Domáca úloha č. 4

1. Polynomiálne redukcie

a) $HAM \rightarrow TSP-D$

Vstupný graf G pre HAM sa na vstupný graf G' pre TSP-D zmení nasledovne:

Vstup pre TSP-D je teda graf G' a maximálna suma rovná 0.

Algoritmus pre TSP-D vráti odpoveď "áno", pričom príslušná obchôdzka obchodného cestujúceho je postupnosť vrcholov (1,2,4,3,1) v G'. Príslušná Hamiltonovská kružnica v G je tiež postupnosť vrcholov (1,2,4,3,1).

b) 3-SAT $\rightarrow VC$

Vstupná formula $(\neg u_2 \lor u_3 \lor \neg u_4) \land (u_1 \lor u_3 \lor \neg u_2) \land (u_4 \lor \neg u_1 \lor u_2) \land (\neg u_2 \lor u_4 \lor \neg u_3)$ sa na vstupný graf G pre VC zmení nasledovne (zatiaľ nie je rozdiel medzi farebne odlíšenými vrcholmi) :

Zadaná formula je splniteľná práve vtedy, keď graf G má VC veľkosti nanajvýš m+2n, kde m je počet logických premenných, a n počet klauzúl. V našom prípade teda potrebujeme nájsť VC, ktorý použije najviac 12 vrcholov. Takýto VC existuje, a príslušných 12 vrcholov je na obrázku vyznačených červenou farbou.

Ohodnotenie logických premenných, ktoré korešponduje nájdenému VC sú teda tie vrcholy, ktoré boli vybrané, v našom prípade je formula splnená ak platí: $\neg u_1$, $\neg u_2$, $\neg u_3$, u_4 .

c) 3-SAT \rightarrow SUBSET-SUM

Vstupná formula $(\neg u_2 \lor u_3 \lor \neg u_4) \land (u_1 \lor u_3 \lor \neg u_2) \land (u_4 \lor \neg u_1 \lor u_2) \land (\neg u_2 \lor u_4 \lor \neg u_3)$ sa zmení na nasledovné čísla v množine A:

	u_1	u_2	u_3	u_4	C_{1}	C_2	C_3	C_4
$v_1 =$	1	0	0	0	0	1	0	0
$v_{1}' =$	1	0	0	0	0	0	1	0
$v_2 =$	0	1	0	0	0	0	1	0
$v_{2}' =$	0	1	0	0	1	1	0	1
$v_3 =$	0	0	1	0	1	1	0	0
$v_{3}' =$	0	0	1	0	0	0	0	1
$v_4 =$	0	0	0	1	0	0	1	1
$v_4' =$	0	0	0	1	1	0	0	0
$c_1 =$	0	0	0	0	1	0	0	0
$c_1' =$	0	0	0	0	2	0	0	0
$c_2 =$	0	0	0	0	0	1	0	0
$c_{2}' =$	0	0	0	0	0	2	0	0
$c_3 =$	0	0	0	0	0	0	1	0
$c_{3}' =$	0	0	0	0	0	0	2	0
$c_4 =$	0	0	0	0	0	0	0	1
$c_{4}' =$	0	0	0	0	0	0	0	2

Cieľová suma t = 11114444.

Pre takúto množinu A vieme nájsť podmnožinu, ktorej súčet bude rovný t, napr. $\{v_1', v_2', v_3', v_4, c_1, c_1', c_2, c_2', c_3', c_4\}$ (zvýraznené riadky). Zodpovedajúce ohodnotenie logických premenných, pri ktorom bude formula splnená, je určené prvkami v_1', v_2', v_3', v_4 vo vybranej podmnožine. Pre splnenie formuly teda musí platiť $\neg u_1, \neg u_2, \neg u_3, u_4$.

d) SUBSET-SUM → COIN

Vstupná množina $A = \{1,4,5,6\}$ sa zmení na nasledovné hodnoty mincí:

	value	a_1	a_2	a_3	a_4
$c_1 =$	1	1	0	0	0
$c_1' =$	0	1	0	0	0
$c_2 =$	4	0	1	0	0
$c_2' =$	0	0	1	0	0
$c_3 =$	5	0	0	1	0
$c_3' =$	0	0	0	1	0
$c_4 =$	6	0	0	0	1
$c_{4}' =$	0	0	0	0	1

Pôvodná cieľová hodnota $t_{SSS}=8$ sa zmení na cieľovú sumu $t_C=81111$. Túto sumu však z uvedených mincí nevieme vyskladať, a teda ani v pôvodnom probléme SUBSET-SUM neexistuje taká podmnožina A, aby jej súčet bol rovný $t_{SSS}=8$.

