Лекция 8 Прямая и плоскость

Пусть на плоскости задана ортонормированная (прямоугольная) система координат O, \vec{e}_1, \vec{e}_2 . Ось абсцисс будем обозначать Ox, ось ординат - Oy.

8.1 Общее уравнение прямой

Г8.1.1 Теорема (об общем уравнении прямой на плоскости)

- 1) В прямоугольной системе координат любая прямая может быть задана уравнением Ax + By + C = 0, где A, B, C некоторые действительные числа
- 2) Любое уравнение вида Ax + By + C = 0, где A, B, C действительные числа, удовлетворяющие условию $A^2 + B^2 \neq 0$, задает на плоскости некоторую прямую.

Доказательство: 1) Пусть l - некоторая прямая на плоскости, $\vec{n} = \{0, B\}$ - некоторый вектор, перпендикулярный прямой l, $M_0 \{0, y_0\}$ - некоторая точка на прямой l.

1) Пусть точка M(x,y) лежит на прямой, тогда векторы $\vec{n} = \{A,B\}$ и $\overline{M_0M} = \{A-x_0,y-y_0\}$ взаимно перпендикулярны и, следовательно, их скалярное произведение равно 0: $A\{A-x_0\} = A\{A-x_0\} = 0$. Раскроем скобки: $Ax + By + \{Ax_0 - By_0\} = 0$. Обозначив $\{Ax_0 - By_0\} = C$, получим утверждение теоремы.

2)Пусть в некоторой прямоугольной системе координат задано уравнение Ax+By+C=0, удовлетворяющее условию $A^2+B^2\neq 0$. Условие это означает, сто коэффициенты A,B не могут быть оба равны 0. Поэтому обязательно найдется некоторая точка M_0 (x_0,y_0) , координаты которой удовлетворяют данному уравнению: $Ax_0+By_0+C=0$. Вычитая уравнение $Ax_0+By_0+C=0$ из уравнения Ax+By+C=0, получим $A(x_0,y_0)$ $A(x_0,y_0)$ $A(x_0,y_0)$ $A(x_0,y_0)$ прямую, перпендикулярную вектору $A(x_0,y_0)$ $A(x_0,y_0)$ A(x

Г8.1.2 Определение: вектор $\vec{n} = \{ 0, B \}$ называется *нормальным вектором* прямой Ax + By + C = 0

Г8.1.3 Теорема (о совпадении прямых)

- 1) Разные прямые на плоскости задаются разными уравнениями
- 2) Два уравнения $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$ задают на плоскости одну и ту же прямую тогда и только тогда, когда $\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$.

Доказательство: 1) рассмотрим на плоскости две различные прямые l_1 и l_2 . Если эти прямые пересекаются, то их нормальные векторы $\vec{n}_1 = \P_1, B_1$ и $\vec{n}_2 = \P_2, B_2$ различны и их координаты не могут быть одинаковыми, т.е. прямые l_1 и l_2 задаются различными уравнениями.

Тогда вектор $\vec{n} = \{\!\!\{0,B\!\!\}$ перпендикулярен вектору $\overline{M_1M_2} = \{\!\!\{0,D\!\!\}$. Но, поскольку точки $M_1 \{\!\!\{0,D\!\!\}$ и $M_2 \{\!\!\{0,D\!\!\}$ дежат на различных прямых, это невозможно. Значит, уравнения прямых l_1 и l_2 не могут быть одинаковыми.

- 2) а) Пусть уравнения $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$ пропорциональны: $\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$, тогда $A_2=\alpha A_1$, $B_2=\alpha B_1$, $C_2=\alpha C_1$ и уравнение $A_2x+B_2y+C_2=0$ можно записать в виде $\alpha A_1x+B_1y+C_1 = 0$, т.е. оно равносильно уравнению $A_1x+B_1y+C_1=0$ и, значит, задает ту же прямую.
- б) пусть уравнения задают одну и ту же прямую, тогда их нормальные векторы должны быть коллинеарны: $\frac{A_1}{A_2} = \frac{B_1}{B_2}$, т.е. $A_2 = \alpha A_1$, $B_2 = \alpha B_1$. Уравнение $A_2 x + B_2 y + C_2 = 0$ можно записать

в виде $\alpha A_1 x + \alpha B_1 y + C_2 = 0$. Умножим уравнение $A_1 x + B_1 y + C_1 = 0$ на α и вычтем из уравнения $\alpha A_1 x + \alpha B_1 y + C_2 = 0$: $C_2 - \alpha C_1 = 0$, значит, и $C_2 = \alpha C_1$. Теорема доказана.

Г8.1.4 *Следствие.* Два уравнения $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$ задают на плоскости параллельные прямые тогда и только тогда, когда $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$.

Г8.1.5 Теорема (частные случаи общего уравнения)

Пусть прямая задана уравнением Ax + By + C = 0, тогда:

- 1) Если A = 0, то прямая параллельна оси ОХ
- 2) Если B = 0, то прямая параллельна оси ОУ
- 3) Если C = 0, то прямая проходит через начало координат

Доказательство: 1) Если A = 0, тогда нормальный вектор $\vec{n} = \mathbf{Q}, \vec{B}$ параллелен оси ОУ, значит, он перпендикулярен оси ОХ и, значит, прямая Ax + By + C = 0 параллельна оси ОХ

- 2)Если B = 0, то нормальный вектор $\vec{n} = 4,0$ параллелен оси ОХ и, следовательно, прямая Ax + By + C = 0 параллельна оси ОУ.
- 3) Если C = 0, то уравнение прямой имеет вид Ax + By = 0 и координаты точки O(0,0) удовлетворяют этому уравнению. *Теорема доказана*.

