PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/00526 C12N 9/08, 15/53, 15/63, 1/21, 15/09, A1 (43) International Publication Date: 8 January 1998 (08.01.98) C12P 1/00, C12Q 1/30 (21) International Application Number: PCT/US97/16513 (81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, (22) International Filing Date: 3 July 1997 (03.07.97) (30) Priority Data: **Published** 08/674,887 3 July 1996 (03.07,96) With international search report. US Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (71) Applicant: RECOMBINANT BIOCATALYSIS, INC. amendments. [US/US]; 505 Coast Boulevard South, La Jolla, CA 92037 (US). (72) Inventors: ROBERTSON, Dan, E.; 33 Evergreen Lane, Haddonfield, NJ 08033 (US). SANYAL, Indrajit; H8, Pickwick Apartments, Maple Shade, NJ 08052 (US). ADHIKARY, Robert, S.; 11 Hoffman Avenue, Cherry Hill, NJ 08003 (US). (74) Agent: HAILE, Lisa, A.; Fish & Richardson P.C., Suite 1400, 4225 Executive Square, La Jolla, CA 92037 (US).

(54) Title: CATALASES

(57) Abstract

Catalase enzymes derived from bacterial for the genera Alcaligenes (Delaya) and MicroscUla are disclosed. The enzymes are produced from native or recombinant host cells and can be utilized to destroy or detect hydrogen peroxide, e.g., in production of glyoxylic acid and in glucose sensors, and in processes where hydrogen peroxide is used as a bleaching or antibacterial agent, e.g., in contact lens cleaning, in bleaching steps in pulp and paper preparation and in the pasteurization of dairy products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	A Ibania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gebon	LV	Larvia	SZ	Swazitand
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	77	Trinidad and Tobego
BJ	Benin	TE	beland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	lceland	MW	Malawi	บร	United States of Americ
CA	Canada	П	haly	MX	Mexico	UZ	Uzbekisten
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KR	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KC	Kyrgyzatan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PĹ	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	น	Licchtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		

- 1 -

CATALASES

Field of the Invention

This invention relates generally to enzymes and more specifically to catalases and polynucleotides encoded such catalases, including methods of use.

5 Background

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production and isolation of such polynucleotides and polypeptides.

More particularly, the polynucleotides and polypeptides of the present invention have been putatively identified as catalases.

Generally, in processes where hydrogen peroxide is a by-product, catalases can be used to destroy or detect hydrogen peroxide, e.g., in production of glyoxylic acid and in glucose sensors. Also, in processes where hydrogen peroxide is used as a bleaching or antibacterial agent, catalases can be used to destroy residual hydrogen peroxide, e.g. in contact lens cleaning, in bleaching steps in pulp and paper preparation and in the pasteurization of dairy products. Further, such catalases can be used as catalysts for oxidation reactions, e.g., epoxidation and hydroxylation.

Summary of the Invention

In accordance with one aspect of the present invention, there are provided novel enzymes, as well as active fragments, analogs and derivatives thereof.

In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding the enzymes of the present invention including mRNAs, cDNAs, genomic DNAs as well as active analogs and fragments of such enzymes.

In accordance with yet a further aspect of the present invention, there is provided a process for producing such polypeptides by recombinant techniques

comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence of the present invention, under conditions promoting expression of said enzymes and subsequent recovery of said enzymes.

In accordance with yet a further aspect of the present invention, there are also provided nucleic acid probes comprising nucleic acid molecules of sufficient

length to specifically hybridize to a nucleic acid sequence of the present invention.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such enzymes, or polynucleotides encoding such enzymes, for *in vitro* purposes related to scientific research, for example, to generate probes for identifying similar sequences which might encode similar enzymes from other organisms by using certain regions, i.e., conserved sequence regions, of the nucleotide sequence.

In accordance with yet a further aspect of the present invention, there is provided antibodies to such catalases. These antibodies are as probes to screen libraries from these or other organisms for members of the libraries which could have the same catalase activity or a cross reactive activity.

In another embodiment, the invention provides a method for catalyzing an oxidation reaction comprising contacting a substrate with an effective amount of an enyzme selected from the group consisting of an amino acid sequence set forth in SEQ ID NOS: 7 or 9, thereby catalyzing an oxidation reaction. Another method of the invention includes the detection and/or destruction of hydrogen peroxide in a

. . . .

į.

3.

sample comprising contacting the sample with an effective amount of an enzyme having an amino acid sequence set forth in SEQ ID NO:7 or SEQ ID NO:9, and detecting the presence of hydrogen peroxide in the sample. Hydrogen peroxide acts as a substrate for catalases, thus, either the detection and/or the destruction of hydrogen peroxide is achieved by combining a sufficient amount of the catalases of the invention with a sample or material suspected of containing hydrogen peroxide.

These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.

Brief Description of the Drawings

The following drawings are illustrative of an embodiment of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

Figure 1 shows the full-length DNA sequence and the corresponding deduced amino acid sequence for *Alcaligenes (Deleya) aquamarinus* Catalase - 64CA2.

Figure 2 shows the full-length DNA sequence and the corresponding deduced amino acid sequence for *Microscilla furvescens* Catalase 53CA 1.

Detailed Description of Preferred Embodiments

In order to facilitate understanding of the following description and examples which follow certain frequently occurring methods and/or terms will be described.

The term "isolated" means altered "by the hand of man" from its natural state; i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a naturally occurring polynucleotide or a polypeptide naturally present in a living animal in its natural state is not "isolated", but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. For example, with respect to polynucleotides, the term isolated means that it is separated from the nucleic acid and cell in which it naturally occurs.

As part of or following isolation, such polynucleotides can be joined to other polynucleotides, such as DNAs, for mutagenesis, to form fusion proteins, and for propagation or expression in a host, for instance. The isolated polynucleotides, alone or joined to other polynucleotides such as vectors, can be introduced into host cells, in culture or in whole organisms. Introduced into host cells in culture or in whole organisms, such polynucleotides still would be isolated, as the term is used herein, because they would not be in their naturally occurring form or environment. Similarly, the polynucleotides and polypeptides may occur in a composition, such as a media formulation (solutions for introduction of polynucleotides or polypeptides, for example, into cells or compositions or solutions for chemical or enzymatic reactions which are not naturally occurring compositions) and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.

The term "ligation" refers to the process of forming phosphodiester bonds

between two or more polynucleotides, which most often are double stranded DNAs.

Techniques for ligation are well known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, for instance,

Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.;

Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

The term "gene" means the segment of DNA involved in 4producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

A coding sequence is "operably linked to" another coding sequence when RNA polymerase will transcribe the two coding sequences into a single mRNA, which is then translated into a single polypeptide having amino acids derived from both coding sequences. The coding sequences need not be contiguous to one another so long as the expressed sequences ultimately process to produce the desired protein.

"Recombinant" enzymes refer to enzymes produced by recombinant DNA techniques; i.e., produced from cells transformed by an exogenous DNA construct

encoding the desired enzyme. nSynthetic" enzymes are those prepared by chemical synthesis.

A DNA "coding sequence of" or a "nucleotide sequence encoding" a particular enzyme, is a DNA sequence which is transcribed and translated into an enzyme when placed under the control of appropriate regulatory sequences.

"Plasmids" are designated by a lower case "p" preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes

used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 μg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 μl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37.C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel et al., *Nucleic Acids Res.*, 8:4057 (1980).

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the

presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units of T4 DNA ligase ("ligase") per 0.5 μg of approximately equimolar amounts of the DNA fragments to be ligated.

Unless otherwise stated, transformation was performed as described in Sambrook and Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring 10 Harbor Laboratory, 1989.

