Introduction to {gt} + {gtsummary} Packages

Daniel D. Sjoberg

Memorial Sloan Kettering Cancer Center June 27, 2019

{gt} package

{gt} philosophy

"We can construct a wide variety of useful tables with a cohesive set of table parts. These include the *table header*, the *stub*, the *stub head*, the *column labels*, the *table body*, and the *table footer*."

{gt} installation

- {gt} is not on CRAN.
- Use the code below to install from GitHub.

```
remotes::install_github("rstudio/gt")
```

• While you're at it, install {gtsummary} as well.

```
remotes::install_github("ddsjoberg/gtsummary")
```

- There is a version of {gtsummary} on CRAN, but with limited functionality.
- Use the version on GitHub (www.github.com/ddsjoberg/gtsummary).
- The full version of {gtsummary} be released on CRAN after {gt} is released.

{gt} examples: the data

When used alone, the gt() function prints a data frame. But so much more is possible!

```
library(gt)
# loading gtsummary for the data
library(gtsummary)
gt_trial_head ← head(trial) %>%
   gt()
```

trt	age	marker	stage	grade	response	death	ttdeath
Drug	23	0.160	Т3	I	1	0	24.00
Drug	9	1.107	T4	Ш	1	1	14.90
Drug	31	0.277	T1	1	1	0	24.00
Placebo	46	2.067	T4	П	1	1	10.21
Drug	51	2.767	T2	П	0	1	20.02
Drug	39	0.613	T1	Ш	1	1	16.55

variable	class	label
trt	character	Treatment Randomization
age	numeric	Age, yrs
marker	numeric	Marker Level, ng/mL
stage	factor	T Stage
grade	factor	Grade
response	integer	Tumor Response
death	integer	Patient Died
ttdeath	numeric	Months to Death/Censor

{gt} examples: the viewer

• {gt} tables print to the RStudio viewer when in the global environment.

• {gt} tables also print in R markdown documents (HTML, PDF, RTF), Shiny apps, etc.

{gt} examples: formatting columns

```
trial_summary ← trial %>% group_by(trt) %>% summarise_at(vars(age, marker), mean, na.rm = TRUE)
```

Raw Summary Statistics

trt	age	marker
Drug	47.57426	0.8981078
Placebo	45.71111	0.9618539

Formatted Summary Statistics

```
gt_format 
  gt(trial_summary) %>%

fmt_number(columns = vars(age), decimals = 0) %>%

fmt_number(columns = "marker", decimals = 2)
```

trt	age	marker
Drug	48	0.90
Placebo	46	0.96

Each column can be formatted without creating a character version of the column!

{gt} examples: formatting cells

```
gt_fmt_cell 		 trial_summary %>%
  gather("variable", "mean", -trt) %>%
  gt() %>%
  fmt_number(columns = vars(mean), rows = (variable = "age"), decimals = 0) %>%
  fmt_number(columns = vars(mean), rows = (variable = "marker"), decimals = 2)
```

trt	variable	mean
Drug	age	48
Placebo	age	46
Drug	marker	0.90
Placebo	marker	0.96

- Use the rows = argument to pinpoint a cell to format.
- There are many formatting functions available: fmt_percent(), fmt_currency(), fmt_date(), fmt_time(), fmt_missing(), and more.
- You can write your own function and pass it to fmt() to format a table.

{gt} examples: grouping data

```
gt_group 		 trial_summary %>%
  gather("variable", "mean", -trt) %>%

gt(groupname_col = "trt") %>%

fmt_number(columns = vars(mean), rows = variable = "age", decimals = 0) %>%

fmt_number(columns = vars(mean), rows = variable = "marker", decimals = 2)
```

variable	mean
Drug	
age	48
marker	0.90
Placebo	
age	46
marker	0.96

- Use the groupname_col = argument to specify a column to group results.
- The grouping column is not printed and a stub row for each group is added.

{gt} examples: column formatting

```
gt_cols ← trial_summary %>%
  gt() %>%
fmt_number(columns = vars(age), decimals = 0) %>%
fmt_number(columns = vars(marker), decimals = 2) %>%
cols_label(trt = md("**Treatment**"), age = md("**Age**"), marker = md("**Marker**")) %>%
tab_spanner(label = "Patient Characteristics", columns = vars(age, marker))
```

Treatment	Patient Characteristics		
ireatment	Age	Marker	
Drug	48	0.90	
Placebo	46	0.96	

- The cols_label() function modifies the column headers.
- The tab_spanner() function includes a spanning header row.
- The md() function interprets input text as Markdown (see also html()).

