

General Principles and Processes of Isolation of Elements Occurrence of metals:

Metal	Ores	Composition	
Aluminium	Bauxite	$AIO_X(OH)_{3-2X}$	
		[where 0 < x < 1]	
	Kaolinite (a form of clay)	[Al ₂ (OH) ₄ Si ₂ O ₅]	
Iron	Haematite	Fe ₂ O ₃	
	Magnetite	Fe ₃ O ₄	
	Siderite	FeCO ₃	
	Iron pyrites	FeS ₂	
Copper	Copper pyrites	CuFeS ₂	
	Malachite	CuCO ₃ .Cu(OH) ₂	
	Cuprite	Cu ₂ O	
	Copper glance	Cu ₂ S	
Zinc	Zinc blende or Sphalerite	ZnS	
	Calamine	ZnCO ₃	
	Zincite	ZnO	

- The major steps involved in the extraction and isolation of metals from ores are:
- 1. Concentration of the ore
- 2. Isolation of the metal from the concentrated ore
- 3. Purification of the metal

Concentration of ores:

- Hydraulic washing: It is the washing away of lighter gangue particles from the heavier ore. It is based on the gravity difference between the ore and the gangue particles.
- Magnetic separation: This separation is carried out if either the ore or the gangue is attracted by a magnetic field.

- Froth floatation method: This method is used for removing gangue from sulphide ores. 'Depressants' are used for separating two sulphide ores. E.g., for separating ZnS and PbS, NaCN is used as the depressant.
- Leaching: If the ore is soluble in some suitable solvent, then this process is used. For example, ores of aluminium (bauxite), silver and gold
 - 1. Leaching of alumina

$$Al_2O_{3(s)} + 2NaOH_{(aq)} + 3H_2O_{(l)} \otimes 2Na[Al(OH)_4]_{(aq)}$$

$$2Na[Al(OH)_4]_{(aq)} + CO_{2(g)} \otimes Al_2O_3.xH_2O_{(s)} + 2NaHCO_{3(aq)}$$

$$Al_2O_3.xH_2O_{(s)} \xrightarrow{\text{HDE}} Al_2O_{3(s)} + xH_2O_{(s)}$$

Isolation of crude metal from concentrated ore: It involves two steps -

- (i) Conversion into oxide and (ii) Reduction of the oxide to metal
 - Conversion into oxide:
 - 1. Calcination → Involves heating

Generally, carbonate ores are converted into oxides by this process.

$$ZnCO_{3(s)} \xrightarrow{\quad \bullet \quad} ZnO_{(s)} + CO_{2(g)}$$

 Roasting → Involves heating in a regular supply of air, at a temperature below the melting point of the metal.

$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

Generally, sulphide ores are converted into oxides by this process.

Reduction of the oxide to metal:
 Involves heating with some reducing agents such as C, CO or another metal.

Thermodynamic principles of metallurgy: For any process, the change in Gibbs energy at a temperature is given by

$$\Delta G = \Delta H - T\Delta S$$

and $\Delta G^{\Theta} = -RT \ln K$

A reaction will proceed when the value of ΔG is negative.

Applications:

If $\Delta G_{(X, XO)}$ is lower than $\Delta G_{(Y, YO)}$, then X can reduce YO.

Extraction of iron from its oxides:

- 1. Reaction taking place in a blast furnace
- 2. At 500 800 K

$$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$$

 $Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$
 $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$

1. At 900 – 1500 K
$$C + CO_2 \rightarrow 2CO$$

$$FeO + CO \rightarrow Fe + CO_2$$

1. Limestone is decomposed to CaO, which removes silicate impurity as slag.

$$CaCO_3 \rightarrow CaO + CO_2$$

 $CaO + SiO_2 \rightarrow CaSiO_3$ (slag)

- 1. Pig iron is the iron obtained from a blast furnace, which contains about 4% carbon and impurities like S, P, Si, Mn in smaller amounts.
- 2. Cast iron (contains about 3% carbon) is obtained by melting pig iron with scrap iron and coke, using hot-air blast.
- 1. Extraction of copper from cuprous oxide:

$$Cu_2O + C \rightarrow 2Cu + CO$$

1. Copper matte contains Cu₂S and FeS. It is put in the silica-lined converter to convert the remaining Cu₂S/Cu₂O into metallic copper.

