ソフトウェア演習Ⅲ〔課題 4:クラス継承〕青野雅樹

Java 言語でも類似のクラスの継承の課題を行った。ここでは、Python 言語で以下のプログラムを作成し、実行結果(kadai4.ps)とあわせ ZIP 等にまとめ、Moodle にアップせよ。締め切りは 11 月 3 日(火)が祝日のため 11 月 10 日(火)までとする。

- ① Shape (2 次元図形) クラスを**基底クラス**として作成せよ。
- ② Triangle (三角形) クラスを Shape クラスの**派生クラス**として作成せよ。
- ③ Trapezoid (台形) クラスを Shape クラスの**派生クラス**として作成せよ。ここで台形の上底と下底は X 軸と平行とし、 $x_1 < x_2 \quad x_3 < x_4$ とする、詳細は次ページの図参照
- ④ Circle(円) クラスを Shape クラスの**派生クラス**として作成せよ。
- __main__を含む kadai4.py を作成し、三角形と台形と円を合計 3N 個 (2<=N<=20)
 (位置や大きさを) ランダムに発生させ、最後に、Shape クラスのプリント関数 (ps_print 関数) ならびに area 関数を呼んで、発生させた図形の総面積を PostScript 内 (末尾) にプリントせよ。(注: PostScript の出だしにもコメントで、氏名と学籍番号、日付を出力すること。)

【コメントとヒント】

PostScript に発生する図形に関して、 $6 \le 3N \le 60$, $0 \le R$, G, $B \le 1.0$, $0 \le x \le 580.0$, $0 \le y \le 700.0$ としてください。円の中心座標は(x,y)に準じてください。半径もx値に準じてください。(XRANGE, YRANGE) = (580.0, 700.0) と定義してください。

課題の要点は、クラスの継承です。Shape クラスは<u>基底クラス(スーパークラス)</u>と呼ばれ、これを継承する Triangle クラス、Trapezoid クラス、Circle クラスは<u>派生クラス(サブクラス)</u>と呼ばれます。基底クラスで宣言された関数(area 関数)はオーバーライドされます。実際、面積計算は図形によって異なりますが、アクセスする場合は、area 関数を呼び出すと、自動的に派生クラスの area 関数を呼び出してくれます。たとえば、PostScriptでの円の出力は、以下のようにx y r 0 360 arc の行(stroke の直前の行)が円を定義しており、(x,y) は円の中心座標でr が半径を表します。

%%円 0.1 0.2 0.91 setrgbcolor newpath 151.0 400.1 124.5 0 360 arc stroke

三角形と台形の描画は、出だしの色と最後の stroke は円と同じで、違うのは、最初の頂点 (x,y) に xy moveto で移動し、以降、xy lineto で線分を結ぶことで行います。最後に closepath で図形を閉じてください。詳細は、後述のサンプルを参照してください。

三角形の符号付き面積は、 $Area=0.5*\sum_{i=1}^{5} \left(x_iy_{i+1}-x_{i+1}y_i\right)$ で計算できます。ただし、 $x_4=x_1$ で $y_4=y_1$ です。正負の値があり得ますので、絶対値をとるようにしてください。図のように左回りに頂点を定義したときに正となる量です。台形では、ここでの規則として $x_1 < x_2 \quad (y=y_1)$ とし、 $x_3 < x_4 \quad (y=y_2)$ としてください。 y_1 と y_2 の大小関係はどちらでも結構です。具体的なクラスは、以下のようにしてください。ここで列挙している変数等は、クラス内にあるべき最小要素なので、他のメンバー変数、メンバー関数などを定義して構いません。また、クラス内の関数の第一引数には、self が入りますが、説明では省略しています。実装では self を第一引数に付けてください。

基底である Shape クラス(クラス名=Shape) メンバー変数:

変数名	値	概要
R	実数値	赤色成分
G	実数値	緑色成分
В	実数値	青色成分

コンストラクタ:

引数の数	引数の型	概要
3	(R, G, B)	R,G,Bにセットする

メソッド (関数):

メソッド名	引数型	戻り値型	概要
area	なし	実数値	<u>面積計算</u>
ps_print	なし	なし	色を PS で書き出す

派生クラス:円クラス (クラス名=Circle)

メンバー変数:

