

Mestrado Integrado em Engenharia Mecânica

Adrian Munteanu nº 51052

Mihail Vasilache nº 50604

Tiago Silva nº 49773

CONCEÇÃO E FABRICO DE UMA PEQUENA BOMBA DE ÁGUA

Grupo 5

Unidade curricular:

Produção Assistida por Computador

Docentes:

Profa. Carla Maria Moreira Machado

Prof. Miguel Araújo Machado

Índice

Índice de Figuras	2
Índice de Tabelas	2
Introdução	3
Memória Descritiva	4
1. Introdução	4
2. Tipo de Bomba	5
Vantagens de uma Bomba de elementos flexíveis	6
3. Dimensionamento	6
4. Conceção	11
1ª Iteração	11
2ª Iteração	13
3ª Iteração	15
Produto Final	16
5. Plano de Processos e Custos	18
Impressão 3D	18
Fresagem	19
Torneamento	20
Produto Final	20
Conclusão	21
Bibliografia	22
Anexo 1	23
Anexo 2	24
Anevo 3	28

Índice de Figuras

Figura 1 – Pases de funcionamento de uma bomba de elementos fiexíveis. [1]	
Figura 2 - Caixa da bomba	6
Figura 3 - Depressão na caixa.	7
Figura 4 - Vista em corte da bomba.	7
Figura 5 - Impulsor da bomba.	8
Figura 6 - Deformação das palhetas	8
Figura 7 - Dimensões do veio.	9
Figura 8 - Conjunto do veio e roda dentada	9
Figura 9 - Área deformada (vermelho) e não deformada (azul)	10
Figura 10 – Montagem da 1ª iteração	11
Figura 11 - Caixa com o rolamento	11
Figura 12 - Montagem das mangueiras com fita adesiva	12
Figura 13 - Teste da 1ª iteração	12
Figura 14 - À esquerda: base usada na impressão das palhetas. À direita: palhetas plastifi	cadas.
	13
Figura 15 – Montagem da 2ª iteração	14
Figura 16 - Teste da 2ª iteração	14
Figura 17 - Montagem da 3ª iteração.	15
Figura 18 - Teste da 3ª iteração	15
Figura 19 - Da esquerda para a direita: maquinação, setup visto de cima, bloco maquinado.	16
Figura 20 - Montagem do produto final	17
Figura 21 - Teste do produto final	17
Figura 22 - Montagem da bomba na base de fixação	18
Índice de Tabelas	
Tabela 1 - Custos de impressão	
Tabela 2 – Custos de fresagem	
Tabela 3 - Custos de torneamento.	20

Introdução

O atual documento reflete o trabalho desenvolvido pelos alunos do grupo 5, ao longo do semestre na unidade curricular de "Produção Assistida por Computador".

O objetivo da unidade curricular foi transmitir aos alunos o percurso temporal de um produto na sua fase de produção, passando pelo projeto do mesmo, o planeamento de processos e finalizando com a sua fabricação. É esperado que os alunos venham a entender o comando numérico de máquinas-ferramentas, com recurso a sistemas de *Computer Aided Design (CAD)* e *Computer Aided Manufacturing (CAM)*.

O projeto consiste no planeamento e fabrico de uma pequena bomba de água, tendo em conta as condições adequadas à sua conceção. A bomba deve ser capaz de elevar a água para uma certa altura, debitar um caudal pré-definido e atuada por um berbequim. Para isso teve-se à disposição os *softwares* necessários para a elaboração do projeto, as tecnologias existentes nos Laboratórios de Tecnologia Industrial do DEMI, bem como os outros recursos necessários para a fabricação da bomba.

Memória Descritiva

1. Introdução

É necessário pensar, planear e produzir uma bomba hidráulica capaz de elevar vinte litros de água por minuto (20 L/min) a uma altura de 1 m. A bomba deve permitir a ligação de mangueiras com o diâmetro interior igual a meia polegada. O mecanismo é acionado com o auxílio de um berbequim, cuja potência é de 750 W, capaz de funcionar a 1000 min⁻¹ e a 3000 min⁻¹.

