Chapter 8: Applicative and traversable functors Part 2: Their laws and structure

Sergei Winitzki

Academy by the Bay

2018-06-07

Deriving the ap operation from map2

Can we avoid having to define map, separately for each n?

- Use curried arguments, fmap₂: $(A \Rightarrow B \Rightarrow Z) \Rightarrow F^A \Rightarrow F^B \Rightarrow F^Z$
- Set $A = B \Rightarrow Z$ and apply fmap₂ to the identity $id^{(B\Rightarrow Z)\Rightarrow (B\Rightarrow Z)}$: obtain $\operatorname{ap}^{[B,Z]}: F^{B\Rightarrow Z} \Rightarrow F^B \Rightarrow F^Z \equiv \operatorname{fmap}_2(\operatorname{id})$
- The functions fmap2 and ap are computationally equivalent:

$$\operatorname{fmap}_2 f^{A \Rightarrow B \Rightarrow Z} = \operatorname{fmap} f \circ \operatorname{ap}$$

$$F^{A} \xrightarrow{\text{fmap } f} F^{B \Rightarrow Z} \xrightarrow{\text{ap}} (F^{B} \Rightarrow F^{Z})$$
 $\text{ap3, fmap4 etc. can be defined similar}$

• The functions fmap3, fmap4 etc. can be defined similarly:

$$\operatorname{fmap}_3 f^{A\Rightarrow B\Rightarrow C\Rightarrow Z} = \operatorname{fmap} f \circ \operatorname{ap} \circ \operatorname{fmap}_{F^B\Rightarrow ?} \operatorname{ap}$$

$$F^{B \Rightarrow C \Rightarrow Z} \xrightarrow{\operatorname{ap}^{[B,C \Rightarrow Z]}} (F^B \Rightarrow F^{C \Rightarrow Z}) \xrightarrow{\operatorname{fmap}_{F^B \Rightarrow ?} \operatorname{ap}^{[C,Z]}} (F^B \Rightarrow F^C \Rightarrow F^Z)$$

• Using the infix syntax will get rid of fmap_{FB \Rightarrow 7}ap (see example code)

Deriving the zip operation from map2

- Note: Function types $A \Rightarrow B \Rightarrow C$ and $A \times B \Rightarrow C$ are equivalent
- Uncurry fmap₂ to fmap₂ : $(A \times B \Rightarrow C) \Rightarrow F^A \times F^B \Rightarrow F^C$
- Compute fmap2 (f) with $f = id^{A \times B \Rightarrow A \times B}$, expecting to obtain a simpler natural transformation:

$$zip: F^A \times F^B \Rightarrow F^{A \times B}$$

- This is quite similar to zip for lists:
 List(1, 2).zip(List(10, 20)) = List((1, 10), (2, 20))
- The functions zip and fmap2 are computationally equivalent:

$$zip = fmap2 (id)$$

$$fmap2 (f^{A \times B \Rightarrow C}) = zip \circ fmap f$$

$$F^{A} \times F^{B} \xrightarrow{fmap2 (f^{A \times B \Rightarrow C})} F^{C}$$

• The functor F is "zippable" if such a zip exists

Equivalence of the operations ap and zip

- Set $A \equiv B \Rightarrow C$, get $zip^{[B\Rightarrow C,B]} : F^{B\Rightarrow C} \times F^B \Rightarrow F^{(B\Rightarrow C)\times B}$
- Use eval : $(B \Rightarrow C) \times B \Rightarrow C$ and fmap (eval) : $F^{(B \Rightarrow C) \times B} \Rightarrow F^C$
- Uncurry: ${}_{\mathrm{app}}{}^{[B,C]}:F^{B\Rightarrow C}\times F^{B}\Rightarrow F^{C}\equiv {}_{\mathrm{zip}}\circ {}_{\mathrm{fmap}}$ (eval)
- The functions zip and app are computationally equivalent:
 - use pair : $(A \Rightarrow B \Rightarrow A \times B) = a^A \Rightarrow b^B \Rightarrow a \times b$
 - ▶ use fmap (pair) \equiv pair[†] on an fa^{F^A} , get (pair[†]fa) : $F^{B\Rightarrow A\times B}$; then

