

Universidad de Chile

${\bf \acute{I}ndice}$

1. Estructuras de datos			
		Disjoint Set Union (Union-Find)	
	1.2.	Segment Tree	
	1.3.	Segment Tree Lazy	
	1.4.	Segment Tree Persistente	
		Segment Tree Iterativo (compacto)	
		Sparse Table	
		Li Chao Tree (dynamic, persistent)	
2.	Gra	afos	
	2.1.	LCA (Binary Lifting)	
		LCA (Sparse Table+ETT)	
		Heavy Light Decomposition	
	2.4.	Dinic Max Flow	
		Centroid Decomposition	
3.	3. Matemáticas		
	3.1.	Exponenciación binaria	
	3.2.	Logaritmo discreto	
	3.3.	Lema de Burnside	
		Fórmula de inversión de Möbius	
	0.1.		
4.	C+	+	
		Custom set/map hash	
		Policy Based Order Statistics Tree	

Universidad de Chile 1 ESTRUCTURAS DE DATOS

1. Estructuras de datos

1.1. Disjoint Set Union (Union-Find)

```
// find y union en ~O(1) amortizado
struct DSU{
    vector <int> parent, sz; // sz = size
    DSU(int n){
        parent.resize(n);
        sz.resize(n);
        for(int i=0; i < n; i++){
            parent[i] = i;
            sz[i] = 1;
        }
    }
    int find_set(int v){
        if(v == parent[v]) return v;
        return parent[v] = find_set(parent[v]);
    void union set(int a. int b){
        a = find set(a):
        b = find set(b);
        if(a != b){
            if(sz[a] < sz[b])
                swap(a,b);
            parent[b] = a;
            sz[a] += sz[b];
    }
};
```

1.2. Segment Tree

```
template <class T, T merge(T,T)>
struct segment_tree{
  int N;
  vector <T> tree;
  segment_tree(int _N){
   N = N;
   tree.resize(4*N);
    build(0, 0, N-1);
  segment_tree(vector <T> &A){
          N = int(A.size()):
          tree.resize(4*N);
          build(0, 0, N-1, A);
  }
  void build(int n, int i, int j){
   if(i == j){
      tree[n] = T(); // initial value
      return:
```

```
int mid = (i+i)/2:
  build(2*n+1, i, mid);
  build(2*n+2, mid+1, i):
  tree[n] = merge(tree[2*n+1], tree[2*n+2]);
void build(int n, int i, int j, vector <T> &A){
  if(i == i){
    tree[n] = A[i]; // initial value
    return;
  int mid = (i+j)/2;
  build(2*n+1, i, mid, A);
  build(2*n+2, mid+1, j, A);
  tree[n] = merge(tree[2*n+1], tree[2*n+2]);
T query(int 1, int r){
  return query(0, 0, N-1, 1, r);
T query(int n, int i, int j, int l, int r){
  if(1 <= i && j <= r) return tree[n];
  int mid = (i+j)/2;
  if(mid < 1 \mid | r < i)
    return query(2*n+2, mid+1, j, 1, r);
  if(j < 1 \mid | r < mid+1)
    return query(2*n+1, i, mid, 1, r);
  return merge(
      query(2*n+1, i, mid, 1, r),
      query(2*n+2, mid+1, j, 1, r));
}
void update(int t, T val){
  update(0, 0, N-1, t, val);
void update(int n, int i, int j, int t, T val){
  if(t < i \mid | j < t) return;
  if(i == j){
    tree[n] = val;
    return;
  int mid = (i+j)/2;
  update(2*n+1, i, mid, t, val);
  update(2*n+2, mid+1, j, t, val);
  tree[n] = merge(tree[2*n+1], tree[2*n+2]);
int search(int from. T val){
  if(!from) return search(0, 0, N-1, val):
  return search(0, 0, N-1, val+query(0, from-1));
int search(int n, int i, int j, T val){
  if(tree[n] < val) return -1;</pre>
```

Universidad de Chile 1 ESTRUCTURAS DE DATOS

```
if(i==j && tree[n] >= val) return i;
int mid = (i+j)/2;
if(tree[2*n+1] >= val) return search(2*n+1, i, mid, val);
else return search(2*n+2, mid+1, j, val-tree[2*n+1]);
};
```

