A SIMPLE FPTAS FOR COUNTING EDGE COVERS

Chengyu Lin¹ Jingcheng Liu¹ Pinyan Lu²

¹Shanghai Jiao Tong University

²Microsoft Research Asia

ACM-SIAM Symposium on Discrete Algorithms, 2014

Overview

- Introduction
 - Definition
 - Edge Covers and Matching
 - Edge Covers and Rtw-Mon-CNF Formulae
 - Counting Problems
- 2 Our Result
 - Counting via Marginal Probability
 - Computation Tree Recursion
 - Correlation Decay

Overview

- Introduction
 - Definition
 - Edge Covers and Matching
 - Edge Covers and Rtw-Mon-CNF Formulae
 - Counting Problems
- 2 Our Result
 - Counting via Marginal Probability
 - Computation Tree Recursion
 - Correlation Decay

Edge cover

Definition

For an undirected input graph G=(V,E), an **edge cover** of G is a set of edges C covering all vertices.

Example

Figure: An edge cover for Petersen graph

Edge cover

Definition

For an undirected input graph G=(V,E), an **edge cover** of G is a set of edges C covering all vertices.

Example

Figure: An edge cover for Petersen graph, with edges chosen being highlighted in red. Note that this is also a perfect matching.

Edge cover

Edge cover is related to many other problems such as:

- Matching problem.
- Rtw-Mon-CNF. (read twice monotone CNF)
- Holant problem.
-

Overview

- Introduction
 - Definition
 - Edge Covers and Matching
 - Edge Covers and Rtw-Mon-CNF Formulae
 - Counting Problems
- 2 Our Result
 - Counting via Marginal Probability
 - Computation Tree Recursion
 - Correlation Decay

Relation to Matching

For a graph with a perfect matching, enumerating (sampling) perfect matchings is equivalent to enumerating (sampling) minimum edge covers.

Example (Minimum edge covers)

Find a minimum edge cover by maximal matching?

(a) G has a perfect matching.

(b) G doesn't have a perfect matching.

Relation to Matching

For a graph with a perfect matching, enumerating (sampling) perfect matchings is equivalent to enumerating (sampling) minimum edge covers.

Example (Minimum edge covers)

Find a minimum edge cover by maximal matching?

(c) G has a perfect matching.

(d) G doesn't have a perfect matching.

Relation to Matching

For a graph with a perfect matching, enumerating (sampling) perfect matchings is equivalent to enumerating (sampling) minimum edge covers.

Example (Minimum edge covers)

Find a minimum edge cover by maximal matching?

(e) G has a perfect matching.

(f) G doesn't have a perfect matching.

Overview

- Introduction
 - Definition
 - Edge Covers and Matching
 - Edge Covers and Rtw-Mon-CNF Formulae
 - Counting Problems
- 2 Our Result
 - Counting via Marginal Probability
 - Computation Tree Recursion
 - Correlation Decay

Relation to Rtw-Mon-CNF

Definition

A formula is **read twice** if every variables appears at most twice.

A formula is **monotone** if every variables appears positively.

$$\phi = (e_1 \lor e_2 \lor e_3) \land (e_1 \lor e_4) \land (e_4 \lor e_5 \lor e_2) \land (e_3 \lor e_5)$$

Jingcheng Liu (SJTU) COUNTING EDGE COVERS

Relation to Rtw-Mon-CNF

Definition

A formula is **read twice** if every variables appears at most twice.

A formula is monotone if every variables appears positively.

Consider the following Rtw-Mon-CNF formula, its satisfying assignments are exactly edge covers of its graph representation, where we write edges as variables, and vertices as clauses.

$$\phi = (e_1 \vee e_2 \vee e_3) \wedge (e_1 \vee e_4) \wedge (e_4 \vee e_5 \vee e_2) \wedge (e_3 \vee e_5).$$

Figure: Graph representation for ϕ .

Jingcheng Liu (SJTU)

Overview

- Introduction
 - Definition
 - Edge Covers and Matching
 - Edge Covers and Rtw-Mon-CNF Formulae
 - Counting Problems
- 2 Our Result
 - Counting via Marginal Probability
 - Computation Tree Recursion
 - Correlation Decay

Counting Problems

A list of problems in their search, optimization, and counting versions.

Search problems:

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

Optimizations:

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

Counting problems

- #SAT.
- Counting matchings.
- Counting edge covers.
-

Counting Problems

A list of problems in their search, optimization, and counting versions.

Search problems:

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

Optimizations:

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

Counting problems

- #SAT.
- Counting matchings
- Counting edge covers.
-

Counting Problems

A list of problems in their search, optimization, and counting versions.

