

Linguaggi di Programmazione AA 2022-2023 Introduzione a C e C++ (4) Priority Queues

Marco Antoniotti Gabriella Pasi Fabio Sartori

Code con priorità

- Unica assunzione
 - Gli elementi che sono parte dell' input sono confrontabili
- Operazioni fondamentali

Operazioni proprie dell' ADT

- Inserimento
- Rimozione del massimo (o del minimo)

Operazioni generiche su ADT

- Copia
- Concatenzione
- Creazione
- Distruzione
- Controllo se vuoto

Code con priorità: applicazioni

Applicazioni

- Simulazione "event-driven" clienti in coda, sistemi di particelle

"Number crunching" riduzione di errori di arrotondamento

Compressione di dati
 codici di Huffman

Ricerca su grafi
 algoritmi di Dijkstra e Prim

Teoria dei numeri somma di potenze

Intelligenza artificiale algoritmo A*

Statistica manutenzione degli M valori più grandi

Sistemi operativi "load balancing", gestione interruzioni

Ottimizzazione discreta "bin packing", "scheduling"

Filtri spam filtri Bayesiani

Generalizza

Pile, code, code randomizzate

Code con priorità: un esempio

Problema.

- Abbiamo un flusso di N dati in arrivo con N molto più grande della disponibilità di memoria del nostro calcolatore
- Dobbiamo recuperare gli *M* elementi più grandi
- Esempi
 - Rilevamento frodi: isolare le transazioni più grandi
 - Manutenzione file systems: trovare i files o le directories più grandi
- Soluzione: si usa una coda con priorità

Assumiamo di avere questa funzione

Code con priorità: implementazioni elementari

- Sfida: implementare entrambe le operazioni base in modo efficiente
- Implementazione elementare con un array ordinato o no

Implementazione	insert	extract
Array non ordinato	O(1)	O(N)
Array ordinato	O(N)	O(1)

Caso asintotico peggiore con N elementi

Implementazione con array non DI IN RMATICA Ordinato

Una semplice implementazione

```
typedef int (* pq_compare) (void*, void*);
typedef struct pq {
    void** pq;
    int size;
    int count;
    pq compare compare;
} * pq priority queue;
pq priority queue
pq new priority queue (pq compare cf, int size);
void pq insert(pq priority queue, void*);
void* pq extract(pq priority queue);
int    pq count(pq priority queue);
bool pq is empty(pq priority queue);
```


Implementazione con array non

```
pq priority queue
pq new priority queue(pq compare cf, int size) {
    pq priority queue pq
        = (pq priority queue) malloc(sizeof(struct pq));
     /* Error checking here... */
    pq->pq = malloc(size * sizeof(void *));
    /* Error checking here... */
    pq->compare = cf;
    pq->count = 0;
    pq->size = size;
    return pq;
```


Implementazione con array non

```
void pq_insert(pq_priority_queue pq, void* item) {
    pq->pq[(pq->count)++] = item;
}

void pq_count(pq_priority_queue pq) {
    return pq->count;
}

bool pq_is_empty(pq_priority_queue pq) {
    return 0 == pq->count;
}
```


Implementazione con array non

La complessità di questa operazione è lineare!

Possiamo far meglio?

La struttura dati "heap" (mucchio) binario

- Gli heaps ci permettono di implementare le operazioni pq_extract e pq_insert in tempo logaritmico
- Uno heap viene implementato (di solito) con un array in cui contenuto è interpretabile come un albero binario completo in "heap-order"
- Albero binario
 - Vuoto, oppure
 - Nodo con puntatori a due sottoalberi (destro e sinistro)
- Albero binario in heap order
 - Elementi nei nodi (chiavi)
 - Nessun elemento più grande (piccolo) degli elementi nei due sotto alberi
- Rappresentazione con un array
 - Si considerano i nodi per livello
 - Nessun puntatore è necessario dato che l'albero è completo

1 X	2	3	4	5	6	7	8	9	10	11	12
Х	Т	0	G	5	М	Z	Α	Е	R	Α	Ι

Proprietà degli heap (mucchi) binari

- Proprietà A: la chiave più piccola (grande) è in cima (alla radice dell' albero)
- Proprietà B: gli indici dell' array si possono usare per muoversi nell' albero
 - Nota: gli indici partono da 1
 - Il genitore del nodo in posizione K si trova in posizione K/2 (arrotondato)
 - I figli del nodo K si trovano in posizione 2K e 2K + 1
- Proprietà C: l' altezza di uno heap è $h = 1 + |\lg(N)|$
 - Il livello i ha al più 2ⁱ nodi
 - $-1+2+4+...+2^{h-1} \ge N$

1	2	3	4	5	6	7	8	9	10	11	12
Х	Т	0	G	5	М	Z	Α	Е	R	Α	Ι

"Promozione" in uno heap

- Scenario: esattamente un nodo è più grande (piccolo) del suo genitore
 - Ovvero vengono violate le proprietà degli heaps

