```
In [2]: import pandas as pd
import numpy as np
from sklearn.datasets import make_classification
```

```
In [5]: df=pd.DataFrame(x,columns=['col1','col2','col3','col4','col5'])
```

In [6]: df

Out[6]:

	col1	col2	col3	col4	col5
0	0.630779	1.448208	0.941771	-1.455243	-0.280989
1	0.410830	-1.556666	0.050209	-1.814057	0.519052
2	-1.540291	-0.206125	3.502919	-0.450205	1.565273
3	2.096366	0.218187	2.130244	-1.871511	1.154351
4	-1.146170	1.392093	0.425851	1.735075	-0.301708
95	-2.972610	-2.147737	-2.247455	-2.976066	3.146960
96	2.240225	-2.756495	3.478257	-2.654683	0.902704
97	-0.222252	-1.108487	0.396636	-1.215891	3.027722
98	2.312145	-0.369648	2.926730	0.726767	1.634659
99	-2.867050	-2.507944	-1.733411	-2.709481	2.555341

100 rows × 5 columns

```
In [7]: x
                [-8.89389312e-01, -1.09894653e+00,
                                                    9.14821331e-01,
                 -8.02322835e-01, 2.32514110e+00],
                [ 2.58677916e+00, -1.80885080e+00,
                                                    1.88322947e-02,
                 -2.38309634e+00, 1.17562456e+00],
                [ 1.64005748e+00, -3.11438786e+00,
                                                    1.96866946e+00,
                 -1.60171890e+00, 1.98675492e+00],
                [-1.18752396e+00, -4.70919462e-01, -6.03135493e-01,
                 -2.39317511e+00, 2.80858185e+00],
                [ 2.38105429e+00, -1.38968359e+00,
                                                    6.41426222e-01,
                 -2.06893265e+00, 2.06747337e+00],
                [ 1.11504943e-02, -1.81647457e-01,
                                                    2.55353399e-01,
                 -6.78925846e-01, 6.45197641e-01],
                [-9.60354977e-01, -1.50279891e+00,
                                                    1.04264809e+00,
                 -1.02331619e+00, -2.26039990e-01],
                [-2.58341413e+00, -2.25050287e+00, -2.85441107e+00,
                 -3.66396355e+00, 1.76497734e+00],
                [-3.01066000e+00, -2.11506289e+00,
                                                    1.07307977e+00,
                 -1.61082884e+00, 1.50900564e+00],
                [-3.50366889e-01,
                                   1.79176645e+00,
                                                    4.27064584e+00,
 In [9]: |df['target']=y
In [10]: y
Out[10]: array([0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
                1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0,
                1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
                0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,
                0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1])
In [83]: #from sklearn.model selection import train test split
In [85]: #x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
In [89]: #x test.shape
```

```
In [11]: df
```

Out[11]:

	col1	col2	col3	col4	col5	target
0	0.630779	1.448208	0.941771	-1.455243	-0.280989	0
1	0.410830	-1.556666	0.050209	-1.814057	0.519052	0
2	-1.540291	-0.206125	3.502919	-0.450205	1.565273	1
3	2.096366	0.218187	2.130244	-1.871511	1.154351	0
4	-1.146170	1.392093	0.425851	1.735075	-0.301708	0
95	-2.972610	-2.147737	-2.247455	-2.976066	3.146960	1
96	2.240225	-2.756495	3.478257	-2.654683	0.902704	0
97	-0.222252	-1.108487	0.396636	-1.215891	3.027722	1
98	2.312145	-0.369648	2.926730	0.726767	1.634659	0
99	-2.867050	-2.507944	-1.733411	-2.709481	2.555341	1

100 rows × 6 columns

```
In [12]: df.shape
```

Out[12]: (100, 6)

In [13]: df.describe()

