

US 20030224418A1

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0224418 A1

Braun et al. (43) Pub. Date

(43) Pub. Date: Dec. 4, 2003

(54) GENES AND POLYMORPHISMS
ASSOCIATED WITH CARDIOVASCULAR
DISEASE AND THEIR USE

(76) Inventors: Andreas Braun, San Diego, CA (US);
Patrick W. Kleyn, Concord, MA (US);
Aruna Bansal, Landbeach (GB)

Correspondence Address:

HELLER EHRMAN WHITE & MCAULIFFE LLP 4350 LA JOLLA VILLAGE DRIVE 7TH FLOOR SAN DIEGO, CA 92122-1246 (US)

(21) Appl. No.: 10/403,902

(22) Filed: Mar. 27, 2003

Related U.S. Application Data

(62) Division of application No. 09/802,640, filed on Mar. 9, 2001, now abandoned.

Publication Classification

(51)	Int. Cl. ⁷	
(52)	U.S. Cl.	

(57) ABSTRACT

Genes and polymorphisms associated with cardiovascular disease, methods that use the polymorphism to detect a predisposition to developing high cholesterol, low HDL or cardiovascular disease, to profile the response of subjects to therapeutic drugs and to develop therapeutic drugs are provided.

GENES AND POLYMORPHISMS ASSOCIATED WITH CARDIOVASCULAR DISEASE AND THEIR USE

RELATED APPLICATIONS

[0001] This application is a divisional application of copending U.S. patent application Ser. No. 09/802,640, filed Mar. 9, 2001, to Andreas Braun, Aruna Bansal and Patrick Kleyn, entitled "GENES AND POLYMORPHISMS ASSOCIATED WITH CARDIOVASCULAR DISEASE AND THEIR USE." The benefit of priority to this application is claimed and the subject matter of the application is incorporated herein in its entirety.

FIELD OF THE INVENTION

[0002] The field of the invention involves genes and polymorphisms of these genes that are associated with development of cardiovascular disease. Methods that use polymorphic markers for prognosticating, profiling drug response and drug discovery are provided.

BACKGROUND OF THE INVENTION

[0003] Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these "disease" markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to

[0004] Polymorphisms

[0005] Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et al. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (see, e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There may be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a disease. Polymorphisms of the genome can lead to altered gene function, protein function or mRNA instability. To identify hose polymorphisms that have clinical relevance is the goal of a world-wide scientific effort. Discovery of such polymorphisms will have a fundamental impact on the identification and development of diagnostics and drug discovery.

[0006] Single Nucleotide Polymorphisms (SNPs)

[0007] Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.

[0008] The organization of SNPs in the primary sequence of a gene into one of the limited number of combinations that exist as units of inheritance is termed a haplotype. Each haplotype therefore contains significantly more information than individual unorganized polymorphisms and provides an accurate measurement of the genomic variation in the two chromosomes of an individual. While it is well-established that many diseases are associated with specific variation in gene sequences and there are examples in which individual polymorphisms act as genetic markers for a particular phenotype, in other cases an individual polymorphism may be found in a variety of genomic backgrounds and therefore shows no definitive coupling between the polymorphism and the phenotype. In these instances, the observed haplotype and its frequency of occurrence in various genotypes will provide a better genetic marker for the phenotype.

[0009] Although risk factors for the development of cardiovascular disease are known, such as high serum cholesterol levels and low serum high density lipoprotein (HDL) levels, the genetic basis for the manifestation of these phenotypes remains unknown. An understanding of the genes that are responsible for controlling cholesterol and HDL levels, along with useful genetic markers and mutations in these genes that affect these phenotypes, will allow for detection of a predisposition for these risk factors and/or cardiovascular disease and the development of therapeutics to modulate such alterations. Therefore, it is an object herein to provide methods for using polymorphic markers to detect a predisposition to the manifestation of high serum cholesterol, low serum HDL and cardiovascular disease. The ultimate goals are the elucidation of pathological pathways, developing new diagnostic assays, determining genetic profiles for positive responses to the rapeutic drugs, identifying new potential drug targets and identifying new drug candidates.

SUMMARY OF THE INVENTION

[0010] A database of twins was screened for individuals which exhibit high or low levels of serum cholesterol or HDL. Using a full genome scanning approach, SNPs present in DNA samples from these individuals were examined for alleles that associate with either high levels of cholesterol or low levels of HDL. This lead to the discovery of the association of the cytochrome C oxidase subunit VIb (COX6B) gene and the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene with these risks factors for

developing cardiovascular disease. Specifically, a previously undetermined association of an allelic variant at nucleotide 86 of the COX6B gene and high serum cholesterol levels has been discovered. In addition, it has been discovered that an allelic variant at nucleotide 2577 of the GPI-1 gene is associated with low serum HDL levels. There was no previously known association between these two genes and risk factors related to cardiovascular disease.

[0011] Methods are provided for detecting the presence or absence of at least one allelic variant associated with high cholesterol, low HDL and/or cardiovascular disease by detecting the presence or absence of at least one allelic variant of the COX6B gene or the GPI-1 gene, individually or in combination with one or more allelic variants of other genes associated with cardiovascular disease.

[0012] Also provided are methods for indicating a predisposition to manifesting high serum cholesterol, low serum HDL and/or cardiovascular disease based on detecting the presence or absence of at least one allelic variant of the COX6B or GPI-1 genes, alone or in combination with one or more allelic variants of other genes associated with cardiovascular disease. These methods, referred to as haplotyping, are based on assaying more than one polymorphism of the COX6B and/or GPI-1 genes. One or more polymorphisms of other genes associated with cardiovascular disease may also be assayed at the same time. A collection of allelic variants of one or more genes may be more informative than a single allelic variant of any one gene. A single polymorphism of a collection of polymorphisms present in the COX6B and/or GPI-1 genes and in other genes associated with cardiovascular disease may be assayed individually or the collection may be assayed simultaneously using a multiplex assay method.

[0013] Also provided are microarrays comprising a probe selected from among an oligonucleotide complementary to a polymorphic region surrounding position 86 of the sense strand of the COX6B gene coding sequence; an oligonucleotide complementary to a polymorphic region surrounding the position of the antisense strand of COX6B corresponding to position 86 of the sense strand of the COX6B gene coding sequence; an oligonucleotide complementary to a polymorphic region surrounding position 2577 of the sense strand of the GPI-1 gene; and an oligonucleotide complementary to a polymorphic region surrounding the position of the antisense strand of GPI-1 corresponding to position 2577 of the sense strand of the GPI-1 gene. Microarrays are well known and can be made, for example, using methods set forth in U.S. Pat. Nos. 5,837,832; 5,858,659; 6,043,136; 6,043,031 and 6,156,501.

[0014] Further provided are methods of utilizing allelic variants of the COX6B or GPI-1 gene individually or together with one or more allelic variants of other genes associated with cardiovascular disease to predict a subject's response to a biologically active agent that modulates serum cholesterol, serum HDL, or a cardiovascular drug.

[0015] Also provided are methods to screen candidate biologically active agents for modulation of cholesterol, HDL or other factors associated with cardiovascular disease. These methods utilize cells or transgenic animals containing one or more allelic variants of the COX6B gene and/or the GPI-1 gene alone or in combination with allelic variants of one or more other genes associated with cardiovascular

disease. Such animals should exhibit high cholesterol, low HDL or other known phenotypes associated with cardiovascular disease. Also, provided are methods to construct transgenic animals that are useful as models for cardiovascular disease by using one or more allelic variants of the COX6B gene and/or the GPI-1 gene alone or in combination with allelic variants of one or more other genes associated with cardiovascular disease.

[0016] Further provided are combinations of probes and primers and kits for predicting a predisposition to high serum cholesterol, low HDL levels and/or cardiovascular disease. In particular, combinations and kits comprise probes or primers which are capable of hybridizing adjacent to or at polymorphic regions of the COX6B and/or GPI-1 gene. The combinations and kits can also contain probes or primers which are capable of hybridizing adjacent to or at polymorphic regions of other genes associated with cardiovascular disease. The kits also optionally contain instructions for carrying out assays, interpreting results and for aiding in diagnosing a subject as having a predisposition towards developing high serum cholesterol, low HDL levels and/or cardiovascular disease. Combinations and kits are also provided for predicting a subject's response to a therapeutic agent directed toward modulating cholesterol, HDL, or another phenotype associated with cardiovascular disease. Such combinations and kits comprise probes or primers as described above.

[0017] In particular for the methods, combinations, kits and arrays described above, the polymorphisms are SNPs. The detection or identification is of a Tnucleotide at position 86 of the sense strand of the COX6B gene coding sequence or the detection or identification of an A nucleotide at the corresponding position in the antisense strand of the COX6B gene coding sequence. Also embodied is the detection or identification of an A nucleotide at position 2577 of the sense strand of the GPI-1 gene or the detection or identification of a T nucleotide at the corresponding position in the antisense strand of the GPI-1 gene. In addition to the SNPs discussed above, other polymorphisms of the COX6B and GPI-1 genes can be assayed for association with high cholesterol or low HDL, respectively, and utilized as disclosed above.

[0018] Other genes containing allelic variants associated with high serum cholesterol, low HDL and/or cardiovascular disease, include, but are not limited to: cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit, and angiotensin II type 1 receptor gene.

[0019] The detection of the presence or absence of an allelic variant can utilize, but are not limited to, methods such as allele specific hybridization, primer specific extension, oligonucleotide ligation assay, restriction enzyme site analysis and single-stranded conformation polymorphism analysis.

[0020] In particular, primers utilized in primer specific extension hybridize adjacent to nucleotide 86 of the COX6B gene or nucleotide 2577 of the GPI-1 gene or the corre-

sponding positions on the antisense strand (numbers refer to GenBank sequences, see pages 15-17). A primer can be extended in the presence of at least one dideoxynucleotide, particularly ddG, or two dideoxynucleotides, particularly ddG and ddC. Preferably, detection of extension products is by mass spectrometry. Detection of allelic variants can also involve signal moieties such as radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent reagents and other light producing reagents.

[0021] Other probes and primers useful for the detection of allelic variants include those which hybridize at or adjacent to the SNPs described in Tables 1-3 and specifically those that comprise SEQ ID NOs.: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118.

DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 depicts the allelic frequency and genotype for pools and individually determined samples of blood from individuals having low cholesterol levels and those with high cholesterol levels.

[0023] FIG. 2 depicts the allelic frequency and genotype for pools and individually determined samples of blood from individuals having high HDL levels and those with low HDL levels.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0024] A. Definitions

[0025] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents, patent applications and publications referred to throughout the disclosure herein are, unless noted otherwise, incorporated by reference in their entirety. In the event that there are a plurality of definitions for terms herein, those in this section prevail.

[0026] As used herein, sequencing refers to the process of determining a nucleotide sequence and can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence in nucleic acid samples taken from the subjects that comprise the database, the region of interest from the samples can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art, and sequenced. For purposes herein, sequencing analysis is preferably effected using mass spectrometry (see, e.g., U.S. Pat. Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids can also be sequenced by hybridization (see, e.g., U.S. Pat. Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Ser. Nos. 08/419,994 and 09/395,409). Alternatively, sequencing may be performed using other known methods, such as set forth in U.S. Pat. Nos. 5,525,464; 5,695,940; 5,834,189; 5,869,242; 5,876,934; 5,908,755; 5,912,118; 5,952,174; 5,976,802; 5,981,186; 5,998,143; 6,004,744; 6,017,702; 6,018,041; 6,025,136; 6,046,005; 6,087,095; 6,117,634, 6,013,431, WO 98/30883; WO 98/56954; WO 99/09218; WO/00/58519, and the others.

[0027] As used herein, "polymorphism" refers to the coexistence of more than one form of a gene or portion thereof.

A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. A polymorphic region can also be several nucleotides in length.

[0028] As used herein, "polymorphic gene" refers to a gene having at least one polymorphic region.

[0029] As used herein, "allele", which is used interchangeably herein with "allelic variant" refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene can also be a form of a gene containing a mutation.

[0030] As used herein, the term "subject" refers to mammals and in particular human beings.

[0031] As used herein, the term "gene" or "recombinant gene" refers to a nucleic acid molecule comprising an open reading frame and including at least one exon and (optionally) at least one intron sequence. A gene can be either RNA or DNA. Genes may include regions preceding and following the coding region (leader and trailer).

[0032] As used herein, "intron" refers to a DNA sequence present in a given gene which is spliced out during mRNA maturation.

[0033] As used herein, the term "coding sequence" refers to that portion of a gene that encodes an amino acid sequence of a protein.

[0034] As used herein, the term "sense strand" refers to that strand of a double-stranded nucleic acid molecule that encodes the sequence of the mRNA that encodes the amino acid sequence encoded by the double-stranded nucleic acid molecule.

[0035] As used herein, the term "antisense strand" refers to that strand of a double-stranded nucleic acid molecule that is the complement of the sequence of the mRNA that encodes the amino acid sequence encoded by the double-stranded nucleic acid molecule.

[0036] As used herein, a DNA or nucleic acid homolog refers to a nucleic acid that includes a preselected conserved nucleotide sequence. By the term "substantially homologous" is meant having at least 80%, preferably at least 90%, most preferably at least 95% homology therewith or a less percentage of homology or identity and conserved biological activity or function.

[0037] Regarding hybridization, as used herein, stringency conditions to achieve specific hybridization refer to the washing conditions for removing the non-specific probes or primers and conditions that are equivalent to either high, medium, or low stringency as described below:

1) high stringency: 0.1 × SSPE, 0.1% SDS, 65° C. 2) medium stringency: 0.2 × SSPE, 0.1% SDS, 50° C. 3) low stringency: 1.0 × SSPE, 0.1% SDS, 50° C.

[0038] It is understood that equivalent stringencies may be achieved using alternative buffers, salts and temperatures.

[0039] As used herein, "heterologous DNA" is DNA that encodes RNA and proteins that are not normally produced in vivo by the cell in which it is expressed or that mediates or encodes mediators that alter expression of endogenous DNA by affecting transcription, translation, or other regulatable biochemical processes or is not present in the exact orientation or position as the counterpart DNA in a wildtype cell. Heterologous DNA may also be referred to as foreign DNA. Any DNA that one of skill in the art would recognize or consider as heterologous or foreign to the cell in which is expressed is herein encompassed by heterologous DNA. Examples of heterologous DNA include, but are not limited to, DNA that encodes traceable marker proteins, such as a protein that confers drug resistance, DNA that encodes therapeutically effective substances, such as anti-cancer agents, enzymes and hormones, and DNA that encodes other types of proteins, such as antibodies. Antibodies that are encoded by heterologous DNA may be secreted or expressed on the surface of the cell in which the heterologous DNA has been introduced.

[0040] As used herein, a "promoter region" refers to the portion of DNA of a gene that controls transcription of the DNA to which it is operatively linked. The promoter region includes specific sequences of DNA that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of the RNA polymerase. These sequences may be cis acting or may be responsive to trans acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated.

[0041] As used herein, the phrase "operatively linked" generally means the sequences or segments have been covalently joined into one piece of DNA, whether in single or double stranded form, whereby control or regulatory sequences on one segment control or permit expression or replication or other such control of other segments. The two segments are not necessarily contiguous. For gene expression a DNA sequence and a regulatory sequence(s) are connected in such a way to control or permit gene expression when the appropriate molecular, e.g., transcriptional activator proteins, are bound to the regulatory sequence(s).

[0042] As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of preferred vector is an episome, i.e., a nucleic acid capable of extra-chromosomal replication. Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in

the form of "plasmids" which refer generally to circular double stranded DNA loops which, in their vector form are not bound to the chromosome. "Plasmid" and "vector" are used interchangeably as the plasmid is the most commonly used form of vector. Also included are other forms of expression vectors that serve equivalent functions and that become known in the art subsequently hereto.

[0043] As used herein, "indicating" or "determining" means that the presence or absence of an allelic variant may be one of many factors that are considered when a subject's predisposition to a disease or disorder is evaluated. Thus a predisposition to a disease or disorder is not necessarily conclusively determined by only ascertaining the presence or absence of one or more allelic variants, but the presence of one of more of such variants is among an number of factors considered.

[0044] As used herein, "predisposition to develop a disease or disorder" means that a subject having a particular genotype and/or haplotype has a higher likelihood than one not having such a genotype and/or haplotype for developing a particular disease or disorder.

[0045] As used herein, "transgenic animal" refers to any animal, preferably a non-human animal, e.g. a mammal, bird or an amphibian, in which one or more of the cells of the animal contain heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. This molecule may be integrated within a chromosome, or it may be extrachromosomally replicating DNA. In the typical transgenic animals described herein, the transgene causes cells to express a recombinant form of a protein. However, transgenic animals in which the recombinant gene is silent are also contemplated, as for example, using the FLP or CRE recombinase dependent constructs. Moreover, "transgenic animal" also includes those recombinant animals in which gene disruption of one or more genes is caused by human intervention, including both recombination and antisense techniques.

[0046] As used herein, "associated" refers to coincidence with the development or manifestation of a disease, condition or phenotype. Association may be due to, but is not limited to, genes responsible for housekeeping functions, those that are part of a pathway that is involved in a specific disease, condition or phenotype and those that indirectly contribute to the manifestation of a disease, condition or phenotype.

[0047] As used herein, "high serum cholesterol" refers to a level of serum cholesterol that is greater than that considered to be in the normal range for a given age in a population, e.g., about 5.25 mmoles/L or greater, i.e., approximately one standard deviation or more away from the age-adjusted mean.

[0048] As used herein, "low serum HDL" refers to a level of serum HDL that is less than that considered to be in the normal range for a given age in a population, e.g. about 1.11

mmoles/L or less, i.e., approximately one standard deviation or more away from the age-adjusted mean.

[0049] As used herein, "cardiovascular disease" refers to any manifestation of or predisposition to cardiovascular disease including, but not limited to, coronary artery disease and myocardial infarction. Included in predisposition is the manifestation of risks factors such as high serum cholesterol levels and low serum HDL levels.

[0050] As used herein, "target nucleic acid" refers to a nucleic acid molecule which contains all or a portion of a polymorphic region of a gene of interest.

[0051] As used herein, "signal moiety" refers to any moiety that allows for the detection of a nucleic acid molecule. Included are moieties covalently attached to nucleic acids and those that are not.

[0052] As used herein, "biologically active agent that modulates serum cholesterol" refers to any drug, small molecule, nucleic acid (sense and antisense), protein, peptide, lipid, carbohydrate etc. or combination thereof, that exhibits some effect directly or indirectly on the cholesterol measured in a subject's serum.

[0053] As used herein, "biologically active agent that modulates serum HDL" refers to any drug, small molecule, nucleic acid (sense and antisense), protein, peptide, lipid, carbohydrate etc. or combination thereof that exhibits some effect directly or indirectly on the HDL measured in a subject's serum.

[0054] As used herein, "expression and/or activity" refers to the level of transcription or translation of the COX6B or GPI-1 gene, mRNA stability, protein stability or biological activity.

[0055] As used herein, "cardiovascular drug" refers to a drug used to treat cardiovascular disease or a risk factor for the disease, either prophylactically or after a risk factor or disease condition has developed. Cardiovascular drugs include those drugs used to lower serum cholesterol and those used to alter the level of serum HDL.

[0056] As used herein, "combining" refers to contacting the biologically active agent with a cell or animal such that the agent is introduced into the cell or animal. For a cell any method that results in an agent traversing the plasma membrane is useful. For an animal any of the standard routes of administration of an agent, e.g. oral, rectal, transmucosal, intestinal, intravenous, intraperitoneal, intraventricular, subcutaneous, intramuscular, etc., can be utilized.

[0057] As used herein, "positive response" refers to improving or ameliorating at least one symptom or detectable characteristic of a disease or condition, e.g., lowering serum cholesterol levels or raising serum HDL levels.

[0058] As used herein, "biological sample" refers to any cell type or tissue of a subject from which nucleic acid, particularly DNA, can be obtained.

[0059] As used herein, "array" refers to a collection of three or more items, such a collection of immobilized nucleic acid probes arranged on a solid substrate, such as silica, polymeric materials or glass.

[0060] As used herein, a composition refers to any mixture. It may be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous or any combination thereof.

[0061] As used herein, a combination refers to any association between two or among more items.

[0062] As used herein, "kit" refers to a package that contains a combination, such as one or more primers or probes used to amplify or detect polymorphic regions of genes associated with cardiovascular disease, optionally including instructions and/or reagents for their use.

[0063] As used herein "specifically hybridizes" refers to hybridization of a probe or primer only to a target sequence preferentially to a non-target sequence. Those of skill in the art are familiar with parameters that affect hybridization; such as temperature, probe or primer length and composition, buffer composition and salt concentration and can readily adjust these parameters to achieve specific hybridization of a nucleic acid to a target sequence.

[0064] As used herein "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The term should also be understood to include, as equivalents, derivatives, variants and analogs of either RNA or DNA made from nucleotide analogs, single (sense or antisense) and double-stranded polynucleotides. Deoxyribonucleotides include deoxyadenosine, deoxycytidine, deoxyguanosine and deoxythymidine. For RNA, the uracil base is uridine.

[0065] As used herein, "mass spectrometry" encompasses any suitable mass spectrometric format known to those of skill in the art. Such formats include, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT Application No. 99/57318 and U.S. Pat. No. 5,118,937) Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the preferred formats.

[0066] B. Cytochrome c Oxidase VIb Gene

[0067] Cytochrome c oxidase (COX) is a mitochondrial enzyme complex integrated in the inner membrane. It transfers electrons from cytochrome to molecular oxygen in the terminal reaction of the respiratory chain in eukaryotic cells. COX contains of three large subunits encoded by the mitochondrial genome and 10 other subunits, encoded by nuclear genes. The three subunits encoded by mitochondrial genome are responsible for the catalytic activity. The cytochrome c oxidase subunit VIb (COX6B) is one of the nuclear gene products. The function of the nuclear encoded subunits is unknown. One proposed role is in the regulation of catalytic activity; specifically the rate of electron transport and stoichiometry of proton pumping. Other proposed roles are not directly related to electron transport and include energydependent calcium uptake and protein import by the mitochondrion. Proteolytic removal of subunits VIa and VIb has been associated with loss of calcium transport in reconstituted vesicles. Steady-state levels of the COX6B transcript are different in different tissues (Taanman et al., Gene (1990), 93:285).

[0068] The COX6B gene is generically used to include the human COX6B gene and its homologs from rat, mouse, guinea pig, etc.

[0069] Several single nucleotide polymorphism have been identified in the human COX6B gene. One of these is

located at position 86 and is a C to T transversion which is manifested as a silent mutation in the coding region, ACC to ACT (threonine to threonine)(SEQ ID NO.: 2). Although this is a silent mutation at the amino acid level, it may represent an alteration that changes codon usage, or it may effect mRNA stability or it may be in linkage disequilibrium with a non-silent change. Other known single nucleotide polymorphisms of the COX6B gene include, but are not limited to, those listed in Table 1.

TABLE 1

Gene	GenBank Accession No.	SNP	SNP Location
COX6B (SEQ ID NO.: 1)	NM_001863	C/T A/G A/T A/T	86 60 324 123

[0070] Based on methods disclosed herein and those used in the art, one of skill would be able to utilize all the SNPs described and find additional polymorphic regions of the COX6B gene to determine whether allelic variants of these regions are associated with high cholesterol levels and cardiovascular disease.

[0071] C. GPI-1 Gene

[0072] Glycosylphosphatidylinositol (GPI) functions to anchor various eukaryotic proteins to membranes and is essential for their surface expression. Thus, a defect in GPI anchor synthesis affects various functions of cell, tissues and organs. Biosynthesis of glycosylphosphatidylinositol (GPI) is initiated by the transfer of N-acetylglucosamine (GIcNAc) from UDP-GIcNAc to phosphatidylinositol (PI) and is catalyzed by a GIcNAc transferase, GPI-GIcNAc transferase (GPI-GnT). Four mammalian gene products form a protein complex that is responsible for this enzyme activity (PIG-A, PIG-H, PIG-C and GPI-1). PIG-A, PIG-H, PIG-C are required for the first step in GPI anchor biosynthesis; GPI-1 is not. Stabilization of the enzyme complex, rather than participation in GIcNAc transfer, has been suggested as a possible role for GPI-1 (Watanabe et al. EMBO (1998) 17: 877).

[0073] The GPI-1 gene is generically used to include the human GPI-1 gene and its homologs from rat, mouse, guinea pig, etc.

[0074] A polymorphism has been identified at position 2577 of the human GPI-1 gene. This is a G to A transversion. This SNP is located in the 3' untranslated region of the mRNA, and does not affect protein structure, but may affect mRNA stability or may be in linkage disequilibrium with a non-silent change. Other known single nucleotide polymorphisms of the GPI-1 gene include, but are not limited to, those listed in Table 2.

TABLE 2

Gene	GenBank Accession No.	SNP	SNP Location
GPI-1	NM_004204	C/T	2829
(SEQ ID NOS.: 6, 7)		A/G	2577
-		C/T	2519
		C/T	2289

TABLE 2-continued

Gene	GenBank Accession No.	SNP	SNP Location
		C/T C/G	1938 1563
		A/G/C/T A/G	2664 2656
		A/C/T G/C/A	2167 2166

[0075] Based on methods disclosed herein and those used in the art, one of skill would be able to use all the described SNPs and find additional polymorphic regions of the GPI-1 gene to determine whether allelic variants of these regions are associated with low levels of HDL and cardiovascular disease.

[0076] D. Other Genes and Polymorphism Associated with Cardiovascular Disease

[0077] Many other genes and polymorphisms contained within them have been associated with risks factors for cardiovascular disease (aberrations in lipid metabolism; specifically high levels of serum cholesterol and low levels of HDL, etc.) and/or the clinical phenotypes of atherosclerosis and cardiovascular disease. Table 3 presents a list of some of these genes and some associated polymorphisms (SNPs): cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase (LIPC); E-selectin; G protein beta 3 subunit and angiotensin II type 1 receptor gene. The SNP locations are based on the GenBank sequence. Table 3 is not meant to be exhaustive, as one of skill in the art based on the disclosure would be able to readily use other known polymorphisms in these and other genes, new polymorphisms discovered in previously identified genes and newly identified genes and polymorphisms in the methods and compositions disclosed herein.

TABLE 3

Gene	GenBank Accession No.	SNP	SNP Location
СЕТР	NM_000078	C/A	991
(SEQ ID NOS.: 11, 12)		C/T	196
		A/G	1586
		A/G	1394
		A/G	1439
		C/G	1297
		C/T	766
		G/A	1131
		G/A	1696
LPL	NM_000237	A/G	1127
(SEQ ID NOS.: 13, 14)		A/C	3447
		C/T	1973
		C/T	3343
		G/A	2851
		C/T	3272
		A/T	2428
		T/C	2743
		G/A	1453

TABLE 3-continued

TABLE 3-continued

TABLE 3-continued			TABLE 3-continued				
Gene	GenBank Accession No.	SNP	SNP Location	Gene	GenBank Accession No.	SNP	SNP Location
		C/A	3449			C/T	7673
		G/A	1282			C/A/G/T	8344
		G/A	579			G/C/T/A	4393
		A/C	1338			A/C/T/G	5894
		A/G/T/C	2416–2426			A/T	12019
		A/ G C/T	2427 1302			C/T G/C/T/A	11973 7065
		G/A	609			C/G	947
		G/C	1595			C/G	7331
		G/A	1309			A/G	7221
		C/T	2454			G/C	6402
		C/T	2988			G/C	3780
		G/A	280			C/G	1661
		G/A	1036			A/T	8167
APO A4	NM_000482	G/T	1122			C/A	8126
SEQ ID NOS.: 15, 16)		G/C	1033			C/T	421
		G/A	1002			C/T	1981
		C/T	960 894			G/A	12510
		C/T G/ A	554	APO B (con't)		G/C G/A	12937 11042
		G/A	950	AIO B (con t)		C/T	2834
		T/C	336			A/G	5869
		G/A	334			A/G	11962
		C/T	330			C/G	4439
		A/G	201			G/A	7824
		A/G	16			G/A	13569
		A/T	1213			G/A	9489
APO E	NM_000041	C/T	448			G/A	2325
SEQ ID NOS.: 17, 18)		G/A	448			G/A	10259
mRNA)		C/T	586		177 C 00 50 5	C/G	14
		C/T	197	MTHFR	NM_005957	G/A	5442
T4' Y !	NTM 0000006	C/T	540	(SEQ ID NOS.: 33, 34)		A/G	5113
Hepatic Lipase SEQ ID NOS.: 19, 20)	NM_000236	C/G G/A	680 1374			A/G A/G	5113 5110
3EQ ID 1103 19, 20)		G/A	701			A/G	5102
		C/A	1492			A/C/T	5097
		A/G	648			A/C/T	5097
		G/C	729			C/T	5079
		G/A	340			C/T	5079
		G/T	522			T/C	5071
PON 1	NM_000446	A/T	172			T/C	5071
SEQ ID NOS.: 21, 22)		A/G	584			T/C	5051
		G/C	190			G/A	5012
PON 2	XM _004947	C/G	475			C/A	5000
SEQ ID NOS.: 23, 24)	NTM 000040	C/G	964			A/G	4998
APO C3	NM_000040	C/T	148			A/G	4994
SEQ ID NOS.: 25, 26)		T/A G/C	471 386			A/G A/G	4994 4994
		G/T	417			C/T	4991
		T/A	495			C/T	4991
ABC 1	XM_005567	G/A	8591			C/T	4991
SEQ ID NOS.: 27, 28)		-,				A/G	4986
APO A1	NM_000039	C/G	770			A/G	4986
SEQ ID NOS.: 29, 30)		G/A	656			A/G	4986
		C/G	589			C/T	4985
		C/G	414			T/A	4982
		A/T	430			T/G	4981
		C/T	708			T/C	4981
		C/T	221	3.0077700 (31)		T/C	4981
		T/G	223	MTHFR (con't)		G/C/A	4967
		C/T A/G	597 340			G/A	4963 4962
		G/C	690			A/G G/C/T	4962
РО В	NM_000384	A/G/C/T	13141			A/C/G/T	4961
SEQ ID NOS.: 31, 32)	1111_00004	A/G/C/T	12669			A/C/T	4961
2 1.30 31, 32)		C/T	11323			A/C/T	4961
		G/C	10422			A/C	4961
		A/C	10408			A/C/T	4960
		C/G	10083			T/C	4938
		C/T	7064			T/C	4937
		C/T	6666			T/C	4933
		C/T	1980			G/C/T	4933
		C/G	5751			C/T	4929

TABLE 3-continued

GenBank SNP Gene Accession No. SNP Location С/Т 4929 T/A/G 4929 4928 A/G G/C 4928 C/G 4927 G/A 4923 4919 A/T/G 4913 C/T 4912 A/T 4903 C/T 4902 4900 A/G G/A 4898 4898 G/T 4897 C/T G/T 4894 T/C/G 4836 C/T 3862 C/T 4922 C/T 4959 T/C 4981 A/G 4994 A/G 5044 T/C 5051 G/C 5066 C/T 5079 MTHFR (con't) 5085 C/A/G 5092 C/T 5103 A/G A/G 5113 1021 C/T NM_000450 3484 E-Selectin G/A (SEQ ID NOS.: 35, 36) G/A 3093 T/G 2939 T/C 2902 C/T 1937 C/T 1916 C/T 1839 C/T 1805

TABLE 3-continued

Gene	GenBank Accession No.	SNP	SNP Location
		C/T	1518
		G/C	1377
		C/T	1376
		G/A	999
		T/C	857
		A/C	561
		C/G	506
		A/G	392
		G/T	98
G protein β3 subunit	NM_002075	C/T	1828
(SEQ ID NOS.: 37, 38)		C/T	1546
		G/T	1431
		G/A	1231
		C/T	1230
Angiotensin II type 1	NM_00686	G/A	1453
receptor gene		C/G	968
(SEQ ID NOS.: 39, 40)		G/C	966
		T/C	941
		G/A	894
		T/C	659

[0078] Assays to identify the nucleotide present at the polymorphic site include those described herein and all others known to those who practice the art.

[0079] For some of the SNPs described above, there are provided a description of the MassEXTEND™ reaction components that can be utilized to determine the allelic variant that is present. Included are the forward and reverse primers used for amplification. Also included are the MassEXTEND™ primer used in the primer extension reaction and the extended MassEXTEND™ primers for each allele. MassEXTEND™ reactions are carried out and the products analyzed as described in Examples 2 and 3.

[0080] CETP

Position 991 (C/A) PCR primers:		
Forward:	ACTGCCTGATAACCATGCTG	(SEQ ID NO.: 41)
Reverse:	ATACTTACACACCAGGAGGG	(SEQ ID NO.: 42)
MassEXTENDTM Primer:	ATGCCTGCTCCAAAGGCAC	(SEQ ID NO.: 43)
Primer Mass:	5757.8	
Extended Primer-Allele C:	ATGCCTGCTCCAAAGGCACC	(SEQ ID NO.: 44)
Extended Primer Mass:	6030.9	
Extended Primer-Allele A:	ATGCCTGCTCCAAAGGCACAT	(SEQ ID NO.: 45)
Extended Primer Mass:	6359.2	
Position 196 (CIT)		
PCR primers:		
Forward:	TACTTCTGGTTCTCTGAGCG	(SEQ ID NO.: 46)
Reverse:	ACTCACCTTGAACTCGTCTC	(SEQ ID NO.: 47)
MassEXTEND ™ Primer:	TGGTTCTCTGAGCGAGTCTT	(SEQ ID NO.: 48)

Primer Mass:	6130			
Extended Primer-Allele C:	TGGTTCTCTGAGCGAGTCTTC	(SEQ I	No.:	49)
Extended Primer Mass:	6707.4			
Extended Primer-Allele T:	TGGTTCTCTGAGCGAGTCTTTC	(SEQ I	NO.:	50)
Extended Primer Mass:	6333.1			
Position 1586 (AIG)				
POR primers:				
Forward:	TGCAGATGGACTTTGGCTTC	(SEQ I	No.:	51)
Reverse:	TGCTTGCCTTCTGCTACAAG	(SEQ I	NO.:	52)
MassEXTENDTM Primer:	CTTCCCTGAGCACCTGCTG	(SEQ I	No.:	53)
Primer Mass:	5715.7			
Extended Primer-Allele G:	CTTCCCTGAGCACCTGCTGGT	(SEQ I	NO.:	54)
Extended Primer Mass:	6333.1			
Extended Primer-Allele A:	CTTCCCTGAGCACCTGCTGA	(SEQ I	No.:	55)
Extended Primer Mass:	601 2.9			
APOA4				
Position 1122 (GIT)				
POR primers:				
Forward:	AACAGCTCAGGACGAAACTG	(SEQ I	No.:	56)
Reverse:	AGAAGGAGTTGACCTTGTCC	(SEQ I	NO.:	57)
MassEXTEND * Primer:	GGAAGCTCAAGTGGCCTTC	(SEQ I	No.:	5)8)
Primer Mass:	5828.8			
Extended Primer-Allele G:	GGAAGCTCAAGTGGCCTTCC	(SEQ I	No.:	59)
Extended Primer Mass:	6102.0			
Extended Primer-Allele T:	GGAAGCTCAAGTGGCCTTCAAC	(SEQ I	NO.:	60)
Extended Primer Mass:	6728.4			
Position 1033 (GIC)				
PCR primers:				
Forward:	AAGTCACTGGCAGAGCTGG	(SEQ I	NO.:	61)
Reverse:				
	GCACCAGGGCTTTGTTGAAG	(SEQ I	NO.:	62)
MassEXTEND * Primer:	GCACCAGGGCTTTGTTGAAG TTTTCCCCGTAGGGCTCCA	(SEQ II		
MassEXTEND * Primer: Primer Mass:		•		
	TTTTCCCCGTAGGGCTCCA	•	NO.:	63)
Primer Mass:	TTTTCCCCGTAGGGCTCCA 5730.7	(SEQ I	NO.:	63)
Primer Mass: Extended Primer-Allele G:	TTTTCCCCGTAGGGCTCCA 5730.7 TTTTCCCCGTAGGGCTCCAC	(SEQ II) NO.:	63)
Primer Mass: Extended Primer-Allele G: Extended Primer Mass:	TTTTCCCCGTAGGGCTCCA 5730.7 TTTTCCCCGTAGGGCTCCAC 6003.9	(SEQ II) NO.:	63)
Primer Mass: Extended Primer-Allele G: Extended Primer Mass: Extended Primer-Allele C:	TTTTCCCCGTAGGGCTCCA 5730.7 TTTTCCCCGTAGGGCTCCAC 6003.9 TTTTCCCCGTAGGGCTCCAGC	(SEQ II) NO.:	63)

PCR primers:		
Forward:	TGCAGAAGTCACTGGCAGAG	(SEQ ID NO.: 66)
Reverse:	GTTGAAGTTTTCCCCGTAGG	(SEQ ID NO.: 67)
MassEXTEND ** Primer:	ACTCCTCCACCTGCTGGTC	(SEQ ID NO.: 68)
Primer Mass:	5675.7	
Extended Primer-Allele G:	ACTCCTCCACCTGCTGGTCC	(SEQ ID NO.: 69)
Extended Primer Mass:	5948.9	
Extended Primer-Allele A:	ACTCCTCCACCTGCTGGTCTA	(SEQ ID NO.: 70)
Extended Primer Mass:	6277.1	
Position 960 (CIT)		
PCR primers:		
Forward:	AGGACGTGCGTGGCAACCTG	(SEQ ID NO.: 71)
Reverse:	AGCTGTGCCAGTGACTTCTG	(SEQ ID NO.: 72)
MassEXTEND * Primer:	GTGACTTCTGCAGCCCCTC	(SEQ ID NO.: 73)
Primer Mass:	571 5.7	
Extended Primer-Allele T:	GTGACTTCTGCAGCCCCTCA	(SEQ ID NO.: 74)
Extended Primer Mass:	601 2.9	
Extended Primer-Allele C:	GTGACTTCTGGAGCCCCTCGGT	(SEQ ID NO.: 75)
Extended Primer Mass:	6662.3	
Extended Filmer Mass.	0002.5	
Position 894 (CIT)	0002.5	
	0002.5	
Position 894 (CIT)	CCTGACCTTCCAGATGAAG	(SEQ ID NO.: 76)
Position 894 (CIT) PCR primers:		(SEQ ID NO.: 76)
Position 894 (CIT) PCR primers: Forward:	CCTGACCTTCCAGATGAAG	
Position 894 (CIT) PCR primers: Forward: Reverse:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC	(SEQ ID NO.: 77)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC	(SEQ ID NO.: 77)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6	(SEQ ID NO.: 77)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC	(SEQ ID NO.: 77)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Position 554 (G/A)	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79)
Position 894 (CIT) PCR primers: Forward: Reverse: MasseXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Position 554 (G/A) PCR primers:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Forward:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0 ACCTGCGAGAGCTTCAGCAG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Forward: Forward: Reverse:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0 ACCTGCGAGAGCTTCAGCAG TCTCCATGCGCTGTGCGTAG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)
Position 894 (CIT) PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Forward: Forward: Reverse: MassEXTEND ** Primer:	CCTGACCTTCCAGATGAAG TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0 ACCTGCGAGAGCTTCAGCAG TCTCCATGCGCTGTGCGTAG AGCTGCGCACCCAGGTCA	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)

							-
-c	αr	11	. 1	n	11	0	а

 -				
Extended Primer-Allele G:	AGCTGCGCACCCAGGTCAGC	(SEQ	ID NO.:	85)
Extended Primer Mass:	6072.0			
APOE				
Position 448 (CIT)				
PCR primers:				
Forward:	TGTCCAAGGAGCTGCAGGC	(SEQ	ID NO.:	86)
Reverse:	CTTACGCAGCTTGCGCAGGT	(SEQ	ID NO.:	87)
MassEXTEND * Primer:	GCGGAGATGGAGGACGTG	(SEQ	ID NO.:	88)
Primer Mass:	5629.7			
Extended Primer-Allele C:	GCGGACATGGAGGACGTGC	(SEQ	ID NO.:	89)
Extended Primer Mass:	5902.8			
Extended Primer-Allele T:	GCGGACATGGAGGACGTGTG	(SEQ	ID NO.:	90)
Extended Primer Mass:	6247.1			
LPL				
Position 1127 (A/G)				
PCR primers:				
Forward:	GTTGTAGAAAGAACCGCTGC	(SEQ	ID NO.:	91)
Reverse:	GAGAACGAGTCTTCAGGTAC	(SEQ	ID NO.:	92)
MassEXTEND " Primer:	ACAATCTGGGCTATGAGATCA	(SEQ	ID NO.:	93)
Primer Mass:	6454.2			
Extended Primer-Allele A:	ACAATCTGGGCTATGAGATCAA	(SEQ	ID NO.:	94)
Extended Primer Mass:	6751 .4			
Extended Primer-Allele G:	ACAATCTGGGCTATGAGATCAGT	(SEQ	ID NO.:	95)
Extended Primer Mass:	7071 .6			
Position 3447 (A/C)				
PCR primers:				
Forward:	GACTCTACACTGCATGTCTC	(SEQ	ID NO.:	96)
Reverse:	ACCCTTCTGAAAAGGAGAGG	(SEQ	ID NO.:	97)
MassEXTENDTM Primer:	GAGGAGACAAGGCAGATA	(SEQ	ID NO.:	98)
Primer Mass:	6273.1			
Extended Primer-Allele A:	GAGGAGAGACAAGGCAGATAT	(SEQ	ID NO.:	99)
Extended Primer Mass:	6561.3			
Extended Primer-Allele C:	GAGGAGAGACAAGGCAGATAGT	(SEQ	ID NO.:	100)
Extended Primer Mass:	6890.5			
Position 1973 (C/TI				
PCR primers:				
Forward:	AAAGGTTCAGTTGCTGCTGC	(SEO	ID NO.:	1011
Reverse:	GCTGGGGAAGGTCTAATAAC	•	ID NO.:	
V246TBG.	GC TGGGUNGGIC IANIANC	(PEQ.	LD NO.:	102)

MassEXTENDTM Primer:	GTTGCTGCTGCCTCGAATG	(SEQ ID NO.: 103)
Primer Mass:	5770.7	
Extended Primer-Allele C:	GTTGCTGCTGCCTCGAATCC	(SEQ ID NO.: 104)
Extended Primer Mass:	6043.9	
Extended Primer-Allele T:	GTTGCTGCTGCCTCGAATCTG	(SEQ ID NO.: 105)
Extended Primer Mass:	6388.2	
LIPC		
Position 680 (CIG)		
PCR primers:		
Forward:	CGTCTTTCTCCAGATGATGC	(SEQ ID NO.: 106)
Reverse:	AGTGTCCTATGGGCTGTTTG	(SEQ ID NO.: 107)
MassEXTEND " Primer:	GGATGCCATTCATACCTTTAC	(SEQ ID NO.: 108)
Primer Mass:	6556.1	
Extended Primer-Allele C:	GGATGCCATTCATACCTTTACC	(SEQ ID NO.: 109)
Extended Primer Mass:	6629.3	
Extended Primer-Allele G:	GGATGCCATTCATACCTTTACGC	(SEQ ID NO.: 110)
Extended Primer Mass:	6958.5	
Position 1374 (GIA)		
PCR primers:		
Forward:	TGGGAAAACAGTGCAGTGTG	(SEQ ID NO.: 111)
Reverse:	TGATCGTCTTCAGAACGAGG	(SEQ ID NO.: 112)
MassEXTEND ** Primer:	CCAGACCATCATCCCATGGA	(SEQ ID NO.: 113)
Primer Mass:	6030.9	
Extended Primer-Allele A:	CCAGACCATCATCCCATGGAA	(SEQ ID NO.: 114)
Extended Primer Mass:	6328.1	
Extended Primer-Allele G:	CCAGACCATCATCCCATGGAGC	(SEQ ID NO.: 115)
Extended Primer Mass:	6633.3	
Position 701 (G/A)		
PCR primers:		
Forward:	CAGCAATCGTCTTTCTCCAG	(SEQ ID NO.: 116)
Reverse:	TCCTATGGGCTGTTTGATGC	(SEQ ID NO.: 117)
MasseXTEND * Primer:	GTCTTTCTCCAGATGATGCCA	(SEQ ID NO.: 118)
Primer Mass:	6372.2	
Extended Primer-Allele A:	GTCTTTCTCCAGATGATGCCAA	(SEQ ID NO.: 119)
Extended Primer Mass:	6669-4	
Extended Primer-Allele G:	GTCTTTCTCCAGATGATGCCAGT	(SEQ ID NO.: 120)
Extended Primer Mass:	6989.6	

[0081] E. Databases

[0082] Databases for determining an association between polymorphic regions of genes and intermediate and clinical phenotypes, comprise biological samples (e.g., blood) which provide a source of nucleic acid and clinical data covering diseases (e.g., age, sex, ethnicity medical history and family medical history) from both individuals exhibiting the phenotype (intermediate phenotype (risk factor) or clinical phenotype (disease)) and those who do not. These databases include human population groups such as twins, diverse affected families, isolated founder populations and drug trial subjects. The quality and consistency of the clinical resources are of primary importance.

[0083] F. Association Studies

[0084] The examples set forth below utilized an extreme trait analysis to discover an association between an allelic variant of the COX6B gene and high cholesterol and an association between an allelic variant of the GPI-1 gene and low HDL. This analysis is based on comparing a pair of pools of DNA from individuals who exhibit respectively hypo or hypernormal levels of a biochemical trait (e.g., cholesterol or HDL) and individually examining SNPs for a difference in allelic frequency between the pools. An association is considered to be positive if a statistically significant value of at least 3.841 using a 1-degree-of-freedom chi-squared test of association, p=0.05, is obtained. Standard multiple testing corrections are applied if more than one SNP is considered at a time, i.e., multiple SNPs are tested during the same study. Although not always required, it may be necessary to further examine the frequency of allelic variants in other populations, including those exhibiting normal levels of the given trait.

[0085] For a qualitative trait (e.g., hypertension) association studies are based on determining the occurrence of certain alleles in a given population of diseased vs. healthy individuals.

[0086] Allelic variants of COX6B, GPI-1 and other genes found to associate with high cholesterol, low HDL and/or cardiovascular disease can represent useful markers for indicating a predisposition for developing a risk factor for cardiovascular disease. These allelic variants may not necessarily represent functional variants affecting the expression, stability, or activity of the encoded protein product. Those of skill in the art would be able to determine which allelic variants are to be used, alone or in conjunction with other variants, only for indicating a predisposition for cardiovascular disease or for profiling of drug reactivity and for determining those which may be also useful for screening for potential therapeutics.

[0087] Any method used to determine association can be utilized to discover or confirm the association of other polymorphic regions in the COX6B gene, the GPI-1 gene or any other gene that may be associated with cardiovascular disease

[0088] G. Detection of Polymorphisms

[0089] 1. Nucleic Acid Detection Method

[0090] Generally, these methods are based in sequencespecific polynucleotides, oligonucleotides, probes and primers. Any method known to those of skill in the art for detecting a specific nucleotide within a nucleic acid sequence or for determining the identity of a specific nucleotide in a nucleic acid sequence is applicable to the methods of determining the presence or absence of an allelic variant of a COX6B gene or GPI-1 gene or another gene associated with cardiovascular disease. Such methods include, but are not limited to, techniques utilizing nucleic acid hybridization of sequence-specific probes, nucleic acid sequencing, selective amplification, analysis of restriction enzyme digests of the nucleic acid, cleavage of mismatched heteroduplexes of nucleic acid and probe, alterations of electrophoretic mobility, primer specific extension, oligonucleotide ligation assay and single-stranded conformation polymorphism analysis. In particular, primer extension reactions that specifically terminate by incorporating a dideoxynucleotide are useful for detection. Several such general nucleic acid detection assays are described in U.S. Pat. No. 6,030,778.

[0091] a. Primer Extension-Based Methods

[0092] Several primer extension-based methods for determining the identity of a particular nucleotide in a nucleic acid sequence have been reported (see, e.g., PCT Application No. PCT/US96/03651 (WO96/29431), PCT Application No. PCT/US97/20444 (WO 98/20019), PCT Application No. PCT/US91/00046 (WO91/13075), and U.S. Pat. No. 5,856,092). In general, a primer is prepared that specifically hybridizes adjacent to a polymorphic site in a particular nucleic acid sequence. The primer is then extended in the presence of one or more dideoxynucleotides, typically with at least one of the dideoxynucleotides being the complement of the nucleotide that is polymorphic at the site. The primer and/or the dideoxynucleotides may be labeled to facilitate a determination of primer extension and identity of the extended nucleotide.

[0093] In a preferred method, primer extension and/or the identity of the extended nucleotide(s) are determined by mass spectrometry (see, e.g., PCT Application Nos. PCT/US96/03651 (WO96/29431) and PCT/US97/20444 (WO 98/20019)).

[0094] b. Polymorphism-Specific Probe Hybridization

[0095] A preferred detection method is allele specific hybridization using probes overlapping the polymorphic site and having about 5, 10, 15, 20, 25, or 30 nucleotides around the polymorphic region. The probes can contain naturally occurring or modified nucleotides (see U.S. Pat. No. 6,156, 501). For example, oligonucleotide probes may be prepared in which the known polymorphic nucleotide is placed centrally (allele-specific probes) and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324: 163; Saiki et al. (1989) Proc. Natl Acad. Sci USA 86: 6230; and Wallace et al. (1979) Nucl. Acids Res. 6: 3543). Such allele specific oligonucleotide hybridization techniques may be used for the simultaneous detection of several nucleotide changes in different polymorphic regions. For example, oligonucleotides having nucleotide sequences of specific allelic variants are attached to a hybridizing membrane and this membrane is then hybridized with labeled sample nucleic acid. Analysis of the hybridization signal will then reveal the identity of the nucleotides of the sample nucleic acid. In a preferred embodiment, several probes capable of hybridizing specifically to allelic variants are attached to a solid phase support, e.g., a "chip". Oligonucleotides can be bound to a solid support by a variety of processes, including

lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix, Santa Clara, Calif.). Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) Human Mutation 7: 244 and in Kozal et al. (1996) Nature Medicine 2: 753. In one embodiment, a chip includes all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment.

[0096] C. Nucleic Acid Amplification-Based Methods

[0097] In other detection methods, it is necessary to first amplify at least a portion of a COX6B gene, GPI-1 gene or another gene associated with cardiovascular disease prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification is performed for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 1 50 and 350 base pairs apart.

[0098] Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87: 1874-1878); transcriptional amplification system (Kwoh, D. Y. et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86: 1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio/Technology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

[0099] Alternatively, allele specific amplification technology, which depends on selective PCR amplification may be used in conjunction with the alleles provided herein. Oligonucleotides used as primers for specific amplification may carry the allelic variant of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238; Newton et al. (1989) Nucl. Acids Res. 17:2503). In addition it may be desirable to introduce a restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1).

[0100] d. Nucleic Acid Sequencing-Based Methods

[0101] In one embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence at least a portion of the COX6B gene, GPI-1 gene or other gene associated with cardiovascular disease and to detect allelic variants, e.g., mutations, by comparing the sequence of the sample sequence with the corresponding wild-type (control) sequence. Exemplary sequencing reactions include those based on techniques developed by Maxam and Gilbert (Proc. Natl. Acad. Sci. USA (1977) 74:560) or Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci 74:5463). It is also contemplated that any of a variety of automated

sequencing procedures may be used when performing the subject assays (Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example, U.S. Pat. No. 5,547,835 and International PCT Application No. WO 94/16101, entitled DNA Sequencing by Mass Spectrometry by H. Koster; U.S. Pat. No. 5,547,835 and International PCT Application No. WO 94/21822, entitled "DNA" Sequencing by Mass Spectrometry Via Exonuclease Degradation" by H. Koster), and U.S. Pat. No. 5,605,798 and International Patent Application No. PCT/US96/03651 entitled DNA Diagnostics Based on Mass Spectrometry by H. Koster; Cohen et al. (1996) Adv Chromatogr 36:127-162; and Griffin et al. (1993) Appl Biochem Biotechnol 38:147-159). It will be evident to one skilled in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track sequencing or an equivalent, e.g., where only one nucleotide is detected, can be carried out. Other sequencing methods are disclosed, e.g., in U.S. Pat. No. 5,580,732 entitled "Method of DNA sequencing employing a mixed DNA-polymer chain probe" and U.S. Pat. No. 5,571,676 entitled "Method for mismatchdirected in vitro DNA sequencing".

