Mes solutions aux Olympiades de Première

Pierre GALLOIS

April 24, 2023

Contents

1	Amiens 2017 - Exercice 4	5
2	Lyon 2017 - Exercice 2	7
3	Normandie (Caen-Rouen) 2017 - Exercice 1	11

CONTENTS 4

Exercice 1

$\begin{array}{c} Le\ fonctionnement\ d'un\\ ordinateur \end{array}$

Amiens 2017 - Exercice 4

1.

Action	P_1	P_2	Résultat
Situation initiale	[a,b,c]	[d, e]	Aucun
Lire P_1	[a,b,c]	[d, e]	c
Transfert de P_1 vers P_2	[a,b]	[d, e, c]	Aucun
Dépiler P_1	[a]	[d, e, c]	Aucun
Empiler la donnée " f " sur P_1	[a,f]	[d, e, c]	Aucun
Transfert de P_2 vers P_1	[a, f, c]	[d, e]	Aucun
Lire P_2	[a, f, c]	[d, e]	e

2. Soit $P_1 = [a, b, c]$

On ne peut pas lire b sans recourir à une autre pile ni perdre des données : Il faut d'abord enlever c soit avec "Transfert de P_1 vers P_2 " soit avec "Dépiler P_1 " avant de "Lire P_1 ", ce qui est à l'encontre des conditions.

3. Dans ce cas, on peut commencer par faire "Transfert de P_1 vers P_2 ", ce qui donne¹:

$$P_1 = [a, b]$$

$$P_2 = [c]$$

On peut alors "Lire P_1 ", ce qui donne b.

4. Soient
$$P_1 = [a, b], P_2 = [], P_3 = []$$

 $^{^{1}}$ Si P_{2} est vide

Action	P_1	P_2	P_3
Situation initiale	[a,b]	[]	[]
Transfert de P_1 vers P_3	[a]	[]	[b]
Transfert de P_1 vers P_2	[]	[a]	[b]
Transfert de P_3 vers P_1	[b]	[a]	
Transfert de P_2 vers P_1	[b,a]	[]	

4.

Action	P_1	P_2	P_3
Situation initiale	[a, b, c]	[]	
Transfert de P_1 vers P_3	[a,b]	[]	[c]
Transfert de P_1 vers P_2	[a]	[b]	[c]
Transfert de P_1 vers P_2	[]	[b,a]	[c]
Transfert de P_3 vers P_1	[c]	[b,a]	
Transfert de P_2 vers P_3	[c]	[b]	[a]
Transfert de P_2 vers P_1	[c,b]	[]	[a]
Transfert de P_3 vers P_1	[c, b, a]		

Exercice 2

$Palindromes\ binaires$

Lyon 2017 - Exercice 2

Partie 1

1.

$$135 = 128 + 4 + 2 + 1$$
$$= 27 + 22 + 21 + 20$$
$$= (10000111)2$$

Le nombre 135 se note donc 10000111 dans le système binaire.

2.

$$(101011)_2 = 2^5 + 2^3 + 2^1 + 2^0$$

= $32 + 8 + 2 + 1$
= 43

Donc 101011 en binaire est 43 en décimal.

3.a) Cas N = 6:

Le reste de la division euclidienne de N par 2^1 est 0. 0 est donc affiché. Ensuite, on affecte à N $6 \div 2 = 3^2$. On affiche $3 \mod 2 = 1$ et on affecte à N $3 \div 2 = 1$, puis on affiche $1 \mod 2 = 0$ et on affecte à N $1 \div 2 = 0$. Comme N = 0. Le programme s'arrête.

Les nombres affichés sont donc 0, 1, 1.

Cas
$$N = 53$$
:

Les nombres affichés sont 1, 0, 1, 0, 1, 1

b) On sait que $6 = (110)_2$ et $53 = (110101)_2$. On en conclut que le programme affiche les chiffre de N converti en binaire à l'envers.

 $^{^{1}}$ noté par la suite $N \mod 2$

²Le quotient de la division euclidienne de 6 par 2

4. On note n le nombre de chiffres dans un nombre et p la place d'un chiffre dans un nombre. On a : TODO : Preuve

$$2^n = (\sum_{p=1}^n 2^{n-p}) + 1$$

Or,

$$\underbrace{(111\dots 1)_2}_{n \text{ fois}} = 2^{n-1} + 2^{n-2} \dots 2^{n-n}$$
$$= \sum_{p=1}^{n} 2^{n-p}$$

On a donc bien
$$\underbrace{(111\dots 1)_2}_{n \text{ fois}} = 2^n - 1.$$

5. On a autant de couleurs possibles sur 24 bits que de nombre que l'on peut créer avec ces 24 bits. Or, on a $2^{24} = 16\,777\,216$ combinaisons différentes. On peut donc créer $16\,777\,216$ couleurs différentes avec ce système.

