

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa

Emai: gianluca.dini@unipi.it

Version: 2022-04-05

1

Secrecy and integrity

- We have primitives for secrecy and integrity
 - Secrecy: ciphers
 - Integrity: MAC
- What if we wish to achieve secrecy and integrity

apr. '22

Authenticated encryption

2

Encrypt and authenticate

 Alice and Bob want to achieve both confidentiality and integrity

```
Alice (k1, k2)
message x
y = E_{k1}(x)
t = MAC_{k2}(x)
-------[y, t] ------>
x = D_{k1}(y)
if V_{k2}(x, t) return x
else return «error»
```

3

Is it secure?

- The tag t might leak information about x
 - Nothing in the definition of security for a MAC implies that it hides information about x
- If the MAC is deterministic (e.g., CBC-MAC and HMAC), then it leaks whether the same message is encrypted twice

apr. '22

Authenticated encryption

4

Encrypt then authenticate

Alice and Bob want to achieve confidentiality and integrity

```
Alice (k1, k2) Bob (k1, k2)

y = E_{k1}(x)

t = MAC_{k2}(y)

----- [y, t] --->

if (V_{k2}(y, t)) return (x = D_{k1}(y))

else return "error"
```

apr. '22 Authenticated encryption

5

Security of encrypt then authenticate

- It can be proved that if Enc is CPA-secure and MAC is secure then:
 - The combination is CPA-secure
 - The combination is a secure MAC

apr. '22

Authenticated encryption

6

Security of encrypt then authenticate

- EtM achieve something stronger
 - Given ciphertexts corresponding to (chosen) plaintexts x₁,
 ..., x_m, it is infeasible for the attacker to generate any new valid ciphertext (ciphertext is the pair y, t)
 - The adversary cannot trick Bob into outputting any message that was not sent by Alice
- Authenticated encryption scheme
 - Impossible to generate any, new valid ciphertexts
- In combination with CPA-security this gives CCAsecurity

apr. '22 Authenticated encryption

7

Authenticated encryption

- Encryption-then-authenticate (with independent keys) is a sound way to construct authenticated encryption
 - Plug-in any CPA-secure Enc and any secure MAC
- Encryption-then-authenticate is CCA-secure
- More schemes have been proposed, active field of research

apr. '22

Authenticated encryption

8

Three different approaches

- Encrypt and MAC (E&M)
 - Discouraged
 - SSH
- Encrypt then MAC (EtM)
 - Always correct
 - Ipsec
- MAC then Encrypt (MtE)
 - correctness depends on Enc-MAC combinations
 - TLS/SSL

apr. '22

Authenticated encryption

9

9

Standards and associated data

- NIST
 - CCM: CBC-MAC then CTR mode encryption
 - 802.11i
 - GCM: CTR mode encryption then MAC
 - · Very efficient
- IETF
 - EAX: CTR mode encryption than OMAC

apr. '22

Authenticated encryption

10

Standards and associated data

- NIST and IETF standards support authenticated encryption with associated data (AEAD)
 - E.g. the header of a packet is just authenticated

11

Authenticated encryption

GALOIS COUNTER MODE (GCM)

apr. '22

Authenticated encryption

12

Galois Counter Mode (GCM)

- GCM is an encryption mode which also computes a MAC
 - Confidentiality and authenticity
- GCM protects
 - Confidentiality of a plaintext x
 - Authenticity of plaintext x and
 - Authenticity of additional authenticated data (AAD) which is left in the clear
 - ADD might include addresses and parameters in network protocols

apr. '22

Authenticated encryption

13

13

Main components

- Cipher in the Counter Mode (CTR)
 - Confidentiality
 - Block size: 128 bit (e.g. AES-128)
- · Galois field multiplication
 - Authentication
 - Multiplication in GF(2^{128}) with irreducible polynomial P(x) = $x^{128} + x^7 + x^2 + x + 1$

apr. '22

Authenticated encryption

Encryption

- a. Derive a counter value CTR₀ from the IV and compute CTR₁ =CTR₀ + 1.
- b. Compute ciphertext: $y_i = E_k(CTR_i) \oplus x_i$, $i \ge 1$

apr. '22

uthenticated encryption

15

Authentication

- a. Generate authentication subkey $H = E_k(0)$
- b. Compute $g_0 = AAD \times H$ (Galois field multiplication)
- c. Compute $g_i = (g_{i-1} \bigoplus y_i) \times H$, $1 \le i \le n$ (Galois field multiplication)
- d. Final authentication tag: $T = (g_n \times H) \bigoplus E_k(CTR_0)$

apr. '22

Authenticated encryption

16

MAC April 22

GF(2^m) - elements

- Elements are represented as polynomials with coefficient in GF(2)
- Polynomials have maximum degree of m − 1
- Example: GF(28)
 - Element A ∈ GF(2⁸) is represented as A = $a_7 \cdot x^7 + ... + a_1 \cdot x + a_0$, $a_i \in GF(2)$
 - Element A can be simply stored as (a₇,a₆,...,a₁,a₀)

apr. '22

Authenticated encryption

17

17

GF(2^m) – operations

- · Addition and subtraction
 - C(x) = A(x) + B(x)
 - Addition/subtraction modulo 2 of coefficients
- Multiplication
 - $C(x) = A(x) \times B(x)$
 - Order greater than m − 1, thus has to be reduced →
 - The operation becomes $C(x) \equiv A(x) \times B(x) \mod P(x)$
 - P(x) is an irreducible polynomial
- Inversion
 - $A(x) \times A^{-1}(x) \equiv 1 \mod P(x)$
 - P(x) is an irreducible polynomial

apr. '22

Authenticated encryption

18

MAC April 22

19

The protocol

- Sender
 - Computes (y₁, y₂,..., y_n) and T
 - Sends [IV, (y₁, y₂,..., y_n), T, ADD]
- Receiver
 - Receives [IV, $(y_1, y_2, ..., y_n)$, T, ADD]
 - Decrypts $(y_1, y_2, ..., y_n)$ by applying CTR with IV
 - Computes T' from (y₁, y₂,..., y_n) and ADD
 - Checks whether T == T'
 - If so, ciphertext and ADD were not manipulated in transit and only the sender could have generated the message

apr. '22

Authenticated encryption

20