

案例:分析婴幼儿年龄和头围的关系

→ 数据

年龄	头围
11	50.90952
1.666667	50.4282
10	51.35181
3	50.27417
3	48.52064
5	50.30917
4	52.34006
8	49.05821
8	51.17692
0.916667	46.21404

非线性回归

模型选择: 根据数据的特点选择模型

 $y = \beta_1 e^{\frac{\beta_2}{x + \beta_3}}$ 负指数函数

$$y = \frac{x + \beta_1}{\beta_2 x + \beta_3}$$

双曲线函数

$$y = \beta_1 (x + \beta_2)^{\beta_3}$$

幂函数

- 模型选择: 根据数据的特点选择模型
- \bigcirc Logistic曲线函数 $y = \frac{\beta_1}{1 + \beta_2 e^{-(x + \beta_3)}}$
- γ 对数函数 $y = \beta_1 + \beta_2 \ln(x + \beta_3)$

非线性回归

```
HeadData = xlsread('headcir.xls');
x = HeadData(:, 1);
y = HeadData(:, 2);
% 理论回归方程对应的匿名函数
HeadCir = @(beta,
x)beta(1)*exp(beta(2)./(x+beta(3)));
%参数初值
beta0 = [50, 0.1, 0.1];
Mdl = fitnlm(x, y, HeadCir, beta0)
% 绘制结果
```

```
xnew = linspace(0, 16, 50)';
ynew = predict(Mdl, xnew);
figure;
plot(x, y, 'k.');
hold on;
plot(xnew, ynew, 'linewidth', 3);
xlabel('年龄(x)');
ylabel('头围(y)');
legend('原始数据','非线性回归曲线');
```


