Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

РАСЧЕТНОЕ ЗАДАНИЕ

Тема: «Марковские модели принятия решений» Дисциплина: «Методы оптимизации и принятия решений» Вариант № 24

Выполнила студентка гр. 13541/3: Сагадеева С.А. (подпись_____) Руководитель, к.т.н., доц. Сиднев А. Г. (подпись)_____ "16" апреля 2019 г.

Оглавление

Задание	3
Выполнение расчетного задания	3
Марковская модель принятия решения	3
Применение метода итераций по стратегиям	6
Выводы	12
Использованная литература	12

Задание

Задача 40, в) из книги Г. Вагнера «Основы исследования операций»: Капитан Р., служащий в одной судоходной компании, командует судном, совершающим регулярные рейсы между двумя портами А и В. Предположим, что продолжительность рейса составляет 1 сутки. Каждое утро капитан должен решить, стоит ли ему загружать судно имеющимся в наличии грузом и отправляться в порт назначения или обождать сутки в надежде, что на следующий день может подвернуться более выгодный груз. Пусть затраты на один рейс составляют c_1 , а затраты, связанные с суточным простоем судна в порту, составляют c_2 , где $c_1 > c_2$. Предположим, что в порту А имеется два вида грузов, стоимостью a_1 и a_2 , где $a_1 > a_2$ Обозначим вероятность того, что груз вида a_1 имеется в наличии, символом p_a . (откуда $(1 - p_a)$ есть вероятность того, что имеется только груз вида a_2). Предположим также, что наличие груза в рассматриваемый день не зависит от его наличия в предыдущие дни (таким образом, если капитан не уходит в рейс, то все равно сохраняется вероятность p_a получения груза a_1 на следующий день). Аналогично пусть стоимость грузов в порту В составляет b_1 и b_2 , где $b_1 > b_2$, и пусть p_b — вероятность наличия груза b_1 .

- 1. построить марковскую модель принятия решений для данной задачи;
- 2. для случая N= ∞ найти и перечислить все стационарные стратегии;
- 3. построенную моделью снабдить разумными численными данными и найти оптимальную стратегию для N=3.

Выполнение расчетного задания

Марковская модель принятия решения

Пусть имеются следующие состояния:

 S_{a1} - судно находится в порту A и в наличии имеется груз a_1

 S_{a2} - судно находится в порту A и в наличии имеется груз a_2

 S_{b1} - судно находится в порту В и в наличии имеется груз b_1

 S_{b2} - судно находится в порту В и в наличии имеется груз b_2

Множество решений:

- 1. X_1 капитан принимает решение отправляться в порт назначения с имеющимся грузом
- 2. X_2 капитан принимает решение ждать сутки Множество допустимых решений для каждого из 4-х состояний: S_{a1} : X_1

$$S_{a2}$$
: X_1 , X_2
 S_{b1} : X_1
 S_{b2} : X_1 , X_2

Количество стационарных стратегий = 1*2*2*1=4:

Теперь можно построить матрицы переходных вероятностей и расходов для каждого из допустимых решений. Далее индексы при P и R определяют номер допустимого решения, которому соответствуют. Т.е. P1 для Sa1, R2 – для Sa2 и т.п.

Матрицы переходов строились с учетом того, что строки и столбцы соответствуют состояниям в моменты времени і и і+1 соответственно.

1 допустимое решение: матрица переходных вероятностей

$$P_1 = \begin{pmatrix} 0 & 0 & p_b & 1 - p_b \\ 0 & 0 & p_b & 1 - p_b \\ p_a & 1 - p_a & 0 & 0 \\ p_a & 1 - p_a & 0 & 0 \end{pmatrix}$$

Нулями обозначены те переходы, вероятность которых равна нуля, так как в из S_{a1} в S_{a1} , из S_{a2} в S_{a1} , из S_{a1} в S_{a2} , из S_{a2} в S_{a2} капитан отправляется в порт В в любом случае, соответственно остаться в порту А — невозможно.

Аналогично для случаев из S_{b1} в S_{b1} , из S_{b2} в S_{b1} , из S_{b1} в S_{b2} , из S_{b2} в S_{b2} вероятности переходов равны нулю, поскольку опять же стремясь в порт В, капитан не может оказаться в порту А.

