Hypothesis testing

Hypothesis testing in a nutshell

Hypothesis testing asks how unusual it is to get data that differ from the null hypothesis.

If the data would be quite unlikely under H_0 , we reject H_0 .

Hypotheses are about populations, but are tested with data from samples

Hypothesis testing usually assumes that sampling is random.

Null hypothesis: a specific statement about a population parameter made for the purposes of argument.

Alternate hypothesis: represents all other possible parameter values except that stated in the null hypothesis.

The *null hypothesis* is usually the simplest statement, whereas the *alternative hypothesis* is usually the statement of greatest interest.

A good null hypothesis would be interesting if proven wrong.

A null hypothesis is specific; an alternate hypothesis is not.

A test statistic summarizes the match between the data and the null hypothesis

A *P*-value is the probability of getting the data, or something as or more unusual, if the null hypothesis were true.

Hypothesis testing: an example

Does a red shirt help win wrestling?

How to find *P*-values

- Simulation
- Parametric tests
- Re-sampling

The experiment and the results

- Animals use red as a sign of aggression
- Does red influence the outcome of wrestling, taekwondo, and boxing?
 - 16 of 20 rounds had more red-shirted than blueshirted winners in these sports in the 2004 Olympics
 - Shirt color was randomly assigned

Stating the hypotheses

H₀: Red- and blue-shirted athletes are <u>equally likely</u> to win (*proportion* = 0.5).

 H_A : Red- and blue-shirted athletes are <u>not equally likely</u> to win (proportion \neq 0.5).

Is this discrepancy by chance alone?:

Estimating the probability of such an extreme result

 The null distribution for a test statistic is the probability distribution of alternative outcomes when a random sample is taken from a population corresponding to the null expectation.

Estimating the value

- 16 of 20 is a proportion of *proportion* = 0.8
- This is a discrepancy of 0.3 from the proportion proposed by the null hypothesis, proportion = 0.5

The null distribution of the sample proportion

Calculating the *P*-value from the null distribution

The *P*-value is calculated as

 $P = 2 \times [Pr(16) + Pr(17) + Pr(18) + Pr(19) + Pr(20)] = 0.012.$

 α is often 0.05

Statistical significance

The *significance level*, α , is a probability used as a criterion for rejecting the null hypothesis.

If the P-value for a test is less than or equal to α , then the null hypothesis is rejected.

Significance for the red shirt example

- P = 0.012
- P < α, so we can reject the null hypothesis
- Athletes in red shirts were more likely to win.

Larger samples give more information

- A larger sample will tend to give and estimate with a smaller confidence interval
- A larger sample will give more power to reject a false null hypothesis

Common wisdom holds that dogs resemble their owners. Is this true?

- 41 dog owners approached in parks; photos taken of dog and owner separately
- Photo of owner and dog, along with another photo of dog, shown to students to match

Hypothesis testing: another example

Do dogs resemble their owners?

Hypotheses

 H_0 : The proportion of correct matches is *proportion* = 0.5.

 H_A : The proportion of correct matches is different from *proportion* = 0.5.

Data

Of 41 matches, 23 were correct and 18 were incorrect.

Null distribution for dog/owner resemblance

Estimating the proportion

sample proportion =
$$\frac{23}{41}$$
 = 0.56

The *P*-value:

$$P = 0.53$$
.

We do not reject the null hypothesis that dogs do not resemble their owners.

Jargon

Type I error

- Rejecting a true null hypothesis
- Probability of Type I error is α (the significance level)

Significance level

- The acceptable probability of rejecting a true null hypothesis
- Called α
- For many purposes, α = 0.05 is acceptable

Type II error

- Not rejecting a false null hypothesis
- The probability of a Type II error is β .
- The smaller β , the more *power* a test has.

Power

- The ability of a test to reject a false null hypothesis
- Power = 1- β

One- and two-tailed tests

- Most tests are two-tailed tests.
- This means that a deviation in either direction would reject the null hypothesis.
- Normally α is divided into $\alpha/2$ on one side and $\alpha/2$ on the other.

One-tailed tests

- Only used when the other tail is nonsensical
- For example, comparing grades on a multiple choice test to that expected by random guessing

Critical value

 The value of a test statistic beyond which the null hypothesis can be rejected

Test Statistic

- A number calculated to represent the match between a set of data and the null hypothesis
- Can be compared to a general distribution to infer probability

"Statistically significant"

- $P < \alpha$
- We can "reject the null hypothesis"

Correlation does not automatically imply causation

We never "accept the null hypothesis"

Correlation does not automatically imply causation

Life expectancy by country:

Confounding variable

An unmeasured variable that may be cause both *X* and *Y*

Observations vs. Experiments

Statistical significance ≠ Biological importance

	Important	Unimportant
Significant	Polio vaccine reduces incidence of polio	Things you don't care about, or already well known things: BRIEFS Study Shows Frequent Sex Enhances Pregnancy Chances The Activity Hald in- many the study that in the study of the stud
Insignificant	Small study shows a possible effect, leading to larger study which finds significance. or Large study showing no effect of drug that was thought to be beneficial.	Studies with small sample size and high <i>P</i> -value or Things you don't care about