CSIE 5432/5433 — Machine Learning Foundations/Techniques

Name: 李吉昌 Homework 2 Student Number: r08922a27 Due Date: November 6 2020, 13:00

Perceptrons

1. Answer: [c]

由 Lecture 7 slides 的第 12 頁可得, 若 data sample 和 bias 項 $(x_0 = 1)$ 構成的矩陣為 $X \circ \diamondsuit X$ 為 d 筆資料, 給定任一 label $y \in \{-1, +1\}^d \circ$ 若 X 可逆, 則一定找得到一組參數 w 使得 $Xw = y \circ Xw = y$ 成立則 $\mathrm{sign}(Xw) = y$ 必成立, 即該組 data sample 必定可以被 shatter。選項中僅有 [c] 為可逆方陣, 得 [c] 的 data sample 可以被 shatter。

$$X = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 7 & 8 & 9 \\ 1 & 15 & 16 & 17 \\ 1 & 21 & 23 & 25 \end{pmatrix}, \ X^{-1} = \begin{pmatrix} 0 & \frac{9}{8} & \frac{7}{8} & -1 \\ \frac{1}{2} & \frac{-11}{8} & \frac{11}{8} & \frac{-1}{2} \\ -1 & \frac{7}{4} & \frac{-3}{4} & 0 \\ \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \end{pmatrix}$$

2. Answer: [d]

令平行 y 軸的 dichotomy set 為 $\mathcal{H}_{\mathcal{X}}$, 平行 x 軸的 dichotomy set 為 $\mathcal{H}_{\mathcal{Y}}$, 任兩集合聯集元素的數量可寫成 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = |\mathcal{H}_{\mathcal{X}}| + |\mathcal{H}_{\mathcal{Y}}| - |\mathcal{H}_{\mathcal{X}} \cap \mathcal{H}_{\mathcal{Y}}|$, x 和 y 軸的 dichotomy 可以各自視為一樣的 decision stump 的 dichotomy。 在 N 筆 sample 彼此的 x, y 的數值不重複的情況, $|\mathcal{H}_{\mathcal{X}}| = |\mathcal{H}_{\mathcal{Y}}| = 2N$ 。 由下圖所示, 可以確定 $\mathcal{H}_{\mathcal{X}}$ 和 $\mathcal{H}_{\mathcal{Y}}$ 一定包含將全部 sample 分成 positive 或 negative 的兩種 dichotomy , 因此 $\mathcal{H}_{\mathcal{X}} \cap \mathcal{H}_{\mathcal{Y}}$ 至少會包含這兩種情況, 則 $|\mathcal{H}_{\mathcal{X}} \cap \mathcal{H}_{\mathcal{Y}}| \geq 2$:

綜上所述, 得 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| \leq 2N + 2N - 2 = 4N - 2$ 。在交集 $\mathcal{H}_{\mathcal{X}} \cap \mathcal{H}_{\mathcal{Y}}$ 只有把全部 sample 分成 positive 或 negative 的兩種 dichotomy 的時候, $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}|$ 才有可能是 4N - 2。在 N = 4 時, 可以找到一例符合 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = 4 \cdot 4 - 2 = 14$ 的情況, 如下圖所示(每個 dichotomy 因為對稱性可以標籤變號, 僅列出兩種的其中一種):

令 $\mathcal{H}_{\chi}' = \mathcal{H}_{\chi}/\{ \odot \odot \odot \odot, \times \times \times \times \}, \mathcal{H}_{\mathcal{Y}}' = \mathcal{H}_{\mathcal{Y}}/\{ \odot \odot \odot \odot, \times \times \times \times \}, |\mathcal{H}_{\chi} \cup \mathcal{H}_{\mathcal{Y}}| = 4N-2$ 等價於 $\mathcal{H}_{\chi}' \cap \mathcal{H}_{\mathcal{Y}}'$ 為空集合。撇除全部 sample 分成 positive 或 negative 的兩種 dichotomy 的情況, 由 x 軸 座標數值大小由左而右排序可以得到下面的表格:

$\mathcal{H_X}'$		$\mathcal{H_{Y}}'$	
X000	⊚×××	00×0	$\times \times \otimes \times$
××@@	⊚⊚××	× () × ()	⊚×⊚×
$\times \times \times \odot$	@@@X	$\times \odot \times \times$	⊚×⊚⊚

