## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/82, 9/02, 15/53

(11) International Publication Number:

WO 97/32028

(43) International Publication Date:

SN, TD, TG).

4 September 1997 (04.09.97)

(21) International Application Number:

PCT/US97/03343

A1

(22) International Filing Date:

27 February 1997 (27.02.97)

(30) Priority Data:

60/012,705

US 28 February 1996 (28.02.96) US 28 February 1996 (28.02.96)

60/013,612 60/020,003

21 June 1996 (21.06.96)

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: AU, BA, BB, BG, BR, BY, CA, CN, CU,

CZ, FI, GE, GH, HU, JP, KG, KR, KZ, LC, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, TJ, UA,

US, UZ, VN, YU, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,

(71) Applicant (for all designated States except US): NOVARTIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): JOHNSON, Maric, A. [US/US]; 408 Heather Drive, Raleigh, NC 27606 (US). VOLRATH, Sandra, L. [US/US]; 4225 Pine Oak Drive, Durham, NC 27707 (US). WARD, Eric, R. [US/US]; 3003 Montgomery Street, Durham, NC 27705 (US).
- (74) Agent: MEIGS, J., Timothy; 520 White Plains Road, Tarrytown, NY 10591-9005 (US).

(54) Title: PROMOTERS FROM PLANT PROTOPORPHYRINOGEN OXIDASE GENES

(57) Abstract

Promoters naturally associated with plant protoporphyrinogen oxidase (protox) coding sequences, and derivatives thereof, are provided. These promoters can be used to control the expression of an operably linked heterologous coding sequence in a plant cell. These promoters are particularly useful for expressing modified forms of herbicide target enzymes, particularly modified forms of protox, to achieve tolerance to herbicides that inhibit the corresponding unmodified enzymes. Recombinant DNA molecules and chimeric genes comprising these promoters are provided, as well as plant tissue and plants containing such chimeric genes.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AM       | Armenia                  | GB       | United Kingdom               | MW | Malawi                   |
|----------|--------------------------|----------|------------------------------|----|--------------------------|
| AT       | Austria                  | GE       | Georgia                      | MX | Mexico                   |
| AU       | Australia                | GN       | Guinea                       | NE | Niger                    |
| BB       | Rerhados                 | GR       | Greece                       | NL | Netherlands              |
| BE       | Belgium                  | HU       | Hungary                      | NO | Norway                   |
| BF       | Burkina Faso             | IE       | Ireland                      | NZ | New Zealand              |
| BG       | Bulgaria                 | IT       | Italy                        | PL | Poland                   |
| BJ       | Benin                    | JР       | Japan                        | PT | Portugal                 |
| -        | Brazil                   | KE       | Kenya                        | RO | Romania                  |
| BR<br>BY | Belarus                  | KG       | Kyrgystan                    | RU | Russian Federation       |
|          |                          | KP       | Democratic People's Republic | SD | Sudan                    |
| CA       | Canada                   | 242      | of Korea                     | SE | Sweden                   |
| CF       | Central African Republic | KR       | Republic of Korea            | SG | Singapore                |
| CG       | Congo                    | KZ.      | Kazakhstan                   | SI | Slovenia                 |
| CH       | Switzerland              | Li       | Liechtenstein                | SK | Slovakia                 |
| a        | Côte d'Ivoire            | LK       | Sri Lanka                    | SN | Senegal                  |
| CM       | Cameroon                 | LR       | Liberia                      | SZ | Swaziland                |
| CN       | China                    | LT<br>LT | Lithuania                    | TD | Chad                     |
| CS       | Czechoslovakia           | LU       | Luxembourg                   | TG | Togo                     |
| CZ       | Czech Republic           |          | Latvia                       | T. | Tajikistan               |
| DE       | Germany                  | LV       |                              | ΤŢ | Trinidad and Tobago      |
| DK       | Denmark                  | MC       | Monaco                       | UA | Ukraine                  |
| RE       | Eatonia.                 | MD       | Republic of Moldova          | UG | Uganda                   |
| ES       | Spain                    | MG       | Madagascar                   | US | United States of America |
| Fl       | Finland                  | ML       | Mali                         |    |                          |
| FR       | France                   | MN       | Mongolia                     | UZ | Uzbekistan               |
| GA       | Gabon                    | MR       | Mauritania                   | VN | Viet Nam                 |

## PROMOTERS FROM PLANT PROTOPORPHYRINOGEN OXIDASE GENES

#### FIELD OF THE INVENTION

This invention relates to novel DNA sequences that function as promoters of transcription of associated DNA sequences in plants. More specifically, this invention relates to novel promoters that are naturally associated with plant protoporphyrinogen oxidase (protox) coding sequences.

#### BACKGROUND OF THE INVENTION

I. The Protox Enzyme and its Involvement in the Chlorophyll/Heme Biosynthetic Pathway

The biosynthetic pathways that lead to the production of chlorophyll and heme share a number of common steps. Chlorophyll is a light harvesting pigment present in all green photosynthetic organisms. Heme is a cofactor of hemoglobin, cytochromes, P450 mixed-function oxygenases, peroxidases, and catalases (see, e.g. Lehninger, Biochemistry. Worth Publishers, New York (1975)), and is therefore a necessary component for all aerobic organisms.

The last common step in chlorophyll and heme biosynthesis is the oxidation of protoporphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase (referred to herein as "protox") is the enzyme that catalyzes this last oxidation step (Matringe *et al.*, *Biochem. J. 260*: 231 (1989)).

The protox enzyme has been purified either partially or completely from a number of organisms including the yeast *Saccharomyces cerevisiae* (Labbe-Bois and Labbe, In Biosynthesis of Heme and Chlorophyll, E.H. Dailey, ed. McGraw Hill: New York, pp. 235-285 (1990)), barley etioplasts (Jacobs and Jacobs, *Biochem. J. 244*: 219 (1987)), and mouse liver (Dailey and Karr, *Biochem. 26*: 2697 (1987)). Genes encoding protox have been isolated from two prokaryotic organisms, *Escherichia coli* (Sasarman *et al.*, *Can. J. Microbiol.* 39: 1155 (1993)) and *Bacillus subtilis* (Dailey *et al.*, *J. Biol. Chem. 269*: 813 (1994)). These genes share no sequence similarity; neither do their predicted protein products share any amino acid sequence identity. The *E. coli* protein is approximately 21 kDa, and associates

with the cell membrane. The *B. subtilis* protein is 51 kDa, and is a soluble, cytoplasmic activity.

Protox encoding cDNAs have now also been isolated from humans (*see* Nishimura *et al., J. Biol. Chem. 270(14):* 8076-8080 (1995) and plants (International application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659).

### II. The Protox Gene as a Herbicide Target

The use of herbicides to control undesirable vegetation such as weeds or plants in crops has become almost a universal practice. The relevant market exceeds a billion dollars annually. Despite this extensive use, weed control remains a significant and costly problem for farmers.

Effective use of herbicides requires sound management. For instance, time and method of application and stage of weed plant development are critical to getting good weed control with herbicides. Since various weed species are resistant to herbicides, the production of effective herbicides becomes increasingly important.

Unfortunately, herbicides that exhibit greater potency, broader weed spectrum and more rapid degradation in soil can also have greater crop phytotoxicity. One solution applied to this problem has been to develop crops that are resistant or tolerant to herbicides. Crop hybrids or varieties resistant to the herbicides allow for the use of the herbicides without attendant risk of damage to the crop. Development of resistance can allow application of a herbicide to a crop where its use was previously precluded or limited (e.g. to pre-emergence use) due to sensitivity of the crop to the herbicide. For example, U.S. Patent No. 4,761,373 to Anderson et al. is directed to plants resistant to various imidazolinone or sulfonamide herbicides. The resistance is conferred by an altered acetohydroxyacid synthase (AHAS) enzyme. U.S. Patent No. 4,975,374 to Goodman et al. relates to plant cells and plants containing a gene encoding a mutant glutamine synthetase (GS) resistant to inhibition by herbicides that were known to inhibit GS, e.g. phosphinothricin and methionine sulfoximine. U.S. Patent No. 5,013,659 to Bedbrook et al. is directed to plants that express a mutant acetolactate synthase that renders the plants resistant to inhibition by sulfonylurea herbicides. U.S. Patent No. 5,162,602 to Somers et al. discloses plants tolerant to inhibition

by cyclohexanedione and aryloxyphenoxypropanoic acid herbicides. The tolerance is conferred by an altered acetyl coenzyme A carboxylase(ACCase).

The protox enzyme serves as the target for a variety of herbicidal compounds. The herbicides that inhibit protox include many different structural classes of molecules (Duke et al., Weed Sci. 39: 465 (1991); Nandihalli et al., Pesticide Biochem. Physiol. 43: 193 (1992); Matringe et al., FEBS Lett. 245: 35 (1989); Yanase and Andoh, Pesticide Biochem. Physiol. 35: 70 (1989)). These herbicidal compounds include the diphenylethers (e.g. acifluorfen, 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobezoic acid; its methyl ester; or oxyfluorfen, 2chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluorobenzene)}, oxidiazoles, (e.g. oxidiazon, 3-[2,4dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one), cyclic imides (e.g. S-23142, N-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3,4,5,6tetrahydrophthalimide; chlorophthalim, N-(4-chlorophenyl)-3,4,5,6-tetrahydrophthalimide). phenyl pyrazoles (e.g. TNPP-ethyl, ethyl 2-[1-(2,3,4-trichlorophenyl)-4-nitropyrazolyl-5oxylpropionate; M&B 39279), pyridine derivatives (e.g. LS 82-556), and phenopylate and its O-phenylpyrrolidino- and piperidinocarbamate analogs. Many of these compounds competitively inhibit the normal reaction catalyzed by the enzyme, apparently acting as substrate analogs.

Typically, the inhibitory effect on protox is determined by measuring fluorescence at about 622 to 635 nM, after excitation at about 395 to 410 nM (see, e.g. Jacobs and Jacobs, *Enzyme 28*: 206 (1982); Sherman et al., *Plant Physiol. 97*: 280 (1991)). This assay is based on the fact that protoporphyrin IX is a fluorescent pigment, and protoporphyrinogen IX is nonfluorescent.

The predicted mode of action of protox-inhibiting herbicides involves the accumulation of protoporphyrinogen IX in the chloroplast. This accumulation is thought to lead to leakage of protoporphyrinogen IX into the cytosol where it is oxidized by a peroxidase activity to protoporphyrin IX. When exposed to light, protoporphyrin IX can cause formation of singlet oxygen in the cytosol. This singlet oxygen can in turn lead to the formation of other reactive oxygen species, which can cause lipid peroxidation and membrane disruption leading to rapid cell death (Lee et al., Plant Physiol. 102: 881 (1993)).

Not all protox enzymes are sensitive to herbicides that inhibit plant protox enzymes. Both of the protox enzymes encoded by genes isolated from *Escherichia coli* (Sasarman et

al., Can. J. Microbiol. 39: 1155 (1993)) and Bacillus subtilis (Dailey et al., J. Biol. Chem. 269: 813 (1994)) are resistant to these herbicidal inhibitors. In addition, mutants of the unicellular alga Chlamydomonas reinhardtii resistant to the phenylimide herbicide S-23142 have been reported (Kataoka et al., J. Pesticide Sci. 15: 449 (1990); Shibata et al., In Research in Photosynthesis, Vol. III, N. Murata, ed. Kluwer:Netherlands. pp. 567-570 (1992)). At least one of these mutants appears to have an altered protox activity that is resistant not only to the herbicidal inhibitor on which the mutant was selected, but also to other classes of protox inhibitors (Oshio et al., Z. Naturforsch. 48c: 339 (1993); Sato et al., In ACS Symposium on Porphyric Pesticides, S. Duke, ed. ACS Press: Washington, D.C. (1994)). A mutant tobacco cell line has also been reported that is resistant to the inhibitor S-21432 (Che et al., Z. Naturforsch. 48c: 350 (1993). In addition, modified, inhibitor-resistant forms of plant protox coding sequences have been described in international application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659.

## III. Regulation of Protox Gene Expression

The bulk of the research related to the protox gene that has been conducted thus far has focused upon the coding sequence and modifications to this enzyme that may render it resistant to protox inhibitors. No information is available in the art with regard to the regulatory elements that control and promote the expression of protox coding sequences in plants.

## **SUMMARY OF THE INVENTION**

The present invention is based on the discovery that the promoter regions naturally associated with the plant protoporphyrinogen oxidase (protox) coding sequences, referred to herein generally as the "protox promoter", are useful for promoting expression of a heterologous coding sequence in a plant.

In accordance with the discovery that the promoter regions naturally associated with the plant protoporphyrinogen oxidase (protox) coding sequence are useful for promoting expression of a heterologous coding sequence in a plant, the present invention provides an isolated DNA molecule comprising a plant protox promoter or a functionally equivalent thereof. The present invention further provides a chimeric gene comprising a plant protox promoter operably linked to a heterologous coding sequence. Plant tissue and plants containing such a chimeric gene are also provided.

In one aspect of the invention the protox promoter is used to express herbicide resistant forms of herbicide target proteins in a plant to confer tolerance to the herbicide. According to this aspect, the protox promoter may be operably linked to a coding sequence for a herbicide-resistant plant protox protein that is resistant to inhibitors of unmodified plant protox protein.

#### **DEPOSITS**

The following vector molecules have been deposited with Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A on the dates indicated below:

AraPT1Pro containing the *Arabidopsis* Protox-1 promoter was deposited December 15, 1995, as pWDC-11 (NRRL #B-21515).

A plasmid containing the maize Protox-1 promoter fused to the remainder of the maize Protox-1 coding sequence was deposited March 19, 1996 as pWDC-14 (NRRL #B-21546).

A plasmid containing the Sugar Beet Protox-1 promoter was deposited December 6, 1996, as pWDC-20 (NRRL #B-21650).

## DESCRIPTION OF THE SEQUENCE LISTING

| SEQ ID NO:1:  | DNA coding sequence for an Arabidopsis thaliana protox-1 protein. |
|---------------|-------------------------------------------------------------------|
| SEQ ID NO:2:  | Arabidopsis protox-1 amino acid sequence encoded by SEQ ID NO:1.  |
| SEQ ID NO:3:  | DNA coding sequence for an Arabidopsis thaliana protox-2 protein. |
| SEQ ID NO:4:  | Arabidopsis protox-2 amino acid sequence encoded by SEQ ID NO:3.  |
| SEQ ID NO:5:  | DNA coding sequence for a maize protox-1 protein.                 |
| SEQ ID NO:6:  | Maize protox-1 amino acid sequence encoded by SEQ ID NO:5.        |
| SEQ ID NO:7:  | DNA coding sequence for a maize protox-2 protein.                 |
| SEQ ID NO:8:  | Maize protox-2 amino acid sequence encoded by SEQ ID NO:7.        |
| SEQ ID NO:9:  | DNA coding sequence for a wheat protox-1 protein.                 |
| SEQ ID NO:10: | Wheat protox-1 amino acid sequence encoded by SEQ ID NO:9.        |
| SEQ ID NO:11: | DNA coding sequence for a soybean protox-1 protein.               |
| SEQ ID NO:12: | Soybean protox-1 protein encoded by SEQ ID NO:11.                 |
| SEQ ID NO:13: | Promoter sequence from Arabidopsis thaliana protox-1 gene.        |
| SEQ ID NO:14: | Promoter sequence from maize protox-1 gene.                       |
| SEQ ID NO:15: | DNA coding sequence for a cotton protox-1 protein.                |
| SEQ ID NO:16: | Cotton protox-1 amino acid sequence encoded by SEQ ID NO:15.      |
| SEQ ID NO:17: | DNA coding sequence for a sugar beet protox-1 protein.            |
| SEQ ID NO:18: | Sugar beet protox-1 amino acid sequence encoded by SEQ ID NO:17.  |
| SEQ ID NO:19: | DNA coding sequence for a rape protox-1 protein.                  |
| SEQ ID NO:20: | Rape protox-1 amino acid sequence encoded by SEQ ID NO:19.        |
| SEQ ID NO:21: | DNA coding sequence for a rice protox-1 protein.                  |
| SEQ ID NO:22: | Rice protox-1 amino acid sequence encoded by SEQ ID NO:21.        |
| SEQ ID NO:23: | DNA coding sequence for a sorghum protox-1 protein.               |
| SEQ ID NO:24: | Sorghum protox-1 amino acid sequence encoded by SEQ ID NO:23.     |
| SEQ ID NO:25: | Maize protox-1 intron sequence.                                   |
| SEQ ID NO:26: | Promoter sequence from sugar beet protox-1 gene.                  |

#### **DEFINITIONS**

As used herein a "plant protox promoter" is used to refer to the regulatory region that naturally occurs immediately upstream of a protoporphyrinogen oxidase (protox) coding sequence in a plant and is responsible, in its naturally occurring state, for regulating the transcription of the associated protox coding sequence. The plant protox promoter includes the DNA region directly involved in binding of RNA polymerase to initiate transcription and additional upstream regulatory cis-elements that influence the transcription of an operably linked coding sequence.

As used herein a "gene" is used to refer to a DNA molecule that includes (1) a coding sequence and (2) associated regulatory regions that promote and regulate the transcription of the coding sequence in a suitable host cell. The coding sequence may encode a useful transcript (e.g. antisense RNA) or polypeptide produced by translation of the encoded transcript. A gene includes at a minimum, in 5'-3' orientation, a promoter region, a coding sequence and a transcription terminator. A gene may also include additional regulatory regions that can occur as part of the minimal elements (e.g. leaders or signal peptides within the coding sequence) or as discrete elements (e.g. introns).

As used herein a "chimeric gene" refers to a gene that does not naturally occur wherein at least one component part is heterologous with respect to another component part. As used herein to describe the present invention a "chimeric gene" refers to a gene that includes the promoter of the invention operably linked to a heterologous coding sequence.

As used herein with reference to the relationship between a promoter and a coding sequence, the term "heterologous" is used to refer to a relationship that does not naturally occur. For instance, a coding sequence is considered heterologous with respect to a promoter sequence if it is different from the coding sequence that naturally occurs in association with the promoter sequence. This includes modified forms of coding sequences that are naturally associated with a subject promoter. Accordingly, a modified, inhibitor-resistant protox coding sequence is considered to be heterologous with respect to the promoter that is naturally associated with the unmodified, inhibitor-sensitive form of this coding sequence. This further includes the promoter of the invention operably linked to a coding sequence from a different plant or non-plant species.

PCT/US97/03343

As used herein, the term "substantial sequence homology" is used to indicate that a nucleotide sequence (in the case of DNA or RNA) or an amino acid sequence (in the case of a protein or polypeptide) exhibits substantial structural and functional equivalence with another nucleotide or amino acid sequence. Any functional or structural differences between sequences having substantial sequence homology will be de minimis; that is they will not affect the ability of the sequence to function as indicated in the present application. For example, a sequence that has substantial sequence homology with a DNA sequence disclosed to be a plant protox promoter will be able to direct the same level and pattern of expression of an associated DNA sequence as the plant protox promoter. Sequences that have substantial sequence homology with the sequences disclosed herein are usually variants of the disclosed sequence, such as mutations, but may also be synthetic sequences. Structural differences are considered de minimis if there is a significant amount of sequence overlap or similarity between two or more different sequences or if the different sequences exhibit similar physical characteristics. Such characteristics can include, for example, immunological reactivity, enzyme activity, structural protein integrity, etc.

Two nucleotide sequences may have substantial sequence homology if the sequences have at least 70 percent, more preferably 80 percent and most preferably 90 percent sequence similarity between them. Two amino acid sequences have substantial sequence homology if they have at least 50 percent, preferably 70 percent, and most preferably 90 percent similarity between the active portions of the polypeptides. In the case of promoter DNA sequences, "substantial sequence homology" also refers to those fragments of a promoter DNA sequence that are able to operate to promote the expression of associated DNA sequences. Such operable fragments of a promoter DNA sequence may be derived from the promoter DNA sequence, for example, by cleaving the promoter DNA sequence using restriction enzymes, synthesizing in accordance with the sequence of the promoter DNA sequence, or may be obtained through the use of PCR technology. Mullis et al., Meth. Enzymol., 155:335-350 (1987); Erlich (ed.), PCR Technology, Stockton Press (New York 1989).

A promoter DNA sequence is said to be "operably linked" to a second DNA sequence if the two are situated such that the promoter DNA sequence influences the transcription or translation of the second DNA sequence. For example, if the second DNA sequence codes for the production of a protein, the promoter DNA sequence would be operably linked to the second DNA sequence if the promoter DNA sequence affects the expression of the protein

product from the second DNA sequence. For example, in a DNA sequence comprising a promoter DNA sequence physically attached to a coding DNA sequence in the same chimeric construct, the two sequences are likely to be operably linked.

## **DETAILED DESCRIPTION OF THE INVENTION**

The present invention relates to promoter DNA sequences that are naturally associated with coding sequences for plant protoporphyrinogen oxidase (referred to herein as "protox"; see international application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659, incorporated by reference in its entirety; and co-pending International Application No\_\_\_\_\_\_\_ entitled "DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof" (docket number PH/5-20757/P1/CGC1847) filed on the same day as the instant application and also incorporated by reference in its entirety). These protox promoter sequences have been found to be useful for the expression of a heterologous coding sequence in a plant.

The promoter sequence for the *Arabidopsis thaliana* protox-1 coding sequence (SEQ ID NO:1) is provided as SEQ ID NO:13. Isolation of this promoter from a genomic library using the associated coding sequence as a probe is described in Example 1. The promoter sequence for the maize protox-1 coding sequence (SEQ ID NO:5) is provided as SEQ ID NO:14. Isolation of this promoter from a genomic library using the associated coding sequence as a probe is described in Example 4. The promoter sequence for the sugar beet protox-1 coding sequence (SEQ ID NO:17) is provided as SEQ ID NO:26. Isolation of this promoter from a genomic library using the associated coding sequence as a probe is described in Example 11.

Based on the information provided by the present invention the approach used to isolate the *Arabidopsis* and maize protox-1 promoters can now be used to isolate the promoter sequence from any plant protox gene. Any protox coding sequence that shares sufficient homology to hybridize to the protox coding sequence associated with the promoter of interest may be used as a probe in this approach. Since the respective protox-1 and protox-2 coding sequences from all plants are contemplated to share this requisite degree of homology, the choice of which protox coding sequence is used as a probe is not considered critical. However, for optimal hybridization results it is preferable to use the most closely related protox coding sequence. Most preferably, the coding sequence used as a probe is

from the same plant species as the protox promoter of interest and is the coding sequence naturally associated with the promoter.

The present invention thus relates to an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase. Preferred is an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase from a plant selected from the group consisting of Arabidopsis, sugar cane, soybean, barley, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf and forage grasses, millet and rice. More preferred is an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase from a plant selected from the group consisting of Arabidopsis. soybean, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf grass and rice. Particularly preferred is an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase from a plant selected from the group consisting of Arabidopsis, sugar beet and maize. Most preferred is an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase from Arabidopsis. Most preferred is an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase from maize. Most preferred is an isolated promoter DNA molecule that is naturally associated with coding sequences for plant protoporphyrinogen oxidase from sugar beet.

Comprised by the present invention are DNA molecules that hybridize to a DNA molecule according to the invention as defined hereinbefore, but preferably to an oligonucleotide probe obtainable from said DNA molecule comprising a contiguous portion of the sequence of the said protox promoter at least 10 nucleotides in length, under moderately stringent conditions. Most preferred are DNA molecules that hybridize to the nucleotide sequence of either SEQ ID NO:13 (Arabidopsis Protox-1 promoter), SEQ ID NO:14 (maize Protox-1 promoter), or SEQ ID NO:26 (sugar beet Protox-1 promoter) under the following set of conditions:

- (a) hybridization in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at 50° C; and
  - (b) wash in 2X SSC, 1% SDS at 50°C.

Factors that effect the stability of hybrids determine the stringency of the hybridization. One such factor is the melting temperature  $T_m$ , which can be easily calculated according to the formula provided in DNA PROBES, George H. Keller and Mark M. Manak , Macmillan Publishers Ltd, 1993, Section one: Molecular Hybridization Technology; page 8 ff. The preferred hybridization temperature is in the range of about 25°C below the calculated melting temperature  $T_m$  and preferably in the range of about 12-15°C below the calculated melting temperature  $T_m$  and in the case of oligonucleotides in the range of about 5-10°C below the melting temperature  $T_m$ .

A further embodiment of the invention is a method of producing a DNA molecule comprising a DNA portion containing a protox promoter sequence and a DNA portion encoding a protox protein comprising

- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for a protox protein or the protox promoter sequence from a plant of at least 10 nucleotides length;
- (b) probing for other protox coding sequences in populations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating and multiplying a DNA molecule comprising a DNA portion containing a protox promoter sequence and a DNA portion encoding a protox protein.

A further embodiment of the invention is a method of producing a DNA molecule comprising a DNA portion containing a protox promoter sequence comprising

- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for a protox protein from a plant of at least 10 nucleotides length:
- (b) probing for other protox coding sequences or protox promoter sequences in populations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating and multiplying a DNA molecule comprising a DNA portion containing a protox promoter sequence.

A further embodiment of the invention is a method of isolating a DNA molecule comprising a DNA portion containing a protox promoter sequence from any plant protox gene comprising

- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for a protox protein or the protox promoter sequence from a plant of at least 10 nucleotides length;
- (b) probing for other protox coding sequences or protox promoter sequences in populations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating a DNA molecule comprising a DNA portion containing a protox promoter sequence.

The invention further embodies the use of a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA of at least 10 nucleotides length in a polymerase chain reaction (PCR), wherein the said probe can either be obtained from the coding region or the promoter region of the protox gene.

The invention further embodies the use of a nucleotide probe capable of specifically hybridizing to a plant protox gene or to map the location of the protox gene(s) in the genome of a chosen plant using standard techniques based on the selective hybridization of the probe to genomic protox sequences.

The invention embodies the use of a protox coding sequence that shares sufficient homology to hybridize to the protox coding sequence associated with the promoter of interest as a probe. Preferred is the use of a protox coding sequence wherein the coding sequence used as a probe is from the same plant species as the protox promoter of interest and is the coding sequence naturally associated with the promoter.

The plant protox promoter of the present invention includes the *Arabidopsis* protox-1 promoter sequence set forth in SEQ ID NO:13, the *Zea mays* (maize) protox-1 promoter sequence set forth in SEQ ID NO:14, the sugar beet protox-1 promoter sequence set forth in SEQ ID NO:26 as well as corresponding protox-1 promoter sequences available from other plant species as indicated above. The present invention also includes functional fragments of these DNA sequences that retain the ability to regulate expression of an operably linked coding sequence in the same manner as the exemplified protox promoter sequence. Such functional fragments may be identified through deletion analyses or other standard techniques used in the art to identify protox promoter activity (*see, e.g.* pages 546-549 of "Genes IV", ed. by Lewin, Oxford Univ. Press (1990)). The present invention also includes

DNA sequences having substantial sequence homology with the protox promoters available from plant genes that confer an equivalent level and pattern of expression upon an operably linked sequence. Such promoter sequences may be obtained through modification of the protox promoters isolated from plant genes and are considered functionally equivalent derivatives of the plant protox promoters.

As illustrated in the examples below, the DNA sequences, vectors and transgenic plants of the present invention comprise a promoter sequence derived from a plant protox gene. The protox promoter DNA sequences are preferably linked operably to a coding DNA sequence, for example a DNA sequence that is transcribed into a useful RNA transcript such as an antisense transcript, or a coding sequence that is ultimately expressed in the production of a useful protein product.

In a preferred embodiment, the protox promoter is used to direct the expression of a modified herbicide target enzyme that is resistant to herbicides at levels that inhibit the corresponding unmodified version of the enzyme. The invention thus relates to the use of a protox promoter to express herbicide resistant forms of herbicide target proteins in a plant to confer tolerance to the herbicide. Such modified herbicide-resistant enzymes include herbicide-resistant forms of imidazoleglycerol phosphate dehyratase (IGPD; see WO 9426909 published Nov. 24, 1994), EPSP synthase (see U.S. Pat. Nos. 4,535,060; 4,769,061; 4,940,835 and EP 550,633), glutamine synthetase (GS; see U.S. Patent No. 4,975,374), acetyl coenzyme A carboxylase(ACCase; see U.S. Patent No. 5,162,602), and acetolactate synthase (see U.S. Patent Nos. 4,761,373; 5,304,732; 5,331,107; 5,013,659; 5,141,870; and 5,378,824). In a most preferred embodiment, the protox promoter is used to direct the expression of a modified protox enzyme that is resistant to protox inhibitors as illustrated in Examples 2-3 (see also International application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659 whose relevant parts are herein incorporated by reference; see also co-pending application entitled " DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof" filed on the same day as the instant application).

The invention relates to a chimeric gene that comprises an expression cassette comprising a plant protox promoter operably linked to a heterologous DNA coding sequence. Preferred is a chimeric gene wherein said plant protox promoter is from a protox-1 gene or protox-2 gene. Particularly preferred is a chimeric gene wherein said plant protox promoter is

from a protox-1 gene. Particularly preferred is a chimeric gene wherein said plant protox promoter is from a protox-2 gene.

Preferred is a chimeric gene wherein said plant protox promoter is from a plant selected from the group consisting of *Arabidopsis*, sugar cane, soybean, barley, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf and forage grasses, millet and rice. More preferred is a chimeric gene wherein said plant protox promoter is from a plant selected from the group consisting of *Arabidopsis*, soybean, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf grass and rice. Particularly preferred is a chimeric gene wherein said plant protox promoter is from a plant selected from the group consisting of *Arabidopsis*, maize and sugar beet. More preferred is a chimeric gene wherein said plant protox promoter is from a plant selected from the group consisting of *Arabidopsis* and maize. Most preferred is a chimeric gene wherein said plant protox promoter has the sequence set forth in SEQ ID NO:13. Most preferred is a chimeric gene wherein said plant protox promoter has the sequence set forth in SEQ ID NO:14. Most preferred is a chimeric gene wherein said plant protox promoter has the sequence set forth in SEQ ID NO:26. Preferred is a chimeric gene wherein said plant protox promoter is at least 500 nucleotides, more preferably at least 300 nucleotides in length.

Preferred is a chimeric gene, wherein the DNA molecule encodes a protein from an Arabidopsis species having protox-1 activity or protox-2 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from maize having protox-1 activity or protox-2 activity, preferably wherein said protein comprises the amino acid sequence set forth in set forth in SEQ ID NO:6 or SEQ ID NO:8. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from wheat having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:10. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from soybean having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:12. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from cotton having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:16. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from sugar beet having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:18. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from rape having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:20. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from rice having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:22. Also preferred is a chimeric gene, wherein the DNA molecule encodes a protein from sorghum having protox-1 activity, preferably wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:24.

The invention further relates to a chimeric gene that comprises an expression cassette comprising a plant protox promoter operably linked to the DNA molecule encoding a protein from a plant, that is resistant to herbicides at levels that inhibit the corresponding unmodified version of the enzyme.

Preferred is a chimeric gene, wherein said heterologous coding sequence encodes a modified, herbicide-resistant form of a plant enzyme. Especially preferred is a chimeric gene wherein said plant enzyme is selected from the group consisting of imidazoleglycerol phosphate dehyratase (IGPD), 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glutamine synthetase (GS), acetyl coenzyme A carboxylase, acetolactate synthase, histidinol dehydrogenase and protoporphyrinogen oxidase (protox). More preferred is a chimeric gene wherein said plant enzyme is selected from the group consisting of imidazoleglycerol phosphate dehyratase (IGPD), 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glutamine synthetase (GS), acetyl coenzyme A carboxylase, acetolactate synthase and protoporphyrinogen oxidase (protox).

Particularly preferred is a chimeric gene wherein said plant enzyme is a eukaryotic protox. More preferred is a chimeric gene wherein said plant enzyme is a eukaryotic protox having a amino acid substitution, said amino acid substitution having the property of conferring resistance to a protox inhibitor. Most preferred is a chimeric gene wherein said plant enzyme is a eukaryotic protox according to the copending International application No.... entitled "DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof", having the property of conferring resistance to a protox inhibitor.

Preferred is a chimeric gene, wherein the DNA molecule encodes a protein from a plant that is selected from the group consisting of which is selected from the group consisting of *Arabidopsis*, sugar cane, soybean, barley, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf and forage grasses, millet, forage and rice.

More preferred is a chimeric gene, wherein the DNA molecule encodes a protein from a plant that is selected from the group consisting of *Arabidopsis*, soybean, cotton, sugar beet, oilseed rape, maize, wheat, sorghum. Particularly preferred is a chimeric gene, wherein the DNA molecule a protein from a plant that is selected from the group consisting of *Arabidopsis*, wheat, soybean and maize. Most preferred is a chimeric gene, wherein the DNA molecule encodes a protein from a plant that is selected from the group consisting of soybean and wheat.

The invention further relates to the use of chimeric gene according to the invention to express a herbicide resistant plant protox protein that is resistant to inhibitors of unmodified plant protox protein. The invention relates further to the stable integration of said chimeric gene into a host genome. The invention relates to a recombinant DNA molecule comprising a plant protoporphyrinogen oxidase (protox) promoter or a functionally equivalent derivative thereof. The invention further relates to a recombinant DNA vector comprising said recombinant DNA molecule.

A further object of the invention is a recombinant vector comprising the said chimeric gene wherein said vector is capable of being stably transformed into a plant, plant seeds, plant tissue or plant cell. The plant and progeny thereof, plant seeds, plant tissue or plant cell stably transformed with the vector is capable of expressing the DNA molecule encoding a desired protein, which may be from a non-plant or plant source, preferably from a plant. Preferred is a recombinant vector, wherein the plant and progeny thereof, plant seeds, plant tissue or plant cell stably transformed with the said vector is capable of expressing the DNA molecule encoding a desired protein, which may be from a non-plant or plant source, preferably from a plant that is resistant to herbicides at levels that inhibit the corresponding unmodified version of the enzyme.

The present invention is further directed to transgenic plant tissue, including plants, and the descendants thereof, seeds, and cultured tissue, stably transformed with at least one chimeric gene according to the invention. Preferred is transgenic plant tissue, including plants, seeds, and cultured tissue, stably transformed with at least one chimeric gene that comprises an expression cassette comprising a plant protox promoter operably linked to a DNA coding sequence capable of expressing a protein, which may be from a non-plant or plant source, preferably from a plant, which is resistant to herbicides at levels that inhibit the corresponding unmodified version of the enzyme in the plant tissue.

Also encompassed by the present invention is a host cell stably transformed with the vector according to the invention, wherein said host cell is capable of expressing said DNA molecule. Preferred is a host cell selected from the group consisting of a plant cell, a bacterial cell, a yeast cell, and an insect cell.

The present invention is further directed to plants and the progeny thereof, plant tissue and plant seeds tolerant to herbicides that inhibit the naturally occurring protox activity in these plants, wherein the tolerance is conferred by a gene expressing a modified inhibitor-resistant protox enzyme as taught herein. Representative plants include any plants to which these herbicides may be applied for their normally intended purpose. Preferred are agronomically important crops, i.e., angiosperms and gymnosperms such as *Arabidopsis*, soybean, sugar cane, barley, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf and forage grasses ,millet and rice and the like. More preferred are agronomically important crops, i.e., angiosperms and gymnosperms such as *Arabidopsis*, cotton, soybean, rape, sugar beet, tobacco, maize, rice, wheat, oats, rye, sorghum, turf grass. Particularly preferred are agronomically important crops, i.e., angiosperms and gymnosperms such as *Arabidopsis*, soybean, cotton, sugar beet, oilseed rape, maize, wheat, sorghum, and rice.

The transgenic plants of the present invention may be transformed by any method of transformation known in the art. These methods include, for instance, transformation by direct infection or co-cultivation of plants, plant tissue or cells with Agrobacterium tumefaciens; Horsch et al., Science, 225: 1229 (1985); Marton, "Cell Culture and Somatic Cell Genetic of Plants", vol. 1, pp. 514-521 (1984); direct gene transfer into protoplasts; Paszkowski et al., EMBO J. 12: 2717 (1984); Loerz et al., Mol. Gen. & Genet. 1199:178 (1985); Fromm et al., Nature 319:719 (1986); microprojectile bombardment, Klein et al., Bio/Technology, 6:559-563 (1988); injection into protoplasts cultured cells and tissues, Reich et al., Bio/Technology, 4:1001-1004 (1986); or injection into meristematic tissues of seedlings and plants as described by De La Pena et al., Nature, 325:274-276 (1987); Hooykaas-Van Slogteren et al., Nature, 311:763-764 (1984); Grimsley et al., Bio/Technology, 6:185 (1988); and Grimsley et al., Nature, 325:177 (1988).

