SmartFusion2 and IGLOO2 Macro Library Guide For Libero SoC v11.7 SP2

Table of Contents - All Macros

AND2	12	IOOEFF	67
AND3	12	IOPAD_IN	
AND4	13	IOPAD_TRI	
ARI1	24	LIVE PROBE FB	
ARI1 CC	26	MACC	
BIBUF	53	MX2	
BIBUF DIFF	53	MX4	
BUFD	17	NAND2	
BUFF	16	NAND3	_
CC CONFIG	28	NAND4	_
CFG1/2/3/4 and LUTs (Look-Up Tables)	14	NOR2	
CFG2	14	NOR3	
CFG3	15	NOR4	
CFG4	15	OR2	
CLKBIBUF	54	OR3	
CLKBUF	54	OR4	
CLKBUF DIFF	55	OSCILLATOR	
CLKINT	17	OUTBUF	
CLKINT PRESERVE	18	OUTBUF DIFF	
DDR IN	59	RAM1K18	
DDR_OE_UNIT		RAM64x18	
DDR OUT		RCLKINT	
DFN1		RGB	
DFN1C0		RGB NG	
DFN1E1		RGCLKINT	
DFN1E1C0		SLE	
DFN1E1P0		SYSCTRL_RESET_STATUS	
DFN1P0		SYSRESET	
DLN1		TRIBUFF	
DLN1C0		TRIBUFF DIFF	
DLN1P0		UJTAG	
FCEND BUFF		XOR2	
FCINIT BUFF		XOR3	
FLASH FREEZE	30	XOR4	
GB	18	XOR8	
GB NG	19	AOR6	50
GBM			
GBM_NG			
GCLKBIBUF			
GCLKBUF	33		
GCLKBUF_DIFF	34		
GCLKINT	20		
INBUF	56 56		
INBUF_DIFF	56		
INV	41		
INVD	41		
IOIN_IB	64		

Table of Contents - Combinatorial Logic

AND2	12
AND3	12
AND4	13
ARI1	24
ARI1_CC	26
BUFD	17
BUFF	16
CC_CONFIG	28
CFG1/2/3/4 and LUTs (Look-Up Tables)	14
CFG2	14
CFG3	15
CFG4	15
INV	41
INVD	41
MX2	42
MX4	42
NAND2	43
NAND3	43
NAND4	44
NOR2	44
NOR3	45
NOR4	45
OR2	46
OR3	46
OR4	47
XOR2	47
XOR3	48
XOR4	49
XOR8	50

Table of Contents - Sequential Logic

DFN135
DFN1C0
DFN1E136
DFN1E1C0
DFN1E1P0 38
DFN1P0
DLN139
DLN1C040
DLN1P040
SLE 23

Table of Contents - RAM Blocks

RAM1K18	. (69
RAM64x18		77

Table of Contents - Math Blocks

MACC 84

Table of Contents - I/Os

BIBUF	53
BIBUF_DIFF	53
CLKBIBUF	54
CLKBUF	54
CLKBUF_DIFF	55
DDR_IN	59
DDR_OE_UNIT	63
DDR_OUT	61
GCLKBIBUF	35
GCLKBUF	33
GCLKBUF_DIFF	34
INBUF	56
INBUF_DIFF	56
IOIN_IB	64
IOINFF	65
IOOEFF	67
IOPAD_IN	64
IOPAD_TRI	65
OUTBUF	57
OUTBUF_DIFF	57
TRIBUFF	58
TRIBUFF_DIFF	58
UJTAG	51

Table of Contents - Clocking

CLKBIBUF	54
CLKBUF	54
CLKBUF_DIFF	55
CLKINT	17
CLKINT_PRESERVE	18
GB	18
GB_NG	19
GBM	19
GBM_NG	20
GCLKBIBUF	35
GCLKBUF	33
GCLKBUF_DIFF	34
GCLKINT	20
IOINFF	65
RCLKINT	21
RGB	21
RGB_NG	22
RGCLKINT	22

Table of Contents - Special

FCEND_BUFF	29
FCINIT_BUFF	30
FLASH_FREEZE	30
LIVE_PROBE_FB	33
OSCILLATOR	30
SYSCTRL_RESET_STATUS	32
SYSRESET	32

Introduction

This macro library guide supports the SmartFusion2 and IGLOO2 families. See the Microsemi website for macro library guides for other families.

This guide follows a naming convention for sequential macros that is unambiguous and extensible, making it possible to understand the function of the macros by their name alone.

The first two mandatory characters of the macro name will indicate the basic macro function:

- DF D-type flip-flop
- DL D-type latch

The next mandatory character indicates the output polarity:

- I output inverted (QN with bubble)
- N output non-inverted (Q without bubble)

The next mandatory number indicates the polarity of the clock or gate:

- 1 rising edge triggered flip-flop or transparent high latch (non-bubbled)
- 0 falling edge triggered flip-flop or transparent low latch (bubbled)

The next two optional characters indicate the polarity of the Enable pin, if present:

- E0 active low enable (bubbled)
- E1 active high enable (non-bubbled)

The next two optional characters indicate the polarity of the asynchronous Preset pin, if present:

- P0 active low asynchronous preset (bubbled)
- P1 active high asynchronous preset (non-bubbled)

The next two optional characters indicate the polarity of the asynchronous Clear pin, if present:

- C0 active low asynchronous clear (bubbled)
- C1 active high asynchronous clear (non-bubbled)

All sequential and combinatorial macros (except MX4 and XOR8) use one logic element in the SmartFusion2 and IGLOO2 families.

As an example, the macro DFN1E1C0 indicates a D-type flip-flop (DF) with a non-inverted (N) Q output, positive-edge triggered (1), with Active High Clock Enable (E1) and Active Low Asychronous Clear (C0). See Figure 1.

Figure 1 • Naming Convention

Truth Table Notation

The truth table states in this User Guide are defined as follows:

State	Meaning	
0	Logic "0"	
1	Logic "1"	
X	Don't Care (for Inputs), Unknown (for Outputs)	
Z	High Impedance	

AND2

2-Input AND

Figure 2 • AND2

Inputs	Output
A, B	Υ

Truth Table

Α	В	Y
Х	0	0
0	Χ	0
1	1	1

AND3

3-Input AND

Figure 3 • AND3

Input	Output	
A, B, C	Υ	

Α	В	С	Υ
Х	Χ	0	0
Х	0	X	0
0	Χ	Χ	0
1	1	1	1

AND4

4-Input AND

Figure 4 • AND4

Input	Output
A, B, C, D	Y

Α	В	С	D	Υ
Х	Х	Χ	0	0
Х	Х	0	Χ	0
Х	0	Χ	Χ	0
0	Х	Х	Х	0
1	1	1	1	1

CFG1/2/3/4 and LUTs (Look-Up Tables)

CFG1, CFG2, CFG3, and CFG4 are post-layout LUTs (Look-up table) used to implement any 1-input, 2-input, 3-input, and 4-input combinational logic functions, respectively. Each of the CFG1/2/3/4 macros has an INIT string parameter that determines the logic functions of the macro. The output Y is dependent on the INIT string parameter and the values of the inputs.

CFG₂

Post-layout macro used to implement any 2-input combinational logic function. Output Y is dependent on the INIT string parameter and the value of A and B. The INIT string parameter is 4 bits wide.

Figure 5 • CFG2

Input	Output
A,B	Y = f(INIT, A, B)

Table 1 • CFG2 INIT String InterpretationI

ВА	Y
00	INIT[0]
01	INIT[1]
10	INIT[2]
11	INIT[3]

CFG3

Post-layout macro used to implement any 3-input combinational logic function. Output Y is dependent on the INIT string parameter and the value of A,B, and C. The INIT string parameter is 8 bits wide.

Figure 6 • CFG3

InputOutputA, B, CY = f(INIT, A,B, C)

Table 2 • CFG3 INIT String Interpretation

СВА	Y
000	INIT[0]
001	INIT[1]
010	INIT[2]
011	INIT[3]
100	INIT[4]
101	INIT[5]
110	INIT[6]
111	INIT[7]

CFG4

Post-layout macro used to implement any 4-input combinational logic function. Output Y is dependent on the INIT string parameter and the value of A,B, C, and D. The INIT string parameter is 16 bits wide.

Figure 7 • CFG4

Input	Output
A, B, C, D	Y = f(INIT, A,B, C, D)

Table 3 • CFG4 INIT String Interpretation

DCBA	Y
0000	INIT[0]
0001	INIT[1]
0010	INIT[2]
0011	INIT[3]
0100	INIT[4]
0101	INIT[5]
0110	INIT[6]
0111	INIT[7]
1000	INIT[8]
1001	INIT[9]
1010	INIT[10]
1011	INIT[11]
1100	INIT[12]
1101	INIT[13]
1110	INIT[14]
1111	INIT[15]

BUFF

Buffer

Figure 8 • BUFF

Input	Output
Α	Υ

Α	Υ
0	0
1	1

BUFD

Buffer. Note that Compile optimization will not remove this macro.

Figure 9 • BUFD

Input	Output
А	Υ

Truth Table

Α	Y
0	0
1	1

CLKINT

Macro used to route an internal fabric signal to global network.

Figure 10 • CLKINT

Input	Output
А	Υ

Α	Υ
0	0
1	1

CLKINT_PRESERVE

Macro used to route an internal fabric signal to global network. It has the same functionality as CLKINT except that this clock always stay on the global clock network and will not be demoted during design implementation.

Figure 11 • CLKINT_PRESERVE

Input	Output
Α	Y

Truth Table

Α	Y
0	0
1	1

GB

Back-annotated macro used to route an internal fabric signal to global network.

