Linear Algebra

枫聆

2021年2月13日

目录

1	Vector Space		
	1.1	Definition of Vector Space	2
	1.2	Subspace	4
2	Finite-Dimensional Vector Space		6
	2.1	Linear Combinations and Span	6

Vector Space

Definition of Vector Space

Definition 1.1. vector spaces 是一个具有加法 (addition) 和数量乘法 (salar multiplication) 的集合 V

- 加法是指对任意的元素 $u, v \in V$, 有 $u + v \in V$
- 数量乘法是指对任意的元素 $\lambda \in F$ 和 $v \in V$,有 $\lambda v \in V$

同时它们存在下面的属性:

- 加法交換律 $\forall u, v \in V, u + v = v + u$
- 加法结合律 $\forall u, v, w \in V, (u+v) + w = u + (v+w)$ 和 $\forall a, b \in F, (ab)v = a(bv)$
- 加法单位元 $\forall v \in V, v+0=v$
- 加法逆元 $\forall v \in V, \exists v^{-1}, v + v^{-1} = 0$
- 数量乘法的单位元 $\forall v \in V, 1v = v$
- 分配律 $\forall v, w \in V, \forall a, b \in F, a(u+v) = au + av, (a+b)v = av + bv$

vector spaces 背后的直觉是什么?《linear algebra done right》上说来自于 F^n 上的 addition 和 scalar multiplication. 很明显 addition 包含了 abelian group 的所有性质,vector space 是 R-module 的特殊化,R-module 从结构上来说,要比 Ring(带单位元) 的性质要弱一些,主要体现在乘法上,弱化为数量乘法,表示把一个环作用在一个 abelian group 上,而不是环上的乘法. 这样做的好处是可以让可以把环上一些看起来不那么好性质都变得好一点,例如 ideal 在一般情况下并不是一个子环,商环类似. 不那么好是相对于群的一些性质来说的,例如正规子群是一个子群。

我想这里多记录一些 R-module 的东西,如何把一个环弱化成一个模结构呢? 首先我们需要一个 abelian group M,定义 "the left-action of a ring R on M" 为

$$\sigma \colon R {
ightarrow} \operatorname{End}_{Ab}(M)$$

是一个环同态. 可能这里有一个小疑问为什么 $\operatorname{End}_{Ab}(M)$ 是一个环结构? 首先这个环里面的元素都是关于 M 的 endomorphisms, 乘法定义为 endomorphisms 之间的复合,加法定义为 (f+g)(a)=f(a)+g(a),其中 $f,g\in\operatorname{End}_{Ab}(M)$. 我们说 σ 把 M 变成了一个 left-R-module, σ 这个映射可以理解为 left-R-module structure(算子),

$$\sigma(r)(m) \in_R M$$

间接的定义了数量乘法,并且有一些有趣的性质:

- 分配律 $\sigma(r)(m_1 + m_2) = \sigma(r)(m_1) + \sigma(r)(m_2)$
- 分配律 $\sigma(r_1 + r_2)(m) = \sigma(r_1)(m) + \sigma(r_2)(m)$ (环同态下可以保证)
- 结合性 $\sigma(r_1r_2)(m) = \sigma(r_1)(\sigma(r_2)(m))$ (环同态下可以保证)
- 单位元 $\sigma(1)(m) = m$

如果要定义更清楚一点, 可以这样

$$\rho \colon R \times M \rightarrow M$$

 ρ 和 σ 的关系为

$$\rho(r,m) = \sigma(r)(m)$$

- ,但是这里不是环同态无法保证上面的一些性质,所以需要额外规定一些东西
 - $\rho(r_1 + r_2, m) = \rho(r_1, m) + \rho(r_2, m)$ (分配律)
 - $\rho(r, m_1 + m_2) = \rho(r, m_1) + \rho(r, m_2)$ (分配律)
 - $\rho(r_1r_2, m) = \rho(r_1, \rho(r_2, m))$ (结合率)
 - $\rho(1,m) = m$ (单位元)

把 vector space 一般化的感觉是不是很爽? 其实 R-module 在一定程度要比 vector space 更复杂,当用更抽象方式去理解 vector space,我们定义了一个 σ 环同态,这个环同态很精妙的把环作用在 abelian group 的 action 表示出来,所以我们用理解 R-module 的方式去理解 vector space,就是首先我们要有一个 abelian group 定义了加法,然后把一个 field 作用在了它之上,定义为数量乘法,最后我们就得到了这样的一个结构。

