Summary of factor model analysis by Fan at al.

W. Evan Durno

July 11, 2015

W. Evan Durno Factoring Porfolios July 11, 2015 1 / 15

Brief summary

Factor models for high-dimensional data are analysed [Fan et al., 2008]. Majority of work emphasizes $O(n) \ge O(p)$.

- Onvergence is studied from the perspective of matrix norms.
- ② Convergence speed is theorized in the $O(\cdot)$ -style, emphasizing how increasing samples, dimensions, and factors influence error.
- Simulations demonstrate adequacy of a proposed norm.
- Analysis is described as 'theoretical'

W. Evan Durno Factoring Porfolios July 11, 2015 2 / 15

Factor model review

Our n data, Y, are in p dimensions with k factors.

- **1** $\Psi \in \mathbb{R}^{p \times p}_{>0}$, diagonal, not random; $L = [l_{i,j}] \in \mathbb{R}^{p \times k}$, not random
- ② $F = [f_j] \sim N(0, I_k); E = [e_i] \sim N(0, \Psi)$
- E does not depend on F

Estimation for L can be done in a few ways, of which MLE and Eigenvectors are popular. The authors use least squares given Y & F.

- **1** $\hat{\Sigma} = \hat{B}\hat{Cov}[F]\hat{B}' + \hat{\Psi}, \hat{\Psi} = diag[E_v E_v'/n], \hat{B} = YX'(XX')^{-1}$
- $oldsymbol{\circ}$ such that $E_v = [E_1, \dots, E_n], X = [F_1, \dots, F_n]$
- \odot Criticism: I don't get to observe F! So it is a theoretical exercise.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

3 / 15

Matrix norms

This paper primarily uses the following norms.

- Frobenious [Horn & Johnson, 1990]: $||A|| = [tr(AA')]^{1/2} = [\sum_{i=1}^{p} \lambda(A)^2]^{1/2}$
- ② Entropy loss: [James & Stein, 1961] $L_1(\hat{\Sigma}, \Sigma) = tr\left(\hat{\Sigma}\Sigma^{-1}\right) \log\left|\hat{\Sigma}\Sigma^{-1}\right| p$
- **3** Custom $||A||_{\Sigma} = \sqrt{p}^{-1}||\Sigma^{-1/2}A\Sigma^{-1/2}||$

Their custom norm is a scaled quadratic norm L_2 . Precisely, $||A - \Sigma||_{\Sigma} = \sqrt{p}^{-1} L_2(\hat{\Sigma}, \Sigma) = \sqrt{p}^{-1} tr \left[A\Sigma^{-1} - I\right]$. Convention: Eigenvalues of A are $\lambda_1(A), \ldots, \lambda_p(A)$ decreasing.

W. Evan Durno Factoring Porfolios July 11, 2015 4 / 15

Assumptions

The following assumptions are employed partially or entirely.

Let
$$b = \mathbb{E}||Y||^2, c = \max_{1 \leq i \leq k} \mathbb{E}[f_j^4], d = \max_{1 \leq i \leq k} \mathbb{E}[e_i^4]$$

- **1** (A) (Y_i, F_i) iid, $\mathbb{E}[E_i|F_i] = 0$, $Cov[E|F] = \Psi$, distribution of F is continuous, $k \leq p$.
- ② (B) b = O(p), c & d bounded. $\exists \sigma_1 > 0 : \lambda_k(LL') \geq \sigma_1 \forall n$
- (D) The k factors $F = [f_j]$ are fixed accross n.

W. Evan Durno Factoring Porfolios July 11, 2015 5 / 15

Frobenious is a poor descriptor of convergence

Theorem (1)

Under assumptions (A) - (C),

- $||\hat{\Sigma} \Sigma|| = O_P(pk/\sqrt{n})$
- $||\hat{\Sigma}_s \Sigma|| = O_P(pk/\sqrt{n})$

Notation

- **1** Let $\hat{\Sigma}$ denote the factor model estimate of Σ .
- **2** Let $\hat{\Sigma}_s$ denote the sample covariance estimate of Σ .

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 90°

W. Evan Durno Factoring Porfolios July 11, 2015 6 / 15

Quadratic norm better describes convergence

Theorem (2)

Under assumptions (A) - (C), if $K = O(n^{\alpha_1}), p = O(n^{\alpha})$, then

$$||\hat{\Sigma}_s - \Sigma||_{\Sigma} = O_P(n^{-\beta_1/2}) : \beta_1 = 1 - \max\{\alpha, 3\alpha_1/2, 3\alpha_1 - \alpha\}$$

Remark: $\alpha > 2\alpha_1 \& \alpha_1 < 1 \Rightarrow \beta > \beta_1$

So the factor estimate converges faster when the number of dimensions grows faster than the number of factors.

Also note that $\alpha \leq 1 \Rightarrow \hat{\Sigma}$ is root-n-consistent under $||\cdot||_{\Sigma}$.

4□ > 4□ > 4 = > 4 = > = 90

W. Evan Durno Factoring Porfolios July 11, 2015 7 / 15

More theory

Theorem (3)

Under assumptions (A) - (C),

$$||\hat{\Sigma}^{-1} - \Sigma^{-1}|| = o_P([p^2k^4 \log n/n]^{1/2})$$

$$||\hat{\Sigma}_s^{-1} - \Sigma^{-1}|| = o_P([p^4k^2 \log n/n]^{1/2})$$

Remark: $\hat{\Sigma}^{-1}$ & $\hat{\Sigma}_s^{-1}$ do refer matrix inverses of the estimates.

