Data Mining: Concepts and Techniques (2nd edition)

Jiawei Han and Micheline Kamber Morgan Kaufmann Publishers, 2006

Bibliographic Notes for Chapter 6 Classification and Prediction

Classification from machine learning, statistics, and pattern recognition perspectives has been described in many books, such as Weiss and Kulikowski [WK91], Michie, Spiegelhalter, and Taylor [MST94], Russel and Norvig [RN95], Langley [Lan96], Mitchell [Mit97], Hastie, Tibshirani, and Friedman [HTF01], Duda, Hart, and Stork [DHS01], Alpaydin [Alp04], Tan, Steinbach, and Kumar [TSK05], and Witten and Frank [WF05]. Many of these books describe each of the basic methods of classification discussed in this chapter, as well as practical techniques for the evaluation of classifier performance. Edited collections containing seminal articles on machine learning can be found in Michalski, Carbonell, and Mitchell [MCM83, MCM86], Kodratoff and Michalski [KM90], Shavlik and Dietterich [SD90], and Michalski and Tecuci [MT94]. For a presentation of machine learning with respect to data mining applications, see Michalski, Bratko, and Kubat [MBK98].

The C4.5 algorithm is described in a book by Quinlan [Qui93]. The CART system is detailed in Classification and Regression Trees by Breiman, Friedman, Olshen, and Stone [BFOS84]. Both books give an excellent presentation of many of the issues regarding decision tree induction. C4.5 has a commercial successor, known as C5.0, which can be found at www.rulequest.com. ID3, a predecessor of C4.5, is detailed in Quinlan [Qui86]. It expands on pioneering work on concept learning systems, described by Hunt, Marin, and Stone [HMS66]. Other algorithms for decision tree induction include FACT (Loh and Vanichsetakul [LV88]), QUEST (Loh and Shih [LS97]), PUBLIC (Rastogi and Shim [RS98]), and CHAID (Kass [Kas80] and Magidson [Mag94]). INFERULE (Uthurusamy, Fayyad, and Spangler [UFS91]) learns decision trees from inconclusive data, where probabilistic rather than categorical classification rules are obtained. KATE (Manago and Kodratoff [MK91]) learns decision trees from complex structured data. Incremental versions of ID3 include ID4 (Schlimmer and Fisher [SF86]) and ID5 (Utgoff [Utg88]), the latter of which is extended in Utgoff, Berkman, and Clouse [UBC97]. An incremental version of CART is described in Crawford [Cra89]. BOAT (Gehrke, Ganti, Ramakrishnan, and Loh [GGRL99]), a decision tree algorithm that addresses the scalability issue in data mining, is also incremental. Other decision tree algorithms that address scalability include SLIQ (Mehta, Agrawal, and Rissanen [MAR96]), SPRINT (Shafer, Agrawal, and Mehta [SAM96]), RainForest (Gehrke, Ramakrishnan, and Ganti [GRG98]), and earlier approaches, such as Catlet [Cat91] and Chan and Stolfo [CS93a, CS93b]. The integration of attribution-oriented induction with decision tree induction is proposed in Kamber, Winstone, Gong, et al. [KWG⁺97]. For a comprehensive survey of many salient issues relating to decision tree induction, such as attribute selection and pruning, see Murthy [Mur98].

For a detailed discussion on attribute selection measures, see Kononenko and Hong [KH97]. Information gain was proposed by Quinlan [Qui86] and is based on pioneering work on information theory by Shannon and Weaver [SW49]. The gain ratio, proposed as an extension to information gain, is described as part of C4.5 [Qui93]. The Gini index was proposed for CART [BFOS84]. The G-statistic, based on information theory, is given in Sokal and Rohlf [SR81]. Comparisons of attribute selection measures include Buntine and Niblett [BN92], Fayyad and Irani [FI92], Kononenko [Kon95], Loh and Shih [LS97], and Shih [Shi99]. Fayyad and Irani [FI92] show limitations of impurity-based measures such as information gain and Gini index. They propose a class of attribute selection measures called C-SEP (Class SEParation), which outperform impurity-based measures in certain cases. Kononenko [Kon95] notes that attribute selection measures based on the minimum description length principle have the least bias toward multivalued attributes. Martin and Hirschberg [MH95] proved that the time complexity of decision tree induction increases exponentially with respect to tree height in the worst case, and under fairly general conditions in the average case. Fayad and Irani [FI90] found that shallow decision trees tend to have many leaves and higher error rates for a large variety of domains. Attribute (or feature) construction is described in Liu and Motoda [LM98, Le98]. Examples of systems with attribute construction include BACON by Langley, Simon,

Bradshaw, and Zytkow [LSBZ87], Stagger by Schlimmer [Sch86], FRINGE by Pagallo [Pag89], and AQ17-DCI by Bloedorn and Michalski [BM98].

There are numerous algorithms for decision tree pruning, including cost complexity pruning (Breiman, Friedman, Olshen, and Stone [BFOS84]), reduced error pruning (Quinlan [Qui87]), and pessimistic pruning (Quinlan [Qui86]). PUBLIC (Rastogi and Shim [RS98]) integrates decision tree construction with tree pruning. MDL-based pruning methods can be found in Quinlan and Rivest [QR89], Mehta, Agrawal, and Rissanen [MRA95], and Rastogi and Shim [RS98]. Other methods include Niblett and Bratko [NB86], and Hosking, Pednault, and Sudan [HPS97]. For an empirical comparison of pruning methods, see Mingers [Min89] and Malerba, Floriana, and Semeraro [MFS95]. For a survey on simplifying decision trees, see Breslow and Aha [BA97].

