Lógica de Predicados 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

O que é?

É um processo de manipulação algébrica das funções lógicas com a finalidade de REDUZIR o número de variáveis e operações para realizar a função lógica.

Por que simplificar?

- tornar o circuito mais simples de fabricar;
- facilitar a manutenção;
- economia de componentes;
- tornar o circuito mais rápido.

$$F(A,B,C) = A'BC + ABC' + A'B'C$$

$$F(A,B,C) = A'BC + ABC' + A'B'C$$

Será que podemos deixá-lo menor (mais simples)?

$$F(A,B,C) = A'BC + ABC' + A'B'C$$

Será que podemos deixá-lo menor (mais simples)? Para isso, precisamos simplificar a função booleana.

Lembrando a Matemática...

Lembrando a Matemática...

SOMA e MULTIPLICAÇÃO:

propriedade <u>comutativa</u>:

$$5 + 2 = 2 + 5$$

$$5.2 = 2.5$$

a ordem das PARCELAS não altera a soma a ordem dos FATORES não altera o produto

Lembrando a Matemática...

SOMA e MULTIPLICAÇÃO:

propriedade <u>comutativa</u>:

$$5 + 2 = 2 + 5$$

$$5.2 = 2.5$$

propriedade <u>associativa</u>:

$$5 + (2 + 3) = 10$$

$$5.(2.3) = 30$$

$$(5 + 2) + 3 = 10$$

$$(5.2).3 = 30$$

$$2 + (5 + 3) = 10$$

$$2.(5.3) = 30$$

Lembrando a Matemática...

SOMA e MULTIPLICAÇÃO:

- propriedade do <u>elemento neutro</u>:
 - soma(0)

$$5 + 0 = 5$$

multiplicação (1)

$$5.1 = 5$$

Lembrando a Matemática...

MULTIPLICAÇÃO:

$$3.(x + 4)$$

Lembrando a Matemática...

MULTIPLICAÇÃO:

$$3.(x + 4) = 3x$$

Lembrando a Matemática...

MULTIPLICAÇÃO:

$$3.(x + 4) = 3x + 12$$

Lembrando a Matemática...

MULTIPLICAÇÃO:

$$3.(x + 4) = 3x + 12$$

$$3x + 12$$

Lembrando a Matemática...

MULTIPLICAÇÃO:

$$3.(x + 4) = 3x + 12$$

$$12 = 3x4$$

Lembrando a Matemática...

MULTIPLICAÇÃO:

propriedade <u>distributiva</u>:

$$3.(x + 4) = 3x + 12$$

fatoração por fator comum:

$$12 = 3x4$$

o que eu quero? 3x

Lembrando a Matemática...

MULTIPLICAÇÃO:

propriedade <u>distributiva</u>:

$$3.(x + 4) = 3x + 12$$

$$12 = 3x4$$

o que eu quero? 3x o que eu tenho? 3

Lembrando a Matemática...

MULTIPLICAÇÃO:

propriedade <u>distributiva</u>:

fatoração por fator comum:

$$3x + 12$$
 3.(x +

$$12 = 3x4$$

o que eu quero? 3x o que eu tenho? 3 o que está faltando? x

Lembrando a Matemática...

MULTIPLICAÇÃO:

propriedade <u>distributiva</u>:

$$3.(x + 4) = 3x + 12$$

fatoração por fator comum:

$$12 = 3x4$$

o que eu quero? 12

Lembrando a Matemática...

MULTIPLICAÇÃO:

propriedade <u>distributiva</u>:

$$3.(x + 4) = 3x + 12$$

$$3x + 12$$

3.(x +

$$12 = 3x4$$

o que eu quero? 12 o que eu tenho? 3

Lembrando a Matemática...

MULTIPLICAÇÃO:

propriedade <u>distributiva</u>:

fatoração por fator comum:

$$3x + 12$$

 $3.(x + 4)$

$$12 = 3x4$$

o que eu quero? 12 o que eu tenho? 3 o que está faltando? 4

$$A = 1$$
 $A = 0$
 $A' = 0$ $A' = 1$
 $A'' = 1$ $A'' = 0$

T2. A.1 = A

Α	В	A·B
0	0	0
0	1	0
1	0	0
1	1	1

T3.
$$A + 1 = 1$$

Α	В	А+В	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

T4. A.0 = 0

	A	В	A·B
I	0	0	0
	0	1	0
	1	0	0
	1	1	1

T5.
$$A + 0 = A$$

Α	В	А+В	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

T6. A.A' =
$$0$$

Α	A'	A.A'
1	0	0
0	1	0

T7. A + A' = 1

Α	A'	A+A'
1	0	1
0	1	1

T8. A + A = A

Α	Α	A+A
1	1	1
0	0	0

Santos

T9.
$$A.A = A$$

Α	Α	A.A
1	1	1
0	0	0

T10. Comutatividade:

$$A + B = B + A$$

е

$$A.B = B.A$$

T11. Distributividade:

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$
 e $A + (B \cdot C) = (A + B) \cdot (A + C)$

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

$$A + (A.B) = A$$

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

$$A + (A.B) = A$$

$$A + (A.B)$$

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

T13. Colocar em evidência:

$$A + (A.B) = A$$

Santos

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

T13. Colocar em evidência:

$$A + (A.B) = A$$

o que eu quero? A o que eu tenho? A o que está faltando???

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

T13. Colocar em evidência:

$$A + (A.B) = A$$

o que eu quero? AB o que eu tenho? A o que está faltando? B

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

$$A + (A.B) = A$$

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

$$A + (A.B) = A$$

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

$$A + (A.B) = A$$

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

T13. Colocar em evidência:

$$A + (A.B) = A$$

T2. A.1 = A

T12. Leis de Morgan:

$$(A + B)' = A'. B'$$
 e $(A.B)' = A' + B'$

T13. Colocar em evidência:

$$A + (A.B) = A$$

$$A.(I + B)$$
 (t3 – teorema básico)

T2. A.1 = A

T14. Xor:

$$A \oplus B = (A.B') + (A'.B)$$

T15. Xor negado:

$$(A \oplus B)' = (A'.B') + (A.B)$$

Teoremas da Álgebra de Boole

T16.
$$(A \rightarrow B)' = A \cdot B'$$

T17.
$$(B \rightarrow A)' = A' \cdot B$$

T18.
$$A \rightarrow B = A' + B$$

T19.
$$B \rightarrow A = A + B'$$

T20.
$$(A \leftrightarrow B) = (A \rightarrow B)$$
. $(B \rightarrow A)$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + ABC' + A'B'C$$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + ABC' + A'B'C$$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + A'B'C + ABC'$$
 (colocar em evidência)
= $C.(A'B + A'B') + ABC'$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + A'B'C + ABC'$$
 (colocar em evidência)
= $C.(A'B + A'B') + ABC'$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + A'B'C + ABC'$$
 (colocar em evidência)
= $C.(A'B + A'B') + ABC'$ (colocar em evidência)
= $C.(A'.(B+B')) + ABC'$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + A'B'C + ABC'$$
 (colocar em evidência)
= $C.(A'B + A'B') + ABC'$ (colocar em evidência)
= $C.(A'.(B+B')) + ABC'$

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

$$F(A,B,C) = A'BC + A'B'C + ABC'$$
 (colocar em evidência)
= $C.(A'B + A'B') + ABC'$ (colocar em evidência)
= $C.(A'.(B+B')) + ABC'$ (T7 - Teorema básico)

Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

```
F(A,B,C) = A'BC + A'B'C + ABC' (colocar em evidência)
= C.(A'B + A'B') + ABC' (colocar em evidência)
= C.(A'.(B+B')) + ABC' (T7 - Teorema básico)
= C.(A'.1) + ABC'
```


Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

```
F(A,B,C) = A'BC + A'B'C + ABC' (colocar em evidência)
= C.(A'B + A'B') + ABC' (colocar em evidência)
= C.(A'.(B+B')) + ABC' (T7 - Teorema básico)
= C.(A'.1) + ABC'
```


Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

```
F(A,B,C) = A'B'C + A'B'C + ABC' (colocar em evidência)
= C.(A'B + A'B') + ABC' (colocar em evidência)
= C.(A'.(B+B')) + ABC' (T7 - Teorema básico)
= C.(A'.1) + ABC' (T2 - Teorema básico)
= C.A' + ABC'
```


Como simplificar?

Aplicando-se os teoremas da Álgebra de Boole sobre a função que deve ser simplificada.

```
F(A,B,C) = A'BC + A'B'C + ABC' (colocar em evidência)
= C.(A'B + A'B') + ABC' (colocar em evidência)
= C.(A'.(B+B')) + ABC' (T7 - Teorema básico)
= C.(A'.1) + ABC' (T2 - Teorema básico)
= A'C + ABC'
```


Referências

BAGHLIAN, J. Lógica e Álgebra Booleana. 1995.