[0102] e. Restriction Enzyme Digest Analysis

[0103] In some cases, the presence of a specific allele in nucleic acid, particularly DNA, from a subject can be shown by restriction enzyme analysis. For example, a specific nucleotide polymorphism can result in a nucleotide sequence containing a restriction site which is absent from the nucleotide sequence of another allelic variant.

[0104] f. Mismatch Cleavage

[0105] Protection from cleavage agents, such as, but not limited to, a nuclease, hydroxylamine or osmium tetroxide and with piperidine, can be used to detect mismatched bases in RNA/RNA DNA/DNA, or RNA/DNA heteroduplexes (Myers, et al. (1985) Science 230:1242). In general, the technique of "mismatch cleavage" starts by providing heteroduplexes formed by hybridizing a control nucleic acid, which is optionally labeled, e.g., RNA or DNA, comprising a nucleotide sequence of an allelic variant with a sample nucleic acid, e.g, RNA or DNA, obtained from a tissue sample. The double-stranded duplexes are treated with an agent, which cleaves single-stranded regions of the duplex such as duplexes formed based on basepair mismatches between the control and sample strands. For instance, RNA/ DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digest the mismatched regions.

[0106] In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine whether the control and sample nucleic acids have an identical nucleotide sequence or in which nucleotides they differ (see, for example, Cotton et al. (1988) Proc. Natl Acad Sci USA 85: 4397; Saleeba et al. (1992) Methods Enzymol. 217: 286-295). The control or sample nucleic acid is labeled for detection.

[0107] g. Electrophoretic Mobility Alterations

In other embodiments, alteration in electrophoretic mobility is used to identify the type of allelic variant in the COX6B gene, GPI-1 gene or other gene associated with cardiovascular disease. For example, single-strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766, see also Cotton (1993) Mutat Res 285:125-144; and Hayashi (1992) Genet Anal Tech Appl 9:73-79). Single-stranded DNA fragments of sample and control nucleic acids are denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In another preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5).

[0109] h. Polyacrylamide Gel Electrophoresis

[0110] In yet another embodiment, the identity of an allelic variant of a polymorphic region in the COX6B gene, GPI-1 gene or other gene associated with cardiovascular disease is obtained by analyzing the movement of a nucleic acid comprising the polymorphic region in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:1275).

[0111] i. Oligonucleotide Ligation Assay (OLA)

[0112] In another embodiment, identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Pat. No. 4,998,617 and in Landegren, U. et al., Science 241:1077-1080 (1988). The OLA protocol uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand. Nickerson, D. A. et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.

[0113] Several techniques based on this OLA method have been developed and can be used to detect specific allelic variants of a polymorphic region of a gene. For example, U.S. Pat. No. 5,593,826 discloses an OLA using an oligonucleotide having 3'-amino group and a 5'-phosphorylated oligonucleotide to form a conjugate having a phosphoramidate linkage. In another variation of OLA described in Tobe et al. (1996) Nucl. Acids Res. 24: 3728), OLA combined with PCR permits typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each OLA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.

[0114] j. SNP Detection Methods

[0115] Also provided are methods for detecting single nucleotide polymorphisms. Because single nucleotide polymorphisms constitute sites of variation flanked by regions of invariant sequence, their analysis requires no more than the determination of the identity of the single nucleotide present at the site of variation and it is unnecessary to determine a complete gene sequence for each patient. Several methods have been developed to facilitate the analysis of such single nucleotide polymorphisms.

[0116] In one embodiment, the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Pat. No. 4,656,127). According to the method, a primer complementary to the allelic sequence immediately 3' to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer. Such incorporation renders the primer resistant to exonuclease, and thereby permits its detection. Since the identity of the exonuclease-resistant derivative of the sample is known, a finding that the primer has become resistant to exonucleases reveals that the nucleotide present in the polymorphic site of the target molecule was complementary to that of the nucleotide derivative used in the reaction. This method has the advantage that it does not require the determination of large amounts of extraneous sequence data.

[0117] In another embodiment, a solution-based method for determining the identity of the nucleotide of a polymorphic site is employed (Cohen, D. et al. (French Patent 2,650,840; PCT Application No. WO91/02087)). As in the Mundy method of U.S. Pat. No. 4,656,127, a primer is employed that is complementary to allelic sequences immediately 3' to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.

[0118] k. Genetic Bit Analysis

[0119] An alternative method, known as Genetic Bit Analysis or GBA™ is described by Goelet, et al. (U.S. Pat. No. 6,004,744, PCT Application No. 92/15712). The method of Goelet, et al. uses mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a

polymorphic site. The labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated. In contrast to the method of Cohen et al. (French Patent 2,650,840; PCT Application No. WO91/02087), the method of Goelet, et al. is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.

[0120] I. Other Primer-Guided Nucleotide Incorporation Procedures

[0121] Other primer-guided nucleotide incorporation procedures for assaying polymorphic sites in DNA have been described (Komher, J. S. et al., Nucl. Acids Res. 17:7779-7784 (1989); Sokolov, B. P., Nucl. Acids Res. 18:3671 (1990); Syvanen, A. C., et al., Genomics 8:684-692 (1990), Kuppuswamy, M. N. et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:1143-1147 (1991); Prezant, T. R. et al., Hum. Mutat. 1:159-164 (1992); Ugozzoli, L. et al., GATA 9:107-112 (1992); Nyren, P. et al., Anal. Biochem. 208:171-175 (1993)). These methods differ from GBA™ in that they all rely on the incorporation of labeled deoxynucleotides to discriminate between bases at a polymorphic site. In such a format, since the signal is proportional to the number of deoxynucleotides incorporated, polymorphisms that occur in runs of the same nucleotide can result in signals that are proportional to the length of the run (Syvanen, A. C., et al., Amer. J. Hum. Genet. 52:46-59 (1993)).

[0122] For determining the identity of the allelic variant of a polymorphic region located in the coding region of a gene, yet other methods than those described above can be used. For example, identification of an allelic variant which encodes a mutated protein can be performed by using an antibody specifically recognizing the mutant protein in, e.g., immunohistochemistry or immunoprecipitation. Binding assays are known in the art and involve, e.g., obtaining cells from a subject, and performing binding experiments with a labeled lipid, to determine whether binding to the mutated form of the protein differs from binding to the wild-type protein.

[0123] m. Molecular Structure Determination

[0124] If a polymorphic region is located in an exon, either in a coding or non-coding region of the gene, the identity of the allelic variant can be determined by determining the molecular structure of the mRNA, pre-mRNA, or cDNA. The molecular structure can be determined using any of the above described methods for determining the molecular structure of the genomic DNA, e.g., sequencing and SSCP.

[0125] n. Mass Spectrometric Methods

[0126] Nucleic acids can also be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Pat. No. 5,605,798, allowed co-pending U.S. application Ser. No. 08/617,256, allowed co-pending U.S. application Ser. No. 08/744,481, U.S. application Ser. No. 08/990,851, International PCT Application No. WO 98/20019). These methods can be automated (see, e.g., co-pending U.S. application Ser. No. 09/285,481, which describes an automated process line). Preferred among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. application Ser. Nos. 08/617,256,

09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed co-pending U.S. application Ser. No. 08/744,481, International PCT Application No. PCT/US97/20444, published as International PCT Application No. WO 98/20019, and based upon U.S. application Ser. Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787, 639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Ser. No. 09/074,936, allowed U.S. application Ser. No. 08/787,639, and U.S. application Ser. Nos. 08/746,055 and 08/786,988, and published International PCT Application No. WO 98/20020).

[0127] A preferred format for performing the analyses is a chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-coated substrate, preferably in the form of an array. More preferably, when analyses are performed using mass spectrometry, particularly MALDI, nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the peaks in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in allowed co-pending U.S. application Ser. No. 08/787,639, co-pending U.S. application Ser. Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Ser. No. PCT/US97/ 20195, which published as International PCT Application No. WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAY™. MassARRAY™ relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments relating to genetic variants without tags.

[0128] Multiplex methods allow for the simultaneous detection of more than one polymorphic region in a particular gene or polymorphic regions in several genes. This is the preferred method for carrying out haplotype analysis of allelic variants of the COX6B and/or GPI-1 genes separately, or along with allelic variants of one or more other genes associated with cardiovascular disease.

[0129] Multiplexing can be achieved by several different methodologies. For example, several mutations can be simultaneously detected on one target sequence by employing corresponding detector (probe) molecules (e.g., oligonucleotides or oligonucleotide mimetics). The molecular weight differences between the detector oligonucleotides must be large enough so that simultaneous detection (multiplexing) is possible. This can be achieved either by the sequence itself (composition or length) or by the introduction of mass-modifying functionalities into the detector oligonucleotides (see below).

[0130] Mass modifying moieties can be attached, for instance, to either the 5'-end of the oligonucleotide, to the nucleobase (or bases), to the phosphate backbone, and to the 2'-position of the nucleoside (nucleosides) and/or to the terminal 3'-position. Examples of mass modifying moieties include, for example, a halogen, an azido, or of the type, XR, wherein X is a linking group and R is a mass-modifying

functionality. The mass-modifying functionality can thus be used to introduce defined mass increments into the oligonucleotide molecule.

[0131] The mass-modifying functionality can be located at different positions within the nucleotide moiety (see, e.g., U.S. Pat. No. 5,547,835 and International PCT Application No. WO 94/21822). For example, the mass-modifying moiety, M, can be attached either to the nucleobase, (in case of the c⁷-deazanucleosides also to C-7), to the triphosphate group at the alpha phosphate or to the 2'-position of the sugar ring of the nucleoside triphosphate. Modifications introduced at the phosphodiester bond, such as with alpha-thio nucleoside triphosphates, have the advantage that these modifications do not interfere with accurate Watson-Crick base-pairing and additionally allow for the one-step postsynthetic site-specific modification of the complete nucleic acid molecule e.g., via alkylation reactions (see, e.g., Nakamaye et al. (1988) Nucl. Acids Res. 16:9947-59). Particularly preferred mass-modifying functionalities are boronmodified nucleic acids since they are better incorporated into nucleic acids by polymerases (see, e.g., Porter et al. (1995) Biochemistry 34:11963-11969; Hasan et al. (1996) Nucleic Acids Res. 24:2150-2157; Li et al. (1995) Nucl. Acids Res. 23:4495-4501).

[0132] Furthermore, the mass-modifying functionality can be added so as to affect chain termination, such as by attaching it to the 3'-position of the sugar ring in the nucleoside triphosphate. For those skilled in the art, it is clear that many combinations can be used in the methods provided herein. In the same way, those skilled in the art will recognize that chain-elongating nucleoside triphosphates can also be mass-modified in a similar fashion with numerous variations and combinations in functionality and attachment positions.

[0133] For example, without being bound to any particular theory, the mass-modification can be introduced for X in XR as well as using oligo-/polyethylene glycol derivatives for R. The mass-modifying increment (m) in this case is 44, i.e. five different mass-modified species can be generated by just changing m from 0 to 4 thus adding mass units of 45 (m=0), 89 (m=1), 133 (m=2), 177 (m=3) and 221 (m=4) to the nucleic acid molecule (e.g., detector oligonucleotide (D) or the nucleoside triphosphates, respectively). The oligo/polyethylene glycols can also be monoalkylated by a lower alkyl such as, but are not limited to, methyl, ethyl, propyl, isopropyl and t-butyl. Other chemistries can be used in the mass-modified compounds (see, e.g., those described in Oligonucleotides and Analogues, A Practical Approach, F. Eckstein, editor, IRL Press, Oxford, 1991).

[0134] In yet another embodiment, various mass-modifying functionalities, R, other than oligo/polyethylene glycols, can be selected and attached via appropriate linking chemistries, X. A simple mass-modification can be achieved by substituting H for halogens, such as F, Cl, Br and/or I, or pseudohalogens such as CN, SCN, NCS, or by using different alkyl, aryl or aralkyl moieties such as methyl, ethyl, propyl, isopropyl, t-butyl, hexyl, phenyl, substituted phenyl, benzyl, or functional groups such as CH₂F, CHF₂, CF₃, Si(CH₃)₃, Si(CH₃)₂(C₂H₅), Si(CH₃)(C₂H₅)₂, Si(C₂H₅)₃. Yet another mass-modification can be obtained by attaching homo- or heteropeptides through the nucleic acid molecule (e.g., detector (D)) or nucleoside triphosphates). One

example, useful in generating mass-modified species with a mass increment of 57, is the attachment of oligoglycines (m) to nucleic acid molecules (r), e.g., mass-modifications of 74 (r=1, m=0), 131 (r=1, m=1), 188 (r=1, m=2), 245 (r=1, m=3) are achieved. Simple oligoamides also can be used, e.g., mass-modifications of 74 (r=1, m=0), 88 (r=2, m=0), 102 (r=3, m=0), 116(r=4, m=0), etc. are obtainable. Variations in additions to those set forth herein will be apparent to the skilled artisan.

[0135] Different mass-modified detector oligonucleotides can be used to simultaneously detect all possible variants/mutants simultaneously. Alternatively, all four base permutations at the site of a mutation can be detected by designing and positioning a detector oligonucleotide, so that it serves as a primer for a DNA/RNA polymerase with varying combinations of elongating and terminating nucleoside triphosphates. For example, mass modifications also can be incorporated during the amplification process.

[0136] A different multiplex detection format is one in which differentiation is accomplished by employing different specific capture sequences which are position-specifically immobilized on a flat surface (e.g., a 'chip array'). If different target sequences T1-Tn are present, their target capture sites TCS1-TCSn will specifically interact with complementary immobilized capture sequences C1-Cn. Detection is achieved by employing appropriately mass differentiated detector oligonucleotides D1 -Dn, which are mass modifying functionalities M1-Mn.

[0137] o. Other Methods p Additional methods of analyzing nucleic acids include amplification-based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using OJ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.

[0138] Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.

[0139] 2. Primers and Probes

[0140] Primers refer to nucleic acids which are capable of specifically hybridizing to a nucleic acid sequence which is adjacent to a polymorphic region of interest or to a polymorphic region and are extended. A primer can be used alone in a detection method, or a primer can be used together with at least one other primer or probe in a detection method. Primers can also be used to amplify at least a portion of a nucleic acid. For amplifying at least a portion of a nucleic acid, a forward primer (i.e., 5' primer) and a reverse primer (i.e., 3' primer) will preferably be used. Forward and reverse primers hybridize to complementary stands of a double stranded nucleic acid, such that upon extension from each primer, a double stranded nucleic acid is amplified.

[0141] Probes refer to nucleic acids which hybridize to the region of interest and which are not further extended. For example, a probe is a nucleic acid which hybridizes adjacent to or at a polymorphic region of a COX6B gene, a GPI-1 gene or another gene associated with cardiovascular disease and which by hybridization or absence of hybridization to the DNA of a subject will be indicative of the identity of the allelic variant of the polymorphic region of the gene. Pre-

ferred probes have a number of nucleotides sufficient to allow specific hybridization to the target nucleotide sequence. Where the target nucleotide sequence is present in a large fragment of DNA, such as a genomic DNA fragment of several tens or hundreds of kilobases, the size of a probe may have to be longer to provide sufficiently specific hybridization, as compared to a probe which is used to detect a target sequence which is present in a shorter fragment of DNA. For example, in some diagnostic methods, a portion of a COX6B gene, a GPI-1 gene or another gene associated with cardiovascular disease may first be amplified and thus isolated from the rest of the chromosomal DNA and then hybridized to a probe. In such a situation, a shorter probe will likely provide sufficient specificity of hybridization. For example, a probe having a nucleotide sequence of about 10 nucleotides may be sufficient.

[0142] Preferred primers and probes hybridize adjacent to or at the polymorphic sites described in TABLES 1-3. In addition, preferred primers include SEQ ID NOS.: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118

[0143] Primers and probes (RNA, DNA (single-stranded or double-stranded), PNA and their analogs) described herein may be labeled with any detectable reporter or signal moiety including, but not limited to radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent and any other light producing chemicals. Additionally, these probes may be modified without changing the substance of their purpose by terminal addition of nucleotides designed to incorporate restriction sites or other useful sequences, proteins, signal generating ligands such as acridinium esters, and/or paramagnetic particles.

[0144] These probes may also be modified by the addition of a capture moiety (including, but not limited to paramagnetic particles, biotin, fluorescein, dioxigenin, antigens, antibodies) or attached to the walls of microtiter trays to assist in the solid phase capture and purification of these probes and any DNA or RNA hybridized to these probes. Fluorescein may be used as a signal moiety as well as a capture moiety, the latter by interacting with an anti-fluorescein antibody.

[0145] Any probe or primer can be prepared according to methods well known in the art and described, e.g., in Sambrook, J. Fritsch, E. F., and Maniatis, T. (1989(Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. For example, discrete fragments of the DNA can be prepared and cloned using restriction enzymes. Alternatively, probes and primers can be prepared using the Polymerase Chain Reaction (PCR) using primers having an appropriate sequence.

[0146] Oligonucleotides may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch (Novato, Calif.); Applied Biosystems (Foster City, Calif.), etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

[0147] H. Transgenic Animals

[0148] Methods for making transgenic animals using a variety of transgenes have been described in Wagner et al. (1981) Proc. Nat. Acad. Sc. U.S.A. 78: 5016; Stewart et al. (1982) Science 217: 1046; Constantini et al. (1981) Nature 294: 92; Lacy et al. (1983) Cell 34: 343; McKnight et al. (1983) Cell 34: 335; Brinstar et al. (1983) Nature 306: 332; Palmiter et al. (1982) Nature 300: 611; Palmiter et al. (1982) Cell 29: 701; and Palmiter et al. (1983) Science 222: 809. Such methods are described in U.S. Pat. Nos. 6,175,057; 6,180,849 and 6,133,502.

[0149] The term "transgene" is used herein to describe genetic material that has been or is about to be artificially inserted into the genome of a mammalian cell, particularly a mammalian cell of a living animal. The transgene is used to transform a cell, meaning that a permanent or transient genetic change, preferably a permanent genetic change, is induced in a cell following incorporation of exogenous DNA. A permanent genetic change is generally achieved by introduction of the DNA into the genome of the cell. Vectors for stable integration include, but are not limited to, plasmids, retroviruses and other animal viruses and YACS. Of interest are transgenic mammals, including, but are not limited to, cows, pigs, goats, horses and others, and particularly rodents, including rats and mice. Preferably, the transgenic-animals are mice.

[0150] Transgenic animals contain an exogenous nucleic acid sequence present as an extrachromosomal element or stably integrated in all or a portion of its cells, especially germ cells. Unless otherwise indicated, it will be assumed that a transgenic animal comprises stable changes to the germline sequence. During the initial construction of the animal, "chimeras" or "chimeric animals" are generated, in which only a subset of cells have the altered genome. Chimeras are primarily used for breeding purposes in order to generate the desired transgenic animal. Animals having a heterozygous alteration are generated by breeding of chimeras. Male and female heterozygotes are typically bred to generate homozygous animals.

[0151] The exogenous gene is usually either from a different species than the animal host, or is otherwise altered in its coding or non-coding sequence. The introduced gene may be a wild-type gene, naturally occurring polymorphism (e.g., as described for COX6B, GPI-1 and other genes associated with cardiovascular disease) or a genetically manipulated sequence, for example having deletions, substitutions or insertions in the coding or non-coding regions. When the introduced gene is a coding sequence, it is usually operably linked to a promoter, which may be constitutive or inducible, and other regulatory sequences required for expression in the host animal.

[0152] Transgenic animals can comprise other genetic alterations in addition to the presence of alleles of COX6B and/or GPI-1 genes. For example, the genome can be altered to affect the function of the endogenous genes, contain marker genes, or contain other genetic alterations (e.g., alleles of other genes associated with cardiovascular disease).

[0153] A "knock-out" of a gene means an alteration in the sequence of the gene that results in a decrease of function of the target gene, preferably such that target gene expression

is undetectable or insignificant. A knock-out of an endogenous COX6B or GPI-1 gene means that function of the gene has been substantially decreased so that expression is not detectable or only present at insignificant levels. "Knock-out" transgenics can be transgenic animals having a heterozygous knock-out of the COX6B or GPI-1 gene or a homozygous knock-out of one or both of these genes. "Knock-outs" also include conditional knock-outs, where alteration of the target gene can occur upon, for example, exposure of the animal to a substance that promotes target gene alteration, introduction of an enzyme hat promotes recombination at the target gene site (e.g., Cre in the Cre-lox system), or other method for directing the target gene alteration postnatally.

[0154] A "knock-in" of a target gene means an alteration in a host cell genome that results in altered expression (e.g., increased (including ectopic)) of the target gene, e.g., by introduction of an additional copy of the target gene, or by operatively inserting a regulatory sequence that provides for enhanced expression of an endogenous copy of the target gene. "Knock-in" transgenics of interest can be transgenic animals having a knock-in of the COX6B or GPI-1. Such transgenics can be heterozygous or homozygous for the knock-in gene. "Knock-ins" also encompass conditional knock-ins.

[0155] A construct is suitable for use in the generation of transgenic animals if it allows the desired level of expression of a COX6B or GPI-1 encoding sequence or the encoding sequence of another gene associated with cardiovascular disease. Methods of isolating and cloning a desired sequence, as well as suitable constructs for expression of a selected sequence in a host animal, are well known in the art and are described below.

[0156] For the introduction of a gene into the subject animal, it is generally advantageous to use the gene as a gene construct wherein the gene is ligated downstream of a promoter capable of and operably linked to expressing the gene in the subject animal cells. Specifically, a transgenic non-human mammal showing high expression of the desired gene can be created by microinjecting a vector ligated with said gene into a fertilized egg of the subject non-human mammal (e.g., rat fertilized egg) downstream of various promoters capable of expressing the protein and/or the corresponding protein derived from various mammals (rabbits, dogs, cats, guinea pigs, hamsters, rats, mice etc., preferably rats etc.) Useful vectors include Escherichia coli-derived plasmids, Bacillus subtilis-derived plasmids, yeast-derived plasmids, bacteriophages such as lambda, phage, retroviruses such as Moloney leukemia virus, and animal viruses such as vaccinia virus or baculovirus.

[0157] Useful promoters for such gene expression regulation include, for example, promoters for genes derived from viruses (cytomegalovirus, Moloney leukemia virus, JC virus, breast cancer virus etc.), and promoters for genes derived from various mammals (humans, rabbits, dogs, cats, guinea pigs, hamsters, rats, mice etc.) and birds (chickens etc.) (e.g., genes for albumin, insulin II, erythropoietin, endothelin, osteocalcin, muscular creatine kinase, platelet-derived growth factor beta, keratins K1, K10 and K14, collagen types I and II, atrial natriuretic factor, dopamine beta-hydroxylase, endothelial receptor tyrosine kinase (generally abbreviated Tie2), sodium-potassium adenosine triph-

osphorylase (generally abbreviated Na,K-ATPase), neurofilament light chain, metallothioneins I and IIA, metalloproteinase I tissue inhibitor, MHC class I antigen (generally abbreviated H-2L), smooth muscle alpha actin, polypeptide chain elongation factor 1 alpha (EF-1 alpha), beta actin, alpha and beta myosin heavy chains, myosin light chains 1 and 2, myelin base protein, serum amyloid component, myoglobin, renin etc.).

[0158] It is preferable that the above-mentioned vectors have a sequence for terminating the transcription of the desired messenger RNA in the transgenic animal (generally referred to as terminator); for example, gene expression can be manipulated using a sequence with such function contained in various genes derived from viruses, mammals and birds. Preferably, the simian virus SV40 terminator etc. are commonly used. Additionally, for the purpose of increasing the expression of the desired gene, the splicing signal and enhancer region of each gene, a portion of the intron of a eukaryotic organism gene may be ligated 5' upstream of the promoter region, or between the promoter region and the translational region, or 3' downstream of the translational region as desired.

[0159] A translational region for a protein of interest can be obtained using the entire or portion of genomic DNA of blood, kidney or fibroblast origin from various mammals (humans, rabbits, dogs, cats, guinea pigs, hamsters, rats, mice etc.) or of various commercially available genomic DNA libraries, as a starting material, or using complementary DNA prepared by a known method from RNA of blood, kidney or fibroblast origin as a starting material. Also, an exogenous gene can be obtained using complementary DNA prepared by a known method from RNA of human fibroblast origin as a starting material. All these translational regions can be utilized in transgenic animals.

[0160] To obtain the translational region, it is possible to prepare DNA incorporating an exogenous gene encoding the protein of interest in which the gene is ligated downstream of the above-mentioned promoter (preferably upstream of the translation termination site) as a gene construct capable of being expressed in the transgenic animal.

[0161] DNA constructs for random integration need not include regions of homology to mediate recombination. Where homologous recombination is desired, the DNA constructs will comprise at least a portion of the target gene with the desired genetic modification, and will include regions of homology to the target locus. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown et al. (1990) Methods in Enzymology 185:527-537.

[0162] The transgenic animal can be created by introducing a COX6B or GPI-1 gene construct into, for example, an unfertilized egg, a fertilized egg, a spermatozoon or a germinal cell containing a primordial germinal cell thereof, preferably in the embryogenic stage in the development of a non-human mammal (more preferably in the single-cell or fertilized cell stage and generally before the 8-cell phase), by standard means, such as the calcium phosphate method, the electric pulse method, the lipofection method, the agglutination method, the microinjection method, the particle gun

method, the DEAE-dextran method and other such method. Also, it is possible to introduce a desired COX6B or GPI-1 gene into a somatic cell, a living organ, a tissue cell, or the like, by gene transformation methods, and utilize it for cell culture, tissue culture etc. Furthermore, these cells may be fused with the above-described germinal cell by a commonly known cell fusion method to create a transgenic animal.

[0163] For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of appropriate growth factors, such as leukemia inhibiting factor (LIF). When ES cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected. The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in in vitro culture.

[0164] Animals containing more than one transgene, such as allelic variants of COX6B and/or GPI-1 and/or other genes associated with cardiovascular disease can be made by sequentially introducing individual alleles into an animal in order to produce the desired phenotype (manifestation or predisposition to cardiovascular disease).

[0165] I. Effect of Allelic Variants on the Encoded Protein and Disease Related Phenotype

[0166] The effect of an allelic variant on a COX6B or GPI-1 protein (altered amount, stability, location and/or activity) can be determined according to methods known in the art. Alielic variants of the COX6B and GPI-1 genes can be assayed individually or in combination with other variants known to be associated with cardiovascular disease.

[0167] If the mutation is located in an intron, the effect of the mutation can be determined, e.g., by producing transgenic animals in which the allelic variant linked to lipid metabolism and/or cardiovascular disease has been introduced and in which the wild-type gene or predominant allele may have been knocked out. Comparison of the level of expression of the protein in the mice transgenic for the allelic variant with mice transgenic for the predominant allele will reveal whether the mutation results in increased or decreased synthesis of the associated protein and/or aberrant tissue distribution of the associated protein. Such analysis

could also be performed in cultured cells, in which the human variant allele gene is introduced and, e.g., replaces the endogenous gene in the cell. Thus, depending on the effect of the alteration a specific treatment can be administered to a subject having such a mutation. Accordingly, if the mutation results in decreased production of a COX6B or GPI-1 protein, the subject can be treated by administration of a compound which increases synthesis, such as by increasing COX6B or GPI-1 gene expression, and wherein the compound acts at a regulatory element different from the one which is mutated. Alternatively, if the mutation results in increased COX6B or GPI-1 protein levels, the subject can be treated by administration of a compound which reduces protein production, e.g., by reducing COX6B or GPI-1 gene expression or a compound which inhibits or reduces the activity of COX6B or GPI-1 protein.

[0168] J. Diagnostic and Prognostic Assays

[0169] Typically, an individual allelic variant that associates with a risk factor for cardiovascular disease will not be used in isolation as a prognosticator for a subject developing high cholesterol, low HDL or cardiovascular disease. An allelic variant typically will be one of a plurality of indicators that are utilized. The other indicators may be the manifestation of other risk factors for cardiovascular disease, e.g., family history, high blood pressure, weight, activity level, etc., or additional allelic variants in the same or other genes associated with altered lipid metabolism and/or cardiovascular disease.

[0170] Useful combinations of allelic variants of the COX6B gene and/or the GPI-1 gene can be determined by examining combinations of variants of these genes, which are assayed individually or assayed simultaneously using multiplexing methods as described above or any other labelling method that allows different variants to be identified. In particular, variants of COX6B gene and/or the GPI-1 gene may be assayed using kits (see below) or any of a variety microarrays known to those in the art. For example, oligonucleotide probes comprising the polymorphic regions surrounding any polymorphism in the COX6B or GPI-1 gene may be designed and fabricated using methods such as those described in U.S. Pat. Nos. 5,492,806; 5,525,464; 5,695,940; 6,018,041; 6,025,136; WO 98/30883; WO 98/56954; WO99/09218; WO 00/58516; WO 00/58519, or references cited therein. Similarly one of skill in the art can determine useful combinations of allelic variants of the COX6B and/or GPI-1 genes along with variants of other genes associated with cardiovascular disease.

[0171] K. Pharmacogenomics

[0172] It is likely that subjects having one or more different allelic variants of the COX6B or GPI-1 polymorphic regions will respond differently to therapeutic drugs to treat cardiovascular disease or conditions. For example, there are numerous drugs available for lowering cholesterol levels: including lovastatin (MEVACOR; Merck & Co.), simvastatin (XOCOR; Merck & Co.), dextrothyroxine (CHOLOXIN; Knoll Pharmaceutical Co.), pamaqueside (Pfizer), cholestryramine (QUESTRAN; Bristol-Myers Squibb), colestipol (COLESTID; Pharmacia & Upjohn), acipomox (Pharmacia & Upjohn), fenofibrate (LIPIDIL), Warner-Lambert), gemfibrozil (LOPID; cerivastatin (LIPOBAY; Bayer), fluvastatin (LESCOL; Novartis), atorvastatin (LIPITOR, Warner-Lambert), etofylline clofibrate (DUOLIP; Merckle (Germany)), probucol (LORELCO; Hoechst Marion Roussel), omacor (Pronova (Norway), etofibrate (Merz (Germany), clofibrate (ATROMID-S; Wyeth-Ayerst (AHP)), and niacin (numerous manufacturers). All patients do not respond identically to these drugs. Alleles of the COX6B or the GPI-1 gene which associate with altered lipid metabolism will be useful alone or in conjunction with markers in other genes associated with the development of cardiovascular disease to predict a subject's response to a therapeutic drug. For example, multiplex primer extension assays or microarrays comprising probes for alleles are useful formats for determining drug response. A correlation between drug responses and specific alleles or combinations of alleles of the COX6B or GPI-1 genes and other genes associated with cardiovascular disease can be shown, for example, by clinical studies wherein the response to specific drugs of subjects having different allelic variants of polymorphic regions of the COX6B or GPI-1 genes alone or in combination with allelic variants of other genes are compared. Such studies can also be performed using animal models, such as mice having various alleles and in which, e.g., the endogenous COX6B or GPI-1 genes have been inactivated such as by a knock-out mutation. Test drugs are then administered to the mice having different alleles and the response of the different mice to a specific compound is compared. Accordingly, assays, microarrays and kits are provided for determining the drug which will be best suited for treating a specific disease or condition in a subject based on the individual's genotype. For example, it will be possible to select drugs which will be devoid of toxicity, or have the lowest level of toxicity possible for treating a subject having a disease or condition, e.g., cardiovascular disease or high cholesterol or low HDL.

[0173] L. Kits

[0174] Kits can be used to indicate whether a subject is at risk of developing high cholesterol, low HDL and/or cardiovascular disease. The kits can also be used to determine if a subject who has high cholesterol or low HDL carries associated variants in the COX6B or GPI-1 genes or other cardiovascular disease-related genes. This information could be used, e.g., to optimize treatment of such individuals as a particular genotype may be associated with drug response.

[0175] In preferred embodiments, the kits comprise a probe or primer which is capable of hybridizing adjacent to or at a polymorphic region of a OX6B or GPI-1 gene and thereby identifying whether the COX6B or GPI-1 gene contains an allelic variant which is associated with cardio-vascular disease. Primers or probes that specifically hybridize at or adjacent to the SNPs described in Tables 1-3 could be included. In particular, primers or probes which comprise the sequences of SEQ ID NOs.: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118 could be included in the kits. The kits preferably further comprise instructions for use in carrying out assays, interpreting results and diagnosing a subject as having a predisposition toward developing high cholesterol, low HDL and/or cardiovascular disease.

[0176] Preferred kits for amplifying a region of a COX6B gene, GPI-1 gene, or other genes associated with cardiovascular disease (such as those listed in Table 3) comprise two primers which flank a polymorphic region of the gene of interest. For example primers can comprise the sequences of

SEQ ID NOs.: 3, 4, 8, 9, 41, 42, 46, 47, 51, 52, 56, 57, 61, 62, 66, 67, 71, 72, 76, 77, 81, 82, 86, 87, 91, 92, 96, 97, 101, 102, 106, 107, 111, 112, 116, and 117. For other assays, primers or probes hybridize to a polymorphic region or 5' or 3' to a polymorphic region depending on which strand of the target nucleic acid is used. For example, specific probes and primers comprise sequences designated as SEQ ID NOs: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118. Those of skill in the art can synthesize primers and probes which hybridize adjacent to or at the polymorphic regions described in TABLES 1-3 and other SNPs in genes associated with cardiovascular disease.

[0177] Yet other kits comprise at least one reagent necessary to perform an assay. For example, the kit can comprise an enzyme, such as a nucleic acid polymerase. Alternatively the kit can comprise a buffer or any other necessary reagent.

[0178] Yet other kits comprise microarrays of probes to detect allelic variants of COX6B, GPI-1, and other genes associated with cardiovascular disease. The kits further comprise instructions for their use and interpreting the results.

[0179] The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention. The practice of methods and development of the products provided herein employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription and Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., New York); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds., Immunochemical Methods In Cell and Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

EXAMPLE 1

[0180] Isolation of DNA from Blood Samples of a Stratified Population

[0181] Blood samples were obtained from a population of unrelated Caucasian women between the ages of 18-79 (average age=48). The women had, no response to media campaigns, attended the Twin Research Unit at the St. Thomas Hospital in London, England. For current purposes, only one member of a twin pair was used to insure that all observations were independent. Blood samples from 1400 unrelated individuals were measured for levels of choles-

terol and HDL. Cholesterol and HDL level in blood samples were quantitated using standard assay methods.

[0182] The population was stratified into pools of 200 people, which represented the lower extreme and the upper extreme for serum levels of cholesterol and HDL.

Pool 1: Individuals were considered to have low cholesterol (0.12–3.6 mmoles/L). Pool 2: Individuals were considered to have high cholesterol (5.25–11.57 mmoles/L). HDL Pool 3: Individuals were considered to have low levels of HDL (0.240–1.11 mmoles/L) Pool 4: Individuals were considered to have high levels of HDL (2.10–3.76 mmoles/L).

[0183] DNA Extraction Protocol

[0184] DNA was extracted from blood samples of each of the pools by utilizing the following protocol.

[0185] Section 1

[0186] 1. Blood was extracted into EDTA tubes.

[0187] 2. Blood sample was spun at 3,000 rpm for 10 minutes in a clinical centrifuge.

[0188] 3. The buffy coat (the leukocytes, a yellowish layer of cells on top of the red blood cells) was removed and pooled into a 1 ml conical tube.

[0189] 4. 0.9% saline was added to fill the tube and resuspend the leucocytes. Sample were immediately further processed or stored at 4° C. for 24 hrs.

[0190] 5. The sample was spun at 2,500 rpm for 10 minutes.

[0191] 6. The buffy coat was again removed as cleanly as possible leaving behind any red cells, the sample was suspended in red cell lysis buffer and left for 20 minutes at 4° C.

[0192] 7. The sample was spun again at 2,500 rpm for 10 minutes. If a pellet of unlysed red cells remained lying above the leucocytes the treatment with red cell lysis buffer was repeated.

[0193] 8. The leucocyte pellet was resuspended in 2 ml 0.9% saline.

[0194] 9. The DNA was liberated by the addition of leucocyte lysis buffer—the tube was capped and gently inverted several times, until the liquid became viscous with DNA. The samples were handled with care to avoid shearing and damage to the DNA.

[0195] 10. Samples were frozen for storage prior to full extraction.

[0196] Section 2

[0197] 11. 2 ml of 5 M sodium perchlorate was added to the thawed sample and mixed by inversion. The sample was heated to 60° C. for 30-40 minutes to fully denature proteins.

[0198] 12. An equal volume of chloroform/isoamyl alcohol (24:1) was added at room temperature and the sample mixed for 10 minutes.

[0199] 13. The sample was spun without a break at 3,000 rpm for 10 minutes.

[0200] 14. The top aqueous phase was removed into a clean tube and two volumes of cold 100% ethanol added and mixed by inversion to precipitate DNA.

[0201] 15. The DNA was removed using a sterile loop and resuspended in 1-5 ml TE buffer depending on the DNA yield.

[0202] 16. The optical density was measured at 260 and 280 nm to check yield and purity of the DNA sample. For use in Examples 2 and 3, all DNA had an absorbance ratio of 1.6 at 260/280, a total yield of 32 μ g and a concentration of 10 ng/ μ l. If initial purity levels were unacceptable a re-extraction was carried out (sections 12-15 above).

EXAMPLE 2

[0203] Detection of an Association Between an SNP at Position 86 of the Human COX6B Gene and High Cholesterol

[0204] DNA samples (as prepared in Example 1), representing 200 women, from the lower extreme, pool 1 (low levels of cholesterol) and the upper extreme, pool 2 (high levels of cholesterol) were amplified and analyzed for genetic differences using a MassEXTEND™ assay detection method. For each pool, single nucleotide polymorphisms were examined throughout the entire genome to detect differences in allelic frequency of a variant allele between the pools.

[0205] PCR Amplification of Samples from Pools 1 and 2

[0206] PCR primers were synthesized by Operon (Alameda, Calif.) using phosphoramidite chemistry. Amplification of the COX6B target sequence was carried out in two 50 μ l PCR reactions with 100 ng of pooled human genomic DNA, obtained as described in Example 1, taken from samples in pool 1 or pool 2, although amounts ranging from 100 ng to 1 ug could be used. Individual DNA concentrations within the pooled samples were present in equal concentration with a final concentration of 0.5 ng. Each reaction contained 1×PCR buffer (Qiagen, Valencia, Calif.), 200 µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl₂, and 25 pmols of the long primer containing both the universal primer sequence and the target specific sequence 5'-AGCGGATAA-CAATTTCACACAGGTAGTCTGGTTCTGGTTGGGG-3' (SEQ ID NO.: 4), 2 pmoles of the short primer 5'-AGGAT-TCAGCACCATGGC-3' (SEQ ID NO.: 3) and 10 pmoles of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCGGATAACAATTTCACA-CAGG-3' (SEQ ID NO.: 121). Alternatively, the biotinylated universal primer could be 5'-GGCGCACGCCTCCACG-3' (SEQ ID NO.: 122). After an initial round of amplification with the target with the specific forward (long) and reverse primer (short), the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded

DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (Waltham, Mass.) (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min.

[0207] Immobilization of DNA

[0208] The 50 μ l PCR reaction was added to 25 μ l of streptavidin coated magnetic bead (Dynal, Lake Success, N.Y.) prewashed three times and resuspended in 1 M NH₄Cl, 0.06 M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.

[0209] Genotyping

[0210] The frequency of the alleles at position 86 in the COX6B gene was measured using the MassEXTEND™ assay and MALDI-TOF. The SNP identified at position 86 of COX6B in the GenBank sequence is represented as a C to T transversion. The MassEXTEND™ assay used detected the sequence of the complementary strand, thus the SNP was represented as G to A in the primer extension products. The DNA coated magnetic beads were resuspended in 26 mM Tris-HCL pH 9.5, 6.5 mM MgCl₂ and 50 mM each of dTTPs and 50 mM each of ddCTP, ddATP, ddGTP, 2.5 U of a thermostable DNA polymerase (Amersham Pharmacia Biotech, Piscataway, N.J.) and 20 pmoles of a template specific oligonucleotide primer 5'-AATCAAGAACTACAAGAC-3' (SEQ ID NO.: 5) (Operon, Alameda, Calif.). Primer extension occurred with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nl of each sample to a silicon chip preloaded with 150 nl of H3PA (3-hydroxy picolinic acid) (Sigma Aldrich, St Louis, Mo.) matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker Daltonics, Billerica, Mass.; PerSeptive, Foster City, Calif.). The mass of the primer used in the MassEXTEND™ reaction was 5493.70 daltons. The predominant allele is extended by the addition of ddC, which has a mass of 5766.90 daltons. The allelic variant results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6111.10 daltons.

[0211] In addition to being analyzed as part of a pool, each individual sample (0.5 ng) was amplified as described above and analyzed individually using a MassEXTEND™ reaction as described above.

[0212] Pooled populations of women (200 women per pool) with high cholesterol (pool 2) showed an increase in the frequency of the A allele at nucleotide position 86 of COX6B as compared with those with low levels of cholesterol (pool 1) (see FIG. 1). The association of this allelic variant of the COX6B gene with high cholesterol gave a statistically significant value of 14.30 using a 1-degree-of-freedom chi-squared test of association. In other words, the increase of 2.75% to 9.05% is significant, with a p value of

0.000156 (see FIG. 1). The genotype of each of the individuals in the pooled population was also determined by carrying out MassEXTENDTM reactions on each DNA samples individually. These analysis confirmed the pooling data showing that there was an increase in the frequency of the A allele of 2.27% to 9.93%, (p=0.0000061). The genotypes in pool 2 showed a decrease in the homozygous GG genotype from 95.4% to 82.35% and an increase in the heterozygous GA genotype from 4.55% to 15.44%. None of the individuals with low levels of serum cholesterol exhibited the homozygous AA genotype.

EXAMPLE 3

[0213] Detection of an Association Between an SNP at Position 2577 of the Human GPI-1 Gene and Low HDL

[0214] DNA samples (as prepared in Example 1), representing 200 women, from pool 3 (low level of HDL) and pool 4 (high levels of HDL) were amplified and analyzed for genetic differences using a MassEXTEND™ detection method. For each pool, SNPs were examined throughout the genome to detect differences in allelic frequency of variant alleles between the pools.

[0215] PCR Amplification of Samples from Pools 3 and 4

[0216] PCR primers were synthesized by Operon (Alameda, Calif.) using phosphoramidite chemistry. Amplification of the GPI-1 target sequence was carried out in single 50 µl PCR reaction with 100 ng of pooled human genomic DNA (200 samples), obtained as described in Example 1, taken from samples in pool 3 or pool 4, although amounts ranging from 100 ng to 1 ug could be used. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration of 0.5 ng. Each reaction contained 1×PCR buffer (Qiagen, Valencia, Calif.), 200 uM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl₂, and 25 pmols of the forward primer containing both the universal primer sequence and the target specific short sequence 5'-AGCAGGGCTTCCTCCTTC-3' (SEQ ID NO.: 8) 2 pmoles of the long primer 5'-AGCGGATAACAATTTCA-CACAGGTGACCCAGCCGTACCTATTC-3' (SEQ ID NO.: 9) and 10 pmoles of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCG-GATAACAATTTCACACAGG-3' (SEQ ID NO.: 121). After an initial round of amplification with the target with the specific forward (long) and reverse primer (short), the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (Watham, Mass.) (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min.

[0217] Immobilization of DNA

[0218] The 50 µl PCR reaction was added to 25 µl of streptavidin coated magnetic bead (Dynal, Lake Success, N.Y.) prewashed three times and resuspended in 1 M NH₄Cl,

0.06 M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.

[0219] Genotyping

[0220] The frequency of the alleles at position 2577 in the GPI-1 gene was measured using the MassEXTEND™ assay and MALDI-TOF. The SNP identified at position 2577 of GPI-1 in the GenBank sequence is represented as a G to A transversion. The MassEXTEND™ assay used detected this sequence, thus the SNP was represented as C to T in the primer extension products. The DNA coated magnetic beads were resuspended in 26 mM Tris-HCL pH 9.5, 6.5 mM MgCl and 50 mM each of dTTPs and 50 mM each of ddCTP, ddATP, ddGTP, 2.5 U of a thermostable DNA polymerase (Amersham Pharmacia Biotech, Piscataway, N.J.) and 20 pmoles of a template specific oligonucleotide primer 5'-AAGGGAGACAGATTTGGC-3' (SEQ ID NO.: 10) (Operon, Alameda, Calif.). Primer extension occurred with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nl each sample to a silicon chip preloaded with 150 nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker Daltonics, Billerica, Mass.; PerSeptive, Foster City, Calif.). The mass of the primer used in the MassEXTEND™ reaction was 561 2.70 daltons. The predominant allele is extended by the addition of ddC, which has a mass of 5885.90 daltons. The allelic variant results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6230.10 daltons.

[0221] In addition to being analyzed as a pool, each individual sample (0.5 ng) was amplified as described above and analyzed individually using the MassEXTENDTM reaction as described above.

[0222] Pooled populations of women (200 women per pool) with low HDL (pool 3) showed an increase in the T allele of 11.33% at nucleotide position 2577 as compared with those with high levels of HDL (pool 4). The association of this allelic variant of the GPI-1 gene with low HDL gave a statistically significant value of 15.04 using a 1-degreeof-freedom chi-squared test of association. In other words, the increase of 16.23% to 27.57% is significant, with a p value of 0.0001064 (see FIG. 2). The genotype of each of the individuals in the pooled population was also determined by carrying out individual MassEXTEND™ reactions on individual DNA samples. These analysis confirmed the pooling data showing that there was an increase in the frequency of the T allele of 19.49% to 26.1%, (p=0.024). The measured genotypes in pool 3 showed a decrease in the homozygous CC genotype from 65.24% to 54.21% and an increase in the heterozygous CT genotype from 30.51% to 39.25%. The homozygous TT genotypes increased 2.3%.