In accordance with an aspect of the present invention, there are provided isolated nucleic acids (polynucleotides) which encode for the mature enzyme having the deduced amino acid sequence of Figure 1 (SEQ ID NO: 7).

In accordance with another aspect of the present invention, there are provided isolated nucleic acids (polynucleotides) which encode for the mature enzyme having the deduced amino acid sequence of Figure 2 (SEQ ID NO: 9).

In accordance with another aspect of the present invention, there is provided an isolated polynucleotide encoding the enzyme of the present invention. The deposited material is a genomic clone comprising DNA encoding an enzyme of the present invention. As deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, USA, the deposited material is assigned ATCC Deposit No.

The deposit has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent

25 Procedure. The clone will be irrevocably (without restriction or condition) released to the public upon the issuance of a patent. This deposit is provided merely as convenience to those of skill in the art and is not an admission that a deposit would be required under 35 U.S.C. §112. The sequence of the polynucleotide contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded

30 thereby, are controlling in the event of any conflict with any description of sequences

٠,:

herein. A license may be required to make, use or sell the deposited material, and no such license is hereby granted.

The polynucleotides of this invention were originally recovered from a genomic gene library derived from two sources. The first, *Alcaligenes (Delaya)*5 aquamarinus, is a β-Proteobacteria. It is a gram-negative rod that grows optimally at 26° C and pH 7.2. The second, *Microscilla furvescens*, is a Cytophagales (Bacteria) isolated from Samoa. It is a gram-negative rod with gliding motility that grows optimally at 30° C and pH 7.0.

With respect to Alcaligenes (Delaya) aquamarinus, the protein with the closest amino acid sequence identity of which the inventors are currently aware is the Microscilla furvescens catalase (59.5 % protein identity; 60 % DNA identity). The next closest is a Mycobacterium tuberculosis catalase (KatG), with a 54 % protein identity.

With respect to *Microscilla furvescens*, the protein with the closest amino acid sequence identity of which the inventors are currently aware is catalase I of *Bacillus stearothermophilas*, which has a 69% amino acid identity.

Accordingly, the polyoucleotides and enzymes encoded thereby are identified by the organism from which they were isolated. Such are sometimes referred to below as "64CA2" (Figure 1 and SEQ ID NOS: 6 and 7) and "53CA1" (Figure 2 and SEQ ID NOS: 8 and 9).

One means for isolating the nucleic acid molecules encoding the enzymes of the present invention is to probe a gene library with a natural or artificially designed probe using art recognized procedures (see, for example: Current Protocols in Molecular Biology, Ausubel F.M. et al. (EDS.) Green Publishing Company Assoc.

25 and John Wiley Interscience, New York, 1989, 1992). It is appreciated by one skilled in the art that the polynucleotides of SEQ ID NOS: 6 and 8, or fragments thereof (comprising at least 12 contiguous nucleotides), are particularly useful probes. Other particularly useful probes for this purpose are hybridizable fragments of the sequences of SEQ ID NOS: 6 and 8 (i.e., comprising at least 12 contiguous nucleotides).

With respect to nucleic acid sequences which hybridize to specific nucleic acid sequences disclosed herein, hybridization may be carried out under conditions of reduced stringency, medium stringency or even stringent conditions. As an example of oligonucleotide hybridization, a polymer membrane containing immobilized denatured nucleic acids is first prehybridized for 30 minutes at 45°C in a solution consisting of 0.9 M NaCl, 5.0 mM NaH₂PO₄, pH 7.0, 5.0 mM Na₂EDTA, 0.5% SDS, 10X Denhardt's, and 0.5 mg/mL polyriboadenylic acid. Approximately 2 X 10⁷ cpm (specific activity 4-9 X 10⁸ cpm/ug) of ³²p end-labeled oligonucleotide probe are then added to the solution. After 1216 hours of incubation, the membrane is washed for 30 minutes at room temperature in 1X SET (150 mM NaCl, 20 mM Tris hydrochloride, pH 7.8, 1 mM Na₂EDTA) containing 0.5% SDS, followed by a 30 minute wash in fresh 1X SET at (Tm less 10°C) for the oligonucleotide probe. The membrane is then exposed to auto-radiographic film for detection of hybridization signals.

Stringent conditions means hybridization will occur only if there is at least 90% identity, preferably at least 95% identity and most preferably at least 97% identity between the sequences. Further, it is understood that a section of a 100 bps sequence that is 95 bps in length has 95% identity with the 1090 bps sequence from which it is obtained. See J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory (1989) which is hereby incorporated by reference in its entirety. Also, it is understood that a fragment of a 100 bps sequence that is 95 bps in length has 95% identity with the 100 bps sequence from which it is obtained.

As used herein, a first DNA (RNA) sequence is at least 70% and preferably at least 80% identical to another DNA (RNA) sequence if there is at least 70% and preferably at least a 80% or 90% identity, respectively, between the bases of the first sequence and the bases of the another sequence, when properly aligned with each other, for example when aligned by BLASTN.

The present invention relates to polynucleotides which differ from the reference polynucleotide such that the differences are silent, for example, the amino acid sequence encoded by the polynucleotides is the same. The present invention also

relates to nucleotide changes which result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference polynucleotide. In a preferred aspect of the invention these polypeptides retain the same biological action as the polypeptide encoded by the reference polynucleotide.

The polynucleotides of this invention were recovered from genomic gene libraries from the organisms identified above. Gene libraries were generated from a Lambda ZAP II cloning vector (Stratagene Cloning Systems). Mass excisions were performed on these libraries to generate libraries in the pBluescript phagemid. Libraries were generated and excisions were performed according to the protocols/methods hereinafter described.

The polynucleotides of the present invention may be in the form of RNA or DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequences which encodes the mature enzymes may be identical to the coding sequences shown in Figures 1-2 (SEQ ID NOS: 6 & 8) or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature enzymes as the DNA of Figures 12 (SEQ ID NOS: 6 & 8).

The polynucleotide which encodes for the mature enzyme of Figures 1-2

20 (SEQ ID NOS: 7 & 9) may include, but is not limited to: only the coding sequence for the mature enzyme; the coding sequence for the mature enzyme and additional coding sequence such as a leader sequence or a proprotein sequence; the coding sequence for the mature enzyme (and optionally additional coding sequence) and non-coding sequence, such as introns or noncoding sequence 5' and/or 3' of the coding sequence

25 for the mature enzyme.

Thus, the term "polynucleotide encoding an enzyme (protein)" encompasses a polynucleotide which includes only coding sequence for the enzyme as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of the enzymes having the deduced amino acid sequences of Figures 1-2 (SEQ ID NOS: 7 & 9). The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a nonnaturally occurring variant of the polyoucleotide.

Thus, the present invention includes polynucleotides encoding the same mature enzymes as shown in Figures 1-2 (SEQ ID NOS: 7 & 9) as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the enzymes of Figures 1-2 (SEQ ID NOS: 7 & 9). Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

As hereinabove indicated, the polynucleotides may have a coding sequence which is a naturally occurring allelic variant of the coding sequences shown in Figures 1-2 (SEQ ID NOS: 6 & 8). As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded enzyme. Also, using directed and other evolution strategies, one may make very minor changes in DNA sequence which can result in major changes in function.

hybridization probes for a cDNA or a genomic library to isolate the full length DNA and to isolate other DNAs which have a high sequence similarity to the gene or similar biological activity. Probes of this type preferably have at least 10, preferably at least 15, and even more preferably at least 30 bases and may contain, for example, at least 50 or more bases. In fact, probes of this type having at least up to 150 bases or greater may be preferably utilized. The probe may also be used to identify a DNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons and introns. An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary or identical to that of the gene or

portion of the gene sequences of the present invention are used to screen a library of genomic DNA to determine which members of the library the probe hybridizes to.

