

Security, Privacy & Explainability in Machine Learning

Rudolf Mayer March 10th

mayer@ifs.tuwien.ac.at

https://www.ifs.tuwien.ac.at/~mayer

https://www.sba-research.org/rudolf-mayer/

Security, Privacy & Explainability in ML

- Overview on the lecture topics
 - Privacy preserving data publishing
 - Secure computation
 - Adversarial examples
 - Backdoor attacks
 - Explainable Al

Security, Privacy & Explainability in ML

- Privacy-preserving data publishing:
 - Pseudonimity
 - k-anonymity
 - I-diversity
 - t-closeness
 - Synthetic data
 - Differential privacy
- Other concerns in data publishing:
 - Intellectual digital property protection
 — watermarking & fingerprinting data

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

Privacy definitions

- "Privacy is the ability of an individual or group to seclude themselves, or information about themselves"
- "The challenge of data privacy is to use data while protecting an individual's privacy preferences and their personally identifiable information"

- Pseudonymity is the use of pseudonyms as IDs
- Anonymity is the state of being not identifiable within a set of subjects, the anonymity set

Privacy-preserving data analysis

- Concerned with micro-data
 - Data at the level of an individual

- Macro data describes mainly two subtypes of data:
 - Aggregated data
 - System-level data

- Meso data: data on collective and cooperative actors
 - Commercial companies, organizations or political parties

Privacy-preserving data analysis

- Large amounts of personal data becomes available
 - Analysis, distribution, sharing often conflicting with data protection laws (GDPR, ...)

- Especially critical with highly sensitive information
 - E.g. health data, financial data, ...

- Solutions?
 - E.g. Data sanitisation to allow privacy-preserving data publishing (PPDP), privacy-preserving computation

Privacy-preserving data analysis

Two main approaches

- Privacy-preserving data publishing
 - De-identification of information: making sure that the data published does not contain personal identifiable information;
 - k-anonymity
 - Differential Privacy
 - Synthetic Data
 - ...
- Privacy-preserving computation
 - Making sure that computed result doesn't allow inference on the data
 - Secure Multi-Party Computation
 - Homomorphic Encryption
 - Differential Privacy
 - ...

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

Pseudonymisation

A state of disguised identity

- Pseudonym identifies a holder, that is, one or more human beings who possess but do not disclose their true names (legal identities)
- It enables a consolidation of a persons' data without revealing identities

Data can also mean books, paintings, etc...

- Depending on requirements:
 - One-way pseudonymisation
 - Reversible pseudonymisation trusted third party!

ιο					
ID	Name	Date of birth	City of residence		
1	William Smith	1/2/73	Berkeley, California		
2	Anna Williams	23/8/79	Berkeley, CA		
ID	Pseudonym	Date of birth	City of residence		
1	John Doe	1/2/73	Berkeley, California		
2	Jane Doe	23/8/79	Berkeley, CA		

Pseudonymisation

GDPR:

- "...personal data ... that can no longer be attributed to a specific data subject without the use of additional information"
- pseudonymized personal data
 remain personal data nonetheless,
 provided the controller or another party
 has the means to reverse the process
- Thus the same principles for storing, processing, sharing, etc. still apply!
 - However, potentially changing interpretation of that status

Data Sanitisation

- Pseudonymisation: remove directly identifying information
 - That is often **not** enough!

- Massachusetts Health records of public employees
 - With the birthdate, ZIP Code, sex: Governor of Massachusetts William Weld uniquely identified
 - Linkage attack with public voting records

FAGULIT UF

Record Linkage attacks

Record linkage attacks

of **mobile phone owners** are re-identified simply by 2 antenna signals, even when coarsened to the hour of the day

of **credit card owners** are re-identified by 3 transactions, even when only merchant and the date of transaction is revealed

of **all people** are re-identified, merely by their date-of-birth, their gender and their ZIP code of residence

Record linkage

- Finding records that refer to the same entity
 - Across data sets from different sources
 - May or may not share a common identifier

- Steps include
 - Preprocessing / normalisation
 - Rule based, hidden Markov models, ...
 - Phonetic algorithms, ...
 - Some form of identity resolution

DataSet	Name	Date of birth	City of residence	
1	William J. Smith	1/2/73	Berkeley, California	
2	Smith, W. J.	1973.1.2	Berkeley, CA	
3	Bill Smith	Jan 2, 1973	Berkeley, Calif.	

