Physics 110

CONSTANTS AND EQUATIONS

Spring 2007

Constant	Symbol	Value	Constant	Symbol	Value
Acceleration due to gravity	g	9.80 m/s ²	Mass of Earth	Me	$5.98 \times 10^{24} \mathrm{kg}$
Gravitational constant	G	6.67 x 10 ⁻¹¹ Nm ² /kg ²	Radius of Earth	R _e	6.37 x 10 ⁶ m

f = final i = inital S= X or y, as appropriate to the problem

Kinematics (constant acceleration)

$$s_f = s_i + v_{is} \Delta t + \frac{1}{2} a_s (\Delta t)^2 \chi_{\xi_i, \chi_{\xi_i}, \chi_$$

$= s_i$	$+ v_{is} \Delta t$	+	$\frac{1}{2}a_s$	$(\Delta t)^2$	\.t) / {) (,,,,,	
2	2	_			/	v	۲,	Nu	

$$\vec{p} = m\vec{v}$$

$$v_{fs}^{2} = v_{is}^{2} + 2a_{s}\Delta s \qquad \forall_{\mathfrak{p}}, \forall_{\dot{\mathfrak{p}}}, \alpha_{i}, \Delta \chi \qquad \vec{p} = m\vec{v} \qquad \sum_{\dot{\mathfrak{p}}} \vec{p}_{i} = \sum_{\dot{\mathfrak{p}}} \vec{p}_{f}$$
when's Second Law and Forces Work and Energy

Newton's Second Law and Forces

$$\vec{F}_{net} = \Sigma \vec{F}_{ext} = m\vec{a} = \frac{d\vec{p}}{dt}$$

$$\vec{W} = m\vec{g} \qquad F = -k\Delta s$$
$$F = \mu n$$

$$F_{m \ on \ M} = F_{M \ on \ m} = \frac{GMm}{r^2}$$

Linear/Circular/Rotational Connection

$$s = r\theta$$

$$v_t = r\omega$$

$$a_t = r\alpha$$

tangential speed

Centripetal Acceleration

$$a_r = \frac{v_i^2}{r} = \omega^2 r$$

angular frequency (angular speed)

Impulse and Linear Momentum

$$\vec{J} = \int_{t}^{t_2} \vec{F}(t)dt = \Delta \vec{p}$$

$$\sum \vec{p}_i = \sum \vec{p}_f$$

$$W = \int_{s_i}^{s_f} F_s ds \quad W = \int_{s_i}^{s_f} \vec{F} \cdot d\vec{s}$$

$$\left[K = \frac{1}{2} m v^2\right] \qquad \Delta K = W_{net}$$

$$F_{x} = -\frac{dU}{dx} \qquad \Delta W = W_{net}$$

$$F_{x} = -\frac{dU}{dx} \qquad \Delta U_{A \to B} = -\int_{A}^{B} \vec{F} \cdot d\vec{s}$$

$$K_{f} + U_{f} = K_{i} + U_{i}$$

$$\Delta K + \Delta U = W_{nc}$$

Potential Energy
$$U = mgy = mgh$$

$$U = \frac{1}{2}k(\Delta s)^2$$

$$U = -\frac{GmM}{r}$$

Orbital Mechanics

$$v(circular) = \sqrt{\frac{GM}{r}}$$

$$v(escape) = \sqrt{\frac{2GM}{r}}$$

$$E(circular) = \frac{U}{2} = -K$$

$$T^2 = \frac{4\pi^2 r^3}{GM}(circular)$$

$$Torque$$

$$\tau = rF \sin \phi$$

$$\tau_{net} = \Sigma \tau_{ext} = I\alpha$$

Wave Motion

$$v = \frac{\lambda}{T} = \lambda f = \frac{\omega}{k}$$

$$k = \frac{2\pi}{1}$$

$$D(x,t) = A\sin(kx \pm \omega t + \phi_{\circ})$$

Vector Identities/Quadratic Equation

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

If
$$Ax^2 + Bx + C = 0$$
 then

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

TABLE 13.3 Moments of inertia of objects with uniform density

and axis	Picture	I	and axis	Picture	I
Thin rod, about center		$\frac{1}{12}ML^2$	Cylinder or disk, about center		$\frac{1}{2}MR^2$
Thin rod, about end		$\frac{1}{3}ML^2$	Cylindrical hoop, about center	R	MR^2
	/			-	

Plane or slab, about center

about edge

