Hard Margin SVM: Geometric Approach

David S. Rosenberg

Bloomberg ML EDU

October 11, 2017

Introduction

Linearly Separable Data

- The figure represents an input space $\mathfrak{X} \in \mathbf{R}^2$.
- The output or class label is either + or -.
- These data are linearly separable if there is a hyperplane (just a line in R²) that perfectly separates the two classes.
- How can we find such a line?
- What if there are multiple lines?
- If there is no such line, what should we do?

Scalar Projections onto Vectors

Projection of v_1 onto w

- Want to find scalar projection of v_1 onto w.
- Also known as the component of v_1 in the direction w.
- It's the length of the segment in the purple curly brace.
- The scalar projection of v_1 onto w is given by

$$\frac{w^T v_1}{\|w\|}$$

- The scalar projection is a **number**.
- The corresponding vector projection is the vector

$$\left(\frac{w^T v_1}{\|w\|}\right) \frac{w}{\|w\|}.$$

David S. Rosenberg (Bloomberg ML EDU)

Projection of v_1 onto w

- The scalar projection is a signed length.
- The component of v_2 in the direction w is **negative**.
- The **vector projection** of v_1 onto w is is the vector

$$\left(\frac{w^T v_1}{\|w\|}\right) \frac{w}{\|w\|}$$

Interpreting Hyperplanes by Scalar Projections

• You may recall from linear algebra that the set

$$S = \left\{ x \in \mathbf{R}^d \mid w^T x = b \right\}$$

is a **hyperplane** in \mathbb{R}^d , for $w \neq 0$.

• Note that $w^T x = b$ is equivalent to

$$\frac{w^T x}{\|w\|} = \frac{b}{\|w\|}.$$

• So S is set of all x that have the component $b/\|w\|$ in direction w.

Interpreting Hyperplanes by Scalar Projection

- Take w to be a unit vector.
- Here we have 10 parallel lines in R²,
 - each with a different component in direction w.
- Each line is a level set of the function $f(v) = w^T v$.
- What do we get if we consider the points

$$S^- = \{ v \mid f(v) < -2 \}$$
?

Separating Data with Hyperplanes

Sides of a Hyperplane

- The hyperplane $\{v \mid w^T v = 15\}$ separates the space into 3 parts depending on value of $w^T v 15$:
 - $w^T v 15 = 0$ (on the hyperplane)
 - $w^T v 15 > 0$ (on side w points in)
 - $w^T v 15 < 0$ (on side -w points in)

Distance from Point to Hyperplanes

- Distance from x_2 to $\{v \mid w^T v = 20\}$.
- Let v be any pointy in $\{v \mid w^T v = 20\}$.
- Distance is difference in components in direction *w*:

$$\frac{w^T x_2}{\|w\|} - \frac{w^T v}{\|w\|}$$

- Well almost this is **signed distance**.
- Positive if x₂ is on the side pointed to by w.
- Negative if x_2 is on the side pointed to by -w.