

Workshop on Machine learning – Day2

ML development for classification Problems

Date: 28th Aug 2021

dubrangala@gmail.com

Day 2 Agenda

- General ML model evaluation methods
- Sample Split
- Model Development
 - Random Forest Model
 - XGBoost

Sample Split

Model Training and Evaluation Sample

Split Data

Original Data → 19,158 rows

General Classification Model evaluation Methods

Evaluate the model for classification problems

Confusion matrix

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 - score = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

Precision tells us how many of the correctly predicted cases actually turned out to be positive

Recall tells us how many of the actual positive cases we were able to predict correctly with our model.

F1-score is a harmonic mean of Precision and Recall, and so it gives a combined idea about these two metrics. It is maximum when Precision is equal to Recall.

$$Accuracy = \frac{Number\ of\ Correct\ predictions}{Total\ number\ of\ predictions\ made}$$

Evaluate the model for classification problems

AUC - ROC

ROC is a probability curve and AUC represents the degree or measure of separability

Lift

Lift is a measure of the effectiveness of a predictive model calculated as the ratio between the results obtained with and without the predictive model.

Model Development

Random Forest Model

Random Forest Classifier

Why Random Forest What is Random Forest Random Forest Parameter •n estimators = number of trees in the ☐ No Overfitting forest Use of multiple trees reduce •max_features = max number of the risk of overfitting features considered for splitting a node Random Forest is a method that Training time is less •max depth = max number of levels in operates by multiple decision trees ☐ High Accuracy each decision tree during training phase. •min_samples_split = min number_of Runs efficiently on large The decision of the majority of the trees data points placed in a node before the database is chosen by the random forest as the node is split Estimates missing data final decision. •min_samples_leaf = min number of Random forest maintain data points allowed in a leaf node accuracy when a large •bootstrap = method for sampling data proportion of data is missing points (with or without replacement)

Random Forest

XGBoost Model

XGBoost

- What is XGBoost?
- What is boosting?
- What is gradient boosting?
- Why is XGBoost so good?

XGBoost hyperparameters

Generally, the XGBoost hyperparameters have been divided into 4 categories

General parameters

booster nthread verbosity

Booster parameters

eta; gamma; max_depth; min_child_weight max_delta_step Subsample; tree_method scale_pos_weight etc..

Learning task parameters

objective eval_metric seed

Command line parameters

They are only used in the console version of XGBoost

Q&A