Predictive Modeling Final Project Direct Mail Fundraising Classification

Kevin Zollicoffer

10/07/2013

Introduction

The RStudio project files and accompanying artifacts, including the tex (Rnw) file that created this PDF, are publicly available on GitHub https://github.com/zollie/PASS-PredictiveModeling-DirectMailPrediction

Preliminaries

The R code here is broken up into seperate scripts for general reuse and orginization. These are presented here, with full up to date versions available on GitHub

data.R

Contains functions and code to load, clean, and setup the data

```
> source('~/R/PASS/PredictiveModeling/DirectMailPrediction/data.R',
+ echo=TRUE, max.deparse.length=10000)
> set.seed(12345)
> getRandomRowNums <- function(dd = getDataRaw(), percent = 0.6) {
+ n <- nrow(dd)
+ a <- sort(sample(1:n, floor(n * percent)))
+ a
+ }
> getDataRaw <- function() {
+ dd <- read.csv("~/R/PASS/PredictiveModeling/DirectMailPrediction/DonorData.csv")
+ }
> getDataClean <- function(dd = getDataRaw()) {</pre>
```

```
dd$Row.Id <- NULL
      dd$Row.Id. <- NULL
      dd$row.names <- NULL
      dd$TARGET_D <- NULL
+ }
> getDataWithLevels <- function(dd = getDataClean()) {
      dd$homeowner.dummy <- factor(dd$homeowner.dummy)</pre>
      dd$gender.dummy <- factor(dd$gender.dummy)</pre>
      dd$INCOME <- factor(dd$INCOME)</pre>
      dd$WEALTH <- factor(dd$WEALTH)</pre>
      dd$TARGET_B <- factor(dd$TARGET_B)</pre>
      dd
+ }
> getNnData <- function(dd = getDataClean()) {</pre>
      dd$WEALTH <- nnNormCol(dd$WEALTH)</pre>
      dd$HV <- nnNormCol(dd$HV)
      dd$1cmed <- nnNormCol(dd$1cmed)</pre>
      dd$lcavg <- nnNormCol(dd$Icavg)</pre>
      dd$IC15 <- nnNormCol(dd$IC15)
      dd$NUMPROM <- nnNormCol(dd$NUMPROM)</pre>
      dd$RAMNTALL <- nnNormCol(dd$RAMNTALL)</pre>
      dd$MAXRAMNT <- nnNormCol(dd$MAXRAMNT)</pre>
      dd$LASTGIFT <- nnNormCol(dd$LASTGIFT)</pre>
      dd$totalmonths <- nnNormCol(dd$totalmonths)</pre>
      dd$TIMELAG <- nnNormCol(dd$TIMELAG)</pre>
      dd$AVGGIFT <- nnNormCol(dd$AVGGIFT)</pre>
      dd
+ }
> getNnDataPruned <- function(dd = defaultReducePredictors(getDataClean())) {
      dd$NUMPROM <- nnNormCol(dd$NUMPROM)</pre>
      dd$RAMNTALL <- nnNormCol(dd$RAMNTALL)</pre>
      dd$MAXRAMNT <- nnNormCol(dd$MAXRAMNT)</pre>
      dd$LASTGIFT <- nnNormCol(dd$LASTGIFT)</pre>
      dd$totalmonths <- nnNormCol(dd$totalmonths)</pre>
      dd$TIMELAG <- nnNormCol(dd$TIMELAG)</pre>
      dd
+ }
> nnNormCol <- function(col) {</pre>
      a <- min(col, na.rm = TRUE)
      b <- max(col, na.rm = TRUE)
      c2 <- sapply(col, function(x) {</pre>
```

```
(x - a)/(b - a)
      })
      c2
+ }
> getFutureDataRaw <- function() {</pre>
      dd <- read.csv("~/R/PASS/PredictiveModeling/DirectMailPrediction/FutureDonorData.csv")
+ }
> getFutureDataClean <- function(dd = getFutureDataRaw()) {
      dd$Row.Id <- NULL
      dd$Row.Id. <- NULL
      dd$X <- NULL
      dd$X.1 <- NULL
      dd$X.2 <- NULL
      dd$X.3 <- NULL
      dd$X.4 <- NULL
      dd$X.5 <- NULL
      dd$X.6 <- NULL
      dd
+ }
> getFutureDataWithLevels <- function(dd = getFutureDataClean()) {</pre>
      dd$homeowner.dummy <- factor(dd$homeowner.dummy)</pre>
      dd$gender.dummy <- factor(dd$gender.dummy)</pre>
      dd$INCOME <- factor(dd$INCOME)</pre>
      dd$WEALTH <- factor(dd$WEALTH)</pre>
      dd
+ }
> reducePredictors <- function(dd = getDataWithLevels(),
      drops) {
      dd[, !(names(dd) %in% drops)]
+ }
> defaultReducePredictors <- function(dd = getDataWithLevels()) {</pre>
      drops <- c("zipconvert_2", "zipconvert_3", "zipconvert_4",</pre>
          "zipconvert_5", "WEALTH", "HV", "Icmed", "Icavg", "IC15",
          "AVGGIFT")
      reducePredictors(dd, drops)
+ }
> prices <- matrix(c(0, 0, -0.68, 13 - 0.68), 2, 2)
```

funcs.R

Contains helper functions and code to build classification tables, charts, calculate lift, etc.

```
> source('~/R/PASS/PredictiveModeling/DirectMailPrediction/funcs.R',
          echo=TRUE, max.deparse.length=10000)
> buildClassTab <- function(p, p.target, cutoff = 0.5) {</pre>
      require(gmodels)
      if (is.null(cutoff)) {
          p.vals = p
      }
      else {
          p.vals <- sapply(p, function(y) {</pre>
               ifelse(y < cutoff, 0, 1)</pre>
           })
      }
      CrossTable(p.target, p.vals, type = "SPSS", dnn = c("Actual",
           "Predicted"))
+ }
> drawRoc <- function(p, p.target) {</pre>
      require(ROCR)
      p.rocr <- prediction(p, p.target)</pre>
      p.rocr.roc <- performance(p.rocr, "tpr", "fpr")</pre>
      plot(p.rocr.roc, main = "ROC Curve", colorize = T)
+ }
> drawLift <- function(p, p.target, add = FALSE) {</pre>
      require(ROCR)
      p.rocr <- prediction(p, p.target)</pre>
      p.rocr.lift <- performance(p.rocr, "lift", "rpp")</pre>
      plot(p.rocr.lift, add = add, main = "Lift Curve", colorize = T)
+ }
> adjustTabForOversamp <- function(ct, target, dnn = c("Actual",</pre>
      "Predicted")) {
      t <- ct$t
      actual.0 <- t[1, 1] + t[1, 2]
      actual.1 \leftarrow t[2, 1] + t[2, 2]
      prop.0 <- 1 - target
      n <- target * 100
      x \leftarrow actual.1 * 100/n
      new.0 <- x * prop.0
      ct
      x.0 \leftarrow ctprop.row[1, 1] * new.0
```

```
x.1 \leftarrow ctprop.row[1, 2] * new.0
      row1 \leftarrow matrix(c(x.0, x.1), 1, 2)
      row2 \leftarrow matrix(c(t[2, 1], t[2, 2]), 1, 2)
      df <- rbind(row1, row2)</pre>
      CrossTable(df, dnn = dnn)
+ }
> netFromCrossTab <- function(ct, prices) {
      t <- ct$t
      x00 \leftarrow t[1, 1] * prices[1, 1]
      x01 \leftarrow t[1, 2] * prices[1, 2]
      x10 \leftarrow t[2, 1] * prices[2, 1]
      x11 \leftarrow t[2, 2] * prices[2, 2]
      sum(x00, x01, x10, x11)
+ }
> buildClassTree <- function(formula, data, minspl,
      minbuc) {
      require(rpart)
      tree.g <- rpart(formula, data = data, method = "class", minsplit = minspl,</pre>
           minbucket = minbuc)
      tree.p <- prune(tree.g, tree.g$cptable[which.min(tree.g$cptable[,</pre>
           "xerror"]), "CP"])
      tree.p
+ }
```

Data Setup

Factorized data will be used for Logistic Regression and CART

```
> dd <- getDataWithLevels()
> n <- getRandomRowNums(dd)
> dd.train <- dd[n,]
> dd.test <- dd[-n,]</pre>
```

Model Building (a)

Logistic Regression

Logistic Regression is applied here with varying parameters and predictors used. For each continuos predictor, ROC and Lift curves will be generated to compare the models.

Using all predictors available

```
> logit <- glm(TARGET_B ~ ., family=binomial("logit"), data=dd.train)
> summary(logit)
Call:
glm(formula = TARGET_B ~ ., family = binomial("logit"), data = dd.train)
Deviance Residuals:
```

Min 1Q Median 3Q Max -1.7805 -1.1485 -0.7362 1.1463 2.1338

Coefficients:

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.230e+01	3.032e+02	-0.041	0.9676	
zipconvert_2	1.377e+01	3.032e+02	0.045	0.9638	
zipconvert_3	1.371e+01	3.032e+02	0.045	0.9639	
zipconvert_4	1.359e+01	3.032e+02	0.045	0.9643	
zipconvert_5	1.371e+01	3.032e+02	0.045	0.9639	
${\tt homeowner.dummy1}$	1.003e-01	1.248e-01	0.804	0.4214	
NUMCHLD	-2.880e-01	1.384e-01	-2.080	0.0375	*
INCOME2	2.473e-01	1.971e-01	1.255	0.2095	
INCOME3	2.626e-01	2.202e-01	1.193	0.2330	
INCOME4	2.696e-01	1.842e-01	1.463	0.1435	
INCOME5	4.806e-01	2.000e-01	2.404	0.0162	*
INCOME6	4.425e-01	2.426e-01	1.824	0.0681	
INCOME7	5.585e-01	2.446e-01	2.283	0.0224	*
gender.dummy1	8.441e-02	9.826e-02	0.859	0.3903	
WEALTH1	5.375e-01	3.366e-01	1.597	0.1103	
WEALTH2	-1.835e-01	3.401e-01	-0.539	0.5896	
WEALTH3	6.874e-02	3.207e-01	0.214	0.8303	
WEALTH4	9.754e-02	3.364e-01	0.290	0.7718	
WEALTH5	9.023e-02	3.247e-01	0.278	0.7811	
WEALTH6	2.486e-01	3.333e-01	0.746	0.4557	
WEALTH7	2.608e-01	3.417e-01	0.763	0.4452	
WEALTH8	2.230e-01	2.733e-01	0.816	0.4145	
WEALTH9	2.012e-01	3.321e-01	0.606	0.5445	
HV	1.275e-04	8.931e-05	1.427	0.1535	
Icmed	6.478e-04	1.178e-03	0.550	0.5823	
Icavg	-1.050e-03	1.285e-03	-0.817	0.4137	
IC15	2.495e-03	5.825e-03	0.428	0.6684	
NUMPROM	4.976e-03	3.569e-03	1.394	0.1633	
RAMNTALL	-2.677e-04	6.930e-04	-0.386	0.6993	
MAXRAMNT	4.317e-03	7.309e-03	0.591	0.5548	
LASTGIFT	-2.264e-02	1.103e-02	-2.053	0.0401	*
totalmonths	-5.774e-02	1.303e-02	-4.432	9.34e-06	***
TIMELAG	6.191e-03	8.838e-03	0.701	0.4836	

```
AVGGIFT 6.560e-03 1.560e-02 0.420 0.6741
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2595.1 on 1871 degrees of freedom
Residual deviance: 2518.7 on 1838 degrees of freedom
AIC: 2586.7
```

Number of Fisher Scoring iterations: 12

Prediction Prediction using the test data is done with the model and evaluated using ROC and Lift curves.

```
> logit.pred <- predict(logit, newdata=dd.test, type="response")
> summary(logit.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
```

Evaluation Clearly, this model is not much better than the Naive Rule.

0.0000009 0.4371000 0.5024000 0.5013000 0.5597000 0.8394000

Subset Selection Predictor reduction was attempted but in no case did the ROC curve suggest significantly better results than the Naive Rule. Attempting each predictor one by one also faired no better. The best predictor using Logistic Regression perhaps being LASTGIFT.

```
> logit.lg <- glm(TARGET_B ~ LASTGIFT, family = binomial("logit"), data = dd.train)
> logit.lg.pred <- predict(logit.lg, newdata=dd.test, type="response")</pre>
```

Classification Table and Net Profit Classification Tables and NetProfit using this model is presented here

> ct.logit.lg <- buildClassTab(logit.lg.pred, dd.test\$TARGET_B)

```
Cell Contents
|------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
```


Figure 1: Logistic Regression ROC curve using all predictors

Figure 2: Logistic Regression Lift curve using all predictors

Figure 3: Logistic Regression ROC curve using only LASTGIFT

Total Observations in Table: 1248

	l D 11 . 1		
	Predicted		
Actual	0	1	Row Total
0	J 306	312	618
	4.156	3.275	1
	0.495	0.505	0.495
	0.556	0.447	1
	0.245	0.250	1
1	l 244	386	630 l
	4.077	3.212	1
	0.387	0.613	0.505
	0.444	0.553	1
	0.196	0.309	1
Column Total	550	698	1248
	0.441	0.559	1

> ct.logit.lg.a <- adjustTabForOversamp(ct.logit.lg, .051)</pre>

Cell Contents

					-
1				N	1
Chi-squar	e d	coı	ntril	oution	1
1	N	/	Row	Total	1
1	N	/	${\tt Col}$	Total	1
l N	/	T	able	Total	1
					-

Total Observations in Table: 12352.94

			Predicted	
	Row Total	[,2]	[,1]	Actual
	11722	5918	5804	[1,]
		0.695	0.724	
1	0.949	0.505	0.495	
1		0.939	0.960	
ı		0.479	0.470	

```
386 |
     [2,] |
                 244 |
                             386 |
12.930 |
                13.477 |
                             0.613 |
0.061 |
                 0.387 |
                                           0.051
                 0.040 |
                  0.020 |
                              0.031 |
                              6304 |
Column Total |
                 6048 |
                                         12352 |
                  0.490 |
                               0.510 |
   -----|----|-----|
```

```
> ct.logit.net <- netFromCrossTab(ct.logit.lg.a, prices)
> ct.logit.net
```

