제3회 한국가스공사 (KOGAS)

빅데이터·인공지능 스타트업 경진대회

가스공급량 수요예측 모델 개발

가스 공급량 수요예측 최적화와 활용방안

데린이 팀

1. 배경 및 개요

도시가스는 공공재 → 국민의 편익 위해 정확한 수요예측이 필요

배경

- ㆍ수요 예측은 원료 수급, 제품 생산, 수요처 공급, 재고관리 등 산업의 전 Value-Chain에 큰 영향을 미침
- ㆍ급변하는 가스 수요 환경에 대응하지 못할 경우 정부, 기업, 국민에게 사회적 비용 손실이 발생함

급감하는 산업용 도시가스, 내년 전망도 '먹구름'

ᄎ 송승은 기자 □ ② 입력 2020.12.10 18:04 □ ② 수정 2020.12.10 18:10 □ 명 댓글 0

A사 30%·B사 21% 감소, 우회직수입 확대에 우려 증폭 LPG 연료전환 지속, 원료비연동제 효과도 아직은 미미

정부는 지난 8월부터 주택용과 일반용을 제외한 도시가스 전 용도(산업용, 열병합용)의 원료비를 기존 홀수월 조정에서 매월 자동조정키로 결정한 바 있다. 이에 따라 산업용 도시가스 수요 회복에 긍정적 효과를 줄 수 있을 것으로 전망되기도 했으나 기대 만큼의 효과는 나타나지 않고 있는 것이 현실이다.

가스공사 노조 관계자는 "직수입으로 인한 산업용 물량의 이탈 현상은 동절기 위주의 도입계약 체결이 불가피 하게 만들면서 <mark>결국 연료선택권이 없는 국민들이 요금상승의 피해를 입게된다</mark>"고 주장했다.

[국감] LNG 수요예측 실패...지난해 오차율 18.7%

음 채제용 기자 │ ② 승인 2021.10.15 21.05 │ ⊝ 댓글 0

4년 동안 계획보다 추가로 8.9조원 구입 수요 예측 실패로 스팟물량 비중 높아져

이처럼 계획물량과 실제 도입물량의 차이가 벌어지면서 계획보다 더 들여온 도입 물량이 지난 4년 동안 2232만톤에 달한다. 연도별 평균 스팟가격와 비교해 봤을 때 무려 75억7912만 달러에 해당하는 규모다. 현재 환율로 환산했을 때 약 8조9000억원에 달하는 비용이 국내 LNG 도입에 계획 외로 사용된 셈이다.

이러한 <mark>수요예측 실패는 앞으로 더 많은 국부 유출로 이어질 수밖에 없다</mark>

과제 개요

ㆍ6년간 공급사/시간별 공급량 데이터를 통해 향후 90일간의 공급량 수요를 예측

데이터

예측

7개 공급사 2013.1.1 ~ 2018.12.31

2019.1.1 ~ 3. 31

가스공급량 수요예측 모델 개발

제공 데이터 외 다양한 외부데이터의 활용 가능성 검토

제공 데이터

	연월일	시간	구분	공급량
0	2013-01-01	1	А	2497.129
1	2013-01-01	2	Α	2363.265
2	2013-01-01	3	Α	2258.505
3	2013-01-01	4	А	2243.969
4	2013-01-01	5	А	2344.105
368083	2018-12-31	20	Н	681.033
368084	2018-12-31	21	Н	669.961
368085	2018-12-31	22	Н	657.941
368086	2018-12-31	23	Н	610.953
368087	2018-12-31	24	Н	560.896

