

## AZ-104T00A Module 04: Virtual Networking



## **Module Overview**



Lesson 01: Virtual Networks



Lesson 02: IP Addressing



Lesson 03: Network Security Groups



Lesson 04: Azure Firewall



Lesson 05: Azure DNS



Lesson 06: Module 04 Lab and Review

## **Lesson 01: Virtual Networks**





## **Azure Networking Components**



Virtual Networks





Subnets



Implementing Virtual Networks



Demonstration – Creating Virtual Networks

## **Azure Networking Components**

Adopting cloud solutions can save time and simplify operations

Azure requires the same types of networking functionality as on-premises infrastructure

Azure networking offers a wide range of services and products



## Virtual Networks



Logical representation of your own network

Create a dedicated private cloud-only virtual network

Securely extend your datacenter with virtual networks

Enable hybrid cloud scenarios

## **Subnets**



A virtual network can be segmented into one or more subnets

Subnets provide logical divisions within your network

Subnets can help improve security, increase performance, and make it easier to manage the network

Each subnet must have a unique address range – cannot overlap with other subnets in the virtual network in the subscription

## Implementing Virtual Networks

Create new virtual networks at any time

Add virtual networks when you create a virtual machine

Need to define the address space, and at least one subnet

Be careful with overlapping address spaces



## **Demonstration – Creating Virtual Networks**



## **Lesson 02: IP Addressing**



# IP Addressing Overview



IP Addressing



**Creating IP Addresses** 



Public IP Addresses



**Private IP Addresses** 

## **IP Addressing**



Private IP addresses - used within an Azure virtual network (VNet), and your on-premises network, when you use a VPN gateway or ExpressRoute circuit to extend your network to Azure

Public IP addresses - used for communication with the Internet, including Azure public-facing services

## **Creating Public IP Addresses**

Available in IPv4 or IPv6 or both

**Basic vs Standard SKU** 

**Dynamic vs Static** 

Zone redundant (Standard SKU)

Range of contiguous addresses available as a prefix

| ● IPv4                        |    |
|-------------------------------|----|
| SKU * ①  Basic Standard       |    |
| IPv4 IP Address Configuration | on |

#### **Public IP Addresses**

| Public IP addresses | IP address association   | Dynamic | Static |
|---------------------|--------------------------|---------|--------|
| Virtual Machine     | NIC                      | Yes     | Yes    |
| Load Balancer       | Front-end configuration  | Yes     | Yes    |
| VPN Gateway         | Gateway IP configuration | Yes     | Yes*   |
| Application Gateway | Front-end configuration  | Yes     | Yes*   |

A public IP address resource can be associated with virtual machine network interfaces, internet-facing load balancers, VPN gateways, and application gateways

<sup>\*</sup>Static IP addresses only available on certain SKUs.

#### **Private IP Addresses**

| Private IP Addresses   | IP address association  | Dynamic | Static |
|------------------------|-------------------------|---------|--------|
| Virtual Machine        | NIC                     | Yes     | Yes    |
| Internal Load Balancer | Front-end configuration | Yes     | Yes    |
| Application Gateway    | Front-end configuration | Yes     | Yes    |

Dynamic (default). Azure assigns the next available unassigned or unreserved IP address in the subnet's address range

Static. You select and assign any unassigned or unreserved IP address in the subnet's address range

## **Lesson 03: Network Security Groups**



## Network Security Groups Overview



Network Security Groups (NSG)



**NSG** Rules



**NSG Effective Rules** 



**Creating NSG Rules** 



Demonstration – NSGs

## **Network Security Groups**



Limits network traffic to resources in a virtual network Lists the security rules that allow or deny inbound or outbound network traffic

Associated to a subnet or a network interface

Can be associated multiple times

## **NSG** Rules

| Priority                        | Name                          | Port | Protocol | Source            | Destination      | Action      |
|---------------------------------|-------------------------------|------|----------|-------------------|------------------|-------------|
| 100                             | ▲ RDP_Inbound                 | 3389 | Any      | Any               | Any              | Allow       |
| 65000                           | AllowVnetInBound              | Any  | Any      | VirtualNetwork    | VirtualNetwork   | Allow       |
| 65001                           | AllowAzureLoadBalancerInBound | Any  | Any      | AzureLoadBalancer | Any              | Allow       |
|                                 |                               |      |          |                   |                  |             |
| 65500                           | DenyAllInBound                | Any  | Any      | Any               | Any              | Oeny        |
| 65500  Outbound secur  Priority | ·                             | Any  | Any      | Any               | Any  Destination | Oeny Action |
| Outbound secur                  | ity rules                     |      |          |                   |                  |             |
| Outbound secur                  | ity rules<br>Name             | Port | Protocol | Source            | Destination      | Action      |

