Games, graphs, and machines

September 27, 2024

Distinguishable strings

Let L be a language.

Say that L distinguishes x and y if there exists a z such that exactly one of xz or yz is in L.

1

Distinguishable strings

Let L be a language.

Say that L distinguishes x and y if there exists a z such that exactly one of xz or yz is in L.

Example

Let $L = 01^*0|10^*1$.

- 1. Does L distinguish 0 and 1?
- 2. What about 01 and 10?
- 3. What about 010 and 101?

Indistinguishable strings

Say that $x \sim_L y$ if L cannot distinguish x and y.

Proposition: \sim_L is an equivalence relation.

How do we know $x \sim y$?

Suppose L has a DFA M.

Proposition: If x and y end at the same state in M, then $x \sim_L y$.

How do we know $x \sim y$?

Suppose L has a DFA M.

Proposition: If x and y end at the same state in M, then $x \sim_L y$.

Proposition: The number of \sim_L equivalence classes is at most the number of states of M.

3

Example

```
Let L = \{Palindromes\}.
```

Proposition: $01,001,0001,00001,\cdots$ are distinguishable.

Example

```
Let L = \{Palindromes\}.
```

Proposition: $01,001,0001,00001,\cdots$ are distinguishable.

Consequence: There is no DFA for *L*.

The Myhill-Nerode Theorem

Theorem: L is regular if and only if \sim_L has finitely many equivalence classes.