Closure of F

FA

- problem: computing the set of dependencies F⁺ that is satisfied by each legal instance of a schema R over which a set of functional dependencies F is defined
- we have concluded that trivially F⊆F⁺, as an instance r
 is legal only if it satisfies all dependencies in F
- what about the other dependencies in F⁺?
- we introduce another set, easy (but time consuming) to compute: F^A

Armstrong's axioms

F^A is a set of functional dependencies on R, so that:

- if $X \rightarrow Y \in F$ then $X \rightarrow Y \in F^A$
- if $Y \subseteq X \in R$ then $X \rightarrow Y \in F^A$ (reflexivity)
- if $X \rightarrow Y \in F^A$ then $XZ \rightarrow YZ \in F^A$, for each $Z \in R$ (augmentation)
- if $X \rightarrow Y \in F^A$ and $Y \rightarrow Z \in F^A$ then $X \rightarrow Z \in F^A$ (transitivity)

we will show that F +=FA, i.e., that the closure of a set of functional dependencies F can be obtained from F by recursively applying the Armstrong's axioms

A few simple observations

- •if $Y \subseteq X \in \mathbb{R}$ then $X \rightarrow Y \in \mathbb{F}^A$ (reflexivity)
- •Name∈(Name, Surname) so, obviously, if two tuples have the same values for (Name, Surname) then they will surely have the same value for Name, therefore (Name, Surname)→Name is always satisfied
- •if $X \rightarrow Y \in F^A$ then $XZ \rightarrow YZ \in F^A$, for each $Z \in R$ (augmentation)
- •if TaxCode→Surname is satisfied, it means that if two tuples have the same TaxCode then they must also have the same Surname
- •if we also consider the Address attribute, we will surely have that if two tuples are identical on (TaxCode, Address), they will be identical on (Surname, Address) too
- •so, if TaxCode→Surname is satisfied
- then TaxCode, Address→Surname, Address is also satisfied

A few simple observations

- •if $X \rightarrow Y \in F^A$ and $Y \rightarrow Z \in F^A$ then $X \rightarrow Z \in F^A$ (transitivity)
- •if Matriculation→TaxCode is satisfied then **if** two tuples have the same Matriculation, **then** they must also have the same TaxCode
- •if TaxCode→Surname is satisfied then **if** two tuples have the same TaxCode, **then** they must also have the same Surname
- •if both the above dependencies are satisfied, and two tuples have the same Matriculation, then they must also have the same TaxCode; but then they must also have the same Surname!
- •so, if both dependencies are satisfied, then whenever two tuples have the same Matriculation, then they must also have the same Surname: Matriculation→Surname

Before we proceed...

•we introduce three more rules derived from the axioms:

- if $X \rightarrow Y \in F^A$ and $X \rightarrow Z \in F^A$ then $X \rightarrow YZ \in F^A$ (union rule)
- if $X \rightarrow Y \in F^A$ and $Z \subseteq Y$ then $X \rightarrow Z \in F^A$ (decomposition rule)
- if $X \rightarrow Y \in F^A$ and $WY \rightarrow Z \in F^A$ then $WX \rightarrow Z \in F^A$ (pseudotransitivity rule)

Theorem

- •**Theorem** Let F be a set of functional dependencies; the following implications apply:
- a)if $X \rightarrow Y \in F^A$ and $X \rightarrow Z \in F^A$ then $X \rightarrow YZ \in F^A$
- b)if $X \rightarrow Y \in F^A$ and $Z \subseteq Y$ then $X \rightarrow Z \in F^A$
- c)if $X \rightarrow Y \in F^A$ and $WY \rightarrow Z \in F^A$ then $WX \rightarrow Z \in F^A$

Demonstration

we're dealing with sets, so XX=X

•(a)

•if $X \rightarrow Y \in F^A$, by the axiom of augmentation we have $X \rightarrow XY \in F^A$; similarly, if $X \rightarrow Z \in F^A$, by the axiom of augmentation we have $XY \rightarrow YZ \in F^A$; since $X \rightarrow XY \in F^A$ and $XY \rightarrow YZ \in F^A$, by the axiom of transitivity we have $X \rightarrow YZ \in F^A$

•(b)

