

CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1 1. An apparatus for examining the internal structure of a material, the apparatus
2 comprising:

3 an x-ray source adapted to emit an x-ray beam at the surface of a target area of the
4 material;

5 an x-ray detector adapted to detect x-rays diffracted from the target area of the
6 material; and

7 a mounting plate having the x-ray source and the x-ray detector rigidly mounted
8 thereto, wherein the x-ray source and the x-ray detector are aligned on the
9 mounting plate such that the x-ray beam emitted from the x-ray source is
10 incident upon a given crystallographic plane atoms in the target area of the
11 material at the Bragg angle for the given crystallographic plane of atoms
12 and the x-ray detector is configured to detect the x-rays diffracted at the
13 approximate Bragg angle.

1 2. The apparatus of claim 1, wherein the mounting plate is adapted to have the x-ray
2 source and x-ray detector rigidly mounted thereto in a finite number of alignments.

1 3. The apparatus of claim 2, wherein for each alignment, the x-ray source and x-ray
2 detector are aligned such that the x-ray detector detects x-rays that were emitted by the x-
3 ray source and diffracted from a particular crystallographic plane of atoms at the
4 approximate Bragg angle for that particular plane of atoms.

1 4. The apparatus of claim 2, wherein the mounting plate defines multiple sets of
2 alignment bores, each set of alignment bores configured to align and rigidly couple the x-
3 ray source and the x-ray detector to the mounting plate.

- 1 5. The apparatus of claim 1, further including:
2 a photo-spectrum analyzer mounted to the mounting plate and adapted to measure
3 spectral intensity across a range of frequencies for electromagnetic
4 radiation emitted from the target area of the material.

- 1 6. The apparatus of claim 1, further including:
2 an x-ray source controller in communication with the x-ray source, the x-ray
3 source controller adapted to provide electrical power and initiation and
4 operation parameters to the x-ray source.

- 1 7. The apparatus of claim 1, further including:
2 a storage device in electrical communication with the x-ray detector, wherein the
3 storage device stores information related to the angular dispersion of the
4 diffracted x-rays.

- 1 8. A method for examining the internal structure of a component, the method
2 comprising the steps of:
3 aligning an x-ray source and an x-ray detector in a rigid and predetermined
4 orientation;
5 irradiating a target area of a surface of a component with an x-ray beam from the
6 x-ray source, wherein the x-ray beam is incident upon a particular
7 crystallographic plane of atoms at the Bragg angle for that plane;
8 detecting x-rays diffracted from the target area of the component with an x-ray
9 detector, wherein the intensity of the diffracted x-rays exhibits a peak at a
10 given angle, θ , and θ is the approximate Bragg angle for the diffracting
11 crystallographic plane of atoms, and wherein the rigid predetermined
12 orientation of the x-ray source and x-ray detector is such that the x-ray
13 detector measures the peak in intensity of the diffracted x-rays; and
14 determining an indicator of the internal structure from the intensity as a function
15 angular dispersion of the diffracted x-rays detected by the x-ray detector.

1 9. The method of claim 8, further including the steps of:
2 enumerating the number of x-rays detected by the x-ray detector over a range of
3 angles; and
4 parameterizing the number of x-rays detected as a function of angle.

1 10. The method of claim 9, wherein the indicator of the internal structure is a
2 parameter used in the parameterization of the number of x-rays counted as a function of
3 angle.

1 11. The method of claim 8, further including the step of:
2 identifying the composition of the component.

1 12. The method of claim 11, wherein the step of identifying the composition of the
2 component includes the steps of:

3 measuring across a frequency range the intensity of light fluoresced from the
4 composition to determine the spectral characteristics of the composition;
5 and

6 comparing the spectral characteristics of the composition with spectral
7 characteristics of known materials.

1 13. The method of claim 8, further including the step of:
2 mounting the x-ray source and the x-ray detector rigidly and removably on a
3 mounting plate, wherein the mounting plate is adapted to have the x-ray
4 source and x-ray detector rigidly and removably coupled thereto in
5 multiple alignments, wherein for each of the multiple alignments the angle
6 between the x-ray beam emitted from the x-ray source is at Bragg angle for
7 a particular crystallographic plane of atoms and the x-ray detector is
8 aligned to receive the diffracted x-rays at the Bragg angle.

1 14. The method of claim 8, further including the step of:
2 determining the remaining lifetime of the component using the internal structure
3 indicator and a database, wherein the database includes structure indicators
4 having lifetimes associated therewith for multiple test objects.

1 15. The method of claim 8, wherein the component is part of a system and is scanned
2 in situ.

1 16. An apparatus for non-destructively examining the internal structure of a
2 component, the apparatus comprising:

3 an x-ray source; an x-ray detector; and
4 a mounting system having the x-ray source and the x-ray detector rigidly mounted
5 thereon, wherein the x-ray source emits an x-ray beam that is at least
6 partially diffracted from the component, and the x-ray source and the x-ray
7 detector are aligned such that the x-ray detector detects a peak in the
8 intensity of the diffracted x-rays, wherein the mounting system is adapted
9 to have the x-ray source and the x-ray detector mounted in multiple
10 configurations; and

11 a housing defining an exterior surface and a generally hollow interior having the
12 mounting system therein, the housing defining a window extending from
13 the interior to the exterior surface, the window adapted to have an x-ray
14 beam generated in the housing pass through the window;;

1 17. The apparatus of claim 16, wherein the mounting system is an interior wall of the
2 housing.

1 18. The apparatus of claim 16, wherein the mounting system includes a plate mounted
2 to an interior wall of the housing.