

FRAUD DETECTION

Kool Data Kids

Kool Data Kids

An efficient, cross-skilled and motivated team (only number 10)

CYPRIEN

Veepee Premium Member Agile Slidemaster

ARNAUD

Applied ML research Associate @ Harvard & Debugging Master

TRISTAN

Wanna-be surfer-rider-ascendant snowboarder

MATHIEU

WoW champion Velib Business Angel

XAVIER

"Dix pour cent" earliest fan Lyft top 10 bike rider in SF

TABLE OF CONTENTS

01

PROBLEM

Fraudulent transactions are painful for your business

02

PROJECT OVERVIEW

From human detection to automation

05

OUR APPROACH

Machine Learning can be used to detect frauds

NEXT STEPS

Recommendations to impact your business and implementation of our solution

READ THE DATA

There is very few frauds compared to

the number of transaction every day

3

01 PROBLEM

FRAUDULENT TRANSACTIONS ARE PAINFUL FOR YOUR BUSINESS

Suspicious activity can easily be detected by humans

Typical transactions

Fraudulent transactions

51 transactions per year

Need for automation

1st pitfall

A fraud flies beneath the radar

The fraud is not detected and the transaction order is accepted

The credit card needs to be replaced, the client reassured and (eventually) refunded

2nd pitfall

A normal transaction is labeled as fraud by mistake

The client credit card is blocked on an unfounded suspicion of fraud

The client cannot use his/her card properly.

The credit card needs to be reactivated, the client reassured

An Imbalanced Dataset

99.83
percent of non-fraud transactions

Fraud appears under specific circumstance

Over 31 columns, 3 were visible.

With more information we could find out more banking rules.

Supposition: time is in seconds, time period is two days, starting midnight of the 1st day

IN DEPTH

Industry rule prevents fraud higher than \$2500?

Higher fraud risk at night and in the morning

GREEDY MODEL

PIPELINE

PIPELINE SELECTION

+640 tested pipelines

8 CPU used

15h of computation

OUR RESULTS

KEY METRICS

IMPACT ON YOUR BUSINESS

OUR RESULTS

KEY METRICS

IMPACT ON YOUR BUSINESS

NEXT STEPS

APPENDIX 1: One Sided Selection

Undersampling method that gets rid of:

- The borderline examples
- The redundant examples
- The examples that suffer from the class-label noise

To do so, it uses an iterative algorithm that implies 1-NN classification, Tomek Links, and subselection to target the examples to delete.

APPENDIX 2: SMOTE(Synthetic Minority Oversampling Technique)

SMOTE creates new minority observations between existing minority observations.

- For each minority instance, k nearest neighbors of the same class are found
- The difference between the feature vector of the considered observation and the feature vectors of the k nearest neighbors are found. k difference vectors are obtained
- Each on of the k difference vector is multiplied by a random number between 0 and 1 (excluding 0 and 1).
- Then they are added to the feature vector of the considered observation at each iteration

APPENDIX 3: Random Forest

- -Tree algorithm technique: what feature will allow me to split the observation in a way that the resulting group are as different as possible
- Random Forest is a large number of individual tree working as an ensemble
- The fundamental concept behind is wisdom of the crowd: trees protect each other from individual mistakes
- Majority vote for all the trees to classify
- Need to ensure that each trees are decorrelated: each tree train on subsample of observations, features or bagging technique is used

APPENDIX 4: Light GBM

Light GBM is a gradient boosting framework that uses tree based learning algorithm.

Light GBM is prefixed as 'Light' because of its high speed. Light GBM can handle the large size of data and takes lower memory to run.

