Fiche d'exercices nº 6

Séries entières

Exercice 1.

Déterminer le rayon de convergence de la série entière $\sum a_n z^n$, avec a_n dans les différents cas suivants

$$\mathbf{a)} \ a_n = \frac{n^n}{n!}$$

b)
$$a_n = (\ln n)^{-\ln n}$$

$$\mathbf{c)} \ a_n = e^{\sqrt{n}}$$

d)
$$a_n = \frac{1}{\sqrt{n}^{\sqrt{n}}}$$

e)
$$a_n = e^{(n+1)^2} - e^{(n-1)^2}$$

d)
$$a_n = \frac{1}{\sqrt{n}\sqrt{n}}$$

f) $a_n = \sqrt[n]{n} - \sqrt[n+1]{n+1}$

Exercice 2.

Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$ avec

$$a_n = \frac{1}{n!} \sum_{k=1}^{n} k \cdot k!$$

Calculer sa somme S et donner un équivalent de S en R et -R.

Exercice 3.

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Déterminer les rayons de convergence des séries :

a)
$$\sum a_n^2 z^n$$

$$\mathbf{b)} \quad \sum \frac{a_n}{n!} z^r$$

a)
$$\sum a_n^2 z^n$$
 b) $\sum \frac{a_n}{n!} z^n$ c) $\sum \frac{n! a_n}{n^n} z^n$

Exercice 4.

On considère les suites (a_n) et (b_n) définies par :

$$a_n = \frac{\cos(n\pi/3)}{n^{1/3}}, \qquad b_n = \sin(a_n).$$

- a) Déterminer les rayons de convergence des séries $\sum a_n x^n$ et $\sum b_n x^n$.
- b) Déterminer la nature de $\sum a_n x^n$ et $\sum b_n x^n$ en fonction de x.

Exercice 5.

On suppose que les séries $\sum a_{2n}z^n$ et $\sum a_{2n+1}z^n$ ont pour rayons de convergence R et R'. Déterminer le rayon de convergence de $\sum a_n z^n$.

Exercice 6.

Soit $\sum a_n z^n$ une série entière de rayon de convergence infini et de somme a(z). Soit également $\rho > 0$. On définit la série entière $\sum b_n z^n$, de sorte qu'en cas de convergence, la somme b(z) vérifie (z - ρ)b(z) = a(z).

- a) Prouver l'existence et l'unicité des coefficients b_n .
- b) Quel est le rayon de convergence de la série $\sum b_n z^n$?

Exercice 7.

Soit $P_n = \sum_{k=0}^n \frac{1}{n!} X^n$ et R > 0. Montrer que pour n assez grand, P_n n'a pas de racine dans le disque fermé de centre 0 et de rayon R.

Exercice 8.

Calculer, en précisant le rayon de convergence, les sommes de séries entières suivantes :

a)
$$\sum_{n=0}^{+\infty} n^2 z^n$$
, avec $z \in \mathbb{C}$. b) $\sum_{n=0}^{+\infty} \frac{4^n (n!)^2}{(2n+1)!} x^{2n+1}$, avec $x \in \mathbb{R}$.

Exercice 9.

Déterminer rayon et somme de la série entière $\sum \frac{1}{u_n} x^n$, où $u_n = n \binom{2n}{n}$.

Exercice 10.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $u_n(x) = \left(\frac{x(1-x)}{2}\right)^{4^n}$.

- a) Déterminer le domaine de convergence de la série $\sum u_n(x)$.
- b) On développe $u_n(x)$ par la formule du binôme : $u_n(x) = \sum_{4^n \le k \le 2.4^n} a_k x^k$. Montrer que le rayon de convergence de la série entière $(\sum a_n x^n)_{n \ge 1}$ est égal à 1 $(a_n \text{ non défini vaut 0 par convention})$.

Exercice 11.

Montrer que
$$\int_0^1 x^{-x} dx = \sum_{n \geqslant 1} n^{-n}.$$

En déduire une méthode de détermination d'une valeur approchée de l'intégrale à 10^{-6} près.

Exercice 12.

Montrer l'égalité suivante :

$$\int_0^1 \frac{dt}{\sqrt{1-t^4}} = \sum_{n>0} \frac{(2n)!}{4^n (4n+1)(n!)^2}.$$

Exercice 13.

