Lab 4: MA 322

Date: 16/02/2021

Submission date: By 5 pm on 22/02/2021

1. Apply Mid-point, Trapezoidal and Simpson methods to evaluate

(a)
$$I = \int_0^{\pi/2} \frac{\cos(x)}{1 + \cos^2(x)} dx$$
 (exact value ≈ 0.623225)

(b)
$$I = \int_0^{\pi} \frac{1}{5+4\cos(x)} dx$$
 (exact value ≈ 1.047198)

(c) I =
$$\int_0^1 \exp(-x^2) dx$$
 (exact value ≈ 0.746824)

2. A function f has the values shown below:

X	1	1.25	1.50	1.75	2
f(x)	10	8	7	6	5

- (a) Use trapezoidal rule to approximate $\int_1^2 f(x) dx$.
- (b) Use Simpson's rule to approximate $\int_1^2 f(x) dx$.
- 3. Use composite Simpson's and composite Trapezoidal rules to obtain an approx-mate value for the improper integral

$$\int_0^\infty \frac{1}{x^2 + 9} dx, \text{ with } n = 4.$$

4. Compute the integral

$$\int_{-1}^{1} \frac{1}{x+2} \mathrm{dx}$$

using the trapezoidal and Simpson's rules and compare the results with help of plots.

5. Determine the values of n and h required to approximate

$$\int_0^2 \frac{1}{x+4} \mathrm{dx}$$

to within 10^{-5} and compute the approximation. Use

- (a) Composite Trapezoidal rule.
- (b) Composite Simpson's rule.
- (c) Composite Midpoint rule.

6. Write a program that approximates $\int_a^b f(x) dx$ by the composite trapezoidal rule T(h). Starting with h = (b - a) to compute

$$\frac{|T(h) - T(\frac{h}{2})|}{|T(\frac{h}{2})|}$$

and reduce h by a factor of 2 until $\frac{|T(h)-T(\frac{h}{2})|}{|T(\frac{h}{2})|}<10^{-6}.$

Your program should return a table with $\frac{h}{2}$, $T(\frac{h}{2})$, $\frac{|T(h)-T(\frac{h}{2})|}{|T(\frac{h}{2})|}$ and it should return the total number of function evaluations f(x). Your program should reuse computed function values as much as possible.

Apply your program to approximate the integrals

- (a) $\int_0^3 \frac{x}{1+x^2} dx = \frac{1}{2} \ln 10$,
- (b) $\int_0^{0.95} \frac{1}{1-x} dx = \ln 20$,
- (c) $\int_0^{\pi/2} \frac{1}{\sqrt{1 m \sin^2 x}} dx$, m = 0.5, 0.8, 0.95
- 7. Suppose that the function $f: \mathbb{R} \to \mathbb{R}$ cannot be evaluated exactly, but instead of f(x) a value $\hat{f}(x) = f(x) + \delta(x)$ is computed, where $|\delta(x)| \leq \delta$ for all $x \in \mathbb{R}$. Suppose one is interested in the integral

$$\int_{a}^{b} f(x) dx$$

and wants to approximate the integral by composite trapezoidal rule T(h) with step size h = (b-a)/N.

(a) Derive an estimate for the error

$$\left| \int_{a}^{b} f(x) dx - T(h) \right|$$

when inexact function evaluations are used.

(b) Given δ , what would the range of "reasonable" step sizes h be? Justify your answer. Demonstrate your findings by approximating

$$\int_0^1 x^3 \mathrm{dx},$$

where instead of

$$f(x) = x^3,$$

the function

$$\hat{f}(x) = x^3 + 0.01 * rand$$

is used in the composite trapezoidal formula.