

Universidad Nacional del Litoral

Mecánica Computacional

Docentes:

Norberto Marcelo Nigro (nnigro@intec.unl.edu.ar)
Gerardo Franck (gerardofranck@yahoo.com.ar)
Diego Sklar (diegosklar@gmail.com)
Carlos Gentile (csgentile@gmail.com)

GUIA DE TRABAJOS PRACTICOS Nº 3

MÉTODO DE ELEMENTOS FINITOS

Ejercicio 1

Dada la siguiente ecuación diferencial en una dimensión que modela la transferencia de calor en una barra:

$$\rho c_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} - cT + G, \quad \forall \mathbf{x} \in [\mathbf{L}_1, \mathbf{L}_2]$$

Resuelva los problemas propuestos en la siguiente tabla, donde se describen los valores de las constantes del modelo y las condiciones de borde. Consideraciones a tener en cuenta:

- Compare siempre la solución obtenida con la solución analítica brindada.
- Resuelva los problemas con funciones de forma lineales y cuadráticas.
- Implemente los tres esquemas temporales: Forward Euler, Backward Euler y Crank-Nicholson. Considerar siempre la condición inicial nula (T(x,0)=0).

	Extremos		Condiciones de borde		Constantes del modelo				
Ítem	L1	L2	L1	L1	ρc_p	K	c	G	Solución analítica
a	0	1	T=10	T=50	0	2	0	100	$T(x) = -25x^2 + 65x + 10$
b	0	2	T=100	q=0	0	1	1	0	$T(x) = \frac{100e^{-x}(e^{2x} + e^4)}{1 + e^4}$
с	1	5	q=2	T=0	0	1	0	$100(x-3)^2$	$T(x) = \frac{-25x^4 + 300x^3 + ax^2 + bx + c}{3}$ a = -1350, b = 1906, c = 2345
d	0	1	T=10	$h=0.2 \phi_{inf}=50$	0	1	1	50	$T(x) = -36.6897e^{-x} - 3.3103e^x + 50$
e	5	10	h=2 φ _{inf} =100	T=50	1	2	0	\mathbf{x}^3	$T(x) = -\frac{x^5}{40} + \frac{1225x}{3} - \frac{4600}{3}$
f	0	1	T=0	h=2 φ _{inf} =10	2	2	2	75	$T(x) = -\frac{5}{4}e^{-(x+1)}(e^x - 1)(11e^x + a)$ $a = 11 - 30e$
g	0	1	T=50	q=5	1	2	-2	0	$T(x) = 73.2433\sin(x) + 50\cos(x)$

Ejercicio 2

Implementar una función [T] = elemFinitos(xnode, model, cb, et) que resuelva el modelo completo de transferencia de calor donde:

- xnode es el vector de coordenadas nodales.
- model es un struct que contiene todas las constantes del modelo $(\mathbf{k}, \mathbf{c}, \mathbf{\rho}, \mathbf{c}_p \ \mathbf{y} \ \mathbf{G})$.
- cb es una matriz de dos filas y tres columnas que contiene los datos de las condiciones de borde. La primera fila indica la condición de borde del lado izquierdo y la segunda fila, la del derecho. La primera columna indica el tipo de condición de borde: 1-Dirichlet, 2-Neumann, 3-Robin. La segunda columna contiene el valor de temperatura, flujo, o coeficiente de convección h dependiendo el dato de la primera columna. La tercera columna será de valor -1 para la condición 1 y 2, y tendrá el valor de temperatura externa en caso de la condición 3.
- et es un escalar que indica el esquema temporal a utilizar (o resolver en estado estacionario).