2 trigs an event when the counter matches the value programmed in the Timer2[19:0] bit field of the TxRxPack RAM table
- this timer is enabled by setting the Timer2En bit in the TxRxPack RAM table of a sequence, allowing a trigger event for the next sequence (Tx/Rx sequence)
- this timer is supposed to be used for short time delay between two Bluetooth transfers
- if an RRM command is enabled (through the StatMach table, RadioComListEna field), the Sequencer requests the Command2 to the RRM-UDRA block during the sequence.

Ways to manage those 3 timers:

The 3 timers are managed (enabled/disabled) in a different way. The goal of the section below is to explain how to manage according to the use-case.

Each timer is one-shot. This means once it expires, it stops and the software has to reprogram/re-enable it for a new sequence.

Furthermore, as there is no mechanism to prevent more than one timer to be active at the same time, the software must ensure it does not start a timer while another one is already on-going for the next sequence.

Here is a summary of the enable/disable method for each timer:

- the wake-up timer is enabled and programmed through the wakeup BLUE_WAKEUP_TIME APB register
 and has no interference with the two others so may be enabled in addition to Timer1 or Timer2.
- the Timer1:
 - duration is programmed only through the IP BLE TimeoutDestReg APB register
 - enable is done only through the IP_BLE TimeoutDestReg APB register
 - disable can be done through the IP_BLE TimeoutDestReg APB register
 - a hardware disable is automatically done by the Sequencer when it treats the Timer2 enable information in the TxRxPack RAM table under execution (whatever the TxRxPack.Timer2En bit value).
- the Timer2:
 - can be programmed either through the IP_BLE TimeoutDestReg APB register or through the TxRxPack table
 - can be enabled/disabled either through the IP_BLE TimeoutDestReg APB register or through the TxRxPack table.

Note:

- Programming respectively Timer1 or Timer2 through the IP_BLE TIMEOUTDESTREG APB register automatically disables respectively the Timer2 or Timer1.
- If the Bluetooth LE sequence ends on a receive timeout (STATUSREG.RCVTIMEOUT = 1), Timer2 is not started even if the TxRxPack.Timer2En associated to this reception was 1.
- Even if Timer2 can be enabled through the IP_BLE controller TIMEOUTDESTREG APB register, it is recommended not to do it in application flow and to use the RAM table.
- TIMEOUTDESTREG[1:0] and TIMEOUTREG[31:0] need to be programmed at least 15 microseconds before the required start trigger.

RM0498 - Rev 1 page 39/115

8.2.2 Bluetooth LE sequence description

The Bluetooth LE sequence starts on the trigger event (from the wakeup timer or the Timer1 or the Timer2). The sequence is managed in three mains phases:

- Initialization (split into 3 sub-steps)
- reception or transmission
- Context saving (to write back some updated field in RAM tables)

At the end of those phases, an interrupt (if at least one active source enabled) is generated to the CPU.

Note:

the status flags and potential associated interrupt are set only at the end of the sequence and not in real time when the event that generates them occurs.

Note:

the STATUSREREG.SEQDONE flag (and INTERRUPT1REG.SEQDONE if enabled in the GlobalStatMach table) is always raised when the Sequencer exits a sequence started by a trig event, whatever the process it followed (exit on error at any steps or run up to the end without problems). For this reason, this specific flag is not mentioned/repeated each time in this section.

The first RAM access done by the Sequencer on any trigger event is to get the GlobalStatMach word 0x01 to check the active bit to know if the parameters the Sequencer is about to read in the RAM table for the 1st INIT phase can be considered as ready and up to date.

If the active bit is low, the sequence stops, and the only actions done are:

- setting NOACTIVELERROR flag in the STATUSREG IP BLE APB register
- and if IntNoActiveLError is set in the GlobalStatMach, setting the NOACTIVELERROR in the INTERRUPT1REG IP_BLE APB register and generating an associated interrupt.

If the GlobalStatMach.Active bit is set, then the Sequencer starts the initialization phase.

Note:

an automatic Active bit auto clear during context saving phase of the sequence can be enabled through the ChkFlagAutoClearEna bit in the GlobalStatMach. This avoids unexpected Tx/Rx due to Sequencer trigger event while the SW did not update the RAM tables (kind of SW acknowledge to allow the next transfer).

The figure below provides an overview of the Sequencer steps and control versus other blocks.

Figure 5. Sequencer steps overview

RM0498 - Rev 1 page 40/115

8.2.2.1 First initialization phase

During the first initialization phase, the Sequencer only reads the minimum information it needs in the RAM table to be able to start the Radio FSM for a reception or a transmission at the end of this phase.

The Sequencer launches up to 3 parallel tasks:

- 1. Set (or maintain if KeepSemaReq bit was set in the TxRxPack RAM table of the previous sequence) the take req signal toward the RRM semaphore block to request/keep the token to access the radio resources.
- 2. If the RadioComListEna bit is set in the current StatMach table, send a command to the RRM UDRA:
 - Command 0 if trig event is the Wakeup timer
 - Command 1 if trig event is the Timer1
 - Command 2 if the trig event is the Timer2.
- 3. Get the minimum information needed to be able to start the Radio FSM (transmission or reception, channel number, PLL calibration requested or not, etc.).

At the end, this task also computes the channel number through the channel incrementer hardware block if requested and writes few radio registers (MOD_DEM_DIG_USR, RADIO_FSM_USR and PHYCTRL_DIG_USR) according to information from the RAM tables.

This first initialization step ends on a timeout defined by a bit field in the GlobalStatMach:

 WakeupInitDelay (time unit is 16 x slow clock so typically 512 kHz) when trig event source is the wakeup timer

Note:

despite the wakeup trigger event to start the sequence being based on a slow clock granularity, typ. 32 kHz (as the trigger occurs at BLUE_WAKEUP_TIME[31:4]), the Sequencer waits until the interpolate time is BLUE_WAKEUP_TIME[31:0 + WakeUpInitDelay to exit the 1st INIT step which means the 512 kHz granularity is respected.

- Timer12InitDelayCal (time unit is 1 us) when the trig event is the Timer1 or when the trig event is the Timer2 and CalReg bit in TxRxPack table is set (PLL calibration requested)
- Timer2InitDelayNoCal (time unit is 1 us) when the trig event is the Timer2 and CalReq bit in the TxRxPack table is low (no PLL calibration requested).

InitDelay is used as a generic name for this duration to simplify the documentation as it can be 3 different bit fields that define it depending on the configuration.

Note:

the main constraint on this delay depends on the previous setup:

- If KeepSemaReq bit was set in the TxRxPack of the previous transfer, then the Radio FSM stays in ACTIVE2 and the main constraint to define the delay is the AHB accesses to read the RAM tables.
- If KeepSemaReq bit was low in the TxRxPack of the previous transfer, then the RRM semaphore releases
 the token and Radio FSM goes back to IDLE. Then the main constraint for the delay is the duration for the
 Radio FSM to reach ACTIVE2 state from IDLE (25 us for ENA_RF_REG step and 20 us for ENA_CURR
 step).
- In parallel, if accurate clock was turned off, there is also the delay to have accurate clock available to consider.

Caution: Whatever the trig event source, this **InitDelay** management in the Sequencer uses the system clock and the user must ensure the system runs an accurate clock to have a precise delay.

When the *InitDelay* timeout expires, the Sequencer checks several conditions to decide if it switches to the second initialization step or exits with error. The checked conditions are:

- Radio FSM reached ACTIVE2 state meaning it is ready to receive a Tx or Rx request (and system clock is the accurate clock)
- All RAM accesses and radio register writings to be done by the Sequencer during the first initialization step are over
- No configuration error occurred (see Section 8.2.3.4 Configuration error for more details)

If all the conditions are true, then the Sequencer:

- sends a Tx or Rx request to the Radio FSM depending on transfer direction indicated by TxMode bit in the current StatMach table
- and switches to the second initialization step.

RM0498 - Rev 1 page 41/115

If at least one of the conditions is false then:

- the sequence rises the flag(s) associated to the error(s). It can be:
 - STATUSREG.CONFIGERROR bit if a configuration error has been detected,
 - STATUSREG.ACTIVE2ERROR bit if the Radio FSM is not in ACTIVE2 at the end of the *InitDelay*,
 - STATUSREG.SEMATIMEOUTERROR bit if the RRM semaphore did not grant the IP_BLE on time,
- No RAM write back action is done.
- The error bits set in the STATUSREG register also appear in INTERRUPT1REG if their associated interrupt enable bit is set in the GlobalStatMach table.

8.2.2.2 Second initialization step

The 2nd INIT step is used by the Sequencer to get all the information from the RAM tables linked to the RF transfer to proceed (except DataPtr and TxDataReady bit fields).

This means the software must have filled all the RAM table information (except DataPtr and TxDataReady bit fields) when the **InitDelay** timeout expires.

The 2nd INIT step starts when the Tx or Rx request is sent to the Radio FSM. The first action of the Sequencer is to read few delays in the GlobalStatMach. Those delays are needed during the 2nd INIT and DATA INIT steps.

This 2nd INIT step ends on a timeout based on 2 pieces of information read in the GlobalStatMach:

- 1. init_radio_delay (in us), used as a generic name for this duration to simplify the documentation: it is one possibility out of 4 different bit fields depending on the transfer configuration:
 - TransmitNoCalDelayChk when the transfer is a Tx and no PLL calibration is requested (CalReq bit is low),
 - TransmitCalDelayChk when the transfer is a Tx and a PLL calibration is requested (CalReg bit is set),
 - ReceiveNoCalDelayChk when the transfer is an Rx and no PLL calibration is requested (CalReq bit is low).
 - ReceiveCalDelayChk when the transfer is an Rx and a PLL calibration is requested (CalReg bit is set).
- TxdataReadyCheck: duration given to the Sequencer to get the two last pieces of information, which are DataPtr and TxDataReady information in the RAM table. This last reading is done in the third initialization step called DATA_INIT.

The 2nd INIT ends after "init radio delay – TxdataReadyCheck" us.

From the 2nd INIT step, the Radio FSM is running in parallel to the Sequencer getting information in the RAM tables. The user must ensure the init_radio_delay duration does not exceed the RF analog setup time up to powering on the antenna for a transmission (or ready to receive on the antenna). This means the 2nd INIT step must not exceed:

- the duration of the Radio FSM to go from ACTIVE2 to Tx state for a transmission with few us of margin
- the duration of the Radio FSM to go from ACTIVE2 to Rx state for a reception.

Note:

- For transmission, the init_radio_delay timeout must expire before the Radio FSM is in Tx mode to avoid
 missing the start of the preamble sending on the antenna (otherwise garbage is sent while the preamble is
 supposed to be output).
- For a reception, the init_radio_delay must expire close to the switch in Rx state of the Radio FSM, knowing the RcvTimeout counter starts when the init_radio_delay expires.

At the very beginning of the 2nd INIT step:

- · the Sequencer starts an internal relative timer
- In parallel, the Sequencer reads the init_radio_delay, ConfigEndDuration and TxdataReadyCheck information in the GlobalStatMach.

The 2nd INIT step really starts to fetch information related to the transfer in the RAM tables when the relative timer reaches "init_radio_delay – ConfigEndDuration".

The GlobalStatMach.ConfigEndDuration bit field allows delaying the reading of the transfer information contained in the RAM tables by the Sequencer. The goal of this delay is to provide more margin to the SW to fill the RAM table information that is read during 2nd INIT. This is possible as the RAM table read session is shorter than the analog radio setup duration. The figure below provides a summary of the timing information contributors for the initialization steps.

RM0498 - Rev 1 page 42/115

Figure 6. Sequencer Initialization steps timings overview

8.2.2.3 Data initialization step

This data INIT step starts when the 2nd INIT step ends.

During this step, the Sequencer only gets 2 values from the table:

- TxDataReady bit in the TxRxPack indicating enough bytes are present in the Tx payload data buffer (in case
 of transmission only).
- DataPtr bit field in the TxRxPack.

The GlobalStatMach.TxdataReadyCheck is used to delay the start of this DATA INIT step to allow more time to the software to provide the data pointer (and first values to transmit if transfer is a transmission).

The DATA INIT step ends when the relative timer (started at the beginning of the 2nd INIT step) reaches init_radio_delay:

- if all conditions are OK (AllTableReady read at 1, TxDataReady read at 1 for a transmission, Radio FSM still in a state between ACTIVE2 and Rx or Tx, command_end received from the RRM if a UDRA command was launched in parallel, a start pulse is sent to the receive/transmit block for a reception/transmission).
- or else no start pulse is sent to the receive/transmit block and status/interrupt flags are updated in the Bluetooth® Low Energy APB registers (no RAM write-back is done).

For transmission, a synchronization mechanism is in place between the transmit block and the Radio FSM: the transmit block waits for the Tx state information from the Radio FSM to know when data can be sent to the modulator. As the transmit block is supposed to receive the start pulse from the Sequencer a bit before the Radio FSM reaches the Tx state, a wait window needs to be defined to avoid waiting forever: this time window is defined in the GlobalStatMach.TxReadyTimeout bit field.

Caution: It is the responsibility of the software to ensure that the init_radio_delay, the ConfigEndDuration and the TxdataReadyCheck values are coherent to guarantee both data ready on time in the table and start pulse sent on time to the receive/transmit block.

RM0498 - Rev 1 page 43/115

8.2.2.4 Transmission/reception step

The transmission/reception step starts when the start pulse is sent by the Sequencer to the transmit or to the receive block.

This step ends when the transmit/receive block indicates that the transfer is done:

- all data transmitted for a transmission (followed by a waiting time defined by GlobalStatMach.TxdelayEnd)
- a frame has been received or the programmed timeout to wait for a reception expired without any reception.

Important:

- When a transmission is completed, the timer2, if it is programmed, starts counting only when GlobalStatMach.TxdelayEnd has elapsed
- · When a reception is completed, if the exit reason is a timeout, the timer2 does not start.

8.2.2.5 Context saving step

The context saving steps consist of RAM write-back operation in some RAM table words to update with the result of the RF transfer that just ended.

This step starts when the Sequencer obtains the transfer done information from the transmit or receive block.

The RAM write-back impacts the following RAM table elements:

- GlobalStatMach Word1 if the GlobalStatMach.ChkFlagAutoClearEna bit is set:
 - clear the Active bit
 - write back the rest of the bit field of this Word1 with the value previously read by the Sequencer in the RAM table.
- StatMach Word0: update SN, NESN, remapped channel, and next transfer direction (TxMode)
- StatMach Word1: update the TxPoint[31:0] with TxPointNext[31:0] or keep the same.
- StatMach Word2: update the RcvPoint[31:0] with RcvPointNext[31:0] or keep the same.
- StatMach Word3: update the TxPointPrev[31:0] with TxPoint[31:0] or keep the same.
- StatMach Word4: update the RcvPointPrev[31:0] with RcvPoint[31:0] or keep the same.
- StatMach Word5: update the TxPointNext[31:0] or keep the same.
- StatMach Word6: update the PCntTx[31:0] or keep the same.
- StatMach Word7: update the PCntTx[39:32] and PCntRcv[23:16] or keep the same.
- StatMach Word8:
 - update the PCntRcv[39:24] or keep the same
 - the rest of the Word8 is written back with value previously read by the Seguencer in the RAM table.

Note: See Section 8.5.1 Pointers management and packet counter for pointer management details.

8.2.2.6 Bluetooth® Low Energy sequence summary

The sequences of operations characterizing a transmission and a reception are summarized in the following timing diagrams.

Figure 7. Tx sequence

RM0498 - Rev 1 page 44/115

Figure 8. Rx sequence

8.2.3 Possible root causes of aborted sequence

It may happen that the sequence is not started or interrupted before the end for different reasons.

In any case, the SeqDone flag (and interrupt if enabled) occurs at the end of a sequence whatever the status (successful or failed).

Then, some status/error flags (with associated maskable interrupt) are available to obtain the reason of the abortion or to have complementary information on the sequence that just occurred.

8.2.3.1 Active bit is low

The sequence is stopped just after the trigger event because the Active bit in the GlobalStatMach RAM table is read equal to 0.

If active bit is low, then:

- no sequence is started (Radio FSM and transmit/receive blocks not informed),
- no timer management is done (no update / reprogramming of the different timers is done),
- no RAM write-back occurs, RAM tables are left unchanged,
- the NOACTIVELERROR bit is set in the STATUSREG IP_BLE APB register,
- if the NOACTIVELERROR bit in the GlobalStatMach word 0x05 is set, the NOACTIVELERROR bit is set in the INTERRUPT1REG IP_BLE APB registers and a Bluetooth® Low Energy interrupt is generated to the CPU
 - The enable mask is readable in INTERRUPT1ENABLEREG.NOACTIVELERROR bit.

8.2.3.2 RRM semaphore does not grant the IP BLE on time

On a trigger event and if active bit is high, the Sequencer requests the token to the RRM semaphore to have control of the radio resources.

If, at the end of the initialization delay (WakeupInitDelay or Timer12InitDelayCal or Timer2InitDelayNoCal), the RRM still does not confirm the IP_BLE has been granted, then:

- no sequence is started (Radio FSM and transmit/receive blocks not informed)
- no timer management is done (no update/reprogramming of the different timers is done)
- no RAM write-back occurs, RAM tables are left unchanged,
- the SEMATIMEOUTERROR bit is set in the STATUSREG IP BLE APB register
- if the IntSemaTimeoutError bit in the GlobalStatMach word 0x05 is set, the SEMATIMEOUTERROR bit is set in the INTERRUPT1REG IP BLE APB registers and an interrupt is generated to the CPU
 - The enable mask is readable in INTERRUPT1ENABLEREG. SEMATIMEOUTERROR bit.

8.2.3.3 Radio FSM not in ACTIVE2 state on time

This error happens if the Radio FSM is not in ACTIVE2 state at the end of the 1st INIT step (on *InitDelay* timeout expiration).

If, at the end of the initialization delay (WakeupInitDelay or Timer12InitDelayCal or Timer2InitDelayNoCal), the Radio FSM has still not confirmed it is ready to start a Tx or Rx sequence (no accurate clock present for instance):

- no sequence is started (Radio FSM and transmit/receive blocks not informed)
- no timer management is done (no update/reprogramming of the different timers is done)
- no RAM write-back occurs, RAM tables are left unchanged

RM0498 - Rev 1 page 45/115

- the ACTIVE2ERROR bit is set in the STATUSREG IP BLE APB register
- if the IntActive2Error bit in the GlobalStatMach word 0x05 is set, the Active2Errorbit is set in the INTERRUPT1REG Bluetooth® Low Energy APB registers and a IP_BLE interrupt is generated to the CPU
 - The enable mask is readable in INTERRUPT1ENABLEREG. ACTIVE2ERROR bit.

8.2.3.4 Configuration error

A configuration error occurs if the value contained by the Rcvpoint or Txpoint field or IQSamplingPtr of the current StatMach RAM table is not modulo 4 (does not correspond to a 32-bit aligned address).

Note:

the StatMach.IQSamplingPtr value is checked only for some values in other RAM table bit fields. Refer to Section 8.6.4.4 IQSamplesPtr[31:0] or AntennaPatternPtr[31:0] not 32-bit aligned for details.

In this case:

- the Sequencer stops the sequence at the end of the 1st initialization phase (so neither the Radio FSM nor the transmit/receive blocks received any request),
- no timer management is done (no update/reprogramming of the different timers)
- no RAM write-back occurs
- the STATUSREG.CONFIGERROR bit is set
- if the IntConfigError bit in the GlobalStatMach RAM table is set, the INTERRUPT1REG.CONFIGERROR is set and an IP BLE interrupt is generated
 - The enable mask is readable in INTERRUPT1ENABLEREG.CONFIGERROR bit.

8.2.3.5 Address pointer error

An address pointer error occurs if the TxRxPack.NextPtr[31:24], the TxRxPack.DataPtr[31:24] or the StatMach.IQSamplestPtr[31:24] (if TxRxPack.CTEAndSamplingEnable=1) is not equal to the SoC RAM base address.

In this case:

- · no transmission or reception is started
- the Tx or Rx request towards Radio FSM is canceled
- · no RAM write-back is done
- the STATUSREG.ADDPOINTERROR bit is high at the end of the sequence
- if the IntAddPointError bit in the GlobalStatMach is high, the INTERRUPT1REG.ADDPOINTERROR bit is set and an IP BLE interrupt is generated.
 - The enable mask is readable in INTERRUPT1ENABLEREG.ADDPOINTERROR bit.

8.2.3.6 PLL lock fail (only if GlobalStatMach.AutoTxRxSkipEn = 1)

If the AutoTxRxSkipEn bit in the GlobalStatMach RAM table is set, the Sequencer skips the sequence if the PLL lock fail information is raised.

This PLL lock fail corresponds to the fact that the PLL did not lock on time and is provided by the Radio FSM. It is checked by the Sequencer at the end of the initialization step, before entering the Tx-Rx step.

In this case:

- no transmission or reception is started
- the Tx or Rx request towards Radio FSM is canceled
- no RAM write-back is done
- the STATUSREG.TXRXSKIP bit is high at the end of the sequence
- if the IntTxRxSkip bit in the GlobalStatMach is high, the INTERRUPT1REG.TXRXSKIP bit is set and a Bluetooth® Low Energy interrupt is generated
 - The enable mask is readable in INTERRUPT1ENABLEREG.TXRXSKIP bit.

8.2.3.7 TxRxSkip APB command

An APB command is available to skip an on-going Tx or Rx transfer. The software needs to write '1' in the TXRXSKIP bit of the CMDREG IP_BLE APB register.

Note: This bit is auto-cleared immediately by the hardware.

RM0498 - Rev 1 page 46/115

The software must be aware that the TxRxSkip APB command is considered only during a sequence. Otherwise the skip request is ignored (not recorded and no TxRxSkip interrupt/status flag is raised on the next sequence). The behavior differs depending on the TxRxSkip command that occurs inside the sequence.

Table 78. Summary of flags and RAM table pointers behavior versus Tx Skip command

	ı	nterrupt flags		RAM table	s updated		
"Skip at" phase	DONE bit[25]	TXRXSKIP Bit[21]	TXERROR_1 Bit[9]	Tx Prev	Tx	Tx next	RAM write-back
1 st INIT	NO	YES	NO	NO	NO	NO	NO
2 nd INIT	NO	YES	NO	NO	NO	NO	NO
DATA INIT	NO	YES	NO	NO	NO	NO	NO
Tx	YES	YES	YES	NO	NO	YES	YES
CONTECT SAVING	YES	NO	NO	YES	YES	YES	YES

Table 79. Summary of flags and RAM table pointers behavior versus Rx Skip command

		Interrupt	flags		RAM table Pointe	ers updated	
"Skip at" phase	RCVOK Bit[31]	RCVCRCERR Bit[30]	DONE Bit[25]	TXRXSKIP Bit[21]	RCV Prev	RCV	RAM write-back
1 st INIT	NO	NO	NO	YES	NO	NO	NO
2 nd INIT	NO	NO	NO	YES	NO	NO	NO
DATA INIT	NO	NO	NO	YES	NO	NO	NO
Rx	NO	YES	YES	YES	NO	YES	YES
CONTECT SAVING	YES	NO	YES	NO	YES	YES	YES

In all scenarios, the IntTxRxSkip bit in the GlobalStatMach must be high to have an interrupt generated when the STATUSREG.TXRXSKIP bit is high. In this case, the INTERRUPT1REG.TXRXSKIP bit is also high. The enable mask is readable in INTERRUPT1ENABLEREG.TXRXSKIP bit.

