

Global United Technology Services Co., Ltd.

Report No: GTSE11010001801

FCC REPORT

Applicant: Hunan Space Satellite Communication Co., Ltd

Address of Applicant: HangTian yard, Wangchengpo, Changsha, Hunan, PRC

Equipment Under Test (EUT)

Product Name: Wireless hd transmission machine

Model No.: WTD-700R, NTD-700R, ETD700R, MTD700R

FCC ID: ZBOWTD-700R

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2009

Date of sample receipt: 12 Jan. 2011

Date of Test: 13 Jan – 1 Mar. 2011

Date of report issue: 7 Mar. 2011

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2 Contents

		Pa	ge
1	COV	/ER PAGE	. 1
2	CON	NTENTS	. 2
3	TES	T SUMMARY	. 3
4	GEN	NERAL INFORMATION	. 4
	4.1	CLIENT INFORMATION	. 4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	TEST ENVIRONMENT AND MODE	. 4
	4.4	TEST FACILITY	. 5
	4.5	TEST LOCATION	. 5
	4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.7	TEST INSTRUMENTS LIST	. 6
5	TES	T RESULTS AND MEASUREMENT DATA	. 7
	5.1	ANTENNA REQUIREMENT:	. 7
	5.2	CONDUCTED EMISSIONS	. 8
	5.3	PEAK TRANSMIT POWER	11
	5.4	Power Spectral Density	14
	5.5	PEAK EXCURSION	16
	5.6	UNDESIRABLE EMISSION	18
	5.7	BAND EDGE	
	5.8	RADIATED EMISSION	23
	5.9	FREQUENCY STABILITY	27

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Peak Excursion	15.407(a)(6)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(f)	PASS

Remark:

• Pass: The EUT complies with the essential requirements in the standard.

• Fail: The EUT does not comply with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 General Information

4.1 Client Information

Applicant:	Hunan Space Satellite Communication Co., Ltd	
Address of Applicant:	HangTian yard,Wangchengpo,Changsha,Hunan,PRC	
Manufacturer/ Factory:	Hunan Space Satellite Communication Co., Ltd	
Address of Manufacturer/ Factory:	HangTian yard,Wangchengpo,Changsha,Hunan,PRC	

4.2 General Description of E.U.T.

Product Name:	Wireless hd transmission machine		
Model No.:	WTD-700R, NTD-700R, ETD700R, MTD700R		
Operation Frequency:	5190MHz, 5230MHz; 5755MHz, 5795MHz, 5835MHz		
Channel numbers:	5		
Channel separation:	40MHz		
Modulation technology:	OFDM		
Antenna Type:	PCB Antenna (Transmit antenna: 1pcs; receive antenna: 4pcs)		
Antenna gain:	2dBi		
Power supply:	AC 120V 60Hz		

4.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in receiving mode				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110100018RF

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

4.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

4.6 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 29

4.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2010	Mar. 30 2011		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sep. 10 2010	Sep. 10 2011		
4	Spectrum analyzer	Rohde & Schwarz	FSP40	GTS203	Sep. 10 2010	Sep. 10 2011		
5	8-WAY Power Divider	JFW	50PD-647	GTS203	Sep. 10 2010	Sep. 10 2011		
6	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Feb. 26 2011	Feb. 26 2012		
7	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 30 2010	June 30 2011		
8	Horn Antenna	SCHWARZBECK MESS-ELEKTRONIK	9170	GTS205	June 30 2010	June 30 2011		
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
10	Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2010	Apr. 01 2011		
11	Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2010	Apr. 01 2011		
12	Coaxial cable	GTS	N/A	GTS402	Apr. 01 2010	Apr. 01 2011		
13	Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2010	Apr. 01 2011		
14	Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2010	Apr. 01 2011		
15	Amplifier	Sonnoma Instrument	305-1052	GTS210	Apr. 01 2010	Apr. 01 2011		
16	Amplifier	HP	8349B	GTS231	Apr. 01 2010	Apr. 01 2011		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)			
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS206	Apr. 10 2010	Apr. 10 2011			
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Sep. 14 2010	Sep. 14 2011			
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS209	Sep. 14 2010	Sep. 14 2011			
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS207	Apr. 14 2010	Apr. 14 2011			
5	Coaxial Cable	GTS	N/A	GTS406	Apr. 01 2010	Apr. 01 2011			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	1					
Test Method:	ANSI C63.4: 2003						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz						
Limit:	Frequency range (MHz) Cuasi-peak Average						
	. , ,	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5 5-30	56 60	46 50				
	* Decreases with the logarithm		50				
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.						
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Instruments:	Refer to section 4.7 for details						
Test mode:	Refer to section 4.3 for details	;					
Test results:	Passed						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Live Line:

Condition : FCC QP LISN(2011) LINE

Job No. : 018RF EUT : Wirel

EUT : Wireless hd transmission machine

Test Mode : Operation mode

Test Engineer: Lau

ıesı	Engineer.	Read	LISN	Cable		Limit	Over	
	Freq	Level			Level	Line		Remark
	MHz	dBuV	dB	dB	dBuV	-dBuV	dB	
1	0.179	36.28	0.67	0.01	36.96	54.53	-17.57	Average
2 3	0.179	51.10	0.67	0.01	51.78	64.53	-12.75	QP
	0.230	24.76	0.64	0.01	25.41	52.44	-27.03	Average
4 5	0.230	48.06	0.64	0.01	48.71	62.44	-13.73	QP
5	0.489	27.85	0.56	0.01	28.42	46.19	-17.77	Average
6 7	0.489	43.56	0.56	0.01	44.13	56.19	-12.06	QP
7	3. 241	32.43	0.35	0.22	33.00	46.00	-13.00	Average
8	3. 241	45.98	0.35	0.22	46.55	56.00	-9.45	QP
9	8.637	38.76	0.24	0.38	39.38	50.00	-10.62	Average
10	8.637	49.29	0.24	0.38	49.91	60.00	-10.09	QP
11	20.814	23.28	0.14	0.45	23.87			Average
12	20.814	37.40	0.14	0.45	37.99	60.00	-22.01	QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 9 of 29

Neutral Line:

Condition : FCC QP LISN(2011) NEUTRAL

Job No. : 018RF

EUT : Wireless hd transmission machine

Test Mode : Operation mode

Test Engineer: Lau

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.179	33.18	0.67	0.01	33.86	54.55	-20.69	Average
2	0.179	49.40	0.67	0.01	50.08	64.55	-14.47	QP
3	0.234	25.17	0.64	0.01	25.82	52.30	-26.48	Average
4 5	0.234	47.16	0.64	0.01	47.81	62.30	-14.49	QP
5	2.012	27.68	0.40	0.12	28.20	46.00	-17.80	Average
6	2.012	42.39	0.40	0.12	42.91	56.00	-13.09	QP
7	3. 293	33.82	0.34	0.22	34.38	46.00	-11.62	Average
8	3.293	45.80	0.34	0.22	46.36	56.00	-9.64	QP
9	9.302	35.69	0.23	0.39	36.31	50.00	-13.69	Average
10	9.302	48.31	0.23	0.39	48.93	60.00	-11.07	QP
11	22.896	25.86	0.13	0.45	26.44	50.00	-23.56	Average
12	22, 896	36, 65	0.13	0.45	37, 23		-22.77	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 29

5.3 Peak Transmit Power

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	ANSI C63.4:2003					
Limit:	For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	As an alternative to Publication: 662911, the test method is "measure and sum", In the measure and sum approach, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units (e.g., mW—not dBm).					
	The EUT peak power was measured with a peak power meter employing a video bandwidth greater than 6dB BW of the emission under test. Peak output power was read directly from the spectrum analyzer across all data rates, Special care was used to make sure that the EUT was transmitting in continuous mode.					
Test Instruments:	Refer to section 4.7 for details					
Test mode:	Refer to section 4.3 for details					
Test results:	Pass					

