EE101: Sinusoidal steady state analysis

M. B. Patil mbpatil@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

$$R(C V_c') + V_c = V_m \cos \omega t, \quad t > 0.$$
 (1)

$$R(C V_c') + V_c = V_m \cos \omega t, \quad t > 0.$$
 (1)

The solution $V_c(t)$ is made up of two components, $V_c(t) = V_c^{(h)}(t) + V_c^{(p)}(t)$.

$$R(C V_c') + V_c = V_m \cos \omega t, \quad t > 0.$$
 (1)

The solution $V_c(t)$ is made up of two components, $V_c(t) = V_c^{(h)}(t) + V_c^{(p)}(t)$. $V_c^{(h)}(t)$ satisfies the homogeneous differential equation,

$$RCV_c'+V_c=0, (2)$$

from which, $V_{c}^{(h)}(t) = A \, \exp(-t/ au)$, with au = RC .

$$R(C V_c') + V_c = V_m \cos \omega t, \quad t > 0.$$
 (1)

The solution $V_c(t)$ is made up of two components, $V_c(t) = V_c^{(h)}(t) + V_c^{(p)}(t)$. $V_c^{(h)}(t)$ satisfies the homogeneous differential equation,

$$RCV_c'+V_c=0, (2)$$

from which, $V_c^{(h)}(t) = A \exp(-t/\tau)$, with $\tau = RC$.

 $V_c^{(p)}(t)$ is a particular solution of (1). Since the forcing function is $V_m \cos \omega t$, we try $V_c^{(p)}(t) = C_1 \cos \omega t + C_2 \sin \omega t$.

$$R(C V_c') + V_c = V_m \cos \omega t, \quad t > 0.$$
 (1)

The solution $V_c(t)$ is made up of two components, $V_c(t) = V_c^{(h)}(t) + V_c^{(p)}(t)$. $V_c^{(h)}(t)$ satisfies the homogeneous differential equation,

$$R C V_c' + V_c = 0,$$
 (2)

from which, $V_c^{(h)}(t) = A \exp(-t/\tau)$, with $\tau = RC$.

 $V_c^{(p)}(t)$ is a particular solution of (1). Since the forcing function is $V_m \cos \omega t$, we try $V_c^{(p)}(t) = C_1 \cos \omega t + C_2 \sin \omega t$.

Substituting in (1), we get,

$$\omega R C (-C_1 \sin \omega t + C_2 \cos \omega t) + C_1 \cos \omega t + C_2 \sin \omega t = V_m \cos \omega t$$
.

$$R(C V_c') + V_c = V_m \cos \omega t, \quad t > 0.$$
 (1)

The solution $V_c(t)$ is made up of two components, $V_c(t) = V_c^{(h)}(t) + V_c^{(p)}(t)$. $V_c^{(h)}(t)$ satisfies the homogeneous differential equation,

$$R C V_c' + V_c = 0, (2)$$

from which, $V_c^{(h)}(t) = A \exp(-t/\tau)$, with $\tau = RC$.

 $V_c^{(p)}(t)$ is a particular solution of (1). Since the forcing function is $V_m \cos \omega t$, we try $V_c^{(p)}(t) = C_1 \cos \omega t + C_2 \sin \omega t$.

Substituting in (1), we get,

$$\omega R C \left(-C_1 \sin \omega t + C_2 \cos \omega t\right) + C_1 \cos \omega t + C_2 \sin \omega t = V_m \cos \omega t$$
.

 C_1 and C_2 can be found by equating the coefficients of $\sin \omega t$ and $\cos \omega t$ on the left and right sides.

* The complete solution is $V_c(t) = A \exp(-t/\tau) + C_1 \cos \omega t + C_2 \sin \omega t$.

- * The complete solution is $V_c(t) = A \exp(-t/\tau) + C_1 \cos \omega t + C_2 \sin \omega t$.
- * As $t \to \infty$, the exponential term becomes zero, and we are left with $V_c(t) = C_1 \cos \omega t + C_2 \sin \omega t$.

- * The complete solution is $V_c(t) = A \exp(-t/\tau) + C_1 \cos \omega t + C_2 \sin \omega t$.
- * As $t \to \infty$, the exponential term becomes zero, and we are left with $V_c(t) = C_1 \cos \omega t + C_2 \sin \omega t$.
- * This is known as the "sinusoidal steady state" response since all quantities (currents and voltages) in the circuit are sinusoidal in nature.

(SEQUEL file: ee101_rc5.sqproj)

- * The complete solution is $V_c(t) = A \exp(-t/\tau) + C_1 \cos \omega t + C_2 \sin \omega t$.
- * As $t \to \infty$, the exponential term becomes zero, and we are left with $V_c(t) = C_1 \cos \omega t + C_2 \sin \omega t$.
- * This is known as the "sinusoidal steady state" response since all quantities (currents and voltages) in the circuit are sinusoidal in nature.
- * Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and current sources (of the same frequency), dependent (linear) sources behaves in a similar manner, viz., each current and voltage in the circuit becomes purely sinusoidal as $t \to \infty$.

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.

- * In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number, $\mathbf{X} = X_m / 2 = X_m \exp(j\theta)$, with the following interpretation in the time domain.

- * In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number, $\mathbf{X} = X_m \angle \theta = X_m \exp(i\theta)$,

$$x(t) = Re\left[\mathbf{X} e^{j\omega t}\right]$$

- * In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number, $\mathbf{X} = X_m / \theta = X_m \exp(i\theta)$,

$$x(t) = Re \left[\mathbf{X} e^{j\omega t} \right]$$
$$= Re \left[X_m e^{j\theta} e^{j\omega t} \right]$$

- * In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number, $\mathbf{X} = X_m \angle \theta = X_m \exp(i\theta)$,

$$x(t) = Re \left[\mathbf{X} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j\theta} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j(\omega t + \theta)} \right]$$

- * In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number, $\mathbf{X} = X_m \angle \theta = X_m \exp(i\theta)$,

$$x(t) = Re \left[\mathbf{X} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j\theta} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j(\omega t + \theta)} \right]$$

$$= X_m \cos(\omega t + \theta)$$

- In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number,

$$\mathbf{X} = X_m \underline{/\theta} = X_m \exp(j\theta)$$
,

with the following interpretation in the time domain.

$$x(t) = Re \left[\mathbf{X} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j\theta} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j(\omega t + \theta)} \right]$$

$$= X_m \cos(\omega t + \theta)$$

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.

- In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
- * A phasor is a complex number,

$$\mathbf{X} = X_m / \theta = X_m \exp(j\theta)$$
,

with the following interpretation in the time domain.

$$x(t) = Re \left[\mathbf{X} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j\theta} e^{j\omega t} \right]$$

$$= Re \left[X_m e^{j(\omega t + \theta)} \right]$$

$$= X_m \cos(\omega t + \theta)$$

- Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.
- * Note that a phasor can be written in the polar form or rectangular form, $\mathbf{X} = X_m \underline{/\theta} = X_m \exp(j\theta) = X_m \cos \theta + j X_m \sin \theta$.

The term ωt is always *implicit*.

Time domain	Frequency domain
$v_1(t)=3.2\cos{(\omega t+30^\circ)} V$	

Time domain	Frequency domain
$v_1(t)=3.2\cos{(\omega t+30^\circ)} V$	$\rm V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$\rm V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$i(t) = -1.5\cos\left(\omegat + 60^\circ\right)A$	

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$V_1 = 3.2 \angle 30^\circ = 3.2 \text{exp} (j\pi/6) \text{V}$
$\begin{split} \text{i(t)} &= -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ &= 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ &= 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{split}$	

Time domain	Frequency domain
$v_1(t) = 3.2 \cos(\omega t + 30^\circ) V$	$ m V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$\begin{split} \text{i(t)} &= -1.5\cos\left(\omega t + 60^{\circ}\right)\text{A} \\ &= 1.5\cos\left(\omega t + \pi/3 - \pi\right)\text{A} \\ &= 1.5\cos\left(\omega t - 2\pi/3\right)\text{A} \end{split}$	$I = 1.5 \angle (-2\pi/3) A$

Time domain	Frequency domain
$v_1(t) = 3.2 \cos(\omega t + 30^\circ) V$	$ m V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$\begin{split} \text{i(t)} &= -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ &= 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ &= 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{split}$	$I = 1.5 \angle (-2\pi/3) A$
$v_2(t) = -0.1\cos(\omega t) V$	

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$ m V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$\begin{aligned} & \text{i(t)} = -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ & = 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ & = 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{aligned}$	$I = 1.5 \angle (-2\pi/3) A$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$\rm V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$\begin{aligned} & \text{i(t)} = -1.5\cos\left(\omega t + 60^{\circ}\right)\text{A} \\ &= 1.5\cos\left(\omega t + \pi/3 - \pi\right)\text{A} \\ &= 1.5\cos\left(\omega t - 2\pi/3\right)\text{A} \end{aligned}$	$I = 1.5 \angle (-2\pi/3) A$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	$V_2 = 0.1 \angle \pi \ V$

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$ m V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$\begin{aligned} \text{i(t)} &= -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ &= 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ &= 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{aligned}$	$I = 1.5 \angle (-2\pi/3) A$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	$V_2 = 0.1 \angle \pi V$
$i_2(t) = 0.18 \sin{(\omega t)} A$	

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$V_1 = 3.2 \angle 30^\circ = 3.2 \exp \left(j \pi / 6 \right) V$
$\begin{aligned} & \text{i(t)} = -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ &= 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ &= 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{aligned}$	$I = 1.5 \angle (-2\pi/3) A$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	$V_2=0.1\angle\piV$
$i_2(t) = 0.18 \sin{(\omega t)} A$ = 0.18 cos ($\omega t - \pi/2$) A	