There are several examples of rule-based classifiers. These include AQ15 (Hong, Mozetic, and Michalski [HMM86]), CN2 (Clark and Niblett [CN89]), ITRULE (Smyth and Goodman [SG92]), RISE (Domingos [Dom94]), IREP (Furnkranz and Widmer [FW94]), RIPPER (Cohen [Coh95]), FOIL (Quinlan and Cameron-Jones [Qui90, QCJ93]), and Swap-1 (Weiss and Indurkhya [WI98]). For the extraction of rules from decision trees, see Quinlan [Qui87, Qui93]. Rule refinement strategies that identify the most interesting rules among a given rule set can be found in Major and Mangano [MM95].

Thorough presentations of Bayesian classification can be found in Duda, Hart, and Stork [DHS01], Weiss and Kulikowski [WK91], and Mitchell [Mit97]. For an analysis of the predictive power of naïve Bayesian classifiers when the class conditional independence assumption is violated, see Domingos and Pazzani [DP96]. Experiments with kernel density estimation for continuous-valued attributes, rather than Gaussian estimation, have been reported for naïve Bayesian classifiers in John [Joh97]. For an introduction to Bayesian belief networks, see Heckerman [Hec96]. For a thorough presentation of probabilistic networks, see Pearl [Pea88]. Solutions for learning the belief network structure from training data given observable variables are proposed in [CH92, Bun94, HGC95]. Algorithms for inference on belief networks can be found in Russell and Norvig [RN95] and Jensen [Jen96]. The method of gradient descent, described in Section 6.4.4 for training Bayesian belief networks, is given in Russell, Binder, Koller, and Kanazawa [RBKK95]. The example given in Figure 6.11 is adapted from Russell et al. [RBKK95]. Alternative strategies for learning belief networks with hidden variables include application of Dempster, Laird, and Rubin's [DLR77] EM (Expectation Maximization) algorithm (Lauritzen [Lau95]) and methods based on the minimum description length principle (Lam [Lam98]). Cooper [Coo90] showed that the general problem of inference in unconstrained belief networks is NP-hard. Limitations of belief networks, such as their large computational complexity (Laskey and Mahoney [LM97]), have prompted the exploration of hierarchical and composable Bayesian models (Pfeffer, Koller, Milch, and Takusagawa [PKMT99] and Xiang, Olesen, and Jensen [XOJ00]). These follow an object-oriented approach to knowledge representation.

The perceptron is a simple neural network, proposed in 1958 by Rosenblatt [Ros58], which became a landmark in early machine learning history. Its input units are randomly connected to a single layer of output linear threshold units. In 1969, Minsky and Papert [MP69] showed that perceptrons are incapable of learning concepts that are linearly inseparable. This limitation, as well as limitations on hardware at the time, dampened enthusiasm for research in computational neuronal modeling for nearly 20 years. Renewed interest was sparked following presentation of the backpropagation algorithm in 1986 by Rumelhart, Hinton, and Williams [RHW86], as this algorithm can learn concepts that are linearly inseparable. Since then, many variations for backpropagation have been proposed, involving, for example, alternative error functions (Hanson and Burr [HB88]), dynamic adjustment of the network topology (Mézard and Nadal [MN89], Fahlman and Lebiere [FL90], Le Cun, Denker, and Solla [LDS90], and Harp, Samad, and Guha [HSG90]), and dynamic adjustment of the learning rate and momentum parameters (Jacobs [Jac88]). Other variations are discussed in Chauvin and Rumelhart [CR95]. Books on neural networks include [RM86, HN90, HKP91, CR95, Bis95, Rip96, Hay99]. Many books on machine learning, such as [Mit97, RN95], also contain good explanations of the backpropagation algorithm. There are several techniques for extracting rules from neural networks, such as [SN88, Gal93, TS93, Avn95, LSL95, CS96, LGT97]. The method of rule extraction described in Section 6.6.4 is based on Lu, Setiono, and Liu [LSL95]. Critiques of techniques for rule extraction from neural networks can be found in Craven and Shavlik [CS97]. Roy [Roy00] proposes that the theoretical foundations of neural networks are flawed with respect to assumptions made regarding how connectionist learning models the brain. An extensive survey of applications of neural networks in industry, business, and science is provided in Widrow, Rumelhart, and Lehr [WRL94].

Support Vector Machines (SVMs) grew out of early work by Vapnik and Chervonenkis on statistical learning theory [VC71]. The first paper on SVMs was presented by Boser, Guyon, and Vapnik [BGV92]. More detailed accounts can be found in books by Vapnik [Vap95, Vap98]. Good starting points include the tutorial on SVMs by Burges [Bur98] and textbook coverage by Kecman [Kec01]. For methods for solving optimization problems, see Fletcher [Fle87] and Nocedal and Wright [NW99]. These references give additional details alluded to as "fancy math tricks" in our text, such as transformation of the problem to a Lagrangian formulation and subsequent solving using Karush-Kuhn-Tucker (KKT) conditions. For the application of SVMs to regression, see Schlkopf, Bartlett, Smola, and Williamson [SBSW99], and Drucker, Burges, Kaufman, Smola, and Vapnik [DBK+97]. Approaches to SVM for large data include the sequential minimal optimization algorithm by Platt [Pla98], decomposition approaches such as in Osuna, Freund, and Girosi [OFG97], and CB-SVM, a microclustering-based SVM algorithm for large data sets, by Yu, Yang, and Han [YYH03].

