

#### **BLM3620 Digital Signal Processing**

Dr. Ali Can KARACA

ackaraca@yildiz.edu.tr

Yıldız Technical University – Computer Engineering



#### Lecture #3 – Spectrum Representation (for continuous-time signals)

- Spectrum of a Sum of Sinusoids
- Fourier Series Analysis and Synthesis
- Example: Amplitude Modulation
- Spectrogram
- MATLAB Applications



#### Course Materials



#### **Important Materials:**

- James H. McClellan, R. W. Schafer, M. A. Yoder, DSP First Second Edition, Pearson, 2015.
- Lizhe Tan, Jean Jiang, *Digital Signal Processing: Fundamentals and Applications*, Third Edition, Academic Press, 2019.

#### **Auxilary Materials:**

- Prof. Sarp Ertürk, Sayısal İşaret İşleme, Birsen Yayınevi.
- Prof. Nizamettin Aydin, DSP Lecture Notes.
- J. G. Proakis, D. K. Manolakis, *Digital Signal Processing Fourth Edition*, Peason, 2014.
- J. K. Perin, Digital Signal Processing, Lecture Notes, Standford University, 2018.

# Syllabus



| Week | Lectures                                        |  |  |  |  |  |  |
|------|-------------------------------------------------|--|--|--|--|--|--|
| 1    | Introduction to DSP and MATLAB                  |  |  |  |  |  |  |
| 2    | Sinuzoids and Complex Exponentials              |  |  |  |  |  |  |
| 3    | Spectrum Representation                         |  |  |  |  |  |  |
| 4    | Sampling and Aliasing                           |  |  |  |  |  |  |
| 5    | Discrete Time Signal Properties and Convolution |  |  |  |  |  |  |
| 6    | Convolution and FIR Filters                     |  |  |  |  |  |  |
| 7    | Frequency Response of FIR Filters               |  |  |  |  |  |  |
| 8    | Midterm Exam                                    |  |  |  |  |  |  |
| 9    | Discrete Time Fourier Transform and Properties  |  |  |  |  |  |  |
| 10   | Discrete Fourier Transform and Properties       |  |  |  |  |  |  |
| 11   | Fast Fourier Transform and Windowing            |  |  |  |  |  |  |
| 12   | z- Transforms                                   |  |  |  |  |  |  |
| 13   | FIR Filter Design and Applications              |  |  |  |  |  |  |
| 14   | IIR Filter Design and Applications              |  |  |  |  |  |  |
| 15   | Final Exam                                      |  |  |  |  |  |  |

For more details -> Bologna page: <a href="http://www.bologna.yildiz.edu.tr/index.php?r=course/view&id=5730&aid=3">http://www.bologna.yildiz.edu.tr/index.php?r=course/view&id=5730&aid=3</a>

#### Recall: Sum of Phasors and Fourier Series







$$x(t) = \sum_{k=-M}^{M} a_k e^{j2\pi f_k t}$$

Demo Link: <a href="https://dspfirst.gatech.edu/chapters/02sines/demos/phasors/index.html">https://dspfirst.gatech.edu/chapters/02sines/demos/phasors/index.html</a>

#### **Fourier Series**



- Sinusoids with DIFFERENT Frequencies
  - SYNTHESIZE by Adding Sinusoids

**Harmonic** freqs: 
$$f_k = k f_0$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k F_0 t}$$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k F_0 t + \varphi_k)$$

- SPECTRUM Representation
  - Graphical Form shows <u>DIFFERENT</u> Freqs

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi k/T_0)t} dt$$

#### Fourier Series Summary





### Strategies to Find Fourier Series Coefficients



#### Some thoughts:

- Starting from signal, x(t), which frequencies and complex amplitudes are required?
- ONLY FOR PERIODIC SIGNALS!
- Two possible analysis methods:
  - 1. Read off coefficients from inverse Euler's
  - 2. Evaluate Fourier series integral
- Can plot the spectrum for the Fourier Series
  - Equally spaced lines at kF<sub>0</sub>

#### STRATEGY 1:



$$x(t) = \sin^3(3\pi t)$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$



$$x(t) = \left(\frac{1}{2j}(e^{j\omega t} - e^{-j\omega t})\right)^3 = \frac{j}{8}\left(e^{j\omega t} - e^{-j\omega t}\right)^3$$

