Grundlagen der Rechnerarchitektur

Tim Luchterhand, Paul Nykiel (Abgabegruppe 117)

1. Februar 2019

Hinweis: Jede Zahl, bei der keine Basis spezifiziert ist, ist im 10er System zu interpretieren, sofern nicht anders angegeben.

1 Schaltalgebra

1.1

- (a) Die Schaltalgebra ist eine Teilmenge der Boolschen Algebra mit einer zweiwertigen Trägermenge. Das heißt es gibt nur zwei möglichen Werte, anstatt beliebig vielen Werten bei einer Boolschen Algebra.
- (b) (i) Nur mit NAND-Gattern:

$$x_1 \cdot x_2 \stackrel{\text{P7}}{=} \overline{x_1 \cdot x_2} \stackrel{\text{P3}}{=} \overline{x_1 \cdot x_2 \cdot x_1 \cdot x_2}$$

Nur mit NOR-Gattern:

$$x_1 \cdot x_2 \stackrel{\text{P3}}{=} \overline{x_1 \cdot x_2} \stackrel{\text{P8}}{=} \overline{x_1} + \overline{x_2} \stackrel{\text{P5}}{=} \overline{x_1 + 0} + \overline{x_2 + 0}$$

(ii) Nur mit NAND-Gattern:

$$x_1 \cdot \overline{x_2} + \overline{x_1} \cdot x_2 \stackrel{\text{P3}}{=} x_1 \cdot \overline{x_2 \cdot x_2} + \overline{x_1 \cdot x_1} \cdot x_2 \stackrel{\text{P7}}{=} \overline{\overline{x_1 \cdot \overline{x_2 \cdot x_2} + \overline{x_1 \cdot x_1} \cdot x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2 \cdot x_2} \cdot \overline{x_1 \cdot x_1} \cdot x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_1 \cdot x_1} \cdot x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_1} \cdot x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_1} \cdot x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_2}}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_2}}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2}}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2} \cdot \overline{x_2}}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2}} \cdot \overline{x_2} \cdot \overline{x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2}} \cdot \overline{x_2} \cdot \overline{x_2}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2} \cdot \overline{x_2}}} \stackrel{\text{P8}'}{=} \overline{\overline{x_1 \cdot \overline{x_2}}} \stackrel{\text{P8}'}{=} \overline$$

Nur mit NOR-Gattern:

1.2

(a) Wertetabelle

$2^3 = x_3$	$2^2 = x_2$	$2^1 = x_1$	$2^0 = x_0$	f(x)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

(b)

$$f_{\text{DKNF}} = x_0 \overline{x_1} \ \overline{x_2} \ \overline{x_3} + \overline{x_0} \ x_1 \overline{x_2} \ \overline{x_3} + x_0 x_1 \overline{x_2} \ \overline{x_3} + \overline{x_0} \ \overline{x_1} \ x_2 \overline{x_3}$$

$$+ x_0 \overline{x_1} \ x_2 \overline{x_3} + \overline{x_0} \ x_1 x_2 \overline{x_3} + x_0 x_1 x_2 \overline{x_3} + \overline{x_0} \ \overline{x_1} \ \overline{x_2} \ x_3$$

$$+ x_0 x_1 \overline{x_2} \ x_3 + x_0 \overline{x_1} \ x_2 x_3$$

$$f_{\text{KKNF}} = (x_0 + x_1 + x_2 + x_3) \cdot (\overline{x_0} + x_1 + x_2 + \overline{x_3}) \cdot (x_0 + \overline{x_1} + x_2 + \overline{x_3}) \cdot (x_0 + x_1 + \overline{x_2} + \overline{x_3})$$

$$\cdot (x_0 + \overline{x_1} + \overline{x_2} + \overline{x_3}) \cdot (\overline{x_0} + \overline{x_1} + \overline{x_2} + \overline{x_3})$$

(c) Da DKNF und KKNF äquivalent sind wird auf Basis der Wahrheitstabelle minimiert.