[1] 731.0229

CART

Classification Trees are attempted next

```
> library(rpart.plot)
> tree.a <- buildClassTree(TARGET_B ^{\sim} ., dd.train, 3, 1)
> tree.b <- buildClassTree(TARGET_B ^{\sim} ., dd.train, 6, 2)
> tree.c <- buildClassTree(TARGET_B ~ ., dd.train, 12, 4)
> summary(tree.a)
Call:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
 n = 1872
         CP nsplit rel error xerror xstd
2 0.01048387
               1 0.8752688 0.9268817 0.02318881
Variable importance
   AVGGIFT
             MAXRAMNT
                        LASTGIFT totalmonths
                                              NUMPROM
                                                        RAMNTALL
        35
             25
                        24 8
Node number 1: 1872 observations, complexity param=0.1247312
 predicted class=0 expected loss=0.4967949 P(node) =1
   class counts: 942 930
  probabilities: 0.503 0.497
 left son=2 (832 obs) right son=3 (1040 obs)
 Primary splits:
     AVGGIFT < 9.878676 to the right, improve=16.276920, (0 missing)
     totalmonths < 31.5 to the right, improve=14.088780, (0 missing)
```

```
to the right, improve=13.134850, (0 missing)
     MAXRAMNT
                 < 14.5
     LASTGIFT
                 < 14.5
                            to the right, improve=12.963660, (0 missing)
     NUMPROM
                 < 54.5
                            to the left, improve= 8.441558, (0 missing)
 Surrogate splits:
     MAXRAMNT
                 < 14.5
                            to the right, agree=0.876, adj=0.720, (0 split)
     LASTGIFT
                            to the right, agree=0.857, adj=0.679, (0 split)
              < 12.5
     totalmonths < 35.5
                            to the right, agree=0.659, adj=0.232, (0 split)
     NUMPROM < 24.5
                            to the left, agree=0.624, adj=0.155, (0 split)
     RAMNTALL
                 < 26.5
                            to the left, agree=0.596, adj=0.091, (0 split)
Node number 2: 832 observations
 predicted class=0 expected loss=0.4230769 P(node) =0.4444444
   class counts:
                  480
                        352
  probabilities: 0.577 0.423
Node number 3: 1040 observations
 predicted class=1 expected loss=0.4442308 P(node) =0.5555556
                  462
    class counts:
                         578
  probabilities: 0.444 0.556
> printcp(tree.a)
Classification tree:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
Variables actually used in tree construction:
[1] AVGGIFT
Root node error: 930/1872 = 0.49679
n = 1872
       CP nsplit rel error xerror
1 0.124731
               0 1.00000 1.03978 0.023249
2 0.010484
               1 0.87527 0.92688 0.023189
> rsq.rpart(tree.a)
Classification tree:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
Variables actually used in tree construction:
[1] AVGGIFT
Root node error: 930/1872 = 0.49679
```

> prp(tree.a)

Figure 4: tree.a classification tree

| N / Table Total |

Total Observations in Table: 1248

	Predicted		
Actual	0	1	Row Total
0	296	322	618
	2.733	2.105	
1	0.479	0.521	0.495
	0.545	0.457	
1	0.237	0.258	
1	247	J 383	630
	2.681	2.065	
1	0.392	0.608	0.505
1	0.455	0.543	
1	0.198	0.307	
Column Total	543	l 705	1248
1	0.435	0.565	

> ct.tree.a.a <- adjustTabForOversamp(ct.tree.a, .051)</pre>

Cell Contents

|------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |

Total Observations in Table: 12352.94

	Predicted		
Actual	[,1]	[,2]	Row Total
[1,]	5614	6108	11722
	0.485	0.438	1

```
0.479 | 0.521 | 0.949 |
0.958 | 0.941 | |
                        0.455 |
                                          0.494 |
                     247 | 383 |

9.029 | 8.154 |

0.392 | 0.608 |

0.042 | 0.059 |

0.020 | 0.031 |
        [2,]
                      5861 | 6491 | 12352 |
0.475 | 0.525 | |
Column Total |
-----|----|-----|
> net.tree.a <- netFromCrossTab(ct.tree.a.a, prices)</pre>
> net.tree.a
[1] 565.0726
> summary(tree.b)
Call:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
 n = 1872
         CP nsplit rel error xerror xstd
2 0.01048387
                1 0.8752688 0.9043011 0.02314150
Variable importance
   AVGGIFT MAXRAMNT LASTGIFT totalmonths NUMPROM RAMNTALL 35 25 24 8 5 3
Node number 1: 1872 observations, complexity param=0.1247312
  predicted class=0 expected loss=0.4967949 P(node) =1
    class counts: 942 930
   probabilities: 0.503 0.497
  left son=2 (832 obs) right son=3 (1040 obs)
  Primary splits:
      AVGGIFT
               < 9.878676 to the right, improve=16.276920, (0 missing)
      totalmonths < 31.5 to the right, improve=14.088780, (0 missing)
     MAXRAMNT < 14.5 to the right, improve=13.134850, (0 missing) LASTGIFT < 14.5 to the right, improve=12.963660, (0 missing) NUMPROM < 54.5 to the left, improve= 8.441558, (0 missing)
  Surrogate splits:
     MAXRAMNT < 14.5 to the right, agree=0.876, adj=0.720, (0 split)
```

```
to the right, agree=0.857, adj=0.679, (0 split)
     totalmonths < 35.5 to the right, agree=0.659, adj=0.232, (0 split)
     NUMPROM < 24.5 to the left, agree=0.624, adj=0.155, (0 split)
     RAMNTALL
                < 26.5
                         to the left, agree=0.596, adj=0.091, (0 split)
Node number 2: 832 observations
 predicted class=0 expected loss=0.4230769 P(node) =0.4444444
   class counts: 480
                       352
  probabilities: 0.577 0.423
Node number 3: 1040 observations
 predicted class=1 expected loss=0.4442308 P(node) =0.5555556
                 462
   class counts:
                       578
  probabilities: 0.444 0.556
> printcp(tree.b)
Classification tree:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
Variables actually used in tree construction:
[1] AVGGIFT
Root node error: 930/1872 = 0.49679
n = 1872
       CP nsplit rel error xerror
1 0.87527 0.9043 0.023141
2 0.010484
> rsq.rpart(tree.b)
Classification tree:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
Variables actually used in tree construction:
[1] AVGGIFT
Root node error: 930/1872 = 0.49679
n = 1872
       CP nsplit rel error xerror
1 0.124731 0 1.00000 1.0559 0.023234
2 0.010484
             1 0.87527 0.9043 0.023141
```

LASTGIFT < 12.5

> prp(tree.b)

Figure 5: tree.b classification tree $\,$

```
> tree.b.pred <- predict(tree.b, newdata=dd.test, type="class")
> ct.tree.b <- buildClassTab(tree.b.pred, dd.test$TARGET_B, cutoff=NULL)</pre>
```

Cell Contents

```
|-----|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
```

Total Observations in Table: 1248

| Predicted

Actual	0	1	Row Total
0	 296	322	618
	2.733	2.105	1
	0.479	0.521	0.495
	0.545	0.457	1
	0.237	0.258	1
1	247	383	630
	2.681	2.065	1
	0.392	0.608	0.505
	0.455	0.543	1
	0.198	0.307	1
Column Total	l 543	705	1248
	0.435	0.565	1

> ct.tree.b.a <- adjustTabForOversamp(ct.tree.b, .051)</pre>

Cell Contents

1						-
					N	1
1	Chi-square	e d	coı	ntrib	oution	-
1		N	/	Row	Total	-
1		N	/	Col	Total	-
1	N	/	Ta	able	Total	-
1						-

Total Observations in Table: 12352.94

	Predicted		
Actual	[,1]	[,2]	Row Total
[1,]	5614	6108	11722
	0.485	0.438	I I
	0.479	0.521	0.949
	0.958	0.941	1
	0.455	0.494	1
[2,]	247	383	630
	9.029	8.154	I I
	0.392	0.608	0.051
	0.042	0.059	1

	0.020	0.031	 	1
Column Total	5861	6491	12352	
 	0.475	0.525	 	ı

- > net.tree.b <- netFromCrossTab(ct.tree.b.a, prices)</pre>
- > net.tree.b

[1] 565.0726

- > tree.c.pred <- predict(tree.c, newdata=dd.test, type="class")</pre>
- > ct.tree.c <- buildClassTab(tree.c.pred, dd.test\$TARGET_B, cutoff=NULL)

Cell Contents

١	N I
١	Chi-square contribution
١	N / Row Total
1	N / Col Total
1	N / Table Total
١	

Total Observations in Table: 1248

	Predicted				
Actual	0	1	1	I	Row Total
		- -		١.	
0	225		393		618
	2.158		1.063	1	1
	0.364		0.636	1	0.495
	0.546		0.470	١	1
	0.180		0.315	١	1
		- -		-	
1	187	1	443	I	630
	2.117	1	1.043	١	1
	0.297		0.703	١	0.505
	0.454		0.530	1	1
	0.150		0.355	1	1
		- -		-	
Column Total	412	1	836	I	1248
	0.330	1	0.670	1	1
		- -		-	

> ct.tree.c.a <- adjustTabForOversamp(ct.tree.c, .051)</pre>

Cell Contents

						-
1					N	-
Ch	ni-squar	e d	coı	ntril	oution	-
1		N	/	Row	Total	-
1		N	/	${\tt Col}$	Total	1
1	N	/	Ta	able	Total	-
						-

Total Observations in Table: 12352.94

	Predicted		
Actual	[,1]	[,2]	Row Total
[1,]	4268	7454	11722
	0.382	0.216	
	0.364	0.636	0.949
	0.958	0.944	
	0.346	0.603	
[2,]	187	443	630
	7.115	4.014	
	0.297	0.703	0.051
	0.042	0.056	
	0.015	0.036	
Column Total	4455	7897	12352
	0.361	0.639	1

```
> net.tree.c <- netFromCrossTab(ct.tree.c.a, prices)
> net.tree.c
```

[1] 388.4416

> summary(tree.c)

Call:

```
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
    minbucket = minbuc)
n= 1872
```

3 0.01000000 5 0.8333333 0.9021505 0.02313637

```
Variable importance
    AVGGIFT
                                        {\tt NUMPROM\ total months}
                                                                  INCOME
               MAXRAMNT
                           LASTGIFT
         22
                     17
                                 16
                                             13
     WEALTH
               RAMNTALL
                            TIMELAG
Node number 1: 1872 observations,
                                     complexity param=0.1247312
  predicted class=0 expected loss=0.4967949 P(node) =1
                  942
                          930
    class counts:
   probabilities: 0.503 0.497
  left son=2 (832 obs) right son=3 (1040 obs)
  Primary splits:
      AVGGIFT
                  < 9.878676 to the right, improve=16.276920, (0 missing)
                             to the right, improve=14.088780, (0 missing)
      totalmonths < 31.5
     MAXRAMNT
                  < 14.5
                             to the right, improve=13.134850, (0 missing)
      LASTGIFT
                  < 14.5
                             to the right, improve=12.963660, (0 missing)
     NUMPROM
                  < 54.5
                             to the left, improve= 8.441558, (0 missing)
  Surrogate splits:
     MAXRAMNT
                  < 14.5
                             to the right, agree=0.876, adj=0.720, (0 split)
                             to the right, agree=0.857, adj=0.679, (0 split)
      LASTGIFT
                  < 12.5
      totalmonths < 35.5
                             to the right, agree=0.659, adj=0.232, (0 split)
                  < 24.5
                             to the left, agree=0.624, adj=0.155, (0 split)
      NUMPROM
                  < 26.5
      RAMNTALL
                             to the left, agree=0.596, adj=0.091, (0 split)
                                    complexity param=0.01048387
Node number 2: 832 observations,
  predicted class=0 expected loss=0.4230769 P(node) =0.4444444
                    480
    class counts:
                          352
   probabilities: 0.577 0.423
  left son=4 (823 obs) right son=5 (9 obs)
  Primary splits:
     NUMPROM
                                           improve=6.056641, (0 missing)
                  < 118
                             to the left,
      INCOME
                  splits as LLRRRRR,
                                           improve=4.468691, (0 missing)
                                           improve=4.277984, (0 missing)
      Icmed
                  < 163.5
                             to the left,
                             RRLRLLRRRR,
                                           improve=3.714286, (0 missing)
      WEALTH
                  splits as
      totalmonths < 31.5
                             to the right, improve=3.479007, (0 missing)
  Surrogate splits:
     MAXRAMNT < 132.5
                          to the left, agree=0.99, adj=0.111, (0 split)
Node number 3: 1040 observations
  predicted class=1 expected loss=0.4442308 P(node) =0.5555556
    class counts:
                    462
                          578
   probabilities: 0.444 0.556
```

complexity param=0.01048387

Node number 4: 823 observations,

```
predicted class=0 expected loss=0.4167679 P(node) =0.4396368
    class counts: 480
                        343
  probabilities: 0.583 0.417
  left son=8 (161 obs) right son=9 (662 obs)
 Primary splits:
     INCOME splits as LLRRRRR,
                                    improve=5.633731, (0 missing)
                       to the left, improve=5.307601, (0 missing)
     Icmed < 158
                                    improve=3.709045, (0 missing)
     WEALTH splits as RRLRLLRRRR,
     Icavg < 174.5 to the left, improve=3.161087, (0 missing)
     HV
            < 252.5 to the left, improve=3.051052, (0 missing)
 Surrogate splits:
                     to the right, agree=0.806, adj=0.006, (0 split)
     IC15 < 54.5
Node number 5: 9 observations
 predicted class=1 expected loss=0 P(node) =0.004807692
    class counts:
                   0
  probabilities: 0.000 1.000
Node number 8: 161 observations
  predicted class=0 expected loss=0.2981366 P(node) =0.08600427
    class counts: 113 48
  probabilities: 0.702 0.298
Node number 9: 662 observations,
                                  complexity param=0.01048387
 predicted class=0 expected loss=0.4456193 P(node) =0.3536325
    class counts:
                 367
  probabilities: 0.554 0.446
 left son=18 (373 obs) right son=19 (289 obs)
 Primary splits:
     totalmonths < 31.5
                          to the right, improve=4.075566, (0 missing)
                         to the left, improve=4.032445, (0 missing)
     Icmed < 158
     WEALTH
                 splits as RRLRLLLLRL,
                                         improve=3.630847, (0 missing)
     IC15
                 < 7.5
                       to the left, improve=3.278974, (0 missing)
     HV
                 < 251
                           to the left, improve=2.809783, (0 missing)
  Surrogate splits:
     LASTGIFT < 14.5
                       to the right, agree=0.636, adj=0.166, (0 split)
     RAMNTALL < 100.5 to the left, agree=0.627, adj=0.145, (0 split)
     TIMELAG < 4.5
                        to the right, agree=0.612, adj=0.111, (0 split)
     MAXRAMNT < 13.5
                        to the right, agree=0.594, adj=0.069, (0 split)
     NUMPROM < 85.5
                       to the left, agree=0.591, adj=0.062, (0 split)
Node number 18: 373 observations
 predicted class=0 expected loss=0.3967828 P(node) =0.1992521
   class counts: 225 148
  probabilities: 0.603 0.397
```

```
Node number 19: 289 observations,
                                    complexity param=0.01048387
 predicted class=1 expected loss=0.4913495 P(node) =0.1543803
    class counts:
                   142
                         147
  probabilities: 0.491 0.509
  left son=38 (101 obs) right son=39 (188 obs)
 Primary splits:
     WEALTH
              splits as RRLRLLLLRL,
                                       improve=5.444424, (0 missing)
                         to the right, improve=3.806479, (0 missing)
     MAXRAMNT < 21.5
     RAMNTALL < 69.5
                         to the right, improve=3.425653, (0 missing)
     NUMPROM < 23.5 to the right, improve=2.697049, (0 missing)
                        to the right, improve=2.120607, (0 missing)
     LASTGIFT < 22.5
 Surrogate splits:
     RAMNTALL < 124
                            to the right, agree=0.744, adj=0.267, (0 split)
     NUMPROM
                 < 40.5
                            to the right, agree=0.730, adj=0.228, (0 split)
     TIMELAG
                 < 10.5
                            to the right, agree=0.696, adj=0.129, (0 split)
                            to the left, agree=0.664, adj=0.040, (0 split)
     IC15
                 < 2.5
     totalmonths < 17.5
                            to the left, agree=0.661, adj=0.030, (0 split)
Node number 38: 101 observations
 predicted class=0 expected loss=0.3762376 P(node) =0.05395299
    class counts:
                    63
                          38
  probabilities: 0.624 0.376
Node number 39: 188 observations
 predicted class=1 expected loss=0.4202128 P(node) =0.1004274
    class counts:
                    79
                        109
  probabilities: 0.420 0.580
> printcp(tree.c)
Classification tree:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
Variables actually used in tree construction:
[1] AVGGIFT
               TNCOME.
                           NUMPROM
                                       totalmonths WEALTH
Root node error: 930/1872 = 0.49679
n = 1872
       CP nsplit rel error xerror
                                       xstd
1 0.124731
               0 1.00000 1.02903 0.023256
2 0.010484
                   0.87527 0.91935 0.023174
               1
3 0.010000
               5 0.83333 0.90215 0.023136
> rsq.rpart(tree.c)
```

> prp(tree.c)

Figure 6: tree.c classification tree

```
Classification tree:
rpart(formula = formula, data = data, method = "class", minsplit = minspl,
   minbucket = minbuc)
Variables actually used in tree construction:
[1] AVGGIFT
               INCOME
                           NUMPROM
                                      totalmonths WEALTH
Root node error: 930/1872 = 0.49679
n= 1872
       CP nsplit rel error xerror
           0 1.00000 1.02903 0.023256
1 0.124731
2 0.010484
               1 0.87527 0.91935 0.023174
3 0.010000
           5 0.83333 0.90215 0.023136
```

- > tree.c.pred <- predict(tree.c, newdata=dd.test, type="class")
 > ct.tree.c <- buildClassTab(tree.c.pred, dd.test\$TARGET_B, cutoff=NULL)</pre>
 - Cell Contents

					-
1				N	1
Chi-square	e d	coı	ntril	oution	
1	N	/	Row	Total	
1	N	/	${\tt Col}$	Total	١
l N	/	Ta	able	Total	١
					- 1

Total Observations in Table: 1248

1	Predicted		
Actual	0	1	Row Total
0	225	393	618
1	2.158	1.063	
	0.364	0.636	0.495
	0.546	0.470	
	0.180	0.315	1
1	187	l 443	630
	2.117	1.043	1
	0.297	0.703	0.505
	0.454	0.530	
	0.150	0.355	
Column Total	412	l 836	1248
	0.330	0.670	

> ct.tree.c.a <- adjustTabForOversamp(ct.tree.c, .051)</pre>

Cell Contents

					-
1				N	1
Chi-square	e d	coı	ntril	oution	1
1	N	/	Row	Total	1
	N	/	Col	Total	1
l N	/	Ta	able	Total	1
					-

Total Observations in Table: 12352.94

	Predicted		
Actual	[,1]	[,2]	Row Total
[1,]	4268	7454	11722
	0.382	0.216	
	0.364	0.636	0.949
	0.958	0.944	
	0.346	0.603	
[2,]	187	443	630
	7.115	4.014	
	0.297	0.703	0.051
	0.042	0.056	
	0.015	0.036	
Column Total	4455	7897	12352
	0.361	0.639	Ι Ι

```
> net.tree.c <- netFromCrossTab(ct.tree.c.a, prices)
```

[1] 388.4416

Neural Networks

The data for a Neural Net needs to be prepared so that the predictors are in the range of [0:1]. Using all predictors resulted in a ROC curve nearly equal to that of the Naive Rule. Therefore, domain knowledge provided by the case writeup was used to prune predictors

```
> library(nnet)
> ddn <- getNnDataPruned()
> n <- getRandomRowNums()
> ddn.train <- ddn[n,]
> ddn.test <- ddn[-n,]
> nn <- nnet(TARGET_B ~ ., data=ddn.train, size=1)
# weights: 13
initial value 514.759043
iter 10 value 467.665761
iter 20 value 467.663370
iter 30 value 466.024357
iter 40 value 463.035281</pre>
```

> net.tree.c

Figure 7: Neural Net ROC curve using Subset Selection

```
iter 50 value 462.850599
iter 60 value 462.834356
iter 70 value 460.655083
iter 80 value 460.009379
iter 90 value 457.699723
iter 100 value 455.028110
final value 455.028110
stopped after 100 iterations
> nn.pred <- predict(nn, newdata=ddn.test)</pre>
```

Classication Table and Net Profit

```
> nn.ct <- buildClassTab(nn.pred, ddn.test$TARGET_B)

Cell Contents
|------</pre>
```

Lift Curve 0.44 1.6 Lift value 0.29 4.1 0.15 1.2 1.0 0.0 0.2 0.4 0.6 8.0 1.0 Rate of positive predictions

Figure 8: Neural Net Lift curve using Subset Selection

```
| N | Chi-square contribution | N / Row Total | N / Col Total | N / Table Total |
```

Total Observations in Table: 1248

1	Predicted		
Actual	0	1	Row Total
0	361	238	599
1	3.781	4.512	1
I	0.603	0.397	0.480
I	0.532	0.418	l I
I	0.289	0.191	1
1	318	331	l 649 l
I	3.489	4.164	l I
I	0.490	0.510	0.520
I	0.468	0.582	l I
I	0.255	0.265	1
Column Total	679	569	1248
I	0.544	0.456	

> nn.ct

\$t

y x 0 1 0 361 238 1 318 331

\$prop.row

x 0 1 0 0.6026711 0.3973289 1 0.4899846 0.5100154

\$prop.col

```
x 0 1
0 0.5316642 0.4182777
1 0.4683358 0.5817223

$prop.tbl
y
x 0 1
0 0.2892628 0.1907051
```

1 0.2548077 0.2652244

> nn.ct.a <- adjustTabForOversamp(nn.ct, .051)</pre>

Cell Contents

١						-
١					N	١
١	Chi-square	е (coı	ntrib	oution	١
١		N	/	Row	Total	١
		N	/	Col	Total	١
	N	/	Ta	able	Total	١
1						-

Total Observations in Table: 12725.49

	Predicted		
Actual	[,1]	[,2]	Row Total
[1,]	7278	4798	12076
	0.668	0.990	
	0.603	0.397	0.949
	0.958	0.935	
	0.572	0.377	1
[2,]	318	331	649
	12.434	18.413	
	0.490	0.510	0.051
	0.042	0.065	
	0.025	0.026	
Column Total	7596	5129	12725
	0.597	0.403	

> nn.ct.a

\$t

[,1] [,2]

```
[1,] 7278.152 4798.338
[2,] 318.000 331.000
$prop.row
          [,1]
                     [,2]
[1,] 0.6026711 0.3973289
[2,] 0.4899846 0.5100154
$prop.col
          [,1]
                      [,2]
[1,] 0.9581367 0.93546926
[2,] 0.0418633 0.06453074
$prop.tbl
           [,1]
                       [,2]
[1,] 0.57193489 0.37706511
[2,] 0.02498921 0.02601079
> nn.ct.net <- netFromCrossTab(nn.ct.a, prices)
> nn.ct.net
[1] 815.0499
```

Classification under asymmetric response and cost (b)

What is the reasoning behind using weighted sampling to produce training and validation sets with equal numbers of donors and non-donors? Why not use a simple random sample from the original dataset? In this case, is classification accuracy a good performance metric for our purposes of maximizing net profit? If not, how would you determine the best model? Please explain your reasoning.

If simple sampling were used, the non-responders would drown out the responders due to the 94.9% rate of non-responders. Using weighted (over) sampling mitigates this phenomonon.

Classification accuracy is not a good indication of performance as there is a much greater interest in classifiying responders from non-responders.

The best model is determined by comparison. Maximzing fund raising is the goal so the model that produces the Classification Table where this is so wins. ROC and Lift curves are used for quick comparison and to rule out models more quickly then rote eximnation of Classification Tables.

Calculate Net Profit (c)

For each method, calculate the lift of net profit for both the training and validation set based on the actual response rate 5.1%. Again, the expected donation, given that they are donors, is \$13.00, and the total cost of each mailing is \$0.68.

This was done for each model above, including adjusting for oversampling

```
In summary
> ct.logit.net
[1] 731.0229
> net.tree.a
[1] 565.0726
> nn.ct.net
[1] 815.0499
>
```

Draw Lift Curves (d)

Draw each models net profit lift curve for the validation set onto a single graph. Are there any models that dominate?

```
> drawLift(logit.pred, dd.test$TARGET_B)
> drawLift(nn.pred, ddn.test$TARGET_B, add=TRUE)
> #drawLift(tree.a.pred, dd.test$TARGET_B, add=TRUE)
```


Best Model (e)

From your answer in part 2b, what do you think is the best model?

I choose the Neural Network model as the best in this case. It seems to model the complex relationships between the predcitor variables more accurately, although no model is a clear winner. In this case, it maximizes the fundraising goal.

Future Data

- > fdd <- getFutureDataClean()</pre>
- > fdd.nn <- getNnDataPruned(fdd)</pre>
- > fdd.pred <- predict(nn, newdata=fdd)</pre>
- > summary(fdd.pred)

۷1

Min. :0.0000 1st Qu.:0.5902 Median :0.5902 Mean :0.4944 3rd Qu.:0.5902 Max. :0.5902 NA's :1120

> fdd.pred

[,1] 5.902334e-01 1 2 0.000000e+00 3 5.902334e-01 4 5.902334e-01 5 5.902334e-01 6 5.902334e-01 7 0.000000e+00 8 5.902334e-01 9 5.902334e-01 10 0.00000e+00 11 5.902334e-01 12 5.902334e-01 13 5.902334e-01 14 5.902334e-01 15 5.902334e-01 16 0.000000e+00 17 5.902334e-01 18 5.902334e-01 19 0.000000e+00 20 0.00000e+00 21 5.902334e-01 22 0.000000e+00 23 5.902334e-01 24 0.000000e+00 25 5.902334e-01 26 5.902334e-01 27 5.902334e-01 28 5.902334e-01 29 5.902334e-01 30 5.902334e-01 31 5.902334e-01 32 5.902334e-01 33 0.000000e+00 34 0.000000e+00 35 5.902334e-01 36 5.902334e-01

37

38

39

40

5.902334e-01

0.000000e+00

5.902334e-01

5.902334e-01

- 5.902334e-01 41
- 42 5.902334e-01
- 43 5.902334e-01
- 44 5.902334e-01
- 45 5.902334e-01
- 46 5.902334e-01
- 47
- 5.902334e-01
- 48 5.902334e-01
- 49 5.902334e-01
- 50 5.902334e-01
- 51 5.902334e-01
- 52 5.902334e-01
- 53 5.902334e-01
- 54 5.902334e-01
- 55 5.902334e-01
- 56 5.902334e-01
- 57 5.902334e-01
- 58
- 5.902334e-01
- 59 5.902334e-01
- 60 5.902334e-01
- 61 5.902334e-01
- 62 5.902334e-01
- 63 5.902334e-01
- 64 5.902334e-01
- 65 5.902334e-01
- 66 5.902334e-01
- 67 5.902334e-01
- 68 0.000000e+00
- 69 5.902334e-01
- 70 5.902334e-01
- 71 5.902334e-01
- 72 5.902334e-01
- 73 5.902334e-01
- 74 5.902334e-01
- 75 5.902334e-01
- 76 5.902334e-01
- 77 5.902334e-01
- 78 5.902334e-01
- 79 5.902334e-01
- 80 5.902334e-01
- 81 5.902334e-01
- 82 5.852950e-01
- 83 0.000000e+00
- 84 5.902334e-01 85 0.000000e+00
- 86 5.902334e-01

- 87 5.902334e-01
- 88 5.902334e-01
- 89 5.901071e-01
- 90 5.902334e-01
- 91 5.902334e-01
- 92 5.902334e-01
- 93 5.902334e-01
- 94 5.902334e-01
- 95 0.000000e+00
- 96 5.902334e-01
- 97 5.902334e-01
- 0.0020010 01
- 98 5.902334e-01
- 99 5.902334e-01
- 100 0.000000e+00
- 101 0.000000e+00
- 102 5.902334e-01
- 103 0.000000e+00
- 104 0.000000e+00
- 105 5.902334e-01
- 106 5.902334e-01
- 100 0.3020040 01
- 107 5.902334e-01
- 108 5.902334e-01
- 109 5.902334e-01
- 110 5.902334e-01
- 111 5.902334e-01
- 112 5.902334e-01
- 113 5.182083e-01
- 114 5.902334e-01
- 115 5.902334e-01
- 116 0.000000e+00
- 117 5.902334e-01
- 118 5.902334e-01
- 119 5.902334e-01
- 120 5.902334e-01
- 121 5.902334e-01
- 122 5.902334e-01
- 123 5.902334e-01
- 124 5.902334e-01
- 125 5.902334e-01
- 126 5.902334e-01
- 127 5.902334e-01
- 128 0.000000e+00
- 129 0.000000e+00
- 130 5.902334e-01
- 131 5.902334e-01
- 132 0.000000e+00

- 133 5.902334e-01
- 134 5.902334e-01
- 135 5.902334e-01
- 136 5.902334e-01
- 137 5.902334e-01
- 138 5.902334e-01
- 139 5.902334e-01
- 140 5.902334e-01
- 141 5.902334e-01
- 142 5.902334e-01
- 143 5.902334e-01
- 144 5.902334e-01
- 145 0.000000e+00
- 146 0.000000e+00
- 147 5.902334e-01
- 148 5.902334e-01
- 149 5.902334e-01
- 110 0.0020010 01
- 150 5.902334e-01
- 151 5.902334e-01
- 152 5.902334e-01
- 153 5.902334e-01
- 154 0.000000e+00
- 155 5.902334e-01
- 156 5.902334e-01
- 150 5.902554e-01
- 157 5.902334e-01 158 0.000000e+00
- 150 0.0000000:00
- 159 5.902334e-01
- 160 5.902334e-01
- 161 5.902334e-01 162 5.902334e-01
- 163 5.902334e-01
- 164 5.902334e-01
- 165 5.902334e-01
- 166 5.902334e-01
- 167 5.902334e-01
- 168 5.902334e-01
- 169 5.902334e-01
- 170 5.902334e-01
- 171 5.902334e-01
- 172 5.902334e-01
- 173 5.902334e-01
- 174 5.902334e-01
- 175 5.902334e-01
- 176 0.000000e+00
- 177 5.902334e-01
- 178 5.902334e-01

