Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: Е. В. Грибанов

Студент группы 321703

Проверил: В. Н. Тищенко

СОДЕРЖАНИЕ

Bı	ведение	3
1	Постановка задачи	4
2	Формализованные фрагменты теории реализация интерпретатора	
	sc-моделей пользовательских интерфейсов	5
3	Формальная семантическая спецификация библиографических ис-	
	точников	9
3	аключение	10
\mathbf{C}	писок использованных источников	11

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки.
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам.
- Оформление конкретных предложений по развитию текущей версии Стандарта интеллектуальных компьтерных систем и технологий их разработки.

1 ПОСТАНОВКА ЗАДАЧИ

Часть 2 Учебной дисциплины ''Представление и обработка информации в интеллектуальных системах''

- \Rightarrow библиографическая ссылка*:
 - Стандарт OSTIS
 - Толковый словарь по Искусственному интеллекту
 - $\Rightarrow URL^*$:

[http://raai.org/library/tolk/aivoc.html]

- ⇒ аттестационные вопросы*:
 - (• Вопрос 1 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"
)

Вопрос 1 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- := [Реализация интерпретатора sc-моделей пользовательских интерфейсов]
- \Rightarrow библиографическая ссылка*:
 - В.В. Голенков, Н.А. Гулякина, И.Т. Давыденко, Д.В. Шункевич. СеманТПИСиСАК-2019ст
 - В.В. Голенков, Н.А. Гулякина. ПроектОСТКПИС-2014ст

2 ФОРМАЛИЗОВАННЫЕ ФРАГМЕНТЫ ТЕОРИИ РЕАЛИЗАЦИЯ ИНТЕРПРЕТАТОРА SC-МОДЕЛЕЙ ПОЛЬЗОВАТЕЛЬСКИХ ИНТЕРФЕЙСОВ

интерпретатор знаний и навыков

платформенная независимость системы

:= [способность системы децентрализовано работать на различных платформах] \Rightarrow пояснение*: платформы = { \bullet Windows

- LinuxMac
- ⇒ пояснение*: способы достижения
- = { четкое разделения унифицированной логико-семантической модели такой системы (sc-модели компьютерной системы)
 - универсальный интерпретатор sc-моделей компьютерных систем.
 - \Rightarrow разбиение*:
 - **{●** программно обеспеченный интерпретатор
 - аппаратно обеспеченный интерпретатор }

интерпретатор языка SCP

- **≔** [Semantic Code Programming]
- := [базовый процедурный язык программирования, ориентированный на обработку текстов SC-кода, хранимых в смысловой графовой ассоциативной памяти.]
- ⇒ пояснение*: требует наличие универсального интерпретатора

фон-неймановская архитектура системы

- [аппаратная реализация описанной ранее программной модели с сохранением традиционных принципов хранения и обработки информации.]
- \Rightarrow пояснение*:

Такой вариант реализации будет обладать существенно более высокой производительностью по сравнению с программной моделью, однако реализация семантических моделей представления и обработки информации на основе традиционной фон-неймановской архитектуры все еще будет обладать значительно более низкой производительностью по сравнению с реализацией интерпретатора в виде семантического ассоциативного компьютера.

 \Rightarrow разбиение*:

}

причины низкой производительности

- (последовательная обработка, ограничивающая эффективность компьютеров физическими возможностями элементной базы
 - низкий уровень доступа к памяти, т. е. сложность и громоздкость выполнения процедуры ассоциативного поиска нужного фрагмента знаний. Ускорить процесс доступа можно путем создания специализированной ассоциативной памяти, обеспечивающей ассоциативный доступ к произвольным фрагментам хранимых знаний (имеющим произвольные размеры и структуру). Кроме того, актуальной становится задача реализации обеспечения параллелизма при выполнении поисковых операций
 - представление информации в памяти современных компьютеров практически не апеллирует к семантике представляемой информации, что сильно затрудняет переработку знаний за счет необходимости учета большого количества деталей, касающихся способа представления информации в памяти, а не ее смысла

6

семантический ассоциативный компьютер

- **≔** [CAK]
- := [компьютер с нелинейной структурно перестраиваемой (графодинамической) ассоциативной памятью, переработка информации в которой сводится не к изменению состояния элементов памяти, а к изменению конфигурации связей между ними]
- \Rightarrow разбиение*:

принципы САК

- в качестве внутреннего способа кодирования знаний, хранимых в памяти семантического ассоциативного компьютера, используется универсальный способ нелинейного (графоподобного) смыслового представления знаний (SC-код);
 - есть базовые агенты, которые не могут быть реализованы программно
 - все агенты работают над общей памятью одновременно
 - \Rightarrow примечание*:

Более того, если для какого либо агента в некоторый момент времени в различных частях памяти возникает сразу несколько условий его применения, разные акты указанного агента в разных частях памяти могут выполняться одновременно (акт агента – это неделимый, целостный процесс деятельности агента)

нелинейная память

}

- [память, в которой каждый элементарный фрагмент хранимого в памяти текста может быть инцидентен неограниченному числу других элементарных фрагментов этого текста]
- ⇒ примечание*:

 в данный момент тяжело создать подходящий тип нелинейной памяти, который подходил бы для специфических задач

sc-машина

- := [ѕс-модель обработки знаний]
- := [абстрактная модель, в основе которой лежит SC-код]
- \Rightarrow пояснение*:

Каждая такая модель (ѕсмашина) представляет собой многоагентную систему

 \Rightarrow разбиение*:

составляющие модели

- { графодинамическая память
 - := [память, в которой хранятся и обрабатываются тексты SC-кода]
 - **≔** [sc-память]
 - коллектив агентов
 - **:=** [sc-агент]
 - \Rightarrow пояснение*:

такие агенты должны работать над общей для них sc-памятью

} ⇒ разбиение*:

языки программирования

= { ● Семейство sc-языков программирования высокого и сверхвысокого уровня (как процедурных, так и непроцедурных).

