Masovno otkrivanje dokumenata sličnih duplikata

Verzioniranje:

- Različite verzije jednog dokumenta
 - o Revizije, različiti formati ...

Zrcaljenje

- Objavljeno na više mjesta

Plagiranje

- Identična ili obrađena kopija

Štetni sadržaj

- Virusi, spam, ...

Skalabilno rješenje:

- Dokumenti i repozitoriji dokumenata su ogromni
 - o Internet
 - o Domena specifičnih tekstova
 - o Logovi
 - o ...

CheckSumming

- Kriptografske hash funkcije
- MD5, SHA1, SHA2, ...

Hvata i najmanje uređivanje

- Dobro za detekciju identičnih kopija
- Nije dobro za detekciju sličnih duplikata

DETEKCIJA SLIČNIH DUPLIKATA

Dvije metode:

- Fingerprinting (identifikacija)
 - o Hashiranje dokumenta
- Rangiranje
 - o Tehnike pronalaženja informacija

FINGERPRINTING

Sličnost čuvajući raspršivanje

- X, skup ulaza
- d_x, funkcija udaljenosti nad X
 - o x1, x2 elements of X
- sličnost čuvajući hash funkciju
 - \circ h: X \rightarrow Y
 - \circ |Y| < |X|
- d_y, funkcija udaljenosti nad Y
- slični ulazi imaju slične hash vrijednosti

if
$$d_x(x1, x2) < \varepsilon_x$$
, onda

$$dy(h(x1), h(x2)) < \varepsilon y$$

- primjer:
 - \circ h(,,text1") = 0xaaaf
 - \circ h(,,text2") = 0xaaae

Simhash algoritam

- Tehnika identifikacije
 - Identifikacija sličnih duplikata razlikuje se u malom broj pozicija bit-ova (hamingova udaljenost)
- Smanjenje dimanzionalnosti
 - o Mape visoko-dimenzionalnih vektora za male fingerprintove (fbits)
- Veličina fingerprinta (fsize)
 - o f je malen i proizvoljan

Računanje simhash-a za f=4

Ponderirana Simhash računanja

- Dodjela faktora težine na svaku novu značku

Izbor hash funkcije h

- Jedinstvena distribucija
- Brzina
- Kandidati: kriptografske hash funkcije
 - o MD5(128bit), SHA-1(256bit)
- Vlastite hash funkcije sa duljinom varijable

Ulazni vektor

- Fokus na sirovom tekstu dokumanata
- Konvertira dokument u oblikovni vektor
- Prikupljanje podataka
 - Tokenizacija (shingling)
 - Unigrami, 2-grami, 3-grami
 - o Proizlazi
 - Uklanjanje točke
 - o Detekcija fraza
 - 0 ..

"lorem ipsum dolor sit amet"

- "lorem", "ipsum", "dolor", "sit", "amet"
- "lorem ipsum", "ipsum dolor", "dolor sit", "sit amet"
- "lor", "ore", "rem", "em ", "m i", ...

- Shingling
 - o Hash k-grama
 - o k-grami
 - Znakovi, riječi, rečenice
 - \circ k = ?
 - malen k: tazličiti dokumenti se pojavljuju slično
 - velik k: slični dokumenti izgledaju različito
 - oblikovni vektor iz IR izlaza
 - Ponderirana sa IDF
 - inverzna učestalost dokumenta
 - može se promijeniti kada se promijene kolekcije
 - Informacije povezivanja
 - Struktura poveznica (slične stranice imaju zajedničke poveznice)
 - Sidreni tekst
 - Slični dokumenti bi trebali imati sličan sidreni tekst (poveznice)

BRZI UPITI

- F kolekcija f-bit fingerprintova
- Q upit
 - o Jedinstveni ii skup fingerprintova
- Zadatak
 - Identificirati kad god se Q razlikuje od ijednog fingerprinta F u najviše k bitova
- Google numbers
- 8B 64-bitni fingerprintovi = 64Gb
- Online upiti
 - \circ Q = jedan fingerprint
 - o Ograničenja: nekoliko milisekundi
- Skupni upiti
 - \circ Q = skup fingerprintova
 - e.g |Q| = 1M
 - o Ograničenja: ~100sekundi
 - 1B upita po danu

Prvi pristup:

- Napravi sortiranu tablu F-ova
- Napravi listu Q' sa svim fingerprintovima čija je hamingova udaljenost od Q najviše k

$$|\mathbf{Q}| = \binom{64}{3} = 41664$$

Drugi pristup

- Napravi sortiranu tablicu F-ova
- Nađi skup fingerprintova (F') koji imaju jednako najviše značajnih djelova (p bitova)
 - Sortirana tablica binarna pretraga 0(p).
- Provjeri hamingovu udaljenost za svaki fingerprint iz F'
- Ovaj pristup će locirati sve fingerprintove u F koji se razlikuju u najviše k bitova
 - Ograničeno na najmanje značajnih f-p bitova!

- Zamijenit žutu i plavu, + sort

Rješenje:

- Izgraditi dodatne tablice
 - Svaka sa različitom permutacijom bitova
 - Svaka tablica ima različit skup značajnih bitova
- Algoritam za brze (online) upite
 - o Napravi t sortiranih tablica od fingerprintova: T1, T2, ..., Tt
 - Svaka tablica Ti sadrži
 - Pi broj značajnih bitova
 - Πi random permutacija
 - O Svaki fingerprint u Ti je permutran sa permutacijom Πi

Za dane Q i k

- Pročitaj svaku tablicu (u paraleli)
 - Dohvati fingerprintove u Ti čiji se značajni Pi bitovi podudaraju sa značajnim Pi bitovima od Πi(Q)
 - Ti'
 - O(Pi) koraka (binarna pretraga)
 - Za svaki fingerprint u Ti', provjeri je li njegova hamingova udaljenost najviše k bitova od Πi(Q)
- Primjer sa t=20, f=64, k=3, |F| = 8B
 - o Podjeli f u 6 blokova (4x11 + 2x10 bitova)
 - Odaberi 3 od 6 blokova (6povrh 3) = 20 putanja
 - o Posloži te blokove kao značajne bitove
 - o P=zbroj tih bitova
 - 31,32 ili 33
 - U prosjeku upit vraća 2³⁴⁻³¹=8 fingerprintova
 - o t i p parametri
 - t ~ p
 - vrijeme upita ~ 1/p
 - zahtjevi za pohranu ~ p
 - prostor/vrijeme
 - analitička solucija za t

Skupni upiti koristeći MapReduce i GFS

- F i Q su datoteke u GFS(sa replikacijom)
- $F \sim 64GB$, $Q \sim 8MB$
- F je spremljen u GFS komadima
- Broj mapera = broj F komada
- Map:
 - Rješava hamingovu udaljenost za komad (64Mb) i emitira listu sličnih duplikata
- Reduce:
 - o Uklanja duplikate