

Meet the Team

Arjun Putcha B.S. Biomedical Engineering, Class of 2022

Drug Misuse is a major problem in the US

Opioid Crisis

In 2019 alone, about 50,000 people died from overdose 1

Misuse of prescriptions 21-29% of patients misuse their prescribed opioids ²

Drug abuse is only growing

Need to keep improving ways to stop drug abuse

How we approached the data

Subset the Data

• Features: Variables not explicitly related to questions about drug use. Included variables about alcohol, tobacco, and cannabis use

Setting up for Machine Learning

- One-hot encoding of categorical variables, compare classification models
- Models compared: SVM, Decision Tree (with AdaBoost), Bagging, Logistic Regression, Random Forest

Stratify Data and Run Models

- Stratification on: Income, Age, Region
- Models used: Logistic Regression, PCA + Logistic Regression, Random Forest

Evaluate Model Performance

- Confusion matrices
- Accuracy scores, Features_importances

Model Performance

Demographics + Alcohol, Tobacco, Marijuana, and OTC use

		US	US_NE	US_Midwest	US_South	US_West
PCA + Logistic Regression	Accuracy	0.94	0.944	0.953	0.929	0.931
	Specificity	0.01	0.03	0.01	0.01	0.02
	Sensitivity	1	1	1	1	1
Random Forest Tree	Accuracy	0.94	0.945	0.952	0.928	0.933
	Specificity	0.02	0.03	0.01	0.01	0.02
	Sensitivity	1	1	1	1	1

Model Performance

Demographics + Alcohol, Tobacco, Marijuana, and OTC use

		Age				Income						
		18-24	25-34	35-44	45-54	55-64	65+	< \$25K	[\$25K, \$50K)	[\$50K, \$75K)	[\$75K, \$100K)	>\$100K
Logistic Regression	Accuracy	0.879	0.874	0.891	0.933	0.962	0.983	0.931	0.93	0.941	0.941	0.947
	Specificity	0.12	0.07	0.06	0.03	0	0.03	0.05	0.03	0.08	0.18	0.14
	Sensitivity	0.98	0.98	0.98	1	1	1	0.99	0.99	1	0.99	0.99
Random Forest Tree	Accuracy	0.884	0.88	0.898	0.934	0.963	0.983	0.933	0.934	0.939	0.937	0.95
	Specificity	0.04	0.07	0.05	0	0	0	0.02	0.03	0.05	0.03	0.03
	Sensitivity	1	0.99	0.99	1	1	1	1	1	1	1	1

Logistic Regression specificity has the highest average across Income -> fewer false positives

Most important features

TOB_LIFE DEM AGE10 MENT_NONE PAIN_CHRONICYR ALC_USE

Our approach achieves high accuracy

88%

minimum accuracy achieved by our Logistic Regression and Random Forest Models

 Low specificity (high false positives), High sensitivity (low false negative) across models

Type I and Type II errors

- With relatively higher occurrences of false positives, we run a greater risk of predicting someone to safely use their medically prescribed opioid, when they actually will use it for a non-medical purpose
 - There is room for improvement here
- However, with low occurrences of false negatives, our model is less likely to falsely assume someone will abuse their prescribed opioids

Outlook

 Part of our analysis included feature variables related to specific drug questions. This model achieved nearly 100% accuracy, so further research can be done to see which questions about drug use should be included in a survey

		Demographics + Drug Data
PCA+ Logistic Regression	n Accuracy	0.998
	Specificity	0.98
	Sensitivity	1
Logistic Regression	Accuracy	0.995
	Specificity	0.96
	Sensitivity	1
Random Forest Tree	Accuracy	0.994
	Specificity	0.96
	Sensitivity	1