

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № __4__

Название: Исследование мультиплексоров.

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-45Б			А.П. Бугаенко		
	(Группа)	(Под	дпись, дата)	(И.О. Фамилия)		
Преподаватель				Ю.А.Попов		
		(Под	дпись, дата)	(И.О. Фамилия)		

Цель работы – изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Задание №1. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8-1 цифровых сигналов.

а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем. Логические уровни 0 и 1 задавать источниками напряжения U=5 B и 0 B (общая).

Вариант	Входы	$D_0 \dots D_7$	Логическая функция
4	1101	1 1 0 0 1	3, 6, 7, 8, 11, 12, 13, 15

Таблица 1. Комбинация сигналов по варианту.

Рис 1. Подача информационных сигналов на входы D0-D7 (S1-S8)

б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд — Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.

Рис 2. Подключение счётчика с генератором.

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Рис 3. Схема с подключенным счётчиком и логическим анализатором.

Рис 4. Результаты логического анализа.

Задание №2. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8-1 аналоговых сигналов:

а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;

Рис 5. Подключение источников напряжения.

б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд - Q0). На вход счетчика подать импульсы генератора с частотой 500 к Γ ц;

Рис 6. Подключение счётчика.

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора — на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

Рис 7. Результаты анализа осциллографа.

Рис 8. Результат работы логического анализатора.

Рис 9. Наложение результатов замеров.

Задание №3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8-1 цифровых сигналов в качестве формирователя Φ АЛ четырех переменных.

Данные берём из таблицы 1:

3, 6, 7, 8, 11, 12, 13, 15.

Сформируем на их основе таблицу:

№ набора	X_4	X_3	X_2	X_1	f	D_{i}
0	0	0	0	0	0	D - 0
1	0	0	0	1	0	$D_0 = 0$
2	0	0	1	0	0	$D_1 = X_1$
3	0	0	1	1	1	
4	0	1	0	0	0	D - 0
5	0	1	0	1	0	$\mathbf{D}_2 = 0$
6	0	1	1	0	1	D - 1
7	0	1	1	1	1	$D_3 = 1$

8	1	0	0	0	1	
9	1	0	0	1	0	$D_4 = \sim X_1$
10	1	0	1	0	0	D W
11	1	0	1	1	1	$D_5 = X_1$
12	1	1	0	0	1	D = 1
13	1	1	0	1	1	$D_6 = 1$
14	1	1	1	0	0	D - V
15	1	1	1	1	1	$\mathbf{D}_7 = \mathbf{X}_1$

Таблица 2. Таблица входов для реализации ФАЛ.

Puc 10. Схема реализации коммутатора MUX 8-1 аналоговых сигналов с помощью мультиплексора.

Рис 11. Результаты работы .

Задание №4. Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4. Исследовать мультиплексор MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15. Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1.

Набор значений из варианта: 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1

Рис 12. Схема 16-1 МИХ на 4-1 МИХ.

Рис 13. Схема с подключенным генератором и счётчиком.

Рис 14. Результаты работы MUX 16-1.

Как мы можем увидеть на рисунке выше, выход построенного нами анализатора совпадает с заданными нами значениями.

Вывод:

При выполнении данной лабораторной работы мы исследовали устройство под названием мультиплексор. Было практически показано, что оно позволяет преобразовывать n-ное количество сигналов на входе в один сигнал на выходе. Данное свойство позволяет использовать мультиплексоры для преобразования параллельного двоичного кода в последовательный.