Core Concepts

General Distributions: Discrete and Continuous

Discrete random variable

X: takes countable values.

PDF $p_X(x) = \mathbb{P}(X = x)$, CDF $F_X(x) = \mathbb{P}(X \leq x)$.

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

$$\begin{split} \mathbb{E}[X] &= \sum_x x \, p_X(x). \\ \mathbb{V}ar[X] &= \sum_x (x^2 \, p_X(x)) - [\sum_x x \, p_X(x)]^2. \end{split}$$

Continuous random variable

X: has a probability density function $f_X(x)$ with $F_X(x) = \int_{-\infty}^x f_X(t) dt$ $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \, f_X(x) \, dx.$

$$Var[X] = \int_{-\infty}^{\infty} x^2 f_X(x) dx - \left(\int_{-\infty}^{\infty} x f_X(x) dx \right)^2$$

Joint distributions:

CDF:

$$F_{XY}(a,b) = \mathbb{P}(X \leqslant a, Y \leqslant b)$$

$$\mathbb{P}(a < X \leqslant b, c < Y \leqslant d) = \int_a^b \int_c^d f_{XY}(x, y) dx dy, \forall a \leqslant b, \ c \leqslant d.$$

Conditional distribution

$$f_{X|Y}(x,y) = f_{X|Y}(x,y) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$$

Conditional CDF given a quantile We know that $X > q_{\alpha}$

Let q_{α} be the α -quantile, i.e. $F(q_{\alpha}) = \alpha$.

$$F_{\alpha}(x) = \mathbb{P}(X < x \mid X > q_{\alpha}) = \frac{F(x) - F(q_{\alpha})}{1 - F(q_{\alpha})} \cdot \mathbf{1}_{\{x \geqslant q_{\alpha}\}}$$

$$f_{\alpha}(x) = \frac{f(x)}{1 - F(q_{\alpha})} \cdot \mathbf{1}_{\{x \geqslant q_{\alpha}\}}$$

Arrangement and Combinations:

Arrangement (Permutation): Number of ways to choose and order k elements from n distinct objects:

$$P_n^k = \frac{n!}{(n-k)!}$$
 (also written $A(n,k)$ or nP_k)

Permutation (Full): Special case when k = n:

n! total ways to order n distinct elements.

Combination: Number of ways to choose k elements from n without regard

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Kev identities:

- $-\binom{n}{k} = \binom{n}{n-k}$
- Total number of subsets of size k: $\sum_{k=0}^{n} {n \choose k} = 2^{n}$

Probability rules:

- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- If A and B are disjoint: $\mathbb{P}(A \cap B) = 0$
- Conditional probability: $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$, if $\mathbb{P}(B) > 0$
- Law of Total Probability (Discrete): $\mathbb{P}(B) = \sum_{i} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i)$ (where $\{A_i\}$ is a partition of the sample space)
- Bayes' Rule (Discrete): $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}$
- Joint Probability Decomposition: $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B)$

- Independence: $A \perp B \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$ $\Rightarrow \mathbb{P}(A \mid B) = \mathbb{P}(A)$
- Chain rule for multiple events: $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(B \mid A) \cdot \mathbb{P}(C \mid A, B)$
- Continuous version (densities):
 - $f_{U|W}(u \mid w) = \frac{f_{UW}(u,w)}{f_{UV}(w)}, \text{ if } f_{W}(w) > 0$
 - $f_{IIW}(u, w) = f_{II|W}(u \mid w) \cdot f_{W}(w)$
- Note: Replace \mathbb{P} with f for densities in the continuous case.

Expectation:

- $\mathbb{E}[aX + b] = a \mathbb{E}[X] + b$,
- ullet $\mathbb{E}ig(\sum_i X_iig) = \sum_i \mathbb{E}[X_i]$. (Holds regardless of whether X_i are independent)
- If X and Y are independent: $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. More generally, for any functions g,h: $\mathbb{E}(g(X)h(Y)) = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$
- Law of Iterated Expectations: $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]] \mathbb{E}(X|Y)$ is a function of Y
- Jensen's Inequality (for convex/concave q):

 $g(\mathbb{E}[X]) \leqslant \mathbb{E}[g(X)]$ if g is convex, $q(\mathbb{E}[X]) \geqslant \mathbb{E}[q(X)]$ if q is concave.

• Handling Transformations: For Y = q(X),

 $\mathbb{E}[Y] = \int g(x) f_X(x) dx$ (continuous), $\mathbb{E}[Y] = \sum_{x} g(x) p_X(x)$ (discrete).

Variance:

- $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
- $Var(aX + b) = a^2 Var(X)$.
- $\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2\sum_{i < i} \operatorname{Cov}(X_i, X_i).$
- If X and Y are independent: Var(X + Y) = Var(X) + Var(Y). More generally, if Cov(X, Y) = 0, then this still holds.
- Law of Total Variance: $Var(X) = \mathbb{E}[Var(X \mid Y)] + Var(\mathbb{E}[X \mid Y]).$
- Variance of sample mean: For X_1, \ldots, X_n i.i.d. with variance σ^2 , $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}, \quad \operatorname{Var}(X_1 + \dots + X_n) = n \sigma^2.$
- Conditional scaling (e.g. Gaussian case): If $X \mid Y \sim \mathcal{N}(\mu(Y), \sigma^2(Y))$, then $Var(X) = \mathbb{E}[\sigma^2(Y)] + Var(\mu(Y)).$
- Population variance: $\sigma^2 = \mathbb{E}[(X \mu)^2]$
- Sample variance (unbiased): $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ Unbiased estimator of σ^2 when X_i i.i.d. with finite variance.