$\mathcal{H}_{\mathcal{X}}{}'$		$\mathcal{H}_{\mathcal{Y}}{}'$	
X0000	$\odot \times \times \times \times$	00×00	$\times \times \odot \times \times$
XX000	$\bigcirc \bigcirc \times \times \times$	X () X () ()	⊚×⊚××
X X X © ©	$\bigcirc \bigcirc \bigcirc \times \times$	$\times \odot \times \times \odot$	⊚×⊚⊚×
××××⊚	$\odot \odot \odot \odot \times$	$\times \odot \times \times \times$	0×000

上述表格的 $\mathcal{H}_{\mathcal{Y}}'$ 原 dichotomy 已經變號兩次, 任何新增在右邊的紅色 sample 不論任何情況都只有可能讓標籤變號的次數變高, 一定不可能被包含於 $\mathcal{H}_{\mathcal{X}}'$, 因此在加入新的 sample 時, 只有最後一層全紅的 dichotomy 有可能被包含於 $\mathcal{H}_{\mathcal{X}}'$, 使 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| < 4N-2$ 。假設「新增的 sample 置於最右邊, y軸數小於左邊最高的 sample、大於左邊最低的 sample 」的規則存在能夠使 $\mathcal{H}_{\mathcal{Y}}'$ 新增全紅的 dichotomy 被包含於 $\mathcal{H}_{\mathcal{X}}'$, 等價於全紅的 dichotomy 存在一只變號一次的情況, 水平線依據最高或最低切分兩類

時必定先切到最右邊新增的 sample, 代表新增的 sample 必須為最高或是最低的 sample, 則與原新增 sample 的規則矛盾, 表示這一新增 sample 的規則絕對不會出現標籤只變號一次的情況, 新增全紅的 dichotomy 亦標籤變號兩次以上, 依據「新增的 sample 置於最右邊, y軸數小於左邊最高的 sample、 大於左邊最低的 sample」的規則產生在 \mathcal{H}_{y}' 的 dichotomy 絕對不會被包含於 \mathcal{H}_{x}' , 得依據該規則在 N=4 具備 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = 4N-2$ 的條件下, 創造出來的 N=5 的 case 亦會成立 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = 4N-2$ 的條件, 依此類推依據同樣條件以及規則創造 N=6 的 case 亦會成立 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = 4N-2$ 。由歸納法 得, 在 N=4 具備 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{V}}| = 4N-2$ 的條件下, 用「新增的 sample 置於最右邊, y軸數小於左邊最 高的 sample 、大於左邊最低的 sample 」的規則可以持續使之後的情況皆符合 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = 4N-2$ 。 因 4N-2 為 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}|$ 最大值, 並且確定在不同 N 的情況都能確定 找到符合 $|\mathcal{H}_{\mathcal{X}} \cup \mathcal{H}_{\mathcal{Y}}| = 4N-2$ 條件的 case, 得 growth function 為 4N-2。

3. Answer: [c]

Stage 1:

由下圖所示, 在 N=2, 可以找到一組被 shatter 的 sample 組合, 得 $d_{vc} \geq 2$ 。

Stage 2:

令三個 sample 為
$$\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3} \in \mathbb{R}^2$$
,三個 sample 包含 bias 項構成矩陣為 $X = \begin{pmatrix} 1, & -\mathbf{x_1}^T - \\ 1, & -\mathbf{x_2}^T - \\ 1, & -\mathbf{x_3}^T - \end{pmatrix}_{3\times 4}$,X 的

