

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science For Engineers (course)

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work? ()

Setup Guide ()

Pre Course Material ()

Week 5: Assignment 5

The due date for submitting this assignment has passed.

Due on 2023-08-30, 23:59 IST.

vivekdubey74rr@gmail.com ~

As per our records you have not submitted this assignment.

1) The values of μ_1,μ_2 and μ_3 while evaluating the Karush-Kuhn-Tucker (KKT) condition with all the constraints being inactive are **1** point

$$\stackrel{\bigcirc}{\mu_1}=\mu_2=\mu_3=1$$

$$\overset{\bigcirc}{\mu_1}=\mu_2=\mu_3=0$$

$$\mu_1 = \mu_3 = 0, \mu_2 = 1$$

$$\overset{\bigcirc}{\mu_1} = \mu_2 = 0, \mu_3 = 1$$

Week 0 ()	No, the answer is incorrect. Score: 0	
Week 1 ()	Accepted Answers: $\mu_1=\mu_2=\mu_3=0$	
Week 2 ()	2) Gradient based algorithm methods compute	1 poin
	only step length at each iteration	
Week 3 ()	oboth direction and step length at each iteration	
Week 4 ()	only direction at each iteration	
	onone of the above	
Week 5 ()	No, the answer is incorrect. Score: 0	
 Multivariate 	Accepted Answers:	
Optimization With	both direction and step length at each iteration	
Equality Constraints (unit?	3) The point on the plane $x+y-2z=6$ that is closest to the origin is	1 point
unit=63&lesson=64)	The point on the plane $x+y-zz=0$ that is closest to the origin is	i point
Multivariate	(0,0,0)	
Optimization With	O (1,1,1)	
Inequality Constraints	○ (−1,1,2)	
(unit? unit=63&lesson=65)	○ (1,1,−2)	
	No, the answer is incorrect.	
Introduction to Data Science (unit?	Score: 0	
unit=63&lesson=66)	Accepted Answers: (1,1,-2)	
Solving Data Analysis		
Problems - A Guided	4) Find the maximum value of $f(x,y)=49-x^2-y^2$ subject to the constraints $x+3y=10.$	1 point
Thought Process (unit?	O 49	
unit=63&lesson=67)	0 49 0 46	
O Dataset (unit?		
unit=63&lesson=68)	○ 59 ○ 59	
	O 39	

FAQ (unit? unit=63&lesson=69)	No, the answer is incorrect. Score: 0 Accepted Answers:	
Practice: Week 5: Assignment 5 (Non Graded) (assessment? name=145)	5) The minimum value of $f(x,y)=x^2+4y^2-2x+8y$ subject to the constraint $x+2y=7$ occurs at the below point: \bigcirc (5,5)	1 point
Quiz: Week 5:Assignment 5(assessment?name=171)	○ (−5,5) ○ (1,5) ○ (5,1)	
Week 5 Feedback Form :Data Science ForEngineers (unit?unit=63&lesson=157)	No, the answer is incorrect. Score: 0 Accepted Answers: (5,1)	
Week 5: Solution (unit? unit=63&lesson=173)	6) Which of the following statements is/are NOT TRUE with respect to the multi variate optimization?	1 point
Week 6 ()	${ m I}$ - The gradient of a function at a point is parallel to the contours ${ m II}$ - Gradient points in the direction of greatest increase of the function	
Week 7 ()	III - Negative gradients points in the direction of the greatest decrease of the function IV - Hessian is a non-symmetric matrix	
Week 8 ()	r I	
Text Transcripts ()	II and III	
Download Videos ()	I and IV	
Books ()	III and IV	
Problem Solving Session - July 2023 ()	No, the answer is incorrect. Score: 0 Accepted Answers: I and IV	

1 point

True

False

No, the answer is incorrect.

Score: 0

Accepted Answers:

False

8) A manufacturer incurs a monthly fixed cost of \$7350 and a variable cost, $C(m) = 0.001m^3 - 2m^2 + 324m$ dollars. The **1 point** revenue generated by selling these units is, $R(m) = -6m^2 + 1065m$. How many units produced every month (m) will generate maximum profit?

$$(m)=46$$

$$(m) = 90$$

$$(m)=231$$

$$(m) = 125$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$(m) = 90$$

9) Consider an optimization problem $\min_{x_1,x_2} x^2 - xy + y^2$ subject to the constraints

1 point

$$2x + y \le 1$$

$$x+2y\geq 2$$

$$x \geq -1$$

Find the lagrangian function for the above optimization problem.

$$L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(2x+y-1) + \mu_2(2-x-2y) + \mu_3(-x-1)$$
 $L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(2x+y-1) + \mu_2(x+2y-2)) + \mu_3(-x-1)$
 $L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(2x+y-1) + \mu_2(x+2y-2)) + \mu_3(x+1)$
 $L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(2x+y-1) + \mu_2(x+2y-2) + \mu_3(x+1)$
 $L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(1-2x-y) + \mu_2(2-x-2y) + \mu_3(-x-1)$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$L(x,y,\mu_1,\mu_2,\mu_3) = x^2 - xy + y^2 + \mu_1(2x+y-1) + \mu_2(2-x-2y) + \mu_3(-x-1)$$