

DYNAMIC STABILITY OF MULTI-SPAN PIPES CONVEYING FLUID BY FINITE ELEMENT METHOD

by

RAVI KUMAR

ME

1982

M

KUM

DYN

DEPARTMENT OF MECHANICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

JULY, 1982

S

DYNAMIC STABILITY OF MULTI-SPAN PIPES CONVEYING FLUID BY FINITE ELEMENT METHOD

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

by
RAVI KUMAR

to the

DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
JULY, 1982

5 JUN 1980

CENTRAL LIBRARY

82764

Acc. No. 5

ME-1882-M-KUM-PYN

CERTIFICATE

This is to certify that the work entitled
"Dynamic Stability of Multi-span Pipes Conveying Fluid
by Finite Element Method" by Ravi Kumar has been carried
out under my supervision and has not been submitted
elsewhere for a degree.

Bhupinder Pal Singh
Dr. Bhupinder Pal Singh
Assistant Professor
Department of Mech. Engg.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. B.P. Singh, my thesis supervisor for his valuable guidance and encouragement which led to the completion of this work.

I wish to express my sincere thanks to Dr. A. K. Mallik for his interest in this work.

I thank all my friends for making my stay in Kanpur a pleasant experience.

Last but not least thanks are also due to Mr. D.P. Saini for his careful typing.

JULY, 1982

RAVI KUMAR

CONTENTS

	<u>Page No.</u>
CERTIFICATE	
ACKNOWLEDGEMENTS	
LIST OF TABLES	(v)
LIST OF FIGURES	(vii)
LIST OF VARIABLES	(x)
SYNOPSIS	(xiii)
CHAPTER I : INTRODUCTION	1
1.1 : Introduction	1
1.2 : Review of Previous Work	2
1.3 : Objective and Scope of Present Work	5
CHAPTER II : GENERAL FORMULATION	6
2.1 : Equation of Motion	6
2.2 : Pipes with Steady Flow	8
2.2.1 : Finite Element Analysis	8
2.2.2 : Method of Solution	14
2.3 : Pipes with Harmonically Perturbed Flow	16
2.3.1 : Finite Element Analysis	18
2.3.2 : Method of Solution	27

CHAPTER III	:	RESULTS AND DISCUSSION	28
3.1	:	Pipes with Steady Flow	28
3.1.1.	:	No. of Finite Element	28
3.1.2.	:	Results and Discussions	28
3.2	:	Pipes with Harmonically Perturbed Flow	31
3.2.1	:	Results and Discussions	34
CHAPTER IV	:	CONCLUSIONS	39
REFERENCES			41
TABLES			45
FIGURES			54
APPENDIX 1	:	Matrices	67
APPENDIX 2	:	Boundary Condition for Steady Flow	69
APPENDIX 3	:	Matrices	71
APPENDIX 4	:	Boundary Conditions for Harmonically Perturbed Flow	73
APPENDIX 5	:	Listing of Computer Program	75

LIST OF TABLES

Table No.	Page No.
1. Number of elements vs frequencies	45
2. Critical velocities for Multi-span simply supported pipes $\beta^{1/2} = 0.5, \alpha = \Gamma = p = \gamma = f = 0$	46
3. Critical velocities of Multi-span pipes one end fixed and other supports simple supports, $\beta^{1/2} = 0.5, \alpha = \Gamma = p = \gamma = f = 0$	47
4. Critical velocities for Multi-span pipes with one end fixed other end free and intermediate supports simple supports $\beta^{1/2} = 0.5, \alpha = \Gamma = p = \gamma = f = 0$	48
5. Critical velocities for Multi-span pipes with both end fixed and other supports simple supports $\beta^{1/2} = 0.5, \alpha = \Gamma = p = \gamma = f = 0$	49
6. Critical velocities for Multi-span pipes with one end fixed and other supports simple supports $\beta^{1/2} = 0.5, \alpha = \Gamma = p = \gamma = f = 0$	50
7. Critical velocities for Multi-span vertical pipes $\beta^{1/2} = 0.5, \alpha = \Gamma = p = \gamma = f = 0$	51

Table No.	Page No.
8. Values of frequencies bounding principal primary instability region for single span simply supported pipe $\beta^{1/2} = 0.4, \alpha = \gamma = p = \gamma = f = 0$ NEL = 5	52
9. Values of frequencies bounding the principal primary instability regions associated with first two modes of two span pipe $\beta^{1/2} = 0.8, \alpha = \gamma = p = \gamma = f = 0$ NEL = 8.	53

LIST OF FIGURES

Figure No.	Caption	Page No.
1.	Pipe conveying fluid at velocity V	54.
2.	Finite elements of the pipe	54
3.	Typical finite element of the pipe	55
4.	Dimensionless complex frequency diagram of a simply supported pipe $\beta^{1/2} = 0.5$, $\alpha = 0.005$ and $p = \gamma = f = 0$ NEL = 5	55
5.	Regions of principal primary instability of one span pipes for $\alpha = \gamma = p = \gamma = f = 0$ NEL = 5	56
6.	Regions of principal primary instability of one span pipes for $\beta^{1/2} = 0.4$, $\alpha = \gamma = p = \gamma = f = 0$ NEL = 5	57
7.	Regions of principal primary instability of two span simply supported pipe for, $u = 1.2\pi$, $\beta^{1/2} = 0.8$, $\alpha = \gamma = p = \gamma = f = 0$ NEL = 8	58
8.	Regions of principal primary instability of a two span simply supported pipes for $u = 0.6\pi$, $\beta^{1/2} = 0.4$, $\alpha = \gamma = p = \gamma = f = 0$ NEL = 8	59

Figure No.	Caption	Page No.
9.	Regions of principal primary instability of three span simply supported pipe $u = 1.8\pi, \beta^{1/2} = 0.4,$ $\alpha = \Gamma = p = \gamma = f = 0$ NEL = 12	60
10.	Regions of principal primary instability of two span pipes one end fixed and other supports simple supports for $u = 1.2\pi, \beta^{1/2} = 0.4,$ $\alpha = \Gamma = p = \gamma = f = 0$ NEL = 8	61
11.	Regions of principal primary instability of three span pipes one end fixed and other supports simple supports for $u = 1.8\pi, \beta^{1/2} = 0.4,$ $\alpha = \Gamma = p = \gamma = f = 0$ NEL = 12	62
12.	Regions of principal primary instability for two span pipes both end fixed and other support simple support for $u = 1.2\pi, \beta^{1/2} = 0.4,$ $\alpha = \Gamma = p = \gamma = f = 0, NEL = 8$	63
13.	Regions of principal primary instability of three span pipes both end fixed and other supports simple supports $u = 1.8\pi, \beta^{1/2} = 0.4,$ $\alpha = \Gamma = p = \gamma = f = 0$ NEL = 12	64

Figure No.	Caption	Page No
14.	Regions of principal primary instability of two span pipes one end fixed other free and intermediate supports simple supports $u = 1.2\pi, \beta^{1/2} = 0.4,$ $\alpha = \beta = p = \gamma = f = 0, NEL = 8$	65
15.	Regions of principal primary instability of three span pipes one end fixed other free and intermediate supports simple supports for $u = 1.8\pi, \beta^{1/2} = 0.4,$ $\alpha = \beta = p = \gamma = f = 0$ $NEL = 12.$	66

LIST OF SYMBOLS

A	Area of passage through which fluid passes.
[B]	Interpolation matrix.
C	Coefficient of viscous damping.
EI	Flexural rigidity of pipe.
E*	Coefficient of internal dissipation.
f	Non-dimensional coefficient of viscous damping, $= \frac{CL^2}{[EI(M_f + m_p)]^{1/2}}$
h	Length of finite element.
K _d	Stiffness of displacement spring.
K _t	Stiffness of torsional spring.
L	Length of the pipe.
M _f	Mass of fluid/unit length.
m _p	Mass of pipe/unit length.
[N]	Interpolation matrix.
[N']	First derivative of N with respect to ξ .
[N'']	Second derivative of N with respect to ξ .
P	Fluid pressure above atmosphere.
p	Non-dimensional fluid pressure, $= \frac{PAL^2}{EI}$
T	Longitudinal tension.
u	Non-dimension velocity of fluid, $= (\frac{M}{EI})^{1/2} UL$
v	Velocity of fluid.

W	Displacement in transverse direction.
w	Non-dimensional displacement, $= W/L$.
$\{w\}^n$	Nodal displacement matrix of pipe.
$\{\dot{w}\}^n$	Nodal velocity matrix of pipe.
$\{\ddot{w}\}^n$	Nodal acceleration matrix of pipe.
$\{w\}^{ne}$	Nodal displacement matrix of finite element.
$\{\dot{w}\}^{ne}$	Nodal velocity matrix of finite element.
$\{\ddot{w}\}^{ne}$	Nodal acceleration matrix of finite element.
X	Coordinate along length of the pipe.
x	Non-dimensional X coordinate, $= X/L$
α	Non-dimensional coefficient of internal dissipation, $= [\frac{I}{E(M_f+m_p)}]^{1/2} \frac{E^*}{L^2}$.
α_d	Non-dimensional stiffness of displacement spring, $= \frac{K_d L^3}{EI}$
α_t	Non-dimensional stiffness of torsional spring, $\frac{K_t L}{EI}$.
β	Non-dimensional mass ratio parameter, $(M_f/(M_f+m_p))$
γ	Non-dimensional gravity, $= \frac{M_f+m_p}{EI} L^3 g$
δ	Excitation parameter.
Γ	Non-dimensional longitudinal tension, $= \frac{TL^2}{EI}$.
ξ	Local coordinate of finite element.
ξ_1	Length coordinate, $= 1 - \xi/h$.
ξ_2	Length coordinate, $= \xi/h$

(xii)

ω Frequency.

Ω Non-dimensional frequency, $= \left(\frac{M_f + m_p}{EI} \right)^{1/2} \frac{L^2}{t^2}$.

ν Poisson's ratio.

$\mu = 0$ If no axial constraint at end.

$\mu = 1$ If there is axial constraint at end

τ Non-dimensional time, $= \left(\frac{EI}{M_f + m_p} \right)^{1/2} \frac{t}{L^2}$.

SYNOPSIS

This thesis deals with dynamic stability of multi-span pipes conveying fluid where the flow velocity is either constant or a small harmonic component is superimposed on it. The very general equation of motion is used to study the stability of the pipes. The element matrices are obtained by the finite element (Galerkin) method. For steady flow stiffness, damping and mass matrices are obtained by finite element methods and a standard dynamical matrix is obtained. The critical velocities are obtained by solving eigen value problem. For harmonically perturbed flow the bounds for the principal primary regions of instability are determined by Bolotin's method. It is shown that critical velocities and instability regions can be controlled by changing the position of the supports.

Two general computer programs have been written to solve these problems. These programs are very flexible in nature and solution for various types of multi-span pipes can very easily be obtained by changing the input data.

CHAPTER - I

INTRODUCTION

1.1 INTRODUCTION

Pipes conveying fluids are encountered in various fields of engineering. To name some of them ; oil pipe lines, propellant lines, pump discharge lines, heat exchanger tubes and coolant channels of nuclear reactors. An imperfect design of pipe lines may result in a leakage and unsatisfactory performance of the whole system. As the flow velocity is increased a certain velocity is reached when the pipe either buckles or flutters. With harmonic perturbations these systems are vulnerable to parametric instability also.

In the recent years many pipe lines have been laid and this has accelerated the research work in this field. Lot of research has been done in the last thirty years. However most of literature is devoted to either single span pipe or periodic pipes. In actual practice however we come across nonperiodic multi-span pipes.

The aim of the present work is to study the stability of multi-span pipes conveying fluid at a

constant velocity or when a small harmonic component is superimposed on it, by finite element method. All types of boundary conditions can easily be accommodated by this method. The objective of present thesis is explained in detail in the last section of this chapter.

2.2 REVIEW OF PREVIOUS WORK

A detailed review of the literature with extensive references is given in Paidoussis and Issid [21] and Chen [6]. A brief review is given below.

Interest in the subject of dynamics of pipes conveying fluid was developed in 1950 in connection with study of vibration of Trans Arabian pipe by Ashley and Haviland [1]. They studied the problem of vibration of simply supported pipe. The same problem was studied by Housner [12] independently by using a different approach. He found that at low fluid velocities the effect upon vibrations of the pipe was negligible but at certain high velocities pipe buckled like a column subjected to axial loading.

Long [15] considered the case of cantilever pipe conveying fluid. He adopted an iterative procedure using a power series for mode shape, which was applicable to relatively small flow velocities and confirmed experimentally that forced motion of cantilever pipes was damped

by internal flow in the range of flow velocities considered.

