

SWEN90016

Software Processes & Project Management

Project Planning and Scheduling

2020 – Semester 1 Tutorial 4

How to plan and control the schedule of software projects.

Software Projects

Formal PM Stages:

- » Initiate
- » Plan
- » Execute
- » Monitor & Control

Agile PM Stages:

- » Initiate
- » Sprint Plan
- » Scrum (or Sprint)
- » Review & Retrospective (or Adapt)
- » Release

MELBOURNE Formal Project Schedule

What steps are involved in developing a project schedule?

MELBOURNE Formal Project Scheduling

1. Work Breakdown Structure

how to plan the schedule

2. PERT Chart

3. Gantt Chart

ID	Task Name	Predecessors	Duration	Jul	23,	'06					Ju	JI 30	, '06					Au	6,	'06					Au	g 13	3, '06	6			_
				S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	T	F	5
1	Start		0 days		7																										
2	a	1	4 days																												
3	b	1	5.33 days						t																						
4	С	2	5.17 days						Ú																						
5	d	2	6.33 days													u			١,							_					
6	е	3,4	5.17 days																												
7	f	5	4.5 days																Ď											-	
8	g	6	5.17 days																				1							ь	
9	Finish	7.8	0 days																											*	

A Gantt chart created using Microsoft Project (MSP). Note (1) the critical path is in red, (2) the slack is the black lines connected to non-critical activities, (3) since Saturday and Sunday are not work days and are thus excluded from the schedule, some bars on the Gantt chart are longer if they cut through a weekend.

Identify Tasks - Work Breakdown

MIELDUUKNE

	Activity	Work Breakdown
1.	1.1 1.2 1.3 1.4	Concept Phase Concept Planning Initial Research Problem definition with client Initial Project Plan
2.	2.1	Requirements Requirements Iteration 1 2.1.1 Requirement Elicitation 2.1.2 Requirements Analysis 2.1.3 Requirement Model Requirements Iteration 2 2.2.1 Requirement Elicitation 2.2.2 Requirements Analysis 2.2.3 Requirement Model
	2.3 2.4 2.5	Requirements Specification Requirements Validation Requirements Sign-off
3.	3.1	Project Planning Technological Risk Assessment

Identify Dependencies

				<u> </u>
	Activity	Work Breakdown	Dependencies predecessor	Duration
1.	1.1 1.2 1.3 1.4	Concept Phase Concept Planning Initial Research Problem definition with client Initial Project Plan	1.1, 1.2, 1.3	1 4 2 1
2.	2.1	Requirements Requirements Iteration 1 2.1.1 Requirement Elicitation 2.1.2 Requirements Analysis 2.1.3 Requirement Model	1.4 2.1.1 2.1.2	2 3 3
	2.2 2.3 2.4 2.5	Requirements Iteration 2 2.2.1 Requirement Elicitation 2.2.2 Requirements Analysis 2.2.3 Requirement Model Requirements Specification Requirements Validation Requirements Sign-off	2.1.2 2.2.1 2.2.2 2.2.3 2.3 3.1, 2.4	3 3 4 5 4 4
3.	3.1	Project Planning Technological Risk Assessment	2.1.2	4

Identify Dependencies

Develop a task network

(activity on node)

given dependencies

	activity	predecessor	duration
1	1.1		1
2	1.2		4
3	1.3		2
4	1.4	1.1 1.2 1.3	1
5	2.1.1	1.4	2
6	2.1.2	2.1.1	3
7	2.1.3	2.1.2	3
8	2.2.1	2.1.2	3
9	2.2.2	2.2.1	3
10	2.2.3	2.2.2	4
11	2.3	2.2.3	5
12	2.4	2.3	4
13	2.5	2.4 3.1	4
14	3.1	2.1.2	4

How to draw a simple network diagram

Network Diagram

- Sequential nodes
- Few details

Pert Chart

MATERIAM MIKINIE

PERT: Program Evaluation & Review Technique

The activity node

Earliest start time (ES)
Duration in people days
Earliest finish time (EF)

Latest start time (LS)
Slack time
Latest finish time (LF)

Pert Chart: example

Show a PERT chart: use task durations & task network diagram

Forward Pass

MILLE OF TRANS

Backward Pass

MIEILIDWWIKNIE

MILLE OF TRANS

Critical Path

Critical Path = A + C + E + G

PERT Chart: activity

Use duration estimates & task network to construct PERT chart

PERT Chart

-18-

Construct Resource Schedule

Play the Project Management Game:

http://thatpmgame.com/

Use a Gantt chart to assign staff to various tasks. Is the project completed on time and on budget?

MELBOURNE Scrum Project Scheduling

1. Product Backlog with milestones

Product

2. Sprint Backlog on Kanban board

3. Burndown Charts

how to plan the schedule

Velocity and Visual Board

How many User Stories are "done" over the time-boxed Sprint?

- Only count 100% complete stories
- Predict when the release milestones will be reached

Team member A completes code for a card and moves it to "done"

Team member A "pulls" a new card from "ready" and moves it to "doing"

The Product Owner selects the next priority set of cards (Sprint Backlog) and moves it to "ready"

Agile Scrum Velocity

Velocity determines when dev team can deliver

- Dev team velocity emerges over a number of Sprints
- Predict when the release milestones will be reached

Agile Scrum Velocity

Velocity determines the slope of the BurnDown charts

- The Scrum master can track remaining effort
- Predict when the release milestones will be reached

X-axis: time

Thank You!

Scott Adams, Inc./Dist. by UFS, Inc.