Wybrane zagadnienia geodezji wyższej Ćwiczenie nr 4

Kornel Samociuk 311619

7 stycznia 2022

Cel ćwiczenia:

Celem ćwiczenia było przekonwertowanie danych z układu GRS80 na układy Gaussa-Krugera, PL-1992 oraz PL-2000 i z powrotem. Ponadto należało obliczyć pole powierzchni wyznaczonego terenu, oraz powstałe na wskutek transformacji zniekształcenia.

Dane wejściowe:

Moimi danymi wyjściowymi były współrzędne czterech wierzchołków w układzie GRS80. Były to kolejno:

$$\varphi_A = 50^{\circ} 15' 00''$$

$$\lambda_A = 20^{\circ} 45' 00''$$

$$\varphi_B = 50^{\circ} \, 00' \, 00''$$

$$\lambda_R = 20^{\circ} 45' 00''$$

$$\varphi_C = 50^{\circ} 15' 00''$$

$$\lambda_C = 21^{\circ} 15' 00''$$

$$\varphi_D = 50^{\circ} \, 00' \, 00''$$

$$\lambda_D = 21^{\circ} 15' 00''$$

Wykonanie:

Zadanie wykonywałem przy użyciu środowiska MATLAB R2021b.

Na początku obliczyłem punkt średniej szerokości oraz punkt środkowy. Do obliczenia współrzędnych tego drugiego wykorzystałem algorytm Vincentego oraz algorytm Kivioja.

```
%Algorytm Vincentego (stopnie -> stopnie)
function [sAD, Aad, Ada] = Vincent(fiA, lamA, fiD, lamD, a, e2) [...]
%Algorytm Kivioja (stopnie -> stopnie)
function [FiS, LambdaS, AzymSo] = Kivioj(fiA, lamA, fiD, lamD, a, e2)
    [sAD, Aad] = Vincent(fiA, lamA, fiD, lamD, a, e2);
    n = 22;
    ds = sAD/(2*n);
    Fi = deg2rad(fiA);
    Lambda = deg2rad(lamA);
    Azym = deg2rad(Aad);
    for i = 1:n[...]
    FiS = rad2deg(Fi);
    LambdaS = rad2deg(Lambda);
    AzymS = rad2deg(Azym);
    AzymSo = AzymS + 180;
end
```

Obr 1. Funkcje wykonujące algorytmy Vincentego i Kivioja

Dzięki temu uzyskałem następujące współrzędne punktów:

$$\varphi_S = 50^{\circ} 07' 30"$$

$$\lambda_S = 21^{\circ} 00' 00"$$

$$\varphi_{Sr} = 50^{\circ} 07' 30.97"$$

$$\lambda_{Sr} = 21^{\circ} 00' 02.34"$$

gdzie:

- φ_S , λ_S wsp. punktu średniej szerokości
- φ_{Sr} , λ_{Sr} wsp. punktu średkowego

Kolejnym krokiem było napisanie szeregu funkcji, które to przeliczały współrzędne z układu GRS80 na inne układy.

```
%GRS80 na PL-2000 (stopnie -> metry)
function [X20, Y20, m20] = GRS80_2_2000(B, L, a, e2, uklad) ...

%Gauss-Kruger na PL-1992 (metry -> metry)
function [X92, Y92, m92] = GK_2_1992(Xgk, Ygk, mgk) ...

%GRS80 na Gaussa-Krugera (stopnie -> metry)
function [Xgk, Ygk, mgk, nr] = GRS80_2_GK(B, L, a, e2, uklad) ...
```

Obr 2. Funkcje transformujące współrzędne

Po przepuszczeniu przez nie wszystkich danych, otrzymałem następujące wyniki:

Pkt.	X _{gk}	Y_{gk}	X ₁₉₉₂	Y ₁₉₉₂	X ₂₀₀₀	Y ₂₀₀₀
Α	5570120.597	124812.228	266221.513	624724.859	5568256.030	7482170.562
В	5542315.026	125464.201	238435.405	625376.376	5540450.350	7482077.452
С	5571077.960	160469.907	267178.206	660357.578	5568256.030	7517829.438
D	5543273.892	161308.283	239393.600	661195.368	5540450.350	7517922.548
S	5556666.778	143014.239	252777.111	642914.129	5554323.110	7500000.000
Sr	5556698.105	143059.996	252808.416	642959.854	5554353.190	7500046.564