row vector 線性獨立; 令 $\mathbf{w}' \in \mathbb{R}^2$ 為 2D-perceptron 的 weight, bias 為一 scalar w_0 , 構成參數向量 w = $\begin{pmatrix} w_0 \\ \mathbf{w}' \end{pmatrix} \in \mathbb{R}^3$, 則 hypothesis 預測結果分別為 $\operatorname{sign}(w_0 + \mathbf{w'}^T \mathbf{x_1})$, $\operatorname{sign}(w_0 + \mathbf{w'}^T \mathbf{x_2})$, $\operatorname{sign}(w_0 + \mathbf{w'}^T \mathbf{x_3})$ 。若 $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ 中存在零向量,零向量的預測結果為 $\mathrm{sign}(w_0+0) = +1$, label 已經被決定,一定不能被 shatter; 若 $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ 中存在任兩向量 $\mathbf{x_i}, \mathbf{x_j}$ 為 dependent(\mathbf{i}, \mathbf{j} 為屬於 $\{1, 2, 3\}$ 中兩個任意不同的 index), 可將 $\mathbf{x_i}$ 寫成 $\mathbf{x_i} = c \cdot \mathbf{x_i}(c)$ 為任意實數常數), 則 $\mathbf{x_i}$ 預測結果為 $\operatorname{sign}(w_0 + c \cdot \mathbf{w'}^T \mathbf{x_i})$, 表 $\mathbf{x_i}$ 結果已被 $\mathbf{x_i}$ 決 定,必定沒辦法舉出其他預測結果,故無法被 shatter;若 $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ 彼此間為 pairwise independent,則 由於 \mathbb{R}^2 空間維度為 2, 三個向量必為線性相依, 一定可以找到一組系數 α , β 使得 $\mathbf{x_3} = \alpha \cdot \mathbf{x_1} + \beta \cdot \mathbf{x_2} \circ$ 在 $\alpha \cdot \mathbf{w'}^T \mathbf{x_1} > 0$, $\beta \cdot \mathbf{w'}^T \mathbf{x_2} > 0$ 的情況下, 則 $\mathbf{w'}^T \mathbf{x_3} = \alpha \cdot \mathbf{w'}^T \mathbf{x_1} + \beta \cdot \mathbf{w'}^T \mathbf{x_2} > 0$, 配合題意 $w_0 > 0$, 得 $\mathbf{w'}^T \mathbf{x_3} + w_0 > 0$, 可推得 $\operatorname{sign}(\mathbf{w'}^T \mathbf{x_3} + w_0) > 0$, 綜上述可得知 $\mathbf{x_3}$ 在 $\mathbf{w'}^T \mathbf{x_1}, \mathbf{w'}^T \mathbf{x_2}$ 和 α , β 同號時 已被決定結果, 必定不能被 shatter, 故 $d_{vc} \leq 2$ 。

由 Stage 1 和 Stage 2 結果得 $d_{vc} = 2$ 。

Ring Hypothesis Set

4. Answer: [b]

令
$$\begin{cases} x_1 = \rho \sin \theta \cos \phi \\ x_2 = \rho \sin \theta \sin \phi \end{cases}, x_1^2 + x_2^2 + x_3^2 = \rho^2, \ \ \theta = \rho^2 \le b, \ \ \text{hypothesis} \ \ \text{的結果與} \ \theta, \phi 無關, 即$$
 $\begin{cases} x_1 = \rho \cos \theta \\ x_2 = \rho \cos \theta \end{cases}$ $\begin{cases} x_1 = \rho \cos \theta \\ x_3 = \rho \cos \theta \end{cases}$ 在 N 個不同的 sample 如果存在相同的 ρ 會有相同 label, 則 dichotomy 的

 $h(\mathbf{x})|_{\rho,\theta,\phi} = h(\mathbf{x})|_{\rho,\theta',\phi'}$ 。 在 N 個不同的 sample 如果存在相同的 ρ 會有相同 label, 則 dichotomy 的

數量小於 N 個不同 ρ 的 sample 得出的 dichotomy。 因為 growth function 為 dichotomy set 的最大維度,僅考慮 N 個不同 ρ 的情況。 與求取區間為 \sqrt{a} 至 \sqrt{b} ,以 ρ 為數線軸的 Positive Intervals 方法一樣,N 個 sample 彼此有 N+1 個區間,共 N+1 取 2 種區間選擇方式以及無區間一種,共 $\binom{N+1}{2}+1$ 個 dichotomy,假設存在 N 個 sample 使得 dichotomy set 的維度大於 $\binom{N+1}{2}+1$,表示 N 個 sample 彼此的區間必須大於 N+1,則 sample 必須大於 N 個,與假設矛盾,得 $\binom{N+1}{2}+1$ 為 dichotomy set 的最大維度,growth function 為 $\binom{N+1}{2}+1$ 。

