Week 3

Advice for Machine Learning

Debugging

Evaluating a model

Computing Test and Train set error

Cross-validation set

Bias and Variance

ML Development Process

Iterative Loop

Example with Spam Classification

Adding Data

Advice for Machine Learning

Debugging

Debugging a learning algorithm

You've implemented regularized linear regression on housing prices

$$J(\vec{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})^{2} + \frac{2}{2m} \sum_{j=1}^{n} w_{j}^{2}$$

But it makes unacceptably large errors in predictions. What do you try next?

Get more training examples

Try smaller sets of features

Try getting additional features

Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, etc)$

 \nearrow Try decreasing λ

Try increasing λ

Evaluating a model

• Splitting datasets into train set and test set (Prevent overfitting etc.)

Evaluating your model Dataset: price size 2104 400 70% 1600 330 $m_{train} = \text{no. training examples}$ 2400 369 1416 232 3000 540 1985 300 1534 315 1427 199 30% 1380 212 $m_{test} = \text{no. test examples}$ 1494 243

Computing Test and Train set error

- For Linear Regression:
- Notice that the regularization term is removed

Train/test procedure for linear regression (with squared error cost)

Fit parameters by minimizing cost function $J(\vec{w}, b)$

Compute test error:

$$J_{test}(\vec{\mathbf{w}}, b) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(f_{\vec{\mathbf{w}}, b} \left(\vec{\mathbf{x}}_{test}^{(i)} \right) - y_{test}^{(i)} \right)^2 \right]$$

Compute training error:

$$J_{train}(\vec{\mathbf{w}}, b) = \frac{1}{2m_{train}} \left[\sum_{i=1}^{m_{train}} \left(f_{\vec{\mathbf{w}}, b} \left(\vec{\mathbf{x}}_{train}^{(i)} \right) - y_{train}^{(i)} \right)^{2} \right]$$

• Check cost of test set to see whether model is effective

Train/test procedure for linear regression (with squared error cost)

- For Classification problems:
 - o You can choose to compute the loss, or compute the fraction of the train/test set that was misclassified

Train/test procedure for classification problem
$$\widehat{y} = \begin{cases} 1 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \geq 0.5 \\ 0 \text{ if } f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) < 0.5 \end{cases}$$
 count $\widehat{y} \neq y$

 $J_{train}(\vec{\mathbf{w}},b)$ is the fraction of the train set that has been misclassified.

- Helps with model selection and fine-tuning parameters
- Pick the model with the lowest cross validation error

Training/cross validation/test set

 $J_{train}(\overrightarrow{\mathbf{w}},b) = \frac{1}{2m_{train}} \left[\sum_{i=1}^{m_{train}} \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) - y^{(i)} \right)^2 \right]$ Training error:

Cross validation $J_{cv}(\vec{\mathbf{w}},b) = \frac{1}{2m_{cv}} \left[\sum_{i=1}^{m_{cv}} \left(f_{\vec{\mathbf{w}},b} \left(\vec{\mathbf{x}}_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^2 \right]$ (validation error, dev error)

 $J_{test}(\overrightarrow{\mathbf{w}},b) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}_{test}^{(i)} \right) - y_{test}^{(i)} \right)^2 \right]$ Test error:

Model selection

 \rightarrow Pick $w_1x + \cdots + w_4x^4 + b$ ($J_{cv}(w^{<4>}, b^{<4>})$)

Estimate generalization error using test the set: $\int_{test} (w^{<4>}, b^{<4>})$

Model selection – choosing a neural network architecture

Estimate generalization error using the test set: $J_{test}(\mathbf{w}^{<2>}, \mathbf{b}^{(<2>)})$

Bias and Variance

{TBC}

ML Development Process

Iterative Loop

Iterative loop of ML development

Example with Spam Classification

• You can also manually spot the errors (Printing the values etc) checking the words where the model fails and misclassifies

Building a spam classifier

Supervised learning: \vec{x} = features of email

y = spam (1) or not spam (0)

Features: list the top 10,000 words to compute $x_1, x_2, \dots, x_{10,000}$

$$\vec{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ buy \\ deal \\ O \\ discount \\ \vdots \\ \vdots \end{bmatrix}$$

From: cheapsales@buystufffromme.com
To: Andrew Ng

Subject: Buy now!

Deal of the week! Buy now!
Rolex w4tchs - \$100
Medlcine (any kind) - £50
Also low cost M0rgages
available.

Adding Data