Sistemas Digitais Somadores

Aula 04

Prof. Leandro Nogueira Couto UFU – Monte Carmelo 05/2013

E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: Assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S=A.B
OU OR		A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: Assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S=A+B
NÃO NOT	->>-	A S 0 1 1 0	Função NÃO: Inverte a variável aplicada à sua entrada.	S=A
NE NAND		A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: Inverso da função E.	S=(A.B)
NOU NOR	→	A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: Inverso da função OU.	S=(A+B)
OU EXCLUSIVO	#>-	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: Assume 1 quando as variáveis assumirem valorem diferentes entre si.	$S = A \oplus B$ $S = \overline{A}.B + A.\overline{B}$
COINCIDÊN CIA	#>>-	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: Assume 1 quando houver coincidência entre os valores das	$S = A_{\odot}B$ $S = \overline{A}.\overline{B} + A.B$

Você já pensou que **toda função** de um computador se encaixa em uma das categorias:

- Processamento de dados
- Armazenamento de dados
- Movimentação de dados
- Controle

As 5 partes básicas de um computador: Entrada, Saída, Memória, Unidade Lógica Aritmética e Unidade de Controle

Vamos relembrar os resultados de uma soma de 1 bit com outro

Vamos relembrar os resultados de uma soma de 1 bit com outro

Como podemos fazer isso usando portas lógicas?

- Vamos tentar fazer a tabela verdade dos bits de saída
- Como podemos escrever um circuito para cada bit de saída?

Como podemos fazer isso usando portas lógicas?

- Vamos tentar fazer a tabela verdade dos bits de saída
- Como podemos escrever um circuito para cada bit de saída?

- Chamamos o valor resultante de S (de saída) e o "vai um" de carry
- Esse circuito é chamado meio-somador ou halfadder. Porque?

- Para podermos fazer um somador para vários bits, o que devemos fazer?
- Encadear vários somadores!
- Para isso, precisamos de algumas modificações no nosso meio-somador

- Para podermos fazer um somador para vários bits, o que devemos fazer?
- Encadear vários somadores!
- Para isso, precisamos de algumas modificações no nosso meio-somador

$$\begin{array}{c}
1110 \\
+0111
\end{array}
\xrightarrow{\begin{array}{c}1110 \\
+0111
\end{array}}
\xrightarrow{\begin{array}{c}1110 \\
+0111
\end{array}}
\xrightarrow{\begin{array}{c}1110 \\
-1110
\end{array}}
\xrightarrow{\begin{array}{c}111 \\
-10101
\end{array}}$$

 Vamos escrever a tabela-verdade para um somador, agora considerando como entradas os bits A e B, e além disso se existe ou não carry (vai-um ou transporte) vindo de uma operação anterior

- Vamos escrever a tabela-verdade para um somador, agora considerando como entradas os bits A e B, e além disso se existe ou não carry (vai-um) vindo de uma operação anterior
- Note que:

Te = Cin (transporte entrada)

Ts = Cout (transporte saída)

A	В	TE	S	T_{s}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 Aplicando mapa de Karnaugh, veremos que (simplificando)

$$S = A \oplus B \oplus Cin$$

E veremos que

```
Cout = BCin + ACin + AB
```

 Construindo o circuito para as fórmulas, temos o somador-completo ou full-adder (pois considera o carry)

• Outra maneira de escrever o full-adder:

 Para evitar desenhar toda vez o circuito, usamos uma "caixinha" para representá-lo

 Como usar o somador-completo para somar 2 números de 4 bits?

 Como usar o somador-completo para somar 2 números de 4 bits?

Outra forma de desenhar

 Note que podemos fazer um somador-completo usando 2 meio-somadores

Essa equivalência é obtida com um pouco de

fatoração

- Podemos usar o mesmo raciocínio para fazer um circuito subtrator
- Como fica a tabela-verdade da subtração?
- Lembrando das regras:

	Minuend		Subtrahend		Difference	Borrow out
Rule 1	0		0	=	0	
Rule 2	0	·	1	=	1	and borrow 1
Rule 3	1	-	0	=	1	
Rule 4	1	-	1	=	0	

• Tabela-Verdade:

Half Subtractor-Truth Table						
Ing	Input Output					
Α	В	Difference	Borrow			
0	0	0	0			
0	1	1	1			
1	0	1	0			
1	1	0	0			
www.flintgroups.com						

• Circuito Lógico do meio-subtrator:

• E o subtrator-completo?

- E o subtrator-completo?
- Tabela-Verdade:

Λ	В	$T_{\rm E}$	S	Ts
Ð	0	0	0	0
0'	0	1	1	1
0	1.	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	Q
1	1	0	0	0
1	1	1	1	1.

 Aplicando mapa de Karnaugh, veremos que (simplificando)

$$S = A \oplus B \oplus Cin$$

• E veremos que

Cout = BCin +
$$(\sim A)$$
Cin + $(\sim A)$ B

 Da mesma forma que no somador, achamos o circuito do subtrator-completo:

Para subtrair 2 números de 4 bits:

• Para subtrair 2 números de 4 bits:

 Da mesma forma podemos tirar um subtratorcompleto a partir de 2 meio-subtratores

- Podemos ver que somador e subtrator são parecidos.
 Podemos fazer um circuito que faz as duas coisas?
- Quero ter uma nova entrada, um bit de controle que quando for 0 faz o circuito efetuar soma e quando for 1 efetua subtração

 Nova tabela-verdade, combinando somador e subtrator

М	Α	В	$T_{\rm E}$	S	T_{s}		
0	0	0	0	0	0	l. 1	
0	i o	0	1	1	0		
0	. 0	1	0	1	0		
. 0	0	1	1	0	1	- [.	Soma
0	1	0	0	1	0	}	Completa
0	1	0	1 `	0	1 -		(M = 0)
0	1	1	0	0	1		
0	1	1	- 1	1	1		
1	0	.0	0	0	0	ì	
1	0	0	1	1	1		-
1	0	1	0	1	1		
.1	0	1	1	0	1		Subtraçã
1	1	0	Ο.	1	0	}	Complet
1	1	0 .	1	0	0		$(\mathbf{M}=1)$
1	1	1	0	0	0		
1	1	1	1	1	1	.,	

 Vamos fazer o diagrama de Karnaugh para S e T?

- Vamos fazer o diagrama de Karnaugh para S e T?
- $S = A \oplus B \oplus Cin$
- Cout = BCin + (~M)AB + (~M)ACin + M(~A)B + M(~A)Cin

 Fatorando Cout um pouco... como fica? (dica, coloque B e Cin em evidência)

Esquema final

 Há outra forma de fazer um somador/subtrator, aproveitando a semelhança entre os circuitos (nota, FA = full-adder, ou somador-completo)