8.2.3.8 AllTableReady bit not set on time

This error is linked to:

- Interrupt mask in GlobalStatMach.IntAllTableReady.
 - This mask is readable in INTERRUPT1ENABLEREG.ALLTABLEREADYERROR bit.
- Status flag in ALLTABLEREADYERROR bit.
- Interrupt flag in INTERRUPT1REG.ALLTABLEREADYERROR bit.

During the 2nd INIT step, the TxRxPack.AllTableReady bit is read by the Sequencer just after the ConfigEndDuration waiting loop (but checks its value only when exiting DATA INIT step at the end of init_radio_delay).

The role of this bit is to guarantee the information related to the transmission/reception packet (especially data pointers) in the TxRxPack (except the payload bytes when transmission) are valid/up-to-date.

If the recorded TxRxPack.AllTableReady is not high:

- · no transmission or reception is started
- Tx or Rx request towards Radio FSM is canceled
- no RAM write-back is done
- the STATUSREG.ALLTABLEREADYERROR bit is high at the end of the sequence
- if the IntAllTableReadyError bit in the GlobalStatMach is high, the INTERRUPT1REG.ALLTABLEREADYERROR bit is set and an IP_BLE interrupt is generated
 - The enable mask is readable in INTERRUPT1ENABLEREG.ALLTABLEREADYERROR bit.

RM0498 - Rev 1 page 47/115

8.2.3.9 TxdataReady bits not set on time

This bit is used only when the on-going transfer is a transmission (not checked on a reception).

It adds flexibility to the software to be able to go on filling the data payload to transmit while the transmission has already started on the antenna.

The recommendation is to set this bit only after at least 16 bytes of Tx data payload are available in the data buffer.

The Sequencer reads the TxRxPack.TxDataReady bit at the beginning of the DATA INIT step but checks its value only at the end of the init radio delay.

If the recorded TxRxPack.TxDataReady is not high:

- no transmission is started
- Tx request towards Radio FSM is canceled
- no RAM write-back is done
- the STATUSREG.TXDATAREADYERROR bit is high at the end of the sequence
- if the IntTxDataReadyError bit in the GlobalStatMach is high, the INTERRUPT1REG.TXDATAREADYERROR bit is set and an IP_BLE interrupt is generated
 - The enable mask is readable in INTERRUPT1ENABLEREG.TXDATAREADYERROR bit.

8.2.3.10 Receive length error

This aborting issue can occur only on reception.

A receive length error is detected if the received length value decoded in the received frame header is greater than the StatMach.MaxReceivedLength[7:0] bit field. This feature can be used when free RAM area is limited and does not allow receiving large packets.

If the receive block detects a packet length in the received header that is greater than the StatMach.MaxReceiveLength value:

- the receiver treats only MaxReceiveLength bytes of data and stops its sequence
 - any extra bytes sent by the demodulator are ignored
- the data payload written back in RAM is limited to MaxReceiveLength + 2 bytes (corresponding to header + length) + potential CTEINFO byte in case of data PDU channel with CTE present
- the Sequencer manages the reception step as usual as the receive block provides a done pulse, it receives a receive done pulse from the receive block
 - this leads to stopping the Radio FSM receive mode while data are potentially still arriving on the antenna
- a RAM write-back occurs
- the STATUSREG.RCVLENGTHERROR bit is high at the end of the sequence
- if the IntRcvLengthError bit in the GlobalStatMach is high, the INTERRUPT1REG.RCVLENGTHERROR bit is set and an IP_BLE interrupt is generated
 - The enable mask is readable in INTERRUPT1ENABLEREG.RCVLENGTHERROR bit.

Note:

As the receiver truncates the received frame to a reduced length, a CRC error occurs in parallel and potential other side effect error flags. So, the RCVLENGTHERROR flag must be considered before the others regarding a reception.

8.3 IP BLE interrupts

The Bluetooth® Low Energy link layer provides 2 separate interrupt lines:

- int1: Bluetooth® Low Energy sequence interrupt (linked to sequence that just occurred)
- int2: AES interrupt (manual or LE privacy end of calculation)

The IP_BLE interrupts:

- the IP_BLE interrupts are enabled through the RAM tables (some in the GlobalStatMach, others in TxRxPack)
- a copy of the applied enable mask is available in the INTERRUPT1ENABLEREG IP BLE APB register
- the IP_BLE interrupts status can be read when an interrupt triggerss at CPU level and is available in the INTERRUPT1REG Bluetooth® Low Energy APB register
- the IP_BLE interrupts are cleared by writing '1' in the associated bit in the INTERRUPT1REG Bluetooth® Low Energy APB register

RM0498 - Rev 1 page 48/115

• a dedicated internal timer is started when the interrupt is raised: its value is accessible in the INTERRUPT1LATENCYREG register. The goal of this register is to inform the interrupt handler SW about how long the interrupt is pending. This latency window is limited to 255 us. Over this delay, the read value stays at 255.

Note:

only enabled interrupts can be read at '1' in this INTERRUPT1REG register. To have the equivalent without enable mask, the STATUSREG IP_BLE APB register must be read.

The AES interrupts:

- the AES interrupts are enabled through IP_BLE APB registers (MANAESCMDREG for manual AES and AESLEPRIVCMDREG for LE privacy AES)
- the AES interrupts status can be read in the INTERRUPT2REG IP_BLE APB register and represents/means "end of calculation" information
- the AES interrupts are cleared by writing '1' in the associated bit in the INTERRUPT2REG IP_BLE APB register.

Note:

the "end of calculation" information is only available through enabled interruption. The MANAESSTATREG and the AESLEPRIVSTATREG IP_BLE APB registers contain other flags, not equivalent to INTERRUPT2REG registers.

8.4 IP_BLE RAM tables

Each time a trigger event is sent to the Bluetooth® Low Energy link layer, the Sequencer fetches the RAM tables in RAM to get the needed information to know what to configure for the radio and which sequence to start (Rx or Tx).

There are several types of table:

- The GlobalStatMach: this table is unique.
- The StatMach: one table by active connection (up to 128 supported by the hardware).
- The TxRxPack: one table packet in Rx or in Tx. So, there is no predefined number of those tables. They are used as a link list from one packet to another during a full connection.
- The DataPack table corresponding to the data buffers pointed by the DataPtr in the TxRxPack. It contains the PDU section of the Bluetooth packet.

Figure 9. RAM table dependency overview gives an overview of RAM tables dependencies. In the provided example, the GlobalStatMach is currently managing the connection number X (StatMachx on-use) and the data buffer points to itself from the third transfer of each type.

RM0498 - Rev 1 page 49/115

Figure 9. RAM table dependency overview

8.4.1 GlobalStatMach RAM table

The GlobalStatMach location is frozen by hardware at address 0x2000_00C0 in the BlueNRG-LPS.

8.4.1.1 GlobalStatMach RAM table overview

The GlobalStatMach is unique and mainly contains static information/options.

RM0498 - Rev 1 page 50/115

Table 80. GlobalStatMach RAM table

Word	Byte addr	R/W bv Bluetooth LE	7	ဖ	Ŋ	4	2	-	0
	0x0				<u> </u>	RadioConfigPtr[7:0]			
	0x1	2			, and the second	RadioConfigPtr[15:8]			
	0x2	2			Ra	RadioConfigPtr[23:16]			
	0x3				Ra	RadioConfigPtr[31:24]			
	0x4		Active			CurStMachNum	hNum		
Š	0x5	Č				WakeupInitDelay			
OX O	9x0	X/X			F	Timer12InitDelayCal			
	0×7				Ţ	Timer2InitDelayNoCal			
	0x8				Tra	TransmitCalDelayChk			
	6×0	۵			Trar	TransmitNoCalDelayChk	~		
OXO	0xA	Ľ			Re	ReceiveCalDelayChk			
	0xB				Rec	ReceiveNoCalDelayChk			
	0xC				0	ConfigEndDuration			
	0xD	۵			Ĺ	TxdataReadyCheck			
SOX O	0xE	۷.				TxdelayStart			
	0xF		TimeCapture	TimeCaptureSel			TxdelayEnd		
	0x10					TxReadyTimeout			
0	0x11	۵				RcvTimeout[7:0]			
5	0x12	۷			"	RcvTimeout [15:8]			
	0x13						Rcv	RcvTimeout [19:16]	
	0x14						ChkFlagAutoClearEna		AutoTxRxskipEn
3000	0x15	۵							
COXO	0x16	۷.	IntNoActiveLError	IntTxDataReadyError	IntNoActiveLError IntTxDataReadyError IntAllTableReadyError IntAddPointError	IntAddPointError			
	0x17		IntConfigError	IntActive2Err	intTxRxSkip	IntSeqDone	IntSemaTimeoutError	IntRcvLengthError	
	0x18					DefaultAntennalD[6:0]	ınalD[6:0]		
90	0x19	۵							
		-							
	0x1B								

RM0498 - Rev 1 page 51/115

Note:

- grey cells are unused cells
- pink cells are related to debug/qualification topic.

The following section describes the GlobalStatMach bit fields to help the user to program accurately the table.

Note:

init_radio_delay is the generic name for the delay that can be TransmitCalDelayChk or TransmitNoCalDelayChk or ReceiveCalDelayChk or ReceiveNoCalDelayChk depending on transfer configuration (see Section 8.2.2.2 Second initialization step for more details).

8.4.1.2 GlobalStatMach RAM table registers list

Table 81. GlobalStatMach RAM table register list

Address offset	Name	RW	Reset	Description
0x00	WORD0	RW	0x00000000	Word0 register
0x04	WORD1	RW	0x0000000	Word1 register
0x08	WORD2	RW	0x00000000	Word2 register
0x0C	WORD3	RW	0x0000000	Word3 register
0x10	WORD4	RW	0x0000000	Word4 register
0x14	WORD5	RW	0x00000000	Word5 register
0x18	WORD6	RW	0x00000000	Word6 register

Table 82. GlobalStatMach.WORD0 register description

Bit	Field name	Reset	RW	Description
				Radio Configuration address Pointer.
				Contains the address of the command_start_list used by the RRM block to execute UDRA command.
31:0	RADIOCONFIGPTR	0x0000000	RW	Caution: This pointer must be 32-bit aligned.
				Note: This value is loaded automatically by the RRM when the MR_BLE exits reset. However, it is also possible to make the RRM reload it through a reload command in the UDRA_CTRL register.

Table 83. GlobalStatMach.WORD1 register description

Bit	Field name	Reset	RW	Description
				Current connection machine number.
			RW	Defines the state machine number (in the range from 0 to 127) which is running for the current transmission or reception.
6:0	CURSTMACHNUM	0x0		It is used to calculate the RAM address from which the State machine table ("StateMach") is read.
				Note: This field is written back with value read at the beginning of the sequencer only if the ChkFlagAutoClearEna bit = '1'.
7	ACTIVE	0x0	RW	Must be at '1' when the trig event (Wake-up Timer, Timer1 or Timer2) occurs to start Bluetooth® Low Energy link layer sequence. Otherwise, no RF sequence nor timer management is done by the Sequencer.
				Note: This field is written back to '0' only if the ChkFlagAutoClearEna bit = '1'.
15:8	WAKEUPINITDELAY	0x0	RW	Delay between wake-up timer trig event on Sequencer and Rx/Tx request sending to the Radio FSM. It corresponds to the Sequencer 1st INIT step duration.
				Note: This bit field is not used if trig event comes from Timer1 or Timer2.

RM0498 - Rev 1 page 52/115

Bit	Field name	Reset	RW	Description
15:8	WAKEUPINITDELAY	0x0	RW	The time unit for this delay/value is a period of slow clock frequency x 16 (if slow clock is 32 kHz, this bit field unit is 1 period of 512 kHz).
10.0	Willer Hill Bleit	OXO		Note: This field is written back with value read at the beginning of the Sequencer only if the ChkFlagAutoClearEna bit = '1'.
				Delay between Timer1 or Timer2 trig event on Sequencer and Rx/Tx request sending to the Radio FSM. It corresponds to the Sequencer 1st INIT step duration.
23:16	TIMER12INITDELAYCAL	0x0	RW	This bit field is used for Timer2 trig event only if CalReq bit is set in current TxRxPack RAM table (PLL calibration is requested).
				The time unit for this delay is 1 us.
				Note: This field is written back with value read at the beginning of the Sequencer only if the ChkFlagAutoClearEna bit = '1'.
				Delay between Timer2 trig event on Sequencer and Rx/Tx request sending to the Radio FSM. It corresponds to the Sequencer 1st INIT step duration.
31:24 TIMER2INITDELAYNOCAL	0x0	RW	This bit field is used for Timer2 trig event only if CalReq bit is low in current TxRxPack RAM table (no PLL calibration is requested).	
				The time unit for this delay is 1 us.
				Note: This field is written back with value read at the beginning of the Sequencer only if the ChkFlagAutoClearEna bit = '1'.

Table 84. GlobalStatMach.WORD2 register description

Bit	Field name	Reset	RW	Description
				Delay between Tx request sent to the Radio FSM and the start pulse sent to the transmit block. It corresponds to the Sequencer 2 nd INIT + DATA INIT steps duration.
7:0	TRANSMITCALDELAYCHK	0x0	RW	Note: This bit field is used if TxMode bit is set in the StatMach (transmission) and the CalReq bit is set in current TxRxPack RAM table (PLL calibration is requested).
				The time unit for this delay is 1 us.
			RW	A recommended value is available in Section 8.5.4 Sequencer timings recommended values.
				Delay between Tx request sent to the Radio FSM and the start pulse to the transmit block. It corresponds to the Sequencer 2 nd INIT + DATA INIT steps duration.
15:8	TRANSMITNOCALDELAYCHK	0x0	RW	Note: This bit field is used if TxMode bit is set in the StatMach (transmission) and the CalReq bit is low in current TxRxPack RAM table (no PLL calibration is requested).
				A recommended value is available in Section 8.5.4 Sequencer timings recommended values.
				The time unit for this delay is 1 us.
			RW	Delay between Rx request sent to the Radio FSM and the start pulse sent to the receive block. It corresponds to the Sequencer 2 nd INIT + DATA INIT steps duration.
23:16	RECEIVECALDELAYCHK	0x0		Note: This bit field is used if TxMode bit is low in the StatMach (reception) and the CalReq bit is set in current TxRxPack RAM table (PLL calibration is requested).
				A recommended value is available in Section 8.5.4 Sequencer timings recommended values.
				The time unit for this delay is 1 us.

RM0498 - Rev 1 page 53/115

Bit	Field name	Reset	RW	Description
				Delay between Rx request sent to the Radio FSM and the start pulse to the receive block. It corresponds to the Sequencer 2 nd INIT + DATA INIT steps duration.
31:24	RECEIVENOCALDELAYCHK	0x0	RW	Note: This bit field is used if TxMode bit is low in the StatMach (reception) and the CalReq bit is low in current TxRxPack RAM table (no PLL calibration is requested).
				A recommended value is available in Section 8.5.4 Sequencer timings recommended values.
				The time unit for this delay is 1 us.

Table 85. GlobalStatMach.WORD3 register description

Bit	Field name	Reset	RW	Description
				Duration for the Sequencer to execute the final configuration.
7:0	CONFIGENDDURATION	0x0	RW	The goal of this bit field is to provide more time to the firmware to prepare the RAM tables.
7.0	CONFIGENDORATION	UXU		The Sequencer waits for relative time to be equal to init_radio_delay - ConfigEndDuration before starting the final configuration.
				The time unit for this delay is 1 us.
				Duration for the Sequencer to get the TxDataReady and DataPtr information in TxRxPack table.
15:8	15:8 TXDATAREADYCHECK 0x0	0x0	RW	The goal of this bit field is to provide more time to the firmware to provide the data pointer address and in case of transmission to provide the data to transmit.
				The Sequencer waits for relative time to be equal to init_radio_delay - TxdataReadyCheck before starting the final configuration.
				The time unit for this delay is 1 us.
23:16	TXDELAYSTART	0x0	RW	Delay added between the moment the Radio FSM is in Tx mode (PA ramp-up done and power present on the antenna) and the first bit transmission to the modulator.
				The time unit for this delay is 125 ns.
				Delay added between the last bit transmission to the modulator and the "end of transmission" information for the Sequencer.
29:24	TXDELAYEND	0x0	RW	The time unit for this delay is 125 ns.
				This delay allows giving time to the modulator and analog chain to output on the antenna the last bit.
				0: the captured time (absolute time) corresponds to the end of 1st INIT step in the sequence (<i>InitDelay</i> timeout event).
30	TIMECAPTURESEL	0x0	RW	1: the captured time (absolute time) corresponds to the end of DATA INIT step in the sequence (init_radio_delay timeout event).
				Note: This bit is for debug purposes.
				0: no capture is requested to monitor the Bluetooth® Low Energy sequence.
			1: a time capture is requested to monitor the Bluetooth® Low Energy sequence. Captured event is defined by GlobalStatMach.TIMECAPTURESEL bit.	
31	TIMECAPTURE	0x0	k0 RW	Note: If both TIMECAPTURE and TIMECAPTURESEL bits are low, the TIMERCAPTUREREG IP_BLE APB register is anyway updated with the <i>InitDelay</i> timeout event (mechanism to bypass the fact those 2 GlobalStatMach bits are checked after 1st INIT step completion).
				Note: If TxRxPack.TrigRcv or TxRxPack.TrigDone bit is set, the TimerCaptureReg Bluetooth® Low Energy APB register shows this last event trig value at the end of the sequence.

RM0498 - Rev 1 page 54/115

Bit	Field name	Reset	RW	Description
31	TIMECAPTURE	0x0	RW	Note: This bit is for debug purposes.

Table 86. GlobalStatMach.WORD4 register description

Bit	Field name	Reset	RW	Description
				Transmission ready timeout.
				Defines the maximum duration for the transmit block to wait for the Radio FSM to indicate it is in Tx state and data can be provided to the modulator.
7:0	TXREADYTIMEOUT	0x0	RW	The time unit for this delay is 1 us.
				Note: If this value is set to 0, no timeout is activated to wait for the Tx ready information. This configuration is not recommended at all as it may lead to endless sequences, restarted only through a new trigger event being generated.
				Receive window timeout.
27:8	RCVTIMEOUT	0x0	RW	Define the maximum duration to stay in reception without any preamble + access address detection (rest of the frame can be received even outside this time window).
				The duration is expressed as (4^RCVTIMEOUT[19:18]) x RCVTIMEOUT[17:0]
				The time unit for RCVTIMEOUT[17:0] is 1 us.
31:28	RESERVED31_28	0x0	RW	Ignored on write - read as zero

Table 87. GlobalStatMach.WORD5 register description

Bit	Field name	Reset	RW	Description
				Automatic transfer (Tx or Rx) skip enable.
0	AUTOTXRXSKIPEN	0x0	RW	If set, the Bluetooth® Low Energy link layer stops automatically an on-going transfer if PLL lock fail event is detected on PLL start. See Section 8.2.3.6 PLL lock fail (only if GlobalStatMach.AutoTxRxSkipEn = 1) for details about behavior on skip.
1	RESERVED1	0x0	RW	Reserved
				Active Auto Clear bit Enable.
				The Active auto clear feature leads the Sequencer to clear the GlobalStatMach.Active bit during the RAM write-back step at the end of a transfer/sequence.
2	2 CHKFLAGAUTOCLEARENA	0x0	RW	The main goal of this feature is to avoid a new transfer to start on the antenna while the software did not yet prepare the next transfer in RAM tables.
				0: the active auto clear bit feature is disabled.
				1: The active auto clear bit feature is enabled.
19:3	RESERVED19_3	0x0	RW	Reserved
				Address pointer error interrupt enable.
20	INTADDPOINTERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.AddPointError is disabled.
				1: the interrupt associated to INTERRUPT1REG.AddPointError is enabled.
				All table ready error interrupt enable.
21	21 INTALLTABLEREADYERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.AllTableReadyError is disabled.
				1: the interrupt associated to INTERRUPT1REG.AllTableReadyError is enabled.
22	INTTXDATAREADYERROR	0x0	RW	Transmission data payload ready error interrupt enable.

RM0498 - Rev 1 page 55/115

Bit	Field name	Reset	RW	Description
22	INTTXDATAREADYERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.TxDataReady is disabled.
				1: the interrupt associated to INTERRUPT1REG.TxDataReady is enabled.
				Active bit low value reading interrupt enable.
23	INTNOACTIVELERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.NoActiveLError is disabled.
				1: the interrupt associated to INTERRUPT1REG.NoActiveLError is enabled.
24	RESERVED24	0x0	RW	Reserved
				Too long received payload length interrupt enable.
25	INTRCVLENGTHERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.ReceiveLengthError is disabled.
				1: the interrupt associated to INTERRUPT1REG.ReceiveLengthError is enabled.
				Semaphore timeout error interrupt enable.
26	6 INTSEMATIMEOUTERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.SemaTimeoutError is disabled.
				1: the interrupt associated to INTERRUPT1REG.SemaTimeoutError is enabled.
27	RESERVED27	0x0	RW	Reserved.
				Sequencer end of task interrupt enable.
28	INTSEQDONE	0x0	RW	This bit should always be set to ensure that an interrupt occurs at the end of sequence whatever the exit reason.
				0: the interrupt associated to INTERRUPT1REG.SeqDone is disabled
				1: the interrupt associated to INTERRUPT1REG.SeqDone is enabled
				Transmission or reception skip interrupt enable.
29	INTTXRXSKIP	0x0	RW	0: the interrupt associated to INTERRUPT1REG.intTxRxSkip is disabled.
				1: the interrupt associated to INTERRUPT1REG.intTxRxSkip is enabled.
			5111	No "in ACTIVE2" information from Radio FSM received on time interrupt enable.
30	INTACTIVE2ERR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.Active2Error is disabled.
				1: the interrupt associated to INTERRUPT1REGActive2Error is enabled.
				Configuration error interrupt enable.
31	INTCONFIGERROR	0x0	RW	0: the interrupt associated to INTERRUPT1REG.ConfigError is disabled
				1: the interrupt associated to INTERRUPT1REG. ConfigError is enabled.

Table 88. GlobalStatMach.WORD6 register description

Bit	Field name	Reset	RW	Description
6:0	DEFAULTANTENNAID	0x0	RW	Default Antenna ID corresponding to the number of the antenna used to receive/ transmit: the full packet when no CTE the packet body (Preamble, Access Address, PDU, and CRC) when CTE
31:7	RESERVED31_7	0x0	RW	Reserved

8.4.2 StatMach RAM table

The StatMach table links to an active connection. There are as many StatMach tables as concurrent connections in a limit of 128 (maximum supported by the hardware).