[0223] Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEO ID NOS: 122
<210> SEQ ID NO 1
<211> LENGTH: 439
<212> TYPE: DNA
<213> ORGANISM: Homo Sapien
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (45)...(305)
<400> SEQUENCE: 1
ttgagctgca ggttgaatcc ggggtgcctt taggattcag cacc atg gcg gaa gac
                                                                                                56
                                                                  Met Ala Glu Asp
atg gag acc aaa atc aag aac tac aag acc gcc cct ttt gac agc cgc Met Glu Thr Lys Ile Lys Asn Tyr Lys Thr Ala Pro Phe Asp Ser Arg 5 10 15 20
                                                                                              104
tte eee aac eag aac eag act aga aac tge tgg eag aac tae etg gae Phe Pro Asn Gln Asn Gln Thr Arg Asn Cys Trp Gln Asn Tyr Leu Asp
ttc cac cgc tgt cag aag gca atg acc gct aaa gga ggc gat atc tct Phe His Arg Cys Gln Lys Ala Met Thr Ala Lys Gly Gly Asp Ile Ser
                                                                                              200
gtg tgc gaa tgg tac cag cgt gtg tac cag tcc ctc tgc ccc aca tcc
                                                                                              248
Val Cys Glu Trp Tyr Gln Arg Val Tyr Gln Ser Leu Cys Pro Thr Ser
                                      60
```

tgg gtc aca gac tgg gat gag caa cgg gct gaa ggc acg ttt ccc ggg Trp Val Thr Asp Trp Asp Glu Gln Arg Ala Glu Gly Thr Phe Pro Gly 70 75 80	296
aag ato tga actggotgoa totooottto ototgtooto catoottoto Lys Ile * 85	345
ccaggatggt gaagggggac ctggtaccca gtgatcccca ccccaggatc ctaaatcatg	405
acttacctgc taataaaaac tcattggaaa agtg	439
<210> SEQ ID NO 2 <211> LENGTH: 85 <212> TYPE: PRT <213> ORGANISM: Homo Sapien	
<400> SEQUENCE: 2	
Met Ala Glu Asp Met Glu Thr Lys Ile Lys Asn Tyr Lys Thr Ala Pro 1 5 10 15	
Phe Asp Ser Arg Phe Pro Asn Gln Asn Gln Thr Arg Asn Cys Trp Gln 20 25 30	
Asn Tyr Leu Asp Phe His Arg Cys Gln Lys Ala Met Thr Ala Lys Gly 35 40 45	
Gly Asp Ile Ser Val Cys Glu Trp Tyr Gln Arg Val Tyr Gln Ser Leu 50 55 60	
Cys Pro Thr Ser Trp Val Thr Asp Trp Asp Glu Gln Arg Ala Glu Gly 65 70 80	
Thr Phe Pro Gly Lys Ile 85	
<210> SEQ ID NO 3 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 3	
aggattcagc accatggc	18
<210> SEQ ID NO 4 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 4	
agoggataac aatttoacac aggtagtotg gttotggttg ggg	43
<210> SEQ ID NO 5 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MassExtend primer	
<400> SEQUENCE: 5	
aatcaagaac tacaagac	18
<210> SEQ ID NO 6	

<211> LENGTH: 2921 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (103)(1848)														
<400> SEQUENCE: 6														
cagogagogo ogtogtotgo cogggeoogo coatoggggt coccaaceco atooggacoo														
ogcogoooga gogogogoo coggaagcao cogootocog go atg gtg oto aag Met Val Leu Lys ${f 1}$														
ged ttd ttd ded acg tgd tgd gtd tdg gdg gad agd ggg dtg dtg gtg Ala Phe Phe Pro Thr Cys Cys Val Ser Ala Asp Ser Gly Leu Leu Val 5 15 20	162													
gga cgg tgg gtg ccg gag cag agc agc gcc gtg gtc ctg gcg gtc ctg Gly Arg Trp Val Pro Glu Gln Ser Ser Ala Val Val Leu Ala Val Leu 25 30 35	210													
cac ttt ccc ttc atc ccc atc cag gtc aag cag ctc ctg gcc cag gtg His Phe Pro Phe Ile Pro Ile Gln Val Lys Gln Leu Leu Ala Gln Val 40 45 50	258													
cgg cag goc agc cag gtg ggc gtg gcc gtg ctg ggc acc tgg tgc cac Arg Gln Ala Ser Gln Val Gly Val Ala Val Leu Gly Thr Trp Cys His 55 60 65	306													
tgc cgg cag gag ccc gag gag agc ctg ggc cgc ttc ctg gag agc ctg Cys Arg Gln Glu Pro Glu Glu Ser Leu Gly Arg Phe Leu Glu Ser Leu 70 75 80	354													
ggt gct gtc ttc ccc cat gag ccc tgg ctg cgg ctg tgc cgg gag aga Gly Ala Val Phe Pro His Glu Pro Trp Leu Arg Leu Cys Arg Glu Arg 85 90 95 100	402													
ggc ggc acg ttc tgg agc tgc gag gcc acc cac cgg caa gcg ccc act Gly Gly Thr Phe Trp Ser Cys Glu Ala Thr His Arg Gln Ala Pro Thr 105 110 115	450													
god odd ggt god odd ggt gag gad dag gtd atg otd atd tto tat gad Ala Pro Gly Ala Pro Gly Glu Asp Gln Val Met Leu Ile Phe Tyr Asp 120 125 130	498													
cag cgc cag gtg ttg ctg tca cag cta cac ctg ccc acc gtc ctg ccc Gln Arg Gln Val Leu Leu Ser Gln Leu His Leu Pro Thr Val Leu Pro 135 140 145	546													
gac cgc cag gct gga gcc acc act gcc agc acg ggg ggc ctg gcc Asp Arg Gln Ala Gly Ala Thr Thr Ala Ser Thr Gly Gly Leu Ala Ala 150 160	594													
gtc ttc gac acg gta gca cgc agt gag gtg ctc ttc cgc agt gac cgc Val Phe Asp Thr Val Ala Arg Ser Glu Val Leu Phe Arg Ser Asp Arg 165 170 175 180	642													
ttt gat gag ggc ccc gtg cgg ctg agc cac tgg cag tcg gag ggc gtg Phe Asp Glu Gly Pro Val Arg Leu Ser His Trp Gln Ser Glu Gly Val 185 190 195	690													
gag gcc agc atc ctc gcg gag ctg gcc agg cga gcc tcg gga ccc att Glu Ala Ser Ile Leu Ala Glu Leu Ala Arg Arg Ala Ser Gly Pro Ile 200 205 210	738													
tgt ctg ctg ttg gcc agc ctg ctg tcg ctg gtc tca gct gtc agt gcc Cys Leu Leu Ala Ser Leu Leu Ser Leu Val Ser Ala Val Ser Ala 215 220 225	786													
tgc cga gtg ttc aag ctc tgg ccc ctg tcc ttc ctc ggg agc aaa ctc Cys Arg Val Phe Lys Leu Trp Pro Leu Ser Phe Leu Gly Ser Lys Leu 230 235 240	834													
too acg tgc gaa cag ctc cgg cac cgg ctg gag cac ctc acg cta atc	882													

												COII	<u></u>	ucu			
Ser 245	Thr	Сув	Glu	Gln	Leu 250	Arg	His	Arg	Leu	Glu 255	His	Leu	Thr	Leu	Ile 260		
	agt Ser															930	
	acg Thr															978	
	tcc Ser															1026	
	gtt Val 310															1074	
	tgg Trp															1122	
Āsp	cag Gln	Val	Leu	Gly 345	Arg	Phe	Phe	Leu	Tyr 350	His	Ile	His	Leu	Trp 355	Ile	1170	
Ser	tac Tyr	Ile	His 360	Leu	Met	Ser	Pro	Phe 365	Val	Glu	His	Ile	Leu 370	Trp	His	1218	
Vaĺ	ggc Gly	Leu 375	Ser	Āla	Сув	Leu	Ğ1у 380	Leu	Thr	Val	Ala	Leu 385	Ser	Leu	Leu	1266	
Ser	gac Asp 390	Ile	Ile	Ala	Leu	Leu 395	Thr	Phe	His	Ile	Tyr 400	Сув	Phe	Tyr	Val	1314	
T y r 405	gga Gly	Āla	Arg	Leu	Tyr 410	Сув	Leu	Lys	Ile	His 415	Gly	Leu	Ser	Ser	Leu 420	1362	
	cgt Arg															1410	
Asp	tcc Ser	Сув	Ser 440	Tyr	Asp	Leu	Asp	Gln 445	Leu	Phe	Ile	Gly	Thr 450	Leu	Leu	1458	
Phe	acc Thr	Ile 455	Leu	Leu	Phe	Leu	Leu 460	Pro	Thr	Thr	Ala	Leu 465	Tyr	Tyr	Leu	1506	
Val	Phe 470	Thr	Leu	Leu	Arg	Leu 475	Leu	Val	Val	Ala	Val 480	Gln	Gly	Leu	Ile	1554	
His 485	ctg Leu	Leu	Val	Asp	Leu 490	Ile	Asn	Ser	Leu	Pro 495	Leu	Tyr	Ser	Leu	Gly 500	1602	
Leu	egg Arg	Leu	Сув	Arg 505	Pro	Tyr	Arg	Leu	Ala 510	Āla	Gly	Val	Lys	Phe 515	Arg	1650	
Val	ctc Leu	Arg	His 520	Glu	Ala	Ser	Arg	Pro 525	Leu	Arg	Leu	Leū	Met 530	Gln	Ile	1698	
Asn	cca Pro	Leu 535	Pro	Tyr	Ser	Arg	Val 540	Val	His	Thr	Tyr	Arg 545	Leu	Pro	Ser	1746	
tgt	ggc	tgc	cac	ccc	aag	cac	tcc	tgg	ggc	gcc	ctg	tgc	cgc	aag	ctg	1794	

ttc ctt ggg gag ctc atc tac ccc tgg agg cag aga ggg gac aag cag Phe Leu Gly Glu Leu Ile Tyr Pro Trp Arg Gln Arg Gly Asp Lys Gln 565 570 580	1842										
gac tga gggaactget ggetegeetg geaceaceae aeggeeaeag ceageeatet Asp *	1898										
gctctgccag ggtggcacca gctcagctgg cgcatgtccc gtgctttgtg gacgctqctg	1958										
tgtgctcctg aacacggcag gccctgctat cacaccttgg gcttggaggt cattgggagt	2018										
gagcagatgt gggggtggcc agccaggctg gccgcactcc atcactggca ctgcctgcct	2078										
tgggaccege tteccaectg etgeggteac catggtggeg ageacageaa ecceaggtgt	2138										
ccagagcact gocccatgcc caccotgcat acccaggtcc agagggtccg tccaccacag	2198										
cagccccagg tggagggctg gtctccctgg gggctcccca gtggctctgc cctggctgtg	2258										
ggggtggagg gaccttgcca ggatgaaccc tecagtccca ggcaccetct agctecctca	2318										
googaacago accotgoato tgggggattg aagoagtogo tgaccoccgt coccagoggg	2378										
cccgggccct cactccctga accacacggg gtttatttgc ggatgttccc tggagaggtc	2438										
gctttgtgaa gaaaccatca gcaggctgtg agcatcgcca ggctgctgtg ggggcgggag	2498										
cagecteagt gteaagggee tgeecaetga eecageegta eetattegte caeggtgeee	2558										
cgtagcagca ggtcctgcgg ccaaatctgt ctcccttcat gggcctccca gggaaggagg	2618										
aagccctgct gtgcagacac ctctgtggcc ccccaggggt gtgagcggcc tggggagggg	2678										
geogtggeae tgaggeegaa agtgeetgee agaeggeaeg gtetgggtge gggtgtteee	2738										
tgtgagcccg agtccgcttc aggaggggag cctgcaggtg ccggctggtg aggggatgac	2798										
gcgctgtggg tgggaggagg cagcgcccat ctcagcagca ccaggactgc ctgggactcc	2858										
ctggcaaccc agcaccgggg aagccgtcag ctgctgtgac aataaaacct gccccgtgtc	2918										
Łgg	2921										
<210> SEQ ID NO 7 <211> LENGTH: 581 <212> TYPE: PRT <213> ORGANISM: Homo Sapien											
<400> SEQUENCE: 7											
Met Val Leu Lys Ala Phe Phe Pro Thr Cys Cys Val Ser Ala Asp Ser 1 5 10 15											
Gly Leu Leu Val Gly Arg Trp Val Pro Glu Gln Ser Ser Ala Val Val 20 25 30											
Leu Ala Val Leu His Phe Pro Phe Ile Pro Ile Gln Val Lys Gln Leu 35 40 45											
Leu Ala Gln Val Arg Gln Ala Ser Gln Val Gly Val Ala Val Leu Gly 50 55 60											
Thr Trp Cys His Cys Arg Gln Glu Pro Glu Glu Ser Leu Gly Arg Phe 70 75 80											
Leu Glu Ser Leu Gly Ala Val Phe Pro His Glu Pro Trp Leu Arg Leu 85 90 95											
Cys Arg Glu Arg Gly Gly Thr Phe Trp Ser Cys Glu Ala Thr His Arg											
Gln Ala Pro Thr Ala Pro Gly Ala Pro Gly Glu Asp Gln Val Met Leu											

Cys Gly Cys His Pro Lys His Ser Trp Gly Ala Leu Cys Arg Lys Leu 550 560

555

		115					120					125			
Ile	Phe 130	Tyr	Asp	Gln	Arg	Gln 135	Val	Leu	Leu	Ser	Gln 140	Leu	His	Leu	Pro
Thr 145	Val	Leu	Pro	Asp	Arg 150	Gln	Ala	Gly	Ala	Thr 155	Thr	Ala	Ser	Thr	Gly 160
Gly	Leu	Ala	Ala	Val 165	Phe	Asp	Thr	Val	Ala 170	Arg	Ser	Glu	Val	Leu 175	Phe
Arg	Ser	Asp	Arg 180	Phe	Asp	Glu	Gly	Pro 185	Val	Arg	Leu	Ser	His 190	Trp	Gln
Ser	Glu	Gly 195	Val	Glu	Ala	Ser	11e 200	Leu	Ala	Glu	Leu	Ala 205	Arg	Arg	Ala
Ser	Gly 210	Pro	Ile	Сув	Leu	Leu 215	Leu	Ala	Ser	Leu	Leu 220	Ser	Leu	Val	Ser
Ala 225	Val	Ser	Ala	Сув	Arg 230	Val	Phe	Lys	Leu	Trp 235	Pro	Leu	Ser	Phe	Leu 240
Gly	Ser	Lys	Leu	Ser 245	Thr	Сув	Glu	Gln	Leu 250	Arg	His	Arg	Leu	Glu 255	His
Leu	Thr	Leu	11e 260	Phe	Ser	Thr	Arg	Lув 265	Ala	Glu	Asn	Pro	Ala 270	Gln	Leu
Met	Arg	Lys 275	Ala	Asn	Thr	Val	Ala 280	Ser	Val	Leu	Leu	Asp 285	Val	Ala	Leu
Gly	Leu 290	Met	Leu	Leu	Ser	Trp 295	Leu	His	Gly	Arg	Ser 300	Arg	Ile	Gly	His
Leu 305	Ala	Asp	Ala	Leu	Val 310	Pro	Val	Ala	Asp	His 315	Val	Ala	Glu	Glu	Leu 320
Gln	His	Leu	Leu	Gln 325	Trp	Leu	Met	Gly	Ala 330	Pro	Ala	Gly	Leu	Lys 335	Met
Asn	Arg	Ala	Leu 340	Asp	Gln	Val	Leu	Gly 345	Arg	Phe	Phe	Leu	T y r 350	His	Ile
His	Leu	Trp 355	Ile	Ser	Tyr	Ile	His 360	Leu	Met	Ser	Pro	Phe 365	Val	Glu	His
Ile	Leu 370	Trp	His	Val	Gly	Leu 375	Ser	Ala	Cys	Leu	Gl y 380	Leu	Thr	Val	Ala
Leu 385	Ser	Leu	Leu	Ser	Asp 390	Ile	Ile	Ala	Leu	Leu 395	Thr	Phe	His	Ile	Tyr 400
Сув	Phe	Tyr	Val	Ty r 405	Gly	Ala	Arg	Leu	Tyr 410	Сув	Leu	Lys	Ile	His 415	Gly
Leu	Ser		Leu 420		Arg	Leu		Ar g 425		Lys	Lys		A sn 430		Leu
Arg	Gln	Arg 435	Val	Asp	Ser	Сув	Ser 440	Tyr	Asp	Leu	Asp	Gln 445	Leu	Phe	Ile
Gly	Thr 450	Leu	Leu	Phe	Thr	Ile 455	Leu	Leu	Phe	Leu	Leu 460	Pro	Thr	Thr	Ala
Leu 465	Tyr	Tyr	Leu	Val	Phe 470	Thr	Leu	Leu	Arg	Leu 475	Leu	Val	Val	Ala	Val 480
Gln	Gly	Leu	Ile	His 485	Leu	Leu	Val	Asp	Leu 490	Ile	Asn	Ser	Leu	Pro 495	Leu
Tyr	Ser	Leu	Gly 500	Leu	Arg	Leu	Сув	Ar g 505	Pro	Tyr	Arg	Leu	Ala 510	Ala	Gly
Val	Lув	Phe 515	Arg	Val	Leu	Arg	His 520	Glu	Ala	Ser	Arg	Pro 525	Leu	Arg	Leu

Leu Met Gln Ile Asn Pro Leu Pro Tyr Ser Arg Val Val His Thr Tyr 530 535 540	
Arg Leu Pro Ser Cys Gly Cys His Pro Lys His Ser Trp Gly Ala Leu 545 550 560	
Cys Arg Lys Leu Phe Leu Gly Glu Leu Ile Tyr Pro Trp Arg Gln Arg 565 570 575	
Gly Asp Lys Gln Asp 580	
<210> SEQ ID NO 8 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer	
<400> SEQUENCE: 8	
agcagggctt cctccttc 18	3
<210> SEQ ID NO 9 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer	
<400> SEQUENCE: 9	
aggggataac aattteacac aggtgaceca geegtaceta tte 43	3
<210> SEQ ID NO 10 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: MassExtend primer	
<400> SEQUENCE: 10	
aagggagaca gatttggc 18	3
<pre><210> SEQ ID NO 11 <211> LENGTH: 1790 <212> TYPE: DNA <213> ORGANISM: Homo sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (131)(1612) <223> OTHER INFORMATION: Nucleotide sequence encoding Cholesterol ester transfer protein (CETP)</pre>	
<400> SEQUENCE: 11	
gtgaatctct ggggccagga agaccctgct gcccggaaga gcctcatgtt ccgtgggggc 60	נ
tgggcggaca tacatatacg ggctccagge tgaacggctc gggccactta cacaccactg 120)
cctgataacc atg ctg gct gcc aca gtc ctg acc ctg gcc ctg ctg ggc 169 Met Leu Ala Ala Thr Val Leu Thr Leu Ala Leu Leu Gly 1 5 10	à
aat gee cat gee tge tee aaa gge ace teg cae gag gea gge ate gtg Asn Ala His Ala Cys Ser Lys Gly Thr Ser His Glu Ala Gly Ile Val 15 20 25	7
tgc cgc atc acc aag cct gcc ctc ctg gtg ttg aac cac gag act gcc Cys Arg Ile Thr Lys Pro Ala Leu Leu Val Leu Asn His Glu Thr Ala	5

							J J 11	СТП	uou		
30			35			40				45	
				ttc Phe							313
				ctc Leu							361
				ttg Leu							409
				gat Asp 100							457
				tat Tyr							505
				ttc Phe							553
				tgt C y s							601
				ttc Phe							649
				atc Ile 180							697
				ctg Leu							745
				gcc Ala							793
				att Ile							841
				tac Tyr							889
				gag Glu 260		Leu					937
				cgc Arg							985
				aag L y s							1033
				gag Glu							1081
				atc Ile							1129
				gtc Val							1177

tgc caa aac aag gga gtc gtg gtc aat tct tca gtg atg gtg aaa ttc Cys Gln Asn Lys Gly Val Val Asn Ser Ser Val Met Val Lys Phe 350 355 365 ctc ttt cca cgc cca gac cag caa cat tct gta gct tac aca ttt gaa Leu Phe Pro Arg Pro Asp Gln Gln His Ser Val Ala Tyr Thr Phe Glu	1225
Cys Gln Asn Lys Gly Val Val Asn Ser Ser Val Met Val Lys Phe 350 355 360 365 ctc ttt cca cgc cca gac cag caa cat tct gta gct tac aca ttt gaa	1225
370 375 380	1273
gag gat atc gtg act acc gtc cag gcc tcc tat tct aag aaa aag ctc Glu Asp Ile Val Thr Thr Val Gln Ala Ser Tyr Ser Lys Lys Leu 385 390 395	1321
tto tta ago oto ttg gat tto cag att aca coa aag act gtt too aac Phe Leu Ser Leu Leu Asp Phe Gln Ile Thr Pro Lys Thr Val Ser Asn 400 405 410	1369
ttg act gag agc agc tcc gag tcc atc cag agc ttc ctg cag tca atg Leu Thr Glu Ser Ser Ser Glu Ser Ile Gln Ser Phe Leu Gln Ser Met 415 420 425	1417
atc acc gct gtg ggc atc cct gag gtc atg tct cgg ctc gag gta gtg Ile Thr Ala Val Gly Ile Pro Glu Val Met Ser Arg Leu Glu Val Val 430 435 440	1465
ttt aca gcc ctc atg aac agc aaa ggc gtg agc ctc ttc gac atc atc Phe Thr Ala Leu Met Asn Ser Lys Gly Val Ser Leu Phe Asp Ile Ile 450 455 460	1513
aac cct gag att atc act cga gat ggc ttc ctg ctg ctg cag atg gac Asn Pro Glu Ile Ile Thr Arg Asp Gly Phe Leu Leu Leu Gln Met Asp 465 470 475	1561
ttt ggc ttc cct gag cac ctg ctg gtg gat ttc ctc cag agc ttg agc Phe Gly Phe Pro Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser 480 485 490	1609
tag aagteteeaa ggaggteggg atggggettg tagcagaagg caageaccag	1662
gctcacaget ggaaceetgg tgteteetee agegtggtgg aagttgggtt aggagtaegg	1722
agatggagat tggctcccaa ctcctcccta tcctaaaggc ccactggcat taaagtgctg	1782
tatocaag	1790
<210> SEQ ID NO 12 <211> LENGTH: 493 <212> TYPE: PRT <213> ORGANISM: Homo sapien	
<400> SEQUENCE: 12	
Met Leu Ala Ala Thr Val Leu Thr Leu Ala Leu Leu Gly Asn Ala His 1 5 10 15	
Ala Cys Ser Lys Gly Thr Ser His Glu Ala Gly Ile Val Cys Arg Ile 20 25 30	
Thr Lys Pro Ala Leu Leu Val Leu Asn His Glu Thr Ala Lys Val Ile 35 40 45	
Gln Thr Ala Phe Gln Arg Ala Ser Tyr Pro Asp Ile Thr Gly Glu Lys 50 55 60	
Ala Met Met Leu Leu Gly Gln Val Lys Tyr Gly Leu His Asn Ile Gln 65 70 75 80	
Ile Ser His Leu Ser Ile Ala Ser Ser Gln Val Glu Leu Val Glu Ala 85 90 95	
Lys Ser Ile Asp Val Ser Ile Gln Asn Val Ser Val Val Phe Lys Gly 100 105 110	

Thr Leu Lys Tyr Gly Tyr Thr Thr Ala Trp Trp Leu Gly Ile Asp Gln

		115					120					125			
Ser	Ile 130	Asp	Phe	Glu	Ile	Asp 135	Ser	Ala	Ile	Asp	Leu 140	Gln	Ile	Asn	Thr
Gln 145	Leu	Thr	Сув	Asp	Ser 150	Gly	Arg	Val	Arg	Thr 155	Asp	Ala	Pro	Asp	Сув 160
Tyr	Leu	Ser	Phe	His 165	Lys	Leu	Leu	Leu	His 170	Leu	Gln	Gly	Glu	Arg 175	Glu
Pro	Gly	Trp	Ile 180	Lys	Gln	Leu	Phe	Thr 185	Asn	Phe	Ile	Ser	Phe 190	Thr	Leu
Lys	Leu	Val 195	Leu	Lys	Gly	Gln	11e 200	Сув	Lys	Glu	Ile	Asn 205	Val	Ile	Ser
Asn	Ile 210	Met	Ala	Asp	Phe	Val 215	Gln	Thr	Arg	Ala	Ala 220	Ser	Ile	Leu	Ser
Asp 225	Gly	Asp	Ile	Gly	Val 230	Asp	Ile	Ser	Leu	Thr 235	Gly	Asp	Pro	Val	Ile 240
Thr	Ala	Ser	Tyr	Leu 245	Glu	Ser	His	His	L ys 250	Gly	His	Phe	Ile	Tyr 255	Lys
Asn	Val	Ser	Glu 260	Авр	Leu	Pro	Leu	Pro 265	Thr	Phe	Ser	Pro	Thr 270	Leu	Leu
Gly	Asp	Ser 275	Arg	Met	Leu	Tyr	Phe 280	Trp	Phe	Ser	Glu	Arg 285	Val	Phe	His
Ser	Leu 290	Ala	Lys	Val	Ala	Phe 295	Gln	Авр	Gly	Arg	Leu 300	Met	Leu	Ser	Leu
Met 305	Gly	Авр	Glu	Phe	Lys 310	Ala	Val	Leu	Glu	Thr 315	Trp	Gly	Phe	Asn	Thr 320
Asn	Gln	Glu	Ile	Phe 325	Gln	Glu	Val	Val	Gly 330	Gly	Phe	Pro	Ser	Gln 335	Ala
Gln	Val	Thr	Val 340	His	Cys	Leu	Lys	Met 345	Pro	Lys	Ile	Ser	C y s 350	Gln	Asn
_	Gly	355					360				_	365			
Arg	9ro 370	Asp	Gln	Gln	His	Ser 375	Val	Ala	Tyr	Thr	Phe 380	Glu	Glu	Asp	Ile
385	Thr				390		_		_	395	_				400
	Leu	_		405				_	410					415	
Ser	Ser		Glu 420		Ile			Phe 425		Gln	Ser		Ile 430		Ala
Val	Gly	Ile 435	Pro	Glu	Val	Met	Ser 440	Arg	Leu	Glu	Val	Val 445	Phe	Thr	Ala
Leu	Met 450	Asn	Ser	Lys	Gly	Val 455	Ser	Leu	Phe	Asp	Ile 460	Ile	Asn	Pro	Glu
465	Ile				470					475			Phe	Gly	Phe 480
Pro	Glu	His	Leu	Leu 485	Val	Asp	Phe	Leu	Gln 490	Ser	Leu	Ser			

<210> SEQ ID NO 13 <211> LENGTH: 3549 <212> TYPE: DNA <213> ORGANISM: Homo sapien

<222 <222	2> L0 3> 01	ME/I	KEY:	(175				ide	sequ	ience	e end	odir	ng li	ipopr	rotein	lipase
<400)> SE	EQUEI	NCE :	13												
ccc	ctati	taa ·	tacto	cata	aa g	ggaa	agoto	g cc	cacti	tota	gct	gada	tgc :	catco	cccttt	60
aaa	gggc	gac ·	ttgci	tcago	ag a	caaa	eaga	g gc	todaç	gece	tct	ccago	ect (ccgg	ctcagc	120
cgg	eteat	tca	gtag	gtee	ge go	eett	gcag	e te	etec	agag	gga	egeg	eee (egag	atg Met 1	177
			gcc Ala 5													225
			tcc Ser													273
			atc Ile													321
			act Thr													369
			ttc Phe													417
			aca Thr 85													465
			aag L y s													513
			gct Ala													561
			cag Gln													609
			cct Pro													657
			gct Ala 165													705
			ggc Gl y													753
-	_	-	agt Arg				-	_	_	-		_	_	-		801
			acc Thr													849
			cat His													897

-continued	
gga tgt aac att gga gaa gct atc cgc gtg att gca gag aga gga ctt Gly Cys Asn Ile Gly Glu Ala Ile Arg Val Ile Ala Glu Arg Gly Leu 245 250 255	945
gga gat gtg gac cag cta gtg aag tgc tcc cac gag cgc tcc att cat Gly Asp Val Asp Gln Leu Val Lys Cys Ser His Glu Arg Ser Ile His 260 265 270	993
ctc ttc atc gac tct ctg ttg aat gaa gaa aat cca agt aag gcc tac Leu Phe Ile Asp Ser Leu Leu Asn Glu Glu Asn Pro Ser Lys Ala Tyr 275 280 285	1041
agg tgc agt tcc aag gaa gcc ttt gag aaa ggg ctc tgc ttg agt tgt Arg Cys Ser Ser Lys Glu Ala Phe Glu Lys Gly Leu Cys Leu Ser Cys 290 295 300 305	1089
aga aag aac cgc tgc aac aat ctg ggc tat gag atc aat aaa gtc aga Arg Lys Asn Arg Cys Asn Asn Leu Gly Tyr Glu Ile Asn Lys Val Arg 310 315 320	1137
gcc aaa aga agc agc aaa atg tac ctg aag act cgt tct cag atg ccc Ala Lys Arg Ser Ser Lys Met Tyr Leu Lys Thr Arg Ser Gln Met Pro 325 330 335	1185
tac aaa gtc ttc cat tac caa gta aag att cat ttt tct ggg act gag Tyr Lys Val Phe His Tyr Gln Val Lys Ile His Phe Ser Gly Thr Glu 340 345 350	1233
agt gaa acc cat acc aat cag gcc ttt gag att tct ctg tat ggc acc Ser Glu Thr His Thr Asn Gln Ala Phe Glu Ile Ser Leu Tyr Gly Thr 355 360 365	1281
gtg gcc gag agt gag aac atc cca ttc act ctg cct gaa gtt tcc aca Val Ala Glu Ser Glu Asn Ile Pro Phe Thr Leu Pro Glu Val Ser Thr 370 375 380 385	1329
aat aag acc tac tcc ttc cta att tac aca gag gta gat att gga gaa Asn Lys Thr Tyr Ser Phe Leu Ile Tyr Thr Glu Val Asp Ile Gly Glu 390 395 400	1377
cta ctc atg ttg aag ctc aaa tgg aag agt gat tca tac ttt agc tgg Leu Leu Met Leu Lys Leu Lys Trp Lys Ser Asp Ser Tyr Phe Ser Trp 405 410 415	1425
tca gac tgg tgg agc agt ccc ggc ttc gcc att cag aag atc aga gta Ser Asp Trp Trp Ser Ser Pro Gly Phe Ala Ile Gln Lys Ile Arg Val 420 425 430	1473
aaa gca gga gag act cag aaa aag gtg atc ttc tgt tct agg gag aaa Lys Ala Gly Glu Thr Gln Lys Lys Val Ile Phe Cys Ser Arg Glu Lys 435 440 445	1521
gtq tct cat ttg caq aaa gga aag gca cct gcg gta ttt gtg aaa tgc Val Ser His Leu Gln Lys Gly Lys Ala Pro Ala Val Phe Val Lys Cys 450 455 460 465	1569
cat gac aag tot otg aat aag aag toa ggo tga aactgggoga atotacagaa His Asp Lys Ser Leu Asn Lys Lys Ser Gly * 470 475	1622
caaagaacgg catgtgaatt ctgtgaagaa tgaagtggag gaagtaactt ttacaaaaca	1682
tacccagtgt ttggggtgtt tcaaaagtgg attttcctga atattaatcc cagccctacc	1742
ettgttagtt attttaggag acagtetcaa geactaaaaa gtggctaatt caatttatgg	1802
ggtatagtgg ccaaatagca catcotocaa cgttaaaaga cagtggatca tgaaaagtgc	1862
tgttttgtcc tttgagaaag aaataattgt ttgagcgcag agtaaaataa ggctccttca tgtggcgtat tgggccatag cctataattg gttagaacct cctattttaa ttggaattct	1922 1982
ggatettteg gactgaggee tteteaaact ttactetaag tetecaagaa tacagaaaat	2042
getttteege ggeacgaate agacteatet acacageagt atgaatgatg ttttagaatg	2102

attccctctt	gctattggaa	tgtggtccag	acgtcaacca	ggaacatgta	acttggagag	2162
ggacgaagaa	agggtctgat	aaacacagag	gttttaaaca	gtccctacca	ttggcctgca	2222
tcatgacaaa	gttacaaatt	caaggagata	taaaatctag	atcaattaat	tcttaatagg	2282
ctttatcgtt	tattgcttaa	tecctetete	cccttcttt	tttgtctcaa	gattatatta	2342
taataatgtt	ctctgggtag	gtgttgaaaa	tgagcctgta	atcctcagct	gacacataat	2402
ttgaatggtg	cagaaaaaaa	aaagataccg	taattttatt	attagattct	ccaaatgatt	2462
ttcatcaatt	taaaatcatt	caatatctga	cagttactct	tcagttttag	gcttaccttg	2522
gtcatgcttc	agttgtactt	ccagtgcgtc	tcttttgttc	ctggctttga	catgaaaaga	2582
taggtttgag	ttcaaatttt	gcattgtgtg	agcttctaca	gattttagac	aaggaccgtt	2642
tttactaagt	aaaagggtgg	agaggttcct	ggggtggatt	cctaagcagt	gcttgtaaac	2702
categegtge	aatgagccag	atggagtacc	atgagggttg	ttatttgttg	ttttaacaa	2762
ctaatcaaga	gtgagtgaac	aactatttat	aaactagatc	tectattttt	cagaatgete	2822
ttctacgtat	aaatatgaaa	tgataaagat	gtcaaatatc	tcagaggcta	tagctgggaa	2882
cccgactgtg	aaagtatgtg	atatotgaac	acatactaga	aagetetgea	tgtgtgttgt	2942
cettcageat	aattcggaag	ggaaaacagt	cgatcaaggg	atgtattgga	acatgtegga	3002
gtagaaattg	ttcctgatgt	gccagaactt	cgaccctttc	tctgagagag	atgatcgtgc	3062
ctataaatag	taggaccaat	gttgtgatta	acatcatcag	gcttggaatg	aattetetet	3122
aaaaataaaa	tgatgtatga	tttgttgttg	gcatcccctt	tattaattca	ttaaatttct	3182
ggatttgggt	tgtgacccag	ggtgcattaa	cttaaaagat	tcactaaagc	agcacatagc	3242
actgggaact	ctggctccga	aaaactttgt	tatatatatc	aaggatgttc	tggctttaca	3302
ttttatttat	tagctgtaaa	tacatgtgtg	gatgtgtaaa	tggagcttgt	acatattgga	3362
aaggtcattg	tggctatctg	catttataaa	tgtgtggtgc	taactgtatg	tgtctttatc	3422
agtgatggtc	tcacagagcc	aactcactct	tatgaaatgg	gctttaacaa	aacaagaaag	3482
aaacgtactt	aactgtgtga	agaaatggaa	tcagctttta	ataaaattga	caacatttta	3542
ttaccac						3549

```
<210> SEQ ID NO 14
```

Met Glu Ser Lys Ala Leu Leu Val Leu Thr Leu Ala Val Trp Leu Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Leu Thr Ala Ser Arg Gly Gly Val Ala Ala Ala Asp Gln Arg Arg 20 25 30

Asp Phe Ile Asp Ile Glu Ser Lys Phe Ala Leu Arg Thr Pro Glu Asp 35 40 45

Thr Ala Glu Asp Thr Cys His Leu Ile Pro Gly Val Ala Glu Ser Val 50 55

Ala Thr Cys His Phe Asn His Ser Ser Lys Thr Phe Met Val Ile His 65 70 75 80

Gly Trp Thr Val Thr Gly Met Tyr Glu Ser Trp Val Pro Lys Leu Val 85 90 95

<211> LENGTH: 475

<212> TYPE: PRT

<213> ORGANISM: Homo sapien

<400> SEQUENCE: 14

Ala	Ala	Leu	Tyr 100	Lys	Arg	Glu	Pro	Asp 105	Ser	Asn	Val	Ile	Val 110	Val	Asp
Trp	Leu	Ser 115	Arg	Ala	Gln	Glu	His 120	туr	Pro	Val	Ser	Ala 125	Gly	туг	Thr
Lys	Leu 130	Val	Gly	Gln	Asp	Val 135	Ala	Arg	Phe	Ile	Asn 140	Trp	Met	Glu	Glu
Glu 145	Phe	Авп	Tyr	Pro	Leu 150	Авр	Asn	Val	His	Leu 155	Leu	Gly	Tyr	Ser	Leu 160
Gly	Ala	His	Ala	Ala 165	Gly	Ile	Ala	Gly	Ser 170	Leu	Thr	Asn	Lys	Lув 175	Val
Asn	Arg	Ile	Thr 180	Gly	Leu	Авр	Pro	Ala 185	Gly	Pro	Asn	Phe	Glu 190	Tyr	Ala
Glu	Ala	Pro 195	Ser	Arg	Leu	Ser	Pro 200	Asp	Asp	Ala	qaA	Phe 205	Val	Asp	Val
Leu	His 210	Thr	Phe	Thr	Arg	Gly 215	Ser	Pro	Gly	Arg	Ser 220	Ile	Gly	Ile	Gln
L ys 225	Pro	Val	Gly	His	Val 230	Asp	Ile	Tyr	Pro	Asn 235	Gly	Gly	Thr	Phe	Gln 240
Pro	Gly	Сув	Asn	Ile 245	Gly	Glu	Ala	Ile	A rg 250	Val	Ile	Ala	Glu	A rg 255	Gly
Leu	Gly	Asp	Val 260	Asp	Gln	Leu	Val	Lys 265	Сув	Ser	His	Glu	Arg 270	Ser	Ile
His	Leu	Phe 275	Ile	Asp	Ser	Leu	Leu 280	Asn	Glu	Glu	Asn	Pro 285	Ser	Lys	Ala
Tyr	Arg 290	Сув	Ser	Ser	Lуs	Glu 295	Ala	Phe	Glu	Lys	Gly 300	Leu	Сув	Leu	Ser
С у в 305	Arg	Lys	Asn	Arg	Сув 310	Asn	Asn	Leu	Gly	Tyr 315	Glu	Ile	Asn	Lys	Val 320
Arg	Ala	Lys	Arg	Ser 325	Ser	Lys	Met	Tyr	Leu 330	Lys	Thr	Arg	Ser	Gln 335	Met
Pro	Tyr	Lys	Val 340	Phe	His	Tyr	Gln	Val 345	Lys	Ile	His	Phe	Ser 350	Gly	Thr
Glu	Ser	Glu 355	Thr	His	Thr	Asn	Gln 360	Ala	Phe	Glu	Ile	Ser 365	Leu	Tyr	Gly
Thr	Val 370	Ala	Glu	Ser	Glu	Авп 375	Ile	Pro	Phe	Thr	Leu 380	Pro	Glu	Val	Ser
Thr 385	Asn	Lув	Thr	Tyr	Ser 390	Phe	Leu	Ile	Tyr	Thr 395	Glu	Val	Авр	Ile	Gly 400
Glu	Leu	Leu	Met	Leu 405	Lys	Leu	Lys	Trp	Lys 410	Ser	Asp	Ser	Tyr	Phe 415	Ser
Trp	Ser	Asp	Trp 420	Trp	Ser	Ser	Pro	Gly 425	Phe	Ala	Ile	Gln	L y s 430	Ile	Arg
Val	Lys	Ala 435	Gly	Glu	Thr	Gln	L y s 440	Lys	Val	Ile	Phe	С у в 445	Ser	Arg	Glu
Lys	Val 450	Ser	His	Leu	Gln	Lys 455	Gly	Lys	Ala	Pro	Ala 460	Val	Phe	Val	Lys
C y s 465	His	Asp	Lys	Ser	Leu 470	Asn	Lys	Lys	Ser	Gly 475					

<210> SEQ ID NO 15 <211> LENGTH: 1466 <212> TYPE: DNA

<221 <221 <222	0> FE l> NA 2> LC 3> OT	ATUE ME/I CATI HER	RE: KEY: ION:	CDS (115	o sar	(130		:ide	seqi	ience	e end	odir	ng ap	oolip	ooprotein	
<400)> SE	QUE	ICE:	15												
agti	teeea	ict (gcago	egca	gg t	gaget	tete	e tga	aggad	cctc	tct	gtca	get (cccct	tgattg	60
tagg	ggagg	gca †	toca	gtgt«	gg ca	aagaa	acto	c cto	cag	cca	gca	agca	gct :	cagg	atg Met 1	117
					gtc Val											165
					agt Ser											213
					agc Ser											261
					acc Thr 55											309
					act Thr											357
					ctg Leu											405
					Gl y aaa											453
					gag Glu											501
					ctg Leu 135											549
					gag Glu											597
					gtg Val											645
					gcc Ala											693
					gga Gly											741
					acc Thr 215											789
					cag Gln											837
acc	ttc	cag	atg	aag	aag	aac	gcc	gag	gag	ctc	aag	gcc	agg	atc	tcg	885

									con	tın.	ued		
Thr Phe Gln M	let Lys 45	Lys	Asn	Ala	Glu 250	Glu	Leu	Lys	Ala	A rg 255	Ile	Ser	
gec agt gec g Ala Ser Ala G 260													933
gtg cgt ggc a Val Arg Gly A 275													981
gca gag ctg g Ala Glu Leu G 290													1029
cgg gtg gag c Arg Val Glu P													1077
atg gaa cag c Met Glu Gln L 3													1125
ggc cac ttg a Gly His Leu S 340													1173
ttc ttc agc a Phe Phe Ser T 355													1221
ctc cct gag c Leu Pro Glu L 370													1269
gag cag gtg c Glu Gln Val G									gct	gece	etg		1315
gtgcactggc cc	caccct	eg to	ggaca	acct	g cc	ctgc	cctg	cca	cctg	tct	gtet	jtecca	1375
aagaagttot gg	tatgaa	ct to	gagga	acaca	a tgi	todaç	gtgg	gag	gtga	gac :	cacct	ctcaa	1435
tattcaataa ag	ctgctg	ag as	atcta	agcct	t c								1466
<210> SEQ ID I <211> LENGTH: <212> TYPE: PI <213> ORGANISI	396 RT	o sar	oien										
<400> SEQUENCE		r											
Met Phe Leu L	ys Ala 5	Val	Val	Leu	Thr	Leu 10	Ala	Leu	Val	Ala	Val 15	Ala	
Gl y Ala A rg A		Val	Ser	Ala	Asp 25	Gln	Val	Ala	Thr	Val 30	Met	Trp	
Asp Tyr Phe S 35	er Gln	Leu	Ser	Asn 40	Asn	Ala	Lys	Glu	Ala 45	Val	Glu	His	
Leu Gln L y s S 50	er Glu	Leu	Thr 55	Gln	Gln	Leu	Asn	Ala 60	Leu	Phe	Gln	Asp	
Lys Leu Gly G 65	lu Val	Asn 70	Thr	Tyr	Ala	Gly	Asp 75	Leu	Gln	Lys	Lys	Leu 80	
Val Pro Phe A	la Thr 85	Glu	Leu	His	Glu	Arg 90	Leu	Ala	Lys	Asp	Ser 95	Glu	
Lys Leu Lys G 1	lu Glu 00	Ile	Gly	Lys	Glu 105	Leu	Glu	Glu	Leu	Arg 110	Ala	Arg	

Leu Leu Pro His Ala Asn Glu Val Ser Gln Lys Ile Gly Asp Asn Leu 115 120 125

Arg	Glu 130	Leu	Gln	Gln	Arg	Leu 135	Glu	Pro	Tyr	Ala	Asp 140	Gln	Leu	Arg	Thr	
Gln 145	Val	Asn	Thr	Gln	Ala 150	Glu	Gln	Leu	Arg	Arg 155	Gln	Leu	Thr	Pro	Tyr 160	
Ala	Gln	Arg	Met	Glu 165	Arg	Val	Leu	Arg	Glu 170	Asn	Ala	Asp	ser	Leu 175	Gln	
Ala	Ser	Leu	Arg 180	Pro	нів	Ala	Asp	Glu 185	Leu	Lys	Ala	Lys	Ile 190	qaA	Gln	
Asn	Val	Glu 195	Glu	Leu	Lys	Gly	Arg 200	Leu	Thr	Pro	Tyr	Ala 205	qaA	Glu	Phe	
Lys	Val 210	Lys	Ile	Asp	Gln	Thr 215	Val	Glu	Glu	Leu	Arg 220	Arg	Ser	Leu	Ala	
Pro 225	Tyr	Ala	Gln	Asp	Thr 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Leu	Glu	Gly 240	
Leu	Thr	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Lys	Ala	Arg 255	Ile	
Ser	Ala	Ser	Ala 260	Glu	Glu	Leu	Arg	Gln 265	Arg	Leu	Ala	Pro	Leu 270	Ala	Glu	
Asp	Val	Arg 275	Gly	Asn	Leu	Arg	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser	
Leu	Ala 290	Glu	Leu	Gly	Gly	His 295	Leu	Asp	Gln	Gln	Val 300	Glu	Glu	Phe	Arg	
A rg 305	Arg	Val	Glu	Pro	Tyr 310	Gly	Glu	Asn	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320	
Gln	Met	Glu	Gln	Leu 325	Arg	Thr	Lys	Leu	Gl y 330	Pro	His	Ala	Gly	Asp 335	Val	
Glu	Gly	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	Arg	Asp	Lys 350	Val	Asn	
Ser	Phe	Phe 355	Ser	Thr	Phe	Lys	Glu 360	Lys	Glu	Ser	Gln	Asp 365	Lys	Thr	Leu	
Ser	Leu 370	Pro	Glu	Leu	Glu	Gln 375	Gln	Gln	Glu	Gln	His 380	Gln	Glu	Gln	Gln	
Gln 385	Glu	Gln	Val	Gln	Met 390	Leu	Ala	Pro	Leu	Glu 395	Ser					
<211 <212 <213 <220 <221 <222	l> LE 2> TY 3> OF 0> FE L> NA 2> LO	EQ IC ENGTH PE: RGANI EATUR ME/K	I: 11 DNA SM: E: EY: ON:	.56 Homo CDS (61)	(1014		*-1-						- 7 - 5		_
	(1	APOE))		:ION:	Nuc	teot	:1de	Sequ	ience	e enc	odir	ıg ap	oolip	coprotein	Е
		QUEN														
_			-		-										aggaag	60
		gtt Val														108
		aag Lys														156
cgc	cag	cag	acc	gag	tgg	cag	agc	ggc	cag	cgc	tgg	gaa	ctg	gca	ctg	204

Arg Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu Ala Leu 35 40 45	
ggt cgc ttt tgg gat tac ctg cgc tgg gtg cag aca ctg tct gag cag Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr Leu Ser Glu Gln 50 55 60	252
gtg cag gag gag ctg ctc agc tcc cag gtc acc cag gaa ctg agg gcg Val Gln Glu Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala 65 70 75 80	300
ctg atg gac gag acc atg aag gag ttg aag gcc tac aaa tcg gaa ctg Leu Met Asp Glu Thr Met Lys Glu Leu Lys Ala Tyr Lys Ser Glu Leu 85 90 95	348
gag gaa caa ctg acc ccg gtg gcg gag gag acg cgg gca cgg ctg tcc Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg Leu Ser 100 105 110	396
aag gag etg cag geg cag gee egg etg gge geg gae atg gag gae Lys Glu Leu Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp 115 120 125	444
gtg tgc ggc cgc ctg gtg cag tac cgc ggc gag gtg cag gcc atg ctc Val Cys Gly Arg Leu Val Gln Tyr Arg Gly Glu Val Gln Ala Met Leu 130 135 140	492
gge cag age ace gag gag etg egg gtg ege ete gee tee eac etg ege Gly Gln Ser Thr Glu Glu Leu Arg Val Arg Leu Ala Ser His Leu Arg 145 150 155 160	540
aag ctg ogt aag ogg ctc otc ogc gat goc gat gac otg oag aag ogc Lys Leu Arg Lys Arg Leu Leu Arg Asp Ala Asp Asp Leu Gln Lys Arg 165 170 175	588
ctg gca gtg tac cag gcc ggg gcc cgc gag ggc gcc gag cgc ggc ctc Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu 180 185 190	636
age gec ate ege gag ege etg ggg eee etg gtg gaa eag gge ege gtg Ser Ala Ile Arg Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg Val 195 200 205	732
cgg gcc gcc act gtg ggc tcc ctg gcc ggc cag ccg cta cag gag cgg Arg Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg 210 215 220	732
gee cag gee tgg gge gag egg etg ege geg egg atg gag atg gge Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly 225 230 235 240	780
age egg ace ege gac ege etg gac gag gtg aag gag eag gtg geg gag Ser Arg Thr Arg Asp Arg Leu Asp Glu Val Lys Glu Gln Val Ala Glu 245 250 255	828
gtg cgc gcc aag ctg gag gag cag gcc cag cag ata cgc ctg cag gcc Val Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu Gln Ala 260 265 270	924
gag gcc ttc cag gcc cgc ctc aag agc tgg ttc gag ccc ctg gtg gaa Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu 275 280 285	924
gac atg cag cgc cag tgg gcc ggg ctg gtg gag aag gtg cag gct gcc Asp Met Gln Arg Gln Trp Ala Gly Leu Val Glu Lys Val Gln Ala Ala 290 295 300	972
Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His * 305 310 315	1014
	1134
	1134
aaagattcac caagtttcac gc	1100

