من أجل إجراء المتابعة الزمنية لتحول كيميائي البطيء و التام الحادث بين معدن الزنك $Zn\left(s\right)$ و محلول ثنائي $I_2(aq)$ عند درجة حرارة ثابتة $G_1=25^o$ ، نحقق التركيب التجريبي المبين في الشكل $I_2(aq)$ عند درجة حرارة ثابئي اليود تركيزه المولي $V=2\times 10^{-2} mol \ L^{-1}$ في العنصر $I_2(aq)$ وعند $I_2(aq)$ من محلول ثنائي اليود تركيزه المولي $I_2(aq)$ في العنصر $I_2(aq)$ وعند $I_2(aq)$ من معدن الزنك النقى كتلته $I_2(aq)$.

المتابعة الزمنية للتحول الكيميائي الحادث عن طريق قياس الناقلية النوعية مكنتنا من رسم المنحنى البياني $\sigma = f(t)$

1ـ أكتب معادلة التفاعل المنمذجة للتحول الكيميائي الحادث ، علما أن الثنائيتين الداخلتين في التفاعل هما:

$$(I_2(aq)/I^-(aq)),(Zn^{2+}(aq)/Zn(s))$$

2 لماذا يمكن متابعة هذا التحول الكيميائي عن طريق قياس الناقلية ؟ علل سبب تزايدها.

3- تعرف على العناصر المرقمة في الشكل-1.

 $.x_{\rm max}$ أنشئ جدول تقدم التفاعل ، ثم عين المتفاعل المحد و قيمة التقدم الأعظمي $.x_{\rm max}$

حيث A ثابت يطلب تعيين $\sigma(t)$ عبارة الناقلية النوعية $\sigma(t)$ للمزيج عند اللحظة t هي: $\sigma(t)$ حيث $\sigma(t)$ عبارته بدلالة $\sigma(t)$ و $\sigma(t)$

 σ_f ثيت $\sigma(t_{1/2}) = \frac{\sigma_f}{2}$: كون الناقلية النوعية للمزيج المتفاعل $\sigma(t_{1/2})$ تكون الناقلية النوعية للمزيج في نهاية التفاعل ، ثم استنتج قيمة $\sigma(t_{1/2})$.

Remchi

 $v\left(t\right) = \frac{1}{A} \frac{d\sigma(t)}{dt}$: أ_بين أن عبارة سرعة التفاعل تكتب من الشكل.

 $t_{2}=600 s$ ب. أحسب قيمة سرعة التفاعل عند اللحظتين: $t_{1}=0$ و

ج_اشرح على المستوى المجهري سبب تناقص هذه السرعة مع مرور الزمن.

لنحنى 2- نعيد نفس التجربة و لكن عند درجة حرارة θ_2 حيث θ_2 حيث $\theta_1 \succ \theta_2$ ، ارسم كيفيا مع بيان الشكل $\sigma = g(t)$ المتحصل عليه في هذه الحالة.

 $\lambda(Zn^{2+}) = 10,56mS.m^2/mol; \lambda(I^-) = 7,7mS.m^2/mol; M(Zn) = 65,4g/mol$ العطيات:

أـ أكتب معادلة التفاعل المنمذجة للتحول الكيميائي الحادث.

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^-$$
 المعادلة النصفية للأكسدة: $I_2(aq) + 2e^- \rightarrow 2I^-(aq)$ المعادلة النصفية للإرجاع: $Zn(s) + I_2(aq) \rightarrow Zn^{2+}(aq) + 2I^-(aq)$ معادلة التفاعل اكسدة ارجاع: والمجام

2 يمكن متابعة هذا التحول الكيميائي عن طريق قياس الناقلية : بسبب التشكل التدريجي لشاردتي $\left(I^{-}\right)$ و $\left(Zn^{2+}\right)$

سبب تزايدها: تزايد تركيز الشوارد $\left(Zn^{2+} \right)$ و $\left(I^{-} \right)$ لأن الناقلية النوعية متعلقة بالشوارد فكلما زاد تركيزها في المحلول زادت الناقلية النوعية.

3 تعرف على العناصر المرقمة في الشكل _5.

اسمالعنصر	الرقم
جهاز قياس الناقلية	1
حامل	2
خليةقياس	3
بیشر	4
الوسط التفاعلي	5
مخلاط مغناطيسي	6
قطعت مغناطيسيت	7

x_{max} عن المتفاعل ، ثم تعين المتفاعل المحد و قيمة التقدم الأعظمي x_{max}

	$Zn(s)+I_2(aq) \rightarrow Zn^{2+}(aq)+2I^-(aq)$			
الحالة الابتدائية	n_{01}	n_{02}	0	0
الحالة الانتقالية	$n_{01}-x(t)$	$n_{02}-x(t)$	x(t)	2x(t)
الحالة النهائية	$n_{01} - x_{\text{max}}$	$n_{02} - x_{\text{max}}$	x_{max}	$2x_{\text{max}}$

$$n_{01}=x_{\max} \Rightarrow \frac{m}{M}=x_{\max}$$
 نفرض أن Zn هو المتفاعل المحد: $n_{01}-x_{\max}=0$ ومنه: $x_{\max}=\frac{0.5}{65.4}=7.64\times 10^{-3} mol$

$$n_{02}=x_{\max}\Rightarrow CV=x_{\max}$$
 نفرض أن I_2 هو المتفاعل المحد: $n_{02}-x_{\max}=0$ ومنه: $x_{\max}=2 imes10^{-2} imes250 imes10^{-3}=5 imes10^{-3}mol$ ومنه:

و بالتالي المتفاعل المحد هو: محلول ثنائي اليود ($I_{2}(aq)$ ، إذن قيمة التقدم الأعظمي

$$x_{\text{max}} = 5 \times 10^{-3} mol$$

يطلب $\sigma(t)=A$ د تبيان أن عبارة الناقلية النوعية $\sigma(t)$ للمزيج عند اللحظة t هي: $\sigma(t)=A$ حيث $\Delta(z^{2+})$ ثابت يطلب عبارته بدلالة $\Delta(z^{2+})$ و $\Delta(z^{2+})$

 $\sigma(t) = \lambda \left(Zn^{2+}\right) \left[Zn^{2+}\right](t) + \lambda \left(I^{-}\right) \left[I^{-}\right](t)$ لدينا عبارة الناقلية النوعية عند اللحظة

$$\sigma(t) = Ax(t)$$
 اِذْنَ: $\sigma(t) = \left(\frac{\lambda(Zn^{2+}) + 2\lambda(I^{-})}{V}\right)x(t)$ ومنه: $\sigma(t) = Ax(t)$ اِذْنَ: $\sigma(t) = \frac{x(t)}{V}$ اِذْنَ: $\sigma(t) = \frac{x(t)}{V}$

$$A = rac{\lambda \left(Zn^{2+}
ight) + 2\lambda \left(I^{-}
ight)}{V}$$
 :حيث

 σ_f ثيه $\sigma(t_{1/2}) = \frac{\sigma_f}{2}$: كد تبيان أنه عند زمن نصف التفاعل $\sigma(t_{1/2})$ تكون الناقلية النوعية للمزيج في نهاية التفاعل ، ثم استنتاج قيمة $\sigma(t_{1/2})$.

 $\sigma(t_{1/2}) = A \frac{x_{\max}}{2}$(1) عند اللحظة $\sigma(t_{1/2}) = A x (t_{1/2}) = A x (t_{1/2}) : t = t_{1/2}$ عند نهاية التفاعل: $\sigma_f = A x_{\max}$(2) عند نهاية التفاعل:

.
$$\sigma(t_{1/2}) = \frac{\sigma_f}{2}$$
 ومنه: $\frac{\sigma(t_{1/2})}{\sigma_f} = \frac{A \frac{x_{\text{max}}}{2}}{Ax_{\text{max}}} = \frac{1}{2}$ ومنه: $\frac{\sigma(t_{1/2})}{2} = \frac{A x_{\text{max}}}{2} = \frac{1}{2}$ ومنه: $\frac{\sigma(t_{1/2})}{2} = \frac{A x_{\text{max}}}{2} = \frac{1}{2}$

.
$$t_{1/2} = 200s$$
 : من البيان قيمة زمن نصف التفاعل: $\sigma(t_{1/2}) = \frac{\sigma_f}{2} = \frac{0.52}{2} = 0.26S$. m^{-1}

 $v\left(t\right) = \frac{1}{A} \frac{d\sigma(t)}{dt}$: أ_تبيان أن عبارة سرعة التفاعل تكتب من الشكل.

$$x\left(t\right) = \frac{\sigma(t)}{A}$$
 ولدينا مما سبق $\sigma(t) = Ax\left(t\right)$ و منه: $v\left(t\right) = \frac{dx\left(t\right)}{dt}$ $v\left(t\right) = \frac{1}{A} \frac{d\sigma(t)}{dt}$ وعليه: $v\left(t\right) = \frac{dx\left(t\right)}{dt} = \frac{d\left(\frac{\sigma(t)}{A}\right)}{dt}$ وعليه:

 $t_{2}=600s$ ب أحسب قيمة سرعة التفاعل عند اللحظتين: $t_{1}=0$ و $t_{1}=0$ عند اللحظة: $t_{2}=600s$

$$\frac{1}{A} = \frac{V}{\lambda \left(Zn^{2+}\right) + 2\lambda \left(I^{-}\right)} = \frac{250 \times 10^{-6}}{25,96 \times 10^{-3}} = 9,63 \times 10^{-3} \, \text{m.S}^{-1}.\text{mol} : v\left(0\right) = \frac{1}{A} \frac{d\sigma}{dt} \bigg|_{t=0}$$

$$v\left(0\right) = 1,67 \times 10^{-5} \, \text{mol s}^{-1} : v\left(0\right) = \frac{1}{A} \frac{d\sigma}{dt} \bigg|_{t=0} = 9,63 \times 10^{-3} \times \frac{0,4}{230} : v\left(0\right) = \frac{1}{A} \frac{d\sigma}{dt} \bigg|_{t=0}$$

$$v\left(600s\right) = 2,028 \times 10^{-6} \, mol. s^{-1}$$
 اذن: $v\left(600s\right) = \frac{1}{A} \frac{d\sigma}{dt} \bigg|_{t=600s} = 9,63 \times 10^{-3} \times \left(\frac{0,32-0,45}{0-600}\right)$

جـ سبب تناقص سرعة التفاعل مع مرور الزمن.

كلما مر الزمن تتناقص كمية مادة المتفاعلين، و بالتالي تناقص تواتر التصادمات الفعالة بين المتفاعلات و هذا يؤدي إلى تناقص سرعة التفاعل.

 $.\sigma_{\!f_1} \succ \sigma_{\!f_2}$:فإن $heta_1 \succ heta_2$ فيد خفض درجة الحرارة أي

Prof Salim