TRIGONOMETRIC EQUATION

LEVEL-I

1.	If $sin(\pi cos\theta) = cos(\pi sin\theta)$, then $sin2\theta$ may (A) 3/4 (C) 1/4	take value (B) -3/4 (D) None of these			
2.	General solution to the equation $tan^2\theta + cos(A) \theta = n\pi$ (C) $\theta = n\pi + \pi/4$	s2 θ - 1 = 0 will be given by (B) θ = 2n π + π /4 (D) θ = 2n π - π /4			
3.	If $\sin \alpha = p$ then the equation whose solution is $\tan \frac{\alpha}{2}$ is				
	(A) $px^2 + 2xp - 1 = 0$ (B) $x^2 + 2x - p = 0$	(B) $px^2 + 2x - p = 0$ (D) None of these			
4.	If $tan(\cot x) = \cot(\tan x)$ then $\sin 2x$ is equal to				
	$(A) \qquad \frac{2}{(2n+1)\pi}$	$(B) \qquad \frac{4}{(2n+1)\pi}$			
	$(C) \qquad \frac{2}{n(n+1)\pi}$	(B) $\frac{4}{(2n+1)\pi}$ (D) $\frac{4}{n(n+1)\pi}$			
*5.	If $\sin^{-1}x + \tan^{-1}x = \frac{\pi}{2}$, then $2x^2 + 1 =$				
	(A) $\sqrt{5}$	(B) $\frac{\sqrt{5}-1}{2}$			
	(C) 2	(D) none of these			
6.	Solution set of the equation $\sin^2 x + \cos^2 3x =$				
	(A) $\left\{\frac{n\pi}{4}, n \in I\right\}$	(B) $\left\{\frac{n\pi}{2}, n \in I\right\}$			
	(C) $\{n\pi, n \in I\}$	(D) none of these			
*7.	The difference between the roots in the $4 \cos x (2 - 3 \sin^2 x) + (\cos 2x + 1) = 0$ is	first quadrant (0 \leq x \leq π /2) of the equation			
	(A) π/6	(B) π/4			
	(C) π/3	(D) π/2			
8.	The value of $\tan\left(2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right)$ is equal	to			
	(A) $\frac{7}{17}$	(B) $\pi - \frac{7}{17}$			

(D) none of these

*9.	The set of values of a for which $x^2 - ax - \sin^{-1}(\sin 3) > 0$ for all $x \in R$ is			
	(A) R	(B) $\left -\frac{\pi}{2}, \frac{\pi}{2}\right $		
	(C) 	(D) none of these		
10.	If $\sin^{-1}(\sin x) = \pi - x$, then x belongs to (A) $(-\infty, \infty)$ (C) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$	(Β) [0, π](D) [π, 2π]		
*11.	If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$ then $x^2 + (A) 0$ (C) 2	y ² + z ² - xy - yz - zx equals to (B) 1 (D) 3		
12.	The number of real solutions of the equation	on $\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{2}$ is		
	(A) zero (B) one (C) to			
*13.	3. If $x \ge 1$, then $2 \tan^{-1} x + \sin^{-1} \frac{2x}{1 + x^2}$ is equal to			
	(A) 4 tan ⁻¹ x (C) 0	(B) π (D) None of these		
14.	If $sinx + siny + sinz = 3$, $x, y, z \in [0, 2\pi]$, $t(A) x^2 + y^2 + z^2 - xy - yz - zx = 0$ (C) $x^3 + y^3 + z^3 = 0$	hen (B) $x^3 + y^3 + z^3 = \pi^3/3$ (D) $x + y + z = 0$		
15.	If $\cos\theta_1 + 2\cos\theta_2 + 3\cos\theta_3 = 6$ then $\tan\theta_1$: (A) 1/2 (C) 0	+ $tan\theta_2$ + $tan\theta_3$ equals to (B) 6 (D) 3		
*16.	The equation $e^{\sin x} + e^{-\sin x} = 2\sin x$ will have (A) no solution (C) two solution	(B) one solution (D) none of these		
17.	If $1 + \tan\theta = \sqrt{2}$ then $\cos\theta - \sin\theta$ equals to (A) $2 \sin\theta$ (C) $\sqrt{2} \cos\theta$	to $(\theta \neq (2n+1)\pi/2)$ (B) $\sqrt{2} \sin\theta$ (D) $2 \cos\theta$		
18.	Value of cos(2 cos ⁻¹ (4/5)) equals to (A) 6/25 (C) 4/25	(B) 7/25 (D) 8/25		
19.	If $4 \cos^{-1} x + \sin^{-1} x = \pi$ then x equals to (A) 1/2 (C) 1	(B) $1/\sqrt{2}$ (D) $\sqrt{3}/2$		

31.

