

Model Development Phase Template

Date	8 July 2024
Team ID	740019
Project Title	3D printer material prediction using machine learning
Maximum Marks	4 Marks

Initial Model Training Code

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

- from sklearn.tree import DecisionTreeClassifier
 dt=DecisionTreeClassifier(criterion='entropy')
 dt.fit(x_train,y_train)
- → DecisionTreeClassifier

 DecisionTreeClassifier(criterion='entropy')
- [36] y_pred_dt=dt.predict(x_test)
 y_pred_dt
- array([1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0])
- [37] from sklearn.metrics import accuracy_score
 accuracy_score(y_test,y_pred_dt)
- 0.42857142857142855

Model Validation and Evaluation Report:

Model	Classification Report	Accura cy
Decision Tree	from sklearn.tree import DecisionTreeClassifier dt=DecisionTreeClassifier(criterion='entropy') dt.fit(x_train,y_train) DecisionTreeClassifier DecisionTreeClassifier(criterion='entropy')	
	[36] y_pred_dt=dt.predict(x_test) y_pred_dt array([1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0])	42%
	[37] from sklearn.metrics import accuracy_score accuracy_score(y_test,y_pred_dt) → 0.42857142857142855	