README

Code scripts can be found in the supporting files. Data are shared via OneDrive link.

0. Data

You can always download the original PhyAAt dataset from https://phyaat.github.io/ using given commands.

eeg_clean.zip: data after highpass filtering and artifact removal

OneDrive link: eeg_clean.zip

extracted_data.zip : extracted features input for SVM all-subject experiment

OneDrive link: extracted_data.zip

X_trial.zip: Input data required for models to run within-subject experiment. Data with new Trial ID and awaited to be split into trials.

OneDrive link: X_trial.zip

S_textscore.zip: Label data required for models to run within-subject experiment.

OneDrive link: <u>S_textscore.zip</u>

1. Code (9 files)

Clean and extract.ipynb: Jupyter notebook file for preprocessing the original PhyAAt dataset (highpass filtering, artifact removal, and feature extraction used for the SVM model)

project_Data.py: Utility functions. Includes customized Dataset and DataModule class
project_Prepro.py: Utility functions. Includes data preprocessing functions such as assigning
new trial ID, assigning task label, and splitting and padding.

project_CNN.py: Utility functions. Includes structure of CNN net and CNN module project_RNN.py: Utility functions. Including structure of RNN net and RNN module

SVM.ipynb: Jupyter notebook file for SVM model. Includes loops over all subjects.

CNN.ipynb: Jupyter notebook file for CNN model. Includes loops over all subjects. models are imported from project_CNN.py

RNN.ipynb: Jupyter notebook file for RNN model. Includes loops over all subjects. models are imported from project_RNN.py

Transformer.ipynb: Jupyter notebook file for Transformer model.

2. How to run

- 1) Unzip data and code in the same folder.
- 2) Run the Jupyter notebook file for corresponding model.

```
e.g Run SVM model = SVM.ipynb + (data: clean_eeg + extracted_data),
```

Run CNN model = CNN.ipynb + (data: X_trial + S_textscore) + (utility: project_Data + project_Prepro + project_CNN)

Run Transformer model = Transformer.ipynb + (data: X_trial + S_textscore)

When running the code for Transformer-based model, please make sure that there are enough GPU resource. And change the parameters "accelerator = 'gpu' " and "device = number of gpus that are available".