15

20

25

30

A COMMUNICATION SERVICE

FIELD OF THE INVENTION

This invention relates to communication services. It is related particularly, but not exclusively, to streaming in a Multimedia Messaging Service (MMS).

BACKGROUND OF THE INVENTION

Electronic mail, or e-mail is a messaging service, which allows quick and economical communication in electronic form. Using the Internet, e-mail messages can be sent all over the world, in many cases practically free of charge. Furthermore, the same e-mail message can be sent to a plurality of recipients. This technique is called multicasting. As the relaying of e-mail messages is entirely automated, the e-mail messages can arrive very shortly after they are sent. E-mail messages can carry computer files such as documents, program files, and different media files like audio- or video clips.

Ordinary home users having Personal Computers (PCs) prefer not to have a permanent connection to their e-mail system (for example to the Internet) but rather to set up a temporary and remote connection to an e-mail server that stores messages received since a previous e-mail message reading session. Using this kind of connection and an e-mail message reading program, new e-mail messages can be transferred from the e-mail server to the memory or a hard disk of a PC and then be read either while the connection is still extant, or alternatively after the connection has been closed. The transmission of data between the PC and the e-mail server is typically carried out using a modem attached to the PC.

In the following, the term "sender" refers to a device that sends data intended for a receiver and "receiver" refers to a device that receives the data and to which the data was intended.

Figure 1 shows a schematic diagram of an Internet-based e-mail system 10 comprising a sender 11, a receiver 15 and the Internet 12 having a sender's e-mail

10

15

20

25

30

server 13 and a receiver's e-mail server 14.

In the Internet, e-mail messages are sent using certain well-known protocols. Simply speaking, an e-mail message, once composed, is packaged into a single unit, stamped with an address of the receiver and is sent to the sender's e-mail server. The sender's e-mail server forwards the message through the Internet to the receiver's e-mail server. The next time the receiver forms a connection to the receiver's e-mail server via the Internet and checks whether new e-mail messages have been received using an e-mail reading program, the receiver can download any newly received e-mail message over the connection (e.g. modem link). When the e-mail message has been received completely, it can be presented to the user. It should be noted that during the various stages of its transmission, the e-mail message is typically split into numerous smaller packets according to the data transfer protocol(s) used. On reception, the receiver gathers together all of the packets, assembles them into the correct order (if necessary) and reconstructs the e-mail message into its original form, before presenting the e-mail message to a user of the receiver.

An e-mail transmission system described above is convenient and provides the possibility for multicasting, but it is best suited, and originally intended, for receiving e-mail messages and then presenting them at the convenience of the user. Thus, the content of a given e-mail message can only be accessed after completion of the e-mail message transmission to the receiver. This is not a real problem with plain text form e-mail messages, but in the case of a large media or multimedia content (clip) it is a drawback that the user of the receiver cannot start presentation of the clip while it is still being downloaded. Another drawback is that in order to receive an e-mail message, the receiver must have a sufficiently large accommodate the entire message. memory to Particularly in communications networks, or any other network in which part of the communications link is formed by a radio connection, it is also problematic to receive a long e-mail message without interruptions or errors, for example due to a temporary loss of or deterioration in radio coverage. Mobile terminals also tend to have limited memory available for the storage of received e-mail messages, which

SSSENSIO DESENI

further exacerbates the problem associated with the accommodation of messages in the receiver. These problems are at least partly mitigated by the Multimedia Messaging Service (MMS).

5

10

15

20

25

30

The MMS is a new end-to-end messaging approach for one-way transmission of multimedia messages having text and/or multimedia content. MMS provides the possibility of sending multimedia messages between mobile users and between a mobile user and the Internet. There is already an agreed solution for implementation of MMS in 3rd Generation mobile communication networks. The currently specified features of the proposed MMS are described in 3rd Generation Partnership Project (3GPP) technical specification 23.140 V.3.0.1. "Multimedia Messaging Service (MMS), Functional Description, Stage 2 (Release 1999)". The MMS proposed in 3GPP 23.140 employs a store-and-forward approach to multimedia message delivery. Multimedia messages are constructed in such a way that the media content, information necessary to describe the media content and addressing information, identifying the intended receiver of the multimedia message, are encapsulated together. The multimedia message is then sent to an MMS Centre MMSC, which in turn notifies the receiver about the multimedia message. The multimedia message is downloaded by the receiving terminal as a whole and only presented to the user once downloaded and stored in the receiving terminal.

