TERRAIN MODEL GENERATION FROM POINT CLOUD

- ▶Animesh Patni (A20403240)
- ▶ Abhijeet Ambekar(A20395747)
- ► Vamsi K Kothapalli(A20395942)

CONTENT

- ► Introduction
- ► DTM
- ▶ Data Acquisition
- ▶ DTM Use-cases
- ▶ Point Cloud Processing
- ► Methodology
- ► How to run?
- ▶ Output files
- ▶ What did we learn?
- ► References

INTRODUCTION

▶ Point Cloud.

- Set of data points in space
- Various file format standards are available to store these points
- Used for DTM, DSM and other spatial analysis
- ▶ Digital terrain model (DTM).
 - A visual representation of geographical spatial features.
 - Digital Elevation Model is a 3D representation of the terrain elevations.
 - Digital Terrain Model is a DEM in which data has been further enhanced with break lines or filtering out the noise.
 - Outliers are noise and Inliers are points that are needed

DATA ACQUISITION

- ► Satellite Mapping
- ▶ Stereo Vision
- Surveying and mapping drones
- ► LiDAR
- ► Physically touching the model
- ► Structured Light

DTM USE-CASES

- ► To build canals and design water flow for mass movement of water bodies
- It can also be used to study the natural disaster prone regions for flash floods
- ▶ In building Metro, Rail systems and even roads
- It can also be helpful to improve
 Navigation by building better maps
- Used in Flight simulation technology

POINT CLOUD PROCESSING

- ► Development Environment
 - Python
 - ▶ PCL
 - ► PPTK
- ► Coordinate Transformation
 - ▶ LLA to ECEF

COORDINATE TRANSFORMATIONS: LLA -> ECEF

- Calculate ellipsoid flattening f.
- $f = \frac{a-b}{a}$
- ► Calculate eccentricity e.
- $\bullet \ e = \sqrt{f * (2 f)}$
- ▶ Calculate the distance N from the surface to z- axis along ellipsoid normal as a function of Φ (geodetic latitude):
- $N(\Phi) = \frac{a}{\sqrt{1 e^2 \sin^2(\Phi)}}$
- ► The ECEF coordinates X, Y and Z can be calculated from:
- $X = (h + N(\Phi)) \cos(\lambda) \cos(\Phi)$
- $Y = (h + N(\Phi)) \cos(\lambda) \sin(\Phi)$

METHODOLOGY

VISUALIZING POINT CLOUD

Read

Read input file

• Latitude, longitude, altitude, intensity

Intensity Model

Generate Terrain model by Intensity Data

- Convert <Lat, Long> to ECEF coordinates <X,Y,Z>
- Visualize the cloud points <x,y,z,intensity>

Elevation Model

Generate Terrain model by Elevation Data

- Convert <Lat, Long> to ECEF coordinates <X,Y,Z>
- Visualize the cloud points <X,Y,Z>
- Color the point clouds by the altitude data

FILTERING POINTS

- ▶ Filtering Noise
 - Read the input file
 - Create point cloud by PCL library
 - Use Statistical Outlier Filter
 - Set the number of neighboring points for mean analysis (K)
 - Set standard deviation threshold
- Outliers
 - Point with mean distance > (mean * std_dev)
- ▶ Inliers
 - Point with mean distance < (mean * std_dev)
 - Generate Terrain Model

HOW TO RUN

- Python main.py
 - Cloud Point Processing
 - 1. Visualize Cloud Points by Intensity
 - 2. Visualize Cloud Points by Height/z-Axis
 - 3. Filter Cloud Points
 - 4. Exit
 - Please enter your choice

OUTPUT

TERRAIN MODEL BY INTENSITY

OUTPUT

Terrain Model by Elevation Visualization

OUTPUT

OUTLIERS - Visualization

INLIERS - Visualization

TERRAIN MODEL BY ELEVATION

TERRAIN MODEL BY INTENSITY

Intensity Visualization

TERRAIN MODEL - OUTLIERS

TERRAIN MODEL FOR INLIERS

WHAT DID WE

- ▶ DTM and Point Cloud
- ► How to process and handle the raw data
- ▶ Visualize the 3d model in various ways

REFERENCES

- https://www.pointtopointsurvey.com/service/digital-terrain-modeling/
- https://en.wikipedia.org/wiki/Digital_elevation_model
- https://www.sanborn.com/dems-dtms/
- https://gisgeography.com/dem-dsm-dtm-differences
- https://ieeexplore.ieee.org/document/7009913
- https://www.researchgate.net/publication/228754113 From point cloud to surface
 e_The_modeling_and_visualization_problem

THANK YOU