Quantum computation and information - Indranil Chakravarty

Siddharth Bhat

Contents

1	Lect	ture 1: Introduction	ŗ
	1.1	rn-Gerlach: A brief, morally correct construction of qubits	ϵ
		1.1.1 Analogy with polarization of light	
	1.2	Observable	
	1.3	Operators	
		1.3.1 Projectors — P	1

4 CONTENTS

Chapter 1

Lecture 1: Introduction

Taught in collaboration with MSR Redmond for the Q# bits. Topics:

- Intro: Transition from Classical to Quantum: Stern Gerlash, Sequential Stern Gerlash, Rise of randomness.
- Foundations of Quantum Theory: States, Ensembles, Qubits, Pure and Mixed states, Multi qubit states, Tensor products, Unitary transforms, Spectral decomposition, SVD, Generalized measurements, Projective measurements, POVM, Evolution of quantum state, Krauss Representation.
- Quantum Entropy: Subadditivity of Entropy, Avani-Licb(?) Inequality, Quantum channel, Quantum channel capacity, Data compression, Benjamin Schumahur(?) theorem.
- Quantum Entanglement: EPR paradox, Schmidt decomposition, Purification of entanglement, Entanglement separability problem, Pure and mixed entangled states, Measures of Entanglement.
- Quantum information processing protocols: Teleportation, Superdense coding, Entanglement swapping.
- Impossible operations in quantum information theory: No cloning, No deleting, No partial erasure.
- Quantum Computation: Introduction to Quantum Computating, Pauli gates, Hadamard gates, Universal gates, Quantum algorithms (Shor, Grover search, machine learning and optimisation).
- Quantum programming: Programming quantum algorithms, Q# programming language, quantum subroutines.

Books:

• Quantum computation and Quantum information — Nielsen and Chuang.

• Preskill lecture notes.

Grading:

- Possibility of open book take-home open ended exam for the finals.
- Mid 1: 15%
- Mid 2: 15%
- End sem (open book?): 30%
- Assignments: 15%
- Projects: 25%

1.1 Stern-Gerlach: A brief, morally correct construction of qubits

light rays ---> [z] ---> (z+, z-) --block (z-) --> [x] --- (x+, x-) -- block (x-) --> [z] ---> (z+, z-?!) [z] represents a polarizer along that axis.

- Since we first polarized along *z*, how did we manage to get out light rays in the *x* direction? The polarization should have killed everything.
- Since we blocked z—, How did we get back z— after passing stuff through [x]? Something has changed drastically from our classical picture.

We can consider $|z+\rangle$ to be something like:

$$|z+\rangle \equiv_? \frac{1}{2}|x+\rangle + \frac{1}{2}|x-\rangle$$

Where $|x+\rangle$ and $|x-\rangle$ are basis vectors for some vector space over \mathbb{R} .

If we were to pass the z+ light rays through [y], then we would get $|y+\rangle$, $|y-\rangle$. So, $|z+\rangle$ is also:

$$|z+\rangle \equiv_{?} \frac{1}{2}|y+\rangle + \frac{1}{2}|y-\rangle$$

1.1.1 Analogy with polarization of light

Consider a monochromatic light wave in the z direction. A linearly polarized light with polarization in the x direction which we call x polarized light is given by:

$$E_x = E_0 \hat{x} \cos(kz - \omega t)$$

 $\omega \equiv$ frequency \equiv ck, c \equiv speed of light, k \equiv wave number. Similarly, y polarized light is given by:

$$E_u = E_0 \hat{y} \cos(kz - \omega t)$$

Consider the case where we have x filters along direction -, x' filter along direction /, y filters along direction |. In this case, we can have x, x', y filters arranged sequentially give us non-zero output (contrast with just having x, y).

We can express the x' polarization as:

$$E_0 \hat{x'} \cos(kz - \omega t) = \frac{E_0}{\sqrt{2}} \hat{x} \cos(kz - \omega t) + \frac{E_0}{\sqrt{2}} \hat{y} \cos(kz - \omega t)$$

By analogy, we write:

$$|z_{+}
angle \equiv rac{1}{\sqrt{2}}|x_{+}
angle + rac{1}{\sqrt{2}}|x_{-}
angle$$

However, we now have probability $\frac{1}{\sqrt{2}}$, but we want $\frac{1}{2}$. So, we define the probability as:

$$\langle x+|x_{-}\rangle^{2}=\frac{1}{2}$$

 $z_+ \equiv x$ polarization

 $z_{-} \equiv y$ polarization

 $x_+ \equiv x'$ polarization

 $x_{-} \equiv y'$ polarization

This problem can be solved again by polarization of light. This time, we consider circularly polarized light which can be obtained by letting linearl polarized light passing through a quarter wave plate (?)

When we pass such circularly polarized light through an x or y filter, we again obtain either an x polarized beam, or a y polarized beam of equal intensity. Yet, everybody knows that circularly polarized light is totally different from 45° linearly polarized light.

A right circularly polarized light is a linear combination of x polarized light and y polarized light, where the oscillation of the electric field for the y component is 90° out of phase with the x polarized component.

$$\begin{split} E &= \frac{E_0}{\sqrt{2}} \hat{x} \cos(kz - \omega t) + \frac{E_0}{\sqrt{2}} \hat{y} \cos\left(kz - \omega t + \frac{n}{2}\right) \\ \frac{E}{E_0} &= \frac{1}{\sqrt{2}} \hat{x} e^{i(kz - \omega t)} + \frac{i}{\sqrt{2}} \hat{y} e^{i(kz - \omega t)} \end{split}$$

Similarly, left circularly polarized light is:

$$E = \frac{E_0}{\sqrt{2}}\hat{x}\cos(kz - \omega t) - \frac{E_0}{\sqrt{2}}\hat{y}\cos(kz - \omega t + \frac{n}{2})$$

1.2 Observable

An observable is something that we observe.

$$Z\left|z+
ight
angle =rac{hbar}{\sqrt{2}}\left|z+
ight
angle \qquad Z\left|z-
ight
angle =rac{hbar}{\sqrt{2}}\left|z-
ight
angle$$

TODO: try to construct an operator that takes a vector $|\nu\rangle$ to a vector that is orthogonal to it.

1.3. OPERATORS

1.3 Operators

1.3.1 Projectors — P

Suppose W is a k-dimensional vector subspace of the d-dimensional vector space V.

Using Gram-Schmidt, it is possible to construct an orthonormal basis $|1\rangle, |2\rangle, \dots |d\rangle$ for V such that $|1\rangle \dots |k\rangle$ is an orthonormal basis for W. Then the projector P is defined as:

$$P_{W} \equiv \sum_{i=1}^{k} |i\rangle\!\langle i|$$