Many algorithms have been proposed that adapt association rule mining to the task of classification. The CBA algorithm for associative classification is proposed in Liu, Hsu, and Ma [LHM98]. A classifier, using emerging patterns, is proposed in Dong and Li [DL99] and Li, Dong, and Ramamohanarao [LDR00]. CMAR (Classification based on Multiple Association Rules) is presented in Li, Han, and Pei [LHP01]. CPAR (Classification based on Predictive Association Rules) is presented in Yin and Han [YH03]. Lent, Swami, and Widom [LSW97] propose the ARCS system, which was described in Section 5.3 on mining multidimensional association rules. It combines ideas from association rule mining, clustering, and image processing, and applies them to classification. Meretakis and Wüthrich [MW99] propose constructing a naïve Bayesian classifier by mining long itemsets.

Nearest-neighbor classifiers were introduced in 1951 by Fix and Hodges [FH51]. A comprehensive collection of articles on nearest-neighbor classification can be found in Dasarathy [Das91]. Additional references can be found in many texts on classification, such as Duda et al. [DHS01] and James [Jam85], as well as articles by Cover and Hart [CH67] and Fukunaga and Hummels [FH87]. Their integration with attribute-weighting and the pruning of noisy instances is described in Aha [Aha92]. The use of search trees to improve nearest-neighbor classification time is detailed in Friedman, Bentley, and Finkel [FBF77]. The partial distance method was proposed by researchers in vector quantization and compression. It is outlined in Gersho and Gray [GG92]. The editing method for removing "useless" training tuples was first proposed by Hart [Har68]. The computational complexity of nearest-neighbor classifiers is described in Preparata and Shamos [PS85]. References on case-based reasoning (CBR) include the texts by Riesbeck and Schank [RS89], Kolodner [Kol93], as well as Leake [Lea96] and Aamodt and Plazas [AP94]. For a list of business applications, see [All94]. Examples in medicine include CASEY by Koton [Kot88] and PROTOS by Bareiss, Porter, and Weir [BPW88], while Rissland and Ashley [RA87] is an example of CBR for law. CBR is available in several commercial software products. For texts on genetic algorithms, see Goldberg [Gol89], Michalewicz [Mic92], and Mitchell [Mit96]. Rough sets were introduced in Pawlak [Paw91]. Concise summaries of rough set theory in data mining include Ziarko [Zia91], and Cios, Pedrycz, and Swiniarski [CPS98]. Rough sets have been used for feature reduction and expert system design in many applications, including Ziarko [Zia91], Lenarcik and Piasta [LP97], and Swiniarski [Swi98]. Algorithms to reduce the computation intensity in finding reducts have been proposed in [SR92]. Fuzzy set theory was proposed by Zadeh in [Zad65, Zad83]. Additional descriptions can be found in [YZ94, Kec01].

Many good textbooks cover the techniques of regression. Examples include James [Jam85], Dobson [Dob01], Johnson and Wichern [JW02], Devore [Dev95], Hogg and Craig [HC95], Neter, Nachtsheim, and Wasserman [NKNW96], and Agresti [Agr96]. The book by Press, Teukolsky, Vetterling, and Flannery [PTVF96] and accompanying source code contain many statistical procedures, such as the method of least squares for both linear and multiple regression. Recent nonlinear regression models include projection pursuit and MARS (Friedman [Fri91]). Log-linear models are also known in the computer science literature as multiplicative models. For log-linear models from a computer science perspective, see Pearl [Pea88]. Regression trees (Breiman, Friedman, Olshen, and Stone [BFOS84]) are often comparable in performance with other regression methods, particularly when there exist many higher-order dependencies among the predictor variables. For model trees, see Quinlan [Qui92].

Methods for data cleaning and data transformation are discussed in Kennedy, Lee, Van Roy, et al. [KLV⁺98], Weiss and Indurkhya [WI98], Pyle [Pyl99], and Chapter 2 of this book. Issues involved in estimating classifier accuracy are described in Weiss and Kulikowski [WK91] and Witten and Frank [WF05]. The use of stratified 10-fold cross-validation for estimating classifier accuracy is recommended over the holdout, cross-validation, leave-

one-out (Stone [Sto74]) and bootstrapping (Efron and Tibshirani [ET93]) methods, based on a theoretical and empirical study by Kohavi [Koh95]. Bagging is proposed in Breiman [Bre96]. The boosting technique of Freund and Schapire [FS97] has been applied to several different classifiers, including decision tree induction (Quinlan [Qui96]) and naïve Bayesian classification (Elkan [Elk97]). Sensitivity, specificity, and precision are discussed in Frakes and Baeza-Yates [FBY92]. For ROC analysis, see Egan [Ega75] and Swets [Swe88].

The University of California at Irvine (UCI) maintains a Machine Learning Repository of data sets for the development and testing of classification algorithms. It also maintains a Knowledge Discovery in Databases (KDD) Archive, an online repository of large data sets that encompasses a wide variety of data types, analysis tasks, and application areas. For information on these two repositories, see www.ics.uci.edu/~mlearn/MLRepository.html and http://kdd.ics.uci.edu.

