Multiple Linear Regression

Import the Relevant Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
sns.set()
```

Load the Data

```
In [2]:
         data = pd.read_csv('RealEstate.csv')
In [3]:
         data.head()
Out[3]:
                price
                         size year
        0 234314.144 643.09 2015
         1 228581.528 656.22 2009
        2 281626.336 487.29 2018
        3 401255.608 1504.75 2015
         4 458674.256 1275.46 2009
In [4]:
         data.describe()
                       nrico
Out[4]:
```

	price	size	year
count	100.000000	100.000000	100.000000
mean	292289.470160	853.024200	2012.600000
std	77051.727525	297.941951	4.729021
min	154282.128000	479.750000	2006.000000
25%	234280.148000	643.330000	2009.000000
50%	280590.716000	696.405000	2015.000000
75%	335723.696000	1029.322500	2018.000000
max	500681.128000	1842.510000	2018.000000

Create the Regression

Declare the Dependent and the Independent Variables

```
In [5]:
    y = data['price']
    x1 = data[['size', 'year']]
```

Regression

```
In [6]:     x = sm.add_constant(x1)
     results = sm.OLS(y, x).fit()
     results.summary()
```

R-squared:

0.776

Out[6]: OLS Regression Results

Dep. Variable:

Model: OLS Adj. R-squared: 0.772 Method: **Least Squares** F-statistic: 168.5 **Date:** Thu, 21 Dec 2023 **Prob (F-statistic):** 2.77e-32 Time: Log-Likelihood: 09:42:46 -1191.7 No. Observations: 100 AIC: 2389. **Df Residuals:** BIC: 97 2397.

price

Df Model: 2

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-5.772e+06	1.58e+06	-3.647	0.000	-8.91e+06	-2.63e+06
size	227.7009	12.474	18.254	0.000	202.943	252.458
year	2916.7853	785.896	3.711	0.000	1357.000	4476.571

 Omnibus:
 10.083
 Durbin-Watson:
 2.250

 Prob(Omnibus):
 0.006
 Jarque-Bera (JB):
 3.678

 Skew:
 0.095
 Prob(JB):
 0.159

 Kurtosis:
 2.080
 Cond. No.
 9.41e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.41e+05. This might indicate that there are strong multicollinearity or other numerical problems.