Benjamin [2] dealing with the general dynamical problem of cantilevered system of articulated pipes conveying fluid was first to anticipate the phenomenon of instable oscillations (flutter). He produced complete theory supported by experiments for articulated pipe systems. He showed that when the system was vertical both oscillation and buckling instabilities are possible. However in general when motion is confined to horizontal plane, that is gravity is insignificant, buckling can not occur. Later Gregory and Paidoussis [10] confirmed both theoretically and experimentally that at sufficiently high velocity cantilever pipes are subjected to oscillatory instabilities. Next Paidoussis [19] included the effect of gravity and showed that in case of vertical cantilevers buckling instability is not possible. This contradiction was cleared by Paidoussis and Deskins [20].

Naguleswaran and William [17] studied both theoretically and experimentally the effect of fluid pressure on the dynamics of the pipe. They showed that pipes with both ends supported may buckle at small flow velocities by the action of high internal pressure.

Chen [5] studied the stability of pipes conveying fluid with upstream end fixed and downstream end supported

by displacement springs, so that boundary conditions are intermediate between clamped free and clamped-pinned. He showed that both buckling and oscillatory instabilities are possible depending upon the spring constant.

Paidoussis and Issid [21] derived the general equation of motion. They included the effect of axial movement of the pipe. They studied the dynamic stability of the pipe where the flow velocity is either constant or a small harmonic component is superimposed on it. They showed that with both ends fixed pipe is subjected not only to buckling instability but flutter instability is also possible at high velocities.

Singh and Mallik [22] studied the wave propagation and vibration response of a periodically supported pipe by propagation constant approach. A succeeding paper by same authors [23] was devoted to parametric instabilities.

Orris and Petyt [18] applied the finite element methods to propagation constant in periodic structures. Deb [7] applied finite element (Galerkin) method and obtained flutter and buckling instabilities of various types of single span pipes.

Kulkarni [13] studied instabilities of the periodic pipes due to parametric excitation considering the effect of axial movement of the pipe. He used the propagation constant technique.

1.3 OBJECTIVE AND SCOPE OF PRESENT WORK

The aim of the present work is to develop finite element method for studying the dynamic stability of multi-span pipes conveying fluid.

In second chapter element matrices are obtained by the finite element (Galerkin method) for pipes conveying fluid when the flow velocity is either constant or a small harmonic component superimposed on it. For steady flow stiffness, damping and mass matrices are obtained by the finite element method and a standard dynamical matrix obtained. Critical velocities are obtained by solving the eigen-value problem. For harmonically perturbed flow, bounds of principal primary instability regions are obtained by using Bolotin's method.

In third chapter results for various types of pipe configurations are given and discussed.

Conclusions are reported in the last chapter. The values of various matrices and listing of computer program are given in Appendixes.

CHAPTER - II

GENERAL FORMULATION

This chapter deals with the finite element analysis of stability of pipes conveying fluid at constant velocity V and with a small harmonic component superimposed on it.

2.1 EQUATION OF MOTION

Consider a pipe conveying fluid at velocity V , Fig. 1. Its equation of motion is, Paidoussis and Issid [21]

$$\begin{aligned}
 & E^* I \frac{\partial^5 W}{\partial X^4 \partial t} + EI \frac{\partial^4 W}{\partial X^4} + [M_f V^2 - T + PA (1 - 2\mu)] \\
 & - [(M_f + m_p)g - M_f \frac{\partial V}{\partial t}] (L - x) \frac{\partial^2 W}{\partial X^2} \\
 & + 2M_f V \frac{\partial^2 W}{\partial X \partial t} + (M_f + m_p) g \frac{\partial W}{\partial X} + c \frac{\partial W}{\partial t} \\
 & + (M_f + m_p) \frac{\partial^2 W}{\partial t^2} = 0 \quad (2.1)
 \end{aligned}$$

where

E^* Coefficient of internal dissipation

EI Flexural rigidity of pipe

M_f Mass of fluid per unit length

V Velocity of the fluid

T Longitudinal tension
 P Fluid pressure above atmosphere
 v Poisson's ratio
 m_p Mass of pipe per unit length
 L Total length of the pipe
 c Coefficient of viscous damping
 $\mu=0$ For no axial constraint at the support
 $\mu=1$ For axial constraint at the support

.... (2.2)

The equation (2.1) can be expressed in dimensionless form by defining the following quantities:

$$\begin{aligned}
 x &= \frac{X}{L}, \quad w = \frac{W}{L}, \quad \tau = \left(\frac{EI}{M_f + m_p} \right)^{1/2} \frac{1}{L^2} \\
 \alpha &= \left[\frac{I}{E(M_f + m_p)} \right]^{1/2} \frac{E^*}{L^2}, \quad u = \left(\frac{M_f}{EI} \right)^{1/2} VL, \quad \beta = \frac{M_f}{M_f + m_p} \\
 \gamma &= \frac{M_f + m_p}{EI} L^3 g, \quad \Gamma = \frac{TL^2}{EI}, \quad f = \frac{cL^2}{[EI(M_f + m_p)]^{1/2}} \\
 p &= \frac{PAL^2}{EI}
 \end{aligned} \tag{2.3}$$

Substituting equation (2.3) into equation (2.1), the equation of motion becomes

$$\begin{aligned}
 & \alpha \frac{\partial^5 w}{\partial x^4 \partial \tau} + \frac{\partial^4 w}{\partial x^4} + \left\{ u^2 - \Gamma + p(1 - 2v\mu) + (\beta^{1/2} \frac{\partial u}{\partial \tau} - \gamma)x \right. \\
 & \left. x(1-x) \right\} \frac{\partial^2 w}{\partial x^2} + 2\beta^{1/2} u \frac{\partial^2 w}{\partial x \partial \tau} + \gamma \frac{\partial w}{\partial x} + f \frac{\partial w}{\partial \tau} + \frac{\partial^2 w}{\partial \tau^2} = 0 \\
 & \dots \tag{2.4}
 \end{aligned}$$

2.2 PIPES WITH STEADY FLOW

For constant velocity, equation (2.4) becomes

$$\alpha \frac{\partial^5 w}{\partial x^4 \partial \tau} + \frac{\partial^4 w}{\partial x^4} + \{ u^2 - \beta + p (1-2\mu) - \gamma (1-x) \} \frac{\partial^2 w}{\partial x^2} + 2\beta^{1/2} u \frac{\partial^2 w}{\partial x \partial \tau} + \gamma \frac{\partial w}{\partial x} + f \frac{\partial w}{\partial \tau} + \frac{\partial^2 w}{\partial \tau^2} = 0 \quad (2.5)$$

2.2.1 Finite Element Analysis:

For finite element solution (Galerkin Method) of this one dimensional partial differential equation, the pipe is divided into number of finite elements. Figure 2. Typical finite element is shown in Figure 3. Its solution is assumed to be of the form of

$$w^{(e)}(\xi, \tau) = [N_1 \ N_2 \ \dots \ N_r] \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_r \end{bmatrix}$$

or $w^{(e)}(\xi, \tau) = [N_i(\xi)] \{w_i(\tau)\}^{(ne)} \quad (2.6)$

where

N_i Interpolating functions of the element

w_i Nodal parameters of the element

r Degrees of freedom of the element (to be decided later)

ξ Local co-ordinate of the element.

Substituting equation (2.6) into equation (2.5), one gets the residue for the element,

$$\begin{aligned}
 R(e) = & \alpha \frac{\partial^5 w(e)}{\partial \xi^4 \partial \tau} + \frac{\partial^4 w(e)}{\partial \xi^4} + \{ u^2 - \Gamma + p(1-2\nu\mu) - \gamma \} \frac{\partial^2 w(e)}{\partial \xi^2} \\
 & + \gamma (x_j + \xi) \frac{\partial^2 w(e)}{\partial \xi^2} + \gamma \frac{\partial w(e)}{\partial \xi} + 2\beta^{1/2} u \frac{\partial^2 w(e)}{\partial \xi \partial \tau} \\
 & + f \frac{\partial w(e)}{\partial \tau} + \frac{\partial^2 w(e)}{\partial \tau^2}
 \end{aligned} \quad (2.7)$$

Minimizing this residue by the Galerkin method,

$$\begin{aligned}
 \int_0^h N_i R(e) d\xi = 0 \\
 \text{or } \int_0^h N_i \left(\alpha \frac{\partial^5 w(e)}{\partial \xi^4 \partial \tau} + \frac{\partial^4 w(e)}{\partial \xi^4} + \{ u^2 - \Gamma + p(1-2\nu\mu) \right. \\
 \left. - \gamma \} \frac{\partial^2 w(e)}{\partial \xi^2} + \gamma (x_j + \xi) \frac{\partial^2 w(e)}{\partial \xi^2} + \gamma \frac{\partial w(e)}{\partial \xi} \right. \\
 \left. + 2\beta^{1/2} u \frac{\partial^2 w(e)}{\partial \xi \partial \tau} + f \frac{\partial w(e)}{\partial \tau} + \frac{\partial^2 w(e)}{\partial \tau^2} \right) d\xi = 0 \quad (2.8)
 \end{aligned}$$

In order to reduce the requirements of interpolating polynomials, the first four terms of equation (2.8) are integrated by parts, and one gets

$$\begin{aligned}
 N_i \alpha \frac{\partial^3}{\partial \xi^3} \left(\frac{\partial w(e)}{\partial \tau} \right) \Big|_0^h - \frac{\partial N_i}{\partial \xi} \alpha \frac{\partial^2}{\partial \xi^2} \left(\frac{\partial w(e)}{\partial \tau} \right) \Big|_0^h + \int_0^h \frac{\partial^2 N_i}{\partial \xi^2} \alpha \frac{\partial^3 w(e)}{\partial \xi^3 \partial \tau} d\xi \\
 + N_i \frac{\partial^3 w(e)}{\partial \xi^3} \Big|_0^h - \frac{\partial N_i}{\partial \xi} \frac{\partial^2 w(e)}{\partial \xi^2} \Big|_0^h + \int_0^h \frac{\partial^2 N_i}{\partial \xi^2} \frac{\partial^2 w(e)}{\partial \xi} d\xi \\
 + N_i \{ u^2 - \Gamma + p(1-2\nu\mu) - \gamma \} \frac{\partial w(e)}{\partial \xi} \Big|_0^h \\
 - \{ u^2 - \Gamma + p(1-2\nu\mu) - \gamma \} \int_0^h \frac{\partial N_i}{\partial \xi} \frac{\partial w(e)}{\partial \xi} d\xi \\
 + \gamma x_j N_i \frac{\partial w(e)}{\partial \xi} \Big|_0^h - \gamma x_j \int_0^h \frac{\partial N_i}{\partial \xi} \frac{\partial w(e)}{\partial \xi} d\xi + \gamma \xi N_i \frac{\partial w(e)}{\partial \xi} \Big|_0^h
 \end{aligned}$$

Contd.....

$$\begin{aligned}
 & - \gamma \int_0^h \frac{\partial N_i}{\partial \xi} \xi \frac{\partial w^{(e)}}{\partial \xi} d\xi + \int_0^h N_i 2\beta^{1/2} u \frac{\partial^2 w^{(e)}}{\partial \xi \partial \tau} d\xi \\
 & + f \int_0^h N_i \frac{\partial w^{(e)}}{\partial \tau} d\xi + \int_0^h N_i \frac{\partial^2 w^{(e)}}{\partial \tau^2} d\xi = 0 \quad (2.9)
 \end{aligned}$$

Highest derivative of $w^{(e)}$ with respect to ξ in any integral in equation (2.9) is second. Thus interpolating function N_i should have compatibility of $w^{(e)}$ and $\frac{\partial w^{(e)}}{\partial \xi}$. Highest derivative in equation (2.9) is third. Thus interpolating function N_i should have completeness of $w^{(e)}$, $\frac{\partial w^{(e)}}{\partial \xi}$, $\frac{\partial^2 w^{(e)}}{\partial \xi^2}$ and $\frac{\partial^3 w^{(e)}}{\partial \xi^3}$. The function satisfying these requirements of compatibility and completeness is

$$\begin{aligned}
 w^{(e)} &= a + bx + cx^2 + dx^3 \\
 \text{or } w^{(e)} &= \begin{bmatrix} \xi_1^2 (3-2\xi_1), h\xi_1^2 \xi_2, \xi_2^2 (3-2\xi_2), -h\xi_1 \xi_2^2 \end{bmatrix} \begin{bmatrix} w_j \\ w_j' \\ w_k \\ w_k' \end{bmatrix} \\
 & \quad \dots \quad (2.10)
 \end{aligned}$$

$$\text{or } w^{(e)} = [N(\xi)] [w(\tau)]^{ne}$$

$$\text{where } \xi_1 = 1 - \xi/h, \xi_2 = \xi/h$$

that is the typical element has four degrees of freedom.

