Question When does $A^k \to zero\ matrix$? Answer $|All\ |\lambda| < 1$.

Fibonacci Numbers

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers grow. Every new Fibonacci number is the sum of the two previous F's:

The sequence
$$0, 1, 1, 2, 3, 5, 8, 13, \ldots$$
 comes from $F_{k+2} = F_{k+1} + F_k$.

These numbers turn up in a fantastic variety of applications. Plants and trees grow in a spiral pattern, and a pear tree has 8 growths for every 3 turns. For a willow those numbers can be 13 and 5. The champion is a sunflower of Daniel O'Connell, which had 233 seeds in 144 loops. Those are the Fibonacci numbers F_{13} and F_{12} . Our problem is more basic.

Problem: Find the Fibonacci number F_{100} The slow way is to apply the rule $F_{k+2} = F_{k+1} + F_k$ one step at a time. By adding $F_6 = 8$ to $F_7 = 13$ we reach $F_8 = 21$. Eventually we come to F_{100} . Linear algebra gives a better way.

The key is to begin with a matrix equation $\mathbf{u}_{k+1} = A\mathbf{u}_k$. That is a *one-step* rule for vectors, while Fibonacci gave a two-step rule for scalars. We match those rules by putting two Fibonacci numbers into a vector. Then you will see the matrix A.

Let
$$u_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$$
. The rule $F_{k+1} = F_{k+1} + F_k$ is $u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k$. (5)

Every step multiplies by $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. After 100 steps we reach $u_{100} = A^{100}u_0$:

$$u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad \ldots, \quad u_{100} = \begin{bmatrix} F_{101} \\ F_{100} \end{bmatrix}.$$

This problem is just right for eigenvalues. Subtract λ from the diagonal of A:

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$$
 leads to $\det(A - \lambda I) = \lambda^2 - \lambda - 1$.

The equation $\lambda^2 - \lambda - 1 = 0$ is solved by the quadratic formula $\left(-b \pm \sqrt{b^2 - 4ac}\right)/2a$:

Eigenvalues
$$\lambda_1 = \frac{1+\sqrt{5}}{2} \approx 1.618$$
 and $\lambda_2 = \frac{1-\sqrt{5}}{2} \approx -.618$.

These eigenvalues lead to eigenvectors $x_1 = (\lambda_1, 1)$ and $x_2 = (\lambda_2, 1)$. Step 2 finds the combination of those eigenvectors that gives $u_0 = (1, 0)$:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \left(\begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} - \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix} \right) \quad \text{or} \quad \mathbf{u}_0 = \frac{\mathbf{x}_1 - \mathbf{x}_2}{\lambda_1 - \lambda_2}. \tag{6}$$

Step 3 multiplies u_0 by A^{100} to find u_{100} . The eigenvectors x_1 and x_2 stay separate! They are multiplied by $(\lambda_1)^{100}$ and $(\lambda_2)^{100}$:

100 steps from
$$u_0$$

$$u_{100} = \frac{(\lambda_1)^{100} x_1 - (\lambda_2)^{100} x_2}{\lambda_1 - \lambda_2}.$$
 (7)

We want $F_{100} =$ second component of u_{100} . The second components of x_1 and x_2 are 1. The difference between $(1 + \sqrt{5})/2$ and $(1 - \sqrt{5})/2$ is $\lambda_1 - \lambda_2 = \sqrt{5}$. We have F_{100} :

$$F_{100} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{100} - \left(\frac{1 - \sqrt{5}}{2} \right)^{100} \right] \approx 3.54 \cdot 10^{20}.$$
 (8)

Is this a whole number? Yes. The fractions and square roots must disappear, because Fibonacci's rule $F_{k+2} = F_{k+1} + F_k$ stays with integers. The second term in (8) is less than $\frac{1}{2}$, so it must move the first term to the nearest whole number:

kth Fibonacci number =
$$\frac{\lambda_1^k - \lambda_2^k}{\lambda_1 - \lambda_2}$$
 = nearest integer to $\frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k$. (9)

The ratio of F_6 to F_5 is 8/5 = 1.6. The ratio F_{101}/F_{100} must be very close to the limiting ratio $(1 + \sqrt{5})/2$. The Greeks called this number the "golden mean". For some reason a rectangle with sides 1.618 and 1 looks especially graceful.

Matrix Powers A^k

Fibonacci's example is a typical difference equation $u_{k+1} = A\mathbf{u}_k$. Each step multiplies by A. The solution is $u_k = A^k u_0$. We want to make clear how diagonalizing the matrix gives a quick way to compute A^k and find u_k in three steps.

The eigenvector matrix S produces $A = S \Lambda S^{-1}$. This is a factorization of the matrix, like A = LU or A = QR. The new factorization is perfectly suited to computing powers, because every time S^{-1} multiplies S we get I:

Powers of
$$A$$
 $A^k u_0 = (S \Lambda S^{-1}) \cdots (S \Lambda S^{-1}) u_0 = S \Lambda^k S^{-1} u_0$

I will split $S\Lambda^k S^{-1}u_0$ into three steps that show how eigenvalues work:

- 1. Write u_0 as a combination $c_1x_1 + \cdots + c_nx_n$ of the eigenvectors. Then $c = S^{-1}u_0$.
- 2. Multiply each eigenvector x_i by $(\lambda_i)^k$. Now we have $\Lambda^k S^{-1}u_0$.
- 3. Add up the pieces $c_i(\lambda_i)^k x_i$ to find the solution $u_k = A^k u_0$. This is $S \wedge^k S^{-1} u_0$.

Solution for
$$u_{k+1} = Au_k$$
 $u_k = A^k u_0 = c_1(\lambda_1)^k x_1 + \dots + c_n(\lambda_n)^k x_n$. (10)

In matrix language A^k equals $(S\Lambda S^{-1})^k$ which is S times Λ^k times S^{-1} . In Step 1,