PHYSICAL CONSTANTS (SI)

Physical Quantity	Symbol	Value	Units
Boltzmann constant	k	1.3807×10^{-23}	$ m JK^{-1}$
Elementary charge	e	1.6022×10^{-19}	С
Electron mass	m_e	9.1094×10^{-31}	kg
Proton mass	m_p	1.6726×10^{-27}	kg
Gravitational constant	G	6.6726×10^{-11}	${\rm m}^3{\rm s}^{-2}{\rm kg}^{-1}$
Planck constant	h	6.6261×10^{-34}	Jѕ
	$\hbar = h/2\pi$	1.0546×10^{-34}	Jѕ
Speed of light in vacuum	c	2.9979×10^8	$\mathrm{m}\mathrm{s}^{-1}$
Permittivity of free space	ϵ_0	8.8542×10^{-12}	Fm^{-1}
Permeability of free space	μ_0	$4\pi \times 10^{-7}$	$\mathrm{H}\mathrm{m}^{-1}$
Proton/electron mass ratio	m_p/m_e	1.8362×10^3	
Electron charge/mass ratio	e/m_e	1.7588×10^{11}	$ m Ckg^{-1}$
Rydberg constant	$R_{\infty} = \frac{me^4}{8\epsilon_0^2 ch^3}$	1.0974×10^7	m^{-1}
Bohr radius	$a_0 = \epsilon_0 h^2 / \pi m e^2$	5.2918×10^{-11}	m
Atomic cross section	πa_0^2	8.7974×10^{-21}	m^2
Classical electron radius	$r_e = e^2 / 4\pi \epsilon_0 mc^2$	2.8179×10^{-15}	m
Thomson cross section	$(8\pi/3)r_e^2$	6.6525×10^{-29}	m^2
Compton wavelength of	$h/m_e c$	2.4263×10^{-12}	m
electron	$\hbar/m_e c$	3.8616×10^{-13}	m
Fine-structure constant	$\begin{vmatrix} \alpha = e^2/2\epsilon_0 hc \\ \alpha^{-1} \end{vmatrix}$	7.2974×10^{-3} 137.04	
First radiation constant	$c_1 = 2\pi h c^2$	3.7418×10^{-16}	${ m Wm^2}$
Second radiation constant	$c_2 = hc/k$	1.4388×10^{-2}	m K
Stefan-Boltzmann constant	σ	5.6705×10^{-8}	$\mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$