DETECCIÓN DE CÁNCER MEDIANTE REDES NEURONALES CONVOLUCIONALES

Por Otto F. Wagner

www.ottofwagner.com

ofwagner@ottofwagner.com

Proyecto Fin de Máster dirigido por:

Dr. Fernando Corbacho

Dr. Manuel Sánchez-Montañés

Índice

1. Introducción y Contexto

2. Modelo y Resultados

3. Conclusiones

Introducción y Contexto

El cáncer es una de las mayores causas de mortalidad y morbilidad

• 18,1 millones de casos que causan 9,6 millones de muertes al año.

La IA una ayuda eficaz

- Una primera exploración suele estar acompañada por radiografías.
- Esta tarea consume mucho tiempo, ya que, requiere que radiólogos expertos estudien las imágenes.
- Dos problemas que pueden provocar un error de diagnóstico:
 - Fatiga del profesional.
 - Falta de experiencia diagnóstica en áreas del mundo donde los radiólogos no están disponibles (Rajpurkar et al., 2018).
- La Inteligencia Artificial puede ayudar al diagnóstico precoz de estas enfermedades.

Un caso concreto, la radiografía de tórax

- Para enfocar el uso de esta tecnología nos centraremos en las radiografías de tórax.
- La base de datos del estudio está formada por una muestra aleatoria de 5,606 imágenes de la base de datos del *National Institute of Health: Chest X-ray Dataset Sample* (2017), y su correspondiente etiquetado.
- Nos centraremos en la localización de masas y nódulos. 553 (9.86%) radiografías presentan alguno de estos hallazgos.

Un caso concreto, la radiografía de tórax

Edad Media	46.7 años
Edad Mínima	1 día
Edad Máxima	94 años
Mujeres	44%
Hombres	56%
Imágenes Anteroposterior	39%
Imágenes Posteroanterior	61%
N° Raidiografias media por paciente	2.7
Tiempo medio entre radiografías	1.7 años

Imagen de Radiografía 1024 x 1024

Objetivos

- Probar varias arquitecturas de redes neuronales convolucionales usando *transfer learning*.
- Intentar encontrar los mejores hiper-parámetros que configuren las redes.
- Realizar un *benchmarking* de los modelos de redes neuronales frente a otros modelos de Machine Learning evaluando el poder discriminante mediante la curva ROC y el área bajo ésta (AUC).
- Seleccionar un modelo de Deep Learning que constituya nuestra prueba de concepto.

Modelo y Resultados

Fases del modelo

- 1. Conversión de las radiografías en tensores para su tratamiento a través de la red.
- 2. Utilización de las capas de una red convolucional pre-entrenada (transfer learning) para la extracción de las características principales de las imágenes.
- 3. Entrenamiento de las últimas capas del modelo con una red neuronal artificial profunda (*Multilayer Perceptron*) versus modelos *benchmarking*. Tratamiento del balanceo.
- 4. De manera complementaría se ha sustituido la red neuronal artificial profunda por tres modelos: regresión logística, random forest y gradient boosting classifier.

Las redes convolucionales funcionan adecuadamente para este problema

- Nos ayudarán a extraer características generales de las imágenes.
- Usaremos transfer learning en las capas convolucionales y de pooling.
- Entrenaremos las capas densas.

	AlexNet	GoogLeNet	VGGNet-16	ResNet-50
Atelectasia	0,65	0,63	0,63	0,71
Cardiomegalia	0,69	0,71	0,71	0,81
Derrame	0,66	0,69	0,65	0,74
Infiltración	0,60	0,61	0,59	0,61
Masa	0,56	0,54	0,51	0,56
Nódulo	0,65	0,56	0,66	0,72
Neumonía	0,55	0,60	0,51	0,63
Neumotórax	0,74	0,78	0,75	0,79

El transfer learning es nuestro gran aliado

La arquitectura VGGNet es la que mejor funciona

ConvNet Configuration							
A	A A-LRN B C D E						
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
nayers					layers		
		nput (224 \times 2					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	•	max	pool				
			4096				
		FC-	4096				
		FC-	1000				
		soft-	-max				
				_			
Network		A,A-I	RN B	C	D E		
	f paramete	rs 133	3 133	134	138 144		

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 256, 256, 3)	0
block1_conv1 (Conv2D)	(None, 256, 256, 64)	1792
block1_conv2 (Conv2D)	(None, 256, 256, 64)	36928
block1_pool (MaxPooling2D)	(None, 128, 128, 64)	0
block2_conv1 (Conv2D)	(None, 128, 128, 128)	73856
block2_conv2 (Conv2D)	(None, 128, 128, 128)	147584
block2_pool (MaxPooling2D)	(None, 64, 64, 128)	0
block3_conv1 (Conv2D)	(None, 64, 64, 256)	295168
block3_conv2 (Conv2D)	(None, 64, 64, 256)	590080
block3_conv3 (Conv2D)	(None, 64, 64, 256)	590080
block3_pool (MaxPooling2D)	(None, 32, 32, 256)	0
block4_conv1 (Conv2D)	(None, 32, 32, 512)	1180160
block4_conv2 (Conv2D)	(None, 32, 32, 512)	2359808
block4_conv3 (Conv2D)	(None, 32, 32, 512)	2359808
block4_pool (MaxPooling2D)	(None, 16, 16, 512)	0
block5_conv1 (Conv2D)	(None, 16, 16, 512)	2359808
block5_conv2 (Conv2D)	(None, 16, 16, 512)	2359808
block5_conv3 (Conv2D)	(None, 16, 16, 512)	2359808
block5_pool (MaxPooling2D)	-	0
Total params: 14,714,688 Trainable params: 14,714,688 Non-trainable params: 0		

