

WSTĘP DO MATEMATYKI FINANSOWEJ

BARTOSZ KOŁODZIEJEK WYDZIAŁ MATEMATYKI I NAUK INFORMACYJNYCH

Laboratoria 5

Projekt "NERW 2 PW. Nauka - Edukacja - Rozwój - Współpraca" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Zadanie 10 pn. "Modyfikacja programów studiów na kierunkach prowadzonych przez Wydział Matematyki i Nauk Informacyjnych", realizowane w ramach projektu "NERW 2 PW. Nauka - Edukacja - Rozwój - Współpraca", współfinansowanego jest ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

April 24, 2025

Legenda: 🗐 – Definicja, TW. – Twierdzenie, 📽 – Przykład, 🛕 – Uwaga, LEM. – Lemat, 👁 – Oznaczenie, 💣 – dla chetnych (może być trudne)

1. L5 - Monte Carlo do wyceny w modelu CRR

Przypomnij sobie model CRR z pliku L3.pdf. Przypomnij sobie metody Monte Carlo z pliku L4.pdf.

- (1) Aby dokładnie obliczyć wartość wypłaty na rynku CRR, która potencjalnie może zależeć od całej trajektorii, trzeba przejrzeć wszystkie trajektorie. Dla większych wartości T, szybko robi się to bardzo wymagające obliczeniowo.
- (2) Można stosować metody Monte Carlo do estymacji wartości wypłaty. Dzięki temu wynik otrzymamy dużo szybciej, choć nie bedziemy mieli pewności co do jego poprawności.
- (3) MPWL gwarantuje, że estymator

$$\hat{V}_{\text{MC}}(M) = \frac{1}{(1+r)^T} \frac{1}{M} \sum_{i=1}^{M} \text{payoff}(\{S_t^{(i)}\}_{t=0}^T)$$

zbiega się do wartości oczekiwanej wypłaty wraz ze wzrostem liczby ścieżek M, a typowy błąd maleje jak $O(1/\sqrt{M})$.

2. Zadania

- 2.1. Implementacja funkcji Monte Carlo. Do swojej implementacji Python z rynkiem CRR dopisz funkcje evaluate_mc(M) z odpowiednimi dodatkowymi parametrami (zależnymi od Twojej implementacji), która:
 - Generuje M ścieżek $(S_t^{(i)})_{t=0}^T$ według modelu CRR (z prawdopodobieństwem martyngałowym). Liczy payoff na końcu każdej ścieżki.

 - Zwraca estymowaną wartość $\hat{V}_{MC}(M) = \frac{1}{(1+r)^T} \frac{1}{M} \sum_{i=1}^{M} \text{payoff}((S_t^{(i)})_{t=0}^T).$
- 2.2. Eksperyment zbieżności. Wyceń wypłatę $X = \max_{t \in T} \{S_t\}$.
- 1) Oblicz wartość dokładną $V_{\rm exact}$ za pomocą kodu z L3.
- 2) Narysuj wykres zbieżności estymatora $\hat{V}_{MC}(M)$, czyli na osi OX liczbę wylosowanych ścieżek M, a na osi OY wartość $\hat{V}_{MC}(M)$ obliczona na podstawie pierwszych M ścieżek.
- 3) Na wykresie dodatkowo zaznacz V_{exact} . Zinterpretuj.
- 4) Porównaj szybkość zbieżności dla różnych T. Mały i duży (duży T to taki, dla którego Twoja implementacja jeszcze pozwala na obliczenie dokładnej wartości).
- 5) Wyestymuj przy pomocy Monte Carlo wartość dla T tak dużego, że Twoja implementacja nie pozwala na znalezienie dokładnej wartości, ale pozwala na ustabilizowanie estymatora Monte Carlo.
- 2.3. Szybkość obliczeń.
 - Czy implementacja petli w numpy zamiast w Python wpływa na szybkość obliczeń?
 - Czy implementacja w C (Cython ipt.) poprawia szybkość obliczeń?
 - Czy można zrównoleglić obliczenia? (użyj np. moduł multiprocessing lub joblib)

Użyj timeit.timeit(...) lub %timeit do precyzyjnego pomiaru czasu wykonania.