Elementos de álgebra - Módulo I

Toda la información: pedco.uncoma.edu.ar Elementos de álgebra

• **Teoría:** Valeria Castaño.

Lunes y Viernes de 16 a 17:30 hs. (Virtual)

• Práctica: Romina Ojeda - Ariela Garcés - René Morari.

Grupo A: Lunes de 9 a 12 hs. (Presencial) Ed. Fac. Informática.

Grupo B: Miércoles de 9 a 12 hs. (Presencial) Ed. Fac. Informática.

- Consultas: Lunes y Viernes después de la teoría. (Virtual)
- Primer parcial: Temas: Lógica Conjuntos Números reales Números naturales.
- Segundo parcial: Temas: Números enteros Números complejos Matrices y determinates Sistemas de ecuaciones lineales Polinomios.

Presenciales.

IMPORTANTE: Respetar el módulo.

Mail de contacto para módulo I: cvaleria@gmail.com

Lógica clásica

Se llama **proposición** a toda oración respecto de la cual puede decirse si es verdadera o falsa.

Ej: La pandemia de Covid 19 duró un año.

Obs:

- Las notaremos en general con letras minúsculas: p, q, r, etc.
- Si la proposición p es verdadera diremos que su valor de verdad es **verdadero** y escribimos v(p) = V.
- Si la proposición p es falsa diremos que su valor de verdad es falso y escribimos v(p) = F.

Llamaremos proposición **simple** ó **atómica** a toda proposición que no contiene propiamente otra proposición.

Ejemplos:

- Python es um lenguaje de programación. — proposición simple
- París es la capital de Francia y Madrid es la capital de España. proposición compuesta

conectivo

Obs. El valor de verdad de una proposición compuesta dedende del valor de verdad de las proposiciones atómicas involucradas en ella.

Para poder armar proposiciones o fórmulas compuestas utilizaremos los **conectivos lógicos**: \land , \lor , \sim , \Rightarrow , \Leftrightarrow .

• Negación: \sim ó \neg

La negación de la proposición p es la proposición: "No p".

Su tabla de verdad es:

p	$\sim p$
V	F
${ m F}$	V

Ejemplo:

p: Una mano tiene 5 dedos.

 $\sim p$: Una mano **no** tiene 5 dedos (No es verdad que una mano tiene 5 dedos)

Como v(p) = V entonces $v(\sim p) = F$

• Conjunción: \land

La unión de dos proposiciones p, q por medio del conectivo "y" se denomina

conjunción de proposiciones. En símbolos: $p \wedge q$

Su tabla de verdad es:

p	q	$p \wedge q$
V	V	V
V	F	F
\mathbf{F}	V	F
F	F	F

• Disyunción: \vee

La unión de dos proposiciones p, q por medio del conectivo "o" se denomina **disyunción** de proposiciones. En símbolos: $p \lor q$.

Su tabla de verdad es:

p	q	$p \lor q$
V	V	V
V	F	V
\mathbf{F}	V	V
F	F	F

• Implicación: \Rightarrow

La **implicación** de dos proposiciones p,q es al proposición: "si p entonces

q". En símbolos: $p \Rightarrow q$.

Su tabla de verdad es:

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

 $p \Rightarrow q$.

antecedente

consecuente

Obs. Si el antecedente es falso, la implicación SIEMPRE resulta verdadera. **Obs.** Otras formas de escribir $p \Rightarrow q$ pueden ser:

- Si p, q.
- Sólo si q, p.
- q, si p.

- p es condición suficiente para q.
- q es condición necesaria para p.

• Equivalencia o doble implicación: \Leftrightarrow

La **equivalencia** de dos proposiciones p,q es al proposicón: "p si y sólo si

q". En símbolos: $p \Leftrightarrow q$.

Su tabla de verdad es:

p	q	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	${ m F}$	V

Obs. Es verdadera únicamente cuando ambas proposiciones tiene el MISMO valor de verdad.

Obs. $p \Leftrightarrow q$ también puede escribirse como $(p \Rightarrow q) \land (q \Rightarrow p)$.

Si tenemos una proposición que involucra una, dos o más proposiciones y conectivos lógicos podemos determinar su valor de verdad mediante **tablas de verdad**.

