Introdução

- Teoria de problemas indecidíveis
 - Estabelecer a existência de tais problemas
 - Orientação sobre o que pode ou não ser realizado através da programação
- Indecidível x intratável
 - Indecidível: raramente tentados na prática
 - Intratável: enfrentados todos os dias
- Como decidir se é indecidível/intratável?

Introdução

Tipo	Classe de linguagens	Modelo de gramática	Modelo de reconhecedor		
0	Recursivamente enumeráveis	Irrestrita	Máquina de Tu- ring		
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita Iimitada		
2	Livres de contexto	Livre de contexto	Autômato de pilha		
3	Regulares	Linear (direita ou esquerda)	Autômato finito		

Introdução

Hierarquia de Chomsky

- Dispositivo teórico conhecido como máquina universal
 - concebido pelo matemático britânico Alan Turing (1936)
 - modelo abstrato de um computador
 - restringe apenas aos aspectos lógicos do seu funcionamento
 - memória, estados e transições

- Essencialmente um autômato finito
 - Fita dividida em quadrados ou células
 - Cada célula pode ter um símbolo
 - De um conjunto finito de símbolos
 - Controle finito

- Inicialmente possui uma entrada
 - String de comprimento finito
- Outras células da fita contêm um símbolo branco

- Movimento da máquina de Turing
 - É uma função do estado do controle e do símbolo lido
- Ações:
 - Mudará de estado (podendo permanecer)
 - Gravará um símbolo na célula varrida.
 - Movimentará a cabeça da fita p/ a esquerda ou p/ a direita (não pode ficar estacionária)

Definição Formal

$$M = (Q, \Sigma, \Gamma, s, b, F, \delta)$$

- -Q =é um conjunto finito de estados
- $-\Sigma =$ é um alfabeto finito de símbolos
- $-\Gamma = \acute{e}$ o alfabeto da fita (conjunto finito de símbolos)
- $-s \in Q =$ é o estado inicial
- $-b \in \Gamma =$ é o símbolo branco
- $-F \subseteq Q = \acute{\mathrm{e}}$ o conjunto dos estados finais
- $-\delta: Q \times \Gamma =>$ é a função programa ou de transição $Q \times \Gamma \times \{\leftarrow, \rightarrow\}$

Função Programa

Pode ser interpretada como um grafo direcionado

Base para descrição de um diagrama de transição

Função Programa

- Exemplo 1:
 - Dada a função programa a seguir:

 estando em q0, lendo o símbolo a da fita, então troca a por d, vai uma casa para a direita e vai para o estado q1

Exemplo 2

Dada a Máquina de Turing a seguir:

$$\mathbf{M} = (\{q_0,q_1\}, \{a,b\}, \{a,b,\square\}, \delta, q_0, \{q_1\})$$

Com a seguinte função programa:

$$\delta(q_0,a) = (q_0,b,R),$$

 $\delta(q_0,b) = (q_0,b,R),$
 $\delta(q_0,\Box) = (q_1,\Box,L).$

Exercício

• Dada a Máquina de Turing a seguir:

- Faça o parsing das seguintes cadeias
 - 00; 010100; 1111; 0000; 101010100