IN THE CLAIMS

Kindly amend the claims to read as follows.

Claims 1-11 (cancelled).

12. (currently amended): A compound of the formula

$$(12) \qquad \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \qquad \begin{array}{c} R_2 \\ R_4 \\ R_5 \end{array}$$

wherein

 R_1 is hydrogen; C_1 - C_5 alkyl; C_1 - C_5 alkoxy; or halogen;

R₂ is C₁-C₅alkyl; C₅-C₇cycloalkyl; C₆-C₁₀aryl;

$$R_3$$
 is G_1 — G_8 alkyl or a radical of the formula (1a) N — N ; in which

Hal is halogen;

$$R_4$$
 is hydrogen; or a radical of the formula (1b) which is $C_{C} = 0$; and

 R_5 is C_5 - C_{18} alkoxy; a radical of formula (1b); or a radical of formula (1d) which is

$$-CH = C - C = N$$
 $C = C - C = N$
 C

R₉ is C₁-C₁₈alkyl₋₇

wherein the compound of formula-(1) in which

R4-is-hydrogen,

R2 is methyl,

R₃ is methyl,

R4 is hydrogen, and

R_s is — C-H is excluded.

13 (cancelled).

14. (new): A compound of formula

$$(12) \qquad \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \qquad \begin{array}{c} R_4 \\ R_5 \end{array}$$

wherein

 R_1 is hydrogen; C_1 - C_5 alkyl; C_1 - C_5 alkoxy; or halogen;

R₂ is C₁-C₅alkyl; C₅-C₇cycloalkyl; C₆-C₁₀aryl;

R₃ is C₁-C₅alkyl or a radical of formula (1a) N= N ; in which

Hal is halogen;

R₄ is a radical of formula (1b) which is -HC=O;

 R_5 is C_5 - C_{18} alkoxy; a radical of formula (1b); or a radical of formula (1d) which is

$$-CH = C - C = N$$
; in which $O = C - C = N$

R₉ is C₁-C₁₈alkyl; or

R₄ and R₅ denote a radical of formula (1b).