Examen de Teoría de Percepción - Recuperación Primer Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2021

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Carlos Martínez		
Cuestiones (1.5 puntos, 30 minutos, sin apunt	es)	
Cuál de las siguientes expresiones no es equival	ente a un clas	sificador de Bayes?
A) $\operatorname{argmax}_{c \in \mathbb{C}} \ e^{P(c \mathbf{x})}$ B) $\operatorname{argmax}_{c \in \mathbb{C}} \ \log P(c \mid \mathbf{x})$ C) $\operatorname{argmax}_{c \in \mathbb{C}} \ P(c \mid \mathbf{x})^2$ D) $\operatorname{argmax}_{c \in \mathbb{C}} \ \cos P(c \mid \mathbf{x})$		
En un sistema de reconocimiento de formas interciona una medida del rendimiento del sistema r ¿cuál es la principal motivación de la utilización	nás próxima	a la realidad, entonce
 A) Comparar sistemas interactivos B) Utilizar un menor número de usuarios C) Permitir un mayor control de los experimento D) Crear un modelo de usuario 	OS	
El proceso de escalado en OCR:		
 A) Garantiza que todas las imágenes sean del m B) Elimina partes no informativas de la imagen C) Proporciona siempre imágenes binarias D) Permite conservar la relación de aspecto original 	original	
Ante una señal de audio cuyo ancho de banda es	de 10 KHz se	e empleará:
A) Un filtro paso bajo de 10 KHz y un muestreo B) Un filtro paso alto de 10 KHz y un muestreo C) Un filtro paso alto de 5 KHz y un muestreo a D) Un filtro paso bajo de 10 KHz y un muestreo	a 20 KHz 20 KHz	

Para minimizar el error de reconstrucción, PCA:
 A) Sustrae la media del conjunto de datos B) Escoge los vectores propios de mayor a menor valor propio asociado C) Toma la dimensión que ofrece un menor error de clasificación D) Proyecta sobre los ejes de menor varianza
\square En general, ¿cómo se interpretan el signo y magnitud de la proyección de un vector \mathbf{x} ?
A) El signo indica el sentido del vector de proyección \mathbf{w} , y la magnitud, la distancia al origen
B) El signo indica el ángulo formado con el vector de proyección ${\bf w}$, y la magnitud, la distancia al origen
C) El signo indica el ángulo formado con el vector de proyección w , y la magnitud, el módulo del vector de proyección
D) El signo indica el sentido del vector de proyección \mathbf{w} , y la magnitud, el módulo del vector proyectado
El clasificador por vecino más cercano:
A) Da fronteras de decisión lineales
B) No puede usarse sobre representaciones no vectoriales
C) Tiene una tasa de acierto que es sensible al número de prototipos
D) Presenta un error de clasificación menor que el clasificador de Bayes
El algoritmo de condensado de Hart (CNN) se caracteriza por:
A) Dar un resultado independiente del orden de recorrido
B) Emplear internamente un clasificador k -NN
C) Partir de un conjunto de prototipos no editado
D) Mantener los prototipos clasificados correctamente

Examen de Teoría de Percepción - Recuperación Primer Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2021

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Carlos Martínez		
Problemas (2 puntos, 90 minutos, con apunte	(\mathbf{s})	

- 1. (0.5 puntos) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global directa de una imagen a 512 niveles de gris con resolución 2048×1024 píxeles (**0.05 puntos**)
 - b) Representación local de una imagen de 2048 × 2048 píxeles, usando ventanas de 15 × 9 píxeles y una rejilla de desplazamiento horizontal de 2 y vertical de 1 sobre una imagen de 512 niveles de gris, usando representación directa de cada ventana (0.2 puntos)
 - c) Señal de audio de 6 canales de 50 minutos de duración, muestreada a 96KHz y 16 bits (0.1 puntos)
 - d) Colección de 500 documentos de 1000 palabras máximo cada uno, con un vocabulario de 50000 palabras, representado por term frequency de 1-grama (0.15 puntos)
- 2. (0.8 puntos) Se tiene el siguiente conjunto de datos vectoriales de 3 dimensiones ($\mathbf{x} \in \mathbb{R}^3$) con sus correspondientes etiquetas de clase:

Se pide:

	n	1	2	3	4	5	6
	x_{n1}	2	-2	1	-2	2	-1
	x_{n2}	-2	2	-1	2	-2	1
	x_{n3}	-2	-1	2	2	1	-2
•	C_n	Α	A	В	В	В	A

- a) Calcular una matriz de proyección a dos dimensiones (\mathbb{R}^2) mediante PCA, indicando todos los pasos necesarios (**0.5** puntos)
- b) Si se busca aplicar un clasificador lineal sobre los datos proyectados, ¿qué dimensión mínima sería necesaria para proyectar con PCA a fin de conseguir un clasificador de error mínimo? Razona la respuesta (0.3 puntos)
- 3. (0.7 puntos) Se tiene el siguiente conjunto de datos, cuya representación gráfica se ve en la parte derecha:

n	l								9
x_{n1}	5	5	4	1	4	3	2	1	2
$\begin{array}{c} x_{n1} \\ x_{n2} \end{array}$	2	5	4	4	1	5	4	2	3
c_n	2	1	1	3	2	3	2	3	1

Se pide:

- a) Aplica el algoritmo de Wilson con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor índice (0.4 puntos)
- b) Una vez aplicado el algoritmo de Wilson, aplica el algoritmo de Hart con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor índice (0.3 puntos)

