Discrete Response Model Lecture 2

datascience@berkeley

Binomial Logistic Regression Model

The Logit Transformation

• The $\log \left(\frac{\pi_i}{1-\pi_i} \right)$ transformation is often referred to as the <u>logit</u> transformation:

$$logit(\pi_i) = \beta_0 + \beta_1 X_{i1} + \beta_p X_{ip}$$

$$\beta_0 + \beta_1 \mathbf{X}_{i1} + \beta_p \mathbf{X}_{ip}$$

This part of the model is often referred to as the linear predictor.

Visualizing the Logistic Curve

When there is only one explanatory variable, $\beta_0 = 1$, and $\beta_1 = 0.5$ (or -0.5), a plot of π vs. x looks like the following:

Observations:

- $0 < \pi < 1$.
- When $\beta_1 > 0$, there is a positive relationship between x_1 and π . When $\beta_1 < 0$, there is a negative relationship between x_1 and π .
- The shape of the curve is somewhat similar to the letter s.
- Above $\pi = 0.5$) is a mirror image of below $\pi = 0.5$.
- The slope of the curve is dependent on the value of x_1 . This is an important property worth remembering when interpreting the coefficients of a logistic regression model.
 - We can show this mathematically by taking the derivative with respect to x_1 :

$$\frac{d\pi}{dx_1} = \beta_1 \pi (1 - \pi)$$

Berkeley school of information