- 179 5.902334e-01
- 180 0.000000e+00
- 181 5.902334e-01
- 182 5.902334e-01
- 183 5.902334e-01
- 184 5.902334e-01
- 185 5.902334e-01
- 186 5.902334e-01
- 187 0.000000e+00
- 188 5.902334e-01
- 189 5.902334e-01
- 190 5.902334e-01
- 191 5.902334e-01
- 192 5.902334e-01
- 193 0.000000e+00
- 194 5.902334e-01
- 195 5.900551e-01
- 196 5.902334e-01
- 197 5.902334e-01
- 198 5.902334e-01
- 199 5.902334e-01
- 200 0.000000e+00
- 201 5.902334e-01
- 202 5.902334e-01
- 203 5.902334e-01 204 0.000000e+00
- 205 5.902334e-01
- 206 5.902334e-01
- 207 5.902334e-01
- 208 5.902334e-01 209 5.902334e-01
- 210 5.902334e-01
- 211 5.902334e-01
- 212 5.902334e-01
- 213 5.902334e-01
- 214 5.902334e-01
- 215 5.902334e-01 216 5.902334e-01
- 217 5.902334e-01
- 218 0.000000e+00
- 219 5.902334e-01
- 220 5.902334e-01
- 221 5.902334e-01
- 222 5.902334e-01
- 223 5.902334e-01
- 224 5.902334e-01

- 225 5.902334e-01
- 226 5.902334e-01
- 227 5.902334e-01
- 228 5.902334e-01
- 229 5.902334e-01
- 230 0.000000e+00
- 231 5.902334e-01
- 232 5.902334e-01
- 233 0.000000e+00
- 234 0.000000e+00
- 235 5.902334e-01
- 236 5.902334e-01
- 237 5.902334e-01
- 201 0.3020040 01
- 238 0.000000e+00
- 239 5.902334e-01
- 240 5.898997e-01
- 241 5.902334e-01
- 242 5.902334e-01
- 243 0.000000e+00
- 244 0.000000e+00
- 245 5.902334e-01
- 246 5.902334e-01
- 247 5.902334e-01
- 248 5.902334e-01
- 249 5.902334e-01
- 250 5.902334e-01
- 251 0.000000e+00
- 252 5.902334e-01
- 253 5.902334e-01
- 254 5.902334e-01
- 255 0.000000e+00
- 256 5.902334e-01
- 257 5.902334e-01
- 258 5.902334e-01
- 259 5.902334e-01
- 260 0.000000e+00
- 261 0.000000e+00 262 5.902334e-01
- 263 0.000000e+00
- 264 5.902334e-01
- 265 5.902334e-01
- 266 5.902334e-01
- 267 5.902334e-01
- 268 5.902334e-01 269 0.000000e+00
- 270 5.491238e-01

- 271 5.902334e-01
- 272 5.902334e-01
- 273 5.902334e-01
- 274 5.902334e-01
- 275 5.902334e-01
- 276 5.902334e-01
- 270 0.0020010 01
- 277 0.000000e+00
- 278 5.902334e-01
- 279 5.902334e-01
- 280 5.902334e-01
- 281 0.000000e+00
- 282 5.902334e-01
- 283 5.902334e-01
- 284 5.902334e-01
- 285 5.902334e-01
- 286 5.902334e-01
- 287 5.902334e-01
- 288 5.902113e-01
- 200 0.0021100 01
- 289 5.902334e-01
- 290 0.000000e+00
- 291 5.902334e-01
- 292 5.902334e-01
- 293 5.902334e-01
- 294 5.902334e-01
- 295 5.902334e-01
- 296 0.000000e+00
- 297 5.902334e-01
- 298 5.902334e-01
- 299 5.902334e-01
- 300 0.000000e+00
- 301 5.902334e-01
- 302 5.902334e-01
- 303 5.902334e-01
- 304 5.902334e-01
- 305 5.902334e-01
- 306 5.902334e-01
- 307 5.902334e-01 308 0.000000e+00
- 309 5.902334e-01
- 309 3.902334e 01
- 310 5.902334e-01
- 311 0.000000e+00
- 312 0.000000e+00
- 313 0.000000e+00
- 314 5.902334e-01
- 315 5.902334e-01
- 316 0.000000e+00

- 317 5.902334e-01
- 318 5.902334e-01
- 319 5.902334e-01
- 320 5.902334e-01
- 321 5.902334e-01
- 322 5.902334e-01
- 323 5.902334e-01
- 324 5.902334e-01
- 325 5.902334e-01
- 326 5.902334e-01
- 327 5.902334e-01
- 328 5.902334e-01
- 329 5.902334e-01
- 330 5.902334e-01
- 331 0.000000e+00
- 332 5.902334e-01
- 333 5.902334e-01
- 334 0.000000e+00
- 335 5.902334e-01
- 336 5.902334e-01
- 337 5.902334e-01
- 338 5.902334e-01
- 339 5.902334e-01
- 340 5.902334e-01
- 341 5.902334e-01 342 5.902334e-01
- 343 5.902334e-01
- 344 5.888828e-01
- 345 5.902334e-01
- 346 5.902334e-01 347 0.000000e+00
- 348 0.000000e+00
- 349 5.902334e-01
- 350 5.902334e-01
- 351 5.902334e-01
- 352 5.902334e-01
- 353 5.902334e-01 354 5.902334e-01
- 355 5.902334e-01
- 356 0.000000e+00
- 357 5.902334e-01
- 358 0.000000e+00
- 359 5.900311e-01
- 360 5.902334e-01 361 5.902334e-01
- 362 0.000000e+00

- 363 5.902334e-01
- 364 5.902334e-01
- 365 5.902334e-01
- 366 5.902334e-01
- 367 5.902334e-01
- 368 5.902334e-01
- 369 5.902334e-01
- 370 0.000000e+00
- 371 5.902334e-01
- 372 0.000000e+00
- 373 0.000000e+00
- 374 5.902334e-01
- 375 5.902334e-01
- 376 5.902334e-01
- 377 5.902334e-01
- 378 5.902334e-01
- 379 5.902334e-01
- 380 5.902334e-01
- 381 5.902334e-01
- 382 5.902334e-01
- 383 5.902334e-01
- 384 5.902334e-01
- 385 5.902334e-01
- 386 5.902334e-01
- 387 5.902334e-01
- 388 5.902334e-01
- 389 0.000000e+00
- 390 0.000000e+00
- 391 5.902334e-01
- 392 0.000000e+00
- 393 0.000000e+00
- 394 5.902334e-01
- 395 5.902334e-01
- 396 0.000000e+00
- 397 5.902334e-01
- 398 5.902334e-01
- 399 0.000000e+00
- 400 5.902334e-01
- 401 0.000000e+00
- 402 0.000000e+00
- 403 0.000000e+00
- 404 5.902334e-01 405 5.902334e-01
- 406 5.902334e-01
- 407 5.902334e-01
- 408 5.902334e-01

- 409 5.902334e-01
- 410 5.902334e-01
- 411 5.902334e-01
- 412 5.902334e-01
- 413 0.000000e+00
- 414 0.000000e+00
- 415 5.902334e-01
- 416 5.902334e-01
- 417 5.902334e-01
- 418 0.000000e+00
- 419 5.902334e-01
- 420 0.000000e+00
- 421 0.000000e+00
- 421 0.000000e100
- 422 0.000000e+00
- 423 0.000000e+00
- 424 5.902334e-01
- 425 5.902334e-01
- 426 5.902334e-01
- 427 5.902334e-01
- 428 5.902334e-01
- 429 5.902334e-01
- 400 5 000004 04
- 430 5.902334e-01
- 431 5.902334e-01
- 432 2.284777e-03
- 433 5.902334e-01
- 434 5.902334e-01
- 435 5.902334e-01
- 436 0.000000e+00
- 437 0.000000e+00
- 438 5.902334e-01
- 439 5.902334e-01
- 440 5.902334e-01
- 441 5.902334e-01
- 442 0.000000e+00
- 443 5.902334e-01
- 444 5.902334e-01
- 445 5.902334e-01
- 446 0.000000e+00
- 447 5.902334e-01
- 448 5.902334e-01
- 449 5.902334e-01
- 450 0.000000e+00
- 451 5.902334e-01
- 452 5.902334e-01
- 453 5.902334e-01
- 454 5.902034e-01

- 455 5.902334e-01
- 456 5.902334e-01
- 457 2.611605e-01
- 458 5.902334e-01
- 459 0.000000e+00
- 460 5.902334e-01
- 461 5.902334e-01
- 462 5.902334e-01
- 463 5.902334e-01 464 5.902334e-01
- 465 5.902334e-01
- 466 5.902334e-01
- 467 5.902334e-01
- 468 5.902334e-01
- 469 0.000000e+00
- 470 0.000000e+00
- 471 5.902334e-01
- 472 5.902334e-01
- 473 5.902334e-01
- 474 5.902334e-01
- 475 5.902334e-01
- 476 5.902334e-01
- 477 5.902334e-01
- 478 5.902334e-01
- 479 0.000000e+00 480 5.902334e-01
- 481 5.902334e-01
- 482 5.902334e-01
- 483 5.902334e-01 484 5.902334e-01
- 485 5.902334e-01
- 486 5.902334e-01
- 487 5.902334e-01
- 488 5.902334e-01
- 489 5.902334e-01
- 490 0.000000e+00
- 491 0.000000e+00
- 492 5.902334e-01
- 493 5.902334e-01
- 494 5.902334e-01
- 495 5.902334e-01
- 496 0.000000e+00
- 497 5.902334e-01
- 498 5.902334e-01
- 499 5.902334e-01
- 500 5.902334e-01

- 501 5.902334e-01
- 502 5.902334e-01
- 503 5.902334e-01
- 504 5.902334e-01
- 505 5.902334e-01
- 506 5.902334e-01
- 3.302334e 01
- 507 5.577281e-01
- 508 5.902334e-01
- 509 5.902334e-01
- 510 5.902334e-01
- 511 5.902334e-01
- 512 5.902334e-01
- 513 0.000000e+00
- 514 5.902334e-01
- 515 5.902334e-01
- 516 5.902334e-01
- 517 0.000000e+00
- 518 5.902334e-01
- 519 5.902334e-01
- --- -----
- 520 5.902334e-01
- 521 5.902334e-01
- 522 5.902334e-01
- 523 5.902334e-01
- 524 5.902334e-01
- 525 0.000000e+00
- 526 4.326627e-01
- 527 2.739410e-01
- 528 0.000000e+00
- 529 5.902334e-01
- 530 5.902334e-01
- 531 0.000000e+00
- 532 0.000000e+00
- 533 5.902334e-01
- 534 5.902334e-01
- 535 5.902334e-01
- 536 5.902334e-01
- 537 5.902334e-01
- 538 5.901892e-01
- 539 0.000000e+00
- 540 5.902334e-01
- 541 5.902334e-01
- 542 5.902334e-01
- 543 5.902334e-01
- 544 5.902334e-01
- 545 5.902334e-01
- 546 5.902334e-01

- 547 5.902012e-01
- 548 0.000000e+00
- 549 5.902334e-01
- 550 5.902334e-01
- 551 5.902334e-01
- 552 5.902334e-01
- 553 5.902334e-01
- 554 5.902334e-01
- 555 5.902334e-01
- 556 5.902334e-01
- 557 5.902334e-01
- 558 5.902334e-01
- 559 5.902334e-01
- 560 0.000000e+00
- 561 5.902223e-01
- 562 5.902334e-01
- 563 0.000000e+00
- 564 0.000000e+00
- 565 5.902334e-01
- 566 5.902334e-01
- 567 5.902334e-01
- 568 5.902334e-01
- 569 0.000000e+00
- 570 5.902334e-01
- 571 5.902334e-01
- 572 5.902334e-01
- 573 5.902334e-01
- 574 5.902334e-01
- 575 5.902334e-01 576 5.902334e-01
- 577 5.902334e-01
- 578 5.902334e-01
- 579 5.902334e-01
- 580 5.902334e-01
- 581 5.902334e-01
- 582 5.890666e-01
- 583 5.902334e-01
- 584 0.000000e+00
- 585 5.902334e-01
- 586 5.902334e-01
- 587 5.902334e-01
- 588 5.902334e-01
- 589 5.902334e-01 590 5.902334e-01
- 591 5.902334e-01
- 592 5.902334e-01

- 593 5.902334e-01
- 594 5.902334e-01
- 595 5.902334e-01
- 596 5.902334e-01
- 597 0.000000e+00
- 598 0.000000e+00
- 0.000000e100
- 599 5.902334e-01
- 600 0.000000e+00
- 601 5.902334e-01
- 602 5.902334e-01
- 603 5.902334e-01
- 604 5.869158e-01
- 605 5.902334e-01
- 606 5.902334e-01
- 607 5.902334e-01
- 608 5.902334e-01
- 609 5.902334e-01
- 610 5.902334e-01
- 611 5.902334e-01
- 0.0020010 01
- 612 0.000000e+00
- 613 5.902334e-01
- 614 5.902334e-01
- 615 5.902334e-01
- 616 5.902334e-01
- 617 5.902334e-01
- 618 5.902334e-01
- 619 5.902334e-01
- 620 5.902334e-01
- 621 5.902334e-01
- 622 5.902334e-01
- 623 5.269861e-01
- 624 5.902334e-01
- 625 5.902334e-01
- 626 5.902334e-01
- 627 5.902334e-01
- 628 5.902334e-01
- 629 5.902334e-01
- 630 5.902334e-01
- 631 5.902334e-01
- 632 5.902334e-01
- 633 5.902334e-01
- 634 5.902334e-01
- 635 5.902334e-01
- 636 5.902334e-01
- 637 5.902334e-01
- 638 5.902334e-01

- 639 5.902334e-01
- 640 5.902334e-01
- 641 5.902334e-01
- 642 5.902334e-01
- 643 5.902334e-01
- 644 5.902334e-01
- 645 0.000000e+00
- 646 5.902334e-01
- 647 5.902334e-01
- 648 5.902334e-01
- 649 5.902334e-01
- 650 5.902334e-01
- 651 5.902334e-01
- 652 5.902334e-01
- 653 0.000000e+00
- 654 0.000000e+00
- 655 0.000000e+00
- 252 0 000000 :00
- 656 0.000000e+00
- 657 5.902334e-01
- 658 5.902334e-01
- 659 5.902334e-01
- 660 5.902334e-01
- 661 0.000000e+00
- 662 5.902334e-01
- 002 5.902334e-01
- 663 5.902334e-01 664 5.902334e-01
- 665 0.000000e+00
- 666 5.902334e-01
- 667 0.000000 :00
- 667 0.000000e+00
- 668 5.902334e-01 669 5.902334e-01
- 670 0.000000e+00
- 671 5.902334e-01
- 672 5.902334e-01
- 673 5.902334e-01
- 674 5.902334e-01
- 675 5.902334e-01
- 676 5.902334e-01
- 677 5.902334e-01
- 678 0.000000e+00
- 679 0.000000e+00
- 680 5.902334e-01
- 681 5.902334e-01
- 682 5.902334e-01
- 683 5.902334e-01
- 684 5.902334e-01

- 685 5.902334e-01
- 686 5.902334e-01
- 687 0.000000e+00
- 688 5.902334e-01
- 689 5.902334e-01
- 005 0.5020040 01
- 690 5.902334e-01
- 691 5.902334e-01
- 692 5.891066e-01
- 693 5.902334e-01
- 694 5.902334e-01
- 695 5.902334e-01
- 696 5.902334e-01
- 697 5.902334e-01
- 698 5.902334e-01
- 699 5.902334e-01
- 700 5.902334e-01
- 701 0.000000e+00
- 702 0.000000e+00
- 102 0:000000000000
- 703 5.902334e-01
- 704 5.902334e-01
- 705 5.902334e-01
- 706 5.902334e-01
- 707 5.902334e-01
- 708 5.902334e-01
- 709 5.902334e-01
- 710 5.902334e-01
- 711 0.000000e+00
- 712 0.000000e+00
- 713 5.902334e-01
- 714 0.000000e+00
- 715 5.902334e-01
- 716 5.902334e-01
- 717 5.902334e-01
- 718 5.902334e-01
- 719 5.902334e-01
- 720 5.902334e-01
- 721 5.902334e-01
- 722 5.902334e-01
- 723 5.902334e-01
- 724 0.000000e+00
- 725 5.902334e-01
- 726 5.902334e-01
- 727 0.000000e+00
- 728 5.902334e-01
- 729 5.902334e-01
- 730 5.902334e-01

- 731 0.000000e+00
- 732 0.000000e+00
- 733 5.902334e-01
- 734 5.902334e-01
- 735 5.902334e-01
- 736 5.902334e-01
- 737 5.902334e-01
- 738 4.132689e-01
- 739 5.902334e-01
- 740 5.902334e-01 741 6.765408e-02
- 742 5.902334e-01
- 743 5.902334e-01
- 744 5.902334e-01
- 745 5.902334e-01
- 746 5.902334e-01
- 747 5.902334e-01
- 748 5.902334e-01
- 749 5.902334e-01
- 750 0.000000e+00
- 751 0.000000e+00
- 752 5.902334e-01
- 753 4.378598e-02
- 754 5.902334e-01
- 755 5.902334e-01
- 756 5.902334e-01
- 757 0.000000e+00
- 758 5.902334e-01
- 759 0.000000e+00
- 760 0.000000e+00
- 761 5.902334e-01
- 762 5.902334e-01
- 763 5.902334e-01
- 764 5.902334e-01
- 765 0.000000e+00
- 766 5.902334e-01
- 767 5.902334e-01
- 768 5.902334e-01
- 769 5.902334e-01
- 770 5.902334e-01
- 771 5.902334e-01
- 772 5.902334e-01
- 773 5.902334e-01
- 774 5.902334e-01
- 775 5.902334e-01
- 776 5.902334e-01

- 777 5.902334e-01
- 778 5.902334e-01
- 779 5.902334e-01
- 780 5.902334e-01
- 781 5.902334e-01
- 782 0.000000e+00
- 783 5.902334e-01
- 700 0.3020040 01
- 784 5.902334e-01
- 785 0.000000e+00
- 786 5.902334e-01
- 787 5.902334e-01
- 788 5.902334e-01
- 789 5.902334e-01
- 790 5.902334e-01
- 791 0.000000e+00
- 792 5.902334e-01
- 793 5.902334e-01
- 794 5.902334e-01
- 701 0.0020010 01
- 795 0.000000e+00
- 796 5.902334e-01
- 797 5.902334e-01
- 798 5.902334e-01
- 799 5.902334e-01
- 800 5.902334e-01
- 801 5.902334e-01
- 802 5.902334e-01
- 803 5.902334e-01
- 804 5.902334e-01
- 805 5.902334e-01
- 806 5.902334e-01
- 807 5.902334e-01
- 808 5.902334e-01
- 809 5.902334e-01
- 810 5.902334e-01
- 811 5.902334e-01
- 812 5.902334e-01
- 813 5.902334e-01
- 814 5.902334e-01
- 815 0.000000e+00
- 0.00000e100
- 816 5.902334e-01
- 817 5.902334e-01
- 818 5.902334e-01
- 819 0.000000e+00
- 820 5.902334e-01
- 821 5.902334e-01
- 822 5.902334e-01

- 823 5.902334e-01
- 824 5.902334e-01
- 825 5.902334e-01
- 826 5.902334e-01
- 827 5.902334e-01
- 828 5.902334e-01
- 829 0.000000e+00
- 830 5.902334e-01
- 831 5.902334e-01
- 832 0.000000e+00
- 833 5.902334e-01
- 834 5.902334e-01
- 835 0.000000e+00
- 836 5.902334e-01
- 837 5.902334e-01
- 838 5.902334e-01
- 839 5.902334e-01
- 840 5.902334e-01
- 841 5.902334e-01
- 842 1.788363e-05
- 843 5.902334e-01
- 844 5.902334e-01
- 845 5.902334e-01
- 846 5.902334e-01
- 847 5.902334e-01
- 848 5.902334e-01
- 849 5.585153e-01
- 850 5.902334e-01
- 851 0.000000e+00
- 852 5.902334e-01
- 853 5.902334e-01
- 854 5.902334e-01
- 855 0.000000e+00
- 856 5.902334e-01
- 857 5.902334e-01
- 858 5.902334e-01
- 859 0.000000e+00
- 860 5.902334e-01
- 861 5.902334e-01
- 862 5.902334e-01
- 863 5.902334e-01
- 864 5.902334e-01
- 865 5.902334e-01
- 866 5.902334e-01
- 867 5.902334e-01
- 868 0.000000e+00

- 869 5.902334e-01
- 870 5.902334e-01
- 871 5.902334e-01
- 872 5.902334e-01
- 873 5.902334e-01
- 874 5.902334e-01
- 875 5.902334e-01
- 876 5.902334e-01
- 877 0.000000e+00
- 878 5.902334e-01
- 879 5.902334e-01
- 880 5.902334e-01
- 881 5.902334e-01
- 882 5.902334e-01
- 883 5.902334e-01
- 884 5.902334e-01
- 885 5.902334e-01
- 886 5.902334e-01
- 887 5.902334e-01
- 888 5.902334e-01
- 000 0.3020040 01
- 889 5.902334e-01
- 890 5.902334e-01
- 891 5.902334e-01
- 892 5.902334e-01
- 893 5.902334e-01
- 894 5.902334e-01
- 895 5.902334e-01
- 896 5.902334e-01
- 007 5 000004 04
- 897 5.902334e-01
- 898 5.902334e-01
- 899 5.902334e-01
- 900 5.902334e-01
- 901 5.902334e-01
- 902 5.902334e-01
- 903 5.902334e-01
- 904 0.000000e+00
- 905 5.902334e-01
- 906 5.902334e-01
- 907 5.902334e-01
- 908 5.902334e-01
- 909 5.902334e-01
- 910 5.902334e-01
- 911 5.902334e-01
- 912 5.902334e-01
- 913 5.902334e-01
- 914 5.902334e-01

- 915 5.902334e-01
- 916 0.000000e+00
- 917 0.000000e+00
- 918 0.000000e+00
- 919 0.000000e+00
- 920 5.902334e-01
- 921 5.902334e-01
- 922 5.902334e-01
- 923 5.902334e-01
- 924 5.902334e-01
- 925 5.902334e-01
- 926 5.902334e-01
- 927 5.902334e-01
- 928 0.000000e+00
- 929 5.902334e-01
- 930 5.902334e-01
- 931 5.902334e-01
- 932 5.902334e-01
- 933 5.902334e-01
- 934 5.902334e-01
- 935 5.902334e-01
- 936 5.902334e-01
- 937 5.902334e-01
- 938 5.902334e-01
- 939 5.902334e-01 940 5.902334e-01
- 941 5.902334e-01
- 942 5.902334e-01
- 943 5.902334e-01 944 5.607607e-01
- 945 5.902334e-01
- 946 0.000000e+00
- 947 5.902334e-01
- 948 5.902334e-01
- 949 5.902334e-01
- 950 5.902334e-01
- 951 5.902334e-01
- 952 5.902334e-01
- 953 5.902334e-01
- 954 5.902334e-01
- 955 5.902334e-01
- 956 5.902334e-01
- 957 5.902334e-01
- 958 5.902334e-01
- 959 5.902334e-01
- 960 5.902334e-01

- 961 5.902334e-01
- 962 5.902334e-01
- 963 5.902334e-01
- 964 0.000000e+00
- 965 5.902334e-01
- 966 5.902334e-01
- 967 5.902334e-01
- 968 5.902334e-01
- 969 5.902334e-01
- 970 0.000000e+00
- 971 5.902334e-01
- 972 5.902334e-01
- 973 5.902334e-01
- 974 5.902334e-01
- 975 5.902334e-01
- 976 5.902334e-01
- 977 5.902334e-01
- 978 0.000000e+00
- 979 5.902334e-01
- 980 5.902334e-01
- 981 5.902334e-01
- 982 0.000000e+00
- 983 5.902334e-01
- 984 5.902334e-01
- 985 5.902334e-01 986 5.902334e-01
- 987 5.902334e-01
- 988 5.902334e-01
- 989 5.902334e-01 990 5.902334e-01
- 991 5.902334e-01
- 992 5.902334e-01
- 993 5.902334e-01
- 994 5.902334e-01
- 995 5.902334e-01 996 5.833435e-01
- 997 5.902334e-01
- 998 5.902334e-01
- 999 5.902334e-01
- 1000 5.902334e-01 1001 5.902334e-01
- 1002 5.902334e-01
- 1003 5.902334e-01
- 1004 0.000000e+00
- 1005 5.902334e-01
- 1006 5.902334e-01

- 1007 5.902334e-01
- 1008 5.902334e-01
- 1009 5.902334e-01
- 1010 5.902334e-01
- 1011 5.863357e-01
- 1012 0.000000e+00
- 1013 5.902334e-01
- 1014 5.902334e-01 1015 5.902334e-01
- 1016 5.902334e-01
- 1017 5.902334e-01
- 1018 5.902334e-01
- 1019 5.902334e-01
- 1020 5.902334e-01
- 1021 5.902334e-01
- 1022 5.902334e-01 1023 5.902334e-01
- 1024 5.902334e-01
- 1025 0.000000e+00
- 1026 5.902334e-01
- 1027 5.902334e-01
- 1028 5.902334e-01
- 1029 5.902334e-01
- 1030 5.902334e-01
- 1031 0.000000e+00
- 1032 5.902334e-01
- 1033 5.902334e-01
- 1034 5.902334e-01
- 1035 5.902334e-01
- 1036 5.902334e-01 1037 5.902334e-01
- 1038 0.000000e+00
- 1039 5.902334e-01
- 1040 5.902334e-01
- 1041 5.902334e-01 1042 5.902334e-01
- 1043 5.902334e-01
- 1044 5.902334e-01
- 1045 0.000000e+00
- 1046 5.902334e-01
- 1047 5.902334e-01
- 1048 0.000000e+00
- 1049 5.902334e-01
- 1050 3.830641e-02
- 1051 0.000000e+00
- 1052 5.902334e-01

- 1053 5.902334e-01
- 1054 5.902334e-01
- 1055 5.902334e-01
- 1056 5.902334e-01
- 1057 5.902334e-01
- 1058 5.902334e-01
- 1059 5.902334e-01
- 1060 5.902334e-01
- 1061 5.902334e-01
- 1062 5.902334e-01 1063 5.902334e-01
- 1064 5.902334e-01
- 1065 5.902334e-01
- 1066 5.902334e-01
- 1067 5.902334e-01
- 1068 5.902334e-01
- 1069 5.902334e-01
- 1070 5.902334e-01
- 1071 5.902334e-01
- 1072 5.902334e-01
- 1073 5.902334e-01
- 1074 5.902334e-01
- 1075 5.902334e-01
- 1076 5.902334e-01
- 1077 0.000000e+00
- 1078 5.902334e-01
- 1079 5.902334e-01
- 1080 5.902334e-01
- 1081 5.902334e-01
- 1082 5.902334e-01
- 1083 5.902334e-01
- 1084 5.902334e-01
- 1085 5.902334e-01
- 1086 5.902334e-01
- 1087 5.902334e-01
- 1088 5.902334e-01
- 1089 5.902334e-01
- 1090 5.902334e-01
- 1091 5.902334e-01
- 1092 5.902334e-01
- 1093 5.902334e-01
- 1094 0.000000e+00
- 1095 5.902334e-01
- 1096 5.902334e-01
- 1097 5.902334e-01
- 1098 0.000000e+00

- 1099 0.000000e+00
- 1100 5.902334e-01
- 1101 5.902334e-01
- 1102 5.902334e-01
- 1103 5.902334e-01
- 1104 5.902334e-01
- 1105 5.902334e-01
- 1106 5.902334e-01
- 1107 5.902334e-01
- 1108 5.902334e-01
- 1109 0.000000e+00
- 1110 5.902334e-01
- 1111 0.000000e+00
- 1112 5.902334e-01
- 1113 1.022167e-04
- 1114 5.902334e-01
- 1115 0.000000e+00
- 1116 5.902334e-01
- 1110 0.0020010 01
- 1117 5.902334e-01
- 1118 0.000000e+00
- 1119 5.902334e-01
- 1120 5.902334e-01
- 1121 5.902334e-01
- 1122 5.902334e-01
- 1123 5.902334e-01
- 1124 0.000000e+00
- 1125 5.902334e-01
- 1126 5.902334e-01
- 1127 5.902334e-01
- 1128 5.902334e-01
- 1129 5.902334e-01
- 1130 5.902334e-01
- 1131 0.000000e+00
- 1132 5.902334e-01
- 1133 5.902334e-01
- 1134 5.902334e-01
- 1135 0.000000e+00 1136 5.902334e-01
- 1137 5.902334e-01
- 1138 5.902334e-01
- 1139 0.000000e+00
- 1140 5.902334e-01
- 1141 5.902334e-01
- 1142 0.000000e+00
- 1143 0.000000e+00
- 1144 0.000000e+00

