WE CLAIM:

1. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (I) or (II):

DO
$$\mathbb{R}^3$$
 \mathbb{R}^{2^1} \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^3 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^2

or its β-L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;

each W¹ and W² is independently CH or N;

each X¹ and X² is independently hydrogen, halogen (F, Cl, Br or I), NH₂, NHR⁴, NR⁴R⁴, NHOR⁴, NR⁴NR⁴'R⁴', OH, OR⁴, SH or SR⁴;

each Y¹ is O, S or Se;

each Z is CH2 or NH;

each R¹ and R¹ is independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, alkylaryl, halogen (F, Cl, Br or I), NH₂, NHR⁵, NR⁵R⁵, NHOR⁵, NR⁵NHR⁵, NR⁵NR⁵'R⁵'', OH, OR⁵, SH, SR⁵, NO₂, NO, CH₂OH, CH₂OR⁵, CO₂H, CO₂R⁵, CONH₂, CONHR⁵, CONR⁵R⁵' or CN;

each R² and R² independently is hydrogen or halogen (F, Cl, Br or I), OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH=CH₂, CN, CH₂NH₂, CH₂OH, CO₂H.

each R³ and R³ independently is hydrogen or halogen (F, Cl, Br or I), OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH₃, C₂H₅, CH=CH₂, CN, CH₂NH₂, CH₂OH, CO₂H.

each R⁴, R⁴, R⁴, R⁵, R⁵ and R⁵ independently is hydrogen, lower alkyl, lower alkenyl, aryl, or arylalkyl such as unsubstituted or substituted phenyl or benzyl; such that for the nucleoside of the general formula (I) or (II) at least one of R² and R² is hydrogen and at least one of R³ and R³ is hydrogen.

2. The method of claim 1, wherein the β -D nucleoside of the formula (I-a) is selected from one of the following:

X	\mathbf{Y}^{1}	R^{I}	$\mathbf{R}^{\mathbf{I}'}$	\mathbb{R}^2	$\mathbb{R}^{2^{r}}$	\mathbb{R}^3	R ³ '
NH ₂	0	Н	Н	OH	Н	Н	OH
NH ₂	0	Н	Н	OH	Н	Н	I
NH ₂	0	Н	Н	ОН	Н	Н	Cl
NH ₂	0	Н	Н	OH	Н	H	Br
NH ₂	0	Н	Н	OH	Н	Н	S-CN
NH ₂	0	Н	Н	OH	Н	Н	N ₃
NH ₂	0	Н	Н	H	C1	Н	OH
NH ₂	0	Н	Н	Н	Br	Н	ОН
NH ₂	0	Н	Н	Н	ОН	Br	Н
NH ₂	0	Н	Н	H	OH	H	Н
NH ₂	O	Н	Н	Н	ОН	O-Ms	H
NH ₂	0	H	Н	Н	OH	O-Ts	Н
NH ₂	0	Н	H	O-Ms	Н	Н	ОН
NH ₂	0	Н	Н	Cl	Н	H	OH
NH ₂	0	D	D	OH	Н	Н	ОН
NH ₂	0	F	Н	ОН	Н	Н	OH
NH ₂	0	F	Н	Н	ОН	Н	OH
NH ₂	0	F	Н	Н	ОН	Н	Н
NH ₂	O	F	Н	Н	OH	C1	H
NH ₂	0	F	Н	Н	ОН	Br	Н

