aglaia norza

Logica Matematica

appunti delle lezioni libro del corso: tbd

Contents

1	Logi	ca Proposizionale	3
	1.1	Introduzione	3
	1.2	Assegnamenti, tavole di verità	3
	1.3	Conseguenza logica	5
	1.4	Completezza funzionale	5
	1.5	Forme normali	7
	1.6	Equivalenza Logica	8
	1.7	Formalizzazioni in logica proposizionale	9
	1.8	Teorema di compattezza	9

1. Logica Proposizionale

1.1. Introduzione

La logica proposizionale è un linguaggio formale con una semplice struttura sintattica basata su proposizioni elementari (atomiche) e sui seguenti connettivi logici:

- *Negazione* (¬): inverte il valore di verità di un enunciato: se un enunciato è vero, la sua negazione è falsa, e viceversa.
- Congiunzione (\land): il risultato è vero se e solo se entrambi i componenti sono veri.
- Disgiunzione (V): il risultato è vero se almeno uno dei componenti è vero.
- Implicazione (→): rappresenta l'enunciato logico "se ... allora". Il risultato è falso solo se il primo componente è vero e il secondo è falso.
- Equivalenza (↔): rappresenta l'enunciato logico "se e solo se". Il risultato è vero quando entrambi i componenti hanno lo stesso valore di verità, cioè sono entrambi veri o entrambi falsi.

Introduciamo anche il concetto di disgiunzione esclusiva o "XOR" (\oplus), il cui risultato è vero solo se gli operandi sono diversi tra di loro (uno vero e uno falso).

Def. 1: Linguaggio proposizionale

Un linguaggio proposizionale è un insieme infinito \mathcal{L} di simboli detti variabili proposizionali, tipicamente denotato come $\{p_i : i \in I\}$ (con I "insieme di indici").

Def. 2: Proposizione

Una proposizione in un linguaggio proposizionale è un elemento dell'insieme PROP così definito:

- 1. tutte le variabili appartengono a PROP
- 2. se $A \in PROP$, allora $\neg A \in PROP$
- 3. se $A, B \in PROP$, allora $(A \land B), (A \lor B), (A \to B) \in PROP$
- 4. nient'altro appartiene a PROP (PROP è il più piccolo insieme che contiene le variabili e soddisfa le proprietà di chiusura sui connettivi 1 e 2)

Per facilitare la leggibilità delle formule, definiamo le seguenti regole di *precedenza*: \neg ha precedenza su \land , \lor , e questi ultimi hanno precedenza su \rightarrow .

1.2. Assegnamenti, tavole di verità

Per un linguaggio \mathcal{L} , un **assegnamento** è una funzione

$$\alpha: \mathcal{L} \to \{0,1\}$$

Estendiamo α ad $\hat{\alpha} : PROP \rightarrow \{0, 1\}$ in questo modo:

$$\hat{\alpha}(\neg A) = \begin{cases} 1 & A = 0 \\ 0 & A = 1 \end{cases}$$

•
$$\hat{\alpha}(A \wedge B) = \begin{cases} 1 & \hat{\alpha}(A) = \hat{\alpha}(B) = 1\\ 0 & altrimenti \end{cases}$$

•
$$\hat{\alpha}(A \vee B) = \begin{cases} 0 & \hat{\alpha}(A) = \hat{\alpha}(B) = 0 \\ 1 & altrimenti \end{cases}$$

•
$$\hat{\alpha}(A \to B) = \begin{cases} 0 & \hat{\alpha}(A) = 1 \land \hat{\alpha}(B) = 0 \\ 1 & altrimenti \end{cases}$$

notazione

Utilizzeremo α al posto di $\hat{\alpha}$ per comodità di notazione.

Osserviamo che è possibile rappresentare gli assegnamenti in modo compatto utilizzando le **tavole di verità**, una presentazione tabulare della funzione di assegnamento.

Per esempio, possiamo riscrivere la definizione di $\alpha(\neg A)$ come segue:

$$\begin{array}{c|c} A & \neg A \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

Ogni riga di una tavola di verità corrisponde ad un assegnamento α .

Si noti anche che dalla definizione di α segue che un'implicazione può essere vera senza che ci sia connessione causale o di significato tra antecedente e conseguente (per esempio, "se tutti i quadrati sono pari allora π è irrazionale").

In secondo luogo, segue anche che una proposizione è sempre vera se il suo antecedente è falso (il che rispecchia la pratica matematica di considerare vera a vuoto una proposizione ipotetica la cui premessa non si applica).

Questo è giustificabile come segue:

- vogliamo che $(A \wedge B) \rightarrow B$ sia sempre vera
- il caso $1 \rightarrow 1$ deve essere vero, perché corrisponde al caso in cui A e B sono vere;

il caso $0 \to 0$ deve essere vero, perché corrisponde al caso in cui $A \land B$ è falso perché B è falso;

il caso $0 \to 0$ deve essere vero perché corrisponde al caso in cui $A \wedge B$ è falso perché B è falso;

il caso $0 \to 1$ deve essere vero perché corrisponde al caso in cui $A \land B$ è falso perché A è falso ma B è vero;

resta dunque soltanto il caso $1 \to 0$, che non corrisponde a nessun caso di $A \land B \to B$.

In più, si vuole che valga, per contrapposizione $(A \to B) \to (\neg B \to \neg A)$.

Osserviamo che, data $A=p_1,p_2,\ldots,p_k$ e due assegnamenti α e β t.c.:

$$\alpha(p_1) = \beta(p_1)$$

. . .

$$\alpha(p_k) = \beta(p_k)$$

allora necessariamente $\alpha(A) = \alpha(B)$.

soddisfacibilità

Se per una formula A e un assegnamento α si ha $\alpha(A)=1$, si dice che "A soddisfa α " (o "A è vera sotto α ").

- Se A ha almeno un assegnamento che la soddisfa, si dice **soddisfacibile** $(A \in SAT)$.
- Se non esiste un assegnamento che la soddisfa, A si dice **insoddisfacibile** ($A \in UNSAT$).
- Se A è soddisfatta da tutti i possibili assegnamenti, si dice **tautologia** (o "verità logica") $(A \in TAUT)$.

Introduciamo anche alcune regole che

1.3. Conseguenza logica

Def. 3: Conseguenza logica

Sia T una teoria, ossia un insieme $\{A_1, \ldots, A_n\}$ proposizioni in un dato linguaggio proposizionale, e sia $A \in PROP$.

Diciamo che A è **conseguenza logica** di T se

$$\forall \alpha, \ \alpha(T) = 1 \rightarrow \alpha(A) = 1$$

ovvero se ogni assegnamento che soddisfa T soddisfa anche A_{n+1} .

Scriviamo in tal caso $T \vDash A_{n+1}$, oppure $A_1, \ldots, A_n \vDash A$.

Si ha che:

- $T \not\models A$ significa che $\exists \alpha$ t.c. $\alpha(T) = 1 \land \alpha(A) = 0$
- $\emptyset \models A$ o, equivalentemente $\models A \iff A$ è una tautologia

Lemma 1: Equivalenze

- 1. $T \models A$
- $2. \models (A_1 \land \cdots \land A_n) \to A$
- 3. $(A_1 \wedge \cdots \wedge A_n) \in \mathtt{UNSAT}$

sono equivalenti.

1.4. Completezza funzionale

Data una tavola di verità arbitraria con n argomenti, esiste una proposizione A che ha esattamente quella tavola di verità?

Una proposizione A contenente le n variabili proposizionali a_1, a_2, \ldots, a_n determina una funzione di n argomenti $f: \{0,1\}^n \to \{0,1\}$ ("funzione di verità"), tale che il valore di f_A su un argomento $(x_1, x_2, \ldots, x_n) \in \{0,1\}^n$ sia dato da un arbitrario assegnamento α tale che $\alpha(p_k) = x_k$ per $k \in [1,n]$.

Theorem 1: Teorema

Sia $f: \{0,1\}^n \to \{0,1\}$ una funzione di verità. Esiste una proposizione A con n variabili proposizionali tale che, per ogni assegnamento α :

$$\alpha(A) = f(\alpha(a_1), \alpha(a_2), \dots, \alpha(a_n))$$

dimostrazione

Si dimostra per induzione su n.

• caso base: n = 1 abbiamo quattro possibili f:

$$f_1(0) = 0,$$
 $f_1(1) = 0$
 $f_2(0) = 1,$ $f_2(1) = 1$
 $f_3(0) = 0,$ $f_3(1) = 1$

$$f_4(0) = 1, \quad f_4(1) = 0$$

Alla funzione f_1 corrisponde la formula $(p \land \neg p)$, alla funzione f_2 la formula $(p \lor \neg p)$, alla funzione f_3 la formula p, e alla funzione f_4 la formula $(\neg p)$.

