Departamento de Matemática	Universidade do Minho
primeiro teste :: Álgebra	3 de novembro de 2021
Lic. em Ciências de Computação - 2º ano	duração: uma hora
Proposta de resolução	

Responda no próprio enunciado, seguindo rigorosamente as instruções dadas em cada um dos grupos

GRUPO I

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente. Cada questão está cotada com 1.2 valores numa escala de 0 a 20.

1.	$(\mathbb{Z},*)$, onde $*$ é definida por $a*b=b+rac{(a+b)(a+b+1)}{2}$, para todos $a,b\in\mathbb{Z}$, é um grupóide.	V⊠ F□
1.	Se * é definida por $a*b=b+\frac{(a+b)(a+b+1)}{2}$, para todos $a,b\in\mathbb{Z}$, podemos concluir que $(\mathbb{Z},*)$ é um grupóide	.V⊠ F□
1.	A igualdade $a*b=b+\frac{(a+b)(a+b+1)}{2}$ define uma operação binária em $\mathbb{Z}.$	V⊠ F□
	Basta observar que $(a+b)(a+b+1)$ é par, para todos $a,b\in\mathbb{Z}$. Assim, $a*b\in\mathbb{Z}$ e, por isso, $*$ é uma binária em \mathbb{Z} , o que equivale a dizer que $(\mathbb{Z},*)$ é um grupóide.	operação
2.	Existem semigrupos com identidade que admitem elementos com dois inversos distintos.	V□ F⊠
2.	Existem semigrupos com identidade que admitem pelo menos um elemento com dois inversos distintos.	V□ F⊠
2.	Nenhum semigrupo com identidade admite elementos com dois inversos distintos.	V⊠ F□
	Num semigrupo com identidade, qualquer elemento admite, no máximo, um inverso (consequência da associda operação).	iatividade
3.	$(\mathbb{R} \times \mathbb{R}, *)$, onde $(a,b)*(c,d) = (a+c,bd)$, para todos $a,b,c,d \in \mathbb{R}$, é um grupo abeliano.	V□ F⊠
3.	$(\mathbb{Z}\times\mathbb{Z}\backslash\{0\},*)\text{, onde }(a,b)*(c,d)=(a+c,bd)\text{, para todos }a,b,c,d\in\mathbb{Z}\text{, }b\neq0\neq d\text{, \'e um grupo abeliano}.$	V□ F⊠
3.	$(\mathbb{Z}\times\mathbb{R},*)\text{, onde }(a,b)*(c,d)=(a+c,bd)\text{, para todos }a,c\in\mathbb{Z}\text{ e }b,d\in\mathbb{R}\text{, \'e um grupo abeliano}.$	V□ F⊠
	Nem \mathbb{R} nem $\mathbb{Z}\backslash\{0\}$ são grupos para a multiplicação usual. Assim, nenhum dos produtos cartesianos apres grupo para a operação dada.	entados é
4.	Não existem grupos com 17 elementos.	V□ F⊠
4.	Não existem grupos com 19 elementos.	V□ F⊠
4.	Existe pelo menos um grupo com 19 elementos.	V⊠ F□
	Para qualquer $n \in \mathbb{N}$, (\mathbb{Z}_n, \oplus) é grupo.	
5.	Sejam G um grupo e $H, K \subseteq G$ tais que $H \subseteq K$. Se $H < G$ então $K < G$.	V□ F⊠
5.	Sejam G um grupo e $H_1, H_2 \subseteq G$ tais que $H_1 < G$. Se $H_1 \subseteq H_2$ então $H_2 < G$.	V□ F⊠
5.	Sejam G um grupo e $H < G$. Se $H \subseteq K \subseteq G$, então, $K < G$.	V□ F⊠
	$\text{Por exemplo, temos que } \{[0]_4,[2]_4\} \subseteq \{[0]_4,[1]_4,[2]_4\}, \ \{[0]_4,[2]_4\} < \mathbb{Z}_4 \text{ e } \{[0]_4,[1]_4,[2]_4\} \text{ n\~ao \'e subgrupo } \{[0]_4,[2]_4\} = \{[$	de \mathbb{Z}_4 .
6.	\mathbb{Z}_4 é subgrupo de $\mathbb{Z}_8.$	V□ F⊠
6.	\mathbb{Z}_3 é subgrupo de $\mathbb{Z}_6.$	V□ F⊠
6.	\mathbb{Z}_8 é subgrupo de $\mathbb{Z}_4.$	V□ F⊠

Nenhum dos subconjuntos apresentados pode ser comparado (em termos de inclusão) com os restantes. Temos que $\mathbb{Z}_4 \not\subseteq \mathbb{Z}_8$, $\mathbb{Z}_3 \not\subseteq \mathbb{Z}_6$ e $\mathbb{Z}_8 \not\subseteq \mathbb{Z}_4$. Logo, não faz sentido falar em subgrupos.