Record linkage

- Deterministic (rules-based) record linkage
 - Links based on the number of individual identifiers that match among the available data sets
 - Records match if all or some identifiers (above a certain threshold) are identical
 - Good option when entities in data sets are identified by a common identifier
 - Or when there are several representative identifiers whose quality of data is relatively high
 - (e.g., name, date of birth, and sex when identifying a person)

Probabilistic (fuzzy) record linkage

- Takes wider range of potential identifiers into account
- Computes weights for each identifier based on its estimated ability to correctly identify a match/non-match
- Uses weights to calculate probability that two given records refer to the same entity
- Three types of matches
 - Pairs with probabilities above a threshold considered to be matches
 - Pairs with probabilities below another threshold considered to be non-matches
 - Pairs between these thresholds are "possible matches"
 - Can be dealt with e.g., human review

Probabilistic (fuzzy) record linkage

- Algorithms assign match/non-match weights to identifiers by two probabilities u and m
- u: probability that identifier in two non-matching records will agree purely by chance
 - What is that for the birth month?
 - $-1/12 \approx 0.083$
- m: the probability that identifier in matching pairs will agree
 - Or sufficiently similar, e.g. strings with low Levenshtein distance
 - 1.0 in case of perfect data; estimated in practice
 - Based on prior knowledge of the data sets
 - By estimation on a large number of matching and non-matching pairs
 - By iteratively running the algorithm to obtain closer estimations of m

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

Data Sanitisation

- Anonymisation: sanitize also quasi-identifiers (QI)
 - Those attributes that can identify when used in combination
 - Birthdate, ZIP Code, sex, occupation, ...
 - Issues?
 - List is not complete
 - Case-dependent
 - Adversary's background knowledge!
 - Dependent on the available other data (present AND future!)
- Anonymised data is not subject to GDPR regulations anymore!

Data Sanitisation: HIPAA

- The Privacy Rule of the US Health Insurance
 Portability and Accountability Act of 1996 (HIPAA)
 establishes comprehensive protections for medical
 privacy (revised & came into effect 2002)
- Protected health information (PHI) is "identifiable" health information acquired in the course of serving patients
 - One of the few authoritative sources that lists identifiable attributes
- Sanitisation standard before data sharing in medical domains (research and professional)

Data Sanitisation: 18 HIPAA Identifiers

- Names
- All geographic subdivisions smaller than a State
- All elements of dates (except year)
- Telephone numbers
- Fax numbers
- Electronic mail addresses
- Social security numbers
- Medical record numbers
- Health plan beneficiary numbers

- Account numbers
- Certificate/license numbers
- Vehicle identifiers and serial numbers, including license plate numbers
- Device identifiers and serial numbers
- Web Universal Resource Locators (URLs)
- Internet Protocol (IP) address numbers
- Biometric identifiers, including finger and voice prints
- Full face photographic images and any comparable images
- Any other unique identifying number, characteristic, or code

FACULTY OF !NFORMATICS

Data Sanitisation: HIPAA

– With the birthdate, ZIP Code, sex: would the governor be re-identified by applying HIPAA?

k-anonymity

- Each released record should be indistinguishable from at least (k-1) others on its QI attributes
- Or: cardinality of any query result on released data should be at least k

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - /-diversity
 - t-closeness
- Data watermarking and fingerprinting

k-Anonymity

- Ensures that at least k records have same QI, via
 - Generalisation of values (exact age to a range of values, ...)

	QI ₁	Ql_2	S ₁
ID	Age	ZIP	Disease
1	5	15	Flu
2	15	25	Fever
3	28	28	COVID
4	25	15	Fever
5	22	28	Flu
6	32	35	Fever
7	38	32	Flu
8	35	25	COVID

			Equi	Valence o	
	Ql₁	QI ₂	S ₁	/ 100	
ID	Age	ZIP	Disease		
1	0-20	10-30	Flu		
2	0-20	10-30	Fever		
3	20-30	10-30	COVID		
4	20-30	10-30	Fever		
5	20-30	10-30	Flu		
6	30-40	20-40	Fever		
7	30-40	20-40	Flu		
8	30-40	20-40	COVID		

k-Anonymity

- Ensures that at least k records have same QI, via
 - Generalisation of values (exact age to a range of values, ...)
 - Suppression of values

Birthday	Sex	ZIP
21/1/79	М	53715
10/1/79	F	55410
1/10/44	F	90210
21/2/83	M	02274
19/4/82	M	02237

		Equ	livalenc	e class
	Birthday	Sex	ZIP	
Croup 1	*/1/79	*	5*	
Group 1	*/1/79	*	5*	
suppress	1/10/44	F	90210	
Group 2	*/*/8*	М	022*	
	//8*	M	022*	

k-Anonymity

- Ensures that at least k records have same QI, via
 - Generalisation of values (exact age to a range of values, ...)
 - Suppression of values
 - Microaggregation

Height	Weight	High Cholestorol
165	72	N
162	74	Υ
171	73	N
177	71	N

k-Anonymity: hierarchies

- Generalisation is achieved by using a hierarchy
 - Example: ZIP code

k-Anonymity: hierarchies

Location

Global vs Local Transformation

Birthdate	Sex	Zipcode	Disease	
*	Male	537**	Flu	
*	Male	537**	Broken Arm	
*	Male	537**	Bronchitis	
*	Female	537**	Hepatitis	
*	Female	537**	Sprained Ankle	
*	Female	537**	Hang Nail	

Global:

All values of the attribute generalized to the same level

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	537**	Flu
21.1.'76	Male	537**	Broken Arm
*	Female	537**	Hepatitis
*	Female	537**	Hang Nail
*	*	5370*	Bronchitis
*	*	5370*	Sprained Ankle

Local:

Different levels of generalization within a single attribute

Minimal generalisation

Race E ₀	ZIP Z ₀	
Black	02138	
Black	02139	
Black	02141	
Black	02142	
White	02138	
White	02139	
White	02141	
White	02142	
PT		

Race E ₁	ZIP Z ₀	
Person	02138	
Person	02139	
Person	02141	
Person	02142	
Person	02138	
Person	02139	
Person	02141	
Person	02142	
GTr ₁ nı		

Race E ₁	ZIP Z ₁	
Person	0213*	
Person	0213*	
Person	0214*	
Person	0214*	
Person	0213*	
Person	0213*	
Person	0214*	
Person	0214*	
GT _[1,1]		

Race E ₀	ZIP Z ₂				
Black	021**				
Black	021**				
Black	021**				
Black	021**				
White	021**				
White	021**				
White	021**				
White	021**				
GT _[0,2]					

Race E ₀	ZIP Z ₁			
Black	0213*			
Black	0213*			
Black	0214*			
Black	0214*			
White	0213*			
White	0213*			
White	0214*			
White	0214*			
GT _[0,1]				

Minimal generalisation – generalization (that satisfies k-anonymity) such that it is impossible to lower the anonymity level of any attribute and obtain the same level of anonymity for the database

Methods for k-anonymisation

Microaggregation

- Data partitioned based on similarity of records
- Aggregation functions applied on data
 - Mean for continuous numerical data
 - Median for categorical data

Age	Sex	Zipcode	Disease
44	Male	53715	Flu
35	Female	53715	Hepatitis
45	Male	53703	Bronchitis
44	Male	53703	Broken Arm
35	Female	53706	Sprained Ankle
45	Female	53706	Hang Nail

Domingo-Ferrer, J., and Vicenç T. "Ordinal, continuous and heterogeneous k-anonymity through microaggregation."

Methods for k-anonymisation

Microaggregation

- Data partitioned based on similarity of records
- Aggregation functions applied on data
 - Mean for continuous numerical data
 - Median for categorical data

Age	Sex	Zipcode	Disease
44	Male	53703	Flu
38	Female	53706	Hepatitis
44	Male	53703	Bronchitis
44	Male	53703	Broken Arm
38	Female	53706	Sprained Ankle
38	Female	53706	Hang Nail

Domingo-Ferrer, J., and Vicenç T. "Ordinal, continuous and heterogeneous k-anonymity through microaggregation."

k-anonymity: types of attributes

- Direct identifiers
 - SSN, driving licence number, ...
- Quasi-identifiers
 - Personal information that can be combined to identify a person
 - Birthdate, zip code, ...
- Sensitive attributes
 - Non-identifying sensitive/confidental personal information
 - Health diagnosis, salary, political affiliation ...
- Insensitive attributes

k-Anonymity: example results

Record	Name	SSN	Age	Location	Sex	Race	Diagnosis	Income
r_1	Alice	123456789	32	San Diego	M	W	AIDS	17,000
r_2	Bob	323232323	30	Los Angeles	M	W	Asthma	68,000
r_3	Charley	232345656	42	Wichita	M	W	Asthma	80,000
r_4	Dave	333333333	30	Kansas City	M	W	Asthma	55,000
r_5	Eva	666666666	35	Lincoln	F	W	Diabetes	23,000
r_6	John	214365879	20	Lincoln	M	В	Asthma	55,000
\mathbf{r}_7	Casey	909090909	25	Wichita	F	В	Diabetes	23,000

Record	Age	Location	Sex	Race
\mathbf{r}_1	30-32	California	M	W
r_2	30-32	California	M	W
r_3	25-42	Kansas	*	*
r_4	25-42	Kansas	*	*
\mathbf{r}_7	25-42	Kansas	*	*
r ₅	20-35	Lincoln	*	*
r_6	20-35	Lincoln	*	*

Solving k-anonymity

- k-anonymity problem:
 - Given a dataset R, find a dataset R' such that:
 - R' satisfies k-anonymity condition
 - R' has the maximum utility (minimum information loss)
- Given some data set R and a QI Q, does R satisfy kanonymity over Q?
 - Easy to tell in polynomial time
- Finding an optimal anonymization is not easy
 - NP-hard: reduction from k-dimensional perfect matching*
 - → Heuristic solutions