It is also appreciated that such probes can be and are preferably labeled with an analytically detectable reagent to facilitate identification of the probe. Useful reagents include but are not limited to radioactivity, fluorescent dyes or enzymes capable of catalyzing the formation of a detectable product. The probes are thus useful to isolate complementary copies of DNA from other sources or to screen such sources for related sequences.

The present invention further relates to polynucleotides which hybridize to
the hereinabove-described sequences if there is at least 70%, preferably at least 90%,
and more preferably at least 95% identity between the sequences. (As indicated
above, 70% identity would include within such definition a 70 bps fragment taken
from a 100 bp polynucleotide, for example.) The present invention particularly relates
to polynucleotides which hybridize under stringent conditions to the hereinabovedescribed polynucleotides. As herein used, the term "stringent conditions" means
hybridization will occur only if there is at least 95% and preferably at least 97%
identity between the sequences. The polyoucleotides which hybridize to the
hereinabove described polynucleotides in a preferred embodiment encode enzymes
which either retain substantially the same biological function or activity as the mature
enzyme encoded by the DNA of Figures 1-2 (SEQ ID NOS: 6 & 8). In referring to
identity in the case of hybridization, as known in the art, such identity refers to the
complementarily of two polynucleotide segments.

Alternatively, the polynucleotide may have at least 15 bases, preferably at least 30 bases, and more preferably at least 50 bases which hybridize to any part of a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity. For example, such polynucleotides may be employed as probes for the polynucleotides of SEQ ID NOS: 6 & 8, for example, for recovery of the polyoucleotide or as a diagnostic probe or as a PCR primer.

Thus, the present invention is directed to polynucleotides having at least a 70% identity, preferably at least 90% identity and more preferably at least a 95% identity to a polynucleotide which encodes the enzymes of SEQ ID NOS: 7 & 9 as well as fragments thereof, which fragments have at least 15 bases, preferably at least 30 bases, more preferably at least 50 bases and most preferably fragments having up to at least 150 bases or greater, which fragments are at least 90% identical, preferably at least 95% identical and most preferably at least 97% identical to any portion of a polynucleotide of the present invention.

The present invention further relates to enzymes which have the deduced amino acid sequences of Figures 1-9 (SEQ ID NOS: 28-36) as well as fragments, analogs and derivatives of such enzyme.

The terms "fragment,n nderivative" and "analog" when referring to the enzymes of Figures 1-9 (SEQ ID NOS. 28-36) means enzymes which retain essentially the same biological function or activity as such enzymes. Thus, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature enzyme.

The enzymes of the present invention may be a recombinant enzyme, a natural enzyme or a synthetic enzyme, preferably a recombinant enzyme.

The fragment, derivative or analog of the enzymes of Figures 1-2 (SEQ ID NOS: 7 & 9) may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature enzyme is fused with another compound, such as a compound to increase the half-life of the enzyme (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature enzyme, such as a leader or secretory sequence or a sequence which is employed for purification of the mature enzyme or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

*

* j.

· 1.

The enzymes and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of enzymes of the invention by recombinant techniques.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector such as an expression vector. The vector may be, for example, in the form of a plasmid, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention may be employed for producing enzymes by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing an enzyme. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the $E.\ coli.\ lac$ or trp, the phage lambda P_L promoter and other promoters

30

known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

The vector containing the appropriate DNA sequence as hereinabove

described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as *E. coli*, *Streptomyces*, *Bacillus subtilis*; fungal cells, such as yeast; insect cells such as *Drosophila S2* and *Spodoptera Sf9*; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, *etc*. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example; Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBluescript II KS(Stratagene), ptrc99a, pKK223-3, pDR540, pRIT2T (Pharmacia); Eukaryotic: pXT1, pSG5 (Stratagene) pSVK3, pBPV, pMSG, pSVL SV40 (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

Promoter regions can be selected from any desired gene using CAT

, ? , ·

¥

(chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, apt, lambda PR, PL and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from
 retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986).

The constructs in host cells can be used in a conventional manner to

15 produce the gene product encoded by the recombinant sequence. Alternatively, the
enzymes of the invention can be synthetically produced by conventional peptide
synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Transcription of the DNA encoding the enzymes of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cisacting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and

- 16 -

adenovirus enhancers.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highlyexpressed gene to direct transcription of a downstream

- structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated enzyme.
- Optionally, the heterologous sequence can encode a fusion enzyme including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli, Bacillus subtilis, Salmonella typhimurium* and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host

20

strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or 5 chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise 15 an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

The enzyme can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, afflnity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as 25 necessary, in completing confi-uration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The enzymes of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant 30 techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast,

47

higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the enzymes of the present invention may be glycosylated or may be non-glycosylated. Enzymes of the invention may or may not also include an initial methionine amino acid residue.

Antibodies generated against the enzymes corresponding to a sequence of the present invention can be obtained by direct injection of the enzymes into an animal or by administering the enzymes to an animal, preferably a nonhuman. The antibody so obtained will then bind the enzymes itself. In this manner, even a sequence encoding only a fragment of the enzymes can be used to generate antibodies 10 binding the whole native enzymes. Such antibodies can then be used to isolate the enzyme from cells expressing that enzyme.

The term "antibody," as used herein, refers to intact immunoglobulin molecules, as well as fragments of immunoglobulin molecules, such as Fab, Fab', (Fab')2, Fv, and SCA fragments, that are capable of binding to an epitope of an 15 endoglucanase polypeptide. These antibody fragments, which retain some ability to selectively bind to the antigen (e.g., an endoglucanase antigen) of the antibody from which they are derived, can be made using well known methods in the art (see, e.g., Harlow and Lane, supra), and are described further, as follows.

- (1) A Fab fragment consists of a monovalent antigen-binding fragment of an 20 antibody molecule, and can be produced by digestion of a whole antibody molecule with the enzyme papain, to yield a fragment consisting of an intact light chain and a portion of a heavy chain.
- (2) A Fab' fragment of an antibody molecule can be obtained by treating a whole antibody molecule with pepsin, followed by reduction, to yield a molecule consisting 25 of an intact light chain and a portion of a heavy chain. Two Fab' fragments are obtained per antibody molecule treated in this manner.
 - (3) A (Fab')₂ fragment of an antibody can be obtained by treating a whole antibody molecule with the enzyme pepsin, without subsequent reduction. A (Fab')2 fragment is a dimer of two Fab' fragments, held together by two disulfide bonds.

- (4) An Fv fragment is defined as a genetically engineered fragment containing the variable region of a light chain and the variable region of a heavy chain expressed as two chains.
- (5) A single chain antibody ("SCA") is a genetically engineered single chain molecule
 containing the variable region of a light chain and the variable region of a heavy
 chain, linked by a suitable, flexible polypeptide linker.

As used in this invention, the term "epitope" refers to an antigenic determinant on an antigen, such as an endoglucanase polypeptide, to which the paratope of an antibody, such as an endoglucanase-specific antibody, binds.

10 Antigenic determinants usually consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and can have specific threedimensional structural characteristics, as well as specific charge characteristics.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, *Nature*, 256:495-497, 1975), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., *Immunology Today* 4:72, 1983), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96, 1985).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic enzyme products of this invention. Also, transgenic mice may be used to express humanized antibodies to immunogenic enzyme products of this invention.

Antibodies generated against an enzyme of the present invention may be used in screening for similar enzymes from other organisms and samples. Such screening techniques are known in the art, for example, one such screening assay is described in Sambrook and Maniatis, Molecular Cloning: A Laboratory Manual (2d Ed.), vol. 2:Section 8.49, Cold Spring Harbor Laboratory, 1989, which is hereby incorporated by reference in its entirety.