Theorem (4)

Under assumptions (A), (B), and (D), $\hat{\Sigma} - \Sigma$ converges in distribution to normal errors.

Language is purposefully vague for brevity.

W. Evan Durno Factoring Porfolios July 11, 2015 8 / 15

Markowitz portfolio optimization

Define the following variables.

- **1** There are p risky assets with rate of return μ and covariance Σ .
- 2 ξ is the variance-minimum allocation vector with rate of return γ .
- **3** ξ_g is the minimum variance porfolio (no desired rate of return).

Theorem (Markowitz [Markowitz, H.M., 1952])

The solution to the problem:

$$\min_{\boldsymbol{\xi}} \boldsymbol{\xi}' \boldsymbol{\Sigma} \boldsymbol{\xi} \; : \; \boldsymbol{\xi}' \mathbf{1} = 1 \; \& \; \boldsymbol{\xi} \boldsymbol{\mu} = \boldsymbol{\gamma}$$

is this:
$$\xi = \frac{\phi - \gamma \psi}{\rho \phi - \psi^2} \Sigma^{-1} \mathbf{1} + \frac{\gamma \rho - \psi}{\rho \phi - \psi^2} \Sigma^{-1} \mu$$
 such that $\rho = \mathbf{1}' \Sigma^{-1} \mathbf{1}, \psi = \mathbf{1}' \Sigma^{-1} \mu, \phi = \mu' \Sigma^{-1} \mu$ with variance $\xi' \Sigma \xi = \frac{\rho \gamma^2 - 2\phi \gamma + \phi}{\rho \phi - \psi^2}$. To get $\hat{\xi}_{\mathbf{g}}$, replace γ with ψ/ϕ .

Factor estimates have less porfolio variance

If we simply plug in estimates $\hat{\Sigma}, \hat{\Sigma}_n, \hat{\mu}$ we get allocation estimates $\hat{\xi}, \hat{\xi}_g$.

Theorem (5, global minimum variance convergence)

Under (A) - (C) and $\rho > 0$,

②
$$\hat{\xi}'_g \hat{\Sigma}_s \hat{\xi}_g - \xi'_g \Sigma \xi_g = o_P([p^6 k^2 \log n/n]^{1/2})$$

Theorem (5, optimal variance convergence)

Under (A) - (C) and

$$\rho\phi - \psi^2 > \max\{0, \rho/(\rho\phi - \psi^2), \psi/(\rho\phi - \psi^2), \phi/(\rho\phi - \psi^2)\},$$

$$\hat{\xi}'\hat{\Sigma}\hat{\xi} - \xi'\Sigma\xi = o_P([p^4k^4\log n/n]^{1/2})$$

2
$$\hat{\xi}' \hat{\Sigma}_s \hat{\xi} - \xi' \Sigma \xi = o_P([p^6 k^2 \log n/n]^{1/2})$$

Weak convergence of variance

Require $\xi = O(1)\mathbf{1}$ to avoid extreme short positions.

Theorem,

Under (A) and (B),

2
$$\xi' \hat{\Sigma}_s \xi - \xi' \Sigma \xi = o_P([p^4 k^2 \log n/n]^{1/2})$$

and requiring NO short positions results in

$$2 \xi' \hat{\Sigma}_s \xi - \xi' \Sigma \xi = o_P([p^2 k^2 \log n/n]^{1/2})$$

Notice the equivalence.

11 / 15

W. Evan Durno Factoring Porfolios July 11, 2015

A simulation study

Under fixed n and k, p was allowed to increase. The study revealed the following.

- The Frobenious norm was insufficient to demonstrate covariance estimate inefficiency.
- The scaled quadratic norm was sufficient to demonstrate covariance estimate efficiency.
- When data follow a factor model, observing the factors and including them in the model greatly increases covariance modelling efficiency
- **SESTIMBLE** Sestimated portfolio variance MSEs greatly reduce with the factor model when data follow a factor model, even when p > n.

W. Evan Durno Factoring Porfolios July 11, 2015 12 / 15

Recap

- Estimation is easy when the model is known and latent variables are observable.
- Results suggest that correct usage of a factor model may result in reduce variance in covariance estimation and porfolio variance.
- **3** Results suggest that a simple porfolio $(\xi = O(1)\mathbf{1})$ without shorts does not enjoy a better variance reduction, so standard covariance estimation is adequate.
- The Frobenious norm may is not always adequate for understanding covariance estimate inefficiency.

W. Evan Durno Factoring Porfolios July 11, 2015 13 / 15

References

Jianquing Fan, Yingying Fan, Jinchi Lv (2008) High dimensional covariance matrix estimation using a factor model Journal of Econometrics 147, 186-197.

Horn, R.A. & Johnson, C.R. (1990) Matrix Analysis Cambridge Press

James, W. & Stein, C. (1961)

Estimation iwth quadratic loss

Proc. Fourth Berkeley Symp. Math. Stat. Prob. vol 1, California Press, Berkeley, pp. 361-379

Markowitz (1952)

Portfolio selection

Journal of Finance 7, 77-91.

W. Evan Durno

The End

W. Evan Durno Factoring Porfolios July 11, 2015 15 / 1