8.2 Другие виды уравнения прямой

Г8.2.1 Уравнение прямой, проходящей через две данные точки:

Даны точки M_1 ($_1$, $_2$) и M_2 ($_2$, $_2$), требуется составить уравнение прямой, проходящей через эти точки.

Вектор $\overline{M_1M_2} = \{ (x_1, y_2 - y_1) \}$ лежит на данной прямой.

Пусть некоторая точка M(x,y) лежит на прямой, тогда вектор $\overline{M_1M} = \{-x_1, y-y_1\}$ также лежит на этой прямой и векторы $\overline{M_1M_2}$ и $\overline{M_1M}$ коллинеарны. Записанное для этих векторов условие коллинеарности

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

является уравнением прямой, проходящей через 2 данные точки.

Г8.2.2 Уравнение прямой «в отрезках»

Рассмотрим общее уравнение прямой: Ax + By + C = 0 при условиях $A \neq 0, B \neq 0, C \neq 0$ и

преобразуем его:
$$-\frac{A}{C}x - \frac{B}{C}y - 1 = 0$$
, $\frac{x}{-C/A} + \frac{y}{-C/B} = 1$. Обозначив $-\frac{C}{A} = a, -\frac{C}{B} = b$, получим

уравнение прямой «в отрезках»:

$$\frac{x}{a} + \frac{y}{b} = 1$$
.

Поскольку при x=0 из уравнения получаем y=b, а при y=0 получим x=a, то числа a,b являются длинами отрезков, отсекаемыми прямой на осях координат, взятыми с соответствующим знаком.

Г8.2.3 Уравнение прямой с угловым коэффициентом

Пусть прямая задана уравнением Ax + By + C = 0 и $B \neq 0$, тогда $y = -\frac{A}{B}x - \frac{C}{B}$. Обозначим

$$-\frac{A}{B} = k , -\frac{C}{B} = b : \qquad y = kx + b .$$

Число k называется угловым коэффициентом прямой, оно равно тангенсу угла наклона этой прямой к положительному направлению оси OX.

8.3 Угол между прямыми

Г8.3.1 Угол φ между прямыми $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$ равен углу между их нормальными векторами,

поэтому
$$\cos \varphi = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$$
.
Тогда $\sin \varphi = \pm \sqrt{1 - \frac{A_1 A_2 - B_1 B_2}{A_1^2 + B_1^2}} = \pm \sqrt{\frac{B_1 A_2 - B_2 A_1}{A_1^2 + B_1^2}}$,
 $tg \varphi = \frac{\sin \varphi}{\cos \varphi} = \pm \sqrt{\frac{B_1 A_2 - B_2 A_1}{A_1^2 + B_1^2}} = \pm \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}} = \pm \frac{|B_1 A_2 - B_2 A_1|}{A_1 A_2 + B_1 B_2}$.

Поделив числитель и знаменатель полученной дроби на произведение B_1B_2 , получим

$$tg\varphi = \pm rac{\left|k_1 - k_2\right|}{1 + k_1 k_2}$$
, где k_1, k_2 - угловые коэффициенты рассматриваемых прямых.

Г8.3.2 *Следствие.* Прямые $y=k_1x+b_1$ и $y=k_2x+b_2$ перпендикулярны тогда и только тогда, когда $k_1k_2=-1$.

8.4 Нормальное уравнение прямой

Г8.4.1 Рассмотрим некоторую прямую L в прямоугольной системе координат. Обозначим p -

расстояние от начала координат до прямой L, α - угол между положительным направлением оси абсцисс и единичным вектором \vec{n} , перпендикулярным прямой L и направленным от начала координат в сторону этой прямой (если прямая проходит через начало координат, то в любую из двух сторон). Пусть P - основание перпендикуляра, опущенного из начала координат на прямую L, тогда $P \oint \cos lpha, p \sin lpha$. Точка $M \oint y$ лежит на прямой L тогда

 $\overrightarrow{PM} = \P - p\cos\alpha, y - p\sin\alpha \qquad \qquad \overrightarrow{n} = \P \cos\alpha, \sin\alpha$

перпендикулярны, то есть $(-p\cos\alpha\cos\alpha + \sqrt{p}\sin\alpha)\sin\alpha = 0$. Получили уравнение $x\cos\alpha + y\sin\alpha - p = 0$,

называемое нормальным уравнением прямой.

Г8.4.2 Пусть дано общее уравнение Ax + By + C = 0 прямой L и нормальное уравнение $x\cos\alpha+y\sin\alpha-p=0$ той же прямой. Согласно теореме Г8.1.3, $\frac{\cos\alpha}{A}=\frac{\sin\alpha}{B}=\frac{-p}{C}=D$, D пропорциональности уравнений. Тогда $\cos \alpha = AD$, $\sin \alpha = BD$, $A^2D^2 + B^2D^2 = \sin^2\alpha + \cos^2\alpha = 1$ и $D = \pm \frac{1}{\sqrt{A^2 + B^2}}$. поскольку -p = CD и $p \ge 0$, то знак

коэффициента D должен быть выбран противоположным знаку числа C. Таким образом, чтобы из общего уравнения прямой получить ее нормальное уравнение, надо умножить общее уравнение на $D = \pm \frac{1}{\sqrt{A^2 + B^2}}$, выбирая знак коэффициента D противоположным знаку числа C.