• 연월일

공급량 측정일

・시간

공급량 측정시간

・구분

1개 권역내 7개 공급사

ㆍ공급량

비식별화 된 공급량 측정값

외부 데이터

- ·도시가스 월별 상대가격 지수 데이터 (출처 : 한국가스공사)
 - 내용: 민수용, 산업용 가스 상대가격
 - 적용: 변수 추가, 예측기간의 데이터는 18년 12월 데이터로 대체
- 결과: 테스트 결과 적용 효과가 약함
- ·기상 정보 데이터 (출처 : 기상자료개방포털)
 - 내용: 온도, 강수, 풍속 등 기상정보
 - 적용: 월평균 데이터 생성 후 3개월 Lagging하여 적용
 - 결과: 예측기간의 실제 데이터와 차이 발생 → 공급량 예측력 저하
- ·지역별 특수일 효과 (출처 : 한국가스공사)
 - 내용: 지역별 평일 대비 가스 수요 감소 비율
 - 적용: 특수일에 해당 변수 적용
 - 결과: 공급량 예측 대상 권역을 알 수 없어 적용 어려움
- · 공휴일 데이터 (출처 : 한국천문연구원 특일정보 API)
 - 내용: 명절, 국경일 등 공휴일 정보
 - 적용: 공휴일 변수 추가
 - 결과: 공휴일의 공급량 예측값 오차 증가

데이터 사용 기간 제한(3개월 전), 낮은 효과로 외부 데이터 활용 X

3. 사용 모델기술 - 1) 데이터 전처리

불필요한 학습 데이터를 제거하여 모델 학습의 효율을 개선

데이터 사용범위 설정

· Noise제거 및 모델 학습의 효율 및 예측력을 향상시키기 위해 평가 데이터와 같은 기간(1~3월)의 데이터 사용

이상치 처리의 최소화로 Domain 정보의 손실을 예방

EDA를 통한 이상치 처리

- · IQR 등 일반적인 이상치 처리 방법 적용시 Domain 정보가 과도하게 손실될 우려가 있음
- · EDA 결과를 바탕으로 학습에 방해가 되는 구간에 한하여 최소한의 이상치 처리 실시

가스공급량 수요예측 모델 개발

예측이 부정확한 구간을 변수화하여 모델 예측력을 강화

변수 추가

- · fold별 예측값과 실제 공급량의 차이를 비교 ☞ 특정구간에서 예측력이 떨어짐을 확인
- · 평가지표(NMAE)특성상 공급량이 적은 구간에서의 예측력이 중요할 것임
- ㆍ해당 구간을 변수로 추가하여 부정확한 예측을 보완

유사 과제에 사용된 모델을 분석/평가하여 최종 모델 선정

모델 후보 검토

ㆍ관련 논문, 유사 경진대회에 사용된 모델 7종에 대해 분석 및 성능 평가 실시

구분	ARIMA	FBProphet	LSTM
종류	시계열	시계열	딥러닝
장점	추세와 계절성을 반영한 시계열 예측의 대표 모델	추세 변화 인지, 이상치 처리 탁월	대규모 시계열자료에서 성능이 우수
단점	대규모, 다차원 좋은 성능을 !	예측값이 직전값에 의존	
평가결과	Bad	Not Bad	Bad

유사 과제에 사용된 모델을 분석/평가하여 최종 모델 선정

모델 후보 검토

ㆍ관련 논문, 유사 경진대회에 사용된 모델 7종에 대해 분석 및 성능 평가 실시

구분	RandomForest	XGBOOST	LGBM	CATBOOST
종류	트리-배깅	트리-부스팅		
장점	다수 DT 사용으로Variance 가 낮아짐	트리계열 중 시계열 예측이 우수 빠른 연산속도		범주형 변수 예측 성능이 우수
단점	느린 연산속도	트리모델 특성상 추세를 반영하기 어려움		
평가결과	Not Bad	Good	Good	Good

3. 사용 모델기술 - 2) 모델 선정

유사 과제에 사용된 모델을 분석/평가하여 최종 모델 선정

최종 모델 선정

- ㆍ모델의 적용 가능성 분석 및 성능 평가를 통해 최종 모델 3개 선정
- · 3개 모델을 Ensemble 하여 예측값을 도출

사용 변수 최소화 및 Custom Tuning으로 일반화된 예측모델 구현

변수 제한

· 사용하는 변수를 최소화하여 과적합 가능성이 낮은 일반화된(Generalized) 예측 모델을 구현

```
16 vars = ['hour', 'type', 'month', 'weekday', 'little_gas', '26~31','2~7']
17
18 X = train[vars]
19 y = train['amount']
20 log_y = np.log1p(y)
```

