

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 339 (2004) 5-10

Combinatoire

Automaticité des ordinaux et des graphes homogènes

Christian Delhommé

ERMIT, département de mathématiques, université de La Réunion, 15, avenue René Cassin, BP 7151, 97715 Saint-Denis Messag cedex 9, La Réunion, France

Reçu le 19 juin 2003 ; accepté après révision le 30 mars 2004

Disponible sur Internet le 25 mai 2004

Présenté par Yves Meyer

Résumé

Les structures automatiques (resp. arbre-automatiques) sont les structures relationnelles dont le domaine est un ensemble régulier de mots (resp. de termes) finis et dont chaque relation atomique est reconnaissable par un automate multi-bandes synchrones. Nous établissons des critères d'automaticité et énonçons des critères analogues d'arbre-automaticité, dont il découle en particulier, d'une part que le graphe aléatoire n'est pas automatique, ni même arbre-automatique, et d'autre part, que tout ordre bien fondé automatique est de hauteur strictement inférieure à ω^{ω} , et que $\omega^{\omega^{\omega}}$ est l'ensemble des ordinaux arbre-automatiques. Pour citer cet article : C. Delhommé, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

Abstract

Automaticity of ordinals and of homogeneous graphs. We establish criteria of automaticity and we state analogous criteria of tree-automaticity which show, on the one-hand that the random graph is neither automatic nor tree-automatic, and on the other hand that every well-founded automatic poset has height less than ω^{ω} and that $\omega^{\omega^{\omega}}$ is the set of tree-automatic ordinals. To cite this article: C. Delhommé, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

© 2004 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abridged English version

Automatic structures and tree-automatic structures are relational structures with domain a regular set of finite words (resp. terms) and each of whose atomic relations is recognized by a synchronous multi-tape automaton. Each such structure has a decidable first-order theory; indeed to each first order formula is effectively associated an automaton recognizing the corresponding relation (see [12,13,11,14,3], and [6,5,2]).

In circulated notes, we proved that the random graph, as well as the generic poset or the generic \mathfrak{R}_n -free graph, fail to be automatic [7], and then that the ordinal ω^{ω} also fails [8] (thus, settling a question from [14], ω^{ω} is indeed precisely the set of automatic ordinals). The proof given in [8], which is reproduced as Section 5 of [9], can easily be adapted to bound the heights of automatic well-founded partially ordered-sets (see Corollary 2.2), and, as observed by the authors of [15], to bound the Cantor–Bendixon ranks of automatic totally ordered-sets.

In this Note, we formulate the proofs of [7] and [8], which share common features, as general criteria of automaticity and we state analogous criteria for tree-automaticity (Proposition 1.1, and Proposition 1.2 together with Corollary 1.3). It follows, in particular, that the random graph, as well as the generic poset or the generic

 \mathfrak{R}_n -free graph, also fail to be tree-automatic (Corollary 2.1), and that $\omega^{\omega^{\omega}}$ is precisely the set of tree-automatic ordinals (Corollary 2.2).

Let us state those criteria. In the sequel $\mathfrak A$ is a relational structure, with domain denoted by $|\mathfrak A|$, over a finite relational language τ . We refer to a first-order formula over τ as a τ -formula.

Relative growth

Consider a *finite* set $\Phi(x)$ of τ -formulas with free variables among which x is distinguished, and a set \mathcal{F} of finite subsets of $|\mathfrak{A}|$ with elements of every finite cardinality.

Given a finite subset E of $|\mathfrak{A}|$, say that two elements a and a' of $|\mathfrak{A}|$ are Φ -equivalent over E (written $a \sim_E^{\Phi} a'$) when for each formula $\varphi(x, y_1, \dots, y_p)$ (with all free-variables displayed) from Φ and every $\vec{b} \in E^p$, $\mathfrak{A} \models \varphi(\vec{a}, \vec{b})$ if and only if $\mathfrak{A} \models \varphi(a', \vec{b})$. Say that a subset of $|\mathfrak{A}|$ is Φ -free over E (for short that it is E- Φ -free) when its elements are pairwise non- Φ -equivalent over E. Let $\vartheta_{\mathcal{F}}^{\Phi}(E) := \min\{\max\{\text{card } F \colon F \in \mathcal{F}, F \subseteq G\}: G \text{ is } E\text{-}\Phi\text{-free}\}$ and of maximal size $\} \in \mathbb{N}$.