$\mathbf{X}^{\mathbf{i}}$	$\mathbf{Y}^{\mathbf{I}}$	\mathbb{R}^{1}	R	\mathbb{R}^2	$\mathbb{R}^{2^{n}}$	R ³	R ³ '
NH ₂	O	F	Н	Н	Cl	Н	OH
NH ₂	O	F	Н	Н	OH	O-Ts	H
NH ₂	O	F	Н	Н	OH	O-Ms	Н
NH ₂	0	Cl	Н	Н	OH	O-Ms	Н
NH ₂	0	Br	Н	Н	ОН	O-Ms	Н
NH ₂	0	Br	Н	H	OH	O-Ts	H
NH ₂	O	Br	Н	Н	OH	Cl	Н
NH ₂	O	Br	Н	Н	OH	Н	OH
NH ₂	O	Br	Н	OH	Н	Н	OH
NH ₂	O	I	Н	Н	ОН	O-Ms	Н
NH ₂	O	I	Н	Н	OH	Br	Н
NH ₂	O	I	Н	Н	ОН	O-Ts	Н
NH ₂	O	I	Н	Н	Cl	Н	OH
NH ₂	O	I	Н	Br	Н	Н	ОН
NH ₂	O	OH	Н	OH	Н	Н	OH
NH ₂	O	NH ₂	Н	Н	ОН	Н	OH
NH ₂	0	CH ₃	Н	Н	OH	C1	Н
NH ₂	NH	Н	Н	OH	Н	Н	OH
NH ₂	S	Н	H	Н	Se-phenyl	H	Н
NH-(2-Ph-Et)	O	Н	Н	OH	Н	H	OH
NH-COCH ₃	0	Н	Н	ОН	Н	H	OH
NH-NH ₂	O	Н	Н	ОН	Н	H	ОН
NH-NH ₂	O	F	H	ОН	Н	Н	ОН
NH-NH ₂	0	CH ₃	Н	Н	OH	Н	ОН
NH-OH	0	Н	Н	Н	OH	Н	ОН
NH-OH	O	F	Н	Н	OH	H	ОН
NH-OH	0	Br	Н	H	ОН	Н	OH
NH-OH	O	I	H	Н	ОН	Н	OH
NH-OH	O	Н	Н	OH	Н	Н	OH
OH	O	ОН	Н	ОН	Н	Н	OH
ОН	O	NH ₂	Н	H	OH	Н	OH

$\mathbf{X}^{\mathbf{I}}$	$\overline{\mathbf{Y}^{1}}$	\mathbf{R}^{1}	\mathbf{R}^{Γ}	\mathbb{R}^2	$\mathbb{R}^{2^{\prime}}$	$^{\prime}$ \mathbb{R}^{3} .	R ³
ОН	O	F	Н	OH	Н	H	ОН
ОН	O	F	H	Н	O-Ts	H	OH
ОН	O	F	Н	H	O-Ms	Н	O-Ms
OH	O	F	Н	Н	OH	Н	OH
OH	O	F	Н	Н	OH	Н	O-Ts
ОН	0	F	Н	Н	H	Н	OH
O-Et	0	Н	Н	H	O-Bz	H	O-Bz
S-CH ₃	O	Н	Н	Н	F	Н	OH
SH	O	Н	Н	Н	OH	Н	OH
SH	0	F	Н	Н	OH	Н	OH
N_3	O	Н	Н	Н	H	Н	Н
NH-(2-Ph-Et)	0	Н	Н	Н	OH	Н	OH
ОН	O	ОН	Н	Н	OH	Н	OH
ОН	O	Н	Н	Н	ОН	Н	Н

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

3. The method of claim 1, wherein the β -D nucleoside of the formula (I-b) is selected from one of the following:

\mathbf{X}^{1}	\overline{X}^2	W¹	\mathbb{R}^2	\mathbb{R}^{2}	\mathbb{R}^3	R ³
OH	NH_2	N	Н	ОН	Н	ОН
OH	NH ₂	СН	F	H	Н	ОН
NH-cyclohexyl	Н	CH	Н	Н	H	H
NH ₂	Н	СН	Н	ОН	Н	F
NH ₂	Н	CH	Н	Н	Н	Н
NH ₂	NH ₂	N	H	ОН	Н	ОН
NH ₂	NH ₂	СН	H	ОН	Н	OH
Cl	Н	СН	F	Н	Н	Н
Cl	I	СН	Н	O-Ac	Н	O-Ac
Cl	Н	СН	H	ОН	Н	OH
NH ₂	Н	СН	H	OH	Н	Н

$\mathbf{X}^{\mathbf{I}}$	\mathbf{X}^{2}	$\overline{\mathbf{W}}^{1}$	R^2	$\mathbb{R}^{2'}$	R^3	R ³ ';
Cl	Н	СН	Н	OH	Н	Н

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

4. The method of claim 1, wherein the β -D nucleoside of the formula (II-a) is selected from one of the following:

\mathcal{X}^{1}	$\mathbf{Y}^{\mathbf{I}}$	$\cdot \mathbf{R^1}$	R ^r	\mathbb{R}^2	\mathbb{R}^3
NH-Bz-(m-NO ₂)	0	F	Н	H	Н
NH-Bz-(o-NO ₂)	0	F	Н	Н	Н
NH ₂	O	F	Н	F	Н

