ECII/ECSI 3206:

Artificial Intelligence [and expert systems]
Topic 5: Fuzzy logic and Fuzzy Logic Systems

By: Edgar Otieno

Introduction to Fuzzy Logic

Fuzzy-This defines when something is not clear or when something is vague[vagueness]

Fuzzy Logic- This is a method of reasoning that resembles human reasoning and it involves finding all the possibilities between a digital Value of YES or NO, True or False, 0 or 1.

Forms of Knowledge in Fuzzy Logic

- Knowledge exists in two forms when considered within a fuzzy logic perspective
 - Objective knowledge[mathematical form]
 - Subjective knowledge[linguistic form]

Fuzzy logic can coordinate these two forms of knowledge in a logical way.

Human vs Computer Decision making

- Unlike computers, human decision making includes a range of possibilities between YES and NO i.e
 - Certainly YES
 - Possibly YES
 - Cannot say
 - Possibly NO
 - Certainly NO

- Fuzzy Logic works on the levels of possible inputs to achieve some desired output
- It can be implemented in the form of Hardware, Software or Both H/W and S/W.

Merits of FLS

- Fuzzy logic Systems can take imprecise, distorted, noisy input information.
- FLSs are easy to construct and understand.
- Mathematical concepts within fuzzy reasoning are very simple.
- You can modify a FLS by just adding or deleting rules due to flexibility of fuzzy logic.
- Fuzzy logic is a solution to complex problems in all fields of life, including medicine, as it resembles human reasoning and decision making.

Demerits of FLS

- They are understandable only when simple.
- There is no systematic approach to fuzzy system designing.
- They are suitable for the problems which do not need high accuracy.

Applications of F.L.S

- Automotive Systems[Gearbox , Vehicle A/C]
- Electronic goods[TV, Camera, Fridge, Washing Machine]
- Navigation Systems[Autopilot]
- Robot Vision

Fuzzy Logic Systems Architecture

- It is made up of four main parts as follows:
 - Fuzzification module
 - Knowledge base
 - Inference engine
 - Deffuzification module
 - Member Function

Diagram of a F.L.S

Member function

1.Fuzzification module

• Fuzzification is a process of transforming *crisp values* into grades of membership for linguistic terms of fuzzy sets.

The purpose is to allow a fuzzy condition in a rule to be interpreted.

• -It transforms *crisp input* into fuzzy sets e.g It splits input X into 5 steps LP,MP,S,MN,LN

2. Knowledge base/Rules

- -This component stores the IF THEN rules provided by the various experts in a given field
- -A collection of rules referring to a particular system is known as a fuzzy rule base.
- IF (a set of conditions) are satisfied THEN (a set of consequents) can be inferred.

- IF(x_1 is A_1 , x_2 is A_2 , x_n is A_n) THEN(y_1 is B_1 , y_2 is B_2 , y_n is B_n) where linguistic variables x_i , y_j take the values of fuzzy sets A_i and B_j respectively.
- Example
 - IF there is "heavy" rain and "strong" winds THEN there must "severe" flood warnings.
 - Here, heavy, strong, and severe are fuzzy sets qualifying the variables rain, wind, and flood warnings respectively.

3.Inference Engine/Intelligence/Fuzzy Inference

- It is the core element of a fuzzy system.
- It simulates human reasoning process by making reference to the inputs and the IF...THEN rules that are stored in the knowledge base then conducts the fuzzy reasoning process(*Approximate reasoning*)
- It uses the principles of *Modus Ponens* and *Modus Tollens*

Modus Ponens

 If P and P → Q are premises, we can us Modus Ponens to derive Q. e.g If you have a password, you can log into your TUK account. Having a password[P],that implies that you can log into your TUK account[P → Q].

Modus Tollens

• If $P \to Q$ and $\neg Q$ are premises, we can use Modus Tollens to derive $\neg P$. e.g If you have a password ,you can log into your TUK account $P \to Q$.If you cannot log into your TUK Account $[\neg Q]$, that means that you don't have a password $[\neg P]$.

4. Defuzzification module

- This component transforms the fuzzy set obtained by Inference engine into *Crisp output*
- Defuzzification is the reverse process of Fuzzification.

Member Function

- It is a function which allows us to quantify linguistic terms and represent fuzzy sets graphically.
- The member function for a fuzzy set A on the universe of X is given as below
 - $M_A:X \rightarrow [0,1]$

[Where the distance between 0 and 1 represent the degree/value of membership.]

