Signature and Name of Invigilator

1.	(Signature)	_ OMRS	hee	t N		·····					
					(To be	filled	d by t	he Ca	ındida	ate)
	(Name)	- Roll No	٠Г								
2	(Signature)	Kon ive	"L								
۷٠	(Signature)	_		(I	n fig	ures a	as per	adm	issior	card)
	(Nama)			`			•			,	,

PAPER - II Roll No. **COMPUTER SCIENCE AND**

(In words)

Number of Questions in this Booklet: 50

APPLICATIONS Time : $1\frac{1}{4}$ hours

[Maximum Marks: 100

Number of Pages in this Booklet: 12

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- 2. This paper consists of fifty multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.
 - **Example:** (1) (2) (4) where (3) is the correct response.
- Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- इस प्रश्न-पत्र में पचास बहविकल्पीय प्रश्न हैं।
- परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
 - प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : (1) (2) ■ (4) जबिक (3) सही उत्तर है।

- 5. Your responses to the items are to be indicated in the OMR | 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
 - 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
 - 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
 - यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
 - आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
 - 10. केवल नीले/काले बाल प्वाईंट पेन का ही प्रयोग करें।
 - 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
 - 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

COMPUTER SCIENCE AND APPLICATIONS PAPER - II

Note: This paper contains **fifty (50)** objective type questions of **two (2)** marks each. **All** questions are **compulsory**.

- 1. If the time is now 4 O'clock, what will be the time after 101 hours from now?
 - (1) 9 O'clock
- (2) 8 O'clock
- (3) 5 O'clock
- (4) 4 O'clock
- 2. Let $m = (313)_4$ and $n = (322)_4$. Find the base 4 expansion of m + n.
 - (1) $(635)_4$
- (2) $(32312)_4$
- (3) $(21323)_4$
- (4) $(1301)_4$
- 3. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$ Find the boolean product $A \odot B$ of the two matrices.
 - $(1) \quad \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$

720

(1)

(2) 120

- $(4) \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$

360

(4)

4. How many distinguishable permutations of the letters in the word BANANA are there?

(3)

5. Consider the graph given below:

Use Kruskal's algorithm to find a minimal spanning tree for the graph. The List of the edges of the tree in the order in which they are choosen is ?

- (1) AD, AE, AG, GC, GB, BF
- (2) GC, GB, BF, GA, AD, AE
- (3) GC, AD, GB, GA, BF, AE
- (4) AD, AG, GC, AE, GB, BF

2

6. The Boolean function with the Karnaugh map

\backslash AB				
CD	00	01	11	10
00	0	1	1	0
01	0	1	1	1
11	1	1	1	1
10	0	1	1	0

is:

(1)
$$(A+C).D+B$$

(2)
$$(A + B).C + D$$

(3)
$$(A + D).C + B$$

(4)
$$(A + C).B + D$$

7. The Octal equivalent of the binary number 1011101011 is:

8. Let P and Q be two propositions, \neg (P \leftrightarrow Q) is equivalent to :

(1)
$$P \leftrightarrow \neg Q$$

(2)
$$\neg P \leftrightarrow Q$$

(3)
$$\neg P \leftrightarrow \neg Q$$

$$(4)$$
 $Q \rightarrow P$

9. Negation of the proposition $\exists x H(x)$ is :

(1)
$$\exists x \neg H(x)$$

(2)
$$\forall x \neg H(x)$$

(3)
$$\forall x H(x)$$

(4)
$$\neg x H(x)$$

10. The output of the following combinational circuit is F.

The value of F is:

(1)
$$P_1 + P_2' P_3$$

(2)
$$P_1 + P_2' P_3'$$

(3)
$$P_1 + P_2 P_3'$$

$$(4) P_1' + P_2 P_3$$

N-08717

3

	(1)	*(ptrdata++)	(2)	(*ptrdata)++
	(3)	*(ptrdata)++	(4)	Depends on compiler
12.	The	associativity of which of the follow	ving o	perators is Left to Right, in C++ ?
	(1)	Unary Operator	(2)	Logical not
	(3)	Array element access	(4)	addressof
				11 (1)
13.	A m	ember function can always access	the d	ata in , (in C++).
	(1)	the class of which it is member	(2)	the object of which it is a member
	(3)	the public part of its class	(4)	the private part of its class
				100
14.	Whi	ch of the following is not correct for	or virt	ual function in C++?
	(1)	Must be declared in public section	n of cl	ass.
	(2)	Virtual function can be static.	- 1	
	(3)	Virtual function should be access	sed us	ing pointers.
	(4)	Virtual function is defined in bas	se class	5. /TT
		- 1	1	
15.	Whi	ch of the following is not correct (in C++	-) ?
	(1)	Class templates and function ten	nplates	s are instantiated in the same way.
	(2)	Class templates differ from funct	tion te	mplates in the way they are initiated.
	(3)	Class template is initiated by def	ining	an object using the template argument.
	(4)	Class templates are generally use	ed for	storage classes.
		W.		
16.	Whi	ch of the following is/are true wit		
((a)	1 -4		executed when certain event occurs.
,	(b)	d /	occur	s after executing a pre-compiled query.
	Cod			
	(1)	Only (a) is true	(2)	Only (b) is true
	(3)	Both (a) and (b) are true	(4)	Neither (a) nor (b) are true
17.	In S		unctio	
	(1)	SELECT (2) CREATE		(3) AVG (4) MODIFY
N-08	3717		4	Paper-II

11. 'ptrdata' is a pointer to a data type. The expression *ptrdata++ is evaluated as (in C++) :

	` /	, ,					` '	into	entity	or domai					
	(b)	Don	nain ii	ntegrit	ty		(ii)		s car			nich a	re usec	d by other	
	(c)	Refe	rentia	l integ	grity		(iii)	enfo	rces v	alid entri	es for a	colum	n		
	(d)	User	defin	ed int	egrity		(iv)	No o	luplic	ate rows i	n a tabl	e		14	
	Cod	e:											(631	
		(a)	(b)	(c)	(d)							-	100	3/1	
	(1)	(iii)	(iv)	(i)	(ii)							- 5	80	52	
	(2)	(iv)	(iii)	(ii)	(i)							1			
	(3)	(iv)	(ii)	(iii)	(i)							4	30		
	(4)	(ii)	(iii)	(iv)	(i)				3	3.6	6	6			
19.		DBMS lificati				s of re	lation	s are	create	ed using	- 9	tec	hnique	to prevent	
	(1)	Fund	ctiona	l Dep	ender	ncies		(2)	Data	a integrity					
	(3)	Refe	rentia	1 integ	grity			(4)	Nor	mal Forms	5				
								1		./					
20.			SQL	com	mand	chang	ges on	e or r	nore i	fields in a	record.				
	(1)	LOC	K-UI)	(2)	INSE	ERT	1	(3)	MODIF	Y	(4)	CHAN	IGE	
21.	fron		x 1 to	index	n of									s are stored ay (i<=n),	
	(1)		: ((i+	- 4	25	1		(2)	ceili	ng ((i+1)	/2)				
	(3)		(i/2)		61	6		(4)		ng (i/2)	,				
	(-)		(-/ -/	1	9	W		(-)							
22.										ty binary nary seard			the giv	ven order :	
((1)	3		1	(2)	4	Ü		(3)	5		(4)	6		
23.	with	G be a maxi ements	mum	weigl	ed con	nnecte 1 E _{min}	d graj the e	ph wi dge w	th dis vith m	stinct edge ninimum v	e weigh weight.	t. Let Whic	E _{max} b h of the	e the edge e following	
	(1)	Ever	y mir	imun	ı span	ning t	ree of	G m	ust co	ntain E _{mir}	ı ·				
	(2)	If E _n	nax is	in mir	nimun	n span	ning	tree, t	hen it	s removal	must d	isconr	ect G.		
	(3)	No 1	minim	ium sj	pannii	ng tree	cont	ains E	max.						
	(4)	G ha	as a ui	nique	minir	num s	panni	ng tre	e.						
NI O	0717							_						n 77	
N-08	8717							5						Paper-II	

Match the following with respect to RDBMS :

Entity integrity

(i)

enforces some specific business rule that do not fall $% \left(1\right) =\left(1\right) \left(1\right)$

18.

(a)