A equipa de projeto foi formada por três elementos, pelo Adrian Munteanu, Mihail Vasilache e pelo Tiago Silva. Os alunos estiveram envolvidos no estudo dos materiais e nos processos tecnológicos a utilizar, na realização do *design* e também no estudo do funcionamento hidráulico da bomba concebida.

Optou-se por projetar uma bomba volumétrica que é caraterizada por baixos caudais e atingindo alturas consideráveis. Quando analisados os diferentes tipos de bombas, decidiu-se fabricar uma de elementos flexíveis, oferecendo ao cliente um produto de dimensões reduzidas e de baixo custo.

2. Tipo de Bomba

As bombas hidráulicas são máquinas que permitem transferir a energia mecânica fornecida para energia transportada pelo escoamento (sob a forma de pressão, energia cinética ou potencial). Os critérios de classificação das bombas baseiam-se no modo de interação entre a máquina e o fluido. Neste sentido temos duas grandes categorias, bombas dinâmicas e bombas de deslocamento ou volumétricas. Nas bombas dinâmicas, a energia é transferida para o fluido através da variação do seu campo de velocidade. Nas bombas de deslocamento ou volumétricas, o fluido é admitido para uma zona da máquina cujo volume é alterado. A energia é transferida para o fluido através da variação do volume ocupado pelo mesmo no interior da máquina. [1]

Destas duas categorias optou-se por projetar uma bomba volumétrica de elementos flexíveis (Figura 1), uma vez que oferece uma solução com dimensões reduzidas, capaz de debitar o caudal pretendido. Este tipo de bomba caracteriza-se por ter um impulsor (rotor) com palhetas flexíveis. Estas palhetas flexíveis deformam-se devido à variação da superfície interior do estator que deixa de ser concêntrica. Na fase **A**, da Figura 1, o fluido é admitido sendo transportado durante a fase **B** com volume constante. Na fase **C** a excentricidade da superfície interna do estator impõe uma deformação às palhetas que provoca uma diminuição do volume, aumentando a pressão e induzindo o fluido para a saída. O caudal bombeado depende assim da variação de volume imposta entre palhetas consecutivas (e da velocidade de rotação). [1]

Estas bombas podem ser auto-ferrantes (*self-priming*), pois havendo ar no seu interior cria uma depressão que suga o líquido na conduta de aspiração. Permitem a bombagem de líquidos, transportando gases ou sólidos pouco abrasivos. O material do rotor (direcionado para a indústria alimentar) permite a bombagem de produtos alimentares e por variação da velocidade de rotação pode ser usada como doseadora. [1]

Figura 1 – Fases de funcionamento de uma bomba de elementos flexíveis. [1]

Vantagens de uma Bomba de elementos flexíveis

- Auto-ferrante: Permite a aspiração a seco, até a baixas rotações, com o comprimento de sucção alcaçando os 6 m.
- Capacidade elevada: Dependendo do tipo e modelo de bomba, pode oferecer caudais de até 1200 L/min.
- Versátil: As palhetas, os materias de estanque e a caixa da bomba podem ser produzidos por diferentes tipos de materiais, podendo operar com motores AC ou DC a diversas velocidades.
- Reversível: Pode funcionar em ambas as direções de rotação, o que permite retrair o
 excesso de fluido quando o reservatório final fica cheio.
- **Alto desempenho:** Permite bombear fluidos de diferentes viscosidades até 50 Pa.s, podendo conter algumas partículas sólidas e resistindo a temperaturas de até 100 °C.
- **Fácil manutenção:** Para limpezas e trabalhos de manutenção, as bombas são facilmente desmontadas e os componentes facilmente substituídos individualmente. Baixos custos de operação. [2]

3. Dimensionamento

A caixa da bomba foi dimensionada com um diâmetro interno de 56 mm, com a parte superior (assinalado a vermelho na Figura 2) com um diâmetro maior, com o objetivo de deformar as palhetas, diminuindo o volume da secção que aumenta a pressão, provocando a saída do fluído.

