DSC 40A

Theoretical Foundations of Data Science I

Last Time

- To predict future salary:
 - Gather salaries y_1, y_2, \dots, y_n .
 - Find a prediction h* which minimizes the mean error:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

- ightharpoonup We saw that R(h) is minimized by Median (y_1, \ldots, y_n) .
- We turned learning into a math problem and solved it.

Two things we don't like

- 1. Minimizing the mean error wasn't so easy.
- 2. Actually **computing** the median isn't so easy, either.

In This Video

Is there another way to measure the quality of a prediction that avoids these problems?

Recommended Reading

Course Notes: Chapter 1, Section 1

The mean error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- ▶ Remember: $|y_i h|$ measures how far h is from y_i .
- ▶ Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?

The mean error is not differentiable

- ▶ We can't compute $\frac{d}{dh}|y_i h|$.
- Remember: $|y_i h|$ measures how far h is from y_i .
- ls there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?

Question

Which of these would work?

a)
$$e^{|y_i-h|}$$

b)
$$|y_i - h|^2$$

a)
$$e^{|y_i - h|}$$

c) $|y_i - h|^3$

d)
$$cos(y_i - h)$$

The Squared Error

Let *h* be a prediction and *y* be the right answer. The **squared error** is:

$$|y - h|^2 = (y - h)^2$$

- Like error, measures how far *h* is from *y*.
- But unlike error, the squared error is differentiable:

$$\frac{d}{dh}(y-h)^2 =$$

The Mean Squared Error

Suppose we predicted a future salary of $h_1 = 150,000$ before collecting data.

salary	error of h_1	squared error of h_1
90,000	60,000	$(60,000)^2$
94,000	56,000	$(56,000)^2$
96,000	54,000	$(54,000)^2$
120,000	30,000	$(30,000)^2$
160,000	10,000	$(10,000)^2$

total squared error: 1.0652×10^{10} mean squared error: 2.13×10^9

► A good prediction is one with small mean squared error.

The Mean Squared Error

Now suppose we had predicted $h_2 = 115,000$.

salary	error of h_2	squared error of h_2
90,000	25,000	$(25,000)^2$
94,000	21,000	$(21,000)^2$
96,000	19,000	$(19,000)^2$
120,000	5,000	$(5,000)^2$
160,000	45,000	$(45,000)^2$

total squared error: 3.47×10^9 mean squared error: 6.95×10^8

► A good prediction is one with small mean squared error.

The New Idea

Make prediction by minimizing the mean squared error:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer.

The New Idea

Make prediction by minimizing the **mean squared error**:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer.

Question

Which of these is dR_{sq}/dh ?

a)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - h)$$

c) $\sum_{i=1}^{n} y_i$

c)
$$\sum_{i=1}^{n} y_i$$

d)
$$\frac{2}{n}\sum_{i=1}^{n}(h-y_i)$$

Solution

$$\frac{dR_{sq}}{dh} = \frac{d}{dh} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 \right]$$

Set to zero and solve for minimizer

Question

Suppose y_1, \ldots, y_n are salaries. Which plot could be $R_{sq}(h)$?

Bonus: the mean is easy to compute

```
def mean(numbers):
total = 0
for number in numbers:
    total = total + number
return total / len(numbers)
```

- ▶ Time complexity: $\Theta(n)$
- ▶ Median by sorting: $\Theta(n \log n)$
- ▶ But there's a $\Theta(n)$ way to find median: quickselect.
- ▶ DSC 40B.

Outliers

► The mean is quite **sensitive** to outliers.

- $|y_4 h|$ is 10 times as big as $|y_3 h|$.
- ▶ But $(y_4 h)^2$ is 100 times as big as $(y_3 h)^2$.
- Squared error can be dominated by outliers.

Example: Data Science Salaries

- ▶ Data set of 1121 self-reported data science salaries in the United States from the 2018 StackOverflow survey.
- ► Median = \$100,000
- ► Mean = \$111,032
- ► Max = \$2,000,000
- ► Min = \$52
- ▶ 95th Percentile: \$200,000

Example: Data Science Salaries

Example: Data Science Salaries

Example: Income Inequality

Chart: Lisa Charlotte Rost, Datawrapper

Example: Income Inequality

Summary: The Mean Minimizes the Mean Squared Error

- Our problem was: find h^* which minimizes the mean squared error, $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$.
- ► The answer is: Mean $(y_1, ..., y_n)$.
- Using mean squared error biases the prediction towards outliers.
- Next time: We consider both the mean error and the mean squared error as part of a more general framework.