Index Class

- 1. Bias-Variance Dilemma
- 2. Train-test split

Types of Fit

Types of Model Fit

Bias-Variance dilemma

The bias-variance dilemma or bias-variance problem is the conflict in trying to simultaneously minimize these two sources of error that prevent supervised learning algorithms from generalizing beyond their training set:^{[1][2]}

- The bias error is an error from erroneous assumptions in the learning algorithm. High bias can cause an
 algorithm to miss the relevant relations between features and target outputs (underfitting).
- The *variance* is an error from sensitivity to small fluctuations in the training set. High variance may result from an algorithm modeling the random noise in the training data (overfitting).

Regression 'explained_variance' metrics.explained variance score 'max error'

metrics.max error metrics.mean_absolute_error

'neg_mean_absolute_error' metrics.mean_squared_error

'neg_mean_squared_error' 'neg_root_mean_squared_error' metrics.root_mean_squared_error

metrics.mean_squared_log_error

'neg_mean_squared_log_error' 'neg_root_mean_squared_log_error'

metrics.root mean squared log error 'neg median absolute error' metrics.median_absolute_error

'r2' metrics.r2_score 'neg_mean_poisson_deviance' metrics.mean_poisson_deviance

'neg_mean_gamma_deviance' 'neg_mean_absolute_percentage_error'

'd2 absolute error score'

'd2 pinball score'

'd2 tweedie score'

metrics.mean gamma deviance

metrics.mean_absolute_percentage_error metrics.d2_absolute_error_score

metrics.d2_pinball_score

metrics.d2 tweedie score

Cheat Sheet - Bias-Variance Tradeoff

What is Bias?

 $bias = \mathbb{E}[f'(x)] - f(x)$

- · Error between average model prediction and ground truth
- The bias of the estimated function tells us the capacity of the underlying model to predict the values

What is Variance?

- nat is Variance? $variance = \mathbb{E}\Big[\big(f'(x) \mathbb{E}[f'(x)]\big)^2\Big]$ Average variability in the model prediction for the given dataset
- · The variance of the estimated function tells you how much the function can adjust to the change in the dataset

High Bias

Overly-simplified Model → Under-fitting

High error on both test and train data

High Variance ----- Overly-complex Model ── Over-fitting

Low error on train data and high on test - Starts modelling the noise in the input

High Bias Low Bias Low Variance High Variance Minimum Error Under-fitting Just Right Over-fitting Preferred if size Preferred if size of dataset is small of dataset is large

Bias variance Trade-off

- Increasing bias reduces variance and vice-versa
- Error = bias² + variance +irreducible error
- The best model is where the error is reduced.
- Compromise between bias and variance

Training vs Test Error

Training error typically under estimates test error.

(e.g., number of features)

