

Fundamentals of Momentum, Heat, and Mass Transfer

Welty | Wicks | Wilson | Rorrer

SOLUTION MANUAL

— Fifth Edition —

CHAPTER 1

1.1 $n = 4 \times 10^{20}$ MOLECULES/m³

$$\bar{v} = \sqrt{k_B T} = 1.32 \times 10^4 \text{ m/s}$$

$$A = \pi/4 (10^{-3} \text{ m})^2$$

$$NA = \frac{1}{4} n \bar{v} A = 1.04 \times 10^{18} \text{ m/s}$$

1.2 FLOW PROPERTIES:

VELOCITY

PRESSURE GRADIENT

STRESS

FLUID PROPERTIES:

PRESSURE

TEMPERATURE

DENSITY

SPEED OF SOUND

SPECIFIC HEAT

1.3 MASS OF SOLID = $\rho_s V_s$

" " FLUID = $\rho_f V_f$

$$x = \frac{\rho_s V_s}{\rho_s V_s + \rho_f V_f}$$

$$\Rightarrow \frac{V_f}{V_s} = \frac{1-x}{x} \frac{\rho_s}{\rho_f}$$

$$\rho_{mix} = \frac{\rho_s V_s + \rho_f V_f}{V_s + V_f} = \frac{\rho_s + \rho_f (V_f/V_s)}{1 + V_f/V_s}$$

$$= \frac{x \rho_s + (1-x) \rho_f}{x \rho_f + (1-x) \rho_f}$$

1.4 GIVEN $\frac{P+B}{P_1+B} = \left(\frac{\rho}{\rho_1}\right)^7$

$$\text{For } P_1 = 1 \text{ atm} \quad \frac{\rho}{\rho_1} = 1.01$$

$$P = 3001 (1.01)^7 - 3000 \\ = 21 \text{ atm}$$

1.5 AT CONSTANT TEMPERATURE

$$P/\rho_T = \text{CONST.} \Rightarrow P/\rho = \text{CONST.}$$

FOR 10% INCREASE IN ρ

P MUST ALSO INCREASE BY 10%

1.6 SINCE DENSITY VARIES AS

$$\rho = kP$$

$$\rho_{250,000 \text{ FT}} = \rho_{S.L.} \frac{P_{250,000 \text{ FT}}}{P_{S.L.}}$$

$$\therefore \rho = n M \quad (M = \text{MOLECULAR WT})$$

$$\therefore n_{250,000} = n_{S.L.} \left[\frac{1.5 \times 10^7}{2.378 \times 10^{-3}} \right] \\ = 4 \times 10^{20} \left[\cancel{z} \right] = 2.5 \times 10^{16}$$

$$\vec{r} = |\vec{r}|_x \vec{e}_x + |\vec{r}|_y \vec{e}_y$$

$$= \cos \theta \vec{e}_x + \sin \theta \vec{e}_y$$

$$\vec{e}_\theta = |\vec{e}_\theta|_x \vec{e}_x + |\vec{e}_\theta|_y \vec{e}_y$$

$$= -\sin \theta \vec{e}_x + \cos \theta \vec{e}_y$$

Q.E.D.

$$1.8 \quad \frac{d\vec{e}_r}{d\theta} = -\sin\theta \vec{e}_x + \cos\theta \vec{e}_y \\ = \vec{e}_\theta$$

$$\frac{d\vec{e}_\theta}{dt} = -\omega\theta \vec{e}_x - \sin\theta \vec{e}_y \\ = -\vec{e}_r$$

Q.E.D.

1.9 TRANSFORMATION FROM (x,y) TO (r,θ)

$$\frac{\partial}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial y} = \frac{\partial r}{\partial y} \frac{\partial}{\partial r} + \frac{\partial \theta}{\partial y} \frac{\partial}{\partial \theta}$$

$$r^2 = x^2 + y^2 \quad \Rightarrow \quad \tan^{-1} y/x$$

$$\text{so: } \frac{\partial r}{\partial x} = \frac{x}{(x^2+y^2)^{1/2}} = \frac{r \cos\theta}{r} = \cos\theta$$

$$\frac{\partial \theta}{\partial x} = -\frac{y}{x^2+y^2} = -\frac{r \sin\theta}{r^2} = -\frac{\sin\theta}{r}$$

$$\frac{\partial r}{\partial y} = \sin\theta \quad \frac{\partial \theta}{\partial y} = \frac{\cos\theta}{r}$$

$$\Rightarrow \frac{\partial}{\partial x} = \cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial y} = \sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r} \frac{\partial}{\partial \theta}$$

$$1.10 \quad \nabla = \frac{\partial}{\partial x} \vec{e}_x + \frac{\partial}{\partial y} \vec{e}_y + \frac{\partial}{\partial z} \vec{e}_z \\ = \left(\cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \right) \vec{e}_x \\ + \left(\sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r} \frac{\partial}{\partial \theta} \right) \vec{e}_y \\ + \frac{\partial}{\partial z} \vec{e}_z$$

1.10 (CONTINUED) --

$$= (\vec{e}_x \cos\theta + \vec{e}_y \sin\theta) \frac{\partial}{\partial r} \\ + \frac{1}{r} (-\vec{e}_x \sin\theta + \vec{e}_y \cos\theta) \frac{\partial}{\partial \theta} \\ + \vec{e}_z \frac{\partial}{\partial z}$$

thus:

$$\nabla = \vec{e}_r \frac{\partial}{\partial r} + \frac{1}{r} \vec{e}_\theta \frac{\partial}{\partial \theta} + \vec{e}_z \frac{\partial}{\partial z}$$

$$1.11 \quad \nabla P = \frac{\partial P}{\partial x} \vec{e}_x + \frac{\partial P}{\partial y} \vec{e}_y$$

$$\nabla P(a,b) = S_0 V_m^2 \left\{ \left[\frac{1}{a} (\cos 1 \sin 1 + 2) \vec{e}_x \right. \right. \\ \left. \left. + \frac{1}{b} (\sin 1 \cos 1) \vec{e}_y \right] \right. \\ \left. = S_0 V_m^2 \left[\frac{1}{a} \sin \frac{2}{2} + 2 \right] \vec{e}_x \right. \\ \left. + \frac{1}{b} \left(\sin \frac{2}{2} \right) \vec{e}_y \right\}$$

$$1.12 \quad \nabla T(x,y) = T_0 \bar{e}^{1/4} \left[\frac{1}{a} \left(\cosh \frac{x}{a} \cosh \frac{y}{b} \right) \vec{e}_x \right. \\ \left. + \frac{1}{b} \left(\sinh \frac{x}{a} \sinh \frac{y}{b} \right) \vec{e}_y \right]$$

$$\nabla T(a,b) = T_0 \bar{e}^{1/4} \left[\frac{1}{a} (\cosh 1 \cosh 1) \vec{e}_x \right. \\ \left. + \frac{1}{b} (\sinh 1 \sinh 1) \vec{e}_y \right] \\ = T_0 \bar{e}^{1/4} \left[\frac{\cosh 1 (\bar{e} + \bar{e}^2)}{2a} \vec{e}_x \right. \\ \left. + \frac{\sinh 1 (\bar{e} - \bar{e}^2)}{2b} \vec{e}_y \right] \\ = T_0 \frac{\bar{e}^{5/4}}{2} \left[\frac{\cosh 1 (1 + \bar{e}^2)}{a} \vec{e}_x \right. \\ \left. + \frac{\sinh 1 (1 - \bar{e}^2)}{b} \vec{e}_y \right]$$

1.13 In Prob 1.12 $T(x,y)$ is dimensionally homogeneous (D.H.)

$P(x,y)$ in Prob 1.11 will be D.H. if

$$P_P \sim \frac{1}{V_B^2} L_B s^2 / \pi^4$$

or using the conversion factor g_C

$$1.14 \quad \phi = 3x^2y + 4y^2$$

$$\text{a) } \nabla \phi = (6xy)\vec{e}_x + (3x^2 + 8y)\vec{e}_y$$

$$\nabla \phi(3,5) = 90\vec{e}_x + 67\vec{e}_y$$

$$\text{b) } \nabla \phi \cdot \vec{e}_S = [6xy\vec{e}_x + (3x^2 + 8y)\vec{e}_y] \cdot [(\cos\theta)\vec{e}_x + (\sin\theta)\vec{e}_y]$$

AT POINT (3,5)

$$\begin{aligned} \nabla \phi \cdot \vec{e}_S &= (90\vec{e}_x + 67\vec{e}_y) \\ &\cdot [\cos(-60)\vec{e}_x + \sin(-60)\vec{e}_y] \\ &= 45 - 58.02 = -13.02 \end{aligned}$$

1.15 For an IDEAL GAS

$$P = \frac{g RT}{M}$$

$$\text{from Prob. 1.3 } g = \frac{g_m(1-x)}{1 - \frac{g_m}{g_s} x}$$

$$\therefore P = \frac{g_m(1-x)}{1 - \frac{g_m}{g_s} x} \cdot \frac{RT}{M}$$

$$1.16 \quad \psi = Ar \sin\theta \left(1 - \frac{a^2}{r^2}\right)$$

$$\text{a) } \nabla \psi = \frac{\partial \psi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \psi}{\partial \theta} \vec{e}_\theta \\ = A \sin\theta \left(1 - \frac{a^2}{r^2}\right) \vec{e}_\theta$$

$$\text{b) } |\nabla \psi| = A \left[\sin^2\theta \left(1 + \frac{a^2}{r^2}\right)^2 + \cos^2\theta \left(1 - \frac{a^2}{r^2}\right)^2 \right]^{1/2}$$

$|\nabla \psi|_{\max}$ is given by & $|\nabla \psi| = 0$

$$\text{or } \frac{\partial}{\partial r} |\nabla \psi| dr + \frac{\partial}{\partial \theta} |\nabla \psi| d\theta = 0$$

$$\text{REQUIRMENT } \frac{\partial}{\partial r} |\nabla \psi| = \frac{\partial}{\partial \theta} |\nabla \psi| = 0$$

for $\frac{\partial}{\partial r} |\nabla \psi| = 0$:

$$-\sin^2\theta \left(1 + \frac{a^2}{r^2}\right) + \cos^2\theta \left(1 - \frac{a^2}{r^2}\right) = 0 \quad (1)$$

$$\frac{1}{2} \text{ from } \frac{\partial}{\partial \theta} |\nabla \psi| = 0$$

$$\sin\theta \cos\theta \left[\left(1 + \frac{a^2}{r^2}\right)^2 - \left(1 - \frac{a^2}{r^2}\right)^2\right] = 0 \quad (2)$$

$$\text{From Eq 2: } \sin\theta \cos\theta 4\frac{a^2}{r^2} = 0$$

IF $a \neq 0, r \neq 0$ THEN $\sin\theta \cos\theta = 0$

FOR WHICH $\theta = 0, \pi/2$ (3)

SUBST INTO EQ. 1 $\theta = 0, 1 - \frac{a^2}{r^2} = 0$

GIVEN $a = r$

FOR $\theta = \pi/2 \quad 1 + \frac{a^2}{r^2} = 0$ is IMPOSSIBLE

THUS CONDITIONS FOR $|\nabla \psi|_{\max}$ ARE

$$\theta = 0 \quad r = a$$

$$1.17 P = P_0 + \frac{1}{2} \rho U_\infty^2 \left[\frac{2xz^2}{L^3} + 3\left(\frac{x}{L}\right)^2 + \frac{U_\infty t}{L} \right]$$

$$\frac{\partial P}{\partial x} \vec{e}_x = \frac{1}{2} \rho U_\infty^2 \left[\frac{2xz^2}{L^3} + \frac{6x}{L^2} \right] \vec{e}_x$$

$$\frac{\partial P}{\partial y} \vec{e}_y = \frac{1}{2} \rho U_\infty^2 \left[\frac{2yz^2}{L^3} \right] \vec{e}_y$$

$$\frac{\partial P}{\partial z} \vec{e}_z = \frac{1}{2} \rho U_\infty^2 \left[\frac{2xy^2}{L^3} \right] \vec{e}_y$$

$$\nabla P = \frac{1}{2} \rho U_\infty^2 \left[\left(\frac{2xz^2}{L^3} + \frac{6x}{L^2} \right) \vec{e}_x + \frac{2yz^2}{L^3} \vec{e}_y + \frac{2xy^2}{L^3} \vec{e}_z \right]$$

$$1.18 \text{ VERTICAL CYLINDER } d = 10 \text{ m} \quad h = 6 \text{ m}$$

$$V = \frac{\pi}{4} (10 \text{ m})^2 (6 \text{ m}) = 471.2 \text{ m}^3$$

$$@ 20^\circ \text{C } \rho_w = 998.2 \text{ kg/m}^3$$

$$m = \rho_w V = (998.2)(471.2) = 470350 \text{ kg}$$

$$@ 80^\circ \text{C } \rho_w = 971.8 \text{ kg/m}^3$$

$$m = (971.8)(471.2) = 457910 \text{ kg}$$

$$\Delta m = 12440 \text{ kg}$$

$$1.19 \text{ LIQUID } - V = 1200 \text{ cm}^3 @ 1.25 \text{ MPa}$$

$$V = 1188 \text{ cm}^3 @ 2.5 \text{ MPa}$$

$$\beta = -V \left(\frac{\partial P}{\partial V} \right)_T \approx -V \frac{\Delta P}{\Delta V}$$

$$V = 1194 \text{ cm}^3 = 1.194 \times 10^{-3} \text{ m}^3$$

$$\Delta V = -12 \text{ cm}^3 = -1.2 \times 10^{-7} \text{ m}^3$$

$$\beta = -1.194 \times 10^{-3} \left[\frac{1.25 \text{ MPa}}{-1.2 \times 10^{-7}} \right]$$

$$= +12440 \text{ MPa} = +12.44 \text{ MPa}$$

$$1.20 \quad \beta = -V \left(\frac{\partial P}{\partial V} \right)_T \approx -V \frac{\Delta P}{\Delta V}$$

$$V = 0.25 \text{ m}^3$$

$$\Delta V = -0.005 \text{ m}^3$$

$$\Delta P = 10 \text{ MPa}$$

$$\beta = -0.25 \left[\frac{10}{-0.005} \right] = 500 \text{ MPa}$$

$$1.21 \text{ for H}_2\text{O} - \beta = 2.205 \text{ GPa}$$

$$\frac{\Delta V}{V} = -0.0075$$

$$\beta \approx -V \frac{\Delta P}{\Delta V} \text{ or } \Delta P = \beta \frac{\Delta V}{V}$$

$$\Delta P = (2.205 \text{ GPa})(0.0075)$$

$$= 0.0165 \text{ GPa} = 16.5 \text{ MPa}$$

$$1.22 \text{ H}_2\text{O: } P_1 = 100 \text{ kPa} \quad P_2 = 120 \text{ MPa}$$

$$\beta = 2.205 \text{ GPa}$$

$$\beta \approx -V \frac{\Delta P}{\Delta V} \text{ or } \frac{\Delta V}{V} = \frac{\Delta P}{\beta}$$

$$\frac{\Delta V}{V} = \frac{\Delta P}{\beta} = \frac{(120000 - 100) \text{ kPa}}{120 \times 10^6 \text{ kPa}}$$

$$= 0.999 \times 10^{-3}$$

$$= 0.0999 \text{ PERCENT}$$

1.23 $H_2O @ 68^\circ C$ (341 K)

$$\sigma = 0.123 \left[1 - 0.00139(341) \right]$$

$$= 0.0647 \text{ N/m}$$

IN A CLEAN TUBE - $\theta = 0^\circ$

$$h = \frac{2\sigma \cos \theta}{\rho g r}$$

$$= \frac{2(0.0647)}{979(9.81)(0.2875 \times 10^{-2}/2)}$$

$$= 9.37 \times 10^{-3} \text{ m} = 9.37 \text{ mm}$$

1.24 PARALLEL GLASS PLATES

$$- gap = 1.625 \text{ mm}$$

$$\sigma = 0.0735 \text{ N/m}$$

FOR A UNIT DEPTH:

$$\text{SURFACE TENSION FORCE} = 2(1)\sigma \cos \theta$$

$$\text{WEIGHT OF } H_2O = \rho g h (1)(1.625 \times 10^{-3})$$

FOR CUBAN GLASS $\cos \theta = 1$

EQUATING FORCES:

$$2(1)\sigma = \rho g h (1)(1.625 \times 10^{-3})$$

$$h = \frac{2(0.0735)}{(1000)(9.81)(1.625 \times 10^{-3})}$$

$$= 0.00922 \text{ m} = 9.22 \text{ mm}$$

FOR A UNIT DEPTH:

$$2(1)\sigma = \rho g h (1)(1.625 \times 10^{-3})$$

$$h = \frac{2(0.0735)}{(1000)(9.81)(1.625 \times 10^{-3})}$$

$$= 0.00922 \text{ m} = 9.22 \text{ mm}$$

FOR A UNIT DEPTH:

$$2(1)\sigma = \rho g h (1)(1.625 \times 10^{-3})$$

$$h = \frac{2(0.0735)}{(1000)(9.81)(1.625 \times 10^{-3})}$$

$$= 0.00922 \text{ m} = 9.22 \text{ mm}$$

1.25 GLASS TUBE - $d_i = 0.25 \text{ mm}$

$$d_o = 0.35 \text{ mm}$$

$$\theta = 130^\circ$$

SURFACE TENSION FORCE -

$$\text{INSIDE} = 2\pi r_i \sigma \cos \theta$$

$$\text{OUTSIDE} = 2\pi r_o \sigma \cos \theta$$

TOTAL UPWARD FORCE -

$$F = 2\pi \sigma \cos \theta (r_i + r_o)$$

$$= 2\pi (0.144)(\cos 130^\circ) \left(\frac{0.25 + 0.35}{2} \times 10^{-3} \right)$$

$$= 5.33 \times 10^{-4} \text{ N}$$

1.26 H_2O -AIR-GLASS INTERFACE @ $40^\circ C$

$$\text{TUBE RADIUS} = 1 \text{ mm}$$

$$h = \frac{2\sigma \cos \theta}{\rho g r}$$

$$\sigma = 0.123 \left[1 - 0.00139(313) \right] = 0.0695 \text{ N/m}$$

$$h = \frac{2(0.0695)}{(993)(9.81)(1 \times 10^{-3})}$$

$$= 0.0143 \text{ m} (1.43 \text{ cm})$$

1.27 SOAP BUBBLE - $T = 20^\circ C$ $d = 4 \text{ mm}$

$$\sigma = 0.025 \text{ N/m} (\text{TABLE 1.2})$$

FORCE BALANCE FOR BUBBLE:

$$\pi r^2 \Delta P = 2\pi r \sigma$$

$$\Delta P = \frac{2\sigma}{r} = \frac{2(0.025)}{2 \times 10^{-3}}$$

$$= 25 \text{ N/m}^2 \sim 25 \text{ Pa}$$

1.28 GLASS TUBE IN Hg ($\sigma_{Ag} = 13.6$)

For Hg / glass - $\sigma = 0.44 \text{ N/m}$

$$\theta = 130^\circ$$

$$h = \frac{2\sigma}{8gr} \quad r = 3 \text{ mm}$$
$$= \frac{2(0.44)}{13.6(1000)(18 \times 10^{-3})}$$
$$= -0.0277 \text{ m}$$
$$= 2.77 \text{ cm DEPRESSION}$$

1.29 @ 60°C $\sigma_{H_2O} = 0.0662 \text{ N/m}$

$$\sigma_{Ag} = 0.44$$

TUBE DIAMETER = 0.55 mm

$$h = \frac{2\sigma \cos\theta}{8gr}$$

for H_2O :

$$h = \frac{2(0.0662)(450)}{983(9.81)(0.55 \times 10^{-3}/2)}$$
$$= 0.0499 \text{ m } (4.99 \text{ cm RISE})$$

for Ag:

$$h = \frac{2(0.44)(450)}{13.6(983)(9.81)(0.55 \times 10^{-3}/2)}$$
$$= -0.0157 \text{ m}$$
$$(1.57 \text{ cm DEPRESSION})$$

1.30 H_2O / GLASS INTERFACE

$$T = 30^\circ\text{C}$$

$$\sigma = 0.123 [1 - 0.00139(303)]$$

$$= 0.0712 \text{ N/m}$$

$$\rho = 996 \text{ kg/m}^3$$

$$h \leq 1 \text{ mm}$$

$$h = \frac{2\sigma \cos\theta}{8gr}$$

$$r = 2\sigma/\rho gh$$

$$= \frac{2(0.0712)}{996(9.81)(1 \times 10^{-3})}$$

$$= 0.0146 \text{ m } (1.46 \text{ cm})$$

$$d = 2r = 2.92 \text{ cm}$$

CHAPTER 2

2.1 Assume local gas behavior.

$$\frac{dp}{dy} = -\rho g = -\frac{\rho g}{RT}$$

for $T = a + by$

$$\Rightarrow T = 530 - 24y/h$$

$$\frac{dp}{P} = -\frac{g}{R} \frac{by}{530 - 24(y/h)}$$

$$\int_{P_0}^P \frac{dp}{P} = gh \int_0^1 \frac{-24}{530 - 24(y/h)} dy$$

$$\ln \frac{P}{P_0} = gh \int_0^1 \frac{500}{530} dy$$

WITH $P = 10.6 \text{ psia}$, $P_0 = 30.1 \text{ inHg}$

$$h = 9192 \text{ FT}$$

2.2

$$\sum F_y = 0 \text{ on TANK}$$

$$\frac{P \pi d^2}{4} - \frac{P_{atm} \pi d^2}{4} - 250 = 0 \quad (1)$$

AT H₂O LEVEL IN TANK:

$$P = P_{atm} + \rho_w g (h - y) \quad (2)$$

from (1) & (2) $h - y = 1,275 \text{ FT}$ ⁽³⁾

for Isothermal compression of air

$$P_{atm} V_{TANK} = P (V_{air})$$

$$P = \frac{3}{3-y} P_{atm} \quad (4)$$

Combining (1) & (4)

$$y = 0.12 \text{ FT}$$

$$h = 1,395 \text{ FT.}$$

2.2 CONT.

For TOP OF TANK FLUSH WITH H₂O LEVEL

$$\sum F_y = 0$$

$$P = P_{atm} + \frac{250 + F}{\pi d^2/4}$$

AT H₂O LEVEL IN TANK:

$$P = P_{atm} + \rho_w g (3 - y)$$

COMBINING EQUATIONS:

$$F = 196(3 - y) - 250$$

for Isothermal compression of air
(as in part (1))

$$3 - y = 2.8 \text{ FT}$$

$$\Rightarrow F = 196(2.8) - 250 = 293.6 \text{ lbf}$$

2.3 WHEN NET FORCE ON TANK = 0

$$W_T = \text{BUOYANT FORCE} = 250 \text{ lbf}$$

$$V_W \text{ DISPLACED} = 250 / \rho_w g = 4.01 \text{ FT}^3$$

Assuming Isothermal compression

$$P_{atm} + (3 \text{ FT}) = P (4.01 \text{ FT}^3)$$

$$= (P_{atm} + \rho g y)(4.01)$$

$$y = 45.88 \text{ FT}$$

$$\text{TOP IS AT LEVEL: } y = \frac{4.01}{\pi d^2/4}$$

OR AT 44.6 FT BELOW SURFACE

2.4.

$$\frac{dp}{dy} = \rho g = \rho_0 e^{\frac{\Delta P}{\beta}} \frac{\Delta P}{\beta}$$

$$\int_0^{\Delta P} \frac{-\Delta P/\beta}{e^{\Delta P/\beta}} dy = \int_0^y -\frac{\rho_0 g \Delta y}{\beta}$$

$$e^{-\Delta P/\beta} = 1 - \frac{\rho_0 g y}{\beta}$$

$$\Delta P = -\beta \ln\left(1 - \frac{\rho_0 y}{\beta}\right)$$

$$= 300,000 \ln(1 - 0.0462)$$

$$= 14190 \text{ Pa}$$

DENSITY RATIO:

$$\frac{\rho}{\rho_0} = e^{-\Delta P/\beta} = 1.0484$$

$$\text{so } \rho = 1.0484 \rho_0$$

2.5. BUOYANT FORCE:

$$F_B = \rho V = \frac{\rho V}{RT}$$

FOR CONSTANT VOLUME:

F VARIES INVERSELY WITH T

26 SEA H_2O : $S.G. = 1.025$ AT DEPTH $y = 185 \text{ m}$

$$\begin{aligned} P_g &= 1.025 \rho_0 g y \\ &= 1.025 (1000)(9.81)(185) \\ &= 1.86 \times 10^6 \text{ Pa} \\ &= 1.86 \text{ MPa} \end{aligned}$$

2.7

r MEASURED FROM EARTH'S SURFACE

R = RADIUS OF EARTH

$$\frac{dp}{dr} = \rho g = \rho_0 \frac{g}{R} \frac{r}{R}$$

$$P - P_{atm} = \frac{\rho_0 r^2}{2R}$$

AT CENTRE OF EARTH ... $r = R$

$$P_{ce} - P_{atm} = \frac{\rho_0 R}{2}$$

SINCE $P_{ce} \gg P_{atm}$

$$\begin{aligned} P_{ce} &\approx \frac{\rho_0 R}{2} = \frac{(5.67)(1000)(9.81)(6330 \times 10^3)}{2} \\ &= 176 \times 10^9 \text{ Pa} \\ &= 176 \text{ MPa} \end{aligned}$$

2.8

$$\begin{aligned} \frac{dp}{dy} &= -\rho g \\ \int_0^P \frac{dp}{dy} dy &= -\rho g \int_0^{-h} dy \\ P - P_{atm} &= \rho g (-h) \\ P - P_{atm} &= \rho g (h) \\ &= (1050)(9.81)(11034) \\ &= 113.7 \text{ MPa} \\ &\approx 1122 \text{ ATMOSPHERES} \end{aligned}$$

29 AS IN PREVIOUS PROBLEM

$$P - P_{atm} = \rho g h$$

$$\text{for } P - P_{atm} = 101,33 \text{ kPa}$$

$$h = 101,33 / \rho g$$

2.9 (CONT.)

$$\text{for } H_2O: h = \frac{10133}{(1000)(9.81)} = 10.33 \text{ m}$$

$$\text{SEA } H_2O: h = \frac{10133}{(1.025)(1000)(9.81)} = 10.08 \text{ m}$$

$$Hg \quad h = \frac{10133}{13.6(1000)(9.81)} = 0.80 \text{ m}$$

2.10

$$P_1 = P_{atm} + \gamma_{Hg} g (12) \quad P_1 = P_2$$

$$P_2 = P_3 + \gamma_k g (5') \quad P_3 = P_4$$

$$P_4 = P_A + \gamma_w g (2') \quad P_4 = P_5$$

$$P_{atm} + \gamma_{Hg} g (12) = P_A + \gamma_w g (2) + \gamma_k g (5)$$

$$P_A = P_{atm} + \gamma_w g [(13.6)(12) - 2 - 0.75(5)]$$

$$= P_{atm} + 5.81 \text{ psi} = 5.81 \text{ psi}$$

2.11 Force Balance on LIQUID COLUMN:

A = AREA OF TUBE

$$-3A + 14.7A - \gamma g h A = 0$$

$$h = \frac{11.7(144)}{62.4(12.2)}$$

$$= 26.6 \text{ in.}$$

2.12

$$P_A = P_B - \gamma_{Hg} g (10 \text{ ft})$$

$$P_C = P_B + \gamma_{w} g (5 \text{ ft})$$

$$P_D = P_C - \gamma_{Hg} g (1 \text{ ft})$$

$$P_A - P_D = \gamma_{Hg} g (1) - \gamma_{w} g (5) - \gamma_{Hg} g (10)$$

$$P_A - P_{atm} = \gamma_{w} g (13.6 \times 1 - 5 - 0.8 \times 10 \times 1)$$

$$= 37.4 \text{ lb}_f/\text{ft}^2$$

2.13

$$P_3 = P_A - \gamma_{Hg} g \gamma_w$$

$$= P_B + (\gamma_{Hg} g) \times \frac{1}{2} \times (d_3 + d_4 \sin 45^\circ)$$

$$P_A - P_B = \frac{(62.4)(32.2)}{32.2} \left[(12.4 + 4 \sin 45^\circ) / 13.6 - 2 \right]$$

$$= 245 \text{ lb}_f/\text{ft}^2 = 1.70 \text{ psi}$$

2.14

$$P_3 = P_A - \gamma_w g d_1$$

$$P_3 = P_B - \gamma_w g (d_1 + d_2 + d_3) + \gamma_{Hg} g d_2$$

EQUATING:

$$P_A - P_B = \gamma_{Hg} g d_2 - \gamma_w g (d_2 + d_3)$$

$$= \gamma_w g \left[(13.6)(1/12) - 7.3/12 \right]$$

$$= 32.8 \text{ lb}_f/\text{ft}^2 = 0.227 \text{ psi}$$

2.15

$$P_I = P_A + \rho_{Hg} g (10)$$

$$P_{II} = P_B + \rho_{Hg} g (4) + \rho_{Hg} g (10)$$

$$P_I = P_{II}$$

$$P_A - P_B = \rho_{Hg} [-6 + 13.6(10)] \\ = \underline{56.3 \text{ psi}}$$

2.16

PRESSURE GRADIENT IS IN DIRECTION OF $\vec{g} - \vec{a}$
ISOBARS ARE PERPENDICULAR TO $(\vec{g} - \vec{a})$

STRING WILL ASSUME THE $(\vec{g} - \vec{a})$ DIRECTION & BALLOON WILL MOVE FORWARD.

2.17

AT REST:
 $P = \rho g y_0$

ACCELERATION:

$$P = \rho |(\vec{g} - \vec{a})| = \rho (g + a) y_a$$

$$\text{EQUATION: } y_a = \frac{g}{g+a} \text{ WHICH } < y_0$$

LEVEL GOES Down

$$2.18 \quad F = P_{C,C} A - P_{Atm} A = \rho g h (\pi r^2)$$

$$h = 2 \text{ m} \quad r = 0.3 \text{ m}$$

$$F = \underline{5546 \text{ N}}$$

$$y_{c.p.} = \bar{y} + I_{bb}/A \bar{y}$$

$$\text{For A Circle: } I_{bb} = \pi r^4 / 4$$

$$y_{c.p.} = 2 \text{ m} + \frac{\pi (0.3 \text{ m})^4}{4 \pi (0.3 \text{ m})^2 (2 \text{ m})} \\ = 2.1011 \text{ m}$$

2.19

HEIGHT OF H_2O COLUMN ABOVE DIFFERENTIAL ELEMENT:

$$= h - 4 + y$$

For (a) - RECTANGULAR GATE - $\Delta A = 4 \text{ dy}$

$$\Delta F_w = [\rho_{H2O} g (h - 4 + y) + P_{Atm}] \Delta A$$

$$\Delta F_a = [P_{Atm} + (6 \text{ psig})(144)] \Delta A$$

$$\sum M_o = \int_A y (\Delta F_w - \Delta F_a) = 0$$

$$\int_0^4 y [\rho g (h - 4 + y) - 864] (4 \text{ dy}) = 0$$

$$h = \underline{15.18 \text{ FT}}$$

For (b): $\Delta A = (4 - y) \Delta y$

$$\int_0^4 y [\rho g (h - 4 + y) - 864] (4 - y) \Delta y = 0$$

$$h = \underline{15.85 \text{ FT}}$$

2.20

PER UNIT DEPTH:

$$\Sigma F_y = 0$$

$$F_{y\text{up}} = S_w g \pi r^2 / 2 \quad \{ \text{Buoyancy} \}$$

$$F_{y\text{down}} = S_w g \pi r^2 + S_w g (r^2 - \pi r^2 / 4)$$

FOR UNIT DEPTH:

$$\frac{S_w g \pi r^2}{2} = S_w g \pi r^2 + S_w g r^2 \left(1 - \frac{\pi}{4}\right)$$

$$S = S_w \left(\frac{\pi}{2} - 1 + \frac{\pi}{4}\right) / \pi$$

$$= S_w \left(\frac{3}{4} - \frac{1}{\pi}\right) = 0.432 S_w$$

$$= 432 \text{ kg/m}^3$$

a) TO LIFT BLOCK FROM BOTTOM

$$F = \{ \text{WT OF CONCRETE} \} + \{ \text{WT OF WATER} \}$$

$$= S_c g V + [S_w g (2.75') + P_{atm}] A$$

$$= (150) g (3 \times 3 \times 0.5)$$

$$+ [62.4 g (2.75) + 14.7 (144)] \times (3 \times 3)$$

$$= 675 + 31828 = \underline{32503 \text{ Lbf}}$$

2.21 (CONT)

b) TO MAINTAIN BLOCK IN FREE POSITION

$$F = \{ \text{WT OF CONCRETE} \} - \{ \text{BUOYANT FORCE} \} \text{ OF A 2D}$$

$$= 675 - S_w g V$$

$$= 675 - [62.4 g (3 \times 3 \times 0.5)]$$

$$= 675 - 281 = \underline{394 \text{ Lbf}}$$

2.22.

DISTANCE Z
MEASURED ALONG
GATE SURFACE
FROM BOTTOM

$$\Sigma M_A = 500(15) - \int_0^{h/\sin 60} z S_w g (h - z \sin 60) dz = 0$$

$$S_w g \int_0^{h/\sin 60} (zh - z^2 \sin 60) dz = 7500$$

$$S_w g \left[\frac{h^2}{2} - \frac{z^3}{3} \sin 60 \right]_0^{h/\sin 60} = 7500$$

$$(62.4) g \left[\frac{h^3}{(\sin 60)^2} \left(\frac{1}{2} - \frac{1}{3} \right) \right] = 7500$$

$$h^3 = \frac{7500 (6) (\sin 60)^2}{62.4 g} = 541$$

$$h = \underline{8.15 \text{ FT}}$$

2.23

↓ Y

USING SPHERICAL COORDINATES FOR A PLATE
AT $y = \text{CONSTANT}$:

$$dA = 2\pi r^2 \sin\theta d\theta$$

$$P = \rho g [h - r \cos\theta + r \cos\theta]$$

$$df_y = dP \cos\theta$$

$$F_y = \int \rho g (h - r \cos\theta + r \cos\theta) x \left(2\pi r^2 \sin\theta d\theta \right)$$

$$= \cancel{2\pi} \rho g r^2 \int_{C}^{\pi} (h - r \cos\theta + r \cos\theta) \sin\theta \cos\theta d\theta$$

$$= C \left[\int_{\alpha}^{\pi} (h - r \cos\theta) \sin\theta \cos\theta d\theta + r \int_{\alpha}^{\pi} \sin\theta \cos^2\theta d\theta \right]$$

$$= C \left[(h - r \cos\theta) \sin^2\theta \Big|_{\alpha}^{\pi} + r \left(-\frac{1}{3} \cos^3\theta \right) \Big|_{\alpha}^{\pi} \right]$$

$$= C \left[(h - r \cos\theta) (1 - \sin^2\theta) - \frac{r}{3} (0 - \cos^3\theta) \right]$$

Now - for $F_y = 0$

$$\sin\theta = \frac{D}{r} \quad \cos\theta = \sqrt{1 - \left(\frac{D}{r}\right)^2}$$

$$\therefore r = \frac{D}{2}$$

2.23 (cont)

$$0 = \left(h - \frac{D}{2} \cos\theta \right) (4\omega^2 \times) + \frac{D}{6} (4\omega^3 \times)$$

$$= h - \frac{D}{2} \cos\theta + \frac{D}{6} \cos\theta$$

$$\text{GIVEN} \quad h = \frac{D}{3} \cos\theta$$

$$\frac{h}{D} = \frac{\cos\theta}{3} = \frac{1}{3} \left[1 - \left(\frac{D}{2} \right)^2 \right]^{1/2}$$

$$\text{For } D = 0.6 \text{ m}$$

$$h = \frac{0.6}{3} \left[1 - \left(\frac{50}{3} \right)^2 \right]^{1/2}$$

$$= \frac{1}{5} \left[1 - \left(\frac{50}{3} \right)^2 \right]^{1/2}$$

2.24

$$\begin{array}{c} \downarrow \\ y \\ \hline 12' \\ | \\ 10' \\ | \\ A \\ \hline B \end{array}$$

$P_A - P_{\text{atm}} = \rho_w g (12) = 24g$
 $P_B - P_{\text{atm}} = 24g + 40g = 64g$

$\rho_w = 250 \text{ kg/m}^3$
 $\rho_m = 450 \text{ kg/m}^3$

BETWEEN O & A: $P - P_{\text{atm}} = \rho_w g y$
 " A & B: $P = \rho_w g (12) + \rho_m g (y - 12)$

FOR UNIT DEPTH:

$$F = \int (P - P_{\text{atm}}) dA$$

$$= \int_0^{12} \rho_w g y dy + \int_{12}^{22} [\rho_w g (12) + \rho_m g (y - 12)] dy$$

$$= \rho_w g (192) + \rho_m g (50)$$

$$= 18790 \text{ N}$$

2.24 (cont.)

Force Location:

$$\begin{aligned}
 Fx/y &= \int_0^{22} y(P - P_{atm}) dy \\
 &= \int_0^{12} \rho_w g y^2 dy + \int_{12}^{22} \rho_w g / 2 y dy \\
 &\quad + \int_{12}^{22} \rho_m g (y^2 - 12y) dy \\
 &= \rho_w g (576 + 2040) \\
 &\quad + \rho_m g (2973 - 2040) \\
 &= 188400 \text{ ft lb}_f \\
 \bar{y} &= \frac{288400}{18790} = 15.35 \text{ ft}
 \end{aligned}$$

2.25

$$\begin{aligned}
 \text{Force on gate} &= \rho g \bar{y} A \\
 &= (1000)(9.81)(12) \frac{\pi}{4} (2)^2 \\
 &= 369.8 \text{ kN}
 \end{aligned}$$

$$y_{cp} = \frac{I_{eo}}{\bar{y} A} = \frac{(\pi/4)(1)^4}{(12)(\pi/4)(2)^2} = 0.0208 \text{ m} \quad (\text{Below Axis B})$$

$$\sum M_B = 0$$

$$\begin{aligned}
 P(1) &= (369.8 \times 10^3)(0.0208) \\
 &= 7.70 \text{ kN}
 \end{aligned}$$

2.26

$$F_w = \rho g \bar{y} A$$

$$= (1000)(9.81)(4)(10)(1) = 392 \text{ kN}$$

y_{cp} IS $\frac{1}{3}$ DISTANCE FROM WATER LINE TO A

~ 6.66 m DOWN from H_2O LINE
3.33 m UP from A

$$\sum M_A = F_c(9) = 392(3.33)$$

$$F_c = 145.2 \text{ kN}$$

2.27 WIDTH = 100 m

$H_2O @ 27^\circ C \rho = 997 \text{ kg/m}^3$

$$\begin{aligned}
 F &= \rho g \bar{y} A \\
 &= (997)(9.81)(64) \\
 &\quad \times (160)(100)
 \end{aligned}$$

$$= 10.016 \times 10^9 \text{ N} = 10.02 \times 10^3 \text{ MN}$$

FOR A FREE H_2O SURFACE

$$y_{cp} = \frac{2}{3}(128 \text{ m}) = 85.3 \text{ m} \quad \left. \begin{array}{l} \text{Below} \\ \text{H}_2\text{O} \\ \text{SURFACE} \end{array} \right\}$$

$$= 106.7 \text{ m } \left. \begin{array}{l} \text{MEASURED FRONT} \\ \text{DAM SURFACE} \end{array} \right\}$$

2.28 SPHERICAL FLOAT

UPWARD FORCES ~ $F + F_{BOUYANT}$

DOWNTWARD " ~ WT

$$W = \rho g V = \rho g \left(\frac{4}{3} \pi R^3 \right)$$

$$F_b = \rho_w g V z = \rho_w g \left(\frac{4}{3} \pi R^3 \right) z$$

z = FRACTION SUBMERGED

$$F = \rho g \left(\frac{4}{3} \pi r^3 \right) - \rho_w g z \left(\frac{4}{3} \pi r^3 \right)$$

$$z = \frac{\rho g \left(\frac{4}{3} \pi r^3 \right) - F}{\rho_w g \left(\frac{4}{3} \pi r^3 \right)}$$

2.29

CUBE -

LENGTH OF SIDE = L

$$\theta = \tan^{-1} \frac{0.1}{0.5}$$

G IS CENTER OF MASS OF SOLID

$$\begin{aligned} \sum M_G &= 2 \left[\frac{1}{2} \left(\frac{L}{2} \right) (0.1L)(L) \rho g \left(\frac{2}{3} \frac{L}{2} \sin \theta \right) \right. \\ &\quad \left. - (0.9L)(L)(L) \rho g (0.05L \sin \theta) \right] \\ &+ M \end{aligned}$$

{ PART OF ORIGINAL SUBMERGED
 VOLUME IS NOW OUT OF THE WATER - }
 { PART THAT WAS ORIGINALLY OUT
 IS NOW SUBMERGED }

2.29 (CONT.)

$$M = \rho g L^4 \sin \theta \left[-\frac{1}{60} + 0.045 \right]$$

$$= \rho g L^4 \sin \theta (0.02833)$$

$$= 0.00556 \rho g L^4$$

CHAPTER 4

4.1 $\vec{V} = 10\vec{e}_x + 7x\vec{e}_y$

AT (2,2) $\vec{V} = 10\vec{e}_x + 14\vec{e}_y$

AT -30° from x axis:

UNIT VECTOR: $\vec{e} = \frac{\sqrt{3}}{2}\vec{e}_x - \frac{1}{2}\vec{e}_y$

ALONG THIS DIRECTION THE
COMPONENT IS $\vec{e} \cdot \vec{V}$:

$$\vec{e} \cdot \vec{V} = \left(\frac{\sqrt{3}}{2}\vec{e}_x - \frac{1}{2}\vec{e}_y\right) \cdot (10\vec{e}_x + 14\vec{e}_y)$$

$$= 5\sqrt{3} - 7 = 1.66 \text{ m/s}$$

4.2 $\vec{V} = 10\vec{e}_x + 7x\vec{e}_y$

$$\frac{dy}{dx} = \frac{V_y}{V_x} = \frac{7x}{10}$$

$$10dy = 7x dx$$

$$10y = 7x^2 + C$$

AT (2,1) $C = 10 - 14 = -4$

EQN IS: $\frac{7x^2}{2} - 10y + C = 0$

OR $x^2 - \frac{10}{7}y - \frac{8}{7} = 0 \quad (\text{a})$

ACROSS THE SURFACE CONNECTING
POINTS (1,0) AND (2,2):

4.2 (CONT)

$$\begin{aligned} \vec{V} &= \int_0^2 \vec{V} \cdot \vec{e}_x dy + \int_1^2 \vec{V} \cdot \vec{e}_y dx \\ &= 10y \Big|_0^2 + 7x^2 \Big|_1^2 \\ &= 20 + \frac{1}{2}(3) = 20 + 10.5 \\ &= 30.5 \text{ m}^3/\text{s} \end{aligned} \quad (\text{b})$$

4.3

CONTROL VOLUME

$$\iint_{\text{C.S.}} S(\vec{V} \cdot \vec{n}) dA + \frac{\partial}{\partial t} \iiint_{\text{C.V.}} \rho dV = 0$$

$$\iint_{\text{C.S.}} S(\vec{V} \cdot \vec{n}) dA = 8V_{2\text{AVG}} A_2$$

$$- \int_0^R g \rho (1 - \frac{r^2}{16}) 2\pi r dr = 0$$

$$V_{2\text{AVG}} A_2 = 18\pi \int_0^4 (r - \frac{r^3}{16}) dr$$

$$= 18\pi \left[\frac{r^2}{2} - \frac{r^4}{64} \right]_0^4 = 72\pi$$

$$V_{2\text{AVG}} = \frac{72\pi}{\pi (3/4)^2} = 128 \text{ ft/s}$$

4.4

$$\iint_{\text{C.S.}} S(\vec{V} \cdot \vec{n}) dA = 0$$

$$= \iint_{A_0} S V \cos 30 dA - \iint_{A_1} S V dA = 0$$

4A - CONTINUED

$$S_{IN} = S_{OUT} \quad A_{IN} = 4 A_{OUT}$$

$$V_{OUT} = \frac{A_i V_i}{A_0 \cos 30^\circ}$$

$$= \frac{4(10)}{\cos 30^\circ} = \underline{46.2 \text{ FT/s}}$$

$$\dot{V} = A_i V = 10 \left(\frac{1}{3} \times \frac{1}{3} \right)$$

$$= \underline{1.11 \text{ FT}^3/\text{s}}$$

4.5 Steady Flow: $\iiint_S \delta(\vec{v} \cdot \vec{n}) dA = 0$
c.s.

$$-\delta v A_1 + \delta v A_2 + \iint_{A_3} \delta(\vec{v} \cdot \vec{n}) dA = 0$$

$\delta = \text{CONST.}$

$$v_1 A_1 = v_2 A_2 + \int_0^L v_2 \frac{\pi D}{2} dx$$

$$= v_2 A_2 + v_2 \frac{\pi D}{2} \frac{x^2}{2} \Big|_0^L$$

$$= v_2 \frac{\pi D^2}{4} + v_2 \frac{\pi D L}{2}$$

$$= \frac{v_2 \pi D}{4} (D + L)$$

$$6 \frac{\pi}{4} (0.2)^2 = v_2 \frac{\pi}{4} [0.2(0.2+0.5)]$$

$$v_2 = \frac{6(0.04)}{(0.2)(0.7)}$$

$$= \underline{1.71 \text{ m/s}}$$

4.6 FOR STEADY, INCOMPRESSIBLE FLOW:

$$\dot{V} = A_i V_i \Delta t = \sum_i V_i \Delta A_i$$

From GIVEN DATA SET:

DIST FROM CENTER IN	V_i FT/s	ΔA_i IN ²	$V_i \Delta A_i$ FT ³ /s
0	7.5	7.844	0.4084
3.16	7.10	37.64	1.856
4.45	6.75	31.96	1.498
5.48	6.42	32.10	1.431
6.33	6.15	31.48	1.344
7.07	5.81	29.85	1.204
7.75	5.47	33.22	1.262
8.37	5.10	33.22	1.176
8.94	4.50	31.44	0.982
9.49	3.82	31.57	0.838
10.-	2.40	15.82	0.264

$$\sum \rightarrow 316.14 \text{ FT}^3/\text{s}$$

$$\sum \Delta A_i = 316.14 \text{ IN}^2 \quad \left\{ \begin{array}{l} \text{EXACT AREA} \\ = 314.16 \text{ IN}^2 \end{array} \right\}$$

$$= 2.195 \text{ FT}^2$$

$$\dot{V} = \sum V_i \Delta A_i = \underline{18.26 \text{ FT}^3/\text{s}}$$

$$V_{AVG} = \frac{\dot{V}}{A} = \frac{18.26}{2.195} = \underline{8.32 \text{ FT/s}}$$

4.7 INFLOW: $\dot{V} = 2 \text{ gal/m} = 19.2 \text{ lb/m}$

OUTFLOW: $\dot{V} = 19.2 \text{ lb}_m/m$

~ STEADY FLOW ~

FOR TOTAL FLOW: $\iiint_S \delta(\vec{v} \cdot \vec{n}) dA = \dot{m}_{out}^0 - \dot{m}_{in}^0 = 0$

TOTAL MASS IN TANK = M

MASS OF SALT IN TANK = S

FOR SALT: $\dot{m}_{out}^0 = 19.2 (S/M) \text{ lb}_m/m$

$\dot{m}_{in}^0 = 19.2 (1.92) \text{ "}$

4.7 - CONTINUED

for SAET: LENS. OF MASS

$$\frac{19.2S}{M} - 3.84 + \frac{dS}{dt} = 0$$

$$\frac{dS}{dt} = 3.84 - \frac{19.2S}{M}$$

$$= A - BS$$

$$A = 3.84$$

$$B = \frac{19.2}{M} = \frac{(19.2)(7.48)}{(100)(62.4)}$$

$$= 0.0230$$

$$\int_0^S \frac{dS}{A - BS} = \int_0^t dt$$

$$-\frac{1}{B} \ln A - \frac{BS}{A} = t$$

$$\ln \left[1 - \frac{BS}{A} \right] = -Bt$$

$$\text{or } S = \frac{A}{B} \left[1 - e^{-Bt} \right]$$

for $t = 100 \text{ m}$

$$S = \frac{3.84}{0.0230} \left(1 - e^{-230} \right)$$

$$\cong \underline{\underline{150 \text{ lb/m}}}$$

$$\text{for } t = \infty \quad S = \underline{\underline{167 \text{ lb/m}}} \quad (\text{b})$$

for $S = 100 \text{ lb/m}$

$$t = \frac{1}{0.023} \ln \left[1 - \frac{0.023}{3.84} (100) \right]$$

4.7 - CONTINUED

$$t = 39.8 \text{ m} \quad \text{for } S = 100 \text{ lb/m}$$

$$\text{from (a) } t = 100 \text{ m} \text{ for } S \cong 150 \text{ lb/m}$$

for S from 100 to 150

$$\Delta t = 100 - 39.8 = \underline{\underline{60.2 \text{ m}}} \quad (\text{c})$$

4.8

For piston & cylinder shown:

$$\text{AT 1} \quad V = V_1 = 2 \text{ ft/s} \quad a = a_1 = 5 \text{ ft/s}^2$$

$$A_1 V_1 = A_2 V_2$$

$$V_2 = \frac{A_1}{A_2} V_1 = \left(\frac{d_1}{d_2} \right)^2 V_1 \\ = \left(\frac{4}{0.5} \right)^2 (2) = \underline{\underline{128 \text{ ft/s}}}$$

$$a_2 = a_1 \left(\frac{d_1}{d_2} \right)^2 = 5 \left(\frac{4}{0.5} \right)^2 = \underline{\underline{320 \text{ ft/s}^2}}$$

4.9 For steady flow:

$$\iint_{\text{C.S.}} S(\vec{v} \cdot \vec{n}) dA = 0$$

$$\text{or } SVA = \text{constant}$$

$$\frac{d(SVA)}{SVA} = \frac{dS}{S} + \frac{dV}{V} + \frac{dA}{A} = 0$$

Q.E.D.

$$4.10 \quad \iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA = \iint_{CS} dm$$

$$\iint \rho (\vec{v} \cdot \vec{n}) dA = dm$$

$$\frac{\partial}{\partial t} \iint_{C.V.} \rho dV = \frac{\partial}{\partial t} M$$

$$\therefore \frac{\partial M}{\partial t} + \iint_{CS} dm = 0 \quad Q.E.D.$$

4.11

FOR THE C.V. SHOWN

$$\iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA + \frac{\partial}{\partial t} \iint_{C.V.} \rho dV = 0$$

C.V.
O - STF FLOW

C.V. MOVES TO RIGHT WITH $V = V_w$
THUS:

$$-S_1 A V_w + S_2 A (V_w - V_2) = 0$$

$$V_2 = V_w \left(1 - \frac{S_1}{S_2} \right)$$

4.12

$$V_{AVG} = \frac{1}{A} \int_A v dA$$

$$= \frac{V_{MAX}}{\pi R^2} \int_0^R 2\pi r \left[1 - \frac{r}{R} \right]^{1/2} dr$$

$$\text{FOR } Z = r/R \quad dz = dr/R$$

$$V_{AVG} = 2V_{MAX} \int_0^1 z (1-z)^{1/2} dz$$

$$\text{FOR } \xi = 1-z \quad d\xi = -dz$$

$$V_{AVG} = -2V_{MAX} \int_1^0 (1-\xi) \xi^{1/2} d\xi$$

4.12 - CONTINUED

$$V_{AVG} = \frac{49}{60} V_{MAX} = 0.817 V_{MAX}$$

4.13

$$\iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA + \frac{\partial}{\partial t} \iint_{C.V.} \rho dV = 0$$

O - STF FLOW

$$\iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA = - \rho V_0 (bd) + \dot{m}_{HORIZONTAL}$$

$$+ 2 \int_0^{3d} \rho \frac{V_0}{3d} y dy$$

$$\dot{m}_{HORIZONTAL} = \rho V_0 (bd) - \rho V_0 (3d)$$

$$= \rho V_0 (3d)$$

4.14

$$\frac{\partial m}{\partial t} + \int dm = 0$$

$$M = \rho (2L)(b)(1) \quad \frac{\partial m}{\partial t} = 2SLb$$

$$\text{WHERE } b = -V$$

$$\int dm = 2 \dot{m}_{SIDE} = 2 \int_0^b \rho V (1) dy$$

$$\text{GIVING: } -2SLV + 2S \int_0^b V dy = 0$$

$$\text{OR} \quad LV = \int_0^b V dy$$

4.14 - (CONTINUED)

(a) For $V = V_{AVG}$ (A constant)

$$LV = V_{AVG} b$$

$$\underline{V_{AVG} = \frac{L}{b} V}$$

(b) $V = ay + by^2$ WITH $V(b) = 0$ $V\left(\frac{b}{2}\right) = V_{MAX}$

$$V = 4V_{MAX} \left[\frac{y}{b} - \left(\frac{y}{b} \right)^2 \right]$$

$$LV = 4V_{MAX} \int \left[\frac{y}{b} - \left(\frac{y}{b} \right)^2 \right] dy$$

$$\underline{V_{MAX} = \frac{3}{2} \frac{LV}{b}}$$

4.15

$$\dot{V} = \int_A v_x dA$$

$$= W \int_0^h V_0 \left(2 \frac{y}{h} - \frac{y^2}{h^2} \right) dy$$

$$= \frac{2}{3} W V_0 h$$

$$2000 \frac{\text{cm}^3}{\text{m}} = \frac{2}{3} (10) V_0 (2)$$

$$\underline{V_0 = 150 \text{ cm/m} = 2.5 \text{ cm/s}}$$

4.16

$$V = WA = Wh^2 \cot 20$$

$$\dot{V} = W \cot 20 \frac{d}{dt} h^2$$

$$\int_{h_1}^{h_2} dh^2 = \frac{\dot{V} \tan 20}{W} \int_0^t dt$$

$$h^2 \Big|_{h_1}^{h_2} = \frac{\dot{V} \tan 20 t}{W}$$

$$\underline{t = \left(h_2^2 - h_1^2 \right) \left[\frac{W}{\dot{V}} \cot 20 \right]}$$

4.17

$$V = WA = WL^2 \tan \frac{\theta}{2}$$

$$\begin{aligned} \dot{m} &= \rho \dot{V} = \rho WL^2 \frac{d}{dt} \left(\tan \frac{\theta}{2} \right) \\ &= \rho WL^2 \sec^2 \frac{\theta}{2} \frac{\dot{\theta}}{2} \end{aligned}$$

$$\underline{\omega^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2}}$$

$$\underline{\dot{m} = \frac{\rho WL^2 \dot{\theta}}{1 + \cos \theta} = \frac{\rho WL^2 \dot{\theta}}{2005^2 \theta / 2}}$$

4.18

STEADY FLOW - $\oint \oint S(\vec{V} \cdot \vec{n}) dA = 0$

$$\oint V_1 = 8A_2V_2 + 8A_3V_3$$

$$1.3 \times 10^{-3} = \frac{\pi}{4} (0.02)^2 (2,1) + (100) \frac{\pi}{4} (10^{-3})^2 V_3$$

$$V_3 = \underline{\underline{8.15 \text{ m/s}}}$$

4.19

STEADY FLOW - $\oint \oint S(\vec{V} \cdot \vec{n}) dA = 0$

$$\oint A_3V_3 - \oint A_1V_1 - \oint A_2V_2 = 0$$

$$V_3 = \frac{A_1V_1 + A_2V_2}{A_3}$$

$$= \frac{\pi/4 (0.076)^2 (40)}{\pi/4 (0.25^2 - 0.016)(3)}$$

$$\underline{\underline{\pi/4 (0.25^2)}}$$

$$V_3 = \underline{\underline{5.15 \text{ m/s}}}$$

4.20

VOLUME DISPLACED BY PLUNGER

$$\dot{V} = A_p V_p = \frac{\pi}{4} d_p^2 V$$

VOLUME OF H₂O MOVING PAST P:

$$\dot{V} = (A - A_p) V = \frac{\pi}{4} (D^2 - d_p^2) V$$

IN STEADY STATE OPERATION THESE MUST BE EQUAL:

$$\frac{\pi}{4} d_p^2 V = \frac{\pi}{4} (D^2 - d_p^2) V$$

$$V = \sqrt{\frac{d_p^2}{D^2 - d_p^2}} \quad (a)$$

RELATIVE TO PLUNGER -

$$V_R = V + V$$

$$= \sqrt{\left[\frac{d_p^2}{D^2 - d_p^2} + 1 \right]} \quad (b)$$

4.21

CONS. OF MASS - CONSTANT ρ

$$\dot{V}_{out} = 6 \text{ cm}^3/\text{s} - \text{CONSTANT}$$

FOR NO LEAKAGE

$$\dot{V} = A_p V = \frac{\pi}{4} (2)^2 V = 6$$

$$V = \underline{\underline{1.91 \text{ cm/s}}}$$

FOR LEAKAGE - $\dot{V} = 6 + 0.6$

$$\dot{V} = \frac{6.6}{\pi/4 (2^2)} = \underline{\underline{2.1 \text{ cm/s}}}$$

4.22

PARALLEL PLATES -

INCOMPRESSIBLE, STEADY FLOW
V = CONSTANT

$$\begin{aligned} V_0 z_0 &= \int V dA \\ &= a \int_0^{z_0} z (z_0 - z) dz \\ &= a \frac{z_0^3}{6} \Rightarrow a = \frac{6V_0}{z_0^2} \end{aligned}$$

V IS MAX AT $z = z_0/2$

$$\begin{aligned} V &= 6 \frac{V_0}{z_0^2} \left[z_0 - \frac{z_0}{2} \right] \frac{z_0}{2} \\ &= 6V_0 / 4 = \underline{12 \text{ cm/s}} \end{aligned}$$

4.23

FOR STEADY INCOMPRESSIBLE FLOW:

$$\dot{V}_{\text{OUT}} - \dot{V}_N = 0$$

$$Q + b \int_0^{\delta} V_0 \left(\frac{3n - n^3}{2} \right) dy = V_0 \delta b$$

$$\begin{aligned} \int_0^{\delta} \frac{3n - n^3}{2} dy &= \frac{\delta}{2} \int_0^1 \frac{3n - n^3}{2} dn \\ &= 5/8 \delta \end{aligned}$$

$$Q = V_0 \delta b \left(1 - \frac{5}{8} \right) = \underline{\underline{\frac{3}{8} V_0 b \delta}}$$

4.24

SEE SKETCH FOR PROB 4.14
PLATES ARE CIRCULAR

$$\frac{\partial M}{\partial t} + \int \partial M = 0$$

$$M = 8b\pi L^2$$

$$\frac{\partial M}{\partial t} = 8\pi L^2 b = -8\pi L^2 V$$

$$\dot{m}_{\text{exit}} = 8\pi L b V_{\text{exit}} = 8\pi L^2 V$$

$$\Rightarrow V_{\text{exit}} = \underline{\underline{L V / 2b}} \quad (a)$$

AS IN PROB 4.14 - PARABOLIC
EXIT PROFILE

$$V_{\text{exit}} = ay + by^2$$

$$= 4V_{\text{max}} \left[\frac{y}{b} - \left(\frac{y}{b} \right)^2 \right]$$

$$\dot{m}_{\text{exit}} = 8 \int_0^b V_{\text{exit}} 2\pi L dy$$

$$= 8 \frac{4}{3} \pi L b V_{\text{max}}$$

$$\therefore \underline{\underline{V_{\text{max}} = \frac{3}{4} \frac{L}{b} V}}$$

CHAPTER 5

5.1

CONS. OF MASS: $\iint_{\text{O.S.}} S(\vec{V} \cdot \vec{n}) dA = 0$

$$S V_1 A_1 = 2 \left[\int_0^1 8 V_2 y dy + \int_1^3 8 V_2 dy \right]$$

$$4 V_1 = 2 V_2 \left[\int_0^1 y^2 dy + \int_1^3 y dy \right]$$

$$= 3 V_2$$

$$V_2 = \frac{4}{3} V_1 = \underline{\underline{26.7 \text{ FT/S}}}$$

5.2 System Shown in Prob 5.1

$$\sum F_x = \iint_{\text{O.S.}} V_x S(\vec{V} \cdot \vec{n}) dA$$

- ASSUMING UNIT DEPTH -

$$F_x + (P_1 - P_2) A$$

$$= 2 S \left[\int_0^1 (V_2 y)^2 dy + \int_1^3 V_2^2 dy - V_1^2 \int_0^1 dy \right]$$

$$= 2 S \left[V_2^2 \frac{y^3}{3} \Big|_0^1 + V_2^2 y \Big|_1^3 - V_1^2 y \Big|_0^1 \right]$$

$$= 2 S V_2^2 \left[\left(\frac{1}{3} + 1 \right) \right] - 4 S V_1^2$$

From 5.1 - $V_2 = \frac{4}{3} V_1$

5.2 - CONTINUED -

$$F_x + (P_1 - P_2) A = \frac{20}{27} S V_1^2$$

$$F_x = -800 \text{ N/m} = 52.8 \text{ lbf/ft}$$

$$P_1 - P_2 = \frac{1}{4} \left[\frac{20}{27} S V_1^2 + 52.8 \right]$$

$$= 157 \text{ lbf/ft}^2$$

$$\approx 7500 \text{ Pa} = 7.5 \text{ kPa}$$

5.3 SAME GENERAL CONFIGURATION EXCEPT EXIT VELOCITY DISTRIBUTION IS $V = V_2 \left(1 - \cos \frac{\pi y}{4} \right)$

AS IN 5.1 THE EXPRESSION TO BE USED IS:

$$V_x A_1 = 2 \left[\int_0^2 V_2 \left(1 - \cos \frac{\pi y}{4} \right) dy \right]$$

$$4 V_1 = 2 V_2 \left[2 - \frac{4}{\pi} \right]$$

$$V_2 = \frac{2 V_1}{2 - \frac{4}{\pi}} = \frac{V_1}{1 - 2/\pi}$$

$$= 55 \text{ FT/S}$$

5.4

$$F_x = \iint_{\text{CS}} V_x S(\vec{V} \cdot \vec{n}) dA$$

$$= S_2 V_2^2 A_2 - S_1 V_1^2 A_1$$

$$= \dot{m}_2 V_2 - \dot{m}_1 V_1$$

$$= \dot{m}_1 (1.02 V_2 - V_1)$$

5.4 - CONTINUED -

$$\begin{aligned}\dot{m} &= \rho A_1 V_1 \\ &= (0.0805 \frac{\text{lbm}}{\text{ft}^3})(10.8 \text{ ft}^2)(300 \frac{\text{ft}}{\text{s}}) \\ &= 260.8 \text{ lbm/s} \\ F_x &= (260.8 \frac{\text{lbm}}{\text{s}}) \left[1.02 \left(900 \frac{\text{ft/s}}{-300 \text{ ft/s}} \right) \right] \\ &= \underline{\underline{5005 \text{ lb}_f}}\end{aligned}$$

5.5

STEADY INCOMPRESSIBLE FLOW:

$$F_x = \iint_{c.s.} v_x s (\vec{v} \cdot \vec{n}) dA$$

$$F_y = \iint_{c.s.} v_y s (\vec{v} \cdot \vec{n}) dA$$

IN X-DIRECTION:

$$\begin{aligned}F_x &= (\dot{m} V A) [V_2 (\cos -30) - (-V_1)] \\ &= \dot{m} [V (0.866) + 1]\end{aligned}$$

$$\begin{aligned}\dot{m} &= \rho A_1 V_1 = 62.4 \frac{\text{lbm}}{\text{ft}^3} (3 \frac{\text{ft}^3}{\text{s}}) \\ &= 187.2 \text{ lbm/s}\end{aligned}$$

$$\begin{aligned}F_x &= \frac{(187.2 \text{ lbm/s})(25 \text{ ft/s})(1.866)}{32.2 \text{ lb}_f \text{ ft/s}^2} \\ &= \underline{\underline{271.2 \text{ lb}_f}} \quad \text{FORCE ON BLADE IS IN } (-x)\end{aligned}$$

5.5 - CONTINUED

$$\begin{aligned}F_y &= \dot{m} V_2 \sin(-30) \\ &= \frac{(187.2)(25)(-0.5)}{32.2} \\ &= -72.7 \text{ lb}_f \quad \left. \begin{array}{l} \text{FORCE ON} \\ \text{BLADE IS IN} \\ +y \text{ DIRECTION} \end{array} \right\}\end{aligned}$$

PART (b) - BLADE MOVES TO RIGHT AT 15 FT/S

RELATIVE TO BLADE: $V_1 = -40 \text{ FT/s}$

$$V_2 = 40 \text{ FT/s} @ -30^\circ$$

ABSOLUTE VELOCITY OF LEAVING JET

$$= \vec{V}_{\text{RELATIVE TO BLADE}} + \vec{V}_{\text{BLADE}}$$

$$= (34.64 \hat{e}_x - 20 \hat{e}_y) + 40 \hat{e}_x$$

$$= \underline{\underline{74.64 \hat{e}_x - 20 \hat{e}_y}}$$

$$|V_{\text{exit}}| \approx \underline{\underline{77.3 \text{ FT/s}}}$$

5.6

C.V. AROUND BOAT - STEADY INCOMPRESSIBLE FLOW

$$\begin{aligned}\sum F_x &= \iint_{c.s.} v_x s (\vec{v} \cdot \vec{n}) dA \\ &= \dot{m} (V_2 - V_1)\end{aligned}$$

5.6 - (CONTINUED)

$$F_x = \dot{m} \ddot{V} \left(\frac{1}{A_2} - \frac{1}{A_1} \right)$$

$$= \frac{(62.4)(6)^2 \left(\frac{1}{0.15} - \frac{1}{0.25} \right)}{32.2}$$

$$= 186 \text{ lbf}$$

$$\text{TENSION IN ROPE} = F_x / \cos 30^\circ$$

$$= 215 \text{ lbf}$$

5.7

Flow is STEADY, INCOMPRESSIBLE

$$\sum F_x = \iint_{C.S.} V_x S (\vec{V} \cdot \vec{n}) dA$$

$$= \dot{m} (V_2 - V_1)$$

$$\dot{m} = \rho \ddot{V} = 0.8 (62.4) (3 \text{ ft}^3/\text{s})$$

$$= 149.8 \text{ lbm/s}$$

$$\sum F_x = F_x + P_1 A_1 - P_2 A_2$$

{ ATMOSPHERIC Pressure
Gauss }

EQUATIONS:

$$F_x + P_1 \frac{\pi D_1^2}{4} - P_2 \frac{\pi D_2^2}{4} = \dot{m} \ddot{V} \left(\frac{1}{A_2} - \frac{1}{A_1} \right)$$

$$F_x = \frac{\pi}{4} (P_2 D_2^2 - P_1 D_1^2)$$

$$+ \dot{m} \ddot{V} \frac{4}{\pi} \left(\frac{1}{D_2^2} - \frac{1}{D_1^2} \right)$$

5.7 - (CONTINUED)

$$P_1 = 50 \text{ psig} \quad P_2 = 5 \text{ psia}$$

$$F_x = -5630 + 392$$

$$= -5238 \text{ lbf}$$

5.8

fluid is H_2O

$$P_1 = 60 \text{ psig} \quad P_2 = 14.7 \text{ psia}$$

$$D_1 = 0.25 \text{ ft} \quad D_2 = \frac{1.5}{12} \text{ ft}$$

$$\ddot{V} = 400 \text{ gal/m} = 0.892 \text{ ft}^3/\text{s}$$

STEADY, INCOMPRESSIBLE FLOW

$$\iint_{C.S.} V_x S (\vec{V} \cdot \vec{n}) dA = 0$$

$$V_1 = \frac{\ddot{V}}{A_1} = \frac{0.892}{\frac{\pi}{4}(0.25)^2} = 18.17 \text{ ft/s}$$

$$V_2 = \frac{V_1 D_1^2}{D_2^2} = 18.17 \left(\frac{0.25(12)}{1.5} \right)^2 = 72.7 \text{ ft/s}$$

$$F_x + P_1 A_1 - P_2 A_2 = \dot{m} (V_2 - V_1)$$

$$F_x = \dot{m} (V_2 - V_1) - P_1 A_1 + P_2 A_2$$

$$= [62.4 (0.892) (72.7 - 18.17)] / 32.2$$

$$- (60 + 14.7)(144) \frac{\pi}{4} (0.25)^2$$

$$+ (14.7)(144) \frac{\pi}{4} (1.5)^2$$

$$= 94.3 - 528.0 + 25.4$$

$$= -408 \text{ lbf}$$

5.9

H_2O -flow is STEADY, INCOMPRESSIBLE

$$\sum F_x = \iint_{CS} \rho v_x (\vec{v} \cdot \vec{n}) dA$$

$$\sum F_x = P_1 A_1 - P_2 A_2$$

$$\iint_{CS} \rho = \rho A_2 v_2^2 - \rho (A_S v_S^2 + A_J v_J^2)$$

EQUATION:

$$P_1 - P_2 = \rho \left[v_2^2 - \frac{A_S}{A} v_S^2 - \frac{A_J}{A} v_J^2 \right]$$

By CONSERVATION OF MASS:

$$\iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA = 0$$

$$A_2 v_2 - A_S v_S - A_J v_J = 0$$

$$v_2 = \frac{A_S}{A_2} v_S + \frac{A_J}{A_2} v_J$$

$$= \frac{0.54}{0.60} (10) + \frac{0.06}{0.60} (90)$$

$$= 18 \text{ FT/S} \quad (a)$$

$$P_1 - P_2 = \frac{62.4}{32.2} \left[(18)^2 - \frac{0.54}{0.6} (10)^2 - \frac{0.06}{0.6} (90)^2 \right]$$

$$= -1116 \text{ lbf/ft}^2 = -7.75 \text{ psi}$$

$$P_2 - P_1 = 7.75 \text{ psi}$$

5.10

flow is STEADY, INCOMPRESSIBLE, FRICTIONLESS

for FRICTIONLESS FLOW -

NO DRAG ON PLATE -

$$\sum F_n = \iint_{CS} v_n \rho (\vec{v} \cdot \vec{n}) dA = 0$$

$$F_n = - v_j \rho (\vec{v} \cdot \vec{n}) A_j$$

$$= - \dot{m} v \cos \theta$$

$$= - 2 (100) (4/5) = -160$$

$$F_x = (-160)(4/5) = -128 \text{ lbf}$$

$$F_y = (-160)(3/5) = -96 \text{ lbf}$$

5.11

STEADY, INCOMPRESSIBLE FRICTIONLESS FLOW

IN X-DIRECTION:

$$\sum F_x = \iint_{CS} v_x \rho (\vec{v} \cdot \vec{n}) dA$$

$$= 8v^2 b - 8v^2 a - 8v^2 h \cos \alpha = 0$$

$$\text{CONS. OF MASS: } 8vh = 8v(a+b)$$

$$h = a + b$$

$$a = \frac{h}{2} (1 - \cos \alpha) \quad b = \frac{h}{2} (1 + \cos \alpha)$$

~

5.11 - CONTINUED

$$\begin{aligned}\sum F_y &= \iint_{C.S.} \rho v_y (\vec{v} \cdot \hat{n}) dA \\ &= \rho v^2 h \sin \alpha \quad (a)\end{aligned}$$

PART (b):

$$\sum M_z = f_y l = \iint_{C.S.} (\vec{r} \times \vec{v})_z \delta(\vec{v}, \hat{n}) dA$$

$$f_y l = \frac{\rho}{2} v (3va) - \frac{\rho}{2} v (3vb)$$

$$\rho v^2 h (\sin \alpha) l = \frac{a^2 \rho v^2}{2} - \frac{b^2 \rho v^2}{2}$$

$$l = \frac{a^2 - b^2}{2h \sin \alpha}$$

$$= \frac{h^2 \cos \alpha}{2h \sin \alpha} = \frac{h \cot \alpha}{2}$$

5.12

FLOW IS STEADY, INCOMPRESSIBLE,
FRICTIONLESS -

ATMOSPHERIC PRESSURE GANDES

CV. MOVES TO LEFT WITH VELOCITY, V_p

$$\sum F_x = \iint_{C.S.} v_x \delta(\vec{v} \cdot \hat{n}) dA$$

$$\begin{aligned}F_x &= \rho A_0 (V_2 + V_p)^2 \\ &= \frac{(62.4)}{32.2} \frac{3}{30} (5 + 30)^2\end{aligned}$$

$$= \underline{237.4 \text{ lb}_F}$$

FOR MOVING PLATE

5.12 - CONTINUED

For $V_p = 0$

$$\begin{aligned}F_x &= \frac{62.4}{32.2} \frac{3}{30} (30)^2 \\ &= 174.4 \text{ lb}_F\end{aligned}$$

5.13

CONS. OF MASS: FOR UNIT CROSS SECTION

$$\frac{\partial m}{\partial t} + \iint_{C.S.} dm = 0$$

$$m = S_2 x + S_1 y \quad \dot{S}dm = -S_2 \dot{v}_2$$

$$S_2 \dot{x} + S_1 \dot{y} - S_2 \dot{v}_2 = 0$$

$$\text{SINCE } \dot{x} = V_w \quad \dot{y} = -V_w$$

$$S_2 (V_w - V_2) - S_1 V_w = 0 \quad (1)$$

X-MOMENTUM:

$$\sum F_x = \iint_{C.S.} v_x \delta(\vec{v} \cdot \hat{n}) dA + \frac{\partial}{\partial t} \iiint_{C.V.} v_x \delta dm$$

$$\begin{aligned}P_2 - P_1 &= -V_2 S_2 V_2 + \frac{\partial}{\partial t} V_2 S_2 x \\ &= -S_2 V_2^2 + S_2 V_2 V_w \\ &= S_2 V_2 [V_w - V_2]\end{aligned}$$

$$\text{FROM (1): } S_2 V_2 (V_w - V_2) = S_1 V_2 V_w$$

$$\text{GIVEN } P_2 - P_1 = \underline{S_1 V_2 V_w}$$

Q.E.D.

5.14 FOR SITUATION CONSIDERED
IN PROB 5.13

$$(a) \text{ Air } V_w = 1130 \text{ ft/s}$$

$$S = 0.00238 \frac{Swg}{\text{ft}^3}$$

$$P_2 - P_1 = S_1 V_2 S_w$$

$$= (0.00238)(10)(1130)$$

$$= 269 \text{ PSF} = 0.187 \text{ psi}$$

$$(b) H_2O \quad V_w = 4700 \text{ ft/s}$$

$$P = 1.938 \frac{\text{Swg}}{\text{ft}^3}$$

$$\Delta P = (1.938)(10)(4700)$$

$$= 91,080 \text{ PSF} = 633 \text{ psi}$$

5.15.

CONS. OF MASS:

TECHNIQUE IS TO LET

$$P_2 = P_1 + \frac{\partial P}{\partial S} AS$$

$$V_2 = V_1 + \frac{\partial V}{\partial S} AS$$

ETC

$$\text{By CONSERVATION OF MASS: } \left\{ \begin{array}{l} \Delta S = \Delta y + \theta \\ \frac{\partial}{\partial S} (S + V) = 0 \end{array} \right.$$

By MOMENTUM THEOREM, USING
CONS. OF MASS RESULT!

$$\Delta P + SV \Delta V + g \Delta y = 0$$

- MESSY -

5.16

$$D_1 = 0.3 \text{ m}$$

$$V_1 = 12 \text{ m/s}$$

$$P_1 = 128 \text{ kPa}$$

$$A_1 = \frac{\pi}{4} (0.3)^2 = 0.0707 \text{ m}^2$$

$$D_2 = 0.38 \text{ m}$$

$$P_2 = 145 \text{ kPa}$$

$$V_2 = 7.48 \text{ m/s}$$

$$A_2 = \pi = 0.1134 \text{ m}^2$$

$$\dot{V} = A_1 V_1 = (0.0707)(12) = 0.8484 \text{ m}^3/\text{s}$$

IN X DIRECTION:

$$\sum F_x = \iint_{\text{C.S.}} V_x S (\vec{v} \cdot \vec{n}) dA$$

$$F_x + P_1 A_1 - P_2 A_2 \cos \theta = \dot{m} (V_2 \cos \theta - V_1)$$

$$F_x = (1000)(0.8484) [7.48(\cos 30^\circ) - 12]$$

$$- (1000) [(128)(0.0707) + (145)(0.1134) \cos 30^\circ]$$

$$= -505.5 \text{ N}$$

IN Y DIRECTION: $\sum F_y = \iint_{\text{C.S.}} V_y S (\vec{v} \cdot \vec{n}) dA$

$$F_y - P_2 A_2 \sin \theta = \dot{m} (V_2 \sin \theta)$$

$$F_y = (1000)(0.8484)(7.48 \sin 30^\circ)$$

$$+ (1000)(145)(0.1134) (\sin 30^\circ)$$

$$= 11395 \text{ N} = 11,395 \text{ kN}$$

5.17

STEADY INCOMPRESSIBLE FLOW:

$$\sum F_x = \iint_{\text{C.S.}} V_x S (\vec{v} \cdot \vec{n}) dA$$

5.17 - (CONTINUED)

$$A_1 = \frac{\pi}{4} (1.5)^2 = 1.767 \text{ ft}^2$$

$$A_2 = \frac{\pi}{4} (1)^2 = 0.785 \text{ "}$$

$$A_3 = \frac{\pi}{4} (2)^2 = 3.142 \text{ "}$$

FOR C.N. BETWEEN

$$\textcircled{1} \frac{1}{2} \textcircled{2} :$$

$$\sum F_x = \iint_{C.S.} \rho v_x (\hat{v} \cdot \hat{n}) dA$$

$$F_x + F_2 + P_1 A_1 - P_2 A_2 = \dot{m} (v_2 - v_1)$$

$$F_x = \frac{770(3400 - 900)}{32.2}$$

$$+ (530 - 14.7)(144)(0.785)$$

$$- (900 - 14.7)(144)(1.767) - F_2$$

$$= -130,000 \text{ lbf} - F_2$$

FOR C.N. BETWEEN

$$\textcircled{2} \frac{1}{2} \textcircled{3} :$$

$$F_x + P_2 A_2 - P_3 A_3 = \dot{m} (v_3 - v_2)$$

$$F_x = \frac{770}{32.2} (6700 - 3400)$$

$$+ (26 - 14.7)(144)(3.14)$$

$$- (530 - 14.7)(144)(0.785)$$

$$= 25777 \text{ lbf}$$

5.17 - (CONTINUED)

STRESS AT 2:

$$\sigma = \frac{F}{A} = \frac{25777 \text{ lbf}}{\pi (12)(3/8)} = 1823 \text{ psi}$$

(COMPRESSION)

AT 1

$$F_1 = -130,000 + 25777$$

$$= -104220 \text{ lbf}$$

$$\sigma = \frac{104220}{\pi (18)(3/8)} = 4915 \text{ psi}$$

TENSION

5.18

FLOW IS STEADY & INCOMPRESSIBLE
NO NET PRESSURE FORCE

$$\sum F_x = \iint_{C.S.} \rho v_x s(\hat{v} \cdot \hat{n}) dA$$

$$F_x = \iint_{\text{OUT}} \rho v_x^2 dA - \rho v_0^2 A_{in}$$

$$= 2 \int_0^{3d} \rho v_0^2 \left(\frac{y}{3d} \right)^2 dy$$

$$+ \rho v_0^2 (3d) - \rho v_0^2 (6d)$$

MOMENTUM OUT TOP & BOTTOM

$$F_x = 2\rho v_0^2 \frac{1}{9d^2} \frac{y^3}{3} \Big|_0^{3d} + \rho v_0^2 (3d - 6d)$$

$$= -\frac{\rho v_0^2 d}{3}$$

FORCE ON CYLINDER = $\rho v_0^2 d$

5.19 FLUID IS H_2O

$$V_{sonic} = 1433 \text{ m/s}$$

THIS IS JUST LIKE PROB 5.13

FOR AN OBSERVER MOVING WITH H_2O STREAM: $V = 3 \text{ m/s}$

$$\text{THEN } \Delta p = \frac{1}{2} \rho A V^2$$

$$= (1000)(1433^2)(3) \text{ Pa}$$

$$= \underline{\underline{4287 \text{ kPa}}}$$

5.20

STATIC PRESSURE OF H_2O :

$$\text{ON LEFT} - P = \frac{8g}{2} h$$

$$\text{ON RIGHT} - P = \frac{8g}{2} h$$

$$\sum F_x = \iint_{CS} v_x \rho (\vec{v} \cdot \vec{n}) dA$$

$$\frac{8gH^2}{2} - \frac{8gh^2}{2} = (8vh) v$$

$$H^2 = \frac{2}{8g} \left[8hv^2 + \frac{8gh^2}{2} \right]$$

$$= \frac{2hv^2}{g} + h^2$$

$$H = \left[\frac{2hv^2}{g} + h^2 \right]^{1/2}$$

5.21

CONSERVATION OF MASS:

$$\iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA = 0$$

$$-8hv_1 + 8Lv_2 = 0$$

$$v_2 = \frac{hv_1}{L} \quad (a)$$

X-MOMENTUM:

$$\sum F_x = \iint_{CS} v_x \rho (\vec{v} \cdot \vec{n}) dA$$

$$P_1 A_1 - P_2 A_2 + F_x = \dot{m}(v_2 - v_1)$$

$$F_x = \dot{m}(v_2 - v_1) + P_2 A_2 - P_1 A_1$$

$$= \frac{8}{2} \rho v_1 h (v_2 - v_1) + \frac{8g}{2} L^2 - \frac{8g}{2} h^2$$

$$= \frac{8}{2} \rho v_1^2 h (h_L - 1) + \frac{8g}{2} (L^2 - h^2) \quad (b)$$

5.22.

CONSERVATION OF MASS:

$$v_1 h_1 = v_2 h_2$$

MOMENTUM EQUATION:

$$\sum F_x = \iint_{CS} \rho v_x (\vec{v} \cdot \vec{n}) dA$$

$$P_1 h_1 - P_2 h_2 = \dot{m}(v_2 - v_1)$$

$$P_1 = \frac{8g}{2} h_1 \quad P_2 = \frac{8g}{2} h_2$$

5.22 - CONTINUED

$$\frac{8gh_1^2}{2} - \frac{8gh_2^2}{2} = 8V_1h_1(V_2 - V_1)$$

from Cons. of MASS: $V_2 = V_1 h_1 / h_2$

$$\frac{g}{2}(h_1^2 - h_2^2) = V_1^2 h_1 \frac{h_1 - h_2}{h_2}$$

FACTORIZING & CANCELLING $h_1 - h_2$

$$\frac{gh_2}{2}(h_1 + h_2) = V_1^2 h_1$$

$$h_2^2 + h_1 h_2 - \frac{2V_1^2 h_1}{g} = 0$$

$$h_2 = \frac{h_1}{2} \left[\sqrt{1 + \frac{8V_1^2}{gh_1}} - 1 \right]$$

from CONTINUITY

$$V_2 = \frac{gh_1}{\Delta A_1} \left[1 + \sqrt{1 + \frac{8V_1^2}{gh_1}} \right]$$

5.23

$$D_1 = 8 \text{ cm}$$

$$D_2 = 5 \text{ cm}$$

$$V_1 = 5 \text{ m/s}$$

$$P_2 = 1 \text{ atm}$$

$$h = 58 \text{ cm}$$

$$A_1 = \frac{\pi}{4} (8 \text{ cm})^2 = 50.3 \text{ cm}^2$$

$$A_2 = \frac{\pi}{4} (5 \text{ cm})^2 = 19.6$$

$$V_2 = 5 \text{ m/s} \left(\frac{50.3}{19.6} \right) = 12.83 \text{ m/s}$$

5.23 - CONTINUED

$$X\text{-MOMENTUM: } \sum F_x = \iint_{C.S.} V_x S (\vec{v} \cdot \vec{n}) dA$$

$$F_x + P_1 A_1 - P_2 A_2 = 8V (V_2 - V_1)$$

$$P_1 - P_2 = \rho g h [1.6 - 1]$$

$$= (1000)(9.81)(0.58)(12.6) \\ = 71.69 \text{ kPa}$$

SINCE $P_2 = 1 \text{ atm}$

$$P_1 = 71.69 \text{ kPa} \text{ ABS}$$

$$F_x + P_1 A_1 = (1000)(50.3 \times 10^{-4})(5)(12.83 - 5)$$

$$F_x = 197 - 71.69(50.3 \times 10^{-4})(1000) \\ = -163.7 \text{ N}$$

5.24

X MOMENTUM'

$$\sum F_x = \iint_{C.S.} V_x S (\vec{v} \cdot \vec{n}) dA + \frac{\partial}{\partial t} \iiint v_x S dV$$

$$F_x = -\rho A_j V_j (V_j \cos \theta) + \rho A_j V_j V_c$$

$$= \rho A_j V_j (V_c - V_j \cos \theta)$$

$$= 1000 \left(\frac{\pi}{4} \right) (0.1)^2 (20) [4.5 - 20 \cos 45^\circ]$$

$$= -1515 \text{ N}$$

Force on CAR By JET: $F_x = 1515 \text{ N}$

5.24 - (CONTINUOUS) -

Σ Momentum:

$$\begin{aligned}\sum F_y &= \iint_{C.S.} v_y S(\vec{v}, \vec{n}) dA \\ &\quad + \frac{\partial}{\partial t} \iiint_{C.V.} v_y S dV\end{aligned}$$

$$\begin{aligned}F_y &= -A_s v_j \sin \theta S(v_j, A_j) + 0 \\ &= -(20 \sin 45^\circ)(1000)(-20) \\ &\quad \times \frac{\pi}{4}(0.1)^2 \\ &= +2220 \text{ N}\end{aligned}$$

force exerted by A_{20} :

$$F_y = -2220 \text{ N}$$

TOTAL Forces -

$$\vec{F} = 1515 \vec{e}_x - 2220 \vec{e}_y \text{ N}$$

5.25

COORDINATES FIXED TO GROUND
~ MOVING TO RIGHT AT v_c

MOMENTUM THM IN X-DIRECTION

$$\begin{aligned}\sum F_x &= SA_s v_j (-v_j) \\ &\quad - SA_s v_c (-v_c)\end{aligned}$$

$$F_x = SA_s v_c v_c - SA_s v_j^2$$

IN y-DIRECTION

$$\begin{aligned}F_y &= SA_s v_j (0) - SA_s v_c (-v_c) \\ &= SA_s v_c^2\end{aligned}$$

FORCE OF FLUID ON CAR IS NEGATIVE
OF TEST.

5.26

for C.V. Shown:

$$\int d\dot{m} + \frac{\partial}{\partial t} M = 0$$

$$M = SAh$$

$$d\dot{m} = SA \dot{h}$$

$$\sum F_y = \iint_{C.S.} v_y S(\vec{v}, \vec{n}) dA + \frac{\partial}{\partial t} \iiint_{C.V.} v_y dV$$

$$-8ghA = +8A\dot{h} + 8A \frac{\partial}{\partial t} (h\dot{h})$$

$$-gh = -\dot{h}^2 + \frac{\partial}{\partial t} (h\dot{h})$$

$$\Rightarrow \underline{\dot{h}} = -g$$

5.27

$$\begin{aligned}\omega &= 1180 \text{ rpm} & r_2 &= 0.6 \text{ in.} \\ r_1 &= 2 \text{ in.} & \theta_2 &= 135^\circ \\ r_2 &= 8 \text{ in.} & r_1 &= 0.8 \text{ in.}\end{aligned}$$

ROTATION IS ABOUT Z-AXIS -

$$\sum M_z = \iint_{C.S.} (\vec{r} \times \vec{v})_z S(\vec{v}, \vec{n}) dA$$

$$\begin{aligned}&= \begin{vmatrix} \vec{e}_r & \vec{e}_\theta & \vec{e}_z \\ r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix} \dot{m}_{out} \\ &= \begin{vmatrix} r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix} \dot{m}_{out}\end{aligned}$$

$$= (r_x v_y - r_y v_x) \dot{m}_{out}$$

AT POSITION ON X-AXIS - $r_x = r_2$

$$r_y = 0$$

$$\dot{v} = 800 \left(\frac{1}{7.48} \right) \left(\frac{1}{60} \right) = 1.783 \text{ FT}^3/\text{s}$$

$$v_x = \frac{1.783}{\pi (8/12)(2)(0.6/12)} = 8.51 \text{ FT/s}$$

5.27 - CONTINUED

AT THIS LOCATION -

$$V_x = V_y = V_{tan} = 8.51 \text{ FT/s}$$

ABS. VELOCITY @ r_2

$$\begin{aligned} V_y &= -rw + V_{tan} \\ &= -(8/12) \left(\frac{1180 \times 2\pi}{60} \right) + 8.51 \\ &= -82.38 + 8.51 = -73.87 \text{ FT/s} \end{aligned}$$

Now - IN MOMENTUM EXPRESSION:

$$\begin{aligned} M_2 &= (r_2 V_y) S \dot{V} \\ &= \frac{8}{12} \left(-73.87 \right) \left(64 \right) \left(1.783 \right) \\ &= 174 \text{ FT Lbf} \end{aligned}$$

POWER = $M_2 w$

$$\begin{aligned} &= 174 \left(\frac{1180 \times 2\pi}{60} \right) \left(\frac{1}{550} \right) \\ &= \underline{\underline{39.1 \text{ HP}}} \end{aligned}$$

5.28 FOR CONFIGURATION OF PROB 5.28

$$\dot{V} = 1.783 \text{ FT}^3/\text{s}$$

$$\begin{aligned} \text{AT INLET} - V_r &= \frac{19}{2\pi r_1 t_1} \\ &= \frac{1783}{2\pi (2/12)(0.8/12)} = 25.54 \text{ FT/s} \end{aligned}$$

5.28 - CONTINUED

$$\begin{aligned} rw &= -r_1 w = -\left(\frac{2}{12}\right) \left(\frac{1180 \times 2\pi}{60}\right) \\ &= -20.6 \text{ FT/s} \end{aligned}$$

$$\alpha = \tan^{-1} \frac{rw}{V_{r1}} = \tan^{-1} \frac{-20.6}{75.54} = \underline{\underline{38.9^\circ}}$$

$$\text{PART (B): } \sum F_x = \iint_{C.S.} V_x S (\vec{r} \cdot \vec{n}) dA$$

$$\begin{aligned} F_x &= -S V_z (-V_z) A, \\ &= \dot{m} V_z = \dot{S} \dot{V} \frac{V}{A_1} \\ &= \frac{(64)(1.783)^2}{\pi (2/12)^2 (32.2)} \\ &= \underline{\underline{70.6 \text{ Lbf}}} \end{aligned}$$

5.29

$$\text{FOR C.N. SHOWN: } \sum M_2 = \iint_{C.S.} (\vec{r} \times \vec{v})_z S (\vec{r} \cdot \vec{n}) dA$$

$$\begin{aligned} M_2 &= \begin{vmatrix} \hat{e}_x \hat{e}_y \hat{e}_z \\ r_x r_y r_z \\ V_x V_y V_z \end{vmatrix} \dot{m} \\ &= 2 \dot{m} (V_x r_y) \\ &= 2 \left(62.4 \right) \left(\pi/4 \right) \left(\frac{0.5}{12} \right)^2 \left(20 \right) \left(\frac{6}{12} \right) \\ &= \underline{\underline{1.057 \text{ FT Lbf}}} \end{aligned}$$

5.30

$$\sum M_A = \iint_{C.S.} (\vec{r} \times \vec{v})_z \delta(\vec{r} \cdot \vec{n}) dA$$

$$= \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix} / (m)$$

$$M_A = 2(-r_y v_x) m$$

$$r_y = R \sin \alpha$$

$$v_x = v_r \sin \alpha - R \omega$$

$$M_A = 2m \left[-R \sin \alpha (v_r \sin \alpha - R \omega) \right]$$

$$\omega = \frac{M_A}{2m r^2 \sin \alpha} + \frac{v_r \sin \alpha}{r}$$

5.31

$$\sum M_A = \iint_{C.S.} (\vec{r} \times \vec{v})_z \delta(\vec{v} \cdot \vec{n}) dA$$

$$= \int_3^9 \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix} \delta v_y t dx$$

$$= \int_3^9 -8t v^2 x dx = -8v^2 t \left(\frac{x^2}{2} \right) \Big|_3^9$$

$$v = \frac{8}{6(0.25/12)} = 64 \text{ FT/s}$$

$$M = -\frac{624(64)^2 (0.25)(81-9)}{32,2}$$

$$= -5950 \text{ FT LB F}$$

5.32

$$\sum M_B = \iint_{C.S.} (\vec{r} \times \vec{v})_z \delta(\vec{v} \cdot \vec{n}) dA$$

$$M_B = \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix} m + r_2 p_2 A_2$$

$$= (r_x v_y - r_y v_x) m + r_2 p_2 A_2$$

$$\dot{v} = \left(30 \frac{\text{gal}}{\text{m}} \right) \left(\frac{1}{7.48 \times 60} \right) = 0.0668 \text{ ft}^3/\text{s}$$

$$v_2 = \frac{\dot{v}}{A_2} = \frac{0.0668}{\frac{\pi}{4} \left(\frac{0.75}{12} \right)^2} = 21.79 \text{ FT/s}$$

$$M_B = + \frac{3(21.79)(62.4)(0.0668)}{32,2}$$

$$+ (3)(24)\left(\frac{\pi}{4}\right)(0.75)^2$$

$$= 8.146 + 31.81 = \underline{40.3 \text{ FT LB F}}$$

5.33

LINEAR MOMENTUM: COORDINATE SYSTEM MOVES WITH CART

$$\sum F_x = \iint_{C.S.} v_x \delta(\vec{v} \cdot \vec{n}) dA$$

$$F_x = SA \left[(v - v_c) \cos \theta \right] (v - v_c) + SA(v - v_c)^2$$

$$P = v_c F_x = SA(v - v_c)^2 [\cos \theta - 1] v_c$$

$$\text{FOR } m = \frac{v_c}{v} - P = SA \left[\frac{v}{v_c} \right] v^3 m (1-m)^2$$

5.33 - (CONTINUED)

$$\text{For } P = P_{\max} \quad \frac{dP}{dm} = 0$$

$$\therefore \frac{dP}{dm} = 8A \left[\frac{v^3}{m} \right] \frac{d}{dm} (m - 2m^2 + m^3)$$

$$= \left\{ \left\{ (1 - 4m + 3m^2) \right\} = 0 \right.$$

$$m = 1, \frac{1}{3}$$

$m = 1$ — MINIMUM

$m = \frac{1}{3}$ MAXIMUM

$$\therefore m = \frac{v_c}{v} = \frac{1}{3}$$

PART (b) ROTATION ABOUT Z-AXIS -

$$M_2 = \iint_{C.S.} (\vec{r} \times \vec{v})_z \delta(\vec{v} \cdot \vec{n}) dA$$

$$= \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix}_{\substack{m \\ z}}^{\circ} \text{ OUT}$$

$$- \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ m & n & z \end{vmatrix}_{\substack{z \\ z}}$$

$$= rm \left[(v - v_c) \cos \theta + v_c - v \right]$$

$$= m \left(\cos \theta - 1 \right) (v - v_c)$$

$$P = M_2 \omega = M_2 \frac{v_c}{r}$$

$$= \left[m \left(\cos \theta - 1 \right) \right] v_c (v - v_c)$$

$$\text{for } m = \frac{v_c}{v}$$

5.33 - (CONTINUED)

$$P = \left[\right] m v^2 (1 - m)$$

$$\frac{dP}{dm} = \left[\right] v^2 (1 - 2m) = 0$$

or P_{\max} occurs when

$$m = \frac{v_c}{v} = \frac{1}{2}$$

CHAPTER 6

6.1. For $V = A + Br$

$$V(r_0) = 0 = A + Br_0$$

$$V(r_i) = \frac{\omega d}{2} = A + Br_i$$

$$A = -Br_0 = \frac{\omega d}{2} - Br_i$$

$$B(r_0 - r_i) = -\frac{\omega d}{2}$$

$$B = -\frac{1}{r_0 - r_i} \frac{\omega d}{2}$$

$$A = \frac{r_0}{r_0 - r_i} \frac{\omega d}{2}$$

$$V = \frac{r_0 - r}{r_0 - r_i} \frac{\omega d}{2}$$

6.2 Steady flow: $\frac{dQ}{dt} = \frac{dW}{dt} = 0$

$$-\frac{dW}{dt} = \underset{\text{CS.}}{\cancel{\int \int (\epsilon + \frac{P}{\rho}) S(\vec{v} \cdot \vec{n}) dA}}$$

$$-\frac{dW}{dt} = \dot{m} \left[u_2 - u_1 + \frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1) \right]$$

$$\dot{m} = \dot{V} = 1025(2) = 2050 \text{ kg/s}$$

$$V_1 = \frac{\dot{V}}{A_1} = 4,278 \text{ m/s}$$

$$V_2 = \frac{\dot{V}}{A_2} = 11,573 \text{ "}$$

SINCE $\Delta T = 0$ $u_2 - u_1 = 0$

$$z_2 - z_1 = 1.8 \text{ m}$$

$$P_2 = 175 \text{ kPa}$$

$$P_1 = -0.15 \text{ m Hg}$$

$$= -19.9 \text{ kPa}$$

6.2 - CONTINUED -

$$\frac{P_2 - P_1}{\rho} = \frac{175 + 19.9}{1,025} = 190 \text{ m}^2/\text{s}^2$$

$$\frac{V_2^2 - V_1^2}{2} = \frac{(4,278)^2 - (11,573)^2}{2} = -57.7 \text{ "}$$

$$g(z_2 - z_1) = 9.81(1.8) = 17.7 \text{ "}$$

$$-\dot{W} = (190 - 57.7 + 17.7)(215,3)$$

$$= 32,295 \text{ W} = \underline{32.3 \text{ kW}}$$

$$6.3 \quad \frac{dQ}{dt} - \frac{dW}{dt} - \frac{dWe}{dt} = \underset{\text{CS.}}{\cancel{\int \int (\epsilon + \frac{P}{\rho}) S(\vec{v} \cdot \vec{n}) dA}} + \frac{\partial}{\partial t} \int \int S \sigma dA$$

$$-\dot{m} \left[h_1 + \frac{V^2}{2} + g z_1 \right] + \frac{\partial}{\partial t} \left[\underset{\text{NEG.}}{\cancel{m u}} \right] = 0$$

$$\dot{S} V C_V \frac{dT}{dt} = \dot{A} V \left(\frac{V^2}{2} \right)$$

$$\frac{dT}{dt} = \frac{A V}{V C_V} \frac{V^2}{2}$$

$$= -\frac{\frac{\pi}{4} \left(\frac{8}{12} \right)^2 \pi^2 \left(\frac{110 \text{ ft}}{5} \right)^3}{2 (10 \text{ ft}^3) (0.17 \text{ Btu}) \left(\frac{778 \text{ ft lb}}{1 \text{ Btu}} \right) \left(\frac{32.2 \text{ Btu}}{1 \text{ kW}} \right)}$$

$$= \underline{21.8 \text{ F/s}}$$

6.4 Energy Equation Reduces To

$$\iint_{CS} (\epsilon + \frac{P}{\rho}) \delta(\vec{v} \cdot \vec{n}) dA = 0$$

$$u_2 - u_1 + \frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) = 0$$

$$\Delta u = C \Delta T = \frac{P_1 - P_2}{\rho}$$

$$\Delta T = \frac{\Delta P}{Cg} = \frac{10(144)}{(1)(62.4)(178)} = 0.0297 \text{ F}$$

6.5.

Between A & B:

$$-\frac{dW_s}{dt} = \iint_{CS} (\epsilon + \frac{P}{\rho}) \delta(\vec{v} \cdot \vec{n}) dA$$

$$\frac{dW_s}{dt} = \frac{600(550)}{0.82} = 402000 \text{ ft lb}_F / \text{s}$$

$$\iint_{CS} = m \left[\frac{V_B^2 - V_A^2}{2} + \frac{P_B - P_A}{\rho} + g(y_B - y_A) + \frac{\Delta u}{\rho} \right]$$

$$\frac{P_B - P_A}{\rho} = \left\{ -\frac{dW_s}{dt} + g(y_A - y_B) + \frac{V_A^2}{2} \right\}$$

$$P_B = P_A + \frac{dW_s}{dt}$$

$$= 465 \text{ PSIA}$$

6.6.

$$\dot{V} = 4 \text{ ft}^3/\text{s}$$

$$P_1 = -6 \text{ PSIA} \quad P_2 = 40 \text{ PSIA}$$

$$V_1 = \frac{4}{\pi \frac{L^2}{4}} = 510 \text{ ft/s} \quad V_2 = \frac{4}{\pi \frac{H^2}{4}} = 733 \text{ ft/s}$$

$$y_2 - y_1 = 5 \text{ ft}$$

Energy Eqn. Reduces to:

$$-\frac{dW_s}{dt} = \dot{m} \left[\frac{\Delta P}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) \right]$$

$$= \dot{m} g \left[\frac{\Delta P}{\rho g} + \frac{V_2^2 - V_1^2}{2g} + y_2 - y_1 \right]$$

$$= 27850 \text{ ft lb}_F / \text{s}$$

$$= 50.6 \text{ HP}$$

6.7

for C.N. ① - Energy Eqn. Reduces to

$$0 = \frac{V_2^2 - V_1^2}{2} + \frac{P_2 - P_1}{\rho} + g(z_2 - z_1)$$

$$\frac{V_2^2}{2} = \frac{P_1 - P_2}{\rho} = \frac{25 \text{ cm H}_2\text{O}}{8}$$

$$V_2 = \sqrt{2 \frac{\Delta P}{\rho}} = 20 \text{ m/s}$$

$$\dot{V} = A V_2 = \frac{\pi}{4} (0.3)^2 (20) = 1.417 \text{ m}^3/\text{s}$$

6.7 - CONTINUED

for CN, ② Energy Eqn is:

$$\begin{aligned} -\frac{dU_3}{dt} &= \dot{m} \left[A_1 u + \frac{V_2^2}{2} A_1 + \frac{A_1}{2} + g A_3 \right] \\ &= \dot{m} V \frac{V_2^2}{2} \\ &= (1.2)(1.417)(20)^2 / 2 \\ &= \underline{\underline{346 \text{ W}}} \end{aligned}$$

6.8.

STEADY FLOW ENERGY EQUATION:

$$\begin{aligned} \dot{m}_1 \left(u_1 + \frac{V_1^2}{2} + \frac{P_1}{\rho g} \right) + \dot{m}_3 \left(u_3 + \frac{V_3^2}{2} + \frac{P_3}{\rho g} \right) \\ = \dot{m}_2 \left(u_2 + \frac{V_2^2}{2} + \frac{P_2}{\rho g} \right) \end{aligned}$$

CONS. OF MASS:

$$u_1 A_1 + u_3 A_3 = u_2 A_2 \quad \textcircled{1}$$

ENERGY EQUATION CAN BE WRITTEN

$$\begin{aligned} A_1 u_1 \left[C_v T_1 + \frac{V_1^2}{2} + \frac{P_1}{\rho g} \right] \\ + A_3 u_3 \left[C_v T_3 + \frac{V_3^2}{2} + \frac{P_3}{\rho g} \right] \\ = A_2 u_2 \left[C_v T_2 + \frac{V_2^2}{2} + \frac{P_2}{\rho g} \right] \quad \textcircled{2} \end{aligned}$$

MOMENTUM:

$$\begin{aligned} (P_1 - P_2) A_1 &= S V_2^2 A_1 - S V_1^2 A_1 \\ &\quad - S V_3^2 A_3 u_3 \quad \textcircled{3} \end{aligned}$$

6.8 - CONTINUED

for $u = C_v T$, $T_1 = T_3$, $P_1 = P_3$

$\frac{1}{2} \text{LOTS OF ALGEBRA}$

$$C_v(T_2 - T_1) = \frac{V_2^2}{2} \left[1 + \left(\frac{A_3 V_3}{A_1 V_1} \right)^2 - 1 \right] \times$$

$$\times \left[\frac{1 + 2 \frac{A_3 V_3}{A_1 V_1}}{1 + \frac{A_3 V_3}{A_1 V_1}} \right] + \frac{V_3^2}{2} \left[\frac{\frac{A_3 V_3}{A_1 V_1}}{1 + \frac{A_3 V_3}{A_1 V_1}} - \frac{2 A_3 V_3}{A_1} \right]$$

6.9

$$\dot{V} = 3 \text{ ft}^3/\text{s}$$

BETWEEN A & B - ENERGY EQUATION:

$$\int_{C,S} \dot{m} (e + \frac{P}{\rho g}) \delta (\vec{v} \cdot \vec{n}) dA = 0$$

$$\frac{V_B^2 - V_A^2}{2} + u_B - u_A + \frac{P_B - P_A}{\rho g} = 0$$

$$V_A = \frac{3}{(\pi/4)(1)^2} = 3.82 \text{ ft/s}$$

$$V_B = \frac{3}{\pi/4 (1/2)^2} = 15.28 \text{ ft/s}$$

$$\begin{aligned} \frac{P_A - P_B}{\rho g} &= \frac{(15.28)^2 - (3.82)^2}{2g} + 0.45 \\ &= 2.15 \text{ ft of H}_2\text{O} \end{aligned}$$

$$P_A = 2.15 + 2 = 4.15 \text{ ft of H}_2\text{O}$$

6.10

$$P_A = 10 \text{ psig}$$

$$\sum F_y = \iint_{c,s} v_y g (\vec{v} \cdot \vec{n}) dA$$

Flow RATE MUST BE DETERMINED

ENERGY EQUATION FOR C.V. SHOWN:

$$\frac{\Delta P}{\rho} + \frac{\Delta P}{g} + \frac{\Delta V^2}{2} + g\Delta z = 0$$

$$\frac{\Delta P}{\rho} = \frac{10(44)(32.2)}{62.4} = 743 \text{ ft}^2/\text{s}^2$$

$$V_A = \frac{V}{\pi/4 (2)^2} = 2.865 V$$

$$V_B = \frac{V}{\pi (2)(0.5/2)} = 3.82 V$$

$$\frac{\Delta V^2}{2} = (2.865^2 - 3.82^2) \frac{V^2}{2} = -3.19 V^2$$

$$g\Delta y = 32.2(-5) = -61 \text{ ft}^2/\text{s}^2$$

$$743 - 3.19 V^2 - 61 = 0$$

$$V^2 = \frac{682}{3.19} \quad V = 14.6 \text{ ft}^3/\text{s}$$

$$V_A = 41.9 \text{ ft/s} \quad V_B = 55.9 \text{ ft/s}$$

$$F_y + P_A A_A - \rho g V = \dot{m} (-V_A)$$

$$P_A A_A = 10 \left(\frac{\pi}{4}\right)^2 (8) = 502 \text{ lb}_f$$

$$\begin{aligned} \rho g V &= (62.4)(32.2)\left(\frac{\pi}{4}\right)\left(\frac{8}{12}\right)^2(5) \\ (\text{WT}) &= \frac{32.2}{144} \\ &= 109 \text{ lb}_f \end{aligned}$$

6.10 - (cont'd)

$$\dot{m} (-V_A) = \frac{-62.4(14.6)(41.9)}{32.2} = -1185 \text{ lb}_f$$

$$F_y = -502 + 109 - 1185$$

$$= -1578 \text{ lb}_f$$

Force on L10 is 1578 lb_f ↑

6.11

$$V = 6 \text{ m}^3/\text{s}$$

$$\Delta P = 0.10 \text{ m of water} \quad (S.L. = 0.6)$$

$$= 0.08 \text{ m H}_2\text{O} = 785 \text{ Pa}$$

$$A_1 = \frac{\pi}{4} (0.6)^2 = 0.283 \text{ m}^2$$

$$V_1 = \frac{V}{A_1} = \frac{6}{0.283} = 21.2 \text{ m/s}$$

ENERGY EQUATION REDUCES TO:

$$\frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g\Delta y = 0$$

$$\begin{aligned} \frac{P_1 - P_2}{\rho} &= \frac{V_2^2 - V_1^2}{2} = \frac{V^2}{2} \left[\frac{1}{A_2^2} - \frac{1}{A_1^2} \right] \\ &= \frac{V^2}{2} \left[\left(\frac{A_1}{A_2} \right)^2 - 1 \right] \end{aligned}$$

$$\frac{P_1 - P_2}{\rho} = \frac{785}{11226} = 640 \text{ m}^2/\text{s}^2$$

$$640 = (21.2)^2 \left[\left(\frac{A_1}{A_2} \right)^2 - 1 \right]$$

$$A_2 = 0.144 \text{ m}^2 \quad D_2 = 0.428 \text{ m}$$

6.12

ENERGY EQUATION REDUCES TO:

$$\Delta U + \frac{\Delta P}{\rho g} + \frac{\Delta V^2}{2} + g\Delta y = 0$$

∴ FOR $\Delta U = V_1 = 0$

$$\frac{P_2 - P_1}{\rho g} + \frac{V_2^2}{2} + g(y_2 - y_1) = 0$$

$$V_2 = \left[2 \left(\frac{P_1 - P_2}{\rho g} \right) + g\Delta y \right]^{1/2}$$

By CONSERVATION OF MASS:

$$A_{TANK} \left(-\frac{dy}{dt} \right) = A_{JET} V_2$$

$$-\frac{A_t}{A_j} \frac{dy}{dt} = []^{1/2}$$

$$-\frac{A_t}{A_j} \int_{y_0}^{y_0-2} \frac{dy}{(K_1 + K_2 y)^{1/2}} = \int_0^t dt$$

$$K_1 = 2 \frac{\Delta P}{g} \quad K_2 = 2g$$

$$t = - \frac{A_t}{A_j} \left[\frac{2}{K_2} (K_1 + K_2 y)^{1/2} \right]_{y_0}^{y_0-2}$$

$$K_1 = 344 \text{ FT}^2/\text{s}^2$$

$$\left[K_1 + K_2 (y_0 - 2) \right]^{1/2} = 23.2 \text{ FT/s}$$

$$\left[K_1 + K_2 (y_0) \right]^{1/2} = 25.8 \text{ "}$$

$$\underline{\underline{t = 105 \text{ s}}}$$

6.13. ENERGY EQUATION REDUCES TO

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2} = \frac{P_2}{\rho g} + \frac{V_2^2}{2}$$

$$P_1 = P_{atm} = 29 \text{ in. Hg} \left(\frac{14.7}{29.92} \right) = 14.25 \text{ psi}$$

$$P_2 = ?$$

$$V_1^2 = \left[\left(85 \text{ mi/h} \right) \left(\frac{5280}{3600} \right) \right]^2 = (124.7)^2$$

$$V_2^2 = 120^2$$

$$P_2 = 14.25 + \frac{g}{2} \left[(124.7)^2 - (120)^2 \right]$$

$$g = P/RT = \frac{14.25(141)}{53.3(500)} = 0.0710 \text{ kN/m}^3 \text{ Pa}$$

$$\underline{\underline{P_2 = 14.25 + 1.37 = 15.6 \text{ psi}}}$$

6.14

$$\text{ENERGY EQUATION: } \frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) = 0$$

$$\text{IN X-DIRECTION: } V_0 \cos \theta = V_x = \frac{dx}{dt}$$

$$\text{IN Y-DIRECTION: } V_0 \sin \theta - gt = \frac{dy}{dt}$$

$$x = (V_0 \cos \theta) t$$

$$y = (V_0 \sin \theta) t - \frac{gt^2}{2}$$

$$\text{COMBINING: } y = x \tan \theta - \frac{g}{2} \frac{x^2}{(V_0 \cos \theta)^2}$$

6.14 - CONTINUED

$$\begin{aligned} y &= 0.6 \text{ m} & \tan \theta &= 0.577 \\ x &= 3.6 \text{ m} & \cos \theta &= 0.816 \end{aligned}$$

$$0.6 = 3.6(0.577) - \frac{9.81}{2} \frac{3.6^2}{(0.816)^2}$$

$$V_0 = 7.57 \text{ ft/s}$$

$$\begin{aligned} \text{TOTAL HEAD} &= 0.6 + \frac{V^2}{2g} \\ &= 3.52 \text{ m} \end{aligned}$$

6.15

$$\dot{V} = 550 \text{ g/m} = 1.225 \text{ ft}^3/\text{s}$$

$$S = \frac{\dot{V}}{A} = \frac{1.225}{\pi/4 (5.95/12)^2} = 635 \text{ ft/s}$$

ENERGY EQUATION: $\underline{2}$ IS AT H₂O LEVEL
OUTSIDE PIPE

$$\frac{P_1 - P_2}{\rho} + \frac{V_1^2 - V_2^2}{2} + g(y_1 - y_2) = 0$$

$$\begin{aligned} \frac{P_1}{\rho} &= -\frac{V_1^2}{2} - gy_1 \\ &= -\frac{(635)^2}{2} - 32.2(6) \end{aligned}$$

$$= -(20.16 + 193.2)$$

$$= -213.4 \text{ ft}^2/\text{s}^2$$

$$P_1 = -\frac{(62.4)(213.4)}{(144)32.2} = -2.87 \text{ psia}$$

6.16 WITH REFERENCE TO PROB 6.15

BETWEEN H₂O SURFACE & PUMP INLET
ENERGY EQUATION IS

$$\frac{P_1 - P_2}{\rho g} + \frac{V_1^2 - V_2^2}{2g} + g(y_1 - y_2) = h_L$$

$$\frac{P_{atm} - P_2}{\rho g} - \frac{V_2^2}{2g} + y_1 - y_2 = h_L$$

$$\frac{V_2^2}{2g} = \frac{P_{atm} - P_2}{\rho g} - (y_2 - y_1) - h_L$$

$$= \frac{(14.7 - 0.47)(144)(32.2)}{62.4(32.2)} - 4-4$$

$$= 25.35 \text{ ft}$$

$$V_2 = \left[2(32.2)(25.35) \right]^{1/2} = 40.4 \text{ ft/s}$$

$$\dot{V} = A V_2 = \frac{\pi}{4} \left(\frac{5.95}{12} \right)^2 (40.4) = 7.8 \text{ ft}^3/\text{s}$$

6.17

From Prob 5.27

$$\Delta S_r = 10.22 \text{ ft/s}$$

$$\omega r_2 = 82.2 \text{ ft/s}$$

$$V_t = 10.22 \text{ ft/s}$$

$$At r_2 - V_x = 82.2 - 10.22$$

$$V_y = 10.22$$

$$V = (V_x^2 + V_y^2)^{1/2} = 82.9 \text{ ft/s}$$

$$\text{HEAD} = \frac{V^2}{2g} = 106.7 \text{ ft}$$

$$\Delta P = \rho \frac{V^2}{2} = 62.4 \left(\frac{82.9^2}{32.2} \right)$$

$$= 6660 \text{ lb}_f/\text{ft}^2 = 46.2 \text{ psi}$$

6.18

FOR THE SITUATION SHOWN -

$$\text{THRUST} = F = \rho V \sigma$$

$$\text{Power} = -\frac{\delta W}{dt} = \rho V \frac{\sigma^2}{2}$$

$$\frac{\text{Power}}{\text{THRUST}} \sim \frac{\rho V \sigma^2 / 2}{\rho V \sigma} \approx \sigma$$

$$\frac{\text{THRUST}}{\text{Power}} \sim \frac{1}{\sigma} \sim \frac{1}{n^{1/2}}$$

FANDRABIT CHOICE: { HIGH VOLUME
Low pressure }

6.19 FROM PROB 5.7 :

$$P_1 = 50 \text{ psia} \quad P_2 = 5 \text{ psia}$$

$$D_1 = 12 \text{ in} \quad D_2 = 2.5 \text{ in}$$

$$\dot{V} = 3 \text{ ft}^3/\text{s} \quad S.G. = 0.8$$

$$h_L = \frac{P_1 - P_2}{\rho g} + \frac{V_1^2 - V_2^2}{2g}$$

$$V_1 = \frac{3}{4}\pi(1)^2 = 3.82 \text{ ft/s}$$

$$V_2 = \frac{3}{4}\pi(2.5)^2 = 88 \text{ ft/s}$$

6.19 - CONTINUED

$$h_L = \frac{(50-5)144}{0.8(62.4)} + \frac{3.82^2 - 88^2}{2(32.2)} = \underline{\underline{9.79 \text{ FT}}}$$

6.20 For A C.V. Enclosed TAE focus:

$$\Delta u + \frac{\Delta p}{\rho} + \frac{\Delta V^2}{2} + g \Delta y = 0$$

$$\Delta u = g \Delta y = 9.81(165) = 1620 \text{ m}^2/\text{s}^2$$

$$= 1620 \text{ m}^2/\text{s}^2 \left(\frac{S \cdot N}{kg \cdot m} \right) = 1620 \text{ J/kg}$$

$$\text{for } H_2O: C_p = 4184 \text{ J/kg} \cdot K$$

$$\Delta T = \frac{\Delta u}{C_p} = \frac{1620}{4184} \approx \underline{\underline{0.39^\circ C}}$$

6.21

ASSUME VERTICAL FORCES DO NOT INCLUDE MOMENTUM OF INCOMING AIR -

$$(P - P_{ATM})A = Mg \quad \left\{ \begin{array}{l} \text{PRESSURE} \\ \text{FORCE} \end{array} \right\} = WT$$

ENERGY EQUATION BECOMES BERNoulli EQUATION BETWEEN INSIDE & EXIT -

$$\frac{P - P_{ATM}}{\rho} = \frac{V^2}{2}$$

$$\text{OR, } V^2 = 2 \frac{Mg}{\rho A}$$

6.21 (CONTINUED)

$$V^2 = \frac{2 \left(8100 \text{ kg} \right) \left(9.81 \text{ m/s}^2 \right)}{\left(1,205 \text{ kg/m}^3 \right) \left(27 \text{ m}^2 \right)}$$

$$\Rightarrow 4885 \text{ m}^2/\text{s}^2 \quad V = 69.9 \text{ m/s}$$

$$\dot{V} = 69.9 (24)(0.03)$$

$$= 50.3 \text{ m}^3/\text{s}$$

$$\dot{m} = 60.6 \text{ kg/s}$$

ENERGY EQUATION:

$$\begin{aligned} -\frac{dW_s}{dt} &= \dot{m} \left(\Delta h + \frac{\dot{V}^2}{2} + \frac{\dot{A}P}{B} + g\dot{A}y \right) \\ &= \dot{m} \frac{\dot{V}^2}{2} \\ &= 60.6 \left(\frac{69.9}{2} \right)^2 = \underline{\underline{148 \text{ kW}}} \end{aligned}$$

6.22 From PROB 5.22

$$h_2 = \frac{h_1}{2} \left[\left(1 + \frac{8V_1^2}{gh_1} \right)^{1/2} - 1 \right]$$

APPLIES TO \uparrow

FOR BERNOULLI EQUATION TO BE

$$V_1 = 0 \quad h_L = 0$$

ENERGY EQUATION FOR THIS CASE IS

$$h_L = \frac{P_1 - P_2}{\rho g} + \frac{V_1^2 - V_2^2}{2g} + y_1 - y_2$$

$$\frac{1}{2} \text{ SINCE } P = P_{ATM} + \rho g(h - y)$$

6.22 - (CONTINUED)

$$h_L = \frac{V_1^2 - V_2^2}{2g} + h_1 - h_2$$

WRITING SAME TO PROB 5.22 AS

$$h_2 = \frac{h_1}{2} \left(\sqrt{1+B} - 1 \right) \quad \left\{ B = \frac{8V_1^2}{gh_1} \right\}$$

$\frac{1}{2}$ NOTE THAT - FOR $h_2 > h_1$, $B > 8$

BERNOULLI EQUATION APPLIES FOR $B = 8$

$\frac{1}{2}$ OBVIOUSLY $h_L > 0$ FOR $B > 8$

6.23 ENERGY EQUATION APPLIES IN FORM

$$\begin{aligned} -\frac{dW_s}{dt} &= \dot{m} \frac{P_{ATM}}{g} - \dot{V} \Delta P \\ &= \eta_P \eta_M (\text{Power}) \end{aligned}$$

$$\left\{ \begin{array}{l} \text{PER} \\ \text{PERSON} \end{array} \right\} \dot{V} = \frac{80}{(7.48)(24)(3600)} = 1.238 \times 10^{-4} \text{ ft}^3/\text{s}$$

$$\begin{aligned} P &= \frac{\dot{V} \Delta P}{\eta_P \eta_M} \\ &= \frac{(1.238 \times 10^{-4})(60)(144)}{1.075(0.9)} \end{aligned}$$

$$= 1.584 \text{ ft lbf} \frac{1}{s}$$

$$= 2.148 \text{ W}$$

PER MONTH -

$$P = 2.148 \text{ W} (30)(24)$$

$$= 1547 \text{ Wh} = \underline{\underline{1.547 \text{ kWh}}}$$

6.24 BERNoulli EQUATION
BETWEEN FREE STREAM &
A REFERENCE POINT (1) ON GM

$$\frac{P_{ATM}}{\rho g} + \frac{(W+V)^2}{2g} = \frac{P_1}{\rho g} + \frac{(V-W)^2}{2g}$$

$$\frac{P_1 - P_{ATM}}{\rho g} = \frac{P_1}{\rho g} = 2WV$$

$$\underline{P_1 g = 2WV}$$

6.25 ENERGY EQUATION IS

$$\frac{dQ}{dt} = \iint_{CS} (e + \frac{1}{2} V^2) \rho (\vec{V} \cdot \vec{n}) dA$$

$$\dot{Q} = \dot{m} \left[(U_2 - U_1) + \frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) \right]$$

$$\Delta U = 200 \text{ kJ/kg}$$

$$\frac{\Delta P}{\rho g} = \frac{340 \times 10^3}{1001} = 340 \text{ kJ/kg}$$

$$\frac{\Delta V^2}{2} = 0$$

$$g \Delta y = 9.81 (15) = 0.147 \text{ kJ/kg}$$

$$\dot{Q} = 200 + 340 + 0.15 = 540 \text{ kJ/kg}$$

$$\dot{V} = V_A \frac{\pi}{4} \left(\frac{8}{12}\right)^2 = V_B \left(2\pi\right)(1)\left(\frac{0.5}{12}\right)$$

6.26 - CONTINUED

$$V_A = 2.865 \text{ ft/s} \quad V_A^2 = 8.22 \text{ ft}^2$$

$$V_B = 3.82 \text{ ft/s} \quad V_B^2 = 14.6 \text{ ft}^2$$

FOR NEGLIGIBLE FRICTION -

BERNOULLI EQUATION APPLIES

$$\frac{P_A - P_B}{\rho g} + \frac{V_A^2 - V_B^2}{2g} + g(y_2 - y_1) = 0$$

$$\frac{V_B^2 - V_A^2}{2} = \frac{V^2}{2} \frac{14.6 - 8.22}{2} = 3.32 \text{ ft}^2$$

$$\frac{P_A - P_B}{\rho g} = \frac{10(144)(32.2)}{62.4} = 743 \text{ ft}^2/\text{s}^2$$

$$g(y_A - y_B) = 32.2(-5) = -161$$

$$3.32 \text{ ft}^2 = 743 - 161 = 582$$

$$\dot{V} = 13.2 \text{ ft}^3/\text{s}$$

6.27

BERNOULLI EQUATION BETWEEN 1 & 2:

$$\frac{P_2 - P_1}{\rho g} + \frac{V_2^2 - V_1^2}{2g} = 0$$

$$V_1 = \frac{1}{\pi} \left(\frac{1}{2}\right)^2 = 5.09 \text{ ft/s}$$

$$V_2 = \frac{1}{\pi} \left(\frac{4}{12}\right)^2 = 11.5 \text{ ft/s}$$

$$\frac{\Delta P}{\rho g} = \frac{-(11.5)^2 - (5.09)^2}{2} = -1.65 \text{ ft H}_2\text{O}$$

MANOMETER READING -

$$= -1.457 \text{ "Hg}$$

$$h \left[1 - \frac{1}{13.6} \right] = 1.457$$

6.28

For A CONTROL VOLUME BETWEEN $1 \frac{1}{2}$
(IN MIXTURE REGION)

$$\frac{P_2 - P_1}{\gamma_m} + \frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) = 0$$

$$P_1 - P_{ATM} = \gamma_m g \Delta y_1 \quad (1)$$

MASS BALANCE AROUND MIXING CHAMBER

$$\dot{m}_{A,IN} + \dot{m}_W = \dot{m}_M$$

$$\text{AS GIVEN: } \gamma_m = \gamma_w / 2$$

$$\therefore V_m = 2V_w + 2 \frac{\gamma_A V_A}{\gamma_W V_W} \quad (2)$$

CONTROL VOLUME BETWEEN $A_{2,0}$
SURFACE $\frac{1}{2}$ & 1 (H₂O ONLY)

$$\frac{P_{ATM} - P_1}{\gamma_w} + \frac{0 - V_w^2}{2} + g \Delta y_2 = 0$$

$$P_1 - P_{ATM} = \gamma_w g \Delta y_2 - \gamma_w \frac{V_w^2}{2} \quad (3)$$

EQUATING (1) & (3):

$$\gamma_m g \Delta y_1 = \gamma_w \left(g \Delta y_2 - \frac{V_w^2}{2} \right)$$

$$\frac{V_w^2}{2} = g (\Delta y_2 - \Delta y_1 / 2)$$

$$V_w = \left[2g (0.45 \text{ m}) \right]^{1/2}$$

6.28 - CONTINUED

SUBSTITUTING EXPRESSION FOR V_w
INTO (2)

$$V_m = 2 \left[g (0.9 \text{ m}) \right]^{1/2} + \frac{2 (g \Delta y)_{AIR}}{\gamma_w V_w}$$

SINCE $\frac{V_w}{V_A} \gg 1$ 2ND TERM IS SMALL

$$\therefore V_m = 2 \left[9.81 (0.9) \right]^{1/2} = \underline{\underline{5.94 \text{ m/s}}}$$

6.29 for conditions of Prob 6.28

CONTROL VOLUME AROUND MIXING CHAMBER

$$\sum F_y = \iint_{CS} V_y \rho (\hat{F}, \vec{n}) dA$$

$$\Delta P A = \gamma_m A V_m \left[V_m - \frac{\gamma_m}{\gamma_w} V_m \right]$$

THIS NEGLECTS MOMENTUM OF AIR

From PROB 6.28

$$\text{ABOVE MIXER} - P = P_{ATM} + \gamma_m g \Delta y_1$$

$$\text{Below "} \quad P = P_{ATM} + \gamma_w g \Delta y_2 - \gamma_w \frac{V_w^2}{2}$$

$$\Delta P = \gamma_w g (\Delta y_2 - \Delta y_1) - \gamma_w \frac{V_w^2}{2}$$

EQUATING WITH MOMENTUM EXPRESSION

$$\Delta P = \gamma_m V_m^2 \left(1 - \frac{\gamma_m}{\gamma_w} \right)$$

$$= \gamma_w \left[g (\Delta y_2 - \Delta y_1) - \frac{V_w^2}{2} \right]$$

$$\frac{V_m^2}{4} = g (\Delta y_2 - \Delta y_1) - \frac{V_w^2}{2}$$

$$\text{For } V_w/V_m = 2 \quad \underline{\underline{V_m = 4.6 \text{ m/s}}}$$

6.29 - (CONTINUED)

$$\begin{aligned}\Delta P &= \rho_m v_m^2 (1 - \frac{1}{2}) \\ &= \frac{1}{2} (4.6)^2 (1000/2) \\ &\approx \underline{5.3 \text{ kPa}}\end{aligned}$$

6.30

IN BOTH GASES - BERNOULLI EQUATION IS

$$\begin{aligned}\frac{V_2^2 - V_1^2}{2} + \frac{P_2 - P_1}{\rho g} &= 0 \\ (\text{a}) \quad \Delta P &= \frac{V^2}{2g} = \frac{15^2}{2(9.81)} \\ &= 11.47 \text{ m AIR} \\ &= \underline{1.39 \text{ cm H}_2\text{O}}\end{aligned}$$

$$\begin{aligned}(\text{b}) \quad \Delta P &= \frac{24^2 - 15^2}{2(9.81)} \\ &= 17.9 \text{ m AIR} \\ &= \underline{2.52 \text{ cm OIL}}\end{aligned}$$

6.31

BETWEEN LIQUID SURFACE & EXIT:

BERNOULLI EQUATION:

$$\begin{aligned}\frac{V^2}{2} &= g \Delta y \\ V &= (2g \Delta y)^{1/2} \\ &= 2(32.2)(10)^{1/2} = 25.35 \text{ FT/S}\end{aligned}$$

$$V = \frac{\pi}{4} \left(\frac{1}{2}\right)^2 (25.35) = \underline{1.66 \text{ FT}^3/\text{s}}$$

BETWEEN POINT B & EXIT:

$$\frac{P_B - P_{\text{ATM}}}{\rho g} + g(y_B - y_{\text{exit}}) = 0$$

$$\begin{aligned}P_B &= P_{\text{ATM}} - \rho g \Delta y \\ &= 14.7 \text{ psi} - \frac{62.4(32.2)(14)}{32.2(144)} \\ &= \underline{8.63 \text{ psi}}\end{aligned}$$

BY CONTINUITY -

$$V_{\text{TANK}} = A_{\text{TANK}} \left(-\frac{dy}{dt}\right)$$

$$= A_{\text{PIPE}} \sqrt{2gy}$$

$$-\frac{dy}{dt} = \frac{A_{\text{PIPE}}}{A_{\text{TANK}}} \sqrt{2g} y^{1/2}$$

6.31 (CONTINUED)

$$\begin{aligned} -\int_7^{10} y^{1/2} dy &= \frac{A_p}{A_t} \sqrt{2g} \int_0^t dt \\ 2y^{1/2} \Big|_7^{10} &= \frac{A_p}{A_t} \sqrt{2g} t \\ 2 \left[10^{1/2} - 7^{1/2} \right] &= \frac{(1/12)^2}{10^2} \sqrt{2(32.2)} t \end{aligned}$$

$$t = 1854 \text{ s} = 0.515 \text{ h}$$

6.32 ENERGY EQN FOR THIS CASE:

$$\frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) + u_2 - u_1 = 0$$

$$V_1 = 0$$

$$y_2 - y_1 = -10 \text{ ft}$$

$$u_2 - u_1 = 32 \frac{V^2}{g}$$

$$\frac{V_2^2}{2g} + (-10) + 32 \frac{V_2^2}{g} = 0$$

$$\frac{32V^2}{g} = 10$$

$$V = 10.03 \text{ ft/s}$$

$$V = \frac{\pi}{4} \left(\frac{1}{12}\right)^2 (10.03) = 0.0547 \text{ ft}^3/\text{s}$$

6.33

BETWEEN 1 & 2

$$\frac{V_2^2 - 0}{2} + g(y_2 - y_1) = 0$$

6.33 (CONTINUED)

$$V_2 = \left[2(32.2)(20) \right]^{1/2} = 35.9 \text{ ft/s}$$

$$V = AV = \frac{\pi}{4} \left(\frac{2}{12}\right)^2 (35.9) = 0.783 \text{ ft}^3/\text{s}$$

$$\text{IN 4" LINES} - V = \frac{V_2}{4} = 8.975 \text{ ft/s}$$

$$V^2 = 80.55 \text{ ft}^2/\text{s}^2$$

BETWEEN 1 & 4:

$$\frac{P_A - P_1}{g} + \frac{V_2^2 - V_1^2}{2} + g(y_4 - y_1) = 0$$

$$\begin{aligned} P_A &= P_{ATM} + \rho \left(-\frac{V_1^2}{2}\right) + \rho g (y_1 - y_A) \\ &= P_{ATM} + \frac{62.4}{32.2} \left(-\frac{80.55}{2}\right) + 62.4(23) \\ &= P_{ATM} + 1356 \text{ lb/ft}^2 = \frac{3475 \text{ PSF}}{(24.12 \text{ psi})} \end{aligned}$$

$$V_A = \underline{8.975 \text{ ft/s}}$$

BETWEEN A & B:

$$\frac{P_A - P_B}{g} + \frac{V_2^2 - V_B^2}{2} + g(y_A - y_B) = 0$$

$$P_B = P_A + \rho g (-3) = \frac{3290 \text{ PSF}}{(22.83 \text{ psi})}$$

$$V_B = \underline{8.975 \text{ ft/s}}$$

CONDITIONS AT D & B ARE EQUAL

$$\therefore P_D = \underline{3290 \text{ PSF}}$$

$$V_D = \underline{8.975 \text{ ft/s}}$$

6.33 (CONTINUED)

BETWEEN B & C :

$$\frac{P_B - P_C}{g} + \frac{V_B^2 - V_C^2}{2} + g(y_B - y_C) = 0$$

$$P_C = P_B + g(y_B - y_C)$$

$$= P_B + 62.4(-20)$$

$$= \frac{2042 \text{ PSF}}{(14.18 \text{ psi})}$$

$$V_C = 8.975 \text{ ft/s}$$

6.34 BETWEEN WATER LEVEL (1)
& EXIT (2)

$$\frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) = 0$$

$$V_2 = \sqrt{2g\Delta y}$$

$$\dot{V} = \frac{\pi}{4} D_{\text{EXIT}}^2 [2gy]^{1/2}$$

H₂O IN TANK:

$$\dot{V} = \frac{\pi}{4} D_{\text{TANK}}^2 \left(-\frac{dy}{dt} \right)$$

$$\frac{dy}{dt} = \left(\frac{D_{\text{EXIT}}}{D_{\text{TANK}}} \right)^2 \sqrt{2g} y^{1/2}$$

$$\int y^{1/2} dy = \left(\frac{D_{\text{E}}}{D_{\text{T}}} \right)^2 \sqrt{2g} \int dt$$

$$2y^{1/2} \Big|_4^{\infty} = \left(\frac{D_{\text{E}}}{D_{\text{T}}} \right)^2 \sqrt{2g} t$$

6.34 - (CONTINUED)

$$t = \frac{2(28^{1/2} - 4^{1/2})}{\left(\frac{2^{1/2}}{15}\right)^2 \left[2(32.2)\right]^{1/2}}$$

$$= \frac{6644 \text{ s}}{1.846 \text{ hours}}$$

6.35

From 1 TO 2

$$\frac{P_1 - P_2}{g_1} + \frac{V_2^2 - V_1^2}{2} + g(y_1 - y_2) = 0$$

$$\frac{P_1 - P_2}{g_1} + \frac{V_2^2}{2} = 0 \quad (1)$$

From 3 TO 4:

$$\frac{P_3 - P_4}{g_2} + \frac{V_4^2 - V_3^2}{2} + g(y_3 - y_4) = 0$$

$$\frac{V_4^2}{2} = \frac{V_3^2}{2} + \frac{P_3 - P_4}{g_2} - gL \quad (2)$$

NOTE THAT $P_4 + \rho_1 g L = P_1$, GIVING

$$\frac{V_4^2}{2} = \frac{V_3^2}{2} + \frac{P_3 - P_1 + \rho_1 g L}{g_2} \quad (3)$$

From 2 TO 3

$$\frac{P_2}{g_1} - \frac{P_3}{g_2} + \frac{V_2^2 - V_3^2}{2} = 0$$

FOR $V_2 \approx V_3$ NEGLIGIBLE.

$$P_2 = P_3$$

& from (2)

$$\frac{V_2^2}{2} = -gL + \frac{\rho_1 g L}{g_2} = gL \left(\frac{\rho_1}{g_2} - 1 \right)$$

6.36 From Prob 6.28:

$$\frac{P_1 - P_2}{S_1} + \frac{V_2^2}{2} = 0$$

$$\frac{P_3 - P_1}{S_2} = \frac{V^2}{2} + gL \left(\frac{S_2 - S_1}{S_2} \right) - \frac{V_3^2}{2}$$

CONS. OF MASS:

$$S_1 V_2 = S_2 V_3 = S_2 V / R$$

$$\frac{\dot{A}_{ATR}}{\dot{A}_{STRA}} = R$$

$$\therefore V_2^2 = \left(\frac{S_2}{S_1} \right)^2 \left(\frac{V}{R} \right)^2 \quad V_3^2 = \frac{V^2}{R^2}$$

$$\text{GIVEN} \quad P_2 - P_1 = -\frac{S_1}{2} \left(\frac{S_2}{S_1} \right)^2 \frac{V^2}{R^2}$$

$$P_3 - P_1 = S_2 \frac{V^2}{2} + gL(S_2 - S_1) - \frac{S_2 V^2}{2R^2}$$

From Momentum Theorem-

$$\frac{V_2 - F_{ATR}}{P_2} = \frac{V_3}{P_3}$$

$$F_x = \iint_{CS} V_x S(\vec{v}, \vec{n}) dA$$

$$(P_2 - P_3) A = S_1 V_2 A (V_3 - V_2)$$

$$P_2 - P_3 = \frac{S_2 V^2}{R^2} \left(1 - \frac{S_2}{S_1} \right)$$

BERNOULLI EQU:

$$\frac{V^2}{R^2} \left(1 - \frac{S_2}{S_1} \right) + \frac{S_1}{2 S_2} \left(\frac{S_2}{S_1} \right)^2 \frac{V^2}{R^2}$$

$$+ \frac{V^2}{2} + gL \left(1 - \frac{S_1}{S_2} \right) - \frac{V^2}{2R^2} = 0$$

6.36 (CONTINUED)

DOING THE ALGEBRA:

$$V_2 = \frac{2gL \left(\frac{S_1}{S_2} - 1 \right)}{1 + \frac{1 - S_2/S_1}{R^2}}$$

6.37

FRICTIONLESS FLOW:

From Bernoulli

$$\frac{P_2 - P_1}{\rho g} + \frac{V_2^2 - V_1^2}{2g} + y_2 - y_1 = 0$$

$$V_2^2 = 2g(y_1 - y_2)$$

$$V = \left[2(9.81)(10) \right]^{1/2} = 14 \text{ m/s}$$

$$\dot{m} = (1000) \left(\frac{\pi}{4} \right) (0.04)^2 (14) = 17.6 \text{ kg/s}$$

WITH NOZZLE - $V = 14 \text{ m/s}$ {stst}

$$\dot{m} = (1000) \left(\frac{\pi}{4} \right) (0.01)^2 (14) = 1.10 \text{ kg/s}$$

WITH $u_2 - u_1 = 3V^2$

ENERGY EQU Reduces to

$$\frac{V_2^2}{2g} + \frac{3V^2}{g} = 2(y_1 - y_2)$$

$$V_2 = \left[\frac{4}{7} (9.81) 10 \right]^{1/2} = 7.49 \text{ m/s}$$

$$\text{PIPE: } \dot{m} = 9.42 \text{ kg/s}$$

$$\text{NOZZLE: } \dot{m} = 0.589 \text{ "}$$

6.38 Same tank as in
Prob 6.37 but 2 exit
pipes -

Pipe 1: $D = 0.04\text{m}$

$$\Delta y = 10\text{ m}$$

Pipe 2 $D = 0.04\text{m}$

$$\Delta y = 20\text{ m}$$

Frictionless flow!

