GETTING STARTED WITH BAYESIAN GLMM IN R, SAS, MPLUS, & WINBUGS

Objectives

- Brief intro to generalized linear mixed models (GLMM)
- Even briefer intro to Bayesian estimation of random effect models
- Intro to the MCMCglmm package in R
- Comparison of MCMCglmm and WinBUGS/OpenBUGS, Mplus, and SAS proc mcmc

Unpacking GLMM

- □ GLMM = GizedLM
 - Traditional General Linear Model (GLM)
 - $y_i = x_i'\beta + \varepsilon_i ; \quad \varepsilon_i \sim N(0, \sigma^2)$
 - $\blacksquare \mu_i = x_i' \beta$
 - General-ized LM (McCullagh & Nelder, 1989)
 - $\eta_i = x_i' \beta$
 - $g(\mu_i) = x_i'\beta$
 - $E(y_i) = \mu_i = g^{-1}(x_i'\beta)$; $y_i \sim exponential\ family$
 - $\operatorname{var}(y_i) = \frac{\phi V(\mu_i)}{w_i}$

Unpacking GLMM continued

- G-izedLM + random effects = GLMM
 - Mixes in some random effects with GizedLM fixed effects (Breslow & Clayton, 1993)

 - $y_{ij} = g^{-1}(x'_{ij}\beta + z'_{ij}\gamma_j) + \varepsilon_{ij}; \gamma \sim N(0, \Sigma_G), \varepsilon \sim N(0, \Sigma_R)$

Bayesian Inference for GLMM

- Inference for GLMM
 - Frequentist Likelihood Approach:
 - $Pr(y|\beta, \gamma, \Sigma_G, \Sigma_R)$
 - Bayesian approach:
 - $\Pr(\beta, \gamma, \Sigma_G, \Sigma_R | y) \propto \Pr(y | \beta, \gamma, \Sigma_G, \Sigma_R) \Pr(\beta, \gamma, \Sigma_G, \Sigma_R)$
- Markov Chain Monte Carlo (MCMC)
 - Before MCMC, joint posterior distribution analytically intractable

GLMM Inference in R

- Several self-contained packages available
 - See http://glmm.wikidot.com/faq
- I'll focus on one today, MCMCglmm
 - Markov chain Monte Carlo Sampler for Multivariate Generalised Linear Mixed Models with special emphasis on correlated random effects arising from pedigrees and phylogenies (Hadfield 2010).
 - http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf

MCMCglmm function

MCMCglmm(fixed, random=NULL, rcov=~units, family="gaussian", mev=NULL, data, start=NULL, prior=NULL, tune=NULL, pedigree=NULL, nodes="ALL",scale=TRUE, nitt=13000, thin=10, burnin=3000, pr=FALSE,pl=FALSE, verbose=TRUE, DIC=TRUE, singular.ok=FALSE, saveX=TRUE, saveZ=TRUE, saveXL=TRUE, slice=FALSE, ginverse=NULL)

Example Dataset

- data(ChickWeight)
 - The ChickWeight data frame has 578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks.
- xyplot(weight ~ Time |Chick, data =ChickWeight)

(See Chpt 4 of Hadfield course notes)

- □ Fit simple 2nd order polynomial with a random intercept
- Priors
 - prior.m4a.1 <- list(R = list(V = 1e-07, n = -2),G = list(G1 = list(V = 1, n = 1)))</pre>
 - Prior for Σ_R is Wishart(V=0,nu=-2)
 - "The inverse gamma is a special case of the inverse Wishart, although it is parametrised using shape and scale, where nu = 2 * shape and V = scale/shape (or shape = nu/2 and scale = nu*V/2)."
 - \square Prior for Σ_G is Wishart(1,1)

- Model statement
 - m4a.1 <- MCMCglmm(weight ~ Diet + poly(Time, 2,raw = TRUE), random = ~Chick, data = ChickWeight, verbose = FALSE, pr = TRUE, prior = prior.m4a.1,saveX = TRUE, saveZ = TRUE)</p>
- Visualize model predictions
 - W.1<-cBind(m4a.1\$X, m4a.1\$Z)# note X and Z are sparse so use cBind intstead of cbind
 - prediction.1<-W.1%*%posterior.mode(m4a.1\$Sol)</p>
 - xyplot(weight+prediction.1@x~Time|Chick, data=ChickWeight)

