Theory of Automata and Formal Language Lecture-2

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj March 30, 2021

Definition of Grammar

A grammar G is defined as a quadruple $G = (V, \Sigma, S, P)$, where

 $V \to \mathsf{Finite}$ set of variables or non-terminal symbols

 $\Sigma \to \mathsf{Finite}$ set of terminal symbols

 $S \in V \to Starting$ symbol of the Grammar

 $P \rightarrow Finite set of production rules$

And P is defined as following:-

$$P\subseteq (V\cup\Sigma)^*X(V\cup\Sigma)^*$$

 $(u,v) \in P$ is denoted by

 $u \rightarrow v$, where $u,v \in (V \cup \Sigma)^*$

u always contains at least one variable.

Direct derivation or derivation in one step

Let $\alpha, \beta \in (V \cup \Sigma)^*$. α directly derives β if $\alpha \to \beta \in P$. It is denoted by $\alpha \Rightarrow \beta$.

Derivation in many steps

Let $\alpha, \beta \in (V \cup \Sigma)^*$. α derives β if there exists production rules $\alpha \to A_1$, $A_1 \to A_2, A_2 \to A_3, \ldots, A_n \to \beta$, such that $\alpha \Rightarrow A_1 \Rightarrow A_2 \Rightarrow A_3 \Rightarrow \ldots \Rightarrow A_n \Rightarrow \beta$. It is denoted by $\alpha \stackrel{*}{\Rightarrow} \beta$.

Sentential Form

Let $\alpha \in (V \cup \Sigma)^*$. The string α is said to be in the sentential form if

 $S \stackrel{*}{\Rightarrow} \alpha$, where S is the starting symbol.

Language generated by a Grammar

The set of all the sentental forms consisting of only terminal symbols is said to be language generated Grammar. That is,

$$L(G) = \{ x \in \Sigma^* ! S \stackrel{*}{\Rightarrow} x \}$$

Equivalent Grammars

Two grammars G_1 and G_2 are said to be equivalent grammar if the languages generated by both grammars are the same. That is,

$$\mathsf{L}(\mathit{G}_{1})=\mathsf{L}(\mathit{G}_{2}).$$

Examples

Determine the languages generated by the following grammars:-

- 1. $S \rightarrow aS/a$
- 2. $S \rightarrow 0S1/\epsilon$
- 3. S
 ightarrow aCa , C
 ightarrow aCa/b
- 4. $S \rightarrow aS/bS/a/b$
- 5. S
 ightarrow 0 S A2 , S
 ightarrow 012 , 2 A
 ightarrow A2 , 1 A
 ightarrow 11