{gt} examples: titles & footnotes

much much more {gt} to learn

Create Table

gt() Create a gt table object
gt_preview() Preview a gt table object

Create/Modify Parts

tab_header() Add a table header
tab_spanner() Add a spanner column label

tab_row_group() Add a row group

tab_stubhead_label() Add label text to the stubhead

tab_footnote() Add a footnote

tab_source_note()

Add a source note citation

tab_options()

Modify the table output options

tab_style()

Add custom styles to one or more cells

Format Data

fmt() Set a column format with a formatter function

fmt_number() Format numeric values

fmt scientific() Format values to scientific notation fmt_percent() Format values as a percentage fmt currency() Format values as currencies fmt_date() Format values as dates fmt time() Format values as times fmt datetime() Format values as date-times fmt markdown() Format Markdown text fmt_missing() Format missing values

fmt_passthrough() Format by simply passing data through

text_transform() Perform targeted text transformation with a function

data color() Set data cell colors using a palette or a color function

Modify Columns

cols move to start()

cols_split_delim()

cols_align() Set the alignment of columns cols hide() Hide one or more columns cols_label() Relabel one or more columns cols merge() Merge two columns to a single column cols_merge_range() Merge two columns to a value range column cols_merge_uncert() Merge two columns to a value & uncertainty column cols_move() Move one or more columns Move one or more columns to the end cols_move_to_end()

Move one or more columns to the start

Create group names and column labels via delimited names

Modify Rows

row_group_order() Modify the ordering of any row groups

Add Rows

summary_rows() Add summary rows using aggregation functions

Export Table

gtsave()

as_raw_html()

as_latex()

as_latex()

as_rtf()

Save a gt table as a file

as_latex()

Output a gt object as LaTeX

sas_rtf()

Save a gt object as an RTF file

extract_summary()

Extract a summary list from a gt object

Shiny

render_gt()

gt_output()

A gt table render function for use in Shiny
gt_output()

Create a gt table output element for Shiny

Information

info_date_style()

info_time_style()

info_paletteer()

info_currencies()

View a table with info on time styles

View a table with info on color palettes

View a table with info on supported currencies

View a table with info on supported locales

Datasets

countrypops

Yearly populations of countries from 1960 to 2017

sza ## Twice hourly solar zenith angles by month & latitude

gtcars ## Deluxe automobiles from the 2014-2017 period

sp500 ## Daily S&P 500 Index data from 1950 to 2015

pizzaplace ## A year of pizza sales from a pizza place

exibble ## A toy example tibble for testing with gt: exibble

Location Helpers

Helpers for targeting multiple cells in different locations

{gtsummary}

{gtsummary} introduction

- {gtsummary} will soon be a part of the biostatR-verse of packages.
- The package uses {gt} as its back end to create tables.
- Used to summarize data frames, regression models, and more.
- Has a tidy API, sensible defaults (meaning minimal code), and is highly customizable.

Let's review the data once more

variable	class	label
trt	character	Treatment Randomization
age	numeric	Age, yrs
marker	numeric	Marker Level, ng/mL
stage	factor	T Stage
grade	factor	Grade
response	integer	Tumor Response
death	integer	Patient Died
ttdeath	numeric	Months to Death/Censor

For brevity, we'll use an abbreviated version of the trial data set with fewer columns.

```
sm_trial ←
  trial %>%
  select(trt, age, response, grade)
```

```
tbl_summary_1 ←
   tbl_summary(sm_trial, by = "trt")
```

- Default statistics are median (IQR) for continuous variables, and n (percent) for categorical data.
- By default, variables coded as 0/1, TRUE/FALSE, and Yes/No are presented dichotomously.

