Schristd @ andrew. emu. edu. 1. KERNEL FEATURE MAPPINGS:- 1) $x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$		
1. KERNEL FEATURE MAPPINGS: $(x_1, x_2)^T, \phi(x) = (x_1^2, \sqrt{2} \times_1 \times_2, x_2^2)^T$ $(x_1, x_2)^T, \phi(x) = (x_1^2, \sqrt{2} \times_1 \times_2, x_2^2)^T$ $(x_1, x_2) = \phi(x). \phi(z) = (x_1^2, \sqrt{2} \times_1 \times_2, x_2^2)^T. (z_1^2, \sqrt{2} \times_1 z_2, z_2^2)^T$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2)^2$ 2) a) map to feasitive space and dot peroduct $k(x_1, z_1) = \phi(x_1). \phi(z_1) = x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_1^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2)^2$ 2) a) map to feasitive space and dot peroduct $k(x_1, z_2) = \phi(x_1). \phi(z_1) = x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_1 + x_2^2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_1 + x_2^2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_1 + x_2^2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_1 + x_2^2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_1 + x_2^2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 z_1 x_2 x_2 z_1^2$ $= x_1^2 z_1^2 + 2 x_1 z_1 z_1 z_1 z_1 z_1 z_1 z_1 z_1 z_1 z$		
SAM DAVID CHRIST DOSS PUSHPA Schristd @ andrew. cmu. edu. 1. KERNEL FEATURE MAPPINGS: 1) $x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$ $(x_1, x_2) = \phi(x)$. $\phi(z) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$. $(z_1^2, \sqrt{2}z_1z_2, z_2^2)^T$ $= x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2 z_1^2)^2$ 2) a) map to fearture space and dot peroduct $(x_1, x_2) = \phi(x_1^2) + \phi(x_2^2) + \phi(x_2^2$		MACHINE LEADANNIG
SAM DAVID CHRIST DOSS PUSHPA Schristd @ andrew. cmu. edu. 1. KERNEL FEATURE MAPPINGS: 1) $x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$ $\times (x_1, z_2) = \phi(x)$. $\phi(z) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$. $(z_1^2, \sqrt{2}z_1z_2, z_2^2)^T$ $= x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2)^2$ 2) a) map to fearture space and dot product $\times (x_1, z_2) = \phi(x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $\times (x_1, z_2^2) = (x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $\times (x_1^2, x_2^2) = (x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $\times (x_1^2, x_2^2) = (x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2^2$ $\times (x_1^2, x_2^2) = (x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2^2$ $\times (x_1^2, x_2^2) = (x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2^2$	2/16/16	
Sch Ristd @ andrew. emu. edu. 1. KERNEL FEATURE MAPPINGS: 1) $x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$ $ \times (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$ $ \times (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$, $(z_1^2, \sqrt{2}z_1z_2, z_2^2)^T$ $ = x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $ = (x_1 z_1 + x_2 z_2)^2$ $ = (x_2 z_1^2 + x_2 z_2)^2$ $ = (x_1 z_1 + x_2 z_2)^2$ $ = (x_2 z_1^2 + x_2 z_2^2)^2$ $ = (x_1 z_1 + x_2 z_1 + x_2 z_2^2)^2$ $ = (x_1 z_1 + x_2 z_1 + x_2 z_2^2)^2$ $ = (x_1 z_1 + x_2 z_1 + x_2 z_1 + x_2 z_2^2)^2$ $ = (x_1 z_1 + x_2 z_1 + x_2 z_2 + x_2 z_1 + x_2 z_2 z_2 z_2 z_2 z_2 z_1 + x_2 z_1 z_2 z_1 + x_2 z_1 z_2 z_2 z_2 z_2 z_2 z_2 z_2 z_2 z_2 z_2$	= 1, = 1	
