Domain Generalization via Model-agnostic Learning of Semantic Features

Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, Ben Glocker

Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK

Motivation

Problem: Generalization capability to unseen domains is crucial for machine learning models when deploying to real-world conditions.

- wide success of deep neural networks in visual understanding tasks
- large variety in image acquisition conditions
- domain shift leads to performance degradation

Goal:

Train a model using multi-domain source data, such that it can directly generalize to new domains without need of retraining.

Related Work

Model-dependent approaches:

- adversarial feature alignment for domain invariance [Li et al. ECCV 2018]
- decompose networks parameters to domain-specific/invariant [Khosla ECCV 2012]
- data augmentation based methods [Shankar et al. ICLR 2018; Volpi et al. NeurIPS 2018]
- multi-task or self-supervised signals [Ghifary et al. ICCV 2015; Carlucci et al. CVPR 2019]

Model-agnostic approaches via gradient-based meta-learning:

- MLDG: directly applying episodic training paradigm [Li et al. AAAI 2018]
- MetaReg: meta-learning of weights regularization term [Balaji et al. NeurIPS 2018]
- Epi-FCR: episodic training with alternative model updates [Li et al. ICCV 2019]

Method

MASF: model-agnostic learning of semantic features

Episodic training paradigm

A model-agnostic learning paradigm with gradients based meta-learning procedures to expose model optimization to simulated domain shift

available domains:
$$D = \{D_1, D_2, \dots, D_K\}$$

neural network is composed of feature extractor F_{ψ} and task classifier T_{θ}

$$(\psi', \theta') = (\psi, \theta) - \alpha \nabla_{\psi, \theta} \mathcal{L}_{task}(\mathcal{D}_{tr}; \psi, \theta)$$

with the temporarily updated parameters, apply meta-learning step, to enforce certain properties to be exhibited on held-out meta-test domain, for globally and locally regularizing semantic features.

Method

Global class alignment

Align a derived **soft confusion matrix** to preserve general knowledge about **inter-class relationships**

In each domain, compute class-specific mean feature vector:

$$\bar{\mathbf{z}}_{c}^{(k)} = \frac{1}{N_{k}^{(c)}} \sum_{n:y_{n}^{(k)}=c} F_{\psi'}(\mathbf{x}_{n}^{(k)}) \approx \mathbb{E}_{D_{k}}[F_{\psi'}(\mathbf{x}) \mid y = c]$$

compute soft label distribution:

$$\mathbf{s}_{c}^{(k)} = \operatorname{softmax}(T_{\theta'}(\bar{\mathbf{z}}_{c}^{(k)})/\tau)$$

with $(D_i, D_j) \in D_{tr} \times D_{te}$, regularize consistency of inter-class alignment:

$$\ell_{\text{global}}(D_i, D_j; \psi', \theta') = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{2} [D_{\text{KL}}(\mathbf{s}_c^{(i)} \parallel \mathbf{s}_c^{(j)}) + D_{\text{KL}}(\mathbf{s}_c^{(j)} \parallel \mathbf{s}_c^{(i)})]$$

Local sample clustering

We promote domain independent class-specific cohesion and separation of sample features with a metric-learning component

metric-learning with an embedding network, obtain a learnable distance function:

$$d_{\phi}(\mathbf{z}_n, \mathbf{z}_m) = \|\mathbf{e}_n - \mathbf{e}_m\|_2 = \|M_{\phi}(\mathbf{z}_n) - M_{\phi}(\mathbf{z}_m)\|_2$$

regularize with contrastive loss, separately collapse each group of same-class exemplars to a distinct single point:

$$\ell_{\text{con}}^{n,m} = \begin{cases} d_{\phi}(\mathbf{z}_n, \mathbf{z}_m)^2, & \text{if } y_n = y_n \\ (\max\{0, \xi - d_{\phi}(\mathbf{z}_n, \mathbf{z}_m)\})^2, & \text{if } y_n \neq y_n \end{cases}$$

Or use triplet loss, make pairs of samples from the same class closer than pairs from different classes, by a certain margin ξ

$$\ell_{\text{tri}}^{a,p,n} = \max\{0, d_{\phi}(\mathbf{z}_a, \mathbf{z}_p)^2 - d_{\phi}(\mathbf{z}_a, \mathbf{z}_n)^2 + \xi\}$$

Experiments

 $abla\!\mathcal{L}_{
m global}$

- Image recognition benchmark of VLCS
- 5 classes: bird, car, chair, dog, person
- 4 domains corresponding to 4 datasets: VOC2007, LabelMe, Caltech, SUN09
- input is pre-extracted DeCAF features (4096-dimensional vector)

	Table	e 1: D	omain ge	neraliza	ation re	VLCS data	LCS dataset with object recognition accuracy (%).						
	Source	Target	I				MMD-AAE		_		_	MASF	
			[12]	[30]	[34]	[25]	[28]	[26]	[27]	[3]	(Baseline)	(Ours)	
	L,C,S	V	63.90	64.38	67.10	69.99	67.70	67.7	67.1	70.62	68.67 ± 0.09	69.14 ± 0.19	
	V,C,S	L	60.13	63.06	62.10	63.49	62.60	61.3	64.3	60.90	63.10 ± 0.11	64.90 ± 0.08	
	V,L,S	\mathbf{C}	89.05	88.83	92.30	93.63	94.40	94.4	94.1	96.93	92.86 ± 0.13	94.78 ± 0.16	
	V,L,C	S	61.33	62.10	59.10	61.32	64.40	65.9	65.9	64.30	64.11 ± 0.17	67.64 ± 0.12	
	Average		68.60	69.59	70.15	72.11	72.28	72.3	72.9	73.19	72.19	74.11	