Now, for each integer n let $\vartheta_{\mathcal{F}}^{\Phi}(n) := \min\{\vartheta_{\mathcal{F}}^{\Phi}(E): E \in \mathcal{F}, \text{card } E = n\}$. Then Proposition 1.1 asserts: If the structure $\mathfrak A$ is automatic, then $\liminf_{n\to\infty}\frac{\vartheta_{\mathcal F}^{\phi}(n)}{n}<\infty$; if it is tree-automatic, then $\liminf_{n\to\infty}\frac{\log\vartheta_{\mathcal F}^{\phi}(n)}{\log n}<\infty$. When $\mathfrak A=(A,\mathcal R)$ is the random graph, consider $\Phi(x)$ reduced to the single atomic formula $\mathcal R(x,y)$ and $\mathcal F$ the

set of all finite subsets of A, in which case $\vartheta_{\mathcal{F}}^{\Phi}(E)$ is simply max{card $F: F \in \mathcal{F}, F \text{ is } E-\Phi\text{-free}$ }: then $\vartheta_{\mathcal{F}}^{\Phi}(n) = 2^n$.

Indecomposability

Given a τ -structure $\mathfrak B$ and a set $\mathcal T$ of τ -structures, say that $\mathfrak B$ is a sum-augmentation of $\mathcal T$ when its domain admits a finite partition on each class B of which the induced substructure $\mathfrak{B} \upharpoonright B$ is isomorphic to an element of T. Say that \mathfrak{B} is a box-augmentation of T when there are a non-empty finite family $(\mathfrak{B}_i: i \in I)$ of T and a bijection $f: \prod_{i \in I} |\mathfrak{B}_i| \to |\mathfrak{B}|$ such that for each $i \in I$ and every $\mathbf{b} \in \prod_{i \in I \setminus \{i\}} |\mathfrak{B}_i|$, the function $b \mapsto f(b \cap \mathbf{b})$ is an embedding of \mathfrak{B}_i into \mathfrak{B} , where $b \cap \mathbf{b}$ denotes the tuple extending \mathbf{b} with value b at i.

Given a τ -formula $\varphi(x, y_1, \dots, y_p)$ with all free-variables displayed, for each tuple $\vec{b} \in |\mathfrak{A}|^p$, let $\varphi(|\mathfrak{A}|, \vec{b}) :=$ $\{a \in |\mathfrak{A}|: \mathfrak{A} \models \varphi(a, \vec{b})\}\$ denote the subset of $|\mathfrak{A}|$ defined by φ with the parameter \vec{b} . Proposition 1.2 asserts: If \mathfrak{A} is automatic (resp. tree-automatic), then for every τ -formula $\varphi(x, \vec{y})$, there is a finite set $\mathcal{S}_{\varphi}^{\mathfrak{A}}$ of τ -structures with the property that for every $\vec{b} \in |\mathfrak{A}|^p$, the induced substructure $\mathfrak{A} \upharpoonright \varphi(|\mathfrak{A}|, \vec{b})$ is a sum-augmentation of $\mathcal{S}^{\mathfrak{A}}_{\omega}$ (resp. is a sum-augmentation of a set of box-augmentations of $\mathcal{S}^{\mathfrak{A}}_{\omega}$).

Now, given a function ν defined on some class S of τ -structures, say that an element α of the range of ν is sum-indecomposable (resp. box-indecomposable) when given any $\mathfrak{B} \in \mathcal{S}$ and any set \mathcal{T} of which \mathfrak{B} is a sumaugmentation (resp. a box-augmentation), if ν takes value α at \mathfrak{B} , then it also takes it at some element of \mathcal{T} . Corollary 1.3 asserts: If $\mathfrak A$ is automatic (resp. tree-automatic), then for every τ -formula $\varphi(x,\vec{y})$, ν assumes only finitely many sum-indecomposable values (resp. only finitely many simultaneously sum-indecomposable and boxindecomposable values) on the $\mathfrak{A} \upharpoonright \varphi(|\mathfrak{A}|, b)$'s belonging to S.

When ν is the function *height* defined on the class of well-founded posets, the sum-indecomposable ordinals are the powers of ω . Thus the well-founded part of every automatic poset has height less than ω^{ω} : consider $\Phi(x)$ reduced to the single atomic formula y < x.

1. Présentation des résultats

Dans ce qui suit, $\mathfrak A$ désigne une structure, de domaine $|\mathfrak A|$, sur un langage relationnel fini τ . Par τ -formule, on entendra formule du premier ordre sur τ . Chaque fois qu'en désignant une telle formule on fera apparaître des variables libres, on les fera toutes apparaître.

1.1. Croissance relative

Considérons un ensemble fini $\Phi(x)$ de τ -formules où la variable libre x est distinguée, et un ensemble \mathcal{F} de parties finies de |A| admettant des éléments de tout cardinal fini.