Using equation (2.10), the equation (2.9) can be written in the following matrix form

$$\begin{aligned}
 [m]^{(e)} \{ \dot{w} \}^{(ne)} + [c]^{(e)} \{ \dot{w} \}^{(ne)} + [k]^{(e)} \{ w \}^{(ne)} \\
 = - \left\{ N \alpha \frac{\partial^3}{\partial \xi^3} \left(\frac{\partial w^{(e)}}{\partial \tau} \right) \begin{matrix} h \\ | \\ 0 \end{matrix} \right\} + \left\{ \frac{\partial N}{\partial \xi} \alpha \frac{\partial^2}{\partial \xi^2} \left(\frac{\partial w^{(e)}}{\partial \tau} \right) \begin{matrix} h \\ | \\ 0 \end{matrix} \right\} \\
 - \left\{ N \frac{\partial^3 w^{(e)}}{\partial \xi^3} \begin{matrix} h \\ | \\ 0 \end{matrix} \right\} + \left\{ \frac{\partial N}{\partial \xi} \frac{\partial^2 w^{(e)}}{\partial \xi^2} \begin{matrix} h \\ | \\ 0 \end{matrix} \right\} \\
 - \left\{ N(u^2 - \beta + p(1-2\nu\mu) - \gamma) \frac{\partial w^{(e)}}{\partial \xi} \begin{matrix} h \\ | \\ 0 \end{matrix} \right\} \\
 - \left\{ \gamma N (x_j + \xi) \frac{\partial w^{(e)}}{\partial \xi} \begin{matrix} h \\ | \\ 0 \end{matrix} \right\} \quad (2.11)
 \end{aligned}$$

where

$$[m]^{(e)} = \int_0^h \{ N \} \{ N \} d\xi \quad (2.12)$$

$$\begin{aligned}
 [c]^{(e)} = \alpha \int_0^h \{ N'' \} \{ N'' \} d\xi + 2\beta^{1/2} u \int_0^h \{ N \} \{ N' \} d\xi \\
 + f \int_0^h \{ N \} \{ N \} d\xi \quad (2.13)
 \end{aligned}$$

$$\begin{aligned}
 [k]^{(e)} = \int_0^h \{ N'' \} \{ N'' \} d\xi \\
 - (u^2 - \beta + p(1-2\nu\mu) - \gamma) \int_0^h \{ N' \} \{ N' \} d\xi \\
 - \gamma x_j \int_0^h \{ N' \} \{ N' \} d\xi - \gamma \int_0^h \{ N' \} \{ N' \} d\xi \quad (2.14)
 \end{aligned}$$

Values of matrices $[m]^{(e)}$, $[c]^{(e)}$ and $[k]^{(e)}$ are given in Appendix I. Using the values of N_i from equation (2.10) in the right side of equation (2.11), one gets

$$[m]^{(e)} \{ \dot{w} \}^{(ne)} + [c]^{(e)} \{ \dot{w} \}^{(ne)} + [k]^{(e)} \{ w \}^{(ne)}$$

$$\begin{bmatrix}
 \alpha \frac{\partial^4 w^{(e)}}{\partial \xi^3 \partial \tau} \Big|_j \\
 0 \\
 -\alpha \frac{\partial^4 w^{(e)}}{\partial \xi^3 \partial \tau} \Big|_k \\
 0 \\
 -\frac{\partial^2 w^{(e)}}{\partial \xi^2} \Big|_j \\
 0 \\
 -\frac{\partial^2 w^{(e)}}{\partial \xi^2} \Big|_k
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 \\
 -\alpha \frac{\partial^3 w^{(e)}}{\partial \xi^2 \partial \tau} \Big|_j \\
 0 \\
 \alpha \frac{\partial^3 w^{(e)}}{\partial \xi^2 \partial \tau} \Big|_k \\
 (u^2 - \Gamma + p(1-2\nu\mu) - \gamma) \frac{\partial w^{(e)}}{\partial \xi} \Big|_j \\
 0 \\
 -(u^2 - \Gamma + p(1-2\nu\mu) - \gamma) \frac{\partial w^{(e)}}{\partial \xi} \Big|_k \\
 0
 \end{bmatrix}
 +
 \begin{bmatrix}
 \frac{\partial^3 w^{(e)}}{\partial \xi^3} \Big|_j \\
 0 \\
 -\frac{\partial^3 w^{(e)}}{\partial \xi^3} \Big|_k \\
 0 \\
 \gamma_x \frac{\partial w^{(e)}}{\partial \xi} \Big|_j \\
 0 \\
 -\gamma_x \frac{\partial w^{(e)}}{\partial \xi} \Big|_k \\
 0
 \end{bmatrix}
 \dots \quad (2.15)$$

The equation (2.15) is for one finite element. These are assembled for the whole domain,

$$[M] \{ \dot{w} \}^{(n)} + [C] \{ \dot{w} \}^{(n)} + [K] \{ w \}^{(n)} =$$

$$\begin{aligned}
 & \left[\begin{array}{c} \alpha \frac{\partial^4 w(e)}{\partial \xi^3 \partial \tau} \Big|_1 \\ 0 \\ \vdots \\ -\alpha \frac{\partial^4 w(e)}{\partial \xi^3 \partial \tau} \Big|_{n+1} \\ 0 \end{array} \right] + \left[\begin{array}{c} 0 \\ -\alpha \frac{\partial^3 w(e)}{\partial \xi^2 \partial \tau} \Big|_1 \\ \vdots \\ 0 \\ \alpha \frac{\partial^3 w(e)}{\partial \xi^2 \partial \tau} \Big|_{n+1} \end{array} \right] + \left[\begin{array}{c} \frac{\partial^3 w(e)}{\partial \xi^3} \Big|_1 \\ 0 \\ \vdots \\ -\frac{\partial^3 w}{\partial \xi^3} \Big|_{n+1} \\ 0 \end{array} \right] \\
 & + \left[\begin{array}{c} 0 \\ -\left(u^2 - \Gamma + p(1-2\nu\mu) - \gamma \right) \frac{\partial w(e)}{\partial \xi} \Big|_1 \\ -\frac{\partial^2 w(e)}{\partial \xi^2} \Big|_1 \\ \vdots \\ 0 \\ \frac{\partial^2 w}{\partial \xi^2} \Big|_{n+1} \end{array} \right] + \left[\begin{array}{c} 0 \\ \vdots \\ -\left(u^2 - \Gamma + p(1-2\nu\mu) - \gamma \right) \frac{\partial w(e)}{\partial \xi} \Big|_{n+1} \\ 0 \end{array} \right] \\
 & + \left[\begin{array}{c} 0 \\ \vdots \\ -\gamma nh \frac{\partial w(e)}{\partial \xi} \Big|_{n+1} \\ 0 \end{array} \right] \quad (2.16)
 \end{aligned}$$

After applying boundary conditions, the equation (2.16) reduces to

$$[\mathbf{M}]_{BC} \{ \ddot{w} \}^{(n)} + [\mathbf{C}]_{BC} \{ \dot{w} \}^{(n)} + [\mathbf{K}]_{BC} \{ w \}^{(n)} = \mathbf{0} \dots \quad (2.17)$$

For boundary conditions, see Appendix 2.

2.2.2 Method of Solution:

Equations (2.17) are set of homogenous differential equations. The solution of this homogenous set of differential equations is obtained as detailed in Meirovitch [14]. But it may be noted that the matrices $[\mathbf{M}]_{BC}$, $[\mathbf{C}]_{BC}$ and $[\mathbf{K}]_{BC}$ need not be symmetric as stated in Meirovitch [14], see Frazer, Duncan and Collar [9]. Using generalised velocity w as auxiliary variables, n second order ordinary differential equations (2.17) are converted to a set of $2n$ first order ordinary differential equations,

$$[\tilde{\mathbf{M}}] \{ \eta(\tau) \} + [\tilde{\mathbf{K}}] \{ \eta(\tau) \} = \{ \mathbf{0} \} \quad (2.18)$$

where

$$\{ \eta(\tau) \} = \begin{Bmatrix} \{ w(\tau) \} \\ \{ \dot{w}(\tau) \} \end{Bmatrix} \quad (2.19)$$

and

$$[\tilde{\mathbf{M}}] = \begin{bmatrix} [\mathbf{0}] [\mathbf{M}]_{BC} \\ [\mathbf{M}]_{BC} [\mathbf{C}]_{BC} \end{bmatrix} \text{ and } [\tilde{\mathbf{K}}] = \begin{bmatrix} -[\mathbf{M}]_{BC} [\mathbf{0}] \\ [\mathbf{0}] [\mathbf{K}]_{BC} \end{bmatrix} \dots \quad (2.20)$$

Now we have the differential equations which in the matrix form are

$$[\tilde{M}] \{ \eta(\tau) \} + [\tilde{K}] \{ \eta(\tau) \} = \{ 0 \} \quad (2.21)$$

$$\text{set } \{ \eta(\tau) \} = e^{\Psi} \{ \phi \} \quad (2.22)$$

where ϕ consists of a vector consisting of $2n$ constant terms. Substitution of equation (2.22) in equation (2.21) leads to the eigen-value problem

$$\Psi [\tilde{M}] \{ \phi \} + [\tilde{K}] \{ \phi \} = 0 \quad (2.23)$$

which can be written as

$$[D] \{ \phi \} = \frac{1}{\Psi} \{ \phi \} \quad (2.24)$$

where

$$[D] = -[\tilde{K}]^{-1} [\tilde{M}] = \begin{bmatrix} [0] & [I] \\ -[K]^{-1}[M] & -[K]^{-1}[C] \end{bmatrix} \quad (2.25)$$

The eigen value of equation (2.23) will in general be complex. The real part of eigen value determines the stability of pipe and imaginary part gives the frequency of pipe. If the real part is positive and imaginary part is nonzero then there will be flutter. If real part is positive and imaginary part is zero the pipe will buckle. The velocity u at which pipe fails either due to buckling or flutter is known as the critical velocity, u_c .

A library subroutine EIGRF was used to calculate the complex eigen values.

2.3 PIPES WITH HARMONICALLY PERTURBED FLOW

Equation (2.4) is general governing differential equation of the pipe conveying fluid.

Now a case is considered where the flow velocity is perturbed harmonically, that is

$$u = u_0 (1 + \delta \cos \Omega \tau) \quad (2.26)$$

where u_0 is mean flow velocity, δ is excitation parameter and Ω is non-dimensional frequency given by $\frac{\omega t}{\tau}$.

Substituting equation (2.26) in equation (2.4) one gets

$$\begin{aligned} \alpha \frac{\partial^5 w}{\partial x^4 \partial \tau} + \frac{\partial^4 w}{\partial x^4} + [u_0^2 (1 + \delta \cos \Omega \tau)^2 - p(1-2\nu\mu) \\ - \gamma(1-x) - \beta^{1/2} u_0 \delta \Omega (1-x) \sin \Omega \tau] \frac{\partial^2 w}{\partial x^2} \\ + 2\beta^{1/2} u_0 (1 + \delta \cos \Omega \tau) \frac{\partial^2 w}{\partial x \partial \tau} + \gamma \frac{\partial w}{\partial x} + f \frac{\partial w}{\partial \tau} \\ + \frac{\partial^2 w}{\partial \tau^2} = 0 \end{aligned} \quad (2.27)$$

The coefficient of some derivatives are time varying, hence the pipe is parametrically excited. Because of parametric excitation, instability will occur over a range of frequencies.

In order to obtain the primary instability regions, we can write, Bolotin [4]

$$w(x, \tau) = \sum Y_k(x) \sin\left(\frac{\Omega \tau}{2}\right) + Z_k(x) \cos\left(\frac{\Omega \tau}{2}\right)$$

$$k = 1, 3, 5, \dots \quad (2.28)$$

The regions of primary instabilities can be obtained quite accurately by taking $K = 1$ approximation, Paidoussis and Issid [21]. Hence one can write

$$w(x, \tau) = Y(x) \sin\left(\frac{\Omega \tau}{2}\right) + Z(x) \cos\left(\frac{\Omega \tau}{2}\right) \quad (2.29)$$

Substituting equation (2.29) in equation (2.27) and equating the coefficients of $\sin\left(\frac{\Omega \tau}{2}\right)$ and $\cos\left(\frac{\Omega \tau}{2}\right)$ separately to zero, one gets

$$\begin{aligned} \frac{d^4 Y}{dx^4} + (u_0^2 (1 - \delta + \frac{\delta^2}{2}) - f + p (1 - 2v\mu) - \gamma (1-x) \frac{d^2 Y}{dx^2}) \\ - \frac{1}{4} \Omega^2 Y + \gamma \frac{dY}{dx} - \frac{\beta^{1/2} u_0 \delta \Omega}{2} [(1-x) \frac{d^2 Z}{dx^2} - (1 - \frac{2}{\delta}) \frac{dZ}{dx}] \\ - \frac{\alpha \Omega}{2} \frac{d^4 Z}{dx^4} - \frac{f \Omega}{2} Z = 0 \end{aligned} \quad (2.30a)$$

$$\begin{aligned} \frac{d^4 Z}{dx^4} + (u_0^2 (1 + \delta + \frac{\delta^2}{2}) - f + p (1 - 2v\mu) - \gamma (1 - x) \frac{d^2 Z}{dx^2}) \\ - \frac{1}{4} \Omega^2 Z + \gamma \frac{dZ}{dx} - \frac{\beta^{1/2} u_0 \delta \Omega}{2} [(1 - x) \frac{d^2 Y}{dx^2} - (1 + \frac{2}{\delta}) \frac{dY}{dx}] \\ + \frac{\alpha \Omega}{2} \frac{d^4 Y}{dx^4} + \frac{f \Omega}{2} Y = 0 \end{aligned} \quad (2.30b)$$