Search problems:

- SAT.
- Find a (perfect) matching.
- Find an edge cover.
-

Optimizations:

- MAX-SAT.
- Find a maximum matching.
- Find a minimum edge cover.
-

Counting problems:

- #SAT.
- Counting matchings.
- Counting edge covers.
-

- Partition function in statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Pricing in combinatorial markets.
- Query evaluations of probabilistic database
-

- Partition function in statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Pricing in combinatorial markets.
- Query evaluations of probabilistic database
-

- Partition function in statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Pricing in combinatorial markets.
- Query evaluations of probabilistic database
-

- Partition function in statistical physics.
- Graph polynomials.
- Sampling, learning and inference.
- Pricing in combinatorial markets.
- Query evaluations of probabilistic database.
-

Approximate Counting

Many interesting problems in the exact counting regimes, including counting edge cover, is hard (#P-complete). Instead we look for these two types of polynomial time approximation scheme:

Definition (FPTAS)

For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq \hat{N}\leq (1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.

Approximate Counting

Many interesting problems in the exact counting regimes, including counting edge cover, is hard (#P-complete). Instead we look for these two types of polynomial time approximation scheme:

Definition (FPTAS)

For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq\hat{N}\leq(1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.

Main Result

Previous work:

- Only an MCMC-based FPRAS is known for counting edge covers in graphs with maximum degree 3.
- The correlation decay based FPTAS for anti-ferromagnetic 2-spins systems (e.g. counting independent sets) goes beyond the best known MCMC based FPRAS and achieves the boundary of approximability.

Our main result: a correlation decay based FPTAS for general graphs. This provides another example where the tractable range for correlation decay based FPTAS exceeds the sampling based FPRAS.

Main Result

Previous work:

- Only an MCMC-based FPRAS is known for counting edge covers in graphs with maximum degree 3.
- The correlation decay based FPTAS for anti-ferromagnetic 2-spins systems (e.g. counting independent sets) goes beyond the best known MCMC based FPRAS and achieves the boundary of approximability.

Our main result: a correlation decay based FPTAS for general graphs. This provides another example where the tractable range for correlation decay based FPTAS exceeds the sampling based FPRAS.

Proof Sketch

Let EC(G) be the set of edge covers. Here is an overall work-flow:

- Relate |EC(G)| with a marginal probability P(G, e).
- Derive a computation tree recursion for P(G, e).
- ullet P(G,e,L): Truncate the tree at depth L for some notion of depth.
- Show exponential correlation decay with respect to that tree depth:

$$|P(G, e, L) - P(G, e)| \le exp(-\Omega(L))$$

Devising sub-problems

Definition (Dangling edge)

A dangling edge $e=(u, _)$ of a graph is such singleton edge with exactly one end-point vertex u, as shown in the Figure 3a.

$$G - e \triangleq (V, E \setminus e)$$

$$G - u \triangleq (V \setminus u, E - u)$$

Figure: Dangling edges examples.

Proof Sketch

Let EC(G) be the set of edge covers. Here is an overall work-flow:

- Relate |EC(G)| with a marginal probability P(G, e).
- Derive a computation tree recursion for P(G, e).
- ullet P(G,e,L): Truncate the tree at depth L for some notion of depth.
- Show exponential correlation decay with respect to that tree depth:

$$|P(G, e, L) - P(G, e)| \le exp(-\Omega(L))$$

Counting v.s. Marginal Probability

Problem

Goal: estimate |EC(G)|.

Let X be an edge cover sampled uniformly from EC(G), consider the following marginal probability:

for an edge e, we write $P(G, e) \triangleq \Pr(e \notin X)$.

Solution: estimate P(G, e).

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X = E)$?

Let
$$E=\{e_i\}$$
, and $e_i=(u_i,v_i).$
$$\Pr(X=E)=\frac{1}{|EC(G)|}$$

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E = \{e_i\}$$
, and $e_i = (u_i, v_i)$.

$$\Pr(X=E) = \frac{1}{|EC(G)|}$$

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E = \{e_i\}$$
, and $e_i = (u_i, v_i)$.

$$Pr(X = E) = \frac{1}{|EC(G)|}$$
$$Pr(X = E) = Pr(\forall i, e_i \in X)$$

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E=\{e_i\}$$
, and $e_i=(u_i,v_i).$
$$\Pr(X=E)=\frac{1}{|EC(G)|}.$$

$$Pr(X = E) = Pr(\forall i, e_i \in X)$$
$$= Pr(e_1 \in X) Pr(e_2 \in X \mid e_1 \in X) \cdots$$

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E = \{e_i\}$$
, and $e_i = (u_i, v_i)$.

$$\Pr(X = E) = \frac{1}{|EC(G)|}$$

$$\Pr(X = E) = \Pr(\forall i, e_i \in X)$$

$$= \Pr(e_1 \in X) \Pr(e_2 \in X \mid e_1 \in X) \cdots$$

$$= \prod_{i} \Pr(e_i \in X \mid \{e_j\}_{j=1}^{i-1} \subseteq X)$$

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E = \{e_i\}$$
, and $e_i = (u_i, v_i)$.

$$Pr(X = E) = \frac{1}{|EC(G)|}$$

$$Pr(X = E) = Pr(\forall i, e_i \in X)$$

$$= Pr(e_1 \in X) Pr(e_2 \in X \mid e_1 \in X) \cdots$$

$$= \prod_{i} Pr(e_i \in X \mid \{e_j\}_{j=1}^{i-1} \subseteq X)$$

$$= \prod_{i} (1 - P(G_i, e_i)),$$

where $G_1 = G, G_{i+1} = G_i - e_i - u_i - v_i$.

