RL: Базовые алгоритмы

План

□ Монте Карло

□ Временные различия

□ Обобщенный подход

□ Безмодельное управление

□ Обучение по чужому опыту

□ Q обучение

Монте - Карло

- □ Работают напрямую по эпизодам взаимодействия со средой
- □ Безмодельный подход (model-free)
- □ Обучается по полным эпизодам
- □ Полезность равно средней отдаче
- Может применен только для эпизодических MDP

Монте – Карло оценка стратегии

 \square Цель: построить V^{π} по эпизодам взаимодействия со стратегией π :

$$s_1, a_1, r_1, ..., s_k \sim \pi$$

□ Отдача – суммарное вознаграждение:

$$R_t = r_{t+1} + \gamma r_{t+2} + \cdots \gamma^{T-1} r_T$$

□ Функция полезности это мат ожидание отдачи:

$$V^{\pi}(s) = E_{\pi}[R_t|s_t = s]$$

□ Оценка стратегии использует эмпирическое среднее отдачи вместо мат.ож

Монте – Карло оценка стратегии с первым посещением

- □ Оцениваем состояние s:
- □ Для первого по времени посещения состояния s в эпизоде:

$$N(s) \leftarrow N(s) + 1$$

$$S(s) \leftarrow S(s) + R_t$$

□ Полезность оцениваем как среднюю отдачу: V(s) = S(s)/N(s)

$$V(s) \xrightarrow{N(s) \to \infty} V^{\pi}(s)$$

Несмещенная состоятельная оценка с высокой дисперсией

□ Оценка стратегии использует эмпирическое среднее отдачи вместо мат.ож

Монте – Карло оценка стратегии с каждым посещением

- □ Оцениваем состояние s:
- □ Для первого по времени посещения состояния s в эпизоде:

$$N(s) \leftarrow N(s) + 1$$

$$S(s) \leftarrow S(s) + R_t$$

 \square Полезность оцениваем как среднюю отдачу: V(s) = S(s)/N(s)

$$V(s) \xrightarrow{N(s) \to \infty} V^{\pi}(s)$$

Смещенная состоятельная оценка с низкой дисперсией

Среднее приращение

□ Средние значения могут быть вычислены последовательно:

$$\mu_k = \frac{1}{k} \sum_{i=1}^k x_i = \frac{1}{k} (x_k + \sum_{i=1}^{k-1} x_i) =$$

$$= \frac{1}{k}(x_k + (k-1)\mu_{k-1}) \Rightarrow$$

$$\Rightarrow \mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$

Монте Карло для приращений

- \square Обновим V(s) с приращением для эпизода $s_1, a_1, r_1, ..., s_T$:
- \square Для каждого состояния s_t с отдачей R_t :

$$N(s_t) \leftarrow N(s_t) + 1$$

$$V(s_t) \leftarrow V(s_t) + \frac{1}{N(s_t)} (R_t - V(s_t))$$

□ Для нестационарных задач м.б. полезно отслеживать текущее среднее:

$$V(s_t) \leftarrow V(s_t) + \alpha(R_t - V(s_t))$$

Обучение на основе временных различий

- □ Метод временных различий (temporal-difference, TD) обучается напрямую по эпизодам взаимодействия со средой
- □ TD безмодельный подход (model-free): модель переходов MDP и функция вознаграждения не известны
- □ TD обучается по неполным эпизодам, используя бутстреп
- □ TD приближает значения на основе предыдущего приближения

MC u TD

- lacktriangle Цель: построить V^π интерактивно (online) по эпизодам взаимодействия со стратегией π
- lacktriangled МС с каждым посещением для приращений: обновляем $V(s_t)$ на основе текущей отдачи R_t

$$V(s_t) \leftarrow V(s_t) + \alpha(R_t - V(s_t))$$

- □ Подход TD:
 - Обновляем на основе ожидаемой отдачи $r_t + \gamma V(s_{t+1})$

$$V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$$

- $r_t + \gamma V(s_{t+1})$ называется TD показателем
- $\delta_t = r_t + \gamma V(s_{t+1}) V(s_t)$ называется TD ошибкой
- □ ТD приближает значения на основе предыдущего приближения