Karnaugh-Veitch-Diagramm:

		x_1					
		0	1	1	0		
x_2	0	0	1	1	1	0	x_4
	1	1	1	1	1	0	
	1	0	1	0	0	1	
	0	1	0	1	0	1	
		0	0	1	1		
		x_3					

Daraus ergibt sich:

$$f_{\mathrm{Min}}(x) = \overline{x_4} \cdot x_3 + \overline{x_4} \cdot x_1 \cdot \overline{x_3} + \overline{x_3} \cdot x_2 \cdot \overline{x_4} + \underline{x_2} \cdot \overline{x_3} \cdot x_1 + x_1 \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot x_4$$

1.3

(a) DKNF:

$$f_{\text{DKNF}}(x) = \overline{x_1} \cdot \overline{x_2} \cdot x_3$$

$$+ \overline{x_1} \cdot x_2 \cdot \overline{x_3}$$

$$+ \overline{x_1} \cdot x_2 \cdot x_3$$

$$+ x_1 \cdot \overline{x_2} \cdot \overline{x_3}$$

$$+ x_1 \cdot x_2 \cdot x_3$$

KKNF:

$$f_{\text{KKNF}}(x) = (x_1 + x_2 + x_3)$$
$$\cdot (\overline{x_1} + x_2 + \overline{x_3})$$
$$\cdot (\overline{x_1} + \overline{x_2} + x_3)$$

(b)

$$f_{\text{DKNF}}(x) = \overline{x_1} \cdot \overline{x_2} \cdot x_3 \\ + \overline{x_1} \cdot x_2 \cdot \overline{x_3} \\ + \overline{x_1} \cdot x_2 \cdot \overline{x_3} \\ + x_1 \cdot \overline{x_2} \cdot \overline{x_3} \\ + x_1 \cdot x_2 \cdot x_3 \\ = \overline{x_1} \cdot (\overline{x_2} \cdot x_3 + x_2 \cdot \overline{x_3} + x_2 \cdot x_3) \\ + x_1 \cdot (x_2 \cdot x_3 + \overline{x_2} \cdot \overline{x_3}) \\ = \overline{x_1} \cdot (x_2 + x_3) + x_1 \cdot (x_2 \cdot x_3 + \overline{x_2} \cdot \overline{x_3}) \\ = \overline{\overline{x_1}} \cdot (x_2 + x_3) + x_1 \cdot (x_2 \cdot x_3 + \overline{x_2} \cdot \overline{x_3}) \\ = \overline{(x_1} \cdot (x_2 + x_3)) \cdot \overline{(x_1} \cdot (x_2 \cdot x_3 + \overline{x_2} \cdot \overline{x_3})) \\ = (x_1 + \overline{(x_2} + x_3)) \cdot \overline{(x_1} + \overline{(x_2} \cdot x_3 + \overline{x_2} \cdot \overline{x_3})) \\ = (x_1 + (\overline{x_2} \cdot \overline{x_3})) \cdot \overline{(x_1} + \overline{((x_2} \cdot x_3) \cdot \overline{(x_2} \cdot \overline{x_3})))} \\ = (x_1 + (\overline{x_2} \cdot \overline{x_3})) \cdot \overline{(x_1} + \overline{((x_2} + \overline{x_3}) \cdot (x_2 + x_3)))} \\ = (x_1 + (\overline{x_2} \cdot \overline{x_3})) \cdot \overline{(x_1} + \overline{(x_2} \cdot \overline{x_3} + x_3 \cdot \overline{x_2} + x_3 \cdot \overline{x_3}))} \\ = \overline{(x_1 + (\overline{x_2} \cdot \overline{x_3})) \cdot \overline{(x_1} + \overline{(x_2} \cdot \overline{x_3} + x_3 \cdot \overline{x_2} + x_3 \cdot \overline{x_3})}} \\ = \overline{x_1 \cdot x_2} \cdot \overline{x_3} + x_1 \cdot \overline{x_2} \cdot x_3} \\ = \overline{x_1 \cdot x_2} \cdot \overline{x_3} + x_1 \cdot \overline{x_2} \cdot x_3 \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} \\ = \overline{x_1} \cdot x_2 \cdot \overline{x_3} + x_1 \cdot \overline{x_2} \cdot x_3 \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} \\ = \overline{(x_1} + \overline{x_2} + x_3) \cdot \overline{(x_1} + x_2 + \overline{x_3}) \cdot \overline{(x_1} + x_2 + x_3)} \\ = f_{KKNF}(x)$$

(c) Karnaugh-Veitch-Diagramm:

Daraus ergibt sich:

$$f_{\text{Min}}(x) = \overline{x_1} \cdot x_2 + x_2 \cdot x_3 + x_3 \cdot \overline{x_1} + x_1 \cdot \overline{x_2} \cdot \overline{x_3}$$

