Sistemes Intel·ligents – Examen Final (Bloc 1), 8 gener 2019 Test B (2 punts) <u>puntuació</u>: max (0, (encerts – errors/3)/3)

Cognoms: Nom:
Grup: A B C D E F G

1) Considerant el següent arbre de cerca, quants nodes com a màxim s'emmagatzemen en memòria, aplicant un procediment de cerca en profunditat iterativa? (Assumiu que a igual profunditat es tria el node més a l'esquerra)

- A. 3
- B. 4
- C. 5
- D. 6
- 2) Donat l'arbre de la figura, on els nodes ombrejats són nodes objectiu, indica la resposta **CORRECTA**:

- A. L'aplicació d'una estratègia en amplària retorna la mateixa solució que una estratègia de profunditat a nivell màxim de profunditat m=2.
- B. L'aplicació d'una estratègia en amplària retorna la mateixa solució que una estratègia de profunditat a nivell màxim de profunditat m=3.
- C. L'aplicació d'una estratègia en amplària retorna la mateixa solució que cost uniforme.
- D. L'aplicació d'una estratègia per cost uniforme retorna la mateixa solució que aprofundiment iteratiu.

- 3) L'aplicació d'una heurística admissible, h1, a un problema retorna un node solució G1 i el nombre de nodes que expandeix és n1. L'aplicació d'una heurística admissible, h2, al mateix problema, on h2 domina a h1, retorna un node solució G2 i expandeix un nombre de nodes igual a n2. Indica la resposta CORRECTA:
 - A. Es compleix que n1 < n2
 - B. Es compleix h1(G1) < h2(G2)
 - C. Es compleix que g(G1) < g(G2)
 - D. Cap de les respostes anteriors és correcta.
- 4) Donat l'arbre de la següent figura, quants nodes es generarien (incloent el node inicial) si s'aplicara un algorisme A? (en cas d'igualtat de f(n), s'expandeix el node més a l'esquerra).

- A. 10
- B. 9
- C. 8
- D. 6

5) Donat l'espai de cerca d'un joc representat en la figura següent, assumint que s'aplica un procediment alfa-beta, indica el valor que hauria de prendre el node ombrejat perquè es produïsca el tall assenyalat en la branca R2:

- A. Un valor en $[1, +\infty]$
- B. Un valor en $[-\infty, 1]$
- C. El node ombrejat sol pot prendre el valor 1
- D. No es pot produir el tall de la figura.

6) Donat el següent arbre de joc i aplicant un procediment alfa-beta, quants nodes terminals no fa falta generar?

- A. 17
- B. 16
- C. 15
- D. 13

Sistemes Intel·ligents – Examen Final (Bloc 1), 8 gener 2019 Problema: 3 punts

En un aeroport es disposen de diversos trens d'equipatge per a portar les maletes des de la zona de facturació a l'avió assignat al vol de les maletes. Una maleta facturada porta l'etiqueta del vol corresponent. Inicialment els trens no estan assignats a cap vol. El vol assignat a un tren serà el vol de la primera maleta que es carregue al tren. Un tren només pot portar maletes per a un únic vol i cada vol només es pot assignar a un tren.

El patró per a representar la informació dinàmica d'un estat d'aquest problema és:

(aeroport [TREN num^s dest^s mal^m]^m) on

num ∈ INTEGER ;; és un número que identifica el tren

 $dest \in \{res, F1, F2, F3,...\}$;; és un símbol que representa el vol assignat al tren (inicialment quan el vol és desconegut, el símbol serà res)

 $mal \in \{M1, M2, M3,...\}$; és un símbol que representa l'identificador de la maleta (inicialment este camp està buit)

Una possible situació inicial del problema és la següent:

- Es tenen cinc maletes (M1, M2, M3, M4 i M5), les dues primeres estan facturades per al vol F14, la tercera per al vol F2 i les dues últimes per al vol F10
- Es disposa de tres trens per a recollida i repartiment d'equipatge i els trens estan buits

Es desitja resoldre aquest problema mitjançant un procés de cerca en un espai d'estats amb el disseny d'un SBR en CLIPS. Es demana:

- 1) (0.7 punts) Escriu la Base de Fets corresponent a la situació inicial que es mostra a dalt. Inclou els patrons addicionals que necessites per a representar la informació estàtica del problema, així com els fets associats a aquests patrons.
- 2) (1 punt) Escriu una regla per a carregar la primera maleta en un tren i assignar el vol de la maleta carregada a aquest tren.
- 3) (0.8 punts) Escriu una regla per a carregar una maleta a un tren quan el tren ja té assignat un vol. El vol de la maleta ha de ser el mateix que el del tren i la maleta no ha d'estar ja carregada al tren.
- 4) (0.5 punts) Suposem que el patró (vol vol^s) on vol^s ∈ {F1, F2, F3,...} és l'identificador d'un vol. Assumint un fet que representa un vol determinat, escriu una regla que mostre per pantalla totes les maletes carregades a el tren per a aquest vol. S'haurà de mostrar un únic missatge del tipus: "Les maletes X X X han sigut carregades al tren Y".

