mov	dst, src	src の値を dst にコピーする (move)。C 言語風に書くと dst = src;
add	dst , src	src の値を dst に加える (add)。 dst = dst + src;
adc	dst , src	src の値および CF の値を dst に加える (add with carry)。dst = dst + src + CF;
sub	dst , src	src の値を dst から減じる (subtract)。dst = dst - src;
sbb	dst , src	src の値および CF の値を dst から減じる (subtract with borrow)。
		dst = dst - src - CF;
inc	dst	dst の値を 1 増やす (increment)。dst = dst + 1; または dst++;
dec	dst	dstの値を1減じる (decrement)。dst = dst - 1; または dst;
and	dst, src	src と dst のビットごとの論理積を dst に代入する。dst = dst & src;
or	dst , src	src と dst のビットごとの論理和を dst に代入する。dst = dst src;
xor	dst , src	src と dst のビットごとの排他的論理和を dst に代入する。dst = dst ^ src;
not	dst	dst の各ビットを反転する。dst = ~dst;
shl	dst, cnt	dst を cnt ビットだけ左シフトする (shift left)。dst = dst << cnt;
shr	dst, cnt	dst を cnt ビットだけ右シフトする (shift right)。dst = dst >>> cnt;
sar	dst, cnt	符号ビットを保存して dst を cnt ビットだけ右シフトする (shift arithmetic right)。
		$dst = dst \gg cnt;$
rol	dst, cnt	dst を cnt ビットだけ左巡回シフトする (rotate left)。
ror	dst, cnt	dst を cnt ビットだけ右巡回シフトする (rotate right)。
rcl	dst, cnt	CF を含めて dst を cnt ビットだけ左巡回シフトする (rotate through carry left)。
rcr	dst, cnt	CF を含めて dst を cnt ビットだけ右巡回シフトする (rotate through carry right)。
mul	m	乗算を行う (multiply)。 m が 32 ビットの場合,EAX と m の積を計算し,上位
		32 ビットを EDX に,下位 32 ビットを EAX に格納する。EDX:EAX = EAX * m ;
div	d	除算を行う (divide)。 d が 32 ビットの場合,EDX を上位 32 ビット,EAX を下
		位 32 ビットとする値を d で割り,商を EAX に,剰余を EDX に格納する。
		EAX = EDX:EAX / d; $EDX = EDX:EAX % d;$