3556. Найти проекции эллипсоида

$$x^2 + y^2 + z^2 - xy = 1$$

на координатные плоскости.

3557. Квадрат $\{0 \le x \le 1, \ 0 \le y \le 1\}$ разбит на конечное число частей о диаметра $\le \delta$. Оценить сверху число δ , если направления нормалей к поверхности

$$z = 1 - x^2 - y^2$$

в любых точках P(x, y) и $P_1(x_1, y_1)$, принадлежащих одной и той же части σ , отличаются меньше чем на 1°. 3558. Пусть

$$z = f(x, y), \text{ rge } (x, y) \in D, \tag{1}$$

— уравнение поверхности и $\phi(P_1, P)$ — угол между нормалями к поверхности (1) в точках $P(x, y) \in D$ и $P_1(x_1, y_1) \in D$.

Доказать, что если область D ограничена и замкнута и функция f(x, y) имеет ограниченные производные 2-го порядка в области D, то справедливо неравенство Ляпинова

$$\varphi(P_1, P) < C\rho(P_1, P),$$
 (2)

где C — постоянная и ρ (P_1 , P) — расстояние между точками P и P_1 .

3559. Под каким углом пересекается цилиндр $x^2 + y^2 = a^2$ с поверхностью bz = xy в общей точке M_0 (x_0, y_0, z_0) ?

3560. Показать, что координатные поверхности сферических координат $x^2 + y^2 + z^2 = r^2$, $y = x \operatorname{tg} \varphi$, $x^2 + y^2 = z^2 \operatorname{tg}^2 \theta$ попарно ортогональны.

3561. Показать, что сферы $x^2+y^2+z^2=2ax$, $x^2+y^2+z^2=2by$, $x^2+y^2+z^2=2cz$ образуют три-

ортогональную систему.

3562. Через каждую точку M(x, y, z) проходят при $\lambda = \lambda_1$, $\lambda = \lambda_2$, $\lambda = \lambda_3$ три поверхности второго порядка:

$$\frac{x^2}{a^2-\lambda^2}+\frac{y^2}{b^2-\lambda^3}+\frac{z^2}{c^2-\lambda^2}=-1 \quad (a>b>c>0).$$

Доказать ортогональность этих поверхностей.

3563. Найти производную функции u = x + y + z в направлении внешней нормали сферы x + y + z = 1 в точке ее M_0 (x_0 , y_0 , z_0).