No classification method is superior over all others for all data types and domains. Empirical comparisons of classification methods include [Qui88, SMT91, BCP93, CM94, MST94, BU95], and [LLS00].

Bibliography

- [Agr96] A. Agresti. An Introduction to Categorical Data Analysis. John Wiley & Sons, 1996.
- [Aha92] D. Aha. Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms. *Int. J. Man-Machine Studies*, 36:267–287, 1992.
- [All94] B. P. Allen. Case-based reasoning: Business applications. Comm. ACM, 37:40–42, 1994.
- [Alp04] E. Alpaydin. Introduction to Machine Learning (Adaptive Computation and Machine Learning). MIT Press, 2004.
- [AP94] A. Aamodt and E. Plazas. Case-based reasoning: Foundational issues, methodological variations, and system approaches. *AI Comm.*, 7:39–52, 1994.
- [Avn95] S. Avner. Discovery of comprehensible symbolic rules in a neural network. In *Proc. 1995 Int. Symp. Intelligence in Neural and Biological Systems*, pages 64–67, 1995.
- [BA97] L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey. *Knowledge Engineering Review*, 12:1–40, 1997.
- [BCP93] D. E. Brown, V. Corruble, and C. L. Pittard. A comparison of decision tree classifiers with back-propagation neural networks for multimodal classification problems. *Pattern Recognition*, 26:953–961, 1993.
- [BFOS84] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984.
- [BGV92] B. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In *Proc. Fifth Annual Workshop on Computational Learning Theory*, pages 144–152, ACM Press: San Mateo, CA, 1992.
- [Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
- [BM98] E. Bloedorn and R. S. Michalski. Data-driven constructive induction: A methodology and its applications. In H. Liu H. Motoda, editor, Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, 1998.
- [BN92] W. L. Buntine and T. Niblett. A further comparison of splitting rules for decision-tree induction. *Machine Learning*, 8:75–85, 1992.
- [BPW88] E. R. Bareiss, B. W. Porter, and C. C. Weir. Protos: An exemplar-based learning apprentice. *Int. J. Man-Machine Studies*, 29:549–561, 1988.
- [Bre96] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
- [BU95] C. E. Brodley and P. E. Utgoff. Multivariate decision trees. *Machine Learning*, 19:45–77, 1995.

- [Bun94] W. L. Buntine. Operations for learning with graphical models. *J. Artificial Intelligence Research*, 2:159–225, 1994.
- [Bur98] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. *Data Mining and Knowledge Discovery*, 2:121–168, 1998.
- [Cat91] J. Catlett. Megainduction: Machine Learning on Very large Databases. Ph.D. Thesis, University of Sydney, 1991.
- [CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. *IEEE Trans. Information Theory*, 13:21–27, 1967.
- [CH92] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. *Machine Learning*, 9:309–347, 1992.
- [CM94] S. P. Curram and J. Mingers. Neural networks, decision tree induction and discriminant analysis: An empirical comparison. *J. Operational Research Society*, 45:440–450, 1994.
- [CN89] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–283, 1989.
- [Coh95] W. Cohen. Fast effective rule induction. In *Proc. 1995 Int. Conf. Machine Learning (ICML'95)*, pages 115–123, Tahoe City, CA, July 1995.
- [Coo90] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393–405, 1990.
- [CPS98] K. Cios, W. Pedrycz, and R. Swiniarski. *Data Mining Methods for Knowledge Discovery*. Kluwer Academic, 1998.
- [CR95] Y. Chauvin and D. Rumelhart. *Backpropagation: Theory, Architectures, and Applications*. Lawrence Erlbaum, 1995.
- [Cra89] S. L. Crawford. Extensions to the cart algorithm. *Int. J. Man-Machine Studies*, 31:197–217, Aug. 1989.
- [CS93a] P. K. Chan and S. J. Stolfo. Experiments on multistrategy learning by metalearning. In Proc. 2nd. Int. Conf. Information and Knowledge Management (CIKM'93), pages 314–323, Washington, DC, Nov. 1993.
- [CS93b] P. K. Chan and S. J. Stolfo. Toward multi-strategy parallel & distributed learning in sequence analysis. In Proc. 1st Int. Conf. Intelligent Systems for Molecular Biology (ISMB'93), pages 65–73, Bethesda, MD, July 1993.
- [CS96] M. W. Craven and J. W. Shavlik. Extracting tree-structured representations of trained networks. In D. Touretzky and M. Mozer M. Hasselmo, editors, Advances in Neural Information Processing Systems. MIT Press, 1996.
- [CS97] M. W. Craven and J. W. Shavlik. Using neural networks in data mining. Future Generation Computer Systems, 13:211–229, 1997.
- [Das91] B. V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, 1991.
- [DBK⁺97] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. N. Vapnik. Support vector regression machines. In M. Mozer, M. Jordan, and T. Petsche, editors, *Advances in Neural Information Processing Systems 9*, pages 155–161. MIT Press, 1997.
- [Dev95] J. L. Devore. Probability and Statistics for Engineering and the Science (4th ed.). Duxbury Press, 1995.