7.
$$H = \{2^k : k \in \mathbb{Z}\} < (\mathbb{Q} \setminus \{0\}, \times).$$
 $V \boxtimes F \square$

7.
$$H = \{2^k : k \in \mathbb{Z}\} < (\mathbb{R} \setminus \{0\}, \times).$$
 $V \boxtimes F \square$

7.
$$H = \{2^k : k \in \mathbb{Q}\} < (\mathbb{R} \setminus \{0\}, \times).$$
 $V \boxtimes F \square$

Resulta da definição de potência de expoente inteiro/racional e das regras das potências.

8. Os subgrupos de um grupo não abeliano ou são todos abelianos ou são todos não abelianos.
$$V \square F \boxtimes$$

Qualquer grupo não abeliano admite como subgrupos o grupo trivial (que é abeliano) e o subgrupo impróprio (que é não abeliano por hipótese).

9. Sejam
$$G$$
 um grupo e $a \in G$ tal que $o(a) = 4$. Então, $o(a^{-6}) = 12$.

9. Sejam
$$G$$
 um grupo e $a \in G$ tal que $o(a) = 4$. Então, $o(a^{-8}) = 8$.

9. Sejam
$$G$$
 um grupo e $a \in G$ tal que $o(a) = 4$. Então, $o(a^{-6}) = 2$.

Se $a \in G$ é tal que o(a) = n, sabemos que $o(a^{-1}) = o(a)$ e que $o(a^p) = \frac{n}{\text{m.d.c.}(p,n)}$. Assim, se o(a) = 4, então, $o(a^{-8}) = o(a^8) = \frac{4}{\text{m.d.c.}(4,8)} = 1$ e $o(a^{-6}) = o(a^6) = \frac{4}{\text{m.d.c.}(6,8)} = 2$.

10. Existe um elemento do produto direto
$$\mathbb{Z}_4\otimes D_3$$
 que tem ordem 24. $V \square \mathsf{F} \boxtimes$

10. Existe um elemento do produto direto
$$\mathbb{Z}_4\otimes D_3$$
 que tem ordem 12. V \boxtimes F \square

10. Existe um elemento do produto direto
$$\mathbb{Z}_6\otimes D_3$$
 que tem ordem 9. $\mathsf{V} \square \mathsf{F} \boxtimes$

Sabemos que qualquer par de um produto direto tem ordem igual ao m.m.c. entre as ordens das respetivas coordenadas. Em \mathbb{Z}_4 , $o([0]_4) = 1$, $o([2]_4) = 2$ e $o([1]_4) = o([3]_4) = 4$. Em \mathbb{Z}_6 , $o([0]_6) = 1$, $o([3]_6) = 2$, $o([2]_6) = o([4]_6) = 3$ e $o([1]_6) = o([5]_6) = 6$. Em D_3 , $o(\rho_1) = 1$, $o(\theta_1) = o(\theta_2) = o(\theta_3) = 2$ e $o(\rho_2) = o(\rho_3) = 3$. Logo,

- a ordem de um elemento de $\mathbb{Z}_4 \otimes D_3$ é, no máximo, 12.
- O par $([1]_4, \rho_2)$, por exemplo, tem ordem m.m.c.(4,3) = 12.
- a ordem de um elemento de $\mathbb{Z}_6\otimes D_3$ é , no máximo, 6.

GRUPO II

Este grupo tem duas questões em alternativa, ambas cotadas com 8.0 valores numa escala de 0 a 20. Deve escolher APENAS UMA DAS QUESTÕES para responder. Se responder às duas, ignorarei a segunda resposta.

Alternativa 1. Justifique devidamente todas as respostas. Dê um exemplo, caso exista, de

(a) um grupóide G com identidade e $a \in G$ tal que a admite dois inversos distintos.

Se em $G = \{1_G, a, b\}$ definirmos a operação * pela tabela

obtemos um grupóide com identidade no qual o elemento a admite a e b como inversos.

(b) um grupo G e $a, b \in G$ tais que $(ab)^3 \neq a^3b^3$.

