Topología II

Tema 1 El grupo fundamental

Definición

Sea X un espacio topológico. Un lazo en X con base un punto del espacio, $x \in X$ es un arco $\alpha: [0,1] \to X$ continua con $\alpha(0) = \alpha(1) = x$. Se denota $\Omega_{x}(X)$ el conjunto de todos los lazos en X con base x.

Sean $\alpha, \beta \in \Omega_x(X)$, se define *el producto de lazos* como

$$\alpha * \beta : [0,1] \to X \ (\alpha * \beta)(t) = \begin{cases} \alpha(2t) \ si \ 0 \le t \le \frac{1}{2} \\ \beta(2t-1) \ si \ \frac{1}{2} \le t \le 1 \end{cases}$$

Definición

Sena $\alpha, \beta \in \Omega_x(X)$ se dice que son homotópicos, $\alpha \simeq \beta$, si existe una aplicación:

$$H: [0,1]x[0,1] \rightarrow X$$
 continua y:

(i)
$$H(t,0) = \alpha(t) \ \forall t \in [0,1]$$
, es decir, $H(*,0) = \alpha$.

(ii)
$$H(t, 1) = \beta(t) \ \forall t \in [0, 1]$$
, es decir, $H(*, 1) = \beta$.

(iii)
$$H(0,s) = H(1,s) = x \ \forall s \in [0,1]$$
, es decir, $H(0,*) = H(1,*) = \varepsilon_x$.

Se dice que H es una homotopía de α a β , y se escribe: H: $\alpha \simeq \beta$

Propiedades

1.- Si $\alpha \in \Omega_x(X)$, entonces $\alpha \simeq \alpha$, con $H: [0,1]x[0,1] \to X$ por $H(t,s) = \alpha(t)$.

2.- Si $h: [0,1] \to [0,1]$ es un homomorfismo con h(0) = 0 h(1) = 1 entonces $\alpha \simeq \alpha \circ h$ donde $\alpha \circ h$ es una reparametrización de α preservando la orientación.

3.- Sean $\alpha, \beta \in \Omega_{x}(X)$. Si $\alpha \simeq \beta$ entonces $\beta \simeq \alpha$.

4.- Sean $\alpha, \beta, \gamma \in \Omega_x(X)$. Si $\alpha \simeq \beta$ y $\beta \simeq \gamma$ entonces $\alpha \simeq \gamma$.

Proposición

Sean X un espacio topológico y puntos $p,q,r\in X$. Sean $\alpha,\alpha'\in\Omega_{p,q}(X)$ y $\beta,\beta'\in\Omega_{q,r}(X)$ arcos tales que $\alpha\simeq\alpha'$ y $\beta\simeq\beta'$. Entonces $\alpha*\beta\simeq\alpha'*\beta'$.

Proposición

Sean X un espacio topológico y puntos $p,q,r,s\in X$. Sean $\alpha\in\Omega_{p,q}(X),\beta\in\Omega_{q,r}(X)$ y $\gamma\in\Omega_{r,s}(X)$. Las siguientes propiedades son ciertas:

(i)
$$\alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma$$
 (ii) $\alpha * \varepsilon_n = \varepsilon_n * \alpha = \alpha$ (iii) $\alpha * \bar{\alpha} = \varepsilon_n$

Sean $f,g:[0,1]\to R$ arcos con el mismo punto inicial $x\in X$ y el mismo punto final $y\in Y$. Demostrar que $f\simeq g$ si y solo si $f*\overline{g}$ es un lazo homotópico al lazo constante ε_x .

Demostrar que si $f,g\colon [0,1] o X$ son arcos con f(1)=g(0) entonces $\overline{f * g}=\overline{g}*\overline{f}$.

Teorema

Sea X un espacio topológico y $p \in X$ un punto arbitrario. La ley de composición interna

$$*: \Pi_1(X, p) \times \Pi_1(X, p) \longrightarrow \Pi_1(X, p) \quad [\alpha] * [\beta] = [\alpha * \beta]$$

está bien definida y dota al conjunto $\Pi_1(X, p)$ de estructura de grupo algebraico.

El grupo $(\Pi_1(X, p), *)$ es conocida como **Grupo Fundamental o de Poincaré** del espacio en el punto p.

Corolario

El grupo fundamental $\Pi_1(X,p)$ está unívocamente determinado salvo isomorfismos por la arcocomponente \mathcal{C}_p del punto p. En particular, si X es arcoconexo entonces la clase de isomorfía de $\Pi_1(X,p)$ no depende del punto $p\in X$. En este caso la notación es $\Pi_1(X)$.

Proposición

Sean X e Y espacios topológicos y $\varphi: X \to Y$ una aplicación continua. Consideremos $\alpha, \beta \in \Omega_{p,q}(X)$ y los correspondientes $\varphi \circ \alpha, \varphi \circ \beta \in \Omega_{\varphi(p),\varphi(q)}(Y)$. Se tiene que

$$\alpha \simeq \beta \Longrightarrow \varphi \circ \alpha \simeq \varphi \circ \beta$$

En particular:

- La aplicación $\varphi_*: \Pi_1(X, p) \to \Pi_1(Y, \varphi(p)) \ \varphi_*([\alpha]) = [\varphi \circ \alpha]$ está bien definida y es un homomorfismo de grupos.
- Si $\psi: Y \to Z$ es otra aplicación continua y consideramos los homomorfismos de grupos $\psi_*: \Pi_1\big(X, \varphi(p)\big) \to \Pi_1\left(Y, \psi\big(\varphi(p)\big)\right)$ y $(\psi \circ \varphi)_*: \Pi_1(X, p) \to \Pi_1\left(Z, \psi\big(\varphi(p)\big)\right)$ entonces se tiene que $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$.

Sea $f\colon X\to Y$ una aplicación continua entre espacios topológicos. Tomamos dos puntos x_1 y x_2 en X. Denotamos por $(f_*)_1\colon \Pi_1(X,x_1)\to \Pi_1\big(Y,f(x_1)\big)$ y por $(f_*)_2\colon \Pi_1(X,x_2)\to \Pi_1\big(Y,f(x_2)\big)$ a los homomorfismos inducidos por f en los puntos x_1 y x_2 . Sea $\gamma\colon [0,1]\to X$ un arco con $\gamma(0)=x_1$ y $\gamma(1)=x_2$. Demostrar que: $(f_*)_2\circ F_\gamma=F_{f^\circ\gamma}\circ (f_*)_1$, donde $F_\gamma\colon \Pi_1(X,x_1)\to \Pi_1(X,x_2)$ es el isomorfismo inducido de γ y $F_{f^\circ\gamma}\colon \Pi_1\big(Y,f(x_1)\big)\to \Pi_1\big(Y,f(x_2)\big)$ es el isomorfismo inducido de $f\circ\gamma\colon [0,1]\to Y$.

Sean X espacio topológico y $x \in X$ un punto:

a.- Sea $\gamma\colon [0,1]\to X$ un lazo con base x. Demostrar que el isomorfismo $F_\gamma\colon \Pi_1(X,x)\to\Pi_1(X,x)$ es la identidad si y solo si la clase de homotopía $[\gamma]$ pertenece al centro de $\Pi_1(X,x)$.

b.- Sean $\gamma, \mu: [0,1] \to X$ arcos con punto inicial $x \in X$ y punto final $y \in X$, Encontrar una condición necesaria y suficiente para que los homomorfismos $F_{\gamma}, F_{\mu}: \Pi_1(X, x) \to \Pi_1(X, y)$ sean iguales.

Solución

a.- Sea $\gamma \in \Omega_{\chi}(X)$ y consideramos el isomorfismo: $F_{\gamma} : \Pi_{1}(X,\chi) \to \Pi_{1}(X,\chi)$

$$F_{\gamma}([\alpha]) = [\bar{\gamma} * \alpha * \gamma]$$

$$F_{\gamma} = Id_{\Pi_{1}(X,x)} \iff F_{\gamma}([\alpha]) = Id_{\Pi_{1}(X,x)}([\alpha]) \ \forall \alpha \in \Omega_{x}(X) \iff$$

$$\iff [\bar{\gamma} * \alpha * \gamma] = [\alpha] \ \forall \alpha \in \Omega_{x}(X) \iff [\bar{\gamma}] * [\alpha] * [\gamma] = [\alpha] \ \forall \alpha \in \Omega_{x}(X)$$

Observemos que $[\gamma] * [\bar{\gamma}] = [\varepsilon_x] \Longrightarrow [\bar{\gamma}]^{-1} = [\gamma]$ ya que $H: [0,1]^2 \to X$ definida por

Tenemos que ver que $\gamma * \bar{\gamma} \simeq \varepsilon_x$

$$s = \frac{s_{x}}{\sqrt{2t}} \frac{1}{\sqrt{1-s}} = \frac{1}{\sqrt{s}} \frac{1}{\sqrt{t}} = \frac{1}{\sqrt{t}} \frac{1}{\sqrt{$$

Veamos que es homotopía: *H* es continua, por serlo en cada trozo y en los bordes.

$$(i) H(t,0) = \begin{cases} \gamma(2t) & t \in \left[0, \frac{1}{2}\right] \\ \bar{\gamma}(2t-1) & t \in \left[\frac{1}{2}, 1\right] \end{cases} = (\gamma * \bar{\gamma})(t) \quad \forall t \in [0,1]$$

$$(ii)\ H(t,1)=\gamma(0)=\bar{\gamma}(1)=x=\varepsilon_x\ \forall t\in[0,1].$$

(iii)
$$H(0,s) = \gamma(0) = x \ H(1,s) = \bar{\gamma}(1) = x \ \forall s \in [0,1].$$

Hemos probado que $\gamma * \bar{\gamma} \simeq \varepsilon_{\chi} \Longrightarrow [\gamma] * [\bar{\gamma}] = [\varepsilon_{\chi}] \Longrightarrow [\bar{\gamma}]^{-1} = [\gamma]$

$$F_{\gamma} = Id_{\Pi_{1}(X, x)} \Longleftrightarrow [\bar{\gamma}] * [\alpha] * [\gamma] = [\alpha] \ \forall \alpha \in \Omega_{x}(X) \Longleftrightarrow [\alpha] * [\gamma] = [\bar{\gamma}]^{-1} * [\alpha] \ \forall \alpha \in \Omega_{x}(X)$$

$$\Leftrightarrow [\alpha] * [\gamma] = [\gamma] * [\alpha] \forall \alpha \in \Omega_{x}(X) \Leftrightarrow [\gamma] \in Z(\Pi_{1}(X, x))$$

NOTA: Probar que $\alpha * (\beta * \gamma) \simeq (\alpha * \beta) * \gamma$

$$((\alpha * \beta) * \gamma)(t) = \begin{cases} (\alpha * \beta)(2t) & 0 \le t \le \frac{1}{2} \\ \gamma(2t - 1) & \frac{1}{2} \le t \le 1 \end{cases} = \begin{cases} \alpha(4t) & 0 \le t \le \frac{1}{4} \\ \beta(4t) - 1 & \frac{1}{4} \le t \le \frac{1}{2} \\ \gamma(2t - 1) & \frac{1}{2} \le t \le 1 \end{cases}$$

$$\alpha(1) = \beta(0)$$
 $\beta(1) = \gamma(0)$

$$\frac{1}{s} = \frac{\frac{1}{4}}{\frac{1}{2} - t} \Longrightarrow \frac{1}{2} - t = \frac{s}{4} \Longrightarrow t = \frac{1}{2} - \frac{s}{4} = \frac{2 - s}{4}$$

$$\frac{1}{s} = \frac{\frac{1}{4}}{\frac{3}{4} - t} \Longrightarrow \frac{3}{4} - t = \frac{s}{4} \Longrightarrow t = \frac{3}{4} - \frac{s}{4} = \frac{3 - s}{4}$$

$$\alpha(4t)$$
 se sustituye $t = \frac{2-s}{4}$ en $4t = 4\frac{2-s}{4} = 2 - s \Longrightarrow \alpha\left(\frac{4t}{2-s}\right)$

$$\beta(4t-1)$$
 se sustituye $t = \frac{2-s}{4}$ en $4t-1 = 1-s \implies \beta(4t-1-1+s) = \beta(4t-2+s)$

En
$$t = \frac{3-s}{4} \Longrightarrow \beta(4t-2+s) = \beta(4\frac{3-s}{4}-2+s) = \beta(1)$$

$$\gamma(2t-1)$$
 se sustituye $t = \frac{3-s}{4}$ en $2t-1 = 2\frac{3-s}{4} - 1 = \frac{1-s}{2} \Longrightarrow \gamma\left(2t-1-\frac{1-s}{2}\right) = \gamma\left(\frac{4t-3+s}{2}\right)$

Se sustituye en $t=1 \Rightarrow \frac{4t-3+s}{2} = \frac{1+s}{2} \Rightarrow \gamma\left(\frac{4t-3+s}{2},\frac{2}{1+s}\right) = \gamma\left(\frac{4t-3+s}{1+s}\right)$

$$H(t,s) = \begin{cases} \alpha\left(\frac{4t}{2-s}\right) & t \in \left[0,\frac{2-s}{4}\right] \\ \beta(4t-2+s) & t \in \left[\frac{2-s}{4},\frac{3-s}{4}\right] \text{ es una homotopia de } \gamma * \bar{\gamma} \text{ en } \varepsilon_x \\ \gamma\left(\frac{4t-3+s}{1+s}\right) & t \in \left[\frac{3-s}{4},1\right] \end{cases}$$

En
$$t = \frac{2-s}{4}$$
: $\alpha(1) = \beta(0)$ y en $t = \frac{3-s}{4}$: $\beta(1) = \gamma(0)$

En
$$t = 1: \gamma(1)$$

Veamos que es homotopía: H es continua, por serlo en cada trozo y en los bordes.

$$(i) \ H(t,0) = \begin{cases} \alpha(2t) & t \in \left[0, \frac{1}{2}\right] \\ \beta\left(2(2t-1)\right) & t \in \left[\frac{1}{2}, \frac{3}{4}\right] \\ \gamma(2(2t-1)-1) & t \in \left[\frac{3}{4}, 1\right] \end{cases} = (\alpha * (\beta * \gamma))(t) \quad \forall t \in [0,1]$$

$$(ii) \ H(t,1) = \begin{cases} \alpha(4t) & t \in \left[0,\frac{1}{4}\right] \\ \beta(4t-1) & t \in \left[\frac{1}{4},\frac{1}{2}\right] \\ \gamma(2t-1) & t \in \left[\frac{1}{2},1\right] \end{cases} = \left((\alpha*\beta)*\gamma\right)(t) \ \forall t \in [0,1].$$

$$(\alpha * (\beta * \gamma))(0) = \alpha(0) = ((\alpha * \beta) * \gamma)(0)$$

$$(\alpha * (\beta * \gamma))(1) = \gamma(1) = ((\alpha * \beta) * \gamma)(1)$$

Es decir, $\alpha * (\beta * \gamma) \simeq (\alpha * \beta) * \gamma$.

NOTA: Probar que $\alpha * \varepsilon_x \simeq \alpha$.

b.- Como F_{γ}, F_{μ} son isomorfismos: $F_{\gamma} = F_{\mu} \Longleftrightarrow F_{\gamma}^{-1} \circ F_{\mu} = Id_{\Pi_{1}(X,\chi)}.$

Se sabe que
$$[\bar{\gamma}] = [\gamma]^{-1} \Longrightarrow F_{\gamma}^{-1} ([\alpha]) = [\gamma * \alpha * \bar{\gamma}] = F_{\bar{\gamma}} ([\alpha]) \ \forall \alpha \in \Omega_{\chi}(X)$$
 , por lo tanto:

$$\begin{split} \big(F_{\gamma}^{-1} \circ F_{\mu}\big)([\alpha]) &= \big(F_{\overline{\gamma}} \circ F_{\mu}\big)([\alpha]) = F_{\overline{\gamma}}(\bar{\mu} * \alpha * \mu) = [\gamma * \bar{\mu} * \alpha * \mu * \bar{\gamma}] = \\ &= \big[\underline{(\mu * \bar{\gamma})} * \alpha * (\mu * \bar{\gamma})\big] = F_{\mu * \bar{\gamma}}([\alpha]) \ \forall \alpha \in \Omega_{X}(X) \Longrightarrow F_{\gamma}^{-1} \circ F_{\mu} = F_{\mu * \bar{\gamma}} = Id_{\Pi_{1}(X,X)} \Longleftrightarrow \\ &\iff [\mu * \bar{\gamma}] \in Z\big(\Pi_{1}(X,X)\big) \end{split}$$

Sea $f \colon R \to R^+$ una función continua y sea

$$S_f = \{(x, y, z) \in R^3 : x^2 + y^2 = f(z)^2\}$$

- a.- Estudiar el conjunto $S_f \cap \{z=z_0\}$ con $z_0 \in \mathit{R}$. Esbozar un dibujo de S_f .
- b.- Demostrar que si $g\colon R o R^+$ es otra función continua entonces S_g es homeomorfo a S_f .
- c.- Calcular el grupo fundamental de \mathcal{S}_f .

Corolario (Invarianza topológica del Grupo Fundamental)

Si $\varphi: X \to Y$ es un homeomorfismo de espacios topológicos entonces $\varphi_*: \Pi_1(X, p) \to \Pi_1(Y, f(p))$ es un isomorfismo de grupos.

Proposición

El grupo fundamental de un subconjunto estrellado de \mathbb{R}^n es trivial. En particular, todo subconjunto convexo de \mathbb{R}^n tiene grupo fundamental trivial.