- [DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed.). John Wiley & Sons, 2001.
- [DL99] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In *Proc.* 1999 Int. Conf. Knowledge Discovery and Data Mining (KDD'99), pages 43–52, San Diego, CA, Aug. 1999.
- [DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Society, 39:1–38, 1977.
- [Dob01] A. J. Dobson. An Introduction to Generalized Linear Models (2nd ed.). Chapman and Hall, 2001.
- [Dom94] P. Domingos. The RISE system: Conquering without separating. In *Proc. 1994 IEEE Int. Conf. Tools with Artificial Intelligence (TAI'94)*, pages 704–707, New Orleans, LA, 1994.
- [DP96] P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In *Proc. 1996 Int. Conf. Machine Learning (ML'96)*, pages 105–112, Bari, Italy, July 1996.
- [Ega75] J. P. Egan. Signal detection theory and ROC analysis. Academic Press, 1975.
- [Elk97] C. Elkan. Boosting and naive Bayesian learning. In *Technical Report CS97-557*, Dept. Computer Science and Engineering, Univ. Calif. at San Diego, Sept. 1997.
- [ET93] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993.
- [FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. *ACM Transactions on Math Software*, 3:209–226, 1977.
- [FBY92] W. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algorithms. Prentice Hall, 1992.
- [FH51] E. Fix and J. L. Hodges Jr. Discriminatory analysis, non-parametric discrimination: consistency properties. In *Technical Report 21-49-004(4)*, USAF School of Aviation Medicine, Randolph Field, Texas, 1951.
- [FH87] K. Fukunaga and D. Hummels. Bayes error estimation using parzen and k-nn procedure. In *IEEE Trans. Pattern Analysis and Machine Learning*, pages 634–643, 1987.
- [FI90] U. M. Fayyad and K. B. Irani. What should be minimized in a decision tree? In *Proc. 1990 Nat. Conf. Artificial Intelligence (AAAI'90)*, pages 749–754, AAAI/MIT Press, 1990.
- [FI92] U. M. Fayyad and K. B. Irani. The attribute selection problem in decision tree generation. In *Proc.* 1992 Nat. Conf. Artificial Intelligence (AAAI'92), pages 104–110, AAAI/MIT Press, 1992.
- [FL90] S. Fahlman and C. Lebiere. The cascade-correlation learning algorithm. In *Technical Report CMU-CS-90-100*, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1990.
- [Fle87] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.
- [Fri91] J. H. Friedman. Multivariate adaptive regression. Annals of Statistics, 19:1–141, 1991.
- [FS97] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences, 55:119–139, 1997.
- [FW94] J. Furnkranz and G. Widmer. Incremental reduced error pruning. In *Proc. 1994 Int. Conf. Machine Learning (ICML'94)*, pages 70–77, New Brunswick, NJ, 1994.
- [Gal93] S. I. Gallant. Neural Network Learning and Expert Systems. MIT Press, 1993.
- [GG92] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic, 1992.

- [GGRL99] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh. BOAT—optimistic decision tree construction. In *Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'99)*, pages 169–180, Philadelphia, PA, June 1999.
- [Gol89] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.
- [GRG98] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree construction of large datasets. In *Proc. 1998 Int. Conf. Very Large Data Bases (VLDB'98)*, pages 416–427, New York, NY, Aug. 1998.
- [Har68] P. E. Hart. The condensed nearest neighbor rule. *IEEE Transactions on Information Theory*, 14:515–516, 1968.
- [Hay99] S. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.
- [HB88] S. J. Hanson and D. J. Burr. Minkowski back-propagation: Learning in connectionist models with non-euclidean error signals. In *Neural Information Processing Systems*, American Institute of Physics, 1988.
- [HC95] R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics (5th ed.). Prentice Hall, 1995.
- [Hec96] D. Heckerman. Bayesian networks for knowledge discovery. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 273–305. MIT Press, 1996.
- [HGC95] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. *Machine Learning*, 20:197–243, 1995.
- [HKP91] J. Hertz, A. Krogh, and R. G. Palmer. *Introduction to the Theory of Neural Computation*. Addison Wesley, 1991.
- [HMM86] J. Hong, I. Mozetic, and R. S. Michalski. AQ15: Incremental learning of attribute-based descriptions from examples, the method and user's guide. In *Report ISG 85-5, UIUCDCS-F-86-949*, Dept. Comp. Science, University of Illinois at Urbana-Champaign, 1986.
- [HMS66] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in Induction. Academic Press, 1966.
- [HN90] R. Hecht-Nielsen. Neurocomputing. Addison Wesley, 1990.
- [HPS97] J. Hosking, E. Pednault, and M. Sudan. A statistical perspective on data mining. Future Generation Computer Systems, 13:117–134, 1997.
- [HSG90] S. A. Harp, T. Samad, and A. Guha. Designing application-specific neural networks using the genetic algorithm. In D. S. Touretzky, editor, *Advances in Neural Information Processing Systems II*, pages 447–454. Morgan Kaufmann, 1990.
- [HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.
- [Jac88] R. Jacobs. Increased rates of convergence through learning rate adaptation. *Neural Networks*, 1:295–307, 1988.
- [Jam85] M. James. Classification Algorithms. John Wiley & Sons, 1985.
- [Jen96] F. V. Jensen. An Introduction to Bayesian Networks. Springer Verlag, 1996.
- [Joh97] G. H. John. *Enhancements to the Data Mining Process*. Ph.D. Thesis, Computer Science Dept., Stanford University, 1997.