Figura 2 - Caixa da bomba.

A caixa terá uma plataforma horizontal onde será aparafusada uma base de fixação em acrílico de forma a suportar os momentos provocados pelo berbequim.

Será utilizado um rolamento, dentro da caixa da bomba, com o propósito de suportar o veio e reduzir os efeitos de atrito na rotação do mesmo.

A altura interior da caixa é a mesma que a do impulsor, 15 mm. É de elevada importância que as secções das palhetas estejam bem estancadas, para não haver trocas de pressão entre as secções, que afetará as pressões à entrada, reduzindo a sucção e as pressões à saída.

Serão utilizados seis parafusos M4 em conjunto com anilhas e porcas com as dimensões apropriadas para fixar a tampa à caixa da bomba. Serão utilizados, também, dois parafusos M6 para montar a caixa da bomba à base de fixação.

Na parte superior da caixa da bomba existe uma depressão (assinalado a amarelo na Figura 3), com o objetivo de reduzir a pressão, criando uma maior sucção na conduta de aspiração.

Figura 3 - Depressão na caixa.

A tampa (assinalada a azul na Figura 4) será produzida em acrílico e maquinada em CNC. A sua superfície lisa e uniforme garante um contacto perfeito com as palhetas, pelas razões referidas acima. A tampa terá um rasgo com o propósito de se estancar com silicone na montagem.

Na zona central do impulsor (assinalado a vermelho na Figura 5) foi removida com o objetivo de reduzir o atrito com a tampa.

Figura 5 - Impulsor da bomba.

As palhetas têm um comprimento superior ao raio interno da caixa (como se pode observar na Figura 6), de forma a que quando inseridas na caixa, possam garantir o constante contacto com a parede, estancando as secções. Também é importante este comprimento maior para a longevidade da bomba. À medida que as pontas das palhetas se vão desgastando, haverá comprimento para estas manterem um bom contacto com as paredes da caixa.

Figura 6 - Deformação das palhetas.

O veio tem um diâmetro 8 mm e é nessa zona do veio que o berbequim vai agarrá-lo. Na outra extremidade o veio tem 12 mm de diâmetro com um rasgo de 2 mm para a fixação com a roda dentada (Figura 7).

Figura 7 - Dimensões do veio.

A potência do berbequim será transmitida ao veio. Este estará encaixado numa roda dentada (Figura 8) que tem o objetivo de agarrar melhor o impulsor, evitando possíveis escorregamentos.

Figura 8 - Conjunto do veio e roda dentada.

O cálculo do caudal teórico debitado para uma dada iteração foi efetuado da seguinte forma:

- Através do *software* de modelação *SolidWorks* foram medidas as áreas deformada (AD) e não-deformada (AND), como se pode verificar na Figura 9.
- Multiplicando a diferença das áreas AND e AD pela altura das palhetas (h) obtém-se o volume debitado por secção (V): $V = (AND AD) \times h$.
- Multiplicando o volume por secção pelo número de secções da palheta (n) e pela velocidade angular do berbequim (ω) obtém-se o caudal da bomba (Q): $Q = V' \times n \times \omega$.

Figura 9 - Volume deformado (vermelho) e não deformado (azul).

Exemplificando o cálculo para o produto final:

$$AND = 203.38 \ mm^2$$

$$AD = 120.92 \ mm^2$$

$$h = 15 \ mm$$

$$n = 7$$

$$\omega = 3000 \ min^{-1}$$

$$V = (AND - AD) \times h \times n \times \omega \Leftrightarrow$$

$$\Leftrightarrow (203.38 - 120.92) * 15 * 7 * 3000 * 10^{-6} = 25.98 \ L/min$$

É de realçar que estes cálculos do caudal produzido pela bomba não contaram com qualquer tipo de perdas.