Pipe 1 -

As in Prob 6.37

$$V = \sqrt{2g\Delta y} = 14\text{ m/s}$$

$$\dot{m} = \underline{17.6\text{ kg/s}}$$

Pipe 2: Also $V = \sqrt{2g\Delta y}$

$$V = \left[2(9.81)(20) \right]^{1/2}$$

$$= \underline{19.81\text{ kg/s}}$$

$$\dot{m} = (1000) \left(\frac{\pi}{4}\right) (0.04)^2 (19.81)$$

$$= \underline{24.9\text{ kg/s}}$$

CHAPTER 7

7.1

$$\frac{\partial v_x}{\partial y} \gg \frac{\partial v_y}{\partial x}$$

$$\frac{\partial v_y}{\partial x} \gg \frac{\partial v_x}{\partial y}$$

7.2

for 2-D flow - in x, y

$$v_z = 0 \quad \sigma_{zz} = 0$$

$$\frac{\partial v_z}{\partial x} = 0 \quad \tau_{zx} = \tau_{xz} = 0$$

$$\frac{\partial v_z}{\partial y} = 0 \quad \tau_{zy} = \tau_{yz} = 0$$

7.3

$$I = v_x(x) \Delta t$$

$$II = v_x(x + \Delta x) \Delta t$$

7.3 - (CONTINUED)

AXIAL STRAIN RATE:

$$= \lim_{\substack{\Delta x \rightarrow 0 \\ \Delta t \rightarrow 0}} \frac{v_x(x + \Delta x) \Delta t - v_x(x) \Delta t}{\Delta x \Delta t} = \frac{\partial v_x}{\partial t}$$

RATE OF VOLUME CHANGE:

$$= \lim_{\substack{\Delta x \rightarrow 0 \\ \Delta t \rightarrow 0}} \frac{A \Delta x_{L+AT} - A \Delta x_{L}}{A \Delta x \Delta t}$$

$$= \lim_{\substack{\Delta x \rightarrow 0 \\ \Delta t \rightarrow 0}} \frac{v_x(x + \Delta x) \Delta t - v_x(x) \Delta t}{A x \Delta t} = \frac{\partial v_x}{\partial x}$$

IN 3 DIMENSIONS

Both Axial Strain Rate AND

VOLUME CHANGE RATE ARE
GIVEN BY

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

7.4

in r-z plane:

$$-\frac{ds}{dt} = -\lim_{\Delta t \rightarrow 0} \frac{s_{t+\Delta t} - s_t}{\Delta t}$$

$$= -\lim_{\Delta t \rightarrow 0} \left[\tan^{-1} \left(\frac{v_r|_{z+\Delta z} - v_r|_z}{\Delta z} \right) \Delta t \right]$$

$$-\tan^{-1} \frac{v_z|r+\Delta r - v_z|r \Delta t + \bar{v}_z}{\Delta r}$$

Δt

50

7.4 - (CONTINUED)

$$= \lim_{\Delta z \rightarrow 0} \left[\frac{U_r|_{z+\Delta z} - U_r|_z}{\Delta z} + \frac{U_z|r+\Delta r - U_z|r}{\Delta r} \right]$$

$$\therefore J_{rz} = J_{zr} = \mu \left[\frac{\partial U_r}{\partial z} + \frac{\partial U_z}{\partial r} \right]$$

IN THE $\theta-z$ PLANE —

SAME PROCEDURE

$$\lim_{\Delta z \rightarrow 0} \left[\frac{U_\theta|_{z+\Delta z} - U_\theta|_z}{\Delta z} + \frac{1}{r} \frac{U_z|_{\theta+\Delta\theta} - U_z|\theta}{\Delta\theta} \right]$$

$$J_{\theta z} = J_{z\theta} = \mu \left[\frac{\partial U_\theta}{\partial z} + \frac{1}{r} \frac{\partial U_z}{\partial \theta} \right]$$

1/ IN $r-\theta$ PLANE

$$\lim_{\Delta r \rightarrow 0} \left[\frac{U_r|_{\theta+\Delta\theta} - U_r|_\theta}{\Delta\theta} + r \frac{U_\theta|_{r+\Delta r} - U_\theta|r}{\Delta r} \right]$$

$$J_{r\theta} = J_{\theta r} = \mu \left[\frac{1}{r} \frac{\partial U_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{U_\theta}{r} \right) \right]$$

7.5 NITROGEN @ 175 K

$$\mu = 2.6693 \times 10^6 \frac{\sqrt{MT}}{\sigma^2 \Omega \mu}$$

$$T = 175 \text{ K} \quad \sigma = 3.681 \text{ \AA}$$

$$M = 28 \quad \Omega \mu = 1.1942$$

$$E_A/k = 91.5$$

$$KT/e = 1.91$$

$$\mu \approx 11.55 \times 10^{-6} \text{ Pa.s.}$$

7.6 OXYGEN @ 350 K

$$\text{EQN. 7.10} \quad \mu = 2.6693 \times 10^6 \frac{\sqrt{MT}}{\sigma^2 \Omega \mu}$$

$$\frac{KT}{e} = \frac{T}{E/k} = \frac{350}{113} = 3.097$$

$$\text{YIELDING} \quad \Omega \mu = 1.03$$

$$M = 32 \quad \sigma = 3.433$$

$$\mu = 1.327 \times 10^{-5} \text{ Pa.s.}$$

$$\text{TABLE VALUE: } \mu = 1.318 \text{ Pa.s.}$$

7.7 for H_2O

$$\mu|_{60^\circ} = 0.76 \times 10^{-3} \text{ lbm/s.ft.}$$

$$\mu|_{120^\circ} = 0.375 \times 10^{-3} \text{ "}$$

$$\text{PERCENT CHANGE} = \frac{0.76 - 0.375}{0.76}$$

$$= 0.51 \quad \text{OR} \quad 51\%$$

7.8 PROPERTIES OF HELIUM, GLYCERIN FROM APPENDIX

T, F	η, HE	$\eta, \text{GLYCERIN}$
60	0.00125	0.017
80	0.00132	0.00762
100	0.00141	0.00128

7.9 For H_2O $\dot{V} \sim 1/\mu$

$$\begin{aligned} @ 120F \quad \mu_w &= 0.391 \times 10^{-3} \text{ lbf/s ft} \\ @ 32F \quad &= 1.2 \times 10^{-3} \text{ "} \end{aligned}$$

$$\frac{\dot{V}_{140}}{\dot{V}_{32}} = \frac{1.2 \times 10^{-3}}{0.391 \times 10^{-3}} = 3.07$$

For CENT CHANGE

$$= \frac{1.2 - 0.391}{0.391}$$

$$= 3.07 - 1 = 2.07$$

$$\text{OR } \underline{207 \%}$$

7.10 For AIR

$$\begin{aligned} @ 140F \quad \mu &= 1.34 \times 10^{-5} \text{ lbf/s ft} \\ 32F \quad \mu &= 1.15 \times 10^{-5} \text{ "} \end{aligned}$$

$$\text{for } \dot{V} \sim 1/\mu$$

$$\frac{\dot{V}_{140}}{\dot{V}_{32}} = \frac{1.15}{1.34} = 0.852$$

$$\begin{aligned} \text{PER CENT CHANGE} &= \frac{1.15 - 1.34}{1.34} \\ &= 0.852 - 1 = -0.148 \\ &= -14.8\% \end{aligned}$$

7.11

$$\mu = 0.1 \text{ Pa s}$$

$$\begin{aligned} D_L &= 3.175 \text{ cm} \\ D_o &= 3.183 \text{ "} \end{aligned}$$

$$\begin{aligned} \text{1ST LAW: } \frac{\partial Q}{\partial t} - \frac{\partial (\eta v_s)}{\partial t} - \frac{\partial (\eta w_s)}{\partial t} &= 0 \\ Q &= \dot{W}_{\text{VISCOUS}} \quad \left\{ \begin{array}{l} \text{NO FLOW IN} \\ \text{OR OUT} \end{array} \right\} \\ &= \tau(A)v - \text{AT MOVING} \\ &\quad \text{BOUNDARY} \end{aligned}$$

$$\tau_i = \mu \frac{\partial v}{\partial r} \approx \mu \frac{rw}{t} \quad \left\{ \begin{array}{l} t = 6 \text{ mm} \\ \text{WIDTH} \end{array} \right\}$$

$$Q = \mu \frac{rw}{t} (\pi D L) (rw)$$

$$= \frac{\mu (rw)^2 \pi D L}{t}$$

$$\omega = 1700 \left(\frac{2\pi}{60} \right) = 178 \text{ RAD/s}$$

$$Q = \frac{(0.01) \left(\frac{0.103175}{2} \right)^2 (178)^2 (\pi) (0.103175) (0.028)}{4 \times 10^{-5}}$$

$$= \underline{5.58 \text{ W}}$$

7.12 REFER TO PROB. 7.13

FOR $\omega_2 = 2\omega_1$

$$\frac{\dot{Q}_2}{\dot{Q}_1} = \frac{(2\omega_1)^2}{\omega_1^2} = 4$$

FOR CENT INCREASE

$$= \frac{\dot{Q}_2 - \dot{Q}_1}{\dot{Q}_1} = 4 - 1 = 3$$

$$= \underline{300\%}$$

7.13 SHIP 1 $\rightarrow V_1 = 4 \text{ m/s}$

SHIP 2 $\rightarrow V_2 = 3.1 \text{ m/s}$

CHOOSE CONTROL VOLUME
ATTACHED TO SHIP 1

$$\begin{aligned}\sum F_x &= \iint_{C,S} V_x S (\vec{v} \cdot \vec{n}) dA \\ &= \dot{m} V_{x1} - \dot{m} V_{x2}\end{aligned}$$

RELATIVE TO MOVING SHIP

$$V_{x1} = 0 \quad V_{x2} = -0.9 \text{ m/s}$$

$$F_x = +\dot{m} V_{x2}$$

$$= 100 \text{ kg/s} (0.9 \text{ m/s})$$

$$= 90 \text{ N}$$

THIS IS FORCE APPLIED TO
MAINTAIN STATED CONDITIONS.

FORCE EXERTED BY FLUID
TRANSFER $= -\underline{90 \text{ N}}$

7.14

$$t = GAP = \frac{D_{\text{outer}} - D_{\text{inner}}}{2}$$

$$= \frac{36.04 - 36.02}{2} = 0.01 \text{ cm}$$

$$f = \bar{J}A = \bar{J}\pi D L$$

$$\bar{J} = \mu \frac{du}{dy} = \mu \frac{du}{Ay} \quad \left. \begin{array}{l} \text{ASSUMES} \\ \text{LINEAR} \\ \text{PROFILE} \end{array} \right\}$$

$$\bar{J} = \mu \frac{V}{t}$$

$$F = \mu \frac{V}{t} \pi D L = \frac{\rho g V \pi D L}{t}$$

$$= \frac{0.85(1000)(3.7 \times 10^{-4})(0.15) \times \pi (0.3602)(3.14)}{1 \times 10^{-4}}$$

$$= \underline{1676 \text{ N}}$$

7.15 REFER TO CONDITIONS OF PROB 7.14

LOAD ON RAM = 680 kg, L = 2.44 m

$$F = mg = \frac{\rho g V \pi D L}{t}$$

$$V = \frac{mgt}{\rho g \pi D L}$$

$$= \frac{680(9.81)(1 \times 10^{-4})}{0.85(1000)(3.7 \times 10^{-4})\pi(0.3602)(2.44)}$$

$$= \underline{0.768 \text{ m/s}}$$

7.16

$$M = \int r dF$$

$$dF = \tau dA$$

dF is on the conical surface
 $= 2\pi r dL$

{ dL is along slanted surf }
 $dL = dr / \sin \alpha$

$$\text{so: } dF = \tau dA$$

$$= \mu r \omega \frac{2\pi r}{h} \frac{dr}{\sin \alpha}$$

$$\int_0^M dM = r dF$$

$$= \frac{2\pi \mu \omega}{h \sin \alpha} \int_0^{D/2} r^3 dr$$

$$M = \frac{\pi \mu \omega D^4}{32 h \sin \alpha}$$

$$7.17 \quad V_x = V_{\max} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

$$= 2V_{\text{avg}} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

$$\tau = \mu \frac{dV}{dr} \Big|_{r=R}$$

$$\frac{dV}{dr} = 2V_{\text{avg}} \left[-\frac{2r}{R^2} \right]$$

7.17 - CONTINUED

$$\text{At } r=R \quad \frac{dV}{dr} = -4 \frac{V_{\text{avg}}}{R}$$

$$\tau = -\frac{4\mu V_{\text{avg}}}{R}$$

$$\mu_w = 0.76 \times 10^{-3} \text{ lbm/s.ft} @ 60^\circ F$$

$$\tau = -\frac{4(0.76 \times 10^{-3})(2)}{(0.05/12)(32.2)}$$

$$= -0.0453 \text{ lbf/in}^2$$

7.17 For conditions of Prob 7.16

$$\tau = -\frac{4\mu V_{\text{avg}}}{R}$$

$$F = \tau A = \tau \pi D L$$

$$= -\frac{4\mu V_{\text{avg}} (\pi D L)}{R}$$

$$=(-0.0453)(\pi)(0.1)(1)$$

$$= \underline{0.00119 \text{ lbf}}$$

$$\Delta P = \frac{F}{\pi D^2/4}$$

$$= \underline{0.00119 \text{ lbf}}$$

$$\pi(0.1/2)^2/4$$

$$= \underline{21.75 \text{ PSF}}$$

7.19 Shear Work Rate = $\bar{G}V$

$$\bar{G}V = \mu V \frac{dV}{dr}$$

For Parabolic Profile -

$$V = V_{\max} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

$$\bar{G}V = \mu V_{\max}^2 \left[1 - \left(\frac{r}{R} \right)^2 \right] \left[-\frac{2r}{R^2} \right]$$

$$= \mu V_{\max}^2 \left[-\frac{2r}{R^2} + 2 \frac{r^3}{R^4} \right]$$

$$\frac{d}{dr}(\bar{G}V) = \mu V_{\max}^2 \left[-\frac{2}{R^2} + 6 \frac{r^2}{R^4} \right]$$

for $\frac{d}{dr}(\bar{G}V) = 0$

$$6 \frac{r^2}{R^4} = \frac{2}{R^2}$$

$$\underline{\underline{\frac{r}{R} = \frac{1}{\sqrt{3}}}}$$

CHAPTER 8

8.1 HAGEN - POISEULLE EQUATION

$$\frac{dp}{dx} = \frac{32 \mu V_{avg}}{D^2}$$

$$= \frac{32 \mu \dot{V}}{D^2 A} = \frac{32 \mu \dot{V}}{\pi/4 D^4}$$

For $D = D_0$ $\dot{V}_0 = \left[\left(-\frac{dp}{dx} \right) \frac{\pi/4}{32\mu} \right] D_0^4$

For $D_1 = 2D_0$ $\dot{V}_1 = \left[\left(-\frac{dp}{dx} \right) \frac{\pi/4}{32\mu} \right] (2D_0)^4$
 $\Rightarrow \dot{V}_1 = 16 \dot{V}_0$

Per Cent Change

$$= \frac{\dot{V}_1 - \dot{V}_0}{\dot{V}_0} = \frac{\dot{V}_1}{\dot{V}_0} - 1 = 15$$

$$= \underline{1500 \%}$$

8.2 FOR SINGLE PIPE:

$$\Delta P_0 = \left[\frac{32 \mu}{D^2 A} \right] \dot{V}_0 (40)$$

For SINGLE-PARALLEL combination

$$\Delta P_1 = \left[\dot{V}_1 (22) - \left\{ \begin{array}{l} \text{SINGLE} \\ \text{BRANCH} \end{array} \right\} \right]$$

$$\Delta P_2 = \left[\dot{V}_2 (18) \right] \left\{ \begin{array}{l} \text{PARALLEL} \\ \text{BRANCH} \end{array} \right\}$$

$$\Delta P_1 + \Delta P_2 = \Delta P_0 = 3.45 \times 10^6 \text{ Pa}$$

$$\dot{V}_1 = 2 \dot{V}_2$$

(Ass 2: $\Delta P_1 + \Delta P_2 = \left[\dot{V}_1 (22+4) \right] \dot{V}_1$)

$$\dot{V}_1 = \frac{40}{31} \dot{V}_0 = \frac{40}{31} (4000)$$

$$= 5161 \text{ BBL/DAY}$$

for 1 — RESERVOIR

2 — PIPE ENTRANCE

3 — " EXIT

BETWEEN 1 & 2: $\frac{P_1 - P_2}{8} + \frac{\dot{V}_1^2 - \dot{V}_2^2}{2} + g(y_1 - y_2) = 0$

$$\frac{P_1}{8} = \frac{P_2}{8} + \frac{\dot{V}_2^2}{2}$$

BETWEEN 2 & 3:

$$\frac{P_2 - P_3}{8} + \frac{\dot{V}_2^2 - \dot{V}_3^2}{2} + g(y_2 - y_3) - \Delta u = 0$$

$$\frac{P_2}{8} = \frac{P_{ATM}}{8} + \Delta u$$

For INVISCID FLOW — $\Delta u = 0$

For LAMINAR, VISCOUS FLOW

$$\Delta u = \frac{\Delta P}{8} \Big|_{\text{FRICTION}} = \frac{32 \mu}{8 D^2} \dot{V}$$

INVISCID CASE:

$$\frac{\dot{V}^2}{2} = \frac{P_1 - P_{ATM}}{8} = \frac{P_{IG}}{8}$$

ASSUMING FLOW IS HYDRAULIC FLOW
@ 60°F — 15.9 K

$$\gamma = 849 \text{ kg/m}^3 \quad \mu = 0.0165 \text{ Pa.s}$$

$$\dot{V} = \left[\frac{2 (207000)}{849} \right]^{\frac{1}{2}} = 22.08 \text{ m/s}$$

$$\dot{V} = \Delta u = \frac{\pi}{4} (0.00635^2) (22.08)$$

$$\approx 7 \times 10^{-4} \text{ m}^3/\text{s}$$

8.3 - CONTINUED

Viscous Case:

$$\frac{P_1 - P_{\text{ATM}}}{\rho} = \frac{V^2}{2} + \Delta u$$

$$\frac{P_{16}}{\rho} = \frac{V^2}{2} + \frac{32 \mu V}{\rho D^2}$$

$$V^2 + \frac{64 \mu V}{\rho D^2} - 2 \frac{P_{16}}{\rho} = 0$$

$$\frac{64 \mu}{\rho D^2} = \frac{64(0.0165)}{849(0.00635)^2}$$

$$= 30.85 \text{ m}^2/\text{s}^2$$

$$2 \frac{P_{16}}{\rho} = 487.6 \text{ "}$$

$$V^2 + 30.85 V - 487.6 = 0$$

$$V = \frac{-30.85 \pm \sqrt{(30.85)^2 + 4(487.6)}}{2}$$

$$= 11.51 \text{ m/s}$$

$$V = \frac{\pi}{4} (0.00635)^2 (11.51)$$

$$= \underline{3.645 \times 10^{-4} \text{ m/s}}$$

$$\frac{V_{\text{inviscid}}}{V_{\text{viscous}}} = \frac{7}{3.645} = \underline{1.92}$$

8.4

from 1 to 2 (Bernoulli)

$$\frac{P_2 - P_{\text{ATM}}}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(y_2 - y_1) = 0$$

$$\frac{V_2^2}{2} = \frac{P_{\text{ATM}} - P_2}{\rho} + g(y_1 - y_2)$$

from 1 to 3

$$\frac{P_2 - P_{\text{ATM}}}{\rho} + \frac{V_2^2 - V_3^2}{2} + g(y_2 - y_3) + \Delta u = 0$$

$$\Delta u = \frac{32 \mu V L}{\rho D^2} = \frac{32 V L}{D^2} \rightarrow$$

Combining Expressions:

$$\frac{32 V L}{D^2} \rightarrow = g(y_1 - y_3) - \frac{V^2}{2}$$

$$\rightarrow V = \frac{4 V}{\pi D^2}$$

$$V = g A y \frac{\pi D^4}{128 L V} - \frac{V}{16 \pi L}$$

$$\frac{9.81(0.63)\pi(0.0018)^4}{128(0.55)(0.273 \times 10^{-4})} = 1.0605 \times 10^{-5}$$

$$\frac{0.273 \times 10^{-4}}{16(\pi)(0.55)} = 0.000987 \times 10^{-5}$$

$$V = (1.0605 - 0.001) \times 10^{-5}$$

$$= \underline{1.0595 \times 10^{-5} \text{ m}^2/\text{s}}$$

8.5

USING THE SAME DEVELOPMENT AS IN SECTION 8.1:

$$\frac{d}{dr}(r\beta) = r \frac{dp}{dx}$$

FOR AN ELEMENT OF LENGTH, L

$$\frac{d}{dr}(r\beta) \int_0^L dx = r \int_{P_1}^{P_2} dp$$

WHICH BECOMES

$$\frac{d}{dr}(r\beta) = r \frac{\Delta p}{L}$$

INTEGRATING:

$$r\beta = \frac{\Delta p}{L} \frac{r^2}{2} + C_1$$

$$\beta = \frac{\Delta p}{L} \frac{r}{2} + C_1/r$$

FOR LAMINAR FLOW, NEWTONIAN

$$\beta = \mu \frac{dv}{dr}$$

$$\text{so } \mu \frac{dv}{dr} = \frac{\Delta p}{L} \frac{r}{2} + C_1/r$$

$$dv = \frac{\Delta p}{2\mu L} r dr + \frac{C_1}{\mu} \frac{dr}{r}$$

INTEGRATING:

$$v = \frac{\Delta p}{4\mu L} r^2 + \frac{C_1}{\mu} \ln r + C_2$$

BOUNDARY CONDITIONS:

$$v(r=R) = 0$$

$$v(r=kR) = 0 \quad k < 1$$

8.5 - (CONTINUED) -

CONSIDERABLE ALGEBRA YIELDS

$$C_1 = -\frac{\Delta p}{4\mu L} \frac{R^2(1-k^2)}{\ln^{1/k}}$$

$$C_2 = -\frac{\Delta p}{4\mu L} R^2 \left[1 - (1-k^2) \frac{\ln R}{\ln^{1/k}} \right]$$

WITH SUBSTITUTION & SIMPLIFICATION:

$$v = -\frac{\Delta p R^2}{4\mu L} \left[1 - \frac{r^2}{R^2} - \frac{1-k^2}{\ln^{1/k}} \ln \frac{R}{r} \right]$$

8.6 THIS IS SAME CONFIGURATION AS SHOWN IN PROB 8.5

$$\therefore \frac{d}{dr}(r\beta) - \frac{dp}{dx} r = 0$$

$$\text{INTEGRATING: } Tr_x - \frac{dp}{dx} \frac{r^2}{2} = \frac{C_1}{r}$$

FOR LAMINAR FLOW, NEWTONIAN FLUID:

$$Tr_x = \mu \frac{dv}{dr}$$

$$\frac{dv}{dr} - \frac{r}{2\mu} \frac{dp}{dx} = \frac{C_1}{\mu r}$$

INTEGRATING:

$$v_x - \frac{1}{4\mu} \frac{dp}{dx} r^2 = \frac{C_1}{\mu} \ln r + C_2$$

BOUNDARY CONDITIONS:

$$v(r=R/2) = 0$$

$$v(r=D/2) = V$$

MORE ALGEBRA!

$$C_1 = -\frac{\mu}{\ln D/d} \left[V + \frac{1}{16\mu} \frac{dp}{dx} (D^2 - d^2) \right]$$

8.6 - CONTINUED

$$C_2 = -\frac{1}{4\mu} \frac{dF}{dx} \frac{D^2}{4} - \frac{C_1}{\mu} \ln \frac{D}{2}$$

DRAG FORCE PER UNIT LENGTH

$$F = \bar{J}A = \bar{J}(\pi d)(l)$$

$$= \mu \frac{dV}{dr} \Big|_{r=d/2} (\pi d)$$

GIVEN:

$$F = \pi d \nu \left[\frac{C_1}{\mu r} + \frac{r}{2\mu} \frac{dF}{dx} \right]_{r=\frac{D}{2}}$$

$$= \pi d \nu \left[\frac{2C_1}{\mu d} + \frac{d}{4\mu} \frac{dF}{dx} \right]$$

FOR THE CASE WITH $\frac{dF}{dx} = 0$

$$F = -\frac{2\pi \mu V}{\ln D/d}$$

8.7

IN θ -DIRECTION:

$$\sum F_\theta = -r A \theta A z \bar{J}_{r\theta} \Big|_r + r A \theta A z \bar{J}_{r\theta} \Big|_R + \Delta r A \theta A z \bar{J}_{r\theta} \Big|_{r+\Delta r}$$

θ COMPONENT OF
FORCE ON (θ) FACE

DIVIDE BY $r A \theta A z$ & TAKE
LIMIT AS $\Delta r \rightarrow 0$:

$$\frac{d}{dr} (r \bar{J}_{r\theta}) + \bar{J}_{r\theta} = 0$$

$$r \frac{d\bar{J}}{dr} + 2\bar{J} = 0$$

8.7 - CONTINUED

$$\frac{d\bar{J}}{\bar{J}} + 2 \frac{d\bar{J}}{r} = 0$$

$$\ln \bar{J} + 2 \ln r = \ln (\text{constant})$$

$$r^2 \bar{J} = \text{CONSTANT}$$

$$\bar{J} = \mu r \frac{d}{dr} \left(\frac{V_\theta}{r} \right)$$

$$r^2 \bar{J} = \mu r^3 \frac{d}{dr} \left(\frac{V_\theta}{r} \right) = \text{constant}$$

$$d \left(\frac{V_\theta}{r} \right) = \frac{C}{\mu} \frac{dr}{r^3}$$

$$\frac{V_\theta}{r} = C_1 \left(-\frac{1}{r^2} \right) + C_2$$

$$V_\theta = -\frac{C_1}{r} + r C_2$$

BOUNDARY CONDITIONS:

$$V_\theta(R) = 0 \quad \Rightarrow \quad 0 = \frac{C_1}{R} + R C_2$$

$$V_\theta(KR) = V \quad \Rightarrow \quad V = -\frac{C_1}{KR} + KRC_2$$

ALGEBRA

$$V_\theta = \frac{VR}{K-1} \left(\frac{r}{R^2} - \frac{1}{r} \right)$$

IF PROFILE IS LINEAR:

$$V_\theta = ar + b$$

{

$$V_\theta = \frac{V}{K-1} \left(\frac{r}{R} - 1 \right)$$

8.7 CONTINUED

$$\text{PERCENT ERROR} = \frac{\Delta V}{V}$$

$$\Delta V = V_{\text{ACTUAL}} - V_{\text{LINEAR}}$$

$$= \frac{VRk}{K^2-1} \left(\frac{r}{R^2} - \frac{1}{r} \right) - \frac{V}{R(K-1)} (r-R)$$

$$\frac{d}{dr} \Delta V = \frac{VRK}{K^2-1} \left(\frac{1}{R^2} + \frac{1}{r^2} \right) - \frac{V}{R(K-1)}$$

$$= \frac{V}{K-1} \left[\frac{RK}{K+1} \left(\frac{1}{R^2} + \frac{1}{r^2} \right) - \frac{1}{R} \right] = 0$$

ΔV_{MAX} occurs at $\frac{r}{R} = \sqrt{K}$

$$\left. \frac{\Delta V}{V} \right|_{\text{MAX}} = 1 - \frac{(\sqrt{K}-1)(K+1)\sqrt{K}}{K(K-1)} = 0.01$$

RESULTING IN

$$\frac{(\sqrt{K}-1)(K+1)}{\sqrt{K}(K-1)} = 0.99$$

$$\underbrace{\quad}_{\downarrow} \quad K = 0.96$$

8.8 FOR FLOW BETWEEN 2 HORIZONTAL PLATES -

GOVERNING D.E. -

$$\frac{d}{dy} (T_{yx}) - \frac{dp}{dx} = 0$$

LAMINAR, STEADY NEWTONIAN

$$T_{yx} = \mu \frac{dv_x}{dy}$$

B.C. - AT INTERFACE ($y=0$)

$$(1) \quad V_{x,A} = V_{x,B}$$

$$(2) \quad T_{yx,A} = T_{yx,B}$$

$$(3) \quad V_x(-h_B) = V_x(h_A) = 0$$

8.9

FULLY DEVELOPED, STEADY, LAMINAR FLOW; NEWTONIAN FLUID -

$$\frac{d}{dy} (T_{yx}) - \frac{dp}{dx} = 0$$

$$T_{yx} = \mu \frac{dv_x}{dy}$$

B.C. $V_x = 0$ for $y = \pm h$

$$\mu \frac{d^2 V}{dy^2} = \frac{dp}{dx}$$

$$\frac{dV}{dy} = \frac{1}{\mu} \frac{dp}{dx} y + C_1$$

$$V = \frac{1}{2\mu} \frac{dp}{dx} y^2 + C_1 y + C_2$$

8.9 - CONTINUED

Applying Boundary Conditions

$$C_1 = 0$$

$$C_2 = -\frac{1}{2\mu} \frac{df}{dx} \frac{h^2}{2}$$

GIVEN:

$$U_x = \frac{1}{2\mu} \frac{df}{dx} \left(y^2 - h^2 \right)$$

8.10

BOUNDARY R.E. IS

$$\frac{d}{dy} T_{yx} - \frac{df}{dx} y = 0$$

$$\text{INTEGRATING: } T_{yx} - \frac{df}{dx} y = C_1$$

LAMINAR FLOW, NEWTONIAN FLUID:

$$T_{yx} = \mu \frac{du}{dy}$$

$$\mu \frac{du}{dy} - \frac{df}{dx} y = C_1$$

$$\text{FOR } T_{yx}(0) = 0 \quad C_1 = 0$$

$$\frac{du}{dy} - \frac{1}{\mu} \frac{df}{dx} y = 0$$

$$U_x - \frac{1}{\mu} \frac{df}{dx} \frac{y^2}{2} = C_2$$

$$U_x @ y = h = U_0$$

$$C_2 = U_0 - \frac{1}{\mu} \frac{df}{dx} \frac{h^2}{2}$$

8.10 - CONTINUED -

$$\text{Also: } U_x @ y = 0 = 0 \therefore C_2 = 0$$

$$\text{GIVEN: } \frac{df}{dx} = \frac{2\mu U_0}{h^2}$$

8.11. For Horizontal Pipe Flow:

DEVELOPMENT IN SECTION 8.1
RESULTS IN

$$U_x = \left(\frac{df}{dx} \right) \frac{r^2}{4\mu} + C_2$$

FOR $\mu = 0$ $\frac{df}{dx} \frac{r^2}{4}$ MUST
= 0 FOR ALL r

$$\therefore U_x = \text{CONSTANT} = V$$

8.12

for an element in
LIQUID FILM:

$$T_{xy} \Delta y |_{x+\Delta x} - T_{xy} \Delta y |_x - \rho g A x \Delta y = 0$$

$$\frac{T_{xy}|_{x+\Delta x} - T_{xy}|_x}{\Delta x} - \rho g = 0$$

IN LIMIT AS $\Delta x \rightarrow 0$

$$\frac{d}{dx} T_{xy} - \rho g = 0$$

8.12 - CONTINUOUS

$$\tau_{xy} = \mu \frac{dy}{dx}$$

$$\frac{dU_x^2}{dx^2} - \frac{8g}{\mu} = 0$$

$$\frac{dU}{dx} - \frac{8g}{\mu} x = C_1$$

$$U - \frac{8g}{2\mu} x^2 = C_1 x + C_2$$

BOUNDARY CONDITIONS:

$$U(0) = U_0 \quad \delta(h) = 0$$

$$C_1 = -\frac{8g}{\mu} h \quad C_2 = U_0$$

GIVING

$$U = U_0 - \frac{8g}{2\mu} (2hx - x^2)$$

$$= U_0 - \frac{8gh^2}{2\mu} \left[2 \frac{x}{h} - \left(\frac{x}{h} \right)^2 \right]$$

$$\delta = \int_0^h U dy$$

$$= \int_0^h U_0 - \frac{8gh^2}{2\mu} \left[2 \frac{x}{h} - \left(\frac{x}{h} \right)^2 \right] dy$$

$$= U_0 h - \frac{8g}{2\mu} \left(h^3 - h^3/3 \right)$$

$$= U_0 h - \frac{8gh^3}{3\mu}$$

8.13

TREAT FLUID LAYER AS A THIN LINEAR LAYER:

$$\frac{\delta y}{x}$$

IN THE USUAL WAY:

$$\frac{dU}{dy} - \frac{df}{dx} = 0$$

TREAT $\frac{df}{dx}$ CONSTANT $\sim \frac{df}{dx} = \frac{\Delta P}{L}$

$$\therefore f = \mu \frac{dx}{dy}$$

$$\text{GIVING } U = \frac{\Delta P}{L} \frac{y^2}{2\mu} + C_1 y + C_2$$

BOUNDARY CONDITIONS:

$$U(0) = R\Omega$$

$$U(h) = 0$$

$$\text{GIVING } R\Omega = C_2$$

$$0 = \frac{\Delta P}{L} \frac{h^2}{2\mu} + C_1 h + R\Omega$$

$$C_1 = -\frac{\Delta P}{L} \frac{h}{2\mu} - \frac{R\Omega}{h}$$

$$\therefore U = R\Omega \left(1 - \frac{y}{h} \right) - \frac{\Delta P}{2\mu L} \left[\left(\frac{y}{h} \right)^2 - \left(\frac{y}{h} \right)^3 \right]$$

$$\text{Flow rate} = \int_0^h U dy$$

8.13 - CONTINUOUS

$$\dot{V} = \int_0^h \xi \text{ Expression for } V \text{ dy}$$

$$= \frac{R \Omega h}{2} - \frac{\Delta P h^3}{12 \mu L}$$

GIVING: $\Delta P = \frac{12 \mu L}{h^3} \left[\frac{R \Omega h}{2} - \dot{V} \right]$

$$\begin{aligned} \text{EFFICIENCY} &= \frac{\text{POWER OUT}}{\text{POWER IN}} \\ &= \frac{\dot{m} \Delta P / \rho}{R \Omega \dot{V}} \end{aligned}$$

ξ EVALUATED AT $R(y=0)$

$$\xi = \mu R \frac{\Omega}{h} + \frac{\Delta P}{\mu L} \frac{h}{2}$$

AFTER DOING THE ALGEBRA:

$$\eta = \frac{12 \dot{V}}{R \Omega h} \frac{R \Omega h / 2 - \dot{V}}{4 R \Omega h - 6 \dot{V}}$$

8.14

FLUID ENTERS AT $y=0$ ξ
FLOWS EQUALLY IN $+x$ & $-x$
DIRECTIONS EXITING AT $x=L/2$
WHERE $P=P_{ATM}$.

WORKING WITH THE R.H. FLOW
(IN $+x$ DIRECTION)

THE APPLICABLE DE. IS

$$\frac{d\xi}{dy} = \frac{dp}{dx}$$

8.14 - CONTINUOUS

$$\xi \text{ AS USUAL} - \xi = \mu \frac{dp}{dy}$$

$$\text{GIVEN: } \frac{d^2 \xi}{dy^2} = \frac{1}{\mu} \frac{dp}{dx}$$

$$\text{INTEGRATING: } \frac{d\xi}{dy} = \frac{1}{\mu} \frac{dp}{dx} y + C_1$$

$$\text{BOUNDARY COND: } \frac{d\xi}{dy}(0) = 0 \therefore C_1 = 0$$

$$\text{THEN } \xi = \frac{1}{2\mu} \frac{dp}{dx} y^2 + C_2$$

$$\text{BOUNDARY LND: } \xi\left(\frac{L}{2}\right) = 0$$

$$\text{SO } C_2 = \left(-\frac{dp}{dx}\right) \frac{L^2}{8\mu}$$

VELOCITY EXPRESSION IS:

$$\xi = \frac{1}{2\mu} \left(-\frac{dp}{dx}\right) \left(\frac{L^2}{4} - y^2\right)$$

$$\begin{aligned} \dot{V} &= 2 \int_0^{b/2} \xi dy \Big|_{b/2} \\ &= \frac{1}{\mu} \left(-\frac{dp}{dx}\right) \int_0^{b/2} \left(\frac{L^2}{4} - y^2\right) dy \\ &= \frac{1}{\mu} \left(-\frac{dp}{dx}\right) \frac{b^3}{12} \end{aligned}$$

SO THE EXPRESSION FOR $-\frac{dp}{dx}$ IS:

$$-\frac{dp}{dx} = \frac{12 \mu \dot{V}}{b^3}$$

$$\frac{1}{\xi} \int_{P_0}^{P_{ATM}} dp = \frac{12 \mu \dot{V}}{b^3} \int_0^{b/2} dx$$

$$P_0 - P_{ATM} = \frac{6 \mu \dot{V} L}{b^3}$$

ξ FOR THE PLATE OF TOTAL LENGTH, L ,

$$F_y = (P_0 - P_{ATM}) 2L = \frac{12 \mu \dot{V} L^2}{b^3}$$

8.15 LIQUID FLOWING DOWN
THE OUTSIDE OF A CYLINDER.

GOVERNING D.E. IS

$$\frac{1}{r} \frac{d}{dr}(rV) + Sg = 0$$

$$\therefore \text{AS USUAL } V = \mu \frac{dw}{dr}$$

$$\mu \frac{d}{dr} \left(r \frac{dw}{dr} \right) + Sg = 0$$

$$r \frac{d^2w}{dr^2} + \frac{Sg}{\mu} \frac{r^2}{2} = C_1$$

$$\text{B.C. } \frac{dw}{dr} = 0 \text{ @ } r = R+h$$

$$\frac{r dw}{dr} = \frac{Sg}{2\mu} \left[(R+h)^2 - r^2 \right]$$

AND AGAIN:

$$V = \frac{Sg}{2\mu} \left[(R+h)^2 \ln r - \frac{r^2}{2} \right] + C_2$$

$$\text{B.C. } V(R) = 0$$

GIVING

$$\begin{aligned} S &= \frac{Sg}{2\mu} \left(R+h \right)^2 \ln \frac{r}{R} \\ &\quad + \frac{SgR^2}{4\mu} \left(1 - \frac{r^2}{R^2} \right) \end{aligned}$$

8.16 FOR RESULT OF PROB. 8.15

V_{\max} occurs WHERE $\frac{dV}{dr} = 0$

WHICH IS AT $r = R+h$

"

$$V_{\max} = \frac{SgR^2}{4\mu} \left[2 \left(1 + \frac{h}{R} \right) \ln \left(1 + \frac{h}{R} \right) - \frac{h^2}{R^2} - \frac{2h}{R} \right]$$

CHAPTER 9

9.1

$$\iint_S \vec{v} \cdot (\vec{r} \cdot \hat{n}) dA + \frac{\partial}{\partial t} \iiint_V \vec{v} dV = 0$$

C.S. C.N.

$$\iint_S \vec{v} \cdot (\vec{r} \cdot \hat{n}) dA = \oint_C \vec{v} \cdot d\vec{r} \quad |_{r+\Delta r}$$

C.S.

$$-\rho v_r \Delta r \Delta \theta \Delta \phi |_r + \rho v_\theta \Delta r \Delta \theta |_{\theta + \Delta \theta}$$

$$-\rho v_\theta \Delta r \Delta \theta |_\theta + \rho v_z \Delta r \Delta \theta |_{z + \Delta z}$$

$$-\rho v_z \Delta r \Delta \theta |_z$$

$$\frac{\partial}{\partial t} \iiint_V \vec{v} dV = \frac{\partial}{\partial t} \oint_C \vec{v} \cdot d\vec{r} \quad |_{z + \Delta z}$$

C.N.

SUBSTITUTION INTO C.N. EQUATION &
EVALUATING IN LIMIT AS $\Delta r \rightarrow 0$

$$\cancel{\frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z} = 0}$$

9.2 $\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y + v_z \vec{e}_z$

$$\nabla = \frac{\partial}{\partial x} \vec{e}_x + \frac{\partial}{\partial y} \vec{e}_y + \frac{\partial}{\partial z} \vec{e}_z$$

$$\vec{v} \cdot \nabla = v_x \frac{\partial}{\partial x} (\vec{e}_x \cdot \vec{e}_x) + v_y \frac{\partial}{\partial y} (\vec{e}_y \cdot \vec{e}_y) + v_z \frac{\partial}{\partial z} (\vec{e}_z \cdot \vec{e}_z)$$

NOTE: $\vec{e}_i \cdot \vec{e}_j = 1$ for $j=i$
 $= 0$ for $j \neq i$

$$\therefore \vec{v} \cdot \nabla = v_x \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} + v_z \frac{\partial}{\partial z}$$

FOR 2-DIMENSIONAL FLOW:

$$\text{VOLUME CHANGE} = (\bar{1}'\bar{2}')(\bar{3}'\bar{2}') - (\bar{1}\bar{2})(\bar{3}\bar{2})$$

$$\bar{1}\bar{2} = \Delta x \quad ; \quad \bar{3}\bar{2} = \Delta y$$

$$\bar{1}'\bar{2}' = \Delta x + [v_x(x + \Delta x, y) - v_x(x, y)] \Delta t$$

$$\bar{3}'\bar{2}' = \Delta y + [v_y(x + \Delta x, y + \Delta y) - v_y(x + \Delta x, y)] \Delta t$$

$$(\bar{1}\bar{2})(\bar{3}\bar{2}) = \Delta x \Delta y$$

$$(\bar{1}'\bar{2}')(\bar{3}'\bar{2}') = \Delta x \Delta y + [v_y(x + \Delta x, y + \Delta y) - v_y(x + \Delta x, y)] \Delta x \Delta t$$

$$+ [v_x(x + \Delta x, y) - v_x(x, y)] \Delta y \Delta t$$

$$+ [] \Delta t^2$$

DIVIDING BY $\Delta x \Delta y \Delta t$

EVALUATING IN LIMIT AS $\Delta x, \Delta y, \Delta t \rightarrow 0$

$$\text{VOLUME CHANGE} = \frac{\partial v_y}{\partial y} + \frac{\partial v_x}{\partial x}$$

$$= \vec{\nabla} \cdot \vec{v}$$

But, from CONTINUITY $-\nabla \cdot \vec{v} = 0$

9.4 $\vec{v} = v_r \vec{e}_r + v_\theta \vec{e}_\theta$

$$d\vec{v} = \frac{\partial \vec{v}}{\partial r} dr + \frac{\partial \vec{v}}{\partial \theta} d\theta + \frac{\partial \vec{v}}{\partial t} dt$$

$$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial r} \frac{dr}{dt} + \frac{\partial \vec{v}}{\partial \theta} \frac{d\theta}{dt} + \frac{\partial \vec{v}}{\partial t}$$

9.4 CONTINUED -

$$\frac{\partial \vec{v}}{\partial r} = \frac{\partial v_r}{\partial r} \hat{e}_r + \frac{\partial v_\theta}{\partial \theta} \hat{e}_\theta + v_r \frac{\partial \hat{e}_r}{\partial r} + v_\theta \frac{\partial \hat{e}_\theta}{\partial r}$$

$$\frac{\partial \vec{v}}{\partial \theta} = \frac{\partial v_r}{\partial \theta} \hat{e}_r + \frac{\partial v_\theta}{\partial r} \hat{e}_\theta + v_r \frac{\partial \hat{e}_r}{\partial \theta} + v_\theta \frac{\partial \hat{e}_\theta}{\partial \theta}$$

$$\hat{e}_r = \hat{e}_x \cos \theta + \hat{e}_y \sin \theta$$

$$\hat{e}_\theta = -\hat{e}_x \sin \theta + \hat{e}_y \cos \theta$$

$$\frac{\partial \hat{e}_r}{\partial r} = \frac{\partial \hat{e}_r}{\partial \theta} \frac{\partial \theta}{\partial r} = \hat{e}_\theta \frac{\partial \theta}{\partial r} = 0$$

$$\frac{\partial \hat{e}_r}{\partial \theta} = -\hat{e}_x \sin \theta + \hat{e}_y \cos \theta = \hat{e}_\theta$$

IN SIMILAR FASHION

$$\frac{\partial \hat{e}_\theta}{\partial r} = 0 \quad \frac{\partial \hat{e}_\theta}{\partial \theta} = -\hat{e}_r$$

GIVEN:

$$\frac{\partial \vec{v}}{\partial r} = \frac{\partial v_r}{\partial r} \hat{e}_r + \frac{\partial v_\theta}{\partial \theta} \hat{e}_\theta$$

$$\frac{\partial \vec{v}}{\partial \theta} = \left(\frac{\partial v_r}{\partial \theta} - v_\theta \right) \hat{e}_r + \left(\frac{\partial v_\theta}{\partial r} + v_r \right) \hat{e}_\theta$$

FOR $\frac{d\vec{v}}{dt}$ TO BE $\frac{D\vec{v}}{Dt}$ $\frac{dr}{dt} = v_r$

$$\frac{1}{r} \frac{d\theta}{dt} = \omega = \frac{v_\theta}{r}$$

$$\frac{D\vec{v}}{Dt} = \frac{\partial \vec{v}}{\partial t} + \left(v_r \frac{\partial v_r}{\partial r} + v_\theta \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} \right) \hat{e}_r$$

$$+ \left(v_r \frac{\partial v_\theta}{\partial r} + v_\theta \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} \right) \hat{e}_\theta$$

9.5 NAVIER-STOKES EQU - INCOMPRESSIBLE FORM:

$$\frac{D\vec{v}}{Dt} = \vec{g} - \frac{\nabla P}{\rho} + \nu \nabla^2 \vec{v}$$

a) FOR \vec{v} SMALL - ALL TERMS INVOLVING \vec{v} ($\sim \frac{\partial \vec{v}}{\partial t}$ & $\nu \nabla^2 \vec{v}$) ARE SMALL RELATIVE TO OTHER TERMS.

b) FOR ν SMALL & \vec{v} LARGE THE PRODUCT $\nu \vec{v}$ CANNOT BE CONSIDERED SMALL RELATIVE TO OTHER TERMS

INCOMPRESSIBLE N.S. EQU. IN X DIRECTION

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} = g_x - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \nabla^2 v_x$$

$$\Rightarrow \nabla^2 v_x = \frac{\partial^2 v_x}{\partial y^2} = \frac{1}{\mu} \frac{\partial p}{\partial x}$$

$$\frac{\partial v_x}{\partial y} = \frac{1}{\mu} \frac{\partial p}{\partial x} y + C_1$$

$$v_x = \frac{1}{\mu} \frac{\partial p}{\partial x} \frac{y^2}{2} + C_1 y + C_2$$

B.C. $v_x = 0$ @ $y = \pm L$

$$C_1 = 0 \quad C_2 = -\frac{1}{2\mu} \frac{\partial p}{\partial x} L^2$$

$$v_x = \frac{1}{2\mu} \frac{\partial p}{\partial x} (y^2 - L^2)$$

$$9.7 \quad \vec{v} = \frac{\omega R^2}{r} \hat{e}_\theta$$

$$\nabla \cdot \vec{v} = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z}$$

$$\nabla \cdot \vec{v} = \frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{\omega R^2}{r} \right)$$

$$= \frac{\omega R^2}{r} \frac{\partial}{\partial \theta} \left(\frac{1}{r} \right) = 0$$

AND CONTINUITY IS SATISFIED

$$9.8 \quad \frac{Dp}{Dt} = \frac{\partial p}{\partial t} + v_x \frac{\partial p}{\partial x} = -v \frac{\partial p}{\partial y}$$

$$= -v \frac{\partial}{\partial y} P_0 e^{-y/B} = \frac{g_0 v_0}{B} e^{-y/B}$$

AT $y = 100,000 \text{ FT}$ $v = 20,000 \text{ FT/S}$

$$\frac{Dp}{Dt} = \frac{20,000}{22,000} P_0 e^{-4,545}$$

$$= 0.0096 P_0 \text{ S}^{-1}$$

$$9.9 \quad \nabla p = g \left(\vec{g} - \frac{D\vec{v}}{Dt} \right)$$

$$\vec{v} = 400 \left[\left(\frac{y}{L} \right)^2 \hat{e}_x + \left(\frac{x}{L} \right)^2 \hat{e}_y \right]$$

$$\frac{D\vec{v}}{Dt} = \frac{\partial \vec{v}}{\partial t} + v_x \frac{\partial \vec{v}}{\partial x} + v_y \frac{\partial \vec{v}}{\partial y}$$

$$= 400 \left(\frac{y}{L} \right)^2 800 \frac{x}{L^2} \hat{e}_y$$

$$+ 400 \left(\frac{x}{L} \right)^2 800 \frac{y}{L^2} \hat{e}_x$$

$$= \frac{32 \times 10^4}{L^4} \left[x^2 y \hat{e}_x + x y^2 \hat{e}_y \right]$$

9.9 (CONTINUED -

EVALUATED AT $(L, 2L)$ WE GET

$$\nabla p = - \frac{128 \times 10^4}{L} \hat{e}_x$$

$$- \left[2g + \frac{256 \times 10^4}{L} \right] \hat{e}_y \quad \frac{LB^2/P_0^2}{ft}$$

9.10 IN X-DIRECTION:

$$8 \frac{Dv_x}{Dt} = g_{gx} - \frac{\partial p}{\partial x} - \frac{\partial}{\partial x} \left(\frac{2}{3} \mu \nabla \cdot \vec{v} \right)$$

$$+ \nabla \cdot \left(\mu \frac{\partial \vec{v}}{\partial x} \right) + \nabla \cdot \left(\mu \nabla v_x \right)$$

$$8 \left[\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right]$$

$$= g_{gx} - \frac{\partial p}{\partial x} - \frac{\partial}{\partial x} \left[\frac{2}{3} \mu \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_x}{\partial y} + \frac{\partial v_x}{\partial z} \right) \right]$$

$$+ \frac{\partial}{\partial x} \left(\mu \frac{\partial v_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial v_x}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial v_x}{\partial z} \right)$$

$$+ \frac{\partial}{\partial x} \left(\mu \frac{\partial v_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial v_x}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial v_x}{\partial z} \right)$$

SIMILARLY IN $y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$ -

A TOTAL OF 45 TERMS!

9.11 FOR $\vec{v} = \vec{v}_0 + \vec{v}_r$

0 - OF COORDINATE ORIGIN

r - RELATIVE TO COORD. ORIGIN

$$\frac{D\vec{v}}{Dt} = \frac{\partial \vec{v}_0}{\partial t} + \frac{D\vec{v}_r}{Dt} = \vec{a}$$

1. N.S. EQU REDUCES TO

$$8\vec{a} = 8\vec{g} - \nabla p$$

$$\therefore \nabla p = 8(\vec{g} - \vec{a})$$

9.12 Given THAT

$$\frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} = 0$$

a) for $v_\theta = 0$ $\frac{\partial}{\partial r} (r v_r) = 0$

$$\frac{1}{r} r v_r (\theta) = f(\theta)$$

$$\text{or } v_r = \underline{f(\theta)/r}$$

b) for $v_r = 0$ $\frac{\partial v_\theta}{\partial \theta} = 0$

$$v_\theta = f(r)$$

9.13 N.S. for Incomp, Lam. flow

$$\frac{D\vec{v}}{Dt} = \vec{g} - \frac{\nabla p}{\rho} + \mu \nabla^2 \vec{v}$$

For \vec{g} NEGIGIBLE

a) VECTOR PROPERTIES $\sim \vec{v} \nparallel \nabla p$
ARE INDEPENDENT BY THEMSELVES
BUT IN SAME RELATIONSHIP
MUST LIE IN SAME PLANE.

b) IF VISCOSITY FORCES ARE NEGIGIBLE

$$\frac{D\vec{v}}{Dt} = - \nabla p$$

$\frac{D\vec{v}}{Dt}$ IS DETERMINED BY $-\frac{\nabla p}{\rho}$

$\frac{1}{r}$ IS POSITIVE IN DIRECTION
OF DECREASING PRESSURE.

c) IN SIMILAR FASHION, ANY
FLUID - EITHER MOVING OR
STATIC - WILL MOVE OR
TEND TO MOVE IN
DIRECTION OF DECREASING p .

9.14. For 1-D STEADY flow:

$$v_x = v_x(x) \quad v_y = v_z = 0$$

$$\rho v_x \frac{\partial v_x}{\partial x} = - \frac{dp}{dx} + \mu \left[-\frac{2}{3} \left(\mu \frac{\partial v_x}{\partial x} \right) + \mu \frac{\partial v_x}{\partial x} \right]$$

$$\rho v_x \frac{\partial v_x}{\partial x} = - \frac{dp}{dx} + \frac{4}{3} \left(\mu \frac{\partial v_x}{\partial x} \right)$$

$$\frac{d}{dx} (\rho v_x) = 0$$

9.15 CONTINUITY: $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v_x) = 0$

MOMENTUM: $\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} \right) = - \frac{\partial p}{\partial x}$

9.16 TAKING z AS POSITIVE DOWN

WITH $v_r = v_z = 0 \quad \frac{1}{r} v_z = f(r)$

EQU. E.6. YIELDS

z direction

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + v_\theta \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = - \frac{\partial p}{\partial z} + \rho g_z + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$

$\frac{1}{r}$ SINCE $g_z = -g$

$$\frac{d}{dr} \left(r \frac{\partial v_z}{\partial r} \right)$$

PROCEED AS WAS DONE IN
SOLNS TO PROBS 8.17 & 8.18

9.17 FOR INCOMPRESSIBLE,
STEADY FLOW, WITH $V_\theta = V_z = 0$
EQUATION (E-4) HAS THE FORM

r direction

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_r v_\theta}{r} + v_z \frac{\partial v_r}{\partial z} \right) \quad \text{DUE TO CONTINUITY}$$

$$= -\frac{\partial P}{\partial r} + \rho g_r + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2} \right]$$

$\frac{1}{r}$ BECOMES

$$\frac{\partial}{\partial r} \left(P + \frac{\rho v_r^2}{2} \right) = \rho g_r$$

9.18 GOVERNING EQUATIONS ARE

r direction

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z} \right)$$

$$= -\frac{\partial P}{\partial r} + \rho g_r + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2} \right]$$

θ direction

$$\rho \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} + v_z \frac{\partial v_\theta}{\partial z} \right)$$

$$= -\frac{1}{r} \frac{\partial P}{\partial \theta} + \rho g_\theta + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_\theta) \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_\theta}{\partial z^2} \right]$$

z direction

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right)$$

$$= -\frac{\partial P}{\partial z} + \rho g_z + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$

WHEN $V_\theta = f(r)$ $\frac{1}{r}$ $v_r = v_z = 0$
THE ONLY NON-ZERO TERM ON
THE LEFT-HAND SIDE OF ALL
COMPONENT EQUATIONS
IS $-V_\theta^2/r$

$$\therefore \frac{D \vec{V}}{Dt} = \frac{d \vec{V}}{dt} = - \frac{V_\theta^2}{r} \hat{e}_r$$

(Q.E.D.,

9.19 EQUATION (E-5) IS SIMPLIFIED
FOR THIS CASE AS

θ direction

$$\rho \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} + v_z \frac{\partial v_\theta}{\partial z} \right)$$

$$= -\frac{1}{r} \frac{\partial P}{\partial \theta} + \rho g_\theta + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_\theta) \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_\theta}{\partial z^2} \right]$$

$\frac{1}{r}$ IN THE ABSENCE OF GRAVITY
WE HAVE

$$\frac{\partial v_\theta}{\partial t} = \nu \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (r v_\theta) \right]$$

9.20 FROM PROB. 9.19 $\frac{1}{r}$
STEADY FLOW

$$\frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (r v_\theta) \right] = 0$$

$$\text{GIVING } \frac{1}{r} \frac{\partial}{\partial r} (r v_\theta) = C_1$$

INTEGRATING AGAIN

$$r v_\theta = C_1 \ln r + C_2$$

$$\text{B.C. } V_\theta(R_1) = R_1 \Omega_1$$

$$V_\theta(R_2) = R_2 \Omega_2$$

$$V_\theta = \frac{1}{r} \left[R_1^2 \Omega_1 + \frac{(R_2^2 \Omega_2 - R_1^2 \Omega_1) \ln r / R_1}{\ln R_2 / R_1} \right]$$

CHAPTER 10

$$10.1 \quad \nabla \times \vec{v} = \left(\vec{e}_r \frac{\partial}{\partial r} + \vec{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \right) \times (v_r \vec{e}_r + v_{\theta} \vec{e}_{\theta})$$

$$= \left(\vec{e}_r \times \vec{e}_r \right) \frac{\partial v_r}{\partial r} + v_r \vec{e}_r \times \frac{\partial \vec{e}_r}{\partial r}$$

$$+ \left(\vec{e}_r \times \vec{e}_{\theta} \right) \frac{\partial v_{\theta}}{\partial r} + v_{\theta} \vec{e}_r \times \frac{\partial \vec{e}_{\theta}}{\partial r}$$

$$+ \left(\vec{e}_r \times \vec{e}_r \right) \frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_r}{r} \vec{e}_r \times \frac{\partial \vec{e}_r}{\partial \theta}$$

$$+ \left(\vec{e}_r \times \vec{e}_{\theta} \right) \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\theta}}{r} \vec{e}_r \times \frac{\partial \vec{e}_{\theta}}{\partial \theta}$$

FOR REFERENCE - SEE PROB 9.4

$$\frac{\partial \vec{e}_r}{\partial r} = 0, \frac{\partial \vec{e}_{\theta}}{\partial r} = 0, \frac{\partial \vec{e}_r}{\partial \theta} = \vec{e}_{\theta} \frac{\partial \vec{e}_{\theta}}{\partial \theta} = -\vec{e}_r$$

ALL REMAINING (NON-ZERO) TERMS GIVE:

$$\nabla \times \vec{v} = \left[\frac{\partial v_{\theta}}{\partial r} + \frac{1}{r} \left(v_{\theta} - \frac{\partial v_r}{\partial \theta} \right) \right] \vec{e}_z$$

10.2

$$\omega_z = \frac{d}{dt} \left(\frac{\alpha + \beta}{2} \right)$$

$$= \lim_{\Delta t \rightarrow 0^2} \frac{1}{\Delta t} \left\{ \tan^{-1} \left(\frac{rv_{\theta} - rv_{\theta}|_{r+\Delta r}}{r\Delta r} \right) \Delta t \right.$$

$$\left. + \frac{\tan^{-1} (v_r|_{\theta+\Delta \theta} - v_r|_{\theta}) \Delta t}{r\Delta \theta} \right]$$

10.2 (CONTINUED -

IN THE LIMIT: { NOTE THAT $\tan z \rightarrow z$ }

$$\omega_z = \lim_{\begin{array}{l} \Delta r \\ \Delta \theta \\ \Delta \theta \end{array} \rightarrow 0} \left[\frac{rv_{\theta}|_{r+\Delta r} - rv_{\theta}|_r}{r\Delta r} \right. \\ \left. - \frac{v_r|_{\theta+\Delta \theta} - v_r|_{\theta}}{r\Delta \theta} \right]$$

$$= \frac{1}{r} \frac{\partial}{\partial r} (rv_{\theta}) - \frac{1}{r} \frac{\partial v_r}{\partial \theta}$$

$$= \frac{\partial v_{\theta}}{\partial r} + \frac{1}{r} \left(v_{\theta} - \frac{\partial v_r}{\partial \theta} \right)$$

Q.E.D.

$$10.3 \quad d\psi = -v_y dx + v_x dy$$

$$= (-v_{\theta} \sin \alpha) dx + (v_{\theta} \cos \alpha) dy$$

$$\psi = -v_{\theta} (\sin \alpha) x + v_{\theta} (\cos \alpha) y + \psi_0$$

$$10.4 \quad \nabla \cdot \vec{v} = \frac{1}{r} \frac{\partial}{\partial r} (rv_r) + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} = 0$$

$$\text{Let } rv_r = \frac{\partial \psi(r, \theta)}{\partial \theta}$$

$$\text{Then } \nabla \cdot \vec{v} = \frac{1}{r} \left[\frac{\partial}{\partial r} \frac{\partial \psi}{\partial \theta} + \frac{\partial v_{\theta}}{\partial \theta} \right] = 0$$

$$\frac{\partial}{\partial \theta} \left(\frac{\partial \psi}{\partial r} + v_{\theta} \right) = 0 \quad \therefore v_{\theta} = -\frac{\partial \psi}{\partial r}$$

$$\therefore v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad \therefore v_r = -\frac{\partial \psi}{\partial r}$$

Q.E.D.

$$10.5 \quad \phi = \frac{5}{3} x^3 - 5xy^2$$

$$\text{SINCE } \vec{V} = \nabla \phi$$

CONTINUITY CAN BE EXPRESSED AS $\nabla \cdot \vec{V} = 0$ OR $\nabla^2 \phi = 0$

$$\text{USING } \nabla^2 \phi = 0$$

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

$$10x - 10x = 0$$

$$U_x = \frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = 5x^2$$

$$\text{OR } \psi = 5x^2 y$$

$$\therefore \frac{\partial \phi}{\partial y} = U_y = -\frac{\partial \phi}{\partial x} \quad \text{CHECK}$$

10.6 IN THE CORE: EULER'S EQU.

$$\frac{D\vec{V}}{Dt} = \vec{g} - \frac{\nabla P}{\rho}$$

$$= -\frac{U^2}{r} \hat{e}_r = \frac{\nabla P}{\rho} = \frac{\partial P}{\partial r} \hat{e}_r$$

$$\frac{dP}{dr} = -\frac{U^2}{r}$$

SINCE VELOCITY VARIATION IS LINEAR

$$U = U_{\max} r / R$$

$$\frac{P_R - P_0}{P_0} = -\frac{8U_{\max}^2}{R^2} \int_0^R r dr$$

$$P_R - P_0 = \frac{8U_{\max}^2}{2} \quad (1)$$

OUTSIDE THE CENTRAL CORE - BERNOULLI EQU. APPLIES

10.6 - (CONTINUED)

$$\frac{P_{\infty}}{\rho} = P + \frac{U^2}{2}$$

U VARIES INVERSELY WITH r :

$$U = U_{\max} \frac{R}{r}$$

$$\text{AT } r = R \quad P_{\infty} - P_r = \frac{8U_{\max}^2}{2} \quad (2)$$

ADDINB (1) & (2)

$$P_{\infty} - P_0 = \frac{8U_{\max}^2}{2}$$

$$U_{\max} = \left[\frac{(58)(32.2)}{0.0766} \right]^{1/2} = 126 \text{ ft/s} \quad (a)$$

FOR $P = -10 \text{ PSF}$

$$P_{\infty} - P = \frac{8U^2}{2}$$

$$U = \left[\frac{(10)(32.2)}{0.0766} \right]^{1/2} = 91.7 \text{ ft/s}$$

$$r = \frac{U_{\max} R}{U} = \frac{126}{91.7} (100) = 138 \text{ ft}$$

PRESSURE WILL FALL FROM -10 TO -38 PSF IN A DISTANCE OF 138 FT

AT 60 MPH = 88 FT/S

$$\text{TIME} = \frac{138}{88} = 1.57 \text{ SECONDS} \quad (b)$$

PRESSURE AT TORNADO CENTER = -38 PSF

$$\text{AT EDGE OF CORE: } = -\frac{8U_{\max}^2}{2} + P_{\infty}$$

FAR FROM CENTER $P = P_{\text{ATM}}$

$$\text{TOTAL } \Delta P = \underline{38 \text{ PSF}} \quad (c)$$

$$10.7 \quad V_r = U_\infty \cos\theta \left(1 - \frac{a^2}{r^2}\right)$$

ALONG THE STAGNATION Streamline
 $\theta = \pi$

$$V_r = -U_\infty \left(1 - \frac{a^2}{r^2}\right) \quad (a)$$

$$\frac{\partial V_r}{\partial r} = -\frac{2U_\infty a^2}{r^3}$$

$$\left.\frac{\partial V_r}{\partial r}\right|_{r=a} = -\frac{2U_\infty}{a} \quad (b)$$

10.8 From CONTINUITY

$$\frac{\partial}{\partial r}(rV_r) = -\frac{\partial V_\theta}{\partial \theta}$$

$$\therefore \left.\frac{\partial V_\theta}{\partial \theta}\right|_{r=a} = -\left.\frac{\partial}{\partial r}(rV_r)\right|_{r=a} \quad \theta = \pi$$

$$10.9 \quad P + \frac{V^2}{2} = \text{constant}$$

$$\text{For } P = P_\infty \quad V^2 = V_\infty^2$$

$$\therefore |V_\theta| = |V_\theta| = 2V_\infty \sin\theta$$

$$\sin\theta = 0.5$$

$$\therefore \theta = \pm 30^\circ, \pm 150^\circ$$

$$10.10 \text{ (a)} \quad \phi = U_\infty \ln \left[\left(\frac{x}{L}\right)^3 - 3 \frac{xy^2}{L^3} \right]$$

$$V = \nabla \phi = V_x \hat{i}_x + V_y \hat{i}_y$$

$$V_x = \frac{\partial \phi}{\partial x} = \frac{3U_\infty}{L^2} (x^2 - y^2) = \frac{\partial \phi}{\partial y}$$

$$V_y = \frac{\partial \phi}{\partial y} = -\frac{6U_\infty xy}{L^2} = -\frac{\partial \phi}{\partial x}$$

10.10 CONTINUED.

$$\phi = \frac{3U_\infty}{L^2} \left(x^2 y - \frac{y^3}{3} \right) + f(y)$$

$$= \frac{3U_\infty x^2 y}{L^2} + g(y)$$

$$\text{So } \phi = \frac{U_\infty x^2 y}{L^2} (6x^2 - y^2)$$

Flow configuration is:

when $\phi = 0 \quad y = 0 \quad \text{or } \pm \sqrt{6}x$

$$\text{b) } \phi = U_\infty \frac{xy}{L}$$

$$V_x = \frac{\partial \phi}{\partial x} = \frac{U_\infty y}{L} = \frac{\partial \phi}{\partial y}$$

$$V_y = \frac{\partial \phi}{\partial y} = \frac{U_\infty x}{L} = -\frac{\partial \phi}{\partial x}$$

$$\phi = \frac{U_\infty}{2L} y^2 + f(x); \quad \psi = -\frac{U_\infty}{2L} x^2 + g(y)$$

$$\psi = \frac{U_\infty}{2L} (y^2 - x^2)$$

when $\phi = 0 \quad y = \pm x$

10.10 (CONTINUOUS)

$$c) \phi = \frac{U_\infty L}{2} \ln(x^2 + y^2)$$

$$U_x = \frac{\partial \phi}{\partial x} = \frac{U_\infty L}{2} \frac{2x}{x^2 + y^2} = \frac{\partial \phi}{\partial y}$$

$$U_y = \frac{\partial \phi}{\partial y} = \frac{U_\infty L}{2} \frac{2y}{x^2 + y^2} = -\frac{\partial \phi}{\partial x}$$

$$\phi = \frac{U_\infty L}{2} x \tan^{-1}(y/x) + f(x)$$

$$\phi = \frac{U_\infty L}{2} x \tan^{-1}(y/x) + g(y)$$

$$\phi = U_\infty L \left[\tan^{-1}(x/y) - \tan^{-1}(y/x) \right]$$

WHEN $\phi = 0$ $y = x$

$$10.11 \quad \phi = 2r^3 \sin 3\theta \quad \text{for } \theta = 0, \frac{\pi}{3}$$

INFINITE RING - FOR $\phi = 0$ - OR ANY NO.

$$r = \left(\frac{3}{2 \sin 3\theta} \right)^{1/3} \quad \text{PICK } 3 -$$

CHOOSE θ - SOLVE FOR r -
PLOT LOOKS LIKE:

$$10.12 \quad \phi = 0 = U_\infty r \sin \theta + \frac{Q}{2\pi} \theta$$

SINCE $r > 0$ WHEN $U_\infty > 0, \phi = 0$
GIVES $\theta = 0 \sim \text{THE +X AXIS}$.WHEN $U_\infty < 0$ (FLOW IN -X DIRECTION)
 $y = R\theta$ - WHERE $R = Q / (2\pi |U_\infty|)$

$$10.13 \quad \text{FOR SOURCE AT ORIGIN} \quad \phi = \frac{m \theta}{2\pi r}$$

m = SOURCE STRENGTH

$$\text{FREE STREAM: } \phi = U_\infty y$$

$$\text{ADDING: } \phi = U_\infty y + \frac{m \theta}{2\pi r}$$

$$v_r = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = U_\infty U_\infty \theta + \frac{m}{2\pi r^2}$$

$$v_r = r \sin \theta$$

$$v_r = 0 @ \theta = \pi$$

$$\text{AT } \theta = \pi \quad r = \frac{m}{2\pi U_\infty U_\infty} = \frac{Q}{2\pi U_\infty^2}$$

10.14

$$\nabla P = \rho \frac{D \vec{V}}{Dt}$$

$$= \rho \left[\frac{\partial \vec{V}}{\partial t} + \nabla \left(\frac{U^2}{2} \right) - \vec{V} \times (\vec{V} \times \vec{V}) \right]$$

FOR STEADY, IRROTATIONAL FLOW

$$\nabla P = \rho \nabla \left(\frac{U^2}{2} \right)$$

@ stagnation point - WHERE $V = 0$

$$\nabla P = 0$$

10.15

LIFT FORCE:

$$\begin{aligned} df_y &= df \sin \theta \\ &= (P_{in} - P_{out}) R \sin \theta d\theta \end{aligned}$$

$$f_y = \int_0^{\pi} AP R \sin \theta d\theta$$

From BERNOULLI EQUATION:

$$P + \frac{1}{2} \rho V^2 = \text{const.}$$

$$P_{in} + \frac{1}{2} \rho V_{in}^2 = P + \frac{1}{2} \rho V^2$$

$$\text{ON HUT } V = 2 V_{in} \sin \theta$$

$$\therefore P = P_{in} + \frac{1}{2} \rho V_{in}^2 \left[1 - 4 \sin^2 \theta \right]$$

Subst. into Expression for f_y

$$\begin{aligned} f_y &= \int_0^{\pi} \frac{1}{2} \rho V_{in}^2 \left[1 - 4 \sin^2 \theta - 1 + 4 \sin^2 \theta_0 \right] R \sin \theta d\theta \\ &= 2 \rho V_{in}^2 R \int_0^{\pi} \left[\sin^3 \theta - \sin \theta \sin^2 \theta_0 \right] d\theta \\ &= 2 \rho V_{in}^2 R \left[\frac{4}{3} - 2 \sin^2 \theta_0 \right] \end{aligned}$$

$$\text{for } f_y = 0 \quad \sin^2 \theta_0 = 2/3$$

$$\theta_0 = 54.7^\circ$$

10.16

STANATION PTS AT CIRCLES

10.17

10.18 FOR THIS CASE - $\nabla^2 \psi \neq 0$

$$y = \frac{\psi}{1+3x^2}$$

$$10.19 \quad \psi = -\frac{K}{2\pi} \ln r, \quad V_\theta = \frac{K}{2\pi r}$$

WHEN ORIGIN IS AT VORTEX

$$V_\theta(-a, 0) = \frac{K}{2\pi(2a)} = \frac{K}{4\pi a}$$

$$\vec{U}_p(-a, 0) = -K/4\pi a \hat{e}_y$$

$$\therefore \vec{U}(a, 0) = -K/4\pi a \hat{e}_y$$

$$\text{SINCE } \psi = \frac{K}{2\pi} \ln r$$

STAGNATION PT.

$$\psi = U_p r \sin \theta + \frac{Q}{2\pi} \theta$$

a) STAGNATION POINT

$$\vec{V} = 0 \text{ requires } U_r = U_\theta = 0$$

$$U_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{1}{r} \left(\frac{Q}{2\pi} + U_p r \cos \theta \right)$$

$$U_\theta = - \frac{\partial \psi}{\partial r} = - U_p r \sin \theta$$

$$\therefore \theta = \pi, r \cos \pi = x = - \frac{Q}{2\pi U_p}$$

AT STAGNATION PT

$$x = - \frac{Q}{2\pi U_p} = - \frac{1.5}{2\pi (9)} = - \underline{0.0265 \text{ m}}$$

$$y = 0$$

b) BODY HEIGHT

STAGNATION STREAMLINE

$$\psi = U_p r \sin \pi + \frac{Q\pi}{2\pi} = \frac{Q}{2}$$

THUS

$$\frac{Q}{2} = U_p r \sin \theta + \frac{Q\theta}{2\pi}$$

SO WHEN $\theta = \pi/2$

$$r \sin \theta = y = \frac{1}{U_p} \left(\frac{Q}{2} - \frac{Q\pi}{2\pi(2)} \right)$$

$$= \frac{Q}{4U_p} = \underline{0.0417 \text{ m}}$$

10.20 (CONTINUED)

c) FOR X LARGE - ALL FLOW IS AT U_p
 $\therefore Q = U_p (2h)$

$$h = \frac{Q}{2U_p} = \frac{1.5}{2(9)} = \underline{0.0833 \text{ m}}$$

d) MAXIMUM SURFACE VELOCITY

$$U^2 = U_r^2 + U_\theta^2 \text{ IS ON S.L. } \phi = Q/2$$

$U_r \notin U_p$ DETERMINED IN PART (a)

$$U^2 = \frac{Q^2}{4\pi^2 r^2} + \frac{Q U_p \cos \theta}{\pi r} + U_p^2$$

$$\text{ON SURFACE } \psi = \frac{Q}{2} = U_p r \sin \theta + \frac{Q\theta}{2\pi}$$

$$\text{THUS } \frac{Q^2}{4\pi^2 r^2} = \frac{Q^2 U_p^2 \sin^2 \theta}{4\pi^2 Q^2 (1-\theta/\pi)^2}$$

$$\frac{Q U_p \cos \theta}{\pi r} = \frac{U_p^2 Q \cos \theta \sin \theta}{\pi Q/2 (1-\theta/\pi)}$$

RESULTS IN

$$\frac{U^2}{U_p^2} = \frac{\sin^2 \theta}{\pi^2 (1-\theta/\pi)^2} + \frac{2 \sin \theta \cos \theta}{\pi (1-\theta/\pi)} + 1$$

$$\frac{U^2}{U_p^2} \text{ IS MAX AT } \theta \approx 63^\circ$$

$$\text{SO } \frac{U_{MAX}}{U_p} \approx 1.26$$

10,21 IN THIS CASE -

$$\phi = U_p r \sin\theta (1 + a^2/r^2)$$

STREAMLINES CAN BE
PLOTTED FOR $U_p = 1, a = 1$

- IN UPPER HALF PLANE
THEY APPEAR AS

10,22

$$\sum F_y = 0$$

$$P_i D - 12T - \frac{D}{2} \int_0^\pi P \sin\theta d\theta = 0$$

$$P = P_{atm} + \frac{8}{2} (U_p^2 - V^2)$$

$$V = -2U_p \sin\theta$$

$$12T = P_i D - P_{atm} + \frac{8}{2} U_p^3$$

$$+ 28 U_p^2 \frac{D}{2} \int_0^\pi \sin^3\theta d\theta$$

$$12T = (P_i - P_{atm})D + \frac{5}{6} 8U_p^2 D$$

$$\underline{\underline{T = 10.1 \text{ kN}}}$$

PER BOLT

CHAPTER 11

11.1 VARIABLE DIMENSIONS

D	L
H	M/L^3
τ	L
σ	L/t^2
Q	$1/t$
P	L^3/t
\bar{P}	$M L^2/t^3$

$$l = 8 - 3 = 5$$

CHOOSE CORE AS S, D, ω

$$\Pi_1 = \eta \sim \text{ALREADY DIMENSIONLESS}$$

$$\Pi_2 = S^a D^b \omega^c H \sim = H/D$$

$$\Pi_3 = S^d D^e \omega^f \tau \sim = g/D\omega^2$$

$$\Pi_4 = S^g D^h \omega^i Q \sim = Q/D^3\omega$$

$$\Pi_5 = S^j D^k \omega^l P \sim = P/S D^5 \omega^3$$

11.2 VARIABLE DIMENSIONS

S	L/t
D	L
ω	M/L^3
τ	M/Lt

$$l = 5 - 3 = 2$$

CHOOSE CORE AS D, S, τ

$$\Pi_1 = D^a S^b \tau^c \mu \sim = \mu / D S \tau = 1/Re$$

$$\Pi_2 = D^d S^e \tau^f e \sim = e/D$$

$$\underline{f = f(Re, e/D)}$$

11.3 VARIABLE DIMENSIONS

ΔP	M/Lt^2
δ	M/L^3
ω	$1/t$
D	L
Q	L^3/t
f	M/Lt

$$l = 6 - 3 = 3$$

CHOOSE CORE AS S, D, ω

$$\Pi_1 = S^a D^b \omega^c \Delta P \sim = \Delta P / S D^2 \omega^2$$

$$\Pi_2 = S^d D^e \omega^f Q \sim = Q / D^3 \omega$$

$$\Pi_3 = S^g D^h \omega^i f \sim = f / S D^2 \omega$$

11.4 VARIABLE DIMENSIONS

C_{MAX}	$M L^2/t^2$
α	M
β	L
γ	M/L^3
δ	L/t^2
ϵ	L

$$l = 8 - 3 = 5$$

$$\Pi_1 = \alpha \sim \text{ALREADY DIMENSIONLESS}$$

$$\Pi_2 = \beta \sim " "$$

CHOOSE CORE AS M, L, ϵ

$$\Pi_3 = M^a L^b \epsilon^c C_{MAX} \sim = C_{MAX} / M \epsilon$$

$$\Pi_4 = M^d L^e \epsilon^f \gamma \sim = S L^3 / M$$

$$\Pi_5 = M^g L^h \epsilon^i \delta \sim = R / L$$

11.5 VARIABLE DIMENSIONS

κ	L/t
D	L^2/t
d	L
w	t/t
ρ	m/L^3
μ	m/Lt

$$l = 6 - 3 = 3$$

CHOOSE CORE AS d, w, ρ

$$\Pi_1 = d^a w^b \rho^c k \sim = k/dw$$

$$\Pi_2 = d^d w^e \rho^f D \sim = D/d^2 w$$

$$\Pi_3 = d^g w^h \rho^i \mu \sim = \mu / \rho^2 w$$

PLOT Π_1 VS. Π_3

OVER A RANGE IN VALUES OF Π_3

11.6 VARIABLE DIMENSIONS

Q	L^3/t
d	L
w	t/t
μ	M/Lt
σ	M/t^2
ρ	m/L^3

$$l = 6 - 3 = 3$$

CHOOSE CORE AS d, w, ρ

$$\Pi_1 = d^a w^b \rho^c Q \sim = Q / \omega d^3$$

$$\Pi_2 = d^d w^e \rho^f \mu \sim = d^2 w \rho / \mu$$

$$\Pi_3 = d^g w^h \rho^i \sigma \sim = \sigma / \rho^2 d^3$$

11.7 VARIABLE DIMENSIONS

M	m
d	L
ρ	m/L^3
σ	L/t^2
σ	M/t^2

$$l = 5 - 3 = 2$$

CHOOSE CORE AS d, ρ, σ

$$\Pi_1 = d^a \rho^b \sigma^c M \sim = M / d^3 \rho$$

$$\Pi_2 = d^d \rho^e \sigma^f \sigma \sim = \sigma d^2 / \rho$$

11.8 VARIABLE DIMENSIONS

n	$1/t$
L	L
d	L
ρ	m/L^3
T	ML/t^2

$$l = 5 - 3 = 2$$

CHOOSE CORES AS n, d, ρ

$$\Pi_1 = n^a d^b \rho^c L \sim = L/d$$

$$\Pi_2 = n^d d^e \rho^f T \sim = T / n^2 L \rho$$

11.9 VARIABLE DIMENSIONS

P	ML^2/t^3
d	L
w	t/t
Q	L^3/t
ρ	M/L^3
μ	M/Lt

$$l = 6 - 3 = 3$$

11.9 - CONTINUED

CHOOSE CORE AS α, β, Q

$$\begin{aligned}\pi_1 &= \alpha^a \beta^b Q^c w = \alpha^3 w / \alpha \\ \pi_2 &= \alpha^d \beta^e Q^f \mu = \alpha \mu / \beta Q \\ \pi_3 &= \alpha^g \beta^h Q^i P = \alpha^4 P / \beta Q^3\end{aligned}$$

$$\underline{\pi_3 = F(\pi_1, \pi_2)}$$

11.10 VARIABLE DIMENSIONS

r	L
t	t
β	m/L^3
E	ML^2/t^2

$$L = 4 - 3 = 1$$

$$\pi_1 = t^a \beta^b E^c r = \frac{\beta^{1/5} r}{t^{2/5} E^{1/5}}$$

$$\text{OR } \pi_1 = \frac{\beta r^5}{t^2 E}$$

$$\text{So: } r^5 = C_1 \frac{Et^2}{\beta} \quad (1)$$

$$\text{SPEED OF WAVE FRONT} = \frac{dr}{dt}$$

$$\Rightarrow \frac{dr}{dt} = \frac{2}{5} C_2 \frac{t}{r^4}$$

$$\text{From (1)} \quad t = C_3 r^{5/2}$$

$$\therefore \frac{dr}{dt} = C_4 / r^{3/2}$$

$\sim \frac{dr}{dt}$ DECREASES $\rightarrow r$ INCREASES

11.11 VARIABLE DIMENSIONS

α	L
β	L
γ	L/t
δ	M/L^3
ϵ	M/Lt
ζ	M/t^2

$$i = 6 - 3 = 3$$

CHOOSE CORE AS β, γ, ζ

$$\begin{aligned}\pi_1 &= \beta^a \gamma^b \zeta^c \alpha = \alpha \gamma \zeta / \beta \\ \pi_2 &= \beta^d \gamma^e \zeta^f \mu = \mu / \beta \gamma \zeta \\ \pi_3 &= \beta^g \gamma^h \zeta^i \sigma = \sigma \zeta / \beta \gamma^2\end{aligned}$$

$$\underline{\pi_1 = \pi_1(\pi_2, \pi_3)}$$

11.12 VARIABLE DIMENSIONS

ΔP	M/Lt^2
β	L^3/t
γ	L
ζ	$1/t$
μ	M/Lt
ν	L
ρ	L

$$L = 7 - 3 = 4$$

CHOOSE CORE AS γ, ζ, μ

$$\begin{aligned}\pi_1 &= \gamma^a \zeta^b \mu^c L = L / \gamma \\ \pi_2 &= \gamma^d \zeta^e \mu^f R = R / \gamma \\ \pi_3 &= \gamma^g \zeta^h \mu^i \Delta P = \Delta P / \gamma \mu \\ \pi_4 &= \gamma^j \zeta^k \mu^l \Omega = \Omega / \gamma^3 \mu\end{aligned}$$

$$11.13 \quad Re = \frac{L U}{\nu} \quad \text{for air @ } 20^\circ C \\ (0.931) \\ D = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$$

a) Based on $L = 58 \text{ m}$

$$Re = \frac{(5.8)(22.2)}{1.505 \times 10^{-5}} = 8.55 \times 10^6$$

b) Based on $D = 0.0004 \text{ m}$

$$Re = \frac{(0.0004)(22.2)}{1.505 \times 10^{-5}} = 9440$$

$$11.14 \quad \rho \frac{D\vec{U}}{Dt} = -\nabla P + \mu \nabla^2 \vec{U} + \rho g \left(\frac{T_A}{T_0} - 1 \right)$$

TO PUT P.E. INTO DIMENSIONLESS FORM - USE TEXT PROCEDURE -

L = REFERENCE LENGTH

U_0 = " VELOCITY

$$\text{THEN } x^* = \frac{x}{L}, y^* = \frac{y}{L}, t^* = \frac{t}{U_0 L}$$

$$\vec{v}^* = L \vec{v} \quad \vec{v}^* \cdot \vec{v}^* = L^2 v^* \cdot v^*$$

$$\rho \frac{D\vec{U}}{Dt} = \rho \frac{D\vec{U}^*}{Dt^*} \left(\frac{\partial \vec{U}}{\partial x^*} \right) \left(\frac{\partial t^*}{\partial t} \right)$$

$$= \frac{\rho U_0^2}{L} \frac{D\vec{U}^*}{Dt^*}$$

WHERE $\frac{\rho U_0^2}{L}$ IS INERTIAL FORCE

WE COULD DO ALL OTHER TERMS IN A LIKE MANNER BUT PROBLEM STATEMENT ONLY ASKS FOR RATIO OF GRAVITY FORCES TO INERTIAL FORCES

11.14 - (CONTINUED) -

THE GRAVITATIONAL (BUOYANCY) FORCE IS
 $\rho g \left(\frac{T_A}{T_0} - 1 \right)$

SO RATIO ASKED FOR IS

$$\frac{Lg}{V_0^2} \left[\frac{T_A}{T_0} - 1 \right] \quad \text{Q.E.D.}$$

11.15	VARIABLE	MODEL	PROTOTYPE
D	D	$6D$	
U_0	U	U	20 ft
S_p	S	S	
μ	μ	μ	
F_p	F_p	10 lbf	F_p
A	D^2	$(6D)^2$	$(60)^2$

DYNAMIC SIMILARITY REQUIRES:

$$Re_m = Re_p$$

$$\frac{DU_0 S_p}{\mu L} = \frac{DU_p S_p}{\mu L_p}$$

$$U_m = U_p \left[\frac{D_p}{D_m} \frac{S_p}{S_m} \frac{\mu_m}{\mu_p} \right] = 6U_p \\ = 120 \text{ ft}$$

ALSO THAT $E_{um} = E_{up}$

$$\frac{F/A}{8U^2} \Big|_m = \frac{F/A}{8U^2} \Big|_p$$

$$F_p = F_m \left[\frac{A_p}{A_m} \left(\frac{S_p}{S_m} \right) \left(\frac{U_p}{U_m} \right)^2 \right]$$

$$= 10 \text{ lbf}$$

11.16 Similarity Features

$$Fr|_m = Fr|_p$$

$$\frac{V^2}{gL}|_m = \frac{V^2}{gL}|_p$$

MODEL PROTOTYPE

$$\begin{array}{lll} V & V_m & V_p \\ L & L/10 & L \end{array}$$

$$\left(\frac{V_m}{V_p}\right)^2 = \frac{L_m}{L_p} = 0.1$$

$$\frac{V_m}{V_p} = 0.316$$

11.17 Model Prototype

$$\begin{array}{ll} L=3m & 4L \\ V_m & 16 \text{ m/s} \\ S_A & S_w \\ D_A & D_w \\ F_m & F_p \\ A_m & 16A_m \end{array}$$

For Air At 20°C (293K)

$$\nu = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$$

$$\text{At } 6\text{ atm} \quad \rho = 0.251 \times 10^{-5} \text{ "}$$

$$\text{For } H_2O \quad \nu = 0.995 \text{ " "}$$

$$Re_m = Re_p$$

$$\frac{L \nu}{\nu}|_m = \frac{L \nu}{\nu}|_p$$

$$V_m = V_p \left(\frac{L_p}{L_m} \frac{\nu_m}{\nu_p} \right)$$

11.17 - CONTINUED

$$V_m = 16 \left[(4) \frac{0.251 \times 10^{-5}}{0.995 \times 10^{-5}} (6) \right] = 969 \text{ m/s}$$

$$Eu_m = Eu_p$$

$$\frac{F/A}{S \nu^2}|_m = \frac{F/A}{S \nu^2}|_p$$

$$\begin{aligned} \frac{F_m}{F_p} &= \left(\frac{A_m}{A_p} \frac{S_m}{S_p} \frac{(V_m)^2}{(V_p)^2} \right) \\ &= \frac{1}{16} \left(\frac{7.229}{998.2} \right) \left(\frac{969}{16} \right)^2 \end{aligned}$$

$$\text{At } 20^\circ\text{C} \quad S_w = 998.2 \text{ kg/m}^3$$

$$\text{At } 20^\circ\text{C, } 6 \text{ atm} \quad S_f = 7.229 \text{ "}$$

$$\frac{F_m}{F_p} = 0.0166$$

RESULT IS
QUITE
TEMPERATURE
SENSITIVE

11.18 Properties

$$\text{Air: } \rho = 5 \times 10^3 \frac{\text{slug}}{\text{ft}^3} \quad \nu = 8 \times 10^{-5} \text{ ft}^2/\text{s}$$

$$H_2O: \rho = 194 \text{ " } \nu = 1 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Re_m = Re_p$$

$$V_m = V_p \left[\frac{L_p}{L_m} \frac{\nu_m}{\nu_p} \right]$$

$$= 60 \left[\left(\frac{1}{2} \right) \left(\frac{8 \times 10^{-5}}{1 \times 10^{-5}} \right) \right]$$

$$= 240 \text{ MPH}$$

11.19

VARIABLES Dimensions

$$\begin{array}{ll} L & L \\ \alpha & L \\ \nu & LT \\ \beta & t \\ g & L/t^2 \end{array}$$

$$L = 5 - 2 = 3$$

{ NOTE - $r = 2$ - NOT THE
 { NO. OF FUNDAMENTAL DIM-
 ENSIONS - NO M }

CHOOSE CORE AS L, g

$$\Pi_1 = L^a g^b \alpha \sim = \frac{\alpha}{L}$$

$$\Pi_2 = L^c g^d \nu \sim = \frac{\nu}{(Lg)^{1/2}}$$

$$\Pi_3 = L^e g^f \beta \sim = \sqrt{\frac{\beta}{L}}$$

a) FOR GEOMETRIC SIMILARITY

$$\Pi_1 |_m = \Pi_1 |_p$$

$$\alpha_m = \alpha_p \frac{L_m}{L_p} = 2m \left(\frac{1}{360}\right)$$

$$= 0.0056 m = \underline{5.6 \text{ mm}}$$

DYNAMIC SIMILARITY DICTATES

$$\Pi_2 |_m = \Pi_2 |_p$$

$$\nu_m = \nu_p \frac{(Lg)_m^{1/2}}{(Lg_p)^{1/2}}$$

$$= 8 \text{ m/s} \left(\frac{1}{360}\right)^{1/2}$$

$$= \underline{0.421 \text{ m/s}}$$

11.19 - (CONTINUED)

KINEMATIC SIMILARITY DICTATES

$$\Pi_3 |_m = \Pi_3 |_p$$

$$T_m = T_p \left[\sqrt{\frac{g}{L}} \left(\frac{L}{p} \sqrt{\frac{L}{g}} \right) \right]$$

$$= 12 \text{ hr} \left(\frac{1}{360} \right)^{1/2} = 0.632 \text{ hr} \\ = \underline{37.9 \text{ min.}}$$

11.20 For Equal Reynolds Nos.:

$$Re |_m = Re |_p$$

$$\frac{L \nu_p}{\mu} |_m = \frac{L \nu_p}{\mu} |_p$$

$$S_m = S_p \left(\frac{L_p}{L_m} \right) \left(\frac{\nu_p}{\nu_m} \right) \left(\frac{\mu_m}{\mu_p} \right)$$

{ FOR IDEAL GAS BEHAVIOR - $S = \frac{P}{RT}$

$$P_m = P_p \left(\frac{T_m}{T_p} \right) \left(\frac{L_p}{L_m} \right) \left(\frac{\nu_p}{\nu_m} \right) \left(\frac{\mu_m}{\mu_p} \right)$$

$$P_p = 287 \text{ Pa.}$$

$$T_p = 250.4 \text{ K} \quad T_m = 294 \text{ K}$$

$$\nu_m \approx 340.3 \text{ m/s} \quad \nu_p = 317.2 \text{ m/s}$$

$$\mu_m = 1.22 \times 10^{-5} \text{ lb m/s.ft}$$

$$\mu_p = 9.53 \times 10^{-6} \text{ "}$$

$$P_m = 287 \left(\frac{294}{250.4} \right) \left(\frac{1}{0.4} \right) \left(\frac{317.2}{340.3} \right) \left(\frac{1.22 \times 10^{-5}}{9.53 \times 10^{-6}} \right)$$

$$= 1000 \text{ Pa} \sim \underline{1 \text{ kPa}}$$

11.20 - CONTINUED

DIMENSIONLESS TIME SCALE:

$$t^* = \frac{tU}{L}$$

$$\therefore \frac{tU}{L} |_m = \frac{tU}{L} |_p$$

$$\begin{aligned} \frac{t_m}{t_p} &= \left(\frac{U_p}{U_m} \right) \left(\frac{L_m}{L_p} \right) \\ &= \left(\frac{317.2}{340.3} \right) \left(\frac{0.41}{1} \right) \\ &= \underline{\underline{0.373}} \end{aligned}$$

$$11.21 \quad F_R = \frac{U^2}{g_L} \quad \text{SPEED RATIO} = \frac{U}{N_d}$$

	MODEL	PROTOTYPE
L	0.41	1.45
U	2.58	U

EQUATING FRIEDE Numbers

$$\frac{U^2}{g_L} |_m = \frac{U^2}{g_L} |_p$$

$$\begin{aligned} U_p &= 2.58 \left(\frac{1.45}{0.41} \right)^{1/2} \\ &= \underline{\underline{6.31 \text{ m/s}}} \end{aligned}$$

EQUATING U/N_d

$$\frac{U}{N_d} |_m = \frac{U}{N_d} |_p$$

11.21 CONTINUED

$$N_d |_p = N_d |_m \frac{U_p}{U_m}$$

$$\begin{aligned} N_p &= N_m \left(\frac{d_m}{d_p} \right) \left(\frac{U_p}{U_m} \right) \\ &= 450 \left(\frac{0.41}{2.45} \right) \left(\frac{6.31}{2.58} \right) \\ &= \underline{\underline{184 \text{ RPM}}} \end{aligned}$$

THRUST FORCE INVOLVES FULER NO.

$$F_u |_m = F_u |_p$$

$$\begin{aligned} \frac{F/A}{S U^2/2} |_m &= \frac{F/A}{S U^2/2} |_p \\ F_p &= F_m \left(\frac{U_p}{U_m} \right)^2 \left(\frac{S_p}{S_m} \right) \left(\frac{L_p}{L_m} \right)^2 \\ &= 245 \left(\frac{6.31}{2.58} \right)^2 \left(\frac{1.45}{0.41} \right)^2 \\ &= \underline{\underline{52.3 \text{ kN}}} \end{aligned}$$

$$\text{TORQUE} = FL$$

- FROM FULER *

$$\frac{T/L}{S U^2/2} |_m = \frac{T/L}{S U^2/2} |_p$$

$$\begin{aligned} T_p &= T_m \left(\frac{L_p}{L_m} \right) \left(\frac{U_p}{U_m} \right)^2 \\ &= 70 \left(\frac{1.45}{0.41} \right) \left(\frac{6.31}{2.58} \right)^2 \\ &= \underline{\underline{715 \text{ N.m}}} \end{aligned}$$

CHAPTER 12

12.1 AT TRANSITION $Re_0 = 2300$

$$Re = \frac{DU}{\nu} = 2300$$

$\overbrace{\text{At } 20^\circ\text{C. : } \nu = 0.00015 \times 10^{-6} \text{ m}^2/\text{s}}$

$$U = \frac{2300(0.00015 \times 10^{-6})}{0.038 \text{ m}} = 0.060 \text{ m/s} \approx 6 \text{ cm/s}$$

12.2 $F_D = C_D A \frac{\rho U^2}{2}$

For 35000 FT - $\rho = 0.0237 \text{ lbm/ft}^3$
S.L. $\rho = 0.0766 \text{ lb/ft}^3$

a) @ 35,000 FT $500 \text{ mph} = 733 \text{ ft/s}$

$$F_D = \frac{0.011(2400)(0.0237)(733)^2}{2(32.2)} = 5220 \text{ lbf}$$

b) @ SEA LEVEL $700 \text{ mph} = 293 \text{ ft/s}$

$$F_D = \frac{0.011(2400)(0.0766)(293)^2}{2(32.2)} = 1700 \text{ lbf}$$

12.3 AT TRANSITION $Re_x = 2 \times 10^5$

$\overbrace{\text{for AIR @ } 20^\circ\text{C, } \nu = 1.505 \times 10^{-5} \text{ m}^2/\text{s}}$

$$Re_x = x \nu / \nu$$

$$x = (2 \times 10^5)(1.505 \times 10^{-5}) / 30 \text{ m/s} = 0.100 \text{ m}$$

12.4 $\frac{U_x}{U_\infty} = C_1 + C_2 y + C_3 y^2 + C_4 y^3$

BOUNDARY CONDITIONS:

- (1) $U_x(0) = 0$
- (2) $U_x(\delta) = U_\infty$
- (3) $\frac{\partial U_x}{\partial y}(\delta) = 0$

ONE MORE B.C. IS NEEDED -

IF $\frac{dU}{dx} = 0$ THE OTHER ONE IS $\frac{\partial^2 U_x}{\partial y^2}(0) = 0$

BUT THIS ISN'T THE CASE CONSIDERED

THE GOVERNING EQUATION OF MOTION IS

$$\frac{U_x \frac{\partial U_x}{\partial x} + U_y \frac{\partial U_y}{\partial y}}{\rho} = -\frac{dp}{\rho x} + \mu \frac{\partial^2 U_x}{\partial y^2}$$

AT $y=0$ - $U_x = U_y = 0$

$\frac{dp}{dx}$ CAN BE RELATED TO U_∞ BY THE BERNOULLI EQUATION: $\frac{p}{\rho} + \frac{U^2}{2} = \text{CONST}$

SO $\frac{dp}{dx} = -\rho U_\infty \frac{dU_\infty}{dx}$

i) @ $y=0$ THE EQUATION OF MOTION GIVES

$$(4) \quad \frac{\partial^2 U_x}{\partial y^2} = -\frac{1}{\rho} U_\infty \frac{dU_\infty}{dx}$$

THIS IS THE 4th B.C.

From (1): $C_1 = 0$ THE REMAINING EXPRESSION FOR $\frac{U_x}{U_\infty}$ WILL BE

$$\frac{U_x}{U_\infty} = C_2 \frac{y}{\delta} + C_3 \left(\frac{y}{\delta}\right)^2 + C_4 \left(\frac{y}{\delta}\right)^3$$

12.4 CONTINUED -

from (2) $1 = C_2 + C_3 + C_4$

(3) $0 = C_2 + 2C_3 + 3C_4$

(4) $-\frac{\delta^2}{\delta} \frac{dU_x}{dy} = 2C_3$

SUBSTITUTION YIELDS:

$$\begin{aligned} \frac{U_x}{U_\infty} &= \frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y^3}{\delta} \right) \\ &+ \frac{\delta^2}{4\delta} \frac{dU_x}{dy} \left[\frac{y}{\delta} - 2 \left(\frac{y^2}{\delta} \right) + \left(\frac{y^3}{\delta} \right) \right] \end{aligned}$$

12.5 Given $U_x = \alpha \sin \beta y$

FOR A LAMINAR B.L. $\frac{df}{dx} = 0$

B.C. (1) $U_x(0) = 0$

(2) $U_x(\delta) = U_\infty$

(3) $\frac{dU_x}{dy}(\delta) = 0$

from (1) $0 = 0$ — NO USE

(2) $U_\infty = \alpha \sin \beta \delta$

(3) $0 = \alpha \beta \cos \beta \delta$

GIVEN $\beta \delta = \pi/2$ — $\beta = \pi/2\delta$

$\alpha = U_\infty$

SO PROFILE IS $U_x = U_\infty \sin \left(\frac{\pi y}{2\delta} \right)$

VON KARMAN INTEGRAL EQU FOR B.L.

$$\frac{f}{8} = \frac{1}{2} \int_0^\delta U_x (U_\infty - U_x) dy$$

$$\frac{f}{8} = \frac{\mu}{8} \frac{dU_x}{dy} \Big|_0^\delta = \frac{\mu}{8} U_\infty \frac{\pi}{2\delta} \cos \frac{\pi y}{2\delta}$$

12.5 CONTINUED -

$$FRICTIONAL \int_0^\delta U_x (U_\infty - U_x) dy :$$

$$= U_\infty^2 \int_0^\delta \frac{U_x}{U_\infty} \left(1 - \frac{U_x}{U_\infty} \right) dy$$

$$= U_\infty^2 \int_0^\delta \left[\frac{\sin \frac{\pi y}{2\delta}}{2\delta} - \frac{\sin^2 \frac{\pi y}{2\delta}}{2\delta} \right] dy$$

$$= U_\infty^2 \left[-\frac{2\delta}{\pi} \frac{\cos \frac{\pi y}{2\delta}}{2\delta} - \frac{y}{2} + \frac{\delta}{2\pi} \frac{\sin \frac{\pi y}{2\delta}}{2\delta} \right]_0^\delta$$

$$= U_\infty^2 \left[-2\frac{\delta}{\pi} - \frac{\delta}{2} \right] = U_\infty^2 \delta \left[\frac{2}{\pi} - \frac{1}{2} \right]$$

NOW: $\frac{d}{dx} \left[\int_0^\delta \sim \right] = \frac{d}{dx} \left\{ U_\infty^2 \delta \left[\frac{2}{\pi} - \frac{1}{2} \right] \right\}$

$$= \left(\frac{2}{\pi} - \frac{1}{2} \right) U_\infty^2 \frac{d\delta}{dx}$$

EQUATING BOTH PARTS:

$$2U_\infty \frac{\pi}{2\delta} = \left(\frac{2}{\pi} - \frac{1}{2} \right) U_\infty^2 \frac{d\delta}{dx}$$

$$\delta d\delta = \frac{10\pi^2}{U_\infty(4-\pi)} \int_0^\delta dx$$

$$\delta = \left[\frac{10x}{U_\infty} \frac{\pi^2}{4-\pi} \right]^{1/2}$$

$$\delta = 4.81 \sqrt{\frac{U_\infty x}{U_\infty}} = \frac{4.81 x}{\sqrt{k_{ex}}}$$

$$C_{fx} = \frac{f}{8 U_\infty^2 / 2} = \frac{\mu U_\infty \pi / 2\delta}{8 U_\infty^2 / 2} = \frac{\mu \pi}{U_\infty \delta}$$

PUTTING IN OUR EXPRESSION FOR δ WE HAVE

$$C_{fx} = 0.1653 k_{ex}^{-1/2}$$

12.5 - CONTINUED -

$$\begin{aligned}
 C_{FL} &= \frac{1}{L} \int_0^L C_{FX} dx \\
 &= \frac{0.653}{L} \sqrt{\frac{D}{U_{\infty}}} \int_0^L x^{-\frac{1}{2}} dx \\
 &= \frac{0.653}{L} \sqrt{\frac{D}{U_{\infty}}} (2x^{\frac{1}{2}}) \Big|_0^L \\
 &= 1.306 \frac{D}{R_e^{\frac{1}{2}}}
 \end{aligned}$$

	COMPARISON	APPROXIMATE	EXACT
δ		$4.81 \times R_e^{-\frac{1}{2}}$	$50 \times R_e^{-\frac{1}{2}}$
C_{FX}		$0.653 R_e^{-\frac{1}{2}}$	$0.644 R_e^{-\frac{1}{2}}$
C_{FL}		$1.305 R_e^{-\frac{1}{2}}$	$1.328 R_e^{-\frac{1}{2}}$

12.6

MOMENTUM THEOREM:

$$\begin{aligned}
 \sum F_x &= \iint_S P(\vec{v} \cdot \vec{n}) dA + \frac{d}{dt} \left. \vec{v}_x \right|_t^0 \\
 \sum F_x &= P|_x - P|_{x+\Delta x} \\
 &\quad + P|_x + P|_{x+\Delta x} (\delta|_{x+\Delta x} - \delta|_x) \\
 &\quad - T_0 \Delta x^2
 \end{aligned}$$

$$\begin{aligned}
 \iint_S v_x P(\vec{v} \cdot \vec{n}) dA &= \int_0^{\delta} 8v_x^2 dy \Big|_{x+\Delta x} \\
 &\quad - \int_0^{\delta} 8v_x^2 dy \Big|_x - v_x \left[\int_0^{\delta} 8v_x dy \Big|_{x+\Delta x} \right] \\
 &\quad - \left[\int_0^{\delta} 8v_x dy \Big|_x - v_{yo} \Delta x \right]
 \end{aligned}$$

12.6 - (CONTINUED)

REARRANGING, DIVIDING BY Ax ,
EVALUATING IN THE LIMIT AS $\Delta x \rightarrow 0$:

$$\begin{aligned}
 -8 \frac{dp}{dx} &= T_0 + U_{\infty} U_{yo} + \frac{d}{dx} \int_0^{\delta} 8v_x^2 dy \\
 &\quad - U_{\infty} \frac{d}{dx} \int_0^{\delta} 8v_x dy
 \end{aligned}$$

NOTING THAT BERNOULLI'S EQUATION APPLIES
OUTSIDE THE B.L., WE CAN WRITE
(SEE CHAPTER)

$$8 \frac{dp}{dx} = \frac{d}{dx} (8v_x^2) - U_{\infty} \frac{d}{dx} (8v_x)$$

THE FINAL RESULT BECOMES:

$$\begin{aligned}
 \frac{T_0}{8} + \frac{U_{\infty} U_{yo}}{8} &= \frac{dU_{\infty}}{dx} \int_0^{\delta} (U_{\infty} - v_x) dy \\
 &\quad + \frac{d}{dx} \int_0^{\delta} v_x (U_{\infty} - v_x) dy
 \end{aligned}$$

12.7

FOR A SMOOTH SPHERE - FIG. ABOVE

$$Re_{cr} \approx 2 \times 10^5$$

FOR AIR @ 20°C $D = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$

$$\begin{aligned}
 U_{cr} &= \frac{D}{\rho} Re_{cr} \\
 &= \frac{(1.505 \times 10^{-5})(2 \times 10^5)}{0.042} \\
 &= 71.7 \text{ m/s}
 \end{aligned}$$

FOR SUCH A SPHERE (GOLF BALL SIZE)
A VELOCITY GREATER THAN THIS
WILL REDUCE DRAG & BALL WILL
TRAVEL FURTHER

12.8 For Air @ 80°F

$$\rho = 0.169 \times 10^{-3} \text{ lbm/ft}^3$$

$$g = 0.0735 \text{ lbm/lb ft}^3$$

$$Re = \frac{Dv}{\nu} = \frac{(1.65/12)v}{0.169 \times 10^{-3}}$$

$$F_D = A \frac{v^2}{2} C_D$$

$$= \frac{\pi}{4} \left(\frac{1.65}{12}\right)^2 \left(\frac{0.0735}{32.2}\right) \frac{v^2}{2} C_D$$

$v, \text{ft/s}$	C_D	Re	F_D, lb_F
50	0.47	4.07×10^4	0.0199
100	0.47	8.14	0.0797
150	0.46	12.2	0.175
200	0.45	16.3	0.305
250	0.41	20.3	0.434
300	0.35	24.4	0.534
350	0.20	28.5	0.415
400	0.08	32.5	0.27

12.9 IN THE UNSTEADY WAKE REGION
 $1 < Re < 10^3$

$$@ 20^\circ \text{C} \quad \rho = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Re = \frac{Dv}{\nu}$$

$$@ Re = 1 = \frac{0.0127 v}{1.505 \times 10^{-5}}$$

$$v = 0.00119 \text{ m/s}$$

$$@ Re = 10^3 \quad v = 1.185 \text{ m/s}$$

THESE ARE THE LOWER &
UPPER BOUNDS FOR v

12.10 for Air @ 80°F

$$\rho = 0.169 \times 10^{-3} \text{ lbm/ft}^3$$

$$g = 0.0735 \text{ lbm/lb ft}^3$$

$$Re = \frac{(0.2/12)(88)}{0.169 \times 10^{-3}} = 8680$$

From Fig 12.2 $C_D \approx 1.2$

$$F_D = C_D A \frac{v^2}{2}$$

$$= 1.2 \left(\frac{0.2}{12}\right) \left(\frac{3}{32.2}\right) \left(\frac{0.0735}{2}\right) \left(\frac{88^2}{2}\right)$$

$$= 0.530 \text{ lb}_F$$

$$12.11 \quad F_D = C_D A \frac{v^2}{2}$$

AIR @ 20°C $\rho = 1.2048 \text{ kg/m}^3$

$$\rho = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$$

$$F_D = 0.26(2.33)(1.2048)(30)^2$$

$$= 657 \text{ N}$$

$$\text{POWER} = F_D v = (657)(30) = 19.7 \text{ kW}$$

WITH A HEADWIND OF 6 m/s

$$F_D = 0.26(2.33)(1.2048)(36)^2 = 28.4 \text{ kW}$$

WITH A TAILWIND OF 6 m/s

$$F_D = (24)^2 = 12.6 \text{ kW}$$

FOR STILL AIR $P = 15.9 \text{ Hp}$

WITH HEADWIND $P = 37.4 \text{ "}$

WITH TAILWIND $P = 16.9 \text{ "}$

$$12.12 \quad 100 \text{ mi/hr} = 44.7 \text{ m/s}$$

$$F_L = C_D A S V^2 / 2$$

$$= 0.21 (2.33) (1.2048) (44.7)^2 / 2$$

$$= \underline{\underline{589 \text{ N}}}$$

$$12.13 \quad \text{IF } C_D = 1$$

$$F_L = 589 \left(\frac{1}{0.21} \right) = \underline{\underline{2805 \text{ kN}}}$$

$$12.14 \quad F_D = C_D A S V^2 / 2$$

IN SAME ENVIRONMENT AT SAME SPEED

$$C_D A |_{\text{CAR}} = C_D A |_{\text{PLATE}}$$

$$C_D A |_{\text{CAR}} = 0.26 (2.33)$$

$$C_D A |_{\text{PLATE}} = 1.1 \pi D^2$$

$$D = \left[\frac{0.26 (2.33) (4)}{(1.1) (\pi)} \right]^{1/2}$$

$$= \underline{\underline{0.837 \text{ m}}}$$

$$12.15 - \text{CIRCULAR SIGN} - D = 8 \text{ FT}$$

$$V = 120 \text{ MPH}$$

$$(176 \text{ FT/S})$$

$$F_D = C_D A S V^2 / 2$$

$$\text{AT } 80^\circ \text{ F} - \rho = 0.0735 \text{ lbm/ft}^3$$

$$F_D = \frac{1.1 \left(\frac{\pi}{4} \right) (8)^2 (0.0735) (176)^2}{32.2 (2)}$$

$$= \underline{\underline{1955 \text{ lbf}}}$$

$$12.16 \quad \text{FOR AIR @ } 100^\circ \text{ F} - \rho = 0.0710 \text{ lbm/ft}^3$$

$$0^\circ \text{ F} - \rho = 0.0862 \text{ "}$$

$$C_D = 0.18 \quad A = 2.14 \text{ m}^2 = 25.83 \text{ ft}^2$$

$$P = F_D S = C_D A S V^3 / 2$$

$$= \frac{0.18 (25.83) (0.0710) (102.7)^3}{2 (32.2) (550)}$$

$$= \underline{\underline{15.7 \text{ lbf}}} - \text{AT } 100^\circ \text{ F}$$

$$= 15.7 \left(\frac{0.0862}{0.0710} \right) = \frac{19.1 \text{ lbf}}{\text{AT } 0^\circ \text{ F}}$$

$$12.17 \quad \text{SPHERE} - D = 9.25 \text{ IN} = 2.94 \text{ m}$$

$$\text{WT} = 5.25 \text{ OUNCES}$$

$$\text{AT } V = 95 \text{ MPH} \quad (139.3 \text{ FT/S})$$

$$\text{AT } 80^\circ \text{ F} \quad \rho_{\text{AIR}} = 0.0735 \text{ lbm/ft}^3$$

$$D_{\text{AIR}} = 0.169 \times 10^{-3} \text{ ft}^2/\text{s}$$

$$\text{a) } Re = \frac{DV}{D} = \frac{(2.94/12)(139.3)}{0.169 \times 10^{-3}} = \underline{\underline{2.02 \times 10^5}}$$

$$F_D = C_D A S V^2 / 2$$

$$\text{b) AT } Re = 2.02 \times 10^5 \quad C_D \approx 0.4$$

$$F_D = \frac{0.4 \left(\frac{\pi}{4} \right) \left(\frac{2.94}{12} \right)^2 (0.0735) (139.3)^2}{2 (32.2)}$$

$$= \underline{\underline{0.418 \text{ lbf}}}$$

c) Flow IS NEAR TRANSITION -
BUT STILL IN LAMINAR RANGE

12.18

$Re \times 10^{-4}$	7.5	10	15	20	25
C_D	0.48	0.38	0.22	0.12	0.10

$$\text{At } 80^\circ\text{F} - D = 0.169 \times 10^{-3} \text{ ft}^2/\text{s}$$

$$g = 0.0735 \text{ ft m/ft}^3$$

$$\text{For } Re = 7.5 \times 10^4 = Du/D$$

$$U = \frac{(7.5 \times 10^4)(0.169 \times 10^{-3})}{1.165/12}$$

$$= 92.12 \text{ ft/s}$$

$$F_D = C_D A S U^2 / 2$$

$$= \frac{0.48 \left(\frac{\pi}{4}\right) \left(\frac{1.165}{12}\right)^2 (0.0735) (92.12)^2}{2(32.2)}$$

$$= 0.069 \text{ lbf}$$

DOING THIS CALCULATION FOR ALL GIVEN CONDITIONS WE GENERATE THE FOLLOWING!