Out[13]:

	col1	col2	col3	col4	col5	target
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
mean	-0.217273	-0.934874	0.867478	-1.232877	1.054425	0.500000
std	1.827953	1.185598	1.435814	1.703789	1.157741	0.502519
min	-4.067846	-3.409669	-2.854411	-5.121569	-1.587915	0.000000
25%	-1.566089	-1.817883	-0.008769	-2.545824	0.441268	0.000000
50%	-0.215917	-1.067414	0.928296	-1.210079	1.006864	0.500000
75%	1.018992	-0.200006	1.848240	-0.083697	1.668817	1.000000
max	5.190239	1.791766	4.270646	2.305320	3.853080	1.000000

```
In [14]: #rows
```

In [17]: def sample_rows(df,percent):
 return df.sample(int(percent*df.shape[0]),replace=True)

In [61]: df1=sample_rows(df,0.2)

In [62]: df1

Out[62]:

	col1	col2	col3	col4	col5	target
•	- 0.620036	-0.256508	3.681323	0.000046	-0.717912	1
2	25 -1.187524	-0.470919	-0.603135	-2.393175	2.808582	1
3	35 -1.048709	-1.203271	0.703654	-0.052110	-1.187669	1
6	1 .115461	-1.474103	-0.688489	0.344932	1.741754	0
6	64 0.703844	0.490278	2.287098	-0.233926	0.034431	0
4	-1 .435702	-1.967460	1.542792	-0.540756	1.255426	1
6	- 1.989563	-0.399381	-0.791770	-2.649196	2.128462	1
ę	2.312145	-0.369648	2.926730	0.726767	1.634659	0
4	19 -1.873927	-1.302895	0.496048	-1.671690	1.133324	1
8	38 2.658478	0.742565	0.081130	-0.659919	1.093026	0
7	70 -1.824587	-0.508452	3.237107	-1.552525	-0.299422	0
3	0.923046	-1.738692	1.464596	-2.872023	1.200902	0
8	. -0.697854	-0.992987	1.857542	-1.592445	0.627273	1
1	- 0.776155	-0.253194	2.810633	1.063000	0.800006	1
7	73 2.035331	-0.474713	-0.498837	1.242075	1.421553	0
4	13 0.560771	-0.407857	3.328741	-2.390933	0.211989	0
2	29 -2.583414	-2.250503	-2.854411	-3.663964	1.764977	1
3	3. 010660	-2.115063	1.073080	-1.610829	1.509006	1
2	22 -0.889389	-1.098947	0.914821	-0.802323	2.325141	1
ţ	3 .486667	-0.493357	0.498534	0.148575	1.454346	0

```
In [63]: df1.shape
```

Out[63]: (20, 6)

In [64]: df2=sample_rows(df,0.2)

In [65]: df2

Out[65]:

	col1	col2	col3	col4	col5	target
29	-2.583414	-2.250503	-2.854411	-3.663964	1.764977	1
39	1.813860	-1.457932	1.055468	-0.132909	0.953043	0
99	-2.867050	-2.507944	-1.733411	-2.709481	2.555341	1
92	-2.512780	-0.279227	1.198327	-2.808435	1.775605	1
38	-4.067846	-1.264625	-1.537569	-4.729491	0.973132	1
52	-0.842741	-1.439331	1.808316	0.257283	0.380747	1
49	-1.873927	-1.302895	0.496048	-1.671690	1.133324	1
11	-0.531307	-2.266932	0.259518	-0.391977	0.716866	1
62	1.688753	1.476900	-0.041840	1.135373	1.312912	0
66	0.594057	-2.420382	1.344552	-1.515076	0.526110	0
22	-0.889389	-1.098947	0.914821	-0.802323	2.325141	1
1	0.410830	-1.556666	0.050209	-1.814057	0.519052	0
62	1.688753	1.476900	-0.041840	1.135373	1.312912	0
50	5.190239	-1.108562	-0.287753	1.353989	0.917915	0
30	-3.010660	-2.115063	1.073080	-1.610829	1.509006	1
58	-3.847802	-2.988380	-0.535181	-4.083800	0.509744	1
10	-2.353748	0.215573	0.794943	-4.256807	-0.706140	0
77	-0.127024	-1.356630	1.445276	0.277285	0.761517	1
89	-0.697854	-0.992987	1.857542	-1.592445	0.627273	1
73	2.035331	-0.474713	-0.498837	1.242075	1.421553	0

```
In [66]: df2.shape
```

