Sistemas Operativos Introducción

Alejandro Valdés Jiménez (avaldes@ubiobio.cl)

Mauricio Fuenzalida (mfuenzalida@ubiobio.cl)

Agenda

- Objetivos
- Un poco de historia
- 3 ¿Qué es un SO?
- Organización una Computadora
- 5 Organización de un Sist. Inf. según No de CPUs
- 6 Estructura de un Sistema Operativo
- 🕜 Operaciones de un Sistema Operativo
- Gestión de Procesos
- Gestión de Memoria
- Gestión de Almacenamiento
- Protección y Seguridad

Objetivos

- Proporcionar una visión general de los principales componentes de los sistemas operativos.
- Proporcionar una panorámica sobre la organización básica de un sistema informático.

Sistemas pioneros, Sistemas informáticos dedicados

- Primeras computadoras, máquinas enormes y muy caras.
- Programador era también el operador de la máquina.
- Operación completamente manual.
- Uso de tarjetas perforadas y cintas de papel para la E/S.
- Tiempo de preparación de trabajos muy alto, CPU inactiva.
- Tiempo de computadora muy valioso, necesidad de maximizar uso de la CPU.

ENIAC - 1946 (ver video)

Sistemas informáticos compartidos

- Separación de funciones programador operador.
- Programador proporcionaba las tarjetas al operador.
- Operador operaba la máquina y ejecutaba los trabajos.
- Trabajos similares se agruparon por lotes para reducir tiempo de preparación.
- Cuando un trabajo se detenía (normal o anormalmente) CPU permanecía inactiva.
- Se desarrollan mecanismos de Secuenciamiento automático de trabajos. (nacen los primeros SO rudimentarios).
- Monitor residente (pequeño programa siempre en memoria) se utiliza para transferir control a trabajo siguiente.
- Uso de tarjetas de control para determinar que programa ejecutar.
- CPU aún puede quedar inactiva, diferencias de velocidad de dispositivos de E/S

Sistema batch (lote) simple

E/S solapada

- Solución a E/S lenta es uso de cintas magnéticas.
- Se copia contenido de tarjetas perforadas en cintas magnéticas, luego la CPU lee de la cinta.
- Salida se escribía en cinta magnética, luego en impresoras.
- Lectores e impresoras se operaban fuera de línea.
- Aparición de discos notable mejora respecto a operación fuera de línea.
- **Spooling**, uso del disco como un gran buffer para leer y escribir.
- Solapamiento de E/S, se puede estar leyendo un trabajo mientras imprime la salida de otro trabajo, al mismo tiempo se puede estar ejecutando otros trabajos.
- Tasa de utilización mucho más alta de CPU y dispositivos de E/S.
- Spooling conduce de manera natural al concepto de multiprogramación.

E/S solapada

Spooling

¿Qué es un SO?

- Un programa que actúa como intermediario entre el usuario de una computadora y el hardware de la misma.
- El **propósito** de un SO es proporcionar un entorno en el que el usuario pueda ejecutar programas de una manera **práctica y eficiente**.
- El SO es software que **gestiona** el hardware de la computadora.

Estructura de un Sistema Informático (1/2)

- SO es parte de este sistema general.
- Un sistema informático puede dividirse en cuatro componentes:
 - Hardware provee los recursos básicos de computación.
 - CPU, memoria, dispositivos de E/S, discos, etc.
 - Sistema Operativo
 - Controla y coordina el uso del hardware entre los diversos programas de aplicación por parte de los distintos usuarios.
 - Programas de aplicación definen las formas en que estos recursos se emplean para resolver los problemas informáticos de los usuarios.
 - Procesadores de texto, compiladores, navegadores web, sistemas de bases de datos, video juegos, etc.
 - Usuarios.
 - Personas, máquinas, otras computadoras.

Estructura de un Sistema Informático (2/2)

Papel del SO

- Punto de vista del Usuario.
 - SO diseñado para maximizar el trabajo (juego)
 - Atención al rendimiento y no al uso de recursos (un sólo usuario)
 - SO diseñado para maximizar el uso de recursos
 - Varios usuarios simultáneamente.
- Punto de vista del Sistema.
 - SO es un asignador de recursos.
 - Administrador de recursos
 - Decide entre solicitudes de recursos como asignarlos de forma eficiente y equitativa.
 - SO es un programa de control
 - Gestiona la ejecución de los programas de usuario para evitar errores y mejorar el uso de la computadora. (Especialmente con el funcionamiento y control de los dispositivos de E/S).

