REopt: Renewable Energy Integration & Optimization

Link to Results Page

Results for Your Site

Your site at Blue Lake CA USA evaluated on June 9, 2020

These results from REopt lite summarize the most cost-effective combination of PV, wind, battery storage and/or diesel generator designed to sustain a critical load at your site. You can edit your inputs to see how changes to your energy strategies affect the results.

Your recommended solar installation size

91 kW

Measured in kilowatts (kW) of direct current (DC), this recommended size minimizes the life cycle cost of energy at your site.

This optimized size may not be commercially available. The user is responsible for finding a commercial product that is closest in size to this optimized size.

Your recommended battery power and capacity

16 kW battery power

105 kWh battery capacity

This system size minimizes the life cycle cost of energy at your site. The battery power (kW-AC) and capacity (kWh) are optimized for economic performance.

This optimized size may not be commercially available. The user is responsible for finding a commercial product that is closest in size to this optimized size.

Your potential life cycle savings (25 years)

This is the net present value of the savings (or costs if negative) realized by the project based on the difference between the total life cycle costs of doing business as usual compared to the optimal case.

\$131,696

Your Potential Resilience

This system sustains the 50% critical load during the specified outage period, from October 23 at 6 pm to October 26 at 6 pm.

This system sustains the critical load for 56% of all potential 72 hour outages throughout the year.

System survives specified 72-hour outage

System survives 56% of 72-hour outages

System Performance Year One

System Performance Year One

This interactive graph shows the dispatch strategy optimized by REopt Lite for the specified outage period as well as the rest of the year. To zoom in on a date range, click and drag right in the chart area or use the "Zoom In a Week" button. To zoom out, click and drag left or use the "Zoom Out a Week" button.

\$ Resilience vs. Financial

Resilience Benefits

This system was designed to sustain the critical load during the outage period specified at lowest cost. The results below show how the system performs during outages occurring at other times of the year. Outages are simulated starting at every hour of the year and amount of time the system can sustain the critical load during each outage is calculated. The resilient system is compared to the business as usual system and a system designed for maximum financial benefits.

	Business As Usual	Resilience	Financial
System	None	91 kW PV	84 kW PV
		16 kW Battery	8 kW Battery
		105 kWh Battery	38 kWh Battery

NPV	\$0	\$131,696	\$142,061
Survives Specified Outage	No	Yes	No
Average	0 hrs	237 hrs	8 hrs
Minimum	0 hrs	1 hrs	0 hrs
Maximum	0 hrs	1,278 hrs	64 hrs

Outage Simulation

Evaluate the amount of time that your system can survive grid outages.

⊞ Results Comparison

Results Comparison

These results show how doing business as usual compares to the optimal case.

	Business As Usual	Resilience	Financial
System Size, Energy Production, and System Cost			
PV Size	0 kW	91 kW	84 kW
Annualized PV Energy Production	0 kWh	103,053 kWh	94,452 kWh
Battery Power	0 kW	16 kW	8 kW
Battery Capacity	0 kWh	105 kWh	38 kWh
Net CAPEX + Replacement + O&M	\$0	\$175,293	\$107,790
Energy Supplied From Grid in Year 1	138,801 kWh	49,210 kWh	61,319 kWh
Year 1 Utility Cost — Before Tax			

Utility Energy Cost	\$40,156	\$10,989	\$14,546
Utility Demand Cost	\$0	\$0	\$0
Utility Fixed Cost	\$22	\$22	\$22
Utility Minimum Cost Adder	\$0	\$0	\$0
Life Cycle Utility Cost — After Tax			
Utility Energy Cost	\$384,779	\$105,294	\$139,380
Utility Demand Cost	\$0	\$0	\$0
Utility Fixed Cost	\$207	\$207	\$207
Utility Minimum Cost Adder	\$0	\$0	\$0
Total System and Life Cycle Utility Cost — After Tax			
Total Life Cycle Costs	\$384,986	\$253,290	\$247,377
Net Present Value	\$0	\$131,696	\$142,061

III Effect of Resilience Costs & Benefits

Effect of Resilience Costs and Benefits

This interactive waterfall chart allows the user to consider the cumulative effect of extra costs and benefits of increased resilience on the project's net present value (NPV). Upgrading the recommended system to a microgrid allows a site to operate in both grid-connected and island-mode. This requires additional investment, which may include extra equipment such as controllers, distribution system infrastructure and communications upgrades. Economic benefit is observed when the value of avoiding the costs of an outage are considered. These microgrid upgrade costs and avoided outage costs are not factored into the optimization results. The sliders under the chart allow the user to change the Microgrid Upgrade Cost and the Avoided Outage Costs to analyze the impact on the NPV after Microgrid Costs and Benefits, while the NPV Before Microgrid Investment, which is determined by the optimization results, remains static.

Microgrid Upgrade Cost

Your Inputs

The results are based on the following inputs.

