# AE. 2A - Lancer d'une boule de pétanque

**Objectif** : Etablir et exploiter l'équation de la trajectoire d'un projectile dans un champ de pesanteur uniforme.



#### PROTOCOLE EXPÉRIMENTAL

On modélise le mouvement d'une boule de pétanque par celui du centre de masse M d'un projectile.

- FILMER le mouvement du projectile lors d'un lancer ou utiliser la vidéo fournie.
- $\subseteq$  CHOISIR un repère (O; i, j) dont l'origine correspond à la position initiale de M.
- ☑ INDIQUER l'échelle de représentation à partir d'un étalon figurant sur l'image.
- POINTER les positions consécutives occupées par M au cours du temps.

### COMPLÉMENT SCIENTIFIQUE

Coordonnées des vecteurs accélération, vitesse et position d'un point mobile M

- On se place dans un repère cartésien (O;  $\vec{i}$ ,  $\vec{j}$ ) dont l'origine correspond à la position initiale de M.
- Le point mobile est lancé avec la vitesse initiale  $\vec{v}_0$  faisant un angle  $\alpha$  avec l'horizontale.
- Les actions de l'air sur M sont négligées.

Vecteur accélération de M

$$\overrightarrow{v} \begin{cases} v_x = v_0 \times \cos\alpha \\ v_y = -g \times t + v_0 \times \sin\alpha \end{cases}$$

Vecteur position de M

$$\overrightarrow{OM} \begin{cases} x = v_0 \times \cos \alpha \times t \\ y = -\frac{1}{2} g \times t^2 + v_0 \times \sin \alpha \times t \end{cases}$$

avec g l'intensité de la pesanteur égale à 9,8 m $\cdot$ s<sup>-2</sup>.

Équation de la trajectoire d'un point mobile M

- Dans le repère (O;  $\vec{i}$ ,  $\vec{j}$ ) choisi, l'équation de la trajectoire est de la forme y = f(x).
- La détermination de l'équation de la trajectoire y = f(x) nécessite d'éliminer le temps en combinant les équations horaires x = g(t) et y = h(t) du mouvement de M.
  - VIDÉO Lancer d'une boule de pétanque QR Code p. 34

# Jidé<sub>o</sub>

# **Pratique expérimentale**

#### Mettre en œuvre un protocole RÉA

**1 a.** Mettre en œuvre le PROTOCOLE EXPÉRIMENTAL permettant de déterminer les coordonnées, dans le repère  $(O; \vec{i}, \vec{j})$  choisi, des vecteurs position  $\overrightarrow{OM}$ , vitesse  $\vec{v}$  et accélération  $\vec{a}$  du centre de masse M du projectile.

#### Exploiter des résultats ANA-RAIS

**b.** Déterminer la valeur  $v_0$  de la vitesse initiale de M, ainsi que l'angle  $\alpha$  du lancer.

#### Discuter un modèle VAL

c. Vérifier, par traitement graphique et en utilisant les fonctionnalités de modélisation du logiciel tableur, que les coordonnées de M sont conformes à celles données dans le COMPLÉMENT SCIENTIFIQUE.

#### Effectuer des calculs RÉA

**2** Établir, à l'aide du COMPLÉMENT SCIENTIFIQUE et des équations précédentes, l'équation y = f(x) de la trajectoire de M.

# Interpréter des résultats VAL

3 Un joueur veut placer sa boule devant le cochonnet situé à 6,1 m de lui. Il lance la boule depuis une hauteur égale à 1,1 m du sol, avec un angle  $\alpha$  égal à 51° et une vitesse initiale de valeur  $v_0 = 7,7$  m·s<sup>-1</sup>. Le joueur a-t-il réussi son lancer?

# Un pas vers le cours

# Utiliser un vocabulaire scientifique adapté et rigoureux COM

4 Comment établir et exploiter l'équation de la trajectoire d'un projectile dans un champ de pesanteur uniforme?