Delirios de AnalFun

Paco Mora

17 de octubre de 2022

CAPÍTULO 1

Yo qué sé qué es esto

1.1 - Introducción

Definición 1.1. Un espacio de medida nula de primera categoría cuando está contenido en una unión numerable de cerrados con interior vacío. Si no es de primera categoría se llama de segunda categoría.

Teorema 1. (Baire)

Sea (X,d) espacio métrico completo $\{G_n\}_{n\in\mathbb{N}}$ abiertos de en $X, \overline{G}_r = X \ \forall n \in \mathbb{N}$. Entonces:

$$\bigcap_{n=1}^{\infty} G_n \neq \emptyset$$

//Repaso de la relación de orden

Teorema 2. Principio de la buena ordenación Para todo conjunto S, existe una relación de orden \leq tal que (S, \leq) está bien ordenado, \leq es un buen orden.

Teorema 3. Lema de Zorn

 $Si\ (P,\leq)$ es un conjunto parcialmente ordenado en el que cada cadena tiene una cota superior (para C, cadena, existe $c\in P$ tal que $x\leq c$ para todo $x\in C$), entonces P tiene un elemento maximal (existe $m\in P$ tal que $si\leq x$ entonces x=m)

Teorema 4. Principio Maximal de Hasudorff

Cada conjunto parcialmente ordenado (P, \leq) contiene una cadena maximal.

Teorema 5. Son equivalentes:

- 1. El principio Maximal de Hasudorff
- 2. Lema de Zorn
- 3. Principio de la buena ordenación
- 4. Axioma de elección

//Definiciones de espacio de Hilbert y de Banach

//1.2.8 del libro

//Del 1.3 ha dicho que lo leamos.

//"Los teoremas que pregunto son los que tienen nombre"

Teorema 6. De la mejor aproximación

Dado $(H, <\cdot>)$ espacio de Hilbert y $C\subset H$ cerrado y convexo. Sea $x_0\not\in C$. Entonces existe un único elemento $c_0 \in C$ tal que $||x_0 - x|| = \inf\{||x_0 - c|| = \alpha : c \in C\}$

Demostración

Tomemos una sucesión $(c_n)_{n\in\mathbb{N}}$ con $c_n\in C$ de forma que se verifique

$$\alpha \quad \|c_n\| \quad \alpha + \frac{1}{n}$$

Si c_n fuera de Cauchy, existe $c_0 = \lim_{n \to \infty} c_n$. Probemos que (c_n) es de Cauchy. Para ello basta usar la identidad del paralelogramo.

Como
$$\underbrace{2\|c_n\|^2}_{2\alpha^2} + \underbrace{2\|c_m\|^2}_{2\alpha^2} - \|c_n + c_m\|^2 = \|c_n - c_m\|^2$$

Dividimos la expresión por 4 podemos usar la convexidad de C para el punto medio entre c_n y c_m :

$$\frac{1}{2}||c_n||^2 + \frac{1}{2}||c_m||^2 - \left|\left|\frac{c_n + c_m}{2}\right|\right|^2 = \frac{1}{4}||c_n - c_m||^2$$

Ahora tomamos límites para ver que $||c_n - c_m|| \to 0$.

Teorema 7. (de la proyección)

Sea M un subespacio cerrado del Hilbert H, entonces existen un único par de aplicaciones lineales continuas $P, Q: H \to H$ tales que P(H) = M y $Q(H) = M^{\perp} = \{y \in H: \langle y, m \rangle = 0 \ \forall m \in M\}$ y $x = Px + Qx \ \forall x \in H$

Además se verifica:

- $\begin{array}{ll} \bullet & x \in M \implies Px = x, \ Qx = 0; \ x \in M^{\perp} \implies Px = 0, \ Qx = x \\ \bullet & \|x Px\| = \inf\{\|x y\|, \ y \in M\} \ \forall x \in H \\ \bullet & \|x\|^2 = \|Px\|^2 + \|Qx\|^2 \ (Pitágoras) \end{array}$