Graphical Representation of a member function

This example assumes a five level Fuzzifier

• Member function Graph for the speed of a car [assuming that the medium speed is 55km/h]. Consider a car moving

at 44km/h..

grade $\mu_A(x_0) = 0.6$ belongs to fuzzy low, and grade $\mu_B(x_0) = 0.4$ belongs to fuzzy medium.

Crisp Logic vs Fuzzy(non crisp) Logic Logic

- Consider the examples below: Example 1.
 - If someone is >=1.8 m in height, we say you are "tall", otherwise, we say you are "not tall". "Tall" students qualify to be members of a basketball team while "non tall" students don't qualify. What if a student is 1cm shorter e.g 1.79m?

- A student of 1.79m would belong to both "tall" and "not tall" but what varies is the degree of membership.
- As a student's height increases, their membership within the "tall" category would also increase while their membership within the "non tall" category would decrease

Representation in the form of crisp and non crisp[fuzzy

- Consider the examples below: Example 2.
 - Consider the set of numbers between 1 and 12.
 - This can be represented as 1>=x<=12
 - Consider the prime numbers within this set{2,3,5,7,11}(crisp set)
 - How would the graphical representation of the prime numbers look like?

- Also using the same set of 1to 12, Consider a set of all small numbers between 1 and 12.(non crisp set)
 - We make the assumption that 1 is a small number but 12 is not a small number. Therefore , we can represent this using a **Universal space**.[A universal space is a way used to describes the start, end and increment of a set] e.g Universal Set $x=\{1,12,1\}$
 - How would the graphical representation of the prime numbers look like?

Universal sets can be finite or infinite.
 Any universal set is finite if it consists of a specific number of different elements, that is, if in counting the different elements of the set, the counting can come to an end, else the set is infinite.

Examples:

- 1. Let N be the universal space of the days of the week. $N = \{Mo, Tu, We, Th, Fr, Sa, Su\}$. [N is finite]
- 2. Let $M = \{1,3,5,7,9,...\}$. [M is infinite]
- 3. Let $L=\{u|u \text{ is a lake in a county}\}$. [L is finite] (Although it may be difficult to count the number of lakes in a county, but L is still a finite universal set.)

Fuzzy vs Crisp[Non Fuzzy set]

• A Fuzzy Set is any set that allows its members to have different degree of membership, called membership function, in the interval [0, 1].

Capturing Uncertainty

• A member function for a Crisp set and non crisp set. Crisp set is a subset of fuzzy set

Algorithm For Functioning of FLS

- 1.define linguistic variables/terms
- 2.Construct membership function[m.f]
- 3.Construct Rule base/Knowledge Base
- 4.Convert Crisp input into a fussy dataset using member function[Fuzzification]
- 5.Evaluate rules in the Knowledge Base
- 6. Combine results for each Rule
- 7.Convert Fuzzy output into Crisp output[Deffuzification]

Real world Example

• Consider an Air conditioning System with a 5 level Fuzzy Logic System. The system adjusts temperature by

comparing the room temp temperature.

1. Define linguistic Variables

- The temperature ranges can be either:
 - VC-Very cold
 - C-Cold
 - W-warm/Normal
 - H-Hot
 - VH-very Hot

2. Construct member Function[m.f]

3.Construct Knowledge Base/Rule Base

RoomTemp. /Target	Very_Cold	Cold	Warm	Hot	Very_Hot
Very_Cold	No_Change	Heat	Heat	Heat	Heat
Cold	Cool	No_Change	Heat	Heat	Heat
Warm	Cool	Cool	No_Change	Heat	Heat
Hot	Cool	Cool	Cool	No_Change	Heat
Very_Hot	Cool	Cool	Cool	Cool	No_Change

4. Convert Crisp input into a fussy dataset using member function[Fuzzification]

• In this case, we will convert the table in Step 3. into rules

RUL E	CONDITION	ACTION
1	IF Room Temp=C or VC and T.T=W THEN	HEAT
2	IF Room Temp=H or VH and T.T=W THEN	COOL
3	IF Room Temp=W and T.T=W THEN	NO CHANGE

Other steps[5,6,7]

- After these the Air conditioning system will perform the next three remaining steps so as to make adjustments to the target temperature
 - 5.Evaluate rules in the Knowledge Base
 - 6. Combine results for each Rule
 - 7.Convert Fuzzy output into Crisp output[Deffuzification]