$Re \times 10^4$	U	C_D	F_D, lbf
7.5	92.2	0.48	0.069
10	122.9	0.48	0.100
15	184.4	0.47	0.129
20	245.8	0.44	0.125
25	307.3	0.40	0.164

12.19 $W_T = 5.25 \text{ OUNCES} = 0.328 \text{ lbf}$

$$F_L = W_T = C_L A S U^2 / 2$$

$$A = \frac{\pi}{4} \left(\frac{2.94}{12}\right)^2 = 0.04714 \text{ ft}^2$$

$$C_L = 0.224$$

From Problem Statement

$$C_L \approx 0.24 \frac{R_f D}{U} - 0.05$$

So for this case

$$\frac{R_f D}{U} = \frac{0.224 + 0.05}{0.24} = 1.142$$

$$U = 110 \text{ mph} = 161.3 \text{ ft/s}$$

$$\Delta = \frac{1.142 (161.3)}{0.385} = 478 \text{ Radians}$$

$$= 76.1 \text{ Rev/s}$$

$$\text{To travel } 60.5 \text{ ft} \quad t = \frac{60.5}{161.3} = 0.3755 \text{ s}$$

$$\text{No of Revolutions} = 76.1 (0.375) = \underline{\underline{28.5}}$$

12.20 BLASIUS EQUATION FOR LAMINAR BOUNDARY LAYER FLOW IS

$$8 \frac{DU_x}{dx} = \frac{dp}{dx} + \rho \nu U_x^2$$

OR, WRITTEN AS

$$U_x \frac{\partial U_x}{\partial x} + U_y \frac{\partial U_x}{\partial y} = -\frac{1}{8} \frac{dp}{dx} + \nu \left[\frac{\partial^2 U_x}{\partial x^2} + \frac{\partial^2 U_x}{\partial y^2} \right]$$

AT $y=0$ - $U_x=0$ BUT, IN THIS CASE, $U_y \neq 0$
THE RESULTANT FORM IS

$$U_y \frac{\partial U_x}{\partial y} = -\frac{1}{8} \frac{dp}{dx} + \nu \frac{\partial^2 U_x}{\partial y^2}$$

↑
THIS TERM IS NOT PRESENTFOR $U_y(0)=0$ {EQU (12-33) CASE}

12.21 TURBULENCE INTENSITY

$$I = \frac{[(\bar{U_x}^2 + \bar{U_y}^2 + \bar{U_z}^2)/3]^{1/2}}{U_p}$$

$$\text{KINETIC ENERGY} = \frac{U_p^2 + \bar{U_x}^2 + \bar{U_y}^2 + \bar{U_z}^2}{2}$$

$$= \frac{U_p^2 (1 + 3I^2)}{2}$$

FOR $I=0.1$ $\frac{\text{K.E.}_1}{\text{TOTAL}_2} = U_p^2 (1.03)$

WHILE $\text{K.E.}_{\text{TURB}} = U_p^2 (0.03)$

FRACTION DUE TO TURBULENCE

$$= \frac{0.03}{1.03} = 2.91\%$$

12.22 $\dot{V} = 2 \text{ gpm} = 0.4416 \times 10^{-2} \text{ ft}^3/\text{s}$

$$V = \frac{\dot{V}}{A} = \frac{0.4416 \times 10^{-2}}{\pi/4 (0.75/12)^2} = 1.45 \text{ ft/s}$$

FOR $H_2O @ 120^\circ F$ $D = 0.62 \times 10^{-5} \text{ ft}^2/\text{s}$

@ $45^\circ F$ $D = 1.57 \times 10^{-5}$ "

@ $120^\circ F$ $Re = \frac{(0.75/12)(1.45)}{0.62 \times 10^{-5}}$

$$= \underline{14,600} \quad (a)$$

@ $45^\circ F$ $Re = \frac{(0.75/12)(1.45)}{1.57 \times 10^{-5}}$

$$= \underline{5770} \quad (b)$$

12.23 LAMINAR FLOW: $\frac{S}{x} = 5 Re_x^{-1/4}$

TURBULENT " $\frac{S}{x} = 0.376 Re_x^{-0.2}$

FOR AIR @ $20^\circ C$ $- D = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$

$$Re_x = \frac{30 \times}{1.505 \times 10^{-5}} = 2 \times 10^6 \times$$

x, m	Re_x	S_L, cm	S_t, cm
0	0	0	0
0.1	2×10^5	0.111	0.327
0.5	.	0.249	1.126
1	.	0.352	2.063
2	.	0.498	3.551

BEGINNING
OF TRANSITION

12.24 $\dot{V} = 0.006 \text{ m}^3/\text{s}$

$$V = \frac{0.006}{(\pi/4)(0.15)^2} = 0.34 \text{ m/s}$$

TO CALCULATE $y_{\max}^+ \& u_{\max}^+$:

$$\frac{J}{g} = 0.0225 \frac{U^2}{U_{\max}^2} \left[\frac{2}{U_{\max} y_{\max}} \right]$$

FROM RESULTS OF $1/7$ POWER LAW:

$$\bar{U} = 0.817 U_{\max} \sim U_{\max} = 0.416 \text{ m/s}$$

$$y_{\max} = 0.075 \text{ m}$$

AT $20^\circ C$ $\lambda = 0.995 \times 10^{-4} \text{ m}^2/\text{s}$

SUBSTITUTING INTO J/g EXPRESSION

$$\sqrt{J/g} = 0.017 \text{ m/s}$$

12.24 (CONTINUED)

- LAMINAR SUBLAYER:

$$y^+ = \frac{\sqrt{3/8} \cdot 4}{\lambda} \approx 5$$

$$y = \frac{5(0.995 \times 10^{-6})}{0.0171} = \underline{0.291 \text{ mm}}$$

BUFFER LAYER -

EXTENDS FOR $5 \leq y^+ \leq 30$

$$@ y^+ = 30 \quad y = 1.746 \text{ mm}$$

$$\text{THICKNESS}_{B.L.} = \underline{1.455 \text{ mm}}$$

TURBULENT CORE EXTENDS

FROM $y = 1.455 \text{ mm}$ TO $y = 75 \text{ mm}$

$$\text{THICKNESS}_{T.C.} = \underline{73.55 \text{ mm}}$$

12.25 EQU. (12-68)

$$\frac{f_0}{8} = 0.0225 \frac{U_{max}^2}{U_{AV}^2} \left[\frac{R}{U_{max} y_{max}} \right]^{1/4}$$

$$\begin{aligned} C_{fx} &= \frac{f_0/8}{U_{AV}^2/2} \\ &= 0.045 \left(\frac{U_m}{U_{AV}} \right)^2 \left[\frac{R}{y_{max}} \right]^{1/4} \end{aligned}$$

$$\left[\frac{R}{y_{max}} \right]^{1/4} = \left[\frac{U_m}{U_{AV}} \frac{U_{AV} R}{y_{max}} \right]^{1/4}$$

$$= \left(\frac{U_m}{U_{AV}} \right)^{1/4} \left(2^{1/4} \right) R^{1/4} U_{AV}^{-1/4}$$

$$\text{GIVEN } C_{fx} = 0.0535 \left(\frac{U_m}{U_{AV}} \right)^{7/4} R^{1/4} U_{AV}^{-1/4}$$

Now - To find $\frac{U_m}{U_{AV}}$ FOR PIPE FLOW

12.25 (CONTINUED)

$$U_{AV} (RR^2) = \int_A U \delta A$$

$$= 2\pi \int_U r dr$$

$$U_{AV} = \frac{2}{R^2} \int_0^R U_{max} \left(1 - \frac{r}{R} \right)^4 r dr$$

$$\text{POINT TAC MATH: } \frac{U_m}{U_{AV}} = 1.225$$

$$C_{fx} = 0.0763 R_e^{-1/4}$$

$$12.26 \quad R_e = \frac{LU}{\nu} = \frac{0.5(40)}{0.159 \times 10^{-3}} = 125,800$$

$$\begin{aligned} C_{fL} &= \frac{1}{L} \int_0^L C_{fx} dy = \frac{1}{L} \int_0^L \frac{0.05764}{R_e^{1/4}} dy \\ &= 0.072 R_e^{-1/5} \end{aligned}$$

$$C_{fL} = 0.072 (125,800)^{-1/5} = 6.877 \times 10^{-3}$$

for 2 SIDES $\frac{1}{2}$ 60°F AIR

$$\begin{aligned} C_d &= 2C_{fL} A \frac{U^2}{2} \\ &= \frac{2(6.877 \times 10^{-3})(1.5)(0.0164)(40)^2}{2(32.2)} \\ &= \underline{0.0392 \text{ lbf}} \quad (\text{a}) \end{aligned}$$

FOR LAMINAR FLOW

$$C_{fL} = 1.328 R_e^{-1/2} = 0.00375$$

$$F_D = 2C_{fL} A \frac{U^2}{2}$$

$$= \underline{0.0213 \text{ lbf}} \quad (\text{b})$$

12.27 $Re = 10^5$

$$\text{LAMINAR flow} - \delta_L = 5 Re_x^{-1/2}$$

$$\text{TURBULENT } " \quad \delta_t = 0.375 Re_x^{-0.2}$$

$$\text{for } Re = 10^5 \quad \frac{\delta_t}{\delta_L} = 1.38$$

From CHAPTER 5: MOMENTUM $\sim \rho U^2$ " " 6: ENERGY $\sim \rho U^3$

$$\text{for } U = U_p f\left(\frac{y}{\delta}\right)$$

$$\text{MOMENTUM} = \delta U_p^2 f^2\left(\frac{y}{\delta}\right)$$

$$\text{ENERGY} = \frac{\delta U_p^3}{2} f^3\left(\frac{y}{\delta}\right)$$

$$\frac{M}{\delta U_p^2} = f^2\left(\frac{y}{\delta}\right)$$

$$\frac{E}{\delta U_p^3/2} = f^3\left(\frac{y}{\delta}\right)$$

FOR LAMINAR CASE:

$$\frac{M}{\delta U_p^2} = \sin^2\left(\frac{y}{\delta_L} \frac{\pi}{2}\right)$$

$$\frac{E}{\delta U_p^3/2} = \sin^3\left(\frac{y}{\delta_L} \frac{\pi}{2}\right)$$

y/δ_L	$\sin^2 \frac{y}{\delta_L} \frac{\pi}{2}$	$\frac{M}{\delta U_p^2}$	$\frac{E}{\delta U_p^3/2}$
0	0	0	0
0.1	0.156	0.0244	0.0038
0.3	0.455	0.207	0.094
0.5	0.701	0.50	0.345
0.7	0.89	0.795	0.708
0.9	0.99	0.98	0.97
1	1.0	1.0	1.0

12.27 CONTINUED

FOR TURBULENT CASE:

$$\frac{M}{\delta U_p^2} = \left(\frac{y}{\delta_t}\right)^2 \quad \frac{E}{\delta U_p^3/2} = \left(\frac{y}{\delta_t}\right)^3$$

y/δ_t	$\frac{M}{\delta U_p^2}$	$\frac{E}{\delta U_p^3/2}$
0	0	0
0.1	0.518	0.373
0.3	0.709	0.600
0.5	0.820	0.743
0.7	0.903	0.858
0.9	0.970	0.956
1	1	1

$$12.28 \quad f_D = C_{fL} A \frac{\delta U}{2}$$

$$A = (7)(40)(2) = 560 \text{ ft}^2 \quad \{2 \text{ sides}\}$$

$$\delta U = 140 \text{ mph} = 205.3 \text{ ft/s}$$

$$@ 560 \text{ ft} - \delta = 0.0660 \text{ lbm/ft}^3$$

$$\mu = 1.165 \times 10^{-5} \text{ lbm/ft.s}$$

$$\rho_e = \frac{L \delta}{N} = \frac{7(205.3)}{1.165 \times 10^{-5}} = 8.14 \times 10^6 \frac{\text{lb}}{0.0660}$$

12.28 (CONTINUED)

a) LAMINAR

$$C_{fL} = 1.328 Re_L^{-1/2} = 0.000465$$

$$F_D = \frac{(0.000465)(560)(0.0001)(205.3)^2}{2(32.2)} = \underline{11.26 \text{ lbf}}$$

b) TURBULENT

$$C_{fL} = 0.012 Re_L^{-0.2} = 0.00226$$

$$F_D = \underline{72.3 \text{ lbf}}$$

$$12.29 \quad Re_x = 10^6$$

B.L. THICKNESS -

$$\text{Lam: } \delta = 5 \times Re_x^{-1/2}$$

$$\text{Turb: } \delta = 0.376 \times Re_x^{-1/5}$$

$$\delta_t/\delta_L = \frac{0.376}{5} Re_x^{0.3} = \underline{4.74}$$

COEF. OF SKIN FRICTION:

$$\text{Lam } C_{fx} = 0.664 Re_x^{-1/2}$$

$$\text{Turb } C_{fx} = 0.0576 Re_x^{-0.2}$$

$$\frac{C_{fx,t}}{C_{fx,L}} = \frac{0.0576}{0.664} Re_x^{0.3} = \underline{5.47}$$

12.30. FOR TURBOULENT B.L. IN WATER

$$@ 60^\circ \text{F } \delta = 62.3 \text{ ft}^{1/2}/\text{ft}^3$$

$$\rho = 1.22 \times 10^{-5} \text{ lb ft}^2/\text{s}$$

$$U = 20 \text{ ft/s}$$

$$Re_L = \frac{20(20)}{1.22 \times 10^{-5}} = 3.28 \times 10^7$$

12.30 (CONTINUED)

$$\delta = 0.376 \times Re_L^{-0.2}$$

$$= 0.376(20)(3.28 \times 10^7)^{-0.2} = \underline{0.2310 \text{ ft}}$$

$$C_{fL} = 0.012 Re_L^{-0.2} = 0.00226$$

$$F_D = C_{fL} A S^{3/2}$$

$$= \frac{(0.00226)(100)(2)(62.3)(20)^2}{2(32.2)} = \underline{350 \text{ lbf}}$$

IF FLOW IS LAMINAR -

$$C_{fL} = 1.328 Re_L^{-1/2} = 2.319 \times 10^{-4}$$

$$F_D = \underline{35.91 \text{ lbf}}$$

12.31 EXPANDING $U_x(x,y)$ IN TAYLOR SERIES:

$$U_x'(x,y) = U_x'(0,0) + x \frac{\partial U}{\partial x}(0,y) + y \frac{\partial U}{\partial y}(x,0) \\ + \frac{x^2}{2} \frac{\partial^2 U}{\partial x^2}(0,y) + \frac{y^2}{2} \frac{\partial^2 U}{\partial y^2}(x,0) \\ + \frac{\partial^2 U}{\partial x \partial y}(0,0) + \dots$$

AS $y \rightarrow 0 \quad x' \rightarrow 0$ THE EXPRESSION FOR U_x' REDUCES TO

$$U_x'(x,y) = a_1 y + a_2 y^2 + a_3 x y + \dots$$

WHERE $a_1 = \frac{\partial U_x}{\partial y}|_0$ - ETC.

SIMILARLY

$$U_y'(x,y) = b_1 y + b_2 y^2 + b_3 x y + \dots$$

WHERE $b_1 = \frac{\partial U_y}{\partial y}|_0$ - ETC.

12.31 CONTINUED

CONTINUITY EQUATION REQUIRES THAT

$$\frac{\partial U_x'}{\partial x} + \frac{\partial U_y'}{\partial y} = 0$$

GIVEN: $a_3y + b_1 + 2b_2y + b_3x = 0$

COEFFICIENTS OF LINEAR TERMS OF $x^{\frac{1}{n}}y$ REQUIRE $a_3 + 2b_2 = 0$

$$b_1 = b_3 = 0$$

SO $U_x'(x, y) = a_1y + a_2y^2 + a_3xy$

$$U_y'(x, y) = -a_3y^2$$

$$U_x' U_y' = -a_3a_1y^3 - a_3a_2y^4$$

TAKING TIME AVERAGE

$$\overline{U_x' U_y'} = -a_3a_1y^3 + \dots$$

i.e. $\overline{U_x' U_y'} \approx y^3$

WHILE MIXING LENGTH THEORY

SAYS $\overline{U_x' U_y'} \approx y^2$

12.32 Power Law Profile

$$\frac{U_x}{U_{\max}} = \left(\frac{y}{R}\right)^{1/n}$$

$$\frac{\partial U_x}{\partial y} = \frac{U_{\max}}{n} \frac{y^{1/n-1}}{R^{1/n}}$$

As $y \rightarrow 0$ $\frac{\partial U_x}{\partial y} \rightarrow \infty$

As $y \rightarrow R$ $\frac{\partial U_x}{\partial y} \rightarrow \frac{U_{\max}}{nR}$

12.33 $\overline{U_x} = 0.0225 \frac{V}{U_{\max}} \left(\frac{V}{U_{\max} S} \right)^{1/4} \quad (1)$

FOR $\frac{U_x}{U_{\max}} = \left(\frac{y}{S}\right)^{1/n}$

$$\begin{aligned} \frac{\overline{U_x}}{S V_p^2} &= \frac{d}{dx} \int_0^S \frac{U_x}{U_{\max}} \left(1 - \frac{U_x}{U_{\max}}\right) dy \\ &= \frac{dS}{dx} \int_0^1 \left[\left(\frac{y}{S}\right)^{1/n} - \left(\frac{y^2}{S}\right)^{1/n} \right] d\left(\frac{y}{S}\right) \end{aligned}$$

$$= \left[\frac{1}{1+1/n} - \frac{1}{1+2/n} \right] \frac{dS}{dx}$$

EQUATING WITH (1) & DOING ALGEBRA

$$0.0225 \left(\frac{V}{U_{\max} S} \right)^{1/4} = \frac{n}{(n+1)(n+2)} \frac{dS}{dx}$$

$$0.0225 \left(\frac{V}{U_{\max}} \right)^{1/4} \int_0^n dx = \frac{n}{(n+1)(n+2)} \int_0^1 S^{1/4} dS$$

BECOMES

$$\left(\frac{S}{x} \right)^{5/4} = \frac{(n+1)(n+2)}{n} (0.0225) Re_x^{-1/4}$$

FINALLY

$$\frac{S}{x} = \left[0.0225 \frac{(n+1)(n+2)}{n} \right]^{0.8} Re_x^{-0.2}$$

CHAPTER 13

13.1 OIL $N = 0.08 \times 10^{-3} \text{ ft}^2/\text{s}$
 $\rho = 57 \text{ lbm/ft}^3$
 $\dot{V} = 10 \text{ gal/hr}$

TUBE - Diam = 0.24 IN., L = 50 FT

$$V = \frac{\dot{V}}{\pi D^2/4} = 1.18 \text{ ft/s}$$

$$Re = \frac{DV}{\nu} = \frac{(0.24/12)(1.18)}{0.08 \times 10^{-3}} = 295$$

Laminar

$$\begin{aligned} \Delta P &= h_L = 2 f_F \frac{L}{D} V^2 \quad \left\{ f_F = 16/Re \right\} \\ &= 2 \frac{(16)}{295} \frac{50}{0.24/12} (1.18)^2 \\ &= 377.6 \text{ ft}^2/\text{s}^2 \end{aligned}$$

$$\Delta P = \frac{57(377.6)}{32.2} = \underline{\underline{668 \text{ lbf}/\text{ft}^2}}$$

13.2 OIL - SAME PROPERTIES AS IN PROB 13.1

TUBE - D = 0.11 m, L = 30 m.
 $\Delta P = 15 \text{ kPa/m}^2$

FOR LAMINAR FLOW - USE H-P. EQU.

$$\Delta P = 32 \mu \nu \Delta x / D^2$$

OR $\frac{\Delta P}{\rho g} = \frac{32 \mu \nu \Delta x}{g D^2}$

$$\begin{aligned} \nu &= \frac{(15)(144)(0.1/12)^2 (30/12)}{32(57)(0.08 \times 10^{-3})(30/12)} \\ &= 13.24 \text{ ft/s} \end{aligned}$$

$$\dot{V} = \nu A = \underline{\underline{7.22 \times 10^{-4} \text{ ft}^3/\text{s}}}$$

$$Re = \frac{(0.1/12)(13.24)}{0.08 \times 10^{-3}} = 1379$$

Laminar flow
O.K.

13.3 $\Delta P = 2 f_F \frac{L}{D} V^2$

FOR A SPECIFIED PIPE: $\Delta P = f_F \rho V^2$
 IF FULLY TURBULENT - $f_F \sim e/D$ ONLY
 $\therefore \Delta P \sim V^2$

FOR H_2O $\Delta P = 13 \text{ psi}$ FOR $\dot{m} = 28.3 \text{ kgm/s}$

FOR LOX $\rho = 70 \text{ kgm/ft}^3$ $\dot{m} = 35 \text{ kgm/s}$

$$\begin{aligned} \frac{\Delta P_{LOX}}{\Delta P_{H2O}} &= \frac{(\dot{m}/SA)_{LOX}}{(\dot{m}/SA)_{H2O}}^2 \\ &= \left(\frac{35}{70} \right)^2 \left(\frac{62.4}{28.3} \right)^2 = 1.21 \end{aligned}$$

FOR LOX - $\Delta P = 13(1.21) = \underline{\underline{15.8 \text{ psi}}}$

13.4 ENERGY EQU:

$$-\frac{dws}{dt} = \dot{m} \left[\frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g \Delta y + h_L \right]$$

$$\text{OIL: } \rho = 810 \text{ kg/m}^3 \quad D = 4.5 \times 10^{-6} \text{ m}^2/\text{s}$$

$$\dot{V} = 0.56 \text{ m}^3/\text{s}$$

$$\text{LINE: } D = 0.162 \text{ m} \quad y_2 - y_1 = -250 \text{ m}$$

$$\Delta P = 101.3 - 300 = -198.1 \text{ kPa}$$

COMMERCIAL STEEL

$$\zeta = \frac{\dot{V}}{A} = \frac{0.56}{\pi/4(0.162)^2} = 1.855 \text{ m/s}$$

$$\frac{P_2 - P_1}{\rho} = \frac{+198.1(1000)}{1.810} = +245.3 \text{ m}^2/\text{s}^2$$

$$\frac{V_2^2 - V_1^2}{2} = 0$$

$$g \Delta y = 9.81(-250) = -2452 \text{ m}^2/\text{s}^2$$

13.4 CONTINUED -

$$Re = \frac{Dv}{\nu} = \frac{0.42(1855)}{4.5 \times 10^{-6}} = 256,000$$

for THIS Re VALUE & COMMERCIAL STEEL - $\frac{\epsilon}{D} \approx 0.00075$

$$Fig 13.1 - f_f \approx 0.0045$$

$$h_L = 2 \left(0.0045 \right) \frac{(280,000)}{0.42} (1,855)^2$$

$$= 13490 \text{ m}^2/\text{s}^2$$

$$-\frac{dW_s}{dt} = (810)(0.56) \left[+245.3 - 2452 + 13490 \right]$$

$$= \underline{5.34 \text{ MW}}$$

13.5 SAME CONDITIONS AS IN PROB 13.4 EXCEPT

2 PIPES IN SERIES -

270 KM OF ORIGINAL PIPE

10 KM OF NEW PIPE
WITH D = 0.42 m

FOR THE NEW SYSTEM:

$$-\frac{dW_s}{dt} = m \left[\frac{P_2 - P_1}{g} + \frac{V_2^2 - V_1^2}{2} + g\Delta y + h_L \right]$$

$$\frac{P_2 - P_1}{g} = \{ \text{SAME} \} = 245.3 \text{ m}^2/\text{s}$$

$$\frac{\Delta V^2}{2} = \{ \text{SAME} \} = 0$$

$$g\Delta y = \{ \text{SAME} \} = -2452 \text{ m}^2/\text{s}$$

$$h_L = h_{L1} + h_{L2}$$

1 → ORIGINAL

2 → NEW

13.5 CONTINUED -

$$h_H = \frac{1270,000}{280,000} (13490) = 13490 \text{ m}^2/\text{s}^2$$

FOR NEW SECTION:

$$v = \frac{0.56}{\pi/4 (0.42)^2} = 4.04 \text{ m/s}$$

$$Re = \frac{0.42(4.04)}{4.5 \times 10^{-6}} = 3,773 \times 10^5$$

$$\frac{\epsilon}{D} = 0.00012 \quad f_f \approx 0.0038$$

$$h_L = 2 \left(0.0038 \right) \frac{10,000}{0.42} (4.04)^2$$

$$= 2753 \text{ m}^2/\text{s}^2$$

$$\text{TOTAL } h_L = 13490 + 2753 = 16440 \text{ m}^2/\text{s}^2$$

NEW GASE -

$$-\frac{dW_s}{dt} = (810)(0.56) [245.3 - 2452 + 16440]$$

$$= \underline{6.46 \text{ MW}}$$

13.6 STADY FLOW BETWEEN PUMPING STATIONS

$$0 = \frac{P_2 - P_1}{g} + \frac{V_2^2 - V_1^2}{2} + g\Delta y + h_L$$

$$\Delta V^2/2 = 0$$

$$\Delta y = 0$$

$$\text{so } \frac{\Delta P}{g} = h_L = 2 f_f \frac{L}{D} V^2$$

$$Re = \frac{DV}{\nu} = \frac{(0.71)(1.1)}{6.7 \times 10^{-6}} = 1,166 \times 10^5$$

$$\frac{\epsilon}{D} = 0.000068 \quad f_f \approx 0.0046$$

$$h_L = 2 \left(0.0046 \right) \frac{(320 \times 10^3)}{0.71} (1.1)^2$$

$$= 5017 \text{ m}^2/\text{s}^2$$

$$\Delta P = h_L/g = \underline{511 \text{ m OF OIL}}$$

13.6 CONTINUED -

$$\begin{aligned} -\frac{\delta w_s}{dt} &= \dot{m} g h_L \\ &= 801 \left(\frac{\pi}{4} \right) (0.71)^2 (1.1) (9.81) (511) \\ &= \underline{\underline{1,749 \text{ MW}}} \end{aligned}$$

13.7 ENERGY EQUATION IN STEADY FLOW.

$$\frac{P_2 - P_1}{g} + \frac{V_2^2 - V_1^2}{2} + g \Delta y + h_L = 0$$

$$-\frac{\Delta P}{g} = -\frac{60(144)(32.2)}{62.4} = -4460 \text{ ft}^2/\text{s}$$

$$\frac{V_2^2 - V_1^2}{2} = \frac{V_2^2}{2}$$

$$g \Delta y = 0$$

$$h_L = 2 f_f \frac{L}{D} V^2 + \sum K \frac{V^2}{2}$$

$$= V^2 \left[2 f_f \frac{L}{D} + \frac{1}{2} \sum K \right]$$

$$\sum K = (6)(0.7) + 3.8 + 7.5 = 15.5$$

$$2 f_f \frac{L}{D} = 2(0.001) \frac{160}{0.75/12} = 35.84$$

$$h_L = V^2 \left[35.84 + 7.75 \right] = 43.6 V^2$$

$$V_2 = \frac{VA}{A_2} = V \left(\frac{D}{D_2} \right)^2 = V \left(\frac{0.75}{0.11} \right)^2 = 56.25 V$$

ENERGY EQUATION BECOMES

$$-4460 + \frac{1}{2} (56.25 V)^2 + 43.6 V^2 = 0$$

$$V^2 = \frac{4460}{1405} = 2.74 \text{ ft}^2/\text{s}^2$$

$$V = 1.656 \text{ ft/s}$$

13.7 CONTINUED

NOW TO CHECK f_f :

$$\begin{aligned} Re &= \left(\frac{0.75}{12} \right) (1.656) / (1.12 \times 10^{-5}) \\ &= 8480 \end{aligned}$$

$$\frac{f_f}{D} = \frac{5 \times 10^{-6} (R)}{0.75} = 0.00008$$

$$\text{FIGURE 13.1} - f_f \approx 0.75$$

THIS MAKES A NEGLIGIBLE CHANGE
IN THE h_L CALCULATION - ∴

$$V = 1.656 \text{ ft/s}$$

$$\dot{V} = \frac{\pi}{4} \left(\frac{0.75}{12} \right)^2 (1.656) = 0.0051 \text{ ft}^3/\text{s}$$

13.8

FOR THIS CASE -

$$\frac{\Delta P}{g} + \frac{\Delta V^2}{2} + g \Delta y + h_L = 0$$

$$-\frac{\Delta P}{g} = -\frac{4.55(144)(32.2)}{62.4} = -338.1 \text{ ft}^2/\text{s}^2$$

$$\Delta V^2 = 0$$

$$g \Delta y = 0$$

$$h_L = 2 f_f \frac{L}{D} V^2$$

$$V = \frac{118 \text{ ft}^3/\text{m}}{(60) \pi/4 (D^2)} = \frac{2.50}{D^2}$$

$$h_L = 2 f_f \frac{2.50}{D} \left(\frac{2.5}{D^2} \right)^2 = \frac{3125 f_f}{D^5}$$

GOVERNING EQUATION IS

$$-338.1 + \frac{3125}{D^5} f_f = 0$$

$$f_f = 0.1082 D^5$$

OTHER CONSTRAINT IS $f_f(Re) \sim \text{FIGURE 13.1}$

13.8 CONTINUED -

$$Re = \frac{DV}{\nu} = \frac{DV}{\pi D^2/4} = \frac{118}{60(\pi)D/4(1.22 \times 10^{-5})} = \frac{2.052 \times 10^5}{D}$$

TRIAL & ERROR -

ASSUME $f_f = 0.004$

$$D = \left[\frac{0.004}{0.0062} \right]^{1/5} = 0.517 \text{ ft}$$

$$Re = \frac{2.052 \times 10^5}{0.517} = 3.97 \times 10^5$$

Fig 13.1 - $f_f = 0.00325$

USING THIS VALUE -

$$D = 0.496 \text{ ft} \quad Re = 4.137 \times 10^5$$

$$f_f = 0.0031$$

$$\Rightarrow D = \underline{0.491 \text{ ft}} \quad (5.9 \text{ in})$$

13.9 ENERGY EQU - STEADY FLOW

$$\frac{\Delta P}{g} + \frac{\Delta V^2}{2} + g\Delta y + h_L = 0$$

LOCATION 1 - SUMP ($V_1=0$)

2 - PUMP INLET

$$\frac{\Delta P}{g} = \frac{P_2 - P_{atm}}{g} = \frac{P_{2g}}{g}$$

$$V_2 = \frac{V}{\pi D^2/4} = \frac{500}{(1.48)(60)\left(\frac{1}{4}\right)} = 5.67 \text{ ft/s}$$

$$\Delta V^2/2 = 16.1 \text{ ft}^2/\text{s}^2$$

13.9 CONTINUED -

$$g\Delta y = 9.81(3) = 29.4 \text{ ft}^2/\text{s}^2$$

$$h_L = 2f_f \frac{L}{D} V^2$$

$$Re = \frac{(6/12)(5.67)}{1.22 \times 10^{-5}} = 2.32 \times 10^5$$

$$e/D = 0.003$$

$$f_f (F_{16}(B,1)) \approx 0.0066$$

$$h_L = 2(0.0066)\left(\frac{6}{0.5}\right)(5.67)^2 = 5.05 \text{ ft}^2/\text{s}^2$$

SUBSTITUTING INTO ENERGY EQU:

$$-\frac{P_{2g}}{g} = 16.1 + 29.4 + 5.05 = 50.6 \text{ ft}^2/\text{s}^2$$

$$-P_{2g} = \frac{62.4(50.6)}{32.2} = \underline{\underline{98.0 \text{ lb}_f/\text{ft}^2}}$$

$$\underline{\underline{P_2 = 0.681 \text{ PSIG}}}$$

$$P_2 \text{ ABSOLUTE} = 14.7 - 0.681$$

$$= \underline{\underline{14.02 \text{ PSIA}}}$$

13.10

BETWEEN RESERVOIR SURFACE (1)
& NOZZLE EXIT (2):

$$\frac{P_2 - P_1}{g} + \frac{V_2^2 - V_1^2}{2} + g\Delta y + h_L = 0$$

$$\Delta P = 0$$

$$V_1^2 = 0$$

$$g\Delta y = -(32.2)(20) = +644 \text{ ft}^2/\text{s}^2$$

$$\text{IN Pipe: } V_p = V_2 \frac{A_2}{A_1} = V_2 \left(\frac{D_2}{D_1}\right)^2 = \frac{V_2}{4}$$

$$98 \quad V_p^2 = V_2^2/16$$

13.10 CONTINUED

$$h_L = 2 f_F \frac{L}{D} V_p^2 + \sum K \frac{V_p^2}{2}$$

$$= V_p^2 \left[2 f_F \frac{114.9}{4/12} + \frac{\sum K}{2} \right]$$

$$\sum K = (5)(0.7) + 1$$

ELBOWS ENTRANCE

$$h_L = V_p^2 [689.4 f_F + 2.25]$$

ENERGY EQUATION IS

$$\frac{V_p^2}{2} - 644 + V_p^2 [] = 0$$

$$\text{OR } V_p^2 [689.4 f_F + 2.25] = 644$$

TRIAL $\frac{1}{2}$ ERROR -

$$\text{ASSUME } f_F = 0.005$$

$$V_p = 10.29 \text{ FT/s}$$

$$Re = \frac{(4/12)(10.29)}{1.22 \times 10^{-5}} = 2.811 \times 10^5$$

$$e/D = 0.0005$$

$$\text{From 13.1} - f_F \approx 0.0045$$

$$\text{WITH } f_F = 0.0045 \quad V_p = 10.6 \text{ FT/s}$$

Re CHECKS

$$\frac{1}{2} \dot{V} = \frac{\pi}{4} \left(\frac{4}{12} \right)^2 (10.6) = 0.925 \text{ FT}^3/\text{s}$$

13.11

BETWEEN RESERVOIR SURFACE (1)
 $\frac{1}{2}$ EXIT (2)

13.11 CONTINUED

$$\frac{P_B - P_1}{\rho} + \frac{V_B^2 - V_1^2}{2} + g \Delta y + h_L = 0$$

$$\Delta P = 0$$

$$V_1 = 0$$

$$g \Delta y = 32.2(-10) = -322 \text{ FT}^2/\text{s}^2$$

$$h_L = 2 f_F \frac{L}{D} V^2 + \sum K \frac{V^2}{2}$$

$$= 2 f_F \frac{23}{1/12} V^2 + V^2 \sum K_{1/2}$$

 $\sum K_{1/2} = \text{ENTRANCE LOSS}$

$$h_L = V^2 [552 f_F + 0.5]$$

ENERGY EQUATION IS

$$\frac{V^2}{2} - 322 + V^2 [552 f_F + 0.5] = 0$$

$$V^2 [552 f_F + 1] = 322$$

TRIAL $\frac{1}{2}$ ERROR:

$$\text{ASSUME } f_F = 0.005$$

$$V = 9.25 \text{ FT/s}$$

$$Re = \frac{(1/12)(9.25)}{1.22 \times 10^{-5}} = 6.32 \times 10^4$$

From 13.1 - SMOOTH TUBE - $f_F = 0.0047$ For $f_F = 0.0047 \quad V = 9.46 \text{ FT/s}$

$$Re = 6.446 \times 10^4 \quad f_F = 0.0047$$

$$\frac{1}{2} \dot{V} = \frac{\pi}{4} \left(\frac{1}{12} \right)^2 (9.46) = 0.0516 \text{ FT}^3/\text{s}$$

BETWEEN (2) $\frac{1}{2}$ B

$$\frac{P_B - P_2}{\rho} + \frac{V_B^2 - V_2^2}{2} + g \Delta y + h_L = 0$$

13.11 CONTINUED -

$$\frac{P_B - P_2}{8} = \frac{P_{fg}}{8}$$

$$\frac{V_B^2 - V_2^2}{2} = 0$$

$$g\Delta y = 32.2(14) = 450.8 \text{ FT}^2/\text{s}^2$$

$$h_L = 2f_F \frac{L}{D} V^2 + \sum K \frac{V^2}{2}$$

$$= \frac{2(0.004f)(14)(9.46)^2}{1/12}$$

$$= 141.3 \text{ FT}^2/\text{s}^2$$

INTO ENERGY EQUATION:

$$\frac{P_{fg}}{g} = -450.8 - 141.3 = -592.1 \text{ FT}^2/\text{s}^2$$

$$P_{Bfg} = \frac{(-592.1)(62.4)}{32.2} = -1147 \text{ PSF}$$

$$= \underline{-7.91 \text{ PSI}}$$

$$P_{B\text{ABSOLUTE}} = 14.7 - 7.91 = \underline{6.73 \text{ PSI}}$$

13.12 RECTANGULAR DUCT - 8" x 8" x 25 FT

$$\dot{V} = 600 \text{ FT}^3/\text{m} \text{ STP AIR}$$

$$D_{eq} = \frac{4(8)(8)}{A/8} = 8 \text{ IN}$$

$$V = \frac{600/60}{8(8)/144} = 22.5 \text{ FT/s}$$

ENERGY EQUATION REDUCES TO

$$\frac{\Delta P}{g} = 2f_F \frac{L}{D} V^2$$

$$Re = \frac{(8/12)(22.5)}{1.56 \times 10^{-5}} = 9.59 \times 10^4$$

13.12 CONTINUED -

$$\epsilon/D = \frac{0.0005}{8/12} = 0.00075$$

$$\text{Eq 13.1} - f_F \approx 0.0054$$

$$\frac{\Delta P}{g} = 2(0.0054) \frac{25}{8/12} (22.5)^2 = 105 \text{ FT}^2/\text{s}^2$$

$$\Delta P = \frac{105(0.0766)}{32.2} = 0.4876 \text{ PSF}$$

$$= 6.366 \text{ FT AIR} = 76.4 \text{ IN AIR}$$

$$= (76.4) \frac{0.0766}{62.4} = \underline{0.0938 \text{ IN H}_2\text{O}}$$

ENERGY EQUATION:

$$\frac{\Delta P}{g} + \frac{\Delta V^2}{g^2} + g\Delta y + h_L = 0$$

$$g\Delta y = (32.2)(175) = 5635 \text{ FT}^2/\text{s}^2$$

$$\dot{V} = 3 \times 10^6 \frac{\text{FT}^3}{\text{DAY}} = 4.642 \text{ FT}^3/\text{s}$$

$$V = \frac{4.642}{\frac{\pi}{4} D^2} = \frac{5.91}{D^2} \text{ FT/s}$$

$$h_L = 2f_F \frac{L}{D} V^2 = 2f_F \frac{10560}{D} \frac{V^2}{25}$$

$$= 2.112 \times 10^4 \frac{f_F V^2}{D^5}$$

$$\text{FOR 10-12 PIPE: } V = \frac{5.91}{(10/12)^2} = 8.51 \text{ FT/s}$$

$$f_F = \frac{(10/12)(8.51)}{1.22 \times 10^{-5}} = 5.81 \times 10^5$$

$$\epsilon/D = 0.00011 - f_F = 0.0051$$

$$h_L = \frac{2.112 \times 10^4 (0.0051)(8.51)^2}{(10/12)^5}$$

$$= \underline{19410 \text{ FT}^2/\text{s}^2}$$

B.13 (CONTINUED)

For 12" PIPE: $V = 5.91 \text{ FT/s}$
 $Re = 4,84 \times 10^5$ $\epsilon/D = 0.00085$
 $f_f \approx 0.0048$ $h_L = 3540 \text{ FT}^2/\text{s}^2$

For 14" PIPE: $V = 4.34 \text{ FT/s}$
 $Re = 4,15 \times 10^5$ $\epsilon/D = 0.00073$
 $f_f \approx 0.0047$ $h_L = 865 \text{ FT}^2/\text{s}^2$

$$\text{Cost/yr} = \underbrace{(\text{Power})}_{\text{POWER LOST}} + \left\{ \begin{array}{l} \text{INITIAL} \\ \text{LOST} \end{array} \right\} + 0.06 \left\{ \begin{array}{l} \text{INITIAL} \\ \text{LOST} \end{array} \right\}$$

$$= \underbrace{(\text{POWER LOST})}_{\text{POWER LOST}} + 0.11 \left\{ \begin{array}{l} \text{INITIAL} \\ \text{LOST} \end{array} \right\}$$

$$\text{Power Lost} = \$ \frac{0.07}{\text{kW-h}} (P)$$

$$P = m(h_L + gA_y) \frac{(1.356)(365)(34)}{(32.2)(1000)}$$

$$= 106,860(h_L + gA_y) \text{ kW-h}$$

For 10-IN PIPE:

$$\text{CPY} = 0.11 (\$11.40)(2)(5280) + \$0.07 (106,860)(19410 + 5635)$$

$$= \$ 260,580$$

For 12" PIPE -

$$\text{CPY} = 0.11 (\$14.70)(2)(5280) + \$0.07 (106,860)(3540 + 5635)$$

$$= \$ 85,670$$

For 14" PIPE -

$$\text{CPY} = 0.11 (\$16.80)(2)(5280) + \$0.07 (106,860)(865 + 5635)$$

$$= \$ 68,108 \quad \leftarrow \text{GREATEST}$$

B.14 ENERGY EQUATION Reduces to

$$\frac{\Delta P}{g} + 2f_f \frac{L}{D} V^2 = 0$$

$$-\frac{\Delta P}{g} = \frac{P_1 - P_{ATM}}{g_w} = \frac{P_{1a}}{g_w} = \frac{40 \text{ PSI}}{g_w}$$

$$= \frac{40(144)(32.2)}{62.4} = 2970 \text{ FT}^2/\text{s}^2$$

$$2f_f \frac{L}{D} V^2 = 2f_f \frac{50}{0.5/12} V^2 = 2400 f_f V^2$$

~ For 1/2-IN. DIAM HOSE -

INTO ENERGY EQUATION: $f_f V^2 = 1,2375$

TRIAL & ERROR:

ASSUME $f_f = 0.005$ $V = 15.73 \text{ FT/s}$

$$Re = \frac{(0.5)(15.73)}{1.22 \times 10^{-5}} = 5,373 \times 10^4$$

FROM B.1 - ASSUME SMOOTH - $f_f = 0.0049$

WITH $f_f = 0.0049$ $V = 15.89 \text{ FT/s}$

$$Re = 5,427 \times 10^4 \rightarrow f_f = 0.0049$$

∴ FOR 1/2-IN. HOSE - $V = 15.89 \text{ FT/s}$

$$\dot{V} = 15.89 \left(\frac{\pi}{4} \right) \left(\frac{0.5}{12} \right)^2 = 0.0217 \text{ FT}^3/\text{s}$$

FOR 3/4-IN DIAM HOSE:

$$h_L = 1600 f_f V^2 \sim f_f V^2 = 1,856$$

- ASSUME $f_f = 0.004$ - $V = 21.54 \text{ FT/s}$

$$Re = \frac{(0.75/2)(21.54)}{1.22 \times 10^{-5}} = 1,1035 \times 10^5 \quad f_f = 0.0042$$

WITH $f_f = 0.0042$ $V = 21.02 \text{ FT/s}$

$$Re = 1,077 \times 10^5 \quad f_f = 0.00425$$

$$V = 20.9 \text{ FT/s} \quad \dot{V} = 0.0641 \text{ FT}^3/\text{s}$$

13.15

$$h_1 = 60 \text{ m}, h_2 = 30 \text{ m}, h_3 = 8 \text{ m}$$

$$L = 80 \text{ m} \quad D = 0.35 \text{ m}$$

ENERGY EQUATION - BETWEEN 1 & 2

$$\frac{\Delta P}{\rho} + \frac{\Delta U^2}{2} + g \Delta y + h_L = 0$$

$$\frac{\Delta P}{\rho} = 0 \quad \frac{\Delta U^2}{2} = 0$$

$$g \Delta y = -(9.81)(30) = -294.3 \text{ m/s}^2$$

$$h_L = 2f_F \frac{L}{D} U^2 + \sum K \frac{U^2}{2}$$

$$= 2(0.004) \left(\frac{80}{0.35} \right) U^2$$

$$+ 0.5 U^2$$

$$= 2,329 U^2$$

INTO ENERGY EQUATION:

$$2,329 U^2 = 294.3$$

$$U = 11.24 \text{ m/s}$$

$$\textcircled{a}) \quad \dot{V} = 11.24 \left(\frac{\pi}{4} \right) (0.35)^2 = 1,082 \text{ m}^3/\text{s}$$

$$\text{FOR } C_D = 0.004$$

$$h_L = 2f_F \frac{80}{0.35} U^2 = 457 f_F U^2$$

INTO ENERGY EQUATION:

$$457 f_F U^2 = 294.3 \quad f_F U^2 = 0.6438$$

TRIAL & ERROR:

$$\text{ASSUME } f_F = 0.0072$$

$$U = 9.46 \text{ m/s}$$

13.15 CONTINUED-

$$Re = \frac{(0.35)(9.46)}{0.995 \times 10^{-6}} = 3,328 \times 10^6$$

fully TURBULENT - $f_F = 0.0072$

$$\therefore U = 9.46 \text{ m/s} \quad \dot{V} = 0.910 \text{ m}^3/\text{s}$$

13.16 ENERGY EQUATION:

$$\frac{\Delta P}{\rho} + \frac{\Delta U^2}{2} + g \Delta y + h_L = 0$$

$$\frac{\Delta U^2}{2} = 0$$

$$g \Delta y = (9.81)(-6.8) = -6553 \text{ m/s}^2$$

$$h_L = 2f_F \frac{L}{D} U^2$$

$$\dot{V} = 90 \text{ m}^3/\text{s} \quad U = \frac{90}{\frac{\pi}{4}(5)^2} = 4.584 \text{ m/s}$$

$$Re = \frac{5(4.584)}{0.995 \times 10^{-6}} = 1.3 \times 10^7$$

$$C_D \approx \frac{(0.003 \text{ ft})(0.3048)}{5} = 0.00018$$

$$f_F \approx 0.0034$$

$$h_L = 2(0.0034) \left(\frac{8000}{5} \right) (4.584)^2 = 228.6 \text{ m/s}^2$$

INTO ENERGY EQUATION:

$$\frac{\Delta P}{\rho} = 6553 - 228.6 = 6324 \text{ m}^2/\text{s}^2$$

$$\Delta P = 6324 (1000) = 6324 \times 10^3 \text{ N/m}^2 \\ = 6,324 \text{ MPa}$$

13.17 GATE VALVE -

$$\frac{\Delta P}{g} = K \frac{V^2}{2}$$

$$P_1 = 234 \text{ kPa}, P_2 = P_{\text{atm}} = 101,4 \text{ kPa}$$

$$\Delta P = 134,6 \text{ kPa}, \frac{\Delta P}{g} = 134,6 \frac{\text{m}^2}{\text{s}^2}$$

a) VALVE FULLY OPEN: $K = 0,15$

$$V = \left[\frac{(134,6)^2}{0,15} \right]^{1/2} = 42,36 \text{ m/s}$$

$$\dot{V} = (42,36) \left(\frac{\pi}{4} \right) (0,2)^2 = 1331 \text{ m}^3/\text{s}$$

b) VALVE 1/4 CLOSED - $K = 0,85$

$$V = 17,8 \text{ m/s}, \dot{V} = 0,559 \text{ m}^3/\text{s}$$

c) VALVE 1/2 CLOSED - $K = 4,4$

$$V = 7,82 \text{ m/s}, \dot{V} = 0,246 \text{ m}^3/\text{s}$$

d) VALVE 3/4 CLOSED - $K = 20$

$$V = 3,67 \text{ m/s}, \dot{V} = 0,115 \text{ m}^3/\text{s}$$

13.18 $h_L = 2 f_f \frac{L}{D} V^2$

$$Re = \frac{DV}{\nu} = \frac{(0,18)(34)}{0,995 \times 10^{-6}} = 6,15 \times 10^6$$

$$\epsilon_D = 0,0014, f_f = 0,0053$$

$$h_L = 2(0,0053) \frac{400}{0,18} (34)^2$$

$$= 27230 \text{ m}^2/\text{s}^2$$

$$= 2716 \text{ m of H}_2\text{O}$$

13.19 $H_2\text{O} @ 15^\circ\text{C}$ $\frac{\Delta P}{g} = 0,50 \text{ m}$

$$L = 300 \text{ m}, D = 2,20 \text{ m}$$

$$\nu = 1,195 \times 10^{-6} \text{ m}^2/\text{s}$$

$$h_L = 2 f_f \frac{L}{D} V^2$$

13.19 (CONTINUED)

$$Re = \frac{DV}{\nu} = \frac{(2,2)(V)}{1,195 \times 10^{-6}} = 1,841 \times 10^6 V$$

$$h_L = 9,81(0,5) = 2 f_f \frac{300}{2,2} V^2$$

$$f_f V^2 = 0,0799$$

TRIAL & ERROR -

Assume TURBULENT FLOW - SMOOTH PIPE

Assume $f_f = 0,003$

$$V = 2,448 \text{ m/s}, Re = 4,508 \times 10^6$$

$$f_{16,1} - f_f = 0,0022$$

$$V = 2,86 \text{ m/s}, Re = 5,26 \times 10^6$$

$$f_{16,1} - f_f \approx 0,0021$$

$$V = 2,93 \text{ m/s} \rightarrow \text{CLOSE ENOUGH}$$

$$\dot{V} = 2,93 \left(\frac{\pi}{4} \right) (2,2)^2 = 11,13 \text{ m}^3/\text{s}$$

13.20 ENERGY EQUATION:

$$\frac{\Delta P}{g} + \frac{\Delta V^2}{2} + g \Delta y + h_L = 0$$

$$\frac{\Delta P}{g} = 0$$

$$\frac{\Delta V^2}{2} = \frac{V_2^2}{2}$$

$$g \Delta y = 9,81(-16,9) = -165,8 \text{ m}^2/\text{s}^2$$

$$h_L = 2 f_f \frac{L}{D} V^2 = 2 f_f \frac{30}{0,6} V^2 = 600 f_f V^2$$

INTO ENERGY EQUATION:

$$V^2 [600 f_f + 0,5] = 165,8$$

TRIAL & ERROR -

0,6-m CAST IRON PIPE - $\epsilon_D = 0,00045$

13.20 (CONTINUED)

$$Re = \frac{0.16V}{0.995 \times 10^{-6}} = 6.03 \times 10^5 V$$

ASSUME $f_f = 0.003$ $V = 6.36 \text{ m/s}$

$$Re = 3.83 \times 10^6 \quad f_f = 0.0041$$

THIS IS IN FLOW TURBULENT REGION

$\therefore f_f$ IS $0.0041 \nparallel V = 7.48 \text{ m/s}$

$$\dot{V} = (7.48) \left(\frac{\pi}{4}\right) (0.16)^2 = 2.116 \text{ m}^3/\text{s}$$

$$13.21 \quad D = 0.15 \text{ m} \quad L = 100 \text{ m}$$

$$20^\circ \text{C } H_2O - \lambda = 0.995 \times 10^{-6} \text{ m}^2/\text{s}$$

$$\Delta P = 30 \text{ kPa} \sim \frac{\Delta P}{L} = 30 \text{ m}^2/\text{s}^2$$

WROUGHT IRON PIPE $\frac{\epsilon}{D} = 0.00035$

$$Re = \frac{(0.15)V}{0.995 \times 10^{-6}} = 1.507 \times 10^5 V$$

ENERGY EQUATION: $\frac{\Delta P}{L} + h_L = 0$

$$2f_f \frac{100}{0.15} V^2 = 30 \quad f_f V^2 = 0.0225$$

TRIAL \nparallel ERROR

ASSUME $f_f = 0.004$ $V = 2.37 \text{ m/s}$

$$Re = 3.574 \times 10^5 \quad f_f \approx 0.0042$$

$\therefore f_f = 0.0042$ $V = 2.31 \text{ m/s}$

$$Re = 3.488 \times 10^5 \quad f_f = 0.0042$$

$$\dot{V} = (2.31) \left(\frac{\pi}{4}\right) (0.15)^2 = 0.0408 \text{ m}^3/\text{s}$$

$$13.22. \quad \Delta P = 1.3 \text{ m H}_2O \quad L = 10 \text{ m}$$

$$D = 0.2 \text{ m} \quad \epsilon = 0.0004 \text{ m}$$

ASSUME $20^\circ - \lambda = 0.995 \times 10^{-6} \text{ m}^2/\text{s}$

$$\frac{\Delta P}{L} = 1.3(9.81) = 12.75 \text{ m}^2/\text{s}^2$$

13.22 (CONTINUED)

$$\text{BROWNIAN FORM} - \frac{\Delta P}{L} = 2 f_f \frac{L}{D} V^2$$

$$12.75 = 2 f_f \frac{10}{0.2} V^2 = 100 f_f V^2$$

$$f_f V^2 = 0.1275$$

$$Re = \frac{0.2V}{0.995 \times 10^{-6}} = 2.01 \times 10^5 V$$

ASSUME SMOOTH PIPE -

$$@ \quad f_f = 0.004 \quad V = 5.646 \text{ m/s}$$

$$Re = 1.135 \times 10^6 \quad f_f \approx 0.002565$$

$$@ \quad f_f = 0.003 \quad V = 6.52 \text{ m/s}$$

$$Re = 1.31 \times 10^6 \quad f_f \approx 0.0027$$

$$@ \quad f_f = 0.0027 \quad V = 6.87 \text{ m/s}$$

$$Re = 1.381 \times 10^6 \quad f_f \approx 0.0027$$

$$\dot{m} = (6.87) \left(\frac{\pi}{4}\right) (0.2)^2 (1000) = 0.216 \text{ kg/s}$$

13.23

$$\dot{V} = 5.675 \times 10^{-4} \text{ m}^3/\text{s}$$

$$L = 20 \text{ m}$$

PIPE IS 6cm STEEL

$$\frac{\epsilon}{D} = 2.446 \times 10^{-5}$$

$$\frac{\Delta P}{L} = h_L + \frac{K V^2}{2}$$

$$= 2 f_f \frac{L}{D} V^2 + 0.5 V^2 \quad \left\{ \text{FOR ENTRANCE} \right. \\ \left. K=1 \right\}$$

$$V = \frac{5.675 \times 10^{-4}}{\pi/4 (0.013)^2} = 4.275 \text{ m/s}$$

$$Re = \frac{(0.013)(4.275)}{0.995 \times 10^{-6}} = 55900$$

Fig 13.1 - $f_f \approx 0.0049$

13.23 CONTINUED

$$\frac{\Delta P}{g} = \nu^2 \left[2(0.0049) \left(\frac{20}{0.03} \right) + 0.5 \right]$$

$$= 284.7 \text{ m}^2/\text{s}^2$$

$$h = \frac{284.7}{g} = \underline{29.02 \text{ m}}$$

13.24 $\dot{V} = 0.25 \text{ m}^3/\text{s}$

$$\text{PIPE 1: } \nu = \frac{0.25}{\frac{\pi}{4}(0.16)^2} = 1243 \text{ m/s}$$

$$\text{PIPE 2 } \nu = \frac{0.25}{\frac{\pi}{4}(0.18)^2} = 9.82 \text{ m/s}$$

$$\text{PIPE 3 } \nu = \frac{0.25}{\frac{\pi}{4}(0.2)^2} = 7.96 \text{ m/s}$$

~

$$\text{PIPE 1 - } \frac{\Delta P}{g} = 2f_f \frac{l}{D} \nu^2$$

$$Re = \frac{0.16(1243)}{0.995 \times 10^{-6}} = 1.998 \times 10^6$$

$$e/D = 0.0055 - f_f = 0.0019$$

$$\frac{\Delta P}{g} = \frac{2(0.0019)(900)(1243)^2}{0.16(9.81)} = \underline{1400 \text{ m}}$$

PIPE 2 -

$$Re = \frac{0.18(9.82)}{0.995 \times 10^{-6}} = 1.776 \times 10^6$$

$$e/D = 0.005 \quad f_f = 0.0075$$

$$\frac{\Delta P}{g} = \frac{2(0.0075)(900)(9.82)^2}{0.18(9.81)} = \underline{1241 \text{ m}}$$

PIPE 3 -

$$Re = \frac{0.2(7.96)}{0.995 \times 10^{-6}} = 1.6 \times 10^6$$

$$e/D \approx 0.0045 \quad f_f \approx 0.0073$$

$$\frac{\Delta P}{g} = \frac{2(0.0073)(800)(7.96)^2}{0.2(9.81)} = \underline{377 \text{ m}}$$

13.25

Pipe	Length, m	Diameter, cm	Roughness, mm
1	125	8	0.240
2	150	6	0.120
3	100	4	0.200

PIPES IN SERIES - $H_2O @ 20^\circ C - V = 0.995 \times 10^6 \text{ m}^2/\text{s}$

$$V_1 = \dot{V} / \pi \frac{D_1^2}{4} = 199 \text{ m/s}$$

$$V_2 = \dots = 354 \text{ m/s}$$

$$V_3 = \dots = 796 \text{ m/s}$$

$$\frac{\Delta P}{g} = h_{L1} + h_{L2} + h_{L3} + 5(9.81)$$

$$h_{L1} = 2f_f \frac{125}{0.08} (199)^2 = 1.238 \times 10^8 f_f \text{ m}^2$$

$$h_{L2} = 2f_f \frac{150}{0.06} (354)^2 = 6.266 \times 10^8 f_f \text{ m}^2$$

$$h_{L3} = 2f_f \frac{100}{0.04} (796)^2 = 3.176 \times 10^9 f_f \text{ m}^2$$

$$\text{PIPE 1 - } e/D = \frac{0.24}{80} = 0.003$$

Assume Fully Turbulent - $f_f = 0.0065$

$$\text{PIPE 2 - } e/D = \frac{0.12}{60} = 0.002$$

~ SAME ASSUMPTION - $f_f = 0.00585$

$$\text{PIPE 3 } e/D = \frac{0.20}{40} = 0.005$$

~ SAME ASSUMPTION $f_f = 0.0077$

$$\sum h_L = \dot{V}^2 \left[8.047 \times 10^5 + 36.66 \times 10^5 + 244.55 \times 10^5 \right] = 289.3 \times 10^5 \text{ m}^2$$

$$\sum h_L = \frac{\Delta P}{g} + gA \frac{V}{2} = 180 + 9.81 \times 276.3 = 276.3 \text{ m}^2/\text{s}^2$$

SOLVING - $\dot{V} = 0.00309 \text{ m}^3/\text{s}$

$$V_1 = 0.615 \text{ m/s } Re_1 = 4.94 \times 10^4 \quad f_f = 0.0071$$

$$V_2 = 1.094 \text{ m/s } Re_2 = 6.60 \times 10^4 \quad f_f = 0.0065$$

$$V_3 = 2.446 \text{ m/s } Re_3 = 9.89 \times 10^4 \quad f_f = 0.0077$$

13.25 CONTINUED -

USING NEW VALUES FOR f_F -

$$\sum h_L = \left[(8.79 + 40.73 + 245) \times 10^5 \right] \frac{V^2}{D}$$

$$= 294.5 \times 10^5 \frac{V^2}{D} = 276.3$$

$$\dot{V} = 0.00306 \text{ m}^3/\text{s}$$

13.26 CONCRETE PIPES IN SERIES

$$H_2O @ 20^\circ\text{C} - \dot{V} = 0.18 \text{ m}^3/\text{s}$$

$$h_{L1} + h_{L2} = 18 \text{ m} = 176.6 \text{ m}^2/\text{s}^2$$

$$\text{for Pipe 1} - h_{L1} = 2f_F \frac{L}{D} V_1^2$$

$$V_1 = \frac{0.18}{(\frac{\pi}{4})(0.3)^2} = 2.55 \text{ m/s}$$

$$Re = \frac{(0.3)(2.55)}{0.995 \times 10^{-6}} = 7,678 \times 10^5$$

$$e/D = \frac{0.0035}{0.3} = 0.00117$$

$$f_F \approx 0.0051$$

$$\frac{\Delta P}{g} = h_L = 2(0.0051) \left(\frac{312.5}{0.3} \right) (2.55)^2$$

$$= 69.09 \text{ m}^2/\text{s}^2$$

THIS REQUIRES h_L FOR PIPE 2

$$\text{TO BE } 176.6 - 69.09 = 107.5 \text{ m}^2/\text{s}^2$$

$$107.5 = 2f_F \frac{312.5}{D} V^2$$

$$\frac{f_F V^2}{D} = 0.172$$

$$\therefore V = \frac{\dot{V}}{\pi D^2/4} = \frac{0.18}{\pi D^2/4} = \frac{0.2292}{D^2}$$

$$\therefore \frac{f_F}{D^5} = 3,275$$

13.26 CONTINUED -

$$Re = \frac{DV}{\nu} = \frac{D(0.2292)}{0.02(0.995 \times 10^{-6})}$$

$$= 2,304 \times 10^5$$

TRUE $\hat{=}$ ERROR -

ASSUME $f_F = 0.006 - D = 0.2835 \text{ m}$

$$e/D = 0.0123 \quad Re = 8,127 \times 10^5$$

$$f_F \approx 0.01$$

$$D = 0.314 \text{ m} \quad e/D = 0.0111$$

$$Re = 7,338 \times 10^5 \quad f_F = 0.01$$

$$\sim D = 0.314 \text{ m}$$

13.27 2 PIPES IN PARALLEL:

Pipe 1 - $D = 0.2 \text{ m}$ $L = 150 \text{ m}$

CAST IRON: $e/D = 0.0013$

Pipe 2 - $D = 0.067 \text{ m}$ $L = 150 \text{ m}$

STEEL - $e/D = 0.0007$

$$\Delta P = 210 \text{ kPa} \quad \frac{\Delta P}{g} = 210 \text{ m}^2/\text{s}^2$$

$$\text{PIPE 1: } \frac{\Delta P}{g} = 2f_F \frac{L}{D} \frac{V^2}{2}$$

ASSUME FULLY TURBULENT - $f_F \approx 0.0055$

$$210 = 2(0.0055) \frac{150}{0.2} \frac{V^2}{2} - V = 5.045 \text{ m/s}$$

$$Re = \frac{0.2(5.045)}{0.995 \times 10^{-6}} = 1,014 \times 10^6 -$$

THIS CONFIRMS FULLY TURBULENT
 $V_1 = 5.045 \text{ m/s}$

Pipe 2: AGAIN ASSUME FULLY TURBULENT

$$f_F = 0.0045 \sim V_2 = 3.228 \text{ m/s}$$

13.27 CONTINUED -

$$Re_2 = \frac{0.06(3.22)}{0.995 \times 10^{-6}} = 2.173 \times 10^5$$

fin 13.1: REvised $f_F \approx 0.0049$

WITH THIS VALUE $V_2 = 3.094 \text{ m/s}$

$$Re = 2.083 \times 10^5 \quad f_F \approx 0.0049$$

$$\therefore V_2 = 3.049 \text{ m/s}$$

$$\dot{V} = 5.045 \left(\frac{\pi}{4}\right)(0.2)^2$$

$$+ 3.049 \left(\frac{\pi}{4}\right)(0.06)^2$$

$$= 0.1585 \text{ ft}^3/\text{s} + 0.0107 \text{ ft}^3/\text{s}$$

$$\overset{\circ}{V}_1 = 0.1585 \text{ ft}^3/\text{s} \quad \overset{\circ}{V}_2 = 0.0107 \text{ ft}^3/\text{s}$$

13.28 3 PIPES IN PARALLEL

Pipe	Length, m	Diameter, cm	Roughness, mm
1	100	8	0.240
2	150	6	0.120
3	80	4	0.200

$$\text{TOTAL } h_L = 24 \text{ m} = 235.4 \text{ m}^2/\text{s}^2$$

$$\text{PIPE 1: } 2f_F \frac{L}{D} V_1^2 = 2f_F \frac{100}{0.08} V_1^2$$

$$\sim f_F V_1^2 = 0.0824$$

$$Re_1 = \frac{0.08 V_1}{0.995 \times 10^{-6}} = 8.04 \times 10^5 V_1$$

TRIPLE $\frac{1}{4}$ ERROR -

$$\epsilon_D = 0.24/100 = 0.0024$$

ASSUME FULLY TURBULENT -

$$f_F = 0.0063 - V_1 = 3.617 \text{ m/s}$$

$$Re = \frac{(0.08)(3.617)}{0.995 \times 10^{-6}} = 2.91 \times 10^5$$

$$f_F = 0.0062 -$$

$$\text{REVISED VALUE: } V_1 = 3.65 \text{ m/s}$$

13.28 CONTINUED

$$\text{PIPE 2: } 235.4 = 2f_F \frac{150}{0.06} V_2^2$$

$$f_F V_2^2 = 0.0412$$

$$Re_2 = \frac{(0.06) V_2}{0.995 \times 10^{-6}} = 6.03 \times 10^4 V_2$$

$$\epsilon_D = 0.002 - \text{ASSUME } f_F = 0.006$$

$$\therefore V_2 = 2.62 \text{ m/s} \quad Re = 1.58 \times 10^5$$

$$\sim f_F = 0.0061$$

$$\text{REVISED VALUE FOR } V_2: \quad V_2 = 2.60 \text{ m/s}$$

$$\text{PIPE 3: } 235.4 = 2f_F \frac{80}{0.04} V_3^2$$

$$f_F V_3^2 = 0.059$$

$$Re = \frac{(0.04) V_3}{0.995 \times 10^{-6}} = 4.02 \times 10^4 V_3$$

$$\epsilon_D = 0.005 - \text{ASSUME } f_F = 0.008$$

$$V_3 = 2.716 \text{ m/s} \quad Re = 1.092 \times 10^5$$

$$f_F = 0.0077$$

$$\sim \text{REVISED VALUE: } \quad V_3 = 2.77 \text{ m/s}$$

TOTAL SYSTEM FLOW RATE:

$$\dot{V} = 3.65 \left(\frac{\pi}{4}\right)(0.08)^2 + (2.60) \left(\frac{\pi}{4}\right)(0.06)^2$$

$$+ 2.77 \left(\frac{\pi}{4}\right)(0.04)^2$$

$$= 0.0292 \text{ ft}^3/\text{s}$$

CHAPTER 14

14.1 CENTRIFUGAL PUMP:

$$\begin{aligned}\dot{V} &= 0,2 \text{ m}^3/\text{s} & \omega &= 850 \text{ rpm} \\ r_2 &= 0,225 \text{ m} & \rho &= 1000 \text{ kg/m}^3 \\ L &= 0,05 \text{ m} \\ \beta_2 &= 24^\circ\end{aligned}$$

TORQUE = Eqn. 14.9

$$M_2 = 8\dot{V}r_2 \left[r_2\omega - \frac{\dot{V}}{2\pi r_2 L} \cot\beta_2 \right]$$

$$\sim$$

$$\omega = 850 \left(\frac{2\pi}{60} \right) = 89,0 \text{ rad/s}$$

$$\sim$$

$$M_2 = (1000)(0,2)(0,225) \times$$

$$\left[(0,225)(89) - \frac{0,2 \cancel{\text{rad}} 24}{2\pi(0,225)(0,05)} \right]$$

$$= 615 \text{ N.m} \quad \text{a)}$$

$$\dot{W} = M_2 \omega = 615(89)$$

$$= 54,75 \text{ kW} \quad \text{a)}$$

$$\left. \frac{\Delta P}{g} \right|_{\max} = - \frac{\dot{W}}{\dot{V}} = - \frac{\dot{W}}{8\dot{V}}$$

$$\Delta P_{\max} = - \frac{54,75 \times 10^3 \text{ N.m/s}}{0,2 \text{ m}^3/\text{s}}$$

$$= - 274 \text{ kPa} \quad \text{b)}$$

14.2 CENTRIFUGAL PUMP:

$$\begin{aligned}\rho &= 680 \text{ kg/m}^3 & r_1 &= 0,075 \text{ m} \\ L &= 0,09 \text{ m} & r_2 &= 0,114 \text{ m} \\ \beta_1 &= 25^\circ & \beta_2 &= 40^\circ \\ \omega &= (1200) \left(\frac{2\pi}{60} \right) = 125,7 \text{ rad/s}\end{aligned}$$

14.2 CONTINUED

$$\begin{aligned}\dot{V} &= 2\pi r_1^2 L \omega \tan\beta_1 \\ &= 2\pi(0,075)^2(0,09)(125,7) \tan 25^\circ \\ &= 0,186 \text{ m}^3/\text{s} \quad \text{a)}\end{aligned}$$

$$\begin{aligned}\dot{W} &= M_2 \omega = 8\dot{V}r_2\omega \left[r_2\omega - \frac{\dot{V} \cot\beta_2}{2\pi r_2 L} \right] \\ &= (680)(0,186)(0,14)(125,7) \times \\ &\quad \left[(0,14)(125,7) - \frac{0,186 \cancel{\text{rad}} 40^\circ}{2\pi(0,14)(0,09)} \right] \\ &= 32,94 \text{ kW} \quad \text{b)}\end{aligned}$$

$$\begin{aligned}\left. \frac{\Delta P}{g} \right|_{\max} &= \frac{\dot{W}}{8g\dot{V}} \\ &= \frac{32,94 \times 10^3}{680(9,81)(0,186)} \\ &= 26,5 \text{ m} \quad \text{c)}\end{aligned}$$

14.3 CENTRIFUGAL PUMP -

$$r_2 = 0,21 \text{ m} \quad L = 0,05 \text{ m} \quad \beta_2 = 33^\circ$$

$$\omega = 1200 \left(\frac{2\pi}{60} \right) = 125,7 \text{ rad/s}$$

$$\frac{\Delta P}{g} = 52 \text{ m H}_2\text{O}$$

$$\begin{aligned}\dot{W} &= 8\dot{V}r_2\omega \left[r_2\omega - \frac{\dot{V} \cot\beta_2}{2\pi r_2 L} \right] \\ &= \frac{\dot{m} \Delta P}{g} = \dot{V} \Delta P\end{aligned}$$

EQUATION:

$$\Delta P = 8r_2\omega \left[r_2\omega - \frac{\dot{V} \cot\beta_2}{2\pi r_2 L} \right]$$

14.3 CONTINUED

$$\begin{aligned}\Delta P &= 52(1000)(9.81) = 490 \text{ kPa} \\ &= (1000)(0.21)(125.7) \times \\ &\quad \left[(0.21)(125.7) - \frac{\dot{V} \cot 33^\circ}{2\pi(0.21)(0.05)} \right] \\ &= 26400 [26.4 - 23.34 \dot{V}]\end{aligned}$$

EQUATING:

$$\begin{aligned}18.56 &= 26.4 - 23.34 \dot{V} \\ \dot{V} &= 0.336 \text{ m}^3/\text{s} \quad a)\end{aligned}$$

$$\begin{aligned}\dot{W} &= \dot{V} \Delta P \\ &= 0.336 (490 \times 10^3) \\ &= \underline{164.6 \text{ kW}} \quad b)\end{aligned}$$

14.4

Pump DEPICTED

$$\begin{aligned}\omega &= 1020 \text{ rpm} \\ &= 106.8 \text{ rad/s}\end{aligned}$$

$$\begin{aligned}\dot{W} &= 8\dot{V}r_2\omega \left[r_2\omega - \frac{\dot{V} \cot \beta_2}{2\pi r_2 L} \right] \\ &= (1000)(0.0071)(0.14)(106.8) \times \\ &\quad \left[(0.14)(106.8) - \frac{0.0071 \cot 55^\circ}{2\pi(0.14)(0.0185)} \right] \\ &= 1555 \text{ W} = \underline{1.555 \text{ kN}}\end{aligned}$$

14.5 CENTRIFUGAL PUMP -

$$\begin{aligned}\rho &= 1000 \text{ kg/m}^3 & \dot{V} &= 0.018 \text{ m}^3/\text{s} \\ \dot{W} &= 4.5 \text{ kW} & \eta &= 63\%\end{aligned}$$

$$\eta = \frac{\dot{m} \Delta P}{\dot{W}}$$

$$\Delta P = \frac{\eta \dot{W}}{\dot{m}} = \eta \frac{\dot{W}}{\dot{V}}$$

$$= \frac{0.63 (4500)}{0.018} = \underline{157.5 \text{ kPa}}$$

$$\frac{\Delta P}{g} = \frac{157500}{(1000)(9.81)} = \underline{16.05 \text{ m H}_2\text{O}}$$

14.6

Pump DEPICTED

$$\begin{aligned}\dot{V} &= 0.032 \text{ m}^3/\text{s} \\ \rho &= 680 \text{ kg/m}^3 \\ \omega &= 1650 \text{ rpm}\end{aligned}$$

$$= 172.8 \text{ rad/s}$$

$$\dot{W} = 8\dot{V}r_2\omega \left[r_2\omega - \frac{\dot{V} \cot \beta_2}{2\pi r_2 L} \right]$$

$$= (680)(0.032)(0.15)(172.8) \times \\ \left[(0.15)(172.8) - \frac{(0.032) \cot 35^\circ}{2\pi(0.15)(0.0185)} \right]$$

$$= 14.2 \text{ kW} = \underline{19.0 \text{ hp}} \quad a)$$

$$\Delta P = \frac{\dot{W}}{\dot{V}} = \frac{14200}{0.032} = 444 \text{ kPa}$$

$$= \frac{444000}{(680)(9.81)} = \underline{66.5 \text{ m}} \quad b)$$

14.6 CONTINUOUS

$$\dot{V} = 2\pi r_1^2 L \omega \tan \beta_1$$

$$\tan \beta_1 = \frac{0.032}{2\pi(0.10)^2(0.005)(172.8)} = 0.0453$$

$$\underline{\beta_1 = 2.6^\circ} \quad \text{c)}$$

14.7 CENTRIFUGAL PUMP

$$\begin{aligned} \rho &= 1000 \text{ kg/m}^3 & r_1 &= 0.12 \text{ m} \\ \beta_1 &= 32^\circ & r_2 &= 0.20 \text{ m} \\ \beta_2 &= 20^\circ & L &= 0.042 \text{ m} \\ \omega &= 1500 \text{ rpm} = 157.1 \text{ rad/s} \end{aligned}$$

$$\begin{aligned} \dot{V} &= 2\pi r_1^2 L \omega \tan \beta_1 \\ &= 2\pi (0.12)^2 (0.042) (157.1) \tan 32^\circ \\ &= \underline{0.373 \text{ m}^3/\text{s}} \quad (\text{a}) \end{aligned}$$

$$\begin{aligned} \dot{W} &= \dot{V} \bar{r}_2 \omega \left[\bar{r}_2 w - \frac{\dot{V} \cot \beta_2}{2\pi \bar{r}_2 L} \right] \\ &= (1000)(0.373)(0.2)(157.1) \times \\ &\quad \left[(0.2)(157.1) - \frac{0.373 \cot 20^\circ}{2\pi(0.2)(0.042)} \right] \\ &= 140.7 \text{ kW} = \underline{189 \text{ HP}} \quad (\text{b}) \end{aligned}$$

$$\Delta p = \frac{\dot{W}}{\dot{V}} = \frac{140.7}{0.373} = 377 \text{ kPa}$$

$$\frac{\Delta p}{\rho g} = \frac{377 \times 10^3}{(1000)(9.81)} = \underline{38.5 \text{ m H}_2\text{O}}$$

14.8 $\text{H}_2\text{O} @ 15^\circ\text{C}$

$$\rho = 999 \text{ kg/m}^3$$

$$D = 0.45 \text{ m}$$

$$\omega = 1600 \left(\frac{2\pi}{60} \right) = 167.6 \text{ rad/s}$$

@ η_{MAX}

$$C_Q \approx 0.012$$

$$C_H \approx 0.0515$$

$$C_P \approx 0.0068$$

$$\eta \approx 0.89$$

$$C_H = \frac{g h}{h^2 D^2} \sim$$

$$h = \frac{(0.0515)(167.6)^2 (0.45)^2}{9.81} = \underline{29.9 \text{ m}} \quad (\text{a})$$

$$C_Q = \frac{\dot{V}}{\rho D^3}$$

$$\dot{V} = 0.012 (167.6) (0.45)^3 = \underline{0.183 \text{ m}^3/\text{s}} \quad (\text{b})$$

$$\Delta p = \rho g h = (999)(9.81)(29.9) = \underline{293 \text{ kPa}} \quad (\text{c})$$

$$C_P = \frac{\dot{W}}{8 \dot{V}^3 \rho^2}$$

$$\begin{aligned} \dot{W} &= (0.0068)(999)(167.6)^3 (0.45)^5 \\ &= 587 \text{ kW} \end{aligned}$$

$$BHP = \frac{587 \times 10^3}{0.89} = 659.6 \text{ kW}$$

$$= \underline{884 \text{ HP}} \quad (\text{d})$$

14.9 CENTRIFUGAL PUMP WITH SAME CHARACTERISTICS AS IN PROB 14.8

$$\dot{V} = 0.2 \text{ m}^3/\text{s}$$

$$\omega = 1400 \left(\frac{2\pi}{60} \right) = 146.6 \text{ rad/s}$$

$$\rho = 1000 \text{ kg/m}^3$$

14.9 CONTINUED -

$$\text{AT } \eta_{\text{MAX}}: C_Q \approx 0.012$$

$$C_H \approx 0.0515$$

$$C_P \approx 0.0068$$

$$C_Q = \frac{\dot{V}}{nD^3} \quad D^3 = \frac{0.2}{(146.6)(0.012)}$$

$$D = 0.485 \text{ m} \quad (\text{a})$$

$$C_H = \frac{\dot{g}h}{n^2 D^2} \quad h = \frac{(0.0515)(146.6)^2 (0.0068)^2}{9.81}$$

$$= 26.5 \text{ m}$$

$$P_{\text{MAX}} + \dot{g}h = (1000)(9.81)(26.5)$$

$$= 260 \text{ kPa} \quad (\text{b})$$

14.10 SAME PUMP FAMILY AS IN PROB 14.8 BUT:

$$D = 0.4 \text{ m}$$

$$\omega = 2200 \left(\frac{2\pi}{60} \right) = 230.4 \text{ Rad/s}$$

$$\rho = 999 \text{ kg/m}^3$$

$$\textcircled{a} \quad \eta_{\text{MAX}} \approx 0.89$$

$$C_Q \approx 0.012$$

$$C_H \approx 0.0515$$

$$C_P \approx 0.0068$$

$$C_H = \frac{\dot{g}h}{n^2 D^2}$$

$$h = \frac{(0.0515)(230.4)^2 (0.4)^2}{9.81}$$

$$= 44.6 \text{ m H}_2\text{O} \quad (\text{a})$$

14.10 CONTINUED

$$C_Q = \frac{\dot{V}}{nD^3} \quad \dot{V} = (0.012)(230.4)(0.4)^3$$

$$= 0.177 \text{ m}^3/\text{s} \quad (\text{b})$$

$$\Delta P = \dot{g}h = (999)(9.81)(44.6)$$

$$= 437 \text{ kPa} \quad (\text{c})$$

$$C_P = \frac{\dot{W}}{\dot{g}n^3 D^5}$$

$$\dot{W} = (0.0068)(999)(230.4)^3 (0.4)^5$$

$$= 850.8 \text{ kW}$$

$$BHP = \frac{850.8}{(0.89)(0.746)} = 1280 \text{ Bhp} \quad (\text{d})$$

14.11 SAME PUMP FAMILY AS IN PROB 14.8

$$D = 0.35 \text{ m} \quad \omega = 2400 \left(\frac{2\pi}{60} \right) = 251.3 \text{ rad/s}$$

$$\rho = 999 \text{ kg/m}^3$$

$$\eta_{\text{MAX}} = 0.89$$

$$C_Q \approx 0.012$$

$$C_H \approx 0.0515$$

$$C_P \approx 0.0068$$

$$C_H = \frac{\dot{g}h}{n^2 D^2} \quad h = \frac{(0.0515)(251.3)^2 (0.35)^2}{9.81}$$

$$= 40.61 \text{ m H}_2\text{O} \quad (\text{a})$$

$$C_Q = \frac{\dot{V}}{nD^3} \quad \dot{V} = (0.012)(251.3)(0.35)^3$$

$$= 0.129 \text{ m}^3/\text{s} \quad (\text{b})$$

$$\Delta P = (999)(9.81)(44.6)$$

$$= 437 \text{ kPa} \quad (\text{c})$$

14.11 CONTINUED -

$$C_p = \frac{\dot{W}}{g n^3 D^5}$$

$$\dot{W} = (0.0068)(299)(251.3)^3(0.35)$$

$$= 566 \text{ kW}$$

$$BHP = \frac{566}{(0.89)(0.746)} = 853 \text{ HP} \quad (\text{a})$$

14.12 - SAME PUMP FAMILY AS
IN PROB 14.8

$$\dot{V} = 0.30 \text{ m}^3/\text{s} \quad n = 1800 \left(\frac{2\pi}{60}\right) = 188.5 \text{ r/s}$$

$$@ \eta_{MAX} = 0.89 \quad C_Q \approx 0.12$$

$$C_H \approx 0.0515$$

$$C_p \approx 0.0068$$

$$C_Q = \frac{\dot{V}}{n D^3} \quad D = \left[\frac{0.30}{(188.5)(0.12)} \right]^{1/3}$$

$$D = 0.430 \text{ m} \quad (\text{a})$$

$$C_H = \frac{g h}{n^2 D^2}$$

$$h = \frac{(0.0515)(188.5)^2}{9.81}(0.43)^2$$

$$= 34.49 \text{ m H}_2\text{O}$$

$$\Delta P = \rho g h = (1000)(9.81)(34.49) \\ = 338 \text{ kPa} \quad (\text{b})$$

14.13 - SAME PUMP FAMILY AS IN
PROB 14.8

$$\dot{V} = 0.201 \text{ m}^3/\text{s} \quad \omega = (1800)(2\pi/60) \\ = 188.5 \text{ r/s}$$

14.13 - CONTINUED

$$@ \eta_{MAX} = 0.89$$

$$C_Q \approx 0.12$$

$$C_H \approx 0.0515$$

$$C_p \approx 0.0068$$

$$C_Q = \frac{\dot{V}}{n D^3} \quad D = \left[\frac{0.201}{(188.5)(0.12)} \right]^{1/3}$$

$$= 0.207 \text{ m} \quad (\text{a})$$

$$C_H = \frac{g h}{n^2 D^2} \quad h = \frac{(0.0515)(188.5)^2}{9.81}(0.207)^2 \\ = 7.99 \text{ m H}_2\text{O}$$

$$\Delta P = \rho g h = (1000)(9.81)(7.99)$$

$$= 78.4 \text{ kPa} \quad (\text{b})$$

14.14

$$@ \eta_{MAX} \approx 0.88$$

$$C_Q \approx 0.12$$

$$C_H \approx 5.3$$

$$h = 90 \text{ m H}_2\text{O}$$

$$C_H = \frac{g h}{n^2 D^2} = 5.3$$

$$\omega^2 = \frac{g h}{C_H D}$$

$$= \frac{9.81(90)}{5.3(0.39)^2}$$

$$\omega = 33.1 \text{ rad/s} = 316 \text{ rpm} \quad (\text{a})$$

$$C_Q = 0.12 = \frac{\dot{V}}{n D^3}$$

$$\dot{V} = (0.12)(33.1)(0.39)^3 = 0.236 \text{ m}^3/\text{s} \quad (\text{b})$$

14.15 SAME PUMP FAMILY AS IN 14.14

$$\text{New Pump: } n = 400 \text{ rpm} \\ = 41.89 \text{ rad/s}$$

$$D_{\text{NEW}} = 6 \text{ D}_{\text{OLD}}$$

$$\text{At } \eta_{\text{MAX}} = C_Q \approx 0.12 = \dot{V}/nD^3 \\ C_H \approx 5.3 = gh/n^2 D^2 \\ C_P \approx 0.70 = P/gn^3 D^5$$

$$P_i = 0.70 (1000)(37.70)^3 (0.371)^5 \\ = 263.6 \text{ kW}$$

$$P_{\text{NEW}} = P_i \left(\frac{\omega_2}{\omega_1} \right)^3 \left(\frac{D_2}{D_1} \right)^5 \\ = 263.6 \left(\frac{400}{360} \right)^3 (6)^5 \\ = \underline{281 \text{ MW}} \quad (\text{a})$$

$$h_1 = \frac{5.3 (37.70)^2 (0.371)^2}{g_{\text{SI}}} = 105.7 \text{ m}$$

$$h_2 = h_1 \left(\frac{\omega_2}{\omega_1} \right)^2 \left(\frac{D_2}{D_1} \right)^2 \\ = 105.7 \left(\frac{400}{360} \right)^2 (6)^2 \\ = \underline{4.7 \text{ km}} \quad (\text{b})$$

$$\dot{V}_1 = 0.12 n_1 D_1^3 \\ = 0.12 (37.70)(0.371)^3 \\ = 0.231 \text{ m}^3/\text{s}$$

$$\dot{V}_2 = \dot{V}_1 \left(\frac{n_2}{n_1} \right) \left(\frac{D_2}{D_1} \right)^3 \\ = 0.231 \left(\frac{400}{360} \right) (6)^3 \\ = \underline{55.4 \text{ m}^3/\text{s}} \quad (\text{c})$$

14.16 SAME PUMP FAMILY AS IN Prob 14.14

$$\text{New } n = 1000 \text{ rpm}$$

$$C_Q \approx 0.12 = \dot{V}/nD^3 \quad C_P \approx 0.7 = P/gn^3 D^5 \\ \dot{V} = 0.12 \left(1000 \times \frac{2\pi}{60} \right) (0.371)^3 \\ = \underline{0.642 \text{ m}^3/\text{s}} \quad (\text{a})$$

$$P = 0.7 (1000) \left(1000 \times \frac{2\pi}{60} \right)^3 (0.371)^5 \\ = \underline{5.65 \text{ MW}} \quad (\text{b})$$

14.17 SAME PUMP FAMILY AS IN Prob 14.14

$$\text{New } \omega = 800 \text{ rpm} = 83.8 \text{ rad/s}$$

$$h = 410 \text{ m}$$

$$C_H = \frac{gh}{n^2 D^2} = \frac{9.81 (410)}{(83.8)^2 (0.371)^2} = 4.161$$

AT THIS VALUE OF C_H , $C_Q \approx 0.16$

$$C_Q = 0.16 = \dot{V}/nD^3 \\ \dot{V} = 0.16 (83.8)(0.371)^3 \\ = \underline{0.685 \text{ m}^3/\text{s}}$$

14.18 SAME PUMP FAMILY AS Prob 14.14

$$D_2 = 3D_1, \quad n_2 = 0.5n_1$$

$$\textcircled{a} \quad \eta_{\text{MAX}} \quad C_Q \approx 0.12 = \dot{V}/nD^3 \\ C_H \approx 5.3 = gh/n^2 D^2$$

$$\frac{\dot{V}_2}{\dot{V}_1} = \left(\frac{n_2}{n_1} \right) \left(\frac{D_2}{D_1} \right)^3 = \frac{1}{2} (3)^2 = 13.5$$

$$\frac{h_2}{h_1} = \left(\frac{n_2}{n_1} \right)^2 \left(\frac{D_2}{D_1} \right)^2 = \left(\frac{1}{2} \right)^2 (3)^2 = 2.25$$

14.18 (CONTINUED)

$$\dot{V}_1 = 0.12(37.7)(0.371)^3 = 0.231 \text{ m}^3/\text{s}$$

$$\dot{V}_2 = 0.231(13.5) = \underline{3.12 \text{ m}^3/\text{s}}$$

$$h_1 = \frac{5.3(37.7)^2(0.371)^2}{981} = 105.7 \text{ m}$$

$$h_2 = (105.7)(2.25) = \underline{238 \text{ m}}$$

14.19 Pump Performance AS IN

$$\text{PROB 14.14} - \Delta y = 95 \text{ m}$$

$$H_2O \text{ PUMP} - D = 0.28 \text{ m}$$

$$L = 550 \text{ m}$$

$$e = 0.457 \times 10^{-4} \text{ m}$$

$$\epsilon/D = 0.000163$$

BETWEEN FON:

$$-\dot{W}_s = \dot{m} \left[\frac{\Delta P}{\rho g} + \frac{\Delta V^2}{2} + g \Delta y + h_f \right]$$

$$h_f = 2 f_f \frac{L}{D} \frac{V^2}{2}$$

- ASSUME FLOW TURBULENT

$$f_f \approx 0.0033$$

$$h_f = 2(0.0033) \frac{(550)}{0.28} \frac{V^2}{2}$$

$$= 12.96 V^2$$

FLAW EXPRESSION BECOMES -

$$-\dot{W}_s = \dot{m} [g_0 g + 12.96 V^2]$$

SYSTEM HEAD -

$$-\frac{\dot{W}_s}{mg} = h = 90 + 1.32 V^2 \quad (1)$$

THIS MUST MATCH PUMP PERFORMANCE -

14.19 (CONTINUED)

SYSTEM PERFORMANCE - EQUATION (1)

\dot{V}	h
0.10	93.48
0.15	95.93
0.20	100.54
0.25	106.5

$$\dot{V} = \frac{\pi}{4} D^2 U = 0.0616 U$$

SYSTEM & PUMP PERFORMANCE INTERSECT
AT $\dot{V} \approx 0.21 \text{ m}^3/\text{s}$ - $U = 3.41$

$$Re = \frac{(0.28)(3.41)}{0.995 \times 10^{-4}} = 9.59 \times 10^5$$

$f_f = 0.0035$ ~ CLOSE ENOUGH

SO: WITHIN ACCURACY OF READING PLOTS

$$\dot{V} = 0.21 \text{ m}^3/\text{s}$$

14.20

FOR STEEL

$$e = 0.457 \times 10^{-4} \text{ m}$$

$$\epsilon/D = 0.000127$$

FOR FLOW-TURBULENT

$$f_f \approx 0.0031$$

$$\text{ENERGY EQUATION: } -\dot{W}_s = \dot{m} \left[\frac{\Delta P}{\rho g} + \frac{\Delta V^2}{2} + g \Delta y + h_f \right]$$

BETWEEN RESERVOIR SURFACE (1)
& DISCHARGE (2) -

$$\frac{\Delta P}{\rho g} = V_1^2 = 0$$

$$g \Delta y = 6.5 g$$

$$\frac{\Delta V^2}{2} = V^2/2$$

14.20 CONTINUED-

$$h_r = 2 f_f \frac{L}{D} V^2 + \sum K \frac{V^2}{2}$$

$$= 2(0.0031) \frac{99.5}{0.36} V^2 + \frac{V^2}{2}$$

$$= 2.21 V^2$$

ENTRANCE

ENERGY EQN NOW BECOMES:

$$\dot{W} = \dot{m} [0.5 V^2 + 6.5 g + 2.21 V^2]$$

$$-\frac{\dot{W}}{\dot{m} g} = h_{\text{SYST}} = 6.5 + 0.276 V^2 \quad (1)$$

SYSTEM PERFORMANCE - EQN (1)

$$V \quad h_{\text{SYST}}$$

0.20	7.27
0.25	7.71
0.30	8.24
0.35	8.81

PUMP & SYSTEM AREN'T WELL MATCHED - PUMP PERFORMANCE HEAD CURVE MUST BE EXTRAPOLATED

$$V \approx 0.33 \text{ m}^3/\text{s}$$

$$\dot{W} \approx 8.8 (1000)(0.33)(9.81)$$

$$= 28.5 \text{ kW}$$

14.21 SAME PUMP FAMILY AS IN PROB 14.14

$$\frac{h_2}{h_1} = \left(\frac{m_2}{m_1}\right)^2 \left(\frac{D_2}{D_1}\right)^2$$

$$h_2 = h_1 \left(\frac{900}{360}\right)^2 = 6.25 h_1$$

TOTAL MISMATCH

14.22.

PUMP
PERFORMANCE

	Capacity, $\text{m}^3/\text{s} \times 10^4$	Developed head, m	Efficiency, %
0	36.6	0	
10	35.9	19.1	
20	34.1	32.9	
30	31.2	41.6	
40	27.5	42.2	
50	23.3	39.7	

SYSTEM
CONFIGURATION

SYSTEM - INLET - $D = 0.06 \text{ m}$,
 $L = 8.5 \text{ m}$

DISCHARGE - $D = 0.06 \text{ m}$,
 $L = 60 \text{ m}$

STEEL - $\epsilon = 0.457 \times 10^{-4} \text{ m}$

$$\epsilon/D = 0.000762$$

MINOR LOSSES - 4 VALVES
4 ELBOWS
1 CONTRACTION

$K = 10$	$K = 0.3$	$K = 1.1$
----------	-----------	-----------

BETWEEN RESERVOIRS - (1) \leq (2)

$$\dot{W} = \dot{m} \left[\frac{\Delta P}{g} + \frac{\Delta V^2}{2} + g \Delta y + h_L \right]$$

$$\frac{\Delta P}{g} = \frac{\Delta V^2}{2} = 0$$

$$g \Delta y = 19 g \text{ m}^2/\text{s}^2$$

$$h_L = 2 f_f \frac{L}{D} V^2 + \sum K \frac{V^2}{2}$$

14.22 CONTINUED -

ASSUME FLOW IS FULLY TURBULENT

$$f_f \approx 0.0046$$

$$\sum K = 4(10) + 4(0.3) + 1 = 42.2$$

$$h_L = \left[2(0.0046) \frac{68.5}{0.06} + \frac{42.2}{2} \right] V^2$$

$$= 31.6 V^2$$

ENERGY EQUATION BECOMES:

$$-\frac{\dot{W}}{mg} = \Delta y + \frac{h_L}{g} = h$$

$$= 19 + 3.22 V^2$$

$$V \times 10^4 \quad h, m$$

20	20.61
30	22.63
40	25.45
50	29.07

INTERSECTION OCCURS AT

$$\dot{V} \approx 42 \times 10^{-4} \text{ m}^3/\text{s}$$

$$\text{AT } \dot{V} = 42 \times 10^{-4} \text{ m}^3/\text{s}$$

$$V = 1.485 \text{ m/s}$$

$$Re = \frac{(0.06)(1.485)}{0.985 \times 10^{-6}} = 8.957 \times 10^5$$

USING FIG 13.1 -

CONDITIONS ARE VERY CLOSE TO
FULLY TURBULENT FLOW -

INITIAL ASSUMPTION FOR f_f
WAS OK.

$$\dot{V} = 0.0042 \text{ m}^3/\text{s}$$

14.23 PUMP - $D = 0.25 \text{ m}$

$$N = 1000 \text{ rpm}$$

$$\dot{V} = 0.065 \text{ m}^3/\text{s}$$

$$U_{INLET} = 6.1 \text{ m/s}$$

$$H_2O @ 20^\circ C \sim P_v = 2.34 \text{ kPa}$$

GRAVITATION OCCURS AT $P_i = 82.7 \text{ kPa}$

$$NPSH + \frac{P_v}{\rho g} = \frac{U_i^2}{2g} + \frac{P_i}{\rho g}$$

$$NPSH = \frac{U_i^2}{2g} + \frac{P_i - P_v}{\rho g}$$

$$= \frac{(6.1)^2}{2(9.81)} + \frac{(82.7 - 2.34)(10^3)}{1000(9.81)}$$

$$= 10.09 \text{ m H}_2\text{O}$$

14.24 - SAME PUMP AS DESCRIBED IN
PROB 14.23 -

NEW TEMP IS $80^\circ C$ ($P_v = 47.35 \text{ kPa}$)

$$NPSH = \frac{U_i^2}{2g} + \frac{P_i - P_v}{\rho g}$$

$$= \frac{(6.1)^2}{2(9.81)} + \frac{(82.7 - 47.35)(1000)}{1000(9.81)}$$

$$= 5.50 \text{ m H}_2\text{O}$$

CHANGE FROM $20^\circ C$ CASE IS

$$\Delta = 10.09 - 5.50 = 4.59 \text{ m}$$

14.25

Pump -

$$D = 0.18 \text{ m}$$

INLET AT $y = 3.8 \text{ m}$
ABOVE SUPPLY
RESERVOIR.

$$\dot{V} = 0.760 \text{ m}^3/\text{s}$$

BETWEEN RESERVOIR SURFACE &
PUMP INLET - $h_L = 1.8 \text{ m H}_2\text{O}$

ENERGY EQUATION:

$$NPSH = \frac{P_{atm} - P_v}{\rho g} - y_2 - h_L$$

$$\text{AT } 20^\circ\text{C } P_v = 2.34 \text{ kPa}$$

$$\frac{P_{atm} - P_v}{\rho g} = \frac{(101.3 - 2.34) \times 10^3}{(1000)(9.81)} = 10.09 \text{ m}$$

$$NPSH = 10.09 - 3.8 - 1.8 = 4.49 \text{ m H}_2\text{O}$$

from PERFORMANCE CURVE -

$$@ \dot{V} = 0.760 \text{ m}^3/\text{s}$$

$$NPSH \approx 3.9 \text{ m}$$

Cavitation Should NOT OCCUR

$$14.26 \quad \dot{V} = 220 \text{ m}^3/\text{s} = 3.487 \times 10^6 \text{ gpm}$$

$$h = 420 \text{ m} = 1318 \text{ ft}$$

$$N_S = \frac{(400)(3.487 \times 10^6)^{1/2}}{(1318)^{3/4}} = 3302$$

ACCORDING TO FIG 14.11

THIS IS PROBABLY A HIGH
CAPACITY CENTRIFUGAL PUMP

14.27 Pump To Deliver 60,000 gpm

With $h = 300 \text{ m}$ @ 2000 rpm.

$$N_S = \frac{(2000)(6 \times 10^6)^{1/2}}{(300/0.3048)^{3/4}} \approx 2790$$

USING FIG 14.11 - PUMP IS PROBABLY
A HIGH-CAPACITY CENTRIFUGAL
PUMP.

14.28 Axial Flow Pump - $N_S = 6.0$

$$N_S = \frac{C_H^{1/2}}{C_H^{3/4}} = \frac{\dot{V}^{1/2} w}{h^{3/4} g^{3/4}} \quad (1)$$

THIS RATIO IS (OBVIOUSLY) DIMENSIONLESS -

BY CONVERTING TO UNITS ON ABSCISSA
OF FIG 14.11 -THE RATIO OF N_S GIVEN BY (1)
TO THE VALUE ON FIG 14.11 IS
2733

- SO A VALUE OF 6 FOR EQUATION (1)
IS EQUIVALENT TO 6 (2733) = 1.64×10^4
ON ABSCISSA OF FIG 14.11.

$$1.64 \times 10^4 = \frac{n(2400)^{1/2}}{(18)^{3/4}}$$

$$n = 2925 \text{ rpm}$$

14.29 Pump @ 520 rpm

$$\dot{V} = 3.3 \text{ m}^3/\text{s}$$

$$h = 16 \text{ m}$$

$$\dot{V} = (3.3) \left(\frac{1}{0.3048} \right)^3 (7.48)(60)$$

$$= 52302 \text{ gpm}$$

$$h = (16) / 0.3048 = 42.65 \text{ ft}$$

$$N_S = \frac{(520)(5,23 \times 10^5)^{1/2}}{(42.65)^{3/4}}$$

$$= 22532$$

FIGURE 14.11: AXIAL FLOW

14.30 $n = 2400 \text{ rpm}$

$$\dot{V} = 3.2 \text{ m}^3/\text{s}$$

$$h = 21 \text{ m}$$

$$\dot{V} = 3.2 \left(\frac{1}{0.3048} \right)^3 (7.48)(60)$$

$$= 5,072 \times 10^4 \text{ gpm}$$

$$h = \frac{21}{0.3048} = 68.9 \text{ ft}$$

$$N_S = \frac{(5,072 \times 10^4)^{1/2} (2400)}{(68.9)^{3/4}}$$

$$= 22601$$

FIGURE 14.11 AXIAL FLOW

CHAPTER 15

15.1

$$q_f = -kA \frac{\Delta T}{dx}$$

$$q_f dx = -kA \Delta T$$

$$q_f \int_0^{15} \frac{dx}{(5 + \frac{x}{3})^2} = k \int_{300}^{600} dT$$

$$q_f \left[-\frac{3}{5 + \frac{x}{3}} \right]_0^{15} = -300 \text{ K}$$

$$q_f [0.6 - 0.3] = 300 (0.173 \text{ W/m}\cdot\text{K})$$

$$\underline{q_f = 1.73 \text{ W}}$$

15.2 SAME VALUE AS IN PREVIOUS PROBLEM EXCEPT HEAT FLOWS IN OPPOSITE DIRECTION

$$\underline{q_f = 1.73 \text{ W}}$$

15.3

$$q_f \int_0^{15} \frac{dx}{(5 + \frac{x}{3})^2} = -k_0 \int_{300}^{600} (1 + ft) dT$$

$$q_f \left[-\frac{3}{5 + \frac{x}{3}} \right]_0^{15} = k_0 \Delta T \left[1 + \frac{f}{2} (T_1 + T_2) \right]_{300}^{600}$$

$$q_f [0.3 \text{ cm}^{-1}] = [0.135 \text{ W/m}\cdot\text{K}] (300 \text{ K})$$

$$\times [1 + 1.95 \times 10^{-4}] (450)$$

$$\underline{q_f = 1.50 \text{ W}}$$

15.4

$$R_{BOLT} = \frac{L}{kA} = \frac{0.15}{(40)(\pi/4)(0.00905)^2} = 13.16 \text{ K/W}$$

NEGLECTING CHANGE IN CROSS-SECTIONAL AREA OF ASBESTOS:

$$R_{AB} = \frac{\Delta T}{q_f} = \frac{300}{1.73} = 173.4 \text{ K/W}$$

$$\frac{1}{R_{EQUIV}} = \frac{1}{13.16} + \frac{1}{173.4} = \frac{1}{12.23}$$

$$q_f = \frac{\Delta T}{R_{EQUIV}} = \underline{14.5 \text{ W}}$$

15.5

$$q_f = \frac{kA}{L} \Delta T$$

$$\Delta T = \frac{4000 \text{ W} (0.02 \text{ W})}{(0.12 \text{ W/m}\cdot\text{K})(2.97 \text{ m}^2)} = 122.4 \text{ K}$$

$$T_c = 55 + 122.4 = \underline{177.4 \text{ C}}$$

15.6 $q_f = \frac{\Delta T}{\sum R}$

$$\sum R = \frac{L}{kA} + \frac{1}{hA}$$

$$= \frac{0.02}{(0.12)(2.97)} + \frac{1}{(284)(2.97)}$$

$$= 4.246 \times 10^{-2} \text{ K/W}$$

$$\Delta T_{overall} = (4000)(4.246 \times 10^{-2}) = 169.9 \text{ K}$$

$$T_{HOT} = 30 + 169.9 = \underline{199.9 \text{ C}}$$

$$T_{surf} = 30 + \frac{4000}{(284)(2.97)} = \underline{77.4 \text{ C}}$$

15.7

$$\begin{aligned} q_{\max} &= -k \frac{\Delta T}{L} \Big|_{\max} \\ &= (1.35 \text{ W/mK})(15 \text{ K/cm})(100 \text{ cm/m}) \\ &= 2025 \text{ W/m}^2 = \Delta T/R \end{aligned}$$

$$\Delta T = 2025 \left(\frac{1}{s}\right) = 405 \text{ K}$$

$$T_{\min} = 850 - 405 = \underline{445 \text{ K}}$$

$$\begin{aligned} 15.8 \quad q_{\max} (\text{from previous prob}) &= 2025 \text{ W/m}^2 \\ &= \frac{\Delta T}{R} + \sigma (T_{\text{surf}}^4 - T_A^4) \\ &= \frac{850 - T}{1/s} + 5.676 \left[8.5^4 - \left(\frac{T}{100} \right)^4 \right] \end{aligned}$$

$$\text{By trial \& error: } T = \underline{836 \text{ K}}$$

15.9

$$\begin{aligned} \frac{q}{A} &= \frac{k \Delta T}{L} \quad \text{or} \quad L = \frac{k \Delta T}{q/A} \\ L &= \frac{(0.10 \text{ Btu}/\text{hr ft F})((100 \text{ F})}{900 \text{ Btu}/\text{hr ft}^2} \\ &= \underline{0.122 \text{ ft}} = \underline{1.47 \text{ in.}} \end{aligned}$$

15.10 ADDING 3 IN. OF KAOLIN:

$$\begin{aligned} \frac{q}{A} &= \frac{\Delta T}{\sum R} = \frac{1750}{1.47/12 + 3/12} \\ &= \frac{1750}{0.10 + 0.007} = \underline{281 \text{ Btu}/\text{hr ft}^2} \quad (\text{a}) \end{aligned}$$

15.10 CONTINUED -

$$\frac{q}{A} = \frac{1600 - T_2}{1.47/12} = \frac{1600 - T_2}{0.10} = \frac{3/12}{0.07} = \frac{3/12}{0.07}$$

$$T_2 = 1254 \text{ F} \quad \leftarrow (\text{b})$$

15.11

$$R_{ss} = \frac{L}{k_{ss}} = \frac{1/48}{10} = 0.0028 \quad \leftarrow (\text{a})$$

$$R_c = \frac{L}{k_c} = \frac{3/12}{0.025} = 10 \quad \leftarrow (\text{b})$$

$$R_p = \frac{L}{k_p} = \frac{1/24}{1.5} = 0.0278 \quad \leftarrow (\text{c})$$

$$q/A = \frac{\Delta T}{\sum R} = \frac{170}{10.03} = \underline{16.95 \text{ Btu/hr ft}^2}$$

$$\frac{1600 - T_2}{0.0028} = \frac{T_2 - T_3}{10} = \frac{T_3 - 80}{0.0278} = 16.95$$

$$T_2 = \underline{249.95 \text{ F}} \quad T_3 = \underline{80.47 \text{ F}} \quad (\text{d})$$

15.12

$$R_{ins} = \frac{1}{40} = 0.025 \text{ hr ft}^2 \text{ F/Btu}$$

$$R_{out} = 1/s = 0.10 \quad " \quad (\text{a})$$

$$\frac{q}{A} = \frac{\Delta T}{\sum R} = \frac{180}{10.225} = 17.6 \text{ Btu}/\text{hr ft}^2$$

$$= \frac{T_3 - T_0}{0.0278 + 0.1} \quad T_3 = 74.0 \text{ F} \quad (\text{b})$$

CONTROLLING RESISTANCE IS
THE CORK BOARD.

15.13

$$q_{\text{TOTAL}} = q_{\text{CONV}} + q_{\text{RAD}}$$

For BLACK BODY RADIATION TO SPACE (NONE INCOMING)

$$q_b = \frac{\pi}{4} \left(\frac{10}{12}\right)^2 \left[5(80) + 0.1714(6.2)^4 \right]$$

$$= 356 \text{ Btu/hr}$$

(a)

By CONVECTION: PERCENT = $\frac{61.2}{38.8}$

RADIATION

(b)

If SURROUNDINGS RADIATE @ 540 R

$$q_{\text{CONV}} = \frac{\pi}{4} \left(\frac{10}{12}\right)^2 (5)(80) = 218.2 \text{ Btu/hr}$$

$$q_{\text{RAD}} = \frac{\pi}{4} \left(\frac{10}{12}\right)^2 (0.1714) [6.2^4 - 5.4^4]$$

$$= 58.6 \text{ Btu/hr}$$

$$q = 276.8 \text{ Btu/hr}$$

$$\% \text{ CONV} = 78.8$$

$$\% \text{ RAD} = 21.2$$

15.14

$$800 \text{ W} = 1730 \text{ Btu/hr}$$

If ALL HEAT LEAVES TOP SURFACE

$$q = hA\Delta T + \sigma A e [T^4 - T_s^4]$$

$$\frac{1730}{A} = 5(T-40) + 0.1714\left(\frac{T}{100}\right)^4 - 5.4^4$$

By TRIAL & ERROR: $T = 1080 \text{ R}$
= 626 F

15.15

$$q = \frac{k}{L} \Delta T_w = h(T_s - T_v)$$

15.15 CONTINUED -

$$\Delta T_w = \frac{(18 \text{ W/m}\cdot\text{K})(75 \text{ K})}{1.3 \text{ W/m}\cdot\text{K}} (20 \text{ m})$$

$$= 207 \text{ K}$$

$$T_{\text{INSIDE}} = 100 + 207 = \underline{307 \text{ C}}$$

15.16

$$\frac{q}{A} = \frac{k}{L} \Delta T_w = h(T_s - T_v) + \sigma [T_s^4 - T_{\infty}^4]$$

$$\Delta T_w = \frac{0.2}{1.3} \left[18(75) + 5.676(3.73^4 - 2.98^4) \right]$$

$$= 308 \text{ K} \quad T_{\text{INSIDE}} = 408 \text{ C}$$

15.17

$$400 \text{ Btu/hr} = h(T_s - T_v) + \sigma [T_s^4 - T_{\infty}^4]$$

$$100 \text{ Btu} = 4(T-550) + 0.1714 \left[\left(\frac{T}{100}\right)^4 - 5.4^4 \right]$$

TRIAL & ERROR: $T = 570 \text{ R} = 110 \text{ F}$

15.18

AT TOP:

$$100 \text{ Btu} = q_{\text{RAD}} + q_{\text{CONV}} + q_{\text{COND}}$$

$$100 = 0.1714 \left[\left(\frac{T}{100}\right)^4 - 5.4^4 \right] + 4(T-550) + \frac{24.8}{1.4/12} (T - T_b)$$

AT BOTTOM:

$$\frac{24.8}{1.4/12} (T - T_b) = 3(T_b - T_v) \quad (2)$$

From (1)

$$8.05 \times 10^{-4} \left(\frac{T}{100}\right)^4 + 1.09T - T_b = 11.53$$

From (2)

$$T_b = 0.986T + 7.65$$

TRIAL & ERROR: $T = 559 \text{ R} = 99 \text{ F}$

15.18 (CONTINUED) -

WITH RADIATION FROM TOP

WITHOUT " "

$$\text{EQU ①: } T_B = 1.019T - 11.53$$

$$\text{② } T_B = 0.980T + 7.65$$

$$T = 582 \text{ K} = 122^\circ\text{F}$$

$$(15.19) A = 2[(0.3)(0.25) + (0.3)(0.5) + (0.25)(0.5)] \\ = 0.7 \text{ m}^2$$

$$q = \frac{kA}{L} \Delta T \quad L = \frac{kA \Delta T}{q}$$

$$L = \frac{(0.30 \text{ W/mK})(0.7 \text{ m})(43 \text{ K})}{400 \text{ W}}$$

$$= 0.0226 \text{ m} = 2.26 \text{ cm}$$

$$(15.20) A = 0.7 \text{ m}^2$$

$$q = \Delta T / \sum R$$

$$R_i = 1/h_i = \frac{1}{16(0.7)} = 8.93 \times 10^{-2} \text{ K/W}$$

$$R_{cond} = L/kA = \frac{L}{(0.30)(0.7)} = \frac{L}{0.21}$$

$$R_o = 1/h_o A = \frac{1}{32(0.7)} = 4.46 \times 10^{-2}$$

$$\sum R = 0.1340 + \frac{L}{0.21} = \frac{43 \text{ K}}{400 \text{ W}}$$

FOR THESE CONDITIONS - NO INSULATION IS NECESSARY & THE SYSTEM CANNOT TRANSFER 400 W.

15.20 (CONTINUED)

$$q = \frac{\Delta T}{\sum R} = \frac{43 \text{ K}}{0.1340} = 321 \text{ K}$$

EFFECTIVE WALL TEMP IS

$$q = h_i(0.7)\Delta T_i = h_o(0.7)\Delta T_o$$

$$\Delta T_i = \frac{321}{16(0.7)} = 28.6 \text{ K}$$

$$T_{wall} = 18.6^\circ\text{C}$$

(15.21)

$$q = \frac{\Delta T}{\sum R} \quad R_i = \frac{1}{(20)(1.83)(3.66)} = 7.46 \times 10^{-3}$$

$$R_{air} = \frac{0.0032}{(0.78)(1.83)(3.66)} = 6.125 \times 10^{-4}$$

$$R_o = \frac{0.008}{(0.0245)(1.83)(3.66)} = 0.0488$$

$$R_o = \frac{1}{(15)(1.83)(3.66)} = 9.95 \times 10^{-3}$$

$$\sum R = 0.06744$$

$$q = \frac{\Delta T}{\sum R} = \frac{45}{0.06744} = 667 \text{ W}$$

(15.22) FOR 1 PANE OF GLASS ONLY

$$\sum R = R_i + R_{air} + R_o$$

$$= 0.0180$$

$$q = \frac{\Delta T}{\sum R} = \frac{45}{0.0180} = 2500 \text{ W}$$

15.23

$$\frac{q}{A} = -k \frac{dT}{dx} = k \frac{\Delta T}{\Delta x} = \frac{\Delta T}{R}, R = \frac{\Delta x}{k}$$

$$\frac{q}{A} = \frac{75 - 30}{0.38 + \frac{1/24}{0.028} + \frac{29/96}{0.05} + \frac{1/48}{0.012}}$$

$$= \frac{45}{0.876 + 1.49 + 2.02 + 0.174}$$

$$= \underline{1.98 \text{ BTU/HR-FT}^2} \quad (a)$$

$$R_{AIR} = \frac{\Delta x}{k} = \frac{1}{0.876} = 0.555$$

$$\sum R = 0.876 + 1.49 + 0.555 + 0.174$$

$$= 3.095 \quad (b)$$

$$\frac{q}{A} = \frac{45}{3.095} = \underline{14.54 \text{ BTU/HR-FT}^2}$$

$$R_{GLASS WOOL} = \frac{29/96}{0.025} = 12.1$$

$$\sum R = 14.64$$

$$\frac{q}{A} = \frac{45}{14.64} = \underline{3.07 \text{ BTU/HR-FT}^2} \quad (c)$$

15.24 $\frac{q}{A} = \Delta T / \sum R$

$$R_{INSIDE} = \frac{1}{h_i} = \frac{1}{1} \frac{\text{HR F-FT}^2}{\text{BTU}}$$

$$R_{OUTSIDE} = \frac{1}{h_o} = \frac{1}{2} "$$

15.24 CONTINUED

- PART a) $\sum R = 23.4 \quad \frac{q}{A} = 1.92 \text{ BTU/HR-FT}^2$
- b) $\sum R = 3.74 \quad \frac{q}{A} = 12.04 \text{ "}$
- c) $\sum R = 15.28 \quad \frac{q}{A} = 2.94 \text{ "}$

$$R_i = \frac{1}{A_i h_i} = \frac{1}{(5110)(1)} = 1.97 \times 10^{-4}$$

$$R_0 = \frac{1}{A_0 h_0} = \frac{1}{(45)(1)} = 0.22$$

$$R_1 = \frac{\Delta x}{k_A} = \frac{0.106}{(1.13)(1)} = 0.0938$$

$$R_2 = \frac{0.00635}{42.9} = 1.48 \times 10^{-4}$$

$$\sum R = 0.1161$$

$$q = \frac{1340 - 295}{0.1161} = 9000 \text{ W}$$

$$q_{000} = \frac{1340 - T_1}{R_i} = \frac{T_1 - T_2}{R_1} = \frac{T_2 - T_3}{R_2}$$

$$= \frac{T_3 - 295}{R_0}$$

$$T_1 = 1338 \text{ K}, T_2 = 494 \text{ K}, T_3 = 493 \text{ K}$$

15.26

From previous problem

$$R_i + R_0 + R_1 + R_2 + R_{CELOTEX}$$

$$= 0.1161 + \frac{1}{0.0635}$$

$$= 0.1161 + 14.49 \text{ L}$$

15.26 CONTINUED

$$q_f = \frac{340 - 295}{0.022} = 2027 \text{ W}$$

$$2027 = \frac{340 - 295}{0.1161 + 14.49 L}$$

$$L = 0.0276 \text{ m}$$

15.27

$$\int \frac{q}{A} dr = \int k dT$$

$$q \int_{r_i}^{r_o} \frac{dr}{2\pi r L} = -0.08 \int_{100}^{300} (1 - 0.0003T) dT$$

$$q \frac{\ln r_o/r_i}{2\pi L} = 65.52$$

$$q = \frac{2\pi (65.52)}{\ln 4} = 297 \frac{\text{Btu}}{\text{HR}}$$

For UNIT LENGTH:

$$R_{ins} = \frac{1}{2\pi r_i h_i} = 0.0238$$

$$R_1 = \frac{\ln r_2/r_1}{2\pi k_1} = 0.00105$$

$$R_2 = \frac{\ln r_3/r_2}{2\pi k_2} = 0.115/k_2$$

$$R_3 = \frac{\ln r_4/r_3}{2\pi k_3} = 0.059/k_3$$

$$R_4 = \frac{1}{2\pi r_4 h_o} = 0.1296$$

15.28 CONTINUED

$$\sum R = 0.1545 + 0.115/k_2 + 0.059/k_3$$

CASE 1: k_2 for MAGNESIR

$$\sum R = 6.134$$

CASE 2: k_2 for GLASS WOOL

$$\sum R = 7.096$$

GLASS WOOL CASE IS BEST

$$q = \frac{\Delta T}{\sum R} = \frac{60}{7.096} = 8.47 \frac{\text{Btu}}{\text{HR-FT}}$$

$$q = \frac{847}{2\pi(1.95/2)} = 5.55 \frac{\text{Btu}}{\text{HR-FT}^2}$$

15.29 for BARE PIPE:

$$q = \pi D_i h \Delta T = \pi \left(\frac{1.315}{12}\right)(1.5)(310)$$

$$= 160 \frac{\text{Btu}}{\text{HR-FT}}$$

for INSULATED PIPE:

$$q_0 = \frac{T_s - T_p}{\frac{\ln D_2/D_1}{2\pi k} + \frac{1}{\pi D_2 h}}$$

$$\frac{\pi h}{2\pi k} \ln \frac{D_2}{D_1} + \frac{1}{D_2} = \frac{\pi h}{80} \Delta T$$

$$12.5 \pi h \frac{D_2}{0.1905} + \frac{1}{D_2} = 18.15$$

By TRIAL & ERROR: $D_2 = 0.382 \text{ FT}$

$$2t = D_2 - D_1 = 3.1265 \text{ IN}$$

$$t = 1.63 \text{ IN.}$$

15.30

FOR BARE PIPE, PER FOOT:

$$q = h A \Delta T = \frac{0.575}{(1.315/12)^4} \pi (1.315/2) (310)$$

$$= 106.7 \text{ Btu/hr}$$

WITH INSULATION - $q = 53.3 \text{ W}$

$$\frac{q}{r} = \frac{\Delta T}{\sum R_w}$$

$$53.3 = \frac{310}{\frac{\ln D_o/D_i}{2\pi k} + \frac{1}{\pi D_o h_o}}$$

$$53.3 = \frac{310}{\frac{\ln D_o/1.315}{2\pi (0.06)} + \frac{(D_o/12)^4}{0.575 \pi D_o/12}}$$

BY TRIAL & ERROR: $D_o = 9.22 \text{ IN}$

$$\text{INSULATION THICKNESS} = \frac{9.22 - 1.315}{2} = \underline{\underline{3.95 \text{ IN}}}$$

15.31

$$q_o = \frac{\Delta T}{\sum R}$$

WITHOUT INSULATION:

$$\sum R_w = \frac{1}{2\pi L} \left[\frac{\ln 137/12.5}{17.3} + \frac{1}{(12)(0.137)} \right]$$

$$= \frac{0.6136}{2\pi L} \text{ K/W}$$

WITH INSULATION:

$$\sum R_w = \frac{1}{2\pi L} \left[\frac{\ln 137/12.5}{17.3} + \frac{1}{12 r_o} + \frac{\ln r_o/13.7}{0.13} \right]$$

$$= \frac{1}{2\pi L} \left[5.299 \times 10^{-3} + \frac{1}{12 r_o} + \frac{\ln r_o/13.7}{0.13} \right]$$

$$\therefore q_w = q_{wo} / 4$$

$$\sum R_w = 4 \sum R_{wo} = 2.454 / 2\pi L$$

$$\therefore 5.299 \times 10^{-3} + \frac{1}{12 r_o} + \frac{\ln r_o/13.7}{0.13} = 2.454$$

15.31 (CONTINUED -

BY TRIAL & ERROR:

$$r_o = 0.177 \text{ m}$$

$$\text{INSULATION THICKNESS} = r_o - r_i$$

$$= 0.177 - 0.137 = \underline{\underline{0.04 \text{ m}}}$$

$$= \underline{\underline{4 \text{ cm}}}$$

CHAPTER 16

16.1 IN CYLINDRICAL COORDINATES: (a)

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} = 0 \quad \text{OR} \quad \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = 0$$

$$r \frac{\partial T}{\partial r} = C_1$$

$$T = C_1 \ln r + C_2$$

$$\text{B.C. } T_i = C_1 \ln r_i + C_2$$

$$T_o = C_1 \ln r_o + C_2$$

$$C_1 = -\frac{T_i - T_o}{\ln r_o / r_i} \quad C_2 = T_i - C_1 \ln r_i$$

$$T = T_i - (T_i - T_o) \frac{\ln r / r_i}{\ln r_o / r_i} \quad (b)$$

$$q = -kA \frac{\partial T}{\partial r} = -k(2\pi r L) \frac{\partial T}{\partial r}$$

$$= -2\pi k L C_1 = \frac{2\pi k L}{\ln r_o / r_i} (T_i - T_o) \quad (c)$$

$$16.2 \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) = 0 \quad (a)$$

$$r^2 \frac{\partial T}{\partial r} = C_1 \quad T = -\frac{C_1}{r} + C_2$$

$$\text{B.C. } T_i = -\frac{C_1}{r_i} + C_2$$

$$T_o = -\frac{C_1}{r_o} + C_2$$

$$C_1 = \frac{T_i - T_o}{1/r_o - 1/r_i} \quad C_2 = T_i + C_1 r_i$$

$$T = T_i - \frac{1/r - 1/r_i}{1/r_o - 1/r_i} (T_i - T_o) \leftarrow (b)$$

$$q = -k \left(4\pi r^2 \right) \frac{\partial T}{\partial r} = -4\pi k C_1$$

$$= \frac{4\pi k}{1/r_o - 1/r_i} (T_i - T_o) \leftarrow (c)$$

$$16.3 \frac{\partial^2 T}{\partial \theta^2} = 0 \quad (a)$$

$$T = C_1 \theta + C_2$$

$$\text{B.C. } T_o = C_2$$

$$T_{\pi} = C_1 \pi + C_2$$

$$C_1 = \frac{T_{\pi} - T_o}{\pi} \quad C_2 = T_o$$

$$T = T_o - \frac{\theta}{\pi} (T_o - T_{\pi}) \quad (b)$$

$$\int_0^{\theta} dq_{\theta} = -k \int_0^{\theta} A \frac{\partial T}{\partial r} dr$$

$$= -k(Ldr) \frac{\partial T}{\partial r} = -kL \frac{\partial T}{\partial r} dr$$

$$\int_0^{\theta} dq_{\theta} = -kL C_1 \int_{r_i}^{r_o} \frac{dr}{r}$$

$$q_{\theta} = -kLC_1 \ln \frac{r_o}{r_i}$$

$$= \frac{kL}{\pi} \ln \frac{r_o}{r_i} (T_o - T_{\pi}) \quad (c)$$

16.4 PROBLEM STATEMENT REQUIRES THAT WE DEMONSTRATE

$$\frac{S}{Dt} \frac{DU}{Dt} + \frac{S}{Dt} \frac{D}{Dt} (gy) + \vec{v} \cdot \vec{g} = S_C V \frac{DT}{DE}$$

$$\text{FOR } C_V \text{ CONSTANT: } \frac{S}{Dt} \frac{DU}{Dt} = S_C V \frac{DT}{DE} \quad (1)$$

$$\frac{S}{Dt} \frac{D}{Dt} (gy) = S \left[\frac{\partial}{\partial t} (gy) + V_x \frac{\partial}{\partial x} (gy) + V_y \frac{\partial}{\partial y} (gy) + V_z \frac{\partial}{\partial z} (gy) \right]$$

$$= S g V_y \quad (2)$$

$$\vec{V} \cdot \vec{g} = \vec{V} \cdot g \vec{e}_y = -S V_y g \quad (3)$$

SUBSTITUTING (1), (2), & (3)

THE DESIRED RESULT IS OBTAINED

16.5 EQUATION (16-7) WITH CONSTANT k : 16.5 (cont.) - By continuity $\frac{1}{S} \frac{DS}{DT} = \nabla \cdot \vec{V}$

$$k\nabla^2 T + \dot{q}_D + L = \nabla \cdot S\vec{V} + S \frac{D}{DT} \left(\frac{V^2}{2} \right) + S \frac{DU}{DT} + S \frac{D}{DT} \left(\frac{gy}{2} \right)$$

For $\dot{q}_D = 0$ \Rightarrow NO VISCOUS DISSIPATION

$$k\nabla^2 T + \vec{V} \cdot \mu \nabla^2 \vec{V} = \nabla \cdot S\vec{V} + S \frac{D}{DT} \left(\frac{V^2}{2} \right) + S \frac{DU}{DT} + S \frac{D}{DT} \left(\frac{gy}{2} \right) \quad (1)$$

from NAVIER-STOKES:

$$S \frac{D\vec{V}}{DT} = S\vec{g} - \nabla P + \mu \nabla^2 \vec{V} \quad (9-19)$$

DOT PRODUCT WITH \vec{V} YIELDS

$$S \frac{D}{DT} \left(\frac{V^2}{2} \right) = \vec{V} \cdot S\vec{g} - \vec{V} \cdot \nabla P + \vec{V} \cdot \mu \nabla^2 \vec{V}$$

SUBSTITUTING INTO (1) \Rightarrow CANCELLING:

$$k\nabla^2 T = P \nabla \cdot \vec{V} + \vec{V} \cdot S\vec{g} + S \frac{DU}{DT} + S \frac{D}{DT} \left(\frac{gy}{2} \right)$$

FOR A POTENTIAL FUNCTION $\phi = gy$

$$\nabla \phi = -\vec{g}$$

$$\text{THEN } S \frac{D}{DT} \left(\frac{gy}{2} \right) = S \frac{D}{DT} \phi = S \left(\frac{\partial \phi}{\partial t} + \vec{V} \cdot \nabla \phi \right)$$

COMBINING WITH THE ENERGY EQUATION:

$$k\nabla^2 T = P \nabla \cdot \vec{V} + S \frac{DU}{DT}$$

Now - From THERMODYNAMICS:

$$u = u(V, T) \quad du = \left(\frac{\partial u}{\partial V} \right)_T dV + \left(\frac{\partial u}{\partial T} \right)_V dT$$

$$\Rightarrow S \frac{DU}{DT} = S \left(\frac{\partial u}{\partial V} \right)_T \frac{DV}{DT} + S \left(\frac{\partial u}{\partial T} \right)_V \frac{DT}{DT}$$

NOTING:

$$k\nabla^2 T = P \nabla \cdot \vec{V} + S c_V \frac{DT}{DT} + S \frac{DV}{DT} \left[-P + T \left(\frac{\partial P}{\partial T} \right)_V \right]$$

$$S \frac{DV}{DT} = S \frac{D}{DT} \left(\frac{1}{S} \right) = -\frac{1}{S} \frac{DS}{DT}$$

$$\text{so } k\nabla^2 T = P \nabla \cdot \vec{V} + S c_V \frac{DT}{DT} - P \nabla \cdot \vec{V} + T \left(\frac{\partial P}{\partial T} \right)_V \nabla \cdot \vec{V}$$

FOR INCOMPRESSIBLE FLOW $\nabla \cdot \vec{V} = 0$

$$k\nabla^2 T = S c_V \frac{DT}{DT}$$

Q.E.D.

16.6 @ STATIONARY STATE $\nabla^2 T + \frac{\dot{q}_D}{k} = 0$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\dot{q}_D}{k} \frac{1}{\epsilon} = 0$$

$$\frac{\partial T}{\partial x} = \frac{\dot{q}_D}{k} \frac{L}{\epsilon} + C_1$$

$$T = -\frac{\dot{q}_D}{k} \frac{L^2}{\epsilon} + C_1 x + C_2$$

$$\text{B.C. } T(0) = T_0 \quad T_b = -\frac{\dot{q}_D}{k} \frac{L^2}{\epsilon} + C_2$$

$$T(L) = T_L \quad T_L = -\frac{\dot{q}_D}{k} \frac{L^2}{\epsilon} + C_1 L + C_2$$

$$T = T_0 + (T_L - T_0) \frac{x}{L} + \frac{\dot{q}_D}{k} \frac{L^2}{\epsilon} \left[\frac{1 - e^{-\frac{x}{L}}}{1 - e^{-\frac{L}{\epsilon}}} \right] - \frac{x}{L} \left(1 - e^{-\frac{L}{\epsilon}} \right)$$

16.7 SAME PROBLEM EXCEPT 2ND B.C. IS

$$\frac{\partial T}{\partial x}(L) = 0 \Rightarrow 0 = \frac{\dot{q}_D}{k} \frac{L}{\epsilon} + C_1$$

$$T = T_0 + \frac{\dot{q}_D}{k} \frac{L^2}{\epsilon} \left(\frac{1 - e^{-\frac{L}{\epsilon}}}{1 - e^{-\frac{L}{\epsilon}}} \right)$$

16.8. Same problem as 16.6 but 2nd

B.C. $\frac{dT}{dx} (L) = \xi$ (A constant)
 $\xi = \frac{q_0}{K} \frac{L}{\beta^2} + C_2$

$$T = T_0 + \xi x - \frac{q_0}{K} \frac{L^2}{\beta^2} \left(\frac{\beta x}{L} - \frac{\beta x}{L} \right)$$

16.9 $TdS = dh - dP/g = du + PdV$

FORMING SUBSTANTIAL DERIVATIVES

$$\frac{TdS}{dt} = \frac{Du}{dt} + P \frac{dV}{dt} = \frac{Du}{dt} + P \frac{\xi^2}{g^2} \frac{dS}{dt}$$

BY CONTINUITY / $\frac{dS}{dt} = -g \nabla \cdot \vec{v}$

So $\frac{Du}{dt} = T \frac{dS}{dt} + P \frac{g}{\xi} \nabla \cdot \vec{v}$

From THE ENERGY EQUATION

$$\frac{Du}{dt} = \nabla \cdot k \nabla T + \dot{q} + \phi$$

$$\therefore T \frac{dS}{dt} = \nabla \cdot k \nabla T + \dot{q} + \phi + \frac{P}{g} \nabla \cdot \vec{v}$$

SINCE ϕ IS ALWAYS > 0 ITS EFFECT IS ALWAYS TO INCREASE S

SINCE $\nabla \cdot k \nabla T$ CAN BE EITHER + OR - AT TX CAN EITHER INCREASE OR DECREASE S

16.10 For $\frac{V_x}{V_{y0}} = \frac{3}{2} \frac{y}{8} - \frac{1}{2} \left(\frac{y}{8} \right)^3$

WITH $V_y = V_z = 0$ THE DISSIPATION FUNCTION REDUCES TO

$$\phi = \mu \left[\frac{\partial V_x}{\partial y} \right]^2$$

FOR THIS GASE

$$\frac{\phi \delta^2}{\mu v_{y0}^2} = \frac{9}{4} \left[1 - \left(\frac{y}{8} \right)^2 \right]$$

16.10 (CONT.)