Measurement Data

Channal	Frequency	26dB Bandwidth	Output Power		Limit	Daguit
Channel	(MHz)	(MHz)	(dBm)	dBm	dBm+10log(BW)	Result
Low	5190	40.38	15.96	17.00	20.02	Pass
High	5230	40.30	15.26	17.00	20.02	Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 11 of 29

Test plot as follows:

Date: 25.FEB.2011 17:20:16

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Date: 25.FEB.2011 17:34:09

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.4 Power Spectral Density

Measurement Data

Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm)	Result
Low	5190	3.86	4.00	Pass
High	5230	3.83	4.00	Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Lowe channel:

Date: 25.FEB.2011 17:22:41

High channel

Date: 26.FEB.2011 08:37:49

Project No.: GTSE110100018RF

5.5 Peak Excursion

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	ANSI C63.4:2003					
Limit:	The ratio of the peak excursion of the modulation envelope (measured suing a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.					
Test Instruments:	Refer to section 4.7 for details					
Test mode:	Refer to section 4.3 for details					
Test results:	Passed					

Measurement Data

Channel	Frequency (MHz)	Measurement Level (dB)	Limit (dBm)	Result
Low	5190	2.24	13.00	Pass
High	5230	3.11	13.00	Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 29

Project No.: GTSE110100018RF

Test plot as follows:

Low channel:

Date: 25.FEB.2011 17:32:23

High channel:

Date: 25.FEB.2011 17:44:41

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 17 of 29

5.6 Undesirable Emission

Test Requirement:	FCC Part15 E Section 15.407						
Test Method:	ANSI C63.4:2003						
Limit:	The 20 dB bandwidth of the emission, not exceed in operation frequency range.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test procedure:	The EUT was setup according to ANSI C63.4, 2003 and tested according to FCC Public Notice DA 02-2138 test procedure for compliance to FCC 47CFR 15. 407 requirements. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned from 1						
	meter to 4 meters to find out the maximum emission level.						
	This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.						
Test Instruments:	Refer to section 4.7 for details						
Test mode:	Refer to section 4.3 for details						
Test results:	Pass						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation channel	Reference Frequency (MHz)	Measurement level (dB)	Limit (dB)	Result
Low	5150	-49.51	-20	Pass

Date: 25.FEB.2011 17:29:47

Operation channel	Reference Frequency (MHz)	Measurement level (dB)	Limit (dB)	Result
High	5350	-52.69	-20	Pass

Date: 25.FEB.2011 17:37:06

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110100018RF

5.7 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.4: 20	03							
Test site:	Measurement D	Distance: 3m (S	Semi-Anecho	ic Chambe	r)				
Receiver setup:		(,				
receiver cotap.	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above Toriz	Peak	1MHz	10Hz	Average Value				
Limit:					1				
	Freque		Limit (dBuV/		Remark				
	30MHz-8	1	40.0		Quasi-peak Value				
	88MHz-21	_	43.5		Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz)	Quasi-peak Value Average Value					
	Above 1	GHz	54.0						
Test Procedure:	a. The EUT w		74.0		Peak Value 0.8 meters above				
	radiation. b. The EUT wantenna, whower. c. The antennathe ground Both horizomake the market and degrees to the EUT have 10dB	a height is var to determine the ntal and vertice leasurement. Ispected emission the rotable tal- find the maximicelyer systemical andwidth withe ion level of the ecified, then te would be repo- margin would	s away from one de maximum al polarization was turned ble was turned ble was turned was set to Period Maximum Hotel EUT in peal sting could brited. Otherwibe re-tested	the interference of a variation was arranto heights for did Mode. It was a to height and the bid Mode. It was a to height and the bid Mode are to height are to height and the bid Mode are to height are to height and by the emissione by one	ence-receiving able-height antenna ur meters above e field strength. htenna are set to ged to its worst rom 1 meter to 4 egrees to 360				
Test setup:	Ab ave 4011								
Tool Colup.	Above 1GHz								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 20 of 29