Soit $p \in \mathbb{N}^*$ et $A \in \mathcal{M}_p(\mathbb{R})$. Déterminer le rayon de convergence et la somme de la série entière $\sum \operatorname{tr}(A^n)z^n$. On pourra trouver une expression faisant intervenir χ_A .

Exercice 14.

Soit f une fonction réelle définie par $f(x) = \sum_{n=0}^{+\infty} x^{n^2}$.

Donner l'ensemble de définition de f et un équivalent en 1.

Exercice 15.

Montrer que la fonction f définie par $f(x) = \sum_{n=0}^{+\infty} e^{-n} \cos(n^2 x)$ est de classe C^{∞} sur \mathbb{R} et que sa série de Taylor a un rayon de convergence nul.

Exercice 16.

Étudier la suite réelle définie par $u_0 = 1$ et $u_{n+1} = \sum_{p+q=n} u_p u_q$.

On exprimera u_n en fonction de n et on donnera un équivalent de u_n .

Exercice 17.

Développer en série entière les fonctions suivantes :

a)
$$x \mapsto \ln(1 + x + x^2)$$

b)
$$x \mapsto (x-1)\ln(x^2-5x+6)$$

a)
$$x \mapsto \ln(1 + x + x^2)$$

b) $x \mapsto (x - 1) \ln(x^2 - 5x + 6)$
c) $x \mapsto \frac{1}{1 + x - 2x^3}$
d) $x \mapsto \frac{x - 2}{x^3 - x^2 - x + 1}$
e) $x \mapsto \arctan(x + 1)$
f) $x \mapsto \arctan(x + \sqrt{3})$

d)
$$x \mapsto \frac{x-z}{x^3-x^2-x+1}$$

e)
$$x \mapsto \arctan(x+1)$$

f)
$$x \mapsto \arctan(x + \sqrt{3})$$

Exercice 18.

Développer en série entière : $\ln(\sqrt{1-2x \operatorname{ch} a + x^2})$.

Exercice 19.

Développer en série entière $\frac{e^x}{1-x}$ puis $\frac{e^{x^2}}{1-x}$.

Exercice 20.

Développer en série entière $f(x) = \sqrt{x + \sqrt{1 + x^2}}$.

Exercice 21.

Développer $f(x) = \frac{x}{1 - x - x^2}$ en série entière en utilisant la relation : $(1 - x - x^2)f(x) = x$.

Exercice 22.

Pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on pose $f(x) = \tan(x)$.

- a) Montrer qu'il existe une suite de polynômes $(P_n)_n$ telle que pour tout $n \in \mathbb{N}, f^{(n)} = P_n \circ f$ et que les P_n sont à coefficients dans \mathbb{N} .
- b) En utilisant la formule de Taylor avec reste intégral, montrer que la série de Taylor de f a un rayon de convergence R supérieur ou égal à $\frac{\pi}{2}$.
- c) On note $(a_n)_n$ la suite des coefficients de cette série de Taylor. Montrer que pour tout $n \in \mathbb{N}^*$, $(n+1)a_{n+1} = \sum_{k=0}^{n} a_k a_{n-k}$. En déduire que pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, f(x) = g(x)]$ et que $R = \frac{\pi}{2}$.
- d) Calculer a_0, a_1, \ldots, a_7 .

Exercice 23.

Déterminer le rayon de convergence de la série entière $\sum a_n x^n$ dans les cas suivant :

- a) La suite (a_n) est périodique, et non identiquement nulle.
- b) a_n est le nombre de diviseur de n
- c) a_n est la n-ième décimale de π .

Exercice 24.

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. On pose

$$b_n = \frac{a_n}{1 + |a_n|}$$

Déterminer le rayon de la série entière $\sum b_n z^n$

Exercice 25. ** théorème de Tauber 1

Soit $\sum a_n x^n$ une série entière de rayon de convergence 1. On suppose que sa somme S admet une limite ℓ en 1.