1.3. Segment Tree Lazy

```
template <class T, T merge(T, T)>
struct segment_tree{
        int N:
        vector <T> tree, lazy;
        segment_tree(int _N){
               N = N:
               tree.resize(4*N);
               lazy.assign(4*N, T()); // modify default value
               build(0, 0, N-1);
        }
        segment tree(vector <T> &A){
               N = A.size();
               tree.resize(4*N);
               lazy.assign(4*N, T()); // modify default value
               build(0, 0, N-1, A);
        }
        void build(int n, int i, int j){
               if(i == j){
                        tree[n] = T(): // initial value
                        return:
               int mid = (i+i)/2:
               build(2*n+1, i, mid);
               build(2*n+2, mid+1, j);
               tree[n] = merge(tree[2*n+1], tree[2*n+2]);
        }
        void build(int n, int i, int j, vector <T> &A){
               if(i == i){
                        tree[n] = A[i];
                        return;
               int mid = (i+j)/2;
               build(2*n+1, i, mid, A);
               build(2*n+2, mid+1, j, A);
                tree[n] = merge(tree[2*n+1], tree[2*n+2]);
        }
        void push(int n, int i, int j){
               // modify this function
               if(lazv[n]){
                        tree[n] += lazy[n]*(j-i+1); // range increment
                        if(i != j){
```

```
lazy[2*n+1] += lazy[n];
                         lazv[2*n+2] += lazv[n]:
                lazv[n] = T():
        }
}
T query(int 1, int r){
        return query(0, 0, N-1, 1, r);
T query(int n, int i, int j, int l, int r){
        push(n, i, j);
        if(1 <= i && j <= r) return tree[n];</pre>
        int mid = (i+i)/2:
        if(mid < 1 \mid \mid r < i)
                return query(2*n+2, mid+1, j, 1, r);
        if(i < 1 \mid | r < mid+1)
                return query(2*n+1, i, mid, 1, r);
        return merge (
                         query(2*n+1, i, mid, 1, r),
                         query(2*n+2, mid+1, j, 1, r));
}
void update(int 1, int r, T val){
        update(0, 0, N-1, 1, r, val);
void update(int n, int i, int j, int l, int r, T val){
        if(1 \le i \&\& i \le r){
                lazy[n] += val; // modify this
                push(n, i, j);
                return:
        push(n, i, j);
        if(r < i || j < 1) return;
        int mid = (i+j)/2;
        update(2*n+1, i, mid, l, r, val);
        update(2*n+2, mid+1, i, l, r, val):
        tree[n] = merge(tree[2*n+1], tree[2*n+2]);
}
```

1.4. Segment Tree Persistente

```
// Same time complexity as normal SegmentTree
// Additional O(log(n)) memory per update
template <typename T, T merge(T, T)>
struct st_node{
    st_node *left=0, *right=0;
    int i, j;
    T val;
    st_node() {}
    st_node(int _i, int _j) : i(_i), j(_j) {}
```

};

Universidad de Chile 1 ESTRUCTURAS DE DATOS

```
st node(vector <T> &A){
        int N = int(A.size()):
        i = 0, j = N-1;
        build(A):
}
void build(vector <11> &A){
        if(i == j){
                val = A[i];
                return:
        int mid = (i+j)/2;
        left = new st_node<T,merge>(i, mid);
        right = new st_node < T, merge > (mid+1, j);
        left->build(A):
        right->build(A);
        val = merge(left->val, right->val);
}
st_node *update(int t, 11 v){
        if(t < i \mid \mid j < t){
                return this;
        7
        if(i == i){
                st_node *ret = new st_node < T, merge > (*this);
                ret -> val = v:
                return ret;
        }
        st_node *ret = new st_node<T,merge>(i, j);
        ret->left = left->update(t, v);
        ret->right = right->update(t, v);
        ret->val = merge(ret->left->val, ret->right->val);
        return ret:
}
11 query(int 1, int r){
        if(1 <= i && j <= r) return val;
        int mid = (i+j)/2;
        if(mid < 1 || r < i) return right->query(1, r);
        else if(j < 1 \mid | r < mid+1) return left->query(1, r);
        return merge(left->query(1, r), right->query(1, r));
}
```

