Chapter 3 Point Estimation

STAT2602A Probability and statistics II (2024-2025 1st Semester)

Contents

Introduction

3.1 Maximum likelihood estimation

Definition

Bernoulli Distribution

Uniform Distribution

Normal Distribution

3.2 Method of moments estimator

Definition

Normal Distribution

Gamma Distribution

3.3 Estimator Properties

Definition

Unbiasedness

Efficiency

UMVUE: Complete and sufficient statistic method

UMVUE: CRLB metod

Consistency

Introduction

A random variable X from a random experiment is assumed to have a distribution with the p.d.f $f(x; \theta)$, where $\theta \in \mathbb{R}^s$ is a unknown parameter taking a value in the parameter space Ω .

Aim: To estimate the unknown parameter $\boldsymbol{\theta}$ based on a random sample \boldsymbol{X} .

(Example 3.1)

Bernoulli Distribution

Suppose X follows a Bernoulli distribution, the p.d.f. of X is

$$f(x; p) = p^{x}(1-p)^{1-x}, x = 0, 1.$$

The unknown parameter $p \in \Omega$ with $\Omega = \{p : p \in (0,1)\}$. A random sample $\mathbf{X} = \{X_1, \dots, X_n\}$ with the observed values $\mathbf{x} = \{x_1, \dots, x_n\}$.

The probability that $\boldsymbol{X} = \boldsymbol{x}$: $L(x_1, \dots, x_n; p) = P(X_1 = x_1, \dots, X_n = x_n)$ $= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$. (Joint p.d.f. of X_1, X_2, \dots, X_n evaluated at the observed values.)

Aim: find the value of p that maximizes the joint p.d.f., i.e.,

$$p_* = \operatorname{argmax}_{p \in \Omega} L(x_1, \dots, x_n; p)$$

Bernoulli Distribution

$$p_* = \operatorname{argmax}_{p \in \Omega} L(x_1, \dots, x_n; p)$$

 p_* most likely has produced the observed values x_1, \ldots, x_n .

 p_* is called the maximum likelihood estimate.

$$\ell(p) = \log L(p) = \log p \cdot \sum_{i=1}^{n} x_i + \log(1-p) \cdot \sum_{i=1}^{n} (1-x_i)$$

$$\frac{d\ell(p)}{dp} = \frac{1}{p} \sum_{i=1}^{n} x_i - \frac{1}{1-p} \left(n - \sum_{i=1}^{n} x_i \right)$$

$$= \frac{(1-p) \sum_{i=1}^{n} x_i - np + p \sum_{i=1}^{n} x_i}{p(1-p)}$$

$$= \frac{n(\overline{x} - p)}{p(1-p)}$$

 $\ell(p)$ attains its maximum at $p_* = \overline{x}$

(Def 3.1, 3.2)

Likelihood Function

Let \boldsymbol{X} be a random sample with a joint p.d.f. $f(x_1,\ldots,x_n;\theta)$, where the parameter θ is within a certain parameter space Ω . Then the likelihood function of this random sample is defined as $L(\theta) = \boldsymbol{f}(\boldsymbol{X}; \theta) = \boldsymbol{f}(X_1, X_2, \cdots, X_n; \theta)$ for $\theta \in \Omega$.

Log Likelihood Function

$$\ell(\theta) = \log L(\theta)$$

Maximum Likelihood Estimator

MLE of
$$\theta$$
: $\hat{\theta} = \underset{\theta \in \Omega}{\operatorname{arg max}} L(\theta) = \underset{\theta \in \Omega}{\operatorname{arg max}} \ell(\theta)$

Maximum likelihood Estimate

The observed value of $\hat{\theta}$

(**Example 3.2**)

Bernoulli Distribution

Let X be an independent random sample from a Bernoulli distribution with parameter p with 0 . Find the MLE of <math>p. $f(x; p) = p^{x}(1-p)^{1-x}, \quad x = 0, 1 \text{ and } \Omega = \{p : p \in (0,1)\}.$

Likelihood function:

$$L(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i} = p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i}$$

Log-likelihood function:

$$\ell(p) = \log L(p) = \log p \cdot \sum_{i=1}^{n} X_i + \log(1-p) \cdot \sum_{i=1}^{n} (1-X_i)$$

 $\ell(p)$ attains its maximum at $p = \overline{X}$.

The maximum likelihood estimator of p is \overline{X} .

