

Machine Learning for Turbulence Modeling

Julia Ling

November 2016

Sandia National Labs

- "Exceptional service in the national interest"
- Sites in Livermore, CA and Albuquerque, NM
- careers.sandia.gov

Machine Learning on Engineering Systems

 How should scientific domain knowledge interact with datadriven models?

Outline

1) Machine learning for turbulence uncertainty quantification

1) Rule extraction to gain physical intuition

1) Deep learning with embedded invariances

Turbulence

Chaotic 3-D fluid motion at a continuum of scales

Hokusai (c 1830)

http://www.windturbinesyndrome.com/2011/wind-turbine-turbulence-what-are-the-micro-climate-effects/

https://brilliant.org/wiki/rocket-physics/

Turbulence Simulations

"When I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic." –Horace Lamb

Direct Numerical Simulation (DNS)

- Hundreds of millions of core hours for even simple flows
- Exact

Reynolds Averaged Navier Stokes (RANS)

- Orders of magnitude less computationally expensive
- Approximate

Machine Learning Problem Set-Up

- Assemble a database of flows for which both DNS and RANS results are available
- Use the DNS as "truth" data for supervised machine learning
- Build a binary classifier to predict when RANS has high uncertainty based on when specific model assumptions are violated
- Inputs are local flow variables from RANS (velocity, pressure, density, ...)
 - Each point in the mesh represents a separate data point

Database of Flows:

High Fidelity and RANS Results

hine Learning Classifier

- Use classifier to make predictions on validation set
- Evaluate classifier by comparing to high fidelity results
- Leave-one-out cross-validation

Classifier Performance

Classifier Performance

Outline

- Machine learning for turbulence model form uncertainty quantification
 - Achieved 3X more accurate error detection than previous state of the art
- 2) Rule extraction to gain physical intuition
- 1) Deep learning with embedded invariances

Rule Extraction

- Random Forests are much more robust and high-performance than single decision trees, but what have we lost?
 - Clarity—how can we understand these machine learned models?
- Representer Trees

 Trained a representer decision tree based on Random Forest that predicted when the RANS isotropy assumption was invalid

Analyzing the Representer Tree

Look for consistent branches

Analyzing the Representer Tree

Analyzing the Representer Tree

- Can determine physical regimes where assumptions are violated
- Can see that different mechanisms cause assumption to break down in near wall region than in free stream

Outline

- Machine learning for turbulence model form uncertainty quantification
 - Achieved 3X more accurate error detection than previous state of the art
- 2) Rule extraction to gain physical intuition
 - Used rule extraction to understand how the complex machine learning algorithm was making its predictions
 - Increases confidence in ML predictions
 - Provides feedback to turbulence modeler
- 3) Deep learning with embedded invariances

Deep Learning for Turbulence Modeling

- RANS simulations rely on empirical models to model the turbulence transport
- These models were proposed based on theory + sparse experimental data
- We want to use a deep neural network to model the turbulence transport

Deep Learning for Turbulence Modeling

Inputs: Tensors x, y

Output: Tensor b

- Would like to enforce Galilean invariance
 - Invariance to inertial coordinate frame transformations
 - Borrow some ideas from group theory, representation theory
 - All Galilean invariant tensors that are a function of x and y lie on a tensor basis: the integrity basis of x and y for the orthogonal group

$$\mathbf{b} = \sum_{n=1}^{10} g^{(n)}(\lambda_1, ..., \lambda_5) \mathbf{T}^{(n)}$$

Embedding Galilean Invariance

Generic MLP

Tensor Basis Neural Network

Deep Learning for Turbulence Modeling

- Deep neural networks implemented using the Lasagne library: built on Theano
- Bayesian optimization used to tune the network hyper-parameters
- Trained an ensemble of networks to provide regularization

Outline

- Machine learning for turbulence model form uncertainty quantification
 - Achieved 3X more accurate error detection than previous state of the art
- 2) Rule extraction to gain physical intuition
 - Used rule extraction to understand how the complex machine learning algorithm was making its predictions
 - Increases confidence in ML predictions
 - Provides feedback to turbulence modeler
- 3) Deep learning with embedded invariances
 - Embedded known invariance property into network architecture
 - Achieved significantly improved Reynolds stress anisotropy predictions
 - First application of deep learning to turbulence modeling

Big Picture

- Directly embedding scientific domain knowledge into machine learning models can give improved performance
- Rule extraction on machine learning models can give improved physical understanding

References

- **J. Ling**, A. Kurzawski, and J. Templeton, "Reynolds Averaged Turbulence Modeling using Deep Neural Networks with Embedded Invariance," Journal of Fluid Mechanics, (2016).
- **J. Ling** and J. Templeton, "Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty," Physics of Fluids, (2015).
- J. Ling, "Using Machine Learning to Understand and Mitigate Model Form Uncertainty in Turbulence Models," IEEE ICMLA, (2015).
- J. Ling, A. Ruiz, G. Lacaze, and J. Oefelein, "Uncertainty analysis and data-driven model advances for a Jet-in-Crossflow," Journal of Turbomachinery, (2016).
- J. Ling, R. Jones, and J. Templeton, "Machine Learning Strategies for Systems with Invariance Properties," J. Comp. Phys., (2016).
- J. Ling, F. Coletti, S. Yapa, J. Eaton, "Experimentally informed optimization of turbulent diffusivity for a discrete hole film cooling geometry," International Journal of Heat and Fluid Flow, (2013).

Questions