```
<210> SEQ ID NO 18
<211> LENGTH: 317
<212> TYPE: PRT
<213> ORGANISM: Homo sapien
<400> SEQUENCE: 18
Met Lys Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys 1 	ext{ } 10 	ext{ } 15
Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu
20 25 30
Arg Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu Ala Leu
Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr Leu Ser Glu Gln 50 $55$
Val Gln Glu Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala 65 70 75 80
Leu Met Asp Glu Thr Met Lys Glu Leu Lys Ala Tyr Lys Ser Glu Leu 85 90 95
Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg Leu Ser 100 105 110
Lys Glu Leu Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp
Val Cys Gly Arg Leu Val Gl<br/>n Tyr Arg Gly Glu Val Gl<br/>n Ala Met Leu 130 135 140
Gly Gln Ser Thr Glu Glu Leu Arg Val Arg Leu Ala Ser His Leu Arg 145 \phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}
Lys Leu Arg Lys Arg Leu Leu Arg Asp Ala Asp Asp Leu Gln Lys Arg 165 170 175
Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu
180 185 190
Ser Ala Ile Arg Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg Val 195 200 205
Arg Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg 210 215 220
Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly 225 230 235 240
Ser Arg Thr Arg Asp Arg Leu Asp Glu Val Lys Glu Gln Val Ala Glu 245 250 255
Val Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu Gln Ala
260 265 270
Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu 275 \hspace{1cm} 280 \hspace{1cm} 285 \hspace{1cm}
Asp Met Gln Arg Gln Trp Ala Gly Leu Val Glu Lys Val Gln Ala Ala 290 295 300
Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His 305 310 315
```

<210> SEQ ID NO 19

<211> LENGTH: 1603

<212> TYPE: DNA

<213> ORGANISM: Homo sapien

<220> FEATURE:

<221> NAME/KEY: CDS

-concinded
222> LOCATION: (58)(1557) 223> OTHER INFORMATION: Nucleotide sequence encoding hepatic lipase (LIPC)
400> SEQUENCE: 19
gtototttg gottoagaaa ttaccaagaa agootggaco oogggtgaaa oggagaa atg 60 Met 1
ac aca agt ccc ctg tgt ttc tcc att ctg ttg gtt tta tgc atc ttt 108 sp Thr Ser Pro Leu Cys Phe Ser Ile Leu Leu Val Leu Cys Ile Phe 5 10 15
to caa toa agt goo ott gga caa ago otg aaa coa gag oca ttt gga 156 le Gln Ser Ser Ala Leu Gly Gln Ser Leu Lys Pro Glu Pro Phe Gly 20 25 30
ga aga gct caa gct gtt gaa aca aac aaa acg ctg cat gag atg aag 204 rg Arg Ala Gln Ala Val Glu Thr Asn Lys Thr Leu His Glu Met Lys 35 40 45
oc aga tto otg oto ttt gga gaa acc aat cag ggo tgt cag att oga 252 hr Arg Phe Leu Leu Phe Gly Glu Thr Asn Gln Gly Cys Gln Ile Arg 50 65
to aat cat dog gad adg tta dag gag tgd ggd ttd aad tod tod dtg 300 le Asn His Pro Asp Thr Leu Gln Glu Cys Gly Phe Asn Ser Ser Leu 70 75 80
ct ctg gtg atg ata atc cac ggg tgg tcg gtg gac ggc gtg cta gaa 348 ro Leu Val Met Ile Ile His Gly Trp Ser Val Asp Gly Val Leu Glu 85 90 95
ac tgg atc tgg cag atg gtg gcc gcg ctg aag tct cag ccg gcc cag 396 sn Trp Ile Trp Gln Met Val Ala Ala Leu Lys Ser Gln Pro Ala Gln 100 105 110
ca gtg aac gtg ggg ctg gtg gac tgg atc acc ctg gcc cac gac cac 444 ro Val Asn Val Gly Leu Val Asp Trp Ile Thr Leu Ala His Asp His 115 120 125
ac acc atc gcc gtc cgc aac acc cgc ctt gtg ggc aag gag gtc gcg 492 yr Thr Ile Ala Val Arg Asn Thr Arg Leu Val Gly Lys Glu Val Ala 30 135 140 145
ct ctt ctc cgg tgg ctg gag gaa tct gtt caa ctc tct cga agc cat 540 la Leu Leu Arg Trp Leu Glu Glu Ser Val Gln Leu Ser Arg Ser His 150 155 160
tt cac cta att ggg tac agc ctg ggt gca cac gtg tca gga ttt gcc 588 al His Leu Ile Gly Tyr Ser Leu Gly Ala His Val Ser Gly Phe Ala 165 170 175
gc agt too ato ggt gga acg cac aag att ggg aga ato aca ggg ctg 636 ly Ser Ser Ile Gly Gly Thr His Lys Ile Gly Arg Ile Thr Gly Leu 180 185 190
at gcc gcg gga cct ttg ttt gag gga agt gcc ccc agc aat cgt ctt 684 sp Ala Ala Gly Pro Leu Phe Glu Gly Ser Ala Pro Ser Asn Arg Leu 195 200 205
ct cca gat gat gcc aat ttt gtg gat gcc att cat acc ttt acg cgg 732 er Pro Asp Asp Ala Asn Phe Val Asp Ala Ile His Thr Phe Thr Arg 10 215 220 225
ag cac atg ggc ctg agc gtg ggc atc aaa cag ccc ata gga cac tat 780 lu His Met Gly Leu Ser Val Gly Ile Lys Gln Pro Ile Gly His Tyr 230 235 240
ac ttc tat ccc aac ggg ggc tcc ttc cag cct ggc tgc cac ttc cta 828 sp Phe Tyr Pro Asn Gly Gly Ser Phe Gln Pro Gly Cys His Phe Leu 245 250 255
ag ctc tac aga cat att gcc cag cac ggc ttc aat gcc atc acc cag 876 lu Leu Tyr Arg His Ile Ala Gln His Gly Phe Asn Ala Ile Thr Gln

												0011			
		260					265					270			
							cga Arg								924
							agc Ser								972
							tgc C y s								1020
							cgc Arg								1068
							gcc Ala 345								1116
							atc Ile								1164
							ctc Leu								1212
							gga Gly								1260
							gat Asp								1308
							gtg Val 425								1356
							aca Thr								1404
							gca Ala								1452
							gac Asp								1500
							ata Ile								1548
	aga Arg		gat	ttaa	tga .	agac	ccagi	tg ta	aaaga	aataa	a ato	gaato	etta		1597
ata	ett														1603
<210)> SI	EQ II) NO	20											

<210> SEQ ID NO 20 <211> LENGTH: 499 <212> TYPE: PRT <213> ORGANISM: Homo sapien

<400> SEQUENCE: 20

Met Asp Thr Ser Pro Leu Cys Phe Ser Ile Leu Leu Val Leu Cys Ile 1 5 10 15

Phe Ile Gln Ser Ser Ala Leu Gly Gln Ser Leu Lys Pro Glu Pro Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gly	Arg	Arg 35	Ala	Gln	Ala	Val	Glu 40	Thr	Asn	Lys	Thr	Leu 45	His	Glu	Met
Lys	Thr 50	Arg	Phe	Leu	Leu	Phe 55	Gly	Glu	Thr	Asn	Gln 60	Gly	Cys	Gln	Ile
Arg 65	Ile	Asn	His	Pro	Asp 70	Thr	Leu	Gln	Glu	С у в 75	Gly	Phe	Asn	Ser	Ser 80
Leu	Pro	Leu	Val	Met 85	Ile	Ile	His	Gly	Trp 90	ser	Val	Asp	Gly	Val 95	Leu
Glu	Asn	Trp	Ile 100	Trp	Gln	Met	Val	Ala 105	Ala	Leu	Lys	Ser	Gln 110	Pro	Ala
Gln	Pro	Val 115	Asn	Val	Gly	Leu	Val 120	Asp	Trp	Ile	Thr	Leu 125	Ala	His	qaA
His	Tyr 130	Thr	Ile	Ala	Val	Arg 135	Asn	Thr	Arg	Leu	Val 140	Gly	Lys	Glu	Val
Ala 145	Ala	Leu	Leu	Arg	Trp 150	Leu	Glu	Glu	Ser	V al 155	Gln	Leu	Ser	Arg	Ser 160
His	Val	His	Leu	Ile 165	Gly	Tyr	Ser	Leu	Gly 170	Ala	His	Val	Ser	Gl y 175	Phe
Ala	Gly	Ser	Ser 180	Ile	Gly	Gly	Thr	His 185	Lys	Ile	Gly	Arg	Ile 190	Thr	Gly
Leu	Asp	Ala 195	Ala	Gly	Pro	Leu	Phe 200	Glu	Gly	Ser	Ala	Pro 205	Ser	Asn	Arg
Leu	Ser 210	Pro	Asp	Asp	Ala	Asn 215	Phe	Val	Asp	Ala	Ile 220	His	Thr	Phe	Thr
A rg 225	Glu	His	Met	Gly	Leu 230	Ser	Val	Gly	Ile	Lys 235	Gln	Pro	Ile	Gly	His 240
Tyr	Asp	Phe	Tyr	Pro 245	Asn	Gly	Gly	Ser	Phe 250	Gln	Pro	Gly	Сув	His 255	Phe
Leu	Glu	Leu	Tyr 260	Arg	His	Ile	Ala	Gln 265	His	Gly	Phe	Asn	Ala 270	Ile	Thr
Gln	Thr	Ile 275	Lys	Сув	Ser	His	Glu 280	Arg	Ser	Val	His	Leu 285	Phe	Ile	Asp
Ser	Leu 290	Leu	His	Ala	Gly	Thr 295	Gln	Ser	Met	Ala	Tyr 300	Pro	Сув	Gly	qaA
Met 305	Asn	Ser	Phe	Ser	Gln 310	Gly	Leu	Сув	Leu	Ser 315	Сув	Lys	Lys	Gly	Arg 320
Сув	Asn	Thr	Leu	Gl y 325	Tyr	His	Val	Arg	Gln 330	Glu	Pro	Arg	Ser	Lys 335	Ser
Lys	Arg	Leu	Phe 340	Leu	Val	Thr	Arg	Ala 345	Gln	Ser	Pro	Phe	L y s 350	Val	Tyr
His	Tyr	Gln 355	Leu	Lys	Ile	Gln	Phe 360	Ile	Asn	Gln	Thr	Glu 365	Thr	Pro	Ile
Gln	Thr 370	Thr	Phe	Thr	Met	Ser 375	Leu	Leu	Gly	Thr	Lys 380	Glu	Lys	Met	Gln
Lys 385	Ile	Pro	Ile	Thr	Leu 390	Gly	Lys	Gly	Ile	Ala 395	Ser	Asn	Lys	Thr	Tyr 400
Ser	Phe	Leu	Ile	Thr 405	Leu	Авр	Val	Авр	Ile 410	Gly	Glu	Leu	Ile	Met 415	Ile
Lys	Phe	Lys	Trp 420	Glu	Asn	Ser	Ala	Val 425	Trp	Ala	Asn	Val	Trp 430	Авр	Thr

Val	Gln	Thr 435	Ile	Ile	Pro	Trp	Ser 440	Thr	Gly	Pro	Arg	His 445	Ser	Gly	Leu	
Val	Leu 450	Lys	Thr	Ile	Arg	Val 455	Lys	Ala	Gly	Glu	Thr 460	Gln	Gln	Arg	Met	
Thr 465	Phe	Сув	Ser	Glu	Asn 470	Thr	Asp	Asp	Leu	Leu 475	Leu	Arg	Pro	Thr	Gln 480	
Glu	Lув	Ile	Phe	Val 485	Lys	Сув	Glu	Ile	Lys 490	Ser	Lys	Thr	Ser	Lys 495	Arg	
Lys	Ile	Arg														
<21: <21: <21: <22: <22: <22: <22:	L> LE 2> TY 3> OF 0> FE L> NA 2> LO 3> OT	(PON	DNA SM: E: EY: ON: INFO	Homo CDS (10)) ((107)		:ide	sequ	ience	e end	odi	ng pa	arao»	conase	
		QUEN			ag ci	tg ai	tt go	eg et	tc ac	cc c1	to t	tg g	gg a	tg g	ga ctg	51
	-		et Al								eu Lo				ly Leu	
														aat Asn		99
														gtt Val 45		147
														gga Gly		195
														ttc Phe		243
														gaa Glu		291
														gta Val		339
						Ile		Thr	Phe	Thr	Asp	Glu	Asp	aat Asn 125		387
														gtg Val		435
														aaa Lys		483
														gtg Val		531
														ccc Pro		579
tta	caa	tcc	tgg	gag	atg	tat	ttg	ggt	tta	gcg	tgg	tcg	tat	gtt	gtc	627

Leu Gln Ser Trp Glu Met Tyr Leu Gly Leu Ala Trp Ser Tyr Val Val 195 200 205	
tac tat agt cca agt gaa gtt cga gtg gtg gca gaa gga ttt gat ttt Tyr Tyr Ser Pro Ser Glu Val Arg Val Val Ala Glu Gly Phe Asp Phe 210 215 220	5
gct aat gga atc aac att tca ccc gat ggc aag tat gtc tat ata gct Ala Asn Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala 225 230 235	3
gag ttg ctg gct cat aag att cat gtg tat gaa aag cat gct aat tgg 773 Glu Leu Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp 240 245 250	1
act tta act cca ttg aag tee ett gae ttt aat ace ete gtg gat aac 819 Thr Leu Thr Pro Leu Lys Ser Leu Asp Phe Asn Thr Leu Val Asp Asn 255 260 265 270	9
ata tct gtg gat cct gag aca gga gac ctt tgg gtt gga tgc cat ccc Ile Ser Val Asp Pro Glu Thr Gly Asp Leu Trp Val Gly Cys His Pro 275 280 285	7
aat ggc atg aaa atc ttc ttc tat gac tca gag aat cct cct gca tca 918 Asn Gly Met Lys Ile Phe Phe Tyr Asp Ser Glu Asn Pro Pro Ala Ser 290 295 300	5
gag gtg ctt cga atc cag aac att cta aca gaa gaa cct aaa gtg aca Glu Val Leu Arg Ile Gln Asn Ile Leu Thr Glu Glu Pro Lys Val Thr 305 310 315	3
cag gtt tat gca gaa aat ggc aca gtg ttg caa ggc agt aca gtt gcc 1011 Gln Val Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala 320 325 330	1
tet gtg tac aaa ggg aaa etg etg att gge aca gtg ttt cac aaa get 1059 Ser Val Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala 335 340 345 350	9
ctt tac tgt gag ctc taa cagaccgatt tgcacccatg ccatagaaac 1107 Leu Tyr Cys Glu Leu * 355	7
tgaggccatt atttcaaccg cttgccatat tccgaggacc cagtgttctt agctgaacaa 1167	7
tgaatgctga ccctaaatgt ggacatcatg aagcatcaaa gcactgttta actgggagtg 1227	7
atatgatgtg tagggetttt ttttgagaat acactateaa ateagtettg gaataettga 1287	7
aaacctcatt taccataaaa atccttctca ctaaaatgga taaatcagtt aaaaaaaaa 1346	6
<210> SEQ ID NO 22 <211> LENGTH: 355 <212> TYPE: PRT <213> ORGANISM: Homo sapien	
<400> SEQUENCE: 22	
Met Ala Lys Leu Ile Ala Leu Thr Leu Leu Gly Met Gly Leu Ala Leu 1 5 10 15	
Phe Arg Asn His Gln Ser Ser Tyr Gln Thr Arg Leu Asn Ala Leu Arg 20 25 30	
Glu Val Gln Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Ile 35 40 45	
Glu Thr Gly Ser Glu Asp Met Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60	
Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Lys Ser Phe Asn Pro Asn 65 70 75 80	

Ser Pro Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Thr 85 90 95

Val	Leu	Glu	Leu 100	Gly	Ile	Thr	Gly	Ser 105	Lys	Phe	Asp	Val	Ser 110	Ser	Phe	
Asn	Pro	His 115	Gly	Ile	Ser	Thr	Phe 120	Thr	Asp	Glu	Asp	Asn 125	Ala	Met	Tyr	
Leu	Leu 130	Val	Val	Asn	His	Pro 135	Asp	Ala	Lys	Ser	Thr 140	Val	Glu	Leu	₽he	
Lys 145	Phe	Gln	Glu	Glu	Glu 150	Lув	ser	Leu	Leu	нів 155	Leu	Lys	Thr	Ile	Arg 160	
His	Lys	Leu	Leu	Pro 165	Asn	Leu	Asn	Asp	Ile 170	Val	Ala	Val	Gly	Pro 175	Glu	
His	Phe	Tyr	Gly 180	Thr	Asn	Asp	His	Tyr 185	Phe	Leu	Asp	Pro	Tyr 190	Leu	Gln	
ser	Trp	Glu 195	Met	Tyr	Leu	Gly	Leu 200	Ala	Trp	Ser	Tyr	Val 205	Val	Tyr	Tyr	
Ser	Pro 210	Ser	Glu	Val	Arg	Val 215	Val	Ala	Glu	Gly	Phe 220	Asp	Phe	Ala	Asn	
Gl y 225	Ile	Asn	Ile	Ser	Pro 230	Авр	Gly	Lys	Tyr	Val 235	Tyr	Ile	Ala	Glu	Leu 240	
Leu	Ala	His	Lys	Ile 245	His	Val	туr	Glu	Lys 250	His	Ala	Asn	Trp	Thr 255	Leu	
Thr	Pro	Leu	Lys 260	Ser	Leu	Авр	Phe	Asn 265	Thr	Leu	Val	Asp	Asn 270	Ile	Ser	
Val	Asp	Pro 275	Glu	Thr	Gly	Asp	Leu 280	Trp	Val	Gly	Сув	His 285	Pro	Asn	Gly	
Met	Ly s 290	Ile	Phe	Phe	Tyr	Asp 295	Ser	Glu	Asn	Pro	Pro 300	Ala	Ser	Glu	Val	
Leu 305	Arg	Ile	Gln	Asn	Ile 310	Leu	Thr	Glu	Glu	Pro 315	Lys	Val	Thr	Gln	Val 320	
Tyr	Ala	Glu	Asn	Gl y 325	Thr	Val	Leu	Gln	Gl y 330	Ser	Thr	Val	Ala	Ser 335	Val	
Tyr	Lys	Gly	Lys 340	Leu	Leu	Ile	Gly	Thr 345	Val	Phe	His	Lys	Ala 350	Leu	Tyr	
Сув	Glu	Leu 355														
<211 <212 <213 <220 <221 <222 <223	l> LE 2> TY 3> OF 0> FE 1> NA 2> LO 3> OT 2	(POI	H: 15 DNA SM: E: EY: ON: INFO	Homo CDS (1).	(1	1097)		ide	sequ	ience	e enc	codir	ng pa	ıraox	conase	
		QUEN														
								ccc Pro								48
								tgg Trp 25								96
								cct Pro						ctg Leu	tag *	144

					acc Thr											192
					cca Pro										taa *	240
					aca Thr											288
taa *					aag Lys 95											336
					att Ile 110											384
					atg Met 125										acc Thr	432
					cag Gln 140											480
					tga *											528
					ctg Leu 170											576
					atc Ile										tga *	624
					atg Met											672
					ttg Leu											720
					atg Met 230											768
					cta Leu									tac Tyr	_	816
agc Ser	tgg Trp 255	ata Ile	cac His	tgg Trp	tgg Trp	ata Ile 260	att Ile	tat Tyr	cta Leu	ttg Leu	atc Ile 265	ctt Leu	cct Pro	cgg Arg	ggg Gly	864
					gtc Val											912
					cct Pro 290											960
					cag Gln											1008
					ctg Leu											1056

tag gca ctt tat acc aca gag cct tgt att gtg aac tct aa attgtacttt * Ala Leu Tyr Thr Thr Glu Pro Cys Ile Val Asn Ser 335 340	1107
tggcatgaaa gtgcgataac ttaacaatta attttctatg aattgctaat tctgagggaa	1167
tttaaccagc aacattgacc cagaaatgta tggcatgtgt agttaatttt attccagtaa	1227
ggaacggccc ttttagttct tagagcactt ttaacaaaaa aggaaaatga acaggttctt	1287
taaaatgcca agcaagggac agaaaagaaa gctgctttcg aataaagtga atacattttg	1347
cacaaagtaa gcctcacctt tgccttccaa ctgccagaac atggattcca ctgaaataga	1407
gtgaattata tttccttaaa atgtgagtga cetcacttet ggcactgtga ctactatggc	1467
tgtttagaac tactgataac gtattttgat gttttgtact tacatctttg tttaccatta	1527
aaaagttgga gttatattaa agactaacta aaatcccagt ttt	1570
<210> SEQ ID NO 24 <211> LENGTH: 342 <212> TYPE: PRT <213> ORGANISM: Homo sapien	
<400> SEQUENCE: 24 Arg Ser Glu Ale Ale Arg Bro Ale Bro Ale Bro Typ Gly Gly Typ Typ	
Arg Ser Glu Ala Ala Arg Pro Ala Pro Ala Pro Trp Gly Gly Trp Trp 1 10 15	
Leu Trp Ala Cys Trp Gly Ser Arg Trp Arg Ser Trp Ala Arg Gly Phe 20 25 30	
Trp His Ser Glu Ile Asp Leu Lys Pro Pro Glu Lys Asn Leu Thr Phe 35 40 45	
His Thr Ala Thr Leu Lys Glu Leu Lys Leu Ala Leu Lys Ile Leu Thr 50 55 60	
Tyr Phe Pro Met Val Trp Leu Phe Leu Val Trp Val Asn Ser Gln Asp 65 70 75 80	
Ser Thr Ala Leu His Gln Ile Ser Leu Glu Glu Tyr Trp Ile Lys Lys 85 90 95	
Lys Asn Gln Gly His Gly Asn Glu Ser Val Val Gly Leu Ile Trp Pro 100 105 110	
His Ser Ile His Met Ala Ser Ala Leu Ser Thr Thr Met Thr Gln Phe 115 120 125	
Ile Ser Leu Leu Thr Thr Gln Asn Ser Arg Ile Gln Trp Lys Phe Leu 130 135 140	
Asn Leu Lys Lys Gln Lys Ile Leu Cys Cys Ile Lys Gln Ser Asn Met 145 150 155 160	
Ser Phe Phe Gln Val Met Thr Ser Gln Leu Leu Asp Arg His Ile Ser 165 170 175	
Met Pro Gln Met Thr Thr Thr Ser Leu Ile Leu Ser Ser Ile Lys His 180 185 190	
Thr Thr Tyr Thr Gly Gln Met Leu Phe Thr Thr Val Gln Met Lys Leu 195 200 205	
Lys Trp Gln Lys Asp Leu Ile Gln Gln Met Gly Ser Ile Phe His Leu 210 215 220	
Met Ile Ser Ile Ser Met Leu Leu Thr Tyr Trp Leu Met Lys Phe Met 225 230 235 240	
Phe Trp Lys Asn Thr Leu Ile Ile Leu Ser Arg Tyr Leu Ser Trp Ile 245 250 255	

<400> SEQUENCE: 26

His Trp	Trp	Ile 260	Ile	Tyr	Leu	Leu	Ile 265	Leu	Pro	Arg	Gly	Thr 270	Ser	Gly	
Ala Val	Ile 275	Leu	Met	Ala	Arg	Ser 280	Ser	Ser	Cys	Met	Thr 285	Arg	Thr	Ile	
Leu Pro 290		Gln	Arg	Phe	ser 295	Ala	ser	Arg	Thr	Phe 300	Tyr	Leu	Arg	Ser	
Leu Gln 305	Leu	Gln	Phe	Met 310	Pro	Thr	Met	Gly	Leu 315	Phe	ser	Lys	Glu	Val 320	
Leu Pro	Gln	Сув	Met 325	Met	Gly	ser	Сув	Ser 330	Ala	Leu	Tyr	Thr	Thr 335	Glu	
Pro Cys	Ile	Val 340	Asn	Ser											
	ENGTH YPE: RGANI EATUH AME/H DCATI THER	H: 50 DNA ISM: RE: KEY: ION: INFO	Homo CDS (47) DRMAT) ((346)		ide	sequ	ience	e end	codir	ng ap	polir	poprotein	
tgctcag	ttc (atcc	ctag	ag go	eaget	gete	e caq	gaad	eaga	ggt			cag o		55
cgg gta Arg Val 5															103
gct tca Ala Ser 20															151
atg aag Met Lys															199
gag tcc Glu Ser															247
agt tcc Ser Ser															295
ttc tgg Phe Trp 85	gat Asp	ttg Leu	gac Asp	cct Pro	gag Glu 90	gtc Val	aga Arg	cca Pro	act Thr	tca Ser 95	gcc Ala	gtg Val	gct Ala	gcc Ala	343
tga gac	ctca	ata (cccc	aagto	cc a	ectgo	cctat	c cca	atcc	tgcg	agc	teet	tgg		396
gtcctgc	aat (ctcc	aggg	ct g	ccct	gtag	g gtt	gett	taaa	agg	gaca	gta 1	ttct	cagtgc	456
tetecta	aaa (cacc	tcat	ga at	tggc	eaaa	e teo	caggo	catg	ctg	geet	ccc i	aataa	aagctg	516
gacaaga	agc ·	tgat	atg												533
<210> SI <211> LI <212> TI <213> OI	ENGTI	FRT	9	o sa <u>r</u>	oien										

Ser Ala Arg Ala Ser Glu Ala Glu Asp Ala Ser Leu Leu Ser Phe Met 25 Gln Gly Tyr Met Lys His Ala Thr Lys Thr Ala Lys Asp Ala Leu Ser Ser Val Gln Glu Ser Gln Val Ala Gln Gln Ala Arg Gly Trp Val Thr Asp Gly Phe Ser Ser Leu Lys Asp Tyr Trp Ser Thr Val Lys Asp Lys Phe Ser Glu Phe Trp Asp Leu Asp Pro Glu Val Arg Pro Thr Ser Ala Val Ala Ala <210> SEQ ID NO 27 <211> LENGTH: 8925 <212> TYPE: DNA <213> ORGANISM: Homo sapien <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 5081, 5082, 5083, 5084, 5085, 5086, 5087, 5088, 5089, 5090, 5091, 5092, 5093, 5094, 5095, 5096, 5097, 5098, 5099, 5100, 5101, 5102, 5103, 5104, 5105, 5106, 5107, 5108, 5109, 5110, 5111, 5112, 5113, 5114, 5115, 5116, 5117, 5118, 5119

<223> OTHER INFORMATION: n = A,T,C or G <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 5120, 5121, 5122, 5123, 5124, 5125, 5126, 5127, 5128, 5129, 5130, 5131, 5132, 5133, 5134, 5135, 5136, 5137, 5138, 5139, 5140, 5141, 5142, 5143, 5144, 5145, 5146, 5147, 5148, 5149, 5150, 5151, 5152, 5153, 5154, 5155, 5156, 5157, 5158 <223> OTHER INFORMATION: n = A, T, C or G <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 5159, 5160, 5161, 5162, 5163, 5164, 5165, 5166, 5167, 5168, 5169, 5170, 5171, 5172, 5173, 5174, 5175, 5176, 5177, 5178, 5179 <223> OTHER INFORMATION: n = A, T, C or G <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (5020)...(6162) <223> OTHER INFORMATION: Nucleotide encoding ATP-binding cassette (ABC1) <400> SEQUENCE: 27 ctcagtgtca gctgctgctg gaagtggcct ggcctctatt tatcttcctg atcctgatct 60 ctgttcggct gagctaccca ccctatgaac aacatgaatg ccattttcca aataaagcca 120 tgccctctgc aggaacactt ccttgggttc aggggattat ctgtaatgcc aacaacccct 180 gtttccgtta cccgactcct ggggaggctc ccggagttgt tggaaacttt aacaaatcca 240 ttqtqqctcq cctqttctca qatqctcqqa qqcttctttt atacaqccaq aaaqacacca 300 qcatqaaqqa catqcqcaaa qttctqaqaa cattacaqca qatcaaqaaa tccaqctcaa 360 acttgaaget teaagattte etggtggaca atgaaacett etetgggtte etgtateaca acctetetet cocaaagtet actgtggaca agatgetgag ggetgatgte attetecaca 480 aggtattttt gcaaggctac cagttacatt tgacaagtct gtgcaatgga tcaaaatcag 540 aagagatgat toaacttggt gaccaagaag tttctgagct ttgtggccta ccaagggaga 600 aactggctgc agcagagcga gtacttcgtt ccaacatgga catcctgaag ccaatcctga 660 qaacactaaa ctctacatct cccttcccga qcaaqqaqct qqctqaaqcc acaaaaacat 720

Met Gln Pro Arg Val Leu Leu Val Val Ala Leu Leu Ala Leu Leu Ala

10

tgcgacagga ggtgatgttt ctgaccaatg tgaacagctc cagctcctcc acccaaatct 840 accaggctgt gtctcgtatt gtctgcgggc atcccgaggg aggggggctg aagatcaagt 900 ctctcaactg gtatgaggac aacaactaca aagccctctt tggaggcaat ggcactgagg 960 aagatgctga aaccttctat gacaactcta caactcctta ctgcaatgat ttgatgaaga 1020
eteteaactg gtatgaggac aacaactaca aagceetett tggaggcaat ggeactgagg 960
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
aagatgotga aacottotat gacaactota caactootta otgoaatgat ttgatgaaga 1020
atttggagtc tagtcctctt tcccgcatta tctggaaagc tctgaagccg ctgctcgttg 1080
ggaagateet gtatacaeet gacaeteeag eeacaaggea ggteatgget gaggtgaaca 1140
agacetteca ggaactgget gtgttecatg atetggaagg catgtgggag gaacteagee 1200
ccaagatctg gaccttcatg gagaacagcc aagaaatgga ccttgtccgg atgctgttgg 1260
acagcaggga caatgaccac ttttgggaac agcagttgga tggcttagat tggacagccc 1320
aagacatcgt ggcgtttttg gccaagcacc cagaggatgt ccagtccagt
tgtacacetg gagagaaget tteaaegaga etaaeeagge aateeggaee atateteget 1440
tcatggagtg tgtcaacctg aacaagctag aacccatage aacagaagte tggctcatca 1500
acaagtccat ggagctgctg gatgagagga agttctgggc tggtattgtg ttcactggaa 1560
ttactccagg cagcattgag ctgccccatc atgtcaagta caagatccga atggacattg 1620
acaatgtgga gaggacaaat aaaatcaagg atgggtactg ggaccctggt cctcgagctg 1680
acceptttga ggacatgegg taegtetggg ggggettege etaettgeag gatgtggtgg 1740
agcaggcaat catcagggtg ctgacgggca ccgagaagaa aactggtgtc tatatgcaac 1800
agatgcccta tccctgttac gttgatgaca tctttctgcg ggtgatgagc cggtcaatgc 1860
contetteat gangetggen tggatttant magtggetgt gathateaag ggeategtgt 1920
atgagaagga ggcacggctg aaagagacca tgcggatcat gggcctggac aacagcatcc 1980
totggtttag otggttoatt agtagootoa ttootottot tgtgagogot ggootgotag 2040
tggtcatcct gaagttagga aacctgctgc cctacagtga tcccagcgtg gtgtttgtct 2100
tcctgtccgt gtttgctgtg gtgacaatcc tgcagtgctt cctgattagc acactcttct 2160
ccagagccaa cctggcagca gcctgtgggg gcatcatcta cttcacgctg tacctgccct 2220
acgtcctgtg tgtggcatgg caggactacg tgggcttcac actcaagatc ttcgctagcc 2280
tgctgtctcc tgtggctttt gggtttggct gtgagtactt tgcccttttt gaggagcagg 2340
gcattggagt gcagtgggac aacctgtttg agagtcctgt ggaggaagat ggcttcaatc 2400
tcaccacttc ggtctccatg atgctgtttg acaccttcct ctatggggtg atgacctggt 2460
acattgaggc tgtctttcca ggccagtacg gaattcccag gccctggtat tttccttgca 2520
ccaagtccta ctggtttggc gaggaaagtg atgagaagag ccaccctggt tccaaccaga 2580
agagaatatc agaaatctgc atggaggagg aacccaccca cttgaagctg ggcgtgtcca 2640
ttcagaacct ggtaaaagtc taccgagatg ggatgaaggt ggctgtcgat ggcctggcac 2700
tgaattttta tgagggccag atcacctcct tcctgggcca caatggagcg gggaagacga 2760
ccaccatgte aatcetgace gggttgttee eecegacete gggcacegee tacateetgg 2820
gaaaagacat togototgag atgagcacca tooggoagaa cotgggggto tgtooccago 2880
gaaaagacat tegetetgag atgageacea teeggeagaa eetgggggte tgteeceage 2880 ataacgtget gtttgacatg etgactgteg aagaacacat etggttetat geeegettga 2940

tgccatcaag	caagctgaaa	agcaaaacaa	gccagctgtc	aggtggaatg	cagagaaagc	3060
tatctgtggc	cttggccttt	gtogggggat	ctaaggttgt	cattctggat	gaacccacag	3120
ctggtgtgga	cccttactcc	cgcaggggaa	tatgggagct	gctgctgaaa	taccgacaag	3180
geegeaceat	tattetetet	acacaccaca	tggatgaagc	ggacgtcctg	ggggacagga	3240
ttgccatcat	ctcccatggg	aagctgtgct	gtgtgggctc	ctccctgttt	ctgaagaacc	3300
agctgggaac	aggctactac	ctgaccttgg	tcaagaaaga	tgtggaatcc	tccctcagtt	3360
cctgcagaaa	cagtagtagc	actgtgtcat	acctgaaaaa	ggaggacagt	gtttctcaga	3420
gcagttctga	tgctggcctg	ggcagcgacc	atgagagtga	cacgctgacc	atcgatgtct	3480
ctgctatctc	caacctcatc	aggaagcatg	tgtctgaagc	ccggctggtg	gaagacatag	3540
ggcatgagct	gacctatgtg	ctgccatatg	aagctgctaa	ggagggagcc	tttgtggaac	3600
tctttcatga	gattgatgac	cggctctcag	acctgggcat	ttctagttat	ggcatctcag	3660
agacgaccet	ggaagaaata	tteeteaagg	tggccgaaga	gagtggggtg	gatgetgaga	3720
cctcagatgg	taccttgcca	gcaagacgaa	acaggcgggc	cttcggggac	aagcagagct	3780
gtcttcgccc	gttcactgaa	gatgatgctg	ctgatccaaa	tgattctgac	atagacccag	3840
aatccagaga	gacagaettg	ctcagtggga	tggatggcaa	agggteetae	caggtgaaag	3900
gctggaaact	tacacagcaa	cagtttgtgg	cccttttgtg	gaagagactg	ctaattgcca	3960
gacggagtcg	gaaaggattt	tttgctcaga	ttqtcttgcc	agctgtgttt	gtctgcattg	4020
cccttgtgtt	cagcctgatc	gtgccaccct	ttggcaagta	ccccagcctg	gaacttcagc	4080
cctggatgta	caacgaacag	tacacatttg	tcagcaatga	tgctcctgag	gacacgggaa	4140
ccctggaact	cttaaacgcc	ctcaccaaag	accetggett	cqqqacccqc	tgtatggaag	4200
gaaacccaat	cccagacacg	ccctgccagg	caggggagga	agagtggacc	actgccccag	4260
ttccccagac	catcatggac	ctcttccaga	atgggaactg	gacaatgcag	aacccttcac	4320
ctgcatgcca	gtgtagcagc	gacaaaatca	agaagatgct	gcctgtgtgt	cccccagggg	4380
caggggggct	gcctcctcca	caaagaaaac	aaaacactgc	agatatcctt	caggacctga	4440
caggaagaaa	catttcggat	tatctggtga	agacgtatgt	gcagatcata	gccaaaagct	4500
taaagaacaa	gatctgggtg	aatgagttta	ggtatggcgg	cttttccctg	ggtgtcagta	4560
atactcaagc	acttcctccg	agtcaagaag	ttaatgatgc	catcaaacaa	atgaagaaac	4620
acctaaagct	ggccaaggac	agttctgcag	atcgatttct	caacagettg	ggaagattta	4680
tgacaggact	ggacaccaaa	aataatgtca	aggtgtggtt	caataacaag	ggctggcatg	4740
caatcagete	tttcctgaat	gtcatcaaca	atgccattct	ccgggccaac	ctgcaaaagg	4800
gagagaaccc	tagccattat	ggaattactg	ctttcaatca	tcccctgaat	ctcaccaage	4860
agcagctctc	agaggtggct	cggatgacca	catcagtgga	tgtccttgtg	tccatctgtg	4920
teatetttge	aatgteette	gteccageca	getttgtegt	atteetgate	caggagcggg	4980
tcagcaaagc	aaaacacctg	cagttcatca		age etg tea Ser Leu Ser 1		5034
				aag ttg tt Lys Leu Pho		5082
				nnn nnn nni Xaa Xaa Xaa		5130

Num n
the stor tith cost titl cong tog tit gog ofto city gog got and any gog gog god and tog and tog and tog gog god and cong gog god and tog gog god god god god god god god god g
xaa Ile Phe Pro Phe Gin Cys Phe Giy Leu Leu Giy Val Aan Giy Ala a Saga and the total act
aga gga gat get the cut aca act to cap to act to taca act act cap to law acc act get cut acc act act gat gas gat gat to the cut acc act to cap to acc acc act to acc acc acc acc acc acc acc acc acc ac
gaa gta cat cag aac atg ggc tac tgc cor cag ttt gat gcc atc aca gaa gta cat cag aac atg ggc tac tgc cor cag ttt gat gcc atc aca Glu Val liis Gln Ana Ret city Tyr Cya Pro Gln Phe Anp Ala 11e Thr gas ctt ttg act ggg ang aga cac gtg gag ttc ttt gac cat caca gag ctt ttg act ggg ang aga cac gtg gag ttc ttt gac cat ttg aga Glu Leu Leu Thr Gly Arg Glu Hie Val Glu Phe Phe Ala Leu Leu Arg 120 gag ctt ttg act ggg ang aga cac gtg gag ttc ttt gac cat ttg aga Glu Leu Leu Thr Gly Arg Glu Hie Val Glu Phe Phe Ala Leu Leu Arg 120 gag atc cac aga aac gan gtt gtg ang at gtg aga gat at gag tag act at a gt 135 135 gaa ggc act act gdg aag tat gga gaa aca tat gct ggt aac tat agt Lya Leu Gly Leu Val Lya Tyr Gly Glu Lya Tyr Ala Gly Ann Tyr Sec 150 gaa ggc aca aac agc aag ctc tt aca gcc atg gct ttg atc ggc ggc Gly Gly Ann Lya Arg Lya Leu Ser Thr Ala Net Ala Leu Ile Gly Gly 175 cct cct dtg dtg tt ctg gat gaa cac aca agc aca gd gct gd ttg at ga cac aca ggc agt act gg at gat gaa cac aca gag at gg at cac aac 185 gcc agg cag tac ttg tgg ant ga ccc aca aca gd gad tcc ac aca 185 gcc agg cag tac ttg tgg ant ga ttg acc cac aca gd gad tcc aca 185 gcc agg cag tac ttg tgg ant at gcc cac aca gd gad tgg at ccc 185 gcc agg cag tac ttg tgg ant tg gcc cac aat gt gt cac aca 185 gcc agg cag tac ttg tgg ant act at gcc aca aca 185 gcc agg agg tac ttg tgg ant tg gcc cac aca gd gad atg gat ccc 215 gca ct acg dt gt gt tta cac tcc act agt atg gaa gac tct tt 226 gca ct acg atg gct tac ttg aca act cac agg atg gt gcc ttt 227 tga act acg atg gcd tac act cac aca gd and gcc acc 228 gc act acg atg gcd aca aca act agg ttt gg ga gd tcc aca atg 129 gcc act acg atg gca aca aca act agg att gg ga gd tcc aca 120 gcc act acg atg gca aca aca act agg ttt ga ga gdt cct tgc 220 gca act acg atg gca aca aca act agg ttt gg ga gdt acc aca 235 act tt gca ctt gca ttt cct gaa act tga gat ttc aca 245 act cac aca aca gag aca 255 ttt gg ctt gca ttt cct gga agg ttt ct aca aca aca aca 266 aca ct aca aca aca gca gcc aca ctt aca aca aca 275 act ccc aca aca 275 act ccc
Giu Val His Gin Aan Net Giy Try Cys Pro Gin Phe Aap Ala 11e Thr 105 105 105 110 110 110 110 110 110 110
clu Leu Ten Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu Leu Arg 120 gag gtc cca gag aaa gaa gtt ggc aag gtt ggt gag tgg gcg att cgg Gly Val Pro Glu Lye Glu Val Gly Lye Val Gly Glu Trp Ala Ile Arg 135 saa ctg ggc ctc gtg aag att gga gaa aaa tat gct ggt aac tat agt 150 gga ggc aac aaa cgc aag ctc tt aac gcc atg gct ttg atc ggg ggg Gly Gly Asn Lye Arg Lye Leu Ser Thr Ala Kat Ala Leu Ile Gly Gly 170 cct cct gtg gtg ttt ctg gat gaa cac acc acc acc acc acc agc atg ggt ttg acc acc Gly Gly Asn Lye Arg Lye Leu Ser Thr Ala Kat Ala Leu Ile Gly Gly 170 cct cct gtg gtg ttt ctg gat gaa cac acc acc acc acc acc agg at gcc acc acc Ala Arg Arg Phe Leu Arp Glu Pro Thr Thr Gly Met Are Pro Lye 180 gcc cgg cgg ttc ttg tgg aat ty gcc cta agt gtt gta gaa gag ggg acc acc gta gtg ttc ttg tgg aat ty gcc cta agt gtt gta gaa ggg ag tac gta gtg ctt acc atc cat agt atg gaa gaa gcc ctt Arg Ser Val Vol Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu 250 tgc act agg atg gca atc atc atg atg acc gag gtt cag ggt gc ctt ggc 225 tgc act agg atg gca atc atg gtc act gga agg ttc agg tgc ctt ggc 235 tgc act agg atg gca atc atg gtc act gga agg ttc agg tgc ctt ggc 236 gta cag at gga at gga act atg gtc act gga agg ttc agg tgc ctt ggc 237 gta cag cat ctc aca acc acc acc acc acc gag gtc ctt 248 agt gtc cag cat ctc aca act agg ttc gg gat ggt tat acc acc acc gtc 328 gta cqa aca gag gg tcc acc acc ga acc tg acc gtc cag gat ttc 329 gta cqa acc acc acc ga gg ttc tac acc acc gac ctg acc gtc cag gat ttc 320 gta cqa acc acc acc acc acc gac ctg acc gtc cag gat ttc 327 ttt gga ctt gca ttt cc acc acc ccg acc ttc acc acc acc acc acc acc acc acc
aaa ctg ggc ctc gtg aag tat gga aaa caa gcc atg get ttg atc ggc ggg gg ggl ggl ggl ggl ggl ggl ggl
Lys Leu Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn Tyr Ser 165 gga ggc aac aaa cgc aag ctc tct aca gcc atg gct ttg atc ggc ggg Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile Gly Gly 170 cct cct gtg gtg ttt ctg gat gaa ccc acc aca ggc atg gat ccc aaa Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys 185 gcc cgg cgg tct ttg tgg aat tgt gcc cta agt gtt gc aaq gag ggg Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly 205 aga tca gta gtg ctt aca tct cat agt atg gaa gaa tgt gaa gcc ctt gcc act aga gag ggg Ala Arg Arg Phe Leu Trp Fan Cys Ala Leu Ser Val Val Lys Glu Gly 215 gca act agg atg gca atc act act cat agg atg gag tcc agg tcc gd; val Ala Leu Ser Val Val Lys Glu Gly 225 tgc act agg atg gca atc atg gtc aat gga ggt cat ggg tcc gd; val Ala Leu Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Gly 230 agg tcc act agg atg gca atc atg gtc aat gga ggt tc agg tcc tg ggc Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 245 agt gtc cag cat cta aaa aat agg ttt gga gat ggt tat aca ata ggt ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val 250 gta cga ata gca ggg tcc aac ccg gac ctg aag cct gtc caq gat ttc 275 ttt gga ctt gca ttt cct gga agt gtt ca aaa gga aaa cac cac gg aac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 290 atg cta caa tac cag ctt cca tct tca tta tct tct ct ggc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 300 atg cta caa tac cag gc aca aca ctt cac tct tca tta tct tct ct gga aga ctac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Ser Ser Leu Ala Arg Ile 300 atg cta caa tac cag agc aaa aag cga ctc cac ata gaa gac tac 594 be cag atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac 594 be cag atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac 594 be cag atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac 599 ctc gtt tct cag aca acc ctt gac ctt gac cat gtt ttt gtg aac ttt gcc aag
Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile Gly Gly 170 cct cct gtg gtg ttt ctg gat gaa ccc acc acc acg ggc atg gat ccc aaa 56610 Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys 195 gcc cgg cgg ttc ttg tgg aat tgt gcc cta agt gtt gtc aag gag ggg Ala Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly 200 aga tca gta gtg ctt aca tct cat agt atg gaa gaa tgt gaa gct ctt Arg Ser Val Val Leu Thr Ser Met Glu Glu Cys Glu Ala Leu 225 tgc act agg atg gca atc atg gtc aat gga agg ttc agg tgc ctt ggc Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 230 agt gtc cag cat cta aaa aat agg ttt gga gat ggt tat aca ata gtt gcs ctg gc Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 245 agt gtc cag cat cta aaa aat agg ttt gga gat ggt tat aca ata gtt Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Try Thr Ile Val 250 gta cga ata gca ggg tcc aac ccg gac ctg aag cct gtc cag gat tcc Yal Gln Asp Phe 265 ttt gga ctt gca ttt cct gga agt gtt cta aca gag aac acc cgg aac phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 280 atg cta caa tac cag ctt cca tct tac tta tta tct tct ctg gc agg ata gct ca cac acc acc acc acc acc acc acc ac
Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys 185 gcc cgg cgg ttc ttg tgg aat tgt gcc cta agt gtt gtc aag gag ggg Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly 200 aga tca gta gtg ctt aca tct cat agt atg gaa gaa tgt gaa gct ctt Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu 215 tgc act agg atg gca atc atg gtc aat gga agg ttc agg tgc ctt ggc Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 230 agt gtc cag cat cta asa aat agg ttt gga gat ggt tat aca ata gtt Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val 250 gta cga ata gca ggg tcc aac ccg gac ctg aag cct gtc cag gat ttc Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe 265 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 280 atg cta caa tac cag ctt cat cat ta tct tct ctt gcg gag ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 305 ttc agc atc ctc cc ag aca cac agc aca agc aca cac ata gaa gac tac Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 315 195 197 198 198 5658 5706 57
Ale Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys Glu Gly 210 aga tca gta gtg ctt aca tct cat agt atg gaa gaa tgt gaa gct ctt Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu 215 tgc act agg atg gca atc atg gtc aat gga agg ttc agg tgc ctt ggc cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 245 agt gtc cag cat cta aaa aat agg ttt gga gat ggt tat aca ata gtt Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val 250 gta cga ata gca ggg tcc aac ctg aag cct aag cct aag gct act agg attc Cyal Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe 275 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Phe Cly Leu Ala Phe Pro Gly Ser Val Leu Lys Gly Lys His Arg Asn 290 atg cta caa tac cag ctt cca tct tca tct tct tct ctg gcc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile Glu Asp Tyr 315 tct gtt tct cag aca aca ctt gac cat gac agt att gtg aac ttt gcc aag 6042
Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu 225 tgc act agg atg goa atc atg gtc aat gga agg ttc agg tgc ctt ggc Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 245 agt gtc cag cat cta aaa aat agg ttt gga gat ggt tat aca ata gtt Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val 255 gta cga ata gca ggg tcc aac ccg gac ctg aag cct gtc cag gat ttc gln Asp Phe 275 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Cys Pro Val Gln Asp Phe Gly Ser Val Leu Lys Glu Lys His Arg Asn 285 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 280 atg cta caa tac cag ctt cca tct tca tta tct tct ctg gcc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 295 ttc agc atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 tct gtt tct cag aca aca ctt gac caa gta ttt gtg aac ttt gcc aag 6042
Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys Leu Gly 245 agt gtc cag cat cta aaa aat agg ttt gga gat ggt tat aca ata ggt Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val 250 gta cga ata gca ggg tcc aac ccg gac ctg aag cct gtc cag gat ttc Ser Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe 275 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 280 atg cta caa tac cag ctt cca tct toa tta tct tct ctg gcc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 295 ttc agc atc ctc cca aca cac cag agc ctc cac ata gaa gac tac Ser Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 tct gtt tct cag aca aca ctt gac caa gta ttt gtg aac ttt gcc aag 6042
Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr Ile Val 250 gta cga ata gca ggg tcc aac ccg gac ctg aag cct gtc cag gat ttc Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe 265 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 280 atg cta caa tac cag ctt cca tct tca tta tct tct ctg gcc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 295 ttc agc atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 ser Val Gln Tyr Gla cac cac ctt gac caa gta ttt gtg aac ttt gcc aag 6042
Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln Asp Phe 265 ttt gga ctt gca ttt cct gga agt gtt cta aaa gag aaa cac cgg aac Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 280 atg cta caa tac cag ctt cca tct tca tta tct tct ctg gcc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 295 ttc agc atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 stct gtt tct cag aca aca ctt gac caa gta ttt gtg aac ttt gcc aag 6042
Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys Glu Lys His Arg Asn 290 atg cta caa tac cag ctt cca tct tca tta tct tct ctg gcc agg ata Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 295 ttc agc atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 315 320 Tct gtt tct cag aca aca ctt gac caa gta ttt gtg aac ttt gcc aag 6042
Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala Arg Ile 295 ttc agc atc ctc tcc cag agc aaa aag cga ctc cac ata gaa gac tac Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 315 5994 tct gtt tct cag aca aca ctt gac caa gta ttt gtg aac ttt gcc aag 6042
Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu Asp Tyr 310 315 320 325 tct gtt tct cag aca aca ctt gac caa gta ttt gtg aac ttt gcc aag 6042

330 335 340	
gac caa agt gat gat gac cac tta aaa gac ctc tca tta cac aaa aac Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu Ser Leu His Lys Asn 345 350 355	6090
cag aca gta gtg gac gtt gca gtt ctc aca tct ttt cta cag gat gag Gln Thr Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln Asp Glu 360 365 370	6138
aaa gtg aaa gaa agc tat gta tga agaatcctgt tcatacgggg tggctgaaag Lys Val Lys Glu Ser Tyr Val * 375 380	6192
taaagaggaa ctagactttc ctttgcacca tgtgaagtgt tgtggagaaa agagccagaa	6252
gttgatgtgg gaagaagtaa actggatact gtactgatac tattcaatgc aatgcaattc	6312
aatgcaatga aaacaaaatt ccattacagg ggcagtgcct ttgtagccta tgtcttgtat	6372
ggctctcaag tgaaagactt gaatttagtt ttttacctat acctatgtga aactctatta	6432
tggaacccaa tggacatatg ggtttgaact cacacttttt ttttttttt tgttcctgtg	6492
tattctcatt ggggttgcaa caataattca tcaagtaatc atggccageg attattgatc	6552
aaaatcaaaa ggtaatgcac atceteatte actaageeat gecatgeeca ggagaetggt	6612
ttcccggtga cacatccatt gctggcaatg agtgtgccag agttattagt gccaagtttt	6672
tcagaaagtt tgaagcacca tggtgtgtca tgctcacttt tgtgaaagct gctctgctca	6732
gagtotatoa acattgaata toagttgaca gaatggtgoo atgcgtggot aacateetgo	6792
tttgattccc tctgataagc tgttctggtg gcagtaacat gcaacaaaaa tgtgggtgtc	6852
