05. Linear-Time Sorting and Selection CPSC 535

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

Big Idea in Computer Science

"What is old is new again": CS principles are solved science; society's needs, economic factors, and fads dictate which are prominent and which are in the background

- thin clients dominated the mainframe era; thick clients dominated the PC era; thin clients dominate the web app era
- memory conservation was critical prior to the 90s; programmer labor was more important, until mobile phones
- ► Unix rose (70s), fell (80s-90s), rose again (MacOS, iOS, Android, ChromeOS, Linux, PlayStation, embedded)
- ▶ algorithms were considered ivory-tower theory until recently

Protip: the CS material that seems irrelevant now, will probably become extremely marketable later in your career

Big Idea in Algorithm Design

Paramaterized complexity: algorithm complexity measured both in terms of input size n, and some parameter describing the values in the input

- ightharpoonup machine word size W (e.g. W=64 on modern PCs)
- # distinct values k

Pseudopolynomial: polynomial over both n, and also parameters

- radix sort takes $\Theta(nW)$ time
- \blacktriangleright strictly speaking W could be as large as n, so $\Theta(nW) = \Theta(n^2)$, unimpressive
- ▶ in practice all real-world computers have $W \in \Theta(1)$ so $\Theta(nW) = \Theta(n)$, faster than $\Theta(n \log n)$
- arguably defying the spirit of the Random Access Model

Tool to circumvent lower bounds. NP-hardness

The Lower Bound for the Sorting Problem

Recall the precise phrasing of the theorem:

Any comparison sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Bad news: $O(n \log n)$ "speed limit" for this important problem

Good news:

- \triangleright optimal $\Theta(n \log n)$ -time algorithms: mergesort, heapsort, quicksort
- loophole: theorem only applies to "comparison sorts"
- loophole: theorem applies to the general sorting problem, but we could make the problem more specific

Counting Sort Problem

```
Recall the classical sorting problem:
```

input: a sequence of n numbers $A = \langle a_1, a_2, \ldots, a_n \rangle$ **output:** a permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \ldots, a'_n$.

What if the inputs a_i are all bounded integers?

```
counting sort problem: (changes are <u>underlined</u>)

input: an integer k \ge 0, and a sequence of n integers A = \langle a_1, a_2, \dots, a_n \rangle, where each a_i \in [0, k]

output: same
```

Turns out this change admits a $\Theta(n)$ -time algorithm.

Counting Sort Idea

- ▶ each a; can work as an array index
- count the number of occurrences of each value; create array C where

C[x] = the number of times that x appears in A

- ▶ let B be the output array
- \triangleright use the counts in C to plan out which indices of B will hold each a_i
- ▶ fill in *B* using this information

Counting Sort Pseudocode

```
1: function COUNTING-SORT(A, B, k)
                                                                               ▷ A[1..n], B[1..n]
       allocate new array C[0, ..., k], initialized to all zeroes
       for j from 1 to n do
 3.
           C[A[i]] + +
                                                              C[i] is the number of elements = i
       end for
 5.
       for i from 1 to k do
           C[i] = C[i] + C[i-1]
                                                                \triangleright C[i] = \text{count of elements} < i
       end for
8.
       for j from n down to 1 do
g٠
           B[C[A[i]]] = A[i]
10.
           C[A[i]] = C[A[i]] - 1
11.
       end for
12:
13: end function
```

Counting Sort Analysis

- ▶ allocate $C: \Theta(k)$ time
- ▶ first **for** loop: $\Theta(n)$ time
- ▶ second **for** loop: $\Theta(k)$ time
- ▶ third **for** loop: $\Theta(n)$ time
- ▶ total = $\Theta(k + n + k + n) = \Theta(2k + 2n) = \Theta(k + n)$ time

When Counting Sort Wins

If $k \in O(n)$, then counting sort takes $\Theta(k+n) = \Theta((n)+n) = \Theta(n)$ time.