1.5. Segment Tree Iterativo (compacto)

};

```
template < class T, T m(T, T) > struct iter_seg_tree {
  int n; vector < T > ST;
  iter_seg_tree(vector < T > &a) {
    n = a.size(); ST.resize(n << 1);
    for (int i=n;i < (n << 1);i++)ST[i] = a[i-n];
    for (int i=n-1;i > 0;i--)ST[i] = m(ST[i << 1],ST[i << 1|1]);
}
void update(int pos, T val) { // replace with val</pre>
```

```
ST[pos += n] = val;
for (pos >>= 1; pos > 0; pos >>= 1)
    ST[pos] = m(ST[pos <<1], ST[pos <<1|1]);
}
T query(int l, int r){ // [l, r]
    T ansL, ansR; bool hasL = 0, hasR = 0;
    for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
        if (l & 1)
            ansL = (hasL?m(ansL,ST[l++]):ST[l++]),hasL=1;
        if (r & 1)
            ansR = (hasR?m(ST[--r],ansR):ST[--r]),hasR=1;
    }
    if (!hasL) return ansR; if (!hasR) return ansL;
    return m(ansL, ansR);
}
};
// Example:
iter_seg_tree<int, my_merge_function> st;
```

1.6. Sparse Table

```
// O(nlogn) preprocesamiento, O(1) query en rango
// para función idempotente (como min, max, qcd, etc)
struct sparse table{
    int n:
    vector <int> logs;
    vector <vector<11>> table;
    sparse_table(vector <11> &A){
        n = A.size();
        logs.resize(n+1);
        logs[1] = 0;
        for(int i=2; i<=n; i++){
            logs[i] = logs[i/2] + 1;
        table.assign(logs[n]+1, vector<11>(n,0));
        for(int i=0; i<=logs[n]; i++){</pre>
            int cur len = 1 << i;
            for(int j=0; j+cur_len-1<n; j++){
                 if(cur_len == 1){
                     table[i][i] = A[i];
                }
                 else{
                     table[i][j] = min(table[i-1][j], table[i-1][j+cur_len
                         \hookrightarrow /2]);
                }
            }
        }
    11 query(int i, int j){
        int p = logs[j-i+1];
        int len = 1 << p;
        return min(table[p][i], table[p][j-len+1]);
};
```

Universidad de Chile 2 GRAFOS

1.7. Li Chao Tree (dynamic, persistent)

```
struct line{
        11 a.b:
        line(){}
        line(ll a, ll b) : a(a), b(b) {}
        11 eval(11 x) { return a*x+b; }
}:
// Dynamic/persistent min Li Chao tree
// Tested on: https://codeforces.com/contest/319/problem/C (add line,
    \hookrightarrow query)
// Tested on: https://www.acmicpc.net/problem/3319 (padd line, query)
struct lc node{
        lc_node *left=0, *right=0;
        11 i, j;
        line val;
        lc_node(l1 _i, l1 _j, line _val) : i(_i), j(_j), val(_val) {}
        // Non-persistent line add
        void add_line(ll a, ll b){
                line v(a,b);
                add_line(v);
        }
        void add_line(line &v){
                ll cur_left=val.eval(i), cur_right=val.eval(j);
                11 new left=v.eval(i), new right=v.eval(j);
                if(cur_left <= new_left && cur_right <= new_right) return;</pre>
                if(cur left > new left && cur right > new right){
                        val=v:
                        return:
                11 \text{ mid} = (i+i) >> 1:
                if(cur_left > new_left) swap(val, v);
                if(val.eval(mid) < v.eval(mid)){</pre>
                        if(!right) right = new lc_node(mid+1, j, v);
                         else right->add line(v);
                }
                else{
                         swap(val, v);
                        if(!left) left = new lc_node(i, mid, v);
                         else left->add_line(v);
                }
        }
        // Persistent line add
        lc_node *padd_line(ll a, ll b){
                line v(a,b);
                return padd_line(v);
        }
        lc_node *padd_line(line &v){
                ll cur_left=val.eval(i), cur_right=val.eval(j);
                ll new_left=v.eval(i), new_right=v.eval(j);
```

```
if(cur_left <= new_left && cur_right <= new_right) return</pre>

    this:

                 lc node *ret = new lc node(*this);
                 if(cur_left > new_left && cur_right > new_right){
                          ret -> val = v:
                          return ret;
                 11 \text{ mid} = (i+j) >> 1;
                 if(cur_left > new_left) swap(ret->val, v);
                 if(ret->val.eval(mid) < v.eval(mid)){</pre>
                          if(!ret->right) ret->right = new lc_node(mid+1, j,
                              \hookrightarrow v):
                          else ret->right = ret->right->padd line(v);
                 else{
                          swap(ret->val, v);
                          if(!ret->left) ret->left = new lc_node(i, mid, v);
                          else ret->left = ret->left->padd_line(v);
                 return ret:
        11 query(11 x){
                 if(i == j) return val.eval(x);
                 11 \text{ mid} = (i+j) >> 1;
                 if(x <= mid && left) return min(val.eval(x), left->query(x
                 else if(x >= mid+1 && right) return min(val.eval(x), right
                      \hookrightarrow ->query(x));
                 return val.eval(x);
        }
/* Example:
lc node *root = new lc node(min val, max val, line(b[0],0));
for(int i=1: i < n: i++) 
        dp[i] = root \rightarrow query(a[i]);
        root \rightarrow add \ line(b[i], dp[i]);
*/
```

