Základní parametry rádiových přijímačů a vysílačů

Doc. Dr. Ing. Pavel Kovář

Obsah

- Základní pojmy
- Nelineární soustava
- Vlastnosti rádiových přijímačů
 - Citlivost
 - Nejvyšší zpracovatelný signál
 - Dynamický rozsah
 - Selektivita a potlačení nežádoucích příjmů
 - Intermodulační odolnost
 - Parazitní vyzařování
- Rádiové vysílače

Základní pojmy

Rádiová přijímač

Elektronické zařízení, které přijímá rádiové signály a získává přenášenou informaci v nich obsaženou

Rádiový vysílač

Elektronické zařízení, které generuje rádiové signály o výkonové úrovni vhodné pro vysílání a kóduje do nich informaci určenou k rádiovému přenosu

Transceiver

Zařízení skládající se z rádiového přijímače a vysílače

Radiomodem

Zařízení skládající se z rádiového přijímače, vysílače a modulátoru určené pro přenos dat

Nelineární soustava

$$y(t) = a_0 + a_1 x(t) + a_2 x^2(t) + a_3 x^3(t)...$$

Průchod harmonického signálu nelineární soustavou

$$y(t) = a_0 + a_1 A \cos(\omega t) + a_2 \cos^2(\omega t) + a_3 \cos^3(\omega t) + \dots =$$

= $a'_0 + a'_1 \cos(\omega t) + a'_2 \cos(2\omega t) + a'_3 \cos(3\omega t) + \dots$

Na výstupu dostáváme periodický signál, není však harmonický. Je zkreslen vyššími harmonickými složkami.

Průchod biharmonického signálu nelineární soustavou

$$y(t) = a_0 + a_1 \left(A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \right) +$$

$$+ a_2 \left(A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \right)^2 + a_3 \left(A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \right)^3 + \dots =$$

$$= a_0 + a_1 A_1 \cos(\omega_1 t) + a_1 A_2 \cos(\omega_2 t) + \frac{a_2 A_1}{2} \left(1 + \cos(2\omega_1 t) \right) +$$

$$+ \frac{a_2 A_2}{2} \left(1 + \cos(2\omega_2 t) \right) + a_2 A_1 A_2 \left(\cos((\omega_1 - \omega_2)t) + \cos((\omega_1 + \omega_2)t) \right) +$$

$$+ \dots \frac{a_3 A_1 A_2^2}{2} \cos(\omega_1 t) \dots$$

Spektrum výstupního signálu obsahuje složky na kmitočtech $m\omega_1 \pm n\omega_2$, kde $m,n\in Z$. Velikost spektrálních čar souvisí s velikostí budících signálů <u>nelineárně</u>. Jev se nazývá <u>intermodulace</u>.

Ve vztahu se vyskytují i členy typu $\frac{a_3A_1A_2^2}{2}\cos(\omega_1 t)$. Jedná se o složku, která leží na kmitočtu ω_1 , její amplituda souvisí s A_1 a A_2 . Přítomností této složky lze vysvětlit **křížovou modulaci.**

a) RF-10dBm

b) RF 0dBM

For meaningful two-tone, third-order IM figures, use the same input RF levels in your test setup as your specific application will require.

Notice the significant difference in two-tone, third-order component with an input level of $-10 \, \mathrm{dBm}$ for each tone (a) compared with 0 dBm input level (b). Measurements made on Model ZAY-1, LO power at $+21.5 \, \mathrm{dBm}$.

Citlivost (senzitivity)

- Nejmenší úroveň signálu na vstupu, která produkuje výstupní signál dané kvality.
- Kvalita výstup se měří
 - pomoci BER nebo PER (packet error rate) u digitálních přijímačů
 - S/N, SINAD apod. u analogových přijímačů

Nejvyšší zpracovatelný signál

- Nejvyšší úroveň signálu na vstupu, která produkuje výstupní signál dané kvality.
- Je omezena nelineárním zkreslením signálu v přijímači

Dynamický rozsah

Rozsah úrovní vstupního signálu, které produkují výstupní signál o patřičné kvalitě

Selektivita (selectivity, radio receiver blocking)

- Vyjadřuje schopnost přijímače přijímat a dekódovat signál za přítomnosti rušícího
 signálu na sousedních (blízká selektivita) a vzdálenějších (potlačení nežádoucích příjmů)
 kmitočtech
- Vyjadřuje se jako poměr výkonů rušivého a testovacího signálu

Intermodulační odolnost

 Vyjadřuje schopnost přijímače přijímat a dekódovat signál za přítomnosti dvou rušících signálů o takových kmitočtech, že jejich intermodulační produkt padne po propustného pásma přijímače

Parazitní vyzařování (Spurious emission)

Vyzařování signálu prostřednictvím anténního konektoru

Vnitřní rušení (Spurious emission)

Rušení rádiového přijímače, které vzniká v samotném přijímači. Jedená se o signály
místních oscilátorů, vzorkovací signál, hodinové signály a jejich harmonické kmitočty.
Tyto signálu mohou pronikat do vysokofrekvenčních a mezifrekvenčních obvodů
přijímače.

Výkon vysílače

Výkon měřený na umělé zátěži (obvykle 50 Ω)

Vyzářený výkon vysílače

Skutečný výkon dodaný do antény

Účinnost vysílače

Parazitní vyzařování

- Harmonické produkty
- Neharmonické produkty

Harmonické produkty

Neharmonické produkty

Spektrální maska

Definuje požadavky na spektrum signálu vysílače

HFDL UWB

Spektrální čistota nosného kmitočtu

Odchylka kmitočtu vysílače, frekvenční stabilita (frequency stability)

Modulační ztráty

EVM Error Vector Magnitude

MER Modulation Error Ration

EVM Error vector magnitude

Vyjadřuje odchylky stavů modulace reálného vysílaného signálu od ideálního stavu

$$EVM[dB] = 10log\left(\frac{P_{error}}{P_{reference}}\right)$$

 $P_{reference}$ výkon nejvzdálenějšího stavu modulace P_{error} výkon chybového signálu

MER Modulation Error Ration

Vyjadřuje odchylky stavů modulace reálného vysílaného signálu od ideálního stavu

$$MER[dB] = 10log\left(\frac{P_{signal}}{P_{error}}\right)$$

 P_{signal} výkon ideálního vysílaného signálu

Perror výkon chybového signálu