Определение стоимости автомобилей (учебный проект)

Сервис по продаже автомобилей с пробегом «Не бит, не крашен» разрабатывает приложение для привлечения новых клиентов. В нём можно быстро узнать рыночную стоимость своего автомобиля. В нашем распоряжении исторические данные: технические характеристики, комплектации и цены автомобилей. Необходимо построить модель для определения стоимости.

Заказчику важны:

- качество предсказания;
- скорость предсказания;
- время обучения.

Для решении задачи заказчик предоставил датасет:

Признаки:

DateCrawled — дата скачивания анкеты из базы

VehicleType — тип автомобильного кузова

RegistrationYear — год регистрации автомобиля

Gearbox — тип коробки передач

Power — мощность (л. с.)

Model — модель автомобиля

Kilometer — пробег (км)

RegistrationMonth — месяц регистрации автомобиля

FuelType — тип топлива

Brand — марка автомобиля

NotRepaired — была машина в ремонте или нет

DateCreated — дата создания анкеты

NumberOfPictures — количество фотографий автомобиля

PostalCode — почтовый индекс владельца анкеты (пользователя)

LastSeen — дата последней активности пользователя

Целевой признак:

Price — цена (евро)

План работы

- Изучение и подготовка данных
- Обучение моделей
- Анализ моделей
- Тестирование лучшей модели

Подготовка данных

In [89]:

```
import pandas as pd
   import numpy as np
 3 import random
 4
   import seaborn as sea
 5
   import time
 7
   from sklearn.preprocessing import OrdinalEncoder, StandardScaler
 8
   from sklearn.model selection import train test split, cross val score, GridSeard
 9
10 from sklearn.linear model import LinearRegression
   from sklearn.metrics import mean squared error, make scorer
11
12 from sklearn.ensemble import RandomForestRegressor
13 from lightgbm import LGBMRegressor
```

In [90]:

```
1 data_original = pd.read_csv('/datasets/autos.csv')
2 data = data_original
```

In [91]:

```
1 data.columns = ['date_crawled', 'price','vehicle_type','registration_year', 'gea
```

In [92]:

```
1 data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 354369 entries, 0 to 354368
Data columns (total 16 columns):

Column Non-Null Count # Dtype ___ _____ _____ ____ 0 date crawled 354369 non-null object 354369 non-null int64 1 price 2 vehicle type 316879 non-null object 3 registration year 354369 non-null int64 4 gearbox 334536 non-null object 354369 non-null int64 5 power 6 334664 non-null object model 7 354369 non-null int64 354369 non-null int64 8 reg month 321474 non-null object 9 fuel type 10 brand 354369 non-null object 283215 non-null object 11 not repaired 354369 non-null object 12 date created 13 pictures 354369 non-null int64 14 postal code 354369 non-null int64 15 last_seen 354369 non-null object

dtypes: int64(7), object(9)
memory usage: 43.3+ MB

price

У 10772 цена 0, чаще встречается цена от 500 до сих 6 тысяч Строки, где нет цены, удалю, так как это целевой признак Есть цены 1 евро и др <10 евро. Или они ошибочны, или единица измерения - тысяча евро? Хотелось бы эту информацию уточнить у заказчика

```
In [93]:
```

```
data = data.drop(index = data[data.price==0].index, axis=0)
data.price.isna().sum()
```

Out[93]:

0

In [94]:

```
1 data[['price']].boxplot()
```

Out[94]:

<AxesSubplot:>

vehicle_type

Тип кузова: нет данных - 37490, other - 3288. Я предполагала, что для ряда моделей можно взять данные из аналогичных моделей с заполненным типом кузова, но у одной и той же модели может быть разный тип кузова и этот вариант не подошел. Поэтому выделим их отдельной группой

Выделяю пустые значения в отедльную группу "нет данных"

