Final Project

Spring 2024

Hongchang Gao

Topic

- Free to choose your topic
 - Supervised Learning
 - Regression
 - Classification
 - Unsupervised Learning
 - Clustering
- Examples:
 - Fraud detection
 - Image classification
 - Community detection
 - Review classification
 - Recommender system
 - •

- Resources
 - Kaggle https://www.kaggle.com/datasets
 - AWS https://registry.opendata.aws/
 - https://www.opendataphilly.org/dataset
 - https://towardsdatascience.com/top-sources-for-machine-learning-datasets-bb6d0dc3378b

- Example 1: House prices:
 - https://www.kaggle.com/c/house-prices-advanced-regressiontechniques/overview
 - With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.

Data fields

Here's a brief version of what you'll find in the data description file.

- SalePrice the property's sale price in dollars. This is the target variable that you're trying to predict.
- MSSubClass: The building class
- MSZoning: The general zoning classification
- LotFrontage: Linear feet of street connected to property
- LotArea: Lot size in square feet
- Street: Type of road access
- Alley: Type of alley access
- LotShape: General shape of property

- Example 2: Titanic Machine Learning from Disaster
 - https://www.kaggle.com/c/titanic/overview
 - Use machine learning to create a model that predicts which passengers survived the Titanic shipwreck.

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

- Example 3: Digit Recognizer
 - https://www.kaggle.com/c/digit-recognizer/overview
 - Image classification

```
8733/547/140663
```

- Example 4: IEEE-CIS Fraud Detection
 - https://www.kaggle.com/c/ieee-fraud-detection
 - Detect fraud transaction

TransactionID int64 isFraud int64 TransactionDT int64 TransactionAmt float64 ProductCD object card1 int64 card2 float64 float64 card3 object card4 card5 float64 object card6 addr1 float64 float64 addr2

- Example 5: Santander Customer Transaction Prediction
 - https://www.kaggle.com/c/santander-customer-transaction-prediction/overview
 - Identify who will make a transaction
 - An anonymized dataset containing numeric feature variables, the binary target column, and a string ID_code column.

- Why is this task important?
- How to obtain/preprocess the data?
- How to explore the data?
- Which model to use?
- How to analyze the result?
- ...

Project Team

- Each team can have
 - One or two students
- Amount of the work
 - The expected amount of work for the whole project per student is 30 hours.
 - The team with 2-person should double the work, ~60 hours

Project Format

- Project format
 - Proposal
 - Progress Report I
 - Progress Report II
 - Final Report

1. Proposal

- Proposal should include
 - Project title and student name(s)
 - Introduction section
 - Give motivation; describe the problem; review related works
 - Proposed work section
 - Explain the idea; explain proposed approaches
 - Timeline
 - State the timeline of the project
 - References
 - provide at least 2 related references (could be a web link)
- 1.5-2 page report
 - 11pt font size
 - Single space

2. Progress Report

- Summarize the progress
 - What has been done
 - What has not been done
 - What will be done during the following week
- 2-page report
 - 11pt font size
 - Single space

3. Final Report

- Final report should include:
 - Project title and student name
 - Introduction Section: give motivation; describe the problem; summarize your contribution
 - Approach: explain the idea; explain proposed approaches
 - Results: show results in form of tables and figures, discuss results
 - Conclusion: summarize the whole project and its outcome
 - Acknowledgements: clearly acknowledge people that helped you finish the project and the web resources you used (please exclude the professor and the TAs)
- 5-page report
 - 11pt font size
 - Single space

Project Timeline

Item	Grade	Due date
Project proposal	15%	March 30, 23:59 (week 1)
Project approval	-	March 31
Start working on the project	-	April 1
Progress report I	10%	April 7, 23:59 (week 2)
Progress report II	15%	April 14, 23:59 (week 3)
Lightning talk	20%	April 23&25 (week 4)
Final report	40%	April 28 23:59 (week 5)