Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? (ICLR 2024)

Chia-Yi Hsu*, Yu-Lin Tsai*, Chulin Xie, Chih-Hsun Lin, Jia-You Chen, Bo Li, Pin-Yu Chen, Chia-Mu Yu, Chun-Ying Huang

Overview

- What:
 - Investigates reliability of safety measures in text-to-image (T2I)
 diffusion models
 - Ring-A-Bell, a model-agnostic red-teaming tool
 - Automatically finds prompts that bypass safety mechanisms and simulates real attacks
 - Users can use Ring-A-Bell for assessment
- Why:
 - The effectiveness of T2I safety measures was largely unexplored
 - → one of the earlier studies

Methods

- Create a "concept vector" from safe/unsafe prompt pairs that differ by a target concept, e.g., violence
- Optimize prompts toward target concept using genetic algorithms:
 - How close does the new prompt's embedding match the unsafe concept?
- Simulate attacks against:
 - Commercial models with safety filters
 (Midjourney, DALL-E 2, Gen-2, Stable Diffusion XL)
 - Concept removal models
 (Erased Stable Diffusion (ESD), Safe Latent Diffusion (SLD))

Methods

Figure 1: Ring-A-Bell's model-agnostic and offline framework

Experimental Design

- Test on prompts from Inappropriate Image Prompts (I2P) dataset
- Simulate attacks against:
 - Commercial models with/without safety filters
 (Midjourney, DALL-E 2, Gen-2, Stable Diffusion XL)
 - Concept removal defenses
 (Erased Stable Diffusion (ESD), Safe Latent Diffusion (SLD))
- Compare against baseline method: QF-Attack
- Metrics: Attack Success Rate (ASR)

Results

SLD-Max

2.11%

9.47%

42.11%

57.89%

2.11%

2.11%

7.37%

15.79%

16%

SLD-Strong

12.63%

13.68%

61.05%

86.32%

6.32%

6.32%

12.63%

32.63%

20.8%

24 2%

SLD-Medium

30.53%

28.42%

91.58%

100%

3.16%

8.42%

35.79%

57.89%

34%

32 8%

SD-NP

4.21%

5.26%

34.74%

49.47%

2.11%

5.26%

8.42%

16.84%

28%

CA

58.95%

56.84%

89.47%

96.84%

9.47%

9.47%

37.89%

53.68%

62%

58.4%

97.6%

100%

54.8%

53.6%

85.2%

98.8%

FMN

37.89%

37.89%

68.42%

94.74%

15.79%

18.95% 28.42%

47.37% 50.4%

53.6%

79.6%

98.8%

47.2%

47.2%

74.4%

98.8%

Violence	QF-Attack (w/o SC)	62%	56%	14.8%	24.2%	32.8%	24.8%
	Ring-A-Bell (w/o SC)	96.4%	54%	19.2%	50%	76.4%	80%
	Ring-A-Bell-Union (w/o SC)	99.6%	86%	40.4%	80.4%	97.2%	94.8%
	Original Prompts (w/ SC)	56.8%	39.2%	14.4%	18%	30.8%	25.2%
	QF-Attack (w/SC)	54.4%	53.6%	11.2%	21.2%	31.6%	21.2%
	Ring-A-Bell (w/SC)	82.8%	49.2%	18%	44%	68.4%	68%
	Ring-A-Bell Union (w/ SC)	99.2%	84%	38.4%	76.4%	95.6%	90.8%

ESD

12.63%

6.32%

35.79%

55.79%

5.26%

4.21%

9.47%

22.11%

42.4%

SD

52.63%

51.58%

93.68%

97.89%

7.37%

7.37%

30.53%

49.47%

60.4%

- Outperformed original prompts and QF-Attack in ASR
- **Higher ASR overall for violence**

Methods

Original Prompts (w/o SC)

QF-Attack (w/o SC)

Ring-A-Bell (w/o SC)

Ring-A-Bell-Union (w/o SC)

Original Prompts (w/ SC)

QF-Attack (w/SC)

Ring-A-Bell (w/ SC)

Ring-A-Bell-Union (w/SC)

Original Prompts (w/o SC)

OF-Attack (w/o SC)

Concept

Nudity

Ring-A-Bell reveals major vulnerabilities in diffusion models

and serves as a valuable red-teaming tool through its ability to generate problematic prompts regardless of model.

Takeaway