16.11 SPHERICAL COORDINATES

$$\frac{1}{r} \frac{d}{dr} \left(r^2 \frac{\partial T}{\partial r} \right) = 0$$

$$r^2 \frac{\partial T}{\partial r} = \text{CONST} \quad \frac{\partial T}{\partial r} = \frac{\text{CONST}}{r}$$

AS r INCREASES $\frac{\partial T}{\partial r}$ DECREASES

16.12 FOR THE TRUNCATED CONE:

$$A_1 = \pi r_1^2 \quad A_2 = \pi r_2^2 \quad r = r_1 + \frac{r_2 - r_1}{L} x$$

$$\Rightarrow A = A_0 \left[1 + \left(\frac{r_2 - r_1}{r_1} \right) \frac{x}{L} \right]^2 = A_0 \left(1 + \beta x \right)^2$$

$$\beta = \left(\frac{r_2 - r_1}{r_1} \right) \frac{1}{L}$$

SINCE $\dot{q} = -kA \frac{\partial T}{\partial x}$ WE HAVE

$$\dot{q} = -kA_0 \left(1 + \beta x^2 \right) \frac{\partial T}{\partial x}$$

$$\int_0^L \frac{\partial x}{1 + \beta x^2} = -kA_0 \int_{T_1}^{T_2} \frac{dT}{x}$$

$$\dot{q} = kA_0 \left[\tan^{-1}(\sqrt{\beta} L) \right] (T_1 - T_2)$$

16.12 CONTINUED -

IF, IN ADDITION, $k = k_0 - \alpha T$

WE HAVE

$$q = -(k_0 - \alpha T)(1 + \beta x^2) \frac{dT}{dx}$$

$$\oint_0^L \frac{dx}{(1 + \beta x^2)} = - \int_{T_1}^{T_2} (k_0 - \alpha T) dT$$

$$q = A_0 \left[\tan^{-1}(\beta L) \right] \left[k_0 - \alpha (T_1 + T_2) \right]$$

$$\times (T_1 - T_2)$$

16.13. HT GENERATION IN PLANE WALL

$$\dot{q} = \dot{q}_{\text{max}} \left(1 - \frac{x}{L} \right)$$

FOURIER FIELD EQUATION FOR STEADY STATE 1-D CONDUCTION, REDUCES TO

$$\frac{dT}{dx^2} + \frac{\dot{q}_{\text{max}}}{k} \left(1 - \frac{x}{L} \right) = 0$$

1ST INTEGRATION:

$$\frac{dT}{dx} + \frac{\dot{q}_{\text{max}}}{k} \left(x - \frac{x^2}{2L} \right) = C_1$$

SYMMETRY; $\frac{dT}{dx} = 0 @ x=0 \therefore C_1 = 0$

SECOND INTEGRATION:

$$\int_{T_c}^{T_o} dT + \frac{\dot{q}_{\text{max}}}{k} \int_0^L \left(x - \frac{x^2}{2L} \right) dx = 0$$

$$T_o - T_c + \frac{\dot{q}_{\text{max}}}{k} \left(\frac{x^2}{2} - \frac{x^3}{6L} \right) \Big|_0^L = 0$$

$$T_c - T_o = \frac{\dot{q}_{\text{max}} L^2}{3k}$$

16.14 HT GENERATION IN A CYLINDER

$$\dot{q} = \dot{q}_{\text{max}} \left[1 - \left(\frac{r}{r_0} \right)^2 \right]$$

FOURIER FIELD EQUATION REDUCES TO

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \frac{\dot{q}_{\text{max}}}{k} \left[1 - \left(\frac{r}{r_0} \right)^2 \right] = 0$$

SEPARATING VARIABLES - 1ST INTEGRATION

$$\int d \left(r \frac{dT}{dr} \right) + \frac{\dot{q}_{\text{max}}}{k} \left[r - \frac{r^3}{3r_0} \right] dr = 0$$

$$r \frac{dT}{dr} + \frac{\dot{q}_{\text{max}}}{k} \left(\frac{r^2}{2} - \frac{r^4}{4r_0^2} \right) = C_1$$

SYMMETRY: $\frac{dT}{dr} = 0 @ r=0 \therefore C_1 = 0$

SECOND SEPARATION & INTEGRATION

$$\int_{T_c}^{T_o} dT + \frac{\dot{q}_{\text{max}}}{k} \int_0^r \left(\frac{r}{2} - \frac{r^3}{4r_0^2} \right) dr = 0$$

$$T_c - T_o = \frac{\dot{q}_{\text{max}}}{k} \frac{3}{16} \frac{r^2}{r_0^2}$$

16.15 HT GENERATION IN A SPHERE

FOURIER FIELD EQUATION REDUCES TO:

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) + \frac{\dot{q}_{\text{max}}}{k} \left[1 - \left(\frac{r}{r_0} \right)^3 \right] = 0$$

1ST INTEGRATION YIELDS 0 - SYMMETRY

$$r^2 \frac{dT}{dr} + \frac{\dot{q}_{\text{max}}}{k} \left(\frac{r^3}{3} - \frac{r^6}{6r_0^3} \right) = C_1$$

SECOND INTEGRATION

$$\int_{T_c}^{T_o} dT + \frac{\dot{q}_{\text{max}}}{k} \int_0^r \left(\frac{r}{3} - \frac{r^4}{6r_0^3} \right) dr = 0$$

$$T_c - T_o = \frac{\dot{q}_{\text{max}}}{k} \frac{2}{15} \frac{r^2}{r_0^2}$$

CHAPTER 17

17.1 STEADY-STATE X-DIRECTIONAL CONDUCTION THROUGH A PLANE WALL

$$q_x = -kA \frac{\Delta T}{\Delta x} = \frac{kA}{L} (T_1 - T_2)$$

$$\text{For } T_1 - T_2 = 75 \text{ K}$$

$$q = (30 \text{ W/m}\cdot\text{K})(1 \text{ m}^2)(75 \text{ K})$$

$$= 0.30 \text{ m}$$

$$= 7500 \text{ W/m}^2$$

$$\frac{\Delta T}{\Delta x} = \frac{\Delta T}{L} = \frac{75 \text{ K}}{0.30 \text{ m}} = 250 \text{ K/m}$$

$$\text{For } T_1 = 300 \text{ K} \quad q = -2000 \text{ W/m}^2$$

$$\frac{\Delta T}{\Delta x} = -\frac{q}{kA} = \frac{2000 \text{ W/m}^2}{(30 \text{ W/m}\cdot\text{K})} = 66.7 \text{ K/m}$$

$$\Delta T = \frac{q_0 L}{kA} = \frac{(2000)(0.3)}{(30)} = -200 \text{ K}$$

$$T_2 = 320 \text{ K}$$

$$\text{For } T_2 = 350 \text{ K} \quad \frac{\Delta T}{\Delta x} = -300 \text{ K/m}$$

$$q = -(30)(300) = 9000 \text{ W/m}^2$$

$$\Delta T = -300 \text{ K/m}(0.3 \text{ m}) = 90 \text{ K}$$

$$T_1 = 440 \text{ K}$$

$$\text{For } T_1 = 250 \text{ K} \quad \frac{\Delta T}{\Delta x} = 200 \text{ K/m}$$

$$q = -(30)(200 \text{ K/m}) = -6000 \text{ W/m}^2$$

$$\Delta T = -(200)(0.3) = -60 \text{ K} \quad T_2 = 310 \text{ K}$$

$$17.2 \quad q = \frac{k\bar{A}}{r_0 r_i} \Delta T = \frac{k}{r_0 r_i} 2\pi \frac{(r_0 - r_i)}{\ln r_0/r_i} \Delta T$$

$$= \frac{2\pi k}{\ln r_0/r_i} \Delta T \quad (a)$$

$$\% \text{ ERROR} = \frac{A_m - A_{pm}}{A_m} \times 100$$

17.2 (CONTINUED)

$$\begin{aligned} & \frac{2\pi(r_0 - r_i)}{\ln r_0/r_i} - \pi(r_0 + r_i) \\ & = \frac{\pi(r_0 - r_i)/\ln r_0/r_i}{2(r_0 - r_i)} \times 100 \\ & = \frac{(r_0/r_i + 1)\ln r_0/r_i}{2(r_0/r_i - 1)} \times 100 \end{aligned}$$

$$\text{For } \frac{r_0}{r_i} = 1.5 \quad \% \text{ ERROR} = 1.3 \%$$

$$3 \quad " = 10.0 \%$$

$$5 \quad " = 20.7 \%$$

17.3

$$q = \frac{4\pi k r_0 r_i}{r_0 - r_i} \Delta T \quad \bar{A} = 4\pi r_0 r_i \quad (a)$$

$$A_m = \frac{4\pi(r_0^2 + r_i^2)}{2} = 2\pi(r_0^2 + r_i^2)$$

$$\% \text{ ERROR} = \frac{4\pi r_0 r_i - 2\pi(r_0^2 + r_i^2)}{4\pi r_0 r_i}$$

$$= 1 - \frac{1}{2} \left(\frac{r_0}{r_i} - \frac{r_i}{r_0} \right)$$

$$\begin{aligned} r_0/r_i &= 1.5 \quad \% \text{ ERROR} = 8.3 \% \\ 3 \quad " &= 66.6 \% \\ 5 \quad " &= 160 \% \end{aligned} \quad b$$

17.4

$$T_{in} = 300 \text{ K}$$

17.4 (CONTINUED)

$$q'' = -k \frac{dT}{dx} = -k_0(1+bT) \frac{dT}{dx}$$

From 0 TO 1.2:

$$\int_0^{1.2} q'' dx = -k_0(1+bT) dT$$

$$q'' = \frac{k_0}{1.2} \left[T + \frac{b}{2} T^2 \right]_{q_{25}}^{q_{125}} = 23(T-300)$$

SOLVING: $T_{\text{RH WALL}} = 307.1 \text{ K}$

$$q'' = 163.3 \text{ W/m}^2$$

From 0 TO L:

$$q'' \int_0^L = -k_0 \int_{q_{25}}^{q_{50}} (1+bT) dT$$

$$L = \frac{k_0}{q''} \left[T + \frac{b}{2} T^2 \right]_{q_{50}}^{q_{125}}$$

$\frac{1}{2}$ SOLVING:

$$L = 0.646 \text{ m.}$$

17.5 GOVERNING EQUATION: $\nabla \cdot k \nabla T = 0$

IN ONE DIMENSION: $\frac{d}{dx}(k \frac{dT}{dx}) = 0$

FOR CONSTANT k:

$$\frac{d^2T}{dx^2} = 0$$

$$\frac{dT}{dx} = C_1$$

$$T = C_1 x + C_2$$

$$T(0) = T_0 = C_1(0) + C_2 \quad C_2 = T_0$$

$$T(L) = T_L = C_1 L + C_2 \quad C_1 = \frac{T_L - T_0}{L}$$

FOR VARIABLE k: $\frac{d}{dx} k_0(1+\beta T) \frac{dT}{dx} = 0$

$$(1+\beta T) \frac{dT}{dx} = C_3$$

$$T + \frac{\beta T^2}{2} = C_3 x + C_4$$

$$T(0) = T_0 \quad T_0 + \frac{\beta T_0^2}{2} = C_4$$

$$T(L) = T_L \quad T_L + \frac{\beta T_L^2}{2} = C_3 L + C_4$$

17.5 (CONTINUED)

$$C_3 = \frac{T_L}{L} \left(1 + \frac{\beta T_L}{2} \right) - \frac{C_4}{L}$$

$$T^2 + \frac{1}{\beta} T - \frac{1}{\beta} C_3 x - \frac{1}{\beta} C_4$$

$$T^2 + BT - C = 0 \quad B = \frac{1}{\beta}$$

$$T = -\frac{B}{2} \pm \sqrt{\frac{B^2}{4} - C} \quad C = \frac{1}{\beta} (C_3 x + C_4)$$

NOW - THE TEMPERATURE DIFFERENCE WE'RE SEEKING IS:

$$\Delta = C_1 x + C_2 - \left[-\frac{B}{2} \pm \sqrt{\frac{B^2}{4} - C} \right]$$

MAXIMUM IS WHERE $\frac{d\Delta}{dx} = 0$

$$\frac{d\Delta}{dx} = C_1 \mp \left(\frac{B^2}{4} - C \right)^{-1/2} \left(-\frac{2C_3}{\beta} \right) = 0$$

$$\frac{C_1 \beta}{2C_3} \mp \left(\frac{B^2}{4} - C \right)^{-1/2} = 0$$

$$\frac{B^2}{4} - C = \frac{4C_3^2}{\beta^2 C_1^2}$$

$$C = \frac{B^2}{4} - \frac{4C_3^2}{\beta^2 C_1^2}$$

$$\frac{2}{\beta} C_3 x + \frac{2}{\beta} C_4 = \frac{1}{\beta^2} - \frac{4C_3^2}{\beta^2 C_1^2}$$

$$x = \frac{1}{2\beta C_3} - \frac{2}{\beta C_1^2} - \frac{C_4}{C_3}$$

$C_1, C_3, \frac{1}{\beta} C_4$ ARE AS DETERMINED ABOVE

17.6 SAME GENERAL PROCEDURE AS PREVIOUS PROBLEM:

D.E. IS $\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0$

FOR CONSTANT k: $\frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0$

FOR VARIABLE k: $\frac{d}{dr} \left[r \left(1 + \beta T \right) \frac{dT}{dr} \right] = 0$

- MESSY BUT STRAIGHTFORWARD -

17.7

$$\dot{q} = \frac{\Delta T}{\Sigma R} \quad f_{BL} = \frac{0.01}{(0.78)(12)} = 1.068 \times 10^{-3}$$

$$R_{AIR} = \frac{0.018}{0.0262(12)} = 5.725 \times 10^{-2}$$

$$R_{conv} = \frac{1}{12(12)} = 6.944 \times 10^{-3}$$

$$\sum R = 2(1.068 \times 10^{-3}) + R_{AIR} + R_{conv}$$

$$= 0.06633 \text{ K/W}$$

$$\dot{q} = \frac{37}{0.06633} = 585 \text{ W}$$

$$T_i = 27 - \frac{585}{(12)(12)} = 22.94 \text{ C}$$

17.8 Brick Stack - 9" x 4.5' x 3'

Brick #1 $k = 0.44 \text{ BTU}/(\text{HRFTF})$ $T_{max} = 1500 \text{ F}$

#2 $k = 0.94 \text{ "}$ $T_{max} = 2200 \text{ "}$

MOST ECONOMICAL ARRANGEMENT IS TO USE AS MUCH OF #1 AS POSSIBLE (LOW k). USE #2 NEXT TO HIGH TEMP SUCH THAT ITS COOLER SURFACE HAS $T \leq 1500 \text{ F}$.

$$\dot{q}'' = \frac{2000 - T}{L/k} \quad L_2 = \frac{k(2000 - T_m)}{200}$$

$$= 2.35 \text{ FT}$$

$$= 28.2 \text{ IN.}$$

$$L_{actual} = 28.5 \text{ in.} \quad (9 \times 2 + 4.5 + 2 \times 3)$$

$$T_{interface} = T_h - \frac{\dot{q}''}{k_2/L_2} = 1495 \text{ F}$$

$$L_{min} = \frac{0.44(1495 - 300)}{200} = 2.63 \text{ FT}$$

$$= 31.6 \text{ IN.}$$

$$h_{ACT} = 33 \text{ IN}$$

17.8 CONTINUED -

MOST ECONOMICAL:

$$\begin{aligned} L_1 &= 33 \text{ IN} \\ L_2 &= 28.5 \text{ "} \end{aligned}$$

17.9

$$T_i \quad T_1 \quad T_2 \quad T_o$$

$$R_i = \frac{1}{115} = 8.696 \times 10^{-3} \text{ K/W}$$

$$R_1 = \frac{0.125}{1.13} = 0.221 \text{ "}$$

$$R_2 = \frac{0.025}{1.45} = 0.138 \text{ "}$$

$$R_3 = \frac{0.10}{0.166} = 0.152 \text{ "}$$

$$R_o = \frac{1}{23} = 0.0435 \text{ K/W}$$

$$\sum R = 0.563$$

$$\dot{q} = \frac{\Delta T}{\sum R} = \frac{1070}{0.563} = 1900 \text{ W/m}^2$$

$$= 116.5 \text{ W/in}^2$$

$$\dot{q} = 23(T_o - 300) \quad T_o = 363 \text{ K}$$

17.10

$$T_i \quad T_1 \quad T_2 \quad T_o$$

$$T_o = 325 \text{ K} \quad \dot{q} = 23(325 - 300)$$

$$= 575 \text{ W/m}^2$$

$$R_i = \frac{1}{115} = 8.696 \times 10^{-3} \text{ K/W}$$

$$R_1 = \frac{0.125}{1.13} = 0.221 \text{ "}$$

$$R_2 = \frac{0.025}{1.45} = 0.138 \text{ "}$$

$$R_3 = \frac{0.10}{0.166} = 0.152 \text{ "}$$

132

17.10 CONTINUED

$$\Sigma R = 0.416 + \frac{1}{1.45} = \frac{\Delta T}{q}$$

$$0.416 + \frac{1}{1.45} = \frac{1045}{575}$$

$$\underline{L = 2.03 \text{ m}}$$

17.11

 $T_{\infty} \approx 70^{\circ}\text{F}$ (ASSUME)

$$L_{st} = \frac{1}{8}'' \quad k = 10 \text{ BTU/HR-FT}^2$$

$$L_{ASB} = \frac{1}{8}'' \quad k = 0.15 \text{ "}$$

$$q = \frac{\Delta T}{\Sigma R} = \frac{100 - T_{\infty}}{\frac{0.125/12}{0.15} + \frac{0.125/12}{10} + \frac{1}{3}}$$

$$= \frac{930}{0.403} = 2305 \text{ BTU/HR-FT}^2 \text{ PER SIDE}$$

$$\frac{q}{R} = \frac{2305(2)}{3.413} = \underline{1351 \text{ W/ft}^2 \text{ (a)}}$$

$2305 = h \Delta T = 3 \Delta T$

$\Delta T = 768^{\circ}\text{F} \quad T_{\text{surf}} = \underline{838^{\circ}\text{F} \text{ (b)}}$

17.12

$R_1 = \frac{0.125/12}{0.15} = 0.0694$

$R_2 = \frac{0.125/12}{10} = 0.00104$

$R_3 = \frac{0.25/12}{(2)(2)(\pi/4)(0.75/2)^2} = 0.154$

17.12 CONTINUED

$$R_{\text{CONDUCTION, EQUIV}} = \frac{1}{\frac{1}{k_1 + R_2} + \frac{1}{R_3}}$$

$$= \frac{1}{\frac{1}{0.01044} + \frac{1}{0.154}} = 0.0483$$

$\Sigma R_{\text{PER SIDE}} = 0.0483 + \frac{1}{3} = 0.3817$

$\text{NEW HT FLUX} = \frac{930}{0.3817} = 2437 \text{ BTU/HR-FT}^2$

$\text{INCREASE} = \frac{2437 - 2305}{2305}$

$= \underline{0.057} = 5.7\%$

17.13

$T_{\infty} = 295 \text{ K}$
 $h_1 = 12 \text{ W/m}^2\text{K}$
 $h_2 = "$

$k_1 = 2.42 \text{ W/m}^2\text{K}$
 $k_2 = 209$

a) APPLIED TO PLASTIC:

$q = 12(T_i - 295) + \frac{2.42}{0.025}(T_2 - 325)$

$\frac{209}{0.05}(325 - T_2) = 12(J_2 - 295)$

$T_2 = 324.9 \quad T_1 = 328.7$

$q = 359 + 404 = \underline{763 \text{ W}}$

b) APPLIED TO AL:

$q = 12(T_2 - 295) + \frac{209}{0.05}(J_2 - 325)$

$\frac{209}{0.05}(T_2 - 325) = \frac{2.42}{0.025}(325 - T_1)$

$T_1 = 322 \text{ K}$
 $T_2 = 325$

$q = 320 + 361 = \underline{681 \text{ W}}$

17.14

BOLTS IN A SQUARE ARRAY
WITH 4 EQUV. BOLTS/FT²

$$R_1 (\text{BOLTS}) = \frac{L}{kA} = \frac{3.75/2}{(10)(4)(\pi/4)(1/4)} = 5.7 \text{ HRF/BTU STEEL}$$

$$= 0.475 \text{ " AW M,}$$

$$R_{2ss} = \frac{1/48}{(10)(1)} = 0.0021$$

$$R_{3cb} = \frac{3/2}{(0.25)(1)} = 10$$

$$R_{4pl} = \frac{1/24}{(1.5)(1)} = 0.0278$$

$$\sum R = 10.03$$

PER FT² OF X-SECTION

$$R_{\text{EQUIV}} = \frac{1}{1/5.7 + 1/10.03} = 3.63 \frac{\text{HRF}}{\text{BTU}} \quad (a)$$

$$= \frac{1}{1/0.475 + 1/10.03} = 0.454 \text{ " } \quad (b)$$

17.15 FOR A SECTION 36 CM WIDE 15

$$R_1 = \frac{1}{A \cdot h_o} = \frac{1}{(0.36)(0.08)} = 0.139 \text{ K/BTU}$$

$$R_2 = \frac{L}{kA} = \frac{0.15}{(0.814)(0.36)} = 0.0683 \text{ "}$$

$$R_3 = \frac{L}{kA} = \frac{0.15}{0.15(0.08)} = 16.67 \text{ "}$$

17.15 (CONTINUED)

$$R_4 = \frac{L}{kA} = \frac{0.15}{0.035(0.36)} = 14.28 \text{ "}$$

$$R_5 = \frac{1}{A \cdot h_i} = \frac{1}{(0.36)(10)} = 0.278 \text{ "}$$

$$R_{\text{STUD WALL EQUIV}} = \frac{1}{1/16.67 + 1/14.28} = 7.691 \text{ "}$$

$$q_f = \frac{\Delta T}{\sum R_{\text{EQUIV}}} = \frac{35 \text{ K}}{8.176 \text{ K/W}} = 4.28 \text{ W}$$

$$q_3 = \frac{\Delta T_{sw}}{R_3} \quad q_4 = \frac{\Delta T_{sw}}{R_4}$$

$$\Delta T_{sw} = \frac{q_f}{1/R_3 + 1/R_4} = 32.92 \text{ K}$$

$$q_3 = \frac{32.92}{16.67} = 1.975 \text{ W}$$

$$q_4 = \underline{2.305 \text{ W}}$$

17.16

$$q_{\text{loss}} = q_1 + q_2$$

$$q_1 = H_T \text{ TO AIR} = h_A A T$$

$$= (23 \text{ W/m}^2 \cdot \text{K}) (2.5 \times 0.1 \times 2 \text{ m}^2 + 2.5 \times 0.05 \times 2 \text{ m}^2 + 0.1 \times 0.05 \times 2 \text{ m}^2 - (0.08)^2 \times 2 \text{ m}^2) (T - 300)$$

$$= 17.19 (T - 300)$$

$q_2 = H_T \text{ THROUGH PODESTALS}$

$$= 2 k A m \theta_0 \left[1 - 2 \frac{e^{-mL} - e^{-mL}}{e^{mL} - e^{-mL}} \right]$$

$$m = \left[\frac{h_p}{kA} \right]^2 = \left[\frac{(23)(0.08)(4)}{(2.6)(0.08)(0.08)} \right]^{1/2} = 21$$

$$e^{mL} = 23.45 \quad e^{-mL} = 0.0427$$

17.16 (CONTINUED -

$$q_2 = 2(2\pi)(0.08)^2 (2) (T-300) \times \\ \times \left[1 - 2 \frac{-0.0421}{23.45} \right] \\ = 0.696(T-300)$$

$$1000 = (17.19 + 0.696)(T-300)$$

$$\underline{\underline{T = 355.9 \text{ K}}}$$

17.17

$$q_{\text{loss}} = q_1 + q_2 + q_3$$

$$q_1 = 17.19(T-300) \quad \text{From Prev. Prob.}$$

q_2 = Same Expression

$$A = (0.08)(0.08) - \frac{\pi}{4}(0.019)^2 \\ = 0.00612 \quad \left\{ \begin{array}{l} \text{Previously} \\ 0.0064 \end{array} \right\}$$

For PEDESTAL MATTL:

$$q_2 \approx 0.7(T-300)$$

q_3 = CONDUCTION THROUGH PANTS

$$= \frac{kA}{L} \Delta T = 42.9 \frac{\pi}{4} \frac{(0.019)^2}{0.15} \Delta T \\ = 0.081(T-300)$$

$$1000 = [17.19 + 0.7 + 0.081](T-300)$$

$$\underline{\underline{T = 355.6 \text{ K}}}$$

17.18

$$q = \Delta T / \sum R$$

$$\Delta T = 292.7 - 70 = 222.7 \text{ F}$$

Room Temp (Assumed)

For 2-in SCH 40 ID = 2.067 in
OD = 2.375 "

$$R_{ST} = \frac{\ln \frac{D_o}{D_i}}{2\pi k L} = 1.475 \times 10^{-5}$$

$$R_{INS} = \frac{\ln \frac{D_o}{D_i}}{2\pi k L} = 0.0529$$

$$R_{PANTS} = \frac{1}{h A_0} = 0.00537 \text{ w/o INSUL} \\ = 0.00237 \text{ w/ INSUL}$$

$$\sum R_{\text{WITHL}} = 0.0553 \quad q = 4030 \text{ BTU/hr}$$

$$\sum R_{\text{WITHOUT}} = 0.00537 \quad q = 41,500 \text{ "}$$

$$\Delta q = 37470 \text{ BTU/hr}$$

$$(COST = 37470 \left(\frac{\$0.68}{10^5} \right)) = \$0.255/\text{hr}$$

$$\text{TIME} = \frac{(60 \text{ ft})(\$0.75/\text{ft})}{\$0.255/\text{hr}} = \underline{\underline{177 \text{ Hours}}}$$

17.19

267.25 F

$$R_1 = \frac{1}{\pi D_1 h_i L} = \frac{1}{\pi (1.75/2)(1500)(10)} = 0.0015$$

$$R_2 = \frac{\ln \frac{D_o}{D_i}}{2\pi k L} = \frac{\ln 1.078}{2\pi (0.04)(10)} = 6.19 \times 10^{-5}$$

$$R_3 = \frac{1}{\pi (1.755/2)(12)} = 0.0725$$

$$\sum R = 0.072 \text{ HRF/BTU}$$

$$q = \frac{\Delta T}{\sum R} = \frac{187.25}{0.072} = 2530 \text{ BTU/HR} \quad (a)$$

$$R_1 + R_2 = 0.00156 \text{ HRF/BTU}$$

$$R_3 = \frac{\ln \frac{5.755}{1.755}}{2\pi (0.04)(10)} = 0.461 \frac{\text{HrF}}{\text{BTU}}$$

17.19 CONTINUED -

$$R_4 = \frac{1}{\pi(5.155/12)(3)(10)} = 0.022 \quad (b)$$

$$\sum R = 0.485 \quad q = \frac{\Delta T}{\sum R} = \frac{380 \text{ BTU}}{0.485} \quad (c)$$

for Base Pipe: $m_{\text{steam}} = \frac{q}{h_{\text{fg}}}$

$$= \frac{380 \text{ BTU}}{9337 \text{ BTU/lbm}} = 2.11 \frac{\text{lbm}}{\text{hr}} \quad (c)$$

17.20

$$\dot{q} \frac{\pi D^2}{4} L = h \pi D L \Delta T$$

$$\frac{I^2 R}{\pi D^2 / 4} L = h \Delta T$$

$$I^2 R = 10 \text{ kW}$$

$$h = 850 \text{ W/m}^2 \cdot \text{K}$$

$$L = 0.6 \text{ m} \quad \Delta T = 1280 \text{ K}$$

$$D = \frac{4(10000 \text{ W})}{(1280 \text{ K})(\pi)(0.6 \text{ m})(850 \text{ W/m}^2 \cdot \text{K})} \\ = 0.0195 \text{ m} = 1.95 \text{ cm} \quad (a)$$

$$[4 \text{ GAGE} = 0.064 \text{ in}, \text{DIAM} = 1.626 \times 10^{-3} \text{ m}]$$

$$L = 7.2 \text{ m} \quad (b)$$

$$\text{For } h = 1150 \text{ W/m}^2 \cdot \text{K}$$

$$D = 1.44 \text{ cm} \quad \left. \begin{array}{l} \\ \end{array} \right\} \quad (c)$$

17.21

$$\dot{q} = \frac{2\pi k}{\ln r_o/r_i} (T_i - T_o)$$

$$= \frac{2\pi (0.14)}{\ln \frac{8.094}{0.1875}} (120 - 70)$$

$$= 11.72 \frac{\text{BTU}}{\text{HR-FT}} = 3.43 \text{ W}$$

17.21 CONTINUED -

$$\dot{q}^2 R = 3.43 \text{ W}$$

$$R = \frac{\dot{q} L}{A} = 2.95 \times 10^4 \Omega$$

$$I^2 = \frac{3.43}{2.95 \times 10^4} \quad I = 107.9 \text{ Amp}$$

17.22

$$\dot{q} = \frac{120 - 70}{\ln \frac{8.094}{0.1875}} + \frac{1}{\pi (131/16 \times 12) A}$$

$$I = 106.1 \text{ Amp}$$

$$11.34 = 4 \left[\frac{131}{16 \times 12} \right] \pi (T - 70)$$

$$T = 71.3 \text{ F}$$

17.23

SAME AS PROB 17.21 EXCEPT
WIRE IS ALUMINUM =

$$R = 4.85 \times 10^4 \Omega$$

$$I = 83.9 \text{ Amp}$$

17.24

$$\dot{q} = \dot{q}_0 [1 - x/L]$$

Poisson EQUN APPLIES: (ENERGY BALANCE)

$$\frac{d^2 T}{dx^2} + \frac{\dot{q}}{k} = 0$$

$$\frac{d^2 T}{dx^2} = - \frac{\dot{q}_0}{k} \left[1 - \frac{x}{L} \right]$$

$$\frac{dT}{dx} = - \frac{\dot{q}_0}{k} \left[x - \frac{x^2}{2L} \right] + C_1$$

17.24 CONTINUED

$$\frac{dT}{dx}(L) = 0 \quad C_1 = \frac{q_0 L}{k^2}$$

$$\frac{dT}{dx} = \frac{q_0 L}{k^2} \left[1 - \frac{x}{L} + \frac{x^2}{L^2} \right]$$

$$T = \frac{q_0 L}{k^2} \left[x - \frac{x^2}{L} + \frac{x^3}{3L^2} \right] + C_2$$

$$T(0) = T_0 = C_2$$

$$T = T_0 + \frac{q_0 L}{k^2} \left[x - \frac{x^2}{L} + \frac{x^3}{3L^2} \right] \quad (a)$$

$$(b) T = T_{\max} \text{ where } \frac{dT}{dx} = 0, \text{ i.e. } @ x = L$$

$$T(L) = T_0 + \frac{180}{0.6} \left(\frac{0.06}{2} \right) \left(\frac{0.06}{3} \right) (1000) \\ = 320 + 180 = \underline{\underline{500 \text{ K}}} \quad (c)$$

17.25

$$\text{In WASTE MTL: } q = q_0 (\pi r_i^2 L) \quad (1)$$

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \frac{q_0}{k} = 0$$

$$x \frac{dT}{dr} + \frac{q_0 r^2}{k} = C_1/r$$

$$\frac{dT}{dx}(0) = 0 \Rightarrow C_1 = 0$$

$$T + \frac{q_0 r^2}{4k} = C_2$$

$$T(r_i) = T_i \quad C_2 = T_i + \frac{q_0 r_i^2}{4k}$$

$$T = T_i + \frac{q_0}{4k} (r_i^2 - r^2)$$

for ST. STEEL

$$q = \frac{2\pi k L}{4\pi r_i^2 h} (T_i - T_0) = 2\pi r_0 L h (T_0 - T_{\max})$$

EQUATING WITH EQN (1)

$$\frac{2\pi k L}{4\pi r_i^2 h} (T_i - T_0) = 2\pi r_0 L h (T_0 - T_{\max}) = \frac{q_0}{4k} r_i^2 K$$

17.25 CONTINUED

$$\text{PUTTING IN VALUES - } T_0 = 339.7 \text{ K} \quad (a)$$

$$T_i = 339.7 + 303 = \underline{\underline{642.7 \text{ K}}}$$

@ CENTER OF WASTE MTL:

$$T = 642.7 + \frac{q_0}{4k} r_i^2$$

$$= 642.7 + 625 = \underline{\underline{1268 \text{ K}}} \quad (b)$$

17.26

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \frac{q_0}{k} = 0$$

$$\frac{d}{dr} \left(r \frac{dT}{dr} \right) + \frac{q_0 r}{k} = 0$$

$$x \frac{dT}{dr} + \frac{q_0 r^2}{2k} = C_1$$

$$\frac{dT}{dr}(0) = 0 \Rightarrow C_1 = 0$$

$$T + \frac{q_0 r^2}{4k} = C_2$$

$$T(r) = T_R \quad C_2 = T_R + \frac{q_0 r^2}{4k}$$

$$T - T_R = \frac{q_0}{4k} (R^2 - r^2) \quad (a)$$

$$T_{\max} = T @ r = 0$$

$$T_{\max} = T_R + \frac{q_0 R^2}{4k}$$

$$= T_R + \frac{(51.7 \times 10^6)(0.107)}{4(339)}$$

$$= T_R + 442$$

$$q = \frac{q_0 V}{4} = \frac{q_0 \pi D L}{4}$$

$$= \frac{(51.7 \times 10^6)(\pi)(0.107)^2(0.106)}{4}$$

$$= h(\pi)(0.107)(0.106) \Delta T$$

$$\Delta T = 307 \text{ K}$$

$$T_{\text{surf}} = 332 \text{ C} \quad T_{\max} = 774 \text{ C}$$

(a) ↑ (b) ↓

17.27 ASSUME THIN-WALLED INNER VESSEL IS 77 K THROUGHOUT

$$R_i = \frac{1/r_i + 1/r_o}{4\pi k} = \frac{1/0.5 - 1/0.55}{4\pi(0.002)} = 7.234$$

$$R_o = \frac{1}{4\pi r_o^2 h} = \frac{1}{4\pi (0.55)^2 (18)} = 0.046$$

$$\dot{q} = \frac{\Delta T}{\sum R} = \text{in heat}$$

$$\dot{m} = \frac{221/7.234}{2 \times 10^5} = 1.524 \times 10^{-4} \text{ kg/s}$$

17.28 for $\dot{q} = \frac{1}{2}$ or value in 17.27

$$\sum R = 14.58 = R_{\text{conv}} + R_{\text{ins}}$$

$$R_{\text{ins}} = \frac{1/0.5 - 1/r_o}{4\pi (0.002)} \quad R_{\text{conv}} = \frac{1}{4\pi r_o^2 (18)}$$

$$14.58 = \frac{1}{4\pi} \left[500 \left(\frac{1}{0.5} - \frac{1}{r_o} \right) + \frac{1}{18 r_o^2} \right]$$

$$r_o = 0.611 \text{ m} \quad \text{INS. THICKNESS} = 0.055 \text{ m}$$

$$\text{ADDED THICKNESS} = 0.0055 \text{ m} \quad \text{OR} \quad 5.5 \text{ mm}$$

17.29 PER FOOT OF BASE TUBE:

$$\dot{q} = h A \Delta T = \left(6 \frac{\text{Btu}}{\text{hr ft}^2} \right) \left(\frac{1}{12} \text{ ft} \right)^2 (170 \text{ F}) \\ = 267 \text{ Btu/hr}$$

FOR LONGITUDINAL FINS:

$$A_f = 12 \left(\frac{3}{4} \right) \left(\frac{1}{12} \right) (2) (1) = 1.5 \text{ ft}^2$$

$$A_0 = \left(\frac{\pi}{12} \right) (1) - 12 \left(\frac{3}{32} \right) \left(\frac{1}{12} \right) = 0.168 \text{ ft}^2$$

$$L \left(\frac{h}{k t} \right)^{1/2} = \left(\frac{3/4}{12} \right) \left[\frac{6}{24.8 \left(\frac{3}{64} \right) \left(\frac{1}{12} \right)} \right]^{1/2} \\ = 0.539 \quad \eta_f \approx 0.92$$

17.29 CONTINUED

$$\dot{q} = h (A_0 + \eta_f A_f) \Delta T \\ = 6 \left(0.168 + 0.92 \times 1.5 \right) (170) = 1580 \frac{\text{Btu}}{\text{hr}}$$

$$\text{INCREASE} = 1580 - 267 = 1310 \frac{\text{Btu}}{\text{hr}}$$

$$\% \text{ INCR} = 491 \%$$

FOR CIRCULAR FINS:

$$\text{PER FIN: } A_f = 2 \frac{\pi}{4} \left[\frac{2.5^2 - 1^2}{144} \right] = 0.0573 \text{ ft}^2$$

$$\text{PER FOOT} \quad n = 1.5 / 0.0573 = 16 \text{ FINS}$$

$$A_0 = \frac{\pi}{12} - \left(\frac{\pi}{12} \times \frac{3}{32} \times \frac{1}{12} \times 16 \right) = 0.209 \text{ ft}^2$$

$$(r_o - r_i) \left[\frac{h}{k t} \right]^{1/2} = \frac{3/4}{12} \left[\frac{6}{24.8 \left(\frac{3}{64} \right) \left(\frac{1}{12} \right)} \right]^{1/2}$$

$$= 0.539 \quad \eta_f \approx 0.88$$

$$\dot{q} = 6 \left[0.209 + (0.88) (16) (0.0573) \right] (170) \\ = 1560 \frac{\text{Btu}}{\text{hr}}$$

$$\text{INCREASE} = 1560 - 267 = 1293 \frac{\text{Btu}}{\text{hr}}$$

$$\% \text{ INCR} = \frac{1293}{267} = 484 \%$$

17.30 $h = 60 \frac{\text{Btu}}{\text{hr ft}^2 \text{ F}}$

$$\text{LONGITUDINAL CASE} \quad L \left(\frac{h}{k t} \right)^{1/2} = 1.70$$

$$\eta_f \approx 0.56$$

$$\dot{q} = 10820 \frac{\text{Btu}}{\text{hr}}$$

$$\text{CIRCULAR CASE: } (r_o - r_i) \left(\frac{h}{k t} \right)^{1/2} = 1.70$$

$$\eta_f \approx 0.52$$

$$\dot{q} = 10180 \frac{\text{Btu}}{\text{hr}}$$

$$4\% \text{ FINS} \quad \dot{q} = 2670 \frac{\text{Btu}}{\text{hr}}$$

INCREASE:

$$\text{LONG:} \quad \frac{8150}{7510} \frac{\text{Btu}}{\text{hr}} \quad 305 \%$$

$$\text{ARC:} \quad \frac{7510}{7510} \frac{\text{Btu}}{\text{hr}} \quad 281 \%$$

7.31

SOLUTION FOR $\theta = \frac{T - T_{\infty}}{T_0 - T_{\infty}}$

IS IN FORM $\theta = C_1 e^{-mx} + C_2 e^{-nx}$

$$m = \left[\frac{(17 \text{ W/m}^2 \cdot \text{K})(\pi)(0.03 \text{ m})^2}{k \pi (0.03 \text{ m})^2} \right]^{\frac{1}{2}} = \frac{47.6}{k^{\frac{1}{2}}}$$

LONG FIN APPROXIMATION: $\theta = C_2 e^{-mx}$

$$\theta_1 = 99 = C_2 e^{-mx}$$

$$\theta_2 = 65 = C_2 e^{-m(x_1 + 0.076)}$$

$$\frac{\theta_2}{\theta_1} = \frac{65}{99} = e^{-m(x_1 + 0.076 - x_1)}$$

$$m = 5.536 = \frac{47.6}{k^{\frac{1}{2}}}$$

$$k \approx 74 \text{ W/m}^2 \cdot \text{K}$$

7.32

$$n_f = \text{fn of } L \left[\frac{h}{kt} \right]^{\frac{1}{2}}$$

AIRSIDE: $= 0.75 \left[\frac{2(3)}{0.05/12(229)} \right]^{\frac{1}{2}}$

$$= 0.156 \quad n_f \approx 0.98$$

WATERSIDE: $= 0.75 \left[\frac{2(25)}{0.5/12(229)} \right]^{\frac{1}{2}}$

$$= 0.143 \quad n_f \approx 0.98$$

for $1 \text{ ft}^2 - A_0 = 1 - 150 \left(1 \times \frac{0.05}{12} \right) = 0.375 \text{ ft}^2$

$$A_f = 150(2) \left(\frac{0.75}{12} \right) (1) + 0.625 = 19.35 \text{ ft}^2$$

W/FINS! $q = 25 \Delta T_w = 3 \Delta T_A = \frac{\Delta T_{\infty}}{\frac{25}{25} + \frac{1}{3}}$

W/OUT FINS!

WATERSIDE $q = 25 \Delta T_w (0.375 + 18.96) = 483 \Delta T_w$

AIRSIDE $q = 3 \Delta T_A (0.375 + 18.96) = 58.0 \Delta T_A$

FINS ADDED TO AIRSIDE ONLY;

7.32 CONTINUED

$$q = \frac{\Delta T_{\infty}}{\frac{1}{25} + \frac{1}{58}} = 17.47 \Delta T_{\infty}$$

$$\% \text{ GAIN} = 549\%$$

TO WATERSIDE:

$$q = \frac{\Delta T_{\infty}}{\frac{1}{483} + \frac{1}{3}} = 198 \Delta T_{\infty}$$

$$\text{GAIN} = 11.2\%$$

BOTH SIDES:

$$q = \frac{\Delta T_{\infty}}{\frac{1}{483} + \frac{1}{58}} = 51.78 \Delta T_{\infty}$$

$$\text{GAIN} = 1832\%$$

7.33

ONE-DIM. CONDUCTION WITH INTERNAL HT GENERATION

$$\frac{d^2 T}{dx^2} = -\frac{\dot{q}}{k}$$

$$\frac{dT}{dx} = -\frac{\dot{q}}{k} x + C_1$$

$$T = -\frac{\dot{q}}{k} \frac{x^2}{2} + C_1 x + C_2$$

$$T(0) = T_0 = C_2$$

$$T(L) = T_L = -\frac{\dot{q}}{k} \frac{L^2}{2} + C_1 L + T_0$$

$$C_1 = \frac{T_L - T_0}{L} + \frac{\dot{q} L}{k^2}$$

$$T = \frac{\dot{q}}{k} \left[\frac{Lx}{2} - \frac{x^2}{2} \right] + \frac{T_L - T_0}{L} x + T_0$$

OR $T - T_0 = \frac{\dot{q}}{k} \left[\frac{x}{L} - \left(\frac{x}{L} \right)^2 \right] + (T_L - T_0) \left(\frac{x}{L} \right)$

AT $\frac{L}{2}$: $T - T_0 = \frac{\dot{q}}{k} \left(\frac{1}{4} \right) + \frac{T_L - T_0}{2}$

$$\dot{q} = \frac{I^2 R}{V} = \frac{I^2 \sigma k}{A^2 L}$$

$$= \frac{(10)^2 (2 \times 10^{-5})}{\pi/4 (0.01)^2} = 2547 \text{ W/m}^3$$

17.33 CONTINUED

MID-PT. TEMP:

$$T_{M,P} = \frac{25,47 \text{ W/m}^3 (0.04 \text{ m})^2}{8 (2 \text{ W/mK})} + 50 \\ \approx 50,00 \text{ - } C$$

$$q = -kA \frac{\partial T}{\partial x} = -kA \left[-\frac{C_1}{R} x + C_1 \right] \\ = -kA \left[-\frac{C_1}{R} x + T_L - T_0 + \frac{q L}{k R} \right]$$

$$@x=0 \quad q = -kA \left[\frac{T_L - T_0}{L} + \frac{q L}{k R} \right] \\ = -0.393 \text{ W}$$

$$AT Y=L \quad q = -kA \left[-\frac{C_1 L}{2R} + \frac{T_L - T_0}{L} \right] \\ = +0.393 \text{ W}$$

$$17.34 \quad m^2 = \frac{hP}{kA} = \frac{(40)(\pi)(0.019)(4)}{(54)(\pi)(0.019)^2} \\ = 2885 \text{ m}^{-2}$$

$$\theta = \theta_0 \cosh mx$$

$$\cosh mx / \lambda$$

$$\frac{d\theta}{dx} = m\theta_0 \frac{\sinh mx}{\cosh mx / \lambda} \Rightarrow \sinh mx = 0 \quad @x=0$$

$$\theta_{max} = \frac{\theta_0}{\cosh mx / \lambda} = \frac{145 \text{ K}}{\cosh 12.08}$$

$$T \approx 625 \text{ K}$$

17.35 ENERGY BALANCE:

$$\frac{d^2\theta}{dx^2} - m^2\theta = -\frac{W}{kA} \quad \left\{ \begin{array}{l} W \text{ IN BTU} \\ \text{FT} \end{array} \right.$$

$$\theta = C_1 e^{mx} + C_2 e^{-mx} + \frac{W}{hP}$$

$$\theta(0) = 0 \quad C_1 = \frac{-W/hP (1 - e^{-mL})}{e^{mL} + e^{-mL}}$$

$$\theta(L) = 0 \quad C_2 = \frac{-W/hP (e^{mL} - 1)}{e^{mL} - e^{-mL}}$$

17.35 CONTINUED.

PUTTING IN VALUES:

$$m = 2.28 \quad C_1 = -0.0017 \text{ W/hP}$$

$$C_2 = -0.999$$

$$\theta = \theta_{max} @ 1.5 \text{ ft}$$

$$W_{max} = I_{max}^2 R$$

$$R = \frac{8 L}{A} = \frac{(1.72 \times 10^{-6})(3)}{\frac{\pi}{4}(1/48)^2(30,48)} \\ = 4.97 \times 10^{-4} \Omega/\text{ft}$$

$$\theta_{max} = 90 \left[-0.00107 \right] \frac{1.78(1.5)}{2} \\ = -0.228(1.5)$$

$$= 0.999 \Omega + 1 \left[\frac{W}{hP} \right]$$

$$\frac{W}{hP} = 96.3 \quad W = 96.3 (\omega)(\pi)(0.25/12)$$

$$= 37.8 \text{ BTU/HP FT}$$

$$= 11.08 \text{ W/ft}$$

$$I_{max}^2 = \frac{11.08}{4.97 \times 10^{-4}} = 2.23 \times 10^4 \text{ A}^2$$

$$I_{max} = 150 \text{ A}$$

17.36

$$m^2 = \frac{hP}{kA} = \frac{45(2)}{42(0.0159)} = 134.8 \text{ m}^{-2}$$

$$m = 11.61 \text{ m}^{-1}$$

$$q = kA m \theta_0 \frac{\sinh mL + h/mk \cosh mL}{\cosh mL + h/mk \sinh mL}$$

$$kA m \theta_0 = (42)(0.0159)(11.61)(300) \\ = 2330$$

$$\sinh mL = 2.01 \quad \cosh mL = 1.75$$

$$h/mk = \frac{45}{11.61(42)} = 0.0923$$

17.36 (CONTINUED)

SUBSTITUTING:

$$q = 2.25 \text{ kW}$$

17.37

$$\frac{\theta}{\theta_0} = \left[\frac{\alpha}{\theta_0} - \bar{e}^m \right] \left[\frac{e^{mx} - e^{mL}}{e^{mL} - e^{ml}} \right] + \bar{e}^{mx}$$

$$\theta_0 = 400 \quad m = 19.6 \text{ m}^{-1}$$

$$ml = 5.69 \quad \bar{e}^m = 242 \quad \bar{e}^{ml} = 0.0041$$

SUBSTITUTING:

$$\theta = 0.262 \bar{e}^m + 399.7 e^{-19.6x}$$

$$q = -kA \frac{dT}{dx} \quad \frac{dT}{dx}(0) = -1829 \quad \frac{dT}{dx}(L) = 1305$$

$$q_0 = -2.32 \text{ kW} \quad q_L = 387 \text{ W}$$

17.38

FOR ALUMINUM, I-BEAM:

SAME PROCEDURE AS PREVIOUS PROB.

$$m = 8.08 \quad \bar{e}^m = 9.61$$

$$\bar{e}^{ml} = 0.104$$

$$\theta = 3\bar{e}^m + 688 \bar{e}^{-8.08x}$$

$$q_0 = 551 \text{ kW} \quad q_L = 170 \text{ W}$$

17.39

$$r_e = \frac{0.3}{2} = 0.15 \text{ m} \quad r_o = 0.15 + 0.02 = 0.17 \text{ m}$$

$$t = 0.003 \text{ m} = 0.0015 \text{ m}$$

$$A_{PEA} = 2\pi(r_o^2 - r_i^2) + A_{END}$$

$$= 2\pi(0.17^2 - 0.15^2) + 2\pi(0.17)(0.003)$$

$$= 0.0434 \text{ m}^2$$

$$(r_o - r_i) \sqrt{h/k} t = 0.02 \left[\frac{12}{(46.4)(0.0015)} \right]^{\frac{1}{2}}$$

$$= 0.163$$

$$r_o/r_i = 1.13$$

$$\text{From fig 17.11} \quad \eta_f \approx 0.96$$

$$q = A_f \eta_f h (T_o - T_{in})$$

$$= (0.0434)(0.96)(12)(270)$$

$$= 135 \text{ W per fin}$$

17.39 CONTINUED -

for A 30% 3 kW ENGINE

$$Q_{in} = \frac{3 \text{ kW}}{0.3} = 10 \text{ kW}$$

$$Q_{out} = Q_{in} - W = 7 \text{ kW}$$

$$\begin{aligned} \text{AMOUNT } T_x \text{ FROM FINS} &= 0.5(7) \\ &= 3.5 \text{ kW} \end{aligned}$$

No. OF FINS REQ'D:

$$n = \frac{3500 \text{ W}}{135 \text{ W/fm}} = 25.92$$

26 FINS REQUIRED

17.40

$$a) L = 20 \text{ mm} \quad b)$$

$$t = 6 \text{ mm}$$

For Beta Gases: $T_b = 120^\circ\text{C}$

$$T_\infty = 20^\circ\text{C}$$

$$h = 60 \text{ W/m}^2\text{K} \quad k_{ss} = 15.3 \text{ W/mK}$$

for CASE a) STRAIGHT FIN

$$q_f = \eta_f h A_f \theta_b$$

USING TEXT - fin 17.11

$$(L + \frac{t}{2})^{3/2} \left[\frac{h}{k t (L + \frac{t}{2})} \right]^{1/2}$$

$$= (0.02 + 0.003)^{3/2} \left[\frac{60}{(15.3)(0.006)(0.023)} \right]^{1/2}$$

$$= 0.588 \quad \eta_f \approx 0.80$$

PER m OF WIDTH: (NEGLECT ENDS)

$$q_f = 0.80(60)(100)(2)(0.020)$$

$$= 192 \text{ W/m}$$

17.40 CONTINUED -

for CASE b) - TRIANGULAR

$$L^{3/2} \left[\frac{h}{k t L} \right]^{1/2}$$

$$= 0.02^{3/2} \left[\frac{60}{(15.3)(0.003)(0.02)} \right]^{1/2}$$

$$= 0.723 \quad \eta_f \approx 0.81$$

$$q = \eta_f h A_f \theta_b$$

$$= (0.81)(2)(0.02)(60)(100)$$

$$= 194.4 \text{ W/m}$$

17.41

w/out fins:

$$q_0 = h \Delta T \pi \left(\frac{2}{12} \right) = 712 \text{ BTU/hr}$$

for LONGITUDINAL FINS:

$$L \left(\frac{h}{k t} \right)^{1/2} = \frac{1}{12} \left[\frac{8}{10 \left(\frac{1}{12} \right)} \right] = 1.46$$

$$\eta_f \approx 0.6$$

$$A_0 = \pi D_0 - 16(2t) = 0.440 \text{ ft}^2$$

$$A_f = 16(2)(\frac{1}{12}) + 16(\frac{1}{16})(\frac{1}{12}) \approx 2.67 \text{ ft}^2$$

$$q = h \Delta T [A_0 + \eta_f A_f]$$

$$= 8(712) [0.440 + 0.6(2.67)] \approx 2780 \text{ BTU/hr}$$

$$\text{INCREASE} = \frac{2068 \text{ BTU/hr}}{712 \text{ BTU/hr}} \times 100\% = 290\% \text{ a)}$$

for VARYING VALUES OF h :

h	$L \sqrt{h/k t}$	η_f	% INCR
2	0.731	0.84	412
5	1.156	0.71	346
8	1.462	0.60	290
15	2.00	0.48	229
50	3.65	0.27	122
100	5.17	0.19	81

17.41 CONTINUED

i.e. fins are most effective when h is small

17.42 Same as 17.41 except mat L is aluminum

$$\text{w/o fins } \bar{q} = 712 \text{ Btu/hr/m}^2\text{K}$$

$$L \left[\frac{h}{kL} \right]^{\frac{1}{2}} = 0.121 \quad \eta_f \approx 0.99 \quad (a)$$

$$\bar{q} \approx 4300 \text{ Btu/hr-m}^2 \quad \% \text{ inc} = 503\%$$

h	2	5	15	50	100
% inc	488	477	448	370	303

17.43

FOR KNOWN END TEMPS:

$$\frac{\theta}{\theta_0} = \frac{T - T_{in}}{T_b - T_{in}} = \left[\frac{\theta_L}{\theta_0} - \frac{-mL}{e} \left[\frac{e^{mL} - e^{-mL}}{e^{mL} + e^{-mL}} \right] + \frac{e^{-mL}}{e^{mL}} \right]$$

$$\theta_0 = 160 - 25 = 135$$

$$\theta_L = 400 - 25 = 375 \quad \frac{\theta_L}{\theta_0} = 2.78$$

$$m = \left[\frac{hP}{kA} \right]^{\frac{1}{2}} = \left[\frac{300(2)}{0.008(229)} \right]^{\frac{1}{2}} = 18.1 \text{ m}^{-1}$$

$$e^{mL} = 6.11 \quad e^{-mL} = 0.164$$

17.43 CONTINUED

SUBSTITUTING:

$$\frac{\theta}{\theta_0} = 0.440 e^{\frac{18.1x}{L}} + 0.560 e^{-\frac{18.1x}{L}}$$

$$\frac{d\theta}{dx} = \theta_0 \left[7.96 e^{\frac{18.1x}{L}} - 10.14 e^{-\frac{18.1x}{L}} \right]$$

$$@ x=0 \quad \frac{d\theta}{dx} = -2.176 \theta_0$$

$$@ x=L \quad \frac{d\theta}{dx} = 47.0 \theta_0$$

$$\dot{F} = -k \frac{d\theta}{dx} \quad \dot{q}(0) = -294 \text{ W/m}$$

$$\dot{q}(L) = 6345 \text{ kW/m}$$

17.44 USING TABLE 17.1

$$S = \frac{2\pi}{\cosh^{-1} \left(\frac{1+\beta^2-\epsilon^2}{2\beta} \right)}$$

$$\beta = 0.5 \quad \epsilon = 1/6$$

$$S = \frac{2\pi}{\cosh^{-1} \left(\frac{1+\frac{1}{4}-\frac{1}{36}}{1} \right)} = \frac{2\pi}{\cosh^{-1} \frac{11}{9}} = 9.6$$

$$\dot{q} = k S \Delta T = (0.023)(9.6)(300) = 66.3 \text{ Btu/hr-ft}^2$$

17.45 TABLE 17.1

$$S = \frac{2\pi}{\cosh^{-1}(\beta/r)} = \frac{2\pi}{\cosh(2.5)} = 1.311$$

$$\dot{q} = k S \Delta T$$

$$= (0.341)(1.311)(600) = 26.83 \text{ W/m}$$

17.46

$$200 + 0 + 2T_2 - 4T_1 = 0$$

$$200 + 0 + T_1 - T_3 - 4T_2 = 0$$

$$0 + 0 + 2T_2 - 4T_3 = 0$$

$$T_1 = 91.7^\circ\text{F} \quad T_2 = 83.3^\circ\text{F} \quad T_3 = 41.7^\circ\text{F}$$

$$\dot{q} = 8k \left[\frac{200-91.7}{2} + \frac{200-83.3}{2} \right] = 205 \text{ BTU/HR-FT}$$

17.47

By ITERATION:

NODE	T, F
1	123
2	112
3	74
4	58
5	51.5
6	36
7	18

$$\dot{q} = 8k \left[(200-123) + (200-112) \right]$$

$$= 198 \text{ BTU/HR-FT}$$

17.48

17.48 CONTINUED-

NUMERICAL SOLUTION USING A

12x12 MESH YIELDS THE

FOLLOWING:

$$\dot{q}_b \cong \frac{1400 \text{ BTU/HR-FT}^2}{\text{Per ft.}}$$

$$T_{\min} \cong \underline{91.8^\circ\text{F}} \text{ AT } i,j = 12,12$$

17.49

$$\begin{aligned} S &= \frac{2\pi}{\ln(r_o/r_i) - 0.271} \\ &= \frac{2\pi}{\ln(5/0.5) - 0.271} \\ &= 8.17 \\ \dot{q}_b &= kSLAT \\ &= (0.037)(8.17)(300)(50) \\ &= 2180 \text{ BTU/HR} \end{aligned}$$

$$\begin{aligned} \text{STEAM CONDENSED} &= \frac{\dot{q}_b}{h_{fg}} \\ &= \frac{2180}{824} = 2.65 \text{ LBm/HR} \end{aligned}$$

17.50

$$\begin{aligned} S &= \frac{2\pi}{\ln(r_o/r_i)} = \frac{2\pi}{\ln(1.2/0.324)} \\ &= 3.17 \end{aligned}$$

$$\begin{aligned} \dot{q}_b &= kSLAT \\ &= (0.166 \text{ W/m.K})(3.17)(90\text{K})(1.45\text{m}) \\ &= \underline{273 \text{ W}} \end{aligned}$$

CHAPTER 18

$$18.1 \quad Bi = \frac{hV/s}{k} = \frac{3}{10} \frac{3/488}{0.5} = 0.0369$$

∴ CAN USE LUMPED PARAMETERS

$$\text{By 1st LAW: } \dot{q}_V - hA\theta = \dot{S}_{cp}V \frac{d\theta}{dt}$$

$$\text{WHERE } \theta = T - T_{\infty}$$

$$\frac{d\theta}{dt} = \frac{\dot{q}_V}{\dot{S}_{cp}V} - \frac{hA\theta}{\dot{S}_{cp}V} = a - b\theta$$

$$\text{SOLN: } t = \frac{1}{b} \ln \frac{a}{a - b\theta} = \frac{1}{b} \ln \frac{1}{1 - \frac{b}{a}\theta}$$

$$a = \frac{\dot{q}}{\dot{S}_{cp}} = \frac{(500)(3.14)}{3(0.11)} = 5170 \text{ F/AE}$$

$$b = \frac{hA}{\dot{S}_{cp}V} = \frac{3(0.05)}{(0.11)(3)} = 4.54 \text{ HE}^{-1}$$

$$\Rightarrow t = \frac{1}{4.54} \ln \frac{1}{1 - 4.54 \cdot \frac{1}{5170}(160)}$$

$$= 0.0333 \text{ hours} = 2.0 \text{ MIN.}$$

18.2

$$V = \frac{\pi D^2}{4} L = \frac{\pi}{4} (0.0001)^2 (0.005)$$

$$= 3.93 \times 10^{-11} \text{ m}^3$$

$$A = \frac{2\pi D^2}{4} + \pi DL$$

$$= \frac{\pi}{2} (0.0001)^2 + \pi (0.0001)(0.005)$$

$$= 1.587 \times 10^{-4} \text{ m}^2$$

$$\frac{hV}{RA} = \frac{10}{20} \frac{(3.93 \times 10^{-11})}{(1.587 \times 10^{-4})} \approx 1.24 \times 10^{-5}$$

CLEARLY A LUMPED PARAMETER CASE

ENERGY BALANCE:

$$\dot{q} - hA(T - T_{\infty}) = \dot{S}_{cp}V \frac{dT}{dt}$$

$$\text{LET } \theta = T - T_{\infty};$$

$$\frac{d\theta}{dt} = \frac{\dot{q}}{\dot{S}_{cp}V} - \frac{hA}{\dot{S}_{cp}V} \theta$$

$$= A - B\theta$$

18.2 CONTINUED -

$$\int_0^\theta \frac{d\theta}{A - B\theta} = \int_0^t dt$$

$$-\frac{1}{B} \ln A - B\theta = t$$

$$\Rightarrow t = \frac{1}{B} \ln \frac{A}{A - B\theta}$$

$$A = \frac{\dot{q}}{\dot{S}_{cp}V} = \frac{9(0.12)}{k/\alpha(V)} = \frac{1.8}{(20/5 \times 10^5)(3.93 \times 10^{-11})} = 1.145 \times 10^5$$

$$B = \frac{hA}{\dot{S}_{cp}V} = \frac{10(1.587 \times 10^{-4})}{(20/5 \times 10^5)(3.93 \times 10^{-11})} = 1.010$$

$$t = \frac{1}{1.01} \ln \frac{1.145 \times 10^5}{1.145 \times 10^5 - (1.01)(810)} = 7.63 \times 10^{-3} \text{ s} = 7.63 \text{ ms}$$

18.3 ALUMINUM WIRE:

$$D = 0.794 \text{ mm} \quad R = 0.0572 \Omega/m$$

$$k = 229 \text{ W/m.K} \quad \rho = 2701 \text{ kg/m}^3$$

$$c_p = 938 \text{ J/kg.K} \quad \alpha = 9.16 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Bi = \frac{hV}{ks} = \frac{h}{k} \frac{\pi D K}{4} = \frac{(500)(0.794 \times 10^{-3})}{(229)(4)} = 4.33 \times 10^{-4}$$

- LUMPED PARAMETER SOLN IS OK.

STEADY STATE CASE - PER M

$$I_n R = hA \Delta T$$

$$\Delta T = \frac{(100)^2 (0.0572) \text{ W}}{(550 \text{ W/m}^2 \text{K}) \pi (0.794 \times 10^{-3}) \text{ m}^2} = 416.9 \text{ K}$$

$$T_{\max} = 25 + 416.9 = 441.9 \text{ C}$$

18.3 CONTINUED -

$$\begin{aligned} & \text{TRANSIENT CASE -} \\ & \frac{ScpV}{dt} = I^2 R - hS(T-T_{\infty}) \\ & \frac{d\theta}{dt} = \frac{I^2 R}{ScpV} - \frac{hS}{ScpV} \theta = A - B\theta \\ & A = \frac{I^2 R}{ScpV} = \frac{(100)^2 (0.05 \Omega)}{(2701)(938) \frac{\pi}{4} (0.714 \times 10^{-3})^2} \\ & = 456 \text{ K/s} \\ & B = \frac{hS}{ScpV} = \frac{(550)(\pi)(0.714 \times 10^{-3})}{(2701)(938) \frac{\pi}{4} (0.714 \times 10^{-3})^2} \\ & = 1.094 \text{ s}^{-1} \\ & \frac{d\theta}{dt} = A - B\theta \\ & \int_0^\theta \frac{d\theta}{\theta - B\theta} = \int_0^t dt \\ & -\frac{1}{B} \ln \frac{A-B\theta}{A} = t \\ & t = \frac{1}{B} \ln \frac{A}{A-B\theta} \\ & = \frac{1}{1.094} \ln \frac{456}{456 - 1.094(411.9)} \\ & = 4.06 \text{ s} \end{aligned}$$

$$\begin{aligned} 18.4 \quad Bi &= \frac{hV}{kS} = \frac{6}{0.151} \left[\frac{(0.1)(0.3)(0.45)}{0.6(0.45)(2)} + \frac{0.6(0.3)(2)}{0.3(0.45)(1)} \right] \\ & = 2.75 \end{aligned}$$

A DISTRIBUTED PARAMETER PROB,

$$\begin{aligned} \frac{T-T_{\infty}}{T_0-T_{\infty}} &= \frac{320-297}{420-297} = 0.187 = Y_A Y_B Y_C \\ M_X &= \frac{0.151}{6(0.15)} = 0.168 \quad X_x = \frac{dt}{0.15^2} = 2.75 \times 10^{-6} t \\ M_Y &= 0.119 \quad X_y = 1.22 \times 10^{-6} t \\ M_Z &= 0.042 \quad X_z = 1.72 \times 10^{-6} t \end{aligned}$$

18.4 CONTINUED -

BY TRIAL & ERROR
 $t \approx 80 \text{ hours}$

$$\begin{aligned} 18.5 \quad Bi &= \frac{hV}{kS} = \frac{16}{23} \left(\frac{6/12}{6} \right) = 0.058 \\ & \text{LUMPED PARAMETER!} \\ F_0 &= \frac{at}{(V/S)^2} = \frac{23}{460(0.10) \text{ hr}} \frac{t}{\left(\frac{6/12}{6} \right)^2} \\ & = 72t \\ \frac{T-T_{\infty}}{T_0-T_{\infty}} &= \frac{600}{2000} = (0.058)(72t) \\ t &= 0.288 \text{ hr} = 17.3 \text{ min} \end{aligned}$$

18.6 LUMPED PARAMETER SOLN APPLIES

IF $Bi = \frac{hV}{kS} < 0.1$ OR $h < 0.1 \text{ kS/V}$

$$\frac{kS}{V} = \frac{k \cdot \pi D^2}{\pi D^3 / 6} = 0.47(6) = 2.82$$

SO h MUST BE $< 0.1(2.82) = 0.282 \text{ W/m}^2\text{K}$
 BUT $h = 15 \Rightarrow$ USE DISTRIBUTED PARAM.
 SOLN.

$$\begin{aligned} \frac{dt}{r_0^2} &= \frac{(0.47)}{(940)(3800)(0.05)^2} t = 5.26 \times 10^{-5} t \\ \frac{T_s-T_{\infty}}{T_0-T_{\infty}} &= 0.5 \quad \frac{k}{hr_0} = \frac{0.47}{15(0.05)} = 0.127 \\ X &\approx 0.17 = 5.26 \times 10^{-5} t \\ t &= 3230 \text{ s} = 53.9 \text{ min} \end{aligned}$$

$$18.7 \quad Bi \approx 0.005$$

USE LUMPED PARAMETER SOLN.

$$\frac{T-T_{\infty}}{T_0-T_{\infty}} = \frac{hScpV}{kS} \sqrt{t}$$

$$\begin{aligned} t &= \frac{ScpV}{hS} \ln \frac{T_0-T_{\infty}}{T-T_{\infty}} \\ &= \frac{51 \text{ V}}{4 \text{ A} \times 12} (0.12) = 0.658 \frac{\text{V}}{\text{A}} \end{aligned}$$

18.7 CONTINUED -

V/A IN INCHES			
	$L(\text{in})$	V/A	$t(\text{min})$
a	3	0.5	19.7
b	6	0.6	23.6
c	12	0.67	26.3
d	24	0.706	27.9
e	60	0.732	28.9

18.8

$$\frac{T_c - T_{\infty}}{T_0 - T_{\infty}} = \frac{500 - 1000}{70 - 1000} = 0.538$$

$$\frac{V}{A} = \frac{D}{4 + 2D/L} = 1/17$$

$$Bi = \frac{hV/S}{k} = \frac{4/\pi}{k}$$

a) Cu - $Bi \leq 0.1$ - Lumped

$$t = \frac{8C_p V}{h A} \ln \frac{1}{0.538} = 27.9 \text{ MIN}$$

b) Al $Bi \leq 0.1$

$$t = 0.345 \text{ Al} = 20.7 \text{ MIN}$$

c) Zn $Bi < 0.1$

$$t = 0.381 \text{ Zn} = 22.9 \text{ MIN}$$

d) STEEL $Bi < 0.1$

$$t = 0.502 \text{ Al} = 30.2 \text{ MIN}$$

18.9 WATER IS WELL-STIRRED
 \therefore LUMPED $\sim T = T(t)$ only

$$\begin{aligned} \frac{T - T_{\infty}}{T_0 - T_{\infty}} &= \exp \left(-\frac{hAt}{8C_p V} \right) \\ &= \exp \left[-\frac{40(\pi)(15)(2)}{62.4(1)(\pi)(1.5^2/4)(2)} t \right] \\ T &= 300 - 260 e^{-1.71t} \end{aligned}$$

$t, \text{ hr}$	0	0.1	0.2	0.4	0.6	0.8	1.0
$T, \text{ F}$	40	81	115	169	210	237	253

18.9 CONTINUED

18.10

$$\begin{aligned} Bi &= \frac{hV/S}{k} = \frac{h}{k} \frac{\pi D^2 L / 4}{\pi D L + 2\pi D^2 / 4} \\ &= \frac{hD}{4k(L+D/2)} = \frac{85(0.6)(0.6)}{(229)(4)(0.9)} \\ &= 0.0371 \end{aligned}$$

~ LUMPED PARAMETER (AST)

TEMP MAY BE CONSIDERED

UNIFORM AT ANY TIME

$$f_0 = \frac{x_t}{(V/S)^2} = \frac{(9.16 \times 10^{-5})(3600)}{(0.10)^2}$$

$$= 32.98$$

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = e^{-Bi f_0} = e^{-(0.0371)(32.98)}$$

$$= 0.294$$

$$T = 345 + 0.294(130)$$

$$= 383.2 \text{ K}$$

18.11

$$\begin{aligned} Bi &= \frac{hV/S}{k} = \frac{15 \left[\frac{\pi D^2}{4} L / \pi D L \right]}{12.4} \\ &= 0.151 \end{aligned}$$

MUST USE DISTRIBUTED PARAMETER
SOLN. FIG F.8

$$\frac{T_s - T}{T_s - T_0} = \frac{2300 - 1500}{2300 - 200} = 0.381$$

$$\frac{xt}{x_1^2} = \frac{0.15}{(0.25)^2} t = 24t$$

18.11 CONTINUED -

$$n = \frac{x}{x_1} = 0 \quad m = \frac{k}{hx_1} = 3.31$$

$$X \approx 1.7 \Rightarrow t = \frac{1.7}{2.4} = 0.708 \text{ HR}$$

$$\text{VELOCITY} = \frac{20}{0.708} = \underline{\underline{28.2 \frac{\text{FT}}{\text{HR}}}} = \underline{\underline{0.41 \frac{\text{FT}}{\text{M}}}}$$

$$18.12 \frac{T_s - T_{\infty}}{T_0 - T_{\infty}} = \frac{410 - 435}{295 - 435} = 0.179$$

$$\frac{xt}{x_1^2} = \frac{(6.19 \times 10^{-8})t}{(0.015)^2} = 2.75 \times 10^{-4} t$$

$$m \approx 0 \text{ from CHART } X \approx 0.8$$

$$t = \frac{0.8}{2.75 \times 10^{-4}} = \underline{\underline{29125}} = \underline{\underline{48.5 \text{ MIN}}}$$

$$18.13 B = \frac{hv}{ks} = \frac{40 \pi^2 / 6}{19.3 \pi D L} = 0.00575$$

LUMPED PARAMETER!

$$T_0 = \frac{xt}{(V/s)^2} = \frac{0.8(15/3600)}{[0.2/2(6)]^2} = 432$$

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = \frac{-B_i T_0}{T_0 - T_{\infty}} = 0.0834$$

$$T = \underline{\underline{115.9 \text{ F}}}$$

$$18.14 x_1 = 0.15 \text{ m} \quad x = 0.05 \text{ m}$$

$$x/x_1 = 1/3$$

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = \frac{100 - 380}{125 - 380} = 0.789$$

$$m = k/hx_1 = \frac{0.20}{140(0.15)} = 0.00952$$

$$xt/x_1^2 = \frac{1.1 \times 10^{-7} t}{(0.15)^2} = 4.89 \times 10^{-6} t$$

18.14 CONTINUED -

{USING CHART FOR CYL}

$$@ \frac{x}{x_1} = 0.2 \quad \frac{xt}{x_1^2} = 0.10$$

$$@ \quad 0.4 \quad " = 0.07$$

$$\text{INTERPOLATING} @ 0.33 \quad \frac{xt}{x_1^2} \approx 0.08$$

$$t \approx 0.08 \quad \approx 16360 \text{ S}$$

$$4.89 \times 10^{-6} = \underline{\underline{273 \text{ MIN}}} = \underline{\underline{4.54 \text{ HR}}}$$

$$18.15 \cdot B_i = \frac{hV/s}{k} = \frac{228 \pi D^2}{0.19 \pi D L} = 3.9$$

~ DISTRIBUTED PARAMETER SOLN:

$$\frac{xt}{x_1^2} = \frac{0.19 t}{(580)(0.050)(0.005)^2} = 7.38 \times 10^{-5} t$$

$$\frac{k}{hx_1} = \frac{0.19}{22.8(0.005)} = 0.128$$

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = \frac{530 - 810}{125 - 810} = 0.544 \quad n = 0$$

$$\text{from CHART} \quad X \approx 0.23 = 7.38 \times 10^{-5} t$$

$$t = \underline{\underline{3114 \text{ S}}} = \underline{\underline{51.9 \text{ MIN}}}$$

18.16 USING CHART SOLN:

$$\frac{T_s - T}{T_s - T_0} = \frac{100 - 250}{100 - 400} = 0.5$$

$$Y_A Y_B Y_C = 0.5 \quad n_A = n_B = n_C = 0$$

$$m_A = m_B = m_C = 0 \quad X_A = 442 t$$

$$X_B = 70.7 t$$

$$X_C = 0.884 t$$

$$Y_C \approx 1 \quad \text{By TRIAL \& ERROR, } t \approx 8.4 \times 10^{-4} \text{ HR}$$

$$\approx 3.05 \text{ S}$$

18.17

$$B_i = \frac{hV}{kS} = \frac{130}{0.151} (0.6)(0.3)(0.45) [\text{see Prob 18.7}] \\ = 105 \quad \left\{ \begin{array}{l} \text{DISTRIBUTED} \\ \text{PARAMETER} \end{array} \right\}$$

$$\frac{T_s - T_p}{T_0 - T_p} = 0.187 = YAY_B Y_c$$

$$M_x = \frac{0.151}{130(0.15)} = 4.377 \times 10^{-3}$$

$$M_y = 2.92 \times 10^{-3}$$

$$M_z = 1.09 \times 10^{-3}$$

$$X_x = \frac{(6.19 \times 10^{-8})t}{(0.15)^2} = 2.75 \times 10^{-6}t$$

$$X_y = 1.22 \times 10^{-6}t$$

$$X_z = 1.09 \times 10^{-6}t$$

TRIAL $\frac{1}{2}$ ERROR: $t \approx \underline{62 \text{ hours}}$

$$18.18 \quad B_i = \frac{hV}{kS} = \frac{(90 \text{ W/m}^2 \cdot \text{K})(\pi D^2 K/4)}{(0.5 \text{ W/m} \cdot \text{K})(\pi \theta K)} \\ = 0.9 \quad \left\{ \begin{array}{l} \text{DISTRIBUTED} \\ \text{PARAMETER} \end{array} \right\}$$

$$\frac{T_s - T_p}{T_0 - T_p} = \frac{80 - 100}{5 - 100} = 0.211$$

$$m = \frac{k}{h x_i} = \frac{0.5}{90(0.01)} = 0.556$$

$$n=0 \quad X = \frac{xt}{x_i^2} = \frac{0.5t}{880(3250)(0.10)^2} \\ = 1.70 \times 10^{-3}t$$

FROM CHART $X \approx 0.76 = 1.70 \times 10^{-3}t$

$$t = \underline{447 \text{ s}} = \underline{7.45 \text{ min.}}$$

18.19

$$T_s - T_p = 2L = 2r_0 \\ V = \pi r_0^2 (2L) \\ = \frac{2.25}{0.991} = 2.27 \times 10^{-3} \text{ m}^3$$

$$L = r_0 = \frac{2.27 \times 10^{-3}}{\pi} = 0.0712 \text{ m}$$

FOR A FINITE CYLINDER:

$$\frac{T(0,0,t) - T_p}{T_i - T_p} = R(0,t) X(0,t)$$

$$\frac{T(0,0,t) - T_p}{T_i - T_p} = \frac{95 - 190}{5 - 190} = 0.514$$

FOR BOTH $r \neq x$ DIRECTIONS:

$$\frac{h r_0}{k} = \frac{h L}{k} = \frac{15(0.0712)}{0.675} = 1.582$$

$$\frac{xt}{r_0^2} = \frac{xt}{L^2} = \frac{0.167 \times 10^{-6}t}{(0.0712)^2} = 3.29 \times 10^{-5}t$$

TRIAL $\frac{1}{2}$ ERROR $\frac{xt}{L^2} = \frac{xt}{r_0^2} \approx 0.34$
 {USING CHARTS}

$$t = 0.34 / 3.29 \times 10^{-5} = 10330 \text{ s} \\ = \underline{172 \text{ MIN}} = \underline{2.87 \text{ HR}}$$

18.20 SAME CYL AS IN PROB 18.15
 BUT H VARIES -

AS $H/D \rightarrow \infty \quad t = 3114 \text{ s} = 51.9 \text{ MIN.}$

WITH ENDS CONSIDERED: $D = \text{CONST}$

$$\frac{xt}{x_i^2} \Big|_{\text{CYL}} = 7.38 \times 10^{-5}t \quad \frac{k}{h x_i k_{\text{EN}} \Big|_{\text{CYL}}} = 0.128 \\ = 13 \text{ cm}$$

$$Y = 0.544 = Y_{\text{CYL}} Y_{\text{PL}}$$

$$\text{FOR PLANE: } \frac{xt}{x_i^2} = \frac{1.25 \times 10^{-5}t}{H^2}$$

$$k/h x_i = 0.0167/H$$

18.20 (CONTINUED -

18.21 USE SEMI-INFINITE WALL SOLN.

$$\frac{T_p-T}{T_p-T_0} = \operatorname{erf} \eta + \exp\left(\frac{\beta^2}{4\eta^2}\right) \left[1 - \operatorname{erf}\left(\frac{\beta}{2\eta} + \eta\right) \right]$$

$$\eta = \frac{y}{\sqrt{2kt}} \quad \beta = \frac{h\sqrt{k}}{k} \quad \frac{\beta}{2\eta} = \frac{h\sqrt{t}}{k}$$

@ SURFACE ~ X=0

$$\frac{T_p-T}{T_p-T_0} = \exp\left(\frac{\beta^2}{4\eta^2}\right) \left(1 - \operatorname{erf}\left(\frac{\beta}{2\eta}\right) \right)$$

$$\frac{h^2xt}{k^2} = \frac{(200)^2 (0.35)t}{(1.73)^2} = 4678t \quad t \text{ IN HOURS}$$

$$\frac{h\sqrt{xt}}{k} = 68A t^{1/2}$$

$$0.1 = e^{68A t^{1/2}} (1 - \operatorname{erf} 4678t)$$

APPROXIMATION: USE 1ST TERM IN SERIES EXPANSION:

$$\frac{T_p-T_0}{T_p-T_0} = 0.1 = \frac{2\eta}{\sqrt{\pi}} \frac{1}{\beta} \frac{k}{h\sqrt{xt}}$$

$$t = 6.80 \times 10^{-3} \text{ hr} = \underline{24.5 \text{ S}}$$

AT THIS TIME $\eta = 0.427$ $\beta = 4.81$ SOLVING FOR T: $\underline{T = 1413 \text{ F}}$

18.22

USE SEMI-INFINITE SOLN.

$$\frac{T-T_0}{T_0-T_0} = \operatorname{erf} \frac{y}{\sqrt{2kt}} = \frac{2}{\sqrt{\pi}} \int_0^{\frac{y}{\sqrt{2kt}}} e^{-\beta^2} d\beta$$

$$\text{GIVEN: } \alpha = 0.0456 \text{ ft}^2/\text{hr} \quad T_0 = 0 \text{ F}$$

$$\frac{\partial T}{\partial y}(0) = 0.02 \text{ F/ft} \quad T_0 = 7000 \text{ F}$$

$$\frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left[\frac{2}{\sqrt{\pi}} \int_0^{\frac{y}{\sqrt{2kt}}} e^{-\beta^2} d\beta \right] (T_0-T_0)$$

$$= \frac{2}{\sqrt{\pi}} \left[e^{-\frac{y^2}{4kt}} \frac{1}{2\sqrt{kt}} \right] (T_0-T_0)$$

$$\text{for } y=0 \quad \frac{\partial T}{\partial y}(0) = \frac{T_0-T_0}{\sqrt{\pi k t^2}}$$

$$t = \frac{(T_0-T_0)^2}{\pi \times (0.0456)(1.73)} = \frac{(7000)^2}{\pi (0.0456) (4 \times 10^{-4})}$$

$$\underline{= 9.75 \times 10^7 \text{ YEARS}}$$

18.23 USE SEMI-INFINITE WALL SOLN.

$$\frac{T-T_0}{T_p-T_0} = \operatorname{erfc} \frac{x}{\sqrt{2kt}} - \left[\exp\left(\frac{hx}{k} + \frac{h^2xt}{k^2}\right) \right] \times \left[\operatorname{erfc}\left(\frac{x}{\sqrt{2kt}} + \frac{h\sqrt{xt}}{k}\right) \right]$$

@ X=0 THIS REDUCES TO

$$\frac{T-T_0}{T_p-T_0} = 1 - e^{-z^2} (1 - \operatorname{erfc} z)$$

WHERE $z = \frac{h\sqrt{xt}}{k}$

$$\alpha = \frac{k}{scp} = \frac{0.17}{(545)(2385)} = 1.3 \times 10^{-6} \text{ m}^2/\text{s}$$

$$\frac{T-T_0}{T_p-T_0} = \frac{400-21}{900-21} = 0.431$$

$$z = \frac{h\sqrt{xt}}{k} = \frac{30}{0.17} \sqrt{1.3 \times 10^{-7} t} t^{1/2}$$

$$= 0.0636 t^{1/2}$$

$$z^2 = 0.00405 t$$

18.23 CONTINUED

SUBSTITUTING,

$$0.431 = 1 - e^{-z^2} (1 - \operatorname{erf} z)$$

$$e^{-z^2} (1 - \operatorname{erf} z) = 0.569$$

BY TRIAL & ERROR: $z \approx 0.6$

$$t = \frac{z^2}{0.00405} = \frac{88.93}{0.00405} = \underline{\underline{1.48 \text{ MIN}}}$$

$$\begin{aligned} 18.24: \quad \frac{T-T_s}{T_0-T_s} &= \frac{2}{\sqrt{\pi}} \int_0^{x/2\sqrt{at}} e^{-\beta^2} d\beta \\ \frac{\partial T}{\partial t} &= (T_0-T_s) \frac{2}{\sqrt{\pi}} e^{-x^2/4at} \left[\frac{x}{4\sqrt{at} + 3/2} \right] \\ &= -\frac{(T_0-T_s)}{t\sqrt{\pi}} \frac{x}{2\sqrt{at}} e^{-x^2/4at} \end{aligned}$$

So $\left| \frac{\partial T}{\partial t} \right|$ is MAX when $x^2/2\sqrt{at}$ is MAX

$$\frac{\partial}{\partial z} \left(z^2 e^{-z^2} \right) = z^2 - 2z^2 e^{-z^2} = 0$$

$$z = 1/\sqrt{2} \text{ OR } \infty$$

$$\Rightarrow \frac{x}{2\sqrt{at}} = \frac{1}{\sqrt{2}} \text{ OR } x = \sqrt{2at}^{1/2}$$

$$\begin{aligned} x &= [2(0.045b)(9.8 \times 10^7)(24)(365)]^{1/2} \\ &= \underline{\underline{2.8 \times 10^5 \text{ FT}}} = \underline{\underline{53 \text{ MILES}}} \end{aligned}$$

18.25 This is A Semi-Infinite Case

$$\frac{T_s-T}{T_0-T_0} = \operatorname{erf} \frac{x}{2\sqrt{at}}$$

$$\frac{x}{2\sqrt{at}} = \frac{0.25 \text{ m}}{2[(5.16 \times 10^{-7} \text{ m}^2/\text{s})(1800 \text{ s})]^{1/2}}$$

$$= 1.297 \quad \operatorname{erf} 1.297 \approx 0.934$$

$$\frac{100-T}{100-280} = 0.934 \quad T = 334 \text{ K}$$

18.26 Solid IS AMENABLE TO EITHER NUMERICAL OR ANALYTICAL APPROX

$$\frac{T_s-T_p}{T_0-T_p} = \exp\left(\frac{h^2 t}{k^2}\right) \left[\operatorname{erfc} \frac{h\sqrt{at}}{k} \right]$$

$$\Delta T_s = T_s - T_p \quad h = 0.44 (J-T_p)^{1/3}$$

$$\begin{aligned} \Delta T_s &= 900 \exp\left(0.00732 \Delta T_p^{2/3} t\right) \times \\ &\quad \times \left[\operatorname{erfc} (0.0856 \Delta T_p^{1/3} t^{1/2}) \right] \end{aligned}$$

TRIAL & ERROR - AT EACH t

t	1 hr	6 hr	24 hr
T_f	580	396	275

18.27

$$\begin{aligned} \frac{T-T_0}{T_p-T_0} &= \operatorname{erfc} \frac{x}{2\sqrt{at}} = \left[\exp\left(\frac{hv}{k}\right) + \frac{h^2 at}{k^2} \right] x \\ &\quad \times \left[\operatorname{erfc} \left(\frac{x}{2\sqrt{at}} + \frac{h\sqrt{at}}{k} \right) \right] \end{aligned}$$

$$\frac{T-T_0}{T_p-T_0} = \frac{400-25}{800-25} = 0.484$$

18.27 CONTINUED

@ SURFACE ($x=0$)

$$\frac{x}{2\sqrt{kt}} = 0 \quad \text{erf}(0) = 0 \quad \text{erfc}(0) = 1$$

$$\frac{hx}{k} = \frac{20}{0.21} (1.07 \times 10^{-7})^{1/2} t^{1/2}$$

$$= 0.0311 t^{1/2} = z$$

GOVERNING EXPRESSION BECOMES:

$$0.484 = 1 - e^{-z^2} (1 - \text{erf}z)$$

TRIAL $\frac{1}{2}$ ERROR: $z \approx 0.73 = 0.0311t^{1/2}$

$$t = \underline{551 \text{ s}} = \underline{9.18 \text{ MIN}}$$

18.28

FOR GLASS:

$$x = \frac{k}{3cp} = \frac{0.45}{(170)(0.2)} = 0.0132 \frac{\text{ft}^2}{\text{HR}}$$

USING SEMI-INFINITE WALL EXPRESSION:

$$\frac{T-T_0}{T_s-T_0} = \frac{32-30}{65-30} = 0.0572 = \text{erfc} \frac{x}{2\sqrt{kt}}$$

$$\frac{x}{2\sqrt{kt}} = 1.38$$

$$\underline{t = 3.9 \text{ s}}$$

18.29 CHARTS APPLY BUT ARE DIFFICULT TO READ -

CHECK VALIDITY OF INFINITE WALL SOLN

$$\frac{L}{2\sqrt{kt}} = \frac{1 \text{ FT}}{2(0.0231t)^{1/2}} > 2$$

WORKS FOR $t > 2.7$ HOURS

$$\frac{x}{2\sqrt{kt}} = \frac{1}{2(0.0231t)^{1/2}} = \frac{3.29}{t^{1/2}}$$

$$\frac{T_s-T}{T_s-T_0} = \text{erf} \frac{3.29}{t^{1/2}} \quad \underline{t \approx 5.2 \text{ HR}}$$

18.30 APPLICABLE EXPRESSION IS

$$\frac{T_s-T}{T_s-T_0} = \text{erf} A + \exp\left(\frac{hx}{k} + B^2\right) \left[1 - \text{erf}(A+B) \right]$$

$$A = \frac{x}{2\sqrt{kt}} = \frac{0.05}{2(0.444 \times 10^5 t)^{1/2}}$$

$$= 11.92 t^{-1/2}$$

$$\frac{hx}{k} = \frac{22(0.05)}{17.3} = 0.0636$$

$$B = \frac{hx}{k} = \frac{22}{17.3} (0.444 \times 10^5 t)^{1/2}$$

$$= 0.00267 t^{1/2}$$

$$B^2 = 7.11 \times 10^{-6} t$$

TRIAL $\frac{1}{2}$ ERROR: $t \approx 49000 \text{ S}$

$\approx \underline{13.6 \text{ Hours}}$

18.31

$$\frac{T_s-T}{T_s-T_0} = \text{erf} A + \exp\left(\frac{hx}{k} + B^2\right) \left[1 - \text{erf}(A+B) \right]$$

$$@ x=0, t=180 \text{ S}$$

$$A = \frac{x}{2\sqrt{kt}} = 0 \quad \frac{hx}{k} = 0$$

$$B = \frac{hx}{k} = \frac{110}{17.3} \sqrt{180} = 0.180$$

$$\frac{20-T}{20-300} \approx 0.96$$

$$T = 20 + 268 = \underline{288 \text{ C}}$$

$$AT \quad x = 50 \text{ mm}$$

$$A = 0.89$$

$$\frac{hx}{k} = 0.1318$$

$$B = 0.180 \quad B^2 = 0.0324$$

$$\frac{20-T}{20-300} = 0.974 \quad T = \underline{293 \text{ C}}$$

18.32.

Eqn (18-33)

$$\frac{F_x}{A} = \frac{d}{dt} \int_0^{\delta} S c_p T dx - S c_p T_0 \frac{dS}{dt}$$

$$\text{For } \frac{T-T_0}{T_s-T_0} = \phi \left(\frac{x}{\delta} \right)$$

$$\frac{\partial T}{\partial x} \Big|_{x=0} = (T_s - T_0) \frac{1}{\delta} \frac{\partial \phi}{\partial x} \Big|_{x=0}$$

$$\frac{\partial \phi}{\partial x}(0) = K \quad (\text{A CONSTANT})$$

$$\frac{F_x}{A} = -k \frac{\partial T}{\partial x} \Big|_{x=0} = F(t)$$

$$\therefore T_s - T_0 = \frac{F(t)}{kK} \delta$$

$$\begin{aligned} F(t) &= \frac{d}{dt} \int_0^{\delta} T dx - T_0 \frac{d\delta}{dt} \\ \frac{d}{dt} \int_0^{\delta} T dx &= T_0 \frac{d\delta}{dt} + \frac{d}{dt} (T_s - T_0) \int_0^{\delta} \phi dx \\ &= T_0 \frac{d\delta}{dt} + \frac{d}{dt} [(T_s - T_0) B \delta] \\ &\{ B \text{ A CONSTANT} \} \end{aligned}$$

$$\begin{aligned} \Rightarrow \frac{F(t)}{S c_p} &= \frac{d}{dt} [(T_s - T_0) B \delta] \\ &= \frac{d}{dt} \left[\frac{B \delta^2 F(t)}{kK} \right] \end{aligned}$$

$$\frac{k}{S c_p} \frac{K}{B} F(t) = \frac{d}{dt} [\delta^2 F(t)]$$

$$\delta^2 F(t) = \frac{K}{B} \times \int_0^t F(t) dt$$

$$\delta = (\text{CONSTANT}) \sqrt{\alpha} \left[\int_0^t F(t) dt \right]^{1/2}$$

18.33

NUMERICAL SOIN PROB

INITIAL TEMP PROFILE-

$$T = 35 + 0.5x \quad T \text{ IN } ^\circ\text{F}, x \text{ IN FT}$$

ALGORITHMS -

FOR ALL NODES EXCEPT SURFACE:

$$T_i^{t+1} = \frac{T_{i+1}^t + T_{i-1}^t}{2}$$

FOR SURFACE NODE:

$$T_0^{t+1} = T_1^t - \frac{h \Delta X}{K} T_0^t$$

$$\sim \frac{\Delta t}{\Delta x^2} = \frac{1}{2} \frac{2h \Delta t}{S c_p \Delta X} = \frac{h \Delta X}{K} \quad T_p = 0$$

RESULT - USING SPREADSHEET
OR PROGRAMTIME \cong 1800 hours

18.34

NUMERICAL SOIN PROB

ALGORITHMS -

$$\text{NODE 1: } T_1^{t+1} = \frac{T_0^t + T_2^t}{2}$$

$$T_{n-1}^{t+1} = \frac{T_{n-2}^t + T_n^t}{2}$$

$$T_i^{t+1} = \frac{T_{i+1}^t + T_{i-1}^t}{2}$$

$$\text{for } \frac{\Delta t}{\Delta x^2} = \frac{1}{2} : \text{ If } \Delta x = 0.25 \text{ FT}$$

$$\Delta t = 1.95 \text{ HR}$$

NO OF INCREMENTS $\cong 7.4$

$$\text{TIME} = 7.4 (1.95) \cong \underline{14.4 \text{ HR}}$$

$$FB-35. \quad T = 520 + 330 \sin \frac{\pi x}{L}$$

$$\alpha = \frac{k}{\rho c_p} = \frac{0.66}{(1670)(838)} = 4.72 \times 10^{-5} \text{ m}^2/\text{s}$$

$$\frac{\alpha \Delta t}{\Delta x^2} = \frac{1}{2}$$

NODES $\rightarrow 0, 1, i, n-1, n$

SAME ALGORITHMS AS PROB (FB-34)

FOR $\frac{\alpha \Delta t}{\Delta x^2} = \frac{1}{2}$ IF $\Delta x = 0.225 \text{ m}$

$$\Delta t = 536 \text{ s}$$

NO OF INCREMENTS ≈ 2.4

$$\text{Time} \approx 2.4(536) = 1286 \text{ s}$$

$$= 21.4 \text{ MIN}$$

AT THIS TIME: $T_{\text{surf}} \approx \underline{360 \text{ K}}$

CHAPTER 19

19.1 For A Plane Wall:

VARIABLES

DIMENSIONS

T_0	T
T_∞	T
x	L
L	L^2/t
α	
k	Q/LtT
t	t
h	Q/L^2tT

$$i = n - r = 5$$

If Temps Are Grouped As

$$T - T_\infty, T_0 - T_\infty \quad i = n - r = 4$$

$$\pi_1 = \Delta T^a L^b k^c \alpha^d (T - T_\infty)$$

$$\pi_2 = (\quad) (x)$$

$$\pi_3 = (\quad) (t)$$

$$\pi_4 = (\quad) (h)$$

$$\pi_1 = \frac{T - T_\infty}{T_0 - T_\infty} \quad \pi_2 = \frac{x}{L} \quad \pi_3 = \frac{\alpha t}{L^2} \quad \pi_4 = \frac{hL}{k}$$

19.2 Air H_2O Benz Hg 64C

$$\rho = 1.9 \times 10^{-5} \quad 0.474 \times 10^{-5} \quad 0.473 \times 10^{-5} \quad 1.06 \times 10^{-6} \quad 0.18 \times 10^{-2}$$

$$cp = 1.008 \times 10^3 \quad 1.0 \quad 0.45 \quad 0.083 \quad 0.598$$

$$K = 0.0293 \quad 0.383 \quad 0.0762 \quad 5.03 \quad 0.165$$

$$Re = 23 \times 10^5 \quad 1.02 \times 10^7 \quad 1.02 \times 10^7 \quad 4.57 \times 10^7 \quad 37,800$$

$$Pr = 0.699 \quad 2.72 \quad 5.21 \quad 0.021 \quad 13.1$$

$$Nu = 348 \quad 15.4 \quad 71.3 \quad 1.17 \quad 35.7$$

$$St = 2.16 \times 10^{-3} \quad 5.55 \times 10^{-7} \quad 1.45 \times 10^{-6} \quad 1.22 \times 10^{-5} \quad 7.21 \times 10^{-5}$$

19.3 ~ PLOTS ~

19.4 Air@ 310K: $Pr = 0.705$

$$k = 27 \times 10^{-2} \text{ W/m.K}$$

$$\frac{fg}{\lambda^2} = 1.161 \times 10^8 / \text{m}^3 \cdot \text{K}$$

$$Gr = \frac{fg}{\lambda^2} \times AT = (1.161 \times 10^8)(110) \times 3^3$$

$$\delta = 3.94 \frac{Pr^{-1/2}}{x} (Pr + 0.954)^{1/4} Gr_x^{-1/4}$$

$$x = 15 \text{ cm} \quad 30 \text{ cm} \quad 1.5 \text{ m}$$

$$Gr_x = 4.31 \times 10^7 \quad 3.45 \times 10^8 \quad 4.31 \times 10^{10}$$

$$\delta = 0.985 \text{ cm} \quad 1.17 \text{ cm} \quad 1.75 \text{ cm}$$

$$Nu = 30.5 \quad 51.2 \quad 171.3$$

$$h_x = 5.48 \text{ W/m.K} \quad 4.61 \quad 3.08$$

19.5

$$h_x = \frac{k}{x} 0.332 Re_x^{1/2} Pr^{1/3}$$

$$= 0.055 \frac{Re_x^{1/2} Pr^{1/3}}{x}$$

$$T = 30 \text{ F} \quad T_f = 55 \text{ F} \quad h_x = 0.4 \frac{Re_x}{x}^{1/2}$$

x	$Re_x^{1/2}/x$	h_x
0	00	00
0.5	10.92	8.74
1	15.46	6.19
1.5	18.92	5.05
2	21.85	4.37

$$T = 50 \text{ F} \quad T_f = 75 \text{ F} \quad h_x = 0.1256 \frac{Re_x}{x}^{1/2}$$

x	$Re_x^{1/2}/x$	h_x
0	00	00
0.5	22.2	11.37
1	31.45	8.06
1.5	38.5	6.57
2	44.5	5.70

19.5 CONTINUED -

$$T = 80F \quad T_f = 105 \quad h_x = 0.119 \frac{Btu}{\frac{1}{2}A}$$

x	$\frac{Btu}{\frac{1}{2}A}$	h_x
0	∞	∞
0.5	61.5	16.06
1	95.2	11.32
1.5	117	9.29
2	135	8.03

19.6

AS PER DEVELOPMENT IN TEXT

$$q_2 - q_1 - q_3 = 0$$

$$\frac{8VcpzT}{2} \frac{T|_{x+\Delta x} - T|x}{\Delta x} - \frac{8VcpzT}{2} \frac{T|x - T|_x}{\Delta x} - \frac{q}{A} (2\Delta x) = 0$$

$$\frac{8Vcpz}{2} \frac{T|_{x+\Delta x} - T|x}{\Delta x} - \frac{q}{A} = 0$$

19.6 CONTINUED -

IN LIMIT AS $\Delta x \rightarrow 0$

$$\frac{8Vcpz}{2} \frac{\Delta T}{\Delta x} - \frac{q}{A} = 0$$

$$\int_{T_0}^T \frac{dT}{x} = \frac{2}{8Vcpz} \int_0^L (x + \beta \sin \frac{\pi x}{L}) dx$$

$$T - T_0 = \frac{2}{8Vcpz} \left[\beta x + \frac{\beta L}{\pi} \left(1 - \cos \frac{\pi x}{L} \right) \right]$$

$$\frac{2}{8Vcpz} = \frac{1}{30} \frac{HRPT F}{Btu}$$

$$\beta L / \pi = 1910 \text{ Btu/HR-PT}$$

x	θ/A	$T-120$
0	250	0
1	1310	27
2	1750	80.3
3	1310	134
4	250	161

19.7

FOR A SINUS 4-PT-LONG PLATE:

$$q = w \int_0^L (x + \beta \sin \frac{\pi x}{L}) dx$$

$$= w \left(\frac{\beta L}{\pi} \left(1 - \cos \frac{\pi L}{L} \right) \right)$$

$$= WL \left(\alpha + 2\beta/\pi \right)$$

$$= 16 \text{ ft}^2 \left(250 + \frac{2(1500)}{\pi} \right)$$

$$= 19300 \text{ Btu/HR}$$

FOR STACK OF PLATES:

$$q_f = 19300 \frac{(640)}{16} = \underline{112,000 \text{ Btu/HR}}$$

$$19.8 \quad \frac{q}{A} = a + b \sin \frac{\pi x}{L} = 900 + 2500 \sin \frac{\pi x}{1.22}$$

$\frac{q}{A}$ IN W/m^2 , x IN m.

ENERGY BALANCE: $q_2 - q_1 - q_3 = 0$

STANDARD PROCEDURE

RESOLUTION EXPRESSION IS

$$\frac{dT}{dx} = \frac{2 \frac{q}{A}}{3VcpD(1)} - C \frac{q}{A} \left\{ \text{CONSTANTS} \right\}$$

$$\int_{T_E}^T dT = C \int_0^x \left(a + b \sin \frac{\pi x}{L} \right) dx$$

$$T - T_E = C \left[ax + \frac{Lb}{\pi} \left(1 - \cos \frac{\pi x}{L} \right) \right]$$

$$C = \frac{2}{3VcpD(1)} = \frac{(7.5)(1034)(0.003)(1)}{= 0.086 \text{ m} \cdot \text{kg}/\text{W}}$$

$$T - T_E = 77.4x + 83.5 \left(1 - \cos \frac{\pi x}{1.22} \right)$$

$$\text{for } h = 56 \text{ W/m}^2 \cdot \text{K} \quad \frac{q}{A} = h(T_0 - T)$$

$$T_0 = T + \frac{q/A}{56}$$

x	$\frac{q}{A}$	T	T_0
0	900	100	116
0.4	3040	171	226
0.8	3110	285	340
1.2	1030	360	378
1.22	900	361	377

$$T_{max} \approx 380^\circ C$$

@ $x \approx 1.15m$

$x \rightarrow$

$$19.9 \quad q = \int_0^L h_x \Delta T dx = \int_0^L N_u x \frac{k}{x} \Delta T dx$$

$$= k \Delta T^{5/4} (0.508) Pr^{1/2} (Pr + 0.954)^{-1/4}$$

$$x \left(\frac{Pr}{V^2} \right)^{1/4} \left(\frac{4}{3} L^{3/4} \right)$$

= 995 W PER M OF WIDTH

$$19.10 \quad \text{for } V = a + by + cy^2$$

$$\text{B.C. } V(0) = 0$$

$$V(\delta) = V_p$$

$$\frac{V}{V_p} = 2 \frac{y}{\delta} - \left(\frac{y}{\delta} \right)^2$$

$$\frac{dy}{dy} (\delta) = 0$$

$$\text{for } T - Ts = x + \beta y + \gamma y^2$$

$$\text{B.C. } (T - Ts)|_0 = 0$$

$$(T - Ts)_{\delta t} = T_p - Ts \quad \frac{T - Ts}{T_p - Ts} = 2 \frac{y}{\delta t} - \left(\frac{y}{\delta t} \right)^2$$

$$\frac{d}{dy} (T - Ts) \Big|_{\delta t} = 0$$

INTO MOMENTUM EQU - TO GET

$$\delta t^2 = 30 \frac{V_p}{V} \quad (1)$$

INTO ENERGY EQU.:

$$\delta t \frac{d}{d\xi} \left(\delta t^2 - \frac{1}{5} \delta t^3 \right) = 12 \frac{x}{V_p} dx \quad (2)$$

$$\text{WHERE } \xi = \delta t / \delta$$

SOLN GIVES $\delta \approx Pr^{-1/3}$

$$\delta_t = Pr^{-1/3} \delta$$

$$\text{SINCE } \frac{q}{A} = -k \frac{dT}{dx}(0) = h(J_s - T_p)$$

$$\frac{h}{k} = \frac{2}{\delta t} = \frac{2 Pr^{1/3}}{\delta} = 0.365 Pr \left(\frac{V_p}{V} \right)^{1/2}$$

$$\text{OR; } N_u x = \frac{hx}{k} = 0.365 Pr^{1/3} Re_x^{1/2}$$

$$\begin{aligned}
 19.11 \quad & \frac{q}{A} = \alpha + \beta \sin \frac{\pi x}{L} \\
 & = \pi D \int_0^L (\alpha + \beta \sin \frac{\pi x}{L}) dx \\
 & = \pi D \left[\alpha L + 2 \frac{\beta L}{\pi} \right] \\
 & = \pi \left(\frac{15}{12} \right) \left[250 + \frac{3000}{\pi} \right] = 4730 \frac{\text{Btu}}{\text{hr}}
 \end{aligned}$$

$$\begin{aligned}
 T_{\text{exit}} &= T_b + \frac{q}{SAVcp} = 60 + \frac{4730}{60(1)(0.062)(3600)} \\
 &= \underline{60.3 \text{ F}}
 \end{aligned}$$

$$T_w = 60.3 + \frac{250}{976} \approx \underline{60.6 \text{ F}}$$

$$19.12 \quad T_o = 300 - 240 \frac{-720 \text{ St}}{\text{S}}$$

$$\begin{aligned}
 q &= \pi D L S c_p V (T_s - T_b) St \\
 &= 471 (S c_p V) St
 \end{aligned}$$

$$\begin{aligned}
 \text{For Air @ 180F} \quad & \vartheta = 0.0622 \\
 & c_p = 0.241
 \end{aligned}$$

$$\begin{aligned}
 q &= 471 (0.0622)(0.241)(15 \times 3600) St \\
 &= 3,82 \times 10^5 \text{ St}
 \end{aligned}$$

$$V = 0.228 \times 10^{-3}$$

$$f_e = \frac{DV}{V} = 5480$$

$$f = 88 \times 10^{-3}$$

$$\text{Reynolds: } St = 0.00444$$

$$T_o = 190 \text{ F} \quad q = 937 \frac{\text{Btu}}{\text{hr}}$$

$$\text{Couture: } \frac{2}{3}$$

$$St = 0.00444 f_r = 0.00467$$

$$T_o = 198 \text{ F} \quad q = 959 \frac{\text{Btu}}{\text{hr}}$$

$$\begin{aligned}
 19.13 \quad & N_2 \text{ AT} \quad 100 \text{ F} \quad 200 \text{ F} \quad 150 \text{ F} \\
 & S_p \quad 0.069 \quad 0.0583 \\
 & \nu_D \quad 1.71 \times 10^{-3} \quad 0.236 \times 10^{-3} \quad 0.109 \times 10^{-3} \\
 & k \quad 0.0154 \quad 0.0174 \quad 0.0161 \\
 & Pr \quad 0.71 \quad 0.71 \quad 0.71 \\
 & Re = \frac{LV}{\nu} = \frac{4 \pi (10 \text{ ft/s})}{0.209 \times 10^{-3} \text{ ft/s}} = 1.91 \times 10^5
 \end{aligned}$$

$$\begin{aligned}
 \text{a) } S &= \frac{5x}{Re_L^{1/2}} = \frac{5(4)}{(1.91 \times 10^5)^{1/2}} = 0.0457 \text{ FT} \\
 &= 0.549 \text{ m} \\
 \text{b) } S_f &= \frac{8}{Pr^{1/3}} = \frac{8}{(0.71)^{1/3}} = 0.165 \text{ m} \\
 \text{c) } C_f &= 0.00444 Re_L^{-1/2} = 0.0052 \\
 \text{d) } C_{FL} &= 1.328 Re_L^{-1/2} = 0.00304 \\
 \text{e) } h_x &= 0.332 \frac{k}{x} Re_L^{1/2} Pr^{1/3} = 0.531 \frac{\text{Btu}}{\text{hr ft}^2 \text{ F}^2} \\
 \text{f) } h &= 0.464 \frac{k}{L} Re_L^{1/2} Pr^{1/3} = 1.06 \text{ "} \\
 \text{g) } f_d &= A C_f \frac{SV^2}{2} = \frac{2(0.00304)(0.003)(10)^2}{2(32.2)} \\
 &= 5.95 \times 10^{-4} \text{ lbf} \\
 \text{h) } q &= h A \Delta T = 1.06(2)(100) \\
 &= 212 \frac{\text{Btu}}{\text{hr}}
 \end{aligned}$$

$$\begin{aligned}
 19.14 \quad & \text{For Air AT } T_f = 325 \text{ K} : \\
 & \rho = 1.087 \text{ kg/m}^3 \quad \nu = 1.807 \times 10^{-5} \text{ m}^2/\text{s} \\
 & c_p = 1.008 \text{ kJ/kg.K} \quad Pr = 0.702 \\
 & k = 2.816 \text{ W/m.K}
 \end{aligned}$$

$$\begin{aligned}
 \text{a) } C_{FL} &= 1.328 Re_L^{-1/2} \\
 Re &= \frac{LV}{\nu} = \frac{(1 \text{ m})(1.8 \text{ m/s})}{1.807 \times 10^{-5} \text{ m}^2/\text{s}} = 1.55 \times 10^5 \\
 C_{FL} &= (1.328)(1.55 \times 10^5)^{1/2} = 0.00337
 \end{aligned}$$

19.14 CONTINUED-

$$(b) F_D = C_{FL} A \frac{\rho v^2}{2}$$

$$= (0.00337)(0.75)(1)(1.081)(2.8)^2$$

$$= 3.59 \times 10^{-3} \text{ N}$$

$$(c) \dot{Q} = h A \Delta T$$

USING Colburn Analogy:

$$St_L = \frac{C_{FL}}{2} Pr^{-2/3}$$

$$= \frac{(0.00337)}{2} (0.702)^{-2/3}$$

$$= 2.133 \times 10^{-3}$$

$$= h / \rho c_p V$$

$$h = (2.133 \times 10^{-3})(1.081)(1008)(2.8)$$

$$= 6.54 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{Q} = 6.54 (1)(0.25)(55)$$

$$= 90.0 \text{ W}$$

19.15

MOMENTUM THEOREM ~ X DIR.

$$\sum F_x = \iint_{C.S.} v_x \delta (\vec{j} \cdot \vec{n}) dA + \frac{\partial}{\partial t} \iiint_{C.V.} v_x \delta dV$$

AT Low Velocity: $\rho \approx \text{CONST}$, $v_{\infty} = 0$
STEADY STATE

LHS: $\sum F_x = (\text{Buoyant Force}) - (\text{Viscous Force})$

Buoyant force (B_F): $\rho g \Delta V$ { per unit volume }

$$f = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{V} \left(\frac{\partial \rho}{\partial T} \right)_P \approx \frac{1}{V} \frac{\Delta \rho}{\Delta T}$$

$$\therefore \Delta \rho \approx -\rho \beta \Delta T$$

$$B.F. = \Delta x f \rho g \int_0^{8t} (T - T_{\infty}) dy$$

19.15 CONTINUED-

$$\text{Viscous force } (V_F) = \Delta x \mu \frac{\partial U_x}{\partial y}(0)$$

$$\text{RAS } \iint_{C.S.} v_x \delta (\vec{j} \cdot \vec{n}) dA = \int_0^8 \delta v_x^2 dy \Big|_{x+\Delta x} - \int_0^8 \delta v_x^2 dy \Big|_x - v_{\infty}^2 \text{ outside}$$

EQUATING: $(LHS) = (RHS) \xi \text{ DIV. BY } \Delta x;$

$$\cancel{\rho g} \int_0^{8t} (T - T_{\infty}) dy - \mu \frac{\partial U_x}{\partial y}(0)$$

$$= \int_0^8 \delta v_x^2 dy \Big|_{x+\Delta x} - \int_0^8 \delta v_x^2 dy \Big|_x$$

In LIMIT AS $\Delta x \rightarrow 0$ $\xi \delta = \text{CONSTANT}$

$$\cancel{\rho g} \int_0^{8t} (T - T_{\infty}) dy - \nu \frac{\partial U_x}{\partial y}(0) = \frac{d}{dy} \int_0^8 v_x^2 dy$$

ENERGY EQUATION: SAME FOR BOTH NATURAL & FORCED CONVECTION

$$\times \frac{\partial T}{\partial y}(0) = \frac{d}{dy} \int_0^{8t} (T_{\infty} - T) v_x dy$$

19.16

$$f_D = \frac{(2 \pi)(10 ft/s)}{12} = 20/\omega$$

LAMINAR FLOW FOR ALL VALUES OF V

$$C_{FL} = \frac{1328}{Re^{1/2}} \quad f_D = A C_f S V^2 / 2$$

$$f_D = \frac{4(1328)(S)(100)}{Re^{1/2}} = 8.25 \frac{S}{Re^{1/2}}$$

$$Re = 0.604 Re^{1/2} Pr^{1/3}$$

$$h = \frac{k}{L} (0.604) Re^{1/2} Pr^{1/3}$$

19.16 (CONTINUED)

T, F	S	V	Re	f_v
30	79.5	6.61×10^{-2}	303	37.6 (f _{fr})
50	79.0	1.52×10^{-2}	1320	17.9 "
80	78.2	0.13×10^{-2}	15400	5.2 "

$$T_e T_{\infty} T_f \rightarrow Re^{1/2} Pr^{1/3}$$

30	80	55	0.0419	21.9	7.25
50	100	75	0.0101	44.6	4.64
80	130	105	0.0011	134.8	2.16

T	h_u	ρ/λ
30	$874 \frac{\text{Btu}}{\text{ft}^2 \text{F}}$	437 $\frac{\text{Btu/lb} \cdot \text{F}}{\text{ft}^2}$
50	11.4 "	570 "
80	16.0 "	800 "

19.17

Assuming $T - Ts = \alpha + \beta y + \gamma y^2 + \delta y^3$

$$\text{B.C. } T(0) = Ts \quad \frac{\partial T}{\partial y}(0) = 0$$

$$T(\delta_t) = T_{\infty} \quad \frac{\partial^2 T}{\partial y^2}(0) = 0$$

Temp profile becomes

$$\frac{T - Ts}{T_{\infty} - Ts} = \frac{3}{2} \frac{y}{\delta_t} - \frac{1}{2} \left(\frac{y}{\delta_t} \right)^3 \quad (1)$$

Similarly for Velocity:

$$\frac{V}{V_{\infty}} = \frac{3}{2} \frac{y}{\delta_t} - \frac{1}{2} \left(\frac{y}{\delta_t} \right)^3 \quad (2)$$

INTO INTEGRAL EXPRESSION:

$$\propto \frac{\partial T}{\partial y}(0) = \frac{d}{dx} \int_0^{\delta_t} (T_{\infty} - T) V dy$$

(LHS) ~ LEFT-HAND SIDE:

$$\propto \frac{\partial T}{\partial y}(0) = \propto (T_{\infty} - Ts) \left(\frac{3}{2} / \delta_t \right)$$

19.17 (CONTINUED)

$$(RHS) \int_0^{\delta_t} (T_{\infty} - Ts) V dy =$$

$$= (T_{\infty} - Ts) V_{\infty} \int_0^{\delta_t} V \left(1 - \frac{T - Ts}{T_{\infty} - Ts} \right) dy$$

SUBST EQUATIONS (1) & (2):

$$= (T_{\infty} - Ts) V_{\infty} \left[\frac{3}{20} \frac{\delta_t^2}{\delta_t} - \frac{3}{80} \frac{\delta_t^4}{\delta_t^3} \right]$$

NEGLECT

$$\text{GIVEN: } (RHS) - (T_{\infty} - Ts) V_{\infty} \frac{d}{dx} \left(\frac{3}{20} \frac{\delta_t^2}{\delta_t} \right)$$

EQUATING: $(LHS) = (RHS)$

$$\delta_t \frac{d}{dx} \frac{\delta_t^2}{\delta_t} = 10 \propto$$

$$\therefore \text{LETTING } \xi = \frac{\delta_t}{\delta} : \quad V_{\infty}$$

$$\delta \xi d(\xi^2) = 10 \propto \frac{d}{dx}$$

$$\delta = \frac{4.64}{\sqrt{V_{\infty}}} x^{1/2}$$

SUBSTITUTION \therefore SOME ALGEBRA (GIVE)

$$4.31 \times \xi^2 d\xi = \left(\frac{x}{\delta} - 1.071 \xi^3 \right) dx$$

SEPARATING VARIABLES

$$\frac{4.31 \xi^2 d\xi}{\frac{1}{\delta} - 1.071 \xi^3} = \frac{dx}{x}$$

$$\xi^3 = \frac{1}{1.071} \frac{1}{\delta} \left[1 - \left(\frac{x}{\delta} \right)^{3/4} \right] \quad \text{SOLVING}$$

$$\xi = \frac{\delta_t}{\delta} \approx \frac{1}{\delta^{1/3}} \left[1 - \left(\frac{x}{\delta} \right)^{3/4} \right]^{1/3}$$

19.17 CONTINUED -

Nusselt No.

$$\begin{aligned} \text{Q} &= -k \frac{\partial T}{\partial y}(0) = -\frac{3}{2} k \frac{T_p - T_s}{\delta_t} \\ &= \frac{3}{2} k \frac{T_s - T_p}{\delta_t} \rho_{ex}^{1/2} \left[\frac{\rho_r}{1 - (\frac{V_x}{x})^{3/4}} \right]^{1/3} \\ &= h(T_s - T_p) \\ N_{ux} &= \frac{h_x}{k} = 0,323 \rho_{ex}^{1/2} \left[\frac{\rho_r}{1 - (\frac{V_x}{x})^{3/4}} \right]^{1/3} \end{aligned}$$

$$19.18 N_{ux} = \frac{h_x x}{k} = 0,508 \rho_{ex}^{1/2} \left(\frac{Pr + 0,954}{Pr} \right)^{-1/4} \left(\frac{\Delta T}{x} \right)^{1/4}$$

$$\text{for Air: } Pr = 0,72 \quad k = 0,025 \frac{\text{W}}{\text{mK}}$$

$$h = k (0,38) \left(2 \times 10^8 \frac{\Delta T}{x} \right)^{1/4} = 0,445 \left(\frac{\Delta T}{x} \right)^{1/4}$$

$$\begin{aligned} Q &= h_L A \Delta T = \int_0^L h_x A T \, dx \\ h_L &= \frac{1}{L} \int_0^L h_x \, dx = 0,286 \left(\frac{\Delta T}{L} \right)^{1/4} = K \left(\frac{\Delta T}{L} \right)^{1/4} \\ \Rightarrow \alpha &= 0,286 \quad b = 1/4 \end{aligned}$$

$$19.19 \quad \frac{V_x}{U_x} = \frac{y}{8} \left(1 - \frac{y}{8} \right)^2 \quad \frac{T_p - T_s}{T_s - T_p} = \left(1 - \frac{y}{8} \right)^2$$

INTO ENERGY EQUATION

$$\alpha \frac{\partial T}{\partial y}(0) = \frac{d}{dx} \int_0^y U_x (T_p - T) \, dy$$

$$\text{cont. } LHS = -2\alpha (T_s - T_p)$$

$$RHS = (T_p - T_s) \frac{d}{dx} \left(\frac{8U_x}{30} \right)$$

$$\text{Equating: } \frac{2\alpha}{8} = \frac{d}{dx} \left(\frac{8U_x}{30} \right)$$

19.19 CONTINUED -

INTO MOMENTUM EQUATION

$$\beta g \int_0^y (T_s - T_p) \, dy - \frac{dU_x}{dy}(0) = \frac{d}{dx} \left(\frac{8U_x^2}{30} \right)$$

$$LHS = \beta g (T_s - T_p) \delta - \frac{dU_x}{\delta}$$

$$RHS = \frac{d}{dx} \left(\frac{8U_x^2}{105} \right)$$

EQUATING:

$$\beta g (T_s - T_p) \delta - \frac{dU_x}{\delta} = \frac{d}{dx} \int_0^y U_x^2 \, dy$$

$$\text{LETTING } \delta = Ax^a \quad U_x = Bx^b$$

PREVIOUS TWO EQUATIONS BECOME:

$$\frac{2\alpha}{A} x^{-a} = \frac{AB(a+b)}{30} x^{a+b-1}$$

$$-\frac{dU_x}{A} x^{-a+b} + \beta g \Delta T \frac{A}{3} x^a = \frac{AB(a+2b)}{105} x^{a+2b-1}$$

EXPONENTS ON X MUST AGREE

$$\Rightarrow -a = a+b-1$$

$$-a+b = a = a+2b-1$$

$$\text{GIVEN: } a = 1/4 \quad b = 1/2$$

SO EQUATIONS FOR A & B BECOME

$$\frac{2\alpha}{A} = \frac{AB}{30} \left(\frac{3}{4} \right)$$

$$\frac{dB}{A} + \beta g \Delta T A = \frac{AB^2}{105} \left(\frac{5}{4} \right)$$

SO WE HAVE

$$A = \left[240 \left(\frac{D}{\beta g \Delta T} \right) \left(\frac{a^2}{b^2} \right) \left(\frac{20}{21} + \frac{D}{x} \right) \right]^{1/4}$$

$$B = \frac{80x}{A}$$

19.19 (CONTINUED -

$$\text{finally - upon Substitution:}$$

$$\delta = \frac{1}{4} x^{\frac{1}{4}} = 3.94 \Pr^{-\frac{1}{2}} (\Pr + 0.954) Gr_x^{\frac{1}{4}}$$

$$\frac{q}{A} = -k \frac{\partial T}{\partial y}(0) = \frac{1}{8} k (T_s - T_w) = h (T_s - T_w)$$

$$\Rightarrow Nu_x = 0.508 \Pr^{\frac{1}{2}} (\Pr + 0.954) Gr_x^{-\frac{1}{4}}$$

19.20

$$\frac{\delta_t}{\delta} = \frac{1}{\Pr^{\frac{1}{3}}} \left[1 - \left(\frac{x}{\delta} \right)^{\frac{3}{4}} \right]^{\frac{1}{3}}$$

$$Nu_x = 0.33 \left[\frac{\Pr}{1 - \left(\frac{x}{\delta} \right)^{\frac{3}{4}}} \right]^{\frac{1}{3}} Re_x^{\frac{1}{2}}$$

$$Re_x = \frac{0.4(5)}{1.569 \times 10^{-5}} = 127,500$$

$$\delta = \frac{5x}{Re_x^{\frac{1}{2}}} = \frac{5(40)}{(1275 \times 10^5)^{\frac{1}{2}}} = 0.56 \text{ cm}$$

$$\delta_t = \frac{0.56}{0.708^{\frac{1}{3}}} \left[1 - \left(\frac{1}{2} \right)^{\frac{3}{4}} \right]^{\frac{1}{3}} = 0.465 \text{ cm}$$

$$C_{fx} = \frac{0.1604}{Re_x^{\frac{1}{2}}} = \underline{1.86 \times 10^{-6}}$$

$$Nu_x = 0.33 \left[\frac{0.708}{1 - \left(\frac{1}{2} \right)^{\frac{3}{4}}} \right]^{\frac{1}{3}} (1275 \times 10^5)^{\frac{1}{2}}$$

$$= 143$$

$$h_x = k_x (143) = \underline{9.38 \text{ W/m}^2 \cdot \text{K}}$$

$$19.21 \quad v = a + by \quad BC, v(0) = 0$$

$$v(\delta) = v_\infty$$

$$1. \quad \frac{v}{v_\infty} = \frac{y}{\delta}$$

$$T - T_s = \alpha + \beta y$$

$$BC, (T - T_s)_0 = 0$$

$$(T - T_s)_{\delta_t} = T_p - T_s$$

$$\therefore \frac{T - T_s}{T_p - T_s} = \frac{y}{\delta_t}$$

19.21 (CONTINUED)

INTO MOMENTUM EQN:

$$\frac{dv}{dy}(0) = \frac{d}{dx} \int_0^\delta (v_\infty - v) dy$$

$$LHS = \frac{d}{dx} v_\infty / \delta$$

$$RHS = -v_\infty^2 \frac{d}{dx} \int_0^\delta \left(1 - \frac{y}{v_\infty} \right) \left(\frac{v_x}{v_\infty} \right) dy$$

EQUATING & SOLVING:

$$\delta^2 = \frac{12 \Pr x}{v_\infty} \quad (1)$$

ENERGY EQN:

$$\frac{dT}{dy}(0) = \frac{d}{dx} \int_0^\delta (T_p - T) v dy$$

SUBSTITUTING & SOLVING:

$$\frac{6x}{v_\infty \delta^2} = \frac{d}{dx} (\delta \xi^2) \quad \left\{ \xi = \frac{\delta_t}{\delta} \right\} \quad (2)$$

$$\delta_t = 0 \quad \text{for } x = \delta$$

$$\xi^3 = \frac{x}{\delta} \left[1 - \left(\frac{x}{\delta} \right)^{\frac{3}{4}} \right]$$

$$\delta_t = \Pr^{-\frac{1}{3}} \left[1 - \left(\frac{x}{\delta} \right)^{\frac{3}{4}} \right]^{\frac{1}{3}}$$

$$\frac{q}{A} = -k \frac{dT}{dy}(0) = -\frac{k(T_s - T_w)}{\delta_t} = h(T_s - T_w)$$

GIVING:

$$Nu_x = \frac{h \delta_t}{k} = 0.288 \left[\frac{\Pr}{1 - \left(\frac{x}{\delta} \right)^{\frac{3}{4}}} \right]^{\frac{1}{3}} Re_x^{\frac{1}{2}}$$

IF $x = 0$

$$Nu_x = 0.288 \Pr^{\frac{1}{3}} Re_x^{\frac{1}{2}}$$

$$P, 22 \quad V = \alpha \sin \beta y \quad T - T_s = \alpha \sin \beta y$$

$$\text{BC}, \quad V(0) = 0 \quad (T - T_s)|_0 = 0$$

$$V(\delta) = V_p \quad (T - T_s)|_{\delta} = T_p - T_s$$

$$\Rightarrow \frac{V}{V_p} = \sin \frac{\pi y}{2\delta} \quad \frac{T - T_s}{T_p - T_s} = \sin \frac{\pi y}{2\delta}$$

INTO ENERGY EQU.

$$\delta_t \frac{dS_t}{dx} = \frac{\alpha \pi}{V_p} \left(\frac{\pi}{4 - \pi} \right)$$

{PRESUMES $\delta = \delta_t$ FOR INTEGRATION}

$$\frac{q}{A} = -k \frac{dT}{dy}(0) = h(T_s - T_p)$$

$$\frac{k\pi}{2\delta_t} = h \quad \text{or} \quad h = \frac{\pi}{2\delta_t}$$

$$\Rightarrow N_{ux} = \frac{hx}{k} = 0.327 \Pr^{1/3} \operatorname{Re}_{\text{ex}}^{1/2}$$

P, 23

$$\frac{V}{V_p} = \left(\frac{y}{\delta} \right)^{1/4} \quad \frac{T - T_s}{T_p - T_s} = \left(\frac{y}{\delta} \right)^{1/4}$$

ENERGY EQUON:

$$\alpha \frac{dT}{dy}(0) = V_p(T_p - T_s) \frac{d}{dx} \int_0^y \frac{V}{V_p} \left(1 - \frac{T - T_s}{T_p - T_s} \right) dy$$

$$LHS = 0.0225 (T_p - T_s) V_p \left(\frac{\pi}{\delta} \right)^{1/4} \frac{d}{dx}$$

$$RHS = V_p (T_p - T_s) \frac{7}{72} \frac{dS}{dx}$$

{ASSUMES $\delta = \delta_t$ FOR INTEGRATION}

EQUATING \nexists SOME ALGEBRA!

$$\frac{\delta}{x} = 0.371 \Pr^{4/5} \operatorname{Re}_{\text{ex}}^{-1/5}$$

P, 23 CONTINUED -

$$\frac{q}{A} = -k \frac{dT}{dy}(0) = -k \frac{(0.0225)(\Delta T) V_p}{\delta} \left(\frac{\pi}{\delta} \right)^{1/4}$$

$$= h \Delta T$$

$$N_{ux} = \frac{hx}{k} = 0.10288 \Pr^{19/20} \operatorname{Re}_{\text{ex}}^{1/5}$$

$$P, 24 \quad q = h A \Delta T$$

$$\frac{q}{A} = 184 - 95 = 89 \text{ W/m}^2$$

$$\Delta T = 8 \text{ K} \quad A = (1)(18.3) = 18.3 \text{ m}^2$$

$$h = \frac{89}{8} = 11.125 \text{ W/m}^2 \cdot \text{K}$$

FOR CONDITIONS SPECIFIED:

$$\operatorname{Re}_L = \frac{(18.3 \text{ m}) V}{1.5689 \times 10^{-5} \text{ m}^2/\text{s}} = 1.166 \times 10^6 V$$

PROBABLY TURBULENT B.L.