•if $Z\subseteq Y$ then, by the axiom of reflexivity, we have $Y\to Z\in F^A$; since $X\to Y\in F^A$ and $Y\to Z\in F^A$, by the axiom of transitivity we have $X\to Z\in F^A$

•(c)

•if $X \rightarrow Y \in F^A$, by the axiom of augmentation we have $WX \rightarrow WY \in F^A$; since $WX \rightarrow WY \in F^A$ and $WY \rightarrow Z \in F^A$, by the axiom of transitivity we have $WX \rightarrow Z \in F^A$

Observation

we observe that:

- for the **union** rule, if $X \rightarrow A_i \in F^A$, i=1, ..., n then $X \rightarrow A_1$, ..., $A_i = A_i + A_i = A_i$
- for the **decomposition** rule, if $X \rightarrow A_1, ..., A_i ..., A_n \in F^A$ then $X \rightarrow A_i \in F^A$, i=1, ..., n

SO

• $X \rightarrow A_1, ..., A_i ... A_n \in F^A \Leftrightarrow X \rightarrow A_i \in F^A$, i=1, ..., n if and only if

Closure a set of attributes

Definition

let R be a schema, F a set of dependencies on R, and X a subset of R

the closure of X with respect to F, denoted X⁺_F (or simply X⁺, if no ambiguity arises) is defined as:

$$X^{+}_{F} = \{A \mid X \rightarrow A \in F^{A}\}$$

 in practice, all those attributes that are functionally determined by X, by possibly applying Armstrong's axioms

trivially: $X\subseteq X^+_F$ (by reflexivity!)

Lemma

Lemma let R be a schema and F a set of functional dependencies on R: $X \rightarrow Y \subseteq F^A \Leftrightarrow Y \subseteq X^+$

Demonstration

Let Y =
$$A_1, A_2, ..., A_n$$

• if (←)

since $Y \subseteq X^+$, for each i=1,...,n we have that $X \longrightarrow A_i \subseteq F^A$ by the **union** rule, $X \longrightarrow Y \subseteq F^A$

•only if (*⇒*)

since $X \rightarrow Y \in F^A$, by the **decomposition** rule we have that, for each i=1,...,n, $X \rightarrow A_i \in F^A$, i.e., $A_i \in X^+$, for each i=1,...,n, and, therefore, $Y \subseteq X^+$

Theorem: $F^{+}=F^{A}$

•Theorem let R be a schema and F a set of functional dependencies on R:

•
$$F^{+} = F^{A}$$

Proof (we prove it by double inclusion)

contains

 $F^+\supseteq F^A$: let $X \rightarrow Y$ be a functional dependency in F^A ; we prove that $X \rightarrow Y \in F^+$ by induction on i, the number of applications of one of the Armstrong's axioms

basis: i=0; in such a case $X \rightarrow Y \in F^A$ is also in F and, therefore, $X \rightarrow Y$ is in F^+

induction step: i>0; by hypothesis, every functional dependency obtained from F by applying Armstrong's axioms a number of times less than or equal to i-1 is in F⁺; we have to prove this is also true a number of applications equal to i

(case 1)

- $X \rightarrow Y$ was obtained in F^A by applying reflexivity, as $Y \subseteq X$
- let r be an instance of R and let t₁ and t₂ be two tuples of r, such that
- $t_1[X]=t_2[X]$
- trivially, we have that $t_1[Y]=t_2[Y]$, so $X \rightarrow Y \in F^+$

(case 2)

- X→Y∈F^A was obtained by applying augmentation to a functional dependency V→W∈F^A, that was obtained, in turn, by recursively applying Armstrong's axioms a number of times ≤ i-1
- thus, for the inductive hypothesis V→W∈F ⁺
- it will then be X=VZ and Y=WZ, for some Z⊆R
- let r be a legal instance of R and let t₁ and t₂ be two tuples of r, such that t₁[X]=t₂[X]
- trivially, we have that t₁[V]=t₂[V] and t₁[Z]=t₂[Z]
- for the inductive hypothesis from $t_1[V]=t_2[V]$ follows that $t_1[W]=t_2[W]$ and from $t_1[W]=t_2[W]$ and $t_1[Z]=t_2[Z]$ follows that $t_1[Y]=t_2[Y]$

(case 3)