Let us take

$$A_1 = u_0^2 (1 - \delta + \frac{\delta^2}{2}) - f + p (1 - 2v\mu) - \gamma \quad (2.31)$$

$$A_2 = \frac{1}{4} \Omega^2 \quad (2.32)$$

$$A_3 = \frac{\beta^{1/2} u_0 \delta \Omega}{2} \quad (2.33)$$

$$A_4 = \left(1 - \frac{2}{\delta}\right) \frac{\beta^{1/2} u_0 \delta \Omega}{2} \quad (2.34)$$

$$A_5 = u_0^2 \left(1 + \delta + \frac{\delta^2}{2}\right) - + p (1 - 2\nu\mu) - \gamma \quad (2.35)$$

$$A_6 = \left(1 + \frac{2}{\delta}\right) \frac{\beta^{1/2} u_0 \delta \Omega}{2} \quad (2.36)$$

Using equations (2.31) to (2.36), equations (2.30) become

$$\begin{aligned} \frac{d^4 Y}{dx^4} + A_1 \frac{d^2 Y}{dx^2} - A_2 Y + \gamma \frac{d}{dx} (x \frac{dY}{dx}) - A_3 (1 - x) \frac{d^2 Z}{dx^2} \\ + A_4 \frac{dZ}{dx} - \frac{\alpha \Omega}{2} \frac{d^4 Z}{dx^4} - \frac{f \Omega}{2} Z = 0 \end{aligned} \quad (2.37a)$$

$$\begin{aligned} \frac{d^4 Z}{dx^4} + A_5 \frac{d^2 Z}{dx^2} - A_2 Z + \gamma \frac{d}{dx} (x \frac{dZ}{dx}) - A_3 (1 - x) \frac{d^2 Y}{dx^2} \\ + A_6 \frac{dY}{dx} + \frac{\alpha \Omega}{2} \frac{d^4 Y}{dx^4} + \frac{f \Omega}{2} Y = 0 \end{aligned} \quad (2.37b)$$

2.3.1 Finite Element Analysis:

Equations (2.37) are coupled differential equations. For finite element solution of these two coupled differential equations, the pipe is divided into number of finite elements, Figure 2. Solution over the finite element is assumed of the form of

$$Y^{(e)}(\xi) = \left[N_i(\xi) \right] \{ Y_i \}^{(ne)} \quad (2.38a)$$

and

$$z^{(e)}(\xi) = \{ B_i(\xi) \} \{ z_i \}^{(ne)} \quad (2.38b)$$

where,

N_i , B_i Interpolating functions

Y_i , Z_i Nodal parameters

ξ Local coordinate

Substituting equation (2.38) in (2.37) one gets the residues $R_a^{(e)}$ and $R_b^{(e)}$ for equation (2.37a) and (2.37b) respectively.

$$R_a^{(e)} = \frac{d^4 Y^{(e)}}{d\xi^4} + A_1 \frac{d^2 Y^{(e)}}{d\xi^2} - A_2 Y^{(e)} + \gamma \frac{d}{d\xi} ((x_j + \xi) \frac{dY^{(e)}}{d\xi}) - A_3 (1 - x_j - \xi) \frac{d^2 Z^{(e)}}{d\xi^2} + A_4 \frac{dZ^{(e)}}{d\xi} - \frac{\alpha \Omega}{2} \frac{d^2 Z}{d\xi^4} - \frac{\epsilon \Omega}{2} Z^{(e)} \quad \dots \quad (2.39a)$$

$$R_b^{(e)} = \frac{d^4 Z^{(e)}}{d\xi^4} + A_5 \frac{d^2 Z^{(e)}}{d\xi^2} - A_2 Z^{(e)} + \gamma \frac{d}{d\xi} ((x_j + \xi) \frac{dZ^{(e)}}{d\xi}) - A_3 (1 - x_j - \xi) \frac{d^2 Y^{(e)}}{d\xi^2} + A_6 \frac{dY^{(e)}}{d\xi} + \frac{\alpha \Omega}{2} \frac{d^4 Y^{(e)}}{d\xi^4} + \frac{\epsilon \Omega}{2} Y^{(e)} \quad \dots \quad (2.39b)$$

where x_j is the global coordinate of the j^{th} node.

Minimizing the residues by the Galerkin method

$$\oint^h N_i R_a^{(e)} d\xi = 0 \quad (2.40a)$$

$$\oint^h B_i R_b^{(e)} d\xi = 0 \quad (2.40b)$$

Treatment for (2.40a) and (2.40b) is similar.

So details are given only for (2.40a) and results of both are given in equation (2.46).

Substituting the value of $R_a^{(e)}$ from equation (2.39a) in the equation (2.40a), one gets

$$\begin{aligned} & \int_0^h N_i \left(\frac{d^4 Y^{(e)}}{d\xi^4} + A_1 \frac{d^2 Y^{(e)}}{d\xi^2} - A_2 Y^{(e)} + \gamma \frac{d}{d\xi} ((x_j + \xi) \frac{dY^{(e)}}{d\xi}) \right. \\ & \left. - A_3 (1 - x_j - \xi) \frac{d^2 Z^{(e)}}{d\xi^2} + A_4 \frac{dZ^{(e)}}{d\xi} - \frac{\alpha \Omega}{2} \frac{d^4 Z^{(e)}}{d\xi^4} - \frac{f \Omega}{2} Z^{(e)} \right) d\xi \\ & = 0 \quad \dots \dots \quad (2.41) \end{aligned}$$

In order to reduce the requirements of the interpolating polynomials first, second, fourth, fifth and seventh terms are integrated by parts, and one gets

$$\begin{aligned} & \int_0^h \frac{d^2 N_i}{d\xi^2} \frac{d^2 Y^{(e)}}{d\xi^2} d\xi - A_1 \int_0^h \frac{dN_i}{d\xi} \frac{dY^{(e)}}{d\xi} d\xi - A_2 \int_0^h N_i Y^{(e)} d\xi \\ & - \gamma x_j \int_0^h \frac{dN_i}{d\xi} \frac{dY^{(e)}}{d\xi} d\xi - \gamma \int_0^h \xi \frac{dN_i}{d\xi} \frac{dY^{(e)}}{d\xi} d\xi \\ & + A_3 (1 - x_j) \int_0^h \frac{dN_i}{d\xi} \frac{dZ^{(e)}}{d\xi} d\xi - A_3 \int_0^h \frac{dN_i}{d\xi} \frac{dZ^{(e)}}{d\xi} d\xi \\ & - A_3 \int_0^h N_i \frac{dZ^{(e)}}{d\xi} d\xi + A_4 \int_0^h N_i \frac{dZ^{(e)}}{d\xi} d\xi \\ & - \frac{\alpha \Omega}{2} \int_0^h \frac{d^2 N_i}{d\xi^2} \frac{d^2 Z^{(e)}}{d\xi^2} d\xi - \frac{f \Omega}{2} \int_0^h N_i Z^{(e)} d\xi \\ & N_i \frac{d^3 Z^{(e)}}{d\xi^3} \Big|_0^h - \frac{dN_i}{d\xi} \frac{d^2 Y^{(e)}}{d\xi^2} \Big|_0^h + A_1 N_i \frac{dY^{(e)}}{d\xi} \Big|_0^h \end{aligned}$$

$$\begin{aligned}
 & - A_3 (1 - x_j - \xi) N_i \left. \frac{z^{(e)}}{d\xi} \right|_0^h - r N_i (x_j + \xi) \left. \frac{dy^{(e)}}{d\xi} \right|_0^h \\
 & - \frac{\alpha \Omega}{2} N_i \left. \frac{d^3 z^{(e)}}{d\xi^3} \right|_0^h + \frac{\alpha \Omega}{2} \left. \frac{dN_i}{d\xi} \right| \left. \frac{d^2 z^{(e)}}{d\xi^2} \right|_0^h = 0 \quad (2.42a)
 \end{aligned}$$

Similar equation (2.42b) is obtained from equation (2.40b). Highest order of derivative in the integrals in equations (2.42) is two. Therefore $y^{(e)}$ and $z^{(e)}$ should have compatibility of $(y, \frac{dy}{d\xi})$ and $(z, \frac{dz}{d\xi})$ respectively. Highest order of derivatives in equations (2.42) is three. Therefore $y^{(e)}$ and $z^{(e)}$ should have completeness of $(y, \frac{dy}{d\xi}, \frac{d^2 y}{d\xi^2}, \frac{d^3 y}{d\xi^3})$ and $(z, \frac{dz}{d\xi}, \frac{d^2 z}{d\xi^2}, \frac{d^3 z}{d\xi^3})$ respectively. Thus N_i and B_i can be chosen identically. Interpolating functions satisfying these requirements are, Able and Desai [8]

$$\begin{aligned}
 |N_i(\xi)| = |B_i(\xi)| = \{ \xi_1^2 (3 - 2\xi), h\xi_1^2 \xi_2 \xi_2^2, (3 - 2\xi_2) - h\xi_1 \xi_2^2 \} \\
 \text{where } \xi_1 = 1 - \frac{\xi}{h} \text{ and } \xi_2 = \frac{\xi}{h} \quad (2.43)
 \end{aligned}$$

Using equation (2.43), the equation (2.42a) becomes

$$\begin{aligned}
 & \int_0^h \{N''\} \{N''\} d\xi \{y\}^{(ne)} - A_1 \int_0^h \{N'\} \{N'\} d\xi \{y\}^{(ne)} \\
 & - A_2 \int_0^h \{N\} \{N\} d\xi \{y\}^{(ne)} - r x_j \int_0^h \{N'\} \{N'\} d\xi \{y\}^{(ne)} \\
 & - r \int_0^h \xi \{N'\} \{N'\} d\xi \{y\}^{(ne)} + A_3 (1 - x_j) \int_0^h \{N'\} \{N'\} d\xi \{z\}^{(ne)}
 \end{aligned}$$

$$\begin{aligned}
 & - A_3 \oint^h \xi \{ N' \} [N'] d\xi \{ Z \}^{(ne)} - A_3 \oint^h \{ N \} [N'] d\xi \{ Z \}^{(ne)} \\
 & + A_4 \oint^h \{ N \} [N'] d\xi \{ Z \}^{(ne)} - \frac{\alpha Q}{2} \oint^h \{ N'' \} [N''] d\xi \{ Z \}^{(ne)} \\
 & - \frac{f Q}{2} \oint^h \{ N \} [N] d\xi \{ Z \}^{(ne)} = \left\{ \begin{array}{c} \frac{d^3 Y(e)}{d\xi^3} \Big|_j \\ 0 \\ - \frac{d^3 Y(e)}{d\xi^3} \Big|_k \\ 0 \end{array} \right\} + \left\{ \begin{array}{c} 0 \\ - \frac{d^2 Y(e)}{d\xi^2} \Big|_j \\ 0 \\ \frac{d^2 Y(e)}{d\xi^2} \Big|_k \end{array} \right\} \\
 & + A_1 \left\{ \begin{array}{c} \frac{dY(e)}{d\xi} \Big|_j \\ 0 \\ - \frac{dY(e)}{d\xi} \Big|_k \\ 0 \end{array} \right\} + A_3 \left\{ \begin{array}{c} - (1-x) \frac{dz(e)}{d\xi} \Big|_j \\ 0 \\ (1-x) \frac{dz(e)}{d\xi} \Big|_k \\ 0 \end{array} \right\} \\
 & + \gamma \left\{ \begin{array}{c} - x \frac{dy(e)}{d\xi} \Big|_j \\ 0 \\ x \frac{dy(e)}{d\xi} \Big|_k \\ 0 \end{array} \right\} + \frac{\alpha Q}{2} \left\{ \begin{array}{c} - \frac{d^3 Z(e)}{d\xi^3} \Big|_j \\ 0 \\ \frac{d^3 Z(e)}{d\xi^3} \Big|_k \\ 0 \end{array} \right\} + \frac{\alpha Q}{2} \left\{ \begin{array}{c} 0 \\ \frac{d^2 Z(e)}{d\xi^2} \Big|_j \\ 0 \\ \frac{d^2 Z(e)}{d\xi^2} \Big|_k \end{array} \right\} \quad (2.44a)
 \end{aligned}$$

