Tên bài giảng

Phương pháp phân tích thiết kế quay lui

Môn học: Phân tích thiết kế thuật toán

Chương: 5

Hệ: Đại học

Giảng viên: TS. Phạm Đình Phong

Email: phongpd@utc.edu.vn

Nội dung bài học

- 1. Phân tích thiết kế, đánh giá thuật toán quay lui
- 2. Một số thuật toán quay lui vét cạn
- Một số thuật toán quay lui trên dữ liệu nhiều chiều

Ý tưởng

Một người đi vào căn phòng bên trong phòng có nhiều vách ngăn từ cửa vào (In) và tìm cửa ra (Out)

Gặp ngõ cụt nên quay trở ra

- Ý tưởng
 - Kỹ thuật thiết kế thuật toán dựa trên đệ quy
 - Tìm lời giải từng bước, tại mỗi bước
 - Nếu có một lựa chọn chấp nhận được → ghi nhận và tiến hành thử bước tiếp theo
 - Nếu không có lựa chọn nào khả thi
 - Quay lại bước trước
 - Xóa bỏ ghi nhận
 - Thử các lựa chọn còn lại tại bước này
 - Phù hợp với bài toán liệt kê cấu hình dạng
 X[1, ..., n]

Bài toán liệt kê

Cho $A_1, A_2, ..., A_n$ là các tập hữu hạn. Ký hiệu

$$X = A_1 \times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n): x_i \in A_i, i = 1, 2, ..., n\}$$

Giả sử P là tính chất cho trên X. Vấn đề đặt ra là liệt kê tất cả các phần tử của X thoả mãn tính chất P:

$$D = \{x = (x_1, x_2, ..., x_n) \in X: x \text{ thoả tính chất } P\}$$

Các phần tử của tập *D* được gọi là các *lời giải chấp* nhận được

- Ví dụ
 - Bài toán liệt kê chuỗi nhị phân độ dài n dẫn về việc liệt kê các phần tử của tập

$$B^n = \{(x_1, ..., x_n): x_i \in \{0, 1\}, i = 1, 2, ..., n\}$$

Tập các hoán vị của các số tự nhiên 1, 2, ..., n là tập

$$\Pi^n = \{(x_1, ..., x_n) \in \mathbb{N}^n: x_i \neq x_i ; i \neq j\}$$

- Lời giải bộ phận
 - Ta gọi lời giải bộ phận cấp k (0 ≤ k ≤ n) là bộ có thứ tự gồm k thành phần (x₁, x₂, ..., x_k), trong đó x_i ∈ A_i, i = 1, 2, ..., k
 - Khi k = 0, lời giải bộ phận cấp 0 được ký hiệu là ()
 và còn được gọi là lời giải rỗng
 - Nếu k = n, ta có lời giải đầy đủ hay đơn giản là một
 lời giải của bài toán

- Mô hình thuật toán
 - Tại mỗi bước i
 - Đã xây dựng xong lời giải bộ phận cấp i 1 (gồm các thành phần x₁, ..., x_{i-1})
 - Xây dựng thành phần thứ i với tất cả các khả năng A_i
 - Nếu trên cơ sở tính chất P, có một phần tử a_j ∈ A_i phù hợp (thỏa tính chất P) với vị trí thứ i → chọn a_j vào vị trí thứ i của lời giải. Tập các {a_j} như vậy được gọi là tập ứng cử viên (UCV) vào vị trí thứ i của lời giải, ký hiệu là S_i
 - Nếu i = n (có lời giải đầy đủ) → ghi nhận một lời giải
 - Ngược lại, tiến hành bước i + 1 để xác định x_{i+1}
 - Nếu trên cơ sở tính chất P, không có $a_j \in A_i$ nào phù hợp với vị trí thứ i thì lùi lại bước i-1 để xác định lại x_{i-1} rồi tiếp tục xây dựng thành phần thứ i

```
backtracking(i) {
   for (M\tilde{o}i j \in A_i) {
       if (j \text{ thỏa tính chất } P) {
           Chọn j cho x_i;
           if (i == n) { //D\tilde{a} xác định được đủ n thành phần
                Đưa ra kết quả;
           } else {
                backtracking (i + 1);
                Bổ chọn j cho x_i;
```

Lệnh gọi để thực hiện thuật toán quay lui là: backtracking(1)

