Programme n°13

ELECTROCINETIQUE

EL4 Régime transitoire du second ordre

Cours et exercices

ATTENTION LES OSCILLATEURS MECANIQUES SERONT VUS PLUS TARD

EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes

Cours et exercices

ATTENTION LES OSCILLATEURS MECANIQUES SERONT VUS PLUS TARD

EL6 Fonction de transfert (Cours uniquement)

- Fonction de transfert d'un système linéaire l
- Filtres ou quadripôles de transfert
 - Fonction de transfert
- Propriétés d'une fonction de transfert
- Les caractéristiques de H(jω) : module et argument
- Réponse fréquentielle d'un filtre
- Définition
- Les caractéristiques H(ω) et φ(ω)
- Diagramme de Bode
- Notion sur les échelles logarithmiques Rappels sur les échelles linéaires
 - Echelles logarithmiques
- Filtres du premier ordre
- Filtre passe bas
- → Exemple de filtre et mise en équation
- → Etude fréquentielle du filtre
- → Montage intégrateur
- \rightarrow Bilan
- Filtre passe haut
- → Exemple de filtre et mise en équation
- \rightarrow Etude fréquentielle du filtre
- $\rightarrow \text{Montage d\'erivateur}$
- → Bilan
- Autres exemples : démarche pour obtenir le diagramme asymptotique

 	
8. Filtrage linéaire	
Signaux périodiques.	Savoir que l'on peut décomposer un signal périodique en une somme de fonctions sinusoïdales.
	Établir par le calcul la valeur efficace d'un signal sinusoïdal.
Fonction de transfert harmonique. Diagramme de Bode.	Utiliser une fonction de transfert donnée d'ordre 1 ou 2 et ses représentations graphiques pour conduire l'étude de la réponse d'un système linéaire à un signal à une ou deux composantes spectrales.
	Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.
	Utiliser les échelles logarithmiques et interpréter les zones rectilignes des diagrammes de Bode d'après l'expression de la fonction de transfert.
Modèles simples de filtres passifs : passe-bas et passe-haut d'ordre 1, passe-bas et passe-bande d'ordre 2.	Expliciter les conditions d'utilisation d'un filtre afin de l'utiliser comme moyenneur, intégrateur, ou dérivateur.
	Approche documentaire : expliquer la nature du filtrage introduit par un dispositif mécanique (sismomètre, amortisseur, accéléromètre).

CINETIQUE CHIMIQUE

CX1. Généralité sur la cinétique chimique (Cours uniquement)

CX2 Cinétique formelle, réaction et ordre (Cours uniquement)

- Ordre d'une réaction Ordre au cours du temps
 - Exemples
 - Aspect expérimental → Ordre initial
 - → Ordre global, ordre partiel
- Les réactions d'ordre simple L'ordre 0
 - L'ordre 1
 - L'ordre 2
- Etude expérimentale de l'ordre d'une réaction Aspect expérimental
 - La méthode intégrale
 - La méthode différentielle
 - La méthode du temps de demi-réaction
 - Méthode d'Oswald
- Influence de la température

En réacteur fermé de composition uniforme

Vitesses de disparition d'un réactif et de formation d'un produit.

Vitesse de réaction pour une transformation modélisée par une réaction chimique unique. Lois de vitesse : réactions sans ordre, réactions avec ordre simple (0, 1, 2), ordre global, ordre apparent.

Temps de demi-réaction.

Temps de demi-vie d'un nucléide radioactif.

Loi empirique d'Arrhenius ; énergie d'activation.

Déterminer l'influence d'un paramètre sur la vitesse d'une réaction chimique.

Relier la vitesse de réaction à la vitesse de disparition d'un réactif ou de formation d'un produit, quand cela est possible.

Établir une loi de vitesse à partir du suivi temporel d'une grandeur physique.

Exprimer la loi de vitesse si la réaction chimique admet un ordre et déterminer la valeur de la constante cinétique à une température donnée.

Déterminer la vitesse de réaction à différentes dates en utilisant une méthode numérique ou graphique.

Déterminer un ordre de réaction à l'aide de la méthode différentielle ou à l'aide des temps de demi-réaction.

Confirmer la valeur d'un ordre par la méthode intégrale, en se limitant strictement à une décomposition d'ordre 0, 1 ou 2 d'un unique réactif, ou se ramenant à un tel cas par dégénérescence de l'ordre ou conditions initiales stœchiométriques.

Déterminer l'énergie d'activation d'une réaction chimique.

Déterminer la valeur de l'énergie d'activation d'une réaction chimique à partir de valeurs de la constante cinétique à différentes températures.

<u>TP</u>

Régime transitoire d'un ciruit RCL