Site and Utility		
Site name	N/A	
Site Location	Blue Lake, CA, USA	
Latitude	40.88290720000001	
Longitude	-123.9839488	
Land available (acres)	Unlimited	
Roofspace available (sq ft)	Unlimited	
Typical load profile type	simulated	
Type of building	Strip Mall	
Annual energy consumption (kWh)	140,000	
URDB rate	Pacific Gas & Electric Co - A-6 Small General Service TOU Meter Charge (W)	
Analysis focus	resilience	
Analyze PV	yes	
Analyze battery	yes	
Analyze wind	no	
Analyze generator during outage	no	

Financial Financial		
Analysis period (years)	25	
Host discount rate, nominal (%)	8.3%	
Host effective tax rate (%)	26%	
Electricity cost escalation rate, nominal (%)	2.3%	
O&M cost escalation rate (%)	2.5%	

PV	
System capital cost (\$/kW)	\$1,600
O&M cost (\$/kW per year)	\$16
Minimum new PV size (kW DC)	0
Maximum new PV size (kW DC)	Unlimited

Module Type	Standard	
Array Type	Rooftop, Fixed	
Array azimuth (deg)	180	
Array tilt (deg)	10	
DC to AC size ratio	1.2	
System losses (%)	14%	
Net metering system size limit (kW)	N/A	
Wholesale rate (\$/kWh)	N/A	
Federal percentage-based incentive (%)	26%	
Federal maximum incentive (%)	Unlimited	
Federal rebate (\$/kW)	\$0	
Federal maximum rebate (\$)	Unlimited	
State percentage-based incentive (%)	0%	
State maximum incentive (\$)	Unlimited	
State rebate (\$/kW)	\$0	
State maximum rebate (\$)	Unlimited	
Utility percentage-based incentive (%)	0%	
Utility maximum incentive (\$)	Unlimited	
Utility rebate (\$/kW)	\$0	
Utility maximum rebate (\$)	Unlimited	
Production incentive (\$/kWh)	\$0	
Incentive duration (years)	1	
Maximum incentive (\$)	Unlimited	
System size limit (kW)	Unlimited	
MACRS bonus depreciation	100%	
MACRS schedule	5 years	
Existing PV systems size (kW)	N/A	
Type of load profile	N/A	
Battery Page 1997		
Energy capacity cost (\$/kWh)	\$420	
Power capacity cost (\$/kW)	\$840	
1 2 11 01 04 p 2011 (4/ 1111)	•	

\$200

10

Energy capacity replacement cost (\$/kWh)

Energy capacity replacement year

Power capacity replacement cost (\$/kW) \$410

Power capacity replacement year	10
Minimum energy capacity (kWh)	0
Maximum energy capacity (kWh)	Unlimited
Minimum power capacity (kW)	0
Maximum power capacity (kW)	Unlimited
Rectifier efficiency (%)	96%
Round trip efficiency (%)	97.5%
Inverter efficiency (%)	96%
Minimum state of charge (%)	20%
Initial state of charge (%)	50%
Allow grid to charge battery	Yes
Total percentage-based incentive (%)	0%
Total rebate (\$/kW)	\$0
MACRS schedule	7 years
MACRS bonus depreciation	100%

Resilience		
Outage Start Date	Oct 23	
Outage start time	6 pm	
Outage duration (hours)	72	
Type of outage event	Typical Outage - Occurs annually	
Critical load profile type	Percent	
Critical load factor	50%	

A Caution

▲ Caution

These results assume perfect prediction of both solar irradiance, wind speed, and electrical load. In practice, actual savings may be lower based on the ability to accurately predict solar irradiance, wind speed, and load, and the battery control strategy used in the system. And, when modeling an outage the results assume perfect foresight of the impending outage, allowing the battery system to charge in the hours leading up the outage.

The results include both expected energy and demand savings. However, the hourly model does not capture inter-hour variability of the PV and wind resource. Because demand is typically determined based on the maximum 15-minute peak, the estimated savings from demand reduction may be exaggerated. The hourly simulation uses one year of load data and one year of solar and wind resource data. Actual demand charges and savings will vary from year to year as load and resource vary.

Photovoltaic system performance predictions calculated by PVWatts® include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by inputs. For example, PV modules with better performance are not differentiated within PVWatts® from lesser performing modules.

Next Steps

This model provides an **estimate** of the techno-economic feasibility of solar, wind, and battery, but investment decisions should not be made based on these results alone. **Before moving ahead with project development, verify:**

- · The utility rate tariff is correct.
 - o Note that a site may have the option or may be required to switch to a different utility rate tariff when installing a PV, wind, or battery system.
 - Contact your utility for more information.
- · Actual load data is used rather than a simulated load profile.
- PV, wind, and battery costs and incentives are accurate for your location.
 - o There may be additional value streams not included in this analysis such as ancillary services or capacity payments.
- Financial inputs are accurate, especially discount rate and utility escalation rate.
- · Other factors that can inform decision-making, but are not captured in this model, are considered. These may include:
 - roof integrity
 - o shading considerations
 - o obstacles to wind flow
 - o ease of permitting
 - o mission compatibility
 - o regulatory and zoning ordinances
 - o utility interconnection rules
 - o availability of funding.
- Multiple systems integrators are consulted and multiple proposals are received. These will help to refine system architecture and projected costs and benefits. REopt results can be used to inform these discussions.

Contact NREL at reopt@nrel.gov for more detailed modeling and project development assistance.