SPATIALLY VARIABLE DECONVOLUTION FOR LIGHTSHEET MICROSCOPY

Bogdan Toader¹, Stéphane Chrétien², Andrew Thompson³

¹University of Cambridge, ²University of Lyon 2, ³National Physical Laboratory

LIGHTSHEET MICROSCOPY

TODO: a few words about why lightsheet is good

Light sheet microscopy is a type of fluorescence microscopy used in cell biology due to its fast acquisition times and low photo-damage to the sample. This is achieved by selectively illuminating a slice of the sample using a sheet of light and detecting the emitted fluorescence signal using a dedicated objective orthogonal to the plane of the sheet.

• Project aim: computationally improve the quality of light sheet microscopy images.

LIGHT-SHEET MICROSCOPE

PROBLEM

SPATIALLY VARYING PSF

Figure credit: Jörg Ritter, PhD thesis (2011) A light-sheet microscope consists of two objectives: TODO etc

Due to the combination of light-sheet and the objective PSF, the effective PSF of the system is spatially varying, and therefore standard deconvolution approaches are not applicable.

MODEL

The measure x can be recovered exactly by solving the TV norm minimisation problem over non-negative measures z on [0, 1]:

$$\min_{z \ge 0} ||z||_{TV} \quad \text{subject to} \quad y_j = \int_{[0,1]} \phi(t - s_j) x(\mathrm{d}t), \quad \forall j = 1, \dots, m, \tag{1}$$

or its dual:

$$\max_{\lambda \in \mathbb{R}^m} y^T \lambda \quad \text{subject to} \quad \sum_{j=1}^m \lambda_j \phi(t - s_j) \le 1, \quad \forall t \in [0, 1]. \tag{2}$$

Having the solution λ to the dual problem (2), the locations $\{t_i\}_{i=1}^k$ in the input signal are given by the global maximisers of the dual certificate:

$$q(t) = \sum_{j=1}^{m} \lambda_j \phi(t - s_j).$$

Results – Simulated Data

FITTING THE PSF

ALGORITHM

We solve

 $\min_{\lambda \in \mathbb{R}^m} f(\lambda)$

for the exact penalty f:

$$f(\lambda) = -y^T \lambda + \Pi \cdot \max \{ \sup_{s} \sum_{j=1}^m \lambda_j \phi(s - s_j) - 1, 0 \}$$

in the set $Q = \{\lambda \in \mathbb{R}^m \mid ||\lambda||_{\infty} \leq B\}$. As described in [1], at every iteration p:

1. Compute the piece-wise linear model:

$$\hat{f}_p(\lambda) = \max_{0 \le l \le p} \left[f(\lambda_l) + \langle g(\lambda_l), \lambda - \lambda_l \rangle \right],$$

where $g(\lambda_l)$ are some subgradients of f at λ_l .

- 2. Find the optimal value \hat{f}_p^* of the current model \hat{f}_p and the smallest value f_p^* of the objective f so far.
- 3. Calculate the next iterate λ_{p+1} as the projection of λ_p on the level set $\mathcal{L}_p(\alpha) = \{\lambda \in$ $Q \mid \hat{f}_p(\lambda) \leq \ell_p(\alpha)$ where $\ell_p(\alpha) = (1 - \alpha)\hat{f}_p^* + \alpha f_p^*$ for some $\alpha \in (0, 1)$.

Results — Real Data

BEADS • Exact measurements: the level method finds the correct locations of the point sources with high accuracy – see the localisation error for two sources as the distance between them goes to zero in the bottom left figure.

• Noisy measurements: As the distance between two sources decreases, they are replaced with one source with higher intensity in the reconstructed signal.

Localisation error for two point sources as the distance Δ between them increases from 0.004 to 0.2 in the noise-free case (left) and noisy case for Gaussian noise with standard deviation 0.01, 0.02, 0.05, 0.1, 0.2 (right). The convolution kernel is Gaussian with $\sigma = 0.05$, intensities are 1 and m = 21 equispaced samples.

Examples of k=25 sources in an image with 67×67 pixels (giving m=4489 measurements), Gaussian kernel with $\sigma = 0.05$ and level method parameters $\Pi = 100$ and B=100. Red crosses * are true sources and black circles • are estimated sources.

Gaussian noise with standard deviation 0.05.

Gaussian noise with standard deviation 0.2.

Gaussian noise with standard deviation 0.1.