SI231 Matrix Analysis and Computations Matrix Calculus and Derivatives

Zepeng Zhang and Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Outline

- Basics of Matrix Calculus and Derivatives
- Examples
- Complex Derivatives

Matrix Calculus and Derivatives

- Matrix calculus is a specialized notation for doing multivariable calculus.
- For multivariable calculus, we have

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^T d\mathbf{x} = \nabla f(\mathbf{x})^T d\mathbf{x},$$

where $f(\mathbf{x})$ is a scalar function of vector $\mathbf{x} \in \mathbb{R}^n$.

For matrix calculus, we have

$$df = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial x_{ij}} dx_{ij} = \operatorname{tr}\left(\left(\frac{\partial f}{\partial \mathbf{X}}\right)^{T} d\mathbf{X}\right) = \operatorname{tr}\left(\nabla f(\mathbf{X})^{T} d\mathbf{X}\right),$$

where $f(\mathbf{X})$ is a scalar function of matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$.

Second-Oder Gradient of Functions of Matrices

• Let $f(\mathbf{X}): \mathbb{R}^{m \times n} \to \mathbb{R}$. The second-order gradient of f can be expressed as

$$\nabla^{2} f(X) \triangleq \begin{bmatrix} \nabla \frac{\partial f(X)}{\partial X_{11}} & \nabla \frac{\partial f(X)}{\partial X_{12}} & \cdots & \nabla \frac{\partial f(X)}{\partial X_{1n}} \\ \nabla \frac{\partial f(X)}{\partial X_{21}} & \nabla \frac{\partial f(X)}{\partial X_{22}} & \cdots & \nabla \frac{\partial f(X)}{\partial X_{2n}} \\ \vdots & \vdots & & \vdots \\ \nabla \frac{\partial f(X)}{\partial X_{m1}} & \nabla \frac{\partial f(X)}{\partial X_{m2}} & \cdots & \nabla \frac{\partial f(X)}{\partial X_{mn}} \end{bmatrix} \in \mathbb{R}^{m \times n \times m \times n}.$$

Basic Rules for Matrix Calculus

Consider two matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, we introduce some basic rules for matrix calculus in the following.

- Addition and subtraction: $d(\mathbf{X} \pm \mathbf{Y}) = d\mathbf{X} \pm d\mathbf{Y}$;
- Multiplication: $d(\mathbf{XY}) = (d\mathbf{X})\mathbf{Y} + \mathbf{X}d\mathbf{Y}$;
- Transpose: $d\left(\mathbf{X}^{T}\right) = \left(d\mathbf{X}\right)^{T}$;
- Trace: $d\operatorname{tr}(\mathbf{X}) = \operatorname{tr}(d\mathbf{X})$;
- Element-wise multiplication: $d(\mathbf{X} \odot \mathbf{Y}) = d\mathbf{X} \odot \mathbf{Y} + \mathbf{X} \odot d\mathbf{Y}$;
- Element-wise function: $d\sigma(\mathbf{X}) = \sigma'(\mathbf{X}) \odot d\mathbf{X}$, where $\sigma(\mathbf{X}) = [\sigma(x_{ij})]$ and $\sigma'(\mathbf{X}) = [\sigma'(x_{ij})]$ are element-wise functions.

Basic Rules for Matrix Calculus

- Determinant: $d|\mathbf{X}| = \operatorname{tr}(\mathbf{X}^{\sharp}d\mathbf{X}) = |\mathbf{X}|\operatorname{tr}(\mathbf{X}^{-1}d\mathbf{X})$.
- Inverse: $dX^{-1} = -X^{-1} (dX) X^{-1}$;

Proof. For $XX^{-1} = I$, we have $dXX^{-1} = dI = 0$, hence

$$d\mathbf{X}\mathbf{X}^{-1} = (d\mathbf{X})\,\mathbf{X}^{-1} + \mathbf{X}d\mathbf{X}^{-1} = 0,$$

which leads to $d\mathbf{X}^{-1} = -\mathbf{X}^{-1} (d\mathbf{X}) \mathbf{X}^{-1}$.

 $^{^{1}\}mathbf{X}^{\sharp}$ represents the adjugate matrix.