The genetic properties engineered into the transgenic seeds and plants described above are passed on by sexual reproduction or vegetative growth and can thus be maintained and propagated in progeny plants. Generally said maintenance and propagation

make use of known agricultural methods developed to fit specific purposes such as tilling, sowing or harvesting. Specialized processes such as hydroponics or greenhouse technologies can also be applied. As the growing crop is vulnerable to attack and damages caused by insects or infections as well as to competition by weed plants, measures are undertaken to control weeds, plant diseases, insects, nematodes, and other adverse conditions to improve yield. These include mechanical measures such a tillage of the soil or removal of weeds and infected plants, as well as the application of agrochemicals such as herbicides, fungicides, gametocides, nematicides, growth regulants, ripening agents and insecticides.

Use of the advantageous genetic properties of the transgenic plants and seeds according to the invention can further be made in plant breeding that aims at the development of plants with improved properties such as tolerance of pests, herbicides, or stress, improved nutritional value, increased yield, or improved structure causing less loss from lodging or shattering. The various breeding steps are characterized by well-defined human intervention such as selecting the lines to be crossed, directing pollination of the parental lines, or selecting appropriate progeny plants. Depending on the desired properties different breeding measures are taken. The relevant techniques are well known in the art and include but are not limited to hybridization, inbreeding, backcross breeding, multiline breeding, variety blend, interspecific hybridization, aneuploid techniques, etc. Hybridization techniques also include the sterilization of plants to yield male or female sterile plants by mechanical, chemical or biochemical means. Cross pollination of a male sterile plant with pollen of a different line assures that the genome of the male sterile but female fertile plant will uniformly obtain properties of both parental lines. Thus, the transgenic seeds and plants according to the invention can be used for the breeding of improved plant lines that for example increase the effectiveness of conventional methods such as herbicide or pesticide treatment or allow to dispense with said methods due to their modified genetic properties. Alternatively new crops with improved stress tolerance can be obtained that, due to their optimized genetic "equipment", yield harvested product of better quality than products that were not able to tolerate comparable adverse developmental conditions.

In seeds production germination quality and uniformity of seeds are essential product characteristics, whereas germination quality and uniformity of seeds harvested and sold by the farmer is not important. As it is difficult to keep a crop free from other crop and weed seeds, to control seedborne diseases, and to produce seed with good germination, fairly

extensive and well-defined seed production practices have been developed by seed producers, who are experienced in the art of growing, conditioning and marketing of pure seed. Thus, it is common practice for the farmer to buy certified seed meeting specific quality standards instead of using seed harvested from his own crop. Propagation material to be used as seeds is customarily treated with a protectant coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures thereof. Customarily used protectant coatings comprise compounds such as captan, carboxin, thiram (TMTD®), methalaxyl (Apron®), and pirimiphos-methyl (Actellic®). If desired these compounds are formulated together with further carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation to provide protection against damage caused by bacterial, fungal or animal pests. The protectant coatings may be applied by impregnating propagation material with a liquid formulation or by coating with a combined wet or dry formulation. Other methods of application are also possible such as treatment directed at the buds or the fruit.

It is a further aspect of the present invention to provide new agricultural methods such as the methods exemplified above, which are characterized by the use of transgenic plants, transgenic plant material, or transgenic seed according to the present invention. The invention is directed to an agricultural method, wherein a transgenic plant or the progeny thereof is used comprising a chimeric gene according to the invention in an amount sufficient to express herbicide resistant forms of herbicide target proteins in a plant to confer tolerance to the herbicide.

To breed progeny from plants transformed according to the method of the present invention, a method such as that which follows may be used: maize plants produced as described in the examples set forth below are grown in pots in a greenhouse or in soil, as is known in the art, and permitted to flower. Pollen is obtained from the mature tassel and used to pollinate the ears of the same plant, sibling plants, or any desirable maize plant. Similarly, the ear developing on the transformed plant may be pollinated by pollen obtained from the same plant, sibling plants, or any desirable maize plant. Transformed progeny obtained by this method may be distinguished from non-transformed progeny by the presence of the introduced gene(s) and/or accompanying DNA (genotype), or the phenotype conferred. The transformed progeny may similarly be selfed or crossed to other plants, as is normally done with any plant carrying a desirable trait. Similarly, tobacco or other transformed plants produced by this method may be selfed or crossed as is known in

the art in order to produce progeny with desired characteristics. Similarly, other transgenic organisms produced by a combination of the methods known in the art and this invention may be bred as is known in the art in order to produce progeny with desired characteristics.

The invention is illustrated in more detail by the following examples, without implying any restriction to what is described therein.

#### **EXAMPLES**

EXAMPLE 1: Isolation of the Arabidopsis thaliana Protox-1 promoter sequence

A Lambda Zap II genomic DNA library prepared from *Arabidopsis thaliana* (Columbia, whole plant) was purchased from Stratagene. Approximately 125,000 phage were plated at a density of 25,000 pfu (plaque forming units) per 15 cm Petri dish and duplicate lifts were made onto Colony/Plaque Screen membranes (NEN Dupont). The plaque lifts were probed with the Arabidopsis Protox-1 cDNA (SEQ ID NO:1 labeled with 32P-dCTP by the random priming method (Life Technologies). Hybridization and wash conditions were at 65°C as described in Church and Gilbert, Proc. Natl. Acad. Sci. USA 81: 1991-1995 (1984). Positively hybridizing plaques were purified and in vivo excised into pBluescript plasmids. Sequence from the genomic DNA inserts was determined by the chain termination method using dideoxy terminators labeled with fluorescent dyes (Applied Biosystems, Inc.). One clone, AraPT1Pro, was determined to contain 580 bp of Arabidopsis sequence upstream from the initiating methionine (ATG) of the Protox-1 protein coding sequence. This clone also contains coding sequence and introns that extend to bp 1241 of the Protox-1 cDNA sequence. The 580 bp 5' noncoding fragment is the putative Arabidopsis Protox-1 promoter, and the sequence is set forth in SEQ ID NO:13.

AraPT1Pro was deposited December 14, 1995, as pWDC-11 (NRRL #B-21515).

EXAMPLE 2: Construction of plant transformation vectors expressing altered Protox-1 genes behind the native Arabidopsis Protox-1 promoter

A full-length cDNA of the appropriate altered Arabidopsis Protox-1 cDNA is isolated as an EcoRI-Xhol partial digest fragment and cloned into the plant expression vector pCGN1761ENX (see Example 9 of International application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659). This plasmid is digested with Ncol and BamHI to produce a fragment comprised of the complete Protox-1 cDNA plus a transcription terminator from the 3' untranslated sequence of the tml gene of Agrobacterium tumefaciens. The AraPT1Pro plasmid described above is digested with Ncol and BamHI to produce a fragment comprised of pBluescript and the 580 bp putative Arabidopsis Protox-1 promoter. Ligation of these two fragments produces a fusion of the altered protox cDNA to the native protox promoter. The expression cassette containing the Protox-1 promoter/Protox-1

cDNA/tml terminator fusion is excised by digestion with Kpnl and cloned into the binary vector pClB200. The binary plasmid is transformed by electroporation into Agrobacterium and then into Arabidopsis using the vacuum infiltration method (Bechtold et al. C.R. Acad. Sci. Paris 316: 1194-1199 (1993)). Transformants expressing altered protox genes are selected on kanamycin or on various concentrations of protox inhibiting herbicide.

EXAMPLE 3: Production of herbicide tolerant plants by expression of a native Protox-1 promoter/altered Protox-1 fusion

Using the procedure described above, an Arabidopsis Protox-1 cDNA containing a TAC to ATG (Tyrosine to Methionine) change at nucleotides 1306-1308 in the Protox-1 sequence (SEQ ID NO:1) was fused to the native Protox-1 promoter fragment and transformed into Arabidopsis thaliana. This altered Protox-1 enzyme (AraC-2Met) has been shown to be >10-fold more tolerant to various protox-inhibiting herbicides than the naturally occurring enzyme when tested in a bacterial expression system (see copending International application entitled " DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof" (docket number PH/5-20757/P1/CGC1847) filed on the same day as the instant application). Seed from the vacuum infiltrated plants was collected and plated on a range (10.0nM-1.0uM) of a protox inhibitory aryluracil herbicide of formula Multiple experiments with wild type Arabidopsis have shown that a 10.0nM XVII. concentration of this compound is sufficient to prevent normal seedling germination. Transgenic seeds expressing the AraC-2Met altered enzyme fused to the native Protox-1 promoter produced normal Arabidopsis seedlings at herbicide concentrations up to 500nM. indicating at least 50-fold higher herbicide tolerance when compared to wild-type Arabidopsis. This promoter/altered protox enzyme fusion therefore functions as an effective selectable marker for plant transformation. Several of the plants that germinated on 100.0nM of protox-inhibiting herbicide were transplanted to soil, grown 2-3 weeks, and tested in a spray assay with various concentrations of the protox-inhibiting herbicide. When compared to empty vector control transformants, the AraPT1Pro/AraC-2Met transgenics were >10-fold more tolerant to the herbicide spray.

## EXAMPLE 4: Isolation of a Maize Protox-1 promoter sequence.

A Zea Mays (Missouri 17 inbred, etiolated seedlings) genomic DNA library in the Lambda FIX II vector was purchased from Stratagene. Approximately 250,000 pfu of the library was plated at a density of 50,000 phage per 15 cm plate and duplicate lifts were made onto Colony/Plaque screen membranes (NEN Dupont). The plaque lifts were probed with the maize Protox-1 cDNA (SEQ ID NO:5) labeled with 32P-dCTP by the random priming method (Life Technologies). Hybridization and wash conditions were at 65°C as described in Church and Gilbert, Proc. Natl. Acad. Sci. USA 81: 1991-1995 (1984). Lambda phage DNA was isolated from three positively hybridizing phage using the Wizard Lambda Preps DNA Purification System (Promega). Analysis by restriction digest, hybridization patterns, and DNA sequence analysis identified a lambda clone containing approximately 3.5 kb of maize genomic DNA located 5' to the maize Protox-1 coding sequence previously isolated as a cDNA clone. This fragment is contemplated to include the maize Protox-1 promoter. The sequence of this fragment is set forth in SEQ ID NO:14. From nucleotide 1 to 3532, this sequence is comprised of 5' noncoding sequence. From nucleotide 3533 to 3848, this sequence encodes the 5' end of the maize Protox-1 protein.

A plasmid containing the sequence of SEQ ID NO:14 fused to the remainder of the maize Protox-1 coding sequence was deposited March 19, 1996 as pWDC-14 (NRRL #B-21546).

## **EXAMPLE 5: Construction of Plant Transformation Vectors**

Numerous transformation vectors are available for plant transformation, and the promoters and chimeric genes of this invention can be used in conjunction with any such vectors. The selection of vector for use will depend upon the preferred transformation technique and the target species for transformation. For certain target species, different antibiotic or herbicide selection markers may be preferred. Selection markers used routinely in transformation include the *nptll* gene, which confers resistance to kanamycin and related antibiotics (Messing & Vierra, *Gene 19:* 259-268 (1982); Bevan *et al.*, *Nature 304:*184-187 (1983)), the *bar* gene, which confers resistance to the herbicide phosphinothricin (White *et al.*, *Nucl Acids Res 18:* 1062 (1990), Spencer *et al.* Theor Appl Genet 79: 625-631(1990)), the *hph* gene, which confers resistance to the antibiotic hygromycin (Blochinger &

Diggelmann, Mol Cell Biol 4: 2929-2931), and the dhfr gene, which confers resistance to methotrexate (Bourouis et al., EMBO J. 2(7): 1099-1104 (1983)).

## I. Construction of Vectors Suitable for Agrobacterium Transformation

Many vectors are available for transformation using *Agrobacterium tumefaciens*. These typically carry at least one T-DNA border sequence and include vectors such as pBIN19 (Bevan, *Nucl. Acids Res.* (1984)) and pXYZ. Below the construction of two typical vectors is described.

Construction of pCIB200 and pCIB2001: The binary vectors pCIB200 and pCIB2001 are used for the construction of recombinant vectors for use with Agrobacterium and was constructed in the following manner. pTJS75kan was created by Narl digestion of pTJS75 (Schmidhauser & Helinski, J Bacteriol. 164: 446-455 (1985)) allowing excision of the tetracycline-resistance gene, followed by insertion of an Accl fragment from pUC4K carrying an NPTII (Messing & Vierra, Gene 19: 259-268 (1982); Bevan et al., Nature 304: 184-187 (1983); McBride et al., Plant Molecular Biology 14: 266-276 (1990)). Xhol linkers were ligated to the EcoRV fragment of pCIB7, which contains the left and right T-DNA borders, a plant selectable nos/nptll chimeric gene and the pUC polylinker (Rothstein et al., Gene 53: 153-161 (1987)), and the Xhol-digested fragment was cloned into Sall-digested pTJS75kan to create pCIB200 (see also EP 0 332 104, example 19 [1338]). pCIB200 contains the following unique polylinker restriction sites: EcoRI, Sstl, KpnI, Bglll, Xbal, and Sall. pCIB2001 is a derivative of pCIB200, which was created by the insertion into the polylinker of additional restriction sites. Unique restriction sites in the polylinker of pCIB2001 are EcoRl, Sstl, Kpnl, Bglll, Xbal, Sall, Mlul, Bcll, Avrll, Apal, Hpal, and Stul. pClB2001, in addition to containing these unique restriction sites also has plant and bacterial kanamycin selection, left and right T-DNA borders for Agrobacterium-mediated transformation, the RK2derived trfA function for mobilization between E. coli and other hosts, and the OriT and OriV functions also from RK2. The pCIB2001 polylinker is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

Construction of pClB10 and Hygromycin Selection Derivatives thereof: The binary vector pClB10 contains a gene encoding kanamycin resistance for selection in plants, T-DNA right and left border sequences and incorporates sequences from the wide host-range plasmid pRK252 allowing it to replicate in both *E. coli* and *Agrobacterium*. Its construction is

described by Rothstein *et al.*, *Gene 53*: 153-161 (1987). Various derivatives of pClB10 have been constructed that incorporate the gene for hygromycin B phosphotransferase described by Gritz *et al.*, *Gene 25*: 179-188 (1983)). These derivatives enable selection of transgenic plant cells on hygromycin only (pClB743), or hygromycin and kanamycin (pClB715, pClB717).

## II. Construction of Vectors Suitable for non-Agrobacterium Transformation.

Transformation without the use of Agrobacterium tumefaciens circumvents the requirement for T-DNA sequences in the chosen transformation vector and consequently vectors lacking these sequences can be utilized in addition to vectors such as the ones described above that contain T-DNA sequences. Transformation techniques that do not rely on Agrobacterium include transformation via particle bombardment, protoplast uptake (e.g. PEG and electroporation) and microinjection. The choice of vector depends largely on the preferred selection for the species being transformed. Below, the construction of some typical vectors is described.

Construction of pCIB3064: pCIB3064 is a pUC-derived vector suitable for direct gene transfer techniques in combination with selection by the herbicide basta (or phosphinothricin). The plasmid pClB246 comprises the CaMV 35S promoter in operational fusion to the E. coli GUS gene and the CaMV 35S transcriptional terminator and is described in the PCT published application WO 93/07278. The 35S promoter of this vector contains two ATG sequences 5' of the start site. These sites were mutated using standard PCR techniques in such a way as to remove the ATG's and generate the restriction sites Sspl and Pvull. The new restriction sites were 96 and 37 bp away from the unique Sall site and 101 and 42 bp away from the actual start site. The resultant derivative of pCIB246 was designated pCIB3025. The GUS gene was then excised from pCIB3025 by digestion with Sall and Sacl, the termini rendered blunt and religated to generate plasmid pCIB3060. The plasmid pJIT82 was obtained from the John Innes Centre, Norwich and the 400 bp Small fragment containing the bar gene from Streptomyces viridochromogenes was excised and inserted into the Hpal site of pCIB3060 (Thompson et al. EMBO J 6: 2519-2523 (1987)). This generated pCIB3064, which comprises the bar gene under the control of the CaMV 35S promoter and terminator for herbicide selection, a gene for ampicillin resistance (for selection in E. coli) and a polylinker with the unique sites Sphl, Pstl, Hindlll, and BamHl. This vector

is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

Construction of pSOG19 and pSOG35: pSOG35 is a transformation vector that utilizes the *E. coli* gene dihydrofolate reductase (DHFR) as a selectable marker conferring resistance to methotrexate. PCR was used to amplify the 35S promoter (~800 bp), intron 6 from the maize Adh1 gene (~550 bp) and 18 bp of the GUS untranslated leader sequence from pSOG10. A 250 bp fragment encoding the *E. coli* dihydrofolate reductase type II gene was also amplified by PCR and these two PCR fragments were assembled with a *Sacl-Pstl* fragment from pBI221 (Clontech), which comprised the pUC19 vector backbone and the nopaline synthase terminator. Assembly of these fragments generated pSOG19, which contains the 35S promoter in fusion with the intron 6 sequence, the GUS leader, the DHFR gene and the nopaline synthase terminator. Replacement of the GUS leader in pSOG19 with the leader sequence from Maize Chlorotic Mottle Virus (MCMV) generated the vector pSOG35. pSOG19 and pSOG35 carry the pUC gene for ampicillin resistance and have *HindIII*, *SphI*, *PstI* and *EcoRI* sites available for the cloning of foreign sequences such as chimeric gene sequences containing a plant protox promoter.

## EXAMPLE 6: Construction of Chimeric Genes/Plant Expression Cassettes

Coding sequences intended for expression in transgenic plants under the control of a plant protox promoter may be assembled in expression cassettes behind a suitable protox promoter and upstream of a suitable transcription terminator. The resulting chimeric genes can then be easily transferred to the plant transformation vectors described above in Example 5.

#### I. Protox Promoter Selection

In accordance with the present invention, the chimeric gene will contain a plant protox promoter. The selection of the specific protox promoter used in the chimeric gene is primarily up to the individual researcher, although generally it will be preferable to use a protox promoter from a plant species closely related to, or most preferably identical, to the species intended to contain the resulting chimeric gene. For example, if the chimeric gene is intended to be contained in a maize plant it would be preferable to use a protox promoter from a monocotyledonous plant and most preferable to use a maize protox promoter.

### II. Transcriptional Terminators

A variety of transcriptional terminators are available for use in expression cassettes. These are responsible for the termination of transcription beyond the transgene and its correct polyadenylation. Appropriate transcriptional terminators are those that are known to function in plants and include the CaMV 35S terminator, the *tml* terminator, the nopaline synthase terminator, the pea *rbcS* E9 terminator, as well as terminators naturally associated with the plant protox gene (i.e. "protox terminators"). These can be used in both monocotyledons and dicotyledons.

## III. Sequences for the Enhancement or Regulation of Expression

Numerous sequences have been found to enhance gene expression from within the transcriptional unit and these sequences can be used in conjunction with the genes of this invention to increase their expression in transgenic plants.

Various intron sequences have been shown to enhance expression, particularly in monocotyledonous cells. For example, the introns of the maize *Adh1* gene have been found to significantly enhance the expression of the wild-type gene under its cognate promoter when introduced into maize cells. Intron 1 was found to be particularly effective and enhanced expression in fusion constructs with the chloramphenicol acetyltransferase gene (Callis *et al.*, Genes Develop. 1: 1183-1200 (1987)). In the same experimental system, the intron from the maize *bronze1* gene had a similar effect in enhancing expression (Callis *et al.*, *supra*). Intron sequences have been routinely incorporated into plant transformation vectors, typically within the non-translated leader.

A number of non-translated leader sequences derived from viruses are also known to enhance expression, and these are particularly effective in dicotyledonous cells. Specifically, leader sequences from Tobacco Mosaic Virus (TMV, the "W-sequence"), Maize Chlorotic Mottle Virus (MCMV), and Alfalfa Mosaic Virus (AMV) have been shown to be effective in enhancing expression (e.g. Gallie et al. Nucl. Acids Res. 15: 8693-8711 (1987); Skuzeski et al. Plant Molec. Biol. 15: 65-79 (1990))

## IV. Targeting of the Gene Product Within the Cell

Various mechanisms for targeting gene products are known to exist in plants and the sequences controlling the functioning of these mechanisms have been characterized in some detail. For example, the targeting of gene products to the chloroplast is controlled by a signal sequence found at the amino terminal end of various proteins and that is cleaved during chloroplast import yielding the mature protein (e.g. Comai et al. J. Biol. Chem. 263: 15104-15109 (1988)). These signal sequences can be fused to heterologous gene products to effect the import of heterologous products into the chloroplast (van den Broeck et al, Nature 313: 358-363 (1985)). DNA encoding for appropriate signal sequences can be isolated from the 5' end of the cDNAs encoding the RUBISCO protein, the CAB protein, the EPSP synthase enzyme, the GS2 protein and many other proteins that are known to be chloroplast localized.

Other gene products are localized to other organelles such as the mitochondrion and the peroxisome (e.g. Unger et al. Plant Molec. Biol. 13: 411-418 (1989)). The cDNAs encoding these products can also be manipulated to effect the targeting of heterologous gene products to these organelles. Examples of such sequences are the nuclear-encoded ATPases and specific aspartate amino transferase isoforms for mitochondria. Targeting to cellular protein bodies has been described by Rogers et al., Proc. Natl. Acad. Sci. USA 82: 6512-6516 (1985)).

In addition, sequences have been characterized that cause the targeting of gene products to other cell compartments. Amino terminal sequences are responsible for targeting to the ER, the apoplast, and extracellular secretion from aleurone cells (Koehler & Ho, *Plant Cell 2:* 769-783 (1990)). Additionally, amino terminal sequences in conjunction with carboxy terminal sequences are responsible for vacuolar targeting of gene products (Shinshi *et al.*, *Plant Molec. Biol. 14*: 357-368 (1990)).

By the fusion of the appropriate targeting sequences described above to transgene sequences of interest it is possible to direct the transgene product to any organelle or cell compartment. For chloroplast targeting, for example, the chloroplast signal sequence from the RUBISCO gene, the CAB gene, the EPSP synthase gene, or the GS2 gene is fused in frame to the amino terminal ATG of the transgene. The signal sequence selected should include the known cleavage site and the fusion constructed should take into account any amino acids after the cleavage site that are required for cleavage. In some cases this

requirement may be fulfilled by the addition of a small number of amino acids between the cleavage site and the transgene ATG or alternatively replacement of some amino acids within the transgene sequence. Fusions constructed for chloroplast import can be tested for efficacy of chloroplast uptake by *in vitro* translation of *in vitro* transcribed constructions followed by *in vitro* chloroplast uptake using techniques described by (Bartlett *et al.* In: Edelmann *et al.* (Eds.) Methods in Chloroplast Molecular Biology, Elsevier. pp. 1081-1091 (1982); Wasmann *et al. Mol. Gen. Genet. 205*: 446-453 (1986)). These construction techniques are well known in the art and are equally applicable to mitochondria and peroxisomes. The choice of targeting that may be required for expression of the transgenes will depend on the cellular localization of the precursor required as the starting point for a given pathway. This will usually be cytosolic or chloroplastic, although it may is some cases be mitochondrial or peroxisomal. The products of transgene expression will not normally require targeting to the ER, the apoplast or the vacuole.

The above described mechanisms for cellular targeting can be utilized in conjunction with plant protox promoters so as to effect a specific cell targeting goal under the transcriptional regulation of a promoter that has an expression pattern different to that of the promoter from which the targeting signal derives.

## **EXAMPLE 7: Transformation of Dicotyledons**

Transformation techniques for dicotyledons are well known in the art and include Agrobacterium-based techniques and techniques that do not require Agrobacterium. Non-Agrobacterium techniques involve the uptake of exogenous genetic material directly by protoplasts or cells. This can be accomplished by PEG or electroporation mediated uptake, particle bombardment-mediated delivery, or microinjection. Examples of these techniques are described by Paszkowski et al., EMBO J 3: 2717-2722 (1984), Potrykus et al., Mol. Gen. Genet. 199: 169-177 (1985), Reich et al., Biotechnology 4: 1001-1004 (1986), and Klein et al., Nature 327: 70-73 (1987). In each case the transformed cells are regenerated to whole plants using standard techniques known in the art.

Agrobacterium-mediated transformation is a preferred technique for transformation of dicotyledons because of its high efficiency of transformation and its broad utility with many different species. The many crop species that are routinely transformable by Agrobacterium include tobacco, tomato, sunflower, cotton, oilseed rape, potato, soybean, alfalfa and poplar

(EP 0 317 511 (cotton), EP 0 249 432 (tomato, to Calgene), WO 87/07299 (*Brassica*, to Calgene), US 4,795,855 (poplar)).

Transformation of the target plant species by recombinant *Agrobacterium* usually involves co-cultivation of the *Agrobacterium* with explants from the plant and follows protocols well known in the art. Transformed tissue is regenerated on selectable medium carrying the antibiotic or herbicide resistance marker present between the binary plasmid T-DNA borders.

#### **EXAMPLE 8: Transformation of Monocotyledons**

Transformation of most monocotyledon species has now also become routine. Preferred techniques include direct gene transfer into protoplasts using PEG or electroporation techniques, and particle bombardment into callus tissue. Transformations can be undertaken with a single DNA species or multiple DNA species (i.e. cotransformation) and both these techniques are suitable for use with this invention. Cotransformation may have the advantage of avoiding complex vector construction and of generating transgenic plants with unlinked loci for the gene of interest and the selectable marker, enabling the removal of the selectable marker in subsequent generations, should this be regarded desirable. However, a disadvantage of the use of co-transformation is the less than 100% frequency with which separate DNA species are integrated into the genome (Schocher et al. Biotechnology 4: 1093-1096 (1986)).

Patent Applications EP 0 292 435 (to Ciba-Geigy), EP 0 392 225 (to Ciba-Geigy), WO 93/07278 (to Ciba-Geigy) and U.S. Patent No. 5,350,689 (to Ciba-Geigy) describe techniques for the preparation of callus and protoplasts from an élite inbred line of maize, transformation of protoplasts using PEG or electroporation, and the regeneration of maize plants from transformed protoplasts. Gordon-Kamm et al., Plant Cell 2: 603-618 (1990)) and Fromm et al., Biotechnology 8: 833-839 (1990)) have published techniques for transformation of A188-derived maize line using particle bombardment. Furthermore, application WO 93/07278 (to Ciba-Geigy) and Koziel et al., Biotechnology 11: 194-200 (1993)) describe techniques for the transformation of élite inbred lines of maize by particle bombardment. This technique utilizes immature maize embryos of 1.5-2.5 mm length excised from a maize ear 14-15 days after pollination and a PDS-1000He Biolistics device for bombardment.

Transformation of rice can also be undertaken by direct gene transfer techniques utilizing protoplasts or particle bombardment. Protoplast-mediated transformation has been described for *Japonica*-types and *Indica*-types (Zhang et al., Plant Cell Rep 7: 379-384 (1988); Shimamoto et al. Nature 338: 274-277 (1989); Datta et al. Biotechnology 8: 736-740 (1990)). Both types are also routinely transformable using particle bombardment (Christou et al. Biotechnology 9: 957-962 (1991)).

Patent Application EP 0 332 581 (to Ciba-Geigy) describes techniques for the generation, transformation and regeneration of Pooideae protoplasts. These techniques allow the transformation of Dactylis and wheat. Furthermore, wheat transformation was been described by Vasil et al., Biotechnology 10: 667-674 (1992)) using particle bombardment into cells of type C tong-term regenerable callus, and also by Vasil et al., Biotechnology 11: 1553-1558 (1993)) and Weeks et al., Plant Physiol. 102: 1077-1084 (1993) using particle bombardment of immature embryos and immature embryo-derived callus. A preferred technique for wheat transformation, however, involves the transformation of wheat by particle bombardment of immature embryos and includes either a high sucrose or a high maltose step prior to gene delivery. Prior to bombardment, any number of embryos (0.75-1 mm in length) are plated onto MS medium with 3% sucrose (Murashige & Skoog, Physiologia Plantarum 15: 473-497 (1962)) and 3 mg/l 2,4-D for induction of somatic embryos, which is allowed to proceed in the dark. On the chosen day of bombardment, embryos are removed from the induction medium and placed onto the osmoticum (i.e. induction medium with sucrose or maltose added at the desired concentration, typically 15%). The embryos are allowed to plasmolyze for 2-3 h and are then bombarded. Twenty embryos per target plate is typical, although not critical. An appropriate gene-carrying plasmid (such as pCIB3064 or pSG35) is precipitated onto micrometer size gold particles using standard procedures. Each plate of embryos is shot with the DuPont Biolistics, helium device using a burst pressure of ~1000 psi using a standard 80 mesh screen. After bombardment, the embryos are placed back into the dark to recover for about 24 h (still on osmoticum). After 24 hrs, the embryos are removed from the osmoticum and placed back onto induction medium where they stay for about a month before regeneration. Approximately one month later the embryo explants with developing embryogenic callus are transferred to regeneration medium (MS + 1 mg/liter NAA, 5 mg/liter GA), further containing the appropriate selection agent (10 mg/l basta in the case of pCIB3064 and 2 mg/l methotrexate in the case of pSOG35). After approximately one month, developed shoots

are transferred to larger sterile containers known as "GA7s," which contained half-strength MS, 2% sucrose, and the same concentration of selection agent. WO94/13822 describes methods for wheat transformation and is hereby incorporated by reference.

EXAMPLE 9: Construction of plant transformation vectors expressing altered Protox-1 genes behind the native maize Protox-1 promoter.

The 3848 bp maize genomic fragment (SEQ ID NO:14) is excised from the isolated lambda phage clone as a Sall-Kpnl partial digest product and ligated to a Kpnl-Notl fragment derived from an altered maize Protox-1 cDNA that contains an alanine to leucine change at amino acid 164 (SEQ ID NO:6) This creates a fusion of the native maize Protox-1 promoter to a full length cDNA that has been shown to confer herbicide tolerance in a bacterial system (see copending International application No.... entitled "DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof" (docket number PH/5-20757/P1/CGC1847), Examples 8-13). This fusion is cloned into a pUC18 derived vector containing the CaMV 35S terminator sequence to create a protox promoter/altered protox cDNA/terminator cassette. The plasmid containing this cassette is designated pWCo-1.

A second construct for maize transformation is created by engineering the first intron found in the coding sequence from the maize genomic clone back into the maize cDNA. The insertion is made using standard overlapping PCR fusion techniques. The intron (SEQ ID NO:25) is 93 bp long and is inserted between nucleotides 203 and 204 of SEQ ID NO:5, exactly as it appeared in natural context in the lambda clone described in Example 4. This intron-containing version of the expression cassette is designated pWCo-2.

EXAMPLE 10: Demonstration of maize Protox-1 promoter activity in transgenic maize plants.

Maize plants transformed with maize protox promoter/altered protox fusions were identified using PCR analysis with primers specific for the transgene. Total RNA was prepared from the PCR positive plants and reverse-transcribed using Superscript M-MLV (Life Technologies) under recommended conditions. Two microliters of the reverse transcription reaction was used in a PCR reaction designed to be specific for the altered protox sequence. While untransformed controls give no product in this reaction, approximately 85% of plants transformed with pWCo-1 gave a positive result, indicating the

presence of mRNA derived from the transgene. This demonstrates some level of activity for the maize protox promoter. The RNA's from the transgenic maize plants were also subjected to standard northern blot analysis using the radiolabeled maize protox cDNA fragment from SEQ ID NO:5 as a probe. Protox-1 mRNA levels significantly above those of untransformed controls were detected in some of the transgenic maize plants. This elevated mRNA level is presumed to be due to expression of altered protox-1 mRNA from the cloned maize protox promoter.

# EXAMPLE 11: Isolation of a Sugar Beet Protox-1 Promoter Sequence

A genomic sugar beet library was prepared by Stratagene in the Lambda Fix II vector. Approximately 300,000 pfu of the library was plated and probed with the sugar beet protox-1 cDNA sequence (SEQ ID NO:17) as described for maize in Example 4. Analysis by restriction digest, hybridization patterns and DNA sequence analysis identified a lambda clone containing approximately 7 kb of sugar beet genomic DNA located 5' to the sugar beet coding sequence previously isolated as a cDNA clone. A PstI-Sall fragment of 2606 bb was subcloned from the lambda clone into a pBluescript vector. This fragment contains 2068 bp of 5' noncoding sequence and includes the sugar beet protox-1 promoter sequence. It also includes the first 453 bp of the protox-1 coding sequence and the 85 bp first intron contained in the coding sequence. The sequence of this fragment is set forth in SEQ ID NO:26.

A plasmid containing the sequence of SEQ ID NO:26 was deposited December 6, 1996 as pWDC-20 (NRRL #B-21650).

Example 12: Construction of Plant Transformation Vectors Expressing Altered Sugar Beet Protox-1 Genes Behind the Native Sugar Beet Protox-1 Promoter

The sugar beet genomic fragment (SEQ ID NO:26) was excised from the genomic subclone described in Example 11 as a Sacl-BsrGI fragment that includes 2068 bp of 5' noncoding sequence and the first 300 bp of the sugar beet Protox-1 coding sequence. This fragment was ligated to a BsrGI-NotI fragment derived from an altered sugar beet Protox-1 cDNA that contained a tyrosine to methionine change at amino acid 449 (SEQ ID NO:18). This created a fusion of the native sugar beet Protox-1 promoter to a full length cDNA that had been shown to confer herbicide tolerance in a bacterial system (Co-pending application no.\_\_\_\_\_ (docket number PH/5-20757/P1/CGC1847)). This fusion was cloned into a

pUC18 derived vector containing the CaMV 35S terminator sequence to create a protox promoter/altered protox cDNA/terminator cassette. The plasmid containing this cassette was designated pWCo-3.

Example 13: Production of Herbicide Tolerant Plants by Expression of a Native Sugar Beet Protox-1 Promoter/Altered Sugar Beet Protox-1 Fusion

The expression cassette from pWCo-3 is transformed into sugar beet using any of the transformation methods applicable to dicot plants, including Agrobacterium, protoplast, and biolistic transformation techniques. Transgenic sugar beets expressing the altered protox-1 enzyme are identified by RNA-PCR and tested for tolerance to protox-inhibiting herbicides at concentrations that are lethal to untransformed sugar beets.

While the present invention has been described with reference to specific embodiments thereof, it will be appreciated that numerous variations, modifications, and embodiments are possible, and accordingly, all such variations, modifications and embodiments are to be regarded as being within the spirit and scope of the present invention.

