Assignment - 1

* Discrete Mathematics

Main Problem

o1.) A system is designed to automatically verify logical statements used in access control. Each access rule is represented as a propositional formula. Consider the formula:

 $\left[(P \rightarrow 9) \land (\neg \forall \lor 9) \right] \rightarrow (P \rightarrow \forall)$

Where:

- P: user is authenticated

- 9: user has a valid token

- 8: user can access confidential files

Tasks:

1. construct the truth table for this expression.

2. Determine whether the statement is a tautology, contradiction, or contingency

3. show how this logic can prevent unauthorized access when q is false.

soln:

A system is designed to automatically verify logical statements used in occess control.

[(P->9) \((-8\nabla g))] -> (P->8)

Where :-

· P: user is authenticated

· 9: user has a valid token

e 8: user can access confidential files

2 Touth Table Construction

	1								
P	9	γ	P->9	78	-8vq	(P->9) 1 (-8 V9)	P->8	Final Expression	
1	T	T	r	F	T	\widehat{T}	T	T	
T	1	F	T	T	1	$ \uparrow $	F	F	
T	F	T	F	F	F	F	1	Υ	
T	F	F	F	T	T	F	F	T	
F	T	个	T	F	T	T	T	T	
F	T	F	1	T	T	T	T	\uparrow	
F	F	T	T	F	F	F	\uparrow	T	
F	F	F	1	T	T	\uparrow	T	1	

Types of statement

- · The last column both Ts and Fs.
- · Therefore, the formula is a contingency
- Logical Analysis for Access control (when quisfulse)
 If q ("user has a rad valid token") is False;
 - · The user does not have a valid token.
 - The system's logic only grants access to confidential files (x true) if both authentication (P) and token (9) conditions are satisfied.
 - ormula typically evaluates false or existincts access, effectively breventing unauthorized users from accessing confidential files.
 - It safeguards the system against unauthorized access by toubling logical requirements.

Sub-Problem 1: Propositional Equivalences

Prove that the following propositions are logically equivalent:

$$\neg(P \rightarrow q) = P \land \neg q$$

Tasks:

I.) Prove the above using touth tables.

2.) use logical identities (e.g., implication, De Morgan's Law) to transform the lefthand side into the right-hand side.

soln e

$$\neg (P \rightarrow q) \equiv P \land \neg q$$

P	9	P->9	-(P->q)	79	P1-9
		\uparrow	F	F	F
σ	F	F	T	T	T
F	$ \uparrow $	1	F	F	F
	F	1	F	T	F
F					2

- columns $\neg (p \Rightarrow q)$ and $p \land \neg q$ match for all
- Therefore, the two expression are logically equivalent,

Lo HoS

Recall that:

$$\neg (P \rightarrow ?) \equiv \neg (\neg P \lor ?)$$

.. (By De Morgans Law)

$$P \rightarrow P = P - P$$

Both the Aruth and Stepwise identities confirm the equivalence.

Side - Perobelim-3: Nested ourn't fiers of Rules of Inference

Nested ourn't fiers of Rules of Inference

- M(x, y): "x is a methor of y"

- Gr(x) "x is a good mentor"

(rulen:

10) $\forall x \forall y (M(x, y) \rightarrow Gr(x))$ 20) M(Amel, Reena)

Taskson

10) using rules of inference, prove that Amit is a good mentor.

20) Express the above inference chain in steps (Universal Instantiation, rodus Ponens, etc.) Solution:

· M (x,y): "x is a mentor of y"

• Gr(x) " x is a good mentor"

Peremises :

I.) $\forall x \forall y (M(x,y) \rightarrow Gr(x))$

20) M (Amit, Reena)

1.) Proof that Amil' is a Good Mentor

step 1:

Premise (1):

 $\forall x \forall y (M(x,y) \rightarrow Gr(x))$

By universal Instantiation:

x = Amit and y = Reena:

M (Amit, Reena) -> Cr (Amit)

20) M (Amit, Reena)

3.) Apply Modus Ponens to the results of steps and steps:

M (Amit, Reena) > (r (Amit) is true, and M (Amit), Reena) is true, then in (Amit) is true

· . Cr (Amit) ("Amit is good mentor") is proved by rules of inference.

