Conditions for eigenvalue configurations of two real symmetric matrices

Daniel Profili

May 13, 2025

Contents

- Problem
- 2 Signature Result
- Symmetry Result
- 4 Comparison
- 5 Future Work

Contents

- Problem
- Signature Result
- Symmetry Result
- 4 Comparison
- 5 Future Work

Problem

Definition (Eigenvalue Configuration)

Let $F \in \mathbb{R}^{m \times m}$, $G \in \mathbb{R}^{n \times n}$ be symmetric with distinct eigenvalues.

Then their **eigenvalue configuration**, which we write as EC(F,G), is the "relative locations" of the eigenvalues.

Example 1: Let
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$
 and $G = \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix}$.

$$EC(F,G) =$$

Example 2: Let
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$
 and $G = \begin{bmatrix} 0 & -1 \\ -1 & 4 \end{bmatrix}$

$$EC(F,G) = -$$

Problem

Problem

In : *C*, a desired eigenvalue configuration

Out: Condition on $F = [a_{ij}]$ and $G = [b_{ij}]$ such that EC(F, G) = C

Example:

Out:
$$\begin{pmatrix} D_{11} & < 0 \\ \land & D_{12} & > 0 \\ \land & D_{21} & > 0 \\ \land & D_{22} & < 0 \\ \land & D_{31} & > 0 \\ \land & D_{32} & < 0 \end{pmatrix} \lor \begin{pmatrix} D_{11} & > 0 \\ \land & D_{12} & < 0 \\ \land & D_{21} & < 0 \\ \land & D_{22} & > 0 \\ \land & D_{31} & > 0 \\ \land & D_{32} & < 0 \end{pmatrix} \lor \dots \qquad \text{where}$$

$$D_{11} = 2(a_{11} + a_{22}) - 2(b_{11} + b_{22})$$

$$D_{12} = (a_{11} + a_{22})^2 - 2(a_{11} + a_{22})(b_{11} + b_{22}) + 4(b_{11}b_{22} - b_{12}^2)$$

$$\vdots$$

Problem: Background and Motivation

Generalization of Descartes' rule of signs: ([1, 2])

$$m{F} = [0] \in \mathbb{R}^{1 imes 1}$$
 and $m{G} = egin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix} \in \mathbb{R}^{2 imes 2}$

$$g(x) = \det(xI - G) = (x+1)(x-3)$$

Descartes' rule of signs:

$$g(x) = \underbrace{x^2}_{+} \underbrace{-2x}_{-} \underbrace{-3}_{-}$$

$$\implies v(+, -, -) = 1$$

$$= \# \text{ positive roots of } g$$

$$= EC(F, G).$$

Problem

Background and Motivation

Applications in Science and Engineering: Many nontrivial problems in science/engineering can be reduced to this problem.

Example (network analysis [3]):

- ullet Let F be the adjacency matrix of a graph.
- Some properties are related to the eigenvalues of F.
- How do eigenvalues change when edges are added or removed?
- ullet Changing edges corresponds to adding a matrix U to ${\it F}$
- Hence, one might be interested in the eigenvalue configuration of

$$F$$
 and $G = F + U$.

Problem

Non-triviality

Why is this problem nontrivial?

Nontrivial specialized quantifier elimination problem.

Problem (Rephrased)

$$\begin{array}{ll} \textit{In} & : & \exists_{\alpha_1,\ldots,\alpha_m,\ \beta_1,\ldots,\beta_n} \Phi_C(\alpha_1,\ldots,\alpha_m,\beta_1,\ldots,\beta_n,a_{ij},b_{ij}) \\ \textit{Out} : & \Psi_C(a_{ij},b_{ij}) \text{ equivalent to the above.} \end{array}$$

- Tarski [4] gave first algorithm for quantifier elimination of general formulas over real closed fields.
- Improvements: Collins, Hong, McCallum, Grigorev, Roy, Renegar, Canny, Brown, Strzebonski, Safey-Eldin, ..., Chen
 [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
- Q: Why not just use existing algorithms for quantifier elimination?

A: General algorithms not good for specialized input.

Challenge: Develop an algorithm that exploits the problem structure.