```
In [95]:
```

```
1 data.loc[data.vehicle_type.isna(),'vehicle_type']='no_data'
```

Отделю тестовую выборку

In [96]:

```
data.loc[data['price'] <= 1200, 'price class'] = 0</pre>
   data.loc[(data['price']>1200)&(data['price']<=2890), 'price class'] = 1
 3
   data.loc[(data['price']>2890)&(data['price']<=6500), 'price class'] = 2
   data.loc[(data['price']>6500) & (data['price'] <= 20000), 'price class'] = 3
 4
 5
 6
   train, test = train test split(
 7
       data,
 8
       test size=0.25,
 9
       random state=12345,
10
       stratify=data['price class']
11
   )
   print(train.shape, test.shape)
12
13
```

(257697, 17) (85900, 17)

registration_year

Есть неадекватные года - больше даты скачивания и меньше 1768. <u>статья на вики</u> (https://translated.turbopages.org/proxy_u/en-ru.ru.a2922144-63446787-7d62ef71-74722d776562/https/en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_Soviet_Union#1931_to_1946).

Думаю, началом учета могу условно считать 1931 год. Стандартизация учета произошла в СССР в 1975 году и в России в 1993 году, но как я пониманию и ранее учет был. При этом не исключаю, что в этом поле указывают год производства по техпаспорту. Автомобили начали производить в 1768 году. По этому вопросу я бы уточнила информацию у заказчика. Также даннные можно проверить по дате выпуска модели. так у форда мондео стоит год регистрации 1000, хотя модель произведена в 1993. Всего таких 166 строк. 82 строкь в периоде с 1768 по 1933. Их хочу проверить, действительно ли продаются древние модели

- 1. Моделям с некорректным годом регистрации установлю год рандомно из диапазона по годам выпуска модели (меньше 1768 и больше текущего). Предполагаю, что возможно база выгружалась в 2016-м году, но возможно обновлялась после выгрузки? Так как не могу это проверить, использую текущий год.
- 2. Проверив вручную дату выхода моделей, у которых в данных стоит год до 1933 сделала вывод, что все эти модели вышли позже, а значит данные ошибочны. Заполню их также рандомными значениями по годам выпуска
- 3. После выполнения первых двух пунктов осталась 41 строка с некорректным годом. Часть из них sonstige_autos (прочие бренды в переводе с немецкого) и еще несколько строк без указания модели. Эти строки удалю, так как данные по наименованию модели определяющие для формирования цены.

In [97]:

data[(data.registration_year<=1933)|(data.registration_year>2022)][['brand','mod

Out[97]:

brand	model	
volkswagen	golf	17
opel	corsa	7
ford	other	6
bmw	3er	6
	other	5
opel	other	4
volkswagen	polo	4
opel	zafira	4
volkswagen	kaefer	4
fiat	other	4
mercedes_benz	other	3
peugeot	other	3
ford	mondeo	3
alfa_romeo	156	2
mercedes_benz	a_klasse	2
porsche	911	2
ford	ka	2

