Algebra Qualifying Exams

Rutgers - the State University of New Jersey

Syllabus

Nilava Metya

Contents

Spring 2023	2
Fall 2022	3
Spring 2022	4
Fall 2021	5
Spring 2021	6
Fall 2020	7
Spring 2020	8

Groups

Classify all groups of order 309, up to isomorphism.

Groups

Let A be the abelian group with generators x, y, z and the relations

$$4x + 3y + z = 0, x + 2y + 3z = 0, 3x + 2y + 5z = 0$$

Show that *A* is a cyclic abelian group, and determine its order.

Linear Algebra

Let *A* be a complex $n \times n$ matrix. Prove that there is an invertible complex $n \times n$ matrix *B* such that $AB = BA^t$. (A^t is the transpose of *A*.)

Rings

Prove that the subring $\mathbb{Z}[3i]$ of \mathbb{C} is not a Principal Ideal Domain.

Rings

If $R = \mathbb{Z}[x]$, show that the sequence $R \xrightarrow{f} R^2 \xrightarrow{g} R$ is exact, where f(a) = (ax, -2a) and g(c, d) = 2c + dx.

Fall 2022

Groups

Let G be a finite simple group. Prove that $G \times G$ has exactly 4 normal subgroups (including $G \times G$) if and only if G is non-abelian.

Rings

Let *R* be a principal ideal domain and *I*, *J* be ideals of *R*. Show that $I \cap J = IJ$ holds if and only if I = 0 or J = 0 or J = R.

Linear Algebra

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with real coefficients. Show that all eigenvalues of A are non-negative if and only if $A = P^T P$ for some matrix $P \in M_n(\mathbb{R})$.

Rings

Let R be an integral domain and R[x, y, z] the polynomial ring in three variables over R. Show that $I = \langle x^3, y^2, y^3 - z^2y \rangle \subseteq R[x, y, z]$ is a prime ideal.

Hint: Show that *I* is the kernel of a ring homomorphism $R[x, y, z] \rightarrow R[t]$.

Linear Algebra

Let *A* and *B* be commuting complex matrices. Assume that $B \notin \mathbb{C}[A]$, that is, *B* cannot be written as a polynomial in *A*. Show that some eigenspace of *A* has dimension at least two.

Rings

Prove that the rings $\mathbb{Q}[x]/(x^2-1)$ and $\mathbb{Q} \oplus \mathbb{Q}$ are isomorphic.

Groups

Let p be a prime. Show that any element of order p in $GL_2(\mathbb{Z}/p\mathbb{Z})$ can be conjugated to the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Fields

Let *a* and *b* be elements of a field of order 2^n where *n* is odd. Prove that if $a^2 + ab + b^2 = 0$ then a = b = 0.

Linear Algebra

Let A, B be linear operators on a nonzero finite-dimensional vector space V over \mathbb{C} such that $A^2 = B^2 = \mathbb{I}$ d. Prove that there exists a nonzero subspace W of V which is invariant under A and B and dim $W \le 2$.

Linear Algebra

Let A be a complex $n \times n$ matrix. Let a_k denote the dimension of the null space of A^k (in particular, $a_0 = 0$). Prove that $a_k + a_{k+2} \le 2a_{k+1}$ for all $k \ge 0$.

Fall 2021

Groups

Let *G* be a group and Z(G) the center of *G*. Show that the group G/Z(G) does not have prime order. Find a group *G* such that G/Z(G) has 4 elements.

Rings

Show that every prime ideal P in $\mathbb{Z}[x]$ which is not principal contains a prime number.

Groups

Show that every finite noncyclic group is a finite union of proper subgroups, and that if a group maps surjectively to a finite noncyclic group then it is a finite union of proper subgroups and use this to determine for which positive integers the product of n copies of the integers is a finite union of proper subgroups.

Linear Algebra

Let A and B be two square matrices over a field F. Suppose diag(A, A) and diag(B, B) are similar. Show that A and B are similar.