tocaggoacg ggaaacttgg ttocattgtt atattgtoot atgottogag coatgggtot	6912
acagggtcat cottatgaga otottaaata taottagato otggtaagag gcaaagaato	6972
aacagccaaa ctgctggggc tgcaagctgc tgaagccagg gcatgggatt aaagagattg	7032
tgcgttcaaa cctagggaag cctgtgccca tttgtcctga ctgtctgcta acatggtaca	7092
ctgcatctca agatgtttat ctgacacaag tgtattattt ctggcttttt gaattaatct	7152
agaaaatgaa aagatggagt tgtattttga caaaaatgtt tgtacttttt aatgttattt	7212
ggaattttaa gttotatoag tgaottotga atoottagaa tggootottt gtagaacoot	7272
gtggtataga ggagtatggc cactgcccca ctatttttat tttcttatgt aagtttgcat	7332
atcagtcatg actagtgcct agaaagcaat gtgatggtca ggatctcatg acattatatt	7392
tgagtttett teagateatt taggataete ttaateteae tteateaate aaatattttt	7452
tgagtgtatg ctgtagctga aagagtatgt acgtacgtat aagactagag agatattaag	7512
totoagtaca ottootgtgo catgitatto agotoactgg titacaaata taggitgtot	7572
tgtggttgta ggagcccact gtaacaatac tgggcagcct tttttttttt	7632
gcaacaatgc aaaagccaag aaagtataag ggtcacaagt ctaaacaatg aattcttcaa	7692
cagggaaaac agctagcttg aaaacttgct gaaaaacaca acttgtgttt atggcattta	7752
gtacetteaa ataattgget ttgeagatat tggatacece attaaatetg acagteteaa	7812
attiticato toticaatoa otagioaaga aaaatataaa aacaacaaat acticcatat	7872
ggagcatttt teagagtttt etaaceeagt ettattttte tagteagtaa acattegtaa	7932
aaatactgtt tcactaatac ttactgttaa ctgtcttgag agaaaagaaa	7992
aactattgtt tggggaagtt caagtgatct ttcaatatca ttactaactt cttccacttt	8052

8112

	=		=	_			
tatatttttt aaatt	ttacag aata	attatat aad	cccactgc	tgaaaaaga	ia aaaa	ıtgatt	8172
gttttagaag ttaas	agtcaa tatt	tgatttt aad	atataagt	aatgaaggo	a tatti	ccaat	8232
aactagtgat atgge	categt tgea	attttac agi	tatettea	aaaatacag	ja attta	ntagaa	8292
taatttctcc tcatt	ttaata ttt	ttcaaaa tca	aaagttat	ggtttccto	a tttta	ctaaa	8352
atcgtattct aatto	etteat tata	agtaaat cta	atgagcaa	ctccttact	t cggti	cctct	8412
gatttcaagg ccata	atttta aaaa	aatcaaa ag	gcactgtg	aactattt	g aagaa	aacac	8472
aacattttaa tacaq	gattga aagg	gacetet te	tgaagcta	gaaacaato	t atag	tatac	8532
atcttcatta atact	tgtgtt acct	tttaaa ata	agtaattt	tttacattt	t cctgi	gtaaa	8592
cctaattgtg gtaga	aaattt ttad	ccaactc tat	tactcaat	caagcaaaa	t ttct	jtatat	8652
tccctgtgga atgta	acctat gtga	agtttca gaa	aattotoa	aaatacgto	rt tcaaa	aattt	8712
etgettttge atett	ttggga caco	ctcagaa aad	cttattaa	caactgtga	ia tatga	igaaat	8772
acagaagaaa ataat	taagee etet	tatacat aaa	atgcccag	cacaattca	it tgtta	aaaaa	8832
caaccaaacc tcaca	actact gtat	tttcatt ato	ctgtactg	aaagcaaat	g cttt	jtgact	8892
attaaatgtt gcaca	atcatt catt	teactgt ata	3.				8925
<pre><210> SEQ ID NO <211> LENGTH: 38 <212> TYPE: PRT <213> OPCANISM.</pre>		∍n					
<220> FEATURE: <221> NAME/KEY: <222> LOCATION:	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 DRMATION: X	39, 40, 4	1, 42, 43	1, 44, 45,),
<220> FEATURE: <221> NAME/KEY: <222> LOCATION: 34, 35, 36 50, 51, 52 <223> OTHER INFO	VARIANT 21, 22, 23 6, 37, 38, 2, 53, 54 PRMATION: X	39, 40, 4: Kaa = Any F	1, 42, 43 Amino Aci	d. 44, 45,	46, 4	, 4 8, 49),
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 PRMATION: X 28 Thr Gly Se	39, 40, 43 Kaa = Any F er Leu Ile	1, 42, 43 Amino Aci Leu Ser 10	d Gly Ile (46, 4 Cys Ala 15	7, 48, 49),
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 DRMATION: X 28 Thr Gly Se 5	39, 40, 43 Kaa = Any F er Leu Ile na Xaa Xaa 25	1, 42, 43 Amino Aci Leu Ser 10 Xaa Xaa	d Gly Ile C	Ys Ala 15 (aa Xaa	I, 48, 49	,
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa	39, 40, 4: Kaa = Any F er Leu Ile na Xaa Xaa 25 na Xaa Xaa 40 Le Phe Pro	1, 42, 43 Amino Aci Leu Ser 10 Xaa Xaa Xaa Xaa	3, 44, 45, d Gly Ile (Xaa Xaa) 3 Xaa Xaa 3	Cys Ala 15 Caa Xaa O	Ile Xaa Xaa),
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa Xaa Xaa Xa	39, 40, 41 Kaa = Any F er Leu Ile na Xaa Xaa 25 na Xaa Xaa 40 Le Phe Pro	Leu Ser 10 Xaa Xaa Xaa Xaa Phe Gln	Gly Ile (Xaa Xaa) Xaa Xaa 2 Cys Phe 6	Cys Ala 15 (aa Xaa (0) (aa Xaa	Ile Xaa Xaa Leu	·,
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa Xaa Xaa Xa Xaa Xaa Xa Ala Gly Ly 70	39, 40, 41 Kaa = Any F er Leu Ile na Xaa Xaa 25 na Xaa Xaa 40 Le Phe Pro ys Ser Ser	Leu Ser 10 Kaa Kaa Aaa Phe Gln Thr Phe 75	Gly Ile C Xaa Xaa X Xaa Xaa X 45 Cys Phe C 60 Lys Met I	Cys Ala 15 Saa Xaa 80 Saa Xaa Saa Saa Yaa Saa Xaa Saa Xaa Saa Saa Saa Saa Saa S	Ile Xaa Xaa Leu Gly 80	·,
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa Xaa Xaa Xa Xaa Xaa Xa Xaa Xaa	39, 40, 41 Kaa = Any F er Leu Ile na Xaa Xaa 25 na Xaa Xaa 40 Le Phe Pro ys Ser Ser Ly Asp Ala	Leu Ser 10 Kaa Xaa Xaa Xaa Phe Gln Thr Phe 75 Phe Leu 90	Gly Ile C Xaa Xaa } Xaa Xaa } Cys Phe C 60 Lys Met I Asn Ile C	Cys Ala 15 Saa Xaa Saa Xaa Cly Leu Leu Thr Cys Ser 95	Ile Xaa Xaa Leu Gly 80 Ile	,
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa Xaa Xaa Xa Ala Gly Ly 70 Thr Arg Gl 85 His Glu Va	39, 40, 41 Kaa = Any A er Leu Ile da Xaa Xaa 25 da Xaa Xaa 40 Le Phe Pro 5 ys Ser Ser Ly Asp Ala al His Gln 105	Leu Ser 10 Kaa Xaa Phe Gln Thr Phe 75 Phe Leu 90 Asn Met	Gly Ile (Xaa Xaa) Xaa Xaa 3 45 Cys Phe 6 Cys Met I Asn Ile (Gly Tyr (Cys Ala 15 Caa Xaa Cly Leu Leu Thr Cys Ser 95 Cys Pro	Ile Xaa Xaa Leu Gly 80 Ile Gln	,
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa Xaa Xaa Xa Xaa Xaa Xa Thr Arg Gl 85 His Glu Va Thr Glu Le	39, 40, 41 Kaa = Any F er Leu Ile na Xaa Xaa 25 na Xaa Xaa 40 Le Phe Pro ys Ser Ser Ly Asp Ala al His Gln 105 eu Leu Thr 120 al Pro Glu	Leu Ser 10 Kaa Kaa Xaa Kaa Phe Gln Thr Phe 75 Phe Leu 90 Asn Met Gly Arg	Gly Ile C Xaa Xaa } 3 Xaa Xaa } 45 Cys Phe C 60 Lys Met I Asn Ile C Gly Tyr C Glu His \ 125	Cys Ala 15 Caa Xaa Cly Leu Cys Ser 95 Cys Pro Cal Glu	Ile Xaa Xaa Leu Gly 80 Ile Gln Phe	
<pre><220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	VARIANT 21, 22, 23 5, 37, 38, 2, 53, 54 RMATION: X 28 Thr Gly Se 5 Xaa Xaa Xa Xaa Xaa Xa Xaa Xaa Xa Thr Arg Gl 85 His Glu Va Arg Gly Va 13	39, 40, 41 Kaa = Any F er Leu Ile na Xaa Xaa 25 na Xaa Xaa 40 Le Phe Pro ys Ser Ser Ly Asp Ala al His Gln 105 eu Leu Thr 120 al Pro Glu 35	Leu Ser 10 Kaa Xaa Xaa Xaa Phe Gln Thr Phe 75 Phe Leu 90 Asn Met Gly Arg Lys Glu	Gly Ile (Xaa Xaa) Xaa Xaa) Cys Phe (60 Lys Met I Asn Ile (Gly Tyr (Glu His V 125 Val Gly I	Cys Ala 15 Caa Xaa 20 Caa Xaa 21 Cys Ser 95 Cys Pro 10 Cal Glu	Ile Xaa Xaa Leu Gly 80 Ile Gln Phe	,

Ala Gly Asn Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met 165 \$170\$

ttccagaatt tgaatattaa cgctaaaggt gtaagacttc agatttcaaa ttaatctttc

Ala Leu Ile Gly Cly Pro Pro Val Val Phe Leu Asp Clu Pro Thr Thr 180 Gly Met Asp Pro Lye Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser 195 Val Val Lys Glu Gly Arg Ser Val Val Leu Trp Asn Cys Ala Leu Ser 210 215 220 Glu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg 225 Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Arg Phe Gly Asp 245 Gly Tyr Thr 11e Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 255 Gly Tyr Thr 11e Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 275 Pro Val Gln Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys 275 Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 285 Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 290 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 310 320 His Ile Glu Asp Tyr Ser Val Ser Gln Thr Leu Asp Gln Val Phe 325 320 Wal Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 330 335 Val Asn Phe Ala Lys Asp Gln Ser Asp Pasp His Leu Lys Asp Leu 330 335 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 365 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 365 Ser Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 380 <210> SEQ ID NO 29 2212> TYER DEA 2213> GRGANISM: Homo sapien 2212> TYER DEA 2213> TAR Ala Val Leu 1																	
Val Val Lys Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu 210 Clu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg 225 Glu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg 225 Clu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg 225 Clu Cys Cys Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp 285 Cly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 275 Clu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Lys 275 Clu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 290 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 305 Ser Leu Ala Arg Tle Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 305 Yal Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 340 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 355 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 **210> SEQ ID No 29 **211> LENGTH: 897 **212> TYPE: DNA 222> DCCATION: (39)(842) **223> CHANTION: (39)(842) **223> CHEN INFORMATION: Nucleotide sequence encoding apolipoprotein A-1 (APOAL) **400> SEQUENCE: 29 asgagactgcg agaaggaggt cocccacggc cottcagg atg asa get gog gtg ctg 384 Met Lys Ala Ala Val Leu 385 Acc ttg goc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tgg 387 Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 cag cas gat gas coc ccc cag agc ccc tgg gat cga ggt aga gac ctg 387 Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 cag cas gat gas coc ccc cag agc ccc tgg gat cga ggt aga gac ctg 387 Clu Ala Phe His Phe Trp 10 cag cas gat gas coc ccc cag agc ccc tgg gat cga ggt aga gac ctat ttc 389 Clu Ala Phe His Phe Trp 400 Ala Thr Val Tyr Val Asp Val Leu Lys Asp Leu 55 Gcc act gtg tac gft gst gtg ctc asa gac agc aga gac tat gft gac 380 Clu Ala Thr Net Glu Siy Ser Ala Leu Lys Leu 56 670 Ctt gac asa ctgg gac ggt gcd ctc cac ctc acc ttc agc ang ctg cg cga ctc 391 Clu Leu Arg Glu 295 ctt gac asa ftg gac agc gtg ccc ttc acc ttc acc ttc agc ang ctg ctg cga ctc 248	Ala	Leu	Ile		Gly	Pro	Pro	Val		Phe	Leu	Asp	Glu		Thr	Thr	
210 215 220 Glu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg 225 230 240 Phe Arg Cys Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp 245 255 Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 260 275 Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 260 275 Pro Val Gln Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys 275 280 Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 290 300 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 1055 310 310 320 His Ile Glu Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe 325 Ser Leu His Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 340 340 345 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 365 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 375 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 380 *210> SEO ID NO 29 *221> SEO ID NO 29 *221> INMETH: 897 *222> LOCATION: (39)(842) *222> COLATION: (39)(842) *223> COLATION: (39)(842) *223> COLATION: 39)(842) *223> COLATION: SEQUENCE: 29 agagactgcg agaaggaggt coccccacggc cettcagg atg asa get geg gtg ctg Met Lys Ala Ala Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 cac ttg gee gtg ctc ttc ctg acg ggg age cag gct cgg cat ttc tcg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 20 cac cac gtg cac cac cac cac cac age cac ctgg gta cag gac cag gac cag gac cag gac cag age cag gac cag cac act gtg tac gat gas gac cag gac cac act gtg cac gac cac age age cac act age cac cac age cac cac dat age cac cac cac age cac cac dat age cac cac age cac cac dat gag cac cac dat age cac cac age cac cac cac age cac cac cac age cac cac cac cac cac age cac cac cac cac cac cac cac cac cac ca	Gly	Met		Pro	Lys	Ala	Arg		Phe	Leu	Trp	Asn		Ala	Leu	Ser	
235 240 Phe Arg Cys Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp 255 Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 265 Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 265 Pro Val Gln Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys 285 Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Lys 285 Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 290 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 305 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 315 Wal Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 355 Val Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 355 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 375 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 <210> SEC ID NO 29 <211> LENGTH: 897 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Homo sapien <220> FRATURE: <221> NABE/KEY: CDS <222> LOCATION: (39)(842) <223> OTHER INFORMATION: Nucleotide sequence encoding apolipoprotein A-1 (APOAI) <400> SEQUENCE: 29 agagactgog agaaggaggt cocccacggc cottcagg atg asa gct gcg gtg ctg Met Lys Ala Ala Val Leu 15 acc ttg gcc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tgg 104 Thr Leu Ala Val Leu Phe Leu Thr Gly ser Gln Ala Arg His Phe Trp 10 cag caa gat gac cc ccc cag agc cct tgg at cgg gtd cgg cat ttc tgg 110 Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 gcc act gtg tac gtg gat gtg cct caaa gac agc gcg ag ag ac atg gct acg and gac ctg 152 Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 gcc act gtg tac gtg gat gtg cc caac agc gcg aga gac tat gtg Ala Trp Asp Asp Leu 45 60 65 65 65 cct gac asa ctg gaa gcg gtg acc tcc acc ttc agc aag ctc aac cta aag ctc ser Gln Fy Val 40 50 ctt gac acc ttg gaa gcg gtg acc tcc acc ttc agc aag ctg cgg gaa Leu 248 Even Gln Flo Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 55 60 ctt gac and ttg gac gcg stg acc tcc acc ttc acc ttc agc aag ctg cgg acc 246 Even Ash Asn Trp Asp Ser Val Thr	Val		Lys	Glu	Gly	Arg		Val	Val	Leu	Thr		His	ser	Met	Glu	
Gly Tyr Thr 11e Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys 260 Pro Val Gln Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys 280 Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 280 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 305 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 305 Wal Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 336 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 365 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 **Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 **Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 212 TYPE1 DYNA 2222 OFFARTURE: **Phe Land Mark Mark (22) FRATURE: **Phe Mark (Asp Clu Ser) (842) **Phe Mark (Asp Clu Ser) (842) **Phe Mark (Asp Clu Ser) (842) **Phe Mark (Asp Clu Clu Clu Ser) (842) **Phe Mark (Asp Clu Clu Clu Ser) (842) **Phe Mark (Asp Clu		Сув	Glu	Ala	Leu		Thr	Arg	Met	Ala		Met	Val	Asn	Gly	_	
Pro Val Gin Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Lys 275 280 285	Phe	Arg	Сув	Leu		Ser	Val	Gln	His		Lys	Asn	Arg	Phe		Asp	
Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 290 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 315 Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 320 His Ile Glu Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe 325 Val Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 350 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 355 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 **210** SEQ ID NO 29 **211** LENGTH: 897 **212** TYPE: DNA **222** LOCATION: (39)(842) **223** OTHER INFORMATION: Nucleotide sequence encoding apolipoprotein A-1 (APOAL) **400** SEQUENCE: 29 **agagactgcg agaaggaggt cocccacggc cottcagg atg aaa gct gcg gtg ctg Met Lys Ala Ala Val Leu Thr Ser 10 **acc ttg gcc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc ttgg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 **cag caa gat gaa ccc ccc cag agc ccc ttg gat cga gtg aag gac ctg Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 **gcc act gtg tac gtg gat gtg ct caa agc agc agc agc agc act at gtg Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val 40 **ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asp Leu Lys Leu 70 ctt gac aac tgg gac agc gtg acc ttc agc acc cttc agc acc ctc agc acc ctc agc ctc acc ctc agc ctc ttc acc acc ctc acc acc ctc cag ctc cac ctc cacc ctc cacc cac	Gly	Tyr	Thr		Val	Val	Arg	Ile		Gly	Ser	Asn	Pro		Leu	Lys	
Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 310 310 310 315 315 315 320 315 320 315 320 320 335 325 325 325 325 325 325 325 325 325	Pro	Val		Asp	Phe	Phe	Gly		Ala	Phe	Pro	Gly		Val	Leu	Lys	
His Ile Glu Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe 325 Val Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 340 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 355 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 375 Val Enorgh: 897 Val 221> LENGTH: 897 Val 222> LOCATION: (39)(842) Val CADON SEQUENCE: 29 agagactgcg agaaggaggt cocccacggc cottcagg atg asa gct gcg gtg ctg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 cag cas gat gas coc ccc cas agg coc tgg gat cas gtg asg gas ctg Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 250 gcc act gtg tac gtg gat gtg ctc asa gac agg ggc agg aga ctat gtg Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val 45 toc cag ttt gas ggc tcc gcc ttg gga asa cag cta asa cta asg ctc 360 Cott gac asc ttg gas agg agg agg aga cag cta asa cta asg ctc 370 Cat gac asc ttg gas agg agg agg asc agg cta asa cta asg ctc 380 Cat gac asc ttg gas ggc tcc gcc ttg gga asa cag cta asa cta asg ctc 370 Cat gac asc ttg gas agg acc cc ccc cag aga ccc ttc agg aga gac cta asc cta asg ctc 380 Cat gac asc ttg gas ggc agg gtg asa cag cta asc cta asg ctc 380 Cat gac asc ttg gas agg acc ag ctc as acc cta asg ctc 380 Cat gac asc ttg gas agg acc ctc acc ttc agg asg ctc aga gtc cag aga ctc 380 Cat gac asc ttg gas agg gtg acc tcc acc ttc agg asg ctc asg ctc asg ctc asg ctc as ctc asg ctc asc ctc asc ctc asg	Glu		His	Arg	Asn	Met		Gln	Туr	Gln	Leu		Ser	Ser	Leu	Ser	
Val Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 340 Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 355 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td></td><td>Leu</td><td>Ala</td><td>Arg</td><td>Ile</td><td></td><td>Ser</td><td>Ile</td><td>Leu</td><td>Ser</td><td></td><td>Ser</td><td>Lys</td><td>Lys</td><td>Arg</td><td></td><td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		Leu	Ala	Arg	Ile		Ser	Ile	Leu	Ser		Ser	Lys	Lys	Arg		
Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 355 Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	His	Ile	Glu	Asp		Ser	Val	Ser	Gln		Thr	Leu	Asp	Gln		Phe	
Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 210> SEQ ID NO 29 211> LENGTH: 897 212> TYPE: DNA 213> ORGANISM: Homo sapien 220> FEATURE: 221> NAME/KEY: CDS 222> LOCATION: (39)(842) 223> OTHER INFORMATION: Nucleotide sequence encoding apolipoprotein A-1 (APOA1) 2400> SEQUENCE: 29 agagactgcg agaaggaggt cccccacggc ccttcagg atg aaa gct gcg gtg ctg Met Lys Ala Ala Val Leu 1 5 acc ttg gcc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tgg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 15 20 cag caa gat gaa ccc ccc cag agc ccc tgg gat cga gtg aag gac ctg Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 30 gcc act gtg tac gtg gat gtg ctc aaa gac agc ggc aga gac tat gtg Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val 40 45 50 tcc cag ttt gaa ggc tcc gcc ttg gga aaa cag cta aac cta aag ctc Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 55 60 ctt gac aac tgg gac agc ggt acc tcc acc ttc agc aag ctg cgc gaa 296 ctt gac aac tgg gac agc ggt acc tcc acc ttc agc aag ctg cgc gaa 296 ctt gac aac tgg gac agc ggt acc tcc acc ttc agc aag ctg cgc gaa 296 ctt gac aac tgg gac agc gtg acc tcc acc ttc agc aag ctg cgc gaa 296 ctt gac aac tgg gac agc gtg acc tcc acc ttc agc aag ctg cgc gaa 296 ctt gac aac tgg gac agc gtg acc tcc acc ttc agc aag ctg cgc gaa 296	Val	Asn	Phe		Lys	Asp	Gln	Ser		Asp	Asp	His	Leu	_	Asp	Leu	
<pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	Ser	Leu		Lys	Asn	Gln	Thr		Val	Asp	Val	Ala		Leu	Thr	Ser	
<pre><211> LENGTH: 897 <212> TYPE: DNA 213> OGGANISM: Homo sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (39)(842) <223> OTHER INFORMATION: Nucleotide sequence encoding apolipoprotein</pre>	Phe		Gln	Asp	Glu	Lys		Lys	Glu	Ser	Tyr						
acc ttg gcc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tgg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10 Ser Pro Trp Asp Arg Val Lys Asp Leu 25 Ser Gln Ala Yal Lys Asp Leu 25 Ser Gln Ala Arg His Phe Trp 20 Ser Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 Ser Gln Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val 40 Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 55 Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 56 Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 57 Ser Val Thr Ser Thr Phe Ser Lys Leu Arg Glu	<211 <212 <213 <220 <221 <222 <223	L> LE 2> TY 3> OF 0> FE L> NA 2> LO 3> OT A-	ENGTH PE: RGANI EATUF AME/K CATI THER -1 (1	DNA SM: RE: REY: ON: INFO	Homo CDS (39) ORMAT	([842]		ide	sequ	ience	e enc	codir	ng ap	oolig	poprotein	
Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Trp 10	agag	gacto	geg s	agaaq	ggagg	gt c	cccc	acggo	e ect	tcaq	Me	et Ly			la Va	al Leu	56
Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 gcc act gtg tac gtg gat gtg ctc aaa gac agc ggc aga gac tat gtg Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val 40 tcc cag ttt gaa ggc tcc gcc ttg gga aaa cag cta aac cta aag ctc Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 55 ctt gac aac tgg gac age gtg acc tcc acc ttc agc aag ctg cgc gaa Leu Asp Asn Trp Asp Ser Val Thr Ser Thr Phe Ser Lys Leu Arg Glu				Val					Gly					His			104
Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val 40 toc cag ttt gaa ggc toc gcc ttg gga aaa cag cta aac cta aag ctc Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 55 ctt gac aac tgg gac agc gtg acc tcc acc ttc agc aag ctg cgc gaa Leu Asp Asn Trp Asp Ser Val Thr Ser Thr Phe Ser Lys Leu Arg Glu			Asp					Ser					Val				152
Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys Gln Leu Asn Leu Lys Leu 55 60 70 ctt gac aac tgg gac agc gtg acc tcc acc ttc agc aag ctg cgc gaa 296 Leu Asp Asn Trp Asp Ser Val Thr Ser Thr Phe Ser Lys Leu Arg Glu		${\tt Thr}$					Val					Gly					200
Leu Asp Asn Trp Asp Ser Val Thr Ser Thr Phe Ser Lys Leu Arg Glu	Ser					Ser					Gln					Leu	248
					Asp					Thr					Arg		296

cag cto Gln Leu					_				-		_	_	_		344
aca gag Thr Glu															392
gee aag Ala Lys 120	Val														440
gag atg Glu Met 135															488
caa gag Gln Glu															536
cca cto Pro Leu															584
etg ege Leu Arg															632
gee geg Ala Ala 200	Arg														680
gag tad Glu Tyr 215															728
gcc aag Ala Lys															776
gag ago Glu Ser															824
aag cto Lys Leu					ggc	geee	gee (geege	cccc	ec ti	cece	ggtgo	3		872
tcagaat	aaa (cgtti	tcca	aa gi	Eggg										897
<210> S <211> L <212> T <213> O	ENGTI YPE :	H: 26	57	sar	oien										
<400> S	EQUEI	NCE:	30												
Met Lys	Ala	Ala	Val 5	Leu	Thr	Leu	Ala	Val 10	Leu	Phe	Leu	Thr	Gly 15	Ser	
Gln Ala	Arg	His 20	Phe	Trp	Gln	Gln	Asp 25	Glu	Pro	Pro	Gln	Ser 30	Pro	Trp	
Asp Arg	Val 35	Lys	Asp	Leu	Ala	Thr 40	Val	Tyr	Val	Asp	Val 45	Leu	Lys	Asp	
Ser Gly 50	Arg	Asp	Tyr	Val	Ser 55	Gln	Phe	Glu	Gly	Ser 60	Ala	Leu	Gly	Lys	
Gln Leu 65	Asn	Leu	Lys	Leu 70	Leu	Asp	Asn	Trp	А вр 75	Ser	Val	Thr	Ser	Thr 80	
Phe Ser	Lys	Leu	Arg 85	Glu	Gln	Leu	Gly	Pro 90	Val	Thr	Gln	Glu	Phe 95	Trp	

Asp	Asn	Leu	Glu 100	Lys	Glu	Thr	Glu	Gly 105	Leu	Arg	Gln	Glu	Met 110	Ser	Lys	
Asp	Leu	Glu 115	Glu	Val	Lys	Ala	Lys 120	Val	Gln	Pro	Tyr	Leu 125	Asp	Asp	Phe	
Gln	Lув 130	Lys	Trp	Gln	Glu	Glu 135	Met	Glu	Leu	Tyr	Arg 140	Gln	Lys	Val	Glu	
Pro 145	Leu	Arg	Ala	Glu	Leu 150	Gln	Glu	Gly	Ala	Arg 155	Gln	Lув	Leu	His	Glu 160	
Leu	Gln	Glu	Lys	Leu 165	Ser	Pro	Leu	Gly	Glu 170	Glu	Met	Arg	Asp	Arg 175	Ala	
Arg	Ala	His	Val 180	Asp	Ala	Leu	Arg	Thr 185	His	Leu	Ala	Pro	T y r 190	Ser	Asp	
Glu	Leu	Arg 195	Gln	Arg	Leu	Ala	Ala 200	Arg	Leu	Glu	Ala	Leu 205	Lys	Glu	Asn	
Gly	Gly 210	Ala	Arg	Leu	Ala	Glu 215	туг	His	Ala	Lys	Ala 220	Thr	Glu	His	Leu	
Ser 225	Thr	Leu	Ser	Glu	Lys 230	Ala	Lys	Pro	Ala	Leu 235	Glu	Asp	Leu	Arg	Gln 240	
Gly	Leu	Leu	Pro	Val 245	Leu	Glu	Ser	Phe	L y s 250	Val	Ser	Phe	Leu	Ser 255	Ala	
Leu	Glu	Glu	Ty r 260	Thr	Lys	Lys	Leu	Asn 265	Thr	Gln						
<21: <22: <22: <22: <22:		GANI ATUR ME/R CATI HER APOB	SM: E: EY: ON: INFO	CDS (129 RMAT	•)	(138		ide	sequ	ience	e end	odir	ng ap	oolig	oprotein	В
att	cccac	ccd d	gaco	ctgc	aa a	getga	agtgo	e aat	tete	ggt	tgat	gaag	gat q	gagga	ageceg	60
ccc	ageca	agc o	agg	geege	eg aç	dacci	gagge	c caç	ldaci	gcag	ccca	agga	gaa q	gaaa	eaccgc	120
agc-	tggc											a Lei			g ctg a Leu	170
								gcg Ala								218
								tgt Cys								266
								aac Asn 55								314
								aga Arg								362
Gly	val gtt	Pro 65 gag	Gly	Thr	Ala	Asp	Ser 70 cag		ser	Ala	Thr	Arg 75 atc	Ile	Asn	Cys	362 410

Ser 95	Gln	Сув	Thr	Leu	Lys 100	Glu	Val	Tyr	Gly	Phe 105	Asn	Pro	Glu	Gly	Lys 110	
	ttg Leu															506
	agg Arg															554
	tac Tyr															602
	atc Ile 160															650
	gtg Val															698
	gtc Val															746
	gac Asp															794
	cca Pro															842
	agc Ser 240															890
	gtg Val															938
	tac Tyr															986
	ctt Leu															1034
	aag Lys															1082
	aag Lys 320															1130
	acc Thr															1178
	gtt Val															1226
	cca Pro															1274
	cag Gln															1322
aaa	cgt	gtg	cat	gcc	aac	ccc	ctt	ctg	ata	gat	gtg	gtc	acc	tac	ctg	1370

												<u> </u>	СТІІ	u-u				
Lys	Arg 400	Val	His	Ala	Asn	Pro 405	Leu	Leu	Ile	Asp	Val 410	Val	Thr	Tyr	Leu			
									cag Gln							1418		
									gcc Ala 440							1466		
His	Ala	Val	Asn 450	Asn	Tyr	His	Lys	Thr 455	aac Asn	Pro	Thr	Gly	Thr 460	Gln	Glu	1514		
Leu	Leu	Asp 465	Ile	Āla	Asn	Tyr	Leu 470	Met	gaa Glu	Gln	Ile	Gln 475	Asp	Asp	Cys	1562		
Thr	Gly 480	Asp	Glu	Āsp	Tyr	Thr 485	Tyr	Leu	att	Leu	Arg 490	Val	Ile	Gly	Asn	1610		
Met 495	Gly	Gln	Thr	Met	Glu 500	Gln	Leu	Thr	cca Pro	Glu 505	Leu	Lys	Ser	Ser	Ile 510	1658		
Leu	Lys	Cys	Val	Gln 515	Ser	Thr	Lys	Pro	tca Ser 520	Leu	Met	Ile	Gln	Lys 525	Ala	1754		
Ala	Ile	Gln	Ala 530	Leu	Arg	Lys	Met	G1u 535	Pro	Lys	Asp	Lув	Asp 540	Gln	Glu	1802		
Val	Leu	Leu 545	Gln	Thr	Phe	Leu	Asp 550	Āsp	Ala	Ser	Pro	Gly 555	Asp	Lys	Arg	1850		
Leū	Ala 560	Āla	Tyr	Leu	Met	Leu 565	Met	Arg	Ser	Pro	Ser 570	Gln	Ala	Asp	Ile	1898		
Asn 575	Lys	Ile	Val	Gln	Ile 580	Leu	Pro	Trp	Glu	Gln 585	Asn	Glu	Gln	Val	Lys 590	1946		
Asn	Phe	Val	Ala	Ser 595	His	Ile	Ala	Asn	Ile 600	Leu	Asn	Ser	Glu	Glu 605	Leu	1994		
Asp	Ile	Gln	Asp 610 act	Leu	Lys atg	Lys	Leu	Val 615 aga	Lys aaa	Glu	Ala	Leu	Lys 620 aac	Ğlu tat	Ser caa	2042		
Gln	Leu	Pro 625	Thr	Val	Met	Asp	Phe 630	Arg	Lys	Phe	Ser	Arg 635	Asn	Tyr	Gln	2090		
Leu	Tyr 640	Lys	Ser	Val	Ser	Leu 645	Pro	Ser	Leu	Asp	Pro 650	Ala	Ser	Āla	Lys	2138		
Ile 655	Glu	Gly	Asn	Leu	Ile 660	Phe	Asp	Pro	Asn	Asn 665	Tyr	Leu	Pro	Lys	Glu 670	2186		
Ser	Met	Leū	Lys	Thr 675	Thr	Leu	Thr	Āla	Phe 680	Ğİy	Phe	Ala	Ser	Ala 685	Asp	2234		
Leu	Ile	Ğlű	Ile 690	Ğİy	Leu	Ğlu	ĞÎy	Lys 695	Gly	Phe	Ğlü	Pro	Thr 700	Leū	Ğlu	2282		
550			צפכ			224	200			540	50	500			,,,,			

_													COII					
A	la	Leu	Phe 705	Gly	Lys	Gln	Gly	Phe 710	Phe	Pro	Asp	Ser	Val 715	Asn	Lys	Ala		
						ggt Gly											2330	
	a Ī					tat Tyr 740											2378	
						ctc Leu											2426	
						gaa Glu											2474	
G]	Lu	Leu	Gly 785	Phe	Ala	agt Ser	Leu	His 790	Asp	Leu	Gln	Leu	Leu 795	Gly	Lys	Leu	2522	
Le	∋u	Leu 800	Met	Gly	Ala	cgc Arg	Thr 805	Leu	Gln	Gly	Ile	Pro 810	Gln	Met	Ile	Gly	2570	
G] 81	lu 15	Val	Ile	Arg	Lys	ggc Gly 820	Ser	Lys	Asn	Asp	Phe 825	Phe	Leu	His	Tyr	Ile 830	2618	
₽ł	ıe	Met	Glu	Asn	Ala 835	ttt Phe	Glu	Leu	Pro	Thr 840	Gly	Ala	Ğİy	Leu	Gln 845	Leu	2666	
G]	ln	Ile	Ser	Ser 850	Ser	gga Gly	Val	Ile	Ala 855	Pro	Gly	Ala	ГÀв	Ala 860	Gly	Val	2714	
L	γs	Leu	Glu 865	Val	Āla	aac Asn	Met	Gln 870	Āla	Ğlu	Leu	Val	Ala 875	Lys	Pro	Ser	2762	
Vā	al	Ser 880	Val	Glu	Phe	gtg Val	Thr 885	Asn	Met	Gly	Ile	Ile 890	Ile	Pro	Asp	Phe	2810	
A]	la 95	Arg	Ser	Gl y	Val	Gln 900	Met	Asn	Thr	Asn	Phe 905	Phe	Нів	Glu	Ser	Gly 910	2858	
Le	eū	Glu	Ala	His	Val 915	gcc Ala	Leu	Lys	Āla	Gly 920	Lys	Leu	Lys	Phe	Ile 925	Ile	2906	
Pı	ro	Ser	Pro	Lys 930	Arg	Pro	Val	Lys	Leu 935	Leu	Ser	Gly	Ğİy	Asn 940	Thr	Leu	3002	
Hi	ai	Leu	Val 945	Ser	Thr	acc Thr	Lys	Thr 950	Glu	Val	Ile	Pro	Pro 955	Leu	Ile	Glu		
As	вn	Arg 960	Gln	Ser	Trp	tca Ser	Val 965	Сув	Lys	Gln	Val	Phe 970	Pro	Gly	Leu	Asn	3050	
Ту 97	75	Сув	Thr	Ser	Gly	gct Ala 980	Tyr	Ser	Asn	Ala	Ser 985	Ser	Thr	Asp	Ser	Ala 990	3098	
Se	er	Tyr	Tyr	Pro	Leu 99!		Gly	Āsp	Thr	Arg 1000	Leu)	Glu	Leu	Ğlu	Leu 1005	Arg	3146	
co	3t	aca	gga	gag	att	gag	cag	tat	tct	gtc	agc	gca	acc	tat	gag	ctc	3194	

Pro Thr Gly Glu Ile Glu Gln Tyr Ser Val Ser Ala Thr Tyr Glu Leu 1010 1015 1020	
cag aga gag gac aga gcc ttg gtg gat acc ctg aag ttt gta act caa Gln Arg Glu Asp Arg Ala Leu Val Asp Thr Leu Lys Phe Val Thr Gln 1025 1030 1035	3242
gca gaa ggt gcg aag cag act gag gct acc atg aca ttc aaa tat aat Ala Glu Gly Ala Lys Gln Thr Glu Ala Thr Met Thr Phe Lys Tyr Asn 1040 1045 1050	3290
cgg cag agt atg acc ttg tcc agt gaa gtc caa att ccg gat ttt gat Arg Gln Ser Met Thr Leu Ser Ser Glu Val Gln Ile Pro Asp Phe Asp 1055 1060 1065 1070	3338
gtt gac etc gga aca atc etc aga gtt aat gat gaa tet act gag gge Val Asp Leu Gly Thr Ile Leu Arg Val Asn Asp Glu ser Thr Glu Gly 1075 1080 1085	3386
aaa acg tot tac aga oto acc otg gac att cag aac aag aaa att act Lys Thr Ser Tyr Arg Leu Thr Leu Asp Ile Gln Asn Lys Lys Ile Thr 1090 1095 1100	3434
gag gtc gcc ctc atg ggc cac cta agt tgt gac aca aag gaa gaa aga Glu Val Ala Leu Met Gly His Leu Ser Cys Asp Thr Lys Glu Glu Arg 1105 1110 1115	3482
aaa atc aag ggt gtt att too ata coc cgt ttg caa gca gaa gcc aga Lys Ile Lys Gly Val Ile Ser Ile Pro Arg Leu Gln Ala Glu Ala Arg 1120 1125 1130	3530
agt gag atc etc gec cac tgg teg eet gec aaa etg ett etc caa atg Ser Glu Ile Leu Ala His Trp Ser Pro Ala Lys Leu Leu Cln Met 1135 1140 1145 1150	3578
gac tea tet get aca get tat gge tee aca gtt tee aag agg gtg gea Asp Ser Ser Ala Thr Ala Tyr Gly Ser Thr Val Ser Lys Arg Val Ala 1155 1160 1165	3626
tgg cat tat gat gaa gag aag att gaa ttt gaa tgg aac aca ggc acc Trp His Tyr Asp Glu Glu Lys Ile Glu Phe Glu Trp Asn Thr Gly Thr 1170 1175 1180	3674
aat gta gat acc aaa aaa atg act too aat tto oot gtg gat oto too Asn Val Asp Thr Lys Lys Met Thr Ser Asn Phe Pro Val Asp Leu Ser 1185 1190 1195	3722
gat tat cct aag agc ttg cat atg tat gct aat aga ctc ctg gat cac Asp Tyr Pro Lys Ser Leu His Met Tyr Ala Asn Arg Leu Leu Asp His 1200 1205 1210	3770
aga gtc cct gaa aca gac atg act ttc cgg cac gtg ggt tcc aaa tta Arg Val Pro Glu Thr Asp Met Thr Phe Arg His Val Gly Ser Lys Leu 1215 1220 1225 1230	3818
ata gtt gca atg agc tca tgg ctt cag aag gca tct ggg agt ctt cct Ile Val Ala Met Ser Ser Trp Leu Gln Lys Ala Ser Gly Ser Leu Pro 1235 1240 1245	3866
tat acc cag act ttg caa gac cac ctc aat agc ctg aag gag ttc aac Tyr Thr Gln Thr Leu Gln Asp His Leu Asn Ser Leu Lys Glu Phe Asn 1250 1255 1260	3914
ctc cag aac atg gga ttg cca gac ttc cac atc cca gaa aac ctc ttc Leu Gln Asn Met Gly Leu Pro Asp Phe His Ile Pro Glu Asn Leu Phe 1265 1270 1275	3962
tta aaa agc gat ggc cgg gtc aaa tat acc ttg aac aag aac agt ttg Leu Lys Ser Asp Gly Arg Val Lys Tyr Thr Leu Asn Lys Asn Ser Leu 1280 1285 1290	4010
aaa att gag att cct ttg cct ttt ggt ggc aaa tcc tcc aga gat cta Lys Ile Glu Ile Pro Leu Pro Phe Gly Gly Lys Ser Ser Arg Asp Leu 1295 1300 1305 1310	4058
aag atg tta gag act gtt agg aca cca gcc ctc cac ttc aag tct gtg	4106

Lys Met Leu Glu Thr Val Arg Thr Pro Ala Leu His Phe Lys Ser Val 1315 1320 1325	
gga ttc cat ctg cca tct cga gag ttc caa gtc cct act ttt acc att Gly Phe His Leu Pro Ser Arg Glu Phe Gln Val Pro Thr Phe Thr Ile 1330 1335 1340	4154
ccc aag ttg tat caa ctg caa gtg cct ctc ctg ggt gtt cta gac ctc Pro Lys Leu Tyr Gln Leu Gln Val Pro Leu Gly Val Leu Asp Leu 1345 1350 1355	4202
too acg aat gto tac ago aac ttg tac aac tgg too goo too tac agt Ser Thr Asn Val Tyr Ser Asn Leu Tyr Asn Trp Ser Ala Ser Tyr Ser 1360 1365 1370	4250
ggt ggc aac acc agc aca gac cat ttc agc ctt cgg gct cgt tac cac Gly Gly Asn Thr Ser Thr Asp His Phe Ser Leu Arg Ala Arg Tyr His 1375 1380 1385 1390	4298
atg aag got gac tot gtg gtt gac otg ott too tac aat gtg caa gga Met Lys Ala Asp Ser Val Val Asp Leu Leu Ser Tyr Asn Val Gln Gly 1395 1400 1405	4346
tct gga gaa aca aca tat gac cac aag aat acg ttc aca cta tca tgt Ser Gly Glu Thr Thr Tyr Asp His Lys Asn Thr Phe Thr Leu Ser Cys 1410 1415 1420	4394
gat ggg tot ota ogo cac aaa ttt ota gat tog aat ato aaa tto agt Asp Gly Ser Leu Arg His Lys Phe Leu Asp Ser Asn Ile Lys Phe Ser 1425 1430 1435	4442
cat gta gaa aaa ctt gga aac aac cca gtc tca aaa ggt tta cta ata His Val Glu Lys Leu Gly Asn Asn Pro Val Ser Lys Gly Leu Leu Ile 1440 1445 1450	4490
tte gat gea tet agt tee tgg gga eea eag atg tet get tea gtt eat Phe Asp Ala Ser Ser Ser Trp Gly Pro Gln Met Ser Ala Ser Val His 1455 1460 1465 1470	4538
ttg gac tcc aaa aag aaa cag cat ttg ttt gtc aaa gaa gtc aag att Leu Asp Ser Lys Lys Gln His Leu Phe Val Lys Glu Val Lys Ile 1475 1480 1485	4586
gat ggg cag ttc aga gtc tct tcg ttc tat gct aaa ggc aca tat ggc Asp Gly Gln Phe Arg Val Ser Ser Phe Tyr Ala Lys Gly Thr Tyr Gly 1490 1495 1500	4634
ctg tot tgt cag agg gat cet aac act ggc cgg ctc aat gga gag toc Leu Ser Cys Gln Arg Asp Pro Asn Thr Gly Arg Leu Asn Gly Glu Ser 1505 1510 1515	4682
aac ctg agg ttt aac tcc tcc tac ctc caa ggc acc aac cag ata aca Asn Leu Arg Phe Asn Ser Ser Tyr Leu Gln Gly Thr Asn Gln Ile Thr 1520 1525 1530	4730
gga aga tat gaa gat gga acc ctc tcc ctc acc tcc acc tct gat ctg Gly Arg Tyr Glu Asp Gly Thr Leu Ser Leu Thr Ser Thr Ser Asp Leu 1535 1540 1545 1550	4778
caa agt ggc atc att aaa aat act gct tcc cta aag tat gag aac tac Gln Ser Gly Ile Ile Lys Asn Thr Ala Ser Leu Lys Tyr Glu Asn Tyr 1555 1560 1565	4826
gag ctg act tta aaa tct gac acc aat ggg aag tat aag aac ttt gcc Glu Leu Thr Leu Lys Ser Asp Thr Asn Gly Lys Tyr Lys Asn Phe Ala 1570 1575 1580	4874
act tot aac aag atg gat atg acc tto tot aag caa aat goa otg otg Thr Ser Asn Lys Met Asp Met Thr Phe Ser Lys Gln Asn Ala Leu Leu 1585 1590 1595	4922
cgt tct gaa tat cag gct gat tac gag tca ttg agg ttc ttc agc ctg Arg Ser Glu Tyr Gln Ala Asp Tyr Glu Ser Leu Arg Phe Phe Ser Leu 1600 1605 1610	4970
ctt tct gga tca cta aat tcc cat ggt ctt gag tta aat gct gac atc	5018

Leu Ser Gly Ser Leu 1615	Asn Ser His Gly Leu Glu Le 1620 1625	u Asn Ala Asp Ile 1630	
	att aat agt ggt gct cac aa Ile Asn Ser Gly Ala His Ly 1640		5066
	ata tot acc agt gca acg ac Ile Ser Thr Ser Ala Thr Th 1655		5114
	gag aat gag ctg aat gca ga Glu Asn Glu Leu Asn Ala Gl 1670		5162
	tta aca aca aat ggc cgc tt Leu Thr Thr Asn Gly Arg Ph 1685 16	e Arg Glu His Asn	5210
	gat ggg aaa gcc gcc ctc ac Asp Gly Lys Ala Ala Leu Th 1700 1705	3 3	5258
	gcc atg att ctg ggt gtc ga Ala Met Ile Leu Gly Val As 1720		5306
	agt caa gaa gga ctt aag ct Ser Gln Glu Gly Leu Lys Le 1735		5 3 5 4
	gaa atg aaa ttt gac cac ac Glu Met Lys Phe Asp His Th 1750	2 2	5402
Ile Ala Gly Leu Ser 1760	ctg gac ttc tct tca aaa ct Leu Asp Phe Ser Ser Lys Le 1765 17	u Asp Asn Ile Tyr 70	5450
	tat aag caa act gtt aat tt Tyr Lys Gln Thr Val Asn Le 1780 1785		5 4 9 8
	act tta aac agt gac ctg aa Thr Leu Asn Ser Asp Leu Ly 1800	s Tyr Asn Ala Leu 1805	5546
Asp Leu Thr Asn Asn 1810	ggg aaa cta cgg cta gaa co Gly Lys Leu Arg Leu Glu Pr 1815	o Leu Lys Leu His 1820	5594
Val Ala Gly Asn Leu 1825	aaa gga gcc tac caa aat aa Lye Gly Ala Tyr Gln Asn As 1830	n Glu Ile Lys His 1835	5642
Ile Tyr Ala Ile Ser 1840	tet get gee tta tea gea ag Ser Ala Ala Leu Ser Ala Se 1845 18	r Tyr Lys Ala Asp 50	5690
Thr Val Ala Lys Val 1855	cag ggt gtg gag ttt agc ca Gln Gly Val Glu Phe Ser Hi 1860 1865	s Arg Leu Asn Thr 1870	5738
Asp Ile Ala Gly Leu 1875		r Thr Asn Tyr Asn 1885	5786
Ser Asp Ser Leu His 1890	tte age aat gte tte egt te Phe Ser Asn Val Phe Arg Se 1895	r Val Met Ála Pró 1900	5834
Phe Thr Met Thr Ile 1905	gat gca cat aca aat ggc aa Asp Ala His Thr Asn Gly As 1910	n Gly Lys Leu Ala 1915	5882
ctc tgg gga gaa cat	act ggg cag ctg tat agc aa	a ttc ctg ttg aaa	5930

Leu Trp Gly Glu His Thr Gly Gln Leu Tyr Ser Lys Phe Leu 1920 1925 1930	Leu Lys
gca gaa cct ctg gca ttt act ttc tct cat gat tac aaa ggc Ala Glu Pro Leu Ala Phe Thr Phe Ser His Asp Tyr Lys Gly 1935 1940 1945	
agt cat cat ctc gtg tct agg aaa agc atc agt gca gct ctt Ser His His Leu Val Ser Arg Lys Ser Ile Ser Ala Ala Leu 1955 1960	
aaa gtc agt gcc ctg ctt act cca gct gag cag aca ggc acc Lys Val Ser Ala Leu Leu Thr Pro Ala Glu Gln Thr Gly Thr 1970 1975 1980	Trp Lys
ctc aag acc caa ttt aac aac aat gaa tac agc cag gac ttg Leu Lys Thr Gln Phe Asn Asn Asn Glu Tyr Ser Gln Asp Leu 1985 1990 1995	
tac aac act aaa gat aaa att ggc gtg gag ctt act gga cga Tyr Asn Thr Lys Asp Lys Ile Gly Val Glu Leu Thr Gly Arg 2000 2005 2010	
gct gac cta act cta cta gac tcc cca att aaa gtg cca ctt Ala Asp Leu Thr Leu Leu Asp Ser Pro Ile Lys Val Pro Leu 2015 2020 2025	Leu Leu 2030
agt gag ccc atc aat atc att gat gct tta gag atg aga gat Ser Glu Pro Ile Asn Ile Ile Asp Ala Leu Glu Met Arg Asp 2035 2040	Ala Val 2045
gag aag ccc caa gaa ttt aca att gtt gct ttt gta aag tat Glu Lys Pro Gln Glu Phe Thr Ile Val Ala Phe Val Lys Tyr 2050 2055 206	Asp Lys 0
Asn Gln Asp Val His Ser Ile Asn Leu Pro Phe Phe Glu Thr 2065 2070 2075	Leu Gln
gaa tat ttt gag agg aat cga caa acc att ata gtt gta gtg Glu Tyr Phe Glu Arg Asn Arg Gln Thr Ile Ile Val Val 2080 2085 2090	Glu Asn
gta cag aga aac ctg aag cac atc aat att gat caa ttt gta Val Gln Arg Asn Leu Lys His Ile Asn Ile Asp Gln Phe Val 2095 2100 2105	Arg Lys 2110
tac aga gca gcc ctg gga aaa ctc cca cag caa gct aat gat Tyr Arg Ala Ala Leu Gly Lys Leu Pro Gln Gln Ala Asn Asp 2115 2120	Tyr Leu 2125
Ash Ser Phe Ash Trp Glu Arg Gln Val Ser His Ala Lys Glu 2130 2135 214	Lys Leu O
act gct ctc aca aaa aag tat aga att aca gaa aat gat ata Thr Ala Leu Thr Lys Lys Tyr Arg Ile Thr Glu Asn Asp Ile 2145 2150 2155	Gln Ile
gca tta gat gat gcc aaa atc aac ttt aat gaa aaa cta tct Ala Leu Asp Asp Ala Lys Ile Asn Phe Asn Glu Lys Leu Ser 2160 2165 2170	Gln Leu
cag aca tat atg ata caa ttt gat cag tat att aaa gat agt Gln Thr Tyr Met Ile Gln Phe Asp Gln Tyr Ile Lys Asp Ser 2175 2180 2185 tta cat gat ttg aaa ata got att got aat att att gat gaa	Tyr Asp 2190
