Putnam 2011

- **A1** Define a growing spiral in the plane to be a sequence of points with integer coordinates $P_0 = (0, 0), P_1, \ldots, P_n$ such that $n \ge 2$ and:
 - The directed line segments $P_0P_1, P_1P_2, \dots, P_{n-1}P_n$ are in successive coordinate directions east (for P_0P_1), north, west, south, east, etc.
 - The lengths of these line segments are positive and strictly increasing.

How many of the points (x, y) with integer coordinates $0 \le x \le 2011, 0 \le y \le 2011$ cannot be the last point, P_n , of any growing spiral?

Answer. 10053.

Solution. For $1 \le x < y$, we can use $|P_0P_1| = x$ and $|P_1P_2| = y$. For (x,y) with $x \ge 3$ and $y \ge 4$ we can also use $|P_iP_{i+1}| = 1, 2, 3, x + 1, x + 2, x + y - 1$ for $1 \le i \le 6$, then x = 1 - 3 + x + 2 = x and y = 2 - (x + 1) + (x + y - 1) = y (we need x + 1 > 3 and y - 1 > 2, so $x \ge 3$ and $y \ge 4$ at least 4 will work.)

To show that these are the all the possible values, we first show that if $a_1 < a_2 < \cdots a_k$ are increasing sequences of positive numbers, then $\sum_{i=1}^k (-1)^{i-1} a_i$ is positive if k is odd,

and negative otherwise. If k is odd, then we have $a_k > 0$ and therefore $\sum_{i=1}^k (-1)^{i-1} a_i = (a_k - a_{k-1}) + (a_{k-2} - a_{k-3}) + \dots + (a_3 - a_2) + a_1$ with each of $a_i - a_{i+1} > 0$. Similarly for for k even we have $\sum_{i=1}^k (-1)^{i-1} a_i = -(a_k - a_{k-1}) - \dots - (a_2 - a_1)$ and each term

negative. Now going back to the core lemma, each change in the coordinates (for each x- and y-coordinates) are in alternate directions, with magnitude increasing by at least 2 each time. Both start with a positive change, so there must be an odd number of changes for both x and y coordinates. This implies n is congruent to 2 mod 4.

If n=2, then we have the x-coordinate as the length P_0P_1 and the y-coordinate as P_1P_2 . In this case we need x < y, with $x \ge 1$. If $n \ge 6$, let $x_1, x_2, \cdots, x_{n/2}$ be the lengths of the x-segments, and we have the x-coordinate as $x_1 - x_2 + x_3 - \cdots + x_{n/2} = (x_{n/2} - x_{n/2-1}) + \cdots + x_1$. Since each term in the form $x_i - x_{i-1}$ must be at least 2, so is $(x_{n/2} - x_{n/2-1})$, with $x_1 \ge 1$. This gives $x \ge 3$. Similarly, if $y_1, y_2, \cdots, y_{n/2}$ are the y-segments then each $(y_{n/2} - y_{n/2-1}) \ge 2$ with $y_1 \ge 2$, giving the lower bound for y-coordinate as 4.

1

Hence for each $0 \le x \le 2011$, if x = 0 then all $y \in [0, 2011]$ cannot be one such point (2012 values); if $1 \le x \le 2$ then we need $y \ge x + 1$ so $y = 0, 1, \dots, x$ are impossible, hence x + 1 values. When $x \ge 3$, each $y \ge 4$ fits. However, those with y > x also have $y \ge 4$, so y = 0, 1, 2, 3 are the ones that cannot fit (4 values each). Hence the answer is $2012 + 2 + 3 + \sum_{i=0}^{2011} 4 = 2017 + 4(2009) = 10053.$

A2 Let a_1, a_2, \ldots and b_1, b_2, \ldots be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1}a_n - 2$ for $n = 2, 3, \ldots$ Assume that the sequence (b_j) is bounded. Prove

$$S = \sum_{n=1}^{\infty} \frac{1}{a_1 \cdots a_n}$$

converges, and evaluate S.

Answer. We necessarily have $S = \frac{3}{2}$.