Applications where $k \ll n$

- ▶ DNA sequences have only k = 4 bases A, C, G, T; human genome has $n \approx 3$ billion bases
- ightharpoonup n-character ASCII string has only k = 127 character values
- log of website analytics has n hits but only k distinct web page URLs; each page is visited many times so $n \gg k$

When Counting Sort Loses

In the general sorting problem, each a_i is unbounded, so the maximum element could use $\Theta(n)$ bits, have value

$$a_i = 2^n = k$$

and force counting sort to take

$$\Theta(k+n) = \Theta((2^n)+n) = \Theta(2^n)$$

time, which is **exponential** in n and much more expensive than $\Theta(n \log n)$

 \implies counting sort is optimal when the software designer knows that the input is always a set of k integers with $k \in O(n)$

⇒ **but** if that is not guaranteed, comparison sorts are still optimal

Stable Sorting

stable sorting algorithm: does not swap order of ties

if
$$a_i = a_j$$
 and $i < j$ then $i' < j'$

Ex.: suppose we sort

by the first element of each pair; a stable sort guarantees (13, c) comes before (13, d)

Stability is a convenient, desirable property

Stable: insertion sort, mergesort, counting sort

Not stable: heapsort, quicksort

11/26

"Radix"

Vocabulary quiz:

- ▶ what does **radix** mean?
- ▶ where else do we use the word "radix"?

Radix Sort Overview

- make counting sort more robust to large elements
- sort one digit at a time
- i.e. sort by least-significant-digit, then by second-least-significant-digit, ..., sort by most-significant digit
- e.g. to sort names in a spreadsheet: sort by first name, then by last name
- ▶ originally used by pre-digital punchcard sorting machines (what's old...)
- ▶ now used for parallel sort in GPU (...is new again)

Radix Sort Worked Example

(Sorting one base-10 digit at a time.)

1	1	5	
0	5	3	
7	6	2	
7	9	1	
6	7	4	
5	2	1	
3	3	4	
\sim	_	_	

7	9	1	
5	2	1	
7	6	2	
0	5	3	
6	7	4	
3	3	4	
7	7	5	
2	2	5	

5	2	1	
		4	
		3	
7	6	2	
6	7	4	
7	7	5	
7	9	1	
	6 7	2 2 3 3 0 5 7 6 6 7 7 7	2 2 5 3 3 4 0 5 3 7 6 2 6 7 4 7 7 5

0	5	3
2	2	5
3	3	4
5	2	1
6	7	4
7	6	2
7	7	5
7	9	1

14/26

Radix Sort. 1 bit at a time

- 1: function RADIX-SORT-1(A, W)
- 2: **for** i from 1 to W **do**
- 3: use a stable sort to sort A based only on bit position i
- 4: end for
- 5: end function

Using counting sort as the stable sort, we have k=2 (bit values 0 or 1) so each loop iteration takes $\Theta(k+n)=\Theta(2+n)=\Theta(n)$ time

Clearly W iterations $\implies \Theta(nW)$ total time

Radix Sort, 8 bits at a time

- 1: function RADIX-SORT-8(A, W)
- 2: **for** i from 1 to $\lceil W/8 \rceil$ **do**
- 3: stably sort A on bits 8i 7 through 8i
- 4: end for
- 5: end function

$$k=2^8=256\in\Theta(1)$$

number of iterations is $\lceil nW/8\rceil\in\Theta(n)$
 \implies still $\Theta(nW)$ time, but with different constant factors

Let r = # bits per pass; optimal choice of r minimizes

$$\lceil W/r \rceil \cdot (2^r + n)$$

Minimum and Maximum

```
1: function MINIMUM(A)
       min = A[1]
       for i from 2 to A.length do
 3:
          if min > A[i] then
              min = A[i]
 5:
           end if
       end for
       return min
 9: end function
\Theta(n) time
can also find maximum in \Theta(n) time, or both in \Theta(n) time
```

Selection Problem and Baseline Algorithm

input: array of *n* numbers $A = \langle a_1, a_2, \dots, a_n \rangle$; index $i \in \{1, 2, \dots, n\}$ **output:** the *i*th smallest element of A

- 1: function SELECTION-BY-SORTING(A, i)
- 2: **return** MERGE SORT(A)[i]
- 3: end function

Clearly $\Theta(n \log n)$ time

Surprise: selection can be solved in only $\Theta(n)$ time

Randomized Quicksort Review

```
1: function RPART(A, p, r)
                                                             k = \text{random in } [p, r]  \triangleright \text{ pivot index}
 1: function RQSORT(A, p, r)
                                                             swap(A[k], A[r]) \triangleright move pivot aside
       if p < r then
                                                          pivot = A[r] \triangleright pivot value
     a = RPART(A, p, r)
                                                       5: i = p - 1 \Rightarrow i is first \leq pivot index
           RQSORT(A, p, a-1)
                                                       6: for j from p to r-1 do
           RQSORT(a, q+1, r)
 5.
                                                                 if A[j] \leq pivot then
 6:
       end if
                                                       8:
                                                                     i + +
 7. end function
                                                                     swap(A[i], A[i])
                                                       9:
                                                                 end if
                                                      10:
                                                             end for
Non-stable sort in \Theta(n \log n) expected time but
                                                      11:
                                                             swap(A[i+1], A[r]) \triangleright move pivot back
\Theta(n^2) worst-case time
                                                      12:
                                                      13:
                                                             return i+1
                                                      14 end function
```