## SEQUENCE LISTING

## (1) GENERAL INFORMATION:

- (i) APPLICANT: Johnson, Marie Volrath, Sandra Ward, Eric
- (ii) TITLE OF INVENTION: Promoters from Plant Protoporphyrinogen Oxidase Genes
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: Novartis Corporation
  - (B) STREET: 520 White Plains Road, P.O. Box 2005
  - (C) CITY: Tarrytown
  - (D) STATE: NY
  - (E) COUNTRY: USA
  - (F) ZIP: 10591-9005
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk
  - (B) COMPUTER: IBM PC compatible
  - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
  - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
  - (A) APPLICATION NUMBER:
  - (B) FILING DATE:
  - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 60/012,705
  - (B) FILING DATE: 28-FEB-1996
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 60/013,612
  - (B) FILING DATE: 28-FEB-1996
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 60/020,003
  - (B) FILING DATE: 21-JUN-1996

#### (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Meigs, J. Timothy
- (B) REGISTRATION NUMBER: 38,241
- (C) REFERENCE/DOCKET NUMBER: CGC 1846
- (ix) TELECOMMUNICATION INFORMATION:
  - (A) TELEPHONE: (919) 541-8587
  - (B) TELEFAX: (919) 541-8689
- (2) INFORMATION FOR SEQ ID NO:1:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1719 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Arabidopsis thaliana
  - (vii) IMMEDIATE SOURCE:
    - (B) CLONE: pWDC-2 (NRRL B-21238)
  - (ix) FEATURE:

10

- (A) NAME/KEY: CDS
- (B) LOCATION: 31..1644
- (D) OTHER INFORMATION: /product= "Arabidopsis protox-1"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- TGACAAAATT CCGAATTCTC TGCGATTTCC ATG GAG TTA TCT CTT CTC CGT CCG 54

  Met Glu Leu Ser Leu Leu Arg Pro

5

20

ACG ACT CAA TCG CTT CTT CCG TCG TTT TCG AAG CCC AAT CTC CGA TTA 102
Thr Thr Gln Ser Leu Leu Pro Ser Phe Ser Lys Pro Asn Leu Arg Leu

15

| AA'   | r Gr.       | r TA      | r AAC | GC'      | r CT      | r AG  | A CTC | CG     | r TG  | r TC  | A GT  | G GCC | GG?   | r GG2 | CCA   | 150 |
|-------|-------------|-----------|-------|----------|-----------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-----|
| Ası   | ı Va.       | l Ty      | C Lys | s Pro    | ) Let     | ı Ar  | g Lev | Arg    | g Cys | Se    | r Va  | l Ala | a Gly | Gly   | / Pro |     |
| 25    |             |           |       |          | 30        |       |       |        |       | 3     |       |       | _     | -     | 40    |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       |       |     |
| ACC   | GTO         | GGZ       | A TCI | r TC     | A AA      | A ATO | GAA   | GGC    | r GGI | , cc  | A GGG | - ACC | 3 200 | אמי   | ACG   | 100 |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       | Thr   | 198 |
|       |             |           |       | 4:       |           | , 110 | - GIU | . 617  |       |       | / G1) | , ini | Thi   |       |       |     |
|       |             |           |       | 7.       | •         |       |       |        | 50    | ,     |       |       |       | 55    |       |     |
| a.c.c | י מים       | י יייטריי | n cmc | י אוווים | . <b></b> |       |       | -      |       |       |       | _     |       |       |       |     |
| Mha   | . Jan       | 161       |       | , MII    | . GIC     | . 666 | GGA   | GGT    | . ATI | ' AGT | GG1   | CTI   | ' TGC | ATC   | GCT   | 246 |
| 1111  | voř         | Cys       |       |          | e vai     | . G17 | GIY   |        |       | Ser   | Gly   | / Leu | Cys   | Ile   | Ala   |     |
|       |             |           | 60    | ,        |           |       |       | 65     | i     |       |       |       | 70    |       |       |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       |       |     |
| CAG   | GCG         | CTI       | GCI   | ' ACI    | ' AAG     | CAT   | CCT   | GAT    | GCI   | GCI   | CCG   | TAA ; | TTA   | ATT   | GTG   | 294 |
| Gln   | Ala         |           |       | Thr      | Lys       | His   | Pro   | Asp    | Ala   | Ala   | Pro   | Asn   | Leu   | Ile   | Val   |     |
|       |             | 75        | •     |          |           |       | 80    |        |       |       |       | 85    |       |       |       |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       |       |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       | GAG   | 342 |
| Thr   | Glu         | Ala       | Lys   | Asp      | Arg       | Val   | Gly   | Gly    | Asn   | Ile   | Ile   | Thr   | Arg   | Glu   | Glu   |     |
|       | 90          |           |       |          |           | 95    |       |        |       |       | 100   |       |       |       |       |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       |       |     |
| AAT   | GGT         | TTT       | CTC   | TGG      | GAA       | GAA   | GGT   | CCC    | AAT   | AGT   | TTT   | CAA   | CCG   | TCT   | GAT   | 390 |
|       |             |           |       |          |           |       | Gly   |        |       |       |       |       |       |       |       |     |
| 105   |             |           |       |          | 110       |       |       |        |       | 115   |       |       |       |       | 120   |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       |       |       |     |
| CCT   | ATG         | CTC       | ACT   | ATG      | GTG       | GTA   | GAT   | AGT    | GGT   | TTG   | AAG   | GAT   | GAT   | ттс   | CTC   | 438 |
| Pro   | Met         | Leu       | Thr   | Met      | Val       | Val   | Asp   | Ser    | Glv   | Leu   | Lvs   | Asp   | Asp   | Len   | Va1   | 430 |
|       |             |           |       | 125      |           |       | _     |        | 130   |       | -,0   |       | 1100  | 135   | val   |     |
|       |             |           |       |          |           |       |       |        |       |       |       |       |       | 135   |       |     |
| TTG   | GGA         | GAT       | CCT   | ACT      | GCG       | CCA   | AGG   | արությ | GTG   | ጥጥር   | TCC   | አአጥ   | ccc   |       | mmo   |     |
| Leu   | Gly         | Asp       | Pro   | Thr      | Ala       | Pro   | Arg   | Phe    | Val   | Leu   | Tro   | var   | C1    | AAA   | 116   | 486 |
|       | _           | _         | 140   |          |           |       | ••• 9 | 145    | VQ.1  | Deu   | пр    | ASII  |       | ьуs   | Leu   |     |
|       |             |           |       |          |           |       |       | 747    |       |       |       |       | 150   |       |       |     |
| AGG   | CCG         | GTT       | CCA   | ፐርር      | AAG       | ריים  | ACA   | CNC    | mm x  | ~~~   |       |       |       |       |       |     |
| Ara   | Pro         | Val       | Pro   | Sor      | Turo      | tau   | Mr-   | GAC    | TTA   | -     | TTC   | TTT   | GAT   | TTG   | ATG   | 534 |
| 3     |             | 155       | 110   | Ser      | μys       | rea   | Thr   | Asp    | Leu   | Pro   | Phe   | Phe   | Asp   | Leu   | Met   |     |
|       |             | 133       |       |          |           |       | 160   |        |       |       |       | 165   |       |       |       |     |
| AGT   | <b>አ</b> ጥጥ | CCM       | ccc   | 330      | <b>.</b>  |       |       |        | _     |       |       |       |       |       |       |     |
| Ser   | 710         | ~1        | 03    | AAG      | ATT       | AGA   | GCT   | GGT    | TTT   | GGT   | GCA   | CTT   | GGC   | ATT   | CGA   | 582 |
| SET   | 120         | стА       | стА   | гÀ2      | TTE       | Arg   | Ala   | Gly    | Phe   | Gly   | Ala   | Leu   | Gly   | Ile   | Arg   |     |
|       | 170         |           |       |          |           | 175   |       |        |       |       | 180   |       |       |       |       |     |
| 000   | <b></b>     |           |       |          |           |       |       |        |       |       |       |       |       |       |       |     |
| -     | TCA         | CCT<br>-  | CCA   | GGT      | CGT       | GAA   | GAA   | TCT    | GTG   | GAG   | GAG   | TTT   | GTA   | CGG   | CGT   | 630 |
| Pro   | Ser         | Pro       | Pro   | Gly      | Arg       | Glu   | Glu   | Ser    | Val   | Glu   | Glu   | Phe   | Val   | Arg   | Arg   |     |
| 185   |             |           |       |          | 190       |       |       |        |       | 195   |       |       |       |       | 200   |     |

|              |     |      |     |     |              | TTT        |         |     |     |       |        |           |     |      |     | 678          |
|--------------|-----|------|-----|-----|--------------|------------|---------|-----|-----|-------|--------|-----------|-----|------|-----|--------------|
| Asn          | Leu | Gly  | Asp | Glu | Val          | Phe        | Glu     | Arg | Leu | Ile   | Glu    | Pro       | Phe | Суѕ  | Ser |              |
|              |     |      |     | 205 |              |            |         |     | 210 |       |        |           |     | 215  |     |              |
| COM          | Omm | m. m | 007 |     | <b>63.</b> m |            | <b></b> |     |     |       |        |           |     |      |     |              |
|              |     |      |     |     |              | CCT        |         |     |     |       |        |           |     |      |     | 726          |
| GIY          | vai | IYI  | 220 | GIY | ASP          | Pro        | Sei     | 225 | reu | ser   | wet    | Lys       |     | ALA  | Phe |              |
|              |     |      | 220 |     |              |            |         | 223 |     |       |        |           | 230 |      |     |              |
| GGG          | AAG | GTT  | TGG | AAA | CTA          | GAG        | CAA     | AAT | GGT | GGA   | AGC    | ATA       | ATA | GGT  | GGT | 774          |
|              |     |      |     |     |              | Glu        |         |     |     |       |        |           |     |      |     | , . <b>-</b> |
|              |     | 235  |     |     |              |            | 240     |     |     |       |        | 245       |     | , –  | _   |              |
|              |     |      |     |     |              |            |         |     |     |       |        |           |     |      |     | •            |
|              |     |      |     |     |              | GAG        |         |     |     |       |        |           |     |      |     | 822          |
| Thr          |     | Lys  | Ala | Ile | Gln          | Glu        | Arg     | Lys | Asn | Ala   |        | Lys       | Ala | Glu  | Arg |              |
|              | 250 |      |     |     |              | 255        |         |     |     |       | 260    |           |     |      |     |              |
| GAC          | CCG | CGC  | СТС | CCA | 444          | CCA        | CAG     | GGC | CAA | a C a | Cutati | CCT       | ጥርጥ | marc | NCC | 070          |
|              |     |      |     |     |              | Pro        |         |     |     |       |        |           |     |      |     | 870          |
| 265          |     |      |     |     | 270          |            |         | ,   |     | 275   | ,      | <b></b> 1 | 501 |      | 280 |              |
|              |     |      |     |     |              |            |         |     |     |       |        |           |     |      |     |              |
| AAG          | GGA | CTT  | CGA | ATG | TTG          | CCA        | GAA     | GCA | ATA | TCT   | GCA    | AGA       | TTA | GGT  | AGC | 918          |
| Lys          | Gly | Leu  | Arg | Met | Leu          | Pro        | Glu     | Ala | Ile | Ser   | Ala    | Arg       | Leu | Gly  | Ser |              |
|              |     |      |     | 285 |              |            |         |     | 290 |       |        |           |     | 295  |     |              |
|              | -   |      |     | ~~  |              |            |         |     |     |       |        |           |     |      |     |              |
|              |     |      |     |     |              | AAG<br>Lys |         |     |     |       |        |           |     |      |     | 966          |
| Lys          | Val | пур  | 300 | Ser | пр           | БУЗ        | Deu     | 305 | GTA | 116   | THE    | Lys       | 310 | GIU  | ser |              |
|              |     |      |     |     |              |            |         | 505 |     |       |        |           | 310 |      |     |              |
| GGA          | GGA | TAC  | AAC | TTA | ACA          | TAT        | GAG     | ACT | CCA | GAT   | GGT    | TTA       | GTT | TCC  | GTG | 1014         |
| Gly          | Gly | Tyr  | Asn | Leu | Thr          | Tyr        | Glu     | Thr | Pro | Asp   | Gly    | Leu       | Val | Ser  | Val |              |
|              |     | 315  |     |     |              |            | 320     |     |     |       |        | 325       |     |      |     |              |
|              |     |      |     |     |              |            |         |     |     |       |        |           |     |      |     |              |
|              |     |      |     |     |              | ATG        |         |     |     |       |        |           |     |      |     | 1062         |
| Gln          |     | Lys  | Ser | Val | Val          | Met        | Thr     | Val | Pro | Ser   |        | Val       | Ala | Ser  | Gly |              |
|              | 330 |      |     |     |              | 335        |         |     |     |       | 340    |           |     |      |     |              |
| СТС          | TTG | CGC  | ССТ | СТТ | тст          | GAA        | ጥርጥ     | GСT | GCA | ልልጥ   | GC1    | ריייר     | ጥሮል | 222  | CTA | 1110         |
|              |     |      |     |     |              | Glu        |         |     |     |       |        |           |     |      |     | 1110         |
| 345          |     | •    |     |     | 350          |            |         |     |     | 355   |        |           |     | -1-  | 360 |              |
|              |     |      |     |     |              |            |         |     |     |       |        |           |     |      |     |              |
| TAT          | TAC | CCA  | CCA | GTT | GCA          | GCA        | GTA     | TCT | ATC | TCG   | TAC    | CCG       | AAA | GAA  | GCA | 1158         |
| Tyr          | Tyr | Pro  | Pro | Val | Ala          | Ala        | Val     | Ser | Ile | Ser   | Tyr    | Pro       | Lys | Glu  | Ala |              |
|              |     |      |     | 365 |              |            |         |     | 370 |       |        |           |     | 375  |     |              |
| <b>3</b> m.c | 003 | 100  |     | mc~ | mm~          | 3.003      | <b></b> |     |     |       |        |           |     |      |     |              |
| ATC          | CGA | ACA  | GAA | TGT | T"I"G        | ATA        | GAT     | GGT | GAA | CTA   | AAG    | GGT       | TTT | GGG  | CAA | 1206         |

| Ile          | Arg            | Thr  | Glu<br>380 |       | . Leu | l Ile | Asp  | 385  |     | Leu  | Lys | Gly  | Phe 390 |     | Gln |      |
|--------------|----------------|------|------------|-------|-------|-------|------|------|-----|------|-----|------|---------|-----|-----|------|
| TTG          | CAT            | CCA  | CGC        | ACG   | CAA   | GGA   | GTT  | GAA  | ACA | TTA  | GGA | ACT  | ATC     | TAC | AGC | 1254 |
|              |                |      |            |       |       |       |      |      |     |      |     |      |         |     | Ser | 1234 |
|              |                | 395  |            |       |       |       | 400  | ı    |     |      |     | 405  |         |     |     |      |
|              |                |      |            |       |       |       |      |      |     |      |     |      |         |     | TTG | 1302 |
| Ser          |                |      | Phe        | Pro   | Asn   | Arg   | Ala  | Pro  | Pro | Gly  | Arg | Ile  | Leu     | Leu | Leu |      |
|              | 410            |      |            |       |       | 415   |      |      |     |      | 420 |      |         |     |     |      |
|              |                |      |            |       |       |       |      |      |     |      |     |      |         |     | GAA | 1350 |
|              | Tyr            | Ile  | Gly        | Gly   |       |       | Asn  | Thr  | Gly | Ile  | Leu | Ser  | Lys     | Ser | Glu |      |
| 425          |                |      |            |       | 430   |       |      |      |     | 435  |     |      |         |     | 440 |      |
|              |                |      |            |       |       |       |      |      |     |      |     | AAA  |         |     |     | 1398 |
| GIY          | GIU            | Leu  | Val        |       | Ala   | Val   | Asp  | Arg  |     | Leu  | Arg | Lys  | Met     | Leu | Ile |      |
|              |                |      |            | 445   |       |       |      |      | 450 |      |     |      |         | 455 |     |      |
|              |                |      |            |       |       |       |      |      |     |      |     | AGG  |         |     |     | 1446 |
| Lys          | Pro            | Asn  |            | Thr   | Asp   | Pro   | Leu  | Lys  | Leu | Gly  | Val | Arg  | Val     | Trp | Pro |      |
|              |                |      | 460        |       |       |       |      | 465  |     |      |     |      | 470     |     |     |      |
| CAA          | GCC            | ATT  | CCT        | CAG   | TTT   | CTA   | GTT  | GGT  | CAC | TTT  | GAT | ATC  | CTT     | GAC | ACG | 1494 |
| Gln          | Ala            |      | Pro        | Gln   | Phe   | Leu   | Val  | Gly  | His | Phe  | Asp | Ile  | Leu     | Asp | Thr |      |
|              |                | 475  |            |       |       |       | 480  |      |     |      |     | 485  |         |     |     |      |
| GCT          | AAA            | TCA  | TCT        | CTA   | ACG   | TCT   | TCG  | GGC  | TAC | GAA  | GGG | CTA  | TTT     | TTG | GGT | 1542 |
| Ala          | Lys            | Ser  | Ser        | Leu   | Thr   |       | Ser  | Gly  | Tyr | Glu  | Gly | Leu  | Phe     | Leu | Gly |      |
|              | 490            |      |            |       |       | 495   |      |      |     |      | 500 |      |         |     |     |      |
| GGC          | AAT<br>-       | TAC  | GTC        | GCT   | GGT   | GTA   | GCC  | TTA  | GGC | CGG  | TGT | GTA  | GAA     | GGC | GCA | 1590 |
| Gly          | Asn            | Tyr  | Val        | Ala   |       | Val   | Ala  | Leu  | Gly | Arg  | Суз | Val  | Glu     | Gly | Ala |      |
| 505          |                |      |            |       | 510   |       |      |      |     | 515  |     |      |         |     | 520 |      |
| TAT          | GAA            | ACC  | GCG        | ATT   | GAG   | GTC   | AAC  | AAC  | TTC | ATG  | TCA | CGG  | TAC     | GCT | TAC | 1638 |
| Tyr          | Glu            | Thr  | Ala        | Ile   | Glu   | Val   | Asn  | Asn  | Phe | Met  | Ser | Arg  | Tyr     | Ala | Tvr | 1050 |
|              |                |      |            | 525   |       |       |      |      | 530 |      |     |      | •       | 535 |     |      |
| מאם י        | ת <b>א</b> א ח | пола |            | 01 mm |       |       |      |      |     |      |     |      |         |     |     |      |
| AAG '<br>Lys | IMMA           | IGIA | AA A       | CATT  | TAAAT | C TC  | CCAG | CTTG | CGT | GAGT | TTT | ATTA | AATA    | TT  |     | 1691 |
| 210          |                |      |            |       |       |       |      |      |     |      |     |      |         |     |     |      |
| (Deno e      | ~>~-           | ma - |            |       |       |       |      |      |     |      |     |      |         |     |     |      |
| TTGA         | JA'I'A         | TC C | AAAA       | AAAA  | A AA  | AAAA  | AA   |      |     |      |     |      |         |     |     | 1719 |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 537 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Glu Leu Ser Leu Leu Arg Pro Thr Thr Gln Ser Leu Leu Pro Ser 1 5 10 15
- Phe Ser Lys Pro Asn Leu Arg Leu Asn Val Tyr Lys Pro Leu Arg Leu 20 25 30
- Arg Cys Ser Val Ala Gly Gly Pro Thr Val Gly Ser Ser Lys Ile Glu 35 40 45
- Gly Gly Gly Thr Thr Ile Thr Thr Asp Cys Val Ile Val Gly Gly 50 55 60
- Gly Ile Ser Gly Leu Cys Ile Ala Gln Ala Leu Ala Thr Lys His Pro 65 70 75 80
- Asp Ala Ala Pro Asn Leu Ile Val Thr Glu Ala Lys Asp Arg Val Gly 85 90 95
- Gly Asn Ile Ile Thr Arg Glu Glu Asn Gly Phe Leu Trp Glu Glu Gly
  100 105 110
- Pro Asn Ser Phe Gln Pro Ser Asp Pro Met Leu Thr Met Val Val Asp 115 120 125
- Ser Gly Leu Lys Asp Asp Leu Val Leu Gly Asp Pro Thr Ala Pro Arg 130 135 140
- Phe Val Leu Trp Asn Gly Lys Leu Arg Pro Val Pro Ser Lys Leu Thr 145 150 155 160
- Asp Leu Pro Phe Phe Asp Leu Met Ser Ile Gly Gly Lys Ile Arg Ala 165 170 175

- Gly Phe Gly Ala Leu Gly Ile Arg Pro Ser Pro Pro Gly Arg Glu Glu 180 185 190
- Ser Val Glu Glu Phe Val Arg Arg Asn Leu Gly Asp Glu Val Phe Glu
  195 200 205
- Arg Leu Ile Glu Pro Phe Cys Ser Gly Val Tyr Ala Gly Asp Pro Ser 210 215 220
- Lys Leu Ser Met Lys Ala Ala Phe Gly Lys Val Trp Lys Leu Glu Gln 225 230 235 240
- Asn Gly Gly Ser Ile Ile Gly Gly Thr Phe Lys Ala Ile Gln Glu Arg
  245 250 255
- Lys Asn Ala Pro Lys Ala Glu Arg Asp Pro Arg Leu Pro Lys Pro Gln 260 265 270
- Gly Gln Thr Val Gly Ser Phe Arg Lys Gly Leu Arg Met Leu Pro Glu 275 280 285
- Ala Ile Ser Ala Arg Leu Gly Ser Lys Val Lys Leu Ser Trp Lys Leu 290 295 300
- Ser Gly Ile Thr Lys Leu Glu Ser Gly Gly Tyr Asn Leu Thr Tyr Glu 305 310 315 320
- Thr Pro Asp Gly Leu Val Ser Val Gln Ser Lys Ser Val Val Met Thr 325 330 335
- Val Pro Ser His Val Ala Ser Gly Leu Leu Arg Pro Leu Ser Glu Ser 340 345 350
- Ala Ala Asn Ala Leu Ser Lys Leu Tyr Tyr Pro Pro Val Ala Ala Val 355 360 365
- Ser Ile Ser Tyr Pro Lys Glu Ala Ile Arg Thr Glu Cys Leu Ile Asp 370 375 380
- Gly Glu Leu Lys Gly Phe Gly Gln Leu His Pro Arg Thr Gln Gly Val
- Glu Thr Leu Gly Thr Ile Tyr Ser Ser Ser Leu Phe Pro Asn Arg Ala
  405 410 415

Pro Pro Gly Arg Ile Leu Leu Leu Asn Tyr Ile Gly Gly Ser Thr Asn 420 425 430

Thr Gly Ile Leu Ser Lys Ser Glu Gly Glu Leu Val Glu Ala Val Asp 435 440 445

Arg Asp Leu Arg Lys Met Leu Ile Lys Pro Asn Ser Thr Asp Pro Leu 450 455 460

Lys Leu Gly Val Arg Val Trp Pro Gln Ala Ile Pro Gln Phe Leu Val 465 470 475 480

Gly His Phe Asp Ile Leu Asp Thr Ala Lys Ser Ser Leu Thr Ser Ser 485 490 495

Gly Tyr Glu Gly Leu Phe Leu Gly Gly Asn Tyr Val Ala Gly Val Ala 500 505 510

Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu Thr Ala Ile Glu Val Asn 515 520 525

Asn Phe Met Ser Arg Tyr Ala Tyr Lys 530 535

## (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1738 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Arabidopsis thaliana
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-1 (NRRL B-21237)

| (ix | FEATURE: | : |
|-----|----------|---|
|-----|----------|---|

(A) NAME/KEY: CDS

(B) LOCATION: 70..1596

(D) OTHER INFORMATION: /product= "Arabidopsis protox-2"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

| TTTTTTACTT ATTTCCGTCA CTGCTTTCGA CTGGTCAGAG ATTTTGACTC TGAATTGTTG                                                                  | 60  |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| CAGATAGCA ATG GCG TCT GGA GCA GTA GCA GAT CAT CAA ATT GAA GCG<br>Met Ala Ser Gly Ala Val Ala Asp His Gln Ile Glu Ala               | 108 |
| 1 5 10                                                                                                                             |     |
| GTT TCA GGA AAA AGA GTC GCA GTC GTA GGT GCA GGT GTA AGT GGA CTT                                                                    | 156 |
| Val Ser Gly Lys Arg Val Ala Val Val Gly Ala Gly Val Ser Gly Leu<br>15 20 25                                                        |     |
| GCG GCG GCT TAC AAG TTG AAA TCG AGG GGT TTG AAT GTG ACT GTG TTT                                                                    | 204 |
| Ala Ala Ala Tyr Lys Leu Lys Ser Arg Gly Leu Asn Val Thr Val Phe 30 40 45                                                           |     |
| 10                                                                                                                                 |     |
| GAA GCT GAT GGA AGA GTA GGT GGG AAG TTG AGA AGT GTT ATG CAA AAT<br>Glu Ala Asp Gly Arg Val Gly Gly Lys Leu Arg Ser Val Met Gln Asn | 252 |
| 50 55 60                                                                                                                           |     |
| GGT TTG ATT TGG GAT GAA GGA GCA AAC ACC ATG ACT GAG GCT GAG CCA                                                                    | 300 |
| Gly Leu Ile Trp Asp Glu Gly Ala Asn Thr Met Thr Glu Ala Glu Pro                                                                    |     |
| 70 75                                                                                                                              |     |
| GAA GTT GGG AGT TTA CTT GAT GAT CTT GGG CTT CGT GAG AAA CAA CAA                                                                    | 348 |
| Glu Val Gly Ser Leu Leu Asp Asp Leu Gly Leu Arg Glu Lys Gln Gln<br>80 85 90                                                        |     |
|                                                                                                                                    |     |
| TTT CCA ATT TCA CAG AAA AAG CGG TAT ATT GTG CGG AAT GGT GTA CCT                                                                    | 396 |
| Phe Pro Ile Ser Gln Lys Lys Arg Tyr Ile Val Arg Asn Gly Val Pro 95 100 105                                                         |     |
|                                                                                                                                    |     |
| GTG ATG CTA CCT ACC AAT CCC ATA GAG CTG GTC ACA AGT AGT GTG CTC                                                                    | 444 |
| Val Met Leu Pro Thr Asn Pro Ile Glu Leu Val Thr Ser Ser Val Leu 110 115 120 125                                                    |     |
| 123                                                                                                                                |     |
| TCT ACC CAA TCT AAG TTT CAA ATC TTG TTG GAA CCA TTT TTA TGG AAG                                                                    | 492 |
| Ser Thr Gln Ser Lys Phe Gln Ile Leu Leu Glu Pro Phe Leu Trp Lys 130 135 140                                                        |     |
|                                                                                                                                    |     |

|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | GTA |       | 540  |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|-------------|--------------|--------|------|------|-------------|-------|-----|-----|-------|------|
| Lys | Lys          | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Lys    | Val | Ser         | Asp          | Ala    | Ser  | Ala  | Glu         | Glu   | Ser | Val | Ser   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145         |        |     |             |              | 150    |      |      |             |       | 155 |     |       |      |
| 010 | e e e        | <b>m</b> mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | ~~~ |             |              |        |      |      |             |       |     |     |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | CTC |       | 588  |
| GIU | Pne          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GIN         | Arg    | HIS | Pne         | - <b>-</b> - | GIN    | GIU  | Val  | Val         |       | Tyr | Leu | Ile   |      |
|     |              | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |     |             | 165          |        |      |      |             | 170   |     |     |       |      |
| GAC | CCT          | UNITATION OF THE PERSON OF THE | CTT         | CCT    | CCA | <b>A</b> CA | እርጥ          | CCT    | ccc  | CAC  | CCM         | C a m | maa | СТТ | mo.   | 63.6 |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | Leu |       | 636  |
|     | 175          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,           | 01,    | 023 | 180         | 001          |        |      | nsp  | 185         | nsp   | Ser | neu | Ser   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      | 103         |       |     |     |       |      |
| ATG | AAG          | CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | тст         | TTC    | CCA | GAT         | CTC          | TGG    | AAT  | GTA  | GAG         | AAA   | AGT | TTT | GGC   | 684  |
| Met | Lys          | His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser         | Phe    | Pro | Asp         | Leu          | Trp    | Asn  | Val  | Glu         | Lys   | Ser | Phe | Gly   |      |
| 190 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 195 |             |              |        |      | 200  |             |       |     |     | 205   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     |     |       |      |
| TCT | ATT          | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GTC         | GGT    | GCA | ATC         | AGA          | ACA    | AAG  | TTT  | GCT         | GCT   | AAA | GGT | GGT   | 732  |
| Ser | Ile          | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Val         | Gly    | Ala | Ile         | Arg          | Thr    | Lys  | Phe  | Ala         | Ala   | Lys | Gly | Gly   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 210    |     |             |              |        | 215  |      |             |       |     | 220 |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     |     |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | TCG |       | 780  |
| Lys | Ser          | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Thr    | Lys | Ser         | Ser          |        | Gly  | Thr  | Lys         | Lys   | _   | Ser | Arg   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225         |        |     |             |              | 230    |      |      |             |       | 235 |     |       |      |
| ccc | <b>ጥ</b> ር አ | (TOTAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>ጥ</b> ርጥ | thatan | 220 | ccc         | CCA          | NIII C | CAC  | a mm | <b>∠</b> mm | COM   | CAM | ACG | mmo.  | 000  |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | Thr |       | 828  |
| Gry | Der          | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Set         | rne    | пуэ | GLY         | 245          | Met    | GIII | TIE  | reu         | 250   | wsb | THE | ren   |      |
|     |              | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |     |             | 243          |        |      |      |             | 230   |     |     |       |      |
| TGC | AAA          | AGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTC         | TCA    | CAT | GAT         | GAG          | ATC    | AAT  | ТТА  | GAC         | TCC   | AAG | GTA | CTC   | 876  |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | Val |       |      |
|     | 255          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     | 260         |              |        |      |      | 265         |       |     |     |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     |     |       |      |
| TCT | TTG          | TCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAC         | AAT    | TCT | GGA         | TCA          | AGA    | CAG  | GAG  | AAC         | TGG   | TCA | TTA | TCT   | 924  |
| Ser | Leu          | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tyr         | Asn    | Ser | Gly         | Ser          | Arg    | Gln  | Glu  | Asn         | Trp   | Ser | Leu | Ser   |      |
| 270 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 275 |             |              |        |      | 280  |             |       |     |     | 285   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     |     |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     | GAT |       | 972  |
| Суѕ | Val          | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | His         |        | Glu | Thr         | Gln          | Arg    | Gln  | Asn  | Pro         | His   | Tyr | Asp | Ala   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 290    |     |             |              |        | 295  |      |             |       |     | 300 |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     |     |       |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |             |              |        |      |      |             |       |     |     | ATG - | 1020 |
| Val | He           | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Ala    | Pro | Leu         | Суѕ          |        | Val  | Lys  | Glu         | Met   |     | Val | Met   |      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 305         |        |     |             |              | 310    |      |      |             |       | 315 |     |       |      |

|       |     | , Gly | Glr   |       |     |       |     |     |             |     |            |             |        |     | T TAC | 1068 |
|-------|-----|-------|-------|-------|-----|-------|-----|-----|-------------|-----|------------|-------------|--------|-----|-------|------|
|       |     | 320   |       |       |     |       | 325 | 5   |             |     |            | 33(         | )      |     |       |      |
|       |     |       |       |       |     |       |     |     |             |     |            |             |        |     | A AAG | 1116 |
| Met   |     |       | Ser   | Val   | Leu |       |     | Thi | Phe         | Thr | Lys        | Glu         | Lys    | Va] | Lys   |      |
|       | 335 |       |       |       |     | 340   |     |     |             |     | 345        | 5           |        |     |       |      |
|       |     |       |       |       |     |       |     |     |             |     |            |             |        |     | AAG   | 1164 |
| Arg   | Pro | Leu   | Glu   | Gly   | Phe | Gly   | Val | Leu | lle         | Pro | Ser        | Lys         | Glu    | Glr | Lys   |      |
| 350   |     |       |       |       | 355 |       |     |     |             | 360 | l          |             |        |     | 365   |      |
| CAT   | GGT | TTC   | AAA   | ACT   | СТА | GGT   | ACA | CTI | TTT         | TCA | TCA        | ATG         | ATG    | ттт | CCA   | 1212 |
| His   | Gly | Phe   | Lys   | Thr   | Leu | Gly   | Thr | Leu | Phe         | Ser | Ser        | Met         | Met    | Phe | Pro   |      |
|       |     |       |       | 370   |     |       |     |     | 375         |     |            |             |        | 380 |       |      |
| GAT   | CGT | TCC   | ССТ   | AGT   | GAC | GTT   | CAT | СТА | TAT         | ACA | ACT        | TTT         | ATT    | GGT | GGG   | 1260 |
| Asp   | Arg | Ser   | Pro   | Ser   | Asp | Val   | His | Leu | Tyr         | Thr | Thr        | Phe         | Ile    | Gly | Gly   |      |
|       |     |       | 385   |       |     |       |     | 390 |             |     |            |             | 395    |     |       |      |
| AGT   | AGG | AAC   | CAG   | GAA   | CTA | GCC   | AAA | GCT | TCC         | ACT | GAC        | GAA         | TTA    | AAA | CAA   | 1308 |
| Ser   | Arg | Asn   | Gln   | Glu   | Leu | Ala   | Lys | Ala | Ser         | Thr | Asp        | Glu         | Leu    | Lys | Gln   |      |
|       |     | 400   |       |       |     |       | 405 |     |             |     |            | 410         |        |     |       |      |
| GTT   | GTG | ACT   | TCT   | GAC   | CTT | CAG   | CGA | CTG | TTG         | GGG | GTT        | GAA         | GGT    | GAA | CCC   | 1356 |
| Val   | Val | Thr   | Ser   | Asp   | Leu | Gln   | Arg | Leu | Leu         | Gly | Val        | Glu         | Gly    | Glu | Pro   | 2350 |
|       | 415 |       |       |       |     | 420   |     |     |             |     | 425        |             |        |     |       |      |
| GTG   | TCT | GTC   | AAC   | CAT   | TAC | TAT   | TGG | AGG | AAA         | GCA | TTC        | CCG         | TTG    | ТАТ | GAC   | 1404 |
| Val   | Ser | Val   | Asn   | His   | Tyr | Tyr   | Trp | Arg | Lys         | Ala | Phe        | Pro         | Leu    | Tyr | Asp   |      |
| 430   |     |       |       |       | 435 |       |     |     |             | 440 |            |             |        |     | 445   |      |
| AGC   | AGC | TAT   | GAC   | TCA   | GTC | ATG   | GAA | GCA | ATT         | GAC | AAG        | ATG         | GAG    | ААТ | ርልጥ   | 1452 |
| Ser   | Ser | Tyr   | Asp   | Ser   | Val | Met   | G1u | Ala | Ile         | Asp | Lys        | Met         | Glu    | Asn | Asp   | 1432 |
|       |     |       |       | 450   |     |       |     |     | <b>4</b> 55 |     |            |             |        | 460 |       |      |
| CTA   | CCT | GGG   | TTC   | TTC   | ТАТ | GCA   | GGT | AAT | CAT         | CGA | GGG        | ദ്രദ        | ריזיר  | ጥርጥ | CTPUT | 1500 |
| Leu   | Pro | Gly   | Phe   | Phe   | Tyr | Ala   | Gly | Asn | His         | Arg | Glv        | Glv         | Leu    | Ser | Val   | 1500 |
|       |     |       | 465   |       |     |       |     | 470 |             | -   | •          | <b>2</b>    | 475    |     | 741   |      |
| GGG 2 | AAA | TCA   | ATA   | GCA ' | TCA | GGT ' | TGC | ΔΔΔ | CC »        | മ്യ | GNO        |             | O.E. ~ |     |       |      |
| Gly i | Lys | Ser   | Ile . | Ala   | Ser | Gly ( | Cvs | Lvs | Ala         | Ala | OAC<br>Aes | CTT<br>Love | GTG    | ATC | TCA   | 1548 |
|       |     | 480   |       |       |     |       | 485 | -2  |             |     | <b>.</b> . | 490         | AaT    | тте | ser   |      |

| TAC  | CTG | GAG | TCT | TGC | TCA | AAT | GAC | AAG | AAA | CCA | AAT | GAC | AGC | TTA | TAACATTGTC |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| 1603 | }   |     |     |     |     |     |     |     |     |     |     |     |     |     |            |

Tyr Leu Glu Ser Cys Ser Asn Asp Lys Lys Pro Asn Asp Ser Leu 495 500 505

AAGGTTCGTC CCTTTTTATC ACTTACTTTG TAAACTTGTA AAATGCAACA AGCCGCCGTG 1663

CGATTAGCCA ACAACTCAGC AAAACCCAGA TTCTCATAAG GCTCACTAAT TCCAGAATAA 1723

ACTATTTATG TAAAA 1738

#### (2) INFORMATION FOR SEO ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 508 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Ser Gly Ala Val Ala Asp His Gln Ile Glu Ala Val Ser Gly

1 5 10 15

Lys Arg Val Ala Val Val Gly Ala Gly Val Ser Gly Leu Ala Ala Ala 20 25 30

Tyr Lys Leu Lys Ser Arg Gly Leu Asn Val Thr Val Phe Glu Ala Asp
35 40 45

Gly Arg Val Gly Gly Lys Leu Arg Ser Val Met Gln Asn Gly Leu Ile 50 55 60

Trp Asp Glu Gly Ala Asn Thr Met Thr Glu Ala Glu Pro Glu Val Gly
. 65 70 75 80

Ser Leu Leu Asp Asp Leu Gly Leu Arg Glu Lys Gln Gln Phe Pro Ile 85 90 95

Ser Gln Lys Lys Arg Tyr Ile Val Arg Asn Gly Val Pro Val Met Leu 100 105 110

Pro Thr Asn Pro Ile Glu Leu Val Thr Ser Ser Val Leu Ser Thr Gln

- 47 -

|            |            | 11         | 5          |                   |               |            | 12         | 0              |            |              |            | 12         | 5          |            |            |
|------------|------------|------------|------------|-------------------|---------------|------------|------------|----------------|------------|--------------|------------|------------|------------|------------|------------|
| Se         | r Ly<br>13 |            | e Gl       | n Il              | e Lei         | 1 Let      |            | ı Pro          | ) Ph       | e Lei        | 140        |            | s Ly:      | s Ly:      | s Ser      |
| Se:        |            | s Va       | l Se       | r As <sub>l</sub> | p <b>A</b> la |            | c Ala      | a Glu          | ı Glı      | 1 Ser<br>155 |            | . Se       | c Gli      | ı Phe      | Phe        |
| Glı        | n Ar       | g Hi       | s Ph       | e Gly<br>169      |               | Glu        | ı Val      | . Val          | 170        |              | Leu        | Ile        | e Asg      | Pro<br>175 | Phe        |
| Va:        | l Gly      | y Gl       | y Th:      | r Sei             | Ala           | Ala        | a Asp      | Pro<br>185     |            | Ser          | Leu        | Ser        | Met<br>190 |            | His        |
| Sei        | r Phe      | Pro<br>19  | o Ası      | ) Leu             | ı Trp         | Asn        | Val<br>200 |                | Lys        | Ser          | Phe        | Gly<br>205 |            | lle        | lle        |
| Va]        | 210        | / Ala      | a Ile      | Arg               | Thr           | Lys<br>215 |            | Ala            | Ala        | Lys          | Gly<br>220 | Gly        | Lys        | Ser        | Arg        |
| Asp<br>225 | Thr        | Lys        | S Ser      | Ser               | 230           | Gly        | Thr        | Lys            | Lys        | Gly<br>235   | Ser        | Arg        | Gly        | Ser        | Phe<br>240 |
| Ser        | Phe        | Lys        | Gly        | Gly<br>245        |               | Gln        | Ile        | Leu            | Pro<br>250 | Asp          | Thr        | Leu        | Суз        | Lys<br>255 | Ser        |
| Leu        | Ser        | His        | 260        | Glu               | Ile           | Asn        | Leu        | <b>Asp</b> 265 | Ser        | Lys          | Val        | Leu        | Ser<br>270 | Leu        | Ser        |
| Tyr        | Asn        | Ser<br>275 | Gly        | Ser               | Arg           | Gln        | Glu<br>280 | Asn            | Trp        | Ser          | Leu        | Ser<br>285 | Суз        | Val        | Ser        |
| His        | Asn<br>290 | Glu        | Thr        | Gln               | Arg           | Gln<br>295 | Asn        | Pro            | His        | Tyr          | Asp<br>300 | Ala        | Val        | Ile        | Met        |
| Thr<br>305 | Ala        | Pro        | Leu        | Cys               | Asn<br>310    | Val        | Lys        | Glu            | Met        | Lys<br>315   | Val        | Met        | Lys        | Gly        | Gly<br>320 |
| Gln        | Pro        | Phe        | Gln        | Leu<br>325        | Asn           | Phe        | Leu        | Pro            | Glu<br>330 | Ile          | Asn        | Tyr        | Met        | Pro<br>335 | Leu        |
| Ser        | Val        | Leu        | Ile<br>340 | Thr               | Thr           | Phe        | Thr        | Lys<br>345     | Glu        | Lys          | Val :      |            | Arg<br>350 | Pro        | Leu        |
| Glu        | Gly        | Phe        | Gly        | Val               | Leu           | Ile        | Pro        | Ser            | Lys        | Glu          | Gln :      | Lys        | His        | Gly        | Phe        |