Leu His Asp Leu Lys Ile Ala Ile Ala Asn Ile Ile Asp Glu 2195 2200	Ile Ile 2205
gaa aaa tta aaa agt ctt gat gag cac tat cat atc cgt gta Glu Lys Leu Lys Ser Leu Asp Glu His Tyr His Ile Arg Val 2210 2215 222	Asn Leu O
gta aaa aca atc cat gat cta cat ttg ttt att gaa aat att	gat ttt 6842

Val Lys Thr Ile His Asp Leu His Leu Phe Ile Glu Asn Ile Asp Phe 2225 2230 2235	
aac aaa agt gga agt agt act gca too tgg att caa aat gtg gat act Asn Lys Ser Gly Ser Ser Thr Ala Ser Trp Ile Gln Asn Val Asp Thr 2240 2245 2250	6890
aag tac caa atc aga atc cag ata caa gaa aaa ctg cag cag ctt aag Lys Tyr Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys 2255 2260 2265 2270	6938
aga cac ata cag aat ata gac ato cag cac cta gct gga aag tta aaa Arg His Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys 2275 2280 2285	6986
caa cac att gag gct att gat gtt aga gtg ctt tta gat caa ttg gga Gln His Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly 2290 2295 2300	7034
act aca att tca ttt gaa aga ata aat gat gtt ctt gag cat gtc aaa Thr Thr Ile Ser Phe Glu Arg Ile Asn Asp Val Leu Glu His Val Lys 2305 2310 2315	7082
cac ttt gtt ata aat ctt att ggg gat ttt gaa gta gct gag aaa atc His Phe Val Ile Asn Leu Ile Gly Asp Phe Glu Val Ala Glu Lys Ile 2320 2325 2330	7130
aat goo tto aga goo aaa gto cat gag tta ato gag agg tat gaa gta Asn Ala Phe Arg Ala Lys Val His Glu Leu Ile Glu Arg Tyr Glu Val 2335 2340 2345 2350	7178
gac caa caa atc cag gtt tta atg gat aaa tta gta gag ttg acc cac Asp Gln Gln Ile Gln Val Leu Met Asp Lys Leu Val Glu Leu Thr His 2355 2360 2365	7226
caa tac aag ttg aag gag act att cag aag cta agc aat gtc cta caa Gln Tyr Lys Leu Lys Glu Thr Ile Gln Lys Leu Ser Asn Val Leu Gln 2370 2375 2380	7274
caa gtt aag ata aaa gat tac ttt gag aaa ttg gtt gga ttt att gat Gln Val Lys Ile Lys Asp Tyr Phe Glu Lys Leu Val Gly Phe Ile Asp 2385 2390 2395	7322
gat gct gtg aag aag ctt aat gaa tta tct ttt aaa aca ttc att gaa Asp Ala Val Lys Lys Leu Asn Glu Leu Ser Phe Lys Thr Phe Ile Glu 2400 2405 2410	7370
gat gtt aac aaa ttc ctt gac atg ttg ata aag aaa tta aag tca ttt Asp Val Asn Lys Phe Leu Asp Met Leu Ile Lys Lys Leu Lys Ser Phe 2415 2420 2425 2430	7418
gat tac cac cag ttt gta gat gaa acc aat gac aaa atc cgt gag gtg Asp Tyr His Gln Phe Val Asp Glu Thr Asn Asp Lys Ile Arg Glu Val 2435 2440 2445	7466
act cag aga ctc aat ggt gaa att cag gct ctg gaa cta cca caa aaa Thr Gln Arg Leu Asn Gly Glu Ile Gln Ala Leu Glu Leu Pro Gln Lys 2450 2455 2460	7514
gct gaa gca tta aaa ctg ttt tta gag gaa acc aag gcc aca gtt gca Ala Glu Ala Leu Lys Leu Phe Leu Glu Glu Thr Lys Ala Thr Val Ala 2465 2470 2475	7562
gtg tat ctg gaa agc cta cag gac acc aaa ata acc tta atc atc aat Val Tyr Leu Glu Ser Leu Gln Asp Thr Lys Ile Thr Leu Ile Ile Asn 2480 2485 2490	7610
tgg tta cag gag get tta agt tea gea tet ttg get cae atg aag gee Trp Leu Gln Glu Ala Leu Ser Ser Ala Ser Leu Ala His Met Lys Ala 2495 2500 2505 2510	7658
aaa ttc cga gag act cta gaa gat aca cga gac cga atg tat caa atgLys Phe Arg Glu Thr Leu Glu Asp Thr Arg Asp Arg Met Tyr Gln Met251525202525	7706
gac att cag cag gaa ctt caa cga tac ctg tct ctg gta ggc cag gtt	7754

Asp Ile Gln Glu Leu Gln Arg Tyr Leu Ser Leu Val Gly Gln Val 2530 2535 2540	
tat age aca ett gte ace tae att tet gat tgg tgg act ett get get Tyr Ser Thr Leu Val Thr Tyr Ile Ser Asp Trp Trp Thr Leu Ala Ala 2545 2550 2555	7802
aag aac ctt act gac ttt gca gag caa tat tct atc caa gat tgg gct Lys Asn Leu Thr Asp Phe Ala Glu Gln Tyr Ser Ile Gln Asp Trp Ala 2560 2565 2570	7850
aaa cgt atg aaa gca ttg gta gag caa ggg ttc act gtt cct gaa atc Lys Arg Met Lys Ala Leu Val Glu Gln Gly Phe Thr Val Pro Glu Ile 2575 2580 2585 2590	7898
aag acc atc ctt ggg acc atg cct gcc ttt gaa gtc agt ctt cag gct Lys Thr Ile Leu Gly Thr Met Pro Ala Phe Glu Val Ser Leu Gln Ala 2595 2600 2605	7946
ctt cag aaa gct acc ttc cag aca cct gat ttt ata gtc ccc cta aca Leu Gln Lys Ala Thr Phe Gln Thr Pro Asp Phe Ile Val Pro Leu Thr 2610 2615 2620	7994
gat ttg agg att cca tca gtt cag ata aac ttc aaa gac tta aaa aat Asp Leu Arg Ile Pro Ser Val Gln Ile Asn Phe Lys Asp Leu Lys Asn 2625 2630 2635	8042
ata aaa atc cca tcc agg ttt tcc aca cca gaa ttt acc atc ctt aac Ile Lys Ile Pro Ser Arg Phe Ser Thr Pro Glu Phe Thr Ile Leu Asn 2640 2645 2650	8090
acc ttc cac att cct tcc ttt aca att gac ttt gtc gaa atg aaa gta Thr Phe His Ile Pro Ser Phe Thr Ile Asp Phe Val Glu Met Lys Val 2655 2660 2665 2670	8138
aag atc atc aga acc att gac cag atg cag aac agt gag ctg cag tgg Lys Ile Ile Arg Thr Ile Asp Gln Met Gln Asn Ser Glu Leu Gln Trp 2675 2680 2685	8186
ccc gtt cca gat ata tat ctc agg gat ctg aag gtg gag gac att cct Pro Val Pro Asp Ile Tyr Leu Arg Asp Leu Lys Val Glu Asp Ile Pro 2690 2695 2700	8234
cta gcg aga atc acc ctg cca gac ttc cgt tta cca gaa atc gca att Leu Ala Arg Ile Thr Leu Pro Asp Phe Arg Leu Pro Glu Ile Ala Ile 2705 2710 2715	8282
cca gas ttc ata atc cca act ctc aac ctt aat gat ttt caa gtt cct Pro Glu Phe Ile Ile Pro Thr Leu Asn Leu Asn Asp Phe Gln Val Pro 2720 2730	8330
gac ctt cac ata cca gaa ttc cag ctt ccc cac atc tca cac aca att Asp Leu His Ile Pro Glu Phe Gln Leu Pro His Ile Ser His Thr Ile 2735 2740 2745 2750	8378
gaa gta cct act ttt ggc aag cta tac agt att ctg aaa atc caa tct Glu Val Pro Thr Phe Gly Lys Leu Tyr Ser Ile Leu Lys Ile Gln Ser 2755 2760 2765	8426
cct ctt ttc aca tta gat gca aat gct gac ata ggg aat gga acc acc Pro Leu Phe Thr Leu Asp Ala Asn Ala Asp Ile Gly Asn Gly Thr Thr 2770 2775 2780	8474
toa goa aac gaa goa ggt atc goa got too atc act goc aaa gga gag Ser Ala Asn Glu Ala Gly Ile Ala Ala Ser Ile Thr Ala Lys Gly Glu 2785 2790 2795	8522
tcc aaa tta gaa gtt ctc aat ttt gat ttt caa gca aat gca caa ctc Ser Lys Leu Glu Val Leu Asn Phe Asp Phe Gln Ala Asn Ala Gln Leu 2800 2805 2810	8570
tca aac cct aag att aat ccg ctg gct ctg aag gag tca gtg aag ttc Ser Asn Pro Lys Ile Asn Pro Leu Ala Leu Lys Glu Ser Val Lys Phe 2815 2820 2825 2830	8618
tcc agc aag tac ctg aga acg gag cat ggg agt gaa atg ctg ttt ttt	8666

Ser Ser Lys Tyr Leu Arg Thr 0 2835	Glu His Gly Ser Glu Met Leu Phe Phe 2840 2845	
	tca aac aca gtg gca agt tta cac aca Ser Asn Thr Val Ala Ser Leu His Thr 2855 2860	3714
Glu Lys Asn Thr Leu Glu Leu S	agt aat gga gtg att gtc aag ata aac 8 Ser Asn Gly Val Ile Val Lys Ile Asn 2870 2875	3762
	aac act aaa tac ttc cac aaa ttg aac 8 Asn Thr Lys Tyr Phe His Lys Leu Asn 2890	8810
	agt cag gct gac ctg cgc aac gag atc Ser Gln Ala Asp Leu Arg Asn Glu Ile 2905 2910	8858
	cac ata gca tgg act tct tct gga aaa	3906
	ccc aga ttc tca gat gag gga aca cat & Pro Arg Phe Ser Asp Glu Gly Thr His 2935 2940	3954
Glu Ser Gln Ile Ser Phe Thr	ata gaa gga ccc ctc act tcc ttt gga S Ile Glu Gly Pro Leu Thr Ser Phe Gly 2950 2955	9002
	aaa cac cta aga gta aac caa aac ttg S Lys His Leu Arg Val Asn Gln Asn Leu 2970	9050
	aac ttt tot aaa ott gaa att caa toa S Asn Phe Ser Lys Leu Glu Ile Gln Ser 2985 2990	9098
	ggc cac agt gtt cta act gct aaa ggc S Gly His Ser Val Leu Thr Ala Lys Gly 3000 3005	9146
	aag gca gag ttt act ggg agg cat gat S Lys Ala Glu Phe Thr Gly Arg His Asp 3015 3020	0194
Ala His Leu Asn Gly Lys Val	att gga act ttg aaa aat tot ott tto S Ile Gly Thr Leu Lys Asn Ser Leu Phe 3030 3035	2242
	atc acg gca tcc aca aac aat gaa ggg S Ile Thr Ala Ser Thr Asn Asn Glu Gly 3050	9290
	Leu Arg Leu Thr Gly Lys Ile Asp Phe 3065 3070	9338
	ctg agt ccc agt gcc cag caa gca agt S Leu Ser Pro Ser Ala Gln Gln Ala Ser 3080 3085	2386
	aat cag tat aag tac aac caa aat ttc S Asn Gln Tyr Lys Tyr Asn Gln Asn Phe 3095 3100	2434
Ser Ala Gly Asn Asn Glu Asn	att atg gag gcc cat gta gga ata aat 9 Ile Met Glu Ala His Val Gly Ile Asn 3110 3115	9482
	tta aac att cct tta aca att cct gaa S Leu Asn Ile Pro Leu Thr Ile Pro Glu 3130	9530
atg cgt cta cct tac aca ata a	atc aca act cct cca ctg aaa gat ttc	9578

-concinued	
Met Arg Leu Pro Tyr Thr Ile Ile Thr Thr Pro Pro Leu Lys Asp Phe 3135 3140 3145 3150	
tet eta tgg gaa aaa aca gge ttg aag gaa tte ttg aaa acg aca aag 9626 Ser Leu Trp Glu Lys Thr Gly Leu Lys Glu Phe Leu Lys Thr Thr Lys 3155 3160 3165	
Caa tca ttt gat tta agt gta aaa gct cag tat aag aaa aac aaa cac 9674 Gln Ser Phe Asp Leu Ser Val Lys Ala Gln Tyr Lys Lys Asn Lys His 3170 3175 3180	
agg cat too ato aca aat cot ttg got gtg ctt tgt gag ttt ato agt 9722 Arg His Ser Ile Thr Asn Pro Leu Ala Val Leu Cys Glu Phe Ile Ser 3185 3190 3195	
cag ago ato aaa too ttt gac agg cat ttt gaa aaa aac aga aac aat 9770 Gln Ser Ile Lys Ser Phe Asp Arg His Phe Glu Lys Asn Arg Asn Asn 3200 3205 3210	
gca tta gat ttt gtc acc aaa tcc tat aat gaa aca aaa att aag ttt 9818 Ala Leu Asp Phe Val Thr Lys Ser Tyr Asn Glu Thr Lys Ile Lys Phe 3215 3220 3225 3230	
gat aag tac aaa gct gaa aaa tct cac gac gag ctc ccc agg acc ttt 9866 Asp Lys Tyr Lys Ala Glu Lys Ser His Asp Glu Leu Pro Arg Thr Phe 3235 3240 3245	
caa att cct gga tac act gtt cca gtt gtc aat gtt gaa gtg tct cca 9914 Gln Ile Pro Gly Tyr Thr Val Pro Val Val Asn Val Glu Val Ser Pro 3250 3255 3260	
tte acc ata gag atg teg gea tte gge tat gtg tte cea aaa gea gte 9962 Phe Thr Ile Glu Met Ser Ala Phe Gly Tyr Val Phe Pro Lys Ala Val 3265 3270 3275	
age atg cet agt tte tee ate eta ggt tet gae gte egt gtg eet tea 10010 Ser Met Pro Ser Phe Ser Ile Leu Gly Ser Asp Val Arg Val Pro Ser 3280 3285 3290	
tac aca tta atc ctg cca tca tta gag ctg cca gtc ctt cat gtc cct 10058 Tyr Thr Leu Ile Leu Pro Ser Leu Glu Leu Pro Val Leu His Val Pro 3295 3300 3305 3310	
aga aat oto aag ott tot ott ooa oat tto aag gaa ttg tgt aco ata 10106 Arg Asn Leu Lys Leu Ser Leu Pro His Phe Lys Glu Leu Cys Thr Ile 3315 3320 3325	
age cat att ttt att ect gee atg gge aat att ace tat gat tte tee 10154 Ser His Ile Phe Ile Pro Ala Met Gly Asn Ile Thr Tyr Asp Phe Ser 3330 3335 3340	
ttt aaa toa agt gto ato aca otg aat aco aat got gaa ott ttt aac 10202 Phe Lys Ser Ser Val Ile Thr Leu Asn Thr Asn Ala Glu Leu Phe Asn 3345 3350 3355	
cag toa gat att gtt got cat oto ott tot toa tot toa tot gto att 10250 Gln Ser Asp Ile Val Ala His Leu Leu Ser Ser Ser Ser Val Ile 3360 3365 3370	
gat gca ctg cag tac aaa tta gag ggc acc aca aga ttg aca aga aaa 10298 Asp Ala Leu Gln Tyr Lys Leu Glu Gly Thr Thr Arg Leu Thr Arg Lys 3375 3380 3385 3390	
agg gga ttg aag tta gcc aca gct ctg tct ctg agc aac aaa ttt gtg 10346 Arg Gly Leu Lys Leu Ala Thr Ala Leu Ser Leu Ser Asn Lys Phe Val 3395 3400 3405	
gag ggt agt cat aac agt act gtg agc tta acc acg aaa aat atg gaa 10394 Glu Gly Ser His Asn Ser Thr Val Ser Leu Thr Thr Lys Asn Met Glu 3410 3415 3420	
gtg tca gtg gca aaa acc aca aaa gcc gaa att cca att ttg aga atg 10442 Val Ser Val Ala Lys Thr Thr Lys Ala Glu Ile Pro Ile Leu Arg Met 3425 3430 3435	
aat ttc aag caa gaa ctt aat gga aat acc aag tca aaa cct act gtc 10490	

Asn Phe Lys Gln Glu Leu Asn Gly Asn Thr Lys Ser Lys Pro Thr Val 3440 3445 3450	
tot too too atg gaa ttt aag tat gat tto aat tot toa atg ctg tac Ser Ser Ser Met Glu Phe Lys Tyr Asp Phe Asn Ser Ser Met Leu Tyr 3455 3460 3465 3470	10538
tct acc gct aaa gga gca gtt gac cac aag ctt agc ttg gaa agc ctc Ser Thr Ala Lys Gly Ala Val Asp His Lys Leu Ser Leu Glu Ser Leu 3475 3480 3485	10586
acc tot tac ttt toc att gag toa tot acc aaa gga gat gto aag ggt Thr Ser Tyr Phe Ser Ile Glu Ser Ser Thr Lys Gly Asp Val Lys Gly 3490 3495 3500	10634
tog gtt ott tot ogg gaa tat toa gga act att got agt gag goo aac Ser Val Leu Ser Arg Glu Tyr Ser Gly Thr Ile Ala Ser Glu Ala Asn 3505 3510 3515	10682
act tac ttg aat tcc aag agc aca cgg tct tca gtg aag ctg cag ggc Thr Tyr Leu Asn Ser Lys Ser Thr Arg Ser Ser Val Lys Leu Gln Gly 3520 3525 3530	10730
act tcc asa att gat gat atc tgg aac ctt gaa gta asa gas ast ttt Thr Ser Lys Ile Asp Asp Ile Trp Asn Leu Glu Val Lys Glu Asn Phe 3535 3540 3550	10778
got gga gaa goc aca oto caa ogo ata tat too oto tgg gag cac agt Ala Gly Glu Ala Thr Leu Gln Arg Ile Tyr Ser Leu Trp Glu His Ser 3555 3560 3565	10826
acg aaa aac cac tta cag cta gag ggc ctc ttt ttc acc aac gga gaa Thr Lys Asn His Leu Gln Leu Glu Gly Leu Phe Phe Thr Asn Gly Glu 3570 3575 3580	10874
cat aca age aaa gee ace etg gaa ete tet eea tgg eaa atg tea get His Thr Ser Lys Ala Thr Leu Glu Leu Ser Pro Trp Gln Met Ser Ala 3585 3590 3595	10922
ctt gtt cag gtc cat gca agt cag ccc agt tcc ttc cat gat ttc cct Leu Val Gln Val His Ala Ser Gln Pro Ser Ser Phe His Asp Phe Pro 3600 3605 3610	10970
gac ctt ggc cag gaa gtg gcc ctg aat gct aac act aag aac cag aag Asp Leu Gly Gln Glu Val Ala Leu Asn Ala Asn Thr Lys Asn Gln Lys 3615 3620 3625 3630	11018
atc aga tgg aaa aat gaa gtc cgg att cat tct ggg tct ttc cag agc Ile Arg Trp Lys Asn Glu Val Arg Ile His Ser Gly Ser Phe Gln Ser 3635 3640 3645	11066
cag gtc gag ctt tcc aat gac caa gaa aag gca cac ctt gac att gca Gln Val Glu Leu Ser Asn Asp Gln Glu Lys Ala His Leu Asp Ile Ala 3650 3655 3660	11114
gga tcc tta gaa gga cac cta agg ttc ctc aaa aat atc atc cta cca Gly Ser Leu Glu Gly His Leu Arg Phe Leu Lys Asn Ile Ile Leu Pro 3665 3670 3675	11162
gtc tat gac aag agc tta tgg gat ttc cta aag ctg gat gta acc acc Val Tyr Asp Lys Ser Leu Trp Asp Phe Leu Lys Leu Asp Val Thr Thr 3680 3685 3690	11210
ago att ggt agg aga cag cat ctt cgt gtt toa act gcc ttt gtg tac Ser Ile Gly Arg Arg Gln His Leu Arg Val Ser Thr Ala Phe Val Tyr 3695 3700 3705 3710	11258
acc aaa aac ccc aat ggc tat tca ttc tcc atc cct gta aaa gtt ttg Thr Lys Asn Pro Asn Gly Tyr Ser Phe Ser Ile Pro Val Lys Val Leu 3715 3720 3725	11306
gct gat aaa ttc att act cct ggg ctg aaa cta aat gat cta aat tca Ala Asp Lys Phe Ile Thr Pro Gly Leu Lys Leu Asn Asp Leu Asn Ser 3730 3735 3740	11354
gtt ctt gtc atg cct acg ttc cat gtc cca ttt aca gat ctt cag gtt	11402

Val Leu Val Met Pro Thr Phe His Val Pro Phe Thr Asp Leu Gln Val 3745 3750 3755	
cca tcg tgc aaa ctt gac ttc aga gaa ata caa atc tat aag aag ctg Pro Ser Cys Lys Leu Asp Phe Arg Glu Ile Gln Ile Tyr Lys Lys Leu 3760 3765 3770	11450
aga act tca tca ttt gcc ctc aac cta cca aca ctc ccc gag gta aaa Arg Thr Ser Ser Phe Ala Leu Asn Leu Pro Thr Leu Pro Glu Val Lys 3775 3780 3785 3790	11498
tto cot gaa gtt gat gtg tta aca aaa tat tot caa coa gaa gac too Phe Pro Glu Val Asp Val Leu Thr Lys Tyr Ser Gln Pro Glu Asp Ser 3795 3800 3805	11546
ttg att eee ttt ttt gag ata ace gtg eet gaa tet eag tta act gtg Leu Ile Pro Phe Phe Glu Ile Thr Val Pro Glu Ser Gln Leu Thr Val 3810 3815 3820	11594
too cag tto acg ctt cca aaa agt gtt toa gat ggc att gct gct ttg Ser Gln Phe Thr Leu Pro Lys Ser Val Ser Asp Gly Ile Ala Ala Leu 3825 3830 3835	11642
gat cta aat gca gta gcc aac aag atc gca gac ttt gag ttg ccc acc Asp Leu Asn Ala Val Ala Asn Lys Ile Ala Asp Phe Glu Leu Pro Thr 3840 3845 3850	11690
atc atc gtg cct gag cag acc att gag att ccc tcc att aag ttc tct Ile Ile Val Pro Glu Gln Thr Ile Glu Ile Pro Ser Ile Lys Phe Ser 3855 3860 3865 3870	11738
gta cot got gga att gtc att cot toc ttt caa gea ctg act gca ege Val Pro Ala Gly Ile Val Ile Pro Ser Phe Gln Ala Leu Thr Ala Arg 3875 3880 3885	11786
ttt gag gta gac tct ccc gtg tat aat gcc act tgg agt gcc agt ttg Phe Glu Val Asp Ser Pro Val Tyr Asn Ala Thr Trp Ser Ala Ser Leu 3890 3895 3900	11834
aaa aac aaa gca gat tat gtt gaa aca gtc ctg gat tcc aca tgc agc Lys Asn Lys Ala Asp Tyr Val Glu Thr Val Leu Asp Ser Thr Cys Ser 3905 3910 3915	11882
tca acc gta cag ttc cta gaa tat gaa cta aat gtt ttg gga aca cac Ser Thr Val Gln Phe Leu Glu Tyr Glu Leu Asn Val Leu Gly Thr His 3920 3925 3930	11930
aaa atc gaa gat ggt acg tta gcc tct aag act aaa gga aca ctt gca Lys Ile Glu Asp Gly Thr Leu Ala Ser Lys Thr Lys Gly Thr Leu Ala 3935 3940 3945 3950	11978
cac cgt gac ttc agt gca gaa tat gaa gaa gat ggc aaa ttt gaa gga His Arg Asp Phe Ser Ala Glu Tyr Glu Glu Asp Gly Lys Phe Glu Gly 3955 3960 3965	12026
ctt cag gaa tgg gaa gga aaa gcg cac ctc aat atc aaa agc cca gcg Leu Gln Glu Trp Glu Gly Lys Ala His Leu Asn Ile Lys Ser Pro Ala 3970 3975 3980	12074
ttc acc gat ctc cat ctg cgc tac cag aaa gac aag aaa ggc atc tcc Phe Thr Asp Leu His Leu Arg Tyr Gln Lys Asp Lys Lys Gly Ile Ser 3985 3990 3995	12122
acc tca gca gcc tcc cca gcc gta ggc acc gtg ggc atg gat atg gat Thr Ser Ala Ala Ser Pro Ala Val Gly Thr Val Gly Met Asp Met Asp 4000 4005 4010	12170
gaa gat gac gac ttt tot aaa tgg aac ttc tac tac age cot cag toc Glu Asp Asp Asp Phe Ser Lys Trp Asn Phe Tyr Tyr Ser Pro Gln Ser 4015 4020 4025 4030	12218
tct cca gat aaa aaa ctc acc ata ttc aaa act gag ttg agg gtc cgg Ser Pro Asp Lys Lys Leu Thr Ile Phe Lys Thr Glu Leu Arg Val Arg 4035 4040 4045	12266
gaa tot gat gag gaa act cag atc aaa gtt aat tgg gaa gaa gag gca	12314

Glu Ser Asp Glu Glu Thr Gln Ile Lys Val Asn Trp Glu Glu Glu Ala 4050 4055 4060	
get tet gge ttg eta acc tet etg aaa gae aac gtg eee aag gee aca Ala Ser Gly Leu Leu Thr Ser Leu Lys Asp Asn Val Pro Lys Ala Thr 4065 4070 4075	12362
ggg gtc ctt tat gat tat gtc aac aag tac cac tgg gaa cac aca ggg Gly Val Leu Tyr Asp Tyr Val Asn Lys Tyr His Trp Glu His Thr Gly 4080 4085 4090	12410
cto acc ctg aga gaa gtg tct tca aag ctg aga aga aat ctg cag aac Leu Thr Leu Arg Glu Val Ser Ser Lys Leu Arg Arg Asn Leu Gln Asn 4095 4100 4105 4110	12458
aat get gag tgg gtt tat caa ggg gee att agg caa att gat gat ate Asn Ala Glu Trp Val Tyr Gln Gly Ala Ile Arg Gln Ile Asp Asp Ile 4115 4120 4125	12506
gac gtg agg ttc cag aaa gca gcc agt ggc acc act ggg acc tac caa Asp Val Arg Phe Gln Lys Ala Ala Ser Gly Thr Thr Gly Thr Tyr Gln 4130 4135 4140	12554
gag tgg aag gac aag gcc cag aat ctg tac cag gaa ctg ttg act cag Glu Trp Lys Asp Lys Ala Gln Asn Leu Tyr Gln Glu Leu Leu Thr Gln 4145 4150 4155	12602
gaa ggc caa gcc agt ttc cag gga ctc aag gat aac gtg ttt gat ggc Glu Gly Gln Ala Ser Phe Gln Gly Leu Lys Asp Asn Val Phe Asp Gly 4160 4165 4170	12650
ttg gta cga gtt act caa aaa ttc cat atg aaa gtc aag cat ctg att Leu Val Arg Val Thr Gln Lys Phe His Met Lys Val Lys His Leu Ile 4175 4180 4185 4190	12698
gac tea etc att gat ttt etg aac tte ees aga tte eag ttt eeg ggg Asp Ser Leu Ile Asp Phe Leu Asn Phe Pro Arg Phe Gln Phe Pro Gly 4195 4200 4205	12746
aaa oot ggg ata tac act agg gag gaa ott tgc act atg ttc ata agg Lys Pro Gly Ile Tyr Thr Arg Glu Glu Leu Cys Thr Met Phe Ile Arg 4210 4215 4220	12794
gag gta ggg acg gta ctg tcc cag gta tat tcg aaa gtc cat aat ggt Glu Val Gly Thr Val Leu Ser Gln Val Tyr Ser Lys Val His Asn Gly 4225 4230 4235	12842
toa gaa ata ctg ttt tcc tat ttc caa gac cta gtg att aca ctt cct Ser Glu Ile Leu Phe Ser Tyr Phe Gln Asp Leu Val Ile Thr Leu Pro 4240 4245 4250	12890
ttc gag tta agg aaa cat aaa cta ata gat gta atc tcg atg tat agg Phe Glu Leu Arg Lys His Lys Leu Ile Asp Val Ile Ser Met Tyr Arg 4255 4260 4265 4270	12938
gaa ctg ttg aaa gat tta tca aaa gaa gcc caa gag gta ttt aaa gcc Glu Leu Leu Lys Asp Leu Ser Lys Glu Ala Gln Glu Val Phe Lys Ala 4275 4280 4285	12986
att cag tot oto aag acc aca gag gtg ota ogt aat ott cag gac ott Ile Gln Ser Leu Lys Thr Thr Glu Val Leu Arg Asn Leu Gln Asp Leu 4290 4295 4300	13034
tta caa tto att tto caa cta ata gaa gat aac att aaa cag ctg aaa Leu Gln Phe Ile Phe Gln Leu Ile Glu Asp Asn Ile Lys Gln Leu Lys 4305 4310 4315	13082
gag atg aaa ttt act tat ctt att aat tat atc caa gat gag atc aac Glu Met Lys Phe Thr Tyr Leu Ile Asn Tyr Ile Gln Asp Glu Ile Asn 4320 4325 4330	13130
aca atc ttc aat gat tat atc cca tat gtt ttt aaa ttg ttg aaa gaa Thr Ile Phe Asn Asp Tyr Ile Pro Tyr Val Phe Lys Leu Leu Lys Glu 4335 4340 4345 4350	13178
aac cta tgc ctt aat ctt cat aag ttc aat gaa ttt att caa aac gag	13226

-continued	
Asn Leu Cys Leu Asn Leu His Lys Phe Asn Glu Phe Ile Gln Asn Glu 4355 4360 4365	
ctt cag gaa gct tot caa gag tta cag cag atc cat caa tac att atg Leu Gln Glu Ala Ser Gln Glu Leu Gln Gln Ile His Gln Tyr Ile Met 4370 4375 4380	13274
gcc ctt cgt gaa gaa tat ttt gat cca agt ata gtt ggc tgg aca gtg Ala Leu Arg Glu Glu Tyr Phe Asp Pro Ser Ile Val Gly Trp Thr Val 4385 4390 4395	13322
aaa tat tat gaa ctt gaa gaa aag ata gtc agt ctg atc aag aac ctg Lys Tyr Tyr Glu Leu Glu Glu Lys Ile Val Ser Leu Ile Lys Asn Leu 4400 4405 4410	13370
tta gtt gct ctt aag gac ttc cat tct gaa tat att gtc agt gcc tct Leu Val Ala Leu Lys Asp Phe His Ser Glu Tyr Ile Val Ser Ala Ser 4415 4420 4425 4430	13418
aac ttt act tcc caa ctc tca agt caa gtt gag caa ttt ctg cac aga Asn Phe Thr Ser Gln Leu Ser Ser Gln Val Glu Gln Phe Leu His Arg 4435 4440 4445	13466
aat att cag gaa tat ctt agc atc ctt acc gat cca gat gga aaa ggg Asn Ile Gln Glu Tyr Leu Ser Ile Leu Thr Asp Pro Asp Gly Lys Gly 4450 4455 4460	13514
aaa gag aag att gca gag ctt tct gcc act gct cag gaa ata att aaa Lys Glu Lys Ile Ala Glu Leu Ser Ala Thr Ala Gln Glu Ile Ile Lys 4465 4470 4475	13562
ago cag goo att gog acg aag aaa ata att tot gat tac cac cag cag Ser Gln Ala Ile Ala Thr Lys Lys Ile Ile Ser Asp Tyr His Gln Gln 4480 4485 4490	13610
ttt aga tat aaa ctg caa gat ttt tca gac caa ctc tct gat tac tat Phe Arg Tyr Lys Leu Gln Asp Phe Ser Asp Gln Leu Ser Asp Tyr Tyr 4495 4500 4505 4510	13658
gaa aaa ttt att got gaa too aaa aga ttg att gac otg too att caa Glu Lys Phe Ile Ala Glu Ser Lys Arg Leu Ile Asp Leu Ser Ile Gln 4515 4520 4525	13706
aac tac cac aca ttt ctg ata tac atc acg gag tta ctg aaa aag ctg Asn Tyr His Thr Phe Leu Ile Tyr Ile Thr Glu Leu Leu Lys Lys Leu 4530 4535 4540	13754
caa toa acc aca gte atg aac ccc tac atg aag ctt gct cca gga gaa Gln Ser Thr Thr Val Met Asn Pro Tyr Met Lys Leu Ala Pro Gly Glu 4545 4550 4555	13802
ctt act atc atc ctc taa ttttttaaaa gaaatcttca tttattcttc Leu Thr Ile Ile Leu * 4560	13850
ttttccaatt gaactttcac atagcacaga aaaaattcaa actgcctata ttgataaaac	13910
catacagtga gccagcettg cagtaggcag tagactataa gcagaagcac atatgaactg	13970
gacctgcacc anagctggca ccagggctcg ganggtctct ganctcagan ggatggcatt	14030
ttttgcaagt taaagaaaat caggatctga gttattttgc taaacttggg ggaggaggaa	14090
caaataaatg gagtotttat tgtgtatoat a	14121
<210> SEQ ID NO 32 <211> LENGTH: 4563 <212> TYPE: PRT <213> ORGANISM: Homo sapien	
<400> SEQUENCE: 32	

<400> SEQUENCE: 32

Met Asp Pro Pro Arg Pro Ala Leu Leu Ala Leu Leu Ala Leu Pro Ala 1 10 15

Leu	Leu	Leu	Leu 20	Leu	Leu	Ala	Gly	Ala 25	Arg	Ala	Glu	Glu	Glu 30	Met	Leu
Glu	Asn	Val 35	Ser	Leu	Val	Сув	Pro 40	Lys	Asp	Ala	Thr	Arg 45	Phe	Lув	His
Leu	Arg 50	Lys	Туг	Thr	Tyr	Авп 55	туг	Glu	Ala	Glu	Ser 60	Ser	Ser	Gly	Val
Pro 65	Gly	Thr	Ala	Asp	Ser 70	Arg	Ser	Ala	Thr	Arg 75	Ile	Asn	Сув	Lув	Val 80
Glu	Leu	Glu	Val	Pro 85	Gln	Leu	Сув	Ser	Phe 90	Ile	Leu	Ьув	Thr	Ser 95	Gln
Сув	Thr	Leu	Lys 100	Glu	Val	туr	Gly	Phe 105	Asn	Pro	Glu	Gly	Lys 110	Ala	Leu
Leu	Lys	Lys 115	Thr	Lys	Asn	Ser	Glu 120	Glu	Phe	Ala	Ala	Ala 125	Met	Ser	Arg
Tyr	Glu 130	Leu	Lys	Leu	Ala	Ile 135	Pro	Glu	Gly	Lys	Gln 140	Val	Phe	Leu	Tyr
Pro 145	Glu	Lys	Asp	Glu	Pro 150	Thr	Tyr	Ile	Leu	Asn 155	Ile	Lys	Arg	Gly	Ile 160
Ile	Ser	Ala	Leu	Leu 165	Val	Pro	Pro	Glu	Thr 170	Glu	Glu	Ala	Lys	Gln 175	Val
Leu	Phe	Leu	Asp 180	Thr	Val	Tyr	Gly	Asn 185	Сув	Ser	Thr	His	Phe 190	Thr	Val
Lys	Thr	Arg 195	Lys	Gly	Asn	Val	Ala 200	Thr	Glu	Ile	Ser	Thr 205	Glu	Arg	Asp
Leu	Gly 210	Gln	Сув	Asp	Arg	Phe 215	Lys	Pro	Ile	Arg	Thr 220	Gly	Ile	Ser	Pro
Leu 225	Ala	Leu	Ile	Lys	Gly 230	Met	Thr	Arg	Pro	Leu 235	Ser	Thr	Leu	Ile	Ser 240
Ser	Ser	Gln	Ser	С у в 245	Gln	Tyr	Thr	Leu	Asp 250	Ala	Lys	Arg	Lys	His 255	Val
Ala	Glu	Ala	11e 260	Сув	Lув	Glu	Gln	Нів 265	Leu	Phe	Leu	Pro	Phe 270	Ser	Tyr
Asn	Asn	Lys 275	Tyr	Gly	Met	Val	Ala 280	Gln	Val	Thr	Gln	Thr 285	Leu	Lув	Leu
Glu	Авр 290	Thr	Pro	Lys	Ile	Авп 295	Ser	Arg	Phe	Phe	Gl y 300	Glu	Gly	Thr	Lys
L ys 305	Met	Gly	Leu	Ala	Phe 310	Glu	Ser	Thr	Lys	Ser 315	Thr	Ser	Pro	Pro	Lys 320
Gln	Ala	Glu	Ala	Val 325	Leu	Lys	Thr	Leu	Gln 330	Glu	Leu	Lys	Lys	Leu 335	Thr
Ile	Ser	Glu	Gln 340	Asn	Ile	Gln	Arg	Ala 345	Asn	Leu	Phe	Asn	L y s 350	Leu	Val
Thr	Glu	Leu 355	Arg	Gly	Leu	Ser	Asp 360	Glu	Ala	Val	Thr	Ser 365	Leu	Leu	Pro
Gln	Leu 370	Ile	Glu	Val	Ser	Ser 375	Pro	Ile	Thr	Leu	Gln 380	Ala	Leu	Val	Gln
С у в 385	Gly	Gln	Pro	Gln	С у в 390	Ser	Thr	His	Ile	Leu 395	Gln	Trp	Leu	Lys	Arg 400
Val	His	Ala	Asn	Pro 405	Leu	Leu	Ile	Asp	Val 410	Val	Thr	Tyr	Leu	Val 415	Ala
Leu	Ile	Pro	Glu	Pro	Ser	Ala	Gln	Gln	Leu	Arg	Glu	Ile	Phe	Asn	Met

			420					425					430		
Ala	Arg	Asp 435	Gln	Arg	Ser	Arg	Ala 440	Thr	Leu	Tyr	Ala	Leu 445	Ser	His	Ala
Val	Asn 450	Asn	Tyr	His	ГÅз	Thr 455	Asn	Pro	Thr	Gly	Thr 460	Gln	Glu	Leu	Leu
Asp 465	Ile	Ala	Asn	Tyr	Leu 470	Met	Glu	Gln	Ile	Gln 475	Asp	Asp	Сув	Thr	Gly 480
Asp	Glu	Asp	Tyr	Thr 485	Tyr	Leu	Ile	Leu	Arg 490	Val	Ile	Gly	Asn	Met 495	Gly
Gln	Thr	Met	Glu 500	Gln	Leu	Thr	Pro	Glu 505	Leu	Lys	Ser	Ser	Ile 510	Leu	Lys
Сув	Val	Gln 515	Ser	Thr	Lуs	Pro	Ser 520	Leu	Met	Ile	Gln	Lу в 525	Ala	Ala	Ile
Gln	Ala 530	Leu	Arg	Lys	Met	Glu 535	Pro	Lys	Asp	Lys	Asp 540	Gln	Glu	Val	Leu
Leu 545	Gln	Thr	Phe	Leu	Asp 550	Asp	Ala	Ser	Pro	Gly 555	qaA	ГАв	Arg	Leu	Ala 560
Ala	Tyr	Leu	Met	Leu 565	Met	Arg	Ser	Pro	Ser 570	Gln	Ala	Asp	Ile	А вп 575	Lys
Ile	Val	Gln	Ile 580	Leu	Pro	Trp	Glu	Gln 585	Asn	Glu	Gln	Val	Lys 590	Asn	Phe
Val	Ala	Ser 595	His	Ile	Ala	Asn	11e 600	Leu	Asn	Ser	Glu	Glu 605	Leu	Авр	Ile
Gln	А вр 610	Leu	Lys	Lys	Leu	Val 615	Lys	Glu	Ala	Leu	Lys 620	Glu	Ser	Gln	Leu
Pro 625	Thr	Val	Met	Авр	Phe 630	Arg	Lys	Phe	Ser	Arg 635	Asn	Tyr	Gln	Leu	Tyr 640
Lys	Ser	Val	Ser	Leu 645	Pro	Ser	Leu	Asp	Pro 650	Ala	Ser	Ala	Lys	Ile 655	Glu
Gly	Asn	Leu	Ile 660	Phe	Asp	Pro	Asn	Asn 665	Tyr	Leu	Pro	Lys	Glu 670	Ser	Met
Leu	Lys	Thr 675	Thr	Leu	Thr	Ala	Phe 680	Gly	Phe	Ala	Ser	Ala 685	Asp	Leu	Ile
Glu	Ile 690	Gly	Leu	Glu	Gly	L ys 695	Gly	Phe	Glu	Pro	Thr 700	Leu	Glu	Ala	Leu
Phe 705	Gly	Lys	Gln	Gly	Phe 710	Phe	Pro	Asp	Ser	Val 715	Asn	Lys	Ala	Leu	Tyr 720
Trp	Val	Asn	Gly	Gln 725	Val	Pro	Asp	Gly	Val 730	Ser	Lys	Val	Leu	Val 735	Asp
His	Phe	Gly	Tyr 740	Thr	ГÀЗ	Asp	Asp	Lys 745	His	Glu	Gln	Asp	Met 750	Val	Asn
Gly	Ile	Met 755	Leu	Ser	Val	Glu	L y s 760	Leu	Ile	Lys	Asp	Leu 765	Lys	Ser	Lys
Glu	Val 770	Pro	Glu	Ala	Arg	Ala 775	Tyr	Leu	Arg	Ile	Leu 780	Gly	Glu	Glu	Leu
Gl y 785	Phe	Ala	Ser	Leu	Нів 790	Asp	Leu	Gln	Leu	Leu 795	Gly	Lys	Leu	Leu	Leu 800
Met	Gly	Ala	Arg	Thr 805	Leu	Gln	Gly	Ile	Pro 810	Gln	Met	Ile	Gly	Glu 815	Val
Ile	Arg	Lys	Gly 820	ser	Lys	Asn	Asp	Phe 825	Phe	Leu	His	Tyr	Ile 830	Phe	Met

Glu	Asn	Ala 835	Phe	Glu	Leu	Pro	Thr 840	Gly	Ala	Gly	Leu	Gln 845	Leu	Gln	Ile
Ser	Ser 850	Ser	Gly	Val	Ile	Ala 855	Pro	Gly	Ala	Lys	Ala 860	Gly	Val	Lys	Leu
Glu 865	Val	Ala	Asn	Met	Gln 870	Ala	Glu	Leu	Val	Ala 875	Lys	Pro	ser	Val	Ser 880
Val	Glu	Phe	Val	Thr 885	Asn	Met.	Gly	Ile	Ile 890	Ile	Pro	Asp	Phe	Ala 895	Arg
ser	Gly	Val	Gln 900	Met	Asn	Thr	Asn	Phe 905	Phe	His	Glu	Ser	Gly 910	Leu	Glu
Ala	His	Val 915	Ala	Leu	Lys	Ala	Gl y 920	Lys	Leu	Lys	Phe	11e 925	Ile	Pro	ser
Pro	Lys 930	Arg	Pro	Val	Lys	Leu 935	Leu	Ser	Gly	Gly	Asn 940	Thr	Leu	His	Leu
Val 945	Ser	Thr	Thr	Lys	Thr 950	Glu	Val	Ile	Pro	Pro 955	Leu	Ile	Glu	Asn	Arg 960
Gln	Ser	Trp	Ser	Val 965	Сув	Lys	Gln	Val	Phe 970	Pro	Gly	Leu	Asn	Ty r 975	Cys
Thr	Ser	Gly	Ala 980	Tyr	Ser	Asn	Ala	Ser 985	Ser	Thr	Asp	Ser	Ala 990	Ser	туг
Tyr	Pro	Leu 995	Thr	Gly	Asp	Thr	Arg 1000		Glu	Leu	Glu	Leu 1005		Pro	Thr
Gly	Glu 1010		Glu	Gln	Tyr	Ser 101		Ser	Ala	Thr	Tyr 1020		Leu	Gln	Arg
Glu 102	Asp	Arg	Ala	Leu	Val 1030		Thr	Leu	Lys	Phe 1035		Thr	Gln	Ala	Glu 1040
Gly	Ala	Lys	Gln	Thr 104!		Ala	Thr	Met	Thr 1050		Lys	Tyr	Asn	Arg 1055	
Ser	Met	Thr	Leu 1060		Ser	Glu	Val	Gln 1065		Pro	Asp	Phe	Asp 1070		Asp
Leu	Gly	Thr 1075		Leu	Arg	Val	Asn 1080		Glu	Ser	Thr	Glu 108		Lys	Thr
Ser	Tyr 1090		Leu	Thr	Leu	Авр 109		Gln	Asn	Lys	Lys 1100		Thr	Glu	Val
Ala 1105	Leu	Met	Gly	His	Leu 1110		Сув	Asp	Thr	Lys 1115		Glu	Arg	Lys	Ile 1120
Lys	Gly	Val	Ile	Ser 1125		Pro	Arg	Leu	Gln 1130		Glu	Ala	Arg	Ser 1135	
Ile	Leu	Ala	His 1140		Ser	Pro	Ala	Lys 1145		Leu	Leu	Gln	Met 1150		Ser
Ser	Ala	Thr 1155		Tyr	Gly	Ser	Thr 1160		Ser	Lys	Arg	Val 1165		Trp	His
Tyr	Asp 1170		Glu	Lys	Ile	Glu 1175		Glu	Trp	Asn	Thr 1180	_	Thr	Asn	Val
Asp 1185	Thr	Lys	Lys	Met	Thr 1190		Asn	Phe	Pro	Val 119		Leu	Ser	Авр	Tyr 1200
Pro	Lув	Ser	Leu	His 120		Туr	Ala	Asn	Arg 1210		Leu	Asp	His	Arg 1215	
Pro	Glu	Thr	Asp 1220		Thr	Phe	Arg	Нів 1225		Gly	Ser	Lув	Leu 1230		Val

											-	con	tinı	ued	
Ala	Met	Ser 1235		Trp	Leu	Gln	Lys 1240		Ser	Gly	Ser	Leu 1245		Tyr	Thr
Gln	Thr 1250		Gln	Asp	His	Leu 1255		Ser	Leu	Lys	Glu 1260	Phe O	Asn	Leu	Gln
Asn 1265		Gly	Leu	Pro	Asp 127		His	Ile	Pro	Glu 1275		Leu	Phe	Leu	Lys 1280
Ser	Авр	Gly	Arg	Val 1285		туr	Thr	Leu	Asn 1290		Asn	Ser	Leu	Lys 1295	
Glu	Ile	Pro	Leu 1300		Phe	Gly	Gly	Lys 1305		Ser	Arg	Asp	Leu 1310		Met
Leu	Glu	Thr 1315		Arg	Thr	Pro	Ala 1320		His	Phe	Lys	Ser 1325		Gly	Phe
His	Leu 1330		Ser	Arg	Glu	Phe 1335		Val	Pro	Thr	Phe 134	Thr	Ile	Pro	Lys
Leu 1345		Gln	Leu	Gln	Val 1350		Leu	Leu	Gly	Val 1355		Asp	Leu	Ser	Thr 1360
Asn	Val	Tyr	Ser	Asn 1365		Tyr	Asn	Trp	Ser 1370		Ser	Tyr	Ser	Gly 1375	
Asn	Thr	Ser	Thr 1380		His	Phe	Ser	Leu 1385		Ala	Arg	Tyr	His 1390		Lys
Ala	Asp	Ser 139		Val	Asp	Leu	Leu 1400		Tyr	Asn	Val	Gln 1405		Ser	Gly
Glu	Thr 1410		Tyr	Asp	His	Lys 1415		Thr	Phe	Thr	Leu 142	Ser D	Сув	Asp	Gly
Ser 1425		Arg	His	Lys	Phe 143		Asp	Ser	Asn	Ile 1435		Phe	Ser	His	Val 1440
Glu	Lys	Leu	Gly	Asn 1445		Pro	Val	Ser	Lys 1450		Leu	Leu	Ile	Phe 1455	
Ala	Ser	Ser	Ser 1460		Gly	Pro	Gln	Met 1465		Ala	Ser	Val	His 1470		Asp
ser	Lув	Lys 1475		Gln	His	Leu	Phe 1480		Lys	Glu	Val	L у в 1485		Авр	Gly
Gln	Phe 1490		Val	Ser	Ser	Phe 1495		Ala	Lys	Gly	Thr 150	Tyr	Gly	Leu	Ser
Cys 1505		Arg	Asp	Pro	Asn 151		Gly	Arg	Leu	Asn 1515		Glu	Ser	Asn	Leu 1520
Arg	Phe	Asn	Ser	Ser 1525		Leu	Gln	Gly	Thr 1530		Gln	Ile	Thr	Gly 1535	
Tyr	Glu	Asp	Gly 1540		Leu	Ser	Leu	Thr 1545		Thr	Ser	Asp	Leu 1550		Ser
Gly	Ile	Ile 1555		Asn	Thr	Ala	Ser 1560		Lys	Tyr	Glu	Asn 1565		Glu	Leu
Thr	Leu 1570		Ser	Asp	Thr	Asn 1575		Lys	Tyr	Lys	Asn 158	Phe D	Ala	Thr	Ser
Asn 1585		Met	Asp	Met	Thr 1590		Ser	Lys	Gln	Asn 1595		Leu	Leu	Arg	Ser 1600
Glu	Tyr	Gln	Ala	Asp 1605		Glu	Ser	Leu	Arg 1610		Phe	Ser	Leu	Leu 1615	
Gly	Ser	Leu	Asn 1620		His	Gly	Leu	Glu 1625		Asn	Ala	Asp	Ile 1630		Gly

Thr Asp Lys Ile Asn Ser Gly Ala His Lys Ala Thr Leu Arg Ile Gly

	163	5				1640)				1645	5		
Gln Asp 165		Ile	Ser	Thr	Ser 1655		Thr	Thr	Asn	Leu 1660		Сув	Ser	Leu
Leu Val	Leu	Glu	Asn	Glu 1670		Asn	Ala	Glu	Leu 1675		Leu	Ser	Gly	Ala 1680
Ser Met	Lys	Leu	Thr 168		Asn	Gly	Arg	Phe 1690		Glu	His	Asn	Ala 1695	
Phe Ser	Leu	Asp 1700		Lys	Ala	Ala	Leu 1705		Glu	Leu	Ser	Leu 1710		Ser
Ala Tyr	Gln 171		Met	Ile	Leu	Gly 1720		qaA	Ser	Lys	Asn 172		Phe	Asn
Phe Lys 173		Ser	Gln	Glu	Gly 1735		Lys	Leu	Ser	Asn 1740		Met	Met	Gly
Ser Tyr 1745	Ala	Glu	Met	Lys 175		Asp	His	Thr	Asn 1755		Leu	Asn	Ile	Ala 1760
Gly Leu	Ser	Leu	Asp 1765		Ser	Ser	Lys	Leu 1770		Asn	Ile	Tyr	Ser 1775	
Asp Lys	Phe	Tyr 1780	-	Gln	Thr	Val	Asn 1785		Gln	Leu	Gln	Pro 1790	_	Ser
Leu Val	Thr 179		Leu	Asn	Ser	Asp 1800		Lys	Tyr	Asn	Ala 1805		Asp	Leu
Thr Asn 181		Gly	Lys	Leu	Arg 1815		Glu	Pro	Leu	Lys 1820		His	Val	Ala
Gly Asn 1825	Leu	Lys	Gly	Ala 1830		Gln	Asn	Asn	Glu 1835		Lув	His	Ile	Tyr 1840
Ala Ile	Ser	Ser	Ala 1845		Leu	Ser	Ala	Ser 1850		Lys	Ala	Asp	Thr 1855	
Ala Lys	Val	Gln 1860	-	Val	Glu	Phe	Ser 1865		Arg	Leu	Asn	Thr 1870	-	Ile
Ala Gly	Leu 187!		Ser	Ala	Ile	Asp 1880		Ser	Thr	Asn	Tyr 1885		Ser	Asp
Ser Leu 189		Phe	Ser	Asn	Val 1895		Arg	Ser	Val	Met 1900		Pro	Phe	Thr
Met Thr 1905	Ile	Asp	Ala	His 1910		Asn	Gly	Asn	Gl y 1915		Leu	Ala	Leu	Trp 1920
Gly Glu	His	Thr	Gl y 192		Leu	Tyr	Ser	L y s 1930		Leu	Leu	Lys	Ala 1935	
Pro Leu	Ala	Phe 1940		Phe	Ser	His	Asp 1945		Lys	Gly	Ser	Thr 1950		His
His Leu	Val 195		Arg	Lys	Ser	11e 1960		Ala	Ala	Leu	Glu 1965		Lys	Val
Ser Ala 197		Leu	Thr	Pro	Ala 1975		Gln	Thr	Gly	Thr 1980		Lys	Leu	Lys
Thr Gln 1985	Phe	Asn	Asn	Asn 1990		Tyr	Ser	Gln	Asp 1995		Asp	Ala	Tyr	Asn 2000
Thr Lys	Asp	Lys	Ile 2005		Val	Glu	Leu	Thr 2010		Arg	Thr	Leu	Ala 2015	
Leu Thr	Leu	Leu 2020		Ser	Pro	Ile	Lys 2025		Pro	Leu	Leu	Leu 2030		Glu
Pro Ile	Asn 203		Ile	Asp	Ala	Leu 2040		Met	Arg	qaA	Ala 2045		Glu	Lys

Pro	Gln	Glu	Phe	Thr	Ile	Val	Ala	Phe	Val	Lys	Tyr	Asp	Lys	Asn	Gln
	205)				2055	5				206	0			

- Asp Val His Ser Ile Asn Leu Pro Phe Phe Glu Thr Leu Gln Glu Tyr 2065 2070 2075 2080
- Phe Glu Arg Asn Arg Gln Thr Ile Ile Val Val Val Glu Asn Val Gln 2085 2090 2095
- Arg Asn Leu Lys His Ile Asn Ile Asp Gln Phe Val Arg Lys Tyr Arg
- Ala Ala Leu Gly Lys Leu Pro Gln Gln Ala Asn Asp Tyr Leu Asn Ser 2115 2120 2125
- Phe Asn Trp Glu Arg Gln Val Ser His Ala Lys Glu Lys Leu Thr Ala 2130 2135 2140
- Leu Thr Lys Lys Tyr Arg Ile Thr Glu Asn Asp Ile Gln Ile Ala Leu 2145 2150 2155 2160
- Asp Asp Ala Lys Ile Asn Phe Asn Glu Lys Leu Ser Gln Leu Gln Thr 2165 2170 2175
- Tyr Met Ile Gln Phe Asp Gln Tyr Ile Lys Asp Ser Tyr Asp Leu His 2180 2185 2190
- Asp Leu Lys Ile Ala Ile Ala Asn Ile Ile Asp Glu Ile Ile Glu Lys 2195 2200 2205
- Thr Ile His Asp Leu His Leu Phe Ile Glu Asn Ile Asp Phe Asn Lys 2225 2230 2235 2240
- Ser Gly Ser Ser Thr Ala Ser Trp Ile Gln Asn Val Asp Thr Lys Tyr 2245 2250 2255
- Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 2265 2270
- Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His 2275 2280 2285
- Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly Thr Thr 2290 2295 2300
- Ile Ser Phe Glu Arg Ile Asn Asp Val Leu Glu His Val Lys His Phe 2305 2310 2315 2320
- Val Ile Asn Leu Ile Gly Asp Phe Glu Val Ala Glu Lys Ile Asn Ala 2325 2330 2335
- Phe Arg Ala Lys Val His Glu Leu Ile Glu Arg Tyr Glu Val Asp Glu 2340 2345 2350
- Gln Ile Gln Val Leu Met Asp Lys Leu Val Glu Leu Thr His Gln Tyr 2355 2360 2365
- Lys Leu Lys Glu Thr Ile Gln Lys Leu Ser Asn Val Leu Gln Gln Val 2370 2375 2380
- Lys Ile Lys Asp Tyr Phe Glu Lys Leu Val Gly Phe Ile Asp Asp Ala 2385 2390 2395 2400
- Val Lys Lys Leu Asn Glu Leu Ser Phe Lys Thr Phe Ile Glu Asp Val 2405 2410 2415
- Asn Lys Phe Leu Asp Met Leu Ile Lys Lys Leu Lys Ser Phe Asp Tyr 2420 2425 2430
- His Gln Phe Val Asp Glu Thr Asn Asp Lys Ile Arg Glu Val Thr Gln 2435 2440 2445

											_	con	tinı	ued	
Arg	Leu 2450		Gly	Glu	Ile	Gln 2455		Leu	Glu	Leu	Pro 2460	Gln)	Lys	Ala	Glu
Ala 2465		Lys	Leu	Phe	Leu 247		Glu	Thr	Lys	Ala 2475		Val	Ala	Val	Tyr 2480
Leu	Glu	Ser	Leu	Gln 2485		Thr	Lys	Ile	Thr 2490		Ile	Ile	Asn	Trp 2495	
Gln	Glu	Ala	Leu 2500		Ser	Ala	Ser	Leu 2505		His	Met	Lув	Ala 2510		Phe
Arg	Glu	Thr 2515		Glu	Asp	Thr	Arg 2520		Arg	Met	Tyr	Gln 2525		Авр	Ile
Gln	Gln 2530		Leu	Gln	Arg	Tyr 2535		Ser	Leu	Val	Gly 2540	Gln O	Val	Tyr	Ser
Thr 2545		Val	Thr	Tyr	Ile 255		Asp	Trp	Trp	Thr 2555		Ala	Ala	Lys	Asn 2560
Leu	Thr	Asp	Phe	Ala 2565		Gln	Tyr	Ser	Ile 2570		Asp	Trp	Ala	Lys 2575	
Met	Lys	Ala	Leu 2580		Glu	Gln	Gly	Phe 2585		Val	Pro	Glu	Ile 2590		Thr
Ile	Leu	Gly 2595		Met	Pro	Ala	Phe 2600		Val	Ser	Leu	Gln 2605		Leu	Gln
Lys	Ala 2610		Phe	Gln	Thr	Pro 2615		Phe	Ile	Val	Pro 2620	Leu)	Thr	Asp	Leu
Arg 2625		Pro	Ser	Val	Gln 263		Asn	Phe	Lys	Asp 2635		Lys	Asn	Ile	Lys 2640
Ile	Pro	Ser	Arg	Phe 2645		Thr	Pro	Glu	Phe 2650		Ile	Leu	Asn	Thr 2655	
His	Ile	Pro	Ser 2660		Thr	Ile	Asp	Phe 2665		Glu	Met	Lys	Val 2670		Ile
Ile	Arg	Thr 2675		Asp	Gln	Met	Gln 2680		Ser	Glu	Leu	Gln 2685		Pro	Val
Pro	Asp 2690		Tyr	Leu	Arg	Авр 2695		Lys	Val	Glu	Asp 2700	Ile)	Pro	Leu	Ala
Arg 2705		Thr	Leu	Pro	Asp 271		Arg	Leu	Pro	Glu 271		Ala	Ile	Pro	Glu 2720
Phe	Ile	Ile	Pro	Thr 2725		Asn	Leu	Asn	Авр 2730		Gln	Val	Pro	Авр 2735	
His	Ile	Pro	Glu 2740		Gln		Pro					Thr	Ile 2750		Val
Pro	Thr	Phe 2755	_	Lys	Leu	Tyr	Ser 2760		Leu	Lys	Ile	Gln 2765		Pro	Leu
Phe	Thr 2770		Asp	Ala	Asn	Ala 2775		Ile	Gly	Asn	Gl y 2780	Thr	Thr	Ser	Ala
Asn 2785		Ala	Gly	Ile	Ala 2790		Ser	Ile	Thr	Ala 279!		Gly	Glu	Ser	L ys 2800
Leu	Glu	Val	Leu	Asn 2805		Asp	Phe	Gln	Ala 2810		Ala	Gln	Leu	Ser 281	
Pro	Lys	Ile	Asn 2820		Leu	Ala	Leu	Lys 2825		Ser	Val	Lys	Phe 2830		Ser
Lys	Tyr	Leu 2835		Thr	Glu	His	Gly 2840		Glu	Met	Leu	Phe 2845		Gly	Asn

Ala Ile Glu Gly Lys Ser Asn Thr Val Ala Ser Leu His Thr Glu Lys

	2850)				2855					2860)			
Asn 2865		Leu	Glu	Leu	Ser 2870		Gly	Val	Ile	Val 2875		Ile	Asn	Asn	Gln 2880
Leu	Thr	Leu	Asp	Ser 2885		Thr	Lys	Tyr	Phe 2890		Lys	Leu	Asn	Ile 2895	
Lys	Leu	Asp	Phe 2900	Ser	Ser	Gln	Ala	Asp 2905		Arg	Asn	Glu	Ile 2910		Thr
Leu	Leu	Lys 2915		Gly	His	Ile	Ala 2920		Thr	Ser	Ser	Gly 2925		Gly	Ser
Trp	Lys 2930		Ala	Сув	Pro	Arg 2935		Ser	Asp	Glu	Gly 2940		His	Glu	Ser
Gln 2945		Ser	Phe	Thr	Ile 2950		Gly	Pro	Leu	Thr 2955		Phe	Gly	Leu	Ser 2960
Asn	Lys	Ile	Asn	Ser 2965		His	Leu	Arg	Val 2970		Gln	Asn	Leu	Val 2975	
Glu	Ser	Gly	Ser 2980	Leu)	Asn	Phe	Ser	Lys 2985		Glu	Ile	Gln	Ser 2990		Val
Авр	Ser	Gln 2995		Val	Gly	His	Ser 3000		Leu	Thr	Ala	Lу в 3005	-	Met	Ala
Leu	Phe 3010		Glu	Gly	Lys	Ala 3015		Phe	Thr	Gly	Arg 3020		Авр	Ala	His
Leu 3025		Gly	Lys	Val	Ile 3030		Thr	Leu	Lys	Asn 3035		Leu	Phe	Phe	Ser 3040
Ala	Gln	Pro	Phe	Glu 3045		Thr	Ala	Ser	Thr 3050		Asn	Glu	Gly	Asn 3055	
Lys	Val	Arg	Phe 3060	Pro	Leu	Arg	Leu	Thr 3065		Lys	Ile	Asp	Phe 3070		Asn
Asn	Tyr	Ala 3075		Phe	Leu	Ser	Pro 3080		Ala	Gln	Gln	Ala 3085		Trp	Gln
Val	Ser 3090		Arg	Phe	Asn	Gln 3095		Lys	Tyr	Asn	Gln 3100		Phe	Ser	Ala
Gly 3105		Asn	Glu	Asn	Ile 3110		Glu	Ala	His	Val 3115		Ile	Asn	Gly	Glu 3120
Ala	Asn	Leu	Asp	Phe 3125		Asn	Ile	Pro	Leu 3130		Ile	Pro	Glu	Met 3135	
Leu	Pro	Tyr	Thr 3140	Ile)	Ile	Thr	Thr	Pro 3145		Leu	Lys	Asp	Phe 3150		Leu
Trp	Glu	Lys 3155		Gly	Leu	Lys	Glu 3160		Leu	Lys	Thr	Thr 3165		Gln	Ser
Phe	Asp 3170		Ser	Val	Lys	Ala 3175		Tyr	Lys	Lys	Asn 3180		His	Arg	His
Ser 3185		Thr	Asn	Pro	Leu 3190		Val	Leu	Сув	Glu 3195		Ile	Ser	Gln	Ser 3200
Ile	Lys	Ser	Phe	Asp 3205		His	Phe	Glu	L ys 3210		Arg	Asn	Asn	Ala 3215	
Asp	Phe	Val	Thr 3220	Lys)	Ser	Tyr	Asn	Glu 3225		Lys	Ile	Lys	Phe 3230	_	Lys
Tyr	Lys	Ala 3235		Lys	Ser	His	Asp 3240		Leu	Pro	Arg	Thr 3245		Gln	Ile
Pro	Gly 3250		Thr	Val	Pro	Val 3255		Asn	Val	Glu	Val 3260		Pro	Phe	Thr

												COn	CTU	uea	
Ile 3265		Met	Ser	Ala	Phe 3270	Gly	Туг	Val	Phe	Pro 3275		Ala	Val	Ser	Met 3280
Pro	Ser	Phe	Ser	Ile 3285		Gly	Ser	Asp	Val 3290		Val	Pro	Ser	Tyr 3295	
Leu	Ile	Leu	Pro 3300		Leu	Glu		Pro 3305		Leu	His	Val	Pro 3310		Asn
Leu	Lys	Leu 3315		Leu	Pro	His	Phe 3320		Glu	Leu	Сув	Thr 3325		Ser	His
Ile	Phe 3330		Pro	Ala	Met	Gly 3335		Ile	Thr	Tyr	Asp 3340		Ser	Phe	Lys
ser 3345		Val	Ile	Thr	Leu 3350	Asn)	Thr	Asn	Ala	Glu 3355		Phe	Asn	Gln	Ser 3360
Asp	Ile	Val	Ala	Нів 3365		Leu	Ser	ser	Ser 3370		Ser	Val	Ile	Asp 3375	
Leu	Gln	Tyr	Lys 3380		Glu	Gly	Thr	Thr 3385		Leu	Thr	Arg	Lys 3390		Gly
Leu	Lys	Leu 3395		Thr	Ala	Leu	Ser 3400		Ser	Asn	Lys	Phe 3405		Glu	Gly
Ser	His 3410		Ser	Thr	Val	Ser 3415		Thr	Thr	Lys	Asn 3420		Glu	Val	Ser
