

Facultad Politécnica Segunda Parcial de Métodos Numéricos - Sección TQ - Año 2023

1. (6P) La oferta de cierto producto aumenta según la siguiente tabla

Precio (dólares)	2.000	2.300	2.800
Cantidad (unidades)	30.000	32.000	36.000

- a) Hallar un polinomio que se ajuste a estos datos.
- b) Estimar la cantidad ofrecida para un precio de 2.150 d
 ólares.
- c) Estimar el precio de la oferta para una cantidad 33.000 unidades del producto.
- 2. (6P) Estimar la integral $\int_0^2 x^2 \sin(x) dx$ mediante el método de Romberg hasta llegar a $R_{3,3}$.
- 3. (8P) Dado el sistema de ecuaciones

$$1 \times 1 = 1$$
 $1 \times 1 = 2$
 $1 \times$

Aproximar la solución del sistema por el método de Jacobi comenzando con $x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Iterar hasta que $||x^{(k)} - x^{(k-1)}||_{\infty} \le 10^{-2}$. ¿Es convergente?.

- 4. (6P) Contestar con verdadero (V) o falso (F). Justificar las F:
 - a) La Regla de Simpson se puede usar cuando el intervalo de integración se divide en una cantidad par de puntos.
 - b) Si f es una función derivable en x = a, entonces la aproximación a f'(a) por medio de la diferencia central tiene un error del orden $O(h^2)$.
 - c) Si en el sistema Ax = b el radio espectral de A es estrictamente menor que 1, entonces el método de Jacobi converge.
 - d) Si en el sistema Ax = b la matriz A es simétrica y definida positiva, entonces se puede usar el Método de Uholesky.
 - e) Un polinomio que interpola los puntos $(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$, de una función f, puede tener grado exactamente n+1.
 - f) Al aproximar la integral $\int_a^b f(x)dx$ por medio de la Regla del Trapecio se obtiene un error del orden $O(h^4)$.

FÓRMULAS

MÉTODO DE JACOBI

$$x_i^{(k+1)} = \frac{-\sum_{j=1, j\neq i}^n a_{ij} x_j^{(k)} + b_i}{a_{ii}} \quad \text{para } i = 1, 2, ..., n$$