BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

DETERMATIONAL ARRIVATION DITRIBLED INDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: PCT/NL99/00584 (22) International Filing Date: 21 September 1999 (21.09.99) (30) Priority Data: 1010140 21 September 1998 (21.09.98) NL (71) Applicant (for all designated States except US): STICHT-ING ENERGIEONDERZOEK CENTRUM NEDERLAND (NL/NL]; Westerduinweg 3, NL-1755 LE Petten (NL). (72) Inventors; and (75) Inventors/Applicants (for US only): DE WILD, Paulus, Johannes [NL/NL]; Leeststraat 13, NL-1825 JL Alkmaar (NL), VERHAAK, Michael, Johannes, Franciscus, Maria (NL/NL): Westerweg 41, NL-1815 DB Alkmaar (NL).	(81) Designated States: AB, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, PP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM). Burnopean patent (AT, BE, RY, KG, KZ, MD, RU, TI, TM).
(22) International Filing Date: 21 September 1999 (21.09.99) (30) Priority Data: 1010140 21 September 1998 (21.09.98) NL (71) Applicant (for all designated States except US): STICHT-ING ENERGIEONDERZOEK CENTRUM NEDERLAND [NL/NL]; Westerduinweg 3, NL-1755 LE Petten (NL). (72) Inventors; and (75) Inventors/Applicants (for US only): DE WILD, Paulus, Johannes [NL/NL]; Leeststraat 13, NL-1825 JL Alkmaar (NL). VERHAAK, Michael, Johannes, Franciscus, Maria [NL/NL]: Westerweg 41, NL-1815 DB Alkmaar (NL).	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI, TJ, TM, TR, TT, TZ, UA, UG, US,
ING ENERGIEONDERZOEK CENTRUM NEDERLAND [NL/NL]; Westerduinweg 3, NL-1755 LE Petten (NL). (72) Inventors; and (75) Inventors/Applicants (for US only): DE WILD, Paulus, Johannes [NL/NL]; Leeststraat 13, NL-1825 JL Alkmaar (NL), VERHAAK, Michael, Johannes, Franciscus, Maria [NL/NL]: Westerweg 41, NL-1815 DB Alkmaar (NL).	CH, CY, DE, DK, BS, FI, FR, GB, GR, IE, IT, LU, MC,
(75) Inventors/Applicants (for US only): DE WILD, Paulus, Johannes [NL/NL]; Leeststraat 13, NL-1825 JL Alkmaar (NL), VERHAAK, Michael, Johannes, Franciscus, Maria [NL/NL]; Westerweg 41, NL-1815 DB Alkmaar (NL).	NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
BAKKER, Dianna, Fokelina [NL/NL]; Vermeerstraat 16, NL-1761 WR Anna Paulowna (NL).	Published With international search report. In English translation (filed in Dutch).
(74) Agent: DE BRUIJN, Leendert, C.; Nederlandsch Octrooibureau, Scheveningseweg 82, P.O. Box 29720, NL-2502 LS The Hague (NL).	
(54) Title: CATALYSTS FOR THE SELECTIVE OXIDATION OF	F CARBON MONOXIDE IN HYDROGEN-CONTAINING GASES

The invention relates to a method for the selective catalytic oxidation of carbonmonoxide (CO) in H₂-rich, CO₂- and H₂-containing gases in the presence of a noble metal catalyst on an alumina carrier with the addition of air as oxidising agent. According to the invention, with this method α -Al₂O₃ is used as carrier material. The specific surface area of the α -Al₂O₃ carrier can be less than 25 m²/gram. The noble metal can be ruthenium or platinum and preferably a combination of ruthenium (Ru) and platinum (Pt), the sum of the quantities of RU and Pt being less than or equal to 1.0 % (m/m).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain .	LS	Lesotho	SI	Slovenia
AM	Armenia	P1	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE.		GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Belgium Burkina Faso	GR	Greece	-	Republic of Macedonia	TR	Turkey
		HU	Hungary	ML	Mali	TT	Trinidad and Tobego
BG	Bulgaria	1E	Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin	IL	îsmel	MR	Mauritania	UG	Uganda
BR	Brazil		Iceland	MW	Malawi	us	United States of America
BY	Belarus	IS		MX	Mexico	UZ	Uzbekistan
CA	Cenada	IT	Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan	NL	Netherlands	YU	Yugoslavia
CG	Coago	KE	Kenya		Norway	zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NO	Now Zealand	2	
a	Côte d'Ivoire	KP	Democratic People's	NZ	• • • • • • • • • • • • • • • • • • • •		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DB	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lenka	SE	Sweden		
RE	Estonia	LR	Liberia	SG	Singapore		