355 360 365

Lys Thr Leu Gly Thr Leu Phe Ser Ser Met Met Phe Pro Asp Arg Ser 370 375 380

Pro Ser Asp Val His Leu Tyr Thr Thr Phe Ile Gly Gly Ser Arg Asn 385 390 395 400

Gln Glu Leu Ala Lys Ala Ser Thr Asp Glu Leu Lys Gln Val Val Thr
405 410 415

Ser Asp Leu Gln Arg Leu Leu Gly Val Glu Gly Glu Pro Val Ser Val
420 425 430

Asn His Tyr Tyr Trp Arg Lys Ala Phe Pro Leu Tyr Asp Ser Ser Tyr 435 440 445

Asp Ser Val Met Glu Ala Ile Asp Lys Met Glu Asn Asp Leu Pro Gly
450 455 460

Phe Phe Tyr Ala Gly Asn His Arg Gly Gly Leu Ser Val Gly Lys Ser 465 470 475 480

Ile Ala Ser Gly Cys Lys Ala Ala Asp Leu Val Ile Ser Tyr Leu Glu 485 490 495

Ser Cys Ser Asn Asp Lys Lys Pro Asn Asp Ser Leu 500 505

## (2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1691 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: Zea mays (maize)

## (vii) IMMEDIATE SOURCE:

(B) CLONE: pWDC-4 (NRRL B-21260)

## (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1443

(D) OTHER INFORMATION: /product= "Maize protox-1

CDNA "

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

| GCG | GAC        | TGC | GTC | GTG | GTG | GGC | GGA | GGC | ATC   | AGT | GGC | CTC         | TGC | ACC   | GCG | 48  |
|-----|------------|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-------------|-----|-------|-----|-----|
| Ala | Asp        | Cys | Val | Val | Val | Gly | Gly | Gly | Ile   | Ser | Gly | Leu         | Cys | Thr   | Ala |     |
| 1   |            |     |     | 5   |     |     |     |     | 10    |     |     |             |     | 15    |     | •   |
|     |            |     |     |     |     |     |     |     |       |     |     |             |     |       |     |     |
|     |            |     |     |     |     |     |     |     |       |     |     |             |     |       | GAG | 96  |
| Gln | Ala        | Leu |     | Thr | Arg | His | Gly | Val | G1y   | Asp | Val | Leu         | Val | Thr   | Glu |     |
|     |            |     | 20  |     |     |     |     | 25  |       |     |     |             | 30  |       |     |     |
| ccc | ccc        | coa | 000 | 000 | 000 |     |     |     |       |     |     |             |     |       |     |     |
| Ala | CGC        | 81- | CGC | CCC | GGC | GGC | AAC | ATT | ACC   | ACC | GTC | GAG         | CGC | CCC   | GAG | 144 |
| VIG | Arg        | 35  | Arg | Pro | GIY | GIA |     | Ile | Thr   | Thr | Val |             | Arg | Pro   | Glu |     |
|     |            | ,,  |     |     |     |     | 40  |     |       |     |     | 45          |     |       |     |     |
| GAA | GGG        | TAC | CTC | TGG | GAG | GAG | GGT | CCC | 220   | 200 | mmc | <b>63</b> 6 | 000 |       |     |     |
| Glu | Gly        | Tyr | Leu | Trp | Glu | Glu | Glv | Pro | Aen   | Ser | Pho | CAG         | Des | TCC   | GAC | 192 |
|     | 50         | _   |     | -   |     | 55  | 3   |     | 71311 | 261 | 60  | GIII        | PIO | ser   | Asp |     |
|     |            |     |     |     |     |     |     |     |       |     | 00  |             |     |       |     |     |
| ccc | GTT        | CTC | ACC | ATG | GCC | GTG | GAC | AGC | GGA   | CTG | AAG | GAT         | GAC | TPTPC | CTT | 240 |
| Pro | Val        | Leu | Thr | Met | Ala | Val | Asp | Ser | Gly   | Leu | Lys | Asp         | Asp | Leu   | Val | 240 |
| 65  |            |     |     |     | 70  |     |     |     | _     | 75  | •   |             |     |       | 80  |     |
|     |            |     |     |     |     |     |     |     |       |     |     |             |     |       |     |     |
| TTT | GGG        | GAC | CCA | AAC | GCG | CCG | CGT | TTC | GTG   | CTG | TGG | GAG         | GGG | AAG   | CTG | 288 |
| Phe | Gly        | Asp | Pro | Asn | Ala | Pro | Arg | Phe | Val   | Leu | Trp | Glu         | Gly | Lys   | Leu |     |
|     |            |     |     | 85  |     |     |     |     | 90    |     |     |             |     | 95    |     |     |
|     |            |     |     |     |     |     |     |     |       |     |     |             |     |       |     |     |
| AGG | CCC        | GTG | CCA | TCC | AAG | CCC | GCC | GAC | CTC   | CCG | TTC | TTC         | GAT | CTC   | ATG | 336 |
| Arg | Pro        | Val |     | Ser | ГЛЗ | Pro | Ala | Asp | Leu   | Pro | Phe | Phe         | Asp | Leu   | Met |     |
|     |            |     | 100 |     |     |     |     | 105 |       |     |     |             | 110 |       |     |     |
| AGC | አ ጥ උ      | CC. | 000 |     |     |     |     |     |       |     |     |             |     |       |     |     |
| AGC | ATC<br>Tla | CCA | GGG | AAG | CTC | AGG | GCC | GGT | CTA   | GGC | GCG | CTT         | GGC | ATC   | CGC | 384 |
| Ser | T16        | 115 | стĀ | ъўs | Leu | Arg |     | Gly | Leu   | Gly | Ala |             | Gly | Ile   | Arg |     |
|     |            | -10 |     |     |     |     | 120 |     |       |     |     | 125         |     |       |     |     |

|     |     | CCT |      |       |     |     |        |     |       |      |     |             |     |     |      | 432 |
|-----|-----|-----|------|-------|-----|-----|--------|-----|-------|------|-----|-------------|-----|-----|------|-----|
| Pro | Pro | Pro | Pro  | Gly   | Arg | Glu | Glu    | Ser | Val   | Glu  | Glu | Phe         | Val | Arg | Arg  |     |
|     | 130 |     |      |       |     | 135 |        |     |       |      | 140 |             |     |     |      |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |
|     |     | GGT |      |       |     |     |        |     |       |      |     |             |     |     |      | 480 |
|     | Leu | Gly | Ala  | GIu   |     | Phe | GIu    | Arg | Leu   |      | Glu | Pro         | Phe | Cys |      |     |
| 145 |     |     |      |       | 150 |     |        |     |       | 155  |     |             |     | ,   | 160  |     |
| GGT | GTC | тат | ርርጥ  | CCT   | CAT | CCT | un∕-un | AAC | CTC   | NGC. | λπc | 220         | CCM | CCA | mmm. | 500 |
|     |     | Tyr |      |       |     |     |        |     |       |      |     |             |     |     |      | 528 |
| OL, | 744 | -3- |      | 165   |     |     | JUL    | 233 | 170   | Jei  | Mec | Dys         | Aid | 175 | PHE  |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     | 1,3 |      |     |
| GGG | AAG | GTT | TGG  | CGG   | TTG | GAA | GAA    | ACT | GGA   | GGT  | AGT | ATT         | ATT | GGT | GGA  | 576 |
| Gly | Lys | Val | Trp  | Arg   | Leu | Glu | Glu    | Thr | Gly   | Gly  | Ser | Ile         | Ile | Gly | Gly  |     |
|     |     |     | 180  |       |     |     |        | 185 |       |      |     |             | 190 | _   | _    |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |
| ACC | ATC | AAG | ACA  | ATT   | CAG | GAG | AGG    | AGC | AAG   | AAT  | CCA | AAA         | CCA | CCG | AGG  | 624 |
| Thr | Ile | Lys | Thr  | Ile   | Gln | Glu | Arg    | Ser | Lys   | Asn  | Pro | Lys         | Pro | Pro | Arg  |     |
|     |     | 195 |      |       |     |     | 200    |     |       |      |     | 205         |     |     |      |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |
|     |     | CGC |      |       |     |     |        |     |       |      |     |             |     |     |      | 672 |
| Asp |     | Arg | Leu  | Pro   | Lys |     | Lys    | Gly | Gin   | Thr  |     | Ala         | Ser | Phe | Arg  |     |
|     | 210 |     |      |       |     | 215 |        |     |       |      | 220 |             |     |     |      |     |
| DAA | GGT | СТТ | GCC  | እጥር   | ርጥጥ | CCA | таа    | GCC | חייית | ACA  | ጥርር | <b>A</b> CC | ጥጥር | CCT | እርጥ  | 720 |
|     |     | Leu |      |       |     |     |        |     |       |      |     | -           | _   |     |      | 720 |
| 225 | ,   |     | •••• |       | 230 |     |        |     |       | 235  | 001 | DCI         | Deu | GIY | 240  |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |
| AAA | GTC | AAA | СТА  | TCA   | TGG | AAA | CTC    | ACG | AGC   | ATT  | ACA | AAA         | TCA | GAT | GAC  | 768 |
| Lys | Val | Lys | Leu  | Ser   | Trp | Lys | Leu    | Thr | Ser   | Ile  | Thr | Lys         | Ser | Asp | Asp  |     |
|     |     |     |      | 245   |     |     |        |     | 250   |      |     |             |     | 255 |      |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |
| AAG | GGA | TAT | GTT  | TTG   | GAG | TAT | GAA    | ACG | CCA   | GAA  | GGG | GTT         | GTT | TCG | GTG  | 816 |
| Lys | Gly | Tyr | Val  | Leu   | Glu | Tyr | Glu    | Thr | Pro   | Glu  | Gly | Val         | Val | Ser | Val  |     |
|     |     |     | 260  |       |     |     |        | 265 |       |      |     |             | 270 |     |      |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |
|     |     | AAA |      |       |     |     |        |     |       |      |     |             |     |     |      | 864 |
| Gin | Ala | Lys | ser  | vai   | 116 | Met |        | IIe | Pro   | Ser  | Tyr |             | Ala | Ser | Asn  |     |
|     |     | 275 |      |       |     |     | 280    |     |       |      |     | 285         |     |     |      |     |
| ልጥጥ | ጥጥር | CGT | CCA  | بلملت | ጥሮል | AGC | GAT    | ርርጥ | GC 2  | ርኔጥ  | CCT | Cura        | መርጉ | አሮኦ | mmc. | 010 |
|     |     | Arg |      |       |     |     |        |     |       |      |     |             |     |     |      | 912 |
|     | 290 | 9   |      |       |     | 295 |        |     |       |      | 300 | Leu         | 261 | vrā | FIIE |     |
|     |     |     |      |       |     |     |        |     |       |      |     |             |     |     |      |     |

|     |       |       |            |      |      |             |            |      |       |      |       |      |            |       | A GCA | 960     |
|-----|-------|-------|------------|------|------|-------------|------------|------|-------|------|-------|------|------------|-------|-------|---------|
| 30  |       |       |            |      | 310  |             |            |      | . • • | 315  |       | PIC  | , rys      | s GII | 320   |         |
| AT: | r Aga | AAA A | GAA        | TGC  | TTA  | ATT         | GAT        | GGG  | GAA   | CTC  | CAG   | GGC  | TTT        | ' GGC | CAG   | 1008    |
|     |       |       |            |      |      |             |            |      |       |      |       |      |            |       | / Gln | 1000    |
|     |       |       |            | 325  | 5    |             |            |      | 330   | )    |       |      |            | 335   | 5     |         |
| TTC | CAT   | CCA   | CGT        | AGI  | CAA  | GGA         | GTT        | GAG  | ACA   | TTA  | GGA   | ACA  | ATA        | TAC   | AGT   | 1056    |
| Let | His   | Pro   |            |      | Gln  | Gly         | Val        |      |       | Leu  | Gly   | Thr  | Ile        | Туг   | Ser   |         |
|     |       |       | 340        |      |      |             |            | 345  | •     |      |       |      | 350        |       |       |         |
| TCC | TCA   | CTC   | TTT        | CCA  | AAT  | CGT         | GCT        | CCT  | GAC   | GGT  | AGG   | GTG  | ТТА        | Спл   | CTA   | 1104    |
| Ser | Ser   | Leu   | Phe        | Pro  | Asn  | Arg         | Ala        | Pro  | Asp   | Gly  | Arg   | Val  | Leu        | Leu   | Leu   | 1104    |
|     |       | 355   |            |      |      |             | 360        |      |       |      |       | 365  |            |       |       |         |
| AAC | TAC   | ATA   | GGA        | GGT  | GCT  | ACA         | AAC        | ACA  | GGA   | ATT  | GTT   | TCC  | AAG        | ACT   | GAA   | 1152    |
| Asn | Туг   | Ile   | Gly        | Gly  | Ala  | Thr         | Asn        | Thr  | Gly   | Ile  | Val   | Ser  | Lys        | Thr   | Glu   |         |
|     | 370   |       |            |      |      | 375         |            |      |       |      | 380   |      |            |       |       |         |
| AGT | GAG   | CTG   | GTC        | GAA  | GCA  | GTT         | GAC        | CGT  | GAC   | CTC  | CGA   | AAA  | ATG        | CTT   | ATA   | 1200    |
| Ser | Glu   | Leu   | Val        | Glu  | Ala  | Val         | Asp        | Arg  | Asp   | Leu  | Arg   | Lys  | Met        | Leu   | Ile   |         |
| 385 |       |       |            |      | 390  |             |            |      |       | 395  |       |      |            |       | 400   |         |
| AAT | тст   | ACA   | GCA        | GTG  | GAC  | CCT         | TTA        | GTC  | СТТ   | GGT  | ርጥጥ   | CCA  | ርጥጥ        | TVCC  | CCA   | 1240    |
| Asn | Ser   | Thr   | Ala        | Val  | Asp  | Pro         | Leu        | Val  | Leu   | Gly  | Val   | Arg  | Val        | Trp   | Pro   | 1248    |
|     |       |       |            | 405  |      |             |            |      | 410   |      |       | _    |            | 415   |       |         |
| CAA | GCC   | አጥአ   | CCM        | C3.0 | mmo  | <b>a</b> ma |            |      |       |      |       |      |            |       |       |         |
| Gln | Ala   | Ile   | CCT<br>Pro | Gln  | Phe  | CTG         | GTA<br>Val | GGA  | CAT   | CTT  | GAT   | CTT  | CTG        | GAA   | GCC   | 1296    |
|     |       |       | 420        |      | •••• | 200         | Vai        | 425  | nıs   | ren  | Asp   | Leu  | Leu<br>430 | Glu   | Ala   |         |
|     |       |       |            |      |      |             |            |      |       |      |       |      |            |       |       |         |
| GCA | AAA   | GCT   | GCC        | CTG  | GAC  | CGA         | GGT        | GGC  | TAC   | GAT  | GGG   | CTG  | TTC        | CTA   | GGA   | 1344    |
| AIA | ьуs   | 435   | Ala        | Leu  | Asp  | Arg         |            | Gly  | Tyr   | Asp  | Gly   | Leu  | Phe        | Leu   | Gly   |         |
|     |       | 133   |            |      |      |             | 440        |      |       |      |       | 445  |            |       |       |         |
| GGG | AAC   | TAT   | GTT        | GCA  | GGA  | GTT         | GCC        | CTG  | GGC   | AGA  | TGC   | GTT  | GAG        | GGC   | GCG   | 1392    |
| Gly | Asn   | Tyr   | Val        | Ala  | Gly  | Val         | Ala        | Leu  | Gly   | Arg  | Cys   | Val  | Glu        | Gly   | Ala   | 1392    |
|     | 450   |       |            |      |      | 455         |            |      |       |      | 460   |      |            | _     |       |         |
| TAT | GAA   | AGT   | GCC        | TCG  | CAA  | ATA         | тст        | GAC  | TTC   | TTG  | ACC . | AAG  | ТАТ        | GCC   | ፐልሮ   | 1440    |
| Tyr | Glu   | Ser   | Ala        | Ser  | Gln  | Ile         | Ser .      | Asp  | Phe   | Leu  | Thr   | Lys  | Tyr        | Ala   | Tyr   | T.3.4.0 |
| 465 |       |       |            |      | 470  |             |            |      |       | 475  |       |      |            |       | 480   |         |
| AAG | TGAT  | GAAA  | GA A       | GTGG | AGCG | C TA        | CTTG       | ΓΤΑΑ | TCG   | TTTA | TGT ' | TGCA | TAGA       | TG    |       | 1493    |

1553

1613

1673

1691

Lys

| aggi      | GCCI             | ecc c     | GGGA        | AAAA       | A A          | GCTT           | GAAT       | ' AGT         | PTTA      | TTT       | ATTC      | TATT      | TT T       | rgta <i>i</i> | ATTGC     |
|-----------|------------------|-----------|-------------|------------|--------------|----------------|------------|---------------|-----------|-----------|-----------|-----------|------------|---------------|-----------|
| ATTI      | CTGI             | TC T      | PTTT        | TCTA       | T CF         | GTAA           | ATTAG      | TTA           | TATI      | TTA       | GTTC      | TGTA      | GG 1       | \GAT1         | CTTCT     |
| GTTC      | ACTO             | CC C      | CTTCA       | AAAG       | A AA         | \ <b>TT</b> TI | 'ATTI      | ' TTC         | ATTC      | TTT       | TATO      | SAGAG     | CT (       | GTGCT         | PACTTA    |
| AAAA      | AAAA             | AA A      | <b>AAAA</b> | AAA        |              |                |            |               |           |           |           |           |            |               |           |
| (2)       | INFO             | RMAT      | rion        | FOR        | SEQ          | ID N           | 10 : 6 :   |               |           |           |           |           |            |               |           |
|           | (                | i) S      | (B)         | LEN<br>TYP | GTH:<br>E: 8 | 481<br>mino    | ami<br>aci | .no a<br>.d   |           | 3         |           |           |            |               |           |
|           | (i               | .i) R     | MOLEC       | ULE        | TYPE         | E: pr          | otei       | .n            |           |           |           |           |            |               |           |
|           | ()               | ci) S     | SEQUE       | ENCE       | DESC         | RIPT           | ION:       | SEC           | ) ID      | NO : 6    | i :       |           |            |               |           |
| Ala<br>1  | Asp              | Cys       | Val         | Val<br>5   | Val          | Gly            | Gly        | Gly           | Ile<br>10 | Ser       | Gly       | Leu       | Суз        | Thr<br>15     | Ala       |
| Gln       | Ala              | Leu       | Ala<br>20   | Thr        | Arg          | His            | Gly        | <b>Val</b> 25 | Gly       | Asp       | Val       | Leu       | Val<br>30  | Thr           | Glu       |
| Ala       | Arg              | Ala<br>35 | Arg         | Pro        | Gly          | Gly            | Asn<br>40  | Ile           | Thr       | Thr       | Val       | Glu<br>45 | Arg        | Pro           | Glu       |
| Glu       | <b>Gly</b><br>50 | Tyr       | Leu         | Trp        | Glu          | Glu<br>55      | Gly        | Pro           | Asn       | Ser       | Phe<br>60 | Gln       | Pro        | Ser           | Asp       |
| Pro<br>65 | Val              | Leu       | Thr         | Met        | Ala<br>70    | Val            | Asp        | Ser           | Gly       | Leu<br>75 | Lys       | Asp       | Asp        | Leu           | Val<br>80 |
| Phe       | Gly              | Asp       | Pro         | Asn<br>85  | Ala          | Pro            | Arg        | Phe           | Val<br>90 | Leu       | Trp       | Glu       | Gly        | Lys<br>95     | Leu       |
| Arg       | Pro              | Val       | Pro<br>100  | Ser        | Lys          | Pro            | Ala        | Asp<br>105    | Leu       | Pro       | Phe       | Phe       | Asp<br>110 | Leu           | Met       |

Ser Ile Pro Gly Lys Leu Arg Ala Gly Leu Gly Ala Leu Gly Ile Arg

- 53 -

|            |            | 115        |            |            |            |            | 120        |            |            |            |                | 125        |            |                |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|----------------|------------|
| Pro        | Pro<br>130 | Pro        | Pro        | Gly        | Arg        | Glu<br>135 | Glu        | Ser        | Val        | Glu        | Glu<br>140     | Phe        | Val        | Arg            | Arg        |
| Asn<br>145 | Leu        | Gly        | Ala        | Glu        | Val<br>150 | Phe        | Glu        | Arg        | Leu        | Ile<br>155 | Glu            | Pro        | Phe        | Cys            | Ser<br>160 |
| Gly        | Val        | Tyr        | Ala        | Gly<br>165 | Asp        | Pro        | Ser        | Lys        | Leu<br>170 | Ser        | Met            | Lys        | Ala        | Ala<br>175     | Phe        |
| Gly        | Lys        | Val        | Trp<br>180 | Arg        | Leu        | Glu        | Glu        | Thr<br>185 | Gly        | Gly        | Ser            | Ile        | Ile<br>190 | Gly            | Gly        |
| Thr        | Ile        | Lys<br>195 | Thr        | Ile        | Gln        | Glu        | Arg<br>200 | Ser        | Lys        | Asn        | Pro            | Lys<br>205 | Pro        | Pro            | Arg        |
| Asp        | Ala<br>210 | Arg        | Leu        | Pro        | Lys        | Pro<br>215 | Lys        | Gly        | Gln        | Thr        | <b>Val</b> 220 | Ala        | Ser        | Phe            | Arg        |
| Lys<br>225 | Gly        | Leu        | Ala        | Met        | Leu<br>230 | Pro        | Asn        | Ala        | Ile        | Thr<br>235 | Ser            | Ser        | Leu        | Gly            | Ser<br>240 |
| Lys        | Val        | Lys        | Leu        | Ser<br>245 | Trp        | Lys        | Leu        | Thr        | Ser<br>250 | Ile        | Thr            | Lys        | Ser        | <b>Asp</b> 255 | Asp        |
| Lys        | Gly        | Tyr        | Val<br>260 | Leu        | Glu        | Tyr        | Glu        | Thr<br>265 | Pro        | Glu        | Gly            | Val        | Val<br>270 | Ser            | Val        |
| Gln        | Ala        | Lys<br>275 | Ser        | Val        | Ile        | Met        | Thr<br>280 | Ile        | Pro        | Ser        | Tyr            | Val<br>285 | Ala        | Ser            | Asn        |
| Ile        | Leu<br>290 | Arg        | Pro        | Leu        | Ser        | Ser<br>295 | Asp        | Ala        | Ala        | Asp        | Ala<br>300     | Leu        | Ser        | Arg            | Phe        |
| Tyr<br>305 | Tyr        | Pro        | Pro        | Val        | Ala<br>310 | Ala        | Val        | Thr        | Val        | Ser<br>315 | Tyr            | Pro        | Lys        | Glu            | Ala<br>320 |
| Ile        | Arg        | Lys        | Glu        | Cys<br>325 | Leu        | Ile        | Asp        | Gly        | Glu<br>330 | Leu        | Gln            | Gly        | Phe        | Gly<br>335     | Gln        |
| Leu        | His        | Pro        | Arg<br>340 | Ser        | Gln        | Gly        | Val        | Glu<br>345 | Thr        | Leu        | Gly            | Thr        | Ile<br>350 | Tyr            | Ser        |
| Ser        | Ser        | Leu        | Phe        | Pro        | Aen        | Ara        | 2 T Z      | Drc        | ) are      | C1         | <b>1</b>       | 17-1       | •          |                |            |

355 360 365

Asn Tyr Ile Gly Gly Ala Thr Asn Thr Gly Ile Val Ser Lys Thr Glu 370 380

Ser Glu Leu Val Glu Ala Val Asp Arg Asp Leu Arg Lys Met Leu Ile 385 390 395 400

Asn Ser Thr Ala Val Asp Pro Leu Val Leu Gly Val Arg Val Trp Pro 405 410 415

Gln Ala Ile Pro Gln Phe Leu Val Gly His Leu Asp Leu Leu Glu Ala 420 425 430

Ala Lys Ala Ala Leu Asp Arg Gly Gly Tyr Asp Gly Leu Phe Leu Gly
435
440
445

Gly Asn Tyr Val Ala Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala 450 455 460

Tyr Glu Ser Ala Ser Gln Ile Ser Asp Phe Leu Thr Lys Tyr Ala Tyr 465 470 475 480

Lys

## (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2061 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Zea mays (maize)
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-3 (NRRL B-21259)

## (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 64..1698

(D) OTHER INFORMATION: /product= "Maize protox-2"

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

| CT  | CTCC! | PACC | TCC   | ACCTO | CA C | GAC | AACA | AG C  | AAAT | CCC   | A TC  | CAGT' | rcca  | AAC   | CCTAA | CT          | 60 |
|-----|-------|------|-------|-------|------|-----|------|-------|------|-------|-------|-------|-------|-------|-------|-------------|----|
| CA  | A ATO | CTC  | GC1   | TTG   | ACT  | GCC | TC   | A GC  | TC   | A TCC | GC'   | T TC  | TC    | CA'   | г сст | 1 (         | 80 |
|     | Met   | Let  | ı Ala | Leu   | Thr  | Ala | Sez  | r Ala | a Se | Ser   | . Ala | a Sei | : Se  | c His | s Pro | •           | -  |
|     | 1     |      |       |       | 5    |     |      |       |      | 10    |       |       |       |       | 15    |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       | 13    |             |    |
| TAT | CGC   | CAC  | GCC   | TCC   | GCG  | CAC | ACT  | r cgi | CGC  | ccc   | CGC   | CTA   | . CG1 | r GCC | GTC   | 1:          | 56 |
| Туз | Arg   | His  | Ala   | Ser   | Ala  | His | Thi  | Arg   | Arç  | Pro   | Arg   | g Leu | Arc   | . Ala | Val   |             | •  |
|     |       |      |       | 20    |      |     |      |       | 25   |       | -     |       | •     | 30    |       |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
| CTC | GCG   | ATG  | GCG   | GGC   | TCC  | GAC | GAC  | ccc   | CG1  | GCA   | GCG   | ccc   | GCC   | AGA   | TCG   | 20          | )4 |
| Lev | Ala   | Met  | Ala   | Gly   | Ser  | Asp | Asp  | Pro   | Arg  | Ala   | Ala   | Pro   | Ala   | Arg   | Ser   |             |    |
|     |       |      | 35    |       |      |     |      | 40    |      |       |       |       | 45    |       |       |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
| GTC | GCC   | GTC  | GTC   | GGC   | GCC  | GGG | GTC  | AGC   | GGG  | CTC   | GCG   | GCG   | GCG   | TAC   | AGG   | 25          | 2  |
| Val | Ala   | Val  | Val   | Gly   | Ala  | Gly | Val  | Ser   | G1y  | Leu   | Ala   | Ala   | Ala   | Tyr   | Arg   |             |    |
|     |       | 50   |       |       |      |     | 55   |       |      |       |       | 60    |       | _     | _     |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
| CTC | AGA   | CAG  | AGC   | GGC   | GTG  | AAC | GTA  | ACG   | GTG  | TTC   | GAA   | GCG   | GCC   | GAC   | AGG   | 30          | 0  |
| Leu | Arg   | Gln  | Ser   | Gly   | Val  | Asn | Val  | Thr   | Val  | Phe   | Glu   | Ala   | Ala   | Asp   | Arg   |             |    |
|     | 65    |      |       |       |      | 70  |      |       |      |       | 75    |       |       |       | _     |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
| GCG | GGA   | GGA  | AAG   | ATA   | CGG  | ACC | AAT  | TCC   | GAG  | GGC   | GGG   | TTT   | GTC   | TGG   | GAT   | 34          | 8  |
| Ala | Gly   | Gly  | Lys   | Ile   | Arg  | Thr | Asn  | Ser   | Glu  | Gly   | Gly   | Phe   | Val   | Trp   | Asp   |             |    |
| 80  |       |      |       |       | 85   |     |      |       |      | 90    |       |       |       |       | 95    |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
| GAA | GGA   | GCT  | AAC   | ACC   | ATG  | ACA | GAA  | GGT   | GAA  | TGG   | GAG   | GCC   | AGT   | AGA   | CTG   | 39          | 6  |
| Glu | Gly   | Ala  | Asn   | Thr   | Met  | Thr | Glu  | Gly   | Glu  | Trp   | Glu   | Ala   | Ser   | Arg   | Leu   |             |    |
|     |       |      |       | 100   |      |     |      |       | 105  |       |       |       |       | 110   |       |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
|     | GAT   | GAT  | CTT   | GGT   | CTA  | CAA | GAC  | AAA   | CAG  | CAG   | TAT   | CCT   | AAC   | TCC   | CAA   | 444         | 4  |
| Ile | Asp   | Asp  | Leu   | Gly   | Leu  | Gln | Asp  | Lys   | Gln  | Gln   | Tyr   | Pro   | Asn   | Ser   | Gln   | ••          | •  |
|     |       |      | 115   |       |      |     |      | 120   |      |       |       |       | 125   |       |       |             |    |
|     |       |      |       |       |      |     |      |       |      |       |       |       |       |       |       |             |    |
| CAC | AAG   | CGT  | TAC   | ATT   | GTC  | AAA | GAT  | GGA   | GCA  | CCA   | GCA   | CTG   | ATT   | CCT   | TCG   | 492         | ,  |
| His | Lys   | Arg  | Tyr   | Ile   | Va1  | Lys | Asp  | Gly   | Ala  | Pro   | Ala   | Leu   | Ile   | Pro   | Ser   | <b>4</b> 32 | •  |
|     |       |      |       |       |      |     |      |       |      |       |       |       | _     |       |       |             |    |

| 130             | 135             |                 | 140            |           |
|-----------------|-----------------|-----------------|----------------|-----------|
| GAT CCC ATT TCG | CTA ATG AAA AGC | AGT GTT CTT TCG | ACA AAA TCA A  | AG 540    |
| Asp Pro Ile Ser |                 |                 |                |           |
| 145             | 150             | 155             | -              | -         |
|                 |                 |                 |                |           |
| ATT GCG TTA TTT |                 |                 |                |           |
| Ile Ala Leu Phe | Phe Glu Pro Phe | Leu Tyr Lys Lys | Ala Asn Thr A  | rg        |
| 160             | 165             | 170             | 1              | 75        |
| 110 mom (G1 111 | ome mem eve eve | 010 mmc 10m c10 | 100 cmm ccc 1  |           |
| AAC TCT GGA AAA |                 |                 |                |           |
| Asn Ser Gly Lys | 180             | 185             | 190            | er        |
|                 | 200             | 103             | 150            |           |
| TTC TGT GAA CGC | CAC TTT GGA AGA | GAA GTT GTT GAC | TAT TTT GTT G. | AT 684    |
| Phe Cys Glu Arg | His Phe Gly Arg | Glu Val Val Asp | Tyr Phe Val A  | sp        |
| 195             |                 | 200             | 205            |           |
|                 |                 |                 |                |           |
| CCA TTT GTA GCT |                 |                 |                | -         |
| Pro Phe Val Ala | _               | Gly Asp Pro Glu |                | le        |
| 210             | 215             |                 | 220            |           |
| CGT CAT GCA TTC | CCA GCA TTG TGG | AAT TTG GAA AGA | AAG TAT GGT TO | CA 780    |
| Arg His Ala Phe |                 |                 |                |           |
| 225             | 230             | 235             |                |           |
|                 |                 |                 |                |           |
| GTT ATT GTT GGT | GCC ATC TTG TCT | AAG CTA GCA GCT | AAA GGT GAT C  | CA 828    |
| Val Ile Val Gly | Ala Ile Leu Ser | Lys Leu Ala Ala | Lys Gly Asp P  | ro        |
| 240             | 245             | 250             | 2              | 55        |
| OTT 110 101 101 | CAM CAM MOA MOA | 666 111 161 166 | 11m 101 001 0  | .ma 07.6  |
| GTA AAG ACA AGA |                 | Gly Lys Arg Arg |                |           |
| var bys im Arg  | 260             | 265             | 270            | <b>41</b> |
|                 |                 |                 | 270            |           |
| TCG TTT TCA TTT | CAT GGT GGA ATG | CAG TCA CTA ATA | AAT GCA CTT C  | AC 924    |
| Ser Phe Ser Phe | His Gly Gly Met | Gln Ser Leu Ile | Asn Ala Leu H  | lis       |
| 275             |                 | 280             | 285            |           |
|                 |                 |                 |                |           |
|                 |                 | AAG CTT GGT ACA |                |           |
| _               | _               | Lys Leu Gly Thr |                | Ser       |
| 290             | 295             |                 | 300            |           |
| TTG GCA TGT ACA | TTT GAT GGA GTT | CCT GCA CTA GGC | AGG TGG TCA A  | \TT 1020  |
|                 |                 | Pro Ala Leu Gly |                |           |
| 305             | 310             | 315             |                |           |