29. If
$$\left(\cos^2 x + \frac{1}{\cos^2 x}\right)\left(1 + \tan^2 2y\right)\left(3 + \sin 3z\right) = 4$$
, then

(A) x may be a multiple of π

(B) x can not be an even multiple of π

(C) z can be a multiple of π

(D) y can be a multiple of $\pi/2$.

- 30. $\tan\theta + \tan2\theta + \tan\theta \tan2\theta = 1$. Then θ is equal to (A) $\pi/12$ (B) $5\pi/12$
 - (C) $-3\pi/12$ (D) $-7\pi/12$
 - If -1 < x < 0 then $\tan^{-1}x$ equals

 (A) $\pi \cos^{-1}\left(\sqrt{1 x^2}\right)$ (B) $\sin^{-1}\left(\frac{x}{\sqrt{1 + x^2}}\right)$ (C) $-\cot^{-1}\left(\frac{\sqrt{1 x^2}}{x}\right)$ (D) $\csc^{-1}x$
- 32. The set of all x in $(-\pi, \pi)$ satisfying $|4\sin x-1| < \sqrt{5}$ is given by $(A) \left(-\frac{\pi}{10}, \frac{3\pi}{10}\right)$ $(B) \left(\frac{\pi}{10}, \frac{3\pi}{10}\right)$ $(C) \left(\frac{\pi}{10}, -\frac{3\pi}{10}\right)$ (D) none of these.
- 33. The number of roots of the equation $x + 2\tan x = \pi/2$ in the interval $[0, 2\pi]$ is (A) 1 (B) 2 (C) 3 (D) infinite
- 34. The general solution of the equation $\sin x + \cos x = 1$, for $n = 0, \pm 1, \pm 2,...$ is (A) $x = 2n\pi$ (B) $x = 2n\pi + \frac{1}{2}\pi$ (C) $x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$ (D) none of these
- 35. The solution set of $(2\cos x 1)$ $(3 + 2\cos x) = 0$ in the interval $0 \le x \le 2\pi$ is $(A) \left\{ \frac{\pi}{3} \right\}$ $(B) \left\{ \frac{\pi}{3}, \frac{5\pi}{3} \right\}$ $(C) \left\{ \frac{\pi}{3}, \frac{5\pi}{3}, \cos^{-1}(-3/2) \right\}$ (D) none of these.
- 36. The number of solutions of the equation tanx + secx = 2cosx lying in the interval $[0, 2\pi]$ is (A) 0 (B) 1 (C) 2 (D) 3
- 37. The general solution of the equation $\tan^2\theta + 2\sqrt{3} \tan\theta = 1$ is given by

(A)
$$\theta = \frac{\pi}{2}$$

(B)
$$\theta = \left(n + \frac{1}{2}\right)\pi$$

$$(C)\theta = (6n+1)\frac{\pi}{12}$$

$$(D)\frac{n\pi}{12}$$

38. The general solution of $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$ is

(A)
$$n\pi + \frac{\pi}{8}$$

$$(B)\frac{n\pi}{2} + \frac{\pi}{8}$$

(C)
$$(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$$

(D)
$$2n\pi + \cos^{-1}(3/2)$$

*39. The value of $\tan[\cos^{-1} 4/5 + \tan^{-1} 2/3]$ or $\tan[\sin^{-1}(3/5) + \cot^{-1} 3/2]$ is

(A) 6/17

(B) 7/16

(C) 17/6

(D) none of these.