Some Properties of Trace

- For scalar x, we have $x = \operatorname{tr}(x)$.
- For matrix \mathbf{X} , we have $\operatorname{tr}(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^T)$.
- For matrix $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, we have $\operatorname{tr}(\mathbf{X} \pm \mathbf{Y}) = \operatorname{tr}(\mathbf{X}) \pm \operatorname{tr}(\mathbf{Y})$.
- For matrix $\mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \mathbb{R}^{m \times n}$, we have $\operatorname{tr}\left(\mathbf{A}^{T}\left(\mathbf{B} \odot \mathbf{C}\right)\right) = \operatorname{tr}\left(\left(\mathbf{A} \odot \mathbf{B}\right)^{T} \mathbf{C}\right)$.

With the above rules and properties, for a scalar function of matrix, we can calculate its differential and rewrite it in the form of

$$df = \operatorname{tr}\left(\frac{\partial f}{\partial \mathbf{X}}^T d\mathbf{X}\right),$$

through which we can get the derivatives by calculating differentials.

Chain Rule

• If $f: \mathbb{R}^d \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}$, then the derivative of $h(\mathbf{x}) = g(f(\mathbf{x}))$ is

$$\frac{\partial h(\mathbf{x})}{\partial \mathbf{x}} = \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right)^T \frac{\partial g(f(\mathbf{x}))}{\partial f(\mathbf{x})}$$

• Let $\mathbf{U} = f(\mathbf{X})$ and the derivative of the function $g(\mathbf{U})$ with respect to \mathbf{X} is

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\partial g(f(\mathbf{X}))}{\partial \mathbf{X}}.$$

Then chain rule can be applied as follows:

$$\frac{\partial g(\mathbf{U})}{\partial x_{ij}} = \sum_{k=1}^{M} \sum_{l=1}^{N} \frac{\partial g(\mathbf{U})}{\partial u_{kl}} \frac{\partial u_{kl}}{\partial x_{ij}} = \operatorname{tr}\left(\left(\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}} \right)^{T} \frac{\partial \mathbf{U}}{\partial x_{ij}} \right),$$

where M and N are the dimensions of rows and columns of U.

Calculate the derivative of $f(\mathbf{X}) = \mathbf{a}^T \mathbf{X} \mathbf{b}$, where $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{X} \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^n$.

ullet First calculate the differential of f as

$$df = d(\mathbf{a}^T \mathbf{X} \mathbf{b}) = \mathbf{a}^T d(\mathbf{X} \mathbf{b}) = \mathbf{a}^T d(\mathbf{X}) \mathbf{b}.$$

• Then rewrite df as follows:

$$df = \operatorname{tr}(df) = \operatorname{tr}(\mathbf{a}^T d(\mathbf{X})\mathbf{b}) = \operatorname{tr}(\mathbf{b}\mathbf{a}^T d(\mathbf{X})) = \operatorname{tr}((\mathbf{a}\mathbf{b}^T)^T d(\mathbf{X})).$$

• Observe that $df = \operatorname{tr}\left(\left(\frac{\partial f}{\partial \mathbf{X}}\right)^T d\mathbf{X}\right) = \operatorname{tr}\left((\mathbf{a}\mathbf{b}^T)^T d(\mathbf{X})\right)$, we can conclude that $\frac{\partial f}{\partial \mathbf{X}} = \mathbf{a}\mathbf{b}^T$.

Calculate the derivative of $f(\mathbf{X}) = \mathbf{a}^T e^{\mathbf{X}\mathbf{b}}$, where $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^n$, and $e^{\mathbf{X}\mathbf{b}}$ is applied element-wise.

ullet First calculate the differential of f as

$$df = d(\mathbf{a}^T e^{\mathbf{X}\mathbf{b}}) = \mathbf{a}^T d(e^{\mathbf{X}\mathbf{b}}) = \mathbf{a}^T (e^{\mathbf{X}\mathbf{b}} \odot d(\mathbf{X}\mathbf{b})) = \mathbf{a}^T (e^{\mathbf{X}\mathbf{b}} \odot d(\mathbf{X})\mathbf{b}).$$

• Then rewrite df as follows:

$$df = \operatorname{tr}(df) = \operatorname{tr}\left(\mathbf{a}^{T}\left(e^{\mathbf{X}\mathbf{b}} \odot d(\mathbf{X})\mathbf{b}\right)\right) = \operatorname{tr}\left((\mathbf{a} \odot e^{\mathbf{X}\mathbf{b}})^{T} d(\mathbf{X})\mathbf{b}\right)$$
$$= \operatorname{tr}\left(\left((\mathbf{a} \odot e^{\mathbf{X}\mathbf{b}})\mathbf{b}^{T}\right)^{T} d(\mathbf{X})\right).$$

