[Sentiment Analysis] (CheatSheet)

1. Data Collection

- Read data from CSV: df = pd.read_csv('file.csv')
- Read data from JSON: df = pd.read_json('file.json', lines=True)
- Load text data from files: text = open('file.txt', 'r').read()
- Fetch data via API: data = requests.get('API_ENDPOINT').json()
- Stream data from Twitter: tweets = tweepy.Cursor(api.search, q='keyword', lang="en").items()
- Web scraping with BeautifulSoup: soup = BeautifulSoup(page.content, 'html.parser')
- Use Pandas to read HTML tables: tables = pd.read_html('URL')
- Read Excel files: df = pd.read_excel('file.xlsx')
- Read data from SQL database: df = pd.read_sql_query("SELECT * FROM table_name", connection)
- Collect data from online forums (e.g., Reddit): submissions = reddit.subreddit('subreddit').hot(limit=100)

2. Data Preprocessing

- Tokenization with NLTK: tokens = nltk.word_tokenize(text)
- Tokenization with spaCy: doc = nlp(text); tokens = [token.text for token in doc]
- Lowercasing: lower_text = text.lower()
- Removing punctuation: import string; text =
 text.translate(str.maketrans('', '', string.punctuation))
- Removing stopwords (NLTK): filtered = [word for word in tokens if word not in stopwords.words('english')]
- Removing stopwords (spaCy): filtered = [token.text for token in doc if not token.is_stop]
- Stemming (NLTK): stemmed = [PorterStemmer().stem(word) for word in tokens]
- Lemmatization (NLTK): lemmatized = [WordNetLemmatizer().lemmatize(word) for word in tokens]
- Lemmatization (spaCy): lemmatized = [token.lemma_ for token in doc]
- Remove non-alphabetic characters: alpha_only = [word for word in tokens if word.isalpha()]
- Remove short words: long_words = [word for word in tokens if len(word) > 2]

- Regex operations for text cleaning: clean_text = re.sub(r'\W+', ' ',
- Expanding contractions: expanded_text = contractions.fix(text)
- Removing HTML tags: clean_text = BeautifulSoup(raw_html, 'html.parser').get_text()
- **Detecting and converting emojis**: emoji.demojize(text)
- Splitting text into sentences: sentences = nltk.sent_tokenize(text)
- Using custom stopword list: custom_filtered = [word for word in tokens if word not in custom_stopwords]
- Advanced Tokenization: Use spaCy or Hugging Face's tokenizer for advanced tokenization needs.
 - o spacy.load("en_core_web_sm").tokenizer(text)
 - o from transformers import AutoTokenizer; tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased"); tokenizer(text)
- Custom Stopword Removal: Tailor your stopword list to better fit the context of your data.
 - o my_stopwords = set(stopwords.words('english') + ['customWord1', 'customWord2']); filtered_words = [word for word in tokenized_text if word not in my_stopwords]
- Lemmatization with Context: Utilize spaCy's lemmatization which considers part of speech.
 - o lemmatized = [token.lemma_ for token in spacy.load("en_core_web_sm")(text)]
- Synonym Replacement: Enhance the robustness of your dataset by incorporating synonyms.
 - o from nltk.corpus import wordnet; synonyms = [syn.lemmas()[0].name() for syn in wordnet.synsets(word)]
- Phrase Detection and Modeling with Gensim: Detect and model phrases (bigrams, trigrams) to capture multi-word expressions.
 - o from gensim.models.phrases import Phrases, Phraser; phrases = Phrases(sentences); bigram = Phraser(phrases); bigram[sentence]

3. Feature Extraction

- Count Vectorization (Scikit-learn): vectorizer = CountVectorizer().fit_transform(corpus)
- TF-IDF Vectorization (Scikit-learn): tfidf_vectorizer = TfidfVectorizer().fit_transform(corpus)
- Word Embeddings (Word2Vec): model = Word2Vec(sentences)
- **Document Embedding with Doc2Vec**: model = Doc2Vec(documents)
- Bag of N-grams: ngram_vectorizer = CountVectorizer(ngram_range=(1, 2)).fit_transform(corpus)

