

Lecture 21 & 22: Linear Regression

Part 1

Recap

- Evaluation metrics
- Entropy
- Join Entropy
- Conditional Entropy
- Mutual Information (Information Gain)
- Use in Decision Trees

Simple Linear Regression

House sizes and prices

House sizes and prices

House sizes and prices

Population versus Sample

- Population Regression Function
 - Deterministic Component y = f(x)
 - •Stochastic Component $y = f(x) + \epsilon$
- Normally distributed error component
- •Univariate function $y = wx + b + \epsilon$
- Multivariate function

$$y = w_n x_n + \dots + w_1 x_1 + w_0 + \epsilon$$
$$= \mathbf{w}^T \mathbf{x} + \epsilon$$

Population Regression Line/Plane/Hyperplane

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}$$

Population versus Sample

- Sample Regression Functions
 - Different Regression Line/Plane/Hyperplane

$$\hat{y} = h(x) = wx + b$$

•Univariate function $\hat{y}=h(x)=wx+b$ •Multivariate function $\hat{y}=h(x)=\mathbf{w}^T\mathbf{x}$

$$\hat{y} = h(x) = \mathbf{w}^T \mathbf{x}$$

Hypothesis function(s)

Different training sets results in different parameters of the hypothesis function

Parametric form of hypothesis function determined before learning

Parameters are learnt during training

Parameters itself is model

Linear Regression algorithm

Step 1. Initialization

- •Assume parametric form $\hat{y} = wx + b$
- Assign random values for w and b

Parametric form of the Hypothesis function

Calculate error using the initial w & b

$$error^{(i)} = \hat{y}^{(i)} - y^{(i)}$$

Formulate Objective function

Also called cost / loss function

$$error^{(i)} = \hat{y}^{(i)} - y^{(i)}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} error^{(i)^2}$$

How do I quantify my unhappiness

$$= \frac{1}{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^2$$

$$\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (b + wx^{(i)} - y^{(i)})^{2}$$

Feature space versus parameter space

$$\hat{y} = wx + b$$

$$\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (b + wx^{(i)} - y^{(i)})^{2}$$

Step 2. Evaluate y-hat & evaluate objective function

- Evaluate y-hat $\hat{y} = wx + b$
- Also known as forward pass

• Evaluate Objective function
$$\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^n \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$
 • Also known as forward pass

$$\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (b + wx^{(i)} - y^{(i)})^{2}$$

Objective function plot

•https://www.geogebra.org/calculator/ua52fqtr

Step 3. Calculate analytical gradients

$$\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (b + wx^{(i)} - y^{(i)})^{2} \qquad \mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^{2}$$

$$\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^2$$

Calculate gradient

$$\frac{\partial \mathcal{J}}{\partial b} = \frac{\partial \mathcal{J}}{\partial \hat{y}^{(i)}} \frac{\partial \hat{y}^{(i)}}{\partial b} \begin{vmatrix} \partial \mathcal{J} \\ \partial w \end{vmatrix} = \frac{\partial \mathcal{J}}{\partial \hat{y}^{(i)}} \frac{\partial \hat{y}^{(i)}}{\partial w} \begin{vmatrix} \partial \mathcal{J} \\ \partial w \end{vmatrix}$$

$$\frac{\partial \mathcal{J}}{\partial w} = \frac{\partial \mathcal{J}}{\partial \hat{y}^{(i)}} \frac{\partial \hat{y}^{(i)}}{\partial w}$$

Cost

$$\frac{\partial \mathcal{J}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} 2(b + wx^{(i)} - y^{(i)})$$

$$\frac{\partial \mathcal{J}}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} 2x^{(i)} (b + wx^{(i)} - y^{(i)})$$

Step 4. Perform numerical gradient descent

Also known as backward pass

$$b = b - \eta \frac{\partial \mathcal{J}}{\partial b}$$
$$w = w - \eta \frac{\partial \mathcal{J}}{\partial w}$$

•Repeat Step 2, 3, 4

Change in w and b with gradient descent

Review Linear Regression

- •Initialization: Select Random w & b, choose learning rate 1/1
- Loop
 - Calculate new-cost for given w & b $\mathcal{J}(w,b) = \frac{1}{n} \sum_{i=1}^{n} (b + wx^{(i)} y^{(i)})^2$ Break If iter == max or new-cost old cost < threshold