USE COUBERN ANALOGY: $S_t = C_f \frac{\Pr}{2}$

FROM CO 13 - FOR TURB. B.L.

$$C_f = 0.0576 \operatorname{Re}_{\text{ex}}^{-1/5}$$

$$C_f L = \frac{1}{L} \int_0^L C_f dx$$

$$= 0.072 \operatorname{Re}_{\text{ex}}^{-1/5} \quad \begin{array}{l} \text{ASSUMING ALL} \\ \text{SURFACE EXPOSED} \\ \text{TO TURB. B.L.} \end{array}$$

$$S_t = \frac{h}{8 C_f V_p} = \frac{0.072 \operatorname{Re}_{\text{ex}}^{-1/5} \Pr^{-1/3}}{2} = 0.036 \left[\frac{1.166 \times 10^6 V}{2} \right] (0.708)^{-1/3} = 0.00277 V^{-1/5}$$

$$h = 8 C_f V (0.00277 V^{-1/5})$$

$$= (1.177)(1000)(0.00277) V^{4/5} \text{ W/m}^2 \cdot \text{K}$$

$$= 3.280 V^{4/5} = 13.63$$

$$V = 11.8 \text{ m/s}$$

19.25

$$\frac{T - T_s}{T_0 - T_s} = \exp\left(-St \frac{4\pi}{D}\right)$$

$$\frac{T - 300}{60 - 300} = \exp\left[-St \frac{4(15)}{12}\right] = \exp(-720 St)$$

$$St = 12,25 \text{ FT/s}$$

REYNOLDS ANALOGY: ASSUME $T_L = 240^\circ F$

$$T_{Ave} = 150^\circ F \quad T_f = 225^\circ F$$

$$Re = \frac{1/12 (12,25)}{3,07 \times 10^{-5}} = 3,32 \times 10^5$$

$$f = 0,0036 \quad St = 0,0018$$

$$T = 300 - (240) e^{-(0,0018)(720)}$$

$$= 234,5^\circ F,$$

CLOSE ENOUGH - DOING OVER
WITH $T_L = 234,5$ WILL YIELD
 $T_L \approx 234,5$ AS A RESULT.COLBURN ANALOGY: ASSUME $T_C = 100^\circ F$

$$T_{Ave} = 130 \quad T_f = 215$$

$$Re = \frac{1/12 (225)}{0,324 \times 10^{-5}} = 3,18 \times 10^5$$

$$f = 0,0036 \quad St = 0,0018 (1,79)$$

$$= 0,00122$$

$$T = 300 - (240) e^{-(0,00122)(720)}$$

$$= 201^\circ F$$

$$q = \dot{m}cp\Delta T = \frac{30}{7,48} (62,3)(0,999)\Delta T$$

$$= 250 \Delta T \text{ BTU/min}$$

SUMMARY $\Delta T, F$ $q, \text{BTU/min}$

REYNOLDS 174 43,500

COLBURN 141 35,300

19.26

$$q = \frac{500 \text{ BTU}}{\text{HR} \cdot \text{FT}^2} (\pi)(15/12) \text{ FT}^2$$

$$= 1960 \text{ BTU/HR}$$

$$q = \dot{m}cp\Delta T = 1960$$

$$\Delta T = \frac{1960}{(30/1,48)(62,3)(60)(0,999)} = 0,131^\circ F$$

$$T_{exit} = 60,13^\circ F$$

FROM COLBURN ANALOGY: $T \approx 60^\circ F$

$$Re = \frac{(1/12)(30/1,48)(144 \times 4)}{0,76 \times 10^{-3}}$$

$$= 1344 \quad \{ \text{LAMINAR} \}$$

$$f = \frac{16}{1344} = 0,0119$$

$$St = \frac{0,0119}{2} (8,07)^{2/3} = 0,00148$$

$$h = 623 \left(\frac{30 \times 144 \times 4}{7,48 \times \pi \times 60} \right) (0,24)(3000)(St)$$

$$= 976 \text{ BTU/HR FT}^2 F$$

$$T_{wall} = 60,13 + \frac{500}{976} = 60,6 F$$

19.27

 q = SAME AS IN PROB 19.26

$$= 1960 \text{ BTU/HR}$$

$$T = T_0 + \frac{q}{3AVcp}$$

$$= 600 + \frac{1960}{(0,0764)(\frac{\pi}{4} \times \frac{1}{144})(15 \times 300)(0,24)}$$

$$= 423 F$$

19.28

$$T_L = T_0 - \Delta T e^{-St} \\ = 300 - 100 e^{-St}$$

$$V = \frac{30(144)}{7.48(60)(\sqrt{4})} = 12.25 \text{ ft/s}$$

$$f_e = \frac{DV}{D} = \frac{(1/2)(12.25)}{7.43 \times 10^{-6}} = 137,100$$

$$f_r = 0.0118 \quad f_f = 0.0044$$

Reynolds $S_f = 0.0022$

ANALOGY:

$$T_L = 300 - 100 e^{-1585} = \underline{279.5 \text{ F}}$$

$$q = \dot{S} A V c_p \Delta T = \underline{100.5 \text{ BTU/s}}$$

Calburn ANALOGY: $S_f = 0.0022(0.0118)^{4/3}$
 ANALOGY: $= 0.0424$

$$T_L = 300 - 100 e^{-30.1} \cong 300 \text{ F}$$

$$\underline{q = 126.4 \text{ BTU/s}}$$

19.29

for constant \dot{Q}/A

$$T = T_0 + \frac{\dot{Q}/A}{\dot{S} V c_p} \\ = 300 + \frac{500}{(58.1)(12.25 \times 3600)(0.332)}$$

$$\cong \underline{300 \text{ F}}$$

CHAPTER 20

$$20.1 \quad \frac{q}{A} = \frac{750(3413)}{\pi(3/48)(1/2)} = 26100 \frac{\text{Btu}}{\text{HR ft}^2}$$

ENDS ARE NEGLECTED

$$h = \frac{k}{L} Nu = \frac{k}{L} \left[0.825 + \frac{0.387 Ra^{1/6}}{1 + (0.492 \frac{g}{Pr})^{9/16}} \right]^2$$

FOR VERTICAL ORIENTATION

$$\text{BY TRIAL \& ERROR: } \Delta T \approx 103 \text{ F}$$

$$\text{HTR Surface Temp} = \underline{198 \text{ F}}$$

HORIZONTAL ORIENTATION:

$$h = \frac{k}{D} \left[0.60 + \frac{0.387 Ra^{1/6}}{1 + (0.559 \frac{g}{Pr})^{9/16}} \right]^2$$

$$\text{TRIAL \& ERROR: } \Delta T = 99 \text{ F}$$

$$\text{HTR Surface Temp} = \underline{194 \text{ F}}$$

$$20.2 \quad \text{BISMUTH} \quad T_p = 700 \text{ F}$$

$$\text{AS IN PROBLEM 20.1} \quad \frac{q}{A} = 26100 \frac{\text{Btu}}{\text{HR ft}^2}$$

VERTICAL - Same formula as above

$$\text{TRIAL \& ERROR: } \Delta T \approx 57 \text{ F}$$

$$T_{\text{SURF}} \approx \underline{757 \text{ F}}$$

HORIZONTAL - Same formula as above

$$\text{TRIAL \& ERROR: } \Delta T \approx 44 \text{ F}$$

$$T_{\text{SURF}} \approx \underline{744 \text{ F}}$$

20.2 CONT. HYDRAULIC FLUID

SAME FORMULAS \& PROCEDURES

$$\text{VERTICAL: } \Delta T \approx 630 \quad T_{\text{SURF}} \approx 630 \text{ F}$$

$$\left. \begin{array}{l} \text{PROPERTIES USED AT} \\ 700 \text{ F - HIGHEST} \end{array} \right\} \text{HORIZONTAL TEMP IN TABLES}$$

$$\Delta T \approx 580 \quad T_{\text{SURF}} \approx 580 \text{ F}$$

FOR VERTICAL ORIENTATION

$$20.3 \quad \frac{q}{A} = \frac{3413}{0.344} = 9900 \frac{\text{Btu}}{\text{HR ft}^2}$$

16 cm (0.525 ft) - VERTICAL AT.

$$T_p = 71 \text{ F}$$

$$h = \frac{k}{L} \left[0.825 + \frac{0.387 Ra^{1/6}}{1 + (0.492 \frac{g}{Pr})^{9/16}} \right]^2$$

$$\text{TRIAL \& ERROR: } \Delta T = 62 \text{ F} \quad T_s = 133 \text{ F}$$

FOR 10 cm (0.328 ft) - HORIZONTAL

$$\text{TRIAL \& ERROR: } \Delta T = 60 \text{ F} \quad T_s = 131 \text{ F}$$

ENGLISH UNITS USED - TABLES EASIER TO USE

$$20.4 \quad \text{for } T_f = 100 \text{ F}$$

$$Gr_L = (107 \times 10^6) \left(\frac{1}{2} \right)^3 (100) = 1,337 \times 10^9$$

$$Pr = 4.51 \quad Ra = 6.03 \times 10^9$$

$$h_{\text{SIDES}} = \frac{k}{L} \left[1 + \frac{0.387 Ra^{1/6}}{1 + (0.492 \frac{g}{Pr})^{9/16}} \right]^2$$

$$= 190 \frac{\text{Btu}}{\text{HR ft}^2 \text{ F}}$$

$$R_i = \frac{hV/A}{k} = \frac{190}{220} (0.0357) = 0.0308$$

USE LUMPED PARAMETER

20.4 (CONT.) for $T_{\text{avg}} = 150 \text{ F}$

$$\frac{T - T_p}{T_0 - T_p} = \frac{50}{150} = \frac{1}{3} = \frac{-Bi_f o}{2}$$

$$f_o = \frac{\kappa t}{(V/A)^2} = \frac{398 t}{(0.0357)^2} = 3120 t$$

t IN hours

$$-Bi_f o = \ln \frac{1}{3}$$

$$t = 0.0114 \text{ hr} = 0.686 \text{ min} = 41.15$$

SINCE LUMPED PARAMETER SOLN IS
VALID - ANSWERS TO PARTS (a) & (b)
ARE THE SAME

WHEN $T_c = 100 \text{ F}$ $T_{\text{surf}} \approx 100 \text{ F}$

20.5 $T_s = 140 \text{ C}$ $T_p = 25 \text{ C}$ $T_f = 82.5 \text{ C}$

$$\text{AIR @ } 355 \text{ K: } \frac{f_o}{D^2} = 0.625 \times 10^{-8} (\text{m}^3 \cdot \text{K})^{-1}$$

$$f_o = (0.625 \times 10^{-8})(0.035)^3 (115) = 3.08 \times 10^{-5}$$

HORIZ. CYLINDER:

$$Nu = \left\{ 0.60 + \frac{0.387 \frac{f_o}{D}^{1/6}}{\left[1 + (0.559 \frac{D}{L})^{9/16} \right]^{8/27}} \right\}^2$$

$$\text{for } Pr = 0.696 \quad Nu_D = 10.47$$

$$q = hA \Delta T = \frac{k}{D} (\pi D L) (\Delta T)$$

$$= (0.0304)(\pi)(0.8)(115)(10.47)$$

$$= 92.0 \text{ W}$$

REMAINDER OF 100W INPUT GOES
TO ELECTRICAL & CONDUCTION LOSSES
& TO ILLUMINATION

20.6 for a HORIZ. CYLINDER

$$Nu = \left\{ 0.60 + \frac{0.387 \frac{f_o}{D}^{1/6}}{\left[1 + (0.559 \frac{D}{L})^{9/16} \right]^{8/27}} \right\}^2$$

$$q = 27 \text{ W/m} = hA \Delta T = \frac{k}{D} Nu A \Delta T$$

$$= \frac{k}{D} Nu (\pi D) \Delta T$$

$$27 = \pi k Nu \Delta T$$

TRIAL & ERROR $\Delta T \approx 9.8 \text{ K}$

$$T_{\text{surf}} \approx 39.8 \text{ C}$$

20.7

for Cu CYLINDER WITH

$$HT = 20.3 \text{ cm}, \text{ DIAM} = 2.54 \text{ cm}$$

$$\frac{V}{A} = \frac{(\pi D^2 / 4)L}{\pi D L + \pi D^2 / 4} = \frac{DL / 4}{L + D / 2} = 0.598 \text{ cm}$$

$$\text{for } Bi = \frac{h V / A}{k} = 0.1 \quad T_f \approx 16 \text{ C}$$

$$h = \frac{0.1 (379)}{0.00598} = 6340 \text{ W/m}^2 \text{ K}$$

for AN h Nusselt ≈ 6340

$Bi < 0.1 \therefore$ LUMPED PARAM.

$$\frac{T - T_p}{T_0 - T_p} = \frac{-Bi_f o}{2}$$

$$f_o = \frac{\kappa t}{(V/A)^2} = \frac{(0.27 \times 10^{-5})(180)}{(0.00598)^2} = 5169$$

$$\frac{4.8 - (-1)}{32.5 - (-1)} = 0.173 = \frac{-Bi_f o}{2}$$

$$Bi_f o = 1.754 \quad Bi = 3.393 \times 10^{-3}$$

$$h = Bi (379) = 2.15 \text{ W/m}^2 \text{ K}$$

20.8 for A SPHERE: $Nu_0 = 2 + 0.43 Ra_0^{1/4}$

$T_s = 340\text{ K}$ $T_f = 320\text{ K}$ $k = 2.78 \times 10^{-2}$
 $T_\infty = 295\text{ K}$ $Pr = 0.703$

$$Ra_0 = (0.994 \times 10^8) D^3 (45)(0.703)$$

$$\approx 3.144 \times 10^9 D^3$$

D, cm	h	k/hx,
7.5	615	0.0104
5	710	0.0135
1.5	1180	0.0271

L.E., SURFACE RESISTANCE IS VERY SMALL :: $T_s = T_\infty$ & FAULTS TO THIS VALUE ALMOST INSTANTANEOUSLY
 $\sim \text{TIME} \approx 0$

20.9 for T_c to REACH 320 K - USE VALUES CALCULATED IN PROB 20.8

$$\alpha = k/f_c p = 2.1 \times 10^{-7} \text{ m}^2/\text{s}$$

D, cm	h	$\Delta t / x^2$	t
7.5	615	0.16	1.19 AR
5	710	0.16	31.7 MIN
1.5	1180	0.16	2.86 "

$T_{surf} \approx 295\text{ K}$ AT ALL TIMES

20.10 $T_s = 240\text{ F}$ $T_\infty = 60\text{ F}$ $T_f = 150\text{ F}$

$$\Delta T = 180\text{ F}$$
 $\frac{f_g}{v^2} = 1.22 \times 10^6$ $Pr = 0.698$
 $k = 0.0167$

a) HORIZONTAL:

$$h = \frac{k}{D} \left[0.6 + \frac{0.387 Ra_0^{1/6}}{\left\{ 1 + \left(\frac{0.559}{Pr} \right)^{9/16} \right\}^{8/27}} \right]^2$$

20.10 (CONT.)

$$h = 1.51 \frac{\text{Btu}}{\text{HR ft}^2 \text{ F}}$$

$$\dot{Q} = h \Delta T = 271 \frac{\text{Btu}}{\text{HR ft}^2}$$

VERTICAL:

$$h = \frac{k}{F} \left[0.825 + \frac{0.387 Ra_0^{1/6}}{\left\{ 1 + \left(\frac{0.492}{Pr} \right)^{9/16} \right\}^{8/27}} \right]^2$$

$$h = 1.0$$

$$\dot{Q} = 180 \frac{\text{Btu}}{\text{HR ft}^2}$$

20.11 SAME CONDITIONS AS PROB 20.10 EXCEPT FLUID IS $H_2O @ 60\text{ F}$

$$\frac{f_g}{v^2} = 403 \times 10^6$$
 $Pr = 2.72$ $k = 0.383$

Horiz: $h = 316 \frac{\text{Btu}}{\text{HR ft}^2 \text{ F}}$ $\dot{Q} = 57000 \frac{\text{Btu}}{\text{HR ft}^2}$

Vert: $h = 281$ " $\dot{Q} = 50,600 \frac{\text{Btu}}{\text{HR ft}^2}$

20.12 SPHERICAL TANK $D = 0.6\text{ m}$

$$T_c = 78\text{ K}$$
 $T_\infty = 278\text{ K}$ $\dot{Q} = \frac{\Delta T}{D} \frac{A}{\Delta R}$

For SPHERE:

$$h = \frac{k}{D} Nu = \frac{k}{D} \left[2 + 0.43 Ra_0^{1/4} \right]$$

$$h = \frac{0.0247}{70} \left[2 + 0.43 \left(2.57 \times 10^8 \right) (0.7)^3 (8)(0.72) \right]^{1/4}$$

$$= 2.86 \text{ W/m}^2 \cdot \text{K} \quad \text{- PROPERTIES}$$

$$@ 260\text{ K}$$

$$R_{conv} = \frac{1}{2.86 (4\pi)(0.35)^2} = 0.127$$

20.12 (CONTINUED)

$$R_{cond} = \frac{r_o - r_i}{4\pi k r_{ref}} = \frac{0.05}{4\pi(0.04)(0.3)(0.75)} = 0.947$$

$$\sum R = 1.174 \quad q = \frac{200}{1.174} = 170 \text{ W}$$

$$\left. \begin{array}{l} T_{conv} \approx 39 \text{ K} \\ T_{surf} \approx 239 \text{ K} \\ T_f \approx 259 \text{ K} \end{array} \right\} \text{O.K.}$$

20.13

Assuming EACH PLATE IS INDEPENDENT

$$h = \frac{k}{L} Nu = \frac{k}{L} \left[0.825 + \frac{0.387 Re^{1/6}}{1 + (0.492/Pr)^{2/3}} \right]^2$$

$$T_{plate} = 200 \text{ F} \quad T_p = 80 \text{ F} \quad T_f = 140 \text{ F}$$

$$Pr = 3.08 \quad Re = (540 \times 10^6)(3)^3(120)(3.08) = 5.39 \times 10^{12}$$

$$h = 287 \text{ BTU/HRFT}^2 \text{ F}$$

$$q_f = hA\Delta T = 287(30 \times 1 \times 3 \times 2)(120) = 6.19 \times 10^6 \text{ BTU/HR}$$

$$= 1.81 \text{ kW}$$

20.14

$$q_A = h\Delta T$$

$$h = \frac{k}{L} [0.14 Re^{1/3}] \text{ if } Re > 2 \times 10^7$$

$$T_{surf} = 150 \text{ F} \quad T_p = 50 \text{ F} \quad T_f = 100 \text{ F}$$

$$Pr = 0.703 \quad Re = (1.76 \times 10^6)(20)^3(100)(0.703)$$

$$k = 0.0156 \quad = 9.90 \times 10^{-11}$$

$$h = \frac{0.0156}{20} (0.14)(9.90 \times 10^{-11})^{1/3} = 1.09 \text{ BTU/HRFT}^2$$

$$q_A = 1.09(100) = 109 \text{ BTU/HRFT}^2$$

20.14 (CONTINUED)

$$\text{FRACTION OF TOTAL} = \frac{109}{200} = 0.54$$

WITH 1 FT X 1 FT RIDGES

$$Re = (1.76 \times 10^6)(1)^3(100)(0.703) = 1.237 \times 10^9$$

$$h = \frac{0.0156}{1} (0.14)(1.237 \times 10^9)^{1/3} = 1.09 \text{ BTU/HRFT}^2$$

SAME AS IN PART (a) FRACT = 0.54

20.15 FOR FORCED CONVECTION

$$Re = \frac{(20 \text{ PT})(6.1 \times 3.281 \text{ FT/S})}{0.181 \times 10^3 \text{ FT}^2/\text{S}} = 2.21 \times 10^6$$

Flow is $\begin{cases} \text{LAMINAR UP TO } Re = 2 \times 10^5 \\ \text{TURBULENT PAST } 3 \times 10^6 \end{cases}$

PLATE IS MOSTLY IN TRANSITION REGION
ASSUME LAMINAR B.L.

$$h = \frac{k}{L} Nu = \frac{0.0156}{20} (0.144 Re^{1/2} Pr^{1/3}) = 0.685 \text{ BTU/HRFT}^2$$

$$q_f = h\Delta T = 68.5 \text{ BTU/HR-FT}^2$$

FRACTION DUE TO F.C. = 0.34

IF B.L. IS TURBOULENT

$$h = \frac{0.0156}{20} [0.036 Re^{0.8} Pr^{1/3}]$$

$$= 2.97 \text{ BTU/HRFT}^2$$

$$q_f = 297 \text{ BTU/HR-FT}^2 \text{ FRACT} = 1.49$$

FOR THIS CASE TABLE IS MORE CAPACITY TO TRANSFER HEAT THAN TABLE IS SOLAR ENERGY SUPPLIED.
SURFACE TEMP WILL BE < 150F

20.16

$$\begin{aligned} T_{\text{surf}} &= 1300 \text{ K} \\ T_p &= 270 \text{ K} \end{aligned} \quad \left. \begin{aligned} T_f &= 785 \text{ K} \end{aligned} \right\}$$

$$\frac{q}{A} = h \Delta T \quad h = \frac{k}{D} \left(2 + 0.43 Ra^{\frac{1}{4}} \right)$$

$$k = 5.68 \times 10^{-2} \text{ W/m}\cdot\text{K} \quad Pr = 0.688$$

$$Ra = (2.015 \times 10^6) (0.15)^3 (1030) (0.688) \\ = 4.82 \times 10^6$$

$$h = 8.4 \text{ W/m}^2 \cdot \text{K}$$

$$\frac{q}{A} = 8.4 (1030) = \underline{\underline{8550 \text{ W/m}^2}}$$

20.17

From Prob 20.16

$$h = \frac{k}{D} Nu = \frac{k}{D} \left[2 + 0.43 Ra^{\frac{1}{4}} \right]$$

$$T_{\text{surf}} \quad T - T_{\infty} \quad T_f \quad Ra^{\frac{1}{4}} \quad h$$

1300	1030	785	468	8.40
1000	730	635	503	7.65
700	430	486	63.1	8.10
420	150	345	57.2	6.69

$$h_{\text{avg}} \approx 7.71 \text{ W/m}^2 \cdot \text{K}$$

$$R_L = \frac{h V/A}{k} = \frac{7.71 (0.15)}{39.8} = 0.00484$$

{LUMPED PARAMETER IS OK!}

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = \frac{600 - 270}{1300 - 270} = 0.32 = \frac{\theta_0 - \theta_1}{F_0}$$

$$R_{\text{cf}} = 1.1394 \quad F_0 = 235.4 = \frac{\Delta t}{(\nabla/V)^2}$$

$$t = \frac{(0.15)^2 (235.4)}{0.00484} = \underline{\underline{130.8 \text{ s}}}$$

20.18

$$q = I^2 R = (400)^2 8 \Omega / A$$

$$R = \frac{(1.72 \times 10^{-6})(100)}{\pi (0.5)^2} = 8.76 \times 10^4 \Omega / \text{m}$$

$$\frac{q}{A} = \frac{400^2 (8.76 \times 10^4)}{\pi (0.018)(1)} = 2480 \text{ W/m}$$

$$= h \Delta T \quad q = 140 \text{ W/m}$$

$$h = \frac{k}{D} C Ra^n$$

$$\frac{q}{A} = \frac{k}{D} C \left[\left(\frac{\beta g}{\nu^2} D^3 Pr \right) \Delta T \right]^{1+n}$$

By TRIAL & ERROR: $\Delta T \approx 220 \text{ K}$

$$h = \underline{\underline{11.0 \text{ W/m}^2 \cdot \text{K}}}$$

$$T_{\text{surf}} = 290 + 220 = \underline{\underline{510 \text{ K}}}$$

RESISTANCE OF INSULATION

$$= \frac{\ln \frac{\theta_0 - \theta_1}{\theta_1}}{2 \pi k} = \frac{\ln \frac{0.018}{0.005}}{2 \pi (0.242)} = 0.842$$

$$\frac{q}{A} = \frac{\Delta T}{R} \quad \Delta T = \frac{140}{0.842} = 166 \text{ K}$$

$$T_{\text{interior}} = 510 + 166 = \underline{\underline{676 \text{ K}}}$$

20.19

$$R_M = \frac{2.83 \times 10^6}{1.72 \times 10^6} (8.76 \times 10^4)$$

$$= 1.44 \times 10^{-3} \Omega / \text{m}$$

$$\frac{q}{A} = (400)^2 (1.44 \times 10^{-3}) = 231 \text{ W/m}^2$$

$$\frac{q}{A} = \frac{231}{\pi (0.018)} = 4080 \text{ W/m}^2$$

$$= \frac{k}{D} C \left[\left(\frac{\beta g}{\nu^2} D^3 Pr \right) \Delta T \right]^{1+n}$$

20.19 CONTINUED -

TRIAL & ERROR: $\Delta T \approx 336 \text{ K}$

$$h = 12.1 \text{ W/m}^2 \cdot \text{K}$$

$$T_{\text{surf}} = 290 + 336 = 626 \text{ K}$$

$$R_{\text{INSUL}} = 0.842 \quad \left\{ \text{Prob 20A3} \right\}$$

$$\Delta T = \frac{q}{R} = \frac{231}{0.842} = 274 \text{ K}$$

$$T_{\text{INTERFACE}} = 626 + 274 = 900 \text{ K}$$

$$20.20 \quad q_{\text{TOTAL}} = q_{\text{CONV}} + q_{\text{RAD}}$$

Assume $T_{\text{INSIDE}} = T_{\text{SURFACE}}$

$$q = h_i A_i (T_{\text{STM}} - T) = h_o A_o (T - T_o) \\ + \sigma A_o \left[\left(\frac{T}{100} \right)^4 - \left(\frac{T_o}{100} \right)^4 \right]$$

$T \propto R$

TRIAL & ERROR: $T = 1147 \text{ K}$

$$= 687 \text{ F}$$

$$h_o = \frac{k}{D} \left[0.6 + \frac{0.387 P_e^{1/6}}{\left\{ 1 + \left(\frac{0.559}{P_r} \right)^{9/16} \right\}^{8/27}} \right]^2$$

$$q_A = 33 (1260 - 1147) = 3730 \text{ BTU} \cdot \text{hr}^{-2} \cdot \text{ft}^{-2}$$

$$q_f = 3730 (\pi) \left(\frac{81625}{12} \right) (20) \\ = 168,000 \text{ BTU/hr}$$

20.21 FORCED CONVECTION OUTSIDE

$$\frac{q}{A} = 33 (1260 - T) = h_o (T - 530) \\ + \sigma \left[\left(\frac{T}{100} \right)^4 - 53^4 \right]$$

$$h_o = \frac{k}{D} B \frac{le}{l} l^{1/3} \quad \left\{ \begin{array}{l} B - \text{FUNCTIONS} \\ n - \text{OF RE} \end{array} \right\}$$

ASSUME $T \approx 650 \text{ F} = 1110 \text{ K} \quad T_f = 360 \text{ F}$

$$Re = \frac{\left(\frac{81625}{12} \right) (6.5) (3.281)}{0.348 \times 10^{-3}} = 4.40 \times 10^4$$

TABLE 20.3 $B = 0.021 \quad n = 0.805$

@ THIS TEMP $h_o = 4.31$

$$LHS = 4950 \quad RHS = 4923 \quad \left\{ \begin{array}{l} \text{Pretty} \\ \text{Good} \end{array} \right\}$$

$$q \approx 4950 \frac{\text{BTU}}{\text{HR} \cdot \text{FT}^2} \left(\frac{81625}{12} \right) (\pi) (20) \\ = \underline{224000 \text{ BTU/HR}} \\ = \underline{65.5 \text{ kW}}$$

20.22 INSULATION ON OUTSIDE by

NATURAL CONV. ON SURFACE

$$R_{\text{INSULATION}} = \frac{0.17 \cdot r_i}{2\pi k} = 1.401 \text{ in} \quad \text{PER FT}$$

$$\sum R = \frac{1}{A_i h_i} + 1.401 + \frac{1}{A_o h_o} \\ = \frac{1}{33 \pi \left(\frac{81625}{12} \right)} + 1.401 + \frac{1}{h_o \pi \frac{141625}{12}} \\ = 1.414 + 0.261/h_o$$

$$\frac{q}{L} = \frac{\Delta T}{\sum R} = \frac{730}{1.414 + 0.261/h_o} = \frac{800 - T}{1.414}$$

$$\text{WITH } h_o = \frac{k}{D} \left[0.6 + \frac{0.387 P_e^{1/6}}{\left\{ 1 + \left(\frac{0.559}{P_r} \right)^{9/16} \right\}^{8/27}} \right]$$

20.22 CONTINUED

TRIAL $\frac{1}{2}$ ERROR: $T \approx 190^\circ F$

$$q = \frac{800 - 190}{1.414} \frac{Btu}{HRFT} (20 \text{ ft}) \\ = 8630 \frac{Btu}{HR} = 253 \text{ kW}$$

20.23 $q = \Delta T / R$

$$= \frac{800 - T_i}{1/\pi D_i (33)} = \frac{2\pi k}{\ln D_o/D_i} (T_i - 70) = \frac{800 - 70}{\Sigma R}$$

$$R_{STM} = \frac{1}{33(\pi)(8,625)} = 0.0134$$

$$R_{INSUL} = \frac{\ln D_o/8,625}{2\pi(0.06)} = 2.65 \ln D_o/8,625$$

EQUATIONS TO BE SOLVED ARE:

$$q = \frac{800 - T}{0.0134} = \frac{T - 70}{2.65 \ln D_o/8,625} = \frac{550}{\Sigma R}$$

TRIAL $\frac{1}{2}$ ERROR: $T \approx 750^\circ F$

$$D_o \approx 9.08 \text{ in.}$$

INSULATION THICKNESS

$$= \frac{9.08 - 8.625}{2} = 0.228 \text{ in.}$$

20.24

$$q = \frac{800 - T_1}{R_{INS}} = \frac{T_1 - T_2}{\frac{2\pi k}{\ln D_o/D_i}} = \pi D_o h_o (T_2 - 70) (\frac{1}{0.085})$$

$$\frac{800 - T_1}{0.0134} = (T_1 - T_2) \frac{0.377}{\ln D_o/D_i} = 3.70 D_o h_o (T_2 - 70)$$

$$= \frac{730}{0.0134 + 2.65 \ln D_o/8,625 + \frac{0.27}{D_o h_o}}$$

TRIAL $\frac{1}{2}$ ERROR PROBLEM (LENGTH)

20.24 CONTINUED -

ANSWER - APPROXIMATELY

$$T_1 = 793.8^\circ F \quad T_2 = 178.4^\circ F$$

$$q = 465 \frac{Btu}{HRFT} (20 \text{ ft}) = 9290 \frac{Btu}{HR} \\ = 2.72 \text{ kW}$$

$$\frac{800 - 793.8}{0.0134} = \frac{(793.8 - 178.4)}{2} 0.377 \ln D_o/D_i$$

$$\ln D_o/D_i = 0.50 \quad \frac{D_o}{D_i} = 1.651$$

$$D_o = 1.651 (8.625) = 14.24 \text{ in.}$$

$$\text{THICKNESS} = \frac{14.24 - 8.625}{2}$$

$$= 2.81 \text{ INCHES}$$

20.25 FOR NATURAL CONVECTION CASE

PLANE UPWARD-FACING HOT SURFACE

$$Nu_L = 0.14 Ra_L^{1/3} \text{ IF } 1 \times 10^7 < Ra_L < 10^{10}$$

ASSUME TOP SURFACE IS SQUARE

$$\sim A = L^2$$

$$q = hA\Delta T = hL^2 \Delta T$$

$$= k \frac{L}{L} Nu_L L^2 \Delta T$$

$$= k [0.14 Ra_L^{1/3}] L \Delta T$$

$$Ra_L = \frac{fg}{\nu^2} L^3 \Delta T \cdot Pr$$

$$q = k [0.14 (\frac{fg}{\nu^2} \Delta T)^{1/3} Pr^{1/3}] L \Delta T$$

$$@ T_s = 45^\circ C \quad T_p = 20^\circ C \quad T_f = 32.5^\circ C$$

$$k = 0.02663 \frac{W}{m \cdot K} \quad \frac{fg}{\nu^2} = 1.244 \times 10^{+8} \frac{m^2 \cdot K}{W}$$

20.25 CONTINUED

$$Ra = (1.244 \times 10^8)(25)(0.707) L^3$$

$$= 2.199 \times 10^9 L^3$$

$$40 \text{ W} = 0.0243 \left[0.14 \left(1.244 \times 10^8 \right)^{1/3} \left(0.707 \right)^{1/3} L^2 (25) \right]$$

$$L^2 = 0.965 \quad L \approx 0.982 \text{ m}$$

$$Ra = 2.08 \times 10^9 \sim \text{OK}$$

Now - for SAME HT LOSS $\frac{1}{L} = 0.982 \text{ m}$

$$q = hA\Delta T = \frac{k}{L} Nu_c A \Delta T \quad \begin{cases} \text{forced} \\ \text{conv.} \end{cases}$$

ASSUME $T_{\text{surf}} \approx 20^\circ \text{C}$

$$k = 2.569 \times 10^{-2}$$

$$\rho = 1.506 \times 10^5$$

$$Re = \frac{LV}{\nu} = \frac{0.965(20)}{1.506 \times 10^{-5}} = 1.28 \times 10^6$$

TRANSITION REGIME -

Assume LAMINAR $b, L, -$

$$Nu = 0.664 Re_L^{1/2} Pr^{1/3}$$

$$40 \text{ W} = \frac{0.02569}{0.965} \left(0.965 \right)^{1/2} \left(0.664 \right) \left(1.28 \times 10^6 \right)^{1/2} \times (0.71)^{1/3} \Delta T$$

$$\Delta T = 2.4 \text{ F} \quad T_{\text{surf}} \approx 22.4 \text{ C}$$

$$20.26 \quad q = \frac{\Delta T}{\sum R} = \frac{319 - 301}{\sum R} \text{ K}$$

$$f_0 = \frac{1}{h_0 \pi D_L} = \frac{1}{(6800) \pi (0.0165)} = 2.464 \times 10^{-3}$$

$$R_i = \frac{1}{h_i \pi D_L} = \frac{1}{(200) \pi (0.0165)} = 3.71 \times 10^{-3}$$

$$R_{\text{cu}} = \frac{f_0 D_0 / \rho_i}{2 \pi k_L} = \frac{f_0^{1.9} / 1.15}{2 \pi (385)} = 5.83 \times 10^{-5}$$

20.26 CONTINUED

$$\sum R = 6.232 \times 10^{-3}$$

$$\dot{m} = \frac{18}{(\sum R) h_f} = \frac{18}{6.232 \times 10^{-3} (2390)} = 1.21 \text{ kg/s}$$

$$20.27 \quad \dot{m} \text{ per TUBE} = 0.49 \text{ kg/s}$$

$$Re = \frac{0.49(4)}{\pi(0.0209)(79 \times 10^{-3})} = 3780$$

USE ANALOGY OR ASSUME TURBULENT

$$\ln \frac{T_L - T_S}{T_0 - T_S} = -4 \frac{L}{D} St \quad St = \frac{f}{2} \Pr^{-2/3}$$

$$\text{Assume } T_{\text{exit}} = 314 \text{ K} \quad T_{\text{avg}} = 307 \text{ K}$$

$$\Pr \approx 1.21 \quad St = \frac{0.01}{2} (121)^{-2/3} = 2.04 \times 10^{-4}$$

$$f \approx 0.01 \quad -2.04 \times 10^{-4} (4)(5) / 0.0209$$

$$T_L = 372 - 72 \approx$$

$$= 313 \text{ K} \sim \text{CHECK}$$

$$q = 1.47 (2000)(13) = 38.2 \text{ kW}$$

$$20.28 \quad \text{Assume } T_L = 235 \text{ F} \quad T_{\text{avg}} = 148 \text{ F}$$

$$Re = \frac{DV}{D} = \frac{(0.87)/2)(40)}{0.209 \times 10^{-3}} = 1.39 \times 10^4$$

{TURBULENT}

$$St = 0.023 f_0^{-0.8} \Pr^{-0.2} = 4.33 \times 10^{-3}$$

$$\frac{T_L - T_S}{T_0 - T_S} = \frac{-4L}{D} St$$

$$T_L = 240 - 180(0.0083)$$

$$= 129 \text{ F} \quad \text{{CLOSE ENOUGH}}$$

$$20.29 \quad f = h\Delta T = 180 \text{ h}$$

a) flow parallel to tube

$$Re = \frac{Lv}{D} = \frac{L(40)}{0.201 \times 10^{-3}} = 1.91 \times 10^5 L$$

If $X \leq 1.5$ B.L. is laminar

If $X = 10$ B.L. is in transition

If laminar over total length!

$$h = \frac{k}{L} (0.604) Re^{1/2} Pr^{1/3}$$

$$= \frac{0.167}{10} (0.604) (1.91 \times 10^5)^{1/2} (0.72)^{1/3}$$

$$= 13.74 \text{ Btu/HR ft}^2 F$$

$$q_f = 13.74 (180) = \underline{\underline{2470 \text{ Btu/HR ft}^2}}$$

b) crossflow GASE

$$Re = \frac{Dv}{D} = 1.59 \times 10^4$$

$$h = \frac{k}{D} \left[0.193 (1.59 \times 10^4)^{0.618} (0.72)^{1/3} \right]$$

$$= 137 \text{ Btu/HR ft}^2 F$$

$$q_f = 137 (180) = \underline{\underline{24,600 \text{ Btu/HR ft}^2}}$$

20.30 WATER:

a) parallel to tube $T_f = 150^\circ F$

$$Re = \frac{10(40)}{0.40 \times 10^{-5}} = 8,44 \times 10^5 \quad \{ \text{TURBULENT} \}$$

$$h = \frac{k}{L} (0.036) Re^{4/5} Pr^{1/3}$$

$$= \frac{0.383}{10} (0.036) (8,44 \times 10^5)^{4/5} (2.72)^{1/3}$$

$$= 4220 \text{ Btu/HR ft}^2 F$$

$$q_f = 4220 (180) = \underline{\underline{7.6 \times 10^5 \text{ Btu/HR ft}^2}}$$

20.30 CONTINUED -

b) Crossflow

$$Re = 7,03 \times 10^5$$

$$h = \frac{k}{D} (0.027) (7,03 \times 10^5)^{0.805} (2.72)^{1/3}$$

{ TABLE 20.3 VALUES @ HIGHEST RE }

$$h = 8820 \text{ Btu/HR ft}^2 F$$

$$q_f = 8820 (180) = \underline{\underline{1.59 \times 10^6 \text{ Btu/HR ft}^2}}$$

20.31 a) parallel

$$Re = \frac{10(40)}{5.45 \times 10^{-5}} = 7.34 \times 10^6 \quad \{ \text{TURB} \}$$

$$h = \frac{k}{D} (0.036) (7.34 \times 10^6)^{4/5} (80.5)^{1/3}$$

$$= 312 \text{ Btu/HR ft}^2 F$$

$$q_f = 312 (180) = \underline{\underline{56,100 \text{ Btu/HR ft}^2}}$$

b) crossflow $Re = 61,000$

$$h = \frac{k}{D} (0.027) (61,000)^{0.805} (80.5)^{1/3}$$

$$= 642 \text{ Btu/HR ft}^2 F$$

$$q_f = 642 (180) = \underline{\underline{115,600 \text{ Btu/HR ft}^2}}$$

20.32 $Re = \frac{GP}{\mu} \quad T_f = 186^\circ F$

$$Re = \frac{(0.385/12)(20)}{0.379 \times 10^{-5}} = 169,000$$

From FIGURE 20.13 $J = 10^{-3}$

{ EXTRAPOLATION }

20.32 CONTINUED

$$h = \frac{k}{D} \left\{ 0.600 + \frac{0.387 Ra_o^{1/6}}{\left[1 + (0.559)^{9/16} \right]^{8/27}} \right\}^2$$

$$Ra_o = (27.54 \times 10^9) (0.075)^3 (85) (2.9)$$

$$= 1.864 \times 10^9$$

$$h = 1351 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{q} = h A \Delta T$$

$$= 1351 \pi (0.012)(0.075)(85)$$

$$= 341 \text{ W}$$

$$= 135 \frac{\text{BTU}}{\text{HR FT}^2 \text{ F}}$$

20.33 $\dot{q} = h A \Delta T$

$$= 135 (48) (\pi) \left(\frac{0.387}{12} \right) (5)$$

$$= 3280 \frac{\text{BTU}}{\text{HR}}$$

20.34 $T_{surf} = 380 \text{ K}$

$$T_\infty = 295 \text{ K} \quad T_f = 337.5 \text{ K}$$

$$\rho = 980.6 \text{ kg/m}^3 \quad \nu = 0.453 \times 10^{-6} \text{ m}^2/\text{s}$$

$$k = 0.661 \text{ W/m} \cdot \text{K} \quad Pr = 1.90$$

a) HORIZONTAL NATURAL CONV.

$$h = \frac{k}{D} \left\{ 0.600 + \frac{0.387 Ra_o^{1/6}}{\left[1 + (0.559)^{9/16} \right]^{8/27}} \right\}^2$$

$$Ra_o = (27.54 \times 10^9) (0.012)^3 (85) (2.9)$$

$$= 1.358 \times 10^9$$

$$h = 1898 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{q} = h A \Delta T = (1898) \pi (0.012)(0.075)(85)$$

$$= 479 \text{ W}$$

20.34 CONTINUED -

b) VERTICAL NATURAL CONV.

$$h = \frac{k}{D} \left\{ 0.825 + \frac{0.387 Ra_o^{1/6}}{\left[1 + (0.492)^{9/16} \right]^{8/27}} \right\}^2$$

$$Ra_o = (27.54 \times 10^9) (0.075)^3 (85) (2.9)$$

$$= 1.864 \times 10^9$$

$$h = 1351 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{q} = (1351) \pi (0.012)(0.075)(85)$$

$$= 341 \text{ W}$$

c) CROSSFLOW

$$Re = \frac{D V}{\nu} = \frac{(0.012)(1.5)}{0.453 \times 10^{-6}}$$

$$= 41700$$

$$h = \frac{k}{D} \left\{ 0.3 + \frac{0.62 Re^{1/2} Pr^{1/3}}{\left[1 + \left(\frac{0.4}{Pr} \right)^{2/3} \right]^{1/4}} \left[1 + \left(\frac{Re}{282000} \right)^{5/8} \right]^{4/5} \right\}$$

$$= 11030 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{q} = (11030) \pi (0.012)(0.075)(85) = 278 \text{ kW}$$

$$20.35 \quad Re = \frac{0.15(150)}{7.98 \times 10^{-5}} = 282,000$$

$$h = \frac{k}{D} Nu = \frac{0.0566}{0.15} (400)$$

from Fig 20.11

$$= 151 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{q} = 151 (1030) = 155 \text{ kW/m}^2$$

$$20.36 \quad q = 140 \text{ W/m} \quad \left\{ \text{from Prob} \right.$$

$$\frac{q}{A} = 2480 \text{ W/m}^2 \quad \left\{ 20.18 \right.$$

$$k = \frac{0.018(9)}{1.569 \times 10^{-5}} = 0.300 \quad \left\{ T_f \approx 300 \text{ K} \right\}$$

$$Pr = 0.708 \quad k = 0.0262$$

$$h = \frac{k}{D} \left[0.193 \left(\frac{0.018}{0.300} \right) \left(\frac{0.708}{0.0262} \right)^{1/3} \right]$$

$$= 75.6 \text{ W/m}^2 \cdot \text{K}$$

$$\Delta T = 2480 / 75.6 = 32.8$$

$$\left\{ T_s = 323, T_f = 300, \text{ close enough} \right\}$$

$$h = 75.6 \text{ W/m}^2 \cdot \text{K}$$

$$\Delta T = 32.8 \quad T_{\text{surf}} = 323 \text{ K}$$

$$\text{INSUL. RESISTANCE} = 0.842 \quad \left\{ \text{Prob 20.13} \right\}$$

$$\Delta T = 140 / 0.842 = 166 \text{ K}$$

$$T_{\text{int diff.}} = 323 + 166 = \underline{\underline{489 \text{ K}}}$$

$$20.37 \quad \text{SPHERES: } D = 0.075 \text{ m}$$

$$T_{b0} = 25^\circ \text{C} \quad T_s = 145^\circ \text{C}$$

$$\nu = 1.59 \times 10^{-5} \quad \mu_p = 1837 \times 10^{-5}$$

$$k = 0.0261 \quad \mu_s = 2429 \times 10^{-5}$$

$$Pr = 0.708$$

$$q = h A \Delta T = h (\pi) (0.075)^2 (120)$$

$$Re = \frac{Dv}{\nu} = \frac{(0.075)(0.5)}{1.59 \times 10^{-5}} = 2418$$

$$h = \frac{k}{D} \left[2 + \left(0.4 \left(\frac{k}{\mu_p} \right)^{1/2} + 0.006 \left(\frac{\mu_s}{\mu_p} \right)^{2/3} \right) Pr \left(\frac{\mu_s}{\mu_p} \right)^{0.4} \right]$$

$$= \frac{0.0261}{0.075} \left\{ 2 + \left[0.4 \left(2418 \right)^{1/2} + 0.006 \left(2418 \right)^{2/3} \right] \times \left(0.708 \right)^{0.4} \left(\frac{1.837}{2429} \right)^{1/4} \right\}$$

20.37 CONTINUED -

$$= 8.99 \text{ W/m}^2 \cdot \text{K}$$

$$q = 8.99 (\pi) (0.075)^2 (120)$$

$$= \underline{\underline{19.07 \text{ W}}}$$

$$20.38 \quad G = 8 \text{ V} = 3.64 \text{ lbm/s} \cdot \text{ft}^2$$

$$Re = \frac{GD}{\mu} = \frac{3.64 (0.622/12)}{0.29 \times 10^{-3}} = 650 \quad (\text{LAMINAR})$$

use Sieder-Tate fcn. assume $T_{b,\text{AVG}} = 150^\circ \text{F}$

$$Nu = 1.86 \left(Re Pr \frac{D}{L} \right)^{1/3} \left(\frac{\mu_b}{\mu_s} \right)^{0.14}$$

$$h = \frac{k}{D} Nu = \frac{0.383 (1.86)}{0.622/12} \left[\frac{(650)(272)}{12(5)} \right]^{1/3} \times \left(\frac{0.29}{0.572} \right)^{0.14}$$

$$= 32.9 \text{ Btu/hr ft}^2 F$$

$$St = \frac{Nu}{Re Pr} = 0.00252$$

$$\frac{T_c - T_s}{T_o - T_s} = \frac{-4 \frac{L}{D} St}{C} = \frac{-0.912}{0.378} = 0.378$$

$$T = 80 + 0.378(100) = 117.8 \text{ F}$$

$$T_{b,\text{AVG}} = \frac{117.8 + 180}{2} = 149 \text{ F} - \text{OK}$$

$$q = \dot{m} c_p \Delta T = 3.64 (0.0021) (149.7 - 86.7)$$

from Steam Tables

$$= \underline{\underline{1710 \text{ Btu/NL}}}$$

$$20.39 \quad G = 60.6 (35) = 2120 \text{ lbm/s} \cdot \text{ft}^2$$

$$Re = 307,000 \quad \left\{ \text{TURBULENT} \right\}$$

$T_f \approx 180^\circ \text{F}$ - use Colburn fcn:

$$St = 0.023 (307,000)^{-0.2} (344)^{-2/3}$$

$$= 0.000807$$

20.39 (CONTINUED)

$$T = 80 + 180 e^{-St(4)(5)/0.622}$$

$$= 153.3 \text{ F} \quad \text{- FIRST GUESS}$$

$$T_f = \left[\frac{80 + 153.3}{2} + 180 \right] / 2 \approx 149 \text{ F}$$

$$\text{AT THIS TEMP: } Re = 443,000 \quad Fr = 4.51$$

$$St = 0.000625 \quad T \approx 155 \text{ F}$$

$$20.40 \quad GA = 10,000 \text{ lbm/hr}$$

$$G = \frac{10,000}{0.276} = 37400 \text{ lbm/HR PT2}$$

$$Re = \frac{37400 \left(\frac{1.001}{12} \right)}{1.63 \times 10^{-5} (3600)} = 3.72 \times 10^5 \quad \{ \text{TURBULENT} \}$$

USE DITRUS-BOECKER EQUATION:

$$h = \frac{k}{D} (0.023) Re^{0.8} Fr^{0.3}$$

$$= \frac{0.0321}{(1.001/12)} (0.023) (3.72 \times 10^5)^{0.8} (0.912)^{0.3}$$

$$= 35.2 \text{ BTU/HR PT2 F}$$

$$20.41 \quad m_{\text{TOTAL}}^0 = 1.47 \frac{\text{kg}}{\text{s}} \quad m = 0.245 \text{ kg/s}$$

Per TUBE

$$Re = \frac{DVS}{\mu} = \frac{m4}{\pi D \mu} = \frac{0.245}{\pi (0.0209) (7.9 \times 10^{-3})} = 1890 \quad \{ \text{LAMINAR} \}$$

$$\ln \frac{T_L - T_s}{T_0 - T_s} = - \frac{4L}{D} St$$

$$St = 1.86 \left(\frac{D}{L} \right)^{1/3} (Re Fr)^{-2/3} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

20.41 (CONTINUED)

$$\text{Assume } T_{\text{exit}} = 305 \text{ K} \quad T_{\text{avg}} \approx 302 \text{ K}$$

$$St = 1.86 \left(\frac{0.029}{2.5} \right)^{1/3} \left(\frac{1890 \times 12}{L} \right)^{2/3} \left(\frac{0.0414}{3.72 \times 10^{-5}} \right)^{0.14}$$

$$= 1.414 \times 10^{-3}$$

$$T_L = 372 - 72 e^{-\frac{(1.414 \times 10^{-3})(4)(25)}{0.0209}}$$

$$= 304.7 \quad \sim \text{GOOD AGREEMENT}$$

$$q = \dot{m} c_p \Delta T = 1.47 (1.84 \times 10^3)(4.7)$$

$$= 12740 \text{ J/s} = \underline{12.74 \text{ kW}}$$

20.42

$$\frac{T - T_s}{T_0 - T_s} = \frac{4L}{D} St$$

$$T_0 = 160 \text{ C} \quad \text{ASSUME } T \approx 140 \text{ C}$$

$$T_s = 100 \text{ C} \quad T_{\text{bavg}} = 150 \text{ C}$$

$$Re = \frac{4m}{\pi D \mu} = \frac{4(136)}{(3600)(0.015)\pi \mu_w}$$

$$@ 423 \text{ K} \quad \mu = (0.0008 \times 10^{-3})(812)$$

$$Re = 116 \quad \sim \text{LAMINAR}$$

$$St = \frac{Nu}{Re Fr} = \frac{1.86}{(Re Fr)^{2/3}} \left(\frac{D}{L} \right)^{1/3} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

$$= \frac{1.86}{[(116)(600)]^{2/3}} \left(\frac{0.015}{15} \right)^{1/3} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

$$= 0.00053$$

$$e^{-4L St} = 0.654$$

$$T = 100 + 0.654(60) = 139.3 \text{ C}$$

Good!

$$T_{\text{exit}} \approx 139 \text{ C}$$

20.43

FOR THIS CASE

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = e^{-\frac{4L}{D} \frac{U}{h_i c_p}}$$

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = \frac{30}{40} = 0.75$$

$$0.2877 = 4 \frac{L}{D} \frac{U}{h_i c_p}$$

$$U = \frac{1}{\frac{1}{h_i A_i} + \frac{1}{h_o A_o}} = \frac{\pi D L}{\frac{1}{h_i} + \frac{1}{h_o}}$$

$$h_o = 500 \text{ W/m}^2 \cdot \text{K} \quad h_i = \frac{k}{D} \text{ Nuss}$$

$$Re_D = \frac{4V}{\pi D \nu} = \frac{4(0.006)}{\pi (0.0025) (7 \times 10^{-7}) (3600)} = 123 \quad \left. \right\} \text{LAMINAR}$$

$$Pr = \frac{\mu c_p}{k} = \frac{(1000) (7 \times 10^{-7}) (4000)}{0.5} = 5.6$$

$$h_i = \frac{k}{D} (1.86) \left(\frac{Re}{L} \frac{Pr}{L} \right)^{1/3} \left(\frac{h_o}{h_w} \right)^{0.14}$$

$$= \frac{0.5}{0.0025} (1.86) \left[(123)(5.6) \left(\frac{0.0025}{7} \right) \right]^{1/3} = 956 \text{ L}^{-1/3}$$

$$U = \frac{\pi D L}{\frac{1}{h_i} + \frac{L}{h_o}} = \frac{L}{0.255 + 0.133 L^{1/3}}$$

PUTTING EVERYTHING TOGETHER:

$$0.2877 = \frac{0.001178 L^2}{0.255 + 0.133 L^{1/3}}$$

By TRIAL & ERROR:

$$\underline{L \approx 11.7 \text{ m}}$$

20.44

 $T_0 = 320 \text{ K}$

$$\frac{1}{h_i A_i} \frac{\Delta T}{\sum R} = \frac{1}{h_i A_i} \frac{\Delta T}{h_o A_o + \frac{\ln r_o/r_i}{2\pi k}}$$

<ASSUME T_0 IS OUTSIDE TUBE TEMP>

$$\frac{1}{h_i A_i} = \frac{1}{(700)(\pi)(0.01656)} = 1.13 \times 10^{-2}$$

$$\frac{\ln r_o/r_i}{2\pi k} = \frac{\ln 1.905 / 1.1656}{2\pi (110)} = 2.03 \times 10^{-4}$$

$$\sum R = 1.15 \times 10^{-2}$$

$$\dot{q} = \frac{320 - 290}{1.15 \times 10^{-2}} = 2,606 \text{ kW/m}$$

$$\dot{m}_{\text{CONO}} = \frac{2,606 \text{ kW/m}}{1393 \text{ kJ/kg}} = 1.09 \text{ g/s}$$

$$= \underline{3920 \text{ g/hr}} = \underline{3.92 \text{ kg/hr}}$$

20.45 OUTSIDE OF TUBE INSULATED

∴ ALL HEAT GENERATED GOES INTO H_2O

$$\dot{q} = \dot{m}_{\text{H}_2\text{O}} \Delta T = (0.12 \text{ kg/s})(4171 \text{ J/kg.K})(70 - 25) \text{ K} = 22.56 \text{ kW}$$

$$\left\{ \dot{q} = \dot{q} V = 1.5 \times 10^6 \text{ W/m}^2 \left[\frac{\pi}{4} (0.045^2 - 0.025^2) \right] L = 1,649 \text{ L.kW} \right.$$

$$L = \underline{13.68 \text{ m}}$$

$$\text{CONSTANT AT FUN} = \frac{22560 \text{ W}}{\pi (0.025)(3.14) \text{ m}^2} = 21000 \text{ W/m}^3$$

$$h = \frac{21000}{110 - 70} = \underline{525 \text{ W/m}^2 \cdot \text{K}}$$

$$20.46 \quad T - T_s = e^{-\frac{4L}{D} St}$$

$$T_0 - T_s$$

$$St = \frac{D}{4L} \ln \frac{60-120}{100-120} = \frac{0.0717}{L}$$

a) $V = 15 \text{ ft/s}$

$$Re = \frac{(0.15/12)(25)}{0.181 \times 10^{-3}} = 8640$$

USE LEIBFERN ANALOGY: $St = \frac{C_f}{2} Fr^{-2/3}$

$$St = \frac{0.0018}{2} (1.257) = 0.0049$$

$$L = \frac{0.0717}{0.0049} = \underline{\underline{3.5 \text{ ft}}}$$

b) $V = 15 \text{ ft/s}$ $Re = 5190$

$$St = 0.005660 \quad L = \underline{\underline{3.03 \text{ ft}}}$$

$$20.47 \quad D_{\text{WIV}} = \frac{4(2)(4)}{(2)(6)} = \frac{16}{6} \text{ ft}$$

$$Re = \frac{(16/6)(6)}{1.28 \times 10^{-5}} = 1.25 \times 10^6$$

$$St = 0.023 Re^{-0.2} Fr^{-2/3}$$

$$= 0.023 (1.25 \times 10^6)^{-0.2} (0.703)^{-2/3}$$

$$= 0.00176$$

FOR THE SHORT DISTANCE INVOLVED:

$$h = St (8Vc_p) = (0.00176)(6)(0.24)$$

$$= 2.53 \times 10^{-3} \frac{\text{Btu}}{\text{s ft}^2 \text{ F}}$$

$$q = h A \Delta T = (2.53 \times 10^{-3})(12)(40)$$

$$= 1.215 \frac{\text{Btu}}{\text{s}} \text{ per ft} = 4370 \frac{\text{Btu}}{\text{hr}} \text{ per ft}$$

$$\Delta T = \frac{q}{m c_p} = \frac{1.215}{(0.24)(6)(8)} = \underline{\underline{0.105 \text{ F per ft}}}$$

20.48

$$T_{in} = 1290 \text{ K} \quad \text{ASSUME } T_{out} = 350$$

$$T_{surf} = 370 \text{ K} \quad T_{base} = 320 \text{ K}$$

$$N = 0.596 \times 10^{-6} \text{ m}^2/\text{s} \quad Pr = 3.87$$

$$T - T_s = e^{-\frac{4L}{D} St}$$

$$Re = \frac{(0.0254)(1.5)}{0.596 \times 10^{-6}} = 63900$$

USE DITTUS-BOECKER EQUATION:

$$St = 0.023 Re^{-0.2} Fr^{-0.6}$$

$$= 0.023 (63900)^{-0.2} (3.87)^{-0.6}$$

$$= 0.00112$$

$$e^{-4 \frac{L}{D} (St)} = 0.414$$

$$T_{out} = 370 - (0.414)(80)$$

$$\cong 337$$

SECOND TRY - $T_{out} = 337$

$$T_{base} = 313.5$$

$$N = 0.663 \times 10^{-6} \quad Pr = 4.33$$

$$Re = 57400 \quad St = 0.00107$$

$$e^{-4 \frac{L}{D} (St)} = 0.432$$

$$T_{out} = 370 - (0.432)(80) = \underline{\underline{335 \text{ K}}}$$

$$q = \dot{m} q \Delta T$$

$$= (972) \frac{\pi}{4} (0.0254)^2 (1.5) (4175) (45)$$

$$= \underline{\underline{141.6 \text{ kW}}}$$

20.49 Rect. Duct $0.61\text{m} \times 1.22\text{m}$

$$De_{\text{corr}} = \frac{4(0.61)(1.22)}{2(0.61+1.22)} = 0.813 \text{ m}$$

$$q = hA\Delta T$$

use Dittus Boelter Eqn.

$$Re = \frac{DG}{\mu} = \frac{(0.813)(29.4)}{1948 \times 10^{-5}} = 1,227 \times 10^6$$

$$Pr = 0.703$$

$$h = \frac{k}{D} (0.023) Re^{0.8} Pr^{0.3}$$

$$= \frac{0.0279}{0.813} (0.023)(1,227 \times 10^6)^{0.8} (0.703)^{0.3}$$

$$= 52.8 \text{ W/m}^2 \cdot \text{K}$$

$$q = hA\Delta T = 52.8 (2)(0.61 \times 1.22)(22)$$

$$= 4250 \text{ W/m}$$

$$q = \dot{m}c_p \Delta T = 6A c_p \Delta T$$

$$\Delta T = \frac{4250}{29.4 (0.61)(1.22)(1007)} = 0.193 \text{ K per m}$$

20.50 Duct: $7.5\text{cm} \times 15\text{cm}$

$$\frac{T-T_s}{T_o-T_s} = \frac{4L}{D} St \quad L = 6 \text{ m} \quad De_{\text{corr}} = 10 \text{ cm}$$

$$\frac{T-T_s}{T_o-T_s} = \frac{30-70}{10-70} = 0.667$$

$$4\frac{L}{D} St = 0.405$$

$$St = \frac{0.405(0.10)}{4(6)} = 0.00169$$

20.50 CONTINUED -

use Corrsen Eq.

$$St = 0.023 Re^{-0.2} Pr^{-2/3}$$

$$Re = \frac{DV}{\mu} = \frac{(0.10)(V)}{1739 \times 10^{-5}} = 5750 \text{ V}$$

$$Pr = 0.704$$

$$0.00169 = 0.023 (5750)^{-0.2} (0.704)^{-2/3}$$

$$\underline{V = 261 \text{ m/s}}$$

UNREALISTIC BUT MATHEMATICALLY CORRECT

20.51 Figs 20.12 & 20.13 APPLY STRICTLY FOR LIQUIDS FLOWING THROUGH TUBE BANKS BUT THEY WILL BE USED FOR LACK OF OTHER RESOURCES. -

Using Fig 20.13 ~

$$Re = \frac{D_V}{\mu} = \frac{(0.018)(60)}{1.505 \times 10^{-5}} = 7.17 \times 10^3$$

AT THIS Re: $j \approx 0.01$

$$h = 0.01 c_p G Pr^{-2/3} \left(\frac{\Delta T}{L_D}\right)^{-0.14}$$

$$= 0.01 (10055)(1.205)(6)(0.707)^{-2/3} \left(\frac{1.117}{1.813}\right)^{-0.14}$$

$$= 89.6 \text{ W/m}^2 \cdot \text{K}$$

FOR A BANK OF 10 TUBES, 10 ROWS DEEP

$$A = 100(\pi)(0.018)(1.8) = 10.18 \text{ m}^2$$

$$= (89.6)(10.18)(65) = \underline{593 \text{ kW}}$$

20.52 FOR SAME CONDITIONS AS PROB. 20.51 EXCEPT FOR STAGGERED TUBE ARRANGEMENT -

$$Re = 7.17 \times 10^3$$

$\frac{1}{2}$ BOTH ARRANGEMENTS GIVE SAME VALUE for j

$$\therefore \underline{j = 59.3 \text{ kW}}$$

20.53 USING FIG 20.12

SAME CAVEATS AS FOR PROB 20.51 -

$$D_{\text{bowl}} = \frac{4}{\pi(0.013)} \left[(0.032)(0.032) - \frac{\pi}{4} (0.013)^2 \right] \\ = 0.0813 \text{ m}$$

$$Re = \frac{(0.0813)(1.25)}{1.569 \times 10^{-5}} = 6.95 \times 10^3$$

- OUT OF LAMINAR RANGE -

MUST USE FIG 20.13

$$Re = \frac{0.013(1.25)}{1.569 \times 10^{-5}} = 1.04 \times 10^3$$

FOR IN-LINE CONFIGURATION -

$$j \approx 0.017$$

$$h = 0.017(1.0063)(1.17)(1.25) \\ \times (0.708)^{-2/3} \left(\frac{2.143}{1.813} \right)^{-0.14}$$

$$= 30.95 \text{ W/m}^2 \cdot \text{K}$$

20.53 CONTINUED -

$$A = 64(\pi)(0.013)(18) = 4.70 \text{ m}^2$$

$$q_f = h A \Delta T$$

$$= 30.95(4.70)(63) \\ = \underline{9.164 \text{ kW}}$$

20.54 SAME CONDITIONS AS PROB 20.53 EXCEPT TUBES ARE IN STAGGERED CONFIGURATION.

ALL CALCULATIONS THE SAME AS IN PROB 20.54 EXCEPT $j = 0.035$

$$\text{GIVEN } h = 63.7 \text{ W/m}^2 \cdot \text{K}$$

$$\frac{1}{2} q_f = 63.7(4.70)(63) \\ = \underline{18.87 \text{ kW}}$$

CHAPTER 21

21.1 PLATE IS ASSUMED TO BE COPPER

for $A_2O @ 323 K$ $L = 0.565 \text{ ft}$

$$f_g = 1.26 \times 10^3 (\text{F.PT})^{-1} \quad Pr = 1.81$$

$$\mu_L = 0.702 \frac{\text{lbm}}{\text{HR.FT}} \quad C_L = 1.01 \frac{\text{BTU}}{\text{lbm.F}}$$

$$k = 0.393 \frac{\text{BTU}}{\text{HR.FT}^2} \quad h_{fg} = 970 \frac{\text{BTU}}{\text{lbm}}$$

$$S_L - S_V \approx S_L = 60 \frac{\text{BTU}}{\text{lbm.FT}^3}$$

NATURAL CONVECTION: $\frac{q}{A} = h \Delta T$

$$\frac{q}{A} = \frac{k}{L} \left[0.68 + \frac{0.67 \frac{Pr}{4}}{1 + (0.492) \frac{Pr}{100}} \right] \Delta T$$

$$= 60 \left[0.68 + 89.6 \Delta T^{1/4} \right] \Delta T \quad (1)$$

NUCLEATE BOILING:

$$\frac{C_L \Delta T}{h_{fg} Pr^{1/7}} = C_{sf} \left[\frac{q/A}{\mu_L h_{fg}} \left(\frac{g_c \sigma}{g [S_L - S_V]} \right)^{1/2} \right]^{1/3}$$

$$\sigma = 3.79 \times 10^3 \frac{\text{lbf}}{\text{FT}} \quad C_{sf} = 0.013$$

$$\text{LHS: } \frac{C_L \Delta T}{h_{fg} Pr^{1/7}} = 3.80 \times 10^4 \Delta T$$

$$\text{RHS: } C_{sf} \left[\frac{q}{A} \right]^{1/3} = 0.013 \left[\frac{q/A}{0.702(970)} \right]^{1/3} \sqrt[3]{60}$$

$$= 294 \times 10^{-4} \left(\frac{q}{A} \right)^{1/3}$$

$$\frac{q}{A} = 214 \Delta T^3 \quad (2)$$

EQUATING: (1) = (2)

$$2.14 \Delta T^3 = 0.6 \left[0.68 + 89.6 \Delta T^{1/4} \right]$$

$$\Delta T \approx 6.3 \text{ F}$$

PART (b): Plot q/A from (1),
 q/A from (2), $\frac{q}{A}$ from their sum

$$21.2 \quad \frac{C_L \Delta T}{h_{fg} Pr^{1/7}} = C_{sf} \left[\frac{q/A}{\mu_L h_{fg}} \left(\frac{g_c \sigma}{g [S_L - S_V]} \right)^{1/2} \right]^{1/3}$$

IN FURNAS UNITS:

$$C_L = 1.03 \quad Pr = 1.74$$

$$h_{fg} = 970 \quad \mu_L = 0.195 \times 10^{-3}$$

$$T_{SAT} = 212 \quad \Delta S = 60.2$$

$$A = \frac{C_L \Delta T}{h_{fg}} \quad B = \frac{1}{\mu_L h_{fg} \sqrt{g \Delta S}}$$

$$\frac{q}{A} = \left[\frac{A}{C_{sf} B (2.74)} \right]^{1/3}$$

$$\text{for Ni} \nmid \text{BRASS} \quad C_{sf} = 0.006$$

$$\text{" Cu} \nmid \text{PT} \quad C_{sf} = 0.013$$

$$T_S(K) \quad \Delta T \quad \Delta T(F) \quad A \quad 5 \times 10^3 \quad B$$

390	17	31	0.033	5.04	0.364
420	47	85	0.090	4.67	0.360
450	77	139	0.148	3.79	0.355

T _S	q/A	h W/m.K	q/A	h
390	168	2 x 10 ⁵	165	0.533 x 10 ⁵
420	3516	85 "	346	4.07 "
450	16340	24 "	1610	1610 "

Ni, BRASS

Cu, PT

$$21.3 \quad \frac{C_L \Delta T}{h_{fg}} = 0.0709$$

$$\frac{q}{A} = \left(\frac{0.0709}{0.01235} \right)^3 = 190 \frac{\text{BTU}}{\text{s.ft}^2}$$

$$= 680,000 \frac{\text{BTU}}{\text{HR.FT}^2}$$

$$q = 680,000 (\pi) (1/4)^2 = 178,000 \frac{\text{BTU}}{\text{HR}}$$

$$h = \frac{680,000}{68} = 10,000 \frac{\text{BTU}}{\text{HR.FT}^2}$$

21.4 Boiling A_0 @ 1 ATM! Burnout
Point is $\Delta T \approx 100\text{ F}$ $T_s = 312\text{ F}$
As it was the cylinder is in

Film Boiling $500 < T_s < 312$

Nucleate $312 < T_s < 140$

Film Boiling Part:

$$h = 0.62 \left[k_f^3 S_f (\Delta s) g (h_{fg} + 0.4 C_p \Delta T_s) \right]^{1/4}$$

$$k_f = 0.0145 \frac{\text{Btu}}{\text{hr ft}^2 \text{F}}$$

$$S_f = 0.0372 \frac{\text{ftm}}{\text{ft}^3} \quad h_{fg} = 970 \frac{\text{Btu}}{\text{lbm}}$$

$$S_L = 60.0 \quad " \quad C_p = 0.451 \frac{\text{Btu}}{\text{lbm ft}^2 \text{F}}$$

$$\mu_f = 3.12 \times 10^{-3} \frac{\text{lbm}}{\text{hr ft}}$$

SUBSTITUTING INTO FORMULA!

$$h = 35.9 \frac{\text{Btu}}{\text{hr ft}^2 \text{F}} \quad \{ \text{Ans } \Delta T \approx 194\text{ F}$$

$$\frac{q}{A} = h(194) = 35.9(194) = 6960 \frac{\text{Btu}}{\text{hr ft}^2}$$

Nucleate Boiling Part 1

$$\frac{C_s \Delta T}{h_{fg}} = C_{sf} \left[\frac{g/A}{\mu_L h_{fg}} \left(\frac{\sigma}{g \Delta s} \right)^{1/2} \right]^3 \Pr^{1/7}$$

$$\Rightarrow \frac{q}{A} = \left(\frac{0.0168 \Delta T}{C_{sf}} \right)^3 = 4.8 \times 10^{-6} \left(\frac{\Delta T}{C_{sf}} \right)^3$$

$$\text{With } \Delta T = 64\text{ F} \quad C_{sf} = 0.013 \sim \text{Cu}$$

$$= 0.006 \sim \text{Br, Ni}$$

$$\frac{q}{A} = 5.72 \times 10^5 \sim \text{Cu}$$

$$= 5.82 \times 10^6 \sim \text{Brass, Ni}$$

$$\frac{q}{A} = \frac{S V C_p}{A} \frac{\Delta T}{\Delta t}$$

$$t = S \left(\frac{V}{A} \right) C_p \left[\int_{312}^{500} \frac{\Delta T}{g/A_f} + \int_{240}^{312} \frac{\Delta T}{g/A_{\text{nuc}}} \right]$$

21.4 CONT.

$$t = S \frac{D}{4} C_p \left(\frac{188}{g/A_f} + \frac{72}{g/A_{\text{nuc}}} \right)$$

$$S \frac{D}{4} C_p = 555 \left(\frac{1}{96} \right) (0.092) = 0.532 \quad \{ \text{Cu}$$

$$= 532 \left(\frac{1}{96} \right) (0.091) = 0.503 \quad \{ \text{Br}$$

$$= 556 \left(\frac{1}{96} \right) (0.111) = 0.643 \quad \{ \text{Ni}$$

$$\text{Copper: } t = 0.532 \left[\frac{188}{6960} + \frac{72}{5.72 \times 10^5} \right] = 52.5$$

$$\text{Br: } t = 0.503 \left[\frac{188}{6960} + \frac{72}{5.8 \times 10^5} \right] = 48.95$$

$$\text{Ni: } t = 0.643 \left[\frac{188}{6960} + \frac{72}{5.8 \times 10^5} \right] = 62.65$$

21.5 USING ENGLISH UNITS:

$$A = \pi D L + 2 \frac{\pi D^2}{4} = \pi (0.02)(0.15) + \frac{\pi}{4} (2)(0.02)^2$$

$$= 0.1082 \text{ ft}^2$$

$$\frac{q}{A} = \frac{500(3.413)}{0.1082} = 15800 \frac{\text{Btu}}{\text{hr ft}^2}$$

ASSUME NUCLEATE BOILING!

$$\frac{1 \Delta T}{(1.8)^{1.7}(970)} = 0.006 \left[\frac{15800}{(0.195 \times 10^3)(970)(3600)} \times \left(\frac{379 \times 10^{-3}}{60} \right)^{1/2} \right]^{1/3}$$

$$\Delta T = 9.0 \text{ F}$$

$$\text{Surface Temp.} = 221 \text{ F}$$

$$h = \frac{15800}{9} = \frac{1760 \frac{\text{Btu}}{\text{hr ft}^2 \text{F}}}{}$$

$$21.6 \quad h = 0.62 \left[k_v^3 g \Delta \bar{S} g (h_{fg} + 0.4 C_p \Delta T) \right]^{1/4}$$

$$= 0.62 \left[\frac{D \mu_w (T_s - T_{SAT})}{(0.0153)(0.0341 \times 10^4 / 14.7)(58.9)} \times \right.$$

$$\left. \frac{1/12 (0.914 \times 10^{-5})(933)}{32.2 (3600)(934 + 0.4 \times 0.483 \times 933)} \right]^{1/4}$$

$$= 26.9 \text{ BTU/HR FT}^2 \text{ F}$$

$$\dot{q} = h \Delta T = 26.9 (1200 - 247) = 25,000 \text{ BTU/HR FT}^2$$

$$21.7 \quad \Delta T = 2200 - 240 = 1960 \text{ F} \quad \begin{cases} \text{FILM} \\ \text{BOILING} \end{cases}$$

$$h = 0.62 \left[\frac{(0.0153)^2 (0.035)(58.9)(32.2)(3600)}{(0.02/12)(1.53 \times 10^{-5})(1960)} \times \right.$$

$$\left. (952 + 0.4 \times 0.483 \times 1960) \right]^{1/4}$$

$$= 43.3 \text{ BTU/HR FT}^2 \text{ F}$$

$$\dot{q} = h A \Delta T = 43.3 (\pi) \left(\frac{0.2}{12} \right) (1)(1960)$$

$$= 444 \text{ BTU/HR FT}^2 \text{ F}$$

$$21.8 \quad 2000 \text{ W} = 6826 \text{ BTU/HR}$$

Per Plate: $A = 2(0.05)(0.1) = 0.01 \text{ m}^2$
 $= 0.1076 \text{ FT}^2$

$$\dot{q} = 20,000 \text{ W/m}^2 = 63400 \text{ BTU/HR FT}^2$$

IT APPEARS THAT NUCLEATE BOILING ON ONE PLATE CAN ACHIEVE THIS.

$$T_{SAT} = 242 \text{ F}$$

$$\frac{C_L \Delta T}{h_{fg} Pr^{1/7}} = C_{sf} \left[\frac{\dot{q}/A}{\mu_L h_{fg}} \left(\frac{\sigma}{g \Delta S} \right)^{1/2} \right]^{1/3}$$

21.8 CONT.

$$\frac{\Delta T}{945(2.12)} = 0.013 \left[\frac{63400}{0.167 \times 10^3 (970)(3600)} \times \right.$$

$$\left. \left(\frac{3.79 \times 10^{-3}}{59.1} \right)^{1/2} \right]^{1/3}$$

$$\underline{\Delta T = 24.9 \text{ F}} \quad \begin{cases} \text{OK} \\ \text{1 PLATE WILL DO IT} \end{cases}$$

21.9 PLOTS REQUIRED

PROBLEMS:

$T_{sat}(k) \quad \Delta T(k)$

600	227	Film Boiling*
500	127	" "
400	27	Nucleate **

* USE EAN (21-7)
** USE EAN (21-5)

$$\dot{q} = h \Delta T$$

h_{film} , b. VARIES AS $\Delta T^{-1/4}$

h_{nuc} , b. " " ΔT^2

\dot{q} | VARIES AS $\Delta T^{3/4}$
 \dot{q}_{film}

\dot{q} | nuc " " ΔT^3

PLATE IS LUMPED

$$\dot{q} = \dot{q}_{cp} \times \frac{\Delta T}{\Delta t} \quad \Delta T = \frac{\dot{q}/A}{\dot{q}_{cp} N} \Delta t$$

21.10 IDEA HERE IS TO RETARD BOILING SUCH THAT INTERNAL PRESSURE WILL NOT BE TOO LARGE

$$q_f = \left(3 \times 10^6 \frac{\text{Btu}}{\text{HR} \cdot \text{ft}^2} \right) \pi \left(\frac{3}{48} \right) (4) = 555 \frac{\text{Btu}}{\text{s}}$$

3600

FOR $P=1 \text{ ATM}$ $\dot{h}_{fg} = 970 \frac{\text{Btu}}{\text{lbm}}$

$$\dot{m}_{\text{EVAPORATION}} = \frac{555}{970} = 0.5716 \frac{\text{lbm}}{\text{s}}$$

$$= \frac{0.5716}{0.0372} = 18.2 \frac{\text{ft}^3}{\text{s}}$$

VOLUME OF PIPE { ALSO VOLUME OF FLUID }

$$= \frac{\pi}{4} \left(\frac{3}{48} \right)^2 (4) = 0.0123 \text{ ft}^3$$

$$\text{FLOW AREA} = \frac{\pi}{4} \left(\frac{3}{48} \right)^2 = 0.0031 \text{ ft}^2$$

FOR $\dot{V}_w \left\{ \frac{\text{ft}^3}{\text{s}} \right\}$ OF FLUID ENTERING

$\dot{V}_w + 18.2$ TOTAL FLOW EXITS

$$\dot{V}_w = 18.2 \left(\frac{0.0372}{59.5} \right) \approx 0.0144 \frac{\text{ft}^3}{\text{s}}$$

$\dot{V}_w + 18.2 \approx 18.2 \frac{\text{ft}^3}{\text{s}}$ OUT

$$V_{\text{exit}} = \frac{18.2}{0.0031} = 5870 \text{ ft/s}$$

SUPERSONIC!

INCREASE PIPE DIAMETER, OR ADD ADDITIONAL PIPES IN PARALLEL, OR DECREASE q_f

21.11

21.11 (CONT.)

AT EQUILIBRIUM $\sum f_x = 0$

$$\text{UPWARD force} = T \Delta x 2\pi r = -\mu \frac{dV}{dr} 2\pi r \Delta x$$

(viscous)

$$\text{DOWNWARD force} = \rho g \pi (r^2 - \xi^2) \Delta x$$

$$\Rightarrow \rho g (r^2 - \xi^2) = -\mu \frac{dV}{dr} 2r$$

$$\text{SEPARATING VARIABLES: } dV = -\frac{\rho g}{2\mu} (r - \xi^2) dr$$

$$V = -\frac{\rho g}{2\mu} \left(\frac{r^2}{2} - \xi^2 \ln r \right) + C$$

$$\text{B.C. } V(R) = 0 \Rightarrow C = \frac{\rho g}{\mu} \left(\frac{R^2}{2} - \xi^2 \ln R \right)$$

$$V = \frac{\rho g}{2\mu} \left[\frac{R^2 - r^2}{2} - \xi^2 \ln \frac{R}{r} \right]$$

AT ANY X, MASS FLOW RATE IS

$$\Gamma = \int_{\xi}^{R} SV(2\pi r) dr$$

$$= \frac{\pi \rho g}{\mu} \int_{\xi}^{R} \left[\frac{R^2}{2} r - \frac{r^3}{2} - \xi^2 r \ln r + \xi^2 r \ln \frac{R}{r} \right] dr$$

$$= \frac{\pi \rho g}{\mu} \left[\frac{R^4}{8} - \frac{\xi^2 R^2}{2} + \frac{3\xi^4}{8} + \frac{\xi^2}{2} \ln R - \frac{\xi^4}{2} \ln \xi \right]$$

RATE OF HEAT FLOW TO WALL - THROUGH CONDENSATE -

$$= \frac{2\pi k}{\rho u^2 g} dx (T_v - T_w)$$

AMOUNT OF CONDENSATE IN DISTANCE dx

$$= \frac{\partial \Gamma}{\partial x} dx = \frac{\partial \Gamma}{\partial \xi} \frac{\partial \xi}{\partial x} dx = \frac{d\Gamma}{d\xi} dx$$

21.11 CONT

$$\frac{d\Gamma}{dx} = \frac{2\pi g^2}{\mu} h_{fg} \left[-\xi R + \xi^3 + 2\xi^2 \ln R - 2\xi^2 \ln \xi \right]$$

RATE OF HEAT FLOW TO COOL WIRE

$$= \frac{2\pi g^2}{\mu} h_{fg} \left[-\xi R + \xi^3 + 2\xi^2 \ln R - 2\xi^2 \ln \xi \right] d\xi$$

EQUATING HEAT FLOW RATES -

$$\frac{k dx}{\mu r/g} (T_b - T_w) = g^2 h_{fg} \left[-\xi R + \xi^3 + 2\xi^2 \ln R - 2\xi^2 \ln \xi \right] d\xi$$

SEPARATING VARIABLES $\frac{1}{\xi}$ INTEGRATING

$$A \int_0^x \frac{dx}{\xi} = \int_R^\infty \left[\dots \right] d\xi$$

$$Ax = f(\xi/R) = f(\eta)$$

SOLVING $\{ \text{messy} \}$ WE GET, FOR $X(\eta)$

$$X(\text{FT}) = (2.42 \times 10^9) \left[1.23 - 3.14 \ln \eta \right] \eta^4 + (1.84 - 0.5 \ln \eta) \eta^2 - 9.07$$

η	$\ln \eta$	η^2	η^4	$X \times 10^{-9}$ (FT)	$\delta_{(IN)}$
0.9	-0.1	0.81	0.654	6.3	0.05
0.8	-0.22	0.64	0.409	11.2	0.10
0.6	-0.508	0.36	0.1294	17.3	0.20
0.4	-0.913	0.16	0.0256	20.2	0.30
0.2	-1.607	0.04	0.0016	21.6	0.40
0				22.0	0.50

21.11 CONT

$$4 \times 10^{-8}, \text{ FT}^{1/2} \times 10^{-9} \text{ ft}^{-2}$$

21.12 a) VERTICAL TUBE

$$h = 0.943 \left\{ \frac{g_L g k^3 \Delta \theta \left[h_{fg} + \frac{3}{8} C_p u (\Delta T) \right]}{L \mu \Delta T} \right\}^{1/4}$$

$$= 0.943 \left\{ \frac{961.2 (9.81) (0.679)^3 (0.961)}{1 (297 \times 10^{-6}) (9)} \times \right. \\ \left. \times \left[2.25 \times 10^6 + \frac{3}{8} (4206)(9) \right] \right\}^{1/4}$$

$$= 6600 \text{ W/m}^2 \cdot \text{K}$$

$$\dot{m}_{\text{cond.}} = \frac{6600 (9) (\pi) (15) (1)}{225 \times 10^6} = 0.0125 \text{ kg/s}$$

b) HORIZONTAL

$$h = 0.725 \left\{ \frac{g_L g \Delta \theta k^3 \left[h_{fg} + \frac{3}{8} C_p u \Delta T \right]}{\mu \Delta T} \right\}^{1/4}$$

$$= 7700 \text{ W/m}^2 \cdot \text{K} \quad \dot{m} = 0.0146 \text{ kg/s}$$

21.13 NEGLECT ΔT ACROSS TUBE

$$h_i = \frac{k}{D} 0.023 \rho_{\text{E}}^{0.8} \text{ Pr}^{4/3}$$

$$h_o = 0.725 \left\{ \frac{g_L g \Delta \theta k^3 \left[h_{fg} + \frac{3}{8} C_p u \Delta T \right]}{\mu \Delta T} \right\}^{1/4}$$

$$\text{for } h_i \quad T_{in} = 20^\circ \text{C} \quad T_w = ? \quad T_b = \frac{20 + T_{out}}{2}$$

$$\text{for } h_o \quad \text{PROPERTIES EVALUATED AT } T_f = \frac{T_{in} + T_{out}}{2}$$

21.13 (CONT.)

$$\dot{q} = \frac{\Delta T_{\text{overall}}}{\sum R_i} = \frac{\Delta T_i}{R_i} = \frac{\Delta T_o}{R_o}$$

A MESSY TRIAL & ERROR PROBLEM
- AFTER QUITE A BIT OF WORK
ASSUMING $T_{i,\text{out}} = 36^\circ\text{C} = 309\text{ K}$

$$n \quad T_{w,\text{avg}} = 58^\circ\text{C} = 331\text{ K}$$

$$\text{GIVING } T_{b,\text{avg}} = 28^\circ\text{C} = 301\text{ K}$$

$$Re_i = \frac{DVS}{\mu} = \frac{4m}{\pi D \mu} = \frac{4(4000)}{\pi(0.0165)(863 \times 10^{-6})} \times (3600) \\ = 99000$$

$$Pr = 5.95 \quad k = 0.611$$

$$h_i = \frac{0.611}{0.0165} (0.023)(99000)^{0.8} (5.95)^{0.4} \\ = 17200 \text{ W/m}^2\text{K}$$

$$h_o = 0.725 \left\{ \frac{97.8(9.8)(97.8)(0.673)}{(352 \times 10^{-6})(0.019)(42)} \right\}^{3/4} \\ \times \left[2.25 \times 10^6 + \frac{3}{8}(4194)(42) \right]^{1/4} \\ = 8960 \text{ W/m}^2\text{K}$$

$$R_i = \frac{1}{17200(\pi)(0.0165)(2)} = 5.61 \times 10^{-4}$$

$$R_o = \frac{1}{8690(\pi)(0.019)(2)} = 9.35 \times 10^{-4}$$

$$\sum R = 14.96 \times 10^{-4}$$

$$\Delta T_{\text{TOTAL}} = 72\text{ K} \quad \Delta T_i \approx 27\text{ K} \quad \Delta T_o \approx 45\text{ K}$$

$$\dot{q} = \frac{27}{R_i} = \frac{45}{R_o} = 48000 \text{ W}$$

21.13 (CONT.)

$$\dot{q} = mc_p \Delta T = \frac{4000}{3600} (4180) \Delta T$$

$$\Delta T \approx 10.4\text{ K}$$

$$\Rightarrow T_{w,\text{out}} \approx 303.5\text{ K} \quad T_{b,\text{avg}} \approx 298\text{ K}$$

~ CLOSE TO ORIGINAL ASSUMPTION

$$\text{FINALY! } h_{H_2O} = 17200 \text{ W/m}^2\text{K} \quad (a)$$

$$h_{\text{condens}} = 8690 \text{ "} \quad (b)$$

$$T_{w,\text{out}} = 303.5\text{ K} \quad (c)$$

$$m_{\text{cond}} = \frac{48000}{2.25 \times 10^6} = 0.0213 \text{ kg/s} \quad (d)$$

$$21.14 \text{ Flow RATE} = \frac{0.042}{0.586} = 0.0717 \text{ m}^3/\text{s}$$

per m

$$\text{ALLOWABLE WIDTH} = \frac{0.0717}{(15)(1)} = 0.00478 \text{ m} \\ = 0.478 \text{ m}$$

$$0.478 + 2\delta = 1 \text{ cm}$$

$$\delta = 0.261 \text{ cm} = 0.00261 \text{ m}$$

Fun Model:

$$S^4 = \left[\frac{4k\mu x \Delta T}{S_L g \Delta S (h_f + \frac{3}{8} c_p \Delta T)} \right]$$

$$= \frac{4(0.392)(0.195 \times 10^{-3})(0.5)}{(59.5)(322)(59.5)(993.5)(3600)} \times \\ \{ \text{ALL ENGLISH UNITS} \}$$

$$S^4 = 4.425 \times 10^{14} \times$$

$$x = \frac{121,500 \text{ FT}}{= 37000 \text{ m}}$$

$$21.15 \frac{q}{A} = k_L \frac{\Delta T}{y} = 8 h_f g \frac{dy}{dt}$$

{ AT A GIVEN DEPTH, y }

$$\int_0^y dy = \frac{k_L \Delta T}{8 h_f g} \int_0^t dt$$

$$\frac{y^2}{2} = \frac{k_L \Delta T}{8 h_f g} t$$

$$y^2 = \frac{2(0.392)(12)}{60.1(970)} t = 1.614 \times 10^{-4} t$$

$$t, \text{ hours} \quad \frac{y}{ft \times 10^2} \quad \text{INCHES}$$

	0	0	0
0.2	0.586	0.0681	
0.4	0.804	0.0964	
0.6	1.0	0.12	
0.8	1.14	0.137	
1.0	1.27	0.152	

21.16 HORIZONTAL CYLINDER:

$$h_H = 0.725 \left\{ \frac{8.9 \Delta S k^3 (h_f g + \frac{3}{8} C_p \Delta T)}{\mu D \Delta T} \right\}^{1/4}$$

$$= 0.725 \left\{ \frac{61.3 (32.2) (41.3) (0.0562) (2100) (997)}{0.29 \times 10^{-3} (0.0656) (45)} \right\}^{1/4}$$

$$= 397 \frac{\text{BTU}}{\text{HRFT}^2} = 2250 \text{ W/m}^2 \cdot \text{K}$$

$$h_v = h_H \left[1.3 \left(\frac{D}{L} \right)^{1/4} \right] = 1000 \text{ W/m}^2 \cdot \text{K}$$

$$21.16 \text{ CONT. } \dot{m}_{\text{COND}}^0 = \frac{h A \Delta T}{h_f g}$$

$$\Rightarrow 2250(\pi)(0.02)(1.5)(25)$$

$$1.32 \times 10^6$$

$$= 2.29 \times 10^{-3} \text{ kg/s}$$

$$= 1.02 \times 10^{-3} \text{ m}^3/\text{s}$$

HORIZONTAL
VERTICAL

$$21.17 h_{\text{AVG}} = \bar{h} \left(\frac{1}{8} \right)^{1/4} = \frac{h}{1.681}$$

HORIZONTAL TUBE GATE { SEE PROB }
21.16

$$h_{\text{HORIZ}} = 2250 \text{ W/m}^2 \cdot \text{K}$$

$$h_{\text{AVG}} = 2250 / 1.681 = 1341 \text{ W/m}^2 \cdot \text{K}$$

$$q = h_{\text{AVG}} A \Delta T$$

$$= 1341 (8)(\pi)(0.02)(1.5)(25)$$

$$= 25.3 \text{ kW}$$

21.18 SINGLE HORIZONTAL TUBE:

$$h = 0.725 \left\{ \frac{8.9 \Delta S k^3 (h_f g + \frac{3}{8} C_p \Delta T)}{D \mu \Delta T} \right\}^{1/4}$$

$$= 0.725 \left\{ \frac{(60.1)(32.2)(60.1)(0.392)(1015)(100)}{5/96 (0.29 \times 10^{-3})(100)} \right\}^{1/4}$$

$$= 1600 \frac{\text{BTU}}{\text{HR FT}^2 F}$$

$$21.19 h_{\text{AVG}} = h \left(\frac{1}{8} \right)^{1/4} = h / 1.681$$

$$h_{\text{HORIZ}} = 2250 \text{ W/m}^2 \cdot \text{K} \quad \{ \text{FROM PROB} \} \quad 21.16$$

$$\text{FOR BANK: } h_{\text{AVG}} = \frac{2250}{1.681} = 1341 \text{ W/m}^2 \cdot \text{K}$$

21.19 (cont.) for n Tubes -

$$q_f = h_{\text{ave},n} n A_{\text{TUBE}} \Delta T$$

$$= h_{\text{ave},n-1} (n-1) A_{\text{TUBE}} \Delta T + h_n A_{\text{TUBE}} \Delta T$$

$$\bar{h}_n n A \Delta f = \bar{h}_{n-1} (n-1) A \Delta f + h_n A \Delta T$$

$$n^{\text{th}} \text{TUBE: } h_n = n \bar{h}_n - (n-1) \bar{h}_{n-1}$$

$$\text{TOP TUBE: } h_1 = 2250 \text{ W/m}^2 \cdot \text{K}$$

$$3^{\text{RD}} \text{TUBE: } \bar{h}_2 = 1890 \text{ W/m}^2 \cdot \text{K}$$

$$\bar{h}_3 = 1710 \text{ "}$$

$$h_3 = 3(1710) - 2(1890) = 1350 \text{ W/m}^2 \cdot \text{K}$$

$$8^{\text{th}} \text{TUBE: } \bar{h}_8 = 1341 \text{ W/m}^2 \cdot \text{K}$$

$$\bar{h}_7 = 1383 \text{ "}$$

$$h_8 = 8(1341) - 7(1383) = 1047 \text{ W/m}^2 \cdot \text{K}$$

$$21.20 \frac{4A\Gamma_c}{P\mu_f} = Re_c = 2000$$

$$\frac{4A\Gamma_c}{P\mu_f} = \frac{4A}{P} \frac{1}{\mu} = \frac{4}{P\mu} h_f L \Delta T$$

$$L = \frac{\mu h_f}{4h \Delta T} (2000)$$

$$= (0.0206 \times 10^{-3})(970)(2000) L^{1/4} (3600)^{-1/4}$$

$$4(100) [2250(1.3)(0.02)]^{1/4}$$

$$L^{3/4} = 3.27 \quad L = 4.85 \text{ FT}$$

$$21.21 \quad q_f = 0.943 \left[\frac{S_c g \Delta S (h_{fg} + \frac{3}{8} C_p \Delta T)}{L \mu \Delta T} \right]^{1/4}$$

$$= 0.943 \left[\frac{37.2(32.2)(37.2)(0.294)(505)}{2(14 \times 10^{-5})(25)} \right]^{1/4}$$

$$= 694 \text{ BTU/HR FT}^2 \text{ F}$$

$$q_f = h A \Delta T = 694(2)(25)$$

$$= 34,700 \text{ BTU/HR PER FOOT OF WIDTH}$$

$$21.22 \quad q_f = \frac{k \Delta y}{y} = S_h q_f \frac{\Delta y}{\Delta t} \quad \text{FOR THICKNESS}$$

$$\int_0^t S_h q_f \frac{y}{k \Delta T} dy = \frac{S_h q_f}{k \Delta T} \frac{y^2}{2}$$

$$t = 60.2(972)(0.02/0.3048)^2$$

$$0.390(39.6)(2)$$

$$= 16.3 \text{ Hours} - \text{IF PAN IS HORIZONTAL}$$

FOR PAN INCLINED:

$$\text{PER UNIT DEPTH: } V_d = \frac{1}{2} \frac{0.02}{\tan \theta} (0.02)$$

$$V_d = \frac{2 \times 10^{-4} L}{\tan \theta} \text{ m}^3$$

$$\text{IF } \theta = 10^\circ \quad V_d = 1.34 \times 10^{-3} \text{ m}^3$$

$$30^\circ \quad " = 3.46 \times 10^{-4} \text{ "}$$

LENGTH OF SURFACE EXPOSED:

IF $\theta = 10^\circ$ LENGTH = 40 TO 28.7 cm

$\theta = 30^\circ$ " 40 TO 36.5 "

21.22 CONT.

ASSUMES: ACCUMULATION OF CONDENSATE DUE PRINCIPALLY TO CONDENSATION ON EXPOSED SURFACE

$$h = 0.943 \left[\frac{0.9 \sin \theta k \Delta S (h_{fg} + \frac{3}{8} C_p \Delta T)}{L \mu \Delta T} \right]^{1/4}$$

$$= \frac{0.943}{(L \sin \theta)^{1/4}} \left[\frac{60(32.2)(0.792)^3(60)(995)(3600)}{0.201 \times 10^{-3}(40)} \right]$$

$$= 1252 \left(\frac{L}{\sin \theta} \right)^{-1/4}$$

$$@ \theta = 10^\circ \quad L_{AVG} = \frac{40 + 28.7}{2} = 33.8 \text{ cm} = 1.109 \text{ FT}$$

$$30^\circ \quad " = \frac{40 + 36.5}{2} = 38.3 \text{ " } = 1.257 \text{ "}$$

$$h_{10} = 788 \frac{\text{Btu}}{\text{HR} \text{FT}^2 \text{F}} \quad h_{30} = 994 \frac{\text{Btu}}{\text{HR} \text{FT}^2 \text{F}}$$

$$\dot{m} = \frac{h_{AAT}}{h_{fg}} - \frac{h_{L_{AVG}(40)}}{980}$$

$$\dot{m}_{10} = 35.7 \frac{\text{lbm}}{\text{HR}} = 0.572 \frac{\text{ft}^3}{\text{HR}}$$

$$\dot{m}_{30} = 51.0 \text{ " } = 0.817 \text{ "}$$

$$t = \sqrt{\frac{V}{\dot{m}}}$$

$$t_{10} = \frac{1.34 \times 10^{-3}}{0.572} / (0.3048)^2 = 0.0252 \text{ HR}$$

$$= 1.51 \text{ MIN}$$

$$\approx \underline{91 \text{ S}}$$

$$t_{30} = 0.00456 \text{ HR} = 0.274 \text{ MIN}$$

$$\approx \underline{16.4 \text{ S}}$$

21.23

$$h = 0.943 \left[\frac{0.9 \sin \theta k \Delta S (h_{fg} + \frac{3}{8} C_p \Delta T)}{L \mu \Delta T} \right]^{1/4}$$

$$= 0.943 \left[\frac{(0.601)(32.2)(\sin 20^\circ)(0.792)^3(60)}{10.1625/12(0.206 \times 10^{-3})(30)} \right]^{1/4}$$

$$\times (981/3600) \quad]^{1/4}$$

$$= 1050 \frac{\text{Btu}}{\text{HR} \text{FT}^2 \text{F}}$$

$$\dot{m} = \frac{h_{AAT}}{h_{fg}}$$

$$= \frac{1050(1/30)}{970} = 32.5 \frac{\text{lbm}}{\text{HR}}$$

$$\text{VOL} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{\tan 20^\circ} \right) \left(\frac{1}{12} \right)$$

$$= 0.00955 \text{ ft}^3$$

$$t = \frac{V}{\dot{m}} = \frac{0.00955}{32.5/62.4}$$

$$= 0.0183 \text{ hour}$$

$$= \underline{1.10 \text{ MIN.}}$$

CHAPTER 22

$$q = \dot{m} c_p \Delta T_{\text{H2O}} = U A \Delta T_{\text{LM}}$$

$$U A = \text{CONST.} = \frac{\dot{q}}{\Delta T_{\text{LM}}}$$

$$U = \frac{1}{\frac{1}{h_i} + \frac{A_L}{2\pi k} \ln \frac{r_o}{r_i} + \frac{A_L}{h_o}} \approx h_i$$

NEGL. NEGL.

$$\Rightarrow h_i A_i = \text{CONST.}$$

USING DITTUS-BOEHLER CORRELATION

$$h_i = \frac{k}{D} (\text{CONST}) Re^{0.8} Pr^{0.4} = K \frac{(Pr)^{0.8}}{D}$$

$$= \frac{K (D Q / \pi D^2)^{0.8}}{D} = (\text{CONST.}) D^{-1.8}$$

$$\Rightarrow h A = \text{CONST.} = A (\text{CONST.}) D^{-1.8}$$

AS DIAMETER INCREASES THE REQUIRED AREA INCREASES AS $D^{1.8}$

$$22.2 \quad \dot{q} = \dot{m} c_p \Delta T_w = \dot{m} c_p \Delta T_{\text{PROD}}$$

$$10^5 (1)(60) = 10^5 (0.24) \Delta T_{\text{PROD}}$$

$$\Delta T_{\text{PROD}} = 250 \text{ F} = 800 - T_{\text{PROD OUT}}$$

$$T_{\text{PROD OUT}} = 550 \text{ F}$$

$$\Delta T_{\text{LM}} = \frac{600 - 400}{\ln \frac{600}{400}} = 500 \text{ F}$$

$$A = \frac{\dot{q}}{U \Delta T_{\text{LM}}} = \frac{10^5 (1)(60)}{12(500)} = \underline{1000 \text{ FT}^2}$$

$$22.3 \quad \text{Q1: } T_{\text{IN}} = 400 \text{ K} \quad T_{\text{OUT}} = 350 \text{ K}$$

$$\dot{m} = 2 \text{ kg/s} \quad q = 1880 \text{ J/kg.K}$$

$$\dot{q} = \dot{m} c_p \Delta T = 2 (1880) (50) = 188000 \text{ W}$$

$$\Delta T_w = \frac{\dot{q}}{\dot{m} c_p} = \frac{188000}{2(4187)} = 22.5 \text{ K}$$

$$T_{\text{w IN}} = 280 \text{ K} \quad T_{\text{w OUT}} = 302.5 \text{ K}$$

$$\Delta T_{\text{LM}} = \frac{97.5 - 70}{\ln \frac{97.5}{70}} = 83 \text{ K}$$

$$A = \frac{\dot{q}}{U \Delta T_{\text{LM}}} = \frac{188000}{230(83)} = \underline{9.85 \text{ m}^2}$$

22.4

$$D_{\text{EQUIV}} = \frac{4(0.1)(0.2)}{2(0.1+0.2)} = 0.0667 \text{ m}$$

$$T_{\text{bANG}} = 295 \text{ K} \quad T_f = 245 \text{ K}$$

$$Re = 0.0667 \frac{8 \text{ m}}{\mu} = 0.0667 \frac{\dot{m}}{A \mu}$$

$$q = h A \Delta T_{\text{LM}}$$

$$\Delta T_{\text{LM}} = \frac{105 - 95}{\ln \frac{105}{95}} = 99.9 \text{ K}$$

22.4 CONTINUED

ASSUMING TURBULENT FLOW:

$$\dot{m}c_p \Delta T = 815 c_p \left[0.023 \left(\frac{k}{\mu} \right)^{0.2} \left(\frac{\rho}{\rho_f} \right)^{-2/3} \right] A_s \Delta T_{LM}$$

$$\dot{m}(10) = \frac{\dot{m}}{A} \left[0.023 \left(\frac{0.0667}{0.205 \times 10^5} \frac{\text{kg}}{\text{m}^2} \right)^{-0.2} \right]$$

$$x (0.698)^{-2/3} [2(0.3)(2.5)999]$$

SOLVING FOR \dot{m} : $\dot{m} = 105 \text{ kg/s}$

$$q = \dot{m} c_p \Delta T = 105 (1009)(60) = 1060 \text{ kW}$$

22.5

a) $q = 150(1)(80) = 12000 \text{ BTU/min}$
 $= UA \Delta T_{LM}$

$$\Delta T_{LM} = \frac{100 - 20}{\ln \frac{100}{20}} = 49.7 F$$

$$A = \frac{q}{U \Delta T_{LM}} = \frac{12000(60)}{50(49.7)} = 290 \text{ ft}^2$$

b) WATER IN SHELL; OIL 2 PASSES

$$Y = \frac{80 - 240}{60 - 240} = 0.889$$

$$Z = \frac{60 - 140}{80 - 240} = 0.5$$

$A = \infty \sim \text{CANT BE DONE}$

c) $q = \dot{m} c_p \Delta T |_w = \dot{m} c_p \Delta T |_{t_0}$

$$C_o = \frac{12000(60)}{160} = 75(60)$$

$$= 4500 \text{ BTU/HR.F}$$

22.5 CONTINUED

$$C_o = C_{MIN}$$

$$\frac{UA}{C_{MIN}} = \frac{50(290)}{4500} = 3.22$$

$$\frac{C_{MIN}}{C_{MAX}} = 0.625$$

$$\text{Fig 22.12} \sim \varepsilon \approx 0.86$$

$$q = \varepsilon C_{MIN}(180) = 7200 \Delta T$$

$$\Delta T_w = \frac{0.86(4500)(180)}{7200} \approx 97 F$$

$$T_w \text{ EXIT} = 157 F$$

22.6 $\Delta T_w = 340 - 255 = 85 K$

$$\Delta T_o = 350 - 305 = 45 K$$

$$q = \varepsilon C_{MIN}(350 - 255) = C_w(85)$$

$$\varepsilon = \frac{85}{95} = 0.895$$

22.7 WATER $T_{IN} = 50 F$

$$\dot{m} = 400 \text{ lbm/HR}$$

$$C_p = 1 \text{ BTU/lbm F}$$

QW: $T_{IN} = 150 F$ $C_p = 0.45 \text{ BTU/lbm F}$
 $\dot{m} = ?$

$$U = 60 \text{ BTU/HRFT}^2F \quad A = 18 \text{ ft}^2$$

$$T_{w \text{ OUT, MAX}} = 212 F \quad T_{o \text{ OUT, MAX}} = 160 F$$

$$q = \dot{m}_w C_p w \Delta T_w = \dot{m}_o C_p o \Delta T_o$$

$$= 400(1)(Tw - 50) = \dot{m}_o (0.45)(250 - T_o)$$

$$= \varepsilon C_{MIN}(200)$$

22.7 CONTINUED -

For $T_{w\text{out}} = 212 \quad \Delta T_w = 162$

$$q = 400(162) = 64800$$

$$= C_o \Delta T_o = \epsilon C_{min}(200)$$

$$\left. \begin{array}{l} q = \dot{m}_o c_p \Delta T_o, \therefore \text{MAX } \dot{m}_o \text{ will} \\ \text{BE ASSOCIATED WITH MINIMUM } \Delta T_o \end{array} \right\}$$

If $T_{o\text{out max}} = 160 \sim \Delta T_{o\text{ min}} = 90$

For H_2O as MINIMUM fluid:

$$C_{min} = 400$$

$$400(162) = \epsilon(400)(200)$$

$$\epsilon = 0.81$$

$$NTU = \frac{UA}{C_{min}} = \frac{60(18)}{400} = 2.7$$

$$\left. \begin{array}{l} \text{FIG 22.12 a} \quad C_{min}/C_{max} \approx 0.65 \end{array} \right\}$$

$$C_{max} = \dot{m}_o c_p = \frac{400}{0.65} = 615$$

$$\Delta T_o = \frac{q}{C_o} = \frac{64800}{615} = 105.3 \text{ F}$$

$$T_{o\text{ out}} = 144.7 - \text{OK}$$

$$\text{Finally: } \dot{m}_{max} c_p = 615$$

$$\dot{m}_{max} = \frac{615}{0.45} = \underline{\underline{1370 \text{ lbm/hr}}}$$

$$\begin{aligned} \dot{m}_o &= 12 \text{ kg/s} \\ c_p &= 2.2 \text{ kJ/kg.K} \\ c_{pw} &= 4180 \text{ J/kg.K} \\ U &= 1080 \text{ W/m}^2 \text{ K} \end{aligned}$$

(PROBLEM STATEMENT)
USES C_H AS c_{pw} &
 C_C AS c_p)

$$q = UAF \Delta T_{lm}$$

$$= \dot{m}_o c_p \Delta T_o = \dot{m}_w c_{pw} \Delta T_w$$

$$= (12)(2200)(10) = \dot{m}_w(4180)(20)$$

$$\rightarrow \dot{m}_w = 3.16 \text{ kg/s}$$

$$\Delta T_{lm} = \frac{45-35}{\ln \frac{45}{35}} = 39.8$$

$$\text{To find F: } Y = \frac{10}{55} = 0.182$$

$$Z = 20/10 = 2$$

$$\text{From 22.9 a: } F \approx 1$$

$$FAT_{lm} = \underline{\underline{39.8 \text{ C}}}$$

$$\begin{aligned} A &= \frac{q}{UAT_{lm}} = \frac{(12)(2200)(10)}{1080(39.8)} \\ &= \underline{\underline{6.14 \text{ m}^2}} \end{aligned}$$

22.9 SAME EXCHANGER & ENTRANCE CONDITIONS AS PROB 22.8 -

(PROBLEM STATEMENT)
SHOULD SAY
 $T_{o\text{ out}} = 28^\circ\text{C}$

$$q = \dot{m}_o c_p \Delta T_o = 12(2200)(8)$$

$$= \dot{m}_w c_{pw} \Delta T_w = 3.16(4180)\Delta T_w$$

$$\Delta T_w \approx 16^\circ\text{C} \quad T_{w\text{ out}} \approx 59^\circ\text{C}$$

22.9 CONTINUED -

$$\Delta T_{lm} = \frac{47-39}{\ln \frac{47}{39}} = 42.9^\circ C$$

$$\text{TO FIND } F: Y = \frac{8}{55} = 0.145 \\ Z = 160/8 = 2$$

For 22.9a - $F \approx 1$

$$\bar{U} = \frac{q}{AF\Delta T_{lm}} = \frac{(12)(2200)(8)}{6.14(42.9)} \\ = 802 \text{ W/m}^2 \cdot K$$

$$|UA|_o = \frac{1}{\sum R_o} \quad |UA|_i = \frac{1}{\sum R_i}$$

$$\sum R_o = \frac{1}{(1080)(6.14)} = 1.508 \times 10^{-4}$$

$$\sum R_i = \frac{1}{(802)(6.14)} = 2.031 \times 10^{-4}$$

FORWING RESISTANCE

$$= \sum R_i - \sum R_o = 0.523 \times 10^{-4} \text{ K/W}$$

$$\dot{m}_w = 2.7 \text{ kg/s} \quad \bar{U} = 160 \text{ W/m}^2 \cdot K$$

$$q = \dot{m}_w c_p w \Delta T_w = (2.7)(4200)(55) \\ = \dot{m}_w (1200)(160)$$

$$\dot{m}_w = \underline{3.25 \text{ kg/s}} \quad a)$$

$$q = UA F \Delta T_{lm}$$

$$\Delta T_{lm} = \frac{205-100}{\ln \frac{205}{100}} = 146.3^\circ C$$

22.10 CONTINUED -

$$\text{TO FIND } F: Y = \frac{55}{260} = 0.211 \\ Z = 160/55 = 2.91$$

For 22.10a - $F \approx 0.96$

$$A = \frac{q}{UF\Delta T_{lm}} = \frac{(2.7)(4200)(55)}{(160)(0.96)(146.3)} \\ = \underline{\underline{27.8 \text{ m}^2}} \quad b)$$

$$\bar{U} = 1200 \text{ W/m}^2 \cdot K$$

$$\Delta T_{lm} = \frac{68-35}{\ln \frac{68}{35}} = 49.7^\circ C$$

$$q = \dot{m}_w c_p w \Delta T_w = \dot{m}_w (4200)(22) \\ = \dot{m}_w c_p \Delta T_o = (11)(2200)(45)$$

$$\dot{m}_w = \underline{\underline{11.79 \text{ kg/s}}} \quad a)$$

$$\text{TO FIND } F: Y = \frac{110-65}{110-20} = 0.5$$

$$Z = \frac{42-20}{110-65} = 0.489$$

For 22.9a ~ $F \approx 1$

$$A = \frac{q}{UF\Delta T_{lm}} = \frac{11(2200)(45)}{(1200)(1)(49.7)} \\ = \underline{\underline{18.26 \text{ m}^2}} \quad b)$$

22.12

$$T_{wout} = 129 \text{ F} \quad \Delta T_{LM} = \frac{70-49}{\ln \frac{70}{49}} = 58.9 \text{ F}$$

$$AF = \frac{q}{U \Delta T_{LM}} = \frac{2500(50)(0.5)}{58.9(260)} = 4.16$$

FIGURE 22.9 a

$$\begin{aligned} Y &= \frac{130-80}{200-80} = \frac{50}{120} = 0.416 \\ Z &= \frac{200-129}{130-80} = \frac{71}{50} = 1.4 \end{aligned} \quad \left. \begin{aligned} F &\approx 0.83 \\ A &= 4.16 / 0.83 = 5.01 \text{ FT}^2 \end{aligned} \right\}$$

22.13 INPUT DATA - See Prob 22.3

$$U = 230 \text{ W/m}^2\text{K} \quad T_{wout} = 400 \text{ K}$$

$$A = 9.85 \text{ m}^2 \quad T_{wN} = 280 \text{ K}$$

$$(a) \text{ CROSSFLOW: } C_o = \dot{m} c_p = 3760 \text{ J/kg}\text{°F}$$

$$C_w = 8374$$

$$\frac{UA}{C_{min}} = \frac{230(9.85)}{3760} = 0.603 \quad \left. \begin{aligned} \epsilon &= 0.43 \\ C_{max}/C_{min} &= 0.45 \end{aligned} \right\}$$

$$q = \epsilon C_{min}(400-280) = 194000 \text{ W}$$

$$T_{wout} = 280 + \frac{194000}{8374} = 303 \text{ K}$$

$$T_{oout} = 400 - \frac{194000}{3760} = 248 \text{ K}$$

22.13 CONTINUED -

(b) SHELL AND TUBE

$$\text{SAME DATA} - \epsilon = 0.40$$

$$q = 0.4(3760)(120) = 180500 \text{ W}$$

$$T_{wout} = 301.5 \text{ K} \quad T_{gout} = 352 \text{ K}$$

22.14

$$q = \dot{m} c_p \Delta T_w = C_w \Delta T_w$$

$$C_w = 3A \rho c_p = \frac{2 \times 10^8}{18} = 1.11 \times 10^7$$

$$\frac{UA}{C_{min}} = \frac{4600 \text{ A}}{1.11 \times 10^7} = 4.14 \times 10^{-4} \text{ A}$$

$$A = n \pi D L = n \pi (1.37/12)L = 0.359 \text{ m}L$$

$$\frac{UA}{C_{min}} = 1.485 \times 10^{-4} \text{ m}L$$

NEGLECTING TUBE FERST

$$T = \frac{1}{h_i + h_o} = \frac{1}{h_i} = \frac{1}{4600} = 10600$$

$$h_i = 8130 \quad Nu_i = \frac{8130(1.37/12)}{0.615} = 1509$$

USING DITTUS-BOEHLER EQN.

$$Nu = 1509 = 0.023 \left[\frac{8V(1.37/12)}{825 \times 10^{-6}} \right]^{0.8} (5.65)^{0.4}$$

$$SV = \frac{q}{A C_p \Delta T} = \frac{2 \times 10^8}{n \pi D^2 (4.179) (18)} = 3192$$

$$n = 81 \text{ TUBES}$$

22.14 (CONTINUED -

$$q = \dot{m} C_{min}(65) \quad \dot{m} = 0,277$$

$$T_{Hout} = 22,2 \text{ C} \quad \frac{UA}{C_{min}} \cong 0,38$$

$$L = \frac{0,38}{(1,48 \times 10^{-4})(81)} = \underline{\underline{31,7 \text{ m}}}$$

22.15

$$\dot{m}_{ETH} = 6,93 \text{ kg/s}$$

$$q = \dot{m}_{ETH} c_p \Delta T = 6,93 (3810)(28)$$

$$= \dot{m}_{ETH} c_p \Delta T_W = 6,93 (4182) \Delta T$$

$$\Delta T_W = 28,1$$

(a) COUNTERFLOW: $\Delta T_{LM} \cong 29 \text{ F}$

$$A = \frac{q}{U \Delta T_{LM}} = \frac{6,93 (3810)(28)}{568(29)} = \underline{\underline{44,9 \text{ m}^2}}$$

(b) PARALLEL FLOW:

$$\Delta T_{LM} = \frac{57 - 0,9}{\ln \frac{57}{0,9}} = 13,52$$

$$A = \frac{q}{U \Delta T_{LM}} = \underline{\underline{96,3 \text{ m}^2}}$$

(c) CROSSFLOW:

$$C_{min,0} = \dot{m} c_p = 26350$$

$$C_{unmixed} = \dot{m} c_p = 26403$$

$$Y = \frac{312 - 240}{283 - 340} = 0,491 \quad Z = \frac{28,1}{28} \cong 1$$

$$F \cong 0,85 \quad A = \frac{44,9}{0,85} = \underline{\underline{52,8 \text{ m}^2}}$$

22.16

$$q = C_A \Delta T_A = C_W \Delta T_W = q_{5000} \frac{\text{Btu}}{\text{hr}}$$

$$C_W = \frac{q_{5000}}{35} = 1720 \frac{\text{Btu}}{\text{hr}}$$

$$C_A = \frac{q_{5000}}{80} = 1188 \text{ " } \sim C_{min}$$

$$\frac{C_{min}}{C_{max}} = \frac{1188}{1720} = 0,437 \quad \xi = \frac{q}{C_{min}(110)} \cong 0,73$$

a) COUNTERFLOW: $\frac{UA}{C_{min}} \cong 1,65$

$$V = \frac{A}{130} = \frac{1,65(1188)}{30(130)} = \underline{\underline{0,502 \text{ ft}^3}}$$

b) CROSSFLOW - AIR MIXED

$$\frac{UA}{C_{min}} \cong 2$$

$$V = \frac{A}{100} = \frac{2(1188)}{40(100)} = \underline{\underline{0,593 \text{ ft}^3}}$$

c) CROSSFLOW - BOTH MIXED

$$\frac{UA}{C_{min,0}} \cong 1,75$$

$$V = \frac{A}{90} = \frac{1,75(1188)}{50(90)} = \underline{\underline{0,462 \text{ ft}^3}}$$

CONFIGURATION (c) IS MOST COMPACT

22.17 $T_S \rightarrow \dot{m} = 5000 \rightarrow 220$

$$T_{Hout} \leftarrow \dot{m} = 2400 \leftarrow 400$$

$$\bar{U} = 300 \frac{\text{W}}{\text{m}^2 \cdot \text{K}} = 52,8 \frac{\text{Btu}}{\text{hr} \cdot \text{ft}^2 \cdot \text{F}}$$

$$q = 5000(1)(445) = 2400(1) \Delta T_H$$

$$\Delta T_H = 302 \quad T_{Hout} = 98 \text{ F}$$

$$\Delta T_{LM} = \frac{180 - 23}{180/23} = 76,3 \text{ F}$$

22.17 CONTINUED -

FOR COOL FLUID IN TUBES:

$$\left. \begin{aligned} Y &= \frac{210-75}{400-75} = 0.446 \\ Z &= \frac{302}{145} = 2.08 \end{aligned} \right\} F \approx ?$$

HOT FLUID IN TUBES:

$$\left. \begin{aligned} Y &= \frac{-302}{-325} = 0.929 \\ Z &= \frac{145}{302} = 0.480 \end{aligned} \right\} F \approx ?$$

BOTH ARE OFF THE CHARTS

NEITHER IS POSSIBLE ~
CAN'T USE THIS CONFIGURATION

22.18 . IF COUNTERFLOW :

$$AU_{OLD} = \frac{1}{\left[\frac{1}{A_{ch,i}} + R_t + \frac{1}{A_{oh,o}} \right]} = 36.7(300)$$

FOR NEW OPERATING CONDITIONS:

$$q_b = 5000(1)(184-75) = 24000 (J/s) \Delta T_H$$

$$= 545000 \quad \Delta T_H = 227 \quad T_{hot,out} = 173$$

$$\Delta T_{LM} = \frac{216-98}{\ln \frac{216}{98}} = 149.3$$

$$AU_{NEW} = \frac{q_b}{\Delta T_{LM}} = \frac{545000}{149.3} = 3650$$

$$= \frac{1}{\left[\frac{1}{A_{ch,i}} + R_t + \frac{1}{A_{oh,o}} \right] + R_f}$$

$$AU_{NEW} = \frac{1}{1/36.7(300) + R_f}$$

22.18 CONTINUED -

$$\frac{1}{36.7(300)} + R_f = \frac{1}{3650}$$

$$R_f = 1.83 \times 10^{-4} \text{ K/W}$$

$$\text{OR } AR_f = 36.7 R$$

$$= 6.72 \times 10^{-3} \text{ m}^2 \cdot \text{K/W}$$

$$h_w = 470 \text{ W/m}^2 \cdot \text{K} \quad \dot{m}_w = 10 \text{ kg/s}$$

$$h_A = 210 \quad " \quad \dot{m}_A = 16 \quad "$$

$$\begin{aligned} q_b &= (10 \text{ kg/s})(4181 \text{ J/kg.K})(350 - T_{w,out}) \\ &= (16 \text{ kg/s})(1007 \text{ J/kg.K})(T_{A,out} - 288) \end{aligned}$$

$$C_w = 41810 \quad C_A = 16112 = C_{MIN}$$

$$C_{MIN} / C_{MAX} = 0.385$$

$$\begin{aligned} A &= \pi D L (50) = \pi (0.026)(6.7)(50) \\ &= 27.36 \text{ m}^2 \end{aligned}$$

{ ASSUMES TOTAL LENGTH OF EACH }
TUBE IS 6.7 M

$$U = \frac{1}{\frac{1}{h_i} + R_{f,NO} + \frac{1}{h_o}} = \frac{1}{\frac{1}{470} + \frac{1}{210}} = 145$$

NEG_I

$$UA / C_{MIN} = \frac{145(27.36)}{16112} = 0.246$$

$$\underline{\underline{\epsilon \approx 0.20}}$$

22.19 CONTINUED -

$$q = \dot{E} C_{\min} (T_{w\text{out}} - T_{c\text{in}})$$

$$= 0.1 (16112)(62) = \underline{\underline{199800 \text{ W}}}$$

$$T_{w\text{out}} = \underline{\underline{345.2 \text{ K}}} \quad T_{c\text{out}} = \underline{\underline{300.4 \text{ K}}}$$

For FOULING RESISTANCE = 0.0021

$$U = \frac{1}{\frac{1}{470} + \frac{1}{210} + 0.0021} = 111.2$$

$$\frac{UA}{C_{\min}} = 0.188 \quad \underline{\underline{\dot{E} \approx 0.10}}$$

$$q = 0.1 (16112)(62) = \underline{\underline{99900 \text{ W}}}$$

$$T_{w\text{out}} = \underline{\underline{347.6 \text{ K}}} \quad T_{c\text{out}} = \underline{\underline{294.2 \text{ K}}}$$

$$U = 1420 \text{ W/m}^2 \cdot \text{K}$$

$$\text{TUBES: } D = 0.01905 \text{ m}$$

$$V = 0.366 \text{ m/s}$$

$$L_{\max} = 2.44 \text{ m}$$

$$\dot{q} = \dot{m} c_p \Delta T_{\text{shell}} = \dot{m} c_p \Delta T_{\text{TUBES}}$$

$$\Delta T_s = \frac{3.8(17)}{1.9} = 34$$

$$C_{\min} = 1.9 (4180) = 7942 \text{ W/K}$$

$$\rho = 983 \text{ kg/m}^3$$

$$\dot{m} = \rho A V = 3.8 = n(983)\left(\frac{\pi}{4}\right)(0.01905)(0.366)$$

$$n = \underline{\underline{37 \text{ TUBES}}}$$

22.20 CONTINUED -

$$q = \dot{E} C_{\min} (367 - 311) \quad \frac{C_{\min}}{C_{\max}} = 0.5$$

$$\dot{E} = \frac{C_{\min}(34)}{C_{\min}(56)} = 0.607$$

$$\frac{UA}{C_{\min}} \approx 1.3 \quad \left\{ \text{fig. 22.12 c} \right\}$$

$$A = \frac{7942(1.3)}{1420} = 7.27 \text{ m}^2$$

$$= \sqrt{\pi (0.01905)} L$$

$$L = 1.64 \text{ m}$$

2 TUBE PASSES WILL WORK

37 TUBES PER PASS

L = 1.64 m per pass

22.21 NTU = 1.25

$$\frac{C_{\min}}{C_{\max}} = 0 \quad \dot{E} \approx 0.72$$

$$\dot{q} = \dot{E} C_{\min} (T_{w\text{in}} - T_{c\text{in}})$$

$$= 0.72 (0.01)(4.18)(93)$$

$$= 19.59 \text{ kW}$$

$$= C_w \Delta T_w = 4.18 (0.01) \Delta T_w$$

$$\Delta T_w = \frac{0.72 (0.01)(4.18)(93)}{4.18 (0.01)} = 67 \text{ K}$$

$$T_{w\text{out}} = 280 + 67 = \underline{\underline{347 \text{ K}}}$$

22.2.1 CONTINUED -

STEAM CONDENSATION RATE

$$\dot{m}_{\text{cond}} = \frac{\dot{q}}{h_{fg}} = \frac{1959}{2256}$$

$$= \underline{\underline{8.68 \times 10^{-3} \text{ kg/s}}}$$

CHAPTER 23

23.1

$$\text{RADIANT EMISSION FROM SUN} = \pi R_s^2 E_{bs}$$

ALL PASSES THROUGH A SPHERICAL SURFACE OF RADIUS, L.