Out[66]: (20, 6)

In [67]: df3=sample_rows(df,0.2)

In [68]: df3

Out[68]:

	col1	col2	col3	col4	col5	target
23	2.586779	-1.808851	0.018832	-2.383096	1.175625	0
15	-2.284465	-2.624479	-0.668061	-0.366578	0.570548	1
51	-0.228301	-0.784220	0.283200	-0.616130	1.194642	1
59	1.741651	-2.104256	1.284468	-1.321281	2.927966	0
33	-1.979184	-1.035882	1.845140	-2.253072	1.248839	1
43	0.560771	-0.407857	3.328741	-2.390933	0.211989	0
85	-0.798660	0.080747	2.263777	0.304528	0.859543	1
32	0.923046	-1.738692	1.464596	-2.872023	1.200902	0
83	-2.084350	-1.402551	-2.005406	-3.560831	0.791396	1
98	2.312145	-0.369648	2.926730	0.726767	1.634659	0
54	0.737752	-1.902913	0.077432	-3.061150	0.421945	0
95	-2.972610	-2.147737	-2.247455	-2.976066	3.146960	1
37	-0.770094	-2.176952	-0.185587	-0.477982	-0.750859	1
49	-1.873927	-1.302895	0.496048	-1.671690	1.133324	1
94	0.986836	-3.211069	0.657087	-2.920357	0.606947	0
73	2.035331	-0.474713	-0.498837	1.242075	1.421553	0
96	2.240225	-2.756495	3.478257	-2.654683	0.902704	0
81	-0.336107	-0.765091	1.257872	-0.723729	-0.389066	0
53	2.207093	-1.844981	-0.639568	0.703398	2.573596	0
53	2.207093	-1.844981	-0.639568	0.703398	2.573596	0

```
In [72]: clf1.fit(df1.iloc[:,0:5],df1.iloc[:,-1])
Out[72]:
           ▼ DecisionTreeClassifier
           DecisionTreeClassifier()
In [73]: clf2.fit(df2.iloc[:,0:5],df2.iloc[:,-1])
Out[73]:
           ▼ DecisionTreeClassifier
           DecisionTreeClassifier()
In [74]: clf3.fit(df3.iloc[:,0:5],df3.iloc[:,-1])
Out[74]:
           ▼ DecisionTreeClassifier
           DecisionTreeClassifier()
In [75]: from sklearn.tree import plot tree
In [76]: plot_tree(clf1)
Out[76]: [Text(0.6, 0.875, 'x[0] <= -0.03\ngini = 0.495\nsamples = 20\nvalue = [9, 1
          1]'),
           Text(0.4, 0.625, x[2] \le 3.024 = 0.153 = 12 = 12 = 12
          1]'),
           Text(0.2, 0.375, 'gini = 0.0\nsamples = 10\nvalue = [0, 10]'),
           Text(0.6, 0.375, x[4] <= -0.509  ngini = 0.5 \ nsamples = 2 \ nvalue = [1, 1]'),
           Text(0.4, 0.125, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
           Text(0.8, 0.125, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
           Text(0.8, 0.625, 'gini = 0.0\nsamples = 8\nvalue = [8, 0]')]
                                   x[0] <= -0.03
                                   gini = 0.495
                                   samples = 20
                                   value = [9, 11]
                         x[2] \le 3.024
                                              gini = 0.0
                          gini = 0.153
                                             samples = 8
                         samples = 12
                                             value = [8, 0]
                         value = [1, 11]
                                  x[4] \le -0.509
gini = 0.5
                 gini = 0.0
                samples = 10
                                   samples = 2
               value = [0, 10]
                                   value = [1, 1]
                           qini = 0.0
                                              qini = 0.0
                                             samples = 1
                          samples = 1
                         value = [0, 1]
                                             value = [1, 0]
```

```
In [77]: plot tree(clf2)
Out[77]: [Text(0.6, 0.8333333333333334, 'x[0] <= 0.142\ngini = 0.48\nsamples = 20\nvalue
       = [8, 12]'),
        Text(0.4, 0.5, 'x[4] \leftarrow -0.163 \cdot = 0.142 \cdot = 13 \cdot = [1, 12]'),
        Text(0.8, 0.5, 'gini = 0.0\nsamples = 7\nvalue = [7, 0]')]
