Poznámky k seminářům z obecné chemie

Zdeněk Moravec, hugo@chemi.muni.cz

10. prosince 2024

Obsah

1	Plat	tné číslice	3			
2	Termodynamika					
	2.1	Zákony termodynamiky	4			
	2.2	Termochemie	5			
	2.3	Hessův zákon	6			
3	рН		7			
	3.1	Aktivita	7			
	3.2	Vzorce	8			
	3.3	Iontový součin vody	8			
	3.4	Silné kyseliny a zásady				
	3.5	Slabé kyseliny a zásady	10			
	3.6	Soli	11			
	3.7	Pufry	12			
4	Kry	rstaly	13			

1 Platné číslice

Platné číslice jsou číslice odečtené z měřící stupnice přístroje, vč. posledního odhadnutého místa.¹

Nuly mezi desetinnou čárkou a první nenulovou číslicí nejsou platné číslice:

$$25,23 \text{ cm} = 252300 \ \mu\text{m} = 2,523 \times 10^5 \ \mu\text{m}$$

Platné jsou vždy čtyři číslice, vyznačený tučnou sazbou.

Při **sčítání a odečítání** má výsledek tolik *desetinných míst* jako číslo s nejmenším počtem desetinných míst:

$$2.5 \text{ cm} + 5.236 \text{ cm} = 7.7 \text{ cm}$$

 $2.5 \text{ cm} + 3.3 \mu\text{m} = 2.5 \text{ cm}$

Při **násobení a dělení** má výsledek tolik *platných číslic* jako číslo s nejmenším počtem platných číslic (platné číslice jsou vyznačeny tučně):

$$n=c$$
 . $V=0.050$. $0.01235=0.0006175$ $mol=6.2\times10^{-4}$ mol

Při výpočtech se vždy zaokrouhluje až poslední výsledek. Zaokrouhlování mezivýpočtů zvyšuje chybu výpočtu.

¹Chyby měření

2 Termodynamika

2.1 Zákony termodynamiky

Termodynamika je obor fyziky, který se zabývá procesy a vlastnostmi látek a polí spojených s teplem a tepelnými jevy; je součástí termiky. Vychází přitom z obecných principů přeměny energie, které jsou popsány čtyřmi termodynamickými zákony (z historických důvodů číslovány nultý až třetí):

Nultý zákon TD

Jsou-li dvě a více těles v termodynamické rovnováze s tělesem dalším, pak jsou všechna tato tělesa v rovnováze.

První zákon TD

Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno.

Nelze sestrojit stroj, který by trvale dodával mechanickou energii, aniž by spotřeboval odpovídající množství energie jiného druhu.

Druhý zákon TD

Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší.

Nelze sestrojit periodicky pracující tepelný stroj, který by trvale konal práci pouze tím, že by ochlazoval jedno těleso, a k žádné další změně v okolí by nedocházelo.

Třetí zákon TD

Při absolutní nulové teplotě je entropie čisté látky pevného nebo kapalného skupenství rovna nule.

2.2 Termochemie

Vypočítejte reakční entalpii přeměny grafitu na diamant:

$$C(gr) \longrightarrow C(diam)$$
 jestliže znáte entalpie reakcí:

$$\begin{array}{lll} A\colon & C(gr) + O_2(g) \longrightarrow CO_2(g) & -393{,}77 \ kJ.mol^{-1} \\ B\colon & C(diam) + O_2(g) \longrightarrow CO_2(g) & -395{,}65 \ kJ.mol^{-1} \end{array}$$

Jelikož nás zajímá přeměna grafitu na diamant, vezmeme entalpii spalování grafitu a od ní odečteme entalpii spalování diamantu: ${\bf A}-{\bf B}$

$$C(gr) + O_2(g) + CO_2(g) \longrightarrow C(diam) + O_2(g) + CO_2(g)$$

Entalpii tedy vypočítáme:

$$\Delta H_r \ = \ -393,77 \ - (-395,65) \ = \ 1,88 \ \mathrm{kJ.mol^{-1}}$$

Entalpie přeměny grafitu na diamant bude 1,88 kJ.mol⁻¹

Vypočítejte entalpii spalování acetylenu:

$$C_2H_2(g) + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(l)$$
 jestliže znáte entalpie reakcí:

$$\begin{array}{lll} A\colon & 2\,C\,(s) + H_2(g) \longrightarrow C_2H_2(g) & 226,92~kJ.mol^{-1} \\ B\colon & 2\,C\,(s) + O_2(g) \longrightarrow CO_2(g) & -393,97~kJ.mol^{-1} \\ C\colon & H_2(g) + \frac{1}{2}\,O_2(g) \longrightarrow H_2O\,(l) & -285,96~kJ.mol^{-1} \end{array}$$

