

Science and Engineering

EBU4202: Digital Circuit Design Number Systems & Codes Tutorials

Dr. Md Hasanuzzaman Sagor (Hasan) Dr. Chao Shu (Chao) Dr. Farha Lakhani (Farha)

School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom.

Conversion

Digits in base R range from 0 to (R-1).

Conversion: Any Base to Decimal

Example: Conversion of binary to decimal

$$10011_2 = ?$$

Example: Conversion of base 5 to decimal

$$4321_5 = ?$$

Example: Conversion of base 5 to decimal

$$12.3_5 = ?$$

Non-integer to Binary Conversion

Example: Convert 225.50 to binary

• Example: 110110111001₂ to decimal

Example: Conversion of binary to octal

$$101110_2 = (?)_8$$

Review: Subtraction with 2's Complement

This can be rewritten as: $23_{10} + (-45_{10})$, so we need to convert the binary representation of 45_{10} to two's complement.

To subtract two signed numbers, take the 2's complement of the subtrahend and add. Discard any final carry bit.

Binary – 2's Complement

- Conversion to 2's complement:
 - Positive numbers: same as simple binary.
 - Negative numbers:

- 1. Obtain the *n-bit* simple binary equivalent.
- 2. Invert the bits of that representation.
- 3. Add 1 to the result.

Example 1: Convert -276₁₆ to 16-bit 2's complement

Example 2: Perform the following subtraction of signed

numbers: $15_{10} - 6_{10}$

Example 3: Perform the following subtraction of signed

numbers: $00001100 - 11110111 [12_{10} - (-9_{10})]$

Example 4: Perform the following subtraction of signed

numbers: $11100111 - 00010011 [-25_{10} - (+19_{10})]$

Review: Floating Point Formats (2/3)

Denormals are used for values very close to zero.

Example: IEEE-754 FP

- 1. Represent 145.84375₁₀ in floating point format:
- 2. Convert the IEEE-754 floating point number

Review: Odd and Even Parity

What is actually sent when even parity has been agreed.

	·S'	'E'
ASCII	101 0011	100 0101
Even parity	0101 0011	1100 0101
Odd Parity	1101 0011	0100 0101

- Example (detection of a 1-bit error):
 - ASCII 'S' is sent (i.e., send 1010011₂), but value 01010010₂ is received.

Assuming value 01010010₂ is received, can Parity Checking detect an error when character 'S' is sent, if even parity has been agreed?

sent = 01010011 ('S')

received = 01010010

Received value has odd number of 1's (so doesn't obey even parity), so error is detected (1 bit flipped).

Example: Odd and Even Parity

What is actually sent when even parity has been agreed.

	'S'	'Е'
ASCII	101 0011	100 0101
Even parity	0101 0011	1100 0101
Odd Parity	1101 0011	0100 0101

- Example (detection of a 1-bit error):
 - ASCII 'E' is sent (i.e., send 1000101₂), but value 01010010₂ is received.

What if instead we send character 'E' and *odd parity* has been agreed? Can Parity Checking detect an error?

Example: Odd and Even Parity

What is actually sent when even parity has been agreed.

	'S'	E ,
ASCII	101 0011	100 0101
Even parity	0101 0011	1100 0101
Odd Parity	1101 0011	0100 0101

- Example: (detection of a 1-bit error):
 - ASCII 'E' is sent (i.e., send 1000101₂) and even parity has been agreed, but value 00000101₂ is received. Can Parity Checking detect an error?

EBU4202: Digital Circuit Design Switching Algebra Tutorial

Dr. Md Hasanuzzaman Sagor (Hasan)
Dr. Chao Shu (Chao)
Dr. Farha Lakhani (Farha)

School of Electronic Engineering and Computer Science,

Queen Mary University of London,

London, United Kingdom.

Review Gates

Review Gates

AND

Input		Output	
Α	В	Χ	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

$$X = A.B$$

OR

Input		out	Output	
	A B		X	
•	0	0	0	
	0	1	1	
	1	0	1	
	1	1	1	
			-	

$$X = A + B$$

NOT

Input	Output
Α	Χ
0	1
1	0

$$X = A'$$

Review Gates

NAND

NOR

XOR

XNOR

$$F = (A+B)'$$

$$F = A'B + AB'$$

$$F = A'B' + AB$$

Adsorption Theorem

Adsorption Theorem (not in the textbook): $(T^*) \times X + X'Y = X + Y$ $(T^*)' \times X(X' + Y) = XY$

Proof:

$$X + X'Y = (X + X')(X + Y)$$
 (T8')
= 1.(X+Y) (T5)
= X+Y (T1')

$$(T8')$$
 $(X + Y)$ $(X + Z) = X + YZ$
 $(T5)$ $X+X' = 1$
 $(T1')$ $X \cdot 1 = X$

Example (1/3): Two Equations

• Show that $F_1 = F_2$ using a Truth Table.

$$F_1 = X' \cdot Y' \cdot Z + X' \cdot Y \cdot Z + X \cdot Y'$$

$$F_2 = X' \cdot Z + X \cdot Y'$$

To prove the equality, we can use Switching Algebra theorems **T8** + **T5**.

$$(T8) \rightarrow XY + XZ = X(Y + Z)$$

$$(T5) \rightarrow X + X' = 1$$

Show: prove that $F_1 = F_2$ using

Switching Algebra,

$$F_1 = X'Y'Z + X'YZ + XY' =$$

$$= X'Z(Y' + Y) + XY'$$
, using (T8)

$$= X'Z + XY'$$
, using (T5)

$$= F_2$$

X	Y	Z	F ₁	F_2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Example (2/3): Two Equations

Example (3/3): Two Equations

To be completed in class ...

$$F_2 = X' \cdot Z + X \cdot Y'$$

Example 2: Minimisation (1)

$$F = A'B'C' + A'B'C + A'BC$$

$$A'B'C = A'B'C + A'B'C \qquad (T3) \quad X + X = X$$

$$F = A'B'C' + A'B'C + A'B'C + A'BC$$

$$T10$$

$$F = A'B' + A'C \qquad (T10) \quad XY + XY' = X$$

$$Circuit \ Diagrams \ for \ these \ functions?$$

Note: Can be further simplified to F = A'(B'+C)

Example 2: Minimisation (2)

To be completed in class ...

F. A.B.C. * A.B.C. * A.B.C.

$$F = A'B' + A'C$$

Exercise

Simplify the following two functions:

a)
$$G=(A+B)(A+C')(A+D)(BC'D+E)$$

