# Détermination d'un Plan d'évacuation incendie

Etude locale et générale d'une évacuation

Simulation globale

Simulation locale

#### PLAN D'EVACUATION



#### INCENDIE

- Appuyez sur le bouton d'alarme-incendie
- Téléphonez au 333
- Indiquez votre nom et l'endroit où vous vous trouvez
- Francia del fondino el fregultos per perternos 6 mil
- Europe del metrophone de parlement stingue.

#### EVECTATION:

- Chapter on appears become
- But and their trade of the contract part for productions of the part of
- · Date and revening transport the business, the country law.
- Transplace in cost to be representations and pillule is transplaced for testing of



























































































### Simulation locale

### Choix de l'implémentation



### Construction d'une salle

















### Déplacement des personnes











### Récupération des données

Exemple avec la salle de MP\*





# Temps t<sub>1</sub>

### Temps de sortie

†1



### Temps de sortie $\begin{matrix} t_1 \\ t_2 \\ t_3 \\ t_4 \\ \cdots \\ T_{k-1} \end{matrix}$



## Temps de sortie



### Exploitation des données

### Première approche de dérivation

### Méthode de la dérivée première à l'ordre 1 (2 points d'appuis)

■ On a f(x+h) = f(x) + hf'(x) + O(h) (formule de Taylor-Young)

$$f'(x) = \left(\frac{f(x+h) - f(x)}{h}\right) + O(h)$$



# Méthode de la dérivée première à l'ordre 1 (2 points d'appuis)

On peut obtenir de même :

$$f'(x) \neq \left(\frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}\right) + O(h^4)$$







Tranformée de Fourier discrète

Signal réel discret





Filtre passe-bas



Signal fréquentiel discret (n harmoniques)

$$\int \mathrm{S}(k) = \sum_{n=0}^{\mathrm{N}-1} s(n) \cdot e^{-2i\pi k rac{n}{\mathrm{N}}} \qquad ext{pour} \qquad 0 \leqslant k < \mathrm{N}$$

 $s(n) = rac{1}{\mathrm{N}} \sum_{k=0}^{\mathrm{N}-1} \mathrm{S}(k) \cdot e^{2i\pi n rac{k}{\mathrm{N}}}$ 

Signal fréquentiel discret (50 harmoniques)

Signal réel discret lissé



# Polynôme interpolateur de Lagrange

<u>Théorème</u>: Etant donné n+1 points  $(x_0, y_0)$ , ...  $(x_n, y_n)$ , il existe un unique fonction polynomiale de degré au plus n qui, aux abscisses  $x_i$ , prend la valeur  $y_i$ 

$$L(X) = \sum_{j=0}^n y_j \left(\prod_{i=0, i 
eq j}^n rac{X-x_i}{x_j-x_i}
ight)$$



$$L(X) = \sum_{j=0}^n y_j \left(\prod_{i=0, i 
eq j}^n rac{X-x_i}{x_j-x_i}
ight)$$



### Pour la suite...

- Etude globale
  - Comparer les plans d'évacuation de façon peu coûteuse

- Etude locale
  - Peaufiner le lissage (méthode des moindres carrés,
  - Rayons de personnes différents (débit plus réaliste)
  - Arrivée des personnes dans les salles (pour modéliser les couloirs (zones vertes)

Couplage des résultats