Además se tiene que

$$\Pi_1(XxY,(p,q)) \cong \Pi_1(X,p)x\Pi_1(Y,q)$$

Ejercicio 6 (Grupo fundamental de un producto)

Sean X eY dos espacios con puntos base $x_0 \in X$ e $y_0 \in Y$. Sea

$$\Phi: \Pi_1(X, x_0) \times \Pi_1(Y, y_0) \to \Pi_1(X \times Y, (x_0, y_0)) \quad \Phi([\alpha], [\beta]) = [(\alpha, \beta)]$$

Donde (α, β) : $[0, 1] \to XxY$ es el arco $(\alpha, \beta)(t) = (\alpha(t), \beta(t))$. Demostrar que Φ está bien definida y es un isomorfismo. Concluir que:

$$\Pi_1(XxY,(x_0,y_0)) \cong \Pi_1(X,x_0)x\Pi_1(Y,y_0)$$

NOTA IMPORTANTE

El grupo Fundamental de S^n es Z. El grupo fundamental de X estrellado es $\Pi_1(X,x)=\{[\varepsilon_x]\}$.

El grupo Fundamental del toro $T=S^1xS^1$ es $ZxZ=Z^2$. El grupo Fundamental del cilindro S^nxR es $Zx\{1\}\cong Z$. El grupo fundamental de X estrellado es $\Pi_1(S^1,1)=(\{[\alpha_n]:n\in N,*\})$.

Definición

Un grupo topológico es un par (G, .) donde:

- *G* es un espacio topológico.
- .: $GxG \rightarrow G$ es una ley de composición interna en G que le dota de estructura algebraica.
- La aplicación $GxG \to G$ $(a,b) \to a.b^{-1}$ es continua, o equivalentemente: $:: GxG \to G$ $(a,b) \to a.b$ y $()^{-1}: G \to G$ $a \to a^{-1}$ son continuas

Probar que son grupos topológicos:

- $(a) R^n$ con la suma y la topología usuales.
- (b) $R_* = R \{0\}$ y $C_* = C \{0\}$ con los productos y las topologías usuales.
- (c) $S^1 \subset C$ con el producto de números complejos y la topología usual.
- (d) El grupo lineal GL(n), el grupo ortogonal O(n) y el grupo especial ortogonal SO(n) con el producto de matrices y la topología inducida por $M_n(R)\cong R^{n^2}$.

Sea $\varphi\colon R^n \to R$ aplicación continua. Sea $X = Graf(\varphi) = \{(x, \varphi(x)); x \in R^n\} \subseteq R^{n+1}$. Calcular el grupo fundamental $\Pi_1(X,x) \ \forall x \in X$.

Propiedad del levantamiento de arco

Sea $\alpha: [0,1] \to S^1$ un arco con $\alpha(0) = 1$. Entonces existe un único arco $\tilde{\alpha}: [0,1] \to R$ tal que $\rho \circ \tilde{\alpha} = \alpha$ y $\tilde{\alpha}(0) = 0$, donde $\rho: R \to S^1$, $\rho(t) = e^{2\pi i t} = (cos(2\pi t), sen(2\pi t))$.

Propiedad del levantamiento de homotopías

Sea α, β : $[0,1] \to S^1$ un arco con $\alpha(0) = \beta(0) = 1$ y $\alpha(1) = \beta(1)$. Supongamos que existe una homotopía H de α en β . Entonces:

- Los arcos $\tilde{\alpha}$ y $\tilde{\beta}$ tienen los mismos extremos.
- La aplicación \widetilde{H} es una homotopía (con extremos fijos) de $\widetilde{\alpha}$ en $\widetilde{\beta}$, donde $\widetilde{H}:[0,1]^2 \to R$ continua tal que $\rho \circ \widetilde{H} = H \vee \widetilde{H}(0,0) = 0$.

Definición

Si $\alpha \equiv (\alpha_1, \alpha_2)$: $[0,1] \to S^1 \subset R^2$ es un arco de clase C^1 con $\alpha(0) = (1,0)$, entonces su levantamiento vía ρ a R dado por:

$$\tilde{\alpha}(t) = \frac{1}{2\pi} \int_0^t (\alpha_1(s)\alpha_2'(s) - \alpha_1'(s)\alpha_2(s)) ds$$

De forma explícita, y para cada $n \in Z$, el lazo $\alpha_n : [0,1] \to S^1 \subset C$, $\alpha_n(t) = e^{2n\pi i t}$ se levanta con condición inicial $\tilde{\alpha}_n(0) = 0$ al arco $\tilde{\alpha}_n : [0,1] \to R$, $\tilde{\alpha}_n(t) = nt$.

Definición

Dado un lazo $\alpha: [0,1] \to S^1$ con base el punto $1 \in S^1$, definimos el grado de α como:

$$deg(\alpha) = \tilde{\alpha}(1) \in Z$$

donde $\tilde{\alpha}$: $[0,1] \to R$ representa el levantamiento de α con condición inicial $\tilde{\alpha}(0) = 0$.

Proposición

Dados $\alpha, \beta: [0,1] \to S^1$ dos lazos con base $1 \in S^1$, se tiene que

$$\alpha \simeq \beta \iff \deg(\alpha) = \deg(\beta)$$

Sea $f\in\Omega_1ig(S^1ig)$ un lazo de clase C^1 . Demostrar que:

$$\deg(f) = \frac{1}{2\pi} \int_0^1 \langle f'(u), J(f(u)) \rangle du$$

donde $J: \mathbb{R}^2 \to \mathbb{R}^2$ es el giro de ángulo $\pi/2$ dado por J(x,y) = (-y,x).

Teorema

La aplicación

$$deg: (\Pi_1(S^1, 1), *) \rightarrow (Z, +), \quad \deg([\alpha]) = \deg(\alpha)$$

está bien definida y es un isomorfismo de grupos.

Proposición

Si \overline{D} denota el disco unidad cerrado $\overline{D}=\{(x,y)\in R^2: x^2+y^2\leq 1\}$, no existe ninguna aplicación continua $f\colon \overline{D}\to S^1$ tal que $f_{/S^1}=Id_{S^1}$.

Teorema (Punto fijo de Brower)

Sea $f: \overline{D} \to \overline{D}$ una aplicación continua. Entonces existe $p_0 \in \overline{D}$ tal que $f(p_0) = p_0$.

Ejercicio 10

Sean $f,g:R^2\to R^2$ aplicaciones continuas y acotadas. Demostrar que existe un punto $q\in R^2$ tal que f(q)=q-3g(q).

Solución

Como se quiere probar que $\exists q \in R^2$ tal que

$$f(q) = q - 3g(q) \Rightarrow f(q) + 3g(q) = q \Rightarrow (f + 3g)(q) = q$$

Sea $h: \mathbb{R}^2 \to \mathbb{R}^2$ dada por h = f + 3g, que es continua y acotada por serlos las funciones f y g.

Se restringe al $\overline{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}, h: \overline{D} \to \overline{D}$, que es continua en \overline{D} .

Como f está acotada: $\exists M_1 > 0: ||f(x, y)||_2 \le M_1 \ \forall (x, y) \in \mathbb{R}^2$

Como g está acotada: $\exists M_2 > 0: ||g(x,y)||_2 \le M_2 \ \forall (x,y) \in \mathbb{R}^2$

Sea $(x, y) \in \mathbb{R}^2$:

$$\|h(x,y)\|_2 = \|f(x,y) + 3g(x,y)\|_2 \leq \|f(x,y)\|_2 + 3\|g(x,y)\|_2 \leq M_1 + 3M_2 \; \forall (x,y) R^2$$

Por lo tanto, h está acotada y $h(R^2) \subseteq \bar{B}(0, M_1 + 3M_2)$, por el teorema del punto fijo de Brower, $\exists q \in R^2 : h(q) = q$, es decir, f(q) = q - 3g(q).

Demostrar que el sistema de ecuaciones

$$\begin{cases} x - arctg(x^{2} - y^{3}) = 5\\ cosx + sen(xy^{3}) + e^{x} + e^{y^{2}} + \frac{1}{y} = -3 \end{cases}$$

tiene al menos una solución $(x, y) \in \mathbb{R}^2$.

Solución

$$\begin{cases} x - arctg(x^2 - y^3) = 5 \Rightarrow x = 5 + arctg(x^2 - y^3) \\ cosx + sen(xy^3) + e^x + e^{y^2} + \frac{1}{y} = -3 \Rightarrow y = \frac{-1}{3 + cosx + sen(xy^3) + e^x + e^{y^2}} \end{cases}$$

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por

$$f(x,y) = \left(5 + arctg(x^2 - y^3), \frac{-1}{3 + cosx + sen(xy^3) + e^x + e^{y^2}}\right)$$

Se tiene que f continua en R^2 porque $3+cosx+sen(xy^3)+e^x+e^{y^2}>0 \ \forall (x,y)\in R^2$, y entonces sus componentes son continuas.

