Some Notes

Brandon Goodell, Rigo Salazar, Freeman Slaughter, Luke Szramowski

Cypher Stack

May 24, 2025

1 Introduction

Feldman's (n,t) Verifiable Secret Sharing Scheme			
Input: public G			
Dealer		Party P_i	
Sample $a_0, \ldots, a_t \stackrel{\$}{\leftarrow} \mathbb{F}_p^*$			
Form $f(x) = a_0 + a_1 x + \dots + a_t x^t$ for secret a_0			
Share commits $A_k = a_k G$ for $i = 0,, t$	$\xrightarrow{(A_0,,A_t)}$		
Share $s_i = f(i)$	$\xrightarrow{ s_i }$		
		P_i uses (A_0, \ldots, A_t) to verify s_i is valid	
		Set $V = s_i G$ and $V' = A_0 + i A_1 + \dots + i^t A_t$	
		Define $S = V' - V$. Normally, check that $S = 0$	
		Eagen/Bassa stuff: $\sum_{k=0}^{t} \frac{i^k}{x-\pi(A_k)} - \frac{s_i}{x-\pi(G)}$	

Table 1: Feldman's protocol, with the Sum of Points stuff.

Point is, we can cut down on P_i 's point computations from t + 1 to 0, permitting some error. The secret a_0 will eventually be recovered using Lagrange interpolation - can we also use divisor stuff for this??

An Actual Proof of Knowledge			
Public: $G, B_i = 2^i G$ for $i = 0, \dots, k$			
Private: s_i such that $a = s_0 + 2s_1 + \cdots + 2^k s_k$			
Prover		Verifier	
Sample $r \stackrel{\$}{\leftarrow} \mathbb{F}_p^*$			
Factor $r = r_0 + 2r_1 + \dots + 2^k r_k$			
Set $Q = rG$	$\overset{Q}{-\!\!\!-\!\!\!\!-\!\!\!\!-}$		
	$\leftarrow e$	Sample $e \stackrel{\$}{\leftarrow} \mathbb{F}_p^*$	
Form $c_i = s_i + er_i$ for $i = 0, \dots, k$	$\xrightarrow{c_0,\dots,c_k}$	P	
		Check $c_0B_0 + \cdots + c_kB_k \stackrel{?}{=} P + eQ$	
		Use divisor nonsense for <i>this</i> check!	

Table 2:

This protocol is complete due to the computation:

$$c_0 B_0 + \dots + c_k B_k$$
= $(s_0 + er_0)G + \dots + (s_k + er_k)(2^k G)$
= $(s_0 + \dots + 2^k s_k)G + e(r_0 + \dots + 2^k r_k)G$
= $P + eQ$