- Nhận xét
 - Để xây dựng thuật toán quay lui ta cần:
 - · Biết dạng của cấu hình cần tìm
 - Độ dài của lời giải là không biết trước
 - · Các lời giải không nhất thiết phải có cùng độ dài
 - Cần kiểm tra $(x_1, x_2, ..., x_k)$ đã là lời giải hay chưa
 - Xác định các khả năng của x_i (số phần tử của tập A_i) → ít nhất có thể. Khi đó, ta có A_i = S_i.
 - Xác định điều kiện thỏa tính chất P cho vị trí thứ i (điều kiện "chấp nhận khả năng j" cho x_i) → đơn giản nhất có thể

Nhận xét

- Nếu chỉ cần tìm một lời giải thì cần tìm cách chấm dứt các thủ tục gọi đệ qui lồng nhau sinh bởi lệnh gọi Backtracking(1) sau khi ghi nhận được lời giải đầu tiên
- Nếu kết thúc thuật toán mà ta không thu được một lời giải nào thì điều đó có nghĩa là bài toán không có lời giải

Cây liệt kê lời giải

- Dãy nhị phân có độ dài n là dãy số có số chữ số bằng n và các chữ số trong dãy chỉ gồm 0 và 1
- Ví dụ: các dãy nhị phân có độ dài 3

1 1 0

 $0 \ 0 \ 0$

Liệt kê dãy nhị phân có độ dài n

Bài toán dẫn về việc liệt kê các phần tử của tập

$$B^n = \{(x_1, ..., x_n): x_i \in \{0, 1\}, i = 1, 2, ..., n\}$$

- \rightarrow Cấu hình cần tìm có dạng: $(x_1, x_2, ..., x_n)$
- Giả sử đã có xâu nhị phân cấp i 1 (x₁, ..., x_{i-1}), khi đó
 x_i = {0, 1}
 - \rightarrow Các khả năng của x_i là 0 và 1 hay $S_i = \{0, 1\}$
- Chấp nhận khả năng j của x; luôn chấp nhận

. . .

Liệt kê dãy nhị phân có độ dài n

Mã giả của thuật toán

```
void backtracking(int i ) {
  for (int j=0; j<=1; j++) {
    x[i] = j;
    if (i == n) //neu tim đen x<sub>i</sub> cuối cùng thì xuất ra kết quả
        output();
    else
        backtracking(i+1); // chưa tìm đen i cuối thì tăng i lên
  }
}
```

Lệnh gọi để thực hiện thuật toán quay lui là: backtracking(1)

Liệt kê dãy nhị phân có độ dài n

Cây liệt kê dãy nhị phân độ dài 3

- Mô tả bài toán
 - Tổ hợp chập k phần tử của X = {1, ..., n} là
 một tập con k phần tử của X
 - Ví dụ: k = 3, n = 4, $X = \{1, 2, 3, 4\}$, ta có các tổ hợp: (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)

- Bài toán dẫn về bài toán liệt kê các phần tử của tập:
 S(k, n) = {(x₁, ..., x_k)∈N^k: 1 ≤ x₁<...<x_k≤ n}
 - \rightarrow Cấu hình cần tìm dạng: $(x_1, x_2, ..., x_k)$ với $x_{i-1} < x_i$
- Từ điều kiện 1 ≤ x₁ < x₂ < ... < x_k ≤ n ta có tập ứng cử viên cho vị trí thứ nhất (các khả năng của x₁):
 S₁ = {1, 2, ..., n-k+1)}

Giả sử đã xây dựng được lời giải bộ phận cấp i -1 (x_1 , ..., x_{i-1}). Từ điều kiện $x_{i-1} < x_i < ... < x_k \le n$, ta có tập ứng cử viên cho vị trí thứ i (các khả năng của x_i) là: $S_i = \{x_{i-1}+1, x_{i-1}+2, ..., n-k+i\}$

Điều kiện chấp nhận khả năng j: luôn chấp nhận

Ví dụ: với k = 3, n = 4 thì các khả năng của $x_1 = \{1, ..., 4 - 3 + 1\} = \{1, 2\}$ $x_2 = \{x_1 + 1, ..., 4 - 3 + 2\} = \{2, 3\}$ $x_3 = \{x_2 + 1, ..., 4 - 3 + 3\} = \{3, 4\}$

Mã giả của thuật toán

```
void backtracking(int i ) { // hàm quay lui
  for(int j = x[i-1]+1; j <= n-k+i; j++) { // xét các khả năng của i
                                  // ghi nhận một giá trị của i
     x[i] = j;
                                  // nếu cấu hình đã đủ k phần tử
     if (i==k) {
                                  // in một cấu hình
        printResult() ;
     } else {
        backtracking(i+1); // quay lui
```