Organización una Computadora

Iniciando una Computadora

- bootstrap program (programa de arranque) es cargado al encender o reiniciar una computadora.
 - Típicamente almacenado en ROM (Read-only memory) o EPROM (Erasable Programmable Read-Only Memory), generalmente conocido como firmware.
 - Inicializa todos los aspectos del sistema.
 - Desde registros de CPU hasta las controladoras de dispositivos.
 - Programa de arranque debe localizar y cargar el kernel (núcleo) del SO en memoria (GRUB, LILO). Luego el SO comienza ejecutando el primer proceso y espera que se produzca algún suceso.
 - Ocurrencia de suceso se indica mediante una Interrupción:
 - Por HW (enviando señal a CPU por el bus del sistema)
 - Por SW (mediante llamada a sistema)

Operaciones de una Computadora

- Dispositivos de E/S y CPU pueden ejecutarse concurrentemente.
- Cada controlador se encarga de un tipo específico de dispositivo.
- Cada controlador tiene su buffer local, programas del sistema y programas de aplicación.
- CPU mueve datos desde/hacia memoria principal hacia/desde buffers locales.
- E/S es desde el dispositivo al buffer local del controlador.
- Controlador de dispositivo informa a la CPU el término de alguna operación a través de una **Interrupción**.

Funciones comunes de Interrupción

- Una interrupción transfiere el control a una rutina de servicio de interrupción, através del **Vector de interrupciones**, el cual contiene las direcciones de todas estas rutinas.
- Al ocurrir una interrupción, debe guardarse la dirección de la instrucción interrumpida, para ser luego atendida.
- Interrupciones entrantes son deshabilitadas mientras otra interrupción se está procesando para evitar una pérdida de interrupción.
- Una trampa (trap) es una interrupción generada por software causada por un error o una solicitud de usuario.
- Un sistema operativo es manejado por Interrupciones.

Manejo de Interrupciones

- El Sistema Operativo preserva el estado de la CPU almacenando registros y contadores de programa.
- Métodos para determinar el tipo de interrupción que ha ocurrido:
 - Invocar rutina genérica para examinar la información de la interrupción y llamar a la rutina especifica. Método muy lento.
 - Vector o matriz de interrupciones (búsqueda mas rápida).
- Segmentos de códigos separados determinan que acción se debe tomar por cada tipo de interrupción.

Línea de tiempo de las Interrupciones

Vector de interrupciones (ejemplo Procesador Intel)

vector number	description
0	divide error
1	debug exception
2	null interrupt
3	breakpoint
4	INTO-detected overflow
5	bound range exception
6	invalid opcode
7	device not available
8	double fault
9	coprocessor segment overrun (reserved)
10	invalid task state segment
11	segment not present
12	stack fault
13	general protection
14	page fault
15	(Intel reserved, do not use)
16	floating-point error
17	alignment check
18	machine check
19–31	(Intel reserved, do not use)
32–255	maskable interrupts

Estructura de Acceso Directo a Memoria (DMA)

- Usado por dispositivos de E/S de alta velocidad.
- El dispositivo controla la transferencia de bloques de datos desde el buffer hacia la memoria principal, sin la intervención de la CPU.
- Una sola interrupción es generada por bloque y no por byte.

Estructura de Almacenamiento

- Memoria principal. Único medio de almacenamiento que la CPU accede directamente.
- Almacenamiento secundario. Extensión de la memoria principal que provee gran capacidad de almacenamiento NO volátil:
 - Hard-Disk Drives (HDDs) o discos magnéticos. Platos de metal rígido cubiertos con material magnético re-escribible. Divididos lógicamente en Pistas, y cada un de ellas divididas en Sectores.
 - NonVolatile Memory (NVM) devices. Discos SSD (Solid-State Drive), por ejemplo.

Jerarquía de Almacenamiento (1/2)

- Sistemas de almacenamiento organizados en jerarquías según:
 - Velocidad
 - Costo
 - Volativilidad

Jerarquía de Almacenamiento (2/2)

Caching

- Implementado en muchos niveles en un computador (hardware, sistema operativo, software).
- Información en uso es copiada desde almacenamientos mas lentos a otros mas rápidos temporalmente.
- Almacenamiento rápido (cache) es chequeado primeramente en busca de la información:
 - Si está ahí, la información es usada directamente del cache.
 - Si no está, la información es copiada al cache y luego usada.
- Administración del cache es un importante problema de diseño.

Cómo trabaja un computador

Sistemas de un solo procesador

- En un sistema de un único procesador, hay una CPU principal capaz de ejecutar un conjunto de instrucciones de propósito general. (menos común cada día).
- Muchos sistemas tienen además procesadores para algún propósito especial.
 - Conjunto limitado de instrucciones, no ejecutan procesos de usuarios (teclado, controladora de video, etc).