- 21 -

The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight.

5

Example 1

Production of the Expression Gene Bank

An E. coli catalase negative host strain CAT500 was infected with a phage solution containing sheared pieces of DNA from Alcaligenes (Deleya) aquamarinus in pBluescript plasmid and plated on agar containing LB with ampicillin (100 ~g/mL), methicillin (80 ~g/mL) and kanamycin (100 ~g/mL) according to the method of Hay and Short (Hay, B. and Short, J., J. Strategies, 5:16, 1992). The resulting colonies were picked with sterile toothpicks and used to singly inoculate each of the wells of 96-well microtiter plates. The wells contained 250 ,uL of SOB media with 100 ~g/mL ampicillin, 80 ~g/mL methicillin, and (SOB Amp/Meth/Kan). The cells were grown overnight at 37°C without shaking. This constituted generation of the "SourceGeneBankn; each well of the Source GeneBank thus contained a stock culture of E. coli cells, each of which contained a pBluescript plasmid with a unique DNA insert. Same protocol was adapted for screening catalase from Microscilla furvescens.

 $\mathcal{E}_{\mathcal{V}}$

ij

75.

Example 2

20

Screening for Catalase Activity

The plates of the Source GeneBank were used to multiply inoculate a single plate (the "Condensed Plate") containing in each well 200 μ L of SOB Amp/Meth/Kan. This step was performed using the High Density Replicating Tool (HDRT) of the Beckman Biomek with a 1 % bleach, water, isopropanol, air-dry sterilization cycle in between each inoculation. Each well of the Condensed Plate thus contained 4 different

pBluescript clones from each of the source library plates. Nine such condensed plates were prepared and grown for 16h at 37°C.

One hundred (100) µL of the overnight culture was transferred to the white polyfiltronic assay plates containing 100 µL Hepes/well. A 0.03% solution of

5 hydrogen peroxide was made in 5 % Triton and 20 µL of this solution was added to each well. The plates were incubated at room temperature for one hour. After an hour, 50 ,µL of 120 mM 3-(p-hydroxyphenyl)-propionic acid and 1 unit of horseradish peroxidase were added to each well and the plates were incubated at room temperature for 1 hour. To quench the reaction, 50 ,µL of 1 M Tris-base was added to each well 1. The wells were excited on a fluorometer at 320 nm and read at 404 nm. A low value signified a positive catalase hit.

Example 3 Isolation and Purification of the Active Clone

In order to isolate the individual clone which carried the activity, the

Source GeneBank plates were thawed and the individual wells used to singly inoculate a new plate containing SOB Amp/Meth/Kan. As above the plate was incubated at 37°C to grow the cells, and assayed for activity as described above. Once the active well from the source plate was identified, the cells from the source plate were streaked on agar with LB/Amp/Meth/Kan and grown overnight at 37°C to obtain single colonies. Eight single colonies were picked with a sterile toothpick and used to singly inoculate the wells of a 96well microtiter plate. The wells contained 250 pL of SOB Amp/Meth/Kan. The cells were grown overnight at 37°C without shaking. A 100 μL aliquot was removed from each well and assayed as indicated above. The most active clone was identified and the remaining 150 μL of culture was used to streak an agar plate with LB/Amp/Meth/Kan. Eight single colonies were picked, grown and assayed as above. The most active clone was used to inoculate 3mL cultures of LB/Amp/Meth/Kan, which were grown overnight. The plasmid DNA was isolated from the cultures and utilized for sequencing.

Example 4

Expression of Catalases

DNA encoding the enzymes of the present invention, SEQ ID NOS: 7 and 9, were initially amplified from a pBluescript vector containing the DNA by the PCR technique using the primers noted herein. The amplified sequences were then inserted into the respective pQE vector listed beneath the primer sequences, and the enzyme was expressed according to the protocols set forth herein. The 5' and 3' oligonucleotide primer sequences used for subcloning and vectors for the respective genes are as follows:

10 Alcaligenes (Deleya) aquamarinus catalse: (pQET vector)

5' Primer

CCGAGAATTCATTAAAGAGGAGAAATTAACTATGAATAACGCATCCGCTG AC EcoRI (SEQ ID NO:1)

3 ' Primer CGGAAAGCTTTTACGACGCGACGTCGAAACG HindI I I (SEQ ID

15 NO:2)

Microscilla furvescens catalase: (pQET vector)

5' Primer

CCGAGAATTCATTAAAGAGGAGAAATTAACTATGGAAAATCACAAACACT CA EcoRI (SEQ ID NO:3)

20 3' Primer CGAAGGTACCTTATTTCAGATCAAACCGGTC Kpnl (SEQ ID NO:4)

The restriction enzyme sites indicated correspond to the restriction enzyme sites on the bacterial expression vector indicated for the respective gene (Qiagen, Inc. Chatsworth, CA). The pQET vector encodes antibiotic resistance (Ampr), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (PPS), a 6 His tag and restriction are

25 binding site (RBS), a 6-His tag and restriction enzyme sites.

The pQET vector was digested with the restriction enzymes indicated. The amplified sequences were ligated into the respective pQET vector and inserted in

frame with the sequence encoding for the RBS. The native stop codon was incorporated so the genes were not fused to the His tag of the vector. The ligation mixture was then used to transform the E. cold strain UM255tpREP4 (Qiagen, Inc.) by electroporation. UM255/pREP4 contains multiple copies of the plasmid pREP4, 5 which expresses the lacl repressor and also confers kanamycin resistance (Kanr). Transformants were identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies were selected. Plasmid DNA was isolated and confirmed by restriction analysis. Clones containing the desired constructs were grown overnight (O/N) in liquid culture in LB media supplemented with both Amp 10 (100 u μ /ml) and Kan (25 u μ /ml). The O/N culture was used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells were grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. IPTG ("Isopropyl-B-D-thiogalacto pyranosiden") was then added to a final concentration of 1 mM. IPTG induces by inactivating the lacl repressor, clearing the P/O leading to increased gene expression. Cells were 15 grown an extra 3 to 4 hours. Cells were then harvested by centrifugation. The primer sequences set out above may also be employed to isolate the target gene from the deposited material by hybridization techniques described above.

-t.

Cited Literature

- 1) Patent 5, 439,813, Aug. 8, 1995, Production of glyoxylic acid with glycolate oxidase and
- catalase immobilized on oxirane acrylic beads, Anton, D. L., Wilmington, DE,
- 5 DiCosimo,
 - R., Wilmington, DE, Gavagan, I.E., Wilmington, DE.
 - 2) Patent: 5,360,732, Nov.1, 1994, Production of Aspergillus niger catalase-R, Berka, R.
 - M., San Mateo, CA, Fowler, T., Redwood City, CA, Rey, M.W., San Mateo, CA.
- 3) Patent: 4,460,686, 1ul. 17, 1984, Glucose oxidation with immobilized glucose oxidasecatalase, Hartmeier, W., Ingelheim am Rhein, Germany
 - 4) Patent: 5,447,650, Sep. 5, 1995, Composition for preventing the accumulation of inorganic deposits on contact lenses, Cafaro, D.P., Santa Ana, CA
 - 5) Patent: 5,362,647, Nov. 8, 1994, Compositions and methods for destroying
- 15 hydrogen
 - peroxide, Cook, I.N., Mission Viejo, CA, Worsley, I.L., Irvine, CA.
 - 6) Patent: 5,266,338, 1993, Cascione, A.S., Rapp, H.
 - 7) Patrick Dhaese, "Catalase: An Enzyme with Growing Industrial Potential~ CHIMICA OGGIA/Chemistry Today, Jan/Feb, 1996.

