Riešenie

(a) Krokovaním stroja M som zistil nasledovné: f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 3, f(3) = 1, f(4) = 5, f(5) = 8, atd'. Zrejme sa teda jedná o známu Fibonacciho postupnosť (bez člena 0). Výstupom funkcie f pre vstup n je hodnota n+1 -tého člena Fibonacciho postupnosti.

Pásky TS M: Výpočet člena postupnosti prebieha tak, že obsah prvej pásky udáva poradie počítaného člena Fibonacciho postupnosti. Na druhej a tretej páske sa nachádzajú predchádzajúci členovia Fibonacciho postupnosti. Na štvrtej páske je vypočítaný člen Fibonacciho postupnosti.

Činnosť TS M: TS vykonáva iterácie výpočtu, kde celkový počet iterácií je daný obsahom pásky 1. V každej iterácii sa deju nasledovné akcie: "Ľavá časť" TS presúva predchádzajúceho člena z pásky 3 na pásku 2 a presúva posledného vypočítaného člena z pásky 4 na pásku 3. "Pravá časť" TS počíta ďalšieho člena Fibonacciho postupnosti na páske 4.

(b) Identifikovanú funkciu f je možné zapísať nasledovne:

$$h(0) = (\sigma \circ \xi) \times (\sigma \circ \xi)()$$

$$h(y+1) = (\pi_2^2 \times plus) \circ (\pi_2^3 \times \pi_3^3)(y, h(y))$$

$$f \equiv \pi_1^2 \circ h$$

Riešenie

Nech M je množina realizácií jazyka L, ktoré majú ako univerzum množinu $\mathbb N$. Predpokladajme, že táto množina M je spočetná. Potom podľa definície spočetnosti existuje bijekcia $f:\mathbb N\longleftrightarrow M$. S využitím f je možné zostaviť nekonečnú maticu, kde jej riadky i budú zodpovedať danej realizácii f(i) z M. Stĺpce budu zodpovedať predikátu s aritou 1 v jednotlivých ohodnoteniach $i,i\in\mathbb N$. Dostaneme teda maticu:

Prvok tejto matice, tj. hodnota a_{ij} , je 1 ak predikát v danej realizácii a pri danom ohodnotení je pravdivý, 0 ak nepravdivý.

Uvažujme realizáciu \overline{R} . Realizácia \overline{R} sa líši od každej $R_i = f(i), i \in \mathbb{N}$:

- ak $a_{ii}=0$, potom predikát v danej realizácii a ohodnotení je pravdivý, čiže p(i)=1
- ak $a_{ii}=1$, potom predikát v danej realizácii a ohodnotení je nepravdivý, čiže p(i)=0

Zároveň však realizácia $\overline{R} \in M$, t.j. mala by sa nachádzať na nejakom riadku matice, čo však nie je možné, keď že sa \overline{R} od každej realizácie líši práve v hodnote a_{ii} . Funkcia f je teda surjektívna funkcia, čo je spor. Množina realizácií jazyka L, ktoré majú ako univerzum množinu \mathbb{N} , je teda nespočetná.

Riešenie

(a) Vzťah $\mathcal{O}(3^{2n}) \subseteq \mathcal{O}(2^{3n})$:

Predpokladajme, že tento vzťah platí.

Potom $\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : 3^{2n} \leq c * 2^{3n}$.

Potom tiež platí že $\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{c*2^{3n}}{3^{2n}} \geq 1$, keďže $3^{2n} \neq 0$ pre žiadne $n \geq 0$ a môžeme teda krátiť.

Na druhú stranu ale platí, že $\lim_{n\to\infty}\frac{c*2^{3n}}{3^{2n}}=\lim_{n\to\infty}\frac{c*8^n}{9^n}=c*\lim_{n\to\infty}(\frac{8}{9})^n=c*0=0.$

Čo je ale spor, keďže nemôže súčasne platiť $\forall n \geq n_0 : \frac{c*2^{3n}}{3^{2n}} \geq 1$ a $\lim_{n \to \infty} \frac{c*2^{3n}}{3^{2n}} = 0$.

Tento vzťah neplatí.

(b) Vzťah $\mathcal{O}(3^{2n}) \supseteq \mathcal{O}(2^{3n})$:

Predpokladajme, že tento vzťah platí.

