Collective Intelligence Assignment 2: Fox-Rabbit competition modelling

Laryza Mussavi, Seeun Park, Aryanne Thompson, Ohad Daniel, Angela Jagessar

THE TASK

Create a predator-prey (fox vs. rabbit) system based on the Lotka-Volterra.

Perform a comparative study.

2 populations, no extras

Obstacle added to separate populations

Energy concept added to Prey

INTRODUCTION

PURPOSE OF THE SIMULATION:

- Visualize data
- A way to study behavioural patterns and environmental effects

QUESTIONS ANSWERED WITH THE SIMULATION:

- How does the spatial behaviour of agents affect the population growth of two different species in a predator?
- What type of parameter settings can be used to extract different behaviours from the agents?

METHODOLOGY

[1] Predator-Prey Models, Stephanie Forrest, Dept. of Computer Science, Univ., of New Mexico, Albuquerque, NM

METHODOLOGY

Fox Rabbit

Probabilistic approach

- Reproduction probability for foxes
 - Energy level and threshold → uniform(1/energy) and threshold
- Set probability for rabbits

Parameters

radius	10, 15, 20
Populations ratio (r:f)	20:20, 20:30, 25:50, 40:40
movement_speed	0.5, 1, 1.5, 2
start_energy (f)*	15, 20, 30, 40, 50
energy_gain (f)	0.1, 0.25, 0.5, 1, 2
energy_decay (f)/s	0.5, 1, 2, 5
reprod_threshold (f)	5, 6, 6.5, 7, 10, 15
reprod_prob (r)	0.2, 0.3, 0.4, 0.5, 0.6, 0.75
reprod_time (r)	1s, 2s, 3s, 4s, 5s, 10s

^{*} f = foxes; r = rabbits

Parameters

radius	15
Populations ratio (r:f)	20:20
movement_speed	1.5
start_energy (f)*	20
energy_gain (f)	0.25
energy_decay (f)/s	1
reprod_threshold (f)	10
reprod_prob (r)	0.5
reprod_time (r)	5s

^{*} f = foxes; r = rabbits

Results

Result Analysis

Population sizes

No obstacle

Obstacle

Range of # Agents

No Obstacles

With Obstacles

Stats

H0: The avg # of agents is equal between the two groups

HA: The avg # of agentis not equal between the two groups

No Obstacles

WilcoxonResult(statistic=25535114.5, pvalue=6.033989331855553e-183)

With Obstacles

WilcoxonResult(statistic=1255493.0, pvalue=1.7107984402765896e-133)

Expectations

- Populations alternating in size
- Constant interactions
- Obstacle causing early extinction
- Graphs in line with Lotka Volterra
- Small number of outliers in stats

Results

- Extinction occurs
 - tuning and conditions on reprod
- Patterns as expected
- Spatial interference by object
- No clear outliers

Conclusion

- Agent based Simulation of competitive behaviours observed in nature.
- Different implementation and approaches.

Conclusion

- Conclusion of the results found and its implications
- Further research
 - Movement influence
 - Reproduction and aging
 - Longer simulations

Skills Learnt

Creativity to implement our own ideas

Parameter
Tuning and Evaluation

Sources

[2] Karsai, I., Montano, E., & Schmickl, T. (2016). Bottom-up ecology. Letters in Biomathematics, 3(1), 161-180.

[3] Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: a review. Ecological modelling, 176(3-4), 313-332.