Veamos que f está acotada. Sea $(x, y) \in \mathbb{R}^2$:

$$|5 + arctg(x^{2} - y^{3})| \le 5 + |arctg(x^{2} - y^{3})| \le 5 + \frac{\pi}{2} \ \forall (x, y) \in R^{2}$$

$$\left| \frac{-1}{3 + cosx + sen(xy^{3}) + e^{x} + e^{y^{2}}} \right| = \frac{1}{3 + cosx + sen(xy^{3}) + e^{x} + e^{y^{2}}} \le$$

$$< \frac{1}{3 - 1 - 1 + 0 + 0} = 1 \ \forall (x, y) \in R^{2}$$

$$\|f(x, y)\|_{2} = \sqrt{\left(5 + arctg(x^{2} - y^{3})\right)^{2} + \left(\frac{-1}{3 + cosx + sen(xy^{3}) + e^{x} + e^{y^{2}}}\right)^{2}} \le$$

$$< \sqrt{\left(5 + \frac{\pi}{2}\right)^{2} + 1} \ \forall (x, y) \in R^{2}$$

Como f es continua y acotada, entonces por el Teorema del punto fijo de Brower, se tiene que: $\exists (x,y) \in R^2$: f(x,y) = (x,y), el sistema tiene al menos una solución.

Sea A un retracto de un disco cerrado en R^2 . Demostrar que toda aplicación continua $f:A\to A$ tiene al menos un punto fijo. Deducir que toda aplicación continua $f:X\to X$ con $X=\overline{B}\big((-1,0),1\big)\cup\overline{B}\big((1,0),1\big)$ tiene al menos un punto fijo.

Solución

Como A es un retracto de un disco cerrado en R^2 , existe $r: \overline{D}(x_0, \varepsilon) \to A$, r es continua y $r(a) = a \ \forall a \in A$.

Sea $h: \overline{D} \to \overline{D}(x_0, \varepsilon)$ dada por $h(z) = \varepsilon z + x_0$, se continua y está bien definida, sea $z \in \overline{D}$

$$||h(z) - x_0|| = ||\varepsilon z + x_0 - x_0|| = ||\varepsilon z|| = \varepsilon ||z|| \le \varepsilon \Longrightarrow h(z) \in \overline{D}(x_0, \varepsilon)$$

Y de la misma forma, $h^{-1}: \overline{D}(x_0, \varepsilon) \to \overline{D}$ dada por

$$h^{-1}(t) = \frac{t - x_0}{\varepsilon}$$

La aplicación h^{-1} es continua y está bien definida.

$$(h \circ h^{-1})(t) = h(h^{-1}(t)) = h\left(\frac{t - x_0}{\varepsilon}\right) = \frac{t - x_0}{\varepsilon} \varepsilon + x_0 = t \Longrightarrow h \circ h^{-1} = Id_{\overline{D}(x_0, \varepsilon)}$$

De la misma forma, $h^{-1} \circ h = Id_{\overline{D}}$. Es una biyección, es decir, h es un homeomorfismo de \overline{D} en $\overline{D}(x_0,\varepsilon)$. Por lo tanto, $h^{-1} \circ i_a \circ f \circ r \circ h$, es continua, luego por el teorema del punto fijo de Brower, existe $q \in A$, $(h^{-1} \circ i_a \circ f \circ r \circ h)(q) = q$

$$\Rightarrow h[(h^{-1} \circ i_a \circ f \circ r \circ h)(q)] = h(q) \Rightarrow (i_a \circ f \circ r \circ h)(q) = h(q)$$

$$\Rightarrow i_a[(f \circ r \circ h)(q)] = h(q) \Rightarrow (f \circ r \circ h)(q) = h(q) \Rightarrow f(r(h(q))) = h(q)$$

Como $f:A\to A$, $r\big(h(q)\big)\in A\Longrightarrow h(q)\in A\Longrightarrow f\big(h(q)\big)=h(q)$, f tiene al menos un punto fijo.

Sea $f: X \to X$ con $X = \overline{B}((-1,0),1) \cup \overline{B}((1,0),1)$. Usando lo anterior si X es un retracto de un disco cerrado, entonces f tiene al menos un punto fijo.

Sea $\overline{D}(x_0=(0,0), \varepsilon=2)$, veamos que X es un retracto de $\overline{D}\big((0,0),2\big)$:

$$r: \overline{D}((0,0),2) \to X$$

¿Es cierto el teorema del punto fijo de Brouwer para $X=R^n$?¿Y para la corona?

Teorema Fundamental del Álgebra

Sea $P: C \rightarrow C$ una función polinómica de la forma

$$P(z) = a_0 + \dots + a_{n-1}z^{n-1} + z^n \quad n \ge 1$$

Entonces existe $z_0 \in C$ tal que $P(z_0) = 0$.

Definición

Sea X un espacio topológico y $A \subset X$ un subespacio topológico. Una retracción o retracto de X en A es una aplicación continua $r: X \to A$ satisfaciendo $r_{/A} = Id_A$, o equivalentemente, $r \circ i = Id_A$ donde $i: A \to X$ es la aplicación inclusión, i(x) = x. En este caso se dice que A es un retractor de X.

Ejercicio 14

Las siguientes aplicaciones entre espacios euclidianos son retracciones:

(a)
$$n: \mathbb{R}^{n+1} - \{0\} \to \mathbb{S}^n \ n(q) = \frac{q}{\|q\|}$$

Se tiene que n es continua en $R^{n+1} - \{0\}$. Sea $q \in S^n \implies ||q|| = 1$

$$(n \circ i)(q) = n(i(q)) = n(q) = \frac{q}{\|q\|} = q \Longrightarrow n \circ i = Id_{S^n}$$

Por tanto, n es una retracción de $R^{n+1} - \{0\}$ en S^n .

$$(b) \; n_{/\overline{B}(0,1)-\{0\}} : \overline{B}(0,1) - \{0\} \to S^n \; \; n(q) = \frac{q}{\|q\|} \; \; donde \; \overline{B}(0,1) = \big\{ p \in R^{n+1} : \|p\| \le 1 \big\}$$

(c)
$$p: S^1xR \to S^1x\{0\} \equiv S^1 \ p(x,y,z) = (x,y,0).$$

(d)
$$f: R^3 - \{x = y = 0\} \to S^1 x R \ f(x, y, z) = (1/||(x, y)|| (x, y), z).$$

Proposición

Si $r: X \to A$ es una retracción, $i: A \to X$ la aplicación inclusión y $a \in A$, entonces:

- $r_*: \Pi_1(X, a) \to \Pi_1(A, a)$ es un epimorfismo
- $i_*: \Pi_1(A, a) \to \Pi_1(X, a)$ es un monomorfismo

Retractos de deformación

Definición

Dado un espacio topológico X y un subespacio suyo $A \subset X$, se dice que A es un retracto de deformación de X si existen una retracción $r: X \to A$ y una aplicación continua $H: Xx[0,1] \to X$ satisfaciendo:

$$H(x,0) = x \quad \forall x \in X \qquad H(x,1) = r(x) \ \forall x \in X$$

Si adicionalmente: $H(a,s) = a \ \forall (a,s) \in Ax[0,1]$, entonces se dice que A es un retracto fuerte de deformación de X. A las aplicaciones H y r se les llamará una deformación y retracción asociadas al retracto (fuerte) de deformación A de X, respectivamente.

Ejercicio 15

Las siguientes aplicaciones realizan retractos fuertes de deformación:

(a) El centro p_0 de un conjunto estrellado E (en un espacio euclidiano R^n) es un retracto fuerte de deformación de E:

Entonces en este caso X=E $A=\{p_0\}$. Sea $r:E\to\{p_0\},\ r(q)=p_0\ \forall q\in E,\ donde\ r$ es continua:

$$(r\circ i)(p_0)=r\big(i(p_0)\big)=r(p_0)=p_0\Longrightarrow r\circ i=Id_{\{p_0\}}\Longrightarrow r\ es\ una\ retracción$$

Sea $H: Ex[0,1] \to E$, $H(q,s) = (1-s)q + sr(q) = (1-s)q + sp_0 \quad \forall q \in E \ \forall s \in [0,1]$, claramente H es continua

$$H(q,0) = q \quad \forall q \in E \qquad H(q,1) = r(q) \ \forall q \in E$$

$$H(p_0, s) = (1 - s)p_0 + sp_0 = p_0 \ \forall (p_0, s) \in \{p_0\}x[0, 1]$$

(b) S^n es un retracto fuerte de deformación de $R^{n+1} - \{0\}$:

$$H: \mathbb{R}^{n+1} - \{0\}x[0,1] \to \mathbb{R}^{n+1} - \{0\} \ H(q,s) = (1-s)q + sn(q)$$

donde
$$n: \mathbb{R}^{n+1} - \{0\} \rightarrow \mathbb{S}^n \ n(q) = \frac{q}{\|q\|}$$

Entonces en este caso $X=R^{n+1}-\{0\}$ $A=S^n$. Se tiene que n es continua en $R^{n+1}-\{0\}$. Sea $q\in S^n\Longrightarrow \|q\|=1$

$$(n \circ i)(q) = n(i(q)) = n(q) = \frac{q}{\|q\|} = q \Longrightarrow n \circ i = Id_{S^n}$$

Por tanto, n es una retracción de $R^{n+1} - \{0\}$ en S^n .

