AIFA: Bayesian Network Inference

18/03/2024

Koustav Rudra

Inference using Belief Networks

- Diagnostic inference
 - From effects to causes
 - Given that JohnCalls, infer P(Burglary|JohnCalls)
- Causal inference
 - From causes to effects
 - Given Burglary, infer P(JohnCalls|Burglary)

Inference using Belief Networks

- Intercausal inferences (between causes of common effect)
 - Given Alarm, we have P(Burglary|Alarm) = 0.376
 - If we add evidence that earthquake is True then P(Burglary | Alarm \land Earthquake) = 0.003
- Mixed inferences
 - Setting the effect JohnCalls to True and cause Earthquake to False
 - P(Alarm|JohnCalls $\land \sim$ Earthquake) = 0.003

Example: Traffic

Causal direction

By Co.

P(R)	
+r	1/4

R	P(T)
+r	3/4
-r	1/2

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Traffic

• Reverse causality?

+t	+r	1/3
	-r	2/3
-t	+r	1/7
	-r	6/7

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General Case:
 - Evidence variables: $E_1, E_2, \dots E_k = e_1, e_2, \dots, e_k$
 - Query Variable: Q
 - Hidden variables: $H_1, H_2, ... H_r$
 - $X_1, X_2, ... X_n$ all variables
- We want: $P(Q|e_1, e_2, ..., e_k)$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1, e_2, \dots, e_k)$$

$$P(Q|e_1, e_2, ..., e_k) = \frac{1}{Z}P(Q, e_1, e_2, ..., e_k)$$

$$P(Q, e_1, e_2, \dots, e_k) = \sum_{h_1, h_2, \dots, h_r} P(Q, h_1, h_2, \dots, h_r, e_1, e_2, \dots, e_k)$$

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions
 - $P(x_1, x_2, ..., x_n) = \prod_i P(x_i | x_1, x_2, ..., x_{i-1})$

Bayes Rule

- Two ways to factor a joint distribution over two variables:
 - $P(x,y) = P(x|y) \times P(y) = P(y|x) \times P(x)$
- Dividing we get
 - $P(x|y) = \frac{P(y|x)}{P(y)}P(x)$
- Why is this useful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems (e.g. ASR, MT)

Bayes Rule

R	P
Sun	0.8
Rain	0.2

P(W)

D	W	P
Wet	Sun	0.1
Dry	Sun	0.9
Wet	Rain	0.7
Dry	Rain	0.3

P(D|W)

P(W|Dry)

Inference by Enumeration

Inference using Belief Networks

$$P(B|J) = \frac{P(BJ)}{P(J)}$$

$$P(BJ) = P(BJA) + P(BJA')$$

$$P(BJA) = P(J|AB)P(AB) + P(J|A'B)P(A'B)$$

$$P(AB) = P(ABE) + P(ABE')$$

$$P(AB) = P(A|BE)P(BE) + P(A|BE')P(BE')$$

$$P(AB) = 0.00095$$

$$P(A'B) = 0.00005$$

Bayesian Network: Inference

- Compute posterior probability distribution of a set of query variables
 - Given some observed event [evidence variables]
 - Some unobserved events [Hidden variables]
- P(B|J=True, M=True)
- Hidden variables:
 - Earthquake
 - Alarm

• P(B|J=True, M=True)

- Hidden variables:
 - Earthquake
 - Alarm
- $P(b|j,m) = \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$
- Add four terms each computed by multiplying five numbers
- If network contains n variables, complexity $O(n2^n)$

• P(B|J=True, M=True)

- Hidden variables:
 - Earthquake
 - Alarm
- $P(b|j,m) = \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$
- $P(b|j,m) = P(b) \sum_{e} \sum_{a} P(e)P(a|b,e)P(j|a)P(m|a)$
- $P(b|j,m) = P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$

• P(B|J=True, M=True)

- Hidden variables:
 - Earthquake
 - Alarm
- $P(b|j,m) = P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$
- P(b|j,m) = <0.00059224,0.0014919> = <0.284,0.716>
- Chance of a burglary given calls from both neighbours is 28%

- P(B|J=True, M=True)
- Hidden variables:
 - Earthquake
 - Alarm
- $P(b|j,m) = P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$
- P(b|j,m) = <0.00059224,0.0014919> = <0.284,0.716>
- Chance of a burglary given calls from both neighbours is 28%

Thank You