Критерий Коши сходимости последовательности.

(Последовательность $\{X_n\}\subset\mathbb{R}$ сходится) \Leftrightarrow

(выполняется условие Коши: $\forall \mathcal{E} > 0 \ \exists \ N(\mathcal{E}) \in \mathbb{N} \ \forall n \geqslant N(\mathcal{E}) \ \forall m \geqslant N(\mathcal{E}) : |X_n - X_m| < \mathcal{E}$)

Определение:

Последовательность $\{X_n\}$ фундаментальна \Leftrightarrow последовательность $\{X_n\}$ сходится в себе

Применение критерия Коши для доказательства расходимости гармонического ряда:

Рассмотрим последовательность
$$H_n = \sum_{k=1}^n rac{1}{k} = 1 + rac{1}{2} + rac{1}{3} + rac{1}{4} + \dots + rac{1}{n}$$
. Покажем, что эта

последовательность не является фундаментальной, то есть, что

 $\exists arepsilon>0: orall k\in \mathbb{N} \ \exists n>k, \exists p\in \mathbb{N}: |H_{n+p}-H_n|\geq arepsilon.$ Оценим разность

$$|H_{n+p}-H_n|=rac{1}{n+1}+\cdots+rac{1}{n+p}\geqrac{1}{n+p}+\cdots+rac{1}{n+p}=rac{p}{n+p}.$$
 Пусть $p\doteq n.$ Тогда

 $\forall n \in \mathbb{N}: |H_{2n} - H_n| \geq rac{1}{2}.$ Следовательно, данная последовательность не является фундаментальной и по критерию Коши расходится. Тогда по определению ряд также расходится.

Задачи для самостоятельного выполнения:

- 1) Доказать сходимость последовательности $\{x_n\} = \{\frac{\sin a}{2} + \frac{\sin 2a}{2^2} + \dots + \frac{\sin na}{2^n}\}$, используя критерий Коши.
- 2) Доказать что последовательность, заданная общим членом $\{x_n\}=rac{3n}{n+1}$ фундаментальная.