• caso induttivo: (assumiamo che il teorema valga per n-1 variabili, e dimostriamo che vale per n)

Se n > 1, scriviamo il grafico di

$$f: \{0,1\}^n \to \{0,1\}$$

in forma di tavola di verità in questo modo:

	$f(p_1,\ldots,p_n)$	p_n	 p_2	p_1
	• • •	0	 	0
grafico di una funzione f_0	:	:		:
	• • •	1	 	0
	• • •	0	 	1
grafico di una funzione f_1	:	:		:
		1	 	1

Se non consideriamo la prima colonna (p_1) , la tavola di verità descrive il grafico di due funzioni, f_0 e f_1 , a n-1 argomenti.

Sappiamo, quindi, per ipotesi induttiva, che esistono due formule A_0 e A_1 a n-1 variabili tali che, per ogni assegnamento α :

$$\alpha(A_0) = f_0(\alpha(p_1), \alpha(p_2), \dots, \alpha(p_n))$$

$$\alpha(A_1) = f_1(\alpha(p_1), \alpha(p_2), \dots, \alpha(p_n))$$

Dobbiamo ora combinare le due formule considerando anche la colonna p_1 .

Possiamo farlo tramite la formula $A = (\neg p_1 \to A_0) \land (p_1 \to A_1)$.

Dimostriamo che A soddisfa il teorem: dobbiamo dimostrare che, dato un assegnamento qualsiasi α , si ha:

$$\alpha(A) = f(\alpha(p_1), \alpha(p_2), \dots, \alpha(p_n))$$

Distinguiamo i due casi:

 $- \alpha(p_1) = 1$

in questo caso, si ha:

$$\alpha \left((\neg p_1 \to A_0) \land (p_1 \to A_1) \right)$$

e la formula vale quindi $1 \iff \alpha(A_1) = 1$.

Ma $\alpha(A_1) = f_1(\alpha(p_2), \dots, \alpha(p_n))$, quindi la formula si comporta esattamente come f_1 :

$$f(\alpha(p_1), \alpha(p_2), \dots, \alpha(p_n)) = f(1, \alpha(p_2), \dots, \alpha(p_n)) = f_1(\alpha(p_2), \dots, \alpha(p_n)).$$

Quindi, in questo caso, vale

$$\alpha(A) = (\alpha(p_1), \alpha(p_2), \dots, \alpha(p_n))$$

 $- \alpha(p_1) = 0$

in questo caso, si ha:

$$\alpha \left((\neg p_1 \to A_0) \land (p_1 \to A_1) \right)$$

che vale $1 \iff \alpha(A_0) = 1$.

Quindi si può fare lo stesso ragionamento di sopra, ma per A_1 e f_0 .

Potremmo anche costruire una funzione f che rappresenta il comportamento di A:

$$f(x_1, x_2, \dots, x_n) = \begin{cases} f_1(x_2, \dots, x_n) & \text{se } x_1 = 1, \\ f_0(x_2, \dots, x_n) & \text{se } x_1 = 0. \end{cases}$$

1.5. Forme normali

notazione

Chiamiamo "letterale" una variabile proposizionale o una negazione di una variabile proposizionale

È utile individuare alcune forme normali canoniche.

Def. 4: Forma Normale Disgiuntiva

Diciamo che A è in Forma Normale Disgiuntiva (**DNF**, *Disjunctive Normal Form*) se A è una disgiunzione di congiunzioni di letterali, ossia è nella forma seguente:

$$\bigvee_{i \le n} \bigwedge_{j \le m_i} A_{ij} = (A_{1,1} \wedge \dots \wedge A_{1,m_1}) \vee \dots \vee (A_{n,1} \wedge \dots \wedge A_{n,m_n})$$

Def. 5: Forma Normale Congiuntiva

Diciamo che A è in Forma Normale Congiuntiva (CNF, Conjunctive Normal Form) se A è una disgiunzione di congiunzioni di letterali, ossia è nella forma seguente:

$$\bigwedge_{i \leq n} \bigvee_{j \leq m_i} A_{ij} = (A_{1,1} \vee \cdots \vee A_{1,m_1}) \wedge \cdots \wedge (A_{n,1} \vee \cdots \vee A_{n,m_n})$$

1.6. Equivalenza Logica

Def. 6: Equivalenza logica

Due formule $A,B\in PROP$ sono logicamente equivalenti $(A\equiv B)$ quando, per ogni assegnamento α si ha $\alpha(A)=\alpha(B)$.