It should be appreciated that although the term "multimedia message" is used generally to describe a message that contains more than one type of content, in this application, the term extends to cover messages that contain only one media type.

As currently specified, the MMS has a drawback: the receiving terminal must store the multimedia message before it can be presented to the user. Therefore the size of the memory of the receiving terminal sets an upper limit on the size of multimedia messages that can be downloaded. WO 99/166746 solves this problem by dividing a message into sub-messages (segments) if the entire

message would not fit into the memory of the receiving terminal. These sub-messages are small enough so that the receiving terminal can individually download each of them as a whole. In that case, the receiving terminal initially downloads a first sub-message. After the first sub-message has been fully downloaded, the receiving terminal can present it. After presentation of the first sub-message, the receiving terminal can download a second sub-message and then present it. Each sub-message is downloaded and then presented by itself. The size of the sub-messages depends on the memory size of the receiving terminal and must be small enough to fit into the memory.

Apart from MMS, there are streaming-techniques used in the Internet for transmission over fixed lines. "Streaming" is a term used generally to describe the presentation of a media stream, for example an audio or video stream, or a combination of different streams, in a continuous way while this stream or those streams are being transmitted to a client over a data network. A "stream" is a flow of data typically enabling the receiver to present some continuous data such as a motion picture, voice or music. In a typical video stream, some 10 to 20 video frames are transmitted per second. In practice, streaming can be either live (real-time) or performed in an on-demand fashion. As its name suggests, "live streaming" describes the creation of a media stream from a live source, for example a stream of digital images produced by a video camera, while "on-demand streaming" describes the creation of a media stream from, for example, a file stored on a server. Streaming also involves establishing a streaming session, during which the stream or streams is or are transmitted to the client.

Within streaming there are two very important functionalities, namely streaming control and media transport. Streaming control takes care of establishing, managing and terminating a streaming session using a negotiated or preconfigured set of parameter values. Media transport concerns the transportation of media during the established session using an agreed or negotiated transport protocol. For example, there are widely agreed protocols in the Internet to provide

10

20

25

30

the connection is low.

both streaming control and media transport functionalities and these can be used as transport protocols in streaming applications.

Whilst streaming is widely used in the Internet, it has still to be adapted for use in mobile communication networks. It should be appreciated that the use of streaming is desirable in mobile networks, since mobile terminals typically have limited storage capacity (memory). However, present mobile communication networks do not support streaming for reasons described in the following.

The encapsulation of media content, message description and addressing

information in a single entity as proposed in current MMS specifications is incompatible with the streaming of media content. In order to establish a streaming session, it is necessary for the receiving terminal to be aware, in advance, of certain information relating to the media content. Such information includes, but is not limited to, the type of media contained in the multimedia message, the way that media is encoded and a suitable transport protocol that can be used to download the media content. Because present MMS specifications require information describing the media content to be encapsulated with the multimedia message itself, the receiving terminal cannot obtain prior knowledge about the properties of the media content and therefore cannot establish any form of streaming session. Thus, according to the present MMS specification, the entire multimedia message must be downloaded to the receiving terminal in order for the details of the media content to be extracted. Only then can any media content, such as video and/or audio clips be played back to the user of the receiving terminal. This limits the usability of the present MMS because multimedia clips are usually bulky in terms of bits and therefore a receiving terminal, for example a mobile station, would require a comparatively large memory to completely receive the clips. The need to download an entire multimedia message before it can be presented may also give rise to significant delays in certain conditions, for

example if the multimedia message is very large, or the data transmission rate of

10

15

25

30

It should further be emphasised that the addressing scheme suggested by current MMS specifications does not facilitate the implementation of streaming in such a system. The current MMS can be viewed as a "sender orientated" system. In other words, the sender decides what media content to send to the receiver, encapsulates that in the multimedia message and addresses the multimedia message to the intended receiver. Streaming, on the other hand, is more "receiver orientated". To establish a streaming session, it is generally necessary for a streaming connection to be formed between the receiver and the sender, for example a network-based server, the content being streamed from the server once the necessary connection has been established. Thus, establishment of a streaming session requires the recipient to have knowledge of the location of the media content, but it does not necessarily require the media content to be directly addressed to the recipient.

