

Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

Unless otherwise noted, vector spaces are over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

- 1. Label the following statements as True or False. Along with your answer, provide an informal proof, counterexample, or other explanation.
 - (1) If $T: V \to W$ is a linear map and v_1, v_2, \dots, v_n are vectors in V, and Tv_1, Tv_2, \dots, Tv_n is linearly independent, then v_1, v_2, \dots, v_n is linearly independent.
 - (2) Suppose that p_0, p_1, \dots, p_m are polynomials in $\mathcal{P}_m(\mathbb{F})$ such that $p_j(-1) = 0$ for all j, then p_0, p_1, \dots, p_m is not linearly independent in $\mathcal{P}_m(\mathbb{F})$.
 - (3) Let T be a linear operator defined on a 3 dimensional real vector space, then T always has an eigenvalue.
 - (4) If v_1, v_2 , and v_3 are eigenvectors of T such that $v_3 = v_1 + v_2$, then all three vectors have the same eigenvalue.
 - (5) Let V be a complex vector space and U_1, U_2, U_3 be its subspaces with intersection $U_1 \cap U_2 \cap U_3 = \{0\}$. Then $U_1 + U_2 + U_3$ is a direct sum.
- 2. If U_1 and U_2 are subspaces of a finite-dimensional vector space. Prove that

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

3. Define $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}))$ by

$$(Tp)(x) = xp'(x)$$

for all $x \in \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

4. Define V^4 by

$$V^4 = V \times V \times V \times V$$
.

Prove that V^4 and $\mathcal{L}(\mathbb{F}^4, V)$ are isomorphic vector spaces.

- 5. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I.
- 6. Consider the standard basis $1, x, x^2$ of $V = \mathcal{P}_2(\mathbb{R})$. Let $\varphi_1, \varphi_2, \varphi_3$ be corresponding the dual basis of $\mathcal{P}_2(\mathbb{R})'$. Let $\varphi: V \to \mathbb{R}$ be the linear function

$$f(x) \mapsto f(2) + \int_0^1 f(x) dx.$$

Find the coefficients a, b, c for which $\varphi = a\varphi_1 + b\varphi_2 + c\varphi_3$.

- 7. Let V be a vector space that is generated by v_1, v_2, \dots, v_n , and let u_1, u_2, \dots, u_m be a linearly independent list of vectors in V. Show that $m \leq n$ and there exists a subset H of v_1, v_2, \dots, v_n containing exactly n m vectors such that $H \cup \{u_1, u_2, \dots, u_m\}$ generates V.
- 8. Let V be a finite-dimensional complex vector space and let S and T be linear operators on V such that ST = TS. Prove that if S and T can each be diagonalized, then there is a basis for V which simultaneously diagonalizes S and T.