4. Conceção

1ª Iteração

Após o dimensionamento com o auxílio do *software* de modelação *SolidWorks*, obteve-se um caudal teórico de 23 L/min, posto isto, passou-se à produção do primeiro protótipo.

Para este protótipo, a caixa, a tampa, a roda dentada e o impulsor de palhetas flexíveis foram produzidos usando a técnica de manufatura aditiva FFF (*Fused Filament Fabrication*). Para a caixa, a tampa e a roda dentada o material usado foi um PLA genérico. Para o impulsor de palhetas flexíveis usou-se um TPU. O veio de aço foi torneado e facejado. Na Figura 10 é possível observar os vários componentes impressos e montados.

Figura 10 – Montagem da 1ª iteração.

É de apontar que na montagem, a caixa foi fabricada com uma entrada para um rolamento, por onde irá passar o veio (Figura 11). Além disso, foi usado uma massa lubrificante entre as superfícies em contacto para reduzir o atrito. Junto ao veio e entre o rolamento e o rotor foi colocado um *O-ring* de modo a fazer o estanque necessário na zona traseira da caixa, onde passa o veio.

Figura 11 - Caixa com o rolamento.

Tendo o protótipo produzido e montado, procedeu-se ao teste do mesmo. Verificou-se que as entradas das mangueiras foram projetadas com as dimensões erradas e ficavam topo-a-topo com as mangueiras. Tendo isto, usou-se fita adesiva para fazer o maior estanque possível entre as mangueiras e as entradas, como se observa na Figura 12.

Figura 12 - Montagem das mangueiras com fita adesiva.

Realizado o teste, não se obtiveram os resultados que se esperavam, pois não se conseguiu fazer com que a bomba debitasse um caudal constante e quando debitava era demasiado baixo. Na Figura 13 mostra-se uma instância em que a bomba debitou algum caudal e como se pode observar, é bastante reduzido.

Figura 13 - Teste da 1ª iteração.

Após o teste e a análise dos resultados, foi realizado um *brainstorming* entre os membros do grupo para perceber o que é que podia ter corrido mal. Chegou-se às seguintes conclusões:

- O material utilizado para a produção do impulsor era inadequado. Era demasiado rígido e facilmente plastificou;
- 2. O comprimento das palhetas era insuficiente e não garantia que estavam sempre encostadas e a fazer o estanque necessário nas paredes do estator;

Na Figura 14 observa-se as palhetas flexíveis plastificadas após o funcionamento da bomba.

Figura 14 - À esquerda: base usada na impressão das palhetas. À direita: palhetas plastificadas.

De forma a responder a estes problemas foi necessário fazer uma segunda iteração.

2ª Iteração

Foi necessário produzir um novo impulsor para solucionar os problemas encontrados na primeira iteração. Neste novo impulsor foi tido em conta o seguinte:

- Utilizou-se um tipo de TPU mais flexível que o anterior, de modo a que durante o funcionamento da bomba, as palhetas não plastifiquem;
- Aumentou-se o comprimento das palhetas de modo a garantir que estas encostariam perfeitamente e que fariam o estanque necessário nas paredes do estator;
- Aumentou-se o número de palhetas de 6 para 7, pois no dimensionamento verificou-se que o caudal teórico aumentava de 23 para 26 L/min.

O novo impulsor foi impresso usando a técnica de manufatura aditiva FFF, porém, usando um filamento do material referido acima. Na Figura 15 encontra-se a bomba montada com o novo impulsor.

Figura 15 - Montagem da 2ª iteração.

Tendo o protótipo produzido e montado, procedeu-se ao teste do mesmo.

Realizado o teste verificou-se que a bomba já produzia um caudal constante, porém, continuava muito aquém do que tinha sido dimensionado, como se pode observar na Figura 16. Obteve-se um caudal de 3 L/min, o que representa umas perdas de 88 % em relação ao valor teórico.

Figura 16 - Teste da 2ª iteração.

