Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 17

1. Пусть
$$z = \frac{3\sqrt{3}}{2} + \frac{3i}{2}$$
. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{2 - 2\sqrt{3}i}$ имеет аргумент $\frac{17\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(10-10i) + y(6+7i) = 32 - 186i \\ x(-5+6i) + y(11+12i) = 140 + 199i \end{cases}$$

- 3. Найти корни многочлена $-2x^6-20x^5-68x^4-20x^3+1022x^2+5440x+9248$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-4+i, x_2=-1+4i, x_3=-4$.
- 4. Даны 3 комплексных числа: 14-4i, 5-23i, 20+8i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{1}{2} + \frac{\sqrt{3}i}{2}, z_2 = -1$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4+2i| < 2\\ |arg(z-6+6i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-9, 1, 0), b = (5, 1, 4), c = (3, 0, 1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-5, -4, 1) и плоскость P: -8x 28y 26z + 636 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-7,2,1), $M_1(1,-2,-3)$, $M_2(10,1,-3)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -22x + 4y + 6z + 214 = 0 \\ -7x - 15y + 13z - 335 = 0 \end{cases} \qquad L_2: \begin{cases} -15x + 19y - 7z - 1991 = 0 \\ -9x - 16y - 16z + 92 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .