Differential hnRNPC Binding

Davyd Sadovskyy
PATH-GDS Rotation 3
Dr. David Bentley Lab

What is hnRNP?

- hnRNP (heterogeneous nuclear ribonucleoprotein) is a an RNA-binding protein (RBP) that binds to newly transcribed RNA
- Functions in RNA stabilization, splicing, and sorting transcripts (mRNA Export)

hnRNPC (my project) recognizes
 unstructured single-stranded RNA regions
 (~200-300 bp long)

Fast and Slow RNA polymerase

- Fast Pol II (Wild-Type)
 - ~3-4 kb per minute
 - Pre-mRNA folds before proteins can bind
- Slow Pol II (R749H Mutation / C4)
 - ~2 kb per minute
 - More unstructured RNA available for hnRNPC binding

Research Question

- Is there differential binding of hnRNPC in fast vs slow pol?
- 2. Where in genome are binding site occupancy differences?

iCLIP Method

iCLIP Raw Data

 The sequenced reads (cDNAs) are aligned to a reference genome using a tool like Bowtie or STAR.

BAM File

- Records every mapped cDNA read
- Chromosome
- o BP position of alignment.
- Strand information (which direction it maps to).
- Sequence quality scores.

Peak Calling - Clippy

It looks like you are trying to call

CLIP peaks.

Would you like help?

.bam file

- not all reads correspond to real cross-link evens (random fragmentation, PCR bias, or sequencing errors)
- Different RNA regions have different background levels

 Peak calling identifies clusters of cross-linked reads, ranks them by intensity, and assigns binding confidence scores. .bed file

- start and end positions of peaks.
- Strand (+ or -).
- Peak intensity (more cross-links = higher score).

Wilcoxon Rank-Sum Test

- Does slow pol have different peak intensity compared to fast pol?
- non parametric test no assumption about distribution

Steps for the test:

- 1. Rank all values together
- 2. Sum ranks for each group
- 3. Compute test statistic. R1 = sum of ranks for the smaller group. n1 = size of the smaller group

$$U = R_1 - rac{n_1(n_1+1)}{2}$$

4. compare U to all possible rank sums that could occur if the groups were randomly shuffled. The p-value is the proportion of times the observed U value is as extreme (or more extreme) than expected under the null.

Results

Total hnRNPC Binding
Peaks in Each Condition

Shared hnRNPC Binding Peaks Between Conditions Unique hnRNPC Binding
Peaks in Each Condition

ConditionTotal_PeaksWT_Rep340855C4_Rep3115584WT_Rep49116C4_Rep429475

Condition Sha	red_Peaks	Condition	Unique_Peaks
WT_Rep3	29363	WT_Rep3	16651
C4_Rep3	29363	C4_Rep3	91274
WT_Rep4	4556	WT_Rep4	5435
C4_Rep4	4556	C4_Rep4	25777

Average hnRNPC Binding Peak Score in Each Condition

Condition	Avg_Peak_Score	
WT_Rep3	14.3153	
C4_Rep3	16.1859	
WT_Rep4	18.6286	
C4_Rep4	15.0892	

Wilcoxon Rank-Sum Test for Binding Strength Differences

Comparison	Wilcoxon_Statistic	Wilcoxon_p_value
WT_Rep3 vs C4_Rep3	-19.91	0.0e+00
WT_Rep4 vs C4_Rep4	-4.74	2.1e-06

- Rep3: p-value = 3.6e-88 (VERY significant). C4 had higher peak scores (stronger hnRNPC binding with slow Pol II).
- Rep4: p-value = 2.1e-6 (still significant, but less extreme). C4 had lower peak scores than in Rep3 but still different from WT

Next Steps

 Do further statistical analysis identify exact genes or genomic regions with different hnRNPC binding

- Validate differences in alternative splicing transcripts with more experiments.
 - RT-PCR or qPCR Check if alternative exons are included or skipped differently in WT vs. C4 cells.
 - RNA-seq Analysis Perform differential splicing analysis to identify transcripts with altered exon inclusion.

Acknowledgments

Thank you to David Bentley and Ben Erickson for your help and guidance in this project