

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной техники

ОТЧЕТ О ВЫПОЛНЕНИИ ПРАКТИЧЕСКИХ РАБОТ

по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы И	МБО-02-22		Ким К.С.
Принял старший преподават	ель		Боронников А.С.
Практические работы выполнены	«»	2023 г.	
«Зачтено»	« »	2023 г.	

Оглавление

Практическая работа №1	
Практическая работа №2	
Практическая работа №3	
Практическая работа №4	
Практическая работа №5	10
Практическая работа №6	12
Практическая работа №7	14
Практическая работа №8	15
Практическая работа №9	17
Практическая работа №10	20
Практическая работа №11	24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

Задание:

Нужно расписать управляющее слово ЦП для различных микроопераций.

Управляющее слово ВМ составляется из управляющих разрядов MSA, MSB, АЛУ, DS, MSM, WR.

Задача устройства управления – обеспечить выдачу управляющего слова ЦП. Иначе он называется микрокод, который управляет работой аппаратуры ЦП. Обычно он записывается в постоянное запоминающее устройство (ПЗУ) центрального процессора (прошивается).

Рисунок 1 – Схема операционного устройства

Управляющее слово: INPR \leftarrow IR + MAR

Решение:

N	MSA	4	N	ASI	В		AJ	ΙУ			D	C	MSM	RAM	
0	1	0	0	1	1	0	0	1	1	0	1	0	1	X	0

Задание:

Составить микрооперации каждого такта циклов выборки и выполнения команды.

Последовательность работы устройства управления задается циклами.

Для начала рассмотрим цикл выборки команды. Ведь прежде, чем выполнить команду, надо выбрать её из памяти ВМ.

Рисунок 2 – Цикл выборки команды

Для выборки команды из памяти ВМ надо, во-первых, поместить адрес команды из регистра адреса команды в регистр адреса памяти, во-вторых, прочитать команду из ячейки памяти в регистр данных памяти, в-третьих. Переслать команду в регистр команды, в-четвертых, подготовить счетчик команд для выборки следующей команды – инкременировать РС.

То есть, последовательно надо выполнить 4 действия, обозначенные на рис. 12 t0, t1, t2, t3. Следовательно, цикл выборки команды осуществляется за 4 такта.

Само выполнение команды происходит следующим образом:

Рисунок 3 – Цикл выполнения команды

Таким образом, мы получили наличие в УУ ЦП следующих циклов:

- 1. Цикл выборки команды С0;
- 2. Цикл дешифрации команды С1;
- 3. Цикл выполнения команды С2;
- 4. Цикл обработки прерывания С3.

Команда: AC←M[AD] - 1

Решение:

	Команда	MSA	MSB	АЛУ	DC	MSM	WR	FR
$C_0 t_0$	MAR←PC	000	XXX	0000	0011	X	0	00
C_0t_1	MDR←M[MAR]	XXX	XXX	XXXX	0100	1	0	00
C_0t_2	IR←MDR	100	XXX	0000	0010	X	0	00
C_0t_3	$PC \leftarrow PC + 1; F = 1$	000	XXX	0001	0000	X	0	10
$q_2C_2t_0$	MAR←IR[AD]	010	XXX	0000	0011	X	0	10
$q_2C_2t_0$	MDR←M[MAR]	XXX	XXX	XXXX	0100	1	0	10
$q_2C_2t_0$	AC←MDR - 1	001	XXX	1010	0001	X	0	10
$q_2C_2t_0$	F=0	XXX	XXX	XXXX	1xxx	X	0	00

Задание:

- 1. Определяем исходное состояние регистров.
- 2. Выписываем микрокоманды циклов выборки команды и выполнения команды.
- 3. Определяем значения регистров после выполнения каждой микрокоманды.
 - 4. Результаты оформляем в виде таблицы.

Вариант:

- 1. Записать микрооперации цикла выборки и выполнения команды DEC.
- 2. По адресу 2E5 записана команда DEC с адресом 379. По этому адресу команды записан операнд 6A4B. В регистре-аккумуляторе находится операнд 56DC.

Определить информацию, которая будет записана в регистрах PC, MAR, MDR, IP, AC после выполнения этой команды.

