Алгебра

Сидоров Дмитрий

Группа БПМИ 219

June 6, 2022

№1

Избавьтесь от иррациональности в знаменателе дроби $\frac{3-63\sqrt[3]{7}-8\sqrt[3]{49}}{1-2\sqrt[3]{7}-4\sqrt[3]{49}}$ и упростите полученное выражение.

Решение:

Обозначим $\alpha=\sqrt[3]{7}$ ($\alpha^3=7$), $f(\alpha)=3-63\sqrt[3]{7}-8\sqrt[3]{49}$, $g(\alpha)=1-2\sqrt[3]{7}-4\sqrt[3]{49}$ $\Rightarrow \frac{3-63\sqrt[3]{7}-8\sqrt[3]{49}}{1-2\sqrt[3]{7}-4\sqrt[3]{49}}=\frac{f(\alpha)}{g(\alpha)}\in\mathbb{Q}(\alpha)$. Тогда, тк $[\mathbb{Q}(a):\mathbb{Q}]=3$ (доказано на семинаре, что если α - действительный корень уравнения $x^3=a$ ($a\in\mathbb{Q}$), то $[\mathbb{Q}(\alpha):\mathbb{Q}]=1$, если a - куб рационального числа, и $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$ иначе), то каждый элемент $\mathbb{Q}(\alpha)$ можно единственным образом представить в виде $a_0\cdot 1+a_1\cdot\sqrt[3]{7}+a_2\cdot\sqrt[3]{49}$. Значит $\frac{3-63\sqrt[3]{7}-8\sqrt[3]{49}}{1-2\sqrt[3]{7}-4\sqrt[3]{49}}=a_0\cdot 1+a_1\cdot\sqrt[3]{7}+a_2\cdot\sqrt[3]{49}\Rightarrow 3-63\sqrt[3]{7}-8\sqrt[3]{49}=(1-2\sqrt[3]{7}-4\sqrt[3]{49})(a_0+a_1\cdot\sqrt[3]{7}+a_2\cdot\sqrt[3]{49})=a_0-2\sqrt[3]{7}a_0-4\sqrt[3]{49}a_0+a_1\sqrt[3]{7}-a_1\cdot2\sqrt[3]{49}-28a_1+a_2\sqrt[3]{49}-14a_2-28a_2\sqrt[3]{7}=(a_0-28a_1-14a_2)+\sqrt[3]{7}(-2a_0+a_1-28a_2)+\sqrt[3]{49}(-4a_0-2a_1+a_2)\Rightarrow$ $\begin{pmatrix} 1&-28&-14&3\\ -2&1&-28&-63\\ -4&-2&1&-8 \end{pmatrix} \rightarrow \begin{pmatrix} 1&-28&-14&3\\ 0&-55&-56&-57\\ 0&-114&-55&-4 \end{pmatrix} \rightarrow \begin{pmatrix} 1&-28&-14&3\\ 0&-55&-56&-57\\ 0&-4&57&-110 \end{pmatrix} \rightarrow \begin{pmatrix} 1&-28&-14&3\\ 0&1&-742&1483\\ 0&0&4&57&-110 \end{pmatrix} \rightarrow \begin{pmatrix} 1&0&0&3\\ 0&1&-742&1483\\ 0&0&1&2 \end{pmatrix} \rightarrow \begin{pmatrix} 1&0&0&3\\ 0&1&0&-1\\ 0&0&1&2 \end{pmatrix} \Rightarrow \frac{3-63\sqrt[3]{7}-8\sqrt[3]{49}}{1-2\sqrt[3]{7}-4\sqrt[3]{49}}=3-\sqrt[3]{7}+2\sqrt[3]{49}$

Ответ: $\frac{3-63\sqrt[3]{7}-8\sqrt[3]{49}}{1-2\sqrt[3]{7}-4\sqrt[3]{49}} = 3-\sqrt[3]{7}+2\sqrt[3]{49}$

№2

Найдите минимальный многочлен для числа $\sqrt{6} - \sqrt{5} - 1$ над \mathbb{Q} .

Решение:

Обозначим $\sqrt{6} - \sqrt{5} - 1$ как a. Тогда $\sqrt{6} - \sqrt{5} - 1 = a \Rightarrow a + 1 = \sqrt{6} - \sqrt{5} \Rightarrow (a + 1)^2 = a^2 + 2a + 1 = (\sqrt{6} - \sqrt{5})^2 = 11 - 2\sqrt{30} \Rightarrow -2\sqrt{30} = a^2 + 2a - 10 \Rightarrow 120 = (a^2 + 2a - 10)^2 = a^4 + 4a^3 - 16a^2 - 40a + 100 \Rightarrow a^4 + 4a^3 - 16a^2 - 40a - 20 = 0$. Значит многочлен $f = x^4 + 4x^3 - 16x^2 - 40x - 20 \in \mathbb{Q}[x]$ является аннулирующим, тк f(a) = 0. Теперь докажем, что найденный многочлен f является минимальным. Для этого для расширения $\mathbb{Q} \subseteq \mathbb{Q}(a)$, тк $[\mathbb{Q}(a):Q] = \deg f_{\min}$ (равно степени минимального многочлена) и $\deg f = 4$, покажем, что $[\mathbb{Q}(a):Q] = 4$. Для этого рассмотрим $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{5}) \subseteq \mathbb{Q}(\sqrt{5})(\sqrt{6})$.

