Cálculo diferencial e integral I Ayudantía 11

Ejercicio 1. Calcule $\lim_{n\to\infty} \frac{n}{n^2+1}$.

Demostración. Tenemos que para toda $n \in \mathbb{N}$ se cumple que

$$n^2 \le n^2 + 1,$$

de donde

$$\frac{1}{n^2+1} \le \frac{1}{n^2},$$

así que al multiplicar por n obtenemos que

$$\frac{n}{n^2+1} \le \frac{n}{n^2} = \frac{1}{n}.$$

Ya que estamos trabajando con números positivos, para toda $n \in \mathbb{N}$ se cumple que

$$0 \le \frac{n}{n^2 + 1} \le \frac{1}{n}.$$

Ya que

$$\lim_{n \to \infty} 0 = 0$$

y también

$$\lim_{n \to \infty} \frac{1}{n} = 0,$$

y también se cumplen las hipótesis del teorema del sándwich, entonces por dicho resultado obtenemos que

$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0.$$

Ejercicio 2. Estudie la convergencia de la sucesión $\{a_n\}$ donde para cada $n \in \mathbb{N}$ se define

$$a_n = \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n}.$$

Demostración. Notemos que para cada sumando que aparece en cada término de la sucesión cumple que

$$\frac{1}{n^2 + n} \le \frac{1}{n^2 + i} \le \frac{1}{n^2 + 1}$$

ya que para cada $i \in \{1, 2, \dots, n\}$ se cumple que

$$n^2 + 1 \le n^2 + i \le n^2 + n.$$

Entonces, al sumar todos los términos obtenemos que

$$\frac{1}{n^2+n} + \frac{1}{n^2+n} + \dots + \frac{1}{n^2+n} \leq \frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{1}{n^2+n} \leq \frac{1}{n^2+1} + \frac{1}{n^2+1} + \dots + \frac{1}{n^2+1},$$

es decir, para toda $n \in \mathbb{N}$ se cumple que

$$\frac{n}{n^2+n} \le a_n \le \frac{n}{n^2+1}.$$

Notamos que

$$\lim_{n\to\infty}\frac{n}{n^2+n}=\lim_{n\to\infty}\frac{1}{n+1}=0$$

y también

$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0,$$

entonces por el Teorema del Sándwich se concluye que

$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n} \right) = 0.$$

Límites infinitos

Definición 3. Sea $\{a_n\}$ una sucesión.

- (I) Decimos que $\{a_n\}$ diverge a infinito, que denotamos por $\lim_{n\to\infty} a_n = \infty$, si para toda M > 0 existe $N \in \mathbb{N}$ tal que si $n \geq N$, entonces $a_n > M$.
- (II) Decimos que $\{a_n\}$ diverge a menos infinito, que denotamos por $\lim_{n\to\infty} a_n = -\infty$, si para toda M < 0 existe $N \in \mathbb{N}$ tal que si $n \geq N$, entonces $a_n < M$.

Ejercicio 4. Pruebe que:

- (I) $\lim_{n\to\infty} n = \infty$.
- (II) $\lim_{n \to \infty} (-2^n) = -\infty.$

Demostración. (I) Sea M > 0. Como 1 > 0, por la propiedad arquimediana existe $N_0 \in \mathbb{N}$ tal que $M < 1 \cdot N_0 = N_0$. Sea $N = N_0$, entonces para toda $n \ge N$ se cumple que $n \ge N > M$. Así, por definición se cumple que

$$\lim_{n \to \infty} n = \infty.$$

(II) Sea M < 0. Entonces -M > 0. Por la propiedad arquimediana existe $N_0 \in \mathbb{N}$ tal que $-M < 1 \cdot N_0 = N_0$. Ahora, sabemos que para toda $n \in \mathbb{N}$ se cumple que $n < 2^n$ (¿puede dar una prueba de este hecho?), así que $-M < 2^{N_0}$. Además, para toda $n \geq N_0$ se cumple que $2^n > 2^{N_0}$, por lo cual para toda $n \geq N_0$ se satisface que $-M < 2^n$, lo cual implica que $-2^n < M$.