В порту В капитан окажется с вероятностью наличия груза b1, поэтому вероятность перехода из состояния S_{a1}/S_{a2} в S_{b2} равна $1-p_b$.

В порту A капитан окажется с вероятностью того, что в порту будет груз a1, поэтому вероятность перехода из состояния S_{b1}/S_{b2} в S_{a2} , равна $1-p_a$.

Матрица доходов для данного решения имеет следующий вид:

$$R_1 = \begin{pmatrix} 0 & 0 & a_1 - c_1 & a_1 - c_1 \\ 0 & 0 & a_2 - c_1 & a_2 - c_1 \\ b_1 - c_1 & b_1 - c_1 & 0 & 0 \\ b_2 - c_1 & b_2 - c_1 & 0 & 0 \end{pmatrix}$$

При переходе из S_{a1} в S_{b1}/S_{b2} будут получены деньги за груз a1, однако с учетом затрат в размере c1 мы получим итоговую прибыль a1-c1.

В случае перевозки груза а2 в пункт b деньги будут получены за груз а2, но с учетом затрат результирующий доход составит а2-с2.

При перевозке груза из S_{b1} в S_{a1}/S_{a2} капитан получит деньги за груз b_1 , однако с учетом затрат на рейс, в результате получит b1-c1.

При перевозке груза из состояния S_{b2} в состояние S_{a1}/S_{a2} , капитан получит деньги за груз b_2 , но при этом затраты на один рейс составят c_1 , поэтому итоговый доход будет равен b_2-c_1 .

2 допустимое решение: матрица переходных вероятностей

В данном сценарии капитан принимает решение подождать сутки более ценный груз:

$$P_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ p_a & 1 - p_a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & p_b & 1 - p_b \end{pmatrix}$$

Так как груз a1 более ценен чем a2, то ожидать сутки его смысла нет, поэтому переходы из S_{a1} в S_{a1} и из S_{a1} в S_{a2} равны 0.

Вероятность переходов из S_{b1} в S_{b1} и из S_{b1} в S_{b2} тоже равны 0 в силу аналогичной выше причины неравной ценности грузов.

Вероятность перехода из состояния S_{a2} в S_{a1} равна p_a (ценный груз вида a_1 будет в наличии). Вероятность перехода из состояния S_{a2} в S_{a2} равна $1-p_a$, поскольку именно с такой вероятностью будет в наличии груз вида a_2 .

Остальные вероятности переходов равны нулю, так как капитан принял решение ожидать груз в пункте А или В соответственно.

Матрица доходов

$$R_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -c_2 & -c_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -c_2 & -c_2 \end{pmatrix}$$

Доходов в данном сценарии нет, так как капитан решил остаться в порту, затратив ресурсы на простой в размере с2.

Применение метода итераций по стратегиям

Рассмотрим все стационарные стратегии поведения. При 4 состояниях и 2 допустимых решениях количество стационарных решений было получено ранее и оно равно 4. В нашей задаче не имеет смысла рассматривать стратегии, при которых находясь в порту А при наличии груза a_1) и находясь в порту В при наличии груза b_1), судно принимает решение о простое, так как при наличии более ценного груза не имеет смысла ждать еще один день.

Для нахождения оптимальной стратегии при N=3 необходимо снабдить модель численными данными. Пусть:

$$a_1 = 100$$
 $a_2 = 80$
 $b_1 = 90$
 $b_2 = 55$
 $c_1 = 50$
 $c_2 = 25$

$$p_a = 0.5$$

 $p_b = 0.7$

В рассматриваемом случае горизонт планирования N=3, а элементы матриц переходных вероятностей и доходов не зависят от номера этапа, поэтому рассмотрим каждую стратегию в соответствии с определенными числовыми показателями. В рамках данной задачи ожидаемые доходы обусловлены только переходом изучаемой системы S из одного состояния в другое в рамках 4х стратегий:

Стратегия 1 $\{X_1, X_1, X_1, X_1\}$: $S(a_1) \to B$ (рейс из порта A в порт B с грузом a_1):

