

DFA vs NFA

DFA:

Every state of a DFA always has exactly one exiting transition arrow for each symbol in the alphabet.

In a DFA, labels on the transition arrows are symbols from the alphabet set Σ

NFA:

In an NFA, a state may have zero, one or more exiting arrows for each alphabet symbol.

In NFA, labels on the transition arrows are symbols from the alphabet or ε . Zero, one or many arrows may exit from each state with the label ε .

DFA vs NFA

Deterministic computation

Nondeterministic computation

Why NFA ??

DFA:

- Faster: It follows only one path.
- Complex: More no of states and transitions.

NFA:

- Slower: It chooses between many paths.
- 2. Simple: Easy to express and join multiple machines.

Ex: Language that accepts all strings over {0,1} that contain a 1 either at the third position from the end or at the second position from the end

DFA vs NFA

DFA:

A finite automaton is a 5 tuple (Q, Σ , δ , q₀, F) where,

- Q is a finite set called the states
- Σ is a finite set called the alphabet
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function
- $q_0 \in Q$ is the start state and
- F ⊆ Q is the set of accept states

NFA:

A nondeterministic finite automaton is a 5tuple (Q, Σ , δ , q₀, F), where

- Q is a finite set of states
- Σ is a finite alphabet set
- $\delta : Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the start state and
- F ⊆ Q is the set of accept states

- Every Non Deterministic Finite automaton has an equivalent deterministic finite automaton
- Every DFA is by default NFA

NFA Machine, N₁ – Formal Definition

NFA:

A nondeterministic finite automaton is a 5tuple (Q, Σ , δ , q₀, F), where

- Q is a finite set of states
- Σ is a finite alphabet set
- $\delta : Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the start state and
- F ⊆ Q is the set of accept states

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},\$$

3.
$$\delta$$
 is given as

	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

Steps:

- DFA will start from the start state, q_a
- It will take input one symbols from the input string from left to right consecutively and will traverse to the next states accordingly.
- After reaching the last state when no other input symbols left, if the last state is an accept state then this machine will accept that string otherwise it can't accept/reject that string.

For input string "aabcc", the sequence of states the machine will visit are:

$$\rightarrow q_a - a \rightarrow q_a - a \rightarrow q_a - b \rightarrow q_b - c \rightarrow q_c - c \rightarrow q_c$$

As the final state q_c is an accept state, so this string will be accepted.

- Suppose we are in state q₁ in NFA and that the next input symbol is a 1. After reading that symbol, the machine splits into multiple copies of itself and follows all the possibilities in parallel.
- Each copy of the machine takes one of the possible ways to proceed and continues as before. If there are subsequent choices, the machine splits again.
- If the next input symbol doesn't appear on any of the arrows exiting the state occupied by a copy of the machine, that copy of the machine dies, along with the branch of computation associated with it.
- Finally, if any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the input string.

- If a state with an ε symbol on an exiting arrow is encountered, something similar happens. Without reading any input, the machine splits into multiple copies, one following each of the exiting ε –labeled arrows and one staying at the current state.
- Then the machine proceeds nondeterministically as before.

Let's compute the following NFA machine for input string 010110

Let's compute the following NFA machine for input string 010110

NFA – Design

Draw the state diagram of NFA machines that can recognize the following languages:

- L(M) = { w | w begins with 101 } over ∑={0,1}
- L(M) = { w | w begins with abb } over ∑={a,b}
- L(M) = { w | w ends with 101 } over ∑={0,1}
- L(M) = { w | w ends with aa } over ∑={a,b}
- L(M) = { w | w contains 110 as substring } over ∑={0,1}
- L(M) = { w | w contains abb as substring } over Σ={a,b}
- L(M) = { w | w is exactly 101 }
- L(M) = { w | w contains a 1 in the 3^{rd} position from the end } over Σ ={0,1}

Regular Operations on NFA - Union

UNION:

The class of regular languages is closed under the union operation

That means, if A_1 and A_2 are regular languages, then A_1 U A_2 is also a regular language. Here, A_1 U A_2 = { $x \mid x \in A_1$ or $x \in A_2$ }

Example:

 $A_1 = \{ good, bad \} and A_2 = \{ boy, girl \}$ Then, $A_1 \cup A_2 = \{ good, bad, boy, girl \}$

In this case, if N_1 and N_2 represent the NFAs to recognize A_1 and A_2 then we need to build a machine N from N_1 and N_2 so that N can also recognize A_1 U A_2

Regular Operations on NFA - Union

UNION of two NFAs

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Regular Operations on NFA - Concatenation

Concatenation:

The class of regular languages is closed under the concatenation operation

That means, if A_1 and A_2 are regular languages, then A_1 o A_2 is also a regular language. Here, A_1 o A_2 = { $xy \mid x \in A_1$ and $y \in A_2$ }

Example:

```
A<sub>1</sub> = { good, bad } and A<sub>2</sub> = { boy, girl }
Then,
A<sub>1</sub> o A<sub>2</sub> = { goodboy, goodgirl, badboy, badgirl }
```

In this case, if N_1 and N_2 represent the NFAs to recognize A_1 and A_2 then we need to build a machine N from N_1 and N_2 so that N can also recognize A_1 o A_2

Regular Operations on NFA - Concatenation

Concatenation of two NFAs

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \not\in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2. \end{cases}$$

Regular Operations on NFA - Star

Star:

The class of regular languages is closed under the star operation

That means,

if A_1 is a regular language, then A_1^* is also a regular language.

Here, $A_1^* = \{ x_1 x_2 x_3 \dots x_k \mid k > = 0 \text{ and each } x_i \in A_1 \}$

Example:

 $A_1 = \{ good, bad \}$

Then,

 $A_1^* = \{ \varepsilon , \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, }$

In this case, if N_1 represents the NFAs to recognize A_1 then we need to build a machine N from N_1 so that N can also recognize A_1^*

Regular Operations on NFA - Star

Star on NFA

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

NFA – Design

Draw the state diagram of NFA machines that can recognize the following languages:

- Union: A be the language consisting of all strings of the form 0^k over {0} where k is a multiple of 2 or 3
- Union: All strings beginning with 101 or with 110
- Concatenation: All strings beginning with 101 and ending with 101
- Star: All strings consisting of 0 or more repetitions of 101
- Plus: All strings consisting of 1 or more repetitions of 101
- Complement: All strings that doesn't contain substring 101
- Concat + Complement: All strings with exactly 1 occurrence of 101

Equivalence of NFAs and DFAs

- Two machines are equivalent if they recognize the same language.
- Deterministic and Nondeterministic finite automata recognize the same class of languages.
- Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Converting NFA into equivalent DFA

- Let N = $(Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A
- We need to construct a DFA machine $M = (Q', \Sigma, \delta', q_0', F')$ recognizing A

Step 1 : M = (\mathbb{Q}' , Σ , δ' , q_0' , F')

Q' = P(Q) = set of all subsets of Q = { Ø , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }

- For R ⊆ Q,
 ε closure of R = E(R) = { q | q can be reached from members of R by traveling along 0 or more ε arrows }
- For this case, $q_0' = E(q_0) = E(\{1\}) = \varepsilon$ closure of $\{1\} = \{1, 3\}$ is our start state.

- F' = { R ∈ Q' | R contains an accept state of N } i.e. the machine M accepts if one of the possible states that N could be in at this point is an accept state.
- For this case, F' = { {1}, {1,2}, {1,3}, {1,2,3} }

- For R ⊆ Q,
 ε closure of R = E(R) = { q | q can be reached from members of R by traveling along 0 or more ε arrows }
- For input symbol a, the transition function can be defined as, $\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(R, a)) \}$ for some $r \in R \} = \bigcup_{r \in R} E(\delta(r, a))$
- In our case for example,

Step 4 : M = (Q', Σ , δ' , q_0 ', F')