- Character-level Vectorization: char_vectorizer = CountVectorizer(analyzer='char').fit_transform(corpus)
- Using pre-trained Word Embeddings (e.g., GloVe): embeddings = {word: vec for word, vec in glove}
- **TF-IDF with N-grams**: tfidf_ngram_vectorizer = TfidfVectorizer(ngram_range=(1, 3)).fit_transform(corpus)
- **POS Tagging for Feature Engineering**: pos_tags = nltk.pos_tag(tokens)
- Sentiment Scores as Features (VADER): sentiment_scores = SentimentIntensityAnalyzer().polarity_scores(text)
- Feature Selection using Chi-Square: chi2_features = SelectKBest(chi2, k=1000).fit_transform(X_tfidf, y)
- Embedding with BERT (Transformers): model = BertModel.from_pretrained('bert-base-uncased')

4. Sentiment Analysis Models

- Naive Bayes Classifier: model = MultinomialNB().fit(X_train, y_train)
- Logistic Regression: model = LogisticRegression().fit(X_train, y_train)
- Support Vector Machine (SVM): model = SVC().fit(X_train, y_train)
- Random Forest Classifier: model = RandomForestClassifier().fit(X_train, y_train)
- Gradient Boosting Machines: model = GradientBoostingClassifier().fit(X_train, y_train)
- Deep Learning Model (Keras/TensorFlow): model = Sequential([...])
- Using Pre-trained Models (e.g., BERT for sentiment): model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
- Fine-tuning Pre-trained Models: model.fit(X_train, y_train)
- LSTM Network for Sentiment Analysis: model = Sequential([LSTM(units), Dense(1, activation='sigmoid')])
- CNN for Text Classification: model = Sequential([Conv1D(filters), MaxPooling1D(), Flatten(), Dense(1, activation='sigmoid')])
- Transfer Learning with Hugging Face Transformers: model = AutoModelForSequenceClassification.from_pretrained('model_name')
- Ensemble Learning Methods: ensemble = VotingClassifier(estimators=[('lr', model1), ('rf', model2)], voting='hard')
- Custom Sentiment Analysis with spaCy: custom_sentiment = spacy.load('en_core_web_sm'); custom_sentiment.add_pipe('custom_component')

5. Evaluation and Interpretation

- Accuracy Score: accuracy = accuracy_score(y_test, y_pred)
- Precision, Recall, and F1 Score: precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred)
- Confusion Matrix: conf_matrix = confusion_matrix(y_test, y_pred)
- ROC Curve and AUC: fpr, tpr, _ = roc_curve(y_test, y_scores); auc_score = auc(fpr, tpr)
- Classification Report: report = classification_report(y_test, y_pred)
- Cross-Validation Scores: cross_val_scores = cross_val_score(model, X, y, cv=5)
- Plotting Learning Curves: plot_learning_curve(model, 'Learning Curve', X,
 y)
- Mean Absolute Error (MAE) for regression models: mae = mean_absolute_error(y_true, y_pred)
- Mean Squared Error (MSE) for regression models: mse = mean_squared_error(y_true, y_pred)
- R-squared score for regression models: r2 = r2_score(y_true, y_pred)
- Kappa Score: kappa = cohen_kappa_score(y_true, y_pred)
- Log Loss: logloss = log_loss(y_true, y_pred_proba)
- Area Under the Precision-Recall Curve: auc_pr = average_precision_score(y_true, y_scores)
- Explaining Model Predictions (e.g., with SHAP): explainer = shap.Explainer(model); shap_values = explainer(X)
- Feature Importance from models: importances = model.feature_importances_

6. Visualization

- Plotting Confusion Matrix:
 - ConfusionMatrixDisplay.from_predictions(y_true, y_pred)
- ROC Curve Plotting: RocCurveDisplay.from_estimator(model, X_test, y_test)
- Precision-Recall Curve: PrecisionRecallDisplay.from_estimator(model, X_test, y_test)
- Feature Importance Visualization: sns.barplot(x=importances, y=feature_names)
- Word Cloud for Text Data: WordCloud(background_color='white').generate('
 '.join(texts)).to_image()
- **Histogram of Sentiment Scores**: plt.hist(sentiment_scores, bins=50)
- Box Plot for Comparing Model Performances: sns.boxplot(data=models_performance)
- Heatmap of Confusion Matrix: sns.heatmap(conf_matrix, annot=True, fmt='d')

