ICOM2014 - 1er Parcial

9 de octubre de 2014

Notas:

- Al finalizar, enviar por e-mail los archivos fuente de cada ejercicio con nombre APELLIDO_NOMBRE_Ejer_N.c a icom@ib.cnea.gov.ar
- 2. Uso de prácticos: se pueden utilizar los trabajos prácticos propios realizados.
- 3. Uso de Internet: solo para la consulta de referencias de funciones de C.

Problema 1. Evitando el megabochazo.

Un estudiante deber rendir examen en tres asignaturas (**A**, **B** y **C**). Su familia le ha exigido que, para irse de vacaciones, apruebe al menos una de ellas. Le quedan cuatro días para estudiar y no le da buen resultado estudiar más de una asignatura diferente el mismo día.

El centro de estudiantes, luego de años y años de estadística, dispone de los datos de la probabilidad $\mathbf{p_k}$ (t) de reprobar la asignatura \mathbf{k} si se dedican \mathbf{t} días de estudio a esa asignatura y entregan dichos datos en forma un archivo de texto a dos columnas, la primer columna son los días de estudio y la segunda la probabilidad de reprobar habiendo estudiado esa cantidad de días (que obviamente disminuye al aumentar los días de estudio...).

Nuestro estudiante consigue la información que necesita en los archivos <u>A.txt</u>, <u>B.txt</u> y <u>C.txt</u> y ahora necesita determinar cuántos de los **4 días** de que dispone debe dedicarle al estudio de cada una de las asignaturas, de forma de **minimizar** la probabilidad de reprobar las 3 asignaturas. Dicha probabilidad se calcula como $P_{R3} = p_A(t_A) \times p_B(t_B) \times p_C(t_C)$, siendo t_A , t_B y t_C el número de días dedicado a las asignaturas t_A , t_B y t_C y por lo tanto deben cumplir que t_A + t_B + t_C = t_A .

Escriba un programa que lea los datos de los 3 archivos y determine la combinación de días t_A , t_B y t_C que minimizan la probabilidad de reprobar las 3 asignaturas.

Problema 2. Área de un triángulo en R³.

Dados los vértices de un triángulo \vec{A} , \vec{B} y \vec{C} , cada uno un punto en \mathbb{R}^3 . Representados por la siguiente estructura de datos:

```
typedef struct {
     double x;
     double y;
     double z;
} P3D t;
```

Escriba un programa que solicite al usuario las 3 coordenadas de cada uno de los vértices y calcule e imprima el área de dicho triángulo.

Ayuda: Recuerde que el área del triángulo está dada por:

$$\frac{1}{2} \| \overrightarrow{AB} \times \overrightarrow{AC} \|$$

Donde:

- \overrightarrow{AB} es el vector que va del vértice \overrightarrow{A} al vértice \overrightarrow{B} (es decir $\overrightarrow{AB} = \overrightarrow{B} \overrightarrow{A}$)
- \times es el procuto vectorial que puede calcularse a partir del siguiente determinante $\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \end{vmatrix}$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} \hat{\imath} - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} \hat{\jmath} + \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \hat{k}$$

siendo $\hat{i}, \hat{j}, \hat{k}$ los versores (1,0,0), (0,1,0), (0,0,1) respectivamente.

• $\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2}$ es el módulo del vector \vec{v} .

Para facilitar su trabajo le sugerimos fuertemente que implemente las siguientes funciones:

- // Carga (pide al usuario) y retorna un P3D_t
 P3D t CargaP3D();
- // calcula y retorna la resta v wP3D_t RestaP3D(P3D_t v, P3D_t w);
- // calcula y retorna el producto vectorial v x w P3D_t ProdVectP3D(P3D_t v, P3D_t w);
- // calcula y retorna el modulo del vector v double ModuloP3D(P3D_t v);

Problema 3. función hipergeométrica confluente.

La función hipergeométrica confluente M(a, c, z) de parámetros reales a, c y variable real z es la solución para el problema de dos partículas cargadas en mecánica cuántica. Esta función puede definirse como una serie:

$$M(a,b,c) = \sum_{k=0}^{\infty} \frac{(a)_k}{(c)_k} \frac{z^k}{k!} = 1 + \frac{a}{c}z + \frac{a(a+1)z^2}{c(c+1)z^2} + \frac{a(a+1)(a+2)z^3}{c(c+1)(c+2)z^3} + \cdots$$

donde se definen los símbolos de Pochhammer $(a)_k y(c)_k$ como:

$$(a)_k = a(a+1)(a+2)...(a+k-1)$$

$$(c)_k = c(c+1)(c+2)...(c+k-1)$$

para cualquier número natural k>0, mientras que $(a)_0=(c)_0=1$.

La función hipergeométrica se reduce a funciones elementales para valores particulares de los parámetros. Por ejemplo:

$$M(1,2,2z) = \frac{e^z}{z} \sinh z$$

- Implementar la función que calcula y retorna el valor del símbolo de Pochhammer $(a)_k$ definido antes float pochhammer (float a,int k);
- Implementar la función que calcula la suma finita desde 0 hasta n de la serie hipergeométrica, utilizando la función obtenida en el inciso anterior

```
float hyper(float a, float c, float z,int n);
```

Utilice la reducción a funciones elementales anterior para comprobar el correcto funcionamiento de su código.