2. Grafos

2.1. LCA (Binary Lifting)

```
struct LCA{ // Uses Binary Lifting. O(nlogn) preprocessing, O(logn) query.
  int n, l, timer=0;
  vector <vector<int>> up;
  vector <int> enter, exit;
  LCA(vector <vector<int>> &adj, int root=0){
        n = adj.size();
        l = ceil(log2(n));
        enter.resize(n);
        exit.resize(n);
```

Universidad de Chile 2 GRAFOS

```
up.resize(n, vector<int>(1+1));
    dfs(root, root, adi):
}
void dfs(int u. int p. vector<vector<int>> &adi){
    enter[u] = timer++;
    up[u][0] = p;
    for(int j=1; j<=1; j++){
        up[u][j] = up[up[u][j-1]][j-1];
    for(int v : adj[u]){
        if(v != p) dfs(v, u, adj);
    exit[u] = timer++;
}
bool is_ancestor(int u, int v){ // v is ancestor of u
    return enter[u] <= enter[v] && exit[u] >= exit[v]:
}
int query(int u, int v){
    if(is ancestor(u,v)) return u;
    if(is_ancestor(v,u)) return v;
    for(int i=1; i>=0; i--){
        if(!is_ancestor(up[u][i], v)){
            u = up[u][i];
    }
    return up[u][0];
}
```

2.2. LCA (Sparse Table+ETT)

};

```
// LCA with SparseTable and Euler Tour
// Requires sparse table of pair<int,int> with min operation
// O(n log n) preprocessing, O(1) query
struct LCA{
        SparseTable st;
        int time=0:
        vector <pair<int,int>> euler;
        vector <int> left, right;
        vector <bool> vis:
        LCA(vector <vector <int>> &adj, int root=0){
                int n = int(adj.size());
                left.resize(n):
                right.resize(n);
                vis.assign(n, false);
                dfs(root, adi):
                st = SparseTable(euler);
        }
        void dfs(int u, vector<vector<int>> &adj, int depth=0){
                vis[u] = 1:
```

2.3. Heavy Light Decomposition

```
// Heavy Light decomposition of a tree
// Queries in O(\log^2(n))
// requires: segment tree
// querying on edges: store edge value in child, change enter[u] in query
template <class T, T merge(T, T)>
struct heavy_light{
       // depth: node depth;
       // sz: subtree size
       // enter: discovery time (index in euler tour)
       // par: parent node
       // head: head of node's chain
       vector <int> depth, sz, enter, par, head;
       segment_tree <T, merge> st;
       vector <T> euler:
       vector <vector <int>> &adi:
       vector <T> &val:
       int time=0;
        /* adj: adjacency list
        * val: value associated with each node
         * merge: merge function for queries
       heavy_light(vector <vector <int>> &_adj, vector <T> &_val, int
            → root=0) : adj(_adj), val(_val) {
                int n = int(adj.size());
                depth.resize(n); sz.resize(n);
                enter.resize(n); par.resize(n);
                euler.resize(n); head.resize(n);
                par[root] = -1;
                depth[root] = 0:
                dfs1(root);
                dfs2(root, root);
                st = segment_tree <T, merge>(euler);
       void dfs1(int u){ // first dfs, computes depth and sz
                sz[u]=1:
               for(int v : adj[u]){
                        if(v != par[u]){
```