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$\rm V_1 = 3.2 \angle 30^\circ = 3.2 exp (j\pi/6) V$
$\begin{split} \text{i(t)} &= -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ &= 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ &= 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{split}$	$I = 1.5 \angle (-2\pi/3) A$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	$V_2 = 0.1 \angle \pi V$
$i_2(t) = 0.18 \sin{(\omega t)} A$ = 0.18 cos ($\omega t - \pi/2$) A	$I_2 = 0.18 \angle (-\pi/2) \text{ A}$

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	$V_1 = 3.2 \angle 30^\circ = 3.2 \exp \left(j \pi / 6 \right) V$
$\begin{aligned} & \text{i(t)} = -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ &= 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ &= 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{aligned}$	$I = 1.5 \angle (-2\pi/3) A$
$\begin{aligned} \mathbf{v}_2(\mathbf{t}) &= -0.1\cos\left(\omega\mathbf{t}\right)\mathbf{V} \\ &= 0.1\cos\left(\omega\mathbf{t} + \pi\right)\mathbf{V} \end{aligned}$	$V_2=0.1\angle\piV$
$i_2(t) = 0.18 \sin{(\omega t)} A$ = 0.18 cos ($\omega t - \pi/2$) A	$I_2 = 0.18 \angle (-\pi/2) \text{ A}$
	$I_3 = 1 + j1 A$

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	${\rm V}_1 = 3.2 \angle 30^\circ = 3.2 {\rm exp} ({\rm j}\pi/6) {\rm V}$
$\begin{aligned} & \text{i(t)} = -1.5\cos{(\omega t + 60^\circ)}\text{A} \\ & = 1.5\cos{(\omega t + \pi/3 - \pi)}\text{A} \\ & = 1.5\cos{(\omega t - 2\pi/3)}\text{A} \end{aligned}$	$I = 1.5\angle(-2\pi/3)A$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	$V_2=0.1\angle\piV$
$i_2(t) = 0.18 \sin{(\omega t)} A$ = 0.18 cos ($\omega t - \pi/2$) A	$I_2 = 0.18 \angle (-\pi/2) \text{ A}$
	$I_3 = 1 + j1 A$ = $\sqrt{2} \angle 45^{\circ} A$

Time domain	Frequency domain
$v_1(t)=3.2\cos(\omega t+30^\circ) V$	${\rm V}_1 = 3.2 \angle 30^\circ = 3.2 {\rm exp} ({\rm j}\pi/6) {\rm V}$
$\begin{aligned} & i(t) = -1.5\cos(\omega t + 60^{\circ}) A \\ &= 1.5\cos(\omega t + \pi/3 - \pi) A \\ &= 1.5\cos(\omega t - 2\pi/3) A \end{aligned}$	${\sf I} = 1.5 \angle (-2\pi/3){\sf A}$
$v_2(t) = -0.1\cos(\omega t) V$ $= 0.1\cos(\omega t + \pi) V$	$V_2 = 0.1 \angle \pi V$
$i_2(t) = 0.18 \sin{(\omega t)} A$ = 0.18 cos $(\omega t - \pi/2) A$	$I_2 = 0.18 \angle (-\pi/2) \text{ A}$
$i_3(t) = \sqrt{2}\cos(\omega t + 45^\circ) \text{ A}$	$I_3 = 1 + j 1 A$ = $\sqrt{2} \angle 45^{\circ} A$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Now consider addition of the phasors corresponding to $v_1(t)$ and $v_2(t)$.

$$V = V_1 + V_2$$

= $V_{m1}e^{j\theta_1} + V_{m2}e^{j\theta_2}$

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Now consider addition of the phasors corresponding to $v_1(t)$ and $v_2(t)$.

$$\mathbf{V} = \mathbf{V_1} + \mathbf{V_2}$$
$$= V_{m1} e^{j\theta_1} + V_{m2} e^{j\theta_2}$$

In the time domain, ${f V}$ corresponds to $\tilde{v}(t)$, with

$$\tilde{v}(t) = Re\left[\mathbf{V}e^{j\omega t}\right]$$

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Now consider addition of the phasors corresponding to $v_1(t)$ and $v_2(t)$.

$$V = V_1 + V_2$$

= $V_{m1}e^{j\theta_1} + V_{m2}e^{j\theta_2}$

In the time domain, ${f V}$ corresponds to $\tilde{v}(t)$, with

$$\begin{split} \tilde{v}(t) &= Re \left[\mathbf{V} e^{j\omega t} \right] \\ &= Re \left[\left(V_{m1} e^{j\theta_1} + V_{m2} e^{j\theta_2} \right) e^{j\omega t} \right] \end{split}$$

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Now consider addition of the phasors corresponding to $v_1(t)$ and $v_2(t)$.

$$V = V_1 + V_2$$

= $V_{m1}e^{j\theta_1} + V_{m2}e^{j\theta_2}$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with

$$\begin{split} \tilde{v}(t) &= Re \left[\mathbf{V} e^{j\omega t} \right] \\ &= Re \left[\left(V_{m1} e^{j\theta_1} + V_{m2} e^{j\theta_2} \right) e^{j\omega t} \right] \\ &= Re \left[V_{m1} e^{j(\omega t + \theta_1)} + V_{m2} e^{(\omega t + j\theta_2)} \right] \end{split}$$

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Now consider addition of the phasors corresponding to $v_1(t)$ and $v_2(t)$.

$$V = V_1 + V_2$$

= $V_{m1}e^{j\theta_1} + V_{m2}e^{j\theta_2}$

In the time domain, ${f V}$ corresponds to $ilde{v}(t)$, with

$$\begin{split} \tilde{v}(t) &= Re \left[\mathbf{V} e^{j\omega t} \right] \\ &= Re \left[\left(V_{m1} e^{j\theta_1} + V_{m2} e^{j\theta_2} \right) e^{j\omega t} \right] \\ &= Re \left[\left(V_{m1} e^{j(\omega t + \theta_1)} + V_{m2} e^{(\omega t + j\theta_2)} \right) \right] \\ &= V_{m1} \cos \left(\omega t + \theta_1 \right) + V_{m2} \cos \left(\omega t + \theta_2 \right) \end{split}$$

Consider addition of two sinusoidal quantities:

$$v(t) = v_1(t) + v_2(t) = V_{m1} \cos(\omega t + \theta_1) + V_{m2} \cos(\omega t + \theta_2)$$

Now consider addition of the phasors corresponding to $v_1(t)$ and $v_2(t)$.

$$V = V_1 + V_2$$

= $V_{m1}e^{j\theta_1} + V_{m2}e^{j\theta_2}$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with

$$\begin{split} \tilde{v}(t) &= Re \left[\mathbf{V} e^{j\omega t} \right] \\ &= Re \left[\left(V_{m1} e^{j\theta_1} + V_{m2} e^{j\theta_2} \right) e^{j\omega t} \right] \\ &= Re \left[\left(V_{m1} e^{j(\omega t + \theta_1)} + V_{m2} e^{(\omega t + j\theta_2)} \right) \right] \\ &= V_{m1} \cos (\omega t + \theta_1) + V_{m2} \cos (\omega t + \theta_2) \end{split}$$

which is the same as v(t).

* Addition of sinusoidal quantities in the time domain can be replaced by addition of the corresponding phasors in the sinusoidal steady state.

- * Addition of sinusoidal quantities in the time domain can be replaced by addition of the corresponding phasors in the sinusoidal steady state.
- * The KCL and KVL equations, $\sum_i i_k(t) = 0 \text{ at a node, and} \\ \sum_i v_k(t) = 0 \text{ in a loop,} \\ \text{amount to addition of sinusoidal quantities and can therefore be replaced by the corresponding phasor equations,} \\ \sum_i \mathbf{I}_k = \mathbf{0} \text{ at a node, and} \\ \sum_i \mathbf{V}_k = \mathbf{0} \text{ in a loop.}$

Let $i(t) = I_m \cos(\omega t + \theta)$.

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.
 $v(t) = R i(t)$

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.
 $v(t) = R i(t)$
 $= R I_m \cos(\omega t + \theta)$

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.
 $v(t) = R i(t)$
 $= R I_m \cos(\omega t + \theta)$
 $\equiv V_m \cos(\omega t + \theta)$,

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.
 $v(t) = R i(t)$
 $= R I_m \cos(\omega t + \theta)$
 $\equiv V_m \cos(\omega t + \theta)$,
which can be rewritten as,
 $Re \left[V_m e^{i(\omega t + \theta)} \right] = Re \left[R I_m e^{i(\omega t + \theta)} \right]$,

Let $i(t) = I_m \cos(\omega t + \theta)$.

$$\begin{split} v(t) &= R \, i(t) \\ &= R \, I_m \cos (\omega t + \theta) \\ &\equiv V_m \cos (\omega t + \theta), \\ \text{which can be rewritten as,} \\ Re \left[V_m \, e^{j(\omega t + \theta)} \right] &= Re \left[R \, I_m \, e^{j(\omega t + \theta)} \right], \\ \text{i.e., } Re \left[V_m \, e^{j\theta} \, e^{j\omega t} \right] &= R \times Re \left[I_m \, e^{j\theta} \, e^{j\omega t} \right], \end{split}$$

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
. $v(t) = R i(t)$ $= R I_m \cos(\omega t + \theta)$ $\equiv V_m \cos(\omega t + \theta)$, which can be rewritten as, $Re \left[V_m e^{j(\omega t + \theta)}\right] = Re \left[R I_m e^{j(\omega t + \theta)}\right]$, i.e., $Re \left[V_m e^{j\theta} e^{j\omega t}\right] = R \times Re \left[I_m e^{j\theta} e^{j\omega t}\right]$, corresponding to the phasor relationship, $\mathbf{V} = R \mathbf{I}$.

