Fadel Mamar Seydou

MSc. Computational Science | EPFL Alumni

Phone: +227 87 36 65 54

Machine learning and Deep learning course plan

Get started with your ML engineering journey

Overview

This workshop plan aims to provide a comprehensive introduction to machine learning and deep learning concepts within 35 hours. It's designed for individuals with a basic understanding of programming and statistics who want to learn the fundamentals and explore practical applications.

Keywords: Machine learning, Deep learning, Computer vision, Pytorch

Learning objectives

- Understand fundamental machine learning and deep learning concepts
- Apply ML methods to real-words problems and evaluate the performance
- Optimize the main tradeoffs such as overfitting, and computational cost vs accuracy
- Structure a deep learning project for reproducibility and collaboration

Computational requirements

- CUDA-enabled GPU with at least <16>GB of VRAM
 - o E.g. NVIDIA GeForce RTX 4070 Ti Super
- At least 1.5*<16>GB of computer memory (i.e. RAM)
- Hard disk: 512GB SSD (it should be large enough to accommodate for your datasets)
- Example

Timetable

- [3hrs] Thursday August 8th
- [4hrs] Thursday August 15th
- [4hrs] Monday August 19th
- [4hrs] Thursday August 22nd
- [4hrs] Monday August 26th
- [4hrs] Thursday August 29th
- [4hrs] Monday September 2nd
- [4hrs] Thursday September 5th
- [4hrs] Monday September 9th

Plan

0. Kaggle competition team prep and set up

Fadel Mamar Seydou

MSc. Computational Science | EPFL Alumni

Phone: +227 87 36 65 54

- a. Understand the problem
- b. Understand the data
- c. Set up collaboration framework
- d. Setting up the development environment
 - i. Orange Data mining
 - ii. Miniconda
- 1. Introduction to Machine learning
 - a. Definition & Types of ML
 - b. Applications of ML
 - c. The importance of data in ML
 - d. Introduction to Overfitting and Underfitting
 - e. Bias-variance tradeoff
- 2. Introduction to deep learning
 - a. Neural networks: common architectures (CNN, Transformer, MLP) and common building blocks
 - b. Backpropagation & Gradient descent
 - c. Loss functions
 - d. Popular optimization algorithms: SGD, RMSProp, Adam
- 3. Computer vision
 - a. Classification
 - b. Segmentation
 - c. Object detection
 - d. Keypoints detection
- 4. Training computer vision classification model
 - a. Data preprocessing
 - b. Data augmentation
 - c. Regularization
 - d. Hyperparameter tuning
- 5. Tricks and Tools for efficient training and inference
 - a. Streamlining training routine with Pytorch lightning
 - b. Logging with wand (and MLflow)
 - c. Exporting trained models with ONNX
 - d. Structuring an ML project w/ cookiecutter and datargs
 - e. Deploying with <u>LitServe</u>
- 6. Traditional supervised ML
 - a. Regression and Classification: linear and logistic regression
 - b. Other algorithms: SVM, Decision trees, K-nn, Ridge regression
 - c. Evaluation metrics
 - d. Cross-validation
- 7. Traditional unsupervised machine learning
 - a. Clustering algorithms (K-means, Hierarchical Clustering) and evaluation
 - b. Dimensionality reduction (PCA, t-SNE)
 - c. Matrix factorization for recommender systems
- 8. Explainable AI
 - a. What is it? Why does it matter?
 - b. Overview of some techniques