- a) La série $\sum a_n$ est-elle nécessairement convergente?
- **b)** On suppose désormais que $a_n \ge 0$ pour tout $n \in \mathbb{N}$. Montrer que $\sum a_n$ converge et que $\sum_{n=0}^{+\infty} a_n = \ell$.

Exercice 26. ** théorème de Tauber 2

Soit $\sum a_n x^n$ une série entière de rayon de convergence 1. On suppose que sa somme S admet une limite ℓ en 1. On suppose également que $a_n = o\left(\frac{1}{n}\right)$. Pour $N \in \mathbb{N}$ et $x \in [0, 1[$, on note :

$$A(x) = S(x) - \ell$$
, $B_N(x) = \sum_{n=0}^{N} (1 - x^n) a_n$, $C_N(x) = \sum_{n=N+1}^{+\infty} a_n x^n$.

- a) Montrer que $\sum_{n=0}^{N} a_n \ell = A(x) + B_N(x) C_N(x)$.
- b) Soit $\varepsilon > 0$. Démontrer qu'il existe $N_0 \in \mathbb{N}$ tel que pour $N \geq N_0$:

$$|C_N(x)| \le \frac{\varepsilon}{N(1-x)}$$

c) Démontrer que la série $\sum_n a_n$ converge et que sa somme vaut ℓ .

Exercice 27.

Développer en série entière la fonction f définie par $f(x) = \frac{x^2 + x - 3}{(x - 2)^2(2x - 1)}$ et préciser le rayon de convergence de la série obtenue.

Exercice 28.

Pour $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$ et on s'intéresse à la série entière $\sum H_n x^n$. On note R son rayon de convergence.

- a) Démontrer que R=1.
- b) On pose, pour $x \in]-1,1[, F(x) = \sum_{n=1}^{+\infty} H_n x^n$. Démontrer que pour tout $x \in]-1,1[$, on a

$$(1-x)F(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$

c) En déduire la valeur de F(x) sur]-1,1[.

Quelques solutions

Solution 1

- a) Critère de d'Alembert, on trouve $R = \frac{1}{e} \operatorname{car} \left(1 + \frac{1}{n} \right)^n \to e$.
- b) D'Alembert est possible mais très (trop) lourd. On préfera la méthode suivante. Soit r > 0. On a

$$a_n r^n = e^{-\ln(n)\ln\left(\ln(n)\right) + n\ln(r)}$$

Or $\ln(\ln(n)) = o(\ln(n))$ et donc $\ln(n)\ln(\ln(n)) = o(\ln^2(n)) = o(n)$. On en déduit que :

— Si
$$r < 1$$
, $-\ln(n)\ln\left(\ln(n)\right) + n\ln(r) \sim n\ln(r) \rightarrow -\infty$, et donc $a_n r^n \rightarrow 0$

— Si
$$r > 1$$
, $-\ln(n)\ln\left(\ln(n)\right) + n\ln(r) \sim n\ln(r) \to +\infty$, et donc $a_n r^n \to +\infty$

Il en résulte que R = 1 (c'est le "sup" des r > 0 tel que $a_n r^n$ est borné).

c) La méthode précédente marche bien, mais d'Alembert n'est pas trop compliqué ici non plus :

$$\frac{a_{n+1}}{a_n} = e^{\sqrt{n+1} - \sqrt{n}} = e^{\frac{1}{\sqrt{n+1} + \sqrt{n}}} \to 1$$

Le rayon est donc R = 1.

d) D'Alembert est encore très lourd mais possible (et formateur!) On fait sinon comme à la b) :

$$a_n r^n = e^{\frac{\sqrt{n}}{2}\ln(n) + n\ln(r)}$$

Une croissance comparée nous donne encore une fois $a_n r^n \to 0$ si r < 1 et $a_n r^n \to +\infty$ si r > 1. D'où R = 1.