Catalysts for the selective oxidation of carbon monoxide in hydrogen-containing gases

Introduction/background information

10

20

The invention relates to a method for the selective catalytic oxidation of carbon monoxide (CO) in the presence of a noble metal catalyst on an alumina carrier.

Fuel cells are being investigated in many places as a possible energy source for driving vehicles and for stationary generation of electricity. The use of fuel cells is still highly dependent on the availability of the fuel: hydrogen (H₂). It is not to be expected that an infrastructure for hydrogen will be set up within the foreseeable future. Especially for mobile applications, it is therefore necessary to transport an available fuel, or a fuel that becomes available, and to convert this to hydrogen as the feed for the fuel cell.

A gas mixture that consists mainly of hydrogen and carbon dioxide (CO₂) is then produced - for example via steam reforming and/or partial oxidation - from fuels such as methane, LPG, methanol, petrol, diesel and other hydrocarbons. Said gas mixture, which is rich in hydrogen, is then fed to the fuel cell which generates electricity by an electrochemical reaction of hydrogen with oxygén.

However, a certain amount of carbon monoxide (CO) is also always liberated during the conversion of said fuels into hydrogen. For instance, a gas mixture of, for example, 75 % (V/V) H₂, 24 % (V/V) CO₂ and 1 % (V/V) CO is produced on steam reforming of methanol. A solid polymer fuel cell, the major candidate for transport applications, is extremely sensitive to CO, which even in low concentrations (0.01 % (V/V)) has an adverse effect on the performance of the fuel cell. For a usable system it is therefore necessary to remove CO down to the said level and preferably down to a lower level (< 0.005 % (V/V), 50 ppm). A technically attractive option for removing CO from H₂-containing gas streams is by means of selective oxidation of CO to CO₂ at low temperature (100 °C - 200 °C). In this context it is important that the consumption of hydrogen by non-selective oxidation to water is minimised.

The power of ruthenium (Ru) to catalyse the oxidation of CO is, for example, known from the ammonia synthesis process. Thus, it is known from US Patent 3 216 782 (9 November 1965) that 0.5 % (m/m) Ru on alumina (Al₂O₃) is capable of oxidising 0.055 - 0.6 % (V/V) CO in the presence of H₂ at between 120 °C and 160 °C to a level of less than 15 ppm. In this case it is necessary that the quantity of oxygen (O₂) added is such that the molar O₂/CO ratio is between 1 and 2. The excess oxygen which is not needed for the

oxidation of CO reacts with hydrogen to give water. It has not been investigated whether this Ru catalyst is also capable of oxidising CO from a typical reformate gas to a CO level of 15 ppm under the same conditions (temperature, O₂/CO ratio).

In the Journal of Catalysis 142 (1993), Academic Press Inc., pages 257-259, S.H. Oh and R.M. Sinkevitch describe 0.5 % (m/m) Ru/γ-Al₂O₃ as highly effective in the complete oxidation, at low temperature (100 °C), of 900 ppm CO with 800 ppm oxygen (O₂) in a gas mixture which also contains 0.85 % (V/V) H₂, with the remainder being N₂. Data on the stability of the Ru catalyst are not given in the article and in addition the behaviour of the catalyst in a realistic reformate gas containing H₂, CO₂, H₂O and CO in much higher concentrations was not investigated.

