UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/05

Paper 5 (Practical 2), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

MARK SCHEME

Skill	Total marks	Breakdown of	marks	Question 1	Question 2
			Marks		
Planning	15 marks	Defining the problem	5	5	0
		<u>Methods</u>	10	10	0
Analysis,	15 marks	Dealing with <u>data</u>	8	0	8
conclusions and evaluation		<u>Evaluation</u>	4	1	3
		Conclusion	3	0	3

Question	Sections	Indicative material	Mark
1 (a)	PLAN Problem	Use of ion size and ionic charge or charge density to predict decreasing $\Delta H_{\rm soln}$ for LiOH to CsOH (Do not give this mark if reference is to size of atom rather than ion)	1
		Correct sketch for <u>candidate predicted trend.</u> Accept any appropriate downward or upward trend. Points alone are sufficient.	1
		If no trend is predicted in the first part of (a) the second mark can be given for a downward trend.	
1 (b)	PLAN Problem	 Independent variable accept any of the following; 1. mass/weight/moles/amount of MOH (not metal), 2. "which MOH used", 3. Group I hydroxide. 	1
		 Dependent variable accept any of the following; 1. temperature rise/change, 2. heat produced/energy change, 3. ΔH_{soln}. 	1
		 Controlled variable accept either of the following; 1. volume/weight of water, (not amount) 2. mass of hydroxide – only allowed if "which hydroxide" is given as the independent variable. 	1

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

Question	Sections	Indicative material	Mark
1 (c)	PLAN Methods	Apparatus diagram showing (insulated) container and thermometer. Non-insulated beaker is acceptable. (Do not give this mark if there is a Bunsen or a water bath)	1
	ACE Evaluation	 Give one mark for any two of the following; 1. solid absorbing water vapour, 2. heat loss from apparatus, (accept open cup/calorimeter) (conduction, convection and radiation are treated as separate errors) 3. loss of material – solution overflows or spray, 4. inaccurate temperature measurement, 5. small temperature rise. Do not give this mark for reference to laboratory temperature or draughts in the laboratory.	1
	PLAN Methods	Give one mark for any two of the following - if linked to the source of error above; 1. keep weighed solid in closed container or use as soon as weighed (not kept under oil or in a vacuum) 2. practical improvement to insulation, 3. larger container or smaller quantities used, (accept use of lid for minimising spray) 4. more accurately calibrated thermometer, 5. use larger mass of the hydroxide or smaller volume of water. (Give one of these two marks for one error and step to minimise	1
		the error)	
1 (d)	PLAN Methods	Identify the corrosive nature of the solid/aqueous hydroxides. If corrosive is identified as the hazard give this mark for using gloves or	1 1
		If solution boils over or sprays out but is not described as corrosive give this mark for using two of gloves, lab coat, eye protection, (face) mask	

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

Question	Sections	Indicative material	Mark
1 (e)	PLAN Methods	1. weighs a stated mass of named hydroxide. mass to be between 0.05 mol and 0.25 mol (See appendix) and candidate describes the weighing of the solid (two possible methods) (i) empty bottle/empty (plastic) cup; and bottle + solid/(plastic) cup + solid (ii) bottle + solid and bottle + residual solid	1
		2. measures between 50 cm³ and 200 cm³ of water and describes the measurement of the volume (measuring cylinder, burette, pipette) (apparatus for measuring the water and the volume used may be shown in the diagram) (A larger or smaller volume of water can be accepted if it is related to a specified capacity container. e.g. 400 cm³ water in 500 cm³ beaker 30 cm³ water in 50 cm³ beaker)	1
		3. Initial and highest temperatures recorded	1
		4. Step by step procedure described Minimum steps required: Weigh solid, specified/measured volume of water and measured temperature rise	1
1 (f)	PLAN Methods	Table showing metal hydroxides two weighings - unless tare specified, initial and final temperatures. Ignore units . Do not give this mark if candidate lists metals for the experiment rather than the metal hydroxides unless the column is headed "metal hydroxide" / "hydroxide" or metals have been penalised in (e) . If weighings are missing in (e) the mark can be given in (f) if the mass of metal hydroxide is tabulated. If temperature readings are missing in (e) the mark can be given in (f) if ΔT is tabulated.	1

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

Question	Sections	Indicative material	Mark
1 (g)	PLAN Methods	Shows how enthalpy change of solution is calculated for one hydroxide using $\frac{\mathbf{mc}\Delta T}{\mathbf{moles}}$ Be certain that \mathbf{m} refers to liquid and \mathbf{not} solid or liquid + solid To gain this mark there must be an expression for converting mass of metal hydroxide to moles, including the correct numerical value for the appropriate M_r . This calculation or numerical evidence for M_r may be found in earlier work – (e) or (f)	1
		Question 1 Total	16

Question	Sections	Indicative material	Mark
2 (a)	ACE Data	Appropriate labels, units and linear scales that will accommodate all points in the data table Acceptable form of units (from 9701 syllabus) volume / cm³ / min (cm³) (cm³) (min) accept mins volume in cubic centimetres time in minutes Do not accept volume cm³ time min Points plotted correctly Points should be within ½ small square, in either direction) of the correct position and within the correct half of the appropriate small square. To gain this mark there must be an attempt to draw a smooth curve	1

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

Question	Sections	Indicative material	Mark
2 (b)	ACE Evaluation ACE Evaluation	Data at either 5.0 or 7.5 minutes identified (<i>Ignore any other point</i>) and suggests one of the following 1. irregular movement of syringe (sticking), 2. H ₂ gas lifts Mg out of the acid solution, 3. reading taken before indicated time.	1
2 (c)	ACE Data	Constructs initial "tangent". Accept either of the following; 1. an attempted tangent to the curve at (t = 0), 2. a straight line drawn through the plotted points at 0.5, 1.0, 1.5 and 2.0 minutes. Reads coordinates <u>from any tangent</u> correct to ½ small square in either direction from the tangent and uses the coordinates in a correct <u>expression</u> for the gradient.	1
2 (d)	ACE Evaluation	Award the mark for either of the following; 1. stopwatch started after magnesium ribbon dropped into flask, (flask sealed and gas collected), 2. gas pushed into the syringe when inserting the bung.	
2 (e)	ACE Conclusions	Identifies as a further source of error one of the following – and gives an <u>appropriate</u> method of reducing the error; 1. gas collected before timing starts or gas pushed into syringe when bung inserted – if not already given in (d), 2. use of 500 cm³ measuring cylinder to measure 100 cm³ of acid, 3. 0.01 g of magnesium weighed on a balance weighing to 2 decimal places. 4. loss of gas before the bung is inserted	1
2 (f)	ACE Data	Calculates relative concentration of acid in each mixture. (See appendix) (1 or 2 sig fig acceptable) (N.B. not all of the experiments have a total volume of 100 cm³)	1

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

MARK SCHEME 9701/05 November 2007

Page 6 of 7 Coordination

Question	Sections	Indicative material	Mark			
2 (g)	ACE Data	Plots initial rate v relative concentration with appropriate labels, units and scales. Scales – points must be plotted over ½ length of each available axis. Do not penalise "awkward" scales.				
		Points for students 3 4 and 8 correctly plotted and no others obviously wrong Points plotted to ½ small square in either direction and within correct half square	1			
		Straight line drawn through points for students 2 – 8. Does not have to pass through 0,0. The straight line should have points either side of the line.	1			
2 (h)	ACE Conclusions	_				
		 Concludes one of the following: 1. the rate of reaction = k[HC<i>l</i>], 2. reaction is first order wrt HC<i>l</i>, 3. reaction is directly proportional to [HC<i>l</i>] (even if straight line does not pass through 0,0), 4. the graph/line for a 2nd order reaction would be a curve/parabola. 				
2 (i)	ACE Evaluation	Award this mark for any answer that is acceptable for the points plotted, line drawn by the candidates. If the data has been correctly processed there should be a good distribution of points for a best-fit straight line. Ignore student 1 – unless the candidate refers to this point.				
		If the relative concentration has been calculated to only 1 significant figure there is lower confidence in the point plotted for Student 2.				
		Question 2 Total	14			

Page 8	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	05

Appendix

Question 1 (e)

		mass of metal hydroxide / g				
metal hydroxide	M _r	0.05 mol	0.10 mol	0.15 mol	0.20 mol	0.25 mol
LiOH	23.9	1.195	2.39	3.585	4.78	5.975
NaOH	40.0	2.00	4.00	6.00	8.00	10.00
кон	56.1	2.805	5.61	8.415	11.22	14.025
RbOH	102.5	5.125	10.25	15.375	20.50	25.625
CsOH	150.0	7.50	15.00	22.50	30.00	37.50

Question 2 (f)

student	volume of acid used	volume of water used	mass of magnesium	initial rate	relative concentration of acid	
	/ cm ³	/ cm ³	/ g	/ cm ³ min ⁻¹		
1	100	0	0.01		1.0	1.0
2	45	55	0.01	8.0	0.45	0.5
3	90	10	0.01	16.4	0.90	0.9
4	60	40	0.01	11.5	0.60	0.6
5	100	100	0.01	9.3	0.50	0.5
6	35	75	0.01	6.8	0.35	0.4
7	80	20	0.01	15.2	0.80	0.8
8	60	240	0.01	3.3	0.20	0.2
					2 sig fig	1 sig fig