EXTENSION OF W1,P(1)

If $\Omega \subseteq \mathbb{R}^n$ open, bounded, constants are in $W^{1,p}(\Omega)$ BUT they don't satisfy the Soloder / Morrey's embedding Thum. Let $\Omega \subseteq_{op} \mathbb{R}^n$ sufficiently "smooth" (i.e. differentiable manifold) and let Ω' s.t. $\Omega \subset \Omega'$. Then we can extend $u \in W^{1,p}(\Omega)$ to $\widetilde{u} \in W^{1,p}(\Omega^{\iota})$.

Thue:

Let a CIR" be regular, bounded and open (i.e. each paint of 20 can be described as the graph of a Confunction). Let also Ω' open s.t. $\Omega \subset \Omega'$. Given $1 \leq p \leq +\infty$, $\forall u \in W^{1,p}(\Omega)$ $\exists \tilde{u} \in W^{1,p}(\Omega')$ extension of u and $\exists C>0$ (indexpendent on u, dependent on p, \O, \O') s.t. \langle \langle

Extension by reflection:

EVEN EXTENSION => is still in W¹|P !!!

HYPERPLANE

UE W¹|P

 $\Rightarrow u \in W^{1,p}(\Omega) \longrightarrow \alpha \in W^{1,p}(\Omega').$ We have:

1 ≤ p < m:

 $\|u\|_{L^{p*}(\Omega)} \leq \|\overline{u}\|_{L^{p*}(\Omega')} \leq C \|\nabla \overline{u}\|_{L^{p}(\Omega')} \leq C \|u\|_{W^{4,p}(\Omega)}$

m <p < +∞:

 $[u]_{\lambda} \leqslant C||u||_{W^{2,p}(\Omega)}$

p = u is called the CRITICAL CASE FOR SOBOLEV FUNCTIONS and it is the worst case possible. In general, functions in Warn are not continuous nor bounded!!!

COMPACTNESS IN dim. 11

Thu. (Rellich):

Let $\Omega \subseteq_{op} \mathbb{R}^n$ bounded and segulor, $1 \le p < n$. Then bounded sets in $W^{1,p}(\Omega)$ ore precompact in $L^s(\Omega)$, $1 \le s < p^*$. In particular \exists subsequence converging in norm in $L^1, L^2, ..., L^s$

Thu. (Egnow):

Let μ be a finite measure on X, $\{u_{\kappa}\}_{\kappa\in\mathbb{N}}$, $u_{\kappa}: X \to \mathbb{IR}$ a sequence of μ -meas, functions $s.t. \exists u: X \to \mathbb{IR}$ with $u_{\kappa}(x) \to u(x)$ for μ -a.e. $x \in X$. Then $\forall E > 0 \exists C \subset X$, $C \mu$ -meas., $s.t. \mu(C) < E$ and $u_{\kappa} \to u$ uniformly on $X \setminus C$.

Proof:

Fix $s = EIN^{>0}$ and define $E_{\mu,s} := \{x \in X : |u_{\kappa}(x) - u(x)| \ge \frac{s}{s} \text{ for some } x \ge u \}$ Then $E_{\mu,s}$ is decreasing in μ and $\mu(\bigcap_{n=1}^{\infty} E_{\mu,s}) = 0$ $\Rightarrow \exists u_s \in IN \text{ s.t. } \mu(E_{\mu s,s}) < \frac{\varepsilon}{2s} \text{ for } \varepsilon > 0. \text{ Take } \sup_{s=1}^{\infty} E_{\mu s,s}, \text{ then } \mu(C) < \varepsilon \text{ and } u_{\kappa} \rightarrow u \text{ uniformly on } X \setminus C$

Broposition (Compactness oriterion in LP(2)):

Given $\Omega \subseteq_{op} \mathbb{R}^n$ bounded, $1 \leqslant p < +\infty$, $F \subset L^p(\Omega)$ family of shurctions bounded in norm, let ϕ_k be the usual sequence of lump functions. Then $\forall u \in F$ $u_k := u * \phi_k \overline{u^p(\Omega)} u$ and, if this convergence is uniform for $u \in F$, then F is (strongly) precompact in $L^p(\Omega)$

N.B. milmu convergence:

YÉ>O ∃REIN S.t. YUEF YK>R ||UK-U||_{LP(2)} ≤ E

Brook:

Fix E>0, we know that $\|u_{\overline{\kappa}} - u\|_{L^{p}(\Omega)} < \varepsilon \ \forall u \in F.$ Define:

 $F_{\vec{\kappa}} = \{ u * \phi_{\vec{\kappa}} : u \in F \} \subset C^{\infty}(\Omega)$

If we prove that $F_{\overline{\kappa}}$ is totally bounded in $L^p(\Omega)$, then F is also totally bounded (and so precompact). So, it is enough to show that $F_{\overline{\kappa}}$ is precompact in $C^p(\overline{\Omega})$. By Ascoli-Arrela, it is enough to show that $F_{\overline{\kappa}}$ is equibounded in L^p and equi-

