3.8
$$F = AB \oplus [(A = D) + D]$$

$$= AB \oplus (AD + A'D' + D)$$

$$= AB \oplus (A'D' + D)$$

$$= AB \oplus (A'+D)$$

$$= (AB)(A'+D)' + (AB)'(A'+D)$$

$$= (AB)(AD') + (A'+B')(A'+D)$$

$$= ABD' + A' + B'D$$

$$= A' + BD' + B'D$$

3.6 (a)
$$(x+w)(Y \oplus Z) + xw'$$

= $(x+w)(Y2'+Y'2) + xw'$
= $xy2' + xy'2 + wy2' + wy'2 + xw'$
= $xyz' + xy'z + wyz' + wy'z + xw'$
= $xyz' + wyz' + wy'z + xw'$

(b)
$$(A \oplus BC) + BD + ACD$$

$$= A'BC + A(BC)' + BD + ACD$$

$$= A'BC + AB' + AC' + BD + ACD$$

$$= A'BC + AB' + AC' + BD + ACD + AD$$

$$= A'BC + AB' + AC' + BD + AD$$

$$= A'BC + AB' + AC' + BD + AD$$

3.10 (c)
$$(A'+C'+D')(A'+B+C')(A+B+D)(A+C+D)$$

 $= (A'+C'+D')(A'+B+C')(A+B+D)(A+C+D)(B+C'+D)$
 $= (A'+C'+D')$ $(A+B+D)(A+C+D)(B+C'+D)$
 $= (A'+C'+D')$ $(A+C+D)(B+C'+D)$

3.18 (a)
$$\chi \oplus 0 = \chi(0)' + \chi'(0) = \chi$$

(b)
$$x \oplus 1 = x(1)' + x'(1) = x'$$

(c)
$$\chi \oplus \chi = \chi(\chi)' + \chi'(\chi) = 0$$

(d)
$$x \oplus x' = x(x')' + x'(x') = x + x' = 1$$

(e)
$$x \oplus y = x(y)' + x'(y) = y(x)' + y'(x) = y \oplus x$$

$$(f) (x \oplus y) \oplus Z = (xy' + x'y) \oplus Z$$

$$= (xy' + x'y) z' + (xy' + x'y)' z$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$= x(yz + y'z') + x'(yz' + y'z)$$

$$= x(yz' + y'z)' + x'(yz' + y'z)$$

$$= x \oplus (yz' + y'z) = x \oplus (y \oplus z)$$

$$(g) (x \oplus y)' = (xy' + x'y)'$$

$$= (x'+y)(x+y')$$

$$= xy + x'y'$$

$$= x(y')' + x'(y')$$

$$= x \oplus y'$$

$$= y(x')' + y'(x')$$

$$= y \oplus x'$$

3.29	$SUM = (X \oplus Y) \oplus C_7$	X	Y	Cī	SUM	Co
		0	0	0	0	0
	$= (XY' + X'Y) \oplus C_7$	0	0	1	1	0
	$= (xY' + X'Y)C_i' + (xY' + X'Y)'C_i$	0	1	0	1	0
	$= XY'C_1' + X'YC_1' + XYC_1 + X'Y'C_1$	0	1	(0	1
		1	0	0	1	0
	$C_0 = (X \oplus Y)C_1 + XY$	1	0	-1	0	1
	$= XY'C_7 + X'YC_7 + XY$	1	1	0	0	1
	$= XC_1 + X'YC_1 + XY$	((1	1	1
	$= XC_7 + YC_7 + XY$					

3.30	ABC	F	F = AB + AC + BC
	0 0 0	D	1 - 110 11
	001	0	
	0 1 0	0	
	011	1	
	100	0	
	101	1	
	110	-	
	1 (1	1	

3.36
$$abc' + d'e + ace + b'c'd'$$

= $(abc' + ace + b'c'd') + d'e$

= $(abc' + ace + b'c'd' + d')(abc' + ace + b'c'd' + e)$

= $(abc' + ace + d')(abc' + b'c'd' + e)$

= $(abc' + ace + d')(abc' + b'c'd' + e)$

= $(abc' + ce) + d'][c'(ab + b'd') + e]$

= $(abc' + ce) + d'][c'(ab + b'd') + e]$

= $(abc' + ce) + d'][c'(ab + b'd') + e]$

= $(abc' + ace + b'c'd') + b'c'd' + e$

= $(abc' + ace + b'c'd') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace + b'c'd' + d') + d'$

= $(abc' + ace +$

3.38 (a)
$$x(y+a') = x(y+b')$$
 is true

$$\Rightarrow [x(y+a')] \oplus [x(y+b')] = 0$$

$$\Rightarrow [x(y+a')][x(y+b')]' + [x(y+a')]'[x(y+b')] = 0$$

$$\Rightarrow x(y+a')(x'+y'b) + (x'+y'a)x(y+b') = 0$$

$$\Rightarrow xy'b(y+a') + xy'a(y+b') = 0$$

$$\Rightarrow xy'ba' + xy'ab' = 0$$

$$\Rightarrow xy'(ba' + ab') = 0$$

$$\Rightarrow xy'(a \oplus b) = 0$$
If $x(y+a') = x(y+b')$, then $xy'(a \oplus b) = 0$.

Consider $x=1$, $y=1$, $a=0$, $b=1$,
$$xy'(a \oplus b) = 1 \cdot 1'(o \oplus 1) = 0$$
, statement is true with $a \neq b$.

Thus, "If $x(y+a') = x(y+b')$, then $a=b$ " is not true.

3.38 (b)
$$a'b + ab' = a'c + ac'$$
 is true

$$\Rightarrow$$
 (a'b+ab') \oplus (a'c+ac') = 0

$$\Rightarrow (a'b+ab') \oplus (a'c+ac') = 0$$

$$\Rightarrow (a'b+ab')(a'c+ac') + (a'b+ab')'(a'c+ac') = 0$$

$$\Rightarrow (a'b+ab')(ac+a'c')+(ab+a'b')(a'c+ac')=0$$

$$\Rightarrow$$
 a'bc' + ab'c + abc' + a'b'c = 0

$$\Rightarrow a'(bc'+b'c) + a(b'c+bc') = 0$$

$$\Rightarrow$$
 $b \oplus c = 0$

Thus, "If a'b+ ab' = a'c+ac', then b=c" is true.