1

Assignment 9

Yenigalla Samyuktha EE20MTECH14019

Abstract—This document checks for the vectors in the subspace spanned by given vectors.

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 9

1 Problem

Let

$$\alpha_1 = \begin{pmatrix} 1 & 1 & -2 & 1 \end{pmatrix} \tag{1.0.1}$$

$$\alpha_2 = \begin{pmatrix} 3 & 0 & 4 & -1 \end{pmatrix}$$
 (1.0.2)

$$\alpha_3 = \begin{pmatrix} -1 & 2 & 5 & 2 \end{pmatrix}$$
 (1.0.3)

Let

$$\alpha = \begin{pmatrix} 4 & -5 & 9 & -7 \end{pmatrix} \tag{1.0.4}$$

$$\beta = \begin{pmatrix} 3 & 1 & -4 & 4 \end{pmatrix} \tag{1.0.5}$$

$$\gamma = \begin{pmatrix} -1 & 1 & 0 & 1 \end{pmatrix} \tag{1.0.6}$$

- 1) Which of the vectors α , β , γ are in the subspace of \mathbb{R}^4 spanned by α_i ?
- 2) Which of the vectors α , β , γ are in the subspace of \mathbb{C}^4 spanned by α_i ?
- 3) Does this suggest a theorem?

2 SOLUTION

1) The linear combination of α_i for i = 1, 2, 3 spans subspace S. We can write,

$$c_{1} \begin{pmatrix} 1\\1\\-2\\1 \end{pmatrix} + c_{2} \begin{pmatrix} 3\\0\\4\\-1 \end{pmatrix} + c_{3} \begin{pmatrix} -1\\2\\5\\2 \end{pmatrix} = \operatorname{span}(S) \quad (2.0.1)$$

where c_1,c_2,c_3 are scalars. Vectors in matrix form is given by

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -1 \\ 1 & 0 & 2 \\ -2 & 4 & 5 \\ 1 & -1 & 2 \end{pmatrix} \tag{2.0.2}$$

We can observe that the columns of matrix **A** formed by vectors α_i are independent as the rank of matrix is 3. Hence α_i forms basis for subspace S.

Checking for α : To check if a solution exists for $\mathbf{AX} = \alpha$. The corresponding agumented matrix can be written as,

$$(\mathbf{A} \quad \alpha) = \begin{pmatrix} 1 & 3 & -1 & 4 \\ 1 & 0 & -2 & -5 \\ -2 & 4 & 5 & 9 \\ 1 & -1 & 2 & -7 \end{pmatrix}$$
 (2.0.3)

On performing row-reduction on (2.0.3),

$$(\mathbf{A} \quad \alpha) = \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (2.0.4)

As Rank($(\mathbf{A} \ \alpha)$)=Rank((\mathbf{A}))=3, the vector α can be represented as linear combination of α_i . From equation (2.0.4), we can write

$$-3\begin{pmatrix} 1\\1\\-2\\1 \end{pmatrix} + 2\begin{pmatrix} 3\\0\\4\\-1 \end{pmatrix} - 1\begin{pmatrix} -1\\2\\5\\2 \end{pmatrix} = \begin{pmatrix} 4\\-5\\9\\-7 \end{pmatrix}$$
 (2.0.5)

Hence α is in the subspace S.

Checking for β : To check if a solution exists for $\mathbf{AX} = \beta$. The corresponding agumented matrix can be written as.

$$(\mathbf{A} \quad \beta) = \begin{pmatrix} 1 & 3 & -1 & 3 \\ 1 & 0 & -2 & 1 \\ -2 & 4 & 5 & -4 \\ 1 & -1 & 2 & 4 \end{pmatrix}$$
 (2.0.6)

On performing row-reduction on (2.0.6),

$$(\mathbf{A} \quad \beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2.0.7)

As Rank($(A \beta)$)=4 and Rank(A)=3, Solution doesn't exist for $AX = \beta$ and hence β is not in the subspace S.

Checking for γ : To check if a solution exists for $AX = \gamma$. The corresponding agumented matrix can be written as,

$$(\mathbf{A} \quad \gamma) = \begin{pmatrix} 1 & 3 & -1 & -1 \\ 1 & 0 & -2 & 1 \\ -2 & 4 & 5 & 0 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$
 (2.0.8)

On performing row-reduction on (2.0.8),

$$(\mathbf{A} \quad \gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2.0.9)

As Rank($(A \ \gamma)$)=4 and Rank(A)=3, Solution doesn't exist for $AX = \gamma$ and hence γ is not in the subspace S.

- 2) In part 1, we haven't considered the field to be either \mathbb{R} or \mathbb{C} . The above equations solved holds for field \mathbb{C} and that implies, they hold for field \mathbb{R} also. Hence α is in the subspace and β and γ are not in the subspace.
- 3) **Theorem suggested:** Let \mathbb{F}_1 and \mathbb{F}_2 are two fields where \mathbb{F}_2 is subfield of \mathbb{F}_1 . Let α_i , i=1,2,3...,n forms basis for subspace of \mathbb{F}_2^n and a vector $\alpha \in \mathbb{F}_2^n$. Then α is in the subspace of \mathbb{F}_2^n spanned by α_i , i=1,2,3...,n if only if α is in the subspace of \mathbb{F}_1^n spanned by α_i , i=1,2,3...,n.