• Cây liệt kê lời giải với k = 3, n = 5

- Mô tả bài toán
 - Cho một tập hợp gồm n phần tử có giá trị từ 1
 đến n. Xuất ra các hoán vị của tập hợp này
 - Ví dụ: n = 3, các hoán vị là:

123

132

213

231

3 1 2

321

- Dẫn đến bài toán liệt kê tất cả các thành phần tập Πⁿ = {(x₁,..., x_n) ∈ Nⁿ: x_i ≠ x_i, i ≠ j }
 - → Cấu hình cần tìm dạng: (x₁, x₂, ..., x_n) với x_i ≠ x_j
 - Hiển nhiên cấu hình thứ nhất là (1, 2, ..., n). Giả sử ta có hoán vị bộ phận (x₁, x₂, ..., xᵢ₁), từ điều kiện xᵢ ≠ xᵢ với mọi i ≠ j ta có:
 - \rightarrow Các khả năng của x_i là: $A_i = \{N \setminus \{x_1, x_2, ..., x_{i-1}\}\}$
 - Điều kiện chấp nhận khả năng j của x_i: khi x_i chưa được sử dụng (x_i khác x₁, ..., x_{i-1} và x_i ≤ n)

Mã giả của thuật toán

```
void hoanvi(int i) {
  for (int j = 0; j < n; j++) {
     if (b[j] == 0) { //Khi số này chưa được chọn
       x[i] = j + 1; //Do chỉ số j chạy từ 0
       b[j] = 1; //Đánh dấu đã sử dụng số này
       if (i == n)
          output();
       else
          hoanvi(i + 1);
       b[j] = 0;
```

Cây liệt kê hoán vị của {1, 2, 3}

- Mô tả bài toán
 - Cho một mảng n phần tử X[0, ..., n-1] không âm và một số T. Tồn tại tập con của X có tổng là T?
 - Ví dụ 1: X = {8, 6, 7, 5, 3, 10, 9} và T = 12
 → tồn tại tập con {7, 5} của X có tổng là 12
 - **Ví dụ 2**: $X = \{3, 34, 4, 12, 5, 2\}$ và T = 9
 - → tồn tại tập con {4, 5} của X có tổng là 9

- Ý tưởng:
 - Xét x ∈ X, tồn tại một dãy con có tổng bằng T nếu
 một trong hai điều kiện sau là đúng
 - 1. Tồn tại một tập con của $X \setminus \{x\}$ có tổng bằng T x
 - 2. Tồn tại một tập con của $X \setminus \{x\}$ có tổng bằng T

- Cách tiếp cận:
 - Với hai trường hợp trên ta có:
 - Bỏ phần tử cuối cùng và giờ đây
 Tổng = T giá trị của phần tử cuối cùng và số phần tử = tổng số phần tử 1
 - Giữ lại phần tử cuối cùng và giờ đây
 Tổng = T và số phần tử = tổng số phần tử 1

Công thức đệ quy cho hàm isSubsetSum

```
isSubsetSum(X, n, T)
= isSubsetSum(X, n - 1, T) ||
isSubsetSum(X, n - 1, T - X[n - 1])

Co so cua de quy:
isSubsetSum(X, n, T) = false, if T > 0 and n == 0
isSubsetSum(X, n, T) = true, if T == 0
```

Cách tiếp cận:

Ví dụ:

```
X[] = {3, 4, 5, 2} \text{ và } T = 9
(x, y) = 'x' là số phần tử còn lại và 'y' là tổng hiện tại
```

```
(4, 9)
        {True}
  / \ (3,7) \ (3,9)
(2,2) (2,7) (2,4) (2,9)
  (1,3) (1,7)
(0,0) (0,3)
{True}
```

Mã giả của thuật toán

```
bool isSubsetSum(int X[], int n, int T) {
 if (T == 0) return true;
  if (n == 0 \&\& T != 0) return false;
 // Trường hợp phần tử cuối lớn hơn T thì bỏ qua
  if (X[n - 1] > T)
    return isSubsetSum(X, n - 1, T);
  return isSubsetSum(X, n - 1, T) \mid |
                isSubsetSum(X, n - 1, T - X[n-1]);
```

- Độ phức tạp:
 - Ở mỗi bước, gọi đệ quy hai lần trên mảng con kích thước nhỏ hơn một đơn vị

$$\rightarrow$$
 T(n) = 2T(n-1) + O(1)

