Vérification ponctuelle des algorithmes de CLASSIFICATION

+ sélection de modèles

Atelier #10

Qu'est-ce que la vérification ponctuelle ("spot-check")?

Définition de vérification ponctuelle ("spot-check")

C'est une méthode qui <u>compare plusieurs algorithmes entre eux</u> dans le but d'identifier celui ou ceux qui performent le mieux pour la problématique d'apprentissage automatique à solutionner et les données disponibles.

Pourquoi faire une vérification ponctuelle?

- Très difficile de savoir à l'avance quel algorithme est le meilleur pour un problème d'apprentissage automatique.
- Pour se concentrer dès le début sur un ou quelques algorithmes qui sont les plus prometteurs.

Algorithmes de classification

Terminologie		Scikit-learn		
Français	Anglais	Module	Documentation	Algorithme
Régression Logistique	Logistic Regression	linear_model	https://scikit-learn.org/stable/modules/li near_model.html#logistic-regression	LogisticRegression
Analyse Discriminante Linéaire (ADL)	Linear Discriminant Analysis (LDA)	discriminant_analysis	https://scikit-learn.org/stable/modules/ldaqda.html#linear-and-quadratic-discriminant-analysis	LinearDiscriminantAnalysis
K plus proches voisins	k-Nearest Neighbors (KNN)	neighbors	https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification	KNeighborsClassifier
Classification Naïve Bayesienne	Naive Bayes Classifier	naive_bayes	https://scikit-learn.org/stable/modules/n aive_bayes.html#gaussian-naive-bayes	GaussianNB
Arbres de décision	Decision Trees	tree	https://scikit-learn.org/stable/modules/tr ee.html#classification	DecisionTreeClassifier
Machines à vecteurs de support (MVS)	Support Vector Machine (SVM)	svm	https://scikit-learn.org/stable/modules/s vm.html#classification	SVC

Sélection de modèles

Définition: Comparer plusieurs modèles entres eux en utilisant un métrique commun dans le but de sélectionner le ou les meilleur(s) modèle(s).

Étapes :

- 1. Définir les algorithmes à tester.
- 2. Sélectionner le métrique approprié à la problématique.
- 3. Faire rouler les modèles de base, sans hyperparamétrisation, tous ensemble.
- 4. Classer les modèles du meilleur au pire.
- 5. Sélectionner le modèle le plus performant.
 - Si plusieurs modèles ont une performance équivalente, voir la leçon 13.

Note

Certains algorithmes seront plus approfondis, mais on ne va pas approfondir le fonctionnement de tous les algorithmes qui seront vu dans le cadre théorique de ce cours.

Données au format LARGE vs LONG

	Long				
	variable	value			
0	Α	1			
1	Α	4			
2	Α	7			
3	В	2			
4	В	5			
5	В	8			
6	С	3			
7	С	6			
8	С	9			
	Préférable				