Exercices Chapitre sur les Variables Aléatoires *

Diego Van Overberghe

8 mai 2020

Exercice 33

a)
$$p = 1 - 0.34 - 0.26 - 0.17 - 0.12 = 0.11$$

b)
$$p = 1 - 0.26 - 0.24 - 0.14 - 0.13 - 0.04 = 0.19$$

Exercice 35

a) On a:

x_i	-1	0	1	3	4	5	6	8
$P(X = x_i)$	$\frac{1}{20}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{3}{20}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{20}$

FIGURE 1 – Tableau présentant la loi de probabilité de X

b)
$$P(1 \le X \le 5) = p_1 + p_3 + p_4 + p_5 = 0.1 + 0.15 + 0.25 + 0.2 = 0.7$$

 $P(X \ge 4) = p_{-1} + p_0 + p_1 + p_3 + p_4 = 0.65$

Exercice 36

a) On a:

x_i	-4	0	2
$P(X = x_i)$	<u>1</u> 9	<u>5</u> 9	$\frac{1}{3}$

FIGURE 2 – Tableau présentant la loi de probabilité de X

b) On a *x*, le nombre de jetons rouges ou verts et *y*, le nombre de jetons bleus.

$$\begin{cases} 2x + y = 20 \\ y = 2x \end{cases} \iff \begin{cases} x = 5 \\ y = 10 \end{cases}$$

x_i	-4	0	2
$P(X = x_i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

FIGURE 3 – Tableau présentant la loi de probabilité de X

^{*}Page 328 du manuel Hatier

Exercice 39

On a
$$p = 1 - 0.12 - 0.14 - 0.21 - 0.32 - 0.13 = 0.08$$

De plus, $P(U \le 13) = 0.12 + 0.14 + 0.21 + 0.32 = 0.79$
Donc, $q = P(U \le 13) - 0.14 - 0.10 = 0.55$
Et, $r = 1 - P(V \le 13) - 0.10 = 0.11$

Exercice 40

- a) Faux. $P(X \ge 4) = 0.15$
- b) Faux. $P(2 \le X \le 3) = 0.35$
- c) Vrai. $P(X \le 2) = 0.15$

Exercice 50

a)
$$E(X) = p_0 x_0 + p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 x_4 = 1,2$$

 $V(X) = p_0 (x_0 - E(X))^2 + \dots + p_r (x_r - E(X))^2 = 1,46$
 $\sigma(X) \approx 1,21$

b)
$$E(Y) = p_0 y_0 + \dots + p_r y_r = 1,1$$

 $V(Y) = p_0 (y_0 - E(Y))^2 + \dots + p_r (y_r - E(Y))^2 = 0,0184$
 $\sigma(Y) \approx 0,14$

c)
$$E(Z) = p_0 z_0 + \dots + p_r z_r = 1,01$$

 $V(X) = p_0 (z_0 - E(Z))^2 + \dots + p_r (z_r - E(Z))^2 \approx 2,05$
 $\sigma(Z) \approx 1,43$

Exercice 51

1)
$$E(X) = p_0 x_0 + \dots + p_r x_r = 4.9$$

 $V(X) = p_0 (x_0 - E(X))^2 + \dots + p_r (x_r - E(X))^2 = 1.81$
 $\sigma(X) \approx 1.35$

2) a)

y_j	0	1	2	3	4	5
$P(Y = y_j)$	0,05	0,12	0,18	0,3	0,23	0,12

FIGURE 4 – Tableau présentant la loi de probabilité de Y

z_j	2,4	3,6	4,8	6	7,2	8,4
$P(Z=z_j)$	0,05	0,12	0,18	0,3	0,23	0,12

FIGURE 5 – Tableau présentant la loi de probabilité de Z

t_j	2,8	3,7	4,6	5,5	6,4	7,3
$P(T = t_j)$	0,05	0,12	0,18	0,3	0,23	0,12

FIGURE 6 - Tableau présentant la loi de probabilité de T

b)
$$E(Y) = E(X) - 2 = 2.9 \qquad E(Z) = 5.88 \qquad E(T) = 5.41 \\ V(Y) = 1.81 \qquad V(Z) \approx 2.61 \qquad V(T) \approx 1.47 \\ \sigma(Y) \approx 1.35 \qquad \sigma(Z) = 1.62 \qquad \sigma(T) \approx 1.63$$

Exercice 52

a)
$$E(X) = p_0 x_0 + \cdots + p_r x_r = 1,99$$

b)
$$E(Y) = p_0 y_0 + \cdots + p_r y_r = 2,13$$

c) Au centre d'examen B, les candidats font plus d'erreurs en moyenne.

d)
$$\sigma(X) = \sqrt{V(X)} = \sqrt{p_0(x_0 - E(X))^2 + \dots + p_r(x_r - E(X))^2} \approx 1,24$$

 $\sigma(Y) = \sqrt{V(Y)} = \sqrt{p_0(y_0 - E(Y))^2 + \dots + p_r(y_r - E(Y))^2} \approx 1,76$

La centre d'examen B a donc les résultats les plus dispérsés.