- 1) Находясь в состоянии S_{a1} , отправляться в порт В с грузом a_1
- 2) Находясь в состоянии S_{a2} , отправляться в порт В с грузом a_2
- 3) Находясь в состоянии S_{b1} , отправляться в порт A с грузом b_1
- 4) Находясь в состоянии S_{b2} , отправляться в порт A с грузом b_2

$$P_1 = \begin{pmatrix} 0 & 0 & 0.7 & 0.3 \\ 0 & 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix} R_1 = \begin{pmatrix} 0 & 0 & 50 & 50 \\ 0 & 0 & 30 & 30 \\ 40 & 40 & 0 & 0 \\ 5 & 5 & 0 & 0 \end{pmatrix}$$

Стратегия 2 $\{X_1, X_2, X_1, X_1\}$: $S(a_2) \to B$ (рейс из порта A в порт B с грузом a_2)

- 1) Находясь в состоянии S_{a1} , отправляться в порт В с грузом a_1
- 2) Находясь в состоянии S_{a2} , ожидать сутки груз вида a_1
- 3) Находясь в состоянии S_{b1} , отправляться в порт A с грузом b_1
- 4) Находясь в состоянии S_{b2} , отправляться в порт A с грузом b_2

$$P_2 = \begin{pmatrix} 0 & 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix} R_2 = \begin{pmatrix} 0 & 0 & 50 & 50 \\ -25 & -25 & 0 & 0 \\ 40 & 40 & 0 & 0 \\ 5 & 5 & 0 & 0 \end{pmatrix}$$

Стратегия 3 $\{X_1, X_1, X_1, X_2\}$: $S(b_1) \to A$ (рейс из порта В в порт А с грузом b_1)

- 1) Находясь в состоянии S_{a1} , отправляться в порт В с грузом a_1
- 2) Находясь в состоянии S_{a2} , отправляться в порт В с грузом a_2
- 3) Находясь в состоянии S_{b1} , отправляться в порт A с грузом b_1
- 4) Находясь в состоянии S_{b2} , ожидать сутки груз вида b_1

$$P_3 = \begin{pmatrix} 0 & 0 & 0.7 & 0.3 \\ 0 & 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.7 & 0.3 \end{pmatrix} R_3 = \begin{pmatrix} 0 & 0 & 50 & 50 \\ 0 & 0 & 30 & 30 \\ 40 & 40 & 0 & 0 \\ 0 & 0 & -25 & -25 \end{pmatrix}$$

Стратегия $4\{X_1, X_2, X_1, X_2\}: S(b_2) \to A$ (рейс из порта В в порт А с грузом b_2)

- 1) Находясь в состоянии S_{a1} , отправляться в порт В с грузом a_1
- 2) Находясь в состоянии S_{a2} , ожидать сутки груз вида a_1
- 3) Находясь в состоянии S_{b1} , отправляться в порт A с грузом b_1
- 4) Находясь в состоянии S_{b2} , ожидать сутки груз вида b_1

5)
$$P_4 = \begin{pmatrix} 0 & 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.7 & 0.3 \end{pmatrix} R_4 = \begin{pmatrix} 0 & 0 & 50 & 50 \\ -25 & -25 & 0 & 0 \\ 40 & 40 & 0 & 0 \\ 0 & 0 & -25 & -25 \end{pmatrix}$$

Алгоритм метода итераций по стратегиям включает в себя следующие шаги [1]:

1. Шаг оценки параметров. Для произвольной стратегии s с матрицами P_s и R_s решаем систему из t уравнений

$$f^{s}(i) - \alpha \sum_{i=1}^{m} p_{ij}^{s} f^{s}(j) = v_{i}^{s}, i = 1, 2, ..., m$$

относительно m неизвестных $f^{s}(1), f^{s}(2), ..., f^{s}(m)$.

2. Шаг улучшения стратегии. Для каждого состояния i определяем альтернативу k, обеспечивающую

$$\max_{k} \left\{ v_{i}^{k} + \alpha \sum_{j=1}^{m} p_{ij}^{k} f^{s}(j) \right\}, i = 1, 2, ..., m,$$

где $f^s(j)$ имеют значения, определенные на шаге оценки параметров. Если улучшенная стратегия t совпадает со стратегией s, то алгоритм закончен. В этом случае стратегия t оптимальна. В противном случае полагаем s=t и повторяем шаг оценки параметров [2].