Contents

- Problem
- 2 Signature Result
- 3 Symmetry Result
- 4 Comparisor
- 5 Future Work

Signature Result: Setup

- Let $F = [a_{ij}] \in \mathbb{R}^{m \times m}$ and $G = [b_{ij}] \in \mathbb{R}^{n \times n}$ be symmetric with distinct (non-shared) eigenvalues.
- Label the eigenvalues $\alpha_1 \leq \cdots \leq \alpha_m$ and $\beta_1 \leq \cdots \leq \beta_n$, respectively.
- Let f denote the characteristic polynomial of F.
- We will assume that $f^{(k)}(\beta_j) \neq 0$ for all $1 \leq k \leq m-1$.

This is for the sake of simple presentation, but not needed logically.

Signature Result: Theorem Statement

Theorem (Signature-based Method)

We have $C = EC(F, G) \iff \operatorname{sign} D \in \Gamma_C$, where

 $\mathbf{0} \ D \in \mathbb{Z}[a_{ij},b_{ij}]^{2^m}$ is such that

$$\begin{aligned} D_e &= \operatorname{coeffs} \det(xI_n - f_e(G)) & e \in \{0, 1\}^m \\ f_e &= f^{(0)^{e_0}} \cdots f^{(m-1)^{e_{m-1}}} & f^{(k)} = k \text{-th derivative} \\ f &= \det(xI_m - F). \end{aligned}$$

 $\Gamma_C = \{S \in (\{-,0,+\}^n)^{2^m-1} : VH^{-1}\sigma(S) = C\}, \text{ where } S \in \{-,0,+\}^n\}$

$$\begin{split} \sigma(S) &= 2v(S) - n & v = \text{ sign variation count} \\ V_{t,s} &= \mathbbm{1}_{v(s,+)=\mathbf{m}-t} & t \in \{1,\dots,\mathbf{m}\}, \ s \in \{-,+\}^{\mathbf{m}} \\ H_{e,s} &= s_1^{e_1} \cdots s_{\mathbf{m}}^{e_{\mathbf{m}}} & e \in \{0,1\}^{\mathbf{m}}, \quad s \in \{-,+\}^{\mathbf{m}} \end{split}$$

Signature Result: Derivation Sketch (m = n = 2) (i)

Sketch of Derivation: (with full details: ≈24 pages [22])

$$C = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{C_1 = 0}$$

$$0 = C_1$$

$$0 = \# \bullet \in (\bullet_1, \bullet_2)$$

$$0 = \# \{ \bullet : \# \{ \bullet : \bullet > \bullet \} = 2 - 1 \}$$

$$0 = \# \{ j : \# \{ i : \alpha_i > \beta_j \} = 2 - 1 \}$$

$$0 = \# \{ j : \# \{ x : f(x) = 0 \land x > \beta_j \} = 2 - 1 \}$$

Signature Result: Derivation Sketch (m=n=2) (ii)

$$0 = C_1$$

$$0 = \#\{j : \#\{x : f(x) = 0 \land x > \beta_j\} = 2 - 1\}$$
 count using Descartes' rule of signs!
$$0 = \#\{j : v(\underbrace{f^{(0)}(\beta_j), f^{(1)}(\beta_j), f^{(2)}(\beta_j)}_{\text{coefficients of Taylor expansion of } f(x + \beta_j)}) = 2 - 1\}$$

In general:
$$C_t = \#\{j : v(f^{(0)}(\beta_j), \dots, f^{(m-1)}(\beta_j), +\} = m - t\}$$

Thus we have eliminated α 's.

Signature Result: Derivation Sketch (m = n = 2) (iii)

Q: How do we count $C_t = \#\{j : v(f^{(0)}(\beta_j), f^{(1)}(\beta_j), +) = 2 - t\}$?

A: For each sign vector $s \in \{-,+\}^2$, count the quantity

$$\#\{j : \operatorname{sign}(f^{(0)}(\beta_j), f^{(1)}(\beta_j)) = s\}$$

and group them together based on the sign variation count of s.