Covariance:

- $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y].$
- Properties:
- $-\operatorname{Cov}(X,X) = \operatorname{Var}(X)$

- $-\operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$
- $-\operatorname{Cov}(aX + b, Y) = a\operatorname{Cov}(X, Y)$
- $-\operatorname{Cov}(X+Z,Y) = \operatorname{Cov}(X,Y) + \operatorname{Cov}(Z,Y)$
- Cauchy-Schwarz Inequality: $|Cov(X,Y)| \leq \sqrt{Var(X) \cdot Var(Y)}$

Correlation:

- Correlation coefficient: $\rho_{XY} = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\,\mathrm{Var}(Y)}}$ Measures the linear association between X and Y. $\rho \in [-1, 1]$.
- Properties:
 - $-\rho_{XY} = \rho_{YX}$
 - $\rho_{XY} = 0$ does not imply independence
 - $\rho_{X,Y} = \pm 1$ perfect linear relationship
 - $|\rho_{X,Y}| \leq 1$ (from Cauchy-Schwarz inequality)
- $\bullet \ \ \text{Sample correlation:} \ r_{XY} = \frac{\sum_{i=1}^n (x_i \bar{x})(y_i \bar{y})}{\sqrt{\sum_{i=1}^n (x_i \bar{x})^2} \cdot \sqrt{\sum_{i=1}^n (y_i \bar{y})^2}}$
- Partial correlation: The correlation between residuals of y and z after removing the effect of X: $\mathbb{C}orr(Y,Z|X) = r_{yz\cdot X} = \frac{z^*'y^*}{\sqrt{z^*'z^*}\cdot\sqrt{y^{*'}y^*}}$ where y^* and z^* are residuals from regressing y and z on X, respectively.

Independance:

Two random variables are independent iff the joint c.d.f. of X and Y is given by: $f_{XY}(x,y) = f_X(x) \times f_Y(y)$

or equivalently

 $F_{XY}(x,y) = F_X(x) \times F_Y(y)$

The following observations are not sufficient to conclude independance Observations If X and Y are independent :

- 1. $f_{X|Y}(x,y) = f_X(x)$.
- 2. $\mathbb{E}(X|Y) = \mathbb{E}(X)$
- 3. $\mathbb{E}(q(X)|Y) = \mathbb{E}(q(X))$, where q is any function.
- 4. $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$
- 5. $\mathbb{E}(q(X)h(Y)) = \mathbb{E}(q(X))\mathbb{E}(h(Y))$
- 6. $\mathbb{C}ov(X, Y) = 0$.
- 7. Var(X + Y) = Var(X) + Var(Y).

Common Discrete Laws

Uniform(a, b):

A random variable X is said to follow a discrete uniform law on $\begin{cases} \{a,a+1,\ldots,b\} \text{ if:} \\ \mathbb{P}(X=k) \ = \ \frac{1}{b-a+1} \text{for } k=a,a+1,\ldots,b. \end{cases}$

$$\mathbb{P}(X=k) = \frac{1}{b-a+1} \text{ for } k = a, a+1, \dots,$$

$$\mathbb{E}[X] = \frac{a+b}{2}, \text{Var}(X) = \frac{((b-a+1)^2-1)}{12}.$$

Bernoulli(*p***)**: 1 experience with 2 possibles outcomes

$$| \mathbb{P}(X=1) = p, \ \mathbb{P}(X=0) = 1 - p$$

$$| \mathbb{E}[X] = p$$

Var(X) = p(1-p).

Binomial(n, p): number of successes in n independent Bernoulli(p) trials.

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k},$$

$$\mathbb{E}[X] = np,$$

$$Var(X) = np(1 - p).$$

Geometric(p**):** number of trials (Bernoulli(p)) needed until first success.

$$\mathbb{P}(X=k) = (1-p)^{k-1}p,$$

$$\mathbb{E}[X] = \frac{1}{p},$$

$$\operatorname{Var}(X) = \frac{1-p}{r^2}.$$

Hypergeometric(N, K, n**):** N items total, K successes in population. Draw n items without replacement, let X be # of successes drawn.

$$\mathbb{P}(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}},$$

$$\mathbb{E}[X] = n\frac{K}{N},$$

$$Var(X) = n \frac{K}{N} \left(1 - \frac{K}{N} \right) \frac{N-n}{N-1}.$$

 $\textbf{Poisson}(\lambda) \textbf{:} \text{ counts the number of events in fixed time/space if events happen at constant rate } \lambda \text{ independently.}$

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

$$\mathbb{E}[X] = \lambda, \quad \text{Var}(X) = \lambda.$$

If 2 RV's follow a poisson law and are independant, the sum of these 2 RV's will follow a poisson law with $\lambda=\lambda_1+\lambda_2$

Common Continuous Laws

Uniform(a, b): $X \sim \text{Unif}(a, b)$ $f_X(x) = \frac{1}{b-a} \mathbf{1}_{\{a \le x \le b\}},$ $\mathbb{E}[X] = \frac{a+b}{2},$

 $Var(X) = \frac{(b-a)^2}{12}.$

$$\begin{split} & \mathbf{Exponential}(\lambda) \colon X \sim \mathrm{Exp}(\lambda) \\ & f_X(x) = \lambda e^{-\lambda x}, \quad x \geqslant 0, \\ & \mathbb{E}[X] = \frac{1}{\lambda}, \\ & \mathrm{Var}(X) = \frac{1}{\lambda^2}. \end{split}$$