Sea $H: \mathbb{R}^{n+1} - \{0\}x[0,1] \to \mathbb{R}^{n+1} - \{0\}$, que es continua

$$H(q,s) = (1-s)q + sn(q) = (1-s)q + s\frac{q}{\|q\|} \quad \forall q \in \mathbb{R}^{n+1} - \{0\} \, \forall s \in [0,1]$$

$$H(q,0) = q \ \forall q \in \mathbb{R}^{n+1} - \{0\} \ H(q,1) = n(q) \ \forall q \in \mathbb{R}^{n+1} - \{0\}$$

$$q \in S^n \Longrightarrow H(q,s) = (1-s)q + s\frac{q}{\|q\|} = (1-s)q + sq = q \ \forall (q,s) \in S^n x[0,1]$$

(c) S^n es un retracto fuerte de deformación de $\overline{B}(0,1)-\{0\}$:

$$H: \overline{B}(0,1) - \{0\}x[0,1] \to \overline{B}(0,1) - \{0\} \ H(q,s) = (1-s)q + sn_{/\overline{B}(0,1)-\{0\}}(q)$$

(d) S^1 es un retracto fuerte de deformación de S^1xR :

$$H: S^1 x R x [0,1] \to S^1 x R \ H(q,s) = (1-s)q + sp(q)$$

donde $p: S^1 x R \to S^1 x \{0\} \equiv S^1 p(x, y, z) = (x, y, 0).$

(e) S^1xR es un retracto fuerte de deformación de $R^3 - \{x = y = 0\}$:

$$H: \mathbb{R}^3 - \{x = y = 0\}x[0, 1] \to \mathbb{R}^3 - \{x = y = 0\} \ H(q, s) = (1 - s)q + sf(q)$$

$$\mathsf{donde}\ f\colon R^3-\{x=y=0\}\to S^1xR\ \ f(x,y,z)=\Big(\frac{1}{\|(x,y)\|}(x,y),z\Big).$$

Demostrar que para todo espacio topológico X la sección ecuatorial $A = Xx\{0\}$ es un retracto de deformación de Xx[-1,1]. Deducir el tipo de homotopía de la banda $R^nx[-1,1]$, el cilindro $S^nx[-1,1]$ y el cubo $\begin{bmatrix} -1,1 \end{bmatrix}^{n+1}$. Discutir qué ocurre si sustituimos $\begin{bmatrix} -1,1 \end{bmatrix}$ por R.

Solución

Sea $r: Xx[-1,1] \to Xx\{0\}, r(x,t) = (x,0) \ \forall (x,t) \in Xx[-1,1], \text{ donde } r \text{ es continua:}$

$$(r \circ i)(x,0) = r(i(x,0)) = r(x,0) = (x,0) \Rightarrow r \circ i = Id_{Xx\{0\}} \Rightarrow r \text{ es una retracción}$$

Sea $H: (Xx[-1,1])x[0,1] \rightarrow Xx[-1,1]$, que es continua

$$H((x,t),s) = (1-s)(x,t) + s(x,0) = (x,(1-s)t) \quad \forall q \in E \ \forall s \in [0,1]$$

$$H((x,t),0) = (x,t) \quad \forall (x,t) \in Xx[-1,1]$$

$$H((x,t),1) = (x,0) = r(x,t) \ \forall (x,t) \in Xx[-1,1]$$

$$H((x,0),s) = (1-s)(x,0) + s(x,0) = (x,0) \quad \forall (x,0) \in Xx\{0\} \ \forall s \in [0,1]$$

Por lo tanto, $Xx\{0\}$ es un retracto fuerte de deformación de Xx[-1,1].

Veamos, ahora los grupos fundamentales:

$$\begin{split} \Pi_1(R^nx[-1,1]) &\cong \Pi_1(R^nx\{0\}) \cong \Pi_1(R^n)x\Pi_1(\{0\}) \cong \{1\}x\{1\} \cong \{1\} \\ \Pi_1(S^nx[-1,1]) &\cong \Pi_1(S^nx\{0\}) \cong \Pi_1(S^n) \cong \begin{cases} Z & \text{si } n = 1 \\ \{1\} & \text{si } n \geq 2 \end{cases} \\ \Pi_1([-1,1]^nx[-1,1]) &\cong \Pi_1([-1,1]^nx\{0\}) \cong \Pi_1([-1,1]^n) \cong \{1\} \end{split}$$

Si se sustituye [-1,1] por R:

$$\Pi_{1}(R^{n}xR) \cong \Pi_{1}(R^{n+1}) \cong \{1\}$$

$$\Pi_{1}(S^{n}xR) \cong \Pi_{1}(S^{n})x\Pi_{1}(R) \cong \Pi_{1}(S^{n}) \cong \begin{cases} Z & \text{si } n = 1 \\ \{1\} & \text{si } n \geq 2 \end{cases}$$

$$\Pi_{1}([-1,1]^{n}xR) \cong \{1\}$$

Encontrar un retracto de deformación de $X = S^n - \{N, S\}$ y otro de $X = R^{n+1} - \overline{B}(0, 1)$, donde $\overline{B}(0, 1)$ es la bola unidad cerrada.

Solución

Sea
$$X = S^n - \{N, S\}$$
 y $A = S^{n-1}x\{0\}$, y sea $r: S^n - \{N, S\} \to S^{n-1}x\{0\}$

$$r(x_1, \dots, x_{n-1}, x_n) = \left(\frac{x_1}{\sqrt{1 - x_n^2}}, \dots, \frac{x_{n-1}}{\sqrt{1 - x_n^2}}, 0\right)$$

$$(x_1, \dots, x_{n-1}, x_n) \in S^n - \{N, S\} \Longrightarrow x_1^2 + \dots + x_{n-1}^2 + x_n^2 = 1 - 1 < x_n < 1$$

Para que esté bien definida:

$$\left(\frac{x_1}{\sqrt{1-x_n^2}}\right)^2 + \dots + \left(\frac{x_{n-1}}{\sqrt{1-x_n^2}}\right)^2 = \frac{x_1^2}{1-x_n^2} + \dots + \frac{x_{n-1}^2}{1-x_n^2} = \frac{x_1^2 + \dots + x_{n-1}^2}{1-x_n^2} = \frac{1-x_n^2}{1-x_n^2} = 1$$

Y además r es continua.

Sea $H: (S^n - \{N, S\})x[0,1] \rightarrow S^n - \{N, S\}$, que es continua

$$\begin{split} H\Big((x_1,\dots,x_{n-1},x_n),s\Big) &= (1-s)(x_1,\dots,x_{n-1},x_n) + s\left(\frac{x_1}{\sqrt{1-x_n^2}},\dots,\frac{x_{n-1}}{\sqrt{1-x_n^2}},0\right) = \\ &= (1-s)(x_1,\dots,x_{n-1},x_n) + s.r(x_1,\dots,x_{n-1},x_n) \\ &\forall (x_1,\dots,x_{n-1},x_n) \in S^n - \{N,S\} \, \forall s \in [0,1] \\ H\Big((x_1,\dots,x_{n-1},x_n),0\Big) &= (x_1,\dots,x_{n-1},x_n) \, \, \, \forall (x_1,\dots,x_{n-1},x_n) \in S^n - \{N,S\} \\ H\Big((x_1,\dots,x_{n-1},x_n),1\Big) &= r(x_1,\dots,x_{n-1},x_n) \, \, \forall (x_1,\dots,x_{n-1},x_n) \in S^n - \{N,S\} \\ H\Big((x_1,\dots,x_{n-1},x_n),1\Big) &= r(x_1,\dots,x_{n-1},x_n) \, \, \forall (x_1,\dots,x_{n-1},x_n) \in S^n - \{N,S\} \\ H\Big((x_1,\dots,x_{n-1},0),s\Big) &= (1-s)(x_1,\dots,x_{n-1},0) + sr(x_1,\dots,x_{n-1},0) = \\ &= (1-s)(x_1,\dots,x_{n-1},0) + s\left(\frac{x_1}{\sqrt{1-0}},\dots,\frac{x_{n-1}}{\sqrt{1-0}},0\right) = \\ &= (1-s)(x_1,\dots,x_{n-1},0) \, \, \forall (x_1,\dots,x_{n-1},0) \in S^{n-1}x\{0\} \, \forall s \in [0,1] \end{split}$$

Por lo tanto, $S^{n-1}x\{0\}$ es un retracto fuerte de deformación de $S^n-\{N,S\}$.

$$\begin{split} \operatorname{Sea} X &= R^{n+1} - \bar{B}(0,1) \text{ y } A = S^n, \operatorname{y sea} r : R^{n+1} - \bar{B}(0,1) \to S^n \\ \operatorname{Sea} \left(x_1, \dots, x_{n+1} \right) &\in R^{n+1} - \bar{B}(0,1) : x_1^2 + \dots + x_{n+1}^2 > 1 \\ & r(x_1, \dots, x_{n+1}) = \left(\frac{x_1}{\|(x_1, \dots, x_{n+1})\|}, \dots, \frac{x_{n+1}}{\|(x_1, \dots, x_{n+1})\|} \right) \end{split}$$