- □ prior.m4a.3 <- list(R = list(V = 1, n = 0.002),G = list(G1 = list(V = diag(3), n = 3)))
- m4a.3 <- MCMCglmm(weight ~ Diet + poly(Time, 2,raw = TRUE), random = ~us(1 + poly(Time, 2,raw = TRUE)):Chick,data = ChickWeight, verbose = FALSE,pr = TRUE, prior = prior.m4a.3, saveX = TRUE,saveZ = TRUE)</p>

MCMCglmm Output for Quadratic Random Effect Model

```
Iterations = 3001:12991 Thinning interval = 10 Sample size = 1000
```

DIC: 3932.687

```
G-structure: ~us(1 + poly(Time, 2, raw = TRUE)):Chick
```

```
post.mean I-95% CI u-95% CI eff.samp (Intercept):(Intercept).Chick 28.6006 10.80540 48.4596 591.4 poly(Time, 2)1:(Intercept).Chick -17.8679 -28.46534 -9.0170 897.1 poly(Time, 2)2:(Intercept).Chick 0.7339 0.08795 1.3298 1000.0 (Intercept):poly(Time, 2)1.Chick -17.8679 -28.46534 -9.0170 897.1 poly(Time, 2)1:poly(Time, 2)1.Chick 12.0861 6.97558 17.5365 1286.4 poly(Time, 2)2:poly(Time, 2)1.Chick 0.7339 0.08795 1.3298 1000.0 (Intercept):poly(Time, 2)2.Chick 0.7339 0.08795 1.3298 1000.0 poly(Time, 2)1:poly(Time, 2)2.Chick -0.5198 -0.91008 -0.1562 1000.0 poly(Time, 2)2:poly(Time, 2)2.Chick 0.1209 0.07670 0.1707 891.2
```

```
R-structure: ~units
```

```
post.mean I-95% CI u-95% CI eff.samp
units 43.9 39.1 49.95 1000
```

Location effects: weight ~ Diet + poly(Time, 2, raw = TRUE)

```
post.mean I-95% CI u-95% CI eff.samp
```

```
pMCMC (Intercept) 36.08622 33.58255 38.33466 1000.0 <0.001 *** Diet2 1.42484 -1.63380 4.33774 1110.6 0.350 Diet3 1.38532 -1.76403 4.12476 1000.0 0.378 Diet4 3.94954 0.93236 7.19609 521.6 0.012 * poly(Time, 2)1 5.92471 4.96057 6.93158 1000.0 <0.001 *** poly(Time, 2)2 0.11233 0.01541 0.21158 1000.0 0.034 *
```

⁻⁻⁻Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> m4a.1\$DIC
[1] 5525.262
> m4a.3\$DIC
[1] 3932.774

REML fit to ChickWeight

```
m5a.3.REML <- Imer(weight ~ Diet + poly(Time, 2, raw = TRUE) + (poly(Time, 2, raw = TRUE) | Chick), data = ChickWeight) summary(m5a.3.REML)
```

Linear mixed model fit by REML ['ImerMod']

Random effects:

Groups Name		Variance	Std.Dev.	Corr
Chick (Intercept)		31.15433	5.5816	
poly(Time, 2, raw = TRUE)1	12.47343	3.5318	-1.00	
poly(Time, 2, raw = TRUE)2	0.05408	0.2325	0.64	-0.64
Residual		43.73500	6.6132	

Number of obs: 578, groups: Chick, 50

Fixed effects:

	Estimate	Std. Error	t value	
(Intercept)	36.07142	1.23192	29.281	
Diet2	1.44948	1.40532	1.031	
Diet3	1.36360	1.40532	0.970	
Diet4	4.16271	1.40546	2.962	
poly(Time, 2, raw = TRI	JE)1	5.90475	0.52667	11.2
poly/Time 2 rour TDI	IE)2	0.44500	0.02406	2 200