1. KERNEL FEATURE MAPPINGS: 1) $x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$ $k(x, z) = \phi(x), \phi(z) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T, (z_1^2, \sqrt{2}z_1z_2, z_2^2)^T$ $= x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2)^2$ 2) a) map to fearture space and dot peroduct. $k(x_1, z) = \phi(x), \phi(z) = x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $k(x_1, z_1) = \phi(x_1^2, x_2^2) + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_1^2 z_1^2 z_2^2 + x_2^2 z_2^2 z_2^2 z_1^2 z_1^2 z_2^2 z_1^2 z_1^2 z_2^2 z_1^2 z$		SAM DAVID CHRIST DOSS PUSHPAM
1) $x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$ $k(x, z) = \phi(x). \phi(z) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T. (z_1^2, \sqrt{2}z_1z_2, z_2^2)^T.$ $= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2 z_1^2)^2$ 2) a) map to fearture space and dot product. $k(x_1, z) = \phi(x). \phi(z) = x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $k(x_1, z_2) = \phi(x). \phi(z_1^2) = x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $2 x_1^2 x_1^2 x_1^2 z_2^2 = 4 \text{ operations.}$ $x_2^2 z_1^2 = 4 \text{ operations.}$ $x_1^2 z_2^2 = 4 \text{ operations.}$		schnistd @ andrew. cmu. edu.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	KERNEL FEATURE MAPPINGS:
$= x_1^2 z_1^2 + 2 x_1 z_1 x_2 z_2 + x_2^2 z_2^2$ $= (x_1 z_1 + x_2 z_2)^2$ $= (x_2 z_1^2 + x_2 z_2)^2$ $= (x_2 z_1^2 + x_2 z_2^2 + x_2^2 z_2$	1)	$x = (x_1, x_2)^T$, $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$
$= (x, z, +x, z_{z})^{2}$ $= (x, z)^{2}$ $= (x, z)^{2}$ $= (x, z)^{2}$ a) map to fearture space and dot product $\mu(x, z) = \phi(x) \cdot \phi(z) = x,^{2}z,^{2} + 2x, z, x, z, +x^{2}z,^{2}$ $\chi^{2}/2^{2} = \phi_{x} \cdot \phi_{$		$\kappa(x,z) = \phi(x). \phi(z) = (x_1^2, \sqrt{2} x_1 x_2, x_2)^T. (z_1^2 \sqrt{2} z_1 z_2, z_2)^T$
$= (x, z, +x, z_{z})^{2}$ $= (x, z)^{2}$ $= (x, z)^{2}$ $= (x, z)^{2}$ a) map to fearture space and dot product $\mu(x, z) = \phi(x) \cdot \phi(z) = x,^{2}z,^{2} + 2x, z, x, z_{z} + x_{z}^{2}z,^{2}$ $\chi^{2}/2^{2} = \phi_{x} + \phi_{$		$= x_1^2 z_1^2 + 2 x_1 z_1 x_1 z_2 + x_1^2 z_1^2$
$= (x \cdot z)^{2}$ 2) a) map to fearture space and dot product. $\mu(x, z) = \phi(x) \cdot \phi(z) = x,^{2}z,^{2} + 2x, z, x, z, + x,^{2}z,^{2}$ $\chi^{2}/2 = \text{poperations}, x, $		
2) a) map to fearture space and dot peroduct. $k(x, z) = \phi(x). \phi(z) = x,^2 z,^2 + 2x, z, x, z, + x,^2 z,^2$ $x^2/z^2 = 4 \text{ operations}.$ $x_2(z^2) = 4 \text{ operations}.$ $\phi(x) \in (x^2 + (2x)^2 + (2x)^2)$		$z \left(x_1 z_1 + x_2 z_2 \right)^2$
2) a) map to fearture space and dot peroduct. $k(x, z) = \phi(x). \phi(z) = x,^2 z,^2 + 2x, z, x, z, + x,^2 z,^2$ $x^2 z,^2 = 4 \text{ operations}.$ $x_2(z) = 4 \text{ operations}.$		$-(x-7)^2$
$k(x, z) = \phi(x). \phi(z) = x,^2 z,^2 + 2x, z, x, z, + x,^2 z,^2$ $2 \times x, 2 \times x, z \times z = 5 \text{ operations.}$ $x_2(z_2^2 = 4 \text{ operations.}$ $\phi(x) \in (x^2 + 2x, x, x$		
2 x/x, x/2 x/2 z = t operations. 2 x/x, x/2 x/2 z = t operations. 2 x/2 z = 4 operations.	2)	a) map to fearture space and dot product.
2 x x x x x z = 5 operations. x z z = 4 operations.		$k(x, z) = \phi(x). \phi(z) = x,^2 z,^2 + 2x, z, x, z, + x,^2 z,^2$
2 x x x x x z = t operations. x 2 z = 4 operations.		x/2/22 & goperations , xxxx 2,
p/x/ z (~2 1/2 x x x2) T		2 x x x x x x z = 5 operations.
$\phi(x) = (x,^2, \sqrt{2}x, x_2, x_3^2)^T$ $\sqrt{2}x, x_2 = 2$ $x_2^2 = 1$ $2x + 2x + 3x + 3x + 3x + 3x + 3x + 3x + $		x2 Z2 = 4 operations.
$\sqrt{2}$ x, x, = 2 } => 4 operations for each ϕ $x_2^2 = 1$		\$\phi(\pi) = \left(\pi, \frac{1}{2} \pi, \pi_2 \p
$\sqrt{2}$ x, x, = 2 z) 4 operations for each ϕ		×, 2 = 1
X 2 7 1 U		√2 x, x, = 2 => 4 operations for each \$
		X2 Z I U

