DÍODES: Característiques i aplicacions

MARC CASELLAS MUNS - Grup 34

- Corbes característiques d'un díode d'unió i d'un de Zener
- Rectificació d'ones amb un díode d'unió i un pont de díodes.
- Circuit limitador de tensió amb un díode zener

CORBES CARACTERÍSTIQUES

CLASSES DE DÍODES:

DÍODES D'UNIÓ:

POLARITZACIÓ DIRECTA:

POLARITZACIÓ INDIRECTA:

DÍODES ZENER:

POLARITZACIÓ DIRECTA:

Actua com a díode d'unió

POLARITZACIÓ INDIRECTA:

Condueix corrent a partir de V₂

- DÍODE D'UNIÓ i R = 100Ω
- CH1: V_D, CH2: V_R
- Senyal Triangular de 50 Hz
- Osciloscopi en mode DC
- CH1 = 0,2 V/div i CH2 = 0,5 V/div

Observem el valor de V_D on V_R = 0,1V

- DÍODE D'UNIÓ i R = 100Ω
- CH1: V_D, CH2: V_R
- Senyal Triangular de 50 Hz
- Osciloscopi en mode DC
- CH1 = 0,2 V/div i CH2 = 0,5 V/div

Observem el valor de V_D on V_R = 0,1V

- DÍODE D'UNIÓ i R = 100Ω
- CH1: V_D, CH2: V_R
- Senyal Triangular de 50 Hz
- Osciloscopi en mode DC
- CH1 = 0,2 V/div i CH2 = 0,5 V/div

Observem el valor de V_D on V_R = 0,1V

$$V_{x} = 0.6 V$$

- DÍODE ZENER i R = 100Ω
- CH1: V_D, CH2: V_R
- Senyal Triangular de 50 Hz
- Osciloscopi en mode DC
- CH1 = 0,2 V/div i CH2 = 0,5 V/div

Observem el valor de V_Z

- DÍODE ZENER i R = 100Ω
- CH1: V_D, CH2: V_R
- Senyal Triangular de 50 Hz
- Osciloscopi en mode DC
- CH1 = 0,2 V/div i CH2 = 0,5 V/div

Observem el valor de V_Z

$$V_{8} = 0.64 \text{ V i } V_{Z} = 6 \text{ V}$$

RECTIFICACIÓ

SITUACIÓ INICIAL

Circuit:

Ona:

RECTIFICACIÓ DE MITJA ONA

Circuit:

Ona resultant:

PRÀCTICA: Rectificació de mitja ona

- Díode d'unió i $R = 1 k\Omega$
- CH1 $V_{Entrada}$ (AC) i CH2 = V_{R} (DC) \rightarrow tensió rectificada
- Senyal sinosoidal de 500 Hz
- B = 0,5 ms/div i A = 2V/div

RECTIFICACIÓ D'ONA COMPLERTA

PONT DE DÍODES

RECTIFICACIÓ D'ONA COMPLERTA

Circuit:

Ona:

PRÀCTICA: Rectificació de ona completa

- Pont de díodes i R = $1 \text{ k}\Omega$
- CH2 = V_R (DC) \rightarrow tensió rectificada
- Senyal sinosoidal de 500 Hz
- B = 0,5 ms/div i A = 2V/div

ESTABILITZACIÓ D'UNA TENSIÓ NO CONSTANT

AMORTIMENT DE LES OSCILACIONS

Circuit:

Ona:

PRÀCTICA: Amortiment de les oscilacions

- Pont de díodes i R = $1 \text{ k}\Omega$
- CH2 = V_R (DC) \rightarrow tensió rectificada
- Senyal sinosoidal de 500 Hz
- V_m≈ 2V
- B = 0,5 ms/div i A = 2V/div

Condensadors de 1µF i 47µF

CIRCUIT LIMITADOR DE TENSIÓ

ZENER COM A LIMITADOR DE TENSIÓ

EQUIVALENT THÉVENIN DEL CIRCUIT

Permet calcular el valor mínim de ε

$$\varepsilon_{\min Z} = \frac{R + R_C}{R_C} V_Z$$

PRÀCTICA: Circuit limitador de tensió

RESULTATS:

R1 (100 Ω) = 99,75 Ω	$R = R_1 + R_2 = 297,04 \Omega$	ε _{min Z} teòrica =
R2 (200 Ω) = 197,29 Ω		$((R+R_C)/R_C) = 12,63 \text{ V}$
R3 (200 Ω) = 217,37 Ω	$R_{\rm C} = R_3 + R_4 = 268,46 \Omega$	
R4 (50 Ω) = 50,77 Ω		

PRÀCTICA: Mesures de tensió i intensitat

RESULTATS:

3	V _{FC}	l _z	
5 V	2,36 V	0 A	
10 V	4,75 V	0 A	
15 V	6,13 V	7,19 A	
20 V	6,19 V	23,79 A	
25 V	6,24 V	39,84 A	

$$\varepsilon_{\text{min Z}}$$
 mesurada = 12,4 V

Tensió Zener:

$$V_{FC}$$
 per $I_Z = 1$ mA = 6,09 V \checkmark V_Z oscil = 6V

PRÀCTICA: Balanç energètic

RESULTATS:

valors	3	V_{FC}	I _Z	I _C	1	٤١	$RI^2+R_CI_C^2+V_{FC}I_Z$
mesurats	20,17V	6,13V	24,19mA	22,68mA	47,06mA	0,949W	0,944 W
teòrics	20V	6V	22,7mA	24mA	46,7mA	0,934W	0,934W

$$P = \varepsilon I = RI^2 + R_C I_C^2 + V_{FC} I_Z$$

Marc Casellas Muns Grup 34