Tarea 3

Fecha de entrega: Febrero 14 de 2024

- 1. Sea $A \in \mathbb{R}^{n \times n}$ tridiagonal con entradas no nulas en las tres diagonales tales que $|a_{11}| > |a_{21}|$, $|a_{nn}| > |a_{n-1,n}|$ y $|a_{ii}| \ge |a_{i-1,i}| + |a_{i+1,i}|$ para $i = 2, \ldots, n-1$. Muestre que A es invertible. Ayuda: Piense en la eliminación de Gauss de A.
- 2. Dada $\|\cdot\|$ una norma en \mathbb{R}^n , muestre que $\|\cdot\|_*$ definida como

$$||x||_* = \sup\{\langle z, x \rangle : ||z|| = 1\}$$

es una norma en \mathbb{R}^n llamada la norma dual de $\|\cdot\|$. Muestre que $\|\cdot\|_{**} = |\cdot\|$. Encuentre la norma dual de la norma ℓ_p .

- 3. Sea $\|\cdot\|$ norma matricial submultiplicativa, entonces $\rho(A) \leq \|A\|$ para toda matriz A. En particular muestre que $\rho(A) \leq \|A\|_F$.
- 4. Dado n, genere una matriz de $n \times n$ con entradas distribuidas uniforme (-1,1). Convierta la matriz a una con diagonal estríctamente dominante modificando la diagonal. Llame a esta matriz A. Resuelva el sistema Ax = b con b el vector de unos para $n = 2^k$ con $k = 2, \ldots, 15$ usando los siguientes métodos y haga una gráfica loglog del tiempo requerido contra el tamaño de la matriz A:
 - a) LU: Calcule la factorización LU de la matriz y luego resuelva los dos sistemas triangulares.
 - b) Jacobi: Pare cuando $||x^k x^{k-1}|| < 10^{-6}, x^0 = 0.$
 - c) Gauss-Seidel: Pare cuando $||x^k x^{k-1}|| < 10^{-6}, x^0 = 0.$
 - d) SOR con w = 0.25, 0.5 y 0.75: Pare cuando $||x^k x^{k-1}|| < 10^{-6}, x^0 = 0.$

Mauricio Junca