Universidad de Chile 2 GRAFOS

```
par[v] = u;
                                 depth[v] = depth[u]+1;
                                 dfs1(v);
                                 sz[u] += sz[v]:
                         }
                }
        }
        void dfs2(int u, int h){ // second dfs, computes hld
                head[u] = h:
                enter[u] = time++:
                euler[enter[u]] = val[u];
                int mx = -1:
                for(int v : adj[u]){
                         if(par[u] != v && (mx==-1 || sz[v]>sz[mx])) mx=v;
                if (mx != -1) dfs2(mx, h);
                for(int v : adj[u]){
                         if(v != par[u] && v != mx)
                                 dfs2(v, v);
                }
        }
        T query(int u, int v){
                T ans = T(); // identity element
                while(head[u] != head[v]){ // find LCA
                         if(depth[head[u]] > depth[head[v]]) swap(u, v);
                         ans = merge(ans, st.query(enter[head[v]], enter[v
                             \hookrightarrow ]));
                         v = par[head[v]];
                if(depth[u] > depth[v]) swap(u, v); // make sure "u" is
                     \hookrightarrow I.CA
                ans = merge(ans, st.query(enter[u], enter[v])); // enter[u]
                     → ]+1 for edge queriesk
                return ans;
        }
        void update(int u, T x){
                st.update(enter[u], x);
        }
};
```

2.4. Dinic Max Flow

```
// Dinic Max Flow O(V^2 E)
struct FlowEdge{
   int u,v;
   ll cap, flow = 0;
   FlowEdge(int u,int v,ll cap):u(u),v(v),cap(cap){}
};
struct Dinic{
   const ll flow_inf = 1e18;
   vector<FlowEdge> edges;
   vector< vector<int> > gr;
   int s,t,n,m=0;
   vector<int> lvl,idx;
```

```
Dinic (int n, int s, int t):n(n),s(s),t(t){
    gr.resize(n):
    lvl.resize(n);
    idx.resize(n):
void add_edge(int u,int v,ll cap){
    edges.emplace_back(u,v,cap);
    edges.emplace back(v,u,0); //cap si bidireccional
    gr[u].push_back(m++);
    gr[v].push_back(m++);
bool run_bfs(){
    queue<int> bfs;
    bfs.push(s);
    fill(lvl.begin(),lvl.end(),-1);
    lvl[s] = 0;
    while (!bfs.empty()){
        int no = bfs.front();
        bfs.pop();
        for (int ne:gr[no]){
            if (lvl[edges[ne].v] == -1 && edges[ne].cap - edges[ne].
                \hookrightarrow flow > 0){
                lvl[edges[ne].v] = lvl[no] + 1;
                bfs.push(edges[ne].v);
            }
        }
    return lv1[t] != -1;
11 dfs(int u,ll cflow){
    if (cflow == 0 || u == t) return cflow;
    while (idx[u] < gr[u].size()){
        int edg = gr[u][idx[u]++];
        int v = edges[edg].v;
        if (lvl[u]+1 == lvl[v] && edges[edg].cap - edges[edg].flow >
            11 rflow = dfs(v,min(cflow,edges[edg].cap - edges[edg].
                \hookrightarrow flow)):
            if (rflow){
                edges[edg].flow += rflow;
                edges[edg^1].flow -= rflow;
                return rflow;
            }
        }
    }
    return 0:
11 flow(){
    11 f = 0:
    while (true){
        if (run bfs()){
            fill(idx.begin(),idx.end(),0);
            while (cf = dfs(s,flow_inf)) f += cf;
        } else break;
    return f;
```

Universidad de Chile 3 MATEMATICAS

```
};
```

2.5. Centroid Decomposition

```
struct cenDec{
    // cen p[i]: el padre de i en el grafo de centroides
    // cen_d[i][j]: distancia entre j y su correspondiente centroide en el
        \hookrightarrow ninel i
    // cen_h[i] es la lista de hijos de i en el grafo de centroides
    vector<int> cen_p, path;
    vector< vector<int> > &gr, cen_d, cen_h;
    vector<bool> on;
    int n,cen_r;
    int pathm(int no,int p){
        path[no] = 1;
        for (int ne:gr[no]){
            if (on[ne] && ne != p){
                path[no] += pathm(ne,no);
        return path[no];
    void dec(int c,int p,int 1){
        pathm(c,-1);
        int cen = c, las = -1;
        while (cen != las){
            las = cen;
            for (int ne:gr[cen]){
                if (on[ne] && path[ne] > path[cen]/2){
                    cen = ne;
                    break;
                }
            path[las] -= path[cen];
            path[cen] += path[las];
        cen_p[cen] = p;
        if (p != -1) cen_h[p].push_back(cen);
        if (1 > cen d.size()) cen d.push back(vector<int>(n,-1));
        cen_d[1-1][cen] = 0;
        queue<int> bfs;
        bfs.push(cen);
        while (!bfs.empty()){
            int cno = bfs.front();
            bfs.pop();
            for (int ne:gr[cno]){
                if (on[ne] && cen_d[1-1][ne] == -1){
                    cen_d[1-1][ne] = cen_d[1-1][cno] + 1;
                    bfs.push(ne);
        }
        on[cen] = false;
```

```
for (int ne:gr[cen]){
            if (on[ne]){
                dec(ne,cen,1+1);
    }
    cenDec(vector< vector<int> > &_gr):gr(_gr){
        n = gr.size();
        path.resize(n);
        cen_p.resize(n);
        cen_h.resize(n);
        on.assign(n,true);
        dec(0,-1,1);
        for (int i=0; i < n; i++) {
            if (cen_p[i] == -1){
                cen r = i;
                break;
            }
        }
    }
};
```