Memoryless property: $\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$

 $\begin{aligned} & \textbf{Normal} \big(\mu, \sigma^2 \big) \text{: } X \sim \mathcal{N}(\mu, \sigma^2) \\ & f_X(x) = \frac{1}{\sqrt{2\pi}\,\sigma} exp\big(-\frac{(x-\mu)^2}{2\sigma^2} \big), \\ & \mathbb{E}[X] = \mu, \\ & \text{Var}(X) = \sigma^2. \\ & \psi_3 = \text{Skewness} = 0 \\ & \psi_4 = \text{Kurtosis} = 3 \end{aligned}$

Chi-squared(χ^2_{ν}): If $Z_i \sim \mathcal{N}(0,1)$ i.i.d., then $\chi^2_{\nu} = \sum_{i=1}^{\nu} Z_i^2 \sim \chi^2(\nu)$ $\mathbb{E}[X] = \nu$, $\mathrm{Var}(X) = 2\nu$.

Student(t_{ν}): $T=\frac{Z}{\sqrt{U/\nu}}$ with $Z\sim\mathcal{N}(0,1)$ and $U\sim\chi^2_{\nu}$ independent. $\mathbb{E}[T]=0$ (if $\nu>1$, undefined otherwise), $\mathrm{Var}(T)=\frac{\nu}{\nu-2}$ (if $\nu>2$), undefined if $\nu=1$ and infinite if $\nu=2$).

Fisher(F_{d_1,d_2}): ratio of scaled chi-squared variables. Often used in ANOVA or regression tests.

If
$$U_1 \sim \chi^2_{d_1}$$
, $U_2 \sim \chi^2_{d_2}$ (independent), then
$$F = \frac{U_1}{\frac{d_1}{d_2}} \sim F_{d_1,d_2}.$$

$$\mathbb{E}[F] \ = \ \begin{cases} \frac{d_2}{d_2-2}, & \text{if } d_2>2, \\ \text{undefined}, & \text{if } d_2\leqslant 2, \end{cases}$$

$$\mathrm{Var}(F) \; = \; \begin{cases} \frac{2 \, d_2^2 \, (d_1 + d_2 - 2)}{d_1 \, (d_2 - 2)^2 \, (d_2 - 4)} \,, & \text{if } d_2 > 4, \\ \text{undefined}, & \text{if } d_2 \leqslant 4. \end{cases}$$

Moments

Central moment of order k: $\mu_k = \mathbb{E}[(Y - \mu)^k]$, where $\mu = \mathbb{E}[Y]$

Standardized moment of order k:

$$\psi_k = \frac{\mu_k}{(\operatorname{Var}(Y))^{k/2}} = \frac{\mathbb{E}[(Y-\mu)^k]}{(\operatorname{Var}(Y))^{k/2}}$$

- $\psi_1 = 0$ for any distribution (centered)
- $\psi_2 = 1$ by definition (variance standardized)
- $\psi_3 =$ **Skewness** = 0 for symmetric distributions (e.g. Gaussian)
- $\psi_4 = \text{Kurtosis} = 3 \text{ for Gaussian}$

Excess kurtosis: $\psi_4 - 3 \rightarrow$ Measures heaviness of tails vs. normal distribution.

Sample central moment of order k: $m_k = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^k$

Standardized sample moment:

$$g_k = \frac{m_k}{(m_2)^{k/2}} = \frac{\frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^k}{\left[\frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2\right]^{k/2}}$$

Law of Large Numbers and Central Limit Theorem

LLN (Law of Large Numbers):

If X_1, \ldots, X_n are i.i.d. with mean μ , then: $\bar{X}_n \xrightarrow{p} \mu$

Key Points:

- ullet Consistency: $ar{X}_n$ is a consistent estimator of μ
- $\bullet \ \ {\bf Unbiasedness:} \ \mathbb{E}[\bar{X}_n] = \mu$
- Variance: $Var(\bar{X}_n) = \frac{\sigma^2}{n}$

Basic CLT (sample mean):

If $X_i \stackrel{\text{i.i.d.}}{\sim} (\mu, \sigma^2)$, then:

 $\sqrt{n}(\bar{X}_n - \mu) \overset{d}{\xrightarrow{}} \mathcal{N}(0, Var(X_i)) \implies \bar{X}_n \approx \mathcal{N}\left(\mu, \frac{Var(X_i)}{n}\right) \text{ for large } n$ Estimation error shrinks at rate \sqrt{n} (convergence in distribution).

CLT for sample sum: $S_n = \sum_{i=1}^n X_i = n\bar{X} \approx \mathcal{N}(n\mu, n\sigma^2)$

CLT for linear combinations: If $a_i \in \mathbb{R}$, and $X_i \overset{\text{i.i.d.}}{\sim} (\mu, \sigma^2)$, then: $\sum_{i=1}^n a_i X_i \overset{d}{\longrightarrow} \mathcal{N}\left(\sum a_i \mu, \sum a_i^2 \sigma^2\right)$

CLT for difference of sample means: If \bar{X} and \bar{Y} are independent: $\bar{X} - \bar{Y} \sim \mathcal{N}(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$

Multivariate CLT:

If $X_i \in \mathbb{R}^m$ i.i.d., with mean μ and covariance matrix Σ (positive definite), then: $\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \Sigma)$