WinBUGS code

```
require(R2WinBUGS)
model <- function(){
for (i in 1:n){
y[i] ~ dnorm (y.hat[i], tau.y)
y.hat[i] <- inprod(B[county[i],],Z[i,]) + inprod(beta[],X[i,])
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)
for (I in 1:3){beta[I]~dnorm(0,1.0E-6)}
for (j in 1:J){
for (k in 1:K){
B[j,k] \leftarrow xi[k]*B.raw[j,k]
B.raw[j,1:K] ~ dmnorm (mu.raw[], Tau.B.raw[,])
```

```
for (k in 1:K){
mu[k] <- xi[k]*mu.raw[k]
mu.raw[k] \sim dnorm (0, .0001)
xi[k] \sim dunif(0, 100)
Tau.B.raw[1:K,1:K] \sim dwish(W[,], df)
df < -K+1
Sigma.B.raw[1:K,1:K] <- inverse(Tau.B.raw[,])
for (k in 1:K){
for (k.prime in 1:K){
rho.B[k,k.prime] <- Sigma.B.raw[k,k.prime]/
sqrt(Sigma.B.raw[k,k]*Sigma.B.raw[k.prime,k.prime])
sigma.B[k] <- abs(xi[k])*sqrt(Sigma.B.raw[k,k])
```

```
model.file <-
file.path(tempdir(),"model.txt")
```

WinBUGS code

```
missObs <- !apply(is.na(ChickWeight[
,c("Diet","Time","Chick")]),1,base::any)
bugDat <- ChickWeight[missObs,]</pre>
y <- bugDat$weight</pre>
dsgnMat <- as.matrix(model.matrix(weight ~</pre>
Diet+poly(Time, 2,raw = TRUE),data=bugDat))
#cbind(bugDat[,c("Diet","Time")],bugDat$Time
^2))
Z <- dsgnMat[,-c(2:4)]</pre>
X \leftarrow dsgnMat[,c(2:4)]
county <- sapply(bugDat$Chick,function(x)</pre>
which(unique(bugDat$Chick) %in% x))
J <- length(unique(county)) #nrow(X)</pre>
K \leftarrow ncol(X)
```

```
n <- nrow(bugDat)</pre>
W \leftarrow diag(3)
bugs.data <- list ("n", "J", "K", "Z",
"X", "y", "county", "W")
bugs.inits <- function (){</pre>
list (B.raw=array(rnorm(J*K), c(J,K)),
mu.raw=rnorm(K), sigma.y=runif(1),
Tau.B.raw=rwish(K+1,diag(K)),
xi=runif(K), beta=rnorm(3))
bugs.parameters <- c ("B", "mu",</pre>
"beta", "sigma.y", "sigma.B", "rho.B")
```

bugsMod <- R2WinBUGS:::bugs (bugs.data, bugs.inits, bugs.parameters, model.file,n.chains=3, n.iter=2000, n.thin=10, #n.burnin=1000,

bugs.directory="F:\\Program Files\\WinBUGS14", clearWD=TRUE, debug=TRUE)

