Examenul de bacalaureat național 2014

Proba E. c)

Matematică M_pedagogic

Barem de evaluare și de notare

Model

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{12} = 2\sqrt{3}$, $\sqrt{8} = 2\sqrt{2}$	2p
	$2\sqrt{3} + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{2} = 0 \in \mathbb{N}$	3p
2.	y = 0	2p
	$f(x) = 0 \Rightarrow x = \frac{3}{2}$	3 p
3.	$7^{x^2+1} = 7^2 \Leftrightarrow x^2 - 1 = 0$	3р
	$x_1 = -1$ şi $x_2 = 1$	2p
4.	Se notează cu x prețul înainte de scumpire \Rightarrow prețul după scumpire este $x + 10\% \cdot x = \frac{11x}{10}$	2p
	$\frac{11x}{10} - 10\% \cdot \frac{11x}{10} = 1980 \Rightarrow x = 2000$	3 p
5.	Coordonatele punctului M care este mijlocul segmentului PR sunt $x_M = 5$ și $y_M = 3$	3р
	$x_M = \frac{x_Q + x_S}{2} \Rightarrow x_S = 6 \text{ și } y_M = \frac{y_Q + y_S}{2} \Rightarrow y_S = 4$	2p
6.	$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} = \frac{25 + 49 - 64}{2 \cdot 5 \cdot 7} =$	3 p
	$=\frac{1}{7}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	2*3=2+3-1=	3p 2p
2.	x * y = x + y - 1 şi $y * x = y + x - 1$, pentru orice numere reale x şi y	3p
	$x * y = y * x$, pentru orice numere reale $x \neq y$	2p
3.	(x*y)*z=(x+y-1)*z=x+y+z-2, pentru orice numere reale x, y şi z	2p
	x*(y*z) = x*(y+z-1) = x+y+z-2, pentru orice numere reale x, y şi z	2p
	Finalizare	1p
4.	$\left(x^2\right) * x = x^2 + x - 1$	2p
	$x^2 + x - 1 = 11 \Leftrightarrow x_1 = 3 \text{ si } x_2 = -4$	3 p
5.	x*(x+2014)=2x+2013	2p
	(x+1012)*(x+1012) = 2x+2013 = x*(x+2014), pentru orice număr real x	3p
6.	$x + \frac{1}{x} - 1 = 1 \Leftrightarrow \frac{x^2 - x + 1}{x^2 - 2x + 1} = 1 \Leftrightarrow x^2 - 2x + 1 = 0$	3p
	x x x $x = 1$	2p

Probă scrisă la matematică *M_pedagogic*

Barem de evaluare și de notare

SUBIECTUL al III-lea (30 de puncte)

		,
1.	$A(0) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	2p
	$\det(A(0)) = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} = 1$	3р
2.	$\det(A(0)) = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} = 1$ $A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	2p
	$A(0) \cdot A(1) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$	3р
	$\det(A(m)) = 0 + 1 + m^2 - 0 - m - 0 = m^2 - m + 1$	3p
	$m^2 - m + 1 = m \Leftrightarrow m = 1$	2p
4.	$m^{2} - m + 1 = m \Leftrightarrow m = 1$ $A(2) + A(4) = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 4 & 1 \\ 1 & 0 & 1 \\ 4 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 6 & 2 \\ 2 & 0 & 2 \\ 6 & 2 & 0 \end{pmatrix} =$	3р
	$= 2 \cdot \begin{pmatrix} 3 & 3 & 1 \\ 1 & 0 & 1 \\ 3 & 1 & 0 \end{pmatrix} = 2A(3)$	2p
5.	$A(0) \cdot B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$	2p
	$B \cdot A(0) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3 \Rightarrow \text{matricea } B \text{ este inversa matricei } A(0)$	3р
6.	m = 0	
	$(0,1,0)$ este soluție a sistemului $\Leftrightarrow \{0=m\}$	3p
	1 = 1	
	m = 0	2p