Детекция животных на фотографиях

Курганский Сергей, Коковкин Лев

Постановка задачи

- Проблема: Автоматизация анализа тысяч фотографий для:
- Подсчета популяций
- Изучения особей
- Выявления редких видов
- **Цель проекта**: Создание модели для детекции 10 классов животных с точностью >70%, подсчет особей, классификация.

Проблемы датасета

• Дисбаланс классов:

- Пример: 1200 изображений оленей vs 320 сурков
- Проблема: Модель хуже распознает редкие виды

• Сложные условия:

- Ночные (35% данных)
- Размытые (12% данных)
- Трудные для детекции случаи:
 - Группы животных в одном кадре (перекрытия)

Архитектура решения

- Выбранная модель: YOLOv8m с модификациями:
- Дополненный backbone:
 - Attention-механизмы для ночных снимков
- Аугментации:
 - Ночная симуляция (+Mosaic, MixUp)

Процесс обучения

- Параметры:
- Размер изображения: 240х240
- Batch size: 32 (GPU)
- Аугментации: HSV, повороты, масштабирование
- Использование разных предобученых моделей:

Результаты

YOLOv8 **сильно зависит от датасета** – даже лучшая архитектура не компенсирует плохие данные

- Критически важные параметры:
- Количество примеров на класс
- Разнообразие условий (погода, время суток, ракурсы)
- Точность разметки

Визуализация работы

- Успешные случаи:
- Детекция мелких объектов (сурки)
- Корректная классификация в группах
- Ошибки:
- Путаница собачьи ↔ куньи ночью
- Пропуск перекрытых объектов
- Визуализация:
- 2 колонки изображений: "Удачные предсказания" vs "Ошибки"
- Пример с bounding boxes и confidence scores

Идеи для улучшения

• Данные:

- Разметка видео-последовательностей
- Synthetic data для редких классов

Визуализация:

- Схема будущего пайплайна
- Логотипы технологий (ONNX, TensorRT)

