AE 737: Mechanics of Damage Tolerance

Lecture 14 - Stress based fatigue

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

March 22, 2021

1

schedule

- 22 Mar Stress-based Fatigue
- 24 Mar Stress-based Fatigue
- 26 Mar Project Abstract Due
- 29 Mar Strain-based Fatigue
- 31 Mar Crack Growth
- 2 Apr Homework 6 Due

outline

- fatigue
- nominal and local stress
- fatigue tests
- fatigue life analysis

fatigue

3

fatigue

- We refer to damage from repeated, or cyclic loads as fatigue damage
- Some of the earliest work on fatigue began in the 1800's
- Chains, railway axles, etc.
- An estimated 80% of failure expenses are due to fatigue

и

fatigue

- There are three main approaches to fatigue analysis
 - Stress based fatigue analysis
 - Strain based fatigue analysis
 - Fracture mechanics fatigue analysis

stress based fatigue

- One of the simplest assumptions we can make is that a load cycles between a constant maximum and minimum stress value
- This is a good approximation for many cases (axles, for example) and can also be easily replicated experimentally
- This is referred to as constant amplitude stressing

6

constant amplitude stressing

constant amplitude stressing

- $\Delta \sigma$ is known as the stress range, and is the difference between max and min stress
- \(\sigma_m\) is the mean stress, and can sometimes be zero, but this
 is not always the case
- σ_a is the stress amplitude, and is the variation about the mean

8

constant amplitude stressing

 We can express all of these in terms of the maximum and minimum stress

$$\begin{split} \Delta\sigma &= \sigma_{\textit{max}} - \sigma_{\textit{min}} \\ \sigma_{\textit{m}} &= \frac{\sigma_{\textit{max}} + \sigma_{\textit{min}}}{2} \\ \sigma_{\textit{a}} &= \frac{\sigma_{\textit{max}} - \sigma_{\textit{min}}}{2} \end{split}$$

constant amplitude stressing

- It is also common to describe some ratios
- The stress ratio, R is defined as

$$R = \frac{\sigma_{min}}{\sigma_{max}}$$

• And the amplitude ratio, A is defined as

$$A = \frac{\sigma_a}{\sigma_m}$$

10

useful relations

There are some useful relationships between the above equations

$$\Delta\sigma = 2\sigma_a = \sigma_{max}(1 - R)$$

$$\sigma_m = \frac{\sigma_{max}}{2}(1 + R)$$

$$R = \frac{1 - A}{1 + A}$$

$$A = \frac{1 - R}{1 + R}$$

nominal and local stress

definition and notation

- It is important to distinguish between the nominal (global) stress and the local stress at some point of interest
- We use σ for the stress at a point (local stress)
- We use S as the nominal (global) stress
- In simple tension, $\sigma = S$

notation

- For many cases (bending, notches), $\sigma \neq S$ in general
- We must also be careful to note σ_y , in some cases $S<\sigma_y$ but at some locations $\sigma>\sigma_y$

13

simple tension

bending

15

notches

fatigue life analysis

stress life curves

- Stress-life curves, or S-N curves, are generated from test data to predict the number of cycles to failure
- In general, one set (or family) of S-N curves is generated using the same σ_m
- Usually Sa (the nominal stress equivalent of σa) is plotted versus N (the number of cycles)

stress life curves

- Each individual point on an S-N curve represents one fatigue experiment
- To find enough data to form statistical significance, as well as to fit a curve across all levels of fatigue is very time-consuming
- In the following plot, if only one test was performed for each point, the total number of cycles tested would be about 7.3x107
- For a 100 Hz machine, this represents over 200 hours of consecutive testing

18

stress life curves

stress life curves

- On a linear scale, the data appear not to agree well with any standard fit
- It is also very difficult to differentiate between low-cycle fatigue failure stresses
- Instead S-N curves are often plotted on a semi-log or log-log scale, so pay attention to the axes

20

stress life curves

curve fits

 If the curve is nearly linear on a log-linear plot, we use the following form to fit the data

$$\sigma_a = C + D \log N_f$$

 When the data are instead linear on a log-log scale, the following form is generally used

$$\sigma_a = \sigma_f'(2N_f)^b$$

\(\sigma_f'\) and \(b\) are often considered material properties and can often be looked up on a table (p. 235)

22

curve fit

stress life curves

24

fatigue limit

fatigue limit

- The fatigue limit, or endurance limit, is a feature of some materials where below a certain stress, no fatigue failure is observed
- Below the fatigue limit, this material is considered to have infinite life
- This most notably occurs in plain-carbon and low-alloy steels
- In these materials, $\sigma_{\rm e}$ is considered to be a material property

25

fatigue limit

- This phenomenon is not typical of aluminum or copper alloys
- It is sometimes arbitrarily assigned using whatever the failure stress is at some large number of cycles (107 or 108)

fatigue limit

27

high and low cycle fatigue

- Some other important terms are high cycle fatigue and low cycle fatigue
- "High cycle fatigue" generally is considered anything above 1000 cycles, but varies somewhat by material

high and low cycle fatigue

 High cycle fatigue occurs when the stress is sufficiently low that yielding effects do not dominate behavior

