A First-Order Logic Formalization of the Unified Foundational Ontology

Daniele Porelo, Claudenir M. Fonseca, João Paulo A. Almeida, Giancarlo Guizzardi, Tiago Prince Sales

December 2, 2021

Abstract

This document presents a formalization of the Unified Foundational Ontology (UFO) in first-order logic. This formalization is documented by means of three complementary representations: (i) a representation in standard Common Logic using the CLIF syntax; (ii) a representation in natural language; and, when applicable, (iii) a UML-based diagrammatic representation. The presented formalization is supported by consistency and satisfiability checks performed through automated proofing tools.

1 Introduction

This document presents a formalization of the Unified Foundational Ontology (UFO) in first-order logic. This formalization is documented by means of three complementary representations: (i) a representation in standard Common Logic using the CLIF syntax; (ii) a representation in natural language; and, when applicable, (iii) a UML-based diagrammatic representation. The presented formalization is supported by consistency and satisfiability checks performed through automated proofing tools.

The remainder of this document is organized as a single formalization section (Section 2), which contains subsections for each submodule of the ontology.

2 Formalization

This section contains the formalization of the Unified Foundational Ontology (UFO) in first-order logics. This formalization is organized in several subsections where each presents the formalization of a portion of the whole ontology. The formalization is presented through different equivalent representations, designed to support the understanding of its contents: (i) a representation in standard Common Logic using the CLIF syntax; (ii) a representation in natural language; and, when applicable, (iii) a UML-based diagrammatic representation.

The UML-based diagrammatic representation serves as a visual representation certain predicates and axioms, being each element in Figure 1 being translated as follows:

• Rectangle shape (Figure 1a): visual representation of unary predicates associated to types in the ontology; the associated predicate is shown in lower camel case with no spaces. classA(x)

Figure 1: UML-based representation of first-order logic axioms.

• Open arrow (Figure 1b): visual representation of binary predicates; the predicate associated to the arrows' label is shown in lower camel case with no spaces; the predicate can only be true for any x and y if it is also true predicates associated to the types of each end (keeping the order of the arrow in the binary predicate's positions); this representation may also be associated to ternary predicates ifif its third position represents a time-index.

```
\forall x, y (relation(x, y) \rightarrow (classA(x) \land classB(y)))
\forall x, y, w (relation(x, y, w) \rightarrow (classA(x) \land classB(y) \land world(w)))
```

- Closed arrow (Figure 1c): visual representation of specializations between ontology's types, where the type in the tail of the arrow is a subtype of the type in the head of the arrow.

 ∀x(classB(x) → classA(x))
- Labeled closed arrow (Figure 1d): visual representation of disjoint and/or complete constraints over sets specializations between ontology's types.

```
 \forall x (classB(x) \rightarrow classA(x)) 
 \forall x (classC(x) \rightarrow classA(x)) 
 \forall x (classA(x) \rightarrow (classB(x) \lor classC(x))) 
 \neg \exists x (classB(x) \land classC(x))  {disjoint}
```

2.1 Partial Taxonomy of UFO: Thing

This subsection presents most general types of UFO's taxonomy specializing the type Thing (Figure 2).

a1 For every x, x is a Thing if f is either a Type or an Individual.

```
\forall x (\mathsf{type}_{-}(x) \lor \mathsf{individual}(x) \leftrightarrow \mathsf{thing}(x))
^{1} \ (\mathsf{cl-text} \ \mathsf{ax\_thing\_taxonomy}
^{2} \ (\mathsf{forall} \ (\mathsf{x})
^{3} \ (\mathsf{iff} \ (\mathsf{or} \ (\mathsf{type\_x}) \ (\mathsf{individual} \ \mathsf{x}))
```


Figure 2: Visual representation of UFO's taxonomy of Thing.

```
4  (thing x))
5  )
6 )
```

a2 There is no x such that it is a Type and an Individual.

```
\neg \exists x (\mathsf{type}_{-}(x) \land \mathsf{individual}(x))
```

```
7 (cl-text ax_thing_partition
8 (not (exists (x)
9  (and (type_ x) (individual x)))
10 )
11 )
```

a3 For every x, x is an Individual ifff x is either a Concrete Individual or an Abstract Individual.

