Dirichlet Problems, Random walks, and Page Rank: From Graphs to Complexes

P. Horn* A. Jadbabaie** G. Lippner* M. Zargham[†]

*Department of Mathematics, Harvard University

**Electrical and Systems Engineering, Computer and Information Science Operations and Information Management, University of Pennsylvania

†Electrical and Systems Engineering, University of Pennsylvania

Overview

Introduction

Boundary value problems

Simplicial PageRank

Overview

Introduction

Boundary value problems

Simplicial PageRank

Motivation: Discrete potential theory

Discrete potential theory has connections to

- random walks (a harmonic function's expected value is preserved during a random walk)
- electric networks (harmonic functions describe voltages in a network)
- PageRank algorithm for web ranking
- consensus problems
- spectral clustering
- spreading processes (e.g. disease spreading)
- network tomography (through boundary value problems)

A key ingredient of this theory is the discrete Laplace operator, or the graph Laplacian

The Laplacian on a graph

- ightharpoonup G(V, E) simple graph.
- ▶ The Laplace operator \triangle acts on functions $f: V \to \mathbb{R}$ by the formula

$$\Delta f(x) = \sum_{y \sim x} f(x) - f(y)$$

▶ Discrete analogue of the classical Laplace operator $\partial_{xx} + \partial_{yy}$ in \mathbb{R}^2 .

This motivates the definition of harmonic functions

Definition

f is called harmonic on the set $W \subset V$ if $\Delta f(x) = 0$ for every $x \in W$. The set $S = V \setminus W$ is the boundary.

Simplicial complexes

- Graphs encode binary relations, but why stop there? higher order relations can be included as well
- Such relations are best modeled on simplicial complexes, the higher dimensional analogues of graphs.
- Edges are generalized to triangles, tetrahedra, and general k simplicies
- We get a more faithful discretization, almost like including higher order terms in a "combinatorial Taylor expansion"
- Simplicial complexes are collection of k-simplicies that are closed under inclusion of faces,
- ▶ Let X be a simplicial complex and let F_k denote the collection of k-dimensional faces.
- ▶ A k-dimensional face $\sigma \in F_k$ has k+1 vertices and generalizes the notion of a vertex and edge

$$\sigma = [v_0, v_1, \ldots, v_k].$$

The higher order Laplace operator I

What is the correct analogue of the Laplace operator for simplicial complexes?

- ▶ The operator acts on "alternating" functions defined on oriented k-faces. A function is alternating if $f(\bar{\sigma}) = -f(\sigma)$.
- $ightharpoonup C^k(X)$ denotes the space of such functions.
- ▶ There is a natural boundary map $\partial_k : C^k(X) \to C^{k-1}(X)$ coming from algebraic topology.
- It is defined by

$$\partial_k f([v_0,\ldots,v_k] = \sum_{i=0}^{k+1} (-1)^i f([v_0,\ldots,v_{i-1},v_{i+1},\ldots,v_k]),$$

and called the boundary map.

generalizes the node-edge incidence matrix of a graph

The higher order Laplace operator II

- ▶ It's adjoint is $\partial_k^* : C^{k-1}(X) \to C^k(X)$.
- ▶ Easy to check: $\partial_k \circ \partial_{k+1} = 0$.
- ▶ The k-Laplacian acting on $C^k(X)$ is defined by

$$\Delta_k = \partial_{k+1} \partial_{k+1}^* + \partial_k^* \partial_k$$

Remark

For k=0 we get back the original graph Laplacian. For k=1 we get the Helmholtzian

Definition

f is called harmonic on the set $W \subset X$ if $\Delta f(x) = 0$ for every $x \in W$. The set $S = X \setminus W$ is the boundary.

► On graphs, harmonic functions are piece-wise constant (on each connected component), representing the zeroth

Hodge decomposition

$$C^{k-1}(X) \xrightarrow{\partial_k^*} C^k(X) \xrightarrow{\partial_{k+1}^*} C^{k+1}(X)$$

$$C^{k-1}(X) \leftarrow \frac{\partial_k}{\partial_k} C^k(X) \leftarrow \frac{\partial_{k+1}}{\partial_k} C^{k+1}(X)$$

The following are well-known facts about the Laplace operator:

- $lackbox{}\Delta_k f = 0 \Longleftrightarrow \partial_k f = 0 \text{ and } \partial_{k+1}^* f = 0$
- ▶ $C^k(X) = \ker \Delta_k \oplus \operatorname{Im}(\partial_{k+1}) \oplus \operatorname{Im}(\partial_k^*)$ is an orthogonal decomposition called the Hodge decomposition.
- ▶ $\operatorname{Im}(\partial_k^*)$ is called the gradient part, $\operatorname{Im}(\partial_{k+1})$ is called the curl part, and $\ker \Delta_k$ is called the harmonic part.
- ▶ dim ker $\Delta_k = \dim H^k(X)$ is the kth Betti-number of X and corresponds to the (co)homology.
- ► This is the discrete analog of the Calculus result that says curl-free vector fields are gradient of a scalar field (no

Overview

Introduction

Boundary value problems

Simplicial PageRank

Dirichlet problems I

- Applications of the Laplace operator often involve finding harmonic functions with certain boundary conditions (Inverse problems, tomography, leader-follower flocking, localization,...)
- ▶ Reminder: denote F_k the set of k-faces. Fix $S \subset F_k$ that will be called the *boundary*, and $F_k \setminus S$ the *interior*.

