NAND SSD 与 3DXPoint 产品与 DRAM 的性能比较

性能\产品容量	Intel SSD D3-S4510 Series(TLC)	Intel SSD DC P4510 Series(TLC)	Intel Optane SSD DC P4800X Series	Intel Optane DC Persistent Memory Module 128GB	DRAM:32GB Micron DDR4 2666 MHz
上市时间	Q3'18	Q3'17	Q1'17	Q2'19	
顺序读	560MB/s	3200MB/s or 26.6GB/s	2400MB/s	66GB/s or 38.9GB/s	105.9GB/s
顺序写	280MB/s	2000MB/s	2000MB/s	15.96GB/s or 11.5GB/s	52.3GB/s
随机读	90,000 IOPS	637000 IOPS or 5,263,647 IOPS	0.55 million IOPS	13.2 million IOPS or 10.3GB/s	70.4GB/s
随机写	16000 IOPS	81500 IOPS	0.50 million IOPS	0.98 million IOPS	未给出
读延迟	36µs	77μs or 191.4μs	10μs	12.1μs or 305ns	81ns
写延迟	37μs	18µs	10μs	60μs or 94ns	86ns
电源-活动	2.4W	12W	18W	20W (peak)	
电源-闲置	1.0W	5W	5W	未给出 idle 时的瓦数,只 给出了 15W (average)	
耐用等级(终身写入)	0.9 PBW	2.61 PBW	20.5 PBW		
Warranty Period	5 yrs	5 yrs	5 yrs	5 yrs	
Form Factor	2.5"7mm	2.5"15mm	HHHL(CEM3.0)	Persistent Memory Module (PMM)	
Interface	SATA 3.0 6Gb/S	PCI NVMe 3.0 x4	PCIe NVMe 3.0 x4	DRR-T(与 DDR4 共用 一个机电接 口)	DDR4

备注:

- 1. 上表中黑色字体数据来源于 Intel 官网的产品比较 https://www.intel.com/content/www/us/en/products/compare-products.html/memory-storage?productlds=97162,190348,134910,122580;
- 2. 上表中红色字体数据来源于"Basic Performance Measurements of the Intel Optane DC Persistent Memory Module" https://arxiv.org/pdf/1903.05714.pdf; 其实验配置如下:

# Sockets	2		
Microarch	Intel Cascade Lake-SP (engineering sample)		
CPU Spec.	24 Cores at 2.2 GHz (Turbo Boost at 3.7 GHz)		
L1 Cache	32 KB i-Cache & 32 KB d-Cache (per-core)		
L2 Cache	1 MB (per-core)		
L3 Cache	33 MB (shared)		
DRAM Spec.	32 GB Micron DDR4 2666 MHz (36ASF4G72PZ)		
Total DRAM	384 GB [2 (socket) \times 6 (channel) \times 32 GB]		
NVMM Spec.	256 GB Intel Optane DC 2666 MHz QS (NMA1XXD256GQS)		
Total NVMM	3 TB [2 (socket) \times 6 (channel) \times 256 GB]		
Storage (NVMe)	Intel Optane SSD DC P4800X 375 GB		
Storage (SATA)	Intel SSD DC S3610 1.6 TB (MLC)		
GNU/Linux Distro	Fedora 27		
Linux Kernel	4.13.0		
CPUFreq Governor	Performance		
Hyper-Threading	Disabled		
NVDIMM Firmware	01.01.00.5253		
Avg. Power Budget	15 W		
Peak Power Budget	20 W		
Transparent Huge Page (THP)	Enabled		
Kernel ASLR	Disabled		
KPTI & Security Mitigations	Not Applied		

3. 上表中蓝色字体数据来源于" Supermicro SuperServer with Intel Optane DC Persistent Memory First Look Review"

https://www.storagereview.com/supermicro_superserver_with_intel_optane_dc_persistent_memory_first_look_review;

其实验配置如下:

Supermicro SuperServer 1029U-TN10RT Specifications

- Chassis Ultra 1U SYS-1029U-TN10RT
- CPU 2 x Intel Xeon Scalable 8268 (2.9GHz, 24C)
- Storage 10 x Intel DC P4510 2TB NVMe SSD, 1DWPD
- DRAM 12 x 32GB DDR4-2933
- Persistent Memory 12 x 128GB DDR4-2666 Intel Optane DC PMMs
- Network 2 x 10GBaseT
- 4. **PBW(生命周期内总写入容量)= SSD 容量 x DWPD x 天数。** DWPD, (Diskful Writes Per Day),每日整盘写入次数,指在预期寿命内可每日完整写入 SSD 固态硬盘所有容量的次数。
- 5. 上表中有些性能项的数据有较大差异,可能是与实验平台配置有关,但我们给与各色字体的可信度排序:黑色>红色>蓝色。

另外,找到一个简单的性能比较表格,但是性能数据和上面的表格有差异。

表格来源: "内存模型系列(下)- 内存持久性模型(Memory Persistency)",

https://blog.csdn.net/maokelong95/article/details/81199226#fn3

存储器	读取延迟	写入延迟	字节可寻址	非易失性
DRAM ²	50ns	50ns	是	否
NAND FLASH ³	10µs	10µs	否	是
3D XPoint ³	100ns	500ns	是	是

表中数据来源引用:

- 2. Mittal S, Vetter J S. A survey of software techniques for using non-volatile memories for storage and main memory systems[J]. IEEE Transactions on Parallel and Distributed Systems (TODS'16), 2016, 27(5): 1537-1550.
- 3. Raghu Kulkarni. Persisent Memory and NVDIMMs [C]. Flash Memory Summit 2018. SNIA. 2018.

另外,找到一个表格,表格中的 PCM 读/写操作时间与前两个表格中 3DXPoint 产品的读/ 写操作时间也有差异,但从读/写操作时间的数量级和单位(ns)上来看,3DXPoint 与 PCM 相 似。

现有芯片 特征 遗操作 写操作 寿命 数据 写操作 空闲 非易失 读过程 当前主要 理论工艺 参数 尺寸[1] 保持力 时间 功耗[2] 功耗 技术瓶颈 容量级别 制程级别 时间 (耐久性) 性质 破坏性 需刷新,易失,作 $>10^{15}$ DRAM ~16 Gb ~20 nm 6~10 F2 <10 ns <10 ns 刷新 破坏性 $\sim 0.1 \, \text{nI/b}$ 高 易失 为内存工艺制程 有限 寿命/性能有限, NAND $10^4 \sim 10^6$ 10 年 非易失 非破坏 $\sim 1 \, \mathrm{Th}$ $\sim 16 \,\mathrm{nm} \quad 4 \sim 11 \,\mathrm{F}^2 \quad 10 \sim 50 \,\mu\mathrm{s} \quad 0.1 \sim 1 \,\mathrm{ms}$ 0.1 \sim 1 nJ/b 低 存储密度较低 容量小,写功耗 \sim 32 nm 16 \sim 60 F² 2 \sim 20 ns $10^{12} \sim 10^{15}$ >10 年 1.6~5 nJ/b STT-RAM ∼64 Mb $5\sim35\,\mathrm{ns}$ 非易失 非破坏 较大,稳定性差 材料级存储机 $10^8 \sim 10^{10}$ RRAM ${\sim}11\,\text{nm}\quad 4{\sim}14\,\text{F}^2\quad 10{\sim}50\,\text{ns}\quad 10{\sim}50\,\text{ns}$ \sim 0.1 nJ/b 非易失 非破坏 理尚不明确 容量小, 具有读 FeRAM \sim 64 MB \sim 65 nm 15 \sim 34 F² 20 \sim 80 ns $10^{12} \sim 10^{14}$ 10 年 < 1 nJ/b $5 \sim 10 \, \text{ns}$ 低 非易失 破坏性 破坏性,存储密 度低 容量较小,材料 $4\sim8\,\mathrm{F}^2$ 10~100 ns 20~120 ns 108~10¹² >10 年 PCM $\sim 8 \text{Gh}$ $\sim 5 \, \mathrm{nm}$ <1 nJ/b低 非易失 非破坏 可操作温度范围 狭窄

表 1 存储技术参数(典型值)对比

表格来源:

冒伟, 刘景宁, 童薇, 等. 基于相变存储器的存储技术研究综述[J]. 计算机学报, 2015, 38(5): 944-960.