Read Cycle Timing Diagram:

T1	T2	Т3	Tw (optional)	T4
AD15-AD0: 1st 16 bit address [high/low] A19-A16: Last 4 bit address [high/low]	RD goes LOW → To read from memory DEN goes LOW → Data Enable; allows the system to use the data bus.	The memory places the actual data onto the data bus (AD15-AD0). This is shown as "Data In" in the diagram. Processor reads this data during T3.	If memory/IO is slow, the READY signal stays LOW, and a wait state is added. This gives memory more time to place the data on the bus. When READY goes HIGH → 8086 continues reading.	RD goes HIGH (read done) DEN goes HIGH (disable data bus) DT/ R goes HIGH (bus direction neutral) Data lines float again, meaning they are released. Cycle ends, CPU now has the data, and moves to the next instruction.

→ tells bus transceivers this is a read operation.		
Bus is now set up to receive data		

Write Cycle Timing Diagram:

T1	T2	Т3	Tw (optional)	T4
AD15-AD0: 1st 16 bit address [high/low]	Data (to be written) is placed on AD15-AD0 by the CPU.	WR remains low Data lines	Same as in read: if READY = LOW , CPU waits.	WR goes HIGH → end of write. \overline{DEN} = HIGH → release
A19-A16: Last 4 bit address [high/low]	DT / R = HIGH (data is going out from CPU).	hold valid data. Memory or	Useful for slow memory or I/O devices.	the data bus. DT/ R = LOW → reset direction.
ALE: Goes HIGH → Latch the	\overline{DEN} = LOW (data	IO receives it		Data lines float or reset

address	bus is enabled).		for next operation.
M/IO: Identifies where to write data memory or IO from the 20 bit address	WR = LOW → To signal - Start Writing		