RM0498 - Rev 1 page 56/115

The StatMach RAM table location is frozen by the hardware as chained just after the GlobalStatMach. The formula for a StatMach base address is:

StateMachBaseAddress[stateMachIdx] = GlobStatMachBaseAddress + 28 + (stateMachIdx * 92)

Table 89. StatMach RAM table

		R/W												
Word	Byte addr.	by Bluetooth® Low Energy	7	6	5	4	3	2	1	0				
	0x0		TxMode	RadioComListEna			Uchan							
0,400	0x1	R/W	NESN	SN			Remap_chan							
0x00	0x2	R/VV	RcvEnc	TxEnc	EncryptOn	Buffer_Full								
	0x3				RxPhy[2:0]		CTEDisable		TxPhy[2	:0]				
	0x4					Txpoint[7:0]								
0x01	0x5	R/W	Txpoint[15:8]											
UXUT	0x6	TC/ V V	Txpoint[23:16]											
	0x7		Txpoint[31:24]											
	0x8					Rcvpoint[7:0]								
0x02	2 0x9 0x0A	R/W				Rcvpoint[15:8]								
0.02		1000				Rcvpoint[23:16]								
	0x0B					Rcvpoint[31:24]								
	0x0C				ı	RcvpointPrev[7:0]								
0x03	0x0D	R/W		RcvpointPrev[15:8]										
0.000	0x0E	1000	Txpointnext[23:16]											
	0x0F				Т	xpointnext[31:24]								
	0x10			RcvpointPrev[7:0]										
0x04	0x11	R/W			F	cvpointPrev[15:8]								
0,04	0x12	1000			R	cvpointPrev[23:16]								
	0x13				R	cvpointPrev[31:24]								
	0x14				Txpointnext[7:0]									
0x05	0x15	R/W				Txpointnext[15:8]								
0,000	0x16	1000			T	xpointnext[23:16]								
	0x17				Т	xpointnext[31:24]								
	0x18					PCntTx[7:0]								
0x06	0x19	R/W				PCntTx [15:8]								
OXOG	0x1A	1011		PCntTx [23:16]										
	0x1B				PCntTx [31:24]									
	0x1C					PCntTx [39:32]								
0x07	0x1D	R/W				PCntRcv[7:0]								
0,101	0x1E	1077		PCntRcv[15:8]										
	0x1F			PCntRcv[23:16]										
	0x20					PCntRcv[31:24]								
0x08	0x21	R				PCntRcv[39:32]								
	0x22		RxMicDbg	MsbFirst	DisableCrc	EnaPreambleRep		Prea	mbleRep[3:0]					

RM0498 - Rev 1 page 57/115

Word	Byte addr.	R/W by	7	6	5	4	3	2	1	0
	auur.	Bluetooth® Low Energy								
0x08	0x23	R	RxDebugCrc	IntRxOverflowError	IntEncError		intTxEr	ror[4:0]		
	0x24				,	accaddr[7:0]				
0x09	0x25	R				accaddr[15:8]				
0203	0x26					accaddr[23:16]				
	0x27					accaddr[31:24]				
	0x28					crcinit[7:0]				
0x0A	0x29	R				crcinit[15:8]				
	0x2A					crcinit[23:16]				
	0x2B				М	axReceivedLength				
	0x2C						PaPo	ower		
0x0B	0x2D	R					hopincr			
oxez	0x2E				Use	edChannelFlags[7:0]				
	0x2F				Use	dChannelFlags[15:8	3]			
	0x30					ChannelFlags[23:10				
0x0C	0x31	R			Used	ChannelFlags[31:24	4]			
	0x32						UsedChanne	IFlags[36:	32]	
	0x33									
	0x34					eventCounter[7:0]				
0x0D	0x35	R			е	ventCounter[15:8]				
	0x36									
	0x37									
	0x38					EncryptIV[7:0]				
0x0E	0x39	R				EncryptIV[15:8]				
	0x3A					EncryptIV[23:16]				
	0x3B					EncryptIV[31:24]				
	0x3C					EncryptIV[39:32]				
0x0F	0x3D	R				EncryptIV[47:40]				
	0x3E					EncryptIV[55:48]				
	0x3F					EncryptIV[63:56]				
	0x40					EncryptK[7:0]				
0x10	0x41	R				EncryptK[15:8]				
	0x42					EncryptK[23:16]				
	0x43 0x44					EncryptK[31:24]				
						EncryptK[39:32]				
0x11	0x45 0x46	R				EncryptK[47:40]				
	0x46 0x47					EncryptK[55:48]				
						EncryptK[63:56]				
0x12	0x48	R				EncryptK[71:64]				
	0x49					EncryptK[79:72]				

RM0498 - Rev 1 page 58/115

Word	Byte addr.	R/W by Bluetooth® Low Energy	7	6	5	4	3	2	1	0					
0x12	0x4A	R				EncryptK[87:80]									
OXIL	0x4B	1.		EncryptK[95:88]											
	0x4C					EncryptK[103:96]									
0x13	0x4D	R			E	EncryptK[111:104]									
UX13	0x4E	K			E	EncryptK[119:112]									
	0x4F				E	EncryptK[127:120]									
	0x50				CTET	ime[4:0]			CTESlotWidth	AoD_nAoA					
0.44	0x51	Б			N	MaximumIQSamples	Number[6:0]								
0x14	0x52	R			Ante	nnaPatternLength[7	0]								
	0x53														
	0x54				I	QSamplesPtr[7:0]									
0x15	0x55	Б			IC	QSamplesPtr[15:8]									
UX15	0x56	R			IC	SamplesPtr[23:16]									
	0x57			IQSamplesPtr[31:24]											
	0x58				An	tennaPatternPtr[7:0]									
0x16	0x59	Б		AntennaPatternPtr[15:8]											
UX16	0x5A	R			Ante	ennaPatternPtr[23:10	6]								
	0x5B				Ante	ennaPatternPtr[31:24	4]								

Note:

- grey cells are unused cells
- pink cells are related to debug/qualification topic
- green cells are related to features outside Bluetooth protocol (proprietary protocol)

The following section describes the StatMach bit fields to help the user to accurately program the table.

8.4.2.1 StatMach RAM table register list

Table 90. StatMach RAM table register list

Address offset	Name	RW	Reset	Description
0x00	WORD0	RW	0x0000000	Word0 register
0x04	WORD1	RW	0x0000000	Word1 register
0x08	WORD2	RW	0x0000000	Word2 register
0x0C	WORD3	RW	0x0000000	Word3 register
0x10	WORD4	RW	0x0000000	Word4 register
0x14	WORD5	RW	0x0000000	Word5 register
0x18	WORD6	RW	0x0000000	Word6 register
0x1C	WORD7	RW	0x0000000	Word7 register
0x20	WORD8	RW	0x0000000	Word8 register
0x24	WORD9	RW	0x0000000	Word9 register
0x28	WORDA	RW	0x0000000	WordA register
0x2C	WORDB	RW	0x0000000	WordB register

RM0498 - Rev 1 page 59/115

Address offset	Name	RW	Reset	Description
0x30	WORDC	RW	0x0000000	WordC register
0x34	WORDD	RW	0x0000000	WordD register
0x38	WORDE	RW	0x0000000	WordE register
0x3C	WORDF	RW	0x0000000	WordF register
0x40	WORD10	RW	0x0000000	Word10 register
0x44	WORD11	RW	0x0000000	Word11 register
0x48	WORD12	RW	0x0000000	Word12 register
0x4C	WORD13	RW	0x0000000	Word13 register
0x50	WORD14	RW	0x0000000	Word14 register
0x54	WORD15	RW	0x0000000	Word15 register
0x58	WORD16	RW	0x0000000	Word16 register

Table 91. StatMach.WORD0 register description

Bit	Field name	Reset	RW	Description
				Bluetooth® Low Energy unmapped channel index.
				UChan is used by the channel incrementer and the remapper to generate a new Uchan and RemapChan values through the two algorithms defined by the Bluetooth core 5.0 specification.
5:0	UCHAN	0x0	RW	Note: this field is written back at the end of the transfer by the Sequencer:
3.0	OCHAN	UXU	IXVV	- if TxRxPack.incchan = 0, written back value is the same value,
				- if TxRxPack.incchan = 1, written back value is the value modified by one of the two algorithms defined by the Bluetooth core 5.0 specification.
				Note: the standard requests this bit field to be set to 0 for the first connection event.
				Radio command list enable.
				0: the Sequencer does not start a UDRA command to the RRM on a trig event.
6	RADIOCOMLISTENA	0x0	RW	1: the Sequencer starts a UDRA command to the RRM on a trig event.
				The command number is related to the timer which triggered (0 for Wakeup timer, 1 for Timer1, 2 for Timer2).
				Transfer type selection of the current sequence.
_		0x0 F	0x0 RW	0: requested transfer is a reception. The start address of the TxRxPack packet in which the received data has to be stored is pointed by rcvpoint.
7	TXMODE			1: requested transfer is a transmission. The start address of the TxRxPack packet to be
				transmitted is pointed by TxPoint. Note: this bit is overloaded by the Sequencer with the StatMach.NextTxMode bit value during each RAM write-back phase.
				Bluetooth® Low Energy remapped channel index.
				This is the remapped channel as described in algorithm1 and algorithm2 in Bluetooth core specification 5.0.
				This bit field is used by the hardware to generate the physical channel frequency.
13:8	REMAP_CHAN	0x0	RW	Note: this field is written back at the end of the transfer by the Sequencer:
				- if TxRxPack.incchan = 0, written back value is the same value
		defined by the Bluetooth core 5.0 spec	- if TxRxPack.incchan = 1, written back value is the value modified by one of the two algorithms defined by the Bluetooth core 5.0 specification and mapped to the used channels list.	
				Note: the standard requests this bit field to be set to 0 for the first connection event.
				Bluetooth® Low Energy sequence number bit.
14	SN	0x0	RW	If TxRxPack.SN_EN = 0 or TxRxPack.Advertise = 1, this bit is kept unchanged at the end of a transfer.

RM0498 - Rev 1 page 60/115

Bit	Field name	Reset	RW	Description
				If TxRxPack.SN_EN = 1 and TxRxPack.Advertise = 0, this bit is managed automatically by the hardware SN/NESN mechanism (as described in the Bluetooth core specification 5.0). Then, this bit is modified by the hardware only at the end of a reception (not on transmission).
				Note: in any case, this bit is written back by the Sequencer at the end of a transfer (modified or not).
				Bluetooth® Low Energy next expected sequence number bit.
				If TxRxPack.SN_EN = 0 or TxRxPack.Advertise=1, this bit is kept unchanged at the end of a transfer.
15	NESN	0x0	RW	If TxRxPack.SN_EN = 1 and TxRxPack.Advertise = 0, this bit is managed automatically by the hardware SN/NESN mechanism (as described in the Bluetooth core specification 5.0). Then, this bit is modified by the hardware only at the end of a reception (not on transmission).
				Note: in any case, this bit is written back by the Sequencer at the end of a transfer (modified or not).
19:16	RESERVED19_16	0x0	RW	Reserved
				No more receive buffer available.
				Set this bit to indicate no more buffer is available to receive any packet.
				In this case:
20	BUFFER_FULL(aka	0x0	RW	- no data are written back in the RAM at the end of the sequence
	BUFFOVERFLOW)			- the SN/NESN automatic mechanism adapts its behavior by keeping the NESN unchanged and does not increment the encryption receive packet counter.
				Note: the SN bit management is not impacted to keep the transmission progressing as long as the peer acknowledges the reception of the previous transmitted packet.
				"On-the-fly" encryption/decryption engine enable.
				0: the "On the fly" encryption/decryption engine is disabled.
21	ENCRYPTON	0x0	RW	1: the "On the fly" encryption/decryption engine is enabled. The parameters StateMach.EncryptIV and StateMach.EncryptK are read from RAM during the initialization phase.
				Note: the "On the fly" encryption/decryption engine does not run for packets with null length.
				Note: it is mandatory to have TxRxPack.SN_EN = 1 when StateMach.Encryption = 1 as PCntTx is incremented by the SN/NESN automatic management mechanism.
				Previous transmission packet was encrypted.
				Note: this bit is fully managed by the hardware.
22	TXENC	0x0	RW	It is set to 1 after the transmission of an encrypted packet (so with length not zero).
22	IXLING	OXO	IXVV	When TxEnc = 0, PCntTx (transmission packet counter required for the sub-keys calculation) is unchanged.
				When TxEnc = 1, PCntTx may be incremented depending on the SN/NESN check result.
				Last receive packet was encrypted.
				Note: this bit is fully managed by the hardware.
23	RCVENC	0x0	RW	It is set to 1 after the reception of a packet with length not zero (whatever the CRC check result) if StateMach.Encryption = 1.
				When RcvEnc = 1, the PCntRcv (receive packet counter required for the sub-keys calculation) is incremented depending on the SN/NESN check result.
				Transmission Phy selection.
				- 000: selected transmitter PHY is legacy 1 Mbps
				- 001: selected transmitter PHY is legacy 2 Mbps
26:24	TXPHY	0x0	RW	- 100: selected transmitter PHY is coded 1 Mbps with S=8
				- 110: selected transmitter PHY is coded 1 Mbps with S=2
				- Others: reserved for future use. If programmed by mistake, selects "Transmitter PHY is legacy 1 Mbps" option.
27	CTEDISABLE	0x0	RW	Disable the CTE feature.

RM0498 - Rev 1 page 61/115

Bit	Field name	Reset	RW	Description
				- 0: in transmission, the CTE is appended to the packet if TxRxPack.CTEAndSamplingEnable bit is set; in reception, the CTE detection is active.
				- 1: CTE is never appended on a transmitted packet and CTE detection mechanism is not active in reception whatever the rest of the RAM table bit fields linked to CTE.
				Reception Phy selection.
				bit0: bit rate (0=1 Mbps / 1=2 MBps) / bit1: does not care / bit2: coded/not coded.
		0x0		- 000: selected receiver PHY is legacy 1 Mbps
30:28	RXPHY		RW	- 001: selected receiver PHY is legacy 2 Mbps
00.20				- 1x0: selected receiver PHY is coded 1 Mbps
				- Others: reserved for future use. If programmed by mistake, selects "Receiver PHY is not coded 1 Mbps" option.
				Note: S2/S8 coded choice comes from an auto-detection done by the demodulator.
31	RESERVED31	0x0	RW	Ignored on write - read as zero

Table 92. StatMach.WORD1 register description

Bit	Field name	Reset	RW	Description
				Pointer to transmit packet.
				TxPoint defines the start address of the TxRxPack link list (containing the parameters of the current transmission to be proceeded).
31:0	TXPOINT	0x0	RW	This variable needs to be initialized by the firmware with the start address of the first TxRxPack of the transmission linked list each time a StateMach is created in memory (new connection). Then, TxPoint is managed by the hardware, considering the firmware has to guarantee the transmission link list is never empty (or pointing to itself).
				Note: this pointer address must be 32-bit aligned and is an absolute address (not an offset).

Table 93. StatMach.WORD2 register description

Bit	Field name	Reset	RW	Description	
				Pointer to receive packet.	
				Rcvpoint defines the start address of the TxRxPack link list (containing the parameters of the current reception to be proceeded).	
31:0	RCVPOINT	0x0	RW	This variable needs to be initialized by the firmware with the start address of the first TxRxPack of the reception linked list each time a StateMach is created in memory (new connection). Then, RcvPoint is managed by the hardware, considering the firmware has to guarantee the reception link list is never empty (or pointing to itself).	
					Note: this pointer address must be 32-bit aligned and is an absolute address (not an offset).

Table 94. StatMach.WORD3 register description

Bit	Field name	Reset	RW	Description
				Pointer to previous transmit packet.
31:0	TXPOINTPREV	0x0	RW	This variable is fully managed by the hardware. It is recommended to initialize to 0 by the firmware when the StateMach is created in memory (new connection).
				TxPointPrev indicates which buffer can be reallocated (as it is now free).

Table 95. StatMach.WORD4 register description

Bit	Field name	Reset	RW	Description
31:0	RCVPOINTPREV	0x0	RW	Pointer to previous receive packet.

RM0498 - Rev 1 page 62/115

Bit	Field name	Reset	RW	Description
				This variable is fully managed by the hardware. It is recommended to initialize to 0 by the firmware when the StateMach is created in memory (new connection).
				RcvPointPrev indicates which buffer can be reallocated (as it is now free).

Table 96. StatMach.WORD5 register description

Bit	Field name	Reset	RW	Description
31:0	TXPOINTNEXT	0x0	RW	Next transmit pointer. This variable is fully managed by the hardware. It is recommended to initialize to 0 by the firmware when the StateMach is created in memory (new connection). TxPointNext indicates the address of the TxRxPack transmit packet to be used once the transmission managed by the TxPoint is done (TxRxPack.NextPtr[31:0]). The TxPointNext bit field is always updated at the end of a transmission. Note: at the end of a valid reception with TxRxPack.SN_EN = 1 and TxRxPack.Advertise = 0, the StatMach.TxPoint is equal to the StatMach.TxPointNext.

Table 97. StatMach.WORD6 register description

Bit	Field name	Reset	RW	Description
	PCNTTX_31_0	0x0	RW	CCM encryption transmission packet counter [31:0]. PCntTx is used during the on the fly encryption of the transmission data by the AES encryption engine. For each new connection, Bluetooth protocol requires PCntTx to be initialized by the firmware to the value: - 40'h8000000000: for data channel PDUs sent by the central
				- 40'h000000000: for data channel PDUs sent by the peripheral Note: it is mandatory to have TxRxPack.SN_EN = 1 when StateMach.Encryption = 1 as PCntTx is incremented by the SN/NESN automatic management mechanism.

Table 98. StatMach.WORD7 register description

Bit	Field name	Reset	RW	Description
				CCM encryption transmission packet counter [39:32].
				PCntTx is used during the on the fly encryption of the transmission data by the AES encryption engine.
7.0	DONTTY 20, 22	0.40	RW	For each new connection, Bluetooth protocol requires PCntTx to be initialized by the firmware to the value:
7:0	PCNTTX_39_32	0x0	KVV	- 40'h8000000000: for data channel PDUs sent by the central
				- 40'h0000000000: for data channel PDUs sent by the peripheral
				Note: it is mandatory to have TxRxPack.SN_EN = 1 when StateMach.Encryption = 1 as PCntTx is incremented by the SN/NESN automatic management mechanism.
				CCM encryption receive packet counter [23:0].
				PCntRcv is used during the on the fly encryption of the received data by the AES encryption engine.
24.0	DONTDOV 22 A	0x0	x0 RW	For each new connection, Bluetooth protocol requires PCntRcv to be initialized by the firmware to the value:
31.8	8 PCNTRCV_23_0			- 40'h8000000000: for data channel PDUs received by the peripheral
				- 40'h000000000: for data channel PDUs received by the central
				Note: it is mandatory to have TxRxPack.SN_EN = 1 as PCntRcv is incremented by the SN/NESN automatic management mechanism.

RM0498 - Rev 1 page 63/115

Table 99. StatMach.WORD8 register description

Bit	Field name	Reset	RW	Description
				CCM encryption receive packet counter [39:24].
				PCntRcv is used during the on the fly encryption of the received data by the AES encryption engine.
15:0	PCNTRCV_39_24	0x0	RW	For each new connection, Bluetooth protocol requires PCntRcv to be initialized by the firmware to the value:
				- 40'h8000000000: for data channel PDUs received by the peripheral
				- 40'h000000000: for data channel PDUs received by the central
				Note: it is mandatory to have TxRxPack.SN_EN = 1 as PCntRcv is incremented by the SN/NESN automatic management mechanism.
				Transmission preamble repetition number.
19:16	PREAMBLEREP	0x0	RW	Defines the number of repetitions of the transmitted preamble length for coded or uncoded phy. Keep it at 0 to have the Bluetooth® Low Energy standard preamble format (1 byte).
				Note: if StateMach.EnaPreambleRep = 0, this bit field is not taken into account.
				This feature is not Bluetooth standard.
				Enable transmission preamble repetition.
				0: the preamble feature is disabled and the preamble length is as described in the Bluetooth core specification 5.0.
20	ENAPREAMBLEREP	0x0	RW	1: the preamble feature is enabled and the preamble length is defined by StateMach.PreambleRep (for coded and uncoded phy).
				This feature is not Bluetooth standard.
				Note: even if the hardware allows this feature with the Coded PHY configuration, the combination of those 2 settings must be avoided as it creates some issues on long preamble sequence.
				CRC disable.
				If set, this bit:
				- in reception: disables the check of the CRC
21	DISABLECRC	0x0	RW	- in transmission: no CRC field is generated nor inserted in the sent packet.
				This feature is not Bluetooth standard.
				Note: when DisableCRC is set, a CRC error flag is systematically set at the end of a reception. Note that the SW is not supposed to track this flag in this configuration.
				Most significant bit is transmitted first:
22	MSBFIRST	0x0	RW	0: the Least Significant Bit of the least significant byte is transmitted first in the frame (as described in Bluetooth® Low Energy core specification 5.0).
				1: the Most Significant Bit of the Most significant byte is transmitted first in the frame.
				This feature is not Bluetooth standard compatible.
				Receive MIC debug.
				0: the decrypted MIC (locally computed) is stored in the payload buffer in RAM (at the end of the payload).
23	RXMICDBG	0x0	RW	1: the received MIC is stored in the payload buffer in RAM (at the end of the payload).
				When RXMICDBG bit is set, the RCVOK flag is raised at the end of a reception whatever the MIC error status (so even when a MIC error is detected).
				This feature is for debug.
				Transmission error interrupt enable.
28:24	INTTXERROR	0x0	RW	If IntTxError[n] = 1: an interrupt is generated and associated flag is set in Interrupt1Reg.TxError[n] if a TxError[n] event occurs during the transmission.
				If IntTxError[n] = 0: no interrupt nor associated flag in Interrupt1Reg.TxError[n] is available if a TxError[n] event occurs during the transmission.

RM0498 - Rev 1 page 64/115

Bit	Field name	Reset	RW	Description
				Note: STATUSREG.TxError[n] bit is not impacted and always provides the TxError[n] unmasked information.
				Receive encryption error interrupt enable.
				Note: the CRC check result is not considered by the interrupt enabled by IntEncErr.
				0: the receive encryption error interrupt is disabled.
29	INTENCERROR	0x0	RW	1: the receive encryption error interrupt is enabled (and associated interrupt flag is visible in Interrupt1Reg.EncError).
				The interrupt is active if the MIC of the received message does not match the computed one (while the preamble and the access address are received ok, StateMach.Encryption = 1 and the received length is not null).
				Note: the CRC check result is not taken into account for this interrupt.
				Receive data path overflow error interrupt enable.
30	INTRXOVERFLOWERROR	0x0	RW	0: the interrupt INTERRUPT1REG.IntRxOverflowError is disabled.
				1: the interrupt INTERRUPT1REG.IntRxOverflowError is enabled.
				Debug mode of the CRC in reception.
				0: the received CRC is not saved with payload in RAM (this is the normal mode).
				1: the received CRC is saved with payload in RAM (this is a debug mode).
31	RXDEBUGCRC	0x0	RW	Warning: the SW has to revert the endianness on the CRC data available in the DataBuffer as the hardware stores the value with the same endianness as the PDU.
				When set:
				 the packet is accepted whatever the CRC: so if CRC errors, then the RCVOK flag is set anyway and no CRC error flag is raised.
				the DataPack RAM buffer size must take into account the 3 additional CRC bytes.

