Master Project

Open Graph Benchmark - Large Scale Challenge @ KDD Cup 2021

Supervised by: Christian Beth

Team members

- Md. Mashiur Rahman
- 2. Ankit Malhotra
- 3. Abdullah Al Amin
- 4. Shaokat Hossain
- 5. Faiz Ahmed
- 6. Mithun Das
- 7. Md Abu Noman Majumder
- 8. Rishabh Lakra

Scope

- 1. Graph data is everywhere
 - a. Example: **Facebook** (Friend to Friend)
- 2. **GNN** is a powerful ML tool.
- 3. State-of-the-art models
- 4. **OGB** has a collection of large scale graphs.

Source: http://www.messersmith.name/wordpress/wp-content/uploads/2009/10/social_graph_eunice_famility_cluster.jpg?fbclid= lwAR0ZZnUgCW/1uMDWC1NZRADhiaoHGRAbPUUl0XIA6hFlBqbzvld8oHqxBgYo

Goal

- 1. Learning about graph neural network
- 2. **KDD** Cup 2021
- 3. Apply **GNN** on heterogeneous graph

Source: https://www.experoinc.com/post/node-classification-by-graph-convolutional-network

From Image Convolution to Graph Convolution

- 1. Image can be expressed as a **regular graph**
- 2. Difficult to perform CNN on graph
 - a) Arbitrary size of graph
 - b) **Complex** topology

Graph Neural Networks

- 1. Each node contains embedded neighborhood information
- 2. Common tasks: Node labelling, node prediction, edge prediction, etc.
- Convert edges by adding feed forward neural network layers and combine graphs and neural networks.

Graph Convolutional Networks (GCN)

- 1. A CNN that can work directly on graphs and leverage their structural information
- 2. Gather feature information a verage an eural network
- 3. The number of layers is the farthest distance that node features can travel.

Homogeneous & Heterogeneous

A single type of node and a single type of edge

Two or more types of nodes and/or two or more types of edges

Metapath

- 1. A composite relation connecting two objects
- 2. Widely used structure to capture the semantics

Source: https://deepai.org/publication/magnn-metapath-aggregated-graph-neural-network-for-heterogeneous-graph-embedding

Message passing framework

"These methods are based on some form of message passing on the graph, allowing different nodes to exchange information."

-Michael Bronstein

Source: https://docs.google.com/presentation/d/1c3EYrhxlbx-um/VaumCCohonxeagxY98akYmC-FNahNs/edit#slide=id.ge255dbf7a9_0_3

R-GCN

An effort to generalize GCN to handle different relationships between entities in a knowledge base.

GCN equation:

$$h_i^{l+1} = \sigma \left(\sum_{j \in N_i} rac{1}{c_i} W^{(l)} h_j^{(l)}
ight)$$

R-GCN equation:

$$h_i^{l+1} = \sigma \left(W_0^{(l)} h_i^{(l)} + \sum_{r \in R} \sum_{j \in N_i^r} rac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)}
ight)$$

Graph Attention(GAT) Network

The GAT expands the basic aggregation function of the GCN layer.

HAN

The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph.

Timeline

Week	Task
1-3	Paper reading
4th	Homo/Heterogeneous graph
5-6	MAG240M-LSC Dataset
7th	OGBN-MAG Dataset
8-9	ACM Dataset

Datasets

- 1. MAG240M-LSC (200 GB)
- 2. OGBN-MAG (1GB)
- 3. ACM Dataset(20MB)

MAG240M-LSC Dataset

It is a heterogeneous academic graph extracted from the Microsoft Academic Graph (MAG).

Source: https://docs.google.com/presentation/d/1c3EYrhxlbx-umVaumCCohonxeagxY98akYmC-FNahNs/edit#slide=id.gb7f755f824 0 6

Task: Predict the primary subject areas of the given arXiv papers, which multi-class classification problem.

Tasks on MAG240M-LSC

- 1. Similar dataset of 2 GB (OGBN-MAG (Processed for PyG))
- 2. Sub-sampling of Actual Dataset
- 3. Working on the sub-sampled graph

MAG240M-LSC Findings

- 1. Limitation of proper infrastructure
- 2. Sub-sampling a heterogeneous graph is not a trivial task
 - a. Preservation of node degree distribution
 - b. Representative of the actual graph

OGBN-MAG

- It is a heterogeneous network composed of a subset of the Microsoft Academic Graph (MAG)
- 2. It contains four types of entities—papers, authors, institutions, and fields of study with 4 meta path "affiliated with", "writes", "cites" and "has a topic of".

Task: Predict the venue (conference or journal) of each paper, given its content, references, authors, and authors' affiliations.

Tasks on ogbn-mag

1. RGCN

- a. Prefilling missing feature with zero value
- b. Featureless Embedding
- 2. **HAN** Model with metapath

OGBN-MAG findings

- 1. **RGCN**(prefilled features) achieve 28% test accuracy
- 2. **RGCN**(featureless embedding) consumes full memory in paperspace after 20 epochs.
- 3. HAN didn't work because of the DGL Library limitation

ACM Dataset

- 1. The **ACM** dataset is a heterogeneous network.
- 2. Entities papers, authors, institutions and fields of study
- 3. Relation written-by, citing, is-about, published-in, related-to, contains, consist-of.

Task: Predict the conference of a paper.

Tasks on **ACM Dataset**

- 1. RGCN
 - a. Featureless embedding
- 2. **HAN** with 2 metapath
 - a. PAP(paper-author-paper)
 - b. PP(paper-paper)

ACM findings

- 1. Capable of fitting both models.
- RGCN shows better result than HAN
- HAN takes much more time to train than RGCN

Training time:

Accuracy:

Loss:

Challenges

- 1. Completely new concept
- 2. Resource limitation
- 3. Lack of proper documentation

Questions?

Thank you!