Преимущества и недостатки MC и TD

- □ TD может обучаться до того, как стала известна итоговая отдача:
 - TD может обучаться интерактивно на каждом шаге
 - МС должен дожидаться окончания эпизода, когда становиться известна отдача
- □ TD может обучаться без информации об итоговой отдаче:
 - TD может обучаться на неполных эпизодах
 - МС может обучаться только на полных эпизодах
 - TD работает и для бесконечных (без терминального состояния) окружений
 - МС работает только для эпизодических окружений

Пакетные методы МС и TD

МС обновление

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

TD обновление

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Динамическое программирование

$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$

Обучение на собственном и чужом опыте

- □ Обучение по собственному опыту (on-policy):
 - Обучение на ходу
 - Обучение стратегии π по опыту, полученному на основе π
- □ Обучение по чужому опыту (off-policy):
 - Обучение на чужих ошибках
 - Обучение стратегии π по опыту, полученному на основе μ

Обобщенные итерация по стратегиям

Оценка стратегии - вычисление V^π

Итеративная оценка стратегии

Улучшение стратегии – генерация $\pi' \geq \pi$

Жадное обновление стратегии

Обобщенные итерация по стратегиям с МС оценкой

Оценка стратегии - вычисление V^π

Монте Карло оценка стратегии по $V = V^{\pi}$

Улучшение стратегии

Жадное обновление стратегии?

Безмодельная итерация по стратегиям с функцией полезности действия

□ Жадное улучшение стратегии по V(s) требует знания модели MDP:

$$\pi'(s) = \underset{a \in A}{\operatorname{argmax}} (R_s^a + P_{ss'}^a V(s'))$$

- Обучение стратегии π по опыту, полученному на основе π
- \square Жадное обновление стратегии по Q(s,a) не требует знания модели

$$\pi'(s) = \operatorname*{argmax}_{a \in A} Q(s, a)$$

Обобщенные итерация по стратегиям с функцией полезности действия

Оценка стратегии -

Монте Карло оценка стратегии по $Q=Q^\pi$

Улучшение стратегии

Жадное обновление стратегии?

ε жадное исследование

- □ Простейшая идея, обеспечивающая постоянное исследование среды
- □ Все действия выбираются с ненулевой вероятностью
- \square С вероятностью $1-\varepsilon$ выбираем действие жадно
- \square С вероятностью ε выбираем действие случайно

$$\pi\left(a|s
ight) = egin{cases} 1 - rac{arepsilon}{m}, \ \mathrm{ec}$$
ли $a^* = \max_{a \in A} Q(s,a) \ rac{arepsilon}{m}, \ \mathrm{uhave} \end{cases}$

МС итерация по стратегиям

Оценка стратегии -

Монте Карло оценка стратегии по $Q=Q^\pi$

Улучшение стратегии

arepsilon жадное обновление стратегии

МС управление

Для каждого эпизода:

Оценка стратегии -

Монте Карло оценка стратегии по $Q=Q^\pi$

Улучшение стратегии

arepsilon жадное обновление стратегии

МС управление

- \square Выбираем k-й эпизод $(s_1, a_1, r_2, ..., s_T) \sim \pi$
- □ Для каждой пары состояние и действия в эпизоде выполняем:

$$N(s_t, a_t) \leftarrow N(s_t, a_t) + 1$$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \frac{1}{N(s_t, a_t)} (R_t - Q(s_t, a_t))$$

□ Улучшаем стратегию на основе новых значений полезности

$$\varepsilon \leftarrow 1/k$$

$$\pi$$
 ← ε жадная (Q)

□ Этот алгоритм сходится к оптимальному решению

MC vs TD управление

- □ TD имеет несколько преимуществ относительно МС
 - Меньше дисперсия,
 - Интерактивное
 - Неполные последовательности
- □ Следовательно, мы можем использовать TD вместо МС для управления
 - Применить TD к Q(s,a)
 - Использовать ε жадное улучшение
 - Обновлять на каждом шаге

Обновление функции полезности по SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma Q(s',a') - Q(s,a))$$

Обучение по чужому опыту

 \square Строим целевую стратегию $\pi(a|s)$ для вычисления $V^{\pi}(s)$ или $Q^{\pi}(s,a)$ по следующей актуальной стратегии $\mu(a|s)$:

$$(s_t, a_t, r_t, \dots) \sim \mu$$

В чем разница?

