Mechanism Kinematics and Dynamics

Final Project

Presentation 10:10-13:00, 12/21 and 12/28

1. The window shield wiper (2)

For the window wiper in Fig.1.33 on p.26 of the PPT,

- (1). Select the length of all links such that the wiper tip $X_p(t)$ can cover a 120 cm window width.
- (2). Plot the trajectory of X_p and the time response of all links.
- (3). Animate the mechanism motion by 0.5 rps at the motor.

FIGURE 1.33 Rear-window wiper mechanism.

2. The windshield wipers (3)

The task is to have wiper 1 and 2 swing 120° with both parallel at all time. The wiper length 50cm, link 3=60 cm.

- (1). Select the link length such that the mechanism when stowed is smaller than 40 cm height.
- (2). Animate the mechanism 0 motion by 1 rps at the motor.
- (3). Plot the trajectory of both wiper tips in the same plane.

3. The landing gear (2)

For the landing gear in Fig.1.35 and 1.36 on p.29 of the PPT,

- (1). Plot the trajectory of X(t) by the driving link \overline{AB} with your selected input.
- (2). Plot the time response of all links and of X(t).
- (3). Animate the mechanism motion from the stowed to deployed position.

FIGURE 1.35 Nosewheel assembly

FIGURE 1.36 Kinematic diagram

4. The landing gear (4)

Let the tire diameter 30 cm, B(0.06, -0.13), C(-0.83, 0.43). $\overline{OA} = 66$ cm and $\overline{OD} = 53$ cm. The position can be modeled by the translation joint.

- (1). For the actuator in sine function, select the link length such that the landing gear can be stowed inside the fuselage.
- (2). Plot the trajectory at the tire center and the time response of all links.
- (3). Animate the mechanism motion from the stowed to deployed position.

5. Landing gear mechanism (4)

For the MD-80 main landing gear shown below, a hydraulic actuator is to pull the mechanism from the extended to the retracted position.

- (1). Create the model in AutoCAD or similar tools.
- (2). Model the mechanism in 4-bar linkages.
- (3). Animate the mechanism motion.

- 6. 4-bar straight-line mechanism (2)
 - On Fig.1.38 (a) at p.31 of the PPT, let the driving link (on the left) be 10 cm rotating at $\omega=1~rps$.
 - (1). Plot the time response of all links and of the midpoint of the connecting link
 - (2). Let the midpoint displacement be $X_p(t)$. Plot the relation between ω and the oscillating frequency of the midpoint.
 - (3). Animate the mechanism motion for at least 5 revolutions.

7. Straight-line mechanism (3)

On Fig.1.38 (b) at p.31 of the PPT, let the driving link rotating at $\omega=1~rps$.

- (1). Select the dimension of all the links such that the point-of-interest $Y_p(t)$ following the straight line has pitch length of 50 cm.
- (2). Plot the time response of all links and of the $Y_p(t)$.
- (3). Animate the mechanism motion.

FIGURE 1.38 Straight-line mechanisms

8. Quick return mechanism (3)

For the quick-return mechanism shown, let $\overline{OB}=0.7$, $\overline{CD}=2.1$, $\overline{OE}=0.9$, and the configuration is for $\phi_1=\pi/6$, $\dot{\phi_1}=-0.2$ and $\ddot{\phi_1}=0$.

- (1). Plot the time response of all links.
- (2). Calculate and compare the oscillation frequency of slider B, C and D, and explain why it is quick-return mechanism.
- (3). Animate the mechanism motion.

9. Film-strip mechanism (3)

A 4-bar mechanism is used to advance a film strip in a movie projector.

- (1). Plot the time response of all links by selecting a $\dot{\phi}_1$, so that point P's motion is 30 frame/sec.
- (2). Plot the trajectory of point P.
- (3). Animate the mechanism motion.

- 10. The pantograph mechanism (2)
 In the mechanism, point D is the drawing point and point T is the tracing point.
 - (1). Select the link length.
 - (2). Plot the trajectory of T when D is drawing a sine function.
 - (3). Animate the mechanism motion.

11. The pantograph mechanism (2) Same as Problem 10.

12. The web cutter mechanism (2)

For the link \overline{AB} rotating at 1 rps.

- (1). Calculate the velocity of point P and Q at the time of cutting and calculate the web length after cut.
- (2). Plot the time response of all links and the trajectory of point P and Q.
- (3). Animate the mechanism motion.

13. The dough-kneader mechanism (2)

The crank \overline{AB} rotates though 360°. Note that in order to model this mechanism two revolute joints are needed at B. Let $\overline{AB}=6$, $\overline{BC}=\overline{CF}=13$, $\overline{BE}=\overline{CF}=6$, $\overline{DC}=15$, $\overline{AD}=18$, $\overline{BP}=26$.

- (1). Plot the trajectory of P(t) and the time response of \overline{AB} , \overline{BE} and \overline{DF} .
- (2). Animate the mechanism motion.

14. Prosthetic mechanism (4)

The 6-bar linkage shown below (Left: extension position, Right: flex position)

- (1). Select the dimension of the links.
- (2). Animate the motion from the flex to extension position.
- (3). Plot the trajectory of the point connection link 3 and 4.

- 15. Trailing edge flap and actuating mechanism (4) (US Patent 3853289)
 - (1). Create the model in AutoCAD or similar tools.
 - (2). Model the mechanism in 4-bar and 6-bar linkages and calculate the degree of freedom.
 - (3). Let 72 be the driving link. Animate the mechanism motion from the extended to retracted position.

- Short take-off wing mechanism (4) (US Patent 3874617)The cruise, take-off and landing position is shown below
 - (1). Create the model in AutoCAD or similar tools.
 - (2). Model the mechanism in 4-bar and 6-bar linkages.
 - (3). Let \overline{HA} be the driving link. Animate the mechanism motion from the extended to retracted position.

17. The spoiler in vehicles (4)

The spoiler in a race-car as shown below.

- (1). Select the link length and create the model.
- (2). Plot the trajectory at the tip of link 6 and the time response of all links.
- (3). Animate the mechanism motion from the fully retracted to elevated position.
- (4). From mechanics view point, discuss the difference should one use link 2 and 4 as the driving link.

- 18. The convertible top mechanism (3)
 - (1). Select the link length and create the model.
 - (2). Determine the degree of freedom and plot the trajectory at the tip of the convertible top.
 - (3). Animate the mechanism motion from the stowed to deployed position.

- 19. Planetary Gear and Differential in vehicles (1)
 - (1). Create the model.
 - (2). Explain the mechanism in animation.
 - (3). Conduct input/output analysis.

20. Universal joint (1)

- (1). Create the model and explain the mechanism.
- (2). Establish the mathematical model in 3-D by deriving the constraint equations.
- (3). Animate the motion by rotating 2-revolution.