29

modeling real loads

real loads

- Static loads are constant and do not vary. While they are not generally considered "fatigue" loads, they can be present during fatigue loads, which will change the response.
- Working loads change with time as a function of the normal operation of a component
- Vibratory loads occur at a higher frequency than working loads and may be caused by the environment or secondary effects of normal operation.
- Accidental loads can occur at a much lower frequency than working loads

30

real loads

real loads

32

simplified load sketch book p 239

effect of variable amplitude

- We know that variable loads can often occur in real scenarios, but how can we model the effect?
- Miner's Rule is often used to approximate the effect of variable amplitude load
- We consider each load amplitude (and the number of cycles at that amplitude) as having used up a percentage of a part's life

$$\frac{N_1}{N_{f1}} + \frac{N_2}{N_{f2}} + \frac{N_3}{N_{f3}} + \dots = \sum \frac{N_i}{N_{fi}} = 1$$

34

effect of variable amplitude

- Often there are "blocks" of variable amplitude loads which repeat
- · A typical flight cycle is a good example of this
- A flight will have working loads, vibrations, as well as storms/turbulence, but each flight should have similar loading
- If we call the number of "block" B then we have

$$B\left[\sum \frac{N_i}{N_{if}}\right]_{rep} = 1$$

mean stress effects

- It is possible for each variable load case to have a different mean stress
- This would mean generating a different S-N curve for each potential mean stress
- Much work has been done to instead convert a zero-mean stress curve to different mean stress amplitudes

36

mean stress effects

mean stress

- Since mean stress has an effect on fatigue life, sometimes a family of S-N curves at varying mean stress values is created
- S-N curves for these are reported in different ways, but commonly σ_{max} replaces σ_a on the y-axis
- One useful way of representing these data, instead of many S-N curves, is a constant-life diagram
- It is created by taking points from the S-N curves and plotting a line through constant Nf values

37

S-N curves at variable σ_m

constant life diagram

39

normalizing

- One very useful way to plot this data is to normalize the amplitude by the zero-mean amplitude
- \bullet We call the zero-mean amplitude as $\sigma_{\it ar}$
- Plotting σ_a/σ_{ar} vs. σ_m provides a good way to group all the data together on one plot with the potential to fit a curve

normalized amplitude-mean diagram

41

Goodman line

 The first work on this problem was done by Goodman, who proposed the line

$$\frac{\sigma_{\rm a}}{\sigma_{\rm ar}} + \frac{\sigma_{\rm m}}{\sigma_{\rm u}} = 1$$

 This equation can also be used for fatigue limits, since they are just a point on the S-N curves

$$\frac{\sigma_{\rm e}}{\sigma_{\rm er}} + \frac{\sigma_{\rm m}}{\sigma_{\rm u}} = 1$$

modifications

- While the Goodman line gives a good approximation to convert non-zero mean stress S-N curves, it is somewhat overly conservative at high mean stresses
- It is also non-conservative for negative mean stresses
- An alternative fit is known as the Gerber Parabola

$$\frac{\sigma_{a}}{\sigma_{ar}} + \left(\frac{\sigma_{m}}{\sigma_{u}}\right)^{2} = 1$$

 In general, the Goodman line is a good fit for brittle materials (steels) while the Gerber parabola is a better fit for more ductile materials

43

modifications

• The Goodman line can also be improved by replacing σ_u with the corrected true fracture strength $\tilde{\sigma}_{fB}$ or the constant σ_f' from the S-N curve fit

$$\frac{\sigma_{\mathsf{a}}}{\sigma_{\mathsf{ar}}} + \frac{\sigma_{\mathsf{m}}}{\sigma_{\mathsf{f}}'} = 1$$

- This is known as the Morrow Equation
- For steels, σ'_f ≈ σ̃_{fB}, but for aluminums these values can be significantly different, and better agreement is found using σ̃_{fB}.

modifications

 One more relationship that has shown particularly good results with aluminum alloys is the Smith, Watson, and Topper equations (SWT)

$$\sigma_{ar} = \sqrt{\sigma_{max}\sigma_a}$$

- In general, it is best to use a form that matches your data
- If data is lacking, the SWT and Morrow equations generally provide the best fit

scatter

45

fatigue scatter

- One of the challenges with fatigue is that there is generally considerable scatter in the data
- Quantifying this scatter requires many repetitions, which makes for time consuming tests
- In general, the scatter follows a lognormal distribution (or a normal distribution in log(Nf))

46

S-N-P Curve

general stress

general stress

- Often combined loads from different sources introduce stresses which are not uni-axial
- For ductile materials, good agreement has been found using an effective stress amplitude, similar to the octahedral shear yield criterion

$$\bar{\sigma}_{a} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{xa} - \sigma_{ya})^{2} + (\sigma_{ya} - \sigma_{za})^{2} + (\sigma_{za} - \sigma_{xa})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2})}$$

• The effective mean stress is given by

$$\bar{\sigma}_m = \bar{\sigma}_{xm} + \bar{\sigma}_{vm} + \bar{\sigma}_{zm}$$

effective stress

- This effective stress can be used in all other relationships, including mean stress relationships
- Note that mean shear stress has no effect on the effective mean stress
- This is surprising, but agrees well with experiments
- When yielding effects do dominate behavior, the strain-based approach is more appropriate