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

5. The method of claim 1, wherein the β -D nucleoside of the formula (II-b) is selected from one of the following:

, X ¹	X ²	W ¹	R ²	R ³
Cl	Н	CH	F	Н
OH	H	CH	H	Н
NH_2	F	CH	Н	Н
NH ₂	F	CH	F	Н
NH ₂	Н	CH	H	Н
OH	NH ₂	CH	Н	H
ОН	Н	СН	Н	Н

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

6. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (V) or (VII):

or its β-L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, W¹, W², X¹, X², Y¹, Z, R¹, R¹, R², R², R², R³ and R³ is the same as defined previously;

such that for the nucleoside of the general formula (V) or (VI), at least one of R^2 and R^2 is hydrogen and at least one of R^3 and R^3 is hydrogen.

7. The method of claim 6, wherein the β -D nucleoside of the formula (V-a) is selected from one of the following:

X	\mathbf{Y}^{I}	R	RI	\mathbb{R}^2	$\mathbb{R}^{2^{+}}$	\mathbb{R}^3	R ^{3'}
NH ₂	O	F	Н	Н	OH	Н	OH
OH	Н	CH ₃	Н	H	Н	Н	Н
OH	O	Н	Н	Н	Н	Н	H
NH ₂	O	Н	Н	H	OH	Н	OH
NH ₂	0	Н	H	Н	Н	H	Н
ОН	0	F	Н	Н	OH	Н	ОН
NH ₂	0	Ι	Н	Н	Н	Н	Н
NH ₂	O	I	Н	Н	ОН	Н	ОН
NH ₂	0	Cl	Н	Н	ОН	Н	ОН

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

8. The method of claim 6, wherein the β -D nucleoside of the formula (VII-a) is selected from one of the following:

\mathbf{X}'	\mathbf{Y}^{1}	$\mathbf{R}^{\mathbf{I}}$	R ¹ ,	\mathbb{R}^2	\mathbb{R}^{2}	R ³	· R ³
NH ₂	O	Н	Н	H	OH	Н	OH
NH ₂	0	F	H	Н	OH	Н	OH
NH-OH	0	Н	Н	H	OH	Н	OH

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

9. The method of claim 6, wherein the β -D nucleoside of the formula (VII-b) is selected from the following:

X	X^2	$\mathbf{W}^{\mathbf{i}}$	R^2	$\mathbb{R}^{2'}$	\mathbb{R}^3	R^{3}
NH ₂	H	СН	Н	ОН	H	ОН

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

10. A method for the treatment or prophylaxis of host exhibiting a Flaviviridae,

Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular

proliferation comprising administering an effective amount of a compound of the general formula (XI):

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, W¹, W², X¹, X², Y¹, Z, R¹, R¹, R², R², R², R³ and R³ is the same as defined previously;

each Z^1 and Z^2 independently is O, S, NR^6 or Se; each R^6 is hydrogen, lower alkyl or lower acyl.

11. The method of claim 10, wherein the β -D nucleoside of the formula (XI-a) is selected from one of the following:

$\mathbf{X}^{\mathbf{I}}$, Y ¹ ,	Z 1	\mathbf{Z}^{2}	R ,	R!
NH ₂	Ō	O	0	Н	Н
NH ₂	O	O	S	F	H
NH ₂	0	О	О	F	H

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

12. The method of claim 10, wherein the β -D nucleoside of the formula (XI-b) is selected from one of the following:

X ¹	X ²	\mathbf{W}^{1}	Zi	\mathbb{Z}^2
Cl	Н	CH	O	S
Cl	NH ₂	СН	O	S
NH ₂	F	СН	O	S
OH	Н	СН	0	O

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

13. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XIII):

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, R¹, R¹', R², R²', R³ and R³' is the same as defined previously;

each Y² is O, S, NH or NR⁷;

each Y³ is O, S, NH or NR⁸;

each X³ is OR⁹ or SR⁹; and

each R⁷, R⁸ and R⁹ is hydrogen, lower alkyl of C₁-C₆, arylalkyl or aryl;

such that for the nucleoside of the general formula (XIII-d), at least one of R^2 and R^2 is hydrogen and at least one of R^3 and R^3 is hydrogen.