Figure 12 • GB

Input	Output
An, ENn	YNn, YSn

An	ENn	q (internal signal)	YNn	YSn
1	0	1	1	1
1	1	0	1	1
0	Х	q	!q	!q

GBM

Back-annotated macro used to route an internal fabric signal to global network.

Figure 13 • GBM

Input	Output
An, ENn	YEn, YWn

Truth Table

An	ENn	q (internal signal)	YEn	YWn
1	0	1	1	1
1	1	0	1	1
0	Х	q	!q	!q

GB_NG

Back-annotated macro used to route an internal fabric signal to global network.

Figure 14 • GB_NG

Input	Output
An, ENn	YNn, YSn

An	ENn	YNn	YSn
0	0	0	0
1	0	1	1
Х	1	Х	Х

GBM_NG

Back-annotated macro used to route an internal fabric signal to global network.

Figure 15 • GBM_NG

Input	Output
An, ENn	YEn, YWn

Truth Table

An	ENn	YEn	YWn
0	0	0	0
1	0	1	1
Х	1	Х	Х

GCLKINT

Gated macro used to route an internal fabric signal to global network. The Enable signal can be used to turn off the global network to save power.

Figure 16 • GCLKINT

Input	Output
A, EN	Υ

Α	EN	q (Internal Signal)	Y
0	0	0	0
0	1	1	0
1	Χ	q	q

RCLKINT

Macro used to route an internal fabric signal to a row global buffer, thus creating a local clock.

Figure 17 • RCLKINT

Input	Output	
Α	Υ	

Truth Table

Α	Y
0	0
1	1

RGB

Back-annotated macro used to route an internal fabric signal to row global network buffer.

Figure 18 • RGB

Input	Output
An, ENn	YL, YR

An	ENn	q (internal signal)	YL	YR
1	0	1	0	0
1	1	0	0	0
0	Х	q	q	q

RGB_NG

Back-annotated macro used to route an internal fabric signal to a row global buffer.

Figure 19 • RGB_NG

Input	Output	
An, ENn	YL, YR	

Truth Table

An	ENn	YL	YR
0	0	1	1
1	0	0	0
Х	1	Х	Х

RGCLKINT

Gated macro used to route an internal fabric signal to a row global buffer, thus creating a local clock. The Enable signal can be used to turn off the local clock to save power.

Figure 20 • RGCLKINT

Input	Output	
A, EN	Υ	

A	EN	q (Internal Signal)	Y
0	0	0	0
0	1	1	0
1	Х	q	q

SLE

Sequential Logic Element

Figure 21 • SLE

	Input		
Name	Function		
D	Data		
CLK	Clock		
EN	Enable		
ALn	Asynchronous Load (Active Low)	Q	
ADn*	Asynchronous Data (Active Low)		
SLn	Synchronous Load (Active Low)		
SD*	Synchronous Data		
LAT*	Latch Enable		

^{*}Note: ADn, SD and LAT are static signals defined at design time and need to be tied to 0 or 1.

ALn	ADn	LAT	CLK	EN	SLn	SD	D	Q _{n+1}
0	ADn	Χ	Х	Х	Х	Χ	Х	!ADn
1	X	0	Not rising	Х	Х	X	Х	Qn
1	Х	0	↑	0	Х	Х	Х	Qn
1	Х	0	↑	1	0	SD	Х	SD
1	Х	0	↑	1	1	Х	D	D
1	Х	1	0	Х	Х	Х	Х	Qn
1	Х	1	1	0	Х	Χ	Х	Qn
1	Х	1	1	1	0	SD	Х	SD
1	Х	1	1	1	1	Х	D	D

ARI1

The ARI1 macro is responsible for representing all arithmetic operations in the pre-layout phase.

Figure 22 • ARI1

Input	Output
A, B, C, D, FCI	Y, S, FCO

The ARI1 cell has a 20bit INIT string parameter that is used to configure its functionality. The interpretation of the 16 LSB of the INIT string is shown in the table below. F0 is the value of Y when A = 0 and F1 is the value of Y when A = 1.

Table 4 • Interpretation of 16 LSB of the INIT String for ARI1

ADCB	Y	
0000	INIT[0]	F0
0001	INIT[1]]
0010	INIT[2]]
0011	INIT[3]]
0100	INIT[4]]
0101	INIT[5]]
0110	INIT[6]]
0111	INIT[7]]
1000	INIT[8]	F1
1001	INIT[9]]
1010	INIT[10]]
1011	INIT[11]]
1100	INIT[12]]
1101	INIT[13]]
1110	INIT[14]	1
1111	INIT[15]	1

Table 5 • Truth Table for S

Υ	FCI	S
0	0	0
0	1	1
1	0	1
1	1	0

Figure 23 • ARI1 Logic

The 4 MSB of the INIT string controls the output of the carry bits. The carry is generated using carry propagation and generation bits, which are evaluated according to the tables below.

Table 6 • ARI1 INIT[17:16] String Interpretation

INIT[17]	INIT[16]	G
0	0	0
0	1	F0
1	0	1
1	1	F1

Table 7 • ARI1 INIT[19:18] String Interpretation

INIT[19]	INIT[18]	Р
0	0	0
0	1	Y
1	Х	1

Table 8 • FCO Truth Table

P	G	FCI	FCO
0	G	Х	G
1	Х	FCI	FCI

ARI1 CC

The ARI1_CC macro is responsible for representing all arithmetic operations in the post-layout phase.It performs all the functions of the ARI1 maco except that it does not generate the final carry out (FCO). Note that FC1 and FC0 do not perform any functionalities.

Figure 24 • ARI1_CC

Input	Output
A, B, C, D,CC	Y, S, P, UB

The ARI1_CC cell has a 20-bit INIT string parameter that is used to configure its functionality. The interpretation of the 16 LSB of the INIT string is shown in the table below. F0 is the value of Y when A = 0 and F1 is the value of Y when A = 1.

Table 9 • Interpretation of 16 LSB of the INIT String for ARI1_CC

ADCB	Y	
0000	INIT[0]	F0
0001	INIT[1]	
0010	INIT[2]	
0011	INIT[3]	
0100	INIT[4]	
0101	INIT[5]	
0110	INIT[6]	
0111	INIT[7]	
1000	INIT[8]	F1
1001	INIT[9]	
1010	INIT[10]	
1011	INIT[11]	
1100	INIT[12]	
1101	INIT[13]	
1110	INIT[14]	
1111	INIT[15]	

The 4 MSB of the INIT string controls the output of the carry bits. The carry is generated using carry propagation and generation bits, which are evaluated according to the tables below.

Table 10 • ARI1_CC INIT[17:16] String Interpretation

INIT[17]	INIT[16]	UB
0	0	1
0	1	!F0
1	0	0
1	1	!F1

Table 11 • ARI1_CC INIT[19:18] String Interpretation

INIT[19]	INIT[18]	Р
0	0	0
0	1	Y
1	Х	1

The equation of S is given by:

S=Y^CC

CC CONFIG

The CC_CONFIG macro is responsible for generating the carry bit for each ARI1_CC cell in the cluster.

Figure 25 • CC_Config

Input	Output
CI, P, UB	CO, CC

CI and CO are the carry-in and carry-out, respectively, to the cell. The intermediate carry-bits are given by CC[11:0]. The functionality of the CC_CONFIG is basically evaluating CC using

$$CC[n] = !Px!UB+PxCC[n-1]$$

where CC[-1] is CI and CC[12] is CO.

Inside every cluster, there are 12 ARI1_CC cells and only one CC_CONFIG cell. The CC_CONFIG takes as input the P and UB outputs of each ARI1_CC cell in the cluster and generates the CC (carry-out bit), which is then fed to the next ARI1_CC cell in the cluster as the carry-in. The connection between the ARI1_CC cells inside the cluster and the CC_CONFIG cell is shown in Figure 26.

Figure 26 • CC_CONFIG Connections to ARI1_CC Cells

FCEND_BUFF

Buffer, driven by the FCO pin of the last macro in the Carry-Chain.

Figure 27 • FCEND_BUFF

Input	Output
А	Υ

Α	Y
0	0
1	1

FCINIT_BUFF

Buffer, used to initialize the FCI pin of the first macro in the Carry-Chain.

Figure 28 • FCINIT BUFF

Input	Output
А	Y

Truth Table

Α	Y
0	0
1	1

FLASH_FREEZE

The Flash_Freeze macro is a special-purpose macro that provides information on when the chip is about to go into Flash Freeze mode to allow the user to perform any housekeeping needed before the device enters into Flash Freeze mode. The macro has 2 outputs:

- FF_TO_START: This signal goes high when the FPGA is about to go into Flash Freeze mode.
- FF_DONE: This signal goes high when the FPGA has successfully entered Flash Freeze mode.

Figure 29 • FLASH_FREEZE

For more information about this macro, refer to the System Controller User Guide and the SmartFusion2 Low Power Design User Guide.

There is no simulation model for this macro. The two outputs remain low during simulation because Flash Freeze is not supported during simulation.

OSCILLATOR

The OSC macro is a special-purpose macro. It can be configured as a Crystal Oscillator (XTLOSC), a 25/50 MHz RC Oscillator or a 1MHz RC Oscillator. All three configurations are supported by simulation models.

XTLOSC

The crystal oscillator provides up to a 20 MHz clock signal. Physically, it requires connection to an external crystal, however, for simulation purposes the XTL pin provides a clock signal running at the desired input frequency. MODE is a two-bit configuration parameter that specifies the frequency range. If the DISABLE input is high, the output is low.

MODE[1:0]	Frequency Range (MHz)
00	N/A
01	0.032-0.075
10	0.075–2.0
11	2.0-20.0

Figure 30 • XTLOSC

RCOSC 1MHZ

The RCOSC_1MHz oscillator is an RC oscillator that provides a free running clock of 1MHz frequency. The DISABLE pin is active high and when asserted, it turns off the oscillator output.

