# Classificação do uso e cobertura da terra utilizando o algoritmo Random Forest na Plataforma Google Earth Engine

Eduardo Ribeiro Lacerda

Fluminense Federal University (UFF)
International Institute for Sustainability (IIS)



# Sobre o que vamos falar?







## O que vamos aprender?

- Como trabalhar com dados espaciais no Google Earth Engine
- Como coletar boas amostras para o seu modelo
- Como limpar e preparar os seus dados
- Como aplicar algoritmos como o Random Forest para classificar imagens de satélite
- Como melhorar seu modelo
- Como validar o modelo e seus resultados
- Como visualizer e exporter seus dados



## A ideia principal é...



- Primeiro, selecionar imagens de satélite que sirvam como bons dados de entrada pro seu modelo
- Coletar boas amostras
- Treinar o modelo e fazer testes que melhorem seu desempenho
- Usar o modelo para classificar dados raster e criar bons resultados



# Exemplos de dados de entrada

| Platform/Sensor | <b>Spatial Resolution</b> | <b>Temporal Resolution</b> | Availability    |
|-----------------|---------------------------|----------------------------|-----------------|
| Landsat MSS     | 79                        | 16 days                    | started in 1972 |
| Landsat TM      | 30                        | 16 days                    | started in 1982 |
| Landsat ETM+    | 30                        | 16 days                    | started in 1999 |
| Landsat 8 OLI   | 30                        | 16 days                    | started in 2013 |
| Landsat 9 OLI-2 | 30                        | 16 days                    | mid 2021        |
| Sentinel 2      | 10-20                     | 5/10 days                  | started in 2014 |
| MODIS           | 250-1000                  | 4 per day                  | started in 2000 |



## Acessibilidade do sensor Landsat OLI (Landsat 8)





### Como ter acesso?





## Usando a base de dados do Google Earth Engine





# Fiz o download da imagem. E agora?







## Escolhendo o algoritmo a ser usado

#### Existem muitas opções...

#### → ee.Classifier

- ee.Classifier.cart(crossvalidationFactor, maxDepth, minLeafPopula...
- ee.Classifier.decisionTree(treeString)
- ee.Classifier.decisionTreeEnsemble(treeStrings)
- ee.Classifier.gmoMaxEnt(weight1, weight2, epsilon, minIterations, ...
- ee.Classifier.libsvm(decisionProcedure, svmType, kernelType, shri...
- ee.Classifier.minimumDistance(metric)
- ee.Classifier.naiveBayes(lambda)
- ee.Classifier.randomForest(numberOfTrees, variablesPerSplit, min...
- ee.Classifier.smileCart(maxNodes, minLeafPopulation)
- ee.Classifier.smileNaiveBayes(lambda)
- ee.Classifier.smileRandomForest(numberOfTrees, variablesPerSpl...
- ee.Classifier.spectralRegion(coordinates, schema)
- ee.Classifier.svm(decisionProcedure, svmType, kernelType, shrinki...



| *  | class                 | † name † si                                                  | nort.name                  | package           |
|----|-----------------------|--------------------------------------------------------------|----------------------------|-------------------|
| 1  | classif.ada           | ada Boosting                                                 | ada                        | ada,rpart         |
| 2  | classif.adaboostm1    | ada Boosting M1                                              | adaboostm1                 | RWeka             |
| 3  | classif.bartMachine   | Bayesian Additive Regression Trees                           | bartmachine                | bartMachine       |
| 4  | classif.binomial      | Binomial Regression                                          | binomial                   | stats             |
| 5  | classif.boosting      | Adabag Boosting                                              | adabag                     | adabag,rpart      |
| 6  | classif.bst           | Gradient Boosting                                            | bst                        | bst,rpart         |
| 7  | classif.C50           | C50                                                          | C50                        | C50               |
| 8  | classif.cforest       | Random forest based on conditional inference trees           | cforest                    | party             |
| 9  | classif.clusterSVM    | Clustered Support Vector Machines                            | clusterSVM                 | SwarmSVM,Liblinea |
| 10 | classif.ctree         | Conditional Inference Trees                                  | ctree                      | party             |
| 11 | classif.cvg/mnet      | GLM with Lasso or Elasticnet Regularization (Cross Validated | cvg/mnet                   | glmnet            |
| 12 | classif.dbnDNN        | Deep neural network with weights initialized by DBN          | d by DBN dbn.dnn           |                   |
| 13 | classif.dcSVM         | Divided-Conquer Support Vector Machines                      | dcSVM                      | SwarmSVM,e1071    |
| 14 | classif.earth         | Flexible Discriminant Analysis                               | fda                        | earth,stats       |
| 15 | classif.evtree        | Evolutionary learning of globally optimal trees              | al trees evtree            |                   |
| 16 | classif.extraTrees    | Extremely Randomized Trees                                   | extraTrees                 |                   |
| 17 | classif.fdausc.glm    | Generalized Linear Models classification on FDA              | fication on FDA fdausc.glm |                   |
| 18 | classif.fdausc.kernel | Kernel classification on FDA                                 | fdausc,kerne               | fda.usc           |
| 19 | classif.fdausc.knn    | fdausc.knn                                                   | fdausc.knn                 | fda.usc           |
| 20 | classif.fdausc.np     | Nonparametric classification on FDA                          | fdausc.np                  | fda.usc           |
| 21 | classif.featureless   | Featureless classifier                                       | featureless                | mir               |
| 22 | classif.fnn           | Fast k-Nearest Neighbour                                     | fnn                        | FNN               |
| 23 | classif.gamboost      | Gradient boosting with smooth components                     | smooth components gamboost |                   |
| 24 | classif.gaterSVM      | Mixture of SVMs with Neural Network Gater Function           | gaterSVM                   | SwarmSVM          |