Étant donnée une partie finie E de $|\mathfrak{A}|$, disons que deux éléments a et a' de $|\mathfrak{A}|$ sont Φ -équivalents sur E (auquel cas on écrira $a \sim_E^{\Phi} a'$) quand pour chaque formule $\varphi(x, y_1, \ldots, y_p)$ de Φ et tout uplet $\vec{b} \in E^p$, $\mathfrak{A} \models \varphi(a, \vec{b})$ si et seulement si $\mathfrak{A} \models \varphi(a', \vec{b})$. Disons alors qu'une partie de $|\mathfrak{A}|$ est Φ -libre sur E (ou E- Φ -libre) lorsque ses éléments sont deux à deux non Φ -équivalents sur E. Soit alors

Proposition 1.1. Si la structure \mathfrak{A} est automatique, alors $\liminf_{n\to\infty} \frac{\vartheta_{\mathcal{F}}^{\phi}(n)}{n} < \infty$; si elle est arbre-automatique, alors $\liminf_{n\to\infty} \frac{\log \vartheta_{\mathcal{F}}^{\phi}(n)}{\log n} < \infty$.

1.2. Indécomposabilité

Étant donnée une τ -structure $\mathfrak B$ et un ensemble $\mathcal T$ de τ -structures, disons que $\mathfrak B$ est somme-augmentation de $\mathcal T$ lorsque son domaine admet une partition finie $(B_i\colon i\in I)$ telle que chaque sous-structure (induite) $\mathfrak B\upharpoonright B_i$ soit isomorphe à un élément de $\mathcal T$, en d'autres termes, lorsqu'il existe une famille finie non-vide $(\mathfrak B_i\colon i\in I)$ de $\mathcal T$ et une bijection $f:\coprod_{i\in I}|\mathfrak B_i|\to |\mathfrak B|$ telle que pour chaque $i\in I$, la restriction $f\upharpoonright |\mathfrak B_i|$ soit un plongement de $\mathfrak B_i$ dans $\mathfrak B$; disons que $\mathfrak B$ est boîte-augmentation de $\mathcal T$ lorsqu'il existe une famille finie non-vide $(\mathfrak B_i\colon i\in I)$ de $\mathcal T$ et une bijection $f:\prod_{i\in I}|\mathfrak B_i|\to |\mathfrak B|$ telle que pour chaque $i\in I$ et tout $\mathbf b\in\prod_{j\in I\setminus\{i\}}|\mathfrak B_i|$, la fonction $b\mapsto f(b\cap \mathbf b)$ soit un plongement de $\mathfrak B_i$ dans $\mathfrak B$, où $b\cap \mathbf b$ désigne l'uplet qui étend $\mathbf b$ par la valeur b en i.

Pour chaque τ -formule $\varphi(x, y_1, \dots, y_p)$, chaque paramètre $\vec{b} \in |\mathfrak{A}|^p$ et chaque partie A de $|\mathfrak{A}|$, $\varphi(A, \vec{b})$ désigne la partie $\{a \in A : \mathfrak{A} \models \varphi(a, \vec{b})\}$ de A.

Proposition 1.2. Si la structure \mathfrak{A} est automatique (resp. si elle est arbre-automatique), alors pour toute τ -formule $\varphi(x,\vec{y})$, il existe un ensemble fini $\mathcal{S}_{\varphi}^{\mathfrak{A}}$ de τ -structures tel que pour tout $\vec{b} \in |\mathfrak{A}|^p$, la structure induite $\mathfrak{A} \upharpoonright \varphi(|\mathfrak{A}|,\vec{b})$ soit somme-augmentation de $\mathcal{S}_{\varphi}^{\mathfrak{A}}$ (resp. soit somme-augmentation d'un ensemble de boîte-augmentations de $\mathcal{S}_{\varphi}^{\mathfrak{A}}$).

Considérons une fonction ν de domaine une classe \mathcal{S} de τ -structures. Disons qu'un élément α de l'image de ν est *somme-indécomposable* (resp. *boîte-indécomposable*), si pour chaque $\mathfrak{B} \in \mathcal{S}$ tel que $\nu(\mathfrak{B}) = \alpha$, tout ensemble dont \mathfrak{B} soit somme-augmentation (resp. boîte-augmentation) contient un élément de \mathcal{S} d'image α par ν .

Corollaire 1.3. Si la structure \mathfrak{A} est automatique (resp. arbre-automatique), alors pour chaque τ -formule $\varphi(x, \vec{y})$, v ne prend qu'un nombre fini de valeurs somme-indécomposables (resp. ne prend qu'un nombre fini de valeurs à la fois somme-indécomposables et boîte-indécomposables) sur les divers $\mathfrak{A} \upharpoonright \varphi(|\mathfrak{A}|, \vec{b})$ appartenant à S.