Покажем, что $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$. Пусть $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=1$, тогда минимальный многочлен иметт степень 1, те имеет вид $g=ax+b,\ a,b\in\mathbb{Q}\Rightarrow g(\sqrt{5})=a\sqrt{5}+b\Rightarrow a\sqrt{3}=-b\Rightarrow$ противоречие, тк правая часть является рациональным числом, а левая иррациональным. При этом существует минимальный многочлен, который имеет вторую степень (x^2-5) , значит $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$.

Теперь покажем, что $[\mathbb{Q}(\sqrt{5})(\sqrt{6}):\mathbb{Q}(\sqrt{5})] = 2$. Существует многочлен $(x^2 - 6)$ такой, что он имеет степень 2, и он является минимальным для $\sqrt{6}$ над $\mathbb{Q}(\sqrt{5})$. Пусть существует многочлен степени 1, который обнуляет $\sqrt{6}$, тогда $\sqrt{6} \in \mathbb{Q}(\sqrt{5})$ и $\sqrt{6} = a\sqrt{5} + b$, $a, b \in \mathbb{Q} \Rightarrow 6 = 5a^2 + b^2 + 2ab\sqrt{5} \Rightarrow$ либо a = 0, либо b = 0 (тк иначе правая часть рациональна, а левая иррациональна). Но тогда либо $6 = 5a^2$, либо $6 = b^2$, оба уравнения не имеют решений в \mathbb{Q} . Таким образом, $[\mathbb{Q}(\sqrt{5})(\sqrt{6}):\mathbb{Q}(\sqrt{5})] = 2$.

Известно, что для произвольных конечных расширений полей $K \subseteq F \subseteq L$ выполняется $[L:K] = [L:F] \cdot [F:K]$, значит $[\mathbb{Q}(\sqrt{5})(\sqrt{6}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{5})(\sqrt{6}):\mathbb{Q}(\sqrt{5})] \cdot [\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 2 \cdot 2 = 4$. Теперь докажем, что $\mathbb{Q}(a) = \mathbb{Q}(\sqrt{5})(\sqrt{6})$.

- 1) $1,\sqrt{5},\sqrt{6},\sqrt{30}$ базис векторного пространства $\mathbb{Q}(\sqrt{5})(\sqrt{6})$ над $\mathbb{Q}\Rightarrow$ тк $a\in\mathbb{Q}(\sqrt{5})(\sqrt{6})$, то $\mathbb{Q}(a)\subseteq\mathbb{Q}(\sqrt{5})(\sqrt{6})$
- 2) Покажем, что базис $\mathbb{Q}(\sqrt{5})(\sqrt{6})$ лежит в $\mathbb{Q}(a)$. $a = \sqrt{6} \sqrt{5} 1 \in \mathbb{Q}(a) \Rightarrow a^2 = (\sqrt{6} \sqrt{5} 1)^2 \in \mathbb{Q}(a)$ и при этом $(\sqrt{6} \sqrt{5} 1)^2 = 12 2\sqrt{30} 2\sqrt{6} + 2\sqrt{5} = -2a + 10 2\sqrt{30} \Rightarrow \sqrt{30} \in \mathbb{Q}(a)$. В том числе $\sqrt{30}a \in \mathbb{Q}(a) \Rightarrow 6\sqrt{5} 5\sqrt{6} \sqrt{30} \in \mathbb{Q}(a) \Rightarrow 6\sqrt{5} 5\sqrt{6} = b \in \mathbb{Q}(a)$ (тк $\sqrt{30} \in \mathbb{Q}(a)$). Тогда, тк $5a, 6a \in \mathbb{Q}(a)$ и $a+b \in \mathbb{Q}(a)$ (тк $a, b \in \mathbb{Q}(a)$), то $b+5a \in \mathbb{Q}(a) \Rightarrow b+5a = \sqrt{5} 5 \in \mathbb{Q}(a) \Rightarrow \sqrt{5} \in \mathbb{Q}(a)$. Аналогично $b+6a = \sqrt{6} 6 \in \mathbb{Q}(a) \Rightarrow \sqrt{6} \in \mathbb{Q}(a)$. При этом, тк $Q \subseteq \mathbb{Q}(a)$ по построению $1 \in \mathbb{Q}(a)$ (в том числе для других целых чисел этот факт использовался ранее). Таким образом, $1, \sqrt{5}, \sqrt{6}, \sqrt{30}$ лежат в $\mathbb{Q}(a)$, а значит $\mathbb{Q}(\sqrt{5})(\sqrt{6}) \subseteq Q(a)$ (тк $1, \sqrt{5}, \sqrt{6}, \sqrt{30}$ базис векторного пространства $\mathbb{Q}(\sqrt{5})(\sqrt{6})$ над \mathbb{Q}).