- [JW02] R. A. Johnson and D. A. Wichern. Applied Multivariate Statistical Analysis (5th ed.). Prentice Hall, 2002.
- [Kas80] G. V. Kass. An exploratory technique for investigating large quantities of categorical data. *Applied Statistics*, 29:119–127, 1980.
- [Kec01] V. Kecman. Learning and Soft Computing. MIT Press, 2001.
- [KH97] I. Kononenko and S. J. Hong. Attribute selection for modeling. Future Generation Computer Systems, 13:181–195, 1997.
- [KLV⁺98] R. L Kennedy, Y. Lee, B. Van Roy, C. D. Reed, and R. P. Lippman. *Solving Data Mining Problems Through Pattern Recognition*. Prentice Hall, 1998.
- [KM90] Y. Kodratoff and R. S. Michalski. *Machine Learning, An Artificial Intelligence Approach, Vol. 3.* Morgan Kaufmann, 1990.
- [Koh95] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In *Proc. 14th Joint Int. Conf. Artificial Intelligence (IJCAI'95)*, volume 2, pages 1137–1143, Montreal, Canada, Aug. 1995.
- [Kol93] J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.
- [Kon95] I. Kononenko. On biases in estimating multi-valued attributes. In *Proc. 14th Joint Int. Conf. Artificial Intelligence (IJCAI'95)*, volume 2, pages 1034–1040, Montreal, Canada, Aug. 1995.
- [Kot88] P. Koton. Reasoning about evidence in causal explanation. In *Proc. 7th Nat. Conf. Artificial Intelligence (AAAI'88)*, pages 256–263, Aug. 1988.
- [KWG⁺97] M. Kamber, L. Winstone, W. Gong, S. Cheng, and J. Han. Generalization and decision tree induction: Efficient classification in data mining. In Proc. 1997 Int. Workshop Research Issues on Data Engineering (RIDE'97), pages 111–120, Birmingham, England, April 1997.
- [Lam98] W. Lam. Bayesian network refinement via machine learning approach. *IEEE Trans. Pattern Analysis and Machine Intelligence*, 20:240–252, 1998.
- [Lan96] P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.
- [Lau95] S. L. Lauritzen. The EM algorithm for graphical association models with missing data. *Computational Statistics and Data Analysis*, 19:191–201, 1995.
- [LDR00] J. Li, G. Dong, and K. Ramamohanrarao. Making use of the most expressive jumping emerging patterns for classification. In *Proc. 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining* (*PAKDD'00*), pages 220–232, Kyoto, Japan, April 2000.
- [LDS90] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. Touretzky, editor, Advances in Neural Information Processing Systems. Morgan Kaufmann, 1990.
- [Le98] H. Liu and H. Motoda (eds.). Feature Extraction, Construction, and Selection: A Data Mining Perspective. Kluwer Academic, 1998.
- [Lea96] D. B. Leake. CBR in context: The present and future. In D. B. Leake, editor, Cased-Based Reasoning: Experiences, Lessons, and Future Directions, pages 3–30. AAAI Press, 1996.
- [LGT97] S. Lawrence, C. L Giles, and A. C. Tsoi. Symbolic conversion, grammatical inference and rule extraction for foreign exchange rate prediction. In Y. Abu-Mostafa, A. S. Weigend, , and P. N. Refenes, editors, Neural Networks in the Capital Markets. World Scientific, 1997.
- [LHM98] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In *Proc.* 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD'98), pages 80–86, New York, NY, Aug. 1998.

- [LHP01] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple class-association rules. In *Proc. 2001 Int. Conf. Data Mining (ICDM'01)*, pages 369–376, San Jose, CA, Nov. 2001.
- [LLS00] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. *Machine Learning*, 40:203–228, 2000.
- [LM97] K. Laskey and S. Mahoney. Network fragments: Representing knowledge for constructing probabilistic models. In Proc. 13th Annual Conf. on Uncertainty in Artificial Intelligence, pages 334–341, Morgan Kaufmann: San Francisco, CA, Aug. 1997.
- [LM98] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, 1998.
- [LP97] A. Lenarcik and Z. Piasta. Probabilistic rough classifiers with mixture of discrete and continuous variables. In T. Y. Lin and N. Cercone, editors, *Rough Sets and Data Mining: Analysis for Imprecise Data*, pages 373–383. Kluwer Academic, 1997.
- [LS97] W. Y. Loh and Y. S. Shih. Split selection methods for classification trees. *Statistica Sinica*, 7:815–840, 1997.
- [LSBZ87] P. Langley, H. A. Simon, G. L. Bradshaw, and J. M. Zytkow. *Scientific Discovery: Computational Explorations of the Creative Processes*. MIT Press, 1987.
- [LSL95] H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to data mining. In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB'95), pages 478–489, Zurich, Switzerland, Sept. 1995.
- [LSW97] B. Lent, A. Swami, and J. Widom. Clustering association rules. In *Proc.* 1997 Int. Conf. Data Engineering (ICDE'97), pages 220–231, Birmingham, England, April 1997.
- [LV88] W. Y. Loh and N. Vanichsetakul. Tree-structured classification via generalized discriminant analysis. J. American Statistical Association, 83:715–728, 1988.
- [Mag94] J. Magidson. The CHAID approach to segmentation modeling: CHI-squared automatic interaction detection. In R. P. Bagozzi, editor, *Advanced Methods of Marketing Research*, pages 118–159. Blackwell Business, 1994.
- [MAR96] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. In *Proc.* 1996 Int. Conf. Extending Database Technology (EDBT'96), pages 18–32, Avignon, France, Mar. 1996.
- [MBK98] R. S. Michalski, I. Brakto, and M. Kubat. *Machine Learning and Data Mining: Methods and Applications*. John Wiley & Sons, 1998.
- [MCM83] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. *Machine Learning, An Artificial Intelligence Approach, Vol. 1.* Morgan Kaufmann, 1983.
- [MCM86] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. *Machine Learning, An Artificial Intelligence Approach*, Vol. 2. Morgan Kaufmann, 1986.
- [MFS95] D. Malerba, E. Floriana, and G. Semeraro. A further comparison of simplification methods for decision tree induction. In D. Fisher and H. Lenz, editors, *Learning from Data: AI and Statistics*. Springer-Verlag, 1995.
- [MH95] J. K. Martin and D. S. Hirschberg. The time complexity of decision tree induction. In *Technical Report ICS-TR 95-27*, Dept. Information and Computer Science, Univ. California, Irvine, Aug. 1995.
- [Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, 1992.
- [Min89] J. Mingers. An empirical comparison of pruning methods for decision-tree induction. *Machine Learning*, 4:227–243, 1989.