Figure 31 • RCOSC_1MHz

RCOSC_25_50MHz

The RCOSC_25_50MHz oscillator is an RC oscillator that provides a free running clock of 25 MHz (at 1.0V supply voltage) or 50MHz (at 1.2V supply voltage). The DISABLE pin is active high and when asserted, it turns off the oscillator output.

Figure 32 • RCOSC_25_50MHz

SYSRESET

SYSRESET is a special-purpose macro. The Output POWER_ON_RESET_N goes low at power up and when DEVRST_N goes low.

Figure 33 • SYSRESET

Input	Output
DEVRST_N	POWER_ON_RESET_N

Truth Table

DEVRST_N	POWER_ON_RESET_N
0	0
1	1

SYSCTRL_RESET_STATUS

This is a special-purpose macro to check the status of the System Controller. The output port RESET_STATUS goes high if the System Controller is in reset ("System Controller Suspend Mode" option is checked in Device Settings under Libero's Project Settings).

Figure 34 • SYSCTRL_RESET_STATUS

This macro is not supported in simulation.

LIVE_PROBE_FB

This is a special-purpose macro that feeds the live probe signals back to the fabric. You can connect the PROBE_A/PROBE_B signals to any unused I/O during design generation. This is useful if PROBE_A/PROBE_B cannot be brought out for debug due to board limitations.

Note: PROBE_A and PROBE_B pins must be reserved if LIVE_PROBE_FB macro is used.

Figure 35 • LIVE_PROBE_FB

This macro is not supported in simulation.

GCLKBUF

Gated input I/O macro to global network; the Enable signal can be used to turn off the global network to save power.

Figure 36 • GCLKBUF

Input	Output	
PAD, EN	Υ	

Truth Table

PAD	EN	q	Y
0	0	0	0
0	1	1	0
1	Χ	q	q
Z	Х	Х	Х

GCLKBUF_DIFF

Gated differential I/O macro to global network; the Enable signal can be used to turn off the global network.

Figure 37 • GCLKBUF_DIFF

Differential

Input	Output
PADP, PADN, EN	Υ

PADP	PADN	EN	q	Υ
0	1	0	0	0
0	1	1	1	0
1	0	Х	q	q
0	0	X	Х	Х
1	1	Х	Х	Х
Z	Z	Х	Х	Х

GCLKBIBUF

Bidirectional I/O macro with gated input to global network; the Enable signal can be used to turn off the global network to save power.

Figure 38 • GCLKBIBUF

Input	Output
D, E, EN, PAD	Y, PAD

Truth Table

D	E	EN	PAD	q	Υ
Х	0	0	0	0	0
Х	0	1	0	1	0
Х	0	Х	1	q	q
Х	0	X	Z	Х	Х
0	1	0	0	0	0
0	1	1	0	1	0
1	1	Х	1	q	q

DFN1

D-Type Flip-Flop

Figure 39 • DFN1

Input	Output	
D, CLK	Q	

Truth Table

CLK	D	Q _{n+1}
not Rising	X	Q _n
↑	D	D

DFN1C0

D-Type Flip-Flop with active low Clear

Figure 40 • DFN1C0

Input	Output
D, CLK, CLR	Q

Truth Table

CLR	CLK	D	Q _{n+1}
0	X	Х	0
1	not Rising	Х	Q _n
1	↑	D	D

DFN1E1

D-Type Flip-Flop with active high Enable

Figure 41 • DFN1E1

Input	Output	
D, E, CLK	Q	

Truth Table

Е	CLK	D	Q _{n+1}
0	X	Х	Q _n
1	not Rising	Х	Q_n
1	↑	D	D

DFN1E1C0

D-Type Flip-Flop, with active high Enable and active low Clear.

Figure 42 • DFN1E1C0

Input	Output
CLR, D, E, CLK	Q

CLR	Е	CLK	D	Q _{n+1}
0	Х	Х	Х	0
1	0	X	X	Q _n
1	1	not Rising	Х	Q _n
1	1	↑	D	D

DFN1E1P0

D-Type Flip-Flop with active high Enable and active low Preset.

Figure 43 • DFN1E1P0

Input	Output	
D, E, PRE, CLK	Q	

PRE	E	CLK	D	Q _{n+1}
0	Х	Х	Х	1
1	0	X	Х	Q _n
1	1	not Rising	X	Q _n
1	1	↑	D	D

DFN1P0

D-Type Flip-Flop with active low Preset.

Figure 44 • DFN1P0

Input	Output	
D, PRE, CLK	Q	

Truth Table

PRE	CLK	D	Q _{n+1}
0	X	Х	1
1	not Rising	X	Qn
1	↑	D	D

DLN1

Data Latch

Figure 45 • DLN1

Input	Output	
D, G	Q	

G	D	Q	
0	Х	Q	
1	D	D	

DLN1C0

Data Latch with active low Clear

Figure 46 • DLN1C0

Input	Output	
CLR, D, G	Q	

Truth Table

CLR	G	D	Q
0	Х	Х	0
1	0	Х	Q
1	1	D	D

DLN1P0

Data Latch with active low Preset

Figure 47 • DLN1P0

Input	Output	
D, G, PRE	Q	

PRE	G	D	Q
0	Х	Х	1
1	0	Х	Q
1	1	D	D

INV

Inverter

Figure 48 • INV

Input	Output
Α	Y

Truth Table

Α	Y
0	1
1	0

INVD

Inverter; note that Compile optimization will not remove this macro.

Figure 49 • INVD

Input	Output
А	Υ

Α	Υ
0	1
1	0

MX2

2 to 1 Multiplexer

Figure 50 • MX2

Input	Output
A, B, S	Y

Truth Table

Α	В	S	Y
Α	Χ	0	Α
Х	В	1	В

MX4

4 to 1 Multiplexer

This macro uses two logic modules.

Figure 51 • MX4

Input	Output
D0, D1, D2, D3, S0, S1	Υ

D3	D2	D1	D0	S1	S0	Υ
Χ	Х	Χ	D0	0	0	D0
Χ	Х	D1	Χ	0	1	D1
Х	D2	Χ	Х	1	0	D2
D3	Х	Х	Х	1	1	D3

NAND2

2-Input NAND

Figure 52 • NAND2

Input	Output
A, B	Y

Truth Table

Α	В	Y
Х	0	1
0	Χ	1
1	1	0

NAND3

3-Input NAND

Figure 53 • NAND3

Input	Output
A, B, C	Υ

Α	В	С	Υ
Х	Χ	0	1
Х	0	Χ	1
0	Χ	Χ	1
1	1	1	0

NAND4

4-input NAND

Figure 54 • NAND4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Y
Х	Х	Χ	0	1
Х	Х	0	Χ	1
X	0	Χ	Χ	1
0	X	X	X	1
1	1	1	1	0

NOR₂

2-input NOR

Figure 55 • NOR2

Input	Output
A, B	Υ

Α	В	Y
0	0	1
Х	1	0
1	Х	0

NOR3

3-input NOR

Figure 56 • NOR3

Input	Output
A, B, C	Υ

Truth Table

Α	В	С	Y
0	0	0	1
Х	Х	1	0
Х	1	Χ	0
1	Х	Х	0

NOR4

4-input NOR

Figure 57 • NOR4

Input	Output
A, B, C, D	Υ

Α	В	С	D	Y
0	0	0	0	1
1	Х	Χ	Χ	0
Х	1	Χ	Χ	0
Χ	Х	1	Χ	0
Х	Х	Х	1	0

OR2

2-input OR

Figure 58 • OR2

Input	Output
A, B	Υ

Truth Table

Α	В	Y
0	0	0
Х	1	1
1	X	1

OR3

3-input OR

Figure 59 • OR3

Input	Output
A, B, C	Υ

Α	В	С	Υ
0	0	0	0
Х	Χ	1	1
Х	1	Х	1
1	Х	Х	1

OR4

4-input OR

Figure 60 • OR4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Y
0	0	0	0	0
1	X	X	X	1
Х	1	Χ	Χ	1
Х	X	1	X	1
Х	Х	Х	1	1

XOR2

2-input XOR

Figure 61 • XOR2

Input	Output
A, B	Υ

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

XOR3

3-input XOR

Figure 62 • XOR3

Input	Output
A, B, C	Υ

Α	В	С	Y
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	1

XOR4

4-input XOR

Figure 63 • XOR4

Input	Output
A, B, C, D	Υ

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

XOR8

8-input XOR

This macro uses two logic modules.

Figure 64 • XOR8

Input	Output
A, B, C, D, E, F, G, H	Υ

Truth Table

If you have an odd number of inputs that are High, the output is High (1).

If you have an even number of inputs that are High, the output is Low (0).

For example:

Α	В	С	D	Е	F	G	Н	Υ
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1	0

UJTAG

The UJTAG macro is a special purpose macro. It allows access to the user JTAG circuitry on board the chip. You must instantiate a UJTAG macro in your design if you plan to make use of the user JTAG feature. The TMS, TDI, TCK, TRSTB and TDO pins of the macro must be connected to top level ports of the design.

Figure 65 • UJTAG

Table 12: Ports and Descriptions

Port	Direction	Polarity	Description
UIREG[7:0]	Output	_	This 8-bit bus carries the contents of the JTAG instruction register of each device. Instruction values 16 to 127 are not reserved and can be employed as user- defined instructions
URSTB	Output	Low	URSTB is an Active Low signal and is asserted when the TAP controller is in Test-Logic-Reset mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP controller state.
UTDI	Output	_	This port is directly connected to the TAP's TDI signal
UTDO	Input	_	This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when the IR addess is in user range.
UDRSH	Output	High	Active High signal enabled in the Shift_DR TAP state.
UDRCAP	Output	High	Active High signal enabled in the Capture_DR_TAP state.
UDRCK	Output	_	This port is directly connected to the TAP's TCK signal.
UDRUPD	Output	High	Active High signal enabled in the Update_DR_TAP state.