Similarly equation (2.42b) can be written as

$$\begin{aligned}
 & \int_0^h \{N''\} [N''] d\xi \{z\}^{(ne)} - A_5 \int_0^h \{N'\} [N'] d\xi \{z\}^{(ne)} \\
 & - A_2 \int_0^h \{N\} [N] d\xi \{z\}^{(ne)} - \gamma x_j \int_0^h \{N'\} [N'] d\xi \{z\}^{(ne)} \\
 & - \gamma \int_0^h \xi \{N'\} [N'] d\xi \{z\}^{(ne)} + A_3 (1-x_j) \int_0^h \{N'\} [N'] d\xi \{Y\}^{(ne)} \\
 & - A_3 \int_0^h \xi \{N'\} [N'] d\xi \{Y\}^{(ne)} - A_3 \int_0^h \{N\} [N'] d\xi \{Y\}^{(ne)} \\
 & + A_6 \int_0^h \{N\} [N'] d\xi \{Y\}^{(ne)} + \frac{\alpha Q}{2} \int_0^h \{N''\} [N''] d\xi \{Y\}^{(ne)} \\
 & + \frac{f Q}{2} \int_0^h \{N\} [N] d\xi \{Y\}^{(ne)}
 \end{aligned}$$

$$\begin{aligned}
 & = \begin{bmatrix} \frac{d^3 z^{(e)}}{d\xi^3} \Big|_j \\ 0 \\ -\frac{d^3 z^{(e)}}{d\xi^3} \Big|_k \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{d^2 z^{(e)}}{d\xi^2} \Big|_j \\ 0 \\ \frac{d^2 z^{(e)}}{d\xi^2} \Big|_k \end{bmatrix} + A_5 \begin{bmatrix} \frac{dz^{(e)}}{d\xi} \Big|_j \\ 0 \\ -\frac{dz^{(e)}}{d\xi} \Big|_k \\ 0 \end{bmatrix} \\
 & + A_3 \begin{bmatrix} - (1-x) \frac{y^{(e)}}{d\xi} \Big|_j \\ 0 \\ + (1-x) \frac{y^{(e)}}{d\xi} \Big|_k \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} -x \frac{z^{(e)}}{d\xi} \Big|_j \\ 0 \\ + x \frac{z^{(e)}}{d\xi} \Big|_k \\ 0 \end{bmatrix}
 \end{aligned}$$

$$\begin{aligned}
 & + \frac{\alpha \Omega}{2} \begin{bmatrix} \frac{d^3 Y(e)}{d \xi^3} \\ 0 \\ -\frac{d^3 Y(e)}{d \xi^3} \\ 0 \end{bmatrix} + \frac{\alpha \Omega}{2} \begin{bmatrix} 0 \\ -\frac{d^2 Y(e)}{d \xi^2} \\ 0 \\ \frac{d^2 Y(e)}{d \xi^2} \end{bmatrix} \quad (2.44b)
 \end{aligned}$$

Combining equations (2.44a) and (2.44b), one gets

$$\begin{aligned}
 & \begin{bmatrix} [A](e) & [B](e) \\ [E](e) & [G](e) \end{bmatrix} \begin{bmatrix} \{Y\}(ne) \\ \{Z\}(ne) \end{bmatrix} \\
 & = \begin{bmatrix} \frac{d^3 Y(e)}{d \xi^3} \\ 0 \\ -\frac{d^3 Y(e)}{d \xi^3} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{d^2 Y(e)}{d \xi^2} \\ 0 \\ \frac{d^2 Y(e)}{d \xi^2} \end{bmatrix} \\
 & + \begin{bmatrix} \frac{d^3 Z(e)}{d \xi^3} \\ 0 \\ -\frac{d^3 Z(e)}{d \xi^3} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{d^2 Z(e)}{d \xi^2} \\ 0 \\ \frac{d^2 Z(e)}{d \xi^2} \end{bmatrix}
 \end{aligned}$$

$$\begin{aligned}
 & \left[\begin{array}{c} + \frac{dY(e)}{d\xi} \Big|_j \\ 0 \\ - \frac{dY(e)}{d\xi} \Big|_k \end{array} \right] \\
 & + A_1 \left[\begin{array}{c} 0 \\ - (1-x) \frac{dZ}{d\xi} \Big|_j \\ 0 \end{array} \right] \\
 & + A_3 \left[\begin{array}{c} 0 \\ (1-x) \frac{dZ}{d\xi} \Big|_k \\ 0 \end{array} \right] \\
 & + A_5 \left[\begin{array}{c} 0 \\ - (1-x) \frac{dY}{d\xi} \Big|_j \\ 0 \end{array} \right] \\
 & + \gamma \left[\begin{array}{c} -x \frac{dY}{d\xi} \Big|_j \\ 0 \\ x \frac{dY}{d\xi} \Big|_k \end{array} \right] \\
 & + \left[\begin{array}{c} 0 \\ -x \frac{dZ}{d\xi} \Big|_j \\ 0 \end{array} \right] + \frac{\alpha \Omega}{2} \left[\begin{array}{c} - \frac{d^3Z(e)}{d\xi^3} \Big|_j \\ 0 \\ \frac{d^3Z(e)}{d\xi^3} \Big|_k \end{array} \right] \\
 & \quad \quad \quad \left[\begin{array}{c} 0 \\ - \frac{d^3Y}{d\xi^3} \Big|_j \\ 0 \end{array} \right] \\
 & \quad \quad \quad \left[\begin{array}{c} 0 \\ - \frac{d^3Y}{d\xi^3} \Big|_k \end{array} \right]
 \end{aligned}$$

Matrices $[A]$, $[B]$, $[E]$ and $[G]$ are given in
Appendix 3.

The equations (2.45) are for one element. Now assembling it for whole domain and applying boundary conditions, one gets

$$\begin{bmatrix} [A] & [B] \\ [E] & [G]_{BC} \end{bmatrix} \begin{Bmatrix} \{Y\}^n \\ \{Z\}^n \end{Bmatrix} = 0$$

or

$$[F] \begin{Bmatrix} \{Y\}^n \\ \{Z\}^n \end{Bmatrix} = 0 \quad (2.46)$$

Various types of boundary conditions are listed in Appendix 4.

2.3.2 Method of Solution:

Bolotin has shown that instability regions can be obtained by equating determinant of matrix $[F]$ to zero. Hence frequencies ω_j , $j = 1, 2, \dots$ are the frequencies where $\text{Det}[f] = 0$ and they give boundaries of instability regions.

A Library subroutine F03AAF/NAG was used to calculate the determinant of matrix $[F]$. The instabilities regions are plotted in $\omega - \delta$ space.

CHAPTER - III

RESULTS AND DISCUSSION

This chapter deals with numerical results obtained for pipe conveying fluid for various types of pipe configurations. In Section 3.1 stabilities of pipes are discussed when the fluid is flowing at constant velocity. In Section 3.2 instability regions for various types of pipe configurations are plotted when a small harmonic component is superimposed over the mean velocity.

3.1 PIPES WITH STEADY FLOW

In this section critical velocities of various types of pipe configurations have been found by the finite element methods.

3.1.1 Number of Finite Element:

To begin with one must decide the number of finite elements to be used in the analysis. For every type of boundary condition the frequencies were calculated for few velocities with increasing number of finite elements. We selected that number of elements beyond which the increase in number of finite element did not change the value of frequency significantly.

Table 1 shows the frequencies of two equal span simply supported pipe with increasing number of finite elements for $\beta = 0.5$, $u = 2$ and $\alpha = \Gamma = p = \gamma = f = 0$. It is observed that the value does not change significantly after eight elements. So the number of finite elements taken for this case was eight.

3.1.2 Results and Discussions:

Using the finite element equations developed in Chapter-II the critical velocities for various configuration of pipes are obtained.

3.1.2.1 One Span Pipes

Complex frequencies for one span simply supported pipes were obtained by Paidoussis and Issid [21] for $\beta = 0.5$, $\alpha = \Gamma = p = \gamma = f = 0$. The same problem was studied by Deb [7] by using finite element method. However Deb [7] did not study the effect of internal dissipation (α) and gravity (γ) effects.

Figure 4 shows effect of coefficient of internal dissipation on the same system. The value of α is taken equal to 0.005. It is found that critical velocity does not change but the symmetry about imaginary axis is lost. These results match with those obtained by Paidoussis and Issid [21].

critical velocities of all these four cases are less than the critical velocity of three equal span pipe.

3.1.2.3 Multi-span Pipes, One End Fixed and Other Supports, Simple Supports

Critical velocity for two equal span pipe, case (1)

Table 3, for $\beta = 0.5$, $\alpha = \gamma = p = \gamma = f = 0$, is 7.12.

This critical velocity is more than the critical velocity of pipe when all the supports are simple supports as expected. Next this pipe is considered with two unequal span lengths, cases (2, 3), Table 3. It is found when the intermediate support is shifted away from the fixed end critical velocity becomes 7.42 which is more than that of the pipe considered in case (1). On the other hand if the intermediate support is shifted towards the fixed end the critical velocity becomes 5.56 which is less than that of case (1).

Next three span pipes are considered, case (4, 5, 6, 7), Table 3. It is found for equal span pipe the critical velocity is 9.93. Critical velocities for unequal spans, cases (5, 6, 7) are 8.60, 8.10 and 10.06 respectively. It may be noted that these critical velocities are more than those if all the supports are simple supports, see Table 2.

3.1.2.4 Multi-span Pipes with One End Fixed, Other End Free and Intermediate Supports Simple Supports

Critical velocity for this two equal span pipe, case (1), Table 4 is 4.64 for $\beta = 0.5$, $\alpha = \Gamma = p = \gamma = f = 0$. If the position of intermediate support is shifted towards the free end the critical velocity becomes 5.65, case (2), Table 4, On the other hand if intermediate support is shifted toward the fixed end, the critical velocity becomes 3.96 which is less than that of pipe considered in case (1).

Next three span pipes are considered, cases (4, 5, 6, 7) Table 4. The critical velocities for these cases are 6.48, 7.41, 5.79 and 5.24 respectively. It may be noted that these pipes are similar to those considered in cases (4, 5, 6, 7) of Table 3, except that the right hand support has been removed and is free now. It is observed that if the right hand support is free, the critical velocities decrease.

3.1.2.5 Multi-span Pipes with Both Ends Fixed and Supports Simple Supports

Critical velocity for two equal span pipe, case (1), Table 5, for $\beta = 0.5$, $\alpha = \Gamma = p = \gamma = f = 0$, is 9.0. For unequal span lengths case (2), Table 5 the critical velocity decreases to 8.65.

For three span pipes, cases (3, 4, 5, 6) critical velocities are 11.76, 9.90, 11.24 and 10.26 respectively. It should be noted that these pipes are similar to those considered in cases (4, 5, 6, 7) Table 3, except that the right hand support has been fixed. It is observed that in the present cases critical velocities increase.

3.1.2.6 Multi-span pipes with One End Fixed and Other Supports Elastic Supports

Table 6 gives the results for the pipes whose one end is fixed and all other supports are elastic supports. In cases (1, 2, 3, 4), Table 6 elastic supports are displacement springs. For $\beta = 0.5$, $\alpha = \Gamma = p = \gamma = f = 0$ and spring constant $\sigma_d = 10.0$ the critical velocities are 8.52, 7.14, 7.08 and 6.93 respectively. These velocities are less than that of those considered in cases (4, 5, 6, 7), Table 3. Where all the supports are simple supports as expected.

Next pipes with torsional springs are considered, see cases (5, 6, 7, 8), Table 6. The critical velocities are 13.41, 10.92, 10.71 and 10.38 respectively. These velocities are more than that of these considered in cases (4, 5, 6, 7), Table 3 as expected.

3.1.2.7 Multi-span Vertical Pipes

Table 7 gives the critical velocities for vertical multi-span pipes. It is observed that critical velocities are more in case of downward flow than those for horizontal flow, and critical velocities are less in case of upward flow. It is observed that effect of gravity is more pronounced in multi-span pipes if one of the ends is free.

3.2 PIPES WITH HARMONICALLY PERTURBED FLOW

In this section we will discuss the stability of pipes when a small harmonic component is superimposed over the mean velocity.

3.2.1 Results and Discussions:

Using the finite element equations developed in Chapter-II the regions of principal primary instability are obtained for various types of pipe configurations. These regions are plotted in $\Omega - \delta$ space.

3.2.1.1 One Span Pipes

In Figure 5 instability regions for one span simply supported pipe are plotted for $u = 0.6\pi$, $\alpha = \Gamma = p = \gamma = f = 0$ and $\beta^{1/2} = 0.4$ and $\beta^{1/2} = 0.8$. These results match with those obtained in [21,13].

For $\beta^{1/2} = 0.8$ results are also given in Table 8 and compared with Kulkarni [13]. Excellent matching is observed. It is observed if the value of β is increased instability region broadens.

Results for fixed-fixed pipe are also given in the Figure 5. Instability regions are plotted for $\beta^{1/2} = 0.4$, $\alpha = \gamma = p = f = 0$, $u = 0.6 \pi$ and π . It is observed that with increase in velocity u the instability region shifts to lower value of Ω .