- [Mit96] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
- [Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
- [MK91] M. Manago and Y. Kodratoff. Induction of decision trees from complex structured data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 289–306. AAAI/MIT Press, 1991.
- [MM95] J. Major and J. Mangano. Selecting among rules induced from a hurricane database. J. Intelligent Information Systems, 4:39–52, 1995.
- [MN89] M. Mézard and J.-P. Nadal. Learning in feedforward layered networks: The tiling algorithm. *J. Physics*, 22:2191–2204, 1989.
- [MP69] M. L. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, 1969.
- [MRA95] M. Metha, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. In *Proc. 1995 Int. Conf. Knowledge Discovery and Data Mining (KDD'95)*, pages 216–221, Montreal, Canada, Aug. 1995.
- [MST94] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical Classification. Ellis Horwood, 1994.
- [MT94] R. S. Michalski and G. Tecuci. *Machine Learning, A Multistrategy Approach, Vol. 4.* Morgan Kaufmann, 1994.
- [Mur98] S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary survey. *Data Mining and Knowledge Discovery*, 2:345–389, 1998.
- [NB86] T. Niblett and I. Bratko. Learning decision rules in noisy domains. In M. A. Bramer, editor, Expert Systems '86: Research and Development in Expert Systems III, pages 25–34. British Computer Society Specialist Group on Expert Systems, Dec. 1986.
- [NKNW96] J. Neter, M. H. Kutner, C. J. Nachtsheim, and L. Wasserman. *Applied Linear Statistical Models* (4th ed.). Irwin, 1996.
- [NW99] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer Verlag, 1999.
- [OFG97] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. In Proc. 1997 IEEE Workshop on Neural Networks for Signal Processing (NNSP'97), pages 276–285, Amelia Island, FL, Sept. 1997.
- [Pag89] G. Pagallo. Learning DNF by decision trees. In *Proc. 1989 Int. Joint Conf. Artificial Intelligence* (*IJCAI'89*), pages 639–644, Morgan Kaufmann, 1989.
- [Paw91] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, 1991.
- [Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauffman, 1988.
- [PKMT99] A. Pfeffer, D. Koller, B. Milch, and K. Takusagawa. SPOOK: A system for probabilistic object-oriented knowledge representation. In *Proc. 15th Annual Conf. Uncertainty in Artificial Intelligence (UAI'99)*, pages 541–550, Stockholm, Sweden, 1999.
- [Pla98] J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schotolkopf, C. J. C. Burges, and A. Smola, editors, Advances in Kernel Methods—Support Vector Learning, pages 185–208. MIT Press, 1998.
- [PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.
- [PTVF96] W. H. Press, S. A. Teukolosky, W. T. Vetterling, and B. P. Flannery. *Numerical Recipes in C: The Art of Scientific Computing*. Cambridge University Press, 1996.

- [Pyl99] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.
- [QCJ93] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In *Proc. 1993 European Conf. Machine Learning*, pages 3–20, Vienna, Austria, 1993.
- [QR89] J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length principle. *Information and Computation*, 80:227–248, Mar. 1989.
- [Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
- [Qui87] J. R. Quinlan. Simplifying decision trees. Int. J. Man-Machine Studies, 27:221–234, 1987.
- [Qui88] J. R. Quinlan. An empirical comparison of genetic and decision-tree classifiers. In *Proc. 1988 Int. Conf. Machine Learning (ICML'88)*, pages 135–141, Ann Arbor, MI, June 1988.
- [Qui90] J. R. Quinlan. Learning logic definitions from relations. *Machine Learning*, 5:139–166, 1990.
- [Qui92] J. R. Quinlan. Learning with continuous classes. In *Proc. 1992 Australian Joint Conf. on Artificial Intelligence*, pages 343–348, Hobart, Tasmania, 1992.
- [Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
- [Qui96] J. R. Quinlan. Bagging, boosting, and C4.5. In *Proc. 1996 Nat. Conf. Artificial Intelligence (AAAI'96)*, volume 1, pages 725–730, Portland, OR, Aug. 1996.
- [RA87] E. L. Rissland and K. Ashley. HYPO: A case-based system for trade secret law. In *Proc. 1st Int. Conf. Artificial Intelligence and Law*, pages 60–66, Boston, MA, May 1987.
- [RBKK95] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic networks with hidden variables. In *Proc. 1995 Joint Int. Conf. Artificial Intelligence (IJCAI'95)*, pages 1146–1152, Montreal, Canada, Aug. 1995.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, *Parallel Distributed Processing*. MIT Press, 1986.
- [Rip96] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
- [RM86] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing. MIT Press, 1986.
- [RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, 1995.
- [Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65:386–498, 1958.
- [RS89] C. Riesbeck and R. Schank. *Inside Case-Based Reasoning*. Lawrence Erlbaum, 1989.
- [RS98] R. Rastogi and K. Shim. Public: A decision tree classifer that integrates building and pruning. In *Proc. 1998 Int. Conf. Very Large Data Bases (VLDB'98)*, pages 404–415, New York, NY, Aug. 1998.
- [SAM96] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In *Proc.* 1996 Int. Conf. Very Large Data Bases (VLDB'96), pages 544–555, Bombay, India, Sept. 1996.
- [SBSW99] B. Schloekopf, P. L. Bartlett, A. Smola, and R. Williamson. Shrinking the tube: A new support vector regression algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, *Advances in Neural Information Processing Systems* 11, pages 330–336. MIT Press, 1999.
- [Sch86] J. C. Schlimmer. Learning and representation change. In *Proc. 1986 Nat. Conf. Artificial Intelligence* (AAAI'86), pages 511–515, Philadelphia, PA, 1986.
- [SD90] J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Morgan Kaufmann, 1990.

