Arquitetura de Computadores

Professora Debora Canne

- Contradição
- Contingência

Definição: De acordo com a <u>última</u> coluna da tabela-verdade de uma proposição composta, podemos classificá-la em:

Tautologia – quando o valor lógico da proposição for sempre a *verdade* (1), quaisquer que sejam os valores lógicos das proposições componentes;

Contingência – quando ocorrem os dois valores lógicos 0 e 1 na tabela-verdade.

р	q	p'	q'	p • q′	$p \bullet q' \to p'$
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	1	0	0	0	1

P(00, 01, 10, 11) = 1101

Logo, é uma contingência.

р	q	p'	q'	p • q	(p • q)′	p' + q'	$(p \bullet q)' \leftrightarrow p' + q$
0	0	1	1	0	1	1	1
0	1	1	0	0	1	1	1
1	0	0	1	0	1	1	1
1	1	0	0	1	0	0	1

P(00, 01, 10, 11) = 1111 Logo, é uma tautologia.

p	q	p'	q'	p' • q	p + q'	$p + q' \leftrightarrow p' \bullet q$
0	0	1	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

P(00, 01, 10, 11) = 0000

Logo, é uma contradição.

Exercício

Determine quais das seguintes proposições são tautologias, contradições ou contingências:

$$p \rightarrow (p' \rightarrow q)$$

$$p' + q \rightarrow (p \rightarrow q)$$

$$p \rightarrow (q \rightarrow (q \rightarrow p))$$

$$((p \rightarrow q) \leftrightarrow q) \rightarrow p$$

$$p' + q' \rightarrow (p \rightarrow q')$$

$$p' + q' \rightarrow (p \rightarrow q)$$

$$p \rightarrow (p + q) + r$$

$$p \bullet q \rightarrow (p \leftrightarrow q + r)$$

$$(q \rightarrow p) \rightarrow (p \rightarrow q)$$

Relações de Implicação e Equivalência

Definição: Dizemos que uma proposição p implica uma proposição q se toda vez que p for verdadeira, q também o for. Em outras palavras, em suas tabelas-verdade, não ocorre 10 (nessa ordem!).

p 🛪 q (p não implica q)

Definição: Dizemos que uma proposição p é equivalente a uma proposição q se os seus valores lógicos forem sempre iguais. Em outras palavras, suas tabelas-verdade são iguais.

Notação: p ⇔ q (p é equivalente a q)

P: $p \leftrightarrow q$

Q: (p • q')'

		Р			Q
р	q	$p \leftrightarrow q$	q'	p • q′	(p • q′)′
0	0	1	1	0	1
0	1	0	0	0	1
1	0	0	1	1	0
1	1	1	0	0	1

$$P \Rightarrow Q (P \text{ implica } Q)$$

P: p ↔ q

Q: $(p \rightarrow q) \bullet (q \rightarrow p)$

		Р			Q
р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \bullet (q \rightarrow p)$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1	1	1	1

 $P \Rightarrow Q (P \text{ implica } Q)$

 $Q \Rightarrow P (Q \text{ implica } P)$

P ⇔ Q (P é equivalente a Q)

Verifique a relação de implicação e equivalência entre as tabelas.

P: p'

.P: $p \leftrightarrow q \rightarrow q'$

.P: q

P: $p' \bullet r \rightarrow q + r'$

P: $p \rightarrow q \cdot r$

Q: q' + p

Q: p • q

Q: $p' \rightarrow q' \bullet p \leftrightarrow q + p$

Q: $p \leftrightarrow q' \rightarrow p' \bullet (q + p)$

Q: $p \rightarrow r \leftrightarrow q + r'$

Q: $(p \rightarrow q) \bullet (p \rightarrow r)$