Current state of the art

5

10

15

20

25

30

European Patent EP 0 743 694 A1 (20 November 1996) refers to an oxidation unit for the selective oxidation of CO in H₂-rich gas at a reaction temperature of between 80 °C and 100 °C. A molar ratio of O₂/CO of 3 is used. The final CO content is a few ppm. The excess oxygen reacts with hydrogen to give water. The catalyst consists of a 0.2 % (m/m) - 0.5 % (m/m) Pt-Ru alloy on Al₂O₃. No examples which would show the stability of the catalyst are given.

US Patent 5 674 460 (7 October 1997) describes a structured reactor for the catalytic removal of CO from H₂-rich gas at between 90 °C and 230 °C. Depending on the temperature, the catalyst in this case consists of Pt on γ -Al₂O₃, Pt on zeolite-Y or Ru on γ -Al₂O₂. The invention is explained solely on the basis of 5 % (m/m) Pt on γ -Al₂O₃, by means of which the CO content can be reduced to about 40 ppm at a reaction temperature of between 80 °C and 130 °C. No stability data are given in this patent either.

In the Journal of Catalysis 168 (1997), Academic Press, pages 125-127, R.M. Torres Sanchez et al. describe gold on manganese oxide as an alternative catalyst for the oxidation of CO in H₂ at low temperatures (approximately 50 °C). In particular the price, due to the high gold loading (approximately 4 - 10 % (m/m)), makes the use of this type of catalyst less interesting. Moreover, this type of catalyst is able to withstand carbon dioxide to only a limited extent.

It is not clear from the above whether the catalysts of the prior art are suitable for the selective oxidation of CO in H₂-rich reformate gas mixtures where there is high activity in conjunction with good stability in the temperature range 100 °C - 200 °C and where a low

oxygen excess can be used to minimise the hydrogen consumption.

Discovery of new catalyst

10

20

One aim of the present invention is to provide a method for the selective catalytic oxidation of CO from H₂-rich, CO₂- and H₂O-containing (reformate) gas mixtures, making use of as small as possible an amount of oxygen and at relatively low temperature. A further aim of the present invention is to provide a catalyst which has high chemical and thermal stability and can be produced in a cost-effective manner by means of a simple method of preparation from commercially available starting materials and a low noble metal loading.

The use of commercially available α -Al₂O₃ as carrier material in the preparation of 0.5 % (m/m) Ru on Al₂O₃ led, surprisingly, to a catalyst which in the temperature range 120 °C - 160 °C combines high activity (> 99% conversion of CO) with high stability (a CO conversion of at least 97 % for a period of at least 50 hours) in the oxidation of CO with a relatively small excess of oxygen in dilute reformate gas. These results were found to be appreciably better than the results which were obtained with a commercially available 0.5 % (m/m) ruthenium catalyst with γ -Al₂O₃ as the carrier (specific surface area > 100 m²/g), which is representative of the catalysts used in the abovementioned studies and reflects the prior art.

It has also been found that the addition of Pt and the lowering of the total noble metal loading resulted in a catalyst which showed even better stability for the selective oxidation of CO in both dilute and <u>undiluted</u> reformate gas (a CO conversion of at least 99 % for a period of at least 50 hours).

It has furthermore been found that in particular the nature and the specific surface area of the Al_2O_3 carrier used are the factors determining the exceptional performance of the Ru and Ru-Pt catalysts according to the present invention. Preferably, alumina is used in the form of α -Al₂O₃. A highly active and stable catalyst is formed when the specific surface area of the α -Al₂O₃ is in the range from 3 m²/g to 25 m²/g.