Таким образом, для нашей задачи:

Выберем в качестве произвольной стратегии τ стратегию №1, тогда при $\alpha = 0.9$:

$$P_{1}(\tau) = \begin{pmatrix} 0 & 0 & 0.7 & 0.3 \\ 0 & 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix} R_{1}(\tau) = \begin{pmatrix} 0 & 0 & 50 & 50 \\ 0 & 0 & 30 & 30 \\ 40 & 40 & 0 & 0 \\ 5 & 5 & 0 & 0 \end{pmatrix}$$

$$f_{\tau}(1) - 0.9(0.7 * f_{\tau}(3) + 0.3 * f_{\tau}(4)) = 50$$

$$f_{\tau}(2) - 0.9(0.7 * f_{\tau}(3) + 0.3 * f_{\tau}(4)) = 30$$

$$f_{\tau}(3) - 0.9 * (0.5 * f_{\tau}(1) + 0.5 * f_{\tau}(2)) = 40$$

$$f_{\tau}(4) - 0.9 * (0.5 * f_{\tau}(1) + 0.5 * f_{\tau}(2)) = 5$$

Скрипт для решения системе в Matlab:

 $A = [1 \ 0 \ -0.63 \ -0.27; \ 0 \ 1 \ -0.63 \ -0.27; \ -0.45 \ -0.45 \ 1 \ 0; \ -0.45 \ -0.45 \ 0 \ 1];$

```
b = [50; 30; 40; 5];

x = inv(A)*b
```

Полученные решения:

$$f_{\tau}(1) = 360.2632$$

 $f_{\tau}(2) = 340.2632$
 $f_{\tau}(3) = 355.2368$
 $f_{\tau}(4) = 320.2368$

Улучшим стратегию при помощи полученных ранее результатов:

	$\varphi_j(X_i) = \nu_j(X_i) + \alpha \sum_{k=1}^4 p_{jk}(X_i) F_{\tau}(k)$ $i = 1$ $i = 2$		$\max_G \varphi_j$	X_{*j}
S_1	50 + 0.9 * $(0.7*355.2368+0.3*320.236$ $8)$ $= 360.2632$	50 + 0.9 * (0.7*355.2368+0.3*320.2368) = 360.2632	360.2632	X_1
S_2	30 + 0.9 * (0.7*355.2368+0.3*320.236 8) = 340.2632	-25 + 0.9 * $(0.5*360.2632+0.5*340.2632)$ $= 290.2368$	340.2632	X_1
S_3	40 + 0.9 * (0.5 * 360.2632 + 0.5 * 340.2632) = 355.2368	40 + 0.9 * (0.5*360.2632+0.5*340.2632) = 355.2368	355.2368	<i>X</i> ₁
S_4	5 + 0.9 * (0.5 * 360.2632 + 0.5 * 340.2632) = 320.2368	5 + 0.9 * (0.5*360.2632+0.5*340.2632) = 320.2368	320.2368	<i>X</i> ₁

Так как в данном подходе стратегия была выбрана нами, а результат подтверждает ее достаточную оптимальность, то при $N=\infty$ мы приходим к выводу, что капитану следует отправляться в противоположный порт без простоев.

Решение методом итераций по стратегиям с учетом дисконтирования при N=3

Так как горизонт планирования конечен, то для оптимальных ожидаемых доходов должны быть выполнены условия:

$$f_{N+1}(j) \equiv 0, j = 1..m$$

Оптимальный ожидаемый доход fi(j) на каждом из этапов (у нас их будет 3) определяется составляющей, определяемой по формуле [3]:

$$f_{i}(j) = \max_{X_{l_{i}} \in G} \left(\nu_{j}(X_{l_{i}}) + \alpha \sum_{k=1}^{m} p_{jk}(i+1|X_{l_{i}}) f_{i+1}(k) \right)$$

Где

$$v_j(X_{l_i}) = \sum_{k=1}^m p_{jk}(i+1 \mid X_{l_i}) r_{jk}(i+1 \mid X_{l_i})$$

И их совокупностью с учетом переходных вероятностей. Ранее было получено количество стационарных стратегий = 1*2*2*1=4:

В используемом нами подходе матрицы P1, R1, P2, R2 не зависят от номера этапа. С учетом этого, ожидаемые доходы, обусловленные переходом системы из одного возможного состояния в другое при $\alpha=0.9$ приведены ниже:

$$v_1(X_1) = 0.7*50+0.3*50 = 50$$
 $v_2(X_1) = 0.7*30+0.3*30 = 30$
 $v_3(X_1) = 0.5*40+0.5*40 = 40$
 $v_4(X_1) = 0.5*5+0.5*5 = 5$
 $v_1(X_2) = 0.7*50+0.3*50 = 50$
 $v_2(X_2) = -0.5*25 - 0.5*25 = -25$
 $v_3(X_2) = 0.5*40+0.5*40 = 40$
 $v_4(X_2) = 0.5*5+0.5*5 = 5$