## Dado de saída



- Urbano
- Floresta
- Solo Exposto
- Gramíneas
- Pasto
- Outros







Underfitting e Overfitting são duas fontes de erro na construção de modelos.

**Underfitted (subajuste)** – Acontece quando seu modelo é simples demais e pode acabar gerando erros na classificação de algumas classes. Um modelo com essa caracteristica terá uma performance ruim quando for usado para classificar novos dados.

**Overfitted (sobreajuste)** – O modelo é complex demais e está considerando ruídos no dado que você utilizou para treinar o modelo. Um modelo com esta característica irá ter performance ruim quando for usado para classificar novos dados, mas se sairá muito bem classificando os dados que foram usados para treinar o modelo.





- O "generalization error" é a proporção de previsões erradas que um modelo faz quando influenciado tanto em situações de subajuste (underfitting) como sobreajuste (overfitting).
- O erro associado ao sobreajuste acontece quando o modelo é complexo demais. Ou seja, quando utilizamos variáveis demais para treinar o modelo.
- O erro associado ao subajuste acontece quando o modelo é simples demais. Ou seja, quando utilizamos variáveis de menos para treinar o modelo.
- Um modelo ideal (optimal/balanced) equilibra esse trade-off.





- A linha pontilhada representa o limite de decisão do modelo
- Então, como podemos resolver este problema? A resposta está em utilizar uma técnica chamada cross-validation (validação cruzada).



A solução é avaliar o desempenho do nosso modelo usando dados que o modelo ainda não viu! Podemos realizar uma nova coleta de dados, mas também podemos apenas divider o conjunto de dados entre amostras de treinamento e testes.

Fazendo isso, nós Podemos usar algumas métricas de desempenho para mostrar como o nosso modelo se irá se comportar com um novo conjunto de dados.

Tipos de cross-validation (validação cruzada)

- Holdout cross-validation
- K-fold cross-validation
- Leave-one-out cross-validation



#### Holdout CV

## Training set

Test set

- The data is randomly split into a training and test set.
- A model is trained using only the training set.
- Predictions are made on the test set.
- The predictions are compared to the true values.





- 1. The data is randomly split into *k* equal-sized folds.
- Each fold is used as the test set once, where the rest of the data makes the training set.
- 3. For each fold, predictions are made on the test set.
- 4. The predictions are compared to the true values.







- 2. Predict the value of the single test case.
- 3. Repeat until every case has been the test case.
- 4. The predictions for each case are compared to the true values.



## Típico fluxo de trabalho





Yay! :)



## **Material Extra**



#### **Decision Trees:**

https://www.youtube.com/watch?v=7VeUPuFGJHk&ab\_channel=StatQuestwithJoshStarmer

#### Random Forest:

https://www.youtube.com/watch?v=J4Wdy0Wc\_xQ&t=7s&ab\_channel=StatQuestwithJoshStarmer

https://www.youtube.com/watch?v=nyxTdL\_4Q-Q&ab\_channel=StatQuestwithJoshStarmer



### Material Extra

Curso Google Earth Engine (Sadeck)

https://www.youtube.com/watch?v=Dqjtoj9AJak&list=PLNFvG6bTA4NReWtgC93Mh9Tw1RNG4EBMP&ab\_channel=LuisSadeck

Google Earth Engine: Explaining all Classifiers

https://www.youtube.com/watch?v=D\_KaouS3q20&ab\_chann
el=ProgramSam

