

Exercise Thinking

卷三 动手学深度学习 Pytorch 习题解

作者: latalealice

日期: 2025/05/09

目 录

序言							
第一章	引言	Ī					
第二章	预备	知识					
	2.1		乍				
			运行代码,将条件语句 X == Y 更改为 X < Y 或 X > Y,看看可以得到什么样的张量				
		2.1.2	用其他形状(例如三维张量)替换广播机制中按元素操作的两个张量,结果如何				
	2.2	数据预处	心理				
			创建包含更多行和列的原始数据集				
	2.3		发				
			证明一个矩阵A的转置的转置是A				
		2.3.2	给出两个矩阵 A 和 B ,证明"它们转置的和"等于"它们和的转置"				
			给定任意方阵 $A,A+A^T$ 总是对称的吗				
			定义形状(2,3,4)的张量 X,len(X)的输出结果是什么				
		2.3.5	对于任意形状的张量 X,len(X)是否总是对应于 X 特定轴的长度?这个轴是什么				
			运行 A/A.sum(axis=1),看看会发生什么.请分析一下原因				
			考虑一个具有形状(2,3,4)的张量,在轴 0、1、2 上的求和输出是什么形状				
		2.3.8	为 linalg.norm 函数提供 3 个或更多轴的张量,并观察其输出.对于任意形状的张量这个函数计算得到什么				
	2.4	微积分.					
		2.4.1	绘制函数 $y = f(x) = x^3 - \frac{1}{x}$ 和其在 $x = 1$ 处切线的图像				
		2.4.2	求函数 $f(\mathbf{x}) = 3x_1^2 + 5e^{x_2}$ 的梯度				
		2.4.3	函数 $f(\mathbf{x}) = \ \mathbf{x}\ _2$ 的梯度是什么				
		2.4.4	尝试写出函数 $u=f(x,y,z)$,其中 $x=x(a,b),y=y(a,b),z=z(a,b)$ 的链式法则				
	2.5	自动微分					
		2.5.1	为什么计算二阶导数比一阶导数的开销要更大				
		2.5.2	在运行反向传播函数之后,立即再次运行它,会发生什么				
		2.5.3	在控制流的例子中,计算 d 关于 a 的导数,如果将变量 a 更改为随机向量或矩阵,会发生什				
			么				
			重新设计一个求控制流梯度的例子,运行并分析结果				
			使 $f(x) = \sin x$,绘制 $f(x)$ 和 $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ 的图像,其中后者不使用 $f'(x) = \cos x$				
	2.6		9				
			进行 $m=500$ 组实验,每组抽取 $n=10$ 个样本.改变 m 和 n ,观察和分析实验结果				
		2.6.2	给定两个概率为 $P(\mathcal{A})$ 和 $P(\mathcal{B})$ 的事件,计算 $P(\mathcal{A} \cup \mathcal{B})$ 和 $P(\mathcal{A} \cap \mathcal{B})$ 的上限和下限(使用韦恩图来展示这些情况)10				
		2.6.3	假设有一系列随机变量,例如 A , B 和 C ,其中 B 只依赖于 A ,而 C 只依赖于 B ,能简化联合概率吗(这是一个马尔可夫链)				
		2.6.4	艾滋病测试问题1				
第三章	线性	回归网络	各12				
	3.1	线性回归	日网络				
		3.1.1	假设有一些数据 $x_1, x_2,, x_n \in R$,目标是找到一个常数 b ,使得 $\sum_i (x_i - b)^2$ 最小化 12				
			推导出使用平方误差的线性回归优化问题的解析解,忽略偏置 b 简化问题(可以通过向 X 添加				
			所有值为1的一列来做到这一点)12				
			假定控制附加噪声的 ϵ 噪声模型是指数分布, $p(\epsilon)=\frac{1}{2}\exp(- \epsilon)$				
	3.2		台实现13				
			如果将权重w初始化为零,会发生什么?算法仍然有效吗13				
			为电压和电流的关系建立一个模型,自动微分可以用来学习模型的参数吗13				
		3.2.3	基于普朗克定律使用光谱能量密度来确定物体的温度14				

