Recovering the posterior doubly-intractable distribution of a parameter Simulation and Monte Carlo methods project presentation

Lucas Degeorge, Baptiste Dupré, Aymeric Tiberghien

ENSAE Paris

April 25, 2023

Table of contents

1 The Ising model

- 2 Exchange algorithms
- Russian Roulette

We consider a $N \times N$ grid of spins : $\mathbf{y} = (y_1, \dots, y_{N^2})$ where each $y_i \in \{-1, +1\}$.

+1	-1	-1	-1	-1
-1	-1	+1	-1	+1
-1	+1	-1	-1	+1
-1	+1	+1	-1	+1
+1	-1	+1	+1	-1

Table: Example of a 5×5 grid.

From now, we will only consider grids for N = 10.

Probabilities in the Ising model

The likelihood of the Ising model is defined by :

$$p(\mathbf{y}; \alpha, \beta) = \frac{1}{\mathcal{Z}(\alpha, \beta)} \exp \left(\alpha \sum_{i=1}^{N^2} y_i + \beta \sum_{(i,j) \in V} y_i y_j \right)$$

where V is the set of nearest neighbour pairs and $\mathcal{Z}(\alpha,\beta)$ is the normalizing constant.

Two spins are considered as nearest neighbours in this situation :

+1	-1	-1
-1	+1	+1
-1	+1	-1

Table: The nearest neighbours (in green) of a spin (in red)

Remark on neighbours

We consider periodic boundary conditions. It means:

+1	-1	-1	+1
-1	+1	+1	-1
-1	+1	-1	+1
+1	-1	-1	-1

Table: The nearest neighbours for a spin in a corner

+1	-1	-1	+1
-1	+1	+1	+1
+1	-1	-1	-1
-1	+1	-1	+1

Table: The nearest neighbours for a spin on an edge

Issues with our distribution

The normalizing constant $\mathcal{Z}(\alpha, \beta)$ is defined by :

$$\mathcal{Z}(\alpha, \beta) = \sum_{\mathcal{Y}} \left(\alpha \sum_{i=1}^{N^2} y_i + \beta \sum_{(i,j) \in V} y_i y_j \right)$$

where \mathcal{Y} denotes the set of all possible grids : $\mathcal{Y} = \{-1, +1\}^{N^2}$.

It can't be computed as it requires summing over the 2^{N^2} possible grids.

Conditional probabilities

Starting from the joint probability:

$$p(\mathbf{y}; \alpha, \beta) \propto \exp\left(\alpha \sum_{i=1}^{N^2} y_i + \beta \sum_{(i,j) \in V} y_i y_j\right)$$

the conditional distribution of component $k \in \{1, ..., N^2\}$ given $y_{-k} = (y_1, ..., y_{k-1}, y_{k+1}, ..., y_{N^2})$ is

$$p(y_k|y_{-k},\alpha,\beta) \propto p(\mathbf{y};\alpha,\beta)$$

We only consider the terms involving y_k in $p(\mathbf{y}; \alpha, \beta)$:

$$p(y_k|y_{-k},\alpha,\beta) \propto \exp\left(\alpha y_k + \beta \sum_{i \sim k} y_i y_k\right)$$

Conditional probabilities

For $x \in \{-1, +1\}$,

$$p(Y_k = x | y_{-k}, \alpha, \beta) \propto \exp\left(\alpha x + \beta x \sum_{i \sim k} y_i\right)$$

Finally,

$$p(Y_k = x | y_{-k}, \alpha, \beta) = \frac{\exp(2\alpha x + 2\beta x \sum_{i \sim k} y_i)}{1 + \exp(2\alpha x + 2\beta x \sum_{i \sim k} y_i)}$$

We recognize the logistic function :

$$p(Y_k = x | y_{-k}, \alpha, \beta) = logistic(2\alpha x + 2\beta x \sum_{i > k} y_i)$$