Table 12: Ports and Descriptions (Continued)

Port	Direction	Polarity	Description
TCK	Input	_	Test Clock. Serial input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/pull- down resistor. Connect TCK to GND or +3.3 V through a resistor (500-1 $\mathrm{K}\Omega$) placed closed to the FPGA pin to prevent totem-pole current on the input buffer and TMS from entering into an undesired state. If JTAG is not used, connect it to GND.
TDI	Input	_	Test Data In. Serial input for JTAG boundary scan. There is an internal weak pull-up resistor on the TDI pin.
TDO	Output	_	Test Data Out. Serial output for JTAG boundary scan. The TDO pin does not have an internal pull-up/pull-down resistor.
TMS	Input	_	Test mode select. The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, and TRST). There is an internal weak pull- up resistor on the TMS pin.
TRSTB	Input	Low	Test reset. The TRSTB pin is an active low input. It synchronously initializes (or resets) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRSTB pin. To hold the JTAG in reset mode and prevent it from entering into undesired states in critical applications, connect TRSTB to GND through a 1 K Ω resistor (placed close to the FPGA pin).

BIBUF

Bidirectional Buffer

Figure 66 • BIBUF

Input	Output
D, E, PAD	PAD, Y

Truth Table

MODE	E	D	PAD	Y
OUTPUT	1	D	D	D
INPUT	0	Х	Z	Х
INPUT	0	Х	PAD	PAD

BIBUF_DIFF

Bidirectional Buffer, Differential I/O

Figure 67 • BIBUF_DIFF

Input	Output	
D, E, PADP, PADN	PADP, PADN, Y	

MODE	Е	D	PADP	PADN	Υ
OUTPUT	1	0	0	1	0
OUTPUT	1	1	1	0	1
INPUT	0	Х	Z	Z	Х
INPUT	0	Х	0	0	Х
INPUT	0	Х	1	1	Х
INPUT	0	Х	0	1	0
INPUT	0	Х	1	0	1

CLKBIBUF

Bidirectional Buffer with Input to global network

Figure 68 • CLKBIBUF

Input	Output	
D, E, PAD	PAD, Y	

Truth Table

D	Е	PAD	Υ
Х	0	Z	Х
Х	0	0	0
Х	0	1	1
0	1	0	0
1	1	1	1

CLKBUF

Input Buffer to global network

Figure 69 • CLKBUF

Input	Output	
PAD	Y	

PAD	Υ
0	0
1	1

CLKBUF_DIFF

Differential I/O macro to global network, Differential I/O

Figure 70 • INBUF_DIFF

Input	Output
PADP, PADN	Υ

PADP	PADN	Υ
Z	Z	Υ
0	0	Х
1	1	Х
0	1	0
1	0	1

INBUF

Input Buffer

Figure 71 • INBUF

Input	Output	
PAD	Υ	

Truth Table

PAD	Υ
Z	Χ
0	0
1	1

INBUF_DIFF

Input Buffer, Differential I/O

Figure 72 • INBUF_DIFF

Input	Output
PADP, PADN	Y

PADP	PADN	Y
Z	Z	Χ
0	0	Χ
1	1	Χ
0	1	0
1	0	1

OUTBUF

Output buffer

Figure 73 • OUTBUF

Input	Output
D	PAD

Truth Table

D	PAD
0	0
1	1

OUTBUF_DIFF

Output buffer, Differential I/O

Figure 74 • OUTBUF_DIFF

Input	Output
D	PADP, PADN

D	PADP	PADN
0	0	1
1	1	0

TRIBUFF

Tristate output buffer

Figure 75 • TRIBUFF

Input	Output
D, E	PAD

Truth Table

D	E	PAD
Х	0	Z
D	1	D

TRIBUFF_DIFF

Tristate output buffer, Differential I/O

Figure 76 • TRIBUFF_DIFF

Input	Output
D, E	PADP, PADN

D	E	PADP	PADN
Х	0	Z	Z
0	1	0	1
1	1	1	0

DDR_IN

Input DDR Register; input D must be connected to an I/O.

Figure 77 • DDR_IN

Input	Output
D, CLK, EN, ALn, ADn, SLn, SD	QR, QF

	Input	Output		
Name	Name Function		Function	
D	Data	QR	Q (Rising Edge)	
CLK	Clock	QF	Q (Falling Edge)	
EN	Enable			
ALn	Asynchronous Load (Active Low)			
ADn*	Asynchronous Data (Active Low)			
SLn	Synchronous Load (Active Low)			
SD*	Synchronous Data			

^{*}Note: ADn and SD are static inputs defined at design time and need to be tied to 0 or 1.

ALn	CLK	EN	SLn	df (Internal Signal)	QR _(n+1)	QF _(n+1)
1	Not rising	Х	Х	df	QR _n	QF _n
1		0	X	df	QR_n	QF_n
1	↑	1	1	df	D	df _n
1	\	Х	Х	D	QR _n	QF _n
1	↑	1	0	df	SD	SD
0	Х	Х	Х	!AD _n	!AD _n	!AD _n

Figure 78 • DDR_IN

DDR_OUT

The DDR_OUT macro is an output DDR cell and is available for pre-layout simulation. It consists of two SLE macros. The output Q must be connected to an I/O.

Figure 79 • DDR_OUT

	Output	
Name	Function	
DR	Data (Rising Edge)	
DF	Data (Falling Edge)	
CLK	Clock	
EN	Enable	0
AL _n	Asynchronous Load (Active Low)	Q
AD _n *	Asynchronous Data (Active Low)	
SL _n	Synchronous Load (Active Low)	
SD*	Synchronous Data	

*Note: ADn and SD are static inputs defined at design time and need to be tied to 0 or 1.

ALn	CLK	EN	SLn	Q _{n+1}
1	not rising	Х	Х	Q _n
1	↑	0	Х	Q _n
1	1	1	1	DR _n

ALn	CLK	EN	SLn	Q _{n+1}
1	\downarrow	1	1	DF _n
1	↑	1	0	SD
0	Х	Х	Х	!AD _n

DDR_OE_UNIT

The DDR_OE_UNIT macro is an output DDR cell that is only available for post-layout simulations. Every DDR_OUT instance is replaced by DDR_OE_UNIT during compile. The DDR_OE_UNIT macro consists of a DDR_OUT macro with inverted data inputs and SDR control ("DDR_OE_UNIT" on page 63). SDR controls whether the cell operates in DDR (SDR = 0) or SDR (SDR = 1) modes.

Figure 80 • DDR_OE_UNIT

IOIN_IB

Buffer macro available in post-layout netlist only.

Figure 81 • IOIN_IB

Input	Output
YIN, E	Y

Note: E input is not used.

Truth Table

YIN	Y
Z	X
0	0
1	1

IOPAD_IN

Input I/O macro available in post-layout netlist only.

Figure 82 • IOPAD_IN

Input	Output
PAD	Υ

PAD	Υ
Z	X
0	0
1	1

IOPAD_TRI

Tri-state output buffer available in post-layout netlist only.

Figure 83 • IOPAD_TRI

Input	Output
D, E	PAD

Truth Table

D	E	PAD
X	0	Z
0	1	0
1	1	1

IOINFF

Registered input I/O macro available only in post-layout netlist.

Figure 84 • IOINFF

	Input	Output
Name	Function	
D	Data	
CLK	Clock	
EN	Enable	
ALn	ALn Asynchronous Load (Active Low)	
ADn*	ADn* Asynchronous Data (Active Low)	
SLn	SLn Synchronous Load (Active Low)	
SD*	SD* Synchronous Data	
LAT*	Latch Enable	

^{*}Note: ADn, SD and LAT are static signals defined at design time and need to be tied to 0 or 1.

ALn	ADn	LAT	CLK	EN	SLn	SD	D	Q _{n+1}
0	ADn	Х	Х	Х	Х	Х	Х	!ADn
1	X	0	Not rising	Х	Х	X	X	Qn
1	Х	0	↑	0	Х	Х	Х	Qn
1	Х	0	↑	1	0	SD	Х	SD
1	Х	0	↑	1	1	Х	D	D
1	Х	1	0	Х	Х	Х	Х	Qn
1	Х	1	1	0	Х	Х	Х	Qn
1	Х	1	1	1	0	SD	Х	SD
1	Х	1	1	1	1	Х	D	D

IOOEFF

Registered output I/O macro available only in post-layout netlist. The IOOEFF is an SLE with an inverted data input.

Figure 85 • IOOEFF

	Output	
Name	Function	
D	Data	
CLK	Clock	
EN	Enable	
ALn	Asynchronous Load (Active Low)	Q
ADn*	On* Asynchronous Data (Active Low)	
SLn	Synchronous Load (Active Low)	
SD*	Synchronous Data	
LAT*	Latch Enable	

^{*}Note: ADn, SD and LAT are static signals defined at design time and need to be tied to 0 or 1.

ALn	LAT	CLK	EN	SLn	Q
1	0	not rising	Х	Х	Q
1	0	rising	0	Х	Q

ALn	LAT	CLK	EN	SLn	Q
1	0	rising	1	1	!Dn
1	0	rising	1	0	SD
0	0	X	X	X	!ADn
1	1	0	Х	X	Q
1	1	1	0	X	Q
1	1	1	1	1	!Dn
1	1	1	1	0	SD
0	1	X	X	X	!ADn

RAM1K18

The RAM1K18 block contains 18,432 memory bits and is a true dual-port memory. The RAM1K18 memory can also be configured in two-port mode. All read/write operations to the RAM1K18 memory are synchronous. To improve the read data delay, an optional pipeline register at the output is available. A feed-through write mode is also available to enable immediate access to the write data. The RAM1K18 memory has two data ports which can be independently configured in any combination shown below.