Table 100. StatMach.WORD9 register description

Bit	Field name	Reset	RW	Description	
				Packet access address. This value is used in transmission and in reception.	
31:0	ACCADDR	0x0	0x0 RW	0x0 RW	in transmission, it is inserted in the packet after the preamble.in reception, it is used by the demodulator to detect and accept a received packet.
					Note: the nature of a packet (primary advertising, secondary advertising or data) is only defined by TxRxPack.Advertise so StateMach.Accadr = 0x8E89BED6 does not mean that the packet is an advertising packet.

Table 101. StatMach.WORDA register description

Bit	Field name	Reset	RW	Description
				CRC initialization value.
23:0	CRCINIT	0x0	RW	This value is used to initialize the CRC for Data packet or for AUX_SYNC_IND PDU and its subordinate set.
			This field is ignored if TxRxPack.CRCINITSEL = 0.	
				Maximum receive length.
	31:24 MAXRECEIVEDLENGTH 0x			Defines the maximum receive length the Bluetooth LE link controller can accept.
31:24		0x0 RW	RW	If the length of the received packet is greater than this value, the hardware limits the payload RAM write-back data to the defined maximum length and stops the reception treatment on this defined maximum length (implying also CRC error, etc.)
			The ReceiveLengthError event is raised (visible in STATUSREG and if associated interrupt is enabled in INTERRUPT1REG register).	

RM0498 - Rev 1 page 65/115

Bit	Field name	Reset	RW	Description
				The received packet is processed normally when the received length located in the received packet header is smaller or equal to StateMach.MaxReceivedLength.

Table 102. StatMach.WORDB register description

Bit	Field name	Reset	RW	Description
4:0	PAPOWER	0x0	RW	Power Amplifier Power. It defines the transmission output power level expressed in dBm as described in Section 8.4.2.2 PaPower bit field description.
7:5	RESERVED7_5	0x0	RW	Ignored on write - read as zero.
13:8	HOPINCR	0x0	RW	Hop increment. Defines the hop increment as described in the algorithm 1 of the Bluetooth 5.0 core specification.
15:14	RESERVED15_14	0x0	RW	Ignored on write - read as zero.
31:16	USEDCHANNELFLAGS_15_0	0x0	RW	Remapping flags[15:0] for all 37 Bluetooth® Low Energy channels. The remapping flags are used by the Bluetooth smart algorithm 1 and 2. If bit(n]) = 1, the channel n may be used for reception or transmission. If bit(n) = 0, the channel n cannot be used for reception or transmission. Note: this parameter is described in channel classification/channel map in the Bluetooth core specification

Table 103. StatMach.WORDC register description

Bit	Field name	Reset	RW	Description
21:0	USEDCHANNELFLAGS_36_16	0x0	RW	Remapping flags[3616] for all 37 Bluetooth® Low Energy channels. The remapping flags are used by the Bluetooth algorithm 1 and 2. If bit(n]) = 1, the channel n may be used for reception or transmission. If bit(n) = 0, the channel n cannot be used for reception or transmission. Note: this parameter is described in channel classification/channel map in the Bluetooth core specification.
31:22	RESERVED31_22	0x0	RW	Ignored on write - read as zero.

Table 104. StatMach.WORDD register description

Bit	Field name	Reset	RW	Description
15:0	EVENTCOUNTER	0x0	RW	Event counter value. Contains a copy of the event counter value, used by the channel incrementer to compute the algorithm #2. This value can be the Connection event counter, the Periodic Advertising event counter, the BIS event counter or the CIS event counter. This bit field has to be managed by the SW.
31:16	RESERVED31_16	0x0	R	Ignored on write – read as zero.

Table 105. StatMach.WORDE register description

Bit	Field name	Reset	RW	Description
				Initial vector for encryption [31:0].
31:0	ENCRYPTIV_31_0	0x0	RW	This value is used by the AES engine during on the fly AES CCM encryption.
				See Bluetooth Low Energy CCM encryption description in Bluetooth LE core specification.

RM0498 - Rev 1 page 66/115

Table 106. StatMach.WORDF register description

Bit	Field name	Reset	RW	Description
				Initial vector for encryption [63:32].
31:0	ENCRYPTIV_63_32	0x0	RW	This value is used by the AES engine during on the fly AES CCM encryption.
				See Bluetooth Low Energy CCM encryption description in Bluetooth LE core specification.

Table 107. StatMach.WORD10 register description

Bit	Field name	Reset	RW	Description
				Encryption key [31:0].
31:0	ENCRYPTK_31_0	0x0	RW	This value is used by the AES engine during on the fly AES CCM encryption.
				See Bluetooth Low Energy CCM encryption description in Bluetooth LE core specification.

Table 108. StatMach.WORD11 register description

Bit	Field name	Reset	RW	Description
				Encryption key [63:32].
31:0	ENCRYPTK_63_32	0x0	RW	This value is used by the AES engine during on the fly AES CCM encryption.
				See Bluetooth Low Energy CCM encryption description in Bluetooth LE core specification.

Table 109. StatMach.WORD12 register description

Bit	Field name	Reset	RW	Description
				Encryption key [95:64].
31:0	ENCRYPTK_95_64	0x0	RW	This value is used by the AES engine during on the fly AES CCM encryption.
				See Bluetooth Low Energy CCM encryption description in Bluetooth LE core specification.

Table 110. StatMach.WORD13 register description

Bit	Field name	Reset	RW	Description
				Encryption key [127:96].
31:0	ENCRYPTK_127_96	0x0	RW	This value is used by the AES engine during on the fly AES CCM encryption.
				See Bluetooth Low Energy CCM encryption description in Bluetooth LE core specification.

Table 111. StatMach.WORD14 register description

Bit	Field name	Reset	RW	Description
				It indicates to the IP_BLE the type of CTE for transmission mode to manage or not an antenna switching sequence.
0	10D n101	0.40	DW	0: Angle of Arrival (AoA) type is used for the transmission.
U	AOD_nAOA	0x0	RW	1: Angle of Departure (AoD) type is used for the transmission.
				This bit field is used only when StatMach.TxMode = 1, TxRxPack.CTEAndSamplingEnable = 1 and StatMach.CTEDisable = 0.
				It indicates the CTE Slot width value:
	CTESLOTWIDTH	0x0	RW	0: CTE time slot is 1 us: antenna switching to be done every 2 us.
1				1: CTE time slot is 2 us: antenna switching to be done every 4 us.
				This bit field is used by the IP_BLE:
				 In transmission for AoD feature (StatMach.TxMode = 1 and StatMach.AoD_nAoA = 1) to control the antenna switching timing.

RM0498 - Rev 1 page 67/115

Bit	Field name	Reset	RW	Description
				In reception for AoA feature (StatMach.TxMode = 0 and StatMach.AoD_nAoA = 0) to control the antenna switching and IQ sampling timing. Note:
				 in AoD reception, the CTESlotWidth information is decoded in the CTEInfo bit field of the received frame, in AoA transmission, the transmitter does not need this information as it simply
				sends the CTE sequence on its unique antenna.
				It provides to the IP_BLE the duration of the Constant Tone Extension to be appended in transmission mode.
6:2	CTETIME	0x0	RW	The value is given in 8 us unit (as the CTETime bit field of the Bluetooth LE standard).
				This bit field is used only when StatMach.TxMode = 1, TxRxPack.CTEAndSamplingEnable = 1 and StatMach.CTEDisable = 0.
7	RESERVED7	0x0	RW	Reserved
				It indicates the maximum number of IQ samples that is written during a CTE reception.
				If the CTETime leads to more samples, the MR_BLE stops storing the IQ samples in RAM when this number is reached.
14:8	MAXIMUMIQSAMPLESNUMBER	0x0	RW	This bit field is used only when StatMach.TxMode = 0, TxRxPack.CTEAndSamplingEnable = 1 and StatMach.CTEDisable = 0.
				Note: despite the Bluetooth LE standard specifying that the maximum possible number of IQ samples is 82, the MR_BLE offers the possibility to customize the maximum number of IQ sampling to store from 0 to 127.
15	RESERVED15	0x0	RW	Reserved
				Length of the antenna switching pattern located at address provided by StatMach.AntennaPatternPtr[31:0].
23:16	ANTENNAPATTERNLENGTH	0x0	RW	This bit field is used only when TxRxPack.CTEAndSamplingEnable = 1 and StatMach.CTEDisable = 0.
				Note: if the CTE time is longer than the pattern length, the pattern is repeated by the hardware as indicated in the Bluetooth LE standard.
31:24	RESERVED31_24	0x0	RW	Reserved

Table 112. StatMach.WORD15 register description

Bit	Field name	Reset	RW	Description
31:0	IQSAMPLESPTR	0x0	RW	Pointer to IQ samples storage buffer (received during CTE reception). This pointer defines the start address of the RAM location where to store the received IQ samples during a Constant Tone Extension phase. The IQ samples are stored in words built with 16-bit LSB for Q[15:0] samples and 16-bit MSB for I[15:0]. This bit field is used and verified only when StatMach.TxMode = 0, StatMach.CTEDisable = 0, TxRxPack.CTEAndSamplingEnable = 1 and StatMach.MaximumIQSamplesNumber>0. Note: this pointer is an absolute address. Caution: this pointer address must be 32-bit aligned, otherwise the sequence is aborted at the end of the 1st INIT and STATUSREG.ADDPOINTERROR flag is raised.

Table 113. StatMach.WORD16 register description

Bit	Field name	Reset	RW	Description
				Pointer to Antenna Pattern (for antenna switching sequence).
31:0	ANTENNAPATTERNPTR	0x0	RW	This pointer defines the start address of the RAM location where to get the Antenna ID pattern to switch antenna during a Constant Tone Extension phase.
				Then Antenna pattern is a list of 8-bit Antenna Identifiers.

RM0498 - Rev 1 page 68/115

Bit	Field name	Reset	RW	Description
				The RAM buffer addressed by this pointer must contain at least StatMach.AntennaPatternLength bytes.
				This bit field is used and verified only when TxRxPack.CTEAndSamplingEnable = 1, StatMach.CTEDisable = 0 and StatMach.MaximumIQSamplesNumber>0.
				Note: this pointer is an absolute address.
				Caution: this pointer address must be 32-bit aligned, otherwise the sequence is aborted at the end of the 1 st INIT and STATUSREG.ADDPOINTERROR flag is raised.

8.4.2.2 PaPower bit field description

The table below provides the PA power correspondence to program the StateMach.PaPower bit field.

The SMPS of the SoC must provide a minimum voltage to reach the targeted PaPower:

- SMPS output level = 1.4 V minimum up to 4 dBm
- SMPS output level = 1.55 V minimum for 5 dBm
- SMPS output level = 1.7 V minimum for 6 dBm

For 8 dBm, refer to the note after the table as this PaPower requests a specific configuration.

Refer to the BlueNRG-LPS Reference Manual RM0491 for details on SMPS programming.

Value (Hexa)	Output power (dBm)						
1F	+6/+8 ⁽¹⁾	17	-0.5	F	-5.9	7	-14.1
1E	+5	16	-0.85	E	-6.9	6	-15.25
1D	+4	15	-1.3	D	-7.8	5	-16.5
1C	+3	14	-1.8	С	-8.85	4	-17.6
1B	+2	13	-2.45	В	-9.9	3	-18.85
1A	+1	12	-3.15	А	-10.9	2	-19.75
19	0	11	-4	9	-12.05	1	-20.85
18	-0.15	10	-4.95	8	-13.15	0	-40

Table 114. StatMach.PaPower values

- 1. Several settings are needed to reach the +8 dBm in transmission:
 - Program the SMPS located in the SoC to provide 1.9 V
 - Program 0x1F in StatMach.PaPower[4:0] bit field
 - Configure the LDO_TRANSFO in bypass mode by setting radio register LDO_ANA_ENG[1] = RFD_LDO_TRANSFO_BYPASS = 1 Warning: the LDO_ANA_ENG[1] = RFD_LDO_TRANSFO_BYPASS bit must be reset in reception.

8.4.3 TxRxPack RAM table

RM0498 - Rev 1 page 69/115

Table 115. TxRxPack RAM table

Mord	Byto addr	R/W	,	u	ų	,	,,	c	,	c
		by IP_BLE		o	o	•	,	١		•
	00×0					Ž	NextPtr[7:0]			
	0x01					Ne	NextPtr[15:8]			
9	0x02	C				Ne	NextPtr[23:16]			
	0x03	צ				Ne	NextPtr[31:24]			
	0x04		IncChan	SN_EN	Advertise	CrcInitSel	CTEAndSamplingEnable	KeepSemaReq	ChanAlgo2Sel	CalReq
Š	0x05				subEventChanAlgo2	DisableWhitening		TxdataReady	AllTableReady	NextTxMode
000	90×0									
	0x07									
	0x08					Õ	DataPtr[7:0]			
S	60×0	Č				Da	DataPtr[15:8]			
OXOZ	0x0A	>				Dat	DataPtr[23:16]			
	0x0B					Dat	DataPtr[31:24]			
	0×0C					ţ.	timer2[7:0]			
6	0×0D	۵				tir	timer2[15:8]			
COXO	0×0E	۷	TrigDone	TrigRcv		Timer2En		timer2[19:16]		
	0×0F		IntRcvOk	IntRcvOk IntRcvCrcErr	IntTimeCapture	IntRcvCmd	IntRcvNoMd	IntRcvTimeout	IntDone	IntTxOk

RM0498 - Rev 1 page 70/115

Note:

- grey cells are unused cells
- pink cells are related to debug/qualification topic.

8.4.3.1 TxRxPack RAM table register list

Table 116. TxRxPack

Address offset	Name	RW	Reset	Description
0x00	WORD0	RW	0x00000000	Word0 register
0x04	WORD1	RW	0x00000000	Word1 register
0x08	WORD2	RW	0x00000000	Word2 register
0x0C	WORD3	RW	0x00000000	Word3 register

Table 117. TxRxPack.WORD0 register description

Bi	Field name	Reset	RW	Description
				Next pointer address entry of the linked list.
31:	31:0 NEXTPTR 0x0	RW	Points to the next transmit or receive packet. The user must enter the absolute address, not an offset.	
				Caution: This pointer must be 32-bit aligned or else STATUSREG.AddPointError is set (and INTERRUPT1REG.AddPointError if GlobalStatMach.IntAddPointError = 1).

Table 118. TxRxPack.WORD1 register description

Bit	Field name	Reset	RW	Description
				Calibration request.
0	CALREQ	0x0	RW	0: RF PLL calibration feature is disabled. This setting is used when this calibration has already been done and if the radio did not go to low-power state.
				1: the RF PLL calibration feature is enabled. It must be performed at each channel frequency change or after the wakeup.
				Channel hopping algorithm selection.
				if TxRxPack.incchan = 0, this bit field has no effect.
				if TxRxPack.incchan = 1:
1	CHANALGO2SEL	0x0	RW	0: the algorithm #1 is used for the channel hopping for data channel. For primary advertising, channels are automatically incremented as follows: 37->38->39->37->etc. 1: the algorithm #2 is used for the channel hopping in data connection or for periodic advertising packets.
				Note: if TxRxPack.IncChan=0 then ChanAlgo2Sel bit has no effect.
				It indicates if the IP_BLE needs to keep the RRM token at the end of the current transfer.
	2 KEEPSEMAREQ		RW	0: the token request is cleared when the controller starts its context saving.
		0x0		1: the token request is maintained high at the end of the sequence.
2				Caution: This bit MUST be set to fit the IFS = 150 us constraint.
				Indeed, when the token is released, the Radio FSM switches back to IDLE mode. The radio FSM needs around 45 us more (ENA_RF_REG and ENA_CUR states) to go back to ACTIVE2 state on next Bluetooth LE sequence trig event.
				It indicates the handling of the Constant Tone Extension for this packet.
				In transmission:
3	CTEANDSAMPLINGENABLE	0x0	RW	0: the IP_BLE does not append CTE sequence at the end of the packet.
				1: the IP_BLE appends any CTE sequence at the end of the packet.
				In reception:

RM0498 - Rev 1 page 71/115

Bit	Field name	Reset	RW	Description
				0: the IP_BLE manages the CTE detection only to extract the CTETime information, keeping reception active until the end of the CTE phase but does not manage any other features like tie slot sampling or potential antenna switching. The goal is to keep the coherency about "last bit on the air time stamp" for TIFS management and no more.
				1: the IP_BLE manages the CTE detection and reacts accordingly to information extracted from the received frame to manage sampling time slots and potential antenna switching.
				CRC initialization value selector.
4	CRCINITSEL	0x0	RW	0: the transmit and the receive block initialize their CRC with a constant equal to: 0x555555.
				1: the transmit and the receive block initialize their CRC with the value defined by StateMach.CrcInit.
				Advertise packet format.
5	ADVERTISE	0x0	RW	0: the packet format stored in RAM or to be received is a data packet format.
				1: the packet format stored in RAM or to be received is an advertise packet format.
				Automatic SN, NESN hardware mechanism enable.
6	SN_EN	0x0	RW	0: automatic SN/NESN hardware mechanism is disabled. The receive pointers and transmit pointers are systematically shifted independently of SN, NESN bits and also on a receive timeout sequence.
				1: automatic SN/NESN hardware mechanism is enabled.
				Automatic channel incrementer enable.
7	INCCHAN	0x0	RW	When enabled, the automatic channel incrementer takes as input StateMach.UChan, TxRxPack.Advertise, TxRxPack.ChanAlgo2Sel, StateMach.Remap_chan, StateMach.hopincr, StateMach.UsedChannelFlags, StateMach.connEventCounter and StateMach.paEventCounter.
				0: automatic channel incrementer is disabled.
				1: automatic channel increment is enabled.
				Flag indicating if next TxRx packet to be handled by the link controller StateMach is a receive packet or a transmit packet.
8	NEXTTXMODE	0x0	RW	The Sequencer overloads StateMach.TxMode value with NextTxMode value during each RAM write back phase.
				0: next TxRx packet is a receive packet.
				1: next TxRx packet is a transmit packet.
				All table data ready.
				This bit is checked at the beginning of the 2 nd INIT phase to ensure bit fields related to on-going transfer and about to be read are relevant.
9	ALLTABLEREADY	0x0	RW	0: the RAM table information related to the on-going transfer is not ready. The transmission is not started by the Sequencer.
				1: the RAM table information related to the on-going transfer is ready. The transmission is started by the Sequencer.
				Note: the goal of this bit is to allow the software to block a transfer if RAM table update is not over.
				Transmission data ready.
				This bit is checked only if the current transfer is a transmission.
10	TYDATABEADV	0.40	RW	The check is done at the beginning of the DATA INIT phase to ensure that at least a few bytes of the transmission payload are already written in the data buffer.
10	TXDATAREADY	0x0	LVV	This bit allows doing an "On the fly" data buffer memcopy while transmission has already started on the antenna.
				0: the transmission payload is not ready. The transfer is not started by the Sequencer.
				1: the transmission payload is ready so the transfer is started by the Sequencer.

RM0498 - Rev 1 page 72/115

Bit	Field name	Reset	RW	Description
				Note: the recommendation for transmission data payload is to set this TxDataReady bit only when at least 16 bytes of data are available in the payload data buffer.
11	RESERVED11	0x0	RW	Reserved. It must be kept at 0.
12	DISABLEWHITENING	0x0	RW	Whitening Disable. 0: the whitening is enabled in the transmit block and in the receive block. 1: the whitening is disabled in the transmit block and in the receive block. This may be used for debug or during official Bluetooth compliance test.
13	SUBEVENTCHANALGO2	0x0	RW	Select the SubEvent Channel computation in the channel incrementer block when the algorithm #2 is used. Used only when IncChan=1 and ChanAlgo2Sel=1.
31:14	RESERVED31_14	0x0	RW	Reserved.

Table 119. TxRxPack.WORD2 register description

Bit	Field name	Reset	RW	Description
				Data pointer address.
				Points to the data packet linked with TxRxPack (called DataPack in this document).
				This data packet contains the header and the data, excluding the preamble, the access address and the CRC.
31:0	DATAPTR	0x0	RW	The Bluetooth LE link layer writes this packet in RAM in case of reception and reads it from RAM in case of transmission.
				Note: This pointer has no memory address alignment requirement.
			However, the software must write an absolute address (not an offset). If the 8-bit MSB part of the pointer value is not equal to the RAM 8-bit MAB address, an AddPointError flag is raised.	

Table 120. TxRxPack.WORD3 register description

Bit	Field name	Reset	RW	Description	
				Timer2 triggering value setting.	
				Defines the delay before next Timer2 trigger event if TxRxPack.Timer2En = 1.	
19:0	TIMER2	0x0	RW	Time unit is in microseconds.	
				Note: the Timer2 delay starts a bit earlier than the end of the on-going sequence (on last transmitted bit or last received bit and before the context saving phase).	
				Timer2 enable (for next timer trig).	
20	TIMER2EN	0x0	RW	0: Timer2 disabled at the end of this current packet.	
				1: Timer2 is enabled at the end of this current packet.	
21	RESERVED21	0x0	RW	Ignored on write - read as zero.	
			x0 RW	Time capture enable on received preamble and access address pattern detection.	
				0: no time stamping requested on preamble + access address detection.	
				1: the interpolated absolute time is captured in TIMERCAPTUREREG when the demodulator detects the preamble + access address in the received bit stream.	
22	TRIGRCV	0x0		When this bit is set and if a time capture occurs, the STATUSREG.TIMERCAPTURETRIG is set to 1. An interrupt is raised if enabled (associated to INTERRUPT1REG.TIMERCAPTURETRIG is set to 1).	
				This bit must be set to 0 in transmission TxRxPack table not to disturb other time capture options.	
				Note: if GlobalStatMach.TimeCapture or TxRxPack.TrigDone bit is set, the TIMERCAPTUREREG IP_BLE APB register shows this last event trig value at the end.	
23	TRIGDONE	0x0 RW	Time capture enable on "On air" last transmitted/received bit.		
23	23 I RIGDUNE		KU KW	0: no time stamping in TIMERCAPTUREREG is achieved, no interrupt is generated by TrigDone.	