SUMMARY OF THE INVENTION

Now a new solution has been invented where the problems of the prior art can be avoided or at least mitigated.

According to a first aspect of the invention there is provided a communication method comprising the steps of:

receiving by a communication server content and information describing the content from a first terminal; and

sending a notification message from the communication server to a second terminal, the notification message notifying about availability of the content; characterised by the method further comprising:

forming a streaming session between the communication server and the second terminal, using the information describing the content; and

transmitting the content in sequential sub-parts from the communication server to the second terminal, during the streaming session.

The transmission of the content to the second terminal as a stream allows rapid access to the content as a recipient using the second terminal need not wait for

10

15

20

the content to be received completely.

Preferably, the content and the information describing the content are sent from the first terminal to the communication server in separate messages. This allows, for example, separate sending of the content to one entity of the communication server and sending of a notification message to the recipients.

Preferably, the information describing the content is sent from the communication server to the second terminal within the notification message.

Preferably, the method further comprises sending by the communication server to the second terminal the information describing the content as a media component of a multimedia message.

The sending of the description of the streamable component as a media component allows utilising of existing multimedia messaging systems with minor changes. It further allows embedding in the same multimedia message more than one media components, wherein some or all of the media components may be descriptions of streamable components.

Preferably, the multimedia message comprises at least one non-streamable component and at least one description of a streamable component.

Preferably, the communication method further comprises the step of presenting at the second terminal the received content as a stream during the streaming session. The second terminal can start presenting the content immediately and possibly take certain measures (for example, pausing or aborting the data transmission) during the transmission.

Preferably, the method further comprises the step of deciding at the second terminal to receive or not to receive the content, at a certain time, and the streaming session is only formed if the decision is to receive the content.

30

25

10

15

20

Preferably, the communication server comprises a content server for storing and transmitting the content and a notification server for receiving and transmitting notifications, wherein the content server and the notification server have a physical relationship selected from the group consisting of the following: a single unit, separate units, and separate units distributed at different geographic locations.

Preferably, the communication method further comprises the step of generating the content at the first terminal. Preferably, content generated at the first terminal is streamed to the content server and the sending of the content occurs during the generation of the content. By doing so the content can be made available to the user earlier than if content was generated wholly or to a large extent in the first terminal and only then streamed to the content server.

Preferably, when using streamed content generation, the information describing the content is sent before content generation is complete, so that the second terminal can start receiving the content before its generation is complete.

Preferably, during the streaming session between the communication server and the second terminal, the receiver can issue an abort command to abort the session. Preferably, the streaming session is aborted in response to the abort command.

Preferably, the notification message comprises information required by the second terminal in order to form a streaming session with the content server.

Preferably, the method is implemented as part of the Multimedia Messaging Service (MMS).

Preferably, the method further comprises the step of multicasting the content to at least one other terminal in addition to the second terminal in at least one other streaming session.

10

20

25

30

In an embodiment in which there are a plurality of streaming sessions, each of the streaming sessions may be formed independently of any other, so that the sessions may start and end at different times or at the same time. Preferably, each of the sessions can be aborted independently of any other, responsive to each of the respective terminals.

According to a second aspect of the invention there is provided a communications system comprising:

a plurality of terminals including a first terminal and a second terminal;

a communication server accessible to the plurality of terminals;

means for sending the content and information describing the content from the first terminal to the communication server; and

means for sending a notification message from the communication server to the second terminal;

characterised by the system further comprising

means for forming a streaming session between the communication server and the second terminal, using the information describing the content; and

means for transmitting the content in sequential sub-parts from the communication server to the second terminal, during the streaming session.

Preferably, the system further comprises means for generating the content at a first terminal.

Preferably, the system further comprises means for presenting at the second terminal the received content as a stream, during the streaming session.