(Example 3.3)

Uniform Distribution

Let ${\pmb X}$ be an independent random sample from a uniformly distribution over $[0,\beta].$ Find the maximum likelihood estimator of $\beta.$

► The p.d.f. is

$$f(x;\beta) = \frac{1}{\beta}I(0 \le x \le \beta),$$

The likelihood function is

$$L(\beta) = \prod_{i=1}^n \frac{1}{\beta} \mathsf{I}(0 \le X_i \le \beta) = \frac{1}{\beta^n} \prod_{i=1}^n \mathsf{I}(0 \le X_i \le \beta).$$

(Example 3.3 con't)

Uniform Distribution

In order that $L(\beta)$ attains its maximum, β must satisfies

$$0 \le X_i \le \beta$$
, $i = 1, 2, ..., n$. Otherwise, $L(\beta) = 0$.

i.e.,

$$0 \leq X_{(1)} \leq \cdots \leq X_{(n)} \leq \beta,$$

Meanwhile, $\frac{1}{\beta^n}$ increases as β decreases.

$$\hat{\beta} = X_{(n)} = \max_{1 \le i \le n} X_i$$

(Example 3.4)

Normal Distribution

Let \boldsymbol{X} be an independent random sample from a normal distribution $N(\theta_1,\theta_2)$, where $(\theta_1,\theta_2)\in\Omega$ and $\Omega=\{(\theta_1,\theta_2):\theta_1\in\mathbb{R},\theta_2>0\}$. Find the maximum likelihood estimator of θ_1 and θ_2 .

 $\blacktriangleright \text{ Let } \boldsymbol{\theta} = (\theta_1, \theta_2).$

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\theta_2}} \exp\left[-\frac{(X_i - \theta_1)^2}{2\theta_2}\right]$$

$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta}) = -\frac{n}{2} \log(2\pi\theta_2) - \frac{\sum_{i=1}^{n} (X_i - \theta_1)^2}{2\theta_2}$$

(Example 3.4 con't)

Normal Distribution

Since $\hat{oldsymbol{ heta}} = ext{arg max}\,\ell(oldsymbol{ heta})$

$$0 = \frac{\partial \ell(\theta)}{\partial \theta_1} = \frac{1}{\theta_2} \sum_{i=1}^{n} (X_i - \theta_1),$$

$$0 = \frac{\partial \ell(\theta)}{\partial \theta_2} = -\frac{n}{2\theta_2} + \frac{1}{2\theta_2^2} \sum_{i=1}^n (X_i - \theta_1)^2$$

$$\hat{\theta}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $\hat{\theta}_2 = S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

(Example 3.4 con't)

Normal Distribution

Check: Second derivatives (< 0)

$$\hat{\theta}_1 = \overline{X}$$
 and $\hat{\theta}_2 = S^2$

(Def 3.1)

The r-th moment about the origin of X

$$\mu_r = \mathsf{E} \mathsf{X}^r$$

The r-th sample moment of a random sample X

is defined as

$$m_r = \frac{1}{n} \sum_{i=1}^n X_i^r, \quad r = 1, 2, \dots$$

 μ_r may contain information about the unknown parameter.

Motivation Example:

 $X \sim N(\mu, \sigma^2)$.

$$\mu_1 = EX = \mu, \ \mu_2 = E[X^2] = Var(X) + [E(X)]^2 = \sigma^2 + \mu^2$$

or

$$\mu = \mu_1, \ \sigma^2 = \mu_2 - \mu_1^2$$

The unknown parameter μ and σ^2 can be estimated if we find "good" estimators for μ_1 and μ_2 .

By WLLN,

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i \to_p E(X) = \mu_1, \ m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \to_p E(X^2) = \mu_2$$

So
$$\hat{\mu}=m_1$$
 and $\hat{\sigma}^2=m_2-m_1^2$.

Unknown parameter $oldsymbol{ heta} \in \mathbb{R}^s$ can be expressed by

$$\theta = h(\mu_1, \mu_2, \dots, \mu_k), h : \mathbb{R}^k \to \mathbb{R}^s$$

In the Motivation Example:

$$s = 2, \ k = 2, \ \theta = (\mu, \sigma^2), \ h = (h_1, h_2)$$

$$\mu_1 = h_1(\mu_1, \mu_2) = \mu_1, \ \sigma^2 = h_2(\mu_1, \mu_2) = \mu_2 - \mu_1^2$$

Method of Moments Estimator (MME)

$$\tilde{\boldsymbol{\theta}} = h(m_1, m_2, \cdots, m_k)$$

The observed value of $\tilde{\theta}$ is called the method of moments estimate.

(Example 3.4 con't)

Normal Distribution

$$\boldsymbol{X} \sim \mathsf{N}(\theta_1, \theta_2)$$

$$\mu=\mu_1 \quad \text{and} \quad \sigma^2=\mu_2-\mu_1^2$$

By the weak law of large numbers,

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i \to_p \mathsf{E}(X) = \mu_1 \ \text{ and } \ m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \to_p \mathsf{E}(X^2) = \mu_2$$

MME of μ : m_1

MME of σ^2 : $m_2 - m_1^2$

(Example 3.5)

Gamma Distribution

Let \boldsymbol{X} be an independent random sample from a Gamma distribution $Gamma(\alpha,\lambda)$, where $(\alpha,\lambda)\in\Omega$ and $\Omega=\{(\alpha,\lambda):\alpha>0,\lambda>0\}$. Find the MME of α and λ .

$$f(x) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}, & \text{for } x > 0; \\ 0, & \text{otherwise.} \end{cases}$$

$$\mu_1 = \frac{\alpha}{\lambda}$$
 and $\mu_2 = \frac{\alpha^2 + \alpha}{\lambda^2}$