Potom $\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : 2^{3n} \le c * 3^{2n}$.

Potom tiež platí že $\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{c*3^{2n}}{2^{3n}} \geq 1$, keďže $2^{3n} \neq 0$ pre žiadne $n \geq 0$ a môžeme teda krátiť.

Ďalej platí, že $\lim_{n\to\infty} \frac{c*3^{2n}}{2^{3n}} = \lim_{n\to\infty} \frac{c*9^n}{8^n} = c*\lim_{n\to\infty} (\frac{9}{8})^n = c*\infty = \infty.$

Napr. pre c=1 a $n_0=1$ platí $\forall n\geq n_0: \frac{c*3^{2n}}{2^{3n}}\geq 1$ a aj $\lim_{n\to\infty}\frac{c*3^{2n}}{2^{3n}}=\infty.$

Tento vzťah platí.

(c) Vzťah $\mathcal{O}(3^{2n}) = \mathcal{O}(2^{3n})$:

Keďže vzťah \supseteq platí, ale vzťah \subseteq neplatí, nemôže teda ani platiť, že $\mathcal{O}(3^{2n}) = \mathcal{O}(2^{3n})$.

Riešenie

Pre dokázanie, že problém tety Kvety je NP-úplný, je potrebné ukázať, že tento problém patrí do NP a dokázať jeho NP-ťažkosť.

Členstvo v NP: Založené na princípe uhádnutia riešenia (počtov kusov jednotlivých druhov cukroviek) a overenia, že sa skutočne jedná o riešenie (t.j. overiť podmienky z problému tety Kvety). Overenie podmienok sa skladá z výpočtu a overenia nerovníc obsahujúcich jednoduché aritmetické výrazy. Tieto činnosti je možné vykonať v polynomiálnom čase pomocou NTS.

NP-ťažkosť: Dôkaz NP-ťažkosti vedieme polynomiálnou redukciou z ILP¹ (známy NP-úplný problém), kde redukujúci TS musí byť DTS a musí pracovať v polynomiálnom čase. Pracujeme s rozhodovacou variantou ILP, kde sa pýtame, či sústava $\overline{A}\overline{x} \leq \overline{b}$ má riešenie $\overline{x} \in \mathcal{Z}^n$.

Popis redukcie ILP \rightarrow problém tety Kvety:

Problém tety Kvety je možné formulovať nasledovnou sústavou nerovníc:

 $\forall \ 1 \leq j \leq m$ (t.j. vytvoríme nerovnicu pre každú surovinu):

$$A_{j1} * x_1 + A_{j2} * x_2 + \dots + A_{jn} * x_n \le b_j$$

Ďalej vieme, že v probléme tety Kvety existuje nasledovná podmienka:

$$x_1 + x_2 + \ldots + x_n \ge k$$

Vytvorme instanciu problému tety Kvety takú, kde nech k je 0. Potom získavame:

$$x_1 + x_2 + \ldots + x_n \ge 0$$

A teda:

$$x_1, x_2, \dots, x_n \ge 0$$

$$x_1, x_2, \ldots, x_n \in \mathbb{Z}$$

Význam použitých premenných:

 A_{ji} - množstvo (v mernej jednotke) suroviny druhu j potrebnej na napečenie jedného kusu cukrovinky druhu i

 b_j - nakúpené množstvo (v mernej jednotke) suroviny druhu j

 x_i - počet kusov cukrovinky druhu i

 \boldsymbol{m} - počet druhov surovín

n - počet druhov cukroviek v kuchárke

k - počet požadovaných kusov cukroviniek (t.j. počet kamarátok)

Odpoveď áno/nie na vytvorenú instanciu problému tety Kvety presne zodpovedá odpovedi rozhodovacej varianty ILP. Je zrejmé, že túto redukciu je možné (s vhodným kódovaním) implementovať úplným DTS pracujúcim v polynomiálnom čase. Sústava nerovníc má riešenie \Leftrightarrow problém tety Kvety má riešenie.

¹https://en.wikipedia.org/wiki/Integer_programming

Riešenie

Navrhnutá Petriho sieť:

Obr. 1: Petriho sieť prijimajúca jazyk $\{a^i(b^j)c^k\in\{a,b,c,(,)\}^\star\mid i\geq j=k\}$