- [SF86] J. C. Schlimmer and D. Fisher. A case study of incremental concept induction. In *Proc. 1986 Nat. Conf. Artificial Intelligence (AAAI'86)*, pages 496–501, Philadelphia, PA, 1986.
- [SG92] P. Smyth and R. M. Goodman. An information theoretic approach to rule induction. *IEEE Trans. Knowledge and Data Engineering*, 4:301–316, 1992.
- [Shi99] Y.-S. Shih. Families of splitting criteria for classification trees. *Statistics and Computing*, 9:309–315, 1999.
- [SMT91] J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms: An experimental comparison. *Machine Learning*, 6:111–144, 1991.
- [SN88] K. Saito and R. Nakano. Medical diagnostic expert system based on PDP model. In *Proc. 1988 IEEE Int. Conf. Neural Networks*, pages 225–262, San Mateo, CA, 1988.
- [SR81] R. Sokal and F. Rohlf. Biometry. Freeman, 1981.
- [SR92] A. Skowron and C. Rauszer. The discernibility matrices and functions in information systems. In R. Slowinski, editor, Intelligent Decision Support, Handbook of Applications and Advances of the Rough Set Theory, pages 331–362. Kluwer Academic, 1992.
- [Sto74] M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Royal Statistical Society, 36:111–147, 1974.
- [SW49] C. E. Shannon and W. Weaver. *The mathematical theory of communication*. University of Illinois Press, Urbana, IL, 1949.
- [Swe88] J. Swets. Measuring the accuracy of diagnostic systems. Science, 240:1285–1293, 1988.
- [Swi98] R. Swiniarski. Rough sets and principal component analysis and their applications in feature extraction and selection, data model building and classification. In S. Pal and A. Skowron, editors, Fuzzy Sets, Rough Sets and Decision Making Processes. New York, 1998.
- [TS93] G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural networks. *Machine Learning*, 13:71–101, Oct. 1993.
- [TSK05] P. Tan, M. Steinbach, and V. Kumar. *Introduction to Data Mining*. Addison Wesley, 2005.
- [UBC97] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on efficient tree restructuring. *Machine Learning*, 29:5–44, 1997.
- [UFS91] R. Uthurusamy, U. M. Fayyad, and S. Spangler. Learning useful rules from inconclusive data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 141–157. AAAI/MIT Press, 1991.
- [Utg88] P. E. Utgoff. An incremental ID3. In Proc. Fifth Int. Conf. Machine Learning, pages 107–120, San Mateo, CA, 1988.
- [Vap95] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
- [Vap98] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.
- [VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. *Theory of Probability and its Applications*, 16:264–280, 1971.
- [WF05] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.). Morgan Kaufmann, 2005.
- [WI98] S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1998.

- [WK91] S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.
- [WRL94] B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks: Applications in industry, business and science. *Comm. ACM*, 37:93–105, 1994.
- [XOJ00] Y. Xiang, K. G. Olesen, and F. V. Jensen. Practical issues in modeling large diagnostic systems with multiply sectioned bayesian networks. *Intl. J. Pattern Recognition and Artificial Intelligence (IJPRAI)*, 14:59–71, 2000.
- [YH03] X. Yin and J. Han. CPAR: Classification based on predictive association rules. In *Proc. 2003 SIAM Int. Conf. Data Mining (SDM'03)*, pages 331–335, San Fransisco, CA, May 2003.
- [YYH03] H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. In *Proc.* 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD'03), pages 306–315, Washington, DC, Aug. 2003.
- [YZ94] R. R. Yager and L. A. Zadeh. Fuzzy Sets, Neural Networks and Soft Computing. Van Nostrand Reinhold, 1994.
- [Zad65] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
- [Zad83] L. Zadeh. Commonsense knowledge representation based on fuzzy logic. Computer, 16:61–65, 1983.
- [Zia91] W. Ziarko. The discovery, analysis, and representation of data dependencies in databases. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 195–209. AAAI Press, 1991.