Solution. Now we write $a_n = \frac{b_n + 2}{b_{n-1}}$ for $n \ge 2$ so $\frac{1}{a_1 \cdots a_n} = \frac{1}{\prod_{k=1}^n a_k} = \frac{1}{\prod_{k=2}^n \frac{b_k + 2}{b_{k-1}}} = \frac{1}{\prod_{k=1}^n a_k}$

 $\frac{1}{(b_n+2)\prod_{k=2}^{n-1}\left(1+\frac{2}{b_k}\right)}$ This motivates us to do the following telescoping sum: we consider the difference $\frac{3}{2} - \sum_{k=1}^{n} \frac{1}{a_1 \cdots a_k}$ for each n. When n = 1 we have $\frac{3}{2} - \frac{1}{a_1} = \frac{3}{2} - 1 = \frac{1}{2}$ and when n = 2 we have $\frac{1}{2} - \frac{1}{b_2 + 2} = \frac{b_2}{2(b_2 + 2)} = \frac{1}{2(1 + \frac{2}{b_2})}$. We claim from here that $\frac{3}{2} - \sum_{k=1}^{n} \frac{1}{a_1 \cdots a_k} = \frac{1}{2 \prod_{k=2}^{n} (1 + \frac{2}{b_k})}.$ Suppose that this is true for some n (we have done

$$\frac{3}{2} - \sum_{k=1}^{n} \frac{1}{a_1 \cdots a_k} = \frac{1}{2 \prod_{k=2}^{n} (1 + \frac{2}{b_k})} - \frac{1}{(b_{n+1} + 2) \prod_{k=2}^{n} \left(1 + \frac{2}{b_k}\right)}$$

$$= \frac{1}{\prod_{k=2}^{n} (1 + \frac{2}{b_k})} \left(\frac{1}{2} - \frac{1}{b_{n+1} + 2}\right)$$

$$= \frac{1}{\prod_{k=2}^{n} (1 + \frac{2}{b_k})} \left(\frac{b_{n+1}}{2(b_{n+1} + 2)}\right)$$

$$= \frac{1}{\prod_{k=2}^{n+1} (1 + \frac{2}{b_k})}$$

and therefore we have $S = \frac{3}{2} - \lim_{n \to \infty} \frac{1}{\prod_{k=2}^{n} (1 + \frac{2}{h_k})}$. Since (b_k) is bounded, there is

M positive such that $b_k \leq M$ for each k. This means $\frac{1}{\prod_{k=2}^n (1+\frac{2}{b_k})} \leq \frac{1}{\prod_{k=2}^n (1+\frac{2}{M})} =$ $\frac{1}{(1+\frac{2}{M})^{n-1}}$ and so $\lim_{n\to\infty} \frac{1}{\prod_{k=2}^{n} (1+\frac{2}{b_k})} \le \lim_{n\to\infty} \frac{1}{(1+\frac{2}{M})^{n-1}} \to 0$. So $S = \frac{3}{2}$.

A3 Find a real number c and a positive number L for which

$$\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r \sin x \, dx}{\int_0^{\pi/2} x^r \cos x \, dx} = L.$$

Answer. c=-1 and $L=\frac{2}{\pi}$. Solution. Denote $S_r=\int_0^{\pi/2}x^r\sin x\,dx$ and $C_r=\int_0^{\pi/2}x^r\cos x\,dx$. We first find the relative of S_{r+1} and S_{r+1} are Example 1. tion between S_{r+1} and S_r for each r. In fact, we will prove that $\lim_{r\to\infty}\frac{S_{r+1}}{S_r}=\frac{\pi}{2}$. First, for

each r we have $S_{r+1} = \int_0^{\pi/2} x^{r+1} \sin x \, dx = \int_0^{\pi/2} x \cdot x^r \sin x \, dx \leq \int_0^{\pi/2} \frac{\pi}{2} x^r \sin x \, dx = \frac{\pi}{2} S_r$. On the other hand, we show that for each $\epsilon > 0$, there exists r_0 such that $\frac{S_{r+1}}{s_r} > \frac{\pi}{2} - \epsilon$ for all $r \geq r_0$. Now let $0 < \delta < \epsilon$. We split S_r into two parts: $\int_0^{\pi/2 - \delta} x^r \sin x \, dx$ and $\int_{\pi/2 - \delta}^{\pi/2} x^r \sin x \, dx$. Since $\sin x \leq 1$ for all x, we have