Zadanou rovnici získáme následující kombinací známých reakcí: $-\mathrm{A}{+}2\mathrm{B}{+}\mathrm{C}$

Entalpii tedy vypočítáme:

$$\Delta H_r = -226,92 - 2.393,7 - 285,96 = -1300,82 \text{ kJ.mol}^{-1}$$

Entalpie zadané reakce bude $-1300,82 \text{ kJ.mol}^{-1}$

2.3 Hessův zákon

3 pH

3.1 Aktivita

Popisuje reálné chování roztoku. Na rozdíl od ideálního roztoku, se v reálném roztoku částice navzájem ovlivňují. Aktivita jakékoliv čisté látky v kondenzovaném stavu (kapalina nebo pevná látka) je jednotková. Aktivita plynu závisí na jeho parciálním tlaku, obvykle se označuje jako **fugacita**.

$$\mu_i=\mu_i^0+{\rm RT}\ln a_i$$
 μ_i - chemický potenciál, μ_i^0 - standardní chemický potenciál

Ativitu lze vyjádřit jako součin molární koncentrace a aktivitního koeficientu: a = γc

Aktivitní koeficient je úměrný náboji iontů v roztoku a iontové síle roztoku

3.1.1 Iontová síla roztoku

$$\log \gamma = -0,509 \mathrm{z}^2 \sqrt{\mathrm{I}}$$

I - iontová síla roztoku - popisuje množství iontů v roztoku

$$I = \frac{1}{2} \sum_{i=0}^{n} c_i z_i^2$$

 $\overrightarrow{c_i}$ – molalita; z_i – náboj; 0,509 – konstanta pro vodné roztoky při 25 °C

Střední aktivitní koeficienty ve vodných roztocích při 25 °C 2

$\boxed{c_m[mol.kg^{-1}]}$	0,1	1,0	4,0	10,0
HCl	0,796	0,809	1,762	10,44
NaOH	0,766	0,678	0,903	3,52
КОН	0,798	0,756	1,352	6,22
$\mathrm{H_2SO_4}$	0,265	0,130	0,171	0,553
$AgNO_3$	0,734	0,429	0,210	
$Ca(NO_3)_2$	0,48	0,35	0,42	

²VOHLÍDAL, Jiří. Chemické tabulky. Praha: SNTL, 1982.

3.2 Vzorce

Silná kyselina
$$pH = -\log c$$

Silná zásada
$$pH = 14 + \log c$$

Slabá kyselina
$$\mathrm{pH} = \tfrac{1}{2} \mathrm{p} K_A - \tfrac{1}{2} \log \, \mathrm{c}$$

Slabá zásada
$$\mathrm{pH} = 14 \; + \; \tfrac{1}{2} \log \mathrm{c} - \tfrac{1}{2} \mathrm{p} K_B$$

Sůl slabé k a silné z pH = 7 +
$$\frac{1}{2} \log c + \frac{1}{2} pK_A$$

Sůl silné k a slabé z pH = 7
$$\frac{1}{2} \log {\rm c} - \frac{1}{2} {\rm p} K_B$$

Sůl slabé k a slabé z pH = 7 +
$$\frac{1}{2} \mathbf{p} K_A - \frac{1}{2} \mathbf{p} K_B$$

Pufr – kyselina
$$\mathrm{pH} = \mathrm{p} K_A + \log \tfrac{[A^-]}{[HA]}$$

Pufr – zásada p
H = 14 - p
$$K_B - \log \frac{[B^+]}{[BOH]}$$

3.3 Iontový součin vody

$$H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$$

$$K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

$$K_w = [H_3O^+][OH-] = 10^{-14}$$

$$pK_w = pH + pOH = 14$$

3.4 Silné kyseliny a zásady

Vypočítej pH kyseliny chlorovodíkové o koncentraci 0,3 M.

$$HCl \longrightarrow H^+ + Cl^- pH = -log c = -log 0.3 = 0.52$$

Vypočítej pH kyseliny sírové o koncentraci 0,3 M.

$$\begin{aligned} &H_2SO_4 \longrightarrow 2\,H^+ + SO_4^{2-} \\ &pH = -log\;c = -log\;(2\times0,3) = 0,22 \end{aligned}$$

Vypočítej pH hydroxidu sodného o koncentraci 0,3 M.

$$NaOH \longrightarrow Na^+ + OH^-$$

$$\begin{array}{l} pOH = \text{-log } c = \text{-log } 0.3 = 0.52 \\ pH = 14 \text{ - } pH = 14 \text{ - } 0.52 = 13.48 \end{array}$$

Vypočítej pH kyseliny chlorovodíkové o koncentraci 1×10^{-8} M.