Randomized Selection Overview

- combining ideas from binary search and quicksort
- recursively search for ith smallest element
- do randomized partition; then
- three cases
 - pivot happens to be ith smallest
 - need to keep searching before pivot
 - need to keep searching after pivot
- expected runtime is $T(n) \approx T(n/2) + \Theta(n)$
- \triangleright counterintuitively, that solves to $\Theta(n)$

Randomized Selection Pseudocode

```
1: function RSELECT(A, p, r, i)
       if p == r then
          return A[p]
                                                                                base case, done
 3:
       end if
    q = RPART(A, p, r)

    partition, a is pivot index

    k = q - p + 1
                                                       \triangleright k = \text{number of elements before pivot}
    if i == k then
          return A[q]
                                                                              pivot is answer
       else if i < k then
9:
10:
           return RSELECT(A, p, a-1, i)
       else
11:
           return RSELECT(A, a + 1, r, i - k)
                                                                             \triangleright i decreases by k
12:
       end if
13.
14: end function
```

Randomized Selection Analysis

- ightharpoonup at most one recursive call, on n/2 elements on average
- ightharpoonup partitioning takes $\Theta(n)$ time
- rest of algorithm takes $\Theta(1)$ time
- expected running time

$$T(n) = T(n/2) + \Theta(n)$$

which is only $\Theta(n)$ by master theorem

- \triangleright worst case is the same for quicksort, extreme pivot at each step, $\Theta(n^2)$ time
- **takeaway:** randomized selection takes $\Theta(n)$ expected time and $\Theta(n^2)$ worst-case time

Deterministic Selection Overview

- deterministic: perfectly predictable; not randomized
- recall that $T(n) = T(fn) + \Theta(n)$ is $\Theta(n)$ for any fraction 0 < f < 1, not just f = 1/2
- ▶ need: deterministic process to find a not-terrible pivot
- ▶ i.e. need at least fn elements on each side of the pivot, so that the worst-case recursive call is T((1-f)n)
- e.g. need at least $\frac{1}{3}n$ elements on each side of the pivot, so that there is a $T(\frac{1}{3}n)$ or $T(\frac{2}{3}n)$ call; worst-case is $T(\frac{2}{3}n)$; so

$$T(n) = T(\frac{2}{3}n) + \Theta(n)$$

which is still $\Theta(n)$ (though with worse constants)

Deterministic Selection Process

- 1. divide *n* elements into $\approx n/5$ groups of 5 elements each
- 2. find the median of each group with SELECTION BY SORTING; $\Theta(n(5 \log 5)) = \Theta(n)$ time
- 3. form a new array of the medians, and recursively select the median of this array = "median-of-medians"; T(n/5) time
- 4. partition as usual, using median-of-medians as the pivot; $\Theta(n)$ time
- 5. same three cases: either pivot is answer, or recurse before pivot, or recurse after pivot; T(max. # elements on either side of pivot)

Deterministic Selection Analysis

- let x be the median-of-medians; count elements $\geq x$
- suppose W.L.O.G. that input elements are distinct
- ightharpoonup ... at least half of the group-medians are $\geq x$
- ightharpoonup at least half of the groups contain at least 3 elements $\geq x$ each; except for the group containing x, and possibly one group with < 5 elements
- \blacktriangleright : #elements > x is at least

$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right)\geq\frac{3}{10}n-6$$

- **>** symmetrically there are at least $\frac{3}{10}n 6$ elements $\leq x$
- ightharpoonup : recursively select at most $n (\frac{3}{10}n 6) = \frac{7}{10}n + 6$ elements

Deterministic Selection Analysis (continued)

For some $t \in \Theta(1)$,

$$T(n) \leq \begin{cases} O(1) & n < t \\ T(\lceil n/5 \rceil) + T(\frac{7}{10}n+6) + O(n) & n \geq t. \end{cases}$$

The master theorem does not apply, but the substitution method can be used to show $T(n) \in O(n)$.

Takeaway: Deterministic selection takes O(n) worst-case time.

Surprise: selection can be **derandomized** from O(n) expected time to O(n) worst-case time with no asymptotic overhead.

Impractical; much worse constant factors, not usually worth it.