3.2.4	计算二阶导数时可能会遇到什么问题?如何解决	14		
3.2.5	为什么在 squared loss 函数中需要使用 reshape 函数	15		
3.2.6	尝试使用不同的学习率,观察损失函数值下降的快慢	15		
3.2.7	如果样本个数不能被批量大小整除,data iter 函数的行为会有什么变化	16		
3.3.1	如果将小批量的总损失替换为小批量损失的平均值,需要如何更改学习率	16		
3.3.2	查看深度学习框架文档,它们提供了哪些损失函数和初始化方法	17		
3.3.3	访问线性回归中的梯度	17		
	3.2.5 3.2.6 3.2.7 節洁实理 3.3.1 3.3.2	3.2.4 计算二阶导数时可能会遇到什么问题?如何解决		

序言

此 PDF 为习题解答,需求的库如下

```
ру
1
   from d2l import torch as d2l
2
   from matplotlib_inline import backend_inline
3
  from matplotlib_venn import venn2
4
  from torch.distributions import multinomial
5
  import numpy as np
  import matplotlib.pyplot as plt
6
7 import os
8
  import pandas as pd
9 import seaborn as sns
10 import torch
11 import torch.nn as nn
```

第一章 引言

- 1. 你当前正在编写的代码的哪些部分可以"学习",即通过学习和自动确定代码中所做的设计选择来改进?你的代码是否包含启发式设计选择?
- 2. 你遇到的哪些问题有许多解决它们的样本,但没有具体的自动化方法?这些可能是使用深度学习的主要候选者.
- 3. 如果把人工智能的发展看作一场新的工业革命,那么算法和数据之间的关系是什么?它类似于蒸汽机和煤吗?根本区别是什么?
- 4. 你还可以在哪里应用端到端的训练方法,比如图 1.1.2、物理、工程和计量经济学?

第二章 预备知识

2.1 数据操作

2.1.1 运行代码,将条件语句 X == Y 更改为 X < Y 或 X > Y,看看可以得到什么样的张量

代码

```
X = torch.arange(12,
    dtype=torch.float32).reshape((3,4))

Y = torch.tensor([[2.0, 1, 4, 3], [1, 2,
    3, 4], [4, 3, 2, 1]])

X > Y,X == Y,X < Y</pre>
```

结果

2.1.2 用其他形状(例如三维张量)替换广播机制中按元素操作的两个张量,结果如何

代码

```
a =
torch.arange(25).reshape((-1,5,1))
b = torch.arange(10).reshape((-1,1,2))
a+b
# 广播矩阵,复制a的列,b的行
```

结果

```
tensor([[[ 0, 1],
                                             ру
2
             [ 1, 2],
3
             [2, 3],
             [ 3, 4],
4
5
             [4, 5]],
6
            [[7, 8],
7
             [8, 9],
8
             [ 9, 10],
9
             [10, 11],
10
             [11, 12]],
11
            [[14, 15],
12
             [15, 16],
13
             [16, 17],
14
             [17, 18],
15
             [18, 19]],
            [[21, 22],
16
17
             [22, 23],
18
             [23, 24],
19
             [24, 25],
20
             [25, 26]],
21
            [[28, 29],
22
             [29, 30],
23
             [30, 31],
24
             [31, 32],
25
             [32, 33]]])
```