Sea $N=N_0$. Entonces para toda $n\geq N$ se cumple que $-2^n < M$. Luego, por definición se cumple que $\lim_{n\to\infty} (-2^n) = -\infty$.

Lema 5. Si $\lim_{n\to\infty} a_n = \infty$, entonces $\lim_{n\to\infty} \frac{1}{a_n} = 0$.

Demostración. Ya que $\lim_{n\to\infty} a_n = \infty$, hay a lo más una cantidad finita de términos tales que $a_n = 0$, ya que existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$, entonces $a_n > 1$. Por ello, podemos suponer sin pérdida de generalidad que para toda $n \in \mathbb{N}$ se cumple que $a_n \neq 0$ (en caso necesario consideramos solamente los términos a_n con $n \geq n_0$).

Sea $\varepsilon > 0$. Como $\lim_{n \to \infty} a_n = \infty$, existe $N_0 \in \mathbb{N}$ tal que si $n \geq N_0$ entonces $a_n > \frac{1}{\varepsilon} > 0$. Esto implica que $|a_n| = a_n$ si $n \geq N_0$. Proponemos $N = N_0$. Así, si $n \geq N$, entonces

$$\left| \frac{1}{a_n} - 0 \right| = \frac{1}{|a_n|} = \frac{1}{a_n} < \varepsilon.$$

Por lo tanto, $\lim_{n\to\infty} \frac{1}{a_n} = 0$.

Ejemplo 6. (I) Ya que $\lim_{n\to\infty} n=\infty$, por el Lema 5 se obtiene que $\lim_{n\to\infty} \frac{1}{n}=0$. Note que este resultado ya lo conocíamos.

(II) Como $\lim_{n\to\infty} 2^n = \infty$ (¿puede dar una prueba rápida de este hecho?), entonces $\lim_{n\to\infty} \frac{1}{2^n} = 0$.

Observación 7. El recíproco del Lema anterior es FALSO.

Demostración. Consideremos la sucesión $\{a_n\} = \left\{\frac{(-1)^n}{n}\right\}$. Notamos que $\lim_{n \to \infty} a_n = 0$. Sin embargo, $\left\{\frac{1}{a_n}\right\} = \left\{(-1)^n n\right\}$ NO diverge a infinito.

Pregunta: ¿Qué puede decir de $\lim_{n\to\infty} \frac{1}{a_n}$ si $\lim_{n\to\infty} a_n = -\infty$?

Lema 8 (de comparación). Suponga que para toda $n \in \mathbb{N}$ (salvo una cantidad finita de términos) se cumple que $a_n \leq b_n$ y que $\lim_{n \to \infty} a_n = \infty$. Entonces $\lim_{n \to \infty} b_n = \infty$.

Demostración. Sea M > 0. Por hipótesis existe $N_0 \in \mathbb{N}$ tal que si $n \geq N_0$, entonces $a_n > M$, y como $b_n \geq a_n$, entonces $b_n > M$. Así, por definición, $\lim_{n \to \infty} b_n = \infty$.

Lema 9 (de comparación). Suponga que para toda $n \in \mathbb{N}$ (salvo una cantidad finita de términos) se cumple que $a_n \leq b_n$ y que $\lim_{n \to \infty} b_n = -\infty$. Entonces $\lim_{n \to \infty} a_n = -\infty$.

Demostración. Sea M < 0. Por la hipótesis existe $N_0 \in \mathbb{N}$ tal que si $n \geq N_0$, entonces $b_n < M$. Como $a_n \leq b_n$, entonces $a_n < M$. Finalmente, por definición obtenemos que $\lim_{n \to \infty} a_n = -\infty$.