(1)
$$f(n) = 10 \, \text{hlog} \, n + 500 \, n + n^2 + 123$$

 $f \in O(g(n))$ $g(n) - ?$

$$h = 1 \qquad 0 + 500 + 1 + 123 = 624$$
for all $h > 1$
$$\frac{10 \log h + 500}{h} + 1 + \frac{113}{h^2} = \frac{10 \log h + 500}{h - 1} + 1 + \frac{123}{(n - 1)^2}$$

$$\frac{10 \log h + 500 - 10 \log h - 500 - 10 \log h \cdot h - 500h}{h(n - 1)} + \frac{123 h^2 - 123 \cdot 2n + 123 - 123 h^2}{h^2 (n + 1)^2} = 0$$

$$\frac{10 \log h + 500}{h(n-1)} + \frac{123 \cdot 2h - 123}{n^2 (h+1)^2} = 0$$

That means that for C=624 and ho=1 inequality* holds for every $h>h_0$.

$(2) n^{\frac{2}{2}} + 7n^{4} \log n + n^{2}.$

$$N^{\frac{9}{2}} = O(n^{\frac{9}{2}})$$

$$N^{2} = O(n^{2})$$

$$7n^4logn \le c \cdot n^4logh$$
 for $c=7$ and any $h(by definition of Big-O notation) $7n^4logn = O(n^4logh)$$

By theorem of functions whose asymptotic behaviors are known

By theorem of functions whose asymptotic behaviors are known if $f_1(n) = Q(g_1(n))$ and $f_2(n) = Q(g_2(n))$, then $f_1(n) + f_2(n) = Q(max(g_1(n), g_2(n)))$. Among functions $n^{\frac{9}{2}}$, h^2 , $h^4 \log n = n^{\frac{9}{2}} \cdot C$. So, $n^{\frac{9}{2}} + 7n^4 \log n + h^2 = Q(n^{\frac{9}{2}})$

(3) $6^{n+1} + 6(n+1)! + 24n^{42}$ $6^{n+1} = 6 \cdot 6^{n}$ $6 \cdot 6^{n} <= c \cdot 6^{n}$, for c = 6 and any h. $24 \cdot h^{42} <= c \cdot h^{42}$ for c = 24 and any h. $6(n+1)! <= c \cdot (n+1)!$ for c = 6 and any h.

So, we have $6^{n+1} = O(6^n)$, 6(n+1)! = O(n+1)!, $24n^{42} = O(n^{42})$.

By theorem of functions whose asymptotic behaviors are known if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(max(g_1(n), g_2(n)))$.

Image functions 6^n , (n+1)!, and n^{42} max function is (n+1)!.

Finally, we have $6^{n+1} + 6(n+1)! + 24n^{42} = O(n+1)!$