- Time Series Analysis of Sentiment Trends: plt.plot(date_series, sentiment_series)
- Distribution of Text Length or Sentiment: sns.distplot(text_lengths); sns.distplot(sentiment_scores)

7. Advanced Techniques

- Aspect-Based Sentiment Analysis: Identify aspects and analyze sentiment for each aspect separately.
- Sentiment Analysis with Transformers: from transformers import pipeline; sentiment_pipeline = pipeline('sentiment-analysis'); results = sentiment_pipeline('We love Python!')
- Multilingual Sentiment Analysis: Support for multiple languages can be achieved with models like 'xlm-roberta-base'.
- Sentiment Analysis in Streaming Data: Use libraries like PySpark for real-time sentiment analysis on streaming data.
- Using BERT for Fine-Tuning on Sentiment Data: from transformers import BertTokenizer, TFBertForSequenceClassification; tokenizer = BertTokenizer.from_pretrained('bert-base-uncased'); model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
- Leveraging GPT-3 for Sentiment Analysis: OpenAI's GPT-3 can be fine-tuned or prompted for advanced sentiment analysis tasks.
- Customizing VADER Sentiment Intensity Analyzer: Customize the VADER lexicon to better fit your specific dataset and domain.
- Sentiment Analysis with Deep Learning (RNN, LSTM, GRU): Building and training deep learning models like RNNs, LSTMs, and GRUs for capturing sequential dependencies in text data.
- Zero-shot Sentiment Analysis: Leverage pre-trained models to perform sentiment analysis without any training data on your specific task.
- Transfer Learning in NLP: Utilize a pre-trained NLP model and fine-tune it on your sentiment analysis dataset for better performance.

8. Model Optimization and Tuning

- Hyperparameter Tuning with GridSearchCV: Optimize model parameters for best performance.
 - o from sklearn.model_selection import GridSearchCV; grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5); grid_search.fit(X_train, y_train)
- Cross-Validation for Model Evaluation: Use cross-validation to assess model robustness.

- o from sklearn.model_selection import cross_val_score; scores = cross_val_score(model, X, y, cv=5)
- Using Early Stopping to Prevent Overfitting: Implement early stopping during model training (applicable in deep learning models).
 - o from keras.callbacks import EarlyStopping; early_stopping = EarlyStopping(monitor='val_loss', patience=10); model.fit(X_train, y_train, validation_split=0.2, callbacks=[early_stopping])
- Ensemble Methods for Improved Performance: Combine multiple models to improve prediction accuracy.
 - o from sklearn.ensemble import VotingClassifier; ensemble = VotingClassifier(estimators=[('model1', model1), ('model2', model2)], voting='soft'); ensemble.fit(X_train, y_train)

9. Post-processing and Deployment

- Serialize Model with joblib: joblib.dump(model, 'model_filename.pkl')
- Load a Model: model = joblib.load('model_filename.pkl')
- Create a Flask API for your model: @app.route('/predict', methods=['POST'])
- Use Docker to Containerize Your Application: FROM python:3.8-slim-buster
- Deploy to AWS Lambda using Serverless Framework: serverless deploy
- Use Streamlit for Quick Web Interfaces: streamlit run your_script.py
- Monitor Model Performance with MLflow: mlflow.log_metric("accuracy", accuracy)
- Update Model with Continuous Training: if performance_degrades: retrain_model()
- Use FastAPI for Modern Web APIs: @app.post("/predict/")
- Integrate Model with Messaging Platforms (Slack, Telegram) for Notifications: requests.post('SLACK_WEBHOOK_URL', json={'text': 'New prediction received'})
- Version Control for Models with DVC (Data Version Control): dvc add data_directory
- Use TensorFlow Serving for Model Deployment: tensorflow_model_server --rest_api_port=8501 --model_name=sentiment_model --model_base_path="/path/to/model"
- Deploy to Google Cloud Run: gcloud run deploy --image gcr.io/project/image
- Use Azure ML for Deployment and Monitoring: az ml model deploy -n mymodel -m model:1
- Deploy to Heroku using Git: git push heroku master

