

Autotuning Parallel Application in Heterogeneous Systems

João Alberto Trigo de Bordalo Morais

Supervisor:

Jorge Manuel Gomes Barbosa

Agenda

- Context
- Achieving the Highest Processing Power
- Problem
- Possible Solution
- Solution's Approach
- Solution's Validation
- Solution's Methodology
- Impact/Goals
- Work plan

Context (1)

Context (2)

Context (3)

Achieving the Highest Processing Power

Using Computers' Heterogeneous Components

Using Code Parallelization

Heterogeneous Components

Code Parallelization

Kremlin

• Find possible paralized regions

Kismet

• Parallel speedup estimation

Argo

 autotuning framework to dynamically adapt applications in multicore architectures

Problem

Heterogeneous System

Possible Solution

Solution's Aproach (1)

Autotuner

Solution's Aproach (2)

Kremlin

- Detect Possible Parallized code
- Avaliation of its Speed

Expert Parallelization

Manual Code modifications

Compare best results
+
Find Autotunning's
Parameters

Solution's Methodology

Solution's Validation (1)

2 use cases:

• A biopharmaceutical HPC application for accelerating drug discovery;

&

• A self-adaptive navigation system to be used in smart cities

Solution's Validation (2)

Evaluation Metrics

Energy Consuming

Execution Time

Memory Accesses

Processing Power

Impact/Goals

Highest Performance

Less Energy Consumed

Developers' Time Saved

Work Plan

- From 13/2 until 16/6
- 5 distinct phases