Groups

- (a) Suppose that *p* and *q* are distinct primes and a group *G* is generated by elements of order *p* and also by elements of order *q*. Show that any homomorphism of *G* to an abelian group is trivial.
- (b) Show that for $n \ge 5$ the alternating group A_n of even permutations of n objects is generated by elements of order 2, and also by elements of order 3, so that for such n the only homomorphisms to abelian groups are trivial.

Rings

The following are four classes of commutative rings, in alphabetical order:

- fields
- · integral domains
- · principal integral domains
- unique factorization domains

These are contained in one-another, in some order, so that $A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq A_4$.

- (a) Determine the order.
- (b) Give an example in each class to show that the inclusions are proper.

Rings

- (a) If R is a commutative ring, define what it means for R to be Noetherian and state Hilbert's basis theorem.
- (b) Give an example of a non-Noetherian commutative ring.

Groups

Let G be a group of order 105 and let P_3 , P_5 , and P_7 be Sylow 3, 5, and 7 subgroups, respectively. Assuming the Sylow theorems, prove the following:

- (a) At least one of P_5 or P_7 is normal in G.
- (b) *G* has a cyclic subgroup of order 35.
- (c) Both P_5 and P_7 are normal in G.

Linear Algebra

Find all similarity classes of 2×2 matrices A with entries in \mathbb{Q} satisfying $A^4 = I$. What are the corresponding rational canonical forms?

Linear Algebra

- (a) Find the possible Jordan Canonical Forms of any matrix such that $A^4 = I$ over $F = \mathbb{F}_5$.
- (b) Give an example of a matrix *B* over $F = \mathbb{F}_3$ satisfying $B^4 = I$, such that *B* is not diagonalizable.

Fall 2020

Linear Algebra

Prove that for any pair of commuting $n \times n$ —matrices with complex entries there exists a common eigenvector.

Groups

Prove that there exists no simple group of order 56.

Rings

Prove that a ring which contains a principal ideal ring R, and which is contained in the field of fractions of R, is a principal ideal ring.

Linear Algebra

Let *A* and *B* be two projection linear maps in a vector space over a field *K*. Prove that if A + B is a projection linear map and char $K \neq 2$ then AB = BA = 0.

Groups

Prove that in the group \mathbb{Q}/\mathbb{Z} for any natural number n there exists exactly one subgroup of order n.

Algebra

Suppose that A is a not necessarily commutative, finite dimensional associative algebra with a unit over a field F and $P \subseteq A$ is a two-sided ideal such that for $a, b \in A$, $ab \in P \implies a \in P$ or $bP \in P$. Show that A/P must be a division algebra (i.e. every nonzero element has a multiplicative inverse).

Groups

Show that every group of order 2020 contains a unique (and hence normal) subgroup of order 505.

Linear Algebra

Let M be a matrix with integer entries.

(a) Prove that the minimal polynomial of M over \mathbb{C}

$$f_{\min}(t) = t^k + \sum_{i=0}^{k-1} a_i t^i$$

has integer coefficients.

(b) Prove that if M is diagonalizable over $\mathbb Q$ then there exists an integer N such that the matrix M mod p is diagonalizable over $\mathbb Z/p\mathbb Z$ for all p>N.

Rings

Let F be a field and let L be the ring of Laurent polynomials $L = F[x, x^{-1}]$ (it is the subring of F(x) generated over F by x and x^{-1}). We consider L as a module over the ring of polynomials R = F[x]. (a) Show that L is not a finitely generated module over R. (b) Show that every finitely generated submodule of L is free with a single generator.

Rings

Let *R* be a commutative integral domain and let $I \subseteq R$ be an ideal.

(a) Show that every alternating bilinear form

$$f: I \times I \to R$$

is zero.

(b) Show that if R is a principal ideal domain, then every alternating bilinear form $f: I \times I \to M$ to any R-module M is zero.