Predpokladajme, že sumu t_C vieme z mincí vyskladať. To znamená, že vieme nájsť koeficienty k také, aby:

$$81111 = k_1c_1 + k_1'c_1' + k_2c_2 + k_2'c_2' + k_3c_3 + k_3'c_3' + k_4c_4 + k_4'c_4'$$

Prvá cifra výslednej sumy sa rovná t_{SSS} (samozrejme, pri číselnej sústave s vhodným základom). Na prvej cifre sumy (ak chceme dostať iba 5-ciferné číslo) avšak nevieme dostať cifru 8 inak, než že aspoň jedno z k_1, k_2, k_3, k_4 bude väčšie ako 1. Tým by sa nám ale zvýšila hodnota aj v nejakej

z ďalších cifier na 2 alebo viac, čiže výsledné číslo by sa nerovnalo 81111. Tým sme dospeli k sporu. To znamená, že nevieme nájsť také koeficienty k, aby prvá cifra výsledku bola rovná t_{SSS} , a teda nevieme nájsť takú podmnožinu A, aby súčet jej členov bol rovný t_{SSS} .

2. Znova animácie

Pózy si môžeme predstaviť ako vrcholy a animácie ako orientované, váhované hrany grafu, kde hrana (s_i,f_i) predstavuje vykonanie animácie v originálnom smere, a hrana (f_1,s_1) v vykonanie animácie odzadu. Začiatočná a konečná póza každej animácie je teda spojená dvojicou hrán – jednou v každom smere. V takto skonštruovanom grafe je teda Jankovou úlohou nájsť ťah dĺžky k začínajúci vo vrchole s a končiaci v f.

Riešenie v NP čase:

Problém sa dá riešiť v NP čase nasledujúcim nedeterministickým algoritmom:

```
function animation(graph G, vertex start, vertex finish, number k) {
     G = convert_to_neighbour table(G)
     v = start
4
     sum = 0
     used = {};
5
     while(true){
7
       u = choose from v.neighbours
8
       if(edge(v, u) in used) { reject }
9
       else{ used.add(edge(v, u)) }
10
11
       sum += edge(v, u).weight
12
        if(sum > k) { reject }
       if(u == finish && sum == k) { accept }
13
14
15
       v = u
16
     }
17
      reject
18
```

Časová zložitosť algoritmu (n je počet vrcholov, m počet hrán):

- Konverzia grafu do tabuľky susedov (r. 2) potrebuje vytvoriť tabuľku $n \times n$ záznamov o veľkosti $\log n$ bitov, pričom túto tabuľku môže vytvoriť "priamočiaro" časová zložitosť je teda $O(n^2.\log n)$, čo je každopádne polynomiálne.
- Riadok 3 potrebuje $O(\log n)$ času, riadky 4 a 5 O(1) polynomiálne.
- Všetky akcie vnútri cyklu (r. 7-15) potrebujú $O(\log n)$ času. Nakoľko medzi každými dvoma vrcholmi vedú nanajvýš dve hrany (tam a späť), tak $m \le n(n-1) \le n^2$. Preto riadky 8 a 9 trvajú $O(\log(m)) \subseteq O(\log(n^2)) = O(2.\log(n)) = O(\log n)$.
- Cyklus sa preruší, ak algoritmus vyberie hranu, ktorá už je v množine used. Môže sa teda vybrať maximálne toľko hrán, kým ich used nebude obsahovať všetky. Cyklus sa teda vykoná max. m krát. Jeho časová zložitosť je teda $O(m.\log n) \subseteq O(n^2.\log n)$, čo je polynomiálne.

Všetky kroky algoritmu sú polynomiálne, problém teda patrí do triedy NP.

Problém je NP-ťažký:

V tejto časti dôkazu ukážeme redukciu iného NP-úplného problému na náš problém, konkrétne $SUBSETSUM \leq_P ANIMATION$.

Množina A a cieľová suma t, ktoré sú na vstupe SUBSETSUM, sa budú transformovať na vstup pre ANIMATION nasledovne:

• Vytvoríme vrchol grafu v_{sf}

- Pre každý prvok i z množiny A vytvoríme:
 - o vrchol v_i (póza v_i)
 - o hrany (v_{sf}, v_i) a (v_i, v_{sf}) , obe s váhou i (animácia $v_{sf} \rightarrow v_i$ a jej opačný smer)
- Začiatok aj koniec hľadaného ťahu (resp. počiatočná aj konečná póza) bude v_{sf}
- Požadovaná cena ťahu (resp. dĺžka animácie) k=2t

Týmto nám vznikne graf v tvare "hviezdičky" (vzhľadom na obdobie roka môžeme túto hviezdu považovať za Vianočnú):

Vrcholov v grafe bude |A| + 1, hrán bude 2|A|, čiže transformácia je O(|A|), a teda polynomiálna.

$$D\hat{o}kaz SUBSETSUM(A, t) = \top \Rightarrow ANIMATION(f(A, t)) = \top$$
:

Vieme, že existuje podmnožina A, ktorá sa nasčíta na hodnotu t:

$$SUBSETSUM(A,t) = \top \implies \exists \{i_1, i_2, \dots, i_p\} \subseteq A\left(\sum_{j=1}^p i_j = t\right)$$

Nakoľko váhy hrán $w(v_{sf}, v_i) = w(v_i, v_{sf}) = i$, tak v získanom grafe f(A, t) platí:

$$\sum_{j=1}^{p} w(v_{sf}, v_{i_{j}}) = \sum_{j=1}^{p} w(v_{i_{j}}, v_{sf}) = t \implies \sum_{j=1}^{p} \left(w(v_{sf}, v_{i_{j}}) + w(v_{i_{j}}, v_{sf}) \right) = 2t = k$$

Výsledný ťah v grafe bude teda postupnosť vrcholov: $x = \left(v_{sf}, v_{i_1}, v_{sf}, v_{i_2}, v_{sf}, \dots, v_{i_p}, v_{sf}\right)$. Nakoľko $\{i_1, i_2, \dots, i_p\}$ je množina, prvky sa v nej neopakujú, a teda aj hrany v x sa nebudú opakovať – x je teda naozaj ťah v grafe. Podľa posledného vzťahu tiež vidíme, že cena x je rovná k. Našli sme teda ťah v grafe, resp. postupnosť animácií x, ktorá trvá presne k krokov, a teda platí ANIMATION(f(A,t)) = T. \square

$D\hat{o}kaz ANIMATION(f(A,t)) = \top \Rightarrow SUBSETSUM(A,t) = \top$:

Vieme, že existuje ťah x v grafe G získanom z f(A,t), ktorého cena je k, pričom začína aj končí v v_{sf} . Nakoľko v G sú hrany iba medzi v_{sf} a $v_i \neq v_{sf}$, neexistuje tam hrana $\left(v_i,v_j\right)$, $v_i,v_j \neq v_{sf}$. Tým pádom ani v x neexistuje podpostupnosť takéhoto tvaru, čiže po každom $v_i \neq v_{sf}$ musí nasledovať v_{sf} . Ďalej, graf neobsahuje slučku $\left(v_{sf},v_{sf}\right)$, teda v x po každom v_{sf} musí nasledovať $v_i \neq v_{sf}$. Z posledných dvoch tvrdení a faktu, že x zo zadania začína aj končí v v_{sf} nám vyplýva, že:

$$x = (v_{sf}, v_{i_1}, v_{sf}, v_{i_2}, v_{sf}, \dots, v_{i_p}, v_{sf})$$

Nakoľko x je ťah, nesmie sa v ňom opakovať žiadna hrana $\left(v_{sf},v_{i}\right)$, a teda platí, že všetky $v_{i_{j}}$ sú v x rôzne. Máme teda množinu vrcholov $\left\{v_{i_{1}},v_{i_{2}},...,v_{i_{p}}\right\}$ a množinu ich označení $\left\{i_{1},i_{2},...,i_{p}\right\}$. Podľa spôsobu konštrukcie grafu G pomocou $f\left(A,t\right)$ vieme, že $w\left(v_{sf},v_{i_{j}}\right)=w\left(v_{i_{j}},v_{sf}\right)=i_{j}$ pre všetky vrcholy $v_{i_{j}}$. Celková cena ťahu x je teda rovná:

$$k = \sum_{j=1}^{p} \left(w \left(v_{sf}, v_{i_j} \right) + w \left(v_{i_j}, v_{sf} \right) \right) = 2 \sum_{j=1}^{p} w \left(v_{sf}, v_{i_j} \right) = 2 \sum_{j=1}^{p} i_j$$

Nakoľko podľa f(A,t) platí k=2t, tak:

$$k = 2 \sum_{j=1}^{p} i_j = 2t \implies \sum_{j=1}^{p} i_j = t$$

Z konštrukcie grafu pomocou f(A,t) vieme, že všetky i_j sú prvkami A, a teda $\{i_1,i_2,...,i_p\}\subseteq A$. Z predchádzajúceho vzťahu vieme, že súčet tejto podmnožiny je rovný t.

Našli sme teda podmnožinu množiny A, ktorej súčet je rovný t, a teda $SUBSETSUM(A,t) = \top$. \Box

Zhrnutie:

Dokázali sme, že $SUBSETSUM(A,t) = \top \Rightarrow ANIMATION(f(A,t)) = \top$, tiež že $ANIMATION(f(A,t)) = \top \Rightarrow SUBSETSUM(A,t) = \top$, a teda f(A,t) je korektná polynomiálna redukcia. Z toho vyplýva, že $SUBSETSUM \leq_P ANIMATION$.

Tiež sme ukázali polynomiálny nedeterministický algoritmus pre ANIMATION, z čoho vyplýva, že $ANIMATION \in NP$.

Z týchto dvoch záverov vieme odvodiť, že problém *ANIMATION* je NP-úplný problém.