第二章关系作业答案

1. 解:
$$A \times B = \{(1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d)\};$$
 $B \times A = \{(a, 1), (b, 1), (c, 1), (d, 1), (a, 2), (b, 2), (c, 2), (d, 2)\};$
 $A^2 \times B = \{((1, 1), a), ((1, 2), a), ((2, 1), a), ((2, 2), a), ((1, 1), b), ((1, 2), b), ((2, 1), b), ((2, 2), b), ((1, 1), c), ((1, 2), c), ((2, 1), c), ((2, 2), c), ((1, 1), d), ((1, 2), d), ((2, 1), d), ((2, 2), d)\};$
 $A \times (B - C) = \{1, a), (1, b), (2, a), (2, b)\}.$
4. 解: $\mathcal{P}(A) = \{\emptyset, \{a, \{b, c\}\}\};$
 $\mathcal{P}(B) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\};$
 $A \times B = \{(\{a, \{b, c\}\}, \emptyset), (\{a, \{b, c\}\}, \{\emptyset\})\}.$
5.(1) 证明: $\diamondsuit(x, y) \in A \times (B \cup C)$
 $\Rightarrow x \in A \land y \in B \cup C$
 $\Rightarrow x \in A \land y \in B \lor y \in C)$
 $\Rightarrow ((x, y) \in A \times B) \lor ((x, y) \in A \times C)$
 $\therefore A \times (B \cup C) \subseteq (A \times B) \cup (A \times C);$
 $\diamondsuit(x, y) \in (A \times B) \cup (A \times C);$
 $\diamondsuit(x, y) \in (A \times B) \cup (A \times C)$
 $\Rightarrow x \in A \land y \in B \cup C$
 $\Rightarrow x \in A \land y \in B \cup C$
 $\Rightarrow x \in A \land y \in B \cup C$
 $\Rightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$
 $\Rightarrow x \in A \land y \in B \cup C$
 $\Rightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$
 $\Rightarrow x \in A \land y \in B \cup C$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \times C)$
 $\Rightarrow (x \in A \land y \in B) \cup (A \land C)$
 \Rightarrow

具备反对称性 $((b,a) \notin R, (c,a) \notin R)$; 具备传递性.

8. 解:
$$R \circ S = \{(a, e), (c, b), (b, e)\};$$

 $S \circ R = \{(d, b), (c, b)\};$
 $R \circ R = \{(a, b), (b, b)\}.$

12.
$$\mathfrak{P}$$
: $r(R) = \{(1,2), (2,1), (1,3), (1,1), (2,2), (3,3)\};$
 $s(R) = \{(1,2), (2,1), (1,3), (1,1), (3,1)\};$
 $t(R) = \{(1,2), (2,1), (1,3), (1,1), (2,3)\}.$

- **18.** 证明: :: R是自反的, $:: I \subseteq R$ $:: R \subseteq s(R), :: I \subseteq s(R)$, 故s(R)是自反的; 同理, $I \subseteq t(R)$, 故t(R)是自反的 Q.E.D.
- **22.** 证明:可知R是自反、对称且传递的.

$$\therefore R$$
是自反的, $\therefore I \subseteq R$

$$:: I^{-1} = I, :: I \subseteq R^{-1}$$

故 R^{-1} 是自反的;

$$\therefore$$
 R是自反的, $\therefore \forall (a,b) \in R, (b,a) \in R$

$$\therefore (x,y) \in R \Rightarrow (y,x) \in R^{-1}$$

故 R^{-1} 是对称的;

$$\forall (x,y) \in R^{-1} \land (y,z) \in R^{-1}$$

有
$$(y,x) \in R \land (z,y) \in R$$

- :: R是传递的
- $\therefore (z, x) \in R$
- $\therefore (x,z) \in R^{-1}$

故R⁻¹是传递的;

综上所证, R^{-1} 是等价关系. Q.E.D.

24.
$$\Re$$
: $[1]_R = \{1, 5\}, [2]_R = \{2, 3, 6\}, [3]_R = \{2, 3, 6\},$ $[4]_R = \{4\}, [5]_R = \{1, 5\}, [6]_R = \{2, 3, 6\}.$

- **33.** 解: 最大元为a, 无最小元, 极大元为a, 极小元为d, e.
- 35. 解: 哈斯图见图1.

Figure 1: 35对应哈斯图