(Example 3.5 con't)

Gamma Distribution

$$\alpha = \lambda \mu_1 = \frac{(\mu_1)^2}{\mu_2 - (\mu_1)^2}$$
 and $\lambda = \frac{\mu_1}{\mu_2 - \mu_1^2}$

One MME of (α, λ) is $(\tilde{\alpha}, \tilde{\lambda})$, where

$$\tilde{\alpha} = \frac{m_1^2}{m_2 - m_1^2} = \frac{\overline{X}^2}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2}$$
 and $\tilde{\lambda} = \frac{m_1}{m_2 - m_1^2} = \frac{\overline{X}}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2}$

Note: The way to construct h is not unique. Usually, we use the lowest possible order moments to construct h, although this may not be the optimal way.

3.3 Estimator Properties

Criteria of goodness to compare different estimators:

- Unbiasedness
- Efficiency
- Consistency

(Def 3.4, 3.5) Suppose that $\hat{\theta}$ is an estimator of θ .

Unbiased estimator

The bias of an estimator $\hat{\theta}$ is defined as

$$\operatorname{Bias}(\hat{\theta}) = \operatorname{E}(\hat{\theta}) - \theta.$$

If $\operatorname{Bias}(\hat{\theta}) = 0$, $\hat{\theta}$ is called an unbiased estimator of θ . Otherwise,

it is said to be biased.

Asymptotically unbiased estimator

 $\hat{\theta}$ is an asymptotically unbiased estimator if

$$\lim_{n\to\infty} \operatorname{Bias}(\hat{\theta}) = \lim_{n\to\infty} [\operatorname{E}(\hat{\theta}) - \theta] = 0,$$

where n is the sample size.

(Example 3.3 con't)

Uniform Distribution

- (i)Show that $\hat{\beta} = X_{(n)}$ is an asymptotically unbiased estimator of β .
 - For $0 \le y \le \beta$,

$$P(Y \le y) = \prod_{i=1}^{n} P(X_i \le y) = \left(\frac{y}{\beta}\right)^{n}.$$

By Property 1.10,

$$E(Y) = \int_0^\infty P(Y > y) dy = \int_0^\beta \left[1 - \left(\frac{y}{\beta} \right)^n \right] dy = \beta - \frac{\beta^{n+1}}{(n+1)\beta^n}$$
$$= \frac{n\beta}{n+1} \to \beta \text{ as } n \to \infty$$

(Example 3.3 con't)

Uniform Distribution

$$\hat{\beta} = X_{(n)}$$

(ii) Modify this estimator of β to make it unbiased.

From (i),
$$E(Y) = \frac{n\beta}{n+1}$$

$$\mathrm{E}\left(\frac{n+1}{n}Y\right) = \beta$$

$$\frac{n+1}{n}Y$$
 is an unbiased estimator of β

(Example 3.4 con't)

Normal Distribution

$$X_i \sim N(\theta_1, \theta_2)$$

$$\hat{\theta}_1 = \overline{X}$$
 and $\hat{\theta}_2 = S^2$

Show that \overline{X} is an unbiased estimator of θ_1 , and S^2 is an asymptotically unbiased estimator of θ_2 .

$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} \theta_1 = \theta_1$$
$$E(S^2) = E\left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2\right]$$

For each *i*, we have

$$\begin{split} \mathrm{E}\left[(X_i - \overline{X})^2\right] &= \mathrm{E}\left[(X_1 - \overline{X})^2\right] = \mathrm{Var}(X_1 - \overline{X}) \\ &= \mathrm{Var}(X_1 - \frac{X_1 + X_2 \cdots + X_n}{n}) \\ &= \mathrm{Var}(\frac{n-1}{n}X_1 - \sum_{i=2}^n \frac{X_i}{n}) \\ &= \frac{(n-1)^2}{n^2}\theta_2 + \frac{(n-1)}{n^2}\theta_2 = \frac{n-1}{n}\theta_2 \end{split}$$

So

$$E(S^2) = E(S^2) = E\left[\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2\right] = \frac{n-1}{n}\theta_2$$
$$\lim_{n \to \infty} E(S^2) = \theta_2$$

(Def 3.6)

Mean squared error

Suppose that $\hat{\theta}$ is an estimator of $\theta.$ The mean squared error of $\hat{\theta}$ is

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right].$$

Use MSE to compare the goodness of two **unbiased** estimators

(Property 3.1)

If $Var(\hat{\theta})$ exists, then the mean squared error of $\hat{\theta}$ is

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{Var}(\hat{\theta}) + \left[\mathsf{Bias}(\hat{\theta})\right]^2.$$

(Remark 3.1)

$$\lim_{n\to\infty}\mathsf{MSE}(\hat{\theta})=0\Longleftrightarrow\lim_{n\to\infty}\mathrm{Var}(\hat{\theta})=0\text{ and }\lim_{n\to\infty}\mathrm{Bias}(\hat{\theta})=0$$

For the unbiased estimators,

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{Var}(\hat{\theta})$$

(Def 3.7)

Suppose that $\hat{\theta}$ and $\tilde{\theta}$ are two unbiased estimators of θ . The efficiency of $\hat{\theta}$ relative to $\tilde{\theta}$ is defined by

$$\mathsf{Eff}(\hat{\theta}, \tilde{\theta}) = \frac{\mathsf{Var}(\tilde{\theta})}{\mathsf{Var}(\hat{\theta})}.$$

If Eff $(\hat{\theta}, \tilde{\theta}) > 1$, then we say that $\hat{\theta}$ is relatively more efficient than $\tilde{\theta}$.