Gibbs sampling

Algorithm 1 Gibbs sampling for the Ising model

```
Require: N_{gs} = 0

Require: (y_{1,0}, \dots, y_{N^2,0}) \in \{-1, +1\}^{N^2}

1: for i = 0 to N_{gs} - 1 do

2: Generate y_{1,i+1} \sim p(\cdot|(y_{2,i}, \dots, y_{N^2,i}), \alpha, \beta)

3: Generate y_{2,i+1} \sim p(\cdot|(y_{1,i+1}, y_{2,i}, \dots, y_{N^2,i}), \alpha, \beta)

\vdots

4: Generate y_{k,i+1} \sim p(\cdot|(y_{1,i+1}, \dots, y_{k-1,i+1}, y_{k+1,i}, \dots, y_{N^2,i}), \alpha, \beta)

\vdots

5: Generate y_{N^2,i+1} \sim p(\cdot|(y_{1,i+1}, \dots, y_{N^2-1,i+1}), \alpha, \beta)
```

6: end for

Objective and issues

Given a grid of spins $\mathbf{y} = (y_1, \dots, y_{N^2})$, we want to recover the parameters α and β which led to the generation of \mathbf{y}

From now, we state that $\alpha=0$ and our objective is to estimate the theoretical value of β : β_{th}

The posterior probability we want to infer is

$$p(\beta|\mathbf{y}) = \frac{p(\mathbf{y}|\beta) \times p(\beta)}{p(\mathbf{y})} = \frac{f(\mathbf{y}|\beta)}{\mathcal{Z}(\beta)} \times p(\beta) \times \frac{1}{p(\mathbf{y})}$$

 $\mathcal{Z}(\beta)$ and $p(\mathbf{y})$ are intractable. $p(\beta|\mathbf{y})$ is a **doubly-intractable** distribution

Let's try Metropolis-Hasting's algorithm

Algorithm 2 Metropolis-Hastings algorithm

Require: T, initial β , a proposal $q(\cdot|\beta, \mathbf{y})$

- 1: **for** t = 1 to T **do**
- 2: Propose $\beta' \sim q(\cdot|\beta, \mathbf{y})$
- 3: Compute $a = \frac{p(\beta'|\mathbf{y}) \cdot q(\beta|\beta',\mathbf{y})}{p(\beta|\mathbf{y}) \cdot q(\beta'|\beta,\mathbf{y})}$
- 4: Draw $r \sim \mathcal{U}_{[0,1]}^r$
- 5: if r < a then
- 6: $\beta \leftarrow \beta'$
- 7: end if
- 8: end for

Let's try Metropolis-Hastings algorithm

One can notice that, as

$$p(\beta|\mathbf{y}) = \frac{f(\mathbf{y}|\beta)}{\mathcal{Z}(\beta)} \times p(\beta) \times \frac{1}{p(\mathbf{y})}$$

a satisfies:

$$a = \frac{f(\mathbf{y}|\beta') \cdot p(\beta') \cdot q(\beta|\beta', \mathbf{y})}{f(\mathbf{y}|\beta) \cdot p(\beta) \cdot q(\beta'|\beta, \mathbf{y})} \times \frac{\mathcal{Z}(\beta)}{\mathcal{Z}(\beta')}$$

Let's try Metropolis-Hastings algorithm

One can notice that, as

$$p(\beta|\mathbf{y}) = \frac{f(\mathbf{y}|\beta)}{\mathcal{Z}(\beta)} \times p(\beta) \times \frac{1}{p(\mathbf{y})}$$

a satisfies:

$$a = \frac{f(\mathbf{y}|\beta') \cdot p(\beta') \cdot q(\beta|\beta', \mathbf{y})}{f(\mathbf{y}|\beta) \cdot p(\beta) \cdot q(\beta'|\beta, \mathbf{y})} \times \frac{\mathcal{Z}(\beta)}{\mathcal{Z}(\beta')}$$

The red terms are not tractable.

We need to find an alternative to Metropolis-Hastings algorithm

Algorithm 3 Single-variable Exchange algorithm

Require: T, initial β , a proposal $q(\cdot|\beta, \mathbf{y})$

- 1: **for** t = 1 to T **do**
- 2: Propose $\beta' \sim q(\cdot|\beta, \mathbf{y})$
- 3: Generate an auxiliary variable $\mathbf{w} \sim \frac{f(\cdot|\beta')}{\mathcal{Z}(\beta')}$
- 4: Compute $a = \frac{q(\beta|\beta',y)}{q(\beta'|\beta,y)} \cdot \frac{p(\beta')}{p(\beta)} \cdot \frac{f(y|\beta') \cdot f(w|\beta)}{f(y|\beta) \cdot f(w|\beta')}$
- 5: Draw $r \sim \mathcal{U}_{[0,1]}$
- 6: if r < a then
- 7: $\beta \leftarrow \beta'$
- 8: end if
- 9: end for