Por lo tanto, r está bien definida y es continua

Sea
$$H: (R^{n+1} - \bar{B}(0,1))x[0,1] \to R^{n+1} - \bar{B}(0,1)$$
, que es continua
$$H((x_1, \dots, x_{n+1}), s) = (1-s)(x_1, \dots, x_{n+1}) + s. r(x_1, \dots, x_{n+1})$$

$$\forall (x_1, \dots, x_{n+1}) \in R^{n+1} - \bar{B}(0,1) \ \forall s \in [0,1]$$

$$H((x_1, \dots, x_{n+1}), 0) = (x_1, \dots, x_{n+1}) \ \forall (x_1, \dots, x_{n+1}) \in R^{n+1} - \bar{B}(0,1)$$

$$H((x_1, \dots, x_{n+1}), 1) = r(x_1, \dots, x_{n+1}) \ \forall (x_1, \dots, x_{n+1}) \in R^{n+1} - \bar{B}(0,1)$$
Sea $(x_1, \dots, x_{n+1}) \in S^n \ s \in [0,1]: \|(x_1, \dots, x_{n+1})\| = 1$

$$H((x_1, \dots, x_{n+1}), s) = (1-s)(x_1, \dots, x_{n+1}) + sr(x_1, \dots, x_{n+1}) =$$

$$= (1-s)(x_1, \dots, x_{n+1}) + s\left(\frac{x_1}{\|(x_1, \dots, x_{n+1})\|}, \dots, \frac{x_{n+1}}{\|(x_1, \dots, x_{n+1})\|}\right) =$$

$$= (1-s)(x_1, \dots, x_{n+1}) + s(x_1, \dots, x_{n+1}) =$$

$$= (x_1, \dots, x_{n+1}) \ \forall (x_1, \dots, x_{n+1}) \in S^n \ \forall s \in [0,1]$$

Por lo tanto, S^n es un retracto fuerte de deformación de $R^{n+1} - \bar{B}(0,1)$.

Sean $x_1,x_2\in R^2$ con $x_1\neq x_2$. Definimos $A=C_1\cup C_2$, donde C_i es la circunferencia de centro x_i y radio $\|x_1-x_2\|/2$. Demostrar gráficamente que A es un retracto de deformación de $R^2-\{x_1,x_2\}$. Calcular explícitamente la retracción cuando $x_1=(-1,0)$ y $x_2=(1,0)$.

Solución

Lo que se va a realizar es dividir a $R^2-\{x_1,x_2\}$ en tres semiplanos uno con puntos dentro y fuera de \mathcal{C}_1 con la coordenada $x< x_1$, otro puntos dentro y fuera de \mathcal{C}_2 con la coordenada $x> x_2$, y un tercero con el resto de puntos. Los puntos del primer semiplano llevarían los puntos en forma radial a \mathcal{C}_1 , de la misma forma los tercer semiplano se llevarían de forma radial a \mathcal{C}_2 , y el resto de puntos se proyecta en $\mathcal{C}_1 \cup \mathcal{C}_2$, de forma perpendicular.

Sea $x_1 = (-1,0)$ y $x_2 = (1,0)$, se va a definir de forma explícita la retracción de A sobre X.

$$A = \{(x, y) \in R^2 : (x + 1)^2 + y^2 = 1\} \cup \{(x, y) \in R^2 : (x - 1)^2 + y^2 = 1\}$$
$$X = R^2 - \{x_1(-1, 0), x_2(1, 0)\}$$

Sea $r: X \to A$ dada por

$$r(x,y) = \begin{cases} (-1,0) + \frac{(x+1,y)}{\|(x+1,y)\|} & si \ x \le -1 \\ \left(x, \sqrt{1 - (x+1)^2}\right) si - 1 \le x \le 0 \ y > 0 \\ \left(x, -\sqrt{1 - (x+1)^2}\right) si - 1 \le x \le 0 \ y < 0 \\ \left(x, \sqrt{1 - (x-1)^2}\right) si \ 0 \le x \le 1 \ y > 0 \\ \left(x, -\sqrt{1 - (x-1)^2}\right) si \ 0 \le x \le 1 \ y > 0 \\ (1,0) + \frac{(x-1,y)}{\|(x-1,y)\|} \ si \ x \ge 1 \end{cases}$$

Se tiene que r está bien definida y es continua.

Sea
$$(x, y) \in A$$
: $(x + 1)^2 + y^2 = 1$ ó $(x - 1)^2 + y^2 = 1$

$$(r \circ i)(x,y) = r(i(x,y)) = r(x,y) = \begin{cases} (x,y) & si(x,y) \in C_1 \\ (x,y) & si(x,y) \in C_2 \end{cases} = (x,y) \Longrightarrow r \circ i = Id_A$$

Por lo tanto, r es una retracción A sobre X.

Sea $H: Xx[0,1] \to X$, que es continua

$$H((x,y),s) = (1-s)(x,y) + s.r(x,y) \quad \forall (x,y) \in X \ \forall s \in [0,1]$$

$$H((x,y),0) = (x,y) \quad \forall (x,y) \in X$$

$$H((x,y),1) = r(x,y) \ \forall (x,y) \in X$$

Por lo tanto, A es un retracto de deformación de X.

Encontrar un retracto de deformación de R^3/L , donde $L=\{(x,y,z)\in R^3: x=y=0\}$ que es el eje z. Obtener $\Pi_1(R^3/R)$, siendo R cualquier recta afín en R^3 .

(e) S^1xR es un retracto fuerte de deformación de $R^3 - \{x = y = 0\}$:

$$r: R^3 - \{x = y = 0\} \to S^1 x R \ r(x, y, z) = \left(\frac{1}{\|(x, y)\|}(x, y), z\right)$$

$$H: R^3 - \{x = y = 0\}x[0,1] \to R^3 - \{x = y = 0\}\ H(q,s) = (1-s)q + sr(q)$$

(d) S^1 es un retracto fuerte de deformación de S^1xR :

$$r: S^1 x R \to S^1 x \{0\} \cong S^1 \ r(x, y, z) = (x, y, 0)$$

$$H: S^1 x R x [0,1] \to S^1 x R \quad H(q,s) = (1-s)q + s r(q)$$

Por lo tanto, S^1 es un retracto fuerte de deformación de $R^3 - \{x = y = 0\}$.

Se sabe
$$R^3/R\cong R^3-\{x=y=0\}\,$$
 y se ha visto $R^3-\{x=y=0\}\simeq S^1$

$$\Pi_1(R^3/R) \cong \Pi_1(R^3 - \{x = y = 0\}) \cong \Pi_1(S^1) \cong Z$$

Sea S un subespacio afín de dimensión $k \leq n-2$ en R^n . Calcular $\Pi_1(R^n/S)$ encontrando para ello un retracto de deformación.

Discutir si la bola unidad cerrada es un retracto de deformación de \mathbb{R}^{n+1} .

Sea $X\subset R^n$ un convexo compacto con interior no vacío. Dado un punto x_0 del interior de X, demostrar que la frontera Fr(X) es un retracto de deformación de $X-\{x_0\}$. Solución

Discutir si S^1 admite algún retracto de deformación $A \neq S^1$.

 $\mbox{\ensuremath{\mbox{\ensuremath{\&}}} Es todo retracto de un espacio <math>X$ un retracto de deformación de X?

Proposición

Si A es un retracto de deformación de X, $\{C_{\alpha}: \alpha \in \Lambda\}$ son las arcocomponentes de A y \hat{C}_{α} es la arcocomponente de X conteniendo a C_{α} para cada $\alpha \in \Lambda$, entonces:

- (i) $r(\hat{C}_{\alpha}) = C_{\alpha} \ \forall \alpha \in \Lambda \ \text{y por tanto}, \ \hat{C}_{\alpha} \neq \hat{C}_{\beta}, \ \alpha \neq \beta.$
- (ii) $\{C_{\alpha}: \alpha \in \Lambda\}$ son las arcocomponentes de X.
- (iii) Si $H: Xx[0,1] \to X$ y $r: X \to A$ son una deformación y retracción asociadas al retracto de deformación A de X, entonces $H_{/\hat{C}_{\alpha}x[0,1]}: \hat{C}_{\alpha}x[0,1] \to \hat{C}_{\alpha}$ y $r_{/\hat{C}_{\alpha}}: \hat{C}_{\alpha} \to C_{\alpha}$ son una deformación y retracción asociadas al retracto de deformación C_{α} de \hat{C}_{α} .

Proposición

Sea $F: X \to A$ un homeomorfismo. Si A es un retracto (fuerte) de deformación de Y entonces $F^{-1}(A)$ es un retracto (fuerte) de deformación de X.

