CORRIGÉ DM N°9 CCP MP 1997 PC

- I. 1) Si f est inversible à gauche, elle est injective donc bijective (cf. cours).
 - $GL_n(\mathbb{R})$ est un sous-groupe du groupe des permutations (=bijections) de \mathbb{R}^n pour la loi \circ . (cf. cours).
 - 2) 2.1. Soit f telle que ||f|| < 1. Si $I_n f$ n'était pas injective, il existerait $x \in \mathbb{R}^n$ non nul tel que $(I_n f)(x) = 0$ soit f(x) = x, ce qui est impossible car, compte tenu de la définition de la norme subordonnée, on doit avoir $||f(x)||_2 \le ||f|| \cdot ||x||_2$ pour tout x

Ainsi $I_n - f$ est un endomorphisme injectif, donc bijectif.

– Par définition de la norme subordonnée, on a $\|f \circ g\| \le \|f\| \cdot \|g\|$ pour tous endomorphismes f et g de \mathbb{R}^n (cf. cours). On en déduit par récurrence, pour tout $i \in \mathbb{N}^*$, $\|f^i\| \le \|f\|^i$, cela restant vrai pour i = 0.

Puisque $\|f\| < 1$, la série géométrique $\sum_{i \geqslant 0} \|f\|^i$ converge; par comparaison, la série $\sum_{i \geqslant 0} \|f^i\|$

converge donc aussi, c'est-à-dire que la série $\sum_{i\geq 0} f^i$ est absolument convergente, donc convergente

(car $\mathscr{L}(\mathbb{R}^n)$ étant de dimension finie est complet). Notons $S=\sum_{i=0}^{+\infty}$ sa somme.

- En notant $S_p = \sum_{i=0}^p f^i$ les sommes partielles de cette série, on a $(I_n f) \circ S_p = I_n f^{p+1}$ (*) par télescopage. Or quand $p \to +\infty$, $(I_n f) \circ S_p$ converge vers $(I_n f) \circ S$ par continuité de l'application linéaire $g \mapsto (I_n f) \circ g$, et f^{p+1} tend vers 0 puisque $||f^{p+1}|| \le ||f||^{p+1}$ avec ||f|| < 1. Il résulte donc de (*), par passage à la limite : $(I_n f) \circ S = I_n$. $I_n f$ est donc inversible (on l'avait déjà démontré d'une autre manière), et $(I_n f)^{-1} = S$.
- **2.2.** $||f_1 \circ ... \circ f_p|| \le ||f_1|| ... ||f_p||$ se démontre par récurrence sur p compte tenu de la propriété de la norme subordonnée déjà rappelée.
 - Soit $\varphi: \left\{ \begin{array}{ccc} (\mathcal{L}(\mathbb{R}^n))^p & \longrightarrow & \mathcal{L}(\mathbb{R}^n) \\ (f_1, \dots, f_p) & \longmapsto & f_1 \circ \dots \circ f_p \end{array} \right.$. On a, φ étant multilinéaire :

$$\varphi(f_1 + h_1, f_2 + h_2, \dots, f_p + h_p) = \varphi(f_1, f_2 + h_2, \dots, f_p + h_p) + \varphi(h_1, f_2 + h_2, \dots, f_p + h_p)$$

$$= \varphi(f_1, f_2, f_3 + h_3, \dots, f_p + h_p) + \varphi(f_1, h_2, \dots, f_p + h_p) + \varphi(h_1, f_2 + h_2, \dots, f_p + h_p)$$

$$= \varphi(f_1, f_2, \dots, f_p) + \dots$$

où les termes dans ... sont tous majorés, en norme, par $\max(\|h_i\|)\max(\|h_i\|+\|f_i\|)$ d'après l'inégalité précédente.

Donc $\lim_{(h_1,\dots,h_p)\to(0,\dots,0)} \varphi(f_1+h_1,f_2+h_2,\dots,f_p+h_p) = \varphi(f_1,f_2,\dots,f_p)$, ce qui signifie que φ est continue (cf. aussi cours sur les applications multilinéaires continues).