40. The principal value of $\sin^{-1}(\sin \frac{2\pi}{3})$ is

(A) $-2\pi/3$

(B) $2\pi/3$

(C) $4\pi/3$

(D) None of these

*41. If $1 + |\sin x| + \sin^2 x + |\sin^3 x| + \dots = 4 + 2\sqrt{3}$, then

(A) $x = \frac{\pi}{6}$

(B) $\frac{\pi}{3}$

 $(C) x = \frac{2\pi}{3}$

(D) $x = \frac{5\pi}{6}$

42. The number of ordered pair (x, y), where x and y satisfy $x + y = 2\pi/3$ and $\cos x + \cos y = 3/2$ is

(A)0

(B)1

(C)2

(D) infinity

43. The number of solutions of $\cos^2\theta + \sin\theta + 1 = 0$, is $(\theta \in [0, 2\pi])$

(A) 0

(B)1

(C)2

(D) infinity

44. If $\sin^{-1} x > \cos^{-1} x$, then

(A) $x \in \left(-1, -\frac{1}{\sqrt{2}}\right)$

(B) $x \in \left(0, \frac{1}{\sqrt{2}}\right)$

(C) $x \in \left(\frac{1}{\sqrt{2}},1\right)$

(D) $x \in \left(-\frac{1}{\sqrt{2}}, 0\right)$

45. The set of all values of x in the interval $[0, \pi]$ for which $2\sin^2 x - 3\sin x + 1 \ge 0$ contains

(A)[0, π /6]

(B)[0, $\pi/3$]

(C)[$2\pi/3$, π]

(D) $[0, \pi/6] \cup \{\pi/2\} \cup [5\pi/6, \pi]$

*46. If the expression $\frac{\sin(x/2) + \cos(x/2) + i \tan x}{1 + 2i \sin(x/2)}$ is real If x belong to the set

(A) $\{n\pi : n \in I\}$

(B) $\{2n\pi : n \in I\}$

(C) $\{n\pi + \pi/4 : n \in I\}$

(D) $\{2n\pi + \pi/4 : n \in I\}$

47. $\sin x$, $\sin 2x$, $\sin 3x$ are in A.P. if (for $n \in I$)

(A)
$$x = \frac{n\pi}{2}$$

(B) $x = n\pi$

(C)
$$x = 2n\pi$$

(D) $x = \frac{n\pi}{3}$

*48. $\sin x \cos x \cos 2x = k$ has a solution, if k belong to the interval

(A)[0, 1]

(B)[-1,0]

(C)
$$[-\pi/2, \pi/2]$$

(D) [-1/4, 1/4]

1.

LEVEL-II

1.	The values of x in [0, 2π] which satisfy the e (A) 0 (C) 2π	equation $2^{1+ \sin x + \sin 2x + \sin 3x +} = 2$ are (B) π (D) $3\pi/2$
2.	$tan^2\theta$ is	satisfying the equation $(\sqrt{3})^{\sec^2 \theta} = \tan^4 \theta + 2$
	(A) π/4(C) π	(B) -π/4 (D) none of these
*3.	$\tan^{-1} \left(\frac{\sin 1 - 1}{\cos 1} \right)$ equals	
	(A) 0	(B) $1-\frac{\pi}{2}$
	(C) $\frac{\pi}{2} - 1$	(D) $\frac{1}{2} - \frac{\pi}{4}$
*4.	The value of x that satisfies the equation tai (A) $\pi/3$	$n^2x = tan^{-1}(tan3)$ is (B) - $\pi/3$
	(C) $\sqrt{\tan^{-1} 3}$	(D) none of these
5.	If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$, $\cos^{-1}x - \cos^{-1}y = \frac{\pi}{3}$,	then the number of ordered pairs (x, y) is
	(A) 0 (C) 2	(B) 1 (D) none of these
6.	The number of real solutions of $\cos^{-1}x + \cos^{-1}(A)$	$s^{-1} 2x = -\pi \text{ is}$ (B) 1
	(C) 2	(D) infinitely many
7.	$\sin x + \cos x = y^2 - y + a$ has no value of (A) (0, $\sqrt{3}$)	x for any y if 'a' belongs to (B) $(-\sqrt{3}, 0)$
	(C) $(-\infty, -\sqrt{3})$	(D) $(\sqrt{3}, \infty)$
8.	The values of k, for which the system of equal sinx sin2y = k +2 holds, is (are) given by	uations $\cos x \cos 2y = (k^2 - 4)^2 + 1$ and
	(A) $k = \pm 2$ (C) $k = 2$	(B) $k = -2$ (D) none of these
9.	The value of $tan[sin^{-1}(cos(sin^{-1}x))]$ $tan[cos^{-1}(A) 0$ (C) -1	$(\sin(\cos^{-1}x))$], $(x \in (0, 1))$ is equal to (B) 1 (D) none of these.