Solving k-anonymity: Algorithms

- Datafly
- Incognito
- SaNGreeA
- Mondrian
- Flash

Datafly

Properties:

- Global (full-domain) generalization algorithm
- Heuristics: for generalization selects the attribute with the greatest number of distinct values (iteratively until k-anonymity is satisfied)
- Not necessarily minimal generalization

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

While not 2-anonymous:

generalise the attribute with the greatest number of distinct values

Start → Birthdate (or Zipcode)

Sex:

1: Person

0: Male Female

Zip:

2: 537** 1: 5371* 5370* 0: 53715 53710 53706 53703

Birthdate:

1: *
0: 21.1.'76 28.2.'76 13.4.'86

Birthdate	Sex	Zipcode	Disease
*	Male	53715	Flu
*	Female	53715	Hepatitis
*	Male	53703	Bronchitis
*	Male	53703	Broken Arm
*	Female	53706	Sprained Ankle
*	Female	53706	Hang Nail

While not 2-anonymous:

generalise the attribute with the greatest number of distinct values

Birthdate	Sex	Zipcode	Disease
*	Male	5371*	Flu
*	Female	5371*	Hepatitis
*	Male	5370*	Bronchitis
*	Male	5370*	Broken Arm
*	Female	5370*	Sprained Ankle
*	Female	5370*	Hang Nail

While not 2-anonymous:

generalise the attribute with the greatest number of distinct values

2-anonymous? NO!

Sex:

Birthdate	Sex	Zipcode	Disease
*	*	5371*	Flu
*	*	5371*	Hepatitis
*	*	5370*	Bronchitis
*	*	5370*	Broken Arm
*	*	5370*	Sprained Ankle
*	*	5370*	Hang Nail

While not 2-anonymous:

generalise the attribute with the greatest number of distinct values

2-anonymous? YES ©

2-minimal generalization?

Birthdate	Sex	Zipcode	Disease
*	*	5371*	Flu
*	*	5371*	Hepatitis
*	*	5370*	Bronchitis
*	*	5370*	Broken Arm
*	*	5370*	Sprained Ankle
*	*	5370*	Hang Nail

Consider:

Birthdate	Sex	Zipcode	Disease
*	*	53715	Flu
*	*	53715	Hepatitis
*	*	53703	Bronchitis
*	*	53703	Broken Arm
*	*	53706	Sprained Ankle
*	*	53706	Hang Nail

Birthdate	Sex	Zipcode	Disease
*	*	5371*	Flu
*	*	5371*	Hepatitis
*	*	5370*	Bronchitis
*	*	5370*	Broken Arm
*	*	5370*	Sprained Ankle
*	*	5370*	Hang Nail

2-anonymous? YES ©

2-minimal generalization? NO!

Properties:

- Generates the set of all possible k-anonymous fulldomain generalizations of the dataset
- Iterative bottom-up breadth-first search
- k-minimal generalization
- Maximizing the number of equivalence classes

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

537**

Sex:

1:

Person

0: Male

Female

2:

1:

5371*

0: 53715

53710

5370*

53706 53703

Birthdate:

1:

0: 21.1.'76

76 28

28.2.'76

*

13.4.'86

FACULTY OF !NFORMATICS

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

Frequency set:

21.1.'76 : 2

13.4.'86 : 2

28.2.'76 : 2

✓ 2-anonymous with respect to "Birth.0"

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

Frequency set:

Male: 3

Female: 3

2-anonymous with respect to "Sex0"

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

Frequency set:

53715 : 2

53703 : 2

53706 : 2

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

Frequency set:

<21.1.'76, Male> : 2 <13.4.'86, Female> : 2 <28.2.'76, Male> : 1 <28.2.'76, Female> : 1

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

Frequency set:

<*, Male> : 3

<*, Female> : 3

2-anonymous with respect to <Birth.1,Sex0>

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

<Birth.1,Sex1> <Birth.1,Sex0> <Birth.0,Sex1>

Frequency set:

<21.1.'76, Person> : 2 <13.4.'86, Person> : 2

<28.2.'76, Person> : 2

2-anonymous with respect to <Birth.0,Sex1>

Birthdate	Sex	Zipcode	Disease
21.1.'76	Male	53715	Flu
13.4.'86	Female	53715	Hepatitis
28.2.'76	Male	53703	Bronchitis
21.1.'76	Male	53703	Broken Arm
13.4.'86	Female	53706	Sprained Ankle
28.2.'76	Female	53706	Hang Nail