WinBUGS Output

```
> bugsMod$summary[!grepl("^B\\[",row.names(bugsMod$summary)),]
                                  2.5%
                                            25%
                                                    50%
                                                              75%
                                                                      97.5%
                                                                              Rhat n.eff
                 mean
mu[1]
               34.7888000 2.63619542 29.55408630
                                                  33.96499890 35.05500 36.1349990 38.1757471 1.232519 90
mu[2]
                5.9312100 0.55340567
                                     4.93427295 5.52424985
                                                              5.92450 6.3149991
                                                                                  7.0219244 1.013821 130
      mu[3]
                0.1170932 0.03387847
                                      0.05346756
                                                 0.09427499
                                                              0.11895
                                                                      0.1401245
                                                                                  0.1827151 1.006368 300
      beta[1]
                3.0466125 4.11195347 -1.03070000 1.24025000
                                                              2.45350
                                                                       3.9942500 12.1322500 1.233420 73
                                     -0.04247700
                                                              3.44450
                                                                       5.0857500 12.5910000 1.232081 120
      beta[2]
                4.1255903 4.67322899
                                                  1.99250000
0.39663750
      beta[3]
                5.6563383 3.55086906
                                                  3.93650000
                                                              5.44800
                                                                       6.8557500
                                                                                 12.1310000 1.176267 300
      sigma.y
                 6.6822533 0.21928991
                                      6.25432402
                                                   6.53349856
                                                               6.69550
                                                                        6.8352500
                                                                                  7.0731989 1.009611 180
                                       4.78300732
      sigma.B[1]
                 6.8031400 1.59958897
                                                   5.91849994
                                                                6.63600
                                                                        7.3562497
                                                                                   10.7334123 1.200988 17
                 3.4715533 0.34714864
                                       2.83274560
                                                   3.21224974
                                                               3.44800
                                                                        3.7060000
                                                                                    4.2070000 1.004215 260
                                       0.18379497
                                                                0.22220
      sigma.B[3]
                 0.2243653 0.02367226
                                                   0.20857489
                                                                        0.2381500
                                                                                    0.2793959 1.004949 300
                                                                                   1.0000000 1.000000
                1.0000000 0.00000000
                                      1.00000000
                                                   1.00000000
                                                               1.00000
                                                                        1.0000000
                -0.8113147 0.10318901 -0.94616000
                                                  -0.88775000 -0.82275
                                                                        -0.7583750
                                                                                   -0.5609825 1.746399
                                                  0.18640000 0.31335 0.4164000
                 0.2960798 0.17634359 -0.05806150
                                                                                   0.5962300 1.037619 59
      rho.B[2,1] -0.8113147 0.10318901
                                      -0.94616000
                                                  -0.88775000 -0.82275
                                                                       -0.7583750
                                                                                   -0.5609825 1.746399
rho.B[2,2]
                 1.0000000 0.00000000
                                      1.00000000
                                                   1.00000000
                                                              1.00000
                                                                        1.0000000
                                                                                   1.0000000 1.000000
      rho.B[2,3]
                -0.5923480 0.10052565
                                      -0.76591000
                                                  -0.66230000
                                                              -0.59870
                                                                        -0.5385250
                                                                                   -0.3749425 1.011282 250
                0.2960798 0.17634359
                                      -0.05806150
                                                   0.18640000 0.31335 0.4164000
                                                                                   0.5962300 1.037619 59
rho.B[3,2]
                -0.5923480 0.10052565
                                      -0.76591000
                                                  -0.66230000
                                                               -0.59870
                                                                        -0.5385250
                                                                                   -0.3749425 1.011282 250
      rho.B[3,3]
                 1.0000000 0.00000000
                                      1.00000000
                                                   1.00000000
                                                               1.00000
                                                                        1.0000000
                                                                                   1.0000000 1.000000
      deviance 3832.3566667 17.44449743 3801.00000000 3821.00000000 3831.00000 3844.0000000 3868.5249678 1.051326
```

Mplus code

```
require(MplusAutomation)
mpDat <- as.data.frame(cbind(county,dsgnMat[,-1],y))</pre>
head(dsgnMat[,-1])
colnames(mpDat) <-
c(colnames(mpDat)[1:4],"time","time2","weight")
modelStem <- "mpQuad"
mpFiles1 <- mplusObject(
TITLE = "ChickWeight Quadratic Random Effect;",
VARIABLE = "CLUSTER = county;
WITHIN = Diet2 Diet3 Diet4 time time2;",
ANALYSIS = "Type = twolevel random; Estimator = Bayes;
proc = 4; fbiter = 13000; thin = 10;",
MODEL = "%WITHIN%
s1 | weight on time;
s2 | weight on time2;
weight on Diet2 Diet3 Diet4;
%BFTWFFN%
weight with s1 s2;
s1 with s2;",
```

```
OUTPUT = "sampstat; tech1; TECH8;",
PLOT = "TYPE = PLOT2;",
rdata=mpDat,
usevariables =
c("county", "Diet2", "Diet3", "Diet4", "time", "time2", "weight"))
base <- tempdir()
#cat(base,"\n")
mpInput <- paste0(modelStem,".inp")</pre>
mpData <- "chkwgtDat"
cd(base,pre="chickwgt",num="Q")
mpModel <-
mplusModeler(mpFiles1,dataout=mpData,modelout=mpIn
put,run=1)
mpModel$results$summaries
mpModel$results$parameters$unstandardized
```