UNDERSAMPLING

- Neighbourhood Cleaning Rule
- Near Miss
- One Sided Selection
- Cluster Centroids
- All KNN
- Edited Nearest Neighbours
- Random Under Sampler
- Instance Hardness Threshold

OVERSAMPLING

- SMOTE
- Borderline SMOTE
- Random Over Sampler
- SVM SMOTE
- KMeans SMOTE
- ADASYN

	accuracy	precision	recall	fl score	specificity score	geometric mean score	average precision score
LogisticRegression NoneType	0.9992765	0.9992221	0.9992765	0.9992205	0.638158204	0.798559011	0.556266931
LogisticRegression NeighbourhoodCleaningRule	0.9992871	0.9992351	0.9992871	0.9992398	0.658260479	0.811043296	0.565949434
LogisticRegression NearMiss	0.9991914	0.9991209	0.9991914	0.9991139	0.584552047	0.764250852	0.503616673
LogisticRegression EditedNearestNeighbours	0.9990743	0.999117		0.9990937	0.752070679	0.866818619	0.520072187
LogisticRegression ClusterCentroids	0.9994042		0.9994042	0.9993805	0.738669697	0.859202874	0.639848445
LogisticRegression CondensedNearestNeighbour	0.9993829	0.9993516	0.9993829	0.9993607	0.738669664	0.859193707	0.629934747
LogisticRegression AllKNN	0.999202			0.9991385	0.611355074	0.781579953	0.515220636
LogisticRegression InstanceHardnessThreshold	0.9994787	0.9994705	0.9994787	0.9994742	0.819078848	0.904793801	0.693986006
LogisticRegression OneSidedSelection	0.6208093		0.6208093	0.7644163	0.93909113	0.763542055	0.003773243
LogisticRegression RandomUnderSampler	0.5621097	0.9982685		0.7180114	0.945698677	0.729099688	0.003316718
LogisticRegression_TomekLinks	0.7372722		0.7372722	0.8471949	0.892370786	0.811122772	0.004955328
LinearSVC NoneType	0.2849543			0.4415091	0.958660103	0.522660809	0.002101818
LinearSVC NeighbourhoodCleaningRule	0.8724824	0.998274		0.9303517	0.912687737	0.892358647	0.010390566
LinearSVC NearMiss	0.6525264		0.6525264	0.7881195	0.925739986	0.77721927	0.00401553
LinearSVC EditedNearestNeighbours	0.8653537	0.9981849	0.8653537	0.9262719	0.865771148	0.865562409	0.008962761
LinearSVC ClusterCentroids	0.636886		0.636886	0.7765544	0.912313646	0.762259631	0.003762568
LinearSVC_ClusterCentrolds LinearSVC CondensedNearestNeighbour	0.8717908	0.9982861	0.8717908	0.9299563	0.912313646	0.895272836	0.010473997
LinearSVC CondensedNearestNeignbour LinearSVC AllKNN	0.6525264			0.7881195	0.919387391	0.895272836	0.010473997
LinearSVC_AllKNN LinearSVC InstanceHardnessThreshold	0.8758977	0.9982419		0.7881195	0.86578789	0.870828139	0.009699295
LinearSVC Instanceriardness i nreshold LinearSVC OneSidedSelection			0.6330769	0.9323009		0.759974263	
	0.6330769				0.912307598		0.003725078
LinearSVC_RandomUnderSampler	0.9334376	0.9982189	0.9334376	0.9640562	0.865879255	0.899024058	0.017759467
LinearSVC_TomekLinks	0.680924			0.8086019	0.852076797	0.761708281	0.003831082
RandomForestClassifier_NoneType	0.9074872			0.9499676	0.86583805	0.886418046	0.012898457
RandomForestClassifier_NeighbourhoodCleaningRul		0.9982065		0.939189	0.872508004	0.880264974	0.010873227
RandomForestClassifier_NearMiss	0.9334376	0.9982189	0.9334376	0.9640562	0.865879255	0.899024058	0.017759467
RandomForestClassifier_EditedNearestNeighbours	0.680924			0.8086019	0.852076797	0.761708281	0.003831082
RandomForestClassifier_ClusterCentroids	0.9074872	0.9982035		0.9499676	0.86583805	0.886418046	0.012898457
