

Aula 07 - Latches e Flip-Flops

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

SUMÁRIO

- Fundamentos dos Circuitos Sequenciais;
- Circuitos com memória;
- Circuitos Sequenciais:
 - Síncronos;
 - Assíncronos;
- Flip-Flop tipo D;
- Flip-Flops tipo J-K;

Circuitos Sequenciais

- Nos circuitos combinacionais, uma dada saída do circuito é função única e exclusiva das suas entradas atuais.
- Nos circuitos sequenciais, elas são também função da história passada do circuito. Isso ocorre em função do circuito sequencial apresentar elementos com capacidade de armazenamento de informação.

Circuitos Sequenciais

- Na parte combinacional: recebe sinais externos e saídas dos elementos de memória
- No elemento de memória: armazena entradas anteriores, onde o elemento de memória é o flip-flop.

Latches

- Dispositivos de armazenamento temporário que tem dois estados estáveis (biestável).
- Similares aos flip-flops porque são dispositivos biestáveis e que podem permanecer em um dos dois estados estáveis usando uma configuração de realimentação, na qual as saídas são ligadas as entradas opostas.
- A principal diferença entre os latches e flip-flops é o método usado para a mudança de estado.

Latch RS

- As saídas das portas, em condições normais, estão sempre em níveis lógicos inversos.
- Existem duas entradas:
 - SET ajusta Q para o estado 1;
 - CLEAR (ou RESET) é a que reseta Q para o estado 0.

Latch RS

• Inicialmente, se SET = RESET = 1, pode-se levar a duas configurações:

Latch RS

Set	Reset	Saída
1	1	Não muda
0	1	Q = 1
1	0	Q = 0
0	0	Inválida*

*Produz $Q = \overline{Q} = 1$.

Latches - portas NAND e NOR

Set	Reset	Saída
1	1	Não muda
0	1	Q = 1
1	0	Q = 0
0	0	Inválida*

Set	Reset	Saída
0	0	Não muda
1	0	Q = 1
0	1	Q = 0
1	1	Inválida*

*Produz Q = \overline{Q} = 0.

Latch R-S síncrono

- O usuário até então não possui controle sobre as entradas:
 - Os dados de entrada são imediatamente processados pelo latch, sem sincronia;
- Solução: utilização do recurso de habilitação do latch (ENABLE)

Latch R-S síncrono

Entr	adas		Saí	das	
"Enable"	R	S	Q	Ō	
0	χ	χ	Não	muda	→ Bloqueio - "Latch"
1	0	0	Não	muda	→ Indeterminado
1	0	1	1	0	
1	1	0	0	1	
1	1	1	1	1	

- Latch R-S síncrono não evita o estado de oscilação quando os atrasos de propagação forem iguais e ocorrer a transição de R=S=1 para R=S=0.
- Solução: adicionar um inversor entre as entradas R e S, as mesmas serão complementares, fazendo com que o circuito atue na região normal de operação.
- Tal circuito é conhecido com latch D (latch transparente).

- Entrada comum das portas que implementam o circuito direcionador: ENABLE.
- Se EN = 1, a saída Q será igual à entrada D (transparente).

Se EN = 0, a saída Q não será modificada (guarda o último valor -

memória).

"Enable"	D	O.
0	χ	Não muda
1	1	1
1	0	0

 Exemplo do comportamento de um latch D para as formas de onda dadas:

Flip-Flops

- Latches: ativados pelo estado do sinal de entrada (nivel lógico alto ou baixo);
- Problema: Variações no nível lógico da entrada D podem mudar seu estado de maneira indesejável;
- **Solução:** Construção de circuito ativado pela transição de estado em vez da ativação por nível lógico;

Flip-Flops

- Circuitos derivados dos latches, porém ativados pela transição do sinal de controle (borda).
- Permanece ativado apenas durante um intervalo de tempo muito pequeno (na transição do sinal de controle);
- Uma eventual troca de estado só pode ocorrer durante esse breve intervalo de tempo em que o flip-flop está ativado

Flip-Flops

- O flip-flop pode ser disparado pela transição de subida ou pela transição de descida do sinal de controle;
- Flip-flops são disparados por borda (transição) enquanto latches são disparados por estado lógico;

Flip-Flop tipo D

- Ativado por borda, durante a transição do sinal no pino CLOCK de ALTO para BAIXO (descida) ou de BAIXO para ALTO (subida);
- Quando houver variação do clock, o valor guardado no flip-flop será o valor na entrada D (Data) naquele instante.

Flip-Flop tipo D

"Clock"	D	Ō
+	1	1
+	0	0
1	Х	Não muda
0	χ	Não muda

Flip-Flop tipo D

- Flip Flops podem mudar o estado da saída quando o clock está subindo ou descendo de acordo com sua especificação.
- Observar a entrada do clock do flip flop se é ativo na subida ou descida:

Flip-Flop J-K

- Ativado por borda, durante a transição do sinal no pino CLOCK de ALTO para BAIXO (descida);
- Pode ser configurado em opção MASTER/ SLAVE;

Flip-Flop J-K

Flip-Flop J-K com Preset e Clear

 As entradas PRESET e CLEAR são chamadas entradas ASSÍNCRONAS, pois não dependem do sinal de clock para serem configuradas;

PRE	CLR	Q	Q				
1	1	operação normal					
0	1	1	0				
1	0	0	1				
0	0	*	*				

Flip-Flop J-K com Preset e Clear

• Diagrama de pinagem:

PRE	CLR	J	K	Clk	Q	Q
0	1	X	X	X	1	0
1	0	X	X	X	0	1
1	1	X	Х	0	Q_0	\bar{Q}_0
1	1	0	0	\uparrow	Q_0	$\bar{\bar{Q}}_0$
1	1	1	0	\uparrow	1	0
1	1	0	1	\uparrow	0	1
1	1	1	1	\uparrow	\bar{Q}_{o}	Q_0

Flip-Flop J-K Master/Slave

- Esse circuito é formado por dois latches, denominados mestre (master) e escravo (slave).
- Possui a mesma tabela de combinações que o flip-flop J-K (edge-triggered), mas com convenções de tempos t_n e t_{n+1} diferentes.
- J_n, K_n e Q_n correspondem aos valores de J, K e Q no tempo imediatamente anterior a subida do pulso, enquanto Q_{n+1} corresponde a saída no tempo posterior a descida do pulso.

Flip-Flop J-K Master/Slave

Flip-Flop J-K Master/Slave

- Tempo de ajuste (setup) e conservação (hold)
 - Os tempos de setup (ts) e hold (th) são parâmetros que devem ser observados para que o flip-flop possa trabalhar de modo confiável.
 - setup corresponde ao intervalo mínimo de tempo no qual as entradas devem permanecer estáveis antes da transição do clock
 - hold corresponde ao intervalo mínimo no qual as entradas devem permanecer estáveis depois da transição do clock

- Atraso de Propagação
 - O atraso de propagação é intervalo de tempo entre a aplicação de um sinal na entrada e o momento que a saída muda. Este atraso pode variar quando ocorre uma mudança de 1 para 0 (transição de descida) e 0 para 1 (transição de subida).

Frequência máxima de clock (fMAX) Tempos de duração do clock em ALTO e BAIXO (twH e twL)

- Sincronização usando Flip-Flops:
 - O sinal assíncrono A pode produzir pulsos parciais em X.
 - Um flip-flop D disparado por transição negativa é usado para sincronizar a habilitação da porta AND com a descida do clock.
- Detecção de uma Sequência de Entrada:
 - Um flip-flop JK é usado para responder a uma determinada sequência de entrada.

• Sincronização usando Flip-Flops:

• Sincronização usando Flip-Flops:

• Detecção de uma Sequência de Entrada:

74LS74 - DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

WITH PRESET AND CLEAR

	FUN	ICTION	TABI	LE	
	INPUT	OUTP	UTS		
PRE	CLR	CLK	D	α	ā
L	Н	×	X	Н	L
Н	L	×	X	L	H
L	L	×	X	нt	Ht
Н	н	t	Н	н	L
Н	н	t	L	L	Н
н	н	L	X	Q_0 .	\overline{a}_0

74LS74 - DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

recommended operating conditions

			SN5474		SN7474				
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				0.8			8.0	٧
ЮН	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current			ALC: NO	16			16	mA
		CLK high	30			30			
tw	Pulse duration	CLK low	37			37			ns
•••		PRE or CLR low	30			30			
t _{su}	Input setup time before CLK†		20			20			ns
^t h	Input hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature	000 000 000 000 000 000 000 000 000 00	- 55	7.07	125	0		70	°c

74LS73 - DUAL J-K FLIP-FLOPS WITH CLEAR

INPUTS			OUTP	UTS		
CLR	CLK	J	K	Q	₫	
L	×	X	×	L	Н	
Н	1	L	L	ao	\overline{a}_0	
Н	1	н	L	н	L	
Н	1	L	Н	L	Н	
Н	4	Н	Н	TOGGLE		
Н	Н	X	×	ao	\bar{a}_0	

• 74LS73 - DUAL J-K FLIP-FLOPS WITH CLEAR

recommended operating conditions

			SN5473			SN7473			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5,5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage			***************************************	8.0		NECOSTO	0.8	٧
ЮН	High-level output current				-0.4	1.00	77	- 0.4	mA
IOL	Low-level output current			-11300	16	2000 2001	022500000	16	mA
		CLK high	20			20			
tw	Pulse duration	CLK low	47			47	-		ns
		CLR low	25			25			
t _{su}	Input setup time before CLK†		0	100000		0			ns
th	Input hold time data after CLK↓		0		Ter Section	0			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

RESUMO

• FLIP-FLOPS: RESUMO

D	Clk	Q	Q
X	0	Q_0	\bar{Q}_0
0	1	0	1
1	\uparrow	1	0

PRE	CLR	J	K	Clk	Q	Q
0	1	X	X	X	1	0
1	0	X	X	X	0	1
1	1	X	X	0	Q_0	$\bar{Q}_{\scriptscriptstyle{0}}$
1	1	0	0	1	Q_0	\bar{Q}_0
1	1	1	0	1	1	0
1	1	0	1	\uparrow	0	1
1	1	1	1	1	\bar{Q}_{o}	Q_0

EXERCÍCIO

As formas de onda de entrada de um Flip-Flop JK são dadas a seguir. Determine a forma de onda da saída Q considerando que o Flip-Flop é ativado na borda de subida do clock. Considere a que saída Q está inicialmente em nível alto.

Para o FF da figura abaixo, desenhe a forma de onda na saída em função dos sinais aplicados

• EXERCÍCIO Derive as saídas Q1, Q2 e Q3:

Para o circuito da figura abaixo, desenhe as formas de onda nas saídas Q1 e Q0

em função dos sinais aplicados.

Aula 07 - Latches e Flip-Flops

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1