Ejemplo:

1)
$$p \land \sim p$$

p	$\sim p$	$p \wedge \sim p$
V	F	F
F	V	F

2)
$$(p \Rightarrow q) \Leftrightarrow (\sim p \lor q)$$

p	q	$p \Rightarrow q$	$\sim p$	$\sim p \vee q$	$(p \Rightarrow q) \Leftrightarrow (\sim p \lor$
V	V	V	F	V	V
V	\mathbf{F}	F	F	F	V
F	V	V	V	V	\mathbf{V}
\mathbf{F}	F	V	V	V	V

3) $p \land \sim (q \Rightarrow r)$

p	q	r	$p \Rightarrow r$	$\sim (p \Rightarrow r)$	$p \land \sim (q \Rightarrow r)$
V	V	V			
V	V	\mathbf{F}			
V	F	V			
V	F	F			
F	V	V			
\mathbf{F}	V	F			
F	F	V			
F	F	F			

Obs. La cantidad de filas en una tabla de verdad correspondiente a una proposición es 2^n , donde n es el número de proposiciones simples involucradas en la proposición.

Diremos que una proposición o fórmula que involucra a proposiciónes simples: p, q, r, etc. es una:

- TAUTOLOGÍA: Si siempre es verdadera, independientemente de los valores de verdad de p, q, r, etc.
- \bullet CONTRADICCIÓN: Si siempre es **falsa**, independientemente de los valores de verdad de p,q,r, etc.
 - CONTINGENCIA: Si no es ni tautología, ni contradicción.

Equivalencia lógica: Diremos que dos proposiciones p y q son equivalentes si la proposición $p \Leftrightarrow q$ es una tautología.

Implicación lógica: Diremos que una proposición p implica lógicamente a una proposición q si la proposición $p \Rightarrow q$ es una tautología.

Implicaciones asociadas: Sea $p \Rightarrow q$ una implicación a la cual llamaremos **directa**. Asociada a ella tenemos las siguientes implicaciones:

- Recíproca: $q \Rightarrow p$. • Contraria: $\sim p \Rightarrow \sim q$.
- Contrarrecíproca: $\sim q \Rightarrow \sim p$.

Equivalencias lógicas de uso frecuente

1.- Doble negación:

2.- Leyes conmutativas:

$$(p \lor q) \Leftrightarrow (q \lor p)$$

$$(p \land q) \Leftrightarrow (q \land p)$$

3.- Leyes asociativas:

$$[(p \lor q) \lor r] \Leftrightarrow [p \lor (q \lor r)]$$

$$[(p \land q) \land r] \Leftrightarrow [p \land (q \land r)]$$

4.- Leyes distributivas:

$$[p \lor (q \land r)] \Leftrightarrow [(p \lor q) \land (p \lor r)]$$

$$[p \land (q \lor r)] \Leftrightarrow [(p \land q) \lor (p \land r)]$$

5.- Leyes de idempotencia:

$$(p \lor p) \Leftrightarrow p$$

$$(p \land p) \Leftrightarrow p$$

6.- Leyes de De Morgan:

$$\sim (p \lor q) \Leftrightarrow (\sim p \land \sim q)$$

$$\sim (p \land q) \Leftrightarrow (\sim p \lor \sim q)$$

Representando con t una tautología y con c una contradicción:

9.- Leyes de identidad:

$$(p \lor c) \Leftrightarrow p$$

$$(p \lor t) \Leftrightarrow t$$

$$(p \wedge c) \Leftrightarrow c$$

$$(p \wedge t) \Leftrightarrow p$$

Me dice cómo negar una conjunción ó una disyunción

10.- Reducción al absurdo:

$$(p \Rightarrow q) \Leftrightarrow [(p \land \sim q) \Rightarrow \mathbf{c}]$$

7.- Implicación:

$$(p \Rightarrow q) \Leftrightarrow (\sim p \vee q)$$

8.- Contrarrecíproca:

$$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$$

Me permite escribír una implicación en términos de \vee y \sim

$$\sim (p \Rightarrow q) \Leftrightarrow (p \land \sim q)$$

Implicaciones lógicas de uso frecuente

1.- Adición:

$$p \Rightarrow (p \lor q)$$

2.- Simplificación:

$$(p \land q) \Rightarrow p$$

3.- Modus ponens:

$$[p \land (p \Rightarrow q)] \Rightarrow q$$

4.- Absurdo:

$$(p \Rightarrow c) \Rightarrow \sim p$$

5.- Transitividad de la implicación:

$$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$$

Cuantificadores:

Notaremos por P(x) a una propiedad asociada al objeto x.