Como consecuencia $H = M \oplus M^{\perp}$

Demostración

Sea $x \in H$, x + M cerrado y convexo, llamemos Qx alúnico elemento en x + M de norma mínima y definimos Px = x - Qx. Vemos que $Qx \in M^{\perp}$, $\langle z, y \rangle = 0 \forall y \in M$. Aplicando que $Qx \equiv Z$ tiene norma mínima en x + M tendremos:

$$0 \leq \|z\|^2 = \langle z, z \rangle \leq \underbrace{\|z - \alpha y\|^2}_{\forall \alpha \in \mathbb{R}} = \langle z - \alpha y, z - \alpha y \rangle = \underbrace{\langle z, z \rangle}_{\forall \alpha \in \mathbb{R}} - \overline{\alpha} \langle z, y \rangle - \alpha \langle y, z \rangle = \alpha^2 \|y\|^2$$

Tomando ahora $\alpha = \langle z, y \rangle$ y como se tiene que cumplir siempre que la expresión es mayor o igual que 0 llegamos a $0 \le -\alpha^2 \implies \alpha = 0$, luego $\operatorname{Im}(Q) \subset H^{\perp}$. Como además $M \cap M^{\perp} = \{0\} \implies x = Px + Qx$, entonces $H = M \oplus M^{\perp}$

Análogamente sale el resto de los enunciados¹.

Lema 1.1.1. $M \subset H$ subespacio estricto cerrado del espacio de Hilbert H. Entonces $\exists x_0 \neq 0, x_0 \perp M, < x_0, m \geq 0 \forall m \in M$

Demostración

П

Como $H \neq M \implies M^{\perp} \neq \{0\}$

 $\{d_n: n=1,2,..\}$ numerable y denso en H

Tomamos entonces una base ortonormal $\{e_1, e_2, ..., e_n, ...\}$ tal que:

$$span\{d_1, ..., d_n, ...\} = span\{e_1, ..., e_n, ...\}$$

Definición 1.2. Conjunto ortonormal $\{\overline{u}_1, \overline{u}_2, ...\}$ en $H : \langle u_i, u_j \rangle = \delta_{ij}$. Tenemos además que son LI:

$$0 = \|\sum_{i=1}^{n} c_i 0_i\|^2 = \langle \sum_{i=1}^{n} c_i 0_i, \sum_{i=1}^{n} c_i 0_i \rangle = \sum_{i=1}^{n} c_i^2 \implies c_i = 0, \ i = 1, 2, ..., n$$

Proposición 1.1. $M = \text{span}\{u_1, u_2, ..., u_n\} \subset H, \ P_M(x) = \sum_{i=1}^n \langle x_i, u_i \rangle u_i. \ Si \ d = dist\{x, M\}$ entonces:

$$||x||^2 - \delta^2 = \sum_{i=1}^n |\langle x, u_i \rangle|^2$$

Lema 1.1.2. Sea $\{u_1, u_2, ..., u_n, ...\}$ ortonormal, $||x||^2 \ge \sum_{i=1}^{\infty} |\langle x, u_i \rangle|^2 \ \forall x \in H$

 $^{^{1}\}mathrm{xd}$

Proposición 1.2. $\{u_1, u_2, ..., u_n, ...\}$ ortonormal en H, la función:

$$\Lambda: H \to \ell^2 \ \Lambda(x) = (\langle x, u_i \rangle)_{i=1}^{\infty}$$

es continua y sobre

Demostración

 $(\xi_n) \in \ell^2$ encontramos $x \in H$: $\Lambda(x) = (\xi_n)$. Nos preguntamos si:

$$\sum_{i=1}^{\infty} \xi_n u_n \to <\sum_{n=1}^{\infty} \xi_n u_n, u_m >$$

No se ve nada en la pizarra, ha probado que es de Cauchy para ver que es convergente.

Teorema 8. (de la base hilbertiana)

 $Para \{u_1, u_2, ..., u_n, ...\}$ conjunto ortonormal en H (espacio de Hilbert). Son equivalentes:

Para $\{u_1, u_2, ..., u_n, ...\}$ conjunct of the second of $\{u_1, u_2, ...\}$ es ortonormal maximal.

2. $\overline{\text{span}\{u_1, ...\}} = H$ 3. $\forall x \in H \text{ se tiene } x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n \text{ en } H$ 4. $\forall x \in H, \ \forall y \in H, \text{ se tiene } \langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, u_n \rangle \langle y, u_n \rangle$ 5. $\forall x \in H, \text{ se tiene } ||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$

A la igualdad de los dos últimos puntos se le llama Identidad de Parseval

Demostración

Recomiendo mirar el libro. 1 \iff 2

Por la definición.

