# Requirements Analysis, *Modeling* and Specification

- ☐ Requirements Analysis, Modeling and Specification
- Problem
- ☐ Carving the Solution Space
- Prioritizing Requirements

### What is a *Model*?











### Requirements Analysis, Modeling & Specification



It is more important to understand the problem than the solution. [Albert Einstein]

"A problem unstated is a problem unsolved" Douglas Ross, 1977

From Sam Supakkul's presentation





©Lawrence Chung







©Lawrence Chung



# Problem = TO-BE - AS-IS

It is more important to understand the problem than the solution. [Albert Einstein]

A problem can be defined as the difference between things as *they are now* and things as *they are desired*.



# **Exercise:** Student Application Processing System

(AS-IS)

(Problem)

(TO-BE)

# A Problem Analysis Roadmap





### One Man's Ceiling is Another Man's Floor!

One Man's Problem is Another Man's Solution!

One Man's Floor is Another Man's Ceiling!

One Man's Solution is Another Man's Problem!

©Lawrence Chung

### Carving the Product Space

Requirements represent a compromise.



# Carving the Product Space

Requirements represent a compromise.

#### **Example**

E.g., Wired/Wireless phone& PCS



### What Is the Problem Behind the Problem?



List contributing causes to the identified problem. Keep asking "Why?" (expand each rib).

# Problem Analysis – Validating a Solution



List the reasons why the solution is the right solution. Keep asking "Why?" (expand each rib).

©Lawrence Chung

What is the problem of your project? Why is your solution the right solution?

# Representation of problems

fault tree diagram



# Representation of problems

fault tree diagram









- Clear relationships between siblings
  - AND/OR
- No relationship with
  - Goals
  - Alternatives





### But what if there are too many problems?

#### Pareto principle

#### In economics

The original observation was in connection with income and wealth. Pareto noticed that 80% of Italy's wealth was owned by 20% of the population. He then carried out surveys on a variety of other countries and found to his surprise that a similar distribution applied. [Wikipedia]

# Pareto effect Analysis



### Focus on Largest Contributors - Pareto's Law



Rank in order. Use the 80-20 Rule to focus on the top contributing causes to address the greatest portion of the problem.

What are in the 20% of the problem of your project?

### Requirements Prioritization

An Analytic Hierarchy Process (AHP) Approach [Karlsson & Ryan 1997]

```
Given n requirements,

Create n x n matrix

Compare each pair

entry (i, j)=

1 if i and j are of equal value
3 if i is slightly more preferred than j

5 if i is strongly more preferred than j

7 if i is very strongly more preferred than j

9 if i is extremely more preferred than j

entry (j, i) = 1/entry (l, j)
```

#### Estimate the eigenvalues

- Calculate the sum of each column
- Divide each entry by the sum of it's column
- Calculate the sum of each row
- Divide each row sum by n

This gives a value for a where circument based on estimated percentage of total value of the project

# Requirements Prioritization

#### An Analytic Hierarchy Process (AHP) Approach

#### **Example**

|    | r1  | r2  | r3 | r4  |
|----|-----|-----|----|-----|
| r1 | 1   | 1/3 | 2  | 4   |
| r2 | 3   | 1   | 5  | 3   |
| r3 | 1/2 | 1/5 | 1  | 1/3 |
| r4 | 1/4 | 1/3 | 3  | 1   |

normalize columns

|    | r1   | r2   | r3   | r4   |
|----|------|------|------|------|
| r1 | 0.21 | 0.18 | 0.18 | 0.48 |
| r2 | 0.63 | 0.54 | 0.45 | 0.36 |
| r3 | 0.11 | 0.11 | 0.09 | 0.04 |
| r4 | 0.05 | 0.18 | 0.27 | 0.12 |



| sum  | Sum/4 |
|------|-------|
| 1.05 | 0.26  |
| 1.98 | 0.50  |
| 0.34 | 0.09  |
| 0.62 | 0.16  |

<sup>\*</sup>Also should compute the consistency index, since the pairwise comparisons may be inconsistent

# Using "Shall" and Related Words

- "shall" indicates a binding provision, i.e., one that must be implemented by the specification users.
- To state non-binding provisions, use "should" or "may."
- Use "will" to express a declaration of purpose (e.g., "The government will furnish ...") or to express future tense

# Appendix

### D, S achieves R to solve P in D

omain/World/Enterprise/Business

D, Problem => Requirements => Specification





### D, S achieves R to solve P in D

Define Boundaries for the Enterprise/Business and the Solution



### D, S achieves R to satisfy/satisfice G (solve P) in D

 $M^G$ ,  $Prog^G \mid = S^G$ ;  $S^G$ ,  $D^G \mid = R^G$ ;  $R^G$ ,  $D^G \mid = G$ ;  $(G \mid = \neg P) \lor (G \mid \sim \neg P)$ 

#### Exercise

#### **An Application Processing System**

- D: include a functional model, a workflow model, an informational model, a BM
- P: include complaints (both external and internal), weaknesses, etc.
- **G**: include wants and needs countering **P** both hard and soft
- R: include an interaction model between D and S
- S: include a functional model, an informational model, a behavioral model



### Modeling is Everywhere

#### Problem Elicitation

exploratory, brain-storming, open-ended thinking elaboration of unclear goals and needs identification of sources, views, needs & wants Wicked Problem

Problem Analysis

process of understanding real-world problems, how they relate to stakeholder needs, and proposing solutions to meet those needs.



- determination of "real" users (<= identification of sources) (e.g., stratification during sampling, questionnaires & interviewing) customers, tellers, other employees
- clarification of goals (e.g, Goal-directed approach)
- detecting differences in views and integrating them, & recording rationale
- resolving a mismash of wants and needs
- prioritization of defects
- understanding (all constraints on the) solutions and evaluating them
- risk analysis (e.g., scenarios)
- Problem Specification
  - choose formal notations
  - create a formal model of the requirements

#### **Modeling is NOT Perfect**

[adapted from Jackson, 1995, p124-5]

- There will always be phenomena in the model that are not present in the application domain
- There will always be phenomena in the application domain that are not in the model
- Perfecting the model is not always a good use of your time

One Man's Ceiling is Another Man's Floor!

### Stakeholders in the Vision Document

Stakeholder - An individual who is materially affected by the outcome of the system or the project(s) producing the system.

| )                                                  |                                                                                                                                                                                         |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stakeholder                                        | Registrar                                                                                                                                                                               |
| Representative                                     | Kelly Hansen                                                                                                                                                                            |
| Description                                        | User                                                                                                                                                                                    |
| Type                                               | The Registrar is typically a college-educated professional with full computer skills. The Registrar is trained and experienced with the use of the current batch-oriented registration. |
| Responsibilities                                   | The Registrar is responsible for administering course registration for each school term. This includes supervising administrative and data entry personnel.                             |
| Success Criteria                                   | The registrar's primary responsibility will be maintaining student and professor databases, and opening/closing courses to registration.                                                |
|                                                    | The registrar's office will also be required to perform                                                                                                                                 |
| Involvement                                        | The registrar's primary responsibility will be maintaining student and professor databases, and opening/closing courses to registration.                                                |
| <mark>}                                    </mark> | The registrar's office will also be required to perform                                                                                                                                 |
| Deliverables                                       | Management reviewer – especially related to functionality and usability of features required by the Registrar staff.                                                                    |
| Comments/<br>Concerns                              | None ©Lawrence Chung                                                                                                                                                                    |

# Carving the Product Space



traceability

# Carving the Product Space

Requirements exist at many levels of abstraction, possibly with diff. terminology