Mplus Output

Mplu	is.version	Title	AnalysisType	DataType	Estimator Obser	vations Parameter	s DIC	pD Filename
	7.3 ChickWeight Quadratic F	Random Effect;	twolevel random	INDIVIDUAL	L BAYES	578 13	3925.949 105	.498 mpQuad.out
parar	mHeader param est po	sterior_sd pval	lower_2.5ci upper_2	2.5ci sig Betw	veenWithin			
1	WEIGHT.ON DIET2 2.501	1.485 0.048	-0.468 5.4	07 FALSE	Within			
2	WEIGHT.ON DIET3 3.618	1.640 0.014	0.372 6.8	09 TRUE	Within			
3	WEIGHT.ON DIET4 5.466	1.575 0.000	2.394 8.5	44 TRUE	Within			
4	Residual WEIGHT 43.542	2.862 0.000	38.394 49.6	47 TRUE	Within			
5	WEIGHT.WITH S1 -24.181	7.313 0.000	-42.050 -14.03	3 TRUE	Between			
6	WEIGHT.WITH S2 0.579	0.372 0.029	-0.018 1.44	3 FALSE	Between			
7	S1.WITH S2 -0.576	0.199 0.000	-1.058 -0.29	1 TRUE B	Between			
8	Means WEIGHT 35.165	1.399 0.000	32.362 37.90	6 TRUE E	Between			
9	Means S1 5.895	0.581 0.000	4.756 7.036	TRUE B	etween			
10	Means S2 0.118	0.037 0.001	0.045 0.190	TRUE B	etween			
11	Variances WEIGHT 44.484	15.677 0.000	22.926 83.25	8 TRUE B	Between			
12	Variances S1 14.789	3.781 0.000	9.637 24.082	TRUE B	etween			
13	Variances S2 0.061	0.015 0.000	0.040 0.098	TRUE B	etween			

SAS proc mcmc

```
proc mcmc data=chkwgt nmc=10000 thin=10
outpost=postout
 seed=17 init=random:
  *ods select Parameters REParameters
PostSummaries:
 array theta[3] alpha beta1 beta2;
 array theta_c[3];
 array Sig c[3,3];
 array mu0[3] (0 0 0);
 array Sig0[3,3] (1000 0 0
             0 1000 0
             0 0 1000);
 array S[3,3] (1 0 0
             0 1 0
             0 0 1);
```

```
parms theta_c {36 5.9 .12} Sig_c {30 0 0 0 15 0 0 0 0.10} var_y { 44 }; parms d2 d3 d4; prior theta_c ~ mvn(mu0, Sig0); prior Sig_c ~ iwish(3, S); prior var_y ~ igamma(0.001, scale=0.001); prior d2 d3 d4 ~ normal(mean = 0, var = 1e6); random theta ~ mvn(theta_c, Sig_c) subject=county;*monitor=(alpha_9 alpha_25); mu = alpha + d2 * diet2 + d3 * diet3 + d4 * diet4 + beta1 * time + beta2 * time2; model weight ~ normal(mu, var=var_y); run;
```

SAS Output

Posterior Summaries								
		Standa	rd	Percentiles	3			
Parameter	N	Mean	Deviation	25%	50%	75%		
theta_c1	1000	36.2189	1.0712	35.4513	36.2101	36.9453		
theta_c2	1000	5.9098	0.5058	5.5666	5.9097	6.2500		
theta_c3	1000	0.1141	0.0390	0.0868	0.1143	0.1397		
Sig_c1	1000	22.8357	8.4000	16.4569	21.6119	27.7463		
Sig_c2	1000	-15.9086	4.5804	-18.5958	-15.3239	-12.4258		
Sig_c3	1000	0.6524	0.2557	0.4721	0.6286	0.8105		
Sig_c4	1000	-15.9086	4.5804	-18.5958	-15.3239	-12.4258		
Sig_c5	1000	11.7026	2.6942	9.7744	11.3285	13.0261		
Sig_c6	1000	-0.4965	0.1676	-0.5916	-0.4830	-0.3784		
Sig_c7	1000	0.6524	0.2557	0.4721	0.6286	0.8105		
Sig_c8	1000	-0.4965	0.1676	-0.5916	-0.4830	-0.3784		
Sig_c9	1000	0.0755	0.0164	0.0638	0.0731	0.0852		
var_y	1000	44.1617	3.0411	41.9688	43.9400	46.2062		
d2	1000	1.4699	1.3118	0.5995	1.5305	2.4082		
d3	1000	1.4207	1.4776	0.3806	1.4395	2.4819		
d4	1000	3.2638	1.5504	2.2698	3.1260	4.2531		