Mais uma vez, os membros do grupo realizaram uma sessão de *brainstorming* onde chegou-se à conclusão de que as perdas poderiam originar por falta de estanque pela tampa, pois a tampa tem uma rugosidade elevada e, além disso, poderia não estar a comprimir o suficiente o impulsor, o que não garantia o estanque necessário entre as várias secções.

De forma a testar se as perdas originavam da tampa foi necessário fazer uma terceira iteração.

3ª Iteração

Nesta iteração utilizou-se uma tampa dividida em 2 partes. Uma das partes é um disco de acrílico que estará em contacto com o impulsor. Com a sua superfície lisa consegue-se garantir uma pressão uniforme sobre o impulsor, garantindo o estanque necessário. A outra parte é uma impressão incompleta da tampa na 1ª iteração, mas que serviu para o propósito deste teste.

Na Figura 17 tem-se a montagem da bomba, onde se observa o disco de acrílico e a impressão incompleta da tampa, a roxo. O aperto dos parafusos foi tal que a tampa pudesse empurrar o acrílico e garantir o estanque necessário no topo do impulsor.

Figura 17 - Montagem da 3ª iteração.

Tendo o protótipo montado, procedeu-se ao teste do mesmo. E como se pode verificar na Figura 18, o caudal aumentou significativamente e aproximou-se muito das especificações.

Figura 18 - Teste da $3^{\rm a}$ iteração.

Com este teste concluiu-se que o problema estava na tampa impressa em PLA e que o ideal seria maquinar uma tampa em acrílico em CNC.

É de referir que, apesar de nesta iteração a bomba se aproximar muito das especificações, ainda há algumas zonas que provocam perdas, nomeadamente, as zonas onde se colocam as mangueiras e a parte traseira da caixa por onde passa o veio. São essas perdas que vão ser solucionadas no produto final, onde se espera que a bomba atinja as especificações.

Produto Final

Para a produção do produto final teríamos de produzir uma tampa e uma caixa novas.

Para a tampa, usou-se um bloco de acrílico com 10 mm de espessura e foi cortado numa fresadora até se obter um quadrado com 120 mm de lado. O bloco cortado de acrílico foi maquinado em CNC para se fazer a tampa. Na Figura 19 observam-se imagens do processo e do bloco maquinado.

Figura 19 - Da esquerda para a direita: maquinação, setup visto de cima, bloco maquinado.

Como o acrílico não tinha espessura suficiente para se maquinar o contorno em CNC este teve de ser, posteriormente, maquinado manualmente com o auxílio de um serrote e um esmeril.

No desenho da nova caixa foram feitas algumas modificações:

- As entradas das mangueiras foram redesenhadas, de modo a que se pudesse inserir as mangueiras e garantir que não há perdas de água na entrada e saída das mesmas;
- Reduziu-se material, de modo a fazer uma caixa mais leve e menos dispendiosa de se produzir;
- Foi adicionada uma plataforma horizontal para que se pudesse ser aparafusada à base de fixação em acrílico.

A nova caixa foi impressa usando a técnica de manufatura aditiva FFF, usando um filamento de PETG, que é um polímero que apresenta uma maior resistência a elevadas temperaturas, comparativamente ao PLA. Na Figura 20 observa-se a montagem da bomba com as novas caixa e tampa. Para resolver as perdas da parte traseira da caixa, por onde passa o veio, foi usado silicone para estancar essa zona.

Figura 20 - Montagem do produto final.

Tendo o produto final montado, procedeu-se ao teste do mesmo. Obteve-se um caudal de 21 L/min o que cumpre as especificações. Na Figura 21 observa-se a bomba a ser testada.

Figura 21 - Teste do produto final.

É de notar que, com este caudal, tem-se um rendimento de 80,8 % em relação do valor teórico, o que significa que as perdas são reduzidas (19,2 %).

Na Figura 22 tem-se a bomba montada com a plataforma horizontal da caixa aparafusada à base de fixação de acrílico. Para aparafusar a bomba à base de fixação foi necessário usar um macho para abrir uma rosca M6, com um pré-furo de 5 mm, no bloco de acrílico. Esta base de fixação é apenas usada para demonstração e não irá constar no produto final.