In Figure 6 instability regions are plotted for fixed simply supported pipe for $\beta^{1/2} = 0.4$, $\alpha = p = \gamma = f = 0$, $u = 0.6 \pi$ and π . Again it was observed that with increase in value of u instability region shifts to lower value of Ω . In the same figure instability regions for cantilever pipe are also plotted for $\beta^{1/2} = 0.4$, $\alpha = \gamma = p = f = 0$, $u = \pi$ and $u = 1.2 \pi$. A striking feature of this instability region is that it starts after a finite value of δ . Again instability region shifts itself to lower value of Ω for higher velocity.

3.2.1.2 Multi-span Simply Supported Pipes

Instability regions associated with first two modes of two equal span simply supported pipe for $u = 1.2 \pi$, $\beta^{1/2} = 0.8$, $\alpha = \gamma = p = \gamma = f = 0$ are

given in Figure 7 and Table 9. The results obtained by Kulkarni [13] are also given in the same figure and table. By present analysis we obtained broader instability regions. The difference arises due to the change in the governing differential equation of motion. Kulkarni [13] has taken L in third term in equation (2.1) as length of the span, where actually L is the overall length of the pipe.

Figure 8 and Figure 9 give the instability regions associated with first two modes of two and three span (equal and unequal) simply supported pipe for $\beta^{1/2} = 0.4$, $\alpha = \gamma = p = f = 0$, respectively. For two span pipe velocity u is 0.6π and for three span pipe it is 1.8π . It is seen that for unequal span lengths the instability region associated with first mode shifts to lower value of Q in comparison to first mode of equal span pipes. On the other hand the instability region corresponding to second mode shifts to higher value of Q in comparison to instability region corresponding to second mode of equal span pipes. The instability region corresponding to first mode of one span pipe is also plotted in Figure 8. It can be seen that for one span pipe the instability region are at very low value of Q .

3.2.1.3 Multi-span Pipes, one End Fixed and Other supports Simple Supports

Figure 10 and Figure 11 show the instability regions associated with first two modes of two and three span (equal and unequal) pipe for $\beta^{1/2} = 0.4$, $\alpha = \beta = p = \gamma = f = 0$ respectively. For two span pipe u is 1.2π and for three span pipe it is 1.8π . It is observed that regions of instability associated with first mode of unequal spans are at lower value of Q in comparison to that of equal spans. On the other hand the instability regions associated with second mode are at higher value of Q in case of unequal spans. In Figure 10 instability regions corresponding to first mode of one span fixed - simply supported are also plotted. It is observed that for one span pipe instability region is at very low value of Q .

3.2.1.4 Multi-span Pipes, Both Ends Fixed and Other Supports Simple Supports

Figure 12 gives instability regions associated with first two modes of a two span (equal and unequal) pipe for $u = 1.2 \pi$, $\beta^{1/2} = 0.4$, $\alpha = \beta = p = \gamma = f = 0$. The region associated with first mode is at lower value of Q for unequal span length. But region of

instability associated with second mode is at higher value of Ω for unequal spans. The results for one span are also plotted for comparison purposes.

Figure 13 gives instability regions associated with first two modes of three span (equal and unequal) pipe for $u = 1.8 \pi$, $\beta^{1/2} = 0.4$, $\alpha = \beta = p = \gamma = f = 0$. Here the instability regions associated with both the modes are at lower value of Ω for unequal spans.

3.2.1.5 Multi-span Pipes, One End Fixed, Other and Free and Intermediate Supports Simple Supports

Figure 14 shows the instability regions for a two span (equal and unequal) pipe. The interesting feature is that the instability region starts from a finite value of δ and both modes are at higher value of Ω for unequal spans.

Figure 15 gives instability regions for a three span pipe for $u = 1.8 \pi$, $\beta^{1/2} = 0.4$, $\alpha = \beta = p = \gamma = f = 0$. The instability regions of both modes are at lower value of Ω for unequal spans. The instability region corresponding to the second mode broadens in case of unequal spans.

CHAPTER IV

CONCLUSIONS

Based on the results obtained in Chapter III following conclusions are drawn.

1. The results by finite element method for multi-equispan simply supported pipes with steady flow match with those obtained by earlier authors. This shows that finite element equations of motion are correct and can be applied for multi-span (equal and unequal) pipes with any type of supports.
2. The results by the finite elements method for multi-equispan simply supported pipes with harmonically perturbed flow match with those obtained by earlier authors for $\beta = 0$. For $\beta \neq 0$ results differ from earlier results because of correct equation of motion used here. Thus the finite element equations of motion developed here are correct and can be applied for multi-span (equal and unequal) pipes with any type of supports.
3. The method developed is very general and flexible. The critical velocities and instability regions for any type of pipe configurations can be obtained by changing the input data in the computer program.

4. The column matrices $\{N(u^2 - \beta^2 + p(1-2\nu\mu) - \gamma) \frac{\partial w}{\partial \xi}, \frac{h}{0}\}$ and $\{v N(x_j + \xi) \frac{\partial w}{\partial \xi}, \frac{h}{0}\}$ of equation (2.11) should be transferred to square matrix of left hand side, similarly. third, fourth fifth column matrices on right hand side of equation (2.45) should be transferred to square matrices of left hand sides, as suggested by Deb [7]. These column matrices can not be neglected as in suggested by the work of Szabo and Lee [24].

5. Critical velocities of pipes can be controlled by changing the position of the supports. Critical velocities of vertical pipes decrease for upward flow and increase for downward flow in comparison to horizontal flow. This effect is more pronounced if one end is free.

6. The principal primary instability regions broadens when the value of β is increased. The principal primary instability regions shifts to lower value of Ω for increase in velocity u .

7. If one end of the pipe is free the principal primary instability regions starts from a finite value of δ'' .

8. Instability regions can be controlled by changing the position of the supports.

REFERENCES

1. Ashley, H. and Haviland G., "Bending vibration of a pipe line containing flow fluid", J. of Applied Mechanics, Vol. 17, No. 3, 1956, pp. 229-232.
2. Benjamin, T.B., "Dynamics of a system of articulated pipes conveying fluid", Parts I and II, Proceeding of the Royal Society of London, Vol. 261, series A, 1961, pp. 457-499.
3. Blevins, R.D., "Flow Induced Vibrations", Van Nastrand Reinhold Co., New York, 1977.
4. Bolotin, V.V., "The Dynamic stability of Elastic systems", Holden Day Inc. San Francisco, 1964.
5. Chen, S.S., "Flow Induced Instability of Elastic tube", The ASME Presentation at the Vibration Conference and International Design Automation Conference, September 8 - 10, 1971.
6. Chen, S.S., "Parallel Flow Induced Vibrations and Instabilities of Cylindrical Structures", The Shock and Vibration Digest, Vol. 6, No. 10, 1974, pp. 1-11.

7. Deb, J.K., "Dynamic stability of pipes conveying fluid by Finite Element Methods", M. Tech. Thesis, IIT, Kanpur, 1978.
8. Desai, C.S. and Abel, J.F., "Introduction to Finite Element Method", Van Nostrand Reinhold Co., New York, 1972.
9. Frazer, R.A., Duncan, W.J. and Collar, R.A., "Elementary Matrices", Cambridge University Press, New York, 1957.
10. Gregory, R.W. and Paidoussis, M.P., "Unstable Oscillation of tubular cantilever conveying fluid", Part I - Theory, Part II - Experimental, Proceedings of the Royal Society of London, A 293, 1966, pp. 512-542.
11. Housner, G.W., "Bending vibrations of pipe line containing fluid", Journal of Applied Mechanics, 19, 1952, pp. 205-208.
12. Hubner, K.H., "The Finite Element Method for Engineers", John Wiley and Sons, 1975.
13. Kulkarni, S.B., "Parametric Instability of a Periodically supported pipe conveying fluid", M. Tech. Thesis, IIT, Kanpur, 1981.

14. Lin, H.C. and Chen, S.S., "Vibration and Stability of fluid conveying pipes", The Shock and Vibration Bulletin, August, 1976, pp. 267-283.
15. Long, R.H. Jr, "Experimental and Theoretical study of transverse vibration of a tube containing flowing fluid", Journal of Applied Mechanics, 22, No. 1, 1955, pp. 65-86.
16. Meircvitch, L., "Analytical Methods in Vibrations", The Macmillan Company, London, 1967.
17. Naguleswaran, S. and Williams, C.J.H., "Lateral Vibration of pipe conveying fluid", Journal of Mechanical Engineering science Vol. 10, No. 3, 1968, pp. 228-238.
18. Orris, R.M. and Petyt, M., "A Finite Element study of Harmonic wave propagation in periodic structures", Journal of Sound and Vibration, 33(2), 1974, pp. 223-236.
19. Paidoussis, M.P., "Dynamics of tubular cantilevers conveying fluid", Journal of Mechanical Engineering Science, 12, 1970, pp. 85-103.
20. Paidoussis, M.P. and Deksnis, E.B., "Dynamics of tubular cantilevers conveying fluid", Journal of Mechanical Engineering Science, 12, 1970, pp. 288-300.

21. Paidoussis, M.P. and Issid, N.T., "Dynamic Stability of pipes conveying fluids", *Journal of Sound and Vibration*, 33, 3, 1974, pp. 267-294.
22. Singh, K. and Mallik, A.K., "Wave Propogation and Vibration response of a periodically supported pipe conveying fluid", *Journal of Sound and Vibration* 54 (1), 1977, pp. 55-56.
23. Singh, K. and Mallik, A.K., "Parametric instabilities of periodically supported pipe conveying fluid", *Journal of Sound and Vibration* 62(3), 1979, pp. 379-397.
24. Szabo, B.A. and Lee, G.C., "Stiffness matrix for plates by Galerkin's Method", *Journal of Engineering Mechanics Division*, Vol. 95, No. 1-6, 1969 pp, 571-586.

TABLE 1

Number of elements vs Frequencies

Two equal span simply supported pipe

$$\beta = 0.5, \alpha = \gamma = p = \gamma = f = 0, u = 2.0$$

Number of Elements	First Mode		Second Mode	
	Real	Imaginary	Real	Imaginary
4	0.0	5.858	0.0	22.798
6	0.0	5.626	0.0	22.310
8	0.0	5.584	0.0	22.194
10	0.0	5.576	0.0	22.188
12	0.0	5.562	0.0	22.186

TABLE 2

Critical velocities for Multi span simply supported pipes

$$\beta = 0.5, \alpha = \beta = p = \gamma = f = 0$$

	Type of pipe	Number of Element	Critical Velocity u_c
1		8	2π
2		12	3π
3		8	6.12
4		12	8.52
5		12	8.16
6		12	8.01
7		12	7.98

TABLE 3

Critical velocities of Multi-span pipes - one end fixed and other supports simple support

$$\beta = 0.5, \alpha = \gamma = p = \gamma = f = 0$$

	Type of pipe	Number of Element	Critical Velocity
1		8	7.12
2		8	5.56
3		8	7.42
4		12	9.93
5		12	9.60
6		12	8.10
7		12	10.06

TABLE 4

Critical velocities for Multi-span pipes with one end fixed, other end free and intermediate supports simple supports

$$\beta = 0.5, \alpha = f' = p = \gamma = f = 0$$

Type of Pipe	Number of Element	Critical Velocity
1	8	4.64
2	8	5.65
3	8	3.96
4	12	6.48
5	12	7.41
6	12	5.79
7	12	5.24

TABLE 5

Critical velocities for Multi-span pipes with both end fixed
and other supports simple supports

$$\beta = 0.5, \alpha = \gamma = p = \gamma = f = 0$$

Type of pipe	Number of Element	Critical Velocity
1	8	9.00
2	8	8.65
3	12	11.76
4	12	9.90
5	12	11.24
6	12	10.26

TABLE 6

Critical velocities for Multiple span pipes with one end fixed and other supports elastic supports

$$\beta = 0.5, \alpha = \gamma = p = \gamma = f = 0$$

	Type of pipe	Spring constant	Number of Elements	Critical Velocity
1		$\alpha_d = 10.0$	12	8.52
2		$\alpha_d = 10.0$	12	7.14
3		$\alpha_d = 10.0$	12	7.08
4		$\alpha_d = 10.0$	12	6.93
5		$\alpha_t = 5.0$	12	13.41
6		$\alpha_t = 5.0$	12	10.92
7		$\alpha_t = 5.0$	12	10.71
8		$\alpha_t = 5.0$	12	10.38

TABLE 7

Critical velocities for Multi-span vertical pipes

$$\beta = 0.5, \alpha = \Gamma = p = \gamma = f = 0$$

Type of pipe	Number of Element			
		$\gamma = -5$	$\gamma = 0$	$\gamma = 5$
1	5	2.71	π	3.51
2	8	6.05	2π	6.46
3	8	7.03	7.12	7.23
4	8	4.26	4.64	5.08

CENTRAL LIBRARY
 Acc. No. 82761

TABLE 8

Values of frequencies bounding principal primary instability region for single span simply supported pipe

