Chapter 2

CALCULUS OF FUNCTIONS OF MORE THAN ONE VARIABLE

Objectives:

At the end of this chapter, you should be able to

- Find the domain and range,
- Perform operations,
- Sketch the graph,
- Find the limit,
- Obtain the partial derivative,

of a function of two or more variables.

RECALL:

Cartesian Coordinate System

$$R^2 = \{(x, y) | x, y \in R\}$$

Distance between two points

$$J(x_1, y_1), P(x_2, y_2) \in \mathbb{R}^2$$

$$d(J,P) = |\overline{JP}|$$

$$= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Definition.

The set of all ordered n-tuples of real numbers is called the n-dimensional number space .

NOTATION:
$$R^n$$

Point:
$$(x_1, x_2, x_3, ..., x_n)$$

on-dimensional number space

$$R^{n} = \{(x_{1}, x_{2}, ..., x_{n}) | x_{i} \in R\}$$

Distance between two points

$$J(x_1, x_2, ..., x_n), P(y_1, y_2, ..., y_n) \in \mathbb{R}^n$$

$$d(J,P) = |\overline{JP}| =$$

$$\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+...+(x_n-y_n)^2}$$

In particular, when n=3

RECALL:

A function is a set of ordered pairs, such that no two distinct ordered pairs have the same first element.

Definition

A function of n variables is a set of ordered pairs of the form (P, w), such that no two distinct ordered pairs have the same first element.

REMEMBER:
$$P \in \mathbb{R}^n$$
, $f(P) = w$ $w \in \mathbb{R}$

Definition

If
$$f(P) = w$$
 , then

DOMAIN:

the set of all admissible points $\,P\,$

RANGE:

the set of all resulting values of W

$$1. \ f(x,y) = \frac{x}{y}$$

DOMAIN: $\{(x,y)|y\neq 0\}$

$$2. f(x,y) = \ln x + \ln y$$

DOMAIN: $\{(x,y)|x,y>0\}$

3.
$$f(x, y, z) = \sqrt{25 - x^2 - y^2 - z^2}$$

DOMAIN:
$$\{(x, y, z) | x^2 + y^2 + z^2 \le 25 \}$$

4.
$$f(x, y, z) = \ln(z - x^2 - y^2)$$

DOMAIN:
$$\{(x, y, z) | z - x^2 - y^2 > 0\}$$

$$\mathbf{5.} \ f\left(x,y,z\right) = y\sqrt{xz}$$

DOMAIN:
$$\{(x, y, z) | xz \ge 0\}$$

Let
$$f(x,y) = e^{y} \cos x$$
$$g(x,y,z) = \ln(xy-z^{2})$$

1.
$$f\left(\frac{\pi}{3},0\right) = e^0 \cos\frac{\pi}{3} = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

2.
$$g\left(1,1,\frac{1}{4}\right) = \ln\left(1 - \frac{1}{4^2}\right) = \ln\frac{15}{16}$$

= $\ln 15 - \ln 16$

OPERATIONS on FUNCTIONS

Recall

• The composite function $(f \circ g)(x)$

$$(f \circ g)(x) = f(g(x))$$

DOMAIN:

$$\left\{ x \middle| x \in D_g \cap g\left(x\right) \in D_f \right\}$$

$$\bullet \mathbf{Let} \ f(t) = \sin t$$

$$g(x) = \sqrt{x-1}$$

$$(f \circ g)(x) = f(g(x)) = \sin \sqrt{x-1}$$

DOMAIN:
$$\left\{ x \middle| x \in D_g \cap g\left(x\right) \in D_f \right\}$$

$$= \left\{ x \middle| x \in D_g \cap g(x) \in R \right\}$$

$$= \left\{ x \middle| x \in D_g \right\} = D_g = \left[1, +\infty \right)$$

Definition

If f is a function of a single variable and g is a function of n variables, the composite function $(f \circ g)$ is the function of n variables defined by

$$(f \circ g)(x_1, x_2, ..., x_n) = f(g(x_1, x_2, ..., x_n))$$

DOMAIN:

$$\left\{ P\left(x_1, x_2, \dots, x_n\right) \middle| P \in D_g \cap g\left(P\right) \in D_f \right\}$$