| TC     | F GT  | r ga   | r TCC | AAC | GAT        | DAG(  | GG1   | GAC    | : AAG | GAC   | CTI      | r GC1 | AG     | AA C | CAA        | 1068 |
|--------|-------|--------|-------|-----|------------|-------|-------|--------|-------|-------|----------|-------|--------|------|------------|------|
| Sea    | r Val | l As   | 9 Sei | Lys | : Ası      | Sei   | r Gly | / Asr  | Lys   | . Asp | Let      | ı Ala | Sei    | Ası  | Gln        |      |
| 320    | י     |        |       |     | 325        | 5     |       |        |       | 330   | )        |       |        |      | 335        |      |
|        |       |        |       |     |            |       |       |        |       |       |          |       |        |      |            |      |
|        |       |        |       |     |            |       |       |        |       |       |          |       |        |      | AGG        | 1116 |
| Thr    | Phe   | e Ası  | o Ala |     |            | Met   | Thr   | Ala    | Pro   | Leu   | Ser      | Asn   | Val    | Arg  | Arg        |      |
|        |       |        |       | 340 | )          |       |       |        | 345   | •     |          |       |        | 350  | )          |      |
| 3.000  |       |        |       |     |            |       |       |        |       |       |          |       |        |      |            |      |
| Mot    | AAC   | TTC    | ACC   | AAA | GGT        | ' GGA | GCT   | CCG    | GTT   | GTT   | CTI      | ' GAC | TTT    | CTI  | CCT        | 1164 |
| Met    | . Lys | PILE   | 355   |     | GIĀ        | GIY   | ' Ala |        |       | Val   | Leu      | Asp   |        |      | Pro        |      |
|        |       |        | 222   | •   |            |       |       | 360    |       |       |          |       | 365    |      |            |      |
| AAG    | ATG   | GAT    | TAT   | CTA | CCA        | СТА   | ጥርጥ   | ריזיכי | ልጥር   | СТС   | እርጣ      | CCM   | (MCMC) |      | AAG        |      |
| Lys    | Met   | Ast    | Tyr   | Leu | Pro        | Leu   | Ser   | Len    | Met   | Val   | WCI      | Ala   | Th     | AAG  | AAG<br>Lys | 1212 |
| _      |       | 370    |       |     |            |       | 375   |        | 1100  | Val   | 1111     | 380   | Pne    | nys  | гуѕ        |      |
|        |       |        |       |     |            |       |       |        |       |       |          | 300   |        |      |            |      |
| GAT    | GAT   | GTC    | AAG   | AAA | CCT        | CTG   | GAA   | GGA    | TTT   | GGG   | GTC      | TTA   | АТА    | ССТ  | TAC        | 1260 |
|        |       |        | Lys   |     |            |       |       |        |       |       |          |       |        |      |            | -200 |
|        | 385   |        |       |     |            | 390   |       |        |       |       | 395      |       |        |      | -          |      |
|        |       |        |       |     |            |       |       |        |       |       |          |       |        |      |            |      |
| AAG    | GAA   | CAG    | CAA   | AAA | CAT        | GGT   | CTG   | AAA    | ACC   | CTT   | GGG      | ACT   | CTC    | TTT  | TCC        | 1308 |
| Lys    | Glu   | Gln    | Gln   | Lys |            | Gly   | Leu   | Lys    | Thr   | Leu   | Gly      | Thr   | Leu    | Phe  | Ser        |      |
| 400    |       |        |       |     | 405        |       |       |        |       | 410   |          |       |        |      | 415        |      |
| ጥሮል    | ልጥር   | እሙር    | mma   | CC3 | C 3 m      |       |       |        |       |       |          |       |        |      |            |      |
| Ser    | Met   | Met    | TTC   | Dro | GAT<br>Aco | CGA   | GCT   | CCT    | GAT   | GAC   | CAA      | TAT   | TTA    | TAT  | ACA        | 1356 |
| -02    | ***** | 146.0  | Phe   | 420 | Asp        | Arg   | Ala   | Pro    |       | Asp   | Gln      | Tyr   | Leu    |      | Thr        |      |
|        |       |        |       | 420 |            |       |       |        | 425   |       |          |       |        | 430  |            |      |
| ACA    | TTT   | GTT    | GGG   | GGT | AGC        | CAC   | ААТ   | AGA    | ሚልጥ   | CUM   | CCM      | CCA   | 00m    | 223  |            |      |
| Thr    | Phe   | Val    | Gly   | Gly | Ser        | His   | Asn   | Ara    | Asp   | Leu   | Δla      | Glv   | Ala    | Dro  | ACG        | 1404 |
|        |       |        | 435   |     |            |       |       | 440    |       |       |          | GLY   | 445    | PIO  | THE        |      |
|        |       |        |       |     |            |       |       |        |       |       |          |       | 113    |      |            |      |
| TCT    | ATT   | CTG    | AAA   | CAA | CTT        | GTG   | ACC   | TCT    | GAC   | СТТ   | AAA      | AAA   | CTC    | TTG  | GGC        | 1452 |
| Ser    | Ile   | Leu    | Lys   | Gln | Leu        | Val   | Thr   | Ser    | Asp   | Leu   | Lys      | Lys   | Leu    | Leu  | Gly        |      |
|        |       | 450    |       |     |            |       | 455   |        |       |       |          | 460   |        |      |            |      |
|        |       |        |       |     |            |       |       |        |       |       |          |       |        |      |            |      |
| GTA    | GAG   | GGG    | CAA   | CCA | ACT        | TTT   | GTC   | AAG    | CAT   | GTA   | TAC      | TGG   | GGA    | AAT  | GCT        | 1500 |
| vaI    | GIU   | Gly    | Gln   | Pro | Thr        |       | Val   | Lys    | His   | Val   | Tyr      | Trp   | Gly    | Asn  | Ala        |      |
|        | 465   |        |       |     |            | 470   |       |        |       |       | 475      |       |        |      |            |      |
| dalai. | ርርጥ   | Unui√. | ጠአጠ   | ccc | ص. د.      | ~~    | m     |        |       |       | _        |       |        |      |            |      |
| Phe    | Pro   | ניפין  | TAT   | GIV | CAT        | GAT   | TAT   | AGT    | TCT   | GTA   | TTG<br>- | GAA   | GCT    | ATA  | GAA        | 1548 |
| 480    | - 2 0 | Jeu    | Tyr   |     | ніs<br>485 | Asp   | ıyr   | ser    |       |       | Leu      | Glu   | Ala    | Ile  | Glu        |      |
|        |       |        |       |     | 400        |       |       |        |       | 490   |          |       |        |      | 495        |      |

| AAG        | ATG     | GAG   | AAA        | AAC     | CTT   | CCA   | GGG         | TTC          | TTC         | TAC  | GCA  | GGA   | AAT   | AGC         | AAG    | 1596 |
|------------|---------|-------|------------|---------|-------|-------|-------------|--------------|-------------|------|------|-------|-------|-------------|--------|------|
| Lys        | Met     | Glu   | Lys        | Asn     | Leu   | Pro   | Gly         | Phe          | Phe         | Tyr  | Ala  | Gly   | Asn   | Ser         | Lys    |      |
|            |         |       |            | 500     |       |       |             |              | 505         |      |      |       |       | 510         |        |      |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |
|            |         |       | GCT        |         |       |       |             |              |             |      |      |       |       |             |        | 1644 |
| Asp        | Gly     | Leu   | Ala        | Val     | Gly   | Ser   | Val         |              | Ala         | Ser  | Gly  | Ser   | _     | Ala         | Ala    |      |
|            |         |       | 515        |         |       |       |             | 520          |             |      |      |       | 525   |             |        |      |
| 33.0       | COM.    | CCA   | 3.000      | mc s    | m s m | com.  | <b>63.3</b> | mom          | <b>a.</b> a |      |      |       |       |             |        |      |
|            |         |       | ATC<br>Ile |         |       |       |             |              |             |      |      |       |       |             |        | 1692 |
| rsp        | Leu     | 530   | 116        | ser     | ıyı   | Leu   | 535         | ser          | nıs         | Thr  | гÀ2  | H1S   | Asn   | Asn         | Ser    |      |
|            |         | 330   |            | (       |       |       | 555         |              |             |      |      | 340   |       |             |        |      |
| CAT        | TGAA    | AGTO  | STC I      | rgaco   | YEATS | C TO  | TAGO        | 'AGT'I       | י פיינ      | GACA | таа  | ሙጥርሳ  | የሮሮል  | ملحلاك      |        | 1745 |
| lis        |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        | 1,43 |
|            | 545     |       |            |         |       |       |             | •            |             |      |      |       |       |             |        |      |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |
| CATO       | TACA    | GT A  | AGAA?      | ACCG    | T GO  | CGTTC | CAGI        | י דדכ        | :AGA#       | CAT  | CTTC | ACT   | CT :  | rcag!       | ATTATA | 1805 |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |
| ACCO       | TTC     | TT (  | BAACA      | ATCC#   | C C   | AGAAA | GGT?        | A GTO        | ACAT        | GTG  | TAAC | TGGC  | SAA A | <b>AATG</b> | AGGTTA | 1865 |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |
| <b>AAA</b> | CTAI    | C AT  | rggco      | GCCC    | SA A  | ATGTT | CCTI        | ר <b>ידי</b> | GTTT        | TCC  | TCAC | CAAG  | rgg ( | CTAC        | GACAC  | 1925 |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |
| ľTGA       | ATGTT   | rgg ? | \AAT?      | ACATT   | A T   | \ATTI | GTTC        | AA?          | TGT         | TGA  | GAAC | CACAT | rgc ( | STGAC       | CGTGTA | 1985 |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |
| A'I'A'I    | "I"I'GC | CT A  | ATTGT      | l'GA'I" | rt ty | AGCAG | TAGI        | r CTI        | GGCC        | CAGA | TTAT | 'GCT' | PTA ( | CGCC!       | AAATTT | 2045 |
|            |         | \     | AAAA       |         |       |       |             |              |             |      |      |       |       |             |        | 2061 |
| WW.        |         | www.  | ~~~~       | w       |       |       |             |              |             |      |      |       |       |             |        | 2001 |
|            |         |       |            |         |       |       |             |              |             |      |      |       |       |             |        |      |

## (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 544 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Leu Ala Leu Thr Ala Ser Ala Ser Ser Ala Ser Ser His Pro Tyr

1 5 10 15

Arg His Ala Ser Ala His Thr Arg Arg Pro Arg Leu Arg Ala Val Leu 20 25 30

- Ala Met Ala Gly Ser Asp Asp Pro Arg Ala Ala Pro Ala Arg Ser Val 35 40 45
- Ala Val Val Gly Ala Gly Val Ser Gly Leu Ala Ala Ala Tyr Arg Leu 50 55 60
- Arg Gln Ser Gly Val Asn Val Thr Val Phe Glu Ala Ala Asp Arg Ala 65 70 75 80
- Gly Gly Lys Ile Arg Thr Asn Ser Glu Gly Gly Phe Val Trp Asp Glu 85 90 95
- Gly Ala Asn Thr Met Thr Glu Gly Glu Trp Glu Ala Ser Arg Leu Ile 100 105 110
- Asp Asp Leu Gly Leu Gln Asp Lys Gln Gln Tyr Pro Asn Ser Gln His
  115 120 125
- Lys Arg Tyr Ile Val Lys Asp Gly Ala Pro Ala Leu Ile Pro Ser Asp 130 135 140
- Pro Ile Ser Leu Met Lys Ser Ser Val Leu Ser Thr Lys Ser Lys Ile 145 150 155 160
- Ala Leu Phe Phe Glu Pro Phe Leu Tyr Lys Lys Ala Asn Thr Arg Asn 165 170 175
- Ser Gly Lys Val Ser Glu Glu His Leu Ser Glu Ser Val Gly Ser Phe 180 185 190
- Cys Glu Arg His Phe Gly Arg Glu Val Val Asp Tyr Phe Val Asp Pro 195 200 205
- Phe Val Ala Gly Thr Ser Ala Gly Asp Pro Glu Ser Leu Ser Ile Arg 210 215 220
- His Ala Phe Pro Ala Leu Trp Asn Leu Glu Arg Lys Tyr Gly Ser Val 225 230 235 240
- Ile Val Gly Ala Ile Leu Ser Lys Leu Ala Ala Lys Gly Asp Pro Val 245 250 255
- Lys Thr Arg His Asp Ser Ser Gly Lys Arg Arg Asn Arg Arg Val Ser 260 265 270

| Phe        | Ser                       | Phe<br>275 | His                | Gly        | Gly        | Met        | Gln<br>280 | Ser        | Leu        | Ile        | Asn        | Ala<br>285 | Leu        | His                | Asn        |
|------------|---------------------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|
| Glu        | Val<br>290                | Gly        | Asp                | Asp        | Asn        | Val<br>295 | Lys        | Leu        | Gly        | Thr        | Glu<br>300 | Val        | Leu        | Ser                | Leu        |
| Ala<br>305 | Суѕ                       | Thr        | Phe                | Asp        | Gly<br>310 | Val        | Pro        | Ala        | Leu        | Gly<br>315 | Arg        | Trp        | Ser        | Ile                | Ser<br>320 |
| Val        | Asp                       | Ser        | Lys                | Asp<br>325 | Ser        | Gly        | Asp        | Lys        | Asp<br>330 | Leu        | Ala        | Ser        | Asn        | Gln<br>335         | Thr        |
| Phe        | Asp                       | Ala        | Val<br>340         | Ile        | Met        | Thr        | Ala        | Pro<br>345 | Leu        | Ser        | Asn        | Val        | Arg<br>350 | Arg                | Met        |
| Lys        | Phe                       | Thr<br>355 | Lys                | Gly        | Gly        | Ala        | Pro<br>360 | Val        | Val        | Leu        | Asp        | Phe<br>365 | Leu        | Pro                | Lys        |
| Met        | <b>Asp</b><br>370         | Туг        | Leu                | Pro        | Leu        | Ser<br>375 | Leu        | Met        | Val        | Thr        | Ala<br>380 | Phe        | Lys        | Lys                | Asp        |
| Asp<br>385 | Val                       | Lys        | Lys                | Pro        | Leu<br>390 | Glu        | Gly        | Phe        | Gly        | Val<br>395 | Leu        | Ile        | Pro        | Tyr                | Lys<br>400 |
| Glu        | Gln                       | Gln        | Lys                | His<br>405 | Gly        | Leu        | Lys        | Thr        | Leu<br>410 | Gly        | Thr        | Leu        | Phe        | Ser<br>415         | Ser        |
| Met        | Met                       | Phe        | Pro<br>420         | Asp        | Arg        | Ala        | Pro        | Asp<br>425 | Asp        | Gln        | Tyr        | Leu        | Tyr<br>430 | Thr                | Thr        |
| Phe        | Val                       | Gly<br>435 | Gly                | Ser        | His        | Asn        | Arg<br>440 | Asp        | Leu        | Ala        | Gly        | Ala<br>445 | Pro        | Thr                | Ser        |
| Ile        | <b>Leu</b><br><b>4</b> 50 | Lys        | Gln                | Leu        | Val        | Thr<br>455 | Ser        | Asp        | Leu        | Lys        | Lys<br>460 | Leu        | Leu        | Gly                | Val        |
| Glu<br>465 | Gly                       | Gln        | Pro                | Thr        | Phe<br>470 | Val        | Lys        | His        | Val        | Tyr<br>475 | Trp        | Gly        | Asn        | Ala                | Phe<br>480 |
| Pro        | Leu                       | Tyr        | Gly                | His<br>485 | Asp        | Tyr        | Ser        | Ser        | Val<br>490 | Leu        | Glu        | Ala        | Ile        | Glu<br><b>4</b> 95 | Lys        |
| Met        | Glu                       | Lys        | <b>A</b> sn<br>500 | Leu        | Pro        | Gly        | Phe        | Phe<br>505 | Tyr        | Ala        | Gly        | Asn        | Ser<br>510 | Lys                | Asp        |

Gly Leu Ala Val Gly Ser Val Ile Ala Ser Gly Ser Lys Ala Ala Asp 515 520 525

Leu Ala Ile Ser Tyr Leu Glu Ser His Thr Lys His Asn Asn Ser His 530 535 540

## (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1811 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Triticum aestivum (wheat)
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-13 (NRRL B-21545)
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 3..1589
  - (D) OTHER INFORMATION: /product= "wheat protox-1"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- GC GCA ACA ATG GCC ACC GCC ACC GTC GCG GCC GCG TCG CCG CTC CGC
  Ala Thr Met Ala Thr Ala Thr Val Ala Ala Ala Ser Pro Leu Arg

  1 5 10 15
- GGC AGG GTC ACC GGG CGC CCA CAC CGC GTC CGC CGC CGT TGC GCT ACC
  Gly Arg Val Thr Gly Arg Pro His Arg Val Arg Pro Arg Cys Ala Thr
  20 25 30
- GCG AGC AGC GCG ACC GAG ACT CCG GCG GCG CCC GGC GTG CGG CTG TCC

  Ala Ser Ser Ala Thr Glu Thr Pro Ala Ala Pro Gly Val Arg Leu Ser

|    |     |     | 35 |    |     |     | 40 |                   |     |     | 45  |    |     |
|----|-----|-----|----|----|-----|-----|----|-------------------|-----|-----|-----|----|-----|
|    |     |     |    |    |     |     |    | AGC<br>Ser        |     |     |     |    | 191 |
|    | Ala | CTG |    |    | Tyr | GGC |    | GAC<br>Asp        | Leu | CTC |     |    | 239 |
|    |     |     |    |    |     |     |    | ACC<br>Thr        |     |     |     |    | 287 |
| 80 |     |     |    | 85 |     |     |    | 90                |     |     | . – | 95 |     |
|    |     |     |    |    |     |     |    | AGC<br>Ser        |     |     |     |    | 335 |
|    |     |     |    |    |     |     |    | CTC<br>Leu        |     |     |     |    | 383 |
|    |     |     |    |    |     |     |    | CTG<br>Leu        |     |     |     |    | 431 |
|    |     |     |    |    |     |     |    | CCT<br>Pro        |     |     |     |    | 479 |
|    |     |     |    |    |     |     |    | GGC<br>Gly<br>170 |     |     |     |    | 527 |
|    |     |     |    |    |     |     |    | GAG<br>Glu        |     |     |     |    | 575 |
|    |     |     |    |    |     |     |    | ATC<br>Ile        |     |     |     |    | 623 |
|    |     |     |    |    |     |     |    | AGT<br>Ser        |     |     |     |    | 671 |

|             |              |            |       |             |              |              |            |             |            |       |       |         |            |                 | T GGA      | 719  |
|-------------|--------------|------------|-------|-------------|--------------|--------------|------------|-------------|------------|-------|-------|---------|------------|-----------------|------------|------|
| Gly         | , Ly:<br>22! |            | l Trp | Arg         | Lei          | 1 Gli<br>230 |            | ı Ile       | e Gly      | / Gl  |       |         | e Ile      | e Gl            | y Gly      |      |
|             | 22.          | •          |       |             |              | 23(          | ,          |             |            |       | 235   | •       |            |                 |            |      |
| ACC         | ATC          | C AAG      | GCG   | ATI         | CAG          | GA1          | ' AA       | A GGC       | AAG        | AA G  | ccc   | C AAZ   | A CCC      | CC              | A AGG      | 767  |
|             |              | Lys        | Ala   | Ile         | Glr          | Asp          | Lys        | Gly         | / Lys      | Ası   | ı Pro | Lys     | Pro        | Pro             | Arg        |      |
| 240         | )            |            |       |             | 245          | •            |            |             |            | 250   | )     |         |            |                 | 255        |      |
| GAT         | ccc          | CGA        | CTT   | CCG         | GCA          | CCA          | AAG        | GGA         | CAG        | . Acc | 3 GTG | e cca   | mon        | n mm            | C AGG      |      |
| Asp         | Pro          | Arg        | Leu   | Pro         | Ala          | Pro          | Lys        | Gly         | Gln        | Thr   | : Val | . Ala   | Ser        | Phe             | AGG<br>Arg | 815  |
|             |              |            |       | 260         |              |              |            |             | 265        |       |       | -       |            | 270             |            |      |
| 220         | CO           | . cm       | 000   | 3.000       |              |              |            |             |            |       |       |         |            |                 |            |      |
| Lvs         | Glv          | Leu        | Ala   | Met         | CTC          | CCG          | AAT        | GCC         | ATC        | GCA   | TCI   | ' AGG   | CTG        | GGT             | AGT<br>Ser | 863  |
|             | 3            |            | 275   |             |              |              | ASI        | 280         |            | WIG   | ser   | Arg     | Leu<br>285 |                 | Ser        |      |
|             |              |            |       |             |              |              |            |             |            |       |       |         | 200        |                 |            |      |
| AAA<br>-    | GTC          | AAG        | CTG   | TCA         | TGG          | AAG          | CTT        | ACG         | AGC        | ATT   | ACA   | AAG     | GCG        | GAC             | AAC        | 911  |
| rys         | Val          | Lys<br>290 | Leu   | Ser         | Trp          | Lys          |            | Thr         | Ser        | Ile   | Thr   | Lys     | Ala        | Asp             | Asn        |      |
|             |              | 230        |       |             |              |              | 295        |             |            |       |       | 300     |            |                 |            |      |
| CAA         | GGA          | TAT        | GTA   | TTA         | GGT          | TAT          | GAA        | ACA         | CCA        | GAA   | GGA   | CTT     | GTT        | TCA             | GTG        | 959  |
| Gln         | Gly          | Tyr        | Val   | Leu         | Gly          | Tyr          | Glu        | Thr         | Pro        | Glu   | Gly   | Leu     | Val        | Ser             | Val        | ,,,, |
|             | 305          |            |       |             |              | 310          |            |             |            |       | 315   |         |            |                 |            |      |
| CAG         | GCT          | AAA        | AGT   | GTT         | АТС          | ATG          | ACC        | እጥሮ         | CCC        | max   | m. m  | -       |            |                 | GAT        |      |
| Gln         | Ala          | Lys        | Ser   | Val         | Ile          | Met          | Thr        | Ile         | Pro        | Ser   | Tvr   | Val     | GCT        | AGT             | GAT        | 1007 |
| 320         |              |            |       |             | 325          |              |            |             |            | 330   | -3-   | · · · · | ·····u     | ner             | 335        |      |
| λ mo        | mmo          | 222        |       |             |              |              |            |             |            |       |       |         |            |                 |            |      |
| Ile         | Leu          | Arm        | CCA   | CTT         | TCA          | ATT          | GAT        | GCA         | GCA        | GAT   | GCA   | CTC     | TCA        | AAA             | TTC        | 1055 |
|             |              | 9          | Pro   | 340         | Ser          | TIE          | Asp        | АТА         | 345        | Asp   | Ala   | Leu     | Ser        |                 | Phe        |      |
|             |              |            |       |             |              |              |            |             |            |       |       |         |            | 350             |            |      |
| TAT         | TAT          | CCG        | CCA   | GTT         | GCT          | GCT          | GTA        | ACT         | GTT        | TCA   | TAT   | CCA     | AAA        | GAA             | GCT        | 1103 |
| Tyr         | Tyr          | Pro        | Pro   | Val         | Ala          | Ala          | Val        |             | Val        | Ser   | Tyr   | Pro     | Lys        | Glu             | Ala        |      |
|             |              |            | 355   |             |              |              |            | 360         |            |       |       |         | 365        |                 |            |      |
| ATT         | AGA          | AAA        | GAA   | TGC         | TTA          | ATT          | GAT        | GGG         | GAG        | CTC   | CAG   | CCT     | መጥር        | ccc             | CAC        | 1151 |
| Ile         | Arg          | Lys        | Glu   | Суѕ         | Leu          | Ile          | Asp        | Gly         | Glu        | Leu   | Gln   | Gly     | Phe        | Glv             | Gln        | 1151 |
|             |              | 370        |       |             |              |              | 375        |             |            |       |       | 380     | -          | <u></u> <u></u> |            |      |
| <b>ም</b> ምር | САТ          | CCA        | ርርም   | <b>እ</b> ርር | <b>ሮ</b> አ ላ | CC 2         | 0m2        | <b>0.</b> ~ |            | :     | _     |         |            |                 |            |      |
| TTG<br>Leu  | His          | Pro        | Ara   | noc<br>Ser  | CAA<br>Gln   | GGA<br>Gl∨   | GTC<br>Val | GAG         | ACT<br>Th∽ | TTA   | GGG   | ACA     | ATA        | TAT             | AGC        | 1199 |
|             | 385          | -          | 3     | <b>-</b>    |              | 390          | <b>741</b> | GIU         | TILE.      | neu   | 395   | Tnr     | tie        | Tyr             | Ser        |      |
|             |              |            |       |             |              |              |            |             |            |       |       |         |            |                 |            |      |

| TCT   | TCT       | CTC   | TTT   | ССТ   | AAT   | CGT   | GCT            | CCT  | GCT   | GGA  | AGA  | GTG  | TTA   | CTT   | CTG           | 1247 |
|-------|-----------|-------|-------|-------|-------|-------|----------------|------|-------|------|------|------|-------|-------|---------------|------|
| Ser   | Ser       | Leu   | Phe   | Pro   | Asn   | Arg   | Ala            | Pro  | Ala   | Gly  | Arg  | Val  | Leu   | Leu   | Leu           |      |
| 400   |           |       |       |       | 405   |       |                |      |       | 410  |      |      |       |       | 415           |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
| AAC   | TAT       | ATC   | GGG   | GGT   | TCT   | ACA   | AAT            | ACA  | GGG   | ATC  | GTC  | TCC  | AAG   | ACT   | GAG           | 1295 |
| Asn   | Tyr       | Ile   | Gly   | Gly   | Ser   | Thr   | Asn            | Thr  | Gly   | Ile  | Val  | Ser  | Lys   | Thr   | Glu           |      |
|       |           |       |       | 420   |       |       |                |      | 425   |      |      |      |       | 430   |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
| AGT   | GAC       | TTA   | GTA   | GGA   | GCC   | GTT   | GAC            | CGT  | GAC   | CTC  | AGA  | AAA  | ATG   | TTG   | ATA           | 1343 |
| Ser   | Asp       | Leu   | Val   | Gly   | Ala   | Val   | Asp            | Arg  | Asp   | Leu  | Arg  | Lys  | Met   | Leu   | Ile           |      |
|       |           |       | 435   |       |       |       |                | 440  |       |      |      |      | 445   |       |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
| AAC   | CCT       | AGA   | GCA   | GCA   | GAC   | CCT   | TTA            | GCA  | TTA   | GGG  | GTT  | CGA  | GTG   | TGG   | CCA           | 1391 |
| Asn   | Pro       | Arg   | Ala   | Ala   | Asp   | Pro   | Leu            | Ala  | Leu   | Gly  | Val  | Arg  | Val   | Trp   | Pro           |      |
|       |           | 450   |       |       |       |       | 455            |      |       |      |      | 460  |       |       |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       |           | ATA   |       |       |       |       |                |      |       |      |      |      |       |       |               | 1439 |
| Gln   | Ala       | Ile   | Pro   | Gln   | Phe   | Leu   | Ile            | Gly  | His   | Leu  | Asp  | Arg  | Leu   | Ala   | Ala           |      |
|       | 465       |       |       |       |       | 470   |                |      |       |      | 475  |      |       |       |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       |           | TCT   |       |       |       |       |                |      |       |      |      |      |       |       |               | 1487 |
| Ala   | Lys       | Ser   | Ala   | Leu   | Gly   | Gln   | Gly            | Gly  | Tyr   | Asp  | Gly  | Leu  | Phe   | Leu   | Gly           |      |
| 480   |           |       |       |       | 485   |       |                |      |       | 490  |      |      |       |       | 495           |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       |           | TAC   |       |       |       |       |                |      |       |      |      |      |       |       |               | 1535 |
| Gly   | Asn       | Tyr   | Val   |       | Gly   | Val   | Ala            | Leu  |       | Arg  | Cys  | Ile  | Glu   | Gly   | Ala           |      |
|       |           |       |       | 500   |       |       |                |      | 505   |      |      |      |       | 510   |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       |           | AGT   |       |       |       |       |                |      |       |      |      |      |       |       |               | 1583 |
| Tyr   | Glu       | Ser   |       | Ser   | Gln   | Val   | Ser            |      | Phe   | Leu  | Thr  | Lys  | _     | Ala   | Tyr           |      |
|       |           |       | 515   |       |       |       |                | 520  |       |      |      |      | 525   |       |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       | TGA       | TGG   | AAGT  | AGT ( | GCAT( | CTCT" | rc a           | PTTT | GTTG  | CAT  | ATAC | SAGG | TGAG  | 3GCT2 | AGG           | 1639 |
| Lys   |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
|       |           |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
| ATC   | 3G'TAI    | AAA ( | CATC  | ATGA  | GA T  | rctg: | ragt           | G TT | rctt' | ГААТ | TGA  | AAAA | ACA A | 'TTAA | <b>PTAGTG</b> | 1699 |
|       | <b></b> . |       |       |       |       |       |                |      |       |      | _    |      |       |       |               |      |
| ATG   | CAAT      | ATG ' | rgct  | CTTT  | CC T  | GTAG' | r <b>rc</b> g. | A GC | ATGT  | ACAT | CGG  | ratg | GGA ' | AAAT  | GTAGAA        | 1759 |
|       | <b></b> - |       |       |       |       |       |                |      |       |      |      |      |       |       |               |      |
| 'I'AA | CTA'      | TTC ' | 1'GCA | AAAG  | CA G  | IGAT  | I'T'T'I        | T TT | GAAA. | AAAA | AAA  | AAAA | AAA   | A.A   |               | 1811 |

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 528 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Ala Thr Met Ala Thr Ala Thr Val Ala Ala Ala Ser Pro Leu Arg Gly

  1 5 10 15
- Arg Val Thr Gly Arg Pro His Arg Val Arg Pro Arg Cys Ala Thr Ala 20 25 30
- Ser Ser Ala Thr Glu Thr Pro Ala Ala Pro Gly Val Arg Leu Ser Ala 35 40 45
- Glu Cys Val Ile Val Gly Ala Gly Ile Ser Gly Leu Cys Thr Ala Gln
  50 55 60
- Ala Leu Ala Thr Arg Tyr Gly Val Ser Asp Leu Leu Val Thr Glu Ala 65 70 75 80
- Arg Asp Arg Pro Gly Gly Asn Ile Thr Thr Val Glu Arg Pro Asp Glu 85 90 95
- Gly Tyr Leu Trp Glu Glu Gly Pro Asn Ser Phe Gln Pro Ser Asp Pro 100 105 110
- Val Leu Thr Met Ala Val Asp Ser Gly Leu Lys Asp Asp Leu Val Phe 115 120 125
- Gly Asp Pro Asn Ala Pro Arg Phe Val Leu Trp Glu Gly Lys Leu Arg 130 135 140
- Pro Val Pro Ser Lys Pro Gly Asp Leu Pro Phe Phe Ser Leu Met Ser 145 150 155
- Ile Pro Gly Lys Leu Arg Ala Gly Leu Gly Ala Leu Gly Ile Arg Pro 165 170 175
- Pro Pro Pro Gly Arg Glu Glu Ser Val Glu Glu Phe Val`Arg Arg Asn 180 185 190

- Leu Gly Ala Glu Val Phe Glu Arg Leu Ile Glu Pro Phe Cys Ser Gly
  195 200 205
- Val Tyr Ala Gly Asp Pro Ser Lys Leu Ser Met Lys Ala Ala Phe Gly 210 215 220
- Lys Val Trp Arg Leu Glu Glu Ile Gly Gly Ser Ile Ile Gly Gly Thr 225 230 235 240
- Ile Lys Ala Ile Gln Asp Lys Gly Lys Asn Pro Lys Pro Pro Arg Asp 245 250 255
- Pro Arg Leu Pro Ala Pro Lys Gly Gln Thr Val Ala Ser Phe Arg Lys 260 265 270
- Gly Leu Ala Met Leu Pro Asn Ala Ile Ala Ser Arg Leu Gly Ser Lys 275 280 285
- Val Lys Leu Ser Trp Lys Leu Thr Ser Ile Thr Lys Ala Asp Asn Gln 290 295 300
- Gly Tyr Val Leu Gly Tyr Glu Thr Pro Glu Gly Leu Val Ser Val Gln 305 310 315 320
- Ala Lys Ser Val Ile Met Thr Ile Pro Ser Tyr Val Ala Ser Asp Ile
  325 330 335
  - Leu Arg Pro Leu Ser Ile Asp Ala Ala Asp Ala Leu Ser Lys Phe Tyr 340 345 350
  - Tyr Pro Pro Val Ala Ala Val Thr Val Ser Tyr Pro Lys Glu Ala Ile 355 360 365
  - Arg Lys Glu Cys Leu Ile Asp Gly Glu Leu Gln Gly Phe Gly Gln Leu 370 375 380
  - His Pro Arg Ser Gln Gly Val Glu Thr Leu Gly Thr Ile Tyr Ser Ser 385
  - Ser Leu Phe Pro Asn Arg Ala Pro Ala Gly Arg Val Leu Leu Leu Asn 405 410 415
  - Tyr Ile Gly Gly Ser Thr Asn Thr Gly Ile Val Ser Lys Thr Glu Ser 420 425 430

- Asp Leu Val Gly Ala Val Asp Arg Asp Leu Arg Lys Met Leu Ile Asn 435 440 445
- Pro Arg Ala Ala Asp Pro Leu Ala Leu Gly Val Arg Val Trp Pro Gln
  450 455 460
- Ala Ile Pro Gln Phe Leu Ile Gly His Leu Asp Arg Leu Ala Ala 465 470 475 480
- Lys Ser Ala Leu Gly Gln Gly Gly Tyr Asp Gly Leu Phe Leu Gly Gly
  485
  490
  495
- Asn Tyr Val Ala Gly Val Ala Leu Gly Arg Cys Ile Glu Gly Ala Tyr 500 505 510
- Glu Ser Ala Ser Gln Val Ser Asp Phe Leu Thr Lys Tyr Ala Tyr Lys
  515 520 525
- (2) INFORMATION FOR SEQ ID NO:11:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1847 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
    - (vi) ORIGINAL SOURCE:
      - (A) ORGANISM: soybean
  - (vii) IMMEDIATE SOURCE:
    - (B) CLONE: pWDC-12 (NRRL B-21516)
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 55..1683
    - (D) OTHER INFORMATION: /product= "soybean protox-1"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

| GA TAACGAACGA ATAGTGCCAT TACTGTAACC            | AACC        | ATG   | 57  |
|------------------------------------------------|-------------|-------|-----|
|                                                |             | Met   |     |
|                                                |             | 1     |     |
| GAG ATC CTA TTC CCG CCG AAC CAA ACC            | СТТ         | CTT 1 | 05  |
| Glu Ile Leu Phe Pro Pro Asn Gln Thr            |             |       |     |
| 10 15                                          |             |       |     |
| •                                              |             |       |     |
| TCC CCA ACC TCT TTC TTC ACC TCT CCC            |             | _     | .53 |
| Ser Pro Thr Ser Phe Phe Thr Ser Pro            | Thr         | Arg   |     |
| 25 30                                          |             |       |     |
| CGC CCT AAC CCT ATT CTA CGC TGC TCC            | a mm        | 000 0 | .01 |
| Arg Pro Asn Pro Ile Leu Arg Cys Ser            |             |       | 01  |
| 40 45                                          | 116         | Ald   |     |
|                                                |             |       |     |
| TCT CCG CCC AAA ACC AGA GAC TCC GCC            | CCC         | GTG 2 | 49  |
| Ser Pro Pro Lys Thr Arg Asp Ser Ala            | Pro         | Val   |     |
| 55 60                                          |             | 65    |     |
|                                                |             |       |     |
| GGC GGA GGC GTC AGC GGC CTC TGC ATC            |             |       | 97  |
| Gly Gly Cal Ser Gly Leu Cys Ile                |             | Gln   |     |
| 75                                             | 80          |       |     |
| CAC GCC AAT GCC AAC GTC GTC GTC ACG            | GAG         | CCC 3 | 45  |
| His Ala Asn Ala Asn Val Val Val Thr            |             |       | 43  |
| 90 95                                          |             |       |     |
|                                                |             |       |     |
| GGC AAC ATC ACC ACG ATG GAG AGG GAC            | GGA         | TAC 3 | 93  |
| Gly Asn Ile Thr Thr Met Glu Arg Asp            | Gly         | Tyr   |     |
| 105 110                                        |             |       |     |
| 222 332 322 222 232                            |             |       |     |
| CCC AAC AGC TTC CAG CCT TCT GAT CCA            |             |       | 41  |
| Pro Asn Ser Phe Gln Pro Ser Asp Pro<br>120 125 | Met         | Leu   |     |
| 120                                            |             |       |     |
| AGT GGT TTA AAG GAT GAG CTT GTT TTG            | GGG         | GAT 4 | 89  |
| Ser Gly Leu Lys Asp Glu Leu Val Leu            |             |       | 0,5 |
| 135 140                                        | -           | 145   |     |
|                                                |             |       |     |
| TTT GTG TTG TGG AAC AGG AAG TTG AGG            |             |       | 37  |
| Phe Val Leu Trp Asn Arg Lys Leu Arg            | Pro         | Val   |     |
| 155                                            | 160         |       |     |
| CAM MMC COM MMC MMM CAS                        | _           |       |     |
| GAT TTG CCT TTC TTT GAC TTG ATG AGC            | <u>አ</u> ጥጥ | CCT C | 95  |

| Pro        | Gl:  | y Ly:       | s Le:         |       | r Ası | p Le        | u Pr         | o Pho<br>170 |              | e Ası      | p Le       | u Me  | 17:   |       | e Gly       |             |
|------------|------|-------------|---------------|-------|-------|-------------|--------------|--------------|--------------|------------|------------|-------|-------|-------|-------------|-------------|
| GGC        | : AA | A ATO       | C AGO         | G GC  | r GG( | TT?         | r ggʻ        | r GC         | G CTT        | r GG       | A AT       | r CG  | G CC  | r cc  | r ccr       | 633         |
| GIĀ        | Ly:  | 180         |               | g Ala | a Gly | y Phe       | e Gly<br>18! |              | a Leu        | ı Gly      | / Ile      | 9 Arg |       | Pro   | Pro         |             |
| CCA        | GG   | CAT         | GAC           | GA/   | A TCC | GT7         | GA)          | A GAC        | TTI          | GTI        | r cgr      | r cgo | AAC   | CTI   | GGT         | 681         |
| Pro        |      |             | Glu           | ı Glı | ı Ser |             |              | ı Glu        | ı Ph∈        | Val        | Arg        | J Arg | Asr   | 1 Let | Gly         |             |
|            | 195  | •           |               |       |       | 200         | )            |              |              |            | 205        | 5     |       |       |             |             |
| GAT        | GAG  | GTT         | r <b>T</b> TI | GAZ   | CGG   | TTO         | AT?          | A GAG        | CCT          | TTI        | TGT        | TCA   | GGG   | GTC   | TAT         | 729         |
| Asp        | Glu  | \Val        | Phe           | Glu   | Arg   | Leu         | Ile          | e Glu        | Pro          | Phe        | Cys        | Ser   | Gly   | Val   | Tyr         | ,25         |
| 210        |      |             |               |       | 215   | •           |              |              |              | 220        | )          |       |       |       | 225         |             |
| GCA        | GGC  | GAT         | CCI           | TCA   | AAA   | TTA         | AGI          | ' ATG        | AAA          | GCA        | GCA        | ттс   | GGG   | . 222 | GTT         | <b>77</b> 7 |
| Ala        | Gly  | Asp         | Pro           | Ser   | Lys   | Leu         | Ser          | Met          | Lys          | Ala        | Ala        | Phe   | Gly   | Lys   | Val         | ,,,         |
|            |      |             |               | 230   |       |             |              |              | 235          |            |            |       |       | 240   |             |             |
| TGG        | AAG  | CTG         | GAA           | . AAA | AAT   | GGT         | GGT          | AGC          | <b>ል</b> ጥ   | ልጥጥ        | CCT        | CCA   | 3.⊄m  | mmo   | AAA         | 005         |
| Trp        | Lys  | Leu         | Glu           | Lys   | Asn   | Gly         | Gly          | Ser          | Ile          | Ile        | Gly        | Glv   | Thr   | Phe   | AAA<br>Lys  | 825         |
|            |      |             | 245           |       |       |             |              | 250          |              |            |            | 3     | 255   |       | 2,3         |             |
| GCA        | ልጥል  | <b>CD 2</b> | GAG           | n.c.a | 3 3 M | 003         | aam          | <b></b>      |              |            |            |       |       |       |             |             |
| Ala        | Ile  | Gln         | Glu           | Ara   | AAT   | GGA         | GCT          | TCA          | AAA<br>Lys   | CCA        | CCT        | CGA   | GAT   | CCG   | CGT         | 873         |
|            |      | 260         |               |       |       | 01,         | 265          |              | пуз          | PLO        | PIO        | 270   | Asp   | Pro   | Arg         |             |
| 000        |      |             |               |       |       |             |              |              |              |            |            |       |       |       |             |             |
| Leu        | CCA  | AAA         | CCA           | AAA   | GGT   | CAG         | ACT          | GTT          | GGA          | TCT        | TTC        | CGG   | AAG   | GGA   | CTT         | 921         |
| Deu        | 275  | nys         | PIO           | ьуs   | GIÀ   | 280         | Thr          | Val          | Gly          | Ser        |            | Arg   | Lys   | Gly   | Leu         |             |
|            |      |             |               |       |       | 200         |              |              |              |            | 285        |       |       |       |             |             |
| ACC        | ATG  | TTG         | CCT           | GAT   | GCA   | ATT         | TCT          | GCC          | AGA          | CTA        | GGC        | AAC   | AAA   | GTA   | AAG         | 969         |
| Thr<br>290 | Met  | Leu         | Pro           | Asp   | Ala   | Ile         | Ser          | Ala          | Arg          | Leu        | Gly        | Asn   | Lys   | Val   | Lys         |             |
| 230        |      |             |               |       | 295   |             |              |              |              | 300        |            |       |       |       | 305         |             |
| TTA        | TCT  | TGG         | AAG           | CTT   | TCA   | AGT         | ATT          | AGT          | AAA          | CTG        | GAT        | AGT   | GGA   | GAG   | <b>T</b> AC | 1017        |
| Leu        | Ser  | Trp         | Lys           | Leu   | Ser   | Ser         | Ile          | Ser          | Lys          | Leu        | Asp        | Ser   | Gly   | Glu   | Tyr         | 101,        |
|            |      |             |               | 310   |       |             |              |              | 315          |            |            |       |       | 320   |             |             |
| AGT        | TTG  | ACA         | TAT           | GAA   | ACA   | CCA         | GAA          | GGA          | GTG          | ርጥጥ        | ጥርጥ        | ጥጥረ   | C N C | maa   |             |             |
| Ser 1      | Leu  | Thr         | Tyr           | Glu   | Thr   | Pro         | Glu          | Gly          | Val          | Val        | Ser        | Leu   | Gln   | TGC   | AAA<br>Lare | 1065        |
|            |      |             | 325           |       |       |             |              | 330          |              |            |            |       | 335   | - ,   | ,           |             |
| ACT (      | GTT  | GTC         | CTG           | ACC   | ልጥጥ   | <b>ር</b> ርጥ | ሞርረ          | m x m        | Omm.         | 00-        |            |       |       |       |             |             |
| ACT (      | Val  | Val         | Leu           | Thr   | Ile   | Pro         | Ser          | TAT<br>Tvr   | GTT  <br>Val | GCT<br>Al≈ | AGT<br>So- | ACA   | TTG   | CTG   | CGT         | 1113        |
|            |      |             |               |       | -     | •           |              | - 7 -        | val .        | мта        | SEL        | rnr   | Leu   | Leu   | Arg         |             |

|                 | 340     |        |     |      | 345   |       |        |      |                | 350 |     |     |     |      |     |
|-----------------|---------|--------|-----|------|-------|-------|--------|------|----------------|-----|-----|-----|-----|------|-----|
| CCT CTG         | TCT GC  | r GCT  | GCT | GCA  | GAT   | GCA   | СТТ    | TCA  | AAG            | TTT | TAT | TAC | ССТ | 1.   | 161 |
| Pro Leu         |         |        |     |      |       |       |        |      |                |     |     |     |     |      | _   |
| 355             |         |        |     | 360  |       |       |        |      | 365            |     | -   | •   |     |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |
| CCA GTT         | GCT GC  | A GTT  | TCC | ATA  | TCC   | TAT   | CCA    | AAA  | GAA            | GCT | АТТ | AGA | TCA | 1:   | 209 |
| Pro Val         | Ala Ala | a Val  | Ser | Ile  | Ser   | Tyr   | Pro    | Lys  | Glu            | Ala | Ile | Arg | Ser |      |     |
| 370             |         |        | 375 |      |       |       |        | 380  |                |     |     |     | 385 |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |
| GAA TGC         |         |        |     |      |       |       |        |      |                |     |     |     |     | 1:   | 257 |
| Glu Cys         | Leu Il  | asp    | Gly | Glu  | Leu   | Lys   | Gly    | Phe  | Gly            | Gln | Leu | His | Pro |      |     |
|                 |         | 390    |     |      |       |       | 395    |      |                |     |     | 400 |     |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |
| CGT AGC         |         |        |     |      |       |       |        |      |                |     |     |     |     | 13   | 305 |
| Arg Ser         |         |        | Glu | Thr  | Leu   |       | Thr    | Ile  | Tyr            | Ser |     | Ser | Leu |      |     |
|                 | 40      | Ď      |     |      |       | 410   |        |      |                | •   | 415 |     |     |      |     |
| <b>MMC 00</b> 0 | 330 00  |        | 003 | ~~m  | 001   |       | - Comm |      |                |     |     |     |     |      |     |
| TTC CCC         |         |        |     |      |       |       |        |      |                |     |     |     |     | 13   | 353 |
| Phe Pro         | 420     | , Ala  | PLO | PIO  | 425   | Arg   | vai    | rea  | Leu            |     | Asn | туг | IIe |      |     |
|                 | 420     |        |     |      | 425   |       |        |      |                | 430 |     |     |     |      |     |
| GGA GGA         | GCA AC' | TAA 7  | ACT | GGA  | ATT   | ጥጥል   | TCG    | AAG  | ACG            | GAC | ልርጥ | GAA | ርጥጥ | 1,   | 101 |
| Gly Gly         |         |        |     |      |       |       |        |      |                |     |     |     |     | 4.7  | .01 |
| 435             |         |        |     | 440  |       |       |        | -1-  | 445            |     | 502 | 014 | 200 |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |
| GTG GAA         | ACA GT  | GAT    | CGA | GAT  | TTG   | AGG   | AAA    | ATC  | СТТ            | ATA | AAC | CCA | AAT | . 14 | 149 |
| Val Glu         | Thr Va  | l Asp  | Arg | Asp  | Leu   | Arg   | Lys    | Ile  | Leu            | Ile | Asn | Pro | Asn |      |     |
| 450             |         |        | 455 |      |       |       |        | 460  |                |     |     |     | 465 |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |
| GCC CAG         |         |        |     |      |       |       |        |      |                |     |     |     |     | 14   | 197 |
| Ala Gln         | Asp Pro | ) Phe  | Val | Val  | Gly   | Val   | Arg    | Leu  | $\mathtt{Trp}$ | Pro | Gln | Ala | Ile |      |     |
|                 |         | 470    |     |      |       |       | 475    |      |                |     |     | 480 |     |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |
| CCA CAG         |         |        |     |      |       |       |        |      |                |     |     |     |     | 15   | 545 |
| Pro Gln         |         |        | Gly | His  | Leu   |       | Leu    | Leu  | Asp            | Val |     | Lys | Ala |      |     |
|                 | 48      | •      |     |      |       | 490   |        |      |                |     | 495 |     |     |      |     |
| ጥርጥ አጥር         | אמ אמ   | ኮ አርጥ  | ccc | www. | C 2 2 | ccc   | CMC    | mma  | amm            | 222 |     |     |     |      |     |
| TCT ATC         |         |        |     |      |       |       |        |      |                |     |     |     |     | 1    | 593 |
| 116             | 500     | - 1117 | GLY |      | 505   | GIÀ   | TEI    | FIIE | nen            | 510 | дтÃ | ASN | Tyr |      |     |
|                 |         |        |     |      | 243   |       |        |      |                | 210 |     |     |     |      |     |
| GTG TCT         | GGT GT  | r GCC  | TTG | GGA  | CGA   | TGC   | GTT    | GAG  | GGA            | GCC | ጥልጥ | GAG | СТЪ | 1    | 541 |
| Val Ser         |         |        |     |      |       |       |        |      |                |     |     |     |     | 1    |     |
| 515             | _       |        | -   | 520  | - 3   | - 2 - |        |      | 525            |     | -3~ | ~u  |     |      |     |
|                 |         |        |     |      |       |       |        |      |                |     |     |     |     |      |     |

1683

1743

1803

1847

| GC  | A GC         | T GA      | A GT | A AA         | C GA  | т тт      | т ст  | C AC  | A AA  | T AG      | A GT | G TA | C AA        | A   |          |
|-----|--------------|-----------|------|--------------|-------|-----------|-------|-------|-------|-----------|------|------|-------------|-----|----------|
|     |              | a Gl      | u Va | l As         | n As  | p Ph      | e Le  | u Th  | r As  | n Ar      | g Va | 1 ту | r Ly        | s   |          |
| 53  | 0            |           |      |              | 53    | 5         |       |       |       | 54        | 0    |      |             |     |          |
| TA  | GTAG         | CAGT      | TTT  | TGTT         | TTT ( | GTGG      | TGGA  | AT G  | GGTG. | ATGG      | G AC | TCTC | GTGT        | TCC | 'АТТСААТ |
| TA  | TAAT.        | aatg      | TGA  | <b>A</b> AGT | TTC ' | rcaa.     | ATTC  | GT T  | CGAT  | AGGT      | т тт | TGGC | GGCT        | тст | ATTGCTG  |
| AT. | <b>AAT</b> G | TAAA      | ATC  | CTCT         | TTA A | AGTT'     | TGAA  | AA A  | AAAA  | AAAA      | A AA | AA   |             |     |          |
| (2  | ) IN         | FORM      | ATIO | N FOI        | R SE( | ) ID      | NO:   | 12:   |       |           |      |      |             |     |          |
|     |              | (i)       | SEQ  | JENCI        | E CHA | ARAC'     | reri: | STICS | S:    |           |      |      |             |     |          |
|     |              |           |      |              |       |           |       | nino  |       | is        |      |      |             |     |          |
|     |              |           |      |              | PE:   |           |       |       |       |           |      |      |             |     |          |
|     |              |           | (I   | O) TC        | POLC  | GY:       | line  | ear   |       |           |      |      |             |     |          |
|     | (            | (ii)      | MOLE | CULE         | TYF   | E: p      | rote  | ein   |       |           |      |      |             |     |          |
|     | (            | (xi)      | SEQU | JENCE        | DES   | CRIE      | MOIT  | l: SE | Q II  | 12:       |      |      |             |     |          |
| Met | Val          | . Ser     | Val  | Phe          | Asn   | Glu       | Ile   | Leu   | Phe   | Pro       | Pro  | Asn  | Glr         | Thr | Leu      |
| 1   |              |           |      | 5            |       |           |       |       | 10    |           |      |      |             | 15  |          |
| Leu | Arg          | Pro       | Ser  | Leu          | His   | Ser       | Pro   | ጥኮኮ   | Ser   | Pho       | Dho  | mb   |             | _   | Thr      |
|     | _            |           | 20   |              |       |           | 110   | 25    |       | File      | Pne  | rnr  | Ser<br>30   |     | Thr      |
|     |              |           |      |              |       |           |       |       |       |           |      |      |             |     |          |
| Arg | Lys          | Phe<br>35 | Pro  | Arg          | Ser   | Arg       |       |       | Pro   | Ile       | Leu  | Arg  | Cys         | Ser | Ile      |
|     |              | 35        |      |              |       |           | 40    |       |       |           |      | 45   |             |     |          |
| Ala | Glu          | Glu       | Ser  | Thr          | Ala   | Ser       | Pro   | Pro   | Lys   | Thr       | Ara  | Asn  | Ser         | λla | Pro      |
|     | 50           |           |      |              |       | 55        |       |       | -     |           | 60   |      | JCI         | NI. | FIO      |
| Val | Δen          | Cre       | Val. | 17-1         | W-1   | <b>01</b> |       |       |       |           |      |      |             |     |          |
| 65  | nap          | Cys       | vai  | vai          | 70    | GIY       | GIĀ   | Gly   | Val   | Ser<br>75 | Gly  | Leu  | Суѕ         | Ile |          |
|     |              |           |      |              |       |           |       |       |       | 75        |      |      |             |     | 80       |
| Gln | Ala          | Leu       | Ala  | Thr          | Lys   | His       | Ala   | Asn   | Ala   | Asn       | Val  | Val  | Val         | Thr | Glu      |
|     |              |           |      | 85           |       |           |       |       | 90    |           |      |      |             | 95  |          |
| Ala | Arg          | Asp       | Arg  | Val          | Glv   | Glv       | Asn   | Ile   | ምb >- | ጥኮ∽       | Mos  | G1   | <b>&gt;</b> | _   | -1       |
|     | -            | -         | 100  | -            | -4    | 1         |       | 105   | ****  | THE       | net  | GIU  | Arg         | Asp | Gly      |
| _   | _            |           |      |              |       |           |       |       |       |           |      |      |             |     |          |
| Tyr | Leu          | Trp       | Glu  | Glu          | Gly   | Pro       | Asn   | Ser   | Phe   | Gln       | Pro  | Ser  | Asp         | Pro | Met      |

|   |            |            | 115        |            |            |            |            | 120        |            |            |            |            | 125        |                           |            |            |
|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------------|------------|------------|
|   | Leu        | Thr<br>130 | Met        | Val        | Val        | Asp        | Ser<br>135 | Gly        | Leu        | Lys        | Asp        | Glu<br>140 | Leu        | Val                       | Leu        | Gly        |
|   | Asp<br>145 | Pro        | Asp        | Ala        | Pro        | Arg<br>150 | Phe        | Val        | Leu        | Trp        | Asn<br>155 | Arg        | Lys        | Leu                       | Arg        | Pro        |
|   | Val        | Pro        | Gly        | Lys        | Leu<br>165 | Thr        | Asp        | Leu        | Pro        | Phe<br>170 | Phe        | Asp        | Leu        | Met                       | Ser<br>175 | Ile        |
|   | Gly        | Gly        | Lys        | Ile<br>180 | Arg        | Ala        | Gly        | Phe        | Gly<br>185 | Ala        | Leu        | Gly        | Ile        | Arg<br>190                | Pro        | Pro        |
|   | Pro        | Pro        | Gly<br>195 | His        | Glu        | Glu        | Ser        | Val<br>200 | Glu        | Glu        | Phe        | Val        | Arg<br>205 | Arg                       | Asn        | Leu        |
|   | Gly        | Asp<br>210 | Glu        | Val        | Phe        | Glu        | Arg<br>215 | Leu        | Ile        | Glu        | Pro        | Phe<br>220 | Cys        | Ser                       | Gly        | Val        |
|   | Tyr<br>225 | Ala        | Gly        | Asp        | Pro        | Ser<br>230 | Lys        | Leu        | Ser        | Met        | Lys<br>235 | Ala        | Ala        | Phe                       | Gly        | Lys<br>240 |
|   | Val        | Trp        | Lys        | Leu        | Glu<br>245 | Lys        | Asn        | Gly        | Gly        | Ser<br>250 | Ile        | Ile        | Gly        | Gly                       | Thr<br>255 | Phe        |
|   | Lys        | Ala        | Ile        | Gln<br>260 | Glu        | Arg        | Asn        | Gly        | Ala<br>265 | Ser        | Lys        | Pro        | Pro        | <b>Arg</b><br><b>27</b> 0 | Asp        | Pro        |
|   | Arg        | Leu        | Pro<br>275 | Lys        | Pro        | Lys        | Gly        | Gln<br>280 | Thr        | Val        | Gly        | Ser        | Phe<br>285 | Arg                       | Lys        | Gly        |
|   | Leu        | Thr<br>290 | Met        | Leu        | Pro        | Asp        | Ala<br>295 | Ile        | Ser        | Ala        | Arg        | Leu<br>300 | Gly        | Asn                       | Lys        | Val        |
|   | Lys<br>305 | Leu        | Ser        | Trp        | Lys        | Leu<br>310 | Ser        | Ser        | Ile        | Ser        | Lys<br>315 | Leu        | Asp        | Ser                       | Gly        | G1v<br>320 |
|   | Tyr        | Ser        | Leu        | Thr        | Tyr<br>325 | Glu        | Thr        | Pro        | Glu        | Gly<br>330 | Val        | Val        | Ser        | Leu                       | Gln<br>335 | Cys        |
| - | Lys        | Thr        | Val        | Val<br>340 | Leu        | Thr        | Ile        | Pro        | Ser<br>345 | Tyr        | Val        | Ala        | Ser        | Thr<br>350                | Leu        | Le         |
|   | Δτα        | Pro        | Len        | Car        | λla        | λla        | Δla        | Δla        | Acn        | λla        | Len        | Ser        | Lare       | Pho                       | т          | Th. 44     |

355 360 365

Pro Pro Val Ala Ala Val Ser Ile Ser Tyr Pro Lys Glu Ala Ile Arg 370 375 380

Ser Glu Cys Leu Ile Asp Gly Glu Leu Lys Gly Phe Gly Gln Leu His 385 390 395 400

Pro Arg Ser Gln Gly Val Glu Thr Leu Gly Thr Ile Tyr Ser Ser Ser 405 410 415

Leu Phe Pro Asn Arg Ala Pro Pro Gly Arg Val Leu Leu Leu Asn Tyr
420 425 430

Ile Gly Gly Ala Thr Asn Thr Gly Ile Leu Ser Lys Thr Asp Ser Glu
435
440
445

Leu Val Glu Thr Val Asp Arg Asp Leu Arg Lys Ile Leu Ile Asn Pro 450 455 460

Asn Ala Gln Asp Pro Phe Val Val Gly Val Arg Leu Trp Pro Gln Ala 465 470 475 480

Ile Pro Gln Phe Leu Val Gly His Leu Asp Leu Leu Asp Val Ala Lys
485 490 495

Ala Ser Ile Arg Asn Thr Gly Phe Glu Gly Leu Phe Leu Gly Gly Asn 500 505 510

Tyr Val Ser Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu 515 520 525

Val Ala Ala Glu Val Asn Asp Phe Leu Thr Asn Arg Val Tyr Lys
530 535 540

#### (2) INFORMATION FOR SEQ ID NO:13:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 583 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

### (iii) HYPOTHETICAL: NO

#### (ix) FEATURE:

- (A) NAME/KEY: promoter
- (B) LOCATION: 1..583
- (D) OTHER INFORMATION: /function= "arabidopsis protox-1 promoter"

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

| GAATTCCGAT | CGAATTATAT | AATTATCATA | AATTTGAATA | AGCATGTTGC | СТТТТАТТАА   | 60  |
|------------|------------|------------|------------|------------|--------------|-----|
| AGAGGTTTAA | TAAAGTTTGG | TAATAATGGA | CTTTGACTTC | AAACTCGATT | CTCATGTAAT   | 120 |
| TAATTAATAT | TTACATCAAA | ATTTGGTCAC | TAATATTACC | АААТТААТАТ | ACTAAAATGT . | 180 |
| TAATTCGCAA | ATAAAACACT | AATTCCAAAT | AAAGGGTCAT | TATGATAAAC | ACGTATTGAA   | 240 |
| CTTGATAAAG | CAAAGCAAAA | ATAATGGGTT | TCAAGGTTTG | GGTTATATAT | GACAAAAAA    | 300 |
| AAAAAAGGTT | TGGTTATATA | TCTATTGGGC | CTATAACCAT | GTTATACAAA | TTTGGGCCTA   | 360 |
| ACTAAAATAA | TAAAATAAAC | GTAATGGTCC | TTTTTATATT | TGGGTCAAAC | ССААСТСТАА   | 420 |
| ACCCAAACCA | AAGAAAAGT  | ATACGGTACG | GTACACAGAC | TTATGGTGTG | TGTGATTGCA   | 480 |
| GGTGAATATT | TCTCGTCGTC | TTCTCCTTTC | TTCTGAAGAA | GATTACCCAA | TCTGAAAAA    | 540 |
| ACCAAGAAGC | TGACAAAATT | CCGAATTCTC | TGCGATTTCC | ATG        |              | 583 |

## (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3848 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO

#### (ix) FEATURE:

- (A) NAME/KEY: promoter(B) LOCATION: 1..3848
- (D) OTHER INFORMATION: /function= "maize protox-1 promoter"

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

| TCGATCTTTC TAGGCTGAT  | C CCCAAATCT1 | CCTCCGAAGO | CCCTGGCGC    | TCTGCCCCTT   | 60   |
|-----------------------|--------------|------------|--------------|--------------|------|
| GGAGCTGGTG GCCTGAAAGA | A GCTTTGCTGT | TGCCCCGAAG | ATTGTGAGG    | T ATATTGTGAC | 120  |
| CTCTGAGACT GACTTCCTTT | GTCGTCACTT   | TGAGTGGAGT | ' TATGGATTGA | CCTGACGTGC   | 180  |
| CTCAGATGGA TTCTTCCTCC | GAAGCCCCTG   | GTCATTTCGG | AGAATCTGTA   | ATCTTATTCC   | 240  |
| CTTCTTTGGC GAAAATCTGT | CAGCTTGGAT   | GTACTCATCC | ATCTTCTGAA   | GCAGCTTCTC   | 300  |
| CAGAGTTTGT GGAGGCTTCC | TGGCGAAATA   | TTGGGCTGTA | GGTCCTGGAC   | GAAGACCCTT   | 360  |
| GATCATGGCC TCAATGACAA | TCTCATTGGG   | CACCGTAGGC | GCTTGTGCCC   | TCAATCGCAA   | 420  |
| GAACCTTCGT ACATATGCCT | GAAGGTATTC   | TTCGTGATCT | TGTGTGCATT   | GGAACAGAGC   | 480  |
| CTGAGCTGTG ACCGACTTCG | TTTGAAAGCC   | TTGGAAGCTA | GTAACCAACA   | TGTGCTTAAG   | 540  |
| CTTCTGCCAC GACGTGATAG | TCCCTGGCCG   | AAGAGAAGAA | TACCATGTTT   | GGGCTACATT   | 600  |
| CCGGACTGCC ATGACGAAGG | ACTTCGCCAT   | GACTACAGTG | TTGACCCCAT   | ACGAAGATAT   | 660  |
| AGTTGCTTCG TAGCTCATCA | GAAACTGCTT   | TGGATCTGAG | TGCCCATCAT   | ACATGGGGAG   | 720  |
| CTGAGGTGGC TTGTATGATG | GGGGCCATGG   | GGTAGCCTGC | AGTTCTGCTG   | CCAAGGGAGA   | 780  |
| AGCATCATCA AAAGTAAAGG | CATCATGATT   | AAAATCATCA | TACCATCCAT   | CCTCGTTGAA   | 840  |
| TAAGCCTTCT TGACGAAGCT | CCCTGTGTTG   | GGGCCTTCGA | TCTTGTTCAT   | CTTGAACAAG   | 900  |
| ATGACGCACT TCTTCAGTGG | CTTCGTCGAT   | CTTTCTTTGG | AGATCAGCCA   | GTCGCACCAT   | 960  |
| CTTCTCCTTC TTTCTTTGTA | CTTGTTGATG   | GATGATCTCC | ATGTCCCTGA   | TCTCTTGGTC   | 1020 |
| CAACTCCTCC TCTTGGAGTG | TCAGACTGGT   | GGCTTTCCTC | TTCTGGCTTC   | GAGCCTCTCG   | 1080 |
| AAGAGAAAGA GTTTCTTGAT | TTGGGTCCAG   | CGGCTGCAGT | GCAGTGGTCC   | CTGGTGCTGA   | 1140 |

| AGCTTTCTTC | GGTGGCATGA | CAAAGGTCAG | TGCTTGCCGA | AGGTGGTCGA | AAAGGGTTCA | 1200 |
|------------|------------|------------|------------|------------|------------|------|
| CTAGAGGTGG | GAGCCAATGT | TGGGGACTTC | TCAAGTGCTA | TGAGTTAAGA | ACAAGGCAAC | 1260 |
| ACAAAATGTT | AAATATTAAT | AGCTTTCATC | TTTCGAAGCA | TTATTTCCCT | TTGGGTATAA | 1320 |
| TGATCTTCAG | ACGAAAGAGT | CCTTCATCAT | TGCGATATAT | GTTAATAGAA | GGAGGAGCAT | 1380 |
| ATGAAATGTA | AGAGACAACA | TGAACAATCG | TGTAGCATTG | TTAATTCATC | АТСАТТТТАТ | 1440 |
| TATTATGGAA | AAATAGAAAC | AATATTGAAT | TACAAATGTA | CCTTTGGCTT | GACAGAAGAT | 1500 |
| AAAAGTACAA | GCTTGACGCA | CGAGCAAGTA | CAAGTCAGTG | TGAACAGTAC | GGGGGTACTG | 1560 |
| TTCATCTATT | TATAGGCACA | GGACACAGCC | TGTGAGAAAT | TACAGTCATG | CCCTTTACAT | 1620 |
| TTACTATTGA | CTTATAGAAA | AATCTATGAG | GACTGGATAG | CCTTTTCCCC | TTTAAGTCGG | 1680 |
| TGCCTTTTTC | CGCGATTAAG | CCGAATCTCC | CTTGCGCATA | GCTTCGGAGC | ATCGGCAACC | 1740 |
| TTCGTCACGA | TCATGCCCTT | CTCATTGTGT | ATGCTTTTAA | TCCTGAATTC | GAAGGTACCT | 1800 |
| GTCCATAAAC | CATACTTGGA | AGACATTGTT | AAATTATGTT | TTTGAGGACC | TTCGGAGGAC | 1860 |
| GAAGGCCCCC | AACAGTCGTG | TTTTTGAGGA | CCTTCGGAAG | ATGAAGGCCC | CCAACAAGAC | 1920 |
| CTATCCATAA | AACCAACCTA | TCCACAAAAC | CGACCCCATT | CACCCTTCAT | TTGCCTCACC | 1980 |
| AACAACCCTA | ATTAGGTTGT | TGGTTTAAAT | TTTTTAGGGT | CAATTTGGTC | ATCACCATCC | 2040 |
| ACTGTCACTC | CACAAACTCA | АТАТСААТАА | ACAGACTCAA | TCACCCAAAC | TGACCATACC | 2100 |
| CATAAAACCG | CCCCACCCTT | CTAGCGCCTC | GCCAGAAACC | AGAAACCCTG | ATTCAGAGTT | 2160 |
| CAAACTTAAA | ACGACCATAA | CTTTCACCTT | GGAACTCGAA | TCAGGTCCAT | TTTTTCCAA  | 2220 |
| ATCACACAAA | ATTAAATTTC | GCATCCGATA | ATCAAGCCAT | CTCTTCACTA | TGGTTTTAAG | 2280 |
| TGTTGCTCAC | ACTAGTGTAT | TTATGGACTA | ATCACCTGTG | ТАТСТСАТАС | AATAACATAT | 2340 |
| CAGTACATCT | AAGTTGTTAC | TCAATTACCA | AAACCGAATT | ATAGCCTTCG | AAAAAGGTTA | 2400 |
| TCGACTAGTC | ACTCAATTAC | СААААСТААА | CTTTAGACTT | TCATGTATGA | САТССААСАТ | 2460 |
| GACACTGTAC | TGGACTAAAC | CACCTTTCAA | GCTACACAAG | GAGCAAAAAT | AACTAATTTT | 2520 |

| CGTAGTTGT  | A GGAGCTAAA  | G TATATGTCC. | A CAACAATAG | T TAAGGGAAG  | C CCCCAAGGAC | 2580 |
|------------|--------------|--------------|-------------|--------------|--------------|------|
| TTAAAAGTC  | C TTTTACCTC  | T TGAAACTTT  | T GTCGTGGTC | T ACTTTTTCA  | C TTTAAACTTC | 2640 |
| AAAATTTGA  | С АТТТТАТСА  | C CCCTTAACT  | C TTAAAACCA | Г ТТАААТТАС. | A TTCTTACTAG | 2700 |
| ATTATAGAT  | G ATTTTGTTG: | F GAAAAGTTT  | TAAGACATG   | TTACACATT    | G ATTAAAATCA | 2760 |
| TTTGTTCAA  | TTCCTAGAG1   | Г ТАААТСТАА! | r Cttattaaa | A CTATTAGAG  | A TACTTTCACG | 2820 |
| AGCTCTAAA! | r attrttatti | г тттсаттату | GAATTTTGT:  | F AGAATTCTT  | A TAGACCTTTT | 2880 |
| TTTGTGGTT' | P AAAAGCCTTG | CCATGTTTT    | AACAAGTTT   | TTTTCTATT    | T TTTGAAATTT | 2940 |
| TCTTGGAAA  | CACTTCTAAC   | CCGGTAGAAC   | ATTTATTTTC  | CTACACTTAT   | TATCTACAACA  | 3000 |
| AAATCAACTI | ATGAAATTGT   | CTTGGAAACT   | ACCTCTAACC  | CGGTAGAAT    | AATTTGAATG   | 3060 |
| AAAATTAAAC | CAACTTACGG   | AATCGCCCAA   | CATATGTCGA  | TTAAAGTGGA   | TATGGATACA   | 3120 |
| TATGAAGAAG | CCCTAGAGAT   | AATCTAAATG   | GTTTCAGAAT  | ' TGAGGGTTAT | TTTTTGAAGT   | 3180 |
| TTGATGGGAA | GATAAGACCA   | TAACGGTAGT   | TCACAGAGAT  | AAAAGGGTTA   | TTTTTTTCAG   | 3240 |
| AAATATTTGT | GCTGCAATTG   | ATCCTGTGCC   | TCAAATTCAG  | CCTGCAACCA   | AGGCCAGGTT   | 3300 |
| CTAGAGCGAA | CAAGGCCCAC   | GTCACCCGTG   | GCCCGTCAGG  | CGAAGCAGGT   | CTTGTGCAGA   | 3360 |
| CTTTGAGAGG | GATTGGATAT   | CAACGGAACC   | AATCACGCAC  | GGCAATGCGA   | TTCCCAGCCC   | 3420 |
| ACCTGTAACG | TTCCAGTGGG   | CCATCCTTAA   | CTCCAAGCCC  | AACGGCCCTA   | CCCCATCTCG   | 3480 |
| TCGTGTCATC | CACTCCGCCG   | CACAGGCGCT   | CAGCTCCGCA  | ACGCCGCCGG   | AAATGGTCGC   | 3540 |
| CGCCACAGCC | ACCGCCATGG   | CCACCGCTGC   | ATCGCCGCTA  | CTCAACGGGA   | CCCGAATACC   | 3600 |
| TGCGCGGCTC | CGCCATCGAG   | GACTCAGCGT   | GCGCTGCGCT  | GCTGTGGCGG   | GCGGCGCGGC   | 3660 |
| CGAGGCACCG | GCATCCACCG   | GCGCGCGCT    | GTCCGCGGAC  | TGCGTTGTGG   | TGGGCGGAGG   | 3720 |
| CATCAGTGGC | CTCTGCACCG   | CGCAGGCGCT   | GGCCACGCGG  | CACGGCGTCG   | GGGACGTGCT   | 3780 |
| TGTCACGGAG | GCCCGCGCCC   | GCCCCGGCGG   | CAACATTACC  | ACCGTCGAGC   | GCCCCGAGGA   | 3840 |

AGGGTACC 3848

| (2) | INFORMATION | FOR | SEO | ID | NO: | 15: |
|-----|-------------|-----|-----|----|-----|-----|
|-----|-------------|-----|-----|----|-----|-----|

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1826 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Gossypium hirsutum (cotton)
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-15 (NRRL B-21594)
- (ix) FEATURE:
  - (A) NAME/KEY: misc\_feature
  - (B) LOCATION: 31..1647
- (D) OTHER INFORMATION: /product= "Cotton protox-1 coding region"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

| CCTCTCGCTC | GCCTGGCCCC | ACCACCAATC | ATGACGGCTC | TAATCGACCT | TTCTCTTCTC | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| CGTTCCTCGC | CCTCCGTTTC | CCCTTTCTCC | ATACCCCACC | ACCAGCATCC | GCCCGCTTT  | 120 |
| CGTAAACCTT | TCAAGCTCCG | ATGCTCCCTC | GCCGAGGGTC | CCACGATTTC | CTCATCTAAA | 180 |
| ATCGACGGGG | GAGAATCATC | CATCGCGGAT | TGCGTCATCG | TTGGAGGTGG | TATCAGTGGA | 240 |
| CTTTGCATTG | CTCAAGCTCT | CGCCACCAAG | CACCGTGACG | TCGCTTCCAA | TGTGATTGTG | 300 |
| ACGGAGGCCA | GAGACCGTGT | TGGTGGCAAC | ATCACTACCG | TTGAGAGAGA | TGGATATCTG | 360 |
| TGGGAAGAAG | GCCCCAACAG | TTTTCAGCCC | TCCGATCCTA | TTCTAACCAT | GGCCGTGGAT | 420 |

AGTGGATTGA AGGACGATTT GGTTTTAGGT GACCCTAATG CACCGCGATT TGTACTATGG 480 GAGGGAAAAC TAAGGCCTGT GCCCTCCAAG CCAACCGACT TGCCGTTTTT TGATTTGATG 540 AGCATTGCTG GAAAACTTAG GGCTGGGTTC GGGGCTATTG GCATTCGGCC TCCCCTCCG 600 GGTTATGAAG AATCGGTGGA GGAGTTTGTG CGCCGTAATC TTGGTGCTGA GGTTTTTGAA 660 CGCTTTATTG AACCATTTTG TTCAGGTGTT TATGCAGGGG ATCCTTCAAA ATTAAGCATG 720 AAAGCAGCAT TTGGAAGAT ATGGAAGCTA GAAGAGATTG GTGGCAGCAT CATTGGTGGC 780 ACTITCAAGA CAATCCAGGA GAGAAATAAG ACACCTAAGC CACCCAGAGA CCCGCGTCTG 840 CCAAAACCGA AGGGCCAAAC AGTTGGATCT TTTAGGAAGG GACTTACCAT GCTGCCTGAG 900 GCAATTGCTA ACAGTTTGGG TAGCAATGTA AAATTATCTT GGAAGCTTTC CAGTATTACC 960 AAATTGGGCA ATGGAGGGTA TAACTTGACA TTTGAAACAC CTGAAGGAAT GGTATCTCTT 1020 CAGAGTAGAA GTGTTGTAAT GACCATTCCA TCCCATGTTG CCAGTAACTT GTTGCATCCT 1080 CTCTCGGCTG CTGCTGCAGA TGCATTATCC CAATTTTATT ATCCTCCAGT TGCATCAGTC 1140 ACAGTCTCCT ATCCAAAAGA AGCCATTCGA AAAGAATGTT TGATTGATGG TGAACTTAAG 1200 GGGTTTGGCC AGTTGCACCC ACGCAGCCAA GGAATTGAAA CTTTAGGGAC GATATACAGT 1260 TCATCACTTT TCCCCAATCG AGCTCCATCT GGCAGGGTGT TGCTCTTGAA CTACATAGGA 1320 GGAGCTACCA ACACTGGAAT TTTGTCCAAG ACTGAAGGGG AACTTGTAGA AGCAGTTGAT 1380 CGTGATTTGA GAAAAATGCT TATAAATCCT AATGCAAAGG ATCCTCTTGT TTTGGGTGTA 1440 AGAGTATGGC CAAAAGCCAT TCCACAGTTC TTGGTTGGTC ATTTGGATCT CCTTGATAGT 1500 GCAAAAATGG CTCTCAGGGA TTCTGGGTTT CATGGACTGT TTCTTGGGGG CAACTATGTA 1560 1620 GAATTCCTGT CACAATATGC ATACAAATAA TATTGAAATT CTTGTCAGGC TGCAAATGTA 1680 GAAGTCAGTT ATTGGATAGT ATCTCTTTAG CTAAAAAATT GGGTAGGGTT TTTTTTGTTA 1740

GTTCCTTGAC CACTTTTGG GGTTTTCATT AGAACTTCAT ATTTGTATAT CATGTTGCAA

TATCAAAAAA AAAAAAAAA AAAAAA

1826

- (2) INFORMATION FOR SEQ ID NO:16:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 539 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: not relevant
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Thr Ala Leu Ile Asp Leu Ser Leu Leu Arg Ser Ser Pro Ser Val 1 5 10 15

Ser Pro Phe Ser Ile Pro His His Gln His Pro Pro Arg Phe Arg Lys
20 25 30

Pro Phe Lys Leu Arg Cys Ser Leu Ala Glu Gly Pro Thr Ile Ser Ser 35 40 45

Ser Lys Ile Asp Gly Glu Ser Ser Ile Ala Asp Cys Val Ile Val 50 55 60

Gly Gly Gly Ile Ser Gly Leu Cys Ile Ala Gln Ala Leu Ala Thr Lys 65 70 75 80

His Arg Asp Val Ala Ser Asn Val Ile Val Thr Glu Ala Arg Asp Arg 85 90 95

Val Gly Gly Asn Ile Thr Thr Val Glu Arg Asp Gly Tyr Leu Trp Glu
100 105 110

Glu Gly Pro Asn Ser Phe Gln Pro Ser Asp Pro Ile Leu Thr Met Ala 115 120 125

Val Asp Ser Gly Leu Lys Asp Asp Leu Val Leu Gly Asp Pro Asn Ala 130 135 140

| Pr<br>14   |            | g 1        | Ph∈        | e Vai      | l Lei      | 150        |            | u Gly      | y Ly:        | s Le       | u Ar<br>15 |                   | o Va                   | l Pro      | o Se       | 160        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|-------------------|------------------------|------------|------------|------------|
| Pr         | o Th       | r i        | Asp        | Let        | 165        |            | Phe        | e Ası      | ) Lei        | 170        |            | r Ile             | e Ala                  | a Gly      | / Lys      | Leu        |
| Ar         | g Al       | a (        | 31y        | Phe<br>180 |            | ' Ala      | Ile        | e Gly      | 7 Ile<br>185 |            | g Pro      | Pro               | Pro                    | Pro<br>190 |            | Tyr        |
| Gl         | ı Gl       |            | Ser<br>195 |            | . Glu      | Glu        | Phe        | 200        |              | y Arg      | j Ası      | ı Lev             | Gl <sub>3</sub><br>205 |            | Glu        | Val        |
| Phe        | e Gl       | u A<br>O   | ۱rg        | Phe        | lle        | Glu        | Pro<br>215 |            | Cys          | Ser        | G13        | / Val             |                        | Ala        | Gly        | Asp        |
| Pro<br>225 | Sei        | r I        | ys         | Leu        | Ser        | Met<br>230 | Lys        | Ala        | Ala          | Phe        | Gly<br>235 |                   | Val                    | Trp        | Lys        | Leu<br>240 |
| Glu        | ı Glı      | ı I        | le         | Gly        | Gly<br>245 | Ser        | Ile        | Ile        | Gly          | Gly<br>250 |            | Phe               | Lys                    | Thr        | Ile<br>255 | Gln        |
| Glu        | Arg        | JА         | sn         | Lys<br>260 | Thr        | Pro        | Lys        | Pro        | Pro<br>265   | Arg        | Asp        | Pro               | Arg                    | Leu<br>270 | Pro        | Lys        |
| Pro        | Lys        | G<br>2     | 1у<br>75   | Gln        | Thr        | Val        | Gly        | Ser<br>280 | Phe          | Arg        | Lys        | Gly               | Leu<br>285             | Thr        | Met        | Leu        |
| Pro        | Glu<br>290 | <b>A</b> . | la         | Ile        | Ala        | Asn        | Ser<br>295 | Leu        | Gly          | Ser        | Asn        | Val               | Lys                    | Leu        | Ser        | Trp        |
| Lys<br>305 | Leu        | Se         | er         | Ser        | Ile        | Thr<br>310 | Lys        | Leu        | Gly          | Asn        | Gly<br>315 | Gly               | Tyr                    | Asn        | Leu        | Thr<br>320 |
| Phe        | Glu        | Tì         | ır         | Pro        | Glu<br>325 | Gly        | Met        | Val        | Ser          | Leu<br>330 | Gln        | Ser               | Arg                    | Ser        | Val<br>335 | Val        |
| Met        | Thr        | 11         | le         | Pro<br>340 | Ser        | His        | Val        | Ala        | Ser<br>345   | Asn        | Leu        | Leu               | His                    | Pro<br>350 | Leu        | Ser        |
| Ala        | Ala        | A1<br>35   | .a .       | Ala        | Asp        | Ala        | Leu        | Ser<br>360 | Gln          | Phe        | Tyr        | Туг               | Pro<br>365             | Pro        | Val        | Ala        |
| Ser        | Val<br>370 | Th         | ır '       | Val        | Ser        | Tyr        | Pro<br>375 | Lys        | Glu          | Ala        | Ile        | <b>Arg</b><br>380 | Lys                    | Glu        | Cys        | Leu        |

Ile Asp Gly Glu Leu Lys Gly Phe Gly Gln Leu His Pro Arg Ser Gln 385 390 395 400

Gly Ile Glu Thr Leu Gly Thr Ile Tyr Ser Ser Ser Leu Phe Pro Asn 405 410 415

Arg Ala Pro Ser Gly Arg Val Leu Leu Leu Asn Tyr Ile Gly Gly Ala
420 425 430

Thr Asn Thr Gly Ile Leu Ser Lys Thr Glu Gly Glu Leu Val Glu Ala 435 440 445

Val Asp Arg Asp Leu Arg Lys Met Leu Ile Asn Pro Asn Ala Lys Asp 450 455 460

Pro Leu Val Leu Gly Val Arg Val Trp Pro Lys Ala Ile Pro Gln Phe 465 470 475 480

Leu Val Gly His Leu Asp Leu Leu Asp Ser Ala Lys Met Ala Leu Arg
485 490 495

Asp Ser Gly Phe His Gly Leu Phe Leu Gly Gly Asn Tyr Val Ser Gly 500 505 510

Val Ala Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu Val Ala Ala Glu 515 520 525

Val Lys Glu Phe Leu Ser Gln Tyr Ala Tyr Lys 530 535

#### (2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1910 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

#### (vi) ORIGINAL SOURCE:

(A) ORGANISM: Beta vulgaris (Sugar Beet)

#### (vii) IMMEDIATE SOURCE:

(B) CLONE: pWDC-16 (NRRL B-21595N)

#### (ix) FEATURE:

- (A) NAME/KEY: misc\_feature
- (B) LOCATION: 1..1680
- (D) OTHER INFORMATION: /product= "Sugar Beet Protox-1 coding region"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ATGAAATCAA TGGCGTTATC AAACTGCATT CCACAGACAC AGTGCATGCC ATTGCGCAGC 60 AGCGGGCATT ACAGGGGTAA TTGTATCATG TTGTCAATTC CATGTAGTTT AATTGGAAGA 120 CGAGGTTATT ATTCACATAA GAAGAGGAGG ATGAGCATGA GTTGCAGCAC AAGCTCAGGC 180 TCAAAGTCAG CGGTTAAAGA AGCAGGATCA GGATCAGGTG CAGGAGGATT GCTAGACTGC 240 GTAATCGTTG GAGGTGGAAT TAGCGGGCTT TGCATCGCGC AGGCTCTTTG TACAAAACAC 300 TCCTCTTCCT CTTTATCCCC AAATTTTATA GTTACAGAGG CCAAAGACAG AGTTGGCGGC 360 AACATCGTCA CTGTGGAGGC CGATGGCTAT ATCTGGGAGG AGGGACCCAA TAGCTTCCAG 420 CCTTCCGACG CGGTGCTCAC CATGGCGGTC GACAGTGGCT TGAAAGATGA GTTGGTGCTC 480 GGAGATCCCA ATGCTCCTCG CTTTGTGCTA TGGAATGACA AATTAAGGCC CGTACCTTCC 540 AGTCTCACCG ACCTCCCTTT CTTCGACCTC ATGACCATTC CGGGCAAGAT TAGGGCTGCT 600 CTTGGTGCTC TCGGATTTCG CCCTTCTCCT CCACCTCATG AGGAATCTGT TGAACACTTT 660 GTGCGTCGTA ATCTCGGAGA TGAGGTCTTT GAACGCTTGA TTGAACCCTT TTGTTCAGGT 720 GTGTATGCCG GTGATCCTGC CAAGCTGAGT ATGAAAGCTG CTTTTGGGAA GGTCTGGAAG 780 TTGGAGCAAA AGGGTGGCAG CATAATTGGT GGCACTCTCA AAGCTATACA GGAAAGAGGG 840 AGTAATCCTA AGCCGCCCCG TGACCAGCGC CTCCCTAAAC CAAAGGGTCA GACTGTTGGA 900

| TCCTTTAGAA AGO | GGACTCGT   | TATGTTGCCT | ACCGCCATTT | CTGCTCGACT | TGGCAGTAGA | 960  |
|----------------|------------|------------|------------|------------|------------|------|
| GTGAAACTAT CTT | rggaccct   | TTCTAGTATC | GTAAAGTCAC | TCAATGGAGA | ATATAGTCTG | 1020 |
| ACTTATGATA CCC | CCAGATGG   | CTTGGTTTCT | GTAAGAACCA | AAAGTGTTGT | GATGACTGTT | 1080 |
| CCATCATATG TTC | GCAAGTAG   | GCTTCTTCGT | CCACTTTCAG | ACTCTGCTGC | AGATTCTCTT | 1140 |
| TCAAAATTTT ACT | PATCCACC . | AGTTGCAGCA | GTGTCACTTT | CCTATCCTAA | AGAAGCGATC | 1200 |
| AGATCAGAAT GCT | rtgattaa ' | TGGTGAACTT | CAAGGTTTCG | GGCAACTACA | TCCCCGCAGT | 1260 |
| CAGGGTGTGG AAA | ACCTTGGG . | AACAATTTAT | AGTTCGTCTC | TTTTCCCTGG | TCGAGCACCA | 1320 |
| CCTGGTAGGA TCT | TTGATCTT ( | GAGCTACATC | GGAGGTGCTA | AAAATCCTGG | САТАТТАААС | 1380 |
| AAGTCGAAAG ATC | GAACTTGC   | CAAGACAGTT | GACAAGGACC | TGAGAAGAAT | GCTTATAAAT | 1440 |
| CCTGATGCAA AAC | CTTCCTCG ' | TGTACTGGGT | GTGAGAGTAT | GGCCTCAAGC | AATACCCCAG | 1500 |
| TTTTCTATTG GGC | CACTTTGA ' | TCTGCTCGAT | GCTGCAAAAG | CTGCTCTGAC | AGATACAGGG | 1560 |
| GTCAAAGGAC TGT | rttcttgg ' | TGGCAACTAT | GTTTCAGGTG | TTGCCTTGGG | GCGGTGTATA | 1620 |
| GAGGGTGCTT ATO | GAGTCTGC   | AGCTGAGGTA | GTAGATTTCC | TCTCACAGTA | CTCAGACAAA | 1680 |
| TAGAGCTTCA GCA | ATCCTGTG ' | TAATTCAACA | CAGGCCTTTT | TGTATCTGTT | GTGCGCGCAT | 1740 |
| GTAGTCTGGT CGT | rggtgcta ( | GGATTGATTA | GTTGCTCTGC | TGTGTGATCC | ACAAGAATTT | 1800 |
| TGATGGAATT TT  | rccagatg ' | TGGGCATTAT | ATGTTGCTGT | CTTATAAATC | CTTAATTTGT | 1860 |
| ACGTTTAGTG AAT | PTACACCG   | CATTTGATGA | СТААААААА  | ААААААААА  |            | 1910 |

### (2) INFORMATION FOR SEQ ID NO:18:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 560 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant

### (ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Met Lys Ser Met Ala Leu Ser Asn Cys Ile Pro Gln Thr Gln Cys Met

  1 5 10 15
- Pro Leu Arg Ser Ser Gly His Tyr Arg Gly Asn Cys Ile Met Leu Ser 20 25 30
- Ile Pro Cys Ser Leu Ile Gly Arg Arg Gly Tyr Tyr Ser His Lys Lys
  35 40 45
- Arg Arg Met Ser Met Ser Cys Ser Thr Ser Ser Gly Ser Lys Ser Ala 50 55 60
- Val Lys Glu Ala Gly Ser Gly Ser Gly Ala Gly Gly Leu Leu Asp Cys 65 70 75 80
- Val Ile Val Gly Gly Ile Ser Gly Leu Cys Ile Ala Gln Ala Leu
  85 90 95
- Cys Thr Lys His Ser Ser Ser Ser Leu Ser Pro Asn Phe Ile Val Thr
  100 105 110
- Glu Ala Lys Asp Arg Val Gly Gly Asn Ile Val Thr Val Glu Ala Asp 115 120 125
- Gly Tyr Ile Trp Glu Glu Gly Pro Asn Ser Phe Gln Pro Ser Asp Ala 130 135 140
- Val Leu Thr Met Ala Val Asp Ser Gly Leu Lys Asp Glu Leu Val Leu 145 55 560
- Gly Asp Pro Asn Ala Pro Arg Phe Val Leu Trp Asn Asp Lys Leu Arg
- Pro Val Pro Ser Ser Leu Thr Asp Leu Pro Phe Phe Asp Leu Met Thr 180 185 190
- Ile Pro Gly Lys Ile Arg Ala Ala Leu Gly Ala Leu Gly Phe Arg Pro 195 200 205
- Ser Pro Pro Pro His Glu Glu Ser Val Glu His Phe Val Arg Arg Asn 210 215 220

| Leu        | Gly               | Asp        | Glu        | Val        | Phe        | Glu        | Arg        | Leu        | Ile        | Glu        | Pro        | Phe        | Cys        | Ser        | Gly        |
|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 225        |                   |            |            |            | 230        |            |            |            |            | 235        |            |            |            |            | 240        |
| Val        | Tyr               | Ala        | Gly        | Asp<br>245 | Pro        | Ala        | Lys        | Leu        | Ser<br>250 | Met        | Lys        | Ala        | Ala        | Phe<br>255 | Gly        |
| Lys        | Val               | Trp        | Lys<br>260 | Leu        | Glu        | Gln        | Lys        | Gly<br>265 | Gly        | Ser        | Ile        | Ile        | Gly<br>270 | Gly        | Thr        |
| Leu        | Lys               | Ala<br>275 | Ile        | Gln        | Glu        | Arg        | Gly<br>280 | Ser        | Asn        | Pro        | Lys        | Pro<br>285 | Pro        | Arg        | Asp        |
| Gln        | <b>Arg</b><br>290 | Leu        | Pro        | Lys        | Pro        | Lys<br>295 | Gly        | Gln        | Thr        | Val        | 300        | Ser        | Phe        | Arg        | Lys        |
| Gly<br>305 | Leu               | Val        | Met        | Leu        | Pro<br>310 | Thr        | Ala        | Ile        | Ser        | Ala<br>315 | Arg        | Leu        | Gly        | Ser        | Arg<br>320 |
| Val        | Lys               | Leu        | Ser        | Trp<br>325 | Thr        | Leu        | Ser        | Ser        | Ile<br>330 | Val        | Lys        | Ser        | Leu        | Asn<br>335 | Gly        |
| Glu        | Tyr               | Ser        | Leu<br>340 | Thr        | Tyr        | Asp        | Thr        | Pro<br>345 | Asp        | Gly        | Leu        | Val        | Ser<br>350 | Val        | Arg        |
| Thr        | Lys               | Ser<br>355 | Val        | Val        | Met        | Thr        | Val<br>360 | Pro        | Ser        | Tyr        | Val        | Ala<br>365 | Ser        | Arg        | Leu        |
| Leu        | Arg<br>370        | Pro        | Leu        | Ser        | Asp        | Ser<br>375 | Ala        | Ala        | Asp        | Ser        | Leu<br>380 | Ser        | Lys        | Phe        | Туг        |
| Tyr<br>385 | Pro               | Pro        | Val        | Ala        | Ala<br>390 | Val        | Ser        | Leu        | Ser        | Tyr<br>395 | Pro        | Lys        | Glu        | Ala        | Ile<br>400 |
| Arg        | Ser               | Glu        | Cys        | Leu<br>405 | Ile        | Asn        | Gly        | Glu        | Leu<br>410 | Gln        | Gly        | Phe        | Gly        | Gln<br>415 | Leu        |
| His        | Pro               | Arg        | Ser<br>420 | Gln        | Gly        | Val        | Glu        | Thr<br>425 | Leu        | Gly        | Thr        | Ile        | Tyr<br>430 | Ser        | Ser        |
| Ser        | Leu               | Phe<br>435 | Pro        | Gly        | Arg        | Ala        | Pro<br>440 | Pro        | Gly        | Arg        | Ile        | Leu<br>445 | Ile        | Leu        | Ser        |
| Tyr        | 11e<br>450        | Gly        | Gly        | Ala        | Lys        | Asn<br>455 | Pro        | Gly        | Ile        | Leu        | Asn<br>460 | Lys        | Ser        | Lys        | Asp        |

Glu Leu Ala Lys Thr Val Asp Lys Asp Leu Arg Arg Met Leu Ile Asn 465 470 475 480

Pro Asp Ala Lys Leu Pro Arg Val Leu Gly Val Arg Val Trp Pro Gln
485 490 495

Ala Ile Pro Gln Phe Ser Ile Gly His Phe Asp Leu Leu Asp Ala Ala 500 505 510

Lys Ala Ala Leu Thr Asp Thr Gly Val Lys Gly Leu Phe Leu Gly Gly 515 520 525

Asn Tyr Val Ser Gly Val Ala Leu Gly Arg Cys Ile Glu Gly Ala Tyr 530 535 540

Glu Ser Ala Ala Glu Val Val Asp Phe Leu Ser Gln Tyr Ser Asp Lys 545 550 550 560

## (2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1784 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Brassica napus (rape)
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-17 (NRRL B-21615)
- (ix) FEATURE:
  - (A) NAME/KEY: misc\_feature
  - (B) LOCATION: 47..1654
- (D) OTHER INFORMATION: /product= "Rape Protox-1 coding region"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

| GGGCCCCCC  | CAAAATTGAG | GATTCTCCTT | CTCGCGGGCG | ATCGCCATGG | ATTTATCTCT | 60   |
|------------|------------|------------|------------|------------|------------|------|
| TCTCCGTCCG | CAGCCATTCC | TATCGCCATT | CTCAAATCCA | TTTCCTCGGT | CGCGTCCCTA | 120  |
| CAAGCCTCTC | AACCTCCGTT | GCTCCGTATC | CGGTGGATCC | GTCGTCGGCT | СТТСТАСААТ | 180  |
| CGAAGGCGGA | GGAGGAGGTA | AAACCGTCAC | GGCGGACTGC | GTGATCGTCG | GCGGAGGAAT | 240  |
| CAGCGGCCTG | TGCATTGCGC | AAGCGCTCGT | GACGAAGCAC | CCAGACGCTG | CAAAGAATGT | 300  |
| GATGGTGACG | GAGGCGAAGG | ACCGTGTGGG | AGGGAATATC | ATCACGCGAG | AGGAGCAAGG | 360  |
| GTTTCTATGG | GAAGAAGGTC | CCAATAGCTT | TCAGCCGTCT | GATCCTATGC | TCACTATGGT | 420  |
| GGTAGATAGT | GGTTTGAAAG | ATGATCTAGT | CTTGGGAGAT | CCTACTGCTC | CGAGGTTTGT | 480  |
| GTTGTGGAAT | GGGAAGCTGA | GGCCGGTTCC | GTCGAAGCTA | ACTGACTTGC | CTTTCTTTGA | 540  |
| CTTGATGAGT | ATTGGAGGGA | AGATTAGAGC | TGGGTTTGGT | GCCATTGGTA | TTCGACCTTC | 600  |
| ACCTCCGGGT | CGTGAGGAAT | CAGTGGAAGA | GTTTGTAAGG | CGTAATCTTG | GTGATGAGGT | 660  |
| TTTTGAGCGC | TTGATTGAAC | CCTTTTGCTC | AGGTGTTTAT | GCGGGAGATC | CTGCGAAACT | 720  |
| GAGTATGAAA | GCAGCTTTTG | GGAAGGTTTG | GAAGCTAGAG | GAGAATGGTG | GGAGCATCAT | 780  |
| TGGTGGTGCT | TTTAAGGCAA | TTCAAGCGAA | AAATAAAGCT | CCCAAGACAA | CCCGAGATCC | 840  |
| GCGTCTGCCA | AAGCCAAAGG | GCCAAACTGT | TGGTTCTTTC | AGGAAAGGAC | TCACAATGCT | 900  |
| GCCAGAGGCA | ATCTCCGCAA | GGTTGGGTGA | CAAGGTGAAA | GTTTCTTGGA | AGCTCTCAAG | 960  |
| TATCACTAAG | CTGGCCAGCG | GAGAATATAG | CTTAACTTAC | GAAACTCCGG | AGGGTATAGT | 1020 |
| CACTGTACAG | AGCAAAAGTG | TAGTGATGAC | TGTGCCATCT | CATGTTGCTA | GTAGTCTCTT | 1080 |
| GCGCCCTCTC | TCTGATTCTG | CAGCTGAAGC | GCTCTCAAAA | СТСТАСТАТС | CGCCAGTTGC | 1140 |
| AGCCGTATCC | ATCTCATACG | CGAAAGAAGC | AATCCGAAGC | GAATGCTTAA | TAGATGGTGA | 1200 |
| ACTAAAAGGG | TTCGGCCAGT | TGCATCCACG | CACGCAAAAA | GTGGAAACTC | TTGGAACAAT | 1260 |

| ATACAGTTCA | TCGCTCTTTC | CCAACCGAGC | ACCGCCTGGA | AGAGTATTGC | TATTGAACTA | 1320 |
|------------|------------|------------|------------|------------|------------|------|
| CATCGGTGGA | GCTACCAACA | CTGGGATCTT | ATCAAAGTCG | GAAGGTGAGT | TAGTGGAAGC | 1380 |
| AGTAGATAGA | GACTTGAGGA | AGATGCTGAT | AAAGCCAAGC | TCGACCGATC | CACTTGTACT | 1440 |
| TGGAGTAAAA | TTATGGCCTC | AAGCCATTCC | TCAGTTTCTG | ATAGGTCACA | TTGATTTGGT | 1500 |
| AGACGCAGCG | AAAGCATCGC | TCTCGTCATC | TGGTCATGAG | GGCTTATTCT | TGGGTGGAAA | 1560 |
| TTACGTTGCC | GGTGTAGCAT | TGGGTCGGTG | TGTGGAAGGT | GCTTATGAAA | CTGCAACCCA | 1620 |
| AGTGAATGAT | TTCATGTCAA | GGTATGCTTA | CAAGTAATGT | AACGCAGCAA | CGATTTGATA | 1680 |
| CTAAGTAGTA | GATTTTGCAG | TTTTGACTTT | AAGAACACTC | TGTTTGTGAA | AAATTCAAGT | 1740 |
| CTGTGATTGA | GTAAATTTAT | GTATTATTAC | ТААААААА   | AAAA       |            | 1784 |

# (2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 536 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: not relevant
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Asp Leu Ser Leu Leu Arg Pro Gln Pro Phe Leu Ser Pro Phe Ser 1 5 10 15

Asn Pro Phe Pro Arg Ser Arg Pro Tyr Lys Pro Leu Asn Leu Arg Cys 20 25 30

Ser Val Ser Gly Gly Ser Val Val Gly Ser Ser Thr Ile Glu Gly Gly 35 40 45

Gly Gly Cly Lys Thr Val Thr Ala Asp Cys Val Ile Val Gly Gly Gly 50 55 60

| Ile<br>65         | Ser               | Gly        | Leu               | Cys        | Ile<br>70         | Ala        | Gln        | Ala        | Leu               | Val<br>75  | Thr        | Lys        | His        | Pro               | Asp<br>80  |
|-------------------|-------------------|------------|-------------------|------------|-------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|
| Ala               | Ala               | Lys        | Asn               | Val<br>85  | Met               | Val        | Thr        | Glu        | Ala<br>90         | Lys        | Asp        | Arg        | Val        | Gly<br>95         | Gly        |
| Asn               | Ile               | Ile        | Thr<br>100        | Arg        | Glu               | Glu        | Gln        | Gly<br>105 | Phe               | Leu        | Trp        | Glu        | Glu<br>110 | Gly               | Pro        |
| Asn               | Ser               | Phe<br>115 | Gln               | Pro        | Ser               | Asp        | Pro<br>120 | Met        | Leu               | Thr        | Met        | Val<br>125 | Val        | Asp               | Ser        |
| Gly               | <b>Leu</b><br>130 | Lys        | Asp               | Asp        | Leu               | Val<br>135 | Leu        | Gly        | Asp               | Pro        | Thr<br>140 | Ala        | Pro        | Arg               | Phe        |
| Val<br>145        | Leu               | Trp        | Asn               | Gly        | <b>Lys</b><br>150 | Leu        | Arg        | Pro        | Val               | Pro<br>155 | Ser        | Lys        | Leu        | Thr               | Asp        |
| Leu               | Pro               | Phe        | Phe               | Asp<br>165 | Leu               | Met        | Ser        | Ile        | Gly<br>170        | Gly        | Lys        | Ile        | Arg        | <b>Ala</b><br>175 | Gly        |
| Phe               | Gly               | Ala        | Ile<br>180        | Gly        | Ile               | Arg        | Pro        | Ser<br>185 | Pro               | Pro        | Gly        | Arg        | Glu<br>190 | Glu               | Ser        |
| Val               | Glu               | Glu<br>195 | Phe               | Val        | Arg               | Arg        | Asn<br>200 | Leu        | Gly               | Asp        | Glu        | Val<br>205 | Phe        | Glu               | Arg        |
| Leu               | Ile<br>210        | Glu        | Pro               | Phe        | Суз               | Ser<br>215 | Gly        | Val        | Tyr               | Ala        | Gly<br>220 | Asp        | Pro        | Ala               | Lys        |
| <b>Leu</b><br>225 | Ser               | Met        | Lys               | Ala        | Ala<br>230        | Phe        | Gly        | Lys        | Val               | Trp<br>235 | Lys        | Leu        | Glu        | Glu               | Asn<br>240 |
| Gly               | Gly               | Ser        | Ile               | Ile<br>245 | Gly               | Gly        | Ala        | Phe        | <b>Lys</b><br>250 | Ala        | Ile        | Gln        | Ala        | <b>Lys</b><br>255 | Asr        |
| Lys               | Ala               | Pro        | <b>Lys</b><br>260 | Thr        | Thr               | Arg        | Asp        | Pro<br>265 | Arg               | Leu        | Pro        | Lys        | Pro<br>270 | Lys               | Gly        |
| Gln               | Thr               | Val<br>275 | Gly               | Ser        | Phe               | Arg        | Lys<br>280 | Gly        | Leu               | Thr        | Met        | Leu<br>285 | Pro        | Glu               | Ala        |
| Ile               | Ser<br>290        | Ala        | Arg               | Leu        | Gly               | Asp<br>295 | Lys        | Val        | Lys               | Val        | Ser        | Trp        | Lys        | Leu               | Sei        |

530

| Ser<br>305 |            | Thr               | Lys        | Leu        | Ala<br>310 |                    | Gly               | Glu        | Туг        | Ser<br>315 |            | Thr        | Туг                | Glu        | Thr<br>320 |
|------------|------------|-------------------|------------|------------|------------|--------------------|-------------------|------------|------------|------------|------------|------------|--------------------|------------|------------|
| Pro        | Glu        | Gly               | ' Ile      | Val<br>325 |            | Val                | Gln               | Ser        | Lys<br>330 |            | Val        | Val        | Met                | Thr        | Val        |
| Pro        | Ser        | His               | Val<br>340 |            | Ser        | Ser                | Leu               | Leu<br>345 |            | Pro        | Leu        | Ser        | <b>A</b> sp<br>350 | Ser        | Ala        |
| Ala        | Glu        | Ala<br>355        |            | Ser        | Lys        | Leu                | Туг<br>360        | Tyr        | Pro        | Pro        | Val        | Ala<br>365 | Ala                | Val        | Ser        |
| Ile        | Ser<br>370 | Tyr               | Ala        | Lys        | Glu        | <b>Al</b> a<br>375 | Ile               | Arg        | Ser        | Glu        | Cys<br>380 | Leu        | Ile                | Asp        | Gly        |
| Glu<br>385 |            | Lys               | Gly        | Phe        | Gly<br>390 | Gln                | Leu               | His        | Pro        | Arg<br>395 | Thr        | Gln        | Lys                | Val        | Glu<br>400 |
| Thr        | Leu        | Gly               | Thr        | Ile<br>405 | Tyr        | Ser                | Ser               | Ser        | Leu<br>410 | Phe        | Pro        | Asn        | Arg                | Ala<br>415 | Pro        |
| Pro        | Gly        | Arg               | Val<br>420 | Leu        | Leu        | Leu                | Asn               | Tyr<br>425 | Ile        | Gly        | Gly        | Ala        | Thr<br>430         | Asn        | Thr        |
| Gly        | Ile        | Leu<br>435        | Ser        | Lys        | Ser        | Glu                | Gly<br>440        | Glu        | Leu        | Val        | Glu        | Ala<br>445 | Val                | Asp        | Arg        |
| Asp        | Leu<br>450 | Arg               | Lys        | Met        | Leu        | Ile<br>455         | Lys               | Pro        | Ser        | Ser        | Thr<br>460 | Asp        | Pro                | Leu        | Val        |
| Leu<br>465 | Gly        | Val               | Lys        | Leu        | Trp<br>470 | Pro                | Gln               | Ala        | Ile        | Pro<br>475 | Gln        | Phe        | Leu                | Ile        | Gly<br>480 |
| His        | Ile        | Asp               | Leu        | Val<br>485 | qaA        | Ala                | Ala               | Lys        | Ala<br>490 | Ser        | Leu        | Ser        | Ser                | Ser<br>495 | Gly        |
| His        | Glu        | Gly               | Leu<br>500 | Phe        | Leu        | Gly                | Gly               | Asn<br>505 | Туr        | Val        | Ala        | Gly        | Val<br>510         | Ala        | Leu        |
| Gly        | Arg        | <b>Cys</b><br>515 | Val        | Glu        | Gly        | Ala                | <b>Tyr</b><br>520 | Glu        | Thr        | Ala        |            | Gln<br>525 | Val                | Asn        | Asp        |
| Phe        | Met        | Ser               | Arg        | Tyr        | Ala        | Tvr                | Lvs               |            |            |            |            |            |                    |            |            |

535

| (2) | INFORMATION | FOR | SEO | ID | NO:21: |
|-----|-------------|-----|-----|----|--------|
|-----|-------------|-----|-----|----|--------|

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1224 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Oryza sative (rice)
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-18 (NRRL B-21648)
- (ix) FEATURE:
  - (A) NAME/KEY: misc\_feature
  - (B) LOCATION: 1..936
- (D) OTHER INFORMATION: /product= "Rice Protox-1 partial coding region"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGGGCTTTGA AGGCTGCATT TGGGAAGGTG TGGAGGCTGG AGGATACTGG AGGTAGCATT 60 ATTGGTGGAA CCATCAAGAC AATCCAGGAG AGGGGGAAAA ACCCCAAACC GCCGAGGGAT 120 CCCCGCCTTC CAACGCCAAA GGGGCAGACA GTTGCATCTT TCAGGAAGGG TCTGACTATG 180 CTCCCGGATG CTATTACATC TAGGTTGGGT AGCAAAGTCA AACTTTCATG GAAGTTGACA 240 AGCATTACAA AGTCAGACAA CAAAGGATAT GCATTAGTGT ATGAAACACC AGAAGGGGTG 300 GTCTCGGTGC AAGCTAAAAC TGTTGTCATG ACCATCCCAT CATATGTTGC TAGTGATATC 360 TTGCGGCCAC TTTCAAGTGA TGCAGCAGAT GCTCTGTCAA TATTCTATTA TCCACCAGTT 420 GCTGCTGTAA CTGTTTCATA TCCAAAAGAA GCAATTAGAA AAGAATGCTT AATTGACGGA 480

| GAGCTCCAGG         | GTTTCGGCCA | GCTGCATCCG | CGTAGTCAGG | GAGTTGAGAC | TTTAGGAACA | 540  |
|--------------------|------------|------------|------------|------------|------------|------|
| ATATATAGCT         | CATCACTCTT | TCCAAATCGT | GCTCCAGCTG | GAAGGGTGTT | ACTTCTGAAC | 600  |
| TACATAGGAG         | GTTCTACAAA | TACAGGGATT | GTTTCCAAGA | CTGAAAGTGA | GCTGGTAGAA | 660  |
| GCAGTTGACC         | GTGACCTCAG | GAAGATGCTG | АТАААТССТА | GAGCAGTGGA | CCCTTTGGTC | 720  |
| CTTGGCGTCC         | GGGTATGGCC | ACAAGCCATA | CCACAGTTCC | TCATTGGCCA | TCTTGATCAT | 780  |
| CTTGAGGCTG         | CAAAATCTGC | CCTGGGCAAA | GGTGGGTATG | ATGGATTGTT | CCTCGGAGGG | 840  |
| AACTATGTTG         | CAGGAGTTGC | CCTGGGCCGA | TGCGTTGAAG | GTGCATATGA | GAGTGCCTCA | 900  |
| CAAATATCTG         | ACTACTTGAC | CAAGTACGCC | TACAAGTGAT | CAAAGTTGGC | CTGCTCCTTT | 960  |
| TGGCACATAG         | ATGTGAGGCT | TCTAGCAGCA | AAAATTTCAT | GGGCATCTTT | TTATCCTGAT | 1020 |
| TCTAATTAGT         | TAGAATTTAG | AATTGTAGAG | GAATGTTCCA | TTTGCAGTTC | ATAATAGTTG | 1080 |
| TTCAGATTTC         | AGCCATTCAA | TTTGTGCAGC | CATTTACTAT | ATGTAGTATG | ATCTTGTAAG | 1140 |
| <b>FACTACTAA</b> G | AACAAATCAA | TTATATTTTC | CTGCAAGTGA | CATCTTAATC | GTCAGCAAAT | 1200 |
| CCAGTTACTA         | GTAAAAAAAA | АААА       |            |            |            | 1224 |