24.		st of n strings, e rithm. The wors						\sim	_	order 1	using merge - sort
	(1)	O(n log n)		O(n ² log n			-			(4)	$O(n^3)$
25.	3, 5,	order traversal o	20, 18,	15, 14			-			Ü	•
		ch one of the fol ree T ?	lowing	sequences	of key	s can	be the	res	sult of a	n in-o	rder traversal of
	(1)	3, 4, 5, 7, 9, 14	, 20, 18	3, 17, 16, 15							-02
	(2)	20, 18, 17, 16, 1	15, 14,	3, 4, 5, 7, 9						2	10 10
	(3)	20, 18, 17, 16, 1	15, 14,	9, 7, 5, 4, 3						(EV YE
	(4)	3, 4, 5, 7, 9, 14	, 15, 16	6, 17, 18, 20						4	10
26.		ch of the followi destination node					om one	ne	twork c	levice	and forwards it to
	(1)	Hub	(2)	Modem		(3)	Swite	ch	- 9	(4)	Gateway
27.		do not to	aka tha	in decisions	on m		namant		n octima	ton of	the current traffic
27.	and	topology.	ake tile	en decisions	OH H	ieasu.	rement	S U.	esuma	ites of	the current traffic
	(1)	Static algorithm	ns		(2)	Ada	ptive a	algo	orithms		
	(3)	Non - adaptive		ithms	(4)		- 4	_	orithms		
	. ,	-	Ü	4	4		- (
28.	The	number of bits ı	used fo	r addressin	g in G	igabi	t Ether	net	is		
	(1)	32 bits	(2)	48 bits		(3)	64 bi	ts		(4)	128 bits
29.	Whi	ch of the followi	ng lay	er of OSLRe	ferenc	re mo	del is a	aleo	called	end-to	-end laver ?
2).	(1)	Network layer				(3)	Sessi			(4)	Transport layer
	(1)	retwork layer		Dutainik 1	ayer	(0)	OCBBI	OII .	iuy Ci	(1)	Transport layer
30.	The	IP address	-3	is used by	hosts	when	they a	re '	being b	ooted.	
4	(1)	0.0.0.0	(2)	1.0.0.0		(3)	1.1.1	.1		(4)	255.255.255.255
1		1	1								
31.	Con	sider the followi	_	gram fragm	ent in	asse	mbly la	ang	uage :		
	6	mov ax,									
	P.,	mov cx, (JA h								
	dolo	•									
	- 1	dec ax loop dolc	00 n								
	Wha	it is the value of	-	l cy register	s after	the o	comple	tior	n of the	doloo	n ?
	(1)	ax = FFF5 h an		· ·	(2)		-		ad cx = 0		Ρ.
	(3)	ax = FFF7 h an			(4)				a cx =		
N-08	3717				6						Paper-II

32. Consider the following assembly program fragment :

stc

mov al, 11010110b

mov cl, 2

rcl al, 3

rol al, 4

shr al, cl

mul cl

The contents of the destination register ax (in hexadecimal) and the status of Carry Flag (CF) after the execution of above instructions, are :

(1)
$$ax = 003CH$$
; $CF = 0$

(2)
$$ax = 001EH$$
; $CF = 0$

(3)
$$ax = 007BH$$
; CF = 1

(4)
$$ax = 00B7H$$
; CF = 1

33. Which of the following regular expressions, each describing a language of binary numbers (MSB to LSB) that represents non-negative decimal values, does **not** include even values?

(1)
$$0^*1^+0^*1^*$$

(2)
$$0^*1^*0^+1^*$$

(3)
$$0^*1^*0^*1^{-1}$$

$$(4) \quad 0^+1^*0^*1^*$$

Where {+, *} are quantification characters.

- **34.** Which of the following statements is/are TRUE?
 - (a) The grammar $S \rightarrow SS \mid a$ is ambiguous. (Where S is the start symbol)
 - (b) The grammar S \rightarrow 0S1 | 01S | ϵ is ambiguous. (The special symbol ϵ represents the empty string) (Where S is the start symbol)
 - (c) The grammar (Where S is the start symbol)

$$S \rightarrow T/U$$

$$T \rightarrow x S y \mid xy \mid \epsilon$$

$$U \rightarrow yT$$

generates a language consisting of the string yxxyy.

- (1) Only (a) and (b) are TRUE.
- (2) Only (a) and (c) are TRUE.
- (3) Only (b) and (c) are TRUE.
- (4) All of (a), (b) and (c) are TRUE.