What Is Claimed Is:

- Substantially pure catalase having an amino acid sequence of SEQ ID NO:7 or SEQ ID NO:9
- 2. An isolated polynucleotide sequence encoding a catalase of claim 1.
- 3. An isolated polynucleotide selected from the group consisting of:
 - a) SEQ ID:6 or SEQ ID NO:8;
 - b) SEQ ID:6 or SEQ ID NO:8, wherein T can also be U;
 - c) nucleic acid sequences complementary to a) and b); and
 - d) fragments of a), b), or c) that are at least 15 bases in length and that will selectively hybridize to DNA which encodes the amino acid sequences of SEQ ID Nos:7 or 9, respectively.
- 4. The polynucleotide of claim 2, wherein the polynucleotide is isolated from a prokaryote.
- 5. An expression vector including the polynucleotide of claim 2.
- 6. The vector of claim 5, wherein the vector is a plasmid.
- 7. The vector of claim 5, wherein the vector is a virus-derived.
- 8. A host cell transformed with the vector of claim 5.
- 9. The host cell of claim 8, wherein the cell is prokaryotic.
- 10. Antibodies that bind to the polypeptide of claim 1.

- 11. The antibodies of claim 10, wherein the antibodies are polyclonal.
- 12. The antibodies of claim 10, wherein the antibodies are monoclonal.
- 13. An enzyme comprising a member selected from the group consisting of:
 - an enzyme comprising an amino acid sequence which is at least 70% identical to the amino acid sequence set forth in SEQ ID NO:7 or SEQ ID NO:9; and
 - b) an enzyme which comprises at least 30 amino acid residues to an enzyme of a).
- 14. A method for producing an enzyme comprising growing a host cell of claim 8 under conditions which allow the expression of the nucleic acid and isolating the enzyme encoded by the nucleic acid.
- 15. A process for producing a cell comprising: transforming or transfecting the cell with the vector of Claim 5 such that the cell expresses the polypeptide encoded by the DNA contained in the vector.
- 16. A method for catalyzing an oxidation reaction comprising contacting a substrate with an effective amount of an enyzme selected from the group consisting of an amino acid sequence set forth in SEQ ID NOS: 7 or 9, thereby catalyzing an oxidation reaction.
- 17. A method for detection or destruction of hydrogen peroxide in a sample comprising contacting the sample with an effective amount of an enzyme having an amino acid sequence set forth in SEQ ID NO:7 or SEQ ID NO:9, and detecting the presence of hydrogen peroxide in the sample.

WO 98/00526 PCT/US97/16513

FIGURE 1

Alcaligenes (Deleya) aquamarinus Catalana - 64CA2

					•																
1	ATO	AAT	AAC	GCA	TCC	GCT	GAC	CAT	CTA	CAC	AGT	AGC	110	CAG	CV	ACA	TO	: ACU	, QC	TIT	60
1	Met	Aen	Aan	Ala	Ser	Ale	Asp	Asp	Leu	His	Ser	Ser	Leu	Gl n	Gla	Arg	Cy	Arg	, Ale	Phe	20
61	GTT	CCC	TTO	GTA	TCG	CCA	AGG	CAT	AGA	GCA	ATA	AGG	GAG	AGA	GCT	DTA	AGC	007	·	TGT	120
21																				Cys	40
							_														
121	cct	GTC	ATG	CAC	OCT	OCT	AAC	ACC	TCG	ACC	OCT	ACT	TCC	AAC	***	GAT	TGO	TOC	CCG	CAA	160
41																				Glu	60
					·																
161	CCO	TTG	AAC	CIG	GAT	ATT	TTG	CAT	CAG	CAA	GAT	ccc	AAA	TCA	GAC	ccs	ATO	GAT	cca	CAT	240
61																			Pro		80
241	TIC	AAC	TAC	CCT	GYY.	AAD	GTA	CGC	AAG	ctc	CAT	TTC	GAC	GCG	CTG	MG	***	CAT	CTC	CAC	300
81	Phe	Asn	Tyr	Arg	Glu	alu	Val	Arg	Lya	Leu	Asp	Phe	Asp	Ala	Leu	Lys	Lye	Asp	Val	Hie	100
301	ocs	TTG	ATG	ACC	GAT	AGC	CAA	GAG	TGG	TGG	CCC	GCT	GAC	TGG	933	CXC	TAC	GGC	COI	110	360
101	Ala	Leu	Het	Thr	Asp	Ser	Gln	Glu	Irp	Trp	PTO	Ala	λap	Trp	Gly	Kie	Tyr	GIY	CJA	Leu	120
361																			GGG		420
121	Met	Ile	Arg	Het	Ala	Trp	Hio	Ser	Ala	Gly	Thr	IÀI	Arg	Ile	Y) =	λap	GIY	yrg	GIY	Gly	140
421																			AGC		480
141	Gly	Gly	Thr	Gly	Ser	Gln	Arg	Phe	Ala	Pro	Leu	Asn	Ser	Trp	Pro	yab	Aen	Val	Ser	Leu	160
481	CAT	AAA	¢CG	ccc	œा	CIG	CIG	TCG	CCG	ATC	AAG	AAG	AAG	TAC	GGC	AAC	AAA	ATC	AGC	TGG	540
161	Asp	Lys	Ale	Yzd	Arg	Lou	Leu	Trp	Pro	Il.	Lye	Lys	Lys	Įλī	Gly	Ken	(y=	Ile	Ser	Trp	180
	GCA																				600
161	Al a	yeb	Leu	Het	Il-	Lou	Ala	Gly	Thr	Val	Ala	Tyr	Glu	Ser	Met	GIA	Leu	PEO	YIE	TYT	200
601	GGC	TIC	TCT	TIC	GGC	CGC	arc.	GAT	ATT	166	GAA	ece	-		uni.	ALC.	120	100 T	GGT	200	660
201	Gly	Phe	Ser	Phe	dly	Arg	Val	Asp	IIo	11b	OId	b.c.	GIU	LYB	Asp	TIG	TA:	LLP	GIY	Mary.	220
														~~				~~	CNG	100	720
661																			GAG		240
221	Glu	Lys	Glu	Trp	Leu	A. a	Sio	Ser	Asp	GIG	Arg	IYZ	GIY	VBD	441	A-11	Lys	113	Glu	-112	240
	DTA								~~ .		-	cero.	B-T-C	T AT	ana.	AAC	ccc	GAA	GCT	CTT	780
	ATG	GAA	AAC	cco	CIU	11-	51-	n-1	GIA.	Mar	WI.	Lati	Tle	TVT	Val	Asn	Pro	Glu	Cly	Val	260
241	Het	CIU	ASI3	PIO	Leu	~	~14	***	41.	,,,,	,			•,•			•••		,		•
781	AAC	acc	CR.C	~ ~	GAT	CCG	CTG.	AGA.	ACC	GCA	CAG	CMG	OTA	CII	CAA	ACC	TTC	GCC	CCT	ATG	840
261	Asn	alv	Hi.	PTO	Aso	Pro	Leu	Aru	Thr	Ala	Gln	Gln	Val	Leu	Glu	Thr	Phe	Ala	λrg	Mec	200
		,			,	•••		•											-		
041	GCG	ATG	AAC	GAC	GAA	***	ACC	GCA	GCC	CTC	ACA	GCT	GGC	ggC	CAC	ACC	OTC	oct	AAT	TGT	900
	Ala																				300
				•	-	•							-	_							
901	CAC	GGT	AAT	ggc	AAT	acc	TCT	QCG	TTA	occ	CCT	GAC	CÇA	***	acc	TCT	GAC	GTT	GAA	AAC	960
301																			Glu		320
		-	_	•																	
961	CAG	GGC	TTA	GGT	TOO	aac	AAC	ccc	AAC	ATG	CAG	990	AAG	GCA	AGC	AAC	GCC	GTG	ACC	TCG	1020
321	Gln	Gly	Leu	Gly	Trp	Gly	Asn	Pro	Asn	Mec	Gln	Gly	Lye	Ala	Ser	Aen	Ala	Val	Thr	Ser	340
021																			GAC		1080
341	Gly	Ile	Glu	aly	Al=	Trp	Thr	Thr	Aen	Pro	Thr	Lye	Phe	yab	Hac	aly	Tyr	Phe	Asp	Leu	360

