

AI 기반 집단급식소 식수 예측 시스템 구축

∷ 키워드 ML NLP Python Python Flask Web

✔ 분석 개요

분석 배경

- 집단 급식소에서의 식수 예측은 비용 문제로 인해 영양사의 경험과 직관에 의한 예측이 주를 이루고 있음
- 데이터 기반 식수 예측 모델링을 통해 예측의 정확성과 객관성, 보편타당성을 보충

분석 목적

• 미배식 되어서 나오는 음식물 쓰레기 최소화

분석 목표

- 지자체에서 제공한 식단표, 카드 데이터와 공공데이터 포털의 데이터를 활용하여 AI 기반의 집단급식소 식수 인수 인원을 예측
- 실무에서 바로 활용할 수 있도록 모델 배포 및 서비스 웹사이트 구현

분석 내용

- 지자체에서 제공한 약 6년간의 식단표, 카드 데이터와 공공데이터 포털의 데이터를 활용하여 AI 기반의 집단급식소 식수 인수 인원 예측
- 한식 메뉴의 특성을 반영한 비정형 데이터(식단표) 처리를 통한 모델 성능 개선
- Gradient Boosting, Random Forest, CatBoost 모델을 블렌딩하여 최종 앙상블 모델 도출
- 웹 서비스 구현

분석 결과

- 최종 모델의 MAPE는 7.64
- 식수 예측 서비스 실무 적용 후 식수 예측 오차율 약 10%P 개선
 - 기존 오차율 (예측 모델 사용 전): 15~20%
 - 개선 오차율 (예측 모델 사용 후): 5~10%

✔ 분석 프로세스

0. 선행 연구 조사

- 선행 연구를 통해 메뉴, 날짜, 날씨 등의 변수가 식수 인원을 추정하는 주요 예측 변수임을 확인
- ▼ 참고한 선행 연구
 - Cheng L, Yang IS, and Baek SH (2003). Investigation on the performance of the forecasting model in university foodservice. Journal of Nutrition and Health, 36, 966-973.
 - Baek OH, Kim MY, and Lee BH (2007). Menu satisfaction survey for business and industry foddservice workers - Focused on food preferences by gender. Journal of The Korean Society of Food Culture, 22, 511-519.
 - Lim JY (2016). (Analysis of forecasting factors affecting meal service in business foodservice (Master's thesis)), Yonsei University, Seoul.

1. 데이터 수집

분석 데이터 목록 및 설명

- 대구광역시 A구청으로부터 약 6년 간의 일일 식단표 및 구내식당 카드 결제 데이터 내역을 제공받음
- 이 외에 예측에 필요한 데이터는 공공데이터 포털에서 수집

	카테고리	활용데이터 목록	구성 내용	데이터 규모	출처	
--	------	----------	-------	--------	----	--

지자체 데이터	구내식당 일일 식 단표	일자별 식단	1,448건	대구시 O구청
	메뉴별 식재료	메뉴, 메뉴별 식재 료	1,065건	
	메뉴별 조리법	메뉴, 메뉴별 조리 법	917건	
	일자별 구내식당 카드결제 내역	날짜, 성명, 수량, 단가	385,482건	
기상청 데이터	대구광역시 기상 데이터	일 최고/최저기온, 일 강수량 등	-	공공 데이터 포털

2. 변수 생성

- 선행 연구와 EDA를 기반으로 기상 변수(체감온도, 폭염 여부, 강우 여부, 적설 여부)와 시계열 변수(월, 연도, 직전일 식수 인원, 연휴 전날 여부) 생성
- 데이터 검토 중 동일한 메뉴가 다르게 표기된 문제를 발견
 이에 예측 정확도를 높이기 위해 메뉴의 특성을 반영한 파생변수를 생성하여 예측에 반영함.
 - 。 ex) 돈육김치찌개, 돼지김치찌개
- 메뉴의 이름은 달라도 식재료, 조리법과 같은 메뉴의 본질적인 요소는 유사하다는 아이디어에서 착안하여 두 정보를 활용하여 파생 변수를 생성함.
 - 1. 조리법 정보(국, 김밥/주먹밥, 김치, 무침/샐러드)를 활용한 파생 변수
 - → 조리법을 기준으로 메뉴를 분류
 - 2. 재료 정보 활용를 활용한 파생 변수
 - 재료의 종류가 약 1,200개로 매우 다양했기 때문에 분류를 통해 범주를 줄임.
 - 재료 분류 시 word2vec과 spherical k-means 방법을 사용하여 연구자의 주 관적인 개입을 최소화 함.
 - 아래 프로세스를 통해 데이터 가공

Step 1.

