ELECTRIC WATER HEATER CONTROL A CONCISE PRESENTATION ABOUT THE DESIGN AND TIMING PROCEDURE OF A PIC CONTROLLED WATER HEATER SIMULATED ON PIC GENIOS BOARD.

STATIC ARCHITECTURE

\Box	- A I			$C \mid C$	
I					
	Δ				
レ	/ \ \		DE:	ントし	$J \cup V$

EEPROM

- eeprom_external_vid_write
- eeprom_external_vid_read

12C

- i2c_vid_master_init
- i2c_vid_start
- i2c_vid_stop
- i2c_vid_restart
- i2c_vid_wait
- i2c vid ack
- i2c vid nack
- i2c_u8_master_write_slave_address_with_write_req
- i2c_u8_master_write_slave_address_with_read_req
- i2c_u8_master_write_byte
- i2c_u8_master_read_byte
- i2c_acktst

Heater Timer multiply check temp • set timer1 • save temp temp setting up • set timer2 temp_setting_down • set timer0 • stop_timer • set temp off check_active_button restart_timer • start timer • timer ISR

SSD	ADC
 Segment_display Segment_display_blink set_blink alternate 	ADC_InitADC_Readtemperature_read

TIMING ANALYSIS

Task	Actions	BCET (ms)	WCET(ms)	Period of Action (ms)	Period of task (ms)		
Segment Display Blink	Blink (OFF) Delay Display (ON) Delay	As Action	As Action	20 1000 20 1000	2040		
Check Active Button	Delay Start Timer (5s) Set Temp (↑/↓)	When no button pressed ≈ 0	When button pressed 160ms	100 60 30μs ≈ 0	160		
EEPROM Save	Read Write	≈ 0	≈ 0				
Temperature Read/Save	Read Temperature Save Temperature	As Action	As Action	3 30μs ≈ 0	≈ 3		
TICK	3 //the segment display blink will not work in the same cycle as the other functions						
CLOCK CYCLE	54						

SCHEDULABLE CHECK

WRITTEN DESCRIPTION

- Timer 1 is starts reset at every UP/DOWN push to be in temperature setting mode for 5 seconds after last button click
- Timer 2 is continuous and raises flag every second... seven segment syncs blink with this timer at temperature setting mode. Heater LED syncs with timer when heating element is ON
- Timer 0 is a continuous timer that controls the time interval between successive sensor readings.
- EEPROM stores the desired temperature value at the end of the setting temperature mode.