เรดาร์ตรวจอากาศคือ ?

เรดาร์ตรวจอากาศเป็นเครื่องมือชนิดหนึ่งใช้สำหรับตรวจวัดฝน ฝนฟ้าคะนอง หิมะ เป็นต้น นอกจากนี้ยังสามารถตรวจ และแสดงตำแหน่ง ศูนย์กลางของพายุหมุนเขตร้อน เมื่อศูนย์กลางของพายุเคลื่อนเข้ามาในรัศมีหวังผลของเรดาร์ตรวจอากาศ กรมอุตุนิยมวิทยาได้จัดหาเครื่อง เรดาร์ที่ทันสมัย เรียกว่า ดอปเปลอร์เรดาร์ไว้ใช้ในราชการของกรมฯ ตามความเหมาะสมของจุดประสงค์ในการใช้ 3 ชนิดด้วยกัน คือ

- 1. ชนิด X-band เป็นเรดาร์ที่เหมาะสำหรับใช้ตรวจวัดฝนที่ตกเบา หรือตกเล็กน้อยถึงปานกลาง ในระยะใกล้ๆ รัศมีหวังผลประมาณ 100 กิโลเมตร
- 2. ชนิด C-band เป็นเรดาร์ที่เหมาะสำหรับใช้ตรวจวัดฝนที่ตกปานกลางถึงหนัก หรือ ตรวจจับพายุหมุนที่มีกำลังไม่รุนแรง เช่นพายุ ดีเปรสชั่น และหาศูนย์กลางพายุพายุโซนร้อน รัศมีหวังผลประมาณ 250 กิโลเมตร
- 3. ชนิด S-band เป็นเรดาร์ที่เหมาะสำหรับใช้ตรวจวัดฝนที่ตกหนักถึงหนักมาก หรือใช้ตรวจจับหาศูนย์กลางพายุที่มีกำลังแรง เช่น พายุ ได้ฝุ่น (typhoon) รัศมีหวังผลเกินกว่า 300 กิโลเมตร

ชนิดของเรดาร์	ความยาวคลื่น(ซ.ม.)	ความถี่(เมกกะเฮิรซ์)
X-band	3	10,000
C-band	5	6,000
S-band	10	3,000

สีในการตรวจสภาพอากาศจากเรดาร์ตรวจอากาศ

รูปนี้คือ สเกลค่าความเข้มของสัญญาณเรดาร์ (dBZ) และอัตราปริมาณฝนตก (Rain Rate in/hr) ซึ่งใช้สำหรับ เรดาร์ตรวจอากาศ ในการวัดปริมาณฝนหรือพายุฝนฟ้าคะนอง

สี	ค่า dBZ	ความหมาย		
แดงเข้ม - ม่วง	> 55 - 66.5	ฝนตกหนักมาก / พายุฝนฟ้าคะนองรุนแรง		
แดง	50 - 55	ฝนตกหนัก		
ส้ม	45 - 50	ฝนปานกลางถึงหนัก		
เหลือง	35 - 45	ฝนปานกลาง		
เขียวเข้ม	25 - 35	ฝนอ่อนถึงปานกลาง		
เขียวอ่อน	15 - 25	ฝนอ่อน หรือมีเมฆหนา		
น้ำเงิน - ไม่มีสี	< 15	มีเมฆบาง ๆ หรือไม่มีฝน		
•				

การพยากรณ์อากาศกับทำนายอากาศต่างกันยังไง?

1. การพยากรณ์อากาศ (Weather Forecasting)

หมายถึง การคาดการณ์สภาพอากาศในระยะสั้นถึงปานกลาง โดยใช้ข้อมูลปัจจุบันมาวิเคราะห์เพื่อ คาดหมายการเปลี่ยนแปลงของบรรยากาศในอนาคต ข้อมูลที่ใช้ได้แก่ อุณหภูมิ ความชื้น ความกดอากาศ ลม เมฆ และปริมาณน้ำฝน โดยอาศัยแบบจำลองทางคณิตศาสตร์และข้อมูลจากเรดาร์หรือดาวเทียม

องค์ประกอบสำคัญของการพยากรณ์อากาศ

- 1. ความรู้เกี่ยวกับกระบวนการทางบรรยากาศและปรากฏการณ์ทางอุตุนิยมวิทยา
- 2. ข้อมูลสภาพอากาศปัจจุบันที่ได้จากสถานีตรวจอากาศ เรดาร์ ดาวเทียม และเซ็นเซอร์ต่าง ๆ
- 3. การวิเคราะห์ข้อมูลและใช้แบบจำลองคณิตศาสตร์เพื่อคาดการณ์การเปลี่ยนแปลงของอากาศ