(Example 3.6)

Relationship between sample size and efficiency

Let $(X_n : n \ge 1)$ be a sequence of independent random variables having the same finite mean and variance,

$$\mu = \mathsf{E}(X_1)$$
 and $\sigma^2 = \mathsf{Var}(X_1)$

Then \overline{X} is an unbiased estimator of μ , and $Var(\overline{X}) = \frac{\sigma^2}{n}$. Suppose that we now take two samples one of size n_1 and one of size n_2 , and denote the sample means as $\overline{X}^{(1)}$ and $\overline{X}^{(2)}$.

$$\mathsf{Eff}(\overline{X}^{(1)}, \overline{X}^{(2)}) = \frac{\mathrm{Var}(\overline{X}^{(2)})}{\mathrm{Var}(\overline{X}^{(1)})} = \frac{n_1}{n_2}$$

Therefore, the larger is the sample size, the more efficient is the sample mean for estimating μ .

(Example 3.3 con't)

Uniform Distribution

Note that $\frac{n+1}{n}X_{(n)}$ is an unbiased estimator of β

Show that

- (i) $2\overline{X}$ is also an unbiased estimator of β .
 - ightharpoonup $\mathrm{E}(\overline{X})=\beta/2$

$$\mathrm{E}(2\overline{X})=\beta$$

(Example 3.3 con't)

Uniform Distribution

- (ii) Compare the efficiency of these two estimators of β
 - ▶ Variance of the estimator $X_{(n)}$

Let
$$Y = X_{(n)}$$

For $0 \le y \le \beta$, $P(Y \le y) = \prod_{i=1}^{n} P(X_i \le y) = \left(\frac{y}{\beta}\right)^n$
 $\operatorname{Var}\left(\frac{n+1}{n}Y\right) = \operatorname{E}\left[\left(\frac{n+1}{n}Y\right)^2\right] - \left[\operatorname{E}\left(\frac{n+1}{n}Y\right)\right]^2$

We have obtained that $E(Y) = \frac{n\beta}{n+1}$ (Example 3.3)

Next step is to calculate $E(Y^2)$.

To calculate
$$E(Y^2)$$
, let $Z = Y^2$
 $P(Z \le z) = P(Y \le \sqrt{z}) = \left(\frac{\sqrt{z}}{\beta}\right)^n$ for $0 \le z \le \beta^2$

$$E(Z) = \int_0^{\beta^2} 1 - \left(\frac{\sqrt{z}}{\beta}\right)^n dz$$

$$= 2 \int_0^{\beta} t \left(1 - \frac{t^n}{\beta^n}\right) dt \quad (\text{ by setting } t = \sqrt{z})$$

$$= 2 \left[\frac{t^2}{2} - \frac{t^{n+2}}{(n+2)\beta^n}\right] \Big|_0^{\beta} = 2 \left[\frac{\beta^2}{2} - \frac{\beta^{n+2}}{(n+2)\beta^n}\right]$$

$$= \frac{n}{n+2}\beta^2$$

Hence,
$$\operatorname{Var}\left(\frac{n+1}{n}Y\right) = \frac{\beta^2}{n(n+2)}$$

(Example 3.3 con't)

Uniform Distribution

- (ii) Compare the efficiency of these two estimators of β
 - ▶ Variance of the estimator $2\overline{X}$

$$\operatorname{Var}(2\overline{X}) = 4\operatorname{Var}(\overline{X}) = 4 \cdot \frac{\beta^2}{12n} = \frac{\beta^2}{3n}$$

Compare the efficiency

$$\mathsf{Eff}\left(\frac{n+1}{n}Y, 2\overline{X}\right) = \frac{\mathrm{Var}(2\overline{X})}{\mathrm{Var}\left(\frac{n+1}{n}Y\right)} = \frac{n+2}{3}$$

For n=1, $\frac{n+1}{n}Y$ and $2\overline{X}$ has the same efficiency. For n>1, $\frac{n+1}{n}Y$ is more efficient than $2\overline{X}$.

▶ Question 1

For a given unbiased estimator $\tilde{\theta}$, could we find another unbiased estimator $\tilde{\theta}_*$, which has a <u>smaller variance</u> than $\tilde{\theta}$?