- **2.3. a)** Puisque $\left\|-f^{-1}\circ g\right\| \leq \left\|f^{-1}\right\|\cdot \left\|g\right\| < 1$, il résulte de la question 2.1 que $I_n + f^{-1}\circ g$ est inversible donc $f+g=f\circ (I_n+f^{-1}\circ g)$ l'est aussi.
 - **b)** Toujours d'après la question 2.1, on a : $(I_n + f^{-1} \circ g)^{-1} = \sum_{i=0}^{+\infty} (-1)^i (f^{-1} \circ g)^i$ donc

$$(I_n + f^{-1} \circ g)^{-1} - I_n = \sum_{i=1}^{+\infty} (-1)^i (f^{-1} \circ g)^i$$
 puis

$$\left\| (\mathbf{I}_n + f^{-1} \circ g)^{-1} - \mathbf{I}_n \right\| \leqslant \sum_{i=1}^{+\infty} \left\| (f^{-1} \circ g)^i \right\| \leqslant \sum_{i=1}^{+\infty} (\left\| f^{-1} \right\| \left\| g \right\|)^i = \frac{\left\| f^{-1} \right\| \left\| g \right\|}{1 - \left\| f^{-1} \right\| \left\| g \right\|}$$

Compte tenu de la relation de l'énoncé (facile à vérifier), on aura donc

$$\|(f+g)^{-1}-f^{-1}\| \le \frac{\|f^{-1}\| \|g\|}{1-\|f^{-1}\| \|g\|} \|f^{-1}\|$$

d'où $\lim_{g\to 0} (f+g)^{-1} = f^{-1}$ ce qui exprime bien la continuité de l'application $f\mapsto f^{-1}$.

- 3) 3.1. D'après la formule du cours Det(M) est une fonction polynomiale des coefficients de la matrice M donc est continue. Et puisque $\det = Det \circ \mathcal{M}$ avec \mathcal{M} application linéaire continue, il en est de même de det.
 - **3.2.** $GL_+(\mathbb{R}^n) = \{ f \in \mathcal{L}(\mathbb{R}^n) : \det(f) > 0 \}$ est donc l'image réciproque par l'application continue det de l'ouvert $]0, +\infty[$ de \mathbb{R} . D'après un théorème du cours, c'est un ouvert de $\mathcal{L}(\mathbb{R}^n)$ etc...
- **4)** $GL_+(\mathbb{R}^n)$ est non vide car il contient $Id_{\mathbb{R}^n}$. D'après les propriétés de déterminants, il est clair que si f et g appartiennent à $GL_+(\mathbb{R}^n)$, il en est de même de $f \circ g^{-1}$. C'est donc bien un sous-groupe de $(GL(\mathbb{R}^n), \circ)$.
 - $GL_{-}(\mathbb{R}^{n})$ ne peut être un sous-groupes $(GL(\mathbb{R}^{n}), \circ)$, puisqu'il ne contient même pas $Id_{\mathbb{R}^{n}}$.
- 5) 5.1. $u(t) = \chi_f(-t)$ où χ_f est le polynôme caractéristique de f; c'est donc bien un polynôme de degré n en t.
 - **5.2.** Les racines d'un polynôme sont en nombre fini. Donc, si u(0) = 0, on peut trouver un intervalle $]0, \alpha[$ où il n'y a pas de racine, et si $u(0) \neq 0$, il en est de même mais cette fois-ci grâce à la continuité de u.

Ainsi, la suite d'endomorphismes $f_n = f + \frac{\alpha}{n} I_n$ $(n \ge 2)$ est une suite d'endomorphismes tous bijectifs qui converge vers f. Tout élément de $\mathcal{L}(\mathbb{R}^n)$ est donc limite d'une suit d'éléments de $\mathrm{GL}_n(\mathbb{R})$, ce qui veut bien dire que $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathcal{L}(\mathbb{R}^n)$.

