Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 17

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

Mark:

$$\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
5 \\
-1 \\
-2
\end{bmatrix}, \begin{bmatrix}
2 \\
0 \\
-1
\end{bmatrix}, and \begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix} span $\mathbb{R}^3$$$

Solution:

$$RREF \left(\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

Determine if $\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x,y,z \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^4 .

Solution: It is closed under addition and scalar multiplication, so it is a subspace. Alternatively, it is the image of the linear transformation from $\mathbb{R}^3 \to \mathbb{R}^4$ given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix}.$$

Standard S2.

Mark: $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ is a basis of \mathbb{R}^3

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.