Colle 15 - MPSI Calcul matriciel

Opérations sur les matrices

Exercice 1

Calculer l'inverse des matrices carrées suivantes :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -3 \\ -1 & 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}.$$

Exercice 2

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Montrer que

$$\forall B \in \mathcal{M}_n(\mathbb{K}), AB = BA \Leftrightarrow \exists \lambda \in \mathbb{K}, A = \lambda . I_n$$

Exercice 3

On suppose que $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent et que A est inversible. Justifier que les matrices A^{-1} et B commutent.

Exercice 4

Calculer A^n pour $n \in \mathbb{N}$ et les matrices A suivantes :

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ $A_3 = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Exercice 5

Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit encore une matrice symétrique.

Exercice 6

Soit $T \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure.

Montrer que T commute avec sa transposée si, et seulement si, la matrice T est diagonale.

Exercice 7

Soit $n \geq 2$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices symétriques.

Exercice 8

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\sigma(A)$ la somme des termes de A.

On pose

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

Vérifier que $J.A.J = \sigma(A).J$

Exercice 9

Pour $i, j, k, l \in \{1, ..., n\}$, on note $E_{i,j}$ et $E_{k,l}$ les matrices élémentaires de $\mathcal{M}_n(\mathbb{K})$ d'indices (i, j) et (k, l). Calculer

$$E_{i,j} \times E_{k,l}$$

Exercice 10

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB = A + B$$

Montrer que A et B commutent.

Exercice 11

On considère la matrice

$$A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$$

- 1. Calculer $A^2 3A + 2I$. En déduire que A est inversible et calculer son inverse.
- 2. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 3. En déduire l'expression de la matrice A^n .

Opérations sur les matrices

Correction de l'exercice 1

1.

$$A^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

2.

$$B^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$

3.

$$C^{-1} = \begin{pmatrix} -1 & 0 & 1\\ 4 & 1 & -3\\ 2 & 1 & -2 \end{pmatrix}$$

Correction de l'exercice 2

Pour mémoire,
$$AE_{ij} = \begin{pmatrix} 0 & \cdots & 0 & a_{1i} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{ni} & 0 & \cdots & 0 \end{pmatrix}$$
 sur la colonne j , et $E_{ij}A = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ a_{j1} & \cdots & a_{jn} \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$ sur la ligne i .

Si A est solution alors $AE_{i,j} = E_{i,j}A$ qui implique $a_{i,i} = a_{j,j}$ et $a_{i,k} = 0$ pour $k \neq i$ donc $A = \lambda I_n$. La réciproque est immédiate.

Correction de l'exercice 3

Il suffit d'écrire

$$A^{-1}B = A^{-1}(BA)A^{-1} = A^{-1}(AB)A^{-1} = BA^{-1}.$$

Correction de l'exercice 4

Par récurrence :

1.
$$A_1^n = \begin{pmatrix} 1 & a_n \\ 0 & 2^n \end{pmatrix}$$
 avec $a_{n+1} = 1 + 2a_n$. En introduisant $b_n = an + 1$, on obtient $a_n = 2^n - 1$.

$$A_1^n = \begin{pmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{pmatrix}$$

2.

$$A_2^n = \begin{pmatrix} a^n & na^{n-1}b \\ 0 & a^n \end{pmatrix}$$

3.

$$A_3^n = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$$

Correction de l'exercice 5

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Sachant $^t(AB) = ^t B^t A = BA$ car A et B sont symétriques et on a

$$^{t}(AB) = AB \Leftrightarrow BA = AB$$

Le produit de deux matrices symétriques est une matrice symétrique si, et seulement si, les deux matrices commutent.

Correction de l'exercice 6

Par récurrence sur $n \geq 1$.

La propriété est immédiate pour n = 1.

Supposons la propriété vraie au rang $n \geq 1$.

Soit $T \in \mathcal{M}_{n+1}(\mathbb{K})$ triangulaire supérieure commutant avec sa transposée. On peut écrire

$$T = \begin{pmatrix} \alpha & {}^t X \\ 0_{n,1} & S \end{pmatrix}$$

avec $\alpha \in \mathbb{K}, X \in \mathcal{M}_{n,1}(\mathbb{K})$ et $S \in \mathcal{M}_n(\mathbb{K})$ triangulaire supérieure.

L'identification du coefficient d'indice (1,1) dans la relation ${}^tTT = T{}^tT$ donne

$$\alpha^2 = \alpha^2 + XX$$

On en déduit $X = 0_{n,1}$ et l'égalité ${}^tTT = T{}^tT$ donne ${}^tSS = S{}^tS$.

Par hypothèse de récurrence, la matrice S est diagonale et par conséquent la matrice T l'est aussi. Récurrence établie.

Correction de l'exercice 7

Soit $(a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ une matrice commutant avec toutes les matrices symétriques. Soient $i < j \in \{1, ..., n\}$.

La matrice A commute avec la matrice symétrique $E_{i,j} + E_{j,i}$ ce qui permet d'écrire

$$A(E_{i,j} + E_{j,i}) = (E_{i,j} + E_{j,i})A$$

L'égalité des coefficients d'indice (i, j) donne

$$a_{i,i} = a_{j,j}$$

La matrice A commute avec la matrice symétrique $E_{i,i}$ ce qui permet d'écrire

$$AE_{i,i} = E_{i,i}A$$

L'égalité des coefficients d'indice (i, j) donne

$$a_{i,j} = 0$$

On en déduit que la matrice A est de la forme λI_n avec $\lambda \in \mathbb{K}$. La réciproque est immédiate.

Correction de l'exercice 8

Notons

$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$$

On a

$$\sigma(A) = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{k,l}$$

Par produit $B = A.J = (b_{i,j})$ avec $b_{i,j} = \sum_{l=1}^{n} a_{i,j}.1$ et $C = J.A.J = J.B = (c_{i,j})$ avec

$$c_{i,j} = \sum_{k=1}^{n} 1.b_{k,l} = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{k,l} = \sigma(A)$$

Ainsi $C = \sigma(A).J$

Correction de l'exercice 9

On peut décrire

$$E_{i,j} = (\delta_{p,i}\delta_{q,j})_{1 \leq p,q \leq n} \quad \text{ et } \quad E_{k,l} = (\delta_{p,k}\delta_{q,l})_{1 \leq p,q \leq n}$$

On a alors

$$A = E_{i,i}E_{k,l} = (a_{p,q})$$

avec

$$a_{p,q} = \sum_{r=1}^{n} (\delta_{p,i} \delta_{r,j}) (\delta_{r,k} \delta_{q,l}) = \left(\sum_{r=1}^{n} \delta_{r,j} \delta_{r,k}\right) \delta_{p,i} \delta_{q,l} = \delta_{j,k} \delta_{p,i} \delta_{q,l}$$

Ainsi

$$E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$$

Correction de l'exercice 10

On a

$$(I_n - A)(I_n - B) = I_n - A - B + AB = I_n$$

On en déduit que ${\cal I}_n-{\cal A}$ est inversible et que ${\cal I}_n-{\cal B}$ est son inverse. L'égalité

$$(I_n - B)(I_n - A) = I_n$$

entraîne alors

$$BA = A + B$$

et on peut conclure que A et B commutent.

Correction de l'exercice 11 1.
$$A^2-3A+2I=0$$
. Comme $A\left(\frac{-1}{2}A+\frac{3}{2}I\right)=I$, on a

$$A^{-1} = -\frac{1}{2}A + \frac{3}{2}I = \begin{pmatrix} 2 & 1\\ -3/2 & -1/2 \end{pmatrix}$$

2. $X^2 - 3X + 2 = (X - 1)(X - 2)$. Sachant que le reste de la division euclidienne considérée est de la forme aX + b, en évaluant en 1 et 2, on détermine a et b et on obtient :

$$X^{n} = (X^{2} - 3X + 2)Q(X) + (2^{n} - 1)X + 2 - 2^{n}$$

3. On peut remplacer X par A dans le calcul qui précède et on obtient :

$$A^{n} = (A^{2} - 3A + 2I)Q(A) + (2^{n} - 1)A + (2 - 2^{n})I = (2^{n} - 1)A + (2 - 2^{n})I$$

et donc

$$A^{n} = \begin{pmatrix} 3 - 2^{n+1} & 2 - 2^{n+1} \\ 3 \cdot 2^{n} - 3 & 3 \cdot 2^{n} - 2 \end{pmatrix}$$