Algorytmy dopasowywania wzroców do tekstu

dr inż. Aleksander Smywiński-Pohl

Plan

- algorytm naiwny
- automat skończony
- algorytm Knutha-Morrisa-Pratta

• T[1..n] - tekst o długości n, tablica znaków, łańcuch znaków

- T[1..n] tekst o długości n, tablica znaków, łańcuch znaków
- + P[1..m] wzorzec o długości $m, \, m \leq n$

- T[1..n] tekst o długości n, tablica znaków, łańcuch znaków
- P[1..m] wzorzec o długości m, $m \leq n$
- Σ alfabet, zbiór znaków tekstu

- T[1..n] tekst o długości n, tablica znaków, łańcuch znaków
- P[1..m] wzorzec o długości $m, \, m \leq n$
- Σ alfabet, zbiór znaków tekstu
- Σ^* zbiór wszystkich łańcuchów skończonej długości nad alfabetem Σ

- T[1..n] tekst o długości n, tablica znaków, łańcuch znaków
- P[1..m] wzorzec o długości $m, \, m \leq n$
- Σ alfabet, zbiór znaków tekstu
- Σ^* zbiór wszystkich łańcuchów skończonej długości nad alfabetem Σ
- ϵ tancuch pusty

- ullet T[1..n] tekst o długości n, tablica znaków, łańcuch znaków
- P[1..m] wzorzec o długości $m, \, m \leq n$
- Σ alfabet, zbiór znaków tekstu
- ullet zbiór wszystkich łańcuchów skończonej długości nad alfabetem Σ
- ϵ tancuch pusty
- ullet |x| długość łańcucha x

- ullet T[1..n] tekst o długości n, tablica znaków, łańcuch znaków
- P[1..m] wzorzec o długości $m, m \leq n$
- Σ alfabet, zbiór znaków tekstu
- ullet zbiór wszystkich łańcuchów skończonej długości nad alfabetem Σ
- ϵ tancuch pusty
- |x| długość łańcucha x
- xy konkatenacja łańcuchów x i y

Definicje

Definicje

- $w \sqsubset x$ w jest **prefiksem** łańcucha $x \equiv \exists y \in \Sigma^* : x = wy$
 - $|w| \le |x|$

Definicje

- $w \sqsubset x$ w jest **prefiksem** łańcucha $x \equiv \exists y \in \Sigma^* : x = wy$
 - $|w| \leq |x|$

- $w \sqsupset x$ w jest **sufiksem** łańcucha $x \equiv \exists y \in \Sigma^* : x = yw$
 - $|w| \leq |x|$

- P_k - prefiks długości k wzorca/tekstu P

- wzorzec P o długości m występuje w tekście T o długości n z przesunięciem s:

$$ullet 0 \leq s \leq n-m \wedge T[s+1..s+m] = P[1..m]$$

- wzorzec P o długości m występuje w tekście T o długości n z przesunięciem s:

$$ullet 0 \leq s \leq n-m \wedge T[s+1..s+m] = P[1..m]$$

ullet poprawne przesunięcie s - wzorzec P występuje z przesunięciem s

- wzorzec P o długości m występuje w tekście T o długości n z przesunięciem s:

•
$$0 \le s \le n - m \land T[s + 1..s + m] = P[1..m]$$

- poprawne przesunięcie s wzorzec P występuje z przesunięciem s
- **niepoprawne przesunięcie** s wzorczec P nie występuje z przesunięciem s

- dopasowanie wzroca ${\cal P}$ do tekstu ${\cal T}$
 - ullet znalezienie wszystkich poprawnych przesunięć s wzroca P w tekście T
 - ullet znalezienie wszystkich przesunięć s, dla których $P \sqsupset T_{s+m}$

Złożoność obliczeniowa algorytmów dopasowywania wzorców

Algorytm	Czas preprocessingu	Czas dopasowywania	_	
naiwny	0	O((n-m+1)m)	•	
automat skończony	\$O(m	\Sigma)^*\$	$\Theta(n)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$		

 $^{^*}$ algorytm prezentowany na wykładzie ma złożoność $O(m^3|\Sigma|)$

Lemat 1.1 (o zawieraniu sufiksów)

x,y,z - łańcuchy znaków

$$x \sqsupset z \land y \sqsupset z \rightarrow$$

- $|x| \leq |y| \rightarrow x \supset y$
- $|x| \ge |y| o y \sqsupset x$
- $|x| = |y| \rightarrow x = y$

Algorytm naiwny

Algorytm naiwny

```
def naive_string_matching(text, pattern):
    for s in range(0, len(text) - len(pattern) + 1):
        if(pattern == text[s:s+len(pattern)]):
            print(f"Przesunięcie {s} jest poprawne")
```

```
In [ ]:
    naive_string_matching("abdabaaaabd", "aa")
```

```
In [ ]:
    naive_string_matching("abdabaaaabd", "aa")
```

Złożoność czasowa dopasowania O((n-m+1)m)