6	
	dot product.
	$\phi(x) \cdot \phi(x) = ((x, 2), (\sqrt{2}x, x_2), (x_2)) \cdot ((z, 2), (\sqrt{2}z, z)^2, (z_2^2)$
	$= \left((x_1^2)(z_1^2) + (\sqrt{2}x_1x_2)(\sqrt{2}z_1z_2) + (x_2^2z_2^2) \right)$
	5 operations.
	\$\phi(n) => 2 × (4 for each \$\phi) + 5 operations while dot product
	z) 13 operations
	b) K(x, z) = (x.z)2
	2.2 = x, z, + x, z, => 3 operations.
	(x,z)2 =) 1 operations
	=) 4 operations totally.
2)	Perceptuons:
	y= ψ (ξx;* ω; +b),
	$\psi(z) = \begin{cases} 0 & \text{if } z \leq 0 \\ 1 & \text{otherwise} \end{cases}$

	10
	1) AND operation 21, 22 AND
	A, A2 AND
	0 0 0
	0 1 0
	2) 12 21 1 2
	2) w, and w, for AND.
	1.2 = 1
	$W_1 = 1$
	$W_2 = 1$ $b = -1$
	b E
6.1	
	3) OR!-
	x , x_2 OR
	0 0 0
	0 0 0
	101
	$4) W_1 = 1, W_2 = 1, b = 0$
	7)
	5) XOR:-
	x, x, xoR
	0 0 0
	0 1
	1 0 1
	1 1 0

	> 06. \ > 7 . &
	B(xc) = 3 w wTxc = (xc) &
	$= \frac{\partial}{\partial w^{k}} J(w) = \frac{2}{2} \frac{\mathcal{E}}{i} \left(\psi_{i} - f(x_{i}) \right) (x_{i})_{k} = \frac{\mathcal{E}}{i} \left(\psi_{i} - f(x_{i}) \right) x_{i}^{k}$
	c) repdate rule:
	$W_{K} = W_{K} + \alpha \frac{\partial}{\partial} \mathcal{I}(w)$
	5 W
	$= \omega^{k} + \alpha^{\ell} \left(2 \leq (y_{i} - f(x_{i})) \times x_{i}^{k} \right)$
	$w_{\text{new}}^{k} = w_{\text{k}} + \alpha \leq (y_{\text{i}} - f(x_{\text{i}}))x_{\text{i}} \cdot k$
	₩ .
	whome, are sent with, a < 0
	2) mascimum likelihood:
	a) $y \sim N(\omega^T x_c, \sigma^2)$
,	noumal distribution.
	$-(y_{\circ}-f(x_{\circ}))^{2}$
	$L(\omega, x, y) = \frac{1}{i} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\left(\frac{y}{i} - \frac{y}{i}(x_i)\right)^2}$
	=> This is due to the condition
	Imal 40 Ms LICI
	that ye is ind,
	mar je se era,
0	mar je se era,