According to a third aspect of the invention there is provided a communication server for serving a plurality of terminals, the communication server comprising:

means for receiving content and information describing the content from a first terminal; and

means for sending a notification message to a second terminal, the notification message notifying the second terminal about availability of the content;

10

15

characterised by the server further comprising:

means for forming a streaming session with the second terminal, using the information describing the content; and

means for transmitting the content in sequential sub-parts to the second terminal, during the streaming session.

According to a fourth aspect of the invention there is provided a computer program product comprising:

computer program code for causing a communication server to receive content and information describing the content from a first terminal to a communication server; and

computer program code for causing the communication server to send a notification message from the communication server to a second terminal, the notification message notifying the second terminal about availability of the content; characterised by the computer program product further comprising:

computer program code for causing the communication server to form a streaming session between the communication server and the second terminal, using the information describing the content; and

computer program code for causing the communication server to transmit the content in sequential sub-parts from the communication server to the second terminal, during the streaming session.

According to a fifth aspect of the invention there is provided a communication device comprising:

means for receiving from a communication server information describing a message intended for the communication device; characterised by

the message comprising a streamable component;

the information describing the message comprising information describing the streamable component; and

the communication device further comprising:

means for forming a streaming session with the communication server for

20

30

25

10

15

receiving the streamable component, using the information describing the streamable component; and

means for receiving the content in sequential sub-parts from the communication server.

According to a sixth aspect of the invention there is provided a computer program product comprising:

computer program code for causing a communication device to receive from a communication server information describing a message intended for the communication device;

characterised by

the message comprising a streamable component;

the information describing the message comprising information describing the streamable component; and

the computer program product further comprising:

computer program code for causing the communication device to form, using the information describing the streamable component, a streaming session with the communication server for receiving the streamable component; and

computer program code for causing the communication device to receive the content in sequential sub-parts from the communication server.

Preferably, the communication device is a wireless communication device. Even more preferably, the communication device is a mobile telephone. In an alternative embodiment, the wireless communication device is a wireless communication adapter adapted for providing wireless communication functionality to an external device such as a laptop PC.

According to a seventh aspect there is provided a method in a communication device, the method comprising the steps of:

receiving from a communication server information describing a message intended for the communication device; characterised by

20

25

30

10

15

30

the message comprising a streamable component;

the information describing the message comprising information describing the streamable component; and

the method further comprising:

forming a streaming session with the communication server for receiving the streamable component, by using the information describing the streamable component; and

presenting the streamable component during the streaming session.

The embodiments of one aspect also apply to various other aspects of the invention. In sake of brevity, all the embodiments have not been repeated in connection with every aspect of the invention. A skilled reader will appreciate the advantages of the various aspects and embodiments based on the advantages of the first aspect and its embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

- 20 Figure 1 is a schematic diagram of an Internet-based e-mail system;
 - Figure 2 is a diagram of a communication system according to a preferred embodiment of the invention;
 - Figure 3 shows the main protocol layers of streamed data transmission in the system of Figure 2;
- 25 Figure 4 shows the structure of messages sent during streamed data transmission between a receiver and a media server according to the preferred embodiment of the invention;
 - Figure 5 shows a block diagram of a mobile communications terminal incorporating a cellular radiotelephone according to a preferred embodiment of the invention; and
 - Figure 6 shows a radio adapter card for a laptop PC according to an alternative embodiment of the invention.

DETAILED DESCRIPTION

Figure 1 has been described already in the foregoing.

Next, a preferred embodiment of the invention is briefly summarised and then fully disclosed with reference to Figures 2 to 6.

According to a preferred embodiment of the invention, streaming is incorporated within the Multimedia Messaging Service (MMS). A three-phase approach is taken in this regard. In a first phase (phase 1), a sender (sending terminal) transfers a multimedia message, or more accurately, media content, to a media (streaming) server. In a second phase (phase 2), one or more receivers (receiving terminals) is or are notified that media content is available for delivery. In a third phase (phase 3), the media content is transferred to the receiver or receivers. Advantageously, the notification performed in phase 2, takes place by means of a notification message sent from the sender via a Multimedia Messaging Server (MMS) to the receiver. Typically, the MMS server stores the notification message and then tries to forward it to the receiver. If it fails in the forwarding, it tries to re-send the stored notification message at a later time.