5. Answer: [b]

growth function 為 $\frac{1}{2}N^2 + \frac{1}{2}N + 1$ 。 當 N=2 時, $\frac{1}{2}\cdot 4 + \frac{1}{2}\cdot 2 + 1 = 4 = 2^2$; 當 N=3 時, $\frac{1}{2}\cdot 9 + \frac{1}{2}\cdot 3 + 1 = 7 < 2^3$, 2 為最大 N 使得 $m_{\mathcal{H}}(2N) = 2^N$, 據 Lecture 7 slides 第 5 頁定義, 得 $d_{vc} = 2$ 。

Deviation from Optimal Hypothesis

6. Answer: [d]

令 $\Delta = \sqrt{\frac{8}{N} \ln{(\frac{4m_{\mathcal{H}}(2N)}{\delta})}}$, 由 Lecture 7 slides 的第 21 頁和第 22 頁可得, 對任意 $h \in \mathcal{H}$, 皆成立 $E_{in}(h) - \Delta \leq E_{out}(h) \leq E_{in}(h) + \Delta$, 將 g 和 g^* 代入:

$$\begin{cases} E_{in}(g) - \Delta \leq E_{out}(g) \leq E_{in}(g) + \Delta \\ E_{in}(g^*) - \Delta \leq E_{out}(g^*) \leq E_{in}(g^*) + \Delta \end{cases}$$
下式同乘負號可得, $-E_{in}(g^*) - \Delta \leq -E_{out}(g^*) \leq -E_{in}(g^*) + \Delta$,兩式相加合併可得下面結果,
$$(E_{in}(g) - E_{in}(g^*)) - 2 \cdot \Delta \leq E_{out}(g) - E_{out}(g^*) \leq (E_{in}(g) - E_{in}(g^*)) + 2 \cdot \Delta, \tag{1}$$
因為 $E_{in}(g) \leq E_{in}(g^*)$,得 $(E_{in}(g) - E_{in}(g^*)) \leq 0$,則 $(E_{in}(g) - E_{in}(g^*)) + 2 \cdot \Delta \leq 2 \cdot \Delta$,
得 $E_{out}(g) - E_{out}(g^*) \leq 2\Delta = 2\sqrt{\frac{8}{N} \ln{(\frac{4m_{\mathcal{H}}(2N)}{\delta})}}$

The VC Dimension

7. Answer: [d]

在二元分類中, VC dimension 為 d_{vc} , 表示一定存在 d_{vc} 個 sample 可以被 shatter, 則表示 \mathcal{H} 至少具備 $2^{d_{vc}}$ 種 dichotomy, 則 $|\mathcal{H}| \geq 2^{d_{vc}}$ 。 因為 d_{vc} 為整數, 兩邊取對數後, 以 floor 求取符合不等式最大整數, 代入 $|\mathcal{H}| = M$, 可得 $d_{vc} \leq |\log_2 M|$ 。

8. Answer: [d]

令輸入數量為 N 種, 當 $N \le k+1$ 時, 可以選擇 sample 出 0 至 N 個 1 的數量的不同輸入, 這個情況 hypothesis 可以一對一給出其對應的 label, 故一定可以被 shatter, 得 $d_{vc} \ge k+1$; 當 N > k+1 時, 必然存在兩種以上具備一樣 1 數量的輸入的情況, 一樣 1 數量的輸入對應的 label 被限制只能有一種, 因此一定沒辦法 shatter 其同類型輸入不同 label 的情況, 得 $d_{vc} \le k+1$, 綜上述可歸納出 $d_{vc} = k+1$ 。

9. Answer: [c]

根據 Lecture 7 slides 的第 4 頁的描述, d_{vc} 為 d, 表示在 \mathcal{H} 内必存在 d 個 distinct input 可以被 shatter, 但不一定適用所有 d 個 distinct input 的情況, 且 d 為 distinct input 可以被 shatter 的最大數量, 亦即超過 d 個 distinct input 一定不能被 shatter。