Types of Convergence

- 1. Convergence in Probability: $X_n \stackrel{p}{\rightarrow} X$
- $\bullet \ \forall \varepsilon > 0 \colon \mathbb{P}(|X_n X| > \varepsilon) \to 0 \text{ as } n \to \infty$
- Used for consistency (e.g., $\hat{\theta}_n \xrightarrow{p} \theta$)
- 2. Convergence in Distribution: $X_n \xrightarrow{d} X$
- CDF of X_n converges to CDF of X
- Used in asymptotic approximations (e.g., CLT: $\sqrt{n}(\bar{X}_n \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$)
- 3. Convergence in Mean Square (L2): $X_n \xrightarrow{L^2} X$
- $\mathbb{E}[(X_n X)^2] \to 0$
- Implies convergence in probability
- 4. Almost Sure Convergence: $X_n \xrightarrow{a.s.} X$
- $\mathbb{P}(\lim_{n\to\infty} X_n = X) = 1$
- Strongest form of convergence

Difference with Expected Value:

- $\mathbb{E}[X_n] \to \mathbb{E}[X]$ (not a type of convergence of RVs)
- Convergence in distribution does NOT imply convergence of expectations

Two-Sample Mean Test (CLT-based)

Compare two i.i.d. samples (with known variances:

- $\bullet m_1, \ldots, m_{n_m} \sim (\mu_m, \sigma_m^2)$
- $w_1, \ldots, w_{n_w} \sim (\mu_w, \sigma_w^2)$

Then by CLT: $\bar{m} - \bar{w} \sim \mathcal{N}\left(\mu_m - \mu_w, \sigma^2\right)$, with $\sigma^2 = \frac{\sigma_m^2}{n_m} + \frac{\sigma_w^2}{n_w}$

Use this for constructing confidence intervals or performing a two-sided $H_0: \mu_m = \mu_w$ test.

Two-Sample *t*-Test (Unequal Variances)

If sample size $_{\rm i}$ 30 : use this, otherwise can be approximated with normal comparison of mean

Test $H_0: \mu_m = \mu_w$ based on: $\frac{\bar{m} - \bar{w}}{\sqrt{\frac{s_m^2}{n_m} + \frac{s_w^2}{n_w}}} \sim t_{\nu}$ (approx)

with Welch's degrees of freedom: $\nu = \frac{\left(\frac{s_m^2}{n_m} + \frac{s_w^2}{n_w}\right)^2}{\frac{(s_m^2/n_m)^2}{n_m-1} + \frac{(s_w^2/n_w)^2}{n_w-1}}$

Chebyshev's Inequality

Let X be a random variable and $c \in \mathbb{R}$ (typically the mean or median). If $\mathbb{E}(|X-c|^r) < \infty$ for some r > 0, then for all $\varepsilon > 0$:

 $\mathbb{P}(|X-c|>\varepsilon) \leqslant \frac{\mathbb{E}(|X-c|^r)}{\varepsilon^r}$

If r=2 and X has finite variance, then:

 $\mathbb{P}(|X - \mu| > \varepsilon) \leqslant \frac{\operatorname{Var}(X)}{\varepsilon^2}$

Use: Bounds tail probabilities; proves convergence in probability (LLN).

Markov's Inequality

Let X be a non-negative random variable with $\mathbb{E}[X] < \infty$. Then for any a > 0:

$$\boxed{\mathbb{P}(X \geqslant a) \leqslant \frac{\mathbb{E}[X]}{a}}$$

Interpretation: Upper bound on the probability that X exceeds a threshold, using only the mean.

Bias, Constitency:

Bias vs Consistency:

- An estimator $\hat{\theta}$ is **unbiased** for θ if $\mathbb{E}[\hat{\theta}] = \theta$.
- An estimator $\hat{\theta}_n$ is **consistent** for θ if $\hat{\theta}_n \xrightarrow{p} \theta$ as $n \to \infty$.
- Bias is a finite-sample property, while consistency is an asymptotic property.

Bias: $\operatorname{Bias}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta$ Unbiasedness: $\mathbb{E}[\hat{\theta}] = \theta$

Expected squared error: $MSE(\hat{\theta}) = (\mathbb{E}[\hat{\theta} - \theta]^2) = Var(\hat{\theta}) + [Bias(\hat{\theta})]^2$

Consistency: $\hat{\theta}_n \xrightarrow{p} \theta$ as $n \to \infty$

Good estimator: low variance and low expected bias

Linear Regression

Linear Regression Model (Matrix Form)

 $\overline{y_i = \beta' x_i + \varepsilon_i}$ (for i = 1, ..., n)

If $x_{i1} = 1$ for all i, then β_1 is the intercept.

Matrix form: $y = X\beta + \varepsilon$

Key Matrices in Regression

Symbol	Description	Form / Dimensions
y	Outcome vector	$n \times 1$
X	Design matrix	$n \times k$
β	Coefficient vector	$k \times 1$, unknown
b	OLS estimator	$k \times 1, b = (X'X)^{-1}X'y$
\hat{y}	Predicted values	$n \times 1, \ \hat{y} = Xb$
e	Residuals	$n \times 1, e = y - \hat{y}$
ε	Errors	$n \times 1, y = X\beta + \varepsilon$
H	Hat matrix	$n \times n, H = X(X'X)^{-1}X'$
M	Residual maker	$n \times n$, $M = I_n - H$
M^0	Mean-centering matrix	$M^0 = I_n - \frac{1}{n} 1_n 1_n'$
P	Projection matrix	$P = X(X'X)^{-1}X' = H$
s^2	Estimator of σ^2	$\frac{e'e}{n-k}$
Z	Instrumental variable matrix	$n \times l, l \geqslant k$
P_Z	Projection on Z	$P_Z = Z(Z'Z)^{-1}Z'$

OLS Estimation

Objective: minimize residual sum of squares f(b) = (y - Xb)'(y - Xb) = e'e Theorem: The coefficient \mathbf{b}_2 from the full regression is the same as the