• Observe that $df = \operatorname{tr}\left(\left(\frac{\partial f}{\partial \mathbf{X}}\right)^T d\mathbf{X}\right) = \operatorname{tr}\left(\left((\mathbf{a} \odot e^{\mathbf{X}\mathbf{b}})\mathbf{b}^T\right)^T d(\mathbf{X})\right)$, we can conclude that $\frac{\partial f}{\partial \mathbf{X}} = (\mathbf{a} \odot e^{\mathbf{X}\mathbf{b}})\mathbf{b}^T$.

Calculate the derivative of $f = \operatorname{tr}((\sigma(\mathbf{WX}))^T \mathbf{M} \sigma(\mathbf{WX}))$, where $\mathbf{W} \in \mathbb{R}^{l \times m}$, $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{M} \in \mathbb{S}^{l \times l}$, and $\sigma(\mathbf{WX})$ is a element-wise function.

• Denote $\mathbf{Y} = \sigma(\mathbf{W}\mathbf{X})$, first calculate the differential of f as

$$df = d(\operatorname{tr}(\mathbf{Y}^T \mathbf{M} \mathbf{Y})) = \operatorname{tr}(d(\mathbf{Y}^T \mathbf{M} \mathbf{Y})) = \operatorname{tr}((d\mathbf{Y}^T) \mathbf{M} \mathbf{Y}) + \operatorname{tr}(\mathbf{Y}^T \mathbf{M} d\mathbf{Y})$$
$$= \operatorname{tr}(\mathbf{Y}^T \mathbf{M}^T d\mathbf{Y}) + \operatorname{tr}(\mathbf{Y}^T \mathbf{M} d\mathbf{Y}) = \operatorname{tr}(\mathbf{Y}^T (\mathbf{M}^T + \mathbf{M}) d\mathbf{Y}),$$

hence $\frac{\partial f}{\partial \mathbf{Y}} = 2\mathbf{M}\mathbf{Y}$.

• Observe that $df = \operatorname{tr}(\left(\frac{\partial f}{\partial \mathbf{Y}}\right)^T d\mathbf{Y})$, we have

$$df = \operatorname{tr}\left(\left(\frac{\partial f}{\partial \mathbf{Y}}\right)^T \left(\sigma'(\mathbf{W}\mathbf{X}) \odot (\mathbf{W}d\mathbf{X})\right)\right) = \operatorname{tr}\left(\left(\frac{\partial f}{\partial \mathbf{Y}} \odot \sigma'(\mathbf{W}\mathbf{X})\right)^T \mathbf{W}d\mathbf{X}\right),$$

which means
$$\frac{\partial f}{\partial \mathbf{X}} = \mathbf{W}^T \left(\frac{\partial f}{\partial \mathbf{Y}} \odot \sigma'(\mathbf{W}\mathbf{X}) \right) = \mathbf{W}^T \left((2\mathbf{M}\sigma(\mathbf{W}\mathbf{X})) \odot \sigma'(\mathbf{W}\mathbf{X}) \right).$$

Calculate the derivative of $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{y} \in \mathbb{R}^m$.

- The variable is a vector, but we can take it as a special case of matrix.
- ullet First calculate the differential of f as

$$df = d\left((\mathbf{A}\mathbf{x} - \mathbf{y})^{T}(\mathbf{A}\mathbf{x} - \mathbf{y})\right) = (\mathbf{A}d\mathbf{x})^{T}(\mathbf{A}\mathbf{x} - \mathbf{y}) + (\mathbf{A}\mathbf{x} - \mathbf{y})^{T}\mathbf{A}d\mathbf{x}$$
$$= \operatorname{tr}\left(2(\mathbf{A}\mathbf{x} - \mathbf{y})^{T}\mathbf{A}d\mathbf{x}\right).$$

• Then we can conclude that $\frac{\partial f}{\partial \mathbf{x}} = 2\mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{y}).$