 $\forall x (\mathsf{concreteIndividual}(x) \lor \mathsf{abstractIndividual}(x) \leftrightarrow \mathsf{individual}(x))$

```
12 (cl-text ax_individual_taxonomy
13 (forall (x)
14   (iff (or (concreteIndividual x) (abstractIndividual x))
15         (individual x))
16   )
17 )
```

There is no x such that it is a Concrete Individual and an Abstract Individual.

 $\neg \exists x (\mathsf{concreteIndividual}(x) \land \mathsf{abstractIndividual}(x))$

```
18 (cl-text ax_individual_partition
19 (not (exists (x)
20  (and (concreteIndividual x) (abstractIndividual x)))
21 )
22 )
```

a5 For every x, x is a Concrete Individual if x is either a Perdurant or an Endurant.

```
\forall x (\mathsf{endurant}(x) \lor \mathsf{perdurant}(x) \leftrightarrow \mathsf{concreteIndividual}(x))
```

a6 There is no x such that it is a Perdurant and an Endurant.

 $\neg \exists x (\mathsf{endurant}(x) \land \mathsf{perdurant}(x))$

```
colling contract contract
```

a7 For every x, x is a Concrete Individual if x is either a Perdurant or an Endurant.

 $\forall x (\mathsf{endurantType}(x) \lor \mathsf{perdurantType}(x) \to \mathsf{type}_{-}(x))$

a8 There is no x such that it is a Perdurant Type and an Endurant Type.

 $\neg \exists x (\mathsf{endurantType}(x) \land \mathsf{perdurantType}(x))$

```
40 (cl-text ax_type_partition
41 (not (exists (x)
42  (and (endurantType x) (perdurantType x)))
43 )
44 )
```

2.2 Partial Taxonomy of UFO: Abstract Individual

This subsection presents a portion of UFO's taxonomy specializing the type Abstract Individual (Figure 3).

a9 Every x that is a Quale is also an Abstract Individual.

 $\forall x (\mathsf{quale}(x) \to \mathsf{abstractIndividual}(x))$

```
(cl-text ax_abstractIndividual_taxonomy_quale
(forall (x)
(if (quale x)
(abstractIndividual x))
)
)
```

a10 Every x that is a Set is also an Abstract Individual.

```
\forall x (\mathsf{set}_{-}(x) \to \mathsf{abstractIndividual}(x))
```


Figure 3: Visual representation of UFO's taxonomy of Abstract Individual.

a11 Every x that is a World is also an Abstract Individual.

 $\forall x (\mathsf{world}(x) \to \mathsf{abstractIndividual}(x))$

a12 There is no x such that it is a Quale, a Set, and a World (pairwise disjoint).

```
\neg \exists x ((\mathsf{quale}(x) \land \mathsf{set}_{\neg}(x)) \lor (\mathsf{quale}(x) \land \mathsf{world}(x)) \lor (\mathsf{set}_{\neg}(x) \land \mathsf{world}(x)))
```

a13 Every x that is a Quality Structure is also a Set.

```
\forall x (\mathsf{qualityStructure}(x) \to \mathsf{set}_{-}(x))
```

```
calcolor (cl-text ax_set_taxonomy_qualityStructure)
(forall (x)
(if (qualityStructure x)
(set_ x))
28  )
29 )
```

a14 For every x, x is a Quality Structure if x is either a Quality Dimension or a Quality Space.

 $\forall x (\mathsf{qualityDimension}(x) \lor \mathsf{qualitySpace}(x) \leftrightarrow \mathsf{qualityStructure}(x))$

```
30 (cl-text ax_qualityStructure_taxonomy
31 (forall (x)
32    (iff (or (qualityDimension x) (qualitySpace x))
33          (qualityStructure x))
34    )
35 )
```

a15 There is no x such that it is a Quality Dimension and a Quality Space.

