Your solutions should include your source codes (without *.exe files), results, and discussions, all in a gzipped tar file. Please send your homework from your NTU email account to twchiu@phys.ntu.edu.tw before 24:00 of the due date.

1. Numerical integration with Trapezoidal, Simpson, and 5-point formulas

Evaluate the integral
$$\int_{0}^{\pi} dx \sin x$$

using approximations to the integrand that are piecewise linear, quadratic, and quartic. With N intervals, and hence N+1 points, evaluate the integral for N=4, 8, 16, 32, 64, ..., 1024, and compare the accuracy of the methods.

2. Romberg Integration

The intensity of light after the diffraction at a knife's edge varies as we move away from the edge according to

$$I = \frac{I_0}{2} \left\{ \left[C(v) + 0.5 \right]^2 + \left[S(v) + 0.5 \right]^2 \right\}$$

where I_0 is the intensity of the incident light, v is proportional to the distance moved, and C(v) and S(v) are Fresnel integrals

$$C(v) = \int_{0}^{v} dw \cos(\pi w^{2}/2), \quad S(v) = \int_{0}^{v} dw \sin(\pi w^{2}/2)$$

Write a C/C++ program to calculate the Fresnel integrals, and evaluate I/I_0 as a function of $\ v$, and plot your results.