- 1. Dual-Port RAM with the following configurations:
 - 1Kx18, 1Kx16
 - 2Kx9, 2Kx8
 - 4Kx4
 - 8Kx2
 - 16Kx1
- 2. Two-Port RAM with the following configurations:
 - 512x36, 512x32
 - 1Kx18, 1Kx16
 - 2Kx9, 2Kx8
 - 4Kx4
 - 8Kx2
 - 16Kx1

The main features of the RAM1K18 memory block are as follows:

- A RAM1K18 block has 18,432 bits.
- A RAM1K18 block provides two independent data ports A and B.
- RAM1K18 has a true dual-port mode, for which both ports have word widths less than or equal to 18 bits.
- In true dual-port mode, each port can be independently configured to any of the following depth/width: 1Kx18, 1Kx16, 2Kx9, 2Kx8, 4Kx4, 8Kx2, and 16Kx1.
- The widths of each port can be different, but one needs to be a multiple of the other. There are 29 unique combinations of true dual-port aspect ratios:
 - 1Kx18/1Kx18, 1Kx18/2Kx9,
 - 1Kx16/1Kx16, 1Kx16/2Kx8, 1Kx16/4Kx4, 1Kx16/8Kx2, 1Kx16/16Kx1,
 - 2Kx9/1Kx18, 2Kx9/2Kx9,
 - 2Kx8/1Kx16, 2Kx8/2Kx8, 2Kx8/4Kx4, 2Kx8/8Kx2, 2Kx8/16Kx1,
 - 4Kx4/1Kx16, 4Kx4/2Kx8, 4Kx4/4Kx4, 4Kx4/8Kx2, 4Kx4/16Kx1,
 - 8Kx2/1Kx16, 8Kx2/2Kx8, 8Kx2/4Kx4, 8Kx2/8Kx2, 8Kx2/16Kx1,
 - 16Kx1/1Kx16, 16Kx1/2Kx8, 16Kx1/4Kx4, 16Kx1/8Kx2, 16Kx1/16Kx1
- RAM1K18 also has a two-port mode. In this case, Port A will become the read port and Port B becomes the
 write port.
- In two-port mode, each port can be independently configured to any of the following depth/width: 512x36, 512x32, 1Kx18, 1Kx16, 2Kx9, 2Kx8, 4Kx4, 8Kx2 and 16Kx1.
- The widths of each port can be different, but one needs to be a multiple of the other. There are 45 unique combinations of two-port aspect ratios:
 - 512x36/512x36, 512x36/1Kx18, 512x36/2Kx9,
 - 512x32/512x32, 512x32/1Kx16, 512x32/2Kx8, 512x32/4Kx4, 512x32/8Kx2, 512x32/16Kx1,
 - 1Kx18/512x36, 1Kx18/1Kx18, 1Kx18/2Kx9,
 - 1Kx16/512x32, 1Kx16/1Kx16, 1Kx16/2Kx8, 1Kx16/4Kx4, 1Kx16/8Kx2, 1Kx16/16Kx1,
 - 2Kx9/512x36, 2Kx9/1Kx18, 2Kx9/2Kx9,
 - 2Kx8/512x32, 2Kx8/1Kx16, 2Kx8/2Kx8, 2Kx8/4Kx4, 2Kx8/8Kx2, 2Kx8/16Kx1,
 - 4Kx4/512x32, 4Kx4/1Kx16, 4Kx4/2Kx8, 4Kx4/4Kx4, 4Kx4/8Kx2, 4Kx4/16Kx1,
 - 8Kx2/512x32, 8Kx2/1Kx16, 8Kx2/2Kx8, 8Kx2/4Kx4, 8Kx2/8Kx2, 8Kx2/16Kx1,

- 16Kx1/512x32, 16Kx1/1Kx16, 16Kx1/2Kx8, 16Kx1/4Kx4, 16Kx1/8Kx2, 16Kx1/16Kx1
- RAM1K18 performs synchronous operation for setting up the address as well as writing and reading the data. The address, data, block port select and write-enable inputs are registered.
- An optional pipeline register with a separate enable, synchronous-reset and asynchronous-reset is available at the read data port to improve the clock-to-out delay.
- There is an independent clock for each port. The memory will be triggered at the rising edge of the clock.
- The true dual-port mode supports an optional feed-through write mode, where the write data also appears on the corresponding read data port.
- Read from both ports at the same location is allowed.
- Read and write on the same location at the same time results in unknown data to be read. There is no
 collision prevention or detection. However, correct data is expected to be written into the memory.

Figure 86 shows a simplified block diagram of the RAM1K18 memory block and Table 13 gives the port descriptions. The simplified block diagram illustrates the two independent data ports, the pipeline registers, and the feed-through multiplexors.

Figure 86 • Simplified Block Diagram of RAM1K18

Table 13 • Port RAM List for RAM1K18

Pin Name Pin Type		Туре	Description	Polarity
A_ADDR[13:0]	Input	Dynamic	Port A address	
A_BLK[2:0]	Input	Dynamic	Port A block selects	High
A_CLK	Input	Dynamic	Port A clock	Rising
A_DIN[17:0]	Input	Dynamic	Port A write data	
A_DOUT[17:0]	Output	Dynamic	Port A read data	

Table 13 • Port RAM List for RAM1K18

Pin Name	Pin Direction	Туре	Description	Polarity
A_WEN[1:0]	Input	Dynamic	Port A write enables (per byte)	High
A_WIDTH[2:0]	Input	Static	Port A width/depth mode select	
A_WMODE	Input	Static	Port A feed-through write select	High
A_ARST_N	Input	Dynamic	Port A reset (must be tied to 1)	Low
A_DOUT_LAT	Input	Static	Port A pipeline register select	Low
A_DOUT_ARST_N	Input	Dynamic	Port A pipeline register asynchronous reset	Low
A_DOUT_CLK	Input	Dynamic	Port A pipeline register clock (must be tied to A_CLK or 1)	Rising
A_DOUT_EN	Input	Dynamic	Port A pipeline register enable	High
A_DOUT_SRST_N	Input	Dynamic	Port A pipeline register synchronous reset	Low
B_ADDR[13:0]	Input	Dynamic	Port B address	
B_BLK[2:0]	Input	Dynamic	Port B block selects	High
B_CLK	Input	Dynamic	Port B clock	Rising
B_DIN[17:0]	Input	Dynamic	Port B write data	
B_DOUT[17:0]	Output	Dynamic	Port B read data	
B_WEN[1:0]	Input	Dynamic	Port B write enables (per byte)	High
B_WIDTH[2:0]	Input	Static	Port B width/depth mode select	
B_WMODE	Input	Static	Port B Feed-through write select	High
B_ARST_N	Input	Dynamic	Port B reset (must be tied to 1)	Low
B_DOUT_LAT	Input	Static	Port B pipeline register select	Low
B_DOUT_ARST_N	Input	Dynamic	Port B pipeline register asynchronous reset	Low
B_DOUT_CLK	Input	Dynamic	Port B pipeline register clock (must be tied to B_CLK or 1)	Rising
B_DOUT_EN	Input	Dynamic	Port B pipeline register enable	High
B_DOUT_SRST_N	DOUT_SRST_N Input Dyn		Port B pipeline register synchronous reset	Low
				·
A_EN	Input	Static	Port A power down (must be tied to 1)	Low
B_EN	Input	Static	Port B power down (must be tied to 1)	Low
SII_LOCK	Input	Static	Lock access to SII	High
BUSY	Output	Dynamic	Busy signal from SII	High

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

Signal Descriptions for RAM1K18

A_WIDTH and B_WIDTH

Table 14 lists the width/depth mode selections for each port. Two-port mode is in effect when the width of at least one port is 36, and A_WIDTH indicates the read width while B_WIDTH indicates the write width. Also, when the write width is 36, the read width must also be 36.

Table 14 • Width/Depth Mode Selection

Depth x Width	A_WIDTH/B_WIDTH
16Kx1	000
8Kx2	001
4Kx4	010
2Kx8, 2Kx9	011
1Kx16, 1Kx18	100
512x32, 512x36 (Two-port)	101 11x

A_WEN and B_WEN

Table 15 lists the write/read control signals for each port. Two-port mode is in effect when the width of at least one port is 36, and read operation is always enabled. Also, when the write width is 36, both A_WEN and B_WEN must be static.

Table 15 • Write/Read Operation Select

Depth x Width	A_WEN/B_WEN	Result	
16Kx1, 8Kx2, 4Kx4, 2Kx8, 2Kx9, 1Kx16, 1Kx18	00	Perform a read operation	
16Kx1, 8Kx2, 4Kx4, 2Kx8, 2Kx9	01	Perform a write operation	
	01	Write [7:0]	
1Kx16	10	Write [16:9]	
	11	Write [16:9], [7:0]	
	01	Write [8:0]	
1Kx18	10	Write [17:9]	
	11	Write [17:0]	

Table 15 • Write/Read Operation Select

Depth x Width	A_WEN/B_WEN	Result
	B_WEN[0] = 1	Write B_DIN[7:0]
512x32	B_WEN[1] = 1	Write B_DIN[16:9]
(Two-port write)	A_WEN[0] = 1	Write A_DIN[7:0]
	A_WEN[1] = 1	Write A_DIN[16:9]
	B_WEN[0] = 1	Write B_DIN[8:0]
512x36	B_WEN[1] = 1	Write B_DIN[17:9]
(Two-port write)	A_WEN[0] = 1	Write A_DIN[8:0]
	A_WEN[1] = 1	Write A_DIN[17:9]

A_ADDR and B_ADDR

Table 16 address buses for the two ports. Fourteen bits are needed to address the 16K independent locations in x1 mode. In wider modes, fewer address bits are used. The required bits are MSB justified and unused LSB bits must be tied to 0. A_ADDR is synchronized by A_CLK while B_ADDR is synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is 36, and A_ADDR provides the read address while B_ADDR provides the write address.

