ABSTRACT

An accident is an unexpected and unwanted event. One of the primary causes of car accidents is speed. Many lives could be saved if rescue services received accident information and responds to it quickly. Human lives became simpler with the emergence of technology and infrastructure. Given the concerning growth in the number of accidents occurring in India, this method ensures that authorities are notified prior to an accident or at the moment of the event. The advancement of technology has also resulted in an increase in traffic dangers and road accidents which result in huge loss of life and property due to inadequate emergency services. The failure to receive timely care is the leading cause of mortality in traffic accidents accounting for half of all fatalities. Since, after an accident every second counts and immediate action is required to avoid the death of a person, intelligent transportation systems have lately evolved as a powerful means of improving the interpretation of transportation systems and promoting travel safety. One of the most effective technologies is accident detection systems so that the rate of death in road accidents can be decreased by treating the victims as soon as possible. This article is based on computer vision which is an emergency alert system built on python which uses object tracking techniques to detect the occurrence of an accident. An efficient automatic accident detection system featuring automated reporting of the accident site to emergency responders is critical for saving valuable human life. This system intends to identify accidents beforehand and communicate the information to emergency responders in order to give rapid aid to the wounded individual. The research work purpose is to determine the severity of an accident and to warn the rescue crew in time.

TABLE OF CONTENTS

		Page No.
	Abstract	
	List of Figures	i
	List of Tables	ii
1.	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Problem Definition	1
	1.3 Objective of project	1
	1.4 Limitation of project	2
2.	LITERATURE SURVEY	2
	2.1 Introduction	2
	2.2 Existing System	3
	2.3 Proposed System	4
3.	SYSTEM ANALYSIS	5
	3.1 Functional requirements	5
	3.2 Non-Functional requirements	6
	3.3 Software requirements	6
	3.4 Hardware requirements	7
4.	SYSTEM DESIGN	8
	4.1 Introduction	8
	4.2 Modules	8
	4.3 Dataflow Diagram	10
	4.4 UML Diagrams	12
5.	IMPLEMENTATION & RESULTS	17
	5.1 Introduction	17
	5.2 Method of Implementation	29
	5.3 Algorithm and Flowcharts	31
	5.4 Sample Code	34
	5.5 Output Screens	40

6.	TESTING	43
	6.1 Introduction to Testing	43
	6.2 Types of Tests considered	43
	6.3 Various Test case scenarios considered	45
7.	CONCLUSION AND FUTURE ENHANCEMENT	48
	7.1 Project Conclusion	48
	7.2 Future Enhancement	48
8.	REFERENCES	49

LIST OF FIGURES

S. No.	Figure No.	Name of the Figure	Page No
1	4.1	System architecture	8
2	4.3.1	Data flow diagram(level 0,1,2)	10-11
3	4.4.1	Usecase diagram	13
5	4.4.2	Class diagram	14
6	4.4.3	Sequence diagram	15
7	4.4.4	Activity diagram	16
8	5.1	Bar Graph	23
9	5.2	Pie Chart	23
10	5.3	Box Plot	24
11	5.4	Histogram	25
12	5.5	Subplot	25
13	5.6	Scatter Plot	26
14	5.7	Violin Plot	27
15	5.8	Heat Map	28
16	5.9	pair Plot	28
17	5.5.1	Input for the execution	40
18	5.5.2	showing the frames being loading	40
19	5.5.3	Frames being extracted from the images	41
20	5.5.4	hough graph after edge detection	41
21	5.5.5	First Image In Accident Detection	42
22	556	Output Image	42

LIST OF TABLES

S. No.	Table No.	Name of the Table	Page No.
1.	6.3	Test case for proposed system	47