Question 2

Among all unbiased estimators, could we find the uniformly minimum variance unbiased estimator (UMVUE)

$$\mathsf{UMVUE} = \underset{\tilde{\theta} \text{ is unbiased}}{\mathsf{arg \, min}} \; \mathsf{Var}(\tilde{\theta}).$$

(Def 3.8)

Sufficient Statistic / Factorization Theorem

Suppose that the random sample X has a joint p.d.f.

 $f(x_1,\ldots,x_n;\boldsymbol{\theta})$, where $\boldsymbol{\theta}$ is the unknown parameter. The statistic $T:=T(\boldsymbol{X})$ is sufficient for $\boldsymbol{\theta}$ if and only if

$$f(x_1,\dots,x_n;\boldsymbol{\theta})=g(T(x_1,\dots,x_n);\boldsymbol{\theta})h(x_1,\dots,x_n),$$

where g depends on x_1, \dots, x_n only through $T(x_1, \dots, x_n)$, and h does not depend on θ .

Sufficient statistic is not unique

$$T = T(\mathbf{X})$$
 is a sufficent statistic for θ
 $\iff v(T) = v(T(\mathbf{X}))$ is also a sufficient statistic for θ ,

where $v(\cdot)$ is an **invertible** function.

Example: If T is a sufficient statistic for θ , then T^3 is also a sufficient statistic for θ .

While, T^2 is NOT a sufficient statistic for θ .

(Example 3.7)

Uniform Distribution

Suppose that X is an independent random sample from a uniform distribution $U(\alpha, \beta)$. Find a sufficient statistic for (α, β) .

Let
$$\theta = (\alpha, \beta)$$

The joint p.d.f. of \boldsymbol{X} is

$$f(x_1, \dots, x_n; \theta)$$

$$= \prod_{i=1}^n \left(\frac{1}{\beta - \alpha}\right) I(\alpha \le x_i \le \beta)$$

$$= \left(\frac{1}{\beta - \alpha}\right)^n I(\alpha \le \min_{1 \le i \le n} X_i) I(\max_{1 \le i \le n} X_i \le \beta)$$

$$\left(\min_{1\leq i\leq n}X_i,\max_{1\leq i\leq n}X_i\right) \text{ is a sufficient statistic for } (\alpha,\beta).$$

(Example 3.8)

Normal Distribution

Suppose that \boldsymbol{X} is an independent random sample from a normal distribution $N(\mu, \sigma^2)$. Find a sufficient statistic for (μ, σ^2) .

► Method 1

Let
$$\theta = (\mu, \sigma^2)$$

The joint p.d.f. of \boldsymbol{X} is

$$f(x_1, \dots, x_n; \theta)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{n}{2\sigma^2}s^2\right) \exp\left(-\frac{n}{2\sigma^2}(\mu - \overline{x})^2\right).$$

 (\overline{X},S^2) is a sufficient statistic for (μ,σ^2)

(Property 3.2)

Sufficient Statistics for Exponential family

Let **X** be an i.i.d. random sample from a p.d.f. having the form

$$f(x; \theta) = h(x)c(\theta) \exp\left(\sum_{i=1}^{s} p_i(\theta)t_i(x)\right)$$
 (expontial family),

where
$$\boldsymbol{\theta} = (\theta_1, \theta_2, \cdots, \theta_s) \in \Theta \subset \mathbb{R}^s$$
.

Then,

$$\mathcal{T}(\boldsymbol{X}) = \left(\sum_{j=1}^n t_1(X_j), \sum_{j=1}^n t_2(X_j), \cdots, \sum_{j=1}^n t_s(X_j)\right)$$

is a sufficient statistic for θ .

(Remark 3.3)

Exponential Family

includes many of the most common distributions, eg

Normal; Exponential; Gamma; Chi Squared; Beta; Bernoulli; Poisson; Geometric; ...

(Example 3.8 con't)

Normal Distribution

Find a sufficient statistic for (μ, σ^2)

Method 2

Let
$$\theta = (\mu, \sigma^2)$$

$$f(x; \theta)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2 + \mu^2 - 2\mu x}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{n\mu}{\sigma^2} \frac{x}{n} - \frac{n}{2\sigma^2} \frac{x^2}{n}\right)$$

 $(\overline{X}, \overline{X^2})$ is ALSO a sufficient statistic for (μ, σ^2)

Note that both (\overline{X},S^2) and $(\overline{X},\overline{X^2})$ are sufficient statistics for θ , and

$$v(\overline{X},\overline{X^2})=(\overline{X},S^2)$$

where $(z_1, z_2) \rightarrow_{v} (z_1, z_2 - z_1^2)$ is invetible.

Fact:
$$S^2 = \overline{X^2} - (\overline{X})^2$$

▶ Question 1

For a given unbiased estimator $\tilde{\theta}$, could we find another unbiased estimator $\tilde{\theta}_*$, which has a <u>smaller variance</u> than $\tilde{\theta}$?