Г8.4.3 Теорема (Расстояние от точки до прямой) Если прямая Lзадана нормальным уравнением $x\cos\alpha + y\sin\alpha - p = 0$, to расстояние точки M_0 (у до этой прямой равно $d = |x_0 \cos \alpha + y_0 \sin \alpha - p|$.

Доказательство. Пусть \vec{n} - единичный нормальный вектор прямой. Возьмем на данной прямой произвольную точку

$$M_1$$
 \P_1 , y_1 . тогда $\left| M_1 \stackrel{\rightarrow}{M}_0 \cdot \vec{n} \right| = \left| M_1 \stackrel{\rightarrow}{M}_0 \right| \cdot \cos \alpha$. Но

 $d = \left| \overrightarrow{M_1 M_0} \right| \cdot \cos \alpha$ - это и есть расстояние от данной точки до данной прямой.

$$\left| \overrightarrow{M_1} \overrightarrow{M_0} \cdot \overrightarrow{n} \right| = \left| \mathbf{C}_0 - x_1 \right| \cos \alpha + \mathbf{C}_0 - y_1 \right| \sin \alpha = \left| x_0 \cos \alpha + y_0 \sin \alpha - p \right|$$
, что и требовалось.

Г8.4.4 Следствие. Расстояние от точки M_0 \P_0 , y_0 до прямой Ax + By + C = 0 равно

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

8.5 Векторная и параметрическая запись уравнения прямой в пространстве

Г8.5.1 Определение. Вектор, коллинеарный данной прямой называется направляющим вектором этой прямой.

Г8.5.2 Определение. Радиус-вектором точки M (; y; z] называется вектор с началом в начале координат и концом в точке M $\{ (y; z) : (y; z) : (y; z) \}$

Замечание. Координаты радиус-вектора точки совпадают с координатами самой этой точки.

Г8.5.3 Пусть \vec{l} **(** \vec{t}): - направляющий вектор прямой L, M_0 **(** \vec{t}): - какая-либо точка на этой прямой. Задание направляющего вектора и точки однозначно определяет прямую на плоскости. Точка M **(**; y; z] тогда и только тогда лежит на прямой L, когда

$$\vec{r} = \vec{r}_0 + t\vec{l} \ , \quad (*)$$

где \vec{r} - радиус-вектор текущей точки M **(**; y; z), \vec{r}_0 - радиус вектор фиксированной точки M_0 $\P_0; y_0; z_0$, \vec{l} $\P; b; c$ - направляющий вектор прямой, $t \in \P \infty; \infty$ - переменная.

Уравнение (*) называется векторным уравнением прямой $\,L_{\,\cdot}\,$

Если расписать векторное уравнение покоординатно, получим параметрические уравнения прямой

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \ (**) \\ z = z_0 + ct \end{cases}$$

Г8.5.4 Пример 1. Написать параметрические уравнения прямой, проходящей через две заданные точки M_1 (x_1, y_1, z_1) и M_2 (x_2, y_2, z_2) .

Решение. В качестве направляющего вектора \vec{l} **(** \vec{k} ; \vec{c}) можно взять \vec{l} **(** \vec{k} 2 – \vec{x} 1; \vec{y} 2 – \vec{y} 3, \vec{z} 2 – \vec{z} 3),

значит, параметрические уравнения можно записать, например, в виде $\begin{cases} x = x_1 + \P_2 - x_1 \, \underline{t} \\ y = y_1 + \P_2 - y_1 \, \underline{t} \\ z = z_1 + \P_2 - z_1 \, \underline{t} \end{cases}$

Г8.5.5 Пример 2. Даны две прямые: $\begin{cases} x = x_1 + a_1 t \\ y = y_1 + b_1 t \end{cases} \begin{cases} x = x_2 + a_2 t \\ y = y_2 + b_2 t \end{cases}$ Найти необходимые и $z = z_1 + c_1 t$

достаточные условия того, чтобы эти прямые: 1) скрещивались; 2) пересекались; 3) были

Решение. Рассмотрим векторы \vec{l}_1 $\P_1; b_1; c_1$, \vec{l}_2 $\P_2; b_2; c_2$ и \vec{l}_3 $\P_2 - x_1; y_2 - y_1; z_2 - z_1$.

Если прямые параллельны или совпадают, то векторы \vec{l}_1, \vec{l}_2 коллинеарны. При этом, если коллинеарны все три вектора $\vec{l}_1, \vec{l}_2, \vec{l}_3$, то прямые совпадают, если только два - \vec{l}_1, \vec{l}_2 , то прямые параллельны. Таким образом, если векторы \vec{l}_1, \vec{l}_2 не коллинеарны, то прямые либо пересекаются, либо скрещиваются. Если прямые пересекаются, то они лежат в одной плоскости и векторы $ec{l}_1, ec{l}_2, ec{l}_3$ компланарны. Если векторы не компланарны – прямые скрещиваются.

