1. Responda V o F

a.	Sea P un poset y m \in P. Si m es maximal entonces es máximo.
b.	Sea P un poset y m \in P. Si m es máximo entonces es maximal.
C.	$(\{1,2,3,9,18\},)$ es un subreticulado de $(D_{18},)$
d.	$D_{ m 35}$ es un algebra de Boole.
e.	Si Γ es consistente y $\Delta \subseteq \Gamma$ entonces Δ consistente.
f.	Si Γ es inconsistente y $\triangle \subseteq \Gamma$ entonces \triangle inconsistente.
g.	Si Γ es consistente maximal entonces es cerrado por derivaciones
h.	Para todo Γ consistente \exists uno y solo un consistente maximal que lo contiene
i.	Si $L_1 \in LR^{\Sigma}$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$, entonces $(L_1 \cup \{\alpha_1, \ldots, \alpha_k\}) \in LR^{\Sigma}$
j.	Si $L_1 \in LR^{\Sigma}$ y $L_2 \subseteq L_1$, entonces $L_2 \in LR^{\Sigma}$
k.	El lenguaje $\{a^ib^j:i,j\in N\}$ es regular
l.	El lenguaje $\{a^i b^j : i, j \in N \ y \ i \neq j\}$ es regular

- 2. Justificar los ítems 1a, 1h, 1k. (libres además 1e).
- 3. a. Determinar si es distributivo con Birkhoff:

b. Sea L un reticulado distributivo y sea a,b,c \in L. Pruebe que:

Sia
$$\Lambda$$
c= $b\Lambda$ c ya V c= bV c entonces a= b

- 4. a. Derivar $\vdash \neg(\varphi \ v \ \omega) \leftrightarrow \neg \varphi \ \land \neg \omega$
 - b. Sea $\Gamma\subseteq\mathsf{PROP}$. Mediante transformaciones de derivación pruebe que:

$$\Gamma \vdash \varphi \ si \ y \ solo \ si \ \Gamma \cup \{\neg \varphi\} \ es \ inconsistente$$

- 5. Considerando los autómatas con alfabeto $\Sigma = \{a,b\}$
 - a. Para M1 dar un AFD con el mismo lenguaje aceptado por medio de los algoritmos dados en la materia.

M1:

Estado inicial q0, estado final q1

	а	b	3
q0	q1, q2		
q1		q0	
q2		q2	q1

b. Para M2 dar una expresión regular para un lenguaje aceptado por medio del Teorema de Kleene

M2:

Estado inicial q0, estado final q0 y q2

	а	b		
q0	q1, q2			
q1	q1, q2	q0		
q2		g2		