

Discrete POWER & Signal **Technologies**

2N5401

MMBT5401

PNP General Purpose Amplifier

This device is designed as a general purpose amplifier and switch for applications requiring high voltages. Sourced from Process 74.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	150	V
V _{CBO}	Collector-Base Voltage	160	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- NOTES:

 1) These ratings are based on a maximum junction temperature of 150 degrees C.

 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units
		2N5401	*MMBT5401	
P_D	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

PNP General Purpose Amplifier

(continued)

Characteri	

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	ARACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	150		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	160		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 120 \text{ V}, I_E = 0$ $V_{CB} = 120 \text{ V}, I_E = 0, T_A = 100^{\circ}\text{C}$		50 50	nA μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
h _{FE}	RACTERISTICS* DC Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$	50 60	240	
IIFE	De current Gain	, 52		240	
$V_{\text{CE(sat)}}$	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.2 0.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		1.0 1.0	V V
SMALL S	SIGNAL CHARACTERISTICS				
f _T	Current Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	100	300	MHz
C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0,$ f = 1.0 MHz		6.0	pF
NF	Noise Figure	$I_C = 250 \mu A, V_{CE} = 5.0 V,$ $R_S = 1.0 k\Omega,$ $f = 10 Hz to 15.7 kHz$		8.0	dB

^{*}Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2.0\%$

Spice Model

PNP General Purpose Amplifier

(continued)

Typical Characteristics

PNP General Purpose Amplifier

(continued)

Typical Characteristics (continued)

Input and Output Capacitance vs Reverse Voltage

Power Dissipation vs Ambient Temperature

