Université de Blida 1, Faculté des Sciences Département de Mathématiques Master I(RO et St)

Module: Plans d'expériences(S2)

Examen

Question de cours

Soit e un point du domaine d'étude, la réponse prédite au point e est donnée par $\hat{y} = e\hat{A}$,

- 1. Montrer que $Var(\hat{y}) = \sigma^2 e^t (XX)^{-1} e(où \sigma^2)$ est l'erreur expérimentale). En déduire la fonction d'erreur de prédiction au point e.
- 2. Cités les différentes parties qui s'influent sur la précision sur les réponses prédites \hat{y} .
- 3. Pour un plan factoriel complet à deux niveaux et pour deux facteurs, déterminer sa fonction d'erreurs de prédiction. En déduire sa forme géométrique.
- 4. Donner la définition du critère d'iso variance par rotation puis donner une illustration géométrique pour ce critère.

Exercice 1

Soit à étudier trois facteurs x^1, x^2 et x^3 par un plan de box-behnken,

- Donner le domaine expérimental pour ces trois facteurs.
- Donner la matrice d'expériences, le modèle mathématique et la matrice des effets. En déduire la matrice d'information.

Exercice 2

Considérons le plan d'expériences de type composite, pour deux facteurs,

- 1. Donner le domaine expérimental en précisant ses différentes parties.
- 2. Quel est le type du modèle à postuler. En déduire la matrice des effets.
- 3. Déterminer la valeur de paramètre α pour que le plan respectant le critère d'iso variance par rotation (justifier votre réponse).

Exercice 3

Considérons le plan d'expériences de douze points expérimentaux représentés par le schémas suivant:

- 1. Donner le nom du schémas ci dessus.
- 2. Donner la matrice d'expériences regroupant les douze points,
- 3. Quelle est le type de modèle qu'on peut postuler, justifier votre réponse puis donner ce modèle.
- **4.** Déterminer la matrice des effets. En déduire la matrice d'information.
- 5. Préciser la condition pour que la plan respecte le critère d'iso variance par rotation. Puis monter que ce critère sera respecté si seulement si: $\beta = (4 + 4\alpha^4)^{\frac{1}{4}}$.

Correction de l'examen

Questions de cours

1. On a: $\hat{y}_{u} = {}^{t}e_{u}\hat{A}$,

La variance sur les réponses prédites:

$$\operatorname{var}(\hat{y}_u) = \operatorname{var}({}^t e_u \hat{A})$$

Dans cette relation la matrice ligne te_u dépend des coordonnées d'un point du domaine d'étude et il a été admis par hypothèse que les coordonnées des points expérimentaux étaient parfaitement connues et n'introduisaient pas d'erreurs. On peut donc sortir le vecteur modélisé du point u des parenthèses :

$$\operatorname{var}(\hat{y}_u) = {}^t e_u \operatorname{var}(\hat{A}) e_u$$

Dans cette expression la variance de \hat{A} est connue et l'on sait qu'elle est égale à :

$$\operatorname{var}(\hat{A}) = \sigma^2({}^{t}XX)^{-1}$$

La variance de la réponse calculée au point u est donc :

$$\operatorname{var}(\hat{y}_u) = {}^{t}e_u \quad \sigma^2({}^{t}XX)^{-1} e_u \qquad \boxed{1}$$

Fonction d'erreur de prédiction

$$d^{2}(\hat{y}_{u}) = {}^{t}e_{u}({}^{t}XX)^{-1}e_{u}$$
 0.5

En prenant la racine carrée de la fonction de variance, on obtient la fonction d'erreur de prédiction :

$$d(\hat{y}_u) = [{}^{t}e_u ({}^{t}XX)^{-1}e_u]^{\frac{1}{2}}$$

- 2. On constate que cette erreur sur la réponse calculée (ou réponse prédite) dépend de quatre grandeurs :
 - l'erreur expérimentale sur les réponses mesurées

- la position du point u dans le domaine d'étude
- l'ensemble des points qui ont été utilisés pour établir les coefficients du modèle, c'est à dire le plan d'expériences lui même

1

- le modèle postulé choisi pour interpréter les résultats (par la matrice de calcul des coefficients et la variance des résidus)
 - **3.** Pour un plan factoriel complet à 2 niveaux:

$$d^{2}_{(\hat{y})} = \sqrt{(1 \quad x_{1} \quad x_{2} \quad x_{1}x_{2}) \times \frac{1}{4}I \times (1 \quad x_{1} \quad x_{2} \quad x_{1}x_{2})^{t}}$$

$$d^{2}_{(\hat{y})} = \frac{1}{2}\sqrt{(1 + x_{1}^{2} + x_{2}^{2} + (x_{1}x_{2})^{2})}$$

La forme de cette fonction est parabolique. (0.5

4. Critère d'iso variation par rotation

On désire que les réponses calculées avec le modèle issu du plan d'expériences aient une erreur de prévision identique pour des points situés à la même distance du centre du domaine d'étude. Dans ce cas on parle de plan iso variant par rotation (rotable).

