Homework 3

April 17, 2025

1. Suppose $\mathbf{v}_1,...,\mathbf{v}_m$ is a list of vectors in V. Define $T \in \mathcal{L}(\mathbb{R}^m,V)$ by

$$T(\mathbf{x}) = x_1 \mathbf{v}_1 + \dots + x_m \mathbf{v}_m.$$

for $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^m$. (Injective or Surjective.)

- (a) What property of T corresponds to $\mathbf{v}_1, ..., \mathbf{v}_m$ spanning V? Why?
- (b) What property of T corresponds to $\mathbf{v}_1, ..., \mathbf{v}_m$ being linearly independent? Why?
- 2. (a) Suppose $T \in \mathcal{L}(V, W)$ is injective and $\mathbf{v}_1, ..., \mathbf{v}_n$ is linearly independent in V. Prove that $T(\mathbf{v}_1), ... T(\mathbf{v}_n)$ is linearly independent in W.
 - (b) Suppose V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null } T = \{0\}$ and T(V) = T(U). Find a basis.
- 3. (a) Suppose V and W are both finite-dimensional. Prove that there exists an surjective linear transformation from V onto W if and only if $\dim V \ge \dim W$.
 - (b) Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V,W)$ such that $\operatorname{null} T = U$ if and only if $\dim U \geq \dim V \dim W$
- 4. Find the standard matrices of the following linear transformations.

(a)
$$T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$$
 with $T(x) = \left[\begin{array}{c} 2x_1 - x_2 \\ -x_1 + x_2 \\ x_2 \end{array} \right]$ for $x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$.

- (b) $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ is a vertical shear transformatin that leaves \mathbf{e}_2 unchanged and maps \mathbf{e}_1 into $2\mathbf{e}_2 + \mathbf{e}_1$.
- (c) $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ first performs a horizontal shear transformatin that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 into $-2\mathbf{e}_1 + \mathbf{e}_2$ and then reflects points through the line $x_2 = -x_1$.

5. Let

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

and let L be the linear transformation from \mathbb{R}^2 into \mathbb{R}^3 define by

$$L(\mathbf{x}) = (x_1 - x_2)\mathbf{b}_1 + x_2\mathbf{b}_2 + (x_1 + x_2)\mathbf{b}_3,$$

find the matrix A representing L with respect to the ordered bases $\{e_1, e_2\}$ and $\{b_1, b_2, b_3\}$.

- 6. Let D be the differentiation operator on $\mathbb{P}_2(\mathbb{R})$. Find the matrix B representing D with respect to $[1, 2x, x^2]$, the matrix A representing D with respect to $[2, 4x, 4x^2 4]$, and the nonsingular matrix S such that $B = S^{-1}AS$.
- 7. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that $\dim \operatorname{range} T = 1$ if and only if there exist a basis of V and a basis of W such that with respect to these bases, all entries of the matrix representation $\mathcal{M}(T)$ equal 1.
- 8. (a) Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that T(u) = S(u) for every $u \in U$ if and only if S is injective.
 - (b) Suppose V, W are finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\operatorname{null} T_1 = \operatorname{null} T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(W)$ such that $T_1 = ST_2$.
 - (c) Suppose V, W are finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that dim null $T_1 = \dim \text{ null } T_2$ if and only if there exists an invertible operators $R \in \mathcal{L}(V)$ and $S \in \mathcal{L}(W)$ such that $T_1 = ST_2R$.
- 9. Suppose V_1, \ldots, V_m and W_1, \ldots, W_m are vector spaces.
 - (a) Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic vector spaces.
 - (b) Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are isomorphic vector spaces.
- 10. Suppose that v, x are vectors in V and that U, W are subspaces of V such that v + U = x + W. Prove that U = W.