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E = \{e_i\}$$
, and $e_i = (u_i, v_i)$.

$$Pr(X = E) = \frac{1}{|EC(G)|}$$

$$Pr(X = E) = Pr(\forall i, e_i \in X)$$

$$= Pr(e_1 \in X) Pr(e_2 \in X \mid e_1 \in X) \cdots$$

$$= \prod_{i} Pr(e_i \in X \mid \{e_j\}_{j=1}^{i-1} \subseteq X)$$

$$= \prod_{i} (1 - P(G_i, e_i)),$$

where $G_1 = G, G_{i+1} = G_i - e_i - u_i - v_i$.

$$\frac{1}{|EC(G)|} = \prod_{i} (1 - P(G_i, e_i)).$$

Recall that the set of all edges E is an edge cover. For a randomly sampled edge cover X, what is $\Pr(X=E)$?

Let
$$E = \{e_i\}$$
, and $e_i = (u_i, v_i)$.

$$Pr(X = E) = \frac{1}{|EC(G)|}$$

$$Pr(X = E) = Pr(\forall i, e_i \in X)$$

$$= Pr(e_1 \in X) Pr(e_2 \in X \mid e_1 \in X) \cdots$$

$$= \prod_{i} Pr(e_i \in X \mid \{e_j\}_{j=1}^{i-1} \subseteq X)$$

$$= \prod (1 - P(G_i, e_i)),$$

where $G_1 = G, G_{i+1} = G_i - e_i - u_i - v_i$.

$$\frac{1}{|EC(G)|} = \prod_{i} \left(1 - P(G_i, e_i)\right).$$

Proof Sketch

Let EC(G) be the set of edge covers. Here is an overall work-flow:

- Relate |EC(G)| with a marginal probability P(G, e).
- Derive a computation tree recursion for P(G, e).
- ullet P(G,e,L): Truncate the tree at depth L for some notion of depth.
- Show exponential correlation decay with respect to that tree depth:

$$|P(G, e, L) - P(G, e)| \le exp(-\Omega(L))$$

Computation Tree Recursion

We focus on e is dangling.

$$P(G, e) = \frac{1 - \prod_{i=1}^{d} P(G_i, e_i)}{2 - \prod_{i=1}^{d} P(G_i, e_i)},$$

where $G_1 \triangleq G - e - u$, and $G_{i+1} \triangleq G_i - e_i$.

Truncate with a modified recursion depth:

$$P(G, e, L) = \begin{cases} \frac{1}{2}, & \text{if } L \leq 0; \\ \frac{1 - \prod_{i=1}^{d} P(G_i, e_i, L - \lceil \log_6 (d+1) \rceil)}{2 - \prod_{i=1}^{d} P(G_i, e_i, L - \lceil \log_6 (d+1) \rceil)}, & \text{otherwise.} \end{cases}$$

Computation Tree Recursion

We focus on e is dangling.

$$P(G, e) = \frac{1 - \prod_{i=1}^{d} P(G_i, e_i)}{2 - \prod_{i=1}^{d} P(G_i, e_i)},$$

where $G_1 \triangleq G - e - u$, and $G_{i+1} \triangleq G_i - e_i$. Truncate with a modified recursion depth:

$$P(G,e,L) = \begin{cases} \frac{1}{2}, & \text{if } L \leq 0; \\ \frac{1-\prod_{i=1}^d P(G_i,e_i,L-\lceil \log_6{(d+1)}\rceil)}{2-\prod_{i=1}^d P(G_i,e_i,L-\lceil \log_6{(d+1)}\rceil)}, & \text{otherwise}. \end{cases}$$

Proof Sketch

Let EC(G) be the set of edge covers. Here is an overall work-flow:

- Relate |EC(G)| with a marginal probability P(G, e).
- Derive a computation tree recursion for P(G, e).
- ullet P(G,e,L): Truncate the tree at depth L for some notion of depth.
- Show exponential correlation decay with respect to that tree depth:

$$|P(G,e,L) - P(G,e)| \le exp(-\Omega(L))$$

Correlation Decay

Proposition

Given graph G, edge e and depth L,

$$|P(G, e, L) - P(G, e)| \le 3 \cdot (\frac{1}{2})^{L+1}$$

Now we just take $L = \log_2\left(\frac{6m}{\varepsilon}\right)$, this gives the desired FPTAS.

Conclusions and Upcoming Results

As a conclusion, we have shown an FPTAS for counting edge covers in general graphs.

We later generalized our techniques and obtained the following:

- FPTAS for weighted edge covers. (Arbitrary edge weights).
- FPTAS for Read-5-Mon-CNF, while Read-6-Mon-CNF does not admit FPTAS unless P=NP.
- FPTAS for hypergraph matching in certain range (e.g. 3D-Matching with maximum degree 4).
- . . .

THANK YOU!