The catalysts in the present invention can be prepared in a simple manner via a standard impregnation method from commercially available starting materials. Compared with the current state of the art, the method according to the present invention has the following advantages:

- complete oxidation of CO to CO₂ in the temperature range 120 °C to 160 °C with only a small excess of oxygen (O₂/CO = 1) compared with the stoichiometrically required quantity

of oxygen ($O_2/CO = 0.5$),

- minimal hydrogen consumption as a result of low oxygen excess (O2/CO = 1),
- stable action at 130 °C in simulated reformate gas $(0.5\% (V/V) CO, 0.5\% (V/V) O_2, 74\% (V/V) H_2, 19\% (V/V) CO_2 and 6\% (V/V) H_2O)$ for a period of at least 50 hours (residual quantity of CO < 50 ppm),
- low noble metal loading of less than 0.5 % (m/m).

α-Al₂O₃ is a commercial product that is used, inter alia, in the electronics industry in the production of thick and thin substrate layers by tape casting. Another application is the production of industrial ceramics.

The use of this α -Al₂O₃ as carrier for a selective oxidation catalyst for CO in H₂-rich gas mixtures has not been described before.

The invention will be explained in more detail on the basis of the following examples together with the appended figures.

In the figures:

15

20

25

30

Figure 1 shows the activity of a 0.5 % (m/m) Ru-on- α -Al₂O₃ catalyst (code A1Ru-5) compared with the activity of a commercial Ru catalyst with 0.5 % (m/m) Ru on γ -Al₂O₃ (code G1RuC-5) in the oxidation of CO in <u>dilute</u> reformate gas,

Figure 2 shows the stability of A1Ru-5 in the CO oxidation at 130 °C compared with the stability of G1RuC-5 in <u>dilute</u> reformate gas,

Figure 3 shows the activity of a 0.25 % (m/m) Ru, 0.125 % (m/m) Pt-on-α-Al₂O₃ catalyst (code A1RuPt-48) compared with the activity of A1Ru-5 in the oxidation of CO in dilute reformate gas,

Figure 4 shows the stability of A1RuPt-48 in the CO oxidation at 130 °C compared with the stability of A1Ru-5 in dilute reformate gas,

Figure 5 shows the activity of A1RuPt-48 in the oxidation of CO as a function of the reformate gas composition,

Figure 6 shows the stability of A1RuPt-48 in the CO oxidation at 130 °C as a function of the reformate gas composition and

Figure 7 shows the activity of A2RuPt-48 compared with the activity of A1Ru-5 and G3Ru-5 in the oxidation of CO in <u>undiluted</u> reformate gas.

In the following tests the Ru-on- α -Al₂O₃ and the Ru-Pt-on- α -Al₂O₃ catalysts were prepared by impregnation of a commercial α -Al₂O₃ carrier with solutions of the salts

ruthenium nitrosylnitrate and hexachloroplatinic acid. The effect of the α -Al₂O₃ carrier on the CO oxidation activity and stability of the catalyst is determined under III below. The effect of the addition of Pt and the lowering of the total noble metal loading on the catalyst activity and stability is given under IV. Finally, the activity and the stability of the catalyst as a function of the composition of the reformate gas are determined under V.

I. Preparation of Ru-on-α-Al₂O₃ and Ru-Pt-on-α-Al₂O₃ catalysts

The catalysts according to the present invention were prepared by dry impregnation of α-Al₂O₃ powder with solutions of ruthenium nitrosylnitrate ((Ru(NO)(NO₃)_x(OH)_y (x+y=3), Ru content of the solution 1.5 % (m/m)) and hexachloroplatinic acid (H₂PtCl₆.xH₂O), Pt content 0.5 % (m/m)).

The 0.5 % (m/m) Ru-on-α-Al₂O₃ catalyst (code A1Ru-5) was prepared by adding 5 gram of the Ru solution to 15 gram of the α-Al₂O₃ powder in a glass beaker and then stirring well until a pasty substance was formed. This paste was then dried in air in an oven for 16 hours at 80 °C. During drying the setting paste was stirred several times. After drying, the solid material was finely ground to a homogeneous powder with the aid of a mortar. The powder thus produced was then pressed to give a pill. After crushing the pill in a mortar a 0.25 mm to 0.5 mm sieve fraction was prepared for the catalytic measurements. The catalyst prepared was stored in a polyethene sample bottle at room temperature.

