Summer 2016

Test #1

Thursday, June 9 2016

NAME:	
	_

Please write clearly and properly.

Problem	Grade
1	
2	
3	
4	
5	
6	
Total	

Problem 1. For each $r \in \mathbb{R}^+$, let A_r denote the interval $[1/r, +\infty)$ in \mathbb{R} .

(1)	What are the intervals A_1 , A_2 , A_3 , $A_{1/2}$, $A_{1/3}$?
(2)]	Is it true that $r > r' \Rightarrow A_r \subseteq A_{r'}$? Explain.
(3) 1	Let $S = \{1, 2, 3\}$. Describe $\bigcup_{r \in S} A_r$ and $\bigcap_{r \in S} A_r$.
(4) I	Let $S = \{1, 1/2, 1/3\}$. Describe $\bigcup_{r \in S} A_r$ and $\bigcap_{r \in S} A_r$.

Summer 2016

Let $S = \mathbb{N}$. Describe $\int_{r \in \mathbb{R}} r dr$	- '	A_r .			
Let $S = \{1$	$\{n, n \in \mathbb{N}\}.$ I	Describe ($\int_{-\infty}^{\infty} A_r$ and	$\bigcap_{r} A_r$.		
		$r\in$: S	$r \in S$		
olem 2. Give	e an example	of a subse	t of $\mathbb{R} \times \mathbb{R}$	which is	a Cartesia	n product
which is not	•					
						1

Summer 2016

Problem 3. Write the truth table of each of the following statements:

$$P\Rightarrow Q\;;\;Q\Rightarrow P\;;\;(\sim Q)\wedge P\;;\;(\sim P)\vee Q\;;\;(\sim P)\Rightarrow (\sim Q)$$

Which are logically equivalent?

(1) P: Alice has blond hair

21:640:238 **Foundations of Modern Math**

Summer 2016

Problem 4. Is P a necessary condition for Q, a sufficient condition for Q, neither, both? No explanation is required.

Q: Alice has hair

(2) P : Bob likes some European countries Q : Bob likes France	
(3) P : Pat used to be an athlete Q : The Queen of England is a horse	
$(4) P: (R \Rightarrow S) \qquad Q: (R \lor S)$	
Problem 5. Are the following statements tautologies, contradictions, or neit Explain briefly.	her?
$(1) P \vee P$	
$(2) \ (\sim P) \Leftrightarrow P$	
$(3) P \lor (P \Rightarrow Q)$	
$(4) \ Q \Rightarrow (\sim Q)$	

Summer 2016

Problem 6. For each of the following open statements P(x) over the domain D, give the set $S \subseteq D$ such that P(x) is true if and only if $x \in S$. No explanation is required.

- (0) Example. P(x): x is prime. $D = \{n \in \mathbb{N} : n < 20\}$. Answer: $S = \{2, 3, 5, 7, 11, 13, 17, 19\}$.
- (1) $P(x): x^2 = 4$. $D = \mathbb{Z}^+$. Answer: S =
- (2) P(x): The heir to the English throne is a x. $D = \{\text{horse, mammal, bird}\}$. Answer: $S = \{\text{horse, mammal, bird}\}$
- (3) $P(x): (1+x)^2 = 1 + 2x + x^2$. $D = \mathbb{R}$. Answer: S =
- (4) P(x): |x| = 2. $D = \mathcal{P}(\{\clubsuit, 7, \Omega, \odot\})$. Answer: S =
- (5) $P(x): x \subseteq \mathbb{Q}$. $D = \{\mathbb{N}, \mathbb{Z}^-, 2.6\}$. Answer: S =
- (6) $P(x): x > 3 \Rightarrow x^2 > 9$. $D = \mathbb{R}$. Answer: S =
- (7) $P(x): x \ge 3 \Rightarrow x^2 > 9$. $D = \mathbb{R}$. Answer: S =
- (8) P(x): If some birds are x, then the sun is blue. $D = \{\text{pigeons, mammals, white}\}$. Answer: $S = \{\text{pigeons, mammals, white}\}$