***4.1** Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = \sum m(1, 2, 3, 5)$.

x x	75 00	ol	1.1	10	
0	0				
ι	0	(1)	0	0	
	Sop	: f(x	1, 12, 763	$(x) = \overline{x}_2 \chi$	3+ 71 X

0	(0)	1	1	1	
I	0	1	0	0	
P	os	<u>Ē</u> (x,	•		3 + ×1×2
			f = .	·元73 +	$\overline{\chi_1 \chi_2} = (\chi_2 + \chi_3) (\overline{\chi_1} + \overline{\chi_2})$

01

***4.2** Repeat problem 4.1 for the function $f(x_1, x_2, x_3) = \sum m(1, 4, 7) + D(2, 5)$.

4.3 Repeat problem 4.1 for the function $f(x_1, ..., x_4) = \Pi M(0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 15).$

= (x1+ x2)(x2+ x3)(x1+x3)

4.4 Repeat problem 4.1 for the function $f(x_1, ..., x_4) = \sum m(0, 2, 8, 9, 10, 15) + D(1, 3, 9, 10, 15)$

×3	LIQ CLON	C) \	1	10					
X1X2 00	1	וט	7	,					
	<u> </u>	υ	رلا	1					
01	0	0	Ð	D					
(1	0	0	1	0					
10	١	l	0	١					
- = ×	2 \(\bar{\chi_3} \)	+	/ \ \ \Z_	7 4 -	+	₹ ₂	х, ж	1	
$f = \hat{x}$	(2×3 -	+ x2 x	4 +	$\overline{\bar{x}_2} x_3$	74				
)(7 2				3 +	74)	<u>_</u>	. Pos

*4.9 A four-variable logic function that is equal to 1 if any three or all four of its variables are equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements this majority function.

А	В	С	D	F
0	0	0	0	0
0	0	0	1	0

$$F = \sum m(7, 11, 13, 14, 15)$$

Α	В	L	U	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$Ab \begin{pmatrix} 00 & 01 & 11 & 10 \\ 00 & 01 & 11 & 10 \\ 01 & 0 & 0 & 0 \\ 01 & 0 & 0 & 1 & 0 \\ 11 & 0 & 1 & 1 & 1 \\ 10 & 0 & 0 & 1 & 0 \end{pmatrix}$$

4.10 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

メ	χı	×3	744	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$f = \varkappa_1 \varkappa_2 \overline{\varkappa}_3 + \varkappa_1 \overline{\varkappa}_2 \varkappa_4 + \varkappa_1 \varkappa_3 \overline{\varkappa}_4 + \overline{\varkappa}_1 \varkappa_2 \varkappa_3 + \overline{\varkappa}_1 \varkappa_3 \varkappa_4 + \varkappa_2 \overline{\varkappa}_3 \varkappa_4$$

24 /2/2 24 3	x400/	01	11	10
00	0	0)	1 (0
01	0	1	1	1
11	1	1 (0)	1
10	0	1	1	1
) [

$$\widetilde{f} = \overline{\chi}_{1} \overline{\chi}_{2} \overline{\chi}_{3} + \overline{\chi}_{1} \overline{\chi}_{3} \overline{\chi}_{4} + \overline{\chi}_{2} \overline{\chi}_{3} \overline{\chi}_{4} + \overline{\chi}_{1} \overline{\chi}_{2} \overline{\chi}_{4} + \overline{\chi}_{1} \overline{\chi}_{2} \overline{\chi}_{4} + \overline{\chi}_{1} \overline{\chi}_{2} \overline{\chi}_{4} + \overline{\chi}_{1} \overline{\chi}_{2} \chi_{3} \chi_{4}$$

$$\int = (\chi_{1} + \chi_{2} + \chi_{3}) (\chi_{1} + \chi_{3} + \chi_{4}) (\chi_{2} + \chi_{3} + \chi_{4}) (\chi_{1} + \chi_{2} + \chi_{4}) (\overline{\chi}_{1} + \overline{\chi}_{2} + \overline{\chi}_{4})$$

POS is the orst-minimum function.

*4.14 Implement the logic circuit in Figure 4.23 using NAND gates only.

$$\mathcal{J} = \frac{x_{1}\overline{x_{2}} + \overline{x_{1}}x_{2}}{\overline{x_{1}}\overline{x_{2}} + \overline{x_{1}}x_{2}} = \overline{x_{1}\overline{x_{2}}} = \overline{x_{1}\overline{x_{2}}}$$

$$= \overline{x_{1}(\overline{x_{1}} + \overline{x_{2}}) \cdot (\overline{x_{1}} + \overline{x_{2}})x_{2}} = (x_{1} \uparrow (\overline{x_{1}} + \overline{x_{2}})) \uparrow (x_{2} \uparrow (\overline{x_{1}} + \overline{x_{2}}))$$

$$= (x_{1} \uparrow (x_{1} \uparrow x_{2})) \uparrow ((x_{1} \uparrow x_{2}) \uparrow x_{2})$$

I is a NAND operator.

$$f = \chi_3 g + \bar{g} \chi_4 = \overline{\chi_3 g + \bar{g} \chi_4} = \overline{\chi_3 g} \cdot \bar{g} \chi_4 = (\chi_3 + g) \uparrow ((3 \uparrow g) \uparrow \chi_4)$$

***4.15** Implement the logic circuit in Figure 4.23 using NOR gates only.

Finally, == st

***4.21** Find the minimum-cost circuit for the function $f(x_1, \ldots, x_4) = \sum m(0, 4, 8, 13, 14, 15)$. Assume that the input variables are available in uncomplemented form only. (Hint: use functional decomposition.)

$$\frac{1}{\sqrt{1 + x_2}} = \frac{1}{\sqrt{x_3}} \frac{1}{\sqrt{x_4}} + \frac{1}{\sqrt{x_2}} \frac{1}{\sqrt{x_3}} \frac{1}{\sqrt{x_4}} + \frac{1}{\sqrt{x_2}} \frac{1}{\sqrt{x_4}} \frac{1}{\sqrt{x_4}} \frac{1}{\sqrt{x_4}} + \frac{1}{\sqrt{x_4}} \frac{1}{\sqrt{x_4}} \frac{1}{\sqrt{x_4}} \frac{1}{\sqrt{x_4}} + \frac{1}{\sqrt{x_4}} \frac{1}{\sqrt{x_4}$$

 $= \overline{x_1 + x_2} + \overline{x_1 + \overline{x_2}}$ $= (\overline{x_1} \downarrow x_2) + (x_1 \downarrow \overline{x_2})$