Giải phương trình đệ quy:

$$T(n) = 2[2T(n-2) +1] + 1$$

$$= 2^{2}[2T(n-3) +1] + 2 + 1$$

$$= 2^{3}T(n-3) + 2^{2} + 2^{1} + 2^{0}$$

$$= 2^{n}T(n-n) + 2^{n-1} + ... + 2^{1} + 2^{0}$$

$$= 2^{n}T(0) + 2^{n} - 1 \text{ v\'oi } T(0) = c$$

$$\Rightarrow T(n) = O(2^{n})$$

- Mô tả bài toán
 - Hãy tìm cách xếp n quân hậu trên bàn cờ kích thước n×n sao cho không quân nào ăn được quân nào

Ví dụ: một cách xếp 8 quân hậu trên bàn cờ 8×8

Hai quân hậu bất kỳ không được xếp trên cùng một hàng

Hai quân hậu bất kỳ không được xếp trên cùng một cột

Hai quân hậu bất kỳ không được xếp trên cùng một đường chéo

n quân hậu Kích thước n×n n cột n dondo

- Đánh số các cột và dòng của bàn cờ từ 1 đến n. Một cách xếp hậu có thể biểu diễn bởi bộ có n thành phần (x₁, x₂,..., x_n), trong đó x_i là toạ độ cột của quân Hậu ở dòng i.
 - \rightarrow Cấu hình cần tìm dạng: $(x_1, x_2, ..., x_n)$
- Các điều kiện đặt ra đối với bộ (x₁, x₂,..., x_n)
 - x_i ≠ x_j, với mọi i ≠ j (hai quân Hậu ở hai dòng i và j không được nằm trên cùng một cột)
 - Hai quân Hậu ở hai vị trí (i, j) và (a, b) ăn được nhau theo đường chéo khi và chỉ khi i j = a b = hằng số (đ/chéo ĐN-TB) hoặc i + j = a + b = hằng số (đ/chéo ĐB-TN)
 - $\rightarrow |x_i x_j| \neq |i j|$, với mọi $i \neq j$ (hai quân Hậu ở hai ô (x_i, i) và (x_i, j) không được nằm trên cùng một đường chéo)

 Như vậy bài toán xếp Hậu dẫn về bài toán liệt kê các phần tử của tập:

$$D=\{(x_1, x_2, ..., x_n) \in \mathbb{N}^n \text{ v\'o'i}$$

 $x_i \neq x_j \text{ v\`a } |x_i - x_j| \neq |i - j|, i \neq j \}$

Mã giả của thuật toán

```
int XepHau(int i) {
   int j, k;
   for (j=1; j \le n; j++) {
      legal = true;
      for (k = 1; k < i; k++)
         if ((j==x[k]) | | (fabs(j-x[k]) == i-k))
             legal = false;
      if (legal) {
         x[i] = j;
         if (i == n) Ghinhan();
         else XepHau(i+1);
```

- Độ phức tạp thời gian
 - Vòng lặp ngoài gọi đệ quy n lần, mỗi vòng giảm kích thước 1 do đặt được một quân Hậu
 - Vòng lặp kiểm tra tính hợp lệ là O(n)

•
$$T(n) = nT(n-1) + O(n)$$

= $n[nT(n-2) + n] + n$
= $n^2[nT(n-3) + n] + n^2 + n$
= $n^3T(n-3) + n^3 + n^2 + n$
= $n^nT(n-n) + n^n + ... + n^2 + n$
= $n^nT(0) + \sum_{i=1}^{n} n^i \text{ v\'oi } T(0) = c$
 $\rightarrow T(n) = O(n^n)$

Mô tả bài toán

 Di chuyển một quân mã trên bàn cờ vua trống kích thước (8x8) qua mỗi ô trên bàn cờ đúng một lần

Nếu vị trí bắt đầu bằng vị trí kết thúc thì đó là một

hành trình đóng

8								
7				X		X		
6			X				X	
5					Ð			
4			X				X	
3				X		X		
2								
1								
	1	2	3	4	5	6	7	8

Bài toán mã đi tuần

- Áp dụng thuật toán quay lui
 - Cấu hình cần tìm dạng: 0 ≤ A[x, y] ≤ 64 thể hiện thứ
 tự bước đi của quân mã, cặp (x, y) là tọa độ bàn cờ
 - Các khả năng của x, y: 0 ≤ x, y ≤ 7
 - Tính hợp lệ của bước đi x, y.
 - Một bước đi: $|\Delta x| + |\Delta y| = 3$, với x, y > 0
 - Từ một vị trí bất kỳ có tối đa 8 đường di chuyển. Các bước đi là: (-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)
 X = {-2,-2,-1,-1, 1, 1, 2, 2}