(d) DKNF:

$$g_{\text{DKNF}}(x) = (\overline{x_1} \cdot \overline{x_2} \cdot x_3)$$

$$+(\overline{x_1} \cdot x_2 \cdot \overline{x_3})$$

$$+(x_1 \cdot \overline{x_2} \cdot \overline{x_3})$$

$$+(x_1 \cdot \overline{x_2} \cdot x_3)$$

$$+(x_1 \cdot x_2 \cdot \overline{x_3})$$

$$+(x_1 \cdot x_2 \cdot x_3)$$

KKNF:

$$g_{\text{KKNF}}(x) = (x_1 + \overline{x_2} + \overline{x_3})$$

 $\cdot (x_1 + x_2 + x_3)$

(e)

$$g_{\text{DKNF}}(x) = (\overline{x_{1}} \cdot \overline{x_{2}} \cdot x_{3}) \\ + (\overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}}) \\ + (x_{1} \cdot \overline{x_{2}} \cdot x_{3}) \\ + (x_{1} \cdot \overline{x_{2}} \cdot x_{3}) \\ + (x_{1} \cdot x_{2} \cdot x_{3}) \\ + (x_{1} \cdot x_{2} \cdot x_{3}) \\ = \overline{x_{1}} \cdot (\overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}}) \\ + x_{1} \cdot (\overline{x_{2}} \cdot \overline{x_{3}} + \overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}}) + x_{1} \\ = \overline{x_{1}} \cdot (\overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}}) + x_{1} \\ = \overline{(x_{1}} \cdot (\overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}}) + x_{1}} \\ = \overline{(x_{1}} \cdot (\overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}})) \cdot \overline{x_{1}}} \\ = \overline{(x_{1}} + (\overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}})) \cdot \overline{x_{1}}} \\ = \overline{(x_{1}} + (\overline{x_{2}} \cdot x_{3} + x_{2} \cdot \overline{x_{3}})) \cdot \overline{x_{1}}} \\ = \overline{(x_{1}} + (x_{2} + \overline{x_{3}}) \cdot (\overline{x_{2}} + x_{3})) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} + \overline{x_{3}}) \cdot (\overline{x_{2}} + x_{3}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} + \overline{x_{3}}) \cdot (\overline{x_{2}} + x_{3}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} + \overline{x_{2}} \cdot \overline{x_{3}}) \cdot \overline{x_{1}}} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) + \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot x_{3} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}}) \cdot \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}})} \\ = \overline{(x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{1}}) \cdot \overline{$$

(f) Karnaugh-Veitch-Diagramm:

Daraus ergibt sich:

$$g_{\mathrm{Min}}(x) = x_1 + \overline{x_2} \cdot x_3 + x_2 \cdot \overline{x_3}$$

2 Shannon Expansion

2.4

(a)

$$f(x_{1}, x_{2}, x_{3}) = \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot f(0, 0, 0)$$

$$+ \overline{x_{1}} \cdot \overline{x_{2}} \cdot x_{3} \cdot f(0, 0, 1)$$

$$+ \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(0, 1, 0)$$

$$+ \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(0, 1, 1)$$

$$+ x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot f(1, 0, 0)$$

$$+ x_{1} \cdot \overline{x_{2}} \cdot x_{3} \cdot f(1, 0, 1)$$

$$+ x_{1} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(1, 1, 0)$$

$$+ x_{1} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(1, 1, 1)$$

$$= \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 0$$

$$+ \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 1$$

$$+ \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}} \cdot 1$$

$$+ x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 1$$

$$+ x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 1$$

$$+ x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 1$$

$$+ x_{1} \cdot x_{2} \cdot \overline{x_{3}} \cdot 1$$

(b)

$$f(x_{1}, x_{2}, x_{3}) = \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot f(0, 0, 0) \\ + \overline{x_{1}} \cdot \overline{x_{2}} \cdot x_{3} \cdot f(0, 0, 1) \\ + \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(0, 1, 0) \\ + \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(0, 1, 1) \\ + x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot f(1, 0, 0) \\ + x_{1} \cdot \overline{x_{2}} \cdot x_{3} \cdot f(1, 0, 1) \\ + x_{1} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(1, 1, 0) \\ + x_{1} \cdot x_{2} \cdot \overline{x_{3}} \cdot f(1, 1, 1) \\ = \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 1 \\ + \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 1 \\ + \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{3}} \cdot 1 \\ + x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 0 \\ + x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 0 \\ + x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \cdot 0 \\ = \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \\ + \overline{x_{2}} \cdot \overline{x_{3}} \cdot \overline{x_{3}} \\ + \overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}} \\ + \overline{x_{2}}$$