MIDTERM EXAMINATION

April 2017 Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Deputy Head of Dept. of Mathematics:	Lecturer:
Assoc. Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (25 marks) Let $f : [a,b] \to \mathbb{R}$ be a continuous function (a < b). Show that the following set is closed in the Euclidean space \mathbb{R}^2

$$E = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ y \ge f(x)\}.$$

Question 2 (25 marks) Let A be a nonempty closed bounded set in the Euclidean space \mathbb{R}^n . Show that there exists $\mathbf{x}_0 \in A$ such that $|\mathbf{x}_0| = \max_{\mathbf{x} \in A} |\mathbf{x}|$, where

$$|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 if $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

Question 3 (10 marks) Determine which of the following sets is open in the Euclidean space \mathbb{R}^2 . Explain your choice.

- (a) $A = \{(x, y) \in \mathbb{R}^2 : y \le x^2\}.$
- (b) $B = \{(x, y) \in \mathbb{R}^2 : 0 < y \le x^2 + 1\}.$
- (c) $C = \{(x, y) \in \mathbb{R}^2 : -1 < x + y < 1\}.$

Question 4 (20 marks) Let X, Y be nonempty sets and let $f: X \to Y$ be a mapping. Let \mathcal{A} be a σ -algebra in X. Show that the collection

$$\mathcal{B} = \left\{ B \subset Y : f^{-1}(B) \in \mathcal{A} \right\}$$

is a σ -algebra over Y.

Question 5 (20 marks) Let (X, A) be a measurable space. Let μ, ν be measures on A and c_1, c_2 be positive real numbers. Show that the function $\lambda = c_1 \mu + c_2 \nu$ is also a measure on A.

-----END-----

SOLUTIONS

MIDTERM EXAMINATION April 2017

Question 1 Suppose $\{(x_n, y_n)\}\subset E$, $(x_n, y_n)\to (x_0, y_0)\in \mathbb{R}^2$. Then we have $x_n\to x_0$, $y_n\to y_0$, and $y_n\geq f(x_n)$ for all n. As $a\leq x_n\leq b$, we must have $a\leq x_0\leq b$. Furthermore, since f is continuous at x_0 , $f(x_n)\to f(x_0)$. It follows that $y_0=\lim y_n\geq \lim f(x_n)=f(x_0)$, that is, $(x_0,y_0)\in E$. Consequently, E is closed.

Question 2 Since A is a closed and bounded set in \mathbb{R}^n , A is compact. The norm $|\cdot|$ is continuous on \mathbb{R}^n , hence it attains its maximum value on A, that is, there is $\mathbf{x}_0 \in A$ with $|\mathbf{x}_0| = \max_{\mathbf{x} \in A} |\mathbf{x}|$.

Question 3 A is not open since $(0,0) \in A$ but for all r > 0, $(0,r/2) \in B((0,0),r)$ and $(0,r/2) \notin A$.

B is not open because $(0,1) \in B$ but for all r > 0, $(0,1+r/2) \in B((0,1),r)$ and $(0,1+r/2) \notin B$.

C is open because the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x,y) = x+y is continuous and C is the inverse image of an open set: $C = \{(x,y) \in \mathbb{R}^2 : x+y \in (-1,1)\} = f^{-1}(-1,1)$. There are other several ways to prove openness of C.

Question 4 We have $f^{-1}(Y) = X \in \mathcal{A}$, so $Y \in \mathcal{B}$. If $B \in \mathcal{B}$, then $f^{-1}(B) \in \mathcal{A}$ and hence $f^{-1}(B^c) = X \setminus f^{-1}(B) \in \mathcal{A}$, that is, $B^c \in \mathcal{B}$. Finally, if $\{B_n\} \subset \mathcal{B}$, we have $f^{-1}(B_n) \in \mathcal{A}$ for all n. Thus $f^{-1}(\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} f^{-1}(B_n) \in \mathcal{A}$, that is, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{B}$. Therefore \mathcal{B} is a σ -algebra.

Question 5 Since μ and ν are measures, $\lambda(A) = c_1 \mu(A) + c_2 \nu(A) \geq 0$ for every $A \in \mathcal{A}$ and in particular, $\lambda(\emptyset) = c_1 \mu(\emptyset) + c_2 \nu(\emptyset) = 0$. Suppose that $\{A_n\} \subset \mathcal{A}$ is a disjoint sequence. σ -additivity of μ and ν gives,

$$\lambda \left(\bigcup_{n=1}^{\infty} B_n \right) = c_1 \mu \left(\bigcup_{n=1}^{\infty} B_n \right) + c_2 \nu \left(\bigcup_{n=1}^{\infty} B_n \right) = c_1 \sum_{n=1}^{\infty} \mu(B_n) + c_2 \sum_{n=1}^{\infty} \nu(B_n)$$

$$= \sum_{n=1}^{\infty} c_1 \mu(B_n) + \sum_{n=1}^{\infty} c_2 \nu(B_n) = \sum_{n=1}^{\infty} \left[c_1 \mu(B_n) + c_2 \nu(B_n) \right]$$

$$= \sum_{n=1}^{\infty} \lambda(B_n).$$

2

Thus λ is σ -additive and hence λ is a measure on \mathcal{A} .