- 1145 5.902334e-01
- 1146 5.902334e-01
- 1147 5.902334e-01
- 1148 5.902334e-01
- 1149 0.000000e+00
- 1150 5.902334e-01
- 1151 5.902334e-01
- 1101 0.3020040 01
- 1152 0.000000e+00
- 1153 5.902334e-01
- 1154 5.902334e-01
- 1155 0.000000e+00
- 1156 5.902334e-01
- 1157 5.902334e-01
- 1158 0.000000e+00
- 1159 5.902334e-01
- 1160 0.000000e+00
- 1161 5.902334e-01
- 1162 4.607070e-01
- 1163 5.902334e-01
- 1164 5.902334e-01
- 1165 5.902334e-01
- 1166 5.902334e-01
- 1167 5.902334e-01
- 1168 5.902334e-01
- 1100 5.902334e-01
- 1169 5.902334e-01 1170 5.902334e-01
- 1170 0.3020040 01
- 1171 5.902334e-01
- 1172 5.902334e-01
- 1173 5.902334e-01
- 1174 5.902334e-01 1175 5.902334e-01
- 1176 5.902334e-01
- 1177 0.000000e+00
- 1178 5.902334e-01
- 1179 5.902334e-01
- 1180 0.000000e+00
- 1181 5.902334e-01
- 1182 5.902334e-01
- 1183 0.000000e+00
- 1184 5.902334e-01
- 1185 5.902334e-01
- 1186 5.902334e-01
- 1107 5 000001
- 1187 5.902334e-01
- 1188 5.902334e-01
- 1189 5.902334e-01
- 1190 5.761208e-01

- 1191 5.902334e-01
- 1192 5.902334e-01
- 1193 0.000000e+00
- 1194 5.902334e-01
- 1195 5.902334e-01
- 1196 5.902334e-01
- 1197 5.902334e-01
- 1198 5.902334e-01
- 1199 5.902334e-01
- 1200 5.902334e-01
- 1201 0.000000e+00
- 1202 0.000000e+00
- 1203 5.902334e-01
- 1204 5.902334e-01
- 1205 5.902334e-01
- 1206 5.902334e-01
- 1207 5.902334e-01
- 1208 0.000000e+00
- 1200 0.000000000000
- 1209 0.000000e+00
- 1210 5.902334e-01
- 1211 5.902334e-01
- 1212 5.902334e-01
- 1213 5.902334e-01
- 1214 5.902334e-01
- 1214 5.902334e-01 1215 5.902334e-01
- 1216 5.902334e-01
- 1217 0.000000e+00
- 1218 5.902334e-01
- 1219 5.902334e-01
- 1220 0.000000e+00
- 1221 0.000000e+00
- 1222 5.902334e-01
- 1223 5.902334e-01
- 1224 5.902334e-01
- 1225 5.902334e-01
- 1226 5.902334e-01
- 1227 5.902334e-01
- 1228 5.902334e-01
- 1229 5.902334e-01
- 1230 5.902334e-01
- 1231 5.902334e-01
- 1232 5.902334e-01
- 1233 5.902334e-01
- 1234 5.902334e-01
- 1235 5.902334e-01
- 1236 5.902334e-01

- 1237 5.902334e-01
- 1238 4.470197e-01
- 1239 5.902334e-01
- 1240 5.902334e-01
- 1241 5.902334e-01
- 1242 5.902334e-01
- 1243 5.902334e-01
- 1244 5.902334e-01
- 1245 5.902334e-01
- 1246 5.902334e-01
- 1247 5.902334e-01
- 1248 5.902334e-01
- 1249 5.902334e-01
- 1250 5.902334e-01
- 1251 5.902334e-01
- 1252 5.902334e-01
- 1253 5.902334e-01
- 1254 5.902334e-01
- 1255 5.902334e-01
- 1256 5.902334e-01
- 1257 0.000000e+00
- 1258 5.902334e-01
- 1259 5.902334e-01
- 1260 5.902334e-01
- 1261 5.902334e-01
- 1262 5.902334e-01
- 1263 5.902334e-01
- 1264 5.902334e-01
- 1265 0.000000e+00
- 1266 5.902334e-01
- 1267 5.902334e-01
- 1268 5.902334e-01
- 1269 5.902334e-01
- 1270 5.902334e-01
- 1271 5.902334e-01
- 1272 5.902334e-01
- 1273 0.000000e+00 1274 5.902334e-01
- 1275 5.902334e-01
- 1276 5.902334e-01
- 1277 5.902334e-01
- 1278 4.435149e-07
- 1279 5.902334e-01
- 1280 5.902334e-01 1281 5.902334e-01
- 1282 5.902334e-01

- 1283 5.902334e-01
- 1284 5.902334e-01
- 1285 5.902334e-01
- 1286 5.902334e-01
- 1287 5.902334e-01
- 1288 5.634920e-01
- 1289 5.902334e-01
- 1290 5.902334e-01
- 1291 5.902334e-01
- 1292 5.902334e-01
- 1293 5.902334e-01
- 1294 5.902334e-01
- 1295 5.902334e-01
- 1296 5.902334e-01
- 1297 5.902334e-01
- 1298 5.902334e-01
- 1299 5.902334e-01
- 1300 5.902334e-01
- 1301 5.902334e-01
- 1302 5.902334e-01
- 1303 5.902134e-01
- 1304 5.902334e-01
- 1305 5.902334e-01
- 1306 5.902334e-01
- 1307 5.902334e-01
- 1308 5.902334e-01
- 1309 5.902334e-01
- 1310 5.902334e-01
- 1311 5.902334e-01
- 1312 0.000000e+00
- 1313 5.902334e-01
- 1314 5.902334e-01
- 1315 5.902334e-01
- 1316 5.902334e-01
- 1317 5.902334e-01
- 1318 5.902334e-01
- 1319 5.902334e-01
- 1320 5.902334e-01
- 1321 5.902334e-01
- 1322 5.902334e-01
- 1323 5.902334e-01
- 1324 5.902334e-01
- 1325 0.000000e+00
- 1326 5.902334e-01
- 1327 5.902334e-01
- 1328 5.902334e-01

- 1329 0.000000e+00
- 1330 0.000000e+00
- 1331 5.902334e-01
- 1332 5.902334e-01
- 1333 5.902334e-01
- 1334 5.902334e-01
- 1335 5.902334e-01
- 1336 5.902334e-01
- 1337 5.902334e-01
- 1338 5.902334e-01
- 1339 5.902334e-01
- 1340 0.000000e+00
- 1341 5.902334e-01
- 1342 5.902334e-01
- 1343 5.902334e-01
- 1344 5.902334e-01
- 1345 5.902334e-01
- 1346 5.902334e-01
- 1347 0.000000e+00
- 1348 5.902334e-01
- 1040 0.3025546 01
- 1349 5.902334e-01
- 1350 5.902334e-01
- 1351 5.902334e-01
- 1352 5.902334e-01
- 1353 5.902334e-01
- 1354 5.902334e-01
- 1355 5.902334e-01
- 1356 5.902334e-01
- 1357 5.902334e-01
- 1358 5.902334e-01
- 1359 5.902334e-01
- 1360 5.902334e-01
- 1361 5.902334e-01
- 1362 5.902334e-01
- 1363 5.902334e-01
- 1364 5.902334e-01
- 1365 5.902334e-01
- 1366 5.902334e-01
- 1367 5.902334e-01
- 1368 0.000000e+00
- 1369 5.902334e-01
- 1370 5.902334e-01
- 1371 0.000000e+00
- 1372 5.902334e-01
- 1373 5.902334e-01
- 1374 6.716483e-07

- 1375 5.902334e-01
- 1376 5.902334e-01
- 1377 5.902334e-01
- 1378 5.902334e-01
- 1379 5.902334e-01
- 1380 0.000000e+00
- 1381 5.902334e-01
- 1000 5 000004 04
- 1382 5.902334e-01 1383 5.902334e-01
- 1384 0.000000e+00
- 1385 5.902334e-01
- 1000 0.0020010 0.
- 1386 5.902334e-01 1387 5.902334e-01
- 1388 0.000000e+00
- 1389 5.902334e-01
- 1309 3.9023346 01
- 1390 5.902334e-01 1391 5.902334e-01
- 1000 5 000004 04
- 1392 5.902334e-01
- 1393 0.000000e+00
- 1394 5.902334e-01
- 1395 0.000000e+00
- 1396 5.902334e-01
- 1397 5.902334e-01
- 1398 5.902334e-01
- 1399 5.900299e-01
- 1400 5.902334e-01
- 1401 5.902334e-01
- 1402 5.902334e-01
- 1403 5.902334e-01
- 1404 5.902334e-01
- 1405 5.902334e-01
- 1406 5.902334e-01
- 1407 5.902334e-01
- 1408 5.902334e-01
- 1409 5.902334e-01
- 1410 5.902334e-01 1411 5.902334e-01
- 1412 5.902334e-01
- 1413 5.902334e-01
- 1414 0.000000e+00
- 1414 0.000000000000
- 1415 5.902334e-01
- 1416 5.902334e-01
- 1417 5.902334e-01
- 1418 5.902334e-01
- 1419 5.902334e-01
- 1420 5.902334e-01

- 1421 0.000000e+00
- 1422 5.902334e-01
- 1423 5.902334e-01
- 1424 5.900785e-01
- 1425 5.902334e-01
- 1426 5.902334e-01
- 1427 5.902334e-01
- 1428 5.902334e-01
- 1429 5.902334e-01 1430 5.902334e-01
- 1431 5.902334e-01
- 1432 5.902334e-01
- 1433 5.902334e-01
- 1434 5.902334e-01
- 1435 5.902334e-01
- 1436 5.902334e-01
- 1437 5.902334e-01
- 1438 5.902334e-01
- 1439 5.902334e-01
- 1440 5.902334e-01
- 1441 5.902334e-01
- 1442 0.000000e+00
- 1443 0.000000e+00
- 1444 5.902334e-01
- 1445 0.000000e+00
- 1446 0.000000e+00
- 1447 0.000000e+00
- 1448 5.902334e-01
- 1449 5.902334e-01
- 1450 5.902334e-01
- 1451 0.000000e+00
- 1452 5.902334e-01
- 1453 5.902334e-01
- 1454 5.902334e-01
- 1455 0.000000e+00
- 1456 5.902334e-01
- 1457 0.000000e+00
- 1458 5.902334e-01
- 1459 4.577362e-01
- 1460 5.902334e-01
- 1461 5.902334e-01
- 1462 5.902334e-01
- 1463 5.902334e-01
- 1464 0.000000e+00
- 1465 5.901976e-01
- 1466 5.902334e-01

- 1467 5.902334e-01
- 1468 0.000000e+00
- 1469 5.902334e-01
- 1470 5.902334e-01
- 1471 5.902334e-01
- 1472 5.902334e-01
- 1473 5.902334e-01
- 1474 5.902334e-01
- 1475 5.902334e-01
- 1476 5.902334e-01
- 1477 5.902334e-01
- 1478 5.902334e-01
- 1479 5.902334e-01
- 1480 5.902334e-01
- 1481 5.902334e-01
- 1482 5.902334e-01
- 1483 5.902334e-01
- 1484 0.000000e+00
- 1485 0.000000e+00
- 1486 0.000000e+00
- 1487 5.902334e-01
- 1488 5.902334e-01
- 1489 5.902334e-01
- 1490 5.902334e-01
- 1491 5.902334e-01
- 1492 5.902334e-01
- 1493 5.902334e-01
- 1494 5.902334e-01
- 1495 5.902334e-01
- 1496 5.902334e-01
- 1497 5.902334e-01
- 1498 0.000000e+00
- 1499 5.902334e-01
- 1500 5.902334e-01
- 1501 0.000000e+00
- 1502 5.902334e-01
- 1503 0.000000e+00
- 1504 0.000000e+00
- 1505 5.902334e-01
- 1506 5.902334e-01
- 1507 5.902334e-01
- 1508 5.902334e-01
- 1509 5.902334e-01
- 1510 5.902334e-01
- 1511 5.902334e-01
- 1512 5.902334e-01

- 1513 0.000000e+00
- 1514 0.000000e+00
- 1515 5.902334e-01
- 1516 5.902334e-01
- 1517 5.902334e-01
- 1518 5.902334e-01
- 1519 0.000000e+00
- 1520 5.902334e-01
- 1521 5.902334e-01
- 1522 5.902334e-01
- 1523 5.902334e-01
- 1524 5.902334e-01
- 1525 5.902334e-01
- 1526 5.902334e-01
- 1527 0.000000e+00
- 1528 0.000000e+00
- 1328 0.000000e100
- 1529 5.902334e-01
- 1530 5.902334e-01
- 1531 5.902334e-01
- 1532 5.902334e-01
- 1533 5.902334e-01
- 1534 5.679409e-01
- 1535 0.000000e+00
- 1536 5.902334e-01
- 1537 0.000000e+00
- 1538 5.902334e-01
- 1539 5.902334e-01
- 1540 5.902334e-01
- 1541 5.902334e-01
- 1542 5.902334e-01
- 1543 5.902334e-01
- 1544 5.902334e-01
- 1545 5.902334e-01
- 1546 5.902334e-01
- 1547 5.902334e-01
- 1548 0.000000e+00
- 1549 5.021894e-01
- 1550 5.902334e-01
- 1551 5.902334e-01
- 1552 5.902334e-01
- 1553 5.902334e-01
- 1554 0.000000e+00
- 4555 5 0000000
- 1555 5.902334e-01
- 1556 5.902334e-01 1557 5.902334e-01
- 1558 5.902334e-01

- 1559 5.902334e-01
- 1560 5.902334e-01
- 1561 5.902334e-01
- 1562 5.902334e-01
- 1563 5.902334e-01
- 1564 5.902334e-01
- 1565 5.902334e-01
- 1566 5.902334e-01
- 1567 5.902334e-01
- 1568 5.902334e-01
- 1569 5.902334e-01
- 1570 5.902334e-01
- 1571 5.902334e-01
- 1572 5.902334e-01
- 1573 5.902334e-01
- 1574 5.902334e-01
- 1575 0.000000e+00
- 1576 0.000000e+00
- 1577 5.902334e-01
- ______
- 1578 5.902334e-01
- 1579 5.902334e-01
- 1580 0.000000e+00
- 1581 5.902334e-01
- 1582 5.902334e-01
- 1583 0.000000e+00
- 1584 5.902334e-01
- 1585 5.902334e-01
- 1586 5.902334e-01
- 1587 5.902334e-01
- 1588 5.902334e-01
- 1589 5.902334e-01
- 1590 5.902334e-01
- 1591 5.902334e-01
- 1592 5.902334e-01
- 1593 5.902334e-01
- 1594 5.902334e-01
- 1595 0.000000e+00 1596 5.902334e-01
- 1597 5.902334e-01
- 1397 3.902334e 01
- 1598 5.902334e-01 1599 5.902334e-01
- 1000 5.0020040 01
- 1600 5.902334e-01
- 1601 5.902334e-01
- 1602 5.902334e-01
- 1603 5.902334e-01
- 1604 5.902334e-01

- 1605 5.902334e-01
- 1606 5.902334e-01
- 1607 5.902334e-01
- 1608 5.902334e-01
- 1609 5.902334e-01
- 1610 5.902334e-01
- 1611 5.902334e-01
- 1612 5.902334e-01
- 1613 5.902334e-01
- 1614 5.902334e-01
- 1615 5.902334e-01
- 1616 5.902334e-01
- 1617 5.902334e-01
- 1010 = 000001
- 1618 5.902334e-01
- 1619 0.000000e+00
- 1620 5.902334e-01
- 1621 5.902334e-01
- 1622 5.902334e-01
- 1623 5.902334e-01
- 1624 5.902334e-01
- 1021 0.0020010 01
- 1625 5.902334e-01
- 1626 5.902334e-01
- 1627 0.000000e+00
- 1628 5.902334e-01
- 1629 5.902334e-01
- 1630 5.902334e-01
- 1631 5.902334e-01
- 1632 0.000000e+00
- 1633 5.902334e-01
- 1634 0.000000e+00
- 1635 5.902334e-01
- 1636 5.902334e-01
- 1637 5.902334e-01
- 1638 5.902334e-01
- 1639 5.902334e-01 1640 5.902334e-01
- 1641 5 000224 04
- 1641 5.902334e-01 1642 5.902334e-01
- 1643 0.000000e+00
- 1644 5.902334e-01
- 1645 5.902334e-01
- 1646 5.902334e-01
- 1647 5.902334e-01
- 1648 5.902334e-01
- 1649 5.902334e-01
- 1650 5.902334e-01

- 1651 0.000000e+00
- 1652 5.902334e-01
- 1653 5.902334e-01
- 1654 5.902334e-01
- 1655 5.902334e-01
- 1656 5.902334e-01
- 1657 5.902334e-01
- 1007 0.5020040 01
- 1658 5.902334e-01
- 1659 5.902334e-01
- 1660 5.902334e-01
- 1661 0.000000e+00
- 1662 5.902334e-01
- 1663 5.902334e-01
- 1664 5.902334e-01
- 1665 5.902334e-01
- 1666 5.902334e-01
- 1667 5.902334e-01
- 1668 5.902334e-01
- 1669 5.902334e-01
- 1670 5.899736e-01
- 1070 0.0557000 01
- 1671 5.902334e-01
- 1672 5.902334e-01
- 1673 5.902334e-01
- 1674 5.902334e-01
- 1675 5.902334e-01
- 1676 5.902334e-01
- 1677 5.902334e-01
- 1678 5.902334e-01
- 1670 5.0020010 01
- 1679 5.902334e-01 1680 5.902334e-01
- 1681 5.902334e-01
- 1682 5.902334e-01
- 1683 5.902334e-01
- 1684 5.902334e-01
- 1685 0.000000e+00
- 1686 5.902334e-01
- 1687 5.902334e-01
- 1688 5.902334e-01
- 1689 5.902334e-01
- 1690 5.902334e-01
- 1691 5.902334e-01
- 1692 0.000000e+00
- 1602 5.0000000
- 1693 5.902334e-01
- 1694 5.902334e-01
- 1695 5.902334e-01 1696 5.902334e-01

- 1697 5.902334e-01
- 1698 0.000000e+00
- 1699 5.902334e-01
- 1700 5.902334e-01
- 1701 0.000000e+00
- 1702 5.902334e-01
- 1703 5.902334e-01
- 1704 5.902334e-01
- 1705 5.902334e-01
- 1706 5.902334e-01
- 1707 5.902334e-01 1708 5.902334e-01
- 1709 5.902334e-01
- 1710 0.000000e+00
- 1711 5.902334e-01
- 1712 5.902334e-01
- 1713 0.000000e+00
- 1714 5.895154e-01
- 1715 5.902334e-01
- 1716 5.902334e-01
- 1717 5.902334e-01
- 1718 1.084605e-06
- 1719 5.902334e-01
- 1720 5.902334e-01
- 1721 5.902334e-01 1722 5.902334e-01
- 1723 0.000000e+00
- 1724 0.000000e+00
- 1725 0.000000e+00
- 1726 5.902334e-01
- 1727 5.902334e-01
- 1728 5.902334e-01
- 1729 0.000000e+00
- 1730 5.902334e-01
- 1731 5.902334e-01
- 1732 5.902334e-01
- 1733 5.902334e-01
- 1734 5.902334e-01
- 1735 5.902334e-01
- 1736 5.902334e-01
- 1737 5.902334e-01
- 1738 5.902334e-01
- 1739 5.902334e-01
- 1740 5.902334e-01
- 1741 0.000000e+00
- 1742 5.902334e-01

- 1743 5.902334e-01
- 1744 5.902334e-01
- 1745 0.000000e+00
- 1746 5.902334e-01
- 1747 5.902334e-01
- 1748 5.902334e-01
- 1749 5.902334e-01
- 1745 0.5020040 01
- 1750 5.902334e-01
- 1751 0.000000e+00
- 1752 5.902334e-01 1753 5.902334e-01
- 1754 0.000000e+00
- 1755 5.902334e-01
- 1756 5.902334e-01
- 1757 5.902334e-01
- 1707 0.0020010 01
- 1758 5.902334e-01
- 1759 5.902334e-01
- 1760 0.000000e+00
- 1761 5.902334e-01
- 1762 5.902334e-01
- 1763 5.902334e-01
- 1764 5.902303e-01
- 1765 0.000000e+00
- 1766 5.902334e-01
- 1700 5.902554e-01
- 1767 5.902334e-01 1768 5.902079e-01
- 1769 5.902334e-01
- 1770 5.902334e-01
- 1771 5.902334e-01
- 1771 5.902334e-01 1772 5.902334e-01
- 1773 5.902334e-01
- 1774 5.902334e-01
- 1774 5.902334e 01 1775 5.902334e-01
- 1776 5.902334e-01
- 1777 5.902334e-01
- 1778 5.902334e-01
- 1779 0.000000e+00
- 1780 5.902334e-01
- 1781 5.902334e-01
- 1701 3.902334e 01
- 1782 5.902334e-01 1783 5.902334e-01
- 1784 5.902334e-01
- 4705 5 000004 04
- 1785 5.902334e-01
- 1786 5.902334e-01
- 1787 0.000000e+00
- 1788 0.000000e+00

- 1789 0.000000e+00
- 1790 5.902334e-01
- 1791 5.902334e-01
- 1792 5.902334e-01
- 1793 5.902334e-01
- 1794 0.000000e+00
- 1795 5.902334e-01
- 4706 F 000004 04
- 1796 5.902334e-01 1797 5.902334e-01
- 1798 0.000000e+00
- 1799 5.902334e-01
- 1800 5.902334e-01
- 1801 5.902334e-01
- 1802 5.902334e-01
- 1002 0.5020040 01
- 1803 5.902334e-01
- 1804 5.902334e-01
- 1805 5.902334e-01
- 1806 5.902334e-01
- 1807 0.000000e+00
- 1808 6.288913e-04
- 1809 5.902334e-01
- 1810 5.902334e-01
- 1811 5.902334e-01
- 1812 0.000000e+00
- 1813 5.902334e-01
- 1814 5.902334e-01
- 1815 5.902334e-01
- 1816 5.902334e-01
- 1817 5.902334e-01
- 1818 5.902334e-01
- 1819 5.902334e-01
- 1820 5.902334e-01
- 1821 5.902334e-01
- 1822 5.902334e-01
- 1823 5.902334e-01
- 1824 5.902334e-01
- 1825 5.902334e-01
- 1826 5.902334e-01
- 1827 5.902334e-01
- 1828 5.902334e-01
- 1829 5.902334e-01
- 1830 5.902334e-01
- 1831 0.000000e+00
- 1832 5.902334e-01
- 1833 5.902334e-01
- 1834 5.902334e-01

- 1835 5.902334e-01
- 1836 0.000000e+00
- 1837 0.000000e+00
- 1838 0.000000e+00
- 1839 5.902334e-01
- 1840 0.000000e+00
- 1841 0.000000e+00
- 1842 5.902334e-01
- 1843 5.902334e-01
- 1844 5.902334e-01
- 1845 5.902334e-01
- 1846 5.902334e-01
- 1847 5.902334e-01
- 1848 5.902334e-01
- 1849 5.902334e-01
- 1850 5.902334e-01
- 1851 0.000000e+00
- 1001 0.0000000:00
- 1852 5.902334e-01
- 1853 5.902334e-01
- 1854 5.902334e-01
- 1855 0.000000e+00
- 1856 5.902334e-01
- 1857 5.902334e-01
- 1858 5.901086e-01
- 1859 5.902334e-01
- 1860 5.902334e-01
- 1861 5.902334e-01
- 1862 5.902334e-01
- 1002 0.0020010 01
- 1863 0.000000e+00
- 1864 0.000000e+00 1865 5.902334e-01
- 1866 5.902334e-01
- 1867 5.902334e-01
- 1868 5.902334e-01
- 1869 5.902334e-01
- 1870 0.000000e+00
- 1871 5.902334e-01
- 1872 5.902334e-01
- 1873 5.902334e-01
- 1073 3.902334e 01
- 1874 5.902334e-01
- 1875 5.902334e-01
- 1876 5.902334e-01
- 1877 5.902334e-01
- 1878 5.902334e-01
- 1879 5.902334e-01
- 1880 0.000000e+00

- 1881 0.000000e+00
- 1882 5.902334e-01
- 1883 5.902334e-01
- 1884 5.902334e-01
- 1885 5.902334e-01
- 1886 5.902334e-01
- 1887 0.000000e+00
- 1007 0.000000000000
- 1888 5.902334e-01
- 1889 5.902334e-01
- 1890 5.902334e-01
- 1891 5.902334e-01
- 1892 5.902334e-01
- 1893 5.902334e-01
- 1894 5.902334e-01
- 1895 5.902334e-01
- 1896 5.902334e-01
- 1897 5.902334e-01
- 1898 5.902334e-01
- 1899 5.902334e-01
- 1900 5.900721e-01
- 1300 3.300721e 01
- 1901 5.902334e-01
- 1902 5.902334e-01
- 1903 0.000000e+00
- 1904 5.902334e-01
- 1905 5.902334e-01
- 1906 5.902334e-01
- 1907 5.902334e-01
- 1908 5.902334e-01
- 1909 5.902334e-01
- 1910 5.902334e-01
- 1911 5.902334e-01
- 1912 5.902334e-01
- 1913 5.902334e-01
- 1914 5.902334e-01
- 1915 5.902334e-01
- 1916 0.000000e+00
- 1917 5.902334e-01
- 1918 5.902334e-01
- 1919 5.902334e-01
- 1920 5.902334e-01
- 1921 5.902334e-01
- 1922 5.902334e-01
- 1923 0.000000e+00
- 1924 5.902334e-01
- 1925 5.902334e-01
- 1926 5.902334e-01

- 1927 5.902334e-01
- 1928 5.902334e-01
- 1929 5.902334e-01
- 1930 5.902334e-01
- 1931 5.902334e-01
- 1932 0.000000e+00
- 1933 5.902334e-01
- 1934 5.902334e-01
- 1935 0.000000e+00
- 1936 5.902334e-01
- 1937 5.902334e-01
- 1938 5.902334e-01
- 1939 5.902334e-01 1940 5.902334e-01
- 1941 5.902334e-01
- 1942 5.902334e-01
- 1943 5.902334e-01
- 1944 0.000000e+00
- 1945 5.902334e-01
- 1946 0.000000e+00
- 1947 5.902334e-01
- 1948 5.902334e-01
- 1949 5.902334e-01
- 1950 5.902334e-01
- 1951 5.902334e-01 1952 5.901208e-01
- 1953 5.902334e-01
- 1954 5.902334e-01
- 1955 0.000000e+00
- 1956 0.000000e+00
- 1957 5.902334e-01
- 1958 5.902334e-01
- 1959 5.900740e-01
- 1960 5.902334e-01
- 1961 5.902334e-01
- 1962 5.902334e-01
- 1963 5.902334e-01
- 1964 5.902334e-01
- 1965 5.902334e-01
- 1966 5.902334e-01
- 1967 5.902334e-01
- 1968 5.902334e-01
- 1969 0.000000e+00
- 1970 5.902334e-01
- 1971 5.902334e-01
- 1972 5.902334e-01

```
1973 5.902334e-01
1974 0.000000e+00
1975 5.902334e-01
1976 5.902334e-01
1977 5.902334e-01
1978 5.902334e-01
1979 5.902334e-01
1980 5.902334e-01
1981 5.902334e-01
1982 5.902334e-01
1983 5.902334e-01
1984 5.902334e-01
1985 5.902334e-01
1986 0.000000e+00
1987 0.000000e+00
1988 5.902334e-01
1989 5.902334e-01
1990 0.000000e+00
1991 5.902334e-01
1992 5.902334e-01
1993 0.000000e+00
1994 5.902334e-01
1995 5.902334e-01
1996 5.902334e-01
1997 0.000000e+00
1998 5.902334e-01
1999 5.902334e-01
2000 5.902334e-01
2001
               NA
2002
               NA
2003
               NA
2004
               NA
2005
               NA
2006
               NA
2007
               NA
2008
               NA
2009
               NA
2010
               NA
2011
               NA
2012
               NA
2013
               NA
2014
               NA
2015
               NA
2016
               NA
2017
               NA
2018
               NA
```

2019	NA
2020	NA
2021	NA
2022	NA
2023	NA
2024	NA
2025	NA
2026	NA
2027	NA
2028	NA
2029	NA
2030	NA
2031	NA
2032	NA
2033	NA
2034	NA
2035	NA
2036	NA
2037	NA
2038	NA
2039	NA
2040	NA
2041	NA
2042	NA
2043	NA
2044	NA
2045	NA
2046	NA
2047	NA
2048	NA
2049	NA
2050	NA
2051	NA
2052	NA
2053	NA
2054	NA
2055	NA
2056	NA
2057	NA
2058	NA
2059	NA
2060	NA
2061	NA
2062	NA
2063	NA
2064	NA

2065	NA
2066	NA
2067	NA
2068	NA
2069	NA
2070	NA
2071	NA
2072	NA
2073	NA
2074	NA
2075	NA
2076	NA
2077	NA
2078	NA
2079	NA
2080	NA
2081	NA
2082	NA
2083	NA
2084	NA
2085	NA
2086	NA
2087	NA
2088	NA
2089	NA
2090	NA
2091	NA
2092	NA
2093	NA
2094	NA
2095	NA
2096	NA
2097	NA
2098	NA
2099	NA
2100	NA
2101	NA
2102	NA
2103	NA
2104	NA
2105	NA
2106	NA
2107	NA
2108	NA
2109	NA
2110	NA

2111	NA
2112	NA
2113	NA
2114	NA
2115	NA
2116	NA
2117	NA
2118	NA
2119	NA
2120	NA
2121	NA
2122	NA
2123	NA
2124	NA
2125	NA
2126	NA
2127	NA
2128	NA
2129	NA
2130	NA
2131	NA
2132	NA
2133	NA
2134	NA
2135	NA
2136	NA
2137	NA
2138	NA
2139	NA
2140	NA
2141	NA
2142	NA
2143	NA
2144	NA
2145	NA
2146	NA
2147	NA
2148	NA
2149	NA
2150	NA
2151	NA
2152	NA
2153	NA
2154	NA
2155	NA
2156	NA

2157	NA
2158	NA
2159	NA
2160	NA
2161	NA
2162	NA
2163	NA
2164	NA
2165	NA
2166	NA
2167	NA
2168	NA
2169	NA
2170	NA
2171	NA
2172	NA
2173	NA
2174	NA
2175	NA
2176	NA
2177	NA
2178	NA
2179	NA
2180	NA
2181	NA
2182	NA
2183	NA
2184	NA
2185	NA
2186	NA
2187	NA
2188	NA
2189	NA
2190	NA
2191	NA
2192	NA
2193	NA
2194	NA
2195	NA
2196	NA
2197	NA
2198	NA
2199	NA
2200	NA
2201	NA
2202	NA

2203	NA
2204	NA
2205	NA
2206	NA
2207	NA
2208	NA
2209	NA
2210	NA
2211	NA
2212	NA
2213	NA
2214	NA
2215	NA
2216	NA
2217	NA
2218	NA
2219	NA
2220	NA
2221	NA
2222	NA
2223	NA
2224	NA
2225	NA
2226	NA
2227	NA
2228	NA
2229	NA
2230	NA
2231	NA
2232	NA
2233	NA
2234	NA
2235	NA
2236	NA
2237	NA
2238	NA
2239	NA
2240	NA
2241	NA
2242	NA
2243	NA
2244	NA
2245	NA
2246	NA
2247	NA
2248	NA

2249	NA
2250	NA
2251	NA
2252	NA
2253	NA
2254	NA
2255	NA
2256	NA
2257	NA
2258	NA
2259	NA
2260	NA
2261	NA
2262	NA
2263	NA
2264	NA
2265	NA
2266	NA
2267	NA
2268	NA
2269	NA
2270	NA
2271	NA
2272	NA
2273	NA
2274	NA
2275	NA
2276	NA
2277	NA
2278	NA
2279	NA
2280	NA
2281	NA
2282	NA
2283	NA
2284	NA
2285	NA
2286	NA
2287	NA
2288	NA
2289	NA
2290	NA
2291	NA
2292	NA
2293	NA
2294	NA

2295	NA
2296	NA
2297	NA
2298	NA
2299	NA
2300	NA
2301	NA
2302	NA
2303	NA
2304	NA
2305	NA
2306	NA
2307	NA
2308	NA
2309	NA
2310	NA
2311	NA
2312	NA
2313	NA
2314	NA
2315	NA
2316	NA
2317	NA
2318	NA
2319	NA
2320	NA
2321	NA
2322	NA
2323	NA
2324	NA
2325	NA
2326	NA
2327	NA
2328	NA
2329	NA
2330	NA
2331	NA
2332	NA
2333	NA
2334	NA
2335	NA
2336	NA NA
2337	NA
2338	NA
2339	NA
2340	NA NA
	MA

2341	NA
2342	NA
2343	NA
2344	NA
2345	NA
2346	NA
2347	NA
2348	NA
2349	NA
2350	NA
2351	NA
2352	NA
2353	NA
2354	NA
2355	NA
2356	NA
2357	NA
2358	NA
2359	NA
2360	NA
2361	NA
2362	NA
2363	NA
2364	NA
2365	NA
2366	NA
2367	NA
2368	NA
2369	NA
2370	NA
2371	NA
2372	NA
2373	NA
2374	NA
2375	NA
2376	NA
2377	NA
2378	NA
2379	NA
2380	NA
2381	NA
2382	NA
2383	NA
2384	NA
2385	NA
2386	NA

2387	NA
2388	NA
2389	NA
2390	NA
2391	NA
2392	NA
2393	NA
2394	NA
2395	NA
2396	NA
2397	NA
2398	NA
2399	NA
2400	NA
2401	NA
2402	NA
2403	NA
2404	NA
2405	NA
2406	NA
2407	NA
2408	NA
2409	NA
2410	NA
2411	NA
2412	NA
2413	NA
2414	NA
2415	NA
2416	NA
2417	NA NA
2418	NA NA
2419 2420	NA NA
2421	NA
2422	NA
2423	NA
2424	NA
2425	NA
2426	NA
2427	NA
2428	NA
2429	NA
2430	NA
2431	NA
2432	NA

2433	NA
2434	NA
2435	NA
2436	NA
2437	NA
2438	NA
2439	NA
2440	NA
2441	NA
2442	NA
2443	NA
2444	NA
2445	NA
2446	NA
2447	NA
2448	NA
2449	NA
2450	NA
2451	NA
2452	NA
2453	NA
2454	NA
2455	NA
2456	NA
2457	NA
2458	NA
2459	NA
2460	NA
2461	NA
2462	NA
2463	NA
2464	NA
2465	NA
2466	NA
2467	NA
2468	NA
2469	NA
2470	NA
2471	NA
2472	NA
2473	NA
2474	NA
2475	NA
2476	NA
2477	NA
2478	NA

2479	NA
2480	NA
2481	NA
2482	NA
2483	NA
2484	NA
2485	NA
2486	NA
2487	NA
2488	NA
2489	NA
2490	NA
2491	NA
2492	NA
2493	NA
2494	NA
2495	NA
2496	NA
2497	NA
2498	NA
2499	NA
2500	NA
2501	NA
2502	NA
2503	NA
2504	NA
2505	NA
2506	NA
2507	NA
2508	NA
2509	NA
2510	NA
2511	NA
2512	NA
2513	NA
2514	NA
2515	NA
2516	NA
2517	NA
2518	NA
2519	NA
2520	NA
2521	NA
2522	NA
2523	NA
2524	NA

2525	NA
2526	NA
2527	NA
2528	NA
2529	NA
2530	NA
2531	NA
2532	NA
2533	NA
2534	NA
2535	NA
2536	NA
2537	NA
2538	NA
2539	NA
2540	NA
2541	NA
2542	NA
2543	NA
2544	NA
2545	NA
2546	NA
2547	NA
2548	NA
2549	NA
2550	NA
2551	NA
2552	NA
2553	NA
2554	NA
2555	NA
2556	NA
2557	NA
2558	NA
2559	NA
2560	NA
2561	NA
2562	NA
2563	NA
2564	NA
2565	NA
2566	NA
2567	NA
2568	NA
2569	NA
2570	NA

2571	NA
2572	NA
2573	NA
2574	NA
2575	NA
2576	NA
2577	NA
2578	NA
2579	NA
2580	NA
2581	NA
2582	NA
2583	NA
2584	NA
2585	NA
2586	NA
2587	NA
2588	NA
2589	NA
2590	NA
2591	NA
2592	NA
2593	NA
2594	NA
2595	NA
2596	NA
2597	NA
2598	NA
2599	NA
2600	NA
2601	NA
2602	NA
2603	NA
2604	NA
2605	NA
2606	NA
2607	NA
2608	NA
2609	NA
2610	NA
2611	NA
2612	NA
2613	NA
2614	NA
2615	NA
2616	NA

2617	NA
2618	NA
2619	NA
2620	NA
2621	NA
2622	NA
2623	NA
2624	NA
2625	NA
2626	NA
2627	NA
2628	NA
2629	NA
2630	NA
2631	NA
2632	NA
2633	NA
2634	NA
2635	NA
2636	NA
2637	NA
2638	NA
2639	NA
2640	NA
2641	NA
2642	NA
2643	NA
2644	NA
2645	NA
2646	NA
2647	NA
2648	NA
2649	NA
2650	NA
2651	NA
2652	NA
2653	NA
2654	NA
2655	NA
2656	NA
2657	NA
2658	NA NA
2659	NA
2660	NA NA
2661	NA NA
2662	NA NA
2002	MU

2663	NA
2664	NA
2665	NA
2666	NA
2667	NA
2668	NA
2669	NA
2670	NA
2671	NA
2672	NA
2673	NA
2674	NA
2675	NA
2676	NA
2677	NA
2678	NA
2679	NA
2680	NA
2681	NA
2682	NA
2683	NA
2684	NA
2685	NA
2686	NA
2687	NA
2688	NA
2689	NA
2690	NA
2691	NA
2692	NA
2693	NA
2694	NA
2695	NA
2696	NA
2697	NA
2698	NA
2699	NA
2700	NA
2701	NA
2702	NA
2703	NA
2704	NA
2705	NA
2706	NA
2707	NA
2708	NA

2709	NA
2710	NA
2711	NA
2712	NA
2713	NA
2714	NA
2715	NA
2716	NA
2717	NA
2718	NA
2719	NA
2720	NA
2721	NA
2722	NA
2723	NA
2724	NA
2725	NA
2726	NA
2727	NA
2728	NA
2729	NA
2730	NA
2731	NA
2732	NA
2733	NA
2734	NA
2735	NA
2736	NA
2737	NA
2738	NA
2739	NA
2740	NA
2741	NA
2742	NA
2743	NA
2744	NA
2745	NA
2746	NA
2747	NA
2748	NA
2749	NA
2750	NA
2751	NA
2752	NA
2753	NA
2754	NA

2755	NA
2756	NA
2757	NA
2758	NA
2759	NA
2760	NA
2761	NA
2762	NA
2763	NA
2764	NA
2765	NA
2766	NA
2767	NA
2768	NA
2769	NA
2770	NA
2771	NA
2772	NA
2773	NA
2774	NA
2775	NA
2776	NA
2777	NA
2778	NA
2779	NA
2780	NA
2781	NA
2782	NA
2783	NA
2784	NA
2785	NA
2786	NA
2787	NA
2788	NA
2789	NA
2790	NA
2791	NA
2792	NA
2793	NA
2794	NA
2795	NA
2796	NA
2797	NA
2798	NA
2799	NA
2800	NA

2801	NA
2802	NA
2803	NA
2804	NA
2805	NA
2806	NA
2807	NA
2808	NA
2809	NA
2810	NA
2811	NA
2812	NA
2813	NA
2814	NA
2815	NA
2816	NA
2817	NA
2818	NA
2819	NA
2820	NA
2821	NA
2822	NA
2823	NA
2824	NA
2825	NA
2826	NA
2827	NA
2828	NA
2829	NA
2830	NA
2831	NA
2832	NA
2833	NA
2834	NA
2835	NA
2836	NA
2837	NA
2838	NA
2839	NA
2840	NA
2841	NA
2842	NA
2843	NA
2844	NA
2845	NA
2846	NA

2847	NA
2848	NA
2849	NA
2850	NA
2851	NA
2852	NA
2853	NA
2854	NA
2855	NA
2856	NA
2857	NA
2858	NA
2859	NA
2860	NA
2861	NA
2862	NA
2863	NA
2864	NA
2865	NA
2866	NA
2867	NA
2868	NA
2869	NA
2870	NA
2871	NA
2872	NA
2873	NA
2874	NA
2875	NA
2876	NA
2877	NA
2878	NA
2879	NA
2880	NA
2881	NA
2882	NA
2883	NA
2884	NA
2885	NA
2886	NA
2887	NA
2888	NA
2889	NA
2890	NA
2891	NA
2892	NA

2893	NA
2894	NA
2895	NA
2896	NA
2897	NA
2898	NA
2899	NA
2900	NA
2901	NA
2902	NA
2903	NA
2904	NA
2905	NA
2906	NA
2907	NA
2908	NA
2909	NA
2910	NA
2911	NA
2912	NA
2913	NA
2914	NA
2915	NA
2916	NA
2917	NA
2918	NA
2919	NA
2920	NA
2921	NA
2922	NA
2923	NA
2924	NA
2925	NA
2926	NA
2927	NA
2928	NA
2929	NA
2930	NA
2931	NA
2932	NA
2933	NA
2934	NA
2935	NA
2936	NA
2937	NA
2938	NA

2939	NA
2940	NA
2941	NA
2942	NA
2943	NA
2944	NA
2945	NA
2946	NA
2947	NA
2948	NA
2949	NA
2950	NA
2951	NA
2952	NA
2953	NA
2954	NA
2955	NA
2956	NA
2957	NA
2958	NA
2959	NA
2960	NA
2961	NA
2962	NA
2963	NA
2964	NA
2965	NA
2966	NA
2967	NA
2968	NA
2969	NA
2970	NA
2971	NA
2972	NA
2973	NA
2974	NA
2975	NA
2976	NA
2977	NA
2978	NA
2979	NA
2980	NA
2981	NA
2982	NA
2983	NA
2984	NA

2985	NA
2986	NA
2987	NA
2988	NA
2989	NA
2990	NA
2991	NA
2992	NA
2993	NA
2994	NA
2995	NA
2996	NA
2997	NA
2998	NA
2999	NA
3000	NA
3001	NA
3002	NA
3003	NA
3004	NA
3005	NA
3006	NA
3007	NA
3008	NA
3009	NA
3010	NA
3011	NA
3012	NA
3013	NA
3014	NA
3015	NA
3016	NA
3017	NA
3018	NA
3019	NA
3020	NA
3021	NA
3022	NA
3023	NA
3024	NA
3025	NA
3026	NA
3027	NA
3028	NA
3029	NA
3030	NA

3031	NA
3032	NA
3033	NA
3034	NA
3035	NA
3036	NA
3037	NA
3038	NA
3039	NA
3040	NA
3041	NA
3042	NA
3043	NA
3044	NA
3045	NA
3046	NA
3047	NA
3048	NA
3049	NA
3050	NA
3051	NA
3052	NA
3053	NA
3054	NA
3055	NA
3056	NA
3057	NA
3058	NA
3059	NA
3060	NA
3061	NA
3062	NA
3063	NA
3064	NA
3065	NA
3066	NA
3067	NA
3068	NA
3069	NA
3070	NA
3071	NA
3072	NA
3073	NA
3074	NA
3075	NA
3076	NA NA
5010	IVA

3077	NA
3078	NA
3079	NA
3080	NA
3081	NA
3082	NA
3083	NA
3084	NA
3085	NA
3086	NA
3087	NA
3088	NA
3089	NA
3090	NA
3091	NA
3092	NA
3093	NA
3094	NA
3095	NA
3096	NA
3097	NA
3098	NA
3099	NA
3100	NA
3101	NA
3102	NA
3103	NA
3104	NA
3105	NA
3106	NA
3107	NA
3108	NA
3109	NA
3110	NA
3111	NA
3112	NA
3113	NA
3114	NA
3115	NA
3116	NA
3117	NA
3118	NA
3119	NA
3120	NA

>