$$\int_0^{\pi/2-\delta} x^r \sin x \, dx \le \int_0^{\pi/2-\delta} x^r \, dx = \frac{(\pi/2-\delta)^{r+1}}{r+1}$$

and

$$\int_{\pi/2-\delta}^{\pi/2} x^r \sin x \, dx \ge \int_{\pi/2-\delta}^{\pi/2} (\pi/2-\delta)^r \sin(\pi/2-\delta) \, dx = \delta(\pi/2-\delta)^r \sin(\pi/2-\delta)$$

which means

$$\frac{\int_{\pi/2-\delta}^{\pi/2} x^r \sin x \, dx}{S_r} \ge \frac{\delta(\pi/2-\delta)^r \sin(\pi/2-\delta)}{\delta(\pi/2-\delta)^r \sin(\pi/2-\delta) + \frac{(\pi/2-\delta)^{r+1}}{r+1}} = \frac{\delta \sin(\pi/2-\delta)}{\delta \sin(\pi/2-\delta) + \frac{\pi/2-\delta}{r+1}}$$

We see that this ratio converges to 1 as $r \to \infty$, and since $\delta < \epsilon$, the ratio $\frac{\int_{\pi/2-\delta}^{\pi/2} x^r \sin x \, dx}{S_r} > \frac{\pi/2-\epsilon}{\pi/2-\delta}$ for sufficiently large r. Now we also have

$$S_{r+1} = \int_0^{\pi/2} x^{r+1} \sin x \, dx$$

$$> \int_{\pi/2 - \delta}^{\pi/2} x^{r+1} \sin x \, dx$$

$$\geq \int_{\pi/2 - \delta}^{\pi/2} (\pi/2 - \delta) x^r \sin x \, dx$$

$$> (\pi/2 - \delta) (\frac{\pi/2 - \epsilon}{\pi/2 - \delta}) S_r$$

$$= (\pi/2 - \epsilon) S_r$$

with the last inequality holds true for sufficiently large r. This concludes the claim that $\frac{S_{r+1}}{S_r} > \frac{\pi}{2} - \epsilon$ for all sufficiently large r. Considering the fact that this holds for each $\epsilon > 0$, we have $\lim_{r \to \infty} \frac{S_{r+1}}{S_r} = \frac{\pi}{2}$.

Now going back to the problem, by virtue of integration by parts we get $C_r = \int_0^{\pi/2} x^r \cos x \, dx = \left[\frac{x^{r+1}}{r+1}\cos x\right]_0^{\pi/2} + \int_0^{\pi/2} \frac{x^{r+1}}{r+1}\sin x \, dx = 0 + \frac{1}{r+1}S_{r+1} = \frac{S_{r+1}}{r+1}$ and by the claim above we have $\frac{2}{\pi} = \lim_{r \to \infty} \frac{S_r}{S_{r+1}} = \lim_{r \to \infty} \frac{S_r}{(r+1)C_r} = \lim_{r \to \infty} \frac{S_r}{rC_r} \lim_{r \to \infty} \frac{r^{-1}S_r}{C_r} \text{ since } \frac{r+1}{r} \text{ as } r \to \infty.$ Thus c = -1 and $L = \frac{2}{\pi}$.

A4 For which positive integers n is there an $n \times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?

Answer. When n is odd. For this example we can use A as the matrix full with ones, and return the answer A - I. (Basically, the ij-entry is 1 iff $i \neq j$).

Solution. It suffices to produce a contradiction when n is even. Now, consider the matrix A of $n \times n$ with the desired property, and it will be more useful to consider it in the \mathbb{Z}_2 space. Let v be the $n \times 1$ matrix with all entries 1 (i.e. $\begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}^T \end{pmatrix}$. Then Av is contains the sum of entries of each row, which is essentially also the dot product of each row with itself in \mathbb{Z}_2 . Hence, Av = 0, and thus v is in the null space of A (also v is

nonempty). On the other hand, the ij-th entry of AA^t is the dot product of the i-th and j-th row of A, and is therefore odd if $i \neq j$, and even otherwise. This gives $AA^t = B - I$ where B is the $n \times n$ matrix with all ones.

