Serial Number:

Roll Number:

Important

- Any malpractice will lead to instant fail grade.
- This is a question paper and answer sheet. Please provide only final answers in the spaces provided. Do not include derivations or proofs. You will be given a 8-page booklet for rough work.
- Write your roll number and "serial number" in this sheet.
- No breaks during the exam. No books, notes or electronic devices allowed.

Have a good test, and try listening to Opeth

Instructions: Provide only the final answers for the below questions.

1. (1 mark) Suppose X is a real-valued continuous random variable with density f(x) such that f(x) = 0 for all x < 0 and all x > 3. Then the maximum possible value of h(X) is

Answer:

2. (1 mark) Suppose X is a real-valued continuous random variable with density f(x) such that

$$\int_{-\infty}^{\infty} x^2 f(x) \, dx = a$$

for some real number a > 0. Then the maximum possible value of h(X) is

Answer:

3. (1 mark) Let X be a continuous random variable, and let Y be obtained by quantizing X using a step size of Δ , i.e., $Y = \lfloor \frac{X}{\Delta} \rfloor$, where $\lfloor x \rfloor$ denotes the largest integer smaller than or equal to x. As $\Delta \to 0$, what is the approximate relation between h(X) and H(Y).

4. (1 mark) The entropy power of a continuous random

Answer:

variable X is equal to

Answer:

5. (1 mark) Consider any set $B \subset \mathbb{R}^n$, and assume that X_1, \ldots, X_n are iid with each X_i having the same density as the continuous random variable X. If n is sufficiently large and $P[(X_1, ..., X_n) \in B] \ge 1 - \epsilon$, then the volume of B is lower bounded by

Answer:

6. (1 marks) If (X_1, X_2) is a two-dimensional Gaussian random vector with covariance matrix

$$\boldsymbol{K} = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix},$$

then what is the value of $I(X_1; X_2)$?

Answer:

7. (2 marks) Suppose X is a discrete random variable with $\mathcal{X} = \{0, 1, 2, 3, \dots\}$ and U is a continuous random variable with uniform distribution in [0, 0.5]. Let Y = X + U, where X and U are independent. What is the relation between h(Y) and H(X)?

Answer:

8. (2 marks) Suppose X has density function $f(x) = 3x^2$ for $0 \le x \le 1$ and f(x) = 0 otherwise. Approximately draw/sketch the typical set $A_{\epsilon}^{(n)}$ for the twodimensional case n=2. Ensure that you clearly highlight the typical set in your sketch. You don't have to use the correct value of h(X) to generate the sketch.

Answer: