

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Improvement of algorithms to identify transportation modes for MobilitApp, an Android Application to anonymously track citizens in Barcelona

Author: Gerard Marrugat Director: Mónica Aguilar Co-Director: Silvia Puglisi

Index

- Introduction
- 2. MobilitApp
- 3. Transport Mode Detection
 - 3.1 APIs
 - 3.2 Accelerometer Sensor Listener
- 4. Analyzing Mobility Data
 - 4.1 Collecting Data
 - 4.2 Analyzing Data
 - 4.3 Mobility Patterns
- 5. Extra Features
- 6. Conclusions and Future Work

Index

1. Introduction

- 2. MobilitApp
- 3. Transport Mode Detection
 - 1. APIs
 - 2. Accelerometer Sensor Listener
- 4. Analyzing Mobility Data
 - 1. Collecting Data
 - 2. Analyzing Data
 - 3. Mobility Patterns
- 5. Extra Features
- 6. Conclusions and Future Work

Introduction

Smart City

Urban and technological development focused on sustainability and able to satisfy citizens' needs

Smart City Areas

- Public Services
- Socio-Cultural Environment
- Medicine & Health
- Sustainability

Image source: http://www.kikusui.co.jp/en/company-info

Introduction

Smart Mobility

Citizens Environment

Image source: http://www.arup.com/smart_mobility

Smart Parking

Car Sharing

E-Mobility

Non Fossil Fuels

Index

Introduction

2. MobilitApp

- 3. Transport Mode Detection
 - 1. APIs
 - 2. Accelerometer Sensor Listener
- 4. Analyzing Mobility Data
 - Collecting Data
 - 2. Analyzing Data
 - 3. Mobility Patterns
- 5. Extra Features
- 6. Conclusions and Future Work

MobilitApp

Image source: http://www.arup.com/smart_mobility

IMPROVE TRANSPORTATION INFRASTRUCTURES

MobilitApp

Image source: MobilitApp Project

Functionalities

- Anonymously Citizens Tracking
- Transportation Mode Detection
- Real-Time Traffic Information

MobilitApp

Requirements

- Minimum OS version:
 - Android 3.0 (Honeycomb)
- o Location Mode:
 - High Accuracy (GPS+WPS)
 - Battery Saving (WPS)
- Wi-Fi enabled

Image source: www.elcomercio.es

GPS (Global Positioning System) **WPS** (Wi-Fi Positioning System)

Index

- 1. Introduction
- 2. MobilitApp

3. Transport Mode Detection

- 1. APIs
- 2. Accelerometer Sensor Listener
- 4. Analyzing Mobility Data
 - Collecting Data
 - 2. Analyzing Data
 - 3. Mobility Patterns
- 5. Extra Features
- 6. Conclusions and Future Work

APIs

Activity Recognition

Places

Directions

Problems

- Not distinguish among motorized transports
- Network connection

- External Service
- Providing Information

Image Source: shutterstock

LISTENING

MOBILE

SENSORS

MOBILITY PATTERNS

Mobile Accelerometer

Image Source:https://developer.android.com/

Local Data

Acceleration value along axis

Low Power Consumption

Sensor/Feature	Consumption
Accelerometer	0.23 mA
Magnetic Field	6.8 mA
Gyroscope	6.1 mA
WiFi	330 mA
GPS	145 mA

Accelerometer Sensor Listener

The State of Art

- Hemminki, S., Nurmi, P., Tarkoma, S.:Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems. p. 13. ACM (2013) ref: https://goo.gl/dpl59g
- Phan, T.: Improving activity recognition via automatic decision tree pruning. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. pp. 827 ACM (2014) ref: http://goo.gl/Lp7Nru

Independent Application

Tool to Collect Data

Image Source: http://flightsafety.org/aerosafety-world-magazine/october-2013/data-delirium

ASL Application Interface

Data Collected

Timestamp

X-Acceleration

Y-Acceleration

Z-Acceleration

Image source: MobilitApp Project

Once process collection is finished...

Saved in a File

Sent to the Server

Deleted from Mobile

Including ASL in MobilitApp

Which Transport?

Users Collaboration

Image source: MobilitApp Project

How Data is Collected?