7 Since, E(E) =0 = mean is 0, last term becomes o MSE = E(f(x) - E(f(x)))2 + E(E(f)-f)2) + 52 = Bias + Voliance + 52 3.2 Regularization 1) a) $L = \frac{1}{2} \frac{\sum_{i=1}^{m} (y_i - w^T x_i)^2 + \frac{\lambda}{2} ||w||^2}{||w||^2}$ $\frac{\partial L}{\partial \omega_{i}} = \frac{2}{2} \frac{2}{E} \left(y_{i} - \omega^{T} x_{i} \right) \frac{\partial (\omega^{T} x_{i})}{\partial \omega_{i}} + \frac{\lambda}{2} \frac{\partial}{\partial \omega_{i}} \|\omega\|^{2}$ = E (y: - w x:) x: + x wk b) The algorithm(ii) is most likely to give sparse w. The walve of wis normalized in that case, so it may suppress the value to 0 completely. without the normalization factor actually suppressing the value of wk, (ii) tends to give sparse w.

$$\frac{\partial}{\partial \omega_{k}} \mathcal{L}(\omega; x, y) = \begin{cases} \frac{1}{1} \frac{\partial}{\partial \omega_{k}} f(x; \omega), & \text{if } y = 1 \\ \frac{1}{1 - \beta} \frac{\partial}{\partial \omega_{k}} (x, \omega), & \text{if } y = 0 \end{cases}$$

$$f = \frac{1}{1 + e^{\omega T} x}, \quad 1 - f = \frac{e^{\omega T} x}{1 + e^{\omega T} x}$$

$$\frac{\partial}{\partial \omega_{k}} f = (-1) \left(1 + e^{\omega T} x \right)^{-2} \frac{\partial}{\partial \omega_{k}} \left(e^{-\omega T} x \right)$$

$$= (-1) \left(1 + e^{\omega T} x \right)^{-2} \left(e^{-\omega T} x \right) x^{\frac{1}{2}}$$

$$= (-1) \left(1 + e^{\omega T} x \right)^{-2} \left(e^{-\omega T} x \right) x^{\frac{1}{2}}$$

$$= (1 + e^{\omega T} x) \left(1 + e^{\omega T} x \right) x^{\frac{1}{2}}$$

$$= (1 + e^{\omega T} x) \left(1 + e^{\omega T} x \right) x^{\frac{1}{2}}$$

$$= (1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta) x^{\frac{1}{2}}, \quad x^{\frac{1}{2}} y = 0 \right)$$

$$= \left((1 - \beta$$

For unregularized LR, Training accuracy: 99.1575 %. Testing accuracy: 98.607 % For regularized LR, Training accuracy: - 99.2236%. Testing accuracy: 98.607% Training accuracy increased slightly in, regularized LR, Whereas the testing accuracy remains the same. The gap between training test ever becomes wider as a result. We would expect a decleron to the inchease in testing accuracy as well. This might be due to low value of the regularization parameter, that it does not affect the parameter, values significantly 5) Programming Kernel perception: 4. Perceptuon: Training accuracy = 98.8932./.
Jesting accuracy = 98.5075./.

Kernel perceptron: Training accuracy: 99.7605%.

Jesting accuracy: 99.602%. Kernel perception has higher accuracy in both training and testing set. This is because the kernel perception actually works in higher dimensional space implicitly, which results in better classification. 4.3)

2)