We get:

$$C_{t} = \sum_{\substack{s \in \{-,+\}^{2} \\ v(s,+)=2-t}} \#\{j : \operatorname{sign}(f^{(0)}(\beta_{j}), f^{(1)}(\beta_{j})) = s\}$$

In vector form:

$$C = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \#\{j : \operatorname{sign}(f^{(0)}(\beta_j), f^{(1)}(\beta_j)) = (--)\} \\ \#\{j : \operatorname{sign}(f^{(0)}(\beta_j), f^{(1)}(\beta_j)) = (-+)\} \\ \#\{j : \operatorname{sign}(f^{(0)}(\beta_j), f^{(1)}(\beta_j)) = (+-)\} \\ \#\{j : \operatorname{sign}(f^{(0)}(\beta_j), f^{(1)}(\beta_j)) = (++)\} \end{bmatrix}$$

Signature Result: Derivation Sketch (m = n = 2) (iv)

Q: How do we compute the following for a given sign vector s?

$$\#\{j : \operatorname{sign}(f^{(0)}(\beta_j), f^{(1)}(\beta_j)) = s\}$$

that is, how to count roots of g subject to a sign condition on $f^{(0)}, f^{(1)}$.

A: Use Tarski [4] and Ben-Or, Kozen, and Reif ([6]): to count these in terms of the signature of related matrices.

where sig is the *signature* of the matrix: (# positive eigenvalues - # negative eigenvalues).

Signature Result: Derivation Sketch (m = n = 2) (v)

Q: How do we compute the signature of the following matrix?

$$f_e(G) := \left(f^{(0)}\right)^{e_0} \left(f^{(1)}\right)^{e_1} (G)$$

A: Use Descartes' rule of signs:

$$\operatorname{sig} f_e(G) = 2v(\operatorname{coeffs charpoly} f_e(G)) - n$$

Hence:

$$C = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = VH^{-1} \begin{bmatrix} 2v(\text{coeffs charpoly } f_{00}(G)) - n \\ 2v(\text{coeffs charpoly } f_{01}(G)) - n \\ 2v(\text{coeffs charpoly } f_{10}(G)) - n \\ 2v(\text{coeffs charpoly } f_{11}(G)) - n \end{bmatrix}.$$

Notice that the coefficients of the characteristic polynomial of $f_e(G)$ involve only the entries of F and G.

So, finally we have eliminated all α 's and β 's.

We are DONE!

Signature Result: Theorem Statement

Theorem (Signature-based Method)

We have $C = EC(F, G) \iff \operatorname{sign} D \in \Gamma_C$, where

 $\mathbf{0} \ D \in \mathbb{Z}[a_{ij},b_{ij}]^{2^m}$ is such that

$$\begin{aligned} D_e &= \operatorname{coeffs} \det(xI_n - f_e(G)) & e \in \{0, 1\}^m \\ f_e &= f^{(0)^{e_0}} \cdots f^{(m-1)^{e_{m-1}}} & f^{(k)} = k \text{-th derivative} \\ f &= \det(xI_m - F). \end{aligned}$$

$$\sigma(S) = 2v(S) - n \qquad v = \text{ sign variation count}$$

$$V_{t,s} = \mathbb{1}_{v(s,+)=m-t} \qquad t \in \{1,\dots,m\}, \ s \in \{-,+\}^m$$

$$H_{e,s} = s_1^{e_1} \cdots s_m^{e_m} \qquad e \in \{0,1\}^m, \quad s \in \{-,+\}^m$$

Signature Result: Example

Out: $sign D \in \Gamma_C$ where

$$D = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \\ D_{31} & D_{32} \end{bmatrix} \qquad \Gamma_C = \left\{ \begin{bmatrix} - & + \\ + & - \\ + & - \end{bmatrix}, \begin{bmatrix} + & - \\ - & + \\ + & - \end{bmatrix}, \dots \right\}$$

$$D_{11} = 2(a_{11} + a_{22}) - 2(b_{11} + b_{22})$$

$$D_{12} = (a_{11} + a_{22})^2 - 2(a_{11} + a_{22})(b_{11} + b_{22}) + 4(b_{11}b_{22} - b_{12}^2)$$