- $X \rightarrow Y \in F^A$ was obtained by applying the axiom of transitivity to two functional dependencies $X \rightarrow Z$, $Z \rightarrow Y \in F^A$, obtained, in turn, by recursively applying Armstrong's axioms a number of times less than or equal to i-1
- thus, for the inductive hypothesis $X \rightarrow Z$, $Z \rightarrow Y \in F^+$
- let r be a legal instance of R and let t₁ and t₂ be two tuples of r, such that t₁[X]=t₂[X]
- for the inductive hypothesis from $t_1[X]=t_2[X]$ follows $t_1[Z]=t_2[Z]$; from $t_1[Z]=t_2[Z]$, again for the inductive hypothesis follows $t_1[Y]=t_2[Y]$

F⁺⊆F^A (by contradiction)

let's suppose that there exists a functional dependency $X \rightarrow Y \in F^+$, such that $X \rightarrow Y \notin F^A$; we will use a particular legal instance of R, to show that this assumption leads to a contradiction

let's consider the following instance r of R:

	X ⁺				R-X ⁺			
r	1	1		1	1	1		1
	1	1		1	0	0		0

r has two tuples, identical on attributes in \mathbf{X}^+ , and different on the others $(\mathbf{R}-\mathbf{X}^+)$:

- we show that r is legal
- using r, we show that if $X \rightarrow Y \subseteq F^+$, then it cannot happen that $X \rightarrow Y \not\subseteq F^A$ (if we assume that, we have a contradiction)

- r is a legal instance
 - let's assume that r is not legal, so there exists at least a dependency V→W∈F (so, also in F^A) that it is not satisfied by r
 - it means that there are 2 tuples in r that are equal on V and different on W this implies that $V \subseteq X^+$ and $W \cap (R-X^+) \neq \emptyset$
 - since V⊆X⁺, by the Lemma, we know that X→V∈F^A;
 therefore, by the axiom of transitivity, since X→V and V→W,
 follows that X→W∈F^A
 - again by the Lemma , W⊆X⁺, which contradicts W∩(R-X⁺)≠Ø
 - so, r is a legal instance

- if $X \rightarrow Y \in F^+$, then it cannot happen that $X \rightarrow Y \notin F^A$
 - suppose that $X \rightarrow Y \in F^+$ and $X \rightarrow Y \notin F^A$
 - we know that r is a legal instance
 - since the dependencies in F⁺ are satisfied by every legal instance, then r satisfies X→Y (that is, if 2 tuples in r are identical on X, then they must be identical on Y)
 - we know that X⊆X⁺
 - are there 2 tuples in r, which are identical on X? yes, there are!
 - so, they must be identical on Y too, so Y⊆X⁺
 - then, by the lemma, $X \rightarrow Y \in F^A$, and we have a contradiction

Theorem: $F^+=F^A$ (final remarks)

- it is useful to note that the proof of this theorem relies on two very important facts:
 - the link that exists between the set of dependencies F⁺ and the legal instances: on one hand, **if** an instance is legal then it also satisfies all dependencies in F⁺; on the other hand, F⁺ is the set of dependencies satisfied by each legal instance (to check if an instance is legal we need to check that it satisfies all the dependencies in F)
 - the link that exists between the closure X⁺ of a set of attributes X and the subset of dependencies in F^A (which, we have just seen, is equal to F⁺) that have X as determinant, i.e., X→Y∈F^A ↔ Y⊆X⁺ which is equivalent to saying that:
 - $X \rightarrow Y \subseteq F^+ \Leftrightarrow Y \subseteq X^+$ and in particular that $X \rightarrow Y$ must be satisfied by every legal instance

Why do we need to know F⁺?

- we now have a way to identify all dependencies in F⁺: those that can be inserted into F^A starting from F and applying Armstrong's axioms and derived rules
- computing F^A=F⁺ takes exponential time in R:
 - if we just consider the axiom of reflexivity,
 each possible subset of R leads to one
 dependency, and since the possible subsets of R are 2^{|R|}, then |F⁺|>> 2^{|R|}

Why do we need to know F⁺?

- the definition of Third Normal Form (3NF) relies on F⁺
- to obtain a schema that is in 3NF from another one which is not, we decompose the initial one into "smaller" ones
- in doing that, we would like to "maintain" the dependencies of the original schema, so we would like to preserve F⁺