

CEFET-MG — Centro Federal de Educação Tecnológica de Minas Gerais

DEPARTAMENTO DE COMPUTAÇÃO DE DIVINÓPOLIS — DECOM-DV

Microprocessadores e Microcontroladores

Primeira Atividade Avaliativa

Aluno: GABRIEL OLIVEIRA ALVES

Valor: 30 pontos (cada questão vale 5 pontos)

Turma: 2024/1

Prof. M. Sc. Diego Ascânio Santos

Respostas:

1 2 3 4 5 6

Questão 1

A respeito de memórias escolha a alternativa falsa:

- a) Se minha memória tem 16 pinos de endereço e 8 pinos de dados então ela consegue armazenar 65536 bytes de informação.
- b) Uma memória com 32 pinos de endereço e 32 bits de dados consegue armazenar 16GB de informação.
- c) Uma memória com 32 pinos de endereço e 32 bits de dados consegue armazenar 4GB de informação.
- d) Uma memória RAM do tipo dinâmica depende de atualizações periódicas conhecidas como *refresh* para manter suas informações armazenadas.
- e) Toda memória ROM foi uma PROM até ter sido fabricada.

Questão 2

Considere o código abaixo:

```
const int ledPin = 13;
const int interruptPin = 2; // only pin 2 and 3 can be used for interrupts
volatile int state = LOW;

void blink() { // ISR function
    state = !state; // toggle the state
}

// missing setup function

void loop() {
    digitalWrite(ledPin, state);
}
```

É desejado que o LED conectado ao pino 13 comute de estado a cada vez que o botão conectado ao pino 2 for pressionado. O *pushbutton* conectado ao pino 2 do arduino também está conectado ao pino gnd do microcontrolador.

Qual alternativa contém a implementação da função setup() que atende a esse requisito no Arduino UNO?

```
a)
void setup() {
   pinMode(2, INPUT_PULLUP);
   pinMode(ledPin, OUTPUT);
   attachInterrupt(
        digitalPinToInterrupt(interruptPin),
       blink,
       KEEPING
   );
b)
void setup() {
   pinMode(2, INPUT PULLUP);
   pinMode(ledPin, OUTPUT);
   attachInterrupt(
        digitalPinToInterrupt(interruptPin),
        blink,
        CHANGE
   );
}
c)
void setup() {
   pinMode(2, INPUT_PULLUP);
   pinMode(ledPin, OUTPUT);
   attachInterrupt(
        digitalPinToInterrupt(interruptPin),
       blink,
   );
}
d)
void setup() {
   pinMode(2, INPUT_PULLUP);
   pinMode(ledPin, OUTPUT);
   attachInterrupt(
       digitalPinToInterrupt(interruptPin),
       blink,
        FALLING
   );
}
e)
void setup() {
   pinMode(2, INPUT_PULLUP);
   pinMode(ledPin, OUTPUT);
   attachInterrupt(
       digitalPinToInterrupt(interruptPin),
```

Questão 3

);

blink, LOW

A respeito das fontes de interrupção no Arduino avalie as seguintes afirmativas:

- I. O temporizador do Arduino pode ser configurado para gerar interrupções em intervalos regulares de tempo.
- II. O ADC pode ser configurado para gerar uma interrupção quando a conversão analógico-digital é concluída.
- III. Quaisquer pinos do Arduino UNO podem ser configurados como pinos de interrupção externos.
- IV. Não é possível associar interrupções para o recebimento de dados pela porta serial.

Quais são verdadeiras?

- a) I, II, III e IV.
- b) I, II e III.

- c) I, II e IV.
- d) I, III e IV.
- e) Apenas III.

Questão 4

Considerando a seguinte rotina de interrupção de *overflow* associada ao Timer2, que o Timer2 está configurado para operar no modo normal (modo timer) e que a frequência do *clock* do Timer2 é de 16 MHz, qual fator de prescaler faz com que o estado do LED conectado ao pino digital 13 comute a (aproximadamente) cada 5 segundos?

Rotina de interrupção de Overflow associada ao Timer 2

```
ISR(TIMER2_OVF_vect) {
    overflows ++;
    if (overflows == 306) {
        overflows = 0;
        // Toggle the LED state
        digitalWrite(13, !digitalRead(13));
    }
}
a) 1.
b) 16.
c) 64.
d) 256.
e) 1024.
```

Questão 5

Quanto as interrupções, avalie as assertivas:

- I. Interrupção é um mecanismo que permite a uma entidade externa interromper a execução de um programa sendo executado.
- II. Chegada de dados em uma porta de entrada/saída pode ser um exemplo de interrupção.
- III. Jammais podem ser associadas a eventos assíncronos.
- IV. O pressionamento de um botão pode ser um exemplo de interrupção.

Quais são falsas?

- a) I, II, III e IV.
- b) I, II e IV.
- c) I e II apenas.
- d) I e IV apenas.
- e) III apenas.

Questão 6

Acerca de entradas e saídas digitais no Arduino e a conexão de periféricos ao microcontrolador, avalie as seguintes assertivas:

- I. O comando pinMode(13, OUTPUT) configura o pino 13 como saída.
- II. Para uma conexão em série do pino $_{5\text{V}}$ do Arduino a um resistor de 330Ω passando pelo ânodo de um LED, em sequência pelo cátodo do LED e finalizando no pino 13 do Arduino, o comando digitalWrite(13, HIGH) acenderá o LED se ele estiver apagado.
- III. Para uma conexão em série do pino $+5\mathrm{V}$ do Arduino a um resistor de 330Ω passando pelo ânodo

de um LED, em sequência pelo cátodo do LED e finalizando no pino 13 do Arduino, o comando digitalWrite(13, HIGH) apagará o LED se ele estiver aceso.

IV. O comando digitalWrite(13, !digitalRead(13)) inverte o estado do dispositivo conectado ao pino 13 qualquer que seja seu modo de conexão (ligado ao +5V ou ao GND do Arduino).

São corretas as assertivas:

- a) I e II, apenas.
- b) I e III, apenas.
- c) I e IV, apenas.
- d) I, III e IV apenas.
- e) I, II, III e IV.