Roll No.:

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch

: ECE

Semester

: VIth

Title of the Course

: Basic of VLSI

Course Code

: ECB 351

Time

: 3 Hours

Maximum Marks : 50

Note: All questions are compulsory.

1. Briefly explain the following with suitable diagrams

10

- (a) Channel length modulation
- (b) Short channel effects
- (c) Rise time, Fall time, Delay time
- (d) BiCMOS technology
- (e) 6T SRAM cell
- 2. Calculate the threshold voltage V_{T0} at $V_{SB} = 0$, for a polysilicon gate n-channel MOS transistor, with the following parameters: substrate doping density $N_A = 4 \times 10^{18}$ cm⁻³, polysilicon gate doping density $N_D = 2 \times 10^{20}$ cm⁻³, gate oxide thickness $t_{ox} = 16\text{\AA}$, and oxide-interface fixed charge density $N_{ox} = 4 \times 10^{10}$ cm⁻². Assume $n_i = 1.45 \times 10^{10}$ cm⁻³ and Fermi potential of polysilicon gate is 0.55 V.
- 3. Consider the circuit shown in figure 1 below.

6

6

5

- (a) Determine the logic function F.
- (b) Design a circuit to implement the same logic function by NOR gates in the transistor-level schematic using pseudo nMOS technology.
- (c) Design a circuit to implement the same logic function, in the transistor-level schematic using CMOS technology.

- 4. Consider a CMOS inverter circuit with the following parameters: $V_{DD} = 3.3 \text{ V}, V_{TO, n} = 0.6 \text{ V}, V_{TO, p} = -0.7 \text{ V}, k_n = 200 \text{ }\mu\text{A/V}^2, k_p = 80 \text{ }\mu\text{A/V}^2.$ Calculate the noise margins of the circuit. Notice that the CMOS inverter being considered here has $k_R = 2.5$ and $V_{TO, n} \neq |V_{TO, p}|$ hence, it is not a symmetric inverter.
- 5. Explain CMOS Transmission gates. Determine the equivalent resistance in different regions of operations.

5

8

6. Consider the domino CMOS circuit shown in figure 2 below. Using the input voltage waveforms illustrated in figure 3, determine the output voltage waveform.

7. Design a circuit to implement the truth table shown in figure 4 below.

Figure 4

S	R	Q	ā
o	1	1	0
1	0	0	1
1	1	Q	₫

8. A single transistor DRAM cell is represented by the circuit diagram in figure 5 below. The bit line can be precharged to V_{DD}/2 by using a clocked precharge circuit. Also the WRITE circuit is assumed here to bring the potential of the bit line to V_{DD} or 0V during the WRITE operation with word line at V_{DD}. Using the parameters given

- (a) Find the maximum voltage across the storage capacitor Cs after WRITE-I operation, i.e., when the bit line is driven to $V_{DD} = 5V$.
- (b) Assuming zero leakage current in the circuit, find the voltage at the bit line during READ-operation after the bit line is first precharged to $V_{\rm DD}/2$