Raonament

1	$P \rightarrow Q$	Premissa
2	$R \rightarrow S$	Premissa
3	$(S \land Q) \rightarrow T$	Premissa
4	$(P \land R) \rightarrow T$	Conclusió

Declaracions

• Àtoms: P, Q, R, S, T

Deducció natural

#			Regles
1	$P \rightarrow Q$		Р
2	R→S		Р
3	$(S \land Q) \rightarrow T$		Р
4		P∧R	Н
5		Р	E 🔨 4
6		R	E 🔨 4
7		Q	E → 1, 5
8		S	E → 2, 6
9		S∧Q	I \Lambda 7, 8
10		Т	E → 3, 9
11	$(P \land R) \rightarrow T$		I → 4, 10

Raonament

1	P∨Q	Premissa
2	$\neg P \rightarrow Q$	Conclusió

Declaracions

• Àtoms: P, Q

Deducció natural

#			Regles
1	PVQ		Р
2		¬P	Н
3		Q	SD 1, 2
4	$\neg P \rightarrow Q$		I → 2, 3

Raonament

1	$P \rightarrow T$	Premissa
2	$S \rightarrow \neg R$	Premissa
3	P ∧ (Q ∨R)	Premissa
4	$T \wedge (S \rightarrow Q)$	Conclusió

Declaracions

• Àtoms: P, Q, R, S, T

Deducció natural

#					Regles
1	$P \rightarrow T$				Р
2	$S \rightarrow \neg R$				Р
3	P∧ (Q∨R)				Р
4	Р				E ∧ 3
5	Т				E → 1, 4
6	QVR				E ∧ 3
7		Q			Н
8			S		Н
9			Q		It 7
10		$S \rightarrow Q$			I → 8, 9
11		R			Н
12			S		Н
13				¬Q	Н
14				¬R	E → 2, 12
15				R	lt 11
16			¬ ¬Q		I 🗝 13, 14, 15
17			Q		E ¬ 16
18		$S \rightarrow Q$			I → 12, 17
19	$S \rightarrow Q$				E V 6, 10, 18
20	$T \land (S \rightarrow Q)$				I 🔨 5, 19

Raonament

1	$A \lor B \rightarrow (C \rightarrow \neg D)$	Premissa
2	$\neg A \rightarrow C$	Premissa
3	$A \lor C \rightarrow \neg (B \land A)$	Premissa

Declaracions

• Àtoms: A, B, C, D

Deducció natural

#					Regles
1	$A \lor B \rightarrow (C \rightarrow \neg D)$				Р
2	$\neg A \rightarrow C$				Р
3	$A \lor C \rightarrow \neg (B \land A)$				Р
4		В			Н
5			D		Н
6			A∨B		I V 4
7			$C \rightarrow \neg D$		E → 1, 6
8				С	Н
9				¬D	E → 7,8
10				D	It 5
11			¬С		I ¬ 8, 9, 10
12				¬А	Н
13				С	E → 2, 12
14				¬С	lt 11
15			$\neg \neg A$		I 🗝 12, 13, 14
16			Α		E ¬ 15
17			AVC		I ∨ 16
18			¬ (B ∧ A)		E → 3, 17
19			ВЛА		I ∧ 4, 16
20		¬D			I 🗝 5, 18, 19
21	$B \rightarrow \neg D$				I → 4, 20

Raonament

1	$\forall x (A(x) \rightarrow \exists y (B(y) \land C(x, y)))$	Premissa
2	$\neg \exists z (B(z)) \rightarrow \neg \exists t (A(t))$	Conclusió

Declaracions

Predicats: A, B, C Variables: x, y, z, tConstants: a, b

Deducció natural

#				Regles
1	$\forall x (A(x) \rightarrow \exists y (B(y) \land C(x, y)))$			Р
2		¬∃z (B(z))		Н
3			∃t (A(t))	Н
4			A(a)	E 🗏 3
5			$A(a) \rightarrow \exists y (B(y) \land C(a, y))$	E ♥ 1
6			∃y (B(y) ∧ C(a, y))	E → 4, 5
7			B(b) ∧ C(a, b)	E∃6
8			B(b)	E ^ 7
9			∀z (¬B(z))	$\neg \exists x A(x) = \forall x \neg A(x) 2$
1 0			¬ B(b)	Ε ∀ 9
1		¬∃t (A(t))		I ¬ 3, 8, 10
1 2	$\neg \exists z (B(z)) \rightarrow \neg \exists t (A(t))$			I → 2, 11

Raonament

1	$\forall x (\exists y R(x, y) \rightarrow P(x) \lor Q(x))$	Premissa
2	¬∃x (Q(x) ∧∃yR(x, y))	Premissa
3	∃xR(a, x)	Premissa
4	P(a)	Conclusió

Declaracions

Predicats: R, P, QVariables: x, yConstants: a

Deducció natural

#		Regles
1	$\forall x (\exists y R(x, y) \rightarrow P(x) \lor Q(x))$	Р
2	¬∃x (Q(x) ∧∃yR(x, y))	Р
3	∃xR(a, x)	Р
4	$\forall x \neg (Q(x) \land \exists yR(x, y))$	$\neg \exists x A(x) = \forall x \neg A(x) 2$
5	¬ (Q(a) ∧ ∃yR(a, y))	E ♥ 4
6	¬Q(a) ∨ ¬∃yR(a, y)	ED: ¬(A ∧ B) = ¬A ∨ ¬B 5
7	$\exists y R(a, y) \rightarrow P(a) \lor Q(a)$	E ♥ 1