Characteristic ¹	Drug , N = 107	Placebo, N = 93		
Age, yrs	47 (39, 58)	45 (36, 54)		
Unknown	6	3		
Tumor Response	53 (51%)	30 (34%)		
Unknown	4	5		
Grade				
1	38 (36%)	29 (31%)		
II	34 (32%)	24 (26%)		
Ш	35 (33%)	40 (43%)		
¹ Statistics presented: median (IQR); n (%)				

```
tbl_summary_2 ←
  tbl_summary(sm_trial, by = "trt") %>%
  add_p()
```

- To compare values across two or more groups, use the add_p() function.
- The default tests are the Wilcoxon ranksum test for continuous variables, chisquare test of independence for most categorical data, and Fisher's exact test for categorical data with low expected counts.

Characteristic ¹	Drug , N = 107	Placebo, N = 93	p-value ²
Age, yrs	47 (39, 58)	45 (36, 54)	0.3
Unknown	6	3	
Tumor Response	53 (51%)	30 (34%)	0.023
Unknown	4	5	
Grade			0.3
1	38 (36%)	29 (31%)	
II	34 (32%)	24 (26%)	
III	35 (33%)	40 (43%)	

¹ Statistics presented: median (IQR); n (%)

² Statistical tests performed: Wilcoxon rank-sum test; chi-square test of independence

{gtsummary} and the {glue} package: an aside

- {glue} is similar to paste (but I like it so much more).
- Embed R expressions in curly braces.
- They are then evaluated and inserted into the argument string.

```
name = "Daniel"
x = 1
glue::glue("{name} is number {x}")
## Daniel is number 1
```

Expression can be complex.

```
glue::glue("{name} is number {((x + 100) * 10) - 1009}")
## Daniel is number 1
```

```
tbl_summary_3 \leftarrow sm_trial %>%
  tbl_summary(
    by = "trt",
    statistic = list(
        all_continuous() ~ "{mean} ({sd})",
        all_categorical() ~ "{n} / {N} ({p}%)"
    ),
    label = "age" ~ "Patient Age"
    ) %>%
  add_p(test = all_continuous() ~ "t.test")
```

- Report mean and standard deviation for continuous variables.
- Specify label for age variable.
- Report p-values from the t-test.

Characteristic ¹	Drug , N = 107	Placebo, N = 93	p-value ²
Patient Age	48 (15)	46 (13)	0.4
Unknown	6	3	
Tumor Response	53 / 103 (51%)	30 / 88 (34%)	0.023
Unknown	4	5	
Grade			0.3
1	38 / 107 (36%)	29 / 93 (31%)	
II	34 / 107 (32%)	24 / 93 (26%)	
III	35 / 107 (33%)	40 / 93 (43%)	
1.64-4:-4:			

¹ Statistics presented: mean (SD); n / N (%)

² Statistical tests performed: t-test; chi-square test of independence

```
tbl_summary_4 \leftarrow sm_trial %>%
  tbl_summary(
    by = "trt",

    type = "response" \( \cappa \) "categorical",

    statistic = all_continuous() \( \cappa \) "{mean} ({sd})",

    digits = vars(age) \( \cappa \) c(0, 1)

) %>%

add_p(test = all_continuous() \( \cappa \) "t.test") %>%

add_stat_label()
```

- Report levels for the response variable.
- Modify the default rounding for age.
- Add column of statistics presented.
- Footnote about statistics is gone!

Characteristic	Statistic	Drug , N = 107	Placebo, N = 93	p-value ¹
Age, yrs	mean (SD)	48 (15.4)	46 (13.2)	0.4
Unknown	n	6	3	
Tumor Response				0.023
0	n (%)	50 (49%)	58 (66%)	
1	n (%)	53 (51%)	30 (34%)	
Unknown	n	4	5	
Grade				0.3
I	n (%)	38 (36%)	29 (31%)	
II	n (%)	34 (32%)	24 (26%)	
III	n (%)	35 (33%)	40 (43%)	

¹ Statistical tests performed: t-test; chi-square test of independence

Advanced Customization

- It's natural a {gtsummary} package user would want to customize the aesthetics of the table with one or more of the many {gt} functions available.
- Every function in {gt} is available to use with a {gtsummary} object.
- 1. Create a {gtsummary} table.
- 2. Convert the table to a {gt} object with the as_gt() function.
- 3. Continue formatting as a {gt} table with any {gt} function.

