International Rectifier

PD-91317C

IRLR/U2705

HEXFET® Power MOSFET

- Logic-Level Gate Drive
- Ultra Low On-Resistance
- Surface Mount (IRLR2705)
- Straight Lead (IRLU2705)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	28	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	20	A
I _{DM}	Pulsed Drain Current ①	110	
P _D @T _C = 25°C	Power Dissipation	68	W
	Linear Derating Factor	0.45	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy ②	110	mJ
I _{AR}	Avalanche Current ①	16	A
E _{AR}	Repetitive Avalanche Energy ①	6.8	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		2.2	
$R_{\theta JA}$	Case-to-Ambient (PCB mount)**		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to application note #AN-994

1

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.065		V/°C	Reference to 25°C, I _D = 1mA
				0.040		V _{GS} = 10V, I _D = 17A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.051	W	V _{GS} = 5.0V, I _D = 17A ④
				0.065		V _{GS} = 4.0V, I _D = 14A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
9fs	Forward Transconductance	11			S	V _{DS} = 25V, I _D = 16A⑦
1	Dunin to Coursel columns Coursest			25		$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
Lanca	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	l IIA	V _{GS} = -16V
Qg	Total Gate Charge			25		I _D = 16A
Q _{gs}	Gate-to-Source Charge			5.2	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			14		$V_{GS} = 5.0V$, See Fig. 6 and 13 \oplus \oslash
t _{d(on)}	Turn-On Delay Time		8.9			V _{DD} = 28V
t _r	Rise Time		100		ns	$I_D = 16A$
t _{d(off)}	Turn-Off Delay Time		21		115	$R_G = 6.5\Omega, V_{GS} = 5.0V$
t _f	FallTime		29			$R_D = 1.8\Omega$, See Fig. 10 $\textcircled{4}$
L _D	Internal Drain Inductance		4.5		- nH	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5		-	from package G
						and center of die contact® s
C _{iss}	Input Capacitance		880			V _{GS} = 0V
C _{oss}	Output Capacitance		220		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		94		1	f = 1.0MHz, See Fig. 5⑦

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			00		MOSFET symbol
	(Body Diode)	2	- 28	Α	showing the	
I _{SM}	Pulsed Source Current			110		integral reverse
	(Body Diode) ①		110		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 17A$, $V_{GS} = 0V$ 4
t _{rr}	Reverse Recovery Time	_	76	110	ns	$T_J = 25^{\circ}C$, $I_F = 16A$
Q _{rr}	Reverse RecoveryCharge		190	290	nC	di/dt = 100A/µs ④⑦
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) $\cite{T_J} = 25^{\circ}$ C, L = 610 μ H
- $R_G = 25\Omega$, $I_{AS} = 16A$. (See Figure 12)
- $\ensuremath{ \Im \ } I_{SD} \leq 16A, \, di/dt \leq 270A/\mu s, \, V_{DD} \leq V_{(BR)DSS}, \,$ $T_J\!\le 175^\circ C$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Caculated continuous current based on maximum allowable junction temperature; Package limitation current = 20A.
- © This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact.
- ① Uses IRLZ34N data and test conditions.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

rig ii. iviaximum ⊏nective Transient Thermai impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

International

TOR Rectifier

Package Outline

TO-252AA Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-252AA (D-PARK)

EXAMPLE: THIS IS AN IRFR120

WITH ASSEMBLY LOT CODE 9U1P

T CODE 9U1P

INTERNATIONAL
RECTIFIER
LOGO
IRFR
120
9U 1P
ASSEMBLY
LOT CODE

INTERNATIONAL
FIRST PORTION
OF PART NUMBER
SECOND PORTION
OF PART NUMBER

International **TOR** Rectifier

IRLR/U2705

Package Outline

TO-251AA Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-251AA (I-PARK)

EXAMPLE: THIS IS AN IRFU120

WITH ASSEMBLY LOT CODE 9U1P

International

TOR Rectifier

Tape & Reel Information

TO-252AA

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/ Data and specifications subject to change without notice. 4/03