Table 16 • Address Bus Used and Unused Bits

	A_AD	A_ADDR/B_ADDR				
Depth x Width	Used Bits	Unused Bits (must be tied to 0)				
16Kx1	[13:0]	None				
8Kx2	[13:1]	[0]				
4Kx4	[13:2]	[1:0]				
2Kx8, 2Kx9	[13:3]	[2:0]				
1Kx16, 1Kx18	[13:4]	[3:0]				
512x32, 512x36 (Two-port)	[13:5]	[4:0]				

A_DIN and B_DIN

Table 17 lists the data input buses for the two ports. The required bits are LSB justified and unused MSB bits must be tied to 0. Two-port mode is in effect when the width of at least one port is 36, and A_DIN provides the MSB of the write data while B_DIN provides the LSB of the write data.

Table 17 • Data Input Buses Used and Unused Bits

	A_DIN/B_DIN				
Depth x Width	Used Bits	Unused Bits (must be tied to 0)			
16Kx1	[0]	[17:1]			
8Kx2	[1:0]	[17:2]			
4Kx4	[3:0]	[17:4]			
2Kx8	[7:0]	[17:8]			
2Kx9	[8:0]	[17:9]			
1Kx16	[16:9] is [15:8] [7:0] is [7:0]	[17] [8]			
1Kx18	[17:0]	None			
512x32 (Two-port write)	A_DIN[16:9] is [31:24] A_DIN[7:0] is [23:16] B_DIN[16:9] is [15:8] B_DIN[7:0] is [7:0]	A_DIN[17] A_DIN[8] B_DIN[17] B_DIN[8]			
512x36 (Two-port write)	A_DIN[17:0] is [35:18] B_DIN[17:0] is [17:0]	None			

A_DOUT and B_DOUT

Table 18 lists the data output buses for the two ports. The required bits are LSB justified. Two-port mode is in effect when the width of at least one port is 36, and A_DOUT provides the MSB of the read data while B_DOUT provides the LSB of the read data.

Table 18 • Data Output Buses Used and Unused Bits

Depth x Width	A_DOUT/B_DOUT				
Deptil X Width	Used Bits	Unused Bits			
16Kx1	[0]	[17:1]			
8Kx2	[1:0]	[17:2]			
4Kx4	[3:0]	[17:4]			
2Kx8	[7:0]	[17:8]			
2Kx9	[8:0]	[17:9]			
1Kx16	[16:9] is [15:8] [7:0] is [7:0]	[17] [8]			
1Kx18	[17:0]	None			

Table 18 • Data Output Buses Used and Unused Bits

Depth x Width	A_DOUT/B_DOUT				
Deptil X Width	Used Bits	Unused Bits			
512x32 (Two-port read)	A_DOUT[16:9] is [31:24] A_DOUT[7:0] is [23:16] B_DOUT[16:9] is [15:8] B_DOUT[7:0] is [7:0]	A_DOUT[17] A_DOUT[8] B_DOUT[17] B_DOUT[8]			
512x36 (Two-port read)	A_DOUT[17:0] is [35:18] B_DOUT[17:0] is [17:0]	None			

A BLK and B BLK

Table 19 lists the block port select control signals for the two ports. A_BLK is synchronized by A_CLK while B_BLK is synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is 36, and A_BLK controls the read operation while B_BLK controls the write operation

Table 19 • Block Port Select

Block Port Select Signal	Value	Result
A_BLK[2:0]	111	Perform read or write operation on Port A. In 36 width mode, perform a read operation from both ports A and B
A_BLK[2:0]	Any one bit is 0	No operation in memory from Port A. Port A read data will be forced to 0. In 36 width mode, the read data from both ports A and B will be forced to 0.
B_BLK[2:0]	111	Perform read or write operation on Port B. In 36 width mode, perform a write operation to both ports A and B.
B_BLK[2:0]	Any one bit is 0	No operation in memory from Port B. Port B read data will be forced to 0, unless it is a 36 width mode and write operation to both ports A and B is gated.

A WMODE and B WMODE

In true dual-port write mode, each port has a feed-through write option:

- Logic 0 = Read data port holds the previous value.
- Logic 1 = Feed-through, i.e. write data appears on the corresponding read data port. This setting is invalid when the width of at least one port is 36 and the two-port mode is in effect.

A CLK and B CLK

All signals in ports A and B are synchronous to the corresponding port clock. All address, data, block port select and write enable inputs must be set up before the rising edge of the clock. The read or write operation begins with the rising edge. Two-port mode is in effect when the width of at least one port is 36, and A_CLK provides the read clock while B_CLK provides the write clock.

A_DOUT_LAT and B_DOUT_LAT

A_DOUT_CLK and B_DOUT_CLK

A_DOUT_ARST_N and B_DOUT_ARST_N

A_DOUT_EN and B_DOUT_EN

A_DOUT_SRST_N and B_DOUT_SRST_N

The A_DOUT_LAT and B_DOUT_LAT signals select the pipeline registers for the respective port. Two-port mode is in effect when the width of at least one port is 36, and the A_DOUT register signals control the MSB of the read data while the B_DOUT register signals control the LSB of the read data.

The pipeline registers have rising edge clock inputs for each port, which must be tied to the respective port clock when used. When the pipeline registers are not being used, they are forced into latch mode and the clock signals should be tied to 1, which makes them transparent.

Table 20 describes the functionality of the control signals on the A_DOUT and B_DOUT pipeline registers.

Table 20 • Truth Table for A_DOUT and B_DOUT Registers

_ARST_N	_LAT	_CLK	_EN	_SRST_N	D	Q _{n+1}
0	Х	Х	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Q _n
1	0	↑	0	Х	Х	Q _n
1	0	\uparrow	1	0	Х	0
1	0	\uparrow	1	1	D	D
1	1	0	Х	Х	Х	Q _n
1	1	1	0	Х	Х	Q _n
1	1	1	1	0	Х	0
1	1	1	1	1	D	D

A_EN and B_EN

These are active low, power down configuration bits for each port. They must be tied to 1.

A_ARST_N and B_ARST_N

Always tie these signals to 1.

SII_LOCK

Control signal, when 1 locks the entire RAM1K18 memory from being accessed by the SII.

BUSY

This output indicates that the RAM1K18 memory is being accessed by the SII.

RAM64x18

The RAM64x18 block contains 1,152 memory bits and is a three-port memory providing one write port and two read ports. Write operations to the RAM64x18 memory are synchronous. Read operations can be asynchronous or synchronous for either setting up the address and/or reading out the data. Enabling synchronous operation at the read address port improves setup timing for the read address and its enable signals. Enabling synchronous operation at the read data port improves clock-to-out delay. Each data port on the RAM64x18 memory can be independently configured in any combination shown below.

- 64x18, 64x16
- 128x9, 128x8
- 256x4
- 512x2
- 1Kx1

The main features of the RAM64x18 memory block are as follows

- There are two independent read data ports A and B, and one write data port C.
- The write operation is always synchronous. The write address, write data, C block port select and write enable
 inputs are registered.
- For both read data ports, setting up the address can be synchronous or asynchronous.
- The two read data ports have address registers with a separate enable, synchronous-reset and asynchronous-reset for synchronous mode operation, which can also be configured to be transparent latches for asynchronous mode operation.
- The two read data ports have output registers with a separate enable, synchronous-reset and asynchronous-reset for pipeline mode operation, which can also be configured to be transparent latches for asynchronous mode operation.
- Therefore, there are four read operation modes for ports A and B:
 - Synchronous read address without pipeline registers (sync-async)
 - Synchronous read address with pipeline registers (sync-sync)
 - Asynchronous read address without pipeline registers (async-async)
 - Asynchronous read address with pipeline registers (async-sync)
- Each data port on the RAM64x18 memory can be independently configured in any of the following combinations: 64x18, 64x16, 128x9, 128x8, 256x4, 512x2, and 1Kx1.
- The widths of each port can be different, but they need to be multiples of one another.
- There is an independent clock for each port. The memory will be triggered at the rising edge of the clock.
- Read from both ports A and B at the same location is allowed.
- Read and write on the same location at the same time results in unknown data to be read. There is no
 collision prevention or detection. However, correct data is expected to be written into the memory.

Figure 87 shows a simplified block diagram of the RAM64x18 memory block and Table 21 gives the port descriptions.

The simplified block diagram illustrates the three independent read/write ports and the pipeline registers on the read port.