First-order condition:

$$\frac{\partial f}{\partial b} = -2X'y + 2X'Xb = 0 \Rightarrow X'Xb = X'y \Rightarrow b = (X'X)^{-1}X'y$$

Also: $b = \beta + (X'X)^{-1}X'\varepsilon$ (under assumption 1)

Consistency (as $n \to \infty$):

If assumptions 1–2 hold and $\frac{1}{n}X'X \xrightarrow{p} Q > 0$, then:

$$(X'X)^{-1}X'\varepsilon \xrightarrow{p} 0 \Rightarrow b \xrightarrow{p} \beta \text{ (we can say b} = \beta)$$

Assumptions:

- 1. Full rank: ${\rm rank}(X)=k$ (no perfect collinearity) x 2. Exogeneity: $\mathbb{E}[\varepsilon_i|X]=0$
- 3. Homoskedasticity: $Var(\varepsilon_i|X) = \sigma^2$ constant
- 4. No autocorrelation: $Cov(\varepsilon_i, \varepsilon_i | X) = 0$ for $i \neq j$
- 5. Normality (optional): $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Consequences:

- $\mathbb{C}orr(x_{ij}\varepsilon_i)=0$ and $\mathbb{E}(\varepsilon_i)=0$ under 2,
- $Var(\varepsilon|X) = \sigma^2 I_n$ under 3-4,
- $\mathbb{E}[b|X] = \beta \ b$ is unbiased, under 1-2,
- $\sqrt{n}(b-\beta) \xrightarrow{d} \mathcal{N}(0, \sigma^2 Q^{-1})$ under 1-4 and $\frac{1}{n}X'X \xrightarrow{p} Q$
- • ${\rm Var}(b|X)=\sigma^2(X'X)^{-1}$, which is the variance-covariance matrix, under 1-4.
 - Diagonal elements: variances of the estimated coefficients.
 - Off-diagonal elements: covariances between coefficients.
- \bullet $s^2 = \hat{\sigma}^2 = \frac{e'e}{n-k} \xrightarrow{p} \sigma^2$, under 1-4,
 - $-s^2$ is NOT normally distributed, even for large n.
 - with k = df = number of regressors (incl. intercept)
 - $\mathbb{E}(s^2 \mid \mathbf{X}) = \sigma^2$ (unbiased estimator).
- \bullet $(n-K)\frac{s^2}{\sigma^2}|X\sim\chi^2_{n-K}$ \Rightarrow s^2 is a scaled chi-squared variable.
- X'e=0 is a mechanical result of the OLS first-order conditions and holds by construction, even if the exogeneity (assumption 2) fails.

Gauss-Markov Theorem (BLUE): If assumptions 1–4 hold, b is the Best Linear Unbiased Estimator of β .

The "Linear" in BLUE explicitly means the estimator b is linear in y

Warning: This does not refer to the model being linear in variables. The model $y=X\beta+e$ is assumed linear in parameters, but "linear" in BLUE is about the estimator's form.

Frisch-Waugh-Lovell Theorem

Goal: Estimate ${\bf b}_2$ from the model ${\bf y}={\bf X}_1{m \beta}_1+{\bf X}_2{m \beta}_2+{m \varepsilon}$ after accounting for ${\bf X}_1$

Theorem: The coefficient \mathbf{b}_2 from the full regression is the same as coefficient from the regression: $\mathbf{b}_2 = \left(\mathbf{X}_2'\mathbf{M}^{\mathbf{X}_1}\mathbf{X}_2\right)^{-1}\mathbf{X}_2'\mathbf{M}^{\mathbf{X}_1}\mathbf{y}$

Interpretation:

- ullet Remove the part of y explained by X_1 to get residuals: $y^* = M^{X_1}y$
- Remove the part of X_2 explained by X_1 : $X_2^* = M^{X_1}X_2$
- Regress y* on X₂*:

$$\mathbf{b}_2 = \frac{(\mathbf{X}_2^*)'\mathbf{y}^*}{(\mathbf{X}_2^*)'\mathbf{X}_2^*}$$

Matrix Definitions:

- $\mathbf{X}_1 \in \mathbb{R}^{n \times k_1}$: Matrix of control regressors (e.g., dummies)
- $\mathbf{X}_2 \in \mathbb{R}^{n \times k_2}$: Regressor(s) of interest
- $M^{X_1}=I_n-X_1(X_1'X_1)^{-1}X_1'$: Residual-maker matrix projecting orthogonally to X_1
- $y^* = M^{X_1}y$: Residuals from regressing y on X_1
- lacktriangle $\mathbf{X}_2^* = \mathbf{M}^{\mathbf{X}_1}\mathbf{X}_2$: Residuals from regressing \mathbf{X}_2 on \mathbf{X}_1

Projection & Residual Matrices

Hat matrix: $\hat{y} = Py = Xb$ We can also note that $y = \hat{y} + e$

Projection Matrix: $P = X(X'X)^{-1}X'$ We can also note that $\hat{y} = Py$

Residual Maker Matrix: e=My, $M=I_n-P$ We can also note that My=e=y-Xb

Properties of P and M:

- $\bullet \ \ P, M \ \text{are symmetric} \ (A=A') \text{, idempotent} \ (A=A^k, \quad \forall k>0)$
- PX = X, MX = 0
- PM = MP = 0
- My = Me
- ullet y=Py+My, decomposition of y in two orthogonal parts

Key Property: Orthogonality of residuals (OLS projection result)

The residuals e=y-Xb are orthogonal to all regressors in X:

 $X'e = 0 \Leftrightarrow \sum_{i=1}^{n} x_{ij}e_i = 0$ for each regressor j

That implies

- $\sum e_i = 0$ (orthogonal to the intercept, (CONDITIONAL ON HAVING AN INTERCEPT))
- \bullet $\sum z_i e_i = 0$, $\sum w_i e_i = 0$, etc.

