Math 285D Notes: 12/5

Tyler Arant

Correction for proof of Weierstrass Preparation. We had $f, g \in \mathbb{C}\{X, T\}$, f regular of order d, and

$$F = u^{-1} \sum_{i \leq d} f_i T^i, \quad u = f_d + f_{d+1} T + \dots \in \mathbb{C} \{X, T\}^{\times}.$$

Choose $(r', r_{m+1}) \in (\mathbb{R}^{>0})^{m+1}$ such that

$$\|g\|_{r}, \|u^{-1}\|_{r}, \|f_{0}\|_{r'}, \dots, \|f_{d+1}\|_{r'} < \infty.$$

Then, we can achieve

$$||F||_r \le ||u^{-1}|| \cdot \sum_{i < d} ||f_i||_{r'} r_{m+1}^i < r_{m+1}^d,$$

since the f_i vanish at 0 we can make the norms as small as we want by choosing r' small enough.

Let $R \subset S$ be an extension of commutative rings.

0.1 Definition. *S* is *flat over R* if each solution in *S* to an equation

$$r_1 x_1 + \dots + r_n x_n = 0 \qquad (r_i \in R) \tag{*}$$

is an *S*-linear combination of solutions in *R*.

0.2 Lemma. If S free as an R-module, then S is flat over R.

Proof. Let $s = (s_1, ..., s_n) \in S^n$ be a solution to (*). Take R-linearly independent $e_1, ..., e_k \in S$ such that

$$s_i = \sum_j w_{ij} e_j \qquad (w_{ij} \in R).$$

Put $w_j = (w_{1j}, ..., w_{nj})$. Then w_j is a solution to (*) and $s = \sum_j e_j w_j$.

We give some examples

- If *R* is a field, then each *S* is flat over *R*.
- $S = R[X_1, ..., X_n]$ flat over R.

0.3 Lemma. Suppose *S* is flat over *R*. Then each solution in *S* to a system

$$r_{i1}x_1 + \dots + r_{in}x_n = 0$$
 $(i = 1, \dots, m; r_{ij} \in R)$

is an *S*-linear combination of solutions in *R*.

Proof. By induction on *m*.

- **0.4 Definition.** We say that *S* is *faithfully flat* over *R* if
- *S* is flat over *R*.
- · Each equation

$$r_1 x_1 + \dots + r_n x_n = 1 \qquad (r_i \in R)$$

that has a solution in S has a solution in R.

- **0.5 Lemma.** Suppose *S* is flat over *R*. The following are equivalent.
- (1) S is faithfully flat over R.
- (2) For each maximal ideal \mathfrak{m} of R, we have $\mathfrak{m}S \neq S$.
- (3) Each system

$$\sum_{i=1}^{n} r_{ij} x_j = t_i \qquad (i = 1, \dots, m; r_{ij}, t_i \in R)$$
 (*)

that has a solution in S has a solution in R.

(1) \Longrightarrow (2): Suppose, by means of contradiction, that $\mathfrak{m}S = S$. Then, there are $r_i \in \mathfrak{m}$ and $s_i \in S$ such that

$$r_1 s_1 + \cdots + r_n s_n = 1,$$

i.e., $s = (s_1, ..., s_n)$ is a solution to the equation

$$r_1 x_1 + \cdots + r_n x_n = 1.$$

Since *S* is faithfully flat over *R*, there is a solution $w = (w_1, ..., w_n)$ so that

$$1 = r_1 w_1 + \cdots + r_n w_n \in \mathfrak{m},$$

which is a contradiction.

(2) \Longrightarrow (1): Suppose S is not faithfully flat over R; then, there are $r_i \in R$ such that

$$r_1 x_1 + \dots + r_n x_n = 1$$

has a solution s in S but not a solution in R. Then the ideal $\mathfrak{a} = (r_1, \dots, r_n)$ in R is proper. Let \mathfrak{m} be an ideal in R that contains \mathfrak{a} . Then, $\mathfrak{m}S = S$ since

$$1 = r_1 s_1 + \cdots + r_n s_n \in \mathfrak{m} S.$$

- $(3) \Longrightarrow (1)$ trivially.
- (1) \Longrightarrow (3): Suppose (*) has a solution $s = (s_1, ..., s_n) \in S^n$. Then, $(1, s) = (1, s_1, ..., s_n)$ is a solution to the homogenous system