Решение:

Регистры	PC	MAR	MDR	IR	AC
Исх. состояние рег.	2E5				56DC
$C_0 t_0$: MAR←PC		2E5			
C_0t_1 : $MDR \leftarrow M[MAR]$			A379		
C_0t_2 : $IR \leftarrow MDR$				A379	
C_0t_3 : $PC \leftarrow PC + 1; F = 1$	2E6				

$q_2C_2t_0:$ $MAR \leftarrow IR[AD]$		379			
$q_2C_2t_1:\\MDR{\leftarrow}M[MAR]$			6A4B		
$q_2C_2t_2$: AC \leftarrow MDR - 1					6A4A
$q_2C_2t_3$:					
F ← 0					
Результат:	2E6	379	6A4B	A379	6A4A

Задание:

Виртуальная память имеет объем 32 М байт, физическая — 32 к байт, страница - 4 к байт. Слово из виртуальной памяти со страницы № 24 со смещением 99 переписывается на страницу № 6 физической памяти. Записать виртуальный и физический адреса слова в двоичном коде, разделив страницу и смещение.

Решение:

Объем виртуальной памяти = 32 Мбайт = $2^5 * 2^{20}$ байт

Объем физической памяти = 32 Кбайт = $2^5 * 2^{15}$ байт

Размер страницы = 4 Кбайт = $2^2 * 2^{10} = 2^{12}$ байт

Номер виртуальной страницы = 24

Смещение = 99

Номер физической страницы = 6

Виртуальный адрес

F	Номер виртуальной страницы						ицы					(Смец	цени	ие					
(\mathbf{C}	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1

Физический адрес

Номер ф	изической ст	раницы	Смещение											
1	0	0	0	0	0	0	0	1	1	0	0	0	1	1

Задание:

К компьютеру подключены 4 периферийных устройства (ПУ) с номерами 0, 1, 2 и 3 (в порядке убывание их приоритета). Вектор-адреса (VAD) этих устройств располагаются в оперативной памяти (ОП) по адресам 00, 01, 10, 11, а соответствующие драйвера, т.е. программы обслуживания прерываний (ПОП), находятся по адресам 101-200, 201-300, 301-400 и 401-500.

Объектный код прикладной программы, исполнение которой прерывается при обращениях к ПУ, хранятся в ОП в области адресов 701-1500.

Для сохранения адресов возврата при прерываниях предусмотрен стек.

В соответствии с заданием, где конкретизированы название ПУ и приведен порядок прерываний прикладной программы от 2-х из перечисленных ПУ, привести поясняющий рисунок, где следует схематически изобразить стек, оперативную память с перечисленными адресами для VAD, для программ обслуживания прерываний и прикладной программы, а также указать с помощью стрелок порядок выполнения вычислительного процесса в ходе прерываний. Чтобы порядок выполнения был более ясным, возле стрелок следует поставить последовательные номера: 0,1,2,3 и т.д.

ПУ: 0. Диск 1. Принтер 2. Манипулятор 3. Тачпад.

При выполнении команды 876 прикладной программы пришло прерывание от манипулятора. Далее, при выполнении команды 335 ПОП манипулятора пришло прерывание от диска.

Решение:

Изобразить на рисунке ход выполнения вычислительного процесса

Рисунок 4 — Последовательность передачи управления вычислительным процессом при обработке прерываний от внешних устройств.

Задание:

- 1. Какие типы ЗУ различают по способу выборки информации?
- 2. Что такое сверхоперативная память?
- 3. В чем состоит проблема согласования пропускной способности процессора и памяти

Преобразовать в ПОЛИЗ арифметическое выражение Q=A/(B+C)/(D-E).

Изобразить на рисунке ход вычислительного процесса в стековой ВМ для данного примера, а также в виде таблицы последовательность выполнения арифметических операций при значениях A=12, B=1, C=3, D=5, E=2.

Решение:

- 1. Типы бывают статистические и динамические.
- 2. Быстродействующая память, расположенное между процессором и ОЗУ
- 3. Тактовая частота работы процессора значительно выше, чем тактовая частота, чем тактовая частота ОЗУ, процессор «простаивает», ожидая данные.

$$Q=A/(B+C)/(D-E)$$

Преобразуется в формулу

$$Q{=}ABC{+}/DE{-}/$$

Шаг	Формула	Левый знак	Операнды	Результат	Новая формула
1	12 1 3 + / 5 2 - /	+	1 и 3	4	124/52-/
2	124/52-/	_	5 и 2	3	124/3/

3	124/3/	/	12 и 4	3	33/
4	3 3 /	/	3 и 3	1	1

На рисунке 5 изображен расчет выражения с использованием стека.