```
#данные выхода моделей брала из википедии
   years = [['volkswagen', 'golf', 1974, 2022],
             ['alfa romeo', '156', 1997, 2007],
 3
             ['opel', 'corsa', 1982, 2022],
 4
 5
             ['bmw','3er',1990,1998],
 6
             ['opel', 'zafira', 1999, 2022],
 7
             ['volkswagen','kaefer',1946,2003],
             ['volkswagen', 'polo', 1975, 2022],
 8
             ['mercedes benz', 'a_klasse', 1997, 2022],
 9
             ['bmw','5er', 2003, 2010],
10
             ['volkswagen', 'passat', 1973, 2022],
11
             ['subaru','impreza', 1992, 2022],
12
             ['renault','twingo', 1993, 2022],
13
             ['renault', 'laguna', 1994, 2015],
14
15
             ['renault','clio', 1990, 2022],
16
             ['porsche','911', 1963, 2022],
17
             ['skoda','octavia', 1996, 2022],
             ['bmw','ler', 2004, 2022],
18
             #['opel','kadett', 1937-1940, 1962-1993]
19
20
             ['mitsubishi','colt', 1962, 2012],
             ['mercedes benz','clk', 1996,2009],
21
22
             ['mazda','6 reihe', 2002, 2022],
23
             ['ford','fiesta',1976, 2022],
24
             ['ford', 'escort', 1968, 2003],
25
             ['fiat', 'panda', 1980, 2022],
26
             ['citroen','c4',2004, 2022],
27
             ['bmw','x reihe',1999, 2022],
28
             ['volkswagen','transporter', 1949, 2022],
             ['ford','ka', 1996, 2016],
29
30
             ['ford', 'mondeo', 1992, 2022],
             ['citroen','c3',2002, 2022],
31
32
             ['volkswagen','caddy',1980, 2022],
33
             ['volkswagen','beetle',1998, 2010],
34
             ['renault', 'espace', 1984, 2022],
35
             ['audi','a2',1999, 2005],
             ['opel', 'agila', 2000, 2015],
36
37
             ['opel', 'calibra', 1989, 1997],
38
             ['fiat', 'punto', 1993, 2018]]
39
40
   def registration(data):
        #отдельно для опеля, так как был перерыв в годах выпуска
41
42
        data.loc[(data.registration year <= 1933)|(data.registration year >2022)
43
            &(data.brand=='opel')
            &(data.model=='kadett'),
44
45
                'registration year']=random.choice(list(range(1937, 1940+1))+list(ra
46
47
        for one in years:
            data.loc[(data.registration year<=1933)|(data.registration year>2022)
48
                     &(data.brand==one[0])
49
50
                     &(data.model==one[1]),
51
                      'registration year']=random.randint(one[2],one[3]+1)
52
        data = data.drop(index = data[(data.registration year <= 1933)|(data.registrat
53
        print(data[(data.registration year<=1933)|(data.registration year>2022)])
54
        return data
55
56 test = registration(test)
57
   train = registration(train)
58
```

```
Empty DataFrame

Columns: [date_crawled, price, vehicle_type, registration_year, gearbo x, power, model, km, reg_month, fuel_type, brand, not_repaired, date_c reated, pictures, postal_code, last_seen, price_class]

Index: []

Empty DataFrame

Columns: [date_crawled, price, vehicle_type, registration_year, gearbo x, power, model, km, reg_month, fuel_type, brand, not_repaired, date_c reated, pictures, postal_code, last_seen, price_class]

Index: []
```

gearbox

Автомат или ручная. 19833 не заполнены. Модели, выпущенные до 1940 года - МКПП. <u>ссылка на вики (https://ru.wikipedia.org/wiki/Автоматическая коробка передач#История)</u>

Для моделей до 1940 года заполняю manual. Остальные пропуски объединяю в отдельную группу

In [99]:

```
def gearbox(data):
    data.loc[data.registration_year<=1940, 'gearbox'] = 'manual'
    data.loc[data.gearbox.isna(),'gearbox'] = 'no_data'
    return data
train = gearbox(train)
test = gearbox(test)</pre>
```

power

40225 нулей. Самая слабая машина на рынке имеет мощность 5 и 17 лс, однако в данных есть 83 машины с мощностью меньше 5. Я погуглила нескольно моделей - данные некорректны. Данные меньше 5 удаляю.

Все пустые данные заполню -999

Для моделей с мощностью более 1600 установлю медианное значение мощности.

In [100]:

```
1
  def power(data):
2
      data.power = data.power.drop(index = data[(data.power<5)&(data.power>0)].ind
3
      data.loc[data.power.isna(), 'power'] = -999
4
      data.loc[data.power>1600,'power'] = data.power.median()
5
      return data
6
  test = power(test)
7
  train = power(train)
8
9
```

Данные по самым мощным автомобилям по годам выпуска взяты из таблицы хронологии (https://translated.turbopages.org/proxy u/en-ru.ru.05545da8-63465441-a8a9547e-74722d776562/https/en.wikipedia.org/wiki/Highest horsepower engine). Для тех моделей, где мощность больше, чем выпускаемая в этот год самая мощная модель, устанавливаю максимально возможное для этого года значение

In [101]:

```
horses = [[1894, 1.5],
 2
   [1897,8],
 3
   [1899,23],
   [1901,35],
 4
 5
   [1902,45],
   [1903,60],
 6
 7
   [1907,75],
 8
   [1908,91],
   [1910,121],
 9
   [1912,200],
10
11
   [1928, 269],
   [1932,324],
12
13
   [1935,406],
   [1958,405],
14
15 [1963,431],
   [1965,492],
16
17
   [1991,560],
18 [1992,627],
19
   [1995,680],
20
   [2004,817],
21
   [2005,1001],
22 [2009,1305],
   [2014,1360],
23
24
   [2015, 1521],
   [2021,1600]
25
26
   1
27
   horses = pd.DataFrame(horses, columns = ['year', 'power']).sort values('power', as
28
29
```

Данные для моделей с незаполненной мощностью заполню медианой по бренду

```
In [102]:
```

```
def horses f(data):
2
      for one in range(len(horses)):
3
          data.loc[(data.registration year == horses.loc[one,'year'])&
                    (data.power == horses.loc[one,'power']),'power'] = horses['power']
4
5
6
      for one in data.brand.unique():
7
          data.loc[(data.power==0)&(data.brand ==one), 'power'] = data[data.brand=
      return data
  train = horses f(train)
9
  test = horses f(test)
```

Проверяю данные >500 лс и сверяю их с данными с сайта drom.ru. Если значение не входит в диапазон модели, то заполняю рандомным числом из диапазона.

```
horses2 = [['volkswagen', 'golf', 50, 310],
   ['bmw', '3er', 75, 387],
   ['opel', 'astra', 60, 200],
   ['bmw', 'm reihe', 195, 560],
   ['mercedes_benz', 'e_klasse', 72, 612],
   ['volkswagen', 'passat', 68, 300],
   ['volkswagen', 'polo', 40, 220],
7
   ['opel', 'corsa', 58, 210],
9
   ['porsche', 'cayenne', 240, 570],
10
   ['renault', 'twingo', 55, 133],
11 ['opel', 'vectra', 57, 280],
   ['mercedes_benz', 's_klasse', 112, 630],
   ['mercedes_benz', 'a_klasse', 60, 421],
13
   ['renault', 'scenic', 64, 163],
15
   ['chevrolet', 'matiz', 51, 82],
   ['fiat', '500',69,135],
16
17
   ['audi', 'a4',75,286],
18 ['audi', 'a6',90,350],
   ['nissan', 'micra',50,110],
19
   ['jaguar', 's_type',200,395],
20
   ['volkswagen', 'transporter',84,204],
   ['bmw', '5er', 86, 530],
22
   ['ford', 'mondeo', 88, 240],
23
24 ['ford', 'ka',50, 136],
25 ['ford', 'fiesta', 40, 200],
   ['peugeot', '3 reihe',45,225],
26
   ['renault', 'espace',88,241],
27
28 ['audi', 'a3',110,250],
   ['opel', 'zafira',82,240],
29
   ['mercedes_benz', 'm_klasse', 150, 558],
30
   ['volvo', 'v40', 102, 249],
31
32 ['ford', 'galaxy',90,240],
33 ['citroen', 'c4', 88, 180],
   ['fiat', 'punto',60,135],
35
   ['ford', 'focus', 75, 350],
   ['volkswagen', 'lupo',50, 125],
37
   ['honda', 'civic',45,205],
   ['volkswagen', 'touran', 90, 190],
38
39 ['seat', 'arosa', 50, 100],
40 ['lancia', 'ypsilon', 54, 95],
   ['audi', 'a8', 150, 571],
42
   ['mercedes benz', 'c klasse', 75, 517],
   ['citroen', 'c2', 60, 122],
   ['skoda', 'fabia', 50, 180],
44
   ['seat', 'leon', 85, 265],
46
   ['volkswagen', 'sharan', 90, 220],
47
   ['toyota', 'corolla', 55, 192],
   ['skoda', 'octavia', 68, 230],
48
   ['smart', 'forfour', 60, 177],
49
50 ['volkswagen', 'kaefer', 25, 50],
51
   ['smart', 'fortwo', 41, 109],
   ['toyota', 'rav', 116, 269],
52
   ['toyota', 'yaris', 65, 272],
53
   ['audi', '80', 54, 172],
54
55 ['renault', 'laguna', 83, 241],
   ['bmw', 'ler', 115, 340],
57
   ['citroen', 'berlingo', 71, 130],
   ['dacia', 'sandero', 65, 101],
58
   ['daewoo', 'nubira', 106, 136],
```