$u = 0.6 \pi$, $\beta^{1/2} = 0.8$, $\alpha = \gamma = p = \gamma = f = 0$

NEL = 5

	Frequencies	
	Lower	Upper
0.01	15.345	15.507
0.10	14.613	16.204
0.20	13.765	16.948
0.30	12.883	17.654
0.40	11.955	18.319

TABLE 9

Values of frequencies bounding the principal primary instability regions associated with first two modes of a two span pipe obtained by present analysis and by Kulkarni [13]

$$u = 1.2\pi, \beta^{1/2} = 0.8, \alpha = \gamma = p = \gamma f = 0$$

NEL = 8

	First Mode				Second Mode			
	Lower		Upper		Lower		Upper	
	Pre- sent	Kul- karni [13]	Pre- sent	Kul- karni [13]	Pre- sent	Kul- karni [13]	Pre- sent	Kul- karni [13]
0.01	61.20	61.40	62.29	62.40	109.60	109.88	110.92	110.44
0.10	56.07	58.52	67.17	65.72	104.56	106.08	116.67	113.06
0.20	50.38	55.02	71.97	66.56	99.69	104.04	123.84	116.08
0.30	44.87	51.60	75.59	71.12	96.02	101.00	131.50	118.84
0.40	39.60	47.89	77.10	72.36	94.21	98.16	139.24	131.48

Fig 1 Pipe conveying fluid at velocity V

Fig 2 Finite elements of the pipe

Fig. 3 Typical finite element of the pipe

Fig.5 Regions of principal primary instability of one span pipes for $\alpha = \Gamma = p = \beta = f = 0$ $NEL = 5$

Fig.6 Regions of principal primary instability of one span pipes for
 $\beta^{1/2} = 0.4, \alpha = \Gamma = p = \vartheta, t = 0, NEL = 5$

Fig.7 Regions of principal primary instability of two span simply supported pipe for $U=1.2\pi$, $\beta^{1/2}=0.8$, $\alpha=\Gamma=p=\vartheta=f=0$ NEL=8

Fig. 8 Regions of principal primary instability of a two span simply supported pipes for
 $L_1 = 0.6\pi$, $\beta^{1/2} = 0.4$, $\alpha = \Gamma = p = \gamma = f = 0$ NEL = 6

Fig. 9 Regions of principal primary instability of three span simply supported pipes for

$$U = 1.8\pi, \beta^{1/2} = 0.4, \alpha = \Gamma = p = \theta = t = 0 \quad NEL = 12$$

Fig.10 Regions of principal primary instability of two span pipes one end fixed and other supports simple supports for

$$\alpha = 1.2\pi, \beta^{1/2} = 0.4, \alpha L = \Gamma = p = \gamma = f = 0, \quad NEL = 8$$

Fig.11 Regions of principal primary instability of three span pipes one end fixed and other supports simple supports for
 $\Omega = 1.8\pi$, $\beta^{1/2} = 0.4$, $\alpha = \Gamma = p = \dot{\theta} = f = 0$ NEL = 12

Fig.12 Regions of principal primary instability for two span pipes both ends fixed and other support simple support for
 $\alpha = 1.2\pi$, $\beta^{1/2} = 0.4$, $\alpha = \Gamma = p = \delta = f = 0$ NEL = 8

Fig.13 Regions of principal primary instability of three span pipes both ends fixed and other supports simple supports

$$\mu = 1.8\pi, \beta^{1/2} = 0.4, \alpha = \Gamma = p = \gamma = f = 0 \quad NEL = 12$$

Fig.14 Regions of principal primary instability of two span pipes one end fixed other free and intermediate support simple support for

$$\alpha = 1.2\pi, \beta^{1/2} = 0.4, \alpha = \Gamma = p = \gamma = f = 0 \quad NEL = 8$$

Fig.15 Regions of principal primary instability of three span pipes one end fixed other free and intermediate supports simple supports for $\alpha=1.8\pi$, $\beta^{1/2}=0.4$, $\alpha\ell=\Gamma=p=\gamma=f=0$, $NEL=12$

APPENDIX-1

The values of various matrices are as follows

$$[m]^{(e)} = \frac{h}{420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ 4h^2 & 13h & -3h^2 & \\ & 156 & -22h & \\ & \text{sym} & 4h^2 & \end{bmatrix} \quad (\text{A1.1})$$

$$[c]^{(e)} = \frac{a}{h^3} \begin{bmatrix} 12 & 6h & -12 & 6h \\ 4h^2 & -6h & 2h^2 & \\ & 12 & -6h & \\ & \text{sym} & 4h^2 & \end{bmatrix} + \frac{2\beta^{1/2}u}{60} \begin{bmatrix} -30 & 6h & 30 & -6h \\ -6h & 0 & 6h & -h^2 \\ -30 & -6h & 30 & 6h \\ 6h & h^2 & -6h & 0 \end{bmatrix}$$

$$+ \frac{f}{420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ 4h^2 & 13h & -3h^2 & \\ & 156 & -22h & \\ & \text{sym} & 4h^2 & \end{bmatrix} \quad (\text{A1.2})$$

$$[k]^{(e)} = \frac{1}{h^3} \begin{bmatrix} 12 & 6h & -12 & 6h \\ 4h^2 & -6h & 2h^2 & \\ & 12 & -6h & \\ & \text{sym} & 4h^2 & \end{bmatrix}$$

$$- \frac{(\Psi^2 - l^2 + p(1 - 2\mu) - \gamma)}{30h} \begin{bmatrix} 36 & 3h & -36 & 3h \\ 4h^2 & -3h & -h^2 & \\ & 36 & -3h & \\ & \text{sym} & 4h^2 & \end{bmatrix}$$

Contd.....

$$\begin{aligned}
 & - \frac{\gamma \times j}{30h} \begin{bmatrix} 36 & 3h & -36 & 3h \\ 4h^2 & -3h & -h^2 & \\ & 36 & -3h & \\ \text{sym} & & 4h^2 & \end{bmatrix} - \frac{\gamma}{60} \begin{bmatrix} 36 & 6h & -36 & 0 \\ 2h^2 & -6h & -h^2 & \\ & 36 & 0 & \\ \text{sym} & & 6h^2 & \end{bmatrix} \\
 & \dots \quad (A1.3)
 \end{aligned}$$

APPENDIX-2

BOUNDARY CONDITIONS FOR STEADY FLOW

A2.1 Simple Supports :

For pipe simply supported at extreme ends, the boundary conditions will be

$$w = 0 \quad \frac{\partial^2 w}{\partial \xi^2} = 0 \quad (A2.1)$$

For an intermediate simple support, the boundary condition will be

$$w = 0 \quad (A2.2)$$

A2.2 Fixed Supports :

For fixed ends of the pipe, the boundary conditions will be

$$w = 0 \quad \frac{\partial w}{\partial \xi} = 0 \quad (A2.3)$$

A2.3 Elastic Supports, Displacement Springs :

For pipe supported by a displacement spring, K_d

$$\begin{aligned} \frac{\partial^3 w}{\partial \xi^3} + \alpha_d w &= 0 & \text{at } \xi = 0 \\ \frac{\partial^3 w}{\partial \xi^3} - \alpha_d w &= 0 & \text{at } \xi = h \end{aligned} \quad (A2.4)$$

where

$$\alpha_d = \frac{K_d L^3}{E I} \quad (A2.5)$$

A2.4 Elastic Supports, Torsional Springs :

For pipe supported by torsional spring, K_t .

$$\frac{\partial^2 w}{\partial \xi^2} - \alpha_t \frac{\partial w}{\partial \xi} = 0 \quad \text{at} \quad \xi = 0$$

$$\frac{\partial^2 w}{\partial \xi^2} + \alpha_t \frac{\partial w}{\partial \xi} = 0 \quad \text{at} \quad \xi = h \quad (\text{A2.6})$$

where

$$\alpha_t = \frac{K_t L}{EI} \quad (\text{A2.7})$$

APPENDIX - 3

The matrices $[A]$, $[B]$, $[E]$ and $[F]$ can be given as

$$\begin{aligned}
 [A] &= \frac{1}{h^3} \begin{bmatrix} 12 & 6h & -12 & 6h \\ & 4h^2 & -6h & 2h^2 \\ \text{sym} & & 12 & -6h \\ & & & 4h^2 \end{bmatrix} - \frac{(A_1 + \gamma x_j)}{30h} \begin{bmatrix} 36 & 3h & -36 & 3h \\ & 4h^2 & -3h & -h^2 \\ \text{sym} & & 36 & -3h \\ & & & 4h^2 \end{bmatrix} \\
 &= \frac{A_2}{420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ & 4h^2 & 13h & -3h^2 \\ \text{sym} & & 156 & 22h \\ & & & 4h^2 \end{bmatrix} - \frac{\gamma}{60} \begin{bmatrix} 36 & 6h & -36 & 0 \\ & 2h^2 & -6h & -h^2 \\ \text{sym} & & 36 & 0 \\ & & & 6h^2 \end{bmatrix} \dots (A3.1) \\
 [B] &= \frac{A_3 (1 - x_j)}{30h} \begin{bmatrix} 36 & 3h & -36 & 3h \\ & 4h^2 & -3h & -h^2 \\ \text{sym} & & 36 & -3h \\ & & & 4h^2 \end{bmatrix} \\
 &= \frac{A_3}{60} \begin{bmatrix} 36 & 6h & -36 & 0 \\ & 2h^2 & -6h & -h^2 \\ \text{sym} & & 36 & 0 \\ & & & 6h^2 \end{bmatrix} - \frac{(A_3 - A_4)}{60} \begin{bmatrix} -30 & 6h & 30 & -6h \\ -6h & 0 & 6h & -h^2 \\ -30 & -6h & 30 & 6h \\ 6h & h & -6h & 0 \end{bmatrix} \\
 &= \frac{\alpha Q}{2h^3} \begin{bmatrix} 12 & 6h & -12 & 6h \\ & 4h^2 & -6h & 2h^2 \\ \text{sym} & & 12 & -6h \\ & & & 4h^2 \end{bmatrix} - \frac{f Q h}{2 \times 420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ & 4h^2 & 13h & -3h^2 \\ \text{sym} & & 156 & 22h \\ & & & 4h^2 \end{bmatrix} \dots (A3.2)
 \end{aligned}$$

$$[E] = \frac{1}{h^3} \begin{bmatrix} 12 & 6h & -12 & 6h \\ & 4h^2 & -6h & 2h^2 \\ & & 12 & -6h \\ & & & 4h^2 \end{bmatrix} - \frac{(A_5 + \gamma x_j)}{30h} \begin{bmatrix} 36 & 3h & -36 & 3h \\ & 4h^2 & -3h & -h^2 \\ & & 36 & -3h \\ & & & 4h^2 \end{bmatrix}$$

$$- \frac{A_2 h}{420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ & 4h^2 & 13h & -3h^2 \\ & & 156 & 22h \\ & & & 4h^2 \end{bmatrix} - \frac{\gamma}{60} \begin{bmatrix} 36 & 6h & -36 & 0 \\ & 2h^2 & -6h & -h^2 \\ & & 36 & 0 \\ & & & 6h^2 \end{bmatrix}$$

... (A3.3)

$$[G] = \frac{A_3 (1 - \gamma_j)}{30h} \begin{bmatrix} 36 & 3h & -36 & 3h \\ & 4h^2 & -3h & -h^2 \\ & & 36 & -3h \\ & & & 4h^2 \end{bmatrix}$$

$$- \frac{A_3}{60} \begin{bmatrix} 36 & 6h & -36 & 6 \\ & 2h^2 & -6h & -h^2 \\ & & 36 & 0 \\ & & & 6h^2 \end{bmatrix} - \frac{(A_3 - A_6)}{60} \begin{bmatrix} -30 & 6h & 30 & -6h \\ -6h & 0 & 6h & -h^2 \\ -30 & -6h & 30 & 6h \\ 6h & h^2 & -6h & 0 \end{bmatrix}$$

$$+ \frac{\alpha_0}{2h^3} \begin{bmatrix} 12 & 6h & -12 & 6h \\ & 4h^2 & -6h & 2h^2 \\ & & 12 & -6h \\ & & & 4h^2 \end{bmatrix} + \frac{f_0}{2} \frac{h}{420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ & 4h^2 & 13h & -3h^2 \\ & & 156 & 22h \\ & & & 4h^2 \end{bmatrix}$$

.... (A3.4)

APPENDIX - 4

BOUNDARY CONDITIONS FOR HARMONICALLY PERTURBED FLOW

A4.1 Simple Supports :

For pipe simply supported at extreme ends, the boundary conditions will be

$$Y = 0 \quad Z = 0$$

$$\frac{d^2Y}{d\xi^2} = 0 \quad \frac{d^2Z}{d\xi^2} = 0 \quad (A4.1)$$

For a intermediate simple support, the boundary conditions will be

$$Y = 0 \quad Z = 0 \quad (A4.2)$$

A4.2 Fixed Supports :