Definition (Dirichlet problem)

Given f_0 on the boundary, find extension f that is harmonic in the interior.

Definition (Inhomogeneous Dirichlet problem)

Given f_0 on the boundary and g_0 in the interior. Find extension f such that $\Delta_k(f) = g_0$ in the interior.

▶ On a graph (i.e. k = 0) these always have a unique solution.

Dirichlet problems II

- ► This is not the case for higher dimensions.
- ▶ On the other hand there is a new type of problem that has solutions only for k > 0.

Definition (Strong Dirichlet problem)

Given f_0 on the boundary, find extension f that is harmonic on the whole space.

- ▶ It is important to understand, how does the boundary set *S* affect the solutions to these Dirichlet problems.
- ► As a first step we can prove:

Theorem

The Dirichlet problem can be solved for any boundary set S.

Types of boundary sets

- We classify possible boundary sets according to the solvability of the Dirichlet problems:
- ▶ The boundary $S \subset F_k$ is
 - ample: if the solution to the Dirichlet problem is unique.
 - modest: if the Strong Dirichlet problem has a solution.

Remark

Bigger boundaries are more likely to be ample, smaller boundaries are more likely to be modest.

Results

Theorem

The Inhomogeneous Dirichlet problem can be solved exactly when S is ample.

Theorem

The smallest possible ample sets are also modest. For such an S both the inhomogeneous and the strong Dirichlet problems can be solved, and the solution is unique.

Ample edge sets

- ▶ It is important to characterize ample sets for applications.
- ► Imagine we can only observe a set *S*. We know that a harmonic function *f* is zero on *S*.
- ▶ How can we be sure that f is identically zero?
- ▶ The answer is: we can be sure exactly if *S* is ample!

Definition

X is surface like if every edge is incident to at most 2 faces.

Theorem

Suppose X is surface like and $n = \dim H^1(X)$. If S is not ample then S can be separated from X by cutting at most 6n edges.

Random Walks and Harmonic functions

- ▶ Let $X_0, X_1,...$ be a simple random walk on a graph.
- ► Harmonic functions are fixed in expectation:

$$f(X_i) = E(f(X_{i+1})).$$

This is also true for harmonic functions with boundary conditions - as long as the walk is in the interior.

Solving Dirichlet problems on graphs:

Start a random walk in $X_0 = v$ and wait until it hits the boundary. Let T denote the time of hitting. Then define

$$f(v) = E(f(X_T)) = E(f_0(X_T)).$$

This is the unique solution of Dirichlet problem with boundary condition f_0 .

Random walks on complexes?

- ▶ Define a random walk W_0 , W_1 , W_2 ,... on the space of oriented k-faces.
- ▶ The transition from W_i to W_{i+1} can be of three types:
 - 1. reverse orientation
 - 2. k-face $\rightarrow (k+1)$ -face $\rightarrow k$ -face
 - 3. k-face $\rightarrow (k-1)$ -face $\rightarrow k$ -face
- ► Carefully choosing transition probabilities of (1), (2), and (3) we can get

$$f(W_i) = k \cdot E(f(W_{i+1})).$$

Then the solution to the Dirichlet problem is

$$f(W_0) := E(k^T f_0(W_T))$$

where T is the first time the walk hits the boundary.

Overview

Introduction

Boundary value problems

Simplicial PageRank

PageRank Operator on Graphs

 Personalized PageRank: Geometric sum of random walks starting at seed s

$$\operatorname{pr}(\alpha, \mathbf{s}) = \mathbf{s}(1 - \alpha) \sum_{t=0}^{\infty} (\alpha W)^{t}$$
 $W = D^{-1}A$

- ▶ $pr(\alpha, s)$ entries: Gives measure of *relative importance* of vertices with respect to seed.
- ► Classical PageRank: $\mathbf{s} = \frac{1}{n}\mathbf{1}$. Entries give measure of global importance.

Question: How to rank importance of *edges/faces* in simplicial complex?

Find analogue of PageRank?

Rethinking PageRank: Green's functions

▶ Green's functions: Inverse of Laplacian Δ or normalized Laplacian $\mathcal{L} = I - D^{-1}A$ on space orthogonal to null space of Δ :

$$\Delta = \sum_{i=0}^{n-1} \lambda_i \phi_i^* \phi_i \qquad \qquad \mathcal{G} = \sum_{i=1}^{n-1} \frac{1}{\lambda_i} \phi_i^* \phi_i$$

▶ PageRank operator: ' β '-Green's function

$$\operatorname{pr}(\alpha, \cdot) = (1 - \alpha) \sum_{t=0}^{\infty} (\alpha W)^{t} = \frac{\beta}{\beta I + \mathcal{L}}$$

Inverse to 'shifted Laplacian' - gives way to generalize PageRank!