Exercice 56

- a) Les représentations graphiques peuvent tous etre assimilées à des paraboles dont le sommet se situe à un abscisse de 25. Donc, les espérances des variables seront identiques. Les courbes sont symmétriques par rapport à la doite d'équation x = 25.
- b) $\sigma(X) < \sigma(Z) < \sigma(Y)$

Exercice 60

$$\begin{split} \mathrm{E}(\mathrm{X}) &= p_0 x_0 + \dots + p_r x_r \,; \quad \mathrm{V}(\mathrm{X}) = p_0 (x_0 - \mathrm{E}(\mathrm{X}))^2 + \dots + p_r (x_r - \mathrm{E}(\mathrm{X}))^2 \,; \quad \sigma(\mathrm{X}) = \sqrt{\mathrm{V}(\mathrm{X})} \\ \mathrm{E}(\mathrm{E}_1) &= -0.21 & \mathrm{E}(\mathrm{E}_2) = -0.21 \\ \mathrm{V}(\mathrm{E}_1) &= 2.2259 & \mathrm{V}(\mathrm{E}_2) = 1.8459 \\ \sigma(\mathrm{E}_1) &\approx 1.49 & \sigma(\mathrm{E}_2) \approx 1.36 \end{split}$$

La marque modélisée par E_2 a une espérance identique à celle de E_1 , mais l'ecart-type est beacoup plus petit, donc il-y-a moins de risque d'avoir un produit très défectueux.

Exercice 61

- a) Vrai. E(aX) = aE(X)
- b) Faux. $\sigma(X + b) = \sigma(X)$
- c) Vrai. V(0.9X) = 0.9V(X) $\sigma(0.9X) = 0.9\sigma(X)$

Exercice 62

E(X) = 3,105	E(Y) = 3,045	E(Z) = 3,28
$V(X) \approx 0.51$	$V(Y) \approx 0.38$	$V(Z) \approx 0.67$
$\sigma(X) \approx 0.72$	$\sigma(Y) \approx 0.62$	$\sigma(Z) \approx 0.82$

- a) La production Z est la plus dispersée.
- b) La production Z a la masse moyenne la plus élevée.
- c) La production Y est la plus régulière.

Exercice 64

- a) Vrai. Les tirages sont indépendants, donc : $P(B;R) = P(B) \times P(R) = P(R) \times P(B) = P(R;B)$
- b) Faux. Les tirages sont indépendants, donc : $P(R;R) = P^2(R) = \frac{1}{16}$ c) Vrai. Les tirages sont indépendants, donc : $P(B;B) = P^2(B) = \frac{9}{16}$

Exercice 65

- a) Il-y-a 36 issues possibles.
- b) $P(A) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ $P(B) = \frac{1}{6} + \frac{1}{6} - P(\text{"on obtient deux fois 1"}) = \frac{12}{36} - \frac{1}{36} = \frac{11}{36}$ $P(C) = \frac{2}{36} = \frac{1}{18}$

Exercice 66

1.

FIGURE 7 – Arbre pondéré

2. a) X prend les valeurs 0; 1; 2.

b)
$$P(X = 0) = P(\bar{A})^2 = \frac{1}{25}$$
; $P(X = 2) = P(A)^2 = \frac{16}{25}$
 $P(X = 1) = 1 - P(X = 0) - P(X = 2) = \frac{8}{25}$
c) $P(X \ge 1) = P(X = 1) + P(X = 2) = \frac{24}{25}$
 $P(X \le 1) = P(X = 1) + P(X = 0) = \frac{9}{25}$

Exercice 67

- a) L'affirmation de Victor est fausse. Chaque lancer est indépendant pusisque le dé n'est pas truqué.
 - Sa justification est fausse parce que il considère qu'au deuxieme lancer, il n'y a plus que cinq faces, or il y en a toujours six.
- b) Valentine, quand à elle a raison. Il n'y a que $\frac{1}{6}$ de chance que l'un des deux joueurs commencent à jouer au premier tour.

Exercice 69

a)

FIGURE 8 – Arbre pondéré

b) On pose la variable aléatoire X, qui représente le nombre d'usagers abonnés. Ses valeurs possibles sont : 0; 1; 2; 3. On donne sa loi de probabilité par le tableau ci-dessous, avec $P(X = x_i) = P(\bar{A})^{3-x_i} \times P(A)^{x_i} \times (Nombre d'issues de l'evenement)$

x_i	0	1
$P(X = x_i)$	$0.38^3 \times 1 \approx 0.0549$	$0,38^2 \times 0,62 \times 3 \approx 0,2686$
x_i	2	3
$P(X = x_i)$	$0,38 \times 0,62^2 \times 3 \approx 0,4382$	$0.62^3 \times 1 \approx 0.2384$

FIGURE 9 – Tableau présentant la loi de probabilité de X

- P("Deux des usagers sont abonnés.") = $P(X = 2) \approx 0.4382$
- P("Au moins deux des usagers sont abonnés.") = $P(X \ge 2) \approx 0,6766$
- P("Au plus deux des usagers sont abonnés.") = P(X ≤ 2) \approx 0,7617
- c) import random

```
def s_abonnes(nbUsagers=10): # Voir Note 1
    X=0
    for ind in range(nbUsagers):
        if random.random()<0.62:
            X+=1
    return X

print(s_abonnes())</pre>
```

```
# Note 1: Il s'agit ici d'un "default parameter", c'est-à-dire que
# si l'utilisateur ne donne pas d'argument, alors 10 est utilisé.
```

Si on imagine l'arbre pondéré de cette situation, on obtient un arbre énorme.

$$\sum_{n=1}^{10} (2^n) = 2048$$
 branches en total

 $2^{10} = 1024$ branches au niveau de la dernière colonne

Dont seulement une petite partie satisfont P("7 Usagers sont abonnés"):

$$\frac{10!}{7! \times 3!} = 120^{\dagger}$$

Finallement, on a $P(X = 7) = 0.62^7 \times 0.38^3 \times 120 \approx 0.2319$

Ceci est cohérent avec ce que je retrouve dans mes simualtions (n = 10000).

Cependant, je suis certain qu'il existe une méthode ∞ment plus simple de résoudre le problème.

^{†. 10} niveaux dans l'arbre, avec 7 "la personne est abonnée", et 3 "la personne n'est pas abonnée".