Završni ispit

5. veljače 2016.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (10 bodova)

U sustavu upravljanja prikazanom slikom 1 upravlja se procesom čija je prijenosna funkcija:

$$G_P(s) = \frac{1}{s(s+1)}.$$

Za upravljanje se koristi regulator oblika

$$G_R(s) = K_R \frac{s - s_n}{s - s_n},$$

pri čemu je $\frac{|s_n|}{|s_p|} < 1$.

Slika 1: Kontinuirani sustav upravljanja.

- a) (3 boda) Odredite izraz za iznos amplitudnog pojačanja regulatora na visokim frekvencijama $|G_R(j\infty)|$.
- b) (5 boda) Odredite maksimalan iznos faznog prethođenja kojeg unosi regulator $G_R(s)$ s općim parametrima s_n i s_p . Uz zahjev na fazno osiguranje $\gamma_0 = 38^\circ$ na presječnoj frekvenciji $\omega_c = 3$ [rad/s], odredite parametre s_n i s_p regulatora tako da se maksimalno fazno prethođenje regulatora $G_R(s)$ ostvari na frekvenciji ω_c .

Napomena: $\arctan(x) - \arctan(y) = \arctan\left(\frac{x-y}{1+xy}\right), \frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}.$

c) (2 boda) Ako je prijenosna funkcija regulatora $G_R(s) = K_R \frac{s+2}{s+5}$, odredite iznos pojačanja regulatora K_R kojim će se ostvariti presječna frekvencija $\omega_c = 3$ [rad/s].

2. zadatak (7 bodova)

Procesom

$$G_P(s) = \frac{2}{(s+1)(s+6)}$$

upravlja se u zatvorenom krugu s jediničnom negativnom povratnom vezom. Za upravljanje procesom koristi se PI regulator $G_R(s)=K_R\frac{1+T_Is}{T_Is}$.

- a) (4 boda) Odredite prijenosnu funkciju PI regulatora tako da se pokrati dominantni pol procesa te da se polovi zatvorenog kruga upravljanja postave u $s_{p,1} = -2$ i $s_{p,2} = -4$.
- b) (3 boda) Korištenjem Tustinove metode diskretizacije odredite rekurzivnu jednadžbu regulatora $G_R(s) = 0.2 \frac{s+2}{s}$ za implementaciju na digitalnom računalu uz vrijeme uzorkovanja $T_s = 0.2$ s.

3. zadatak (6 bodova)

Na slici 2 prikazan je sustav automatskog upravljanja s proporcionalnim regulatorom.

Slika 2: Sustav automatskog upravljanja.

- a) (3 boda) Odredite frekvenciju oscilacija sustava na rubu stabilnosti.
- b) (3 boda) Za K=4 odredite iznos regulacijskog odstupanja u stacionarnom stanju e_{∞} na pobudu oblika $r(t)=4\cdot (t-5)\cdot S(t-5)$.

4. zadatak (10 bodova)

Diskretni sustav upravljanja prikazan je slikom 3. U diskretnom sustavu upravljanja nalazi se mjerni član s promjenjivim pojačanjem $K_m > 0$.

Slika 3: Diskretni sustav upravljanja.

- a) (4 boda) Zadana je prijenosna funkcija procesa u vremenski kontinuiranoj domeni $G_P(s) = \frac{0.5}{s^2+1.5s+0.5}$. Odredite prijenosnu funkciju procesa $G_P(z)$ koristeći metodu diskretizacije kojom se u diskretnoj domeni zadržavaju svojstva kontinuirane prijelazne funkcije. Vrijeme uzorkovanja odaberite tako da bude jednako jednoj petini najmanje vremenske konstante procesa.
- b) (6 bodova) Za diskretni sustav upravljanja prikazan slikom 3 zadano je $G_R(z) = \frac{1}{T_I} \frac{z}{z-1}$ i $G_P(z) = \frac{0.25z+0.75}{z-0.5}$. Korištenjem Juryjevog kriterija odredite za koje vrijednosti parametra T_I i K_m je sustav stabilan. Prikažite područje stabilnosti u $T_I K_m$ ravnini.

5. zadatak (8 bodova)

Zadana je prijenosna funkcija otvorenog kruga:

$$G_o(s) = \frac{K}{(s - \omega_{p1})(s - \omega_{p2})}.$$

- a) (6 bodova) Potrebno je projektirati PI regulator korištenjem Ziegler-Nicholsove metode prijelazne funkcije, pri čemu je $K=2,\,\omega_{p1}=-2$ te $\omega_{p2}=-3.$
- b) (2 boda) Može li se na sustav primijeniti Ziegler-Nicholsova metoda prijelazne funkcije ako je $\omega_{p1}>0$. Objasnite!