Now $\det(AA^t) = \det(A) \det(A^t) = \det(A^t) \det(A) = \det(A^tA)$ and since Av = 0, we have $A^tAv = 0$ too, so A^tA and AA^t cannot be invertible in \mathbb{Z}_2 . On the other hand, consider the matrix $B - I = AA^t$, and we claim that the determinant is odd by induction on n. Base case when n = 2 and we have $B_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ with determinant -1 (and hence odd). Now suppose that for some even n, B_{n-2} has odd determinant.

We consider B_n : $\begin{pmatrix}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 0
\end{pmatrix}$ Consider, now, B_{1k} for k > 1 where B_{ij} is the matrix obtained by deleting i-th row and j-th column from B, and we have $\det(B) = \sum_{n=1}^{\infty} a_n \cdot a_n \cdot a_n$

matrix obtained by deleting *i*-th row and *j*-th column from B, and we have $\det(B) = \sum_{k=1}^{n} (-1)^{k-1} b_{1k} \det(B_{1k}) = \sum_{k=2}^{n} \det(B_{1k})$ since b_{1k} is 1 except for $b_{11} = 0$, and also remov-

ing all the $(-1)^k$'s since we are doing \mathbb{Z}_2 . Now each $C=B_{1k}$ for $k\geq 2$, the matrix has the following form: $c_{1j}=1$ for all j's, and $c_{j\ell}=1$ with the exception when $j\geq 2$ and $\ell=j-1$ for j< k, and $\ell=j$, otherwise. Since row reduction preserves the determinant, we subtract every row by the first row. Since the first row is all ones, we essentially flipped all rows 2 to n-1. Thus we now have $c_{j\ell}=0$ unless $j\geq 2$, and $\ell=j-1$ for j< k and $\ell=j$, otherwise. This means, there's exactly 1 nontrivial entries in each row $c_{j(j-1)}$ (j< k) or c_{jj} $(j\geq k)$, and each of them are in different rows and columns. Multiplying them with $c_{1(k-1)}=1$ gives the only possible contribution to the determinant of C, i.e.

 $\pm 1 = 1$ in \mathbb{Z}_2 . Thus $\det(B) = \sum_{k=2}^n \det(B_{1k}) = \sum_{k=2}^n 1 = n - 1 = 1$ since n is even. Thus now B is invertible, which is a contradiction

B1 Let h and k be positive integers. Prove that for every $\varepsilon > 0$, there are positive integers m and n such that

$$\varepsilon < |h\sqrt{m} - k\sqrt{n}| < 2\varepsilon.$$

Solution. We first show that for all $\varepsilon > 0$, there exists m and n such that $0 < |h\sqrt{m} - k\sqrt{n}| < 2\epsilon$.

Let d > 0 be the greatest common divisor of h^2 and k^2 . By Euclid's algorithm, there exists m_0 and n_0 such that $h^2m_0 - k^2n_0 = d$. And if m_0 and n_0 are such solutions, other solutions can be obtained by changing (m_0, n_0) with $(m_0 + xk^2/d, n_0 + xh^2/d)$ for all $x \ge 0$.

We now proceed to another crucial observation: $\lim_{N\to\infty}\sqrt{N+d}-\sqrt{N}=0$. To this end, notice that for each $\varepsilon>0$, we have $(\sqrt{N}+\varepsilon)^2=N+\varepsilon^2+2\varepsilon\sqrt{N}>N+2\varepsilon\sqrt{N}$, so choosing N such that $d<2\varepsilon\sqrt{N}$ (i.e. $N>(\frac{d}{4\varepsilon^2})$) we get $(\sqrt{N}+\varepsilon)^2>N+d$ and therefore $\sqrt{N+d}-\sqrt{N}<\varepsilon$ for all such N. This means, fixing N_0 such that $0<\sqrt{N+d}-\sqrt{N}<\varepsilon$ for all $N>N_0$ and choosing x such that $n_0+xh^2/d>N$ we have $0< h\sqrt{m_0+xk^2/d}-k\sqrt{n_0+xh^2/d}<\varepsilon$. In other words, there exists m_1 and n_1 such that $0< h\sqrt{m_1}-k\sqrt{n_1}<\varepsilon$ (by assigning $m_1=m_0+xk^2/d$ and $n_1=n_0+xh^2/d$).