Utilizamos 3 capas densas para entrenar

Layer (type)	Output	Shape	Param #
dropout_17 (Dropout)	(None,	512)	0
batch_normalization_25 (Batc	(None,	512)	2048
dense_25 (Dense)	(None,	30)	15390
dropout_18 (Dropout)	(None,	30)	0
batch_normalization_26 (Batc	(None,	30)	120
dense_26 (Dense)	(None,	20)	620
batch_normalization_27 (Batc	(None,	20)	80
dense_27 (Dense)	(None,	1)	21
Total params: 18,279 Trainable params: 17,155 Non-trainable params: 1,124			

None

Benchmarking

La arquitectura VGGNet junto al MLP da los mejores resultados

		VGGNet-16		VGGNet-19		ResNet-50	
		0	1	0	1	0	1
tica	Score Avg.	0.	74	0.	74	0	.7
ogíst	Precision	0.88	0.1	0	0.1	0.9	0
Regresión Logística	Recall	0.02	0.97	0	1	1	0
gresi	F1-Score	0.04	0.18	0	0.18	0.95	0
Re	AUC	0	59	0.55		0.51	
,	Score Avg.	0.9		0.9		0.9	
Random Forest	Precision	0.9	0	0.9	0	0.9	0
om 1	Recall	1	0	1	0	1	0
Rand	F1-Score	0.95	0	0.95	0	0.95	0
д	AUC	0	54	0.51		0.52	
_	Accuracy Avg.	0.0	64	0.	49	0.	44
rona	Precision	0.93	0.16	0.92	0.12	0.91	0.11
Red Neuronal	Recall	0.65	0.59	0.48	0.66	0.43	0.61
Red	F1-Score	0.76	0.25	0.63	0.21	0.58	0.18
	AUC	0.0	62	0.	63	0.	56

ROC: ninguno de los modelos discriminan lo suficientemente bien

ResNet-50

CNN + Regresión Logística

		DEFE	сто	GRID SEARCH		
		0	1	0	1	
g	Score Avg.	0.	74	0.7	'3	
Regresión Logística	Precission	0.88	0.1	0.91	0.11	
ión L	Recall	0.02	0.97	0.41	0.65	
egres	F1-Score	0.04	0.18	0.57	0.19	
~	AUC	0.5	59	0.59		
	Accuracy Avg.	0.0	64			
	Precission	0.93	0.16			
MLP	Recall	0.65	0.59			
	F1-Score	0.76	0.25			
	AUC	0.62				

PARÁMETROS POR

CDID CEVDCH

Comentarios a los resultados

- Los resultados aún se encuentran muy alejados de lo deseado
- Esto se debe a:
 - Muestra demasiado pequeña para poder entrenar con cierta fiabilidad.
 - Datos no balanceados.
 - Probables problemas de etiquetado de las radiografías.
 - Equipo poco potente, ausencia de GPUs, no pudiendo realizar un entrenamiento completo.
- La capa de MLP da los mejores resultados incluso cuando a los otros modelos de ML se les realiza un grid search.
- Nos decantamos por la VGGNet-16 al ser más sencilla que la VGGNet-19 y tener mejores resultados AUC = 0.62
- ResNet-50 discrimina peor que las arquitecturas VGGNet: AUC = 0.56

Conclusiones

Conclusiones

- Es una prueba de concepto de cómo se pueden predecir hallazgos patológicos a través del análisis de imágenes radiológicas.
- Este trabajo muestra como trabajar con pocos datos no balanceados.
- Los resultados, lejos de ser buenos, demuestran como las redes neuronales artificiales se pueden combinar con otros modelos (modelos híbridos).
- Los modelos que mejor han funcionado son las redes puras (CNN+MLP).

Mejoras al modelo y posibles líneas de investigación

- Fine tuning de todas las capas o de algunas de la VGGNet-16.
- Entrenamiento completo de la VGGNet-16.
- Trabajar con formatos de mayor calidad en la imagen: dicom o nii.gz.
- Utilización de otras bases de datos de radiografías.
- Clasificación multi-etiqueta de los 14 hallazgos del NIH.
- Construcción de mapas de calor.
- Prueba de otras arquitecturas más complejas.
- Creación de una arquitectura de red convolucional ad-hoc.
- Combinación de CNN con RNN, teniendo en cuenta el histórico de cada paciente.
- Uso de algoritmos de detección de objetos en tiempo real.

GRACIAS!!!

Otto F. Wagner

ofwagner@ottofwagner.com

www.ottofwagner.com

Anexo: etiquetado

	MetaMap			MetaMap MetaMap + Dnorm			orm
Patología	Precision	Recall	F1-Score	Precision	Recall	F1-Score	
Atelectasia	0.95	0.95	0.95	0.99	0.85	0.91	
Cardiomegalia	0.99	0.83	0.90	1.00	0.79	0.88	
Derrame	0.74	0.90	0.81	0.93	0.82	0.87	
Infiltración	0.25	0.98	0.39	0.74	0.87	0.80	
Masa	0.59	0.67	0.62	0.75	0.40	0.52	
Nódulo	0.95	0.65	0.77	0.96	0.62	0.75	
Normal	0.93	0.90	0.91	0.87	0.99	0.93	
Neumonía	0.58	0.93	0.71	0.66	0.93	0.77	
Neumotórax	0.32	0.82	0.46	0.90	0.82	0.86	
Total	0.84	0.88	0.86	0.90	0.91	0.90	

Anexo: formulas performance

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \frac{Precision*Recall}{Precision*Recall}$$