(Theorem 3.1)

Rao-Blackwell Theorem

Let $\tilde{\theta}$ be an unbiased estimator of θ with $\mathsf{E}(\tilde{\theta}^2) < \infty$,

and T := T(X) be a sufficient statistic for θ .

Let $w(t) = \mathsf{E}(\tilde{\theta}|T=t)$. Then, $\tilde{\theta}_* = w(T)$ is an unbiased estimator of θ and $\mathsf{Var}(\tilde{\theta}_*) \leq \mathsf{Var}(\tilde{\theta})$.

Answer 1

By using the sufficient statistic T, we can always get a better unbiased estimator (in terms of efficiency) from an initial unbiased estimator.

From Rao-Blackwell Theorem,

the UMVUE is a function of the sufficient statistic T.

(Property 3.3)

If $\hat{\theta}$ is the UMVUE of θ , then $\hat{\theta}$ is unique.

Next step: How to find the UMVUE?

- ▶ Two approaches:
 - 1. Complete and sufficient statistic method
 - 2. CRLR method

(Def 3.9)

Complete Statistic

For a given random sample \boldsymbol{X} , $T:=T(\boldsymbol{X})$ is a complete statistic of θ if

$$E[z(T)] = 0$$
 for all θ implies $P(z(T) = 0) = 1$ for all θ .

(Property 3.4)

Complete statistic for exponential family

Let X be an i.i.d. random sample from a p.d.f. having the form

$$f(x; \theta) = h(x)c(\theta) \exp\left(\sum_{i=1}^{s} p_i(\theta)t_i(x)\right)$$
 (expontial family),

where $m{ heta}=(heta_1, heta_2,\cdots, heta_s)\in\Theta\subset\mathbb{R}^s.$ Then,

$$\mathcal{T}(\boldsymbol{X}) = \left(\sum_{j=1}^n t_1(X_j), \sum_{j=1}^n t_2(X_j), \cdots, \sum_{j=1}^n t_s(X_j)\right)$$

is a complete statistic for θ as long as the parameter Θ contains an open set in \mathbb{R}^s .

(Property 3.4)

From Properties 3.2 and 3.4,

if X is from an exponential family and the related parameter Θ contains an open set in \mathbb{R}^s , then

$$\mathcal{T}(\boldsymbol{X}) = \left(\sum_{j=1}^n t_1(X_j), \sum_{j=1}^n t_2(X_j), \cdots, \sum_{j=1}^n t_s(X_j)\right)$$

is a complete and sufficient statistic for $\boldsymbol{\theta}$

(Example 3.8 con't)

 $(\overline{X}, \overline{X^2})$ is also a complete statistic for θ .

(Theorem 3.2)

Let T := T(X) be a complete and sufficient statistic for θ ,

and $\phi(T)$ be any estimator based only on T.

Then, $\phi(T)$ is the unique UMVUE of its expected value $E[\phi(T)]$.

- ► First approach to find the UMVUE
- 1. Find a complete and sufficient statistic T for θ
- 2. Find a functional $\phi_0(\cdot)$ such that $\mathsf{E}[\phi_0(T)] = \theta$

(Example 3.8 con't)

Normal Distribution

 $\boldsymbol{X} \sim N(\mu, \sigma^2)$

▶ Find the UMVUE of $\theta = (\mu, \sigma^2)$

 $(\overline{X},\overline{X^2})$ is a complete and sufficient statistic for θ

$$\mathsf{E}(\overline{X}) = \mu, \ \ \mathsf{E}\left(\frac{n}{n-1}S^2\right) = \sigma^2$$

 \overline{X} is the UMVUE of μ , $\frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2$ is the UMVUE of σ^2 .

(**Example 3.9**)

Poisson Distribution

Let \boldsymbol{X} be i.i.d. random sample from Poisson distribution with parameter λ . Find the UMVUE of λ .

$$f(x;\theta) = \frac{e^{-\lambda}\lambda^{x}}{x!} = \frac{e^{-\lambda}}{x!}e^{\log(\lambda^{x})} = \frac{e^{-\lambda}}{x!}e^{x\log(\lambda)} = \frac{e^{-\lambda}}{x!}e^{\frac{x}{n}n\log(\lambda)}$$

 $T(X) = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for λ .

$$E(\overline{X}) = \lambda$$

Therefore, \overline{X} is the UMVUE of λ

- Second approach to find the UMVUE
- 1. Find the lower bound of $Var(\tilde{\theta})$ for all unbiased estimators;
- 2. Find an unbiased estimator $\hat{\theta}$ whose variance achieves this lower bound.

Note: Sufficient but not necessary condition for the UMVUE

(Def 3.10) To consider the lower bound of $Var(\tilde{\theta})$, we introduce

Fisher information about θ

$$I_n(\theta) = \mathrm{E}\left[\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)^2\right]$$

where $\ell(\theta) = \log L(\theta)$ is the log-likelihood function of the random sample.

