1 Mageni u.c. npu noom. penino. p. 9.76 a) psg painpeg ch kn ξ -runa magenia, npour ucnormania. 5) grynnyuro painreg on len. u el zpagniu. b) mam oning a guenepeino ch kn. ξ 2) Uposemnoeme moro, rmo rucho usgenia, npour ucnorm, ogger ne menou. a) Psg painpegenenie ch lentre morino nonyumi i nomoujou exemor $\xi = (0,1,2,3,4) - 603$ morino nonyumi i nomoujou exemin $\xi = (0,1,2,3,4) - 603$ morino $\xi = (0,00390615)$ $\xi = (0,1,2,3,4) - 603$ morinomo. $\xi = (0,1,2$	
δ) grynnywo paenreg on len. u - ee $expagnin$ δ) $expansion paenreg on len. expagnin γ) expansion paenreg p$	
6) nam oning a guenepeino en len $\frac{5}{2}$ 2) deposembosme mono, rmo richo uzgenia, apoui uenom, deger ne nuenou $\frac{5}{2}$ 1) log painpegenene en len $\frac{5}{2}$ normo nonymm e nomoujero exemina $\frac{5}{2}$ 2 = $(0,1,2,3,4)$ - bozmorinne $\frac{5}{2}$ norme en len $\frac{5}{2}$ 2 normo noerumamo lenaemnoemo. 10 py (0) = $0,75^{\circ} \cdot 0,25^{\circ} \cdot 0,$	
6) war oning a giveneration on less, ξ 2) deposition from more, the rest was according an appearance of less and the second of the second	
2) Howempoons more, rome reconsispense, speak comm, Types ne were well as painting painting more continuous c	
Py (0) = 0,75° · 0,254 · Cy = 0,00390625 Py (1) = 0,75° · 0,255 · Cy = 0,0048875 Py (2) = 0,75° · 0,255 · Cy = 0,046875 Py (3) = 0,75° · 0,256 · Cy = 0,41875 Py (4) = 0,75° · 0,256 · Cy = 0,41875 Py (4) = 0,75° · 0,256 · Cy = 0,41875 Py (2) = 0,75° · 0,256 · Cy = 0,41875 Py (3) = 0,75° · 0,256 · Cy = 0,41875 Py (4) = 0,75° · 0,256 · Cy = 0,41875 Py (5) = 0,75° · 0,256 · Cy = 0,41875 Py (6) = 0,75° · 0,256 · Cy = 0,41875 Py (7) = 0,75° · 0,256 · Cy = 0,41875 Py (8) = 0,75° · 0,256 · Cy = 0,41875 Py (9) = 0,75° · 0,256 · Cy = 0,41875 Py (10) = 0,756 · 0,256 · Cy = 0,41875 Py (10) = 0,756 · 0,256 · Cy = 0,41875 Py (10) = 0,756 · 0,256 · Cy = 0,41875 Py (10) = 0,756 · 0,256 · Cy = 0,41875 Py (10) = 0,7	
$ \xi = (0, 1, 2, 3, 4) - 603 \text{ moreme a name en len. No exemp Expaymen} $ months noterumant lepasemnocms. $ P_{4}(0) = 0.75^{\circ} \cdot 0.25^{4} \cdot C_{4}^{\circ} = 0.00390625 $ $ P_{4}(1) = 0.75^{1} \cdot 0.25^{3} \cdot C_{4}^{\circ} = 0.046875 $ $ P_{4}(2) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.109375 $ $ P_{4}(3) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{4}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{4}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(2) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(3) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(5) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(5) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(5) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot 0.25^{\circ} \cdot C_{4}^{\circ} = 0.41875 $ $ P_{5}(5) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot 0.2$	The second second
Nowwo noerumans department. $P_{y}(0) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.00390625$ $P_{y}(1) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.048875$ $P_{y}(1) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.048875$ $P_{y}(1) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.109375$ $P_{y}(2) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.4109375$ $P_{y}(3) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot 0.25^{\circ} \cdot C_{y}^{\circ} = 0.41875$ $P_{y}(4) = 0.75^{\circ} \cdot 0.25^{\circ} \cdot 0.25$	
$\begin{array}{lll} P_{4}(1) = 0.75^{4} \cdot 0.25^{3} \cdot C_{4}^{4} = 0.046875 & P. Ri(0). P_{4}(1). P_{4}(2). P_{4}(3) \\ P_{4}(2) = 0.75^{3} \cdot 0.25^{4} \cdot C_{4}^{4} = 0.109375 & P. g. pacorphigeness \\ P_{4}(3) = 0.75^{3} \cdot 0.25^{4} \cdot C_{4}^{3} = 0.421875 & P. g. pacorphigeness \\ P_{4}(4) = 0.75^{4} \cdot C_{4}^{4} = 9.31640625 & F(x). \end{array}$	
$\begin{array}{lll} P_{4}(1) = 0.75^{4} \cdot 0.25^{3} \cdot C_{4}^{4} = 0.046875 & P. Ri(0). P_{4}(1). P_{4}(2). P_{4}(3) \\ P_{4}(2) = 0.75^{3} \cdot 0.25^{4} \cdot C_{4}^{4} = 0.109375 & P. g. pacorphigeness \\ P_{4}(3) = 0.75^{3} \cdot 0.25^{4} \cdot C_{4}^{3} = 0.421875 & P. g. pacorphigeness \\ P_{4}(4) = 0.75^{4} \cdot C_{4}^{4} = 9.31640625 & F(x). \end{array}$] 4
$P_4(2) = 0,75^{\circ} \cdot 0,25^{\circ} \cdot C_4^{\circ} = 0,2109375$ $P_4(3) = 0,75^{\circ} \cdot 0,25^{\circ} \cdot C_4^{\circ} = 0,421875$ $P_4(4) = 0,75^{\circ} \cdot C_4^{\circ} = 9,31640625$ $F(x)$	P. (5)
Py (4) = 0,75 \ C, 4 = 9,31640625	
and a second parameter of the contract of the	
5) Cynnyce en ben.	
1000390625 6-8<1	
(70)	
0,050 78725, 1 < 3 < 2	
F(3) = 0, 26171875, 2<5<5 FN	*
0, 6 8 35 9 378, 325 27	X
1, 3 > 4	1
	++++
8) $M_3 = \sum_{i \in I} P_i x_i = 0 \cdot P_4(0) + 1 \cdot P_4(1) + 2 \cdot P_4(2) + 3 \cdot P_4(5) + 4 \cdot P_4(4) = 3$	
Воспользушие опред мат опиц дие диспретной вепигино:	