8	∃yR(a, y)	$\exists x A(x) = \exists y A(y) 3$
9	P(a) ∨Q(a)	E → 7, 8
10	¬ Q(a)	SD 6, 8
11	P(a)	SD 9, 10

Raonament

1	$\exists x Q(x) \longrightarrow \forall x \exists z (S(x) \longrightarrow P(z) \land W(x, z))$	Premissa
2	$\forall y (P(y) \rightarrow \neg W(c, y))$	Premissa
3	S(c)	Premissa
4	¬ ∃xQ(x)	Conclusió

Declaracions

Predicats: P, Q, R, S, W
Variables: x, y, z
Constants: c, b

Deducció natural

#			Regles
1	$\exists x Q(x) \longrightarrow \forall x \ \exists z \ (S(x) \longrightarrow P(z) \ \land W(x, z))$		Р
2	$\forall y (P(y) \rightarrow \neg W(c, y))$		Р
3	S(c)		Р
4		∃xQ(x)	Н
5		$\forall x \exists z (S(x) \rightarrow P(z) \land W(x, z))$	E → 1, 4
6		$\exists z (S(c) \rightarrow P(z) \land W(c, z))$	E ∀ 5
7		$S(c) \rightarrow P(b) \land W(c, b)$	E∃6
8		P(b) ∧ W(c, b)	E → 7, 3
9		$P(b) \rightarrow \neg W(c, b)$	E∀ 2
10		P(b)	E ∧ 8
11		¬ W(c, b)	E → 9, 10
12		W(c, b)	E ∧ 8
13	¬ ∃xQ(x)		I ¬ 4, 11, 12

Passar a enunciat

Raonament

1	$\exists x (P(x) \land \forall y (Q(y) \longrightarrow R(y, x)))$	Premissa
2	¬ ∃xQ(x)	Premissa
3	∃x ¬ P(x)	Conclusió

Domini

Pas de fórmules a enunciats

Premissa 1: $\exists x (P(x) \land \forall y (Q(y) \rightarrow R(y, x)))$

_			
1.	$\exists x (P(x) \land \forall y (Q(y) \rightarrow R(y, x)))$		
2.	$\exists x (P(x) \land ((Q(1) \rightarrow R(1, x)) \land (Q(2) \rightarrow R(2, x))))$	Eliminar quantificador universal	Correcte
3.	$(P(1) \land ((Q(1) \rightarrow R(1, 1)) \land (Q(2) \rightarrow R(2, 1)))) \lor (P(2) \land ((Q(1) \rightarrow R(1, 2)) \land (Q(2) \rightarrow R(2, 2))))$	Eliminar quantificador existencial	Correcte
4.		Enunciat	Correcte

Correcte

Premissa 2: $\neg \exists xQ(x)$

1.	¬ ∃хQ(х)		
2.	¬ (Q(1) ∨Q(2))	Eliminar quantificador existencial	Correcte
3.		Enunciat	Correcte

Correcte

Conclusió: $\exists x \neg P(x)$

1.	∃x ¬P(x)		
2.	¬P(1) ∨ ¬P(2)	Eliminar quantificador existencial	Correcte
3.		Enunciat	Correcte

Correcte

Pregunta

El raonament de l'exercici anterior no és vàlid. Demostreu-ho. [Cal haver resolt correctament l'exercici anterior per a puntuar en aquest]

Resposta

Per demostrar que el raonament no és correcte n'hi ha prou amb trobar un contraexemple, això és una interpretació que faci certes les premisses però falsa la conclusió

Per a fer falsa la conclusió ¬ P(1) V ¬ P (2) cal que ambdós disjuntands siguin falsos. Això s'aconsegueix amb: P(1) = P(2) = V

Per a per a fer certa la segona premissa \neg (Q(1) \lor Q(2)) és necessari que ambdós disjuntands siguin falsos: **Q(1)=Q(2)=F** Pel que fa a la primera premissa (P(1) \land (Q(1) \rightarrow R(1, 1)) \land (Q(2) \rightarrow R(2, 1))) \lor (P(2) \land (Q(1) \rightarrow R(1, 2)) \land (Q(2) \rightarrow R(2, 2)))) veiem que totes les parts de la

forma Q(_) → ... són certes atès que tots els antecedents són falsos. Això redueix l'enunciat a P(1) ∨ P(2) i aquest enunciat ja és cert amb els valors de P(_) donats abans.

Pel que fa als valors de R(_,_) aquests poden ser qualssevol.

Així, una interpretació que és un contraexemple del raonament (i per tant una demostració de la seva incorrectesa) és:

 $<\{1,2\}, \{P(1)=P(2)=V, Q(1)=Q(2)=F, R(1,1)=V, R(2,1)=V, R(1,2)=V, R(2,2)=V\}, \emptyset > 0$