20

25

15

Advantageously, streaming is performed in the first and third phases, namely while uploading the media content to the media (streaming) server and while downloading the media content from the media (streaming) server. It should be noted that streaming during the uploading phase (phase 1) is not an essential feature of the method according to the invention. However, the use of streaming in both phases 1 and 3 can reduce the delay between starting transmission of the media content from the sender and the commencement of streaming at the receiver. It may also have the effect of reducing storage requirements in the media (streaming) server and can effectively enable implementation of real-time or near real-time streaming in the MMS.

30

Phase 2 of the method can be regarded as a message control phase, which takes care of forwarding a multimedia message and streaming-related information to a

10

20

25

30

recipient (a target receiver of a multimedia message) via the MMS server. Phases 1 and 2 may be performed sequentially or substantially simultaneously, while phase 3 can be performed automatically on receipt of the notification message at the receiver, or at some later time at the discretion of a user of the receiver. Thus, the invention provides the flexibility to play the streamed media content at the receiver at any time. The preferred embodiment does not impose any limitation on the size of the media content or the number of recipients in the case of multicasting. The preferred embodiment is based on a store-and-forward approach and it is thus in-line with other MMS solutions. This enables any media content that is not to be streamed or is not of a type suitable for streaming to be downloaded to the receiver in a conventional manner that is as specified in current MMS specifications.

It is an advantage of the present invention that the implementation of streaming functionality can enhance the proposed MMS in many ways, particularly when the media content is large or it is to be multicast. The store-and-forward approach to streaming in MMS is effective and desirable, since it provides the receiver with complete flexibility to decide whether and when to receive and play back the media content within a multimedia message. The invention also provides streaming functionality within the framework of the proposed MMS and is thus fully compatible with the existing MMS standards.

The embodiments of the invention described hereafter outline the main steps for streaming under MMS.

Figure 2 is a diagram of a communication system 20 according to a preferred embodiment of the invention. The system 20 comprises a sender 21, an MMS Centre (MMSC) having a media server 22 and an MMS server 23, and a receiver 24. The MMSC can also be referred to as a communication server.

In this example of a multimedia message streaming method, the sender 21 is a mobile terminal equipped with a video-camera 25 and a microphone (not shown)

25

30

5

which creates media content (an audio/video clip) to be sent to the receiver 24. The receiver 24 is a mobile terminal equipped with appropriate presentation software and equipment to enable presentation of the media content (the audio/video clip). Typically, the sender 21 and the receiver 24 are similar devices, one of them being the sender 21 and another of the being the receiver 24 just because of their roles as sending and receiving parties (sender and recipient). The three phases of the method are described in detail in the following.

In the phase 1, the sender 21 establishes a streaming session with the media (streaming) server 22 which starts storing the media content in a predetermined location. This phase can be considered as a media upload phase.

In the phase 2, the sender 21 sends a notification via the MMS server 23 to the receiver 24 about the media content being stored. The notification includes presentation description information required to establish another streaming session between the receiver 24 and the media server 22. The presentation description information includes, but is not limited to, the following data: the network address of the media server, details of an access mechanism by use of which media content can be retrieved from the media server 22, the type of media to be streamed, the encoding method(s) used to encode the media content and an indication of the transport protocol(s) to be used for media downloading.

In the phase 3, the receiver 24 establishes a streaming session with the media server 22, based on the information received in the notification message and the receiver 24 starts to download and play the media. This phase can be considered as a media download phase. The media content is downloaded as a sequence of content sub-parts, each representing one time period of the streaming session. The content sub-parts may be separate data packets, or one sub-part may be comprised by more than one data packet, depending the type of coding of the media content and payload size of the data packets.

The media server 22 and the MMS server 23 can be merged together or maintained as different entities in the network depending on the implementation chosen by the service provider, which controls them. The media server 22 can be located, for example, in a mobile communications network or can reside in the Internet, possibly under the control of a service provider other than that responsible for provision of services in the mobile communications network.