Teorema

Sea X un espacio topológico y sea $A \subset X$ un retracto fuerte de deformación con $r: X \to A$ una retracción asociada. Entonces dado $a \in A$ se tiene que:

$$r_*: \Pi_1(X, a) \to \Pi_1(A, a)$$
 $i_*: \Pi_1(A, a) \to \Pi_1(X, a)$

son isomorfismo, uno inverso del otro.

Definición

Un espacio topológico X se dice contráctil si admite como retracto de deformación a un punto $\{p_0\} \subset X$. En caso de que $\{p_0\}$ sea retracto fuerte de deformación de X diremos que el espacio es fuertemente contráctil.

Definición

Un espacio topológico X se dice simplemente conexo si es arcoconexo y $\Pi_1(X,p)=\{[\varepsilon_p]\}$ para algún $p\in X$ (luego para todo $p\in X$).

Corolario

Todo espacio fuertemente contráctil es simplemente conexo.

Consecuencias

- (i) Todo subconjunto estrellado de \mathbb{R}^n es simplemente conexo. Esto se aplica a subconjuntos $A \subset \mathbb{R}^n$ convexos.
- (ii) Si $p \in S^n$ entonces $\Pi_1(R^{n+1} \{0\}, p)$ es isomorfo a $\Pi_1(S^n, p)$.

- $(iii) \text{ Si } p \in S^1 \text{ entonces } \Pi_1 \left(S^1 x R, (p,0) \right) \text{ es isomorfo a } \Pi_1 (S^1,p) \cong Z.$
- (iv) Si $p \in S^1xR$ entonces $\Pi_1(R^3 \{x = y = 0\}, p)$ es isomorfo a $\Pi_1(S^1xR, p) \cong Z$.
- (V) El grupo fundamental de la cinta de Möbius es isomorfo a Z.

Teorema

Sea X un espacio topológico conexo y localmente arcoconexo. Supongamos que la topología de admite una base β satisfaciendo:

- (i) β es numerable (luego X es II Axioma de Numerabilidad)
- (ii) B es simplemente conexo $\forall B \in \beta$

Entonces $\Pi_1(X, x)$ es numerable $\forall x \in X$.

Sea X simplemente conexo y $A \subset X$ un retracto de X. ¿Es A simplemente conexo?

Solución

Homotopía de aplicaciones

Definición

Dados dos espacios topológicos X e Y, dos aplicaciones continuas $\varphi_1, \varphi_2: X \to Y$, se dicen homotópicas, y se escribe $\varphi_1 \simeq \varphi_2$, si existe un aplicación continua $H: Xx[0,1] \to Y$ verificando:

$$H(x,0) = \varphi_1(x) \ \forall x \in X \qquad H(x,1) = \varphi_2(x) \ \forall x \in X$$

Si $A \subset X$, las aplicaciones continuas $\varphi_1, \varphi_2: X \to Y$ se dirán homotópicas relativas a $A, \varphi_1 \simeq_A \varphi_2$ si existe $H: Xx[0,1] \to Y$ verificando:

$$H(x,0) = \varphi_1(x) \; \forall x \in X \qquad H(x,1) = \varphi_2(x) \; \forall x \in X$$

$$H(a,s) = \varphi_1(a) = \varphi_2(a) \ \forall (a,s) \in Ax[0,1]$$

Si $A \subset X$ es un retracto de deformación vía H con la retracción asociada r, entonces $Id_X \simeq r$. Si A es un retracto fuete de deformación de X se tiene que $Id_X \simeq_A r$.

Sean $f,g:X\to Y$ aplicaciones continuas con $f(x_0)=g(x_0)=y_0$. Supongamos que $f\simeq g$ por una homotopía $H:Xx[0,1]\to Y$ tal que $H(x_0,s)=y_0\ \forall s\in[0,1]$. Demostrar que los homomorfismos inducidos f y g en x_0 son iguales.

Solución

Teorema

Sean X e Y espacios topológicos y dos aplicaciones continuas $\varphi_1, \varphi_2 \colon X \to Y$. Supongamos que $\varphi_1 \simeq \varphi_2$ vía $H \colon Xx[0,1] \to Y$, fijemos $x_0 \in X$ y sea $\gamma \colon [0,1] \to Y$ el arco uniendo $\varphi_1(x_0)$ y $\varphi_2(x_0)$ definido por $\gamma(s) = H(x_0,s)$.

Dados los homomorfismos de grupos

$$(\varphi_1)_*: \Pi_1(X, x_0) \to \Pi_1(Y, \varphi_1(x_0)) \quad (\varphi_2)_*: \Pi_1(X, x_0) \to \Pi_1(Y, \varphi_2(x_0))$$

Y el isomorfismo $U_{\gamma}: \Pi_1(Y, \varphi_1(x_0)) \to \Pi_1(Y, \varphi_2(x_0))$, se tiene que $U_{\gamma} \circ (\varphi_1)_* = (\varphi_2)_*$

En particular los homomorfismos $(\varphi_1)_*$ y $(\varphi_2)_*$ son iguales salvo isomorfismos.

Corolario

Sean $\varphi_1, \varphi_2: X \to Y$ aplicaciones continuas y $x_0 \in X$. Supongamos que $\varphi_1 \simeq_{\{x_0\}} \varphi_2$ y sea $y_0 = \varphi_1(x_0) = \varphi_2(x_0)$. Entonces $(\varphi_1)_* = (\varphi_2)_* : \Pi_1(X, x_0) \to \Pi_1(Y, y_0)$.

Definición

Sean X e Y espacios topológicos. Una aplicación continua $f: X \to Y$ se dirá una equivalencia homotópica si existe $g: X \to Y$ tal que: $g \circ f = Id_X$ $f \circ g = Id_Y$. Es ese caso se dirán que f y g son inversas homotópicas.

Dos espacios X e Y se dicen del *mismo tipo de homotopía* si existe una equivalencia homotópica entre ellos.

Nota

Todo homeomorfismo es una equivalencia homotópica pero el recíproco no es cierto. La equivalencia homotópica es suficiente para garantizar isomorfismo entre grupos fundamentales.

Teorema

Sean X e Y espacios topológicos y $f: X \to Y$ una equivalencia homotópica con inversa homotópica $g: X \to Y$. Fijemos $x_0 \in X$. Entonces $f_*: \Pi_1(X, x_0) \to \Pi_1(Y, f(x_0))$ es un isomorfismo de grupos.

Corolario

Sea $A \subset X$ es un retracto de deformación de X con la retracción asociada $r: X \to A$ e $i; A \to X$ la aplicación inclusión. Entonces para cada $a \in A$ las aplicaciones

$$r_*: \Pi_1(X, a) \to \Pi_1(A, a) \quad i_*: \Pi_1(A, a) \to \Pi_1(X, a)$$

son isomorfismos de grupos. En particular, todo espacio topológico contráctil es simplemente conexo.

Proposición

Sea X un espacio topológico, y sean $U, V \subset X$ subconjuntos satisfaciendo:

- (i) U y V son abiertos simplemente conexos (con la topología inducida)
- (ii) $U \cap V$ es arcoconexo y no vacío

(iii)
$$U \cup V = X$$

Entonces X es simplemente conexo.

Corolario

La esfera S^n es simplemente conexa para todo $n \ge 2$.

Teorema de Invarianza de la Dimensión

Si $\Omega_2 \subset R^2$ y $\Omega_n \subset R^n$ $n \neq 2$ son abiertos conexos, entonces Ω_2 no es homeomorfo a Ω_n .

Lema

Sea $f: S^1 \to S^1$ continua e impar con f(1) = 1, y sea β el lazo en S^1 dado por $\beta = f \circ \alpha_1$ donde $\alpha_1 = \rho_{/[0,1]}$, $\rho: R \to S^1$ $\rho(t) = e^{2\pi i t}$. Entonces $deg(\beta)$ es impar.

Lema

No existe ninguna aplicación $F: S^2 \to S^1$ continua e impar.

Teorema (Borsuk-Ulam)

Si $f: S^2 \to R^2$ es continua, entonces existe $x_0 \in S^2$ tal que $f(x_0) = f(-x_0)$.

¿Es cierto el teorema de Borsuk-Ulam si cambiamos S^2 por el toro $T=S^1xS^1$?

Solución

Probar que el teorema de Borsuk-Ulam es equivalente a cualquiera de los siguientes enunciados:

a.- Si $f\colon S^2 o R^2$ es continua e impar, entonces existe $x_0 \in S^2$ tal que $f(x_0) = 0$.

b.- Si $g_1,g_2:S^2\to R$ son continuas e impares, existe $x_0\in S^2$ tal que $g_1(x_0)=g_2(x_0)=0$.

Corolario

Si identificamos S^2 con la superficie de la Tierra y $f,g:S^2\to R$ son dos magnitudes físicas que se distribuyen de forma continua sobre dicha superficie (por ejemplo, la presión y la temperatura), existen puntos antípodas $p_0,-p_0\in S^2$ tales que $(f,g)(p_0)=(f,g)(-p_0)$.