Automat skończony - definicja

Automat skończony M to krotka (Q,q_0,A,Σ,δ) :

ullet Q - zbiór stanów

$$Q = \{ q_1, q_2, q_3 \}$$

 $ullet \ q_0 \in Q$ - stan początkowy

ullet $A\subset Q$ - zbiór stanów akceptujących

- Σ - alfabet, skończony zbiór znaków

$$\sum = \{a, b\}$$

• $\delta:Q imes\Sigma o Q$ - funkcja przejścia

- automat **akceptuje** łańcuch \equiv stan po przeczytaniu łańcucha $q \in A$
- w przeciwnym razie automat odrzuca łańcuch

- automat indukuje funkcję $\phi(w)$ zwaną **funkcją stanu końcowego**
- $\phi(w):\Sigma^* o Q$
 - $\phi(\epsilon) = q_0$
 - ullet $\phi(wa)=\delta(\phi(w),a)$ dla $w\in\Sigma^*,a\in\Sigma$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

Funkcja sufiksowa σ_P odpowiadająca wzorcowi P

```
|P|=m \sigma_P:\Sigma^*	o\{0,1,\dots m\} oldsymbol{\sigma}_P(x)=max\{k:P_k\sqsupset x\}
```


• $P_0=\epsilon$ jest sufiksem każdego łańcucha, co zapewni o poprawność definicji funkcji

•
$$|P| = m o (\sigma_P(x) = m \leftrightarrow P \sqsupset x)$$

Automat akceptujący teksty pasujące do wzorca D[1 20]

P[1..m]

- $Q = \{0, 1, \dots, m\}$
- $q_0 = 0$
- $A=\{m\}$ jedyny stan akceptujący
- $\bullet \ \ \delta(q,a) = \sigma_P(P_qa)$

Jak skonstruować funkcję δ ? Kluczowa obserwacja:

$$\sigma_P(T_ia) = \sigma_P(P_qa)$$
, gdzie $q = \sigma_P(T_i)$

Innymi słowy - można to zrobić analizująca sam wzorzec P.

Algorytm automatu skończonego

Algorytm automatu skończonego

```
In [15]:

def fa_string_matching(text, delta):
    q = 0
    length = len(delta) - 1
    for i in range(0, len(text)):
        q = delta[q][text[i]]
        if(q == length):
            print(f"Przesunięcie {i + 1 - q } jest poprawne")
            # ponieważ przeczytaliśmy (s+q)-ty znak tekstu, ale w Pythonie ma on indeks o jeden mniejszy,
            # dlatego wartośc musimy zwiększyć o 1
```

Algorytm automatu skończonego

Złożoność czasowa dopasowania $\Theta(n)$

Funkcja przejścia

Funkcja przejścia

Funkcja przejścia

Przesunięcie 0 jest poprawne Przesunięcie 3 jest poprawne Przesunięcie 8 jest poprawne

Poprawność działania automatu skończonego

- ullet lemat o nierówności funkcji sufiksowej σ
- lemat o rekursywności funkcji sufiksowej σ
- twierdzenie o porawności automatu skończonego

Lemat 1.2 (o nierówności funkcji sufiksowej)

Przyjmując:

- x łańcuch znaków
- a znak

 $orall x, a: \sigma_P(xa) \leq \sigma_P(x) + 1$

- 1. Niech $r = \sigma_P(xa)$
- 2. Jeśli r=0, wtedy warunek nierówności jest spełniony, ponieważ σ_P jest nieujemna.
- 3. Jeśli r>0:
 - A. $P_r \sqsupset xa$
 - B. $P_{r-1} \sqsupset x$
 - C. $r-1 \leq \sigma_P(x)$
 - D. $\sigma_P(xa) = r \leq \sigma_P(x) + 1$

Lemat 1.3 (o rekursywności funkcji sufiksowej)

Przyjmując:

- x łańcuch znaków
- a znak

$$orall x,a:q=\sigma_P(x) o\sigma_P(xa)=\sigma_P(P_qa)$$

1. $P_q \sqsupset x$ z definicji σ

1. $P_q a \mathrel{\sqsupset} xa$ poprzez dodanie znaku a na końcu prefiksu wzorca oraz na końcu tekstu

1. niech $r=\sigma_P(xa)$, wtedy: A. P_r $\hfill \Box xa$

1. niech $r=\sigma_P(xa)$, wtedy:

A.
$$r \leq q+1$$
 z lematu 1.2

1. niech $r=\sigma_P(xa)$, wtedy:

A.
$$|P_r|$$
 $= r$
 $\leq q$
 $+1$
 $=$
 $|P_q a|$

1. niech $r = \sigma_P(xa)$, wtedy:

A. $P_r \sqsupset P_q a$ (z $P_q a \sqsupset xa$, $P_r \sqsupset xa$ oraz $|P_r| \le |P_q a|$ i lematu 1.1)

1. niech
$$r=\sigma_P(xa)$$
, wtedy: A. $\sigma_P \ (P_r) \ \leq \sigma_P \ (P_qa)$