ระยะเวลาของการพยากรณ์อากาศ

- การพยากรณ์ปัจจุบัน (Nowcasting): คาดการณ์ภายใน 2 ชั่วโมง
- การพยากรณ์ระยะสั้นมาก: คาดการณ์ไม่เกิน 12 ชั่วโมง
- การพยากรณ์ระยะสั้น: คาดการณ์ระหว่าง 12 ชั่วโมง 3 วัน
- การพยากรณ์ระยะปานกลาง: คาดการณ์ระหว่าง 3 10 วัน
- การพยากรณ์ระยะยาว: คาดการณ์ระหว่าง 10 30 วัน

เทคนิคที่ใช้ในการพยากรณ์อากาศ

- Numerical Weather Prediction (NWP) หรือแบบจำลองเชิงตัวเลขที่ใช้สมการทาง คณิตศาสตร์
- การใช้เรดาร์ตรวจอากาศและดาวเทียมเพื่อวิเคราะห์พายุและแนวโน้มฝน
- การใช้ AI และ Machine Learning วิเคราะห์ข้อมูลอุตุนิยมวิทยา

ตัวอย่างของการพยากรณ์อากาศ

- พรุ่งนี้ฝนจะตกหรือไม่
- อุณหภูมิสูงสุดวันนี้เป็นเท่าไหร่
- อีก 3 วันข้างหน้าจะมีพายูเข้าไทยหรือไม่

2. การทำนายสภาพอากาศ (Weather Prediction)

หมายถึง การคาดการณ์แนวโน้มของสภาพอากาศในระยะยาว โดยใช้ข้อมูลทางสถิติและแบบจำลองเพื่อ คำนวณการเปลี่ยนแปลงของภูมิอากาศ ข้อมูลที่ใช้ได้แก่ อุณหภูมิ ปริมาณน้ำฝน และการเปลี่ยนแปลงทาง ภูมิอากาศในอดีต ไม่ได้เป็นการพยากรณ์อากาศแบบวันต่อวัน แต่เป็นการวิเคราะห์แนวโน้มโดยรวม

องค์ประกอบสำคัญของการทำนายสภาพอากาศ

- ข้อมูลสภาพอากาศในอดีต (Historical Climate Data)
- การใช้แบบจำลองคำนวณการเปลี่ยนแปลงของอุณหภูมิและปริมาณน้ำฝน
- การนำข้อมูลด้านสิ่งแวดล้อมและผลกระทบของภาวะโลกร้อนมาประกอบการวิเคราะห์

ระยะเวลาของการทำนายสภาพอากาศ

- การคาดหมายรายเดือน: วิเคราะห์แนวโน้มของสภาพอากาศรายเดือน
- การคาดหมายรายสามเดือน: วิเคราะห์แนวโน้มของอากาศในแต่ละฤดูกาล
- การคาดหมายระยะยาว: วิเคราะห์แนวโน้มของอากาศเป็นปี หรือหลายปี
- การคาดหมายภูมิอากาศ: วิเคราะห์แนวโน้มอุณหภูมิและปริมาณฝนในอนาคต

เทคนิคที่ใช้ในการทำนายสภาพอากาศ

- Climate Models หรือแบบจำลองสภาพภูมิอากาศที่ใช้คำนวณการเปลี่ยนแปลงในอนาคต
- Machine Learning และ AI วิเคราะห์แนวโน้มของสภาพอากาศจากข้อมูลในอดีต
- Time Series Analysis เช่น LSTM, ARIMA หรือ XGBoost วิเคราะห์แนวโน้มอุณหภูมิ และปริมาณฝน

ตัวอย่างของการทำนายสภาพอากาศ

- ปีหน้าไทยจะมีปริมาณฝนมากกว่าปีนี้หรือไม่
- อีก 5 ปีข้างหน้า ฤดูฝนจะเริ่มช้ากว่าปัจจุบันหรือไม่
- ในอีก 10 ปีข้างหน้า อุณหภูมิประเทศไทยจะสูงขึ้นแค่ไหน

เปรียบเทียบ "การพยากรณ์อากาศ" และ "การทำนายสภาพอากาศ"			
หัวข้อ	การพยากรณ์อากาศ (Weather Forecasting)	การทำนายสภาพอากาศ (Weather Prediction)	
เป้าหมาย	ตาดการณ์อากาศแบบรายวันหรือราย สัปดาห์	คาดการณ์แนวโน้มอากาศในระยะยาว	
ระยะเวลา	1 วัน - 30 วัน	1 เดือน - 10+ ปี	
ข้อมูลที่ใช้	 ภาพเรดาร์, ข้อมูลดาวเทียม แบบจำลองทางคณิตศาสตร์ ข้อมูลลม, อุณหภูมิ, ความชื้น, ความกด 	- ข้อมูลภูมิอากาศในอดีต (Historical Climate Data) - แบบจำลองสภาพภูมิอากาศ - ข้อมูลการเปลี่ยนแปลงของโลก (Global Warming, Climate Change)	
เทคนิคที่ใช้	- Numerical Weather Prediction (NWP) - Al วิเคราะห์ภาพเรดาร์ - การใช้แบบจำลองอุตุนิยมวิทยา	- AI + Big Data - Time Series Forecasting (LSTM, ARIMA, XGBoost) - Climate Model	
ตัวอย่าง คำถาม	"พรุ่งนี้ฝนจะตกไหม?" "อุณหภูมิวันนี้เป็นเท่าไหร่?" "อีก 3 วันจะมีพายุไหม?"	"ปีหน้าไทยจะฝนตกมากขึ้นหรือไม่?" "อุณหภูมิประเทศไทยจะสูงขึ้นภายใน 5 ปีหรือไม่?" "อีก 10 ปีข้างหน้าภูมิอากาศจะเปลี่ยนไปอย่างไร?"	