Exercice 1

1. Pour trois facteurs, on a un cube. Le cube possède 12 arêtes et donc le plan à 12 essais. On ajoute 3 essais au centre du domaine d'étude. On obtient au total 15 essais (Figure 4.9)

2.

a. Matrice d'expériences:

Plan de Box-Behnken pour trois facteurs

Essai N°	Facteur 1	Facteur 2	Facteur 3	
1	-1	-1	0	
2	1	-1	0	
3	-1	1	0	
4	1	1	0	
5	-1	0	-1	
6	1	0	-1	
7	-1	0	1	
8	1	0	1	
9	0	-1	-1	
10	0	1	-1	
11	0	-1	1	
12	0	1	1	
13 à 15	0	0	0	

b. Le modèle est de deuxième degré avec interaction: (0.5

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2$$

c. Matrice des effets:

$${}^{t}XX = \begin{pmatrix} 1 & -1 & -1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 & -1 & 0 & 0 & 1 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & 1 & 1 \\ 1 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

<u>.</u>

d. Matrice d'information

Cette matrice est calculée à partir de la matrice de calcul 'XX . Pour trois facteurs on a

Exercice 2

:

1. Le domaine d'étude pour un plan composite à 2 facteurs est:

0.5

Les différentes parties d'un plan composite sont:

- a. plan factoriel à deux niveaux par facteur analogue à ceux que nous avons précédemment décrits
- b. plan en étoile où tous les points sont situés à la même distance du centre de domaine d'étude
- c. on réalise au moins un essai au centre du domaine expérimental. Ces points sont importants et ils ont plusieurs rôles :
- 2. Le modèle est deuxième de degré.

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_{12} x_1 x_2 + a_{11} x_1^2 + a_{22} x_2^2$$
 0.5

3. Matrice d'expériences et d'effets:

Matrice d'expériences d'un plan composite pour deux facteurs

Essai N°	Facteur 1	Facteur 2	
1	-1	-1	
2	1	-1	
3	-1	1	
4	1	1	
5	-α	0	0.5
6	α	0	
7	0	-α	
8	0	α	
9 à 11	0	1	

Pour deux facteurs la matrice des effets X est une matrice (11,6) puisqu'il y a 11 expériences et 6 coefficients dans le modèle postulé :

La matrice d'information est calculée à partir de la matrice de calcul 'XX Pour 2 facteurs on a :

$$^{t}XX = \begin{pmatrix} 11 & 0 & 0 & 0 & 4 + 2\alpha^{2} & 4 + 2\alpha^{2} \\ 0 & 4 + 2\alpha^{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 + 2\alpha^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 4 + 2\alpha^{2} & 0 & 0 & 0 & 4 + 2\alpha^{4} & 4 \\ 4 + 2\alpha^{2} & 0 & 0 & 0 & 4 & 4 + 2\alpha^{4} \end{pmatrix}$$

D'une manière générale, la matrice d'information peut s'écrire :

$$^{t}XX = \begin{pmatrix} N & 0 & 0 & 0 & n_{f} + 2\alpha^{2} & n_{f} + 2\alpha^{2} \\ 0 & n_{f} + 2\alpha^{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & n_{f} + 2\alpha^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & n_{f} & 0 & 0 \\ n_{f} + 2\alpha^{2} & 0 & 0 & 0 & n_{f} + 2\alpha^{4} & n_{f} \\ n_{f} + 2\alpha^{2} & 0 & 0 & 0 & n_{f} & n_{f} + 2\alpha^{4} \end{pmatrix}$$

Pour le critère Iso variance par rotation les éléments de la matrice d'information doivent satisfaire la relation :

$$3n_f = n_f + 2\alpha^4$$

$$\Rightarrow 2n_f = 2\alpha^4$$

$$\Rightarrow \alpha = (n_f)^{\frac{1}{4}}$$

Exercice 3:

- 1. C'est le domaine expérimental.
- 2. La matrice d'expériences correspondante est représentée par le tableau suivant:

Essai N°	Facteur 1	Facteur 2	
1	-1	-1	
2	1	-1	
3	-1	1	
4	1	1	
5	$-\alpha$	-α	
6	α	$-\alpha$	
7	$-\alpha$	α	
8	α	α	
9	$-\beta$	0	
10	β	0	
11	0	$-\beta$	
12	0	$-\beta$ β	
13	0	0	

3. Le modèle est de deuxième degré car dans le plan nous avons 12 points donc on peut déterminer les 6 coefficients situés dans le modèle à deux degré.

4. la matrice des effets est :

Ecrivons la matrice d'information ${}^{t}XX$:

$$\begin{pmatrix} 13 & 0 & 0 & 0 & 4+4\alpha^2+2\beta^2 & 4+4\alpha^2+2\beta^2 \\ 0 & 4+4\alpha^2+2\beta^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4+4\alpha^2+2\beta^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4+4\alpha^4 & 0 & 0 \\ 4+4\alpha^2+2\beta^2 & 0 & 0 & 0 & 4+4\alpha^4+2\beta^4 & 4+4\alpha^4 \\ 4+4\alpha^2+2\beta^2 & 0 & 0 & 0 & 4+4\alpha^4 & 4+4\alpha^4+2\beta^4 \end{pmatrix}$$

5. Pour que le plan satisfasse le critère d'isovariance par rotation il faut comme pour les plans composites que nous ayons la relation suivante :

$$(n_f + n_f \alpha^4) \cdot 3 = n_f + n_f \alpha^4 + 2\beta^4$$

soit

$$2\beta^4 = 2(n_f + n_f \alpha^4)$$

ou

$$\beta = \left(n_f + n_f \alpha^4\right)^{\frac{1}{4}}$$