W celu sprawdzenia poprawności wyników, uzyskane współrzędne zamieniłem z powrotem na współrzędne w układzie GRS80. Do tego zadania także musiałem napisać szereg funkcji.

```
%PL-2000 na GRS80 (metry -> stopnie)
function [B, L] = PL2000_2_GRS80(X20, Y20, a, e2) ...

%PL-1992 na GRS80 (metry -> stopnie)
function [B, L] = PL1992_2_GRS80(X92, Y92, a, e2) ...

%Gauss-Kruger na GRS80 (metry -> stopnie)
function [B, L] = GK_2_GRS80(Xgk, Ygk, L0, a, e2) ...
```

Obr 2. Funkcje odwrotne

Po otrzymaniu oczekiwanych współrzędnych (identycznych jak dane początkowe), przystąpiłem do obliczania wartości pól powierzchni dla konkretnych układów, ich elementarnych skal długości dla kolejnych punktów oraz powstałych na wskutek transformacji zniekształceń.

```
%Zniekształcenie
function[k, kha, m2] = Zniekszt(m_u)

%Obliczanie pola (stopnie -> metry^2)
function [P] = PoleBL(fiA, lamA, fiB, lamB, a, e2)

%Obliczanie pola (metry -> metry^2)
function [P] = Pole(xA, yA, xB, yB, xC, yC, xD, yD)
...
```

Obr 3. Funkcje obliczające pola powierzchni i powstałe zniekształcenia

Otrzymane dane zaprezentowałem w formie tabelek poniżej.

Elementarna skala długości i zniekształcenia na 1 km						
Pkt.	m_{gk}	\mathbf{k}_{gk}	m ₁₉₉₂	k ₁₉₉₂	m ₂₀₀₀	k ₂₀₀₀
Α	1.000191	-0.19	0.999491	0.51	0.999927	0.07
В	1.000193	-0.19	0.999493	0.51	0.999927	0.07
С	1.000316	-0.32	0.999616	0.38	0.999927	0.07
D	1.000319	-0.32	0.999619	0.38	0.999927	0.07
S	1.000251	-0.25	0.999551	0.45	0.999923	0.08
Sr	1.000251	-0.25	0.999551	0.45	0.999923	0.08

Elementarna skala pól powierzchni i zniekształcenia na 1 ha						
Pkt.	m^2_{gk}	k^2_{gk}	m^2_{1992}	k ² ₁₉₉₂	m^2_{2000}	k^2_{2000}
Α	1.000383	-3.83	0.998982	10.18	0.999854	1.46
В	1.000387	-3.87	0.998986	10.14	0.999854	1.46
С	1.000632	-6.32	0.999232	7.68	0.999854	1.46
D	1.000639	-6.39	0.999239	7.61	0.999854	1.46
S	1.000502	-5.02	0.999102	8.98	0.999846	1.54
Sr	1.000503	-5.03	0.999102	8.98	0.999846	1.54

Zestawienie pól powierzchni w km²						
P _{elipsoidalne}	P_gk	P ₁₉₉₂	P ₂₀₀₀			
994.2652	994.7608	993.3686	994.1083			

Wnioski:

W geodezji stosuje się wiele różnych układów, zależnie od potrzeb. Transformacje między nimi mogą jednak prowadzić do zniekształceń, które trzeba odpowiednio niwelować. Jednym z dokładniejszych układów w odniesieniu do Polski jest PL-2000, który to dzieli nasz kraj na określone strefy i to właśnie dzięki nim (i dobranym dla każdego z nich południkom osiowym) powstałe zniekształcenia nie są tak duże, jak np. w PL-1992. Ten układ zaś nie dzieli naszego kraju na płaty, a obejmuje go w całości, stąd też zniekształcenia powstałe podczas zamiany układów są dość znaczące.