- e) On montre facilement que $a_n \sim e^{(n+1)^2}$ et que $a_n r^n \to +\infty$ quelque soit r > 0. On a donc R = 0.
- f) D'Alembert est assez horrible ici, on va déjà avoir fort à faire pour trouver un équivalent asymptotique de a_n . Il est en effet assez clair que $a_n \to 0$ et donc que $R \ge 1$ (pourquoi?) mais il faut montrer que $(a_n)_n$ ne tend pas "trop vite" vers 0. On écrit déjà

$$a_n = e^{\frac{\ln(n)}{n}} - e^{\frac{\ln(n+1)}{n+1}}$$

On peut utiliser un développement limité de $x\mapsto \mathrm{e}^x$ en 0 car $\frac{\ln(n)}{n}\to 0$ par croissances comparées :

$$e^{\frac{\ln(n)}{n}} = 1 + \frac{\ln(n)}{n} + \frac{\ln^2(n)}{2n^2} + O\left(\frac{\ln^3(n)}{n^3}\right)$$

On peut tenter de s'arrêter à l'ordre 1, mais on se rendra compte alors qu'une simplification du terme d'ordre 1 avec celui du développement de $e^{\frac{\ln(n+1)}{n+1}}$ donnera un terme en $\frac{\ln(n)}{n^2}$ qui est négligeable devant un terme en $\frac{\ln^2(n)}{n^2}$! Pour cette même raison, terminer le développement par un o() de l'ordre 2 ne permettra pas de garder le terme $\frac{\ln(n)}{n^2}$ qui sera absorbé! Terminer par un O() de l'ordre 3 est plus précis et évite ce problème car $\frac{\ln^3(n)}{n^3} = o\left(\frac{\ln(n)}{n^2}\right)$ par croissance comparée. Mais poursuivons ... On a :

$$e^{\frac{\ln(n+1)}{n+1}} = 1 + \frac{\ln(n+1)}{n+1} + \frac{\ln^2(n+1)}{2(n+1)^2} + O\left(\frac{\ln^3(n)}{n^3}\right)$$

On a pu mettre n plutôt que n+1 dans le O() car $\frac{\ln(n+1)}{n+1} \sim \frac{\ln(n)}{n}$.

Au-delà des "1" qui se simplient dans la différence $e^{\frac{\ln(n)}{n}} - e^{\frac{\ln(n+1)}{n+1}}$, il nous faut transformer l'écriture de $\frac{\ln(n+1)}{n+1}$ pour aller plus loin :

$$\frac{\ln(n+1)}{n+1} = \frac{1}{n} \left(1 + \frac{1}{n} \right)^{-1} \left(\ln(n) + \ln\left(1 + \frac{1}{n}\right) \right)$$
$$= \left(\frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \right) \left(\ln(n) + \frac{1}{n} + o\left(\frac{1}{n}\right) \right)$$
$$= \frac{\ln(n)}{n} - \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$

On peut alors aussi en déduire :

$$\frac{\ln^2(n+1)}{(n+1)^2} = \frac{\ln^2(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$

On a donc finalement, en utilisant le fait que $\frac{\ln^3(n)}{n^3} = o\left(\frac{\ln(n)}{n^2}\right)$:

$$e^{\frac{\ln(n+1)}{n+1}} = 1 + \frac{\ln(n)}{n} + \frac{\ln^2(n)}{2n^2} - \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$

Avant de terminer, rappelons qu'on a aussi par ailleurs

$$e^{\frac{\ln(n)}{n}} = 1 + \frac{\ln(n)}{n} + \frac{\ln^2(n)}{2n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$

C'est la différence de ces deux quantités qui nous intéressait, et on a ainsi montré :

$$a_n = \sqrt[n]{n} - \sqrt[n+1]{n+1} \sim \frac{\ln(n)}{n^2}$$

Il est maintenant clair (d'Alembert ou équivalent de $a_n r^n$ pour r > 0) que R = 1.

Solution 3

Dans cet exercice, on peut être tenté d'écrire que $\frac{a_{n+1}}{a_n} \to \frac{1}{R}$. On en déduit alors facilement (faites-le!) que les rayons de ces trois nouvelles séries entières sont respectivement R^2 , $+\infty$ et e R. Sauf que bien sûr, il est tout à fait possible que $\frac{a_{n+1}}{a_n}$ n'admette pas de limite, ne serait-ce que parce qu'on pourrait avoir $a_n=0$ pour certaines valeurs de n Néanmoins il doit certainement s'agir des bons rayons en général! Voyons comment le prouver sans d'Alembert.