Рисунок 5 – Пример использования стека для вычисления выражений.

Задание:

- 1. Конвейерная обработка в процессоре составляет 9 этапов, каждый длительностью в 1 такт. Определите среднюю длительность выполнения одной команды при количестве команд 12 и отсутствии конфликтов в конвейере.
- 2. Конвейерная обработка в процессоре составляет 5 этапов, каждый длительностью в 1 такт, кроме 3-го этапа, который составляет 2 такта. Определите среднюю длительность выполнения одной команды при количестве команд 10 и отсутствии конфликтов в конвейере

Решение:

1. По формуле $T_{NK} = (K + (N-1)) * T_K$

Средняя длительность выполнения одной команды =

$$= ((9 + (12 - 1)) * 1) / 12 \approx 1.66$$

2. Построим таблицу

Vouguro									J			Ta	KT											,
Команда	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	1	2	3	4	5	6	7	8	9	10														
2		1	2	3	4	5	6	7	8	9	10													
3			1		2		3		4		5		6		7		8		9		10			
4				1		2		3		4		5		6		7		8		9		10		
5					1		2		3		4		5		6		7		8		9		10	

Средняя длительность выполнения одной команды =

$$= 24 / 10 = 2.4$$

Задание:

Интернет-провайдер назначил компьютеру IP-адрес: 139.210.75.87/25 (после косой черты за IP-адресом указано число разрядов маски сети провайдера). Количество подсетей провайдера – 4.

Записать IP-адрес в двоичном коде, подчеркнуть биты блока IP-адреса сети провайдера (одной чертой) и биты адресов подсетей (двумя чертами);

Записать в двоичном виде блок адресов сети провайдера;

Записать в дот-нотации блок адресов сети провайдера;

Записать в двоичном виде маску сети;

Записать в дот-нотации маску сети;

Определить номер подсети, в которой находится компьютер (в десятичной системе);

Определить номер компьютера в подсети (в десятичной системе);

Определить максимальное количество компьютеров в подсети.

(Для каждого студента цифровые величины в задании индивидуальны)

Решение:

IP: 139.210.75.87/<u>25</u>

Количество подсетей: $4 = 2^2$

IP-адрес в двоичной системе: <u>10001011.11010011.01001011.0</u><u>10</u>10111

Дот-нотации блок адресов сети провайдера:

Дот-нотации маску сети: 255.255.255.128

Умножаем IP-адрес на маску сети

Номер подсети, котором находится ПК: 2 (выделено желтым цветом)

Номер ПК в подсети: 23 (выделено зелёным цветом)

Максимальное количество компьютеров в подсети: $2^5 = 32$

Задание:

- 1. Изучить правила построения, принцип работы логических схем.
- 2. Синтезировать электрическую принципиальную схему логического устройства, описанного заданным преподавателем уравнением в алгебраической форме.
- 3. Нарисовать синтезированную схему в графическом редакторе САПР QUARTUS II.
- 4. Произвести симуляцию работы схемы. Зарисовать диаграммы работы и по ее результатам заполнить таблицу истинности смоделированной схемы.

$$Y = A\overline{C} + A\overline{B} + AC\overline{D} + \overline{BC}$$

Решение:

Данное решение представлено на Листинге – 1 и на Листинге – 2.

Листинг 1 - lab1var10.v

```
module lab1var10(
    input A, B, C, D,
    output Y
    );
assign Y = (B ^ (A * C)) + ~(A & D) + (~B) & C;
endmodule
```

