An MCM Paper Made by Team 1234567

Summary

Here is the abstract of your paper.

Firstly, that is ...

Secondly, that is ...

Finally, that is ...

Contents

1	Introduction			
	1.1	Problem Background	2	
	1.2	Literature Review	2	
	1.3	Our work	2	
2	Prep	paration of the Models	2	
	2.1	Assumptions	2	
	2.2	Notations	2	
3	The Models			
	3.1	Model 1	3	
		3.1.1 Detail 1 about Model 1	3	
	3.2	Model 2	3	
4	Stre	ngths and Weaknesses	3	
	4.1	Strengths	3	
	4.2	Weaknesses	3	
M	Memorandum			
Re	eferen	ices	4	
Αı	nend	lix A: Further on IAT&X	5	

Team # 1234567 Page 2 of 5

1 Introduction

1.1 Problem Background

Here is the problem background ...

Two major problems are discussed in this paper, which are:

- Doing the first thing.
- Doing the second thing.

1.2 Literature Review

A literatrue[1] say something about this problem ...

1.3 Our work

We do such things ...

- **1.** We do ...
- **2.** We do ...
- **3.** We do ...

2 Preparation of the Models

2.1 Assumptions

2.2 Notations

The primary notations used in this paper are listed in Table 1.

Table 1: Notations

Symbol	Definition
A	the first one
b	the second one
α	the last one

Team # 1234567 Page 3 of 5

3 The Models

3.1 Model 1

3.1.1 Detail 1 about Model 1

The detail can be described by equation (1):

$$\frac{\partial u}{\partial t} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = f(x, y, z, t) \tag{1}$$

3.2 Model 2

The results are shown in Figure 1, where t denotes the time in seconds, and c refers to the concentration of water in the boiler.

Figure 1: The result of Model 2

4 Strengths and Weaknesses

4.1 Strengths

- First one...
- Second one ...

4.2 Weaknesses

• Only one ...

Team # 1234567 Page 4 of 5

Memorandum

To: Heishan Yan

From: Team XXXXXXX **Date:** October 1st, 2019

Subject: A better choice than MS Word: LATEX

In the memo, we want to introduce you an alternate typesetting program to the prevailing MS Word: LATEX. In fact, the history of LATEX is even longer than that of MS Word. In 1970s, the famous computer scientist Donald Knuth first came out with a typesetting program, which named TEX...

```
Firstly, ...
Secondly, ...
Lastly, ...
```

According to all those mentioned above, it is really worth to have a try on LATEX!

References

- [1] Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete?. *Physical review*, 47(10), 777.
- [2] A simple, easy ETEX template for MCM/ICM: EasyMCM. (2018). Retrieved December 1, 2019, from https://www.cnblogs.com/xjtu-blacksmith/p/easymcm.html

Team # 1234567 Page 5 of 5

Appendix A: Further on LATEX

To clarify the importance of using LATeX in MCM or ICM, several points need to be covered, which are \dots

To be more specific, ...

All in all, ...

Anyway, nobody really needs such appendix ...