RM0498 - Rev 1 page 73/115

Bit	Field name	Reset	RW	Description
				1: the interpolated absolute time is captured in TIMERCAPTUREREG when the demodulator receives the last bit of the bit stream or when the last transmitted has been shifted out of the transmit block.
				When this bit is set and if a time capture event occurs, the STATUSREG.TIMECAPTURETRIG is set to 1. An interrupt is raised if enabled (associated to INTERRUPT1REG.TrigDone set to 1).
				Note: if GlobalStatMach.TimeCapture or TxRxPack.TrigRcv bit is set, the TIMERCAPTUREREG Bluetooth LE APB register shows this last event trig value at the end.
				Interrupt enable of "good reception of transmitted packet is confirmed by the peer device".
				0: the interrupt INTERRUPT1REG.TXOK is disabled
24	INTTXOK	0x0	RW	1: the INTERRUPT1REG.TXOK is enabled.
				Note: this interrupt has to be enabled in the RxPack table as the feature is active at the end of a reception.
				Done interrupt enable.
25	INTDONE	0x0	RW	0: the INTERRUPT1REG.DONE is disabled.
				1: the INTERRUPT1REG.DONE is enabled.
				Receive timeout interrupt enable.
26	INTRCVTIMEOUT	0x0	RW	0: the interrupt INTERRUPT1REG.RCVTIMEOUT is disabled.
				1: the interrupt INTERRUPT1REG.RCVTIMEOUT is enabled.
				No more Data (end of connection found) interrupt enable.
27	INTRCVNOMD	0x0	RW	0: the interrupt INTERRUPT1REG.RCVNOMD is disabled .
				1: the INTERRUPT1REG.RCVNOMD is enabled.
				"Received packet is a command" interrupt enable.
28	INTRCVCMD	0x0	RW	0: the INTERRUPT1REG.RCVCMD is disabled.
				1: the INTERRUPT1REG.RCVCMD is enabled.
				"Time Capture occurred" interrupt enable.
				0: the interrupt INTERRUPT1REG. INTTIMECAPTURETRIG is disabled.
29	INTTIMECAPTURE	0x0	RW	1: the interrupt INTERRUPT1REG.INTTIMECAPTURETRIG is enabled.
				Note: the event(s) responsible for the interrupt can be the Sequencer Time Capture and/or the TrigDone and/or the TrigRcv events.
				Receive CRC error interrupt enable.
30	INTRCVCRCERR	0x0	RW	0: the interrupt INTERRUPT1REG.RCVCRCERR is disabled.
				1: the interrupt INTERRUPT1REG.RCVCRCERR is enabled.
)x0 RW	Receive OK interrupt enable.
31	INTRCVOK	0x0		0: the interrupt INTERRUPT1REG.RCVOK is disabled.
				1: the interrupt INTERRUPT1REG.RCVOK is enabled
				•

8.4.4 DataPack RAM table

The DataPack tables are the data buffer for reception or transmission packet. They are pointed by the TxRxPack.DataPtr value.

Their content corresponds to the PDU (header bytes, payload and potentially MIC for encrypted packets).

8.5 Complementary information

8.5.1 Pointers management and packet counter

The Sequencer updates the pointers and packet counters at the end of a transmission or a reception, depending on some parameters.

RM0498 - Rev 1 page 74/115

Figure 10. Pointer management and packet counter increment algorithm shows the actions made on the pointers and packet counter.

Figure 10. Pointer management and packet counter increment algorithm

8.5.2 Channel number management

The Bluetooth LE link layer manages the channel frequency through different parameters located in the RAM table.

A channel incrementer allows calculating a new channel if TxRxPack.IncChan bit is set. The algorithm (#1 or #2) is selected through the TxRxPack.ChanAlgo2Sel bit.

In addition, a remap is done to fit with the StatMach.UserChannelFlags if TxRxPack.IncChan bit is set.

Figure 11. Bluetooth LE link layer channel management overview presents an overview of the channel number management.

RM0498 - Rev 1 page 75/115

Figure 11. Bluetooth LE link layer channel management overview

When the channel incrementer hardware block is used (IncChan = 1), the selection of the algorithm must be managed by the SW following Table 121. Truth table to select the correct algorithm below.

Table 121. Truth table to select the correct algorithm

	TxRxPa	ack	Salastad algorithm
Advertise	ChanAlgo2Sel	SubEventChanAlgo2	Selected algorithm
0	0	X	Algorithm #1 is used for the channel hopping for data channel.
			Primary advertising channels selected with automatic incrementation as follows:
1	0	X	$37 \rightarrow 38 \rightarrow 39 \rightarrow 37 \rightarrow 38$
			Note: this configuration should not be used when running on secondary advertising channels (undefined behavior).
0	1	0	Algorithm #2 for an event channel (connection, secondary Advertising or CIS/BIS event) is used for the channel hopping for data channel.
0	1	1	Algorithm #2 for a subevent channel (for example CIS/BIS subevent) is used for the channel hopping for data channel.
1	1	1 0	Algorithm #2 is used for the channel hopping for Periodic Advertising channel.
'			Note: this configuration should not be used when running on primary advertising channels (undefined behavior).
1	1	1	Not supposed to be used with Bluetooth specification/use-cases.

RM0498 - Rev 1 page 76/115

In addition, the following table lists the different bit field in RAM tables linked to the channel number management and indicates which ones are used at hardware level according to targeted algorithm (#1 or #2).

Table 122. RAM table bit fields usage versus algorithm number

Bit field	RAM table	Read/write-back	Considered		
Bit liela	KAIWI LADIE	Read/write-back	for Algo #1	for Algo #2	
InChan	TxRxPack	Read	Yes	Yes	
ChannelAlgo2Sel	TxRxPack	Read	Yes	Yes	
EventCounter[15:0]	StatMach	Read	No	Yes	
SubEventChanAlgo2	TxRxPack	Read	No	Yes	
advertise	TxRxPack	Read	Yes	Yes	
accaddr[31:0]	StatMach	Read	No	Yes	
UsedChannelFlags[36:0]	StatMach	Read	Yes	Yes	
hopincr[5:0]	StatMach	Read	Yes	No	
UChan[5:0]	StatMach	Read / Written back	Yes	No	
Remap_chan[5:0]	StatMach	Read / Written back	Yes	Yes	

8.5.3 Time capture

The IP_BLE can capture the absolute time on specific events.

The capture feature is enabled inside the RAM tables and the result is provided in an IP_BLE APB register called TIMECAPTUREREG[31:0].

The events that can be time stamped / captured are:

- Sequencer reaches the end of 1st INIT step (*InitDelay* timeout)
- Sequencer reaches the end of DATA INIT step (init_radio_delay timeout)
- "On the air" last bit transmitted/received bit (depending on Rx or Tx current mode)
- Preamble + Access Address detection event on a reception

The time capture service is associated to an interrupt flag that is enabled through the TxRxPack.IntTimeCapture bit and status / interrupt flag at the end of the sequence is available in the IP_BLE APB STATUSREG.TIMECAPTURETRIG (and INTERRUPT1REG.TIMECAPTURETRIG if interrupt is enabled inside the TxRxPack table).

If several events are requested to be captured on a same sequence (e.g. Sequencer reaches end of 1st INIT and "on the air" last bit), the latest occurrence is the available time inside the TIMECAPTUREREG register.

On a transmission sequence:

Table 123. Transmission sequence

Glob	StatMach	TxR	xPack	IP_BLE APB
TimeCapture	TimeCaptureSel	TrigRcv	TrigDone	TIMECAPTUREREG
0	x	x	0	Sequencer end of 1 st INIT
1	0	х	0	Sequencer end of 1 st INIT
1	1	х	0	Sequencer end of DATA INIT
X	X	x	1	"On the air" last transmitted bit

RM0498 - Rev 1 page 77/115

Glob	StatMach	TxR	xPack	IP_BLE APB
TimeCapture	TimeCaptureSel	TrigRcv	TrigDone	TIMECAPTUREREG
0	x	0	0	Sequencer end of 1st INIT
1	0	0	0	Sequencer end of 1st INIT
1	1	0	0	Sequencer end of DATA INIT
x	x	1	0	Preamble + Access Address detection time
х	x	х	1	"On the air" last received bit

Table 124. Reception sequence

8.5.4 Sequencer timings recommended values

The 2nd INIT and DATA INIT steps of the Sequencer use several timing parameters in addition to the init_radio_delay. This generic name covers 4 different durations depending on the transfer configuration (Tx/Rx, PLL calibration/No calibration).

For reminder, the Radio FSM and the Sequencer run in parallel with almost no handshake from the start of the 2nd INIT phase.

A set of timings is programmed in the GlobalStatMach to guarantee the Sequencer starts the transmission (respectively reception) phase with respect to the Radio FSM progress.

Figure 12. Timings of an Rx sequence and Figure 13. Timings of a Tx sequence show a summary of involved timings.

Figure 12. Timings of an Rx sequence

RM0498 - Rev 1 page 78/115

Figure 13. Timings of a Tx sequence

Reminder on main constraints for a transmission:

- the DATA_INIT step must end before the Radio FSM reaches the Tx state.
 - it is possible to take some margin as the TxReadyTimeout delay allows waiting for the confirmation that the Radio FSM is in Tx state before really starting the TxDelayStart timeout (see Figure 7. Tx sequence).
- if TxRxPack.IncChan = 0, the Sequencer reads the PaPower[4:0] information from the RAM table only after the ConfigEndDuration temporization.
 - the ConfigEndDuration value must be big enough to ensure the Sequencer treats this information before the Radio FSM reaches the EN PA state.

Reminder on main constraints for a reception:

- the DATA_INIT step must end close to the moment the Radio FSM reaches the Rx state as it corresponds to the start of the Receive timeout window.
- the Sequencer transfers the StatMach.accaddr information in the AA0_DIG_USR to AA3_DIG_USR radio registers for the demodulator block. This transfer in the radio register is done only after the ConfigEndDuration temporization. This information is used by the demodulator and must be present before the Radio FSM reaches the Rx state.
 - the ConfigEndDuration value must be big enough to ensure the Sequencer starts the activity before the Radio FSM reaches the Rx state.

Table 125. Delays for Sequencer 2nd INIT step proposal shows some recommendations/proposals on values for some timings programmed through RAM tables.

Table 125. Delays for Sequencer 2nd INIT step proposal

GlobalStatMach table bit field	Recommended value	Comments
TransmitNoCalDelayChk[7:0]	0x32 (50d)	Theoretical exact duration from ACTIVE2 to Tx state is 52 us. Keep some margin to avoid timeout after Tx state. Then, use the TxReadyTimeout[7:0] to define the duration of the wait Tx state info for the transmit block.
TransmitCalDelayChk[7:0]	0x5A (90d)	Theoretical exact duration from ACTIVE2 to Tx state is 92 us. Keep some margin to avoid timeout after Tx state. Then, use the TxReadyTimeout[7:0] to define the duration of the wait Tx state info for the transmit block.
ReceiveNoCalDelayChk[7:0]	0x32 (50d)	Theoretical exact duration from ACTIVE2 to Rx state is 50 us. The delay can be programmed to 50us.

RM0498 - Rev 1 page 79/115

GlobalStatMach table bit field	Recommended value	Comments
ReceiveCalDelayChk[7:0]	0x5A (90d)	Theoretical exact duration from ACTIVE2 to Rx state is 90 us. The delay can be programmed to 90 us.
ConfigEndDuration[7:0]	at least 10 max is init_radio_delay	 Note: if this value is too small, the Sequencer may not do all the AHB RAM table accesses on time. the user must take margin (not use the minimum value) when a concurrent AES operation occurs during the 2nd INIT of the Sequencer (Manual AEs or LE Privacy).
TxDataReadyCheck[7:0]k	between 1 and 5	Can be increased to take more margin. Only impact is a potential useless extra waiting time before aborting when the Radio FSM / the sequence is broken.
TxReadyTimeout[7:0]	at least 5	Can be increased to take more margin. Only impact is the Tx sequence abort is delayed with the same additional delay in case of real Radio FSM Tx sequence issue.

8.6 Angle of arrival (AoA) and angle of departure (AoD)

The Bluetooth Core Specification v5.1 introduces new capabilities that support higher-accuracy direction finding.

The Bluetooth direction finding exploits some of the fundamental properties of radio waves by taking several phases and amplitude measurements (across different antenna) that can be used in direction finding calculations at precise intervals in a process known as In-phase and Quadrature Sampling (IQ sampling).

Applications use this data in calculations that involve trigonometry and information about the design of the antenna array.

A single IQ sample consists of the wave's amplitude and phase angle represented as a set of Cartesian coordinates. Applications can transform this Cartesian representation into corresponding polar coordinates that yield the phase angle and the amplitude value.

The existing RAM tables have been upgraded to support the new hardware features (CTE, I/Q sampling and Antenna Switching) added to support the direction-finding topic.

8.6.1 RAM tables and registers impact

The existing RAM tables have been upgraded to support the new hardware features (CTE, I/Q sampling and Antenna Switching) added to support the direction-finding topic.

8.6.1.1 GlobalStatMatch RAM table

The GlobalStatMach table size has not been impacted: still 7 words = 28 bytes.

A new bit field has been added in the RFU existing Word6: DefaultAntennald[6:0] bit field in Word6[6:0].

This bit field is mandatory for the configurations where more than one antenna is present on the board.

This bit field indicates which antenna identifier must be used to transmit or receive packets without CTE or packet body (Preamble, Access Address, PDU, and CRC) for CTE enabled packets. This value is transmitted through the corresponding pads of the device to the external component located on the board to switch on the requested antenna.

8.6.1.2 StatMach RAM table

The StatMach RAM table size has been increased by 3 words for a total of 23 words = 92 bytes.

The additional bit fields are the following:

- CTEDisable bit in Word0[27]. If set,
 - in transmission: no CTE appended at the end of the Frame whatever the TxRxPack.CTEAndSamplingEnable bit value
 - in reception: no CTE detection nor treatment done on the PDU, frame treated as a Bluetooth® Low Energy core 5.0 or less format.

RM0498 - Rev 1 page 80/115

- CTETime[4:0] bit field in Word14[6:2]:
 - used only when StatMach.CTEDisable=0, TxRxPack.CTEAndSamplingEnable=1 and StatMach.TxMode=1,
 - same format as the CTEInfo CTETime bit field (time unit = 8 us),
 - provides the duration of the Constant Tone Extension to append after CRC.
- CTESlotWidth bit in Word14[1]:
 - in transmission and AoD use-case: used to control the antenna switching timing,
 - in reception and in AoA use-case: used to control the antenna switching and the I/Q sampling timings,
 - not needed in other configurations,
 - used only when StatMach.CTEDisable=0, TxRxPack.CTEAndSamplingEnable=1.
- MaximumIQSamplesNumber[6:0] bit field in Word14[14:8]:
 - needed in reception only to indicate the maximum I/Q samples that can be stored in RAM,
 - if more I/Q samples are received (CTE time longer than maximum samples allowed), the sequence goes on but the AHB master stops storing the additional receive samples.
 - used only when StatMach.CTEDisable=0, TxRxPack.CTEAndSamplingEnable=1 and StatMach.TxMode=0.
- IQSamplesPtr[31:0] bit field in Word15[31:0]:
 - needed in reception only to indicate the start address in RAM to store the I/Q samples received during the CTE.
 - the address contained by this pointer must be 32-bit aligned and MSByte value must be equal to the MSByte of the RAM base address of the device,
 - used and verified only when StatMach.CTEDisable=0, TxRxPack.CTEAndSamplingEnable=1, StatMach.TxMode=0 and StatMach.MaximumIQsamplesNumber >0.
- AntennaPatternLength[7:0] bit field in Word14[23:16]:
 - needed when antenna switching must be managed on the current transfer (in transmission if AoD / in reception if AoA),
 - defines the length of the Antenna ID pattern to be applied during the CTE. If the CTE duration requires
 more slots than the length defined here, the same pattern is repeated until the end of the CTE phase,
 - used only when StatMach.CTEDisable=0 and TxRxPack.CTEAndSamplingEnable=1.
- AoD_nAoA bit in Word14[0]:
 - used only when StatMach.CTEDisable=0, TxRxPack.CTEAndSamplingEnable=1 and StatMach.TxMode=1,
 - indicates to the transmitter if it has to manage antenna switching (AoD) or not (AoA) during the transmission when CTE is enabled.
- AntennaPatternPtr[31:0] bit field in Word16[31:0]:
 - needed when antenna switching has to be managed to indicate the start address of the antenna pattern (the antenna pattern is a list of 8-bit values describing the antenna identifier),
 - the RAM location addressed by the StatMach.AntennaPatternPtr shall contain at least StatMach.AntennaPatternLength bytes,
 - used and verified only when StatMach.CTEDisable=0, TxRxPack.CTEAndSamplingEnable=1 and StatMach.AntennaPatternLength>0.

8.6.1.3 TxRxPack RAM table

The TxRxPack RAM table size has been decreased by 1 word for a total of 4 words = 16 bytes.

A new CTEAndSamplingEnable bit has been added in Word1[3]. The role of this bit is to indicate to the MR_BLE IP:

- In transmission:
 - to append a Constant Tone Extension after the CRC
 - to manage the antenna switching if AoD use-case

RM0498 - Rev 1 page 81/115

- · In reception:
 - to detect if the received frame has a CTE and to extract details from the CTEInfo
 - to manage the I/Q Sampling storage in RAM
 - to manage the antenna switching if AoA use-case.

8.6.2 Manage the feature in transmission

If the SW wants to append a Constant Tone Extension at the end of the frame, it has to:

- ensure the StatMach.CTEDisable bit is 0,
- program the CTE duration in the **StatMach.CTETime[4:0]** (same format as the CTETime bit field of the CTEInfo defined by the standard),
- set the TxRxPack.CTEAndSamplingEnable = 1 for this dedicated packet.

In case of encrypted frame, the AES encrypts or not the HEADER3 thanks to the TxRxPack.Advertise information.

Note:

The transmit block does not decode on the fly the bytes provided by the RAM Data Buffer (located at DataPtr address) to identify the CTE information. It relies on the information provided through the RAM table. It is the responsibility of the SW to guarantee the coherency between the CTE related bit field in RAM and the data in RAM that corresponds to the CTEInfo bit field inside the frame on the air.

In addition to the CTE append on the transmitted frame, if the device must manage the antenna switching (AoD configuration), the SW has to:

- define the default Antenna ID for the packet body through the GlobalStatMach.DefaultAntennald[6:0] bit field.
- provide the start address of the antenna pattern through the StatMach.AntennaPatternPtr[31:0] bit field,
- provide the antenna pattern / sequence length through the StatMach.AntennaPatternLength[7:0] bit field,
- fill the RAM location pointed by the StatMach.AntennaPatternPtr[31:0] bit field with 8-bit antenna identifier (the SW must ensure this RAM area contains at least StatMach.AntennaPatternLength[7:0] antenna ID),
- if needed, tune the TX_TIME_TO_SWITCH[6:0] timing in the ANTSW2_DIG_USR radio register to compensate potential delay between the modulator to antenna path versus antenna switching component control signals.

In parallel, the SW must ensure the SoC GPIOs have been programmed in the accurate configuration to output the Antenna Identifier and enable signals to the external component.

To execute a transmission without CTE phase appended at the end of the frame, the SW just must set the

StatMach.CTEDisable bit to 1.

8.6.3 Manage the feature in reception

8.6.3.1 CTE detection and decoding

Note:

If the SW wants the MR_BLE to execute a reception with the ability to detect if the received frame is a packet with or without CTE, it has to:

- set the StatMach.CTEDisable bit to 0,
- set the TxRxPack.CTEAndSamplingEnable bit to 1.

In case of encrypted frame, the AES decrypts or not the HEADER3 thanks to the TxRxPack.Advertise information.

Table 126. Behavior versus CTEDisable and CTEAndSampling bits value shows the behavior according to the combination between TxRxPack.CTEAndSamplingEnable and StatMach.CTEDisable.

Table 126. Behavior versus CTEDisable and CTEAndSampling bits value

Configuration	Behavior
StatMach.CTEDisable = 1 and TxRxPack.CTEAndSamplingEnable = "don't care"	 The receiver behaves as a Bluetooth® Low Energy SIG 5.0 or before. the receiver does not try to decode any CTEInfo bit field inside the received frame, the reception ends after CRC (if no DisableCRC bit set),

RM0498 - Rev 1 page 82/115

Configuration	Behavior
	the Timer2 (if enabled) starts at the end of the CRC.
	The receiver detects if CTE packet or not but does not sample the I/Q. This configuration allows keeping the synchronization on T _{IFS} with the transmitting device.
StatMach.CTEDisable = 0 and TxRxPack.CTEAndSamplingEnable = 0	the receiver decodes any CTEInfo bit field inside the received frame if present,
TXXXF ack. OT LANGSampling Linable - 0	the reception ends after the CRC (if not a CTE packet) or after the CTE phase (if CTE packet detected),
	the Timer2 (if enabled) starts at the end of the reception (after CRC or CTE).
	The receiver detects if CTE packet or not and manages the I/Q sampling.
	the receiver decodes any CTEInfo bit field inside the received frame if present,
StatMach.CTEDisable = 0 and TxRxPack.CTEAndSamplingEnable = 1	the reception ends after the CRC (if not a CTE packet) or after the CTE phase (if CTE packet detected),
TX of dollar ExtraodiffpiingEndble	the Timer2 (if enabled) starts at the end of the reception (after CRC or CTE),
	 the MR_BLE stores the I/Q sampling in RAM (according to options programmed in the RAM tables by the SW).

During the reception, the receiver extracts from the frame the CTE info like duration, slot width and type. The only configuration for which the MR_BLE needs to get the information from the RAM table is the Angle of Arrival (AoA). In this specific case, the slot width is not indicated in the CTEType[1:0] bit field:

- 00: AoA
- 01: AoD with 1 us slots
- 10: AoD with 2 us slots
- 11: reserved for future used

In AoA, the receiver device is the owner of the antenna switching and of the time slot width choice. In this specific configuration, the SW must provide the information through the **StatMach.CTESIotWidth** bit.

The MR_BLE stores the I/Q samples in words built as follows:

- I[15:0] as 16 MSbit
- Q[15:0] as 16 LSbit

As the AHB master writes both I and Q in one 32-bit access in RAM, the IQSamplesPtr must contain a 32-bit aligned address.

To manage a reception in CTE with I/Q sampling, the SW has:

- to set the reception has CTE aware (refer to previous sub-section),
- to program the maximum number of I/Q samples that are allowed to be written in RAM (between 0 and 127 I+Q) through the **StatMach.MaximumIQSamplesNumber[6:0]** bit field,
- to define the start address to store the I/Q samples in the StatMach.IQSamplesPtr[31:0].

At the end of the reception, some status bit fields are provided to give visibility on what has been received:

- IP_BLE APB register called STATUS2REG [0] = IQSamplesReady.
 - when set, indicates I/Q sampling has been received
 - when set, means that the received frame embedded a Constant Tone Extension at the end
- IP BLE APB register called STATUS2REG [7:1] = IQSamplesNumber[6:0]
 - provides the number of I/Q samples stored in RAM.