2.2 数据预处理

2.2.1 创建包含更多行和列的原始数据集

- 删除缺失值最多的列
- 将预处理后的数据集转换为张量格式

代码

```
os.makedirs(os.path.join('..',
1
                                       ру
   'data'), exist_ok=True)
   data_file = os.path.join('...', 'data',
2
   'house_tiny.csv')
   with open(data_file, 'w') as f:
    f.write('NumRooms, Alley, Price\n') # 列
4
    f.write('NA,Pave,127500\n') # 每行表示
5
    一个数据样本
6
    f.write('2,NA,106000\n')
7
   f.write('4,NA,178100\n')
8
    f.write('NA,NA,140000\n')
9
    f.write('3,Pave,122000\n')
   # 1. 删除缺失值最多的列
10
   # 计算每列的缺失值数量
11
12
    missing_values = data.isnull().sum()
13
    # 找出缺失值最多的列名
    column_to_drop =
14
    missing_values.idxmax()
15
   # 删除该列
    data_preprocessed =
16
    data.drop(column_to_drop, axis=1)
17
    print(data_preprocessed)
18
   # 2. 将预处理后的数据集转换为张量格式
19
   # 首先处理剩余的缺失值(用均值填充数值列)
    data preprocessed['NumRooms'] =
   data_preprocessed['NumRooms'].
    fillna(data preprocessed['NumRooms'].mean
21
   # 转换为张量
    tensor_data =
22
   torch.tensor(data_preprocessed.values,
    dtype=torch.float32)
```

结果

1		NumRooms	Price		ру
2	0	NaN	127500		
3	1	2.0	106000		
4	2	4.0	178100		
5	3	NaN	140000		
6	4	3.0	122000		
7	ten	sor([[3.00	00e+00,	1.2750e+05],	
8		[2.00	00e+00,	1.0600e+05],	
9		[4.00	00e+00,	1.7810e+05],	
10		[3.00	00e+00,	1.4000e+05],	
11		[3.00	00e+00,	1.2200e+05]])	

2.3 线性代数

2.3.1 证明一个矩阵 A 的转置的转置是 A

代码 结果

```
1 A = torch.arange(20).reshape(5, -1) py
2 A.T.T == A
```

2.3.2 给出两个矩阵 A 和 B,证明"它们转置的和"等于"它们和的转置"

代码

```
1 A = torch.randn(3,4)
2 B = torch.randn(3,4)
3 (A+B).T == A.T+B.T
```

结果

2.3.3 给定任意方阵 $A, A + A^T$ 总是对称的吗

代码

```
1 A=torch.randn(4,4)
2 A+A.T == (A.T+A).T
```

结果

```
1 tensor([[True, True, True, True], py)
2          [True, True, True, True],
3          [True, True, True, True],
4          [True, True, True, True]])
```

2.3.4 定义形状(2,3,4)的张量 X,len(X)的输出结果是什么

代码

```
1 X = torch.arange(24).reshape(2,3,4) py
2 len(X)
```

结果

```
1 2 py
```

2.3.5 对于任意形状的张量 X,len(X)是否总是对应于 X 特定轴的长度?这个轴是什么

代码

```
1 # 1维张量
2 X = torch.tensor([1, 2, 3])
3 len(X)
4 # 2维张量
X = torch.tensor([[1, 2], [3, 4], [5, 6]])
6 len(X)
7 # 3维张量
8 X = torch.rand(2, 3, 4)
9 len(X)
```

结果

2.3.6 运行 A/A.sum(axis=1),看看会发生什么.请分析一下原因

代码结果

2.3.7 考虑一个具有形状(2,3,4)的张量,在轴 0、1、2 上的求和输出是什么形状

代码

结果

2.3.8 为 linalg.norm 函数提供 3 个或更多轴的张量,并观察其输出.对于任意形状的张量这个函数计算得到什么

代码

```
1 # 创建一个3×4×5的张量
2 tensor_3d = torch.randn(3, 4, 5)
3 norm_default = np.linalg.norm(tensor_3d)
4 norm_default
norm_axis0 = np.linalg.norm(tensor_3d,
axis=0)
6 norm_axis0
norm_axis01 = np.linalg.norm(tensor_3d,
axis=(0, 1))
8 norm_axis01
```

结果

```
1 7.6230054 py

[[1.5946476 1.4472774 2.368117
2.1636908 2.045201 ],[1.8514549
1.5507743 2.2650828 0.7746272
2 1.3306752 ],[1.4223679 0.55377847
2.2253275 1.3022163 1.2005248 ],

[1.6133649 2.9035609 1.4079779
1.3459872 0.64774853]]
[4.924984 , 2.7686076, 3.7564898,
3 3 3 3 3 5 8 1 5 2 5 3 8 8 8 8 3 1
```