- a) Notons R' le rayon de $\sum a_n^2 z^n$ et fixons r > 0.
 - Si r < R', alors $a_n^2 r^n \to 0$ et donc $|a_n|(\sqrt{r})^n = \sqrt{|a_n^2 r^n|} \to 0$. Il en résulte $\sqrt{r} \le R$ (la série $\sum a_n z^n$ évaluée en $z = \sqrt{r}$ ne diverge pas grossièrement) et donc $r \le R^2$.
 - Si au contraire r > R', alors la suite $(a_n^2 r^n)_n$ n'est pas bornée, et donc la suite $(a_n(\sqrt{r})^n)_n$ non plus, de sorte que $\sqrt{r} \ge R$ et donc $r \ge R^2$.

On ainsi montré que $\forall r < R', r \leqslant R^2$, d'où $R' \leqslant R^2$, et que $\forall r > R', r \geqslant R^2$, d'où $R' \geqslant R^2$. cqfd

b) Comme $\sum a_n z^n$ a un rayon R > 0, la série $\sum a_n r^n$ converge pour $r = \frac{R}{2}$. Soit maintenant $z \in \mathbb{C}$ quelconque. Pour $n \in \mathbb{N}$ on a (super mega astuce):

$$\frac{a_n}{n!}z^n = a_n r^n \frac{1}{n!} \left(\frac{z}{r}\right)^n$$

Or $\frac{1}{n!} \left(\frac{z}{r}\right)^n \to 0$ par croissance comparée, et on a donc :

$$\left| \frac{a_n}{n!} z^n \right| = \mathrm{o} \left(|a_n| r^n \right)$$

Par comparaison des séries positives, la série $\sum \frac{a_n}{n!}z^n$ est donc absolument convergente, pour un $z \in \mathbb{C}$ quelconque, de sorte que le rayon de convergence cherché est bien $+\infty$.

c) Il est très utile ici de disposer de l'équivalent asymptotique (formule de Stirling) $n! \sim K\left(\frac{n}{e}\right)^n \sqrt{n}$ (où $K = \sqrt{2\pi}$, ce que l'on n'a pas besoin de savoir ici). Notons R'' le rayon de convergence de la série $\sum \frac{n! \, a_n}{n^n} z^n$. Compte-tenu de l'équivalent qu'on vient de mentionner, R'' est aussi le rayon de convergence de la série $\sum \frac{a_n \sqrt{n}}{e^n} z^n$. D'après le cours $\sum na_n z^n$ a le même rayon R que $\sum a_n z^n$, de sorte que $\sum \sqrt{n} a_n z^n$ aussi (puisque $1 \le \sqrt{n} \le n$). (preuve rapide pour celles et ceux qui ne veulent pas aller revoir le cours : $Si \ r > R$, $(a_n z^n)_n$ n'est pas borné, donc $(a_n \sqrt{n} z^n)$ encore moins. Mais $si \ r < R$, on peut poser $\rho = \frac{r+R}{2}$ de façon à ce que $r < \rho < R$, et donc que (SMA) $a_n \sqrt{n} r^n = a_n \rho^n \sqrt{n} \left(\frac{r}{\rho}\right)^n \to 0$ par croissance comparée) On peut maintenant conclure rapidement : pour $z \in \mathbb{C}$, on a |z| < R'' implique $a_n \sqrt{n} \left(\frac{z}{e}\right)^n = \frac{a_n \sqrt{n}}{e^n} z^n \to 0$ et implique donc $|z| \le R$. Au contraire |z| > R'' implique $a_n \sqrt{n} \left(\frac{z}{e}\right)^n$ non borné et donc $|z| \ge R$. On en déduit $R'' \le R$ et $R'' \ge R$, d'où R'' = R comme annoncé.

Solution 24

On montre que $R' \ge \max(1, R)$ grâce à $|b_n| \le 1$ et $|b_n| \le |a_n|$. Pour l'autre inégalité on suppose R' > 1, on a alors $|b_n| \to 0$ et en exprimant $|a_n|$ en fonction de $|b_n|$ on trouve $|a_n| \sim |b_n|$, d'où R' = R.

Solution 25

À venir ...

Solution 26

À venir ...

Solution 27

À venir ...

Solution 28

À venir ...