(Theorem 3.3)

1. $I_n(\theta) = nI(\theta)$, where

$$I(\theta) = \mathrm{E}\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2\right],$$

and X has the same distribution as the population

2.
$$I(\theta) = -E\left[\frac{\partial^2 \log f(X; \theta)}{\partial \theta^2}\right];$$

3. Cramer-Rao inequality:

$$\operatorname{Var}(\hat{\theta}) \geq \frac{1}{I_n(\theta)},$$

where $\hat{\theta}$ is an unbiased estimator of $\theta,$ and $\frac{1}{I_n(\theta)}$ is called the

(Corollary 3.1)

If $\hat{\theta}$ is an unbiased estimator of θ and $Var(\hat{\theta}) = \frac{1}{I_n(\theta)}$, then $\hat{\theta}$ is the UMVUE of θ .

(Example 3.10)

Normal Distribution

 $\boldsymbol{X} \sim N(\mu, \sigma^2)$

▶ Find the UMVUE of $\theta = (\mu, \sigma^2)$

For
$$-\infty < x < \infty$$
.

$$f(x; \mu) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right],$$

which implies that

$$\log f(x; \mu) = -\log(\sigma\sqrt{2\pi}) - \frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^{2},$$
and
$$\frac{\partial \log f(x; \mu)}{\partial \mu} = \frac{x - \mu}{\sigma^{2}}.$$

(Example 3.8 con't)

Normal Distribution

 $\boldsymbol{X} \sim \mathsf{N}(\theta_1, \theta_2)$

ightharpoonup Find the UMVUE of θ

$$I(\mu) = E\left[\left(\frac{\partial \log f(X;\mu)}{\partial \mu}\right)^{2}\right] = E\left[\frac{(X-\mu)^{2}}{\sigma^{4}}\right] = \frac{1}{\sigma^{2}}$$

$$CRLB = \frac{1}{I_{n}(\mu)} = \frac{1}{nI(\mu)} = \frac{\sigma^{2}}{n}.$$

Recall that
$$E(\overline{X}) = \mu$$
 and $Var(\overline{X}) = \frac{\sigma^2}{n}$.

Thus, \overline{X} is the UMVUE of μ .

(Example 3.10)

Bernoulli Distribution

▶ Show that \overline{X} is the UMVUE of the parameter θ of a Bernoulli population.

For x = 0 or 1,

$$f(x;\theta) = \theta^{x}(1-\theta)^{1-x},$$

which implies that

$$\frac{\partial \log f(x;\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} \left[x \log \theta + (1-x) \log(1-\theta) \right]$$
$$= \frac{x}{\theta} - \frac{1-x}{1-\theta}$$
$$= \frac{x}{\theta(1-\theta)} - \frac{1}{1-\theta}.$$

(Example 3.10)

Bernoulli Distribution

▶ Show that \overline{X} is the UMVUE of the parameter θ of a Bernoulli population.

Noting that

$$\mathrm{E}\left[\frac{X}{\theta(1- heta)}
ight] = rac{1}{1- heta},$$

we have

$$I(\theta) = \mathrm{E}\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2\right] = \mathrm{Var}\left[\frac{X}{\theta(1-\theta)}\right] = \frac{1}{\theta(1-\theta)}.$$

Hence,

$$CRLB = \frac{1}{I_n(\theta)} = \frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}.$$

Since $E(\overline{X}) = \theta$ and $Var(\overline{X}) = \frac{\theta(1-\theta)}{n}$, \overline{X} is the UMVUE of θ .

(Theorem 3.4)

Suppose that $\hat{\theta}$ is the MLE of a parameter θ of a population distribution. Then, under certain regular conditions, as $n \to \infty$,

$$\frac{\hat{\theta} - \theta}{\sqrt{1/I_n(\theta)}} \to_d \mathrm{N}(0,1).$$

If $\hat{\theta}$ is MLE of θ , the above theorem implies that $\mathrm{Var}(\hat{\theta}) \approx \frac{1}{I_n(\theta)}$ when n is large. That is, the MLE $\hat{\theta}$ can achieve the CRLB asymptotically.

(Def 3.11)

Consistent estimator

 $\hat{\theta}$ is a consistent estimator of θ , if

$$\hat{\theta} \rightarrow_{p} \theta$$
,

that is, for any $\epsilon > 0$,

$$P\left(|\hat{\theta} - \theta| > \epsilon\right) \to 0 \text{ as } n \to \infty.$$

Note: The unbiasedness alone does not imply the consistency. Example:

$$\hat{\theta} = I(0 < X_1 < 1/2) - I(1/2 < X_1 < 1), \ X \sim U(0, 1).$$

$$E(\hat{\theta}) = 0.$$

 $\hat{\theta}$ is an unbiased estimator of $\theta=0$. But as $\hat{\theta}$ takes value of either 1 or -1, $\hat{\theta}$ is not consistent.

(Property 3.5, 3.6)

If $\hat{\theta}$ is an (asymptotically) unbiased estimator of a parameter θ and

 $Var(\hat{\theta}) \to 0$ as $n \to \infty$, then $\hat{\theta}$ is a consistent estimator of θ .