Dans la section qui suit, nous présentons les résultats en vue desquels les critères ci-dessus ont été établis. Le reste du texte est consacré à la démonstration desdits critères, dans le cas automatique.

2. Applications

2.1. Relations binaires homogènes

(Voir [10].) Une structure relationnelle est dite *homogène* si tout isomorphisme entre deux de ses restrictions finies admet une extension en un automorphisme de la structure. Étant donnée une classe de relations binaires, appelons *générique* toute relation dénombrable homogène dont les types d'isomorphie des restrictions finies sont ceux des éléments finis de la classe; une telle structure, lorsqu'elle existe, est unique. Ainsi le *graphe aléatoire* est le graphe générique, et pour chaque entier $n \ge 3$, il existe un graphe générique relativement à la classe des graphes sans sous-graphe complet de taille n (appelons le *graphe-sans-* \Re_n *générique*).

Corollaire 2.1. Le graphe générique \mathfrak{G} , l'ensemble ordonné générique \mathfrak{P} et le graphe-sans- \mathfrak{K}_n générique \mathfrak{H}_n ne sont ni automatiques [7], ni même arbre-automatiques.

Preuve. Considérons, étant donné un symbole de relation binaire \prec , l'ensemble de formules $\Phi(x) = \{x \prec y, y \prec x, x = y\}$, et la classe \mathcal{F} de tous les ensembles finis de sommets de \mathfrak{G} , ou de toutes les antichaînes (c'est-à-dire ensembles de sommets deux à deux incomparables) finies de \mathfrak{P} , ou de tous les indépendants (c'est-à-dire ensembles de sommets deux à deux non adjacents) finis de \mathfrak{H}_n . Dans tous les cas $\vartheta_{\mathcal{F}}^{\Phi}$ croît au moins exponentiellement. \square 2.2. *Bons-ordres*

Corollaire 2.2. Tout bon ordre automatique est de type strictement inférieur à ω^{ω} [8], et plus généralement, la partie bien-fondée de tout ordre automatique est de hauteur strictement inférieure à ω^{ω} . Tout bon-ordre arbreautomatique est de type strictement inférieur à $\omega^{\omega^{\omega}}$.

Preuve. Considérer la fonction *hauteur* (à valeurs ordinales) sur la classe des ensembles ordonnés bien-fondés. L'argument donné dans [1] quant au fait que les puissances de ω (les ω^{ξ}) sont les types somme-indécomposables des bons ordres prouve également qu'ils sont les hauteurs somme-indécomposables des ordres bien fondés. Quant aux types boîte-indécomposables des bons ordres, il s'agit des $\omega^{\omega^{\xi}}$ (cf. [4]). D'autre part, pour chaque ordre \mathfrak{A} , tout ordinal inférieur à la valeur prise par ν sur un $\mathfrak{A} \upharpoonright (|\mathfrak{A}| < b)$ bien fondé est également une valeur prise par ν sur un tel type de restriction. \square

On constate aisément que tout ordinal strictement inférieur à $\omega^{\omega^{\omega}}$ est arbre-automatique; en outre, puisque tout segment initial d'un bon ordre y est définissable par une formule du premier ordre avec un paramètre, la classe des ordinaux arbre-automatiques est un segment initial (cf. Section 3.2); ainsi, $\omega^{\omega^{\omega}}$ est précisément l'ensemble des ordinaux arbre-automatiques.

3. Préliminaires

Considérons un ensemble fini non vide Σ ; soit $\Sigma^{<\omega}$ l'ensemble des *mots* sur Σ , c'est-à-dire des suites finies d'éléments de Σ ; la *longueur* d'une telle suite $\mathbf u$ sera notée $|\mathbf u|$, de sorte que $\mathbf u=(\mathbf u(k)\colon 0\leqslant k<|\mathbf u|)$; le mot vide, seul mot de longueur nulle, sera noté ϵ . Le mot concaténé de deux mots $\mathbf u$ et $\mathbf v$ est noté $\mathbf u \cdot \mathbf v$.

3.1. Automates

Considérons un $automate\ \mathcal{A}=\langle \Sigma,\mathcal{Q},\Delta,I,F\rangle$ sur l'alphabet Σ , dont \mathcal{Q} est l'ensemble (fini) des états, I et F les ensembles d'états initiaux et finaux, et dont la fonction de transition est $\Delta\colon \Sigma\to \mathcal{P}(\mathcal{Q}\times\mathcal{Q}),$ $a\mapsto \underline{a}$: ainsi chaque \underline{a} est une relation binaire sur l'ensemble des états. Un calcul de \mathcal{A} sur le mot \mathbf{u} est toute suite finie $q(0)\cdots q(|\mathbf{u}|)$ d'états telle que, pour chaque $k<|\mathbf{u}|,\ (q(k),q(k+1))\in \underline{\mathbf{u}(k)}$ (on écrira q(k) $\underline{\mathbf{u}(k)}$ q(k+1)); ce calcul est $r\acute{e}ussi$ si $q(0)\in I$ et $q(|\mathbf{u}|)\in F$. Le $langage\ (r\acute{e}gulier)\ reconnu$ par \mathcal{A} est l'ensemble $L_{\mathcal{A}}$ des mots admettant un calcul réussi. La fonction de transition Δ s'étend aux mots : $\mathbf{u}\mapsto \underline{\mathbf{u}}\in \mathcal{P}(\mathcal{Q}\times\mathcal{Q})$ de façon à ce que $\underline{\epsilon}=\mathrm{id}_{\mathcal{Q}}$ (la relation associée au mot vide est l'identité de \mathcal{Q}) et pour tous mots \mathbf{u} et \mathbf{v} , $\underline{\mathbf{u}}\cdot\mathbf{v}=\underline{\mathbf{u}}\circ\underline{\mathbf{v}}:=\{(q,q'')\colon\exists q',\ q\underline{\mathbf{u}}\ q'$ et $q'\underline{\mathbf{v}}\ q''\}$ (chaque lettre étant identifiée à un mot de longueur 1). En particulier $L_{\mathcal{A}}=\{\mathbf{u}\in \Sigma^{<\omega}\colon\underline{\mathbf{u}}\cap (I\times F)\neq\varnothing\}.$

3.2. Structures automatiques

Étant donné un symbole $\square \notin \Sigma$, soit Σ_{\square} l'alphabet $\Sigma \dot{\cup} \{\square\}$. Pour chaque mot \mathbf{u} et tout entier $k \geqslant |\mathbf{u}|, \mathbf{u}(k)$ désignera le symbole \square . Pour chaque uplet $(\mathbf{u}_1, \ldots, \mathbf{u}_m)$ de mots sur Σ , $(\mathbf{u}_1, \ldots, \mathbf{u}_m)^{\otimes}$ désigne le mot sur Σ_{\square}^m de longueur max $\{|\mathbf{u}_1|, \ldots, |\mathbf{u}_m|\}$ tel que pour tout k, $(\mathbf{u}_1, \ldots, \mathbf{u}_m)^{\otimes}(k) = (\mathbf{u}_1(k), \ldots, \mathbf{u}_m(k))$. On étend la notation aux ensembles U de uplets de mots par $U^{\otimes} := \{\mathbf{x}^{\otimes} : \mathbf{x} \in U\}$.

Une τ -structure automatique $\langle L_V, L_{\mathcal{R}} \colon \mathcal{R} \in \tau \rangle$ d'alphabet Σ est spécifiée par un langage régulier (de mots sur Σ) L_V , et, pour chaque symbole relationnel \mathcal{R} d'arité m, une relation m-aire $L_{\mathcal{R}}$ sur L_V (c'est-à-dire une partie de L_V^m) telle que $L_{\mathcal{R}}^{\otimes}$ soit un langage régulier (de mots sur Σ_{\square}^m).

Étant donnée une telle structure \mathfrak{A} , pour chaque τ -formule $\varphi(x_1,\ldots,x_m,y_1,\ldots,y_p)$ et paramètre $\vec{b} \in |\mathfrak{A}|^p$, $\varphi(|\mathfrak{A}|^m,\vec{b})^{\otimes}$ est un ensemble rationnel (de mots sur Σ_{\square}^m) qui dépend récursivement de φ et \vec{b} (voir [12,13,11,14, 2,3]).

4. Démonstrations des Propositions 1.1 et 1.2

On considère une structure automatique $\langle L_V, L_{\mathcal{R}} \colon \mathcal{R} \in \tau \rangle$ d'alphabet Σ . Désignons par Γ l'ensemble $\Sigma^{<\omega}$ des mots sur Σ . Pour chaque partie S de Γ , soit $\overline{S} := S \cap L_V$ l'ensemble des sommets de la structure codés par des éléments de S. Pour chaque entier $n \in \mathbb{N}$, désignons par Γ_n l'ensemble des mots de longueur inférieure (ou égale) à n, puis désignons par $V_n := \overline{\Gamma_n}$ l'ensemble des sommets codés par de tels mots. Pour tout mot \mathbf{s} de longueur au moins n, désignons par $\mathbf{s} \upharpoonright n$ son segment initial de longueur n, c'est-à-dire ($\mathbf{s}(k)$: $0 \le k < n$).