Consider a classification problem, where we have samples $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)$ with $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in \mathbb{R}^m$. Note that \mathbf{y}_i is a zero vector with one entry equals one. The loss function of a two layer neural networks can be defined as

$$\ell(\mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2) = -\sum_{i=1}^{N} \mathbf{y}_i^T \text{log}\left(\text{softmax}\left(\mathbf{W}_2 \sigma\left(\mathbf{W}_1 \mathbf{x}_i + \mathbf{b}_1\right) + \mathbf{b}_2\right)\right),$$

where $\mathbf{W}_2 \in \mathbb{R}^{m \times p}$, $\mathbf{W}_1 \in \mathbb{R}^{p \times n}$, $\mathbf{b}_1 \in \mathbb{R}^p$, $\mathbf{b}_2 \in \mathbb{R}^m$, softmax $(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\mathbf{1}^T e^{\mathbf{x}}}$, and $\sigma(x) = \frac{1}{1 + e^{-x}}$. In the following, we will derive the derivative of ℓ .

• Let $\mathbf{a}_{1,i} = \mathbf{W}_1 \mathbf{x}_i + \mathbf{b}_1$, $\mathbf{h}_{1,i} = \sigma\left(\mathbf{a}_{1,i}\right)$, and $\mathbf{a}_{2,i} = \mathbf{W}_2 \mathbf{h}_{1,i} + \mathbf{b}_2$, then

$$\ell = -\sum_{i=1}^{N} \mathbf{y}_i^T ext{log}\left(ext{softmax}\left(\mathbf{a}_{2,i}
ight)
ight).$$

ullet Loss function ℓ can be rewritten as

$$egin{aligned} \ell &= -\sum_{i=1}^N \mathbf{y}_i^T \mathrm{log}ig(rac{e^{\mathbf{a}_{2,i}}}{\mathbf{1}^T e^{\mathbf{a}_{2,i}}}ig) = -\sum_{i=1}^N \mathbf{y}_i^T \left(\mathrm{log}(e^{\mathbf{a}_{2,i}}) - \mathbf{1}\mathrm{log}(\mathbf{1}^T e^{\mathbf{a}_{2,i}})
ight) \ &= -\sum_{i=1}^N \mathbf{y}_i^T \mathbf{a}_{2,i} + \sum_{i=1}^N \mathrm{log}(\mathbf{1}^T e^{\mathbf{a}_{2,i}}). \end{aligned}$$

• We will first calculate $\frac{\partial \ell}{\partial \mathbf{a}_{2,i}}$. The differential of ℓ is

$$\begin{split} d\ell &= d\Big(-\sum_{i=1}^{N}\mathbf{y}_{i}^{T}\mathbf{a}_{2,i} + \sum_{i=1}^{N}\log(\mathbf{1}^{T}e^{\mathbf{a}_{2,i}})\Big) = -\sum_{i=1}^{N}\mathbf{y}_{i}^{T}d\mathbf{a}_{2,i} + \sum_{i=1}^{N}\frac{d(\mathbf{1}^{T}e^{\mathbf{a}_{2,i}})}{\mathbf{1}^{T}e^{\mathbf{a}_{2,i}}} \\ &= -\sum_{i=1}^{N}\mathbf{y}_{i}^{T}d\mathbf{a}_{2,i} + \sum_{i=1}^{N}\frac{\mathbf{1}^{T}d\left(e^{\mathbf{a}_{2,i}}\right)}{\mathbf{1}^{T}e^{\mathbf{a}_{2,i}}} = -\sum_{i=1}^{N}\mathbf{y}_{i}^{T}d\mathbf{a}_{2,i} + \sum_{i=1}^{N}\frac{\mathbf{1}^{T}\left(e^{\mathbf{a}_{2,i}}\odot d\mathbf{a}_{2,i}\right)}{\mathbf{1}^{T}e^{\mathbf{a}_{2,i}}} \end{split}$$