```
60 ['ford', 'mustang', 85, 760],
61
   ['kia', 'rio', 75, 138],
   ['mazda', '6 reihe', 120, 274],
62
   ['mercedes_benz', 'cl', 279, 517],
   ['mercedes_benz', 'clk', 136, 582],
64
65
   ['mitsubishi', 'colt', 55, 163],
   ['mitsubishi', 'outlander', 98, 230],
66
   ['nissan', 'x_trail', 114, 280],
67
   ['peugeot', '2_reihe', 100, 170],
68
   ['renault', 'kangoo',55, 115],
69
70
   ['mini', 'cooper', 98, 130]]
71
```

In [104]:

```
def horses f2(data):
2
      for one in horses2:
3
           data.loc[(data.brand==one[0])
4
                    &(data.model==one[1])
5
                    &((data.power>one[3])|(data.power<one[2]))
                    ,'power'] = random.randint(one[2],one[3]+1)
6
7
       return data
8
  train = horses f2(train)
  test = horses f2(test)
9
```

In [105]:

```
1 sea.kdeplot(train['power'])
```

Out[105]:

<AxesSubplot:xlabel='power', ylabel='Density'>


```
In [106]:
```

```
1 sea.kdeplot(test['power'])
```

Out[106]:

<AxesSubplot:xlabel='power', ylabel='Density'>


```
    Успех: Молодец
```

model

Больше всего golf, other - 24421, пустые значения 19705. Им можно присвоить other. Некоторые модели есть у нескольких брендов (1_reihe). rangerover и range_rover - похожие названия модели, но выпускаются разными брендами rover и landrover

In [107]:

```
def model(data):
    data.loc[data.model.isna(), 'model'] = 'other'
    data.model.isna().sum()
    return data
    train = model(train)
    test = model(test)
```

fuel_type

petrol (англ), gasoline (амер)- синонимы, lpg - пропан-бутан, cng - метан. hybrid - гибриддые, electric - электрические, other - 204, нет данных - 32895.

Petrol и gasoline объединю. Пустые заполню как other

In [108]:

```
def fuel_type(data):
    data.loc[data.fuel_type == 'petrol','fuel_type'] = 'gasoline'
    data.loc[data.fuel_type.isna(),'fuel_type'] = 'other'
    return data
train = fuel_type(train)
test = fuel_type(test)
```

not_repaired

not_repaired - 71154 нет данных, yes/no. Нет данных - сделаю отдельной группой

```
In [109]:
```

```
def not_repaired(data):
    data.loc[data.not_repaired.isna(),'not_repaired'] = 'no_data'
    data[data.not_repaired.isna()]
    return data
train = not_repaired(train)
test = not_repaired(test)
```

last seen

Довольно много строк, где год регистрации автомобиля больше, чем год последнего просмотра. Возможно их стоит удалить