Considérons un automate $\mathcal{A}_V = \langle \Sigma, \mathcal{Q}_V, \Delta_V, I_V, F_V \rangle$ reconnaissant L_V , pour chaque $\mathcal{R} \in \tau$ d'arité m, un automate $\mathcal{A}_{\mathcal{R}} = \langle \Sigma_{\square}^m, \mathcal{Q}_{\mathcal{R}}, \Delta_{\mathcal{R}}, I_{\mathcal{R}}, F_{\mathcal{R}} \rangle$ reconnaissant $L_{\mathcal{R}}^{\otimes}$, et plus généralement, pour chaque τ -formule $\varphi(x, y_1, \ldots, y_p)$, un automate $\mathcal{A}_{\varphi} = \langle \Sigma_{\square}^{1+p}, \mathcal{Q}_{\varphi}, \Delta_{\varphi}, I_{\varphi}, F_{\varphi} \rangle$ reconnaissant $L_{\varphi}^{\otimes} := \varphi(L_V^{1+p})^{\otimes}$. L'amorce commune des preuves des propositions consiste à jouer sur les observations suivantes (cf. Affirmations 1 et 3).

Observations. Pour tous mots \mathbf{h} , \mathbf{t} , \mathbf{t}_0 , \mathbf{t}_1 , ..., \mathbf{t}_m , \mathbf{s}_1 , ..., \mathbf{s}_p , tels que les $\mathbf{h} \cdot \mathbf{t}_\ell$ et les \mathbf{s}_k appartiennent à L_V , et que \mathbf{h} soit au moins aussi long que chaque \mathbf{s}_k ,

$$\mathbf{h} \cdot \mathbf{t} \in L_V \iff \mathbf{h}_V \circ \mathbf{t}_V \text{ rencontre } I_V \times F_V.$$
 (1)

$$\mathfrak{A} \models \mathcal{R}(\mathbf{h} \cdot \mathbf{t}_1, \dots, \mathbf{h} \cdot \mathbf{t}_m) \iff (\mathbf{h}, \dots, \mathbf{h})^{\otimes}_{\mathcal{R}} \circ (\mathbf{t}_1, \dots, \mathbf{t}_m)^{\otimes}_{\mathcal{R}} \text{ rencontre } I_{\mathcal{R}} \times F_{\mathcal{R}}.$$
 (2)

$$\mathfrak{A} \models \varphi(\mathbf{h} \cdot \mathbf{t}_0, \mathbf{s}_1, \dots, \mathbf{s}_p) \iff \underline{(\mathbf{h}, \mathbf{s}_1, \dots, \mathbf{s}_p)^{\otimes}}_{\varphi} \circ \underline{(\mathbf{t}_0, \epsilon, \dots, \epsilon)^{\otimes}}_{\varphi} \text{ rencontre } I_{\varphi} \times F_{\varphi}. \tag{3}$$

4.1. Croissance relative. Preuve de la Proposition 1.1

Lemme 4.1. Étant donné un ensemble fini $\Phi(x)$ de τ -formules, il existe un entier c tel que $\forall n \in \mathbb{N}$, $\forall \mathbf{s} \in L_V$, $\exists \mathbf{s}' \in V_{n+c}$ $\mathbf{s}' \sim_{V_n}^{\Phi} \mathbf{s}$. En particulier, pour chaque partie E de V_n et toute partie E- Φ -libre F de V_n , il existe une partie E- Φ -libre de V_{n+c} de même taille que F.

Preuve du Lemme. Soit $(x, y_1, ..., y_p)$ une énumération des variables admettant au moins une occurrence libre dans un élément de Φ . Considérons la fonction :

$$f: \Gamma \ni \mathbf{t} \longmapsto \left(\underline{\mathbf{t}}_{V}; \ \underline{(\mathbf{t}, \epsilon, \dots, \epsilon)^{\otimes}}_{\varphi}: \ \varphi \in \Phi\right) \in \mathcal{P}(\mathcal{Q}_{V}^{2}) \times \prod_{\varphi \in \Phi} \mathcal{P}(\mathcal{Q}_{\varphi}^{2}).$$

Cette fonction, qui prend ses valeurs dans un ensemble fini, disons de taille c+1, est définie de sorte que pour chaque $n \in \mathbb{N}$:

Affirmation 1. Soit un mot **h** de longueur n. Pour tous **t** et **t**' dans Γ , si $f(\mathbf{t}) = f(\mathbf{t}')$, alors

$$\mathbf{h} \cdot \mathbf{t} \in L_V \Leftrightarrow \mathbf{h} \cdot \mathbf{t}' \in L_V$$
, auquel cas $\mathbf{h} \cdot \mathbf{t} \sim_{V_n}^{\Phi} \mathbf{h} \cdot \mathbf{t}'$.

