Expressive Power of Recurrent Neural Networks, II

Выполнил: Алкин Эмиль Венерович 1,2

Научный руководитель: Оселедец Иван Валерьевич²

16 декабря 2023 г.

 $^{^{1}}$ Московский физико-технический институт

²Сколковский институт науки и технологий

Постановка задачи

Мотивация

Одним из актуальных направлений в исследовании теоретических основ глубоких нейронных сетей является изучение выразительной силы различных архитектур глубоких сетей. В значимых статьях ([1], [2]) по этой теме в качестве меры выразительности сети рассматривается канонический *CP*-ранг тензора, соответствующего определенной архитектуре сети. Такой подход оказался удобным и его более широкое применение имеет актуальность.

- [1] Nadav Cohen et al. On the expressive power of deep learning: A tensor analysis. (2016)
- [2] Valentin Khrulkov et al. Expressive power of recurrent neural networks (2017)

Постановка задачи

Проблема

В статье [2] показана связь между реккурентными нейронными сетями и Tensor Train разложением тензора, а также доказана теорема о "нижней оценке" СР-ранга тензора, соответствующего реккурентной сети, в которой каждый слой имеет собственный набор весов. Аналогичный результат для RNN с количеством весов, не зависящим от глубины сети, не доказан, а сформулирован в качестве гипотезы. Также, эксперименты в этой статье лишь частично подтверждают полученные теоритические результаты.

[2] Valentin Khrulkov et al. Expressive power of recurrent neural networks (2017)

Связь между Tensor Train разложением тензора и реккурентной архитектурой сетей

A tensor $\mathcal X$ is said to be represented in the Tensor Train (TT) format if each element of $\mathcal X$ can be computed as follows

$$\mathcal{X}^{i_1 i_2 \dots i_d} = \sum_{\alpha_1 = 1}^{r_1} \sum_{\alpha_2 = 1}^{r_2} \dots \sum_{\alpha_{d-1} = 1}^{r_{d-1}} G_1^{i_1 \alpha_1} G_2^{\alpha_1 i_2 \alpha_2} \dots G_d^{\alpha_{d-1} i_d}$$

Puc.: Recurrent-type neural architecture that corresponds to the Tensor Train decomposition. Gray circles are bilinear maps.

Обозначения

Let us denote $n=(n_1,n_2\dots n_d)$. Set of all tensors $\mathcal X$ with mode sizes n representable in TT-format with

$$\operatorname{rank}_{TT} \mathcal{X} \leqslant r$$
,

for some vector of positive integers r (inequality is understood entry-wise) forms an irreducible algebraic variety, which we denote by $\mathcal{M}_{n,r}.$ By $\mathcal{M}_{n,r}^{eq}$ we denote such tensors in $\mathcal{M}_{n,r}$ whose TT-cores are equal (except the first core and the last core).

Основной результат

Гипотеза 1 из статьи [2], сформулированная в качестве теоремы:

Theorem

Suppose that d = 2k is even. Define the following set

$$\mathcal{B} := \left\{ \mathcal{X} \in \mathcal{M}_{\mathsf{n},\mathsf{r}}^{\mathsf{e}q} : \mathsf{rank}_{\mathit{CP}} \, \mathcal{X} < q^{\frac{d}{2}} \right\},$$

where $q = \min\{n, r - 1\}$.

Then

$$\mu(B)=0,$$

where μ is the standard Lebesgue measure on $\mathcal{M}_{\mathsf{n,r}}^{\mathsf{eq}}$.

[2] Valentin Khrulkov et al. Expressive power of recurrent neural networks (2017)

Заключение

- Доказана Гипотеза 1 из статьи [2];
- Повторены эксперименты на синтетических данных из статьи [2];
- В планах модифицировать архитектуру реккурентных сетей, предложеннную в статье [2], для получения высокого качества на датасете CIFAR-10.
- [2] Valentin Khrulkov et al. Expressive power of recurrent neural networks (2017)