- Per eliminare la violazione
 - Si scambia il nodo con il genitore
 - Si ripete finchè le proprietà dello heap sono ripristinate


```
void swim(pq_priority_queue pq, int k) {
  while (k > 1
          && pq->compare(pq->pq[k/2], pq->pq[k])) {
        exchange(pq->pq, k, k/2);
        k = k/2;
   }
}
```


1	2	3	4	5	6	7	8	9	10	11	12	13
×	Т	0	G	5	W	13	Α	Ш	8	Α	Ι	Р
×	Т	Р	G	S	0	И	Α	Е	R	Α	Ι	М

"Demozione" in uno heap

 Scenario: esattamente un nodo è più grande (piccolo) di un suo discendente

- Per eliminare la violazione
 - Si scambia il nodo con il più grande (piccolo) dei suoi discendenti
 - Si ripete finchè le proprietà dello heap sono ripristinate

1	2	3	4	5	6	7	8	9	10	11	12	13
0	Т	Х	G	S	Р	2	Α	Ε	R	Α	Ι	М
Х	Т	Р	G	S	0	7	Α	E	R	Α	Ι	М

Inserimento in uno heap

 L'operazione di inserimento è molto semplice

Estrazione

 Estrazione: si scambia la radice con l'ultimo elemento e poi si demuove la nuova radice


```
void* pq_extract(pq_priority_queue pq) {
  void* item = pq->pq[1];
  exchange(pq->pq, 1, pq->count--);
  sink(pq, 1);
  pq->pq[1 + pq->count] = NULL;
  return item;
}
```


Considerazioni ulteriori

- Ridimensionamento dell'array
 - Si può estendere l'array mediante il metodo "del raddoppio" quando la coda con priorità è piena
 - In questo modo ogni operazione richiede O(lg(N)) tempo ammortizzato
- Chiavi immutabili
 - L'implementazione presentata assume che le chiavi non vengano mai modificate dal programma che utilizza la libreria
 - È bene che il programma cliente usi chiavi immutabili
- Altre operazioni (implementabili usando sink e swim)
 - Rimozione di un elemento arbitrario
 - Modifica di una chiave
 - Operazione fondamentale per alcune applicazioni

Sommario sulle prestazioni

Caso peggiore per una coda con priorità di N elementi

Operazione	insert	extract	top
Array ordinato	O(N)	O(1)	O(1)
Lista ordinata	O(N)	O(1)	O(1)
Array disordinato	O(1)	O(N)	O(N)
Lista disordinata	O(1)	O(N)	O(N)
Heap	O(lg(N))	O(lg(N))	O(1)

Digressione: ordinamenti con heaps

- Primo passo: si costruisce uno heap con tutti gli elementi dell' array in input
 - Si usa uno heap ausiliario
 - Oppure, si ricostruisce uno heap "in-place"
- Secondo passo: ordinamento
 - Si "estraggono" gli elementi massimi (minimi) uno alla volta
 - Invece di annullare l'elemento posto in ultima posizione, lo si tiene così com' è
 - Alla fine, l' array dello heap sarà ordinato
- Numero di confronti richiesto: al più 2 N lg(N)

Importanza di Heapsort

- Heapsort è ottimo in tempo e spazio nel peggior caso
 - Tempo $O(N \lg(N))$
 - Spazio O(N)
- Mergesort richiede spazio 2N
- Quicksort può richiedere $O(N^2)$ nel caso peggiore
- Ciononostante, heapsort
 - Ha un ciclo interno più complicato di quicksort
 - Su nuove architetture hardware può avere caratteristiche di "caching" non buone
- La STL C++ usa un algortimo di sorting ibrido tra quicksort, heapsort ed insertion-sort

Applicazioni di code con priorità

Algoritmo A*

Consideriamo il gioco del 15

http://www.javaonthebrain.com/java/puzz15/

Sam Loyd

Versione con 8 caselle

Soluzione con una ricerca esaustiva (breadth first)

Pictures from Sequential and Parallel Algorithms by Berman and Paul.

Soluzione A* (gioco dell' 8)

- Ricerca con priorità
 - Idea fondamentale: ricercare un cammino da uno stato iniziale ad uno finale in maniera più intelligente assegnando un punteggio ad ogni configurazione
 - Esempio 1: il punteggio è il numero di caselle fuori posto
 - Esempio 2: si usa come punteggio la "distanza di Manhattan" sommata alla "profondità" del nodo
- L'algoritmo A* può essere implementato con una coda a priorità

Simulazione "event-driven"

- Esempio: Simulazione della dinamica molecolare con sfere indeformabili
- Obiettivo: simulare N particelle che si muovono obbedendo alle leggi sugli urti elastici
- Modello con sfere indeformabili
 - Le particelle in movimento interagiscono tra di loro e con delle pareti tramite urti elastici
 - Ogni particella è una sfera di cui sono note posizione, velocità, massa e raggio
 - Non vi sono altre forze
- Significato: si mettono in relazione osservabili macroscopiche (temperatura, pressione, costante di diffusione) con dinamiche microscopiche (movimento individuale di atomi e molecole)
 - Maxwell e Boltzmann: si derivano le distribuzioni delle velocità delle molecole interagenti a partire dalla temperatura
 - Einstein: si spiega il moto Browniano dei pollini