Finally, since $0 < h\sqrt{m_1} - k\sqrt{n_1}$, let $c = \varepsilon/h\sqrt{m_1} - k\sqrt{n_1}$. Consider the number $g = \lfloor c \rfloor + 1$. From the choices of m_1 and n_1 , we also have c > 1, and from $c < g = \lfloor c \rfloor + 1 \le c + 1$ we have 1 < g/c < 2. Thus, making $m = g^2 m_1$ and $n = g^2 n_1$ we get

$$h\sqrt{m} - k\sqrt{n} = g(h\sqrt{m_1} - k\sqrt{n_1}) = \varepsilon \cdot (g/c)$$

and with $g/c \in (1,2)$ we gave $h\sqrt{m} - k\sqrt{n} \in (\varepsilon, 2\varepsilon)$.

B2 Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational number x satisfies $px^2 + qx + r = 0$. Which primes appear in seven or more elements of S?

Answer. 2 and 5

Solution. We will use without proof that a rational solution exists to $px^2 + qx + r = 0$ if and only if the discriminant $q^2 - 4pr$ is a perfect square. In other words, we want to solve for $q^2 - 4pr = s^2$ with s being an integer. Rearranging gives (q - s)(q + s) = 4pr, with the prime factorization of 4pr being $2 \times p \times r$.

If both p and r are 2, we have (q-s)(q+s) is 16, so (q-s,q+s) is either (1,16),(2,8) or (4,4). The first one will force q and s to be non-integer; the second one gives (q,s) as (5,3). The third example gives (4,0), neither of which is a prime. Thus the only possibility is (p,q,r)=(2,5,2).

If one of them, say p is 2 while r prime, then (q-s)(q+s)=8r. Bearing in mind that $q-s\equiv q+s\mod 2$, both factors have to be even and therefore in the category of (2,4r),(4,2r). Since r>2, we have 2r>4. This forces q,s to be (2r+1,2r-1) in the first case, and (r+2,r-2) in the second case. Thus we have (p,q,r)=(2,2r+1,r),(r,2r+1,2),(2,r+2,r) or (r,r+2,2), condition on that 2r+1 or r+2 actually being a prime.

If both p and r are odd primes, we have $(q-s)(q+s)=4pr=2p\times 2r$. Again both q-s and q+s are even, so (q-s,q+s) are (2,2pr) or (2p,2r), assuming $p\leq r$. The first case gives (q,s)=(pr+1,pr-1) and the second case gives (p+r,p-r). Notice, however, that this is hardly possible: since p and r are odd, q=pr+1 and q=p+r are both odd, and greater than 2, hence cannot be even.

Thus a prime $r \notin \{2,5\}$ will appear two times when 2r+1 is prime, when r+2 being a prime, when $\frac{r-1}{2}$ is a prime, when r-2 is a prime. If r were to appear at least 7 times, then all conditions must hold. If $r \geq 7$, then one of r-2, r, r+2 must be divisible by 3, contradiction. Hence $r \geq 7$ is impossible. When r=3, r-2=1 is not prime. Now we claim that the primes 2 and 5 are possible: we have an example (2,5,2) as above and since 2r+1=11,5+2=7,5-2=3 are primes, we can do (2,11,5),(5,11,2),(2,7,5),(5,7,2),(2,5,3),(3,5,2). These give the 7 occurences of 2 and 5.

B3 Let f and g be (real-valued) functions defined on an open interval containing 0, with g nonzero and continuous at 0. If fg and f/g are differentiable at 0, must f be differentiable at 0?

Answer. Yes.

Solution. We need to see if $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ is defined. By the rules of limits we have

$$\lim_{x \to 0} \frac{f(x)g(x) - f(0)g(0)}{x} = (fg)'(0)$$

$$\lim_{x \to 0} \frac{f(x)g(0) - f(0)g(x)}{x} = \lim_{x \to 0} \frac{f(x)/g(x) - f(0)/g(0)}{x} \cdot \lim_{x \to 0} g(0)g(x) = (f/g)'(0) \cdot g(0)^2$$