- Lipschitz. We have: $u_{\kappa}(x) = \int_{\Omega} \phi_{\overline{\kappa}}(x-y) u(y) dy \wedge \nabla u_{\overline{\kappa}}(x) = \int_{\Omega} \nabla \phi_{\overline{\kappa}}(x-y) u(y) dy$ $\Rightarrow |u_{\overline{\kappa}}(x)| \leqslant M \cdot ||u||_{L^{2}(\Omega)} \leqslant M \cdot ||\Omega||^{1-\frac{1}{p}} \cdot ||u||_{L^{p}(\Omega)} \leqslant C \quad \text{in dependent on everything } |||$ and the same holds for $\nabla u_{\overline{\mathbf{k}}}$: Proof (Rellich's Thu.): Debouded, regular, $1 \leqslant p \leqslant u$, $F \in W^{1,p}(\Omega)$ bounded in now We first prove the Thu. for s=1. For $u \in F$ let $u_k := u * \varphi_k$, we show that $u_k \xrightarrow{1 \choose 1} u$ uniformly for $u \in F$. We have: $\|u_{\kappa} - u\|_{L^{4}(\Omega)} = \int_{\Omega} |\int_{\mathcal{B}_{2}(0)} (u(x-y) - u(x)) \phi_{\kappa}(y) dy | dx$ $\leq \int_{\mathcal{B}_{+}(0)} \phi_{\kappa}(y) \int_{\Omega} |u(x-y) - u(x)| dx dy$ $\Rightarrow \int_{\Omega} |u(x-y) - u(x)| dx = \int_{U} |u(x-y) - u(x)| dx + \int_{\Omega} |u(x-y) - u(x)| dx$ with U "lorge", open, U << 12 $\Rightarrow \int_{\Omega \setminus U} |u(x-y) - u(x)| dx \ll |\Omega \setminus U|^{1-\frac{2}{p^*}} \cdot 2||u||_{L^{p^*}(\Omega)} \quad (\text{Hölder})$ $< C \cdot \|u\|_{W^{\frac{1}{p}}(\Omega)} \cdot |\Omega|U|^{1-\frac{1}{p*}} < C \cdot |\Omega|U|^{1-\frac{1}{p*}} < \varepsilon \text{ for } U \text{ "large"}$ $\Rightarrow \int_{\mathcal{U}} |u(x-y) - u(x)| dx = \int_{\mathcal{U}} |\int_{0}^{1} dt (u(x-ty)) dt| dx = \int_{\mathcal{U}} |\int_{0}^{1} u(x-ty) \cdot y dt| dx$

 $\leq \frac{1}{K} \int_{0}^{1} dt \int_{U} |\nabla u(x-ty)| dx \leq \frac{1}{K} |\Delta|^{1-\frac{1}{p}} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log p} ||\nabla u||_{L^{p}(\Omega)} \leq \frac{C}{K} \leq \epsilon \int_{n \log$

 $\Rightarrow \int_{\Omega} |u(x-y) - u(x)| dx < 2\varepsilon \text{ for } K \text{ large even gh}$

 $\Rightarrow \|u_{\kappa} - u\|_{L^{1}(\Omega)} < 2E \Rightarrow we have precompositives in L^{1}. Now, we prove it for <math>s \in [1, p^{*}]$: any sequence $\{u_{s}\} \in \mathbb{F}$ has a subseq. $s.t.u_{s} \xrightarrow{L^{1}(\Omega)} u$ (and a.e.). We claim that $\{u_{s}\}$ is Cauchy in L^{s}

 $\Rightarrow \{u_s\}$ is bounded in $L^{p*}(\Omega) \Rightarrow \forall A$ measurable, ???? || us || 25(A) < | A | 3- p* || us || 2p*(2) < € for | A | < S

- $\Rightarrow \text{By Egnov, }\exists C \text{ measurable, } |C| < \delta \text{ s.t.}$ $u_s \rightarrow u \text{ uniformly in } \Omega \setminus C$ $\Rightarrow u_s \underline{L^s(\Omega \setminus C)} u \Rightarrow \exists v \in |N| \text{ s.t. } \forall s, \kappa \geqslant v \text{ ||u_s u_{\kappa}||_{L^s(\Omega \setminus C)}} < \varepsilon$ $\Rightarrow ||u_s u_{\kappa}||_{L^s(\Omega)} \leqslant ||u_s u_{\kappa}||_{L^s(\Omega \setminus C)} + ||u_s||_{L^s(C)} + ||u_{\kappa}||_{L^s(C)} < 3\varepsilon$
- Corollary (Weak Compactuess in $W^{1,p}(\Omega)$): Let Ω be bounded, open in IR^n , $1 , <math>\{u_x\} \subset W^{1,p}(\Omega)$ bounded in norm. Then \exists subsequence, $u \in W^{1,p}(\Omega)$, s.t.:
 - 1) If $1 , <math>1 \leq s < p^{*}$ 2) If u uniformly