### Example



$$x(t) = \sin^3(3\pi t)$$

$$x(t) = \left(\frac{j}{8}\right)e^{j9\pi t} + \left(\frac{-3j}{8}\right)e^{j3\pi t} + \left(\frac{3j}{8}\right)e^{-j3\pi t} + \left(\frac{-j}{8}\right)e^{-j9\pi t}$$



Aug 2016

# STRATEGY 2: $x(t) \rightarrow a_k$



#### ANALYSIS

- Get representation from the signal
- Works for **PERIODIC** Signals
- Fourier Series
  - Answer is: an INTEGRAL over one period

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\omega_0 kt} dt$$

#### SQUARE WAVE EXAMPLE



$$x(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2}T_0 \\ 0 & \frac{1}{2}T_0 \le t < T_0 \end{cases}$$
 for  $T_0 = 0.04$  sec.



# FS for a SQUARE WAVE {a<sub>k</sub>}



$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi/T_0)kt} dt \qquad (k \neq 0)$$

$$x(t) = \begin{cases} 1 & 0 \le t < .02 \\ 0 & .02 \le t < .04 \end{cases}$$

$$a_{k} = \frac{1}{0.04} \int_{0}^{.02} 1 e^{-j(2\pi/.04)kt} dt = \frac{1}{.04(-j2\pi k/.04)} e^{-j(2\pi/.04)kt} \Big|_{0}^{.02}$$

$$= \frac{1}{(-j2\pi k)} (e^{-j(\pi)k} - 1) = \frac{1 - (-1)^{k}}{j2\pi k} \qquad (k \neq 0)$$





- Complex Amplitude a<sub>k</sub> for k-th Harmonic
  - Does not depend on the period, T<sub>0</sub>
  - DC value is 0.5

$$a_k = \frac{1 - (-1)^k}{j2\pi k} = \begin{cases} \frac{1}{j\pi k} & k = \pm 1, \pm 3, \dots \\ 0 & k = \pm 2, \pm 4, \dots \end{cases}$$

$$\frac{1}{2} \qquad k = 0$$

### Spectrum from Fourier Series



$$T_0 = 0.04 \implies$$

$$\omega_0 = 2\pi/(0.04) = 2\pi(25)$$





# Synthesis: 1st & 3rd Harmonics

$$y(t) = \frac{1}{2} + \frac{2}{\pi}\cos(2\pi(25)t - \frac{\pi}{2}) + \frac{2}{3\pi}\cos(2\pi(75)t - \frac{\pi}{2})$$





Aug 2016

# Synthesis: up to 7th Harmonic

$$y(t) = \frac{1}{2} + \frac{2}{\pi}\cos(50\pi t - \frac{\pi}{2}) + \frac{2}{3\pi}\sin(150\pi t) + \frac{2}{5\pi}\sin(250\pi t) + \frac{2}{7\pi}\sin(350\pi t)$$





#### Fourier Series Demo





### More Examples for Strategy -1



$$x(t) = 10 + 14\cos(200\pi t - \pi/3) + 8\cos(500\pi t + \pi/2)$$

Find spectrum of signal x(t).

#### Apply inverse Euler formula:

$$x(t) = 10 + 7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$
$$+ 4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

#### Find the complex amplitude and frequency of these phasors:

$$\{(0, 10), (100, 7e^{-j\pi/3}), (-100, 7e^{j\pi/3}), (250, 4e^{j\pi/2}), (-250, 4e^{-j\pi/2})\}$$
  
 $f_0 \ a_0 \ f_2 \ a_2 \ f_{-2} \ a_{-2}$ 

### Spectrum Representation





#### Spectrum Interpretation



$$A\cos(7\pi t + 0.1) = \frac{A}{2}e^{j0.1}e^{j7\pi t} + \frac{A}{2}e^{-j0.1}e^{-j7\pi t}$$

$$\frac{A}{2}e^{-j0.1}$$

$$\frac{A}{2}e^{j0.1}$$
Freq. in rad/s

- One has a positive frequency
- The other has negative freq.
- · Amplitude of each is half as big