Soluzione "time-driven"

- Si discretizza il tempo in quanti di dimensione dt
- Si aggiornano le posizioni delle N particelle ad ogni dt e si controlla se vi sono sovrapposizioni (due centri di due particelle sono più vicini della somma dei loro raggi)
- Se vi sono sovrapposizioni si "torna indietro nel tempo" al momento della collisione, si ricomputano le velocità delle particelle e si continua la simulazione

Soluzione "time-driven"

Problemi

- N² controlli di sovrapposizione per quanto di tempo
- È possibile perdere una sovrapposizione se il quanto di tempo è troppo grande
- La simulazione rallenta molto se dt è molto piccolo

Soluzione "event-driven"

Osservazioni

- Tra un urto e l'altro le particelle si muovono in linea retta
- I soli momenti "interessanti" sono quelli in cui si osserva un urto (particella-particella o particella-parete)
- Possiamo mantenere una coda con priorità di questi eventi, con chiave il tempo
- Estrarre il minimo elemento dalla coda con priorità equivale a trovare il "prossimo" urto

Predizione degli urti

– Data la velocità, la posizione ed il raggio di una particella, quando avverà un urto con un' altra particella o con la parete?

Risoluzione di un urto

 Se un urto accade, si aggiornano le velocità delle particelle coinvolte secondo le leggi regolanti gli urti elastici

Urto particella-parete

- Predizione urto
 - Particella di raggio r, posizione (rx, ry) che si muove con velocità (vx, vy)
 - Se e quando urterà una parete orizzontale?

$$\Delta t = \begin{cases} \infty & \text{if } vy = 0\\ (\sigma - ry)/vy & \text{if } vy < 0\\ (1 - \sigma - ry)/vy & \text{if } vy > 0 \end{cases}$$

Risoluzione urto: (vx', vy') = (vx, -vy)

time = $t + \Delta t$

Urto particella-particella

Predizione urto

- Particella i: raggio r_i, posizione (rx_i, ry_i), velocità (vx_i, vy_i)
- Particella j: raggio r_i, posizione (rx_i, ry_i), velocità (vx_i, vy_i)
- Se e quando la particella i urterà la particella j?

Urto particella-particella

Predizione urto

- Particella i: raggio r_i, posizione (rx_i, ry_i), velocità (vx_i, vy_i)
- Particella j: raggio r_i, posizione (rx_i, ry_i), velocità (vx_i, vy_i)
- Se e quando la particella i urterà la particella j?

$$\Delta t = \begin{cases} \infty & \text{if } \Delta v \cdot \Delta r \ge 0 \\ \infty & \text{if } d < 0 \\ -\frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise} \end{cases}$$

$$d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) (\Delta r \cdot \Delta r - \sigma^2) \qquad \sigma = \sigma_i + \sigma_j$$

$$\Delta v = (\Delta vx, \ \Delta vy) = (vx_i - vx_j, \ vy_i - vy_j)$$

$$\Delta r = (\Delta rx, \ \Delta ry) = (rx_i - rx_j, \ ry_i - ry_j)$$

$$\Delta v \cdot \Delta v = (\Delta vx)^2 + (\Delta vy)^2$$

$$\Delta r \cdot \Delta r = (\Delta rx)^2 + (\Delta ry)^2$$

$$\Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry)$$

Urto particella-particella

Risoluzione urto

Quando due particelle si urtano, come cambiano le loro velocità?

$$Jx = \frac{J\Delta rx}{\sigma}, Jy = \frac{J\Delta ry}{\sigma}, J = \frac{2m_i m_j (\Delta v \cdot \Delta r)}{\sigma (m_i + m_j)}$$

Impulso dovuto ad una forza normale (conservazione di energia, conservazione del momento)

Soluzione "event-driven"

Inizializzazione

 Si riempie la coda con priorità PQ con una insieme di tutti i possibili urti (≈ N²) data la configurazione iniziale

Ciclo principale

- Si estrae l' evento incombente da PQ (particelle p1 e p2, tempo = t)
- Se l'evento non è più "valido" lo si ignora
- Si aggiornano le posizioni di tutte le particelle al tempo t, seguendo traiettorie lineari
- Si aggiornano le velocità delle particelle p1 e p2 partecipanti all' urto
- Si predicono i possibili futuri urti che coinvolgono le particelle p1 e
 p2 e li si inseriscono in PQ

Conclusioni

- Le code con priorità sono una struttura dati fondamentale
- Le loro applicazioni sono molteplici
 - Ordinamenti
 - Ricerche su grafo
 - Ottimizzazione
 - Simulazione event-driven
- Operazioni fondamentali
 - Inserimento O(Ig(N))
 - Estrazione minimo (massimo) O(lg(N))
- Caratteristiche
 - Dati mantenuti in ordine parziale
- Altre operazioni
 - Modifica di chiave
 - Concatenazione di due heaps
- Variazioni (tutte le operazioni molto efficienti in tempo ammortizzato)
 - Heaps binomiali
 - Heaps di Fibonacci