Test channel:		Low		Rem	ark:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5100.00	41.34	32.54	5.26	30.75	48.39	74.00	-25.61	Vertical
5150.00	42.25	32.58	5.28	30.82	49.29	74.00	-24.71	Vertical
5250.00	36.34	32.86	5.31	31.05	43.46	74.00	-30.54	Vertical
5350.00	35.26	32.91	5.32	31.12	42.37	74.00	-31.63	Vertical
5100.00	44.08	32.54	5.26	30.75	51.13	74.00	-22.87	Horizontal
5150.00	45.53	32.58	5.28	30.82	52.57	74.00	-21.43	Horizontal
5250.00	40.16	32.86	5.31	31.05	47.28	74.00	-26.72	Horizontal
5350.00	39.62	32.91	5.32	31.12	46.73	74.00	-27.27	Horizontal

Test channel:		Low		Rei	mark:		Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBu)		Over Limit (dB)	polarization
5100.00	30.56	32.54	5.26	30.75	37.61	54.	00	-16.39	Vertical
5150.00	32.74	32.58	5.28	30.82	39.78	54.	00	-14.22	Vertical
5250.00	27.11	32.86	5.31	31.05	34.23	54.	00	-19.77	Vertical
5350.00	24.60	32.91	5.32	31.12	31.71	54.	00	-22.29	Vertical
5100.00	33.30	32.54	5.26	30.75	40.35	54.	00	-13.65	Horizontal
5150.00	36.02	32.58	5.28	30.82	43.06	54.	00	-10.94	Horizontal
5250.00	30.93	32.86	5.31	31.05	38.05	54.	00	-15.95	Horizontal
5350.00	28.96	32.91	5.32	31.12	36.07	54.	00	-17.93	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel: High					Rema	ark:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit (dBu		Over Limit (dB)	polarization
5100.00	39.26	32.54	5.26	30	.75	46.31	74.	00	-27.69	Vertical
5150.00	40.21	32.58	5.28	30.82		47.25	74.	00	-26.75	Vertical
5250.00	49.81	32.86	5.31	31	.05	56.93	74.	00	-17.07	Vertical
5350.00	39.97	32.91	5.32	31	.12	47.08	74.	00	-26.92	Vertical
5100.00	40.84	32.54	5.26	30	.75	47.89	74.	00	-26.11	Horizontal
5150.00	41.97	32.58	5.28	30	.82	49.01	74.	00	-24.99	Horizontal
5250.00	51.75	32.86	5.31	31	.05	58.87	74.	00	-15.13	Horizontal
5350.00	42.09	32.91	5.32	31	.12	49.20	74.	00	-24.80	Horizontal

Test channel:		High			Rema	ark:		Aver	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit (dBu		Over Limit (dB)	polarization
5100.00	30.53	32.54	5.26	30	.75	37.58	54.	00	-16.42	Vertical
5150.00	30.40	32.58	5.28	30.82		37.44	54.	00	-16.56	Vertical
5250.00	37.92	32.86	5.31	31	.05	45.04	54.	00	-8.96	Vertical
5350.00	32.76	32.91	5.32	31	.12	39.87	54.	00	-14.13	Vertical
5100.00	32.11	32.54	5.26	30	.75	39.16	54.	00	-14.84	Horizontal
5150.00	32.16	32.58	5.28	30	.82	39.20	54.	00	-14.80	Horizontal
5250.00	39.86	32.86	5.31	31	.05	46.98	54.	00	-7.02	Horizontal
5350.00	34.88	32.91	5.32	31	.12	41.99	54.	00	-12.01	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 22 of 29