Adding the two limits up give

$$(fg)'(0) + (f/g)'(0) \cdot g(0)^{2} = \lim_{x \to 0} \frac{f(x)g(x) - f(0)g(0)}{x} + \lim_{x \to 0} \frac{f(x)g(0) - f(0)g(x)}{x}$$
$$= \lim_{x \to 0} \frac{(f(x) - f(0))(g(x) + g(0))}{x}$$

and since $\lim_{x\to 0} g(x) + g(0) = 2g(0) \neq 0$ (before f is continuous at 0), we have

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

$$= \lim_{x \to 0} \frac{(f(x) - f(0))(g(x) + g(0))}{x} \div \lim_{x \to 0} (g(x) + g(0))$$

$$= (fg)'(0) + (f/g)'(0) \cdot g(0)^{2} \div 2g(0)$$

as desired.

B5 Let a_1, a_2, \ldots be real numbers. Suppose there is a constant A such that for all n,

$$\int_{-\infty}^{\infty} \left(\sum_{i=1}^{n} \frac{1}{1 + (x - a_i)^2} \right)^2 dx \le An.$$

Prove there is a constant B > 0 such that for all n,

$$\sum_{i,j=1}^{n} \left(1 + (a_i - a_j)^2 \right) \ge Bn^3.$$

Solution. We first consider these facts: for all a, b we have

$$\int_{-\infty}^{\infty} \frac{1}{b^2 + (x - a)^2} dx = \frac{1}{b} \arctan \infty - \frac{1}{b} \arctan(-\infty) = \frac{\pi}{b}$$

Claim: for all a, b we have

$$\int_{-\infty}^{\infty} \frac{1}{(1+(x-a)^2)(1+(x-b)^2)} dx = \frac{2\pi}{4+(b-a)^2}$$

Proof: when $a \neq b$, let's write $\frac{1}{(1+(x-a)^2)(1+(x-b)^2)}$ into partial fraction

$$\frac{1}{(1+(x-a)^2)(1+(x-b)^2)} = \frac{A(x)}{1+(x-a)^2} + \frac{B(x)}{1+(x-b)^2}$$

i.e. solving

$$A(x)(1 + (x - b)^{2}) + B(x)(1 + (x - a)^{2}) = 1$$

Plugging x = b + i and b - i gives

$$B(b+i) = \frac{1}{1 + (b-a+i)^2} = \frac{1}{(b-a)^2 + 2i(b-a)} = \frac{1}{b-a} \frac{b-a-2i}{(b-a)^2 + 4i}$$

$$B(b-i) = \frac{1}{1 + (b-a-i)^2} = \frac{1}{(b-a)^2 - 2i(b-a)} = \frac{1}{b-a} \frac{b-a+2i}{(b-a)^2 + 4}$$

Thus if we write B(x) = p(x - b) + q we have

$$q = \frac{1}{2}(B(b+i) + B(b-i)) = \frac{1}{b-a} \cdot \frac{b-a}{(b-a)^2 + 4} = \frac{1}{(b-a)^2 + 4}$$

and

$$p = \frac{1}{2i}(B(b+i) - B(b-i)) = \frac{1}{2i}\frac{1}{b-a} \cdot \frac{-4i}{(b-a)^2 + 4} = \frac{-2}{(b-a)[(b-a)^2 + 4]}$$

Thus

$$B(x) = \frac{-2}{(b-a)[(b-a)^2 + 4]}(x-b) + \frac{1}{(b-a)^2 + 4}$$

and similarly by flipping a and b we get

$$A(x) = \frac{-2}{(a-b)[(b-a)^2 + 4]}(x-a) + \frac{1}{(b-a)^2 + 4}$$

Now, write our term as

$$\frac{1}{(1+(x-a)^2)(1+(x-b)^2)} = \frac{1}{(b-a)^2+4} \left(\frac{1}{1+(x-a)^2} + \frac{1}{1+(x-b)^2} \right) + \frac{2}{(b-a)[(b-a)^2+4]} \left(\frac{x-a}{1+(x-a)^2} - \frac{x-b}{1+(x-b)^2} \right)$$

