Subject: Control of Robotic Systems (OE-7)										
Program: B. Tech. (All Branches; Except Mech.)				Subject Code: ME0635			Semester: VI			
Teaching Scheme				Examination Evaluation Scheme						
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE) Theory	Continuous Internal Evaluation (CIE) Practical	Total Marks		
2	0	2	3	16/40	16/40	24/60	24/60	200		

Course objective:

This course aims to develop the understanding of control systems, its designing and application.

Course Outcomes (CO):

- 1. To learn the fundamentals of MATLAB software
- 2. Know the transfer function, signal flow graph representation of linear systems & their controlling actions
- 3. Understand concept of time, frequency response as well as concept of state-space models and their relation to frequency domain models
- 4. Understand the methodology for modelling dynamic systems with concept of stability

Course Contents:

Unit	Contents							
1	MATLAB for Control system Basics, Language Fundamentals, Mathematical Operations, Graphics, Programming	03						
2	Basics of Control Control Systems: Types of Controllers, Introduction to closed loop control, Differential Equation, Transfer function, Block diagram, Signal Flow Graph,							
3	Time Response and Frequency Response Time Response, Routh-Hurwitz test, relative stability, Root locus design, construction of root loci, phase lead and phase-lag design, lag-lead design, Frequency response, Bode, polar, Nyquist plot.							
4	Linear Control Concept of states, state space model, different form, controllability, observability; pole placement by state feedback, observer design, P, PI & PID Controller, control law partitioning, modelling and control of a single joint.	08						

Reference Books:

- 1. M. Gopal, Control Systems, McGraw-Hill (2012)
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall India (2009).
- 3. M. Spong, M. Vidyasagar, S. Hutchinson, Robot Modeling and Control, Wiley & Sons, (2005).
- 4. J. J. Craig, "Introduction to Robotics: Mechanics and Control", 3rd edition, Addison-Wesley (2003).
- 5. S. K. Saha, Introduction to Robotics 2e, TATA McGraw Hills Education (2014).
- 6. Thomas Kailath, "Linear Systems", Prentice Hall (1980). 7. AlokSinha, "Linear Systems: Optimal and Robust Control", Taylor & Francis (2007).

List of Practical /Tutorials:

- 1. Reviewing the fundamentals of MATLAB software
- 2. Determination of transfer function parameters of field-controlled DC Servo motor
- 3. Stability analysis of linear system
- 4. Plot the Root Locus
- 5. Basics of Simulink
- 6. Use of Simulink for ROS
- 7. AC/DC Position control system
- 8. Design and perform Nyquist and Bode Plot
- 9. Stepper Motor control system
- 10. Implementation of P, PI and PID controller
- 11. Interfacing of Hardware and software with MATLAB
- 12. Programming and simulation of a robot in MATLAB