Birthdate	Sex	Zipcode	Disease
*	*	53715	Flu
*	*	53715	Hepatitis
*	*	53703	Bronchitis
*	*	53703	Broken Arm
*	*	53706	Sprained Ankle
*	*	53706	Hang Nail

Birthdate	Sex	Zipcode	Disease
*	Male	537**	Flu
*	Female	537**	Hepatitis
*	Male	537**	Bronchitis
*	Male	537**	Broken Arm
*	Female	537**	Sprained Ankle
*	Female	537**	Hang Nail

Birthdate	Sex	Zipcode	Disease
21.1.'76	*	537**	Flu
13.4.'86	*	537**	Hepatitis
28.2.'76	*	537**	Bronchitis
21.1.'76	*	537**	Broken Arm
13.4.'86	*	537**	Sprained Ankle
28.2.'76	*	537**	Hang Nail

SaNGreeA

Properties:

- Greedy clustering algorithm
- User-specified generalization hierarchies for each categorical attribute
- Numerical attributes are generalized on the fly no fixed categories needed
- GIL function measures the amount of generalization

N =set of numerical attributes

$$GIL(cl) = |cl| \cdot (\sum_{j=1}^{s} \frac{size(gen(cl)[N_j])}{size(min_{x \in N}(X[N_j]), max_{x \in N}(X[N_j]))})$$

→ "how large is the generalised range compared to the total range of the attribute"

$$+\sum_{j=1}^{t}\frac{height(A(gen(cl)[C_{j}]))}{height(H_{C_{j}})} \xrightarrow[\text{total \# of hierarchy we need to take out of total # of hierarchy levels"}}$$

C = set of categorical attributes

	Age	Sex	Zipcode	Disease	
t1	43	Male	53715	Flu	c1
t2	35	Female	53715	Hepatitis	
t3	32	Male	53703	Bronchitis	
t4	43	Male	53703	Broken Arm	
t5	28	Female	53706	Sprained Ankle	
t6	33	Female	53706	Hang Nail	

- Initiate the cluster c1 with the record t1
- Add another record t to c1:
 - Calculate GIL for each available t and c1
 - E.g. if we would add t2 to c1, Age would need to be generalised to the range [35-43] and Sex to *
 - Hence, GIL(c1,t2) = size of range [35-43] / size of total Age range[28-43]
 - + #steps taken in Sex gen.hierarcy / #tot. steps in Sex gen.hierarchy
 - + #steps in Zipcode gen.hierarcy / #tot. steps in Zipcode gen.hierarchy

GIL(c1,t2) = 8/15 + 1/1 + 0/2 = 1,53

Choose a record with min GIL

	Age	Sex	Zipcode	Disease	
t1	43	Male	53715	Flu	c1
t2	35	Female	53715	Hepatitis	+
t3	32	Male	53703	Bronchitis	(
t4	43	Male	53703	Broken Arm	—
t5	28	Female	53706	Sprained Ankle	
t6	33	Female	53706	Hang Nail	

$$GIL(c1,t2) = 8/15 + 1/1 + 0/2 = 1,53$$

$$GIL(c1,t3) = 11/15 + 0/1 + 2/2 = 1,73$$

$$GIL(c1,t4) = 0/15 + 0/1 + 2/2 = 1 \longrightarrow Min GIL$$

$$GIL(c1,t5) = 15/15 + 1/1 + 2/2 = 3$$

$$GIL(c1,t6) = 10/15 + 1/1 + 2/2 = 2,67$$

	Age	Sex	Zipcode	Disease	
t1	43	Male	537**	Flu	c1
t2	35	Female	53715	Hepatitis	c2
t3	32	Male	53703	Bronchitis	
t4	43	Male	537**	Broken Arm	c1
t5	28	Female	53706	Sprained Ankle	
t6	33	Female	53706	Hang Nail	

- Initiate the next cluster c2 with the record t2
- Add another record t to c2:
 - Calculate GIL for each available t and c1
 - E.g. if we would add t3 to c2, Age would need to be generalised to the range [32-35], Sex to * and Zipcode to 537**
 - Hence, GIL(c2,t3) = size of range [32-35] / size of total Age range[28-43]
 - + #steps taken in Sex gen.hierarcy / #tot. steps in Sex gen.hierarchy
 - + #steps in Zipcode gen.hierarcy / #tot. steps in Zipcode gen.hierarchy

