Curso Ciência da Computação Disciplina: Cálculo 2 Professor: Carlos Roberto Silva

Atividade 3 - Integral Indefinida

Data: 12/04/22

Atividade3

Entregar a resolução numa folha anexa.

1) Calcular as integrais seguintes usando o método da substituição:

a)
$$\int (2x^2 + 2x - 3)^{10}(2x + 1)dx$$

b)
$$\int (x^3-2)^{1/7}x^2dx$$

$$c) \int \frac{xdx}{\sqrt[5]{x^2 - 1}}$$

$$d) \int 5x\sqrt{4-3x^2}dx$$

$$e) \int \sqrt{x^2 + 2x^4} dx$$

$$f) \int (e^{2t} + 2)^{\frac{1}{3}} e^{2t} dt$$

$$g) \int \frac{e^t dt}{e^t + 4}$$

$$h) \int \frac{e^{\frac{1}{x}} + 2}{x^2} dx$$

$$i) \int tgx \, sec^2x \, dx$$

$$j) \int sen^4x \cos x \, dx$$

2) Resolver as seguintes integrais usando a técnica de integração por partes.

a)
$$\int x \operatorname{sen} 5x \, dx$$

$$b) \int \ln(1-x) dx$$

c)
$$\int te^{4t}dt$$

$$d) \int (x+1)\cos 2x \ dx$$

$$e) \int x \ln 3x \ dx$$

Fórmulas de Integração Básica

$$\int dx = \int 1 dx = x + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad n \neq -1, n \text{ racional}$$

$$\int \operatorname{sen} x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \operatorname{sec}^2 x \, dx = tg \, x + c$$

$$\int \operatorname{cos} ec^2 x \, dx = -\cot g \, x + c$$

$$\int \operatorname{sec} x \, tg \, x \, dx = \sec x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int \operatorname{cos} ec x \, tg \, x \, dx = -\cot g \, x + c$$

$$\int$$

TABELA - Derivadas

• *Derivadas*: Sejam u e v funções deriváveis de x e n constante.

1.
$$y = u^{n}$$
 $\Rightarrow y' = nu^{n-1}u'$.
2. $y = uv$ $\Rightarrow y' = u'v + v'u$.
3. $y = \frac{u}{v}$ $\Rightarrow y' = \frac{u'v - v'u}{v^{2}}$.
4. $y = a^{u}$ $\Rightarrow y' = a^{u}(\ln a)u'$, $(a > 0, a \ne 1)$.
5. $y = e^{u}$ $\Rightarrow y' = e^{u}u'$.
6. $y = \ln u$ $\Rightarrow y' = \frac{1}{u}u'$.
7. $y = u^{v}$ $\Rightarrow y' = vu^{v-1}u' + u^{v}(\ln u)v'$.
8. $y = \sin u$ $\Rightarrow y' = u'\cos u$.
9. $y = \cos u$ $\Rightarrow y' = -u'\sin u$.
10. $y = tgu$ $\Rightarrow y' = \sec^{2}u.u'$