In the case of the 0.25 % (m/m) Ru and 0.125 % (m/m) Pt-on-α-Al₂O₃ catalysts (codes A1RuPt-48 and A2RuPt-48), first 1.68 gram of the Ru solution and then 2.51 gram of the Pt solution were added to 10 gram of the α-Al₂O₃ powder. The subsequent preparation steps were identical to those described above for A1Ru-5.

25 II. Test apparatus and test procedure

5

10

15

20

30

The conversion of CO was studied in an automated micro-flow set-up operating under atmospheric pressure. The following gases were available to the set-up: N₂, O₂, H₂, CO₂, CO and H₂O. It was possible to measure the gases H₂, CO₂ and CO with the aid of a Perkin-Elmer model 8500 gas chromatograph equipped with a methanizer, connected in series, a TCD and an FID. A pneumatically controlled 6-way tap was used for sampling the product gas. CO was also measured occasionally with an Elsag Bailey Hartmann & Braun model URAS 10E ND-IR analyser.

The precursor was contained in a Pyrex glass reactor having an internal diameter of

10 mm. The catalyst bed was covered with glass wool and a layer of glass beads. The height of the catalyst bed was approximately 5 mm, whilst the gas flow was approximately 75 ml/min. The space velocity (SV) was approximately 11,000 h⁻¹ in this case. The amount of precursor required (0.25 mm - 0.5 mm fraction) was 200 or 400 mg. The temperature was measured immediately below the catalyst bed using a CrAl thermocouple.

During the measurements the catalyst sample was exposed to a pre-mixed gas containing 0.5 % (V/V) CO, 0.5 % (V/V) O2, 5 or 19 % (V/V) CO2, 15, 51 or 74 % (V/V) H2, 6 or 7 % (V/V) H2O, with the remainder being N2. Prior to the CO oxidation measurement the catalyst sample was pre-treated with, successively, air at 400 °C and 25 % (V/V) H2 in N2 at 550 °C for activation. The activated catalyst was then cooled under H2/N2 to the starting temperature for the test. The reactor was flushed with N2 for approximately 10 minutes each time the gas composition was changed. For activity measurements the starting temperature was always 80 °C, after which the reactor temperature was raised in 10 °C steps to a final temperature of 250 °C. The CO conversion was determined at each temperature. For stability measurements the catalyst bed was first brought to the measurement temperature under H2/N2 after the pretreatment, after which the CO conversion was determined once an hour for a period of 50 hours. The general test conditions for the CO oxidation measurements are given in Table 1.

15

20

The CO conversion was calculated on the basis of the amount of CO in the product gas (CO_{out}) using the GC and the amount of CO in the feed gas ($CO_{in} = 0.5 \%$ (V/V)) determined using the GC in accordance with: CO conversion (in %) = $100 + (CO_{in} - CO_{out})/CO_{in}$. Using the NDIR it was separately determined that the detection limit of the GC for CO was approximately 25-30 ppm.

10

20

Table 1 General test conditions

Weight of catalyst sample 200-400 mg Volume of catalyst bed approx. 0.4 - 0.6 ml 0.25-0.50 mm Particle size 75 ml/min Gas flow rate Spatial velocity of the gas 10,000 - 15,000 h⁻¹ per hour (GHSV) Feed gases 0.5% CO, 0.5% 02, 15% H2, 5% CO2, 7% H2O, remainder N2 Reformate gas 1 0.5% CO, 0.5% $0_2,\,51\%$ $H_2,\,5\%$ CO2, 7% $H_2O,\,remainder$ N_2 Reformate gas 2 0.5% CO, 0.5% O₂, 74% H₂, 19% CO₂, 6% H₂O Reformate gas 3 atmospheric Total pressure 80 °C - 250 °C (10 °C steps in the activity measurements) Temperature of catalyst 130 °C (stability measurements) bed

