의료 데이터를 활용한 데이터 분석

의료 영상 이미지를 활용한 딥러닝 실습

목차 의료 데이터를 활용한 데이터 분석

- 1. 히스토그램
- 2. VGG16 이해하기
- 3. Class Imbalance

1. 히스토그램

- 수치 데이터의 분포를 이미지로 표현한 것
- •막대 그래프와 유사하게 연속적인 숫자 범위로 그룹화되는 많은 데이터를 빈으로 묶어 시각화

Bin/Interval	Count/Frequency
-3.5 to -2.51	9
-2.5 to -1.51	32
-1.5 to -0.51	109
-0.5 to 0.49	180
0.5 to 1.49	132
1.5 to 2.49	34
2.5 to 3.49	4

- •일반적으로 y축은 관측치를 나타냄
- •X축은 빈(혹은 인터벌)이라고 하는 연속적인 숫자 범주를 나타냄

이미지의 대비향상(Contrast Enhancement)

•시각적인 측면에서 막대그래프와 히스토그램의 차이는 막대그래프와 달리 모든 막대가 연속적으로 붙어있다는 것

막대 그래프	히스토그램		
X축은 어떤 값도 표현 가능	X축은 연속된 숫자 데이터만 표현 가능		
일반적으로 연속된 두 막대 사이에 일정한 간격이 있음	두 개의 연속된 두 막대사이에는 간격이 없음		

이터분석

이터 분석

- •이미지 대비 향상은 널리 사용되는 이미지 전처리 기술 중 하나
- 흐릿한 이미지를 선명하게 만들어 모델의 성능을 향상

의료 데이터를 활용한 데

이터분석

- •의료 이미지의 품질 저하 요인
 - 데이터 수집 과정에서 발생하는 불가피한 노이즈
 - 고르지 않은 조명과 같은 여러 요인으로 인해 발생하는 낮은 대비

원인	설명
잡음	실제 입력되지 않았지만 입력 되었다고 잘못 판단된 값
결측값	데이터가 입력되지 않았지만 입력되었다고 잘못 판단한 값
이상값	데이터의 정상적인 범위에서 많이 벗어난 아주 크거나 작은 값
불일관성	다양한 형태/형식의 데이터

의료 데이터를 활용한 데

이터 분석

- •다양한 이미지의 대비 향상 기술들이 존재함
 - 선형 대비 향상
 - 비선형 대비 향상 (e.g. 감마 보정)
 - 3. 히스토그램 대비 향상 (e.g. 히스토그램 균등화)
 - 4.

- •다양한 이미지의 대비 향상 기술들이 존재함
 - 1. 선형 대비 향상
 - 2. 비선형 대비 향상 (e.g. 감마 보정)
 - 3. 히스토그램 대비 향상 (e.g. 히스토그램 균등화)
 - 4. ...

- •특정 그레이 레벨 사이에 몰려 있는 히스토그램 분포를 균등하게 늘리는 방법입니다.
- •즉, 변환 함수를 통해 히스토그램을 전체 그레이 레벨에 고르게 분포 시킵니다.

히스토그램 균등화(Histogram Equalization)

히스토그램 균등화(Histogram Equalization)

•아래 그림은 과도한 조명으로 인해 거의 모든 픽셀들이 높은 명도 값을 가지는 왼쪽 기울어짐이 발생한 예시입니다.

왼쪽 기울어짐 (left-skewed)

- •이때 히스토그램 균등화를 통해 전체적인 픽셀의 그레이 레벨의 분포를 균등하게 만들어주면 이미지를 보다 선명하게 관찰할 수 있음
- •이러한 이미지 대비향상은 위성, 열화상 및 X선 이미지 같은 과학 이미지에서 매우 유용한 기술

히스토그램 균등화(Histogram Equalization)

2. VGG16 이해하기

- •인간이 가진 시각적 능력을 컴퓨터 시스템으로 구현하는 작업
- •사람들이 매일 생성하는 수십억 장의 사진 및 동영상을 처리하기 위해 콘텐츠 레이블링, 이미지 검색 등 다양한 영역에서 이미지 인식이 활용되고 있습니다.