AT THE EARTH

$$I = \frac{\pi R_s^2 E_{bs}}{4\pi L^2} = \left(\frac{D}{2L}\right)^2 E_{bs}$$

$$\text{FLUX AT EARTH} = 360 + 90 = 450 \text{ BTU HR PT}^2$$

$$450 = \left[\frac{8.6 \times 10^5}{2(93 \times 10^6)} \right]^2 \sigma T_s^4$$

$$T_s = 10530 R$$

23.2

$$0 < \lambda < 0.35 \mu \quad \tau = 0$$

$$0.35 < \lambda < 1.7 \mu \quad \tau = 0.92$$

$$1.7 < \lambda \quad \tau = 0$$

FOR $T = 5800 \text{ K}$

$$\lambda_1 T = 2030 \quad F = 0.072$$

$$\lambda_2 T = 15660 \quad F = 0.972$$

$$\Delta F = 0.90$$

$$\text{PER CENT } T_x = 0.90(0.92) = 0.828 \\ \cong 83\%$$

FOR $T = 300 \text{ K}$:

$$\begin{aligned} \lambda_1 T = 105 & \quad F \approx 0 \\ \lambda_2 T = 810 & \quad F \approx 0 \end{aligned} \quad \left. \right\} \Delta F \approx 0$$

$$\text{PERCENT } T_x = \underline{0}$$

23.3

FROM WIEN'S DISPLACEMENT LAW:

$$\lambda_{\text{MAX}} T = 5215.6 \mu\text{K}$$

$$\lambda_{\text{MAX}} = \frac{5215.6}{4000} = \underline{1.304 \mu}$$

FRACTION IN VISIBLE BAND:

$$= \frac{\int_{\lambda_1}^{\lambda_2} E_b d\lambda}{\int_0^{\infty} E_b d\lambda} = \frac{1}{\sigma T^4} \left(E_b \Big|_0^{\lambda_2 T} - E_b \Big|_0^{\lambda_1 T} \right)$$

$$\left\{ \text{TABLE 23.1} \right\} \lambda_1 T = 667 \mu\text{K} \quad F \approx 0$$

$$\lambda_2 T = 1667 \quad F = 0.0256$$

$$\text{OR } \underline{2.56\%}$$

23.4

$$(a) I = \frac{f}{A_A W \theta_A W}$$

$$I = \frac{E_b}{\pi} = \frac{\sigma T^4}{\pi} = 9.137 \times 10^4 \text{ W/m}^2 \cdot \text{sr}$$

$$W = \frac{A_D}{r^2} = \frac{0.001 \text{ m}^2}{1 \text{ m}^2} = 0.001 \text{ Sr}$$

$$f = I A_A W \theta_A W$$

$$= (9.137 \times 10^4) \left(\frac{\pi}{4} \right) (0.025)^2 \cos 30^\circ \\ \times (0.001)$$

$$= \underline{3.88 \times 10^{-2} \text{ W}}$$

23.4 CONTINUED -

(b) WITH WINDOW

$$q = \int I A_{\lambda} \omega \sigma_{\lambda} \omega$$

$$\int = \frac{\int_0^{\infty} T_x G_x d\lambda}{\int_0^{\infty} G_x d\lambda}$$

$$= \frac{\int_0^{\infty} T_x E_{\lambda, b} d\lambda}{\int_0^{\infty} E_{\lambda, b} d\lambda}$$

$$= 0.8 \int_0^2 \frac{E_{\lambda, b}}{E_b} d\lambda + 0 \int_2^{\infty} \sim$$

$$= 0.8 F(0-2\mu m)$$

$$\lambda T = 2(1500) = 3000$$

$$F_{0-2\mu m} = 0.273$$

$$T = 0.8(0.273) = 0.218$$

$$q = 0.218 (3.88 \times 10^{-2})$$

$$= 8.47 \times 10^{-3} W$$

$$\begin{aligned} 23.5 \quad T_{SOLAR} &= \int \lambda F_{\lambda, \lambda_1, \lambda_2} \\ &= \int \lambda (F_{0-\lambda_2} - F_{0-\lambda_1}) \end{aligned}$$

FOR SOLAR IRRADIATION:

PLAIN GLASS :

$$\lambda_1 T = 0.3(5800) = 1740 \quad F = 0.033$$

$$\lambda_2 T = 2.5(5800) = 14500 \quad F = 0.966$$

23.5 CONTINUED -

$$T_s = 0.9 (0.966 - 0.033) = \underline{0.84}$$

TINTED GLASS :

$$\lambda_1 T = 0.5(5800) = 2900 \quad F = 0.25$$

$$\lambda_2 T = 1.5(5800) = 8700 \quad F = 0.881$$

$$T = 0.9 (0.881 - 0.25) = \underline{0.568}$$

IN THE VISIBLE RANGE :

$$\lambda_1 = 0.38 \mu m \quad \lambda_2 = 0.76 \mu m$$

$$\left\{ \text{FOR TINTED GLASS} \quad \lambda_1 = 0.5 \mu m \right\}$$

$$\lambda_1 = 0.38 \quad F_{0-\lambda_1 T} = 0.1017$$

$$\lambda_1 = 0.5 \quad F_{0-\lambda_1 T} = 0.250$$

$$\lambda_2 = 0.76 \quad F_{0-\lambda_2 T} = 0.550$$

$$\begin{aligned} \text{PLAIN GLASS: } T &= 0.9 (0.550 - 0.1017) \\ &= \underline{0.404} \end{aligned}$$

$$\begin{aligned} \text{TINTED GLASS: } T &= 0.9 (0.550 - 0.250) \\ &= \underline{0.27} \end{aligned}$$

$$\begin{aligned} 23.6 \quad \lambda_1 &= 0.8 \mu m \\ \lambda_2 &= 5 \mu m \quad F_{\lambda_1 T - \lambda_2 T} = F_{0-\lambda_2 T} - F_{0-\lambda_1 T} \end{aligned}$$

T, K	F _{0-λ₁T}	F _{0-λ₂T}	F _{λ₁T - λ₂T}
500	-0	0.1613	0.1613
2000	0.0197	0.9142	0.8945
3000	0.1402	0.9689	0.8287
4500	0.4036	0.9896	0.586

23.7 $T = 5800 \text{ K}$

$$\text{for } \lambda_1 = 0.4 \mu\text{m} \quad \lambda_1 T = 2320$$

$$\lambda_2 = 0.7 \mu\text{m} \quad \lambda_2 T = 4060$$

$$F_{0-\lambda_1 T} = 0.1220 \quad F_{0-\lambda_2 T} = 0.4916$$

$$\left. \begin{array}{l} \text{FRACTION IN} \\ \text{VISIBLE RANGE} \end{array} \right\} = \underline{0.3696}$$

IN UV RANGE: $0.01 < \lambda < 0.4$

$$F_{0-\lambda_1 T} = 0 \quad F_{0-\lambda_2 T} \approx 0.12$$

$$\left. \begin{array}{l} \text{FRACTION IN} \\ \text{UV RANGE} \end{array} \right\} \approx \underline{0.12}$$

IN IR RANGE: $0.4 < \lambda < 10^2$

$$F_{0-\lambda_1 T} = 0.12 \quad F_{0-\lambda_2 T} = 100$$

$$\left. \begin{array}{l} \text{FRACTION IN} \\ \text{IR RANGE} \end{array} \right\} \approx \underline{0.88}$$

WIEN'S LAW -

$$\lambda_{\max} T = 2897.6 \mu\text{m} \cdot \text{K}$$

$$\lambda_{\max} \approx \underline{0.500 \mu\text{m}}$$

23.8

$$\theta = \sin^{-1} \frac{4000}{4500} = 62.7^\circ = 1.096 \text{ RAD}$$

$$S = 4500 - 4000 \cos(90 - \theta) = 945 \text{ mi}$$

$$r = \frac{S}{\cos \theta} = 2060 \text{ mi}$$

23.8 CONTINUED -

AREA SUBTENDED BY EARTH

$$\Delta A = \int_0^{\theta} 2\pi r^2 \sin \theta d\theta = 2\pi r^2 (1 - \cos \theta)$$

$$= 2\pi r^2 (0.541) \text{ mi}^2$$

$$F_{S-E} = \frac{\Delta A}{4\pi r^2} = 0.271$$

$$f_{S-\text{SPACE}} = 0.729$$

$$\text{INCIDENT SOLAR ENERGY} = 450 \frac{\text{BTU}}{\text{HR} \cdot \text{FT}^2}$$

{from Prob 23.1}

$$q_{\text{SUN-SAT}} = 450 \left(\frac{\pi}{4}\right) \left(\frac{50}{12}\right)^2 = 6150 \frac{\text{BTU}}{\text{HR}}$$

$$q_{\text{ABSORBED BY SAT}} = 0.3 (6150) = 1845 \text{ "}$$

$$q_{\text{REFLECTED}} = 4305 \frac{\text{BTU}}{\text{HR}}$$

$$q_{E-SAT} = \epsilon A_s f_{S-E} (T_E)^4$$

$$= 0.195 \left[\left(\frac{\pi}{12}\right)^2\right] (0.271) (0.1714) (51)^4$$

$$= 164 \frac{\text{BTU}}{\text{HR}}$$

$$q_{\text{ABSORBED}} = 0.05 (164) = 8.2 \frac{\text{BTU}}{\text{HR}}$$

$$q_{\text{REFLECTED}} = 155.8 \frac{\text{BTU}}{\text{HR}}$$

$$q_{\text{EMITTED BY SAT.}} = 0.05 (0.1714) \left(\frac{T_S}{100}\right)^4 \left(\frac{50}{12}\right)^2$$

$$= 0.467 \left(\frac{T_S}{100}\right)^4$$

ENERGY BALANCE:

$$6150 + 164 = 4305 + 155.8 + 0.467 \left(\frac{T_S}{100}\right)^4$$

$$T_S = \underline{794} \text{ R} = \underline{334} \text{ F}$$

23.9

$$\begin{aligned} \frac{Q}{A}_{\text{NET}} &= \frac{Q}{A}_{\text{IN}} - \frac{Q}{A}_{\text{OUT}} \\ &= 1000 - h(T_s - T_\infty) - \epsilon\sigma \left[\left(\frac{T_s}{100}\right)^4 - \left(\frac{T}{100}\right)^4 \right] \\ &= 1000 - 12(30-20) - 5.676(0.3)(100) \\ &= \underline{\underline{862 \text{ W/m}^2}} \end{aligned}$$

23.10

ENERGY BALANCE FOR COLLECTOR:

$$Q_{\text{IN}} = 800 \text{ A W}$$

$$\begin{aligned} Q_{\text{OUT}} &= Q_{\text{RAD}} + Q_{\text{COND}} \\ &= \sigma A (T^4 - T_\infty^4) + h A (T - T_\infty) \end{aligned}$$

EQUATING:

$$\begin{aligned} 800 &= \sigma (T^4 - T_\infty^4) + h (T - T_\infty) \\ &= 5.676 \left(\frac{T}{100}\right)^4 - 5.676(3,03)^4 \\ &\quad + 35T - 10605 \\ \left(\frac{T}{100}\right)^4 + 6.17T &= 2094 \end{aligned}$$

By TRIAL & ERROR: $T = \underline{\underline{322 \text{ K}}}$

$$\begin{aligned} Q_{\text{RAD}} &= \sigma A (T^4 - T_\infty^4) \\ &= 5.676(60) \left[3,22^4 - 3,03^4 \right] \\ &= \underline{\underline{7910 \text{ W}}} \end{aligned}$$

23.11

$$f_{12} = 0,12 \quad \left. \begin{array}{l} f_{16} \\ f_{23,14} \end{array} \right\}$$

$$f_{13} = 0,88$$

$$f_{31} = f_{32} = \frac{A_1 f_{13}}{A_3}$$

$$= \frac{\pi D^2}{4} \frac{0,88}{\pi D L} = 0,17$$

$$F_{3-\text{SURR}} = 0,34$$

$$\begin{aligned} Q_{3-\text{SURR}} &= \pi (0,075)(0,1)(0,34)(5,676) (T_{-3,1}) \\ &= \underline{\underline{105 \text{ W}}} \end{aligned}$$

23.12 ENTIRE HOLE (INTERIOR IS SURF 2
OPENINGS (SURROUNDINGS) IS $\times 1$

$$f_{12} = 1 \quad A f_{12} = \frac{\pi D^2}{4} (1)$$

$$\begin{aligned} Q_{21} &= A f_{21} \epsilon \sigma (T_2^4 - T_1^4) = A f_{12} \epsilon \sigma (T_2^4 - T_1^4) \\ &= \frac{\pi}{4} (0,075)^2 (1) (5,676) (T_{-3,1}) \\ &= \underline{\underline{57,9 \text{ W}}} \end{aligned}$$

$$23.13 \quad \frac{Q}{A} = \frac{1200 \text{ W}}{5(0,49 \text{ m}^2)} = 490 \text{ W/m}^2$$

$$= \epsilon \sigma \left[\left(\frac{T}{100}\right)^4 - 2,8^4 \right]$$

$$490 = 0,7 (5,676) \left[\left(\frac{T}{100}\right)^4 - 2,8^4 \right]$$

$$T = \underline{\underline{369 \text{ K}}}$$

23.14 WITH NO INTERVENING PLATE:

$$q_{f12} = A_f \chi_{12} \sigma (T_1^4 - T_2^4)$$

$$\frac{q}{A} = 5,676 \left[9^4 - 5,8^4 \right] = \underline{\underline{30,8 \text{ kW/m}^2}}$$

WITH INTERVENING PLATE PRESENT:

PER UNIT AREA:

$$\frac{q}{A} = \frac{E_{b1} - E_{b2}}{\frac{1}{F_{13}} + \frac{1}{F_{23}}} = \frac{E_{b1} - E_{b2}}{2}$$

$$= \underline{\underline{15,4 \text{ kW/m}^2}}$$

$$\frac{q}{A} = (E_{b1} - J_3) \frac{1}{F_{13}} = (J_3 - E_{b2}) \frac{1}{F_{23}}$$

$$J_3 = \sigma T_1^4 - \frac{q}{A} = \underline{\underline{15,4 \text{ kW/m}^2}}$$

$$= \sigma T_3^4$$

$$T_3^4 = \frac{15,4 \times 10^3}{\sigma} \quad T_3 = \underline{\underline{722 \text{ K}}}$$

{EMISSIVITY OF INTERVENING PLATE}
HAS NO EFFECT

23.15 FILAMENT AT 2910 K

$$q = 100 \text{ W}$$

$$\lambda_{MAX} = \frac{2897,6}{2910} = \underline{\underline{0,999 \mu\text{m}}} \quad a)$$

VISIBILE RANGE: $0,38 < \lambda < 0,76$

$$\lambda T_1 = 0,38(2910) = 1102 \quad F_{0-\lambda} = 0,0009$$

$$\lambda T_2 = 0,76(2910) = 2204 \quad F_{0-\lambda} = 0,017$$

$$\text{FRACTION IN V.R.} = \underline{\underline{0,1008}} \quad b)$$

23.16 FOR SURROUNDINGS AT 0 K:

$$E_b = \sigma T^4 = (5,676)(20)^4 = 9,08 \times 10^5 \text{ W/m}^2$$

$$100 \text{ W} = 9,08 \times 10^5 \text{ A}$$

$$A = 1,109 \times 10^{-2} \text{ m}^2 = \pi D^2 / 4$$

$$D = 0,01188 \text{ m} = 1,188 \text{ cm} \quad a)$$

IN VISIBILE RANGE: $0,4 < \lambda < 0,7 \mu\text{m}$

$$\lambda T_1 = 2000(0,4) = 800 \quad F \approx 0$$

$$\lambda T_2 = 2000(0,7) = 1400 \quad F = 0,0078$$

$$\text{FRACTION} = \underline{\underline{0,0078}} \quad b)$$

IN UV RANGE: $0 < \lambda < 0,4$

$$\lambda T_1 = 0 \quad \lambda T_2 \approx 0 \quad \text{FRACTION} = \underline{\underline{0}} \quad c)$$

IN IR RANGE: $0,4 < \lambda < 100$

$$\lambda T_1 = 0,0078$$

$$\lambda T_2 \approx 1,0 \quad \text{FRACTION} = \underline{\underline{0,992}} \quad d)$$

23.17

$q = 8 \text{ W}$ THROUGH HOLE WITH $D = 0,0025 \text{ m}^2$

$$E_b = \frac{8}{0,0025} = 3200 \text{ W/m}^2 = \sigma T^4$$

$$T = 487 \text{ K}$$

23.18

$$\lambda_{MAX} T = 1897,6 \mu\text{m} \cdot \text{K}$$

T	λ_{MAX}
SUN	5730 K
L. BULB	2910 K
SURFACE	1550 K
SKIN	308 K

λ_{MAX}
1998 μm
1,004 "
0,535 "
0,1063 "

23.19 $T=1500K$ Feedline $D=10\text{ cm}$

$$\sigma = 0.78 \text{ for } 0 < \lambda < 3.2 \mu\text{m}$$

$$0.08 \quad 3.2 < \lambda < \infty$$

$$q_{\max} = 5.676 \left(\frac{15}{4}\right)^4 \left(\frac{\pi}{4}\right) (0.01)^2$$

$$= 22.57 \text{ W}$$

$$\text{for } \Delta T_1 = 0 \quad f_{0-\Delta T_1} = 0$$

$$\Delta T_2 = 4800 \quad f_{0-\Delta T_2} = 0.6075$$

$$\Delta T_3 = \infty \quad f_{0-\Delta T_3} = 1$$

TOTAL HT LOSS

$$= 22.57 \left[0.78(0.6075) + 0.08(0.3925) \right]$$

$$= \underline{\underline{11.40 \text{ W}}}$$

1 IS INNER CYLINDER

2 " OUTER "

$$E_{b1} = \sigma (77)^4 = 2.0 \text{ W/m}^2$$

$$E_{b2} = \sigma (300)^4 = 4600 \text{ "}$$

$$R_1 = \frac{g_1}{A_1 E_1} = \frac{0.8}{\pi (0.02)(1)(0.2)} = 63.7 \text{ m}^{-2}$$

$$R_2 = \frac{1}{A_1 f_{J1}} = \frac{1}{\pi (0.02)(1)} = 15.9 \text{ "}$$

$$R_3 = \frac{g_2}{A_2 E_2} = \frac{0.95}{\pi (0.05)(1)(0.05)} = 121 \text{ "}$$

$$\sum R = 201 \text{ m}^{-2}$$

$$q = \frac{E_{b2} - E_{b1}}{\sum R} = \frac{4600 - 2}{201} = \underline{\underline{228 \text{ W/m}}}$$

23.20 cont. - WITH RADIATION SHIELD

$$R_1 = 63.7 \quad R_3 = 121$$

$$R_2 = 15.9$$

$$R_4 = \frac{1}{A_3 f_{J2}} = \frac{1}{\frac{\pi}{4} (0.05)(1)} = 9.09$$

$$\sum R = 209.7$$

$$q = \frac{4600 - 2}{209.7} = \underline{\underline{21.8 \text{ W/m}}}$$

23.21 ASSUMING THERMOCOUPLE AT GEOMETRIC CENTER OF DUCT

SOLID ANGLE OF DUCT OPENING

$$\Omega \cong \frac{\pi R^2}{\pi R_0^2} = \frac{\text{DUCT AREA}}{\text{HEMISPHERE SURFACE}}$$

$$= \frac{(15/12)^2}{1^2} = 0.0156$$

{ THERMOCOUPLE SEES DUCT, PRIMARILY }

FOR THERMOCOUPLE: $q_{\text{RAD}} = q_{\text{FLW}}$

$$A_f T_{\text{CW}} (f_{\text{bc}} - f_{\text{bw}}) = h A (T_b - T_c)$$

23.21 CONT.

$$A_c f_{cw} = \frac{1}{\frac{s_c}{A_c \epsilon_c} + \frac{1}{A_c f_{cw}} + \frac{s_w}{A_w \epsilon_w}}$$

$$f_{cw} = \frac{1}{\frac{s_c}{A_c \epsilon_c} + \frac{1}{A_c f_{cw}} + \frac{s_w A_c}{A_w \epsilon_w}}$$

$$f_{cw} \approx 1 \quad A_c / A_w \approx 0$$

$$\therefore f_{cw} = \frac{1}{\frac{1 - \epsilon_c}{\epsilon_c} + 1} \approx \epsilon_c = 0.6$$

$$30(T_b - T_c) = \epsilon_c (0.1714) \left[\left(\frac{T_c}{100} \right)^4 - \left(\frac{T_w}{100} \right)^4 \right]$$

$$T_c = 316 F$$

23.22

$$R_1 = \frac{s_1}{A_1 \epsilon_1} = \frac{0.2}{\pi/6 (0.8)} = \frac{1.5}{\pi}$$

$$R_2 = \frac{1}{A_1 f_{12}} = \frac{1}{\pi/6 (0.5)} = \frac{12}{\pi}$$

$$R_3 = \frac{1}{A_2 f_{13}} = \frac{1}{\pi/6 (0.5)} = \frac{12}{\pi}$$

$$R_4 = \frac{1}{A_2 f_{23}} = \frac{1}{A_3 f_{32}} = \frac{1}{1.5 - 0.167} = 0.75$$

$$R_{\text{equiv}} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_2 + R_4}} = 2.08$$

23.22 CONT.

$$\sum R = 1.5/\pi + 2.08 = 2.557$$

$$q = \frac{0.1714 (24.6^4 - 5.3^4)}{2.557} = 24,500 \frac{\text{Btu}}{\text{HR ft}} \quad (a)$$

WITH NO REFLECTOR:

$$q = \epsilon A (F_{b1} - F_{b3})$$

$$= 0.8 \left(\frac{\pi}{6} \right) (0.1714) (24.6^4 - 5.3^4) \\ = 25,500 \frac{\text{Btu}}{\text{HR ft}} \quad (b)$$

23.23

$$R_1 = \frac{s_p}{A_p \epsilon_p} = \frac{0.3}{\pi (1/4)(0.7)} = 0.546$$

$$R_2 = \frac{1}{A_p f_{pw}} = \frac{1}{\pi (1/4)(1)} = 1.273$$

$$R_3 = \frac{s_w}{A_w \epsilon_w} = \frac{0.2}{(A_w) \epsilon_w} \approx \text{Very Small}$$

$$q = \frac{0.1714 (6.65^4 - 5.3^4)}{1.819}$$

$$= 110 \frac{\text{Btu}}{\text{HR}} \text{ per foot} \quad \text{RADIANT LOSS}$$

CONVECTION:

$$h = \frac{k}{D} \left\{ 0.60 + \frac{0.387 R_a^{1/6}}{\left[1 + \left(\frac{0.559}{Pr} \right)^{2/3} \right]^{1/2}} \right\}^2$$

23.23 (CONTINUED -

$$\text{for } T_f = B7f$$

$$h = 1,21 \frac{\text{Btu}}{\text{hr} \cdot \text{ft}^2 \cdot \text{F}}$$

$$q_{\text{conv}} = 1,21 (\pi \times \frac{1}{4})(135) = \underline{\underline{128 \frac{\text{Btu}}{\text{hr}} \text{ per ft}}}$$

23.24

$$\{ \text{Fig 23.14}\}, \quad F_{13} = 0,38 \quad F_{12} = 0,62$$

$$A_2 F_{12} = A_2 F_{21} \quad F_{21} = F_{23} = \frac{A_1 f_{12}}{A_2}$$

$$\frac{1}{A_2 f_{21}} = \frac{1}{A_2 F_{12}} = \frac{1}{\pi (6)^2 (0,62)}$$

$$\frac{1}{A_2 F_{13}} = \frac{1}{\pi (6)^2 (0,38)}$$

$$\frac{1}{A_2 F_{23}} = \frac{1}{A_3 F_{32}} = \frac{1}{A_1 F_{12}} = \frac{1}{A_2 F_{21}}$$

$$= \frac{1}{\pi (6)^2 (0,62)}$$

$$\frac{1}{P_{\text{conv}}} = A_2 F_{23} + \frac{1}{A_2 F_{21}} + \frac{1}{A_1 F_{13}}$$

$$= \pi (6)^2 (0,62) + \frac{1}{\pi (6)^2 (0,62)} + \frac{1}{\pi (6)^2 (0,38)}$$

$$= \pi (6)^2 (0,856)$$

23.24 (CONTINUED -

$$\frac{q_e}{A_2 e_2} = \frac{0,2}{\pi (6)^2 (12) (0,8)} = \frac{1}{\pi (6)^2 (8)}$$

$$\sum R = \frac{1}{\pi (6)^2 (0,856)} + \frac{1}{\pi (6)^2 (8)}$$

$$= \frac{1,29}{\pi (6)^2}$$

$$q = \frac{\sigma (T_2^4 - T_1^4)}{\sum R}$$

$$= \frac{0,1714 (\pi (6))^2}{1,29} (10^4 - 54)$$

$$= \underline{\underline{140,900 \frac{\text{Btu}}{\text{hr}}}}$$

23.25 (3) Diam of hole = 5 cm

$$f_{11} + f_{12} + f_{13} = 1 \quad f_{21} = f_{31} = 1$$

$$f_{12} = f_{21} \frac{A_2}{A_1} = \frac{\pi (0,15^2 - 0,025^2)}{2\pi (0,15^2)} = 0,486$$

$$f_{13} = F_{31} \frac{A_3}{A_1} = \frac{\pi (0,25^2)}{2\pi (0,15^2)} = 0,0139$$

$$R_1 = \frac{1}{A_1 F_{12}} = \frac{1}{2\pi (0,15)^2 (0,486)} = 14,55$$

$$R_2 = \frac{1}{A_1 F_{13}} = \frac{1}{2\pi (0,15)^2 (0,0139)} = 509$$

$$R_3 = \infty$$

23.25 (CONTINUED -

$$q_{f3} = A_f F_{f3} E_{b1} = A_3 F_{31} E_{b3}$$

$$= \frac{\pi (0.05)^2}{4} (1)(5.676)(7^4)$$

$$= \underline{16.7 \text{ W}}$$

$$T_2 = T_1 = \underline{700 \text{ K}}$$

GRAY CASE:

$$R_4 = \frac{S_1}{A_1 G_1} = \frac{0.3}{2\pi(0.15^2)(0.7)} = 3.03$$

$$q_f = \frac{E_{bo} - 0}{\sum R} = \frac{0T_1^4}{512.03} = \underline{26.7 \text{ W}}$$

$$T_2 = T_1 = \underline{700 \text{ F}}$$

23.26

{WALLS ASSUMED TO BE AT
A UNIFORM TEMPERATURE}

$$R_1 = \frac{0.2}{12(20)(0.8)} = 0.00104$$

$$R_2 = \frac{S_{AWF}}{A_f f_f} = 0.00104$$

$$R_3 = \frac{1}{A_f f_f - C} = \frac{1}{(12)(20)(0.45)} = 0.00903$$

$$R_4 = \frac{1}{A_f f_f - W} = \frac{1}{(12)(20)(0.55)} = 0.0076$$

$$R_5 = R_4 = 0.0076$$

23.26 (CONTINUED)

$$R_{EQVN} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4 + R_5}} = 0.0058$$

$$\sum R = R_1 + R_2 + R_{EQVN} = 0.00785$$

$$q_f = \frac{5(T_f^4 - T_c^4)}{\sum R} = \frac{0.714(545^4 - 525^4)}{0.00785}$$

$$= \underline{2680 \text{ BTU/HR}}$$

23.27

{EQUIVALENT CIRCUIT}

$$R_1 = \frac{S_1}{A_1 G_1} \quad R_2 = \frac{1}{A_f F_{12}} = \frac{1}{A_2 F_{21}} \quad R_3 = \frac{S_2}{A_2 G_2}$$

$$T_1 = 300 \text{ K} \quad T_2 = 78 \text{ K}$$

$$A_1 = \pi D_1^2 = \pi (1.3)^2 = 1.69\pi \text{ m}^2$$

$$A_2 = \pi D_2^2 = \pi (1)^2 = \pi \text{ m}^2$$

$$R_1 = \frac{0.8}{(1.69\pi)(0.2)} = \frac{2.37}{\pi} \text{ m}^{-1}$$

$$R_2 = \frac{1}{\pi (1)^2 (1)} = \frac{1}{\pi} \text{ m}^{-1}$$

$$R_3 = \frac{0.8}{\pi (0.2)} = \frac{4}{\pi} \text{ m}^{-1}$$

$$\sum R = \frac{7.37}{\pi} = 2.35 \text{ m}^{-1}$$

23.27 (CONTINUED -

$$q = \frac{E_{b2} - E_{b1}}{\sum R} = \sigma (T_2^4 - T_1^4)$$

$$= \frac{5,676 (3^4 - 0,78^4)}{235} = 194,8 \text{ W}$$

Boil-off RATE: $\dot{m} = q / h_{fg}$

$$\dot{m} = \frac{194,8}{2 \times 10^5} = 9,74 \times 10^{-4} \text{ kg/s}$$

$$= 3,51 \text{ kg/hr}$$

23.28 OPENING DIAM = 5 mm

(a) EQUIV. SURFACE ① SEES
INTERIOR AS A SINGLE SURFACE

$$q = \frac{E_{b2} - E_{b1}}{R} = \frac{\sigma T_2^4 - 0}{A_1}$$

$$= \frac{\pi (5)^2 (5,676) (6)^4}{4} (10^{-6} \frac{\text{m}^2}{\text{mm}^2})$$

$$= 0,144 \text{ W}$$

b) ANALOG CIRCUIT:

$$F_1 = \frac{1}{A_1 F_{13}} = 0,060 \text{ mm}^{-2} \quad F_{12} \approx 0,15$$

$$F_2 = \frac{1}{A_2 F_{24}} = 1,61 \times 10^{-3} \quad F_{13} = 0,85$$

$$F_3 = \frac{1}{A_1 F_{12}} = 0,339 \quad F_{23} \approx 0,1$$

$$F_4 = \frac{1}{A_2 F_{23}} = 0,0148 \quad F_{24} = 4,167 \times 10^{-3}$$

23.28 (CONTINUED -

$$F_5 = \frac{1}{A_2 F_{23}} = 1,57 \times 10^{-3} \quad F_{24} = 0,0958$$

$$F_6 = \frac{S_2}{A_2 \epsilon_2} = 9,43 \times 10^4 \quad F_{42} = 0,0985$$

$$F_{43} = 0,9015$$

$$\frac{1}{R_{23\text{EQUIV}}} = \frac{1}{R_5} + \frac{1}{R_4 + R_2} \quad R_{23\text{EQ}} = 1433 \times 10^{-3}$$

$$\frac{1}{R_{21\text{EQUIV}}} = \frac{1}{R_3} + \frac{1}{R_5 + R_1} \quad R_{21\text{EQ}} = 0,052$$

$$q = \frac{\sigma T^4}{R_6 + R_{21\text{EQUIV}}} = 0,139 \text{ W}$$

(c) ALL INTERIOR MAY BE CONSIDERED
A SINGLE SURFACE -

$$R_2 = \frac{1}{A_1 F_{12}} = \frac{1}{A_1} = 0,0509$$

$$R_1 = \frac{S}{A \epsilon} = \frac{0,4}{A_1 (0,6)} = 1,291 \times 10^{-4}$$

$$q = \frac{\sigma T^4}{\sum R} = 0,144 \text{ W}$$

(SLIGHTLY LESS THAN
IN PART (a))

23.29 PROBLEM STATEMENT ASKS FOR
RADIANT ENERGY REACHING TANK
BOTTOM - I.E., THE IRRADIATION

a) $q_{\text{TOTAL}} = q_{\text{from HTR}} + q_{\text{from SPACE}}$

23.29 CONTINUED

$$q_{\text{HTR}} = A_1 F_{12} E_{b1}$$

$$\left\{ f_{12} \approx 0,39 - \text{fig 23.15} \right\}$$

$$= \frac{\pi}{4} (0,2)^2 (0,39) 5 T_1^4$$

$$= 1826 \text{ W}$$

$$q_{\text{space}} = \frac{\pi}{4} (0,2)^2 (0,61) 5 T_2^4$$

$$= 8,8 \text{ W}$$

$$q_{\text{TOTAL}} \approx \underline{1835 \text{ W}}$$

$$R_1 = \frac{1}{A_1 F_{12}} = \frac{1}{\frac{\pi}{4} (0,2)^2 (0,39)} = 81,62$$

$$R_2 = \frac{1}{A_1 F_{13}} = \frac{1}{\frac{\pi}{4} (0,2)^2 (0,61)} = 52,18$$

$$R_3 = \frac{1}{A_2 F_{23}} = R_2 = 52,18$$

$$R_4 = \frac{S_1}{A_1 e_1} = \frac{0,4}{\frac{\pi}{4} (0,2)^2 (0,6)} = 21,22$$

$$\frac{1}{R_{12 \text{ equiv}}} = \frac{1}{R_1} + \frac{1}{R_2 + R_3} \quad R_{12 \text{ equiv}} = 45,8$$

$$\sum R = R_4 + R_{12 \text{ equiv}} \approx 67$$

$$q_{\text{REACHING SURF}} = \frac{5T^4}{67} = \underline{2224 \text{ W}}$$

23.30

SURROUNDINGS ARE CONSIDERED AN EQUIVALENT SURFACE ③ AT 0K

$$T_1 = 100 \text{ K} \quad f_{12} \approx 0,28 \quad \left\{ \text{fig 23.14} \right\}$$

$$T_2 = 200 \text{ K} \quad f_{13} = 0,72$$

$$T_3 = 0 \text{ K} \quad f_{23} = 0,72$$

$$R_1 = \frac{1}{50(0,28)} = 0,0714$$

$$(a) \quad R_2 = R_3 = \frac{1}{50(0,72)} = 0,0278$$

$$q_{f12} = \frac{E_{b1} - E_{b2}}{R_1} = \frac{0(T_1^4 - T_2^4)}{R_1} = \underline{-1192 \text{ W}}$$

$$(b) \quad q_{f1} = q_{f12} + q_{f13}$$

$$q_{f12} = -1192$$

$$q_{f13} = \frac{E_{b1} - 0}{R_2} = \frac{204}{R_2} \text{ W}$$

$$q_{f1} = \underline{-988 \text{ W}}$$

23.30 CONTINUED-

$$q_2 = q_{21} + q_{23}$$

$$q_{21} = 1192$$

$$q_{23} = \frac{E_{02}-0}{R_3} = 3270 \text{ W}$$

$$q_2 = \underline{4462 \text{ W}}$$

c) TO SURROUNDINGS

$$q_{13} = \underline{204 \text{ W}}$$

$$q_{23} = \underline{3270 \text{ W}}$$

23.31

$$\epsilon_1 = 0.6 \quad T_1 = 1000 \text{ K} \quad A_1 = 2.88 \text{ m}^2$$

$$\epsilon_2 = 0.9 \quad T_2 = 400 \text{ K} \quad A_2 = "$$

$$\left\{ F_{12} \approx 0.5 \right\}$$

FIG 23.14

{NOTE 3 "Loops"}

$$R_1 = \frac{\epsilon_1}{A_1 \epsilon_1} = 0.231 \quad R_2 = \frac{1}{A_1 F_{12}} = 0.694$$

$$R_3 = \frac{\epsilon_2}{A_2 \epsilon_2} = 0.039 \quad R_4 = R_5 = \frac{1}{A_2 F_{13}} = 0.694$$

23.31 CONTINUED-

WRITING EQUATIONS FOR LOOPS AS SHOWN:

$$E_{01}-0 = (I_1+I_3)R_1 + I_1 R_4$$

$$E_{02}-0 = (I_2-I_3)R_3 + I_2 R_5$$

$$E_{01}-E_{02} = (I_1+I_3)R_1 + I_3 R_2 + (I_3-I_2)R_3$$

SUBSTITUTING VALUES & SOLVING SIMULTANEOUS EQUATIONS.

$$I_1 = 59550 \quad I_2 = 4695 \quad I_3 = 42970$$

$$Q_{NET} = I_1 + I_3 = \underline{102.5 \text{ kW}}$$

$$Q_{12} = I_3 = \underline{4297 \text{ kW}}$$

{ THESE RESULTS PRESUME NO HT TX FROM OTHER SIDES OF PLATES }

23.32

$$T_1 = 1000 \text{ K}$$

$$A_1 = 2.88 \text{ m}^2$$

$$\epsilon_1 = 0.6$$

$$T_3 = ? \quad A = 2.88$$

$$\epsilon = 0.8$$

$$T_2 = 400 \text{ K}$$

$$A = 2.88 \quad \epsilon = 0.9$$

$$R_1 = 0.231$$

$$R_3 = 0.694$$

$$R_4 = 1.157$$

$$R_7 = 0.496$$

$$R_5 = 1.157$$

$$R_8 = 0.579$$

$$R_6 = 0.496$$

23.32 (CONTINUED -

EQUATIONS for Loops Shown:

$$E_{b1} - 0 = I_1 R_1 + (I_1 - I_3) R_4$$

$$E_{b2} - 0 = I_2 R_3 + (I_2 - I_4) R_5$$

$$0 = (I_3 - I_1) R_4 + I_3 R_6 + (I_3 + I_4) R_8$$

$$0 = (I_3 + I_4) R_8 + I_4 R_7 + (I_4 - I_2) R_5$$

$$\text{SOLVING: } I_1 = 62100 \quad I_2 = 25500$$

$$I_3 = 16940 \quad I_4 = 25600$$

$$Q_f = \underline{62.1 \text{ kW}}$$

23.33

Pole ③

From Figs 23.14 & 23.15

$$F_{(2+3)} - 1 = f_{1-(2+3)} \approx 0.04$$

$$f_{31} \approx 0.04$$

$$F_{13} = 0.04 \frac{(2.5)^2}{(4)^2} = 0.0156$$

$$f_{12} = 0.04 - 0.0156 = 0.0244$$

for Black Disks:

$$\begin{aligned} Q_{12} &= A_1 f_{12} \sigma (T_4 - T_2) \\ &= \frac{\pi}{4} \left(\frac{4}{12}\right)^2 (0.0244) (0.1714) \\ &\quad \times (9.6^4 - 6.7^4) \\ &= \underline{2.36 \text{ BTU/HR}} \quad (\text{a}) \end{aligned}$$

23.33 (CONTINUED -

for GRAY bodies:

$$R_1 = \frac{S_1}{A_1 \epsilon_1} = \frac{0.4}{\frac{\pi}{4} \left(\frac{4}{12}\right)^2 (0.6)} = 76.4$$

$$R_2 = \frac{1}{A_1 f_{12}} = 470$$

$$R_3 = \frac{S_2}{A_2 \epsilon_2} = 65$$

$$R_4 = \frac{1}{A_1 f_{1-5}} = 11.74$$

$$R_5 = \frac{1}{A_2 f_{2-5}} = 19.6$$

for Loops Shown:

$$E_{b1} - 0 = I_1 R_1 + I_1 R_4 + I_3 R_1$$

$$E_{b2} - 0 = I_2 R_3 + I_2 R_5 - I_3 R_3$$

$$E_{b1} - E_{b2} = (I_1 + I_3) R_1 + I_3 R_2 + (I_3 - I_2) R_3$$

SOLVING SIMULTANEOUSLY!

$$Q_{1-2} = I_3 = \underline{1.67 \text{ BTU/HR}} \quad (\text{b})$$

23.34 $E_{b4} = R_3 = 3 \quad E_{b3} = 0$

23.34 CONTINUED-

$$R_1 = 470$$

$$E_{b1} = 14600$$

$$R_2 = 11.94$$

$$E_{b2} = 345$$

$$R_3 = 30.6$$

$$E_{b3} = 0$$

$$R_4 = 735$$

A IS ADIABATIC

$$R_5 = 19.6$$

FOR BLACK SURFACES:

$$q_{f12} = \frac{E_{b1} - E_{b2}}{R_{\text{ADIR},12}}$$

$$R_{\text{ADIR},12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2 + R_4}} = 288$$

$$q_{f12} = \frac{1460 - 345}{288} = 387 \text{ BTU}$$

$$q_{\text{lost through hole}} = q_{f13} = \frac{E_{b1} - 0}{R_{\text{ADIR}}}$$

$$R_{\text{ADIR}} = \frac{1}{\frac{1}{R_5} + \frac{1}{R_1 + R_2}} = 18.83$$

$$q_{\text{lost}} = \frac{1460}{18.83} = 77.5 \text{ BTU}$$

FOR GREY SURFACES: $\epsilon_1 = 0.6$ $\epsilon_2 = 0.3$

ADDITIONAL RESISTANCES R_A , R_B

$$R_A = \frac{\epsilon_1}{A \epsilon_1} = \frac{0.4}{\frac{\pi}{4} \left(\frac{d_2}{2}\right)^2 0.6} = 7.64$$

$$R_B = \frac{0.3}{\frac{\pi}{4} \left[\left(\frac{d_2}{2}\right)^2 - \left(\frac{d_5}{2}\right)^2\right] 0.1} = 8.06$$

23.34 CONTINUED-

$$q_{f12} = \frac{1460 - 345}{288 + 7.64 + 8.06} = 3.67 \text{ BTU}$$

$$q_{\text{lost}} = \frac{1460}{18.83 + 7.64} = 55.2 \text{ BTU}$$

23.35

$$\begin{aligned} R_1 &= 470 & E_{b1} &= 1460 \\ R_2 &= 11.94 & R_4 &= 735 & E_{b2} &= 345 \\ R_3 &= 30.6 & R_5 &= 19.6 & E_{b3} &= 0 \\ &&&&& E_{b4} = 738 \end{aligned}$$

WRITING LOOP EQUATIONS:

$$1: f_{12} - f_{b4} = R_2(I_1 + I_4 + I_5)$$

$$2: E_{b4} - 0 = R_3(I_3 - I_5)$$

$$3: E_{b1} - E_{b2} = R_1(I_2 - I_4)$$

$$4: 0 = R_1(I_4 - I_2) + R_2(I_4 + I_1 - I_5) + I_4 R_4$$

$$5: 0 = R_3(I_5 - I_3) + R_2(I_5 - I_1 - I_4) + I_5 R_5$$

SOLVING:

$$I_1 = 134.8 \quad I_3 = 98.7 \quad I_5 = 74.6$$

$$I_2 = 2.84 \quad I_4 = 0.47$$

$$q_{f12} = I_2 = 2.84 \text{ BTU}$$

$$q_{\text{lost}} = I_3 + I_5 = 173.3 \text{ BTU}$$

23.36

{Fig 23.14}

$$F_{13} = 0.18$$

$$F_{12} = 0.82$$

$$R_1 = \frac{S_1}{A_1 G_1} = \frac{0.69}{\frac{\pi}{4}(2)^2(0.31)} = 0.708 \text{ m}^{-2}$$

$$R_2 = \frac{S_2}{A_2 G_2} = 0.996 \text{ m}^{-2}$$

$$R_3 = \frac{1}{A_1 F_{12}} = 0.388 \text{ m}^{-2}$$

$$R_4 = \frac{1}{A_1 F_{13}} = 1.77 \text{ m}^{-2}$$

$$R_5 = 0.388 \text{ m}^{-2}$$

$$R_{\text{parallel}} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4 + R_5}} = \frac{1}{\frac{1}{0.388} + \frac{1}{1.77 + 0.388}} = 0.329$$

$$\sum R = 0.708 + 0.329 + 0.996 = 2.03 \text{ m}^{-2}$$

$$q = \frac{E_{01} - E_{02}}{\sum R} = \frac{5.676 (7.55^4 - 3.95^4)}{2.03} = 8400 \text{ W} = 8.4 \text{ kW}$$

23.37

{Surface 3 is Surroundings}

23.37 (CONTINUED)

$$A_1 = A_2 = \frac{\pi}{4} (0.15)^2 = 0.0177 \text{ m}^2$$

$$R_1 = \frac{S_1}{A_1 G_1} = \frac{0.2}{A(0.8)} = 14.12$$

{Fig 23.14 } $F_{12} \approx 0.37 \Rightarrow F_{13} = 0.18$

$$R_2 = \frac{1}{A_2 F_{12}} = 153$$

$$f_3 = \frac{1}{A_1 F_{13}} = 89.7$$

$$f_4 = \frac{1}{A_2 f_{13}} = 89.7$$

$$E_{03} = \sigma (3.5)^4 = 852 \text{ W/m}^2$$

Loop Eqs:

$$E_{01} - E_{03} = (I_1 + I_2)R_1 + I_1 R_3$$

$$E_{01} - E_{03} = (I_1 + I_2)R_1 + I_2(R_2 + R_4)$$

$$\text{SOLVING: } I_1 = 2.706 I_2$$

$$I_1 + I_2 = 300$$

$$\therefore I_2 \approx 81 \quad I_1 = 219$$

$$J_2 = E_{02} + I_2 R_4$$

$$= 57.9 + 81(89.7) = 7319$$

$$J_1 = J_2 + I_2 R_2$$

$$J_1 = 7319 + 81(153) = 19710$$

$$E_{01} = J_1 + 300(R_1)$$

$$= 19710 + 300(14.12)$$

$$= 123950$$

23.37 CONTINUED -

$$\text{FINALLY: } T_1 = \left(\frac{F_{b1}}{\sigma}\right)^{\frac{1}{4}} = \underline{\underline{806 \text{ K}}} \quad (a)$$

$$T_2 = \left(\frac{J_2}{\sigma}\right)^{\frac{1}{4}} = \underline{\underline{599 \text{ K}}} \quad (b)$$

$$q_{f, \text{SORE}}^{\text{TO}} = I_1 + I_2 = \underline{\underline{300 \text{ W}}} \quad (c)$$

$$q_{f,1-2} = I_2 = \underline{\underline{81 \text{ W}}} \quad (d)$$

23.37 ALTERNATE SOLUTION USING EQUATIONS 23.37 & 23.38

APPLYING THEM TO EACH NODE:

$$\frac{300}{A_1} = J_1 - F_{12}J_2 - F_{13}J_3$$

$$0 = J_2 - F_{21}J_1 - F_{23}J_3$$

$$F_{b3} = J_3$$

SOLVING THESE EQUATIONS SIMULTANEOUSLY GIVES SAME RESULTS AS ABOVE

23.38 TEST SPECIMEN IS 1
TUBE IS 2
VIEWING PORT W

$$R_1 = \frac{S_1}{A_1 E_1} = \frac{0.2}{0.833(0.8)} = 0.30$$

$$R_2 = \frac{1}{A_f 12} = \frac{1}{A_1} = 1.133 \quad \{F_{12} \approx 1\}$$

23.38 CONTINUED -

$$R_3 = \frac{S_2}{A_2 E_2} = \frac{0.77}{340(0.23)} = 9.85 \times 10^{-4}$$

$$R_4 = \frac{1}{A_w f_w}$$

$$A_1 = 0.883 \text{ in}^2 \quad A_w = 0.049 \text{ in}^2$$

$$A_2 = \frac{\pi}{4}(16) + 8\pi + 4\pi(24) = 340 \text{ in}^2$$

$$q_f^1 = q_f^2 + q_f^3$$

$$q_f^2 = \frac{A_2 E_2}{S_2} (J_2 - E_{b2})$$

$$q_f^3 = A_w J_2$$

$$q_f^1 = \frac{E_{b1} - J_1}{R_1 + R_2} = A_1 E_1 (E_{b1} - J_1)$$

J_2 BECOMES:

$$J_2 = \frac{E_{b1} + \frac{A_1}{A_2} \frac{E_2}{S_2 E_1} E_{b2}}{1 + \frac{A_2}{A_1} \frac{E_2}{S_2 E_1} + \frac{A_w}{A_1 E_1}}$$

$$F_{b1} = 131,500 \frac{\text{Btu}}{\text{HR ft}^2} \quad F_{b2} = 16$$

$$\Rightarrow J_2 = 344 \frac{\text{Btu}}{\text{HR ft}^2}$$

$$q_f^1 = \frac{0.883}{144} (0.2) (131,500 - 344)$$

$$= \underline{\underline{161 \frac{\text{Btu}}{\text{ft}^2}}} \quad (b)$$

~ FROM SPECIMEN

$$q_f^3 = \frac{0.049}{144} (344) = 0.177 \frac{\text{Btu}}{\text{ft}^2} \quad (c)$$

~ LOSS THROUGH WINDOW

$$F_{lw} \approx \frac{A_w f_w}{A_1} = \frac{\frac{1}{4}(16)}{2\pi(144)} \approx \underline{\underline{5 \times 10^{-5}}} \quad (a)$$

23.39 $q_{\text{gas-wall direct}} = A_1 F_{1G} \alpha_G \sigma (T_G^4 - T_1^4)$

$q_{\text{gas to reradiating walls}} = A_2 F_{2G} \alpha_G \sigma (T_G^4 - T_2^4)$

$q_{\text{reradiating walls to 1}} = A_1 F_{12} \bar{J}_G \sigma (T_2^4 - T_1^4)$

$$q_{f_{12}} = q_{f_{21}} = q_{fr} = \frac{\sigma (T_G^4 - T_1^4)}{\frac{1}{A_1 F_{12} \bar{J}_G} + \frac{1}{A_2 F_{2G} \alpha_G}}$$

$q_{\text{TOTAL TO 1}} = q_{f_{G1}} + q_{fr}$

$$L = \frac{3A(0.2)(0.2)\chi_1}{4(0.2)(1)} = 0.17 \text{ m}$$

$$p = 1 \text{ ATM}$$

$$\alpha_G = 0.22$$

$$P_L = 0.558 \text{ ATM-FT} \quad \bar{J}_G = 0.78$$

$$R_1 = \frac{1}{0.2(1)(0.22)} = 22.7$$

$$R_2 = \frac{0.2}{0.2(1)(0.8)} = 1.25$$

$$R_3 = \frac{1}{3(0.2)(1)(0.22)} = 7.58$$

$$R_4 = \frac{1}{0.2(1)(1)(0.78)} = 6.41$$

$$R_{\text{EQUIV}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_3 + R_4}} = 8.66$$

23.39 (CONTINUED)

$$\sum R = 8.66 + 1.25 = 9.91$$

$$q = \frac{5.676 (6^4 - 4.2^4)}{9.91} = \frac{564 \text{ W}}{\text{per m}}$$

23.40

$$q_{\text{NET}} = \sigma A (\epsilon_G T_G^4 - \alpha_G T_w^4)$$

$$A = 4\pi r^2 = \pi (3m)^2 = 28.27$$

$$T_G = 1000 \text{ K} \quad T_w = 600 \text{ K}$$

$$L = 2/3 D = 2 \text{ m}$$

$$pL = 0.15 (5) (6.56) = 4.92 \text{ ATM-FT}$$

$$\alpha_G = 0.18 \quad \epsilon_G = 0.22$$

$$q_{\text{NET}} = 5.676 (9\pi) [0.22(10^4) - 0.18(6^4)] = \underline{\underline{316 \text{ kW}}}$$

23.41

$$\frac{q_1 - \frac{\rightarrow \Delta X \leftarrow}{q_2 + q_3}}{q_3}$$

$$q_2 - q_1 = A \bar{V} C_p (T_{x+\Delta x} - T_x)$$

$$q_3 = h \bar{P} \Delta x (T - T_w) + \bar{P} w F_{wG} \sigma \epsilon_w [\epsilon_G T_G^4 - \alpha_G T_w^4]$$

$$q_1 = q_2 + q_3$$

$$A \bar{V} C_p \frac{T_{x+\Delta x} - T_x}{\Delta x} + h \bar{P} (T - T_w)$$

$$+ \bar{P} F_{wG} \sigma \epsilon_w (\epsilon_G T_G^4 - \alpha_G T_w^4) = 0$$

23.41 (CONTINUED) -

IN LIMIT AS $\Delta x \rightarrow 0$:

$$SAU_{cp} \frac{\Delta T}{\Delta x} + hP(T-T_w) + P_{EW} \sigma (e_G T_G^4 - e_G T_w^4) = 0$$

$$P_c = 0,20 \quad L = \frac{3,4 W_D^2}{4 W_D} = 0,425$$

$$P_{cL} = 0,085 \sim @ 2000 F \quad e_G \approx 0,035$$

$$@ 1000 \quad e_G \approx 0,065$$

$$T_w = 1260 R \quad \alpha_G = 0,071$$

$$\begin{aligned} \frac{\Delta T}{\Delta x} &= \left[-\frac{hP}{SAU_{cp}} (T - T_w) - \frac{P_{EW} \sigma (e_G T_G^4 - e_G T_w^4)}{SAU_{cp}} \right]_A^1 \\ &= \left\{ \frac{1,5(2)(T-1260)}{0,4(0,28)} - \frac{2(0,9)(0,0714)}{(0,4)(0,28)} \right. \\ &\quad \left. \times \left[e_G \left(\frac{T_G}{100} \right)^4 - 0,071 \left(\frac{1260}{100} \right)^4 \right] \right\} \frac{4}{3600} \end{aligned}$$

$$\frac{\Delta T}{\Delta x} = \frac{1}{900} \left\{ -26,8(T-1260) - 2,75 \left[e_G \left(\frac{T_G}{100} \right)^4 - 1772 \right] \right\}$$

$$\Delta x = -\left[\frac{1}{-26,8(T-1260) - 2,75 e_G \left(\frac{T_G}{100} \right)^4 + 4870} \right] \times 900 \Delta T$$

BY GRAPHICAL INTEGRATION

$$x = \int_{1000}^{2000} \left[\frac{1}{-26,8(T-1260) - 2,75 e_G \left(\frac{T_G}{100} \right)^4 + 4870} \right] 900 \Delta T = 35,2 \text{ ft} \quad (a)$$

$$Q_{TOTAL} = SAU_{cp} \Delta T$$

$$= 0,4 \left(\frac{1}{4} \right) (0,28) (1000)$$

$$= 28 \text{ BTu/s}$$

23.41 (CONTINUED) -

$$q_{conv} = hP(x)(T-800)$$

$$= \frac{1,5(2)x(T-800)}{3600} = x \frac{T-800}{1200}$$

T_{avg}	x	$q_{conv,i}$
1900	3,2	2,93
1700	4,0	3,0
1500	5,4	3,15
1300	8,0	3,33
1100	14,6	3,65

$$q_{conv} = \sum q_i = 16,06 \text{ BTu/s}$$

$$q_{RAD} = 28 - 16,06 = 11,94 \text{ BTu/s}$$

$$\text{RADIANT FUNCTION} = \frac{11,94}{28} = 0,43 \quad (b)$$

FOR U DOUBLED:

$$\Delta x = \left[\frac{900}{-13,4(T-1260) - 1,375 \left[e_G \left(\frac{T_G}{100} \right)^4 - 1772 \right]} \right] \Delta T$$

INTEGRATE GRAPHICALLY UNTIL $x = 35,2$

AT THIS LOCATION $T = 1265 F$

CHAPTER 24

24.1 BASIS 1g mole LNG

	g/mole	MW	g	WT FRACTION
CH ₄	0.935	16	14.96	0.871
C ₂ H ₆	0.046	30	1.38	0.080
C ₃ H ₈	0.012	44	0.528	0.031
CO ₂	0.007	44	0.308	0.018

$$17.176 \quad 1.00$$

$$\text{WT FRACTION ETHANE} = \underline{0.080} \quad a)$$

$$\text{Ave. M.WT} = \underline{17.176 \text{ g/mole}} \quad b)$$

DENSITY:

$$\rho = \frac{PM}{RT} = \frac{1.4 \times 10^5 (17.176)}{8.314(900)}$$

$$= 1397 \text{ g/m}^3 = \underline{1.397 \text{ kg/m}^3} \quad c)$$

$$P_{\text{CH}_4} = y_{\text{CH}_4} P = (0.935)(1.4 \times 10^5) \\ = \underline{131 \text{ kPa}} \quad d)$$

MASS FRACTION CO₂

$$= \frac{0.308}{17.176} = \underline{0.0179} \quad e)$$

BASIS - 1 kg MOLE				
	kg/mole	M.W.	kg	WT FRACTION
SiC ₆ H ₄	0.40	32.12	12.85	0.914
H ₂	0.60	2.02	1.21	0.086

14.06 1.0
† a

24.2 CONTINUED -

$$\text{M.W.} = \underline{14.06 \text{ kg/kg mole}} \quad b)$$

$$C_A, \text{SiC}_6H_4 = y_A C$$

$$P = \frac{60}{760} (1.013 \times 10^5) = 7.99 \times 10^3 \text{ Pa}$$

$$C = \frac{P}{RT} = \frac{7.99 \times 10^3}{8.314(900)} = 1.068 \text{ mole/m}^3$$

$$C_A = (0.40)(1.068) = \underline{0.1427 \text{ mole/m}^3} \quad c)$$

24.3 Basis 1g MOLE

	y	MOLE	M.W.	g
O ₂	0.21	0.21	32	6.72
N ₂	0.79	0.79	28	22.12

1.0 28.84

$$\text{MOLE FRACTION OF O}_2 = \underline{0.21} \quad a)$$

$$\text{VOLUME " n " n } = \underline{0.21} \quad b)$$

$$\text{WT OF MIXTURE} = \underline{28.84 \text{ g}} \quad c)$$

$$\text{Vol/mole} = \frac{RT}{P} = \frac{8.314(400)}{1.013 \times 10^5} \\ = 0.0328 \text{ m}^3/\text{mole}$$

$$\rho_{O_2} = \frac{6.72}{0.0328} = \underline{204.9 \text{ g/m}^3} \quad d)$$

$$\rho_{N_2} = \frac{22.12}{0.0328} = \underline{674.4 \text{ "}} \quad e)$$

$$\rho_{\text{mix}} = \underline{879 \text{ "}} \quad f)$$

$$\text{M.W. OF MIXTURE} = \underline{28.84} \quad g)$$

$$24.4 \quad N_{A2} = -CD_{AB} \frac{dy_A}{dz} + y_A (N_{A2} + N_{B2})$$

$$N_{B2} = -CD_{BA} \frac{dy_B}{dz} + y_B (N_{A2} + N_{B2})$$

ADDING:

$$N_{A2} + N_{B2} = -CD_{AB} \frac{dy_A}{dz} - CD_{BA} \frac{dy_B}{dz} + (y_A + y_B)(N_{A2} + N_{B2})$$

$$CD_{AB} \frac{dy_A}{dz} + CD_{BA} \frac{dy_B}{dz} = 0$$

$$y_A + y_B = 1$$

$$\therefore \frac{dy_A}{dz} + \frac{dy_B}{dz} = 0 \quad \therefore \frac{dy}{dz} = -\frac{dy_B}{dz}$$

GIVINH $D_{AB} = D_{BA}$

IN AIRSAFELEDOF EQU:

$$\sigma_{AB}^2, \sigma^2 \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{1/2}$$

WILL BE THE SAME FOR D_{AB}, D_{BA}

\therefore AGREEMENT -- Q.E.D.

$$24.5 \quad \vec{N}_A = -CD_{AB} \nabla y_A + y_A (\vec{N}_A + \vec{N}_B)$$

C = CONST.; MULTIPLY BY M_A

$$\vec{N}_A M_A = -D_{AB} M_A \nabla C_A + y_A M_A (\vec{N}_A + \vec{N}_B)$$

$$w_A = \frac{y_A M_A}{X_A M_A + X_B M_B} = \frac{y_A M_A}{M_A w_A}$$

$$\vec{N}_A = -D_{AB} \nabla p_A + w_A (\vec{N}_A + \vec{N}_B)$$

$$\therefore \vec{N}_A = -D_{AB} \nabla w_A + w_A (\vec{N}_A + \vec{N}_B)$$

24.5 CONTINUED

$$\vec{N}_A = -D_{AB} \nabla C_A + C_A \left[\frac{\vec{C}_A \vec{V}_A + \vec{C}_B \vec{V}_B}{C} \right]$$

$$\vec{C}_A \vec{V}_A = -D_{AB} \nabla C_A + C_A \vec{V}$$

$$C_A (\vec{V} - \vec{V}) = -D_{AB} \nabla C_A$$

$$\therefore \vec{J}_A = -D_{AB} \nabla C_A \quad b)$$

$$24.6 \quad \vec{N}_A + \vec{N}_B = \left[\vec{C}_A \vec{V}_A + \vec{C}_B \vec{V}_B \right] \frac{C}{C}$$

$$= \underline{\underline{CV}} \quad a)$$

$$n_A + n_B = \left(S_A \vec{V}_A + S_B \vec{V}_B \right) \frac{S}{S}$$

$$= \underline{\underline{SV}} \quad b)$$

$$\vec{J}_A + \vec{J}_B = -D_{AB} S \nabla w_A - D_{AB} S \nabla w_B$$

$$\text{AS } w_A + w_B = 1; \quad \nabla w_A + \nabla w_B = 0$$

$$\therefore \underline{\underline{J}_A + J_B = 0} \quad c)$$

$$24.7 \quad -\frac{dC_A}{dz} = \beta_{AB} \frac{p_A}{M_A} \frac{p_B}{M_B} (v_{A2} - v_{B2})$$

$$+ \beta_{AC} \frac{p_A}{M_A} \frac{p_C}{M_C} (v_{A2} - v_{C2}) + \dots$$

$$\text{AS } C = \frac{p_i}{M_i} = \frac{p_i}{RT}$$

$$-\frac{1}{RT} \frac{dp_A}{dz} = \beta_{AB} \left[\frac{p_B}{RT} C_A v_{A2} - \frac{p_A}{RT} C_B v_{B2} \right]$$

$$+ \beta_{AC} \left[\frac{p_C}{RT} C_A v_{A2} - \frac{p_A}{RT} C_C v_{C2} \right] + \dots$$

24.7 CONTINUED -

$$\begin{aligned}
 -\frac{1}{RT} \frac{dP_A}{dz} &= \frac{\beta_{AB}}{RT} \left(P_B N_{A2} - P_A N_{B2} \right) \\
 &\quad + \frac{\beta_{AC}}{RT} \left(P_C N_{A2} - P_A N_{C2} \right) + \dots \\
 -\frac{dP_A}{dz} &= \left[\beta_{AB} P_B + \beta_{AC} P_C + \dots \right] N_{A2} \\
 &\quad - P_A \left[\beta_{AB} N_{B2} + \beta_{AC} N_{C2} + \dots \right]
 \end{aligned}$$

LET $D_{Ai} = \frac{RT}{\beta_{Ai} P}$ or $\beta_{Ai} = \frac{RT}{D_{Ai} P}$

$$\begin{aligned}
 -\frac{dP_A}{dz} &= \left\{ \frac{RT}{P} \left[\frac{P_B}{D_{AB}} + \frac{P_C}{D_{AC}} + \dots \right] N_{A2} \right. \\
 &\quad \left. - \frac{P_A RT}{P} \left[\frac{N_{B2}}{D_{AB}} + \frac{N_{C2}}{D_{AC}} + \dots \right] \right\}
 \end{aligned}$$

for A DIFFUSING THROUGH NON-DIFFUSING B,C,D,...

$$N_{B2} = N_{C2} = N_{D2} = \dots = 0$$

GIVING

$$-\frac{dP_A}{dz} = \frac{RT}{P} \left(\frac{P_B}{D_{AB}} + \frac{P_C}{D_{AC}} + \dots \right) N_{A2}$$

$$\therefore \frac{P}{RT N_{A2}} \left(-\frac{dP_A}{dz} \right) = \frac{P_B}{D_{AB}} + \frac{P_C}{D_{AC}} + \dots \quad (1)$$

Now - CONSIDER A BINARY CASE

$$\text{WITH } N_{B2} = 0$$

$$N_{A2} = -C D_{AB} \frac{dy_A}{dz} + y_A N_{A2}$$

24.7 CONTINUED -

$$N_{A2} = -\frac{P}{RT} \frac{D_{AB}}{1-y_A} \frac{dy_A}{dz}$$

$$= -\frac{P}{RT} \frac{D_{AB}}{P-P_A} \frac{dP_A}{dz}$$

$$\text{or } \frac{P-P_A}{D_{AB}} = \frac{P}{RT} \left[\frac{-\frac{dP_A}{dz}}{N_{A2}} \right] \quad (2)$$

COMBINING (1) & (2)

$$\frac{P-P_A}{P_{A-mix}} = \frac{y_B}{D_{AB}} + \frac{P_C}{D_{AC}} + \frac{P_D}{D_{AD}} + \dots$$

$$\therefore P_{A-mix} = \frac{P-P_A}{\frac{P_B}{D_{AB}} + \frac{P_C}{D_{AC}} + \frac{P_D}{D_{AD}} + \dots}$$

DIVIDING NUMERATOR & DENOMINATOR BY P WE GET

$$P_{A-mix} = \frac{1-y_A}{y_B/D_{AB} + y_C/D_{AC} + y_D/D_{AD} + \dots}$$

DIVIDING NUMERATOR & DENOMINATOR BY $1-y_A$ & DESIGNATING $y'_i = y_i / (1-y_A)$

WE HAVE, FINALLY,

$$P_{A-mix} = \frac{1}{y'_B/D_{AB} + y'_C/D_{AC} + y'_D/D_{AD} + \dots}$$

24.8 CO₂ IN AIR @ 310 K, 1.5 × 10⁵ Pa

APPENDIX J: D_{AB}P = 1378 m²/s Pa

$$D_{AB} @ T_2 P_2 = D_{AB} \left| \frac{P_1}{T_1} \right| \left(\frac{T_2}{P_2} \right)^{3/2} \Omega_{DT_2}$$

$$CO_2: \epsilon_{AB}/k = 190$$

$$Air: \epsilon/k = 97$$

$$\epsilon_{AB}/k = \sqrt{190}(97) = 135.76$$

$$T_1: \frac{TK}{\epsilon_{AB}} = \frac{273}{135.76} = 2.011 \quad \Omega_D = 1.673$$

$$T_2: \frac{TK}{\epsilon_{AB}} = \frac{310}{135.76} = 2.283 \quad \Omega_D = 1.028$$

$$D_{AB} = \frac{1.378}{1.5 \times 10^5} \left(\frac{310}{273} \right)^{3/2} \frac{1.673}{1.028}$$

$$= 1.16 \times 10^{-5} \text{ m}^2/\text{s} \quad (a)$$

BUTANOL IN AIR @ 325 K 2 × 10⁵ Pa

SAME PROCEDURE AS ABOVE -

$$D_{AB}P \Big|_{298} = 1337 \text{ m}^2/\text{s Pa}$$

$$\epsilon_{AB}/k = 194.7 \quad \Omega_{DT_1} = 1.188 \quad \Omega_{DT_2} = 1.148$$

$$D_{AB} = \frac{1.377}{2 \times 10^5} \left(\frac{325}{298} \right)^{3/2} \left(\frac{1.188}{1.148} \right)$$

$$= 7.88 \times 10^{-6} \text{ m}^2/\text{s} \quad (b)$$

24.8 (CONTINUED) -

CO IN AIR @ 310 K, 1.5 × 10⁵ Pa

$$\text{MUST USE HIRSCHFELDER EQUATION}$$

$$D_{AB} = \frac{0.001858 T^{3/2} \left[\frac{1}{m_A} + \frac{1}{m_B} \right]^{1/2}}{P \sigma_{AB}^2 \Omega_D}$$

$$\text{VALUES: } \left[\frac{1}{m_A} + \frac{1}{m_B} \right]^{1/2} = 0.265$$

$$P = 1.4807 \text{ atm}$$

$$\sigma_{AB}^2 = 12.985 \quad \epsilon_{AB}/k = 103.29$$

$$TK/\epsilon_{AB} = 3.0 \quad \Omega_D = 0.949$$

SUBSTITUTING & SOLVING:

$$\underline{D_{AB} = 1.47 \times 10^{-5} \text{ m}^2/\text{s}} \quad (c)$$

CCl₄ IN AIR @ 298 K, 1.913 × 10⁵ Pa

AGAIN - HIRSCHFELDER EQUATION - SEE PART (c)

$$\text{VALUES: } \left[\frac{1}{m_A} + \frac{1}{m_B} \right]^{1/2} = 0.202$$

$$P = 1.888 \text{ atm}$$

$$\sigma_{AB}^2 = 22.553 \quad \epsilon_{AB}/k = 178.1$$

$$TK/\epsilon_{AB} = 1.67 \quad \Omega_D = 1.148$$

SUBSTITUTING & SOLVING:

$$\underline{D_{AB} = 3.95 \times 10^{-6} \text{ m}^2/\text{s}} \quad (d)$$

24.9 n BUTANE - i BUTANE @ 673 K
2.0 ATM

USE HIRSHFELDER EQUATION - SEE PROB 24.8

$$\text{VALUES: } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{\frac{1}{2}} = 0.1857$$

$$S_{AB}^2 = 16,718 \quad \epsilon_{AB}/k = 358.2$$

$$TK/\epsilon_{AB} = 1.88 \quad \Omega_D = 1.098$$

SUBSTITUTING \nless SOLVING:

$$D_{AB} = 1.03 \times 10^{-5} \text{ m}^2/\text{s}$$

FULLER-SCHAFER-GIDDINGS

$$D_{AB} = \frac{10^{-3} T^{1/2} \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{1/2}}{P \left[\left(\sum \nu_A \right)^{1/3} + \left(\sum \nu_B \right)^{1/3} \right]^2}$$

$$\sum \nu_A = \sum \nu_B = \left[A(4.8) + 10(3.7) \right] \\ = 96.2$$

SUBSTITUTING VALUES \nless SOLVING

$$D_{AB} = 9.9 \times 10^{-6} \text{ m}^2/\text{s}$$

24.10 CH₄ IN AIR, 373 K, 1.5 × 10⁵ Pa

HIRSHFELDER EQUATION - SEE PROB 24.8

$$\text{VALUES: } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{\frac{1}{2}} = 0.1311$$

$$S_{AB}^2 = 13.834 \quad \epsilon_{AB}/k = 115.07$$

$$TK/\epsilon_{AB} = 3.24 \quad \Omega_D = 0.930$$

SUBSTITUTING, \nless SOLVING:

$$D_{AB} = 2.19 \times 10^{-5} \text{ m}^2/\text{s} \quad (\text{a})$$

24.10 CONTINUE -

$$\text{WILKE EQUATION: } D_{A-\text{mix}} = \frac{1}{\frac{0.21}{D_{A-\text{O}_2}} + \frac{0.079}{D_{A-\text{N}_2}}} \\ A = \text{CH}_4$$

MUST USE HIRSHFELDER EQUATION FOR D_{A-L}
- SEE PROB 24.8 FOR EQUATION.

FOR D_{A-O₂}:

$$\text{VALUES: } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{\frac{1}{2}} = 0.206$$

$$S_{AB}^2 = 13.159 \quad \epsilon_{AB}/k = 124.19$$

$$TK/\epsilon_{AB} = 3.0 \quad \Omega_D = 0.949$$

$$\text{SUBSTITUTING} \quad D_{A-\text{O}_2} = 2.22 \times 10^{-5} \text{ m}^2/\text{s}$$

FOR D_{A-N₂}

$$\text{VALUES: } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{\frac{1}{2}} = 0.1313$$

$$S_{AB}^2 = 14.074 \quad \epsilon_{AB}/k = 111.76$$

$$TK/\epsilon_{AB} = 3.337 \quad \Omega_D = 0.923$$

$$\text{SUBSTITUTING: } D_{A-\text{N}_2} = 2.19 \times 10^{-5} \text{ m}^2/\text{s}$$

FOR MIXTURE: (WILKE EQUATION)

$$D_{A-\text{air}} = \frac{1 \times 10^{-5}}{0.21/2.22 + 0.079/2.19} \\ = \underline{2.19 \times 10^{-5} \text{ m}^2/\text{s}} \quad (\text{b})$$

24.13 H₂S IN NITROGEN 350 K, 1 atm

for A INTO B: USE H.E. (Prob. 24.8)

$$\text{VALUES: } \left(\frac{1}{M_A} + \frac{1}{M_B} \right)^{1/2} = 0.255$$

$$\sigma_{AB}^2 = 14.27 \quad \epsilon_{AB}/k = 162.2$$

$$kT/\epsilon_{AB} = 2.158 \quad -D_B = 1.048$$

SUBSTITUTION INTO SAWINOWSKI

$$D_{AB} = 2.07 \times 10^{-5} \text{ m}^2/\text{s}$$

for A INTO C: ~ SAME PROCEDURE

$$\text{VALUES: } \left(\frac{1}{M_A} + \frac{1}{M_C} \right)^{1/2} = 0.212$$

$$\sigma_{AC}^2 = 16.66 \quad \epsilon_{AC}/k = 269.1$$

$$kT/\epsilon_{AC} = 1.30 \quad -D_C = 1.273$$

$$D_{AC} = 1.20 \times 10^{-5} \text{ m}^2/\text{s}$$

MIXTURE: $y_A = 0.03 \quad y_B = 0.92 \quad y_C = 0.05$

$$y'_B = 0.948 \quad y'_C = 0.0515$$

$$1 \times 10^{-5}$$

$$D_{H_2S-Mix} = \frac{\frac{0.948}{2.07} + \frac{0.0515}{1.20}}{1 \times 10^{-5}} = 2.00 \times 10^{-5} \text{ m}^2/\text{s}$$

$$24.14 \quad D_{AB} = \frac{kT}{6\pi r \mu_B} \sim r = \frac{kT}{6\pi D_{AB} \mu_B}$$

$$\text{Given } D_{AB} = 5.94 \times 10^{-11} \text{ m}^2/\text{s}$$

$$T = 293 \text{ K} \quad \mu_B = 998 \times 10^{-6} \text{ Pa}\cdot\text{s}$$

$$\text{SUBSTITUTION: } r = 3.637 \text{ nm}$$

24.15 O₂ IN C₂H₅OH 293 K

for C₂H₅OH: $\mu_B = 1.14 \text{ cp} \quad M_B = 46 \quad \phi_B = 1.5$

$$V_{O_2} = 25.6$$

$$D_{AB} = \frac{T}{\mu_B} \frac{(7.4 \times 10^{-8})(\phi_B M_B)^{1/2}}{V_A^{0.16}} \quad (a)$$

$$\text{SUBSTITUTION VALUES: } D_{AB} = 2.06 \times 10^{-9} \text{ m}^2/\text{s}$$

C₂H₅OH IN H₂O, 288 K

$\mu_B = 1.14 \text{ cp} \quad M_B = 46 \quad \phi_B = 2.26$

$$V_{CH_3OH} = 14.8 + 4(3.7) + 7.4 = 37$$

SUBSTITUTION INTO Eq (24-52). SEE PART

$$D_{AB} = 1.336 \times 10^{-9} \text{ m}^2/\text{s} \quad (b)$$

H₂O IN CH₃OH 288 K

$\mu_B = 0.162 \text{ cp} \quad M_B = 32 \quad \phi_B = 1.9$

$$V_A = 18.9$$

SUBSTITUTION INTO EQUATION (24-52)

$$D_{AB} = 4.59 \times 10^{-9} \text{ m}^2/\text{s} \quad (c)$$

C₂H₅OH IN H₂O 288 K

$\mu_B = 1.14 \text{ cp} \quad M_B = 46 \quad \phi_B = 2.26$

SUBSTITUTION INTO EQUATION (24-52)

$$D_{AB} = 7.37 \times 10^{-10} \text{ m}^2/\text{s} \quad (d)$$

FROM TEXT - APPENDIX J

$$D_{AB} = 7.7 \times 10^{-10} \text{ m}^2/\text{s}$$

24.16 Cl₂ in H₂O 289 K

$$\mu_B = 1.13 \text{ cP} \quad M_B = 18 \quad \phi_B = 2.26 \\ V_A = 48 \text{ m}$$

SUBSTITUTION INTO FON (24-52)

$$D_{AB} = 1.17 \times 10^{-9} \text{ m}^2/\text{s}$$

USING FON (24-53)

$$D_{AB} = (13.26 \times 10^{-5}) \mu_B^{-1.14} V_A^{-0.589} \\ = 1.14 \times 10^{-9} \text{ m}^2/\text{s}$$

APPENDIX J: $D_{AB} = 1.26 \times 10^{-9} \text{ m}^2/\text{s}$

24.17 C₆H₆ in C₂H₅OH 288 K

$$\mu_B = 1.3 \text{ cP} \quad M_B = 46 \quad \phi_B = 1.5 \\ V_A = 96$$

SUBSTITUTION, NOW FON (24-52)

$$D_{AB} = 8.81 \times 10^{-10} \text{ m}^2/\text{s}$$

C₂H₅OH INTO C₆H₆

$$\mu_B = 0.75 \text{ cP} \quad M_B = 78 \quad \phi_B = 1.0 \\ V_A = 59.2$$

SUBSTITUTION INTO FON (24-52)

$$D_{AB} = 2.17 \times 10^{-9} \text{ m}^2/\text{s}$$

24.18 O₂ in H₂O(l) 288 K

$$FON (24-52) - \mu_B = 1.14 \text{ cP}$$

$$M_B = 18 \quad \phi_B = 2.26 \quad V_A = 256$$

SUBSTITUTION: $D_{AB} = 1.70 \times 10^{-9} \text{ m}^2/\text{s}$

FON (24-53)

$$D_{AB} = 1.69 \times 10^{-9} \text{ m}^2/\text{s}$$

24.19 P in Si(s)

$$@ 1316 \text{ K} \quad D_{AB} = 1 \times 10^{-17} \text{ m}^2/\text{s}$$

$$1408 \text{ K} \quad D_{AB} = 1 \times 10^{-16} \text{ m}^2/\text{s}$$

$$D_i = D_0 e^{-Q/RT}$$

$$\ln D_i = \ln D_0 - Q/RT$$

$$SUBSTITUTION: Q_{1/2} = 4.645 \times 10^4$$

$$D_0 = 213.31$$

$$@ 1373 \text{ K} \quad \ln D_i = -18.47$$

$$D_{AB} = 4.32 \times 10^{-17} \text{ m}^2/\text{s}$$

24.20 C in FCC Fe 1000 K

$$D_0 = 2.5 \times 10^{-6} \text{ m}^2/\text{s} \quad Q = 144.2 \text{ kJ/mol}$$

$$D_i = D_0 e^{-Q/RT} = 7.34 \times 10^{-10} \text{ m}^2/\text{s}$$

C in BCC Fe

$$D_0 = 2.0 \times 10^{-6} \text{ m}^2/\text{s} \quad Q = 84.1 \text{ kJ/mol}$$

$$D_i = D_0 e^{-Q/RT} = 8.09 \times 10^{-9} \text{ m}^2/\text{s}$$

24.21 EFFECTIVE DIFFUSION OF H₂ IN N₂ 373 K, 1 ATM

STREAMLINED FICK'S (D=100 Å) IN PARALLEL
 $d_p = 1 \times 10^{-8} \text{ m}$

$$\text{EQN (24-58)} \quad D_{KA} = 4850 d_p \sqrt{\frac{1}{M_A}}$$

$$= 4850 (10^{-8}) \sqrt{\frac{373}{2.015}} \text{ } ^{1/2}$$

$$= 6.6 \times 10^{-8} \text{ m}^2/\text{s}$$

AT 288 K $D_{AB} = 0.743 \times 10^{-6} \text{ m}^2/\text{s}$

AT 373 K $D_B = 1.095 \times 10^{-6} \text{ m}^2/\text{s}$

ASSUMING DILUTE N₂

$$\text{DEFECTIVE} = \frac{1 \times 10^{-6}}{\frac{1}{0.743} + \frac{1}{0.095}}$$

$$= 0.062 \times 10^{-6} \text{ m}^2/\text{s} \quad @$$

RANDOM POROSITY - VOID FRACTION = 0.4

$$D_{eff} = \epsilon^2 D_E = (0.4)^2 (0.062 \times 10^{-6})$$

$$= 9.92 \times 10^{-7} \text{ m}^2/\text{s} \quad @$$

RANDOM POROSITY 1000 Å ε = 0.4

$$\text{EQN (24-58)} \quad D_{KA} = 0.106 \times 10^{-6} \text{ m}^2/\text{s}$$

$$D_{AE} = 0.383 \times 10^{-6} \text{ m}^2/\text{s}$$

$$D_{AE}' = (0.4)^2 (0.383 \times 10^{-6})$$

$$= 0.0614 \times 10^{-6} \text{ m}^2/\text{s} \quad @$$

24.21 (CONTINUED) $d_p = 20,000 \text{ Å}$ PARALLEL

$$\text{EQN (24-58)} \quad D_{KA} = 1.3197 \times 10^{-5} \text{ m}^2/\text{s}$$

$$D_{AE} = \frac{1 \times 10^{-6}}{\frac{1}{0.095} + \frac{1}{1.3197}}$$

$$= 1.011 \times 10^{-6} \text{ m}^2/\text{s} \quad @$$

24.22 A = CH₄ ~ 20 mol %

B = H₂O ~ 80 *

USE H.E. - EQN. (24-33)

$$\text{VALUES } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{1/2} = 0.3436$$

$$\Omega_{AB}^2 = 10.468 \quad \epsilon_{AB}/\kappa = 220.4$$

$$kT/\epsilon_{AB} = 2.60 \quad \Omega_0 = 0.9878$$

SUBSTITUTING: $D_{AB} = 1.694 \times 10^{-6} \text{ m}^2/\text{s}$

$$D_{AE} = \frac{1}{\frac{1}{D_{AB}} + \frac{1}{D_K}}$$

$$D_K = 4850 (2 \times 10^{-7} \text{ m}) \sqrt{\frac{573}{16}}$$

$$= 0.580 \times 10^{-6} \text{ m}^2/\text{s}$$

SUBSTITUTING: $D_{AE} = 0.432 \times 10^{-6} \text{ m}^2/\text{s}$

KRUSSEN DIFFUSION IS ~ 75% OF TOTAL

24.23 H_2O INTO CO 353 K 2 ATM

$$A = \text{H}_2\text{O} \quad B = \text{CO}$$

$$D_{AB} @ 273 \text{ K}, 1 \text{ atm} = 0.1651 \times 10^{-4} \text{ m}^2/\text{s}$$

$$\left. \begin{array}{l} \text{At } 353 \text{ K} \\ \text{2 ATM} \end{array} \right\} D_{AB} = 0.1651 \left(\frac{353}{273} \right)^{\frac{3}{2}} \left(\frac{1}{2} \right) = 0.479 \times 10^{-4} \text{ m}^2/\text{s}$$

$$D'_{AE} = 0.036 \times 10^{-4} \text{ m}^2/\text{s}$$

$$= (0.3)^2 D_{AB}$$

$$D_{AE} = 0.4 \text{ m/s}$$

$$0.4 = \frac{1 \times 10^{-4}}{1/0.479 + 1/D_{AK}}$$

$$D_{AK} = 2.425 \times 10^{-4} \text{ m}^2/\text{s}$$

From Eqn (24-58)

$$2.425 \times 10^{-4} = 4850 d_p \left[\frac{353}{2.0158} \right]^{\frac{1}{2}}$$

$$d_p = 3.78 \times 10^{-7} \text{ m}$$

24.24 O₂ INTO HE ~ A INTO B

$$d_p = 5 \times 10^{-6} \text{ m} \quad P = 300 \text{ Pa}$$

$$T = 373 \text{ K} \quad M_A = 32 \quad M_B = 4$$

$$C = \frac{P}{RT} = \frac{300}{8.314(373)} = 0.0967 \text{ mol/m}^3$$

$$C_{CO_2} = 0.01(0.0967) = 9.67 \times 10^{-5} \text{ mol/m}^3$$

24.24 CONTINUED -

$$\text{In Pores} - D_{eff} = \frac{1}{\frac{1}{D_{AB}} + \frac{1}{D_{AK}}}$$

USE Eqn (24-33) TO FIND D_{AB}:

$$\text{VALUES: } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{\frac{1}{2}} = 0.530$$

$$\sigma_{AB}^2 = 9.027 \quad \epsilon_{AB}/k = 33.98$$

$$kT/\epsilon_{AB} = 10.98 \quad \Omega_0 = 0.8161$$

$$\text{SUBSTITUTING: } D_{AB} = 0.0325 \text{ m}^2/\text{s}$$

USE Eqn (24-58) TO FIND D_{AK}

$$D_{AK} = 8.28 \times 10^{-4} \text{ m}^2/\text{s}$$

$$D_{AE} = \frac{1 \times 10^{-4}}{1/325 + 1/8.28} = 8.08 \times 10^{-4} \text{ m}^2/\text{s}$$

24.25 Cu₆ IN H₂O (l)

$$d_p = 1.50 \times 10^{-7} \text{ m} \quad \mu_B = 0.95 \text{ cP}$$

$$\epsilon = 0.4 \quad \phi_B = 2.26 \quad M_B = 18$$

$$V_A = 96.38$$

SUBSTITUTING INTO Eqn (24-52)

$$D_{AB} = 0.955 \times 10^{-9} \text{ m}^2/\text{s}$$

USE Eqn (24-58) TO GET D_{AK}

$$D_{AK} = 0.142 \times 10^{-4} \text{ m}^2/\text{s}$$

$$D_{AE} = \frac{1 \times 10^{-9}}{1/14200 + 1/0.955} \approx 0.955 \times 10^{-9} \text{ m}^2/\text{s}$$

$$D_{AE}' = \epsilon^2 D_{AE} = 1.528 \times 10^{-10} \text{ m}^2/\text{s}$$

24.26 CO IN H₂

$$d_p = 1.5 \times 10^{-8} \text{ m} \quad \epsilon = 0.10$$

$$T = 673 \text{ K} \quad P = 5.0 \text{ atm}$$

$$\text{APPENDIX J: } D_{AB} = 0.651 \times 10^{-4} \text{ m}^2/\text{s} @ 1 \text{ atm}$$

$$\sim D_{AB} = 0.130 \times 10^{-4} \text{ m}^2/\text{s} @ 5 \text{ atm}$$

$$E_{AB}/k = 60.52$$

$$@ 273 \text{ K} - kT/E_{AB} = 4.51 \quad f_D = 0.8606$$

$$@ 673 \text{ K} - kT/E_{AB} = 11.12 \quad f_D = 0.7345$$

$$D_{AB} \Big|_{673} = 0.130 \times 10^{-4} \left(\frac{673}{273} \right)^{\frac{3}{2}} \left(\frac{0.8606}{0.7345} \right)$$

$$= 0.5891 \times 10^{-4} \text{ m}^2/\text{s}$$

OBTAIN D_{AK} FROM EQUATION (24-58)

$$D_{AK} = 4850 (1.5 \times 10^{-8}) \sqrt{\frac{673}{273}}$$

$$= 0.0357 \times 10^{-4} \text{ m}^2/\text{s}$$

$$D_{AE} = \frac{1 \times 10^{-4}}{1/0.5891 + 1/0.0357}$$

$$= 0.337 \times 10^{-4} \text{ m}^2/\text{s}$$

$$D'_{AE} = (0.1)^2 (0.337 \times 10^{-4})$$

$$= \underline{\underline{0.337 \times 10^{-4} \text{ m}^2/\text{s}}}$$

$$K.D. = \frac{0.0357}{0.5891 + 0.0357} \approx 5.7\%$$

24.27 Glucose (A) IN H₂O

$$T = 303 \text{ K} \quad d_p = 3 \times 10^{-9} \text{ m}$$

$$d_A = 0.86 \times 10^{-9} \text{ m}$$

$$\mu_B = 825 \text{ g/cm.s}$$

USE STO克斯-EINSTEIN EQUATION (24-50)

$$D_{AB} = \frac{kT}{6\pi\mu_B r_A} = \frac{(1.38 \times 10^{-16})(303)}{6\pi(825)(0.86 \times 10^{-9})}$$

$$= 6.25 \times 10^{-15} \text{ m}^2/\text{s}$$

USE EQUATION (24-62) TO OBTAIN D_{AE}

$$\phi = \frac{8.6 \times 10^{-10} \text{ m}}{30 \times 10^{-10} \text{ m}} = 0.2867$$

$$f_1 = (1-\phi)^2 = 0.508$$

$$f_2 = 1 - 2.104(0.2867) + 2.09(0.2867)^3$$

$$- 0.95(0.2867)^5 = 0.444$$

$$D_{AE} = D_{AB} f_1 f_2 = (6.25 \times 10^{-15})(0.508)(0.444)$$

$$= \underline{\underline{1.41 \times 10^{-15} \text{ m}^2/\text{s}}}$$

24.28 UREA (A) INTO SUPPORT (B)

$$D_{AB} = 3.46 \times 10^{-11} \text{ m}^2/\text{s}$$

$$d_{\text{molecule}} = 12.38 \text{ nm} \quad d_p = 100 \text{ nm}$$

$$\phi = \frac{12.38}{100} = 0.1238$$

$$f_1(\phi) = (1-0.1238)^2 = 0.7677$$

$$f_2(\phi) = 1 - 2.104(0.1238) + 2.09(0.1238)^3$$

$$- 0.95(0.1238)^5$$

$$= 0.743$$

24.28 (CONTINUED)

$$D_{AE} = (3.46 \times 10^{-7})(0.717)(0.743)$$
$$= \underline{1.97 \times 10^{-11} \text{ m}^2/\text{s}}$$

24.29 RIBONUCLEASE (A)
INTO SUPPORT (B)

$$D_{AB} = 5.0 \times 10^{-11} \text{ m}^2/\text{s}$$

$$D_{AE} = 1.19 \times 10^{-10} \text{ m}^2/\text{s}$$

$$d_m = 3.6 \text{ nm}$$

$$D_{AE} = D_{AB} f_1(\phi) f_2(\phi)$$

$$f_1(\phi) f_2(\phi) = \frac{5.0 \times 10^{-11}}{1.19 \times 10^{-10}}$$

$$= 0.4202$$

TRIAL $\frac{1}{2}$ ERROR ~

$$\phi \approx 0.183$$

$$f_1(\phi) = (1 - 0.183)^2 = 0.6675$$

$$f_2(\phi) = 1 - 2.104(0.183)$$
$$+ 2.09(0.183)^3 - 0.95(0.183)^5$$
$$= 0.6276$$

$$f_1 f_2 \approx 0.4190$$

GASE ENDPOINT ~

$$d_p = \frac{3.6 \text{ nm}}{0.183} = \underline{19.67 \text{ nm}}$$

CHAPTER 25

25.1 CONSERVATION OF MASS:

$$\iint_{CS} \rho (\vec{v} \cdot \vec{n}) dA + \frac{\partial}{\partial t} \iiint_{CV} \rho dV = 0$$

MASS FLOW:

$$N_A x \Delta y \Delta z |_{x+\Delta x} - N_A x \Delta y \Delta z |_x \\ + N_A y \Delta x \Delta z |_{y+\Delta y} - N_A y \Delta x \Delta z |_y \\ + N_A z \Delta x \Delta y |_{z+\Delta z} - N_A z \Delta x \Delta y |_z$$

ACCUMULATION: $\frac{\partial C_A}{\partial t} A x \Delta y \Delta z$

PRODUCTION: $R_A A x \Delta y \Delta z$

PROCEDURE:

1. RELATE ACCORDING TO BASIC E.O.N.
2. DIVIDE THROUGH BY $\Delta x \Delta y \Delta z$
3. CANCEL Δ TERMS WHERE APPLICABLE
4. TAKE LIMIT AS $\Delta x, \Delta y, \Delta z \rightarrow 0$

RESULT!

$$\nabla \cdot \vec{n}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

$$25.2 \quad \nabla \cdot \vec{n}_A + \frac{\partial S_A}{\partial t} - r_A = 0$$

FOR $S_A \notin D_{AB}$ CONSTANT

$$\vec{n}_A = -D_{AB} \nabla S_A + S_A \vec{v}$$

$$\nabla \cdot \vec{n}_A = -D_{AB} \nabla^2 S_A + \nabla \cdot S_A \vec{v}$$

SUBSTITUTION YIELDS:

$$\frac{\partial S_A}{\partial t} - D_{AB} \nabla^2 S_A + \nabla \cdot S_A \vec{v} = r_A$$

25.3

$$\nabla \cdot \vec{n}_H + \frac{\partial C_H}{\partial t} = P_H$$

ONE-DIRECTIONAL, STEADY STATE, NO HOMOGENEOUS REACTION -

$$\frac{\partial}{\partial z} N_{AZ} = 0 \quad (a)$$

$$N_{AZ} = -CD_{HL} \frac{dy_H}{dz} + y_H (N_{HZ} + N_{LZ})$$

$$\text{AS } N_{LZ} = -2N_{HZ}$$

$$N_{HZ} = -CD_{HL} \frac{dy_H}{dz} + y_H (N_{HZ} - 2N_{AZ})$$

$$N_{HZ} (1 + y_H) = -CD_{HL} \frac{dy_H}{dz}$$

$$N_{HZ} = -\frac{CD_{HL}}{1 + y_H} \frac{dy_H}{dz}$$

1. T, P CONSTANT; C = CONSTANT
2. STEADY STATE
3. NO HOMOGENEOUS REACTION, $R_f = 0$
4. ONE DIRECTIONAL DIFFUSION
5. CONCENTRATION CONSTANT @ $r=R$
6. $N_{AIR} = 0$

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

$$\frac{1}{r^2} \frac{d}{dr} (r^2 N_{Ar}) = 0 \quad r^2 N_{Ar} = \text{CONST.}$$

$$N_{Ar} = -CD_{AB} \frac{dy_A}{dr} + y_A (N_{Ar} + N_{Br})$$

$$\underline{N_{Ar} = -\frac{CD_{AB}}{1-y_A} \frac{dy_A}{dr}}$$

25.5 $O_2 \sim A$ $H_2O \sim B$

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

for z-DIRECTION:

$$\frac{d}{dz} N_{Az} = 0 \quad N_{Az} = \text{CONST}$$

$$N_{Az} = -CD_{AB} \frac{dy_A}{dz} + y_A (N_{Az} + N_{Bz})$$

SINCE DIWUTE: $y_A \approx 0, C \approx \text{CONST}$

$$\frac{\partial C_A}{\partial t} = D_{AB} \frac{\partial^2 C_A}{\partial z^2}$$

for $R_A = -k C_A$

$$\underline{\frac{\partial C_A}{\partial t} - D_{AB} \frac{\partial^2 C_A}{\partial z^2} + k C_A = 0}$$

25.6

(a)

1. DIFFUSION IN r-DIRECTION ONLY
2. NO HOMOGENEOUS REACTION, $R_A = 0$
3. $C_A @ r=R+10$ IS KNOWN & CONSTANT
4. $C_A @ r=R$ IS CONSTANT, $y_A = P_A/P$
5. MOLECULAR DIFFUSION ONLY
6. STEADY STATE

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} = R_A$$

$$\underline{\sim \frac{1}{r} \frac{d}{dr} (r N_{Ar}) = 0} \quad (b)$$

$$\frac{d}{dr} (r N_{Ar}) = 0$$

$$\sim \underline{r N_{Ar} = \text{CONSTANT}} \quad (c)$$

$$N_{Ar} = -CD_{AB} \frac{dy_A}{dr} + y_A (N_{Ar} + N_{Br})$$

$$= -CD_{AB} \frac{dy_A}{dr} + y_A N_{Ar}$$

$$\underline{N_{Ar} = -\frac{CD_{AB}}{1-y_A} \frac{dy_A}{dr}}$$

for DILUTE CONCENTRATION: $y_A \approx 0$

$$\underline{N_{Ar} = -CD_{AB} \frac{dy_A}{dr}}$$

$$25.7 \quad \nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

ASSUMPTIONS / CONDITIONS:

1. STEADY STATE
2. NO HOMOGENEOUS REACTION
3. DIFFUSION IN x & y DIRECTIONS
4. $U_y = 0$
5. CONSTANT C, DAB
6. $U_x = U_y$

25.7 CONTINUED

$$\frac{\partial N_A}{\partial y} + \frac{\partial N_B}{\partial y} = 0$$

$$N_A = -D_{AB} \frac{\partial C_A}{\partial y} + \alpha y C_A$$

$$N_B = -D_{AB} \frac{\partial C_A}{\partial y}$$

SUBSTITUTION:

$$-D_{AB} \frac{\partial^2 C_A}{\partial y^2} + \alpha y \frac{\partial C_A}{\partial y} - D_{AB} \frac{\partial^2 C_A}{\partial y^2} = 0$$

$$D_{AB} \left[\frac{\partial C_A}{\partial y} + \frac{\partial^2 C_A}{\partial y^2} \right] = \alpha y \frac{\partial C_A}{\partial y}$$

B.C. $C_A(0, y) = 0$

$C_A(x, 0) = C_{A0}$

$C_A(x, R) = 0$

25.8

1. DIFFUSION IN $r \frac{1}{2} z$ DIRECTIONS

2. STEADY STATE

3. NO HOMOGENEOUS REACTION

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - \dot{m} = 0$$

$$\frac{1}{r} \frac{\partial}{\partial r} (r N_A) + \frac{\partial}{\partial z} N_B = 0$$

IN BOTH DIRECTIONS:

$$N_A = -N_B r \quad N_A = -N_B z$$

~ FICKIAN COUNTERDIFFUSION

25.8 CONTINUED

$$\therefore N_A = -C D_{AB} \frac{\partial y_A}{\partial r} = -D_{AB} \frac{\partial C_A}{\partial r}$$

$$N_B = -C D_{AB} \frac{\partial y_A}{\partial r} = -D_{AB} \frac{\partial C_A}{\partial r}$$

INTO MASS CONSERVATION EQU:

$$\frac{1}{r} \frac{\partial}{\partial r} \left(-D_{AB} r \frac{\partial C_A}{\partial r} \right) + \frac{\partial}{\partial z} \left(-D_{AB} \frac{\partial C_A}{\partial z} \right) = 0$$

$$\underline{\underline{\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_A}{\partial r} \right) + \frac{\partial^2 C_A}{\partial z^2} = 0}}$$

B.C. $\frac{\partial C_A}{\partial r}(0, z) = 0$

$C_A(0, 0.005 \text{ cm}, z) = 0$

$C_A(R, 2.0 \text{ cm}) = 0.6 \text{ C}$

25.9 $\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - \dot{m} = 0 \quad \{A, S, O_2\}$

STEADY STATE, $R_A = -m$

$$\nabla^2 N_A + m = 0$$

DIFFUSION IN r -DIRECTION ONLY

$$\frac{1}{r} \frac{\partial}{\partial r} (r N_A) + m = 0$$

EQUIMOLAR COUNTERDIFFUSION

$$N_A = -C D_{AB} \frac{\partial y_A}{\partial r} + y_A (N_A + N_B)$$

$$\therefore N_A = -C D_{AB} \frac{\partial y_A}{\partial r} = -D_{AB} \frac{dc_A}{dr}$$

$$\text{OR} - \underline{\underline{N_A = -\frac{D_{AB}}{RT} \frac{dp_A}{dr}}}$$

25.10 $\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$
 STEADY STATE $\{ A \text{ IS } O_2 \}$
 NO HOMOGENEOUS REACTION
 ONE-D (SPHERICAL) DIFFUSION

$$\underline{\underline{\frac{d}{dr}(r^2 N_{Ar}) = 0}}$$

$$2N_{Ar} = N_{Br}$$

$$y_A(N_{Ar} + N_{Br}) = -y_A N_{Ar}$$

$$N_{Ar} = -CD_{AB} \frac{dy_A}{dr} - y_A N_{Ar}$$

$$= -\frac{CD_{AB}}{1+y_A} \frac{dy_A}{dr}$$

$$y_A(N_{Ar} + N_{Br}) = 0$$

$$N_{Ar} = -CD_{AB} \frac{dy_A}{dr}$$

B.C. $y_A(R) = 0$

$$y_A(0) = 0, 21$$

25.11

ASSUMPTIONS:

1. Temp = CONST, $D_{AB} \propto P_g$ (CONSTANT)
2. No Homogeneous Reaction

25.11 (CONTINUED)

3. Silicon Treats As Semi-Infinite
4. $C_A(z, 0) = 0$
5. Molecular Diffusion In Solid
6. One Directional (z) Diffusion

GENERAL MASS CONSERVATION EQUATION IS

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} = 0$$

$$\therefore N_A = -D_{AB} \frac{\partial C_A}{\partial z}$$

Lombardini: $\frac{\partial C_A}{\partial t} = D_{AB} \frac{\partial^2 C_A}{\partial z^2}$

B.C. $C_A(z, 0) = 0$

$$C_A(0, t) = C_{AS}$$

$$C_A(\infty, t) = 0$$

25.12 $A \text{ IS } O_2$

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

ST, ST \downarrow NO R_A

$$\frac{\partial N_{Ar}}{\partial x} + \frac{\partial N_{A2}}{\partial z} = 0$$

$$N_{Ar} = -D_{AB} \frac{\partial C_A}{\partial x} + y_A(N_{Ar} + N_{A2})$$

\downarrow O - DILUTE CONCENTR.

$$N_{Ar} = -D_{AB} \frac{\partial C_A}{\partial x}$$

$$N_{A2} = -D_{AB} \frac{\partial C_A}{\partial z} + C_A v_m$$

BULK FLOW & MOLECULAR FLOW
IN 2-DIRECTION

25.12 CONTINUED -

SUBSTITUTING INTO MASS BNC EQU.

$$\frac{\partial}{\partial z} \left(-D_{AB} \frac{\partial C_A}{\partial y} \right) \frac{\partial}{\partial z} (C_A V_m) = 0$$

$$-D_{AB} \frac{\partial^2 C_A}{\partial y^2} + V_m \frac{\partial C_A}{\partial z} = 0$$

B.C. $C_A(x, 0) = 0$,

$C_A(0, z) = C_A^*$

$\frac{\partial C_A}{\partial x}(0, z) = 0$

25.13 $\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$

ONE-DIMENSIONAL (r) DIFFUSION
IN SPHERICAL GEOMETRY

NO HOMOGENEOUS REACTION

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 N_{Ar} \right) + \frac{\partial C_A}{\partial t} = 0$$

FICK'S LAW:

$$N_{Ar} = -D_{AB} \frac{\partial C_A}{\partial r} + C_A \delta r$$

Combining:

$$- \frac{D_{AB}}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_A}{\partial r} \right) + \frac{\partial C_A}{\partial t} = 0$$

B.C. $C_A(R, t) = 0$

$C_A(r, 0) = C_{A0}$

$\frac{\partial C_A}{\partial r}(0, t) = 0$

25.14 SPHERICAL GEOMETRY -

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

No Homog. Rx

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 N_{Ar} \right) + \frac{\partial C_A}{\partial t} = 0$$

FICK'S LAW:

$$N_{Ar} = -D_{A, \text{eff}} \frac{\partial C_A}{\partial r} + f. \text{ CONTRIB.}$$

O - NO BULK

↳ COMBINING:

$$- \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_{A, \text{eff}} \frac{\partial C_A}{\partial r} \right) + \frac{\partial C_A}{\partial t} = 0$$

$$\frac{\partial C_A}{\partial t} = D_{A, \text{eff}} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_A}{\partial r} \right)$$

$C_A(r \leq R, 0) = C_{A0}$

$C_A(R, t) = C_A^*$

$\frac{\partial C_A}{\partial r}(0, t) = 0$

25.15 INTO AIR: (A - Herbicide)

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

O-S.T.S. No Homog. Rx

ONE-DIMENSIONAL (z) DIFFUSION

$$\frac{d N_A}{d z} = 0$$

FICK'S LAW

$$N_{Az} = -CD_{Ab} \frac{dy_A}{dz} + y_A (N_{A, \text{NET}})$$

$$N_{Az} = -\frac{CD_{Ab}}{1-y_A} \frac{dy_A}{dz} \quad (a)$$

25.15 (CONTINUED)

INTO SOIL -

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

NO Rx
NO EQUIL. CONC.

$$N_A = -D_{AB} \frac{\partial C_A}{\partial z} + -f$$

$$\frac{\partial N_A}{\partial z} + \frac{\partial C_A}{\partial t} = 0$$

COMBINE:

$$\frac{\partial C_A}{\partial t} = D_{AB} \frac{\partial^2 C_A}{\partial z^2}$$

25.16

$$R_p = -k C_A$$

$$\nabla \cdot \vec{N}_A + \frac{\partial C_A}{\partial t} - R_A = 0$$

Spherical Geometry - Solid State

$$\frac{1}{r^2} \frac{d}{dr} (r^2 N_A r) + k C_A = 0$$

$$N_A r = -D_{p-mix} \frac{d C_A}{d r} + \text{DILUTE}$$

COMBINE:

$$-\frac{D_{p-mix}}{r^2} \frac{d}{dr} \left(r^2 \frac{d C_A}{d r} \right) + k C_A = 0$$

CHAPTER 26

26.1 ARNOLD CELL

$$d = 1 \text{ cm}$$

$$T = 308 \text{ K}$$

$$P_A^0 = 0.195 \text{ atm}$$

$$\rho_L = 0.85 \text{ g/cm}^3$$

$$M_A = 78$$

$$y_{A1} = 0.195$$

$$y_{A2} = 0$$

EQUATION (26-19) APPLIES

$$D_{AB} = \frac{P_{AL} Y_{BL,m.} / M_A}{C(y_{A1} - y_{A2}) t} \left(\frac{\frac{r_0}{2} - \frac{r_i}{2}}{2} \right)^2$$

$$Y_{BL,m.} = \frac{1.0 - 0.805}{\ln \frac{1.0}{0.805}} = 0.899$$

$$C = \frac{P}{RT} = \frac{1}{(82.06)(308)} = 3.956 \times 10^{-5} \text{ mol/cm}^2$$

$$t = 72 \text{ h} = 2592 \times 10^5 \text{ s}$$

SUBSTITUTING -

$$\underline{D_{AB} = 9.6 \times 10^{-6} \text{ m}^2/\text{s}}$$

From APPENDIX J.1.

$$\text{At } 298 \text{ K: } D_{AB} = 9.62 \times 10^{-6} \text{ m}^2/\text{s}$$

$$\text{At } 308 \text{ K: } D_{AB} = \left(9.62 \times 10^{-5} \right) \left(\frac{308}{298} \right)^{3/2} \\ = 1.01 \times 10^{-5} \text{ m}^2/\text{s}$$

- IN EXPERIMENT - EDDIES AT TOP OF CELL WOULD ALTER DIFFUSION MECHANISM

26.2 CYLINDRICAL GEOMETRY:
STOIC STATE, NO HOMOGENEOUS REACTION -

$$\frac{1}{r} \frac{d}{dr} (r N_{Ar}) = 0$$

$$N_{Ar} = - C D_{AB} \frac{dy_A}{dr} + y_A \frac{dP}{dr} \quad \text{0-DILUTE}$$

$$= - \frac{D_{AB} dy_A}{RT dr}$$

$$r N_{Ar} \int_{r_i}^{r_o} \frac{dr}{r} = - \frac{D_{AB}}{RT} \int_{P_{Ai}}^{P_{Al}} \frac{dP}{P}$$

$$r N_{Ar} \ln \frac{r_o}{r_i} = \frac{D_{AB}}{RT} (P_{Al} - P_{Ai})$$

$$\text{TABLE J.3. AT } 293 \text{ K } D_{AB} = 4.49 \times 10^{-15} \text{ m}^2/\text{s}$$

SUBSTITUTING VALUES IN SOLVING:

$$\underline{N_{Ar} = 3.92 \times 10^{-11} \text{ mol/m}^2 \cdot \text{s}}$$

TO GET CONCENTRATION PROFILE:

$$\frac{d}{dr} (r N_{Ar}) = \frac{d}{dr} \left(-r D_{AB} \frac{dc_A}{dr} \right) = 0$$

$$\frac{d}{dr} (r \frac{dc_A}{dr}) = 0$$

$$\text{SOLVING: } r \frac{dc_A}{dr} = C_1$$

$$c_A = C_1 \ln r + C_2$$

$$\text{AT } r_i = 5 \text{ mm}$$

$$c_{Al} = \frac{P_{Al}}{RT} = \frac{1.5 \times 10^5}{8.314(293)} = 61.58 \text{ mol/m}^3$$

$$\text{AT } r_o = 8 \text{ mm}$$

$$c_{Ao} = \frac{1.0 \times 10^5}{(8.314)(293)} = 41.05 \text{ mol/m}^3$$

26.2 CONTINUED -

UNITS: $C_A, \text{mol/m}^3$ r, mm

$$@r_1 \quad 61.58 = C_1 \ln 5 + C_2$$

$$@r_0 \quad 41.05 = C_1 \ln 8 + C_2$$

}

$$C_1 = -43.64 \quad C_2 = 131.8$$

$$\underline{C_A = -43.64 \ln r + 131.8}$$

26.3

ONE DIRECTIONAL

STEADY STATE

B INSOLUBLE IN A $\xrightarrow{\delta}$ SOLVENT

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz} + y_A(N_{A2} + N_{B2})$$

$$= \frac{CD_{AB}}{z_2 - z_1} \ln \left(\frac{1-y_A^2}{1-y_A} \right) \quad \text{(Eq. 24-5)}$$

$$y_A(3.0) = 1.0 \quad y_A(0.5) = \frac{163}{760} = 0.214$$

$$C = \frac{P}{RT} = \frac{1.0}{(82.06)(303)} = 4.02 \times 10^{-5} \frac{\text{mol}}{\text{cm}^3}$$

$$\text{APP. J: } @ 298 \text{ K} \quad D_{AB} = 1.62 \times 10^{-4} \text{ m}^2/\text{s}$$

$$\text{AT } 303 \text{ K} \quad D_{AB} = (1.62 \times 10^{-4}) \left(\frac{303}{298} \right)^{3/2}$$

$$= 1.66 \times 10^{-4} \text{ m}^2/\text{s}$$

SUBSTITUTING VALUES $\xrightarrow{\delta}$ SOLVING!

$$N_{A2} = 6.42 \times 10^{-5} \frac{\text{mol}}{\text{m}^2 \cdot \text{s}}$$

$$W_A = (6.42 \times 10^{-5})(32)(3600)(24) \text{ A}$$

$$A = \pi / 4 (1)^2 = 0.785 \text{ m}^2$$

$$\underline{W = 139 \frac{\text{g}}{\text{day}}} \quad (\alpha)$$

26.3 CONTINUED

IF TEMPERATURE IS 313 K:

$$D_{AB} = (1.62 \times 10^{-4}) \left(\frac{313}{298} \right)^{3/2} = 1.74 \times 10^{-4} \text{ m}^2/\text{s}$$

$$y_A = \frac{265}{760} = 0.349$$

ALL OTHER VALUES REMAIN THE SAME -
SOLVING:

$$\underline{W_A = 260.6 \frac{\text{g}}{\text{day}}}$$

26.4 CATION (A) THROUGH SOLVENT H_2O (B)

ONE DIMENSIONAL, STEADY DIFFUSION

DILUTE CONCENTRATION: $y_A \approx \text{small}$

$$N_{A2} = -D_{AB} \frac{dy_A}{dz} = \frac{D_{AB}}{\delta} (C_{A1} - C_{A2})$$

TO FIND RATE D_{AB} - USE EQU. (24-53)

$$\left\{ V_A = 2(14.8) + 6(37) + 7.4 = 59.2 \frac{\text{cm}^3}{\text{mol}} \right.$$

$$\left\{ \mu_B = 1.45 \text{ CP} \right.$$

$$D_{AB} = (13.26 \times 10^{-9}) (1.45) \left(\frac{-1.14}{59.2} \right) \left(\frac{-0.589}{7.82 \times 10^{-10}} \right)$$

$$= 7.82 \times 10^{-10} \text{ m}^2/\text{s}$$

$$C_{A1} = 0.1 \frac{\text{mol}}{\text{m}^3} \quad C_{A2} = 0.02 \frac{\text{mol}}{\text{m}^3}$$

SUBSTITUTING $\xrightarrow{\delta}$ SOLVING!

$$\underline{N_{A2} = 1.56 \times 10^{-12} \frac{\text{mol}}{\text{m}^2 \cdot \text{s}}}$$

TO DETERMINE $C_A(z)$:

$$\nabla \cdot \vec{N}_A = 0 \sim \frac{dN_A}{dz} = 0$$

$$\text{GIVEN } \frac{d^2 N_A}{dz^2} = 0$$

26.4 CONTINUED

$$C_A = C_2 + C_1$$

BC. $C_p(0) = 0.1 \text{ mol/m}^3$

$$C_A(0,004) = 0.02 \text{ "}$$

$$C_2 = 0.1 \quad C_1 = \frac{(0.02 - 0.1)}{0.004} = -20$$

$$\underline{C_A = 0.1 - 20z} \quad \left\{ \begin{array}{l} C_A, \text{mol/m}^3 \\ z, \text{m} \end{array} \right.$$

FOR $\text{C}_2 + \text{SO}_2(\text{A}) \text{ IN AIR (B) } 283\text{K}$

$$C = \frac{P}{RT} = \frac{1.013 \times 10^5}{8,314(283)} = 43.05 \text{ mol/m}^3$$

$$y_{\text{A}2} = C_{\text{A}2}/C = \frac{0.1}{43.05} = 2.32 \times 10^{-3}$$

$$y_{\text{A}2} = \frac{0.02}{43.05} = 4.64 \times 10^{-4}$$

$$D_{\text{AB}} = (1.32 \times 10^{-5}) \left(\frac{283}{298} \right)^{3/2} \\ = 1.22 \times 10^{-5} \text{ m}^2/\text{s}$$

SAME EQUATION FOR $N_{\text{A}2}$ AS IN PART (a)

$$N_{\text{A}2} = \frac{(1.22 \times 10^{-5})(0.1 - 0.02)}{4 \times 10^{-3}}$$

$$= 2.44 \times 10^{-4} \text{ mol/m}^2\text{s}$$

26.5

$$\begin{aligned} P &= 2 \text{ ATM} \\ T &= 373 \text{ K} \\ M_A &= 58 \end{aligned}$$

STEADY STATE, 1D DIFFUSION

26.5 CONTINUED

$$\frac{\partial N_{\text{A}2}}{\partial r} = 0 \quad N_{\text{A}2} = -N_{\text{B}2} = \frac{C}{S} \frac{D_{\text{AB}}}{r} (y_{\text{A}1} - y_{\text{A}2})$$

$$y_{\text{A}1}(0) = 0.4$$

$$y_{\text{A}2}(0.02 \text{ m}) = 0$$

$$C = \frac{P}{RT} = \frac{2}{(82.06)(373)} = 6.53 \times 10^{-5} \text{ mol/cm}^3$$

$$D_{\text{AB}} = 0.1 \left(\frac{373}{298} \right)^{3/2} \left(\frac{1}{2} \right) = 0.07 \text{ cm}^2/\text{s}$$

SUBSTITUTING INTO $N_{\text{A}2}$ EXPRESSION

$$N_{\text{B}2} = -N_{\text{A}2} = 1.829 \times 10^{-6} \text{ g-mol/cm}^2\text{s}$$

$$N_{\text{A}2} = N_{\text{B}2} \cdot S$$

$$0.01 \text{ mol/min} = (1.829 \times 10^{-6})(60) S$$

$$S = \text{SURFACE AREA} = 91.12 \text{ cm}^2$$

$$\text{PER CHANNEL} - S' = \pi/4 (0.1)^2 = 0.00785$$

$$\text{NO. CHANNELS} = \frac{91.12}{0.00785} = 11608$$

$$26.6 \quad D_{\text{AB}} = 1.5 \times 10^{-9} \text{ m}^2/\text{s}$$

$$C_{\text{AS}} = C_A(R_1) = 0.01 \text{ mol/cm}^3$$

$$C_{\text{AO}} = C_A(R_0)$$

STEADY STATE, NO HOMOGENEITY --

$$\nabla \cdot \vec{N}_{\text{A}2} = 0 \quad N_{\text{A}2} = -D_{\text{AB}} \frac{dC_A}{dr}$$

$$\frac{d}{dr} (r^2 N_{\text{A}2}) = 0 \quad \text{or } r^2 N_{\text{A}2} \text{ IS CONST.}$$

$$\frac{d}{dr} (r^2 \frac{dC_A}{dr}) = 0$$

26.6 (CONTINUED) -

$$r^2 \frac{dc_A}{dr} = g \quad \frac{dc_A}{dr} = r^2 c_1$$

$$c_A = -\frac{c_1}{r} + c_2$$

USING B.C.

$$c_{A1} = 0.01 = -\frac{c_1}{0.2} + c_2$$

$$c_{A0} = -\frac{c_1}{0.35} + c_2$$

$$\text{SUBTRACTING} - c_1 = \frac{c_{A0} - 0.01}{0.466}$$

$$W = 4\pi r^2 N_{A2} = 4\pi (-D_{AB}) c_1$$

$$= -4\pi D_{AB} (c_{A0} - 0.01)$$

$$= -\frac{4\pi (1.5 \times 10^{-5})}{0.466} (c_{A0} - 0.01)$$

$$= -4.045 \times 10^{-4} (c_{A0} - 0.01) \text{ mol/s}$$

W_A IS MAX FOR $c_{A0} = 0$

$$= 4.045 \times 10^{-4} \text{ mol/s}$$

$$= \underline{\underline{1.456 \text{ mol/H}}}$$

26.7 SPHERICAL GEOMETRY

STEADY STATE, NO HOMOFLUX

A INTO STAGNANT B

$$\nabla \cdot \vec{N}_A = 0$$

$$\frac{d}{dr}(r^2 N_{Ar}) = 0$$

$$N_{Ar} = -C D_{AB} \frac{dy_A}{dr} + y_A (N_{Ar} + N_{Br})$$

26.7 - CONTINUED -

$$\nabla \cdot \vec{N}_A = 0 \Rightarrow \frac{d}{dr}(r^2 N_{Ar}) = 0$$

$$N_{Ar} = -C D_{AB} \frac{dy_A}{dr} + y_A (N_{Ar} + N_{Br})$$

$$N_{Ar} = -\frac{C D_{AB}}{1-y_A} \frac{dy_A}{dr}$$

$$N_{Ar} (4\pi r^2) \int_r^R \frac{dr}{r^2} = -4\pi C D_{AB} \int_{y_A}^{y_A=0} \frac{dy_A}{1-y_A}$$

$$W_A \left(-\frac{1}{r} \Big|_R^{\infty} \right) = -4\pi C D_{AB} \left(\ln \frac{1}{1-y_A} \Big|_{y_A=0}^{\infty} \right)$$

$$W_A = 4\pi C D_{AB} R \ln \left(\frac{1}{1-y_{A0}} \right)$$

MASS BALANCE FOR A:

$$4\pi C D_{AB} R \ln \frac{1}{1-y_{A0}} = \frac{S}{M_A} \frac{dN}{dt}$$

$$4\pi C D_{AB} R \ln \frac{1}{1-y_{A0}} = \frac{4\pi S}{M_A} R^2 \frac{dr}{dt}$$

SEPARATING VARIABLES $\xrightarrow{\text{INTTEGRATION}}$

$$C D_{AB} \ln \left(\frac{1}{1-y_{A0}} \right) = \frac{S}{M_A} \left(\frac{R_1^2 - R_2^2}{2} \right)$$

VALUES: $D_{AB} = 8.19 \times 10^{-6} \text{ m}^2/\text{s}$

$$C = \frac{P}{RT} = \frac{1.013 \times 10^5}{8.314(347)} = 35.11 \text{ g/mol/m}^3$$

$$P_S = \frac{1.145}{128} \times (100)^3 = 8945 \text{ g/mol/m}^3$$

SOLVING FOR t:

$$t = \frac{(8945) \left(\frac{10^{-4} - 0.0625 \times 10^{-4}}{2} \right)}{(35.11)(8.19 \times 10^{-6}) \ln \left(\frac{1}{0.993} \right)}$$

$$= \underline{\underline{2.076 \times 10^5 \text{ s}}} = \underline{\underline{57 \text{ H}}}$$

26.7

PSEUDO STEADY STATE -

NO FLUX OF H_2

ONE (1) DIRECTIONAL DIFFUSION

$$\nabla \cdot \vec{N}_A = 0 \quad \frac{dN_{A2}}{dz} = 0$$

$$N_{B2} = -CD_{AB} \frac{dy_A}{dz} + y_A(N_{A2} + N_{B2} + N_{C2})$$

$$\left\{ \begin{array}{l} \text{H}_2: \quad N_{B2} = 3y_A N_{A2} \\ \text{CH}_4: \quad N_{C2} = -3N_{A2} \end{array} \right.$$

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz} + y_A N_{A2} (1 + \frac{3}{2} - 3)$$

$$= - \frac{CD_{AB} dy_A}{(1 + y_A/2) dz}$$

$$N_{A2} \int_8^0 dz = -CD_{AB} \int_{y_0}^0 \frac{dy_A}{1 + y_A/2} \quad (a)$$

FOR DILOUTED A $\sim y_A$ SMALL

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz}$$

$$N_{A2} \int_8^0 dz = -CD_{AB} \int_{0.0002}^0 dy_A$$

$$C = \frac{P}{RT} = \frac{0.20}{82.06(73)} = 2.5 \times 10^{-6} \text{ g mol/cm}^3$$

$$D_{AB} \Big|_{T_2, P_2} = 2.0 \text{ cm}^2/\text{s} \left(\frac{1}{0.2} \right)^{3/2} \quad (c)$$

IN TERMS OF δ:

$$\underline{\underline{N_{A2} = \frac{CD_{AB}}{\delta} (0.0002)}} \quad (b)$$

$$P = 303.9 \text{ Pa} \quad T = 873 \text{ K}$$

$$y_A = y_{AS} = 0 \text{ @ } z=0$$

$$y_A = 0.2 \text{ @ } z = \delta = 6 \text{ cm}$$

$$M_A = 78$$

FOR D_{AB} - FICK'S FELDER EQUATION

$$\text{VALUES: } \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{1/2} = 0.716$$

$$\sigma_{AB}^2 = 12A18 \quad E_{AB}/k = 6913$$

$$E_{AB}/k_T = 7.92 \quad \Omega_0 = 0.8556$$

~ SUBSTITUTING $\underline{\underline{D_{AB} = 0.0221 \text{ m}^2/\text{s}}} \quad (a)$ PHYSICAL SITUATION IS EQUIVALENT TO
CASE EXAMINED IN EXAMPLE 2, CH 25

$$N_{A2} = \frac{CD_{AB}}{\delta} \ln \left(\frac{1+y_{A0}}{1+y_{AS}} \right)$$

$$C = \frac{P}{RT} = \frac{3 \times 10^{-3}}{82.06(873)} = 4188 \times 10^{-8} \text{ mol/cm}^3$$

$$N_{A2} = \frac{(4.188 \times 10^{-8})(2.21 \text{ cm}^2/\text{s}) \ln(1.2)}{6 \text{ cm}}$$

$$= 2.814 \times 10^{-7} \text{ mol/cm}^2 \cdot \text{s}$$

$$W_A = N_{A2} A = N_{A2} (\pi/4) \delta^2$$

$$= (2.814 \times 10^{-7}) (\pi/4) (15)^2 (60)(78)$$

$$= 0.2327 \text{ g/m}$$

26.10 HEMISPHERICAL DROPLET ON A PLANE SURFACE

STEADY STATE, NO HOMOGENEOUS RXN

$$\nabla^2 \vec{N}_A = - \frac{1}{r^2} \frac{d}{dr} (r^2 N_{Ar}) = 0$$

$r^2 N_{Ar} \sim \text{CONSTANT}$

$$N_{Ar} = -C D_{AB} \frac{dy_A}{dr} + y_A (N_{Ar} + N_{Bz})$$

$$N_{Ar} = -\frac{C D_{AB}}{1-y_A} \frac{dy_A}{dr}$$

$$\frac{2\pi r^2}{W_A} \int_0^r \frac{N_{Ar}}{r^2} dr = 2\pi C D_{AB} \int_0^r \frac{dy_A}{1-y_A}$$

$$@t=0 \quad r = 0.005 \text{ m}$$

$$y_{A1} = \frac{31.824}{760} = 0.0419$$

$$W_A \left[-\frac{1}{r} \right]_R^r = 2\pi C D_{AB} R \ln \left(\frac{1}{0.958} \right)$$

$$W_A = 2\pi C D_{AB} R \ln (1.043) \quad (1)$$

FOR DROPLET ~ PSEUDO S.S.

$$W_A = -\frac{\delta_A}{M_A} \frac{dN}{dt}$$

$$= -\frac{1}{18} \left(2\pi R^2 \frac{dR}{dt} \right) \quad (2)$$

EQUATING (1) & (2) & INTEGRATING:

$$C D_{AB} R \ln (1.043) t = 0.0556 \left(\frac{R_i^2 - R_f^2}{2} \right)$$

$$C = \frac{P}{RT} = \frac{1.03 \times 10^5}{8.314(303)} = 4.021 \times 10^{-7} \text{ g mol/cm}^3$$

26.10 CONTINUED -

$$D_{AB} = 0.260 \left(\frac{303}{298} \right)^{3/2} = 0.2166 \text{ cm}^2/\text{s}$$

$$R_i = 0.5 \text{ cm} \quad P_0 = 0$$

SUBSTITUTE & SOLVE -

$$t = 1.517 \times 10^8 \text{ s} = 421.4 \text{ h}$$

26.11

$$1 \text{ ATM}, 400 \text{ K}$$

$$D_{AB} = 1.7 \text{ cm}^2/\text{s}$$

$$\rho_{FeO} = 2.5 \text{ g/cm}^3$$

$$M_{FeO} = 71.85$$

STEADY STATE
NO HOMOGENEOUS RXN

$$\nabla^2 \vec{N}_A = \frac{dN_{Az}}{dz} = 0 \sim N_{Az} \sim \text{CONST.}$$

$$N_{Az} = -C D_{AB} \frac{dy_A}{dz} + y_A (N_{Az} + N_{Bz})$$

$$\text{AS } N_{Bz} = -N_{Az} \text{; } y_A (N_{Az} + N_{Bz}) = 0$$

$$N_{Az} \frac{dy_A}{dz} = -C D_{AB} \frac{dy_A}{1.0}$$

$$N_{Az} = \frac{C D_{AB}}{\delta} \quad (a)$$

$$C = \frac{P}{RT} = \frac{1}{82.06(400)} = 3.047 \times 10^{-5} \text{ g mol/cm}^3$$

$$\nu_{Az} = 5.18 \times 10^{-5} \text{ g mol/cm}^2 \cdot \text{s} \quad (b)$$

FOR $0.1 < \delta < 0.2$

$$W = \nu_{Az} (1) = \delta \frac{dS}{dt}$$

$$\frac{M_B}{M_A} D_{AB} C \int_0^t dt = \int_{S_1}^{S_2} \delta d\delta$$

26.11 (CONTINUED) -

$$\frac{M_B D_{ABC}}{S_B} t = \frac{\delta_2^2 - \delta_1^2}{2}$$

SUBSTITUTING NUMERICAL VALUES:

$$t = 1007 \text{ s} = 16.78 \text{ min.}$$

26.12

$$T = 310 \text{ K}$$

$$D_{AB} = 2 \times 10^{-5} \text{ cm}^2/\text{s}$$

$$\rho_A = 1.10 \text{ g/cm}^3$$

$$M_A = 120$$

$$C_A^* = 2.0 \times 10^{-4} \text{ g mol/cm}^3$$

PSEUDO STOICHIOMETRY, NO HOMOGEN. Rx
ONE-DIMENSIONAL - DILUTE SOLN

$$\nabla \cdot \vec{N}_A = \frac{dN_{A2}}{dz} = 0 \rightarrow N_{A2} \text{ CONST.}$$

$$N_{A2} = -D_{AB} \frac{dC_A}{dz}$$

$$N_{A2} \int_{z_1}^{z_2} dz = -D_{AB} \int_{C_A}^{0} \frac{dC_A}{C_A^*}$$

$$N_{A2} = \frac{D_{AB} C_A^*}{z_2 - z_1} \quad (\alpha)$$

for A Port:

$$W_{A2} = N_{A2} A = \frac{D_{ABC}^* A}{z_2 - z_1}$$

$$W_A = \frac{(2 \times 10^{-5})(2.0 \times 10^{-4})(\pi/4)(0.04)^2}{0.2 - 0.12}$$

$$= 6.3 \times 10^{-11} \text{ g mol/s per port}$$

26.12 (CONTINUED) -

for 1 Pill ~ 16 pores ~

$$W_A = (6.3 \times 10^{-11})(16) = 1.008 \times 10^{-9} \text{ g mol/s}$$

TIME TO DISSOLVE -

$$\frac{S_B}{M_B} \frac{dS}{dt} = \frac{D_{ABC}^*}{S}$$

$$\int_0^{0.2} S dS = \frac{D_{ABC}^* M_B}{S_B} \int_0^t dt$$

$$\frac{\delta^2}{2} \Big|_0^{0.2} = \frac{D_{ABC}^* M_B}{S_B} t$$

$$t = 3.165 \times 10^4 \text{ s} = 10.14 \text{ h}$$

26.13 FOR CONDITIONS DESCRIBED -

$$\nabla \cdot \vec{N}_A = \frac{dN_{A2}}{dz} = 0 \quad N_{A2} \sim \text{CONSTANT}$$

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz} + y_A(N_{A2} + N_{B2})$$

IN EACH REACTION - $N_{B2} = -N_{A2}$

$$\therefore N_{A2} = -CD_{AB} \frac{dy_A}{dz}$$

$$k_{A2} = \frac{CD_{AB}(y_{A0} - 0)}{S}$$

ALL REACTIONS INVOLVE EQUAL AMOUNT OF DIFFUSION -

26.14

$$T = 900\text{ K}$$

$$P = 1 \text{ atm}$$

FOR CONDITIONS STATED:

$$\nabla \cdot \vec{N}_A = \frac{dN_{A2}}{dz} = 0 \quad N_{A2} \text{ CONST.}$$

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz} + y_A(N_{A2} - N_{B2})$$

$$\text{Since } N_{A2} - N_{B2} = 0$$

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz}$$

INTEGRATING:

$$N_{A2} = \frac{CD_{AB} y_{A0}}{\delta}$$

$$C = \frac{P}{RT} = \frac{1}{(82.06)(900)} = 1.354 \times 10^{-5} \text{ mol/cm}^3$$

$$\text{For } \delta = 0.05 \text{ cm}$$

$$N_{A2} = \frac{(0.031)(1.354 \times 10^{-5})}{0.05} = 8.39 \times 10^{-6} \text{ mol/cm}^2 \cdot \text{s} \quad (2)$$

By STOICHIOMETRY:

$$\left\{ \begin{array}{l} \text{RATE OF} \\ \text{Ti DEPOSITED} \end{array} \right\} = \frac{1}{2} \left\{ \begin{array}{l} \text{RATE OF} \\ A_2 \text{ DIFFUSED} \end{array} \right\}$$

$$\frac{S_{Ti}}{M_{Ti}} \frac{d\delta}{dt} = \frac{1}{2} \frac{D_{AB}}{\delta} C_{p0}$$

$$\frac{S_T}{M_T} \int_0^{0.05} d\delta = \frac{D_{AB} C_{p0}}{2} dt$$

$$\delta = \left[\frac{M_T}{S_T} D_{AB} C_{p0} \right]^{1/2} t^{1/2}$$

26.14 CONTINUED -

INSERTING VALUES - FOR $\delta = 0.1 \text{ cm}$

$$t = 1293 \text{ s} = 0.359 \text{ h} \quad (b)$$

$$@ \delta = 0.05 \text{ cm} ; N_A = 8.39 \times 10^{-6} \text{ mol/cm}^2 \cdot \text{s}$$

 $= A \text{ (A CONSTANT)}$

$$A \int_0^z dz = -D_{AB} \int_{C_{p0}}^{C_A} dC_A$$

$$C_A - C_{p0} = -\left[\frac{A}{D_{AB}}\right] z$$

$$C_A = C_{p0} - \frac{A}{D_{AB}} z \quad (c)$$

26.15 ACETONE (A) DIFFUSING IN AIR (B)

$$D_{AB}|_{298K} = 0.093 \text{ cm}^2/\text{s}$$

$$D_{AB}|_{323K} = 0.093 \left(\frac{323}{298}\right)^{3/2} = 0.105 \text{ cm}^2/\text{s}$$

STEADY STATE - NO HOMOGENEOUS RX

$$\nabla \cdot \vec{N}_A = \frac{dN_{A2}}{dz} = 0 \quad N_{A2} \text{ CONST.}$$

$$\text{FOR } T \neq P \text{ CONSTANT} \quad N_{A2} = -N_{B2}$$

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz} = \frac{CD_{AB}}{z_2 - z_1} (y_{A1} - y_{A2})$$

$$C = \frac{P}{RT} = \frac{1 \text{ atm}}{82.06(323)} = 3.77 \times 10^{-5} \text{ mol/cm}^3$$

$$z_2 - z_1 = 500 \text{ cm} \quad y_{A1} - y_{A2} = 0.6$$

$$\text{SUBSTITUTING: } N_{A2} = 3.96 \times 10^{-9} \text{ mol/cm}^2 \cdot \text{s}$$

$$W_A = N_{A2}(A)$$

$$= (3.96 \times 10^{-9}) \left(\frac{\pi}{4}\right) (10 \text{ cm})^2$$

$$= \underline{3.11 \times 10^{-7} \text{ mol/s}}$$

26.16

$$d = 5 \times 10^{-6} \text{ cm} \quad \Delta z = 2 \times 10^{-5} \text{ cm}$$

$$T = 473 \text{ K} \quad P = 1,25 \text{ atm}$$

ASSUMPTIONS - STEADY
NO HOMOGENEOUS RX
ONE DIMENSIONAL

$$\nabla \cdot \vec{N}_A = \frac{d}{dz} N_{Az} = 0 \quad N_{Az} \text{ CONSTANT}$$

$$N_{Az} = -CD_{A-Mix} \frac{dy_A}{dz} + y_A(N_{Az} + N_{Bz} + N_{Cz})$$

$\text{H}_2(\text{A}), \text{O}_2(\text{B}), \text{H}_2\text{O}(\text{C})$

$$N_{Bz} = \frac{1}{2} N_{Az} \quad N_{Cz} = -N_{Az}$$

$$N_{Az} = -CD_{AB} \frac{dy_A}{dz} + \frac{1}{2} y_A N_{Az}$$

$$N_{Az} \int_0^L dz = CD_{AB} \int_0^{0.01} \frac{dy_A}{1-y_A/2}$$

$$N_{Az} L = 2CD_{AMix} \int_0^L \frac{1-y_A/2}{1-0}$$

$$N_{Az} = \frac{2CD_{AMix}}{L} (-0.0050)$$

$$C = \frac{P}{RT} = \frac{125}{82.06(473)} = 3.22 \times 10^{-5} \text{ mol/m}^3$$

$$D_{AB} = \frac{0.697}{1.25} \left(\frac{473}{273} \right)^{3/2} = 1.212 \text{ cm}^2/\text{s}$$

$$D_{AC} = \frac{0.850}{1.25} \left(\frac{473}{373} \right)^{3/2} = 1.551 \text{ "}$$

26.16 (CONTINUED -

$$D_{A-L-Mix} = \frac{1}{\frac{y_A}{D_{AB}} + \frac{y_C}{D_{AC}}} = 1.274 \text{ cm}^2/\text{s}$$

SUBSTITUTING NUMERICAL VALUES!

$$\underline{N_{Az} = -0.0205 \text{ mol/cm}^2 \cdot \text{s}}$$

26.17 $WF_p(A)$

KNUDSEN DIFFUSION

VERY DILUTE

$$\nabla \cdot \vec{N}_A = \frac{dN_{Az}}{dz} = 0 \quad N_{Az} \text{ CONSTANT}$$

$$N_{Az} = -D_{AB} \frac{dy_A}{dz} = \frac{D_{AB} C_{AO}}{\delta}$$

RATE OF FORMATION OF W

$$= N_{Az}(A) = \frac{D_{AB} C_{AO}(A)}{\delta} = \frac{s_w}{M_w} \frac{d(A\delta)}{dt}$$

$$\frac{P_w}{M_w} \frac{d\delta}{dt} = \frac{D_{AB} C_{AO}}{\delta}$$

$$\delta^2 = 2D_{AB} M_w C_{AO} \frac{s_w}{M_w}$$

$$\delta = \left[2D_{AB} \frac{M_w C_{AO}}{s_w} \right]^{1/2} t^{1/2}$$

For KNUDSEN DIFFUSION - EQUATION (24-58)

$$D_{KA} = 4850 d_p \sqrt{\frac{T}{M_w F_b}}$$

$$d_p = 2.5 \times 10^{-5} \text{ cm}, T = 700 \text{ K}, M = 298$$

$$D_{KA} = 0.1858 \text{ cm}^2/\text{s}$$

26.17 (CONTINUED)

$$C = \frac{P}{RT} = \frac{75 \text{ Pa}}{8,314(100)} = 0,0129 \text{ mol/m}^3$$

$$c_{\text{AO}} = y_{\text{AO}} C = 1,29 \times 10^{-3} \text{ mol/cm}^3$$

SUBSTITUTING INTO EQUATION FOR S(t)

$$\underline{t = 8,80 \times 10^4 \text{ s} = 24,44 \text{ h}}$$

26.18 C₆H₆ (A) IN C₇H₈

$$h_{fg}(A) = 30 \text{ kJ/mol}$$

$$h_{fg}(B) = 33 \text{ "}$$

$$\nabla \cdot \vec{N}_A = \frac{d N_{A2}}{dr} = 0 \quad N_{A2} \text{ CONST.}$$

$$\underline{N_{A2} = -CD_{AB} \frac{dy_A}{dr} + y_A(N_{A2} + N_{B2})}$$

$$N_{A2}(30) = N_{B2}(33)$$

$$N_{B2} = -0,909 N_{A2}$$

$$N_{A2} = -CD_{AB} \frac{dy_A}{dr} + y_A N_{A2}(1-0,909)$$

$$N_{A2} \int_0^R dr = -CD_{AB} \int_{y_{\infty}}^{y_A} \frac{dy_A}{1-0,909 y_A}$$

$$N_{A2} S = \frac{CD_{AB}}{0,091} \ln \left[\frac{1-0,909 y_A}{1-0,909 y_{\infty}} \right]$$

$$N_{A2} = \frac{CD_{AB}}{0,091 S} \ln \left[\frac{1-0,909 y_A}{1-0,909 y_{\infty}} \right]$$

