情報処理工学第6回

藤田 一寿

公立小松大学保健医療学部臨床工学科

論理回路

■ 論理回路

- 論理演算を回路で表したものを論理回路とよぶ.
- ・コンピュータは論理回路により様々な処理を実現している.

- ・ 論理回路を構成する素子のことを論理素子と言う.
- 論理回路は1と0を扱う. 1と0はそれぞれ真と偽, T (True)とF (False), もしくはH (High)とL(Low)と呼ばれることもある.

論理素子

• 論理積(AND),論理和(OR),否定(NOT),排他的論理和 (XOR) それぞれに対応した論理回路を構成する素子がある.

A -	+B	=Y		$\overline{A} =$	= Y
Α	В	Υ		Α	\ <u>\</u>
			Ĭ	А	I Y

AND回路(ゲート) OR回路(ゲート) NOT回路(ゲート) XOR回路(ゲート)

$A \oplus B = Y$		
А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

NAND回路, NOR回路

• 論理積の否定および論理和の否定を出力する回路を、それぞれNAND 回路、NOR回路と呼ぶ。

• NOT回路の三角の部分は省略できるので、それぞれの回路は次のように描くことができる、

■ 論理式から論理回路を作る

• 論理式で用いる論理演算に対応する論理素子がそれぞれあるので、論 理式は論理回路に変換することができる.

例題

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

注意:線が接続している部分は黒丸で描く.

論理式の簡略化と論理回路

• 論理式を論理回路にするとき、論理式はなるべく簡単化した後に論理 回路にする。

$$Y = (A + B) + A \cdot B$$
$$= A + B$$

・次の論理式を論理回路に直せ.

$$Y = A \cdot B + \overline{A} \cdot \overline{B}$$

・ 次の論理式を論理回路に直せ.

$$Y = A \cdot B + \overline{A} \cdot \overline{B}$$

AND OR NOT =D- =D- -D-

論理回路を論理式に変換する.

この回路を論理式に変換してみる.

まず、入力に近い回路から論理式に変換する.

出力を計算するAND回路は、 入力に接続されている回路 の出力を受け取る。

$$Y = (A + B) \cdot (A \cdot B)$$

論理回路の簡略化

• 先の例の論理回路から得られた論理式を見ると、論理式を簡単化する ことができることが分かる。

$$Y = (A + B) \cdot (A \cdot B)$$

簡単化可能

論理回路の簡略化

例題で扱った回路は、簡略化するとAND回路となった。

論理回路から真理値表を作る.

• 論理回路の動作は、論理式だけではなく真理値表でも表現することができる。

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

論理回路から真理値表を作る.

• 論理回路の動作は、論理式だけではなく真理値表でも表現することができる。

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

論理回路から真理値表を作る.

・論理回路の動作は、論理式だけではなく真理値表でも表現することができる.

Α	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

Α	В	С	Χ	Υ
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Α	В	С	X	Υ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

■ 演習

A	[3]	4
0	0	0
0		0
	0	0

■ 真理値表から論理回路を作る

- 論理回路を用い,何かの機能を実現するとき,まず真理値表を作成する.
- 論理回路は作成した真理値表を元に作成する.
- では、どうすれば真理値表から論理回路を作れるのか?

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

この真理値表から論理回路をどう作る?

■ 真理値表から論理回路を作る

- 真理値表から論理回路を作ることは非常に難しい.
- 真理値表から論理回路を作るには、次の手順を踏む.

真理值表

真理値表に基づき、論理式を作る

論理式に基づき, 論理回路を作る

■ 真理値表から論理式を作る

・出力が1のときに着目する.

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

■ 真理値表から論理式を作る

・図のように論理式を作る.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

- 出力が1の部分は入 力の掛け算に
- 入力が0のところは 否定に

■ 真理値表から論理式を作る

- ・ 先程の手順で作成した論理式を足す.
- できた論理式を簡単化して完成.

А	В	Υ	
0	0	0	
0	1	1	$\stackrel{\frown}{\longrightarrow} \stackrel{\frown}{A} \cdot \stackrel{B}{\longrightarrow} \overline{A} \cdot B + A \cdot \overline{B}$
1	0	1	$\Lambda \overline{\overline{R}}$
1	1	0	

XORの式になった

■ 真理値表から論理回路を作る

・完成した論理式から、論理回路を作成すればよい.

Α	В	Υ	
0	0	0	
0	1	1	$\overline{A} \cdot B + A \cdot \overline{B}$
1	0	1	
1	1	0	
			A B Y

Α	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

■ 演習

Α	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

Α	В	Υ		
0	0	1	A·B	
0	1	0		Ā·B +A·
1	0	0		71 0 (7)
1	1	1	A·B	

■ 中間試験

- 第8回(11月27日)講義の後半に実施
- 時間は30分
- 範囲は第1回から第7回の講義で取り扱った内容
- 国家試験,ME2種の過去問を改変したものを出題
- 持ち込みあり

- 不合格となった学生がいた場合は、再試の連絡を掲示板する.
- 定期試験ができると国家試験もできるようになるので頑張ろう.