Ejemplo: x es par.

Def: P(x) es un función proposicional en la variable x si existe al menos una sustitución de x por una constante que la transforme en proposición.

Ejemplo: Consideremos P(x): x+1 es impar entonces

 $P(1): \mathbf{1} + 1$ es impar \longleftarrow es una proposición falsa.

P(2): $\mathbf{2} + 1$ es impar \longleftarrow es una proposición verdadera.

Utilizaremos los conectivos lógicos $(\land, \lor, \sim, \Rightarrow, \Leftrightarrow)$ para relacionar a las funciones proposicionales..

También consideraremos funciones proposicionales en 2, 3 o más variables.

Ejemplo:
$$P(x,y): (x+y)^2 = x^2 + y^2$$

Si $x = 1$ e $y = 2$ entonces $P(1,2): (1+2)^2 = 1^2 + 2^2$ es falsa.

Podemos obtener proposiciones a partir de una función proposicional P(x)de las siguientes formas:

• Particularizando ésta, es decir, dándoles valores a la variable.

• Anteponiéndole un cuantificador

1)
$$\forall x : P(x)$$
 (para todo x se cumple $P(x)$)

1) $\forall x : P(x)$ (para todo x se cumple P(x)) 2) $\exists x : P(x)$ (para algún x se cumple P(x))

Sea A un conjunto de posibles valores de x:

- 1) La proposición $\forall x \in A : P(x)$ se lee "para todo x en A se cumple P(x)" y es **verdadera** si para cada $c \in A$, P(c) es verdadera.
- 2) La proposición $\exists x \in A : P(x)$ se lee "existe un elemento x en A que cumple P(x)" ó "algún x de A cumple P(x)",

y es **verdadera** si al menos hay un valor $a \in A$ que hace que P(a) sea verdadera.

Negación de proposiciones cuantificaddas: Debemos seguir las siguientes reglas:

$$\bullet \sim (\forall x \in A : P(x)) \Leftrightarrow \exists x \in A / \sim P(x))$$

$$\bullet \sim (\exists x \in A/P(x)) \quad \Leftrightarrow \quad \forall x \in A : \sim P(x))$$

De esto se desprenden las siguientes equivalencias útiles:

•
$$\forall x \in A : P(x) \Leftrightarrow \sim (\exists x \in A / \sim P(x)))$$

•
$$\exists x \in A/P(x)$$
 \Leftrightarrow $\sim (\forall x \in A : \sim P(x)))$

Métodos de demostración:

Def. Un **teorema** es un enunciado que es verdadero y que es necesario demostrar. Consta de dos partes:

Hipótesis.

Tesis.

Simbólicamente:

$$H \Rightarrow T$$

Demostrar un teorema es demostrar que la implicación $H\Rightarrow T$ es verdadera. Se pueden utilizar los siguientes métodos:

1) Método directo: $H \Rightarrow T$

Consiste en suponer que las hipótesis son verdaderas y utilizarlas para demostrar mediante reglas de inferencias válidas que la tesis también lo es.

2) <u>Métodos indirectos:</u>

a) Contrarrecíproco o cantrapositiva: $\sim T \Rightarrow \sim H$

Consiste en aplicar el método directo para probar la implicación $\sim T \Rightarrow \sim H$. Es decir, suponer que la negación de la tesis es verdadera y utilizarla para probar la negación de la hipótesis.

b) Reducción al absurdo: $H \wedge \sim T \Rightarrow Abs$.

Consiste en suponer que $H \Rightarrow T$ es falsa, es decir, que la hipótesis y la negación de la tesis son verdaderas a la vez y llegar a un absurdo.

Obs: 1) En ningún método se puede suponer que la tesis es verdadera.

2) Para demostrar un enunciado de la forma $p \Leftrightarrow q$ debemos probar los teoremas $p \Rightarrow q$ y $q \Rightarrow p$.