$$\vdots$$

Contents

- Problem
- Signature Result
- 3 Symmetry Result
- 4 Comparison
- 5 Future Work

Symmetry Result: Setup

- Let $F = [a_{ij}] \in \mathbb{R}^{m \times m}$ and $G = [b_{ij}] \in \mathbb{R}^{n \times n}$ be symmetric with distinct (non-shared) eigenvalues.
- Label the eigenvalues $\alpha_1 \leq \cdots \leq \alpha_m$ and $\beta_1 \leq \cdots \leq \beta_n$, respectively.
- Let f denote the characteristic polynomial of F.
- We will assume that $f^{(k)}(\beta_j) \neq 0$ for all $1 \leq k \leq m-1$.

This is for the sake of simple presentation, but not needed logically.

Symmetry Result: Theorem Statement

Theorem (Symmetry-based Method)

We have $C = EC(\mathbf{F}, \mathbf{G}) \iff \operatorname{sign} D \in \Gamma_C$, where

 $\mathbf{0} \ D \in \mathbb{R}[a_{ij},b_{ij}]^m$ such that

$$D_r = \text{coeffs} \prod_{(i_1, \dots, i_r, j) \in Y} \left(x + \prod_{p=1}^r \left(\alpha_{i_p} - \beta_j \right) \right)$$

$$\Gamma_C = \{S \in \left(\{-,0,+\}^{\binom{m}{r}n}\right)^m : T^{-1}v(S) = C\} \text{ where}$$

$$v(S) =$$
 sign variation count of S

$$T_{rs} = \sum_{1 \le t \le m} {m - t \choose r - t} (-2)^{r-1} {s \choose t}.$$

Symmetry Result: Derivation Sketch (m = n = 2) (i)

Sketch of Derivation: (with full details: \approx 9 pages [23])

1. Consider the set

$$Y = \left\{ \text{nonempty subsets of } [\mathbf{m}] \right\} \times [\mathbf{n}].$$

$$Y = \underbrace{\left\{ \begin{array}{c} \text{nonempty subsets of } [m] \right\} \times \underbrace{[n]}_{\beta} \ .}_{\alpha's}$$

$$Y = \left\{ \begin{array}{c} \{1\} \\ \{2\} \\ \{1,2\} \end{array} \right\} \times \{1,2\} = \left\{ \begin{array}{c} (1,1) & (12,1) \\ (1,2) & (12,2) \\ (2,1) \\ (2,2) \end{array} \right\}$$

2. Consider products formed from the elements of Y as follows:

$$(i_1,\ldots,i_r,j) \mapsto \prod_{p=1}^r (\alpha_{i_p}-\beta_j).$$

Symmetry Result: Derivation Sketch (m = n = 2) (ii)

3. Observe the signs of those products.

Let
$$C = \frac{\beta_1 \alpha_1 \alpha_2 \beta_2}{\bullet \bullet}$$
.

Element of Y	r	$\prod_{p=1}^{r} \left(\alpha_{i_p} - \beta_j \right)$	$sign \prod_{p=1}^{r} (\alpha_{i_p} - \beta_j)$
(1, 1)	1	$(\alpha_1 - \beta_1)$	+
(1,2)	1	$(\alpha_1 - \beta_2)$	_
(2,1)	1	$(\alpha_2 - \beta_1)$	+
$\left(\frac{2}{2},\frac{2}{2}\right)$	1	$(\alpha_2 - \beta_2)$	_
(12,1)	2	$(\alpha_1-\beta_1)(\alpha_2-\beta_1)$	+
(12, 2)	2	$(\alpha_1-\beta_2)(\alpha_2-\beta_2)$	+

Now, for each r, count how many -'s appear in the last column.

$$\begin{array}{c|c} r & \#-\\ \hline 1 & 2\\ 2 & 0 \end{array} \implies y := \begin{bmatrix} 2\\ 0 \end{bmatrix}.$$

Symmetry Result: Derivation Sketch (m = n = 2) (iii)

Claim: Eigenvalue configurations and \boldsymbol{y} vectors are in 1-1 correspondence.