When streaming is used both in the phase 1 and in the phase 3, the (notification) phase 2 is performed during the (media upload) phase 1 and the (media download) phase 3 can also be started during the phase 1. The sender 21 continues to send the media content to the media server 22 while the media server 22 simultaneously sends those parts of the media content received earlier to the receiver 24. The receiver 24 starts (and continues) playing back the media content with a total delay that depends on the streaming process, data transmission delays, and the time at which the phase 3 was initiated. If the phase 3 is not started automatically, but only after prompting and receiving permission from the user of the receiver 24, the total delay is typically longer than if the phase 3 were to be initiated immediately on notification being received at the receiver 24.

In an alternative embodiment the media content is already stored in the media server 22 and the sender 21 knows the presentation description information of the media content. In this case the phase 1 can be omitted. As stated above, streaming of media content is not essential to phase 1. For example, a non-streaming approach to phase 1 can be used in connection with the provision of media content from a commercial content provider, such as a provider of news content, located in a communications network, such as the Internet. The content provider updates the media content stored on the media server 22 using non-streaming transmission over an IP connection and notifies potential recipients of media content about new clips of interest, using notification messages according to phase 2 of the invention. The recipients of notification messages would be, for example, users having a subscription with the particular content provider. Based on the notification message, at individually convenient times, each recipient can

10

15

20

25

30

decide whether to form a streaming session with the media server 22 in order to retrieve new media content made available by the particular content provider. This also represents an example of a multicasting approach to streaming using the multimedia messaging system according to the invention.

According to an alternative embodiment of the invention, the presentation description information can be stored in a server other than the MMS server 23 or the media server 22, for example in an e-mail or Web-server. In this embodiment, the notification message sent to the receiver 24 identifies the particular server on which the presentation description information is stored and an access mechanism (HTTP GET, WSP GET, IMAP4, POP3, RTSP DESCRIBE) can be used to retrieve the presentation description information from that location. Then the receiver 24 retrieves the presentation description information from the server identified in the notification message using the specified access mechanism. The presentation description information thus retrieved then guides the receiver 24 to invoke phase 3 of the method for retrieving and playing the stored media content. If the server used to store presentation description information is the MMS server 23, the existing MMS solution can be used directly to retrieve the presentation description information. In this situation, the MMS notification from the sender 21 to the MMS server 23 carries presentation description information and the presentation description information is stored in the MMS server 23. The notification from the server storing the presentation description to the receiver 24 then carries the location of the stored presentation description, the server address and other required information. Finally, the receiver 24 follows the MMS to retrieve the presentation description from the MMS server 23.

It should thus be noted that, in certain situations, the information content of the notification message sent from the sender 21 to the MMS server 23 may be different from that sent from the MMS server 23 to the receiver 24.

According to a preferred embodiment of the invention, if the senders 21 and receivers 24 are under the authority of different mutually linked MMS servers (that

5

10

15

20

25

is they have different "serving" multimedia servers), the notification message is carried over the link between the MMS servers. The number of servers that may be linked together between serving MMS servers is not limited for any end-to-end notification.

There are existing protocols for both streaming control and media transport in the Internet domain. Phases 1 and 3 can thus be implemented based on these existing protocols. In this way, the solution provided by the present invention also ensures interworking with the Internet, which is also an important objective of current MMS standard. Phase 2 conforms to existing MMS standards and thus provides backward compatibility with previously proposed mechanisms for non-streamed media content download.

Some practical approaches to accomplish the different phases of the preferred embodiment of the present invention are outlined below as examples.

The Real Time Streaming Protocol (RTSP) is a client-server streaming control protocol that enables controlled delivery of streamed multimedia data over an IP network. It is an application-level protocol and can work in conjunction with either the Transmission Control Protocol (TCP) or User Datagram Protocol (UDP). RTSP provides scope to use RTP (Real-time Transport Protocol)/UDP or any other lower level protocol for media transport. RTSP comprises a set of methods/instructions to control streamed audio and/or video. In this regard, the most useful methods/instructions are OPTIONS, DESCRIBE, ANNOUNCE, SETUP, PLAY, PAUSE, TEARDOWN, REDIRECT and RECORD. The media upload and download can be implemented using SETUP, PLAY, RECORD, PAUSE and TEARDOWN.