В качестве конкретного примера рассмотрим прямые $\begin{cases} x = 2 + t \\ y = 3 + 2t \text{ и} \end{cases} \begin{cases} x = 9 + 4t \\ y = 11 + 5t \text{ . 3десь } \vec{l_1} \leqslant 2; 3 \text{ .} \end{cases}$ $z = 4 + 3t \end{cases} \begin{cases} z = 4 + 3t \end{cases} \begin{cases} z = 3 + 4t \\ z = 13 + 6t \end{cases}$ $\vec{l_2} \leqslant 5; 6 \end{cases}, \vec{l_3} \leqslant -2; 11 - 3; 13 - 4 \end{cases} = (3; 8; 9) \end{cases}$. Начинаем с проверки коллинеарности векторов $\vec{l_1}, \vec{l_2}$:

 $\frac{1}{4} \neq \frac{2}{5}$, значит, эти векторы не коллинеарны и прямые либо пересекаются, либо скрещиваются.

Проверяем компланарность векторов $\vec{l}_1, \vec{l}_2, \vec{l}_3$; $\vec{l}_1 \times \vec{l}_2 \cdot \vec{l}_3 = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$. Векторы коллинеарны,

значит, прямые пересекаются.

8.6 Канонические уравнения прямой в пространстве

Г8.6.1 Канонические уравнения прямой. Положение прямой в пространстве однозначно определяется ее направляющим вектором \vec{l} **(** \vec{l} ; \vec{b} ; \vec{c} и какой-либо точкой M_0 **(** \vec{l}); y_0 ; z_0 лежащей на этой прямой. Точка \vec{l} **(** \vec{l} ; \vec{c}) будет лежать на прямой, определяемой вектором \vec{l} **(** \vec{l} ; \vec{b} ; \vec{c} и точкой M_0 **(** \vec{l}); \vec{l} 0; \vec{l} 1 тогда и только тогда, когда векторы \vec{l} 2 коллинеарны, то есть, когда выполнены условия

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \quad (***).$$

Уравнения (***) называются каноническими уравнениями прямой в пространстве.

Г8.6.2 Замечание. Пример Г8.5.5 дословно переносится на случай канонических уравнений $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$, $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$.

Г8.6.3 Уравнение прямой, проходящей через две заданные точки. Пусть даны две точки M_1 $(x_1; y_1; z_1)$ и M_2 $(x_2; y_2; z_2)$. Тогда направляющим вектором прямой, проходящей через эти точки является, например, \vec{l} $(x_2 - x_1; y_2 - y_1; z_2 - z_1)$ и канонические уравнения прямой имеют вид

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}.$$

8.7 Виды уравнений плоскости в пространстве

Г8.7.1 Векторное уравнение плоскости. Любая плоскость однозначно определяется любой своей точкой M_0 $(0, y_0, z_0)$ и приложенными к этой точке двумя неколлинеарными векторами $\vec{u}_1 = (1, b_1, c_1)$ и $\vec{u}_2 = (1, b_2, c_2)$ (направляющими векторами плоскости). В определяемой плоскости векторы \vec{u}_1 и \vec{u}_2 будучи неколлинеарными, образуют базис. Значит, любой коллинеарный им вектор (параллельный определяемой плоскости) имеет вид $\vec{su}_1 + t\vec{u}_2$, где \vec{s} , \vec{t} с произвольные действительные числа. Таким образом, векторное уравнение плоскости имеет вид

$$\vec{r} = \vec{r}_0 + s\vec{u}_1 + t\vec{u}_2,$$

где $\vec{r}=(x,y,z)$ - радиус-вектор текущей точки плоскости (соответствующий двум конкретным значениям параметров $s,t\in R$), $\vec{r}_0=\P_0,y_0,z_0$ - радиус-вектор выбранной точки M_0 \P_0,y_0,z_0 .

Г8.7.2 Параметрические уравнения плоскости. Расписывая покоординатно векторное уравнение $\vec{r} = \vec{r}_0 + s\vec{u}_1 + t\vec{u}_2$, получим *параметрические уравнения плоскости*

$$\begin{cases} x = x_0 + sa_1 + ta_2 \\ y = y_0 + sb_1 + tb_2 \\ z = z_0 + sc_1 + tc_2 \end{cases}$$

Г8.7.3 Общее уравнение плоскости. Параметрические уравнения плоскости, записанные

в виде
$$\begin{cases} x-x_0=sa_1+ta_2\\ y-y_0=sb_1+tb_2\\ z-z_0=sc_1+tc_2 \end{cases}$$
 выражают факт линейной зависимости векторов

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Раскладывая определитель по первой строке, получим

$$A(-x_0) B(-y_0) C(-z_0) = 0 (****),$$

где $A = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$, $B = -\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$, $C = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$. Раскрыв скобки в (***) и обозначив

 $- (Ax_0 + By_0 + Cz_0) \ne D$ получим общее уравнение плоскости:

$$Ax + By + Cz + D = 0.$$

Г8.7.4 Уравнение плоскости, проходящей через три заданные точки. Пусть заданы три точки M_1 (x_1, y_1, z_1) , M_2 (x_2, y_2, z_2) и M_3 (x_3, y_3, z_3) , не лежащие на одной прямой. Составим уравнение плоскости, проходящей через эти три точки.

