1	E' dato il triangolo isoscele ABC di base BC si prolunghino, oltre il vertice A, i due lati BA e CA rispettivamente di due segmenti AE e AD congruenti tra loro. Dimostra che i segmenti BD e CE sono congruenti.
2	E' dato l'angolo rs di vertice O. Sulla semiretta r si considerino i punti A e B e sulla semiretta s i punti P e Q in modo che sia $OA \cong OP$ e $OB \cong OQ$. Dimostra che $AQ \cong BP$.
3	Siano AH e BK le bisettrici degli angoli alla base di un triangolo isoscele ABC. Dimostra che CK \cong CH.
4	E' dato il triangolo isoscele ABC; sulla base AB si prendano i punti R e S tali che $AR\cong BS$. Dimostra che il triangolo CSR è isoscele.
5	Un triangolo isoscele è diviso in due triangoli dalla bisettrice relativa all'angolo al vertice. Dimostra che i due triangoli sono congruenti.
6	Dato un triangolo ABC, si prolunghi la mediana AM di un segmento MP≅AM. Dimostrare che BP≅AC e PC≅AB.
7	E' dato il triangolo isoscele ABC; si prolunghi la base AB da ambo le parti, e su detti prolungamenti si prendano due punti D ed E tali che AD≅ BE. Dimostra che CDE è un triangolo isoscele.
8	Dimostra che due triangoli isosceli sono congruenti se hanno congruenti la base e uno degli angoli ad essa adiacenti.
9	Sia ABC un triangolo equilatero. Prolunga nello stesso verso i suoi lati rispettivamente dei segmenti AD, BE, e CF congruenti tra loro. Dimostra che il triangolo DEF è ancora equilatero.
10	In un triangolo equilatero ABC si conducano le bisettrici degli angoli ABC e ACB e si chiami P il loro punto di incontro. Dimostrare che il triangolo PBC è isoscele e che i triangoli BPA, BPC e CPA sono congruenti.

11	Sia ABC un triangolo equilatero. Considera sui tre lati del triangolo tre punti R, S, T in modo che risulti $AR \cong BS \cong CT$. Congiungi i tre punti e dimostra che anche il triangolo RST è equilatero. Considera il caso in cui il punto R è punto medio del lato AB. Quanti triangoli equilateri si formano?
12	I triangoli ABC e PQR sono equilateri ed è AB≅ PQ. Dimostrare che i due triangoli sono congruenti.
13	E' dato un triangolo isoscele; dimostrare che i punti medi dei lati sono vertici di un triangolo isoscele.
14	Dimostra che in ogni triangolo isoscele le mediane relative ai lati congruenti sono congruenti.
15	Dimostra che in ogni triangolo isoscele le bisettrici relative agli angoli congruenti sono congruenti.
16	Nel triangolo isoscele ABC, di base AB, sia G il punto di incontro delle mediane AM e BN relative ai lati congruenti; dimostra che i triangoli AGN e BGM sono congruenti.
17	Del triangolo isoscele ABC, di base AB, sia CD la bisettrice dell'angolo $A\hat{C}B$. Considera sui lati obliqui AC e BC, rispettivamente, due punti P e Q tali che AP \cong BQ. Dimostra che il triangolo PDQ è isoscele.
18	Sia $X\widehat{O}Y$ un angolo la cui bisettrice è OM; sui lati OX e OY si considerino rispettivamente i punti A e B tali che $OA \cong OB$ e sia C il punto di intersezione di OM con AB. Dimostrare che $AC \cong BC$.
19	Sia OM la bisettrice di un angolo qualsiasi di vertice \hat{O} ; sui lati dell'angolo si prendano due segmenti congruenti OA e OB. Dimostrare che le congiungenti i punti A e B con un punto qualunque C della bisettrice OM sono congruenti.
20	Del triangolo isoscele ABC si consideri la mediana AH relativa alla base BC ed un suo punto P; la retta BP incontra AC in K e la retta CP incontra AB in T. Dimostrare che BK è congruente a CT.

21	Si prolunghi l'altezza AH del triangolo ABC di un segmento HP≅ AH. Dimostrare che i triangoli ABP e ACP sono isosceli.
22	Sia AM una mediana del triangolo qualunque ABC. Sul prolungamento di AM dalla parte di M si costruisca un segmento MP≅AM. Dimostrare che il triangolo ACM è congruente al triangolo BMP.
23	Si conducano le bisettrici di due angoli di un triangolo equilatero e si congiunga il loro punto di intersezione con i tre vertici. Dimostra che si ottengono tre triangoli congruenti tra loro.
24	Disegna un triangolo equilatero ABC e indica con 0 l'ortocentro (punto di incontro delle altezze). Dimostra che i triangoli AOB, AOC e BOC sono congruenti.
25	Dimostra che in un triangolo isoscele ABC di base AB, le bisettrici AE e BF sono congruenti.
26	Dato un triangolo equilatero, congiungi i punti medi dei suoi lati e dimostra che il triangolo dato risulta diviso in quattro triangoli equilateri congruenti fra loro.
27	Considera un triangolo isoscele e congiungi fra loro i punti medi dei lati. Dimostra che i quattro triangoli che si formano sono isosceli e congruenti.
28	Dato l'asse r di un segmento AB, segna un punto qualsiasi P dell'asse stesso, non appartenente al segmento AB. Dimostra che i triangoli PMA e PMB sono congruenti.
29	Sia ABC un triangolo isoscele sulla base AB. Considera un punto P sulla bisettrice dell'angolo AĈB e congiungilo con i vertici A e B. Dimostra che i triangoli APC e BPC sono congruenti.
30	Sulla bisettrice AD dell'angolo di un triangolo ABC, prendi i segmenti AE≅AB e AF≅AC. Dimostra che BF≅CE.