Chybný výpočet: pH =
$$-\log 1.10^{-8} = 8$$

Je nutné uvažovat iontový součin vody, pro správný výpočet musíme uvažovat tři podmínky:

1.
$$[Cl^{-}] = c$$

2.
$$[H^+] = [OH^-] + [Cl^-]$$

3.
$$K_w = [H^+][OH^-]$$

Tím získáme kvadratickou rovnici:

$$x^2 - cx - K_w = 0$$

c = 1,051 × 10⁻⁷

$$pH = 6,978$$

3.5 Slabé kyseliny a zásady

Jak'e je pH 0,2 M kyseliny octov\'e, p $K_a=4.76$?

$$CH_3COOH \Longrightarrow CH_3COO^- + H^+$$

$$K_a = 10^{-\mathrm{pK}_a} = 10^{-4.76} = 0,000017$$

$$K_a = \frac{[\mathrm{CH_3COO^-}][\mathrm{H^+}]}{[\mathrm{CH_3COOH}]} = \frac{x.x}{0.2-x}$$

Dosadíme za K_a a upravíme získaný výraz, čímž dostaneme kvadratickou rovnici:

$$x^2 + 0,000017x - 0,0000034 = 0$$

Kvadratickou rovnici vyřešíme pomocí diskriminantu:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-0,000017 \pm \sqrt{0,000017^2 - 4.1.(-0,0000034)}}{2.1}$$

Ze dvou vypočítaných kořenů zvolíme ten kladný, koncentrace nemůže být záporná.

$$x = 0,001835$$

$$\mathrm{pH} = -\log[H^+] = -\log 0,01835 = 2,736$$

Zjednodušený výpočet

$$K_a = \frac{[\mathrm{CH_3COO^-}][\mathrm{H^+}]}{[\mathrm{CH_3COOH}]} = \frac{x.x}{0.2}$$

Dosadíme za K_a a upravíme získaný výraz, čímž dostaneme kvadratickou rovnici:

$$x^2 - 0,0000034 = 0$$

$$x = \pm \sqrt{0,0000034}$$

$$x = 0,001844$$

$$pH = -log 0.001844 = 2.734$$

Vzorec pro výpočet pH:

$$\mathrm{pH} = \frac{1}{2} \mathrm{p} K_A - \frac{1}{2} \log \, \mathrm{c} = \frac{1}{2} \times 4,76 - \frac{1}{2} \log \, 0,\! 2 = 2,\! 73$$

Jaké je pH 0,25 M roztoku amoniaku

$$\begin{split} \mathrm{NH_3} + \mathrm{H_2O} &\longrightarrow \mathrm{NH_4^+} + \mathrm{OH}^- \\ \mathrm{pK}_B = 4.76 \\ \mathrm{K}_B = 1.74 \times 10^{-5} \\ \mathrm{K}_B = \frac{[\mathrm{NH_4^+}][\mathrm{OH}^-]}{[\mathrm{NH_3}]} &= \frac{\mathrm{x}^2}{\mathrm{c}} \\ \mathrm{x} = \sqrt{\mathrm{K}_B \times c} &= \sqrt{1.74 \times 10^{-5} \times 0.25} &= 2.09 \times 10^{-3} \\ \mathrm{pOH} = -\mathrm{log} \ 2.09 \times 10^{-3} &= 2.68 \\ \mathrm{pH} = 14 - 2.68 &= \mathbf{11.32} \end{split}$$

Vzorec:

$$pH = 14 + \frac{1}{2} \log c - \frac{1}{2} pK_B = 14 + 0.5 \log 0.25 - 0.5 \times 4.76 = 11.32$$

3.6 Soli

3.6.1 Sůl silné kyseliny a silné zásady

$$NaCl \longrightarrow Na^+ + Cl^-$$

Při disociaci nedochází ke vzniku H^+ , ani OH^- iontů, hodnota pH tedy není ovlivněna.