Introduciamo alcune regole utili per verificare l'equivalenza tra proposizioni.

Con un piccolo abuso di notazione, definiamo 1 e 0 come le formule per cui $\forall \alpha, \ \alpha(1) = 1$ e $\alpha(0) = 0$. In questo modo, abbiamo:

Involuzione	$\neg \neg A \equiv A$
Assorbimento (con 0 e 1)	$A \lor 0 \equiv A$
	$A \wedge 1 \equiv A$
Cancellazione	$A \lor 1 \equiv 1$
	$A \wedge 0 \equiv 0$
Terzo escluso (tertium non datur)	$A \vee \neg A \equiv 1$
	$A \wedge \neg A \equiv 0$
Leggi di De Morgan	$\neg (A \lor B) \equiv \neg A \land \neg B$
	$\neg (A \land B) \equiv \neg A \lor \neg B$
Commutatività	$A \vee B \equiv B \vee A$
	$A \wedge B \equiv B \wedge A$
Associatività	$A \lor (B \lor C) \equiv (A \lor B) \lor C$
	$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$
Distributività	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
	$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
I teorema di assorbimento	$A \lor (A \land B) \equiv A$
	$A \wedge (A \vee B) \equiv A$
II teorema di assorbimento	$A \vee (\neg A \wedge B) \equiv A \vee B$
	$A \wedge (\neg A \vee B) \equiv A \wedge B$

Table 1.1: Principali leggi di equivalenza logica

1.7. Formalizzazioni in logica proposizionale

Il concetto di soddisfacibilità ci permette di usare insiemi di formule proposizionali per catturare determinate strutture matematiche.

Per esempio: sia X un insieme. Consideriamo il linguaggio proposizionale composto dalle variabili $p_{(x,y)}$ per ogni $(x,y) \in X \times X$, e consideriamo il seguente insieme T di proposizioni in questo linguaggio:

- 1. $\neg p_{x,x} \ \forall x \in X$ (antiriflessività)
- 2. $p_{x,y} \to \neg p_{y,x} \ \forall x \in X$ (asimmetria)
- 3. $(p_{x,y} \land p_{y,z}) \rightarrow p_{x,z} \ \forall x,y,z \in X$ (transitività)
- 4. $(p_{x,y} \lor p_{y,x}) \ \forall x \neq y \in X$ (ordine totale)

Usiamo una teoria T per poter gestire anche casi di insiemi infiniti. Infatti, sappiamo che una teoria infinita è soddisfatta se e solo se lo sono tutte le sue proposizioni.

L'insieme $T=T_X$ esprime il concetto di **ordine totale stretto** su X. Infatti, se avessimo un assegnamento α che soddisfa tutte le proposizioni di T, l'ordine indotto da tutte le variabili vere sotto α sarebbe un ordine totale stretto di X.

Se α è un assegnamento, definiamo la relazione \prec_{α} su X come segue:

$$x \prec_{\alpha} y \leftrightarrow \alpha(p_{x,y}) = 1$$

Si ha che per ogni assegnamento α che soddisfca T_X , l'ordine \prec_{α} indotto da α è un ordine totale stretto su X.

Dall'altra parte, se \prec è un ordine totale stretto su X, e α_{\prec} è l'assegnamento indotto da \prec così definito:

$$\alpha_{\prec}(p_{x,y}) = 1 \leftrightarrow (x \prec y)$$

Si ha che, per ogni ordine totale stretto \prec su X, l'assegnamento α_{\prec} indotto da \prec sulle variabili $p_{x,y}$ soddisfa T.

Ovvero, un assegnamento α soddisfa la teoria T_X se e solo se l'ordine indotto da α su X è un ordine totale.

Colorabilità

1.8. Teorema di compattezza

Def. 7: Monotonia della conseguenza logica

Si dice che la nozione di conseguenza logica è monotona, ovvero che

$$T' \vDash A \land T' \subseteq T \Rightarrow T \vDash A$$

(se $A_1, A_2, \ldots, A_k \models A$, allora $T \models A$ per ogni teoria T contenente A_1, A_2, \ldots, A_k)

Nonostante non sembri intuitivamente vero, vale anche il viceversa:

Theorem 2: Teorema di compattezza v.1

Se $T \vDash A$, esiste un sottoinsieme finito T_0 di T tale che $T_0 \vDash A$

Introduciamo il concetto di una teoria finitamente soddisfacibile:

Def. 8: FINSAT

Una teoria si dice **finitamente soddisfacibile** (\in FINSAT) se *ogni* suo sottoinsieme finito è soddisfacibile.

