EK "Risikoanalysen in der IT"

HW & SW: Zustandsdiagramme & Markov-Analysen

Ralf Mock, 9. November 2015

Modellierung von Hardware- und Software-Ausfällen

Mit Markov-Zustandsdiagrammen lässt sich auch das Zusammenwirken von HW und SW auf die System-Zustandswahrscheinlichkeiten berechnen. Im Beispiel wird davon ausgegangen, dass sich HW- und SW-Fehler beseitigen lassen. Zustände und Kenngrössen sind:

Zustandswahrscheinlichkeiten	Raten und Beschreibung
P_1 : HW + SW voll funktionsfähig P_2 : Ausfall der HW P_3 : Teilausfall der SW; HW funktionsfähig P_4 : Ausfall der HW + SW (Systemausfall)	λ_H : Ausfallrate der HW (B1)* μ_S : Reparaturrate der SW (B2) λ_S : Ausfallrate der SW (B3) μ_H : Reparaturrate der HW (B4)

Anmerkungen: In (B ...) stehen die Bezeichnungen der Raten für das folgende Zustandsdiagramm. Beispiel gem. [?] (ohne Berechnungen, Daten und Simulationen). Simulation mit CARMS.

rcher Fashbochschule

Zustandsdigramm

20cm footbooks/sig

Stationärer Systemzustand ($t \rightarrow \infty$)

$$0 = \mu_{S} \cdot P_{3} - \lambda_{S} \cdot P_{1}$$

$$0 = \mu_{H} \cdot P_{2} - \lambda_{H} \cdot P_{1}$$

$$0 = -\mu_{S} \cdot P_{3} + \lambda_{S} \cdot P_{1} - \lambda_{H} \cdot P_{3} + \mu_{H} \cdot P_{4}$$

$$0 = -\mu_{H} \cdot P_{4} + \lambda_{H} \cdot P_{3}$$

$$(1)$$

Mit $1 = \sum_{i} P_{i}$ ist dann Gl. ?? zu lösen:

$$0 = 1 - P_{1} - P_{2} - P_{3} - P_{4}$$

$$0 = \mu_{H} \cdot P_{2} - \lambda_{H} \cdot P_{1}$$

$$0 = -\mu_{S} \cdot P_{3} + \lambda_{S} \cdot P_{1} - \lambda_{H} \cdot P_{3} + \mu_{H} \cdot P_{4}$$

$$0 = -\mu_{H} \cdot P_{4} + \lambda_{H} \cdot P_{3}$$
(2)

Auflösen des 4. Terms der Gl. ?? nach P_4 ergibt

$$P_4 = \frac{\lambda_H \cdot P_3}{\mu_H} \tag{3}$$

One Facilitation in the Control of t

Einsetzen von P_4 in Gl. ?? ergibt

$$0 = 1 - P_1 - P_2 - P_3 - \frac{\lambda_H \cdot P_3}{\mu_H}$$

$$0 = \mu_H \cdot P_2 - \lambda_H \cdot P_1$$

$$0 = -\mu_S \cdot P_3 + \lambda_S \cdot P_1 - \lambda_H \cdot P_3 + \frac{\mu_H \cdot \lambda_H \cdot P_3}{\mu_H}$$

$$(4)$$

Der 3. Term der Gl. $\ref{Gl.}$ vereinfacht sich; auflösen des 2. Terms nach $\ref{P_2}$ ergibt

$$P_2 = \frac{\lambda_H \cdot P_1}{\mu_H} \tag{5}$$

Einsetzen von P_2 in Gl. ?? ergibt

$$0 = 1 - P_1 - \frac{\lambda_H \cdot P_1}{\mu_H} - P_3 - \frac{\lambda_H \cdot P_3}{\mu_H}$$

$$0 = -\mu_S \cdot P_3 + \lambda_S \cdot P_1$$
(6)

S/1

Auflösen des 2. Terms der Gl. ?? nach P_3 ergibt

$$P_3 = \frac{\lambda_S \cdot P_1}{\mu_S} \tag{7}$$

Einsetzen von P_3 in die Gl. ?? ergibt einen Ausdruck, der nur noch von P_1 abhängt:

$$0 = 1 - P_1 - \frac{\lambda_H \cdot P_1}{\mu_H} - \frac{\lambda_S \cdot P_1}{\mu_S} - \frac{\lambda_H \cdot \lambda_S \cdot P_1}{\mu_H \cdot \mu_S}$$
(8)

Gl. ?? ist umzuformen und nach P_1 aufzulösen.