 $2 \implies 3$

Por la desigualdad de Bessel.

Sea $M_n=span\{u_1,u_2,...,u_n\},$ sabemos que $\overline{\bigcup_{n=1}^{\infty}M_n}=H$ y que:

$$\forall x \in H, \ P_{M_n}(x) = \sum_{i=1}^n \langle x, u_i \rangle u_i$$

$$||x||^2 = \underbrace{dist(x, M_n)^2}_{=:\delta_n \to 0} + \sum_{i=1}^n |\langle x, u_i \rangle|^2$$

$$\forall \varepsilon > 0, \ \exists x_{\varepsilon} \in \bigcup_{i=1}^{\infty} M_n : \ \|x - x_{\varepsilon}\| < \varepsilon, \ x_{\varepsilon} = \sum_{i=1}^{n} c_i u_i \in M_P$$
$$\delta_n = d(x, M_n) \le \|x - x_{\varepsilon}\| < \varepsilon$$

 $3 \implies 4$

Continuidad del producto escalar

 $4 \implies 5$

Directo.

 $5 \implies 2$

Por la desigualdad de Bessel.

Definición 1.3. A una base como la anterior se le llama base hilbertiana. A los coeficientes se les llama coeficientes de Fourier.

Lema 1.1.3. Si $(E, \|\cdot\|)$ es un espacio de Banach con una base algebraica numerable, entonces E es finito dimensional.

Para E no completo, no es cierto.

Aquí falta un teorema que ha dictado y no me ha dado tiempo a copiar.

Teorema 9. Sea $<\cdot>$ un producto escalar en C([a,b]) con $\|\cdot\|_{\infty}$ más fina que $\|\cdot\|_{\infty}$. Sea $\{\phi_n: n=0,1,2,\ldots\}$ la sucesión de polinomios ortonormales. Entonces:

$$f = \sum_{n=0}^{\infty} \langle f, \phi_n \rangle \phi_n \ \forall f \in C[a, b]$$

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \implies \left\| f - \sum_{n=0}^{\infty} \langle f, \phi_n \rangle \phi_n \right\|_{\langle \cdot \rangle} \langle \varepsilon \rangle$$

1.1.1. Series de Fourier

Definición 1.4. Un polinomio trigonométrico es una función de la forma

$$h(t) = \sum_{n=0}^{m} \alpha_n \cos(nt) + \beta_n \sin(nt), \ \alpha_n, \beta_n \in \mathbb{R}, \ m = 0, 1, 2, \dots$$

Lema 1.1.4. Si h_1, h_2 son polinomios trigonométricos, su producto también lo es.

Lema 1.1.5. $f: [-\pi, \pi] \to \mathbb{R}, \ \varepsilon > 0$, entonces existe un polinomio trigonométrico q_{ε} tal que:

$$\int_{-\pi}^{\pi} |f(t) - q_{\varepsilon}(t)|^2 dt < \varepsilon$$

Ejercicio 1.

$$u_0(t) = \frac{1}{\sqrt{2\pi}}, \ u_{2n+1}(t) = \frac{1}{\sqrt{pi}}\cos(nt), \ u_{2m}(t) = \frac{1}{\sqrt{pi}}\sin(mt), \ m = 1, 2, \dots$$

Es ortonormal en $(C[a,b],\langle\cdot\rangle)$

1.2 - Teoremas de representación

Vemos primero un primer teorema de representación.

Proposición 1.3. Dado $F:C[0,1]\to\mathbb{R}$ lineal y continua. Existe una única medida (F función de distribución) tal que:

$$F(f) = \int_{0}^{1} f(t)dF(f)$$

Teorema 10. Teorema de Rieszt.

Buscar en el libro.

Definición 1.5. Topología débil del espacio de Hilbert

Sea (H, <>) un espacio de Hilbert.

$$\mathbb{K} \leftarrow H : x_0, \qquad \varepsilon > 0, \ t_1, ..., t_p \in H$$

 $< x, x_0 > \leftarrow x$

$$W(x_0, \varepsilon, t_1, ..., t_p) = \{ z \in H : | \langle t; x_0 - z \rangle | \langle \varepsilon, i = 1, 2, ..., p \}$$

Teorema 11. Alaoglo-Bourbaki

Sea (H, <>) un espacio de Hilbert y sea $B_H = \{x \in H : ||x||_{<>} \le 1\}$. Entonces B_H es un subconjunto débilmente compacto.