В качестве направляющих векторов плоскости можно взять $M_1 M_2 \blacktriangleleft_2 - x_1, y_2 - y_1, z_2 - z_1$ и $M_1 M_3 \blacktriangleleft_3 - x_1, y_3 - y_1, z_3 - z_1$. Тогда, согласно Г9.3.3 уравнение плоскости получится из равенства

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

после раскрытия определителя.

Г8.7.5 Замечание. Если точки M_1 (x_1, y_1, z_1) , M_2 (x_2, y_2, z_2) и M_3 (x_3, y_3, z_3) лежат на одной прямой, то векторы M_1 M_2 $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$ и M_1 M_3 $(x_3 - x_1, y_3 - y_1, z_3 - z_1)$ будут коллинеарны. Следовательно, определитель $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix}$ тождественно равен

нулю и после его раскрытия мы не получим уравнения плоскости.

8.8 Частные случаи общего уравнения

Г8.8.1 Пусть в уравнении Ax + By + Cz + D = 0 коэффициент D = 0, то есть уравнение имеет вид Ax + By + Cz = 0. Очевидно, что плоскость, заданная этим уравнением проходит через начало координат. Пусть в уравнении Ax + By + Cz + D = 0 коэффициент A = 0, но при этом $D \neq 0$. Уравнение имеет вид By + Cz + D = 0, то есть не зависит от переменной x. Допустим, числа $y = y_0, z = z_0$ удовлетворяют уравнению By + Cz + D = 0, тогда любая точка M_0 , $\{(y_0, z_0)\}$ лежит в плоскости By + Cz + D = 0. Иными словами, плоскость параллельна оси OX (именно параллельна, а не содержит этой оси, так как $D \neq 0$). Аналогично, если B = 0 и $D \neq 0$, то плоскость параллельна оси OY, а если C = 0 и $D \neq 0$, то плоскость параллельна оси OY, а если C = 0 и $D \neq 0$, то плоскость параллельна оси OZ.

Г8.8.2 Из Г8.8.1 следует, что если A=0, D=0, то плоскость содержит в себе ось OX, если B=0 и D=0, то плоскость содержит в себе ось OY, наконец, если C=0 и D=0, то плоскость содержит в себе ось OZ.

Г8.8.3 Если A=0 и B=0, то плоскость параллельна координатной плоскости XOY при $D\neq 0$ и совпадает с ней при D=0. Аналогично, если A=0 и C=0, то плоскость параллельна координатной плоскости XOZ при $D\neq 0$ и совпадает с ней при D=0. И если B=0 и C=0, то плоскость параллельна координатной плоскости YOZ при $D\neq 0$ и совпадает с ней при D=0.

Г8.8.4 Уравнение плоскости «в отрезках». Пусть в общем уравнении плоскости ни один из коэффициентов A, B, C, D не равен нулю. Тогда получим Ax + By + Cz = -D;

$$\frac{A}{-D}x + \frac{B}{-D}y + \frac{C}{-D}z = 1;$$
 $\frac{x}{-D/A} + \frac{y}{-D/C} + \frac{z}{-D/C} = 1;$ $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$ Последнее уравнение

называется уравнением плоскости «в отрезках». Нетрудно проверить по аналогии с Γ 7.3.1, что a,b,c - отрезки, отсекаемые плоскостью на осях координат.

8.9 Взаимное расположение двух плоскостей в пространстве

Г9.5.1 Теорема (о совпадении плоскостей) Два уравнения $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ задают одну и ту же плоскость тогда и только тогда, когда $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} \,.$

Доказательство. 1) Если имеет место равенство $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$, то одно уравнение

получается из другого умножением на некоторое число и, очевидно, задает ту же плоскость. 2) Пусть уравнения $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$ задают одну и ту же плоскость. В уравнении $A_1x+B_1y+C_1z+D_1=0$ хотя бы один из коэффициентов A_1,B_1,C_1 не равен нулю (иначе это вообще не уравнение). Пусть, например, $A_1\neq 0$. Тогда и $A_2\neq 0$ иначе уравнение $A_2x+B_2y+C_2z+D_2=0$ задает плоскость, параллельную оси OX, а уравнение $A_1x+B_1y+C_1z+D_1=0$ - плоскость, не параллельную этой оси, чего не может быть, так как по предположению это одна и та же плоскость. Поделим первое уравнение на $A_1\neq 0$, второе — на $A_2\neq 0$ и переобозначим коэффициенты

$$\left(\beta_{i} = \frac{B_{i}}{A_{i}}, \gamma_{i} = \frac{C_{i}}{A_{i}}, \delta_{i} = \frac{D_{i}}{A_{i}}, i = 1,2\right): \quad x + \beta_{1}y + \gamma_{1}z + \delta_{1} = 0, \quad x + \beta_{2}y + \gamma_{2}z + \delta_{2} = 0.$$
 Выберем