31	Date due rette incidenti in O, prendi su una stessa retta e da parti opposte rispetto a O i segmenti OA o OB congruenti fra loro; sull'altra retta porta, sempre da parti opposte rispetto a O, i segmenti congruenti fra loro, ma non ai precedenti, OC e OD. Dimostra che i triangoli OAC e OBD sono congruenti.
32	È dato il segmento AB e il suo punto medio O; in A e in B da parte opposta rispetto ad AB conduci le semirette AX e BZ formanti due angoli congruenti con AB. Per il punto O conduci una prima retta che intersechi AX in C e BZ in D, poi una seconda retta che intersechi AX in E e BZ in F. Dimostra che si ha: $AC \cong BD$; $CE \cong DF$; $CF \cong DE$.
33	Dimostra che due triangoli rettangoli sono congruenti se hanno congruenti l'ipotenusa, un cateto e la mediana ad esso relativa
34	Due triangoli isosceli hanno congruenti l'angolo al vertice e la mediana relativa alla base. Dimostra che i due triangoli sono congruenti.
35	Dimostra che due triangoli sono congruenti se hanno ordinatamente congruenti un lato e i due angoli esterni aventi il vertice negli estremi di questo lato.
36	Dimostra che due triangoli rettangoli sono congruenti se hanno congruenti un cateto, l'ipotenusa e la mediana ad essa relativa.
37	Dimostra che due triangoli rettangoli sono congruenti se hanno congruenti l'ipotenusa, un angolo acuto e la relativa bisettrice.
38	Dimostra che due triangoli rettangoli sono congruenti se hanno congruenti un cateto e la bisettrice dell'angolo retto
39	Dimostra che se in un triangolo ABC l'altezza AH relativa al lato BC è anche la bisettrice dell'angolo $C\hat{A}B$, allora il triangolo ABC è isoscele.
40	Siano ABC e ABC' due triangoli isosceli aventi base comune AB e appartenenti a semipiani opposti aventi come origine la retta AB. Dimostra che CC' è bisettrice degli angoli $A\hat{C}B$ e $A\widehat{C'}B$.

41	Sui lati a e b di un angolo a $\hat{O}b$ considera due punti A e B tali che $OA \cong OB$. Dimostra che, comunque si prenda un punto P appartenente alla bisettrice di $a\hat{O}b$, i due triangoli OPA e OPB sono congruenti. Considera poi due punti $R \in a$ ed $S \in b$ tali che $R \notin OA$, $S \notin OB$ e $RA \cong SB$; dimostra che $RP \cong SP$.
42	Dato un triangolo ABC, traccia una semiretta con origine in B, appartenente al semipiano avente come origine la retta AB e che non contiene il punto C, tale da formare con AB un angolo congruente all'angolo \widehat{CAB} . Detto C' il punto di intersezione del prolungamento della mediana CM con tale semiretta, dimostra che $AC \cong BC'$.
43	Considera un angolo $A\widehat{O}B$. Fissa sul lato AO i punti M e N e sul lato BO i punti P e Q in modo che sia $OM \cong OP$ e $ON \cong OQ$. Congiungi N con P e M con Q . Dimostra che i triangoli NOP e QOM sono congruenti.
44	Dimostra che due quadrilateri convessi ABCD e A'B'C'D' che hanno i lati ordinatamente congruenti e $\widehat{A}\cong\widehat{A}'$ sono congruenti.
45	Sia dato il triangolo ABC. Sul prolungamento del lato AB, dalla parte di A, prendi il segmento AH tale che HA≅AB, e sul prolungamento del lato CA, dalla parte di A, prendi il segmento AK tale che AK≅CA. Dimostra che il triangolo ABC è congruente al triangolo AHK.
46	Sia O il punto medio del segmento AB. Per O traccia una retta qualsiasi s e costruisci su di essa, da parti opposte rispetto ad O, due segmenti congruenti OH e OK. Dimostra che i due triangoli OBH e OAK sono congruenti.
47	Un quadrilatero ABCD è tale che $\widehat{ADB} \cong \widehat{BDC}$. Dimostra che, se sulla diagonale BD esiste un punto P tale che $\widehat{APB} \cong \widehat{BPC}$, allora i due triangoli ADC e ABC sono congruenti.
48	Considera il triangolo ABC, isoscele sulla base AB, e un punto D sul prolungamento di CB dalla parte di B. Dimostra che $\widehat{CAB} > \widehat{BDA}$.

Sono dati due triangoli ABC e A'BC congruenti tra loro e giacenti dalla stessa parte rispetto al lato comune BC. Sapendo che AB > CA e CA' > A'B, detto D il punto di intersezione dei segmenti AB e CA', dimostra che il triangolo DBC è isoscele e che i triangoli DCA e DA'B sono tra loro congruenti.

50

Prolunga il lato BC di un triangolo equilatero ABC, da parti opposte, di due segmenti CD e EB congruenti a BC. Conduci da D la perpendicolare a ED e traccia la retta EA fino a incontrare tale perpendicolare in F. Dimostra che CA e EF sono perpendicolari e che CF e AB sono paralleli.