Possiamo quindi introdurre una nuova versione del teorema di compattezza:

Theorem 3: Teorema di compattezza v.2

FINSAT \Rightarrow SAT, ovvero se ogni sottoinsieme di T è soddisfacibile, anche T è soddisfacibile.

Lemma 2: Teorema di compattezza $v.1 \equiv v.2$

I due punti seguenti (le due versioni del teorema di compattezza) sono equivalenti:

1.
$$T \vDash A \iff \exists T_0 \stackrel{fin}{\subseteq} T \ t.c. \ T_0 \vDash A$$

2. $T \in \mathtt{SAT} \iff T \in \mathtt{FINSAT}$

dim.

• $(1) \Rightarrow (2)$

Supponiamo per assurdo che $T\in {\tt FINSAT} \Rightarrow T\in {\tt SAT},$ e che $T\vDash A$ ma che $\forall T_0 \overset{fin}\subseteq T,\ T_0 \not\vDash A.$

 $T \not\models A \text{ significa } T \cup \{\neg A\} \in \mathtt{SAT}.$

Quindi, visto che FINSAT \Rightarrow SAT, $T \cup \{\neg A\} \in$ SAT, il che va in contraddizione con l'ipotesi $T \models A$.

• $2 \Rightarrow 1$

Supponiamo per assurdo che $T \vDash A \Rightarrow \exists T_0 \stackrel{fin}{\subseteq} T \ t.c. \ T_0 \vDash A$, che $T \in \texttt{FINSAT}$, ma che $T \not \in \texttt{SAT} \ (T \in \texttt{UNSAT})$.

Se $T \in \text{UNSAT}$, possiamo dire che $T \models p \land \neg p$ (tutto è conseguenza logica di una teoria insoddisfacibile).

Per 2, quindi, $\exists T_0 \ t.c, \ T_0 \overset{fin}{\subseteq} T \vDash p \land \neg p$, il che va in contraddizione con $T \in \texttt{FINSAT}$.

Theorem 4: Estendibilità di SAT

Se T è soddisfacibile, allora $T \cup \{A\}$ è soddisfacibile oppure $T \cup \{\neg A\}$ è soddisfacibile.

dimostrazione dalle dispense

Sia α un assegnamento che soddisfa T. Se $\alpha(A)=1$ allora $T\cup\{A\}$ è soddisfacibile. Se $\alpha(A)=0$, $T\cup\{\neg A\}$ è soddisfacibile.

dimostrazione vista in classe

Supponiamo $T\in {\tt SAT},\ T\cup \{A\}\in {\tt UNSAT}\ {\tt e}\ T\cup \{\neg A\}\in {\tt UNSAT}.$ Avremmo entrambi $T\vDash \{\neg A\}\ {\tt e}\ T\vDash A,$ il che è impossibile se $T\in {\tt SAT}.$

Un concetto analogo vale per FINSAT.

Theorem 5: Estendibilità di FINSAT

Sia $T \in \text{FINSAT}$. Per ogni formula $A, T \cup \{A\} \in \text{FINSAT}$ o $T \cup \{\neg A\} \in \text{FINSAT}$

dim

Supponiamo per assurdo che $T \cup \{A\} \not\in \texttt{FINSAT}$ e $T \cup \{\neg A\} \not\in \texttt{FINSAT}$.

Vuol dire che esistono $B \stackrel{fin}{\subseteq} T \cup \{A\}$ e $C \stackrel{fin}{\subseteq} T \cup \{\neg A\}$ insoddisfacibili.

Dato che per ipotesi $T \in \texttt{FINSAT}$, sappiamo che $A \in B, C$. Possiamo quindi introdurre $\hat{B} = B \setminus \{A\}$ e $\hat{C} = C \setminus \{A\}$.

Sappiamo che l'insieme $\hat{B} \cup \hat{C} \in \texttt{FINSAT}$, in quanto sottoinsieme finito di T.

Sia α un assegnamento che lo soddisfa. Se $\alpha(A)=1$, allora soddisfa anche B. Se $\alpha(A)=0$, soddisfa anche C. In entrambi i casi abbiamo una contraddizione.