5.8 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 20	03						
Test Frequency Range:	30MHz to 40GH	z						
Test site:	Measurement D	istance: 3m (Semi-Anecho	ic Chambe	r)			
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit:					Γ			
	Freque		Limit (dBuV/	m @3m)	Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21	6MHz	43.5		Quasi-peak Value			
	216MHz-9		46.0)	Quasi-peak Value			
	960MHz-	1GHz	54.0)	Quasi-peak Value			
					T			
	Freque		Limit (dBm		Remark			
Test Procedure:	Substitution me	Above 1GHz -27.0 Pea						
	the ground rotated 360 radiation. 2. The EUT vantenna, wantenna to 3. The antennathe ground Both horizon make the radiation. 4. For each sacase and the meters and degrees to 5. The test-resapecified Each of the limit spanse values of the did not have	test procedure at test procedure as placed on at a 3 meter of at a 3 meter of degrees to degrees to degrees to degrees to degrees to determine an height is various and vertine assurement, uspected emithen the antendation of the rotable to find the maxification level of the EUT would be to the EUT would be	re: the top of a rosemi-anechoic letermine the pers away from unted on the termine do not the maximum ical polarization itssion, the EU ina was tuned able was tune imum reading in was set to P h Maximum H he EUT in peat testing could be d be reported. in would be res	c camber. To position of the interfer op of a variate meter to find value of the positions of the all to heights ed from 0 co. The was arrailed to heights ed from 0 co. The eak Detect lold Mode. The all to heights ed from 0 co. The eak Detect lold Mode. The all to heights ed from 0 co. The all to heights	the highest rence-receiving			

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

	2>.Above 1GHz test procedure:
	 On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
	The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)
	where:
	Pg is the generator output power into the substitution antenna.
Test setup:	Below 1GHz

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110100018RF

Test channel:		ow		Remark:		Peak	
Frequency (MHz)	Read Level (dBm)	Factor (dB)	Lev	el (dBm)	Limit Line (dBm/MHz)	Over Limit (dB)	polarization
10380	-74.10	30.24	-	43.86	-27.00	-16.86	Vertical
15570	-73.43	34.58	-	38.85	-27.00	-11.85	Vertical
20760	*	*		*	-27.00	*	Vertical
25950	*	*		*	-27.00	*	Vertical
31140	*	*		*	-27.00	*	Vertical
36330	*	*		*	-27.00	*	Vertical
10380	-71.87	30.24	-	41.63	-27.00	-14.63	Horizontal
15570	-70.24	34.58	-	35.66	-27.00	-8.66	Horizontal
20760	*	*		*	-27.00	*	Horizontal
25950	*	*		*	-27.00	*	Horizontal
31140	*	*		*	-27.00	*	Horizontal
36330	*	*		*	-27.00	*	Horizontal

Test channel:		High	Remark:		Peak		
Frequency (MHz)	Read Level (dBm)	Factor (dB)	Lev	/el (dBm)	Limit Line (dBm/MHz)	Over Limit (dB)	polarization
10460	-75.76	30.58		-42.09	-27.00	-15.09	Vertical
15690	-76.88	34.86		-38.34	-27.00	-11.34	Vertical
20920	*	*		*	-27.00	*	Vertical
26150	*	*		*	-27.00	*	Vertical
31380	*	*		*	-27.00	*	Vertical
36610	*	*		*	-27.00	*	Vertical
10460	-71.80	30.58		-40.84	-27.00	-13.84	Horizontal
15690	-74.95	34.86		-39.60	-27.00	-12.60	Horizontal
20920	*	*		*	-27.00	*	Horizontal
26150	*	*		*	-27.00	*	Horizontal
31380	*	*		*	-27.00	*	Horizontal
36610	*	*		*	-27.00	*	Horizontal

Remark:

- 1. "*", means this data is the too weak instrument of signal is unable to test.
- 2. Level = Reading Level + Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 26 of 29

5.9 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407							
Test Method:	ANSI C63.4: 2003							
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified							
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.							
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector						
Test Instruments:	Refer to section 4.7 for details							
Test mode:	Refer to section 4.3 for details							
Test results:	Passed							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