Symmetry Result: Derivation Sketch (m = n = 2) (iv)

In fact: y = TC where $T \in \mathbb{N}^{m \times m}$ such that

$$T_{rs} = \sum_{1 \le t \le m} {m-t \choose r-t} (-2)^{r-1} {s \choose t}.$$

But who cares? Recall our goal is to write an equivalent condition to EC(F,G) = C without referencing any eigenvalues.

Recall that

$$y_r = \# \left\{ (\mathbf{i_1}, \dots, \mathbf{i_r}, \mathbf{j}) \in Y : \prod_{p=1}^r (\alpha_{i_p} - \beta_{\mathbf{j}}) < 0 \right\}.$$

This is exactly the number of negative roots of the polynomial

$$h_r := \prod_{(i_1, \dots, i_r, j) \in Y} \left(x - \prod_{p=1}^r \left(\alpha_{i_p} - \beta_j \right) \right).$$

This polynomial is symmetric in α and β .

Symmetry Result: Derivation Sketch (m = n = 2) (v)

- Recall that y_r equals the number of negative roots of $h_r := \prod_{(i_1,\dots,i_r,j)\in Y} \left(x-\prod_{p=1}^r \left(\alpha_{i_p}-\beta_j\right)\right)$.
- ② Note that the above polynomial is symmetric in α and β .
- 3 The Fundamental Theorem of Symmetric Polynomials applies.
- **1** Thus, we express h_r in terms of the entries a_{ij} and b_{ij} of F and G.
- $oldsymbol{\circ}$ Finally, use Descartes' rule of signs to count the negative roots of $h_r.$

We are DONE!

Symmetry Result: Theorem Statement

Theorem (Symmetry-based Method)

We have $C = EC(F, G) \iff \operatorname{sign} D \in \Gamma_C$, where

 $\mathbf{0} \ D \in \mathbb{R}[\mathbf{a_{ij}}, b_{ij}]^{\mathbf{m}}$ such that

$$D_r = \text{coeffs} \prod_{(i_1, \dots, i_r, j) \in Y} \left(x + \prod_{p=1}^r \left(\alpha_{i_p} - \beta_j \right) \right)$$

 $\Gamma_C = \{S \in \left(\{-,0,+\}^{\binom{m}{r}n}\right)^m : T^{-1}v(S) = C\} \text{ where } T = \{0,1,\dots,n\}$

$$v(S) = \text{ sign variation count of } S$$

$$T_{rs} = \sum_{1 \le t \le m} {m-t \choose r-t} (-2)^{r-1} {s \choose t}.$$

Remark: D are symmetric in α and β . From FTSP, they can be expressed in terms of the entries of the matrices F and G.

Symmetry Result: Example

$$\mathit{In}: C = igcup_{C} igcup_{C$$

$$D = \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} \\ D_{21} & D_{22} & & & \end{bmatrix}$$

$$D_{11} = 2(a_{11} + a_{22}) - 2(b_{11} + b_{22})$$

$$D_{12} = (a_{11} + a_{22})^2 + (b_{11} + b_{22})^2 + 2(a_{11}a_{22} - a_{12}^2)$$

$$+ 2(b_{11}b_{22} - b_{12}^2) - 3(a_{11} + a_{22})(b_{11}b_{22})$$

:

$$\Gamma_C = \left\{ \begin{bmatrix} + & - & + & - \\ - & + & - \end{bmatrix}, \begin{bmatrix} - & + & - & - \\ + & - & - \end{bmatrix}, \dots \right\}$$

Contents

- Problem
- Signature Result
- Symmetry Result
- 4 Comparison
- 5 Future Work

Comparison

Size of D: total number of coefficients of D

m	Signature	Symmetry	Descartes
arbitrary	$(2^{m}-1)\cdot n$	$(2^{m}-1)\cdot n$	N/A
1	n	n	n

- **①** Size of D for each approach is the same: $(2^m 1) \cdot n$
- 2 The above two methods are asymmetric with regard to the sizes of F and G.
 - If size of F is fixed, size is linear!
 - Choose F to be smaller matrix

Contents

- Problem
- Signature Result
- Symmetry Result
- 4 Comparison
- 5 Future Work

Future Work

Short-term:

- ullet Allow F and G to share eigenvalues
- Find applications
- Prune redundancies from output

Long-term:

- Generalize to > 2 matrices
- Generalize to tensors

References I

R. Descartes.

Géométrie.