Sistemas multiprocesador

móviles hasta servidores.

• Tradicionalmente tienen des o más procesadores que comparten el bus del computador ()

Sistemas multiprocesadores dominan el campo de la computación, desde dispositivos

- Tradicionalmente tienen dos o más procesadores que comparten el bus del computador (y otros recursos).
- Sus ventajas incluyen:
 - Mayor rendimiento (velocidad de N procesadores no es N sino menor que N).
 - Economía de escala (pueden ser mas baratos que múltiples sistemas con un procesador).

Arquitectura SMP (Symmetric Multi-Processing)

Diseño Dual-core

NUMA (Non-Uniform Memory Access)

- Acceso a memoria puede ser cuello de botella si se tienen más CPUs (bus compartido).
- Una alternativa: NUMA. Rápido cuando CPU necesita acceder a su memoria.
- Latencia aumenta si necesita acceder a memoria remota. SO mediante planificación de CPU puede minimizar esta penalización.

Sistemas en Cluster

- Otro tipo de sistema con múltiples CPUs.
- Se diferencian de los sistemas de multiprocesamiento en que están formados por dos o más sistemas individuales acoplados.
- Usualmente comparten almacenamiento a través de redes de área almacenamiento (SAN Storage-Area-Network).
- Proveen de servicios de alta disponibilidad, de acuerdo al nivel de redundancia del sistema:
 - Cluster Asimétrico: Una máquina está en modo de espera y monitorea a la máquina activa.
 - Cluster Simétrico: Dos o más host ejecutan aplicaciones y se monitorizan entre si.

Cluster

Multiprogramación

- Un usuario no puede mantener ocupada la CPU y dispositivos de E/S todo el tiempo.
- La multiprogramación organiza los trabajos (datos y código) para que la CPU siempre tenga algo que ejecutar.
- Un subconjunto de los trabajos se mantienen en memoria.
- Un trabajo es seleccionado y ejecutado a través del Planificador de trabajos.
- Cuando el trabajo en ejecución tiene que esperar (por ejemplo por alguna E/S), el SO cambia a otro trabajo.

Tiempo Compartido (multitarea)

- Es una extensión lógica de la multiprogramación.
- La CPU ejecuta múltiples trabajos conmutando entre ellos, lo que se producen tan frecuente que los usuarios pueden interactuar con cada programa mientras éste está en ejecución.
- Tiempo de respuesta debe ser pequeño (menos de 1 segundo).
- Cada usuario tiene al menos un programa distinto en memoria (Proceso).
- Si varios trabajos están listos para ejecutarse al mismo tiempo (<u>Planificación de CPU</u>).
- Si los procesos no encajan en la memoria, con <u>swapping</u> se mueven dentro y fuera para ser ejecutados.
- Memoria virtual permite ejecución de un proceso que no está completamente en memoria.
 (permite ejecutar programas que son más grandes que la memoria física real.)

Layout de la memoria de un sistema multiprogramado

Operaciones de un Sistema Operativo

- Sistemas modernos controlados mediante Interrupciones.
- Excepción (o trap) es una interrupción generada por software:
 - por un error (división por cero o acceso a memoria no válido)
 - solicitud específica de un programa de usuario por un servicio del SO.
- Otros problemas pueden ser ciclos infinitos, procesos pueden modificar a otros procesos o al mismo SO.

Operación en Modo Dual

- Para asegurar la correcta ejecución del SO, se debe poder distinguir entre la ejecución del código del SO y del código definido por el usuario.
- Soporte por hardware para diferenciar entre varios modos de ejecución.
- Como mínimo se necesitan dos modos:
 - Modo usuario
 - Modo Kernel o supervisor o privilegiado.
- Bit de modo provisto por el hardware:
 - Se puede diferenciar entre una tarea que se ejecute en nombre del SO o del usuario.
 - Algunas instrucciones son privilegiadas y sólo se pueden ejecutar en modo kernel.
 - Llamadas al sistema, solicita servicios al SO.

Transición de modo usuario a modo kernel

Temporizador

- Debemos asegurar que el SO mantenga el control sobre la CPU.
- Impedir que programas de usuarios entren en ciclos infinitos.
- Impedir que no devuelvan el control al SO.
- Impedir que acaparen recursos.
- Ocurre interrupción después de un cierto periodo.
- Uso de contadores. Cuando llega a cero, ejecuta interrupción.