GIL(c2,t3) = 3/15 + 1/1 + 2/2 = 2,2

Choose a record with min GIL

	Age	Sex	Zipcode	Disease	
t1	43	Male	537**	Flu	c1
t2	35	Female	53715	Hepatitis	c2
t3	32	Male	53703	Bronchitis	—
t4	43	Male	537**	Broken Arm	c1
t5	28	Female	53706	Sprained Ankle	—
t6	33	Female	53706	Hang Nail)Z

$$GIL(c2,t3) = 3/15 + 1/1 + 2/2 = 2,2$$

$$GIL(c2,t5) = 7/15 + 0/1 + 2/2 = 1,47$$

$$GIL(c2,t6) = 2/15 + 0/1 + 2/2 = 1,13 \rightarrow Min GIL$$

	Age	Sex	Zipcode	Disease	
t1	43	Male	537**	Flu	c1
t2	[33,35]	Female	537**	Hepatitis	c2
t3	32	Male	53703	Bronchitis	c3
t4	43	Male	537**	Broken Arm	c1
t5	28	Female	53706	Sprained Ankle	c3
t6	[33,35]	Female	537**	Hang Nail	c2

		Age	Sex	Zipcode	Disease	l
t	1 .	43	Male	537**	Flu	c1
t	2	[33,35]	Female	537**	Hepatitis	c2
t	3	[28,33]	*	5370*	Bronchitis	c3
t	4 .	43	Male	537**	Broken Arm	c1
t	5	[28,33]	*	5370*	Sprained Ankle	сЗ
t	6	[33,35]	Female	537**	Hang Nail	c2

Age	Sex	Zipcode	Disease
43	Male	537**	Flu
43	Male	537**	Broken Arm
[33,35]	Female	537**	Hepatitis
[33,35]	Female	537**	Hang Nail
[28,33]	*	5370*	Bronchitis
[28,33]	*	5370*	Sprained Ankle

Solving k-anonymity: Tools

- ARX:
 - Flash algorithm
 - https://arx.deidentifier.org/
- Amnesia:
 - https://amnesia.openaire.eu/
- UTD Anonymization Toolbox:
 - Datafly, Incognito, Mondrian
 - http://www.cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php
- Microaggregation tool:
 - https://github.com/CrisesUrv/microaggregationbased_anonymization_tool

k-Anonymity: Effects on utility

- Two main approaches to evaluate the effect of kanonymisation on the data utility
 - Measured directly on the data ("information loss metric")
 - Precision (steps in the hierarchy), Discernibility Metric (how many records can be distinguished), non-uniform entropy, ...
 - Measured by the effect on utility for a certain task/model
 - E.g. Train a machine learning model, and evaluate difference in effectiveness measures

Effects on Utility

Increasing the level of anonymity, the information loss also increases

Local (SaNGreeA) vs Global (Flash/ARX) transformation

^{*} Experiments on Adult dataset (target: education-num)

Attacks Against K-Anonymity

- Complementary Release Attack
 - Different releases can be linked together to compromise k-anonymity
 - Solution:
 - Consider all of the released tables before release the new one, and try to avoid linking
 - Other data holders may release some data that can be used in this kind of attack.
 - Hard to be prevented completely

Attacks Against K-Anonymity

- k-Anonymity does not provide privacy if
 - Sensitive values in an equivalence class lack diversity
 - The attacker has background knowledge

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

L-diversity principles

 Each equivalence class has at least / wellrepresented sensitive values

Bob		
Zipcode	Age	
47678	27	

Alan	
Zipcode	Age
47673	36

A 3-anonymous patient table

Zipcode	Age	Disease
476**	20-40	Heart Disease
476**	20-40	Heart Disease
476**	20-40	Breast Cancer
4790*	≥40	Flu
4790*	≥40	Heart Disease
4790*	≥40	Breast Cancer
476**	20-40	Heart Disease
476**	20-40	Heart Disease
476**	20-40	Breast Cancer

L-diversity principles

- L-diversity principle:
 - A q-block (equivalence class) is I-diverse if contains at least I 'well represented" values for the sensitive attribute S

- A table is I-diverse if every q-block is I-diverse
- Different variations: distinct, entropy, recursive *I*-diversity

l-Diversity: variations

- Distinct I-diversity
 - Each equivalence class has at least / well-represented sensitive values

- Limitation:
 - Doesn't prevent a probabilistic inference attack
 - Example
 - 10 tuples in one equivalent class
 - The "Disease" variable contains one "Flu", one "Heart Disease", and eight "Cancer"
- # |Zipcode | Age Disease 476** Cancer 476** Flu 476** Cancer 476** Cancer 476** Cancer 476** Cancer 476** Cancer 476** **Heart Disease** 476** Cancer 476** Cancer

 This satisfies 3-diversity, but an attacker can still affirm that the target person's disease is "Cancer" with the accuracy of 80%.

l-Diversity: variations

Entropy I-diversity

- Each equivalence class not only must have enough different sensitive values, but also the different sensitive values must be distributed evenly enough.
- It means the entropy of the distribution of sensitive values in each equivalence class is at least log₂(I)

$$H(X) = E(I(X)) = \sum_{i=1}^{n} p(x_i)I(x_i) = -\sum_{i=1}^{n} p(x_i)\log_{2} p(x_i)$$