14. The method of claim 13, wherein the β -D nucleoside of the formula (XIII-a) is selected from one of the following:

$\overline{Y^2}$	Y^3	\mathbf{R}^{1}	R^{Γ}	\mathbb{R}^2	\mathbb{R}^2	, R ³	R³
0	O	F	Н	Н	OH	Н	ОН

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

15. The method of claim 13, wherein the β -D nucleoside of the formula (XIII-c) is selected from one of the following:

\mathbf{Y}^2	\overline{Y}^3	R^1	R^{1}	R ³ .	R ³ '
O	0	F	Н	Н	ОН
O	0	F	Н	Н	O-Ms
NH	O	Н	Н	Н	O-Ms

${\mathbf{Y}^2}$	\mathbf{Y}^3	R	$\mathbf{R}^{\mathbf{I}'}$	\mathbb{R}^3	R ³
NH	O	H	Н	Н	O-Ac
NH	O	Н	Н	Н	OH
NH	O	F	Н	Н	ОН
NH	O	F	Н	Н	O-Ac

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

16. The method of claim 13, wherein the β -D nucleoside of the formula (XIII-d) is selected from the following:

$ Y^2$	\overline{X}^3	\mathbf{R}^{1}	$\mathbf{R}^{\mathbf{l}}$	\mathbb{R}^2	$\mathbb{R}^{2^{r}}$	R ³	$\mathbb{R}^{3^{t}}$
0	O-CH ₃	Н	Н	Н	O-Ac	H	O-Ac

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

17. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XIV):

DO
$$\begin{array}{c|c}
X^{1} & L^{1} \\
N & L^{2} \\
R^{3} & Z^{3} R^{2} \\
\hline
[XIV]
\end{array}$$

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, X^1 , Y^1 , Z^1 , R^1 , R^2 , R^2 , R^3 and R^3 is the same as defined previously; each L^1 is hydrogen, Cl or Br; each L^2 is OH, OCH₃, OC₂H₅, OC₃H₇, OCF₃, OAc or OBz; each Z^3 can be O or CH₂.

18. The method of claim 17, wherein the β -D nucleoside of the formula (XIV) is selected from one of the following:

Y	$\overline{\mathbf{R}}^{\mathbf{l}}$	\mathbf{R}^{Γ}	R^2	\mathbb{R}^{2}	\mathbb{R}^3	R ³	Γ_{i}	\mathbf{L}^{2}
O	NH-OH	ОН	OH	Н	Н	ОН	Н	OH
0	O	F	Н	ОН	Н	OH	Cl	O-CH ₃
0	O	Н	Н	ОН	Н	OH	Br	O-CH ₃
0	O	F	H	OH	Н	ОН	Br	O-COCH ₃
O	0	F	H	OH	H	ОН	Br	O-CH ₃
O	0	F	Н	OH	Н	ОН	Br	O-Et
O	O	Cl	Н	OH	Н	ОН	Br	O-CH ₃
	0 0 0 0	O NH-OH O O O O O O O O O O	O NH-OH OH O O F O O F O O F O O F	O NH-OH OH OH O O F H O O F H O O F H O O F H	O NH-OH OH OH H O O F H OH O O H H OH O O F H OH O O F H OH O O F H OH	O NH-OH OH OH H O O F H OH H	O NH-OH OH OH H H OH O O F H OH H OH	O NH-OH OH OH H OH H O O F H OH H OH CI O O O H H OH H OH Br O O F H OH H OH Br O O F H OH H OH Br

or its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

19. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XV):

DO
$$R^3$$
 R^2 DO R^3 R^3

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, W¹, W², X¹, Y¹, Z³, R¹, R¹', R², R²', R³ and R³' is the same as defined previously.

20. The method of claim 19, wherein the β -D nucleoside of the formula (XV-a) is defined as the following:

$\mathbf{Y}^{\mathbf{I}}$	Z^3	$\mathbf{R}_{,}^{\mathbf{I}}$	$R^{I'}$	\mathbb{R}^2	\mathbb{R}^{2}	\mathbb{R}^3	R ³
O	O	H	H	H	OH	H	OH

its β-L-enantiomer or its pharmaceutically acceptable salt thereof.