For our simulations, we used:

• for the prior over β : $\mathcal{U}_{[0,1]}$. So $\frac{p(\beta')}{p(\beta)}=1$

For our simulations, we used:

- ullet for the prior over $eta\colon \mathcal{U}_{[0,1]}.$ So $rac{p(eta')}{p(eta)}=1$
- for the proposal: $q(\cdot|\beta, \mathbf{y}) = \mathcal{N}(\beta, \sigma)$ where σ is to be tuned

For our simulations, we used:

- for the prior over β : $\mathcal{U}_{[0,1]}$. So $\frac{p(\beta')}{p(\beta)} = 1$
- ullet for the proposal: $q(\cdot|eta,\mathbf{y})=\mathcal{N}(eta,\sigma)$ where σ is to be tuned
- for the likelihood $f(\cdot|\beta)$: $\mathbf{y} \mapsto \exp\left(\beta \sum_{(i,j) \in V} y_i y_j\right)$ from the lsing model.

For our simulations, we used:

- for the prior over β : $\mathcal{U}_{[0,1]}$. So $\frac{p(\beta')}{p(\beta)} = 1$
- for the proposal: $q(\cdot|\beta, \mathbf{y}) = \mathcal{N}(\beta, \sigma)$ where σ is to be tuned
- for the likelihood $f(\cdot|\beta)$: $\mathbf{y} \mapsto \exp\left(\beta \sum_{(i,j) \in V} y_i y_j\right)$ from the Ising model.
- the Gibbs sampler to generate $\beta' \sim q(\cdot|\beta, \mathbf{y})$

Results

We run the algorithm with $T=10^4$, $N_{gs}=10^3$ and $\sigma=0.1$

Figure: Evolution of the empirical mean of β over the iterations

Impact of the variance on the limits

We also run the algorithm with other values of the variances.

Figure: Evolution when $\sigma = 0.01$

Figure: Evolution when $\sigma = 0.5$

Impact of N_{gs} on the limits

... and with different values of N_{gs}

Figure: Evolution when $N_{gs} = 100$

Figure: Evolution when $N_{gs} = 5\dot{3}00$

A way to estimate $\mathcal{Z}(\beta)$

Another idea is to infer $p(\beta|\mathbf{y}) = \frac{f(\mathbf{y}|\beta)}{\mathcal{Z}(\beta)}p(\beta)\frac{1}{p(\mathbf{y})}$ is to construct an estimator of $\frac{1}{\mathcal{Z}(\beta)}$.

Given an instrumental density q(y), it holds

$$rac{1}{\mathcal{Z}(eta)} = rac{1}{\mathcal{Z}(eta)} \int q(\mathbf{y}) d\mathbf{y} = \int rac{q(\mathbf{y})}{f(\mathbf{y}|eta)} p(\mathbf{y}|eta) d\mathbf{y}$$

One can estimate this integral with:

$$\int \frac{q(\mathbf{y})}{f(\mathbf{y}|\beta)} p(\mathbf{y}|\beta) d\mathbf{y} \approx \frac{1}{T} \sum_{t=1}^{I} \frac{q(\mathbf{y}_t)}{f(\mathbf{y}_t|\beta)}$$

Warning: $\mathbf{y}_t \neq y_k$ The first one is a grid of spins, the second one belongs to $\{-1; +1\}$

Generalities on Russian Roulette methods

We consider an infinite sum S defined by : $S = \sum_{k=0}^{+\infty} u_k$

We also consider τ a finite random time, and we define for $n \ge 0$, $p_n := \mathbb{P}(\tau \ge n) > 0$.

We define $S_0=u_0$, and for $k\geq 1$, $S_k=u_0+\sum\limits_{j=1}^{k}\frac{u_j}{p_j}$

Property: unbiased estimator of S

The Russian Roulette random truncation approximation of S, defined by $\hat{S} = S_{\tau}$ is an unbiased estimator of S.