какую-либо точку M_1 (x_1, y_1, z_1) лежащую в первой (а, значит, и во второй, плоскости). Тогда $x_1 + \beta_1 y_1 + \gamma_1 z_1 + \delta_1 = 0$ и $x_1 + \beta_2 y_1 + \gamma_2 z_1 + \delta_2 = 0$. Вычитая первое уравнение из второго, получим (x_2, y_2, z_2) , лежащую в той же плоскости и получим (x_2, y_2, z_2) , лежащую в той же плоскости и получим (x_2, y_2, z_2) , лежащую в той же плоскости и получим (x_2, y_2, z_2) , лежащую в той же плоскости и получим (x_2, y_2, z_2) , лежащую в той же плоскости и получим (x_2, y_2, z_2) , лежащую в той же плоскости и получим (x_2, y_2, z_2) , лежащую в той же плоскости $(x_2, y_2, z_2$

$$\begin{cases}
\mathbf{Q}_{2} - \beta_{1} \mathbf{y}_{1} + \mathbf{Q}_{2} - \gamma_{1} \mathbf{z}_{1} + \mathbf{Q}_{2} - \delta_{1} \neq 0 \\
\mathbf{Q}_{2} - \beta_{1} \mathbf{y}_{2} + \mathbf{Q}_{2} - \gamma_{1} \mathbf{z}_{2} + \mathbf{Q}_{2} - \delta_{1} \neq 0
\end{cases}$$

$$\mathbf{Q}_{2} - \beta_{1} \mathbf{y}_{3} + \mathbf{Q}_{2} - \gamma_{1} \mathbf{z}_{3} + \mathbf{Q}_{2} - \delta_{1} \neq 0$$

как систему уравнений относительно неизвестных $\beta = \beta_2 - \beta_1$, $\gamma = \gamma_2 - \gamma_1$, $\delta = \delta_2 - \delta_1$. Эта система имеет очевидное решение $\beta = \gamma = \delta = 0$. Определитель этой линейной

системы уравнений равен $\begin{vmatrix} y_1 & z_1 & 1 \\ y_2 & z_2 & 1 \\ y_3 & z_3 & 1 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 & 1 \\ y_2 - y_1 & z_2 - z_1 & 0 \\ y_3 - y_1 & z_3 - z_1 & 0 \end{vmatrix} \neq 0$, так как точки M_1, M_2, M_3

не лежат на одной прямой. Значит, система имеет единственное решение и $\beta_2=\beta_1$, $\gamma_2=\gamma_1$, $\delta_2=\delta_1$. Откуда получаем $\frac{B_1}{A_1}=\frac{B_2}{A_2}$, $\frac{C_1}{A_1}=\frac{C_2}{A_2}$, $\frac{D_1}{A_1}=\frac{D_2}{A_2}$. А отсюда, в свою очередь, получим $\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}$, что и требовалось.

Г8.9.2 Теорема (о параллельности плоскостей) Два уравнения $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ задают параллельные плоскости тогда и только тогда, когда $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2} \,.$

Доказательство. Плоскости параллельны, тогда и только тогда, когда система уравнений $\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$ не имеет решений. Согласно теореме Кронекера-

Капелли, ранги матриц $T=\begin{pmatrix}A_1&B_1&C_1\\A_2&B_2&C_2\end{pmatrix}$ и $S=\begin{pmatrix}A_1&B_1&C_1&D_1\\A_2&B_2&C_2&D_2\end{pmatrix}$ не совпадают. Ранг

матрицы T не больше двух, так как у нее две строки. Он не может быть равен нулю, иначе T - нулевая матрица и никаких уравнений вообще нет. Он также не может быть равен двум, иначе ранги матриц T и S совпадут. Значит, ранг матрицы T равен одному,

то есть ее строки пропорциональны: $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$. Равенство $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$

невозможно, иначе плоскости совпадут (Г9.5.1), значит, $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$.

Г8.9.3 *Следствие.* Два уравнения $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ задают пересекающиеся плоскости тогда и только тогда, когда не выполняется хотя бы одно из равенств $\frac{A_1}{A_2} = \frac{B_1}{B_2}$, $\frac{B_1}{B_2} = \frac{C_1}{C_2}$.

8.10 Прямая как пересечение двух плоскостей

Линию в пространстве можно рассматривать как пересечение двух поверхностей. В частности, прямую в пространства можно рассматривать, например, как результат пересечения двух плоскостей.

Г8.10.1 Определение. Пусть уравнения $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ задают пересекающиеся плоскости. Тогда система уравнений $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ называется общими уравнениями прямой в пространстве.

Г8.10.2 Переход от общих уравнений прямой к каноническим. Для составления канонических уравнений прямой нужна какая-нибудь точка M_0 ((a, y_0, z_0)), лежащая на этой прямой и какойнибудь направляющий вектор \vec{l} ((a, b, c)) этой прямой. Точку можно найти как любое из решений системы уравнений $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$. Если найти еще какое-нибудь

решение (x_1, y_1, z_1) той же системы, то точка M_1 (x_1, y_1, z_1) будет лежать на той же искомой прямой и в качестве направляющего вектора можно взять $\overrightarrow{M_0}M_1 = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$.

8.11 Нормальный вектор плоскости

- **Г8.11.1 Теорема (об общем уравнение плоскости)** 1) Любая плоскость в прямоугольной системе координат может быть задана уравнением Ax + By + Cz + D = 0, где A, B, C, D некоторые действительные числа.
- 2) Любое уравнение вида Ax + By + Cz + D = 0 при условии $A^2 + B^2 + C^2 \neq 0$ задает в пространстве некоторую плоскость.

Доказательство: 1) Пусть дана некоторая плоскость p и точка $O(x_0,y_0,z_0) \in p$. Пусть вектор $\vec{n}(A,B,C)$ перпендикулярен этой плоскости. Тогда он перпендикулярен любому вектору, лежащему в этой плоскости.

$$A (-x_0) B (-y_0) C (-z_0) = 0$$

$$Ax + By + Cz + (Ax_0 - By_0 - Cz_0) = 0$$

Обозначив $\{Ax_0 - By_0 - Cz_0 \neq D\}$, получим Ax + By + Cz + D = 0.

2) Поскольку $A^2+B^2+C^2\neq 0$, то хотя бы один из коэффициентов A,B,C не равен нулю и уравнение Ax+By+Cz+D=0 имеет решение. Пусть (x_0,y_0,z_0) - какое либо решение этого уравнения, тогда равенство $Ax_0+By_0+Cz_0+D=0$ является тождеством. Вычтем это тождество из уравнения Ax+By+Cz+D=0: $A(-x_0)B(-x_0)C(-z_0)C(-z_0)$ 0. Это уравнение определяет плоскость, перпендикулярную вектору $\vec{n}(A,B,C)$ и проходящую через точку (x_0,y_0,z_0) . *Теорема доказана*.

Г8.11.2 Определение. Вектор $\vec{n}(A,B,C)$ называется *нормальным вектором* плоскости Ax + By + Cz + D = 0.

8.12 Нормальное уравнение плоскости

Г8.12.1 Рассмотрим общее уравнение плоскости Ax + By + Cz + D = 0 и поделим его на $\pm \frac{1}{\sqrt{A^2 + B^2 + C^2}}$, причем знак дроби выберем так, чтобы он был противоположен знаку коэффициента D (если D = 0, знак выбираем произвольно): обозначим $A_1 = \pm \frac{A}{\sqrt{A^2 + B^2 + C^2}}$, $B_1 = \pm \frac{B}{\sqrt{A^2 + B^2 + C^2}}$, $C_1 = \pm \frac{C}{\sqrt{A^2 + B^2 + C^2}}$ с учетом уже выбранного знака. Тогда вектор $\vec{n}_0 = \P_1; B_1; C_1$ коллинеарен нормальному вектору $\vec{n} = \P; B; C$ и по длине равен единице. Иными словами, числа A_1, B_1, C_1 являются направляющими косинусами нормального вектора плоскости. Уравнение плоскости запишется в виде $x \cos \alpha + y \cos \beta + z \cos \gamma - p = 0$, где в силу выбора знака, $p \ge 0$. Уравнение $x \cos \alpha + y \cos \beta + z \cos \gamma - p = 0$ называется нормальным уравнением

плоскости, при этом число $p \ge 0$ - расстояние от начала координат до плоскости. Действительно, выражение $x\cos\alpha + y\cos\beta + z\cos\gamma$ - это проекция радиус-вектора (x;y;z) на вектор $\vec{n} = \{A;B;C\}$ и p - проекция того же радиус-вектора (x;y;z) на вектор $\vec{n} = \{A;B;C\}$.

Г8.12.2 Теорема (Расстояние от точки до плоскости) Если плоскость π задана нормальным уравнением $x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$, то расстояние от точки M_0 (0, y_0 , y_0 , y_0) до этой плоскости равно $d = |x_0\cos\alpha + y_0\cos\beta + z_0\cos\gamma - p|$.

Доказательство. Через точку M_0 ($_0$, y_0 , z_0) проводим плоскость π_0 , параллельную плоскости π и рассмотрим ось, определяемую вектором $\vec{n}_0 = \cos\alpha;\cos\beta;\cos\gamma$, приложенным к началу координат и, очевидно, перпендикулярным к обеим плоскостям. Эта ось пересечет плоскости соответственно в точках P и P_0 . Расстояние $d = \begin{vmatrix} \overrightarrow{PP_0} \\ P \end{vmatrix}$. По лемме Шаля (Г1.4.7)

получаем $\overrightarrow{OP_0} = \overrightarrow{OP} + \overrightarrow{PP_0}$, при этом $\left| \overrightarrow{OP_0} \right| = \Pi p_{\vec{n_0}} \overrightarrow{OM}_0$. Но, поскольку $\overrightarrow{OM}_0 = \P_0$, y_0, z_0 , то $\left| \overrightarrow{OP_0} \right| = \Pi p_{\vec{n_0}} \overrightarrow{OM}_0 = x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma$. Поскольку $\overrightarrow{OP} = p$, то из $\overrightarrow{OP_0} = \overrightarrow{OP} + \overrightarrow{PP_0}$ получаем $\left| \overrightarrow{PP_0} \right| = \pm \P_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p$ и $d = \left| x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p \right|$.

Г10.4.3 *Следствие*. Если плоскость π задана общим уравнением Ax + By + Cz + D = 0, то расстояние от точки M_0 (x_0, y_0, z_0) до этой плоскости равно $d = \frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\left|Ax_0 + By_0 + Cz_0 + C\right|}$.

8.13 Основные задачи для прямой и плоскости в пространстве

Г8.13.1 Угол между плоскостями. Угол между плоскостями $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ равен углу между их нормальными векторами:

$$\cos\varphi = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Г8.13.2 Угол между прямой и плоскостью.

Пусть дана прямая $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ и плоскость Ax + By + Cz + D = 0.

Решение: Пусть α - искомый угол между прямой и плоскостью, β - угол между направляющим вектором прямой и нормальным вектором плоскости, тогда $\alpha + \beta = 90^{\circ}$ и $\sin \alpha = \cos \beta$.

Значит,
$$\sin \alpha = \frac{lA + mB + nC}{\sqrt{l^2 + m^2 + n^2} \cdot \sqrt{A^2 + B^2 + C^2}}$$
.

Г8.13.3 Определение взаимного положения прямой и плоскости в пространстве.

Прямая может пересекать плоскость, лежать в этой плоскости или быть ей параллельной. Определить взаимное положение прямой и плоскости можно, рассмотрев систему, состоящую из уравнения плоскости и уравнений прямой: если система имеет единственное решение – прямая и плоскость пересекаются в единственной точке; если система имеет бесконечно много решений – прямая лежит в плоскости; если система не имеет решений – плоскость и прямая параллельны.

Можно привести и менее громоздкий способ определения взаимного положения прямой и плоскости:

- 1) Прямая $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ и плоскость Ax + By + Cz + D = 0 пересекаются тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости не перпендикулярны: $Al + Bm + Cn \neq 0$.
- 2) Прямая лежит в плоскости тогда и только тогда, когда Al+Bm+Cn=0 и $Ax_0+By_0+Cz_0+D=0$.
- 3) Прямая параллельна плоскости тогда и только тогда, когда Al+Bm+Cn=0 и $Ax_0+By_0+Cz_0+D\neq 0$.

Г8.13.4 Расстояние от точки до прямой в пространстве. Пусть дана прямая $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ и точка M_1 (, y_1, z_1). Требуется найти расстояние от этой точки до данной прямой.

Решение. Искомое расстояние является высотой h параллелограмма, построенного на векторах $\vec{u} = \{\!\!\{\!\!\{\!\!\}\!\!\}, c\!\!\}$ и $\vec{v} = \{\!\!\{\!\!\{\!\!\}\!\!\}\}, c\!\!\}$ и $\vec{v} = \{\!\!\{\!\!\}\!\!\}$, $v_0, v_1 - v_0, v_1$

$$h = \frac{\sqrt{\begin{vmatrix} y_1 - y_0 & z_1 - z_0 \end{vmatrix}^2 + \begin{vmatrix} z_1 - z_0 & x_1 - x_0 \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \end{vmatrix}^2}}{\sqrt{a^2 + b^2 + c^2}}$$

Г8.13.5 Расстояние между двумя скрещивающимися прямыми. Даны уравнения двух скрещивающихся прямых $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ и $\frac{x-x_2}{a_{21}} = \frac{y-y_2}{b_2} = \frac{z-z_3}{c_3}$. Требуется найти расстояние между этими прямыми.

Решение. Искомое расстояние является высотой h параллелепипеда, построенного на векторах $\vec{u} = \P_1, b_1, c_1$ и $\vec{v} = \P_2, b_2, c_2$ и $\vec{w} = \P_2 - x_1, y_2 - y_1, z_2 - z_1$, отложенных от точки M_1 \P_1, y_1, z_1 . Объем этого параллелепипеда равен модулю смешанного произведения $\vec{u} \times \vec{v} \cdot \vec{w}$, а площадь основания, на которое опущена высота n равна модулю векторного произведения $\vec{u} \times \vec{v}$.

Таким образом,
$$h = \frac{\left| \vec{u} \vec{v} \vec{w} \right|}{\left| \vec{u} \times \vec{v} \right|}$$
.

Контрольные вопросы:

- 1. Сформулируйте теорему об общем уравнении прямой на плоскости. Сформулируйте теорему о совпадении прямых и следствие о параллельности прямых. Запишите уравнение прямой, проходящей через две заданные точки и уравнение прямой «в отрезках».
- 2. Запишите уравнение прямой с угловым коэффициентом. Как вычисляется угол между прямыми? Запишите условие перпендикулярности прямых. Что называется нормальным уравнение прямой? Как перейти от общего уравнения прямой к нормальному? Как находится расстояние от точки до прямой на плоскости?

- 3. Запишите векторные и параметрические уравнения прямой в пространстве. Запишите канонические уравнения прямой в пространстве. Запишите уравнения прямой, проходящей через две заданные точки в пространстве.
- 4. Запишите векторные и параметрические уравнения плоскости. Запишите уравнение плоскости, проходящей через две заданные точки. Запишите уравнение плоскости «в отрезках».
- 5. Сформулируйте теорему о совпадении плоскостей. Сформулируйте теорему о параллельности плоскостей. Что называется нормальным уравнением плоскости. Как перейти от общего уравнения плоскости к нормальному? Как вычисляется расстояние от точки до плоскости?
- 6. Опишите алгоритм перехода от общих уравнений прямой в пространстве к каноническим. Как вычисляется угол между плоскостями? Как вычисляется угол между прямой и плоскостью? Как определить взаимное положение двух прямых в пространстве по их каноническим уравнениям? Как определить взаимное положение прямой и плоскости? Как вычислить расстояние от точки до прямой в пространстве? Как вычислить расстояние между двумя скрещивающимися прямыми?