

Use of forecasts "how many fish are in the sea" ...and how many can I catch.

- Conservation planning/management
- Domestic (country) planning/management
- Domestic (state) planning/management
- Basin-specific planning/management
 - Sometimes even tributary-based management (Umpqua/S. Umpqua)
- International treaty planning/management

Chinook forecasting and use for Pacific Salmon Treaty Management

- "The Chinook Model"
 - Used for PST Chinook management
 - Also other output used by terminal management agencies
 - Output used for PFMC management for Chinook FRAM input
- Maintained by the CTC
- Run by CTC-AWG
- Inputs provided for by CTC-AWG and individual terminal management agencies

Inputs to the Chinook Model

- Typically due second or third week in March
 - Hard deadline, needed to foster US domestic ocean salmon management (FRAM-PFMC management)
 - Exploitation rate analysis (ERA) conducted in February part of the information flow feeding into the PSC Chinook model.
- Inputs into Chinook Model
 - Base productivity-stocks
 - Fisheries impacts (both pre-terminal and terminal)
 - Maturation rates
 - Estimates of spawning or terminal abundance from 1979-present
 - Forecasts of abundance for the coming year's return
 - · AK opts to allow Chinook model to predict coming year's abundance
 - All other terminal management agencies S. of AK borders provide for forecast of Chinook
 - · History behind treaty struggles and forecasting review

More model tidbits...

- Current model is deterministic
- Run annually
 - Pre-season assessment due by April 1st
 - Post-season assessment made have next year's model run is concluded
- Single-pool
- Everything is compared back to the "base years" 1979-1982
 - Per negotiated agreement
- Currently in the R&D phase to produce something "different"

Figure 1.1.—Pacific Salmon Treaty (PST) Chinook management and fishery process.

Forecasts impact on the PSC Chinook model

- The ability of the PSC Chinook Model to accurately predict Chinook salmon ocean abundance in AABM fisheries depends on the ability of the model to predict the returns of Chinook salmon (in terms of ocean escapement or spawning escapement) in the forecast year.
- For each year's model calibration, all available agency-produced forecasts for model stocks are inputs to the model. Thus, for model stocks with agency-produced forecasts, the variation between model forecasts and actual returns can be broken into two parts: the ability of the model to fit the agency-produced forecasts used as inputs, and the ability of the agency-produced forecasts to accurately predict the actual return of Chinook salmon in the upcoming year.

CTC Chinook Model Calibration

Calibration Objective: Estimate the set of stock and brood specific EVs that produce an identical set of Escapement/terminal runs compared to the observed escapement/terminal runs for 30 CTC stocks.

Chinook Model Calibration Procedure

Calculation Sequence

- (1) Update Cohort (age, survival, growth)
- (2) Pre-Terminal Catches
- (3) Pre-Terminal Incidental Mortality
- (4) Maturation
- (5) Terminal Catches
- (6) Terminal Incidental Mortality

CTC Model Inputs

Projection Runs

- .OP? identified the input files and outputs to be generated
- .STK Base period data for individual stocks (cohort size, maturation rates, AEQs, exploitation rates)
- .BSE stocks, fisheries, terminal fishery specifications, survival rates
- .ENH enhancement changes
- .IDL post-fishery, pre-spawning mortality
- .MAT annual maturation rate estimates from ERA
- .PNV proportion non-vulnerable for individual fisheries (size limits)
- .CNR chinook non-retention
- .CEI catch levels for fisheries
- .FP fishery policy factors

Etc.

Calibration

.FCS - historical data and forecasts

CTC Chinook Model Projection

Projection Objective: Project the pre-season total allowable landed catch for the SEAK, NBC, and WCVI AABM fisheries

FCS file –input to PSC Chinook model

- Stock specific
 - Age/no age specific information
 - Mix of both

- Contains both forecasts and observations of escapement or terminal run
- Escapement or terminal run based metrics specific to the stock
 - This is/has been determined how the stock was accounted for during the base period calibration

	FSO,Fraser Early Sum 0-3	URB, Columbia River UpRiver Brights only NO MCBs
FS3,Fraser Early Sp 1-3	2, read in maturation rate	2, read in maturity schedule
1,Adjustment to maturation rate	1,Escapement	2,Terminal Run Adults
2,Escapement + Fraser River net sport and FN		3,First Age
3,First age of data	1,Minimum number of ages per brood	1,Minimum number of ages AGE 5 = AGE 5+6
1,Minimum number of ages per brood	79,1,4137.98529878384,19790.3644724444,989.518223622222	79,1,9400,64500,15300
79,0,1,32107	80,1,1092.70866561498,5273.50703840275,3895.74393827951	80,1,11913,29236,35657
80,0,1,20865	81,0,1,16057.1027320246	81,1,7684,45572,13347
81,0,1,17230	82,1,594.87534676014,6713.59319915015,424.910961971529	82,1,35218,29083,14678
82,0,1,19210	83,1,610.297002226793,8001.67180697351,610.297002226793	83,1,28428,47795,9828
83,0,1,31685	84,1,1270.69224333843,11506.8242035646,2682.57251371446	84,1,35931,76839,18599
84,0,1,35554	85,1,4736.19993614729,14265.662458275,1141.252996662	85,1,64873,80357,51134
85,0,1,49551	86,0,1,31779.3956367809	86,1,91103,149230,41218
86,0,1,57563	87,0,1,30118.2353397201	87,1,102336,217488,100831
87,0,1,57853	88,0,1,41113.3448831562	88,1,34058,192538,113319
88,0,1,47601	89,0,1,32639.1040328259	89,1,30657,66114,164531
89,0,1,39182	90,0,1,35572.9039660838	90,1,8798,70093,74703
90,0,1,47689	91,0,1,34077.3251048919	91,1,9703,26167,67416
91,0,1,37080	92,0,1,43708.6363999979	92,1,17591,37652,25773
92,0,1,37544	93,0,1,20608.1096035859	93,1,13394,62267,27248
93,0,1,44153	94,0,1,38260.5508285072	94,1,12980,63134,56725
94,0,1,64217	95,0,1,28458.5883440520	95,1,22950,19372,64137
95,0,1,51240	96,0,1,68501.1111515984	96,1,53400,71000,18717
96,0,1,38176	97,0,1,59661.0130848189	97,1,22193,108090,31452
97,0,1,42979	98,0,1,87349.5400345323	98,1,43319,22162,76094
98,0,1,36667	99,0,1,68607.1756674515	99,1,25204,119389,21296
99,0,1,25425	100,0,1,46945.8039346412	100,1,18378,63268,74949
100,0,1,30859	101,1,25031.9979241273,45903.8041598651,7701.49095933854	101,1,76054,111089,45224
101,0,1,35007	102,0,1,112585.5778900789	102,1,59073,168108,52366
102,0,1,43957	103,0,1,89810.7770838750	103,1,45469,216453,112231
103,0,1,57034	104,0,1,56852.7165689594	104,1,103405,94200,165199
104,0,1,41424	105,0,1,95831.7107487586	105,1,58437,154181,64622
105,0,1,28465	106,0,1,180206.5275698603	106,1,39252,88173,102965
106,0,1,27585	107,0,1,73996.0000000000	107,1,27296,52159,34546
107,0,1,14928	108,1,36143.2940651651,39601.2601011921,14074.9018521613	108,1,102655,56491,38150
108,0,1,19921	109,0,1,86693.0000000000	109,1,45378,137583,29142 110,1,148092,112131,64685
109,0,1,33505	110,1,19293.0880531256,131990.280621591,7129.2840162171	111,1,93070,195421,33562
110,0,1,19693	111,0,1,127088.0000000000	112,1,162814,84656,50357
111,0,1,14586	112,1,7384.89241831944,23740.6453416945,16890.462239986	113,1,427626,329676,20952
112.0.1.14082	113,1,49551.0557682873,66408.2585112284,4032.68572048429	114.1.113947.518630.51662
	114.1.13447.8414853186.66878.2337012278.4373.92481345365	

Model error

- With the PSC Chinook model
 - Most impact from errors in
 - Forecasts
 - Maturation...getting the mat rate right is almost important as getting the escapement estimate correct.

Figure 4.9.—Deviation between pre- and post-season abundance indices (AIs) for the three aggregate abundance-based management (AABM) fisheries, 1999–2023.

Acknowledgements

- CTC
- CTC-AWG
- Antonio Velez-Espino
- John Carlile
- Gayle Brown
- Gary Morishima