Sujet IMT-4

I - Lois de de Morgan

Les règles de la logique intuitionniste :

Axiome	Affaiblissement
$\frac{1}{\Gamma, A \vdash A}$ (Ax)	$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} $ (Aff)

	Introduction	Élimination
Conjonction	$\frac{\Gamma \vdash A \qquad \Gamma' \vdash B}{\Gamma, \Gamma' \vdash A \land B} \ (\land_i)$	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\wedge_e^g) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\wedge_e^d)$
Disjonction	$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \ (\vee_i^g) \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \ (\vee_i^d)$	$\frac{\Gamma, A \vdash C \qquad \Gamma', B \vdash C \qquad \Gamma'' \vdash A \lor B}{\Gamma, \Gamma', \Gamma'' \vdash C} \ (\lor_e)$
Implication	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \ (\to_{i})$	$\frac{\Gamma \vdash A \to B \Gamma' \vdash A}{\Gamma, \Gamma' \vdash B} \ (\to_e)$
Négation	$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \ (\neg_i)$	$\frac{\Gamma \vdash A \Gamma' \vdash \neg A}{\Gamma, \Gamma' \vdash \bot} \ (\neg_e)$
Constante ⊤	$\overline{\Gamma \vdash \top}$ (\top_i)	
Constante ⊥		$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \ (\bot_e)$

- 1. Deriver les séquents suivants à l'aide des règles de la logique intuitionniste (ci-dessus).
 - $\neg A \lor \neg B \vdash \neg (A \land B)$
 - $\neg (A \lor \neg A) \vdash \neg A$
- 2. Montrer que la regle RAA, permet de dériver le séquent du Tiers-exclu : $\vdash A \lor \neg A$

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} (RAA)$$

On ajoute à la logique intuitionniste l'axiome du Tiers-exclu:

$$\overline{\vdash A \vee \neg A}(\mathrm{TE})$$

3. Montrer que $\neg (A \land B) \vdash \neg A \lor \neg B$ est dérivable.

II - Langages

Définition: Soit L un langage sur Σ , on définit la racine carrée de L, $\sqrt{L}=\{u\in\Sigma^*|u.u\in L\}$

Définition: Soit $A=(Q,\Sigma,q_0,F,\delta)$ un automate fini déterministe complet. On définit $\forall q\in Q$, les automates finis A_q tels que:

- les états de A_q sont les couples $\left(q_i,q_j\right)\in Q^2$
- l'état initial de A_q est (q_0,q)
- les états terminaux de A_q sont les $\left(q,q_f\right), \forall q_f \in F$
- On a pour tout les A_q , la même fonction de transition $\delta_2:\left(\left(q_i,q_j\right),a\right) o \left(\delta(q_i,a),\delta\left(q_j,a\right)\right)$
- 1. Caractériser simplement $\mathcal{L}(A_q)$
- 2. Montrer que la racine carré d'un langage rationnel est rationnelle.

Définition: Soit L un langage sur Σ , on définit $\frac{1}{2}L=\{u\in\Sigma^*|\exists v\in\Sigma^*,|v|=|u|\text{ et }u.v\in L\}$

3. Montrer que $\frac{1}{2}L$ est rationnel si L l'est aussi.