Automatic Algorithm Transformation for Efficient Multi-Snapshot Analytics on Temporal Graphs (时态图上对多快照分析进行高效算法自动转换)

蔡修远 数据管理和系统实现

Why Multi-snapshot analytics

> What is snapshot

➤ What can we do with multi-snapshot

basic solution

> Independent Snapshot Execution

➤ How to facilitate the similarity among snapshots

Advanced solution

> Instance Interleaving

 $i_{t_1}: G^S.neighbors(v_0) = [v_1, v_3]$

 $i_{t_2}: G^S.neighbors(v_0) = [v_1, v_2, v_3]$

Solution author propose

> Graph-Synchronous Interleaved Execution

Algorithm 1 1-hop neighborhood traversal.

1: $visit(v_0)$

2: for $n \in G^S$.neighbors (v_0) do

 $3: \quad visit(n)$

Algorithm 2 SAMS variant of Algorithm 1 that allows its concurrent execution for two graph snapshots.

1: $visit(v_0, \{i_{t_1}, i_{t_2}\})$

2: for $(n, active_n) \in G^S$. $neighbors_*(v_0, \{i_{t_1}, i_{t_2}\})$ do

3: $visit(n, active_n)$

Interleaving of Program Instances

> Rules for algorithm interleaving

```
Rule 5 While loop
Rule 1 Function definition
                                                                              sim \binom{S}{D} do
                                           fun F_*(S, args_*...)
 sim (_) do
                                                                                   while E do
                                                \mathcal{A}(F_*) := S
      fun F(args...)
                                                                                                                       e_* := eval_*(E, \mathcal{A}(\phi) \cap D)
                                                                                       stmt
                                                sim \binom{S}{A(F_*)} do
                                                                                                                      T := \{i \mid e_i = true\}
           stmt
                                                                                                                      \mathcal{A}(\phi) := \mathcal{A}(\phi) \cap T
                                                                                                                      \sin \binom{T}{D \cap A(\phi)} do
Rule 2 Statement sequence
 sim \binom{S}{D} do
                                           sim \binom{S}{D} do
                                                                             Rule 6 Loop \phi break statement
                                                stmt_1
      stmt_1
                                                                              sim \binom{S}{D} do
                                                                                                                  \mathcal{A}(\phi) := \mathcal{A}(\phi) \setminus (S \cap D)
                                          sim \binom{S}{D} do
      stmt_2
                                                                                   break
                                                stmt_2
                                                                             Rule 7 For loop
                                                                              sim \binom{S}{D} do
Rule 3 Expression evaluation and assignment
                                                                                                              \phi: for v_* \in collect_*(E, S \cap D) do
                                                                                  for v \in E do
                                          v_* := eval_*(E, S \cap D)
 sim \binom{S}{D} do
                                                                                       stmt
     v := E
                                                                                                                          stmt
Rule 4 Conditional branch statement
                                                                             Rule 8 Function call
                                                                                                                 v_* := F_*(S \cap D, x_*...)
                                                                              sim \binom{S}{D} do
                                           e_* := eval_*(E, S \cap D)
 sim \binom{S}{D} do
                                                                                  v := F(x...)
                                          T := \{i \mid e_i = true\}
      if E then
           stmt_{t}
                                          sim \begin{pmatrix} T \\ D \end{pmatrix} do
                                                                             Rule 9 Function \psi return statement
      else
                                                stmt_{t}
                                                                              sim \binom{S}{D} do
                                                                                                                  sim \binom{S}{D} do
           stmt_f
                                                                                  return E
                                          \sin \binom{S \setminus T}{D} do
                                                                                                                  A(\psi) := A(\psi) \setminus (S \cap D)
                                                stmt_f
                                                                                                                  if \mathcal{A}(\psi) = \emptyset then return \mathcal{R}(\psi)
```

An example


```
\begin{array}{ll} \mathbf{Rule\ 7\ For\ loop} \\ \mathbf{sim}\ (^{S}_{D})\ \mathbf{do} \\ \mathbf{for}\ v \in E\ \mathbf{do} \\ \mathbf{s}tmt \end{array} \right\rangle \begin{array}{l} \mathcal{A}(\phi) := S \\ \phi \colon \mathbf{for}\ v_{*} \in collect_{*}(E, S \cap D)\ \mathbf{do} \\ \mathbf{sim}\ (^{S \cap \mathcal{A}(v_{*})}_{D \cap \mathcal{A}(\phi)})\ \mathbf{do} \\ \mathbf{s}tmt \end{array}
```

- > Sim statement interleaving marker
- \triangleright S scope constraints D dynamic constraints
- \triangleright E expression \lor variable
- $\rightarrow \mathcal{A}(\phi)$ active set *collect**() function
- \rightarrow A(v*) active set

Locality optimized Data Layout

- Global property
 - > Vertex's property in same memory location
- Local variables
 - > Collocate their values in all program instances

Experiment Setup

6 graph algorithms

PageRank Triangle counting BFS DFS closeness centrality Tarjan's strongly connected components

store graphs in the compressed sparse row (CSR) format

Ubuntu Linux 15.10

two Intel Xeon E5-2660 v2 CPUs having 20 logical threads at 2.2GHz and 256GB of main memory.

Datasets

Table 2: Properties of the evaluated data sets.

Graph	Vertices (k)	Edges (k)	Ø Degree	Diameter	Ø Diameter	Directed	Temporal
LDBC 1	34.4	1,010.6	29.4	5	2.8		X
LDBC 10	226.9	10,141.4	44.7	6	3.0		X
LDBC 100	1,611.9	101,747.9	63.1	6	3.2		X
Baidu	2,753.2	17,643.7	6.4	24	6.6	\mathbf{X}	
Citeseer	384.4	1,751.5	4.6	70	18.6	X	
Mailinglist	27.9	1,014.1	36.3	112	7.2	\mathbf{X}	X
Wiki Talk	2,502.0	5,021.4	2.0	14	5.0	X	
Wikipedia	1,870.7	39,953.1	21.4	376	4.6	X	X

evaluate all algorithms for 512 distinct graph snapshots, the first comprises 80% of all edges and their incident vertices

Speedup

Speedup of SAMS over snapshot-at-atime execution for varying degrees of concurrency.

competitor

Execution - O Snapshot at a Time - A Single Algorithm Multiple Snapshots + Chronos's strategy

Figure 4: Absolute runtime to process a varying number of snapshots, using the LDBC 100 graph.

summary

- > Inspiration:
 - ➤ Automatically transform
 - > sharing common computation
- > Deficiency:
 - > instable
 - ➤ only for concurrency ≤256
- > Further improvement:
 - > Out-of-core and distributed processing