Листинг 2 - test.v

```
C in = 1'b0;
D = 1'b0;
#20;
A in = 1'b0;
B in = 1'b0;
C_in = 1'b0;
D_in = 1'b1;
#20;
A_{in} = 1'b0;
B_in = 1'b0;
C_in = 1'b1;
D_{in} = 1'b0;
#20;
A_{in} = 1'b0;
B_{in} = 1'b0;
C_{in} = 1'b1;
D^{-} in = 1'b1;
#20;
A in = 1'b0;
B_{in} = 1'b1;
C_{in} = 1'b0;
D_{in} = 1'b0;
#20;
A_in = 1'b0;
B_{in} = 1'b1;
C^{-}in = 1'b0;
D in = 1'b1;
#20;
A in = 1'b0;
B in = 1'b1;
C in = 1'b1;
D^{-}in = 1'b0;
#20;
A in = 1'b0;
B in = 1'b1;
C in = 1'b1;
D in = 1'b1;
#20;
A in = 1'b1;
B in = 1'b0;
C_{in} = 1'b0;
D = 1'b0;
#20;
A_{in} = 1'b1;
B in = 1'b0;
C_{in} = 1'b0;
D in = 1'b1;
#20;
A_in = 1'b1;
B = 1'b0;
C_{in} = 1'b1;
D^{-}in = 1'b0;
#20;
A in = 1'b1;
B = 1'b0;
C^{-}in = 1'b1;
D = 1'b1;
#20;
A in = 1'b1;
B_in = 1'b1;
C_in = 1'b0;
```

```
D in = 1'b0;
     #<del>2</del>0;
     A in = 1'b1;
     B = 1'b1;
     C_in = 1'b0;
D_in = 1'b1;
     #20;
     A in = 1'b1;
     B_in = 1'b1;
C_in = 1'b1;
D_in = 1'b0;
     #20;
     A_{in} = 1'b1;
     B_{in} = 1'b1;
     C_{in} = 1'b1;
     D_{in} = 1'b1;
     #20;
     $stop;
end
endmodule
```

Результат выполнения программы, показано на рисунке 6:

Рисунок 6 – Результат лабораторной работы №1

Задание:

Реализовать модули: дешифратор (DC2_4.v), приоритетный шифратор (PRCOD4_2.v: по положению старшей «1» на входе) и 2-разрядный регистр (RG_2.v: сброс асинхронный по высокому уровню сигнала). Выполнить их коммутацию в ТОР-модуле, согласно рисунку 7:

Рисунок 7 – ТОР-модуль

Решение:

Данное решение представлено на Листинге -1, на Листинге -2, Листинге -3, Листинге -4 и на Листинге -5.


```
module DC2_4(
    input EN,
    input [1:0] DATA,
    output reg [3:0] out
    );
always@(*)
    if (EN) begin
    case(DATA)
    2'b00: out <= 4'b0001;
        2'b01: out <= 4'b0100;
        2'b10: out <= 4'b0100;
        2'b11: out <= 4'b1000;
        default: out <= out;
    endcase</pre>
```

```
end endmodule
```



```
module PRCOD4 2 (
    input [3:0] in,
    input en,
    output reg [1:0] out
always @(*) begin
   if(en)
        if (in[3])
            out = 2'b11;
        else if(in[2])
           out = 2'b10;
        else if(in[1])
           out = 2'b01;
        else
            out = 2'b00;
     else
        out = 2'b00;
end
endmodule
```



```
module RG_2(
   input clk, rst, in,
   output reg [1:0] out
   );
always@(posedge clk or posedge rst)
   begin
     if(rst)
        out <= 2'b00;
   else
        out <= in;
   end
endmodule</pre>
```

Листинг 4 – ТОР. у

```
module TOP(
   input [1:0] D,
   input R,
   input en,
   input clk,
   output [1:0] Q
);
wire [3:0] dec out;
wire [1:0] reg out;
DC2 4 dc(
   .DATA(D),
    .out (dec out),
    .EN(en)
PRCOD4 2 prcod(
   .in(dec out),
    .out(reg out),
```

```
.en(en)
);
RG_2 rg(
    .in(reg_out),
    .clk(clk),
    .rst(R),
    .out(Q)
);
endmodule
```

Листинг 5 - test.v

```
module test;
// input
reg RST, CLK;
reg [1:0] DATA, EN;
//output
wire OUT;
TOP uut (
    .D(DATA),
    .R(RST),
    .Q(OUT),
    .en(EN)
);
always begin
    #10;
    EN = \sim EN;
end
initial begin
   DATA[0] = 0;
    RST = 1;
    CLK = 1;
    #20;
    RST = 0;
    #50;
    RST = 1;
    #40;
    DATA[0] = 1;
    #40;
    $stop;
end
endmodule
```

Результат выполнения программы, показано на рисунке 8:

Рисунок 8 – Результат в Schematic Viewer

Задание:

Реализовать модули: делитель частоты (dividor.v) и регистр (RG.v). Выполнить в ТОР-модуле, согласно рисунку 9:

Рисунок 9 – ТОР-модуль

Решение:

Данное решение представлено на Листинге – 1, на Листинге – 2, Листинге – 3 и на Листинге – 4.