$$zip(fa \times fb) = app(pair^{\uparrow}fa) \times fb)$$
 $app^{[B \Rightarrow C,B]} = zip^{[B \Rightarrow C,B]} \circ fmap(eval)$

$$F^{B\Rightarrow C} \times F^{B} \xrightarrow{\text{zip}} F^{(B\Rightarrow C)\times B} \xrightarrow{\text{fmap(eval)}} F^{C}$$

- Rewrite this using curried arguments: $fzip^{[A,B]}: F^A \Rightarrow F^B \Rightarrow F^{A\times B};$ $ap^{[B,C]}: F^{B\Rightarrow C} \Rightarrow F^B \Rightarrow F^C;$ then $ap f = fzip f \circ fmap (eval).$
- Now fzip $p^{F^A}q^{F^B} = ap \left(pair^{\uparrow}p\right)q$, hence we may omit the argument q: fzip = pair $^{\uparrow} \circ ap$. With explicit types: fzip $^{[A,B]} = pair^{\uparrow} \circ ap^{[B,A\Rightarrow B]}$.

Motivation for applicative laws. Naturality for map2

Treat map2 as a replacement for a monadic block with independent effects:

Main idea: Formulate the monad laws in terms of map2 and pure

Naturality laws: Manipulate data in one of the containers

```
\begin{array}{lll} \text{for } \{ & & \text{for } \{ \\ & x \leftarrow \text{cont1.map(f)} & & x \leftarrow \text{cont1} \\ & y \leftarrow \text{cont2} & & y \leftarrow \text{cont2} \\ \} \ \text{yield } g(x, \ y) & \} \ \text{yield } g(f(x), \ y) \end{array}
```

and similarly for cont2 instead of cont1; now rewrite in terms of for map2:

• Left naturality for map2:

```
 map2(cont1.map(f), cont2)(g) 
= map2(cont1, cont2){ (x, y) \Rightarrow g(f(x), y) }
```

• Right naturality for map2:

```
 map2(cont1, cont2.map(f))(g) 
= map2(cont1, cont2){ (x, y) \Rightarrow g(x, f(y)) }
```

Associativity and identity laws for map2

Inline two generators out of three, in two different ways:

Write this in terms of map2 to obtain the associativity law for map2:

```
\begin{split} & \texttt{map2}(\texttt{cont1}, \ \texttt{map2}(\texttt{cont2}, \ \texttt{cont3})((\_,\_)) \{ \ \texttt{case}(\texttt{x},(\texttt{y},\texttt{z})) \Rightarrow \texttt{g}(\texttt{x},\texttt{y},\texttt{z}) \} \\ & = \texttt{map2}(\texttt{map2}(\texttt{cont1}, \ \texttt{cont2})((\_,\_)), \ \texttt{cont3}) \{ \ \texttt{case}((\texttt{x},\texttt{y}),\texttt{z})) \Rightarrow \texttt{g}(\texttt{x},\texttt{y},\texttt{z}) \} \end{split}
```

Empty context preceds a generator, or follows a generator:

```
\begin{array}{lll} \text{for } \{ \ x \leftarrow \text{pure(a)} & \text{for } \{ \\ & \text{y} \leftarrow \text{cont} & \text{y} \leftarrow \text{cont} \\ \} \ \text{yield } g(x, \ y) & \} \ \text{yield } g(a, \ y) \end{array}
```

Write this in terms of map2 to obtain the identity laws for map2 and pure:

```
map2(pure(a), cont)(g) = cont.map { y \Rightarrow g(a, y) } map2(cont, pure(b))(g) = cont.map { x \Rightarrow g(x, b) }
```

Deriving the laws for ap and zip

Set