26.19 SPHERICAL GEOMETRY -

$$T = 1000 \text{ K} \quad P = 1 \text{ atm}$$

$$D_{AB} = 0,273 \text{ cm}^2/\text{s} \quad L = 0,4 \text{ cm}$$

STEADY STATE, NO FLUX GRAD.

$$\nabla \cdot \vec{N}_A = \frac{1}{r^2} \frac{d}{dr} r^2 N_{Ar} = 0 \quad r^2 N_{Ar} \sim \text{CONST.}$$

$$\underline{N_{Ar} = -CD_{AB} \frac{dy_A}{dr} + y_A(N_{Ar} + N_{Br})}$$

$$N_{Br} = -3N_{Ar} \Rightarrow N_{Ar} + N_{Br} = -2N_{Ar}$$

$$\underline{N_{Ar} = -\frac{CD_{AB}}{1+2y_A} \frac{dy_A}{dr}}$$

$$\underline{\frac{4\pi r^2 N_{Ar}}{W_A} \int_R^P \frac{dr}{r^2}} = 4\pi C D_{AB} \int_{1,0}^P \frac{dy_A}{1+2y_A}$$

$$W_A(\frac{1}{P}) = \frac{4\pi C D_{AB}}{2} \ln \frac{3,0}{1,0}$$

$$W_A = 2\pi R C D_{AB} \ln 3$$

$$C = \frac{P}{RT} = \frac{1,013 \times 10^5}{8,314(100)} = 12,18 \text{ mol/m}^3$$

$$= 1,218 \times 10^{-5} \text{ mol/cm}^3$$

SUBSTITUTING VALUES:

$$\underline{W_A = 4,59 \times 10^{-6} \text{ mol/s}}$$

26.20

Slope of Plot is W_A :

$$W_A \approx \frac{0.15 \text{ μmol}}{18.5 \text{ h}} \left(\frac{1}{3600} \right) = 2.25 \times 10^{-12} \text{ mol/s}$$

$$A_s = 9 \text{ cm}^2$$

$$N_{A2} = 2.503 \times 10^{-13} \text{ mol/s} \cdot \text{cm}^2$$

SINCE PROFILE IS LINEAR -

ALL TRANSPORT IS DIFFUSION

$$\therefore N_{A2} = D_{AB} \frac{C_{A1} - C_{A2}}{\Delta z} = D_{AB} \frac{C_{A1}}{z_2 - z_1}$$

$$D_{AB} = \frac{2.503 \times 10^{-13}}{0.5 \times 10^{-6}} (0.2) = 1.00 \times 10^{-7} \text{ cm}^2/\text{s}$$

MODIFIED WILKE-CRANK-EQN (24-54)

$$\frac{D_{AB} \mu}{T} = \text{CONST}$$

$$\begin{aligned} D_{AB|35} &= D_{AB|20} \left(\frac{293}{308} \right) \left(\frac{\mu_{H_2O|35}}{\mu_{H_2O|20}} \right) \\ &= 1.0 \times 10^{-7} \left(\frac{293}{308} \right) \left(\frac{0.00393}{0.00742} \right) \\ &= 1.273 \times 10^{-7} \text{ cm}^2/\text{s} \end{aligned}$$

26.20 CONTINUED -

ALL OTHER TERMS REMAIN THE SAME -

$$\begin{aligned} W_A|_{35} &= W_A|_{20} \frac{D_{AB|35}}{D_{AB|20}} \\ &= (2.25 \times 10^{-12}) \frac{1.273 \times 10^{-7}}{1 \times 10^{-7}} \\ &= 2.864 \times 10^{-12} \text{ mol/s} \\ &= 2.475 \times 10^{-7} \text{ mol/day} \end{aligned}$$

$$26.21 \quad J_{A2} = -CD_{AB} \frac{dC_A}{dz} = \frac{D_{AB}}{\Delta z} (C_{A1} - C_{A2})$$

$$C_{A1} - C_{A2} = k \left(\frac{P_{A1}}{P_{A2}} - \frac{P_{A2}}{P_{A1}} \right)^{1/2}$$

$$\Rightarrow J_{A2} = D_{AB} k \left(\frac{P_{A1}}{P_{A2}} - \frac{P_{A2}}{P_{A1}} \right)^{1/2}$$

$$\text{AT } 1 \text{ atm} \quad C_{A1} = k \frac{P_{A1}}{P_A}$$

$$= \frac{7 \text{ cm}^3}{100 \text{ g}} \left(\frac{9.8}{\text{cm}^3} \right) = 0.63$$

$$k = 0.63 \text{ atm}^{-1/2}$$

$$D_{AB} = 6 \times 10^{-5} \text{ cm}^2/\text{s} \quad P_{A1} = 8 \text{ atm} \quad P_{A2} = 0$$

$$\Delta z = 0.2 \text{ cm}$$

$$\text{SUBSTITUTION!} \quad J_{A2} = 5.346 \times 10^{-4} \text{ cm/s}$$

$$W_A = J_{A2} A = (5.346 \times 10^{-4})(8)$$

$$= 4.277 \text{ cm}^3/\text{s}$$

$$= 15.4 \text{ cm}^3/\text{day}$$

26/22

$$\nabla \cdot \vec{N}_A - R_A = 0$$

$$\frac{dN_{A2}}{dz} - R_A = 0$$

for NO BULK CONTRIBUTION

$$N_{A2} = -D_{AB} \frac{dc_A}{dz}$$

$$\frac{d}{dz} \left(-D_{AB} \frac{dc_A}{dz} \right) = R_A$$

$$d \left(-D_{AB} \frac{dc_A}{dz} \right) = R_A dz$$

$$-D_{AB} \frac{dc_A}{dz} = R_A z + C_1$$

$$-D_{AB} c_A = R_A \frac{z^2}{2} + C_1 z + C_2$$

$$B.C., c_A(0.5 \text{ cm}) = C_0$$

$$\frac{dc_A}{dz}(0) = 0 \Rightarrow C_1 = 0$$

$$C_2 = -D_{AB}(c_0) - \frac{R_A}{2}(0.5)^2$$

$$c_A = -\frac{1}{D_{AB}} \left[R_A \frac{z^2}{2} + C_1 z + C_2 \right]$$

WITH VALUES SUBSTITUTED

$$c_A = C_0 - \frac{R_A}{D_{AB}} \left(\frac{z^2}{2} - 0.125 \right)$$

26/23 CYLINDRICAL GEOMETRY --

$$T = 1100 \text{ K} \quad P = 2 \text{ atm}$$

$$\delta(B,L, \text{film}) = 5 \text{ mm} \quad L = 25 \text{ cm}$$

$$d = 2 \text{ cm}$$

$$\nabla \cdot \vec{N}_A = \frac{1}{r} \frac{d}{dr} (r N_A) = 0 \quad r N_A \text{ const.}$$

$$O_2 \text{ is A} \quad N_{Br} = -N_{Ar}$$

$$CO_2 \text{ is B} \quad N_{Ar} = -C D_{AB} \frac{dy_A}{dr}$$

$$\underbrace{2\pi L r N_{Ar}}_{W_A} \int \frac{dr}{r} = -2\pi L C D_{AB} \int \frac{dy_A}{r} \Big|_0^{0.21}$$

$$W_A \text{ Jm} \frac{r_2}{r_1} = -2\pi L C D_{AB} (0.21)$$

$$W_A = -\frac{2\pi L C D_{AB} (0.21)}{\text{Jm} (r_2/r_1)}$$

$$C = \frac{P}{RT} = \frac{2.026 \times 10^5}{(8.314)(1100)} = 22.1 \text{ mol/m}^3$$

$$= 2.21 \times 10^5 \text{ mol/cm}^3$$

$$D_{AB} = 0.175 \left(\frac{1}{2} \left(\frac{1100}{273} \right)^{3/2} \right) = 0.708 \text{ cm}^2/\text{s}$$

$$At, t=0 \quad r_2/r_1 = 1.5$$

SOLVING FOR W_A AT $t=0$

$$\underline{W_A = -1.28 \times 10^{-3} \text{ mol/s}}$$

FOR $t > 0 \sim r_1$, DECREASES

$$W_A = -\frac{2\pi L C D_{AB} (0.21)}{\text{Jm} \left(\frac{r+0.5}{r} \right)}$$

247

26.23 (CONTINUED) -

$$\text{FOR SOLID C : RATE OF DEPOSITION} = \frac{\rho}{M} \frac{dN}{dt}$$

$$\text{PER MOLE: } W_A = -\frac{\rho}{M} \frac{dN}{dt}$$

$$\frac{2\pi L c D_{AB} (0,2)}{\ln \left[\frac{(r+0,5)/r}{r} \right]} = \frac{\rho}{M} (2\pi r L) \frac{dr}{dt}$$

INTEGRATION BETWEEN $r=r_i$ @ $t=0$
 $r=0$ @ t

THE SOLUTION ~ A BIT MESSY ~

$$t = 18000 \text{ s (E h)}$$

26.24

EQUILIBRIUM DATA \rightarrow

$P_A (\text{mmHg})$	5.0	10.0	15.0	20.0	25.0	30.0
$c_A (\text{mol/m}^3)$	6.1	11.9	20.0	32.1	53.6	84.8

NH_3 (A) DIFFUSES IN SERIES, THROUGH GAS & LIQUID LAYERS

$$\text{THROUGH GAS: } N_{AZ} = \frac{C}{\delta_L} \frac{D_{AB}}{S_L} \ln \left(\frac{1-y_{Ai}}{1-y_{A1}} \right)$$

$$\text{LIQUID: } N_{AZ} = \frac{D_L}{\delta_L} (C_{A1} - C_{AS})$$

$$D_{AB} = 0.198 \left(\frac{288}{273} \right)^{3/2} = 0.215 \text{ cm}^2/\text{s}$$

$$D_L = 1.77 \times 10^{-5} \text{ cm}^2/\text{s}$$

$$N_{AG} = N_{AL}$$

$$\frac{C}{\delta_L} \frac{D_{AB}}{S_L} \ln \frac{1-y_{Ai}}{1-y_{A1}} = \frac{D_L}{\delta_L} (C_{A1} - C_{AS})$$

26.24 (CONTINUED) -

$$C = \frac{\rho}{R_T} = \frac{1.013 \times 10^5}{(8.314)(288)} = 42.3 \text{ mol/m}^3$$

$$= 4.23 \times 10^{-5} \text{ mol/cm}^3$$

INSERTING VALUES:

$$0.257 \ln \frac{1-y_{Ai}}{0.9658} = C_{Ai}$$

VALUES OF y_{Ai} , CAL MUST AGREE WITH PLOT OF DATA --

TRIAL & ERROR IS NECESSARY --

~ RESULT IS $P_{AL} = 25.88 \text{ mm}$

$$\sim y_{Ai} = \frac{25.88}{760} = 0.0339$$

$$C_{Ai} = 5.58 \times 10^{-5} \text{ mol/cm}^3$$

WITH THESE VALUES --

$$N_{AZ} = \frac{(1.77 \times 10^{-5})(5.58 \times 10^{-5})}{1}$$

$$= 9.88 \times 10^{-10} \text{ mol/cm}^2 \cdot \text{s}$$

26.25

CONSTITUENT A IS O_2

$$\nabla \cdot \vec{N}_A = \frac{d N_{AZ}}{dz} = 0 \quad N_{AZ} = \text{CONSTANT}$$

$$N_{AZ} = -C D_{AB} \frac{dy_A}{dz} + y_A (N_{AZ} + N_{BZ})$$

REACTION AT SURFACE IS $C + O_2 = 2CO$

$$\sim 2 N_{AZ} = -N_{BZ}$$

$$y_A (N_{AZ} + N_{BZ}) = y_A N_{AZ} (-1)$$

26.25 (CONTINUED -

$$N_{A2}(1+y_A) = -CD_{AB} \frac{dy_A}{dz}$$

SEPARATING VARIABLES & INTEGRATING:

From $z=0$ TO δ y_A from 0 TO 0.21

$$\underline{N_{A2} = -\frac{CD_{AB}}{\delta} \ln 1.21 \quad (a)}$$

IF REACTION AT SURFACE IS

$$\text{THEN } y_A(N_{A2} + N_{B2}) = 0$$

& SOLUTION IS

$$\underline{N_{A2} = -\frac{CD_{AB}}{\delta} (0.21) \quad (b)}$$

IF REACTION AT SURFACE IS

$$\text{THEN } N_{B2} = N_C - \frac{2}{3}N_{A2}$$

$$y_A(N_{A2} + N_{B2} + N_{C2}) = y_A N_{A2} \left(-\frac{1}{3}\right)$$

FICK'S LAW EXPRESSION BECOMES,

$$N_{A2} = -CD_{AB} \frac{dy_A}{dz} - y_A \frac{N_{A2}}{3}$$

$$N_{A2}(1 + y_A/3) = -CD_{AB} \frac{dy_A}{dz}$$

& SOLUTION IS

$$\begin{aligned} N_{A2} &= -\frac{CD_{AB}}{\delta} \left[3 \ln 1.07 \right] \\ &= \frac{CD_{AB}}{\delta} (0.203) \quad (c) \end{aligned}$$

26.26

Time (h)	Measured SiO ₂		film thickness (μm)
	(100) Si	(111) Si	
1	0.049		0.070
2	0.078		0.105
4	0.124		0.154
7	0.180		0.212
16	0.298		0.339

SYSTEM CONSIDERED WAS EVALUATED IN TEXT - EXAMPLE 2.

$$\delta^2 = \frac{2MBD_{AB}C_{AS}}{S_B} t$$

FROM DATA IN TABLE -

$$\frac{d\delta^2}{dt} = \frac{2MBD_{AB}C_{AS}}{S_B} = A$$

$$D_{AB} = \frac{AS_B}{2MC_{AS}}$$

A EVALUATED FROM DATA VARIES FROM 0.0049 TO 0.00718 ~ TAKE MIDDLE VALUE (CONDITION @ t=4h)

$$A = 0.00593 \mu\text{m}^2/\text{h}$$

$$= 1.646 \times 10^{-14} \text{ cm}^2/\text{s}$$

$$\begin{aligned} D_{AB} &= \frac{(1.646 \times 10^{-14})(2.27)}{2(100)(9.68 \times 10^{-8})} \\ &= 3.24 \times 10^{-9} \text{ cm}^2/\text{s} \end{aligned}$$

26.27 CYLINDRICAL GEOMETRY -

$$\nabla \cdot \vec{N}_A = \frac{1}{r} \frac{d}{dr} (rN_{Ar}) \stackrel{!}{=} 0 \quad r \text{ Norm (const.)}$$

$$\begin{aligned} A \sim O_2 \\ B \sim CO \end{aligned} \quad N_A = -CD_{AB} \frac{dy_A}{dr} + y_A (N_{Ar} + N_{Br})$$

$$N_{Br} = -2N_{Ar}$$

26.27 (CONTINUED) -

$$N_{Ar} = - \frac{c D_{AB}}{1+y_A} \frac{dy_A}{dr}$$

$$\frac{2\pi L r N_{Ar}}{W_A} \int_{r_1}^{r_2} \frac{dr}{r} = - 2\pi L c D_{AB} \int_0^{0.4} \frac{dy_A}{1+y_A}$$

$$W_A = - \frac{2\pi L c D_{AB} \ln(1.4)}{\ln(r_2/r_1)}$$

$$c = \frac{P}{RT} = \frac{1 \text{ ATM}}{(82.04)(1145)} = 1.065 \times 10^{-5} \text{ mol/cm}^3$$

$$D_{AB} = 1.0 \times 10^{-5} \text{ m}^2/\text{s} = 0.10 \text{ cm}^2/\text{s}$$

SUBSTITUTING NUMERICAL VALUES -

$$W_A = -4.099 \times 10^{-5} \text{ mol/s} \quad (1)$$

$$W_B = W_C = -2W_A = 8.20 \times 10^{-5} \text{ mol/s}$$

FOR CONCENTRATION PROFILE:

$$\frac{d}{dr} r N_{Ar} = \frac{d}{dr} \left[-r \frac{c D_{AB}}{1+y_A} \frac{dy_A}{dr} \right] = 0$$

INTEGRATE ONCE:

$$\frac{r}{1+y_A} \frac{dy_A}{dr} = C_1$$

$$\therefore \text{ AGAIN: } \ln(1+y_A) = C_1 \ln r + C_2$$

$$\text{B.C. } y_A(r_1=0.5) = 0$$

$$y_A(r_2=1.5) = 0.4$$

$$\text{SOLVING: } C_1 = 0.304 \quad C_2 = 0.212$$

Now - For $r = 1$

26.27 (CONTINUED) -

$$\ln(1+y_A) = C_1 \ln(1) + C_2$$

$$y_A = e^{0.212} - 1 = 0.236$$

26.28 PROBLEM STATEMENT Refers TO EXAMPLE 4 IN CHAPTER FOR SPHERICAL GEOMETRY -

$$\frac{1}{r^2} \frac{d}{dr} (r^2 \nabla_{Ar}) = -k_1 c_A$$

WITH PURE DIFFUSION:

$$N_{Ar} = -D_{AB} \frac{dc_A}{dr}$$

$$\therefore - \frac{D_{AB}}{r^2} \frac{d}{dr} \left(r^2 \frac{dc_A}{dr} \right) = -k_1 c_A$$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dc_A}{dr} \right) = \frac{k_1}{D_{AB}} c_A \quad (1)$$

$$\text{LETTING } y = c_A r \sim \frac{dy}{dr} = c_A + r \frac{dc_A}{dr}$$

$$\text{WE HAVE: } r^2 \frac{dc_A}{dr} = r \frac{dy}{dr} - y \quad (2)$$

SUBSTITUTING (2) INTO (1) WE HAVE

$$\frac{d^2 y}{dr^2} - \frac{k_1}{D_{AB}} y = 0$$

SOLN. IS

$$y = C_1 \text{ cosh} \left(\sqrt{\frac{k_1}{D_{AB}}} r \right) + C_2 \sinh \left(\sqrt{\frac{k_1}{D_{AB}}} r \right)$$

$$\text{B.C. } y(0) = 0 \quad y(R) = C_{40}$$

$$\therefore C_1 = 0 \quad C_2 = \frac{C_{40} R}{\sinh \left(\sqrt{\frac{k_1}{D_{AB}}} R \right)}$$

26.28 (CONTINUED -

$$\frac{C_A}{C_{A0}} = \frac{R}{r} \frac{\operatorname{Sinh}(\sqrt{k_1 D_{AB}} r)}{\operatorname{Sinh}(\sqrt{k_1 D_{AB}} R)} \quad (a)$$

To Evaluate N_{Ar} - MUST KNOW $\frac{dC_A}{dr}$

From (a)

$$\begin{aligned} \frac{dC_A}{dr} &= \frac{C_{A0} R}{\operatorname{Sinh}(\sqrt{k_1 D_{AB}} R)} \times \\ &\left[-\frac{1}{r^2} \operatorname{Sinh}(\sqrt{k_1 D_{AB}} r) \right. \\ &\left. + \frac{\sqrt{k_1 D_{AB}} \operatorname{Cosec}(\sqrt{k_1 D_{AB}} r)}{r} \right] \end{aligned}$$

EVALUATING AT $r = R$:

$$\frac{dC_A}{dr} \Big|_{r=R} = \frac{C_{A0}}{R} + C_{A0} \sqrt{\frac{k_1}{D_{AB}}} \operatorname{Coth}(\sqrt{\frac{k_1}{D_{AB}}} R)$$

∴ FINALLY -

$$N_{Ar} = \frac{D_{AB} C_{A0}}{R} \left[1 - R \sqrt{\frac{k_1}{D_{AB}}} \operatorname{Coth}(\sqrt{\frac{k_1}{D_{AB}}} R) \right]$$

from EXAMPLE 4: $D_{AB} = 2 \times 10^{-10} \text{ m}^2/\text{s}$

$$R = 0.002$$

$$C_{A0} = 0.02 \text{ mol/m}^2$$

$$k_1 = 0.019 \text{ s}$$

SUBSTITUTING:

$$N_{Ar} = 1.02 \times 10^{-12} \text{ mol/m}^2 \cdot \text{s}$$

26.29 FLAT CATALYTIC SURFACE:

$$\frac{\partial N_{A2}}{\partial z} - k_1 y_B = 0 \quad (1)$$

$$\frac{\partial N_{B2}}{\partial z} + k_1 y_A = 0 \quad (2)$$

$$\text{ADDINH: } \frac{\partial}{\partial z} (N_{A2} + N_{B2}) = 0 \quad \{ N_{B2} = -N_{A2} \}$$

$$N_{A2} = -CD_{AB} \frac{\partial y_A}{\partial z}$$

EQN (1) BECOMES:

$$CD_{AB} \frac{\partial^2 y_B}{\partial z^2} - k_1 y_B = 0$$

$$\text{OR } \frac{\partial^2 y_B}{\partial z^2} - \frac{k_1}{CD_{AB}} y_B = 0$$

$$\text{LETINH } b^2 = k_1 / CD_{AB}$$

$$\frac{\partial^2 y_B}{\partial z^2} - b^2 y_B = 0$$

∴ SOLUTION IS

$$y_B = C_1 \operatorname{cosh} bz + C_2 \operatorname{sinh} bz$$

$$\text{B.C. } y(0) = y_{B0} \quad y(\infty) = 1$$

$$\text{GIVINH } C_1 = y_{B0}$$

$$C_2 = \frac{1 - y_{B0} \operatorname{cosh} bz}{\operatorname{sinh} bz}$$

DOING THE MATH:

$$N_{A2} = b C D_{AB} \left[\frac{1 - y_{B0} \operatorname{cosh} bz}{\operatorname{sinh} bz} \right]$$

26.30 Same configuration as in
Prob 26.29 except in film
 $A \xrightarrow[k_1]{k'_1} B$ $R_A = k_1 y_B - k'_1 y_A$

Fick's Law: $N_{AB} = -CD_{AB} \frac{dy_A}{dz}$

CONSERVATION OF MASS:

$$\frac{dN_{AB}}{dz} - k_1 y_B + k'_1 y_A = 0$$

$$\therefore -CD_{AB} \frac{d^2 y_A}{dz^2} - k_1(1-y_A) + k'_1 y_A = 0$$

WITH A LITTLE ALGEBRA WE GET

$$\frac{d^2 y_A}{dz^2} - \frac{k_1 + k'_1}{CD_{AB}} y_A = -\frac{k_1}{CD_{AB}}$$

DEFINING $M^2 = \frac{k_1 + k'_1}{CD_{AB}}$

$$N^2 = k_1 / CD_{AB}$$

our EoN for $y_A(z)$ is

$$\frac{d^2 y_A}{dz^2} - M^2 y_A = -N^2$$

Soln is:

$$y_A = C_1 \cosh Mz + C_2 \sinh Mz + \frac{N^2}{M^2}$$

B.C. $y_A(0) = y_{A0}$

$y_A(\delta) = 0$

~ DOING THE MATH ~

$$C_1 = y_{A0} - \frac{N^2}{M^2}$$

26.30 (CONTINUED -

$$C_2 = \frac{\left(\frac{N^2}{M^2} - y_{A0}\right) \cosh M\delta - \frac{N^2}{M^2}}{\sinh M\delta}$$

CHAPTER 27

27.1 - SEMI INFINITE BODY OF LIQUID

-THIS CASE IS DISCUSSED IN TEXT
EQN (27-9) APPLIES

$$\frac{P_A - P_{AO}}{P_{AS} - P_{AO}} = 1 - \operatorname{erf}\left(\frac{z}{2\sqrt{D_{AB}t}}\right)$$

FOR O₂ IN H₂O - WILKE-CRANZ,
EQN. (4-52) APPLIES

$$D_{AB} = \frac{7.4 \times 10^8 (\phi_B M_B)^{1/2} T}{(V_B)^{0.6} \mu_B}$$

$$\text{VALUES: } \phi_B = 2.26 \quad M_B = 18$$

$$T = 283 \quad V_B = 25.6$$

$$\mu_B = 0.01394 \text{ cP}$$

$$D_{AB} = 1.469 \times 10^{-3} \text{ cm}^2/\text{s}$$

$$@ t = 3600 \text{ s} \quad \frac{z}{2\sqrt{D_{AB}t}} = 4.60$$

$$@ 36000 \quad = 14.54$$

$$@ 360000 \quad = 4610$$

EQN - @ 3600 s -

$$\frac{P_A - 2}{9 - 2} = 1 - \operatorname{erf}\left(\frac{z}{46.0}\right)$$

CONC. PROFILES APPEAR AS

27.2 O₂ DISSOLVING INTO POLYMER FILM

$$C_{AS} = 3.16 (1.5) = 4.74 \text{ g mol/m}^3$$

FOR t = 10 s - VERY SHORT PENETRATION -
EQN (27-11) APPLIES

$$\begin{aligned} N_A Z &= \sqrt{\frac{D_{AB}}{\pi t}} (C_{AS} - C_{AO}) \\ &= \left[\frac{1.469 \times 10^{-3}}{\pi (10)} \right]^{1/2} (4.74 - 0.39) \\ &= \underline{\underline{2.45 \text{ g mol/m}^2 \cdot \text{s}}} \quad a) \end{aligned}$$

FOR C_A = 3 g mol/m³ @ z = 4 mm

$$\frac{C_A - C_{AO}}{C_{AS} - C_{AO}} = 1 - \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\frac{3 - 0.39}{4.74 - 0.39} = 0.6 = 1 - \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}} = 0.4$$

$$\frac{z}{2\sqrt{D_{AB}t}} = 0.372$$

$$\begin{aligned} t &= 2.89 \times 10^6 \text{ s} \\ &= 802.8 \text{ h} \\ &= 33.4 \text{ DAYS} \end{aligned}$$

27.3

$$C_{AO} = 0$$

$$C_{AS} = 1.0$$

$$\text{FOR } t = 24 \text{ h}$$

$$C_A = 0.203 @ z = 2 \text{ mm}$$

27.3 CONTINUED-

$$\frac{C_{AS} - C_A}{C_{AS} - C_{AO}} = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\frac{1.0 - 0.203}{1.0} = 0.797 = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

For $t = 24 \text{ h} = 86400 \text{ s}$

$$z = 0.2 \text{ cm}$$

$$\underline{D_{AB} = 1.43 \times 10^{-7} \text{ cm}^2/\text{s}} \quad \text{a)}$$

ASSUMPTIONS:

1. SURFACE CONCENTRATION CONSTANT $\sim \neq C_{AS}(t)$
2. ONE DIRECTIONAL DIFFUSION
3. CONSTANT D_{AB} b)

USING WILKE-CAPANGANIAN EQUATION:
(24-54)

$$\begin{aligned} D_{AB}/T_2 &= D_{AB}/T_1 \frac{\mu_{B1} T_2}{\mu_{B2} T_1} \\ &= 1.43 \times 10^{-7} \left(\frac{9.93 \times 10^{-4}}{6.58 \times 10^{-4}} \right) \frac{313}{293} \\ &= \underline{2.30 \times 10^{-7} \text{ cm}^2/\text{s}} \quad \text{(c)} \end{aligned}$$

27.4

27.4 CONTINUED-

$$\frac{z}{2\sqrt{D_{AB}t}} = \frac{0.05}{2[4 \times 10^9 (2.59 \times 10^5)]} = 1.553$$

$$\operatorname{erf}(1.553) = 0.972 = \frac{C_{AS} - C_A}{C_{AS} - C_{AO}}$$

$$\underline{C_A = 0.672 \text{ mol/m}^3}$$

27.5 H₂ INTO Fe

$$D_{AB} = 1.24 \times 10^{-11} \text{ cm}^2/\text{s}$$

$$C_{AO} = 0$$

$$C_A @ 0.1 \text{ cm} = 1.76 \times 10^{-7} \text{ mol/g Fe}$$

$$C_{AS} = 2.2 \times 10^{-7} \text{ mol/g Fe}$$

$$T = 373 \quad P = 1 \text{ ATM}$$

$$\frac{C_{AS} - C_A}{C_{AS} - C_{AO}} = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\frac{2.2 - 1.76}{2.2 - 0} = 0.2 = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\frac{z}{2\sqrt{D_{AB}t}} = 0.179$$

$$\underline{t = 6.27 \times 10^5 \text{ s} = 174 \text{ h}}$$

27.6 HERBICIDE INTO SOIL

$$D_{AB} = 1 \times 10^{-8} \text{ m}^2/\text{s} \quad t = 1800 \text{ s}$$

$$C_{AS} = 1 \quad C_{AO} = 0 \quad C_A = 0.001$$

$$\frac{C_A - C_{AO}}{C_{AS} - C_{AO}} = \frac{0.001}{1} = 1 - \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

27.6 CONTINUED -

$$\operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}} = 0.999$$

$$\frac{z}{2\sqrt{D_{AB}t}} = 2.25$$

$$z = 2(2.25) \left[(1 \times 10^{-3})(1800) \right]^{\frac{1}{2}}$$

$$= \underline{6.037 \text{ m}}$$

27.7 BORON DIFFUSION INTO Si

$$C_B = 5 \times 10^{20} \text{ Atoms/cm}^3$$

$$C_{B2} = 0.17 \times 10^{20} \text{ " } @ z = 3 \times 10^{-7} \text{ m}$$

$$C_{B0} = 0 \quad t = 1800 \text{ s}$$

$$\frac{C_{B2} - C_{B0}}{C_{B2} - C_{B0}} = \frac{(5 - 0.17) \times 10^{20}}{5 \times 10^{20}} = 0.966$$

$$= \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\text{From APPENDIX L } \frac{z}{2\sqrt{D_{AB}t}} = 1.5$$

$$D_{AB} = \left(\frac{2 \times 10^{-7}}{3} \right)^2 (1800)^{-1}$$

$$= \underline{2.469 \times 10^{-18} \text{ m}^2/\text{s}}$$

$$\text{AS STATED } D_{AB} = D_0 e^{-Q_0/RT}$$

$$\ln \frac{D_{AB}}{D_0} = -\frac{Q_0}{RT}$$

$$T = \frac{R \ln \frac{D_0}{D_{AB}}}{Q_0}$$

$$= \frac{2.74 \times 10^5}{(8.314) \ln \frac{19 \times 10^{-18}}{2.469 \times 10^{-18}}}$$

$$= \underline{1204 \text{ K}}$$

27.8 CARBON DIFFUSION INTO STEEL

$$w_{AS} = 0.007 \left\{ \frac{0.007 - w_A}{0.007 - 0.002} = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}} \right.$$

$$w_{AD} = 0.002 \left\{ \frac{0.007 - w_A}{0.007 - 0.002} = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}} \right.$$

$$\frac{0.007 - w_A}{0.005} = \operatorname{erf} \left[\frac{z}{2(1 \times 10^{-11})(3600)} \right]$$

$$w_A = 0.007 - 0.005 \operatorname{erf} \left[\frac{z}{3.7 \times 10^{-4} \text{ m}} \right]$$

for $z = 0.01 \text{ cm}$

$$\operatorname{erf} [] = \operatorname{erf}(0.244) = 0.291$$

$$w_A = 0.007 - 0.005(0.291)$$

$$= \underline{0.55 \text{ wt \% C}}$$

for $z = 0.02 \text{ cm}$

$$\operatorname{erf} [] = \operatorname{erf}(0.528) = 0.545$$

$$w_A = 0.007 - 0.005(0.528) = \underline{0.417 \text{ wt \% C}}$$

for $z = 0.04 \text{ cm}$

$$\operatorname{erf} [] = \operatorname{erf}(1.056) = 0.866$$

$$w_A = 0.007 - 0.005(1.056) = \underline{0.267 \text{ wt \% C}}$$

27.9

AS INTO Si:

$$\frac{C_{AS} - C_A}{C_{AS} - C_{A0}} = \operatorname{erf} \frac{z}{2\sqrt{D_{AB}t}}$$

$$\frac{z}{2\sqrt{D_{AB}t}} = \frac{2 \times 10^{-4}}{2[(5 \times 10^{13})(3600)]^{\frac{1}{2}}} = 2.357$$

27.9 (CONTINUED)

$$\text{erf}(2.357) = 0.9990 = \frac{2 \times 10^{21} - C_A}{2 \times 10^{21} - 1 \times 10^{12}}$$

$$C_A = 2.0 \times 10^{18} \text{ Atoms/cm}^3$$

$$\begin{aligned} N_{\text{eff}} &= \left[\frac{D_{AB}}{\pi t} \right]^{1/2} (C_{\text{AS}} - C_A) \\ &= \left[\frac{5 \times 10^{-13}}{\pi (3600)} \right]^{1/2} (2 \times 10^{21} - 1 \times 10^{12}) \\ &= 1.33 \times 10^{13} \text{ Atoms/cm}^2 \cdot \text{s} \end{aligned}$$

27.10 Same Situation as Prob 27.9

$$C_{\text{AS}} = 2 \times 10^{21} \text{ Atoms/cm}^3$$

$$C_A = 1 \times 10^{12} \text{ "}$$

$$C_A = 2 \times 10^{17} \text{ "}$$

$$\text{erf} \frac{z}{2\sqrt{D_{AB}t}} = \frac{2 \times 10^{21} - 2 \times 10^{17}}{2 \times 10^{21} - 1 \times 10^{12}} = 0.9999$$

$$\frac{z}{2\sqrt{D_{AB}t}} = 2.8$$

D_{AB}

$$z = 5.6 \left(5 \times 10^{-13} \right)^{1/2} t^{1/2}$$

$$= 3.960 \times 10^{-6} t^{1/2}$$

<u>$t(s)$</u>	$t^{1/2}$	$z(\text{cm}) \times 10^4$
3600	60	2.346
7200	84.8	3.36
10800	103.9	4.115
14400	120	4.75
18000	134.2	5.31
21600	147.0	5.82

27.10 - (CONTINUED)

$z(t^{1/2})$ IS OBVIOUSLY LINEAR
WITH SLOPE = $0.0396 \text{ } \mu\text{m}/\text{s}^{1/2}$

27.11 $\text{O}_2(\text{A}) \rightleftharpoons \text{H}_2\text{O}(\text{B})$

100% O_2 gas
298 K 2.0 atm

Sealed tank
deep liquid water
initial dissolved O_2
100 g O_2/m^3

$$T = 298 \text{ K} \quad P = 2 \text{ atm}$$

$$C_{\text{AO}} = 10^9 \text{ m}^{-3}$$

$$\begin{aligned} C_{\text{AS}} &= \frac{100}{0.8} = 125 \text{ mol/m}^3 \\ &= 125(32) = 80 \text{ g/m}^3 \end{aligned}$$

$$\frac{C_{\text{AS}} - C_A}{C_{\text{AS}} - C_{\text{AO}}} = \frac{80 - 20}{80 - 10} = 0.857 = \text{erf} \left[\frac{z}{2\sqrt{D_{\text{AB}}t}} \right]$$

$$\frac{z}{2\sqrt{D_{\text{AB}}t}} = 1.038$$

$$t = \left[\frac{z}{2(1.038)} \right]^2 \left[\frac{1}{D_{\text{AB}}} \right]$$

$$= \left[\frac{0.3}{2(1.038)} \right]^2 \left[\frac{1}{2.1 \times 10^{-5}} \right]$$

$$= 994 \text{ s} = 16.6 \text{ m}$$

27.12 A DIFFUSING INTO SEMI-INFINITE MEDIUM

$$C_{AS} = 2 \text{ mol/m}^3$$

$$C_{AO} = 0 \text{ "}$$

$$C_A = 0.2 \text{ " } @ z = 5 \text{ mm}$$

$$\frac{C_{AS} - C_A}{C_{AS} - C_{AO}} = \frac{2 - 0.2}{2} = g_D = \exp \frac{z}{2\sqrt{D_{AB}t}}$$

$$\frac{z}{2\sqrt{D_{AB}t}} = 1.165$$

$$t = \left[\frac{z}{2(1.165)} \right]^2 (D_{AB})^{-1}$$

$$= \left[\frac{0.5}{2(1.165)} \right]^2 (1 \times 10^{-6})^{-1}$$

$$= 46053 \text{ s} = 12.79 \text{ h}$$

27.13 REFER TO PROB 27.4 -

C₆H₆ DIFFUSING INTO H₂O SATURATED SOIL,

ANALYTICAL SOLN GIVEN BY EQ (27-16):

$$\frac{C_A - C_{AS}}{C_{AO} - C_{AS}} = \frac{A}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n\pi z}{L} \right) e^{-\left(\frac{n\pi}{L}\right)^2 X_D t}$$

$$\text{FOR } n \text{ ODD; } X_D = D_{AB}t / X_1^2$$

$$\text{IN THE PRESENT CASE: } X_1 = \frac{L}{2} = 1 \text{ m}$$

CALCULATIONS MADE USING SPREAD SHEET - R.H. COLUMN

PROCEDURE IS TO GUESS A VALUE OF t & SOLVE CONTINUOUSLY UNTIL $C_A = 1 \text{ g/m}^3$ @ $z = Y_1$

27.13 CONTINUED -

EXCEL SPREADSHEET

$$T = 273 \text{ K}$$

$$M_A = 78 \quad D_{AB} = 1 \times 10^{-9} \text{ m}^2/\text{s}$$

$$C_{AS} = 24.0 \text{ mol/m}^3$$

$$C_{AO} = 0$$

n	Term	Summation	% Change
1	1.16E+00	1.160E+00	
3	-1.84E-01	9.763E-01	18.8
5	2.50E-02	1.001E+00	2.5
7	-1.92E-03	9.994E-01	0.2
9	7.67E-05	9.995E-01	0.0
11	-1.53E-06	9.995E-01	0.0
13	1.50E-08	9.995E-01	0.0
15	-7.19E-11	9.995E-01	0.0
17	1.67E-13	9.995E-01	0.0
19	-1.86E-16	9.995E-01	0.0
21	1.00E-19	9.995E-01	0.0
23	-2.59E-23	9.995E-01	0.0
25	3.21E-27	9.995E-01	0.0

$$\text{RESULT: } t = 3.763 \times 10^7 \text{ s}$$

$$= 10452 \text{ h}$$

$$= 435.5 \text{ DAYS}$$

27.14 REFER TO PROBLEM 27.4

FLUX EXPRESSION GIVEN AS EQN (27-17).

$$N_{A2} = \frac{4D_{AB}}{L} (C_{AS} - C_{AO}) \sum_{n=1}^{\infty} \cos \left(\frac{n\pi z}{L} \right) e^{-\frac{n^2 \pi^2 D_{AB} t}{4X_1^2}}$$

$$\text{WITH } X_1 = \frac{L}{2} = 1 \text{ m}, \quad N_{A2} = 0 @ z = 0$$

$$M_A(t) = W^2 \int_0^t N_A(z) \Big|_{z=0} dt$$

27.14 CONTINUED -

SPREADSHEET FOR SUMMATION:

n	Term	Summation	% Change
1	1.17E-01	1.168E-01	
3	6.79E-02	1.847E-01	36.7
5	3.18E-02	2.164E-01	14.7
7	1.65E-02	2.330E-01	7.1
9	1.00E-02	2.430E-01	4.1
11	6.70E-03	2.497E-01	2.7
13	4.80E-03	2.545E-01	1.9
15	3.60E-03	2.581E-01	1.4
17	2.80E-03	2.609E-01	1.1
19	2.25E-03	2.631E-01	0.9
21	1.84E-03	2.650E-01	0.7
23	1.53E-03	2.665E-01	0.6
25	1.30E-03	2.678E-01	0.5
27	1.11E-03	2.689E-01	0.4
29	9.64E-04	2.699E-01	0.4
31	8.43E-04	2.707E-01	0.3
33	7.44E-04	2.715E-01	0.3
35	6.62E-04	2.721E-01	0.2
37	5.92E-04	2.727E-01	0.2
39	5.33E-04	2.733E-01	0.2
41	4.82E-04	2.737E-01	0.2
43	4.38E-04	2.742E-01	0.2
45	4.00E-04	2.746E-01	0.1
47	3.67E-04	2.749E-01	0.1
49	3.38E-04	2.753E-01	0.1
51	3.12E-04	2.756E-01	0.1

RESULT: For $t = 2 \times 10^7 \text{ s}$

$$\underline{M_A = 516 \text{ grams}}$$

27.15. CONCENTRATION PROFILE IN A SLAB BY NO SURFACE RESISTANCE IS EXPRESSED BY EQUATION (27-16),

$$\frac{C_A - C_{AS}}{C_{AO} - C_{AS}} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi t}{L} e^{-\left(\frac{n\pi}{2}\right)^2 X_D}$$

N ODE -

27.15 CONTINUED -

$$\text{MEAN CONCENTRATION: } \bar{C} = \frac{\int_0^L C_A dz}{\int_0^L dz}$$

SUBSTITUTING:

$$\begin{aligned} \bar{C}_A &= \frac{4}{\pi} (C_{AO} - C_{AS}) \left[\int_0^L \frac{1}{n} e^{-\left(\frac{n\pi}{2}\right)^2 X_D} \right. \\ &\quad \times \sin \left(\frac{n\pi z}{L} \right) dz + C_{AS} dz \Big] \\ &= -\frac{4}{\pi} (C_{AO} - C_{AS}) \left[\sum_{n=1}^{\infty} \frac{1}{n} \frac{L}{n\pi} e^{-\left(\frac{n\pi}{2}\right)^2 X_D} \right. \\ &\quad \times \cos \left(\frac{n\pi z}{L} + C_{AS} L \right) \Big] \\ \frac{C_A - C_{AS}}{C_{AO} - C_{AS}} &= -\frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{-\left(\frac{n\pi}{2}\right)^2 X_D} [-1 - (-1)] \\ &= \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{-\left(\frac{n\pi}{2}\right)^2 X_D} \end{aligned}$$

- n ope

$$\text{FOR } \bar{Y} = \frac{\bar{C}_A - C_{AS}}{C_{AO} - C_{AS}}$$

$$\begin{aligned} \bar{Y} &= 0.8106 \left[e^{-\left(\frac{1\pi}{2}\right)^2 X_D} + \frac{1}{9} e^{-\left(\frac{3\pi}{2}\right)^2 X_D} \right. \\ &\quad \left. + \frac{1}{25} e^{-\left(\frac{5\pi}{2}\right)^2 X_D} + \dots \right] \end{aligned}$$

DRAFT THE CALCULATION FOR $\bar{Y}(X_D)$:

27.16

$$C_{A0} = 0$$

$$C_A |_{t=42\text{ h}} = 48.5 \text{ mmol/L}$$

GOVERNING DIFFERENTIAL EQUATION:

$$\frac{\partial C_A}{\partial t} = D_{AB} \frac{\partial^2 C_A}{\partial z^2} \quad (\text{a})$$

CHARTS WILL BE USED -

$$Y = \frac{C_{AS} - C_A}{C_{AS} - C_{A0}} = \frac{50 - 48.5}{50} = 0.03$$

FIGURE F.4

$$\text{AT } z = 0 \quad X = \frac{D_{AB} t}{z_1^2} \approx 1.6$$

$$D_{AB} = \frac{1.6 (0.5)^2}{42 (3600)} = 1.64 \times 10^{-6} \text{ cm}^2/\text{s}$$

27.17 CYLINDRICAL GEOMETRY

$$D_{AB} = 4 \times 10^{-7} \text{ cm}^2/\text{s}$$

$$L = 5 \text{ cm} \quad C_A' = 2.0 \text{ g mol/m}^3$$

$$r = 0.5 \text{ "} \quad K = 1.5 \frac{\text{cm}^3}{\text{cm}^3 \text{ FLUID}}$$

$$C_A = K C_A' \quad \text{cm}^3 \text{ ABSORBENT}$$

$$C_{A0} = 0$$

$$C_{AS} = 1.5 C_A' = 3.0 \text{ g mol/m}^3$$

$$C_A = 2.94 \text{ g mol/m}^3 @ X = 0.1 \text{ cm}$$

27.17 (CONTINUED) -

USING CHARTS - SINCE $L \gg r$ WE ASSUME DIFFUSION IS ONLY SIGNIFICANT IN THE r -DIRECTION

$$Y = \frac{C_{AS} - C_A}{C_{AS} - C_{A0}} = \frac{3.0 - 2.94}{3.0} = 0.02$$

$$\text{FIGURE F.2} @ \frac{X}{r} = 0.2 \quad m = 0$$

$$X \approx 0.75 = \frac{D_{AB} t}{r^2}$$

$$t = \frac{0.75 (0.5)^2}{4 \times 10^{-7}} = \frac{4.69 \times 10^5 \text{ s}}{= 130.3 \text{ h}}$$

$$= 5.428 \text{ DAYS}$$

27.18 SPHERICAL GEOMETRY

$$D_{AB} = 1.5 \times 10^{-7} \text{ cm}^2/\text{s}$$

$$\text{AT } r = 0 \quad C_A = 0.02$$

$$C_{A0} = 0.2$$

$$r_i = 0.05 \text{ cm}$$

$$\frac{C_A - C_{AS}}{C_{A0} - C_{AS}} = 0.10$$

USING CHARTS - FIGURE F.9

$$n = \frac{r}{r_i} = 0 \quad m = 0$$

$$X = 0.3 = \frac{D_{AB} t}{r_i^2}$$

$$t = \frac{0.3 (0.05)^2}{1.5 \times 10^{-7}} = \frac{5 \times 10^3 \text{ s}}{= 1.389 \text{ h}}$$

27.19 - TRANSIENT DRYING OF A SLAB

$$D_{AB} = 1.3 \times 10^{-4} \text{ cm}^2/\text{s}$$

@ $t=0$ $w = 15\%$ By WT

@ $x=x_1$, $w = 4\%$ By WT

DESIRABLE $w @ x = \frac{x_1}{2} = 10\%$ By WT.

MOISTURE CONCENTRATIONS MUST BE EXPRESSED IN CONSISTENT TERMS ~

- WT H_2O PER WT DRY SOLN ~

$$\therefore w'_0 = \frac{0.15}{1-0.15} = 0.1765 \frac{g H_2O}{g D.S.}$$

$$w'_S = \frac{0.04}{1-0.04} = 0.0417 \quad "$$

$$w'_A = \frac{0.10}{1-0.10} = 0.111 \quad "$$

FOR CHART SCALING:

$$Y = \frac{0.111 - 0.0417}{0.1765 - 0.0417} = 0.515$$

$$n = \frac{x}{x_1} = 0.5$$

$$m = 0$$

$$f_{AB} f_7 - @ n=0.4 \frac{D_{AB} t}{x_1^2} \approx 0.24$$

$$@ n=0.6 \quad " \quad \approx 0.16$$

$$\therefore @ n=0.5 \quad \frac{D_{AB} t}{x_1^2} \approx 0.20$$

$$t = \frac{0.20 (5)^2}{1.3 \times 10^{-4}} \rightarrow \frac{38400 \text{ s}}{= 10.68 \text{ h}}$$

27.20

Al DIFFUSES INTO Si

$$T = 1250 \text{ K} \quad t = 10 \text{ h} = 3.6 \times 10^4 \text{ s}$$

$$f_{AB} 24.6 \sim D_{AB} \approx 1.1 \times 10^{-13} \text{ cm}^2/\text{s}$$

$$x_1 = 0.5 \mu\text{m}$$

CONDITION SOUGHT IS $w_A @ \frac{x}{x_1} = 0.5$

CHART SOLUTION ISN'T POSSIBLE SINCE B.C. ON TOP Si SURFACE IS UNKNOWN

PRESUMING Si THICKNESS IS LARGE COMPARED TO PENETRATION DEPTH - CONSIDER THIS A SEMI-INFINITE SITUATION:

$$\frac{w_{AS} - w_A}{w_{AS} - w_{AO}} = \operatorname{erf} \frac{z}{2\sqrt{D_{AB} t}} \quad \{ \text{see (27-10)}$$

$$\frac{z}{2\sqrt{D_{AB} t}} = \frac{0.25 \times 10^{-4}}{2 \left[(1.1 \times 10^{-13}) (3.6 \times 10^4) \right]^{1/2}} \approx 0.1986$$

$$\operatorname{erf}(0.1986) \approx 0.2212$$

$$= \frac{0.01 - w_A}{0.01} \quad w_A = 0.00779$$

$$\approx 0.779\%$$

27.21 SPHERICAL GEOMETRY

$$D_{AB} = 2 \times 10^{-6} \text{ cm}^2/\text{s}$$

$$r_1 = 0.25 \text{ cm}$$

$$C_{AS} = 0.1 (150) = 15 \text{ mol/m}^3$$

$$C_A(r=0) = 12 \text{ mol/m}^3$$

$$\frac{C_{AS} - C_A}{C_{AS} - C_{AO}} = \frac{15 - 12}{15} = 0.2$$

$$n = \frac{x}{x_1} = 0 \quad m = 0$$

$$\text{Fig: F.9} \quad X_0 = \frac{D_{AB} t}{r_1^2} \approx 0.25$$

$$t = \frac{0.25 (0.25)^2}{2 \times 10^{-6}} = \underline{\underline{7812 \text{ s}}} \\ = \underline{\underline{2.17 \text{ h}}}$$

27.22 RECTANGULAR BLOCK - EDGES SEALED -

$$C_{AO} = 64 \text{ mol/cm}^3$$

$$C_{AS} = 0$$

$$D_{AB} = 3 \times 10^{-7} \text{ cm}^2/\text{s}$$

$$V = (1 \text{ cm})(0.652 \text{ cm}) L$$

L = OTHER DIMENSION

$$\frac{41.7}{64} = (1)(0.652)L$$

$$L = 1 \text{ cm}$$

$$\frac{D_{AB} t}{X_1^2} = \frac{(3 \times 10^{-7})(0.6)}{(0.652/2)^2}$$

$$= 0.976$$

27.22 CONTINUED -

$$n = 0 \quad m = 0$$

$$\text{fig F.7} \quad Y \approx 0.11$$

$$\frac{C_{AS} - C_A}{C_{AS} - C_{AO}} = \frac{0 - C_A}{0 - 64} = 0.11 \quad C_A = 7.04 \text{ mol/cm}^3$$

27.23 CYLINDER: $r = 1.25 \text{ cm}$ $L = 80 \text{ cm}$

$$C_{AO} = 30 \text{ wt\%} = \frac{0.3}{1-0.3} = 0.429 \text{ g}_A/\text{g}_{\text{ps.}}$$

$$C_{AS} = 1 \text{ wt\%} = \frac{0.01}{1-0.01} = 0.0101 \quad "$$

SINCE $L \gg r$ - VIRTUALLY ALL DIFFUSION IS IN r -DIRECTION

$$C_A(r=0) = 18 \text{ wt\%} = \frac{0.18}{1-0.18} = 0.2195$$

$$\text{AT } t = 36000 \text{ s} \quad (10h)$$

$$Y = \frac{w_A' - w_{AS}'}{w_{A0}' - w_{AS}'} = \frac{0.219 - 0.0101}{0.429 - 0.0101} \approx 0.50$$

$$\text{for } n = m = 0 \quad X = \frac{D_{AB} t}{r^2} = 0.2$$

$$\frac{D_{AB}}{r^2} = \frac{0.2}{10h}$$

$$\text{AFTER 15 h: } X = \frac{D_{AB}}{r^2}(15) = 0.3$$

$$\text{fig f.8} \quad Y \approx 0.29 = \frac{w_A' - 0.0101}{0.429 - 0.0101}$$

$$w_A' = 0.1316$$

$$\text{wt\%} = \frac{w_A}{1-w_A} = 0.1316 \quad \underline{\underline{\text{wt\%} = 11.6\%}}$$

27.24 SPHERICAL GEOMETRY -

$$r = 0.1 \text{ cm}$$

For H₂O in AIR - $D_{AB} = 0.260 \text{ cm}^2/\text{s}$
 @ 298 K, 1 atm

$$w_{AO} = 0$$

$$w_A(r=0) = 0.9 w_{AS}$$

$$\bar{Y} = \frac{w_{AS} - w_A}{w_{AS} - w_{AO}} = \frac{1 - 0.9}{1} = 0.1$$

$$\text{Fig F.9} - n = m = 0$$

$$X_D = \frac{D_{AB} t}{r^2} \approx 0.3$$

$$t = \frac{0.3(0.1)^2}{0.260} = \underline{\underline{0.0115 \text{ s}}}$$

27.25 RECTANGULAR SODIUM

$$10 \text{ cm} \times 10 \text{ cm} \times 45 \text{ cm}$$

H₂O DIFFUSES: $D_{AB} = 1.04 \times 10^{-5} \text{ cm}^2/\text{s}$

$$C_{AO} = 45 \text{ wt\%}, w_{AO} = \frac{0.45}{1-0.45} = 0.818$$

$$C_{AS} = 15 \text{ "}, w_{AS} = \frac{0.15}{1-0.15} = 0.176$$

$$C_A = 25 \text{ "}, w_A = \frac{0.25}{1-0.25} = 0.333$$

$$\bar{Y} = \frac{w_{AS} - w_A}{w_{AS} - w_{AO}} = \frac{0.176 - 0.333}{0.176 - 0.818} = 0.244$$

$$= Y_1 Y_2 = Y_s^2 \quad \begin{matrix} \text{SINCE SIDES} \\ \text{HAVE SAME} \\ \text{DIMENSIONS} \end{matrix}$$

$$\therefore Y_s = (0.244)^{1/2} = 0.494$$

27.25 (CONTINUED)

USING FIGURE F.7

$$n = m = 0 \quad X_D \approx 0.39 = \frac{D_{AB} t}{r^2}$$

$$t = \frac{0.39(5)^2}{1.04 \times 10^{-5}} = \frac{9.375 \times 10^5}{1.04} \text{ s} \\ = \underline{\underline{260.4 \text{ h}}} \\ = \underline{\underline{10.85 \text{ DAYS}}}$$

IF ALL DIFFUSION IS FROM ENDS:

$$\bar{Y} = 0.244$$

$$X_D \approx 0.72 = \frac{D_{AB} t}{r^2}$$

$$t = \frac{0.72(22.5)^2}{1.04 \times 10^{-5}} = \frac{3.50 \times 10^7}{1.04} \text{ s} \\ = \underline{\underline{9734 \text{ h}}} \\ = \underline{\underline{405.6 \text{ DAYS}}}$$

CHAPTER 28

28.1 FOR O₂ DIFFUSING IN AIR
@ 300 K, 1 ATM

$$D_{AB}(273K) = 0.175 \text{ cm}^2/\text{s}$$

$$D_{AB}(300K) = 0.175 \left(\frac{300}{273}\right)^{3/2} = 0.202 \text{ cm}^2/\text{s}$$

$$@ 300 K - D_{H_2} = 0.1569 \text{ cm}^2/\text{s}$$

$$S_C = \frac{0.1569}{0.202} = \underline{\underline{0.777}} \quad (\text{a})$$

FOR O₂ IN H₂O @ 300 K

$$D_{AB} = 1.5 \times 10^{-9} \text{ m}^2/\text{s}$$

$$D_{H_2O} = 0.880 \times 10^{-6} \text{ m}^2/\text{s}$$

$$S_C = \frac{0.880 \times 10^{-6}}{1.5 \times 10^{-9}} = \underline{\underline{587}} \quad (\text{b})$$

28.2 SiH₄ IN He
(A) 900 K
(B) 100 Pa
 $y_{SiH_4} = 0.01$

$$D_{AB} @ 298 K, 101.3 kPa = 0.518 \text{ cm}^2/\text{s}$$

$$D_{AB} T, P = \left(0.518\right) \left(\frac{P_1}{P_2}\right) \left(\frac{T_2}{T_1}\right)^{3/2} \left(\frac{\Omega_D}{\Omega_D}\right)$$

$$\text{VALUES: } E_{AB}/k = 46.06$$

$$@ 298 K \quad E_{AB}/kT = 64.70 \quad \Omega_D = 0.802$$

$$@ 900 K \quad E_{AB}/kT = 19.54 \quad \Omega_D = 0.1668$$

$$D_{AB} T, P = \left(0.518\right) \left(\frac{1.013 \times 10^5}{1100}\right) \left(\frac{900}{298}\right)^{3/2} \times \frac{0.802}{0.1668}$$

28.2 CONTINUED -

$$D_{AB} T, P = 3.31 \times 10^{-3} \text{ cm}^2/\text{s}$$

$$D_{He} @ 900 K = 6 \times 10^{-3} \text{ ft}^2/\text{s} \cdot \left(\frac{0.3048 \text{ m}}{\text{ft}}\right)^2 \\ = 5.574 \times 10^{-4} \text{ m}^2/\text{s} \\ = 5.574 \text{ cm}^2/\text{s}$$

$$S_C = \frac{5.574}{3210} = \underline{\underline{0.001684}}$$

28.3 Cl₂ IN SiCl₄ (l)
(A) (B)

FOR D_{AB} - USE WILKE-CRANG EQU.

- Eq (24-52)

$$D_{AB} = \frac{7.4 \times 10^{-8} (M_B \phi_B)^{1/2}}{V_A^{0.6}} \frac{T}{\mu_B}$$

$$\text{VALUES: } \phi_B = 1.0 \quad M_B = 170$$

$$\mu_B = 5.2 \times 10^{-4} \text{ kg/m.s} \\ = 0.52 \text{ cP}$$

$$V_A = 48.4$$

$$\text{SUBSTITUTION: } D_{AB} = 5.395 \times 10^{-5} \text{ cm}^2/\text{s}$$

$$\lambda = \frac{\mu}{g} = \frac{5.2 \times 10^{-4} \text{ kg/m.s}}{1.47 \text{ g/cm}^3} = 3.54 \times 10^{-3} \text{ cm}^2/\text{s}$$

$$S_C = \frac{3.54 \times 10^{-3}}{5.395 \times 10^{-5}} = \underline{\underline{65.6}}$$

$$28.4 \quad S_t = \frac{k_c}{\sigma_{D_B}} \\ = \frac{k_c L}{D_{AB}} \frac{\nu}{L \nu_p} \frac{D_{AB}}{\nu} \\ = \underline{\underline{S_h / \rho_e S_c}}$$

$$R_e = \frac{U_{\nu_p} L}{D_{AB}} \\ = \underline{\underline{\frac{U_{\nu_p} L}{\nu} \frac{\nu}{D_{AB}} = R_e S_c}}$$

28.5

VARIABLE	SYMBOL	DIM.
MASS TX COEF	k_c	$L t^{-1}$
LENGTH	L	L
VELOCITY	U	$L t^{-1}$
VISCOSE	μ	$M L^{-1} t^{-1}$
DIFFUSIVITY	D_{AB}	$L^2 t^{-1}$
DENSITY	ρ	$M L^{-3}$

$$L = n - r = 6 - 3 = 3 \text{ \pi groups}$$

CORE = D_{AB}, ρ, L

$$\Pi_1 = D_{AB} \rho L k_c \\ = \left(\frac{L^2}{t} \right)^a \left(\frac{M}{L^3} \right)^b L^c \frac{L}{t}$$

$$M: \alpha = b \\ L: \alpha = 2a - 3b + c + 1 \\ t: \alpha = -a - 1$$

$$a = -1 \quad b = 0 \quad c = 1$$

$$\underline{\underline{\Pi_1 = k_c L / D_{AB} = S_h}}$$

28.5 (CONTINUED)

$$\Pi_2 = D_{AB} \rho L U = \left(\frac{L^2}{t} \right) \left(\frac{M}{L^3} \right) L F \frac{L}{t}$$

$$M: \alpha = \varepsilon$$

$$L: \alpha = 2a - 3\varepsilon + f + 1$$

$$t: \alpha = -a - 1$$

$$a = -1 \quad \varepsilon = 0 \quad f = 1$$

$$\underline{\underline{\Pi_2 = U L / D_{AB}}}$$

$$\Pi_3 = D_{AB} \rho L^h i \nu = \left(\frac{L^2}{t} \right)^g \left(\frac{M}{L^3} \right)^h L^i \frac{M}{L^f}$$

$$M: \alpha = h + 1$$

$$L: \alpha = 2g - 3h + i - 1$$

$$t: \alpha = -g - 1$$

$$g = -1 \quad h = -1 \quad i = 0$$

$$\underline{\underline{\Pi_3 = \frac{\mu}{\rho D_{AB}} = Sc}}$$

$$\text{-NOTE THAT } \Pi_2 / \Pi_3 = \frac{U \rho L}{\mu} = Re$$

28.6

VARIABLE	SYMBOL	DIMENSIONS
MASS	M	M
DIAMETER	D	L
SURFACE TENSION	γ	L/t^2
DENSITY (ρ)	ρ_L	M/L^3
VISCOSITY (μ)	μ_L	M/Lt
VELOCITY (U)	U	L/t
DENSITY (ρ)	ρ_g	M/L^3
VISCOSITY (μ)	μ_g	M/Lt

$$i = n - r = 9 - 3 = 6 \text{ \pi groups}$$

$$\text{CORE} = \rho_L \mu_L D$$

264

28.6 (CONTINUED) -

$$\Pi_1 = S_L^a \mu_L^b D^c \nu = \left(\frac{m}{L^3}\right)^a \left(\frac{m}{L^2 t}\right)^b \left(\frac{L}{t}\right)^c$$

$$\begin{array}{ll} M: 0 = a+b & a=1 \\ L: 0 = -3a - b + c + 1 & c=1 \\ t: 0 = -b - 1 & b=-1 \end{array}$$

$$\underline{\Pi_1 = S_L D \nu / \mu_L = Re}$$

$$\Pi_2 = S_L^a \mu_L^b D^c g = \left(\frac{m}{L^3}\right)^a \left(\frac{m}{L^2 t}\right)^b \left(\frac{L}{t^2}\right)^c$$

$$\begin{array}{ll} M: 0 = a+b & a=2 \\ L: 0 = -3a - b + c + 1 & c=3 \\ t: 0 = -b - 2 & b=-2 \end{array}$$

$$\underline{\Pi_2 = S_L^2 D^3 g / \mu_L^2 = D^3 g / V^2}$$

$$\Pi_3 = S_L^a \mu_L^b D^c \sigma = \left(\frac{m}{L^3}\right)^a \left(\frac{m}{L^2 t}\right)^b \left(\frac{M}{t^2}\right)^c$$

$$\begin{array}{ll} M: 0 = a+b+1 & a=1 \\ L: 0 = -3a - b + c & c=1 \\ t: 0 = -b - 2 & b=-2 \end{array}$$

$$\underline{\Pi_3 = S_L D \sigma / \mu_L^2}$$

$$\Pi_4 = S_L^a \mu_L^b D^c \mu_g$$

$$\sim \text{By INSPECTION} - \underline{\Pi_4 = \mu_L / \mu_g}$$

$$\Pi_5 = S_L^a \mu_L^b D^c g$$

$$\sim \text{By INSPECTION} \quad \underline{\Pi_5 = S_L / S_L}$$

$$\Pi_6 = S_L^a \mu_L^b D^c M = \left(\frac{m}{L^3}\right)^a \left(\frac{m}{L^2 t}\right)^b \left(\frac{L}{t}\right)^c M$$

$$\begin{array}{ll} M: 0 = a+b+1 & a=-1 \\ L: 0 = -3a - b + c & c=-3 \\ t: 0 = -b & b=0 \end{array}$$

$$\underline{\Pi_6 = M / S_L D^3}$$

28.7 VARIABLE

SYMBOL

DIMENSIONS

MASS TX COEF.	k_c	L/t
VELOCITY	V	L/t
PIPE DIAMETER	D_L	L
"	D_o	L
DENSITY	ρ	M/L^3
VISCOSEITY	μ	M/Lt
DIFFUSIVITY	D_{AB}	L^2/t

$$L = n - r = 7 - 3 = 4 \text{ GROUPS}$$

$$\text{CORE} = D_{AB}, \rho, D_o$$

$$\Pi_1 = D_{AB} S_L^a D_o^b k_c = \left(\frac{L^2}{t}\right)^a \left(\frac{m}{L^3}\right)^b \left(\frac{L}{t}\right)^c$$

$$\begin{array}{ll} M: 0 = b & b=0 \\ L: 0 = 2a - 3b + c + 1 & c=1 \\ t: 0 = -a - 1 & a=-1 \end{array}$$

$$\underline{\Pi_1 = k_c D_o / D_{AB} = Sh}$$

$$\Pi_2 = D_{AB}^a S_L^b D_o^c V = \left(\frac{L^2}{t}\right)^a \left(\frac{m}{L^3}\right)^b \left(\frac{L}{t}\right)^c$$

SAME FORM AS Π_1 --

$$\underline{\Pi_2 = D_o V / D_{AB}}$$

28.7 CONTINUED -

$$\Pi_3 = \frac{a}{D_{AB}} \frac{b}{S} \frac{c}{D_0} \mu = \left(\frac{L^2}{t}\right)^a \left(\frac{m}{L^3}\right)^b \left(\frac{M}{L^2 t}\right)^c$$

$$M: 0 = b+1$$

$$b = -1$$

$$L: 0 = 2a - 3b + c - 1$$

$$c = 0$$

$$t: 0 = -a - 1$$

$$a = -1$$

$$\underline{\Pi_3 = \frac{\mu}{8 D_{AB}} = \frac{S}{D_{AB}}} = Sc$$

$$\Pi_4 = \frac{a}{D_{AB}} \frac{b}{S} \frac{c}{D_0} \frac{t}{D_L}$$

$$\sim \text{By Inspection} - \underline{\Pi_4 = \frac{D_L}{D_0}}$$

$$\text{NOTE THAT } \frac{\Pi_2}{\Pi_3} = \frac{D_0 S}{\mu} = Pe$$

28.8 VARIABLE SYMBOL DIMENSION

CONCENTRATION DIFFERENCE	$C_{A0} - C_{A0}$	M/L^3
OVERALL "	$C_{A0} - C_{A0}$	M/L^3
RADIUS	r	L
REFERENCE RADIUS	R	L
DIFFUSIVITY	D_{AB}	L^2/t
MASS TX. COEF	k_c	L/t
TIME	t	t

$$l = n - r = 7 - 3 = 4$$

CORE - $C_{A0} - C_{A0}, R, D_{AB}$

$$\Pi_1 = (C_{A0} - C_{A0})^a R^b D_{AB}^c (C_A - C_{A0})$$

$$\text{By INSPECTION} - \underline{\Pi_1 = \frac{C_A - C_{A0}}{C_{A0} - C_{A0}}}$$

28.8 CONTINUED

$$\Pi_2 = (C_{A0} - C_{A0})^a R^b D_{AB}^c r$$

$$\sim \text{By INSPECTION} - \underline{\Pi_2 = \frac{r}{R}}$$

$$\Pi_3 = (C_{A0} - C_{A0})^a R^b D_{AB}^c k_c = \left(\frac{M}{L^3}\right)^a \left(\frac{L^2}{t}\right)^b \left(\frac{L}{t}\right)^c$$

$$M: 0 = a$$

$$a = 0$$

$$L: 0 = -3a + b + 2c + 1$$

$$b = 1$$

$$t: 0 = -c - 1$$

$$c = -1$$

$$\underline{\Pi_3 = k_c R / D_{AB}}$$

$$\Pi_4 = (C_{A0} - C_{A0})^a R^b D_{AB}^c t = \left(\frac{M}{L^3}\right)^a \left(\frac{L^2}{t}\right)^b \left(\frac{L}{t}\right)^c t$$

$$M: 0 = a$$

$$a = 0$$

$$L: 0 = -3a + b + 2c$$

$$b = -2$$

$$t: 0 = -c + 1$$

$$c = 1$$

$$\underline{\Pi_4 = D_{AB} t / R^2}$$

28.9 B.L. EQUATIONS:

$$\text{LAMINAR: } \frac{k_c x}{D_{AB}} = 0.332 Re_x^{1/2} Sc^{1/3}$$

$$\text{TURBULENT: } \frac{k_c x}{D_{AB}} = 0.0292 Re_x^{4/5} Sc^{1/3}$$

$$Re_x l_{tr} = 2 \times 10^5$$

$$\left. \begin{array}{l} \text{FRACTION OF} \\ \text{MASS TX} \\ \text{WHICH IS} \\ \text{LAMINAR} \end{array} \right\} = \frac{N_{AL}}{N_{AL} + N_{AT}} = \frac{\bar{k}_{CL}}{\bar{k}_{CL} + \bar{k}_{CT}}$$

28.9 CONTINUED

$$\begin{aligned}
 \bar{k}_{ct} &= \frac{1}{L} \int_0^L k_{ct} dx \\
 &= \frac{1}{L} (0.332) \left(\frac{U_x}{w} \right)^{1/2} S_c^{1/3} \int_0^L k_{tr}^{1/2} dx \\
 &= \frac{0.664}{L} R_{tr}^{1/2} S_c^{1/3} \\
 \bar{k}_{ct} &= \frac{1}{L} \int_{Ltr}^L k_{ct} dx \\
 &= \frac{1}{L} (0.0292) \left(\frac{U_x}{w} \right)^{4/5} S_c^{1/3} \int_{Ltr}^L k_{tr}^{4/5} dx \\
 &= \frac{0.0365}{L} \left(R_{tr}^{4/5} - R_{Ltr}^{4/5} \right) S_c^{1/3}
 \end{aligned}$$

$$\begin{aligned}
 \text{LAMINAR} \\
 \text{FRACTION} &= \frac{0.664 R_{tr}^{1/2}}{0.664 R_{tr}^{1/2} + 0.0365 (R_{tr}^{4/5} - R_{Ltr}^{4/5})} \\
 R_{tr}^{1/2} &= (2 \times 10^5)^{1/2} = 447.2 \\
 R_{tr}^{4/5} &= (2 \times 10^5)^{4/5} = 17411 \\
 R_{tr}^{4/5} &= (3 \times 10^6)^{4/5} = 151950
 \end{aligned}$$

SUBSTITUTING $\frac{1}{2}$ SOLVING

$$\text{LAMINAR FRACTION} = 0.057 = 5.7\%$$

28.10

AT SURFACE

$$\begin{aligned}
 T &= 900 \text{ K} & P &= 100 \text{ Pa} & U_w &= 50 \text{ cm/s} \\
 L &= 15 \text{ cm} & D_{AB} &= 0.4036 \times 10^{-4} \text{ cm}^2/\text{s}
 \end{aligned}$$

$$Y_{AB} = 0.061$$

28.10 CONTINUED

$$S_c = \frac{1}{D_{AB}} = \frac{1.8 \times 10^4}{2.167 \times 10^{-8}} \left(\frac{1}{0.4036 \times 10^{-4}} \right) = 1.67$$

$$Re = \frac{(50)(15)(2.167 \times 10^{-8})}{1.8 \times 10^{-4}} = 0.1125 \quad (\text{LAMINAR})$$

$$Sh = \frac{\bar{k}_{ct} L}{D_{AB}} = 0.664 Re^{1/2} S_c^{1/3} = 0.264$$

$$k_C = \frac{0.4036 \times 10^4}{15} (0.264) = 71.1 \text{ cm}^2/\text{s}$$

$$c = \frac{P}{RT} = \frac{100 / 1.0135 \times 10^5}{(82.06)(500)} = 1.336 \times 10^{-8} \text{ mol/cm}^3$$

$$C_{AB} = 0.001 (1.336 \times 10^{-8}) = 1.336 \times 10^{-11} \text{ "}$$

$$\begin{aligned}
 W_A = N_A A &= k_C (C_{AB} - C_{AS})(15)(15) \\
 &= (71.1)(1.336 \times 10^{-11})(225) \\
 &= 2.136 \times 10^{-7} \text{ mol/s} \\
 &= 1.28 \times 10^{-5} \text{ mol/m}
 \end{aligned}$$

THICKEST Si LAYER WILL OCCUR
WHERE k_{ct} IS LARGEST

~ AT X = 0

28.11

$$T = 300 \text{ K}$$

$$\bar{T} = 1 \text{ atm}$$

$$P_{AS} = 0.137 \text{ atm}$$

$$\begin{aligned}
 V &= \frac{V}{(W \times H)} = \frac{60}{(1 \times 1.5 \times 1.0)} = 0.67 \text{ m/s} \\
 &= 67 \text{ cm/s}
 \end{aligned}$$

28.11 (CONTINUED) ..

$$D_{AB} = 0.0962 \left(\frac{300}{293} \right)^{3/2} = 0.0972 \text{ cm}^2/\text{s}$$

$$\lambda = 1.569 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Sc = \frac{(1.569 \times 10^{-5})(10)}{0.0972} = 1.614$$

$$Re = \frac{VL}{\lambda} = \frac{(6)(50)}{0.1569} = 6.41 \times 10^4 \quad (\text{LAMINAR})$$

$$k_c = 0.1004 \frac{(0.0972)}{150} (6.41 \times 10^4)^{1/2} (1.614)^{1/3} = 0.128 \text{ cm/s}$$

$$C_{AS} = \frac{\rho_{AS}}{RT} = \frac{0.137}{(82.06)(300)} = 5.965 \times 10^{-4} \text{ mol/cm}^3$$

$$W_A = N_A \times A = k_c (C_{AS} - C_{A, \infty})(A) \\ = (0.128)(5.965 \times 10^{-4} - 0)(50)(150) \\ = 0.0160 \text{ mol/s} \\ = \underline{\underline{4500 \text{ g/h}}}$$

28.12

$$T = 293 \text{ K}$$

$$P = 1 \text{ ATM}$$

$$V = 150 \text{ cm/s}$$

$$D_{AB} = 0.080 \text{ cm}^2/\text{s}$$

$$P_w = 0.16 \text{ ATM}$$

$$V_{air} = 0.15 \text{ cm}^2/\text{s}$$

$$Sc = \frac{0.15}{0.080} = 1.875$$

28.12 (CONTINUED) ..

$$Re = \frac{VW}{\lambda} = \frac{150(50)}{0.15} = 50,000$$

(LAMINAR)

$$k_c = 0.1004 \frac{D_{AB}}{W} Re^{1/2} Sc^{1/3}$$

$$= 0.1004 \frac{0.080}{50} (5 \times 10^4)^{1/2} (1.875)^{1/3} \\ = 0.293 \text{ cm/s}$$

$$W_A = N_A(A) = k_c \Delta C_A (2WL)$$

$$C_{AS} = \frac{P_w}{RT} = \frac{0.16}{(82.06)(293)} = 6.65 \times 10^{-4} \text{ mol/cm}^3$$

$$W_A = (0.293)(6.65 \times 10^{-4} - 0)(2 \times 50 \times 250)$$

$$= 0.0487 \text{ mol/s}$$

$$= (0.0487)(86) = \underline{\underline{4.19 \text{ g/s}}} \quad (d)$$

$$Sh = \frac{k_c W}{D_{AB}} = \frac{(0.293)(50)}{0.080} = \underline{\underline{183.1}} \quad (a)$$

$$\text{INPUT} = \frac{0.1 \text{ g SOLVENT}}{\text{g DRY SOL.}} \left(\frac{50 \text{ g DRY SOL.}}{\text{s}} \right)$$

$$= 5 \text{ g/s} \quad \text{SOLVENT}$$

$$\text{OUTPUT} = 4.19 \text{ g/s} + \underline{\underline{m \text{ g/s}}} \quad (\text{IN PAPER})$$

$$m = 5 - 4.19 = 0.81 \text{ g/s}$$

$$X = \frac{0.81}{50} = 0.0162 \frac{\text{g SOLVENT}}{\text{g DRY SOL.}} \quad (c)$$

28.13 ACETONE (A) IN AIR (B)

$$T = 298 \text{ K}$$

$$P = 1.013 \times 10^5 \text{ Pa} \quad P_A^\circ = 3.066 \times 10^4 \text{ Pa}$$

$$U = 600 \text{ cm/s} \quad L = 100 \text{ cm}$$

$$D_{AB} = 0.93 \times 10^{-5} \text{ m}^2/\text{s}$$

$$\text{AT } 298 \text{ K} \dots D_{A|R} = 1.55 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Sc = \frac{1.55 \times 10^{-5}}{0.93 \times 10^{-5}} = 1.67$$

$$f_{ex} = \frac{(6)(0.4)}{1.55 \times 10^{-4}} = 1.548 \times 10^5 \quad (\text{LAMINAR})$$

$$k_{ex}^x = \frac{0.332}{D_{AB}} Re_x^{1/2} Sc^{1/3}$$

$$k_c = \frac{0.93 \times 10^{-5}}{0.4} (0.332) (1.548 \times 10^5)^{1/2} \times (1.67)^{1/3}$$

$$= \underline{\underline{3.6 \times 10^{-3} \text{ m/s}}} \quad (\text{a})$$

for $L = 1 \text{ m}$

$$Re_L = \frac{(6)(U)}{1.55 \times 10^{-5}} = 3.87 \times 10^5$$

TURBULENT for $Re_x > 2 \times 10^5$

ASSUMING B.L. IS

LAMINAR for $0 < Re_x < 2 \times 10^5$

TURBULENT for $2 \times 10^5 < Re_x$

$$k_c = \frac{0.604}{L} \frac{D_{AB}}{Re_{tr}} Re_x^{1/2} Sc^{1/3} + 0.0365 \frac{D_{AB}}{L} Sc^{1/3} \left[\frac{Re_L}{Re_{tr}} - \frac{4/5}{4/5} \right]$$

28.13 CONTINUED -

$$Re_{tr} = 2 \times 10^5$$

$$k_{ex} = 3.87 \times 10^5$$

SUBSTITUTING $\frac{1}{3}$ SOLVING

$$k_c = 8.15 \times 10^{-3} \text{ m}^2/\text{s}$$

$$W_A = k_c A (C_{AS} - C_{AO})$$

$$C_{AS} = \frac{P_A^\circ}{RT} = \frac{3.066 \times 10^4}{(8.314)(298)} = 12.37 \text{ mol/m}^3$$

$$W_A = (8.15 \times 10^{-3})(12.37 - 0)(1)$$

$$= 0.101 \text{ mol/s}$$

$$= (0.101)(58) = \underline{\underline{5.86 \text{ g/s}}}$$

28.14 GAS STREAM CONTAINING CO (A) O₂ (B) CO₂ (C)

$$y_A = 0.009 \quad T = 300 \text{ K}$$

$$y_B = 0.001 \quad P = 1 \text{ atm}$$

$$y_C = 0.99$$

$$y'_A = \frac{0.009}{0.999} = 0.00901$$

$$y'_C = \frac{0.99}{0.999} = 0.991$$

$$D_{AB} = 0.213 \text{ cm}^2/\text{s} \quad D_A = 0.158 \text{ cm}^2/\text{s}$$

$$D_{AC} = 0.155 \text{ "} \quad D_B = 0.159 \text{ "}$$

$$D_{BC} = 0.164 \text{ "} \quad D_C = 0.0832 \text{ "}$$

28.14 CONTINUED -

$$D_{B-MIX} = \frac{1}{\frac{1}{D_A} + \frac{1}{D_C}} = D_{BC}$$

SUBSTITUTING $\frac{1}{D_A}$ & SOLVING:

$$D_{B-MIX} = 0.166 \text{ cm}^2/\text{s}$$

USE VISCOSITY $\sim \eta_C$ - THE DOMINANT COMPONENT

$$Sc = \frac{D}{D_{AB}} = \frac{0.0832}{0.166} = 0.501 \quad (a)$$

$$Re = \frac{\eta L}{D} = \frac{(1200)(30)}{0.0832} = 4327 \times 10^6$$

{ VERY MUCH INTO TURBOLENT REGIME }

PRESUMING B.L. FLOW TO BE

LAMINAR FOR $0 < Re < 2 \times 10^5$

TURBOLENT $2 \times 10^5 < Re$

$$\bar{F}_C = 0.1664 \frac{D_{AB}}{L} Sc^{1/3} Re_{tr}^{1/2} + 0.0365 \frac{D_{AB} Sc^{1/3}}{L} [Re_L^{4/5} - Re_{tr}^{4/5}]$$

SUBSTITUTING VALUES $\frac{1}{D}$ & SOLVING:

$$\bar{F}_C = 3.277 \text{ cm/s} \quad (c)$$

TURBOLENT EFFECTS DOMINATE (b)

28.15

SOLUTE (A)
INTO MEK (B)

28.15 CONTINUED -

$$C_{AB} = 0 \quad D_{AB} = 3 \times 10^{-6} \text{ cm}^2/\text{s}$$

$$D = 6 \times 10^{-3} \text{ m}$$

$$\rho_{solid} = 1.05 \text{ g/cm}^3 \quad \rho_L = 0.80 \text{ g/cm}^3$$

$$\rho_A^* = 0.04 \text{ g/cm}^3 \quad V = 30 \text{ cm}^3/\text{s}$$

$$V = \frac{30}{(1.98)(10)} = 1.515 \text{ cm/s} \quad \{ \text{UNIT DEPTH} \}$$

$$Sc = \frac{6 \times 10^{-3}}{3 \times 10^{-6}} = 2000$$

$$Re = \frac{(1.515)(10)}{6 \times 10^{-3}} = 5050 \quad \{ \text{LAMINAR} \}$$

$$\bar{F}_C = 0.1664 \frac{D_{AB}}{L} Re_L^{1/2} Sc^{1/3} = 88.94 \times 10^{-6} \text{ cm/s}$$

$$n_A = \frac{\bar{F}_C (\rho_A^* - \rho_{AB})}{(88.94 \times 10^{-6})(0.04)} = \frac{3.558 \times 10^{-6} \text{ g/cm}^2 \cdot \text{s}}{88.94 \times 10^{-6} \text{ cm/s}} \quad (a)$$

$$N_A = n_A A = (3.558 \times 10^{-6})(10 \times 20) = 7.116 \times 10^{-4} \text{ g/s}$$

$$m_{solid} = (0.02)(10)(20)(1.05) = 4.20 \text{ g}$$

$$t = \frac{4.20}{7.116 \times 10^{-4}} = \frac{5902 \text{ s}}{1.64 \text{ h}} \quad (b)$$

28.16

METHYLENE CHLORIDE (A) IN AIR (B)

$$T = 293 \text{ K} \quad P = 1 \text{ atm}$$

$$D_{AB} = 0.085 \text{ cm}^2/\text{s} \quad v = 7.5 \text{ m/s}$$

$$\bar{v} = 0.15 \text{ cm}^2/\text{s}$$

$$Sc = \frac{\bar{v} L}{D} = \frac{0.15}{0.085} = 1.765$$

$$Re = \frac{v L}{\bar{v}} = \frac{(7.5)(100)}{0.15 \times 10^{-4}} = 5 \times 10^7$$

Assume B.L. Flow To Be

LAMINAR FOR $0 < Re < 2 \times 10^5$ TURBULENT FOR $2 \times 10^5 < Re$

$$\overline{k}_c = 0.664 \frac{D_{AB}}{L} Sc^{1/3} Re_{tr}^{1/2} + 0.0365 \frac{D_{AB}}{L} Sc^{1/3} \left[Re_L^{4/5} - Re_{tr}^{4/5} \right]$$

$$Re_{tr} = 2 \times 10^5 \quad Re_L = 5 \times 10^7$$

SUBSTITUTING \overline{k}_c SOLVABLE

$$\overline{k}_c = 0.5372 \text{ cm/s} \quad (\text{b})$$

$$\text{for } Re = 2 \times 10^5 = \frac{v L_{tr}}{\bar{v}}$$

$$L_{tr} = \frac{(2 \times 10^5)(0.15 \times 10^{-4})}{7.5} = 0.4 \text{ m} \quad (\text{a})$$

THIS IS THE EXTENT OF
THE LAMINAR B.L.

$$Sc(L) = \frac{0.010}{1.07 \times 10^{-5}} = 934 \quad (\text{c})$$

28.17 LUBRICATING OIL (A) IN AIR (B)

$$T = 386 \text{ K} \quad P = 1 \text{ atm} \quad v = 50 \text{ m/s}$$

$$X_{tr} = 0.097 \text{ m} \quad D_{AB} = 0.040 \text{ cm}^2/\text{s}$$

$$\mu = 2.23 \times 10^{-5} \text{ kg/m.s}$$

$$\rho = 0.917 \text{ kg/m}^3$$

$$P_A^o = 0.20 \text{ Pa}$$

$$\bar{v} = \frac{2.23 \times 10^{-5}}{0.917} = 2.43 \times 10^{-5} \text{ m}^2/\text{s} \\ = 0.243 \text{ cm}^2/\text{s}$$

$$Sc = \frac{\bar{v}}{D_{AB}} = \frac{0.243}{0.040} = 6.075 \quad (\text{a})$$

$$\overline{k}_c = 0.664 \frac{D_{AB}}{L} Sc^{1/3} Re_{tr}^{1/2} + 0.0365 \frac{D_{AB}}{L} Sc^{1/3} \left[Re_L^{4/5} - Re_{tr}^{4/5} \right]$$

$$Re_{tr} = \frac{(5000)(97)}{0.243} \quad Re_L = \frac{(5000)(200)}{0.243} \\ \approx 2 \times 10^5 \quad = 4.115 \times 10^6$$

SUBSTITUTING VALUES INTO \overline{k}_c EXPRESSION:

$$\overline{k}_c = 2.48 \text{ cm/s} \quad (\text{b})$$

AT $X = 120 \text{ cm}$

$$Re_x = \frac{(5000)(120)}{0.243} = 2.469 \times 10^6$$

$$k_{cy} = \frac{0.0292 D_{AB}}{X} Sc^{1/3} Re_x^{1/2} \\ = \frac{0.0292(0.040)(6.075)^{1/3} (2.469 \times 10^6)^{4/5}}{120} \\ = 2.307 \text{ cm/s} \quad (\text{c})$$

$$28.18 \quad \text{for } k_{ex} = 70,000 = \frac{XU}{V}$$

$$X = 70,000 \frac{V}{U}$$

$$\frac{k_c X}{D_{AB}} = 0.332 Re_x^{1/2} Sc^{1/3}$$

$$k_c = 0.332 \frac{(70,000)^{1/2} Sc^{1/3} D_{AB} U}{70,000^{2/3} V} \\ = \underline{\underline{0.00125 U Sc^{-2/3}}} \quad (a)$$

$$\text{for } Re_x = 70,000 = L U / V$$

$$L = 70,000 \frac{V}{U}$$

$$\frac{Re_x L}{D_{AB}} = 0.664 Re_x^{1/2} Sc^{1/3} \\ = 0.664 \frac{(70,000)^{1/2} Sc^{1/3} D_{AB} U}{70,000} \\ = \underline{\underline{0.0025 U Sc^{-2/3}}} \quad (b)$$

$$\text{for } Re_x = 7 \times 10^5$$

$$X = 7 \times 10^5 \frac{V}{U}$$

$$\frac{k_c X}{D_{AB}} = 0.0292 Re_x^{4/5} Sc^{1/3}$$

$$k_c = \frac{0.0292 (7 \times 10^5)^{4/5} Sc^{1/3} D_{AB} U}{(7 \times 10^5)} \\ = \underline{\underline{0.00198 U Sc^{-2/3}}} \quad (c)$$

28.19 - VON KARMAN BL. ANALYSIS.

$$\text{GIVEN } U = \alpha + \beta y^{1/7}$$

$$\text{B.C. } U(y=0) = 0 \quad \alpha = 0$$

$$U(y=\delta) = U_\infty \quad \beta = \frac{U_\infty}{\delta^{1/7}}$$

$$\therefore \underline{\underline{U_x = U_\infty \left(\frac{y}{\delta}\right)^{1/7}}}$$

$$\text{Given } C_A - C_{AP} = \eta + \xi y^{1/7}$$

$$\text{At } y=0 \quad C_A - C_{AP} = C_{AS} - C_{AP}$$

$$\text{At } y=\delta_C \quad C_A - C_{AP} = 0$$

$$\eta = C_{AS} - C_{AP}$$

$$\xi = -\frac{\eta}{\delta_C^{1/7}} = -\frac{C_{AS} - C_{AP}}{\delta_C^{1/7}}$$

$$\text{Now. } \frac{C_A - C_{AP}}{C_{AS} - C_{AP}} = 1 - \left(\frac{y}{\delta_C}\right)^{1/7}$$

EQUATION (28.29)

$$\frac{d}{dx} \int_0^{Sc} (C_A - C_{AP}) U dy = k_c (C_{AS} - C_{AP})$$

DIVIDE BY $(C_{AS} - C_{AP}) U_\infty$

$$\frac{d}{dx} \int_0^{Sc} \left(\frac{C_A - C_{AP}}{C_{AS} - C_{AP}} \right) \frac{U}{U_\infty} dy = \frac{k_c}{U_\infty}$$

~

EVALUATING THE INTEGRAL...

$$\int_0^{Sc} \left[1 - \left(\frac{y}{\delta_C} \right)^{1/7} \right] \left(\frac{y}{\delta} \right)^{1/7} dy$$

$$\int_0^{Sc} \left[\left(\frac{y}{\delta} \right)^{1/7} - \frac{y^{2/7}}{\delta_C^{1/7} \delta^{1/7}} \right] dy$$

$$\left[\frac{1}{8} \frac{y^{8/7}}{\delta^{1/7}} - \frac{1}{9} \frac{y^{9/7}}{\delta_C^{1/7} \delta^{1/7}} \right]_0^{Sc}$$

28.19 CONTINUED

INTEGRAL EVALUATION - BETWEEN 0 & δ_c

$$\frac{7}{8} \frac{\delta_c^{8/7}}{8^{1/7}} - \frac{7}{9} \frac{\delta_c^{8/7}}{8^{1/7}} = \frac{7}{92} \frac{\delta_c^{8/7}}{8^{1/7}}$$

BACK INTO GOVERNING EQUN.:

$$\frac{d}{dx} \left[\frac{7}{92} \frac{\delta_c^{8/7}}{8^{1/7}} \right] = \frac{k_c}{v_p}$$

LETTING $\delta_c = 1$ $\Rightarrow \delta_c = \delta$

$$\frac{7}{92} \frac{d\delta_c}{dx} = \frac{k_c}{v_p}$$

∴ SINCE WE KNOW $\delta = \frac{0.311 x}{Rex}$

$$\frac{d\delta_c}{dx} = \frac{d\delta}{dx} = \frac{0.311}{(v_p/\omega)^{1/5}} \left(\frac{4}{5} x^{-1/5} \right)$$

$$= 0.297 Rex^{-1/5}$$

WE NOW HAVE

$$\frac{7}{92} (0.297 Rex^{-1/5}) = k_c / v_p$$

∴ FINALLY $k_c = 0.01289 v_p Rex^{-1/5}$

28.20 $v_x = a + by$

B.C. $v_x(0) = 0$

$$v_x(\delta) = v_p$$

$$v_x = v_p \left(\frac{y}{\delta} \right)$$

$$C_A = a + by$$

B.C. $C_A = C_{AS} @ y=0$

$$C_A = C_{AP} @ y=\delta_c$$

28.20 CONTINUED

$$\frac{C_A - C_{AS}}{C_{AP} - C_{AS}} = \frac{y}{\delta_c}$$

ANOTHER PHYSICAL SITUATION THAT A PROFILE SHOULD PROVIDE IS

$$\frac{dC_A}{dy} = 0 @ y=0$$

THE LINEAR MODEL DOES NOT YIELD THIS RESULT & WILL NOT SATISFY ALL OF THE PHYSICAL REQUIREMENTS

28.21 FOR A SPHERICAL PELLET ($d=1\text{ cm}$)

$$Nu = 0.37 \cdot f_{eq}^{0.6} Pr^{1/3}$$

From DATA REQUIRED IN PROBLEM STATEMENT:

$$Re_{eq} = \frac{v_p d}{\nu} = \frac{(1)(0.01)}{1.569 \times 10^{-5}} = 637$$

$$Pr = \frac{\lambda}{\alpha} = \frac{1.569 \times 10^{-5}}{2.216 \times 10^{-5}} = 0.708$$

$$h = Nu \frac{k}{d} = \frac{0.317(637)^{0.6}(0.708)(0.02642)}{0.01}$$

$$= 41.64 \text{ W/m}^2 \quad (\text{a})$$

AT MASS TX ANALOGUE:

$$\frac{h}{8c_p \nu} Pr^{2/3} = \frac{k_c}{v} \delta_c^{2/3}$$

$$k_c = \frac{h}{8c_p} \left(\frac{Pr}{\delta_c} \right)^{2/3}$$

$$\delta_c = \frac{v}{D_{AB}} = \frac{1.569 \times 10^{-5}}{9.462 \times 10^{-6}} = 1.63$$

28.21 CONTINUED -

$$k_c = \frac{41.64}{(1.17)(1.006)} \left(\frac{0.708}{1.163} \right)^{2/3}$$

$$= \underline{\underline{0.020 \text{ m/s}}} \quad (b)$$

$$N_A = k_c (C_{AS} - C_{AP})$$

$$C_{AS} = \frac{P_A^0}{RT} = \frac{1.27 \times 10^4}{(8.314)(300)} = 5.09 \text{ mol/m}^3$$

$$C_{AP} = 0 \quad (c)$$

$$N_A = (0.020)(5.09) = \underline{\underline{0.102 \text{ mol/m}^2 \cdot \text{s}}}$$

28.22 - GIVEN IN PROBLEM STATEMENT

$$\frac{h d_1}{k} = 0.031 Re_{d_1}^{0.8} Pr^{1/3} \left(\frac{\mu}{\mu_{vis}} \right)^{0.14} \left(\frac{d_2}{d_1} \right)^{0.15}$$

HEAT & MASS TRANSFER RELATED BY

$$\frac{h}{P_{cp} V} Pr^{2/3} = \frac{k_c}{V} Sc^{2/3}$$

SUBSTITUTING & SOLVING:

$$Sh = \frac{k_c d_1}{D_{AB}}$$

$$= 0.031 Re_{d_1}^{0.8} Sc^{1/3} \left(\frac{\mu}{\mu_{vis}} \right)^{0.14} \left(\frac{d_2}{d_1} \right)^{0.15}$$

28.23 AS GIVEN:

$$Nu = \frac{h dp}{k} = 0.37 Re_{dp}^{0.6} Pr^{1/3}$$

\therefore from CHILTON-CORBURN ANALOGY

$$\frac{h}{P_{cp} V} Pr^{2/3} = \frac{k_c}{V} Sc^{2/3}$$

28.23 CONTINUED

- COMBINING EQUATIONS -

$$Sh = \frac{k_c d_p}{D_{AB}} = 0.37 Re_{dp}^{0.6} Sc^{1/3}$$

FOR SLOW FLOW - NO BULK CONCENTRATION

$$\text{STEADY STATE: } \frac{d}{dr} (r^2 N_A) = 0$$

$$N_A = - D_{AB} \frac{dC_A}{dr}$$

$$r^2 N_A \int_r^R \frac{dr}{r^2} = - D_{AB} \int_{C_{AS}}^{C_{AP}} dC_A$$

$$r^2 N_A \left(-\frac{1}{r} \right) \Big|_R^A = D_{AB} (C_{AS} - C_{AP})$$

$$\text{AT } r=R: N_A = \frac{D_{AB}}{R} (C_{AS} - C_{AP}) = k_c \Delta C_A$$

$$k_c = \frac{D_{AB}}{R} = \frac{2 D_{AB}}{dp}$$

$$\text{GIVEN: } Sh = \frac{k_c d_p}{D_{AB}} = 2$$

MODIFIED EQUATION IS, THUS

$$Sh = 2 + 0.37 Re_{dp}^{0.6} Sc^{1/3}$$

28.24

FOR FLOW IN A CHANNEL BETWEEN
2 PLANES (PER UNIT DEPTH)

28.24 CONTINUED -

MASS BALANCE FOR CONTROL VOLUME:

$$c_A \nu W |_x + 2 k_c (c_{AS} - c_A) \Delta x = c_A \nu W |_{x+\Delta x}$$

$$\frac{c_A|_{x+\Delta x} - c_A|_x}{\Delta x} = \frac{2}{W \nu} k_c (c_{AS} - c_A)$$

IN LIMIT AS $\Delta x \rightarrow 0$

$$\frac{dc_A}{dx} = \frac{2}{W \nu} k_c (c_{AS} - c_A)$$

$$\text{LET } \theta = c_A - c_{AS} \sim \frac{dc_A}{dx} = \frac{d\theta}{dx}$$

$$\frac{d\theta}{dx} = -\frac{2}{W \nu} k_c \theta$$

$$\int_{\theta_0}^{\theta_L} \frac{d\theta}{\theta} = -\frac{2}{W \nu} k_c \int_0^L dx$$

$$\ln \frac{\theta_L}{\theta_0} = -\frac{2 k_c L}{W \nu}$$

$$\frac{\theta_L}{\theta_0} = \exp \left(-\frac{2 k_c L}{W \nu} \right)$$

$$\frac{c_{AL} - c_{AS}}{c_{AO} - c_{AS}} = \exp \left(-\frac{2 k_c L}{W \nu} \right)$$

FOR $c_{AO} = 0$

$$c_{AL} = c_{AS} \left[1 - e^{-\frac{2 k_c L}{W \nu}} \right]$$

NAPHTHALENE IN AIR:

$$T = 273 K \quad P = 1.013 \times 10^5 \text{ Pa}$$

$$P_A^0 = 1 \text{ Pa} \quad D_{AB} = 5.14 \times 10^{-6} \text{ m}^2/\text{s}$$

$$Sc = 2.5 \quad \lambda = Sc D_{AB} = 1.32 \times 10^{-5} \text{ "}$$

$$\nu = 15 \text{ m/s}$$

28.24 CONTINUED

$$c_{AS} = \frac{P_A}{RT} = \frac{1}{(8.314)(273)} = 4.406 \times 10^{-4} \text{ mol/m}^3$$

USING REYNOLDS ANALOGY

$$Re = \frac{Dequiv \nu}{D}$$

$$Dequiv = \frac{4(1)(w)}{2} = 2w$$

$$Re = \frac{2(0.0075)(15)}{1.32 \times 10^{-5}} = 1.7 \times 10^4$$

$$\text{Fig (13.1)} \quad f_r = C_f \approx 0.0064$$

$$\frac{k_c}{\nu} = \frac{0.0064}{2} = 0.0032$$

$$c_{AL} = (4.406 \times 10^{-4}) \left[1 - e^{-2(0.0032)(0.1/0.0075)} \right]$$

$$= 3.60 \times 10^{-5} \text{ mol/m}^3 \quad (a)$$

USING THE VON KARMAN ANALOGY:

$$\frac{k_c}{\nu} = \frac{C_f/2}{1 + 5(C_f/2)^{1/2} [Sc - 1 + \ln(1 + \frac{5}{6} Sc)]}$$

$$C_f/2 = 0.0032 \quad Sc = 2.5$$

$$\frac{k_c}{\nu} = 0.00184$$

$$c_{AL} = (4.406 \times 10^{-4}) \left[1 - e^{-2(0.00184)(0.1/0.0075)} \right]$$

$$= 2.11 \times 10^{-5} \text{ mol/m}^3 \quad (b)$$

$$\text{CHILTON COLBURN: } \frac{k_c}{\nu} = \frac{C_f Sc^{2/3}}{2}$$

$$k_c/\nu = 0.00174 - \frac{1}{10^{-5}} \quad (c)$$

$$\text{GIVEN } c_{AL} = 2.0 \times 10^{-5} \text{ mol/m}^3$$

18.24 CONTINUED -

PARTS (a), (b) & (c) COMPARE CONCENTRATIONS AT/NEAR STARTING CONDITIONS - BEFORE NAPHTHALENE SHEETS HAVE CHANGED DIMENSIONS.

AFTER EXTENDED TIME -

ORIGINAL VOL. OF NAP

$$= (10)(10)(0.25) = 25 \text{ cm}^3$$

WHEN $\frac{1}{2}$ OF VOLUME HAS BEEN SUBLIMED - 12.5 cm^3 REMAIN &
12.5 cm ARE GONE -

NEW CHANNEL WIDTH = 0.00875 m

AT AVERAGE CONDITIONS -

$$D_{COVW} = 2W = 2(0.00875) \\ = 0.01625 \text{ m}$$

$$Re = \frac{(0.01625)(15)}{1.32 \times 10^{-5}} = 185 \times 10^4$$

$$C_f = f_f \approx 0.0064 \quad \frac{C_f}{2} = 0.0032$$

∴ AT AVERAGE CONDITIONS THE ANSWERS TO PARTS (a), (b) & (c) BECOME -

REYNOLDS $C_{AL} = 3.34 \times 10^{-5} \text{ mol/m}^3$

VON KARMAN $= 1.95 \times 10^{-5} "$

C-COLBURN $= 1.84 \times 10^{-5} "$

THESE ARE PROBABLY MORE REPRESENTATIVE VALUES -

18.24 CONTINUED

TOTAL NAPHTHALENE LOST -

$$= (12.5 \text{ cm}^3)(1.145 \text{ g/cm}^3) \left(\frac{\text{mol}}{128.1 \text{ g}} \right)$$

$$= 0.1117 \text{ mol}$$

$$W_A = C_{AL}VA$$

$$= C_{AL}(15 \text{ m/s})(0.1 \text{ m})(0.00875 \text{ m})$$

$$= 0.0122(C_{AL}) \text{ mol/s}$$

$$t = \frac{0.1117}{0.0122 C_{AL}}$$

USING CORRECTED RESULTS FOR C_{AL}

REYNOLDS: $t = \frac{0.1117}{(0.0122)(3.34 \times 10^{-5})} \\ = 2.744 \times 10^5 \text{ s} \\ = \underline{\underline{76.2 \text{ h}}}$

VON-KARMAN: $t = \underline{\underline{130.6 \text{ h}}}$

C-COLBURN: $t = \underline{\underline{138.4 \text{ h}}}$

18.25 SPHERICAL DROP IN AIR -

$$D_{AIR} = 15689 \times 10^{-5} \text{ m}^2/\text{s} \quad \rho_{AIR} = 1.177 \text{ kg/m}^3$$

$$\kappa_{AIR} = 2.2156 \times 10^{-5} " \quad k = 2.64 \times 10^{-2} \text{ W/m.K}$$

$$T_{DB} = 2.63 \times 10^{-5} " \quad c_p = 1006 \text{ kJ/kg.K}$$

$$T_S = 290 \text{ K} \quad \lambda = 2461 \text{ J/g}$$

$$\rho_w = 1940 \text{ Pa} \quad T_p = 310 \text{ K}$$

28.25 CONTINUED -

ENERGY BALANCE --

$$\left. \begin{array}{l} \text{HT TO DROP} \\ \text{BY CONVECTION} \end{array} \right\} = \left. \begin{array}{l} \text{HT LOST BY} \\ \text{EVAPORATION} \end{array} \right\}$$

$$h(T_p - T_s) = \lambda k_c (C_{AS} - C_{AV}) M$$

USING GALTAN-CALBURN ANALOGY

$$\frac{k_c}{v_p} Sc^{2/3} = \frac{h}{8c_p v_p} Pr^{2/3}$$

$$\frac{h}{k_c} = \left(\frac{Sc}{Pr} \right)^{2/3} 8c_p$$

$$C_{AS} - C_{AV} = \frac{h}{k_c} \frac{(T_p - T_s)}{\lambda M}$$

$$= \left(\frac{Sc}{Pr} \right)^{2/3} \frac{R_g (T_p - T_s)}{\lambda M}$$

$$= \left(\frac{0.60}{0.708} \right)^{2/3} \frac{(117)(1,000)(20)}{2461(18)}$$

$$= 0.478 \text{ mol/m}^3$$

$$C_{AS} = \frac{P}{RT} = \frac{1940}{(8,314)(290)} = 0.805 \text{ mol/m}^3$$

$$C_{AV} = 0.805 - 0.478 = 0.326 \text{ mol/m}^3$$

28.26 - THIS IS THE SAME PHYSICAL PROCESS AS IN TEXT EXAMPLE b

$$T_m = \frac{\lambda_{TS}}{8c_p} \left(\frac{Pr}{Sc} \right)^{1/3} (C_{AS} - C_{AV}) + T_s$$

28.26 CONTINUED -

$$T_s = 298 \text{ K}$$

$$C_{AIR} = 1 \text{ J/g.K}$$

$$\mu = 1.84 \times 10^4 \text{ g/cm.s.}$$

$$\rho = 1.17 \times 10^{-3} \text{ g/cm}^3$$

$$P_w = 1300 \text{ Pa}$$

$$k = 2.62 \times 10^{-4} \text{ W/cm.K}$$

$$v_p = 0.22 \text{ m/s} \quad D_{AB} = 3 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Fr = \frac{\mu c_s}{k} = \frac{(1.84 \times 10^4)(1)}{2.62 \times 10^{-4}} = 0.70$$

$$Sc = \frac{\mu}{k D_{AB}} = \frac{(1.84 \times 10^4)}{(1.17 \times 10^{-3})(3 \times 10^{-5})} = 0.524$$

$$C_{AS} = \frac{P}{RT} = \frac{1300}{(8,314)(298)} = 0.525 \text{ mol/m}^3$$

$$C_{AV} = 0$$

$$T_m = \frac{(2460)(18)}{(1.17 \times 10^{-3})(1)} \left(\frac{0.70}{0.524} \right)^{1/3} (0.525 \times 10^{-6}) + 298$$

$$= 218 + 298 = \underline{\underline{319.8 \text{ K}}}$$

28.27 $\text{H}_2\text{O}(\text{A})$ INTO AIR (β)

$$T = 310 \text{ K}$$

$$D = 0.15 \text{ m}$$

$$P = 1.013 \times 10^5 \text{ Pa}$$

$$D/\epsilon = 10^4$$

$$T_s = 290 \text{ K}$$

MASS BALANCE FOR C.V. SHOWN:

28.27 (CONTINUED -

$$C_A \sqrt{\frac{\pi D}{4}} \Big|_x + k_C (C_{AS} - C_A) \pi D \Delta x = \\ C_A \sqrt{\frac{\pi D^2}{4}} \Big|_{x+\Delta x}$$

$$\frac{C_A \Big|_{x+\Delta x} - C_A \Big|_x}{\Delta x} = 4 \frac{k_C}{D \sqrt{S}} (C_{AS} - C_A)$$

IN LIMIT AS $\Delta x \rightarrow 0$

$$\frac{dC_A}{dx} = \frac{4}{D} \frac{k_C}{\sqrt{S}} (C_{AS} - C_A)$$

$$\text{LET } \Theta = C_A - C_{AS} \quad - \quad \frac{d\Theta}{dx} = \frac{dC_A}{dx}$$

$$\frac{d\Theta}{dx} = - \frac{4}{D} \frac{k_C}{\sqrt{S}} \Theta$$

$$\int_{\Theta_0}^{\Theta_L} \frac{d\Theta}{\Theta} = - \frac{4}{D} \frac{k_C}{\sqrt{S}} \int_0^L dx$$

$$\ln \frac{\Theta_L}{\Theta_0} = - \frac{4}{D} \frac{k_C}{\sqrt{S}} L$$

$$\frac{C_{AL} - C_{AS}}{C_{AO} - C_{AS}} = e^{- \frac{4}{D} \frac{k_C}{\sqrt{S}} L}$$

CHILTON-COLBURN ANALOGY

$$\frac{k_C}{S} S^{2/3} = \frac{C_f}{2} = \frac{f}{2}$$

$$S_C = \frac{\lambda}{D_{AB}}$$

$$\lambda = 1.569 \times 10^{-5} \text{ m}^2/\text{s} @ T_f = 300 \text{ K}$$

28.27 (CONTINUED -

$$D_{AB} = \frac{2.634}{1.013 \times 10^5} \left(\frac{300}{298} \right)^{3/2} = 2.626 \times 10^{-5} \text{ m}^2/\text{s}$$

$$S_C = \frac{\lambda}{D_{AB}} = \frac{1.569 \times 10^{-5}}{2.626 \times 10^{-5}} = 0.597$$

$$Re = \frac{DU}{N} = \frac{(0.15)(1.5)}{1.569 \times 10^{-5}} = 1.43 \times 10^4$$

$$\text{Fig 13.1} \quad f_f \approx 0.0066$$

$$\frac{k_C}{S} = \frac{0.0066}{2} (0.597)^{-2/3} = 4.65 \times 10^{-3}$$

$$\frac{C_{AL} - C_{AS}}{C_{AO} - C_{AS}} = e^{- \frac{4}{D} (f_f) (4.65 \times 10^{-3})} = 0.474$$

$$C_{AO} = \frac{P}{RT} = \frac{1895}{(8.314)(290)} = 0.786 \text{ mol/m}^3$$

$$C_{AL} = C_{AS} (1 - 0.474)$$

$$= 0.786 (0.526) = \underline{\underline{0.413 \text{ mol/m}^3}}$$

28.28 SAME PHYSICAL SITUATION AS
IN PROB 28.27

$$\text{In } \frac{C_{AL} - C_{AS}}{C_{AO} - C_{AS}} = - \frac{4}{D} \frac{k_C}{\sqrt{S}} L$$

$$Re = \frac{DU}{N} = \frac{(0.025)(1.5)}{1.415 \times 10^{-5}} = 2.65 \times 10^4$$

$$\text{Fig 13.1} \quad f_f = C_f = 0.0058$$

$$S_C = \frac{\lambda}{D_{AB}} = \frac{1.415 \times 10^{-5}}{540 \times 10^{-6}} = 2.62$$

28, 28 (CONTINUED)

USE GILTON-CARBUK ANALOGY

$$\frac{k_C}{V} = \frac{C_e/2}{S_C^{2/3}} = \frac{0.0058/2}{2.62^{2/3}}$$

$$= 0.00153$$

$$\ln \left[\frac{C_{AL} - C_{AS}}{C_{AO} - C_{AS}} \right] = - \frac{4}{0.00153} L$$

$$= -0.245 \text{ L}$$

$$C_{AS} = \frac{P^o}{RT} = \frac{3}{(8.314)(283)} = 1.275 \times 10^{-3} \text{ mol/m}^3$$

$$C_{AL} = 4.75 \times 10^{-4} \text{ mol/m}^3 \quad C_{AO} = 0$$

$$\ln \frac{4.75 - 12.75}{-12.75} = -0.466$$

$$L = \frac{0.466}{0.245} = \underline{\underline{1.90 \text{ m}}}$$

CHAPTER 29 -

29.1 EQUILIBRIUM DATA - Cl_2 IN H_2O

$p, \text{Cl}_2 \text{ kg/m}^3 \text{ mol/m}^3$

6666	0.438	6.17
1330	0.975	8.10
4000	0.937	13.20
6600	1.210	
13200	1.773	

A CAREFUL PLOT WILL YIELD

$$H \approx 62 \text{ Pa/(mol/m}^3)$$

29.2 EQUILIBRIUM DATA FOR TCE IN H_2O

p, TCE	C
ATM	mol/m^3
0.000	0
0.050	5.0
0.150	15.0
0.200	20.0

PLOT & OBSERVATION WILL SHOW LINEAR BEHAVIOR -

$$H = \frac{\Delta p}{\Delta C} = 0.010 \text{ atm/(mol/m}^3)$$

29.3 BENZENE (B) - 49 moles
TOLUENE (T) - 21 moles
 $\sum = \frac{70}{70}$ "

$$\text{AT } 363 \text{ K, } P = 1.013 \times 10^5 \text{ Pa}$$

$$P_B = 1.344 \times 10^5 \text{ "}$$

$$P_T = 5.38 \times 10^5 \text{ "}$$

B	x_B	$P_B \times 10^{-5}$	$P_T \times 10^{-5}$
T	$1-x_B$	1.344	$1.344 x_B$

$$P_B + P_T = 1.013 \times 10^5$$

$$1.344 \times 10^5 x_B + 5.38 \times 10^5 (1-x_B) = 1.013 \times 10^5$$

$$x_B = 0.589 \quad x_T = 0.411 \quad (\text{a})$$

$$y_B = \frac{1.344 \times 10^5}{1.013 \times 10^5} (0.589) = 0.783$$

$$y_T = 1-y_B = 0.217$$

MASS BALANCE -

$$\text{TOTAL: } 70 = V + L$$

$$\text{B: } 49 = 0.783V + 0.589L$$

$$= 0.783(70-L) + 0.589L$$

$$L = 29.95 \text{ mol} \quad (\text{b})$$

29.4 BASIS ... 100 kg H₂O

	kg	M	mol	X _i
O ₂	2 × 10 ⁻³	32	6.25 × 10 ⁻⁵	1.126 × 10 ⁻⁵
H ₂ O	100	18	5.55	

$$P_{O_2} = \gamma_{O_2} P = 0.21 (1.013 \times 10^5) = 0.2127 \times 10^5$$

$$P_{O_2}^* = H X_{O_2} = (4.06 \times 10^9) (1.126 \times 10^{-5}) \\ = 4.57 \times 10^4$$

As $P_{O_2}^* > P_{O_2}$ (a)
SOLUTION WILL LOSE O₂

$$P_{O_2} = H X_{O_2}$$

$$2.127 \times 10^4 = 4.06 \times 10^9 X_{O_2}$$

$$X_{O_2} = 5.24 \times 10^{-6}$$

FROM TABLE I TOTAL MOLES = 5.55

IN EQUILIBRIUM SOLUTION :

$$Z_{O_2} = (5.24 \times 10^{-6})(5.55) \\ = 2.91 \times 10^{-5} \text{ kg mol}$$

BY MASS :

$$(2.91 \times 10^{-5} \text{ kg mol})(32) \\ 100 \text{ kg H}_2\text{O} \\ = 9.3 \times 10^{-4} \text{ kg O}_2 / \frac{1}{100 \text{ kg H}_2\text{O}} \quad (b)$$

29.5

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{H k_A}$$

$$P_A = H C_A = H C_X A$$

$$C = (1 \text{ g/cm}^3)(10^6 \text{ cm}^3/\text{m}^3) \left(\frac{\text{kg}}{1000 \text{ g}} \right) \left(\frac{\text{kg mol}}{18 \text{ kg}} \right)$$

$$= 55.56 \text{ kg mol/m}^3$$

$$H' = \frac{4.06 \times 10^9}{55.56} = 7.3 \times 10^7 \frac{\text{Pa}}{\text{kg mol/m}^3}$$

$$\frac{1}{K_L} = \frac{1}{2.15 \times 10^{-5}} + \frac{1}{(9.28 \times 10^{-8})(7.3 \times 10^7)}$$

$$= 4.65 \times 10^5 + 0.148 \approx 4.65 \times 10^5$$

$$K_L = 2.15 \times 10^{-5} \text{ m/s}$$

ALL (100%) OF RESISTANCE IS IN GAS

29.6 INTERPHASE TRANSPORT

CO₂ - AIR - H₂O

$$P = 1.5 \text{ ATM} \quad H = 7.7 \times 10^{-4} \text{ ATM/(g mol/m}^3)$$

$$\gamma_P = 0.0401 \quad \gamma_L = 992.3 \text{ kg/m}^3$$

$$X_A = 0.00040$$

AT EQUILIBRIUM :

$$P_A = H C_A$$

$$= \gamma_A P = 0.04 (1.5) = 0.06 \text{ ATM}$$

$$C_A = \frac{P_A}{H} = \frac{0.06}{7.7 \times 10^{-4}} = 77.9 \text{ g mol/m}^3$$

$$= 0.022 \text{ kg mol/m}^3 = 22.0 \text{ g mol/m}^3$$

$$C_A^* = \frac{P_A}{H} = \frac{0.06}{7.7 \times 10^{-4}} = 77.9 \text{ g mol/m}^3$$

29.6 CONTINUED -

SINCE $C_A^* > C_A$ - ABSORPTION (a)

maximum $C_A = C_A^* = 779 \text{ g mol/m}^3$ (b)

$$k_y = 1.0 \text{ g mol/m}^2 \cdot \text{s}$$

$$kg = 0.010 \text{ g mol/m}^2 \cdot \text{s} \cdot \text{atm}$$

$$ky = kgP = 0.010(1.5) = 0.015 \text{ g mol/m}^2 \cdot \text{s}$$

$$\frac{1}{ky} = \frac{1}{kg} + \frac{H}{k_x}$$

$$p_A = H C_A$$

$$\frac{p_A}{P} = y_A = \frac{CH}{P} x_A = H x_A$$

$$H' = \frac{CH}{P} = \frac{(55.13)(7.7 \times 10^{-4})}{1.5}$$

$$= 0.0283$$

$$\frac{1}{ky} = \frac{1}{0.015} + \frac{0.0283}{1.0}$$

$$ky = 0.015 \text{ g mol/m}^2 \cdot \text{s} \quad (c)$$

$$N_A = Ky (y_{A,i} - y_A^*)$$

$$y_{A,i} = 0.06$$

$$y_A^* = \frac{p_A^*}{P} = \frac{7.7 \times 10^{-4}}{1.5} \quad (22)$$

$$= 0.0113$$

$$N_A = (0.015)(0.06 - 0.0113)$$

$$= 7.30 \times 10^{-4} \text{ g mol/m}^2 \cdot \text{s} \quad (d)$$

$$297 \quad N_A = k_L (C_A^* - C_{AL})$$

$$C_A^* = \frac{p_{A,i}}{H} = \frac{1.013 \times 10^4}{1.674 \times 10^3} = 6.05 \text{ kg mol/m}^3$$

$$N_A = (1.26 \times 10^{-6})(6.05 - 4) = 2.58 \times 10^{-6} \text{ kg mol/m}^2 \cdot \text{s}$$

$$\frac{1}{k_L} = \frac{k_L}{k_L} = 0.53 \quad (d)$$

$$k_L = \frac{k_L}{0.53} = \frac{1.26 \times 10^{-6}}{0.53} = 2.38 \times 10^{-6} \quad (a)$$

{UNITS ARE $\text{kg mol/m}^2 \cdot \text{s} \cdot (\text{mol/m}^3)$ }

$$N_A = (2.58 \times 10^{-6}) = 2.38 \times 10^{-6} (C_{AL} - 4)$$

$$C_{AL} = 5.08 \text{ kg mol/m}^3 \quad (c)$$

$$N_A = kg (p_{A,i} - p_{A,l})$$

$$p_{A,l} = H C_{AL} = (1.674 \times 10^3)(5.08)$$

$$= 8.50 \times 10^3 \text{ Pa}$$

$$ky = \frac{N_A}{p_{A,i} - p_{A,l}}$$

$$= \frac{2.58 \times 10^{-6}}{1.013 \times 10^4 - 0.850 \times 10^4}$$

$$= 1.58 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa} \quad (b)$$

29.8 STRIPPING TA FROM WASTEWATER

$$T = 293 \text{ K} \quad P = 1,25 \text{ atm}$$

$$H' = 400 \text{ atm} \quad p_A = H' x_A$$

$$p_A = H' x_A$$

$$y_A = \frac{H'}{P} x_A \quad \frac{H'}{P} = \frac{400}{1,25} = 320 \frac{\text{kg mol}}{\text{m}^3 \Delta y}$$

$$p_A = \frac{H'}{C} c_A \quad H = \frac{H'}{C} \quad (\text{a})$$

$$c = \frac{P}{RT} = \frac{1,25}{(0,08206)(293)} = 0,0520 \frac{\text{kg mol}}{\text{m}^3}$$

$$H = \frac{400}{0,0520} = 7690 \frac{\text{atm}}{\text{kg mol/m}^3} \quad (\text{b})$$

GIVEN - $k_C = 0,01 \text{ mol/s}$

$$k_g = \frac{k_C}{RT} = \frac{0,01}{(0,08206)(293)} = 4,16 \times 10^{-4} \frac{\text{kg mol}}{\text{m}^2 \cdot \text{s} \cdot \text{atm}} \quad (\text{c})$$

$$N_A = k_C \Delta C_A = C k_C \frac{\Delta C_A}{C} = k_g \Delta y_A$$

$$k_g = C k_C = (0,0520)(0,01) = 5,2 \times 10^{-4} \frac{\text{kg mol}}{\text{m}^2 \cdot \text{s} \cdot \Delta y}$$

$$k_g = C k_L \quad (\text{d})$$

$$\left\{ \begin{array}{l} \text{IN} \\ \text{LIQUID} \end{array} \right\} C = S_w = \frac{9982}{18} = 55,46 \frac{\text{kg mol}}{\text{m}^3}$$

$$k_g = (55,46)(0,01) = 0,5546 \frac{\text{kg mol}}{\text{m}^2 \cdot \text{s}} \quad (\text{d})$$

29.9

$$T = 300 \text{ K}$$

$$P = 2 \text{ atm}$$

$$y_A = 0,101$$

$$x_A = 0,035$$

80% OF RESISTANCE
IS IN LIQUID

$$N_A = k_x (x_{A\text{in}} - x_{A\text{f}}) - K_x (y_{A\text{in}} - y_A^*)$$

$$\frac{1/k_x}{1/K_x} = \frac{K_x}{k_x} = 0,8 = \frac{x_{A\text{in}} - x_{A\text{f}}}{y_{A\text{in}} - y_A^*} = \frac{0,035 - 0,021}{0,035 - 0,0238}$$

$$x_{A\text{f}} = 0,035 - 0,8(0,014) = 0,0238 \quad (\text{a})$$

FROM EQUILIBRIUM DIAGRAM ABOVE

$$y_{A\text{f}} = 0,0122 \quad (\text{a})$$

$$\frac{1/k_y}{1/K_y} = \frac{K_y}{k_y} = 0,2$$

$$K_y = 0,2(1,25) = 0,25 \frac{\text{g mol}}{\text{m}^2 \cdot \text{s} \cdot \Delta y} \quad (\text{b})$$

$$K_y = \frac{K_y}{P} = \frac{0,25}{2} = 0,125 \frac{\text{g mol}}{\text{m}^2 \cdot \text{s} \cdot \text{atm}} \quad (\text{c})$$

$$\frac{K_y}{P} = \frac{K_C}{RT} \sim K_C = K_y \frac{RT}{P}$$

$$K_C = 0,25 \frac{(82,06)(300)}{2}$$

$$= 3077 \frac{\text{m}^2}{\text{s}} \quad (\text{d})$$

29.10 SOLUTE A REMOVED FROM GAS STREAM

$$T = 300 \text{ K}$$

$$P = 2 \text{ ATM}$$

EQUILIBRIUM:

$$y_{\text{A}i} = 0.01$$

$$y_{\text{A}G} = 0.035$$

$$y_{\text{A}} = 0.3 y_{\text{A}i}$$

$$\frac{1/k_y}{1/k_y} = \frac{y_{\text{A}i}}{k} = 0.6$$

$$y_{\text{A}i} - y_{\text{A}i}' = 0.6$$

$$y_{\text{A}G} - y_{\text{A}}^*$$

$$y_{\text{A}}^* = 0.3 y_{\text{A}i} = 0.3(0.01) = 0.003$$

$$\frac{0.035 - y_{\text{A}i}'}{0.035 - 0.003} = 0.6$$

$$\underline{y_{\text{A}i}' = 0.0158}$$

$$y_{\text{A}i} = \frac{y_{\text{A}i}'}{0.3} = \underline{\underline{0.0521}} \quad (\text{a})$$

$$k_y = 0.6 k_y = 0.6(1.25)$$

$$= \underline{\underline{0.75 \text{ g mol/m}^2 \cdot \text{s} \cdot \Delta x}} \quad (\text{b})$$

$$\left\{ \begin{array}{l} \frac{1}{k_x} = \frac{1}{H' k_y} + \frac{1}{k_x} \\ \frac{1}{k_y} = \frac{1}{k_y} + \frac{H'}{k_x} \end{array} \right\} \rightarrow \frac{1}{k_x} = \frac{H'}{k_y}$$

$$k_x = \frac{k_y}{H'} = \frac{0.75}{0.3}$$

$$= \underline{\underline{2.5 \text{ g mol/m}^2 \cdot \text{s} \cdot \Delta x}} \quad (\text{c})$$

29.11 PERCOLATION OF H_2O

$$T = 293 \text{ K} \quad y_{\text{A}G} = 0.21$$

$$P = 2 \text{ ATM}$$

$$P_{\text{H}_2\text{O}} = 1000 \text{ kg/m}^3$$

$$H' = 40,100 \text{ ATM} \quad \Delta y / \Delta x$$

$$P_{\text{O}_2} = 0.21(2) = 0.42 \text{ ATM}$$

$$= (40,100) y_{\text{O}_2}$$

$$x_{\text{O}_2}^* = \frac{0.42}{40,100} = \underline{\underline{1.047 \times 10^{-5} \frac{\text{mol O}_2}{\text{mol H}_2\text{O}}}} \quad (\text{a})$$

$$c_A^* = (1.047 \times 10^{-5}) \left(\frac{1000}{18} \right)$$

$$= \underline{\underline{5.82 \times 10^{-4} \text{ kg mol/m}^3}} \quad (\text{b})$$

AS SYSTEM PRESSURE INCREASES

$x^* \nparallel c^*$ WILL INCREASE (c)

29.12

EQUILIBRIUM FOR
SPECIES A IN AIR
 $\xrightarrow{\text{SPECIES A}}$ DISSOLVED IN H_2O

$$T = 293 \text{ K}$$

$$P = 2.20 \text{ ATM}$$

$$P_{\text{H}_2\text{O}} = 992.3 \text{ kg/m}^3$$

$$k_y = 0.010 \text{ g mol/m}^2 \cdot \text{s}$$

$$k_x = 0.125 \text{ "}$$

THIS IS A STRIPPING PROCESS a)

29.12 (CONTINUED) -

$$y_A = H' x_A'$$

$$p_A = \frac{H' P}{C} x_{AC}^* = H C_A^* \quad H = \frac{H' P}{C}$$

$$C = \frac{992.3}{18} = 55.13 \text{ kg mol/m}^3$$

$$H' = 50 \quad \text{--- from Diagram}$$

$$H' = \frac{50 (2.2)}{55.13} = 1.996 \text{ atm/}(\text{kg mol/m}^3) \quad (b)$$

$$y_A = H' x_A' = 0.10 = 50 x_A^* \\ x_A^* = 0.002$$

$$C_A^* = x_A^* C = 0.002 (55.13) \\ = 0.110 \text{ kg mol/m}^3$$

$$c_{AP} = x_{AP} C = (0.004)(55.13) \\ = 0.220 \text{ kg mol/m}^3$$

$$\frac{1}{K_X} = \frac{1}{k_X} + \frac{1}{H' k_Y} = \frac{1}{0.125} + \frac{1}{(50)(0.01)} \\ = 8 + 2 = 10$$

$$k_X = 0.10 \text{ g mol/m}^2 \cdot \text{s} \quad (c)$$

$$k_L = \frac{k_X}{C} = \frac{0.10}{55.13} = 1.81 \times 10^{-6} \text{ m/s}$$

$$N_A = K_L (C_{AP} - C_A^*)$$

$$= (1.81 \times 10^{-6})(0.220 - 0.110)$$

$$= 8.91 \times 10^{-6} \text{ kg mol/m}^2 \cdot \text{s}$$

29.12 (CONTINUED) -

$$N_A = (8.91 \times 10^{-6}) = k_X (x_{AP} - x_{AI})$$

$$= (0.125)(0.004 - x_{AI})$$

$$x_{AI} = \frac{3.93 \times 10^{-3}}{50} \quad (d)$$

$$y_{AI} = H' x_{AI} = 50 (3.93 \times 10^{-3}) = 0.196$$

29.13 HEPTANE (A) ABSORBED FROM AIR

$$T = 273 \text{ K}$$

$$P = 1.5 \text{ atm}$$

$$S_L = 0.80 \text{ g/cm}^3$$

$$M_L = 180$$

$$y_{AP} = 0.015 \text{ atm}$$

$$x_{AP} = 0.05$$

$$k_Y = 0.02 \text{ kg mol/m}^2 \cdot \text{s}$$

$$k_Y = 0.01 \quad "$$

$$C = \frac{S_L}{M} = \frac{0.80}{180} = 4.44 \times 10^{-3} \text{ g mol/cm}^3$$

$$p_A = 0.15 x_A^*$$

$$\frac{1}{K_X} = \frac{1}{k_X} + \frac{1}{H' k_Y} = \frac{1}{0.01} + \frac{1}{(0.15)(0.02)}$$

$$k_X = 2.31 \times 10^3 \text{ kg mol/m}^2 \cdot \text{s}$$

$$k_L = \frac{k_X}{C} = \frac{2.31 \times 10^3 (10)^{-3}}{4.44 \times 10^{-3} (10)^4}$$

$$= 0.52 \times 10^7 \text{ cm/s} \quad (a)$$

$$k_Y (y_{AP} - y_{AI}) = k_X (x_{AP} - x_{AI})$$

$$0.02 (0.015 - y_{AI}) = 0.01 (x_{AI} - 0.05)$$

$$\text{Also: } y_{AI} = \frac{p_{AI}}{P} = \frac{0.15}{1.5} x_{AI}$$

$$y_{AI} = \frac{0.15}{1.5} = 0.10 x_{AI}$$

29.13 (CONTINUED -

COMBINING THESE EXPRESSIONS -

$$X_{AI} = \underline{0.0667} \quad (b)$$

$$Y_{AI} = 0.1 X_{AI} = \underline{0.00667}$$

29.14 SO₂ ABSORBED INTO H₂O

$$P_{AO} = 4 \times 10^3 \text{ Pa}$$

$$C_{AO} = 0.55 \text{ kg mol/m}^3$$

$$k_g = 3.95 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$$

$$k_L = 1.1 \times 10^{-4} \text{ kg mol/m}^2 \cdot \text{s} \cdot (\text{kg mol/m}^3)$$