Posterior Intervals

Paramete	er Alpha	r Alpha Equal-Tail Interval		l HPD	Interval
theta_c1	0.050	34.3190	38.3687	7 34.3133	38.3615
theta_c2	0.050	4.9527	6.8830	4.9186	6.8195
theta_c3	0.050	0.0368	0.1901	0.0348	0.1863
Sig_c1	0.050	9.9307	41.9441	8.6948	39.4294
Sig_c2	0.050	-26.6860	-8.7971	-25.0472	-8.0377
Sig_c3	0.050	0.2342	1.2554	0.1791	1.1490
Sig_c4	0.050	-26.6860	-8.7971	-25.0472	-8.0377
Sig_c5	0.050	7.5476	18.2496	7.0956	17.3317
Sig_c6	0.050	-0.8862	-0.2171	-0.8644	-0.2102
Sig_c7	0.050	0.2342	1.2554	0.1791	1.1490
Sig_c8	0.050	-0.8862	-0.2171	-0.8644	-0.2102
Sig_c9	0.050	0.0492	0.1126	0.0480	0.1096
var_y	0.050	38.8878	50.3790	38.7140	49.9304
d2	0.050	-1.1540	3.9506	-1.1086	3.9761
d3	0.050	-1.4888	4.0987	-1.4468	4.1170
d4	0.050	0.1898	6.5590	0.0331	6.3151

Comparison of parameter estimates

Fixed Effects: Posterior Mean Estimates

Random Effect '	Variances: I	Posterior N	Mean	Estimates
-----------------	--------------	-------------	------	-----------

	MCMCglmm	SAS	Mplus '	WinBUGS	lmer	N	/ICMCglmm	SAS	Mplus V	VinBUGS	lmer
Intercept	36.09	36.22	35.17	34.79	36.07	Intercept	28.60	22.84	44.48	46.24	31.15
Diet2	1.42	1.47	2.50	3.05	1.45	Linear	12.09	11.70	14.79	12.04	12.47
Diet3	1.39	1.42	3.62	4.13	1.36	Quadratic	0.12	0.08	0.06	0.05	0.05
Diet4	3.95	3.26	5.47	5.66	4.16	Residual	43.9	44.16	43.54	44.65	43.74
linear	5.92	5.91	5.90	5.93	5.90						
quadratic	0.11	0.11	0.12	0.12	0.12						

Why the differences?

- Posterior-mean, median, mode?
 - Not in this instance, but worth paying attention to across software/packages
- Equivalence of convergence achieved?
 - Hard to know for certain, but seems to be equivalent
- Differences in default/recommended prior distributions?
 - Yes. MCMCglmm/SAS, Mplus, and WinBUGS were all different in prior examples
 - Note: MCMCglmm prior below approx. reproduces Mplus output
 - prior_mg1_mplus <- list(R = list(V = 1e-16, n = -2),G = list(G1 = list(V = diag(1e-16,3), n = -4)))</p>

Which prior should I use?

- If your lucky, won't matter
- If your unlucky, explore the shape of the default distributions before deciding which feels most comfortable to you
 - VisCov Package in R can be helpful
 - MCMCglmm course notes provide overview of prior choice implications; see also Gelman & Hill (2006) chpt 16-17.

Examining MCMC Diagnostics

- MCMCglmm:plot(m4a.3\$Sol)
- autocorr(m4a.3\$Sol[,1])

Lag 0 1.0000000000

Lag 10 -0.0018215519

Lag 50 0.0379767609

Lag 100 0.0122456031

Lag 500 -0.0002609533

- Uses coda package
 - bcoda <- as.mcmc.list(m4a.3\$Sol)</p>

Pros and Cons MCMCglmm

- Pro
 - Straightforward extensions exist for common distributions like the logistic, Poisson, gamma, ...
 - Highly efficient estimation time
 - Coda package handy
 - Handles highly complex pedigree and phylogeny data structures
- Con
 - Prediction code underdeveloped
 - Can only run single chain at a time

More MCMCglmm info

 http://cran.rproject.org/web/packages/MCMCglmm/vignett es/CourseNotes.pdf