State	1,3	
Next States without ε	1	
Final States with ε -closure	1,3	

State	1,3	
Next States without ε	2	
Final States with ε-closure	2	

State	2
Next States without ε	2,3
Final States with ε -closure	2,3

State	2	
Next States without ε	3	
Final States with ε -closure	3	

State	3	
Next States without ε	\ 1	
Final States with ε -closure	1,3	

State	3	
Next States without ε	{}	
Final States with ε-closure	{}	

State	2,3
Next States without ε	2, 3, 1
Final States with ε -closure	2, 3, 1

State	2,3	
Next States without ε	3	
Final States with ε -closure	3	

State	{}	
Next States without ε	{}	
Final States with ε -closure	{}	

State	1, 2, 3
Next States without ε	2, 3, 1
Final States with ε -closure	2, 3, 1

State	1, 2, 3
Next States without ε	2,3
Final States with ε -closure	2,3

NFA -> DFA : Practices

Question Archive

- Design the state diagram for the following NFAs
 - a) Draw the state diagram of an NFA / ε-NFA which accepts strings those do not contain substring "main". Here, Σ = { a,b,c,d,...,z}
 - b) Draw the state diagram of an NFA / ε -NFA which accepts binary strings which has even values. Here, Σ = { 0, 1} (Accepted: 01010, Not accepted: 10101)
 - c) Draw the state diagram of an NFA / ε -NFA which recognizes FIFA World Cup years in 4 digits. Assume World Cup occurs every 4 years starting from 2002. Here, $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$.
- Design the state diagram for the following DFA's
 - a) Draw the state diagram of an NFA/ ε-NFA which accepts strings of length at most 5. The set of accepted symbols is {0, 1, 2}
 - b) Draw the state diagram of an NFA/ ε-NFA for alphabet set {a, b, c} which starts with 'abc' or ends with 'bb'.
 - c) Draw the state diagram of an NFA/ ε-NFA which accepts those binary strings that has odd decimal values. The set of accepted symbols is {0, 1}

Question Archive

- 3. Design the state diagram for the following NFAs
 - a) Draw the state diagram of an NFA/∈-NFA for alphabet set {a, b} which starts and ends with "ab".
 - b) Draw the state diagram of an NFA/∈-NFA for alphabet set {a, b} which contains a 'b' in its third position from the last. [Sample accepted strings: "abba", "baa", "ababab"].
 - c) Consider the following NFA, and show with the help of NFA-tree whether the string "001010" is accepted or not.

- Design the state diagram for the following DFA's
 - a) Draw the state diagram of a NFA/ E-NFA over alphabet set {a, b, c} that starts with 'ab' or 'ac' and does not end with 'a'. [Sample Accepted Strings: abcc, acbab, abaacb]
 - b) Draw the state diagram of a NFA/ E-NFA over alphabet set {0, 1} that contains '1011' and '000' as a substring.

Question Archive

- 5. Design the state diagram for the following NFAs
 - a) Draw the state diagram of an NFA / ε-NFA which accepts strings having both 'web' and 'security' as substrings. Here, Σ = { a, b, c, d, ..., z }
 - b) Draw the state diagram of an NFA / ε-NFA which accepts strings having 1 at the 3rd position from the last. Here, Σ = {0, 1}
 - c) Draw the state diagram of an NFA / ε-NFA which recognizes leap years. Assume that, leap year occurs every 4 years starting from 0. Here, Σ = {0,1,2,3,4,5,6,7,8,9}.
- Design the state diagram for the following DFA's
 - a) Draw the state diagram of an NFA or ε-NFA that accepts all binary strings which start with 1 or end with 001
 - b) Draw the state diagram for alphabet set {0, 1, 2, ..., 9} of an NFA or ε-NFA that accepts strings that ends with the digit 5 and also 5 is the summation of the first two digits.
 - c) Draw the state diagram of an NFA or ε-NFA for the language { w ∈ Σ* | w contains at least two 0's or exactly two 1's