step	Statement	Reasoning / Rule
1	$\forall x \forall y (M(x,y) \rightarrow G(x))$	Peremise
2	M (Amit, Reena)	Premise
3	M (Amily, Reena) > Gr (Amil)	universal Instantiation
4	M (Amid, Reena)	Restate (2)
5.	Gr (Amit)	Modus Ponens on
		(3) \$ (4)

- universal Instantiation: From a statement that is true for all x and all y it must be true for specific value (x= Amit, y=Reena) do
 - · Modus Penent : If A -> B is thuc and A is true, then B is true

Sub Problem 4: set theory operations

 Θ .) Let: $-A = \xi I, 2, 3, 4 \xi$ $-B = \xi 2, 4, 6, 8 \xi$ $-U = \xi I, 2, 3, 4, 5, 6, 7, 8, 9 \xi \text{ (universal set)}$

Tasks:

2. Verify: (AUB)' = A'NB'

MA = 51,2,3,48

· B = {2,4,6,8}

· Universal set U = { 1,2,3,4,5,6,7,8,9 }

1

. union (AUB):

AUB = {I, 2, 3, 4, 6,8}

· Intersection (A NB):

ANB = 2349

· Difference (A-B)

A-B = { 1,3}

· complement of A with suspect to U(A'):

Al= U-A = &5,6,7,8,98

· complement of B with respect to U(B)

B'=U-B= & 5, 3 5, 7, 95

2.) verify: (AUB)'=A'NB'

First, find (AUB)':

AUB = \$1,2,3,4,6,8 \{

se (AUB)'=U-(AUB)= {5,7,9}

· Now, find A' NB' $A' = \xi 5, 6, 7, 8, 9 \xi, B' = \xi 1, 3, 5, 7, 9 \xi$

Intersection:

 $A' \cap B' = \{5, 7, 9\}$ Hence $(A \cup B)' = A' \cap B'$ is verified. sub-Problem 5: Relations-Properties and Moderal
Representation or

Let $A = \{1, 2, 3\}$ and define a relation Ron A as:

 $R = \{(1,1), (2,2), (3,3), (1,2), (3,3)\}$

Tasks :

1.) Represent relation R as a 0-1 matrix

2.) Determine whether R it:

- Reflexive

- symmetric

- Pransitive

3. Draw the digraph of R.

Deliverables

containing all the numericals, touth tables, relation and Proofs.

		11/ 1/20	1.11 1 1 1
criterion	weight	Excellent/Grood/Fair M	
Pruth Pable Accuracy	2040	All entries correct / 5 minor mistakes / Partial logic / Incorrect	5 /4 /3 /2
Jogical Peroofs + Identities	20 %	Att complete with step/some gaps/ Incomplete/Missing	5/4/3/2

Peroperties 20 % correct operations of matrix/some 5/4/3/2 Peresentation Jone / incomplete Structure 20 % Neat, labeled, class runor formatting curstructured 5/43/2	xuantifier Logic	20%	symbolic from / Minor flaw/Basic / incorrect	5/4/3/2
structure 20 % Neat, labeled, class 5/43/2 unstructured			mistakes / Few forth	5/4/3/2
1 Page	4	20 %	Meat, labeled, class	5/43/2

Sof

$$A = \{I, 2, 3\}$$
 $R = \{(I, I), (2, 2), (3, 3), (I, 2), (2, 3)\}$
derifined on set A

10) Relation R as a 0-1 Matrix

	1	2	3
I	1	1	0
2	0	エ	1
3	0	0	1

2.) Proporties of Relation R

Reflexive

Here (I,I), (2,2), (3,3) are in Ris reflexive.

symmetric

. (1,2) ∈ R but (31) & R.

Hence, R is not symmetric

· Pransitive:

· (I,2), (2,3) & R, but (I,3) & R.

Hence R is not teransitive

3.) Digraph of Relation R Vertices: I, 2, 3

Edges:

· Loops on 1,2, and 3 (for reflexive pairs)

· Directed edgl from 1 to 2

" Directed edge from 2 to 3

roperty	Is R satisfied?	Reason
Reflexive	Yes	All diagonal pairs (1,1), (2,2); (3,3) are
Symmetric	NO	(1,2) ER but (3, I) & R.
transitive !	NO	(1,2), (2,3) & R but (1,3) & R.

- · Accurate 0-1 material supresentation
- · clear revaluation of properties based on definitions
- · Description for the digraph braning