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

### Example: Sythetic Vowel



Table 3-1 Complex amplitudes for the periodic signal that approximates a complicated waveform like a vowel, such as "ah." The  $a_k$  coefficients are given for positive indices k, but the values for negative k are the conjugates,  $a_{-k} = a_k^*$ .

| k  | $f_k$ (Hz) | $f_k$ (Hz) $a_k$   |         | Phase  |  |
|----|------------|--------------------|---------|--------|--|
| 1  | 100        | 0                  | 0       | 0      |  |
| 2  | 200        | 0.00772 + j0.122   | 0.1223  | 1.508  |  |
| 3  | 300        | 0                  | 0       | 0      |  |
| 4  | 400        | -0.08866 + j0.2805 | 0.2942  | 1.877  |  |
| 5  | 500        | 0.48 - j0.08996    | 0.4884  | -0.185 |  |
| 6  | 600        | 0                  | 0       | 0      |  |
| :  | :          | :                  | :       | ÷      |  |
| 15 | 1500       | 0                  | 0       | 0      |  |
| 16 | 1600       | 0.01656 - j0.1352  | 0.1362  | -1.449 |  |
| 17 | 1700       | 0.04724 + j0       | 0.04724 | 0      |  |







#### Vowel Waveform

1911

(a) The 200-Hz term alone. (b) Sum of the 400-Hz and 200-Hz terms. Additional terms are added one at a time until the entire synthetic vowel signal is created in (e). (c) Adding the 500-Hz term, which changes the fundamental period, (d) adding the 1600-Hz term, and (e) adding the 1700-Hz term.



#### FREQUENCY ANALYSIS



# Now, a much HARDER problem

Given a recording of a song, have the computer write the music





- Can a machine extract frequencies?
  - Yes, if we COMPUTE the spectrum for x(t)
    - During short intervals

# Frequency can change with time 😊 What can we do?





25

#### SIMPLE TEST SIGNAL



- C-major SCALE: stepped frequencies
  - Frequency is constant for each note

| Middle C | $D_4$ | E <sub>4</sub> | F <sub>4</sub> | $G_4$ | $A_4$ | B <sub>4</sub> | $C_5$ |
|----------|-------|----------------|----------------|-------|-------|----------------|-------|
| 262 Hz   | 294   | 330            | 349            | 392   | 440   | 494            | 523   |



#### **SPECTROGRAM**



- SPECTROGRAM Tool
  - MATLAB function is spectrogram.m
  - SP-First has plotspec.m & spectgr.m
- ANALYSIS program
  - Takes x(t) as input
  - Produces spectrum values X<sub>k</sub>
  - Breaks x(t) into SHORT TIME SEGMENTS
    - Then uses the FFT (<u>Fast Fourier Transform</u>)

#### SPECTROGRAM EXAMPLE



• Two **Constant** Frequencies: Beats







 $\cos(2\pi(672)t) + \cos(2\pi(648)t)$  $= 2\cos(2\pi(12)t)\cos(2\pi(660)t)$ 

llan & RW Schafer

## AM Radio Signal



Same form as BEAT Notes, but <u>higher in freq</u>

# $\cos(2\pi(\underline{660})t)\sin(2\pi(12)t)$



$$\frac{1}{2} \left( e^{j2\pi(660)t} + e^{-j2\pi(660)t} \right) \frac{1}{2j} \left( e^{j2\pi(12)t} - e^{-j2\pi(12)t} \right)$$

$$\frac{1}{4j} \left( e^{j2\pi(672)t} - e^{-j2\pi(672)t} - e^{j2\pi(648)t} + e^{-j2\pi(648)t} \right)$$

$$\frac{1}{2}\cos(2\pi(672)t - \frac{\pi}{2}) + \frac{1}{2}\cos(2\pi(648)t + \frac{\pi}{2})$$

# SPECTRUM of AM (Amplitude Modulation)



• **SUM** of 4 complex exponentials:



What is the fundamental frequency?