Листинг 1 - dividor.v

```
module dividor #(
    parameter DIV = 5
    input CLK, RST,
    output reg CLK DIV
reg [$clog2(DIV) - 1:0] counter;
always@(posedge CLK, posedge RST) begin
    if(RST) begin
        counter <= 0;</pre>
        CLK DIV <= 1'b0;
    end
    else if(counter == DIV - 1) begin
        counter <= 0;</pre>
        CLK DIV <= 1'b1;
    end
     else begin
        counter <= counter + 1;</pre>
        CLK DIV = 1'b0;
    end
```

```
end endmodule
```

Листинг 2 - RG.v

```
module RG#(
    parameter WDT_RG = 8
)(
    input L, RST, CLK,
    input [WDT_RG-1:0] D,
    output reg [WDT_RG-1:0] Q
    );
always@(posedge CLK, posedge RST) begin
    if(RST) begin
        Q <= {WDT_RG{1'b0}};
    end
    else if(L) begin
        Q <= D;
    end
end
end
end
end</pre>
```

Листинг 3 – ТОР. у

```
module TOP #(parameter WDT = 8)(
   input [WDT - 1:0] DATA,
    input iclk,
    input irst,
    output [WDT - 1:0] out,
    wire clk div
dividor #(.DIV(7)) div(
    .CLK(iclk),
    .RST(irst),
    .CLK DIV(clk div)
);
RG #(.WDT RG(WDT)) rg(
    .D(DATA),
    .L(clk div),
    .RST(irst),
    .CLK(iclk),
    .Q(out)
```

Листинг 4 - test.v

```
module test;
reg [3:0] DATA;
reg CLK;
reg RST;
wire clk_div;
wire [3:0] OUT;
TOP #(.WDT(4)) dutl(
    .iclk(CLK),
    .irst(RST),
    .out(OUT),
    .clk_div(clk_div),
    .DATA(DATA)
);
```

```
always begin
    #10;
    CLK = ~CLK;
end
initial begin
    CLK = 0;
    RST = 0;
    #50;
    RST = 1;
    #100;
    RST = 0;
    DATA = 1;
    #50;
    RST = 1;
    #50;
    RST = 0;
    DATA = 3;
    #300;
    $stop;
end
endmodule
```

Результат выполнения программы, показано на рисунке 10:

Рисунок 10 – Результат лабораторной работы №3

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Федеральный закон №127 от 23 августа 1996 г. «О науке и государственной научно-технической политике» (ред. от 23.05.2016) URL: http://www.consultant.ru/document/cons_doc_LAW_11507/ (Дата обращения: 07.02.2019)
- 2. Громов Г. Р. Очерки информационной технологии. М.: Инфо Арт, 2015. — 336 с.
- 3. Информатика: Учебник / Под ред. проф. Н. В. Макаровой. М.: Финансы и статистика, 2015. 768 с.
- 4. Качала В. В. Предварительное обследование при реорганизации управления предприятием // Третья Российская научно-практическая конференция «Реинжиниринг бизнес-процессов на основе современных информационных технологий». М.: МЭСИ, 2012. С. 248–253.
- 5. Надарая Э. А. Об оценке регрессии // Теория вероятностей и ее применения. 2010. Т. 9. Вып. 1. С. 157–159.
- 6. Пур А. Накопители XXI века // PC Magazine. 2013. № 4. C.138 \(\text{146}. \)
- 7. Фурсов К.С. Анализ новейших международных рекомендаций в области статистического измерения исследований и разработок (Руководство Фраскати) и возможность их адаптации в отечественной статистике URL: http://www.gks.ru/free_doc/new_site/rosstat/nms/prez2_1503.pdf (Дата обращения: 07.02.2019)
- 8. Billings S. A., Fadzil M. B., Sulley J., Johnson P. M. Identification of a non-linear difference equation model of an industrial diesel generator // Mechanical Systems and Signal Processing. 2015. Vol. 2. N 1. P. 59–76.