Partie 2

1. Les années palindromes binaires entre 1 et 129 sont :

```
1 = (1)_2
  3 = (11)_2
  5 = (101)_2
  7 = (111)_2
  9 = (1001)_2
 15 = (1111)_2
 17 = (10001)_2
 21 = (10101)_2
 27 = (11011)_2
 31 = (111111)_2
 33 = (100001)_2
 45 = (101101)_2
 51 = (110011)_2
 63 = (1111111)_2
 65 = (1000001)_2
 73 = (1001001)_2
 85 = (1010101)_2
 93 = (1011101)_2
 99 = (1100011)_2
107 = (1101011)_2
119 = (1110111)_2
127 = (11111111)_2
129 = (10000001)_2
```

- **2.** $2017 = (11111100001)_2$. Ce nombre n'est donc un palindrome binaire, car retourné il vaut 7231
- 4. On utilise les résultats du 1.
 - Palindromes à 3 chiffres : 2 (101, 111)
 - Palindromes à 4 chiffres : 2 (1001, 1111)
 - Palindromes à 5 chiffres : 4 (10001, 10101, 11011, 11111)
 - Palindromes à 6 chiffres : 4 (100001, 101101, 110011, 111111)

 \bullet Palindromes à 7 chiffres : 8 (1000001, 1001001, 1010101, 1011101, 1100011, 1101011, 1110111, 1111111)

5. a)

TODO: Finir l'exo

Exercice 3

$La\ constante\ de\ Pythagore$ Normandie (Caen-Rouen) 2017 - Exercice 1

Partie A

On note L la longueur et l la largeur.

1. D'après l'énoncé, un rectangle diagonal est tel que :

$$\frac{L}{l} = \frac{l}{\frac{L}{2}}$$

On peut donc dire que:

$$\frac{L}{l} = \frac{l \cdot 2}{L}$$

$$\frac{L^2}{l} = 2l$$

$$L^2 = 2l^2$$

$$\frac{L^2}{l^2} = 2$$

$$\frac{L}{l} = \sqrt{2}$$

2. On note A(n) l'aire d'une feuille A_n , ainsi que L_n et l_n les longueurs et largeurs d'une feuille A_n . On a:

$$A(n) = L_n \cdot l_n$$

On sait que A(0) = 1. Trouvons L_0 et l_0 :

$$L_0 \cdot l_0 = 1$$

$$L_0 = \frac{1}{l_0} \tag{3.1}$$

$$L_{0}^{2} = \frac{L_{0}}{l_{0}}$$

$$L_{0}^{2} = \sqrt{2}$$

$$L_{0}^{2} = \sqrt{2}$$

$$l_{0} = \frac{1}{l_{0}^{2}}$$

$$l_{0} = \frac{1}{\sqrt{\sqrt{2}}}$$

$$l_{0} = \frac{\sqrt{\sqrt{2}}}{\sqrt{2}}$$

$$l_{0} = \frac{\sqrt{2} \cdot \sqrt{\sqrt{2}}}{\sqrt{2} \cdot \sqrt{2}}$$

$$l_{0} = \frac{\sqrt{2\sqrt{2}}}{2}$$

Partie B

1. Cas pair au carré:

Si la division en facteurs premiers d'un nombre contient 2, alors son carré contient aussi 2. Ce carré est donc pair.

Cas impair au carré:

Cette fois, la division en facteurs premiers ne contient pas de 2. Le carré n'en contient pas non plus, le carré est donc impair.

2. Supposons qu'il existe a et b tels que $\frac{a}{b} = \sqrt{2}$

a)

$$\frac{a^2}{b^2} = 2$$
$$a^2 = 2b^2$$

On sait que a^2 est divisible par deux car si a=2n, a est pair. Or la racine d'un nombre pair est paire. Donc $\sqrt{a^2}=a$ est pair.

b) Si un carré est pair, sa décomposition en facteurs premiers contient au moins deux 2. a^2 est pair, donc $\frac{a^2}{2}$ est aussi pair. Or, $\frac{a^2}{2} = b^2$. b^2 est pair, donc b est pair.

 $\mathbf{c})$

Définition. Un nombre rationnel peut être écrit sous la forme d'une fraction irréductible $\frac{p}{q}$ avec p et q des entiers relatifs.

On sait que a et b sont pairs, ce qui signifie qu'ils sont tous deux divisibles par 2. La définition dit que $\frac{a}{b}$ doit être irréductible, mais ici $\frac{a}{b}$ est réductible par 2. On en conclut que $\sqrt{2}$ n'est par un nombre rationnel.

3. Le nombre $\frac{22619537}{15994428}$ est rationnel, mais $\sqrt{2}$ n'est pas rationnel. On peut donc dire $\sqrt{2} \neq \frac{22619537}{15994428}$