2.4 微积分

2.4.1 绘制函数 $y = f(x) = x^3 - \frac{1}{x}$ 和其在 x = 1处切线的图像

2.4.2 求函数 $f(x) = 3x_1^2 + 5e^{x_2}$ 的梯度

代码

结果

```
1 [6*x1, 5*exp(x2)] py
```

2.4.3 函数 $f(x) = ||x||_2$ 的梯度是什么

代码

```
1 n = 3
    x = sp.Matrix([sp.symbols(f'x{i}',
    real=True) for i in range(1, n+1)])
    f = sp.sqrt(sum(x[i]**2 for i in
    range(n))) # L2 范数
    gradient = [f.diff(x[i]) for i in
    range(n)]
5 print(gradient)
```

结果

```
[x1/sqrt(x1**2 + x2**2 + x3**2), x2/

1 sqrt(x1**2 + x2**2 + x3**2), x3/

sqrt(x1**2 + x2**2 + x3**2)]
```

2.4.4 尝试写出函数 u = f(x, y, z),其中 x = x(a, b), y = y(a, b), z = z(a, b) 的链式法则 结果

```
1 a, b = sp.symbols('a b')
    x, y, z = sp.symbols('x y z',
2 cls=sp.Function) # x(a,b), y(a,b),
    z(a,b)
    f = sp.Function('f')(x(a, b), y(a, b),
    z(a, b)) # u = f(x(a,b), y(a,b), z(a,b))
4 # 计算 u 对 a 的偏导数
5 du_da = sp.diff(f, a)
6 print("du/da = ", du_da)
7 # 计算 u 对 b 的偏导数
8 du_db = sp.diff(f, b)
9 print("du/db = ", du_db)
```

```
du/da = Derivative(f(x, y, z),
    x)*Derivative(x, a) + Derivative(f(x,
1 y, z), y)*Derivative(y, a) +
    Derivative(f(x, y, z),
    z)*Derivative(z, a)
    du/db = Derivative(f(x(a, b), y(a, b),
    z(a, b)), x(a, b))*Derivative(x(a, b), b)
    + Derivative(f(x(a, b), y(a, b), z(a,
    b)), y(a, b))*Derivative(y(a, b), b) +
    Derivative(f(x(a, b), y(a, b), z(a, b)),
    z(a, b))*Derivative(z(a, b), b)
```

2.5 自动微分

2.5.1 为什么计算二阶导数比一阶导数的开销要更大

二阶导数的计算需要在一阶导数的计算图上再叠加一层微分操作,导致计算图更复杂

2.5.2 在运行反向传播函数之后,立即再次运行它,会发生什么

在 PyTorch 中,默认情况下计算图(computational graph)在调用.backward()后会被自动释放以节省内存.当尝试第二次调用.backward()时,计算图已经不存在了,因此会报错.可以通过设置 retain graph=True 来保留计算图

y.backward(retain_graph=True)

y.backward()

如果多次调用.backward(),梯度会累加到 x.grad 中(而不是覆盖).如果需要重新计算梯度,需要在每次 反向传播前手动清零梯度:

x.grad.zero ()

y.backward()

2.5.3 在控制流的例子中,计算 d 关于 a 的导数,如果将变量 a 更改为随机向量或矩阵,会发生什么 代码 结果

```
x =
1 torch.arange(40.,requires_grad=True). py
reshape(5,-1)
2 x.retain_grad() # 保留梯度
3 y = 2 * torch.sum(x**2)
4 y.backward()
5 print(x.grad)
```