 Sometimes too restrictive – when some values are very common, entropy of the entire table may be very low

l-Diversity: variations

- Recursive (c,l)-diversity
 - Less conservative notion
 - "The most frequent value does not appear too "frequently
 - s₁, s_m possible values of attribute in a q-block
 - $n_{(q,sm)} = count of that value$
 - sorted descending & referred to as r₁ .. r_m
 - A q-block is (c,2) diverse if, for a specified c:
 - $r_1 < c(r_2 + ... + r_m)$
 - Recursively (if more than two sensitive values)
 - $r_1 < C(r_1 + r_{l+1} + ... + r_m)$

Limitations of l-Diversity

I-diversity may be difficult or unnecessary

- Example: a single sensitive attribute
 - Two values: HIV positive (1%) and HIV negative (99%)
 - Very different degrees of sensitivity
 - I-diversity may be unnecessary
 - 2-diversity is unnecessary for an equivalence class that contains only negative records
 - I-diversity is difficult to achieve
 - Suppose there are 10000 records in total
 - To have distinct 2-diversity, there can be at most 10000*1%=100 equivalence classes

Limitations of l-Diversity

I-diversity is insufficient to prevent attribute disclosure

- - Bob's salary is in [3k,5k], which is relatively low
 - Bob has some stomach-related disease
- I-diversity does not consider semantic meanings of sensitive values

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

t-closeness

 k-anonymity prevents identity disclosure but not attribute disclosure

 To solve that problem *I*-diversity requires that each eq. class has at least *I* values for each sensitive attribute

• *t*-closeness requires that the distribution of a sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table

t-closeness

Bob	
Zip	Age
47678	27

?

Similarity Attack

Zipcode	Age	Salary	Disease
476**	<40	3K	Gastric Ulcer
476**	<40	9K	Pneumonia
476**	<40	5K	Stomach Cancer
4790*	≥40	6K	Gastritis
4790*	≥40	11K	Flu
4790*	≥40	8K	Bronchitis
476**	<40	7K	Bronchitis
476**	<40	4K	Gastritis
476**	<40	10K	Stomach Cancer

- Privacy = information gain of an observer
- Distribution of the sensitive attribute <u>in each</u> <u>equivalence class</u> should be <u>similar</u> to distribution of the sensitive attribute <u>in the whole table</u>

t-closeness

Privacy is measured by the information gain of an observer

- Information Gain = (Posterior Belief Prior Belief)
- Q = the distribution of the sensitive attribute in the whole table

 P = the distribution of the sensitive attribute in equivalence class

t-closeness Principle

- An equivalence class is said to have t-closeness
 - If the distance between the distribution of a sensitive attribute in this class and the distribution of the attribute in the whole table is no more than a threshold t

- A table is said to have t-closeness
 - If all equivalence classes have t-closeness.

Distance between two distributions

Given two distributions

$$- P = (p_1, p_2, ..., p_m)$$

$$- Q = (q_1, q_2, ..., q_m),$$

Variational distance:

$$D[\mathbf{P}, \mathbf{Q}] = \sum_{i=1}^{m} \frac{1}{2} |p_i - q_i|.$$

Earth Movers Distance:

$$D[\mathbf{P}, \mathbf{Q}] = \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i| = \sum_{p_i \ge q_i} (p_i - q_i) = -\sum_{p_i < q_i} (p_i - q_i)$$

(Or something else..)

Similarity Attack Example

	ZIP Code	Age	Salary	Disease
1	4767*	≤ 40	3K	gastric ulcer
3	4767*	≤ 40	5K	stomach cancer
8	4767*	≤ 40	9K	pneumonia
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
2	4760*	≤ 40	4K	gastritis
7	4760*	≤ 40	7K	bronchitis
9	4760*	≤ 40	10K	stomach cancer

 0.167-closeness for Salary and 0.278-closeness for Disease

l-t: Conclusion

- I-diversity and t-closeness add additional guarantees for the privacy of the individuals
- They however further limit the data utility
- Search for k/l/t-minimal distortion more complex
- Adds two more parameters to set which values??