Corolario

Si S^2 es la unión de tres subconjuntos cerrados A_1,A_2 y A_3 , entonces alguno de ellos contiene dos puntos antípodas.

Coralario (Teorema de las tortitas)

Dados dos compactos $A_1, A_2 \subset \mathbb{R}^2$, existe una recta combinatoria de \mathbb{R}^2 que los subdivide a ambos en trozos de igual área.

Corolario (Teorema del bocadillo de jamón)

Dados dos compactos $A_1, A_2, A_3 \subset R^3$, es posible encontrar un plano combinatorio de R^3 que los subdivida a los tres en trozos de igual volumen.

Teorema de Seifert-Van Kampen

Sea X un espacio topológico y sean $U, V \subset X$ subconjuntos satisfaciendo:

(i) $U,V \vee U \cap V$ son abiertos arcoconexos (ii) $U \cap V \neq \emptyset \vee U \cup V = X$.

Sea $i: U \cap V \to U$ y $j: U \cap V \to V$ a las aplicaciones inclusión, se fija $x_0 \in U \cap V$ y se considera

 $i_*:\Pi_1(U\cap V,x_0)\to\Pi_1(U,x_0)$ y $j_*:\Pi_1(U\cap V,x_0)\to\Pi_1(V,x_0)$ los correspondientes homomorfismos inducidos. Entonces

$$\Pi_1(X, x_0) \cong \Pi_1(U, x_0) *_{\Pi_1(U \cap V, x_0)} \Pi_1(V, x_0)$$

donde el producto amalgamado es el relativo a los homomorfismos i_* y j_* .

Calcular $\Pi_1(X)$ en estos casos:

a.- $X = S^2 \cup [N, S]$ donde N, S son el polo Sur y el polo Norte de S^2 .

b.- $X = S^2 \cup \{(x, y, 0) \in R^3 : x^2 + y^2 \le 1\}.$

c.- $X = S^2 \cup C_1 \cup C_2$ donde C_1 y C_2 son circunferencias tangentes a S^2 en los puntos N y S.

d.- $\it X$ es la unión de una esfera y de un toro tangentes en un único punto.

e.- \boldsymbol{X} es la unión de dos toros tangentes en un único punto.

Corolario

Bajo las mismas hipótesis del Teorema de Seifert-Van Kampen, si $U \cap V$ es simplemente conexo entonces $\Pi_1(X, x_0) \cong \Pi_1(U, x_0) * \Pi_1(V, x_0)$.

Corolario

Bajo las mismas hipótesis del Teorema de Seifert-Van Kampen, si V es simplemente conexo entonces $\Pi_1(X,x_0)\cong \Pi_1(U,x_0)/N\left(i_*\big(\Pi_1(U\cap V,x_0)\big)\right)$.

Corolario

Si X es un n-ciclo entonces $\Pi_1(X,x_0)$ es isomorfo al grupo libre $F(a_1,\ldots,a_n)$.

Definición

Sea el semiplano $\Pi_1 = \{(x_1, x_2, x_3) \subset \mathbb{R}^3 : x_1 = 0, x_2 \ge 0\}$ y sus girados respecto del eje x_3 :

$$\Pi_j = \left\{ \left(e^{2\pi(j-1)i}/kz, x_3\right) \colon (z, x_3) \in \Pi_1 \subset CxR \equiv R^3 \right\} \ j = 1, \dots, k$$

Por definición, el espacio libro de k hojas es:

$$L_k = \bigcup_{j=1}^k \Pi_j \ k \in N$$

Proposición

Los espacios L_k y L_s no son homeomorfos, $k, s \in N, k \neq s$.

Corolario

Si $0 \subset \mathbb{R}^3$ es un abierto conteniendo al origen, entonces $0 \cap L_k$ no puede ser homeomorfo a un abierto de \mathbb{R}^2 para todo $k \neq 2$.

Calcula el grupo fundamental del siguiente subespacio $X \subset \mathbb{R}^3$.

Se tiene que $X=S_1\cup S_2\cup L\cup A_1\cup A_2.$ Se define

$$U = X/\{p\}$$
 $V = X/\{q\}$ $\Longrightarrow U \cap V = X/\{p,q\} \neq \emptyset$ $U \cup V = X$

Además, U, V y $U \cap V$ son abiertos arcoconexos, además U:

(*) $A_1 - \{p\} \cong [-1,1] - \{0\} = [-1,0[\ \cup\]0,1] \simeq \{N_1\} \cup \{N_2\}$ ya que cada intervalo es contráctil, donde N_i son los punto Norte de S_i .

Se define

$$U^{\prime\prime}=U^{\prime}/S_1 \quad V^{\prime\prime}=U^{\prime}/\{N_2\} \ \Longrightarrow U^{\prime\prime}\cap V^{\prime\prime}=U^{\prime}/(\{N_2\}\cup S_1)\neq\emptyset \quad U^{\prime\prime}\cup V^{\prime\prime}=U^{\prime}$$

Además, $U^{\prime\prime}$, $V^{\prime\prime}$ y $U^{\prime\prime}\cap V^{\prime\prime}$ son abiertos arcoconexos, además $U^{\prime\prime}$ simplemente conexo

$$\Pi_1(U^{\prime\prime}, x_0) \cong \Pi_1(S^2, x_0) \cong \{1\}$$

Además $U^{\prime\prime}\cap V^{\prime\prime}$ es simplemente conexo ya que es contráctil

Por el **teorema de Seifert-Van Kampen**

$$\Pi_1(U',x_0) \cong \Pi_1(U'',x_0) *_{\Pi_1(U'' \cap V'',x_0)} \Pi_1(V'',x_0) \cong \Pi_1(Y,x_0)$$

Se define:

$$Y_1 = Y/\{p\} \ Y_2 = Y/\{q\} \implies Y_1 \cap Y_2 = Y/\{p,q\} \neq \emptyset \ Y_1 \cup Y_2 = Y$$

Además, Y_1 , Y_2 y $Y_1 \cap Y_2$ son abiertos arcoconexos

 Y_1 $\stackrel{r.d}{\longrightarrow}$

$$\Pi_1(Y_1,x_0)\cong\Pi_1(S^1,x_0)\cong Z$$

 Y_2

$$\stackrel{r.d}{\longrightarrow}$$

 Y_2 es simplemente conexo, $\Pi_1(Y_2, x_0) \cong \Pi_1(S^2, x_0) \cong \{1\}$

 $Y_1 \cap Y_2$

 $\overset{r.d}{\longrightarrow}$

 $Y_1 \cap Y_2$ es simplemente conexo por ser contráctil, $\Pi_1(Y_1 \cap Y_2, x_0) \cong \{1\}$.

Por el teorema de Seifert-Van Kampen

$$\Pi_{1}(Y, x_{0}) \cong \Pi_{1}(Y_{1}, x_{0}) *_{\Pi_{1}(Y_{1} \cap Y_{2}, x_{0})} \Pi_{1}(Y_{2}, x_{0}) \cong \Pi_{1}(Y_{1}, x_{0}) * \Pi_{1}(Y_{2}, x_{0}) \cong F(a)$$

$$\Pi_{1}(U', x_{0}) \cong Z \Longrightarrow U \simeq U' \Longrightarrow \Pi_{1}(U, x_{0}) \cong F(a)$$

De manera análoga, $\Pi_1(V, x_0) \cong F(b)$.

Además $U \cap V$:

Se define

$$W_1 = W/\{p\} \ \ W_2 = W/\{q\} \ \ W_1 \cap W_2 = W/p, q \ \ W_1 \cup W_2 = W$$

Además, W_1 , W_2 y $W_1 \cap W_2$ son abiertos arcoconexos

 W_1

 $\Pi_1(W_1, x_0) \cong \Pi_1(S^2, x_0) \cong \{1\}$

De la misma forma $\Pi_1(W_2,x_0)\cong \Pi_1(S^2,x_0)\cong \{1\}.$

Y $W_1 \cap W_2$ es contráctil, luego es simplemente conexo y $\Pi_1(W_1 \cap W_2, x_0) \cong \{1\}$.

Por el teorema de Seifert-Van Kampen

$$\Pi_1(W,x_0)\cong \Pi_1(W_1,x_0)*_{\Pi_1(W_1\cap W_2,x_0)}\Pi_1(W_2,x_0)\cong \Pi_1(W_1,x_0)*\Pi_1(W_2,x_0)\cong \{1\}$$

$$\Pi_1(W,x_0)\cong\{1\}\Longrightarrow U\cap V\simeq W\ es\ simplemente\ conexo\Longrightarrow\Pi_1(U\cap V,x_0)\cong\{1\}$$

Luego por el teorema de Seifert-Van Kampen

$$\begin{split} \Pi_1(X,x_0) &\cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) \cong \Pi_1(U,x_0) * \Pi_1(V,x_0) \cong \\ &\cong F(a).F(b) = F(a,b) \end{split}$$

Ejercicio 31

Calcular el grupo fundamental del siguiente subespacio topológico de \mathbb{R}^3 .