Figure 87 • Simplified Block Diagram of RAM64x18

Table 21 • Port List for RAM64x18

Pin Name	Pin Direction	Туре	Description	Polarity
A_ADDR[9:0]	Input	Dynamic	Port A address	
A_BLK[1:0]	Input	Dynamic	Port A block selects	High
A_WIDTH[2:0]	Input	Static	Port A width/depth mode selection	
A_DOUT[17:0]	Output	Dynamic	Port A read data	
A_DOUT_ARST_N	Input	Dynamic	Port A pipeline register asynchronous reset	Low
A_DOUT_CLK	Input	Dynamic	Port A pipeline register clock	Rising
A_DOUT_EN	Input	Dynamic	Port A pipeline register enable	High
A_DOUT_LAT	Input	Static	Port A pipeline register select	Low
A_DOUT_SRST_N	Input	Dynamic	Port A pipeline register synchronous reset	Low
A_ADDR_CLK	Input	Dynamic	Port A address register clock	Rising
A_ADDR_EN	Input	Dynamic	Port A address register enable	High
A_ADDR_LAT	Input	Static	Port A address register select	Low
A_ADDR_SRST_N	Input	Dynamic	Port A address register synchronous reset	Low
A_ADDR_ARST_N	Input	Dynamic	Port A address register asynchronous reset	Low

Table 21 • Port List for RAM64x18

Pin Name	Pin Direction	Туре	Description	Polarity
B_ADDR[9:0]	Input	Dynamic	Port B address	
B_BLK[1:0]	Input	Dynamic	Port B block selects	High
B_WIDTH[2:0]	Input	Static	Port B width/depth mode selection	
B_DOUT[17:0]	Output	Dynamic	Port B read data	
B_DOUT_ARST_N	Input	Dynamic	Port B pipeline register asynchronous reset	Low
B_DOUT_CLK	Input	Dynamic	Port B pipeline register clock	Rising
B_DOUT_EN	Input	Dynamic	Port B pipeline register enable	High
B_DOUT_LAT	Input	Static	Port B pipeline register select	Low
B_DOUT_SRST_N	Input	Dynamic	Port B pipeline register synchronous reset	Low
B_ADDR_CLK	Input	Dynamic	Port B address register clock	Rising
B_ADDR_EN	Input	Dynamic	Port B address register enable	High
B_ADDR_LAT	Input	Static	Port B address register select	Low
B_ADDR_SRST_N	Input	Dynamic	Port B address register synchronous reset	Low
B_ADDR_ARST_N	Input	Dynamic	Port B address register asynchronous reset	Low
C_ADDR[9:0]	Input	Dynamic	Port C address	
C_CLK	Input	Dynamic	Port C clock	Rising
C_DIN[17:0]	Input	Dynamic	Port C write data	
C_WEN	Input	Dynamic	Port C write enable	High
C_BLK[1:0]	Input	Dynamic	Port C block selects	High
C_WIDTH[2:0]	Input	Static	Port C width/depth mode selection	
A_EN	Input	Static	Port A power down (must be tied to 1)	Low
B_EN	Input	Static	Port B power down (must be tied to 1)	Low
C_EN	Input	Static	Port C power down (must be tied to 1)	Low
SII_LOCK	Input	Static	Lock access to SII High	
BUSY	Output	Dynamic	Busy signal from SII High	

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

Signal Descriptions for RAM64x18

A_WIDTH, B_WIDTH and C_WIDTH

Table 22 lists the width/depth mode selections for each port.

Table 22 • Width/Depth Mode Selection

Depth x Width	A_WIDTH/B_WIDTH/C_WIDTH
1Kx1	000
512x2	001
256x4	010
128x8, 128x9	011
64x16, 64x18	1xx

C_WEN

This is the write enable signal for port C.

A_ADDR, B_ADDR and C_ADDR

Table 23 lists the address buses for each port. 10 bits are required to address 1K independent locations in x1 mode. In wider modes, fewer address bits are used. The required bits are MSB justified and unused LSB bits must be tied to 0.

Table 23 • Address Buses Used and Unused Bits

Depth x	A_ADDR/B_ADDR/C_ADDR		
Width	Used Bits	Unused Bits (must be tied to zero)	
1Kx1	[9:0]	None	
512x2	[9:1]	[0]	
256x4	[9:2]	[1:0]	
128x8, 128x9	[9:3]	[2:0]	
64x16, 64x18	[9:4]	[3:0]	

C_DIN

Table 24 lists the write data input for port C. The required bits are LSB justified and unused MSB bits must be tied to 0.

Table 24 • Data Input Bus Used and Unused Bits

	C_DIN				
Depth x Width	Used Bits	Unused Bits (must be tied to 0)			
1Kx1	[0]	[17:1]			
512x2	[1:0]	[17:2]			
256x4	[3:0]	[17:4]			
128x8	[7:0]	[17:8]			
128x9	[8:0]	[17:9]			
64x16	[16:9] [7:0]	[17] [8]			
64x18	[17:0]	None			

A_DOUT and B_DOUT

Table 25 lists the read data output buses for ports A and B. The required bits are LSB justified.

Table 25 • Data Output Used and Unused Bits

Depth x Width	A_DOUT/B_DOUT					
Depth x Width	Used Bits	Unused Bits				
1Kx1	[0]	[17:1]				
512x2	[1:0]	[17:2]				
256x4	[3:0]	[17:4]				
128x8	[7:0]	[17:8]				
128x9	[8:0]	[17:9]				
64x16	[16:9] [7:0]	[17] [8]				
64x18	[17:0]	None				

A BLK, B BLK and C BLK

Table 26 lists the block port select control signals for the ports.

Table 26 • Block Port Select

Block Port Select Signal	Value	Result		
A_BLK[1:0]	Any one bit is 0	Port A is not selected and its read data will be forced to zero.		
	11	Perform read operation from port A.		
B_BLK[1:0]	Any one bit is 0	Port B is not selected and its read data will be forced to zero.		
	11	Perform read operation from port B.		
C BI K[1:0]	Any one bit is 0	Port C is not selected.		
C_BLK[1:0]	11	Perform write operation to port C.		

C CLK

All signals on port C are synchronous to this clock signal. All write address, write data, C block port select and write enable inputs must be set up before the rising edge of the clock. The write operation begins with the rising edge.

A_DOUT_LAT, A_ADDR_LAT, B_DOUT_LAT and B_ADDR_LAT

A_DOUT_CLK, A_ADDR_CLK, B_DOUT_CLK and B_ADDR_CLK

A_DOUT_ARST_N, A_ADDR_ARST_N, B_DOUT_ARST_N and B_ADDR_ARST_N

A_DOUT_EN, A_ADDR_EN, B_DOUT_EN and B_ADDR_EN

A_DOUT_SRST_N, A_ADDR_SRST_N, B_DOUT_SRST_N and B_ADDR_SRST_N

The _LAT signals select the registers for the respective port.

The address and pipeline registers have rising edge clock inputs for ports A and B. When both the address and pipeline registers for a port are in use, their clock signals must be tied together. When the registers are not being used, they are forced into latch mode and the clock signals should be tied to 1, which makes them transparent.

Table 27 describes the functionality of the control signals on the A_ADDR, B_ADDR, A_DOUT and B_DOUT registers.

Table 27 • Truth Table for A_ADDR, B_ADDR, A_DOUT and B_DOUT Registers

_ARST_N	_LAT	_CLK	_EN	_SRST_N	D	Q _{n+1}
0	Х	Х	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Q _n
1	0	↑	0	Х	Х	Q _n
1	0	↑	1	0	Х	0
1	0	\uparrow	1	1	D	D
1	1	0	Х	х	Х	Q _n
1	1	1	0	х	Х	Q _n
1	1	1	1	0	Х	0
1	1	1	1	1	D	D

A_EN, B_EN and C_EN

Active low, power down configuration bits for each port. They must be tied to 1.

SII_LOCK

Control signal, when 1 locks the entire RAM64X18 memory from being accessed by the SII.

BUSY

Output indicates that the RAM64X18 memory is being accessed by the SII.

MACC

18 bit x 18 bit multiply-accumulate MACC block

The MACC block can accumulate the current multiplication product with a previous result, a constant, a dynamic value, or a result from another MACC block. Each MACC block can also be configured to perform a Dot-product operation. All the signals of the MACC block (except CDIN and CDOUT) have optional registers.

Figure 88 • MACC Ports

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description			
DOTP	Input	Static	High	Dot-product mode. When DOTP = 1, MACC block performs Dot-product of two pairs of 9-bit operands. When DOTP = 0, it is called the normal mode.			
SIMD	Input	Static		Reserved. Must be 0.			
CLK [1:0]	Input	Dynamic	Rising edge	Input clocks. CLK[1] is the clock for A[17:9], B[17:9], C[43:18], P[43:18], OVFL_CARRYOUT, ARSHFT17, CDSEL, FDBKSEL and SUB registers.			
				CLK[0] is the clock for A[8:0], B[8:0], C[17:0], CARRYIN and P[17:0].			
				In normal mode, ensure CLK[1] = CLK[0].			
A [17:0]	Input	Dynamic	High	Input data A.			
A_BYPASS[1:0]	Input	Static	High	 Bypass data A registers. A_BYPASS[1] is for A[17:9]. Connect to 1, if not registered. A_BYPASS[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_BYPASS[0] = A_BYPASS[1]. 			
A_ARST_N[1:0]	Input	Dynamic	Low	 Asynchronous reset for data A registers. A_ARST_N[1] is for A[17:9]. Connect to 1, if not registered. A_ARST_N[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_ARST_N[1] = A_ARST_N[0]. 			
A_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for data A registers. A_SRST_N[1] is for A[17:9]. Connect to 1, if not registered. A_SRST_N[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_SRST_N[1] = A_SRST_N[0]. 			

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description
A_EN[1:0]	Input	Dynamic	High	 Enable for data A registers. A_EN[1] is for A[17:9]. Connect to 1, if not registered. A_EN[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_EN[1] = A_EN[0].
		I	I	
B [17:0]	Input	Dynamic	High	Input data B.
B_BYPASS[1:0]	Input	Static	High	 Bypass data B registers. B_BYPASS[1] is for B[17:9]. Connect to 1, if not registered. B_BYPASS[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_BYPASS[0] = B_BYPASS[1].
B_ARST_N[1:0]	Input	Dynamic	Low	 Asynchronous reset for data B registers. B_ARST_N[1] is for B[17:9]. Connect to 1, if not registered. B_ARST_N[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_ARST_N[1] = B_ARST_N[0].
B_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for data B registers. B_SRST_N[1] is for B[17:9]. Connect to 1, if not registered. B_SRST_N[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_SRST_N[1] = B_SRST_N[0].
B_EN[1:0]	Input	Dynamic	High	 Enable for data B registers. B_EN[1] is for B[17:9]. Connect to 1, if not registered. B_EN[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_EN[1] = B_EN[0].