Preuve de l'Affirmation. Observations (1) et (3) ci-dessus. \Box_{Affirm}

Affirmation 2. Pour chaque $\mathbf{t} \in \Gamma$, existe un \mathbf{t}' dans Γ_c de même image par f.

Preuve de l'Affirmation. Il suffit de constater que pour tout mot \mathbf{t} de longueur strictement supérieure à c, existe un mot strictement plus court de même image par f. Pour constater cela, observer que pour un tel \mathbf{t} , existent $0 \le k < \ell \le |\mathbf{t}|$ tels que $f(\mathbf{t} \upharpoonright k) = f(\mathbf{t} \upharpoonright \ell)$, puis considérer $\mathbf{t}' = (\mathbf{t} \upharpoonright k) \cdot \mathbf{v}$ pour l'unique \mathbf{v} tel que $\mathbf{t} = (\mathbf{t} \upharpoonright \ell) \cdot \mathbf{v}$. \Box_{Affirm}

Maintenant considérons un $\mathbf{s} \in L_V$. Au cas où il n'appartiendrait pas déjà à V_{n+c} , considérer l'unique mot \mathbf{t} tel que $\mathbf{s} = (\mathbf{s} \upharpoonright n) \cdot \mathbf{t}$, puis $\mathbf{s}' = (\mathbf{s} \upharpoonright n) \cdot \mathbf{t}'$ pour un $\mathbf{t}' \in \Gamma_c$ tel que $f(\mathbf{t}') = f(\mathbf{t})$. \square

Preuve de la Proposition 1.1. Soit σ le nombre d'éléments de Σ . Vérifions que la liminf en question est inférieure à σ^c . Supposons, par l'absurde, que pour un certain $t > \sigma^c$ et un $N \in \mathbb{N}$:

$$\forall E \in \mathcal{F}$$
 avec card $E \geqslant N$ ($\forall G \ E - \Phi$ -libre de taille maximum $\exists F \in \mathcal{F}, \ F \subseteq G$ et card $F \geqslant t$ card E)

alors, partant d'un $F_0 \in \mathcal{F}$ tel que card $F_0 \geqslant N$ et étant donné un $n_0 \in \mathbb{N}$ pour lequel $F_0 \subseteq V_{n_0}$, on déduit d'applications répétées du Lemme 4.1 l'existence d'une suite $(F_k: k \in \mathbb{N})$ de \mathcal{F} satisfaisant : $\forall k \in \mathbb{N}$, $F_k \subseteq V_{n_0+kc}$ et card $F_k \geqslant t^k$ card F_0 . Ainsi, comme $F_k \subseteq V_{n_0+kc}$ et que pour tout n card $V_n \leqslant \operatorname{card} \Gamma_n \leqslant (n+1)\sigma^n$, il s'ensuit que $\forall k \in \mathbb{N}$ t^k card $F_0 \leqslant \operatorname{card} F_k \leqslant \operatorname{card} V_{n_0+kc} \leqslant (n_0+kc+1)\sigma^{n_0+kc} \leqslant \sigma^{n_0} \times (n_0+kc+1) \times (\sigma^c)^k$, ce qui conduit à une contradiction (considérer k suffisamment grand). \square

4.2. Indécomposabilité. Preuve de la Proposition 1.2

Preuve de la Proposition 1.2. Considérons une τ -formule $\varphi(x, y_1, ..., y_p)$. Pour chaque $\vec{\mathbf{s}} = (\mathbf{s}_1, ..., \mathbf{s}_p) \in L_V^p$, et tout $\mathbf{h} \in \Gamma$ au moins aussi long que chacun des \mathbf{s}_k , soit

$$f(\mathbf{h}, \vec{\mathbf{s}}) := (\underline{\mathbf{h}}_V, \underline{(\mathbf{h}, \mathbf{s}_1, \dots, \mathbf{s}_p)^{\otimes}}_{\varphi}, \underline{(\mathbf{h}, \dots, \mathbf{h})^{\otimes}}_{\mathcal{R}} : \mathcal{R} \in \tau) \in \mathcal{P}(\mathcal{Q}_V^2) \times \mathcal{P}(\mathcal{Q}_{\varphi}^2) \times \prod_{\mathcal{R} \in \tau} \mathcal{P}(\mathcal{Q}_{\mathcal{R}}^2).$$

Cette fonction f, qui prend ses valeurs dans un ensemble fini, est définie de sorte que :

Affirmation 3. Le type d'isomorphie de $\mathfrak{A} \upharpoonright \varphi(\overline{\mathbf{h} \cdot \Gamma}, \vec{\mathbf{s}})$ ne dépend que de $f(\mathbf{h}, \vec{\mathbf{s}})$.