Val 3425		Lys	Thr	Thr	Lys 3430	Ala)	Glu	Ile	Pro	Ile 3435		Arg	Met	Asn	Phe 3440
Lys	Gln	Glu	Leu	Asn 3445	Gl y	Asn	Thr	Lys	Ser 3450		Pro	Thr	Val	Ser 3455	
Ser	Met	Glu	Phe 3460		Tyr	Asp	Phe	Asn 3465		Ser	Met	Leu	Tyr 3470		Thr
Ala	Lys	Gly 3475		Val	Asp	His	Ly s 3480		Ser	Leu	Glu	ser 3485		Thr	Ser
	Phe 3490		Ile	Glu	Ser	Ser 3495		Lys	Gly	Asp	Val 3500		Gly	Ser	Val
Leu 3505		Arg	Glu	Tyr	Ser 3510	Gly)	Thr	Ile	Ala	Ser 3515		Ala	Asn	Thr	Tyr 3520
Leu	Asn	Ser	Lys	Ser 3525		Arg	Ser	Ser	Val 3530		Leu	Gln	Gly	Thr 3535	
Lys	Ile	qaA	Авр 3540		Trp	Asn	Leu	Glu 3545		Lys	Glu	Asn	Phe 3550		Gly
						Ile								Thr	Lys
Asn	His 3570		Gln	Leu	Glu	Gly 3575		Phe	Phe	Thr	Asn 3580		Glu	His	Thr
Ser 3585	_	Ala	Thr	Leu	Glu 3590	Leu)	Ser	Pro	Trp	Gln 3595		Ser	Ala	Leu	Val 3600
Gln	Val	His	Ala	Ser 3605		Pro	Ser	Ser	Phe 3610		Asp	Phe	Pro	Авр 3615	
Gly	Gln	Glu	Val 3620		Leu	Asn	Ala	Авп 3625		Lув	Asn	Gln	Lys 3630		Arg
Trp	Lys	Asn 3635		Val	Arg	Ile	His 3640		Gly	Ser	Phe	Gln 3645		Gln	Val

Glu Leu Ser Asn Asp Gln Glu Lys Ala His Leu Asp Ile Ala Gly Ser 3650 3660

						COII	Linueu	
Leu Glu Gly 3665	His Leu	Arg Phe 3670	Leu I	Lys Asn	Ile Ile 3675	Leu	Pro Val	Tyr 3680
Asp Lys Ser	Leu Trp 368		Leu I	Lys Leu 3690		Thr	Thr Ser 369	
Gly Arg Arg	Gln His 3700	Leu Arg		Ser Thr 3705	Ala Phe	Val	Tyr Thr 3710	Lys
Asn Pro Asn 371		Ser Phe	Ser 1	Ile Pro	Val Lys	Val 3725		Asp
Lys Phe Ile 3730	Thr Pro	Gly Leu 373		Leu Asn	Asp Leu 3740		Ser Val	Leu
Val Met Pro 3745	Thr Phe	His Val	Pro I	Phe Thr	Asp Leu 3755	Gln	Val Pro	Ser 3760
Cys Lys Leu	Asp Phe		Ile 0	Gln Ile 3770		Lys	Leu Arg 377	
Ser Ser Phe	Ala Leu 3780	Asn Leu		Thr Leu 3785	Pro Glu	Val	Lys Phe 3790	Pro
Glu Val Asp 379		Thr Lys	Tyr 8	Ser Gln	Pro Glu	Asp 3805		Ile
Pro Phe Phe 3810	Glu Ile	Thr Val		Glu Ser	Gln Leu 3820		Val Ser	Gln
Phe Thr Leu 3825	Pro Lys	Ser Val	Ser A	Asp Gly	Ile Ala 3835	Ala	Leu Asp	Leu 3840
Asn Ala Val	Ala Asn 384		Ala A	Asp Phe 3850		Pro	Thr Ile	
Val Pro Glu	Gln Thr 3860	Ile Glu		Pro Ser 3865	Ile Lys	Phe	Ser Val 3870	Pro
Ala Gly Ile 387		Pro Ser	Phe 0	Gln Ala	Leu Thr	Ala 3885		Glu
Val Asp Ser 3890	Pro Val	Tyr Asn 389		Thr Trp	Ser Ala		Leu Lys	Asn
Lys Ala Asp 3905	Tyr Val	Glu Thr	Val I	Leu Asp	Ser Thr	Сув	Ser Ser	Thr 3920
Val Gln Phe	Leu Glu 392		Leu A	Asn Val 3930		Thr	His Lys 393	
Glu Asp Gly	Thr Leu 3940	Ala Ser		Thr Lys 3945	Gly Thr	Leu	Ala His 3950	Arg
Asp Phe Ser		Tyr Glu	Glu <i>I</i> 3960	Asp Gly	Lys Phe	Glu 3965		Gln
Glu Trp Glu 3970	Gly Lys	Ala His		Asn Ile	Lys Ser		Ala Phe	Thr
Asp Leu His 3985	Leu Arg	Tyr Gln 3990	Lys A	Asp Lys	Lys Gly 3995	Ile	Ser Thr	Ser 4000
Ala Ala Ser	Pro Ala 400		Thr V	Val Gly 4010		Met	Asp Glu 401	
Asp Asp Phe	Ser Lys 4020	Trp Asn		Tyr Ty r 4025	Ser Pro	Gln	Ser Ser 4030	Pro
Asp Lys Lys		Ile Phe	Lys 7	Thr Glu	Leu Arg	Val 4045		Ser
Asp Glu Glu 4050	Thr Gln	Ile Lys 405		Asn Trp	Glu Glu 4060		Ala Ala	Ser
Gly Leu Leu	Thr Ser	Leu Lys	Asp A	Asn Val	Pro Lys	Ala	Thr Gly	Val

4065	4070	4075	4080
Leu Tyr Asp Tyr Val		His Trp Glu His Thr 4090	Gly Leu Thr 4095
Leu Arg Glu Val Ser	Ser Lys Leu	Arg Arg Asn Leu Gln	Asn Asn Ala
4100		4105	4110
Glu Trp Val Tyr Gln	Gly Ala Ile	Arg Gln Ile Asp Asp	
4115	4120) 4125	
Arg Phe Gln Lys Ala 4130	Ala Ser Gly 4135	Thr Thr Gly Thr Tyr 4140	Gln Glu Trp
Lys Asp Lys Ala Gln	Asn Leu Tyr	Gln Glu Leu Leu Thr	Gln Glu Gly
4145	4150	4155	4160
Gln Ala Ser Phe Gln		Asp Asn Val Phe Asp	Gly Leu Val
416		4170	4175
Arg Val Thr Gln Lys	Phe His Met	Lys Val Lys His Leu	Ile Asp Ser
4180		4185	4190
Leu Ile Asp Phe Leu 4195	Asn Phe Pro	Arg Phe Gln Phe Pro 4205	
Gly Ile Tyr Thr Arg	Glu Glu Leu	Cys Thr Met Phe Ile	Arg Glu Val
4210	4215	4220	
Gly Thr Val Leu Ser	Gln Val Tyr	Ser Lys Val His Asn	Gly Ser Glu
4225	4230	4235	4240
Ile Leu Phe Ser Tyr		Leu Val Ile Thr Leu	Pro Phe Glu
424		4250	4255
Leu Arg Lys His Lys	Leu Ile Asp	Val Ile Ser Met Tyr	Arg Glu Leu
4260		4265	4270
Leu Lys Asp Leu Ser	Lys Glu Ala	Gln Glu Val Phe Lys	
4275	4280) 4285	
Ser Leu Lys Thr Thr	Glu Val Leu	Arg Asn Leu Gln Asp	Leu Leu Gln
4290	4295	4300	
Phe Ile Phe Gln Leu	Ile Glu Asp	Asn Ile Lys Gln Leu	Lys Glu Met
4305	4310	4315	4320
Lys Phe Thr Tyr Leu		Ile Gln Asp Glu Ile	Asn Thr Ile
432		4330	4335
Phe Asn Asp Tyr Ile	Pro Tyr Val	Phe Lys Leu Leu Lys	Glu Asn Leu
4340		4345	4350
Cys Leu Asn Leu His	Lys Phe Asn	Glu Phe Ile Gln Asn	
4355	4360) 4365	
Glu Ala Ser Gln Glu	Leu Gln Gln	Ile His Gln Tyr Ile	Met Ala Leu
4370	4375	4380	
Arg Glu Glu Tyr Phe	Asp Pro Ser	Ile Val Gly Trp Thr	Val Lys Tyr
4385	4390	4395	4400
Tyr Glu Leu Glu Glu		Ser Leu Ile Lys Asn	Leu Leu Val
440		4410	4415
Ala Leu Lys Asp Phe 4420	His Ser Glu	Tyr Ile Val Ser Ala 4425	Ser Asn Phe 4430
Thr Ser Gln Leu Ser 4435	Ser Gln Val	Glu Gln Phe Leu His) 4445	
Gln Glu Tyr Leu Ser	Ile Leu Thr	Asp Pro Asp Gly Lys	Gly Lys Glu
4450	4455	4460	
Lys Ile Ala Glu Leu	Ser Ala Thr	Ala Gln Glu Ile Ile	Lys Ser Gln
4465	4470	4475	4480

Ala lie Ala in	4485	4490	Tyr his Gin Gin	4495
Tyr Lys Leu Gli 450		Asp Gln Leu 4505	Ser Asp Tyr Tyr 451	
Phe Ile Ala Gli 4515	ı Ser Lys Arg	Leu Ile Asp 4520	Leu Ser Ile Gln 4525	Asn Tyr
His Thr Phe Let 4530	ı Ile Tyr Ile 453		Leu Lys Lys Leu 4540	Gln Ser
Thr Thr Val Met 4545	Asn Pro Tyr 4550		Ala Pro Gly Glu 4555	Leu Thr 4560
Ile Ile Leu				
<pre><210> SEQ ID NO <211> LENGTH: 2 <212> TYPE: DNM <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INI 5,10-metl</pre>	196 Homo sapien CDS (13)(198 CORMATION: Nu	3)		
<400> SEQUENCE:				
			a aac agc agc c y Asn Ser Ser L 10	
			gag age tee aaa Glu Ser Ser Lys 25	
			gag cgg cat gag Glu Arg His Glu 40	
			ggt gac aag tgg Gly Asp Lys Trp	
	e Pro Pro Arg		gga gct gtc aat Gly Ala Val Asn 75	
tca agg ttt gad Ser Arg Phe Asj 80	c cgg atg gca o Arg Met Ala	gca ggt ggc Ala Gly Gly 85	ccc ctc tac ata Pro Leu Tyr Ile 90	gac gtg 291 Asp Val
		Pro Gly Ser	gac aag gag acc Asp Lys Glu Thr 105	
		Val Asn Tyr	tgt ggc ctg gag C ys Gl y L eu Glu 120	
			gag gag atc acg Glu Glu Ile Thr	
	a Lys Gln Leu		aac atc atg gcg Asn Ile Met Ala 155	
			gag gag gga ggc Glu Glu Gly Gly 170	
tac gca gtg gad	ctg gtg aag	cac atc cga	agt gag ttt ggt	gac tac 579

Ala Ile Ala Thr Lys Lys Ile Ile Ser Asp Tyr His Gln Gln Phe Arg

Tyr	Ala 175	Val	Asp	Leu	Val	Lys 180	His	Ile	Arg	Ser	Glu 185	Phe	Gly	Asp	Tyr	
									aaa L ys							627
									aag Lys 215							675
									ttt Phe							723
									ggc Gl y							771
									cac His							819
									gag Glu							867
									cgc Arg 295							915
									gcc Ala							963
									atg Met							1011
									ccc Pro							1059
									gag Glu							1107
		-		-		_	-		atc Ile 375		-		-			1155
									aat A sn							1203
									tac Tyr							1251
									gag Glu							1299
									ctc Leu							1347
									tgg Trp 455							1395
									ctg Leu							1443
ggc	atc	ctc	acc	atc	aac	tca	cag	ccc	aac	atc	aac	aaa	aag	ccg	tcc	1491

Gly Ile Leu Thr Ile Asn Ser Gln Pro Asn Ile Asn Gly Lys Pro Ser 480 485 485 490 tcc gac ccc atc gtg ggc tgg ggc ccc agc ggg ggc tat gtc ttc cag 1539 Ser Asp Pro Ile Val Gly Trp Gly Pro Ser Gly Gly Tyr Val Phe Gln 495 500 500	
Ser Asp Pro Ile Val Gly Trp Gly Pro Ser Gly Gly Tyr Val Phe Gln	
450 500 505	
aag gcc tac tta gag ttt ttc act tcc cgc gag aca gcg gaa gca ctt 1587 Lys Ala Tyr Leu Glu Phe Phe Thr Ser Arg Glu Thr Ala Glu Ala Leu 510 515 520 525	
ctg caa gtg ctg aag aag tac gag ctc cgg gtt aat tac cac ctt gtc 1635 Leu Gln Val Leu Lys Lys Tyr Glu Leu Arg Val Asn Tyr His Leu Val 530 535 540	
aat gtg aag ggt gaa aac atc acc aat gcc cct gaa ctg cag ccg aat 1683 Asn Val Lys Gly Glu Asn Ile Thr Asn Ala Pro Glu Leu Gln Pro Asn 545 550 555	
gct gtc act tgg ggc atc ttc cct ggg cga gag atc atc cag ccc acc 1731 Ala Val Thr Trp Gly Ile Phe Pro Gly Arg Glu Ile Ile Gln Pro Thr 560 565 570	
gta gtg gat ccc gtc agc ttc atg ttc tgg aag gac gag gcc ttt gcc 1779 Val Val Asp Pro Val Ser Phe Met Phe Trp Lys Asp Glu Ala Phe Ala 575 580 585	
ctg tgg att gag cgg tgg gga aag ctg tat gag gag gag tcc ccg tcc 1827 Leu Trp Ile Glu Arg Trp Gly Lys Leu Tyr Glu Glu Glu Ser Pro Ser 590 595 600 605	
cgc acc atc atc cag tac atc cac gac aac tac ttc ctg gtc aac ctg 1875 Arg Thr Ile Ile Gln Tyr Ile His Asp Asn Tyr Phe Leu Val Asn Leu 610 615 620	
gtg gac aat gac ttc cca ctg gac aac tgc ctc tgg cag gtg gtg gaa 1923 Val Asp Asn Asp Phe Pro Leu Asp Asn Cys Leu Trp Gln Val Val Glu 625 630 635	
gac aca ttg gag ctt ctc aac agg ccc acc cag aat gcg aga gaa acg 1971 Asp Thr Leu Glu Leu Asn Arg Pro Thr Gln Asn Ala Arg Glu Thr 640 645 650	
gag get eea tga eeetgegtee tgaegeeetg egttggagee acteetgtee 2023 Glu Ala Pro * 655	
egectteete etecaeagtg etgettetet tgggaactee acteteette gtgtetetee 2083	
caccceggee tecacteece cacctgacaa tggcagetag actggagtga ggettecagg 2143	
ctetteetgg acctgagteg geoceacatg ggaacctagt actetetget eta 2196	
<210> SEQ ID NO 34 <211> LENGTH: 656 <212> TYPE: PRT <213> ORGANISM: Homo sapien	
<400> SEQUENCE: 34	
Met Val Asn Glu Ala Arg Gly Asn Ser Ser Leu Asn Pro Cys Leu Glu 1 5 10 15	
Gly Ser Ala Ser Ser Gly Ser Glu Ser Ser Lys Asp Ser Ser Arg Cys 20 25 30	
Ser Thr Pro Gly Leu Asp Pro Glu Arg His Glu Arg Leu Arg Glu Lys 35 40 45	
Met Arg Arg Arg Leu Glu Ser Gly Asp Lys Trp Phe Ser Leu Glu Phe 50 55 60	
Phe Pro Pro Arg Thr Ala Glu Gly Ala Val Asn Leu Ile Ser Arg Phe 70 75 80	

Asp	Arg	Met	Ala	Ala 85	Gly	Gly	Pro	Leu	Tyr 90	Ile	qaA	Val	Thr	Trp 95	His
Pro	Ala	Gly	Asp 100	Pro	Gly	Ser	Asp	Lys 105	Glu	Thr	Ser	Ser	Met 110	Met	Ile
Ala	Ser	Thr 115	Ala	Val	Asn	туr	Cys 120	Gly	Leu	Glu	Thr	Ile 125	Leu	Нів	Met
Thr	Сув 130	Сув	Arg	Gln	Arg	Leu 135	Glu	Glu	Ile	Thr	Gly 140	Нів	Leu	His	Lys
Ala 145	Lув	Gln	Leu	Gly	Leu 150	Lys	Asn	Ile	Met	Ala 155	Leu	Arg	Gly	Авр	Pro 160
Ile	Gly	Asp	Gln	Trp 165	Glu	Glu	Glu	Glu	Gly 170	Gly	Phe	Asn	Tyr	Ala 175	Val
Asp	Leu	Val	Lys 180	His	Ile	Arg	Ser	Glu 185	Phe	Gly	Asp	Tyr	Phe 190	Asp	Ile
Сув	Val	Ala 195	Gly	Tyr	Pro	Lys	Gly 200	His	Pro	Glu	Ala	Gly 205	Ser	Phe	Glu
Ala	Asp 210	Leu	Lys	His	Leu	L ys 215	Glu	Lys	Val	Ser	Ala 220	Gly	Ala	Asp	Phe
Ile 225	Ile	Thr	Gln	Leu	Phe 230	Phe	Glu	Ala	Asp	Thr 235	Phe	Phe	Arg	Phe	Val 240
Lys	Ala	Сув	Thr	Asp 245	Met	Gly	Ile	Thr	Сув 250	Pro	Ile	Val	Pro	Gly 255	Ile
Phe	Pro	Ile	Gln 260	Gly	Tyr	His	Ser	Leu 265	Arg	Gln	Leu	Val	Lys 270	Leu	Ser
Lys	Leu	Glu 275	Val	Pro	Gln	Glu	11e 280	Lys	Asp	Val	Ile	Glu 285	Pro	Ile	Lys
Asp	Asn 290	Asp	Ala	Ala	Ile	Arg 295	Asn	Tyr	Gly	Ile	Glu 300	Leu	Ala	Val	Ser
Leu 305	Сув	Gln	Glu	Leu	Leu 310	Ala	Ser	Gly	Leu	Val 315	Pro	Gly	Leu	His	Phe 320
Tyr	Thr	Leu	Asn	Arg 325	Glu	Met	Ala	Thr	Thr 330	Glu	Val	Leu	Lys	Arg 335	Leu
Gly	Met	Trp	Thr 340	Glu	Asp	Pro	Arg	Arg 345	Pro	Leu	Pro	Trp	Ala 350	Leu	Ser
Ala	His	Pro 355	Lys	Arg	Arg	Glu	Glu 360	Авр	Val	Arg	Pro	11e 365	Phe	Trp	Ala
Ser	Arg 370	Pro	Lys	Ser	Tyr	Ile 375	Tyr	Arg	Thr	Gln	Glu 380	Trp	Asp	Glu	Phe
Pro 385	Asn	Gly	Arg	Trp	Gl y 390	Asn	Ser	Ser	Ser	Pro 395	Ala	Phe	Gly	Glu	Leu 400
Lys	Asp	Tyr	Tyr	Leu 405	Phe	Tyr	Leu	Lys	Ser 410	Lys	Ser	Pro	Lys	Glu 415	Glu
Leu	Leu	Lys	Met 420	Trp	Gly	Glu	Glu	Leu 425	Thr	Ser	Glu	Ala	Ser 430	Val	Phe
Glu	Val	Phe 435	Val	Leu	Tyr	Leu	Ser 440	Gly	Glu	Pro	Asn	Arg 445	Asn	Gly	His
Lys	Val 450	Thr	Сув	Leu	Pro	Trp 455	Asn	Asp	Glu	Pro	Leu 460	Ala	Ala	Glu	Thr
Ser 465	Leu	Leu	Lys	Glu	Glu 470	Leu	Leu	Arg	Val	Asn 475	Arg	Gln	Gly	Ile	Leu 480
Thr	Ile	Asn	Ser	Gln	Pro	Asn	Ile	Asn	Gly	Lys	Pro	Ser	Ser	qaA	Pro

485 490 495	
Ile Val Gly Trp Gly Pro Ser Gly Gly Tyr Val Phe Gln Lys Ala Tyr 500 505 510	
Leu Glu Phe Phe Thr Ser Arg Glu Thr Ala Glu Ala Leu Leu Gln Val 515 520 525	
Leu Lys Lys Tyr Glu Leu Arg Val Asn Tyr His Leu Val Asn Val Lys 530 540	
Gly Glu Asn Ile Thr Asn Ala Pro Glu Leu Gln Pro Asn Ala Val Thr 545 550 555 560	
Trp Gly Ile Phe Pro Gly Arg Glu Ile Ile Gln Pro Thr Val Val Asp 565 570 575	
Pro Val Ser Phe Met Phe Trp Lys Asp Glu Ala Phe Ala Leu Trp Ile 580 585 590	
Glu Arg Trp Gly Lys Leu Tyr Glu Glu Glu Ser Pro Ser Arg Thr Ile 595 600 605	
Ile Gln Tyr Ile His Asp Asn Tyr Phe Leu Val Asn Leu Val Asp Asn 610 620	
Asp Phe Pro Leu Asp Asn Cys Leu Trp Gln Val Val Glu Asp Thr Leu 625 630 635 640	
Glu Leu Leu Asn Arg Pro Thr Gln Asn Ala Arg Glu Thr Glu Ala Pro 645 650 655	
<213> ORGANISM: Homo sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (117)(1949) <223> OTHER INFORMATION: Nucleotide sequence encoding selectin E (S	SELE)
<pre><400> SEQUENCE: 35 cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg</pre>	60 119
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys	
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys 5 10 15 gag agt gga gcc tgg tct tac aac acc tcc acg gaa gct atg act tat	119
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtattca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys 5 10 15 gag agt gga gcc tgg tct tac aac acc tcc acg gaa gct atg act tat Glu Ser Gly Ala Trp Ser Tyr Asn Thr Ser Thr Glu Ala Met Thr Tyr 20 25 30	119 167 215
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys 5 10 15 gag agt gga gcc tgg tct tac aac acc tcc acg gaa gct atg act tat Glu Ser Gly Ala Trp Ser Tyr Asn Thr Ser Thr Glu Ala Met Thr Tyr	119
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys 5 10 15 gag agt gga gcc tgg tct tac aac acc tcc acg gaa gct atg act tat Glu Ser Gly Ala Trp Ser Tyr Asn Thr Ser Thr Glu Ala Met Thr Tyr 20 25 30 gat gag gcc agt gct tat tgt cag caa agg tac aca cac ctg gtt gca Asp Glu Ala Ser Ala Tyr Cys Gln Gln Arg Tyr Thr His Leu Val Ala	119 167 215
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys 5 10 15 gag agt gga gcc tgg tct tac aac acc tcc acg gaa gct atg act tat Glu Ser Gly Ala Trp Ser Tyr Asn Thr Ser Thr Glu Ala Met Thr Tyr 20 25 30 gat gag gcc agt gct tat tgt cag caa agg tac aca cac ctg gtt gca Asp Glu Ala Ser Ala Tyr Cys Gln Gln Arg Tyr Thr His Leu Val Ala 35 40 45 att caa aac aaa gaa gag att gag tac cta aac tcc ata ttg agc tat Ile Gln Asn Lys Glu Glu Ile Glu Tyr Leu Asn Ser Ile Leu Ser Tyr	119 167 215 263
cctgagacag aggcagcagt gatacccacc tgagagatcc tgtgtttgaa caactgcttc ccaaaacgga aagtatttca agcctaaacc tttgggtgaa aagaactctt gaagtc atg Met 1 att gct tca cag ttt ctc tca gct ctc act ttg gtg ctt ctc att aaa Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile Lys 5 10 15 gag agt gga gcc tgg tct tac aac acc tcc acg gaa gct atg act tat Glu Ser Gly Ala Trp Ser Tyr Asn Thr Ser Thr Glu Ala Met Thr Tyr 20 25 30 gat gag gcc agt gct tat tgt cag caa agg tac aca cac ctg gtt gca Asp Glu Ala Ser Ala Tyr Cys Gln Gln Arg Tyr Thr His Leu Val Ala 35 40 45 att caa aac aaa gaa gag att gag tac cta aac tcc ata ttg agc tat Ile Gln Asn Lys Glu Glu Ile Glu Tyr Leu Asn Ser Ile Leu Ser Tyr 50 65 tca cca agt tat tac tgg att gga atc aga aaa gtc aac aat gtg tgg Ser Pro Ser Tyr Tyr Trp Ile Gly Ile Arg Lys Val Asn Asn Val Trp	119 167 215 263 311

		100				105					110			
					aaa Lys 120									503
					gcc Ala									551
					ggt Gly									599
	_	_	_	_	ggc Gly		_			_	_			647
					gaa Glu									695
-			_		ttc Phe 200	_					-		_	743
					cca Pro									791
					gct Ala									839
					cca Pro									887
					tgg Trp									935
					gga Gl y 280									983
					aag Lys									1031
					aat Asn									1079
					aaa Lys									1127
					cca Pro									1175
_			-		cca Pro 360	-	_	_	-		_	_	_	1223
					ggc Gly									1271
					tcc Ser									1319
					aaa Lys									1367

405 410 415	
tgg gac aac gag aag ccc aca tgt gaa gct gtg aga tgc gat gct gtc Trp Asp Asn Glu Lys Pro Thr Cys Glu Ala Val Arg Cys Asp Ala Val 420 425 430	1415
cac cag ccc ccg aag ggt ttg gtg agg tgt gct cat tcc cct att gga His Gln Pro Pro Lys Gly Leu Val Arg Cys Ala His Ser Pro Ile Gly 435 440 445	1463
gaa ttc acc tac aag tcc tct tgt gcc ttc agc tgt gag gag gga ttt Glu Phe Thr Tyr Lys Ser Ser Cys Ala Phe Ser Cys Glu Glu Gly Phe 450 455 460 465	1511
gaa tta tat gga tca act caa ctt gag tgc aca tct cag gga caa tgg Glu Leu Tyr Gly Ser Thr Gln Leu Glu Cys Thr Ser Gln Gly Gln Trp 470 475 480	1559
aca gaa gag gtt oot too tgo caa gtg gta aaa tgt toa ago otg goa Thr Glu Glu Val Pro Ser Cys Gln Val Val Lys Cys Ser Ser Leu Ala 485 490 495	1607
gtt ccg gga aag atc aac atg agc tgc agt ggg gag ccc gtg ttt ggc Val Pro Gly Lys Ile Asn Met Ser Cys Ser Gly Glu Pro Val Phe Gly 500 505 510	1655
act gtg tgc aag ttc gcc tgt cct gaa gga tgg acg ctc aat ggc tct Thr Val Cys Lys Phe Ala Cys Pro Glu Gly Trp Thr Leu Asn Gly Ser 515 520 525	1703
gca gct cgg aca tgt gga gcc aca gga cac tgg tct ggc ctg cta cct Ala Ala Arg Thr Cys Gly Ala Thr Gly His Trp Ser Gly Leu Leu Pro 530 545	1751
acc tgt gaa get eec act gag tee aac att eec ttg gta get gga ett Thr Cys Glu Ala Pro Thr Glu Ser Asn Ile Pro Leu Val Ala Gly Leu 550 555 560	1799
tot got got gga oto too oto otg aca tta gca coa ttt oto oto tqg Ser Ala Ala Gly Leu Ser Leu Leu Thr Leu Ala Pro Phe Leu Leu Trp 565 570 575	1847
ctt cgg aaa tgc tta cgg aaa gca aag aaa ttt gtt cct gcc agc agc Leu Arg Lys Cys Leu Arg Lys Ala Lys Lys Phe Val Pro Ala Ser Ser 580 585 590	1895
tgc caa agc ctt gaa tca gac gga agc tac caa aag cct tct tac atc Cys Gln Ser Leu Glu Ser Asp Gly Ser Tyr Gln Lys Pro Ser Tyr Ile 595 600 605	1943
ctt taa gttcaaaaga atcagaaaca ggtgcatctg gggaactaga gggatacact Leu * 610	1999
gaagttaaca gagacagata actotootog ggtototggo cottottgoo tactatgooa	2059
gatgoottta tggotgaaac cgcaacaccc atcaccactt caatagatca aagtocagca	2119
ggcaaggacg gccttcaact gaaagactc agtgttccct ttcctactct caggatcaag	2179
aaagtgttgg ctaatgaagg gaaaggatat tttcttccaa gcaaaggtga agagaccaag actctgaaat ctcagaattc cttttctaac tctcccttgc tcgctgtaaa atcttggcac	2299
agaaacacaa tattttgtgg ctttctttct tttgcccttc acagtgtttc gacagctgat	2359
tacacagttg ctgtcataag aatgaataat aattatccag agtttagagg aaaaaaatga	2419
ctaaaaatat tataacttaa aaaaatgaca gatgttgaat gcccacaggc aaatgcatgg	2479
agggttgtta atggtgcaaa tootaotgaa tgototgtgo gagggttaot atgoacaatt	2539
taatcacttt catccctatg ggattcagtg cttcttaaag agttcttaag gattgtgata	2599
tttttacttg cattgaatat attataatct tccatacttc ttcattcaat acaagtgtgg	2659

tagggactta	aaaaacttgt	aaatgctgtc	aactatgata	tggtaaaagt	tacttattct	2719
agattacccc	ctcattgttt	attaacaaat	tatgttacat	ctgttttaaa	tttatttcaa	2779
aaagggaaac	tattgtcccc	tagcaaggca	tgatgttaac	cagaataaag	ttctgagtgt	2839
ttttactaca	gttgttttt	gaaaacatgg	tagaattgga	gagtaaaaac	tgaatggaag	2899
gtttgtatat	tgtcagatat	tttttcagaa	atatgtggtt	tccacgatga	aaaacttcca	2959
tgaggccaaa	cgttttgaac	taataaaagc	ataaatgcaa	acacacaaag	gtataatttt	3019
atgaatgtct	ttgttggaaa	agaatacaga	aagatggatg	tgctttgcat	tcctacaaag	3079
atgtttgtca	gatgtgatat	gtaaacataa	ttcttgtata	ttatggaaga	ttttaaattc	3139
acaatagaaa	ctcaccatqt	aaaagaqtca	tctggtagat	tttaacgaa	tgaagatgtc	3199
taatagttat	tccctatttg	ttttcttctg	tatgttaggg	tgctctggaa	gagaggaatg	3259
cctgtgtgag	caagcattta	tgtttattta	taagcagatt	taacaattcc	aaaggaatct	3319
ccagttttca	gttgatcact	ggcaatgaaa	aattctcagt	cagtaattgc	caaagctgct	3379
ctagccttga	ggagtgtgag	aatcaaaact	ctcctacact	tccattaact	tagcatgtgt	3439
tgaaaaaaaa	agtttcagag	aagttctggc	tgaacactgg	caacgacaaa	gccaacagtc	3499
aaaacagaga	tgtgataagg	atcagaacag	cagaggttct	tttaaagggg	cagaaaaact	3559
ctgggaaata	agagagaaca	actactgtga	tcaggctatg	tatggaatac	agtgttattt	3619
tctttgaaat	tgtttaagtg	ttgtaaatat	ttatgtaaac	tgcattagaa	attagctgtg	3679
tgaaatacca	gtgtggtttg	tgtttgagtt	ttattgagaa	ttttaaatta	taacttaaaa	3739
tattttataa	tttttaaagt	atatatttat	ttaagcttat	gtcagaccta	tttgacataa	3799
cactataaag	gttgacaata	aatgtgctta	tgttt			3834

<210> SEQ ID NO 36

<211> LENGTH: 610

<212> TYPE: PRT

<213> ORGANISM: Homo sapien

<400> SEQUENCE: 36

Met Ile Ala Ser Gln Phe Leu Ser Ala Leu Thr Leu Val Leu Leu Ile 1 5 10 15

Lys Glu Ser Gly Ala Trp Ser Tyr Asn Thr Ser Thr Glu Ala Met Thr 20 25 30

Tyr Asp Glu Ala Ser Ala Tyr Cys Gln Gln Arg Tyr Thr His Leu Val 35 40 45

Ala Ile Gln Asn Lys Glu Glu Ile Glu Tyr Leu Asn Ser Ile Leu Ser 50 55 60

Tyr Ser Pro Ser Tyr Tyr Trp Ile Gly Ile Arg Lys Val Asn Asn Val 65 70 75 80

Trp Val Trp Val Gly Thr Gln Lys Pro Leu Thr Glu Glu Ala Lys Asn 85 90 95

Trp Ala Pro Gly Glu Pro Asn Asn Arg Gln Lys Asp Glu Asp Cys Val 100 105 110

Glu Ile Tyr Ile Lys Arg Glu Lys Asp Val Gly Met Trp Asn Asp Glu 115 120 125

Arg Cys Ser Lys Lys Leu Leu Cys Tyr Thr Ala Ala Cys Thr 130 135 140

Asn Thr Ser Cys Ser Gly His Gly Glu Cys Val Glu Thr Ile Asn Asn

145					150					155					160
	Thr	Сув	Lys	C ys 165	Asp	Pro	Gly	Phe	Ser 170		Leu	Lys	Сув	Glu 175	
Ile	Val	Asn	C y s 180	Thr	Ala	Leu	Glu	Ser 185	Pro	Glu	His	Gly	Ser 190	Leu	Val
Сув	Ser	His 195	Pro	Leu	Gly	Asn	Phe 200	Ser	Tyr	Asn	Ser	Ser 205	Сув	Ser	Ile
Ser	C y s 210	Asp	Arg	Gly	Tyr	Leu 215	Pro	Ser	Ser	Met	Glu 220	Thr	Met	Gln	Cys
Met 225	Ser	Ser	Gly	Glu	Trp 230	Ser	Ala	Pro	Ile	Pro 235	Ala	Сув	Asn	Val	Val 240
Glu	Сув	Asp	Ala	Val 245	Thr	Asn	Pro	Ala	Asn 250	Gly	Phe	Val	Glu	С у в 255	Phe
Gln	Asn	Pro	Gly 260	Ser	Phe	Pro	Trp	Asn 265	Thr	Thr	Сув	Thr	Phe 270	Asp	Сув
Glu	Glu	Gly 275	Phe	Glu	Leu	Met	Gly 280	Ala	Gln	Ser	Leu	Gln 285	Сув	Thr	Ser
Ser	Gly 290	Asn	Trp	Авр	Asn	Glu 295	Lys	Pro	Thr	Сув	100 300	Ala	Val	Thr	Сув
Arq 305	Ala	Val	Arg	Gln	Pro 310	Gln	Asn	Gly	Ser	Val 315	Arg	Сув	Ser	His	Ser 320
				325	Thr				330					335	
Glu	Gly	Phe	Met 340	Leu	Gln	Gly	Pro	Ala 345	Gln	Val	Glu	Сув	Thr 350	Thr	Gln
Gly	Gln	Trp 355	Thr	Gln	Gln	Ile	Pro 360	Val	Сув	Glu	Ala	Phe 365	Gln	Сув	Thr
Ala	Leu 370	Ser	Asn	Pro	Glu	Arg 375	Gly	Tyr	Met	Asn	380	Leu	Pro	Ser	Ala
Ser 385	Gly	Ser	Phe	Arg	Tyr 390	Gly	Ser	Ser	Cys	Glu 395	Phe	Ser	Cys	Glu	Gln 400
Gly	Phe	Val	Leu	Lys 405	Gly	Ser	Lys	Arg	Leu 410	Gln	Cys	Gly	Pro	Thr 415	Gly
	Ī	_	420		Lys			425				_	430	_	
Val	His	Gln 435	Pro	Pro	Lys	Gly	Leu 440	Val	Arg	Cys	Ala	His 445	Ser	Pro	Ile
Gly	Glu 450	Phe	Thr	Tyr	ГÀЗ	Ser 455	Ser	Сув	Ala	Phe	Ser 460	Суз	Glu	Glu	Gly
Phe 465	Glu	Leu	Tyr	Gly	Ser 470	Thr	Gln	Leu	Glu	C y s 475	Thr	Ser	Gln	Gly	Gln 480
Trp	Thr	Glu	Glu	Val 485	Pro	Ser	Сув	Gln	Val 490	Val	Lys	Суз	Ser	Ser 495	Leu
Ala	Val	Pro	Gly 500	Lys	Ile	Asn	Met	Ser 505	Сув	Ser	Gly	Glu	Pro 510	Val	Phe
Gly	Thr	Val 515	Сув	Lys	Phe	Ala	Cys 520	Pro	Glu	Gly	Trp	Thr 525	Leu	Asn	Gly
Ser	Ala 530	Ala	Arg	Thr	Cys	Gly 535	Ala	Thr	Gly	His	Trp 540	Ser	Gly	Leu	Leu
Pro 545	Thr	Сув	Glu	Ala	Pro 550	Thr	Glu	Ser	Asn	Ile 555	Pro	Leu	Val	Ala	Gly 560

Leu	Ser	Ala	Ala	Gl y 565	Leu	Ser	Leu	Leu	Thr 570	Leu	Ala	Pro	Phe	Leu 575	Leu	
Trp	Leu	Arg	Lys 580	Cys	Leu	Arg	Lys	Ala 585	Lys	Lys	Phe	Val	Pro 590	Ala	Ser	
ser	Сув	Gln 595	Ser	Leu	Glu	Ser	Asp 600	Gly	Ser	Tyr	Gln	Lу в 605	Pro	Ser	Tyr	
Ile	Leu 610															
<211 <212 <213 <220 <221 <222	l> LE 2> TY 3> OE 3> FE 1> NA 2> LO 3> OT	ENGTH PE: RGANI EATUR ME/R CATI	SM: RE: REY: ON: INFO	Homo CDS (406)RMAT)	(142 Nuc	leot		sequ ypept					ıcled	otide b	pinding
<400)> SE	QUE	ICE:	37												
ccad	aata	agg q	gcag	jacct	g to	cato	ctto	e tet	gtgg	ggte	ccct	gta	ect t	tete	eccca	60
acaç	ggato	eag a	10008	ıgagç	ge ag	jetge	gttgg	g ggt	ttgt	cga	gaaq	gaag	gat t	tated	cagato	120
agto	ccttt	ct a	aatct	cago	t co	tgc	etgta	a cco	etece	ata	ctca	accaa	aac c	ectet	tecce	180
acca	accet	ga q	getga	aggaq	je ac	agtt	tgaç	g geo	eccc	caa	ccc	ceego	eeg q	gtegg	jggcca	240
ggc	caggo	cca ș	ggcca	ageto	e to	tggo	cagca	a gaç	geete	ggg	aggt	gac	ggg d	aggg	geggg	300
cgto	gcag	jet q	gaggg	gagte	a gg	aggo	etcco	age	gaaco	gga	gct	ggaa	acc o	ggc	gaggt	360
ccaq	jedag	jag (ccaa	agago	ec ag	jagto	jacco	e ete	egaco	tgt	cago	M∈			ag atg Lu Met	417
									ctc Leu							465
									ctg Leu 30							513
									cgg A rg							561
									cac His							609
									aaq L y s							657
									cca Pro							705
									aac Asn 110							753
									ctc Leu							801
									cac His							849

135 140 145	
tgo ogo tto otg gat gac aac aat att gtg acc ago tog ggg gac acc Cys Arg Phe Leu Asp Asp Asn Asn Ile Val Thr Ser Ser Gly Asp Thr 150 155 160	897
acg tgt gcc ttg tgg gac att gag act ggg cag cag aag act gta ttt Thr Cys Ala Leu Trp Asp Ile Glu Thr Gly Gln Gln Lys Thr Val Phe 165 170 175 180	945
gtg gga cac acg ggt gac tgc atg agc ctg gct gtg tct cct gac ttc Val Gly His Thr Gly Asp Cys Met Ser Leu Ala Val Ser Pro Asp Phe 185 190 195	993
aat ctc ttc att tcg ggg gcc tgt gat gcc agt gcc aag ctc tgg gat Asn Leu Phe Ile Ser Gly Ala Cys Asp Ala Ser Ala Lys Leu Trp Asp 200 205 210	1041
gtg cga gag ggg acc tgc cgt cag act ttc act ggc cac gag tcg gac Val Arg Glu Gly Thr Cys Arg Gln Thr Phe Thr Gly His Glu Ser Asp 215 220 225	1089
atc aac gcc atc tgt ttc ttc ccc aat gga gag gcc atc tgc acg ggc Ile Asn Ala Ile Cys Phe Phe Pro Asn Gly Glu Ala Ile Cys Thr Gly 230 235 240	1137
tog gat gac gct toc tgc cgc ttg ttt gac ctg cgg gca gac cag gag Ser Asp Asp Ala Ser Cys Arg Leu Phe Asp Leu Arg Ala Asp Gln Glu 245 250 255 260	1185
ctg atc tgc ttc tcc cac gag agc atc atc tgc ggc atc acg tcc gtg Leu Ile Cys Phe Ser His Glu Ser Ile Ile Cys Gly Ile Thr Ser Val 265 270 275	1233
gcc ttc tcc ctc agt ggc cgc cta cta ttc gct ggc tac gac gtc ttc Ala Phe Ser Leu Ser Gly Arg Leu Leu Phe Ala Gly Tyr Asp Asp Phe 280 285 290	1281
aac tgc aat gtc tgg gac tcc atg aag tct gag cgt gtg ggc atc ctc Asn Cys Asn Val Trp Asp Ser Met Lys Ser Glu Arg Val Gly Ile Leu 295 300 305	1329
tct ggc cac gat aac agg gtg agc tgc ctg gga gtc aca gct gac ggg Ser Gly His Asp Asn Arg Val Ser Cys Leu Gly Val Thr Ala Asp Gly 310 315 320	1377
atg gct gtg gcc aca ggt tcc tgg gac agc ttc ctc aaa atc tgg aac Met Ala Val Ala Thr Gly Ser Trp Asp Ser Phe Leu Lys Ile Trp Asn 325 330 335 340	1425
tga ggaggetgga gaaagggaag tggaaggeag tgaacacaet cageageeee	1478
ctgcccgacc ccatctcatt caggtgttct cttctatatt ccgggtgcca ttcccactaa	1538
gctttctcct ttgagggcag tggggagcat gggactgtgc ctttgggagg cagcatcagg	1598
gacacagggg caaagaactg ccccatctcc teccatggee tteceteece acagteetea	1658
cagcetetee ettaatgage aaggacaace tgeceeteee cageeetttg caggeecage	1718
agacttgagt ctgaggcccc aggccctagg attcctcccc cagagccact acctttgtcc	1778
aggcctgggt ggtatagggc gtttggccct gtgactatgg ctctggcacc actagggtcc	1838
tggccctett ettatteatg ettteteett tttetacett tttttetete etaagacace tgcaataaag tgtagcacec tggt	1898 1922
ogounounus ogougouooo oggo	

<210> SEQ ID NO 38 <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Homo sapien

<400> SEQUENCE: 38

Met Gly Glu Met Glu Gln Leu Arg Gln Glu Ala Glu Gln Leu Lys Lys Gln Ile Ala Asp Ala Arg Lys Ala Cys Ala Asp Val Thr Leu Ala Glu 20 25 30Leu Val Ser Gly Leu Glu Val Val Gly Arg Val Gln Met Arg Thr Arg 35 40 45 Arg Thr Leu Arg Gly His Leu Ala Lys Ile Tyr Ala Met His Trp Ala 50 55 60Thr Asp Ser Lys Leu Leu Val Ser Ala Ser Gln Asp Gly Lys Leu Ile 65 70 75 80 Val Trp Asp Ser Tyr Thr Thr Asn Lys Val His Ala Ile Pro Leu Arg 85 90 95 Ser Ser Trp Val Met Thr Cys Ala Tyr Ala Pro Ser Gly Asn Phe Val 100 105 110Ala Cys Gly Gly Leu Asp Asn Met Cys Ser Ile Tyr Asn Leu Lys Ser 115 120 125 Arg Glu Gly Asn Val Lys Val Ser Arg Glu Leu Ser Ala His Thr Gly 130 135 140 Tyr Leu Ser Cys Cys Arg Phe Leu Asp Asp Asn Asn Ile Val Thr Ser 145 150 155 160 Ser Gly Asp Thr Thr Cys Ala Leu Trp Asp Ile Glu Thr Gly Gln Gln Lys Thr Val Phe Val Gly His Thr Gly Asp Cys Met Ser Leu Ala Val 180 185 190 Ser Pro Asp Phe Asn Leu Phe Ile Ser Gly Ala Cys Asp Ala Ser Ala 195 200 205 Lys Leu Trp Asp Val Arg Glu Gly Thr Cys Arg Gln Thr Phe Thr Gly 210 215 220 His Glu Ser Asp Ile Asn Ala Ile Cys Phe Phe Pro Asn Gly Glu Ala 225 230 235 240 Ile Cys Thr Gly Ser Asp Asp Ala Ser Cys Arg Leu Phe Asp Leu Arg 245 250 255Ala Asp Gln Glu Leu Ile Cys Phe Ser His Glu Ser Ile Ile Cys Gly 260 265 270Ile Thr Ser Val Ala Phe Ser Leu Ser Gly Arg Leu Leu Phe Ala Gly 275 280 285Tyr Asp Asp Phe Asn Cys Asn Val Trp Asp Ser Met Lys Ser Glu Arg 290 295 300Val Gly Ile Leu Ser Gly His Asp Asn Arg Val Ser Cys Leu Gly Val 305 310 315 320 Thr Ala Asp Gly Met Ala Val Ala Thr Gly Ser Trp Asp Ser Phe Leu 325 330 335 Lys Ile Trp Asn <210> SEQ ID NO 39 <211> LENGTH: 2443 <212> TYPE: DNA <213> ORGANISM: Homo sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (162)...(1253)
<223> OTHER INFORMATION: Nucleotide sequence encoding angiotensin receptor 2 (AGTR2)

<400> SEQUENCE: 39	
acgtcccagc gtctgagaga acgagtaagc aagaattcaa agcattctgc agcctgaatt	60
ttgaaggagt gtgtttaggc actaagcaag ctgatttatg ataactgctt taaacttcaa	120
caaccaaagg cataagaact aggagctgct gacatttcaa t atg aag ggc aac tcc Met Lys Gly Asn Ser 1 5	176
acc ctt gcc act act agc aaa aac att acc agc ggt ctt cac ttc ggg Thr Leu Ala Thr Thr Ser Lys Asn Ile Thr Ser Gly Leu His Phe Gly 10 15 20	224
ctt gtg aac atc tct ggc aac aat gag tct acc ttg aac tgt tca cag Leu Val Asn Ile Ser Gly Asn Asn Glu Ser Thr Leu Asn Cys Ser Gln 25 30 35	272
aaa cca tca gat aag cat tta gat gca att cct att ctt tac tac att Lys Pro Ser Asp Lys His Leu Asp Ala Ile Pro Ile Leu Tyr Tyr Ile 40 45 50	320
ata ttt gta att gga ttt ctg gtc aat att gtc gtg gtt aca ctg ttt Ile Phe Val Ile Gly Phe Leu Val Asn Ile Val Val Val Thr Leu Phe 55 60 65	368
tgt tgt caa aag ggt cct aaa aag gtt tct agc ata tac atc ttc aac Cys Cys Gln Lys Gly Pro Lys Lys Val Ser Ser Ile Tyr Ile Phe Asn 70 75 80 85	416
ctc gct gtg gct gat tta ctc ctt ttg gct act ctt cct cta tgg gca Leu Ala Val Ala Asp Leu Leu Leu Ala Thr Leu Pro Leu Trp Ala 90 95 100	464
ace tat tat tet tat aga tat gae tgg ete ttt gga eet gtg atg tge Thr Tyr Tyr Ser Tyr Arg Tyr Asp Trp Leu Phe Gly Pro Val Met Cys 105 110 115	512
aaa gtt ttt ggt tct ttt ctt acc ctg aac atg ttt gca agc att ttt Lys Val Phe Gly Ser Phe Leu Thr Leu Asn Met Phe Ala Ser Ile Phe 120 125 130	560
ttt atc acc tgc atg agt gtt gat agg tac caa tct gtc atc tac ccc Phe Ile Thr Cys Met Ser Val Asp Arg Tyr Gln Ser Val Ile Tyr Pro 135 140 145	608
ttt ctg tct caa aga aga aat ccc tgg caa gca tct tat ata gtt ccc Phe Leu Ser Gln Arg Arg Asn Pro Trp Gln Ala Ser Tyr Ile Val Pro 150 165	656
ctt gtt tgg tgt atg gcc tgt ttg tcc tca ttg cca aca ttt tat ttt Leu Val Trp Cys Met Ala Cys Leu Ser Ser Leu Pro Thr Phe Tyr Phe 170 175 180	704
cga gac gtc aga acc att gaa tac tta gga gtg aat gct tgc att atg Arg Asp Val Arg Thr Ile Glu Tyr Leu Gly Val Asn Ala Cys Ile Met 185 190 195	752
get tte eea eet gag aaa tat gee eaa tgg tea get ggg att gee tta Ala Phe Pro Pro Glu Lys Tyr Ala Gln Trp Ser Ala Gly Ile Ala Leu 200 205 210	800
atg aaa aat atc ott ggt ttt att atc oot tta ata tto ata gca aca Met Lys Asn Ile Leu Gly Phe Ile Ile Pro Leu Ile Phe Ile Ala Thr 215 220 225	848
tgc tat ttt gga att aga aaa cac tta ctg aag acg aat agc tat ggg Cys Tyr Phe Gly Ile Arg Lys His Leu Leu Lys Thr Asn Ser Tyr Gly 230 235 240 245	896
aag aac agg ata acc cgt gac caa gtc ctg aag atg gca gct gct gtt Lys Asn Arg Ile Thr Arg Asp Gln Val Leu Lys Met Ala Ala Ala Val 250 255 260	944
gtt ctg gcc ttc atc att tgg tgc ctt ccc ttc cat gtt ctg acc ttc	992

gg gast got otg got tgg ggt ggt gtc att aat agt tgg gaa gtt ata su Aap Ala Leu Ala Trp Met Cly Val Ile Aan Ser Cys Glu Vel Ile 280 280 280 280 280 280 280 280 280 280		
ma App Ale Lou Ala Trp Net Giy Val Ilo Ann Ser cys Giu Val Ilo 280 285 286 287 287 288 288 288 288 288 288 288 288	7al Leu Ala Phe Ile Ile Trp Cys Leu Pro Phe His Val Leu Thr Phe 265 270 275	
280 285 290 286 287 280 288 280 28 agte att gac ctg gac att cet ttt gac atc ctc ttg gga ttc acc ctc ttg gga ttc acc ctc ttg gga ttc acc ctc ttg gga ttc acc ctc ttg gga ttc acc ctc ttg gga ttc acc ctc ttg gga ttc acc ctc ttg gga ttc ctg atc gtc ttc gga ttc ctg ttt gtt gga acc cgg ttc cin Ser Cys Val Ann Pro Phe Leu Tyr Cys Phe Val Gly Ann Arg Phe cin Ser Cys Val Ann Pro Phe Leu Tyr Cys Phe Val Gly Ann Arg Phe cin Ser Cys Val Ann Pro Phe Leu Tyr Cys Phe Val Gly Ann Arg Phe cin Ser Cys Val Ann Pro Phe Leu Tyr Cys Phe Val Gly Ann Arg Phe cin Gli Lys Leu Arg Ser Val Phe Arg Val Pro Ile Thr Trp Leu Gli cin cin Gli Lys Leu Arg Ger Val Phe Arg Val Pro Ile Thr Trp Leu Gli cin cin Gli Lys Leu Arg Glu cy Tyr Arg Glu der Met Ser Cys So Arg Lys Ser Ser Ser Leu Arg Glu cy Lys Arg Glu cy Cys Arg Lys Ser Ser Ser Ser Lau Arg Glu cy Lys Arg Glu cy Cys Arg Lys Ser Ser Ser Ser Lau Arg Glu cy Lys Cys Cys Cys Cys Cys Cys Cys Cys Cys C	etg gat get etg gee tgg atg ggt gte att aat age tge gaa gtt ata	1040
A Val Ile Äsp Leu Äla Leu Pro Phe Äla Ile Leu Leu Öily Phe Thr 295 300 300 300 300 300 300 300 300 300 30		
to agot tyo git aat cog tit cit tat tit tit tit tit tit tit tit tit t	gea gtc att gac ctg gca ctt cct ttt gcc atc ctc ttg gga ttc acc	1088
and Ser Cys Val Am Pro Phe Leu Tyr Cys Phe Val Gly Am Arg Phe 313 325 325 326 326 327 327 328 328 328 328 328 328 328 328 328 328		
as cag and ctc ogo agt gdg ttt agg gtt coa att act tot caa as agg agg agt cog agt gdg ttt agg gtt coa att act tot caa as agg agg agt atg tct tag cog aaa agc agt tct ctt aga gaa gg agt atg tct tag cog aaa agc agt tct ctt aga gaa gg agt atg tct tag cog aaa agc agt tct ctt aga gaa gag agt atg tct tag cog aaa agc agt tct ctt aga gaa gag agt atg tct tag aggagac asatgcatgt astcaacatg 1283 and could be seen of the boundary of the bou	ac ago tgo gtt aat cog ttt ctg tat tgt ttt gtt gga aac cgg tto	1136
in Gln Lyś Leu Arg ser Val Phe Arg Val Pro Ile Thr Trp Leu Gln 330 Ig aaa aga gag agt atg tot tgc cgg aaa agc agt tot cut aga gaa Ig aaa aga gag agt atg tot tgc cgg aaa agc agt tot cut aga gaa Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca aaatgcatgt aatcaacatg Ig gag acc ttt ggt tot taa acggagagca acaaggatga tttaacaacatg Ig gag acc ttt ggt tot gag tttaacaa acaatgtaa ctaatgttaa cgtccatgt gtgacacata Ig gagaacat gggaatcaga tttotototga accaagaaca gtctttcaac tcattgcatc Ig gagaacat gagaaggat gacactctaa gttgagtata ttaaataaca 1823 Ig gagaacat tttaacaggat ttcotcttga accaagaaca gtctttcaac tcattgcatc Ig gagaacatg attaatcaag ctttaaggaat atgcttctt aaaacacgata taaattataa Ig gagaacat attaacaag gtgagaggtt ataagttaat taaacacaca tattgaata Ig gagaacat tttcacttga gtgagaggtt atagttaatc tataacacaca tattgaata Ig gaagaacat ttttaaaaa accttcaaca tattaataa ttggtgttc accaaaacaca Ig gaagaacat tttttaaaaa accttcaaca cattgtaat gttgtaaaaat gaattgaa Ig gaagaacat tttttaaaaa accttcaaca cattgtaat gttgtaaaaat gaattgaa Ig gaagaacat ttttaaaaa accttcaacaca gaatagaaa acctggaaaa acctggagaaa acctggagaaaaaaa Ig gaagaacat ttgtaaaaaaaaaaaaaaaaaaaaaaaa		
gg aaa aga gag agt atg tot tge egg aaa age agt tot oft aga gaa aga gag agt atg tot tot aga gaa gas agt aga gag agt atg tot tge egg aaa age agt tot oft aga gaa gas agt aga gag age of the gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc tot gag gag acc acagaattat tottaagtg tottaataaa ataataaaat 1343 tottooggaa tottooggaa tottooggaa coagaattat tottaagtg tottaataaa ataataaaat 1343 tottooggaa tgocoattgt tottooggaa coagaattat gattgtacaa gatttoottg gagagaata 1463 tottooggaa tgocoattgt tottooggaa gattaat gattgtacaa gatttoottg gagagaata 1523 tottooggaa tottoogg	eaa cag aag ete ege agt gtg ttt agg gtt eea att aet tgg ete eaa	1184
Ay Lye Arg Glu Ser Met Ser Cye Arg Lye Ser Ser Leu Arg Glu 345 355 355 355 355 355 355 355 355 355		
ag gag acc ttt gig tct taa acggagagca aaatgcatgt aatcaacatg st Glu Thr Phe Val Ser * 360 stacttgot ttgaggotca ccagaattat ttttaagtgg ttttaataaa ataataaaat 1343 stoccetaat cttttctgaa tcttctqaaa ccaaatgtaa ctatgtttat cgtccagtga 1403 stacaacct agaagtaact ggtgatatat ctcaaattgt aattaataat agattggaa 1523 statgatttg gggattcaga tttctcttg aaacatgct gtgtttctta gtgggggttt 1583 statcaattt ttatcaggat ttcctcttg aaacatgctt gtgtttctta gtgggggttt 1583 statcaattt ttatcaggat ttcctcttga accagaacca gtctttcaac tcattgcatc 1643 stacaaac caacattgta agagagatga gcacttctaa gttgggtata ttataataag 1703 sagtactgg attattcagg ctttaggaat atgcttcttt aaaaacgcta taaattata 1763 sagtactgg attattcagg ctttaggaat atgcttcttt aaaaacgcta taaattata 1763 sagtactgg attattcagg ctttaggagtt atagttaatc tataactaca tattgaatag 1823 sattagaact ttttaacaa tcatactcct atgctttagc ttattttac agttatagaa 1883 spaagaat atagattaaa tcatactcct atgctttagt ttattttac agttatagaa 1883 spaagaat atagattaaa accttctact cattttaatg attgtttaaa ggtttctatt 2003 satttcacaa ccttgaat tttagatgtgc tgcttgtat gttgtaaaat gtaaaggtca 2063 satttcacac ccttgacttt ttagatgtgc tgctttgata tataggacat tgatttgatt	ggg aaa aga gag agt atg tot tgo ogg aaa ago agt tot ott aga gaa	1232
state of the Thr. Phe Val Ser * 360 statestiget tigaggetea coagaattat tittaagigg tittaataaa ataataaaat 1343 statestiget tigaggetea coagaattat tittaagigg tittaataaa ataataaaat 1343 stateaggaa tigecoattig tittetgatat gittigaaaa gatticatig gigagaaata 1463 stateagaaa tigecoattig tittetgatat gittigaaaa gatticatig gigagaaata 1463 stateaaact agaagtaact gigigatatat eteaaatigt aattaataat agattigaaa 1523 stateattig giggatteaga tittetettig aaacatgett gigittetta gigggitti 1583 stateaatti titateaggat titeetettig aecaagaaca gietitteaac teatigeate 1643 stateaaga caacatigta agaagagatga geaetictaa gitigagtata titataataga 1703 sagtactiga attateagg etitaggeat atgetietti aaaaaacgeta taaattaata 1763 setetitgea titteactiga giggaggitti atagitaate tataactaca tattigaatag 1823 setetitgea tittaaaaa teatacteet atgetitage titatittaa agitatagaa 1883 setetitgaa ataagattaaa teatacteet atgetitage titatittaa agitatagaa 1883 setetitgaa etittaaaaa actitetaac eatittaata titgigtigtic actaaaactet 1943 setetitgaa etittiaaaaa actitetaac eatitiaata gittigaaaat gitaaaggetea 2063 setetitgaa etittitaaa atgetitigaa ateagaaaa actigigatat titgigaaaa titgittaaa gittigati 2123 setetitaac titgiaataaa eeettaactig geataggaaa tiggiatooag aatggaatti 2243 setetitaac titgiaataaa eeettaactig geataggaaa tiggiatooag aatggaatti 2243 setetitaac titgiaataaa eeettaactig geataggaaa tiggiatooag aatggaatti 2243 setetitaac titgiaataaa eeettaactig geataggaaa tiggiatooag gataggaatti 2243 setetitaac titgiaataaa eeettaactig geataggaaa tiggiatooag gataggaatti 2243 setetitaac titgiaataaa eeettaactig geataggaaa titgiateeaag 2303 setetitaac titgiaataaa teaaatgga ettitgaaaat ataaccitg giggiagtitt 2363 setetitaat totataaacac tittitittoo agaatetigta tigattetatig giggiagtittit 2423		
