CS 744: RAY

Shivaram Venkataraman Fall 2019

ADMINISTRIVIA

- Assignment I Grades
- Assignment 2 due on Fri
- Course Project emails

Bismarck

Supervised learning, Unified Interface Shared memory, Model fits in memory

Parameter Server

Large datasets, large models (PB scale) Consistency model, Fault tolerance

Tensorflow

Need for flexible programming model

Dataflow graph

PS tasks Heterogeneous accelerators

Machine Learning

Bismarck - Conver optimization - Small datasets simple models - SVMs, legistic reg. Parameter Server -> Largo, datasets -> Sparse date -> High din parameters -> Ad Clicle

WORKLOADS

Tensorflow

Lanning Lannin

Supervised learning
Training Data

Model

Lit

REINFORCEMENT LEARNING

Robot

Came playing _

bot Agent I Agent of action (Policy)

Environment

Policy improvement (e.g., SGD)

trajectory: s_0 , (s_1, r_1) , ..., (s_n, r_n)

Serving

Policy evaluation

reward (r_{i+1})

action (a_i)

state (s_{i+1})

improve Policy

given sequence

of state, reward

RL REOUIREMENTS

Stateful = hame engine
Stateless Simulation You Wout L) Tools would be of varying length Ims , seconds/ Tasks are deterministic (state, actim) -> reward Dynamic execution = iteration structure
depends on current 'iteration Serving Lo very low laterey = Parallelism Rollows happen in parallel

Class: Actor, Shapping Cart Queue S1: f. remote (args 1) Tasks normal bythen function Y Conore (item 1) futures = f.remote(args) __actor = Class.remote(args) futures = actor.method.remote(args) Task which with run = actor. method. remote (arg. ?) f onth args

- Handle to result of task (args) before f (args 1) objects = ray.get(futures) ready = ray.wait(futures, k,timeout) (tateless tas/ce

COMPUTATION MODEL grask Vertices: Al = Actor T₀ train_policy Data A₁₀ \ Simulator Tasks/ Adors I₁ create_policy A₂₀ Simulator policy₁ def task() A₁₁ rollout A₂₁ rollout = taskl. remote (a) Edges $\mathsf{rollout}_{21}$ rollout₁₁ --> Control edge I₂ update_policy -) Pata edge Data vertex Arays Task/ Actor policy₂ A₁₂ rollout A₂₂ rollout $\mathsf{rollout}_{12}$ rollout₂₂ Stateful edge to ensure Actor methods ordering T₃ update_policy

ARCHITECTURE

GLOBAL CONTROL STORE

Object table

Ly list of object | Wamenode their locations | metadata

Task table

L> Lineage, tosses created edge in comp goaph

Function table

Ly Code blocks that
are running

Externalized State La Bottlenecks not in global system L) Sharding Fault folerance

Ly Chain replication

RAY SCHEDULER

FAULT TOLERANCE

Tasks Lo lineage from GCS La Computation fails Actors " check pointing" GIS - extra sesources

Ly scalability - Sharded, replicated multiple schedulers Scheduler ____ Stateless, backup sched.

DISCUSSION

https://forms.gle/QQyLbwjAufJNXWnr6

Consider you are implementing two tasks a deep learning model training and a sorting application. When will use tasks vs actors and why?

Actors You can parabletize and stateless operations Sorting: wait for other tasks? Parameters... Flexible synt-fire grand don't reed adcont

Considering AllReduce using MPI as the baseline parallel programming task. Discuss the improvements made by MapReduce, Spark over MPI and discuss

if/how Ray further contributes to the comparison.

NEXT STEPS

Next class: Clipper

Assignment 2 due this week!

Course project