# (2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 312 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: not relevant
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Arg Ala Leu Lys Ala Ala Phe Gly Lys Val Trp Arg Leu Glu Asp Thr 1 5 10 15

| Gly        | Gly        | Ser        | Ile<br>20  | Ile        | Gly        | Gly        | Thr        | Ile<br>25         | Lys              | Thr        | Ile        | Gln        | Glu<br>30  | Arg        | Gly        |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------------|------------|------------|------------|------------|------------|------------|
| Lys        | Asn        | Pro<br>35  | Lys        | Pro        | Pro        | Arg        | Asp<br>40  | Pro               | Arg              | Leu        | Pro        | Thr<br>45  | Pro        | Lys        | Gly        |
| Gln        | Thr<br>50  | Val        | Ala        | Ser        | Phe        | Arg<br>55  | Lys        | Gly               | Leu              | Thr        | Met<br>60  | Leu        | Pro        | Asp        | Ala        |
| Ile<br>65  | Thr        | Ser        | Arg        | Leu        | Gly<br>70  | Ser        | Lys        | Val               | Lys              | Leu<br>75  | Ser        | Trp        | Lys        | Leu        | Thr<br>80  |
| Ser        | Ile        | Thr        | Lys        | Ser<br>85  | Asp        | Asn        | Lys        | Gly               | <b>Tyr</b><br>90 | Ala        | Leu        | Val        | Tyr        | Glu<br>95  | Thr        |
| Pro        | Glu        | Gly        | Val<br>100 | Val        | Ser        | Val        | Gln        | <b>Ala</b><br>105 | Lys              | Thr        | Val        | Val        | Met<br>110 | Thr        | Ile        |
| Pro        | Ser        | Туг<br>115 | Val        | Ala        | Ser        | Asp        | Ile<br>120 | Leu               | Arg              | Pro        | Leu        | Ser<br>125 | Ser        | Asp        | Ala        |
| Ala        | Asp<br>130 | Ala        | Leu        | Ser        | Ile        | Phe<br>135 | Туr        | Tyr               | Pro              | Pro        | Val<br>140 | Ala        | Ala        | Val        | Thr        |
| Val<br>145 | Ser        | Tyr        | Pro        | Lys        | Glu<br>150 | Ala        | Ile        | Arg               | Lys              | Glu<br>155 | Cys        | Leu        | Ile        | Asp        | Gly<br>160 |
| Glu        | Leu        | Gln        | Gly        | Phe<br>165 | Gly        | Gln        | Leu        | His               | Pro<br>170       | Arg        | Ser        | Gln        | Gly        | Val<br>175 | Glu        |
| Thr        | Leu        | Gly        | Thr<br>180 | Ile        | Tyr        | Ser        | Ser        | Ser<br>185        |                  | Phe        | Pro        | Asn        | Arg<br>190 | Ala        | Pro        |
| Ala        | Gly        | Arg<br>195 | Val        | Leu        | Leu        | Leu        | Asn<br>200 | Туr               | Ile              | Gly        | Gly        | Ser<br>205 | Thr        | Asn        | Thr        |
| Gly        | Ile<br>210 | Val        | Ser        | Lys        | Thr        | Glu<br>215 | Ser        | Glu               | Leu              | Val        | Glu<br>220 | Ala        | Val        | Asp        | Arg        |
| Asp<br>225 | Leu        | Arg        | Lys        | Met        | Leu<br>230 | Ile        | Asn        | Pro               | Arg              | Ala<br>235 | Val        | Asp        | Pro        | Leu        | Val<br>240 |
| Leu        | Gly        | Val        | Arg        | Val<br>245 | Trp        | Pro        | Gln        | Ala               | Ile<br>250       | Pro        | Gln        | Phe        | Leu        | Ile<br>255 | Gly        |

120

His Leu Asp His Leu Glu Ala Ala Lys Ser Ala Leu Gly Lys Gly Gly 260 265 270

Tyr Asp Gly Leu Phe Leu Gly Gly Asn Tyr Val Ala Gly Val Ala Leu 275 280 285

Gly Arg Cys Val Glu Gly Ala Tyr Glu Ser Ala Ser Gln Ile Ser Asp 290 295 300

Tyr Leu Thr Lys Tyr Ala Tyr Lys 305 310

- (2) INFORMATION FOR SEQ ID NO:23:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1590 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Sorghum bicolor (sorghum)
  - (vii) IMMEDIATE SOURCE:
    - (B) CLONE: pWDC-19 (NRRL B-21649)
  - (ix) FEATURE:
    - (A) NAME/KEY: misc\_feature
    - (B) LOCATION: 1..1320
- (D) OTHER INFORMATION: /product= "Sorghum Protox-1 partial coding region"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TCCACCGTCG AGCGCCCCGA GGAAGGGTAC CTCTGGGAGG AGGGTCCCAA CAGCTTCCAG 60

CCATCCGACC CCGTTCTCTC CATGGCCGTG GACAGCGGGC TGAAGGATGA CCTGGTTTTT

| GGGGACCCCA | ACGCGCCACG | GTTCGTGCTG | TGGGAGGGGA | AGCTGAGGCC | CGTGCCATCC | 180  |
|------------|------------|------------|------------|------------|------------|------|
| AAGCCCGCCG | ACCTCCCGTT | CTTCGATCTC | ATGAGCATCC | CTGGCAAGCT | CAGGGCCGGT | 240  |
| CTCGGCGCGC | TTGGCATCCG | CCCGCCTGCT | CCAGGCCGCG | AGGAGTCAGT | GGAGGAGTTT | 300  |
| GTGCGCCGCA | ACCTCGGTGC | TGAGGTCTTT | GAGCGCCTAA | TTGAGCCTTT | CTGCTCAGGT | 360  |
| GTCTATGCTG | GCGATCCTTC | CAAGCTCAGT | ATGAAGGCTG | CATTTGGGAA | GGTGTGGCGG | 420  |
| TTAGAAGAAG | CTGGAGGTAG | TATTATTGGT | GGAACCATCA | AGACGATTCA | GGAGAGGGGC | 480  |
| AAGAATCCAA | AACCACCGAG | GGATCCCCGC | CTTCCGAAGC | CAAAAGGGCA | GACAGTTGCA | 540  |
| TCTTTCAGGA | AGGGTCTTGC | CATGCTTCCA | AATGCCATCA | CATCCAGCTT | GGGTAGTAAA | 600  |
| GTCAAACTAT | CATGGAAACT | CACGAGCATG | ACAAAATCAG | ATGGCAAGGG | GTATGTTTTG | 660  |
| GAGTATGAAA | CACCAGAAGG | GGTTGTTTTG | GTGCAGGCTA | AAAGTGTTAT | CATGACCATT | 720  |
| CCATCATATG | TTGCTAGCGA | CATTTTGCGT | CCACTTTCAG | GTGATGCTGC | AGATGTTCTA | 780  |
| TCAAGATTCT | ATTATCCACC | AGTTGCTGCT | GTAACGGTTT | CGTATCCAAA | GGAAGCAATT | 840  |
| AGAAAAGAAT | GCTTAATTGA | TGGGGAACTC | CAGGGTTTTG | GCCAGTTGCA | TCCACGTAGT | 900  |
| CAAGGAGTTG | AGACATTAGG | AACAATATAC | AGCTCATCAC | TCTTTCCAAA | TCGTGCTCCT | 960  |
| GCTGGTAGGG | TGTTACTTCT | AAACTACATA | GGAGGTGCTA | CAAACACAGG | AATTGTTTCC | 1020 |
| AAGACTGAAA | GTGAGCTGGT | AGAAGCAGTT | GACCGTGACC | TCCGAAAAAT | GCTTATAAAT | 1080 |
| CCTACAGCAG | TGGACCCTTT | AGTCCTTGGT | GTCCGAGTTT | GGCCACAAGC | CATACCTCAG | 1140 |
| TTCCTGGTAG | GACATCTTGA | TCTTCTGGAG | GCCGCAAAAT | CTGCCCTGGA | CCAAGGTGGC | 1200 |
| TATAATGGGC | TGTTCCTAGG | AGGGAACTAT | GTTGCAGGAG | TTGCCCTGGG | CAGATGCATT | 1260 |
| GAGGGCGCAT | ATGAGAGTGC | CGCGCAAATA | TATGACTTCT | TGACCAAGTA | CGCCTACAAG | 1320 |
| TGATGGAAGA | AGTGGAGCGC | TGCTTGTTAA | TTGTTATGTT | GCATAGATGA | GGTGAGACCA | 1380 |
| GGAGTAGTAA | AAGGCGTCAC | GAGTATTTT  | CATTCTTATT | TTGTAAATTG | CACTTCTGTT | 1440 |
| TTTTTTCCT  | GTCAGTAATT | AGTTAGATTT | TAGTTATGTA | GGAGATTGTT | GTGTTCACTG | 1500 |

CCCTACAAAA GAATTTTAT TTTGCATTCG TTTATGAGAG CTGTGCAGAC TTATGTAACG 1560
TTTTACTGTA AGTATCAACA AAATCAAATA 1590

- (2) INFORMATION FOR SEQ ID NO:24:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 440 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: not relevant
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Ser Thr Val Glu Arg Pro Glu Glu Gly Tyr Leu Trp Glu Glu Gly Pro 1 5 10 15

Asn Ser Phe Gln Pro Ser Asp Pro Val Leu Ser Met Ala Val Asp Ser 20 25 30

Gly Leu Lys Asp Asp Leu Val Phe Gly Asp Pro Asn Ala Pro Arg Phe 35 40 45

Val Leu Trp Glu Gly Lys Leu Arg Pro Val Pro Ser Lys Pro Ala Asp 50 55 60

Leu Pro Phe Phe Asp Leu Met Ser Ile Pro Gly Lys Leu Arg Ala Gly 65 70 75 80

Leu Gly Ala Leu Gly Ile Arg Pro Pro Ala Pro Gly Arg Glu Glu Ser 85 90 95

Val Glu Glu Phe Val Arg Arg Asn Leu Gly Ala Glu Val Phe Glu Arg

Leu Ile Glu Pro Phe Cys Ser Gly Val Tyr Ala Gly Asp Pro Ser Lys
115 120 125

Leu Ser Met Lys Ala Ala Phe Gly Lys Val Trp Arg Leu Glu Glu Ala

|            | 130        |                   |            |            |            | 135        |            |            |            |            | 140        |            |             |            |                     |
|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|---------------------|
| Gly<br>145 | Gly        | Ser               | Ile        | Ile        | Gly<br>150 | Gly        | Thr        | Ile        | Lys        | Thr<br>155 | Ile        | Gln        | <b>Gl</b> u | Arg        | Gly<br>160          |
| Lys        | Asn        | Pro               | Lys        | Pro<br>165 | Pro        | Arg        | Asp        | Pro        | Arg<br>170 | Leu        | Pro        | Lys        | Pro         | Lys<br>175 | Gly                 |
| Gln        | Thr        | Val               | Ala<br>180 | Ser        | Phe        | Arg        | Lys        | Gly<br>185 | Leu        | Ala        | Met        | Leu        | Pro<br>190  | Asn        | Ala                 |
| Ile        | Thr        | Ser<br>195        | Ser        | Leu        | Gly        | Ser        | Lys<br>200 | Val        | Lys        | Leu        | Ser        | Trp<br>205 | Lys         | Leu        | Thr                 |
| Ser        | Met<br>210 | Thr               | Lys        | Ser        | Asp        | Gly<br>215 | Lys        | Gly        | Tyr        | Val        | Leu<br>220 | Glu        | Tyr         | Glu        | Thr                 |
| Pro<br>225 | Glu        | Gly               | Val        | Val        | Leu<br>230 | Val        | Gln        | Ala        | Lys        | Ser<br>235 | Val        | Ile        | Met         | Thr        | Ile<br>2 <b>4</b> 0 |
| Pro        | Ser        | Tyr               | Val        | Ala<br>245 | Ser        | Asp        | Ile        | Leu        | Arg<br>250 | Pro        | Leu        | Ser        | Gly         | Asp<br>255 | Ala                 |
| Ala        | Asp        | Val               | Leu<br>260 | Ser        | Arg        | Phe        | Tyr        | Tyr<br>265 | Pro        | Pro        | Val        | Ala        | Ala<br>270  | Val        | Thr                 |
| Val        | Ser        | <b>Tyr</b><br>275 | Pro        | Lys        | Glu        | Ala        | Ile<br>280 | Arg        | Lys        | Glu        | Cys        | Leu<br>285 | Ile         | Asp        | Gly                 |
| Glu        | Leu<br>290 | Gln               | Gly        | Phe        | Gly        | Gln<br>295 | Leu        | His        | Pro        | Arg        | Ser<br>300 | Gln        | Gly         | Val        | Glu                 |
| Thr<br>305 | Leu        | Gly               | Thr        | Ile        | Tyr<br>310 | Ser        | Ser        | Ser        | Leu        | Phe<br>315 | Pro        | Asn        | Arg         | Ala        | Pro<br>320          |
| Ala        | Gly        | Arg               | Val        | Leu<br>325 | Leu        | Leu        | Asn        | Tyr        | Ile<br>330 | Gly        | Gly        | Ala        | Thr         | Asn<br>335 | Thr                 |
| Gly        | Ile        | Val               | Ser<br>340 | Lys        | Thr        | Glu        | Ser        | Glu<br>345 | Leu        | Val        | Glu        | Ala        | Val<br>350  | Asp        | Arg                 |
| Asp        | Leu        | Arg<br>355        | Lys        | Met        | Leu        | Ile        | Asn<br>360 | Pro        | Thr        | Ala        | Val        | Asp<br>365 | Pro         | Leu        | Val                 |
| Leu        | Glv        | Val               | Ara        | Val        | Tro        | Pro        | Gln        | Ala        | Ile        | Pro        | Gln        | Phe        | Len         | Va1        | Glv                 |

- 99 -

|       |            | 370                      |                          |                       |            |                              | 375                       |            |            |            |            | 380  |      |            |            |            |    |
|-------|------------|--------------------------|--------------------------|-----------------------|------------|------------------------------|---------------------------|------------|------------|------------|------------|------|------|------------|------------|------------|----|
|       | His<br>385 | Leu                      | Asp                      | Leu                   | Leu        | Glu<br>390                   | Ala                       | Ala        | Lys        | Ser        | Ala<br>395 | Leu  | Asp  | Gln        | Gly        | Gly<br>400 |    |
|       | Tyr        | Asn                      | Gly                      | Leu                   | Phe<br>405 | Leu                          | Gly                       | Gly        | Asn        | Tyr<br>410 | Val        | Ala  | Gly  | Val        | Ala<br>415 | Leu        |    |
|       | Gly        | Arg                      | Cys                      | Ile<br>420            | Glu        | Gly                          | Ala                       | Tyr        | Glu<br>425 | Ser        | Ala        | Ala  | Gln  | Ile<br>430 | Tyr        | Asp        |    |
|       | Phe        | Leu                      | Thr<br>435               | Lys                   | Tyr        | Ala                          | Tyr                       | Lys<br>440 |            |            |            |      |      |            |            |            |    |
| (2)   | INFOR      | LTAM                     | ON F                     | or s                  | SEQ I      | D NO                         | ):25:                     | :          |            |            |            |      |      |            |            |            |    |
|       | (i)        | (A)<br>(B)<br>(C)<br>(D) | LEN<br>TYP<br>STR<br>TOP | GTH: PE: n ANDE POLOG |            | base<br>ic a<br>S: s<br>inea | e pai<br>cid<br>ingl<br>r | rs<br>.e   |            |            |            |      |      |            |            |            |    |
| se    | quenc      |                          | DES                      | CRIP                  | TION       | : /d                         | esc                       | = "m       | aize       | pro        | tox-       | 1 in | tron |            |            |            |    |
|       |            |                          |                          |                       |            |                              |                           |            |            |            |            |      |      |            |            |            |    |
|       | (xi)       | SEQU                     | ENCE                     | DES                   | CRIP       | TION                         | : SE                      | Q ID       | NO:        | 25 :       |            |      |      |            |            |            |    |
| GTAC  | GCTCC'     | r cg                     | CTGG                     | CGCC                  | GCA        | GCGT                         | CTT (                     | CTTC'      | rcag2      | AC TO      | CATG       | CGCA | G CC | ATGG!      | \ATT       |            | 60 |
| GAGAT | rgctg/     | A ATO                    | GGAT'                    | <b>LLL</b>            | TAC        | GCGC                         | GCG (                     | CAG        |            |            |            |      |      |            |            |            | 93 |
| (2) 1 | NFOR       | (ATI                     | ON FO                    | OR SI                 | EQ II      | ON C                         | : 26 :                    |            |            |            |            |      |      |            |            |            |    |
|       | (i) S      |                          |                          |                       |            |                              |                           |            |            |            |            |      |      |            |            |            |    |
|       |            |                          |                          |                       | 2606       |                              |                           | airs       |            |            |            |      |      |            |            |            |    |
|       |            |                          |                          |                       | ıclei      |                              |                           |            |            |            |            |      |      |            |            |            |    |
|       |            | (C)                      | STRA                     | MDET                  | MECC       | 2                            | -1-                       | _          |            |            |            |      |      |            |            |            |    |

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Beta vulgaris (sugar beet)
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: pWDC-20 (NRRL B-21650)
- (ix) FEATURE:
  - (A) NAME/KEY: misc\_feature
  - (B) LOCATION: 1..6
  - (D) OTHER INFORMATION: /note= "SalI site"
- (ix) FEATURE:
  - (A) NAME/KEY: misc\_feature
  - (B) LOCATION: complement (1..538)
- (D) OTHER INFORMATION: /note= "partial cDNA of sugar beet protox-1 in 3' 5' direction"
  - (ix) FEATURE:
    - (A) NAME/KEY: misc\_feature
    - (B) LOCATION: 539..2606
- (D) OTHER INFORMATION: /note= "sugar beet protox-1 promoter region presented in 3' 5' direction (partial sequence of the ~ 3 kb PstI-SalI fragment subcloned from pWDC-20)"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

| TTCCAATTA  | A ACTACATGGA | A ATTGACAAC        | A TGATACAATT | GCCCCTGTA  | TGCCCGCTGC | 480  |
|------------|--------------|--------------------|--------------|------------|------------|------|
| TGTGCAATG  | G CATGCACTG1 | gtctgtgga <i>i</i> | A TGCAGTTTGA | TAACGCCATT | GATTTCATCT | 540  |
| CTCTCTCGC1 | CTCTCGCCC1   | CCTTATCCT          | TATATCCCCT   | TCTTGCTTGC | TCGGGAATTC | 600  |
| TAATTAACCI | тататсаааа   | TGAAACAACI         | GTTTCTAGTT   | AAAAAGTTTI | TTATAAATAG | 660  |
| TACTCTAAAT | AAACGATTAC   | ATGTATCTTC         | TAACCATACT   | TGTTTGGTGG | AGGTGGTGCG | 720  |
| TAACCGGTAA | CTTACCTTTG   | TAACTCACCT         | CAATACCTAC   | TTATGCTTAA | GGATACGGAT | 780  |
| TCTTTTAAAC | TCTCAGGCAT   | TGACCTATGI         | AGCTGGACTG   | ACTAACATCT | GAATTTGTTT | 840  |
| CTCTGGTTAT | ATATGCAATT   | ' TTAACTGAAT       | CGAAATTTCT   | CTGGATGCTA | AAAATGTCTT | 900  |
| TAACGGGGTT | TATGAGGACT   | AAATTATCTC         | CTTCAATGAG   | GAGGTTCTTG | ATTTGCATGT | 960  |
| ATGAGCGTGA | AAATGCATTC   | TTAACGGCTA         | TAGATTCAGT   | AATAAGTGGT | GTTAAAAGTA | 1020 |
| AAAAGTACTT | GGAAAAATGA   | TTAAGCGACT         | TAATTTTTTT   | TATTTGTTTG | AAAGTTGCCT | 1080 |
| TTTCTTGGCT | ATCTTAACAT   | GTATTTATCA         | AACACCTTTT   | TTAATTACAT | GGAAATCGAA | 1140 |
| AAGTTTGAAA | АААААААТС    | ATACTCACTA         | ACCGCCTTAA   | AATATAAGCT | GAAGATGTCT | 1200 |
| CACTAACAGA | GTGCATGTGA   | AGCACCCCA          | AAGCAATTAT   | AACACAACAT | СТСССССТСТ | 1260 |
| TCAAAATTCC | ТАСАААТАСА   | TCTAATAAAC         | TTGTTGAAAC   | AATCAAAGTA | ACATGGTGTG | 1320 |
| TCAATTGCGG | ATGCTTCTCA   | TTCCAGACTT         | TATATAGTGA   | TTTTGTTTAA | TCCATAGTCA | 1380 |
| ACAACTCACA | TAATGGTACC   | CAAAGAATAC         | CCAAATTTTT   | TGCTCAAAAT | CCCTAAACAT | 1440 |
| TGTAGCTGTG | TAAGTTTGAC   | TAACATGTTT         | CAGCATGCTT   | GCCATGGGTA | AATAAGACTT | 1500 |
| AGGGGCAAAT | CTCGAATCCA   | CAAACTCATC         | ATTGGTTTTA   | GTTTGTCTCC | AACGTAAAAC | 1560 |
| AATGATGTGA | AATACACCAC   | ААААТТСАТА         | CAATCTCGTT   | ATCTTGGAAG | CTTGAAAGCC | 1620 |
| ATAATCTTGT | TTGTACTTTC   | ACTACGTCGA         | GAAGACAAAA   | TTACAACTAA | GAAGAGGTCA | 1680 |
| TTGCTCAGTG | TCGTGTACTA   | СТТАТСТТТС         | AACTCATAGA   | AACAAGCAAA | CCAATTGTCA | 1740 |

| CCTATATACT | GTACTTCTCC | ATCATATACT | TCCAACTTGC | CTTAAACTCA | ATACTATCAT | 1800 |
|------------|------------|------------|------------|------------|------------|------|
| AAAAACCACA | AAGACATTTC | ATAAAAGCAT | AATAAAAATG | TGTCATCACT | CTTCAAAGTT | 1860 |
| CCAAAGTGAT | TCTAACTACA | TTCTAATGAA | AATGACATTG | GTGTAAACCT | AATCCTTGTG | 1920 |
| TTATAAAACA | CCTACATACC | ACGATTATGT | TAGAAATATA | TTTATGAATG | CAGTACCTAC | 1980 |
| ATAAAGCCAT | TAAATAACCA | GTTTTATGTT | ATTTCGTGAC | CAACATAGTT | CCTAAAGATT | 2040 |
| ACGAAGTAAT | TTATAGTCAT | TTTGTGGCCA | CTTAATTCAT | TTAATACCCA | GTATATTTAT | 2100 |
| AAGTTACCAG | CTTAAGTAGT | TTTGTGACCA | TCTCTACATA | CTTCCTCCGG | TCCATAATAA | 2160 |
| GGGGGCGTTT | GGTTGCAACG | GGGTAAAGGG | AATGGAATCA | AGAAAGGGAG | AGGAGAGGAA | 2220 |
| AGGAAAAGAA | AACCCTTAGA | TTTAGAGTGG | TGTTTGGTTA | AGATAATGTT | AATTCTCTTT | 2280 |
| CTTCCTCTTT | CTTACCCTTC | TTCCACCCTA | GCACCACCAC | TCCTCCCTCT | GTTACTATTC | 2340 |
| TCCACGCCGC | CTCTCCCTAC | CCCAGTAACA | CCACCTTGTC | GGCCCCCGG  | TCTTCCCCTT | 2400 |
| CCCGCGACGG | TTCCCCCCTC | CCCTGCGCCG | TCACGTCGTC | CCCCTCACCT | CCCTGCACCG | 2460 |
| TCGAGTTATC | CCCCTCCCCT | GCGCGTCGCG | TTCTCCCCTC | CCTCACCATC | GCGTTCTCCC | 2520 |
| CTCCCTCACC | GTCGCGTTCT | CCCCTCCCTC | ACCGTCGCGG | TCTCCCCTCC | CTCACCGTCG | 2580 |
| CGGTCTCTCT | TTCCCTCCCC | CTGCAG     |            |            |            | 2606 |

### What is claimed is:

- 1. An isolated DNA molecule comprising a plant protoporphyrinogen oxidase (protox) promoter or a functionally equivalent derivative thereof.
- 2. An isolated DNA molecule comprising a plant protox promoter that is naturally associated with the coding sequences for plant protoporphyrinogen oxidase.
- 3. The isolated DNA molecule of claim 2, wherein said plant is an Arabidopsis species.
- 4. The isolated DNA molecule of claim 3, wherein said DNA molecule comprises the nucleotide sequence set forth in SEQ ID NO:13 and all DNA molecules hybridizing therewith under moderately stringent conditions.
- 5. The isolated DNA molecule of claim 2, wherein said plant is maize.
- 6. The isolated DNA molecule of claim 5, wherein said DNA molecule comprises the nucleotide sequence set forth in SEQ ID NO:14 and all DNA molecules hybridizing therewith under moderately stringent conditions.
- 7. The isolated DNA molecule of claim 2, wherein said plant is sugar beet.
- 8. The isolated DNA molecule of claim 7, wherein said DNA molecule comprises the nucleotide sequence set forth in SEQ ID NO:26 and all DNA molecules hybridizing therewith under moderately stringent conditions.
- 9. A recombinant DNA molecule comprising a plant protoporphyrinogen oxidase (protox) promoter or a functionally equivalent derivative thereof as described in anyone of claims 1-8.
- 10. A chimeric gene comprising a plant protox promoter operably linked to a heterologous DNA coding sequence.
- 11. The chimeric gene of claim 10 wherein said plant protox promoter is from a protox-1 gene.

- 12. The chimeric gene of claim 10 wherein said plant protox promoter is from a protox-2 gene.
- 13. The chimeric gene of claim 10 wherein said protox promoter is from a plant selected from the group consisting of *Arabidopsis*, soybean, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf grass and rice.
- 14. The chimeric gene of claim 10 wherein said promoter is from a plant selected from the group consisting of *Arabidopsis*, sugar beet and maize.
- 15. The chimeric gene of claim 10 wherein said promoter is from a plant selected from the group consisting of *Arabidopsis* and maize.
- 16. The chimeric gene of claim 10 wherein said promoter is from sugar beet.
- 17. The chimeric gene of claim 10 wherein said promoter is at least 300 nucleotides in length.
- 18. The chimeric gene of claim 17 wherein said promoter is at least 500 nucleotides in length.
- 19. The chimeric gene of claim 11 wherein said promoter is from *Arabidopsis* and has the sequence set forth in SEQ ID NO:13.
- 20. The chimeric gene of claim 11 wherein said promoter is from maize and has the sequence set forth in SEQ ID NO:14.
- 21. The chimeric gene of claim 11 wherein said promoter is from sugar beet and has the sequence set forth in SEQ ID NO:26.
- 22. The chimeric gene of claim 10 wherein said heterologous coding sequence encodes a modified, herbicide-resistant form of a plant enzyme.
- 23. The chimeric gene of claim 22 wherein said plant enzyme is selected from the group consisting of imidazoleglycerol phosphate dehyratase (IGPD), 5-enolpyruvylshikimate-3-

phosphate synthase (EPSP), glutamine synthetase (GS), acetyl coenzyme A carboxylase, acetolactate synthase, histidinol dehydrogenase and protoporphyrinogen oxidase (protox).

- 24. The chimeric gene of claim 23 wherein said plant enzyme is protox.
- 25. The chimeric gene of claim 23 wherein said plant enzyme is a eukaryotic protox having a amino acid substitution, said amino acid substitution having the property of conferring resistance to a protox inhibitor.
- 26. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from an *Arabidopsis* species having protox-1 activity or protox-2 activity
- 27. A chimeric gene of claim 26, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4
- 28. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from maize having protox-1 activity or protox-2 activity
- 29. A chimeric gene of claim 28, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:6 or SEQ ID NO:8
- 30. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from wheat having protox-1 activity.
- 31. A chimeric gene of claim 30, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:10
- 32. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from soybean having protox-1 activity.
- 33. A chimeric gene of claim 32, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:12
- 34. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from cotton having protox-1 activity.

- 35. A chimeric gene of claim 34, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:16
- 36. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from sugar beet having protox-1 activity.
- 37. A chimeric gene of claim 36, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:18
- 38. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from rape having protox-1 activity.
- 39. A chimeric gene of claim 38, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:20
- 40. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from rice having protox-1 activity.
- 41. A chimeric gene of claim 40, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:22
- 42. A chimeric gene of claim 10, wherein the heterologous DNA molecule encodes a protein from sorghum having protox-1 activity.
- 43. A chimeric gene of claim 42, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO:24
- 44. A recombinant DNA vector comprising the recombinant DNA molecule of claim 9.
- 45. A recombinant vector comprising the chimeric gene of any one of claims 10 to 43 wherein said vector is capable of being stably transformed into a plant, plant seeds, plant tissue or plant cell.
- 46. Plant tissue comprising the chimeric gene of anyone of claims 10 to 43.

- 47. A plant and the progeny thereof comprising the chimeric gene of anyone of claims 10 to 43.
- 48. The plant of claim 47 wherein said plant is selected from the group consisting of *Arabidopsis*, sugar cane, soybean, barley, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf and forage grasses, millet and rice.
- 49. The plant of claim 47 wherein said plant is selected from the group consisting of *Arabidopsis*, soybean, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf grass and rice.
- 50. Use of a protox promoter to express herbicide resistant forms of herbicide target proteins in a plant to confer tolerance to the herbicide.
- 51. Use of chimeric gene according to claim 25 to express a herbicide resistant plant protox protein that is resistant to inhibitors of unmodified plant protox protein.
- 52. Use of a protox coding sequence that shares sufficient homology to hybridize to the protox coding sequence associated with the promoter of interest as a probe.
- 53. Use of a protox coding sequence according to claim 52, wherein the coding sequence used as a probe is from the same plant species as the protox promoter of interest and is the coding sequence naturally associated with the promoter.
- 54. A method of producing a DNA molecule comprising a DNA portion containing a protox promoter sequence and a DNA portion encoding a protox protein comprising
- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for a protox protein from a plant of at least 10 nucleotides length;
- (b) probing for other protox coding sequences in populations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating and multiplying a DNA molecule comprising a DNA portion containing a protox promoter sequence and a DNA portion encoding a protox protein.

- 55. A method of producing a DNA molecule comprising a DNA portion containing a protox promoter sequence comprising
- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for a protox protein from a plant of at least 10 nucleotides length;
- (b) probing for other protox coding sequences in populations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating and multiplying a DNA molecule comprising a DNA portion containing a protox promoter sequence.
- 56. A method of isolating a DNA molecule comprising a DNA portion containing a protox promoter sequence from any plant protox gene comprising
- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant protox gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for a protox protein from a plant of at least 10 nucleotides length;
- (b) probing for other protox coding sequences in populations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating a DNA molecule comprising a DNA portion containing a protox promoter sequence.
- 57. An agricultural method, wherein a transgenic plant or the progeny thereof is used comprising a chimeric gene according to claims 10 to 25 in an amount sufficient to express herbicide resistant forms of herbicide target proteins in a plant to confer tolerance to the herbicide.
- 58. The chimeric gene of claim 10 additionally comprising a signal sequence operably linked to said DNA molecule, wherein said signal sequence is capable of targeting the protein encoded by said DNA molecule into the chloroplast.
- 59. The chimeric gene of claim 10 additionally comprising a signal sequence operably linked to said DNA molecule, wherein said signal sequence is capable of targeting the protein encoded by said DNA molecule into the mitochondria.

- 60. The chimeric gene of claim 22 wherein said plant enzyme is selected from the group consisting of imidazoleglycerol phosphate dehyratase (IGPD), 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glutamine synthetase (GS), acetyl coenzyme A carboxylase, acetolactate synthase, and protoporphyrinogen oxidase (protox).
- 61. The isolated DNA molecule of claim 3, wherein said DNA molecule comprises the nucleotide sequence set forth in SEQ ID NO:13 and all DNA molecules hybridizing therewith under the following conditions:
- (a) hybridization in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at  $50^{\circ}$  C; and
  - (b) wash in 2X SSC, 1% SDS at 50° C.
- 62. The isolated DNA molecule of claim 5, wherein said DNA molecule comprises the nucleotide sequence set forth in SEQ ID NO:14 and all DNA molecules hybridizing therewith under the following conditions:
- (a) hybridization in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at  $50^{\circ}$  C; and
  - (b) wash in 2X SSC, 1% SDS at 50° C.
- 63. The isolated DNA molecule of claim 7, wherein said DNA molecule comprises the nucleotide sequence set forth in SEQ ID NO:26 and all DNA molecules hybridizing therewith under the following conditions:
- (a) hybridization in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at  $50^{\circ}$  C; and
  - (b) wash in 2X SSC, 1% SDS at 50° C.

# INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/US 97/03343

| ÎPC 6                   | SIFICATION OF SUBJECT MATTER C12N15/82 C12N9/02 C12                                       | 2N15/53                                                                                                               |                       |
|-------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|
| According               | to International Patent Classification (IPC) or to both natio                             | DOM classification and IDC                                                                                            |                       |
| B. FIELD                | S SEARCHED                                                                                | will datalication and IPC                                                                                             |                       |
| Minimum                 | documentation searched (classification system followed by                                 | dassification symbols)                                                                                                |                       |
| IPC 0                   | C12N                                                                                      | · ····································                                                                                |                       |
| Document                | ation searched other than minimum documentation to the ex                                 | ctent that such documents are included in the fields                                                                  | searched              |
| Plane                   |                                                                                           |                                                                                                                       |                       |
| Electrome               | data base consulted during the international search (name o                               | f data base and, where practical, search terms used                                                                   | )                     |
|                         |                                                                                           |                                                                                                                       | •                     |
|                         | MENTS CONSIDERED TO BE RELEVANT                                                           |                                                                                                                       |                       |
| Category *              | Citation of document, with indication, where appropriate,                                 | of the relevant passages                                                                                              | Relevant to claim No. |
| Υ                       | WO 95 34659 A (CIBA GEIGY AG                                                              | ) 21 December                                                                                                         | 1                     |
|                         | cited in the application                                                                  |                                                                                                                       |                       |
| A                       | see the whole document                                                                    |                                                                                                                       | 2-6,                  |
|                         |                                                                                           |                                                                                                                       | 9-15,22.              |
|                         |                                                                                           |                                                                                                                       | 24-29,                |
|                         | •                                                                                         |                                                                                                                       | 45-56,                |
| . l                     |                                                                                           |                                                                                                                       | 58-62                 |
| Y                       | GENOMICS,                                                                                 |                                                                                                                       | 1                     |
|                         | vol. 29, no. 3, 1995, NEW YOR                                                             | RK US,                                                                                                                | •                     |
|                         | pages 698-703, XP002034629<br>S. TAKETANI ET AL.: "The hun                                |                                                                                                                       |                       |
|                         | protoporphyrinogen oxidase ge                                                             | ndfi                                                                                                                  |                       |
|                         | viganization and location to                                                              | chromosome 1"                                                                                                         |                       |
|                         | see the whole document                                                                    | om omosome 1                                                                                                          |                       |
|                         |                                                                                           |                                                                                                                       |                       |
| ı                       |                                                                                           | -/                                                                                                                    |                       |
|                         |                                                                                           | ·                                                                                                                     |                       |
| X Furth                 | er documents are listed in the continuation of box C.                                     |                                                                                                                       |                       |
|                         |                                                                                           | Patent family members are listed in                                                                                   | annex.                |
|                         | gories of crted documents :                                                               | later document published after the inter                                                                              |                       |
|                         | nt defining the general state of the art which is not<br>ed to be of particular relevance | or priority date and not in conflict with<br>cited to understand the principle or the<br>invention                    |                       |
| earlier de<br>filing da | ocument but published on or after the international                                       |                                                                                                                       |                       |
| documen                 | t which may throw doubts on priority claim(s) or                                          | "X" document of particular relevance; the c<br>cannot be considered novel or cannot i                                 |                       |
| citation                | or other special reason (as merified)                                                     | 'Y' document of particular relevance; the coannot be considered to relevance; the coannot be considered to relevance. | -i                    |
|                         |                                                                                           | document is combined with one or man                                                                                  | entive step when the  |
| document<br>later that  | t published prior to the international filing date but<br>in the priority date claimed    | in the art.                                                                                                           | to a person skilled   |
| ate of the ac           | tual completion of the international search                                               | *A* document member of the same patent for<br>Date of mailing of the international sear                               |                       |
| 8 .                     | July 1997                                                                                 | 2 3. 07. 97                                                                                                           | <b></b>               |
| ime and ma              | ling address of the ISA                                                                   |                                                                                                                       |                       |
|                         | European Patent Office, P.B. 5818 Patentiaan 2                                            | Authorized officer                                                                                                    |                       |
|                         | NL - 2280 HV Rimmil                                                                       |                                                                                                                       |                       |
|                         | NL - 2280 HV Ripwik Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016     | De Kok, A                                                                                                             |                       |

1

# INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/US 97/03343

|                                                      |                                                                                    | PC1/03 91/03343       |  |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|--|--|--|
| C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                    |                       |  |  |  |
| Category *                                           | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |  |  |  |
| A                                                    | US 5 086 169 A (J. P. MASCARENHAS) 4<br>February 1992<br>see the whole document    | 1-62                  |  |  |  |
| A                                                    | EP 0 459 643 A (LUBRIZOL GENETICS INC ) 4 December 1991 see the whole document     |                       |  |  |  |
|                                                      |                                                                                    |                       |  |  |  |
|                                                      |                                                                                    |                       |  |  |  |

# INTERNATIONAL SEARCH REPORT

. ,formation on patent family members

Inten nal Application No
PCT/US 97/03343

| Patent document cited in search report | Publication date | Patent family member(s)                                                                     | Publication date                                                     |
|----------------------------------------|------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| WO 9534659 A                           | 21-12-95         | AU 2453895 A<br>EP 0769059 A<br>FI 964958 A<br>PL 317759 A                                  | 05-01-96<br>23-04-97<br>11-12-96<br>28-04-97                         |
| US 5086169 A                           | 04-02-92         | NONE                                                                                        |                                                                      |
| EP 0459643 A                           | 04-12-91         | AU 643521 B<br>AU 7710791 A<br>CA 2042831 A<br>CN 1063506 A<br>JP 7067645 A<br>US 5290924 A | 18-11-93<br>21-11-91<br>19-11-91<br>12-08-92<br>14-03-95<br>01-03-94 |

Form PCT/ISA/210 (patent family annex) (July 1992)