[Aula 10] Autômatos finitos com saída

Prof. João F. Mari joaof.mari@ufv.br

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 5.
 - + Slides disponibilizados pelo autor do livro.

ROTEIRO

- Autômato Finito com Saída (AFS)
- Máquina de Mealy
- Máquina de Mealy Computação (Função Programa Estendida)
- [EX] Máquina de Mealy: Sistema de Diálogo
- Máquina de Moore
- Máquina de Moore × AFD & Mealy
- Maquina de Moore Computação (Função Programa Estendida)
- [EX] Máquina de Moore: Análise Léxica
- Equivalência: Máquinas de Moore e de Mealy
- Máquinas de Moore → Mealy
- [EX] Máquinas de Moore → Mealy
- Máquina de Mealy → Moore
- [EX] Máquina de Mealy → Moore
- EXERCÍCIOS

Prof. João Fernando Mari (joaof.mari@ufv.br)

3

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Autômato Finito com Saída (AFS)

- A saída não pode ser lida:
 - Não é memória auxiliar.
- A saída é definida sobre um alfabeto especial:
 - Alfabeto de símbolos de saída;
 - Pode, eventualmente, ser igual ao alfabeto de entrada.
- A saída é gravada em uma fita de saída:
 - Independente da fita de entrada;
 - A cabeça da fita de saída move uma célula para a direita a cada símbolo gravado.
- O resultado do processamento do AFS:
 - Condição de aceita/rejeita (estado final);
 - A informação contida na fita de saída.

Autômato Finito com Saída (AFS)

- Conceito básico de Autômato Finito:
 - A informação de saída limitada à lógica binária aceita/rejeita;
 - As aplicações práticas são restritas.
- Geração de uma palavra de saída:
 - Estende a definição de Autômato Finito;
 - Reconhece a mesma classe de linguagens.
- Autômatos Finitos com Saída (AFS):
 - Máquina de Mealy
 - As saídas são associadas às transições.
 - Máquina de Moore
 - As saídas são associadas aos estados.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Autômato Finito com Saída (AFS)

- Máquinas de Mealy e Moore:
 - Construídos por modificações sobre o AFD;
 - Consequentemente sobre AFNs e AFN ε;
 - Estudaremos apenas AFSs determinísticos.
- Aplicações dos autômatos finitos com saída:
 - Aplicações Tradicionais:
 - Analisador Léxico (Linguagens de Programação);
 - Processadores de Texto.
 - WWW (World Wide Web):
 - Hipertexto e Hipermídia;
 - Animação quadro a quadro;
 - Verificar exemplos no capitulo 5 do livro texto (MENEZES, 2008).

Máquina de Mealy

 Para cada transição da máquina gera uma palavra de saída (pode ser vazia).

Prof. João Fernando Mari (joaof.mari@ufv.br)

5

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquina de Mealy

$$M = (\Sigma, Q, \delta, q_0, F, \Delta)$$

- Σ: alfabeto (de símbolos) de entrada;
- Q: conjunto de estados (finito);
- δ: função programa ou função de transição (função parcial);

$$\delta: Q \times \Sigma \rightarrow Q \times \Delta^*$$

- q₀: estado inicial: elemento distinguido de Q;
- F: conjunto de estados finais: subconjunto de Q;
- Δ alfabeto (de símbolos) de saída;
- Máquina de Mealy × AFD:
 - $-\Sigma$, Q, q_0 e F são como no AFD.

Máquina de Mealy - Computação (Função Programa Estendida)

- Computação, para entrada w
 - Sucessiva aplicação da função programa;
 - Para cada símbolo de w (da esquerda para a direita);
 - Até ocorrer uma condição de parada.
- Palavra vazia como saída:
 - Nenhuma gravação é realizada;
 - Não move a cabeça da fita de saída.
- Se todas as transições geram saída vazia:
 - O processamento é o mesmo de um AFD.
- Definição formal da função programa estendida:
 - Semelhante ao do AFD. Não será mostrado.

Prof. João Fernando Mari (joaof.mari@ufv.br)

C

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

[EX] Máquina de Mealy: Sistema de Diálogo

- Aplicação comum e recomendada para os autômatos com saída:
 - Projeto de diálogo entre um programa e o usuário.
 - Determina, eventualmente, ações internas ao sistema.
 - Shell de Sistemas Operacionais.
- O diálogo pode ser de dois tipos:
 - Comandado pelo programa;
 - Comandado pelo usuário.