•Calculate gradients wrt w and b
$$\frac{\partial \mathcal{J}}{\partial b} = \frac{1}{m} \sum_{i=1}^m 2(b + wx^{(i)} - y^{(i)})$$

Do gradient descent

$$b = b - \eta \frac{\partial \mathcal{J}}{\partial b}$$

$$w = w - \eta \frac{\partial \mathcal{J}}{\partial w}$$

$$\frac{\partial \mathcal{J}}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} 2x^{(i)} (b + wx^{(i)} - y^{(i)})$$

•Old Cost = new cost

Gradient descent summary

Iteration	w	b	Cost	dJ/dw	dJ/db
0	0.0110	0.0195	2.0443	-1.1077	-1.9538
1000	1.4309	1.2985	0.0178	-0.0407	0.02078
2000	1.7162	1.1527	0.0071	-0.0191	0.00976
3000	1.8502	1.0842	0.0047	-0.0090	0.00459
4000	1.9132	1.0520	0.0042	-0.0042	0.00215
5000	1.9430	1.0369	0.0041	-0.0020	0.00101
6000	1.9567	1.0298	0.0040	-0.0009	0.00047
7000	1.9632	1.0265	0.0040	-0.0004	0.00022
8000	1.9663	1.0249	0.0040	-0.0002	0.00010
9000	1.9677	1.0242	0.0040	-9.637e-05	4.925e-05

Demo in Jupyter Notebook

Impact of Learning rate on gradient descent

Impact of Learning rate on gradient descent

Importance of Scaling/Normalization

- Faster convergence (Less steps to minima)
- Robust convergence (will not wander away)

Closed form analytical solution

Closed form analytical solution

$$y = w_1 x + w_0 + \epsilon$$
 $\hat{y} = w_1 x + w_0$

$$\mathcal{J}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} \left(w_0 + w_1 x^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{\partial \mathcal{J}}{\partial \hat{y}^{(i)}} \frac{\partial \hat{y}^{(i)}}{\partial w_0} = \frac{1}{n} \sum_{i=1}^n 2(w_0 + w_1 x^{(i)} - y^{(i)}) = 0$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{\partial \mathcal{J}}{\partial \hat{y}^{(i)}} \frac{\partial \hat{y}^{(i)}}{\partial w_1} = \frac{1}{n} \sum_{i=1}^n 2(w_0 + w_1 x^{(i)} - y^{(i)}) x^{(i)} = 0$$

Closed form analytical solution

$$w_1 = \frac{n \sum_{i=1}^m x^{(i)} y^{(i)} - \sum_{i=1}^m x^{(i)} \sum_{i=1}^m y^{(i)}}{n \sum_{i=1}^m x^{(i)^2} - (\sum_{i=1}^m x^{(i)})^2}$$

$$w_0 = \frac{\sum_{i=1}^m y^{(i)} - w_1 \sum_{i=1}^m x^{(i)}}{n}$$

- Formula starts getting complicated with interdependencies
- Needs to load all data at once
 - •What happens when there are million+ records?

Types of Gradient Descent

Gradient descent - Batch, mini batch & stochastic

- Batch gradient descent
 - Entire dataset used, Offline training
 - Good for small data set
- Stochastic gradient descent
 - One record used at a time, Online training
 - Good for streaming data
- Mini-batch gradient descent
 - Large dataset is cut into chunks, Calc J on each chunk
 - Iterate over entire dataset many times progressively reducing cost

Gradient descent comparison

Batch Gradient Descent

Stochastic Gradient Descent

Mini-batch Gradient Descent

Cost function comparison

Gradient descent comparison

Batch Gradient Descent

- Entire dataset for updation
- Cost function reduces smoothly
- Computation cost is very high

Stochastic Gradient Descent (SGD)

- Single observation for updation
- Lot of variations in cost function
- Computation time is more

Mini-Batch Gradient Descent

- Subset of data for updation
- Smoother cost function as compared to SGD
- Computation time is lesser than SGD
- Computation cost is lesser than Batch Gradient Descent