This comes from the first-order condition of the OLS minimization problem.

X'e = 0 (residuals orthogonal to regressors)

Regression Specifications (How to interpret β_j)

Continuous:

 $y=\beta_0+\beta_j x_j+\varepsilon \Rightarrow 1$ unit increase in $x_j \to \beta_j$ change in y

Dummy (binary):

$$y = \beta_0 + \beta_j D_j + \varepsilon \Rightarrow D_j = 1 \text{ vs } D_j = 0 \rightarrow \beta_j \text{ change in } y$$

Log-Linear:

 $\log(y)=\beta_0+\beta_j x_j+arepsilon \Rightarrow 1$ unit increase in $x_j o \beta_j\cdot 100\%$ change in y

Linear-Log

 $y = \beta_0 + \beta_j \log(x_j) + \varepsilon \Rightarrow 1\%$ increase in $x_j \to \frac{\beta_j}{100}$ change in y

Log-Log:

 $\log(y) = \beta_0 + \beta_i \log(x_i) + \varepsilon \Rightarrow 1\%$ increase in $x_i \to \beta_i\%$ change in y

Goodness of Fit

Total Sum of Squares:

$$TSS = \sum (y_i - \bar{y})^2 = y' M^0 y$$

The TSS can be imagined as a sum of squared residuals on a regression with only a constant equal to \bar{y} .

Explained Sum of Squares (ESS):

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = b' X' M^0 X b$$

Residual Sum of Squares (SSR):

$$SSR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = e'e = (y - Xb)'(y - Xb)$$

Decomposition: TSS = ESS + SSR

Coefficient of Determination:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS} = 1 - \frac{e'e}{y'M^0y}$$

 $\it Note: \ R^2$ does not penalize irrelevant regressors — prefer \bar{R}^2 , AIC, or BIC for model selection.

Asymptotic Limit of R^2 : Even as $n \to \infty$, $R^2 < 1$ if $\sigma^2 > 0$ (irreducible noise in y). $\Rightarrow \hat{\beta} \xrightarrow{p} \beta$ but y still noisy.

Adjusted R^2 :

$$\bar{R}^2 = 1 - \frac{e'e/(n-k)}{y'M^0y/(n-1)} = 1 - \frac{n-1}{n-k}(1-R^2)$$

Change in \mathbb{R}^2 from adding variable z:

 $R_{X,z}^2=R_X^2+(1-R_X^2)(r_{yz}^X)^2$ One instrument per endogenous regressor system is just identified. Use standard IV formula.

Common Pitfalls in Linear Regression

1. Multicollinearity

- Occurs when some regressors are nearly linear combinations of others.
- \bullet Leads to large variances of OLS estimators \rightarrow wide confidence intervals.
- Reduces power of t-tests \rightarrow harder to reject $H_0: \beta_j = 0$.
- Example: if $Corr(x_1, x_2)$ close to 1, variance of b_1 inflates
- Variance of $b_j \colon s^2 \cdot [(X'X)^{-1}]_{jj}$ increases when X has high collinearity.

- 2. Omitted Variable Bias

- Suppose the **true model**: $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$, but you estimate: $b_1 = (X_1'X_1)^{-1}X_1'y \Rightarrow \mathbb{E}[b_1|X] = \beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2$
- If $X_1'X_2 \neq 0$ (no orthogonality, linear dependence) and $\beta_2 \neq 0$, b_1 is biased.
- Intuition: X_1 "captures" the effect of omitted X_2
- Remedy: include control variables (i.e., add X_2 to the regression)

3. Irrelevant Variables (Overfitting)

- Suppose the true model is: $y=X_1\beta_1+\varepsilon$ but you estimate: $y=X_1\beta_1+X_2\beta_2+\varepsilon$ with $\beta_2=0$
- Estimates are still unbiased.
- But adding irrelevant X_2 increases the variance of b_1
- Leads to inefficiency and reduced test power (higher risk of Type II errors)
- \bullet Adjusted R^2 and AIC/BIC help guard against overfitting

Instrumental Variables (IV)

If $\mathbb{E}[\varepsilon_i|x_i] \neq 0$, then x_i is endogenous, and OLS is no longer consistent.

Why?
$$b=\beta+(X'X)^{-1}X'\varepsilon \Rightarrow b\xrightarrow{p}\beta+Q_{xx}^{-1}\gamma\neq\beta$$
 with $\gamma=\mathbb{E}[x_i\varepsilon_i]$ Here, $Q_{xx}=\frac{X'X}{n}$ is the probability limit of the scaled Gram matrix — it represents the asymptotic second moment matrix of the regressors. Its inverse, Q_{xx}^{-1} , appears in the asymptotic bias term and plays a role similar to $(X'X)^{-1}$ is faith unable.

Remedy: Instrumental Variables (IV) Use valid instruments z_i such that: $\mathbb{E}[\varepsilon_i|z_i]=0$ and $\mathrm{Cov}(z_i,x_i)\neq 0$

Valid instruments z_i satisfy:

- Relevance: $Cov(z_i, x_i) \neq 0$
- Exogeneity: $\mathbb{E}[\varepsilon_i|z_i]=0$
- No multicollinearity in projected X on Z Why? To ensure that (Z'X) is invertible and that all parameters in β are identified. \Rightarrow Without this, b_{IV} is undefined (underidentified model).