- (1) 「some set of d distinct inputs is shattered by \mathcal{H} 」不成立,等價 「any set of d distinct inputs is not shattered by \mathcal{H} 」,表示 d_{vc} 必小於 d, 則 $d_{vc} = d$ 不成立。
- (2) 「some set of d distinct inputs is not shattered by \mathcal{H} 」 不成立, 等價 「any set of d distinct inputs is shattered by \mathcal{H} 」, 表示 d_{vc} 在 d 以上, 則 $d_{vc}=d$ 有可能成立。
- (3) 「any set of d distinct inputs is shattered by \mathcal{H} 」 不成立, 等價 「some set of d distinct inputs is not shattered by \mathcal{H} 」, 不確定 d distinct inputs 能不能被 shatter, 則 $d_{vc} = d$ 有可能成立。
- (4) 「any set of d distinct inputs is not shattered by \mathcal{H} 」 不成立, 等價 「some set of d distinct inputs is shattered by \mathcal{H} 」, 表示 d_{vc} 在 d 以上, 則 $d_{vc} = d$ 有可能成立。
- (5) 「some set of d+1 distinct inputs is shattered by \mathcal{H} 」不成立,等價 「any set of d+1 distinct inputs is not shattered by \mathcal{H} 」,不確定 d distinct inputs 能不能被 shatter, 則 $d_{vc}=d$ 有可能成立。
- (6) 「some set of d+1 distinct inputs is not shattered by \mathcal{H} 」 不成立, 等價 「any set of d+1 distinct inputs is shattered by \mathcal{H} 」, 表示 d_{vc} 在 d+1 以上, 則 $d_{vc}=d$ 不成立。
- (7) 「any set of d+1 distinct inputs is shattered by \mathcal{H} 」 不成立, 等價 「some set of d+1 distinct inputs is not shattered by \mathcal{H} 」, 不確定 d distinct inputs 能不能被 shatter, 則 $d_{vc}=d$ 有可能成立。
- (8) 「any set of d+1 distinct inputs is not shattered by \mathcal{H} 」 不成立,等價 「some set of d+1 distinct inputs is shattered by \mathcal{H} 」,表示 d_{vc} 在 d+1 以上,則 $d_{vc}=d$ 不成立。 綜上所述,(1)(6)(8) 為「 d_{vc} 為 d」的 necessary condition。

10. Answer: [c]

答案為 [c], 附上參考文章連結, 證明如下:

令待 shatter 的 data sample pair 為 $\{(\mathbf{x_i},y_i)|i=1,2,...,N\}$, 其中 $\mathbf{x_i}=2\pi 10^{-i}$, $y_i\in\{-1,+1\}$ 為 $\mathbf{x_i}$ 對應的 label, 並將 α 令為 $\alpha=\frac{1}{2}(1+\sum_{i=1}^N\frac{1-y_i}{2}10^i)=\frac{1}{2}(1+\sum_{i:y_i=-1}10^i)$ 。 證明方法為分別討論 label y_i 分別為 -1 或 +1 的時候, 當 y_i 為 -1 而 $\sin{(\alpha\cdot\mathbf{x_i})}$ 永遠為負且 y_i 為 +1 而 $\sin{(\alpha\cdot\mathbf{x_i})}$ 永遠為正時, 表示 h_{α} 永遠可以 shatter 所有情況, 則其 VC dimension 為 ∞ 。

Stage 1:

任一 sample x_i 的 $y_i = -1$, 則:

$$\alpha \cdot x_{j} = \frac{1}{2} (1 + \sum_{i:y_{i}=-1} 10^{i}) \cdot 2\pi 10^{-j}$$

$$= \pi (10^{-j} + \sum_{i:y_{i}=-1} 10^{i-j})$$

$$= \pi (10^{-j} + 1 + \sum_{\substack{i:y_{i}=-1\\i>j}} 10^{i-j} + \sum_{\substack{i:y_{i}=-1\\i< j}} 10^{i-j}, \sum_{\substack{i:y_{i}=-1\\i>j}} 10^{i-j} \stackrel{\text{h}}{\Rightarrow} 2 \stackrel{\text{emb}}{=} 2 \text{ min}$$

$$= \pi (10^{-j} + 1 + \sum_{\substack{i:y_{i}=-1\\i< j}} 10^{i-j}) + 2k\pi$$

$$(2)$$

其中
$$\sum_{\substack{i:y_i=-1\\i< j}} 10^{i-j} < \sum_{\substack{i=1\\i< j}}^{\infty} 10^{-i} = \sum_{\substack{i=0\\i< j}}^{\infty} 10^{-i} - 1 = \frac{1}{1-0.1} - 1 = \frac{1}{9}$$
 且 $10^{-j} \le 10^{-1} = \frac{1}{10}$, 令 $10^{-j} + \sum_{\substack{i:y_i=-1\\i< j}} 10^{i-j}$ 為 ϵ ,由上述可得 ϵ 範圍, $0 < \epsilon < \frac{1}{9} + \frac{1}{10} = \frac{19}{90} < 1$,