Considerando $G = D_3$, $a = \theta_1$ e $b = \theta_2$, obtemos $(ab)^3 = \rho_3^3 = \rho_1$ e $a^3b^3 = \theta_1^3\theta_2^3 = \theta_1\theta_2 = \rho_3$.

(Observação: num grupo abeliano G, $(ab)^3=a^3b^3$, para todos $a,b\in G$. Assim, era necessário considerar um grupo não abeliano.)

(c) um elemento de ordem 4 de $\mathbb{Z}_{60} \otimes \mathbb{Z}_{30}$.

Em \mathbb{Z}_{60} , $o([15]_{60}) = 4$ e, em \mathbb{Z}_{30} , $o([15]_{30}) = 2$. Assim, em $\mathbb{Z}_{60} \otimes \mathbb{Z}_{30}$,

$$o(([15]_{60}, [15]_{30})) = \text{m.m.c.}(4, 2) = 4.$$

(d) um grupo com 6 elementos onde $x^2 \neq 1_G$, para todo $x \in G \setminus \{1_G\}$.

Não existe. Se $x \neq 1_G$ e $x^2 \neq 1_G$, então, $x \neq x^{-1}$ para todo $x \neq 1_G$.

Assim, no grupo G, tirando a identidade, temos sempre que considerar pares de elementos, o que nos leva a concluir que G tem de ter um número ímpar de elementos.

(e) um grupo G que contém um elemento a tal que o(a)=12 e não contém um subgrupo de ordem 6.

Não existe. Se $a \in G$ é tal que o(a) = 12, então, $o(a^2) = 6$ e, portanto, $a^2 > G$ é tal que $|a^2| = 6$.

Alternativa 2. Sejam G um grupo abeliano e $H = \{(x, x^2) : x \in G\}$.

(a) Mostre que $H < G \otimes G$.

Temos que:

- $1_{G \otimes G} = (1_G, 1_G) = (1_G, 1_G^2) \in H$. Logo, $H \neq \emptyset$;
- para $x, y \in G$, $(xy)^2 = x^2y^2$, uma vez que G é abeliano. Assim,

$$(x, x^2)(y, y^2) = (xy, x^2y^2) = (xy, (xy)^2)$$

e, por isso,

$$(x, x^2), (y, y^2) \in H \Rightarrow (x, x^2)(y, y^2) \in H;$$

• para $(x, x^2) \in H$,

$$(x, x^2)^{-1} = (x^{-1}, (x^2)^{-1}) = (x^{-1}, (x^{-1})^2) \in H.$$

Logo, $H < G \otimes G$.

(b) Seja $x \in G$. Mostre que o(x) = 2 se e só se $o((x, x^2)) = 2$.

Seja $x \in G$. Se o(x) = 2, temos que $x \neq 1_G$ e $x^2 = 1_G$. Então,

$$(x, x^2) = (x, 1_G) \neq (1_G, 1_G)$$

e

$$(x, x^2)^2 = (x, 1_G)^2 = (x^2, (1_G)^2) = (1_G, 1_G).$$

Logo, $o((x, x^2)) = 2$.

Reciprocamente, se $o((x, x^2)) = 2$, temos que

$$\left\{ \begin{array}{l} (x,x^2) \neq (1_G,1_G) \\ (x,x^2)^2 = (1_G,1_G) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \neq 1_G \text{ ou } x^2 \neq 1_G \\ x^2 = 1_G \text{ e } x^4 = 1_G \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x \neq 1_G \\ x^2 = 1_G \end{array} \right. \Leftrightarrow o(x) = 2.$$

(c) Se G é o grupo aditivo \mathbb{Z}_6 , determine dois elementos de H distintos que tenham ordem 3.

Se $G = \mathbb{Z}_6$, então, $H = \{([a]_6, 2[a]_6) : a \in \{0, 1, 2, 3, 4, 5\}\}$. Assim,

$$H = \{([0]_6, [0]_6), ([1]_6, [2]_6), ([2]_6, [4]_6), ([3]_6, [0]_6), ([4]_6, [2]_6), ([5]_6, [4]_6)\}.$$

Sabendo que qualquer par de um produto direto tem ordem igual ao m.m.c. entre as ordens das respetivas coordenadas e que, em \mathbb{Z}_6 , $o([0]_6) = 1$, $o([3]_6) = 2$, $o([2]_6) = o([4]_6) = 3$ e $o([1]_6) = o([5]_6) = 6$, temos que, $([2]_6, [4]_6), ([4]_6, [2]_6) \in H$ e $o(([2]_6, [4]_6)) = 0(([4]_6, [2]_6)) = m.m.c.(3, 3) = 3$.