Security rules in NSGs enable you to filter network traffic that can flow in and out of virtual network subnets and network interfaces

There are default security rules.
You cannot delete the default rules,
but you can add other rules with
a higher priority

#### **NSG Effective Rules**

NSGs are evaluated independently for the subnet and NIC

An "allow" rule must exist at both levels for traffic to be admitted

Use the Effective Rules link if you are not sure which security rules are being applied



## **Creating NSG rules**

Select from a large variety of services

**Service** – The destination protocol and port range for this rule

Port ranges – Single port or multiple ports

**Priority** – The lower the number, the higher the priority



## **Demonstration – Network Security Rules**



Access the NSGs blade

\_\_\_\_\_\_



Add a new NSG

\_\_\_\_\_



Explore inbound and outbound rules

## Lesson 04: Azure Firewall





## **Azure Firewall**

Azure Firewall Overview



Implementing Firewalls



Firewall Rules

## **Azure Firewall**

Stateful firewall as a service

Built-in high availability with unrestricted cloud scalability

Create, enforce, and log application and network connectivity policies

Threat intelligence-based filtering

Fully integrated with Azure Monitor for logging and analytics

Support for hybrid connectivity through deployment behind VPN and ExpressRoute Gateways



## Implementing Firewalls



A Hub-Spoke network topology is recommended

Shared services are placed in the hub virtual network

Each environment is deployed to a spoke to maintain isolation

#### Firewall Rules



**NAT rules.** Configure DNAT rules to allow incoming connections

Network rules. Configure rules that contain source addresses, protocols, destination ports, and destination addresses

Application rules. Configure fully qualified domain names (FQDNs) that can be accessed from a subnet

## Lesson 05: Azure DNS



## Azure DNS Overview



Domains and Custom Domains



Verifying Custom Domain Names



**Azure DNS Zones** 



**DNS** Delegation



**DNS Record Sets** 



**DNS for Private Domains** 



**Private Zones Scenarios** 



Demonstration – DNS Name Resolution

#### **Domains and Custom Domains**

When you create an Azure subscription an Azure AD domain is created for you

The domain has initial domain name in the form domainname.onmicrosoft.com

You can customize/change the name

After the custom name is added it must be verified (next topic)



## Verify the Custom Domain Name

Verification demonstrates ownership of the domain name

Add a DNS record (MX or TXT) that is provided by Azure into your company's DNS zone

Azure will query the DNS domain for the presence of the record

This could take several minutes or several hours



#### **Azure DNS Zones**

A DNS zone hosts the DNS records for a domain

The name of the zone must be unique within the resource group

Where multiple zones share the same name, each instance is assigned different name server addresses

Root/Parent domain is registered at the registrar and pointed to Azure NS



## **DNS** Delegation

When delegating a domain to Azure DNS, you must use the name server names provided by Azure DNS – use all four

Once the DNS zone is created, update the parent registrar

For child zones, register the NS records in the parent domain



#### **DNS Record Sets**

A record set is a collection of records in a zone that have the same name and are the same type

You can add up to 20 records to any record set

A record set cannot contain two identical records

Changing the drop-down Type, changes the information required



#### **DNS for Private Domains**

Use your own custom domain names

Provides name resolution for VMs within a VNet and between VNets

Automatic hostname record management

Removes the need for custom DNS solutions

Use all common DNS records types

Available in all Azure regions



#### **Private Zone Scenarios**



DNS resolution in VNet1 is private and not accessible from the Internet

DNS queries across the virtual networks are resolved Reverse DNS queries are scoped to the same virtual network

## **Demonstration – DNS Name Resolution**



## Lesson 06: Module 04 Lab and Review



## Lab 04 – Implement Virtual Networking

#### Lab scenario

You plan to create a virtual network in Azure that will host a couple of Azure virtual machines. You will deploy them into different subnets of the virtual network. You also want to ensure that their private and public IP addresses will not change over time. To comply with Contoso security requirements, you need to protect public endpoints of Azure virtual machines accessible from Internet. Finally, you need to implement DNS name resolution for Azure virtual machines both within the virtual network and from Internet.

#### **Objectives**

#### Task 1:

Create and configure a virtual network

#### Task 4:

Configure network security groups

#### Task 2:

Deploy virtual machines into the virtual network

#### Task 5:

Configure Azure DNS for internal name resolution

#### Task 3:

Configure private and public IP addresses of Azure VMs

#### Task 6:

Configure Azure DNS for external name resolution

Next slide for an architecture diagram ( $\rightarrow$ )



## Lab 04 – Architecture diagram



#### **Module Review**

#### **Module Review Questions**



#### Microsoft Learn Modules (docs.microsoft.com/Learn)

Networking Fundamentals – Principals

Design an IP addressing schema for your Azure deployment

Secure and isolate access to Azure resources by using network security groups and service endpoints

# End of presentation