1. niech $r=\sigma_P(xa)$, wtedy:

$$egin{aligned} r &= \sigma_P(xa) \ A. & r \ &\leq \sigma_P \ & (P_qa) \ B. & \sigma_P(xa) \ &\leq \sigma_P \ & (P_qa) \ C. & \sigma_P(P_qa) \ &\leq \sigma_P \ & (xa) \ & ext{ponieważ} \ & P_qa \ & \Box & xa \ D. & \sigma_P(xa) \ & = \sigma_P \end{aligned}$$

 $(P_q a)$

Twierdzenie 1.4 (o poprawności automatu skończonego)

Niech:

- ullet ϕ_P funkcja stanu końcowego dla wzroca P,
- T[1..n] tekst dopasowywany do wzorca P,

wtedy

$$\phi_P(T_i) = \sigma_P(T_i)$$

dla i=0, twierdzenie jest prawdziwe, ponieważ $T_0=\epsilon$, więc $\phi_P(T_0)=0=\sigma_P(T_0)$,

dla i=0, twierdzenie jest prawdziwe, ponieważ $T_0=\epsilon$, więc $\phi_P(T_0)=0=\sigma_P(T_0)$,

Załóżmy, że $\phi_P(T_i)=\sigma_P(T_i)$ i sprawdźmy, czy $\phi_P(T_{i+1})=\sigma_P(T_{i+1}).$

dla i=0, twierdzenie jest prawdziwe, ponieważ $T_0=\epsilon$, więc $\phi_P(T_0)=0=\sigma_P(T_0)$,

Załóżmy, że $\phi_P(T_i)=\sigma_P(T_i)$ i sprawdźmy, czy $\phi_P(T_{i+1})=\sigma_P(T_{i+1}).$

Niech $q \equiv \phi_P(T_i)$ oraz $a \equiv T[i+1]$.

dla i=0, twierdzenie jest prawdziwe, ponieważ $T_0=\epsilon$, więc $\phi_P(T_0)=0=\sigma_P(T_0)$,

Załóżmy, że $\phi_P(T_i) = \sigma_P(T_i)$ i sprawdźmy, czy $\phi_P(T_{i+1}) = \sigma_P(T_{i+1}).$

Niech $q \equiv \phi_P(T_i)$ oraz $a \equiv T[i+1]$.

$$egin{array}{lll} \phi_P(T_{i+1}) &=& \phi_P(T_i a) & ext{z definicji T_{i+1} oraz a} \ &=& \delta(\phi_P(T_i), a) & ext{z definicji ϕ} \ &=& \delta(q, a) & ext{z definicji q} \ &=& \sigma_P(P_q a) & ext{z definicji δ} \ &=& \sigma_P(T_i a) & ext{z lematu 1.3 oraz indukcji} \ &=& \sigma_P(T_{i+1}) & ext{z definicji T_{i+1}} \end{array}$$

Algorytm generujący funkcję przejścia

Algorytm generujący funkcję przejścia

Algorytm generujący funkcję przejścia

```
In [21]:
                    def transition table(pattern):
                        result = []
                       for q in range(0, len(pattern) + 1):
                           result.append({})
                           for a in ["a", "b"]:
                              k = min(len(pattern) + 1, q + 2)
                              while True:
                                  k = k - 1
                                 # x[:k] - prefiks o długości k
                                 # x[-k:] - sufiks o długości k
                                 if(k == 0 \text{ or pattern}[:k] == (pattern[:q] + a)[-k:]):
                                     break
                              result[q][a] = k
                        return result
In [22]:
                    transition table("aba")
Out[22]:
                    [{'a': 1, 'b': 0}, {'a': 1, 'b': 2}, {'a': 3, 'b': 0},
                    {'a': 1, 'b': 2}]
```

Złożoność czasowa algorytmu generującego funkcję przejścia

 $O(m^3|\Sigma|)$

Funkcja prefiksowa

```
egin{aligned} \pi: \{1,2,\ldots,m\} &
ightarrow \{0,1,\ldots,m-1\} \ & \pi[q] = \max\{k: k < q \land P_k \sqsupset P_q\} \end{aligned}
```

Funkcja prefiksowa

$$egin{aligned} \pi: \{1,2,\ldots,m\} &
ightarrow \{0,1,\ldots,m-1\} \ & \pi[q] = \max\{k: k < q \land P_k \sqsupset P_q\} \end{aligned}$$


```
In [23]:
```


Złożoność obliczeniowa tworzenia tablicy π : $\Theta(|P|)$

Złożoność obliczeniowa tworzenia tablicy π : $\Theta(|P|)$

```
In [25]:
    prefix_function("abacab")
```

Out[25]:

[0, 0, 1, 0, 1, 2]

```
In [25]:
              prefix_function("abacab")
Out[25]:
              [0, 0, 1, 0, 1, 2]
In [26]:
              kmp_string_matching("abaabaaaaba", "aba")
              Przesunięcie 0 jest poprawne
              Przesunięcie 3 jest poprawne
              Przesunięcie 8 jest poprawne
 In [ ]:
```