Hamiltonian Formulation for Dynamics

The Hamiltonian formulation provides a method to write the dynamics of a robotic manipulator as a set of first-order differential equations instead of a set of second-order differential equations as in the Euler-Lagrange method.

Given the Lagrangian $\mathcal{L} = K - P$ with K being the kinetic energy of the system, P being the potential energy of the system, and q_1, \ldots, q_n being the generalized coordinates of the system, define the generalized momentum p_k as

 $p_k = \frac{\partial \mathcal{L}}{\partial \dot{q}_k}.\tag{1}$

For an *n*-link robotic manipulator, we know that the kinetic energy K is given by $K = \frac{1}{2}\dot{q}^T D(q)\dot{q} = \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n d_{ij}(q)\dot{q}_i\dot{q}_j$ where d_{ij} denotes the $(i,j)^{th}$ element of the matrix D(q). Hence, we have $p_k = \frac{\partial \mathcal{L}}{\partial \dot{q}_k} = \sum_{j=1}^n d_{kj}(q)\dot{q}_j$. Therefore,

$$\sum_{k=1}^{n} \dot{q}_k p_k = \sum_{k=1}^{n} \dot{q}_k \sum_{j=1}^{n} d_{kj}(q) \dot{q}_j = \sum_{k=1}^{n} \sum_{j=1}^{n} d_{kj}(q) \dot{q}_k \dot{q}_j = 2K.$$
 (2)

Define the Hamiltonian H as $H = \sum_{k=1}^{n} \dot{q}_k p_k - \mathcal{L} = 2K - (K - P) = K + P$ where K is the kinetic energy and P is the potential energy. \mathcal{L} is a function of q and \dot{q} , i.e., $\mathcal{L}(q,\dot{q})$. From Euler-Lagrange's equations, we know that $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = \tau_i$. Since $p_k = \frac{\partial \mathcal{L}}{\partial \dot{q}_k}$, we have from Euler-Lagrange's equations that $\frac{\partial \mathcal{L}}{\partial q_k} = \dot{p}_k - \tau_k$. From the equation that $H = \sum_{k=1}^{n} \dot{q}_k p_k - \mathcal{L}(q,\dot{q})$, we have $\frac{\partial H}{\partial p_k} = \dot{q}_k$. Also, $\frac{\partial H}{\partial q_k} = -\frac{\partial \mathcal{L}}{\partial q_k} = -\dot{p}_k + \tau_k$. Hence, we get

$$\dot{q}_k = \frac{\partial H}{\partial p_k}$$

$$\dot{p}_k = -\frac{\partial H}{\partial q_k} + \tau_k.$$
(3)

Note that this is a set of first-order differential equations.

Since H is a function of $q_k, k = 1, ..., n$, and $p_k, k = 1, ..., n$, we have

$$\frac{dH}{dt} = \sum_{k=1}^{n} \left(\frac{\partial H}{\partial q_k} \dot{q}_k + \frac{\partial H}{\partial p_k} \dot{p}_k \right)
= \sum_{k=1}^{n} \left((-\dot{p}_k + \tau_k) \dot{q}_k + (\dot{q}_k) \dot{p}_k \right) = \sum_{k=1}^{n} \tau_k \dot{q}_k = \dot{q}^T \tau.$$
(4)

Since, as shown above, H is the total energy (H = K + P), the rate of change of H is the power injected into the system (assuming that there are no friction losses, etc.). Since power for a prismatic joint is the product of the joint's linear velocity and force and power for a revolute joint is the product of the joint's angular velocity and torque, we see that the total power is $\dot{q}^T\tau = \dot{q}_1^T\tau_1 + \ldots + \dot{q}_n^T\tau_n$ where each τ_i is the force or torque of the i^{th} joint (force for a prismatic joint and torque for a revolute joint).