1081 CTG TTC GGC TAC AAT TOO GAA CTG AAA AAG AGT CCT GGC GGT GGC CAC CAT TOG GAA CCG 1140 161 Leu Phe Gly Tyr Aen Trp Glu Leu Lye Lye Ser Pro Ala Gly Ala His His Trp Glu Pro 1141 ATT GAG ATC AAA AAG GAA AAC AAG GCG GTT GAC GCC AGC GAC CCC TCT ATT CGC CAC AAC 1200 381 Ile Asp Ile Lye Lye Glu Asn Lye Pro Val Asp Ala Ser Asp Pro Ser Ile Arg His Asn 400 1201 CCG ATC ATG ACC GAT GCG GAT ATG GCG ATA AAG GTA AAT CCG ACC TAT CGC GCT ATC TGC 401 Fro Ile Mct Thr Asp Ala Asp Mct Ala Ile Lye Val Asn Pro Thr Tyr Arg Ala Ile Cys 1261 GAA AAA TTC ATG GCC GAT CCT GAG TAC TTC AAG AAA ACT TTC GCO AAG GCG TGG TTC AAG 1320 421 Glu Lys Phe Met Ala Asp Pro Glu Tyr Phe Lys Lys Thr Phe Ala Lys Ala Trp Phe Lys 440 1321 CTG ACG CAC CGT GAC CTG GGC CCG AAA TCA CGT TAC ATC GGC CCG GAA GTG CCG GCA GAA 1380 441 Leu Thr His Arg Asp Lau Gly Pro Lys Ser Arg Tyr Ile Gly Pro Glu Val Pro Ala Glu 460 1381 GAC CTG ATT TOG CAA GAC CCG ATT CCG GCA GGT AAC ACC GAC TAC TGC GAA GAA GTG GTC 461 Asp Leu Ile Trp Gln Asp Pro Ile Pro Ala Gly Asn Thr Asp Tyr Cye Glu Glu Val Val 1441 AAG CAG AAA ATT GCA CAA AGT GGC CTG AGC ATT AGT GAG ATG GTC TCC ACC GCT TGG GAC 481 Lys Oln Lys Ile Ala Gin Ser Gly Leu Ser Ile Ser Glu Met Val Ser Thr Ala Trp Asp 1501 AGT GCC CGT ACT TAT CGC GGT TCC GAT ATG CGC GGC GGT GCT AAC GGT GCC CGC ATT CGC 1560 SG1 Ser Ala Arg Thr Tyr Arg Gly Ser Asp Het Arg Gly Gly Ala Asn Gly Ala Arg Ile Arg 1561 TTG GCC CCA CAG AAC GAG TGG CAG GGC AAC GAG CCG GAG CGC CTG GCG AAA GTG CTG AGC 1620 521 Lou Ala Pro Cln Asn Glu Trp Gln Gly Asn Glu Pro Glu Arg Lou Ala Lye Val Lou Ser 1621 GTC TAC GAG CAG ATC TCT GCC GAC ACC GGC GCT AGC ATC GCG GAC GTG ATC GTT CTG GCC 1680 541 Val Tyr Glu Gln Ile Ser Ala Aep Thr Gly Ala Ser Ile Ala Aep Val Ile Val Leu Ala Sco 1681 GGT AGC GTA GGC ATC GAG ANA GCC GCG ANA GCA GGA GGT TAC GAT GTG GGC GTT CCC TTC 1740 561 Gly Ser Val Gly Ile Glu Lye Ala Ala Lye Ala Ala Gly Tyr Asp Val Arg Val Pro Phe 580 1741 CTG AAA GGC COT GGC GAT GCG ACC GCC GAG ATG ACC GAC GCA GAC TCC TTC GCA CCG CTG 1800 S81 Leu Lys Gly Arr Gly Asp Ala Thr Ala Glu Met Thr Asp Ala Asp Ser Phe Ala Pro Leu €00 1801 GAG CCG CTG GCC GAT GGC TTC CGC AAC TGG CAG AAG AAA GAG TAT GTG GTG AAG CCG GAA 1860 601 Glu Pro Leu Ala Asp Glv Phe Ard Asp Trp Gln Lvs Lvs Glu Tvr Val Val Lvs Pro Glu 620 1961. GAG ATG CTG CTG GAT CGT GCG CAG CTG ATG GGC TTA ACC GGC CCG GAA ATG ACC GTG CTG 621 Glu Het Leu Leu Asp Arg Als Gln Leu Het Gly Leu Thr Gly Pro Glu Het Thr Val Leu 1921 CTG GGC GOT ATG CGC GTA CTG GGC ACC AAC TAT GOT GGC ACC AAA CAC GGC GTA TTC ACC 1960 641 Leu Gly Gly Met Arg Val Leu Gly Thr Asn Tyr Gly Gly Thr Lys Ris Gly Val She Thr 1981 GAT TOT GAA OGC CAG TTG ACC AAC GAC TTT TTT GTG AAC CTG ACC GAT ATG GGG AAC AGC 661 Asp Cys Glu Gly Gln Leu Thr Asn Asp Phe Phe Val Asn Leu Thr Asp Het Gly Asn Ser 680 2041 TGG AAG CCG GTA GGT AGC AAC GCC TAC GAA ATC CGC GAC CGC AAG ACC GGT GCC GTG AAG 481 Trp Lys Pro Val Gly Ser Asn Ala Tyr Glu Ile Arg Asp Arg Lys Thr Gly Ala Val Lys 2101 TGG ACC GCC TCG CGG GTG GAT CTG GTA TTT GGT TCC AAC TCG CTA CTG CGC TCT TAC GCA 2160 701 Trp Thr Ala Ser Arg Vel Asp Leu Val Phe Gly Ser Asn Ser Leu Leu Arg Ser Tyr Ala 720 2161 GAA OTG TAC OCC CAG GAC GAT AAC GGC GAG AAG TTC OTC AGA GAC TTC OTC GGC GCC TGG 2220 721 Glu Val Tyr Als Gln Asp Asp Asn Gly Glu Lye Phe Val Arg Asp Phe Val Ala Ala Trp 740 2221 ACC AAA GTG ATG AAC GCC GAC CGT TTC GAC GTC GCG TGG TAA 2262 741 Thr Lys Val Met Aen Ala Asp Arg Phe Asp Val Ala Ser End 754

į.

