The Pilot Of Oracle RDBMS

DB-Engines Ranking

DB-Engines Ranking

The status of SQL

Structured Query Language

The History of SQL

SQL vs. NoSQL

The evolving database landscape Relational 451 Research Analytic Teradata Aster IBM Netezza ParAccel Kognitio SAP Sybase IQ Piccolo Hadapt Hadoop Infobright EMC Greenplum IBM InfoSphere Non-relational HPCC RainStorTeradata Calpont Actian VectorWise HP Vertica IBM Informix SAP HANA NoSQL Oracle Percona IBM DB2 MariaDB DataStax Enterprise Neo4J MarkLogic Castle Acunu SkySQL MySQL PostgreSQL SQL Server Graph Citrusleaf Hypertable -as-a-Service FathomDB InfiniteGraph Versant BerkeleyDB Cassandra HBase Actian Ingres Amazon RDS Database.com OrientDB Oracle NoSQL Big tables Postgres Plus Cloud EnterpriseDB ClearDB DEX RethinkDB App Engine Rackspace MySQL Cloud NuvolaBase SAP Sybase ASE HandlerSocket* Datastore Google Cloud SQL SQL Azure Redis-to-go McObject Riak -as-a-Service SimpleDB NewSQL LevelDB DynamoDB NuoDB VoltDB New databases Progress Redis Iris Mongo Mongo Cloudant MemSQL JustOneDB SQLFire -as-a-Service Membrain Couch Lab HQ StormDB Drizzle Akiban Translattice Voldemort GenieDB SchoonerSQL Clustrix RavenDB Couchbase =Xeround= Key value MongoDB CouchDB ScaleArc ParElastic Tokutek ScaleDB Zimory Scale Objectivity Continuent Storage MySQL Cluster Galera CodeFutures Lotus Notes Document engines ScaleBase Clustering/sharding Operational Starcounter InterSystems © 2012 by The 451 Group. All rights reserved

CAP Theorem

Professor
Eric A. Brewer
University of
California
at Berkeley

Visual Guide to NoSQL Systems

The difference between SQL and NoSQL

- IT systems
 - OLAP=On-Line Analytical Processing
 - OLTP=On-Line Transaction Processing
- NoSQL
 - Key-value stores
 - Column-oriented databases
 - Document-based stores

RDBMS

- Relational Database Management System
- E. F. Codd

The Normal Form

- 1NF
- 2NF
- 3NF
- BCNF
- 4NF
- 5NF

First Normal Form (1NF)

- Every attribute must have value.
 - It should not be empty.
 - In RDBMS a column without value has NULL value that can be manipulated or accesses like a normal value.
- Every attribute must have atomic value that cannot be shorten further.
 - For example: Name is non-atomic attribute as it can be broken into First Name, Middle Name and Surname.

First Normal Form (1NF)

Student Table :

Student	Age	Subject
Adam	15	Biology, Maths
Alex	14	Maths
Stuart	17	Maths

Student Table following 1NF will be :

Student	Age	Subject
Adam	15	Biology
Adam	15	Maths
Alex	14	Maths
Stuart	17	Maths

Second Normal Form (2NF)

- An entity must be in First Normal Form
- Entity must have a Primary Key or Composite Primary Key
- Every attribute must be fully and functionally dependent upon Primary Key

Second Normal Form (2NF)

SelectCourse Table :

StudentId Name Age CourseName CourseScore Credit

New Student Table :

StudentId Name Age CourseScore

New Course Table :

CourseName Credit

Third Normal Form (3NF)

- An entity must be Second Normal Form.
- There must not be any dependency among nonkey attributes (other that Primary Key)

Third Normal Form (3NF)

Student_Detail Table :

Student_id Student_name DOB Street city State Zip

New Student_Detail Table :

Student_id Student_name DOB Zip

• Address Table :

Zip Street city state

Boyce-Codd Normal Form (BCNF)

- An entity must be in Third Normal Form.
- If the entity has a Composite Primary Key & Alternate Primary Key with one or more attribute common to both, in such case entity must be broken into three entities.

Boyce-Codd Normal Form (BCNF)

StorehouseManage Table :

StorehouseID EmpID ProductID StockQuantity

StorehouseStock Table :

StorehouseID ProductID StockQuantity

StorehouseHR Table :

StorehouseID EmpID

Fouth Normal Form(4NF)

- An entity must be in Boyce-Codd Normal Form.
- If an attribute is based on Value List must be taken out as a separate entity.
- Student Table :

College Professor Student

Frith Normal Form(5NF)

- An entity must be in Fourth Normal Form.
- If an attribute is multi-valued attribute then it must be taken out as a separate entity.

Sales Table :

Businessman Vendor Product

ACID

- Atomicity
- Consistency
- Isolation
- Durability

The data analytical modal

Oracle Company

Oracle Company

memory structure

memory structure

data block

Redo Log

Undo

Hard Disk IOPS

Total IOPS

- Random Read IOPS
- Random Write IOPS
- Sequential Read IOPS
- Sequential Write IOPS

source of information http://en.wikipedia.org/wiki/IOPS

ASM

ASM = Automatic Storage Management

Backup and Restore

- Copy, Paste
- Export, Import
- Expdp, Impdp
- Rman

Index

SQL Optimization

- CBO = Cost-Based Optimization
- RBO = Rule-Based Optimization
- Hints
- Explain plan

Lock & Latch

HA

- HA = High Availability
- RAC = Real Application Clusters
- Data Guard
- MAA = Maximum Availability Architecture

GoldenGate

 Real-Time Data Integration and Heterogeneous Database Replication

Streams

Exadata

BigData

Hadoop

- ODCH
- OLH

The End