Demostración

Lo vemos para el caso separable.

Tomemos una base hilbertiana $\{e_n\}$ de H y tomemos $(v_n) \subseteq B_H$.

Notemos primero que $|\langle e_p, v_n \rangle| \le 1 \ \forall p, n \in \mathbb{N}$.

Tomemos $[0,1]^{\mathbb{N}}$, el cubo de Hilbert, que es métrico compacto.

Por el teorema de Riesz, tomamos la forma lineal equivalente a cada elemento de la sucesión (v_n) , $v_n \mapsto <-, v_n>$ y utilizando la base, este producto puede expresarse como $\sum\limits_{p=1}^{\infty} < x, e_p>e_p$ para cierto x

Volviendo al cubo de Hilbert, existe una sucesión de enteros $n_1 < n_2, ..., n_k < ...$ de forma que $(< e_p, v_{n_k})_{k=1}^{\infty}$ es convergente (ya que el cubo es métrico compacto).

Si tomamos entonces $S = s \operatorname{span}\{e_n : n \in \mathbb{N}\}$, entonces $(\langle s, v_{n_k} \rangle)_{k=1}^{\infty}$ es convergente $\forall s \in S$. Falta ver que sea convergente para todo punto de $H = \overline{S}$ que se demuestra con los teoremas de Skald que se ven a continuación.

1.3 - Teoremas de Skald

Definición 1.6. Familia de funciones (uniformemente) equicontinua

Una sucesión de funciones continuas $(f_i)_{i\in I}$ se dice que es equicontinua en x_0 si $\forall \varepsilon > 0 \ \forall i \in I \ \exists \delta_{\varepsilon}$ tal que $d(x_0, x) < \delta_{\varepsilon} \implies |f_i(x) - f_i(x_0)| < \varepsilon$. Es decir, que el δ necesario es el mismo para todas las funciones.

De forma análoga se define el concepto de familia de funciones uniformemente equicontinua:

Una sucesión de funciones uniformemente continuas $(f_i)_{i\in I}$ se dice que es uniformemente equicontinua en si $\forall \varepsilon > 0 \ \forall i \in I \ \exists \delta_{\varepsilon}$ tal que $d(y,x) < \delta_{\varepsilon} \Longrightarrow |f_i(x) - f_i(y)| < \varepsilon$. Es decir, que el δ necesario es el mismo para todas las funciones.

Las demostraciones de los teoremas se pueden encontrar en el libro General Topology de Willard (va para tarea).

Teorema 12. Sea (K, d) un espacio métrico y $C(K) = \{f : K \to \mathbb{R} \text{ continuas}\} \hookrightarrow (\mathbb{R}^k, T_p)$ $(T_p \text{ es la topología producto}).$

 $Si \phi es (unif.) equicontinua, entonces \overline{\phi}^{T_p} son (uniformemente) continuas$

Teorema 13. Si ϕ es equicontinua, entonces en ϕ coinciden las topologías $T_p(producto)$ y la de convergencia puntual sobre un subconjunto $D \subseteq K$ denso $(\overline{D} = K)$.

Teorema 14. Sea $\phi \subseteq C(K)$ y sea (K,d) métrico compacto. Entonces ϕ es relativamente compacto en $\|\cdot\|_{\infty} \iff \phi$ es equicontinuo y $\phi(x) = \{f(x) : f \in \phi\}$ acotado $\forall x \in K$

Teorema 15. Lax- Milgram

Sea (H, <>) un espacio de Hilbert y $B: H \times H \to \mathbb{K}(\mathbb{R} \ o \ \mathbb{C})$ tal que:

- 1. $B(\cdot,y)$ es lineal $\forall y \in H$ y $B(x,\cdot)$ es lineal conj., es decir, B es sesquilineal.
- 2. Bes acotada: $\exists c > 0$ tal que $|B(x,y)| \leq C||x|| ||y|| \forall x, y \in H$
- 3. B es fuertemente positiva: $\exists b > 0$ tal que $|B(x,y)| > b||y||^2$, $\forall y \in H$

Entonces para cualquier forma lineal y continua $\phi: H \to \mathbb{K}$ existe un único $y \in H$ tal que $\phi(x) = B(x,y) \forall x \in H$

Demostración

Para y fijo la apliación $x \hookrightarrow B(x,y)$ es lineal continuo. Por el teorema de Riesz, $\exists z \in H$ tal que $B(x,y) = \langle x,z \rangle \forall x \in H$ y sea T la forma lineal que da el teorema de Riesz.

