

הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353)

הרצאה 1

המצגת מבוססת על ספרם של פרופ' נסים פרנסיז ופרופ' שמואל זקס, "אוטומטים ושפות פורמליות", האוניברסיטה הפתוחה, 1987. גרסה ראשונה של מצגת זו הוכנה על-ידי אריאל ירושביץ, תחת הנחייתו של פרופ' שמואל זקס. בגרסה הנוכחית הוכנסו מספר שינויים ועדכונים על-ידי פרופ' יובל ישי, פרופ' מיכאל קמינסקי ופרופ' שמואל זקס.

אוטומטים ושפות פורמליות - מבוא

- ?קורס ראשון ב*מדעי* המחשב. למה
- שאר הקורסים עד כה היו במתמטיקה או בתכנות (בהכללה גסה)

קורס תיאורטי – מתמטי ■

■ מהווה בסיס לתחומים רבים מאוד במדעי המחשב,תיאורטיים ומעשיים כאחד (ראה המשך)

אוטומטים ושפות פורמליות – מאין ולאן? סקירה לא מחייבת)

חישוביות

Q: "Halt?"

A: "@#\$%!!!"

קומפילציה

gcc -o MyKillerApp.exe

Shall I compare thee to
a summer's day?

על מה הקורס? (הקדמה לא פורמלית)

דקדוקים

$$S \rightarrow a$$

היא המילה arepsilonהריקה

 $S \rightarrow \varepsilon$

שפות

{*a*}

$$\{w \mid |w| \equiv 0 \pmod{2}\}$$

מסמן את אורך $|x|$
המילה x

הגדרה

.אלp בית Σ הינו קבוצה סופית כלשהי

דוגמאות

$$\Sigma_1 = \{a,b,c\}$$

$$\Sigma_2 = \{0,1\}$$

 $\Sigma_3 = \{(x,y) \mid x \in \{0,1\}, y \in \{a,b,c\}\}$

שמוסכמות סימון: ⊌

נשתמש בדרך כלל באותיות יווניות $\Sigma,\,\Gamma,\,\Delta$ גדולות כגון

נשתמש באותיות יווניות קטנות כגון σ, γ

הגדרה

.אות $\sigma \in \Sigma$ הינה איבר מתוך א"ב נתון $\sigma \in \Sigma$

הגדרה

Σ מעל א"ב w (word) מילה סידרה סופית של אותיות.

דוגמאות

- $\{a\}$ היא מילה מעל א"ב aaa
- $\{1,3,d,\$,\#,\%,\&\}$ היא מילה מעל 1313d3\$\$# •
- $\{(x,y) \mid x \in \{0,1\}, y \in \{a,b,c\}\}\$ היא מילה מעל (0,b)(0,a)(1,c)

מוסכמות סימון 🤚

- בהקשרים אחרים נהוג לסמן סדרות כך: a,b,c,d,e. כאן אנו משמיטים abcde את הפסיקים ורושמים
- לציון w,v,x,y,z לציון מסוף הא"ב כגון לטיניות לטיניות מסוף הא"ב כגון w,v,x,y,z לציון משתני מילים

עוד על מילים

- |w| תהי $|w|=s_1s_2...s_n$ נסמן את אורכה ב|w|=n
 - |arepsilon|=0 נסמן בarepsilon את המילה הריקה:
- יהיו $w_1 = \sigma_1 ... \sigma_n, w_2 = \gamma_1 ... \gamma_m$ יהיו $w_1 \cdot w_2 = \gamma_1 ... \gamma_m$ של שתי המילים יסומן ב $w_1 \cdot w_2$ ויוגדר ($w_1 \cdot w_2 = v_1 \cdot w_2$) של שתי המילים יסומן ב $v_1 \cdot w_2 = v_1 \cdot w_2$ ויוגדר כ"הדבקתן" זו לזו עם חשיבות לסדר, לכדי יצירת מילה חדשה:

$$w_1 \cdot w_2 = \sigma_1 \dots \sigma_n \cdot \gamma_1 \dots \gamma_m = \sigma_1 \dots \sigma_n \gamma_1 \dots \gamma_m$$

- בד"כ נשמיט את אופרטור השרשור -
 - $\forall w,\, w \cdot \varepsilon = \varepsilon \cdot w = w$ נשים לב כי:

לא הגדרנו מעל איזה א"ב כל מילה. האם שתיהן מעל אותו א"ב? האם זה משנה??

