

Intelligent Systems

Excersice 7 - Clustering

Simon Reichhuber, Ingo Thomsen February 3, 2021

University of Kiel, Winter Term 2021

TABLE OF CONTENT

- 1. Single, Complete und Average Linkage
- 2. c-Means basics
- 3. Apply c-Means Clustering

Single, Complete und Average

Linkage

- A. How does Single Linkage Clustering work? Visualise the procedure using the data set of the figure with C=3 and with C=2. As distance measure choose the Manhattan distance.
- B. What are Pros and Cons of Single Linkage in comparison to complete Linkage regarding the treatment of outliers and the tendency of producing chains?
- C. What is the difference between Single Linkage, Complete Linkage, and Average Linkage? How would Complete or Average Linkage cluster the data points in the figure with C=2 and the Manhattan distance?

1. A SINGLE LINKAGE CLUSTERING

How does Single Linkage Clustering work? Visualise the procedure using the data set of the figure with C=3 and with C=2. As distance measure choose the Manhattan distance.

A) - SINGLE LINKAGE

Given a set of samples x_i mit i = 1, ..., N and additionally a number of cluster c that are required to be found. $(N \ge c)$.

- 1. First, partition the samples such that every sample is assigned to a different cluster. Given *N* samples results in *N* clusters:
 - $C_i = \{x_i\}$
- 2. These *N* clusters are merged stepwise:
 - 2.1 Determine two clusters with minimum distance according to the criterion nearest neighbor and merge them.
 - 2.2 If the number of clusters is still above c, repeat step 2.1.

A) SINGLE LINKAGE EXAMPLE

Figure 1: *

Every sample is assigned to a different clusterr.

A) SINGLE LINKAGE EXAMPLE C=3

Figure 2: *

Merge two clusters, until the number of required clusters c = 3 is reached.

A) SINGLE LINKAGE EXAMPLE C=3

Figure 3: *

Resulting 3 clusters.

A) SINGLE LINKAGE EXAMPLE C=2

Figure 4: *

Merge two clusters, until the number of required clusters c = 2 is reached.

A) SINGLE LINKAGE BEISPIEL C=2

Figure 5: *

The possible result shows a poor clustering. The middle cluster should be merged to the bottom cluster → chaining problem

- A. How does Single Linkage Clustering work? Visualise the procedure using the data set of the figure with C=3 and with C=2. As distance measure choose the Manhattan distance.
- B. What are Pros and Cons of Single Linkage in comparison to complete Linkage regarding the treatment of outliers and the tendency of producing chains?
- C. What is the difference between Single Linkage, Complete Linkage, and Average Linkage? How would Complete or Average Linkage cluster the data points in the figure with C=2 and the Manhattan distance?

1. B SINLGE LINKAGE CLUSTERING

What are Pros and Cons of Single Linkage in comparison to complete Linkage regarding the treatment of outliers and the tendency of producing chains?

Pros:

Outliers are detected, because they will be added lastly

Cons:

- Only two samples matters for merging two clusters → What if these are noise or outliers?
- Chaining problem: long chains are able to form clusters with a large maximum point distance (Remark: sometimes chaining is required for clustering geographical data, i.e. rivers)

- A. How does Single Linkage Clustering work? Visualise the procedure using the data set of the figure with C=3 and with C=2. As distance measure choose the Manhattan distance.
- B. What are Pros and Cons of Single Linkage in comparison to complete Linkage regarding the treatment of outliers and the tendency of producing chains?
- C. What is the difference between Single Linkage, Complete Linkage, and Average Linkage? How would Complete or Average Linkage cluster the data points in the figure with C=2 and the Manhattan distance?

1. C COMPLETE LINKAGE CLUSTERING

Similiarly as Single Linkage but maximum distant neighbor as distance measure

Pros:

No chaining as in Single Linkage
 For example: In Exercise 1A with c = 2 the bottom and middle cluster will be merged definitely.

Cons:

 Outliers will be merged to clusters most likely and won't be detected as outliers

1. C Average Linkage Clustering

- Similiarly as Single Linkage but average distant neighbor as distance measure
- Average Linkage is a trade-off between Single Linkage and Complete Linkage
- In many cases this approach succeeds.
- For example:
 The middle clsuter in exercise 1A with c = 2 will be merged correctly to the bottom cluster.

c-Means basics

- A. Visualise and explain with the help of the figure how the c-Means algorithm works.
- B. What are Pros and Cons of the c-Means algorithm?
- C. Which steps can be applied to optimise the clustering results?