Just-identified IV estimator (L = K):

One instrument per endogenous regressor system is just identified. Use standard IV formula.

$$b_{IV} = (Z'X)^{-1}Z'y$$

Wald estimator = IV estimator in the special case with:

- | One endogenous regressor x_i
- One binary instrument z_i

Then:
$$\hat{\beta}_{Wald} = \frac{Cov(z_i, y_i)}{Cov(z_i, x_i)}$$

More general cases use full IV or 2SLS formula.

Asymptotic distribution (if L=K): $b_{IV} \stackrel{d}{\to} \mathcal{N}\left(\beta, \frac{\sigma^2}{n}[Q_{xz}Q_{zz}^{-1}Q_{zx}]^{-1}\right)$

Where:
$$Q_{xz} = \frac{X'Z}{n}$$
, $Q_{zx} = \frac{Z'X}{n}$, $Q_{zz} = \frac{Z'Z}{n}$

Estimate variance in practice:
$$\widehat{\text{Var}}(b_{IV})=s_{IV}^2\cdot Q_{zx}^{-1}Q_{zz}Q_{xz}^{-1}$$
 with $s_{IV}^2=\frac{1}{n}\sum(y_i-x_i'b_{IV})^2$

Page - 4

Overidentified case (L > K): 2SLS

More instruments than regressors overidentified system. Project X on Z, then regress y on \hat{X} .

Sten

- 1. Regress X on Z: $\hat{X} = P_Z X$ with $P_Z = Z(Z'Z)^{-1}Z'$
- 2. Regress y on \hat{X}

2SLS estimator:
$$b_{2SLS} = (X'P_ZX)^{-1}X'P_Zy$$

Weak instruments:

- Instruments only weakly correlated with x_i (relevance not resepcted)
- Check: F-statistic from first stage regression. Low ${\cal F}$ weak instruments

Inference and Confidence Intervals

Under assumptions 4.1–4.5 (including normality):

$$\mathbf{b}|X \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^2(X'X)^{-1}\right)$$

$$s^2 = \hat{\sigma}^2 = \frac{e'e}{n-k} \xrightarrow{p} \sigma^2$$
 (under 1-4)

with k = df = number of regressors (incl. intercept)

Distribution of b_k (component of \mathbf{b}, σ^2 known):

$$b_k \mid X \sim \mathcal{N}\left(\beta_k, \sigma^2 v_k\right)$$

$$\sqrt{n} \frac{b_k - \beta_k}{\sqrt{\sigma^2 v_k}} \mid X \sim \mathcal{N}(0, 1)$$

Distribution of b_k (component of b, σ^2 unknown):

$$\sqrt{n} \frac{b_k - \beta_k}{\sqrt{s^2 v_k}} \mid X \sim t (n - k)$$

with $v_k = [(X'X)^{-1}]_{kk}$, which means: the k-th diagonal element of the matrix $(X'X)^{-1}$, and is the variance weight associated with the k-th coefficient b_k .

t-statistic:

$$t_{k} = \frac{\frac{b_{k} - \beta_{k}}{\sqrt{\sigma^{2} v_{k}}}}{\sqrt{\frac{(n-K)s^{2}}{\sigma^{2}(n-K)}}} = \frac{b_{k} - \beta_{k}}{\sqrt{s^{2} v_{k}}} \sim t(n-K)$$

t-Test Requirements:

- Gauss-Markov (Assumptions 1–4) are insufficient for valid t-tests in small samples.
- Normality (Assumption 5: $\varepsilon \sim \mathcal{N}(0, \sigma^2)$) is strictly required for exact t-distributions in finite samples.
- Without normality, t-tests rely on asymptotic approximations (CLT).

Confidence interval for b_k at $1-\alpha\%$:

$$\left[b_k \pm t_{1-\frac{\alpha}{2},n-k} \cdot \sqrt{s^2 v_k}\right]$$

We use $\mathcal{N}(0,1)$ quantiles as $n \to \infty$ (CLT)

Inference on linear combinations: Let $\alpha'b$ estimate $\alpha'\beta$:

$$\alpha'b \mid X \sim \mathcal{N}(\alpha'\beta, \sigma^2\alpha'(X'X)^{-1}\alpha)$$

$$\Rightarrow \frac{\alpha' b - \alpha' \beta}{\sqrt{s^2 \alpha' (X'X)^{-1} \alpha}} \sim t(n-k)$$

Hypothesis Testing:

We test hypotheses about parameters θ (imperfectly observed) using data x whose distribution depends on θ .

Null and alternative hypotheses:

 $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1 = \Theta_0^c$ (or equivalently, $H_0: h(\theta) = 0$)

A statistical test requires:

- a parameter vector θ (partially or fully unknown)
- a test statistic $S(\mathbf{x})$ (function of the sample)
- a critical region Ω (set of implausible values under H_0)

Decision rule:

- Reject H_0 if $S(\mathbf{x}) \in \Omega$
- Fail to reject H_0 if $S(\mathbf{x}) \notin \Omega$

Errors and test performance:

- Type I error (false positive): reject H_0 when true (α)
- Type II error (false negative): fail to reject H_0 when false (β)
- Power: $\gamma = 1 \beta \to 1$ as $n \to \infty$ (probability of correctly rejecting H_0)

Error probabilities:

 $\alpha = \mathbb{P}(S \in \Omega \mid H_0)$ $\beta = \mathbb{P}(S \notin \Omega \mid H_1)$