Examen Final de SIN: bloc 2 (5 punts) (tipus B) ETSINF, Universitat Politècnica de València, 8 de gener de 2019

		, eniversit				i, o de ge	nor ac 2	010		7
Cognoms:						Nom:				
Grup:	3A □ 3	3B □ 3C	\square 3D	\square 3E	\Box 3F	\square 3G	\Box 4 IA	1		
Qüestions	(2 pur	ats								
Marca cada qua	`	•	ó. Puntua	ació: max(0	, (encer	s - errors/	3) / 3).			
Siga un prob	lema de cla	assificació en d	ues classes	c = 1, 2, p	er a obje	ectes				
		ntació de 4 e olega les (vert					P(c)	' /	D()	()
	_	x; així com la	, -		_		-	c = 2	$\frac{P(\mathbf{x})}{1/3}$	$\frac{c(\mathbf{x})}{1}$
		x. Així mate				lasse	0/4	1/4	1/3 $1/4$	1
		${\mathbb E}$ per un cert tic donat, la p				en er	1 1	3/4	1/4	1
A) $4/4 \ge 8$	$\varepsilon > 3/4$.	, 1			(// /	\mathbf{x}_{2}	1/2	1/2	1/6	2
B) $3/4 \ge 8$										
C) $2/4 \ge 8$ D) $1/4 \ge 8$										
_	,								, ,	
		tat d'error del terior. Aquest					per al pro	blema c	ie class:	ificació
A) $4/4 \ge \varepsilon$	* > 3/4	sorror, riquest	error, que	donotom	, ,	,,,,				
B) $3/4 \ge \varepsilon$ C) $2/4 \ge \varepsilon$										
D) $1/4 \ge \varepsilon$										
funcions disc	eriminants $\mathbf{a}_1 = (-1)^n$	assificació en del qual són li $2,1,2,0)^t$ assignarà l'ob	neals amb $\mathbf{a}_2 = (0, 2, 1)$	vectors de $(2,0)^t$ a	$pesos (e)$ $_3 = (1, 1)$	n notació l $(1,1,0)^t$	nomogènia $\mathbf{a}_4 = (3, 0)$	a):	assifica	dor le
		cant l'algorism								
		lestió 3. Així n nament a proc							jüestió	3 és la
=		cap vector de		aar sapesei	n perten	., e110 & 1a e	10,550 9. 12	160,010.		
,		ots els vectors	=							
		s vectors de p								
D) Es mod	lificarà noi	més el vector o	de pesos a 3	3.						
		ficació de mos					de la figu	ra		_
de la dreta,	quina de le	s següents par	ticions rep	resenta con	rrectame	nt l'arbre?		($x_1 \leq$	3
4	•	4	4	1 1 1	•	4		(ra	$\frac{1}{\sqrt{1}}$	
3 +	• •	3	→ 3		•	3		$\frac{x_2}{x_2}$	≤ 1	
A) 2		3) 2	• • · · · · · · · · · · · · · · · · · ·		1	D) 2 + •		0	$x_1 \le$	1
0	x_1		x_1		x_1	0	x	1	\mathcal{I}	

6

En la figura de la dreta es mostra una partició de 6 punts bidimensionals en 2 clústers, \circ i \bullet , obtinguda mitjançant l'algorisme C-mitjanes (convencional o "popular"). Si transferim els punts $(1,2)^t$ i $(2,1)^t$ del clúster \circ al clúster \bullet , llavors:

- A) es produeix un increment de la SEC.
- B) es produeix un decrement de la SEC.
- C) no s'altera la SEC.
- D) es produeix una SEC igual a 0.

Problema (3 punts)

Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$; alfabet $\Sigma = \{a, b, c\}$; probabilitats inicials $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$
2	$\frac{1}{4}$ $\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

B	a	b	c
1	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
2	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{4}$

Siga x = "ac". Es demana:

- 1. (0,75 punts) Feu una traça de l'algorisme Forward per a trobar la probabilitat $P_M(x)$ que M genere x.
- 2. (0,75 punts) Realitzeu una traça de l'algorisme de Viterbi per a obtindre la seqüència d'estats més probable, $\tilde{q}_M(x)$, amb la qual M genera x.
- 3. (0,50 punts) Amb base en els resultats obtinguts en els apartats anteriors, podem afirmar que M genera x amb probabilitat $P_M(x)$, seguint la seqüència d'estats $\tilde{q}_M(x)$. Cert o fals? Raoneu breument la resposta.
- 4. (1 punt) A partir de les cadenes d'entrenament x i "cb", i sabent que $\tilde{q}_M(cb) = "21F$ ", re-estimeu els paràmetres de M mitjançant l'algorisme de re-estimació per Viterbi (fins a convergència).