$$-t_{1}x_{0} + \sum_{j=1}^{n} r_{1j}x_{j} = 0$$

$$\vdots$$

$$-t_{m}x_{0} + \sum_{j=1}^{n} r_{mj}x_{j} = 0$$

$$(**)$$

Since *S* is flat over *R*, (1, s) is an *S*-linear combination of solutions $(u_1, v_1), \ldots, (u_k, v_k)$ in R^{1+n} . So,

$$(1, s) = w_1(u_1, v_1) + \dots + w_k(u_k, v_k) \qquad (w_i \in S),$$

hence

$$1 = w_1 u_1 + \cdots + w_k u_k.$$

By (1), there exists $\omega_1, \ldots, \omega_k \in R$ such that

$$1 = \omega_1 u_1 + \cdots + \omega_k u_k.$$

Then, $\omega_1 v_1 + \cdots + \omega_k v_k \in \mathbb{R}^n$ solves (*).

0.6 Theorem. $\mathbb{C}[[X]]$ *is faithfully flat over* $\mathbb{C}[X]$.

Proof sketch. We proceed by induction on the number of variable. Consider

$$f_1 \, y_1 + \dots + f_n \, y_n = 0 \qquad (f_i \in \mathbb{C}\{X, T\}.$$
 (*)

We may assume that all f_i , if nonzero, are regular in T. Then, apply Weierstass Preparation in $\mathbb{C}\{X,T\}$ to the $f_i \neq 0$. Then, we can assume that the $f_i \neq 0$ are Weierstrass polynomials: $f_i \in \mathbb{C}\{X\}[T]$ monic of some degree d_i . Set

$$z_{2} = \begin{bmatrix} f_{2} \\ -f_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, z_{3} = \begin{bmatrix} f_{3} \\ 0 \\ -f_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, z_{n} = \begin{bmatrix} f_{n} \\ 0 \\ \vdots \\ 0 \\ -f_{1} \end{bmatrix},$$

which together is a solution of (*). We have $y_i = q_i f_1 + r_i$, where $q_i \in \mathbb{C}[[X,T]]$, and $r_i \in \mathbb{C}[[X]][T]$ is of degree $< d_1$. Then consider

$$y + q_2 z_2 = \begin{bmatrix} * \\ r_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}, \dots, y + q_2 z_2 + \dots + f_n y_n = \begin{bmatrix} * \\ r_2 \\ r_3 \\ \vdots \\ r_n \end{bmatrix},$$

and conclude that we can assume $y_2, ..., y_n \in \mathbb{C}[[X]][T]$. We have

$$g := f_1 y_1 = -(f_2 y_2 + \dots + f_n y_n) \in \mathbb{C}\{X\}[T].$$

We can find h, r with $g = f_1 h + r$ with $h, r \in \mathbb{C}[[X]][T]$, $\deg r < d_1$. So, $g = f_1 y_1 + 0$ in $\mathbb{C}[[X, T]]$, hence r = 0 and $y_1 = h \in \mathbb{C}[[X]][T]$. This reduces the proof to showing: $R \subset S$ flat $\implies R[T] \subset S[T]$ flat.

1 Restricted Analytic Functions

1.1 Lemma (Taylor expansion). Suppose $f \in \mathbb{C}\{X\}_s$ and $b \in D_s(0)$, $j \in \mathbb{N}^m$. Then,

- (1) $\partial^j f := \left(\frac{\partial}{\partial X_1}\right)^{j_1} \cdots \left(\frac{\partial}{\partial X_m}\right)^{j_m} f \in \mathbb{C}\{X\}_r \text{ for all } r < s.$
- (2) $(\partial^j f)(b) := \sum_{i \ge j} f_i \frac{i!}{(i-j)!} b^{i-j}$ converges absolutely.
- (3) $\sum_{j} \frac{1}{j!} (\partial^j f)(b) X^j \in \mathbb{C}\{X\}_{s(b)}$, where

$$s(b) = (s_1 - |b_1|, \dots, s_m - |b_m|),$$

and

$$f(x+b) = \sum_{j} \frac{1}{j!} (\partial^{j} f)(b) x^{j} \qquad (x \in \overline{D_{s(b)}}(0)).$$

- *Proof.* (1) By induction on |j|. The case $\frac{\partial}{\partial x+k}$ follows from Abel's Lemma: a finite bound on $|f_i|s^i$ gives a finite bound on $i_k|f_i|r^{i-e_k}$ (for given r < s, with e_k is the k^th standard basis vector).
- (2) Follows easily from (1).
- (3) Left as an exercise using (2) and multivariate binomial theorem.