

POPPY THE WATCHDOG

Applied Reinforcement Learning 2016 Erik Wannerberg, Zhiwei Han, Ben Pfirrmann

Image: References (left to right):

¹⁾ https://pixabay.com/de/sicherheit-wort-laser-modern-574079/ 2) https://pixabay.com/de/sicherheit-sicherheitskonzept-augen-1163108/

³⁾ https://pixabay.com/de/objektiv-linse-null-eins-bin%C3%A4r-1278493/ 4) https://pixabay.com/de/sicherheit-wort-laser-modern-574079/

Introduction and Motivation

Goals and Steps

Project Plan and Distribution of Workload

Introduction and Motivation

Goals and Steps

Project Plan and Distribution of Workload

Introduction and Motivation

What

- Point its weapons (i.e. robot arm) only towards hostile intruders
- Welcome allies with a friendly greeting
- Emulation using colored cards
- Implement the procedure using reinforcement learning
- Overall goal: finding a policy that allows the Poppy robot to locate a target by only moving its head, to fix the object in the center of its vision.

Why

- Detection and tracking are important problems in autonomous systems
- Using machine learning methods we can achieve more complex or dynamic behaviour

Introduction and Motivation

Goals and Steps

Project Plan and Distribution of Workload

Overall goal: Acting properly

Subgoal

Tasks and Steps

Classifying image data and object localization

- Collection of reference images (i.e. images of colored cards or items)
- Algorithm research
 - Color Segmentation
 - Localization
- Algorithm Testing and Implementation

Finding optimal state-action policy

- State and action space formulation
- Reward design
- Learning Algorithm and Implementation
- Simulation (VREP)

Making Poppy what the simulator does

Practical Implementation

- Mechanics and Control
- Transfer of Algorithms on Poppy
- Performance Evaluation

Introduction and Motivation

Goals and Steps

Project Plan and Distribution of Workload

Project plan - visualized using a Gantt-Chart

Task distribution

Computer vision

Reinforcement Learning

Practical Implementation

Step / Subtasks	Who	Deadline
COLLECTION OF REFERENCE IMAGES	11	
 Write a python script that makes poppy perform predefined rotational movements taking images of the environment 		19/05
■ Take reference images using the aforementioned algorithm	∥Z/B	19/05
ALGORITHM RESEARCH	П	
Search for color-segmentation solutions and the python APIs (naiv-channel difference, k-means-segmentation etc.)	B 	19/05
Search for a center detection algorithm	E	19/05
TESTING AND IMPLEMENTAION	11	
Find possibilities to implement these algorithms in python using APIs and libraries or write the code directly.	∥ ∥E/B ! !	26/05
 Test the algorithms offline using reference images. 	Z/E	26/05
Test the algorithms online with poppy and verify the accuracy of the result (i.e. are poppy images correctly mapped to states)	E/B	26/05

Image: Reference: https://pixabay.com/de/umzug-tragen-schrank-treppe-hoch-1015581/

Task Distribution

Computer vision

Reinforcement Learning

Practical Implementation

Step / Subtasks	Who	Deadline
STATE AND ACTION SPACE FORMULATION	11	
 Create artificial states that will be used as input data to the simulator (the artificial states can be generated based on the images taken with poppy and based on geometrical reasoning) 		02/06
LEARNING ALGORITHM AND IMPLEMENTATION	П	1
 Create a python default template (i.e. import relevant modules, define objects and respective default values for actions, states, rewards, value function) to allow for simple coding. 		16/06
 Create a function prototype for a function that returns an action according to a policy 	¦¦E	16/06
SIMULATION (VREP)		
 Try several learning algorithms with the predefined setup and make them run properly on VREP using the artificial states as an input sequence. 		16/06
 Compare the different learning algorithms based on stability, robustness and speed in the simulator 	E/Z/B	16/06
REWARD DESIGN		
 If necessary do an additional tuning of the rewards or the discount factor using the previously created functions. 	E	16/06

Image: Reference: https://pixabay.com/de/umzug-tragen-schrank-treppe-hoch-1015581/

Task Distribution

Computer vision

Reinforcement Learning Practical Implementation

Step / Subtasks	Who	Deadline
MECHANICS AND CONTROL	11	
Implement algorithm prototypes (from the Reinforcement learning task) on poppy and identify, if the performance/behaviour largely deviates form the VREP simulation		30/06
TRANSFER OF ALGORITHMS ON POPPY	П	I
Identify possible mechanical issues and create fixes (e.g. lock the poppy torso in place)	B	30/06
PERFORMANCE EVALUATION	11	
• Evaluate the performance and possibly improve the algorithm using simulation and real poppy robot.	E/Z/B	14/07

Image: Reference: https://pixabay.com/de/umzug-tragen-schrank-treppe-hoch-1015581/

Task Distribution

Computer vision

Reinforcement Learning

Practical Implementation

Step / Subtasks	Who	Deadline
MECHANICS AND CONTROL	11	
Implement algorithm prototypes (from the Reinforcement learning task) on poppy and identify, if the performance/behaviour largely deviates form the VREP simulation	Group	30/06
TRANSFER OF ALGORITHMS ON POPPY	11	
Identify possible mechanical issues and create fixes (e.g. lock the poppy torso in place)	∥∥Ben ∥∥	30/06
PERFORMANCE EVALUATION		
Evaluate the performance and possibly improve the algorithm using simulation and real poppy robot.	Group	14/07

Documentation will be handled by all group members continuously but mainly from 01/07 to 14/07

Image: Reference: https://pixabay.com/de/umzug-tragen-schrank-treppe-hoch-1015581/

BACKUP

Module: Computer Vision Task

Recent Results

- Result 1
- Result 2
- Result 3
- Result 4
- Result 5

Risks

- Risk 1
- Risk 2
- Risk 3
- Risk 4
- Risk 5

Subgoal / Step

- Computer Vision Goal 1

Upcoming Tasks

- Task 1
- Task 2
- Task 3
- Task 4
- Task 5