由於 $\sin{(\alpha \cdot x_j)} = \sin{(\pi(1+\epsilon) + 2k\pi)} = \sin{(\pi(1+\epsilon))}$,僅需討論 $\pi(1+\epsilon)$ 的範圍,由上述可得, $\pi < \pi(1+\epsilon) < 2\pi$,在該區間内 $\sin{(\pi(1+\epsilon))} < 0$,當 y_j 為 -1 的情況永遠可以預測正確。

Stage 2:

任一 sample x_j 的 $y_j = +1$, 則:

$$\alpha \cdot x_{j} = \pi (10^{-j} + \sum_{\substack{i: y_{i} = -1 \\ i > j}} 10^{i-j})$$

$$= \pi (10^{-j} + \sum_{\substack{i: y_{i} = -1 \\ i > j}} 10^{i-j} + \sum_{\substack{i: y_{i} = -1 \\ i < j}} 10^{i-j}), \sum_{\substack{i: y_{i} = -1 \\ i > j}} 10^{i-j} 為 2 倍數的正整數, 令為 2k,$$

$$= \pi (10^{-j} + \sum_{\substack{i: y_{i} = -1 \\ i < j}} 10^{i-j}) + 2k\pi,$$
(3)

代入
$$\epsilon = 10^{-j} + \sum_{\substack{i: y_i = -1 \ i < j}} 10^{i-j}$$
, 則 $\alpha \cdot x_j = \pi \cdot \epsilon + 2k\pi$,

由於 $\sin{(\alpha \cdot x_j)} = \sin{(\pi \cdot \epsilon + 2k\pi)} = \sin{(\pi \cdot \epsilon)}$, 僅需討論 $\pi \cdot \epsilon$ 的範圍, 由 Stage 1 可得 $0 < \epsilon < 1$, 則 $0 < \pi \cdot \epsilon < \pi$, 在該區間内 $\sin{(\pi \cdot)} > 0$, 當 y_j 為 +1 的情況永遠可以預測正確。

綜合 Stage 1 和 Stage 2, 在 label 不同的條件下, 在 $\alpha=\frac{1}{2}(1+\sum_{i=1}^N\frac{1-y_i}{2}10^i)$ 時必能將所有情況預測正確, 將其 shatter。

Noise and Error

11. Answer: [d]

在 τ 機率干擾下, 看到 $[h(\mathbf{x}) \neq y)]$ 發生有可能來自兩種情況, 分別是 y 沒被 flip 且 $h(\mathbf{x})$ 答錯以及 y 被 flip 且 $h(\mathbf{x})$ 答對的情況, 因此, $E_{out}(h,\tau)$ 可以拆成兩情況的疊加, 如下式:

$$E_{out}(h,\tau) = (1-\tau) \cdot \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{P}_0} \llbracket h(\mathbf{x}) \neq y) \rrbracket + \tau \cdot \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{P}_0} \llbracket h(\mathbf{x}) = y) \rrbracket,$$
代入 $\mathbb{E}_{(\mathbf{x},y) \sim \mathcal{P}_0} \llbracket h(\mathbf{x}) = y) \rrbracket = 1 - \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{P}_0} \llbracket h(\mathbf{x}) \neq y) \rrbracket$ 以及 $E_{out}(h,0) = \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{P}_0} \llbracket h(\mathbf{x}) \neq y \rangle \rrbracket,$

$$E_{out}(h,\tau) = (1-\tau) \cdot E_{out}(h,0) + \tau \cdot (1-E_{out}(h,0)),$$
經移項整理可得 $E_{out}(h,0) = \frac{E_{out}(h,\tau) - \tau}{1-2\tau}$

12. Answer: [b]

所有 x, y 産生的 $err(f(\mathbf{x}), y)$ 需要分成 $f(\mathbf{x}) = 1$, $f(\mathbf{x}) = 2$ 和 $f(\mathbf{x}) = 3$ 三種情况討論, 如下式:

13. Answer: [b]

同上題所述, 需分段討論在 $f(\mathbf{x})$ 不同的情況下對應的 $f_*(\mathbf{x})$ 和機率:

當
$$f(\mathbf{x}) = 1$$
 時: $P(y|\mathbf{x}) = \begin{cases} 0.7, y = 1\\ 0.1, y = 2\\ 0.2, y = 3 \end{cases}$ 得 $f_*(\mathbf{x}) = 1 \cdot 0.7 + 2 \cdot 0.1 + 3 \cdot 0.2 = 1.5$
當 $f(\mathbf{x}) = 2$ 時: $P(y|\mathbf{x}) = \begin{cases} 0.2, y = 1\\ 0.7, y = 2\\ 0.1, y = 3 \end{cases}$ 得 $f_*(\mathbf{x}) = 1 \cdot 0.2 + 2 \cdot 0.7 + 3 \cdot 0.1 = 1.9$
當 $f(\mathbf{x}) = 3$ 時: $P(y|\mathbf{x}) = \begin{cases} 0.1, y = 1\\ 0.2, y = 2\\ 0.7, y = 3 \end{cases}$
 $\Delta(f, f_*) = \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x})}(f(\mathbf{x}) - f_*(\mathbf{x}))^2$
 $= \mathbb{P}[f(\mathbf{x}) = 1] \cdot \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x}|f(\mathbf{x}) = 1)}(f(\mathbf{x}) - f_*(\mathbf{x}))^2$
 $+ \mathbb{P}[f(\mathbf{x}) = 2] \cdot \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x}|f(\mathbf{x}) = 2)}(f(\mathbf{x}) - f_*(\mathbf{x}))^2$
 $+ \mathbb{P}[f(\mathbf{x}) = 3] \cdot \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x}|f(\mathbf{x}) = 3)}(f(\mathbf{x}) - f_*(\mathbf{x}))^2$
 $= \frac{1}{3} \cdot (1 - 1.5)^2 + \frac{1}{3} \cdot (2 - 1.9)^2 + \frac{1}{3} \cdot (3 - 2.6)^2 = 0.14$

Decision Stump

14. Answer: [d]

由 Lecture 7 slides 的第 3 頁可得 $\delta = 4m_{\mathcal{H}}(2N) \exp\left(-\frac{1}{8}\epsilon^2 N\right)$, 代入 $m_{\mathcal{H}}(2N) = 2(2N) = 4N$, $\epsilon = 0.1$ 以及 $\delta = 0.1$, 得 $0.1 = 16 \cdot N \cdot exp(-0.00125 \cdot N)$ 。

以及
$$\delta = 0.1$$
,得 $0.1 = 16 \cdot N \cdot exp(-0.00125 \cdot N)$ 。
$$\begin{cases} 53.096(>\delta), N = 6000 \\ 5.8112(>\delta), N = 8000 \\ 0.5963(>\delta), N = 10000 \end{cases} , 得 N = 12000 時為滿足條件最小值。
$$\begin{cases} 0.587(<\delta), N = 12000 \\ 0.00587(<\delta), N = 14000 \end{cases}$$$$

15. Answer: [b]

須分成 $\theta > 0$ 和 $\theta \le 0$ 的兩種情形討論, 如下式:

$$E_{out}(h_{+1,\theta},0) = \mathbb{P}[\theta > 0] \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}}[x \in (0,\theta]|\theta > 0] + \mathbb{P}[\theta \leq 0] \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}}[x \in [\theta,0)|\theta \leq 0]$$

因為 \mathbf{x} 為平均分布, 則 θ 亦為平均分布, 得 $\mathbb{P}[\theta > 0] = \mathbb{P}[\theta \leq 0] = \frac{1}{2}$,

由下圖所示. 右半和左半邊綠色區塊和整個定義域 [-1,+1] 的比例即為不同情況下發生錯誤的機率,

當
$$\theta>0$$
, 右半邊綠色區塊的機率為 $\mathbb{E}_{\mathbf{x}\sim\mathcal{P}}[\![x\in(0,\theta]|\theta>0]\!]=\frac{1}{2}\cdot\theta=\frac{1}{2}|\theta|,$