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
. $v(t) = R i(t)$ $= R I_m \cos(\omega t + \theta)$ $\equiv V_m \cos(\omega t + \theta)$, which can be rewritten as, $Re \left[V_m e^{i(\omega t + \theta)}\right] = Re \left[R I_m e^{i(\omega t + \theta)}\right]$, i.e., $Re \left[V_m e^{j\theta} e^{j\omega t}\right] = R \times Re \left[I_m e^{j\theta} e^{j\omega t}\right]$, corresponding to the phasor relationship, $\mathbf{V} = R \mathbf{I}$.

Thus, the *impedance* of a resistor, defined as, $\mathbf{Z} = \mathbf{V}/\mathbf{I}$, is

$$\mathbf{Z} = R + j \, 0$$

Let $v(t) = V_m \cos(\omega t + \theta)$.

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
.

$$i(t) = C \frac{dv}{dt} = -C \omega V_m \sin(\omega t + \theta).$$

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
.

$$i(t) = C \frac{dv}{dt} = -C \omega V_m \sin(\omega t + \theta).$$

Using the identity, $\cos{(\phi+\pi/2)}=-\sin{\phi}$, we get

$$i(t) = C \omega V_m \cos(\omega t + \theta + \pi/2).$$

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
.

$$i(t) = C \frac{dv}{dt} = -C \omega V_m \sin(\omega t + \theta).$$

Using the identity, $\cos(\phi + \pi/2) = -\sin \phi$, we get

$$i(t) = C \omega V_m \cos(\omega t + \theta + \pi/2).$$

In terms of phasors, $\mathbf{V} = V_m \underline{\mathcal{I}}, \ \mathbf{I} = \omega C V_m \underline{\mathcal{I}}(\theta + \pi/2)$.

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
.

$$i(t) = C \frac{dv}{dt} = -C \omega V_m \sin(\omega t + \theta).$$

Using the identity, $\cos(\phi + \pi/2) = -\sin \phi$, we get

$$i(t) = C \omega V_m \cos(\omega t + \theta + \pi/2).$$

In terms of phasors, $\mathbf{V} = V_m \angle \theta$, $\mathbf{I} = \omega C V_m \angle (\theta + \pi/2)$.

I can be rewritten as,

$$\mathbf{I} = \omega \, C V_m \, \mathrm{e}^{\mathrm{j} (\theta + \pi/2)} = \omega \, C V_m \, \mathrm{e}^{\mathrm{j} \theta} \, \, \mathrm{e}^{\mathrm{j} \pi/2} = \mathrm{j} \omega \, C \, \left(V_m \, \mathrm{e}^{\mathrm{j} \theta} \right) = \mathrm{j} \omega \, C \, \mathbf{V}$$

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
.

$$i(t) = C \frac{dv}{dt} = -C \omega V_m \sin(\omega t + \theta).$$

Using the identity, $\cos(\phi + \pi/2) = -\sin \phi$, we get

$$i(t) = C \omega V_m \cos(\omega t + \theta + \pi/2).$$

In terms of phasors, $\mathbf{V} = V_m \angle \theta$, $\mathbf{I} = \omega C V_m \angle (\theta + \pi/2)$.

I can be rewritten as,

$$\mathbf{I} = \omega C V_m e^{j(\theta + \pi/2)} = \omega C V_m e^{j\theta} e^{j\pi/2} = j\omega C \left(V_m e^{j\theta}\right) = j\omega C \mathbf{V}$$

Thus, the *impedance* of a capacitor, $\mathbf{Z} = \mathbf{V}/\mathbf{I}$, is $\mathbf{Z} = 1/(j\omega\,\mathcal{C})$,

and the *admittance* of a capacitor, $\mathbf{Y} = \mathbf{I}/\mathbf{V}$, is $\mathbf{Y} = j\omega C$.

Let $i(t) = I_m \cos(\omega t + \theta)$.

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.

$$v(t) = L \frac{di}{dt} = -L \omega I_m \sin(\omega t + \theta).$$

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.
$$v(t) = L \frac{di}{dt} = -L \omega I_m \sin(\omega t + \theta).$$
 Using the identity, $\cos(\phi + \pi/2) = -\sin \phi$, we get
$$v(t) = L \omega I_m \cos(\omega t + \theta + \pi/2).$$

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.

$$v(t) = L \frac{di}{dt} = -L \omega I_m \sin(\omega t + \theta).$$

Using the identity, $\cos{(\phi+\pi/2)}=-\sin{\phi}$, we get

$$v(t) = L \omega I_m \cos(\omega t + \theta + \pi/2).$$

In terms of phasors, $\mathbf{I} = I_m \underline{/\theta}$, $\mathbf{V} = \omega L I_m \underline{/(\theta + \pi/2)}$.

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.

$$v(t) = L \frac{di}{dt} = -L \omega I_m \sin(\omega t + \theta).$$

Using the identity, $\cos(\phi + \pi/2) = -\sin \phi$, we get

$$v(t) = L \omega I_m \cos(\omega t + \theta + \pi/2).$$

In terms of phasors, $\mathbf{I} = I_m / \theta$, $\mathbf{V} = \omega L I_m / (\theta + \pi/2)$.

V can be rewritten as,

$$\mathbf{V} = \omega L I_m \, \mathrm{e}^{\mathrm{j}(\theta + \pi/2)} = \omega L I_m \, \mathrm{e}^{\mathrm{j}\theta} \, \mathrm{e}^{\mathrm{j}\pi/2} = \mathrm{j}\omega L \, \left(I_m \, \mathrm{e}^{\mathrm{j}\theta}\right) = \mathrm{j}\omega L \, \mathbf{I}$$

Let
$$i(t) = I_m \cos(\omega t + \theta)$$
.

$$v(t) = L \frac{di}{dt} = -L \omega I_m \sin(\omega t + \theta).$$

Using the identity, $\cos(\phi + \pi/2) = -\sin \phi$, we get

$$v(t) = L \omega I_m \cos(\omega t + \theta + \pi/2).$$

In terms of phasors, $\mathbf{I} = I_m / \theta$, $\mathbf{V} = \omega L I_m / (\theta + \pi / 2)$.

V can be rewritten as,

$$\mathbf{V} = \omega L I_{m} e^{j(\theta + \pi/2)} = \omega L I_{m} e^{j\theta} e^{j\pi/2} = j\omega L \left(I_{m} e^{j\theta}\right) = j\omega L \mathbf{I}$$

Thus, the *impedance* of an indcutor, $\mathbf{Z} = \mathbf{V}/\mathbf{I}$, is $\mathbf{Z} = j\omega L$,

and the *admittance* of an inductor, $\mathbf{Y} = \mathbf{I}/\mathbf{V}$, is $\mathbf{Y} = 1/(j\omega L)$.

Sources

Sources

* An independent sinusoidal current source, $i_s(t) = I_m \cos{(\omega t + \theta)}$, can be represented by the phasor $I_m \angle \theta$ (i.e., a constant complex number).

- * An independent sinusoidal current source, $i_s(t) = I_m \cos(\omega t + \theta)$, can be represented by the phasor $I_m \angle \theta$ (i.e., a constant complex number).
- * An independent sinusoidal voltage source, $v_s(t) = V_m \cos{(\omega t + \theta)}$, can be represented by the phasor $V_m \angle \theta$ (i.e., a constant complex number).

Sources

- * An independent sinusoidal current source, $i_s(t) = I_m \cos(\omega t + \theta)$, can be represented by the phasor $I_m \angle \theta$ (i.e., a constant complex number).
- * An independent sinusoidal voltage source, $v_s(t) = V_m \cos{(\omega t + \theta)}$, can be represented by the phasor $V_m \angle \theta$ (i.e., a constant complex number).
- * Dependent (linear) sources can be treated in the sinusoidal steady state in the same manner as a resistor, i.e., by the corresponding phasor relationship. For example, for a CCVS, we have, $v(t) = r \, i_c(t)$ in the time domain. $\mathbf{V} = r \, \mathbf{I_c}$ in the frequency domain.

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_k(t) = 0$ and $\sum v_k(t) = 0$ can be written as $\sum \mathbf{I}_k = \mathbf{0}$ and $\sum \mathbf{V}_k = \mathbf{0}$ in the frequency domain.

- * The time-domain KCL and KVL equations $\sum i_k(t) = 0$ and $\sum v_k(t) = 0$ can be written as $\sum \mathbf{I}_k = \mathbf{0}$ and $\sum \mathbf{V}_k = \mathbf{0}$ in the frequency domain.
- * Resistors, capacitors, and inductors can be described by $\mathbf{V} = \mathbf{Z} \mathbf{I}$ in the frequency domain, which is similar to $V = R \mathbf{I}$ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

- * The time-domain KCL and KVL equations $\sum i_k(t) = 0$ and $\sum v_k(t) = 0$ can be written as $\sum \mathbf{I}_k = \mathbf{0}$ and $\sum \mathbf{V}_k = \mathbf{0}$ in the frequency domain.
- * Resistors, capacitors, and inductors can be described by V = ZI in the frequency domain, which is similar to V = RI in DC conditions (except that we are dealing with complex numbers in the frequency domain).
- * An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., $V_s = constant$ (a complex number).

- * The time-domain KCL and KVL equations $\sum i_k(t) = 0$ and $\sum v_k(t) = 0$ can be written as $\sum \mathbf{I}_k = \mathbf{0}$ and $\sum \mathbf{V}_k = \mathbf{0}$ in the frequency domain.
- * Resistors, capacitors, and inductors can be described by V = ZI in the frequency domain, which is similar to V = RI in DC conditions (except that we are dealing with complex numbers in the frequency domain).
- An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., V_s = constant (a complex number).
- * For dependent sources, the time-domain relationships such as $i(t) = \beta i_c(t)$ translate to $I = \beta I_c$ in the frequency domain.

