Machine Learning in <u>Medicine</u>

Muhammad Owais Bawany Felix Singerman

Machine Learning in Medicine

Author of this research paper is:

Rahul C. Deo, MD, PHD

Agenda

- 1. Machine Learning: Supervised vs Unsupervised Learning
- 2. The Learning problem
- Illustrative Examples of Machine Learning (Supervised)
 - Supervised Learning learning from Forests & Trees
 - C-Path
 - Attractor metagenes in Cancer and bake-offs in ML
- 4. Illustrative Examples of Machine Learning (Supervised)
 - in HFpEF Towards Precision Medicine?
- 5. Discussion summary

Machine Learning

Scientific discipline that focuses on how computers learn from data

- Subclassified into categories such as supervised and unsupervised learning
 - Tasks physicians can already do well vs learning those where physicians have had limited success

Supervised vs Unsupervised Learning

		Supervised	Unsupervised	Comments
1	Predicting known output or target	✓	X	 Unsupervised Learning is used for Analysis
2	Classification and regression	✓	X	 Unsupervised Learning - Clustering, density estimation and dimensionality reduction
3	Input data is labeled	✓	X	
4	Uses Training dataset	/	X	Uses just input dataset

THE LEARNING PROBLEM

Machine learning algorithms have had limited presence in clinical practice

Supervised Learning Problem

- Want to build an accurate model to discriminate between classes.
 - → Finding predictors or features (Feature Selection)
 - Issues and Solutions
 - → Find function that relates <u>values of a feature</u> to its <u>prediction</u>
 - Which function to work with?

Feature Selection - choice of functional class

Type of functions

- Logistic regression model generalized linear model
- 2. Decision trees mutually exclusive causes?
- Neural networks
- 4. Support Vector Machines
- 5. Prototype methods k-nearest neighbours

Feature Selection

The Learning Problem

- Free Parameters
- Separation of tasks
- Estimating training error
- Collecting requisite inputs
- Test data vs training data
- Complexity vs generalizability
- Best solution?
- How much data?

Supervised Learning — Learning From Forests and Trees

- Provide sufficient flexibility to minimize training error
- Allow generalization to new data sets <u>AND</u>
- In a computationally efficient wav

Innovative and highly effective algorithm - constructed from trees - regularization - bagging - subset of features at each node

RSF performance was actually inferior compared to Framingham Risk Score, despite fewer variables & a more complex model for RSF

Attractor Metagenes in Cancer and Bake-Offs in Machine Learning

- Netflix \$1,000,000 bake-off
- Rare in medicine
- Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge
 - Lessons Learned
- Attractor Metagenes

Attractor Metagenes in Cancer

Attractor Metagenes in Cancer

Attractor Metagenes in Cancer

Unsupervised Learning in HFpEF

- Classifying HFpEF patients seeking to find internal structure in the data.
- Instances (patients) characterized by a feature vector & value to their attributes (age, sex,..)
- Matrix Representation to find instances (patients) similar to one another
- Agglomerative hierarchical clustering/K-medoids clustering
 - Sparse Coding

Unsupervised Learning in HFpEF

Conclusion

- Application of ML to clinical datasets robust risk models/redefined patient classes
- Predicting outcome from diverse features/finding recurring patterns
- Limited clinical footprint of ML
 - Reluctance to completely entrust a Machine
 - Reimbursement and liability
 - Black-box nature of automated systems
- Reimbursement model integrated man-and-machine approach

QUESTIONS??

Q & A time

Thank You