WO 98/00526 PCT/US97/16513

FIGURE 2 Microscilla furvescens Catalase 53CX1

	ATG					C) C	TCA	GG1	TCT	tcr	ACG	TAT	AAC	ACA	AAC	ACT	GGC	GGA	AAA	TOC	60
1	Het	aw.	MT.	CAC.	Lvie	Hie	Ser	gly	Ser	Ser	Thr	Tyr	A øn	Thr	Aen	Thr	gly	aly	Lys	Cy•	20
61	CCI	111	ACC	ADO	got	TCO	crr	AAG	CVA	AGT	GCA	OCT	OOC	GOC	ACC	***	AAC	AGG	CAT	100	120
21	Pro	Phe	Thr	Gly	Gly	Ser	Leu	Lye	Qln	Ser	Ala	gly	gly	GJA	Thr	Lys	Asn	Arg	Asp	Trp	40
																					180
121	TGG	ccc	AAC	ATG	ctc	AAC	CIC	GGC	ATC	TTA	CCC	CAX	CAT	TCA	100	Lau	Ser	AAD	Pro	Asn	60
41	Trp	Pro	Asn	Met	Leu	Asn	Leu	Gly	Ile	Leu	Arg	GIN	n10	341							
	GAC				C) C	T 2 T	acc	GAA	GAG	111	MG	AAG	CTA	GAT	ctc	GCA	GCG	GTT	**	AAG	240
161	GAC Asp	CCG	CAT	III	AAD	TVE	Ala	Glu	Glu	Phe	Lye	Lye	Lou	Asp	Leu	Ala	Ala	Val	Lye	Lys	80
241	GAC	CIO	GCA	acc	CTA	ATO	ACA	CAT	TCA	CAG	GAC	TOG	TOO	CCY	GCA	GAT	TAC	GGT	CAT	TAT	300 100
81	Asp	Leu	Ala	Ala	Leu	Het	Thr	Asp	Sor	Gln	Asp	Trp	Trp	Pro	Al-	Aap	тух	OIY			100
												~~	000	BCC.	TRC	CCT	ATC	ogt	GAT	GGC	360
301	GGC Gly	CCC	πc	TII	ATA	ccc	ATG	GCG	100	CAC	AUC.	314	alv	Thr	īvr	Arg	Ile	Gly	λap	aly	120
101	aly	Pro	Pho	Phe	Ile	Arg	Met	W1=	trb	ure	961	~~	,		-7-	•					
			000	OOT.	ac c	TCC	aac	TCA	CAG	œc	TTC	aca	CCT	CIC	art	AGC	TGG	CCY	CAC	AAT	420
361	Arg	GO1	alv	alv	Gly	Ser	aly	Ser	Gln	Arg	Phe	Ala	Pro	Leu	Yeu	Ser	Trp	Pro	yeb	Asn	140
																					480
421	GCC	AAT	cro	GAT	AAA	GCA	CGC	TTG	ता	CIT	TGG	CCC	ATC	***	CN.	****	TAC	GGT	ATG	Lve	160
141	Ala	Aen	Leu	Asp	Lye	Ala	Arg	Leu	Lou	Leu	Trp	Bro	I1•	Lye	GIN	rye	TAT	417	~~3	-1-	•••
	ATC					_					aca.	aac	GTA	act	CIG	an.	ACT	ATG	ggc	TII	540
	ATC Ile	TCC	TOO	aca	CAT	CIA	Mar	Tie	Lau	Thr	alv	Asn	Val	Ala	Leu	Gl u	The	Met	Gly	Phe	180
161																					
641	***	ACT	111	act	TII	GCA	GST	GGC	AGA	GCA	GAT	OTA	TGG	CAG	CCI	هدي	CYX	ÇλŢ	GEA	TAC	600
181	Lye	Thr	Phe	aly	Phe	Ale	Gly	Gly	Arg	Ala	kap	Val	Trp	alu	Pro	Glu	Glu	Yab	VAI	TYT	200
																					660
601	TGG Tep	GGA	CCA	CAN	ACC	: CXX	TGG	CIG	GGA	CAC	Tank	Ave	TVI	Glu	aly	Asp	Arg	Glu	Leu	Glu	220
201																					
	AAT			a caca	acc	OTA	CAA	ATG	QGA	CTC	ATC	TAT	GIA	AAC	CCC	GYY.	CCLA	CCC	AAC	GGC	720
221	AAT Aan	PEO	Lev	Gly	. YJ=	Val	Gin	Het	Gly	Leu	Ile	TYT	Vel	Le n	510	Olu	Qlγ	Szo	λen	gly	240
																					780
721	AAG	CCA	CAC	. cc:	ATC	: GCT	cci	COS	CCI	GAT	ATT	COT.	GAG	The	Phe	alv	Arg	Het	Ala	Het	260
241					Ile																
***	AAT		- 481	GAA	. ACC	e one	act	CTC	ATA	GCG	GGT	OCIX	фC	ACC	TTC	OCY	AAA	ACC	CAT	COT	640
781	AAT	Ast	Gli	alv	. Thi	. Val	Ale	Leu	Ile	Ale	Gly	Gly	Hi=	Thr	Phe	Gly	Lye	Thr	His	gly	260
																					900
841	CCI	GC.	: GA	c acc	GAC	ואו	TA1	OTO	GGC	CGA	CAC.	CCT	GCC	9000	al a	GUI	Ile	Glu	Glu	ATG	300
	GCT Ala																				
	AGO						- 10	TAC	: ago	ACC	GGA		GGT	aca	GAT	ACC	ATC	ACC	ACT	GGA	960
	AGC	CR	. a).	3 3 CA	o Lvi	a Asi	n Thi	Ty	gly	Thi	Gly	Hie	Gly	Ala	Asp	Thr	Ile	Thr	Ser	Gly	320
301	•																				
961	CI	, av	N OG	c a c	C TO	g ac	C AN	3 AC	: 001	י אכז	. OY	TGO	AGC	. AAT	AAC	777	TII	. CO.	AAC	CTC	1020
321	Lei	g Gl	u 01	y al	a Tr	p Th	r Ly	Th	Pro	Tha	: Gln	Try	Ser	Asn	Aan	, Aue	. kue	GIG		Lou	340
											. (مر	903	OCT	TAT	- CM	TGG		CCA	AAA	1080
1021	117	00	T TA	c cav	0 10	g (2)	9 CT	F ACI	. ANI E Javi	. Aus	Pro	Ale	aly	AL	Tyz	ala	Tr	Lye	Pro	Lys	360
341																					
1081	GA.	: aa	T 00	c 00	a ac	T 00	C AC	C AT	A CO	a CAX	. 00	(CA.1	GAT	ccc	: AGC		TO	CAC	: ocz	CCA	1140
361	As	p G1	y Al	a G1	y Al	a G1	y Th	r Il	e Pr	o Asy	Ale	Hic	yet	Pro	Ser	Lye	5et	. H14	. Als	Pro	380