21. The method of claim 19, wherein the β -D nucleoside of the formula (XV-b) is defined as the following:

\overline{X}^{I}	$\mathbf{W}^{\mathbf{I}}$	\mathbb{Z}^3	\mathbb{R}^2	R ²	\mathbb{R}^3	$R^{3'}$
NH ₂	СН	O	Н	OH	Н	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

22. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XVI):

or its β -L enantiomer or its pharmaceuticany acceptable salt thereof, wherein:

each D, W¹, X¹, X², Y¹, Z, R¹, R², R²', R³ and R³' is the same as defined previously;

each W³ is independently N, CH or CR¹;

each W⁴ and W⁵ is independently N, CH, CX¹ or CR¹'; and

each Z^4 and Z^5 is independently NH or $C(=Y^1)$;

such that if Z^4 and Z^5 are covalently bound, then Z^4 is not $C(=Y^1)$ when Z^5 is $C(=Y^1)$; and

there are no more than three ring-nitrogens.

23. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-a) is selected as one of the following:

Z^4	W ⁵	W^4	· Z ⁵ ·	\mathbb{R}^2	$\mathbb{R}^{2^{\prime}}$	\mathbb{R}^3	\mathbb{R}^{3}
NCH ₃	C-OH	N	C=O	H	ОН	Н	O-Ts
NH	C-NH ₂	N	C=O	Н	ОН	H	OH
NH	C-NHAc	N	C=O	Н	OH	Н	OH
NH	C-OH	N	C=O	Н	OH	Н	OH
NCH ₃	C-NH ₂	N	C=O	Н	OH	Н	ОН
NH	C-NHBz	N	C=O	Н	OH	Н	OH
C=O	C-NH ₂	C-SH	NH	Н	OH	H	OH
NH	С-ОН	N	C=O	Н	Cl	Н	OH
NH	C-NH ₂	N	C=O	Н	Br	Н	OH
	NCH ₃ NH NH NCH ₃ NH C=0 NH	NCH ₃ C-OH NH C-NH ₂ NH C-NHAc NH C-OH NCH ₃ C-NH ₂ NH C-NHBz C=O C-NH ₂ NH C-OH	NCH3 C-OH N NH C-NH2 N NH C-NHAc N NH C-OH N NCH3 C-NH2 N NH C-NHBz N C=O C-NH2 C-SH NH C-OH N	NCH3 C-OH N C=O NH C-NH2 N C=O NH C-NHAc N C=O NH C-OH N C=O NCH3 C-NH2 N C=O NH C-NHBz N C=O C=O C-NH2 C-SH NH NH C-OH N C=O	NCH3 C-OH N C=O H NH C-NH2 N C=O H NH C-NHAc N C=O H NH C-OH N C=O H NCH3 C-NH2 N C=O H NH C-NHBz N C=O H C=O C-NH2 C-SH NH H NH C-OH N C=O H	NCH3 C-OH N C=O H OH NH C-NH2 N C=O H OH NH C-NHAC N C=O H OH NH C-OH N C=O H OH NCH3 C-NH2 N C=O H OH NH C-NHBz N C=O H OH C=O C-NH2 C-SH NH H OH NH C-OH N C=O H CI	NCH3 C-OH N C=O H OH H NH C-NH2 N C=O H OH H NH C-NHAc N C=O H OH H NH C-OH N C=O H OH H NCH3 C-NH2 N C=O H OH H NH C-NHBZ N C=O H OH H C=O C-NH2 C-SH NH H OH H NH C-OH N C=O H CI H

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

24. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-c) is defined as the following:

$\overline{\mathbf{W}^3}$	\mathbf{Z}^4	\mathbf{Z}^{5}	W^4	R^2	R^{2}	\mathbb{R}^3	R^{3}
CH	N-CH ₃	C=O	N	Н	OH	Н	O-Ac

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

25. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-d) is defined as the following:

W^3	\mathbf{Z}^4	Z ⁵	W^4	R ³	, R 3,
CH	N	C=NH	N	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

26. The method of claim 22, wherein the β -D nucleoside of the formula (XVI-f) is defined as the following:

X^{1}	X²	$\mathbf{W}^{\mathbf{I}}$	\mathbb{R}^2	\mathbf{R}^2	R ³	, (R ³
NH ₂	Н	N	H	OH	H	OH

its β -L-enantiomer or its pharmaceutically acceptable salt thereof.

27. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XVII):

or its β-L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, W¹, W², X¹, X², Y¹, Z³, R¹, R¹, R², R², R², R³ and R³ is the same as defined previously;

each X⁴ and X⁵ is independently hydrogen, halogen (F, Cl, Br or I), N₃, NH₂, NHR⁸, NR⁸R⁸, OH, OR⁸, SH or SR⁸; and

each R⁸ and R⁸ is independently hydrogen, lower alkyl, lower alkenyl, aryl or arylalkyl, such as an unsubstituted or substituted phenyl or benzyl;

such that for the nucleoside of the general formula (XVII-a) or (XVII-b), X^4 is not OH or OR⁸.

28. The method of claim 27; wherein the β -D nucleoside of the formula (XVII-d) is defined as the following:

$\overline{\mathbf{X}^{\mathbf{I}}}$	\overline{X}^2	$\overline{\mathbf{W}^{\mathbf{i}}}$	X ³	X4
NH ₂	F	CH	Н	OH

its β-L-enantiomer or its pharmaceutically acceptable salt thereof.

29. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XVIII):

$$X^{1}$$

$$X^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5$$

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, W¹, W², X¹, X², Y¹, R¹, R¹, R², R², R², R³ and R³ is the same as defined previously;

30. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XIX):

[XIX]

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, R¹, R⁴ and R⁴ is the same as defined previously;

each R⁹ is hydrogen, halogen (F, Cl, Br or I) or OP³;

each P^1 is hydrogen, lower alkyl, lower alkenyl, aryl, arylalkyl (such as an unsubstituted or substituted phenyl or benzyl), OH, OR^4 , NH_2 , NHR^4 or NR^4R^4 ; and

each P² and P³ is independently hydrogen, alkyl, acyl, -Ms, -Ts, monophosphate, diphosphate, triphosphate, mono-phosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid.

31. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

$$O$$
 O
 O
 O
 O
 O
 O
 O
 O

or its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D and P^2 is the same as defined previously.

32. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XX):

[XX]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 , P^2 , P^3 , R^1 , R^4 , R^4 and R^9 is the same as defined previously.

33. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XXI):

[XXI]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 , P^2 , P^3 , R^1 , R^4 and $R^{4'}$ is the same as defined previously.

34. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^2 and P^3 is the same as defined previously.

35. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XXII):

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 and R^1 is the same as defined previously.

36. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: D is the same as defined previously.

37. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (XXIII):

[XXIII]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 , P^2 , P^3 , R^1 , R^4 and $R^{4'}$ is the same as defined previously.

38. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^2 and P^3 is the same as defined previously.

39. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

40. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

41. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

42. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula (I) or (II):

or its pharmaceutically acceptable salt thereof.

43. A method for the treatment or prophylaxis of host exhibiting a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering an effective amount of a compound of the general formula:

or its pharmaceutically acceptable salt thereof.

44. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a compound according to any one of claims 1-29.

A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XIX):

[XIX]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein:

each D, R¹, R⁴ and R⁴ is the same as defined previously;

each R⁹ is hydrogen, halogen (F, Cl, Br or I) or OP³;

each P^1 is hydrogen, lower alkyl, lower alkenyl, aryl, arylalkyl (such as an unsubstituted or substituted phenyl or benzyl), OH, OR⁴, NH₂, NHR⁴ or NR⁴R⁴; and

each P² and P³ is independently hydrogen, alkyl, acyl, -Ms, -Ts, monophosphate, diphosphate, triphosphate, mono-phosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;

optionally in a pharmaceutically acceptable carrier.

46. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D and P^2 is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

47. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XX):

[XX]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 , P^2 , P^3 , R^1 , R^4 , R^4 and R^9 is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

48. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β-D nucleoside of the formula (XXI):

[XXI]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 , P^2 , P^3 , R^1 , R^4 and $R^{4'}$ is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

49. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^2 and P^3 is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

50. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β-D nucleoside of the formula (XXII):

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 and R^1 is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

51. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: D is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

52. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β -D nucleoside of the formula (XXIII):

[XXIII]

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^1 , P^2 , P^3 , R^1 , R^4 and $R^{4'}$ is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

53. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a β-D nucleoside of the formula (XXIII) is the following:

its β -L enantiomer or its pharmaceutically acceptable salt thereof, wherein: each D, P^2 and P^3 is the same as defined previously; optionally in a pharmaceutically acceptable carrier.

54. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

55. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

57. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

58. A method for the treatment or prophylaxis of a hepatitis C virus infection in a host comprising administering an effective treatment amount of a nucleoside of the formula:

or its pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.