•대표적인 이미지 인식 작업으로는 이미지 분류(Image classification), 객체 탐지(Object detection), 이미지 분할(Semantic segmentation)이 있습니다.

•일반적으로 대부분의 이미지 인식모델은 여러 층의 합성곱 신경망으로 이루어져 있습니다.

합성곱 신경망(Convolutional Neural Network, CNN)

- •인간의 시신경 구조를 모방한 모델
- •합성곱 레이어를 사용하는 인공신경망 구조입니다.

합성곱 신경망(Convolutional Neural Network, CNN)

•이미지 인식 모델은 합성곱 신경망을 이용해 공간 계층 구조를 학습할 수 있습니다.

- •합성곱 신경망의 가장 중요한 단위인 합성곱 레이어는 필터, 스트라이드, 패딩으로 구성됩니다.
 - 필터(Filter): 이미지의 특징을 찾아내기 위한 파라미터

합성곱 신경망(Convolutional Neural Network, CNN)

- 스트라이드(Stride) 필터가 움직이는 지정된 간격
- •패딩(Padding); 레이어의 출력 데이터가 줄어드는 것을 방지하기 위해 외곽에 특정 값을 채워 넣는 것

•합성곱 신경망은 입력 레이어, 출력 레이어 그리고 은닉 레이어(합성곱 레이어)로 구성됩니다.

합성곱 신경망(Convolutional Neural Network, CNN)

- Visual Geometry Group에서 개발한 모델
- VGG는 개발 당시 이미지 인식 경진대회 중 하나인 ILSVRC에서 최고 성능을 달성한 모델

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

•강력한 이미지 인식 구조 중 하나로써 이미지 처리에서 필수적으로 알아야 하는 모델입니다.

• VGG는 여러 층의 합성곱 신경망으로 이루어진 모델로 층의 개수에 따라 VGG16 혹은 VGG19로 명명됩니다.

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

3. Class Imbalance

•어떤 데이터에서 각 클래스별로 갖고 있는 데이터의 양에 차이가 있을 경우, 클래스 불균형이 있다고 말합니다.

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

의료 데이터를 활용한 데

이터 분석/

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Class Imbalance (데이터 불균형) 이란

의료 데이터를 활용한 데 이터 분석 의료 영상 이미지를 활용 한 딥러닝 실습

Class Imbalance

아픈 사람보다 아프지 않은 사람이 훨씬 더 많습니다! (클래스 불균형)

이터 분석

Class Imbalance (데이터 불균형) 이란

•병이 있는지를 판단하는 문제에서는 모델이 '무조건 아프지 않다' 라고 판단하면 대부분의 환자를 맞출 수 있어, 진짜 환자도 '아프지 않다'고 잘못 분류될 확률이 높습니다.

' 무조건 아프지 않다고 판단하면 1명 빼고 다 맞추네?'

<u>의료 데이터를 활용한 데</u>

이터 분석

Weight Balance(가중치 조절)

- •training set의 각 데이터에서 loss를 계산할 때
- 특정 클래스의 데이터에 더 큰 loss 값을 갖도록 하는 방법입니다.
- •예를 들어 '환자'의 클래스에는 75%의 가중치를 두고, '정상'의 클래스에는 25%의 가중치를 두 어 환자 클래스일 때의 loss에 더 민감하게 학습하도록 합니다.

75%

25%

•이진 분류의 경우, 교차 엔트로피 식에서는 다음과 같이 α 와 $1-\alpha$ 로 가중치를 줍니다.

$$loss = -\alpha t(\log(y) + (1 - \alpha)(1 - t)\log(1 - y))$$

t = target (0/1)

y = prediction(0~1)

의료 데이터를 활용한 데

이터 분석

Oversampling & Undersampling

•Oversampling과 Undersampling은 학습 데이터 생성 과정에서 정상과 비정상 데이터 분포를 맞춰서 분류할 클래스마다 비슷한 수의 instance를 갖게 하는 방법입니다.

- •간단한 랜덤 오버샘플링 방법
- •기존에 존재하는 소수의 클래스 데이터를 복제하여 비율을 맞춰줍니다.

출처: https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets

이터 분석

•배치를 만들 때 클래스에서 같은 개수만큼 샘플링하여 학습을 진행하는 방법입니다.