No onjug guenepaux que quenp lenur: D[] = \(\in \mathbb{C}_i -m)^2 \range, rge m= MX =7 T.n. MX hamme pance, bocnows nony znavenew. 2x= P.10). (0-3)2 + P. (1) (4-3)2 + P. (2) (2-3)2 + P. (3) (3-3)2 + P. (4) (48)4. = 9. po + 4.py + 1.p2 + 0 + 1.py = 0,75 1) Beposen, rmo uzg bygem wenoure 3. A= 1 uzg npownu ucnorm, uzgeniñ ne wienowest P(A)= 1 - P(A) = 1- F(3) = 0,7328125 P(5<3) = F(3) 12 Pacing palmon na 1/2 a) namnoems pacopeger reposem en ben. Y=X² E) mam onung. Y a) $f(x) = \begin{cases} \sqrt{3y_2}, & x \in (0; \sqrt{2}) \\ 0, & \text{unore} \end{cases}$ Uzoopazum rpagnin Y= X² > 16 (x)- x² Руниция кусотия жотом шомотомия, поэтому восполз дорицион Ty (y) - Efx (4; (y)) (4; (y)) ; i - bce peruence y (y) - obhamman n Q(x); B naccen crysae: q(x) - x2 10 years

Рассиотрии угастии:

1)
$$y < 0$$
: KA gonom gracome ret represe y $y = x^2 \Rightarrow f_y(y) = 0$

3)
$$y > \frac{Jt^2}{4}$$
: $x = \frac{Jt^2}{4}$

$$f_{\gamma ly} = \begin{cases} \frac{1}{2\sqrt{xy}}, & y \in \{0, \frac{3l^2}{4}\} \\ 0, & unare. \end{cases}$$

$$MY = \int y \cdot \frac{1}{\pi I g} dy = \int \int \frac{1}{y} \sqrt{y} dy = \int \frac{1}{3} \frac{y^{3/2}}{3} \int_{0}^{3/4} - \int \frac{1}{3} \frac{x}{3} \cdot \frac{1}{4} \cdot \frac{x^{2}}{2} = \frac{\overline{J}^{2}}{12}$$