- ASL -> Background Service
- 20 seconds every 2 minutes
- Storage and Upload

Index

- 1. Introduction
- 2. MobilitApp
- 3. Transport Mode Detection
 - 1. APIs
 - 2. Accelerometer Sensor Listener

4. Analyzing Mobility Data

- Collecting Data
- 2. Analyzing Data
- 3. Mobility Patterns
- 5. Extra Features
- 6. Conclusions and Future Work

Collecting Data

Total Downloads: 25

Observed Users: 7

Transportation Modes: 5

Spent Time: 30 h 15 min

Note

- Execution Times
- Mobile Phone Location

Analyzing Data

Different Transports -> Different Behaviours

Horizontal Acceleration

Statistical Analysis

Peak Analysis

Bus Horizontal Acceleration

Car Horizontal Acceleration

Motorbike Horizontal Acceleration

Metro Horizontal Acceleration

Train Horizontal Acceleration

Statistical Analysis

Parameters

Mean

Standard Deviation

Variance

Root Mean Square Error

Maximum Value

Minimum Value

Peak Analysis

Parameters

Peak Area

Peak Interval

Mobility Patterns

Statistical Analysis

	Mean (m/s²)	Standard Deviation (m/s²)	Maximum (m/s²)	Minimum (m/s²)
Bus	5,17	0,72	8,2	0,015
Car	5,26	0,63	6,14	2,45
Motorbike	3,03	0,7	5,55	1,26
Metro	3,32	2,52	13,7	0,004
Train	4,13	2,41	12,36	0,097

Road Vehicles

	Mean (m/s²)	Standard Deviation (m/s²)	Maximum (m/s²)	Minimum (m/s²)
Bus	5,17	0,72	8,2	0,015
Car	5,26	0,63	6,14	2,45
Motorbike	3,03	0,7	5,55	1,26

Rail Vehicles

Metro	3,32	2,52	13,7	0,004
Train	4,13	2,41	12,36	0,097

Peak Analysis

Road Vehicles

	Interval Length (s)	Peak Area (m/s)
Bus	0,5	1,1
Car	1,37	0,78
Motorbike	0,52	0,66

Rail Vehicles

Metro	0,6	1,57
Train	0,67	1,65

Road Vehicles

	Interval Length (s)	Peak Area (m/s)	
Bus	0,5	1,1	
Car	1,37	0,78	
Motorbike	0,52	0,66	

Rail Vehicles

Metro	0,6	1,57
Train	0,67	1,65

- No differences among Rail Vehicles
- Future Work

Classification Diagram

Index

- 1. Introduction
- 2. MobilitApp
- 3. Transport Mode Detection
 - 1. APIs
 - 2. Accelerometer Sensor Listener
- 4. Analyzing Mobility Data
 - Collecting Data
 - 2. Analyzing Data
 - 3. Mobility Patterns

5. Extra Features

6. Conclusions and Future Work

The Server

Raspberry Pi 2 Model B

Services

- Web Page
- Data Storage

Features

- Broadcom BCM2835 system on a chip (SoC)
- 900MHz quad-core ARM Cortex-A7 CPU
- 1GB de RAM
- Debian Linux ARM

- Low Power Consumption: 3,5 W/h
- Reduced Price (45\$)
- Size (6cm x 9cm)

- -Processor Capacity Limited
- RAM memory

Web Page

Image source: MobilitApp Project

mobilitapp.noip.me

Promotional Video

MobilitApp Promotional Video

Publications

• Silvia Puglisi, Ángel Torres Moreira, Gerard Marrugat Torregrosa, Mónica Aguilar Igartua and Jordi Forné. MobilitApp: Analysing mobility data of citizens in the metropolitan area of Barcelona. EAI International Conference on Smart Objects and Technologies for Social Good, October 2015

Ref: https://arxiv.org/abs/1605.06536

• Silvia Puglisi, Gerard Marrugat, Mónica Aguilar and Jordi Forné. How do you get there? Identifying means of transportation from mobile sensors patterns. The 14th Annual IEEE Consumer Communications&Networking Conference, January 2017 (in process)

Index

- 1. Introduction
- 2. MobilitApp
- 3. Transport Mode Detection
 - 1. APIs
 - 2. Accelerometer Sensor Listener
- 4. Analyzing Mobility Data
 - Collecting Data
 - 2. Analyzing Data
 - 3. Mobility Patterns
- 5. Extra Features

6. Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Accelerometer Sensor Listener -> Scalable Solution
- Patterns -> Transport Detection Task
- Mobility Data

Conclusions and Future Work

Future Work

- o E-Call
- Transport Mode Detection Algorithm
- Attractive to users
- WiFi Metro Station
- Improve Infrastructure

Web Page

mobilitapp.noip.me

Promotional Video

MobilitApp Promotional Video

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Improvement of algorithms to identify transportation modes for MobilitApp, an Android Application to anonymously track citizens in Barcelona

Thank you

Author: Gerard Marrugat Director: Mónica Aguilar Co-Director: Silvia Puglisi