The Hypertext Transport Protocol (HTTP) can also be used to enable and control the uploading and downloading of media content according to the invention, using TCP as a transport protocol. HTTP has methods/instructions PUT and GET,

10

15

20

25

30

corresponding to RECORD and PLAY in RTSP, which can be used for media uploading (phase 1) and downloading (phase 3).

UDP is a connectionless lightweight transport protocol providing communication with comparatively low latency. RTP is purposely designed for real-time communication and is implemented in such a way that it provides time-stamps and sequence numbers for data packets on top of UDP. Multicasting is possible using RTP. RTP is further designed to work in conjunction with the auxiliary control protocol RTCP (Real-time Control Protocol) to obtain feedback on the quality of data transmission and information about participants in an on-going session. Together, RTP and RTCP provide functionality and control mechanisms necessary for carrying real-time content and hence to enable streaming of media content and can thus be used in conjunction with the present invention.

TCP is a connection-orientated transport protocol. It ensures guaranteed and sequential reception of data packets at the cost of increased latency and larger overhead compared with UDP. Multicasting is not possible with TCP, but TCP can be used in streaming applications, if initial buffering time is not critical and the media clips to be streamed are comparatively short.

Message control functionality is required on top of streaming control and media transport layers in order to incorporate streaming in the MMS. Figure 3 shows the main protocol layers of a streamed data transmission system according to Figure 2. A message control layer 31 provides overall control of messaging functionality. For example, in the sender 21 the message control layer 31 is responsible for the assembly of media content into multimedia messages and formation of notification messages containing information describing the media content, which are subsequently sent to the intended receiver(s) 24. In the receiver 24, the message control layer 31 is responsible for interpreting received notification messages, extracting information relating to the location of media content to be streamed and information necessary to form streaming sessions to retrieve the media content. The message control layer 31 is also responsible for controlling the transmission

5

10

20

25

30

and reception of any media content that is not to be streamed and/or is not of a type suitable for streaming, according to existing MMS.

A streaming control layer 32 is controlled by the message control layer 31. It is responsible for forming a streaming session for each type of media content to be streamed, according to information provided by the message control layer 31, or according to predefined rules for each media type. It is also responsible for controlling/regulating the streaming of media content once a streaming session is established. In the sender 21, the streaming control layer 32 is responsible for streamed uploading of media content to a media server 22 and conversely, in the receiver 24, it is responsible for controlling the streamed downloading of media content from the media server 22. Alternatively, streaming control functionality may be provided in the media server 22 in a situation, for example, in which streaming is performed in phase 1 and 3 in such a way as to provide real-time or near real-time streaming of media content between senders 21 and receivers 24. A media transport layer 33 handles the actual transportation of data using an appropriate transport protocol. The choice of protocol may be predefined for different media types or may be indicated to the media transport layer 33 via the message control and streaming control layers 31,32 in accordance with information provided in the notification message. In a preferred embodiment, the media streaming control adapts the streaming in accordance with the data transmission channel condition as notified by the media transport layer 33.

Figure 4 shows the structure of different control messages sent between the receiver 24 and an MMSC (or media server 22) during a streamed media content download according to a preferred embodiment of the invention. It illustrates the flow of information to enable a media clip to be played in the receiver 24 using an RTSP session while using RTP/RTCP as a transport protocol. This gives an example of an approach that can be used for downloading a media clip in phase 3 of the present invention. The control messages sent to the receiver 24 are next explained:

10

25

30

The receiver 24 requests for the media content it has been notified about in phase 2. The receiver 24 sends to the MMSC an RTSP setup message (41) for setting up a streaming session, and receives a corresponding acknowledgement (41_ACK). The receiver 24 next sends an RTSP play instruction message (42) to the MMSC, and receives a corresponding acknowledgement (42_ACK). In response to the play instruction, the MMSC starts sending RTP audio (43) and RTP video (44) content to the receiver 24, according to the multimedia message being sent. The receiver 24 may control the MMSC's sending of the media content by an RTCP message (45). Once the user of the receiver 24 desires to pause the streaming downloading of content, he or she requests for pausing the streaming and, responsively, the receiver 24 sends an RTSP pause message (46) to the MMSC, and receives a corresponding acknowledgement (46_ACK). Responsive to the RTSP pause message, the MMSC pauses the sending of the media content (RTP audio and RTP video). Next, an RTSP teardown message (47) is sent from the receiver 24 to the MMSC to end the RTP session, allowing the streaming be continued on a later occasion. A corresponding acknowledgement message (47_ACK) is returned by the MMSC to the receiver 24.