- * The time-domain KCL and KVL equations $\sum i_k(t) = 0$ and $\sum v_k(t) = 0$ can be written as $\sum \mathbf{I}_k = \mathbf{0}$ and $\sum \mathbf{V}_k = \mathbf{0}$ in the frequency domain.
- * Resistors, capacitors, and inductors can be described by V = ZI in the frequency domain, which is similar to V = RI in DC conditions (except that we are dealing with complex numbers in the frequency domain).
- An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., V_s = constant (a complex number).
- * For dependent sources, the time-domain relationships such as $i(t) = \beta i_c(t)$ translate to $I = \beta I_c$ in the frequency domain.
- Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with independent and dependent sources, and resistors.

- * The time-domain KCL and KVL equations $\sum i_k(t) = 0$ and $\sum v_k(t) = 0$ can be written as $\sum \mathbf{I}_k = \mathbf{0}$ and $\sum \mathbf{V}_k = \mathbf{0}$ in the frequency domain.
- * Resistors, capacitors, and inductors can be described by V = ZI in the frequency domain, which is similar to V = RI in DC conditions (except that we are dealing with complex numbers in the frequency domain).
- An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., V_s = constant (a complex number).
- * For dependent sources, the time-domain relationships such as $i(t) = \beta i_c(t)$ translate to $I = \beta I_c$ in the frequency domain.
- Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with independent and dependent sources, and resistors.
- Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin's and Norton's theorems can be directly applied to circuits in the sinusoidal steady state.

RL circuit

$$\begin{split} \mathbf{I} &= \frac{V_m \angle \mathbf{0}}{R + j\omega L} \equiv I_m \angle (-\theta), \\ \text{where } I_m &= \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \text{ and } \theta = \tan^{-1}(\omega L/R). \end{split}$$

$$\mathbf{I} = rac{V_m \angle 0}{R + j\omega L} \equiv I_m \angle (- heta),$$
 where $I_m = rac{V_m}{\sqrt{R^2 + \omega^2 L^2}}$, and $heta = an^{-1}(\omega L/R)$.

In the time domain, $i(t)=I_m\cos{(\omega t-\theta)}$, which lags the source voltage since the peak (or zero) of i(t) occurs $t=\theta/\omega$ seconds after that of the source voltage.

$$\mathbf{I} = rac{V_m \angle 0}{R + j\omega L} \equiv I_m \angle (- heta),$$
 where $I_m = rac{V_m}{\sqrt{R^2 + \omega^2 L^2}}$, and $heta = an^{-1}(\omega L/R)$.

In the time domain, $i(t)=I_m\cos{(\omega t-\theta)}$, which lags the source voltage since the peak (or zero) of i(t) occurs $t=\theta/\omega$ seconds after that of the source voltage.

For $R=1\,\Omega$, $L=1.6\,\mathrm{mH}$, $f=50\,\mathrm{Hz}$, $\theta=26.6^\circ$, $t_{\mathrm{lag}}=1.48\,\mathrm{ms}$. (SEQUEL file: ee101_rl_ac_1.sqproj)

$$\mathbf{I} = rac{V_m \angle 0}{R + j\omega L} \equiv I_m \angle (- heta),$$
 where $I_m = rac{V_m}{\sqrt{R^2 + \omega^2 L^2}}$, and $heta = an^{-1}(\omega L/R)$.

In the time domain, $i(t)=I_m\cos{(\omega t-\theta)}$, which lags the source voltage since the peak (or zero) of i(t) occurs $t=\theta/\omega$ seconds after that of the source voltage.

For
$$R=1\,\Omega$$
, $L=1.6\,\mathrm{mH}$, $f=50\,\mathrm{Hz}$, $\theta=26.6^\circ$, $t_{\mathrm{lag}}=1.48\,\mathrm{ms}$. (SEQUEL file: ee101_rl_ac_1.sqproj)

$$\begin{split} \mathbf{I} &= \frac{V_m \angle \mathbf{0}}{R + j\omega L} \equiv I_m \angle (-\theta), \\ \text{where } I_m &= \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \text{ and } \theta = \tan^{-1}(\omega L/R). \end{split}$$

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + j\omega L} \equiv I_m \angle (-\theta), \\ \text{where } I_m &= \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \text{ and } \theta = \tan^{-1}(\omega L/R). \\ \mathbf{V}_R &= \mathbf{I} \times R = R \, I_m \, \angle (-\theta), \\ \mathbf{V}_L &= \mathbf{I} \times j\omega L = \omega I_m L \, \angle (-\theta + \pi/2), \end{split}$$

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + j\omega L} \equiv I_m \angle (-\theta), \\ \text{where } I_m &= \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \text{ and } \theta = \tan^{-1}(\omega L/R). \end{split}$$

$$\mathbf{V}_{R} = \mathbf{I} \times R = R I_{m} \angle (-\theta)$$
,
 $\mathbf{V}_{L} = \mathbf{I} \times j\omega L = \omega I_{m} L \angle (-\theta + \pi/2)$,

The KVL equation, $V_s = V_R + V_L$, can be represented in the complex plane by a "phasor diagram."

$$\begin{split} \mathbf{I} &= \frac{V_m \angle \mathbf{0}}{R + j\omega L} \equiv I_m \angle (-\theta), \\ \text{where } I_m &= \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \text{ and } \theta = \tan^{-1}(\omega L/R). \end{split}$$

$$\mathbf{V}_{R} = \mathbf{I} \times R = R I_{m} \angle (-\theta)$$
,
 $\mathbf{V}_{L} = \mathbf{I} \times j\omega L = \omega I_{m} L \angle (-\theta + \pi/2)$,

The KVL equation, $V_s = V_R + V_L$, can be represented in the complex plane by a "phasor diagram."

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + j\omega L} \equiv I_m \angle (-\theta), \\ \text{where } I_m &= \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \text{ and } \theta = \tan^{-1}(\omega L/R). \end{split}$$

$$\mathbf{V}_{R} = \mathbf{I} \times R = R I_{m} \angle (-\theta),$$

 $\mathbf{V}_{L} = \mathbf{I} \times j\omega L = \omega I_{m} L \angle (-\theta + \pi/2),$

The KVL equation, $\mathbf{V_s} = \mathbf{V_R} + \mathbf{V_L}$, can be represented in the complex plane by a "phasor diagram."

If
$$R \gg |j\omega L|$$
, $\theta \to 0$, $|\mathbf{V_R}| \simeq |\mathbf{V_s}| = V_m$.
If $R \ll |j\omega L|$, $\theta \to \pi/2$, $|\mathbf{V_L}| \simeq |\mathbf{V_s}| = V_m$.

RC circuit

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

In the time domain, $i(t)=I_m\cos(\omega t+\theta)$, which leads the source voltage since the peak (or zero) of i(t) occurs $t=\theta/\omega$ seconds before that of the source voltage.

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

In the time domain, $i(t) = I_m \cos(\omega t + \theta)$, which leads the source voltage since the peak (or zero) of i(t) occurs $t = \theta/\omega$ seconds before that of the source voltage.

For $R=1\,\Omega$, $L=5.3\,\mathrm{mF}$, $f=50\,\mathrm{Hz}$, $\theta=31^\circ$, $t_{\mathrm{lead}}=1.72\,\mathrm{ms}$. (SEQUEL file: ee101_rc_ac_1.sqproj)

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

In the time domain, $i(t) = I_m \cos(\omega t + \theta)$, which leads the source voltage since the peak (or zero) of i(t) occurs $t = \theta/\omega$ seconds before that of the source voltage.

For $R=1\,\Omega$, $L=5.3\,\mathrm{mF}$, $f=50\,\mathrm{Hz}$, $\theta=31^\circ$, $t_{\mathrm{lead}}=1.72\,\mathrm{ms}$. (SEQUEL file: ee101_rc_ac_1.sqproj)

RC circuit

$$\begin{array}{c|c} + & V_R & - \\ \hline & + & R & \hline \\ V_m \angle 0^\circ & V_S & \\ - & & 1/j\omega C & - \end{array}$$

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

RC circuit

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega \, C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \\ \mathbf{V}_{\mathbf{R}} &= \mathbf{I} \times R = R \, I_m \angle \theta, \\ \mathbf{V}_{\mathbf{C}} &= \mathbf{I} \times (1/j\omega \, C) = (I_m/\omega \, C) \angle (\theta - \pi/2), \end{split}$$

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega \, C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

$$\mathbf{V}_{R} = \mathbf{I} \times R = R I_{m} \angle \theta$$
,
 $\mathbf{V}_{C} = \mathbf{I} \times (1/j\omega C) = (I_{m}/\omega C) \angle (\theta - \pi/2)$,

The KVL equation, $\mathbf{V_s} = \mathbf{V_R} + \mathbf{V_C}$, can be represented in the complex plane by a "phasor diagram."

RC circuit

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R+1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega \, C V_m}{\sqrt{1+(\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

$$\mathbf{V}_{\mathbf{R}}=\mathbf{I}\times R=R\,I_{m}\,\angle\theta\,,$$

$$V_C = I \times (1/j\omega C) = (I_m/\omega C) \angle (\theta - \pi/2)$$
,

The KVL equation, $\mathbf{V_s} = \mathbf{V_R} + \mathbf{V_C}$, can be represented in the complex plane by a "phasor diagram."

RC circuit

$$\begin{split} \mathbf{I} &= \frac{V_m \angle 0}{R + 1/j\omega C} \equiv I_m \angle \theta, \\ \text{where } I_m &= \frac{\omega C V_m}{\sqrt{1 + (\omega R C)^2}}, \text{ and } \theta = \pi/2 - \tan^{-1}(\omega R C). \end{split}$$

$$\mathbf{V}_{\mathsf{R}}=\mathbf{I}\times R=R\,I_{\mathsf{m}}\,\angle\theta\,,$$

$$\mathbf{V}_{\mathbf{C}} = \mathbf{I} \times (1/j\omega C) = (I_m/\omega C) \angle (\theta - \pi/2),$$

The KVL equation, $\mathbf{V_s} = \mathbf{V_R} + \mathbf{V_C}$, can be represented in the complex plane by a "phasor diagram."