RJEŠENJA:

Zadatak 1

a) Iz jednadžbe za amplitudno pojačanje regulatora slijedi $A_{\rm dB}(\infty)=20\log(K_R)$. Isti rezultat može se dobiti ako se koristi aproksimacija pravcima (pravac amplitudno frekvencijske karakteristike za $\omega \to \infty$ je asimptota)

$$A_{\mathrm{dB}}(\infty) = 20 \log \left(K_R \frac{s_n}{s_n} \right) + 20 \log \left(\frac{s_p}{s_n} \right) = 20 \log(K_R)$$

b)
$$\arctan(\frac{\omega}{-s_n}) - \arctan(\frac{\omega}{-s_p}) = \varphi(\omega),$$

$$\frac{d\varphi(\omega)}{d\omega} = -s_p(1 + \frac{\omega^2}{s_p^2}) + s_n(1 + \frac{\omega^2}{s_n^2}) = 0,$$

$$\omega_{\varphi_{max}} = \sqrt{s_n s_p}.$$

S obzirom da vrijedi $\angle \{G_p(j\omega_c)\} = -161.565^\circ$, prethođenje regulatora na frekvenciji ω_c mora biti

$$-\angle \{G_p(j\omega_c)\} - 180 + \gamma = 19.565^{\circ}.$$

$$\max(\varphi(\omega)) = \arctan(\frac{\omega_c}{-s_n}) - \arctan(\frac{-s_n}{\omega_c}) = 19.565^{\circ},$$

Slijedi $s_n = -2.1176$ i $s_p = -4.25$.

c)
$$K_R \frac{\sqrt{4+\omega_c^2}}{25+\omega_c^2} \frac{1}{\omega_c \sqrt{1+\omega_c^2}} = 1,$$

Slijedi $K_R = 15.3422$.

Zadatak 2

a) Dominantni pol je $s_{p,d}=-1$, iz čega slijedi $T_I=1$ [s]. Prijenosna funkcija zatvorenog kruga upravljanja je

$$G_z(s) = \frac{s(2+6)}{s^2 + 6s + 2K_r},$$

a polovi

$$s_{p_{1,2}} = -3 \pm \frac{\sqrt{36 - 8K_r}}{2},$$

iz čega slijedi $K_r = 4$.

b) Prijenosna funkcija regulatora u diskretnoj domeni je

$$G_r(z) = \frac{(0.2T_s + 0.2)z + (0.2T_s - 0.2)}{z - 1},$$

a rekurzivna jednadžba regulatora uz $T_s=0.2~[\mathrm{s}]$

$$u(k) = u(k-1) + 0.04(e(k) + e(k-1)) + 0.2(e(k) - e(k-1)).$$

Zadatak 3

a) Korištenjem Hurwitzovog kriterija stabilnosti dobije se da je sustav stabilan za K < 5.05. Frekvencija trajnih oscilacija može se odrediti iz Nyquistova dijagrama (ω_{π}), u točki gdje dijagram siječe realnu os, odnosno računanjem nultočaka karakterističnog polinoma za K = 5.05. Frekvencija trajnih oscilacija je 1 [rad/s]].

b)
$$\frac{E(s)}{R(s)} = \frac{s(s+0.1)(s+10)}{s(s+0.1)(s+10)+2K},$$

$$e_{\infty} = \lim_{s \to 0} sE(s)R(s) = \frac{4}{2K} = 0.5.$$

Zadatak 4

a) Kako bi odredili vrijeme diskretizacije pogodno je zadanu prijenosnu funkciju prikazati u obliku pogodnom za isčitavanje vremenskih konstanti.

$$G_P(s) = \frac{0.5}{s^2 + 1.5s + 0.5} = \frac{1}{(1+2s)(1+s)} = \frac{K}{(1+T_1s)(1+T_2s)}$$

Najmanja vremenska konstanta iznosi $T_{min}=T_2=1\,\mathrm{s}$ iz čega slijedi da je vrijeme uzorkovanja $T=\frac{1}{5}T_{min}=0.2\,\mathrm{s}.$

Sada možemo diskretizirati proces korištenjem ZOH diskretizacije.

