LI QUAN

+86-180-9209-6391 | liquan buaa@outlook.com

EDUCATION

Beihang University	M.S. in Information Engineering	GPA: 3.73/4.00 (top 3%)	Sep 2017 – Feb 2020
Beihang University	B.E. in Information Engineering	GPA: 3.71/4.00 (top 3%)	Sep 2013 – Jul 2017

PUBLICATIONS

- 1. Li Quan, Qin Huang, "Transparent Coded Blockchain", ACM CoNEXT 2019, Orlando, FL, USA, December 9-12, 2019.
- 2. Li Quan, Qin Huang, Shengli Zhang, Zulin Wang, "Downsampling Blockchain Algorithm", IEEE INFOCOM 2019, Paris, France, April 29 May 2, 2019.
- Qin Huang, Qiang Xiao, Li Quan, Zulin Wang, Shafei Wang, "Trimming Soft-Input Soft-Output Viterbi Algorithms", IEEE Transactions on Communications (TCOM), Vol. 64, Issue, 7, 2016, Pages 2952-2960.
- 4. Ruilin Pei, Zulin Wang, Qiang Xiao, **Li Quan**, "Blind identification for Turbo codes in AMC systems", IEEE ICCSN 2016, Beijing, China, June 4-6, 2016.

PATENTS

- 1. Qin Huang, Li Quan, "Information transmission and reception method and device", China patent, 2019.
- 2. Qin Huang, Shuai Wang, **Li Quan**, "Target localization method, device and electronic device based on querying", China patent, 2019.
- 3. Qin Huang, Li Quan, Zulin Wang, "Blockchain storage method and blockchain node", China patent, 2018.

RESEARCH EXPERIENCES

Blockchain Storage Reduction via Downsampling Algorithm

Prof. Qin Huang

Research Assistant, National Science Foundation, Beihang University, Beijing, China

Sept 2017 – Present

- Researched on reducing the bloated storage of existing blockchain system using information and coding theory.
- Proposed a novel solution to use a downsampling algorithm to reduce storage required at each node, via simple verification.
- Accomplished orders of reduction in storage space while still satisfying confidence requirements. Published results in IEEE INFOCOM 2019, and applied national patents.

Algorithm Design and Enhance Polkadot Bridges Protocol

Prof. Roman Beck

Research Assistant, IT University of Copenhagen, Copenhagen, Denmark

Aug 2019 - Sept 2019

- Lead the algorithm design for enhancing Polkadot bridge protocol implementation, specifically for BTC and ETH.
- Designed a vault system on top of XClaim for BTC and ETH, and implemented the logic for deposit and transfer.
- Built an intelligent contract that conforms to the decentralized interoperable trust infrastructure.
- Overall design won approval from Pokadot experts and won third place in final presentation.

Decoding Algorithm of Turbo Code for High Throughput Communication

Prof. Qin Huang

Research Assistant, Beihang University, Beijing, China

Sept 2015 – June 2017

- Designed a new algorithm to reduce time complexity in Turbo code (forward error correction) encoding/decoding.
- Studied various existing algorithms including Scaled Max-Log-MAP, Trimming SOVA.
- Achieved significant performance enhancement and won best presentation award in Annual China Information Conference.

INDUSTRY EXPERIENCES

Development of a Distributed Data Processing Pipeline

Software Development Intern, IT Orange LLC, Beijing

July 2015 – Sept 2015

- Investigated in optimizing and improve existing data analytics system and started the design of a new parallel framework.
- Completed the V1 design and proof of concept development to demonstrate a 10x efficiency enhancement.

AWARDS

TWINDS	
• ACM CoNEXT, sponsored by ACM SIGCOMM (Travel Grant)	
• National Software and Information Talent Competition C/C++ Programming Design (National Third Place)	
 Blockchain Development and Application Competitions (Second Place) 	
• The Mathematical Contest in Modeling (Meritorious Award)	2016

SKILLS & LANGUAGES

Proficient: C++, Python, Solidity, MATLAB; **Intermediate:** Assembly Language and Verilog **Basic:** JavaScript, HTML **Standardized Tests:** *TOEFL:* 100 (R27 L27 S22 W24), GRE: 322 (V153 + Q169) + AW3.5