

Authenticated Encryption

Constructions from ciphers and MACs

... but first, some history

Authenticated Encryption (AE): introduced in 2000 [KY'00, BN'00]

Crypto APIs before then: (e.g. MS-CAPI)

- Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
- Provide API for MAC (e.g. HMAC)

Every project had to combine the two itself without a well defined goal

Not all combinations provide AE ...

Combining MAC and ENC (CCA)

Encryption key k_E . MAC key = k_I

A.E. Theorems

Let (E,D) be CPA secure cipher and (S,V) secure MAC. Then:

1. Encrypt-then-MAC: always provides A.E.

2. MAC-then-encrypt: may be insecure against CCA attacks

however: when (E,D) is rand-CTR mode or rand-CBC M-then-E provides A.E.

for rand-CTR mode, one-time MAC is sufficient

Standards (at a high level)

- GCM: CTR mode encryption then CW-MAC (accelerated via Intel's PCLMULQDQ instruction)
- CCM: CBC-MAC then CTR mode encryption (802.11i)
- EAX: CTR mode encryption then CMAC

All support AEAD: (auth. enc. with associated data). All are nonce-based.

An example API (OpenSSL)

```
int AES_GCM_Init(AES_GCM_CTX *ain,
unsigned char *nonce, unsigned long noncelen,
unsigned char *key, unsigned int klen)
```

MAC Security -- an explanation

Recall: MAC security implies $(m, t) \implies (m, t')$

Why? Suppose not: $(m,t) \rightarrow (m,t')$

Then Encrypt-then-MAC would not have Ciphertext Integrity!!

Dan Boneh

OCB: a direct construction from a PRP

More efficient authenticated encryption: one E() op. per block.

Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>Cipher</u>	code <u>size</u>	Speed (MB/sec)		
{	AES/GCM	large**	108	AES/CTR	139
	AES/CCM	smaller	61	AES/CBC	109
	AES/EAX	smaller	61	AES/CMAC	109
	AES/OCB		129*	HMAC/SHA1	

^{**} non-Intel machines

End of Segment