o Let
$$f(t) = e^t$$

 $g(x, y, z) = \ln(xy - z^2)$

$$f \circ g$$

DOMAIN:
$$\left\{ P(x, y, z) \middle| P \in D_g \cap g(P) \in D_f \right\}$$

$$= \left\{ P(x, y, z) \middle| P \in D_g \cap g(P) \in R \right\}$$

$$= \left\{ P(x, y, z) \middle| P \in D_g \right\} = D_g$$

$$= \left\{ \left(x, y, z \right) \middle| xy - z^2 > 0 \right\}$$

o Let
$$f(t) = e^{t}$$
$$g(x, y, z) = \ln(xy - z^{2})$$

$$f \circ g$$

$$(f \circ g)(x, y, z) = f(g(x, y, z))$$

$$= e^{\ln\left(xy - z^2\right)}$$

$$= xy - z^2$$

Determine the domain and the range of each function.

$$1. \quad f(x,y) = \sin(ye^{-x})$$

2.
$$g(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 1}}$$

3.
$$h(x, y, z) = \sqrt{9 - x^2 - y^2}$$

$$1. \quad f(x,y) = \sin(ye^{-x})$$

Domain: R^2

Range: $\begin{bmatrix} -1,1 \end{bmatrix}$

2.
$$g(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 1}}$$

Domain:
$$\{(x,y)|x^2+y^2>1\}$$

Range: $(0,+\infty)$

3.
$$h(x, y, z) = \sqrt{9 - x^2 - y^2}$$

Domain:
$$\{(x, y, z) | x^2 + y^2 \le 9 \}$$

Range: [0,3]

GRAPHS of FUNCTIONS

Definition

If f is a function of n variables, then the graph of f is the set of all points

$$\left(x_1,x_2,...,x_n,w\right)$$
 in R^{n+1} for which $\left(x_1,x_2,...,x_n\right)\in D_f$ and $w=f\left(x_1,x_2,...,x_n\right)$.

Domain:

$$f(x,y) = \sqrt{25 - x^2 - y^2}$$

Definition

The set of all points in R^2 where f(x,y) has a constant value k is called a level curve of f.

The set of all points in R^3 where f(x,y,z) has a constant value c is called a *level* surface of f.

Defintion

A set of level curves or level surfaces obtained by considering different values of k is called a contour map.

Identify and sketch a contour map of the given function.

$$1. f(x, y) = \frac{y}{x^2}$$

Range: R

$$f(x,y) = k \Rightarrow \frac{y}{x^2} = k \Rightarrow y = kx^2$$

That is, the level curve of f is a parabola if $k \neq 0$, line if k = 0.

$$f(x,y) = \frac{y}{x^2} = k \implies y = k x^2$$

$$k=0 \implies y=0$$
.

$$k=1 \implies y=x^2$$
.

$$k = -1 \implies y = -x^2.$$

A sketch of the graph of f is shown below:

A sketch of the graph of f is shown below:

2. $g(x, y) = y^2 - x^2$ $g(x, y) = k \implies y^2 - x^2 = k$

Range: R

That is, the level curve of f is a vertical hyperbola if k>0, is a horizontal hyperbola if k<0, are 2 intersecting lines if k=0.

$$g(x,y)=k \implies y^2-x^2=k$$

$$k=0 \Rightarrow y=\pm x$$
.

$$k=1 \Longrightarrow y^2 - x^2 = 1$$

$$k = -1 \Rightarrow y = -x^2$$
.

A sketch of the graph of f is shown below:

$$g(x,y) = y^2 - x^2$$

A sketch of the graph of f is shown below:

$$g(x,y) = y^2 - x^2$$

Range: R

$$f(x, y, z) = 3x - 2y + z$$

$$f(x, y, z) = c \implies 3x - 2y + z = c$$

That is, the level surface of f is a plane.

$$f(x, y, z) = c \implies 3x - 2y + z = c$$

$$c = 0 \implies 3x - 2y + z = 0$$

$$c = 6 \Rightarrow 3x - 2y + z = 6$$

$$c = -6$$

$$\Rightarrow 3x - 2y + z = -6$$

END