MATH 230 L

** Converting regexes to DFAs

We have finished the cases of $r=\phi$, $r=\epsilon$ and r=a for $a \in \Sigma$

4) $\gamma = r_1 r_2$ where r_1, r_2 (smaller) regexes

Suppose we have M_1 , M_2 such that $L(M_1) = L(Y_1)$ and $L(M_2) = L(Y_2)$ Want to construct M such that $L(M) = L(Y_1) \circ L(Y_2)$ If W = xy, such that $z \in L(Y_1)$, $y \in L(Y_2)$

Ideally. We want a method to "teleport" from the accept states of M_1 to the start state of M_2 . This construction would exactly accept what we want, namely $L(M_1) \circ L(M_2) = L(\Upsilon_1) \circ L(\Upsilon_2)$. But at the moment it's not allowed.

We've stuck ... with our current definition.

5)
$$Y = Y_1 | Y_2$$
; $L(Y) = L(Y_1) \cup L(Y_2)$

Suppose we have $M_1 + M_2$ such that $L(M_1) = L(Y_1)$ and $L(M_2) = L(Y_2)$ Want to construct M such that $L(M) = L(Y_1) \cup L(Y_2)$ In other words, $W \in L(M)$ is either it is in $L(M_1)$

In other words, we L(M) if either it is in L(Mi) or it is in L(M2).

$$M_1$$
 M_2 M

We want to "simultaneously" run M, & M2 on any given word, and accept if any one accepts.

** Example

W = 11011

To simulate M, & Mz simultaneously, we need "two pointers". We'll do this using a produce DFA

** Product automator

*** Def: Let M, be a DFA with P as its set of states, Po the start state, A the set of accept states, and δ_1 : P \times Σ \rightarrow P Similarly Mz has Q as the state set, q_o the start state, B the accept states, and δ_2 : Q \times Σ \rightarrow Q

M = product automator for L(M) UL(M2)

- . Set of states: PXQ
- · start state: (p., g.)

Transition function $S: (PxQ) \times \Sigma \rightarrow P \times Q$ $S((P,q), a) = (S_1(P,a), S_2(q,a))$ Accept states (for L(Mi) v L(M2))

We say that (p,q) & PxQ is an accept state

for M, if:

either PEA or geB (or both)

accepting states of M, & M2 resp.

This finishes the case $Y=Y_1|Y_2$ 6) $Y=(Y_1)^*$

Given M, st. L(Mi) = L(ri), we want M, such that L(M) = L(ri)*.

Want to teleport from the accept states of M, to the start state.

This will essentially give us what we want, but we also need to accept ϵ ... simply making the current start state an accepting state is not correct

** Remark : It is possible to write down DFAs
that work for the rizz & (rist, but it's not
at all obvious

** Rreview: We'll introduce non-deterministic finite automata (NFAS), i.e. DFAs with choices