1636.

In A source book in Mathematics, pages 90-131. Harvard University Press, 1969.

M. L. Telek.

Geometry of the signed support of a multivariate polynomial and descartes' rule of signs.

SIAM Journal on Applied Algebra and Geometry, 8(4):968–1000, 2024.

Bernhard Beckermann, Daniel Kressner, and Marcel Schweitzer.

Low-rank updates of matrix functions.

SIAM Journal on Matrix Analysis and Applications, 39(1):539–565, 2018.

A. Tarski.

The completeness of elementary algebra and geometry.

1930.

Reprinted in 1967.

References II

G. E. Collins.

Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition.

In Lecture Notes In Computer Science, pages 134–183. Springer-Verlag, Berlin, 1975.

Vol. 33.

M. Ben-Or, D. Kozen, and J. H. Reif.

The complexity of elementary algebra and geometry.

J. Comput. System Sci., 32(2):251-264, 1986.

D. Yu. Grigor'ev.

The complexity of deciding Tarski algebra.

Journal of Symbolic Computation, 5(1,2):65–108, 1988.

L. Gonzalez-Vega, H. Lombardi, T. Recio, and M.-F. Roy.

Sturm-Habicht sequences.

In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebriaic Computation, pages 136–146, July 1989.

References III

H. Hong.

An improvement of the projection operator in cylindrical algebraic decomposition.

In International Symposium of Symbolic and Algebraic Computation (ISSAC-90), pages 261–264. ACM, 1990.

H. Hong.

Improvements in CAD-based Quantifier Elimination.

PhD thesis, The Ohio State University, 1990.

G. E. Collins and H. Hong.

Partial cylindrical algebraic decomposition for quantifier elimination.

Journal of Symbolic Computation, 12(3):299–328, sep 1991.

H. Hong.

Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination.

In International Conference on Symbolic and Algebraic Computation ISSAC-92, pages 177–188, 1992.

References IV

J. Renegar.

On the computational complexity and geometry of the first-order theory of the reals.

Journal of Symbolic Computation, 13(3):255-352, 1992.

J. F. Canny.

Improved algorithms for sign and existential quantifier elimination.

Computer Journal, 36:409-418, 1993.

In a special issue on computational quantifier elimination, edited by H. Hong.

V. Weispfenning.

Quantifier elimination for real algebra – the cubic case.

In International Symposium on Symbolic and Algebraic Computation 94, pages 258–263, 1994.

References V

L. Gonzalez-Vega.

A combinatorial algorithm solving some quantifier elimination problems.

In B. Caviness and J. Johnson, editors, *Quantifier Elimination and Cylindrical Algebraic Decomposition*. Springer Verlag, 1996.

Texts and Monographs in Symbolic Computation.

S. McCallum.

Factors of iterated resultants and discriminants.

J. Symb. Comput., 27(4):367-385, 1999.

C. W. Brown.

Improved projection for cylindrical algebraic decomposition.

J. Symb. Comput., 32(5):447-465, 2001.

A. Strzebonski.

Cylindrical algebraic decomposition using validated numerics.

J. Symb. Comput., 41(9):1021-1038, 2006.

References VI

H. Hong and M. S. El Din.

Variant quantifier elimination.

J. Symb. Comput., 47(7):883-901, 2012.

Rizeng Chen.

The geometry of cylindrical algebraic decomposition.

ACM Commun. Comput. Algebra, 58(3):67-71, February 2025.

Hoon Hong, Daniel Profili, and J Rafael Sendra.

Conditions for eigenvalue configurations of two real symmetric matrices: a signature approach.

arXiv preprint arXiv:2401.00866, 2023.

Hoon Hong, Daniel Profili, and J Rafael Sendra.

Conditions for eigenvalue configurations of two real symmetric matrices: a symmetric function approach.

arXiv preprint arXiv:2401.00869, 2023.

Thank you!