If
$$R\gg |1/j\omega C|$$
, $heta o 0$, $|{f V}_{f R}|\simeq |{f V}_{f s}|=V_m$.

If
$$R \ll |1/j\omega C|, \ heta
ightarrow \pi/2, \ |\mathbf{V_C}| \simeq |\mathbf{V_s}| = V_m.$$

$$\begin{array}{c|c} Z_1 = j \times 100 \times 0.25 = j\,25\,\Omega \\ \\ Z_2 = -j/(100 \times 100 \times 10^{-6}) = -j\,100\,\Omega \\ \\ Z = Z_1 + Z_2 = -j\,75\,\Omega \end{array}$$

$$\begin{split} Z_1 &= j \times 100 \times 0.25 = j \, 25 \, \Omega \\ Z_2 &= -j/(100 \times 100 \times 10^{-6}) = -j \, 100 \, \Omega \\ Z &= Z_1 + Z_2 = -j \, 75 \, \Omega \end{split}$$

$$\begin{split} Z_1 &= j \times 100 \times 0.25 = j \, 25 \, \Omega \\ Z_2 &= -j/(100 \times 100 \times 10^{-6}) = -j \, 100 \, \Omega \\ Z &= Z_1 + Z_2 = -j \, 75 \, \Omega \end{split}$$

$$\begin{split} Z &= \frac{Z_1 Z_2}{Z_1 + Z_2} \\ &= \frac{(j \, 25) \times (-j \, 100)}{j \, 25 - j \, 100} \\ &= \frac{25 \times 100}{-j \, 75} \\ &= j \, 33.3 \, \Omega \end{split}$$

Impedance example

Obtain Z in polar form.

Impedance example

Obtain Z in polar form.

Method 1:

$$\begin{split} Z &= \frac{10 \times j10}{10 + j10} = \frac{j10}{1 + j} \\ &= \frac{j10}{1 + j} \times \frac{1 - j}{1 - j} \\ &= \frac{10 + j10}{2} = 5 + j5\Omega \end{split}$$

Convert to polar form \to Z $= 7.07 \, \angle \, 45^{\circ} \, \Omega$

Impedance example

Obtain Z in polar form.

Method 1:

$$\begin{split} Z &= \frac{10 \times j10}{10 + j10} = \frac{j10}{1 + j} \\ &= \frac{j10}{1 + j} \times \frac{1 - j}{1 - j} \\ &= \frac{10 + j10}{2} = 5 + j5\Omega \end{split}$$

Convert to polar form \to Z $= 7.07 \, \angle \, 45^{\circ} \, \Omega$

Method 2:

$$\begin{split} Z &= \frac{10 \times j10}{10 + j10} = \frac{100 \angle \pi/2}{10 \sqrt{2} \angle \pi/4} \\ &= 5 \sqrt{2} \angle (\pi/2 - \pi/4) = 7.07 \angle 45^{\circ} \Omega \end{split}$$

Circuit example

Circuit example

Circuit example

$$\mathbf{Z}_3 = \frac{1}{j \times 2\pi \times 50 \times 2 \times 10^{-3}} = -j \, 1.6 \, \, \Omega$$

$$Z3 = {1 \over j \times 2\pi \times 50 \times 2 \times 10^{-3}} = -j 1.6 Ω$$
 $Z4 = 2\pi \times 50 \times 15 \times 10^{-3} = j 4.7 Ω$

$$\begin{aligned} \mathbf{Z}_3 &= \frac{1}{j \times 2\pi \times 50 \times 2 \times 10^{-3}} = -j \, 1.6 \, \Omega \\ \mathbf{Z}_4 &= 2\pi \times 50 \times 15 \times 10^{-3} = j \, 4.7 \, \Omega \\ \mathbf{Z}_{EQ} &= \mathbf{Z}_1 + \mathbf{Z}_3 \parallel (\mathbf{Z}_2 + \mathbf{Z}_4) \\ &= 2 + (-j \, 1.6) \parallel (10 + j \, 4.7) = 2 + \frac{(-j \, 1.6) \times (10 + j \, 4.7)}{-j \, 1.6 + 10 + j \, 4.7} \end{aligned}$$

$$\begin{split} \mathbf{Z}_3 &= \frac{1}{j \times 2\pi \times 50 \times 2 \times 10^{-3}} = -j \, 1.6 \, \Omega \\ \mathbf{Z}_4 &= 2\pi \times 50 \times 15 \times 10^{-3} = j \, 4.7 \, \Omega \\ \mathbf{Z}_{EQ} &= \mathbf{Z}_1 + \mathbf{Z}_3 \parallel (\mathbf{Z}_2 + \mathbf{Z}_4) \\ &= 2 + (-j \, 1.6) \parallel (10 + j \, 4.7) = 2 + \frac{(-j \, 1.6) \times (10 + j \, 4.7)}{-j \, 1.6 + 10 + j \, 4.7} \\ &= 2 + \frac{1.6 \angle (-90^\circ) \times 11.05 \angle (25.2^\circ)}{10.47 \angle (17.2^\circ)} = 2 + \frac{17.7 \angle (-64.8^\circ)}{10.47 \angle (17.2^\circ)} \end{split}$$

$$\mathbf{Z}_{3} = \frac{1}{j \times 2\pi \times 50 \times 2 \times 10^{-3}} = -j \, 1.6 \, \Omega$$

$$\mathbf{Z}_{4} = 2\pi \times 50 \times 15 \times 10^{-3} = j \, 4.7 \, \Omega$$

$$\mathbf{Z}_{EQ} = \mathbf{Z}_{1} + \mathbf{Z}_{3} \parallel (\mathbf{Z}_{2} + \mathbf{Z}_{4})$$

$$= 2 + (-j \, 1.6) \parallel (10 + j \, 4.7) = 2 + \frac{(-j \, 1.6) \times (10 + j \, 4.7)}{-j \, 1.6 + 10 + j \, 4.7}$$

$$= 2 + \frac{1.6 \angle (-90^{\circ}) \times 11.05 \angle (25.2^{\circ})}{10.47 \angle (17.2^{\circ})} = 2 + \frac{17.7 \angle (-64.8^{\circ})}{10.47 \angle (17.2^{\circ})}$$

$$= 2 + 1.69 \angle (-82^{\circ}) = 2 + (0.235 - j \, 1.67)$$

$$\begin{split} \mathbf{Z}_3 &= \frac{1}{j \times 2\pi \times 50 \times 2 \times 10^{-3}} = -j \, 1.6 \, \Omega \\ \mathbf{Z}_4 &= 2\pi \times 50 \times 15 \times 10^{-3} = j \, 4.7 \, \Omega \\ \mathbf{Z}_{EQ} &= \mathbf{Z}_1 + \mathbf{Z}_3 \parallel (\mathbf{Z}_2 + \mathbf{Z}_4) \\ &= 2 + (-j \, 1.6) \parallel (10 + j \, 4.7) = 2 + \frac{(-j \, 1.6) \times (10 + j \, 4.7)}{-j \, 1.6 + 10 + j \, 4.7} \\ &= 2 + \frac{1.6 \angle (-90^\circ) \times 11.05 \angle (25.2^\circ)}{10.47 \angle (17.2^\circ)} = 2 + \frac{17.7 \angle (-64.8^\circ)}{10.47 \angle (17.2^\circ)} \\ &= 2 + 1.69 \angle (-82^\circ) = 2 + (0.235 - j \, 1.67) \\ &= 2.235 - j \, 1.67 = 2.79 \angle (-36.8^\circ) \, \Omega \end{split}$$

$$I_s = \frac{\textbf{V}_s}{\textbf{Z}_{EQ}} = \frac{10 \angle (0^\circ)}{2.79 \angle (-36.8^\circ)} = 3.58 \angle (36.8^\circ) \; \textit{A}$$

$$I_{s} = \frac{V_{s}}{Z_{EQ}} = \frac{10 \angle (0^{\circ})}{2.79 \angle (-36.8^{\circ})} = 3.58 \angle (36.8^{\circ}) A$$

$$I_{C} = \frac{(Z_{2} + Z_{4})}{Z_{3} + (Z_{2} + Z_{4})} \times I_{s} = 3.79 \angle (44.6^{\circ}) A$$

$$I_{s} = \frac{V_{s}}{Z_{EQ}} = \frac{10 \angle (0^{\circ})}{2.79 \angle (-36.8^{\circ})} = 3.58 \angle (36.8^{\circ}) A$$

$$I_{C} = \frac{(Z_{2} + Z_{4})}{Z_{3} + (Z_{2} + Z_{4})} \times I_{s} = 3.79 \angle (44.6^{\circ}) A$$

$$I_{L} = \frac{Z_{3}}{Z_{3} + (Z_{2} + Z_{4})} \times I_{s} = 0.546 \angle (-70.6^{\circ}) A$$

$$I_{s} = \frac{V_{s}}{Z_{EQ}} = \frac{10 \angle (0^{\circ})}{2.79 \angle (-36.8^{\circ})} = 3.58 \angle (36.8^{\circ}) A$$

$$I_{C} = \frac{(Z_{2} + Z_{4})}{Z_{3} + (Z_{2} + Z_{4})} \times I_{s} = 3.79 \angle (44.6^{\circ}) A$$

$$I_{L} = \frac{Z_{3}}{Z_{3} + (Z_{2} + Z_{4})} \times I_{s} = 0.546 \angle (-70.6^{\circ}) A$$

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
, i.e., $\mathbf{V} = V_m \angle \theta$, $i(t) = I_m \cos(\omega t + \phi)$, i.e., $\mathbf{I} = I_m \angle \phi$.