```
In [110]:
```

```
def last_seen(data):
    data = data.drop(data[data.registration_year>2022].index, axis = 0)
    data.registration_year = pd.to_datetime(data.registration_year, format='%Y')
    data = data.drop(data[data.registration_year>data.last_seen].index, axis = 0
    data.registration_year = data.registration_year.astype('int')

return data
train = last_seen(train)
test = last_seen(test)
```

```
In [111]:
```

```
1 train.power = train.power.astype('int')
2 test.power = test.power.astype('int')
```

Не требуют обработки

кт - категориальный признак. Пустых значений нет. Больше всего с пробегом 150 тыс.

brand - пропусков и других проблем нет **postal_code** - пропусков нет, важен, так как по сути это регион продажи. По индексу видно, что это даже разные страны

Не нужны

date_crawled Дата скачивания анкеты из базы - если обнаружится какая-то ошибка, то будем изучать,

для модели не нужен. Анкеты скачаны в апреле и марте 2016 года, есть точное время скачивания

reg_month - не понятно, зачем нужен этот признаки. Нулей - 37352. Пропусков нет. Больше всего регистрировались в марте, июне и апреле. Меньше всего в феврале, августе и январе.

date_created - всего 1 дата за 2014 год, 18 дат за 2015, остальные - за 2016 (89 уникальных дат 2016-го года). Пустых нет.

pictures - 354369 с количеством 0, пропусков нет, столбец можно удалить

last_seen - пропусков нет, все пользователи были активны в 2016

In [112]:

```
def drop(data):
    data = data.drop(['date_crawled','reg_month','date_created','pictures','last
    data = data.drop_duplicates()
    return data
train = drop(train)
test = drop(test)
```

In [113]:

```
1 sea.kdeplot(train['km'])
2
```

Out[113]:

<AxesSubplot:xlabel='km', ylabel='Density'>

In [114]:

```
1 train[train['power']>1500]
```

Out[114]:

	price	vehicle_type	registration_year	gearbox	power	model	km	fuel_type	bra
145154	1200	sedan	946684800000000000	manual	1503	other	150000	gasoline	br

```
In [115]:
```

```
1 test[test['power']>1500]
```

Out[115]:

	price	vehicle_type	registration_year	gearbox	power	model	km	fuel_type	bra
146238	1500	sedan	820454400000000000	manual	1596	other	150000	gasoline	br

Кодирование признаков

In [116]:

```
1 target_train = train['price']
2 features_train = train.drop(['price', 'price_class'], axis=1)
3 target_test = test['price']
4 features_test = test.drop(['price', 'price_class'], axis=1)
5
6 print(target_train.shape, features_train.shape, target_test.shape, features_test
```

(234310,) (234310, 10) (80779,) (80779, 10)

In [117]:

```
1 encoder = OrdinalEncoder(handle_unknown = 88888)
2 encoder.fit(features_train)
3 features_train_ordinal = pd.DataFrame(encoder.transform(features_train), columns
4 features_test_ordinal = pd.DataFrame(encoder.transform(features_test), columns =
5 features_test_ordinal
```

Out[117]:

	vehicle_type	registration_year	gearbox	power	model	km	fuel_type	brand	not_repaired	postal_code
0	6.0	73.0	1.0	101.0	173.0	6.0	2.0	38.0	0.0	3162.0
1	6.0	63.0	1.0	86.0	33.0	12.0	2.0	20.0	0.0	796.0
2	6.0	69.0	1.0	56.0	83.0	9.0	2.0	24.0	2.0	3799.0
3	5.0	71.0	0.0	146.0	180.0	12.0	2.0	23.0	0.0	6118.0
4	5.0	61.0	1.0	86.0	59.0	12.0	2.0	20.0	0.0	7745.0
										•••
80774	4.0	72.0	1.0	64.0	166.0	5.0	2.0	23.0	0.0	4505.0
80775	2.0	69.0	1.0	260.0	248.0	11.0	2.0	2.0	0.0	4841.0
80776	6.0	68.0	1.0	61.0	245.0	11.0	2.0	36.0	0.0	3211.0
80777	8.0	66.0	1.0	105.0	166.0	12.0	2.0	25.0	0.0	5710.0

