Étudier le mouvement des satellites.

I. Mouvement circulaire des planètes et des satellites

On étudie le mouvement du centre P d'une planète de masse m_p autour du Soleil de centre S de masse M_S dans le référentiel héliocentrique supposé galiléen.

Dans ce cas, une seule force $\overrightarrow{f_{S/P}}$ s'exerce sur le système:

$$\overrightarrow{f_{S/P}} = m_p \times \overrightarrow{a_P}$$

$$= G \times \frac{M_S \times m_p}{d^2} \overrightarrow{u}$$

avec \overrightarrow{u} vecteur unitaire allant de P à S, G la constante gravitationnelle et d la distance entre P et S.

En appliquant la deuxième loi de Newton, on a:

$$\overrightarrow{a_P} = G \times \frac{M_S}{d^2} \overrightarrow{u}$$

$$=\frac{G\times M_S}{d^2}\overrightarrow{N}$$

A) Mouvement circulaire uniforme

Comme la trajectoire décrite est un cercle, on se place dans un repère de Frenet centré sur P, alors:

$$\overrightarrow{a_P} = \frac{dv}{dt}\overrightarrow{t} + \frac{v^2}{d}\overrightarrow{N}$$

Or $\overrightarrow{a_P}$ est centripète, donc $\frac{dv}{dt}$ est nul, $\Rightarrow \frac{d\overrightarrow{t}}{dt} = \overrightarrow{0} \Rightarrow v = \text{constante}$.

$$\overrightarrow{a_P} = \frac{v^2}{d} \overrightarrow{N}$$

B) Expression de la vitesse

On a:

$$v = \sqrt{G \frac{M_S}{d}}$$

C) Période de révolution

Définition : La période de révolution T (en s) d'une planète autour du Soleil est la durée que met la planète pour faire un tour soit : $2\pi r$.

On a:

$$T = 2\pi \sqrt{\frac{r^3}{G \times M_s}}$$

II. Les satellites géostationnaires

Un satellite géostationnaire est immobile dans le référentiel terrestre, il reste à la verticale du même point du globe.

Dans le référentiel géocentrique :

- Son orbite est circulaire et est dans le plan équatorial de la terre.
- Sa période de révolution est de 86 164 s (un jour sidéral) et le satellite tourne dans le même sens que la Terre.

Il existe aussi les satellites dits géosynchrones, i.e., qu'ils reviennent chaque jour à la même position que la Terre. Cela se produit si le satellite est à une certaine altitude et si sa période est de 86 164 s.

III - Lois de Kepler

A) Loi des orbites - 1ère loi de Kepler

Dans le référentiel héliocentrique, la trajectoire du centre d'une planète est une ellipse dont l'un des foyers est le centre du soleil S.

B) Loi des aires - 2ème loi de Kepler

Le rayon-vecteur reliant le centre d'une planète au centre du soleil balaie des aires égales pendant des durées égales.

Ainsi: Une planète P a une vitesse plus grande lorsqu'elle est proche du soleil, et une vitesse plus faible lorsqu'elle est éloignée du soleil.

La vitesse de la planète P est donc maximale à la périphelie (distance minimale entre P et S) et minimale à l'aphelie (distance maximale entre P et S).

C) Loi des périodes - 3ème loi de Kepler

Dans le référentiel héliocentrique, on a:

$$\frac{T^2}{a^3} = k$$

où k est une constante, et a le demi-grand axe de l'ellipse.