2.2 Изучение спектров водорода и дейтерия

Александр Романов Б01-110

1 Введение

1.1 О работе

Исследуются спектральные закономерности в оптических спектрах водорода и дейтерия. По результатам измерений вычисляются постоянные Ридберга для этих двух изотопов водорода, их потенциалы ионизации, изотопические сдвиги линий.

1.2 Схема установки

2 Работа

2.1 Каллибровка установки

Откалибруем установку по спектру неона:

lambda, units	lambda, A	num
2574	7032.41	1
2562	6929.47	2
2480	6717.04	3
2478	6678.28	4
2444	6598.95	5
2414	6532.88	6
2412	6506.53	7
2373	6402.24	8
2364	6382.99	9
2342	6334.42	10
2332	6304.79	11
2320	6266.49	12
2296	6217.28	13
2280	6163.59	14
2266	6143.06	15
2248	6096.14	16
2238	6074.34	17
2226	6030	18
2194	5975.53	19
2180	5944.83	20
2150	5881.89	21
2132	5852.49	22
1874	5400.56	23

Таблица 1: Спектр неона

И также по спектру ртути

lambda, units	lambda, A	num
2540	6907	K1
2308	6234	K2
2100	5791	1
2090	5770	2
1912	5461	3
1494	4916	4
734	4358	5
292	4047	6

Таблица 2: Спектр ртути

2.2 Спектр водорода

Теперь перейдём к измерению водорода

lambda, units	num
2428	0
1440	1
806	2

Таблица 3: Спектр водорода

Учтя каллибровку

lambda, A	num
6556	0
4976	1
4439	2

Таблица 4: Спектр водорода

Как видно, отношение энергий спектра водорода удовлетворяет формуле сериальной закономерности.

Для каждой линии водорода вычислим значение постоянной Ридберга:

$$\frac{c}{\lambda} = R\left(\frac{1}{4} - \frac{1}{9}\right)$$

$$R_{23} = \frac{c}{\lambda\left(\frac{1}{4} - \frac{1}{9}\right)} = 1.1 \cdot 10^7 m^{-1} = 13.6 \text{ eV}$$

$$R_{24} = \frac{c}{\lambda\left(\frac{1}{4} - \frac{1}{16}\right)} = 10.1 \text{ eV}$$

$$R_{23} = \frac{c}{\lambda\left(\frac{1}{4} - \frac{1}{25}\right)} = 9.0 \text{ eV}$$

2.3 Спектр Йода

Несколько изменим установку

lamda, units	num
2374	$\lambda_{1,0}$
2262	$\lambda_{1,5}$
2584	left
572	right

Таблица 5: Спектр Йода

lambda, A	num
6428	$\lambda_{1,0}$
6162	$\lambda_{1,5}$
6927	left
4242	right

Таблица 6: Спектр Йода

Вычислим энергию колебательного кванта возбуждённого состояния молекулы йода:

$$h\nu_2 = \frac{h(1/\lambda_{1,5} - 1/\lambda_{1,0})}{5} = 0.265 \ eV$$

3 Выводы

В ходе выполнения работы:

- 1. Были изучены спектры Водорода и Йода.
- 2. По линиям йода было получено значение энергии колебательного кванта возбуждённого остояния молекулы йода.