Syllabus

Course Information

Instructor Information

Course Code	CSE530	Instructor	Antoine Vigneron Aaram Yun
Course Title	Algorithms and Complexity	Office	106-701-1 106-501-3
Year/Semester	2018/spring	Telephone	3186 2117
School	ECE	E-mail	antoine@unist.ac.kr aaramyun@unist.ac.kr
Course Classification		Office Hours	
Classroom/Class Time	106-711 MON WED 14:30-15:45		
Grading Type			

Course Objectives & Description

This course gives a basic introduction to algorithms and complexity. The topics covered are: review of asymptotic notations, elementary data structures and graph algorithms, dynamic programming, maximum flow, linear programming, Turing machine formalism, the classes P and NP, NP-completeness and reduction, and probabilistic algorithms.

Grading

Attendance(10 %) / Homework(20%) / Midterm(35%) / Final Exam(35%)

Weekly Schedule

Week	Contents
01	Introduction. Asymptotic notations and algorithms analysis.
02	Dynamic programming
03	Review of elementary data structures and graph algorithms
04	Maximum flow
05	Introduction to linear programming
06	The simplex algorithm

07	Interior point methods
08	Midterm exam
09	Turing machines, Church-Turing thesis, computability and decidability
10	Time complexity, the class P
11	The class NP and NP-completeness
12	Cook-Levin Theorem
13	Examples of NP-complete problems
14	P vs NP problem, relativization, natural proofs
15	Impagliazzo's Five Worlds
16	Final exam