2.5.4 重新设计一个求控制流梯度的例子,运行并分析结果

代码

```
def f(x):
1
                                            ру
2
     y = x ** 2
3
      if y.norm() >0:
          y = y ** 2
5
          z = y
6
     else:
7
          z = 100 * y
8
    return z
   x = torch.randn(size=(),
   requires grad=True)
10 \quad a = f(x)
11 a.backward()
12 print(x.grad)
```

```
1 tensor(-24.2866) py
```

2.5.5 使 $f(x) = \sin x$,绘制 f(x) 和 $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ 的图像,其中后者不使用 $f'(x) = \cos x$

代码

```
x = torch.linspace(-2 * np.pi,
2*np.pi, 1000)

x.requires_grad_(True)

f= torch.sin(x)

f.sum().backward()

plt.plot(x.detach(), f.detach(),
label='f=sin(x)')

plt.plot(x.detach(), x.grad, label='df/dx=cos(x)')

plt.legend(loc='upper right')

plt.show()
```


2.6 概率

2.6.1 进行 m=500组实验,每组抽取 n=10个样本.改变 m 和 n,观察和分析实验结果

随着 m 和 n 的增大,总样本的分布越来越接近标准高斯分布

代码

2.6.2 给定两个概率为 $P(\mathcal{A})$ 和 $P(\mathcal{B})$ 的事件,计算 $P(\mathcal{A} \cup \mathcal{B})$ 和 $P(\mathcal{A} \cap \mathcal{B})$ 的上限和下限(使用韦恩 图来展示这些情况)

2.6.3 假设有一系列随机变量,例如 A, B和 C, 其中 B只依赖于 A, 而 C 只依赖于 B, 能简化联合概率 吗(这是一个马尔可夫链)

$$P(A, B, C) = P(A)P(B|A)P(C|B)$$

2.6.4 艾滋病测试问题

• 假设一个医生对患者进行艾滋病病毒测试.这个测试是相当准确的,如果患者健康但测试显示他患病,这个概率只有 1%;如果患者真正感染 HIV,它永远不会检测不出.用 D_1 来表示诊断结果(如果阳性,则为 1,如果阴性,则为 0),H 来表示感染艾滋病病毒的状态(如果阳性,则为 1,如果阴性,则为 0).人口总体是相当健康的,P(H=1)=0.0015,现在测试显示他患病,那么患者真正患病的概率是多少

先验概率: P(H=1) = 0.0015, P(H=0) = 0.9985

条件概率: $P(D_1 = 1|H = 1) = 1$, $P(D_1 = 1|H = 0) = 0.01$

全概率: $P(D_1 = 1) = P(D_1 = 1|H = 1)P(H = 1) + P(D_1 = 1|H = 0)P(H = 0) = 0.011485$

后验概率: $P(H=1|D_1=1) = \frac{P(D_1=1|H=1)P(H=1)}{P(D_1=1)} \approx 13.05\%$

• 患者得知测试阳性后要求医生进行另一次测试来确定病情.第二个测试具有不同的特性,它不如第一个测试那么精确,如果患者健康但测试显示他患病,这个概率有 3%;如果患者真正感染 HIV 但测试显示他没病,这个概率有 2%.经过第二次测试,依然显示患病,请问现在患者患病的概率是多少

先验概率: P(H=1) = 0.1305, P(H=0) = 0.8695

条件概率: $P(D_2 = 1|H = 1) = 0.98, P(D_2 = 1|H = 0) = 0.03$

全概率: $P(D_2=1)=P(D_2=1|H=1)P(H=1)+P(D_2=1|H=0)P(H=0)\approx 0.153975$

后验概率:
$$P(H=1|D_2=1)=\frac{P(D_2=1|H=1)P(H=1)}{P(D_2=1)}\approx 83.06\%$$

- 虽然第一个测试在准确性方面表现更好,但在临床实践中,有时会采用两个不同的测试而不是重复使用同一个测试
 - · 避免系统性错误
 - · 提高独立性和确认性
 - · 分层更新贝叶斯概率

第三章 线性回归网络

3.1 线性回归网络

- 3.1.1 假设有一些数据 $x_1,x_2,...,x_n\in R$,目标是找到一个常数 b,使得 $\sum_i \left(x_i-b\right)^2$ 最小化
 - 如何找到最优值的解析解
 - 这个问题及其解与正态分布有什么关系