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
, i.e., $\mathbf{V} = V_m \angle \theta$, $i(t) = I_m \cos(\omega t + \phi)$, i.e., $\mathbf{I} = I_m \angle \phi$.

The *instantaneous* power absorbed by **Z** is,

$$P(t) = v(t) i(t)$$

$$= V_m I_m \cos(\omega t + \theta) \cos(\omega t + \phi)$$

$$= \frac{1}{2} V_m I_m \left[\cos(2\omega t + \theta + \phi) + \cos(\theta - \phi)\right]$$
(1)

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
, i.e., $\mathbf{V} = V_m \angle \theta$, $i(t) = I_m \cos(\omega t + \phi)$, i.e., $\mathbf{I} = I_m \angle \phi$.

The instantaneous power absorbed by **Z** is,

$$P(t) = v(t) i(t)$$

$$= V_m I_m \cos(\omega t + \theta) \cos(\omega t + \phi)$$

$$= \frac{1}{2} V_m I_m \left[\cos(2\omega t + \theta + \phi) + \cos(\theta - \phi)\right]$$
(1)

The average power absorbed by ${\bf Z}$ is

$$P=rac{1}{T}\int_0^T P(t)\,dt$$
, where $T=2\pi/\omega$.

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
, i.e., $\mathbf{V} = V_m \angle \theta$, $i(t) = I_m \cos(\omega t + \phi)$, i.e., $\mathbf{I} = I_m \angle \phi$.

The *instantaneous* power absorbed by **Z** is,

$$P(t) = v(t) i(t)$$

$$= V_m I_m \cos(\omega t + \theta) \cos(\omega t + \phi)$$

$$= \frac{1}{2} V_m I_m \left[\cos(2\omega t + \theta + \phi) + \cos(\theta - \phi)\right]$$
(1)

The average power absorbed by Z is

$$P = \frac{1}{T} \int_0^T P(t) dt$$
, where $T = 2\pi/\omega$.

The first term in Eq. (1) has an average value of zero and does not contribute to P. Therefore,

Let
$$v(t) = V_m \cos(\omega t + \theta)$$
, i.e., $\mathbf{V} = V_m \angle \theta$, $i(t) = I_m \cos(\omega t + \phi)$, i.e., $\mathbf{I} = I_m \angle \phi$.

The *instantaneous* power absorbed by **Z** is,

$$P(t) = v(t) i(t)$$

$$= V_m I_m \cos(\omega t + \theta) \cos(\omega t + \phi)$$

$$= \frac{1}{2} V_m I_m \left[\cos(2\omega t + \theta + \phi) + \cos(\theta - \phi)\right]$$
(1)

The average power absorbed by Z is

$$P = \frac{1}{T} \int_0^T P(t) dt$$
, where $T = 2\pi/\omega$.

The first term in Eq. (1) has an average value of zero and does not contribute to P. Therefore,

General formula:

$$\begin{split} \mathbf{V} &= \mathbf{V_m} \, \angle \, \theta \,, \\ \mathbf{I} &= \mathbf{I_m} \, \angle \, \phi \\ \mathbf{P} &= \frac{1}{2} \, \mathbf{V_m} \, \mathbf{I_m} \cos \left(\theta - \phi \right) \end{split}$$

+ V -	General formula: $\begin{aligned} \mathbf{V} &= \mathbf{V_m} \angle \boldsymbol{\theta} , \mathbf{I} = \mathbf{I_m} \angle \boldsymbol{\phi} \\ \mathbf{P} &= \frac{1}{2} \mathbf{V_m} \mathbf{I_m} \cos \left(\theta - \boldsymbol{\phi} \right) \end{aligned}$
+ V -	$\begin{aligned} \mathbf{V} &= \mathbf{R} \mathbf{I} \\ \text{For } \mathbf{I} &= \mathbf{I}_{\mathbf{M}} \angle \alpha, \ \mathbf{V} &= \mathbf{R} \mathbf{I}_{\mathbf{M}} \angle \alpha, \\ \mathbf{P} &= \frac{1}{2} \left(\mathbf{R} \mathbf{I}_{\mathbf{M}} \right) \mathbf{I}_{\mathbf{M}} \cos \left(\alpha - \alpha \right) = \frac{1}{2} \mathbf{I}_{\mathbf{M}}^2 \mathbf{R} = \frac{1}{2} \mathbf{V}_{\mathbf{M}}^2 / \mathbf{R} \end{aligned}$

+ V -	General formula: $\begin{aligned} \mathbf{V} &= \mathbf{V_m} \angle \boldsymbol{\theta} , \mathbf{I} = \mathbf{I_m} \angle \boldsymbol{\phi} \\ \mathbf{P} &= \frac{1}{2} \mathbf{V_m} \mathbf{I_m} \cos \left(\boldsymbol{\theta} - \boldsymbol{\phi} \right) \end{aligned}$
+ V -	$\begin{split} & V = RI \\ & \text{For } I = I_{m} \angle\alpha, \ V = RI_{m} \angle\alpha, \\ & P = \frac{1}{2} \left(RI_{m}\right)I_{m}\cos\left(\alpha - \alpha\right) = \frac{1}{2}I_{m}^{2}R = \frac{1}{2}V_{m}^{2}/R \end{split}$
+ V -	$\begin{split} V &= j \omega L I \\ For I &= I_M \angle \alpha, V = \omega L I_M \angle \left(\alpha + \pi/2\right), \\ P &= \frac{1}{2} V_M I_M cos \left[\left(\alpha + \pi/2\right) - \alpha \right] = 0 \end{split}$

Given: $I=2\, \angle\, 45^\circ\,$ A

Find the average power absorbed.

Given: I = 2 $\angle\,45^\circ\,$ A

Find the average power absorbed.

$\underline{\mathsf{Method}\ 1}:$

$$V = (50 + j25) \times 2 \angle 45^{\circ}$$

= 55.9 \(\angle 26.6^{\circ} \times 2 \angle 45^{\circ}
= 111.8 \(\angle (45^{\circ} + 26.6^{\circ}) \)

$$+$$
 \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{V} \mathbf{I} \mathbf{V} \mathbf{V}

Given: $I=2\, \angle\, 45^\circ\,$ A

Find the average power absorbed.

Method 1:

$$\begin{aligned} \mathbf{V} &= (50 + j25) \times 2 \angle 45^{\circ} \\ &= 55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ} \\ &= 111.8 \angle (45^{\circ} + 26.6^{\circ}) \\ P &= \frac{1}{2} \times 111.8 \times 2 \times \cos(26.6^{\circ}) = 100 \ W. \end{aligned}$$

$$+$$
 \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{V} \mathbf{V}

Given: $I = 2 \angle 45^{\circ} A$

Find the average power absorbed.

Method 1:

$$V = (50 + j25) \times 2 \angle 45^{\circ}$$

$$= 55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ}$$

$$= 111.8 \angle (45^{\circ} + 26.6^{\circ})$$

$$P = \frac{1}{2} \times 111.8 \times 2 \times \cos(26.6^{\circ}) = 100 \ W.$$

Method 2:

No average power is absorbed by the inductor.

$$\Rightarrow P = P_R$$
 (average power absorbed by R)

Given: $I=2\, \angle\, 45^\circ$ A

Find the average power absorbed.

Method 1:

$$V = (50 + j25) \times 2 \angle 45^{\circ}$$

$$= 55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ}$$

$$= 111.8 \angle (45^{\circ} + 26.6^{\circ})$$

$$P = \frac{1}{2} \times 111.8 \times 2 \times \cos(26.6^{\circ}) = 100 \ W.$$

Method 2:

No average power is absorbed by the inductor.

$$\Rightarrow P = P_R$$
 (average power absorbed by R)
$$= \frac{1}{2} I_m^2 R = \frac{1}{2} \times 2^2 \times 50$$

= 100 W.

Let
$$\mathbf{Z}_L = R_L + jX_L$$
, $\mathbf{Z}_{Th} = R_{Th} + jX_{Th}$, and $\mathbf{I} = I_m \angle \phi$.

Let
$$\mathbf{Z}_L = R_L + jX_L$$
, $\mathbf{Z}_{Th} = R_{Th} + jX_{Th}$, and $\mathbf{I} = I_m \angle \phi$.

The power absorbed by \mathbf{Z}_L is,

$$P = \frac{1}{2} I_m^2 R_L$$

$$= \frac{1}{2} \left| \frac{\mathbf{V}_{Th}}{\mathbf{Z}_{Th} + \mathbf{Z}_L} \right|^2 R_L$$

$$= \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2} R_L.$$

Let
$$\mathbf{Z}_L = R_L + jX_L$$
, $\mathbf{Z}_{Th} = R_{Th} + jX_{Th}$, and $\mathbf{I} = I_m \angle \phi$.

The power absorbed by \mathbf{Z}_L is,

$$P = \frac{1}{2} I_m^2 R_L$$

$$= \frac{1}{2} \left| \frac{\mathbf{V}_{Th}}{\mathbf{Z}_{Th} + \mathbf{Z}_L} \right|^2 R_L$$

$$= \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2} R_L.$$

For P to be maximum, $(X_{Th} + X_L)$ must be zero. $\Rightarrow X_L = -X_{Th}$.

Let
$$\mathbf{Z}_L = R_L + jX_L$$
, $\mathbf{Z}_{Th} = R_{Th} + jX_{Th}$, and $\mathbf{I} = I_m \angle \phi$.

The power absorbed by \mathbf{Z}_L is,

$$P = \frac{1}{2} I_m^2 R_L$$

$$= \frac{1}{2} \left| \frac{\mathbf{V}_{Th}}{\mathbf{Z}_{Th} + \mathbf{Z}_L} \right|^2 R_L$$

$$= \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2} R_L.$$

For P to be maximum, $(X_{Th} + X_L)$ must be zero. $\Rightarrow X_L = -X_{Th}$.

