Fisica

Giacomo Fantoni

Telegram: @GiacomoFantoni

 $Github:\ https://github.com/giacThePhantom/Genetica$

10 marzo 2021

Indice

Capitolo 1

Cinematica del punto

1.1 Introduzione

La meccanica riguarda lo studio del moto di un corpo: spiega la relazione tra le cause che lo generano e le sue caratteristiche, esprimendola con leggi quantitative.

1.1.1 Punto materiale

Un punto materiale o particella è un corpo privo di dimensioni: le sue dimensioni sono trascurabili rispetto a quelle dello spazio in cui può muoversi o degli altri corpi con cui può interagire.

1.1.2 Movimenti di un corpo esteso

- Traslazione: il corpo esteso si muove come un punto materiale.
- $\bullet \;$ Rotazioni.
- Vibrazioni.

1.1.3 Cinematica

Si intende per cinematica una parte della meccanica che studia il moto senza considerare le forze che entrano in gioco.

1.1.4 Determinare il moto

Il moto di un punto materiale è determinato se è nota la sua posizione in funzione del tempo in un determinato sistema di riferimento.

1.1.4.1 Sistema di riferimento cartesiano

In un sistema di riferimento cartesiano il la posizione di un corpo è data dalle sue coordinate x(t), y(t), z(t), espresse in funzione del tempo. Altri sistemi di riferimento fanno uso delle coordinate polari.

1.1.5 Traiettoria

La traiettoria è il luogo dei punti occupati successivamente dal punto in movimento. Costituisce una curva continua nello spazio.

1.1.6 Grandezze fondamentali

Nella cinematica le grandezze fondamentali sono:

• Spazio.

• Accelerazione.

• Velocità.

• Tempo o la variabile indipendente.

1.1.7 Quiete

La quiete è un tipo di moto in cui le coordinate rimangono costanti, pertanto velocità ed accelerazione sono nulle.

1.2 Moto rettilineo

1.2.1 Descrizione

Il moto rettilineo si svolge lungo una retta su cui vengono fissati arbitrariamente un'origine e un verso. Il moto del punto può essere descrivibile tramite una coordinata x(t).

1.2.2 Rappresentazione

Le misure ottenute da un'osservazione di un moto rettilineo per tempo e spazio possono essere rappresentate in un sistema a due assi cartesiani: sulle ordinate i valori di x e su quello delle ascisse il tempo t corrispondente. Questo viene detto diagramma orario.

1.2.3 Velocità

1.2.3.1 Velocità media

Se al tempo $t=t_1$ il punto si trova nella posizione $x=x_1$ e al tempo $t=t_2$ nella posizione $x=x_2$, $\Delta x=x_2-x_1$ rappresenta lo spazio percorso nell'intervallo di tempo $\Delta t=t_2-t_1$. La rapidità con cui avviene lo spostamento viene caratterizzata dalla velocità media:

$$v_m = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

1.2.3.2 Velocità istantanea

Per ricavare informazioni riguardo le caratteristiche del moto si può suddividere Δx in numerosi piccoli intervalli $(\Delta x)_i$ percorsi in altrettanti piccoli intervalli di Δt $(\Delta t)_i$. Si nota come le corrispondenti velocità medie sono $v_i = \frac{(\Delta x)_i}{(\Delta t)_i}$, diverse tra di loro e da v_m . Questo avviene in quanto in un generico moto rettilineo la velocità non è costante nel tempo. Suddividendo Δx in un numero

elevatissimo di intervallini dx percorsi nel tempo dt si può definire la velocità istantanea ad un istante t del punto in movimento come:

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

La velocità istantanea rappresenta pertanto la rapidità di variazione temporale della posizione nell'istante t considerato. Il segno indica il verso del moto sull'asse. Può inoltre essere espressa come funzione del tempo v(t).