RandomForestClassifier_CondensedNearestNeighbou		0.9982065		0.939189	0.872508004	0.880264974	0.010873227
RandomForestClassifier_AllKNN	0.9266069	0.998226		0.9603835	0.872569161	0.899182173	0.016384609
RandomForestClassifier_InstanceHardnessThreshold	0.6063817	0.997911		0.7533898	0.805053167	0.698691302	0.002914504
RandomForestClassifier_OneSidedSelection	0.8651622	0.998222		0.92616	0.885873102	0.87545641	0.009325355
RandomForestClassifier_RandomUnderSampler	0.6868078			0.8127334	0.912392914	0.791605031	0.004337858
RandomForestClassifier_TomekLinks	0.796291	0.998279		0.8850262	0.925968262	0.858685141	0.006748703
LGBMClassifier_NoneType	0.5450967			0.7039105	0.932270158	0.712865591	0.003130163
LGBMClassifier_NeighbourhoodCleaningRule	0.254099		0.254099	0.403129	0.972012615	0.496978275	0.002051319
LGBMClassifier_NearMiss	0.7300584			0.8425456	0.322795349	0.48544769	0.001685371
LGBMClassifier_EditedNearestNeighbours	0.5316161	0.9982394	0.5316161	0.6925042	0.938949505	0.706513022	0.003075026
LGBMClassifier_ClusterCentroids	0.5093258	0.9982312	0.5093258	0.6732027	0.938914112	0.691529567	0.002940067
LGBMClassifier_CondensedNearestNeighbour	0.03376	0.9977578	0.03376	0.0623841	0.985064257	0.182361612	0.0016157
LGBMClassifier_AllKNN	0.9984147	0.9968319	0.9984147	0.9976226	0.001585326	0.039784575	0.001585326
LGBMClassifier_InstanceHardnessThreshold	0.5316161	0.9982394	0.5316161	0.6925042	0.938949505	0.706513022	0.003075026
LGBMClassifier_OneSidedSelection	0.5093683	0.9982313	0.5093683	0.6732401	0.938914179	0.691558483	0.002940313
LGBMClassifier_RandomUnderSampler	0.03376	0.9977578	0.03376	0.0623841	0.985064257	0.182361612	0.0016157
LGBMClassifier_TomekLinks	0.9984147	0.9968319	0.9984147	0.9976226	0.001585326	0.039784575	0.001585326
von en						0.0000000000000000000000000000000000000	
LogisticRegression_NoneType	0.9992765	0.9992221	0.9992765	0.9992205	0.638158204	0.798559011	0.556266931
LogisticRegression_SMOTE	0.9991914	0.9991209	0.9991914	0.9991139	0.584552047	0.764250852	0.503616673
LogisticRegression BorderlineSMOTE	0.999202		0.999202	0.9991838	0.705165613	0.83940628	0.544536448
LogisticRegression_RandomOverSampler	0.9747305	0.9983591	0.9747305	0.9857827	0.912850091	0.943283027	0.049831763
LogisticRegression SVMSMOTE	0.9959462	0.998655		0.9970329	0.886080767	0.939408758	0.235946193
RandomForestClassifier NoneType	0.999468			0.9994662	0.825779584	0.908482404	0.691003932
RandomForestClassifier SMOTE	0.9894453	0.9983854	0.9894453	0.9934377	0.865968186	0.925650147	0.101652
RandomForestClassifier BorderlineSMOTE	0.989041	0.9984264	0.989041	0.9932313	0.892770555	0.939673729	0.103673393
RandomForestClassifier RandomOverSampler	0.9996702	0.999661	0.9996702	0.9996627	0.852582916	0.923201877	0.79617762
RandomForestClassifier SVMSMOTE	0.975337		0.975337	0.9860972	0.912851054	0.943576929	0.050992159
LGBMClassifier NoneType	0.9962442	0.9986803	0.9962442	0.9972119	0.88608124	0.939549499	0.250051811
LGBMClassifier_NoneType LGBMClassifier_SMOTE	0.9996382	0.9996273	0.996382	0.9972119	0.83918136	0.939349499	0.777038849
LGBMClassifier_SMOTE	0.9990382			0.9990293	0.892774356	0.913902716	0.177038849

APPENDIX 6: THE MAGIC OF KEDRO

Kedro is an open source development workflow tool that helps structure reproducible, scaleable, deployable, robust and versioned data pipelines