Gestión de Procesos

- Un proceso es un programa en ejecución. Es la unidad de trabajo del SO.
- Programa es una entidad pasiva, Proceso es una entidad Activa.
- Los procesos necesitan ciertos recursos para completar su tarea:
 - CPU, memoria, dispositivos de E/S, archivos.
 - Datos de entrada (inicialización).
- Cuando el proceso termina, el SO reclama todos los recursos reutilizables.
- Proceso de una sóla <u>hebra</u> posee un <u>contador de programa</u> que especifica la siguiente instrucción a ejecutar. (ejecutan instrucciones secuencialmente, una a la vez.)
- Procesos <u>multihebras</u> tienen un contador de programa por hebra.
- Todos los procesos pueden potencialmente ejecutarse de forma concurrente, por ejemplo, multiplexando la CPU cuando sólo se disponga de una.

Actividades de la Gestión de Procesos

- Crear y borrar los procesos de usuario y sistema.
- Suspender y reanudar los procesos.
- Proporcionar mecanismos para la comunicación entre procesos (IPC).
- Proporcionar mecanismos para la sincronización de procesos. Acceso concurrente a datos compartidos puede resultar con datos inconsistentes (Sección Crítica).
- Proporcionar mecanismos para el tratamiento de los bloqueos mutuos. (que impiden que un conjunto de procesos concurrentes completen sus tareas).

Gestión de Memoria

 La MP es un repositorio de datos rápidamente accesibles, compartida por la CPU y los dispositivos de E/S.

Para que la CPU procese datos de un disco. Estos deben transferirse primero a MP

- mediante llamadas de E/S generadas por la CPU.
- Del mismo modo las instrucciones deben estar en memoria para que la CPU las ejecute.
- La Gestión de Memoria determina qué mantener en MP en función de optimizar la utilización de CPU y los tiempos de respuesta a los usuarios.

Actividades de la Gestión de Memoria

- Controlar qué partes de la memoria están actualmente en uso y por parte de quien.
- Decidir qué datos y procesos (o partes de procesos) añadir o extraer de la memoria.
- Asignar y liberar la asignación de espacio de memoria según sea necesario.

Gestión de Almacenamiento

- Para que el Sistema Informático sea cómodo para los usuarios, el SO proporciona una vista lógica y uniforme del sistema de almacenamiento de información.
- Abstrae las propiedades físicas de los dispositivos y define una unidad de almacenamiento lógico, el <u>Archivo</u>.
- Los dispositivos tienen características tales como:
 - velocidad de acceso
 - capacidad
 - velocidad de transferencia de datos.
 - método de acceso (secuencial o aleatorio).

Características de varios tipos de almacenamiento

Level	1	2	3	4	5
Name	registers	cache	main memory	solid-state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25-0.5	0.5-25	80-250	25,000-50,000	5,000,000
Bandwidth (MB/sec)	20,000-100,000	5,000-10,000	1,000-5,000	500	20-150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Gestión del sistema de Archivos

- Un Archivo es un colección de información relacionada definida por su creador.
- Archivos representan:
 - programas (tanto en formato fuente como objeto).
 - datos (numéricos, alfanuméricos o binarios).
- Archivos usualmente organizados en Directorios.
- Control de Acceso para determinar Quién puede acceder Qué elemento.
- SO responsable de las siguientes actividades:
 - Creación y borrado de archivos.
 - Creación y borrado de directorios para organizar los archivos.
 - entre otros.

Protección y Seguridad

- Sistema con múltiples usuarios y ejecución concurrente de múltiples procesos, entonces acceso a datos debe regularse.
- Emplear mecanismos que aseguren que sólo puedan utilizar los recursos (archivos, segmentos de memoria, CPU, etc) aquellos procesos que sean autorizados por el SO.
- Protección: Cualquier mecanismo que controle el acceso de los procesos o usuarios a los recursos que el sistema informático pone a disposición.
- Seguridad: Mecanismos para defender al sistema informático frente a ataques internos y externos.
 - Virus, gusanos, denegación de servicios, robo de identidad, robo de servicios, etc.

Protección y Seguridad

- Se requiere que el sistema puedan distinguir a todos sus usuarios.
 - Lista de nombres de usuarios y sus identificadores de usuarios asociados (ID). ID son unívocos y uno por usuario.
 - El ID de usuario estará asociado con todos los archivos y procesos del usuario.
 - Identificador de grupo: Conjunto de usuarios.
 - Escalamiento de privilegios: Para obtener permisos adicionales para una actividad. Permisos setuid $(x \rightarrow s)$:

```
$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 68248 Mar 23 09:40 /usr/bin/passwd
```