Advanced Customization

```
tbl_summary_5 ← sm_trial %>%
  tbl_summary(by = "trt") %>%
  # convert from gtsummary object to gt object
  as_gt() %>%
  # modify with gt functions
  tab_spanner(
    label = "Randomization Group",
    columns = starts_with("stat_")
)
```

Characteristic ¹	Randomization Group			
Characteristic	Drug , N = 107	Placebo, N = 93		
Age, yrs	47 (39, 58)	45 (36, 54)		
Unknown	6	3		
Tumor Response	53 (51%)	30 (34%)		
Unknown	4	5		
Grade				
1	38 (36%)	29 (31%)		
II	34 (32%)	24 (26%)		
III	35 (33%)	40 (43%)		
¹ Statistics presented: median (IQR); n (%)				

Review the tbl_summary vignette for more details http://www.danieldsjoberg.com/gtsummary/articles/tbl_summary.html

- Reporting any statistic for continuous variables, including user-written functions.
- More on dichotomous variables and how to specify the level printed.
- Missing data options (e.g. report as a column rather than a row, always report N missing even when no missing data, modify missing text, etc.).

- Sort categorical variables by frequency.
- Report row percent, rather than column percent.
- Report q-values from various methods like false discovery rate.
- Sort data by ascending p-values when comparisons have been made.

Raw Output

```
m1 ← glm(response ~ trt + grade + age, data = trial, family = binomial)
m1
##
## Call: glm(formula = response ~ trt + grade + age, family = binomial,
##
      data = trial)
##
## Coefficients:
  (Intercept) trtPlacebo gradeII gradeIII
                                                            age
     0.449477 - 0.660514 - 0.504973 - 0.167732
                                                     -0.004199
##
##
  Degrees of Freedom: 181 Total (i.e. Null); 177 Residual
    (18 observations deleted due to missingness)
## Null Deviance:
                       249.1
## Residual Deviance: 242.8 AIC: 252.8
```

{broom} Output

```
## # A tibble: 5 x 7
                estimate std.error statistic p.value conf.low conf.high
    term
    <chr>
                   <dbl>
                             <dbl>
                                       <dbl>
                                               <dbl>
                                                        <dbl>
                                                                 <dbl>
## 1 (Intercept)
                   1.57
                            0.565
                                       0.796 0.426
                                                       0.520
                                                                 4.81
## 2 trtPlacebo
                   0.517
                                   -2.14
                                             0.0324
                                                       0.280
                                                                 0.941
                            0.309
## 3 gradeII
                                                       0.279
                                                                 1.29
                   0.604
                            0.390
                                   -1.30
                                             0.195
## 4 gradeIII
                                   -0.455 0.649
                                                                 1.74
                   0.846
                            0.369
                                                       0.409
## 5 age
                   0.996
                            0.0106
                                      -0.395 0.693
                                                        0.975
                                                                 1.02
```

broom::tidy(m1, conf.int = TRUE, exponentiate = TRUE)

{gtsummary} Output

```
tbl_regression_1 \leftarrow tbl_regression(m1, exponentiate = TRUE)
```

- tbl_regression() accepts regression model object as inputs.
- Reference groups added to the table.
- Logistic regression model with odds ratio header and footnote.

```
tbl_regression_2 ← m1 %>%
  tbl_regression(exponentiate = TRUE) %>%
  add_global_p()
```

 Replace individual p-values for categorical variables with global p-value for the entire variable.

N = 182	OR ⁷	95% CI ⁷	p-value	
Treatment Randomization			0.031	
Drug	_	_		
Placebo	0.52	0.28, 0.94		
Grade			0.4	
I	_	_		
II	0.60	0.28, 1.29		
III	0.85	0.41, 1.74		
Age, yrs	1.00	0.98, 1.02	0.7	
⁷ OR = Odds Ratio, CI = Confidence Interval				

- Build Cox regression model with same predictors as previous model.
- Merge the two regression models with the same predictors and present results side-by-side.

