Exploratory Data Analysis (EDA)

J Andres Gannon

January 25, 2025

Types of data science

What should we do? What is the Best Decision?

 Support decision making and proactive actions

What will happen in the future?

 Predict forward-looking behavior, events, probabilities, or trends

What happened in the past?

- Data visualization
- Reports and profiling
- Summary statistics & significance testing

Purpose of EDA

- 1. Communicate present data and explain and inform with evidence
- 2. Analyze explore data to assess a situation and determine how to proceed

Descriptive statistics do this by identifying:

- Kinds of values
- Outliers (possibly incorrect)
- Distribution (possibly skewed)

Two basic EDA principles

- 1. Making a simpler description possible is good
- 2. Looking one level below an existing description is good

So we shall always be glad (a) to simplify description and (b) to describe one layer deeper.

Where exploratory data analysis fits in

Where exploratory data analysis fits in (reality)

Understand data via single variable, pair of variables, or dimensionality reduction

Organizes the data, spots problems, and identifies modeling strategies

How to describe a dataset

Key descriptive statistics

```
import pandas as pd
import numpy as np
df = pd.read_csv("https://github.com/nlihin/data-analytics/raw/main/dataset
df.describe()
```

	new_cases	new_deaths	new_tests
count	248.000000	248.000000	135.000000
mean	1094.818548	143.133065	31699.674074
std	1554.508002	227.105538	11622.209757
min	-148.000000	-31.000000	7841.000000
25%	123.000000	3.000000	25259.000000
50%	342.000000	17.000000	29545.000000

	new_cases	new_deaths	new_tests
75%	1371.750000	175.250000	37711.000000
max	6557.000000	971.000000	95273.000000

Key descriptive statistics

Low variance means values close to the mean

Skewness is symmetry of the data. Positive skew indicates large outliers. Negative skew indicates small outliers

```
1 df.skew(numeric_only = True)
new_cases    1.728277
new_deaths    1.703742
new_tests    1.619825
dtype: float64
```

Descriptive statistics can mislead

```
datasaurus_data = pd.read_csv('./data/datasaurus.csv')
datasaurus_data.groupby('dataset').agg({'x': ['count', 'mean', 'std'],'y': [
```

X		У		
count	mean	std	count	mean
142	54.268730	16.769239	142	47.830823
142	54.263273	16.765142	142	47.832253
142	54.261442	16.765898	142	47.830252
142	54.260150	16.769958	142	47.83971
	142 142 142	142 54.268730 142 54.263273 142 54.261442	142 54.268730 16.769239 142 54.263273 16.765142 142 54.261442 16.765898	142 54.268730 16.769239 142 142 54.263273 16.765142 142 142 54.261442 16.765898 142

Descriptive statistics can mislead

1 import seaborn as sns
2 sns.relplot(data=datasaurus_data, x='x', y='y', col='dataset', col_wrap=4)

Trust nothing and no one

Excel: Why using Microsoft's tool caused Covid-19 results to be lost

SCIENCE / TECH / MICROSOFT

Scientists rename human genes to stop Microsoft Excel from misreading them as dates

SCHENECTADY COUNTY

NYCLU walks back report on pot arrests

Civil liberties group apologizes to police for exaggerated numbers

By Pete DeMola | July 5, 2019

Why missingness happens

Column values missing

- Subject-created: opt out, unknown value
- Record-created: entry, software, or coding errors

No universal solution, but many wrong ones

Computational strategies

Guiding questions

- How much missingness is present
- Is missing value in response variable or predictor variable
- Is missing value quantitative or categorical
- Specifying allowed NA values when reading in data
- Look for nonsense values (outlier check)
- Missingness when joining/merging

Mean Imputation

```
1 df = pd.read csv("./data/titanic.csv")
 2 df = df[["PassengerId", "Survived", "Name", "Sex", "Age", "Class"]]
 3
 4 # Mean imputate for numeric
 5 	ext{ df imputed} = 	ext{df}
 6 df imputed['Age'] = df imputed['Age'].fillna(df imputed['Age'].mean())
 7 df imputed.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
O PassengerId 1309 non-null int64
    Survived 891 non-null float64
   Name 1309 non-null object
    Sex 1309 non-null object
   Age 1309 non-null float64
    Class 1304 non-null float64
dtypes: float64(3), int64(1), object(2)
memory usage: 61.5+ KB
```

Multiple Imputation: Random Sample

Replace each missing value with a random value from that column

```
1 df = pd.read csv("./data/titanic.csv")
   df = df[["PassengerId", "Survived", "Name", "Sex", "Age", "Class"]]
    df['Age'].dropna().sample()
      5.0
777
```

Multiple Imputation: k-nearest neighbor

K-nearest neighbor: impute from rows that most closely match based on non-missing variables

Requires numeric columns and normalization

```
from sklearn.impute import KNNImputer

df = pd.read_csv("./data/titanic.csv")

df = df[["PassengerId", "Survived", "Age", "Class"]]

imp = KNNImputer(n_neighbors = 2, weights = "uniform")

df = pd.DataFrame(imp.fit_transform(df), columns = df.columns)

df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 4 columns):
    # Column Non-Null Count Dtype
```

0	PassengerId	1309	non-null	float64
1	Survived	1309	non-null	float64
2	Age	1309	non-null	float64
3	Class	1309	non-null	float64
d+ 170	os: float6///	1		

dtypes: float64(4)

memory usage: 41.0 KB

EDA can seem mundane...

90% cleaning and documentation

9% existing off the shelf tools

1% cutting edge

...but it's the foundation of everything else

