Determination Young's modulus using acoustic resonance

Koveshnikov Grigory

December 4, 2021

Goal of the work: research the phenomena of acoustic resonance in a thin rod; measure velocity of spreading of longitudinal acoustic oscillation in thin rods made up of different metals and various sizes; measure Young's modulus of different materials.

Inception

Theoretical part:

Measured parameters of rods and data was entered in the table. Using equation of После настройки установки: поместили стержень между двумя пластинами на минимальном расскоянии от них, причем так, чтобы концы стержня были строго посередине платформ и никак не касались их. Оценим частоты по формуле:

Построим графики зависимости частоты от номера гармоники по данным из таблицы для 3 стержней:

Table 1: frequencies for different rods

n	1	2	3	4	5
copper ν , kHz	3.160	6.438	9.512	12.700	15.822
steel ν , kHz	4.126	8.313	12.391	16.550	20.647
aluminum ν , kHz	4.2441	8.537	12.7018	16.970	21.206

Table 2: parameters of rods:

copper								
d, mm	11.95	11.72	11.97	11.94	11.85			
l, mm	39.6	40.2	30.2	40.5	30.3			
m, g	39.42	38.74	30.13	40.38	29.478			
steel								
d, mm	11.86	11.97	11.99	11.97	12.23			
l, mm	41.4	40.0	30.0	29.7	31.4			
m, g	37.16	35.16	26.17	26.03	28.12			
duralumin								
d, mm	11.84	11.58	12.03	11.71	12.13			
l, mm	30.2	40.3	30.1	30.3	41.4			
m, g	9.19	11.79	9.493	9.00	13.24			

Найдем коэффициенты по методу наименыпих квадратов. Найдем из них модуль

Юнга. Учитываем системетическую и случайную погрешности:

$$f_n = \frac{u}{2L} \cdot n$$

$$f_n = \frac{u}{2L} \cdot n$$
Random error:
$$u = 2L \frac{\langle f_n n \rangle}{\langle n^2 \rangle}$$

$$\sigma_u = 2L \frac{1}{\sqrt{5}} \sqrt{\frac{\langle f_n^2 \rangle}{\langle n^2 \rangle} - \left(\frac{u}{2L}\right)^2}$$

System error:
$$\sigma_u = \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2}$$

General error: $\sigma_u = \sqrt{\sigma_{rand}^2 + \sigma_{syst}^2}$ Put velocities and all errors into the table: Enter wave velocities and their errors for 3 rods in the table:

*10 ³	u	σ_{rand}	σ_{syst}	σ_u
copper	3.172	0.006	0.002	0.006
steel	4.134	0.003	0.002	0.004
aluminum	4.242	0.004	0.002	0.004