10. The value of
$$tan^{-1}\left(\frac{1}{2}tan2A\right) + tan^{-1}(cotA) + tan^{-1}(cot^3A)$$
, for $0 < A < \pi/4$, is

(A) tan⁻¹ 2 (C) 4 tan⁻¹(1)

The value of a for which the equation $4\csc^2(\pi (a + x)) + a^2 - 4a = 0$ has a real solution, *11. is

(A) a = 1

(B) a = 2

(C) a = 10

(D) None of these

*12.
$$\cos\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + \cos\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right)$$
 is equal to

(A) $\pm \sqrt{\frac{a+b}{h}}$

(B) $\sqrt{\frac{b}{a+b}}$

(C) $\sqrt{\frac{a+b}{b}}$

(D) None of these

13. If
$$2 \sin^{-1} x = \cos^{-1} (1 - 2x^2)$$
, then

(A) $-1 \le x \le 1$

(B) $-1 \le x \le 0$

(C) $x = 1/\sqrt{2}$

(D) $0 \le x \le 1$

14. If
$$\sqrt{1-\sin A} = \sin \frac{A}{2} - \cos \frac{A}{2}$$
, then $\frac{A}{2} - \frac{\pi}{4}$ could lie in quadrant

(A) first

(B) second

(C) third

(D) fourth

15. General solution to the equation
$$tan^2\theta + cos2\theta - 1 = 0$$
 will be given by

(A) $\theta = n\pi$

(B) $\theta = 2n\pi + \pi/4$

(C) $\theta = n\pi + \pi/4$

(D) $\theta = 2n\pi - \pi/4$

16. If
$$\sin x + \cos x = \sqrt{y + \frac{1}{y}}$$
, $x \in [0, \pi]$, then

- (A) $x = \pi/4$
- (B) y = 0
- (C) y = 1
- (D) $x = 3\pi/4$.

17. The minimum value of
$$2^{\sin x} + 2^{\cos x}$$
 is

(A) 1

- (B) $2 \frac{1}{\sqrt{2}}$
- (C) $2^{-1/\sqrt{2}}$
- (D) $2^{1-\frac{1}{\sqrt{2}}}$

$$\tan^{-1}\frac{1}{2x+1} + \tan^{-1}\frac{1}{4x+1} = \tan^{-1}\frac{2}{x^2}$$
 is

(A) 1

(B)2

(C)3

(D) 4

*19. The value of
$$\tan^{-1}\left(\frac{a_1x-y}{a_1y+x}\right) + \tan^{-1}\frac{a_2-a_1}{1+a_1a_2} + \tan^{-1}\frac{a_3-a_2}{1+a_2a_3} + \dots + \tan^{-1}\frac{a_n-a_{n-1}}{1+a_na_{n-1}} + \tan^{-1}\frac{1}{a_n}$$
 is

