COMP20007 Design of Algorithms Semester 1 2015

Map/Dictionary data structures
Hash tables

Lecture Objectives

- Learn about the Hash Table data structure
- After this lecture you should be able to
 - implement a hash table with separate chaining
 - choose a suitable hash function for your data
 - understand different approaches to collision handling
 - Open Addressing
 - Cuckoo Hashing
 - Hopscotch Hashing

Map/Dictionary abstract data type

- What is required of a map?
 - create empty map
 - insert (key, value)
 - delete (key, value)
 - find(key)

Maybe:

- get size
- get an iterator
- get a sorted iterator

Map/dictionary as a BBST

Operation	Worst
create	$\Theta(1)$
insert	$\Theta(?)$
delete	$\Theta(?)$
find	$\Theta(?)$
size	$\Theta(?)$
iterate over	$\Theta(?)$
find smallest	$\Theta(?)$
find largest	$\Theta(?)$
find successor	$\Theta(?)$

Successor = smallest thing in right sub-tree, or parent of left-child ancestor.

Map/dictionary as a BBST

Operation	Worst
create	$\Theta(1)$
insert	$\Theta(\log n)$
delete	$\Theta(\log n)$
find	$\Theta(\log n)$
size	$\Theta(n)$
iterate over	$\Theta(n)$
find smallest	$\Theta(\log n)$
find largest	$\Theta(\log n)$
find successor	Θ(log n)

Successor = smallest thing in right sub-tree, or parent of left-child ancestor.

Hash tables: map keys into an array

- ▶ So we need...
 - ▶ An array *A*[0...*m*-1]
 - ▶ A function h: key → integer in range [0, m)

- h(key) = key mod m
- ▶ Insert(key, data): A[h(key)] = data $\Theta(1)$
- Search(key): return A[h(key)] $\Theta(1)$
- ▶ Delete(key): A[h(key)] = NULL $\Theta(1)$

Fantastic! Why do we need BBST?

Operation	BBST Worst	Hash Table Worst
create	$\Theta(1)$	$\Theta(1)$
insert	$\Theta(\log n)$	$\Theta(1)$
delete	$\Theta(\log n)$	$\Theta(1)$
find	$\Theta(\log n)$	$\Theta(1)$
size	$\Theta(n)$	$\Theta(1)$
iterate over	$\Theta(n)$	O(m)
find smallest	$\Theta(\log n)$	O(m)
find largest	$\Theta(\log n)$	O(m)
find successor	$\Theta(\log n)$	O(m)

- m = 8
- h(key) = key mod m
- ▶ Insert 15, 9, 4, 7

_	_
1	1
ı	
ı	J

- 1
- 2
- 3
- 4
- 5
- 6
- 7

- m = 8
- h(key) = key mod m
- ▶ Insert 15, 9, 4, 7

U

- 1
- 2
- 3
- 4
- 5
- 6
- 7 15

- m = 8
- h(key) = key mod m
- ▶ Insert 15, 9, 4, 7

0	
1	9
2	
3	
4	
5	
6	
7	15

- m = 8
- h(key) = key mod m
- ▶ Insert 15, 9, 4, 7

0	
1	9
2	
3	
4	4
5	
6	
7	15

- m = 8
- h(key) = key mod m
- ▶ Insert 15, 9, 4, 7

0	
1	9
2	
3	
4	4
5	
6	
7	15

How to handle collisions?

Make m bigger

- ▶ Pigeon hole principle: n pigeons, m holes, $m \ge n$
- ▶ If we want to handle integer keys up to U, we need $m \ge U$
- For integers, $U = 2^{32}$ or 2^{64}
- ▶ For strings? Say 10 letter words, lower case: 26¹⁰
- ▶ Not viable for large *U*

▶ If $m \ge n$, make h "better"

If we know all keys in advance, can build a perfect hash function (uses graphs, but not studied here)

Even if $m \ge n$, can still get collisions

Birthday "paradox": what's the probability of 2 people sharing a birthday (day/month) out of n people?

Even if $m \ge n$, can still get collisions

▶ Birthday "paradox": what's the probability of 2 people sharing a birthday (day/month) out of *n* people?

$$n = 1$$
, Pr no collision = 1
 $n = 2$, Pr no collision = $(m-1)/m$
 $n = 3$, Pr no collision = $(m-1)/m * (m-2)/m$
...

n, Pr no collision =
$$\prod_{i=1}^{n} \frac{m-i+1}{m} = \frac{m!}{(m-n)! m^n}$$

- n = 23, m = 365: 0.493
- n = 50, m = 365: 0.03

So even if *h* really randomises keys...