- Image recognition benchmark of PACS
 - 7 classes: dog, elephant, giraffe, guitar, house, horse, person
 - 4 domains with distinct styles, i.e., art painting, cartoon, photo, sketch
- $F_{\psi} \circ T_{\theta}$ uses AlexNet pretrained on ImageNet, M_{Φ} uses FC with triplet loss

Table 2	: Domain ge	eneralizati	on resul	ts on PAC	CS datas	et with re	ecognition	accur	acy (%) usir	ng AlexNet
Source	Target					* _ -	MetaReg			MASF
		[12]	[30]	[25]	[26]	[27]	[1]	[3]	(Baseline)	(Ours)
C,P,S	Art painting	60.27	62.70	62.86	66.23	64.7	69.82	67.63	67.60 ± 0.21	70.35 ± 0.33
A,P,S	Cartoon	58.65	69.73	66.97	66.88	72.3	70.35	71.71	68.87 ± 0.22	72.46 ± 0.19
A,C,S	Photo	91.12	78.65	89.50	88.00	86.1	91.07	89.00	89.20 ± 0.24	90.68 ± 0.12
A,C,P	Sketch	47.68	64.45	57.51	58.96	65.0	59.26	65.18	61.13 ± 0.30	67.33 ± 0.12
Average		64.48	68.88	69.21	70.01	72.0	72.62	73.38	71.70	75.21

Experiments

- Analytical experiments
- * ablation of key components of episodic training, global loss and local loss

Table 3: Ablation study on key components of our method with the PACS dataset (accuracy, %). Episodic \mathcal{L}_{global} \mathcal{L}_{local} Art Cartoon Photo Sketch Average

- - - 67.60 \pm 0.21 68.87 \pm 0.22 89.20 \pm 0.24 61.13 \pm 0.30 71.70 \checkmark - - 69.19 \pm 0.10 70.66 \pm 0.37 90.36 \pm 0.18 59.89 \pm 0.26 72.52

- \checkmark - 69.43 \pm 0.29 70.22 \pm 0.21 90.64 \pm 0.15 60.11 \pm 0.17 72.60

- - \checkmark 69.50 \pm 0.15 70.25 \pm 0.13 90.12 \pm 0.12 63.02 \pm 0.12 73.22

- \checkmark \checkmark 69.48 \pm 0.20 71.15 \pm 0.16 90.16 \pm 0.15 64.73 \pm 0.34 73.88 \checkmark \checkmark - 69.94 \pm 0.15 72.16 \pm 0.28 90.10 \pm 0.12 63.54 \pm 0.13 73.93 \checkmark - \checkmark 69.50 \pm 0.20 71.44 \pm 0.34 90.16 \pm 0.15 64.97 \pm 0.28 74.02

scalability to deep models

 Table 4: PACS results with deep residual network architectures (accuracy, %)

 Source
 Target
 ResNet-18
 ResNet-50

 DeepAll
 MASF (ours)
 DeepAll
 MASF (ours)

 C,P,S
 Art-painting
 77.38 ± 0.15 80.29 ± 0.18 81.41 ± 0.16 82.89 ± 0.16

 A,P,S
 Cartoon
 75.65 ± 0.11 77.17 ± 0.08 78.61 ± 0.17 80.49 ± 0.21

 A,C,S
 Photo
 94.25 ± 0.09 94.90 ± 0.09 94.82 ± 0.06 95.01 ± 0.10

observation of learning procedure

- Application to a real-world medical task
 - pixel-wise segmentation of brain tissue in MRI
 - data acquisition differences in scanners, imaging protocols, etc.
 - ❖ 3 brain tissues: white matter, gray matter and cerebrospinal fluid
 - ❖ 4 domains corresponding to 4 different clinical sites

Train Test	Set-A	Set-B	Set-C	Set-D	DeepAll	MASF
Set-A	90.62	88.91	88.81	85.03	89.09	89.82
Set-B	85.03	94.22	81.38	88.31	90.41	91.71
Set-C	93.14	92.80	95.40	88.68	94.30	94.50
Set-D	76.32	88.39	73.50	94.29	88.62	89.51

Conclusion

We have presented a new approach to domain generalization of predictive models by incorporating global and local constraints for learning semantic feature spaces. The better generalization capability is demonstrated by new state-of-the-art results on popular benchmarks and a dense classification task for medical images.

References

- [1] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M. Hospedales. *Episodic training for domain generalization.* ICCV, 2019.
- [2] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. *MetaReg: Towards domain generalization using meta-regularization*. NeurIPS, 2018.
- [3] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. *Learning to generalize: Meta-learning for domain generalization*. AAAI, 2018.

Acknowledgement

Imperial College London

