Year 11 Physics – 2018

Waves Test BRAT'S ANOTATED

Cooperation						
Student name:						
MARKING	KE	EY				
Teacher (Please tick one box)						
	Group	10° ×	·			
Mr Boughton	1					
Mr Dopson	2					
Mr Dopson	3					
Dr Pitts	4					

NOTE:

- 1. Calculations must show **clear working** with **formulae** and final answers stated to **three significant figures.**
- Marks will be allocated for clear and logical setting out.
- 3. State your assumptions if working on open ended type questions.
- 4. Underline your answers.
- 5. Half a mark may be taken off for incorrect number of significant figures and incorrect units in the final answer.

1. The following waveforms are produced when different musical instruments are played in front of a microphone. Each instrument is played in the same place each time. The oscilloscope controls remain unchanged. There is no external interference.

	 a) Identify which instrument is producing the loudest sound and give a reason for your choice. 	(1)			
3 00 50	Saxophone (2)				
	Greatest amplitude (2)				
	b) How can you tell that all instruments are producing a note of the same pitch?	(1)			
	The frequency of the three				
	waveforms are the same				
c) Why do all the notes have a different sound? $\triangle A = \bigcirc M$					
	The quality of the three wavefor are different. DIFF wax SHAPE or different harmonics or overtones	rms			
	are different. DIFF wax SHAPE	(1/2			
	or different harmonics or overtones				
2. Name	the property of sound waves associated with each of the following:				
	a) An opera singer breaking a glass by singing.	(1)			
	Resonance				
	b) Hearing around corners.	(1)			
	W C T T W C T				

- Amplitudes must be similar or same
- 4. A speaker from a signal generator is attached to one end of a plastic tube that contains sawdust. Before the signal generator is switched on, the sawdust is distributed evenly over the length of the tube. When the signal generator is switched on, the frequency is adjusted, and resonance is heard. The sawdust gathered into three piles as shown in the diagram below.

- a) On the diagram above, draw the standing wave pattern in the tube at this frequency. (1)
- b) If the tube is 1.80 m long, what is the frequency of the signal generator? $f_{N} = \frac{NV}{4L} = \frac{5 \times 346}{4 \times 1.80} = \frac{1730}{7.2} = 240.28 \text{ Hz}$ = 240 Hz
- (2)c) What is the fundamental frequency of this tube? $f_1 = \frac{f_5}{5} = \frac{240.28}{5} = 48.056$

5. A water wave, shown in the diagram below, is travelling to the right. It has a speed of 10.0 ms⁻¹.

a) What is the amplitude of the wave? 2m (1)

b) What is the wavelength of the wave? 4 (1)

c) Calculate the frequency of the wave.

$$V = f\lambda$$

$$f = \frac{10.0}{\lambda}$$

$$= \frac{10.0}{4}$$

$$= 2.50 \text{ Hz}$$

d) Calculate the period of the wave.

(2)

 $T = \frac{1}{f} = \frac{1}{2.50} = 0.45$ (1s.f. ok)

e) Using an arrow on the diagram above, clearly show the direction of movement of the water's surface at the 2 m position. (1)

(See Above)

イマー

6. A sound wave passes through a thick brick wall as shown below.

 a) Complete the diagram showing the path of the sound through the 	
brick and out the other side. Show the wave fronts.	(4)
(-1 for each detail not shown)	
1	
Wave fronts	
DEAD COST STATE AIR BRICK AIR	
perpendicular AIR BRICK AIR	
to wave centre	
	-
line III	
	,
1. \ Back u	nto air
-Refraction	
towards	
- \ air 1 =	λ e in 7
	MIT
In brick	
- Refraction away from normal	
- Refraction away from normal - \(\) increases	
the state of the framework valuable and wavelength of the	ho

b) State what happens to the frequency, velocity and wavelength of the sound wave above by using the words *increases*, *decreases* or *remains the same* as the sound wave passes from air into the brick.

(3)

Frequency	Remains	the	same
Velocity	Increas	ils	
Wavelength _	Increas	ses	

4

7. A stationary car is observed at a set of traffic lights with its engine running. On the front of the car, the radio antenna is observed to be vibrating as shown in the diagram:

a) If the radio antenna is 1.25 m long, calculate the wavelength of the standing wave. (2

$$L = \frac{3\lambda}{4} \frac{1}{4}$$
.', $\lambda = \frac{4}{3} \times L = \frac{4 \times 1.25}{3} = 1.667 \text{ m} (3s.f.)$

b) The car's engine idles at 500 rpm. Assuming that the radio antenna experiences 500 vibrations per minute, calculate the speed of the wave in the antenna.

ave in the antenna.
$$f = \frac{500}{60}$$
 $= 8.33 \times 1.667$
 $= 8.33 \times 1.667$
 $= 13.9 \text{ ms}^{-1}$

c) Explain how you could adjust the antenna to stop the tip (end) from vibrating?

lower the antenna to $\frac{\lambda}{2} = \frac{1.67}{2} = 0.835 \text{m}$

- Extend or retract the antenna
- Place a mass at the top
- · CHANGE ENGINE RPM

6

8. A closed pipe is 50.0 cm long and is made to vibrate at its first overtone.

b) Calculate the frequency of the wave.

$$f_n = \frac{nV}{4L} = \frac{3 \times 346}{4 \times 0.50} = \frac{1038}{2} = \frac{519 \, \text{Hz}}{2}$$

(-1 if incorrect harmonic used)

Define resonance and state one example.

Definition: 05 cillation induced in a physical system when it is affected by another system that is itself oscillating at the right natural frequency, with an increase in amplitude Example:

Playing a wind or string musical instrument

Example:

Bridge Tacoma

breaking a glass (Any reasonable answer

(2)

(3)

a) Describe the relationship between sound intensity and distance.

Sound intensity is proportional to the inverse square of the distance. I

b) If your ear experiences 1.80×10^{-12} Wm⁻² of sound when you are 1.00 m from a sound source, what will be the theoretical new sound intensity experienced by your ear when you are standing 8.00 m from the same sound source?

$$\overline{I} = \frac{1.80 \times 10^{-12}}{8^2} = 2.81 \times 10^{-14} \text{ Wm}^{-2}$$