메뉴별	재료 군집 작성				
메뉴	재료				
A	[material 1, material 2]				
В	[material 4, material 7, material 8, material 9]				
С	[material 2, material 5, material 6]				

Step 2.

	재료를 Word2Vec 방식으로 벡터화
메뉴	재료
A	[vector 1, vector 2]
В	[vector 4, vector 7, vector 8, vector 9]
C	[vecotr 2, vector 5, vector 6]

^{*} vector_size : 요리법별로 존재하는 메뉴 수의 0.13배

Step 4.

일자별	식단	데이터와 결합하여,
식단 기	대료의	각 군집 개수로 합계
일자	식단	군집
A	A	[clusterX: 1, clusterY: 1, clusterZ: 0]
В	A,C	[clusterX: 1, clusterY: 2, clusterZ: 2]
C	A,B	[clusterX: 3, clusterY: 2, clusterZ: 1]

Step 3.

각 메	뉴의 재료 벡터에 해당하는 군집 작성
메뉴	재료
A	[cluster X, cluster Y]
В	[cluster X, cluster Y, cluster X, cluster Z]
С	[cluster Y, cluster Z, cluster Z]

• 앞서 만든 변수들을 일자 기준으로 결합하여 최종 데이터셋을 생성

	조리법 정보를 반영 대분류 변수 날짜 변수 기상 변수 시계열 변수 (메뉴 특성 변수)		날짜변수 기상남 ♥ 『					한	재료 정 재료 군 (메뉴 특	 집 변수						į	종속 변수 <u>•</u>			
	요 일	월	년	연휴 전날	체감 온도	폭염 여부	비/ 눈	전날_식 수인원	과일/음 료/과자	구이/ 볶음	 김밥/주 먹밥_5	김밥/주 먹밥_6	빵/떡 _0	빵/떡 _1	빵/떡 _2	빵/떡 _3	빵/떡 _4	빵/떡 _5	빵/떡 _6	식수 인원
Date																				
2016- 01-18	0	1	2016	0	-8	0	0	265	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	314
2016- 01-19	1	1	2016	0	-13	0	0	314	0.0	2.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	294
2016- 01-20	2	1	2016	0	-11	0	0	294	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	312
2016- 01-21	3	1	2016	0	-10	0	0	312	0.0	1.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	259
2016- 01-22	4	1	2016	0	-7	0	0	259	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	226

3. 모델링

- 여러 예측 모형(Gradient Boost, XGB, LGBM, CatBoost)중 MSE와 MAE를 기준으로 가장 유의한 모델 3가지(Gradient Boosting, Random Forest, CatBoost)를 블렌딩하여 최종 앙상블 모델 도출
 - 。 <스태킹 앙상블 모형 구조>

^{*} window_size : 한 메뉴에 사용된 식재료 개수의 최대값 48

 스태킹 앙상블을 적용한 결과, MSE가 865.28로 기존 단일 모델들에 비해 약 8~12% 개선되었음.

Model	MSE	MAE
Random Forest	1,056.61	24.85
GradientBoosting	972.41	24.12
CatBoost	943.59	23.88
Ensemble	865.28	22.26

• 최종 모델의 MAPE는 7.64로 예측값은 실제값에서 7% 정도의 오차만 존재

4. 분석 결과

웹 서비스

- python flask를 사용하여 웹 서비스 구현
- 날짜, 메뉴를 입력하면 예측값을 도출

실무 적용 후 식수 예측 오차율 약 10%P 개선

• 기존 오차율 (예측 모델 사용 전): 15~20%

• 개선 오차율 (예측 모델 사용 후): 5~10%

5. 본 프로젝트의 차별점

- 기존 연구는 연구자의 주관적인 판단하에 메뉴를 분류하였으나, 본 프로젝트는 텍스트 마이닝에서 일반적으로 사용되는 단어 임베딩 방법론을 적용하여 연구자의 부분적인 개입을 최소화하고 성능을 향상시킴
- 또한, 한식은 메뉴의 종류가 많고 본질적으로 같은 메뉴라도 다른 이름으로 표기되는 경우가 많음. 이러한 한식의 특성을 반영하여 조리법과 요리법 정보를 활용한 파생변수를 생성함.
 - 그 결과 기존 데이터를 그대로 사용했을 때보다 성능이 향상됨.

•	메뉴명을 그대로 시	용	메뉴명을 그대로 사용							
	Model	MSE								
	Ensemble	967.83								

•	• 조리법, 요리법 정보를 활용						
	Model	MSE					
	Ensemble	865.28					