メンバー変数名	型	概要
х,у	2 つの実数値のタップル	円の中心座標 (x,y)
radius	実数値	円の半径 (図では r)

コンストラクタ:

引数の数	引数の型	概要
6	(R,G,B,x,y,radius)	色,中心座標,半径

メソッド (関数):

メソッド名	引数型	戻り値型	概要
area	なし	実数値	円の面積計算
ps_print	なし	なし	円のデータを PS 形式で書き出す

派生クラス:三角形クラス (クラス名=Triangle)

メンバー変数:

変数名	型	概要
x1,y1,x2,y2,x3,y3	実数値	3 頂点の座標値

コンストラクタ:

引数の数	引数の型	概要
9	(R,G,B,x1,y1,x2,y2,x3,y3)	色と3頂点

メソッド(関数):

メソッド名	引数型	戻り値型	概要
area	なし	実数値	三角形の面積計算
ps_print	なし	なし	三角形のデータを PS 形式で書き出す

派生クラス:台形クラス (クラス名=Trapezoid)

メンバー変数:

変数名	型	概要
x1,y1,x2,y2,x3,y3,x4,y4	実数値	台形の 4 点の座標値

コンストラクタ:

Ē	別数の数	引数の型	概要
1	11	(R,G,B,x1,y1,x2,y2,x3,y3,x4,y4)	色と4項点(xの条件に注意)

メソッド (関数):

メソッド名	引数型	戻り値型	概要
area	なし	実数値	台形の面積計算
ps_print	なし	なし	台形のデータを PS 形式で書き出す

メイン関数の処理手順

- (1) 引数 (図形の発生回数) のチェック (2 <= N <= 20)
- (2) 各種初期化(乱数、総面積)
- (3) N回ループ (ループ内で3種類の図形を発生させる) 色をランダムに発生
 - (ア) 円 (中心(x,y),半径 rad, x=[0,XRANGE], y=[0,YRANGE], rad=[0,0.25*XRANGE])
 - (イ) 三角形の発生、座標値は円の中心と同様
 - (ウ) 台形の発生、x1,x2,x3,x4 の x は円の中心と同様だが、x1<x2, x3<x4 をチェック、y は y1 と y2 のみ円の中心座標の y と同様の範囲でランダムに発生。x の範囲も円の x の範囲と同様とする。
 - (エ) 上の3つの図形は (__main__で定義する) shape_list に append していく。
- (4) 3N回、PSでプリント、この際、shape=shape_list[i]から2つの関数(area, ps_print)にアクセスし、自動的に派生クラスのそれぞれの関数が呼び出せることを確認し、ファイルにアウトプット

Adobe の https://www.adobe.com/content/dam/acom/en/devnet/actionscript/articles/psrefman.pdf に PostScript のマニュアルがあります。PostScript のチュートリアルの例としては、https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF にあります。図形のチュートリアルとしては、http://paulbourke.net/dataformats/postscript/がわかりやすいです。

【実行例】

\$ python kadai4.py 1 kadai4.ps

以下は、出力される PostScript ファイル (kadai4.ps) の例です (一部のみ)。

%%!PS-Adobe-2.0

%%File: kadai4.ps

%%課題3:青野雅樹,01162069

%%日付:2020年10月2日18時43分28秒

%%1番目の図形は円です

%% 色:

0.459513 0.850986 0.843484 setrgbcolor

%% 円:面積 = 12765.2

newpath

468.198 419.826 63.7439 0 360 arc

stroke

%%2番目の図形は三角形です

%% 色:

0.164469 0.133408 0.787166 setrgbcolor

%% 三角形:面積 = 80403.4

newpath

554.371 674.653 moveto

72.9878 644.728 lineto

560.019 340.953 lineto

554.371 674.653 lineto

closepath

stroke

%%3番目の図形は台形です

%% 色:

0.804806 0.180023 0.0960385 setrgbcolor

%% 台形:面積 = 26805.8

newpath

203.235 106.748 moveto

368.561 106.748 lineto

183.235 345.13 lineto

123.662 345.13 lineto

closepath

stroke

..... (3N個の図形)

%% 総面積は 931547です showpage

以下はPostScript(kadai4.ps)にps2pdfでPDF化した際の可視化例です。