Anonymisation: other limitations

- In very high-dimensional spaces data matrices often get very sparse
 - → Only a few items are actually similar to each other

Anonymisation: other limitations

- In very high-dimensional spaces data matrices often get very sparse
 - Makes re-identification easier

Anonymisation: conclusion

- Approaches like k/l/t-* prevent certain types of attacks
 - Identification, background, similarity,
 - Has effects on the data utility
 - It is difficult to assess what other data is available
 - It is not clear what a required level for k is

Still

- There aren't many alternatives around
 - Differential privacy the one likely most often mentioned
- Still frequently used approach when you need to publish data to the "public"
- Makes it more GDPR compliant

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation
 - *k*-anonymity
 - /-diversity
 - t-closeness
- · Data watermarking and fingerprinting

Digital property protection: motivation

- Why protecting the data?
 - Data owner used a lot of resources to collect/create the data (money, human experts, time...)
 - Sensitive data (e.g. medical data) needs to be shared with researchers

 Privacy implications: only the trusted parties get the data and should not share it further

- Share full data
- Trace the unauthorised data re-distribution

Data fingerprinting and watermarking

- Embedding owner's signature into the data
 - Applying tailored modifications to the data which only the owner is able to extract

Age	Blood Pressure	Diabetes
32	64	1
31	66	0
50	72	1
48	70	0

Age	Blood Pressure	Diabetes
33	64	1
31	68	0
50	72	1
47	70	0

Watermarking vs. fingerprinting

Watermark: identifies the owner

Fingerprint: owner & recipient

Fingerprinting – (a bad) example

The Tesla CEO replied: "That is quite an interesting story. We sent what appeared to be identical emails to all, but each was actually coded with either one or two spaces between sentences, forming a binary signature that identified the leaker".

https://twitter.com/pnikosis/status/1592823543498436611

The workflow

The schemes: fingerprinting

- Owner's secret key used for
 - Fingerprint creation
 - Embedding pattern
- Create distinct fingerprint for each data recipient
 - Fingerprint = bitstring (output of a hash function seeded by the secret key)
- Embed the fingerprint bits following the embedding pattern:
 - Pseudorandom number generator seeded by the secret key outputs the locations in the dataset to be modified with fingerprint bits
 - bit (location_i) = bit (location_i) x fingerprint_i (if fingerprint=1 → change)
- Fingerprint extraction: reverse insertion (possible only by knowing the secret key!)

Robustness vs utility

- Robustness against attacks -> <u>maximise</u> modifications
- Preserve data utility! -> minimise modifications
 - Trade-off!

Watermarking ML/DL models

- Protecting the ownership of ML/DL models
- The same idea: Embedd the owner's signature into the model
 - E.g. modify decision boundary of DNN by learning specifically tailored input data (adversarial input)

More about this later in adversarial ML lecture!

WM & FP: Conclusions

- Watermarking and fingerprinting allow sharing the data with a possibility of:
 - Ownership verification
 - Identification of unauthorised usage of data (only fingerprint)
- Requires modifying the data
- Robustness of a fingerprint vs. data utlity:
 - Stronger fingerprints decrease the utility more

Outline

- Privacy: definitions and motivation
- Pseudonimisation
 - ➤ Record-Linkage Attack
- Anonymisation: setting & threat models
 - *k*-anonymity
 - I-diversity
 - t-closeness
- Data watermarking and fingerprinting

General Setting

Medical data

Query logs

Social network data

Data mining Statistical queries

General Setting

- Identity disclosure
- Attribute disclosure

Membership disclosure

(assuming data being published/analysed; other threats applicable e.g. if models are published / distributed, e.g. model inversion)

- Identity disclosure (or re-identification)
 - Means that an individual can be linked to a specific data entry

ID	Birthdate	Sex	Salary
?	02.03.1995	Male	3 950€
?	03.04.2006	Male	2 870€
?	01.02.1994	Female	3 720€

Attribute disclosure

Membership disclosure

Identity disclosure

- Attribute disclosure
 - May be achieved even without linking to a specific item in a dataset
 - Discloses sensitive attributes from the dataset with which individuals are not willing to be linked with, e.g. the salary of a person
 - Possible when knowing values of some attributes of a record

ID	Birthdate	Sex	Education	Salary	Salary
Tom	01.02.1984	F	Tertiary	?	4 720€
Tanja	02.03.1995	M	Secondary	?	3 950€

Membership disclosure

- Identity disclosure
- Attribute disclosure

- Membership disclosure
 - Inference allows an attacker to determine whether or not data about an individual is contained in a dataset
 - Does not directly disclose any information from the dataset itself
 - → but may allow an attacker to infer meta-information
 - Deals with implicit sensitive attributes: attributes of an individual that are not contained in the dataset, but are globally true for all/most records in the dataset

FACULTY OF !NFORMATICS

- Identity disclosure (or re-identification)
 - Means that an individual can be linked to a specific data entry

I	D	Birthdate	Sex	Salary
?)	02.03.1995	Male	3 950€
?)	03.04.2006	Male	2 870€
?)	01.02.1994	Female	3 720€

- From the identification it also follows that an attacker can learn all sensitive information contained in the data entry about the individual
 - → automatically leads to attribute and membership disclosure
- Attribute disclosure

Membership disclosure

- Identity disclosure
- Attribute disclosure

- Membership disclosure
- → Which methods discussed last week counter which disclosure type(s)?

Questions?