[EX] Máquina de Mealy: Sistema de Diálogo

- <...> entrada fornecida pelo usuário
- "..." saída gerada pelo programa
- [...] ação interna ao programa
- (...) resultado de ação interna ao programa

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquina de Moore

- Possui uma segunda função
 - Gera uma palavra de saída (pode ser vazia) para cada estado da máquina.

Máquina de Moore

$$M = (\Sigma, Q, \delta, q_0, F, \Delta, \delta_s)$$

- Σ: alfabeto (de símbolos) de entrada;
- Q: conjunto de estados (finito);
- δ: função programa ou função de transição (função parcial):

$$\delta: Q \times \Sigma \rightarrow Q$$

- q₀: elemento distinguido de Q: estado inicial;
- F: subconjunto de Q: conjunto de estados finais;
- Δ: alfabeto (de símbolos) de saída;
- δ_s: função de saída (função total):

$$\delta_s: Q \rightarrow \Delta^*$$

Prof. João Fernando Mari (joaof.mari@ufv.br

13

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquina de Moore × AFD & Mealy

- Σ , Q, δ , q0 e F são como no AFD;
- Δ é como na Máquina de Mealy.

Maquina de Moore - Computação (Função Programa Estendida)

- Computação, para entrada w:
 - Sucessiva aplicação da função programa;
 - Para cada símbolo de w (da esquerda para a direita);
 - Até ocorrer uma condição de parada;
 - Juntamente com a sucessiva aplicação da função de saída para cada estado atingido.
- Palavra vazia como saída:
 - Nenhuma gravação é realizada;
 - Não move a cabeça da fita de saída.
- Se todas os estados geram saída vazia:
 - O processamento é o mesmo de um AFD.
- Definição formal da função programa estendida:
 - Semelhante ao do AFD. Não será mostrado.

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

[EX] Máquina de Moore: Análise Léxica

- Analisador Léxico:
 - Autômato finito (em geral, determinístico);
 - Identifica os componentes básicos da linguagem:
 - Números, identificadores, separadores, etc.
- Máquina de Moore como Analisador Léxico:
 - Cada estado final é associado a uma unidade léxica.
 - A saída descreve ou codifica a unidade léxica identificada
 - Máquina para em estados não finais (rejeita)
 - Em geral a saída é vazia.

[EX] Máquina de Moore: Análise Léxica

 Máquina de Moore que reconhece unidades léxicas IF-THAN-FI SF:

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Equivalência: Máquinas de Moore e de Mealy

- A Equivalência não é válida para a entrada vazia.
- Para os demais casos a equivalência pode ser facilmente verificada

Máquinas de Moore → Mealy

 Toda Máquina de Moore pode ser simulada por uma Máquina de Mealy, para entradas não vazias.

Prof. João Fernando Mari (joaof.mari@ufv.br)

19

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquinas de Moore → Mealy

Seja M uma Máquina de Moore qualquer:

$$M = (\Sigma, Q, \delta, q0, F, \Delta, \delta_s)$$

A máquina de Mealy correspondente ME:

ME =
$$(\Sigma, Q \cup \{q_e\}, \delta_{MF}, q_e, F, \Delta)$$

- O estado q_e:
 - Referenciado somente na primeira transição executada.
 - Garante a geração da saída referente ao estado inicial q_0 de Moore.
- Função programa δ_{ME} :
 - $-\delta_{MF}(q_e, a) = (\delta(q_0, a), \delta_s(q_0) \delta_s(\delta(q_0, a)))$
 - $-\delta_{ME}(q, a) = (\delta(q, a), \delta_{S}(\delta(q, a)))$

[EX] Máquinas de Moore → Mealy

Máquina de Moore

- MO = $(\Sigma, Q, \delta_{MO}, q0, F, \Delta, \delta_s)$
 - $-\Sigma = \{a_0, a_1\}$
 - $Q = \{q_0, q_1\}$
 - $-\delta_{MO}(q_0,a_0)=q_0$
 - $-\delta_{MO}(q_0,a_1)=q_1$
 - $F = \{q_1\}$
 - $-\Delta = \{u_0, u_1\}$
 - $-\delta_s(q_0) = u_0$
 - $-\delta_s(q_1)=u_1$

Máquina de Mealy

- ME = $(\Sigma, Q_{MF}, \delta_{MF}, q_{e}, F, \Delta)$
 - $-\Sigma = \{a_0, a_1\}$
 - $Q = \{q_0, q_1\} \cup \{q_e\}$
 - $-\delta_{MF}(q_{e}, a_{0}) = q_{0}, u_{0}u_{0}$
 - $-\delta_{MF}(q_{e}, a_{1}) = q_{1}, u_{0}u_{1}$
 - $-\delta_{MF}(q_0, a_0) = q_0, u_0$
 - $-\delta_{MF}(q_0, a_1) = q_1, u_1$

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquina de Mealy -> Moore

Toda Máquina de Mealy pode ser simulada por uma Máquina de Moore.