- \Rightarrow пояснение*:
 - Тексты программ этих языков хранятся в базе знаний ИС и описывают способы решения различных классов задач в соответствующих предметных областях.
- Базовый sc-язык программирования (язык SCP), на котором описываются sc-агенты и интерпретации sc-языков программирования высокого и сверхвысокого уровня
- Язык программирования, на котором описывается интерпретатор базового sc-языка программирования.
- \Rightarrow примечание*:

Этот язык, в частности, может использоваться как язык микропрограмм для sc-компьютера, обеспечивающего аппаратную интерпретацию базового sc-языка программирования (языка SCP).

sc-агент

- := [коллектив агентов, взаимодействующие друг с другом через общую sc-память]
- \Rightarrow разбиение*:

область применения

}

- = { интерпретация программ различных sc-языков программирования высокого уровня
 - информационный поиск
 - реализация правил логического вывода, соответствующих самым различным логическим исчислениям
 - сведение задач к подзадачам
 - анализ качества хранимой базы знаний, в частности, ее корректности, полноты
 - обнаружение и автоматическое склеивание синонимичных sc-элементов

sc-модель интеллектуальной системы

}

- := [унифицированная логико-семантической моделб ИС]
- := [логическая система, построенная но основе абстрактной ѕс-машины]
- \Rightarrow включает*:
 - = { интегрированную совокупность всех знаний, которые необходимы для функционирования ИС и которые представлены в виде интегрированного sc-текста
 - ⇒ пояснение*: такую семантическую модель базы знаний можно называть sc-моделью базы знаний или sc-текстом базы знаний
 - абстрактную sc-машину, в памяти которой хранится указанный sc-текст базы знаний

3 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

В.В. Голенков, Н.А. Гулякина, И.Т. Давыденко, Д.В. Шункевич. СеманТПИСиСАК-2019ст

- \Rightarrow ключевой знак*:
 - многоагентная система
 - интерпретатор знаний и навыков
 - платформенная независимость системы
 - интерпретатор языка SCP
 - фон-неймановская архитектура системы
 - семантический ассоциативный компьютер
 - нелинейная память
- \Rightarrow аннотация*:

[В статье проведен анализ проблемы обеспечения совместимости компьютерных систем, рассмотрены основные принципы, лежащие в основе технологии OSTIS, одной из задач которой является решение данной проблемы. Отдельное внимание уделено принципам построения семантических ассоциативных компьютеров, являющихся аппаратной реализацией интерпретатора логико-семантических моделей компьютерных систем, разрабатываемых по технологии OSTIS.]

В.В. Голенков, Н.А. Гулякина. ПроектОСТКПИС-2014ст

- \Rightarrow ключевой знак*:
 - *sc-машина*
 - sc-агент
 - sc-модель интеллектиальной системы
- \Rightarrow аннотация*:

[Статья является второй в цикле статей, посвященных рассмотрению открытого проекта, направленного на создание и развитие технологии компонентного проектирования интеллектуальных систем. В работе рассматривается унификация семантических моделей обработки знаний - моделей информационного поиска, моделей интеграции знаний, моделей решения задач, моделей трансляции семантических сетей во внешнее представление и обратно. На основе унифицированных семантических моделей интеллектуальных систем рассмотрена модель их компонентного проектирования, основанная на выделении многократно используемых компонентов интеллектуальных систем и на обеспечении платформенной независимости их проектирования. Рассмотрены также средства обеспечения открытого характера технологии проектирования интеллектуальных систем, методика их эволюционного проектирования и принципы построения метасистемы, предназначенной для комплексной поддержки проектирования интеллектуальных систем.]

ЗАКЛЮЧЕНИЕ

В ходе ознакомительной практики были приобретены ценные компетенции в сфере формализации текстового материала. Проведена тщательная работа по подбору соответствующей литературы, детальному разбору источников и выявлению ключевых элементов.

Изучен теоретический базис Стандарта OSTIS с целью последующей интеграции собственной формализации. Кроме того, строго соблюдались синтаксические правила оформления формализованной теории.

В процессе практической деятельности были дополнены уже существующие формализованные концепты в монографии посредством добавления примечаний, разъяснений и конкретных примеров. Параллельно была проведена формализация дополнительной информации, касающейся формальной онтологии множеств, связей и отношений.

В результате выполнения ознакомительной практики были приобретены необходимые знания и умения в области формализации текстовых данных с соблюдением установленных стандартов и требований.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] В.В. Голенков, Н.А. Гулякина. Проект открытой семнтической технологии компонентного проектирования интеллектуальных систем. Часть 2: унифицированные модели проектирования / Н.А. Гулякина В.В. Голенков. Белорусский государственный университет информатики и радиоэлектроники, 2014. С. 53.
- [2] В.В. Голенков Н.А. Гулякина, И.Т. Давыденко Д.В. Шункевич. Семантические технологии проектирования интеллектуальных систем и семантических ассоциативных компьютеров / И.Т. Давыденко Д.В. Шункевич В.В. Голенков, Н.А. Гулякина. Белорусский государственный университет информатики и радиоэлектроники, 2019. С. 50.