WO 98/00526 PCT/US97/16513

11	•1	TTT .	ATG	-	C A	CT A	cc c	AC C	TO O	co c	TO (30C /	ATG (GA C	CCI	CAT	TAC	GAA	AAA	ATT	T	टा टब	120	0
31		ine i	Mec	Let	u Ti	T T	hr A	ep L	eu A	ia I	.eu J	rg I	Het /	kap	Pro	Aep	Tyt	Olu	Lye	Ile	. s.	or Ar	400	
120		~ ~ ·		~																				
	11 2		N-	70	- 01		AC C	CT G	AT G	AG T	TT	CAC	MT (CT	TTC	aca	***	GCA	100	TAC	: AJ	u cro	126	0
••		-9	.,.	.,.		, .		ro A	вр ч	IU P	ne A	TW W	rab	.14	Phe	Ala	Lys	Ala	Trp	Tyr	Ly	s Lei	420	
126	1 A	ca c	ac.	a Ca	. ca	T 3	רים הצי	3A C	~R B:		***	nc =		-								A GAC		
42	1 7	hr H	lia	Aro		n Ma	. C (1)			V	.1 .	uc 1	AC C	.TU (ALA.	CCA	CAA.		-	CYG	GA.	А САС И Авр	1320	0
								.,		,	^	-9 .	y	, mu (JLY	PLO	O.Lu	ANT	PTO	GIN	G1	u Asp	440	
132	1 0	TC A	TC	TOO	CA	A GJ	ים כנ	T AT	A C	.	AT G	TA A	ac c	at c	, T	~~	OTA .	GAC.	CBA			T ATT		
44																						ı Alı P Ile	1360	,
				•			•				•							~~p	4.4	V-41	~	b 119	460	
130	1 6	u c	GC (CTA	AA.	A GC	C AA	A AT	c cı	. a	LA TO		a c	A DZ	.ca (JTA .	AGC (GRG (CTO .	GTA	AG	C ACG	1440	
46	1 0	Lu a	ly i	Leu	Ly	s Al	a Ly	• Il	o La	u 01	iu Se	r a	ly L	eu T	hr \	/al .	Ser (3lu I	Leu '	Val	Sei	The	480	
144	L GC	n K	3 6 (CT	TC	c ac	A TC	T AC	1 11	TAG	K A4	C TO	.T @	lc a	AG C	:0C (30C (आर (occ a	М¢	OG1	GCA	1500	
463	L Al	a T	د ک	Lla	Se	r Al	a 5e	r Th	r Ph	• Ar	g As	n Se	r A	p L	ye A	ra (aly o	ly s	(la)	lan :	Gly	Ala	500	
1501	. ∝	T AI	CA C	CA.	CI	GC	c ca	N CN		N CA	C TO	G CU	y Q	X A	VC Y	AC C	cr c	240 0	**	 .	GCC	AGG	1560	
501	Az	g II	. a X	æg	Leu	Al	a Pro	o Oli	1 Ly	. Ye	p Tr	b 01	u Va	1 A	n y	en P	ro a	in a	iln L	eu /	Ala	Arg	\$20	
																	c a c						1620	
7-1	•		-	y =	MI	-	: 611	, et	114	. GI	u GT	u as	P Nu	8 A4	in C.	IN X	la G	in S	er X	₽Þ Å	len	Lys	540	•
1621	CC	. GT	a T	~	TTG	GCC	GAC	- CTG	1 277	. GT	3 (37)	3 60	c 00	c Tro	r 0/	~ ~	-T 0	- 0						
																	ly V						1600 560	
							•							,			-,			,		~	340	
1631	XX.	CA	T G		GGC	CAI	GAG	GTO	CAG	GTG		110	CAA	c cc	G GC	a c	2A CC	30 CJ	AT GO	C A	cc	GCT	1740	
																	rg Al						520	;
																			-					
1741																	T CA						1800	
581	Glu	Gli	n Ti	ur i	Lap	Val	Glu	Ala	Phe	Glu	Ala	Leu	. Glu	Pr	o Al	a Al	a As	p 01	y Ph	a A	rg .	Asn	600	•
1001																	y CY						1860	
601	-77z	ă.i.	Ly	's 1	Pro	GIL	His	Lys	Val	Se:	Ala	Glu	Glu	Hel	Le	u Va	l As	ף אב	g Al	2 G)	ln.	Leu	620	
1861	<u></u>	TO			-~-	-C-1		~	1.70	.~	-		_				s es					_		
621																	C Ar						1920	•
								414		****	~		***	473	4 1	7 40		y va	T De	a 01	Y	INF	640	
1921	AAC	TAC	: ca	c	GT	TCG	CAG	CAT	GGÁ	GTG	TIT	ACA.	AAT	AAG		3 GC	T CAC	: cr:	l TC	C 83	T (33.0	1980	
641																							660	
				-	-				•								,						•••	
1901	TTC	111	GE	. .	AC	CIG	CTA	arc	CTC	AAC	ACT	***	TOG	CGA	acc	: AG	C GAI	·	l TO		c ,	u.	2040	
																	r Aep						680	
																						_		
2041																							2100	
681	Val	Pha	G1 1	1 3	ly i	Arg	yab	Phe	Lye	The	GIY	Glu	Val	Lye	Trp	501	c Oly	The	Arg	Va.	ג נ	ap qa	700	
	~~		_						- -								_							
701	Len	AIC Tla	11(. 0		LCC .	AAT '	rcc	الىك دادە	CIX	AGA	950	CLC	6CX	GYY	oro	TAC	600	101	. ea	A G		2160	
701	J-34	-14	5714		4Y 3	>= F		aer	atn	u=U	vī.ā	WTE	ren	W! #	Glu	VAL	īyī	Gly	CA	Al	• A	ep.	720	
161	TCT	GYY.	QX.	L ALI	AØ 1	TT I	GIT .		CAT '	177	ara.	11d	acc	TO	acc.	222		3~~	<i>a.</i> -					
721	Ser	Glu	Glu	L	ye 1	he '	Val	Lye	an Nan	Phe	Val	Lv=	Al-	Tro	Al-	Luc	V-1	MAP	anc.	CTC	. c	AC .	2220	
				•	•		-	•	•	-		-,-			,	-, •			~=P			-P	740	
221	COO	111	GAT		10 1	w.	IAA	22:	38															
741	Arg	Phe	Asp	L	eu I	ys I	End	740	•															

INTERNATIONAL SEARCH REP RT

Form PCT/ISA/210 (second sheet)(July 1992)*

International application No. PCT/US97/16513

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12N 9/08, 15/53, 15/63, 1/21, 15/09; C12P 1/00; C12Q 1/30 US CL :435/192, 320.1, 252.3, 41, 27; 536/23.2									
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED									
Minimum documentation searched (classification system follows	d by classification symbols)								
U.S. : 435/192, 320.1, 252.3, 41, 27; 536/23.2									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.									
C. DOCUMENTS CONSIDERED TO BE RELEVANT	C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where a	opropriate, of the relevant passages Re	elevant to claim No.							
X FORKL H. et al. Molecular Cloni Expression of the Gene for Catalase-		13							
A Photosynthetic Bacterium Rhodobacte		2, 4-9, 14-17							
Biochem. 1993, Vol. 214, pages 251-2	· · · · · · · · · · · · · · · · · · ·	, ,							
X LOPRASERT, S. et al. Cloning,	Nucleotide Sequence, and 3.	3, 13							
Expression in Escherichia coli of the	• '								
A Peroxidase Gene (perA). J. Bacteriol		2, 4-9, 14-17							
No. 9, pages 4871-4875, see Figure 2	•								
Further documents are listed in the continuation of Box C	See patent family annex.								
Special entegories of eited documents:	To later document published after the internation date and not in conflict with the application	but sited to understand							
"A" document defining the general state of the art which is not considered to be of particular relovance	the principle or theory underlying the invent "X" document of particular relevance; the claim								
E cartier document published on or ofter the international filling data *L* document which may threw doubts on priority claim(s) or which is	engineered novel or encant the considered to i	nvolve an investive step							
"L" document which may threw doubts on priority claim(s) or which is sited to establish the publication date of another election or other special reason (as specified)	*Y* document of perticular relevance; the claim								
O document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive step combined with one or more other such docu- being obvious to a person skilled in the art								
P document published prior to the international filling date but later then the priority data elaused	*&* document trember of the same patent family	у							
Date of the actual completion of the international search	Date of mailing of the international search	report							
15 OCTOBER 1997	3 1 OCT 1997								
Name and mailing address of the ISA/US	Authorized officer								
Commissioner of Patents and Trademarks Box PCT Westigner D.C. 20031	REBECCA PROUTY MA								
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196								

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/16513

. * .

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, MEDLINE, SCISEARCH, LIFESCI, EMBASE, WPI, CAS, NTIS, BIOTECHDS, BIOSIS search terms: catalases, acaligenes or delaya or aquamarinus, microscilla or furvescens

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-9 and 13-17, drawn to catalases, method of making and method of use thereof. Group II, claims 10-12, drawn to catalase antibodies.

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they tack the same or corresponding special technical features for the following reasons: the proteins of Groups I and II are structurally unrelated amino acid sequences.

The second secon