With $X_L = -X_{Th}$, we have,

$$P = \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2}{(R_{Th} + R_L)^2} R_L,$$

which is maximum for $R_L = R_{Th}$.

Let
$$\mathbf{Z}_L = R_L + jX_L$$
, $\mathbf{Z}_{Th} = R_{Th} + jX_{Th}$, and $\mathbf{I} = I_m \angle \phi$.

The power absorbed by \mathbf{Z}_L is,

$$P = \frac{1}{2} I_m^2 R_L$$

$$= \frac{1}{2} \left| \frac{\mathbf{V}_{Th}}{\mathbf{Z}_{Th} + \mathbf{Z}_L} \right|^2 R_L$$

$$= \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2} R_L.$$

For P to be maximum, $(X_{Th} + X_L)$ must be zero. $\Rightarrow X_L = -X_{Th}$.

With $X_L = -X_{Th}$, we have,

$$P = \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2}{(R_{Th} + R_L)^2} R_L$$
,

which is maximum for $R_L = R_{Th}$.

Therefore, for maximum power transfer to the load \mathbf{Z}_L , we need,

Maximum power transfer: example

Maximum power transfer: example

Maximum power transfer: example

$$\mathbf{Z}_{\mathit{Th}} = (-j\,6) \parallel (4+j\,3) = 5.76 - j\,1.68\,\Omega$$
 .

$${\bf Z}_{Th} = (-j\,6) \parallel (4+j\,3) = 5.76 - j\,1.68\,\Omega \,.$$
 For maximum power transfer, ${\bf Z}_L = {\bf Z}_{Th}^* = 5.76 + j\,1.68\,\Omega \equiv R_L + j\,X_L \,.$

$$\begin{split} & \mathbf{Z}_{Th} = (-j\,6) \parallel (4+j\,3) = 5.76 - j\,1.68\,\Omega \,. \\ & \text{For maximum power transfer, } \mathbf{Z}_L = \mathbf{Z}_{Th}^* = 5.76 + j\,1.68\,\Omega \equiv R_L + j\,X_L \,. \\ & \mathbf{V}_{Th} = 16\,\angle\,0^\circ \times \frac{-j\,6}{(4+j\,3) + (-j\,6)} = 19.2\,\angle(-53.13^\circ) \,. \end{split}$$

$${f Z}_{Th} = (-j\, 6) \parallel (4+j\, 3) = 5.76 - j\, 1.68\, \Omega$$
 . For maximum power transfer, ${f Z}_L = {f Z}_{Th}^* = 5.76 + j\, 1.68\, \Omega \equiv R_L + j\, X_L$. ${f V}_{Th} = 16\, \angle\, 0^\circ \times \frac{-j\, 6}{(4+j\, 3) + (-j\, 6)} = 19.2\, \angle (-53.13^\circ)$.

$$\mathbf{I} = \frac{\mathbf{V}_{\mathit{Th}}}{\mathbf{Z}_{\mathit{Th}} + \mathbf{Z}_{\mathit{L}}} = \frac{\mathbf{V}_{\mathit{Th}}}{2\,\mathit{R}_{\mathit{L}}}\,.$$

$$\mathbf{Z}_{Th} = (-j \, 6) \parallel (4 + j \, 3) = 5.76 - j \, 1.68 \, \Omega$$
.

For maximum power transfer, $\mathbf{Z}_L = \mathbf{Z}_{Th}^* = 5.76 + j\,1.68\,\Omega \equiv R_L + j\,X_L$.

$$\mathbf{V}_{Th} = 16 \angle 0^{\circ} \times \frac{-j 6}{(4+j 3) + (-j 6)} = 19.2 \angle (-53.13^{\circ}).$$

$$\mathbf{I} = \frac{\mathbf{V}_{Th}}{\mathbf{Z}_{Th} + \mathbf{Z}_L} = \frac{\mathbf{V}_{Th}}{2 R_L} \,.$$

$$P = \frac{1}{2} I_m^2 R_L = \frac{1}{2} \left(\frac{19.2}{2 R_I} \right)^2 \times R_L = \frac{1}{2} \frac{(19.2)^2}{4 R_I} = 8 W.$$

Consider a periodic current i(t) passing through R.

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

$$P_1 = rac{1}{T} \, \int_{t_0}^{t_0+T} \left[i(t)
ight]^2 R \, dt \, ,$$

where t_0 is some reference time (we will take t_0 to be 0).

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

$$P_1 = \frac{1}{T} \, \int_{t_0}^{t_0+T} \, [i(t)]^2 \, R \, dt \, ,$$

where t_0 is some reference time (we will take t_0 to be 0).

The average power absorbed by R in the DC case is,

$$P_2 = I_{eff}^2 R.$$

Consider a periodic current i(t) passing through R.

The average power absorbed by R is,

$$P_1 = \frac{1}{T} \int_{t_0}^{t_0+T} [i(t)]^2 R dt$$
,

where t_0 is some reference time (we will take t_0 to be 0).

The average power absorbed by R in the DC case is,

$$P_2 = I_{eff}^2 R$$
.

 $I_{\it eff}$, the effective value of i(t), is defined such that $P_1=P_2$, i.e.,

$$I_{\text{eff}}^2 R = \frac{1}{T} \int_0^T [i(t)]^2 R dt$$

$$I_{eff} = \sqrt{rac{1}{T} \int_0^T [i(t)]^2 dt}$$
.

$$I_{eff} = \sqrt{rac{1}{T} \int_0^T \left[i(t)
ight]^2 \, dt} \, .$$

 $l_{\it eff}$ is called the root-mean-square (rms) value of i(t) because of the operations (root, mean, and square) involved in its computation.

$$+$$
 $v(t)$ $+$ V_{eff} W_{eff} R U_{eff} R U_{ef

$$I_{\text{eff}} = \sqrt{\frac{1}{T} \, \int_0^T \left[i(t) \right]^2 \, dt} \, . \label{eff_leff}$$

 $l_{\rm eff}$ is called the root-mean-square (rms) value of i(t) because of the operations (root, mean, and square) involved in its computation.

If
$$i(t)$$
 is sinusoidal, i.e., $i(t) = I_m \cos(\omega t + \phi)$,

$$I_{eff} = \sqrt{\frac{1}{T} \int_0^T I_m^2 \cos^2(\omega t + \phi) dt} = I_m \sqrt{\frac{1}{T} \int_0^T \frac{1}{2} [1 + \cos(2\omega t + \phi)] dt}$$
$$= I_m \sqrt{\frac{1}{T} \frac{1}{2} T} = I_m / \sqrt{2}.$$

$$+$$
 $v(t)$ $+$ V_{eff} $i(t)$ R I_{eff} R constant v and i

$$I_{\text{eff}} = \sqrt{\frac{1}{T} \, \int_0^T \left[i(t) \right]^2 \, dt} \, . \label{eff_leff}$$

 $l_{\rm eff}$ is called the root-mean-square (rms) value of i(t) because of the operations (root, mean, and square) involved in its computation.

If i(t) is sinusoidal, i.e., $i(t) = I_m \cos(\omega t + \phi)$,

$$\begin{split} I_{eff} &= \sqrt{\frac{1}{T} \int_0^T I_m^2 \cos^2(\omega t + \phi) \, dt} = I_m \sqrt{\frac{1}{T} \int_0^T \frac{1}{2} \left[1 + \cos(2\omega t + \phi) \right] \, dt} \\ &= I_m \sqrt{\frac{1}{T} \frac{1}{2} T} = I_m / \sqrt{2} \, . \end{split}$$

Similarly, $V_{\it eff} = V_m/\sqrt{2}$.

$$+$$
 V $V = V_m \angle t$ $I = I_m \angle \phi$

The average ("real") power absorbed by Z is,

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta - \phi)$$
$$= V_{eff} I_{eff} \cos(\theta - \phi) \text{ (Watts)}$$

$$+$$
 V $V = V_m \angle t$ $I = I_m \angle \phi$

The average ("real") power absorbed by Z is,

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta - \phi)$$
$$= V_{eff} I_{eff} \cos(\theta - \phi) \text{ (Watts)}$$

$$+$$
 V $V = V_m \angle \theta$ $I = I_m \angle \phi$

The average ("real") power absorbed by Z is,

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta - \phi)$$
$$= V_{eff} I_{eff} \cos(\theta - \phi) \text{ (Watts)}$$

Power factor is defined as
$$P.F. = \frac{\text{Average power}}{\text{Apparent power}} = \cos(\theta - \phi).$$

$$+$$
 V $V = V_m \angle \theta$ $I = I_m \angle \phi$

The average ("real") power absorbed by Z is,

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta - \phi)$$
$$= V_{eff} I_{eff} \cos(\theta - \phi) \text{ (Watts)}$$

Power factor is defined as
$$P.F. = \frac{\text{Average power}}{\text{Apparent power}} = \cos(\theta - \phi).$$

$$(\theta - \phi) > 0$$
: $i(t)$ lags $v(t)$, the P. F. is called a *lagging* P. F. (inductive impedance)

$$+$$
 V $V = V_m \angle \theta$ $I = I_m \angle \phi$

The average ("real") power absorbed by Z is,

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta - \phi)$$
$$= V_{eff} I_{eff} \cos(\theta - \phi) \text{ (Watts)}$$

Power factor is defined as
$$P.F. = \frac{\text{Average power}}{\text{Apparent power}} = \cos(\theta - \phi).$$

$$(\theta - \phi) > 0$$
: $i(t)$ lags $v(t)$, the P. F. is called a *lagging* P. F. (inductive impedance)

$$(\theta - \phi) < 0$$
: $i(t)$ leads $v(t)$, the P. F. is called a *leading* P. F. (capacitive impedance)

1. Given: ${\bf V}=120\,{\it \angle}\,0^\circ$ V (rms), ${\bf I}=2\,{\it \angle}\,(-36.9^\circ)$ A (rms). Find $P_{app},$ P.F., and P.

