

Spike Challenge

Diseño e implementación de un clasificador de tipo de música

Sebastián Camberos Febrero 2018

Descripción Spike Challenge

- Objetivo: clasificar 2 tipos de música a partir de descriptores varios
- Libre elección de algoritmo de clasificación
- Origen datos: API de Spotify
- Muestra (sin procesar)
 - Entrenamiento, música tipo reggaeton, 70 registros x 15 campos
 - Entrenamiento, otros tipos de música, 2.230 registros x 16 campos
 - Validación, 50 registros x 16 campos

Pregunta 1 Análisis Datasets

Variable	Composición	Estilo	Estructura	Estacional	Redundancia
acousticness	Χ				
danceability		X			
duration			X		
energy		X			
id_new				X	
instrumentalness	X				
key	X				
liveness			X		
loudness					X
mode					X
popularity				X	
speechiness		X			
tempo	X				
valence		Χ			

- Criterios selección variables
 - Descripción variable Spotify vs elementos de composición y estilo musical (1)
 - Corroboración diferencias estilo musical con distribuciones (promedio, desviación estándar y kurtosis)
 - Eliminación descriptores que no alteran estructura musical
 - Eliminación variables estacionales
 - Eliminación redundancias según correlación o composición musical

Pregunta 1 Histogramas

Música tipo reggaeton

Otros tipos de música

Pregunta 1 Correlaciones

Pregunta 2 Consolidación Datasets

- Preprocesamiento datos
 - Filtrado de registros vacíos, 8 en total
 - Normalización cantidad de campos
 - Marcas identificación tipo de música:
 "reggaeton" y "otros"
 - Transformación int a float
 - Consolidación muestra reggaeton y otros tipos de música, 2.292 registros x 15 campos
- Preentrenamiento modelo
 - Extracción media y normalización
 - Hot-encode: "reggaeton", 01; "otros", 10

Pregunta 3 Modelo

- Descripción modelo
 - Basado en clasificador de dígitos (LeCun, 1998) y autoencoder (Hinton, 2006)
 - Red neuronal fully connected
 - 4 hidden layers con pesos 1024 512- 256 2
 - Función activación ReLU
 - Salida softmax interpretada como probabilidad
 - Código en Python y TensorFlow
- Calibración hiper parámetros
 - Pesos iniciales aleatorios
 - Optimizador Adam
 - Entrenamiento por batches

Pregunta 4 Performance Modelo

		Modelo 1	Modelo 2	Modelo 3	Modelo 4
Variable	acousticness	Χ			
	danceability	Χ	X	X	Χ
	duration				
	energy	Χ	X	X	Χ
	id_new				
instrumentalness		Χ	Χ	X	X
	key	Χ	Χ	X	Χ
	liveness				
	loudness				
	mode				
	popularity				
	speechiness	Χ	Χ	X	
	tempo	Χ	Χ		
	valence	Χ	Χ	Χ	Χ
	Predictores	8	7	6	5
Accuracy	epochs	128	128	128	128
	data_train	0.9978	0.9948	0.9930	0.9747
	data_reggaeton	0.9286	0.8429	0.7857	0.1714

- Observar durante entrenamiento
 - Función de pérdida (cross entropy)
 - Performance (accuracy)
 - Inspección separación tipos de música

Performance

- Pruebas iniciales con 4 modelos (búsqueda parsimonia)
- Inspección visual da cuenta de separación de tipos de música en logits y softmax

Pregunta 4 Performance modelo

Accuracy de experimento inicial @128 epochs

Pregunta 4 Performance modelo

Separación de datos Modelo 1 @128 epochs

Salida red neuronal Layer 4 (logits) Salida red neuronal Softmax (clasificador) Histograma clasificador (solo reggaeton)

Separación de datos Modelo 4 @128 epochs

Salida red neuronal Layer 4 (logits) Salida red neuronal Softmax (clasificador) Histograma clasificador (solo reggaeton)

Pregunta 4 Performance modelo

Separación de datos Modelo 1 @384 epochs

Salida red neuronal Layer 4 (logits) Salida red neuronal Softmax (clasificador) Histograma clasificador (solo reggaeton)

- Existen mejoras de optimización y de reducción de consumo de energía
- Incrementar performance
 - Uso de factores y variables puras
 - Aumentar epochs evitando overfitting
- Reducir tiempo de entrenamiento
 - Explorar curriculum learning (Bengio, 2009)
- Reducir tiempo de procesamiento en producción
 - Implementar pruning
 - Reducir descriptores
 - Reducir pesos por unidad neuronal
 - Reducir layers

Pregunta 5 Validación Modelo

Inferencia Modelo 1 @384 epochs, 80% nivel de corte

Salida red neuronal Layer 4 (logits) Salida red neuronal Softmax (clasificador) Histograma clasificador (solo reggaeton)

- Performance validación
 - Ocurre separación de datos
 - Probabilidad de tipo de música señalada por magnitudes de softmax
 - 4 canciones clasificadas como reggaeton
- Elementos para correcta identificación de tipo de música
 - Arquitectura modelo para descubrir estructura subyacente y lograr amplia separación de datos
 - Predictores elegidos
 - Nivel de corte obtenido durante entrenamiento