- **1.2.3.2.1** Moto rettilineo uniforme Si intende per moto rettilineo uniforme un tipo di moto rettilineo in cui la velocità è costante.
- **1.2.3.2.2** Ottenere la velocità Nota la legge oraria x(t) si può otenere la velocità istantanea con l'operazione di derivazione.
- 1.2.3.2.3 Ottenere la legge oraria Nota la dipendenza del tempo della velocità istantanea v(t) si può ottenere la legge oraria x(t). Supponendo che il punto si trovi in x al tempo t e nella posizione x+dx in t+dt da $v=\frac{dx}{dt}$ si nota come lo spostamento infinitesimo dx è uguale al prodotto del tempo dt impiegato a percorrerlo per il valore della velocità al tempo t:dx=v(t)dt, qualunque sia la dipendenza della velocità dal tempo. Lo spostamento complessivo sulla retta su cui si muove il punto in un intervallo finito $\Delta t=t-t_0$ è dato dalla somma di tutti i successivi valori dx. Si utilizza l'operazione di integrazione:

$$\Delta x = \int_{x_0}^x dx = \int_{t_0}^t v(t)dt$$
$$x - x_0 = \int_{t_0}^t v(t)dt$$
$$x = x_0 + \int_{t_0}^t v(t)dt$$

Si ottiene pertanto la relazione generale che permette il calcolo dello spazio percorso nel moto rettilineo:

$$x(t) = x_0 + \int_{t_0}^t v(t)dt$$

Dove x_0 rappresenta la posizione iniziale del punto occupata nell'istante t_0 Si noti come Δx rappresenta la somma algebrica degli spostamenti.

1.2.3.3 Relazione tra velocità media e istantanea

Ricordando che $v_m = \frac{x-x_0}{t-t_0}$, la relazione tra velocità media e istantanea:

$$v_m = \frac{1}{t - t_0} \int_{t_0}^t v(t)dt$$

1.2.3.4 Legge oraria del moto rettilineo uniforme

Considerando il moto rettilineo uniforme in cui v è costante si ha:

$$x(t) = x_0 + v \int_{t_0}^t dt$$
$$= x_0 + v(t - t_0)$$
$$= x_0 + vt \qquad se \ t_0 = 0$$

Si nota pertanto come nel moto rettilineo uniforme lo spazio è una funzione lineare del tempo e la velocità istantanea coincide con la velocità media.

1.2.4 Accelerazione

La velocità v(t) varia in un determinato Δt di una quantità δv .

1.2.4.1 Accelerazione media

Analogamente alla velocità media si definisce l'accelerazione media come

$$a_m = \frac{\Delta v}{\Delta t}$$

1.2.4.2 Accelerazione istantanea

Si definisce accelerazione istantanea come la rapidità di variazione temporale della celocità come:

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

1.2.4.3 Significato fisico dell'accelerazione

- a = 0: velocità costante, moto rettilineo uniforme.
- a > 0: la velocità cresce nel tempo.
- a < 0: la velocità decresce nel tempo.

1.2.4.4 Ottenere la velocità

Data una a(t) si ricava v(t):

$$dv = a(t)dt$$

$$\Delta v = \int_{v_0}^{v} dv$$

$$= \int_{t_0}^{t} a(t)dt$$

Pertanto:

$$v(t) = v_0 + \int_{t_0}^t a(t)dt$$

1.2.4.5 Moto rettilineo uniformemente accelerato

Si intende per moto rettilineo uniformemente accelerato un moto in cui l'accelerazione è costante durante il moto.

1.2.4.5.1 Dipendenza della velocità dal tempo La dipendenza della velocità dal tempo è lineare:

$$v(t) = v_0 + a(t - t_0)$$

$$v(t) = v_0 + at$$
 se $t_0 = 0$

1.2.4.5.2 Dipendenza della posizione dal tempo Lo spazio è una funzione quadratica del tempo:

$$x(t) = x_0 + \int_{t_0}^t [v_0 + a(t - t_0)] dt$$

$$= x_0 + \int_{t_0}^t v_0 dt + \int_{t_0}^t a(t - t_0) dt$$

$$x(t) = x_0 + v(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

$$= x_0 + v_0 t + \frac{1}{2}at^2 \qquad \text{se } t_0 = 0$$