當 $\theta \leq 0$,左半邊綠色區塊的機率為 $\mathbb{E}_{\mathbf{x} \sim \mathcal{P}}[x \in [\theta, 0) | \theta \leq 0] = \frac{1}{2} \cdot (-\theta) = \frac{1}{2} |\theta|$,

得
$$E_{out}(h_{+1,\theta},0) = \frac{1}{2} \cdot \frac{1}{2}|\theta| + \frac{1}{2} \cdot \frac{1}{2}|\theta| = \frac{1}{2}|\theta|$$
 (7)

Experiment

程式碼實作細節如下, 可以透過 parser 的 --mode 参數決定用 closed form 或 simulation 求取 $E_{out}(h_{s,\theta},\tau)$:

```
python code.py --mode closedform
python code.py --mode simulate
import numpy as np
import random
from scipy.stats import bernoulli
import argparse
'''Define Function'''
def generate_data(size, tau):
    x = np.sort(np.random.uniform(-1, 1, size))
    y = np.zeros(size).astype(int)
    y[x > 0] = 1
    y[x <= 0] = -1
    noisy_idx = bernoulli.rvs(tau, size=size) > 0
    y[noisy_idx] = -y[noisy_idx]
    return x, y
def get_g_Ein(x, y):
    theta_set = ([-1] + list(((x[1:] + x[:-1]) / 2))) * 2
    s_{st} = [-1] * len(x) + [1] * len(x)
    hypothesis_set = np.array(
        sorted(tuple(zip(s_set, theta_set)), key=lambda x: x[0] + x[1]))
    g, Ein = (-1, -1), 1
    for hypothesis in hypothesis_set:
        err = get_err(hypothesis, x, y)
        if Ein > err:
            g, Ein = hypothesis, err
        if Ein == 0:
            break
    return g, Ein
```

```
def get_err(hypothesis, x, y):
    s, theta = hypothesis
   pred = np.ones(len(y)).astype(int)
    if s > 0:
       pred[x \le theta] = -1
    else:
        pred[x > theta] = -1
   return (y != pred).sum() / len(y)
def get_Eout(hypothesis, tau, IsSimulate=False):
    if IsSimulate:
        x_tst, y_tst = generate_data(100000, tau)
        Eout = get_err(hypothesis, x_tst, y_tst)
        return Eout
    else:
        s, theta = hypothesis
        Eout = 0.5 * np.abs(theta) if s > 0 else 1 - 0.5 * np.abs(theta)
        return (1 - 2 * tau) * Eout + tau
def get_answer(exp_num, size, tau, IsSimulate=False):
    ans = []
    for _ in range(exp_num):
        random.seed(random.randint(1, 10000))
        x_tra, y_tra = generate_data(size, tau)
        g, Ein = get_g_Ein(x_tra, y_tra)
        Eout = get_Eout(g, tau, IsSimulate)
        ans.append(Eout - Ein)
    return np.mean(ans)
def main():
    '''Parsing'''
    parser = argparse.ArgumentParser(
        description='Argument Parser for MLF HW1.')
   parser.add_argument('--mode', default='closedform',
                        choices=['closedform', 'simulate'])
    args = parser.parse_args()
    if args.mode == 'simulate':
        is_simulate = True
        print("Tesing by simulation!")
    elif args.mode == 'closedform':
        is_simulate = False
        print("Tesing by closed form!")
```

```
'''Answer questions'''
    print('RUNNING Q16...')
    print('Answer of Q16 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=2, tau=0, IsSimulate=is_simulate)))
   print('RUNNING Q17...')
   print('Answer of Q17 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=20, tau=0, IsSimulate=is_simulate)))
   print('RUNNING Q18...')
   print('Answer of Q18 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=2, tau=0.1, IsSimulate=is_simulate)))
   print('RUNNING Q19...')
   print('Answer of Q19 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=20, tau=0.1, IsSimulate=is_simulate)))
   print('RUNNING Q20...')
   print('Answer of Q20 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=200, tau=0.1, IsSimulate=is_simulate)))
if __name__ == "__main__":
   main()
 16. Answer: [d]
                   17. Answer: [b]
                                     18. Answer: [e]
                                                      19. Answer: [c]
                                                                       20. Answer: [a]
     0.2930
                       0.0243
                                                          0.0519
                                                                           0.0051
                                        0.3671
```