Lecture 4: Groups - basic properties and related ideas

We will look at some basic properties of groups which can be derived just from the group axioms.

Recall

A group is a pair (G, *) where

G is a set and x is a binary operation on G such that:

(1) There exists an element 1g such that $f * 1_G = 1_G * f = f$ for all f in G.

- (2) For all f in G, there exists an element f'' such that $f * f'' = f'' * f = 1_G$.

 (3) (Associativity) For any f, a, h
- (3) (Associativity) For any f, g, hin G, (f*g)*h = f*(g*h).

Cancellation property Let a, b and c be elements of a group G. If either ab = ac or ba = ca, then b=c.

(In other words, we can cancel c either on the left or the right.)

```
Proof: Suppose ab = ac.
Then, a'(ab) = a'(ac).
So, by associativity,
```

 $(a^{-1}a)b = (a^{-1}a)c$

So 16.6 = 16.C., i.e. b = c. If ba = ca, the proof is similar.

Remark

It is not true, in general that $ab = ca \implies b = c.$

For example in the dihedral

group D3, PT = TP. However, we cannot cancel T to get P=P (which is false) About the identity element The axioms say that there exists some element 1g such that $f * L_G = L_G * f = f$ for all f. They do not explicitly say that there is only one such element. However, we can deduce this.

Uniqueness of identity. Theorem Let G be a group and let f be an element of G such that fx = x for some x in G. Then f = 1_G. $\frac{\text{Proof}}{\text{fx}} = x \implies f = 1_{G}$

(by "cancelling" x on the right.)/

Remark

Notice that we only needed to assume that fx = x for <u>some</u>

x, not necessarily all x.

Also, we did not need to assume xf = x.

About inverses

Similarly, in the case of inverses, the axioms only state that for any f in G, there exists some f'such that $f * f' = f * f = L_G$.

However, we can <u>deduce</u> a stronger statement.

Uniqueness of inverses

Theorem Let G be a group and let f be an element of G. If h is an element such that fh= 1g, then h= f. Similarly, if h satisfies hf = 16, then $h = f^{-1}$.

 $h = 1_G \cdot h$ Proof: = (f'f) h= $t_{J}(ty)$ $= f^{-1} 1_G = f^{-1}$ The proof in the case hf = 1a is similar. (Ex. - Write it out.)

Inverses of a product Note that if a, b are in a group G, (ab) is not the same as a b! In fact, we claim that $(ab)^{-1} = b^{-1} \cdot a^{-1}$ (Note the order 1)

Indeed, $ab \cdot (b^{1}a^{-1}) = a(bb^{-1})a^{-1}$ $= \alpha \cdot 1_6 \cdot \alpha^{-1}$ $= \alpha \overline{\alpha'} = 1_G$ So (ab)' = b'a'In general, à b' and b'a' are not the same.

Notation

If the binary operation in a group is being written like multiplication, we write f for f.f. ... f where n times. n is a positive number.

We will write f' for (f')". One can check that this behaves as expected, r.e. fm. fn = fm+n for any integers m and n.

Similar-looking groups.

What is the group of isometries of a non-equilateral isosceles

triangle?

There are only two

isometries

- id (identity)
- T (a reflection)

The multiplication table for this group is very simple.

	id	て
id	bi	て
て	て	ıδ.

Now, consider the isometries of a parallelogram which has unequal sides and is not a

rectangle.

There are only two isometries

(1) id (identity)

(2) P (rotation around o through T)

The multiplication table is id id P

id id P

id.

we notice that these groups are "essentially the same".

Let us look at another example...

Let A be the following set

The pattern repeats infinitely in both directions.

The group of isometries is the set { id, o, o⁻¹, o², o⁻², ---- }

where $\sigma =$ translation to the right through distance d.

Composition is simple: 50. 51 = 511 for any integers j.

So, this group is "like" (Z, +). When should two groups be treated essentially the same? We should say they are the same if we can match up the elements in a way that "respects" the binary operations.

Definition

Let (G, *) and (H, O) be two groups. A group isomorphism from (G,*) to (H,O) is a

1-1 correspondence P:G→H such that $\varphi(x * y) = \varphi(x) \odot \varphi(y)$ for all x, y in G.

We say that two groups are isomorphic if there exists a

group isomorphism from one

to the other.

Example

Let 1R_t denote the set of positive real numbers. IR_t is a group under the binary operation of multiplication.

We denote this group by (IR+, ·).

Fix some real number a>1.

Consider the function $\varphi: \mathbb{R} \longrightarrow \mathbb{R}_+$ given by $\varphi(x) = a^x$.

It can be shown that φ is α 1-1 correspondence. $\varphi(x+y) = \alpha^{x+y} = \alpha^x \cdot \alpha^y$

 $= \varphi(x) \cdot \varphi(y).$ Thus, φ is a group isomorphism. So (R_+, \cdot) is isomorphic to $(R_+, +)$.

Isomorphisms "preserve" identity and inverses

Theorem Let G and H be groups. Let $\varphi: G_1 \longrightarrow H$ be an isomorphism. Then

 $(0) \varphi(1_G) = 1_H$

(2) For any $x \in G$, $\varphi(x') = \varphi(x)^{-1}$

Proof: $\varphi(1_G) = \varphi(1_G \cdot 1_G)$ $= \phi(T^e) \cdot \phi(T^e)$ So, by cancelling $\varphi(L_{\epsilon})$ from both sides, we get $\varphi(1_G) = 1_H$. This proves (1) Now, let 2 be any element of G.

Then
$$\varphi(x \cdot x^{-1}) = \varphi(x) \cdot \varphi(x^{-1})$$

But $\varphi(x \cdot x^{-1}) = \varphi(1_c) = 1$

But
$$\varphi(x \cdot x') = \varphi(1_6) = 1_H$$

So $\varphi(x) \cdot \varphi(x^{-1}) = 1_{H}$ So, $\varphi(x^{-1}) = \varphi(x)^{-1}$

Example

G = group of rotational symmetries of a regular hexagon

H = group of isometries of an equilateral briangle.

Are they isomorphic?

Answer No.

Two ways to see this.

(1) G contains the rotation P through $2\pi/6$ radians.

Then $P^6 = 1_G$. Also, P^2 and P^3 are <u>not</u> equal to 1_G

There is no such element in H 1

Indeed if x is any element of H, either $x^2 = 1_H$ or $x^3 = 1_H$. (Check this!)

If ϕ : G → H were any isomorphism, $\varphi(P)^2 = \varphi(P^2)$

and $\varphi(\rho)^3 = \varphi(\rho^3)$ must both

be distinct from 1 - contradiction.