Custom Metric

·모델 학습시 평가지표(NMAE)와 동일한 Metric 적용

```
10
11 def nmae(y_pred, train_data):
12 y_true = train_data.get_label()
13 y_pred = np.expm1(y_pred)
14 y_true = np.expm1(y_true)
15 score = np.mean((np.abs(y_true-y_pred))/y_true)
16 return 'nmae', score, False
17

model = lgb.train(params, train_set=d_training, feval = nmae)
```

매개변수 조정

· Optuna, Grid Search 사용시 과적합 발생

ਯ 예측값의 시각화 결과를 확인하며 수동으로 조정

KFold

· KFold는 3~24 까지 적용 후 모델별 최적 Fold수 선택

과대추정 방지를 위해 Minimum Ensemble 적용

Ensemble

· 수요예측 비즈니스의 특성과 평가지표(NMAE)를 고려하여 과대추정 보다는 과소추정이 합리적이라고 판단

case1) 실제값 6000, 예측값 4000, NMAE = 0.3 case2) 실제값 500, 예측값 1500, NMAE = 2.0

실제값이 작을때 작게 예측하는 것이 중요

ㆍ3개 모델의 예측값 중 최소값을 최종 예측값으로 선택하는 'Minimum Ensemble' 적용

	일자[시간]구분	공급량	lgb_pred	xgb_pred	cat_pred
0	2019-01-01 01 A	2061.970535	2101.111564	2061.970535	2161.203070
1	2019-01-01 02 A	1792.151836	1809.501060	1794.805046	1792.151836
2	2019-01-01 03 A	1689.663193	1692.503973	[1689.663193]	1697.251391
3	2019-01-01 04 A	1727.195526	1727.287962	[1727.195526]	1737.477559
4	2019-01-01 05 A	1918.173037	1922.780823	1928.554031	1918.173037

4. 모델링 결과

가스공급량 수요예측 모델 개발

예측값

	일자[시간]구분	공급량
0	2019-01-01 01 A	2061.970535
1	2019-01-01 02 A	1794.805046
2	2019-01-01 03 A	1689.663193
3	2019-01-01 04 A	1727.195526
4	2019-01-01 05 A	1922.059821
15115	2019-03-31 20 H	333.837695
15116	2019-03-31 21 H	328.356260
15117	2019-03-31 22 H	320.012548
15118	2019-03-31 23 H	283.641309
15119	2019-03-31 24 H	280.750799

최종 성적

10th

데린이

0.09486

14

가스공급량 수요예측 모델 개발

논문

- ㆍ도시가스 수요량 예측을 위한 시계열 모형 개발(2009) 최보승, 강현철, 이경윤, 한상태
- ㆍ국내 도시가스의 시간대별 수요 예측(2016) 한정희, 이근철
- ㆍ머신 러닝 방법과 시계열 분석 모형을 이용한 부동산 가격지수 예측(2018) 배상완, 유정석
- ㆍ외재적 변수를 이용한 딥러닝 예측 기반의 도시가스 인수량 예측(2019) 김지현, 김지은, 박상준, 박운학
- ㆍ함수 주성분 분석을 이용한 일별 도시가스 수요 예측(2020) 최용옥, 박혜성
- ㆍ도시가스 일 최대수요 예측에 관한 연구(2020) 박철웅, 박철호

데이터

- ㆍ도시가스 월별 상대가격 지수 데이터 (출처 : 한국가스공사)
- ㆍ기상 정보 데이터 (출처: 기상자료개방포털)
- ㆍ지역별 특수일 효과 (출처 : 한국가스공사)
- · 공휴일 데이터 (출처 : 한국천문연구원 특일정보 API)

경진대회

- · 전력 사용량 예측 AI 경진대회
- · 태양광 발전량 예측 AI 경진대회