II. 1) Soit $(E_{i,j})$ la base canonique de $\mathbb{M}_n(\mathbb{R})$ et soit $M = \sum_{k,l} m_{k,l} E_{k,l}$ une matrice de $\mathbb{M}_n(\mathbb{R})$.

On calcule:

$$\mathbf{E}_{i,j}\mathbf{M} = \sum_{k,l} m_{k,l} \mathbf{E}_{i,j} \mathbf{E}_{k,l} = \sum_{k,l} \delta_{jk} m_{k,l} \mathbf{E}_{i,l} = \sum_{j} m_{j,l} \mathbf{E}_{i,l}$$

donc la matrice $E_{i,j}M$ est la matrice où toutes les lignes sont nulles sauf la i-ème qui contient la j-ème ligne de M.

Donc:

- puisque $A_{1,k,\lambda} = J_n + (\lambda 1)E_i i$, faire le produit $A_{1,k,\lambda}M$ revient à multiplier la i-ème ligne de M par λ .
- puisque $A_{2,k,p,\lambda} = J_n + \lambda E_{k,p}$, faire le produit $A_{2,k,p,\lambda}M$ revient à faire l'opération $L_k \leftarrow L_k + \lambda L_p$.
- puisque $A_{3,k,p} = J_n E_{k,k} E_{p,p} + E_{k,p} + E_{p,k}$, faire le produit $A_{3,k,p}M$ revient à faire l'échange des lignes L_k et L_p .
- 2) Les déterminants demandés valent successivement λ , 1 et -1 (pour le dernier, on fait juste une transposition pour se ramener à J_n), donc sont non nuls.
 - L'inverse de $A_{1,k,\lambda}$ est $A_{1,k,1/\lambda}$ (inverse d'une matrice diagonale), l'inverse de $A_{2,k,p,\lambda}$ est $A_{2,k,p,-\lambda}$ puisque $(J_n + \lambda E_{k,p})(J_n \lambda E_{k,p}) = J_n^2 \lambda^2 \underbrace{E_{k,p} E_{p,k}}_{=0 \text{ car } k \neq p} = J_n$ et enfin $A_{3,k,p}$ est sa propre inverse (matrice d'une

application linéaire telle que $u(e_k) = e_p$ et $u(e_p) = e_k$ donc $u^2 = \mathrm{Id}$).

• N est L-équivalente à M si et seulement si il existe un produit fini B de matrices de type $A_{...}$, tel que N = BM; si c'est le cas, $M = B^{-1}N$ et B^{-1} est un produit fini de matrices du même type d'après la question précédente.

Ceci assure la symétrie de la relation; la réflexivité s'obtient en prenant par exemple $B = A_{1,1,1}$, et la transitivité est immédiate.

La fin découle la structure de groupe de $GL_n(\mathbb{R})$.

- 3) 3.1. Il suffit de multiplier la m(k)-ième ligne par $\lambda = \frac{1}{\alpha_{m(k),p(m(k))}}$ ce qui est une opération de type 1 (multiplication par $A_{1,m(k),\lambda}$) et donne le résultat voulu.
 - **3.2.** Pour tout indice $i \neq m(k)$, on prend $\lambda_i = -a_{i,p(m(k))}$. Multiplier M'(k) par $A_{2,i,m(k),\lambda_i}$ revient à faire les opérations $L_i \leftarrow L_i a_{i,p(m(k))} L_{m(k)}$, donc à mettre des zéros dans la colonne p(m(k)) dans chacune de ces lignes. On vérifie ensuite que puisque M'(k) vérifiait P(k), la matrice obtenue vérifie P(m(k)) (la où il y avait une colonne avec un 1 et des zéros, rien n'a changé puisque le coefficient de cette colonne sur la ligne m(k) était nul).