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description
P [43:0]	Output		High	Result data. Normal mode P = D + (CARRYIN + C) + (A * B), when SUB = 0 P = D + (CARRYIN + C) - (A * B), when SUB = 1 Dot-product mode P = D + (CARRYIN + C) + 512 * ((A _L * B _H) + (A _H * B _L)), when SUB = 0 P = D + (CARRYIN + C) - 512 * ((A _L * B _H) + (A _H * B _L)), when SUB = 1 Notation: A _L = A[8:0], A _H = A[17:9] B _L = B[8:0], B _H = B[17:9] Refer to Table 31 on page 92 to see how operand D is obtained from P, CDIN or 0.
OVFL_CARRYOUT	Output		High	Overflow or CarryOut Overflow when OVFL_CARRYOUT_SEL = 0 OVFL_CARRYOUT = (SUM[45] ^ SUM[44]) (SUM[44] ^ SUM[43]) CarryOut when OVFL_CARRYOUT_SEL = 1 OVFL_CARRYOUT = C[43] ^ D[43] ^ SUM[44]
P_BYPASS[1:0]	Input	Static	High	 Bypass result P registers. P_BYPASS[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_BYPASS[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_BYPASS[0] = P_BYPASS[1].
P_ARST_N[1:0]	Input	Dynamic	Low	 Asynchronous reset for result P registers. P_ARST_N[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_ARST_N[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_ARST_N[1] = P_ARST_N[0].

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description
P_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for result P registers. P_SRST_N[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_SRST_N[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_SRST_N[1] = P_SRST_N[0].
P_EN[1:0]	Input	Dynamic	High	 Enable for result P registers. P_EN[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_EN[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_EN[1] = P_EN[0].
CDOUT[43:0]	Output	Cascade	High	Cascade output of result P. CDOUT is the same as P. The entire bus must either be dangling or drive an entire CDIN of another MACC block in cascaded mode.
CARRYIN	Input	Dynamic	High	CarryIn for operand C.
C [43:0]	Input	Dynamic	High	Routed input for operand C. In Dot-product mode, connect C[8:0] to the CARRYIN.
C_BYPASS[1:0]	Input	Static	High	Bypass data C registers. C_BYPASS[1] is for C[43:18]. Connect to 1, if not registered. C_BYPASS[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_BYPASS[0] = C_BYPASS[1].
C_ARST_N[1:0]	Input	Dynamic	Low	 Asynchronous reset for data C registers. C_ARST_N[1] is for C[43:18] . Connect to 1, if not registered. C_ARST_N[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_ARST_N[1] = C_ARST_N[0].

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description
C_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for data C registers. C_SRST_N[1] is for C[43:18]. Connect to 1, if not registered. C_SRST_N[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_SRST_N[1] = C_SRST_N[0].
C_EN[1:0]	Input	Dynamic	High	 Enable for data C registers. C_EN[1] is for C[43:18]. Connect to 1, if not registered. C_EN[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_EN[1] = C_EN[0].
CDIN[43:0]	Input	Cascade	High	Cascaded input for operand D. The entire bus must be driven by an entire CDOUT of another MACC block. In Dot- product mode the CDOUT must also be generated by a MACC block in Dot-product mode. Refer to Table 31 on page 92 to see how CDIN is propagated to operand D.
				1 1 1 3
ARSHFT17	Input	Dynamic	High	Arithmetic right-shift for operand D. When asserted, a 17-bit arithmetic right-shift is performed on operand D going into the accumulator. Refer to Table 31 on page 92 to see how operand D is obtained from P, CDIN or 0.
ARSHFT17_BYPASS	Input	Static	High	Bypass ARSHFT17 register. Connect to 1, if not registered.
ARSHFT17_AL_N	Input	Dynamic	Low	Asynchronous load for ARSHFT17 register. Connect to 1, if not registered. When asserted, ARSHFT17 register is loaded with ARSHFT17_AD.
ARSHFT17_AD	Input	Static	High	Asynchronous load data for ARSHFT17 register.
ARSHFT17_SL_N	Input	Dynamic	Low	Synchronous load for ARSHFT17 register. Connect to 1, if not registered. See Table 29 on page 91.
ARSHFT17_SD_N	Input	Static	Low	Synchronous load data for ARSHFT17 register. See Table 29 on page 91.
ARSHFT17_EN	Input	Dynamic	High	Enable for ARSHFT17 register. Connect to 1, if not registered. See Table 29 on page 91.

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description
CDSEL	Input	Dynamic	High	Select CDIN for operand D. When CDSEL = 1, propagate CDIN. When CDSEL = 0, propagate 0 or P depending on FDBKSEL. Refer to Table 29 on page 91 to see how operand D is obtained from P, CDIN or 0.
CDSEL_BYPASS	Input	Static	High	Bypass CDSEL register. Connect to 1, if not registered.
CDSEL_AL_N	Input	Dynamic	Low	Asynchronous load for CDSEL register. Connect to 1, if not registered. When asserted, CDSEL register is loaded with CDSEL_AD.
CDSEL_AD	Input	Static	High	Asynchronous load data for CDSEL register.
CDSEL_SL_N	Input	Dynamic	Low	Synchronous load for CDSEL register. Connect to 1, if not registered. See Table 29 on page 91.
CDSEL_SD_N	Input	Static	Low	Synchronous load data for CDSEL register. See Table 29 on page 91.
CDSEL_EN	Input	Dynamic	High	Enable for CDSEL register. Connect to 1, if not registered. See Table 29 on page 91.
	1	1	1	
FDBKSEL	Input	Dynamic	High	Select the feedback from P for operand D. When FDBKSEL = 1, propagate the current value of result P register. Ensure P_BYPASS[1] = 0 and CDSEL = 0. When FDBKSEL = 0, propagate 0. Ensure CDSEL = 0. Refer to Table 31 on page 92 to see how operand D is obtained from P, CDIN or 0.
FDBKSEL_BYPASS	Input	Static	High	Bypass FDBKSEL register. Connect to 1, if not registered.
FDBKSEL_AL_N	Input	Dynamic	Low	Asynchronous load for FDBKSEL register. Connect to 1, if not registered. When asserted, FDBKSEL register is loaded with FDBKSEL_AD.
FDBKSEL_AD	Input	Static	High	Asynchronous load data for FDBKSEL register.
FDBKSEL_SL_N	Input	Dynamic	Low	Synchronous load for FDBKSEL register. Connect to 1, if not registered. See Table 29 on page 91.
FDBKSEL_SD_N	Input	Static	Low	Synchronous load data for FDBKSEL register. See Table 29 on page 91.
FDBKSEL_EN	Input	Dynamic	High	Enable for FDBKSEL register. Connect to 1, if not registered. See Table 29 on page 91.

Table 28 • Ports

Port Name	Direction	Туре	Polarity	Description
SUB	Input	Dynamic	High	Subtract operation.
SUB_BYPASS	Input	Static	High	Bypass SUB register. Connect to 1, if not registered.
SUB_AL_N	Input	Dynamic	Low	Asynchronous load for SUB register. Connect to 1, if not registered. When asserted, SUB register is loaded with SUB_AD.
SUB_AD	Input	Static	High	Asynchronous load data for SUB register.
SUB_SL_N	Input	Dynamic	Low	Synchronous load for SUB register. Connect to 1, if not registered. See Table 29.
SUB_SD_N	Input	Static	Low	Synchronous load data for SUB register. See Table 29.
SUB_EN	Input	Dynamic	High	Enable for SUB register. Connect to 1, if not registered. See Table 29.

Table 29 • Truth Table for Control Registers ARSHFT17, CDSEL, FDBKSEL and SUB

_AL_N	_AD	_BYPASS	_CLK	_EN	_SL_N	_SD_N	D	Q _{n+1}
0	AD	Х	Х	Х	Х	Х	Х	AD
1	Х	0	Not rising	Х	Х	Х	Х	Q _n
1	Х	0	\uparrow	0	Х	Х	Х	Q _n
1	Х	0	\uparrow	1	0	SD _n	Х	!SD _n
1	Х	0	↑	1	1	Х	D	D
1	Х	1	Х	0	Х	Х	Х	Q _n
1	Х	1	Х	1	0	SD _n	Х	!SD _n
1	Х	1	Х	1	1	Х	D	D

Table 30 • Truth Table - Data Registers A, B, C, CARRYIN, P and OVFL_CARRYOUT

_ARST_N	_BYPASS	_CLK	_EN	_SRST_N	D	Q _{n+1}
0	Х	X	Х	Х	X	0
1	0	Not rising	Х	Х	X	Q _n
1	0	↑	0	Х	Х	Q _n
1	0	↑	1	0	Х	0
1	0	\uparrow	1	1	D	D
1	1	X	0	Х	Х	Q _n
1	1	X	1	0	Х	0
1	1	X	1	1	D	D

Table 31 • Truth Table - Propagating Data to Operand D

FDBKSEL	CDSEL	ARSHFT17	Operand D
0	0	х	44'b0
х	1	0	CDIN[43:0]
х	1	1	{{17{CDIN[43]}},CDIN[43:17]}
1	0	0	P[43:0]
1	0	1	{{17{P[43]}},P[43:17]}

A - Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call **800.262.1060**From the rest of the world, call **650.318.4460**Fax, from anywhere in the world, **650.318.8044**

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support.

Website

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

©2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; Enterprise Storage and Communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.