Wicas	Frequency stability versus Temp.											
	Operating Frequency: 5190MHz											
Temp.	Power	0 min		2 minute		5 minute		10 minute				
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)		(MHz)		(MHz)		(MHz)				
55	120	5190.0023	0.0023	5190.0022	0.0022	5190.0021	0.0021	5190.0024	0.0024			
50	120	5190.0020	0.0020	5190.0022	0.0022	5190.0022	0.0022	5190.0023	0.0023			
40	120	5190.0018	0.0018	5190.0018	0.0018	5190.0014	0.0014	5190.0016	0.0016			
30	120	5190.0013	0.0013	5190.0016	0.0016	5190.0010	0.0010	5190.0012	0.0012			
20	120	5190.0012	0.0012	5190.0015	0.0015	5190.0009	0.0009	5190.0012	0.0012			
10	120	5190.0011	0.0011	5190.0014	0.0014	5190.0009	0.0009	5190.0012	0.0012			
0	120	5190.0014	0.0014	5190.0015	0.0015	5190.0017	0.0017	5190.0015	0.0015			
-10	120	5190.0010	0.0010	5190.0011	0.0011	5190.0009	0.0009	5190.0010	0.0010			
-20	120	5190.0004	0.0004	5190.0007	0.0007	5190.0003	0.0003	5190.0004	0.0004			

	Frequency stability versus voltage											
	Operating Frequency: 5190MHz											
Temp.	Power	0 mir	nute	2 minute		5 minute		10 minute				
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)		(MHz)		(MHz)		(MHz)				
	102	5190.0008	0.0008	5190.0009	0.0009	5190.0010	0.0010	5190.0011	0.0011			
20	120	5190.0012	0.0012	5190.0015	0.0015	5190.0009	0.0009	5190.0012	0.0012			
	138	5190.0016	0.0016	5190.0020	0.0020	5190.0014	0.0014	5190.0020	0.0020			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110100018RF

	Frequency stability versus Temp.										
	Operating Frequency: 5230MHz										
Temp.	Power	0 min	ute	2 minute		5 minute		10 minute			
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency		
	(Vac)	Frequency	drift (MHz)								
		(MHz)		(MHz)		(MHz)		(MHz)			
55	120	5230.0022	0.0022	5230.0021	0.0021	5230.0022	0.0022	5230.0017	0.0017		
50	120	5230.0019	0.0019	5230.0022	0.0022	5230.0021	0.0021	5230.0015	0.0015		
40	120	5230.0019	0.0019	5230.0020	0.0020	5230.0020	0.0020	5230.0015	0.0015		
30	120	5230.0017	0.0017	5230.0020	0.0020	5230.0020	0.0020	5230.0013	0.0013		
20	120	5230.0016	0.0016	5230.0019	0.0019	5230.0018	0.0018	5230.0014	0.0014		
10	120	5230.0016	0.0016	5230.0019	0.0019	5230.0018	0.0018	5230.0012	0.0012		
0	120	5230.0014	0.0014	5230.0017	0.0017	5230.0018	0.0018	5230.0012	0.0012		
-10	120	5230.0013	0.0013	5230.0017	0.0017	5230.0017	0.0017	5230.0012	0.0012		
-20	120	5230.0013	0.0013	5230.0015	0.0015	5230.0018	0.0018	5230.0012	0.0012		

	Frequency stability versus voltage											
	Operating Frequency: 5230MHz											
Temp.	Power	0 mir	nute	2 minute		5 minute		10 minute				
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)		(MHz)		(MHz)		(MHz)				
	102	5230.0011	0.0011	5230.0016	0.0016	5230.0012	0.0012	5230.0015	0.0015			
20	120	5230.0016	0.0016	5230.0019	0.0019	5230.0018	0.0018	5230.0014	0.0014			
	138	5230.0017	0.0017	5230.0020	0.0020	5230.0017	0.0017	5230.0020	0.0020			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 29 of 29