# **CE 361A: Engineering Hydrology**

# Precipitation

Lecture -6

#### Revision

- Analysis of Rainfall
  - Present rainfall data
    - Hyetograph
    - Mass-curve
    - Time-series plot rainfall depth, anomalies, moving average
  - Consistency of raingauge record
    - Reasons for inconsistencies
    - Double mass curve
  - Estimating Missing values
    - Arithmetic average and Normal ratio method

## **Analysis of Rainfall Data**

#### Data collected from rain gauges

- Present rainfall data
- 2. Check consistency
- 3. Estimate missing values
- 4. Adequacy of raingauge
- 5. Areal average rainfall
- 6. Depth-area-duration relationships (DAD)
- 7. Frequency analysis: Intensity-duration-frequency (IDF) curves
- 8. Probable maximum precipitation
- 9. Variability, Periodicity and Trends

## **Areal Average Rainfall**

Problem statement: Convert point rainfall values at various stations into an average value over an area

Why do we need an areal average value?

#### **Available Methods**

- Arithmetical mean method
- Thiessen mean method
- Isohyetal method
- Inverse distance square
- Kriging

• ...



#### **Arithmetical mean method**

Average value over the area is estimated as the arithmetic mean of rainfall at the stations within the area

$$\bar{P} = \frac{1}{N} \sum_{i=1}^{N} P_i$$
  $\bar{P} = \frac{1}{3} (P_2 + P_3 + P_4)$ 

- Used when rainfall has little variations among the stations
- Rarely used



## Thiessen mean (polygon) method

- 1. Join the stations by a network of triangles
  - Delaunay triangulation such that no points fall inside the circumcircle of any triangle
- 2. Draw perpendicular bisector for each sides of the triangle
- 3. The bisectors form a polygon with area of the boundary as an outer limit

## Thiessen mean (polygon) method

- 1. Join the stations by a network of triangles
  - Delaunay triangulation such that no points fall inside the circumcircle of any triangle
- 2. Draw perpendicular bisector for each sides of the triangle
- 3. The bisectors form a polygon with area of the boundary as an outer limit

$$\bar{P} = \frac{\sum_{i=1}^{N} P_i A_i}{\sum_{i=1}^{N} A_i} = \sum_{i=1}^{N} P_i \frac{A_i}{A}$$

 $\frac{A_i}{A}$  is called Thiessen weight



## **Isohyetal Method**

- Draw isohyets which are lines joining points of equal rainfall magnitude
  - neighboring gauges
  - topography of the area
- 2. Determine area between two adjacent isohyets

$$\bar{P} = \frac{A_1 \left(\frac{P_1 + P_2}{2}\right) + A_2 \left(\frac{P_2 + P_3}{2}\right) + \dots + A_N \left(\frac{P_N + P_{N+1}}{2}\right)}{\sum_{i=1}^{N} A_i}$$

Isohyetal method is considered

superior to other methods. Why?



# **Inverse (Reciprocal) Distance Method**

- 1. Divide the area into
  - square grids
- Determine the value at each grid using inverse distance equation

$$P_i = \frac{P_1(d_1)^{-2} + P_2(d_2)^{-2} + P_3(d_3)^{-2}}{(d_1)^{-2} + (d_2)^{-2} + (d_3)^{-2}}$$



Amenable to computer programming

### **Kriging**

- Based on the assumption of Gaussian processes and linear regression
- Best linear unbiased estimator
- Developed by D. G. Krige for gold mining application in South Africa
- 4. Gives an estimate of uncertainty

## **Summary: Areal Average Rainfall**

#### Many methods are available

- Arithmetical mean method
- Thiessen mean method
- Isohyetal method
- Inverse distance square
- Kriging
- ...
- Isohyetal method is considered more accurate because other relevant information like topography can be used in drawing isohyets
- Unlike isohyets, Thiessen weights do not change from storm to storm.

Indian standard IS 4987: 1994

-Plains: 1 per 500 km<sup>2</sup>

-Region with average elevation 1 km: 1 per 250-400 km<sup>2</sup>

-Hilly regions: 1 per 150 km<sup>2</sup>

#### World Meteorological Organization (WMO) recommendations

| Region                       | Minimum density in km²/gauge |                 |
|------------------------------|------------------------------|-----------------|
|                              | Non-recording (SRG)          | Recording (ARG) |
| Hilly region                 | 250                          | 2,500           |
| Semi-hilly region            | 500                          | 5,000           |
| Plains, high rainfall region | 500                          | 5,000           |
| Plains, low rainfall region  | 900                          | 9,000           |
| Arid region                  | 10,000                       | 100,000         |

10% stations of the stations should be recording type

#### Allowable error in estimation of mean

The optimal number of rain gauges (N) needed to have an assigned percentage error in estimation of mean rainfall ( $\epsilon$ )

$$N = \left(\frac{C_v}{\varepsilon}\right)^2$$

where  $C_n$  is coefficient of variation

Relative standard error ( $\epsilon$ ) is usually taken as 10%

Example: A catchment has 4 rain gauges with values given below. Is the number of rain gauges adequate? If not, how many more gauges are required to have error in estimate of mean rainfall is not more than 10%?

| Stations | Observed rainfall (X, mm) |
|----------|---------------------------|
| E        | 800                       |
| F        | 540                       |
| G        | 445                       |
| Н        | 410                       |

| Stations | Observed rainfall (X, mm) |
|----------|---------------------------|
| E        | 800                       |
| F        | 540                       |
| G        | 445                       |
| Н        | 410                       |

- 1. Mean  $\bar{X} = 548.75 \text{ mm}$
- 2. Standard deviation  $\sigma_x = 176.28 \text{ mm}$
- 3. Coefficient of variation  $C_v = \frac{\sigma_x}{\bar{X}} \times 100 = 32.12$
- 4. Optimum number of stations  $N = \left(\frac{C_v}{\varepsilon}\right)^2 = \left(\frac{32.12}{10}\right)^2 = 10.32 = 11$
- 5. Extra gauges = 11 4 = 7

#### Allowable coefficient of varaition

The optimal number of rain gauges ( $N_{desired}$ ) to achieve a desired coefficient of variation  $Cv_{desired}$  can be estimated as

$$N_{desired} = \left(\frac{CV_{existing}}{CV_{desired}}\right)^2 N_{existing}$$

Assumption: mean and sum of squared deviations do not change significantly by addition of new rain gauges

Usual value of desired CV is less than 20%

| Stations | Observed rainfall (X, mm) |
|----------|---------------------------|
| E        | 800                       |
| F        | 540                       |
| G        | 445                       |
| Н        | 410                       |

$$CV_{existing} = 32.12$$

$$N_{existing} = 4$$

$$CV_{desired} = 20$$

$$N_{desired} = \left(\frac{CV_{existing}}{CV_{desired}}\right)^2 N_{existing} = 10.37 = 11$$

Extra gauges = 
$$11-4=7$$