Figura 22 - Montagem da bomba na base de fixação.

5. Plano de Processos e Custos

Impressão 3D

Tanto a caixa da bomba, como a roda dentada, como o impulsor, foram produzidos usando a técnica de manufatura aditiva FFF. Para a impressão da caixa foi utilizado um filamento de PETG, para a roda dentada um filamento de PLA e para o impulsor um de TPU.

A caixa e a roda podiam ambas ter sido impressas em PETG, porém, as impressões foram feitas de acordo com a disponibilidade de filamento.

Na Tabela 1 estão apresentados os custos da impressão de cada componente.

Tabela 1 - Custos de impressão.

	Preço por kg (€/kg)	Peso (kg)	Preço por kWh (€/kWh)	Potência Impressão (kW)	Tempo de impressão (h)	Custo Total (€)
Caixa da bomba (PETG)	20	0,137			9,3	3,07
Roda dentada (PLA)	20	0,003	0,1481	0,24	0,3833	0,07
Impulsor (TPU)	27	0,013			1,6167	0,41

Fresagem

Como já foi referido, a tampa da bomba foi maquinada em CNC.

Partiu-se de um bloco de acrílico com dimensões 120 x 120 x 10 mm. Fez-se um programa em código G (Anexo 1) e utilizou-se a fresadora do Laboratório de Tecnologia Industrial do DEMI, para a produção do mesmo. A sequência de operações que contém as formas de fixação, as ferramentas utilizadas e os parâmetros de corte está apresentada no Anexo 2.

Na Tabela 2 estão apresentados os custos da maquinação da tampa na fresadora.

Tabela 2 – Custos de fresagem.

Preço do	Preço por	Potência de	Tempo de	Preço da	Preço da	Custo
material	kWh	maquinação	maquinação	mão-de-	matéria-	Custo
(€)	(€/kWh)	(kW)	(h)	obra (€/h)	prima (€)	Total (€)
10	0,1481	0,8	0,25	30	10	17,53

Torneamento

O componente que foi torneado foi o veio, com o auxílio do torno do Laboratório de Tecnologia Industrial do DEMI.

Partiu-se de um varão de aço com 16 mm de diâmetro e 100 mm de comprimento. A sequência de operações que contém as formas de fixação, as ferramentas utilizadas e os parâmetros de corte está apresentada no Anexo 3.

Na Tabela 3 estão apresentados os custos de maquinação do veio no torno.

Tabela 3 - Custos de torneamento.

Preço do	Preço por	Potência de	Tempo de	Preço da	Preço da	Custo
material	kWh	maquinação	maquinação	mão-de-	matéria-	Custo
(€)	(€/kWh)	(kW)	(h)	obra (€/h)	prima (€)	Total (€)
0,09	0,1481	0,8	0,0833	20	0,09	1,76

Produto Final

Tendo os custos de operação das impressões e da maquinação, o preço final da bomba é 22,84 €. É de assinalar que este valor é referente à produção de uma bomba singular. Se esta for produzida em massa o preço irá reduzir significativamente.

Conclusão

O desenvolvimento deste projeto permitiu ao grupo adquirir competências práticas, em contexto laboratorial, da conceção de um produto, desde a ideia inicial até ao resultado final. Os objetivos definidos para esta unidade curricular, aprender acerca do planeamento de um projeto, os processos de fabrico, o comando numérico de máquinas-ferramentas e a utilização dos sistemas CAD e CAM, foram cumpridos.

Uma das dificuldades encontradas pelo grupo centrou-se nos cálculos para o dimensionamento da bomba, pois era complicado prever como é que as alterações na geometria da bomba afetariam o caudal debitado teoricamente. O facto de não ser possível fazer a análise com o *Flow Simulation* também dificultou os cálculos teóricos. Outro problema, foi o difícil estanque dos componentes, com várias perdas na zona do veio. O fator crucial que permitiu com que a bomba funcionasse como projetada foi a troca da tampa em PLA por uma tampa em acrílico. Isto permitiu um melhor contacto com o impulsor e uma redução do fator de atrito de contacto considerável.

