Routing in the Internet

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Scaling Routing for the Internet

scale

- 200 million destinations can't store all destinations or all prefixes in routing tables
- link-state: flood link state packets to all hosts in the entire Internet
- distance-vector: send routing table for all networks to each of your neighbors
- administrative authority
 - the Internet is a network of networks
 - each network administrator wants to control routing in her organization – may even use a different routing algorithm

Hierarchical Routing

Hierarchical Routing RIP OSPF BGR

Hierarchical Routing

- aggregate routers into regions: domains or autonomous systems (AS)
- intra-domain routing
 - routing within a domain
 - run a single routing protocol in the domain
- inter-domain routing
 - routing between domains
 - every domain must agree to run the same inter-domain routing protocol
- border router or gateway
 - router at the border of your domain and a peer, runs
 - must run both intra- and inter-domain routing protocols

Domains and Border Routers

- forwarding table entries on a border router are created by both the intra-domain and inter-domain routing protocols
 - intra-domain sets routes for internal destinations
 - inter-domain sets routes for external destinations

Hierarchical Routing

- router in AS1 gets a datagram for an external destination
- which border router does it choose?
- inter-domain routing protocol needs to
 - learn destinations reachable through each border router
 - propagate routes to all routers inside the domain
 - some destinations may be reachable by more than one border router – choose the closest one

Hierarchical Routing Procedure

Intra-Domain Routing

Intra-Domain Routing

- also known as an interior gateway protocol (IGP)
- most common protocols
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco)

RIP

RIP: Routing Information Protocol

- distance-vector algorithm
- included in BSD-UNIX in 1982, most Unix and Linux distributions since then
- each link cost = 1, infinity = 16 (limits counting to infinity problem)
- exchanges distance vectors with neighbors every 30 seconds (called an advertisement)
- each advertisement contains a list of up to 25 destination networks
- RIP2 supports subnet masks, adds authentication for advertisements
- RIPng supports IPv6

RIP Example

routing table for D:

Destination Subnet	Next Router	Number of Hops to Destination
W	А	2
у	В	2
Z	В	7
Х	_	1

RIP Example

advertisement from A:

Destination Subnet	Next Router	Number of Hops to Destination
Z	C	4
W	_	1
Х	_	1

routing table for D:

Destination Subnet	Next Router	Number of Hops to Destination
w	А	2
у	В	2
Z	А	5

D changes its route for z to use A instead of B (cost of 5 instead of 7)

RIP Link Failure and Recovery

- if no advertisement heard after 180 sec, neighbor/link declared dead
 - routes using neighbor invalidated
 - new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
 - link failure info quickly propagates to entire network
 - poison reverse used help with count-to-infinity

RIP Table Processing

- RIP run as application-level process called routed (route daemon)
- advertisements sent in UDP packets, periodically repeated

OSPF

OSPF: Open Shortest Path First

- open: publicly available
- uses link-state algorithm
 - link-state advertisements (LSAs) contain one entry per neighbor router
 - LSAs sent to each router in the domain
 - LSAs sent as OSPF messages directly over IP (no TCP and no UDP)
- security: all messages authenticated
- multi-path: multiple same-cost paths allowed
- TOS: multiple cost metrics per link (e.g. satellite can be low cost for bandwidth, high cost for latency)
- multicast support: MOSPF uses OSPF link-state database
- hierarchical: divide a domain into multiple areas

OSPF Hierarchy

- area routers learn topology and routes for area
- area border routers summarize distances for networks in their area, advertise to other area routers on backbone
- backbone routers run OSPF on the backbone
- boundary routers connect to Internet

Inter-Domain Routing

BGP

Inter-Domain Routing: BGP

- Border Gateway Protocol (BGP) the standard for Internet inter-domain routing
- BGP allows domains to
 - advertise routes for internal networks to the rest of the Internet
 - obtain routes for external networks from other domains
 - use policy to select routes (not just shortest path)

BGP Basics

- BGP peers (routers) establish TCP connections and exchange routing information (may span several non-BGP routers)
- when AS1 advertises a prefix (network) to AS2, AS1 is promising it will forward any datagrams sent to that prefix
- prefixes can be aggregated along any bit boundary

BGP Reachability

- advertise prefixes that are reachable by your domain
- example
 - 3a uses BGP to send reachability info to 1c for internal networks
 - 1c uses OSPF/IGRP to distribute reachability to other routers in AS1
 - 1b uses BGP to advertise these networks to 2a
 - any router that learns about a new/updated prefix creates/updates forwarding table entry

BGP Attributes

- attributes may be attached to prefixes = route
- important attributes
 - AS-PATH: an ordered list of ASs in the route
 - NEXT-HOP: IP address of the router which should be used as the BGP next hop to the destination
- example
 - when 3a advertises a route to 1c, it uses its own IP address as the NEXT-HOP and the AS-PATH is AS3.
 - when 1b advertises the same route to 2a, it changes the NEXT-HOP to 1b's address, and the AS-PATH is AS3-AS1

BGP Route Selection

- BGP routers use policies to determine which routes they will accept and advertise to their peers
- policy eliminates routes for which you don't want to carry traffic)
- route selection among multiple routes for same prefix : complicated rules)
 - largest weight
 - highest local preference (e.g. prefer directly-connected routes, or routes over Internet2)
 - shortest AS-PATH
 - cheapest internal route to BGP NEXT-HOP

BGP Messages

- exchanged using TCP
- message types
 - OPEN: open TCP connection to peer and authenticate sender
 - UPDATE: advertise new paths, withdraw old paths
 - KEEPALIVE: keep connection alive in absence of updates, ACKs OPEN request
 - NOTIFICATION: reports errors, can also close connection

BGP Policy

- provider networks: A, B, C
- customer networks: X, W, Y
- X is dual-homed: attached to two networks
- policy
 - X does not want to route from B to C via itself
 - X will not advertise to B a route for C

BGP Policy

- A advertises path AW to B
- B advertises path BAW to X
- should B advertise path BAW to C?

BGP Policy

- A advertises path AW to B
- B advertises path BAW to X
- should B advertise path BAW to C?
 - No! B gets no benefit from routing CBAW since neither C nor W are customers of B
 - B wants to force C to route via A
 - B wants to route only to/from its own customers

Separation of Concerns

policy

- inter-domain: want control over how traffic is routed, who routes to domain, needs policy
- intra-domain: single administrator, so no policy decisions needed
- scale
 - hierarchical routing saves table size, reduces update traffic
- performance
 - intra-domain focuses on performance
 - inter-domain focuses on global reachability, policy