- ...you will probably get collisions.
- A nice comparison of hash functions:
 "Which hashing algorithm is best for uniqueness and speed". stackexchange.com.
- And the winner is MurmurHash http://code.google.com/p/smhasher/
- ▶ But watch out for hashDOS... http://emboss.github.io/blog/2012/12/14/breaking-murmur-hash-flooding-dos-reloaded/

So we have to handle collisions

Separate chaining

- ▶ Each element in *A* is a linked list (perhaps move to front (MTF))
- Or each element in A is a BBST (perhaps Splay)
- Or just an unordered array (good cache hits)

Open Addressing

- Linear probing: $h(\text{key}, i) = (h(\text{key}) + i) \mod m$
- Double hashing: $h(\text{key}, i) = (h_1(\text{key}) + i.h_2(\text{key})) \mod m$
- Cuckoo hashing
 - Move current element into B & vice versa
 - ▶ What happens when *A* and *B* are full: rehash everything into bigger tables
 - Visualisation at http://www.lkozma.net/cuckoo_hashing_visualization/

Separate Chaining

Insert 15, 9, 4, 7 h(key) = key mod 8

Separate Chaining with MTF

Insert 15, 9, 4, 7 h(key) = key mod 8

Separate Chaining with MTF array

Insert 15, 9, 4, 7 h(key) = key mod 8

First element is number of elements in the rest of array.

Separate Chaining - Analysis

- Assuming h is O(1) and spreads keys
- ▶ Insert: $\Theta(1)$ if MTF, usually O(1) if n/m low
- Search: expect O(1) if n/m low
- ▶ Delete: expect O(1) if n/m low
- Array may be faster than linked list (caching)
- MTF will adapt to skew access patterns

0	7
1	9
2	
3	
4	4
5	
6	
7	15

Insert 15, 9, 4, 7 h(key) = key mod 8

If collide, just search +1 (with wrap around – mod *m*) until find a gap

0	7 0
1	9
2	
3	
4	4
5	
6	
7	15

Insert 15, 9, 4, 7 h(key) = key mod 8

Insert 0. Clash!

0	7	
1	9	0
2		
3		
4	4	
5		
6		

15

Insert 15, 9, 4, 7 h(key) = key mod 8

Search +1. Another clash!

0	7
1	9
2	0
3	
4	4
5	
6	
7	15

Insert 15, 9, 4, 7, 0 h(key) = key mod 8

Search +2. Success.

- Good cache behaviour
 - Scanning left to right except for wrap around
- Keys tend to cluster
- Generally in OA we want a hash function of two arguments: key and *i*, the rehash attempt number
- ▶ Linear probing: $h(\text{key}, i) = (h(\text{key}) + i) \mod m$

Original hash function

 $h(\text{key}, i) = (h_1(\text{key}) + i.h_2(\text{key})) \mod m$

0 1 9 2

3

4 4

5

6

7 15

Insert 15, 9, 4, 7 $h_1(\text{key}) = \text{key mod } 8$ $h_2(\text{key}) = \text{key mod } 3 + 1$ $h(\text{key}, i) = (h_1(\text{key}) + i h_2(\text{key})) \mod m$

Note h_2 should not evaluate to 0

Q: Why have second hash function, not just a fixed offset, e.g. $h_2(\text{key}) = 7$?

```
Insert 15, 9, 4, 7
                   h_1(\text{key}) = \text{key mod } 8
                   h_2(\text{key}) = \text{key mod } 3 + 1
        9
                   h(\text{key}, i) = (h_1(\text{key}) + i.h_2(\text{key})) \mod m
3
                    i = 0. Clash!
5
                   h_1(7) = 7 \mod 8 = 7
                   h_2(7) = 7 \mod 3 + 1 = 2
     15 7
```

```
9 7
3
5
    15
```

Insert 15, 9, 4, 7
$$h_1(\text{key}) = \text{key mod } 8$$
 $h_2(\text{key}) = \text{key mod } 3 + 1$
 $h(\text{key}, i) = (h_1(\text{key}) + i.h_2(\text{key})) \mod m$

$$i = 1$$
. Clash!

$$h_1(7) = 7 \mod 8 = 7$$

 $h_2(7) = 7 \mod 3 + 1 = 2$

```
9
5
      15
```

Insert 15, 9, 4, 7
$$h_1(\text{key}) = \text{key mod } 8$$
 $h_2(\text{key}) = \text{key mod } 3 + 1$
 $h(\text{key}, i) = (h_1(\text{key}) + i.h_2(\text{key})) \text{ mod } m$

$$i = 2$$
. Success!

$$h_1(7) = 7 \mod 8 = 7$$

 $h_2(7) = 7 \mod 3 + 1 = 2$

- Must be careful choosing h_1 and h_2
- eg If m=1024 and h_2 (key)=256, probe sequence would be: h_1 (key) + {256, 512, 768, 0, 256, ...} which only examines 4/1024 = 1/256 slots
- Generally, $h_2(\text{key})$ must be relatively prime to m
- Relatively Prime = no common divisor other than 1
- Easy way 1
 - Choose *m* to be a power of 2
 - ▶ Design h_2 (key) to always return an odd number
- Easy way 2
 - Choose *m* to be prime
 - Design h_2 to be in (0,m): $h_2(\text{key}) = 1 + (\text{key mod }(m-1))$

Summary

- Open Addressing does not require extra structures, but number of keys is limited to table size.
 - Watch out for delete!
- Chaining allows expansion beyond m
- Can be slow? Let's see in the Workshop.
- Access is O(1) if hash function is O(1)
- Insert/Delete can be more than O(1) if table is heavily loaded (n/m) high)