Cela permet donc de faire une récurrence (l'initialisation est immédiate en commençant à k=0), puisque $m(k) \ge k+1$.

- **3.3.** $b_{m,j} = \frac{a_{m,j}}{a_{m,p(m)}}$ (pour mettre le coefficient à 1) et, pour tout $i \neq m$, $b_{i,j} = a_{i,j} \frac{a_{m,j}a_{i,p(m)}}{a_{m,n(m)}}$ (pour mettre des zéros dans la colonne p(m)).
- **3.4.** − Soit $M \in GL_n(\mathbb{R})$ qui est L-réduite.

M n'a pas de ligne nulle, donc p(i) est défini pour tout i. L'application p est injective : en effet, si p(i) = p(j) avec i < j, la p(i)-ème colonne contient un 1 à la place j, c'est exclu. Donc p est bijective, c'est une permutation de 1, ..., n.

Il y a donc dans M, par colonne, exactement un 1 et des zéros ailleurs ; c'est aussi vrai par ligne, car chaque place sur la ligne autre qu'à l'entrée principale est en regard d'une entrée principale d'une autre ligne. Ainsi, M est une matrice de permutation σ . M représente donc une application linéaire qui transforme la base (e_1, \ldots, e_n) en la base $e_{\sigma(1)}, \ldots, e_{\sigma(n)}$). En écrivant cette permutation comme produit de transposition, on peut donc écrire M comme produit de matrices de la forme $A_{3,k,p}$.

- Toute matrice produit d'éléments de $\mathcal{E}l(n)$ est évidemment inversible.

Réciproquement, si M est inversible, elle est L-équivalente à une matrice L-réduite inversible, elle même produit de matrices de transpositions comme on vient de le voir. Donc M est bien un produit d'éléments de $\mathcal{E}l(n)$.

III. A.

- 1) Découle directement de $\det \mathbf{M} = \prod_{i=1}^{m} \det \mathbf{B}_{i} > 0$.
- 2) 2.1. La matrice $\varphi(t) = A_{1,k,(1-t)\lambda+t}$ a tous ses coefficients qui sont des fonctions continues de t donc φ est continue (th. du cours sur les applications continues à valeurs dans un espace vectoriel normé de dimension finie, que l'on utilisera dans toute la suite). De plus, $\det \varphi(t) = (1-t)\lambda + t > 0$ car $\lambda > 0$ et $t \in [0,1]$. Et on a $\varphi(0) = A_{1,k,\lambda}$ et $\varphi(1) = J_n$.
 - **2.2.** Même principe. Ici, $\psi(0) = A_{1,k,\lambda}$ et $\psi(1) = A_{1,k,-1}$.
- 3) Même principe. Ici, le chemin relie $\chi(0) = A_{2,k,p,\lambda}$ à $\chi(1) = A_{2,k,p,0} = J_n$ et toutes les matrices $\chi(t)$ sont de déterminant 1.

4) La matrice
$$\omega(t)$$
 est
$$\begin{pmatrix} 1 & 0 & \dots & 0 & \dots & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & \dots & 0 & \dots & 0 \\ \vdots & & & & & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & -\sin\left(\frac{\pi}{2}t\right) & \dots & \cos\left(\frac{\pi}{2}t\right) & \dots & 0 \\ \vdots & & & \vdots & & & \vdots & & \vdots \\ 0 & \dots & 0 & \cos\left(\frac{\pi}{2}t\right) & \dots & \sin\left(\frac{\pi}{2}t\right) & & 0 \\ & & & \vdots & & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

(lignes et colonnes de numéros k et p). Les coefficients sont des fonctions continues de t donc ω est continue. $\omega(0) = A_{3,k,p}$ et $\omega(1) = A_{1,k,-1}$. Enfin $\det(\omega(t)) = -1$, en faisant un calcul par blocs après un échange d'une ligne et d'une colonne.