Ch and should be	Tumor Response		Time to Death			
Characteristic	OR ¹	95% CI ⁷	p-value	HR ¹	95% CI ¹	p-value
Treatment Randomization						
Drug	_	_		_	_	
Placebo	0.52	0.28, 0.94	0.032	1.31	0.89, 1.94	0.2
Grade						
1	_	_		_	_	
II	0.60	0.28, 1.29	0.2	1.25	0.74, 2.12	0.4
III	0.85	0.41, 1.74	0.6	1.87	1.16, 3.01	0.011
Age, yrs	1.00	0.98, 1.02	0.7	1.01	0.99, 1.02	0.4
⁷ OR = Odds Ratio, HR = Hazard Ratio, CI = Confidence Interval						

{gtsummary} summarize data with tbl_uvregression()

```
library(survival)
tbl_uvregression_1 ←
  tbl_uvregression(
    sm_trial,
    method = glm,
    y = response,
    method.args = list(family = binomial),
    exponentiate = TRUE
  )
```

- Table of univariate regression models.
- Specify the outcome, and the remaining variables in data frame serve as predictors.

Characteristic	N	OR ¹	95% CI ¹	p-value
Treatment Randomization	191			
Drug		_	_	
Placebo		0.49	0.27, 0.87	0.016
Age, yrs	182	1.00	0.98, 1.02	0.7
Grade	191			
I		_	_	
II		0.65	0.31, 1.34	0.2
Ш		0.76	0.38, 1.49	0.4
¹ OR = Odds Ratio, CI = Confidence Interval				

```
fit1 ← survfit(Surv(ttdeath, death) ~ trt,
                data = trial)
survminer::ggsurvplot(
 fit = fit1.
 xlab = "Months".
 ylab = "Overall survival probability",
 legend.title = "Treatment Group",
 legend.labs = c("Drug", "Placebo"),
 break.x.by = 6,
 censor = FALSE,
 risk.table = TRUE,
 risk.table.y.text = FALSE
```


- First, use survfit() to estimate survival times.
- Create table of estimates with tbl_survival().
- Can use this function to print survival quantiles as well, e.g. median survival.

Time	Probability	95% CI ⁷		
Drug, N = 107				
12 Month	87%	81%, 94%		
24 Month	54%	46%, 65%		
Placebo, N = 93				
12 Month	83%	75%, 91%		
24 Month	38%	29%, 49%		
¹ CI = Confidence Interval				

{gtsummary} reporting results with inline_text()

- Tables are important, but we often need to report results in-line in a report.
- Any statistic reported in a {gtsummary} table can be extracted and reported in-line in a R Markdown document with the inline_text() function.

```
inline_text(tbl_regression_1, variable = "trt", level = "Placebo")
0.52 (95% CI 0.28, 0.94; p=0.032)
```

- The pattern of what is reported can be modified with the pattern = argument.
- Default is pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high};
 {p.value})".

{gtsummary}

- Every function is documented further in the help file •
- · Check out the package website for vignettes including detailed examples and explanations ·
 - {gtsummary} documentation danieldsjoberg.com/gtsummary/
 - **Q** {gtsummary} package github.com/ddsjoberg/gtsummary
 - ▶ slides at danieldsjoberg.com/gt-and-gtsummary-presentation
 - source code for slides at github.com/ddsjoberg/gt-and-gtsummary-presentation
 - **?** {gt} package github.com/rstudio/gt

{gtsummary} Advanced

{gtsummary} output is a list that prints as a {gt} table.

```
names(tbl summary 1)
## [1] "gt calls"
                "table body" "meta data" "inputs" "call list"
## [6] "bv"
                  "df bv"
pluck(tbl summary 1, "table body") %>% head()
                                                         pluck(tbl summary 1, "gt calls") %>% head(n = 4)
## # A tibble: 6 x 5
                                                        ## $gt
   variable row type label
                                         stat 2
                                                        ## gt(data = x$table body)
                            stat 1
    <chr> <chr> <chr>
                              <chr>
                                             <chr>
        label
                             47 (39, 58) 45 (36, 54) ## $cols_label_label
## 1 age
                    Age, vrs
        missing Unknown
                                                        ## cols label(label = md('**Characteristic**'))
## 2 age
## 3 response label
                    Tumor Response 53 (51%)
                                             30 (34%)
                                                        ##
## 4 response missing
                    Unknown
                                                        ## $cols align
           label
                                                        ## cols align(align = 'center') %>% cols align(align = 'lef
## 5 grade
                    Grade <NA>
                                             <NA>
                                  38 (36%)
                                             29 (31%)
## 6 grade
           level
                                                        ##
                                                        ## $cols hide
                                                        ## cols hide(columns = vars(variable, row type))
```