FrancyMonoids/A package to display commutative monoid objects with francy

4 June 2018

Garcia-Sanchez Pedro A.

Herrera-Poyatos Andres

Martins Manuel

Garcia-Sanchez Pedro A.

Email: pedro@ugr.es

Homepage: https://www.ugr.es/~pedro

Address: Departamento de Álgebra, Facultad de Ciencias

Universidad de Granada, 18071 Granada

Spain

Herrera-Poyatos Andres

Email: andreshp99@gmailcom

Homepage: https://github.com/andreshp

Address: Departamento de Álgebra, Facultad de Ciencias

Universidad de Granada, 18071 Granada

Spain

Martins Manuel

Email: manuelmachadomartins@gmail.com Homepage: http://github.com/mcmartins

Contents

1	Frai	ncyMonoids automatic generated documentation	3
	1.1	FrancyMonoids automatic generated documentation of methods	3
	1.2	FrancyMonoids automatic generated documentation of global functions	4
Ind	dex		-

Chapter 1

FrancyMonoids automatic generated documentation

1.1 FrancyMonoids automatic generated documentation of methods

1.1.1 DrawFactorizationGraph (for IsRectangularTable)

▷ DrawFactorizationGraph(f)

(operation)

Returns: a drawing

f is a set of factorizations Draws the graph of factorizations associated to f: a complete graph whose vertices are the elements of f. Edges are labelled with distances between nodes they join. Kruskal algorithm is used to draw in red a spannin tree with minimal distances. Thus the catenary degree is reached in the edges of the tree.

1.1.2 DrawEliahouGraph (for IsRectangularTable)

▷ DrawEliahouGraph(f)

(operation)

Returns: a drawing

f is a set of factorizations Draws the Eliahou graph of factorizations associated to f: a graph whose vertices are the elements of f, and there is an edge between two vertices if they have common support. Edges are labelled with distances between nodes they join.

1.1.3 DrawRosalesGraph (for IsHomogeneousList,IsAffineSemigroup)

▷ DrawRosalesGraph(n, s)

(operation)

Returns: a drawing

s is either a numerical semigroup or an affine semigroup, and n is an element of s Draws the graph associated to n in s.

1.1.4 DrawRosalesGraph (for IsInt,IsNumericalSemigroup)

▷ DrawRosalesGraph(arg1, arg2)

(operation)

FrancyMonoids 4

1.2 FrancyMonoids automatic generated documentation of global functions

1.2.1 DrawOverSemigroupsNumericalSemigroup

▷ DrawOverSemigroupsNumericalSemigroup(s)

(function)

Returns: a drawing

Draws the Hasse diagram of oversemigroupstree of the numerical semigroup s. Irreducible numerical semigroups are highlighted.

1.2.2 DrawTreeOfSonsOfNumericalSemigroup

▷ DrawTreeOfSonsOfNumericalSemigroup(s, 1, generators)

(function)

Returns: a drawing

Draws the tree of sons of numerical semigroups up to level l with respect to the minimal system of generators given by the function generators.

1.2.3 DrawHasseDiagramOfNumericalSemigroup

▷ DrawHasseDiagramOfNumericalSemigroup(s, A)

(function)

Returns: a drawing

plots a graph whose set of vertices is A, which is a finite set of integers, and whose edges are provided by the order of the numerical semigroup s.

1.2.4 DrawTreeOfGluingsOfNumericalSemigroup

▷ DrawTreeOfGluingsOfNumericalSemigroup(s[, expand])

(function)

Returns: a drawing

Returns a Francy canvas with the tree of gluings of the numerical semigroup s. If the optional argument expand is provided, then the tree is drawn fully expanded.

Index

```
DrawEliahouGraph
for IsRectangularTable, 3
DrawFactorizationGraph
for IsRectangularTable, 3
DrawHasseDiagramOfNumericalSemigroup, 4
DrawOverSemigroupsNumericalSemigroup, 4
DrawRosalesGraph
for IsHomogeneousList,IsAffineSemigroup,
3
for IsInt,IsNumericalSemigroup, 3
DrawTreeOfGluingsOfNumericalSemigroup,
4
DrawTreeOfSonsOfNumericalSemigroup, 4
```