华东师范大学 2012 年攻读硕士学位研究生入学试题

共 3 页

考试科目代码及名称: 360 高等数学(A)

招生专业(领域)名称:

考生注意:

无论以下试题中是否有答题位置,均应将答案做在考场另发的答题纸上(写明题号).

- 一、填空题(本题 (共 6 小题,每小题 4 分,满分 24 分)
- 2. \(\dip\frac{\beta}{2}\)_{-3} $(x\cos\frac{x}{2}+1)\sqrt{9-x^2}dx = \underline{\hspace{1cm}}$
- 3. 设函数 $u(x, y, z) = x^2 + y^2 + z^2$. 则 div (grad u) = _______, rot (grad u) = ______.
- 4. 曲面 $x^2 4y^2 + 2z^2 = 6$ 上点 (2,2,3) 处的法线方程为______.
- 6. 设矩阵 $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,矩阵 B 满足 $ABA^* = 5BA^* + E$,其中 A^* 是 A 的伴随矩阵, E 为 3 阶单位矩阵.则

| *B* |= ______.

- 二、选择题 (本题共6小题,每小题4分,满分24分)
- 7. 下列命题正确的是_____.
 - [A] 设f(x)为有界函数,且 $\lim \alpha(x)f(x) = 0$,则 $\lim \alpha(x) = 0$;
 - [**B**] 设 $\alpha(x)$ 为无穷小量,且 $\lim \frac{\alpha(x)}{\beta(x)} = a \neq 0$,则 $\lim \beta(x) = \infty$;
 - [C] 设 $\alpha(x)$ 为无穷大量,且 $\lim \alpha(x)\beta(x) = a$,则 $\lim \beta(x) = 0$;
 - [**D**] 设 $\alpha(x)$ 为无界函数,且 $\lim \alpha(x)f(x)=0$,则 $\lim f(x)=0$.
- 8. 函数 $f(x,y) = \sqrt{x^2 + y^2}$,则在点(0,0)处 _____.
 - [A] 不连续;

- [B] 两个偏导数均存在;
- [C] 沿任一方向的方向导数都存在;
- [**D**] 可微.

9. 设曲线 L: f(x,y) = 2 经过第四象限内的点 M 和第二象限内的点 N , 其中函数 f(x,y) 具有二阶连续偏导数,

又 Γ 为L上从点M到点N的一段弧.则下列积分为**负值**的是.

$$[\mathbf{A}] \int_{\Gamma} f(x, y) \mathrm{d}x;$$

[B]
$$\int_{\Gamma} f(x, y) dy$$
;

[C]
$$\int_{\Gamma} f(x, y) ds$$
;

[D]
$$\int_{\Gamma} f_x(x,y) dx + f_y(x,y) dy.$$

10. 设函数 $f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ 2 - 2x, & \frac{1}{2} < x < 1, \end{cases}$ 而 $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x, -\infty < x < +\infty$,其中的系数

 $b_n = 2\int_0^1 f(x) \sin n\pi x dx, \ n = 1, 2, 3, \dots$ $\mathbb{N} S\left(\frac{11}{2}\right) = \underline{\qquad}$

[A]
$$-\frac{1}{2}$$
;

[B]
$$-\frac{3}{4}$$
;

[C]
$$\frac{1}{2}$$
;

[D]
$$\frac{3}{4}$$

11. 微分方程 $y'' + 4y' + 4y = e^{-2x} + 1$ 的特解具有的形式为 ______.

[A]
$$Ae^{-2x} + B$$
;

[B]
$$Axe^{-2x} + B$$
;

[C]
$$Ax^2e^{-2x} + B$$
;

[D]
$$e^{-2x} + B$$
.

12. 设 $A \neq n \times n$ 非零矩阵, $E \rightarrow n$ 阶单位矩阵. r(E+A) 和 r(E-A) 分别表示矩阵 E+A 与E-A 的秩.

 $A^3 = 0$,则有 _____.

[A]
$$r(E-A) < n$$
, $r(E+A) < n$;

[A]
$$r(E-A) < n$$
, $r(E+A) < n$; [B] $r(E-A) < n$, $r(E+A) = n$;

[C]
$$r(E-A) = n$$
, $r(E+A) < n$; [D] $r(E-A) = n$, $r(E+A) = n$

[D]
$$r(E-A) = n$$
, $r(E+A) = n$

三、解答题

- 13. (10 分) 求函数极限 $\lim_{x\to 0} \frac{(\cos x 1)(x \ln(1 + \sin x))}{\tan^4 x}$.
- 14. (10 分) 判別级数 $\sum_{n=1}^{\infty} \left(1 \cos \frac{2}{\sqrt{n}}\right)^2$ 的敛散性.
- 15. (10 分) 证明不等式: 当x > 0时, $(x^2 1)\ln x \ge (x 1)^2$, 当且仅当x = 1时等号成立.
- 16. (12 分) 求函数 $f(x) = \int_0^x \frac{3t+1}{t^2-t+1} dt$ 在[0,1]上的最大值和最小值.
- 17. (12 分) 已知函数 f(x, y) 满足 $f(x, y) = xy + x^2 y \iint_D xy f(x, y) dx dy$, 其中 D 为由直线 y = x, y = 0, x = 1 所围

成的区域. 求 $\frac{\partial^2 f}{\partial x \partial y}$.

- 19. (12 分) 设函数 u = f(r) , $r = \sqrt{x^2 + y^2 + z^2}$,其中 f 是二阶可微的函数,且 $\lim_{x \to 1} \frac{f(x) 1}{x 1} = 1$. 已知函数 u(x, y, z)满足 Laplace 方程

(E)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

- (1) 试将上述偏微分方程(E) 化为 f(r) 的常微分方程;
- (2) 求出 f(r) 的解析式.
- 20. (12 分) 已知向量 $\alpha_1 = (1, 0, 2, 3)^T$, $\alpha_2 = (1, 1, 3, 5)^T$, $\alpha_3 = (1, -1, a+2, 1)^T$, $\alpha_4 = (1, 2, 4, a+8)^T$ 以及向量 $\beta = (1, 1, b+3, 5)^T$.
 - (1) 若 β 不能由 α_1 , α_2 , α_3 , α_4 线性表出,求a、b的值;
 - (2) 求a、b 为何值时, β 可以表示成 α_1 , α_2 , α_3 , α_4 的线性组合且表法唯一,并求出该表达式.
- 21. (12 分) 已知矩阵 $A = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 2 & 3 \\ 0 & 0 & a \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 2 & b & 0 \\ -1 & 2 & -1 \end{pmatrix}$ 相似.
 - (1) 求*a*、*b*的值;
 - (2) 求可逆矩阵 $P \oplus P^{-1}AP = B$.