N-08717

7

	name			iption parts i		-	s of a c	lassic	optimizing	g comp	oiler in	List - I, v	vith the		
	List - I										List - II				
	(a)	A pa synta		a comj	piler t	hat is resp	onsible	for r	ecognizing	(i)	Opti	mizer			
	(b)	chara	acters	and p	roduo	hat takes a ces as outp ciated synt	out a st	ream	of words	(ii)	Sema	antic Analy	rsis		
	(c)	1177										1			
	(d)					er that trie		-		(iv)	Scan	ner			
	Code	:						1	47	9	10				
		(a)	(b)	(c)	(d)			P	1 /		ſ				
	(1)	(iii)	(iv)	(ii)	(i)		1		1/						
	(2)	(iv)	(iii)	(ii)	(i)		1		1./						
	(3)	(ii)	(iv)	(i)	(iii)				, mar.	6					
	(4)	(ii)	(iv)	(iii)	(i)	1	1		5						
36.	In Di	stribu	ited s	ystem,	, the c	apacity of	a syste	em to	adapt the	increas	ed ser	vice load i	s called		
	(1)	Tolei	rance	((2)	Scalabilit	y	(3)	Capabilit	y	(4)	Loading			
4			ervin	g the	reque	ests along	the wa	ay. V	Vhen the l	nead re	eaches	nd to other the other tests on the	end, it		
	(1)	LOO	K		(2)	SCAN		(3)	C - LOO	K	(4)	C - SCAN	I		
	75 KI	3, 60 K	(B, 27	5 KB a	nd 65	KB respec	ctively.	The f		be store	ed on a	es 150 KB, 2 a sequential be stored ?			
	(1)	F5, F	2, F1,	F3, F6	6, F4		(2)	F4, 1	F6, F3, F1,	F2, F5					
	(3)	F1, F	2, F3,	F4, F5	5, F6		(4)	F6, 1	F5, F4, F3,	F2, F1					
N-08	717						8					Pa	aper-II		

39.		ch module gives dular ?	s con	trol of the CP	U to th	e process selec	ted by	the short - term				
	(1)	Dispatcher	(2)	Interrupt	(3)	Schedular	(4)	Threading				
40.	Two	atomic operation	ns per	missible on Se	maphor	es are	and	. 14				
	(1)	wait, stop	(2)	wait, hold	(3)	hold, signal	(4)	wait, signal				
41.		vare does not we riorate as it evolve			onal sen	se of the term, l	out soft	ware does tend to				
	(1)	Software suffers	from	exposure to he	ostile en	vironments.	1	P.				
	(2)	Defects are more	e likel	y to arise after	softwar	e has been used	often.					
	(3)	Multiple change	requ	ests introduce	errors ir	component int	eraction	ns.				
	(4)	Software spare p	parts	become harder	to orde	W ,						
42.	Softv	vare re-engineerii	ng is	concerned with	ı :	MIS						
	(1)	Re-constructing program and mo					nachine	(low - level) code				
	(2)	Scrapping the so	ource	code of a softw	vare and	re-writing it er	tirely f	rom scratch.				
	(3)	Re-organising and modifying existing software systems to make them more maintainable.										
4	(4)	Translating sour	ce coc	le of an existing	g softwai	e to a new mach	ine (lov	v - level) language.				
43.	Whi	ch of the followi	na is	not a key ice	na etrae	sed by an agile	philos	sophy of software				
13.		neering?	11g 13	not a key 133	uc stres	sea by an agne	pilios	opily of software				
	(1)	The importance between team m		0		well as commur	nication	and collaboration				
	(2)	Recognition that	t char	ige represents	opportu	nity.						
	(3)	Emphasis on rap	oid de	livery of softw	are that	satisfies the cus	tomer.					
	(4)	Having a separa	te tes	ting phase afte	r a build	l phase.						
N-08	8717				9			Paper-II				
								- up 0. 11				

44.	Wha	at is the normal order of activities in which traditional software testing is organized?
	(a)	Integration Testing
	(b)	System Testing
	(c)	Unit Testing
	(d)	Validation Testing
	Cod	e:
	(1)	(c), (a), (b), (d)
	(2)	(c), (a), (d), (b)
	(3)	(d), (c), (b), (a)
	(4)	(b), (d), (a), (c)
45 .		ch of the following testing techniques ensures that the software product runs correctly the changes during maintenance?
	(1)	Path Testing (2) Integration Testing

(3) Piz Daint

Unit Testing

(3)

(4) Sequoia

Regression Testing

47. Which of the following statements about ERP system is **true**?

- (1) Most ERP software implementations fully achieve seamless integration.
- (2) ERP software packages are themselves combinations of seperate applications for manufacturing, materials, resource planning, general ledger, human resources, procurement and order entry.
- (3) Integration of ERP systems can be achieved in only one way.
- (4) An ERP package implemented uniformly throughout an enterprise is likely to contain very flexible connections to allow charges and software variations.

48. Which of the following is **not** a Clustering method?

(1) K - Mean method

(2) Self Organizing feature map method

(3) K - nearest neighbor method

(4) Agglomerative method

49. Which of the given wireless technologies used in IoT, consumes the least amount of power?

(1) Zigbee

(2) Bluetooth

(3) Wi-Fi

(4) GSM/CDMA

50. Which speed up could be achieved according to Amdahl's Law for infinite number of processes if 5% of a program is sequential and the remaining part is ideally parallel?

(1) Infinite

(2) 5

(3) 20

(4) 50

- 0 0 0

Space For Rough Work

N-08717 Paper-II