8.6.3.3 Antenna switching

In addition to the CTE detection and the I/Q sampling storage, in AoA, the device has to manage the antenna switching. To achieve this, the SW has to:

RM0498 - Rev 1 page 83/115

- define the default Antenna ID for the packet body through the GlobalStatMach.DefaultAntennald[6:0] bit field.
- provide the start address of the antenna pattern through the StatMach.AntennaPatternPtr[31:0] bit field,
- provide the antenna pattern / sequence length through the StatMach.AntennaPatternLength[7:0] bit field,
- fill the RAM location pointed by the **StatMach.AntennaPatternPtr[31:0]** bit field with 8-bit antenna identifier (the SW must ensure this RAM area contains at least **StatMach.AntennaPatternLength[7:0]** antenna ID),
- if needed, tune the RX_TIME_TO_SWITCH[5:0] timing in the ANTSW1_DIG_USR radio register to compensate potential delay between antenna path to demodulator versus antenna switching component control signals,
- if needed, tune the RX_TIME_TO_SAMPLE[6:0] timing in the ANTSW0_DIG_USR radio register to center the I/Q sampling action inside the slot window.

In parallel, the SW must ensure the SoC GPIOs have been programmed in the accurate configuration to output the Antenna Identifier and enable signals to the external component.

Note:

The hardware automatically restarts the antenna switching pattern from its first element if there are more CTE slots than the AntennaPatternLength value provided in the StatMach.

8.6.4 Error management

Several error cases are treated at hardware level concerning CTE, I/Q sampling and antenna switching.

8.6.4.1 Invalid CTEType received

Expected values for the CTEType[1:0] bit field inside the CTEInfo are "00", "01" or "10". If the receiver decodes a CTEType[1:0] = "11" in a CTE packet, it behaves as if TxRxPack.CTEAndSamplingEnable = 0 (CTE time duration respected for reception phase but no I/Q sampling nor antenna switching management).

8.6.4.2 CTE length outside [20..2] window

The MR_BLE IP has been designed to support CTE length outside the standard limit to offer the possibility to develop proprietary versions or for trials in lab.

In reception:

- if CTE length > 20:
 - the reception is able to manage I/Q sampling and CTE phase for CTE length greater than the standard.
 For I/Q sampling, the limit used by the hardware is the StatMach.MaximumIQSamplesNumber bit field value.
- if CTE length < 2:
 - the reception is able to manage I/Q sampling and CTE phase for CTE length less than the standard.

In transmission:

- if CTE length > 20:
 - the transmission is able to manage a CTE duration longer than the longest indicated by the Bluetooth core specification 5.1 standard.
 - the TXERROR_4 flag (and associated interrupt if enabled) is raised to inform the packet is not CTE standard compliant (but the transmission is executed with requested configuration).
- if CTE length < 2:
 - the transmission is able to manage a CTE duration shorter than the shortest indicated by the Bluetooth core specification 5.1 standard. Note that for duration = 0, this is equivalent to no CTE phase after CRC.
 - the TXERROR_4 flag (and associated interrupt if enabled) is raised to inform the packet is not CTE standard compliant (but the transmission is executed with requested configuration).

8.6.4.3 CTE requested while long range is selected

The Bluetooth core specification 5.1 standard indicates the Constant Tone Extension feature does not concern the Coded PHY packets (long range configuration).

If the MR_BLE IP is in front of a contradictory configuration indicating coded PHY format and CTE enabled, the transfer is managed as a Coded PHY without CTE.

In reception, no CTE detection is activated (so no I/Q sampling nor antenna switching is managed either). In transmission:

RM0498 - Rev 1 page 84/115

- no CTE phase is appended at the end of the frame,
- the TXERROR_4 flag (and associated interrupt if enabled) is raised to information the configuration is not CTE standard compliant.

8.6.4.4 IQSamplesPtr[31:0] or AntennaPatternPtr[31:0] not 32-bit aligned

The StatMach.IQSamplesPtr[31:0] and the StatMach.AntennaPatternPtr[31:0] must contain a 32-bit aligned address.

For IQSamplesPtr, an error is detected if:

- the StatMach.IQSamplesPtr[31:0] does not contain a modulo 4 value (32-bit aligned address).
- and StatMach.CTEDisable=0,
- and StatMach.CTEAndSamplingEnable=1,
- and StatMach.MaximumIQSamplesNumber[6:0] > 0.

For AntennaPatternPtr, an error is detected if:

- the StatMach. AntennaPatternPtr [31:0] does not contain a modulo 4 value (32-bit aligned address),
- and StatMach.CTEDisable=0,
- and StatMach.CTEAndSamplingEnable=1,
- and StatMach.AntennaPatternLength[7:0] > 0.

The associated error is a ConfigError (no RF transfer as the Sequencer aborts after the1st INIT step). Refer to Section 8.2.3.4 Configuration error for details on the ConfigError behavior.

8.6.4.5 IQSamplesPtr[31:24] or AntennaPatternPtr[31:24] not equal to device RAM base address[31:24]

The StatMach.IQSamplesPtr[31:24] and the StatMach.AntennaPatternPtr[31:24] must contain a value equal to the RAM base address[31:24].

For IQSamplesPtr, an error is identified if:

- the StatMach.IQSamplesPtr[31:24] is different from the RAM base address[31:24],
- and StatMach.CTEDisable=0,
- and StatMach.CTEAndSamplingEnable=1,
- and StatMach.MaximumIQSamplesNumber > 0.

For AntennaPatternPtr, an error is detected if:

- the StatMach. AntennaPatternPtr [31:24] is different from the RAM base address[31:24],
- and StatMach.CTEDisable=0,
- and StatMach.CTEAndSamplingEnable=1,
- and StatMach.AntennaPatternLength[7:0] > 0.

The associated error is an AddPointError (no RF transfer as the Sequencer aborts after the1st INIT step). Refer to Section 8.2.3.5 Address pointer error for details on the AddPointError behavior.

8.6.4.6 I/Q sampling storage overflow

In this case:

In case of too high latency in AHB transfers between the MR_BLE IP and the RAM inside the device, some received I/Q samples could be overwritten inside the internal buffer before being transferred into the SoC RAM.

- a status flag is raised in the STATUS2REG IP_BLE APB register: STATUS2REG [29] = IQSamplesMissingError,
- no more I/Q samples are written in RAM until the end of the CTE phase,
- the IQSamplesReady bit and the IQSamplesNumber bit fields are updated according to the real number of samples written in RAM,
- the rest of the reception goes on in a normal way (including antenna switching is AoA, despite no more samples being recorded).

Then, the SW has the choice to handle or not the partial list of received I/Q samples.

Note: This error is not supposed to occur as an internal FIFO has been put in place to buffer some I/Q samples and is supposed to be dimensioned according to the device bandwidth.

RM0498 - Rev 1 page 85/115

8.6.4.7 Antenna pattern length=1

The Bluetooth core specification 5.1 for the HCI_LE_Set_Connection_CTE_Receive_Parameters indicates the Length_of_switching_Pattern parameter must be at least 2, the MR_BLE IP, at hardware level, supports an antenna pattern length=1.

In this case, the reference period and the sample slots are done on the same antenna.

8.6.4.8 Antenna pattern read underflow

In case of too high latency in AHB transfers between the MR_BLE IP and the RAM inside the device, the next antenna ID may not be ready inside the antenna switching sub-block when the next antenna switching event is supposed to occur.

In this case:

- a flag is raised in the STATUS2REG IP_BLE APB register: STATUS2REG [30] = AntennaSwitchingPatternAccessError
- the antenna switching process goes on but with an unpredictable value on the antenna ID and shifted value once the read value is available.

Note:

this error is not supposed to occur as an internal FIFO is present to store some anticipated antenna ID and is supposed to be dimensioned according to the device bandwidth.

8.7 AES

The MR_BLE IP embeds an AES hardware accelerator. This accelerator is encapsulated in a wrapper allowing a single accelerator core to be shared for 3 different actions/modes:

- 1. on-the fly encryption
- 2. manual encryption
- 3. LE privacy

In case of simultaneous requests for several modes, a priority mechanism serves the requester in the same order as the list order above.

8.7.1 On the fly encryption

This mode corresponds to an on-going Bluetooth encrypted transmission/reception.

In transmission, the AES encrypts the data read from the RAM DataPack table before transmitting them.

In reception, the AES decrypts the received data before storing them in the DataPack RAM table.

This mode is activated as soon as an RF transfer is done with the StatMach. EncryptOn bit set to '1'.

The on the fly AES feature can discriminate the part of the frame not concerned by encryption like the HEADER parts (including the HEADER3 when CTE is active in the frame).

Warning: the isochronous channels encryption is not managed by this hardware feature and needs to be done at SW level without enabling the hardware encryption.

This mode is the most priority mode and is always served first in case of concurrent requests not to impact the Bluetooth communication.

8.7.2 Manual encryption

The goal of this mode is to share the AES core embedded with the CPU of the SoC. As the Bluetooth® Low Energy link layer does not use this hardware resource all the time, the idea is to let the CPU process its own encryptions through this hardware accelerator. It avoids adding an extra AES core to the SoC if the share usage is acceptable.

A set of registers is present to manage this manual encryption (see Section 8.9.1 IP_BLE controller register list). The process to fulfill a manual encryption is the following:

- 1. Enter the key in the MANAESxKEYREG registers (x from 0 to 3).
- 2. Enter the text to encrypt (16 bytes by computation) in the MANAESCLEARTEXTxREG (x from 0 to 3) registers.
- 3. Possibility to enable an interrupt to be informed when the computation is over by setting the MANAESCMDREG[1] = INTENA bit.
- 4. Launch the encryption by setting the MANAESCMDREG[0] = START bit.

RM0498 - Rev 1 page 86/115

- 5. Wait for end of computation:
 - a. If the interrupt mode is enabled, the interrupt line dedicated to AES (irq_BLE_int2 aka BLE_AES) is raised and the CPU gets the reason in the Interrupt2Reg[0] = AESMANENDINT bit.
 - b. Otherwise, the SW has to poll the MANAESSTATREG[0] = BUSY bit until it is cleared by hardware.
- 6. If interrupt is used, write 1 in the Interrupt2Reg[0] = AESMANENDINT bit to clear the flag.
- 7. The encrypted data / result is available in the MANAESCYPHERTEXTxREG (x from 0 to 3) registers.
- 8. If needed, the SW can restart from step 1 or step 2.

8.7.3 LE privacy

In MR_BLE IP, the Bluetooth® Low Energy link layer controller provides a hardware solution for the LE privacy resolution.

The process to fulfill the LE privacy resolution is the following:

- 1. The processor must provide the AES block with:
 - a. the address in RAM where to find the 128-bit key array through the AESLEPRIVPOINTERREG IP_BLE APB register.
 - b. the reference HASH through the AESLEPRIVHASHREG IP_BLE APB register.
 - c. the random number through the AESLEPRIVPRANDREG IP BLE APB register.
 - the maximum key number through the AESLEPRIVCMDREG IP BLE APB register (NBKEYS bit field).
- 2. Enable the AES LE privacy interrupt by setting the INTENA bit in the AESLEPRIVCMDREG IP_BLE APB register.
- Launch the calculation by setting the Start bit in the AESLEPRIVCMDREG IP_BLE APB register (autocleared bit).
- 4. At the end of computation, the interrupt line dedicated to AES (irq_BLE_int2 aka BLE_AES) is raised and the CPU gets the reason in the INTERRUPT2REG [1] = AESLEPRIVINT bit.
- 5. Write 1 in the INTERRUPT2REG[1] = AESLEPRIVINT bit to clear the flag.
- 6. The results are then available in the following registers / bit fields:
 - a. the KEYFIND bit in the AESLEPRIVSTATREG IP_BLE APB register indicates if a key has been found (KEYFIND bit = 1) or not (KEYFIND) = 0 in the list,
 - b. if KEYFIND = 1, the KEYFINDINDEX[7:0] bit field in the AESLEPRIVSTATREG IP_BLE APB register indicates which key of the array is the one found.

8.8 MSB first feature

The MSB first feature, not compliant with the Bluetooth standard, is added to extend potential proprietary protocols.

The principle is:

- in Tx: to swap the endianness inside transmitted bytes before whitening,
- in Rx: to swap the endianness inside received bytes after dewhitening.

The bit endianness modification is done only on the PDU part of the packet. This means:

- the PREAMBLE is sent as usual,
- the bit endianness inversion for the Access Address must be managed at SW level by reverting the endianness of the programmed value in the StatMach.AccAddr[31:0].

However, the MR_BLE receive block is able to manage the 2 first bytes of the PDU regardless of the endianness option:

- first byte to export its content (LLID, MD, SN, NESN)
- second byte to correctly extract the length information from the HEADER1

RM0498 - Rev 1 page 87/115

Figure 14. MSBFirst feature principle overview

The feature is enabled by setting the StatMach.MsbFirst bit.

This feature must not be enabled when at least one of the conditions below is true:

- the packet is in coded PHY format (long range),
- the CTE mode is enabled (StatMach.CTEDisable=0),
- the packet is encrypted,
- StatMach.DisableCRC = 0. Note that in this configuration, either Viterbi must be disabled or packet length=0 cannot be used.

There is no hardware mechanism to ensure previous forbidden configurations are not active at the same time as the MSBFirst feature. So, if the SW does not respect the rule, the integrity of the transfer is not guaranteed.

8.9 IP_BLE registers

8.9.1 IP_BLE controller register list

The BLUE_BLOCKBaseAddress keyword used for all the register base address information corresponds to the IP_BLE registers base address decided by the SoC when integrating the IP.

Note: BLUE_BLOCKBaseAddress is 0x6000_0000 in the BlueNRG-LPS product.

RM0498 - Rev 1 page 88/115

Table 127. IP_BLE controller registers list

Address offset	Name	RW	Reset	Description
0x04	INTERRUPT1REG	RW	0x00000000	INTERRUPT1REG register, related to sources of the irq_BLE_int1, aka BLE_TXRX interrupt line
0x08	INTERRUPT2REG	RW	0x00000000	INTERRUPT2REG register, related to sources of the irq_BLE_int2, aka BLE_AES
0x0C	TIMEOUTDESTREG	RW	0x00000000	Timer1 and Timer2 enable/disable
0x10	TIMEOUTREG	RW	0x00000000	Timer1 and Timer2 timeout register
0x14	TIMERCAPTUREREG	R	0x00000000	Timer capture register
0x18	CMDREG	RW	0x00000000	CmdReg register
0x1C	STATUSREG	R	0x00000000	Status register
0x20	INTERRUPT1ENABLEREG	R	0x00000000	This read-only register is a copy/summary of all the enable mask bits located in the different RAM tables. When '0', corresponding interrupt was masked during previous sequence. When '1', corresponding interrupt was enabled during the previous sequence.
0x24	INTERRUPT1LATENCYREG	R	0x00000000	Interrupt1 Latency register
0x28	MANAESKEY0REG	RW	0x00000000	Manual AES Key0 register
0x2C	MANAESKEY1REG	RW	0x00000000	Manual AES Key1 register
0x30	MANAESKEY2REG	RW	0x00000000	Manual AES Key2 register
0x34	MANAESKEY3REG	RW	0x00000000	Manual AES Key3 register
0x38	MANAESCLEARTEXTOREG	RW	0x00000000	Manual AES ClearText0 register
0x3C	MANAESCLEARTEXT1REG	RW	0x00000000	Manual AES ClearText1 register
0x40	MANAESCLEARTEXT2REG	RW	0x00000000	Manual AES ClearText2 register
0x44	MANAESCLEARTEXT3REG	RW	0x00000000	Manual AES ClearText3 register
0x48	MANAESCIPHERTEXTOREG	R	0x00000000	Manual AES CipherText0 register
0x4C	MANAESCIPHERTEXT1REG	R	0x00000000	Manual AES CipherText1 register
0x50	MANAESCIPHERTEXT2REG	R	0x00000000	Manual AES CipherText2 register
0x54	MANAESCIPHERTEXT3REG	R	0x00000000	Manual AES CipherText3 register
0x58	MANAESCMDREG	RW	0x00000000	Manual AES CmdReg register
0x5C	MANAESSTATREG	R	0x00000000	Manual AES Status register
0x60	AESLEPRIVPOINTERREG	RW	0x00000000	AES LE Privacy Pointer register
0x64	AESLEPRIVHASHREG	RW	0x00000000	AES LE Privacy Hash register
0x68	AESLEPRIVPRANDREG	RW	0x00000000	AES LE Privacy Prand register
0x6C	AESLEPRIVCMDREG	RW	0x00000000	AES LE Privacy CmdReg register
0x70	AESLEPRIVSTATREG	R	0x00000000	AES LE Privacy Status register
0x7C	STATUS2REG	R	0x00000000	STATUS2REG register

8.9.2 IP_BLE controller register list description

Table 128. INTERRUPT 1REG register description

Bit	Field name	Reset	RW	Description
3:0	RESERVED3_0	0x0	R	Reserved
	4 ADDDONITEDDOD		RW	Address Pointer Error.
4	ADDPOINTERROR	0x0		When read, indicates the interrupt status.

RM0498 - Rev 1 page 89/115

Bit	Field name	Reset	RW	Description
4	ADDPOINTERROR	0x0	RW	Write 1'b1 to clear.
				Receive Overflow.
5	5 RXOVERFLOWERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
6	RESERVED6	0x0	R	Reserved
				Sequencer end of task.
7	SEQDONE	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
	TYFDDOD		DIM	Transmission error 0: transmit block missing data error. When read, indicates the interrupt status.
8	TXERROR_0	0x0	RW	Write 1'b1 to clear.
				Transmission error 1: a Tx skip happened during an on-going transmission.
9	TXERROR_1	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Transmission error 2: channel index is greater than 39.
10	TXERROR_2	0x0	RW	When read, indicates the interrupt status.
	_			Write 1'b1 to clear.
				Transmission error 3: error while waiting for the confirmation the Radio FSM is
11	1 TXERROR_3	0x0	RW	in Tx state. When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Transmission error 4: a CTE issue occurred.
12	TXERROR_4	0x0	RW	·
				Write 1'b1 to clear.
				Encryption error on receive.
13	ENCERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				All RAM table not ready on time.
14	ALLTABLEREADYERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Transmit data pack not ready error .
15	TXDATAREADYERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				GlobStatMach.active bit error.
16	NOACTIVELERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
17	RESERVED17	0x0	RW	Reserved
40	DOMENOTUEDDOS	00	DVA	Receive length error.
18	RCVLENGTHERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
1.5	OFMATIMES! ITEMS		D	Semaphore timeout error.
19	SEMATIMEOUTERROR	0x0	RW	When read, indicates the interrupt.
				Write 1'b1 to clear.

RM0498 - Rev 1 page 90/115

Bit	Field name	Reset	RW	Description
20	RESERVED20	0x0	RW	Reserved
				Transmission/Reception skip.
21	21 TXRXSKIP	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Active2 Radio state error.
22	ACTIVE2ERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Data pointer configuration error.
23	CONFIGERROR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Previous transmitted packet received OK by the peer device.
24	TXOK	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Receive/Transmit done.
25	25 DONE	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
		0x0	RW	Receive timeout (no preamble found).
26	RCVTIMEOUT			When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Received low MD bit.
27	RCVNOMD	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Received command.
28	RCVCMD	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				A time has been captured in TIMERCAPTUREREG.
29	TIMECAPTURETRIG	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Receive data fail .
30	RCVCRCERR	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.
				Receive data OK.
31	RCVOK	0x0	RW	When read, indicates the interrupt status.
				Write 1'b1 to clear.

Note:

All bits with the corresponding enable mask at '0' are seen at '0' in this register whatever the status. The full unmasked status is visible in the STATUSREG register. Refer to STATUSREG for exhaustive flag description.

Table 129. INTERRUPT2REG register description

Bit	Field name	Reset	RW	Description
	A FOMANIFNOINT	0x0	RW	AES manual encryption.
0 AESMANENC	AESMANENCINT			This interrupt is enabled through AESLEPRIVCMDREG register.

RM0498 - Rev 1 page 91/115

Bit	Field name	Reset	RW	Description
0	AESMANENCINT	0x0	RW	When read, indicates the interrupt status.
	, LEON AVERTORY		IXVV	Write 1'b1 to clear.
				AES LE privacy engine.
1	AESI EDDIMINT	0x0	RW	This interrupt is enabled through MANAESCMDREG register.
'	1 AESLEPRIVINT	UXU		When read, indicates the interrupt status.
				Write 1'b1 to clear.
31:2	RESERVED31_2	0x0	R	Reserved

Table 130. TIMEOUTDESTREG register description

Bit	Field name	Reset	RW	Description
		0x0 R		Timeout timer Destination
				- 00 or 01: all disabled
1:0	DESTINATION		RW	- 10: Timer1 enable
			- 11: Timer2 enable (but Timer2 really starts counting at the end of a Rx/Tx sequence)	
				Note: Enabling one of the two timers automatically disables the second one. See Section 8.2.1 Possible trigger timers for the Sequencer for more details.
31:2	RESERVED31_2	0x0	R	Reserved

Table 131. TIMEOUTREG register description

Bit	Field name	Reset	RW	Description	
		Timer1 or Timer2 Timeout value (depending on destination register).			
31:0	TIMEOUT	0x0	RW	Time units:	
01.0	7.IIV.2001	OAG	KVV	 in microseconds for Timer2 in periods of 512 kHz clock for Timer1. See Section 8.2.1 Possible trigger timers for the Sequencer for more details. 	

Table 132. TIMERCAPTUREREG register description

Bit	Field name	Reset	RW	Description
				Interpolated absolute time capture register (TxRxPack.TrigRcv/TrigDone,
		TURE 0x0 F		GlobStatMach.TimeCapture/TimeCaptureSel for detailed specifications).
31:0	TIMERCAPTURE		0x0 RW	This register is cleared on the beginning of a new Bluetooth® Low Energy sequence (Sequencer trigger event) sequence.
				Time unit is in 16 x slow clock so typically 512 kHz period cycle.

Table 133. CMDREG register description

				Description
0	TXRXSKIP	0x0	RW	Transmission/reception skip command.
	17ti Otoltii	OXO	1	This bit is auto-cleared by the hardware.
1:2	RESERVED	0x0	RW	Reserved
3 (CLEARSEMAREQ	0x0	RW	Semaphore clear command. Setting this bit releases the token for the IP_BLE. Software option in parallel with the hardware management by the Bluetooth® Low Energy Sequencer through TxRxPack.KeepSemaReq bit. This bit is auto-cleared by the hardware.