```
In [118]:
```

```
features train ohe = pd.get dummies(features train, drop first = True)
   features_test_ohe = pd.get_dummies(features_test,drop_first = True)
3 #for one in features train ohe.columns[~features train ohe.columns.isin(features
        features test ohe[one] = 0
5 for one in features train ohe.columns:
       if one not in features_test_ohe.columns:
6
7
           features test ohe[one] = 0
   for one in features test ohe.columns:
8
9
      if one not in features train ohe.columns:
           features train ohe[one] = 0
10
   features train ohe.shape, features test ohe.shape
12
```

```
Out[118]:
((234310, 309), (80779, 309))
```

Корреляция признаков

```
In [119]:
```

```
1 features_train.corr()
```

Out[119]:

	registration_year	power	km	postal_code
registration_year	1.000000	0.108428	-0.214832	0.035511
power	0.108428	1.000000	0.115379	0.057420
km	-0.214832	0.115379	1.000000	-0.013770
postal_code	0.035511	0.057420	-0.013770	1.000000

Ярко выраженной линейной зависимости между признаками нет

Обучение моделей

Константная модель

```
In [120]:
```

```
def rmse(target, prediction):
    rmse = mean_squared_error(target, prediction, squared = False)
    return rmse
4
```

In [121]:

```
prediction = [data.price.median()]*len(data)
rmse(data.price, prediction)
3
```

Out[121]:

4812.3097981057535

Линейная регрессия

In [122]:

```
1 features_train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 234310 entries, 275374 to 39122
Data columns (total 10 columns):
                     Non-Null Count
   Column
                                    Dtype
____
                      _____
                      234310 non-null object
 0
    vehicle type
 1
   registration year 234310 non-null int64
                      234310 non-null object
 2
   gearbox
 3 power
                      234310 non-null int64
                      234310 non-null object
 4
    model
 5
    km
                      234310 non-null int64
 6 fuel type
                      234310 non-null object
7
                      234310 non-null object
   brand
                      234310 non-null object
   not repaired
 9
                      234310 non-null int64
   postal code
dtypes: int64(4), object(6)
memory usage: 19.7+ MB
```

In [123]:

```
train_rmse = [0,0,0]
test_rmse = [0,0,0]
fit_time = [0,0,0]

p_time = [0,0,0]

pd.options.mode.chained_assignment = None
scaler = StandardScaler()
scaler.fit(features_train_ohe[['power','km','postal_code','registration_year']])
features_scaled_train = features_train_ohe
features_scaled_test = features_test_ohe
features_scaled_train[['power','km','postal_code','registration_year']] = scaler
features_scaled_test[['power','km','postal_code','registration_year']] = scaler
```

In [124]:

```
model_l = LinearRegression()
scor = make_scorer(rmse, greater_is_better=False)
scores = cross_val_score(model_l, features_scaled_train, target_train, cv=5, scottrain_rmse[2] = scores.mean()
print(train_rmse[2])

start_time = time.time()
model_l.fit(features_scaled_train, target_train)
fit_time[2] = (time.time() - start_time)
print("Bpems обучения %s c" % (fit_time[2]))
start_time = time.time()
predict_l = model_l.predict(features_scaled_train)
p_time[2] = time.time() - start_time
print("Время предсказания %s c" % p_time[2])
```

-2755.2868212521785 Время обучения 21.788912057876587 с Время предсказания 0.40083742141723633 с

LightGBM

In [125]:

```
trees = [10, 50, 100]
 3 best scores = 999999
   parametrs = {'n estimators': range (10, 40, 10),
 5
                 'max depth': range (10,40,10),
                 'num leaves': range (10,40,10)}
 7
   model lgbm = LGBMRegressor()
   grid = GridSearchCV(model lgbm, parametrs, cv=5, scoring = 'neg root mean square
9
10 | start time = time.time()
   grid.fit(features train ordinal, target train)
11
12
   fit time[0] = (time.time() - start time)
1.3
14 train rmse[0] = grid.best score
15
   print(grid.best_estimator_, train_rmse[0])
16 print("Время обучения %s c" % (fit time[0]))
17
18 | start time = time.time()
   predict lgbm = grid.predict(features train ordinal)
20 p time[0] = time.time() - start time
   print("Время предсказания %s c" % р time[0])
21
22
```

```
LGBMRegressor(max_depth=10, n_estimators=30, num_leaves=30) -1975.0848 555962239
Время обучения 782.7031135559082 с
Время предсказания 0.5144298076629639 с
```

RandomForest

```
In [126]:
```

```
trees = [10, 50, 100]
 2
 3 best scores = 999999
   parametrs = {'n estimators': range(10, 40,20),
 4
 5
                 'max depth': range(10,40,10),
                 'min samples split': [0.1,0.2,0.3],
 6
                 'min_samples_leaf': range(10,40,10)}
 7
 8
   model rf = RandomForestRegressor()
9
   grid rf = GridSearchCV(model rf, parametrs, cv=5, scoring = 'neg root mean squar
10
   start time = time.time()
11 grid rf.fit(features train ordinal, target train)
   fit time[1]=(time.time() - start time)
13 train rmse[1] = grid rf.best score
14 print(grid rf.best_estimator_, train_rmse[1])
15 print("Время обучения %s c" % (fit time[1]))
16 | start time = time.time()
   predict rf= grid rf.predict(features train ordinal)
17
18 p time[1] = time.time() - start time
   print("Время предсказания %s c" % p time[1])
19
20
```

Анализ моделей

```
In [127]:
```

```
work_time = pd.DataFrame(columns = ['name','time_predict','time_fit', 'train_rms'
work_time.time_fit = fit_time
work_time.time_predict = p_time
work_time.name = ['LGBM','RandomForest','LinearRegression']
work_time.train_rmse = np.array(train_rmse).astype('int')
work_time
```

Out[127]:

	name	time_predict	time_fit	train_rmse
0	LGBM	0.514430	782.703114	-1975
1	RandomForest	0.081471	760.236702	-2944
2	LinearRegression	0.400837	21.788912	-2755

Лучший результат rmse - у градиентного бустинга. Быстрее работает линейная регрессия.

Тестирование лучшей модели

In [131]:

```
1 start_time = time.time()
2 best_prediction = grid.predict(features_test_ordinal)
3 fit_time_best = (time.time() - start_time)
4 best_rmse = rmse(best_prediction,target_test)
5 print('RMSE лучшей модели', best_rmse)
6 print("Время обучения %s c" % work_time.time_fit[0])
7 print("Время предсказания %s c" % fit_time_best)
8
```

```
RMSE лучшей модели 1988.5825310269688
Время обучения 782.7031135559082 с
Время предсказания 0.19648075103759766 с
```

Рекомендую заказчику использовать модель LightGBM, так как она показывает лучшее качество предсказаний и единственная выполняет поставленную задачу по метрике качества. При этом она показывает худший результат по времени. В случае неудовлетворенности результатом предложу продожлить подбор гиперпараметров для RandomForest.

Вывод

```
In [ ]:
```

```
1
2 # Не забывай про финальный вывод)
```

В рамках проекта проделана работа по предобработке данных, обучению 3 моделей для предсказания рыночной цены автомобиля. Модель LightGBM работает дольше других моделей, но показывает лучшее качество в текущей задаче регрессии и является рекомендованной к применению.