Preuve de l'Affirmation. Étant donnés deux mots \mathbf{h} et \mathbf{h}' , considérons la bijection $\mathbf{h} \cdot \mathbf{t} \mapsto \mathbf{h}' \cdot \mathbf{t}$ entre $\mathbf{h} \cdot \Gamma$ et $\mathbf{h}' \cdot \Gamma$. Étant donnés deux uplets de mots $\vec{\mathbf{s}}$ et $\vec{\mathbf{s}}'$ tels que $f(\mathbf{h}, \vec{\mathbf{s}}) = f(\mathbf{h}', \vec{\mathbf{s}}')$, il résulte de l'Observation (1) cidessus que cette bijection envoie $L_V \cap (\mathbf{h} \cdot \Gamma)$ sur $L_V \cap (\mathbf{h}' \cdot \Gamma)$, puis de l'Observation (2) qu'il s'agit en fait d'un isomorphisme entre $\mathfrak{A} \upharpoonright L_V \cap (\mathbf{h} \cdot \Gamma)$ et $\mathfrak{A} \upharpoonright L_V \cap (\mathbf{h}' \cdot \Gamma)$; il résulte en outre de l'Observation (3) qu'elle envoie $\varphi(L_V \cap (\mathbf{h} \cdot \Gamma), \vec{\mathbf{s}})$ sur $\varphi(L_V \cap (\mathbf{h}' \cdot \Gamma), \vec{\mathbf{s}}')$; ainsi elle établit un isomorphisme entre $\mathfrak{A} \upharpoonright \varphi(L_V \cap (\mathbf{h} \cdot \Gamma), \vec{\mathbf{s}})$ et $\mathfrak{A} \upharpoonright \varphi(L_V \cap (\mathbf{h} \cdot \Gamma), \vec{\mathbf{s}})$. \square_{Affirm}

Étant donné alors un $\vec{\mathbf{s}} \in L_V^p$, considérer un majorant n de l'ensemble des longueurs des \mathbf{s}_k , puis la partition finie $\varphi(L_V, \vec{\mathbf{s}}) = \dot{\bigcup}_{\{\mathbf{u} \in \varphi(L_V, \vec{\mathbf{s}}): |\mathbf{u}| < n\}} \{\mathbf{u}\} \dot{\cup} \dot{\bigcup}_{\mathbf{h} \in \Sigma^n} \varphi(\overline{\mathbf{h} \cdot \Gamma}, \vec{\mathbf{s}})$. \square

Références

- [1] U. Abraham, R. Bonnet, Hausdorff's theorem for posets that satisfy the finite antichain property, Fund. Math. 159 (1) (1999) 51-69.
- [2] A. Blumensath, Automatic Structures, Diploma Thesis, RWTH, University of Aachen, 1999.
- [3] A. Blumensath, E. Graedel, Automatic structures, in: LICS'00, 2000, pp. 51-62.
- [4] P.W. Carruth, Arithmetic of ordinals with applications to the theory of ordered Abelian groups, Bull. Amer. Math. Soc. 48 (1942) 262-271.
- [5] H. Common, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, M. Tomassi, TATA: Tree Automata and Their Applications, http://l3ux02.univ-lille3.fr/tata/.
- [6] M. Dauchet, S. Tison, The theory of ground rewrite systems is decidable, in: LICS'90, IEEE, 1990, pp. 242-248.
- [7] C. Delhommé, Rado's graph is not automatic, Manuscript, 2001.
- [8] C. Delhommé, Non automaticity of ω^{ω} , Manuscript, 2001.
- [9] C. Delhommé, V. Goranko, T. Knapik, Automatic linear orderings, Manuscript, 2002.
- [10] R. Fraïssé, Theory of relations, in: Stud. Logic, vol. 118, North-Holland, 1986.
- [11] C. Frougny, J. Sakarovitch, Synchronized rational relations of finite and infinite words, Theoret. Comput. Sci. 108 (1993) 45–82.
- [12] B.R. Hodgson, Théories décidables par automate fini, Thèse de doctorat, Université de Montréal, 1976, 171 p.
- [13] B.R. Hodgson, Décidabilité par automate fini, Ann. Sci. Math. Québec 7 (1) (1983) 39–57.
- [14] B. Khoussainov, A. Nerode, Automatic presentations of structures, in: Logic and Comput. Complex., Lecture Notes in Comput. Sci., vol. 960, 1995, pp. 367–392.
- [15] B. Khoussainov, S. Rubin, F. Stephan, On automatic partial orders, Manuscript, 2003.