$$G_R(z) = (1 - z^{-1}) \mathcal{Z} \left\{ \frac{1}{s} G_P(s) \right\} = (1 - z^{-1}) \mathcal{Z} \left\{ \frac{1}{s} \frac{0.5}{s^2 + 1.5s + 0.5} \right\}$$

$$\frac{0.5}{s(s+0.5)(s+1)} = \frac{A}{s} + \frac{B}{s+0.5} + \frac{C}{s+1}$$
$$0.5 = A(s^2 + 1.5s + 0.5) + B(s^2 + s) + C(s^2 + 0.5s)$$

Rješavanjem sustava slijedi:

$$A = 1$$
, $B = -2$, $C = 1$

Konačno, diskretna prijenosna funkcija procesa:

$$G_R(z) = (1 - z^{-1}) \left(\frac{1}{1 - z^{-1}} - \frac{2}{1 - 0.9048z^{-1}} + \frac{1}{1 - 0.8187z^{-1}} \right)$$

$$G_R(z) = \frac{0.0091z + 0.0082}{z^2 - 1.724z + 0.7408}$$

b) Prijenosna funkcija otvorenoga kruga je $G_o(z) = K_m G_R(z) G_P(z)$. Karakteristična jednadžba zatvorenoga kruga glasi:

$$f(z) = 1 + G_o(z) = (T_I + 0.25K_m)z^2 + (-1.5T_I + 0.75K_m)z + 0.5T_I$$

Primjenom Juryjevog kriterija slijedi:

• Uvjet a)

$$f(1) > 0 \Rightarrow K_m > 0$$

 $(-1)^2 f(-1) > 0 \Rightarrow K_m < 6T_I$

• Uvjet b)

$$|a_0| < |a_2| \Rightarrow T_I > -0.5K_m$$

Kombiniranjem uvjeta slijedi da je sustav stabilan za:

$$K_m > 0$$
, $T_I > 0$, $K_m < 6T_I$

Zadatak 5

a) Koristeći prijenosnu funkciju otvorenoga kruga $G_o(s)$, potrebno je odrediti prijelaznu fukciju sustava h(t).

$$G_o(s) = \frac{Y(s)}{U(s)} \Rightarrow Y(s) = G_o(s) \cdot U(s) = \frac{2}{(s+2)(s+3)} \frac{1}{s}$$

Izraz rastavljamo na parcijalne razlomke:

$$Y(s) = \frac{2}{s(s+2)(s+3)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+3}$$

pri čemu su koeficjenti $A=\frac{1}{3},\,B=-1$ te $C=\frac{2}{3}$. Primjenom inverzne Laplaceove transformacije dobije se prijelazna funkcija:

$$y(t) = h(t) = L^{-1} \{Y(s)\} = (\frac{1}{3} - e^{-2t} + \frac{2}{3}e^{-3t})S(t)$$

Zatim tražimo točku infleksije. Za to su nam potrebne prva i druga derivacija prijelazne funkcije:

$$\dot{h}(t) = (2e^{-2t} - 2e^{-3t})S(t)$$
$$\ddot{h}(t) = (-4e^{-2t} + 6e^{-3t})S(t)$$

pri čemu smo zanemarili doprinos δ -funkcije koja je neodređeni izraz u trenutku t=0.

Izjednačavanjem izraza $\ddot{h}(t)$ s nulom izračunava se vrijeme točke infleksije $t_i = \ln \frac{3}{2} = 0.4054$.

Iznos prijelazne funkcije u točki tangente iznosi $y_i=h(t_i)=\frac{7}{81}=0.0864$, a nagib tangente $k=\dot{h}(t_i)=\frac{8}{27}=0.2963$.

Jednadžba tangente u točki infleksije:

$$y - y_i = k(t - t_i)$$
$$y = 0.2963t - 0.0337$$

Vrijeme zadržavanja t_z iznosi:

$$0 = 0.2963t_z - 0.0337 \Rightarrow t_z = 0.1137 \,\mathrm{s}.$$

Vrijeme kad tangenta presijeca stacionarno stanje prijelazne funkcije $K_s = h(\infty) = \frac{1}{3}$:

$$\frac{1}{3} = 0.2963(t_z + t_a) - 0.0337 \Rightarrow t_a = 1.1250 \,\mathrm{s}.$$

Konačno, parametri PI regulatora su:

$$K_R = 0.9 \frac{t_a}{t_z K_s} = 26.71$$

 $T_I = 3.33 t_z = 0.3786$

b) Ne može budući da je sustav za $\omega_{p1} > 0$ nestabilan.