                        x[0] <= 0.142
                         gini = 0.48
                        samples = 20
                        value = [8, 12]
                 x[4] <= -0.163
                                qini = 0.0
                 gini = 0.142
                               samples = 7
                 samples = 13
                               value = [7, 0]
                 value = [1, 12]
           gini = 0.0
                         gini = 0.0
          samples = 1
                        samples = 12
          value = [1, 0]
                        value = [0, 12]
```

```
In [78]: plot tree(clf3)
Out[78]: [Text(0.6, 0.875, 'x[0] <= 0.166\ngini = 0.48\nsamples = 20\nvalue = [12, 8]'),
           Text(0.4, 0.625, x[1] <= -0.775 = 0.198 = 9 = 9 = [1, 8]),
           Text(0.2, 0.375, 'gini = 0.0\nsamples = 7\nvalue = [0, 7]'),
           Text(0.6, 0.375, x[0] <= -0.567 = 0.5 = 2 = 2 = [1, 1]'),
           Text(0.4, 0.125, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
           Text(0.8, 0.125, 'gini = 0.0 \setminus samples = 1 \setminus value = [1, 0]'),
           Text(0.8, 0.625, 'gini = 0.0\nsamples = 11\nvalue = [11, 0]')]
                                    x[0] \le 0.166
                                     gini = 0.48
                                    samples = 20
                                   value = [12, 8]
                         x[1] \le -0.775
                                               gini = 0.0
                          gini = 0.198
                                              samples = 11
                          samples = 9
                                             value = [11, 0]
                          value = [1, 8]
                                   x[0] <= -0.567
                 gini = 0.0
                                     gini = 0.5
                 samples = 7
                                    samples = 2
                value = [0, 7]
                                    value = [1, 1]
                           qini = 0.0
                                               qini = 0.0
                          samples = 1
                                              samples = 1
                          value = [0, 1]
                                              value = [1, 0]
```

```
In [79]: |#predicting the values
In [90]: clf1.predict(np.array([-1.048709,-1.203271,0.703654,-0.052110,-1.187669])
                      .reshape(1,5))
         C:\Users\91733\AppData\Roaming\Python\Python39\site-packages\sklearn\base.py:40
         9: UserWarning: X does not have valid feature names, but DecisionTreeClassifier
         was fitted with feature names
           warnings.warn(
Out[90]: array([1])
In [81]: clf2.predict(np.array([-1.048709,-1.203271,0.703654,-0.052110,-1.187669])
                      .reshape(1,5)
         C:\Users\91733\AppData\Roaming\Python\Python39\site-packages\sklearn\base.py:40
         9: UserWarning: X does not have valid feature names, but DecisionTreeClassifier
         was fitted with feature names
           warnings.warn(
Out[81]: array([0])
In [82]: clf3.predict(np.array([-1.048709,-1.203271,0.703654,-0.052110,-1.187669])
                      .reshape(1,5))
         C:\Users\91733\AppData\Roaming\Python\Python39\site-packages\sklearn\base.py:40
         9: UserWarning: X does not have valid feature names, but DecisionTreeClassifier
         was fitted with feature names
           warnings.warn(
Out[82]: array([1])
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
```