

Università degli Studi di Padova

3D Data Processing Lab 1

Problem Formulation

 Search in a pair of stereo images for corresponding pixels that are projections of the same 3D point

Epipolar constraints reduces the search to

one dimension

Dense Matching

Find correspondences for all points that are projected in both images

Assumptions

- Most scene points are visible from both viewpoints
- Corresponding image regions are similar
- We consider rectified rectilinear stereo rigs: the epipolar lines are the rows of the images (scanlines)

Cost Volume

Cost Volume

```
for(int r = window_height_/2 + 1; r < height_ - window_height_/2 - 1; r++)
{
    for(int c = window_width_/2 + 1; c < width_ - window_width_/2 - 1; c++)
    {
        for(int d=0; d<disparity_range_; d++)
        {
            long cost = 0;
            // do stuff
            cost_[r][c][d]=cost;
        }
    }
}</pre>
```

// do stuff: compute E_data, using one of the methods seen in class (SSD, SAD, ZNCC, CENSUS)

Global Methods

- Enforce smoothness constraints, i.e. disparity is piecewise smooth
- Enforce ordering constraints
- Greater computational complexity

Semi-Global Matching

- Approximate global methods by aggregating costs for a number of directions (from 2D to multiple 1D areas of interest)
- Minimization along individual image rows can be performed efficiently in polynomial time using Dynamic Programming

Semi-Global Matching

- For each direction, start from one end point and go toward p
- For each pixel along the direction, update the following dynamic programming equation (the result at step i depends on the result at step i-1):

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1}) - \min_{0 \le \Delta \le d_{\text{max}}} E(p_{i-1}, \Delta)$$

where:

 $E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2(p, q) & \text{if } |f_p - f_q| > 1 \end{cases}$

Exercise: Semi-Global Matching

Consider the stereo matching problem for the following 7 x 1 left and right images:

- 2 3 1 2 3 3 1 1 2 3 2 2
- 1) Compute the right to left cost volume, considering positive disparities, d >= 0 with d_{max} = 3 and data cost defined by the sum of absolute differences (SAD) computed in 1 x 1 windows. Use value -1 to set "no disparity assigned"
- 2) Given the matching cost computed in 1), consider the Semi-Global Matching method with the following simplified dynamic programming equations:

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p, q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

where $c_1 = 1$ and $c_2 = 2$. Compute the integration matrix for the highlighted pixel and scanline:

using SAD right to left with a 1x1 window, means taking the module of the difference between the pixel on the right and the disparity-adjusted pixel on the left

notice that the disparity-adjusted pixel may go outside the left image --> -1

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

if
$$f_p = f_q$$

if $|f_p - f_q| = 1$
if $|f_p - f_q| > 1$

0		
1		
2		
3		

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

if
$$f_p = f_q$$

if $|f_p - f_q| = 1$
if $|f_p - f_q| > 1$

0	1		
1	2		
2	0		
3	1		

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

0	1		
1	2		
2	0		
3	1		

$$1 + \min(1, 2+1, 0+2)=2$$

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

if
$$f_p = f_q$$

if $|f_p - f_q| = 1$
if $|f_p - f_q| > 1$

0	1	2	
1	2	2	
2	0	0	
3	1	2	

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

if
$$f_p = f_q$$

if $|f_p - f_q| = 1$
if $|f_p - f_q| > 1$

0	1	2	4	
1	2	2	2	
2	0	0	0	
3	1	2	1	

0	1	2	4	3
1	2	2	2	3
2	0	0	0	2
3	1	2	1	1