ullet The differential of ℓ can be rewritten as

$$\begin{split} d\ell &= \operatorname{tr} \Big(-\sum_{i=1}^{N} \mathbf{y}_{i}^{T} d\mathbf{a}_{2,i} + \sum_{i=1}^{N} \frac{\mathbf{1}^{T} (e^{\mathbf{a}_{2,i}} \odot d\mathbf{a}_{2,i})}{\mathbf{1}^{T} e^{\mathbf{a}_{2,i}}} \Big) \\ &= -\sum_{i=1}^{N} \mathbf{y}_{i}^{T} d\mathbf{a}_{2,i} + \operatorname{tr} \Big(\sum_{i=1}^{N} \frac{(e^{\mathbf{a}_{2,i}})^{T} d\mathbf{a}_{2,i}}{\mathbf{1}^{T} e^{\mathbf{a}_{2,i}}} \Big) \\ &= -\sum_{i=1}^{N} \mathbf{y}_{i}^{T} d\mathbf{a}_{2,i} + \sum_{i=1}^{N} \operatorname{softmax}(\mathbf{a}_{2,i})^{T} d\mathbf{a}_{2,i} \\ &= \sum_{i=1}^{N} (\operatorname{softmax}(\mathbf{a}_{2,i}) - \mathbf{y}_{i})^{T} d\mathbf{a}_{2,i} \\ &= \operatorname{tr} \Big(\sum_{i=1}^{N} (\operatorname{softmax}(\mathbf{a}_{2,i}) - \mathbf{y}_{i})^{T} d\mathbf{a}_{2,i} \Big), \end{split}$$

which means $\frac{\partial \ell}{\partial \mathbf{a}_{2,i}} = \operatorname{softmax}(\mathbf{a}_{2,i}) - \mathbf{y}_i$.

Observe that

$$d\ell = \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{2,i}}\right)^{T} d\mathbf{a}_{2,i}\right) = \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{2,i}}\right)^{T} d(\mathbf{W}_{2}\mathbf{h}_{1,i} + \mathbf{b}_{2})\right)$$

$$= \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{2,i}}\right)^{T} d(\mathbf{W}_{2})\mathbf{h}_{1,i}\right) + \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{2,i}}\right)^{T} \mathbf{W}_{2} d(\mathbf{h}_{1,i})\right)$$

$$+ \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{2,i}}\right)^{T} d\mathbf{b}_{2}\right),$$

from which we can get $\frac{\partial \ell}{\partial \mathbf{W}_2} = \sum_{i=1}^N \frac{\partial \ell}{\partial \mathbf{a}_{2,i}} \mathbf{h}_{1,i}^T$, $\frac{\partial \ell}{\partial \mathbf{h}_{1,i}} = \mathbf{W}_2^T \frac{\partial \ell}{\partial \mathbf{a}_{2,i}}$, and $\frac{\partial \ell}{\partial \mathbf{b}_2} = \sum_{i=1}^N \frac{\partial \ell}{\partial \mathbf{a}_{2,i}}$.

• Since $\mathbf{h}_{1,i} = \sigma(\mathbf{a}_{1,i})$, we have

$$\frac{\partial \ell}{\partial \mathbf{a}_{1,i}} = \frac{\partial \ell}{\partial \mathbf{h}_{1,i}} \odot \sigma'(\mathbf{a}_{1,i}).$$

Considering that

$$d\ell = \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{1,i}}\right)^{T} d\mathbf{a}_{1,i}\right) = \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{1,i}}\right)^{T} d(\mathbf{W}_{1}\mathbf{x}_{i} + \mathbf{b}_{1})\right)$$
$$= \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{1,i}}\right)^{T} d(\mathbf{W}_{1})\mathbf{x}_{i}\right) + \operatorname{tr}\left(\sum_{i=1}^{N} \left(\frac{\partial \ell}{\partial \mathbf{a}_{1,i}}\right)^{T} d\mathbf{b}_{1}\right),$$

we can get
$$\frac{\partial \ell}{\partial \mathbf{W}_1} = \sum_{i=1}^N \frac{\partial \ell}{\partial \mathbf{a}_{1,i}} \mathbf{x}_i^T$$
 and $\frac{\partial \ell}{\partial \mathbf{b}_1} = \sum_{i=1}^N \frac{\partial \ell}{\partial \mathbf{a}_{1,i}}$.

- Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, $\mathbf{A}_1 = [\mathbf{a}_{1,1}, \dots, \mathbf{a}_{1,N}]$, $\mathbf{H}_1 = [\mathbf{h}_{1,1}, \dots, \mathbf{h}_{1,N}]$, and $\mathbf{A}_2 = [\mathbf{a}_{2,1}, \dots, \mathbf{a}_{2,N}]$.
- Then we have

$$\frac{\partial \ell}{\partial \mathbf{W}_{2}} = \frac{\partial \ell}{\partial \mathbf{A}_{2}} \mathbf{H}_{1}^{T}$$

$$\frac{\partial \ell}{\partial \mathbf{H}_{1}} = \mathbf{W}_{2}^{T} \frac{\partial \ell}{\partial \mathbf{A}_{2}}$$

$$\frac{\partial \ell}{\partial \mathbf{b}_{2}} = \frac{\partial \ell}{\partial \mathbf{A}_{2}} \mathbf{1}$$

$$\frac{\partial \ell}{\partial \mathbf{A}_{1}} = \frac{\partial \ell}{\partial \mathbf{H}_{1}} \odot \sigma'(\mathbf{A}_{1})$$

$$\frac{\partial \ell}{\partial \mathbf{W}_{1}} = \sum_{i=1}^{N} \frac{\partial \ell}{\partial \mathbf{A}_{1}} \mathbf{X}^{T}$$

$$\frac{\partial \ell}{\partial \mathbf{b}_{1}} = \frac{\partial \ell}{\partial \mathbf{A}_{1}}.$$

Complex-Differentiable

• Similar to real functions, for a complex function that is continuous at point z, we can define its complex derivative as

$$f'(z) = \frac{df}{dz} = \lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{\delta z}.$$

- In principle, we might get different results from the above formula when we plug in different infinitesimals δz (e.g., $f(z)=z^*$).
- A complex function is complex-differentiable at z is the above definition gives the same answer regardless of the argument of δz .
- Besides, if a complex function is complex-differentiable at all points in some domain, then it is said to be analytic in that domain.

Cauchy-Riemann Equations

• Let $f(z=x+\mathrm{j}y)=u(x,y)+\mathrm{j}v(x,y)$ be a complex function where u(x,y) and v(x,y) are real functions. If f is complex-differentiable at a given $z=x+\mathrm{j}y$, then we have

$$\begin{cases} \operatorname{Re}\{f'(z)\} = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \operatorname{Im}\{f'(z)\} = \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}. \end{cases}$$
 (Cauchy-Riemann Equations)

ullet Conversely, if the Cauchy-Riemann Equations holds at point z, then the function f is complex-differentiable at z.

Differentials of Complex Matrix

- $d\mathbf{Z} = d\text{Re}\{\mathbf{Z}\} + jd\text{Im}\{\mathbf{Z}\}$
- $d\mathbf{Z}^* = d\text{Re}\{\mathbf{Z}\} jd\text{Im}\{\mathbf{Z}\}$
- $d\operatorname{Re}\{\mathbf{Z}\} = \frac{1}{2}(d\mathbf{Z} + d\mathbf{Z}^*)$
- $d\operatorname{Im}\{\mathbf{Z}\} = \frac{1}{2i}(d\mathbf{Z} d\mathbf{Z}^*)$

Basic Rules for Matrix Calculus

Consider two matrices $\mathbf{Z}_1, \mathbf{Z}_2 \in \mathbb{C}^{m \times n}$, we introduce some basic rules for matrix calculus in the following.

- Addition and subtraction: $d(\mathbf{Z}_1 \pm \mathbf{Z}_2) = d\mathbf{Z}_1 \pm d\mathbf{Z}_2$;
- Multiplication: $d(\mathbf{Z}_1\mathbf{Z}_2) = (d\mathbf{Z}_1)\mathbf{Z}_2 + \mathbf{Z}_1d\mathbf{Z}_2$;
- Transpose: $d\left(\mathbf{Z}_{1}^{H}\right)=\left(d\mathbf{Z}_{1}\right)^{H}$;
- Trace: $d\operatorname{tr}(\mathbf{Z}_1) = \operatorname{tr}(d\mathbf{Z}_1)$;
- Element-wise multiplication: $d(\mathbf{Z}_1 \odot \mathbf{Z}_2) = d\mathbf{Z}_1 \odot \mathbf{Z}_2 + \mathbf{Z}_1 \odot d\mathbf{Z}_2$;
- Inverse: $d\mathbf{Z}_1^{-1} = -\mathbf{Z}_1^{-1} (d\mathbf{Z}_1) \mathbf{Z}_1^{-1}$;
- Determinant: $d|\mathbf{Z}_1| = \operatorname{tr}\left(\mathbf{Z}_1^{\sharp} d\mathbf{Z}_1\right) = |\mathbf{Z}_1| \operatorname{tr}\left(\mathbf{Z}_1^{-1} d\mathbf{Z}_1\right)$.

Thanks!