Таким образом, $\mathbb{Q} = \mathbb{Q}(\sqrt{5})(\sqrt{6})$, а значит $[\mathbb{Q}(a):Q]=4$. Итого, $f=x^4+4x^3-16x^2-40x-20$ - искомый минимальный многочлен для числа $\sqrt{6}-\sqrt{5}-1$ над \mathbb{Q} .

Ответ: $f = x^4 + 4x^3 - 16x^2 - 40x - 20$

№3

Постройте явно поле \mathbb{F}_8 и составьте для него таблицы сложения и умножения.

Решение:

Тк $8=2^3$, то в нашем случае для $\mathbb{F}_8=\mathbb{F}_{p^n}$ p=2, n=3 (p - простое, $n\in\mathbb{N}$). Тогда, чтобы построить поле \mathbb{F}_8 нужно взять неприводимый многочлен $f\in\mathbb{Z}_2[x]$, степень которого равна n=3. Значит, можно взять многочлен $f=x^3+x+1$, тк для него $f(0)=1\neq 0$, $f(1)=1\neq 0$. Положим $\mathbb{F}_8=\mathbb{Z}_2[x]/(f)$. Тогда \mathbb{F}_8 состоит из всех многочленов в $\mathbb{Z}_2[x]/(f)$, степень которых меньше 3, те $\mathbb{F}_8=\{\bar{0},\bar{1},\bar{x},\bar{x}+\bar{1},\bar{x}^2,\bar{x}^2+\bar{1},\bar{x}^2+\bar{x},\bar{x}^2+\bar{x}+\bar{1}\}$.

Таблицы сложения и умножения для этого поля см в конце документа (обе операции коммутативны в поле, те таблицы симметричны относительно главной диагонали, а так же для умножения используем факт, что $x^3 = -x - 1 = x + 1$).

№4

Пусть $K \subseteq F$ - расширение полей и $\alpha \in F$. Положим $K[\alpha] = \{f(\alpha) \mid f \in K[x]\}$. Докажите, что если $K[\alpha]$ конечномерно как векторное пространство над K, то $K[\alpha] = K(\alpha)$.

Доказательство:

Пусть $\dim K[\alpha] = n < \infty$ (по условию $K[\alpha]$ конечномерно как векторное пространство над K). Тогда векторы $1, \alpha, \ldots, \alpha^n$ линейно завсимы, тк их n+1>n штук. Таким образом, существует i такой, что линейная комбинация $a_0+a_1\alpha+\cdots+a_n\alpha^n=0$ при $a_i\neq 0,\ a_i\in K\Rightarrow \alpha-$ это корень многочлена $f=a_0+a_1\alpha+\cdots+a_n\alpha^n$ в поле F, а значит α является алгебраическим над K. При этом элементы $K[\alpha]$ имеют вид $a_0+a_1\alpha+\cdots+a_n\alpha^n$ ($a_i\in K$) и $\alpha^j\in K(\alpha), 1\leq j\leq n\Rightarrow a_0+a_1\alpha+\cdots+a_n\alpha^n\in K(\alpha)\Rightarrow K[\alpha]\subseteq K(\alpha)$.

Известно, что если $K \subseteq F$ - расширение полей и $\alpha \in F$ - элемент, алгебраический над K и h - его минимальный многочлен, то $K(\alpha)$ - пересечение всех подполей F, содержащих K и α , значит $K(\alpha)$ - наименьшее поле, содержащее

K и α . Докажем, что $K[\alpha]$ - поле (тогда, тк $K[\alpha]$ содержит K и α и $K[\alpha] \subseteq K(\alpha)$, $K(\alpha) = K[\alpha]$). Пусть $h \in K[x]$ - минимальный многочлен α , тогда $h(\alpha) = 0$, и по лемме из лекции h неприводим над K. По определению поле - коммутативное в кольцо, в котором $0 \neq 1$ и всякий ненулевой элемент обратим. В $K[\alpha]$ $0 \neq 1$, тк K - поле. Докажем, что всякий ненулевой элемент в $K[\alpha]$ обратим. Рассмотрим многочлен $f \in K[x]$, для которого выполняется $f(\alpha) \neq 0$. Тогда по лемме из лекции получаем, что f не делится на h (тк иначе $f(\alpha) = 0$). При этом, тк h неприводим, он не делится на f. Таким образом, их НОД равен 1, а значит $\exists u, v \in K[x] : uh + vf = 1 \Rightarrow u(\alpha)h(\alpha) + v(\alpha)f(\alpha) = 1 \Rightarrow v(\alpha)f(\alpha) = 1$, тк $h(\alpha) = 0 \Rightarrow f(\alpha)$ обратим, а значит всякий ненулевой элемент в $K[\alpha]$ обратим, и $K[\alpha]$ является полем. Таким образом, $K[\alpha] = K(\alpha)$.