Assignment 1

Addagalla Satyanarayana

Abstract—This document explains how to find a line perpendicular to 2 lines and passing through a point.

Download the python code from

https://github.com/AddagallaSatyanarayana/AI5006/tree/master/Assignment1

and latex-tikz codes from

https://github.com/AddagallaSatyanarayana/AI5006/blob/master/Assignment1/Assignment1.tex

1 Problem

Find the vector equation of the line passing through the point $\begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$ and perpendicular to the two lines

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{5}$

2 Solution

Equation of a \overrightarrow{l} passing through \overrightarrow{a} and parallel to \overrightarrow{n} is given by:

 $\overrightarrow{l} = \overrightarrow{a} + L * \overrightarrow{n}$, where L is some constant Since the line passes through $\begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$

$$\overrightarrow{\mathbf{a}} = (i + 2j - 4k)$$

Let \overrightarrow{n} be the normal vector to both lines. If $\overrightarrow{m_1}$ and $\overrightarrow{m_2}$ are the direction vectors of the lines,then

$$\overrightarrow{\mathbf{m}}_{1}^{T}\overrightarrow{\mathbf{n}} = 0 \tag{2.0.1}$$

$$\overrightarrow{\mathbf{m}}_{2}^{T}\overrightarrow{\mathbf{n}} = 0 \tag{2.0.2}$$

Let
$$\overrightarrow{\mathbf{n}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
; $\overrightarrow{\mathbf{m}}_1 = \begin{pmatrix} 3 \\ -16 \\ 7 \end{pmatrix}$; $\overrightarrow{\mathbf{m}}_2 = \begin{pmatrix} 3 \\ 8 \\ -5 \end{pmatrix}$

Since $\overrightarrow{\mathbf{n}}$ is perpendicular to $\overrightarrow{\mathbf{m}_1}$ and $\overrightarrow{\mathbf{m}_2}$

$$3x - 16y + 7z = 0 ag{2.0.3}$$

$$3x + 8y - 5z = 0 (2.0.4)$$

Solving the equations $\frac{x}{2} = \frac{y}{3} = \frac{z}{6} = K$ x = 2K, y = 3K, z = 6K $\overrightarrow{\mathbf{n}} = K * (2i + 3j + 6k)$ so the equation of $\overrightarrow{\mathbf{l}}$ is $\overrightarrow{\mathbf{l}} = (i + 2j - 4k) + L * K(2i + 3j + 6k)$, where L is any constant

