Indian Institute of Technology Delhi

COL 759 - Cryptography

Assignment 4

Garv Nagori, Naman Agarwal 2021CS10549, 2021CS10555

Contents

1	Question 1		•
	1.1	Part a)	
	1.2	Part b)	٠
2	2 Acknowledgements		4

§1 Question 1

§1.1 Part a)

Claim 1.1 — If there exists a p.p.t. algorithm A that breaks the collision-resistance property of this hash function family with non negligible probability ϵ , then there exists a p.p.t. algorithm B that breaks the discrete log assumption with non-negligible probability ϵ' .

Reduction for Discrete Log Challenger

To get a , we will check if the coefficient of A in both are different. If yes, we can calculate "a" using equality of hash functions $\sum_{i=1}^n \alpha_i \cdot x_i = \sum_{i=1}^n \alpha_i \cdot x_i'$ with the only unknown term being a. We know that there has to be at least 2 separate indices for which $x_i \neq x_i'$ for x and x' to be a collision. Also the probability of winning depends on the coefficients for A being different so the probability of breaking discrete log challenger is $\epsilon' = \epsilon/n$

§1.2 Part b)

Given hash function $h_{N,e,z}: \mathbb{Z}_N^* \times \mathbb{Z}_e \to \mathbb{Z}_N^*$ where $h_{N,e,z}(a,b) = a^e \cdot z^b \mod \mathbb{N}$.

Claim 1.2 — If a polynomial time adversary \mathcal{A} breaks CRHF game for this hash function with non-negligible probability then there exists a reduction \mathcal{B} which break can RSA with non-negligible probability.

Reduction

We know that

$$h(N, e, x^e, a_1, b_1) = h(N, e, x^e, a_2, b_2)$$

 $a_1^e \cdot x^{eb_1} = a_2^e \cdot x^{eb_2}$

Now we can say that given e co prime to $\phi(n)$ if $a^e = b^e \mod N$ then $a = b \mod N$. We know there exists d such that $e \cdot d = 1 \mod \phi(n)$ and raising both sides to d we get $a = b \mod N$. So we can say $a_1 \cdot x^{b_1} = a_2 \cdot x^{b_2}$

Since a_1 and a_2 are coprime to N, we can calculate their inverses using Extended Euclidean Algorithm and hence compute $x^{b_1-b_2}$.

Given $b_1, b_2 \in \mathbb{Z}_e$, $b_1 - b_2$ is coprime to e.

Again using extended euclidean algorithm we can calculate A,B such that

$$Ae + B(b_1 - b_2) = \gcd(e, (b_1 - b_2)) = 1.$$

 $Ae + B(b_1 - b_2) = \gcd(e, (b_1 - b_2)) = 1.$ Doing $(x^e)^A \cdot (x^{b_1 - b_2})^B = x^1$ we calculate x and break RSA challenger.

§2 Acknowledgements

We have used the style file from here 1 to typeset and the style file from here 2 for cryptographic games and protocols to produce this document.

¹https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty

²https://github.com/arnomi/cryptocode