(A) 0

(B) 1

(C) $tan^{-1} \frac{x}{y}$

(D) $\tan^{-1} \frac{y}{x}$

*20. If sinx + cosx = 1 + sinx cosx, then

(A)
$$\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

(B)
$$\sin\left(x-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

(C)
$$\cos\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$$

(D)
$$\cos\left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

21. If
$$\alpha \le \tan^{-1}x + \cot^{-1}x + \sin^{-1}x \le \beta$$
 $\forall x \in (0, 1]$ then

(A) $\alpha = 0$, $\beta = \pi/2$

(B) $\alpha = 0$, $\beta = \pi$

(C) $\alpha = \pi/2$, $\beta = \pi$

(D) $\alpha = \pi/2$, $\beta = \pi$

LEVEL-III

1.	If all the solutions 'x' of a'' (A) $[3+2\sqrt{2}, \infty)$	$a^{-1} + a^{-1} = 6$ (a	> 1) are real, then set (B) (6, 12)	of values of a is	
	(C) $(1, 3 + 2\sqrt{2})$		(D) none of these.		
2.	The value of $\sin^{-1} \left\{ \cot \left(\sin \left($	$(n^{-1}\sqrt{\frac{2-\sqrt{3}}{4}}+co)$	$s^{-1}\frac{\sqrt{12}}{4} + sec^{-1}\sqrt{2}$	is	
	(A) 0 (C) π/6		(B) π/4 (D) π/2		
3.	The number of integral values solution in $[0, 2\pi]$ is (A) 1 (C) 3	lues of p for which	the equation cos (psi (B) 2 (D) none of these	nx) = sin(p cosx) has a	
4.	If $(\tan^{-1}x)^2 + (\cot^{-1}x)^2 = \frac{5\pi}{8}$	$\frac{\tau^2}{2}$, then x equals	to		
	(A) -1 (C) 0	3	(B) 1 (D) none of these		
*5.	The number of points $tan^4x + cot^4x + 1 = 3sin^2y$ (A) one (C) four		n the circle x ² + (B) two (D) infinite	$y^2 = 4$ satisfying	
*6.	If $\cos \left[\pi \left\{ \sin \left(x + \frac{\pi}{6} \right) + \cos \left(x + \frac{\pi}{6} \right) \right\} \right] $	$\left(x-\frac{\pi}{3}\right)$ = 0, the	n x is		
	(A) $n\pi + \pi/4$, $n \in I$. (C) $n\pi - \pi/4$, $n \in I$.		(B) $n\pi$ - $\pi/2$, $n \in I$. (D) none of these		
7.	Indicate the relation which (A) $\tan \tan^{-1} x = x $ (B) $\sin \sin^{-1} x = x $		(C) $tan^{-1} tan x = x$	Ι	
8.	The values of x between 0 and 2π which satisfy the equation $\sin x \sqrt{8\cos^2 x} = 1$ are in A.P. with common difference				
	(A) $\pi/4$ (B)		(C) 3π/8	(C) 5π/8	
9.	In a triangle ABC, the angle B is greater than angle A. If the values of angles A and B satisfy the equation $3\sin x - 4\sin^3 x - k = 0$, $0 < k < 1$, then the value of C is				
	(A) $\frac{\pi}{3}$	(B) (D)	$\frac{\pi}{2}$		
	(C) $\frac{2\pi}{3}$	(D)	$\frac{5\pi}{6}$		

10. If
$$A = 2 \tan^{-1}(2\sqrt{2} - 1)$$
 and $B = 3 \sin^{-1}(1/3) + \sin^{-1}(3/5)$, then

(A) A = B

(B) A < B

(C) A > B

- (D) none of these
- *11. The equation $(\cos p 1)x^2 + (\cos p)x + \sin p = 0$, where x is a variable, has real roots. Then the interval of p may be
 - (A) $(0, 2\pi)$

(B) $(-\pi, 0)$

(C) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

(D) (0, π)

ANSWERS

LEVE	L-I							
	1.	A	2.	A,C	3.	D	4.	В
	5.	A	6.	A	7.	A	8.	C
	9.	C	10.	C	11.	A	12.	C
	13.	В	14.	A	15.	C	16.	A
	17.		18.	В	19.	D	20.	A
	21.	C			22.	A		
	23.	A	24.	A				
	25.	D	26.	A				
	27.	В	28.	A				
	29.	A,D	30.	A, B, C, D	31.	В	32.	A
	33.	C	34.	C	35.	В	36.	C
	37.	C	38.		39.	C	40.	D
	41.	B, C	42.	A	43.	В	44.	C
	45.	D	46.	В,С	47.	A, C	48.	D
LEVE	L –II							
	1.	A, B, C	2.	A, B	3.	D	4.	D
	5.	В	6.	A	7.	D	8.	В
	9.	В	10.	C	11.	C	12.	C
	13.	D	14.	A,B	15.		16.	A, C
	17.	D	18.	В	19.	C	20.	A, D
	21.							
LEVE	L –III							
	1.	A	2.	A	3.	D	4.	A
	5.	C	6.		7.	A, B, D	8.	A
	9.	C	10.	C	11.	D		