Университет ИТМО, кафедра ВТ

Лабораторная работа №1 (21) по Физике

Работу выполнил студент группы Р3200 **Рогов Я. С.**

Преподаватели: Зинчик А.А.

Тема:

Изучение интерференции света от двух источников

Цель:

Иследование характеристик интерференционной картины в схеме Юнга.

Теоретическая часть:

Различают два основных метода получения интерферирующих пучков: метод деления волнового фронта и метод деления амплитуды. Из-за малости длин волн видимого света и требований пространственной когерентности наблюдение интерференции света методом деления волнового фронта сопряжено с определенными сложностями. Один из первых успешных экспериментов, демонстрирующих двухлучевую интерференцию методом деления волнового фронта (рис. 1), был осуществлен Томасом Юнгом в начале XIX века. Для электромагнитных волн (свет – электромагнитная волна) колебания вектора от двух одинаковых источников S1 и S2 определяются выражениями

$$\vec{E}_1 {=} \vec{E}_0 {\cos \left(\omega \, t - k_1 r_1\right)} \\ \vec{E}_2 {=} \vec{E}_0 {\cos \left(\omega \, t - k_2 r_2\right)} \ \ '$$
где E $_0$ - амплитуда гармонических

где E_0 – амплитуда гармонических колебаний, k – волновое число, r_1 и r_2 – расстояния от источников S_1 , S_2 до точки наблюдения P на экране.

Обработка результатов измерений:

1. Занесём измерения L, α, N и s в таблицу.

№ п/п	L, мм	α, °	N	S, MM	Δх, мм	d, мм	$\langle d \rangle$
1	370	0	9	13.5	1.50	0.16±0.06	0.17
2		30	9	15	1.67	0.17±0.03	
3		60	9	24	2.67	0.18±0.08	
4		α_{x}	9	18.5	2.06	-	
5	278	0	9	10	1.11	0.16±0.04	0.18
6		30	9	10.5	1.17	0.18±0.03	
7		60	9	16	1.78	0.2±0.1	
8	200	0	9	7	0.78	0.17±0.05	0.18
9		30	9	8	0.89	0.17±0.3	
10		60	9	11.5	1.28	0.2±0.09	

2-3. И расчитаем ширину полосы Δx и расстояние между щелями d по формулам:

$$\Delta x = \frac{s}{N}$$
 $d = \frac{\lambda_0 L}{\Delta x \cos \alpha}$ (1), где λ_0 = 650 нм – длина волны исследуемого света в среде с n=1.

4. Найдём величину произвольного угла $\alpha_{\scriptscriptstyle X}$ по формуле:

$$\alpha_{_{X}}\!\!=\!\arccos(\frac{\lambda_{_{0}}L}{\overline{d}\,\Delta\,x})\!\!=\!\arccos(\frac{650\,[{\rm {\it HM}}]\!\!*\,\!370[\,{\rm {\it MM}}]}{0.17\,[\,{\rm {\it MM}}]\!\!*\,\!2.06[\,{\rm {\it MM}}]})\!\approx\!46.627^{\circ}$$

5. Повторим вычисления пунктов 2-3 для расстояний L=278 мм и L=200 мм и заполним таблицу.

Построим график зависимости $\Delta x(L)$ при $\alpha = 0^{\circ}$.

Коэффициента наклона аппроксимирующей кривой равен $K\!\approx\!0.0043$. Значит расстояние между щелями $d\!=\!\frac{\lambda_0}{K}\!=\!\frac{650[\,{\mbox{\scriptsize HM}}\,]}{0.0043}\!=\!0.15[\,{\mbox{\scriptsize MM}}\,]$, что немного отличается от значений, полученных в пунктах 3 и 5 по формуле (1).

6. Построим графики $\Delta x(\alpha)$ для всех расстояний L.

Графики $\Delta x(\alpha)$ полностью отражают связь ширины полос Δx и и угла поворота α , заданной в формуле (1), а именно отношение $\Delta x \sim \frac{1}{\cos \alpha}$.

7. Оценим погрешность ∆d.

Т.к. формула (1) имеет вид $d=\frac{\lambda_0 L}{\Delta x \cos \alpha}=\frac{\lambda_0 L}{\frac{S}{N}\cos \alpha}$, то погрешность можно расчитать по

формуле:
$$\Delta d = \frac{\Delta L}{L} + \frac{\Delta s}{s} + tg(\alpha) * \Delta \alpha$$

T.o.:

, т.е. значение из п. 5 немного выходит за пределы погрешности.

Вывод

В ходе данной лабораторной работы было изучено явление интерференции света от двух источников, а также исследованы характеристики интерференционной картины в схеме Юнга. Расхождение значений в пунктах 5 и 7 можно объяснить недостаточно точным измерением расстояний между полосами s.