

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \end{cases}$$

Logistic regression derivatives

deeplearning.ai

Basics of Neural Network Programming

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(u,b)}{J(u,b)} = \frac{1}{m} \sum_{i=1}^{m} f(a^{(i)}, y^{(i)}) \\
\Rightarrow a^{(i)} = G(z^{(i)}) = G(u^{T}x^{(i)} + b)$$

$$\frac{\partial}{\partial u_{1}} J(u,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial u_{1}} f(a^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial u_{1}} - (x^{(i)}, y^{(i)})$$

Logistic regression on m examples

$$J=0$$
; $d\omega_{1}=0$; $d\omega_{2}=0$; $db=0$
 $Z^{(i)}=\omega^{T}x^{(i)}+b$
 $Z^{$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$
 $\omega_1 := \omega_1 - d d\omega_1$
 $\omega_2 := \omega_2 - \alpha d\omega_2$
 $b := b - d db$

Vectorization