Note: There is often a tradeoff between α and power $(1 - \beta)$

Decision / Truth	H_0 True	H_0 False
Not rejected	Correct decision $(1 - \alpha)$	Type II error (β)
Rejected	Type I error (α)	Correct decision $(1 - \beta)$

Common Tests:

Generic Setup: Let S_n be a test statistic that (under H_0) follows a known distribution D, or compare S_n to quantiles of D at level α .

p-value: Reject H_0 at level α if $p < \alpha$

1. Student's *t*-distribution: Arises when: $\hat{\theta}$ is normally distributed with variance estimated from sample

Assumptions: i.i.d. observations, normality (or large n), unknown variance

Statistic: $T = \frac{\hat{\theta} - \theta_0}{\widehat{SE}(\hat{\theta})} \sim t_{df}$

Reject H_0 if: $|T| > t_{\alpha/2,df}$ (two-sided) or $T > t_{\alpha,df}$ (one-sided)

2. Chi-squared (χ^2) distribution:

Arises when: testing variance, goodness-of-fit, or quadratic forms in normals

Statistic:
$$\chi^2 = \sum_{i=1}^k \left(\frac{O_i - E_i}{\sqrt{E_i}}\right)^2$$
 or $\hat{\varepsilon}' A \hat{\varepsilon}$

Degrees of freedom = number of independent components

Reject H_0 if: $\chi^2_{obs} > \chi^2_{ord}$

3. F-Test

When used: To test joint linear restrictions (e.g. $H_0: R\beta = q$), compare models, or test variance equality.

General formula (Wald-based):

$$F = \frac{(Rb-q)'[R(X'X)^{-1}R']^{-1}(Rb-q)}{Js^2} \sim \mathcal{F}(J, n-k)$$

Alternative formula (SSR-based):

$$F = \frac{(SSR_{restr} - SSR_{unrestr})/J}{SSR_{unrestr}/(n-k)} = \frac{(R^2 - R_{*}^2)/J}{(1-R^2)/(n-k)}$$
 Where SSR_{restr} is the model under H_0

Degrees of freedom:

- J = number of restrictions (numerator df)
- n-k = number of residual df (denominator)

Reject H_0 if $F_{obs} > F_{\alpha,J,n-k}$

Asymptotic approx (large n-k): $F(J,\infty)\approx \chi^2(J)/J\to \text{Wald}$ and F con-

Caution (CLT misconception): Even as $n \to \infty$, F-distributions do not converge to Normal. F is a ratio of χ^2 variables the CLT does not apply.

4. Standard Normal ($\mathcal{N}(0,1)$):

Arises when: variance is known, or from large sample CLTs

Statistic: $Z = \frac{\hat{\theta} - \theta_0}{\operatorname{SE}(\hat{\theta})} \sim \mathcal{N}(0, 1)$

Reject H_0 if: $|Z|>z_{\alpha/2}$ (two-sided) or $Z>z_{\alpha}$ (one-sided)

Critical values for $\mathcal{N}(0,1)$:

Significance Level α	z_{lpha} (one-sided)	$z_{lpha/2}$ (two-sided)		
0.10	1.28	1.64		
0.05	1.645	1.96		
0.01	2.33	2.58		
0.001	3.09	3.29		

5. Jarque-Bera Test (Normality):

Tests whether a sample's skewness and kurtosis match those of a normal

Under $H_0: Y_i \sim \mathcal{N}(\mu, \sigma^2)$, so: $g_3 \to 0$, $g_4 \to 3$ Asymptotic properties:

- $\sqrt{n}a_3 \xrightarrow{d} \mathcal{N}(0,6)$
- $\sqrt{n}(a_4-3) \xrightarrow{d} \mathcal{N}(0,24)$

JB Statistic: $JB = \frac{n}{6} \left(g_3^2 + \frac{(g_4 - 3)^2}{4} \right)$ where g_3, g_4 are standardized sample

Under H_0 , $JB \xrightarrow{d} \chi^2(2)$

6. Durbin-Wu-Hausman Test (for endogeneity):

Test whether OLS is inconsistent and IV is necessary.

$$H = (b_{IV} - b_{OLS})' \left[\widehat{\text{Var}}(b_{IV}) - \widehat{\text{Var}}(b_{OLS}) \right]^{+} (b_{IV} - b_{OLS})$$

Where:

- + = Moore-Penrose pseudo-inverse (in case matrix isn't full rank)
- Under H_0 : both estimators are consistent (OLS preferred for efficiency)
- Under H_0 : $H\sim \chi^2(q)$, where q is the rank of ${
 m Var}({f b}_1)-{
 m Var}({f b}_0)$ Under H_1 : only IV is consistent (OLS is biased)

Rejecting H_0 OLS inconsistent prefer IV.

Testing Linear Restrictions (F-test)

Test joint restrictions: $H_0: R\beta = q$ vs. $H_1: R\beta \neq q$

Page - 5

Discrepancy vector: m = Rb - q

Under H_0 : $\mathbb{E}[m|X] = 0$

Variance: (Under 4.1–4.4) $Var(m|X) = \sigma^2 R(X'X)^{-1} R'$

Wald statistic (σ^2 known:)

 $W=m'\left[\mathrm{Var}(m|X)\right]^{-1}m=\frac{m'[R(X'X)^{-1}R']^{-1}m}{\sigma^2}\sim \chi^2(J)$ F statistic (when σ^2 is unknown, use s^2):

$$F = \frac{1}{J} \cdot \frac{m'[R(X'X)^{-1}R']^{-1}m}{s^2} \sim F(J, n - K)$$

We can use the SSR (alternative) formula (see F-test). The restricted SSR is the one of the test, with less parameters, i.e. the one under H_0 .