20 By replacing the PLAY instruction with RECORD, a similar session suitable for media uploading in phase 1 of the invention can be implemented, wherein in place of the receiver 24 there is the sender 21.

End-to-end notification is required for message control functionality because, as explained previously, the receiver 24 requires certain information concerning the media content to be streamed in order to take part in a streaming session. According to current MMS specifications, information describing media content is encapsulated together with the media content itself and thus cannot be sent independently to the receiver 24. In the absence of such information, the receiver 24 is unable to download the media content by streaming. By providing separate end-to-end communication of media presentation information, the method according to the invention supplies the receiver 24 with the information it requires in order to download media content by streaming. Furthermore, the existing non-streaming MMS protocol has scope to allow communication of media presentation

10

15

20

25

30

information using end-to-end messaging via an MMS server, rendering the method according to the invention compatible with current MMS standards.

RTSP is believed to represent a best mode for enabling and controlling streaming in phases 1 and 3. A certain degree of compromise in performance is required if RTP/UDP or TCP is used as a media transport protocol. Specifically, implementations using TCP do not provide multicasting functionality, as TCP is a connection orientated protocol. Nevertheless, TCP represents a viable alternative media transport protocol that can be used in connection with the present invention. Indeed, its connection-orientated nature may provide advantages in certain situations, particularly if a more secure streaming connection is desired. According to the preferred embodiment of the invention, the existing MMS protocol is used to provide end-to-end notification of presentation description information from the sender 21 to the receiver 24 via the MMSC in phase 2.

Figure 5 shows a block diagram of a mobile terminal 50 (capable to be either the sender 21 or the receiver 24) incorporating a cellular radiotelephone. The mobile terminal 50 comprises a display 51, a transceiver 52 for transmitting and receiving radio signals, a digital signal processor (DSP) 53 for processing data and voice into and from the radio signals, a user input device such as a keypad or keyboard 54, and a central processing unit 55, the operation of which is controlled by software. The mobile terminal 50 further comprises a memory 56 for storing data and the software. The memory is used by the DSP 53 and the CPU 55. The software comprises an operating system and applications for controlling the operation of the mobile terminal 50 and for providing certain functionality, such as MMS. The mobile terminal 50 also comprises a removable smart card such as a SIM 57 for subscriber identification. The portion of the memory 56 that is dedicated to storing applications is so-called non-volatile memory that retains its contents even if the mobile terminal's power supply becomes depleted. The applications can be stored in any manner known in the art, including factory installation, storing from a personal computer and downloading over the air, for example from a server

20

25

in a communications network. All of these techniques are known, for example, from the Nokia® 9110 Communicator.

Figure 6 shows a radio adapter card 61 for a laptop PC 62 according to an embodiment of the invention, capable of acting as the sender 21 and as the receiver 24. The radio adapter card is fitted into a PCMCIA-slot of the laptop PC 62 (PCMCIA, Personal Computer Memory Card International Association).

While the invention has been described in relation to its implementation in a communications network in which at least part of the network comprises a radio communication link, it should be emphasised that its use is not in any way limited to this kind of network. The invention may equally well be implemented in networks where the physical connections between the various elements of the network (sender 21, receiver 24 and network servers) are implemented partially or entirely by means of fixed line connections.

The operation of the servers and terminals involved with different embodiments of the invention, such as the MMSC, the sender 21 and the receiver 24, is preferably controlled by computer program products causing these entities to operate according to the invention.

Particular implementations and embodiments of the invention have been described. It is clear to a person skilled in the art that the invention is not restricted to details of the embodiments presented above, but that it can be implemented in other embodiments using equivalent means without deviating from the characteristics of the invention. The scope of the invention is only restricted by the attached patent claims.