 $\neg \exists x (\mathsf{qualityDimension}(x) \land \mathsf{qualitySpace}(x))$

```
36 (cl-text ax_qualityStructure_partition
37 (not (exists (x)
38   (and (qualityDimension x) (qualitySpace x)))
39 )
40 )
```

2.3 Partial Taxonomy of UFO: Endurant

This subsection presents a portion of UFO's taxonomy specializing the type Endurant (Figure 4).

Figure 4: Visual representation of UFO's taxonomy of Endurant.

a16 For every x, x is an Endurant if x is either a Substantial or a Moment.

 $\forall x (\mathsf{substantial}(x) \lor \mathsf{moment}(x) \leftrightarrow \mathsf{endurant}(x))$

a17 There is no x such that it is a Substantial and a Moment.

 $\neg \exists x (\mathsf{substantial}(x) \land \mathsf{moment}(x))$

```
7 (cl-text ax_endurant_partition
8 (not (exists (x)
9  (and (substantial x) (moment x)))
10 )
11 )
```

a18 For every x, x is a Substantial ifif x is either an Object, a Collective, or a Quantity.

 $\forall x (\mathsf{object}(x) \lor \mathsf{collective}(x) \lor \mathsf{quantity}(x) \leftrightarrow \mathsf{substantial}(x))$

a19 There is no x such that it is an Object, a Collective, and a Quantity (pairwise disjoint).

```
\neg \exists x ((\mathsf{object}(x) \land \mathsf{collective}(x)) \lor (\mathsf{object}(x) \land \mathsf{quantity}(x)) \lor (\mathsf{collective}(x) \land \mathsf{quantity}(x)))
```

a20 For every x, x is a Moment if x is either an Intrinsic Moment or a Relator.

 $\forall x (\mathsf{intrinsicMoment}(x) \lor \mathsf{relator}(x) \leftrightarrow \mathsf{moment}(x))$

```
case (cl-text ax_moment_taxonomy
(forall (x)
(iff (or (intrinsicMoment x) (relator x))
(moment x))
27  )
28 )
```

a21 There is no x such that it is an Intrinsic Moment and a Relator.

 $\neg \exists x (\mathsf{intrinsicMoment}(x) \land \mathsf{relator}(x))$

a22 For every x, x is an Intrinsic Moment if x is either a Quality or a Mode.

 $\forall x (\mathsf{quality}(x) \lor \mathsf{mode}(x) \leftrightarrow \mathsf{intrinsicMoment}(x))$

```
(cl-text ax_intrinsicMoment_taxonomy
(forall (x)
(iff (or (quality x) (mode x))
(intrinsicMoment x))
)
```

a23 There is no x such that it is an Intrinsic Moment and a Relator.

```
\neg \exists x (\mathsf{quality}(x) \land \mathsf{mode}(x))
```

```
40 (cl-text ax_intrinsicMoment_partition
41 (not (exists (x)
42  (and (quality x) (mode x)))
43 )
44 )
```

a24 Every x that is a Disposition is also a Mode.

```
\forall x (\mathsf{disposition}(x) \to \mathsf{mode}(x))
```

a25 Every x that is an Externally Dependent Mode is also a Mode.

```
\forall x (\mathsf{externallyDependentMode}(x) \to \mathsf{mode}(x))
```

 ${f a26}$ Every x that is an Qua Individual is also an Externally Dependent Mode.

 $\forall x (\mathsf{quaIndividual}(x) \to \mathsf{externallyDependentMode}(x))$

```
57 (cl-text ax_externallyDependentMode_taxonomy_quaIndividual
58 (forall (x)
59  (if (quaIndividual x)
60   (externallyDependentMode x))
61  )
62 )
```