这篇 note 既然是在《linear algebra done right》的基础上记录的,我会尽可能的记录一些抽象的延伸的东西,让自己对 linear algebra 有一个不同于大学的颠覆性的认知。

Subspace

Definition 1.2. 如果 V 中的子集 U 是一个子空间, 当且仅当满足一下条件:

- 1. $0 \in U$
- $2. u, w \in U$ 蕴含 $u + w \in U$
- $3. \ a \in F, u \in U$ 蕴含 $au \in U$

也就是说, V 下子空间一定是子集, 包含加法单位元, 且在加法和数量乘法下封闭。

Definition 1.3. 定义 U_1, \dots, U_m 是 V 的子集. 这些子集的和表示为

$$U_1+\cdots+U_m=\{\,u_1+\cdots+u_m\mid u_1\in U_1,\cdots,u_m\in U_m\,\}$$

定义子集和,是为了引入下面这个性质

Proposition 1.4. 定义 U_1, \dots, U_m 都是 V 中的子空间,则 $U_1 + \dots + U_m$ 是包含 U_1, \dots, U_m 的最小子空间.

证明. 最小的就是指 V 里面任意包含 U_1, \cdots, U_m 的子空间都包含 $U_1 + \cdots + U_m$,首先得证明一下 $U_1 + \cdots + U_m$ 是一个子空间,按照子空间的定义,加法单位元和封闭性都很显然,满足上述条件的子空间很也显然需要包含所有子空间对应的子集和。

Definition 1.5. 定义 U_1, \cdots, U_m 都是 V 中的子空间,如果 $U_1 + \cdots + U_m$ 中的每个元素都有唯一分解形式即 u_1, \cdots, u_m ,则 $U_1 + \cdots + U_m$ 是直和 (direct sum),用 $U_1 \oplus \cdots \oplus U_m$ 表示。

那怎么判定一个子集合是不是直和呢?

Proposition 1.6. 定义 U_1,\cdots,U_m 都是 V 中的子空间,如果 $U_1+\cdots+U_m$ 是直和当且仅当 $u_1+\cdots+u_m=0$ 时, $u_1=\ldots=u_m=0$ 。

即只需要 0 有唯一的表示形式就够了,来证明一下

证明. 假设

$$u_1+\cdots+u_m=u_1'+\cdots+u_m'$$

,整理一下

$$(u_1 - u_1') + \dots + (u_m - u_m') = 0$$

,0 有唯一的表示方式,则 $u_1 = u_1', \dots, u_m = u_m'(u_1 - u_1' \in U_1, \dots, u_m - u_m' \in U_m)$

下面再来个特殊情况,只有两个子空间,怎么判定它们的子集和是不是直和?

Proposition 1.7. 定义 U 和 W 是 V 中的两个子空间,如果 U+W 是直和当且仅当 $U\cap W=0$.

证明. 如果 U+W 是直和, 任取 $v\in U\cap W$, 则 $-v\in U\cap W$, 而 0=v+(-v), 所以 v 只能是 0.

如果 $U\cap W=\{0\}$,我们假设还有 0=v+w,其中 v,w 不为 0,则 w=(-v),则 $v\in U\cap W$,与前提矛盾. 所以 0 有唯一表示。

Finite-Dimensional Vector Space

Linear Combinations and Span

Definition 2.1. 给定 V 里面一系列向量 v_1, v_2, \cdots, v_m (vector list),它们的线性组合表示为

$$a_1v_1 + a_2v_2 + \dots + a_mv_m,$$

其中 $a_1, a_2, \cdots, a_m \in F$.

Definition 2.2. 给定 V 里面一系列向量 v_1, v_2, \cdots, v_m ,所有的它们的线性组合构成的集合叫一个 **span**(linear span).

$$\mathrm{span}(v_1, v_2, \cdots, v_m) = \{\, a_1 v_1 + a_2 v_2 + \cdots + a_m v_m \mid a_1, a_2, \cdots, a_m \in F \,\}.$$

空的 vector list 的 span 表示为 {0}.

下面是关于 span 一些有趣的性质.

Proposition 2.3. span 是包含当前 vector list 里面所有 vectors 的 smallest subspace.