Simplicial Complex PageRank Operator

Definition (Normalized Simplicial Laplacian)

$$\mathcal{L}_{k} = \partial_{k}^{*} D_{(k)}^{-1} \partial_{k} + D_{(k+1)}^{-1} \partial_{k+1} \partial_{k+1}^{*}$$

 $D_{(k+1)}$ = diagonal degree matrix of k-faces.

 $D_{(k+1)}(f,f) = \# (k+1)$ faces the k-face f lies in.

Definition (Simplicial Complex PageRank Operator)

$$\operatorname{pr}^{(k)}(\beta,\cdot) = (\beta I + \mathcal{L}_k)^{-1}$$

 β -Green's function for the \mathcal{L}_k Laplacian.

Problem: $\operatorname{pr}^{(k)}(\beta, \cdot)$ not stochastic Question: How to rank with $\operatorname{pr}^{(k)}(\beta, \cdot)$?

Rethinking personalized (graph) PageRank

For a vertex v:

- ▶ $pr(\alpha, \chi_v)$: vector entries measure relative rankings of vertices with respect to seed.
- ▶ $||\operatorname{pr}(\alpha, \chi_{\nu})||_2$: measures 'spread' of $\operatorname{pr}(\alpha, \chi_{\nu})$.
- ▶ $||\operatorname{pr}(\alpha, \chi_{v})||_{2}$ small:
 - Entries of $pr(\alpha, \chi_{\nu})$ small
 - → short random walks starting at v mix
 - ▶ ⇒ v 'not important' to 'bottlenecks'
- $||\operatorname{pr}(\alpha,\chi_{\nu})||_2$ large:
 - Some entries of $pr(\alpha, \chi_{\nu})$ large
 - ▶ ⇒ short random walks starting at v don't mix
 - ightharpoonup
 ightharpoonup v 'important' to 'bottlenecks'.

Idea: $||\operatorname{pr}(\alpha, \chi_{\nu})||_2$ measures significance of ν to certain geometric graph features (bottlenecks)

Geometry through Hodge Decomposition

Idea

Use $||\mathbf{pr}^{(2)}(\beta, \chi_e)||_2$ to give ranking of edges.

- ► More generally: Different rankings via Hodge Decomposition
- Write $\chi_e = h_e + g_e + c_e$
 - $g_e = \operatorname{proj}_{\operatorname{Im}\partial_r^*}(\chi_e)$: Gradient flow
 - $c_e = \operatorname{proj}_{\operatorname{Im}\partial_2}(\chi_e)$: Curl flow
 - $h_e = \operatorname{proj}_{\ker \partial_2^*/\operatorname{Im}\partial_1^*}(\chi_e)$: Harmonic flow
- ▶ $pr^{(2)}(\beta, \cdot)$ acts independently on each component.
- Gives four rankings:

$$||\operatorname{pr}^{(2)}(\beta, \chi_2)||_2 = ||\operatorname{pr}^{(2)}(\beta, g_e)||_2 = ||\operatorname{pr}^{(2)}(\beta, c_e)||_2 ||\operatorname{pr}^{(2)}(\beta, h_e)||_2$$

Geometry of Rankings

Hodge Decomposition:

$$\chi_e = h_e + g_e + c_e$$

- ▶ $||\operatorname{pr}^{(2)}(\beta, h_e)||_2$: Measures importance of e to 'holes'.
- ▶ $||\operatorname{pr}^{(2)}(\beta, g_e)||_2$: Measures importance of e to 'sparse cuts'.
- $||pr^{(2)}(\beta, c_e)||_2$:
 - ► High for edges central to dense areas where inconsistency arises
 - Less well understood
- $||\operatorname{pr}^{(2)}(\beta,\chi_e)||_2$: Combination of three influences.

Question: Influence of β ?

Influence of β

What role does β play?

- ▶ Eigenvalue λ of \mathcal{L}_k → eigenvalue of $\frac{1}{\beta+\lambda}$ → 0.
- \triangleright β large: Eigenvalues similar in magnitude, all faces ranked the same.
- ▶ β small: $\frac{1}{\beta + \lambda} \approx \frac{1}{\lambda}$ projections onto eigenvectors with small λ dominate.

Edge Rankings

Video: Combined PageRank of edges in complex as $\beta \to 0$.

As $\beta \to 0$, edges in sparse cuts (eg. 59) and crucial to holes most important.

Edge Rankings

Video: PageRank of component parts as $\beta \rightarrow 0$

Edge rankings and flow decompositions

PageRank of component parts for $\beta = 0.1$

Edge rankings and flow decompositions

PageRank of component parts for $\beta = 0.01$

Conclusions

- Dirichlet problems on complexes are more subtle than on graphs: existence of unique solutions is not guaranteed.
 Ample sets give us the right framework
- ► Page Rank can be generalized to complexes to measure importance of edges and higher order simplices.
- ► Edge importance is measured by the "spread" of personalized PageRank in the curl, harmonic and gradient subspaces.
- changing the teleportation constant β allows for measuring both importance and *persistence*.