RM0498 - Rev 1 page 92/115

Bit	Field name	Reset	RW	Description
31:4	RESERVED31_4	0x0	R	Reserved

Table 134. STATUSREG register description

Bit	Field name	Reset	RW	Description
0	AESONFLYBUSY	0x0	R	AES on the fly encryption busy status.
2:1	RESERVED2_1	0x0	R	Reserved
3	NOT_SUPPORTED_FEATURE	0x0	R	It indicates that the SW requests an unsupported feature.
4	ADDPOINTERROR	0x0	R	Address Pointer Error status. This flag is set when the MSB[31:24] part of some address pointers defined in the RAM tables is not equal to the MSB[31:24] part of the RAM base address of the device.
5	RXOVERFLOWERROR	0x0	R	AHB arbiter is full and there is no more storage capability available in Rx data path.
6	PREVTRANSMIT (*)	0x0	R	Previous event was a Transmission (1) or Reception (0) status.
				Sequencer end of task status.
7	SEQDONE	0x0	R	This bit is set each time the Sequencer ends the execution of a sequence due to a trigger event whatever the result (OK, with errors, ACTIVE bit not set, etc.).
				Transmission error 0 status transmit block missing data error. This flag is raised if the transmit block did not receive bytes to transmit from RAM on time during transmission).
8	8 TXERROR_0	0x0	R	Note: On this error, the transmit block stops the on-going transmission but the Sequencer manages it as a normal end of transmission. This TXERROR_0 flag is the only information available for the user regarding this issue.
9	TXERROR_1	0x0	R	Transmission error 1 status. This flag is raised if a TxSkip event occurs during the Transmission/Reception step of the Sequencer (mainly due to a SW skip through CMDREG.TXRXSKIP bit or possibly due to a PLL lock issue during EN_PA Radio FSM state).
10	TXERROR_2	0x0	R	Transmission error 2 status. This flag is raised if the requested channel number is greater than 39. This channel index comes: directly from SW in RAM table when TxRxPack.IncChan = 0 from the channel incrementer block when TxRxPack.IncChan = 1 Note: The channel index used for the failing Tx can be read in StateMach.Remap_chan at the end of the sequence.
11	TXERROR_3	0x0	R	Transmission error 3 status: error while waiting for the confirmation the Radio FSM is in Tx state (timeout defined in GlobalStatMach.TxReadyTimeout[7:0] bit field). Possible causes are: the Radio FSM encounters an issue and did not go in Tx state (for example, PLL lock failure) the TxReadyTimeout[7:0] delay is too short
12	TXERROR_4	0x0	R	Transmission error 4 status. Possible causes are: the CTETime field is not between 2 and 20 inclusive the transmission applied the CTE anyway (informative flag) or in case of CTE enabled with a coded packet the transmission occurs without CTE
13	ENCERROR	0x0	R	Encryption error on receive status
14	ALLTABLEREADYERROR	0x0	R	All RAM Table not ready status.

RM0498 - Rev 1 page 93/115

Bit	Field name	Reset	RW	Description				
				Transmit data pack not ready status.				
15	TXDATAREADYERROR	0x0	R	Indicates the data to transmit are not ready in RAM when Tx on antenna is about to start.				
				This flag is raised if the Sequencer reads TxRxPack.TXdataReady= 0 during DATA INIT step (for transmission sequence only).				
16	NOACTIVELERROR	0x0	R	GlobalStatMach.active bit error status. This flag is raised when the Sequencer reads active = 0 at the beginning of a trigger sequence.				
17	RESERVED17	0x0	R	Reserved				
18	RCVLENGTHERROR	0x0	R	Receive length error status.				
19	SEMATIMEOUTERROR	0x0	R	Semaphore timeout error status. This flag is raised when the IP_BLE token request is not granted on time by the RRM semaphore.				
20	RESERVED20	0x0	R	Reserved				
21	TXRXSKIP	0x0	R	Transmission/Reception skip status.				
22	ACTIVE2ERROR	0x0	R	Active2 Radio state error status.				
23	CONFIGERROR (*)	0x0	R	Data pointer configuration error status.				
				Previous transmitted packet received OK by the peer device status. This bit is updated at the end of a reception.				
		0x0		0: the previous transmitted packet was not received OK by the peer device.				
				1: the previous transmitted packet was received OK by the peer device.				
24	TXOK		R	This bit is set only if the following conditions are verified:				
				this is a data packet				
				 the SN/NESN mechanism is enabled (TxRxPack.SN_EN = 1) a preamble and a good access address have been received inside 				
				the receive window				
				the received NESN is different from the local StatMach.SN bit.				
25	DONE	0x0	R	Receive/Transmit done status.				
		UNO		This flag is set if the Sequencer reached the Transmission/Reception step.				
26	RCVTIMEOUT	0x0	R	Receive timeout status (no preamble found).				
27	RCVNOMD	0x0	R	Received MD bit status (valid only on Data Physical Channel PDU reception). This flag is raised when MD = 0 in the received data packet header.				
28	RCVCMD	0x0	R	Received command status (valid only on Data Physical Channel PDU reception).				
				This flag is raised when LLID = 2'b11 in the received data packet header.				
29	TIMECAPTURETRIG	0x0	R	Indicates a time has been captured in TIMERCAPTUREREG when set.				
				Receive data fail. (CRC error or invalid CI field) status.				
30	RCVCRCERR	0x0	R	Note: This error is raised only if at least preamble and access address have been detected.				
31	RCVOK	0x0	R	Receive data OK status.				

RM0498 - Rev 1 page 94/115

Note:

- This StatusReg is updated on each Sequencer end of sequence.
- This register is cleared each time the Sequencer starts a new sequence (timer trig event) except for the bit tagged with (*):
 - CONFIGERROR: updated when the Sequencer reads the StatMach
 - PREVTRANSMIT: updated when the Sequencer reaches the TX/RX step again
- After a reception, an SN_NESN error is identified if the STATUSREG indicates the Rx is done (DONE=1), not OK (RCVOK=0) but no specific error flag is set.
- When a proper transmission occurred, the DONE flag (in STATUSREG and potentially INTERRUPT1REG) and the STATUSREG.PREVTRANSMIT bit are set.

Table 135. INTERRUPT1ENABLEREG register description

Bit	Field name	Reset	RW	Description			
3:0	RESERVED3_0	0x0	R	Reserved			
4	ADDPOINTERROR	0x0	R	Address Pointer Error enable interruption.			
5	RXOVERFLOWERROR	0x0	R	Rx Overflow Error enable interruption.			
6	RESERVED6	0x0	R	Reserved			
7	SEQDONE	0x0	R	Sequencer end of task enable interruption.			
8	TXERROR_0	0x0	R	Transmission error 0 enable interruption.			
9	TXERROR_1	0x0	R	Transmission error 1 enable interruption.			
10	TXERROR_2	0x0	R	Transmission error 2 enable interruption.			
11	TXERROR_3	0x0	R	Transmission error 3 enable interruption.			
12	TXERROR_4	0x0	R	Transmission error 4 enable interruption.			
13	ENCERROR	0x0	R	Encryption error on receive enable interruption.			
14	ALLTABLEREADYERROR	0x0	R	All RAM Table not ready enable interruption.			
15	TXDATAREADYERROR	0x0	R	Transmit data pack not ready enable interruption.			
16	NOACTIVELERROR	0x0	R	Active bit error enable interruption.			
17	RESERVED17	0x0	R	Reserved			
18	RCVLENGTHERROR	0x0	R	Receive length error enable interruption .			
19	SEMATIMEOUTERROR	0x0	R	Semaphore timeout error enable interruption.			
20	RESERVED20	0x0	R	Reserved			
21	TXRXSKIP	0x0	R	Transmission/Reception skip enable interruption.			
22	ACTIVE2ERROR	0x0	R	Active2 Radio state error enable interruption.			
23	CONFIGERROR	0x0	R	Data pointer configuration error enable interruption.			
24	TXOK	0x0	R	Previous transmitted packet received OK enable interruption.			
25	DONE	0x0	R	Receive/Transmit done interruption.			
26	RCVTIMEOUT	0x0	R	Receive timeout enable interruption (no preamble found).			
27	RCVNOMD	0x0	R	Received MD bit embedded in the PDU data packet header was zero enable interruption.			
28	RCVCMD	0x0	R	Received command enable interruption.			
29	TIMECAPTURETRIG	0x0	R	Time capture enable interruption.			
30	RCVCRCERR	0x0	R	Receive data fail enable interruption.			
31	RCVOK	0x0	R	Receive data OK enable interruption.			

RM0498 - Rev 1 page 95/115

Note:

This read-only register is a copy/summary of all the enable mask bit located in the different RAM tables treated by the Sequencer. When '0', corresponding interrupt was masked during previous sequence. When '1', corresponding interrupt was enabled during the previous sequence.

Table 136. INTERRUPT1LATENCYREG register description

Bit	Field name	Reset	RW	Description
7:0	INTERRUPT1LATENCY	0x0	R	Relative time counter started on irq_BLE_int1 (BLE_TXRX) occurrence. Time unit: 1 us Clamped at 255 Reset when all INTERRUPT1REG sources are cleared or when a new irq BLE_int1 (BLE_TXRX) is raised.
31:8	RESERVED31_8	0x0	R	Reserved

Table 137. MANAESKEY0REG register description

Bit	Field name	Reset	RW	Description
31:0	MANAESKEY_31_0	0x0	RW	Manual mode AES key

Table 138. MANAESKEY1REG register description

Bit	Field name	Reset	RW	Description
31:0	MANAESKEY_63_32	0x0	RW	Manual mode AES key

Table 139. MANAESKEY2REG register description

Bit	Field name	Reset	RW	Description
31:0	MANAESKEY_95_64	0x0	RW	Manual mode AES key

Table 140. MANAESKEY3REG register description

Bit	Field name	Reset	RW	Description
31:0	MANAESKEY_127_96	0x0	RW	Manual mode AES key

Table 141. MANAESCLEARTEXTOREG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CIPHER_31_0	0x0	RW	Manual AES clear text

Table 142. MANAESCLEARTEXT1REG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CLEAR_63_32	0x0	RW	Manual AES clear text

Table 143. MANAESCLEARTEXT2REG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CLEAR_95_64	0x0	RW	Manual AES clear text

Table 144. MANAESCLEARTEXT3REG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CLEAR_127_96	0x0	RW	Manual AES clear text

RM0498 - Rev 1 page 96/115

Table 145. MANAESCHIPHERTEXTOREG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CIPHER_31_0	0x0	RW	Manual AES cipher text

Table 146. MANAESCHIPHERTEXT1REG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CIPHER_63_32	0x0	RW	Manual AES cipher text

Table 147. MANAESCHIPHERTEXT2REG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CIPHER_95_64	0x0	RW	Manual AES cipher text

Table 148. MANAESCHIPHERTEXT3REG register description

Bit	Field name	Reset	RW	Description
31:0	AES_CIPHER_127_96	0x0	RW	Manual AES cipher text

Table 149. MANAESCMDREG register description

Bit	Field name	Reset	RW	Description
0	START	0x0	R	AES manual encryption Start command.
0 START	SIARI	UXU	K	This bit is auto-cleared by the hardware.
1	INTENA	0x0	RW	AES manual encryption interrupt enable on Interrupt2Reg.
31:2	RESERVED31_2	0x0	R	Reserved

Table 150. MANAESSTATREG register description

Bit	Field name	Reset	RW	Description
0	BUSY	0x0	R	AES manual encryption busy status
31:1	RESERVED31_1	0x0	R	Reserved

Table 151. AESLEPRIVPOINTERREG register description

Bit	Field name	Reset	RW	Description
23:0	POINTER	0x0	RW	AES LE privacy pointer
31:24	31:24 RESERVED31_24		R	Reserved

Table 152. AESLEPRIVHASHREG register description

Bit	Field name	Reset	RW	Description
23:0	HASH	0x0	RW	AES LE privacy reference hash
31:24	RESERVED31_24	0x0	R	Reserved

Table 153. AESLEPRIVPRANDREG register description

Bit field	Field name	Reset	RW	Description
23:0	PRAND	0x0	RW	AES Le privacy Prand
31:24	RESERVED31_24	0x0	R	Reserved

RM0498 - Rev 1 page 97/115

Table 154. AESLEPRIVCMDREG register description

Bit	Field name	Reset	RW	Description
0	START	0x0	RW	AES LE privacy start command.
0	SIARI	UXU	IXVV	This bit is auto-cleared by the hardware.
1	INTENA	0x0	RW	AES LE privacy interrupt enable on Interrupt2Reg.
9:2	NBKEYS	0x0	RW	AES LE privacy number of keys pointed by AesLePrivPointerReg (points to the resolution key list).
31:10	RESERVED31_10	0x0	R	Reserved

Table 155. AESLEPRIVSTATREG register description

Bit	Field name	Reset	RW	Description
0	BUSY	0x0	R	AES LE privacy busy status.
1	KEYFND	0x0	R	AES LE privacy key finding status.
9:02	KEYFNDINDEX	0x0	R	AES LE privacy index of the key found in the resolution key list.
31:10	RESERVED31_10	0x0	R	Reserved

Table 156. STATUS2REG register description

Bit	Field name	Reset	RW	Description
				Indicates if IQ samples have been received on the last reception.
0	IQSAMPLES_READY	0x0	R	0: no IQ samples reception occurred so no IQ samples stored in RAM
				1: IQ samples received and stored in RAM. Exact number of stored samples is available in IQSAMPLES_NUMBER[6:0] bit field.
7:1	IQSAMPLES_NUMBER	0x0	R	Indicates the number of IQ samples stored in the RAM buffer addressed by StatMach.IQSamplesPtr.
28:8	RESERVED28_8	0x0	R	For future use.
	IQSAMPLES_MISSING_ERROR		R	IQ sample internal buffer overflow error flag.
29		0x0		This bit is set when the internal buffer storing the IQ samples is full and new IQ samples have to be recording. The reason would be a too long latency on AHB write transfer from this internal buffer to RAM.
				Timing error flag related to Antenna Pattern not read on time.
30	ANTENNA_SWITCHING_PATTERN_ACCESS_ERROR	0x0	R	This bit is set when the hardware antenna switching sub-block requests a new element of the Antenna Pattern and does not get it on time versus antenna switching event.
				AHB access error flag.
31	ANTENNA_SWITCHING_PATTERN_ADDRESS_ERROR	0x0	R	This bit is set when an internal error is raised while the IP_BLE tries to read the Antenna pattern in RAM. This indicates the value contained in the StatMach.AntennaPatternPtr is not pointing on a supported address in the SoC mapping.

Note: This register is updated on each start of a new Bluetooth® Low Energy sequence (timer trigger event).

RM0498 - Rev 1 ______ page 98/115

9 Wakeup block

The wakeup block is partially located in the always-on power domain to stay supplied even in the low-power modes of the device. All features not mandatory during low-power modes are located in the 1V2 switchable power domain to limit power consumption.

The wakeup block combines in fact two features:

- · wakeup / sleep requests management
- absolute and interpolated time computation.

9.1 Time features management

The wakeup block computes two kinds of time: the absolute time and the interpolated time.

9.1.1 Absolute time

This timer is located in the always-on power domain and is based on a rollover free running counter. The absolute time is computed by a 28-bit counter clocked on the slow clock (around 32 kHz).

This absolute time is used to generate a wake-up event to the power controller block of the device when the programmed target reaches the current absolute time.

Two different targets can be programmed in parallel:

- · one associated to the IP BLE link layer
- one to generate a device wake-up event for CPU/application purpose.

The absolute time is also used by the time interpolator block to build the 28-bit MSB non-interpolated part of the 32-bit interpolated time.

9.1.2 Interpolated time

The interpolated time is located in the 1.2 V switchable power domain and is clocked at 16 x slow clock typically 512 kHz. This interpolated time is a 32-bit timer built with:

- 28-bit MSB part corresponding to the non-interpolated time clocked at 32 kHz (absolute time)
- 4-bit LSB corresponding to the fractional part (interpolation at 512 kHz).

The 32-bit interpolated time is provided to the IP_BLE link layer to get current time information and to manage the timer1.

The 512 kHz interpolation part (4-LSB) is generated using both the 32 kHz and the system clock using a 16 MHz base whatever the system clock frequency is.

9.1.3 Slow clock frequency statistics

A module computes the minimum, the maximum and the average value of the slow clock period length by counting the number of 16 MHz periods in a slow clock period. The value is tuned on each slow clock cycle.

The calculation is done continuously from the moment the MR_BLE IP reset is released. The result is available in MINIMUM_PERIOD_LENGTH, AVERAGE_PERIOD_LENGTH and MAXIMUM_PERIOD_LENGTH registers (see Section 9.5 Wake-up block registers).

The average value is calculated using the previous sampled results as recursive weight: the new calculation is added to previous average and divided by the number of measurements up to 16. Then the ratio factor stays at 16.

The software can reset the minimum/maximum period value and/or the average value registers thanks to dedicated command bit in STATISTICS_RESTART register.

9.2 Sleep feature management

The sleep management informs the device power controller block if the MR_BLE allows the device to go in low-power mode ("sleep request").

The Wakeup block allows the device to go in low-power mode (through sleep request information) if:

the IP_BLE sleep enable feature is active (bit SLEEP_EN = 1 in the BLE_SLEEP_REQUEST_MODE APB register),

RM0498 - Rev 1 page 99/115

- the IP_BLE link layer is not busy which means:
 - the Sequencer is in IDLE state (no sequence on-going),
 - Timer1 and Timer2 are not enabled,
 - no pending interrupt(s) in INTERRUPT1REG APB register (related to irg_BLE_int1 aka BLE_TXRX),

When the device is in low-power, the slow clock timer is still active and may generate a wakeup request to the power controller.

9.3 Wakeup management

The wakeup feature is in charge of waking up the device from a low-power mode and in a second time (once power and clock tree are restored), to wake up the IP_BLE link layer and/or the CPU.

Note: the CPU wakeup/interrupt feature offers an additional low-power timer to the device.

The Wakeup block manages:

- the SoC wake-up event generation to restart the power and clock system (based on 28-bit absolute time only),
- the IP_BLE wake-up trigger event, supposed to be done once the power and accurate clock are restored (based on 32-bit interpolated time),
- a CPU wake-up interrupt, supposed to be done once the power and accurate clock are restored (based on 32-bit interpolated time).

9.3.1 SoC wake-up event generation

The Wakeup block offers the possibility to wake up the SoC before waking up the IP_BLE link layer or the CPU to let time to power and clocks to settle.

This way, the user only has to program dynamically along its application the IP_BLE link layer/CPU wake-up time target, letting the hardware manage the anticipated SoC wakeup.

The mechanism consists in programming a dedicated register called WAKEUP_OFFSET at the power-on with a value corresponding to at least the duration of the power and clock restoration from a low-power mode exit.

The hardware automatically uses this information to anticipate the SoC wake-up event generation from this duration versus the absolute time wake-up target.

Information to program the SoC wake-up event time:

- a wake-up offset information must be filled in a WAKEUP OFFSET[7:0] bit field,
- this value is in slow clock period time units (typically 32 kHz),
- So the maximum SoC power and clocks settlement time supported by the MR BLE IP is:
 - typically, 7.96 ms when slow clock is 32 kHz
 - 5.2 ms if slow clock is 49 kHz
 - 10.6 ms if slow clock is 24 kHz.

9.3.2 IP_BLE wakeup management

The user must program two pieces of information to activate the IP_BLE link layer wake-up feature:

- the BLUE_SLEEP_REQUEST_MODE[30] = BLE_WAKEUP_EN bit must be set to enable the wake-up feature,
- the IP BLE link layer wake-up target time in the BLUE WAKEUP TIME[31:0] APB register
 - this register represents a 32-bit interpolated time
 - the 28-bit absolute time (corresponding to BLUE_WAKEUP_TIME[31:4]) is used first to generate the
 anticipated event to the power controller and the wake-up trigger event to the IP_BLE link layer
 Sequencer
 - the 32-bit interpolated time information (corresponding to BLUE_WAKEUP_TIME[31:0]), is used by the
 IP BLE link layer Sequencer block to manage the 1st INIT step duration.

Note: the user must ensure when setting the BLE_WAKEUP_EN bit that the programmed IP_BLE wake-up time is as least WAKEUP_OFFSET[7:0] duration later.

Figure 15. IP_BLE wakeup timing contributors provides an overview of the registers involved in the wakeup management and summarizes the steps described just above.

RM0498 - Rev 1 page 100/115

Figure 15. IP BLE wakeup timing contributors

9.4 CPU wakeup management

A similar behavior is possible to generate a CPU wake-up event.

The user must program three information to activate the CPU wake-up feature:

- the CM0_SLEEP_REQUEST_MODE[30] = CM0_WAKEUP_EN bit must be set to enable the wakeup feature,
- the CPU wake-up target time in the CM0_WAKEUP_TIME[31:4] APB register
- the WAKEUP_CM0_IRQ_ENABLE[0] = WAKEUP_IT bit must be set to have an interrupt generated on CPU
 on event

Note: Only the 28-bit absolute time is used for the CPU wake-up feature, so granularity of wake-up target is slow clock frequency.

In this case, the wakeup process also occurs in two steps:

- At ABSOLUTE_TIME[31:4] = CM0_WAKEUP_TIME [31:4] WAKEUP_OFFSET[7:0]
 - the wakeup block raises a SoC wakeup request towards the Power Controller of the SoC to request voltage/clock restoring.
- At ABSOLUTE_TIME[31:4] = CM0_WAKEUP_TIME [31:4]
 - if WAKEUP_CM0_IRQ_ENABLE.WAKEUP_IT = 1, the Wakeup block sends an interrupt towards the CPU (irq_wakeup_cpu line)

This feature allows using the existing slow clock timer to generate a CPU wakeup source. This feature when activated has no impact on the Bluetooth LE transfers (no trigger event generated to the Bluetooth LE Sequencer).

9.5 Wake-up block registers

The WAKEUP_SLEEP_BLOCKBaseAddress keyword used for all the register base address information corresponds to the wake-up registers base address decided by the SoC when integrating the IP.

Note: WAKEUP_SLEEP_BLOCKBaseAddress is 0x6000_1800 in BlueNRG-LPS product.