3.6.2 Sůl silné kyseliny a slabé zásady

$$\begin{aligned} \mathrm{NH_4NO_3} + \mathrm{H_2O} & \longrightarrow \mathrm{NH_4}^+ + \mathrm{NO_3}^- + \mathrm{NH_3} + \mathrm{H}^+ \\ \mathrm{pH} &= 7 - \frac{1}{2} (\mathrm{pK}_b + \log c) \end{aligned}$$

3.6.3 Sůl slabé kyseliny a silné zásady

$$\begin{aligned} \text{NaF} + \text{H}_2\text{O} &\longrightarrow \text{Na}^+ + \text{F}^- + \text{HF} + \text{OH}^- \\ \text{pH} &= 7 + \frac{1}{2}(\text{pK}_a + \log c) \end{aligned}$$

3.6.4 Sůl slabé kyseliny a slabé zásady

$$\begin{array}{l} {\rm NH_4F} + {\rm H_2O} \longrightarrow {\rm NH_4}^+ + {\rm F}^- + {\rm NH_3} + {\rm H}^+ + {\rm HF} + {\rm OH}^- \\ {\rm pH} = 7 + \frac{1}{2} ({\rm pK}_a - {\rm pK}_b) \\ {\rm pK}_a ({\rm HF}) = 3, 17 \\ {\rm pK}_b ({\rm NH_3}) = 4, 75 \\ {\rm pH} = 7 + \frac{1}{2} (3, 17 - 4, 75) = 6, 21 \end{array}$$

3.7 Pufry

Jde o směs slabé kyseliny a její soli nebo slabé zásady a její soli. Příkladem je např. acetátový pufr - směs kyseliny octové a octanu sodného.

Rovnováhy v pufru lze popsat rovnicemi:

$$CH_3COOH + H_2O \longleftrightarrow CH_3COO^- + H_3O^+$$

$$CH_3COONa + H_2O \longleftrightarrow CH_3COOH + Na^+ + OH^-$$

Přídavkem kyseliny vzniknou molekuly kyseliny octové, přídavkem zásady ionty octanu. pH roztoku se nezmění.

$$\begin{aligned} & \text{pH} = \text{pK}_a + \log \frac{[A^-]}{[HA]} \\ & \text{pH} = 14 - \text{pK}_b + \log \frac{[B]}{[BH^+]} \end{aligned}$$

$$pH = 14 - pK_b + log \frac{[B]}{[BH^+]}$$

Pufr	Složení	Rozsah pH
Acetátový	CH ₃ COOH/CH ₃ COONa	3,8 - 5,8
Fosfátový	$\mathrm{NaH_{2}PO_{4}/Na_{2}HPO_{4}}$	6,2 - 8,2
Borátový	$\mathrm{H_{3}BO_{3}/Na_{2}B_{4}O_{7}}$	8,25 - 10,25

4 Krystaly

V elementární buňce rozlišujeme čtyři typy poloh:

- 1. Poloha uvnitř buňky, atom patří celý do jediné buňky
- 2. Poloha ve středu stěny, atom je sdílen dvěma buňkami. V konkrétní buňce je umístěna polovina atomu.
- 3. Poloha ve středu hrany, atom je sdílen čtyřmi buňkami. V konkrétní buňce je umístěna čtvrtina atomu.
- 4. Poloha ve vrcholu buňky, atom je sdílen osmi buňkami. V konkrétní buňce je umístěna osmina atomu.

Obrázek 1: Krystalová struktura chloridu cesného.³

Např. chlorid cesný obsahuje cesný i
on ve středu kubické buňky a osm chloridových aniontů v jejích vrcholech. Cesný kation patři do krystalové buňky celý a každý chlorid tam spadá $\frac{1}{8},$ t
zn. vzorec je $\mathrm{CsCl}_{8\times\frac{1}{9}}=\mathrm{CsCl}.$

Obrázek 2: Krystalová struktura oxidu titaničitého.⁴

- 1. Ti: šedé, $8 \times \frac{1}{8} + 1 = 2$
- 2. O: červené, $2{\times}1\,+\,4{\times}\frac{1}{2}=4$

³Zdroj: Benjah-bmm27/Commons

⁴Zdroj: Ben Mills/Commons