Этап 3:

	$\nu_j(X_i)$			
	i = 1	i = 2	$\max_{G} \varphi_j$	X_{*j}
S_1	50	50	-	<i>X</i> 1
			50	
S_2	30	-25		X_1
			30	
S_3	40	40		<i>X</i> ₁ , X2
			40	X2
S_4	5	5		X_1 ,
			5	X2

$$f_{\tau}(1) = 50$$

 $f_{\tau}(2) = 30$
 $f_{\tau}(3) = 40$
 $f_{\tau}(4) = 5$

Этап 2:

	$\varphi_j(X_i) = \nu_j(X_i) + \alpha \sum_{k=1}^4 p_{jk}(X_i) F_3(k)$		$\max_G \varphi_j$	X_{*j}
	i = 1	i = 2		
S_1	50 + 0.9 * (0.7*40 + 0.3*5)	50 + 0.9 * (0.7*40 + 0.3*5)	76,55	X_1 ,
	= 76,55	= 76,55		X2
S_2	30 + 0.9 * (0.7*40+0.3*5)	-25 + 0.9 * (0.5*50+0.5*30)	56,55	X_1
	= 56,55	= 11		
S_3	40 + 0.9 * (0.5 * 50 + 0.5 *	40 + 0.9 * (0.5*50+0.5*30)		X_1 ,
	30) = 76	= 76	76	X2
S_4	5 + 0.9 * (0.5 * 50 + 0.5 *	5 + 0.9 * (0.5*50+0.5*30)		X_1 ,
	30) = 41	= 41	41	X2

$$f_{\tau}(1) = 76,55$$

 $f_{\tau}(2) = 56,55$
 $f_{\tau}(3) = 76$
 $f_{\tau}(4) = 41$

Этап 1:

	$\varphi_j(X_i) = \nu_j(X_i) + \alpha \sum_{k=1}^4 p_{jk}(X_i) F_2(k)$		$\max_G \varphi_j$	X_{*j}
	i = 1	i = 2		
S_1	75,55 + 0.9 *	76,55 + 0.9 * (0.7*76+0.3*41)	134,5	X_1 ,
	(0.7*76+0.3*41) = 134,5	= 134,5		X2
S_2	56,55 + 0.9 *	56,55 + 0.9 * (0.5*76+0.5*41)	115,5	X_1
	(0.7*76+0.3*41) = 115,5	= 109,2		

S_3	76 + 0.9 * (0.5 * 76,55 +	76 + 0.9 * (0.5*76,55+0.5*30)		X_1 ,
	0.5 * 30) = 129,275	= 129,275	129,275	X2
S_4	41 + 0.9 * (0.5 * 76,55 +	41 + 0.9 *		v
	0.5 * 56,55) = 100,895	(0.5*76,55+0.5*56,55) =	100,895	$\begin{array}{c c} \lambda_1, \\ X2 \end{array}$
		100,895		Λ 2

$$f_{\tau}(1) = 134,5$$

 $f_{\tau}(2) = 115,5$
 $f_{\tau}(3) = 129,275$
 $f_{\tau}(4) = 100,895$

Уже на 3м этапе мы получаем одинаковые значения оптимальности для X1 и X2 для всех стратегий кроме 2й, где заметно преимущество первого решения. Такая степень аналогичности результатов, скорее всего, обусловлена случайным выбором численной модели данных.

Выводы

В ходе данной лабораторной работы нами были изучены марковские модели принятия решений, а также решение задач метод итераций при бесконечном горизонте планирования и при введении ограничения на N.

Использованная литература

- 1. Г.Вагнер «Основы исследования операций» Т.3, 1973г. 493 стр.
- 2. И.М. Макаров, Т.М. Виноградская, А.А. Рубчинский, В.Б. Соколов «Теория выбора и принятия решений» М. 1982 328 с.
- 3. Волков, Загоруйко «Исследование операций» 2000 436 с.