1. การแปลงรูปภาพอากาศเป็นตัวเลข

แนวทางการทำงาน

- รับภาพถ่ายสภาพอากาศจากเรดาร์หรือดาวเทียม
- ใช้ Image Processing (OpenCV + Go gocv) เพื่อดึงค่าพิกเซลและแปลงสีเป็นข้อมูล ตัวเลข
- ใช้ OCR (Tesseract หรือ Al Model) หากต้องการอ่านตัวเลขจากภาพโดยตรง
- ใช้ AI วิเคราะห์ภาพ (CNN หรือ Machine Learning) เพื่อแปลงรูปภาพเป็นค่าตัวเลข เช่น dBZ

เครื่องมือที่ใช้

- Go (Golang) สำหรับประมวลผลข้อมูลและสร้าง API
- gocv (OpenCV for Go) เพื่อประมวลผลภาพ
- Tesseract OCR หรือ Al Model สำหรับอ่านค่าตัวเลขจากภาพ

2. การทำนายอากาศ

แนวทางการทำงาน

นำค่าตัวเลขที่ได้จากภาพเรดาร์ไปใช้เป็นอินพุตสำหรับการวิเคราะห์

- ใช้ Time Series Forecasting (เช่น LSTM, ARIMA, XGBoost) เพื่อวิเคราะห์ แนวโน้ม
- ใช้ Deep Learning (เช่น CNN + LSTM) เพื่อพยากรณ์ว่าฝนจะตกมากขึ้นหรือลดลงใน ช่วงเวลาใด

เครื่องมือที่ใช้

- AI/ML Frameworks เช่น TensorFlow, PyTorch, หรือ Gorgonia (สำหรับ Golang)
- Database (เช่น PostgreSQL, MySQL) เพื่อจัดเก็บข้อมูลการพยากรณ์
- 3. การแสดงผล
- ใช้ Next.js เพื่อพัฒนาเว็บแอป
- แสดงผลลัพธ์เป็น กราฟ, แผนที่อากาศ หรือค่าพยากรณ์เป็นตัวเลข

Workflow การพัฒนา

- 1. รับภาพถ่ายสภาพอากาศจากแหล่งข้อมูล เช่น เรดาร์, ดาวเทียม
- 2. ใช้ AI แปลงภาพเป็นตัวเลข โดยใช้ OpenCV หรือ CNN
- 3. บันทึกข้อมูลลงฐานข้อมูล เพื่อใช้วิเคราะห์ต่อไป
- 4. ใช้ AI ทำนายแนวโน้มสภาพอากาศ
- 5. แสดงผลลัพธ์ผ่านเว็บแอป Next.js

ที่มาของภาพถ่ายสภาพอากาศที่น่าเชื่อถือมีดังนี้:

- 1. กรมอุตุนิยมวิทยาแห่งประเทศไทย (**TMD):** ให้บริการภาพถ่ายดาวเทียมและเรดาร์ที่อัปเดตอย่าง ต่อเนื่อง สามารถเข้าถึงได้ผ่านเว็บไซต์ของกรมอุตุนิยมวิทยา
- 2. ศูนย์อุทกวิทยาชลประทานภาคเหนือตอนล่าง กรมชลประทาน: มีการเผยแพร่ภาพถ่ายดาวเทียมและ แผนที่ความกดอากาศที่เป็นประโยชน์สำหรับการวิเคราะห์สภาพอากาศ
- 3. Zoom Earth: เว็บไซต์ที่ให้บริการภาพถ่ายดาวเทียมแบบเรียลไทม์จากทั่วโลก สามารถใช้เพื่อ สังเกตการณ์สภาพอากาศในพื้นที่ต่าง ๆ
- 4. ศูนย์เตรียมความพร้อมป้องกันภัยพิบัติแห่งเอเซีย (ADPC): มีการใช้ภาพถ่ายดาวเทียมในการ ตรวจวัดอุณหภูมิและสภาพอากาศ เพื่อการวิเคราะห์และคาดการณ์สภาพอากาศในอนาคต
- 5. กรมอุทกศาสตร์ กองทัพเรือ: ให้บริการข้อมูลสภาพอากาศทางทะเล รวมถึงภาพถ่ายดาวเทียมและแผน ที่สภาพอากาศที่เกี่ยวข้อง