stacttgot ttgaggotoa ccagaattat ttttaagtgg ttttaataaa ataataaaat 1343 cccctaat ctttetgaa tettetgaaa ccaaatgtaa ctatgtttat cgtecagtga 1403 cttcaggaa tgcccattgt tttetgatat gtttgtacaa gattteattg gtgagacata 1463 ctacaacct agaagtaact ggtgatatat etcaaattgt aattaataat agattgtgaa 1523 cattgattg gggatteaga ttteetettg aaacatget gtgttetta gtggggttt 1583 cattcattt ttatcaggat tteetettga accagaacca gtettecaac teattgeate 1643 ctacaacct agaagtagat geacattgta agaggatga geacttetaa gttgagtata ttataataga 1703 cattacaaga caacattgta agaggatga geacttetaa gttgagtata ttataataga 1763 cattettgaa attattcagg etttaggeat atgettettt aaaaacgeta taaattatat 1763 cottettgaa ttteacttga gtggaggttt atagttaate tataactaca tattgaatag 1823 cottettgaa attagattaaa teatacteet atgetttage ttatttttac agttatagaa 1883 caagaatgt actataacat agaattgeaa tetataatat ttggtgtte actaaactet 1943 cattaagac tttttaaaaa actttetac cattttaatg attgtttaaa ggtttetatt 2003 cottetgaa etttttaaa atcagtaaac actgtgtatt gttgtaaaat gtaaaggeta 2063 cottetgaa etttttaaa atcagtage tgetttgata tataggacat tgatttgat 2123 cottetgaa etttttaaa accettaactg geataggaaa tggtaccaag aatggaattt 2243 cottetgaa ettgaataaa cocttaactg geataggaaa tggtaccaag aatggaattt 2243 cottetgaa ggtettgggtg ggggcaaaga gaccagtea attacatgtt tggtaccaag 2303 cottetgaa ettgaataac etttttaact geatagaaa tggtaccaag ggggtagttt 2363 cottetgaa tetataacaa tggttggtg ettegaaaat atatacogtg ggggtagttt 2363 cottetgaa tetataacaa tgtttgttee agaatetgta tggtaccaag ggggtagttt 2363 cottetgaa ettataacaa tgtttgttee agaatetgta tgattetatg gaggtagttt 2363 cottetgaa ettataacaa tgtttgttee agaatetgta tgattetatg gaggtagtttt 2423	utg gag acc ttt gtg tct taa acggagagca aaatgcatgt aatcaacatg Met Glu Thr Phe Val Ser *	1283
tricogram tettetegam tettetegam communication communicatio		
tttcaggaa tgcccattgt tttctgatat gtttgtacaa gatttcattg gtgagacata 1463 ttacaacct agaagtaact ggtgatatat ctcaaattgt aattaataat agattgtgaa 1523 tatgatttg gggattcaga tttctctttg aaacatgctt gtgtttctta gtgggggtttt 1583 tatccattt ttatcaggat ttcctcttga accagaacca gtctttcaac tcattgcatc 1643 tttacaaga caacattgta agagagatga gcacttctaa gttgagtata ttataataga 1703 tagtactgg attattcagg ctttaggcat atgcttcttt aaaaacgcta taaattatat 1763 tatgatactgg attattcagg ctttaggcat atgcttcttt aaaaacgcta taaattatat 1763 tatgatactgg attattcagg gtggaggttt atagttaatc tataactaca tattgaatag 1823 tatgagaat atagattaaa tcatactcct atgctttagc ttattttac agttatagaa 1883 tataagcac tttttaaaaa actttctact cattttaatg attgtttaaa ggtttctatt 2003 tattagata ctttttgaa atcagtaaac actgtgtatt gttgtaaaat gtaaaggtca 2063 tattcacat ccttgacttt ttagatgtgc tgctttgata tataggacat tgatttgatt	ctacttgct ttgaggctca ccagaattat ttttaagtgg ttttaataaa ataataaaat	1343
tacaacct agaagtaact ggtgatatat ctcaaattgt aattaataat agattgtgaa 1523 tatgatttg gggattcaga tttctctttg aaacatgctt gtgtttctta gtggggttt 1583 tatcattt ttatcaggat ttcctcttga accagaacca gtctttcaac tcattgcatc 1643 tatacaaga caacattgta agagagatga gcacttctaa gttgagtata ttataataga 1703 tagtactgg attattcagg ctttaggcat atgcttcttt aaaacacgcta taaattatat 1763 tectcttgca tttcacttga gtggaggttt atagttaatc tataactaca tattgaatag 1823 tectaggaat atagattaaa tcatactcct atgctttagc ttatttttac agttatagaa 1883 tectaggaat atagattaaa accttctact cattttaatg attgttgata actaaactct 1943 tataaagcac tttttaaaaa actttctact cattttaatg attgtttaaa ggtttctatt 2003 tectctgata cttttttgaa atcagtaaac actgtgtatt gttgtaaaat gtaaaggtca 2063 tetttcacat cettgacttt ttagatgtgc tgctttgata tataggacat tgatttgatt	teccetaat ettttetgaa tettetgaaa eeaaatgtaa etatgtttat egteeagtga	1403
Latgattq gggattcaga tttctctttq aaacatgett qtgtttctta gtggggtttt 1583 Latccattt ttatcaggat ttcctcttga accagaacca gtctttcaac tcattgcatc 1643 Litacaaga caacattgta agagagatga gcacttctaa gttgagtata ttataataga 1703 Lagtactgg attattcagg ctttaggcat atgettettt aaaaacgcta taaattatat 1763 Loctcttgca tttcacttga gtggaggttt atagttaatc tataactaca tattgaatag 1823 Loctaggaat atagattaaa tcatactcct atgetttagc ttattttac agttatagaa 1883 Locaagaatgt actataacat agaattgcaa tctataatat ttggtgttc actaaactct 1943 Lataagcac tttttaaaaa acttctact cattttaatg attgttaaa ggttctatt 2003 Loctctgata ctttttgaa atcagtaaac actgtgtatt gttgtaaaat gtaaaggtca 2063 Loctctgata ctttttgaa atcagtagca tcctatgata tataggacat tgatttgatt	tttcaggaa tgcccattgt tttctgatat gtttgtacaa gatttcattg gtgagacata	1463
catcoattt ttatoaggat ttootottga accagaacca gtotttoaac toattgoato 1643 cittacaaga caacattgta agagagatga gcacttotaa gttgagtata ttataataga 1703 cagtactgg attattoagg ctttaggcat atgottottt aaaaacagcta taaattatat 1763 cotottgoa tttoacttga gtggaggttt atagttaato tataactaca tattgaatag 1823 cotaggaat atagattaaa toatactcot atgotttago ttattttac agttatagaa 1883 coaagatgt actataacat agaattgoaa totataatat ttgtgtgtto actaacactot 1943 cataagcac tttttaaaaa actttotact cattttaatg attgtttaaa ggttotatt 2003 cototgata cotttttgaa atcagtaaac actgtgtatt gttgtaaaat gtaaaggtoa 2063 cototgata cotttgactt ttagatgtgo tgctttgata tataggacat tgatttgatt 2123 cotattata atgotttggt totgggtgt ttootaaaat atctgggtgg cottaaaaaaa 2183 cotottaac totgacttt ttagatgtgo tgcataggaaa tggtatocag aatggaattt 2243 cotataatg ggtotgggtg ggggcaaaga gaccoagtoa attacatgtt tggtaccaag 2303 caaggaacot gtcagggoag tacaatgtga cottgaaaat atatacogtg ggggtagttt 2363 cocotatat ctataaacac tgtttgttoc agaatotgta tgattotatg gagctatttt	ttacaacct agaagtaact ggtgatatat ctcaaattgt aattaataat agattgtgaa	
agtactgg attattcagg ctttaggcat atgettett aaaaacgeta taaattatat 1763 cetettgea ttteactiga gtggaggttt atagttaate tataactaca tattgaatag 1823 getaggaat atagattaaa teatacteet atgetttage ttattttae agttatagaa 1883 geaagatgt actataacat agaattgeaa teetataatat ttgtgtgtte actaaacteet 1943 cetettgata ettttaaaaa actttetaet eatttaatg attgttaaa ggtttetatt 2003 cetettgata etttttaaaaa actttetaet eattttaatg attgttaaa ggtttetatt 2003 cetettgata etttttgaa ateagtaaac actgtgtatt gttgtaaaat gtaaaggtea 2063 cetettgata eettgattt ttagatgtge tgetttgata tataggacat tgatttgatt 2123 cetattatta atgetttggt teetgggttg tteetaaaaa actgggggg ettaaaaaaa 2183 cetettaac tegtaataaa eeettaactg geataggaaa tggtateeag aatggaattt 2243 cetacatgg ggtetgggtg ggggeaaaga gacceagtea attacatgtt tggtaceaag 2303 caaggaacet gteagggeag tacaatgtga etttgaaaat atatacegtg ggggtagttt 2363 cecetatat etataaacac tgtttgttee agaatetgta tgattetatg gagetatttt 2423	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
cagtactgg attattcagg cittaggcat atgcitcitt aaaaacgcta taaattatat 1763 cotottgca titcactiga giggaggitt atagtiaatc tataactaca tatigaatag 1823 gctaggaat atagattaaa tcatactcct atgcittagc tiatititac agitatagaa 1883 gcaagatgi actataacat agaattgcaa totataatat tigiggitic actaaactci 1943 cataagcac tittaaaaaa actitciact cattitaatg atigittaaa ggittciatt 2003 cototigata cittitigaa atcagtaaac actgigtati gitigaaaat gaaaaggica 2063 citticacat cottgactit tiagatgigc tgcittigata tataggacat tgattigatt 2123 citatiatata atgcittiggi totiggitigi ticciaaaaat atcigggigg citaaaaaaaa 2183 citcittaac tigiaataaa cocitaactig gcataggaaa tggitaccag aatggaatti 2243 cotacatgg ggictiggig ggggcaaaga gacccagtca attacatgit tggiaccaag 2303 caggaacct gicagggoag tacaatgiga cittigaaaat atataccgig ggggtagitt 2363 cocctatat citataaacac tgittigitcc agaatcigta tgattciatig gagctattit		
potettigoa titicactiga giggaggitti atagitaato tataactaca tatigaatag 1823 potaggaat atagattaaa toatactoot atgottiago titattitao agitatagaa 1883 potaggaat actataacat agaattigoaa totataatat tigtigtigtio actaaactoot 1943 potaggaat tititaaaaa actitotact cattitaatig attigtitaaa gigtitotati 2003 potaggaat ottittigaa atoagtaaac actigtigtati gitigtaaaat gitaaaggica 2063 potatigata citittigaa atoagtaaac actigtigtati gitigtaaaat gitaaaggica 2063 potattitoacat cottigactit tiagatigio tigottigata tataggacat tigattigati 2123 potatatatia atgottiggi totiggitigi ticotaaaat atotiggitigi citaaaaaaa 2183 potattaac tigitaataaa coottaactig goataggaaa tigitatooag aatiggaatti 2243 potacatigi gigtotiggitig giggicaaaga gaccoagtoa attacatigit tigitaccaag 2303 potaggaacot gicaggicag tacaatigia cittigaaaat atataccigti giggigaattit 2363 potacatat otataaacac tigittigitoo agaatotigta tigattotatig gagotattiti 2423		
getaggaat atagattaaa teataeteet atgetttage ttattttae agttatagaa 1883 geaagatgt actataacat agaattgeaa tetataatat ttgtgtgtte actaaactet 1943 getaggaac tttttaaaaa actteetaet eatttaatg attgttaaa ggtteetatt 2003 getettgata etttttgaa ateagtaaac actgtgtatt gttgtaaaat gtaaaggtea 2063 getetteaet eettgaettt ttagatgtge tgetttgata tataggacat tgattegatt 2123 getattatta atgetttggt teetgggtgt tteetaaaat atetgggtgg ettaaaaaaa 2183 getettaac ttgtaataaa eeettaactg geataggaaa tggtateeag aatggaattt 2243 getacatgg ggtetgggtg ggggeaaaga gaeeeagtea attacatgt tggtaeeaag 2303 geaggaacet gteagggeag tacaatgtga eettgaaaat atataeegtg ggggtagttt 2363 geeetatat etataaacae tgtttgttee agaatetgta tgattetatg gagetatttt 2423		
graagatgt actataacat agaattgcaa totataatat ttgtgtgttc actaaactct 1943 lataagcac tttttaaaaa actttctact cattttaatg attgtttaaa ggtttctatt 2003 lectctgata cttttttgaa atcagtaaac actgtgtatt gttgtaaaat gtaaaggtca 2063 letttcacat cettgacttt ttagatgtge tgetttgata tataggacat tgatttgatt 2123 letattatta atgetttggt tetegggttgt tteetaaaat atetgggtgg ettaaaaaaa 2183 letetttaac ttgtaataaa eeettaactg geataggaaa tggtatecag aatggaattt 2243 letacatgg ggtetgggtg ggggcaaaga gacceagtca attacatgtt tggtaccaag 2303 laaggaacet gteagggcag tacaatgtga etttgaaaat atatacegtg ggggtagttt 2363 leectatat etataaacae tgtttgttee agaatetgta tgattetatg gagetatttt 2423		
tataagcac titttaaaaa actitctact catittaatg attgittaaa ggittctatt 2003 cetetgata cittittgaa atcagtaaac actgigtatt gitgiaaaat giaaaggica 2063 cetetgata cettgactit tiagatgige tgettigata tataggacat tgattigatt 2123 cetattatta atgeittiggi teegggitgi tieetaaaaa ateigggitgi eitaaaaaaa 2183 cetettaac tigiaataaa eeettaacig geataggaaa tggiaateeag aatggaatti 2243 cetacatgi ggiteiggitgi ggggeaaaga gaceeagtea attacatgit tigiaacaag 2303 caggaacet gicagggoog tacaatgiga ettigaaaat atatacegig ggggtagitt 2363 cecetatat etataaacae tgitigitee agaateigta tgattetatig gagetattit 2423		
actottgata ottttttgaa atoagtaaac actgtgtatt gttgtaaaat gtaaaggtca 2063 etttcacat oottgacttt ttagatgtgo tgotttgata tataggacat tgatttgatt 2123 etattatta atgotttggt tctgggttgt ttootaaaat atotgggtgg ottaaaaaaa 2183 etotttaac ttgtaataaa oocttaactg gcataggaaa tggtatocag aatggaattt 2243 gctacatgg ggtotgggtg ggggcaaaga gacccagtca attacatgtt tggtaccaag 2303 aaggaacct gtoagggcag tacaatgtga otttgaaaat atatacogtg ggggtagttt 2363 accctatat otataaacac tgtttgttoo agaatotgta tgattotatg gagotatttt 2423		
tetteacat cettgactit tiagatgige tgettigata tataggacat tgattigati 2123 tetattatta atgettiggi tetegggitgi tiecetaaaat atetgggitgi ettaaaaaaa 2183 stettiaac tigtaataaa eeettaacig geataggaaa tggtateeag aatggaatit 2243 getacatgg ggietiggitg ggggeaaaga gacceagica attacatgit tggtaceaag 2303 laggaacet gieagggeag tacaatgiga ettigaaaat atatacegig ggggtagitit 2363 lageetatat etataaacae tgittgitee agaatetgia tgattetatg gagetattit 2423		
ctattatta atgctttggt tctgggttgt ttcctaaaat atctgggtgg cttaaaaaaa 2183 ctctttaac ttgtaataaa cccttaactg gcataggaaa tggtatccag aatggaattt 2243 cctacatgg ggtctgggtg ggggcaaaga gacccagtca attacatgtt tggtaccaag 2303 caggaacct gtcagggcag tacaatgtga ctttgaaaat atataccgtg ggggtagttt 2363 ccctatat ctataaacac tgtttgttcc agaatctgta tgattctatg gagctatttt 2423		
protetttaac tigtaataaa cccttaactg gcataggaaa tggtatccag aatggaattt 2243 protacatgg ggtctgggtg ggggcaaaga gacccagtca attacatgtt tggtaccaag 2303 paggaacct gtcagggcag tacaatgtga ctttgaaaat atataccgtg ggggtagttt 2363 proceedatat ctataaacac tgtttgttcc agaatctgta tgattctatg gagctatttt 2423		
getacatgg ggtctgggtg ggggcaaaga gacccagtca attacatgtt tggtaccaag 2303 laggaacct gtcagggcag tacaatgtga etttgaaaat atataccgtg ggggtagttt 2363 lecctatat etataaacae tgtttgttee agaatetgta tgattetatg gagetatttt 2423		
naggaacct gtcagggcag tacaatgtga ctttgaaaat atataccgtg ggggtagttt 2363		
acctatat ctataaacac tgtttgttcc agaatctgta tgattctatg gagctatttt 2423	aaggaacet gtcagggcag tacaatgtga etttgaaaat atatacegtg ggggtagttt	
	accotatat ctataaacac tgtttgttcc agaatctgta tgattctatg gagctatttt	
	aaccaattg caggtotaga	2443

Met Lys Gly Asn Ser Thr Leu Ala Thr Thr Ser Lys Asn Ile Thr Ser

<210> SEQ ID NO 40 <211> LENGTH: 363 <212> TYPE: PRT <213> ORGANISM: Homo sapien

<400> SEQUENCE: 40

1				5					10					15	
Gly	Leu	His	Phe 20	Gly	Leu	Val	Asn	Ile 25	Ser	Gly	Asn	Asn	Glu 30	Ser	Thr
Leu	Asn	Сув 35	Ser	Gln	Lys	Pro	Ser 40	Asp	Lys	His	Leu	Asp 45	Ala	Ile	Pro
Ile	Leu 50	Tyr	Tyr	Ile	Ile	Phe 55	Val	Ile	Gly	Phe	Leu 60	Val	Asn	Ile	Val
Val 65	Val	Thr	Leu	Phe	С у з 70	Сув	Gln	Lys	Gly	Pro 75	Lys	Lys	Val	Ser	Ser 80
Ile	Tyr	Ile	Phe	Asn 85	Leu	Ala	Val	Ala	Asp 90	Leu	Leu	Leu	Leu	Ala 95	Thr
Leu	Pro	Leu	Trp 100	Ala	Thr	Tyr	Tyr	Ser 105	Tyr	Arg	Tyr	Asp	Trp 110	Leu	Phe
Gly	Pro	Val 115	Met	Сув	Lуs	Val	Phe 120	Gly	Ser	Phe	Leu	Thr 125	Leu	Asn	Met
Phe	Ala 130	Ser	Ile	Phe	Phe	Ile 135	Thr	Сув	Met	Ser	Val 140	Asp	Arg	Tyr	Gln
Ser 145	Val	Ile	Tyr	Pro	Phe 150	Leu	Ser	Gln	Arg	Arg 155	Asn	Pro	Trp	Gln	Ala 160
Ser	Tyr	Ile	Val	Pro 165	Leu	Val	Trp	Сув	Met 170	Ala	Cys	Leu	Ser	Ser 175	Leu
Pro	Thr	Phe	Tyr 180	Phe	Arg	Авр	Val	A rg 185	Thr	Ile	Glu	Tyr	Leu 190	Gly	Val
Asn	Ala	Сув 195	Ile	Met	Ala	Phe	Pro 200	Pro	Glu	Lys	Tyr	Ala 205	Gln	Trp	Ser
Ala	Gly 210	Ile	Ala	Leu	Met	Lys 215	Asn	Ile	Leu	Gly	Phe 220	Ile	Ile	Pro	Leu
Ile 225	Phe	Ile	Ala	Thr	C ys 230	Tyr	Phe	Gly	Ile	Arg 235	Lys	His	Leu	Leu	Lys 240
Thr	Asn	Ser	туг	Gly 245	Lys	Asn	Arg	Ile	Thr 250	Arg	Asp	Gln	Val	Leu 255	Lys
Met.	Ala	Ala	Ala 260	Val	Val	Leu	Ala	Phe 265	Ile	Ile	Trp	Сув	Leu 270	Pro	Phe
His	Val	Leu 275	Thr	Phe	Leu	Asp	Ala 280	Leu	Ala	Trp	Met	Gly 285	Val	Ile	Asn
Ser	C y s 290	Glu	Val	Ile	Ala	Val 295	Ile	Asp	Leu	Ala	Leu 300	Pro	Phe	Ala	Ile
Leu 305	Leu	Gly	Phe	Thr	Asn 310	Ser	Сув	Val	Asn	Pro 315	Phe	Leu	Tyr	Cys	Phe 320
Val	Gly	Asn	Arg	Phe 325	Gln	Gln	Lys	Leu	Arg 330	Ser	Val	Phe	Arg	Val 335	Pro
Ile	Thr	Trp	Leu 340	Gln	Gly	Lys	Arg	Glu 345	Ser	Met	Ser	Суз	Arg 350	Lys	Ser
Ser	Ser	Leu 355	Arg	Glu	Met	Glu	Thr 360	Phe	Val	Ser					

<210> SEQ ID NO 41
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

	-continued	
<400> SEQUENCE: 41		
actgcctgat aaccatgctg	20	
<210> SEQ ID NO 42 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 42		
atacttacac accaggaggg	20	
<210> SEQ ID NO 43 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 43		
atgcctgctc caaaggcac	19	
<210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 44		
atgcctgctc caaaggcacc	20	
<210> SEQ ID NO 45 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 45	21	
atgeetgete caaaggeaca t	21	
<210> SEQ ID NO 46 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 46		
tacttctggt tctctgagcg	20	
<210> SEQ ID NO 47 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 47		
actcaccttg aactcgtctc	20	

240 470 77 110 40	
<210> SEQ ID NO 48	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
CZZZZ OTIEK INTONIATION. ITEME	
444 GROVENGE 44	
<400> SEQUENCE: 48	
tggttctctg agcgagtctt	20
<210> SEQ ID NO 49	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
VEZO OTHER INTOMISTION. ITEMET	
-4005 SPOURNOR AD	
<400> SEQUENCE: 49	
	0.4
tggttctctg agcgagtctt c	21
<210> SEQ ID NO 50	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 50	
Light Digether to	
tggttctctg agcgagtctt tc	22
tygttetetg agegagtett te	22
<210> SEQ ID NO 51	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 51	
+ggaga+gga g+++ggg++g	20
tgcagatgga ctttggcttc	20
240 APA TR WA 50	
<210> SEQ ID NO 52	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 52	
	
tgcttgcctt ctgctacaag	20
- cyclegodd degoddau	
010 dro TD W0 50	
<210> SEQ ID NO 53	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 53	
cttccctgag cacctgctg	19
<210> SEQ ID NO 54	
<211> LENGTH: 21	
<211> LENGTH: 21 <212> TYPE: DNA	
NATAN TIPU. DNM	

<220>	ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Primer	
<400>	SEQUENCE: 54	
cttccc	etgag cacctgctgg t	21
	SEQ ID NO 55 LENGTH: 20	
	TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Primer	
<400>	SEQUENCE: 55	
cttccc	ctgag cacctgetga	20
CCCCC	ougay caccugotya	20
	SEQ ID NO 56	
	LENGTH: 20 TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Primer	
<400>	SEQUENCE: 56	
aacago	ctcag gacgaaactg	20
	SEQ ID NO 57	
	LENGTH: 20 TYPE: DNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Primer	
<400>	SEQUENCE: 57	
agaagg	gagtt gaccttgtcc	20
<210>	SEQ ID NO 58	
	LENGTH: 19	
	TYPE: DNA ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Primer	
<400>	SEQUENCE: 58	
ggaago	etcaa gtggccttc	19
<210>	SEQ ID NO 59	
	LENGTH: 20	
	TYPE: DNA ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Primer	
<400>	SEQUENCE: 59	
ggaage	ctcaa gtggccttcc	20
<210>	SEQ ID NO 60	
	LENGTH: 22	
	TYPE: DNA ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Primer	

<400> SEQUENCE: 60		
ggaagctcaa gtggccttca ac	22	
<210> SEQ ID NO 61 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 61		
aagtcactgg cagagctgg	19	
<pre><210> SEQ ID NO 62 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>		
<pre><400> SEQUENCE: 62 gcaccagggc tttgttgaag</pre>	20	
<210> SEQ ID NO 63 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 63 ttttccccgt agggeteca	19	
<210> SEQ ID NO 64 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 64		
ttttccccgt agggetccac	20	
<210> SEQ ID NO 65 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 65		
ttttccccgt agggctccag c	21	
<210> SEQ ID NO 66 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 66		
tgcagaagtc actggcagag	20	

23.05 CEO TO NO CE	
<210> SEQ ID NO 67	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 67	
gttgaagttt tccccgtagg	20
<210> SEO ID NO 68	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
7225 OTHER INTOMISTION, ITEMOT	
<400> SEQUENCE: 68	
STATE OF STA	
actectecac etgetggte	19
<210> SEQ ID NO 69	
<211> SEQ 1D NO 69 <211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 69	
	0.0
actcctccac ctgctggtcc	20
<210> SEQ ID NO 70	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 70	
actcctccac ctgctggtct a	21
<210> SEQ ID NO 71	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 71	
~	
aggacgtgcg tggcaacctg	20
<210> SEQ ID NO 72	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
ALLOS OTHER INFORMATION, FITHER	
<400> SEQUENCE: 72	
agetetgeea gtgaettetg	20
	==
<210> SEQ ID NO 73	
<211> LENGTH: 19	
<212> TYPE: DNA	

		Concinued	
<220>	ORGANISM: Artificial Sequence PEATURE: OTHER INFORMATION: Primer		
<400>	SEQUENCE: 73		
gtgact	totg cagococto	19	
<211> <212>	SEQ ID NO 74 LENGTH: 20 TYPE: DNA DRGANISM: Artitifical sequence		
<400>	SEQUENCE: 74		
gtgact	tctg cagecectca	20	
<211> <212> <213> <220>	SEQ ID NO 75 LENGTH: 22 TYPE: DNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Primer		
<400>	SEQUENCE: 75		
gtgact	tetg cagececteg gt	22	
<211> <212> <213> <220>	SEQ ID NO 76 LENGTH: 19 TYPE: DNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Primer		
<400>	SEQUENCE: 76		
cctgac	cttc cagatgaag	19	
<211> <212> <213> <220>	SEQ ID NO 77 LENGTH: 19 TYPE: DNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Primer		
<400>	SEQUENCE: 77		
tcaggt	tgcc acgcacgtc	19	
<211> <212> <213> <220>	SEQ ID NO 78 LENGTH: 18 TYPE: DNA DRGANISM: Artificial Sequence FEATURE: DTHER INFORMATION: Primer		
<400>	SEQUENCE: 78		
caggat	ctog gooagtgo	18	
<211><212><213><220><223>	SEQ ID NO 79 LENGTH: 19 TYPE: DNA DRGANISM: Artificial Sequence PEATURE: DTHER INFORMATION: Primer SEQUENCE: 79		

caggatctcg gccagtgcc	19
<210> SEQ ID NO 80 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 80	
caggateteg gecagtgetg	20
<210> SEQ ID NO 81 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 81	
acctgcgaga gcttcagcag	20
<210> SEQ ID NO 82 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 82	
tctccatgcg ctgtgcgtag	20
<210> SEQ ID NO 83 <211> LEMGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 83	
agetgegeae ceaggtea	18
<210> SEQ ID NO 84 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 84	
agotgogoao coaggtoaa	19
<210> SEQ ID NO 85 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 85	
agetgegeae ceaggteage	20
<210> SEQ ID NO 86	

<211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 86	
tgtccaagga gctgcaggc	19
<210> SEQ ID NO 87 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 87	
cttacgcagc ttgcgcaggt	20
<210> SEQ ID NO 88 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 88	
gcggacatgg aggacgtg	18
<pre><210> SEQ ID NO 89 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 89	
gcggacatgg aggacgtgc	19
<pre><210> SEQ ID NO 90 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 90	
gcggacatgg aggacgtgtg	20
<210> SEQ ID NO 91 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 91	
gttgtagaaa gaaccgctgc	20
<210> SEQ ID NO 92 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 92		
gagaacgagt cttcaggtac	20	
<pre><210> SEQ ID NO 93 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 93		
acaatctggg ctatgagatc a	21	
<210> SEQ ID NO 94 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 94		
acaatctggg ctatgagatc aa	22	
<pre><210> SEQ ID NO 95 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 95		
acaatctggg ctatgagatc agt	23	
<210> SEQ ID NO 96 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 96		
cactetacae tgeatgtete	20	
<210> SEQ ID NO 97 <211> LENGTH: 20 <212> TYFE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 97		
accettetga aaaggagagg	20	
<pre><210> SEQ ID NO 98 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 98</pre>		

gaggagagac aaggcagata	20
<210> SEQ ID NO 99 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 99	
gaggagagac aaggcagata t	21
<210> SEQ ID NO 100 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 100	
gaggagagac aaggcagata gt	22
<210> SEQ ID NO 101 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 101	
aaaggttcag ttgctgctgc	20
<210> SEQ ID NO 102 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 102	
gctggggaag gtctaataac	20
<210> SEQ ID NO 103 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 103	
gttgctgctg cctcgaatc	19
<210> SEQ ID NO 104 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 104	
gttgctgctg cctcgaatcc	20
<210> SEQ ID NO 105	

<pre><211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	
<pre><220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 105	
gttgctgctg cctcgaatct g	21
<210> SEQ ID NO 106	
<pre><211> LENGTH: 20 <212> TYPE: DNA</pre>	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 106	
cgtctttctc cagatgatgc	20
<210> SEQ ID NO 107 <211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 107	
agtgtcctat gggctgtttg	20
<210> SEQ ID NO 108 <211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 108	
ggatgccatt catacettta c	21
<210> SEQ ID NO 109	
<211> LENGTH: 22 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 109	
ggatgccatt cataccttta cc	22
<210> SEQ ID NO 110 <211> LENGTH: 23	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 110	
ggatgccatt cataccttta cgc	23
<210> SEQ ID NO 111	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

	-continued
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 111	
tgggaaaaca gtgcagtgtg	20
<210> SEQ ID NO 112 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 112	
tgatcgtctt cagaacgagg	20
<210> SEQ ID NO 113 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 113	
ccagaccatc atcatcccat gga	23
<210> SEQ ID NO 114 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 114	
ccagaccatc atcccatgga a	21
<210> SEQ ID NO 115 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 115	
ccagaccatc atcccatgga gc	22
<210> SEQ ID NO 116 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 116	
cagcaatcgt ctttctccag	20
<210> SEQ ID NO 117 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 117	

tectatggge tgtttgatge	20	
<210> SEQ ID NO 118 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 118		
gtetttetee agatgatgee a	21	
<210> SEQ ID NO 119 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 119		
gtotttotoc agatgatgoc aa	22	
<210> SEQ ID NO 120 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 120		
gtotttotoc agatgatgoc agt	23	
<210> SEQ ID NO 121 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 121		
agoggataac aatttcacac agg	23	
<210> SEQ ID NO 122 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 122		
ggcgcacgcc tccacg	16	

What is claimed:

1. A method for detecting the presence or absence in a subject of at least one allelic variant of a polymorphic region of a gene associated with cardiovascular disease, comprising:

the step of detecting the presence or absence of an allelic variant of a polymorphic region of a cytochrome C oxidase subunit VIb (COX6B) gene of the subject that is associated with high serum cholesterol or an allelic variant of a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene of the subject that is associated with low serum high density lipoprotein (HDL).

2. The method of claim 1, wherein the allelic variant is of a polymorphic region of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.

- 3. The method of claim 1, further comprising detecting the presence or absence in a subject of least one allelic variant of another gene associated with cardiovascular disease.
- 4. The method of claim 3, wherein the other gene is selected from the group consisting of cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- 5. The method of claim 2, wherein the polymorphic region is a single nucleotide polymorphism (SNP).
- 6. The method of claim 5, wherein the SNP is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene sequence and the allelic variant is represented by an A nucleotide in the sense strand or a T nucleotide in the corresponding position in the antisense strand.
- 7. The method of claim 1, wherein the detecting step is by a method selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation assay, restriction enzyme site analysis and single-stranded conformation polymorphism analysis.
 - 8. The method of claim 6, further comprising:
 - (a) hybridizing a target nucleic acid comprising a N-acetylglucosaminyl transferase component GPI-1 (GPI-1)-encoding nucleic acid or fragment thereof with a nucleic acid primer that hybridizes adjacent to nucleotide 2577 of the GPI-1 gene;
 - (b) extending the nucleic acid primer using the target nucleic acid as a template; and
 - (c) determining the mass of the extended primer to identify the nucleotide present at position 2577, thereby determining the presence or absence of the allelic variant.
- 9. The method of claim 1, wherein the detecting step comprises mass spectrometry.
- 10. The method of claim 1, wherein the detecting step utilizes a signal moiety selected from the group consisting of: radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent reagents and other light producing reagents.
- 11. The method of claim 8, wherein the nucleic acid primer is extended in the presence of at least one dideoxynucleotide.
- 12. The method of claim 11, wherein the dideoxynucleotide is dideoxyguanosine (ddG).
- 13. The method of claim 8, wherein the primer is extended in the presence of at least two dideoxynucleotides and the dideoxynucleotides are dideoxyguanosine (ddG) and dideoxycytosine (ddC).
- 14. A method for indicating a predisposition to cardiovascular disease in a subject, comprising:
 - the step of detecting in a target nucleic acid obtained from the subject the presence or absence of at least one allelic variant of polymorphic regions of a cytochrome C oxidase subunit VIb (COX6B) gene associated with high serum cholesterol or at least one allelic variant of

- polymorphic regions of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low serum HDL wherein the presence of an allelic variant is indicative of a predisposition to cardiovascular disease compared to a subject who does not comprise the allelic variant.
- 15. The method of claim 14, wherein the allelic variant is of a polymorphic region of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 16. The method of claim 15, wherein the polymorphic region is a single nucleotide polymorphism (SNP).
- 17. The method of claim 16, wherein the SNP is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene sequence and the allelic variant is represented by an Anucleotide in the sense strand or a T nucleotide in the corresponding position in the antisense strand.
- 18. The method of claim 14, wherein the detecting step is by a method selected from the group consisting of allele specific hybridization, primer specific extension, oligonucle-otide ligation assay, restriction enzyme site analysis and single-stranded conformation polymorphism analysis.
 - 19. The method of claim 17, further comprising:
 - (a) hybridizing a target nucleic acid comprising a N-acetylglucosaminyl transferase component GPI-1 (GPI-1)-encoding nucleic acid or fragment thereof with a nucleic acid primer that hybridizes adjacent to nucleotide 2577 of the GPI-1 gene;
 - (b) extending the nucleic acid primer using the target nucleic acid as a template; and
 - (c) determining the mass of the extended primer to identify the nucleotide present at position 2577, thereby determining the presence or absence of the allelic variant.
- 20. The method of claim 14, wherein the detecting step comprises mass spectrometry.
- 21. The method of claim 14, wherein the detecting step utilizes a signal moiety selected from the group consisting of: radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent reagents and other light producing reagents.
- 22. The method of claim 14, further comprising detecting the presence or absence of at least one allelic variant of polymorphic regions of another gene associated with cardiovascular disease, wherein the presence of the two allelic variants is associated with a predisposition to cardiovascular disease compared to a subject who does not comprise the combination of allelic variants.
- 23. The method of claim 22, wherein the other gene is selected from the group consisting of cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- 24. The method of claim 22, wherein the two allelic variants are of the cytochrome C oxidase subunit VIb (COX6B) gene and the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.

- 25. A method of screening for biologically active agents that modulate serum high density lipoprotein (HDL), comprising:
 - (a) combining a candidate agent with a cell comprising a nucleotide sequence encoding an allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low levels of serum HDL and operably linked to a promoter such that the nucleotide sequence is expressed as a GPI-1 protein in the cell; and
 - (b) determining the affect of the agent upon the expression and/or activity of the GPI-1 protein.
- 26. A method of screening for biologically active agents that modulate serum high density lipoprotein (HDL), comprising:
 - (a) combining a candidate agent with a transgenic mouse comprising a transgenic nucleotide sequence stably integrated into the genome of the mouse encoding an allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low levels of serum HDL operably linked to a promoter, wherein the transgenic nucleotide sequence is expressed and the transgenic animal develops a low level of serum HDL; and
 - (b) determining the affect of the agent upon the serum HDL level.
- 27. The method of claim 25, wherein the allelic variant is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 28. The method of claim 26, wherein the allelic variant is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 29. A method for predicting a response of a subject to a cardiovascular drug, comprising:
 - detecting the presence or absence of at least one allelic variant of a cytochrome C oxidase subunit VIb (COX6B) gene of the subject associated with high serum cholesterol or at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene of the subject associated with low serum high density lipoprotein (HDL);
 - wherein the presence of at least one allelic variant is indicative of a positive response.
- 30. The method of claim 29, wherein the allelic variant is of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 31. A method for predicting a response of a subject to a biologically active agent that modulates serum high density lipoprotein (HDL), comprising:
 - detecting the presence or absence of at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene of the subject associated with low HDL; wherein the presence of an allelic variant is indicative of a positive response.
- 32. A method for predicting a response of a subject to a biologically active agent that modulates serum high density lipoprotein (HDL) levels, comprising:
 - (a) detecting the presence or absence of at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low HDL of the subject; and

- (b) detecting the presence or absence of an allelic variant in at least one other gene of subject associated with cardiovascular disease, wherein the presence of both allelic variants is indicative of a positive response.
- **33**. The method of claim 31, wherein the allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene is at position 2577.
- 34. The method of claims 32, wherein the allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene is at position 2577.
- 35. The method of claim 32, wherein the other gene associated with cardiovascular disease is selected from the group of genes consisting of cytochrome C oxidase subunit VIb (COX6B); cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type I receptor gene.
- 36. A primer or probe that specifically hybridizes adjacent to or at a polymorphic region of a cytochrome C oxidase subunit VIb (COX6B) gene associated with high serum cholesterol in combination with a primer or probe that specifically hybridizes adjacent to or at a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low HDL.
- 37. The primers or probes of claim 36, further comprising primers or probes that specifically hybridizes adjacent to or at a polymorphic region of another gene associated with cardiovascular disease.
- 38. The primers or probes of claim 36, wherein the polymorphic region of the cytochrome C oxidase subunit VIb (COX6B) gene comprises nucleotide 86 of the coding strand and the polymorphic region of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene comprises nucleotide 2577.
- 39. The primers or probes of claim 37, wherein the other gene associated with cardiovascular disease is selected from the group of genes consisting of cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- **40**. A kit for indicating whether a subject has a predisposition to developing cardiovascular disease, comprising:
 - (a) at least one probe or primer that specifically hybridizes adjacent to or at a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low serum high density lipoprotein (HDL).
- **41**. The kit of claim 40 further comprising instructions for use.
- **42**. The kit of claim 40, wherein the polymorphic region comprises nucleotide 2577 of the coding strand.
- 43. A kit for indicating whether a subject has a predisposition to developing cardiovascular disease, comprising:

- (a) at least one probe or primer which specifically hybridizes adjacent to or at a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low serum high density lipoprotein (HDL); and
- (b) at least one probe or primer which specifically hybridizes adjacent to or at a polymorphic region of another gene associated with cardiovascular disease.
- **44**. The kit of claim 43, further comprising instructions for use.
- 45. The kit of claim 43, wherein the other gene associated with cardiovascular disease is selected from the group of genes consisting of cytochrome C oxidase subunit VIb (COX6B); cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- **46**. A method of diagnosing a predisposition to cardiovascular disease in a human, said method comprising the steps of:
 - (a) obtaining a biological sample from the human;
 - (b) isolating DNA from the biological sample; and
 - (c) detecting the presence or absence of at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene in the DNA.
- 47. The method of claim 46, wherein at least one variant is a G to A transversion at position 2577 of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 48. A method of determining a response of a human to a cardiovascular drug, said method comprising the steps of:
 - (a) obtaining a biological sample from the human;
 - (b) isolating DNA from the biological sample; and
 - (c) detecting the presence or absence of at least one allelic variant of a cytochrome C oxidase subunit VIb (COX6B) gene in the DNA or at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene in the DNA.

- **49**. The method of claim 46, wherein the detecting step is performed by an assay selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation, restriction enzyme site analysis, and single-stranded conformation polymorphism analysis.
- **50**. The method of claim 48, wherein the detecting step is performed by an assay selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation, restriction enzyme site analysis, and single-stranded conformation polymorphism analysis.
- 51. A microarray comprising a nucleic acid having a sequence of a polymorphic region from a human N-acetyl-glucosaminyl transferase component GPI-1 (GPI-1) gene.
- 52. The microarray of claim 51, wherein the polymorphic region comprises a locus selected from the group consisting of position 2577 of the human N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene, position 2829 of the human GPI-1 gene, position 2519 of the human GPI-1 gene, position 1938 of the human GPI-1 gene, position 1563 of the human GPI-1 gene, position 2656 of the human GPI-1 gene, and position 2664 of the human GPI-1 gene.
- **53**. The microarray of claim 52, wherein the polymorphic region comprises position 2577 of the human N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
 - 54. A kit comprising:
 - (a) at least one probe specific for a polymorphic region of a human gene selected from the group consisting of cytochrome C oxidase subunit VIb (COX6B); N-acetylglucosaminyl transferase component GPI-1 (GPI-1); cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene; and
 - (b) instructions for use.

* * * *