ATM Implied Volatility for Constant Maturity Term Structure

Understanding Market Expectations Through Volatility

Presented by: Iulian "Syca" Costan

June 28, 2025

Key Concepts

At-the-Money (ATM) Options

Options with strike prices equal or very close to the current market price of the underlying asset.

Implied Volatility (IV)

A forward-looking measure derived from option prices that represents the market's expectation of future price fluctuations.

Constant Maturity

A standardization method that fixes time-to-expiration values (e.g., 30, 60, 90 days) for consistent comparison across different time periods.

Term Structure

The relationship between a financial variable (like implied volatility) and different time horizons, showing how expectations change over various maturities.

At-the-Money (ATM) Options

What are ATM Options?

An option is considered **At-the-Money (ATM)** when its strike price is equal or very close to the current market price of the underlying asset.

Why ATM Options Matter

- Most liquid options in the market
- Balanced sensitivity to price changes (delta ≈ 0.50)
- · Maximum time value and gamma
- Benchmark for volatility analysis

ATM Options in Volatility Analysis

ATM options provide the clearest signal of market's volatility expectations because they:

- Are less affected by volatility skew
- Have the highest trading volume
- Provide the most reliable implied volatility readings

Implied Volatility

What is Implied Volatility?

Implied Volatility (IV) is a forward-looking measure derived from option prices that represents the market's expectation of future price fluctuations of the underlying asset.

Key Characteristics

- Derived from option pricing models (e.g., Black-Scholes)
- Expressed as an annualized percentage
- Reflects market sentiment and expected uncertainty
- Tends to increase during market stress and decrease during calm periods

Option Price = f(Underlying Price, Strike Price,
Time to Expiry, Interest Rate, Implied Volatility)

Implied Volatility vs. Historical Volatility

- Implied Volatility: Forward-looking, market expectation
- Historical Volatility: Backward-looking, actual past price movements
- The difference between the two can signal market sentiment shifts
- Trading strategies often exploit the relationship between these measures

Constant Maturity Term Structure

Term Structure Concept

Term Structure refers to the relationship between a financial variable (like implied volatility or interest rates) and different time horizons or maturities.

Constant Maturity Standardization

Constant Maturity is a method that standardizes data points to fixed time horizons (e.g., 30, 60, 90 days), allowing for consistent comparison across different periods regardless of actual expiration dates.

Common Term Structure Shapes

- Normal (Upward): Longer maturities show higher values
- Inverted (Downward): Shorter maturities show higher values
- · Flat: Consistent values across all maturities
- **Humped:** Mid-term maturities show highest values

Visualizing Term Structure

Applications

- Comparing volatility expectations across different time horizons
- Identifying market anomalies and trading opportunities
- Assessing market sentiment about future events
- Risk management and derivatives pricing

ATM Implied Volatility Term Structure

Combining the Concepts

ATM Implied Volatility Term Structure combines:

- At-the-Money options (most liquid, balanced sensitivity)
- Implied volatility (market's expectation of future volatility)
- Constant maturity (standardized time horizons)

Key Parameters

The term structure can be summarized by three key parameters:

- Short-term IV (e.g., 30-day)
- Long-term IV (e.g., 2-year)
- Implied earnings effect (event-specific jumps)

Why It Matters

- Provides standardized volatility expectations across time
- Enables comparison between different assets and periods
- · Reveals market sentiment about future uncertainty

Reading the Term Structure

- Contango: Upward sloping curve indicating higher volatility expected in longer-term
- Backwardation: Downward sloping curve indicating higher volatility expected in near-term
- Kinks: Indicate expected volatility around specific events (earnings, economic releases)

Applications in Trading

Trading Strategies

Volatility Spread Trading

Exploiting differences between implied volatilities across different maturities when term structure appears distorted.

Mean Reversion Plays

Trading on the expectation that extreme term structure shapes will normalize over time.

Event-Driven Strategies

Identifying opportunities around known events (earnings, economic releases) by analyzing kinks in the term structure.

Volatility Surface Arbitrage

Exploiting inconsistencies across both strike prices and maturities in the volatility surface.

Risk Management Applications

Practical Implementation

- Use ATM options for each maturity to construct the term structure
- Standardize to constant maturities (30, 60, 90, 180 days)
- Track changes in the shape over time
- Compare current term structure to historical patterns

Analysis Techniques

Quantitative Methods

Curve Fitting

Using mathematical models (polynomial, exponential, or spline functions) to fit the term structure curve for smoother analysis.

Principal Component Analysis (PCA)

Decomposing term structure movements into key factors: level (parallel shifts), slope (steepening/flattening), and curvature.

Regression Analysis

Identifying relationships between term structure parameters and market factors or future returns.

Key Metrics

- Term Structure Slope: Difference between long and shortterm IV
- Term Structure Curvature: Deviation from linear relationship
- Historical Percentiles: Current levels relative to historical ranges

Visualization Techniques

Practical Analysis Framework

- 1. Collect ATM option prices across multiple expirations
- 2. Calculate implied volatilities using option pricing models
- 3. Interpolate to create constant maturity points
- 4. Analyze the shape and compare to historical patterns
- 5. Identify anomalies and potential trading opportunities

Market Insights

Reading Market Sentiment

Normal Term Structure (Contango)

Indicates stable market conditions with higher uncertainty for longer-term horizons.

Inverted Term Structure (Backwardation)

Signals immediate market stress or anticipated nearterm events causing uncertainty.

Flat Term Structure

Suggests uniform uncertainty across time horizons, often seen during transitions between market regimes.

Kinks and Anomalies

Reveal specific event expectations (earnings, economic releases, corporate actions) at particular time horizons.

Predictive Power

Case Studies

- Market Crashes: Steep backwardation often precedes significant market corrections
- Earnings Season: Kinks in term structure around expected earnings dates
- Economic Releases: Term structure shifts before major economic announcements
- **Sector Rotation:** Different sectors show varying term structure patterns during market transitions

Conclusion

- **Powerful Analytical Tool:** ATM Implied Volatility for Constant Maturity Term Structure provides a standardized framework for analyzing market expectations across different time horizons.
- Market Sentiment Indicator: The shape and changes in the term structure reveal valuable insights about market sentiment, expected events, and potential regime shifts.
- Frading Opportunities: Understanding the term structure helps identify mispricing, arbitrage opportunities, and optimal positioning for various market conditions.
- Risk Management: Incorporating term structure analysis into risk models improves hedging strategies and provides a more comprehensive view of potential market scenarios.
- **Continuous Learning:** The term structure is dynamic and evolving, requiring ongoing analysis and adaptation to extract maximum value from this powerful concept.