Máquina de Mealy

Máquina de Moore

Máquina de Mealy → Moore

- A Máquina de Moore correspondente possui, em geral, mais estados que Mealy.
- As transições com saídas diferentes que atingem um mesmo estado
 - são simuladas por diversos estados (um para cada saída).
 - Cada estado no máquina de Moore é um par ordenado:
 - <estado, saída>

Prof. João Fernando Mari (joaof.mari@ufv.br)

23

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquina de Mealy → Moore

• Seja M uma Máquina de Mealy qualquer

$$M = (\Sigma, Q, \delta, q_0, F, \Delta)$$

MO é a máquina de Moore correspondente:

MO =
$$(\Sigma, (Q \times S(\delta)) \cup \{ \langle q_0, \epsilon \rangle \}, \delta_{MO}, \langle q_0, \epsilon \rangle, F \times S(\delta), \Delta, \delta_s)$$

- $S(\delta)$: imagem de δ , restrita à componente saída
 - O conjunto de saídas possíveis de M
- Se $\delta(q_0, a) = (q, u)$
 - $\delta_{MO}(<q_0, \epsilon>, a) = <q, u>$
- Se $\delta(q, b) = (p, v)$, então, para cada $\delta(q_i, a_i) = (q, u_i)$
 - $\delta_{MO}(<q, u_i>, b) = <p, v>$
- Para o estado <q, u> de MO
 - $\delta_{s}(<q, u>) = u$

[EX] Máquina de Mealy → Moore

- Máquina de Mealy:
 - Compacta brancos de um texto: $M = ({a, β}, {q, p}, δ, q, {q, p}, {a, β})$
 - a → qualquer caractere;
 - $-\beta \rightarrow$ caractere em branco.

Máquina de Moore:

MO = ({ a, β }, Q,
$$\delta_{MO}$$
, , F, { a, β }, δ_{S})
– Q = F = { q, p } × { ε, a, β }

Prof. João Fernando Mari (joaof.mari@ufv.br)

25

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

Máquina de Mealy → Moore

- Mealy possui, em geral, menos estados que a correspondente Moore.
 - Em aplicações práticas usar Mealy preferencialmente a Moore, sempre que possível.
- Em experimentos reais
 - Significativa preferência das pessoas em associar as saídas aos estados (e não às transições).
 - Nesse caso, construir Moore e converter para Mealy.

EXERCÍCIOS

- 1) Desenvolva uma máquina de Moore e uma máquina de Mealy que converta a representação monetária de dólares para reais:
 - U\$\$25.010,59 → R\$25.010,59
 - US\$1.250.100,48 \rightarrow R\$1.250.100,48
- O autômato deve verificar a entrada é um valor monetário válido.

Prof. João Fernando Mari (joaof.mari@ufv.br)

27

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

EXERCÍCIOS

- Desenvolva uma máquina de Mealy e uma máquina de Moore para configurar corretamente um texto escrito em um editor de texto.
- Cada texto é uma palavra sobre o alfabeto {x, β, ·}:
 - x = caracteres do alfabeto da língua portuguesa:
 - {a...z, A...Z}
 - β = espaço em branco;
 - $-\cdot$ = ponto final.
- O texto resultante (palavra de saída) deve:
 - Não possuir brancos contínuos;
 - O texto deve começar por x e terminar por ·;
 - Devem ser eliminados β antes de ·;
 - Antes do ponto deve existir um x.
- [EX]
 - ββxxββxxxβββxxβ⋅ββ deve ser aceita como:
 - xxβxxxβxx٠
 - − ·x deve ser rejeitada.

EXERCÍCIOS

- 1) Converta o exemplo de máquina de Mealy (Dialogo) apresentado na Aula 10 para Moore.
- 2) Converta o resultado dos exercícios 1 e 2 da Aula 10 para a máquina de Mealy e de Moore equivalente.

Prof. João Fernando Mari (joaof.mari@ufv.br)

29

[Aula 10] Autômatos finitos com saída

SIN 131 – Introdução à Teoria da Computação (2018-1)

[FIM]