

Cortana Analytics Workshop

Sept 10 - 11, 2015 • MSCC

Deep Neural Networks

Misha Bilenko Alexey Kamenev Ye Xing Principal Researcher Senior Research Software Engineer Senior Data Scientist

Why deep neural networks?

State-of-the-art accuracy for vision and speech

Active research in natural language processing: machine translation, text similarity, etc

Trained models can be used as featurizers

Pre-trained "competition-grade" models can be reused as general representations for all learners

Neural Nets are a strong learner

- Workhorse non-linear trainer alongside boosted trees/random forests
- With sufficient training data, additional layers add generalization capacility

Neural Nets: Gentle Refresher

- "Layers" of <u>transformed</u> linear models
 - Input layer: features
 - Hidden layers: linear models followed by non-linearity
 - Output layer: predictions
- Hidden layer node values
 - Weighted sum of source nodes + bias
 - Output is transformed via an activation function
- Formally:

$$\overrightarrow{hidden} = f_1(W_1 \overrightarrow{input} + \overrightarrow{b_1})$$

$$\overrightarrow{output} = f_2(W_2 \overrightarrow{hidden} + \overrightarrow{b_2})$$

Training Neural Nets

- Goal: good weights and biases W
- Minimize cost function
 - Error on training set L(W)
 - Model regularization
- Iteratively update weights in the "direction" of reducing the cost function → reducing error

Training neural networks

Many different types of nets DNN, CNN, RNN, LSTM, DSSM, ...

Q: Can we use just one net for all tasks?

A: No – NFL theorem D. Wolpert, W. Macready; 1996, 1997]

No Free Lunch theorem: any two optimization algorithms are equivalent when their performance is averaged across all possible problems

No universal machine learning algorithm that performs best on all tasks 🕾

The tools are important!

Cortana Analytics covers both training and prediction

Why now?

Neural nets have been around for decades

Backpropagation in 1970s, Convolutional nets in late 1980s etc

Two main factors:

Large, real-world (and free!) datasets ImageNet, SVHN, MIT Places etc

Advances in hardware

Net#: Topology and Model Language

- Flexible language for neural network topology
 - Used for training and/or models
 - Simple, readable, general, open
 - Not too image/speech/text specific but a good fit for any of these tasks
 - Syntax is similar to C# (lambdas, consts etc.)
- Core connectivity patterns ("connection bundles")
 - Full, Filtered (sparse), Convolutional, Pooling, Response normalization
 - Weight sharing among bundles (for RNNs)
 - Expandable
- Core activation functions
 - Sigmoid, tanh, ReLU, Soft ReLU, abs, sqr, expandable
- Model conversion from other frameworks (e.g. Caffe)

Net#: basic topologies

1 hidden layer, fully connected net:

```
1 input Picture [28,28];
2 hidden H [200] from Picture all;
3 output Result [10] softmax from H all;
```


2 hidden layers, fully connected net:

```
1 input Picture [28,28];
2 hidden H1 [200] tanh from Picture all;
3 hidden H2 [200] tanh from H1 all;
4 output Result [10] softmax from H2 all;
```


Net# - advanced topologies I

Convolutional layer:

```
1 const { T = true; F = false; }
2
3 input data [3 * 224 * 224];
4
5 hidden conv1 [64, 224, 224] rlinear
6    from data convolve
7    {
8         InputShape = [3, 224, 224];
9         KernelShape = [3, 3, 3];
10         Padding = [F, T, T];
11         MapCount = 64;
12    }
```


Multiple bundles:

Max pooling layer:

Representation learning

Deep neural nets learn features

Many other ML algorithms require manual feature engineering

Features are reusable

Other applications like dimensionality reduction, similarity search As inputs to other ML algorithms (e.g. logistic regression)

Why deep learning?

[Goodfellow et al, 2013]

How deep?

Depends on the problem, for example, ImageNet: around 20 layers

Net Topology Demo

Alexey Kamenev

ImageNet

Large image dataset:

14M+ images Images are photographs of different sizes

Organized into WordNet-based hierarchy

21,841 synonym sets (synsets), such as:

- n02882647: bowling pin, pinn00449517: auto racing, car racing
- n10698368: television reporter, television newscaster, TV reporter, TV newsman

Smaller 1000 classes dataset is used in competitions

Classes are mutually exclusive

Error is measured as top-5 error:

Take top 5 predictions, if sample's label is within these 5 classes, then count it as correct labeling case

ImageNet Competition Results aka "The Chart you'll see in every DNN talk"

ImageNet top-5 error (%)

AlexNet (simplified)

Neural Nets in Azure ML Demo

Ye Xing

MNIST dataset

```
1 1 1 X 1 X 3 X X 1 X 1 X 1
2224222222222222222
533333333333333333333333
4444444444444444444
フフつフマグラアフチフリソフチフィンママ
2888888888888888888
   999999999999
```

Azure Machine Learning Service

Data -> Predictive model -> Operational web API in minutes

Blobs and Tables
Hadoop (HDInsight)
Relational DB (Azure SQL DB)

Conclusion

- Deep neural network is state-of-art with applications in image, speech and natural language processing.
 - No manual feature engineering work is needed
 - High accuracy
- Azure ML provides a cloud-based platform for deep neural network with an easy deployment of web service

Cortana analytics suite provides E2E analytics pipeline.

