- Technical
- Social
- Political
- Economic

- Problem Definition
- Figure of Merit
- System Design
- Constraints, Tradeoffs
- Statistics of Variation
- Tolerance, Capability

3.003 Principles of Engineering Practice

Research Methodology (10min)
The Ethical Engineer (30min)
Light-Matter Interactions (10min)
Lionel C. Kimerling

Laboratory Methodology

The Complete Engineer's Skill Set
Technical—Social—Political--Economic

- Problem Definition
- Constraints
- Options
- Analysis
- Solution

3.003 Technology Problems

The Complete Engineer's Skill Set
Technical—Social—Political--Economic

Add the following to your lab report.

- Problem Definition
 - What problem is the team solving?
- Experiment Design
 - What are the constraints that the team faces?
- Solution
 - Justify the experimental design?

3.003 Technology Problems

The Complete Engineer's Skill Set
Technical—Social—Political--Economic

- Problem Definition
 - Attributes, Specifications
- Design
 - Constraints
 - Figure of Merit: Tradeoffs
 - Options
 - Analysis
 - Statistics of Variation: Tolerance, Capability
- Solution
 - Results

Figure of Merit

Materials Design Property relation to Performance

- Example: problem and constraint
 - load bearing with lightest weight
- Volume = LxA
- P = load

$$(1/m)_{max}$$
 = Performance

Materials Properties

- tensile strength = σ = P/A=load/area
- m = density x volume = ρ AL

$$1/m = \sigma/\rho \times 1/PL$$

FOM =1/m= σ/ρ =tensile strength/density

Ethical Practice

An Ethical Engineer?

- Conflicting motivations
 - divergence between commerce and engineering?
 - is the data sufficient?
- Ethical action
 - most good for most people?
 - absolute right and wrong?
- Dealing at the boundaries

Laboratory Methodology

The Complete Engineer's Skill Set
Technical—Social—Political--Economic

- Problem Definition
- Constraints
- Options
- Analysis
- Solution

Ethics Basics

- Absolute of Judgment?
- Rationale: good world or self?
- Truth = 'fuel of the mind'
 - science of variation
- Can sustainability be built on fiction?
 - Ethics is not an act, but a lifetime; it is the definition of self

The Puzzle of Moral Judgment

- Kant
 - Right is principles that everyone can follow.
- Mill
 - Right is the greatest good for the greatest number of people.

Right before good or good before right?

Ethics: Private vs. Public

Your purpose in life

Your methods of achieving that purpose

Ethics: Private vs. Public

HYPOTHESIS OR FACT?

The way that you live has consequences for the lives of others.

Light and Matter

4

Light is an Electromagnetic Wave

Courtesy of the Opensource Handbook of Nanoscience and Nanotechnology.

Observables

Electromagnetic Field

- voltage $\vec{E}(\vec{r},t)$
- current $\vec{H}(\vec{r},t)$

Photonic Materials

- dielectric constant, $\varepsilon/\varepsilon_0$
- index of refraction, n
- absorption, α

- wavelength, λ
- group velocity, $v_q = c_o/N$; N = group index
- power, P

$c_{\text{material}} = c_0/n_r$ $n_r = (\epsilon/\epsilon_0)^{1/2}$

	$\frac{\boldsymbol{e}}{\boldsymbol{e}_0}$ (static)	n (ս)
Si	11.7	3.5
Ge	16	4
LiNbO ₃	43	2.27
BaTiO ₃	3600	2.46

c=speed of light; n_r =refractive index; ϵ = electric permittivity ϵ/ϵ_0 =dielectric constant

Materials Design by Property Maps

Lab #1 Appendix 1 Water Vapor and AR Coatings

Courtesy of Martin Chaplin. Used with permission.

Solar spectrum

From Haug, Franz-Josef. "Irradiation Spectrum." *Solar Cells: Generating Electricity from Light*. Used with permission.

Refractive indices

Material	Refractive index	
Air	1.0	
Water	1.33	
SiO_2	1.5	
Si ₃ N ₄	2.0	
Si	3.5	

Anti-reflection (AR) coatings

Elimination of reflection on surfaces:

- √ Solar cells
- ✓ Photodetectors
- √ Photolithography

Example: AR coating for silicon

$$n_{Si} = 3.5$$
 $n_{AR} = 2.3$
 $n_{SiO2} = 1.51$
 $\lambda = 550 \text{ nm } \rightarrow \text{t} = 91 \text{ nm}$

$$n_1$$
 (air) \downarrow n_2 (coating) t n_3 (material) \uparrow

$$R = \frac{{n_2}^2 - {n_1}{n_3}}{{n_2}^2 + {n_1}{n_3}}$$
 = 0 when $n_2 = \sqrt{n_1}{n_3}$
$$t = \frac{\lambda_0}{4n_2}$$

Quarter wave film

SiO₂-on-Si Color Chart

Film thickness, microns	Color and comment	Film thickness, microns	Color and comment
0.05	Tan	0.68	"Bluish"
0.07	Brown	0.72	Blue-green to green (quite broad)
0.10	Dark violet to red-violet	0.77	"Yellowish"
0.12	Royal blue	0.80	Orange (rather broad for orange)
0.15	Light blue to metallic blue	0.82	Salmon
0.17	Metallic to very light yellow-green	0.85	Dull, light red-violet
0.20	Light gold to yellow - slightly metallic	0.86	Violet
0.22	Gold with slight yellow-orange	0.87	Blue-violet
0.25	Orange to melon	0.89	Blue
0.27	Red-violet	0.92	Blue-green
0.30	Blue to violet-blue	0.95	Dull yellow-green
0.31	Blue	0.97	Yellow to "yellowish"
0.32	Blue to blue green	0.99	Orange
0.34	Light green	1.00	Carnation pink
0.35	Green to yellow-green	1.02	Violet-red
0.36	Yellow-green	1.05	Red-violet
0.37	Green-yellow	1.06	Violet
0.39	Yellow	1.07	Blue-violet
0.41	Light orange	1.10	Green
0.42	Carnation pink	1.11	Yellow-green
0.44	Violet-red	1.12	Green
0.46	Red-violet	1.18	Violet
0.47	Violet	1.19	Red-violet
0.48	Blue-violet	1.21	Violet-red
0.49	Blue	1.24	Carnation pink to salmon
0.50	Blue-green	1.25	Orange
0.52	Green (broad)	1.28	"Yellowish"
0.54	Yellow-green	1.32	Sky blue to green-blue
0.56	Green-yellow	1.40	Orange
0.57	Yellow to "yellowish"	1.45	Violet
0.58	Light-orange or yellow to pink borderline	1.46	Blue-violet
0.60	Carnation pink	1.50	Blue
0.63	Violet-red	1.54	Dull yellow-green

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.