1. Given: ${\bf V}=120\,\angle\,0^\circ$ V (rms), ${\bf I}=2\,\angle\,(-36.9^\circ)$ A (rms). Find $P_{app},$ P.F., and P.

$$P_{app} = 120 \times 2 = 240 \ V-A.$$

1. Given: ${\bf V}=120\,{\it \angle}\,0^\circ$ V (rms), ${\bf I}=2\,{\it \angle}\,(-36.9^\circ)$ A (rms). Find $P_{app},$ P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos (0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

1. Given: $\mathbf{V} = 120 \angle 0^\circ \text{ V (rms)}, \ \mathbf{I} = 2 \angle (-36.9^\circ) \text{ A (rms)}.$ Find P_{app} , P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos (0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

$$P = P_{app} \times P.F. = 192 W.$$

1. Given: $\mathbf{V} = 120 \angle 0^\circ \text{ V (rms)}, \ \mathbf{I} = 2 \angle (-36.9^\circ) \text{ A (rms)}.$ Find P_{app} , P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos(0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

$$P = P_{app} \times P.F. = 192 W.$$

2. Given: $P=50~{\rm k}W,~{\rm P.F.}=0.95$ (lagging), ${\bf V}=480\,{\it \angle}\,0^\circ~{\rm V}$ (rms). Find I.

1. Given: $\mathbf{V} = 120 \angle 0^\circ \text{ V (rms)}, \ \mathbf{I} = 2 \angle (-36.9^\circ) \text{ A (rms)}.$ Find P_{app} , P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos(0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

$$P = P_{app} \times P.F. = 192 W.$$

2. Given: P=50 kW, P.F. = 0.95 (lagging), $\mathbf{V}=480 \angle 0^{\circ}$ V (rms). Find I.

$$V_{eff} \times I_{eff} \times P.F = 50 \times 10^3$$

1. Given: $\mathbf{V} = 120 \angle 0^{\circ} \text{ V (rms)}$, $\mathbf{I} = 2 \angle (-36.9^{\circ}) \text{ A (rms)}$. Find P_{app} , P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos (0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

$$P = P_{app} \times P.F. = 192 W.$$

2. Given: $P=50~{\rm k}W,~{\rm P.F.}=0.95$ (lagging), ${\bf V}=480\,{\it \angle}\,0^\circ~{\rm V}$ (rms). Find I.

$$V_{eff} \times I_{eff} \times P.F = 50 \times 10^3$$

$$I_{eff} = \frac{50 \times 10^3}{480 \times 0.95} = 109.6 A.$$

1. Given: $\mathbf{V} = 120 \angle 0^\circ \text{ V (rms)}, \ \mathbf{I} = 2 \angle (-36.9^\circ) \text{ A (rms)}.$ Find P_{app} , P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos (0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

$$P = P_{app} \times P.F. = 192 W.$$

2. Given: P=50 kW, P.F. = 0.95 (lagging), ${\bf V}=480\,\angle\,0^\circ$ V (rms). Find I.

$$V_{eff} \times I_{eff} \times P.F = 50 \times 10^3$$

$$I_{\text{eff}} = \frac{50 \times 10^3}{480 \times 0.95} = 109.6 \text{ A}.$$

Since P.F. is 0.95 (lagging), I lags V by $\cos^{-1}(0.95) = 18.2^{\circ}$.

1. Given: $\mathbf{V} = 120 \angle 0^\circ \text{ V (rms)}, \ \mathbf{I} = 2 \angle (-36.9^\circ) \text{ A (rms)}.$ Find P_{app} , P.F., and P.

$$P_{app} = 120 \times 2 = 240 \text{ V-A}.$$

P.F. =
$$\cos (0^{\circ} - (-36.9^{\circ})) = 0.8$$
 lagging (since I lags V).

$$P = P_{app} \times P.F. = 192 W.$$

2. Given: $P=50~{\rm k}W,~{\rm P.F.}=0.95$ (lagging), ${\bf V}=480\,{\it \angle}\,0^\circ~{\rm V}$ (rms). Find I.

$$V_{eff} \times I_{eff} \times P.F = 50 \times 10^3$$

$$I_{\text{eff}} = \frac{50 \times 10^3}{480 \times 0.95} = 109.6 \text{ A}.$$

Since P.F. is 0.95 (lagging), I lags V by $\cos^{-1}(0.95) = 18.2^{\circ}$.

$$\Rightarrow$$
 I = 109.6 \angle (-18.2°) A (rms).

Consider a simplified model of a power system consisting of a generator (V_s) , transmission line (R), and load (Z_L) .

The load is specified as P=50 kW, P.F.= 0.6 (lagging), $\mathbf{V}_L=480\,\angle\,0^\circ\,$ V (rms).

Note: lagging power factors are typical of industrial loads (motors).

Consider a simplified model of a power system consisting of a generator (V_s) , transmission line (R), and load (Z_L) .

The load is specified as P=50 kW, P.F.= 0.6 (lagging), $\mathbf{V}_L=480 \angle 0^\circ \ V$ (rms). Note: lagging power factors are typical of industrial loads (motors).

$$P = 50 \times 10^3 \; W = |\mathbf{V}_L| \times |\mathbf{I}_L| \times \text{P.F.} \Rightarrow |\mathbf{I}_L| = \frac{50 \times 10^3}{480 \times 0.6} = 173.6 \; A \; (\text{rms}).$$

Consider a simplified model of a power system consisting of a generator (V_s) , transmission line (R), and load (Z_L) .

The load is specified as P=50~kW, P.F.= 0.6 (lagging), $V_L=480 \angle 0^\circ~V~\text{(rms)}$. Note: lagging power factors are typical of industrial loads (motors).

$$P = 50 \times 10^3 \ W = |\mathbf{V}_L| \times |\mathbf{I}_L| \times \text{P.F.} \Rightarrow |\mathbf{I}_L| = \frac{50 \times 10^3}{480 \times 0.6} = 173.6 \ A \ (\text{rms}).$$

Power loss in the transmission line $P_{\text{loss}} = |\mathbf{I}_L|^2 R = (173.6)^2 \times 0.1 = \underline{3 \text{ kW}}$.

Consider a simplified model of a power system consisting of a generator (V_s) , transmission line (R), and load (Z_L) .

The load is specified as P=50 kW, P.F.= 0.6 (lagging), $V_L=480 \angle 0^\circ~V~(\text{rms})$.

Note: lagging power factors are typical of industrial loads (motors).

$$P = 50 \times 10^3 \ W = |\mathbf{V}_L| \times |\mathbf{I}_L| \times \text{P.F.} \Rightarrow |\mathbf{I}_L| = \frac{50 \times 10^3}{480 \times 0.6} = 173.6 \ A \ (\text{rms}).$$

Power loss in the transmission line $P_{\text{loss}} = |\mathbf{I}_L|^2 R = (173.6)^2 \times 0.1 = \underline{3 \text{ kW}}$.

If the load power factor was 0.95 (lagging), we would have

$$|I_L| = \frac{50 \times 10^3}{480 \times 0.95} = 109.6 \ A \text{ (rms)}, \text{ and } P_{\text{loss}} = (109.6)^2 \times 0.1 = \underline{1.2 \ \text{kW}}.$$

Consider a simplified model of a power system consisting of a generator (V_s) , transmission line (R), and load (Z_L) .

The load is specified as P=50 kW, P.F.= 0.6 (lagging), $\mathbf{V}_L=480 \angle 0^\circ \ V$ (rms).

$$P = 50 \times 10^3 \ W = |\mathbf{V}_L| \times |\mathbf{I}_L| \times \text{P.F.} \Rightarrow |\mathbf{I}_L| = \frac{50 \times 10^3}{480 \times 0.6} = 173.6 \ A \ (\text{rms}).$$

Power loss in the transmission line $P_{\text{loss}} = |\mathbf{I}_L|^2 R = (173.6)^2 \times 0.1 = \underline{3 \text{ kW}}$.

If the load power factor was 0.95 (lagging), we would have

$$|I_L| = {50 \times 10^3 \over 480 \times 0.95} = 109.6 \; \textit{A} \; (\text{rms}), \; \text{and} \; P_{\text{loss}} = (109.6)^2 \times 0.1 = {\underline{1.2 \; kW}}.$$

Thus, a higher power factor can substantially reduce transmission losses.

Consider a simplified model of a power system consisting of a generator (V_s) , transmission line (R), and load (Z_L) .

The load is specified as P=50 kW, P.F.= 0.6 (lagging), $V_L=480 \angle 0^{\circ}~V$ (rms).

Note: lagging power factors are typical of industrial loads (motors).

$$P = 50 \times 10^3 \ W = |\mathbf{V}_L| \times |\mathbf{I}_L| \times \text{P.F.} \Rightarrow |\mathbf{I}_L| = \frac{50 \times 10^3}{480 \times 0.6} = 173.6 \ A \text{ (rms)}.$$

Power loss in the transmission line $P_{\text{loss}} = |\mathbf{I}_L|^2 R = (173.6)^2 \times 0.1 = \underline{3 \text{ kW}}$.

If the load power factor was 0.95 (lagging), we would have

$$|I_L| = \frac{50 \times 10^3}{480 \times 0.95} = 109.6 \ A \text{ (rms)}, \text{ and } P_{\text{loss}} = (109.6)^2 \times 0.1 = \underline{1.2 \ \text{kW}}.$$

Thus, a higher power factor can substantially reduce transmission losses.

The effective power factor of an inductive load can be improved by connecting a suitable capacitance in parallel.

Power computation: home work

- * Find I_1 , I_2 , I_s .
- * Compute the average power absorbed by each element.
- * Verify power balance.

(SEQUEL file: ee101_phasors_2.sqproj)