

Spring 2016

BLM2502 Theory of Computation

» Course Outline

- » Week Content
- » 1 Introduction to Course
- » 2 Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle
- » 3 Regular Expressions
- » 4 Finite Automata
- » 5 Deterministic and Nondeterministic Finite Automata
- » 6 Epsilon Transition, Equivalence of Automata
- » 7 Pumping Theorem
- » 8 April 10 14 week is the first midterm week
- » 9 Context Free Grammars, Parse Tree, Ambiguity
- » 10 Pumping Theorem, Normal Forms
- » 11 Pushdown Automata
- **>> 12** Turing Machines, Recognition and Computation, Church-Turing Hypothesis
- » 13 Turing Machines, Recognition and Computation, Church-Turing Hypothesis
- » 14 May 22 27 week is the second midterm week
- » 15 Review
- » 16 Final Exam date will be announced

The Language Hierarchy

Languages accepted by Turing Machines

 $a^n b^n c^n$

WW

Context-Free Languages

$$a^nb^n$$

 WW^R

Regular Languages

a *

*a***b**

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Example:

 q_2

Example:

Determinism

Allowed

Not Allowed

No epsilon transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol c

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1 HALT!!!

Halting Example 2:

No possible transition from q_1 and symbol c HALT!!!

Accepting States

- Accepting states have no outgoing transitions
- The machine halts and accepts

Acceptance

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts in a non-accept state

If machine enters an infinite loop

Observation:

In order to accept an input string, it is not necessary to scan all the symbols in the string

Turing Machine Example

Input alphabet
$$\Sigma = \{a, b\}$$

Accepts the language: a^*

$$\begin{array}{c}
a \to a, R \\
\hline
 & Q_0 \\
\hline
 & Q_1
\end{array}$$

Rejection Example

No possible Transition Halt & Reject

 $a \rightarrow a, R$

A simpler machine for same language but for input alphabet $\Sigma = \{a\}$

Accepts the language: a^*

Halt & Accept

Not necessary to scan input

Infinite Loop Example

A Turing machine for language $a^*+b(a+b)^*$

$$b \to b, L$$

$$a \to a, R$$

$$Q_0 \longrightarrow 0, L$$

$$Q_1$$

BLM2502 Theory of Computation – Turing

Because of the infinite loop:

• The accepting state cannot be reached

The machine never halts

The input string is rejected

Another Turing Machine Example

Turing machine for the language $\{a'\}$

$$\{a^nb^n\}$$
 $n \ge 1$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's

If there is a remaining a or b reject

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move:

$$q_2 xayb > x q_0 ayb$$

(yields in one mode)

A computation $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:
$$q_2 xayb \succ xxy q_1 b$$

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2 \}$$
 Initial state Accept state

If a language L is accepted by a Turing machine M then we say that L is:

Turing Recognizable

Other names used:

- Turing Acceptable
- Recursively Enumerable

Computing Functions with Turing Machines

A function

f(w)

has:

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \ \succ \ q_f \ f(w)$$
 Initial Final Configuration

For all $w \in D$ Domain

Example

The function
$$f(x,y) = x + y$$
 is computable

$$x, y$$
 are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

The 0 is the delimiter that separates the two numbers

The 0 here helps when we use the result for other operations

Turing machine for function f(x,y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

$$\begin{array}{c|c|c} x + y \\ \hline & \Diamond & 1 & 1 & 1 & 0 & \Diamond \\ \hline & & \uparrow & \\ & & q_4 & & & \end{array}$$

BLM2502 Theory of Computation – Turing

Another Example

$$f(x) = 2x$$

is computable

 \mathcal{X}

is integer

Turing Machine:

Input string:

 \mathcal{X}

unary

Output string:

XX

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- Repeat:
 - Find rightmost \$, replace it with 1
 - Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Finish

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$
 is computable

Input:
$$x0y$$

Output:
$$1$$
 or 0

Turing Machine Pseudocode:

Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else

erase tape, write 0

 $(x \le y)$

Combining Turing Machines

Block Diagram

$$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