$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

 $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$

1. Extraction of zinc from zinc oxide:

Electrochemical principles of metallurgy: A more reactive metal displaces a less reactive one from its salt solution.

Extraction of aluminium:

- 1. Purified Al₂O₃ is mixed with Na₃AlF₆ or CaF₂ to lower the melting point and bring conductivity.
- 2. The overall reaction -

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$$

- 1. This electrolytic process is known as Hall-Heroult process.
- 2. The electrolytic reactions are -

Cathode:
$$AI^{3+}_{(melt)} + 3e^{-} \rightarrow AI_{(1)}$$

Anode: $C_{(s)} + O^{2-}_{(melt)} \rightarrow CO_{(g)} + 2e^{-}$
 $C_{(s)} + 2O^{2-}_{(melt)} \rightarrow CO_{2(g)} + 4e^{-}$

Copper from low-grade ores and scraps:

Copper is extracted by hydrometallurgy from low-grade ores. The solution containing Cu^{2+} is treated with scrap iron or H_2 .

$$Cu^{2+}_{(aq)} + H_{2(g)} \rightarrow Cu_{(s)} + 2H^{+}_{(aq)}$$

Extraction of Chlorine from Brine

oxidation reaction

$$2\text{NaCl}_{(aq)} + 2\text{H}_2\text{O}_{(l)} \longrightarrow 2\text{NaOH}_{(aq)} + \text{H}_{2(g)} + \text{Cl}_{2(g)}$$

- $E^0 = 2.2 \text{ V}$
- Requires an external emf greater than 2.2 V. But the
- Electrolysis requires an excess potential to overcome some other hindering reactions.
- Electrolysis of molten NaCl produces Na metal in the place of NaOH.

Extraction of Gold and Silver

- Metal is leached with NaCN or KCN.
- Ag is oxidised to Ag+ and Au is oxidised to Au+

$$4M_{(s)} + 8CN_{(aq)}^{-} + 2H_{2}O_{(aq)} + O_{2(g)} \longrightarrow 4[M(CN)_{2}]_{(aq)}^{-} + 4OH_{(aq)}^{-}$$

$$(M = Ag \text{ or } Au)$$

$$2[M(CN)_{2}]_{(aq)}^{-} + Zn_{(s)} \longrightarrow [Zn(CN)_{4}]_{(aq)}^{2-} + 2M_{(s)}$$

Refining (Purification):

Distillation –

The impure forms of low-boiling metals like zinc and mercury are evaporated to obtain pure metals as distillate.

Liquation –

Low-melting metals (like tin) are separated from higher-melting liquids by allowing them to flow on a sloping surface.

• Electrolytic refining –

Anode: $M \rightarrow M^{n+} + ne^{-}$ Cathode: $M^{n+} + ne^{-} \rightarrow M$

- a. Impure metal is taken as anode and a strip of pure metal is taken as cathode.
- b. Copper and zinc are refined by this process.
- c. Anode mud obtained during electrolytic refining of copper contains antimony, selenium, tellurium, silver, gold and platinum.

- a. Principle The impurities are more soluble in the molten state than in the solid state of a metal.
- b. Germanium, silicon, boron, gallium, indium are refined by this process.

28 สโดเพต

- Vapour-phase refining -
- a. Requirements -
- b. The metal should form a volatile compound with an available reagent.
- c. The volatile compound should be easily decomposed so that it can be recovered easily.
- a. Mond process for refining nickel:

Ni + 4CO
$$\xrightarrow{330-350 \mathbb{K}}$$
 Ni(CO)₄
Ni(CO)₄ $\xrightarrow{450-470 \mathbb{K}}$ Ni + 4CO

a. van Arkel method for refining ziroconium (Zr) or titanium (Ti):

Used for removing oxygen and nitrogen present as impurities

$$Zr + 2l_2 \rightarrow Zrl_4$$

 $Zrl_4 \rightarrow Zr + 2l_2$

- Chromatographic methods:
- a. Principle Different components of a mixture are differently adsorbed on an adsorbent.
- b. Chromatography involves a mobile phase and a stationary phase.
- c. There are several chromatographic techniques –
- d. Paper chromatography
- e. Column chromatography
- f. Gas chromatography