6/1

Umformen und Auflösen der Gl. ??

$$1 = P_1 + \frac{\lambda_H \cdot P_1}{\mu_H} + \frac{\lambda_S \cdot P_1}{\mu_S} + \frac{\lambda_H \cdot \lambda_S \cdot P_1}{\mu_H \cdot \mu_S}$$
(9)

Ausklammern von P_1 in Gl. ?? ergibt

$$1 = P_1 \cdot \left(1 + \frac{\lambda_H}{\mu_H} + \frac{\lambda_S}{\mu_S} + \frac{\lambda_H \cdot \lambda_S}{\mu_H \cdot \mu_S} \right) \tag{10}$$

Hauptnenner bilden in Gl. ?? ergibt

$$1 = P_1 \cdot \left(\frac{\mu_H^2 \cdot \mu_S^2 + \lambda_H \cdot \mu_S \cdot (\mu_H \cdot \mu_S) + \lambda_S \cdot \mu_H \cdot (\mu_H \cdot \mu_S) + \lambda_H \cdot \lambda_S \cdot \mu_H \cdot \mu_S}{\mu_h \cdot \mu_S \cdot \mu_H \cdot \mu_S} \right)$$
(11)

Zusammenfassen der Gl. ?? und nach P_1 ausklammern

$$P_{1} = \frac{\mu_{H}^{2} \cdot \mu_{S}^{2}}{\mu_{H}^{2} \cdot \mu_{S}^{2} + \lambda_{H} \cdot \mu_{S}^{2} \cdot \mu_{H} + \lambda_{S} \cdot \mu_{H}^{2} \cdot \mu_{S} + \lambda_{H} \cdot \lambda_{S} \cdot \mu_{H} \cdot \mu_{S}}$$
(12)

Zürcher Fachhochsch

Stationäre Zustandswahrscheinlichkeiten

$$\begin{split} P_1 &= \frac{\mu_H^2 \cdot \mu_S^2}{\mu_H^2 \cdot \mu_S^2 + \lambda_H \cdot \mu_S^2 \cdot \mu_H + \lambda_S \cdot \mu_H^2 \cdot \mu_S + \lambda_H \cdot \lambda_S \cdot \mu_H \cdot \mu_S} \\ P_2 &= \frac{\lambda_H \cdot P_1}{\mu_H} \\ P_3 &= \frac{\lambda_S \cdot P_1}{\mu_S} \\ P_4 &= \frac{\lambda_H \cdot P_3}{\mu_H} = \frac{\lambda_H \cdot \lambda_S \cdot P_1}{\mu_H \cdot \mu_S} \end{split}$$

Eingabewerte und Ergebnis

Eingabewerte $\left[\frac{1}{h}\right]$	Ergebnisse
$\lambda_H = 3.3 \cdot 10^{-1}$	$P_1 = 3.0208 \cdot 10^{-7}$
$\mu_{\mathcal{S}}=10^{-4}$	$P_2 = 9.9688 \cdot 10^{-5}$
$\lambda_{\mathcal{S}}=1$	$P_3 = 3.000 \cdot 10^{-3}$
$\mu_H = 10^{-3}$	$P_4 = 9.969 \cdot 10^{-1}$

8/1

Simulation mit CARMS: zeitabhängige Zustandswahrscheinlichkeiten (Abb.: nach 30 Stunden)

Nach einem Einschwingvorgang nähern sich hier die zeitabhängigen den stationären Wahrscheinlichkeiten sehr langsam an. Im Beispiel sind erst nach ca. 20'000 Stunden die Wahrscheinlichkeiten (fast) gleich.

9 / 1

Literatur

Ziocher Fasthosheinide