常数模型 $y_i = b + \varepsilon_i$

设计矩阵

$$\mathbf{X} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

线性模型

$$y=X b + \varepsilon$$

解析解

$$b = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \frac{1}{n} \sum_i x_i$$

假设数据
$$x_1, x_2, ..., x_n \in R$$
从正态分布 $\mathcal{N}(\mu, \sigma^2)$ 中独立采样得到,其概率密度与似然函数
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$L(\mu) = \prod_i f(x) \propto \exp\left(-\frac{1}{2\sigma^2}\sum_i (x_i - \mu)^2\right)$$

最大化 $\log L(\mu)$ 等价于最小化 $\sum_i (x_i - b)^2$,正态分布的最大似然估计 $\hat{\mu}$ 就是样本均值

- 3.1.2 推导出使用平方误差的线性回归优化问题的解析解,忽略偏置 b 简化问题(可以通过向 X 添加 所有值为1的一列来做到这一点)
 - 用矩阵和向量表示法写出优化问题(将所有数据视为单个矩阵,将所有目标值视为单个向量)
 - 计算损失对 w 的梯度
 - 将梯度设为 0,求解矩阵方程来找到解析解
 - 什么时候可能比使用随机梯度下降更好?这种方法何时会失效

给定数据矩阵 $\mathbf{X} \in \mathbb{R}^{n \times d}$ 和目标向量 $\mathbf{y} \in \mathbb{R}^n$ 线性回归的优化目标是最小化平方误差

$$\begin{split} \min L(w) &= \|\mathbf{X}w - \mathbf{y}\|^2 = (\mathbf{X}w - \mathbf{y})^T (\mathbf{X}w - \mathbf{y}) \\ L(w) &= w^T \mathbf{X}^T \mathbf{X}w - 2\mathbf{y}^T \mathbf{X}w + \mathbf{y}^T \mathbf{y} \\ \nabla_w L &= 2\mathbf{X}^T \mathbf{X}w - 2\mathbf{X}^T \mathbf{y} \\ w &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \end{split}$$

解析解的优势

- 精确解:直接得到最优参数,无需调参(如学习率)
- 小规模数据高效:当特征数 d 较小,计算 $(\mathbf{X}^T\mathbf{X})^{-1}$ 的时间复杂度 $O(d^3)$ 可接受 失效情况
- 矩阵不可逆:当 \mathbf{X} 列线性相关或 $n < d, \mathbf{X}^T \mathbf{X}$ 不可逆
- 高维数据:特征数 d很大,计算逆矩阵成本过高
- 内存限制:数据量n极大时,存储 \mathbf{X} 并计算 $\mathbf{X}^T\mathbf{X}$ 不可行
- 3.1.3 假定控制附加噪声的 ϵ 噪声模型是指数分布, $p(\epsilon) = \frac{1}{2} \exp(-|\epsilon|)$
 - 写出模型 $-\log P(\mathbf{y}|\mathbf{X})$ 下数据的负对数似然
 - 写出解析解

• 提出一种随机梯度下降算法来解决这个问题

$$\begin{split} \mathbf{y} &= \mathbf{X}\beta + \epsilon_i \\ P(\mathbf{y}|\mathbf{X}) &= \prod_i \tfrac{1}{2} \exp(-|\mathbf{y} - \mathbf{x}_i\beta|) \\ -\log P(\mathbf{y}|\mathbf{X}) &= n \log 2 + \sum_i \exp(-|\mathbf{y} - \mathbf{x}_i\beta|) \end{split}$$

带指数分布噪声的线性回归模型等价于最小化 L1 损失函数,也称为中位数回归(Median Regression).与普通最小二乘法(OLS)不同,由于 L1 损失函数在残差为零处不可导,L1 回归通常没有封闭形式的解析解.对于一维情况,中位数回归的解析解就是将回归线穿过数据点的中位数.对于多维情况.通常需要使用数值优化方法