10. Libraries and Installation Commands

- NLTK: !pip install nltk
- Scikit-learn: !pip install scikit-learn
- Pandas: !pip install pandas
- TextBlob: !pip install textblob
- spαCy: !pip install spacy
- gensim: !pip install gensim
- Beautiful Soup: !pip install beautifulsoup4
- Tweepy for Twitter data: !pip install tweepy
- Requests for HTTP requests: !pip install requests
- Hugging Face Transformers: !pip install transformers
- SHAP for model explanation: !pip install shap
- Matplotlib & Seaborn for visualization: !pip install matplotlib seaborn
- WordCloud for generating word clouds: !pip install wordcloud

11. Application in Real-World Scenarios

- Real-time Sentiment Analysis: stream = Stream(auth, listener); stream.filter(track=['keyword'])
- Sentiment Analysis in Multilingual Texts: translated = df['text'].apply(lambda x: GoogleTranslator(source='auto', target='en').translate(x)); df['sentiment'] = translated.apply(lambda x: TextBlob(x).sentiment.polarity)
- Aspect-based Sentiment Analysis: aspect_terms = extract_aspects(df['text']); df['aspect_sentiment'] = aspect_terms.apply(lambda x: TextBlob(x).sentiment.polarity)
- Sentiment Analysis Dashboard with Dash/Plotly: app = JupyterDash(__name__); app.layout = html.Div([...]); app.run_server(debug=True)
- Using Sentiment Analysis for Customer Feedback Analysis: feedback_sentiments = df['customer_feedback'].apply(lambda x: TextBlob(x).sentiment.polarity)

12. Going Beyond Traditional Sentiment Analysis

- Detecting Sarcasm in Texts: model_sarcasm = Sequential([...]); model_sarcasm.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']);
- Emotion Detection: emotion_model = Sequential([...]); emotion_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']);

- Sentiment Analysis with Multi-Label Classification: model_multi_label = Sequential([...]); model_multi_label.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']);
- Integrating Sentiment Analysis into Chatbots: if detect_sentiment(message) < -0.5: respond_with_empathy(); else:</pre> respond_normally();
- Ethical Considerations and Bias Mitigation in Sentiment Analysis: bias_metrics = analyze_bias(sentiment_scores); if bias_metrics['unfairness'] > threshold: mitigate_bias();

13. Leveraging Deep Learning and Transfer Learning

- Using Pre-trained Word Embeddings (GloVe): embeddings_index = dict(get_coefs(*o.strip().split()) for o in open('glove.6B.100d.txt')); embedding_matrix = np.zeros((len(word_index) + 1, 100)); for word, i in word_index.items(): embedding_vector = embeddings_index.get(word); if embedding_vector is not None: embedding_matrix[i] = embedding_vector
- Fine-tuning BERT for Sentiment Analysis: from transformers import BertTokenizer, TFBertForSequenceClassification; tokenizer = BertTokenizer.from_pretrained('bert-base-uncased'); model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased');
- Sentiment Analysis with Convolutional Neural Networks (CNNs): model_cnn = Sequential([Embedding(input_dim=len(word_index)+1, output_dim=100, weights=[embedding_matrix], input_length=max_len, trainable=False), Conv1D(filters=128, kernel_size=5, activation='relu'), GlobalMaxPooling1D(), Dense(10, activation='relu'), Dense(1, activation='sigmoid')]); model_cnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']);
- Sentiment Analysis with Recurrent Neural Networks (RNNs): model_rnn = Sequential([Embedding(input_dim=len(word_index)+1, output_dim=100, weights=[embedding_matrix], input_length=max_len, trainable=False), SimpleRNN(128), Dense(10, activation='relu'), Dense(1, activation='sigmoid')]); model_rnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']);
- Using LSTM for Sequence Modeling: model_lstm = Sequential(); model_lstm.add(Embedding(input_dim=len(word_index)+1, output_dim=100, weights=[embedding_matrix], input_length=max_len, trainable=False)); model_lstm.add(LSTM(128)); model_lstm.add(Dense(1, activation='sigmoid')); model_lstm.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']);