(Property 3.7)

If $\hat{\theta} \rightarrow_{p} \theta$ and $\tilde{\theta} \rightarrow_{p} \theta'$, then

(i)
$$\hat{\theta} \pm \tilde{\theta} \rightarrow_{p} \theta \pm \theta'$$
;

(ii)
$$\hat{\theta} \cdot \tilde{\theta} \rightarrow_{p} \theta \cdot \theta'$$
;

(iii)
$$\hat{\theta}/\tilde{\theta} \rightarrow_{p} \theta/\theta'$$
 assuming that $\tilde{\theta} \neq 0$ and $\theta' \neq 0$;

(iv) if g is any real-valued function that is continuous at θ , $g(\hat{\theta}) \to_p g(\theta)$.

(Example 3.12)

Suppose that X is an independent random sample from a population with the finite mean $\mu = E(X_1)$, finite variance $\sigma^2 = Var(X_1)$, and finite fourth moment $\mu_4 = E(X_1^4)$.

- ▶ Show that \overline{X} is a consistent estimator of μ , and S^2 is a consistent estimator of σ^2 .
 - For μ :

$$\mathsf{E}(\overline{X}) = \mu \text{ and } \mathsf{Var}(\overline{X}) = rac{\sigma^2}{n} o 0 \text{ as } n o \infty$$

ightharpoonup For S^2 :

$$\overline{X^2} = \frac{1}{n} \sum_{i=1}^n X_i^2 \to_{\rho} \mu_2 = \mathsf{E}(X_1^2).$$
$$(\overline{X})^2 \to_{\rho} \mu^2.$$
$$S^2 \to_{\rho} \mu_2 - \mu^2 = \sigma^2$$

Comprehensive Question

(Example 3.13)

Let \boldsymbol{X} be an independent random sample from a population with a p.d.f.

$$f(x;\theta) = \frac{2x}{\theta^2} \mathsf{I}(0 < x \le \theta).$$

- (i) Find the UMVUE of θ ;
- (ii) Show that this UMVUE is a consistent estimator of θ ;
- (iii) Find the MLE of θ ;
- (iv) Find a MME of θ ;
- (v) Will the MLE be better than the MME in terms of efficiency?

(**Example** 3.13)

- Find the UMVUE of θ
 Complete and sufficient statistic
 - Sufficient statistic

$$f(x_1, x_2, \dots, x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$

$$= \prod_{i=1}^{n} \frac{2x_i}{\theta^2} I(0 < x_i < \theta)$$

$$= \left[\prod_{i=1}^{n} x_i I(x_i > 0) \right] \left[\left(\frac{2}{\theta^2} \right)^n I\left(\max_{1 \le i \le n} x_i \le \theta \right) \right]$$

By Def 3.8, $T := \max_{1 \le i \le n} X_i$ is a sufficient statistic for θ .

(**Example** 3.13)

- Find the UMVUE of θ
 Complete and sufficient statistic
 - Let $z(\cdot)$ be a functional such that E(z(T)) = 0 for all $\theta > 0$, i.e.,

$$0 = \mathsf{E}(z(T)) = \int_0^\theta z(t) \frac{2nt^{2n-1}}{\theta^{2n}} dt = \frac{2n}{\theta^{2n}} \int_0^\theta z(t) t^{2n-1} dt$$

for all $\theta > 0$.

$$\int_0^{\theta} z(t)t^{2n-1}dt = 0$$
 for all $\theta > 0$, which

implies that $z(\theta)\theta^{2n-1}=0$ and hence $z(\theta)=0$.

By Def 3.9, T is a complete statistic for θ

(**Example** 3.13)

ightharpoonup Find the UMVUE of θ

$$\mathsf{E}(T) \ = \ \int_0^\theta t \frac{2nt^{2n-1}}{\theta^{2n}} dt = \frac{2n}{\theta^{2n}} \int_0^\theta t^{2n} dt = \frac{2n}{2n+1} \theta,$$

By Theorem 3.2, $Y := \frac{2n+1}{2n}T$ is the UMVUE of θ .

(Example 3.13)

as $n \to \infty$.

 \blacktriangleright Show that this UMVUE is a consistent estimator of θ

$$\mathsf{E}(Y^2) = \frac{(2n+1)^2}{(2n)\theta^{2n}} \int_0^\theta t^{2n+1} dt = \frac{(2n+1)^2}{(2n)(2n+2)} \theta^2,$$

$$Var(Y) = E(Y^2) - [E(Y)]^2 = \frac{(2n+1)^2}{(2n)(2n+2)}\theta^2 - \theta^2 \to 0$$

By Property 3.5, Y is a consistent estimator of θ .

(**Example** 3.13)

 \blacktriangleright Find the MLE of θ

The MLE of θ is T.

(**Example** 3.13)

ightharpoonup Find a MME of θ

$$\mathsf{E}(X) = \int_0^\theta x \frac{2x}{\theta^2} dx = \frac{2}{3}\theta$$

Hence, $\frac{3}{2}\overline{X}$ is a MME of θ .