- Обучение по наблюдениям за человеком или другими агентами
- Переиспользование опыта полученного по старым стратегиям

$$\pi_1, \pi_2, \dots, \pi_{t-1}$$

- Конструирование оптимальной стратегии, следуя поисковой стратегии
- Конструирование нескольких стратегий, следуя одной

Выборка по значимости

□ Оценка матожидания другого распределения:

$$E_{X\sim P}[f(X)] = \sum P(X)f(X) =$$

$$= \sum_{X} Q(X) \frac{P(X)}{Q(X)} f(X) = E_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

Выборка по значимости для МС по чужому опыту

- \square Изучаем отдачи полученные по μ , для вычисления π
- \square Взвешиваем отдачу R_t в соответствии со сходством стратегий
- □ Считаем поправки для выборки значимости по всему эпизоду:

$$R_t^{\pi/\mu} = \frac{\pi(a_t, s_t)\pi(a_{t+1}, s_{t+1})}{\mu(a_t, s_t)\mu(a_{t+1}, s_{t+1})} \dots \frac{\pi(a_T, s_T)}{\mu(a_T, s_T)} R_t$$

□ Обновляем стратегию на основе скорректированной отдачи:

$$V(s_t) \leftarrow V(s_t) + \alpha (R_t^{\pi/\mu} - V(s_t))$$

- \square Не применяем если μ нулевая, а π не нулевая
- □ Выборка по значимости может существенно увеличить дисперсию

Выборка по значимости для TD по чужому опыту

- lacktriangle Изучаем TD показатели полученные по μ , для вычисления π
- \square Взвешиваем TD показатель $R + \gamma V(s')$ в соответствии с выборкой по значимости
- □ Необходима только одна поправка по значимости:

$$V(s_t) \leftarrow V(s_t) + \alpha \left(\frac{\pi(a_t, s_t)}{\mu(a_t, s_t)} (r_{t+1} + \gamma V(s_{t+1})) - V(s_t) \right)$$

- □ На много более низкая дисперсия по сравнению с МС
- □ Стратегии должны быть схожи только на одном шаге итерации

Q обучение

- □ Рассмотрим обучение по чужому опыту для функции Q(s,a)
- □ Выборка по значимости здесь не требуется
- \square Следующее действие a_{t+1} выбираем по стратегии $\mu(\cdot | s_t)$
- \square Но мы рассматриваем следующее действие a' по $\pi(\cdot | s_t)$
- lacktriangled Обновляем $Q(s_t, a_t)$ в соответствии с полезностями альтернативного действия

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t))$$

Контроль по чужому опыту с Q-обучением

- □ Будем улучшать как целевую, так и актуальную стратегию
- \square Целевая стратегия π улучшается жадно с учетом Q(s,a):

$$\pi(s_{t+1}) = \operatorname*{argmax}_{a'} Q(s_{t+1}, a')$$

- \square Актуальная стратегия μ , например, ε жадно, также с учетом Q(s,a)
- □ Показатель Q обучения упрощается:

$$r_{t+1} + \gamma Q(s_{t+1}, a') =$$

$$r_{t+1} + \gamma Q\left(s_{t+1}, \operatorname*{argmax}_{a'} Q(s_{t+1}, a')\right) =$$

$$r_{t+1} + \max_{a'} \gamma Q(s_{t+1}, a')$$

Алгоритм управления с Q обучением (SARSAMAX)

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$