EQUILIBRIUM DATA - GIVEN IN

PROBLEM STATEMENT -

$$-\frac{k_L}{k_g} = -\frac{1.1 \times 10^{-4}}{3.95 \times 10^{-9}} = -278 \text{ NO}^{-4}$$

$$\text{From Plot} - \underline{P_{AI} \approx 213 \text{ Pa}} \quad (a)$$

$$\underline{C_{AI} \approx 0.69 \text{ kg mol/m}^3}$$

$$N_A = \log(P_{AI} - P_{AO})$$

$$= 3.95 \times 10^{-9} (4000 - 213)$$

$$= 1.496 \times 10^{-5} \text{ kg mol/m}^2 \cdot \text{s}$$

29.14 (CONTINUED -

From EQUILIBRIUM PLOT -

$$\text{For } C_{AL} = 0.55 \quad P_A^* \approx 164$$

$$K_g = \frac{N_A}{P_{AO} - P_A^*} = \frac{1.496 \times 10^{-5}}{4000 - 164}$$

$$= 3.9 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$$

∴ ALSO FROM EQUILIBRIUM PLOT

$$\text{for } P_{AO} = 4000 \quad C_A^* \approx 6.9$$

$$K_L = \frac{N_A}{C_A^* - C_{AL}} = \frac{1.496 \times 10^{-5}}{6.9 - 0.55}$$

$$= 2.36 \times 10^{-6} \text{ kg mol/m}^2 \cdot \text{s} \cdot (\text{kg mol/m}^3)$$

Summary :

$$k_g = 3.95 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$$

$$k_L = 1.1 \times 10^{-4} \text{ kg mol/m}^2 \cdot \text{s} \cdot (\text{kg mol/m}^3)$$

$$K_g = 3.9 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$$

$$K_L = 2.36 \times 10^{-6} \text{ kg mol/m}^2 \cdot \text{s} \cdot (\text{kg mol/m}^3)$$

$$P_{AO} - P_{AI} = 3781 \text{ Pa}$$

$$C_{AI} - C_{AL} = 0.14 \text{ kg mol/m}^3$$

$$P_{AO} - P_A^* = 3836 \text{ Pa}$$

$$C_A^* - C_{AL} = 6.35 \text{ kg mol/m}^3$$

(b)

$$\frac{1/\text{kg}}{1/\text{kg}} = \frac{K_g}{k_g} = \frac{3.9 \times 10^{-9}}{3.95 \times 10^{-9}} = 0.987$$

~ 98.7 % OF RESISTANCE IS IN GAS φ (c)

29.15 Cl_2 from Gas Stream into Liquid

$$P = 1.013 \times 10^5 \text{ Pa} \quad Y_{\text{A}i} = 0.002$$

$$k_y = 1.0 \text{ kg mol/m}^2 \cdot \text{h} \cdot \Delta x$$

$$k_y = 10 \text{ kg mol/m}^2 \cdot \text{h} \cdot \Delta x$$

$$H = 6.13 \times 10^4 \text{ Pa/(kg mol/m}^3)$$

$$C_{\text{AL}} = 2.6 \times 10^{-3} \text{ kg mol/m}^3$$

$$\rho_{\text{Ai}} = H C_{\text{Ai}} \quad Y_{\text{Ai}} = \frac{H C}{P} X_A = H' X_A$$

$$C_i = \frac{1000}{18} = 55.55 \text{ kg mol/m}^3$$

$$H' = \frac{H C}{P} = \frac{(6.13 \times 10^4)(55.55)}{1.013 \times 10^5} = 33.6$$

$$\frac{1}{K_x} = \frac{1}{k_y} + \frac{1}{H' k_y}$$

$$= \frac{1}{10} + \frac{1}{33.6(1)}$$

$$K_x = 7.71 \text{ kg mol/m}^2 \cdot \text{h} \cdot \Delta x \quad (\text{a})$$

$$X_{\text{AL}} = \frac{C_{\text{AL}}}{C} = \frac{2.6 \times 10^{-3}}{55.55} = 4.68 \times 10^{-5}$$

$$X_A^* = \frac{Y_{\text{A}i}}{H'} = \frac{0.002}{33.6} = 5.95 \times 10^{-5}$$

$$N_A = K_x (X_A^* - X_{\text{AL}}) = 7.71 (5.95 - 4.68) \times 10^{-5}$$

$$= 9.79 \times 10^{-5} \text{ kg mol/m}^2 \cdot \text{h} \quad (\text{b})$$

$$N_A = k_y (Y_{\text{A}i} - Y_{\text{AL}})$$

$$9.79 \times 10^{-5} = 10 (Y_{\text{A}i} - 4.68 \times 10^{-5})$$

$$Y_{\text{A}i} = 5.66 \times 10^{-5} \quad (\text{c})$$

29.15 CONTINUED -

$$y_{\text{A}i} = A' X_{\text{A}i} = 33.6 (5.66 \times 10^{-5})$$

$$= \underline{\underline{1.90 \times 10^{-3}}} \quad (\text{c})$$

FRACTION OF RESISTANCE IN LIQUID

$$\frac{1/k_x}{1/k_x + \frac{K_x}{k_y}} = \frac{K_x}{K_x + k_y} = \frac{7.71}{10} = \underline{\underline{0.771}}$$

$$= \underline{\underline{77.1\%}} \quad (\text{d})$$

29.16 Component A - From Liq to Gas

$$T = 290 \text{ K} \quad P_{\text{AG}} = 4000 \text{ Pa}$$

$$P = 1.013 \times 10^5 \text{ Pa} \quad C_{\text{AL}} = 4 \text{ kg mol/m}^3$$

60% of RESISTANCE IS IN GAS PHASE

$$K_G = 246 \times 10^{-8} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$$

$$H = 1400 \text{ Pa/(kg mol/m}^3)$$

$$\frac{1/k_G}{1/k_G + \frac{K_G}{k_y}} = \frac{K_G}{K_G + k_y} = \frac{246 \times 10^{-8}}{0.6}$$

$$= \underline{\underline{4.1 \times 10^{-8} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}}} \quad (\text{e})$$

$$P_A^* = H C_{\text{AL}} = 1400 (4) = 5600 \text{ Pa}$$

$$N_A = K_G (P_A^* - P_{\text{AG}}) = (246 \times 10^{-8})(5600 - 4000)$$

$$= 3.94 \times 10^{-5} \text{ kg mol/m}^2 \cdot \text{s}$$

$$= k_y (P_{\text{Ai}} - P_{\text{AG}}) = (4.1 \times 10^{-8})(P_{\text{Ai}} - 4000)$$

$$\underline{\underline{P_{\text{Ai}} = 4961 \text{ Pa}}} \quad (\text{e})$$

29.16 (CONTINUED) -

$$c_{Ai} = \frac{p_{Ai}}{H} = \frac{4960}{1400} = 3.54 \text{ kg/mol/m}^3$$

$$N_A = k_L (C_{AL} - C_{Ai})$$

$$3.94 \times 10^{-5} = k_L (4 - 3.54)$$

$$k_L = 8.56 \times 10^{-5} \text{ kg/mol/m}^2 \cdot \text{s} \quad (\text{b})$$

$$N_A = K_L (C_{AL} - C_A^*)$$

$$C_A^* = \frac{p_{A^*}}{H} = \frac{4000}{1400} = 2.86$$

$$K_L = \frac{3.94 \times 10^{-5}}{4 - 2.86} \quad (\text{a})$$

$$= 3.46 \times 10^{-5} \text{ kg/mol/m}^2 \cdot \text{s. (kg/mol/m}^3\text{)}$$

29.17 Clr from GAS PHASE INTO WATER

(EQUILIBRIUM DATA FOR THIS SYSTEM GIVEN IN PROB 29.1)

$$T = 293 \text{ K} \quad p_{AG} = 4 \times 10^4 \text{ Pa}$$

$$P = 1.013 \times 10^5 \text{ Pa} \quad C_{AL} = 1 \text{ kg/m}^3$$

75% OF RESISTANCE IS IN LIQUID

$$\frac{p_{AG} - p_{Ai}}{p_{AG} - p_{A^*}} = 0.25$$

FROM PLOT OF PROB 29.1 DATA

$$p_{A^*} = 4480 \text{ Pa}$$

$$\frac{40000 - p_{Ai}}{40000 - 4480} = 0.25 \quad p_{Ai} = 3.12 \times 10^4 \text{ Pa}$$

$$\frac{1}{k_L} \text{ from plot} - \underline{\underline{C_{Ai} = 3.0 \text{ kg/m}^3}}$$

29.18

SYSTEM →

$$\frac{1}{k_L} = \frac{1}{k_L'} + \frac{1}{H \cdot kg}$$

$$kg = 0.01 \text{ kg/mol/m}^2 \cdot \text{s. atm}$$

$$H = 10 \text{ atm/(kg/mol/m}^3\text{)}$$

$$k_L = 5 \times 10^4 \text{ (kg/mol/m}^2\text{)}$$

$$\frac{1}{K_L} = \frac{1}{5 \times 10^4} + \frac{1}{(10)(0.01)} = 2.010$$

$$K_L = 4.975 \times 10^4 \text{ kg/mol/m}^2 \cdot \text{s. (kg/mol/m}^3\text{)}$$

FRACTION OF RESISTANCE IN LIQUID

$$= \frac{1/k_L}{1/k_L'} = \frac{k_L'}{k_L} = \frac{4.975 \times 10^4}{5 \times 10^4} = \underline{\underline{0.995}}$$

$$= \underline{\underline{99.5\%}}$$

29.19 Tx from BENZENE PHASE TO AQUEOUS

$$C_A' = 170 C_B''$$

(BE) (AO)

$$k_L' = 3.5 \times 10^6 \text{ kg/mol/m}^2 \cdot \text{s. (kg/mol/m}^3\text{)}$$

$$k_L' = 2.5 \times 10^{-5} \text{ "}$$

$$\frac{1}{K_L'} = \frac{1}{k_L'} + \frac{A}{k_B''} = \frac{1}{3.5 \times 10^6} + \frac{170}{2.5 \times 10^{-5}} \quad (\text{a})$$

$$K_L' = 1.41 \times 10^{-7} \text{ kg/mol/m}^2 \cdot \text{s. (kg/mol/m}^3\text{)}$$

29.19 (CONTINUED -

$$\begin{aligned}\frac{1}{K_L''} &= \frac{1}{k_L'} + \frac{1}{H' k_L'} \\ &= \frac{1}{2.5 \times 10^{-5}} + \frac{1}{(170)(3.5 \times 10^{-6})} \quad (b) \\ K_L'' &= 2.40 \times 10^{-5} \text{ kg mole/m}^2 \cdot \text{s} \cdot (\text{kg mole/m}^3)\end{aligned}$$

FRACTION OF RESISTANCE IN PQ FILM

$$\begin{aligned}\frac{1/k_L''}{1/K_L''} &= \frac{k_L''}{K_L''} = \frac{2.40 \times 10^{-5}}{2.50 \times 10^{-5}} = 0.96 \\ &= \underline{\underline{96\%}} \quad (c)\end{aligned}$$

29.20

TCE TRANSFERRED FROM LIQUID TO GAS PHASE -

$$\begin{aligned}T &= 293 \text{ K} & C_{\text{A},\text{L}} &= 10 \text{ g mole/m}^3 \\ P &= 1 \text{ ATM} & y_{\text{A},\text{in}} &= 0.04 \\ D &= 20 \text{ m} & k_F &= 200 \text{ g mole/m}^2 \cdot \text{s} \\ A &= \frac{\pi}{4}(20)^2 & k_{\text{L}} &= 0.1 \text{ "} \\ &= 314 \text{ m}^2 & H &= 550 \text{ ATM/} \Delta x \\ & & C_L &= 66 \text{ g mole/m}^3\end{aligned}$$

$$b_A = H x_A$$

$$y_A = \frac{P_A}{P} = \frac{H}{P} x_A = H' x_A$$

$$H' = \frac{550}{1} = 550$$

29.20 (CONTINUED -

$$\frac{1}{K_X} = \frac{1}{k_X} + \frac{1}{H' k_Y} = \frac{1}{200} + \frac{1}{(550)(0.1)}$$

$$k_X = 43.10 \text{ g mole/m}^2 \cdot \text{s}$$

$$k_L = \frac{K_X}{C} = \frac{43.10}{66} = \underline{\underline{0.653 \text{ m/s}}} \quad (a)$$

$$N_A = K_X (x_{\text{A,in}} - x_A^*)$$

$$x_{\text{A,in}} = \frac{C_{\text{A,in}}}{C} = \frac{10}{66} = 0.1515$$

$$y_{\text{A,in}} = 550 x_A^*$$

$$x_A^* = \frac{0.04}{550} = 7.27 \times 10^{-5}$$

$$N_A = (43.10)(0.1515 - 7.27 \times 10^{-5})$$

$$= \underline{\underline{6.53 \text{ g mole/m}^2 \cdot \text{s}}} \quad (b)$$

$$\begin{aligned}W_A &= N_A \cdot A = 6.53 (314) \\ &= 2050 \text{ g mole/s}\end{aligned}$$

MASS BALANCE FOR LIQUID -

$$\dot{V}_0 C_{\text{A},\text{L}}|_{\text{IN}} = 2050 (3600) + \dot{V}_0 C_{\text{A},\text{L}}|_{\text{OUT}}$$

$$\dot{V}_0 = \frac{2050 (3600)}{50 - 10}$$

$$= 1.845 \times 10^5 \text{ g mole/h}$$

$$= \frac{1.845 \times 10^5}{60} \text{ m}^3/\text{h}$$

$$= \underline{\underline{2795 \text{ m}^3/\text{h}}} \quad (c)$$

29,21 NH₃ & H₂S STRIPPED FROM H₂O

FOR BOTH -

$$k_G = 3.20 \times 10^9 \text{ kg mol/m}^2 \cdot \text{s. Pa}$$

$$k_L = 1.73 \times 10^9 \text{ kg mol/m}^2 \cdot \text{s. (kg mol/m}^3\text{)}$$

$$H_{NH_3} = 1.36 \times 10^3 \text{ Pa/(kg mol/m}^3\text{)}$$

$$H_{H_2S} = 8.81 \times 10^5 \text{ "}$$

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{1}{k_L}$$

$$NH_3: \frac{1}{K_G} = \frac{1}{3.20 \times 10^9} + \frac{1.36 \times 10^3}{1.73 \times 10^9}$$

$$K_G = 2.556 \times 10^9 \text{ kg mol/m}^2 \cdot \text{s. Pa}$$

$$H_2S: \frac{1}{K_G} = \frac{1}{3.20 \times 10^9} - \frac{8.81 \times 10^5}{1.73 \times 10^9}$$

$$K_G = 1.95 \times 10^{11} \text{ kg mol/m}^2 \cdot \text{s. Pa}$$

$$\frac{K_G \text{ NH}_3}{K_G \text{ H}_2\text{S}} = \frac{2.556}{1.95} = \underline{\underline{131 \text{ TO } 1}}$$

29,22 NH₃ ABSORBED

$$K_G = 3.12 \times 10^9 \text{ kg mol/m}^2 \cdot \text{s. Pa}$$

$$C_{AL} = 4 \text{ kg mol/m}^3$$

$$\bar{P}_{AG} = 3040 \text{ Pa}$$

$$\bar{P}_{AI} = (1360 \text{ Pa/(kg mol/m}^3\text{)}) C_{AI}$$

75% OF RESISTANCE IS IN LINE ϕ -

29,22 (CONTINUED) -

$$\frac{1/k_G}{1/K_G} = \frac{K_G}{k_G} = 0.75 = \frac{3.12 \times 10^9}{k_G}$$

$$k_G = 4.16 \times 10^9 \text{ kg mol/m}^2 \cdot \text{s. Pa} \quad (a)$$

$$K_L = H K_G = (1360)(3.12 \times 10^9) \quad (c)$$

$$= 4.24 \times 10^{16} \text{ kg mol/m}^2 \cdot \text{s. (kg mol/m}^3\text{)}$$

25% OF RESISTANCE IN LIQUID PHASE

$$0.25 = \frac{K_L}{k_L} \quad k_L = \frac{4.24 \times 10^{16}}{0.25}$$

$$k_L = 16.96 \times 10^{16} \text{ kg mol/m}^2 \cdot \text{s. (kg mol/m}^3\text{)} \quad (b)$$

$$N_A = K_G (\bar{P}_A^* - \bar{P}_{AG})$$

$$\bar{P}_A^* = H C_{AL} = (1360)(4) = 5440 \text{ Pa}$$

$$N_A = (3.12 \times 10^9)(5440 - 3040)$$

$$= 7.488 \times 10^{16} \text{ kg mol/m}^2 \cdot \text{s}$$

$$= K_G (\bar{P}_{AI} - \bar{P}_{AG})$$

$$= (4.16 \times 10^9)(\bar{P}_{AI} - 3040)$$

$$\bar{P}_{AI} = 4840 \text{ Pa}$$

$$C_{AI} = \frac{\bar{P}_{AI}}{H} = \frac{4840}{1360} = \underline{\underline{3.56 \text{ kg mol/m}^3}} \quad (d)$$

29.23

NH₃ REMOVAL

$T = 303 \text{ K}$

$P = 1 \text{ ATM}$

$C_L = 55.6 \text{ kg mol/m}^3$

$X_{AL} = 0.04 \quad P_{AL} = 0.2 \text{ ATM}$

$k_G = 1.0 \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{ATM}$

$k_L = 0.045 \text{ m/s}$

$$k_x = C k_L = (55.6)(0.045)$$

$$= 2.50 \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{ATM} \quad (a)$$

VALUES FROM EQUILIBRIUM CURVE:

$P_A = 0.02 \text{ ATM} \quad X_A = 0.018$

$$C_A = C X_A = 55.6(0.018)$$

$$= 1.0 \text{ kg mol/m}^3$$

$$H = P_A/C_A = 0.02/1$$

$$= 0.02 \text{ ATM/(kg mol/m}^3)$$

$\frac{1}{k_g} = \frac{1}{k_L} + \frac{H}{k_L} = \frac{1}{1.0} + \frac{0.02}{0.045}$

$K_G = 0.692 \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{ATM} \quad (c)$

FRACTION OF RESISTANCE IN GAS ϕ :

$$\frac{1/k_g}{1/k_g} = \frac{k_g}{K_G} = \frac{0.692}{1} = 0.692$$

29.23 CONTINUED -

For OPERATING POINT AT $X_A = 0.04$,

$P_A = 0.2 \quad - P_A^* = 0.050 \text{ ATM}$

$$\frac{P_{AL} - P_{AI}}{P_{AL} - P_A^*} = 0.692 = \frac{0.20 - P_{AI}}{0.20 - 0.05}$$

$P_{AI} = 0.096 \text{ ATM} \quad - \underline{X_{AI} = 0.067}$

(FPTM CURVE)

$$Y_{AI} = \frac{P_{AI}}{P} = \frac{0.096}{2} = \underline{0.048} \quad (b)$$

$N_A = K_G (P_{AL} - P_A^*)$

$= (0.692)(0.20 - 0.05)$

$$= 0.104 \text{ kg mol/m}^2 \cdot \text{s} \quad (d)$$

29.24 ABSORPTION TOWER - SOLUTE (A)
SOLVENT (B)

$P_{AL} = 1.519 \times 10^4 \text{ Pa}$

$C_{AL} = 1.0 \times 10^{-3} \text{ kg mol/m}^3$

$N_A = 4 \times 10^5 \text{ kg mol/m}^2 \cdot \text{s}$

$k_G = 3.95 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$

$H = \frac{3.04 \times 10^3}{1 \times 10^{-3}} = 3.04 \times 10^6 \text{ Pa/(kg mol/m}^3)$

$N_A = k_g (P_{AL} - P_{AI})$

$4 \times 10^5 = (3.95 \times 10^{-9})(1.519 \times 10^4 - P_{AI})$

$P_{AI} = 5070 \text{ Pa}$

$P_{AL} - P_{AI} = 15190 - 5070 = \underline{10120 \text{ Pa}}$

291

29,24 (CONTINUED)

$$N_A = k_L (C_{Ai} - C_{AL})$$

$$C_{Ai} = \frac{P_{Ai}}{H} = \frac{5.07 \times 10^3}{3.04 \times 10^4}$$

$$= 1.67 \times 10^{-3} \text{ kg mol/m}^3$$

$$4 \times 10^{-5} = k_L (1.67 \times 10^{-3} - 1.0 \times 10^{-3})$$

$$\underline{k_L = 0.0597 \text{ m/s}}$$

$$C_{AL} - C_{AL} = 1.67 \times 10^{-3} - 1.0 \times 10^{-3}$$

$$= 0.67 \times 10^{-3} \text{ kg mol/m}^3$$

$$\frac{1}{K_G} = \frac{1}{k_L} + \frac{H}{k_L} = \frac{1}{3.95 \times 10^{-9}} + \frac{3.04 \times 10^4}{0.0597}$$

$$\underline{K_G = 3.29 \times 10^{-9} \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}}$$

$$N_A = K_G (P_{AG} - P_A^*)$$

$$P_{AG} - P_A^* = \frac{4 \times 10^{-5}}{3.29 \times 10^{-9}}$$

$$= 1.216 \times 10^4 \text{ Pa}$$

$$\frac{1}{k_L} = \frac{1}{k_G} + \frac{1}{H k_G}$$

$$= \frac{1}{0.0597} + \frac{1}{(3.95 \times 10^{-9})(3.04 \times 10^4)}$$

$$\underline{K_L = 0.010 \text{ kg mol/m}^2 \cdot \text{s} \cdot (\text{kg mol/m}^3)}$$

29,24 (CONTINUED)

$$N_A = K_L (C_A^* - C_{AL})$$

$$C_A^* - C_{AL} = \frac{4 \times 10^{-5}}{0.01} = \underline{4 \times 10^{-3} \text{ kg mol/m}^3}$$

FRACTION OF RESISTANCE IN LIQUID φ

$$\phi = \frac{1/k_L}{1/k_L} = \frac{K_L}{k_L} = \frac{0.010}{0.0597} = \underline{0.167} \\ (16.7\%)$$

29,25

NH₃ INTO H₂O

$$T = 293 \text{ K}$$

$$P = 1 \text{ ATM}$$

$$D = 4 \text{ m}$$

$$P_{AG} = 0.02 \text{ ATM}$$

$$\dot{V} = 200 \text{ L/h} = 0.2 \text{ m}^3/\text{h}$$

$$H = 0.02 \text{ ATM}/(\text{kg mol/m}^3)$$

$$K_G = 1.25 \text{ kg mol/m}^2 \cdot \text{h} \cdot \text{ATM}$$

$$k_L = 0.05 \text{ m/h}$$

$$\frac{1}{k_G} = \frac{1}{k_L} + \frac{H}{k_L} = \frac{1}{1.25} + \frac{0.02}{0.05}$$

$$\underline{K_G = 0.833 \text{ kg mol/m}^2 \cdot \text{h} \cdot \text{ATM}} \quad (a)$$

$$\frac{1}{k_G} = \frac{K_G}{k_G} = \frac{0.0833}{1.25} = \frac{P_{AG} - P_{Ai}}{P_{AG} - P_A^*}$$

$$\frac{0.02 - P_{Ai}}{0.02 - 0} = 0.666 \quad \underline{P_{Ai} = 0.0067} \quad (b)$$

29,25 (CONTINUED -

$$\begin{aligned}W_A &= N_A \cdot A_x = K_a (P_{A\text{in}} - P_A^*) A \\&= (0,833)(0,02-0)\left(\frac{\pi}{4}\right)(4)^2 \\&= 0,21 \text{ kg mol/h} \quad (\text{c})\end{aligned}$$

MASS BALANCE:

$$\text{for NH}_3: \dot{V}(0) + 0,21 = \dot{V} c_{A\text{out}}$$

$$c_{A\text{out}} = \frac{0,21}{0,2} = \underline{1,05 \text{ kg mol/m}^3} \quad (\text{d})$$

CHAPTER 30

30.1 SOLVENT EVAPORATION INTO AIR

$$T_s = 312 \text{ K} \quad P = 1 \text{ atm} \\ T_{\infty} = 293 \text{ K} \quad T_f = 303 \text{ K} \quad P_s = 0.05 \text{ atm} \\ C_{\infty} = 0.001 \text{ mol/cm}^3$$

$$\text{Air @ } 303 \text{ K: } D = 0.158 \text{ cm}^2/\text{s} \\ \rho = 1.17 \times 10^{-3} \text{ g/cm}^3$$

$$Re = \frac{Lu_p}{D} = \frac{(20)(5.0)}{0.158} = 633 \quad \text{(LAMINAR)}$$

$$D_{AB} = 0.1 \left(\frac{303}{298} \right)^{3/2} = 1.025 \text{ cm}^2/\text{s}$$

$$Sc = \frac{0.158}{1.025} = 0.154 \quad \text{(a)}$$

$$Sh = \overline{k}_c L = 0.664 Re^{1/2} Sc^{1/3}$$

$$D_{AB} = 9.16 \quad \text{(a)}$$

$$\overline{k}_c = \frac{9.16 (1.025)}{30} = 0.469 \text{ cm/s}$$

$$C = \frac{P}{RT} = \frac{1}{(82.06)(303)} = 4.02 \times 10^{-5} \text{ g mol/cm}^3$$

$$F_q = C \overline{k}_c = (4.02 \times 10^{-5})(0.469) \quad \text{(b)} \\ = 1.89 \times 10^{-5} \text{ g mol/cm}^2 \cdot \text{s} \cdot \Delta y$$

$$W_A = k_A (y_A^* - y_{A\infty}) A_F$$

$$y_A^* = \frac{P_{\infty}}{P} = 0.05$$

$$W_A = (1.89 \times 10^{-5})(0.05 - 0)(20 \times 10) \\ = 1.89 \times 10^{-4} \text{ g mol/s}$$

30.1 (CONTINUED)

$$\text{Moles of Solvent} = PV$$

$$= (0.001)(20)(10)(0.01) = 0.002$$

$$t = \frac{0.002}{1.89 \times 10^{-4}} = 10,58 \text{ s} \quad \text{(c)}$$

30.2 NAPHTHALENE SUBLIMING INTO AIR

$$T_s = 290 \text{ K} \quad T_f = 300 \text{ K} \quad P_A^0 = 26 \text{ Pa} \\ T_{\infty} = 310 \text{ K} \quad @ 290 \text{ K}$$

$$D = 1.569 \times 10^{-5} \text{ m}^2/\text{s} \quad V = 20 \text{ m/s}$$

$$D_{AB} = 5.61 \times 10^{-6} \left(\frac{300}{290} \right)^{3/2} = 5.90 \times 10^{-6} \text{ m}^2/\text{s}$$

$$At \ x = 3 \text{ m} \quad Re = \frac{0.3(20)}{1.569 \times 10^{-5}} = 382 \times 10^5$$

$$Sc = \frac{1.569 \times 10^{-5}}{5.90 \times 10^{-6}} = 266$$

$$\overline{k}_{c,y} = \frac{D_{AB}}{x} Re^{4/5} Sc^{1/3}$$

$$= \frac{5.90 \times 10^{-6}}{0.3} (382 \times 10^5)^{4/5} (2.66)^{1/3}$$

$$= 0.0232 \text{ m/s} \quad \text{(d)}$$

From 0.5m < x < 0.75m

$$\overline{k}_c = \frac{0.0365 D_{AB} Sc^{1/3}}{0.75 - 0.5} \left[Re_{0.75}^{4/5} - Re_{0.5}^{4/5} \right]$$

$$Re_{0.75} = \frac{0.75(20)}{1.569 \times 10^{-5}} = 9.56 \times 10^5$$

$$Re_{0.5} = \frac{0.5(20)}{1.569 \times 10^{-5}} = 6.31 \times 10^5$$

30,2 CONTINUED-

SUBSTITUTING VALUES:

$$\bar{k}_c = 0.020 \text{ m/s}$$

$$W_A = N_A A = \bar{k}_c (C_{AS} - C_{Ar}) A$$

$$C_{AS} = \frac{P}{RT} = \frac{26}{(8.314)(289)} = 0.0108 \text{ mol/m}^3$$

$$C_{Ar} = 0$$

$$W_A = (0.020)(0.0108)(0.25)(1) \\ = 5.4 \times 10^{-5} \text{ mol/s} \\ = 0.1944 \text{ mol/h}$$

30,3 $\text{C}_2\text{H}_5\text{OH}$ INTO AIR

$$T_f = \frac{289 + 303}{2} = 296 \text{ K} \quad P_{\infty} = 6.45 \times 10 \text{ atm}$$

$$D_{AB} = 1.32 \times 10^{-5} \text{ m}^2/\text{s}$$

$$N = 1.53 \times 10^{-5} \text{ "}$$

$$Re_L = \frac{U_{\infty} L}{\nu} = \frac{(3)(2)}{1.53 \times 10^{-5}} = 3.92 \times 10^5$$

TAKING FLOW AS LAMINAR FOR $Re \leq 2 \times 10^5$
§ TURBULENT FOR $Re > 2 \times 10^5$

$$\bar{k}_c = \frac{D_{AB}}{L} \left[0.044 Re_L^{1/2} Sc^{1/5} + 0.0365 Sc^{1/3} (Re_L^{4/5} - Re_L^{1/5}) \right]$$

$$Re_L = 2 \times 10^5 \quad Re_L = 3.92 \times 10^5$$

SUBSTITUTING VALUES:

$$\bar{k}_c = 5.16 \times 10^{-3} \text{ m/s}$$

30,3 CONTINUED-

$$W_A = N_A A = \bar{k}_c (C_{AS} - C_{Ar}) A$$

$$C_{AS} = \frac{P}{RT} = \frac{(6.45 \times 10^{-2})(1.03 \times 10^5)}{(8.314)(289)} = 2.72 \text{ mol/m}^3$$

$$W_A = (5.16 \times 10^{-3})(2.72 - 0)(2 \times 4) \\ = 0.112 \text{ mol/s} \\ = 0.112(46) = 5.15 \text{ g/s}$$

30,4 MOLECULAR DIFFUSION THROUGH GRAVEL - THEN CONVECTIVE TRANSFER TO AIR -

$$T = 288 \text{ K} \quad U = 2 \text{ cm/s}$$

$$f_A = 1039 \text{ Pa} \quad L = 10 \text{ m} \quad \text{GRAVEL DEPTH} = 1 \text{ m}$$

$$\text{THROUGH GRAVEL} - N_A = \frac{D_{AB}}{S} (C_{A1} - C_{A2})$$

$$\text{AT SURFACE} \quad N_A = \bar{k}_c (C_{A2} - C_{Ar})$$

$$Re_L = \frac{LU_{\infty}}{\nu} = \frac{(10)(0.02)}{1.46 \times 10^{-5}} = 1.37 \times 10^6$$

$$\bar{k}_c = \frac{D_{AB}}{L} (0.044) Re_L^{1/2} Sc^{1/3} \quad (\text{Laminar})$$

$$Sc = \frac{\nu}{D_{AB}} = \frac{1.46 \times 10^{-5}}{5.72 \times 10^{-6}} = 2.55$$

$$\bar{k}_c = \frac{5.72 \times 10^{-6}}{10} (0.044) (1.37 \times 10^6)^{1/2} 2.55^{1/3}$$

$$= 6.07 \times 10^{-5} \text{ m/s}$$

$$C_{A1} = \frac{P}{RT} = \frac{1039}{(8.314)(288)} = 0.434 \text{ mol/m}^3$$

30.4 CONTINUED -

AT STEADY STATE -

$$N_A = \frac{D_{AB}}{\delta} (C_{A1} - C_{A2}) = \bar{k}_c (C_{A2} - 0)$$

$$\frac{5.72 \times 10^{-6}}{1} (0.434 - C_{A2}) = 6.07 \times 10^{-5} C_{A2}$$

$$C_{A2} = 0.0374 \text{ mol/m}^3$$

$$C = \frac{P}{RT} = \frac{1.013 \times 10^5}{(8.314)(288)} = 42.31 \text{ mol/m}^3$$

$$y_{A2} = \frac{0.0374}{42.31} = 8.84 \times 10^{-4} \quad (\text{a})$$

$$N_A = (6.07 \times 10^{-5})(0.0374) = 2.27 \times 10^{-6} \text{ mol/m}^2\text{s}$$

FOR SAME CONFIGURATION & PROCESS

BUT $V_A = 50 \text{ cm/s}$

$$Re_L = \frac{(40)(50)}{1.416 \times 10^{-5}} = 3.42 \times 10^5$$

{ INTO TURBULENT
FLOW REGIME }

FOR $Re \leq 2 \times 10^5$ LAMINAR B.L.

$Re > "$ TURBULENT *

$$\bar{k}_c = \frac{D_{AB} S_c^{1/3}}{L} \left[0.004 Re_{tr}^{1/2} + 0.0365 (Re_L^{1/5} - Re_{tr}^{1/5}) \right]$$

$$Re_{tr} = 2 \times 10^5$$

$$Re_L = 3.42 \times 10^5$$

SUBSTITUTING & SOLVING:

$$\bar{k}_c = 4.98 \times 10^{-4} \text{ m/s}$$

30.4 CONTINUED -

$$\frac{5.72 \times 10^{-6}}{1} (C_{A1} - C_{A2}) = 4.98 \times 10^{-4} (C_{A2} - 0)$$

$$C_{A2} = 4.93 \times 10^{-3} \text{ mol/m}^3$$

$$y_{A2} = \frac{4.93 \times 10^{-3}}{42.31} = \underline{\underline{1.16 \times 10^{-4}}} \quad (\text{b})$$

$$N_A = (4.98 \times 10^{-4})(4.93 \times 10^{-3}) = \underline{\underline{2.45 \times 10^{-6} \text{ mol/m}^2\text{s}}}$$

NEEDED BIOT NO. = $\frac{\bar{k}_c S}{D_{AB}}$

$$= \frac{(6.07 \times 10^{-5})(1)}{5.72 \times 10^{-6}} = 10.61 \quad \{ \text{CASE (a)} \}$$

$$\frac{1/\bar{k}_c}{1/D_{AB}/\delta} = \frac{1}{10.61} = 0.094$$

- 9.4% RESISTANCE IN FLOWING STREAM

$$\text{for CASE (b)} - Bi = \frac{\bar{k}_c S}{D_{AB}} = 87.06$$

$$\frac{1}{87.06} = 0.0115$$

- 1.15% RESISTANCE IN AIR STREAM

30.5 REFER TO CHAPTER - EXAMPLE 1 - FOR PROBLEM SPECIFICATIONS -

ACSIINE (A)

TMB (B)

$$C = \frac{P}{RT} = \frac{1.013 \times 10^5}{(8.314)(800)} = 15.23 \text{ mol/m}^3$$

30.5 CONTINUED -

$$C_{AP} = C_{BP} = 0.001(15.23) \\ = 0.0152 \text{ mol/m}^3$$

FOR TMH - 1800 K

$$\begin{aligned} D_{H_2} &= 5.686 \text{ cm}^2/\text{s} \\ D_{AB} &= 1.65 \text{ cm}^2/\text{s} \end{aligned} \quad \left\{ \begin{aligned} Sc &= 3.67 \\ \end{aligned} \right.$$

AT $x = 4 \text{ cm}$ $Sh_x = k_c = N_A = 0$

$x = 9 \text{ cm}$ - SEE EXAMPLE 1 -

$$Sh_x = 8.375 \quad k_c = 0.0144 \text{ m/s} \\ N_B = 0.0144(0.0152) \\ = 2.19 \times 10^{-4} \text{ mol B/m}^2 \cdot \text{s}$$

$x = 14 \text{ cm}$

$$Re_x = \frac{V_{max}x}{D} = \frac{(100)(14)}{5.686} = 2416$$

$$k_{CB} = \frac{D_{AB}}{x} \left[0.332 Re_x^{1/2} \left(\frac{Sc}{1 + [Sc]^{1/4}} \right)^{1/3} \right]$$

$X/x = 4/14$ - OTHER QUANTITIES KNOWN

SUBSTITUTING 3 UNKNOWN:

$$k_c = 0.0144 \text{ m/s}$$

$$N_B = (0.0144)(0.0152) = 1.59 \times 10^{-4} \text{ mol/m}^2 \cdot \text{s}$$

FOR A:

AT $x = 4 \text{ cm}$: $Sh_x = k_c = N_A = 0$

30.5 CONTINUED -

$$x = 9 \text{ cm} \quad Re_x = \frac{(100)(9)}{5.686} = 158.3$$

$$k_{CA} = \frac{3.17}{9} \left[0.332(158.3) \left(\frac{1.784}{1 - (4/9)^{1/4}} \right)^{1/3} \right] \\ = 0.0232 \text{ m/s}$$

$$N_A = (0.0232)(0.0152) = \underline{\underline{3.53 \times 10^{-4} \text{ mol/m}^2 \cdot \text{s}}}$$

$$\text{AT } 14 \text{ cm} \quad Re_x = \frac{(100)(14)}{5.686} = 2416$$

SAME FORMULA BUT $x = 14$ $Re = 2416$

$$k_c = 0.0169 \text{ m/s}$$

$$N_A = (0.0169)(0.0152) = \underline{\underline{2.57 \times 10^{-4} \text{ mol/m}^2 \cdot \text{s}}}$$

$$\text{TO PRODUCE } \frac{N_A}{N_B} = 1 \Rightarrow \frac{k_{CA}(C_{AS} - C_{PA})}{k_{CB}(C_{BS} - C_{PB})} = 1$$

$$@ 9 \text{ cm}: \frac{k_{CA}}{k_{CB}} = \frac{0.0232}{0.0144} \frac{\Delta C_A}{\Delta C_B}$$

$$= 1 \quad \text{IF} \quad \frac{\Delta C_A}{\Delta C_B} = 0.162$$

$$@ 14 \text{ cm}: \frac{\Delta C_A}{\Delta C_B} = \frac{k_{CB}}{k_{CA}} = \frac{0.0169}{0.0232} = 0.162$$

FOR BOTH CASES -

$$\Delta C_B = C_{BS} - C_{PB} = 0.0152 - C_{PB}$$

$$\Delta C_A = C_{AS} - C_{PA} = 0.0152$$

$$\text{SO } C_{PB} \text{ SHOULD BE } \frac{0.0152 - C_{PB}}{0.0152} = 0.62$$

$$\text{OR } C_B = 0.00578 \text{ mol/m}^3$$

30.5 CONTINUED -

THICKNESS OF GAFS FILM AFTER 120S

$$- \text{AT } x = 4 \text{ cm} \quad \delta = 0$$

$$\text{AT } x = 9 \text{ cm}$$

GAFS DEPOSITED -

$$= (2.19 \times 10^{-4}) (144) (120) = 378 \text{ g/m}^2$$

$$P_s = 5.8 (180)^3 = 5.8 \times 10^6 \text{ g/m}^2$$

$$\delta = \frac{3.78}{5.68 \times 10^6} = 0.652 \times 10^{-6} \text{ m}$$

$\sim 0.652 \mu\text{m}$

AT $x = 14 \text{ cm}$

$$\delta = \frac{(1.59 \times 10^{-4})(144)(120)}{5.68 \times 10^6}$$

$$= 0.474 \times 10^{-6} \text{ m} = \underline{\underline{0.474 \mu\text{m}}}$$

30.6 MASS TRANSFER FROM SPHERICAL SURFACE -

$$D = 1 \text{ cm}$$

$$P_A^o = 1.17 \times 10^4 \text{ Pa}$$

$$T = 298 \text{ K}$$

$$M_A = 78$$

$$P = 1 \text{ atm}$$

$$D_{AB} = 0.0962 \text{ cm}^2/\text{s}$$

$$\text{Mass of Solvent} = (0.12 \text{ g/cm}^2) A$$

$$= 0.12(\pi)(1)^2 = 0.377 \text{ g}$$

$$= 3.77 \times 10^{-4} \text{ kg}$$

$$W_A = N_A A = k_C (C_{AS} - C_{AR}) \pi D^2$$

$$D = \frac{\mu}{P} = \frac{1.85 \times 10^{-4}}{1.18 \times 10^{-3}} = 0.1568 \text{ cm}^2/\text{s}$$

$$D_{AB} = 0.0962 \text{ cm}^2/\text{s}$$

30.6 CONTINUED -

$$Sc = \frac{D}{D_{AB}} = \frac{0.1568}{0.0962} = 1.63$$

$$\text{IN STAGNANT AIR} - \frac{k_C D}{D_{AB}} = 2$$

$$k_C = \frac{2(0.0962)}{1} = 0.1924 \text{ cm/s}$$

$$C_{AS} = \frac{P_A^o}{RT} = \frac{1.17 \times 10^4}{(8.314)(298)} = 4.72 \text{ mol/m}^3$$

$$W = (0.1924)(4.72 - 0) \pi (1)(18)(10^{-6})$$

$$= 2.225 \times 10^{-4} \text{ g/s} = 2.225 \times 10^{-7} \text{ kg/s}$$

$$t = \frac{3.77 \times 10^{-4}}{2.225 \times 10^{-7}} = \frac{1694 \text{ s}}{0.471 \text{ h}} \quad (a)$$

for $U_p = 1 \text{ m/s}$

$$Re = \frac{1(100)}{0.1568} = 638$$

$$Sh = \frac{k_C D}{D_{AB}} = 2 + 0.552 Re^{1/2} Sc^{1/3}$$

$$k_C = \frac{D_{AB}}{D} \left(\frac{Re}{Sc} \right)^{1/3} = 1.77 \text{ cm/s}$$

$$W_A = 2.225 \times 10^{-4} \left(\frac{1.77}{0.1924} \right)$$

$$= 20.43 \times 10^{-7} \text{ kg/s}$$

$$t = \frac{3.77 \times 10^{-4}}{20.43 \times 10^{-7}} = \underline{\underline{184 \text{ s}}} \quad (b)$$

30.7 A DIFFUSING THROUGH STAGNANT B $\rightarrow N_B = 0$

$$N_{Ar} = - \frac{CD_{AB}}{1-y_A} \frac{dy_A}{dr}$$

$$\nabla^2 N_A = \frac{1}{r^2} \frac{d}{dr} (r^2 N_{Ar}) = 0$$

$$\sim r^2 N_{Ar} = \text{CONSTANT}$$

$$N_{Ar} R \int_0^R \frac{dy_A}{r^2} = C D_{AB} \left(\frac{y_{Ar}}{1-y_A} - \frac{y_{Ar}}{y_{As}} \right)$$

$$N_{Ar} R^2 \left[\frac{1}{R} - 0 \right] = C D_{AB} \ln \left(\frac{1-y_{Ar}}{1-y_{As}} \right)$$

$$N_{Ar} R = \frac{C D_{AB}}{y_{BLM.}} (y_{As} - y_{Ar})$$

$$N_{Ar} \frac{D}{2} = \frac{C D_{AB}}{y_{BLM.}} (y_{As} - y_{Ar})$$

$$N_{Ar} = \frac{2 D_{AB}}{y_{BLM.}} (C_{As} - C_{Ar})$$

$$\Rightarrow k_c = \frac{2 D_{AB}}{(y_{BLM.}) D}$$

$\frac{1}{2}$ for $y_{BLM.} \approx 1$ (DILUTE SOLN OF A)

$$Sh = \frac{k_c D}{D_{AB}} = 2$$

30.8 SPHERICAL PENET IN CROSSFLOW-

$$T = 293 K \quad D = 9.95 \times 10^{-3} \text{ cm}^2/\text{s}$$

$$D = 1 \text{ cm} \quad D_{AB} = 1.2 \times 10^{-5} "$$

$$U_p = 5 \text{ cm/s} \quad C_{Ar} = 0$$

30.8 CONTINUED -

$$\frac{k_c D}{D_{AB}} = 2.0 + 0.552 Re^{1/2} Sc^{1/3}$$

$$Re = \frac{DU_p}{\nu} = \frac{(1)(5)}{9.95 \times 10^{-3}} = 502$$

$$Sc = \frac{\nu}{D_{AB}} = \frac{9.95 \times 10^{-3}}{1.2 \times 10^{-5}} = 9.37$$

Solving for k_c : $k_c = 0.00141 \text{ cm/s}$ (2)

$$V = \frac{\pi D^3}{6} \quad \frac{dN}{dt} = 2\pi D^2 \frac{dV}{dt}$$

$$W_A = \frac{P_A}{M_A} \frac{dN}{dt} = k_c (C_{As} - C_{Ar}) \pi D^2$$

$$\frac{P_A}{M_A} 2\pi D^2 \frac{dV}{dt} = \pi D^2 k_c C_{As}$$

$$\frac{dV}{dt} = \frac{(0.00141)(7 \times 10^{-4})(110)}{2(2)}$$

$$= 2.71 \times 10^{-5} \text{ cm/s} = 0.0977 \text{ cm/h}$$

$$\frac{df}{dt} = 0.105 \text{ cm/h} \quad (b)$$

for $D = 0.5 \text{ cm}$

$$Re_p = 251 \quad k_c = 2.0 + 0.552 Re^{1/2} Sc^{1/3}$$

$$= 0.00201 \text{ cm/s}$$

$$\frac{W_A|_{1.0}}{W_A|_{0.5}} = \frac{0.00141}{0.00201} \frac{C_{As} \pi (1)^2}{C_{As} \pi (0.5)^2}$$

$$= 2.804 \quad (c) \quad \left. \begin{array}{l} \text{INCREASE BY} \\ \text{THIS FACTOR} \end{array} \right\}$$

30.9 Glucose (A) INTO AQUEOUS STREAM 30.10 C₂H₆ (A) INTO LIQUID (B)

$$T = 298 \text{ K}$$

$$V = 0.15 \text{ m/s}$$

$$D_{AB} = 6.9 \times 10^{-10} \text{ m}^2/\text{s}$$

$$D = 0.3 \text{ cm}$$

(SPACES)

FOR T_A INTO A LIQUID STREAM:

$$Re_D = \frac{DV}{\mu}$$

$$\lambda = \frac{0.00091 \text{ kg/m.s}}{997 \text{ kg/m}^3} = 9.127 \times 10^{-7} \text{ m}^2/\text{s}$$

$$Re = \frac{(0.003)(0.15)}{9.127 \times 10^{-7}} = 493$$

$$Sc = \frac{9.127 \times 10^{-7}}{6.9 \times 10^{-10}} = 1322$$

$$k_e = Re Sc = 6521 \times 10^5$$

EQN. (30-8) APPLIES

$$k_e D = 1.01 k_L^{1/3}$$

$$D_{AB}$$

$$k_L = \frac{1.01 (6521 \times 10^5)^{1/3}}{0.003} \frac{6.9 \times 10^{-10}}{= 2.0 \times 10^5 \text{ m/s}}$$

$$k_L \sim \frac{1}{D} \left(D^{1/3} V^{1/3} \right) \sim \frac{V^{1/3}}{D^{2/3}}$$

FOR D INCREASING k_L DECREASES

FOR V " " k_L INCREASES

LARGER EFFECT IS AD (b)

$$\text{BUBBLE } D = 0.002 \text{ m}$$

$$\rho_B = 1.47 \text{ g/cm}^3$$

$$\mu_B = 5.2 \times 10^{-4} \text{ kg/m.s}$$

$$D_{AB} = 5.6 \times 10^{-5} \text{ cm}^2/\text{s}$$

$$H = 6.76 \text{ atm}/\Delta x_A$$

FOR D < 2.5 mm - Eq (30-14a) APPLIES -

$$k_C = \frac{D_{AB}}{D} \left[0.131 \left(\frac{\rho_L}{\rho_B} \right)^{1/3} Sc^{1/3} \right]$$

$$Sc = \frac{\mu}{8 D_{AB}} = \frac{5.2 \times 10^{-4}}{(1.47 \times 10^3)(5.6 \times 10^{-5})}$$

$$= 63.2$$

$$G_r = \frac{D^2 \rho_L (\rho_L - \rho_g) g}{\mu_L^2}$$

$$\rho_g = \frac{PM}{RT} = \frac{(1.013 \times 10^5)(71)}{(8.314)(298)} = 2.9 \text{ kg/m}^3$$

$$\rho_L = 1470 \text{ kg/m}^3$$

SUBSTITUTING VALUES :

$$k = 2.95 \times 10^4 \text{ m/s}$$

$$N_A = k_C (C_{AS} - C_{AR})^0$$

$$C_{AS} = X_A C_L = \frac{P_A}{H} C_L = \frac{1}{6.76} C_L$$

$$C_L = \frac{(1470)(0.001)}{169.8} = 8660 \text{ mol/m}^3$$

$$N_A = (2.95 \times 10^4) \left(\frac{8660}{6.76} \right)$$

$$= 0.378 \text{ mol/m}^2 \text{ s}$$

30.11

TCE (A)

BEING
STRIPPED -

MASS BALANCE FOR A:

$$\left\{ \begin{array}{l} \text{RATE OF Tx} \\ \text{from } \text{H}_2\text{O} \end{array} \right\} = \left\{ \begin{array}{l} \text{RATE OF DEPLETION} \\ \text{IN } \text{H}_2\text{O PHASE} \end{array} \right\}$$

$$N_A A_i = - \frac{dC_A}{dt} \quad \left\{ \text{PER } \text{m}^3 \right\}$$

$$K_L A_i C_A = - \frac{dC_A}{dt}$$

FOR LIQUID PHASE Tx CONTROLLING

$$k_L \approx K_L$$

$$-\frac{dC_A}{dt} = k_L A_i C_A$$

$$-\int_{C_{Ai}}^{C_A} \frac{dC_A}{C_A} = k_L A_i \int_0^t dt$$

$$\ln\left(\frac{C_{Ai}}{C_A}\right) = k_L A_i t \quad (a)$$

$$T = 293 \text{ K}$$

$$M_A = 131.4$$

$$\mu_L = 9.93 \times 10^{-4} \text{ kg/m.s}$$

$$\rho_L = 998.2 \text{ kg/m}^3 \quad D = 9.95 \times 10^{-7} \text{ m}^2/\text{s}$$

$$\rho_G = 1.19 \text{ kg/m}^3$$

$$H = 997 \text{ Atm/(kg.m)}^2/\text{m}^3$$

$$D_{AB} = 8.9 \times 10^{-10} \text{ m}^2/\text{s}$$

$$Sc = \frac{9.95 \times 10^{-7}}{8.9 \times 10^{-10}} = 1117$$

$$\text{BUBBLE DIAM} \approx 0.005 \text{ m}$$

30.11 CONTINUED -

$$A_i (\text{in } \text{m}^2) = 0.015 \frac{\text{m}^3 \text{ AIR}}{\text{m}^3 \text{ H}_2\text{O}} \frac{6}{0.005} \frac{\text{m}^2}{\text{m}^3}$$

$$= 18 \text{ m}^2/\text{m}^3$$

EQUATION (30-14b) APPLIES:

$$k_L = \frac{D_{AB}}{dp} (0.42) Gr^{1/3} Sc^{1/2}$$

$$Gr = \frac{d^3 \rho_L g (\rho_L - \rho_G)}{\mu_L^2}$$

SUBSTITUTING VALUES:

$$k_L = 2.682 \times 10^{-4} \text{ m/s}$$

$$k_L A_i = (2.682 \times 10^{-4})(18) = 0.00482 \text{ s}^{-1}$$

$$\ln\left(\frac{50}{0.005}\right) = 0.00482 t$$

$$\underline{t = 1911 \text{ s}}$$

30.12

SAME SYSTEM AS
IN PROB 13.11

MASS BALANCE FOR C.N. { CONSTITUENT A }

$$C_A(t) V_{1/2} - C_A(t) V_{1/2,eq} = N_A A_i A_{1/2}$$

DIVIDE BY A Δz & EVALUATE IN LIMIT $\Delta z \rightarrow 0$

$$-V \frac{dC_A}{dt} = K_L A_i (C_A - C_A^*) \quad (a)$$

$$C_A^* = \frac{p_A}{H} = 0 \quad K_L = K_L - \left\{ \begin{array}{l} \text{LIQUID} \\ \text{PHASE} \\ \text{CONTROLS} \end{array} \right\}$$

30.1

30.12 (CONTINUED) -

$$-\int_{C_0}^{C_A} \frac{dC_A}{C_A} = \frac{k_L A_i}{V} \int_0^L dz$$

$$A_i = 18 \text{ m}^2/\text{m}^3 \quad \left\{ \begin{array}{l} \text{SEE SOLN TO} \\ \text{PROB 30.11} \end{array} \right\}$$

$$\ln \frac{C_A}{C_0} = k_L V A_i L$$

$$k_L = 2.682 \times 10^{-4} \text{ m/s}$$

$\left\{ \begin{array}{l} \text{SEE PROB 30.11} \\ \text{FOR DETAILS} \end{array} \right\}$

SUBSTITUTE VALUES & SOLVE -

$$L = 191.5 \text{ m}$$

30.13

THICKNESS OF COATING = 0.01 CM

MASS OF COATING
= 5 mg

$$\mu_l = 0.040 \text{ g/cm.s} \quad \dot{V} = 10 \text{ cm}^3/\text{s}$$

$$\rho_l = 1.05 \text{ g/cm}^3$$

$$D_{AB} = 1 \times 10^{-6} \text{ cm}^2/\text{s} \quad M = 18$$

$$V = \frac{\dot{V}}{A} = \frac{10}{\pi/4(1)^2} = 12.73 \text{ cm/s}$$

FOR A SINHUE CYLINDER - EQUATION (30-16) -

$$\frac{k_L S_C}{V} = 0.281 R_e^{-0.4}$$

30.13 (CONTINUED)

$$S_C = \frac{0.040}{(1.05)(1 \times 10^{-6})} = 3.8 \times 10^4$$

$$R_e = \frac{(0.12)(12.73)(1.05)}{0.04} = 66.8 \quad (a)$$

SUBSTITUTING VALUES: $k_L = 0.00181 \text{ cm/s}$

$$W = N_A A = k_L (C_A^* - C_{AB})(\pi D L)$$

$$C_A^* = 2.5 \times 10^{-4} \text{ mg/cm}^3$$

$$W = (0.00181)(2.5 \times 10^{-4})(\pi)(0.2)(1)$$

$$= 2.84 \times 10^{-7} \text{ mg/s}$$

$$t = \frac{5}{2.84 \times 10^{-7}} = 1.76 \times 10^7 \text{ s}$$

$$= 4890 \text{ h}$$

$$\approx 204 \text{ DAYS}$$

30.14

$$P_A = 428 \text{ Pa}$$

$$M_A = 106$$

$$T_f = \frac{298 + 313}{2} = 305.5 \text{ K}$$

$$\rho_{air} = 1.156 \text{ kg/m}^3$$

$$D_{AB} = \left(0.08 \left(\frac{305.5}{313}\right)^{3/2}\right) = 0.017 \text{ cm}^2/\text{s}$$

$$\text{INITIALLY: } Re = \frac{(1)(20)}{0.01621} = 1234$$

$$S_C = \frac{2}{D_{AB}} = \frac{0.01621}{0.017} = 2.104$$

EQUATION (30-16) APPLIES

30.14 CONTINUED -

$$k_D \frac{P_{Sc}^{0.56}}{6m} = 0.281 Re^{-0.4}$$

$$P = 1.013 \times 10^5 \text{ Pa}$$

$$G_m = \frac{g}{M} = \frac{(1.156)(0.2)}{29}$$

$$= 0.00797 \text{ kg mol/m}^2\text{s}$$

SUBSTITUTING VALUES

$$k_D = 2.12 \times 10^{-6} \text{ kg mol/m}^2\text{s Pa}$$

$$N_A = k_D (P_{AS} - P_{Ar})^0$$

$$= (2.12 \times 10^{-6})(4.28) = 9.07 \times 10^{-7} \text{ kg mol/m}^2\text{s}$$

$$W_A = N_A A$$

$$= (9.07 \times 10^{-7})(\pi)(0.05)(0.05)$$

$$= 1.425 \times 10^{-9} \text{ kg mol/s}$$

$$= (1.425 \times 10^{-9})(100) = 1.51 \times 10^{-7} \text{ kg/s}$$

$$= 0.544 \text{ g/h} \quad (a)$$

WHEN A IS DEPLETED

$$D = 0.5 \text{ cm} \sim Re_D = 61.7$$

Same Procedure as in Part (a)

NEW VALUES:

$$k_D = 2.79 \times 10^{-6} \text{ kg mol/m}^2\text{s Pa}$$

$$N_A = 1.19 \times 10^{-6} \text{ kg mol/m}^2\text{s}$$

30.14 CONTINUED -

$$W_A = (1.19 \times 10^{-6})(\pi)(0.005)(0.05)$$

$$= 9.35 \times 10^{-10} \text{ kg mol/s}$$

$$W_{A,AVG} = \frac{(1.425 + 0.935)}{2} \times 10^9$$

$$= 1.18 \times 10^{-9} \text{ kg mol/s}$$

TOTAL MASS OF A DEPLETED -

$$m = \frac{\pi (D_i^2 - D_f^2)}{4} (1.1)(0.4) \frac{10^6}{10^6}$$

{ 0.4 IS FRACTION OF A IN SOLN }

$$= 0.0122 \text{ g mol}$$

$$t = \frac{0.0122}{(1.18 \times 10^{-9})(1000)} = \frac{10340 \text{ s}}{1.18 \times 10^{-9}} = 2.87 \text{ h}$$

30.15 CONSTITUENT A INTO WATER (B)

CYLINDRICAL FILM - $D_i = 1.8 \text{ cm}$

$$D_o = 2.0 \text{ "}$$

$$T = 293 \text{ K}$$

$$\dot{V}_{H_2O} = 314 \text{ cm}^3/\text{s} \quad U = \frac{314}{\pi/4 (1.8)^2} = 123 \text{ cm/s}$$

$$D_{AB} = 0.00995 \text{ cm}^2/\text{s}$$

$$D_{AB} = 1.2 \times 10^{-9} \text{ m}^2/\text{s}$$

$$Sc = \frac{0.00995}{(1.2 \times 10^{-9})(100)} = 829$$

$$Re = \frac{(1.8)(123)}{0.00995} = 22,250$$

30.15 (CONTINUED -

EQN (30-18) APPLIES

$$k_L = \frac{D_{AB}}{D} (0.023) Re^{0.83} Sc^{1/3}$$

$$\text{SUBSTITUTING VALUES: } k_L = 0.00583 \text{ cm/s}$$

WHEN SCALE HAS BEEN REMOVED

$$D = 2 \text{ cm}$$

$$V = \frac{\pi/4(2)^2}{\pi/4(2)^2} = 100 \text{ cm/s}$$

SAME PROCEDURE AS ABOVE -

NEW VALUES:

$$Re = 20,100$$

$$k_L = 0.00482 \text{ cm/s}$$

$$k_{L,\text{AVG}} = \frac{0.00583 + 0.00482}{2} = 0.005325 \text{ cm/s}$$

$$W_A = k_L (C_{AS} - C_{AL}) (\pi D L)$$

$$= (0.005325)(0.14 \times 10^{-6})(\pi)(2)(100) = 4.68 \times 10^{-7} \text{ g mol/s}$$

MASS OF CaCO_3 REMOVED -

$$m = \rho V = \frac{(2.7)(\pi)}{100} (2^2 - 1.8^2)(100) = 1.611 \text{ g mol}$$

$$t = \frac{1.611}{4.68 \times 10^{-7}} = 3.44 \times 10^6 \text{ s} = 956 \text{ h}$$

30.16

O_2 INTO H_2O :

$$T = 298 \text{ K}$$

$$P = 1 \text{ ATM}$$

$$D = 9.12 \times 10^{-3} \text{ cm}^2/\text{s}$$

$$D_{AB} = 2.10 \times 10^{-5} \text{ "}$$

$$L = 500 \text{ cm}$$

$$H = 0.78 \text{ ATM/(mol/m}^3\text{)}$$

$$V = 50 \text{ cm/s}$$

FOR MASS TRANSFER FROM CYLINDRICAL INTERFACE IN A PIPE:

MASS BALANCE FOR C.N. YIELDS

$$\ln \frac{C_{AS} - C_{AO}}{C_{AS} - C_{AL}} = 4 \frac{L}{D} \frac{k_L}{V}$$

$$Sc = \frac{D}{D_{AB}} = \frac{9.12 \times 10^{-3}}{2.10 \times 10^{-5}} = 434 \quad (a)$$

$$Re = \frac{1(50)}{9.12 \times 10^{-3}} = 5482$$

$$\text{EQN (30-18) } Sh = 0.023 Re^{0.83} Sc^{1/3}$$

$$\text{SUBSTITUTING VALUES - } Sh = 220 \quad (a)$$

$$k_L = \frac{D_{AB} Sh}{D} = \frac{2.10 \times 10^{-5}}{1}(220)$$

$$= 0.00463 \text{ cm/s}$$

$$4 \frac{L}{D} \frac{k_L}{V} = 4 \frac{(500)(0.00463)}{1 \cdot 50} = 0.185$$

$$\ln \left[\frac{1.28 - 0}{1.28 - C_{AL}} \right] = 0.185$$

$$C_{AL} = 0.713 \text{ mol/m}^3$$

30.16 (CONTINUED)

FOR $C_{AL} = 0.6 \text{ CAS}$

$$\ln \frac{C_{AS}}{C_{AS} - 0.6 C_{AS}} = \ln 2.5 = 0.916$$

$$0.916 = \frac{4L}{1} \frac{(0.00463)}{50}$$

$$L = 2470 \text{ cm} = 24.7 \text{ m}$$

30.17

NAPHTHALENE - AIR

$$T = 373 \text{ K} \quad P = 1 \text{ atm}$$

$$\rho_0 = 1 \text{ mm Hg}$$

$$D_{AB} = 0.086 \text{ cm}^2/\text{s}$$

$$A_B = 0.25 \text{ cm}^2/\text{s}$$

$$P_B = 9.5 \times 10^{-4} \text{ g/cm}^3$$

MASS BALANCE FOR A IN X (UP) DIRECTION

$$C_A \nu \frac{\pi D^2}{4} \Big|_x + k_C (C_{AS} - C_A) \pi D \Delta x \\ = C_A \nu \frac{\pi D^2}{4} \Big|_{x+\Delta x}$$

DO ALGEBRA & EVALUATE IN LIMIT AS $\Delta x \rightarrow 0$

$$\frac{dC_A}{C_{AS} - C_A} = \frac{4}{D \nu} \frac{k_C}{\Delta x} dx$$

LEFT-HAND-SIDE:

$$\int \frac{dC_A}{C_{AS} - C_A} = \int_0^{C_{A1}} \frac{dC_A}{C_{AS} - C_A} + \int_{C_{A1}}^{C_{A2}} \frac{dC_A}{C_{AS} - C_A} \\ = \ln \frac{C_{AS} - 0}{C_{AS} - C_{A1}} + \ln \frac{C_{AS} - C_{A1}}{C_{AS} - C_{A2}} \\ = \ln \frac{C_{AS}}{C_{AS} - C_{A2}}$$

30.17 (CONTINUED)

RIGHT-HAND-SIDE -

$$4 \frac{k_C}{D \nu} \int_0^{20} dx = \frac{4}{D \nu} \left[\int_0^{20} dx + \int_{20}^{20+4} dx \right] \\ = \frac{4}{D \nu} (40)$$

FINAL EXPRESSION IS:

$$\ln \frac{C_{AS}}{C_{AS} - C_{AL}} = \frac{4}{D \nu} (40) \quad (a)$$

$$C = \frac{1}{RT} = \frac{1}{(82.06)(373)} = 3.267 \times 10^{-5} \text{ g mole/cm}^3$$

$$C_{AL} = y_{AL} C = 0.00666(C) = 2.15 \times 10^{-7} \text{ "}$$

$$C_{AS} = \frac{P_{AS}}{RT} = \frac{0.0314}{(82.06)(373)} = 4.29 \times 10^{-7} \text{ "}$$

$$\nu = 4.5 \text{ g/m} \left(\frac{\text{m}}{60 \text{ s}} \right) \left(\frac{\text{cm}^3}{9.5 \times 10^{-4} \text{ g}} \right) \left(\frac{4}{\pi} \right) \left(20 \text{ m} \right)^2 \\ = 25.13 \text{ cm/s}$$

SUBSTITUTING VALUES & SOLVING:

$$\underline{k_C = 0.120 \text{ cm/s}} \quad (b)$$

$$Re = \frac{D \nu}{\eta} = \frac{(2)(25.13)}{0.25} = 201$$

{ Laminar }

$$Sc = \frac{\nu}{D_{AB}} = \frac{0.25}{0.086} = 2.91$$

FOR (30-19) APPLIES:

$$k_C = \frac{D}{D_{AB}} (1.86) \left[\frac{1}{L} Re Sc \right]^{1/3}$$

WITH VALUES SUBSTITUTED:

$$\underline{k_C = 0.146 \text{ cm/s}} \quad (c)$$

30.18

A INTO SOLVENT -

$$C_A^* = 20 \text{ mg/cm}^3 \quad \rho_A = 1.10 \text{ g/cm}^3$$

$$D = 0.02 \text{ cm}^2/\text{s} \quad C_{A1} = 0.1 \text{ mg/cm}^3$$

$$\rho_{\text{soln}} = 1.04 \text{ g/cm}^3$$

USUAL MASS BALANCE FOR A

TRANSFERRING FROM TUBE WALL -

SEE PROB 30.17

$$\int_0^{C_A} \frac{dC_A}{C_{A1}-C_A} = \frac{4}{D} \frac{k_c}{V} \int_0^L dx$$

$$\ln \frac{C_A}{C_{A1}-C_A} = \frac{4L k_c}{D V} \quad (\text{a})$$

$$\ln \frac{20}{20-0.1} = 0.00501$$

$$= \frac{4(50)}{0.8} \frac{k_c}{V}$$

$$k_c = 2.005 \times 10^5 \text{ cm/s}$$

$$V = 35 \left(\frac{4}{\pi} \right) (0.8)^2 = 69.63 \text{ cm/s}$$

$$k_c = 1.389 \times 10^{-3} \text{ cm/s}$$

$$Re = \frac{DV}{D} = \frac{(0.8)(69.63)}{0.02} = 2793$$

USE Eq. 30-18

$$k_c = \frac{D_{AB}}{D} (0.023) k_e \left(\frac{2}{D_{AB}} \right)^{1/3}$$

SUBSTITUTING VALUES!

$$D_{AB} = 5.36 \times 10^{-5} \text{ cm}^2/\text{s} \quad (\text{b})$$

30.19

 H_2O INTO AIRWater adsorbent liner
(1.0 mm thick, 0.6 g H_2O/cm^3 liner initially) $T = 313 \text{ K}$ $P = 1 \text{ atm}$

$$P_A^0 = 55.4 \text{ mmHg} = 0.0729 \text{ atm}$$

$$\mu_{A1,2} = 1.91 \times 10^{-4} \text{ g/cm.s} \quad D = 0.169 \text{ cm}^2/\text{s}$$

$$\rho = 1.13 \times 10^{-3} \text{ g/cm}^3 \quad D = 0.169 \text{ cm}^2/\text{s}$$

$$D_{AB} = 0.240 \left(\frac{313}{298} \right)^{1/2} = 0.280 \text{ cm}^2/\text{s}$$

$$Sc = \frac{0.169}{0.280} = \underline{\underline{0.60}} \quad (\text{a})$$

USUAL MASS BALANCE - SEE PROB 30.17

$$\int_{C_{A1}}^{C_{A2}} \frac{dC_A}{C_A^* - C_A} = \frac{4}{D} \frac{k_c}{V} \int_0^L dx$$

$$\ln \frac{C_A^* - C_{A1}}{C_A^* - C_{A2}} = \frac{4L k_c}{D V} \quad (\text{b})$$

$$Re = \frac{(3)(300)}{0.169} = 5325$$

$$\text{Eqn (30-18): } k_c = \frac{D_{AB}}{D} (0.023) Re^{0.83} Sc^{1/3}$$

SUBSTITUTING VALUES - $k_c = 2.24 \text{ cm/s}$

$$\ln \frac{C_A^* - C_{A1}}{C_A^* - C_{A2}} = \frac{4(800)}{3} \frac{2.24}{300}$$

$$\frac{C_A^* - C_{A1}}{C_A^* - C_{A2}} = 2877$$

$$C_A^* = \frac{P_A^0}{RT} = \frac{0.0729}{(82.06)(313)} = 2.8 \times 10^{-4} \text{ mol/cm}^3$$

$$C_{A1} = k_c = 0.01 \left[\frac{1}{(82.06)(313)} \right] = 3.89 \times 10^{-7} \text{ mol/cm}^3$$

30.19 (CONTINUED) -

$$\text{SUBSTITUTING VALUES: } C_{A2} = 2.8 \times 10^{-5} \text{ mol/cm}^3$$

MASS OF H_2O ABSORBED -

$$\begin{aligned} m &= 0.6(0.10)(\pi)(800)3/8 \\ &= 15.13 \text{ g mol} \\ &= (C_{A2} - C_{A1})V\left(\frac{\pi D^2}{4}\right)t \\ &= (2.8 - 3.89)(10^{-5})(300)\left(\frac{\pi}{4}\right)^2 t \\ &= 5.112 \times 10^{-3} \text{ g mol/s} \end{aligned}$$

$$t = \frac{15.13}{5.112 \times 10^{-3}} = \underline{4916 \text{ s}}$$

$$\underline{1.366 \text{ h}}$$

30.20

$$C_{AS} = 20 \text{ mg/cm}^3 \quad D = 0.02 \text{ cm}^2/\text{s}$$

$$C_{AL,0} = 0.01 \quad D_{AB} = 4 \times 10^{-5}$$

$$\rho_{solid} = 1.10 \text{ g/cm}^3$$

$$V = \frac{V}{A} = \frac{(3)(A)}{\pi(0.8)^2} = 5.968 \text{ cm/s}$$

$$Re = \frac{(0.8)(5.968)}{0.02} = 238.7 \quad \{ \text{LAMINAR} \}$$

$$Sc = \frac{D}{D_{AB}} = \frac{0.02}{4 \times 10^{-5}} = 500$$

$$\text{From (30-19)} \quad k_c = \frac{D_{AB}}{D} (1.816) \left[\frac{D}{Re Sc} \right]^{1/3}$$

$$\Rightarrow k_c = 4.234 \times 10^{-4} L^{-1/3}$$

30.20 (CONTINUED) -

~ USUAL MASS BALANCE -

$$\ln \frac{C_A^* - C_A^0}{C_A^* - C_{AL}} = \frac{4Lk_c}{DV}$$

$$\begin{aligned} \ln \frac{20-0}{20-0.01} &= 5.00 \times 10^{-4} \\ &= \frac{4(4.234 \times 10^{-4})L^{2/3}}{0.8(5.968)} \\ L &= \underline{1.67 \text{ cm}} \end{aligned}$$

30.21 WETTED WALL COLUMN

$$P = 1 \text{ ATM} \quad D_i = 5 \text{ cm}$$

$$T = 300 \text{ K} \quad L = 600 \text{ cm}$$

$$D = 0.157 \text{ cm}^2/\text{s} \quad P_A^0 = 0.035 \text{ ATM}$$

For H_2O IN AIR @ 298 K -

$$D_{AB} = \frac{240}{2} \left(\frac{300}{298} \right)^{3/2} = \underline{0.131 \text{ cm}^2/\text{s}} \quad (a)$$

$$V = \frac{V}{A} = \frac{4000}{(\pi/4)(5)^2} = 203 \text{ cm/s}$$

$$Re = \frac{DV}{D} = \frac{(5)(203)}{0.157} = 6487$$

$$\text{From (30-18)} \quad k_c = \frac{D_{AB}}{D} (0.023)^{0.83} Sc^{1/3}$$

$$Sc = \frac{0.157}{0.131} = 1.198 \quad k_c = 0.934 \text{ cm/s}$$

$$Sh = \frac{(0.934)(5)}{0.131} = \underline{35.65} \quad (b)$$

$$k_G = \frac{k_c}{RT} = \frac{0.934}{(82.04)(300)} = \underline{3.79 \times 10^{-5} \text{ g mol/cm.s.atm}} \quad (c)$$

30.21 (CONTINUED -

$$C_A^* = \frac{P_A}{RT} = \frac{0.035}{(92.0)(300)} = 1.42 \times 10^{-6} \text{ g mole/cm}^3 \quad (\text{d})$$

USUAL MASS BALANCE FOR OIL,

$$\int_{C_{AO}}^{C_{AL}} \frac{dc_A}{C_A^* - C_A} = \frac{4}{D} \frac{k_c}{V} \int_0^L dx$$

$$\ln \frac{C_A^* - C_{AL}}{C_A^* - C_{AO}} = \frac{4L}{D} \frac{k_c}{V}$$

$$\ln \frac{1.42 \times 10^{-6}}{1.42 \times 10^{-6} - C_{AL}} = \frac{4(1600)(0.934)}{(5)(203)}$$

$$C_{AL} = 1.263 \times 10^{-6} \text{ g mole/cm}^3$$

30.22 WETTED WALL COLUMN $\text{CO}_2 - \text{H}_2\text{O}$

$$T = 293 \text{ K} \quad P_L = 998.2 \text{ kg/m}^3$$

$$\rho = 2.54 \text{ atm} \quad \mu_w = 993 \times 10^{-6} \text{ kg/m.s}$$

$$H = 25.5 \text{ atm/(kg mole/m}^3)$$

$$L = 2 \text{ m} \quad \dot{m}_{H_2O} = 2 \text{ g mole/s}$$

$$D = 6 \text{ cm} \quad \dot{m}_{CO_2} = 0.5 \text{ "}$$

$$\dot{P}_{CO_2} = H C_{CO_2}^* \quad C_{CO_2}^* = \frac{2.54}{25.5} = 0.1 \text{ kg mole/m}^3 \quad (\text{a})$$

$$Re_w = \frac{4 \dot{m}_w}{\pi D \mu_w}$$

$$= \frac{4(2)(12)}{\pi(6)(993 \times 10^{-6})} = 769$$

EQUATION (30-20) APPLIES

$$k_L = \frac{D_{AB}}{2} (0.433) S_C \left(\frac{g_F^3}{D_L^2} \right)^{1/6} k_{Lc}^{0.4}$$

30.22 (CONTINUED -

FOR CO_2 IN H_2O @ 293K

$$D_{AB} = 1.77 \times 10^{-9} \text{ m/s}$$

$$S_C = \frac{993 \times 10^{-6}}{(998.2)(1.77 \times 10^{-9})} = 562$$

$$\frac{g_F^3}{D_L^2} = \frac{(9.81)(2)^3}{[993 \times 10^{-6}/998.2]} = 79.2 \times 10^{12}$$

$$\text{SUBSTITUTING VALUES: } k_L = 2.686 \times 10^{-3} \text{ cm/s} \quad (\text{b})$$

USUAL MASS BALANCE:

$$\int_{C_{AO}}^{C_{AL}} \frac{dc_A}{C_A^* - C_A} = \frac{4}{D} \frac{k_c}{V} \int_0^L dz$$

$$Re = 769 = \frac{DV}{D} \sim V = 0.0127 \text{ m/s}$$

$$\ln \frac{C_A^*}{C_A^* - C_A} = \frac{4(2)}{0.06} \left(\frac{2.686 \times 10^{-3}}{0.0127} \right)$$

$$\frac{C_A^*}{C_A^* - C_A} = 1.3258 = \frac{0.1}{0.1 - C_A}$$

$$C_A = 0.0246 \text{ kg mole/m}^3 \quad (\text{c})$$

30.23 FALLING FILM TO TEOS (A) INTO H_2O

$$\dot{V}_L = 2000 \text{ cm}^3/\text{s} \quad T = 333 \text{ K}$$

$$D_i = 5 \text{ cm} \quad D_G = 1.47 \text{ cm}^2/\text{s}$$

$$L = 2 \text{ m} \quad D_{AB} = 1315 \text{ cm}^2/\text{s}$$

$$\dot{P}_A = 2133 \text{ Pa}$$

$$V = \frac{\dot{V}}{A} = \frac{2000}{\frac{\pi}{4}(5)^2} = 101.9 \text{ cm/s}$$

30.23 (CONTINUED) -

$$Re = \frac{DU}{\nu} = \frac{(5)(101.9)}{1.47} = 346.5$$

$\left\{ \text{LAMINAR} \right\}$

$$\text{Eqn (30-19)} \quad k_c = \frac{D_{AB}}{D} (1.86) \left(\frac{D}{L} Re Sc \right)^{1/3}$$

$$Sc = \frac{1.47}{1.315} = 1.118$$

SUBSTITUTING VALUES: $k_c = 1.042 \text{ cm/s}$

$$k_b = \frac{k_c}{RT} = \frac{1.042}{(8206)(333)} = 3.813 \times 10^{-5} \text{ mol/cm s atm}$$

(a)

USUAL MASS BALANCE:

$$\int_{C_{AO}}^{C_{AS}} \frac{dC_A}{C_{AS} - C_A} = 4 \frac{k_c}{D} \int_0^L dx$$

$$\ln \frac{C_{AS} - C_{AO}}{C_{AS} - C_{AL}} = \frac{4L}{D} \frac{k_c}{V}$$

$$= 4 \frac{(200)}{5} \frac{1.042}{101.9} = 1.637$$

$$\frac{C_{AS} - 0}{C_{AS} - C_{AL}} = 5.1387$$

$$C_{AL} = 0.805 C_{AS}$$

$$C_{AS} = \frac{P_A}{RT} = \frac{2133}{(8206)(333)} = 0.770 \text{ mol/m}^3$$

$$C_{AL} = 0.805 (0.770) = 0.620 \text{ mol/m}^3$$

(b)

AT BOTTOM OF COLUMN: $C_{AS} - C_{AL} = 0.770 - 0 \text{ mol/m}^3$

AT TOP: $C_{AS} - C_{AL} = 0.770 - 0.620 \text{ "}$

30.23 (CONTINUED) -

$$(C_{AS} - C_{AL})_{LM} = \frac{0.770 - 0.150}{4 \times 0.770 / 0.150} = 0.380 \text{ mol/m}^3$$

$$N_A = k_c (C_{AS} - C_{AL})_{LM}$$

$$= \frac{1.042 (0.380)}{(100)^3} = 3.96 \times 10^{-7} \text{ mol/cm}^3 \text{ s}$$

$$W_A = N_A A = (3.96 \times 10^{-7})(\pi)(5)(200)$$

$$= 1.24 \times 10^{-3} \text{ mol/s}$$

$$\dot{m}_{H_2} = \frac{P V}{R T} = \frac{(1.013 \times 10^5)(2 \times 10^{-3})}{(8.314)(333)}$$

$$= 0.0732 \text{ mol/s}$$

$$y_A = \frac{1.24 \times 10^{-3}}{1.24 \times 10^{-3} + 0.0732} = \underline{\underline{0.0167}} \quad (b)$$

$$\dot{m}_A = (1.24 \times 10^{-3})(208.33)$$

$$= \underline{\underline{0.258 \text{ g/s}}} \quad (c)$$

30.24 WETTED-WALL COLUMN

- ETHYL ACETATE (A) INTO AIR

$$V = 0.2 \text{ m/s} \quad T = 300 \text{ K} \quad P = 1 \text{ atm}$$

$$D = 0.05 \text{ m} \quad P_A = 0.080 \text{ atm}$$

$$D_{AIR} = 1.569 \times 10^{-5} \text{ m}^2/\text{s}$$

$$D_{AB} = 0.0709 \left(\frac{300}{273} \right)^{3/2} = 0.0817 \text{ cm}^2/\text{s}$$

$$Sc = \frac{(1.569 \times 10^{-5})(100)}{0.0817} = 1.92$$

$$Re = \frac{DV}{\nu} = \frac{(0.05)(0.2)}{1.569 \times 10^{-5}} = 637$$

$\left\{ \text{LAMINAR} \right\}$

30,24 CONTINUED -

$$\text{EQUATION (30-19): } k_c = \frac{D_{AB}}{D} (186) \left[\frac{P}{L} \frac{k_e S_c}{C_A} \right]^{1/3}$$

$$\text{SUBSTITUTED VALUES: } \underline{k_c = 555 \times 10^{-4} \text{ m/s}} \quad (a)$$

THE USUAL MASS BALANCE YIELDS:

$$\int_{C_{A0}}^{C_A} \frac{dC_A}{C_{AS}-C_A} = \frac{4}{D} \frac{k_c}{V} \int_0^t dy$$

$$\ln \frac{C_{AS}-0}{C_{AS}-C_A} = \frac{4L}{DV} \frac{k_c}{V} t$$

$$C_{AS} = \frac{P_A}{RT} = \frac{0.08}{(82.06)(300)} = 3.25 \times 10^{-4} \text{ g mol/m}^3$$

$$= 3.25 \text{ g mol/m}^3$$

$$\ln \frac{3.25}{3.25-C_A} = \frac{4(10)}{0.05} \frac{5.55 \times 10^{-4}}{0.2}$$

$$\text{GIVING } \underline{C_A = 1.90 \text{ g mol/m}^3}$$

$$\dot{m} = C_A V A$$

$$= 1.90(0.2)\left(\frac{\pi}{4}\right)(0.05)^2(300)$$

$$\underline{= 4.1 \text{ g mol/h}}$$

30,25 OZONE BUBBLED INTO H₂O

$$T = 293 \text{ K} \quad V_{TANK} = 2 \text{ m}^3$$

$$P = 1 \text{ atm}$$

$$C_A = 4 \text{ g mol/m}^3 \text{ AFTER 10 m}$$

$$H = 6.67 \times 10^{-2} \text{ atm/(g mol/m}^3\text{)}$$

30,25 CONTINUED -

FOR A WELL-MIXED PROCESS:
AN OZONE IS DISSOLVED -

MASS BALANCE ON OZONE (A)

$$k_a(C_A^* - C_A) = \frac{dC_A}{dt}$$

$$\int_0^{C_A} \frac{dC_A}{C_A^* - C_A} = k_a \int_0^t dt$$

$$\ln \frac{C_A^*}{C_A^* - C_A} = k_a t$$

$$P_A^* = H C_A^* = 6.67 \times 10^{-2} C_A^* = 1$$

$$C_A^* = 14.99 \text{ g mol/m}^3$$

$$\ln \frac{14.99}{14.99 - 1} = k_a (10)(60)$$

$$\underline{k_a = 5.14 \times 10^{-5} \text{ s}^{-1}}$$

30,26 USING EQUATION (30-21) $J_D = 1.17 P_e^{-0.415}$

$$J_D = \frac{k_c}{V_P} S_c^{2/3} = 1.17 P_e^{-0.415}$$

$$k_c = 1.17 V_P P_e^{-0.415} S_c^{-2/3}$$

$$\text{AT } T = 311 \text{ K} \quad D = 1.673 \times 10^{-5} \text{ m}^2/\text{s}$$

$$D_{AB} = \frac{2.634}{1.013 \times 10^5} \left(\frac{311}{298} \right)^{3/2} = 2.772 \times 10^{-5} \text{ m}^2/\text{s}$$

$$S_c = \frac{1.673 \times 10^{-5}}{2.772 \times 10^{-5}} = 0.60$$

30,26 (CONTINUED) -

$$Re = \frac{D_B}{\mu} = \frac{D_B}{\eta_{air}} = \frac{D_B}{\mu}$$

$$\text{AT } 311 \text{ K} - \mu_{air} = 1.897 \times 10^{-5} \text{ Pa.s}$$

$$Re = \frac{(0.00571)(0.816)}{1.897 \times 10^{-5}} = 246$$

SUBSTITUTING VALUES: $k_c = 0.120 \text{ m/s}$

$$k_a = \frac{k_c}{RT} = \frac{0.120}{(8.314)(311)} = 4.64 \times 10^{-5} \text{ kg mol/m}^2 \text{ s Pa}$$

$$= 4.64 \times 10^{-8} \text{ kg mol/m}^2 \text{ s Pa}$$

$$= 4.70 \times 10^{-3} \text{ kg mol/m}^2 \text{ s atm}$$

COMPARED WITH EXPERIMENTAL VALUE

$$\Delta = 0.28 \times 10^{-3} \text{ kg mol/m}^2 \text{ s atm} \sim 6.33\%$$

METHOD 2:

$$Ej_D = \frac{2.06}{Re^{0.575}} = E \cdot \frac{k_c}{Sc} Sc^{2/3}$$

$$Re = 246 \quad Sc = 0.6 \quad E = 0.75$$

$$k_c = \frac{2.06 (0.75) Re^{-0.575}}{0.75} Sc^{2/3}$$

$$V = G/f = \frac{0.816}{1.136} = 0.718 \text{ m/s}$$

SUBSTITUTING VALUES: $k_c = 0.117 \text{ m/s}$

$$k_a = \frac{k_c}{RT} = \frac{0.117}{(8.314)(311)} = 4.52 \times 10^{-8} \text{ kg mol/m}^2 \text{ s Pa}$$

$$= 4.58 \times 10^{-3} \text{ kg mol/m}^2 \text{ s atm}$$

$\sim 6.32\%$ DIFFERENT FROM EXPERIMENT

30,27 FOR O₂ TRANSFER -

$$k_a a = 300 \text{ h}^{-1}$$

FOR D_{O₂-H₂O} - EAN: (24-52)

$$\frac{D_{AB} \mu_B}{T} = \frac{7.4 \times 10^{-8} (\phi_B M_B)^{1/2}}{V_A^{0.4}}$$

VALUES: $\phi_B = 2.26 \quad M_B = 18 \quad T = 283 \text{ K}$

$$Y_A = 7.4 \quad \mu_B = 1.45 \text{ cp}$$

$$D_{O_2-H_2O} = 2.77 \times 10^{-5} \text{ cm}^2/\text{s}$$

TABLE J.2 $D_{CO_2-H_2O} = 1.46 \times 10^{-5} \text{ cm}^2/\text{s}$

FILM THEORY - $k_a a \sim D_{AB}^{1/2}$

$$k_a a_{CO_2} = k_a a_{O_2} \left[\frac{D_{CO_2-H_2O}}{D_{O_2-H_2O}} \right]^{1/2}$$

$$= 300 \left[\frac{1.46 \times 10^{-5}}{2.77 \times 10^{-5}} \right]^{1/2} = \underline{\underline{158 \text{ h}^{-1}}}$$

BOUNDARY-LAYER THEORY: $k_a a \sim D_{AB}^{2/3}$

$$k_a a_{CO_2} = 300 \left[\frac{1}{Re^{2/3}} \right]^{2/3} = \underline{\underline{195.8 \text{ h}^{-1}}}$$

PENETRATION THEORY: $k_a a \sim D_{AB}^{1/2}$

$$k_a a_{CO_2} = 300 \left[\frac{1}{Sc^{1/2}} \right]^{1/2} = \underline{\underline{217.8 \text{ h}^{-1}}}$$

30.28 CO_2 into H_2O in packed bed

$$\dot{m}_w = 5 \text{ kg mol/m} \quad P = 2 \text{ atm}$$

$$\dot{m}_{\text{CO}_2} = 1 \quad T = 293 \text{ K}$$

$$D = 0.25 \text{ m}$$

$$P_{\text{H}_2\text{O}} = 55.5 \text{ kg mol/m}^3$$

$$= 998.2 \text{ kg/m}^3$$

$$\mu_w = 993 \times 10^{-6} \text{ kg/m.s}$$

$$A = 25.4 \text{ atm/(kg mol/m}^3)$$

$$\text{EQUATION (30-33)} \quad \frac{k_L a}{F_A} = \alpha \left(\frac{L}{\mu} \right)^{1-n} S_C^{1/2}$$

for 1-in. FISCHER RINGS' $\alpha = 100$

$$n = 0.22$$

$D_{\text{DB}} \sim \text{CO}_2 \text{ in } \text{H}_2\text{O} @ 293 \text{ K}$

$$= 1.77 \times 10^{-9} \text{ m}^2/\text{s}$$

$$S_C = \frac{913 \times 10^{-6}}{(998.2)(1.77 \times 10^{-9})} = 562$$

$$A_x = \frac{\pi}{4}(0.25)^2 = 0.0491 \text{ m}^2$$

$$= 0.529 \text{ ft}^2$$

$$L = 5(18)(60) \frac{2.2}{0.529}$$

$$= 22500 \text{ L/m/h ft}^2$$

$$D_{\text{DB}} = 1.77 \times 10^{-9} (0.3048)^2$$

$$= 6.86 \times 10^{-5} \text{ ft}^2/\text{h}$$

SUBSTITUTION VALUES:

$$\underline{k_L a = 0.0566 \text{ s}^{-1} \quad (a)}$$

MASS BALANCE For A

$$C_A^* = \frac{P_{\text{CO}_2}}{R} = \frac{2}{25.4}$$

$$= 0.075 \text{ kg mol/m}^3$$

$$C_A = 0.95 C_A^*$$

$$= 0.95(0.075)$$

$$= 0.07125 \text{ kg mol/m}^3$$

MASS BALANCE -

$$k_L a (C_A^* - C_A) = V \frac{dC_A}{dz}$$

$$\int_0^z \frac{dC_A}{C_A^* - C_A} = \frac{k_L a f_L}{V} dz$$

$$\ln \frac{C_A^*}{C_A^* - 0.95 C_A^*} = \frac{k_L a L}{V}$$

$$L = \frac{V}{k_L a} \ln 20$$

V (ASSUMING EMPTY X-SECTION)

$$= \frac{V}{8A} = \frac{5}{(60)(55.5)(1/4)(0.25)^2}$$

$$= 0.0306 \text{ m/s}$$

$$L = \frac{(0.0306)(\ln 20)}{0.0566} = \underline{1.62 \text{ m}} \quad (b)$$

30,29

TCE (A) IN AIR

$$D_p = 3 \text{ mm}$$

$$\epsilon = 0.5$$

$$T = 293 \text{ K}$$

$$G_B = 0.1 \text{ kg/m}^2\text{s}$$

$$D_p^0 = 58 \text{ mm}$$

$$\beta = 1,200 \text{ kg/m}^3$$

$$D_{AB} = 8.08 \times 10^{-6} \text{ m}^2/\text{s}$$

$$N_B = 1.505 \times 10^{-5} \text{ m}^2/\text{s}$$

$$Sc = \frac{1505 \times 10^{-5}}{8.08 \times 10^{-6}} = 1.863$$

$$- Re = \frac{D_p G}{\mu} = \frac{(0.003)(0.1)}{1.863 \times 10^{-5}} = 16,53$$

EQUATION (30,23) APPLIES:

$$\epsilon \frac{k_c}{V} Sc^{2/3} = 0.25 Re^{-0.31}$$

$$k_c = \frac{0.25 V Re^{-0.31}}{\epsilon Sc^{2/3}}$$

$$V = \frac{G}{\rho} = \frac{0.1}{1,200} = 0.083 \text{ m/s}$$

SUBSTITUTING VALUES: $k_c = 0.011 \text{ m/s}$
(a)

MASS BALANCE FOR A:

$$k_c \frac{A}{V} (C_A^* - C_A) = V \frac{dC_A}{dz}$$

$$\int_0^{C_A^*} \frac{dC_A}{C_A^* - C_A} = \frac{k_c A}{V} \int_0^L dz$$

30,29 (CONTINUED) -

$$\ln \frac{C_A^*}{C_A^* - 0.9C_A^*} = \frac{k_c A}{V} \frac{L}{V}$$

$$L = \frac{V}{k_c A} \ln 10$$

$\frac{V}{A}$ IS VOLUME TO SURFACE
AREA RATIO OF PARTICLES
IN TOWER

FOR A SPHERICAL PARTICLE -

$$A = \pi D^2$$

OCCUPYING A SPACE WITH $V = D^3$

IN TOWER -

$$\sim \frac{V}{A} = \frac{D^3}{\pi D^2} = \frac{D}{\pi}$$

$$L = \frac{V}{k_c} \frac{D}{\pi} \ln 10$$

$$= \frac{0.083 (0.003)}{0.011 (\pi)} \ln 10$$

$$= \underline{0.0166 \text{ m}} = \underline{1.66 \text{ cm}} \quad (\text{b})$$

CHAPTER 31

31.1 AERATION TANK w/ SPARGERS -

THIS PROBLEM IS SIMILAR TO EXAMPLE 2 IN SECTION 31.2.

FOR A WELL MIXED TANK - EQUATION (31-1) APPLIES & THE FINAL O₂ LEVEL IS DESCRIBED BY

$$C_p = C_A^* - (C_A^* - C_{A0}) e^{k_L a t} (-K_{L,at})$$

$$\dot{V}_{air} = 0.0078 \text{ m}^3/\text{s}$$

$$= \frac{(0.0078)(60)}{(0.3048)} = 15 \text{ cfm}$$

FOR 6 SPARGERS - & FIGURE 31.7
@ 15 cfm & 15 FT DEPTH

$$k_{L,a} = k_L \frac{A}{V} = 1200 \frac{\text{m}}{\text{s}}$$

$$= \frac{(1200)(6)}{10,000} = 0.72 \text{ h}^{-1}$$

$$P_{\text{atm}} = \frac{P_{\text{top}} + P_{\text{bottom}}}{2}$$

$$1 + \left[1 + 14.93(0.0295) \right] = 1.22 \text{ ATM}$$

$$x_{O_2}^* = \frac{P}{N} = \frac{0.21(1.22)}{3.27 \times 10^4} = 7.83 \times 10^{-6}$$

$$C = \frac{1000}{18} = 55.56 \text{ g/mol/l}$$

$$C_A^* = (7.83 \times 10^{-6})(55.56)$$

$$= 4.35 \times 10^{-4} \text{ g/mol/l}$$

SUBSTITUTING VALUES:

$$\text{For } t = 9000 \text{ s} = 2.5 \text{ h}$$

$$C_{O_2,t} = 3.64 \times 10^{-4} \text{ g/mol/l}$$

31.2 OZONE / H₂O TREATMENT USING SPARGERS

SYSTEM IS ANALOGOUS TO EXAMPLE 2 -

$$t = \ln \left(\frac{C_A^* - C_{A0}}{C_A^* - C_{At}} \right) \frac{1}{k_{L,a}}$$

$$\text{for } V_b = 17.8 \text{ m}^3/h = 4.9 \times 10^{-3} \text{ m}^3/s = 10.4 \text{ cfm}$$

$$\frac{1}{6} \text{ DEPTH} = 3.2 \text{ m} = 10.5 \text{ FT}$$

$$\text{FIGURE 31.7 GIVES } K_L \frac{A}{V} \approx 400 \text{ CFH}$$

$$K_{L,a} = \frac{(400)(8)}{(80)/(0.3048)^3} = 1.132 \text{ h}^{-1}$$

BY PENETRATION THEORY:

$$\frac{K_{L,a} b_{O_3}}{K_{L,a} b_{O_2}} = \frac{\left[\frac{P_{O_3 - H_2O}}{P_{O_2 - H_2O}} \right]^{\frac{1}{2}}}{\left[\frac{P_{O_2 - H_2O}}{P_{O_3 - H_2O}} \right]^{\frac{1}{2}}} = \frac{\left[\frac{1.7 \times 10^{-5}}{2.14 \times 10^{-5}} \right]^{\frac{1}{2}}}{0.891}$$

$$K_{L,a} \Big|_{O_3} = (1.132)(0.891) = 1.01 \text{ h}^{-1} \quad (a)$$

$$P_{\text{atm}} = \frac{1 + (3.2)(0.0295)}{0.3048 + 1}$$

$$= 1.155 \text{ ATM}$$

$$P_{O_3} = 0.04(1.155) = 0.0462 \text{ atm}$$

$$C_{O_3}^* = \frac{0.0462}{0.0667} = 0.682 \text{ g/mol/m}^3$$

$$= 0.682 \left(\frac{48}{1000} \right) = 32.7 \text{ mg/l}$$

$$C_{At} = 0.15 \text{ g/mol/m}^3 = 7.2 \text{ mg/l}$$

SUBSTITUTING VALUES:

$$t = 0.246 \text{ h} = 886 \text{ s} \quad (b)$$

31.3 WASTEWATER TREATMENT USING 10 SPARGERS -

$$V = 425 \text{ m}^3 = 15000 \text{ ft}^3$$

$$\dot{V} = 7,08 \times 10^{-3} \text{ m}^3/\text{s} = 15 \text{ cfm}$$

$$\text{DEPTH} = 3,2 \text{ m} = 10,5 \text{ ft.}$$

ANALYSIS PREVIOUS EXAMPLE 2.

$$t = \ln \left(\frac{C_{O_2}^* - C_{O_2,t}}{C_{O_2}^* - C_{O_2,i}} \right) \left[\frac{1}{K_a} \right]$$

$$\text{Fig. (31.7)} \quad K_a V = 800 \text{ ft}^3/\text{h}$$

$$K_a = \frac{(800)(10)}{15000} = 0,533 \text{ h}^{-1}$$

$$P_{\text{Top}} = 1 \text{ atm}$$

$$P_{\text{Bottom}} = 1 + (10,5)(0,0295) = 1,31 \text{ atm}$$

$$P_{\text{AVG}} = 1,155 \text{ atm}$$

$$P_{O_2} = 0,21 (1,155) = 0,2425 \text{ atm}$$

$$X_{O_2}^* = \frac{P_{O_2}}{P} = \frac{0,2425}{3,27 \times 10^4} = 7,42 \times 10^{-6}$$

$$C_L = \frac{1000}{18} = 55,56 \text{ mol/l}$$

$$C_{O_2}^* = (7,42 \times 10^{-6})(55,56)$$

$$= 4,12 \times 10^{-4} \text{ mol/l}$$

$$t = \ln \left[\frac{4,12 \times 10^{-4} - 8 \times 10^{-5}}{4,12 \times 10^{-4} - 2 \times 10^{-4}} \right] \left(\frac{1}{0,533} \right)$$

$$= 0,841 \text{ h} = 3028 \text{ s}$$

31.4 O₂ ABSORPTION USING 1 SPARGER

$$V = 28,3 \text{ m}^3 = 1000 \text{ ft}^3$$

$$\dot{V} = 7,08 \times 10^{-3} \text{ m}^3/\text{s} = 15 \text{ cfm}$$

$$\text{DEPTH} = 3,2 \text{ m} = 10,5 \text{ ft}$$

FROM ANALYSIS ACCOMPANYING EXAMPLE 2

$$t = \frac{1}{K_a} \ln \frac{C_{O_2}^* - C_{O_2,t}}{C_{O_2}^* - C_{O_2,i}}$$

$$C_{O_2,i} = 0,04 \text{ mmol/l}$$

$$C_{O_2,t} = 0,25 \text{ "}$$

FOR 10.5 FT DEPTH:

$$P_{\text{Top}} = 1 \text{ atm} \quad P_{\text{Bottom}} = 1 + (10,5)(0,0295) = 1,31 \text{ atm}$$

$$P_{\text{AVG}} = 1,155 \text{ atm}$$

$$P_{O_2} = 0,21 (1,155) = 0,2426 \text{ atm}$$

$$X_{O_2}^* = \frac{P_{O_2}}{P} = \frac{0,2426}{3,27 \times 10^4} = 7,42 \times 10^{-6}$$

$$C = \frac{1000}{18} = 55,56 \text{ g/mol/l}$$

$$C_{O_2}^* = (7,42 \times 10^{-6})(55,56) = 4,12 \times 10^{-4} \text{ g/mol/l}$$

$$= 0,412 \text{ mmol/l}$$

FOR $t = 4 \text{ h}$ - SUBSTITUTION YIELDS

$$K_a \Big|_{O_2} = 0,208 \text{ h}^{-1} \quad \text{FOR 1 SPARGER} \quad (a)$$

$$\frac{K_a \Big|_{H_2S}}{K_a \Big|_{O_2}} = \frac{D_{H_2S-H_2O}}{D_{O_2-H_2O}} = \frac{14 \times 10^{-5}}{214 \times 10^{-5}} = 0,069$$

$$K_a \Big|_{H_2S} = 0,069 (0,208) = 0,140 \text{ h}^{-1} \quad (b)$$

31.4 CONTINUED -

for H_2S - 10 SPARKERS, $K_{La} = 1.68 \text{ h}^{-1}$

$$V = 425 \text{ m}^3 = 15000 \text{ ft}^3$$

$$\text{DEPTH} = 10.5 \text{ FT} \quad t = 4 \text{ h}$$

$$Y_{H_2S} = P_{H_2S} C^*_{H_2S} = 0$$

$$t = 4 = \frac{1}{1.68} \ln \left[\frac{0 - C_{H_2Si}}{0 - C_{H_2St}} \right]$$

$$C_{H_2Si} = 0.03 \text{ mmol/l} \quad (c)$$

$$\text{SOLVENT: } C_{H_2St} = 3.61 \times 10^{-4} \text{ g/mol/l}$$

31.5 Countercurrent Absorption Tower

$$X_1 = ?, \quad X_2 = 0$$

$$Y_1 = \frac{0.04}{0.96} = 0.0417$$

$$Y_2 = \frac{0.002}{0.998} = 0.002$$

$$\left| \frac{L_s}{G_s} \right|_{\text{MIN}} = \frac{Y_1 - Y_2}{X_1^* - X_2} = \frac{0.0417 - 0.002}{0.177 - 0} = 0.224$$

$$\left| \frac{L_s}{G_s} \right|_{\text{ACTUAL}} = (0.224)(1.5) = 0.336 \frac{\text{mol SAW}}{\text{mol C.G.}}$$

31.5 CONTINUED -

$$0.336 = \frac{Y_1 - Y_2}{X_1 - X_2} = \frac{0.0417 - 0.002}{X_1 - 0}$$

$$X_1 = \frac{0.0397}{0.336} = 0.118$$

$$X_1 = \frac{X_1}{1 + X_1} = \frac{0.118}{1.118} = 0.106$$

31.6 TCE STRIPPED FROM H_2O NA Countercurrent Tower

For Dilute Streams

$$X \approx y \quad Y \approx y$$

$$C_{A2} = \frac{40 (1000)}{131.5} = 3.04 \times 10^{-4} \text{ mol/m}^3$$

$$C_{A1} = \frac{5 (1000) (10^{-6})}{131.5} = 3.80 \times 10^{-5} \text{ "}$$

$$Y_1 = 0$$

$$Y_{A2}^* = \frac{L}{P} C_{A2} = \frac{11.7 \times 10^{-3}}{1} (3.04 \times 10^{-4}) = 3.557 \times 10^{-6}$$

$$\left| \frac{L}{G} \right|_{\text{ACTUAL}} = \frac{0.013}{3} = 4.33 \times 10^{-3} = \frac{Y_{A2} - 0}{2.166 \times 10^{-4}}$$

$$Y_{A2} = 1.15 \times 10^{-6}$$

$$P_{A2} = Y_{A2} P = 1.15 \times 10^{-6} \text{ atm}$$

31.7

TOWER (a)

- COUNTERCURRENT

TOWER (b)

- COUNTERCURRENT

$$Y'_{1,a} = Y_{1,b} > Y_{2,b} > Y_{1,a}$$

$$X_{1,b} > X_{1,a} = X_{2,b} > X_{1,a}$$

TOWER (a) - COUNTERCURRENT

" (b) - COCURRENT

$$X_{1,b} > X_{1,a} = X_{2,b} > X_{1,a}$$

$$Y_{1,a} > Y_{2,a} = Y_{2,b} > Y_{1,b}$$

BOTH TOWERS ARE
COUNTERCURRENT

$$X_{1,b} > X_{1,a} = X_{2,b} > X_{1,a}$$

$$Y_{1,a} > Y_{2,a} = Y_{1,b} > Y_{2,b}$$

31.7 CONTINUED

31.8 SAME FLOW SCHEMES AS IN PROB 31.7
EXCEPT PROCESSES ARE NOW
DESORPTION / STRIPPING

BOTH ARE COUNTERCURRENT

$$X_{2,a} > X_a = X_{2,b} = X_b$$

$$Y_{1,a} > Y_{2,a} = Y_{2,b} > Y_{1,b}$$

(a) COUNTERCURRENT

(b) COCURRENT

$$X_{2,a} > X_{1,a} = X_{2,b} > X_{1,b}$$

$$Y_{1,b} > Y_{2,a} = Y_{2,b} > Y_{1,a}$$

31.7

31.8 CONTINUED.

Beta Towers ARE
COUNTERCURRENT

$$X_{2a} > X_{1a} = X_{2b} > X_{1b}$$

$$Y_{2b} > Y_{2a} = Y_{1b} > Y_{1a}$$

31.9

$$G_1 = 136 \text{ mol/m}^2 \cdot \text{s}$$

$$G_S = G_1(1-y_1)$$

$$= 136(0.95)$$

$$= 129.2 \text{ mol air/m}^2 \cdot \text{s}$$

$$L_S = L_2 = \frac{3400}{18}$$

$$= 188.9 \text{ mol H}_2\text{O/m}^2 \cdot \text{s}$$

$$L_S(X_1 - X_2) = G_S(Y_1 - Y_2)$$

$$188.9(X_1 - 0) = 129.2(0.0526 - 0.002)$$

$$X_1 = 0.0346$$

$$Y_1 = \frac{X_1}{1+X_1} = \frac{0.0346}{1.0346} = \underline{\underline{0.033}} \quad (\text{a})$$

$$\left| \frac{L_S}{G_S} \right|_{\text{ACTUAL}} = \frac{188.9}{129.2} = 1.462$$

31.9 CONTINUED

EQUILIBRIUM DATA: $y = 1.075x$

$$Y = \frac{y}{1-y} \quad X = \frac{x}{1-x}$$

Y	y	X	x
0	0	0	0
0.0054	0.0054	0.005	0.005
0.0109	0.0108	0.01	0.0101
0.0220	0.0215	0.02	0.0204
0.0333	0.0323	0.03	0.0309
0.0449	0.0430	0.04	0.0417
0.0568	0.0538	0.05	0.0526

$$\left| \frac{L_S}{G_S} \right|_{\text{MIN}} = \frac{0.0526 - 0.002}{0.0490 - 0} = 1.033$$

$$\frac{\left| \frac{L_S}{G_S} \right|_{\text{ACT}}}{\left| \frac{L_S}{G_S} \right|_{\text{MIN}}} = \frac{1.462}{1.033} = 1.415 \quad (\text{b})$$

MASS BALANCE - REFERENCE IS TOP ~ (2)

$$G_S(Y_1 - Y_2) = L_S(X_1 - X_2)$$

$$Y = \frac{y_2}{1-y_2} = \frac{0.02}{0.98} = 0.0204$$

$$129.2(0.0204 - 0.002) = 188.9 X_2$$

$$X_2 = 0.01258$$

$$X_2 = \frac{0.01258}{1.01258} = \underline{\underline{0.0124}} \quad (\text{c})$$

31.10

EQUILIBRIUM DATA - SEE TABLE
FOR PROB 31.9

$$\frac{L_s}{G_s} \Big|_{\text{MIN}} = \frac{Y_1 - Y_2}{X_i^* - X_2} = \frac{0.0519 - 0.002}{0.0480 - 0} = 1.0396$$

$$\frac{L_s}{G_s} \Big|_{\text{ACTUAL}} = 1.4(1.0396) = 1.455$$

$$= \frac{Y_1 - Y_2}{X_1 - X_2} = \frac{0.0519 - 0.002}{X_1 - 0}$$

$$X_1 = 0.0345$$

$$\text{MOLAR FLOW OF NH}_3 = G_s(Y_{A1} - Y_{A2})$$

31.10 CONTINUED

$$= G_s(Y_{A1} - Y_{A2})$$

$$= 129.3(0.0519 - 0.002)$$

$$= 6.45 \text{ g/mol/m}^2 \cdot \text{s} \times \frac{17}{1000}$$

$$= 0.1096 \text{ kg/m}^2 \cdot \text{s} \quad (a)$$

HEIGHT OF PROBE: $z = \frac{G_s}{Ry_a} \int_{0.002}^{0.0519} \frac{dY_A}{Y_A - Y_A^*}$

SINCE INTEGRAND INFORMATION IS NOT
IN ANALYTIC FORM - EVALUATION OF z
MUST BE DONE GRAPHICALLY OR
NUMERICALLY -

Y_A	Y_A^*	$Y_A - Y_A^*$	$(Y_A - Y_A^*)^{-1}$
0.002	0	0.002	500
0.010	0.0057	0.0043	232.6
0.015	0.0095	0.0055	181.8
0.020	0.0132	0.0068	147.6
0.025	0.0170	0.0080	125.0
0.030	0.0208	0.0092	108.7
0.035	0.0247	0.0103	97.1
0.040	0.0284	0.0116	86.2
0.045	0.0321	0.0129	77.5
0.050	0.0358	0.0142	70.4
0.0519	0.0372	0.0147	68.0

A PLOT WILL YIELD

31.10 (CONTINUED) -

$$z = \frac{6s}{K_A} \int_{Y_A^*}^{0.02} dY_A$$

$$= \frac{6s}{K_A} \int_{0.002}^{0.02} dY_A$$

$$= \frac{129.3 (8,27)}{107} \approx 10 \text{ m}$$

31.11

$$X_1^* = \frac{Y_1}{48.3} = \frac{0.0384}{48.3}$$

$$= 7.95 \times 10^{-4}$$

$$\left| \frac{L_s}{G_s} \right|_{\min} = \frac{Y_1 - Y_2}{X_1^* - Y_2^*}$$

$$= \frac{0.0384 - 0.002}{7.95 \times 10^{-4}} = 45.8$$

$$\left| \frac{L_s}{G_s} \right|_{ACT} = 1.5(45.8) = \frac{68.7 \text{ mol H}_2\text{O}}{\text{mole C}_6}$$

$$= \frac{Y_1 - Y_2}{X_1 - X_2} = \frac{0.0384 - 0.002}{X_1 - 0}$$

$$X_1 = 5.30 \times 10^{-4}$$

$$X_1 = \frac{X_1}{1+X_1} = 5.30 \times 10^{-4} \quad (b)$$

31.12

$$X_2 = \frac{0.07}{0.93} = 0.075$$

31.12 (CONTINUED) -

EQUILIBRIUM DATA \rightarrow

x	mole benzene mole wash oil	0.00	0.02	0.04	0.05	0.06	0.08	0.10	0.12	0.14
y	mole benzene mole steam	0.00	0.07	0.14	0.22	0.31	0.405	0.515	0.63	

$$L_s = 6.94 \text{ mole wash oil/s}$$

$$\text{BENZENE IN } L_2' = 0.075(6.94)$$

$$= 0.52 \text{ mole Benz/s}$$

$$\text{BZ TO BE REMOVED} = (0.52)(0.85)$$

$$= 0.442 \text{ mole/s}$$

$$\text{BZ REMAINING IN LIQUID} = 0.078 \text{ "}$$

$$X_1 = \frac{0.078}{6.94} = 0.0112 \frac{\text{mol BZ}}{\text{mol W.O.}}$$

FOR COUPTEC CURRENT FLOW STREAMS:

$$\left| \frac{G_s}{L_s} \right|_{\min} = \frac{X_2 - X_1}{Y_2^* - Y_1} = \frac{0.075 - 0.0112}{0.287 - 0}$$

$$G_s \min = 0.222(6.94) = 1.54 \text{ mole/s}$$

$$G_s \text{ ACTUAL} = 1.4(1.54) = \underline{\underline{2.16 \text{ mole/s}}} \quad (a)$$

CURRENT FLOW: -

$$\left| \frac{G_s}{L_s} \right| = \frac{X_2 - X_1}{Y_2^* - Y_1} = \frac{0.075 - 0.0112}{0.0440 - 0} = 1.595$$

$$G_s \min = 1.595(6.94) = 11.07 \text{ mole/s}$$

$$G_s \text{ ACT} = 1.4(11.07) = \underline{\underline{15.5 \text{ mole/s}}} \quad (b)$$

31.13

$$X_{A1} = \frac{0,0365}{0,9635} = 0,0379$$

$$Y_{A1} = \frac{0,05}{0,95} = 0,0526$$

$$X_{A1} = 0,0365 \quad Y_{A1} = 0,0526$$

$$Y_{A2} = \frac{0,003}{0,997} \approx 0,003$$

$$G_1' = \frac{\dot{V} P}{RT} = \frac{(15/60)(1,013 \times 10^5)}{(8,314)(289)} \\ = 10,54 \text{ g mol/s}$$

$$G_S' = G_1' (1 - y_{A1}) = (10,54)(0,95) \\ = 10,01 \text{ g mol/s}$$

$$\frac{G_S'}{L_S} = \frac{X_{A1} - X_{A2}}{Y_{A1} - Y_{A2}} = \frac{0,0379 - 0}{0,0526 - 0,003}$$

$$L_S' = 13,1 \text{ g mol/s}$$

$$Y_{A1}^* = 0,8 X_{A1} = 0,8(0,0379) \\ = 0,0303$$

$$Y_{A1} - Y_{A1}^* = 0,0526 - 0,0303 \\ = 0,0223$$

$$Y_{A2} - Y_{A2}^* = 0,003 - 0 = 0,003$$

$$Y_{A2} = 0 \quad Y_{A2} = 0,003$$

31.13 CONTINUED-

$$Z = \frac{G_S}{K_A} \frac{Y_{A1} - Y_{A2}}{(Y_{A1} - Y_A^*)_{L,M}}$$

$$(Y_{A1} - Y_A^*)_{L,M} = \frac{0,0723 - 0,003}{\ln \frac{0,0223}{0,003}} \\ = 0,0096$$

$$G_S = \frac{G_S}{A} = \frac{10,01}{0,2} = 50,05 \text{ g mol/m}^2 \cdot \text{s}$$

$$Z = \frac{(50,05)(0,0223 - 0,003)}{(52)(0,0096)}$$

$$= 4,97 \text{ m}$$

31.14

$$X_{A2} = 0 \quad X_{A2} = 0$$

$$Y_{A2} = 0,003$$

$$Y_{A2} = \frac{0,003}{0,997} \approx 0,003$$

$$Y_{A1} = 0,036 \quad Y_{A1} = \frac{0,036}{0,964} = 0,0373$$

$$A = \frac{\pi}{4}(0,15) = 0,0177 \text{ m}^2$$

$$L_1 = L_S = \frac{14,5}{0,0177} = 819,2 \text{ mol/m}^2 \cdot \text{s}$$

$$G_1 = \frac{8}{0,0177} = 452 \text{ mol/m}^2 \cdot \text{s}$$

$$G_S = G_1 (1 - y_J) = 452 (0,964)$$

$$= 435,7 \text{ mol/m}^2 \cdot \text{s}$$

$$\left| \frac{L_S}{G_S} \right|_{ACT} = \frac{819,2}{435,7} = 1,88$$

31.14 (CONTINUED)

$$\frac{L_s}{G_s} = 1.88 = \frac{Y_{A1} - Y_{A2}}{X_{A1} - X_{A2}} = \frac{0.0373 - 0.003}{X_{A1} - 0}$$

$$X_{A1} = 0.0182$$

EQUILIBRIUM DATA \rightarrow

x	mole NH ₃ mole NH ₃ -free water	0.00	0.0164	0.0252	0.0349	0.0445	0.0722
y	mole NH ₃ mole NH ₃ -free air	0.00	0.021	0.032	0.042	0.053	0.080

$$\left. \frac{L_s}{G_s} \right|_{\text{MIN}} = \frac{Y_{A1} - Y_{A2}}{X_{A1}^* - X_{A2}} = \frac{0.0375 - 0.003}{0.0305 - 0} = 1.125$$

$$\frac{L_s/G_s \text{ ACT}}{L_s/G_s \text{ MIN}} = \frac{1.88}{1.125} = \underline{\underline{1.67}} \quad (\text{a})$$

USING GRAPHICAL INTEGRATION:

$$z = \frac{G_s}{K_y a} \int_{0.003}^{0.0373} \frac{dY_A}{Y_A - Y_A^*}$$

Y _{A1}	Y _A ^*	Y _A - Y _A ^*	(Y _{A1} - Y _A ^*) ^-1
0.003	0	0.003	333.3
0.010	0.0048	0.0052	192.3
0.015	0.0083	0.0067	149.2
0.020	0.0116	0.0084	119.1
0.025	0.0150	0.010	100.0
0.030	0.0183	0.0117	85.5
0.0373	0.023	0.0143	69.9

31.14 (CONTINUED)

$$z = \frac{435.7}{71} (4.81) = \underline{\underline{29.52 \text{ m}}} \quad (\text{b})$$

31.15 SAME Specs of SYSTEM AS
IN PROB 31.14

from Prob 31.14 SOLUTION:

$$G_s = 435.7 \text{ Mol/m}^2 \cdot \text{s}$$

$$K_y a = 71 \text{ Mol/m}^2 \cdot \text{s} \cdot \Delta Y_A$$

$$Y_{A1} - Y_{A1}^* = 0.0373 - 0.023 = 0.0143$$

$$Y_{A2} - Y_{A2}^* = 0.003$$

$$(Y_A - Y_A^*)_{L.M.} = \frac{0.0143 - 0.003}{\ln \frac{0.0143}{0.003}} = 0.0072$$

$$z = \frac{G_s}{K_y a} \frac{Y_{A1} - Y_{A2}}{(Y_A - Y_A^*)_{L.M.}}$$

$$= \frac{435.7}{71} \frac{(0.0373 - 0.003)}{0.0072}$$

$$= \underline{\underline{29.2 \text{ m}}}$$

31.16

$$C_{A2} = 0.0394 \times 10^3 \text{ g/mol/g}$$

$$= 0.0394 \text{ mol/m}^3$$

$$C_{A1} = 0.0131 \times 10^3 \text{ g/mol/g} = 0.0131 \text{ mol/m}^3$$

$$y_{A1} = 0$$

$$Q_L' = \frac{5000(3785)}{1000} = 18,92 \text{ m}^3/\text{h}$$

$$G' = \frac{\dot{V}_L'}{1.5} = \frac{18,92}{1.5} = 12.62 \text{ mol/h}$$

EQUILIBRIUM DATA →	C_A , moles VOC/m ³	0.014	0.0240	0.0349	0.0498
	y _A , VOC	0.018	0.030	0.042	0.053

SINCE STREAMS ARE RELATIVELY DILUTE

Q_L' & G' ARE CONSTANT

$$Q_L'(C_{A1} - C_{A2}) = G'(y_{A1} - y_{A2})$$

31.16 (CONTINUED)

$$\frac{Q_L'}{G'} \left|_{\min} \right. = \frac{y_{A2}^* - y_{A1}}{C_{A2} - C_{A1}} = \frac{0.0457 - 0}{0.0394 - 0.0131}$$

$$= 1,738$$

$$G'_{\min} = \frac{18,92}{1,738} = 10.89 \text{ mol/h} \quad (a)$$

$$Q_L'(C_{A1} - C_{A2}) = G'_{\min}(y_{A1} - y_{A2})$$

$$18,92(0.0131 - 0.0394) = 12.62(0 - y_{A2})$$

$$y_{A2} = 0.0394$$

$$\text{TOWER HEIGHT: } Z = \frac{\dot{V}_L}{K_a} \frac{C_{A2} - C_{A1}}{(C_A - C_A^*)_{\min}}$$

$$(C_A - C_A^*)_{\min} = 0.0394 - 0.0305 = 9.0 \times 10^{-3}$$

$$(C_A - C_A^*)_1 = 1.31 \times 10^{-2} - 0 = 0.0131$$

$$(C_A - C_A^*)_{\min} = \frac{0.0131 - 0.009}{\ln \frac{0.0131}{0.009}} = 0.0109$$

$$\frac{Q_L'}{A} = \frac{18,92}{\frac{1}{4}(0.6)^2(3600)} = 0.0186 \text{ m/s}$$

$$Z = \frac{0.0186(0.0394 - 0.0131)}{0.01(0.0109)}$$

$$= 4.49 \text{ m} \quad (b)$$

31.17 THE EXOTHERMIC REACTION WILL CAUSE THE TEMPERATURE IN THE TOWER TO INCREASE, WHICH, IN TURN, WILL CAUSE THE EQUILIBRIUM LINE TO SHIFT UPWARD. THE RESULT WILL BE A SMALLER DRIVING FORCE, $Y_A - Y_A^*$. A TALLER TOWER WILL BE REQUIRED RELATIVE TO ONE OPERATING ISO-THERMALLY.

31.18

$$X_1 = 0.0305$$

$$X_1 = \frac{0.0305}{0.9695} = 0.0315$$

$$G_s' = \frac{VR}{RT} = \frac{(0.2316)(1.013 \times 10^5)}{(8.314)(293)}$$

$$= 9.814 \text{ g mol/s}$$

$$G_s' = G'(1 - g_s) = (9.814)(0.95)$$

$$= 9.323 \text{ g mol/s}$$

$$L_s' = \frac{G_s'(Y_1 - Y_2)}{X_1 - X_2}$$

$$= \frac{9.323(0.0526 - 0.003)}{0.0315 - 0}$$

$$= 14.68 \text{ g mol/s}$$

31.18 CONTINUED

EQUILIBRIUM DATA

x	moles mercaptan mole mercaptan-free solvent	0.00	0.01	0.02	0.03	0.04
y	moles mercaptan mole mercaptan free air	0.00	0.0045	0.0145	0.0310	0.0545

$$\text{TOWER HEIGHT: } Z = \frac{G_s}{k_{ya}} \int_{Y_2}^{Y_1} \frac{dY_A}{Y_A - Y_A^*}$$

USING EQUILIBRIUM DATA PROVIDED:

Y_1	Y^*	$Y_A - Y^*$	$(Y_A - Y^*)^{-1}$
0.003	0	0.003	333.3
0.010	0.0016	0.0084	119.05
0.016	0.0038	0.0122	81.97
0.020	0.0057	0.0143	69.93
0.028	0.0100	0.0180	55.56
0.034	0.0140	0.0200	50.0
0.040	0.0193	0.0207	48.31
0.048	0.0281	0.0199	50.25
0.0526	0.0340	0.0186	53.76

$$Z = \frac{9.323(3.67)}{(0.2)(40)} = \underline{\underline{4.28 \text{ m}}}$$

31.19 Same System & Feed Streams
As in Prob 31.18

From Prob 31.18 Solution -

$$G_1' = 9,814 \text{ gmol/s}$$

$$L_s' = 14,68 \text{ "}$$

IN THIS CASE -

$$Z = 4,5 \text{ m} \quad C_f = 155$$

IN RASCHIG RUNGS

$$\text{FOR GAS: } \Delta P_{12} = 300 \text{ N/m}^2$$

PARAMETERS for Fig 31.25:

$$\frac{L'}{G'} \left[\frac{\rho_g}{\rho_L - \rho_g} \right]^{1/2}$$

$$G_1' = \frac{(9,814)(30,1)}{1000} = 0,295 \text{ kg/s}$$

$$L_1' = \frac{L_s}{1-X_1} = \frac{1468}{1-0,0315}$$

$$= 15,16 \text{ gmol/s}$$

$$L_1' = (15,16)(180) = 2,729 \text{ kg/s}$$

$$\rho_g = \frac{P}{RT} M = \frac{(1,013 \times 10^5)(30,1)}{(8,314)(293)(1000)} \\ = 1,252 \text{ kg/m}^3$$

$$\rho_L = 0,81(1000) = 810 \text{ kg/m}^3$$

SUBSTITUTING VALUES -

$$\frac{L'}{G'} \left[\frac{\rho_g}{\rho_L - \rho_g} \right]^{1/2} = 0,364$$

31.19 (CONTINUED)

FROM FIG 31.25 -

$$\frac{G'^2 C_g \mu_L^{0.1}}{\rho_g (\rho_L - \rho_g) g_c} = 0,03$$

SUBSTITUTING VALUES

$$\mu_L = 0,0039 \text{ Pa.s}$$

$$g_c = 1$$

OTHERS ALREADY CALCULATED

$$G' = 0,592 \text{ kg/m}^2 \cdot \text{s}$$

$$\text{TOWER AREA} = \frac{G_1'}{G'} = \frac{0,295}{0,592} \\ = 0,498 \text{ m}^2$$

$$D = \left(\frac{0,498}{\pi/4} \right)^{1/2} = \underline{0,796 \text{ m}}$$

$$OR \sim \underline{0,8 \text{ m}}$$

31.20 $x_{A2}=0$

$$x_{A2}=0$$

$$y_{A2}=0,004$$

$$Y_{A2} = \frac{0,004}{0,996} \approx 0,004$$

$$x_{A1}$$

$$y_{A1}=0,125$$

$$Y_{A1} = \frac{0,125}{0,875} = 0,143$$

FRACTION OF HCl REMOVED -

$$= \frac{(G_1(Y_{A1} - Y_{A2}))}{G_1(Y_{A1})} = \frac{0,143 - 0,004}{0,143}$$

$$= \underline{0,972 \sim 97,2\% \text{ (a)}}$$

31.20 CONTINUED -

x_{HCl}	0.210	0.243	0.267	0.330	0.353	0.375	0.400	0.425
y_{HCl}	0.0023	0.00956	0.0215	0.0523	0.0852	0.1135	0.203	0.322

EQUILIB. DATA →

DETERMINE EQUILIB. VALUES IN TERMS OF X_A, Y_A

$Y_A \dots$	X_A	Y_A	Y_A
0.210	0.210	0.0023	0.0023
0.243	0.321	0.0095	0.0096
0.287	0.403	0.0215	0.0220
0.330	0.493	0.0523	0.0552
0.353	0.546	0.0852	0.0931
0.375	0.600	0.135	0.156
0.400	0.666	0.203	0.255
0.425	0.739	0.322	0.475

$$\left| \frac{L_s}{G_s} \right|_{\text{MIN}} = \frac{Y_{A1} - Y_{A2}}{X_{A1}^* - X_{A2}} = \frac{0.143 - 0.004}{0.588 - 0} = 0.236$$

$$\left| \frac{L_s}{G_s} \right|_{\text{ACT}} = 0.236 (1.04) = 0.387$$

$$= \frac{Y_{A1} - Y_{A2}}{X_{A1} - X_{A2}} = \frac{0.143 - 0.004}{X_{A1} - 0}$$

$$X_{A1} = 0.359$$

$$Y_{A1} = \frac{X_{A1}}{1 + X_{A1}} = \frac{0.359}{1.359} = 0.264 \quad (b)$$

31.20 CONTINUED -

$$K_{GA} = 8.8 \text{ kg mol/m}^2 \cdot \text{s} \cdot \text{Pa}$$

WITH K_{GA} EXPRESSED IN THIS MANNER
DRIVING FORCE MUST BE IN $P_A - P_A^*$

$$T = \frac{L_s}{K_{GA}} \int_{0.004}^{0.143} \frac{dY_A}{P_{A1} - P_A^*}$$

Y_A	Y_A^*	Y_{A1}	Y_A^*	P_A
0.004	0	0.004	0	405
0.02	0.0005	0.0196	0.0005	1985
0.04	0.0010	0.0385	0.0010	3900
0.06	0.0015	0.0566	0.0015	5734
0.08	0.0019	0.0741	0.0019	7506
0.10	0.0021	0.0909	0.0021	9208
0.12	0.0060	0.1071	0.0060	10850
0.143	0.015	0.1250	0.0148	12662

Σ	P_A^*	$P_{A1} - P_A^*$	$(P_{A1} - P_A^*)^{-1} \times 10^4$
	0	405	24.7
	50.6	1935	5.17
	101	3799	2.63
	152	5582	1.79
	192	7314	1.37
	213	8996	1.11
	608	10240	0.98
	1499	11160	0.90

31.20 (CONTINUED -

$$\dot{V} = 5 \text{ m}^3/\text{m}$$

$$G_1' = \frac{\dot{V} P}{RT} = \frac{(5)(1,013 \times 10^5)}{(8,314)(293)(60)}$$

$$= 3,465 \text{ mol/s}$$

$$G_S' = G_1' (1 - y_{A1}) = (3,465)(1 - 0,125)$$

$$= 3,03 \text{ mol/s}$$

$$G_S = \frac{3,03}{(\pi/4)(0,6)^2} = 10,72 \text{ mol/m}^2\text{s}$$

$$k_g a = 8,8 \times 10^{-8} \text{ kg mol/m}^3\text{s Pa}$$

$$= 8,8 \times 10^{-5} \text{ mol/m}^2\text{s Pa}$$

SUBSTITUTING:

$$z = \frac{10,72 (4,06 \times 10^{-5})}{8,8 \times 10^{-5}}$$

$$= \underline{\underline{4,94 \text{ m}}}$$