By what we have before,

$$\int_{-\infty}^{\infty} \frac{1}{(b-a)^2 + 4} \left(\frac{1}{1 + (x-a)^2} + \frac{1}{1 + (x-b)^2} \right) dx = \frac{2\pi}{(b-a)^2 + 4}$$

so it suffices to show that

$$\int_{-\infty}^{\infty} \frac{x-a}{1+(x-a)^2} - \frac{x-b}{1+(x-b)^2} dx = 0$$

Taking the indefinite integral gives

$$\int \frac{x-a}{1+(x-a)^2} - \frac{x-b}{1+(x-b)^2} dx = \frac{1}{2} (\ln(1+(x-a)^2) - \ln(1+(x-b)^2)) = \frac{1}{2} \ln\left(\frac{1+(x-a)^2}{1+(x-b)^2}\right)$$

and since

$$\lim_{x \to +\infty} \frac{1 + (x - a)^2}{1 + (x - b)^2} = \lim_{x \to -\infty} \frac{1 + (x - a)^2}{1 + (x - b)^2} = 1$$

we have $\int_{-\infty}^{\infty} \frac{x-a}{1+(x-a)^2} - \frac{x-b}{1+(x-b)^2} dx = \frac{1}{2} (\ln 1 - \ln 1) = 0$, as claimed.

When a=b, our goal is to show that $\int_{-\infty}^{\infty} \frac{1}{(1+(x-a)^2)^2} dx = \frac{\pi}{2}$. By symmetry, we may assume that a=0. Now, $\frac{1}{1+x^2} = \frac{1}{2i}(\frac{1}{x-i} - \frac{1}{x+i})$ so

$$\frac{1}{(1+x^2)^2} = -\frac{1}{4}(\frac{1}{(x-i)^2} + \frac{1}{(x+i)^2}) + \frac{1}{2}\frac{1}{1+x^2}$$

We've already seen that $\int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{1+x^2} dx = \frac{\pi}{2}$. Also,

$$-\int \frac{1}{(x-i)^2} + \frac{1}{(x+i)^2} dx = \frac{1}{x-i} + \frac{1}{x+i} = \frac{2x}{1+x^2} dx$$

and

$$\lim_{x \to \infty} \frac{2x}{1 + x^2} dx = \lim_{x \to -\infty} \frac{2x}{1 + x^2} dx = 0$$

and so $\int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{1+x^2} dx$, as desired.

Having this, we turn to the original expression and obtain

$$\int_{-\infty}^{\infty} \left(\sum_{i=1}^{n} \frac{1}{1 + (x - a_i)^2} \right)^2 dx = \int_{-\infty}^{\infty} \sum_{1 \le i, j \le n} \frac{1}{(1 + (x - a_i)^2)(1 + (x - a_j)^2)} dx$$

$$= \sum_{1 \le i, j \le n} \int_{-\infty}^{\infty} \frac{1}{(1 + (x - a_i)^2)(1 + (x - a_j)^2)} dx = \sum_{1 \le i, j \le n} \frac{2\pi}{4 + (a_i - a_j)^2}$$

By Cauchy-Schawz inequality,

$$\left(\sum_{1 \le i, j \le n} \frac{2\pi}{4 + (a_i - a_j)^2}\right) \left(\sum_{1 \le i, j \le n} (4 + (a_i - a_j)^2)\right) \ge \left(\sum_{1 \le i, j \le n} \sqrt{2\pi}\right)^2 = 2n^4\pi$$

and with $\frac{2\pi}{4+(a_i-a_j)^2} \leq An$ we have

$$\sum_{1 \le i, j \le n} (4 + (a_i - a_j)^2) \ge \frac{2\pi}{A} n^3$$

Therefore we can take

$$B = \min\{\min\{\frac{1}{n^3} \sum_{1 \le i, j \le n} (1 + (a_i - a_j)^2) : n = 1, 2, 3, \dots, k\}, \frac{2\pi}{A} - \frac{3}{k^2}\}$$

for some k, where k is big enough such that $\frac{2\pi}{A} - \frac{3}{k^2} \ge \frac{\pi}{A}$. Note that $\frac{1}{n^3} \sum_{1 \le i,j \le n} (1 + (a_i - a_j)^2) \ge \frac{1}{n^3} \sum_{1 \le i,j \le n} 1 = \frac{1}{n}$, so this B will be > 0. (I.e. we could have said, $B = \min\{\frac{1}{k}, \frac{2\pi}{A} - \frac{3}{k^2}\}$) above.