3. A C-MEANS PROCEDURE I

Given *N d*-dimensional samples $X = \{x_i\}_{i=1}^N \subset \mathbb{R}^d$ and the number of required clusters $c \in \mathbb{N}$

- 1. Distribute c cluster centres $c_j, j=1,\ldots,c$ (arbitrary) in the space \mathbb{R}^d
- 2. Assign every sample to the nearest cluster centre $class(x_i) = argmin_{j=1,...,k}||x_i c_j||_2$
- 3. Distribute new cluster centres

$$c_j = \frac{1}{|\{x \in X | class(x) = j\}|} \sum_{x \in \{x' \in X | class(x') = j\}} X$$

4. Repeat steps 2)-3) and terminate after *k* iterations or if no new cluster assignement took place

3. A C-MEANS PROCEDURE II

- A. Visualise and explain with the help of the figure how the *c*-Means algorithm works.
- B. What are Pros and Cons of the c-Means algorithm?
- C. Which steps can be applied to optimise the clustering results?

What are Pros and Cons of the c-Means algorithm? Pros:

- Easy, understandable
- Every sample is assigned to a cluster
- Algorithm terminates

Cons:

- Greedy procedure → convergence at local minimum possible
- Number of clusters has to be known or estimated
- · Also outliers will be assigned to clusters
- · Sensible according to poor initial cluster centres placement

- A. Visualise and explain with the help of the figure how the *c*-Means algorithm works.
- B. What are Pros and Cons of the c-Means algorithm?
- C. Which steps can be applied to optimise the clustering results?

Which steps can be applied to optimise the clustering results? In the figure: How can we prevent the clustering in the right image?

3. C C-MEANS TUNING

Unlucky placement of cluster centres:

- Repeat procedure with different randomised initial cluster centres placements
- Intelligent cluster centres placement

Not suitable number of clusters:

- Begin with small c and evaluate the minimum cluster distance with ascending c
- Decide according to elbow method

3. C ELBOW-CRITERION

Figure 6: *

3. C CLEVER CLUSTER CENTRE PLACEMENT

Solution 1:

Increase c and merge similar clusters

Solution2:

Apply clever cluster centre distribution:

- Approach 1: Random distribution
 - a) Select c samples randomly as cluster centre
 - b) Choose random points within minimum sphere containing all samples.
- Approach 2: Sort samples x₁,..., x_N according distance to global centre c_{global} = ½ ∑_{i=1}^N x_i and select nearest (1 + (j − 1) · [N/c])-th sample as cluster centre.

Apply c-Means Clustering

A. Proceed 4 iterations of the c-Means clustering on the points given in the figure. Note the Euclidean distances into the table. Remark: You can use a ruler to measure the Euclidean distances.

2. A INITIAL

Iteration		Α	В	С	D	Ε	F	G	Н	1	J
0	$Z_1 = (6.0, 6.0)$	3.6	4.5	6.3	5.0	4.5	2.2	5.4	7.8	5.0	4.1
0	$Z_1 = (7.0, 6.0)$	3.2	5.0	6.7	5.1	5.4	3.2	5.1	8.6	5.8	4.0

2. A ITERATION 1

Iteration		Α	В	С	D	Ε	F	G	Н	1	J
1	$Z_1 = (3.1, 3.1)$	4.9	1.4	3.3	3.6	5.0	4.0	5.3	3.8	1.2	4.0
1	$Z_1 = (7.7, 2.0)$	1.1	3.7	4.2	1.9	8.3	6.2	1.1	7.7	5.8	0.7

2. A ITERATION 2

Iteration		Α	В	С	D	Ε	F	G	Н	1	J
2	$Z_1 = (2.7, 3.5)$	5.4	2.0	3.7	4.2	4.5	3.7	5.9	3.7	8.0	4.6
2	$Z_1 = (7.2, 1.8)$	1.5	3.3	3.7	1.5	8.2	6.2	1.1	7.3	5.4	0.4

2. A ITERATION 3

Iteration		Α	В	С	D	Ε	F	G	Н	1	J
3	$Z_1 = (2.4, 4.2)$	5.7	2.7	4.5	4.8	3.8	3.2	6.4	4.0	1.3	5.1
3	$Z_1 = (6.6, 1.4)$	2.1	2.7	3.0	0.7	8.0	6.2	1.5	6.6	4.9	0.7