648 Hz?

24 Hz?

#### STEPPED FREQUENCIES



- C-major SCALE: successive sinusoids
  - Frequency is constant for each note



# SPECTROGRAM of C-Scale

Aug 2016



32

### Example 1



#### **PROBLEM:**

A real signal x(t) has the following two-sided spectrum:



- (a) Write an equation for x(t) as a sum of cosines.
- (b) Plot the spectrum of the signal  $y(t) = 2x(t) 3\cos(5000\pi(t 0.002))$ .

a) 
$$\infty(t) = 5 + (2.5 \times 2) \cos(3000\pi t - \frac{\pi}{6}) + (2 \times 2) \cos(8000\pi t + \frac{\pi}{2})$$
  
careful! do not forget this factor 2!

b) 
$$Y(t) = 2x(t) - 3\cos(5000 \pi (t - 0.002))$$
  
 $= 2x(t) - 3\cos(5000 \pi t - 10\pi)$   
 $= 2x(t) - 3\cos(5000 \pi t)$   
 $= 2x(t) + 3\cos(5000 \pi t + \pi)$ 



# Example 2



A signal composed of sinusoids is given by the equation

$$x(t) = 3\cos(50\pi t - \pi/8) - 5\cos(150\pi t + \pi/6)$$

- (a) Sketch the spectrum of this signal indicating the complex amplitude of each frequency component. You do not have to make separate plots for real/imaginary parts or magnitude/phase. Just indicate the complex amplitude value at the appropriate frequency.
- (b) Is x(t) periodic? If so, what is the period? Which harmonics are present?

#### Answer



a) 
$$x(+) = \frac{3}{2}e^{-j\frac{\pi}{8}}e^{-j50\pi t} + \frac{3}{2}e^{j\frac{\pi}{8}}e^{-j50\pi t} - \frac{5}{2}e^{-j\frac{\pi}{6}}e^{-j50\pi t} - \frac{5}{2}e^{-j\frac{\pi}{6}}e^{-j50\pi t} = \frac{5}{2}e^{-j\frac{\pi}{6}}e^{-j50\pi t} + \frac{3}{2}e^{-j\frac{\pi}{6}}e^{-j50\pi t} + \frac{3}{2}e^{-j\frac{\pi}{6}}e^{-j50\pi t} + \frac{5}{2}e^{-j\frac{\pi}{6}}e^{-j50\pi t} + \frac{5}{2}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e^{-j\frac{\pi}{6}}e$$

b) Yes, x(+) is periodic:  $T = \frac{1}{25} = 40 \text{ ms}$ First and third larmonics are present.

### Example 3



A periodic signal, x(t), is given by

$$x(t) = 2 + \sin(300\pi t) + 3\cos(600\pi t + \pi/3)$$

(a) What is the period of x(t)?

FUNDAMENTAL FREQ.: 
$$\omega_0 = 300\pi = \frac{2\pi}{T}$$

$$\Rightarrow T = \frac{1}{150} \text{ Sec.}$$

(b) Find the Fourier series coefficients of x(t) for  $-6 \le k \le 6$ .

Using Euler's Relation  $(x|t) = 2 + \frac{1}{2}e^{i\frac{\pi}{2}} e^{i\frac{\pi}{2}} e^{i\frac{300\pi t}{2}} + \frac{1}{2}e^{i\frac{\pi}{2}} e^{i\frac{300\pi t}{2}} + \frac{3}{2}e^{i\frac{\pi}{3}} e^{i\frac{2(300\pi)t}{2}} + \frac{3}{3}e^{i\frac{\pi}{3}} e^{i\frac{2(300\pi)t}{2}}$ 

$$a_0 = 2$$
  $a_2 = \frac{3}{2} e^{j\pi/3}$ 
 $a_1 = \frac{1}{2} e^{j\pi/2}$   $a_2 = \frac{3}{2} e^{j\pi/3}$ 
 $a_1 = \frac{1}{2} e^{j\pi/2}$   $a_2 = \frac{3}{2} e^{j\pi/3}$ 
 $a_1 = \frac{1}{2} e^{j\pi/2}$   $a_2 = 0$  FOR ALL OTHER  $k$ 

### Example 4

(a) 4 (b) 1 (c) 2 (d) 5 (e) 3

Several signals are plotted below along with their corresponding spectra. However, they are in a randon order. For each of the signals (a)–(e), determine the correct spectrum (1)–(5). Write your answers in the following table:



















# More Examples



Can be found here:

https://dspfirst.gatech.edu/database/?d=homework&chap=3

https://dspfirst.gatech.edu/chapters/03spect/demos/spectrog/index.html