Coding Linear Regression

Linear Regression Dataset

Advertising.csv

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9

Coding with statsmodels

```
import statsmodels.api as sm
lm = sm.OLS(y, X)
model = lm.fit()
```

model.summary()

Dep. Variable:	sales	R-squared (uncentered):	0.982
Model:	OLS	Adj. R-squared (uncentered):	0.982
Method:	Least Squares	F-statistic:	3566.
Date:	Sun, 28 Mar 2021	Prob (F-statistic):	2.43e-171
Time:	13:42:33	Log-Likelihood:	-423.54
No. Observations:	200	AIC:	853.1
Df Residuals:	197	BIC:	863.0
Df Model:	3		

nonrobust

Covariance Type:

		coef	std err	t	P> t	[0.025	0.975]
	TV	0.0538	0.001	40.507	0.000	0.051	0.056
	radio	0.2222	0.009	23.595	0.000	0.204	0.241
ne	wspaper	0.0168	0.007	2.517	0.013	0.004	0.030
	O	mnibus:	5.982	Durbi	n-Watso	on: 2.0	038
	Prob(On	nnibus):	0.050	Jarque-	Bera (J	B): 7.	039
		Skew:	-0.232		Prob(J	B): 0.02	296
	K	urtosis:	3.794		Cond. N	No. 1	2.6

Coding with sklearn

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
model = lm.fit(X,y)
```

```
model.predict(new_data)
```

```
array([[6.15044172]])
```

Different types of gradient descent in sklearn

- Batch gradient descent
 - •sklearn.linear model.LinearRegression
- Stochastic gradient descent
 - •sklearn.linear_model.SGDRegressor
- Mini-batch gradient descent
 - •sklearn.linear_model.SGDRegressor
 - •partial_fit()
 - Pass each mini batch into partial fit()
 - •Cannot use partial_fit() in Pipeline!

Evaluation metrics for Regression

```
model.score(X_train, y_train) model.score(X_test,y_test)
:
0.910413637900632 :
0.8495077592917368
```

•What does score mean in Regression?

Evaluating Linear Regression

Evaluation metrics for Regression

- •Mean Squared Error (MSE) $=\frac{1}{n}\sum_{i=1}^{n}(\hat{y}^{(i)}-y^{(i)})^2$
- Root Mean Squared Error (RMSE) $= \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\hat{y}^{(i)}-y^{(i)})^2}$
- •Mean Absolute Error (MAE) $=\frac{1}{n}\sum_{i=1}^{n}|\hat{y}^{(i)}-y^{(i)}|$
- •R-Squared $R^2 = 1 \frac{SS_{reg}}{SS_{avg}} = 1 \frac{\sum_{i=1}^{n} \left(\hat{y}^{(i)} y^{(i)}\right)^2}{\sum_{i=1}^{n} \left(\hat{y}^{(i)} \bar{y}\right)^2}$
- •Adjusted R-Squared $R_{adj}^2 = 1 \frac{\sum_{i=1}^n \left(\hat{y}^{(i)} y^{(i)} \right)^2}{\sum_{i=1}^n \left(\hat{y}^{(i)} \bar{y} \right)^2} \frac{(n-1)}{(n-k-1)}$

R-squared intuition

$$R^{2} = 1 - \frac{SS_{reg}}{SS_{avg}} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^{2}}{\sum_{i=1}^{n} (\hat{y}^{(i)} - \bar{y})^{2}}$$

- Denominator is variance w.r.t. mean
- Numerator is variance w.r.t.
 regression line
- Lesser the variance wrt regression line the better
- How much variance is explained by linear regression?
 - More the merrier (Implies less error is left after regression)
- R-squared between 0 & 1. Higher the better

Adjusted R-squared intuition

$$R_{adj}^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^{2}}{\sum_{i=1}^{n} (\hat{y}^{(i)} - \bar{y})^{2}} \frac{(n-1)}{(n-k-1)}$$

- If additional feature is added R squared increases
- But if the feature less useful in explaining variance, then adjusted R-squared decreases
- Penalized for using more features that do not add value

Recap

- Population and Sample Regression
- Simple Linear Regression Intuition
- Linear Regression Algorithm
- Gradient Descent
- Impact of Scaling in Gradient Descent
- Closed form analytical solution
- Types of Gradient Descent
- Regression Evaluation Metrics