Table 157. Wake-up block register list

Address offset	Name	RW	Reset	Description
0x08	WAKEUP_OFFSET	RW	0x00000000	Wake-up offset register
0x10	ABSOLUTE_TIME	R	0x00000000	Absolute time register
0x14	MINIMUM_PERIOD_LENGTH	R	0x00000000	Minimum period length register
0x18	AVERAGE_PERIOD_LENGTH	R	0x00000000	Average period length register
0x1C	MAXIMUM_PERIOD_LENGTH	R	0x00000000	Maximum period length register
0x20	STATISTICS_RESTART	RW	0x00000000	Statistics restart register
0x24	BLUE_WAKEUP_TIME	RW	0x00000000	IP_BLE wake-up time register

RM0498 - Rev 1 page 101/115

Address offset	Name	RW	Reset	Description
0x28	BLUE_SLEEP_REQUEST_MODE	RW	0x00000007	IP_BLE sleep request mode register
0x2C	CM0_WAKEUP_TIME	RW	0x00000000	CPU wake-up time register
0x30	CM0_SLEEP_REQUEST_MODE	RW	0x80000007	CPU sleep request mode register
0x40	WAKEUP_BLE_IRQ_ENABLE	RW	0x00000000	Wakeup IP_BLE interrupt enable register
0x44	WAKEUP_BLE_IRQ_STATUS	RW	0x00000000	Wakeup IP_BLE interrupt status register
0x48	WAKEUP_CM0_IRQ_ENABLE	RW	0x00000000	Wakeup CPU interrupt enable register
0x4C	WAKEUP_CM0_IRQ_STATUS	RW	0x00000000	Wakeup CPU interrupt status register

9.5.1 Wake-up block registers description

Table 158. WAKEUP_OFFSET register description

Bit	Field name	Reset	RW	Description
7:0	WAKEUP_OFFSET	0x0	RW	Delay of anticipation of the Soc device to settle power and clock. Unit is in slow clock period time (typically 32 kHz).
31:8	RESERVED_31_8	0x0	RW	Reserved

Table 159. ABSOLUTE_TIME register description

Bi	Field name	Reset	RW	Description
31:	ABSOLUTE_TIME	0x0	R	Absolute time Unit of this full bit field is (slow_clock *16) frequency period cycle (typically 512 kHz). Note: ABSOLUTE_TIME[31:4] is clocked on the slow clock (typically 32 kHz), ABSOLUTE_TIME[3:0] is the interpolation at slow clock * 16 frequency (typically 512 kHz).

Table 160. MINIMUM_PERIOD_LENGTH register decription

Bit	Field name	Reset	RW	Description
3:0	RESERVED3_0	0x0	R	Reserved
13:4	LENGTH	0x0	R	Minimum period length computed by time interpolator
31:14	RESERVED31_14	0x0	R	Reserved

Table 161. AVERAGE_PERIOD_LENGTH register description

Bit	Field name	Reset	RW	Description		
				Additional information/precision on slow clock frequency.		
3:0	0 LENGTH_FRAC 0x0	R	Reading AVERAGE_PERIOD_LENGTH[13:0] indicates the number of 16 MHz clock cycles contained in 16 slow clock periods.			
				his bit field is updated every 16 slow clock periods.		
				Average period length computed by Time Interpolator.		
13:4	13:4 LENGTH_INT	0x0	R	This value indicates the number of 16 MHz clock cycles contained in 1 slow clock period.		
				This bit field is updated every 16 slow clock periods.		
23:14	RESERVED23_14	0x0	R	Reserved		
		0x0	0x0 R	This value indicates the number of slow clock periods taken into account to calculate the average.		
31:24	31:24 AVERAGE_COUNT			This bit field is updated every slow clock period.		
				This bit field is clamped at 0xFF so reading 0xFF means at least 128 slow clock periods are already being used to calculate the average.		

RM0498 - Rev 1 page 102/115

Table 162. MAXIMUM_PERIOD_LENGTH register description

Bit	Field name	Reset	RW	Description
3:0	RESERVED3_0	0x0	R	Reserved
13:4	LENGTH	0x0	R	Maximum period length computed by Time Interpolator.
31:14	RESERVED31_14	0x0	R	Reserved

Table 163. STATISTIC_RESTART register description

Bit	Field name	Reset	RW	Description
0	CLD MINI MAY	0x0	RW	Write '1' to clear the minimum and maximum registers.
0	CLR_MIN_MAX	UXU	KVV	Note: This bit is auto cleared by the hardware.
				Write '1' to clear the AVERAGE_PERIOD_LENGTH register value.
1	CLR_AVR	0x0	0x0 RW	This action clears both the average length value and the average counter.
			Note: This bit is auto cleared by the hardware.	
31:2	RESERVED31_2	0x0	R	Reserved

Table 164. BLUE_WAKEUP_TIME register description

Bit	Field name	Reset	RW	Description
31:0	WAKEUP TIME	0x0	RW	Programmed wake-up time for the IP_BLE.
31.0	31:0 WAKEUP_TIME 0X0	IXVV	Unit is in (16 x slow clock) period so typically 512 kHz when slow clock is 32 kHz.	

Table 165. BLUE_SLEEP_REQUEST_MODE register description

Bit	Field name	Reset	RW	Description			
2:0	RESERVED2_0	0x7	RW	Reserved			
28:3	RESERVED28_3	0x0	R	Reserved			
				- 0: disable IP_BLE sleeping mode = no low-power mode request when the Bluetooth LE link layer indicates it is no longer busy.			
29	SLEEP_EN	0x0	RW	- 1: enable IP_BLE sleeping mode = low-power mode request when the Bluetooth LE link layer indicates it is no longer busy.			
				Note: Bluetooth LE Sequencer is no longer busy if no sequence is on-going and if no Timer1 nor Timer2 counter is enabled (to trig the next sequence).			
				- 0: disable the IP_BLE wakeup			
30	BLE WAKEUP EN	0x0	RW	- 1: enable the IP_BLE wake-up request through the embedded wake-up timer.			
	SS BEE_VINALEST_ERV	O/CO		This bit is auto-cleared by hardware when a wake-up event occurs (IP_BLE wake-up time matches with current time).			
				- 0: the IP_BLE sleeping is managed dynamically according to IP_BLE activity and status			
31	FORCE_SLEEPING	0x0	RW	- 1: the IP_BLE is always considered as sleeping, which means it always allows the SoC to go to low power mode			

Table 166. CM0_WAKEUP_TIME register description

Bit	Field name	Reset	RW	Description
3:0	RESERVED3_0	0x0	R	Always read as zero as no 512 kHz granularity on this time wakeup.
31:4	WAKELID TIME	0x0 RW	Programmed wake-up time for the CPU.	
31.4	1:4 WAKEUP_TIME 0x0	KVV	Unit is in slow clock period.	

RM0498 - Rev 1 page 103/115

Table 167. CM0_SLEEP_REQUEST_MODE register description

Bit	Field name	Reset	RW	Description
2:0	RESERVED2_0	0x7	RW	Reserved
29:3	RESERVED29_3	0x0	R	Reserved
30	CPU_WAKEUP_EN	0x0	RW	- 0: disable/mask the CPU wake-up request 1: enable the CPU wake-up request. Note: this bit has to be used in combination with the CM0_WAKEUP_TIME register to generate a wake-up request to the SoC. This bit is auto-cleared by hardware when a wakeup event occurs (CM0_WAKEUPTIME value matches with current time).
31	FORCE_SLEEPING	0x1	RW	 - 0: the CPU sleeping information is also monitored by the MR_BLE wakeup block to decide whether it allows or not the low power mode at SoC level - 1: the CPU is always considered as sleeping by the wake-up block. Note: this bit must always be kept high to let the CPU WFI instruction managing alone the low power allowance for CPU side.

Table 168. WAKEUP_BLE_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	WAKEUP_IT	0x0	RW	- 0: disable the IP_BLE wake-up interrupt towards CPU.- 1: enable IP_BLE wake-up interrupt towards the CPU.
31:1	RESERVED31_1	0x0	R	Reserved

Table 169. WAKEUP_BLE_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description
0	WAKEUP_IT	0x0	RW	Write '1' to clear the interrupt. When read, returns the interrupt status.
31:1	RESERVED31_1	0x0	R	Reserved

Table 170. WAKEUP_CM0_IRQ_ENABLE register description

Bit	Field name	Reset	RW	Description
0	WAKEUP_IT	0x0	RW	- 0: disable the CPU wake-up interrupt towards CPU 1: enable CPU wake-up interrupt towards the CPU.
31:1	RESERVED31_0	0x0	R	Reserved

Table 171. WAKEUP_CM0_IRQ_STATUS register description

Bit	Field name	Reset	RW	Description
0	WAKEUP_IT	0x0	RW	Write '1' to clear the interrupt. When read, returns the interrupt status.
31:1	RESERVED31_0	0x0	R	Reserved

RM0498 - Rev 1 page 104/115

10 Acronyms

Table 172. Acronyms

Acronym	Description
ADC	Analog to digital converter
AES	Advanced encryption standard hardware accelerator
AGC	Automatic gain converter
AoA (or AOA)	Angle of Arrival
AoD (or AOD)	Angle of Departure
Bluetooth LE	Bluetooth Low Energy
CTE	Constant tone extension
FSM	Finite state machine
HW	Hardware
MR_BLE	Digital radio IP
PA	Power amplifier
POR	Power-On-Reset. The system gets out of a power-down phase (both V _{bat} and 1.2 V lost)
RF2G4	Analog radio block used with the MR_BLE IP.
RRM	Radio resource manager
Rx	Reception
SoC	System-on-Chip. Represents the device embedding the MR_BLE IP in this document.
SW	Software
Tx	Transmission
UDRA	Unified Direct Register Access (part of the RRM block)
Vbat	Battery voltage. Voltage used for the always-on part of the design

RM0498 - Rev 1 page 105/115

Revision history

Table 173. Document revision history

Date	Version	Changes
30-Jun-2022	1	Initial release.

RM0498 - Rev 1 page 106/115

Contents

1	Blue	NRG-L	PS radio IP features	2
	1.1	Archite	ecture overview of the MR_BLE IP	2
	1.2	Global	scenario for Bluetooth® Low Energy protocol usage	3
	1.3	Miscel	laneous features: RF activity monitoring	4
		1.3.1	On-going Tx sequence information (to control an external power amplifier (PA))	4
		1.3.2	On-going Rx sequence information (to control an external low noise amplifier (LNA))	4
		1.3.3	RF activity information	4
	1.4	Blueto	oth® Low Energy standard 5.1 additional support	4
2	Inte	rfacing	with the MR_BLE IP	6
	2.1	Interru	ption lines to the CPU	6
		2.1.1	IP_BLE interrupt lines	6
		2.1.2	Wake-up block interrupt lines	6
		2.1.3	RRM interrupt line	7
		2.1.4	Radio controller interrupt lines	7
	2.2	Interfa	ce with the RAM embedded in the SoC	7
	2.3	Interfa	ce with the power clock and reset controllers	7
3	War	ning for	rusers	8
4	Rad	io resou	urce manager (RRM)	9
	4.1	Semap	phore	10
	4.2	UDRA		10
		4.2.1	RAM command link list information	10
		4.2.2	UDRA command format in RAM	12
	4.3	Direct	register access	13
	4.4	RRM r	registers	13
		4.4.1	RRM registers list	13
5	Rad	io regis	ters	18
	5.1	Radio	register list	18
	5.2	Radio	registers description	20
	5.3	Trimm	ing information	30
6	Rad	io FSM.		31
	6.1	Radio	FSM sequences	31
	6.2	Radio	FSM states overview	32
	6.3	Radio	FSM interrupts	34
7	Rad	io contr	oller	35

	7.1	Slow	clock measurement	35
	7.2	Radio	FSM interrupt management	35
	7.3	Radio	controller registers	35
		7.3.1	Radio controller register list	
		7.3.2	Radio controller register description	36
8	IP_B	LE		38
	8.1	Overv	iew	38
	8.2	Blueto	ooth LE link layer Sequencer	38
		8.2.1	Possible trigger timers for the Sequencer	
		8.2.2	Bluetooth LE sequence description	40
		8.2.3	Possible root causes of aborted sequence	45
	8.3	IP_BL	E interrupts	48
	8.4	IP_BL	E RAM tables	49
		8.4.1	GlobalStatMach RAM table	50
		8.4.2	StatMach RAM table	56
		8.4.3	TxRxPack RAM table	69
		8.4.4	DataPack RAM table	74
	8.5	Comp	lementary information	74
		8.5.1	Pointers management and packet counter	74
		8.5.2	Channel number management	75
		8.5.3	Time capture	77
		8.5.4	Sequencer timings recommended values	78
	8.6	Angle	of arrival (AoA) and angle of departure (AoD)	80
		8.6.1	RAM tables and registers impact	80
		8.6.2	Manage the feature in transmission	82
		8.6.3	Manage the feature in reception	82
		8.6.4	Error management	84
	8.7	AES.		86
		8.7.1	On the fly encryption	86
		8.7.2	Manual encryption	86
		8.7.3	LE privacy	87
	8.8	MSB f	irst feature	87
	8.9	IP_BL	E registers	88
		8.9.1	IP_BLE controller register list	88
		8.9.2	IP_BLE controller register list description	89
9	Wak	eup blo	ock	99
	9.1	Time f	features management	99

Rev	vision	history		106
10	Acro	onyms .		105
		9.5.1	Wake-up block registers description	102
	9.5	Wake-	up block registers	101
	9.4	CPU w	vakeup management	101
		9.3.2	IP_BLE wakeup management	100
		9.3.1	SoC wake-up event generation	100
	9.3	Wakeu	up management	100
	9.2	Sleep	feature management	99
		9.1.3	Slow clock frequency statistics	99
		9.1.2	Interpolated time	99
		9.1.1	Absolute time	99

List of tables

Table 1.	Interruption summary	
Table 2.	Command start list details	. 11
Table 3.	UDRA command format in RAM	. 12
Table 4.	RRM registers list	. 13
Table 5.	UDRA_CTRL0 register description	
Table 6.	UDRA_IRQ_ENABLE register description	
Table 7.	UDRA_IRQ_STATUS register description	. 14
Table 8.	UDRA_RADIO_CFG_PTR register description	. 14
Table 9.	SEMA_IRQ_ENABLE register description	. 14
Table 10.	SEMA_IRQ_STATUS register description	. 14
Table 11.	BLE_IRQ_ENABLE register description	. 15
Table 12.	BLE_IRQ_STATUS register description	
Table 13.	VP_CPU_CMD_BUS register description	
Table 14.	VP_CPU_SEMA_BUS register description	
Table 15.	VP_CPU_IRQ_ENABLE register description	
Table 16.	VP_CPU_IRQ_STATUS register description	
Table 17.	Radio register list	
Table 18.	AA0 DIG USR register description	
Table 19.	AA1_DIG_USR register description	
Table 20.	AA2 DIG USR register description	
Table 21.	AA3_DIG_USR register description	
Table 22.	DEM_MOD_DIG_USR register description	
Table 23.	RADIO_FSM_USR register description.	
Table 24.	PHYCTRL_DIG_USR register description	
Table 25.	AFC1_DIG_ENG register description	
Table 26.	CR0_DIG_ENG register description	
Table 27.	CR0_LR register description	
Table 28.	VIT_CONF_DIG_ENG register description	
Table 29.	LR_PD_THR_DIG_ENG register description	
Table 30.	LR_RSSI_THR_DIG_ENG register description	
Table 31.	LR_AAC_THR_DIG_ENG register description	
Table 31.	SYNTHCAL0_DIG_ENG register description	
Table 33.	DTB5_DIG_ENG register description	
Table 34.	RXADC_ANA_USR register description	
Table 35.	LDO_ANA_ENG register description	
Table 36.	CBIASO_ANA_ENG register description	
Table 37.	CBIAS1_ANA_ENG register description	
Table 38.	SYNTHCALO_DIG_OUT register description	
Table 39.	SYNTHCAL1_DIG_OUT register description	
Table 40.	SYNTHCAL2_DIG_OUT register description	
Table 41.	SYNTHCAL3_DIG_OUT register description	
Table 42.	SYNTHCAL4_DIG_OUT register description	
Table 43.	. SYNTHCAL5_DIG_OUT register description	
Table 44.	FSM_STATUS_DIG_OUT register description	
Table 45.	RSSI0_DIG_OUT register description	
Table 46.	RSSI1_DIG_OUT register description	
Table 47.	AGC_DIG_OUT register description	. 26
Table 48.	DEMOD_DIG_OUT register description	. 27
Table 49.	AGC2_ANA_TST register description	. 27
Table 50.	AGC0_DIG_ENG register description	. 27
Table 51.	AGC1_DIG_ENG register description	. 27
Table 52.	AGC10_DIG_ENG register description	. 27
Table 53.	AGC11_DIG_ENG register description	. 27

Table 54.	AGC12_DIG_ENG register description	
Table 55.	AGC13_DIG_ENG register description	
Table 56.	AGC14_DIG_ENG register description	
Table 57.	AGC15_DIG_ENG register description	
Table 58.	AGC16_DIG_ENG register description	
Table 59.	AGC17_DIG_ENG register description	
Table 60.	AGC18_DIG_ENG register description	
Table 61.	AGC19_DIG_ENG register description	
Table 62.	RXADC_HW_TRIM_OUT register description	
Table 63.	CBIAS0_HW_TRIM_OUT register description	
Table 64.	AGC_HW_TRIM_OUT register description	
Table 65.	ANTSW0_DIG_USR register description	
Table 66.	ANTSW1_DIG_USR register description	
Table 67.	ANTSW2_DIG_USR register description	
Table 68.	ANTSW3_DIG_USR register description	
Table 69.	Radio FSM states summary (including exit conditions and timings)	
Table 70.	ACTIVE2 to Tx or Rx state duration	
Table 71.	Radio Controller registers list	
Table 72.	RADIO_CONTROL_ID register description	
Table 73.	CLK32COUNT_REG register description	
Table 74.	CLK32PERIOD_REG register description	
Table 75.	CLK32FREQUENCY_REG register description	
Table 76.	RADIO_CONTROL_IRQ_STATUS register description	
Table 77.	RADIO_CONTROL_IRQ_ENABLE register description.	
Table 78.	Summary of flags and RAM table pointers behavior versus Tx Skip command	
Table 79.	Summary of flags and RAM table pointers behavior versus Rx Skip command	
Table 80.	GlobalStatMach RAM table	
Table 81.	GlobalStatMach RAM table register list	
Table 82.	GlobalStatMach.WORD0 register description.	
Table 83.	GlobalStatMach.WORD1 register description	
Table 84.	GlobalStatMach.WORD2 register description	53
Table 85.	GlobalStatMach.WORD3 register description	54
Table 86.	GlobalStatMach.WORD4 register description	
Table 87.	GlobalStatMach.WORD5 register description	55
Table 88.	GlobalStatMach.WORD6 register description.	
Table 89.	StatMach RAM table	57
Table 90.	StatMach RAM table register list	
Table 91.	StatMach.WORD0 register description	
Table 92.	StatMach.WORD1 register description	
Table 93.	StatMach.WORD2 register description	
Table 94.	StatMach.WORD3 register description	
Table 95.	StatMach.WORD4 register description	
Table 96.	StatMach.WORD5 register description	
Table 97.	StatMach.WORD6 register description	
Table 98.	StatMach.WORD7 register description	
Table 99.	StatMach.WORD8 register description	
	StatMach.WORD9 register description	
	StatMach.WORDA register description	
	StatMach.WORDB register description	
	StatMach.WORDC register description	
	StatMach.WORDD register description	
	StatMach.WORDE register description	
	StatMach.WORDF register description	
	StatMach.WORD10 register description	
Table 108.	StatMach.WORD11 register description	67

	StatMach.WORD12 register description	
Table 110.	StatMach.WORD13 register description	67
Table 111.	StatMach.WORD14 register description	67
	StatMach.WORD15 register description	
	StatMach.WORD16 register description	
Table 114.	StatMach.PaPower values	69
Table 115.	TxRxPack RAM table	70
	TxRxPack	
Table 117.	TxRxPack.WORD0 register description	71
Table 118.	TxRxPack.WORD1 register description	71
Table 119.	TxRxPack.WORD2 register description	73
	TxRxPack.WORD3 register description.	
	Truth table to select the correct algorithm	
Table 122.	RAM table bit fields usage versus algorithm number	77
	Transmission sequence	
Table 124.	Reception sequence	78
Table 125.	Delays for Sequencer 2 nd INIT step proposal	79
Table 126.	Behavior versus CTEDisable and CTEAndSampling bits value	82
Table 127.	IP_BLE controller registers list	89
Table 128.	INTERRUPT 1REG register description	89
Table 129.	INTERRUPT2REG register description	91
Table 130.	TIMEOUTDESTREG register description	92
Table 131.	TIMEOUTREG register description	92
Table 132.	TIMERCAPTUREREG register description	92
Table 133.	CMDREG register description	92
Table 134.	STATUSREG register description	93
Table 135.	INTERRUPT1ENABLEREG register description	95
	INTERRUPT1LATENCYREG register description	
Table 137.	MANAESKEY0REG register description	96
Table 138.	MANAESKEY1REG register description	96
Table 139.	MANAESKEY2REG register description	96
Table 140.	MANAESKEY3REG register description	96
Table 141.	MANAESCLEARTEXTOREG register description	96
Table 142.	MANAESCLEARTEXT1REG register description	96
Table 143.	MANAESCLEARTEXT2REG register description	96
Table 144.	MANAESCLEARTEXT3REG register description	96
Table 145.	MANAESCHIPHERTEXTOREG register description	97
Table 146.	MANAESCHIPHERTEXT1REG register description	97
Table 147.	MANAESCHIPHERTEXT2REG register description	97
	MANAESCHIPHERTEXT3REG register description	
Table 149.	MANAESCMDREG register description	97
	MANAESSTATREG register description	
Table 151.	AESLEPRIVPOINTERREG register description	97
Table 152.	AESLEPRIVHASHREG register description	97
Table 153.	AESLEPRIVPRANDREG register description	97
	AESLEPRIVCMDREG register description	
	AESLEPRIVSTATREG register description	
	STATUS2REG register description	
	Wake-up block register list	
	WAKEUP_OFFSET register description	
	ABSOLUTE_TIME register description	
	MINIMUM_PERIOD_LENGTH register decription	
	AVERAGE_PERIOD_LENGTH register description	
	MAXIMUM_PERIOD_LENGTH register description	
Table 163.	STATISTIC_RESTART register description	103

RM0498

Table 164.	BLUE_WAKEUP_TIME register description	103
Table 165.	BLUE_SLEEP_REQUEST_MODE register description	103
Table 166.	CM0_WAKEUP_TIME register description	103
Table 167.	CM0_SLEEP_REQUEST_MODE register description	104
Table 168.	WAKEUP_BLE_IRQ_ENABLE register description	104
Table 169.	WAKEUP_BLE_IRQ_STATUS register description	104
Table 170.	WAKEUP_CM0_IRQ_ENABLE register description	104
Table 171.	WAKEUP_CM0_IRQ_STATUS register description	104
Table 172.	Acronyms	105
Table 173.	Document revision history	106

RM0498 - Rev 1 page 113/115

List of figures

Figure 1.	MR_BLE architecture overview	. 3
Figure 2.	RRM overview	. 9
Figure 3.	UDRA command list mapping in RAM (example)	11
Figure 4.	Radio FSM overview	32
Figure 5.	Sequencer steps overview	40
Figure 6.	Sequencer Initialization steps timings overview	43
Figure 7.	Tx sequence	44
Figure 8.	Rx sequence	45
Figure 9.	RAM table dependency overview	50
Figure 10.	Pointer management and packet counter increment algorithm	75
Figure 11.	Bluetooth LE link layer channel management overview	76
Figure 12.	Timings of an Rx sequence	78
Figure 13.	Timings of a Tx sequence	79
Figure 14.	MSBFirst feature principle overview	88
Figure 15.	IP_BLE wakeup timing contributors	01

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

RM0498 - Rev 1 page 115/115