For fixed ends of pipe, the boundary conditions will be

$$Y = 0 \quad Z = 0$$

$$\frac{dY}{d\xi} = 0 \quad \frac{dZ}{d\xi} = 0 \quad (A4.3)$$

A4.3 Elastic Supports, Displacement Springs :

For a displacement spring K_d

$$\frac{d^3Y}{d\xi^3} + \alpha_d Y = 0, \quad \frac{d^3Z}{d\xi^3} + \alpha_d Z = 0 \quad \text{at } \xi = 0$$

$$\frac{d^3Y}{d\xi^3} - \alpha_d Y = 0, \quad \frac{d^3Z}{d\xi^3} - \alpha_d Z = 0 \quad \text{at } \xi = h \quad (A4.4)$$

where $\alpha_d = \frac{K_d L^3}{EI}$ (A4.5)

A4.4 Elastic Supports, Torsional Springs :

For pipe supported by torsional spring, K_t

$$\begin{aligned} \frac{d^2Y}{d\xi^2} - \alpha_t \frac{dY}{d\xi} &= 0, \quad \frac{d^2Z}{d\xi^2} - \alpha_t \frac{dZ}{d\xi} = 0 \quad \text{at } \xi = 0 \\ \frac{d^2Y}{d\xi^2} + \alpha_t \frac{dY}{d\xi} &= 0, \quad \frac{d^2Z}{d\xi^2} + \alpha_t \frac{dZ}{d\xi} = 0 \quad \text{at } \xi = h \\ &\dots \end{aligned} \quad (\text{A4.6})$$

where

$$\alpha_t = \frac{K_t L}{EI} \quad (\text{A4.7})$$

$$\frac{d}{dt} \left(\frac{d\langle \hat{A} \rangle}{dt} \right) = \frac{1}{2} \frac{d\langle \hat{A}^2 \rangle}{dt} - \frac{1}{2} \langle \hat{A}^2 \rangle \langle \hat{A} \rangle$$

2.1.1 THE DISTRIBUTIONAL STABILITY OF DYNAMIC INVESTMENT WITH RISKY PROFIT STREAMS

EXECUTIVE 2 E&T/EP/6PA 6782-1/181

Machine Input and Output Parameters

Y	ESTIMATE OF INERTIAL LOAD, VEHICLE
B	MASS, DRYER, PARTRIDGE
S	ADJUSTABLE INERTIAL LOAD, VEHICLE
Gyro	ESTIMATE OF INERTIAL GRAVITY LOAD, VEHICLE
WIND	ESTIMATE OF INERTIAL CORRECTION OF INERTIAL RESPONSE
G	ESTIMATE OF INERTIAL INERTIAL INERTIAL CORRECTION
SPD	ESTIMATION OF GEOMETRICAL INERTIAL COMPUTATION
Dis	ESTIMATE OF INERTIAL DISPLACEMENT OF SPHERICAL MOTION
PS	ESTIMATE OF INERTIAL POSITION OF SPHERICAL MOTION
DA	ESTIMATE CORRECTION OF DISPLACEMENT COMPUTATION
ACCO	ESTIMATION OF DISPLACEMENT SPHERICAL COMPUTATION
DisP	ESTIMATE OF DISPLACEMENT SPHERICAL COMPUTATION
ZL	ADJUSTED FREQUENCIES
BCD	ESTIMATION OF TOPSTOOL SPRING SUPPORTS

```

101      RDP(1,1)=1, RDP(2,1)=1, RDP(3,1)=1, RDP(4,1)=1
102      RDP(1,2)=1, RDP(2,2)=1, RDP(3,2)=1, RDP(4,2)=1
103      RDP(1,3)=1, RDP(2,3)=1, RDP(3,3)=1, RDP(4,3)=1
104      RDP(1,4)=1, RDP(2,4)=1, RDP(3,4)=1, RDP(4,4)=1
105      RDP(1,1)=1, RDP(1,2)=1, RDP(1,3)=1, RDP(1,4)=1, RDP(2,1)=1, RDP(2,2)=1, RDP(2,3)=1, RDP(2,4)=1, RDP(3,1)=1, RDP(3,2)=1, RDP(3,3)=1, RDP(3,4)=1, RDP(4,1)=1, RDP(4,2)=1, RDP(4,3)=1, RDP(4,4)=1
106      T:=2+(J-1)*4
107      J:=2+(I-1)*4
108      DDP(1,1)=150
109      DDP(1,2)=240
110      DDP(1,3)=30
111      DDP(1,4)=13*3
112      DDP(2,2)=114*2
113      DDP(2,3)=13*3
114      DDP(2,4)=341*4
115      DDP(3,3)=150
116      DDP(3,4)=224
117      DDP(4,4)=44*2
118      DDP(2,1)=DDP(1,1)
119      DDP(2,1)=DDP(1,1)
120      DDP(3,2)=DDP(2,3)
121      DDP(4,1)=DDP(1,4)
122      DDP(4,2)=DDP(3,4)
123      DDP(4,3)=DDP(3,1)
124      DDP(4,4)=DDP(1,4)
125      DDP(1,1)=DDP(1,1)*((1/4)*2)
126      DDP(1,2)=12
127      DDP(1,3)=1*3
128      DDP(1,4)=1*3
129      DDP(2,2)=4*3*2
130      DDP(2,3)=6*3
131      DDP(2,4)=2*6*2
132      DDP(3,3)=12
133      DDP(3,4)=6*3
134      DDP(1,1)=4*1*2
135      DDP(2,1)=DDP(1,2)
136      DDP(3,1)=DDP(1,3)
137      DDP(3,2)=DDP(2,3)
138      DDP(4,1)=DDP(1,4)
139      DDP(4,2)=DDP(2,4)
140      DDP(4,3)=DDP(3,4)
20 75  T=1/4
20 75  J=1/4
20 75  DDP(1,J)=DDP(1,J)*((1/4)*2)
20 75  DDP(1,1)=36
20 75  DDP(1,2)=6*3
20 75  DDP(1,3)=30
20 75  DDP(1,4)=6*3
20 75  DDP(2,2)=0
20 75  DDP(2,3)=6*3
20 75  DDP(2,4)=1*3
20 75  DDP(3,3)=30
20 75  DDP(3,4)=6*3
20 75  DDP(4,4)=0
20 75  DDP(2,1)=6*3
20 75  DDP(3,1)=14*DDP(1,3)
20 75  DDP(3,2)=14*DDP(2,3)
20 75  DDP(4,1)=14*DDP(1,4)
20 75  DDP(1,2)=14*DDP(2,4)
20 75  DDP(3,3)=14*DDP(3,4)
20 24  J=1/4
20 24  DDP(1,J)=((1/6.)*0DD(1,J)*(2*SORT(8)*0))
20 24  DDPT(1,1)=0
20 24  DDPT(1,2)=0
20 301  T=1/4
20 301  J=1/4

```



```

100(3,0)=-1*PDR(0,3)
PDR(1,1)=-1*PDR(1,1)
PDR(1,2)=-1*PDR(2,1)
PDR(1,3)=-1*PDR(3,1)
DU 21 T=1,1
DU 22 J=1,4
SDF(1,0)=-(1./tP_1)*G00(T,1)*PP
CONTINUE
DU 234 I=1,4
DU 244 J=1,2
SAC(1,0)=-(1./tP_0)*G00(T,1)*PP
OKS(1,1)=-36
OKS(1,2)=+10
OKS(1,3)=-30
OKS(1,4)=3*N
OKS(2,0)=0*N+6
OKS(2,1)=-3*N
OKS(2,2)=-11+N2
OKS(2,3)=36
OKS(2,4)=-3*N
OKS(3,0)=+11*N2
OKS(3,1)=BULK(1,2)
OKS(3,2)=BULK(1,3)
OKS(3,3)=BULK(1,3)
OKS(4,0)=BULK(2,1)
OKS(4,1)=BULK(2,1)
OKS(4,2)=BULK(3,1)
OKS(4,3)=BULK(3,1)
DU 26 I=1,4
DU 26 J=1,1
RSC(1,0)=-OKS(1,1)*A4/(30.*N)
CONTINUE
DU 401 I=1,4
DU 401 J=1,1
ZSF(1,0)=-OKS(1,0)*P0/(30.*N)
DU 27 I=1,4
DU 27 J=1,4
SS(1,J)=RSC(I,J)+P0(I,J)
CONTINUE
DU 442 I=1,4
DU 442 J=1,4
YS(1,J)=RSC(I,J)+ZS(I,J)
DU 421 I=1,4
DU 421 J=1,4
SD(I,J)=SC*OKS(I,J)/(30.*N)
DU 424 T=1,4
DU 424 J=1,4
SC(1,0)=SC*OKS(1,0)/(30.*N)
DSF(1,0)=36
CSF(2,1)=6*N
OSF(3,1)=-36
OSF(4,1)=0
NSF(2,2)=-2*N**2
NSF(3,2)=-6*N
NSF(4,2)=-N**2
NSF(3,3)=36
NSF(4,3)=0
NSF(4,4)=6*N**2
DSF(1,2)=DSF(2,1)
DSF(1,3)=DSF(3,1)
DSF(1,4)=DSF(4,1)
DSF(2,3)=DSF(3,2)
DSF(2,4)=DSF(4,2)
DSF(3,1)=DSF(4,3)
DU 427 I=1,4
DU 427 J=1,4
SF(1,J)=DSF(I,J)*(-1./60.)*CS
DO 430 I=1,4
DO 430 J=1,4
SG(1,J)=-SC*PDR(T,1)*(1./60.)*CS
CALL ASEMB(AS,SS,[4,JH,NE])
CALL ASEMB(AY,YS,14,JM,NP)

```


ROUTINE BOUND
 THIS ROUTINE INTRODUCES GEODRIFTICAL BOUNDARY CONDITIONS
 P FINAL MATRIX OF DRDPH(IA,JA)
 A INPUT MATRIX OF DRDPCH(IA,JA)
 BMX TOTAL NUMBER OF GEODRIFTICAL SUPPORTS
 CND LOCATION OF THE SUPPORT

```

SUBROUTINE BOUNDURE(A,IM,JM,IA,JA,LM,CDL)
DIMENSION COD(50),A(50,50),D(50,50),F(50,50)
DO 700 K=1,LMM
DO 700 I=1,IM
DO 700 J=1,JM
IF(COD(K).EQ.1.AND.COD(K).EQ.J)GO TO 720
GO TO 730
A(I,J)=1.E+30
GO TO 700
730 IF(COD(K).EQ.1.OR.COD(K).EQ.J)GO TO 740
A(I,J)=A(I,J)
GO TO 700
740 A(I,J)=1.E+30
750 CONTINUE
JB=C
JB=JB+1
KB=0
109 KB=KB+1
IF(JB,KB,COD(KB))GO TO 109
IF(KB,KB,LMM)GO TO 110

```

1.01	$\Delta A = 0$ $\Delta \mu = 100, \Delta t = 1, 10$ $\Delta \tau = 100, \Delta \theta = 0.0, \Delta \phi = 33.75, \Delta \alpha = 0, \Delta \beta = 100$ $\Delta \gamma = 100$ $\Delta \nu = 100, \Delta \eta = 1, 10$ $\Delta (T_{\text{ref}}) = \Delta (T, \eta)$ $\Delta (m) = 100$ $\Delta \lambda = 0$ $\Delta \mu = 100, \Delta \eta = 1, 10$ $\Delta \phi = 100, \Delta \theta = 0, \Delta \tau = 100, \Delta \alpha = 0, \Delta \beta = 100, \Delta \gamma = 100$ $\Delta \lambda = \Delta \eta + 1$ $\Delta \mu = 100, \Delta t = 1, 10$ $\Delta (T, \eta) = \Delta (T, \theta)$ $\Delta (m, T) = 0$ $\Delta (T, \eta) = 0$ $\Delta \eta = 0$
1.04	

2 SUBROUTINE NAME: 4
2 THIS SUBROUTINE INVERTS THE MATRIX
2 A TO INVERSE AND INPUT MATRIX
2 B IS OUTPUT OF MATRIX

SUPPORTING ASSEMBLY
THIS SUPPORTING ASSEMBLY HELPS MAINTAIN THE FORM (Y) ELEMENT
B TO ELEMENT MATRIX
A IS OUTPUT MATRIX
DE IS NUMBER OF ELEMENTS
H IS LENGTH OF ELEMENT

```

SUBROUTINE ASHLEY(LA,N,IM,JM,LC,NC)
DIMENSION A(150,50),B(4,4)
DO 300 I=1,IM
DO 400 J=1,JM
ALT(I,J)=0
COMPTTRUE
LN=0
VN=1
WN=1
GN=1
KM=NE*4
DO 400 I=1,KM
DO 400 J=1,4
IF(I,LE,4) GO TO 125
GO TO 150
ALT(I,J)=AL(I,J)
GO TO 400
125 IF(I,LE,LN) GO TO 175
LN=LN+4
150
300
400

```

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015

CENTRAL LIBRARY
I.I.T. KANPUR
Acc. No. A.....82764

ME-1982-M-KUM-DYN