dm25s1

Topic 05: Exploratory Data Analysis2

Part 02: EDA Visualisation

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2025

Outline

Selection of seaborn plots and advanced settings

Data Mining (Week 5)

EDA Visualisation — Summary

- 1. Review of previous week
- 2. Second Pass Individual Features and Target
- 2.1 Targe
- 2.2 Individual Features
- 3. Third Pass Relationships Between Features and Target
- 3.1 Correlations
- 3.2 Multi-relation Plots
- 4. Visualisation selection of seaborn plots
- 5. Resources

Need for More Advanced Plots

- The basic plot types allow us to visualise distributions and relationships
- But they have limitations if we wish to
 - Show a single plot with related elements rather than multiple hardcoded plots
 - Show that predictions from the model have uncertainty that varies over the range
 - Show the relationship between the *distributions* of 2 numerical variables
 - Generalise boxplots to show more distribution information, not just the quartiles
 - Plot a combination of 3 or more categorical and/or numerical variables in 2-D
 - Compare a selection of data instances over a selection of variables
 - Use attributes like colour, size or shape to convey information on categorical variables

Selected seaborn-based visualisations

- We could easily spend several weeks on EDA visualisation
- There is a long history of visualisation, from infographics to bubble plots
- Seaborn provides a gallery of data science-related visualisation examples
- We consider a selection today that are useful in practice
- Take a look at the seaborn examples gallery for more inspiration...

Histograms with facets

Source: https://seaborn.pydata.org/examples/faceted_histogram.html

- Facets: show a grid of related plots
- Conditioned by 1 or 2 categorical variables
- Here: flipper length of penguins, by sex × species.

Histograms with facets

Source: https://seaborn.pydata.org/examples/faceted_histogram.html

What it does

- Facets: show a grid of related plots
- Conditioned by 1 or 2 categorical variables
- Here: flipper length of penguins, by sex × species.

- Have a key variable, represented by a suitable plot
- Wish to view dependence on 1 or 2 categorical variables in same plot group

Line plots with error bands

Source: https://seaborn.pydata.org/examples/errorband_lineplots.html

- Multiple numeric variables as lineplots
- Use of colour and linetype
- Overlaid on error bands

Line plots with error bands

Source: https://seaborn.pydata.org/examples/errorband_lineplots.html

What it does

- Multiple numeric variables as lineplots
- Use of colour and linetype
- Overlaid on error bands

- Multiple numeric variables on same scale
- Highlight uncertainties

Binning with distribution plots

Source: https://seaborn.pydata.org/ examples/hexbin_marginals.html

- Compare histograms of 2 numeric columns
- Binning provides a heatmap

Binning with distribution plots

Source: https://seaborn.pydata.org/ examples/hexbin_marginals.html

What it does

- Compare histograms of 2 numeric columns
- Binning provides a heatmap

- Interested in the co-occurrence of 2 numeric columns
- Columns are correlated, wish to understand this

Contour plots of distributions

Source: https://seaborn.pydata.org/ examples/joint_kde.html

- \bullet Penguin bill length \times bill width per species
- Two ways of showing distributions

Contour plots of distributions

Source: https://seaborn.pydata.org/ examples/joint_kde.html

What it does

- ullet Penguin bill length imes bill width per species
- Two ways of showing distributions

When to use it

• 2 numeric features, split by 1 categorical feature

Violin plots

Source: https://seaborn.pydata.org/examples/simple_violinplots.html

- Numeric variable, split by category
- Alternative to boxplot
- data points shown here

Violin plots

Source: https://seaborn.pydata.org/ examples/simple_violinplots.html

What it does

- Numeric variable, split by category
- Alternative to boxplot
- data points shown here

- Numeric attibute by categorical feature
- Interested in the shape of the distribution

Scatterplot matrix

5000

Source: https://seaborn.pydata.org/ examples/scatterplot_matrix.html

- Penguin data 4 numeric features (bill length,
- bill depth, flipper length, body mass), 1 categorical feature (species) with 3 levels
- All combinations shown

Scatterplot matrix

Source: https://seaborn.pydata.org/

What it does

- Penguin data 4 numeric features (bill length, bill depth, flipper length, body mass), 1 categorical feature (species) with 3 levels
- All combinations shown

- Look at many numeric variables together
- Can use colour or other indicator to show categorical variable

Scatterplot with categorical variables

Source: https://seaborn.pydata.org/examples/scatterplot_categorical.html

What it does

 Show numerical variable in terms of 1 or more categorical variables

Scatterplot with categorical variables

Source: https://seaborn.pydata.org/examples/scatterplot_categorical.html

What it does

• Show numerical variable in terms of 1 or more categorical variables

When to use it

• More detailed alternative to violinplot

Scatterplot with bubbles

Source: https://seaborn.pydata.org/examples/scatter_bubbles.html

- Auto mpg data, mpg × horsepower
- Plot features represent categorical features
- Note grouping of numeric variable to create categories