- 1. 线性规划
- 2. 迭代加权最小二乘法
- 3. 梯度下降类算法(需要处理不可导点) 由于 L1 损失在残差为零处不可导,需要使用次梯度(subgradient)方法

3.2 从零开始实现

3.2.1 如果将权重 w 初始化为零,会发生什么?算法仍然有效吗

线性回归在权重初始化为零时仍然有效,主要是因为

- 1. 梯度取决于输入特征:即使权重相同,但由于输入特征 x_i 各不相同,因此计算得到的梯度也各不相同
- 无隐藏层结构:线性回归是直接从输入到输出的映射,没有中间层的复杂结构,因此不会遇到神经网络中的表达能力受限问题.
- 3. 单一全局最优解:线性回归的损失函数是凸函数,总是有一个全局最优解,梯度下降算法最终会收敛到这个解.

3.2.2 为电压和电流的关系建立一个模型,自动微分可以用来学习模型的参数吗

自动微分在以下几个关键步骤中起到了重要作用

- 1. 参数跟踪:创建 nn.Linear 层时,PyTorch 自动为权重和偏置参数设置 requires_grad=True,参数的 梯度将被计算和存储
- 2. 损失函数计算:当计算模型输出与实际电流之间的损失时,PyTorch 构建了一个计算图,跟踪损失是如何依赖于模型参数的
- 3. 梯度计算:当调用 loss.backward()时,PyTorch 自动计算损失函数相对于每个参数的梯度.这些梯度展示如何调整参数以减小损失
- 4. 参数更新:optimizer.step()使用计算出的梯度来更新模型参数,通常沿着梯度的负方向移动(梯度下降)

3.2.3 基于普朗克定律使用光谱能量密度来确定物体的温度

图像

3.2.4 计算二阶导数时可能会遇到什么问题?如何解决

主要问题

- 1. 梯度消失问题:当计算深层网络的二阶导数时,由于链式法则的连乘效应,可能导致梯度变得非常小
- 2. 内存占用过大:二阶导数计算需要储存更多的中间计算结果,特别是对于大型模型,可能导致 GPU 内存不足
- 3. 计算效率低下:直接计算 Hessian 矩阵计算量很大,尤其是参数众多的模型
- 4. 数值不稳定性:浮点数精度限制可能导致数值计算不稳定

解决方案

- 1. 使用 Hessian 向量积(Hessian-vector product, HVP)
- 2. 使用自动微分库
- 3. 有限差分法近似
- 4. 低阶优化算法:如果只是为了优化而计算二阶导数,可以考虑使用近似二阶方法如 L-BFGS、KFAC 等
- 5. 分批计算 Hessian 矩阵

3.2.5 为什么在 squared_loss 函数中需要使用 reshape 函数

1. 维度匹配

在计算均方误差(MSE)时,预测值和真实值的形状必须一致或能够进行广播.reshape 确保这两个 张量可以直接进行数学运算

2. 应对不同的输出格式

线性回归模型的输出形状可能是:

- [batch_size]:一维张量
- [batch_size, 1]:二维张量列向量

而标签数据可能是不同形状:

- 可能是普通 Python 列表:[value1, value2, ...]
- 可能是 NumPy 数组或 Pandas Series
- 可能是不同形状的 PyTorch 张量

reshape 函数确保无论输入格式如何,都能统一处理

3. 处理模型输出

许多 PyTorch 模型的输出是形状为[batch size, num features]的张量,即使 num features=1

4. 防止隐式广播导致的错误

如果不使用 reshape, PyTorch 的广播机制可能会导致意外的计算结果

5. 批量处理的一致性

在批量处理数据时,确保每个样本的损失计算方式一致是很重要的

3.2.6 尝试使用不同的学习率,观察损失函数值下降的快慢

- 从小学习率开始(0.001)
- 逐渐增加(乘以 10)
- 当观察到损失函数开始震荡或发散时停止
- 选择震荡前的最大学习率作为最优值

3.2.7 如果样本个数不能被批量大小整除,data_iter 函数的行为会有什么变化

当样本总数不能被批量大小整除时,会出现以下几种情况:

1. 最后一个批次的大小不足

这是最常见的处理方式.如果总样本数为 n,批量大小为 batch_size,当 n % batch_size != 0 时

- 前面的批次都是完整的 batch size 大小
- 最后一个批次的大小为 n % batch size,小于标准批量大小

例如:有 103 个样本,批量大小为 32,则会产生 4 个批次.前 3 个批次各包含 32 个样本,最后 1 个批次只包含 7 个样本(103-3×3=7)

2. 对最后一个不完整批次的不同处理策略

在实际应用中,对于最后一个不完整批次,有几种常见的处理策略:

• 保留不完整批次(默认行为)

如上所述,就是保留最后一个较小的批次.这是最直接的方法,确保所有样本都被使用

• 丢弃不完整批次

某些情况下,特别是当批次归一化(Batch Normalization)层对批次大小敏感时,可能会选择丢弃最后一个不完整的批次

• 填充(padding)不完整批次

在 NLP 或计算机视觉任务中,常用填充方法使最后一个批次达到完整大小

3.3 简洁实现

3.3.1 如果将小批量的总损失替换为小批量损失的平均值,需要如何更改学习率

总损失

$$L_{\mathrm{sum}} = \sum_{i=1}^n l(x_i; w)$$

对参数w的梯度为

$$\nabla_w L_{\mathrm{sum}} = \sum_{i=1}^n \nabla_w l(x_i; w)$$

一个随机梯度下降步长(Stochastic Gradient Descent)

$$\Delta w = -\eta \nabla_w L_{\rm sum}$$

平均损失

$$L_{\text{mean}} = \frac{1}{n} \sum_{i=1}^{n} l(x_i; w)$$

$$\begin{split} \nabla_w L_{\text{mean}} &= \frac{1}{n} \sum_{i=1}^n \nabla_w l(x_i; w) \\ \Delta w &= -\frac{\eta}{n} \nabla_w L_{\text{mean}} \end{split}$$

为了让平均损失的每步更新幅度与总损失版本一致,需要将学习率放大n倍

3.3.2 查看深度学习框架文档,它们提供了哪些损失函数和初始化方法

PyTorch 中的损失函数和初始化方法

- 回归任务
 - ► nn.MSELoss 均方误差 Mean Squared Error Loss
 - ► nn.L1Loss 平均绝对误差 Mean Absolute Error
 - ► nn.HuberLoss Huber 损失 Huber Loss
 - ► nn.SmoothL1Loss 平滑 L1 损失 Smooth L1 Loss
- 分类任务
 - ► BinaryCrossentropy()二元交叉熵
 - ► CategoricalCrossentropy()多类交叉熵
 - ▶ SparseCategoricalCrossentropy()稀疏多类交叉熵
- 其他任务
 - ► KLDivergence() KL 散度
 - ► CosineSimilarity()余弦相似度

权重初始化方法

- xavier_uniform_ / xavier_normal_适用于 Sigmoid/Tanh 激活函数
- kaiming uniform / kaiming normal 适用于 ReLU 激活函数
- orthogonal 正交初始化
- constant 常数初始化
- zeros_ / ones_全零或全一初始化

3.3.3 访问线性回归中的梯度

代码

x = torch.tensor([[1.0], [2.0],1 ру [3.0]]) y = torch.tensor([[2.0], [4.0], [6.0]])model = nn.Linear(in_features=1, out_features=1) criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01)pred = model(x)loss = criterion(pred, y) optimizer.zero grad() # 清除旧的梯度 loss.backward() # 自动计算梯度 print("Weight gradient:", 10 model.weight.grad) 11 print("Bias gradient:", model.bias.grad)

结果

1 Weight gradient: tensor([[-10.5606]]) py
2 Bias gradient: tensor([-4.3515])