$$Y = \{-1, 1, -2, 2, -2, 2, -1, 1\}$$

- Với x, y là vị trí hiện tại của quân mã → thử tất cả các bước đi kế tiếp. Một bước đi hợp lệ thỏa: 0 ≤ x + X_i ≤ n 1 và 0 ≤ y + Y_i ≤ n 1 và A[x + X_i, y + Y_i] = 0
 - \rightarrow Lưu thứ tự bước đi vào ô nhớ mảng $A[x + X_i, y + Y_i]$

Bài toán mã đi tuần

Áp dụng thuật toán quay lui

```
void diChuyen (int x, int y) {
  ++dem; //Tăng giá trị bước đi
  A[x][y] = dem; //Đánh dấu đã đi
  for (int i = 0; i < 8; i++) {
     if (dem == n * n) { //Kiểm tra xem mã đã đi hết bàn cờ chưa
       cout << "Cac buoc di la: \n";
       xuat();
       exit(0);//kết thúc chương trình
     //Nếu chưa đi hết bàn cờ thì tạo bước đi mới
     int u = x + X[i]; //tao môt vị trí x mới
     int v = y + Y[i]; //tao môt vị trí y mới
     //Nếu hợp lệ thì tiến hành di chuyển
     if (u \ge 0 \&\& u < n \&\& v >= 0 \&\& v < n \&\& A[u][v] == 0)
       diChuyen(u, v);
  //Nếu không tìm được bước đi thì ta phải trả lại các giá trị ban đầu
  --dem; A[x][y] = 0;
```

Bài toán mã đi tuần

Áp dụng thuật toán quay lui

```
D:\PhongPD\DHGTVT\Phan_th
Nhap n: 8
Nhap vi tri ban dau.
x: 0
Cac buoc di la:
1 12 9 6 3 14 17 20
10 7 2 13 18 21 4 15
31 28 11 8 5 16 19 22
64 25 32 29 36 23 48 45
33 30 27 24 49 46 37 58
26 63 52 35 40 57 44 47
53 34 61 50 55 42 59 38
62 51 54 41 60 39 56 43
```

Trò chơi Sudoku

Mô tả bài toán

Có một hình vuông được chia thành 9x9 ô vuông con. Mỗi ô vuông con có giá trị trong khoảng từ 1 đến 9. Ban đầu hình vuông có một số ô vuông con cho trước (có điền sẵn số) và còn lại là trống. Hãy điền các số từ 1-9 vào các ô còn lại sao cho: hàng ngang là các số khác nhau từ 1 đến 9, hàng dọc là các số khác nhau từ 1 đến 9, và mỗi khối 3x3 chính là các số khác nhau từ 1 đến 9

Trò chơi Sudoku

Ví dụ

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	ო	4	8
1	9	8	ო	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

TỔNG KẾT

- 1. Tìm hiểu thuật toán quy lui
- 2. Minh họa một số bài toán minh họa
- 3. Ưu điểm:
 - Thử tất cả các tổ hợp để tìm được một lời giải
 - Nhiều cài đặt tránh được việc phải thử nhiều trường hợp chưa hoàn chỉnh, nhờ đó giảm thời gian chạy

4. Nhược điểm:

- Quá trình tìm kiếm cứ gặp phải bế tắc với cùng một nguyên nhân
- Thực hiện các công việc dư thừa (mỗi lần quay lui lại phải đánh giá lại lời giải)
- Không sớm phát hiện được các khả năng bị bế tắc trong tương lai

Bài tập

- Bài 1. Sửa thuật toán quay lui isSubsetSum ở trên để in ra các dãy số trong X có tổng bằng T.
- Bài 2. Sửa thuật toán quay lui của bài toán mã đi tuần ở trên để in ra một chu trình đóng.
- Bài 3. Cho một số tự nhiên N ≤ 9. Giữa các số từ 1 đến N hãy thêm vào các dấu + và sao cho kết quả thu được bằng 0. Hãy viết chương trình tìm tất cả các khả năng có thể.
- Bài 4. Cho một tự nhiên N ≤ 30. Tìm tất cả các cách phân tích số N thành tổng của các số nguyên dương. Các cách phân tích là hoán vị của nhau thì chỉ tính là một cách.