Scatterplot with bubbles

Source: https://seaborn.pydata.org/examples/scatter_bubbles.html

What it does

- Auto mpg data, mpg × horsepower
- Plot features represent categorical features
- Note grouping of numeric variable to create categories

When to use it

• Represent multiple categorical variables in terms of 2 numerical variables

Pointplot for Analysis of Variance

- Trend in pulse rates, by time × activity (ordered categories)
- Rich plot, with drill down capability

Pointplot for Analysis of Variance

Source: https://seaborn.pydata.org/examples/pointplot_anova.html

What it does

- Trend in pulse rates, by time × activity (ordered categories)
- Rich plot, with drill down capability

When to use it

 Numeric target as function of multiple categorical features

Colour palettes

Source: https://seaborn.pydata.org/examples/palette_choices.html

- Options for choosing palettes
- Qualitative, Sequential, Diverging

Colour palettes

Source: https://seaborn.pydata.org/examples/palette_choices.html

What it does

- Options for choosing palettes
- Qualitative, Sequential, Diverging

- Qualitative: unordered categorical variable
- Sequential: ordered categorical variable
- Diverging: ordered sequential variable

Grouped Violinplots

Source: https://seaborn.pydata.org/examples/grouped_violinplots.html

- \bullet Tips data: total_bill by day \times smoker
- Note splits in "violins" to accommodate a category

Grouped Violinplots

Source: https://seaborn.pydata.org/examples/grouped_violinplots.html

What it does

- Tips data: total_bill by day × smoker
- Note splits in "violins" to accommodate a category

- Adding a second categorical variable to violinplot
- Alternative to faceting

Stacked histograms

Source: https://seaborn.pydata.org/examples/histogram_stacked.html

- Diamond valuation data
- Show distribution of price by cut
- Be careful: stacked not overlaid!

Stacked histograms

Source: https://seaborn.pydata.org/examples/histogram_stacked.html

What it does

- Diamond valuation data
- Show distribution of price by cut
- Be careful: stacked not overlaid!

- Can compare histograms by category variable
- Alternative to faceting

Heatmap with scatterplot

Source: https://seaborn.pydata.org/

examples/heat_scatter.html

- Network data
- Highlighting correlated flows
- Use of colour and size of bubbles

Heatmap with scatterplot

Source: https://seaborn.pydata.org/

examples/heat_scatter.html

What it does

- Network data
- Highlighting correlated flows
- Use of colour and size of bubbles

When to use it

• Emphasise sign and magnitude of correlations

Heatmap with dendrogram

Source: https://seaborn.pydata.org/examples/structured_heatmap.html

- Heatmap of correlations
- Dendrogram clusters them to highlight similar values

Heatmap with dendrogram

Source: https://seaborn.pydata.org/examples/structured_heatmap.html

What it does

- Heatmap of correlations
- Dendrogram clusters them to highlight similar values

When to use it

Need to identify groups of correlated numerical variables

Parallel coordinate plots

Source: https://pandas.pydata.org/docs/ reference/api/pandas.plotting.parallel_ coordinates.html

- Each piecewise linear "line" represesents an instance
- Each vertical split (context) line represents a numerical variable (feature or target)
- Instance lines pass through values they take on the context variables

Parallel coordinate plots

Source: https://pandas.pydata.org/docs/ reference/api/pandas.plotting.parallel_ coordinates.html

What it does

- Each piecewise linear "line" represesents an instance
- Each vertical split (context) line represents a numerical variable (feature or target)
- Instance lines pass through values they take on the context variables

- Need to compare subsets of instances (note use of colour to distinguish)
- Compare instances based on a (subset) of their numerical values

Radar charts

Source: https://www.pythoncharts.com/

matplotlib/radar-charts/

- Each polygon represents an instance, colour legend identifies the instance
- Each radial line represents a numerical variable
- Vertices of the polygon indicate the value an instance takes on that variable

Radar charts

Source: https://www.pythoncharts.com/

matplotlib/radar-charts/

What it does

- Each polygon represents an instance, colour legend identifies the instance
- Each radial line represents a numerical variable
- Vertices of the polygon indicate the value an instance takes on that variable

- Have a small number of instances to compare over selected numerical variables
- Visualise correlations between numerical variables, for selected instances

Resources

Resources

Resources

Guides

• 1 hour, Youtube on generating seaborn plots — excellent (but wrong on interpretation of box plot)
www.youtube.com/watch?v=6GUZXDef2U0&t=1363s

Articles on Exploratory Data Analysis

- Exploratory Data Analysis (EDA) and Data Visualization with Python www.kite.com/blog/python/data-analysis-visualization-python/
- When Should You Delete Outliers from a Data Set?
 humansofdata.atlan.com/2018/03/when-delete-outliers-dataset

Visualisation

• (Seaborn) Example Gallery

https://seaborn.pydata.org/examples/index.html