

# FACULDADE DE CIÊNCIAS

### DEPARTAMENTO DE FÍSICA

#### **Física**

### Cursos: Licenciatura em Engenharia Informática

#### Regente - Félix Tomo

**Assitentes** - Fernando Mucomole, Tomásio Januário, Alexandre Dambe, Belarmíno Matsinhe, Graça Massimbe & Valdemiro Sultane

## 2023 - Aula Prática # 1 - Vectores e Noções Básicas de Integrais

- **1.** As coordenadas de três pontos são dadas por A(-2,2,3), B(1,0,-3) e C(1,3,-1). Considerando os vectores  $\vec{a} = \overrightarrow{CA}$  e  $\vec{b} = \overrightarrow{BA}$ , represente estes vectores no sistema cartesiano de coordenadas.
- **2.** Dê as propriedades dos vectores  $\vec{a}$  e  $\vec{b}$ , tal que sejam válidas as seguintes condições:
  - a)  $\vec{a} \times \vec{b} = 0$ ;
  - **b)**  $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$
  - c)  $\vec{a} + \vec{b} = \vec{c} e a^2 + b^2 = c^2$
- 3. No sistema dextrogiro de coordenadas cartesianas ortogonais, encontrar os seguintes produtos vectoriais:  $\vec{\iota} \times \vec{\iota}; \ \vec{\iota} \times \vec{\jmath}; \ \vec{\iota} \times \vec{k}; \ \vec{k} \times \vec{\jmath} \ \text{e} \ \vec{k} \times \vec{\iota}.$
- **4.** Sejam dados dois vectores  $\vec{a} = 2\vec{i} + 5\vec{j} 3\vec{k}$  e  $\vec{b} = -3\vec{i} + 4\vec{j} + 4\vec{k}$ .
  - a) Desenhe os referidos vectores num sistema tridimensional (dextrógiro);
  - b) Aplicando o produto escalar, determine o ângulo entre estes dois vectores;
  - c) Aplicando o produto vectorial, determine o ângulo entre estes dois vectores e compare com o resultado da alínea anterior;
  - d) Represente o vector  $\vec{c}$  no gráfico em a), sendo  $\vec{c} = \vec{a} \times \vec{b}$ .
  - e) Determine os versores dos vectores  $\vec{a} \in \vec{b}$ .
- 5. Demonstrar que quando dois vectores  $\vec{a}$  e  $\vec{b}$  tem o mesmo módulo e entre eles formam um ângulo  $\theta$ , o módulo da soma expressa-se por  $S=2|\vec{a}|\cos(\theta/2)$  e o módulo da diferença por  $D=2|\vec{a}|\sin(\theta/2)$ .
- **6.** Sejam dados três vectores  $\vec{a} = -\vec{\iota} + 3\vec{j} + 4\vec{k}$ ,  $\vec{b} = 3\vec{\iota} 2\vec{j} 8\vec{k}$  e  $\vec{c} = 4\vec{\iota} + 4\vec{j} + 4\vec{k}$ .
  - a) Comprove a seguinte indentidade:  $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a}.\vec{c}) \vec{c}(\vec{a}.\vec{b})$ .
  - **b)** Determine por cálculo directo se há alguma diferença entre os produtos  $\vec{a} \times (\vec{b} \times \vec{c})$  e  $(\vec{a} \times \vec{b}) \times \vec{c}$ ;
  - c) Determine os produtos  $\vec{a}$ .  $(\vec{b} \times \vec{c})$ ,  $(\vec{a} \times \vec{b})$ .  $\vec{c}$ ,  $(\vec{c} \times \vec{a})$ .  $\vec{b}$  e verifique se há alguma diferença.
- 7. Três vectores com magnitudes  $|\vec{a}| = 22$ ,  $|\vec{b}| = 35 \ e \ |\vec{c}| = 15$  encontram-se no plano XY. O vector  $\vec{a}$  forma ângulo de  $80^{\circ}$  com o vector  $\vec{b}$  e este por sua vez forma  $130^{\circ}$  com o vector  $\vec{c}$ . Determine:
  - a) A magnitude e a direcção (em relação aomenor vector) do vector  $\vec{d}$  sendo este o doubro da resultante ( $\vec{r}$ ) dos três vectores.
  - **b)** Amagnitude do vector  $\vec{f}$  sendo que  $\vec{f} = -2\vec{a} + 3\vec{r}$ .

- **8.** Quando o vector  $\vec{a}$  é adicionado ao vector  $\vec{b} = 3\vec{i} + 4\vec{j}$  resulta num vector orientado ao longo da direcção positiva do eixo Y e com magnitude igual à do vector  $\vec{b}$ . Determine a magnitude do vector  $\vec{a}$ .
- 9. Três vectores  $\vec{a}, \vec{b}$  e  $\vec{c}$  que se encotram no plano XY tem módulos iguais de 50~m e formam ângulos em relação com o eixo Y, de 30°, 195° e 315° respectivamente. Determine:
  - a) As magnitudes e a direcções dos vectores  $\vec{s} = \vec{a} + \vec{b} + \vec{c} e \vec{d} = \vec{a} \vec{b} + \vec{c}$ .
  - **b)** Amagnitude e a direção do vector  $\vec{f}$  tal que,  $(\vec{a} + \vec{b}) (\vec{c} + \vec{f}) = 0$ .
- **10.** Determine o versor do vector  $\vec{a}$  de módulo a=20 que é perpendicular ao vector  $\vec{b}=2\vec{\imath}-4\vec{\jmath}$  e que forma um ângulo de 30° com o vector  $\vec{c} = 4\vec{k}$ .
- **11.** Dois vectores  $\vec{a}$  e  $\vec{b}$  tendo módulos iguais a 10~unidades cada e ângulos  $\theta_1=30^\circ$  e  $\theta_2=105^\circ$  são orientados conforme se ilustra na Figura 1. Sendo a sua soma representada por  $\vec{r}$ , determine:
  - a) As componentes de  $\vec{r}$  nos eixos OX e OY:
  - **b)** O módulo de  $\vec{r}$ ;
  - c) O ângulo que  $\vec{r}$  forma com o eixo OY.



Figura 1.

- 12. Determine as primitivas das seguintes funções:
  - a)  $f(\theta) = \sin \theta \cos \theta$ ; b)  $f(x) = e^{-x} + 3$ ;

  - c)  $f(t) = t^2$ , sabendo que F(0) = 3.
- **13.** Obtenha  $\vec{r}(t)$ , isto é, um vector  $\vec{r}$  dependente da variável t, resolvendo a seguinte expressão:

$$\int_{\vec{r}_0}^{\vec{r}} d\vec{r} = \int_0^t (\vec{v}_0 + \vec{a}t) dt$$

Sendo que,  $\frac{d\vec{v}_0}{dt} = 0$  e  $\frac{d\vec{a}}{dt} = 0$ ;

- **14.** Seja dada a equação  $\frac{d\xi}{dt}=b+ct$ , onde b e c são constantes arbitrárias. Sabendo que  $\xi(t=0)=\xi_0$ , determine a função  $\xi(t)$  para qualquer valor de t .
- 15. Obtenha a energia potencial gravitacional resolvendo a seguinte expressão:

$$\int_{0}^{E_{p}} dE_{p} = \int_{\infty}^{r} \frac{mM}{r^{2}} dr$$

Bom Trabalho