Tenemos que T(H) es un subespacio de H. Veamos que T(H)=H y esto dará la prueba de nuevo por el teorema de Riesz. Demostremos varias cosas:

1. T(H) es cerrado.

Sea
$$z_n = Ty_n$$
 tal que $\lim_{n \to \infty} z_n = z \in H, z \in T(H)$

$$B(x, y_n - y_m) = \langle x, z_n - z_m \rangle \forall x \in H$$

$$b\|y_n - y_m\|^{\frac{1}{2}} \le B(y_n - y_m, y_n - y_m) = \langle y_n - y_m, z_n - z_m \rangle \le \|y_n - y_m\|\|z_n - z_m\|$$

Luego (y_n) es de Cacuhy y $\lim_{n\to\infty}y_n=y$ y tenemos que:

$$< x, z_n > = B(x, y_n) \to B(x, y) = < x, z > = < x, Ty > \forall x \in H$$

2. Supongamos $T(H) \subsetneq H \implies \exists x_0 \neq 0 : \langle x_0, z \rangle = 0 \forall z \in T(H) \implies B(x_0, y) = \langle x_0, z \rangle \forall y \in H, \ B(x_0, x_0) = 0 \text{ si } x_0 \neq 0$

1.4 - Principio de Drichlet

Para esta sección consideraremos Ω un subconjunto de \mathbb{R}^n abierto y acotado.

Lo que querremos estudiar en esta sección será el sistema:

$$\begin{cases} \Delta u(x) = 0 & x \in \Omega \\ u|_{\partial\Omega}(x) = f(x) & x \in \partial\Omega \end{cases}$$

Ejemplo 2. Tomemos n = 2, en esta dimensión existe el problema clásico de una placa que se calienta en los bordes. Queremos conocer el estado estacionario del sistema.

Idea para buscar una solución

Buscar el estado de equilibrio minimizando una energía o acción adecuada.

La energía que plantea Drichlet es la de la llamada integral de Drichlet:

$$D(u) = \int_{\Omega} |\nabla u|^2 = \int_{\Omega} |\frac{\partial u}{\partial x_1}|^2 + |\frac{\partial u}{\partial x_2}|^2 d_1 dx_2$$

Definición 1.7. $C^2(\overline{\Omega})$

Denotamos a $C^2(\overline{\Omega})$ como las funciones dos veces derivables en el interior de Ω con segunda derivada continua en $\overline{\Omega}$.

Las funciones con las que trabajaremos en este apartado son las de este tipo con soporte compacto.

Proposición 1.4. Si existe $u \in C^2(\overline{\Omega})$ que minimiza a D(u) entre todas las funciones $u \in C^2(\overline{\Omega})$ con $u|_{\partial\Omega} \equiv f$, entonces u es armónica $(\triangle u = 0)$.

Demostración

En $C^2(\overline{\Omega})$, definimos $<\cdot>_D$ por:

$$\langle F, G \rangle_D = \int_{\Omega} \left(\frac{\partial F}{\partial x_1} \frac{\partial G}{\partial x_1} + \frac{\partial F}{\partial x_2} \frac{\partial G}{\partial x_2} \right) dx_1 dx_2$$

Definimos ahora $D(u) = \langle u, u \rangle_D$.

Si $v \in C^2(\overline{\Omega})$ que verifica que $v|_{\partial\Omega} = 0 \implies \forall \varepsilon \in \mathbb{R}$ se tiene que $D(u + \varepsilon v)(*) \geq D(u)$

$$(*) = D(u) + \varepsilon^2 D(u) + \varepsilon D(v) + \varepsilon < u, v >_D + \varepsilon < v, u >_D$$

Ampliación de Probabilidad

Cancelando D(u) tenemos:

$$\varepsilon^2 D(u) + \varepsilon D(v) + \varepsilon < u, v >_D + \varepsilon < v, u >_D \ge 0$$

Como esto lo podemos hacer para un ε arbitrario, tenemos que $< u, v>_D = 0$, luego:

$$0 = \int_{\Omega} \left(\frac{\partial u}{\partial x_1} \frac{\partial v}{\partial x_1} + \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_2} \right) dx_1 dx_2$$