No final conseguiu-se cumprir com o proposto, que foi elevar um caudal de 20 L/min a uma altura de 1 m, sendo que o caudal real ronda os 21 L/min. Esta diferença está relacionada com o ligeiro sobredimensionamento da bomba (projetada para 26 L/min) para fazer face a eventuais perdas.

Por último, de realçar que o conhecimento adquirido ao longo deste trabalho será uma mais valia para um futuro como Engenheiros.

Bibliografia

- [1] L. Gil, "Bombas Hidráulicas." p. 52, 2020.
- [2] BESTPUMP, "FLEXIBLE IMPELLER PUMPS," 2020. https://bestpump.co.uk/food-grade-pumps/flexible-impeller-pumps/ (accessed Dec. 13, 2020).

Anexo 1

N300 G43 H03;

N010 #10=2387; N310 M03 S#12; N020 #11=200; N320 G01 X29.5 Y60. F#13; N030 G90 G40 G80 G54; N330 Z6.5; N040 M06 T01 (Broca 4 mm); N340 G03 I30.5 J0.; N050 G43 H01; N350 G01 Z15.; N060 M03 S#10; N360 M05; N070 G01 Z15 F#11. N390 M06 T04 (Fresa 6 mm); N080 M08: N400 G43 H04; N090 G83 X40. Y27.689 Z-5. R12. Q2. N410 M03 S#12; F#11; N420 G01 X-5. Y20. F#13; N100 X80.; N430 Z7.; N110 X98. Y60.; N440 X60.; N120 X75. Y94.914; N450 G03 I0. J40.; N130 X45.; N460 G01 Y23.; N140 X22. Y60.; N470 G03 I0. J37.; N150 G80 N480 G01 Z60.; N160 G01 Z20. F#11; N490 M05; N170 M05; N500 M09; N200 M06 T02 (Broca 3 mm); N510 M30; N210 G43 H02; N220 G01 X29.50 Y60. F#11; N230 M03 S#10; N240 G01 Z6. F#11; N250 Z15.; N260 M05; N270 #12=6000; N280 #13=239; N290 M06 T03 (Fresa 3 mm);

Anexo 2

Setup	N° Op	Esquema	Equipamento	Instruções	Parâmetros de corte
1		27.689	Fresadora	Furo passante com uma broca de 4 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$
1	2	80	Fresadora	Furo passante com uma broca de 4 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$

1	3	98	- Fresadora	Furo passante com uma broca de 4 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$
1	4	75	Fresadora	Furo passante com uma broca de 4 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$
1	5	45	Fresadora	Furo passante com uma broca de 4 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$

1	6		Fresadora	Furo passante com uma broca de 4 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$
1	7	3.5	Fresadora	Furo cego com broca de 3 mm com p=3.5 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$
1	8	3.5	Fresadora	Rasgo circular com fresa de 3 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$

1	9	8	Fresadora	Rasgo circular com fresa de 6 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$
1	10		Fresadora	Rasgo circular com fresa de 6 mm.	$S = 2387 min^{-1}$ $v = 200 mm/min$

Anexo 3

Setup	N° Op	Esquema	Equipamento	Instruções	Parâmetros de corte
1	1		Torno	Torneamento cilíndrico exterior de 3 passagens: 2 com p = 0.8 mm; 1 com p = 0.4 mm.	$S = 1100 min^{-1}$ $v = 180 mm/min$
1	2		Torno	Chanfro de 45° com 1 mm.	$S = 1100 min^{-1}$ $v = 200 mm/min$
2	1	54	Torno	Sangramento.	$S = 1100 min^{-1}$ $v = 170 mm/min$
3	1		Fresadora	Facejamento 2 passagens de 1 mm.	$S = 1400 min^{-1}$ $v = 70 mm/min$