עוד על מילים (המשך)

תכונות השרשור

- $(w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)$
 - $|w_1 \cdot w_2| = |w_1| + |w_2|$

?איך מוכיחים את התכונות הנ"ל

הגדרה

 $\exists v, u \cdot v = w$ היא $u \cdot v = w$ היא של של u

 $\exists v, v \cdot u = w$ היא *סיפא* של w אמ"מ u

u=arepsilon או u=w אם u=w או $u=\omega$ נאמר ש $u=\omega$ היא רישא (סיפא) טריוויאלית של

נאמר שרישא (סיפא) היא רישא (סיפא) ממש, או אמיתית, אם היא אינה טריוויאלית.

עוד על מילים (המשך)

הגדרה

חזקה של מילה w

-I
$$w^0 = \epsilon$$

$$w^{i+1} = w^i \cdot w$$

,כלומר

$$w^i = \underbrace{ww...w}_{i}$$

 $\#_{\sigma}(w)$ במילה w במילה במופעים של האות σ במילה -

$$\#_c(aaba) = 0$$
, $\#_b(aaba) = 1$, $\#_a(aaba) = 3$: לדוגמא:

שפות (פורמליות)

הגדרה

שפה (פורמלית) L מעל א"ב Σ היא קבוצת מילים מעל אותו א"ב.

$\Sigma = \{a,b\}$ דוגמאות לשפות מעל

- {*aab*,*b*} ■
- $\{aaaa, \varepsilon\}$
- $\{w/\#_a(w) = \#_b(w)\}$
 - { *E*}
 - \varnothing

 $\{w/ \#_a(w) \mid \#_b(w) \}$ $\{w/ | w/ \text{ is prime} \}$ $\{a^n b^n \mid n \in \mathbb{N} \}$

פעולות על שפות

הגדרה

:שרשור של שפות L_1 , L_2 הוא השפה הבאה L_1

$$L_1 \cdot L_2 = \{ w \cdot v | w \in L_1 \land v \in L_2 \}$$

הגדרה

L חזקה של שפה

-I
$$L^0=\{\epsilon\}$$

$$L^{i+1} = L^i \cdot L$$

$$L^{\!^*} = \stackrel{\circ}{\bigcup} L^i$$
 סגור קליני: $lacksquare$

$$L^* = igcup_{i=0}^{\infty} L^i$$
 סגור קליני: $L^* = igcup_{i=0}^{\infty} L^i$ הסגור החיובי: $L^* = igcup_{i=0}^{\infty} L^i$

בהנתן א"ב Σ מסמנים את קבוצת כל המילים מעל א"ב זה

שפות (המשך)

- $.arepsilon\in L^*$,L נשים לב כי לכל
- מהו איבר היחידה ביחס לשרשור שפות?
 - $?L\cdot\varnothing$ למה שווה
 - ? $(L_1 \cup L_2)L_3 = L_1L_3 \cup L_2L_3$ האם
 - ? $(L_1 \cap L_2)L_3 = L_1L_3 \cap L_2L_3$ האם
 - $?(L_1L_2)^* = L_1^*L_2^*$ האם

סיכום ודגשים

- הגדרנו את המושגים א"ב, מלים ושפות
 - ב הגדרנו פעולות על המושגים הנ"ל:
 - אורך (למילים)
 - שרשור (למילים ושפות)
 - חזקה (למילים ושפות)
 - רישא/סיפא (למילים) -
 - :בנשים לב
 - א"ב הוא תמיד קבוצה סופית 🕨
 - אורך של מילה הוא תמיד סופי
 - שפות יכולות להיות סופיות או אינסופיות
 - עוד על עוצמות הקבוצות שהכרנו בתרגול •

ש. זקס, נ. פרנסיז, "*אוטומטים ושפות ופרמליות*", הוצאת האוניברסיטה הפתוחה, 2000.

Hopcroft & Ullman, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, 1979 (במהדורה החדשה שונו מספר הוכחות.)