III. Effect of 0.-Al2O3 carrier on CO oxidation in dilute reformate gas

The test results for the oxidation of CO with O₂ in dilute reformate gas (gas 1) over the Ru-on-alumina catalyst (code A1Ru-5) show that the use of α -Al₂O₃ as the carrier for Ru results in both a better activity and a better stability in the oxidation of CO compared with a commercial Ru-on- γ -Al₂O₃ catalyst (code G1RuC-5).

Figure 1 shows the activity of A1Ru-5 compared with the activity of G1RuC-5 in the oxidation of CO in dilute reformate gas 1. Catalyst A1Ru-5 achieves a more complete CO conversion over a wider temperature range than does G1RuC-5.

Figure 2 shows the stability in the CO oxidation in dilute reformate gas 1 with A1Ru-5 compared with the stability of G1RuC-5. A1Ru-5 is found to be both more active and more stable in the CO oxidation than G1RuC-5 over a measurement period of 50 hours.

15 IV. CO oxidation in dilute reformate gas with Ru-Pt on α-Al₂O₃

Test results for the oxidation of CO with O₂ in dilute reformate gas 1 over a Ru-Pt-on-α-Al₂O₃ catalyst (code A1RuPt-48) demonstrate that the addition of Pt and lowering the total noble metal loading results in a catalyst which is more stable than the A1Ru-5 described above. The addition of platinum and lowering the total noble metal loading was not found to have a significant effect on the activity of the catalyst.

Figure 3 shows the activity of A1RuPt-48, which has a low loading, compared with the activity of A1Ru-5 in the oxidation of CO in dilute reformate gas 1. It can clearly be seen that from 120 °C A1RuPt-48 shows virtually the same CO conversion as a function of the temperature as A1Ru-5. This is despite the lower noble metal loading of A1RuPt-48 compared with A1Ru-5.

Figure 4 shows the stability of A1RuPt-48 in the CO oxidation at 130 °C compared with the stability of A1Ru-5 in dilute reformate gas 1. A1RuPt-48 displays a higher conversion of CO than A1Ru-5 over the entire measurement period.

10 V. Effect of reformate gas composition on CO oxidation with Ru-Pt on α-Al₂O₃

15

20

25

Test results for the oxidation of CO with O₂ in various reformate gases 1, 2 and 3 over the Ru-Pt-on-α-Al₂O₃ catalyst described above show that activity and stability are virtually independent of the composition of the reformate gas.

Figure 5 shows the activity of A1RuPt-48 in the oxidation of CO measured in various reformate gas compositions. Only at the highest temperatures is the conversion of CO in the less dilute reformate gases 2 and 3 somewhat lower than the conversion in the most dilute reformate gas 1.

Figure 6 shows the stability of A1RuPt-48 in the CO oxidation in the three different reformate gases 1, 2 and 3. The very high CO conversion with this catalyst is dependent to only a very slight extent on the composition of the reformate gas; even with simulated undiluted reformate gas 3 there is more than 99% CO conversion over the entire measurement period (residual quantity of CO < 50 ppm).

Figure 7 shows the activity of three catalysts in the oxidation of CO in undiluted reformate gas 3. The various curves in Figure 7 for 0.5 % (m/m) Ru on γ -Al₂O₃ (code G3Ru-5), 0.5 % (m/m) Ru on α -Al₂O₃ (code A1Ru-5) and 0.25 % (m/m) Ru and 0.125 % (m/m) Pt on α -Al₂O₃ (code A2RuPt-48) show the substantial effect of the type of carrier material (γ compared with α) and the metal composition (Ru compared with Ru/Pt).

