HDL HW 6: Memory Generation for the VGG CNN Accelerator

Outlines

- almost same as previous homework except
 - use memory compiler to generate hardware input/output/weight SRAM

RAM vs. Registers

Registers

- use array to model registers
- e.g., reg [31:0] R [0:15];
 - ✓ register file with 16 registers, each with 32 bits
 - ✓ realized using 16*32 FFs
- many register locations can be accessed simultaneously
 - \checkmark e.g., R[3] = R[0] + R]1] + R[2];
- much more area than RAM

RAM

- need memory compiler tool to generate RAM
- only the specified address can be accessed at a time
- much smaller area than registers

24 transistors in a flip-flop

6 transistors in a sram cell

Memory Array Architecture

- ☐ 2ⁿ words of 2^m bits each
- ☐ If n >> m, fold by 2^k into fewer *rows* of more *columns*
 - need both row decoder and column decoder
- Good regularity easy for automatic generation
 - e.g., memory compiler
- Very high density if good cells are used

Memory Components

Row decoder Cell array Sense amplifier Column multiplexing

 Problem: ASPECT RATIO or HEIGHT >> WIDTH

Large SRAMs

- Large SRAMs are split into subarrays for speed
 - typically 128 or 256 words (rows) per vertical bit-line (column)
 - typically 128 or 256 bits (columns) on each horizontal word-line (row)
- Ex: UltraSparc 512KB cache
 - 4 * 128 KB subarrays
 - each subarray has 16 * 8KB banks
 - 256 rows x 256 cols / 8KB-bank

Down-Sampled Input Image

- original input image size
 - 224x224
- down-sampled input image size to 56x56 in testbench
 - 1/16 image size
 - 1/16 computation
 - smaller execution time
- consider only 1st VGG-16 layer
 - 3 input channels
 - 64 output channels

# of input channels	# of output channels	Input featuremap size	Filter Kernel size
3	64	56x56	3x3

Synthesis of SRAM

- in HW5, Input/Weight/Output SRAM units are in testbench
- in HW6, they are real hardware generated from memory ccompiler
- only execute the 1st VGG-16 layer with ICP=1, KWP=9, and OCP=4

TSMC 90nm Memory Compiler

• 90nm

TSMC_90nm	Register file	SRAM
Single-port	RF_SP_ADV	SRAM_SP_ADV
Two-port	RF_2P_ADV	-
Dual-port		SRAM_DP_ADV

TSMC_40nm	Register file	SRAM
Single-port	RF_SP_HDE (rvt_hvt_rvt) RF_SP_HSD (rvt_rvt_hvt)	SRAM_SP_HDE (rvt_hvt_rvt) SRAM_SP_HSC (rvt_hvt_rvt)
Two-port	RF_2P_HSE (rvt_hvt_rvt)	-
Dual-port		SRAM_DP_HDE (rvt_hvt_rvt)

TSMC 90nm Single-Port Pins

 chip-enable (CEN) and write-enable (WEN) are active-low

Pin	Description
A[9:0]	Addresses (A[0] = LSB)
D[31:0]	Data Inputs (D[0] = LSB)
CLK	Clock
CEN	Chip Enable (active low)
WEN	Write Enable (active low)
Q[31:0]	Data Outputs (Q[0] = LSB)
EMA[2:0]	Extra Margin Adjustment (EMA[0] = LSB)

TSMC 40nm Single-Port Pins

- contain pins related to design-for-testability (DFT)
- set initial values of these pins for normal operations

Pin	Descrption	
CEN	Chipe Enable (active low)	
WEN	Write Enable (active low)	
A	Addresses(A[0]=LSB)	
D	Data Inputs (D[0]=LSB)	
Q	Data Outputs (Q[0]=LSB)	
CLK	Clock	
WENY		
CENY	Multiplexor out (WEN CEN A D)	
AY DY	(WEIVELIVIE)	

Pin	Descrption	
EMA		
EMAW	Extra Margin Adjustment	
EMAS		
BEN	Bypass mode, active low	
TEN (enable)		
TCEN	TEST MODE, active low	
TWEN	(CEN WEN AD Q 同前面意思)	
TA TD TQ		
RET1N	Retention mode, acitve low	
STOV	Synchronous clock enable, acitve low	

TSMC 90nm Memory: Register-File

 register-file-based memory single-port two-port

Single-Port 90nm Register File rf_sp_adv			
Parameter	Ranges		
Numbers of words	Mux=1	8 to 128	
	Mux=2	16 to 256	
	Mux=4	32 to 512	
Numbers of bits	Mux=1	8 to 128	
	Mux=2	4 to 128	
	Mux=4	2 to 64	
Total memory bits	Mux=1	64 to 16,384 bits	
	Mux=2, 4	64 to 32,768 bits	

Two-Port 90nm Register File rf_2p_adv			
Parameter	Ranges		
Numbers of words	Mux=1	8 to 128	
	Mux=2	16 to 256	
	Mux=4	32 to 512	
Numbers of bits	Mux=1	2 to 128	
	Mux=2	2 to 64	
	Mux=4	2 to 32	
Total memory bits	16 to 16,384 bits		

of rows = # of words # of columns = # of bits * mux

TSMC 90nm Memory: SRAM

 sram-based memory single-port

Single-Port 90nm SRAM sram_sp_adv			
Parameter	Ranges		
Numbers of words	Mux=8	256 to 4096	
	Mux=16	512 to 8192	
	Mux=32	1024 to 16384	
Numbers of bits	Mux=8	2 to 128	
	Mux=16	2 to 64	
	Mux=32	2 to 32	
Total memory bits	512 to 524,288 bits		

dual-port

Dual-Port 90nm SRAM sram_dp_adv			
Parameter	Ranges		
Numbers of words	Mux=4	128 to 2048	
	Mux=8	256 to 4096	
	Mux=16	512 to 8192	
Numbers of bits	Mux=4	2 to 128	
	Mux=8	2 to 64	
	Mux=16	2 to 32	
Total memory bits	256 to 262,144 bits		

Memory Synthesis in Synopsys DC

- use memory compiler to generate .lib and .v files
 - select register-file or sram
 - select single-port, two-port, or dual-port
 - specify # of words, # of bits, mux_width
 - give module name (e.g., sram_sp_1024x32)
- add the memory modules into your design
 - first convert .lib into .db file for Synopsys DC synthesis
 - use module instantiation to add memory modules
 - combine with your other RTL codes, e.g., in top.v
- use Synopsys DC to synthesize the entire ckt.
 - synthesized ckt., e.g., in top_gate.v
- simulate with all .v files