3. Matemáticas

3.1. Exponenciación binaria

```
const ll MOD; // MOD variable global

ll binpow(ll a, ll b){
    a %= MOD;
    ll ans=1;
    while(b > 0){
        if(b & 1)
            ans = ans * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    }
    return ans;
}
```

3.2. Logaritmo discreto

Universidad de Chile 4 C++

```
an = (an * 1ll * a) % m;
unordered_map<int, int> vals;
for (int q = 0, cur = b; q <= n; ++q) {
    vals[cur] = q;
    cur = (cur * 1ll * a) % m;
}

for (int p = 1, cur = 1; p <= n; ++p) {
    cur = (cur * 1ll * an) % m;
    if (vals.count(cur)) {
        int ans = n * p - vals[cur];
        return ans;
    }
}
return -1;</pre>
```

3.3. Lema de Burnside

El lema de Burnside sirve para problemas de conteo donde hay que contar solo una vez cada simetría.

Sea G un grupo finito actuando sobre un conjunto finito X. Para $g \in G$, denotamos como X^g los elementos de X que están fijos por g. El lema da una fórmula para el número de órbitas |X/G|:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

Ejemplo: Contemos collares de n perlas, donde cada perla tiene m posibles colores. Dos collares son simétricos si son idénticos bajo alguna rotación. Así, cada órbita representa un collar, y el grupo G se compone de las n rotaciones posibles: $0, 1, \ldots, n-1$ pasos en algún sentido.

Entonces, contamos cuántos collares permanecen invariantes luego de aplicar una rotación de k pasos. Con cero pasos, todos los m^n collares permanecen fijos, y con 1 paso, los m collares donde todas las perlas tienen el mismo color permanecen fijos. En general, un total de $m^{\gcd(k,n)}$ collares están fijos con k pasos, porque bloques de tamaño $\gcd(k,n)$ se reemplazan unos a los otros. Finalmente, por el Lema de Burnside, la cantidad de collares distintos es:

$$\frac{1}{n} \sum_{k=0}^{n-1} m^{\gcd(k,n)}.$$

3.4. Fórmula de inversión de Möbius

Sea (P, \leq) un poset, la función de Möbius μ de P se define recursivamente para elementos de P como:

$$\mu(s,s) = 1$$

$$\mu(s,u) = -\sum_{s < t < u} \mu(s,t).$$

Si cada ideal principal de P es finito, $f \colon P \to R$ es una función, y existe una función q que cumple

$$g(y) = \sum_{x \le y} f(x),$$

luego, se tiene

$$f(y) = \sum_{x < y} g(x)\mu(x, y).$$

4. C++

4.1. Custom set/map hash

```
struct custom hash {
       static uint64 t splitmix64(uint64 t x) {
               // http://xorshift.di.unimi.it/splitmix64.c
               x += 0x9e3779b97f4a7c15;
               x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
               x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
               return x ^ (x >> 31);
       }
       size t operator()(uint64 t x) const {
               static const uint64 t FIXED RANDOM = chrono::steady clock
                  return splitmix64(x + FIXED_RANDOM);
       }
};
unordered_map<ll, int, custom_hash> safe_map;
unordered_set<ll, custom_hash> safe_set;
```

4.2. Policy Based Order Statistics Tree

Universidad de Chile 4 C++

```
s.insert(2);
s.insert(3);
s.insert(7);
s.insert(9);
auto x = s.find_by_order(2);
cout << *x << "\n"; // 7
cout << s.order_of_key(7) << "\n"; // 2
*/</pre>
```