

How to Judge if a Rule/Pattern Is Interesting?

- □ Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- ☐ Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - Support, confidence, correlation, ...
 - Subjective interestingness measures: One man's trash could be another man's treasure
 - ☐ Query-based: Relevant to a user's particular request
 - ☐ Against one's knowledge-base: unexpected, freshness, timeliness
 - ☐ Visualization tools: Multi-dimensional, interactive examination

Limitation of the Support-Confidence Framework

- \square Are s and c interesting in association rules: "A \Rightarrow B" [s, c]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)	
eat-cereal	400	350	750 2-	Way Conti
not eat-cereal	200	50	250	way contingency table
sum(col.)	600	400	1000	376

- Association rule mining may generate the following:
 - \square play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - \neg play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

■ Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- □ Lift(B, C) may tell how B and C are correlated
 - □ Lift(B, C) = 1: B and C are independent
 - □ > 1: positively correlated
 - □ < 1: negatively correlated

For our example,	lift(B C) =	400/1000	= 0.89
	iiji(B,C)	$600/1000 \times 750/1000$	- 0.07
1	dift(R - C) -	200/1000	=1.33
ι	$ijt(B, \neg C) =$	$\overline{600/1000 \times 250/1000}$	-1.33

- ☐ Thus, B and C are negatively correlated since lift(B, C) < 1;
 - \square B and \neg C are positively correlated since lift(B, \neg C) > 1

Lift is more telling than s & c

	В	¬В	Σ_{row}
С	400	350	750
¬C	200	50	250
$\Sigma_{col.}$	600	400	1000

Interestingness Measure: χ^2

 \square Another measure to test correlated events: χ^2

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

- General rules
 - \square χ^2 = 0: independent
 - $\mathbf{\Sigma} \mathbf{\chi}^2 > 0$: correlated, either positive or negative, so it needs additional test

		В	¬B	Σ_{row}	
С	400 (450)		350 (300)	750	
¬C	20	ر (150)	50 (100)	250	
Σ_{col}		600	400	1000	

Expected value

Observed value

Now,
$$\chi^2 = \frac{(400 - 450)^2}{450} + \frac{(350 - 300)^2}{300} + \frac{(200 - 150)^2}{150} + \frac{(50 - 100)^2}{100} = 55.56$$

- χ² shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- \square χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- \square χ^2 = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

	В	¬В	Σ_{row}
С	100	1000	1100
¬С	1000	100000	101000
$\Sigma_{\text{col.}}$	1100 /	101000	102100

null transactions

Contingency table with expected values added

	В	¬В	Σ_{row}	
С	100 (11.85)	1000	1100	
¬С	1000 (988.15)	100000	101000	
$\Sigma_{\text{col.}}$	1100	101000	102100	

Interestingness Measures & Null-Invariance

- □ *Null invariance:* Value does not change with the # of null-transactions
- ☐ A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	
Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes	
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	
MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)}, \frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes	

X² and lift are not null-invariant

Jaccard, consine,
AllConf, MaxConf,
and Kulczynski
are null-invariant
measures

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{row}
$cof\!fee$	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - \square D_4 — D_6 differentiate the null-invariant measures
 - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

All 5 are null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on those cases

Imbalance Ratio with Kulczynski Measure

□ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: |s(A) - s(B)|

$$IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$$

- \square Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D_4 through D_6
 - \square D₄ is neutral & balanced; D₅ is neutral but imbalanced
 - D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	$\bigcirc 0.5$	0.5	0
D_5	1,000	100	10,000	100,000	0.09	$\bigcirc 0.29$	0.5	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

Example: Analysis of DBLP Coauthor Relationships

Recent DB conferences, removing balanced associations, low sup, etc.

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	1 6	120	16	$\bigcirc 0.133 (5)$	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	\bigcirc 12	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312(9)	0.485(5)
					•			

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
 - ☐ Use Kulc to find Advisor-advisee, close collaborators