5) On a $M \in GL_{n+}(\mathbb{R})$ avec $M = B_1 \times B_2 \times ... \times B_m$ et les B_i dans $\mathcal{E}l(n)$.

Pour tout i il existe une application continue α_i de [0,1] dans $GL_n(\mathbb{R})$ telle que $\alpha_i(0) = B_i$ et $\alpha_i(1)$ qui

est soit J_n soit une matrice de la forme $A_{1,k,-1}$. Si on pose $\sigma(t) = \prod_{i=1}^m \alpha_i(t)$, σ sera une application continue de [0,1] dans $GL_n(\mathbb{R})$, telle que $\sigma(0) = M$ et $\sigma(1)$ produit de matrices de la forme $A_{1,k,-1}$, donc diagonale avec des ± 1 sur la diagonale.

L'application det $\circ \sigma$ étant à valeurs dans \mathbb{R}^* et étant continue garde toujours le même signe donc $\det \sigma(1) = \det M > 0$, donc le nombre de -1 sur la diagonale est pair.

- 6) C'est toujours pareil... $N_{p,k}$ est une matrice diagonale avec des 1 sur la diagonale sauf lignes p et k où on trouve -1. Le chemin ρ la relie à J_n et les matrices $\rho(t)$ ont toutes un déterminant égal à +1 (même démonstration que pour ω).
- 7) Notons déjà que, dans un espace vectoriel normé E, s'il existe un chemin γ qui relie a à b et un chemin γ' qui relie b à c, on peut construire un chemin δ qui relie a à b.

En effet, il suffit de prendre δ telle que $\begin{cases} \delta(t) = \gamma(2t) & \text{si } t \in \left[0, \frac{1}{2}\right] \\ \delta(t) = \gamma'(2t - 1) & \text{si } t \in \left[\frac{1}{2}, 1\right] \end{cases}.$

On peut donc mettre « bout à bout » deux chemins pour en faire un autre et par récurrence, on peut en mettre ainsi un nombre quelconque bout à bout.

- Soit donc $M ∈ GL_{n+}(\mathbb{R})$. On a déjà trouvé un chemin qui relie M à une matrice diagonale avec des ± 1 sur la diagonale, le nombre de -1 étant pair. Si cette matrice est J_n , c'est fini. Sinon, on considère un chemin du type ρ qui va transformer une paire de -1 en une paire de 1 etc... jusqu'à obtenir J_n , puis on met tous ces chemins bout à bout.
- On a ainsi joint toute matrice M de $GL_{n+}(\mathbb{R})$ à J_n par un chemin. On peut, en considérant le chemin « inverse » ($\gamma(1-t)$ au lieu de $\gamma(t)$) joindre J_n à toute matrice M' de $GL_{n+}(\mathbb{R})$. En mettant ces chemins bout à bout, on peut ainsi relier toute matrice M de $GL_{n+}(\mathbb{R})$ à toute autre matrice M' de $GL_{n+}(\mathbb{R})$ par un chemin continu, donc $GL_{n+}(\mathbb{R})$ est connexe par arcs.

В.

C'est presque pareil. La seule différence est qu'on arrive à une matrice diagonale avec des ± 1 sur la diagonale, le nombre de -1 étant impair, puis avec des chemins de type ρ , on arrive à joindre toute matrice $M \in GL_{n-}(\mathbb{R})$ à une matrice de type $A_{1,k,-1}$. Or on peut passer par un chemin continu d'une matrice de type $A_{1,k,-1}$ à une matrice $A_{3,k,1}$ par un chemin de la forme ω^{-1} . Enfin, on peut passer de $A_{3,k,1} = A_{3,1,k}$ à $A_{1,1,-1}$ par un chemin du type ω .

En mettant tous ces chemins bout à bout, on trouve un chemin continu ν qui relie $M \in GL_{n-}(\mathbb{R})$ à la matrice $A_{1,1,-1}$. Puis on conclut comme dans la question précédente.

* * * * * * * * *