5

15

20

Claims

- 1. Method for the selective catalytic oxidation of carbon monoxide (CO) in H₂-rich, CO₂-and H₂O-containing gases in the presence of a noble metal catalyst on an alumina carrier with the addition of air as oxidising agent, characterised in that α-Al₂O₃ is used as carrier material.
- 2. Method according to Claim 1, characterised in that the specific surface area of the α -Al₂O₃ carrier is less than 25 m²/gram.
- 3. Method according to Claim 1, characterised in that the noble metal is ruthenium or platinum and preferably a combination of ruthenium (Ru) and platinum (Pt).
 - 4. Method according to Claims 1 and 3, characterised in that the sum of the quantities of Ru and Pt is less than or equal to 1.0 % (m/m).
 - 5. Method according to Claim 1, characterised in that the quantity of air added to the gas stream to be treated corresponds to a quantity of oxygen which in molar terms is at most five times as great as the quantity of CO to be removed and preferably is equal to the quantity of CO to be removed and is at least equal to half the quantity of CO to be removed.
 - 6. Method according to Claim 1, characterised in that the oxidation takes place at a temperature of between 100 °C and 200 °C, preferably of between 120 °C and 180 °C.
- Method according to Claims 1 and 6, characterised in that the temperature at which the
 oxidation takes place is maintained by using the catalyst in or on a reactor which has the features of a heat exchanger.

WO 00/17097 PCT/NL99/00584

WO 00/17097

INTERNATIONAL SEARCH REPORT

Inter: 1al Application No PCT/NL 99/00584

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C01B3/58						
According to Internetional Patent Classification (IPC) or to both national classification and tPC						
	SEARCHED					
	ocumentation searched (classification system followed by classification	on symbols)				
IPC 7	C01B B01D					
Documenter	Documentation searched other than minimum documentation to the extent that auch documents are included in the fields searched					
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)				
	ENTS CONSIDERED TO BE RELEVANT	Palaurah a dala Na				
Category *	Citation of document, with indication, where appropriate, of the rel	event passeges Relevant to claim No.				
A	DE 43 34 983 A (DAIMLER-BENZ) 20 April 1995 (1995-04-20) claims	1-7				
A	US 5 491 120 A (KENNETH E. VOS ET 13 February 1996 (1996-02-13) column 2, line 16 -column 3, line claims					
Further documents are listed in the continuation of box C. Patent family members are listed in annex.						
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance threation in the cannot be considered to be of particular relevance. "E" earlier document but published on or after the international filling date "L" document which may strow doubts on priority claim(s) or which is obsid to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or						
	means ent published prior to the international filing date but an the priority date claimed	ments, such combination being obvious to a person skilled in the srt. '&" document member of the same patent family				
Date of the	actual completion of the international search	Date of mailing of the international search report				
2	December 1999	16/12/1999				
Name and r	neiling address of the ISA European Patent Office, P.B. 5618 Patentiaan 2	Authorized officer				
European Patem Cimbe, P.B. 3516 Patemban 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Bogaerts, M						

INTERNATIONAL SEARCH REPORT.

information on patent family members

Inter: nal Application No PCT/NL 99/00584

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 4334983 A	20-04-1995	EP 0650922 A	03-05-1995
us 5491120 A	13-02-1996	AU 669498 B	13-06-1996
03 3431140 .		AU 3037392 A	16-06-1994
		CA 2124439 A	10-06-1993
		EP 0614398 A	14-09-1994
		JP 7501484 T	16-02-1995
		MX 9206830 A	01-07-1993
		WO 9310885 A	10-06-1993
		CA 2124441 A	10-06-1993
		EP 0614399 A	14 - 09-1994
		JP 7501485 T	16-02-1995
		MX 9206829 A	01-07-1993
		WO 9310886 A	10-06-1993
	•	US 5462907 A	31-10-1995
		US 5580535 A	03-12-1996
		US 5627124 A	06-05-1997
•		US 5756053 A	26-05-1998
		ZA 9209107 A	25-04-1994
		ZA 9209108 A	09-03-1994

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
(Z) COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.