STM32—timer/counter

Where is stm32l476xx.h

Download the package and include the header files you want

I have attached the header files in e3 lab7 announce

How to use stm32l476xx.h's define

```
#include "stm321476xx.h"
#define SET_REG(REG,SELECT,VAL) {((REG)=((REG)&(~(SELECT))) | (VAL));};

//ex:
SET_REG(RCC->AHB2ENR,RCC_AHB2ENR_GPIOAEN,RCC_AHB2ENR_GPIOAEN)//enable GPIOA
SET_REG(RCC->AHB2ENR,RCC_AHB2ENR_GPIOAEN,0)//disable GPIOA
```

- 更改系統clock觀察led閃爍變化(1,6,10,16,40 MHz)
- Use PLLCLK with clock source(MSI) as system clock
- f(VCO clock) = f(PLL clock input) × (PLLN / PLLM)
- System clock=f(PLL_R) = f(VCO clock) / PLLR
- 即System clock=f(PLL clock input) × (PLLN / PLLM) / PLLR

- RCC_AHB2ENR
- RCC_CFGR
- RCC_CR
- RCC_PLLCFGR

To modify the PLL configuration, proceed as follows:

- Disable the PLL by setting PLLON to 0 in Clock control register (RCC_CR).
- Wait until PLLRDY is cleared. The PLL is now fully stopped.
- Change the desired parameter.
- Enable the PLL again by setting PLLON to 1.
- Enable the desired PLL outputs by configuring PLLPEN, PLLQEN, PLLREN in PLL configuration register (RCC_PLLCFGR).

- 設計一計時器利用7-SEG LED顯示,從0.00開始計時至大於等於TIME_SEC 時停止,請使用polling方式取得timer counter資訊
- RCC_APB1ENR1
- TIMX_
- 初始化時,設定count數,是否自動update等等
- polling時,檢查count數,是否已經有update event

- 利用timer的pwm功能驅動buzzer,並使用keypad控制buzzer產生不同頻率的聲音。(可使用TIM2)
- 連接buzzer的gpio pin需要在以下reg設定,才可將pwm訊號傳至該pin
- GPIOX_MODER 設為Alternate function mode
- GPIOX_AFRL or GPIOX_AFRH 設為 AF1(tim1/tim2)

- Set TIMX start=off
- Set TIMX enable
- Set TIMX prescaler , reload value, count_dir
- Set TIMX capture/compare enable
- Set TIMX capture/compare as output
- Set TIMX capture/compare as pwm mode
- Set TIMX capture/compare reg's count value
- Set TIMX re-initialize counter=on
- Set TIMX update interrupt enable
- Set TIMX start=on

System Clock—Clock tree

Four different clock sources can be used to drive the system clock (SYSCLK):

- HSI16 (high speed internal)16 MHz RC oscillator clock
- MSI (multispeed internal) RC oscillator clock
- HSE oscillator clock, from 4 to 48 MHz
- PLL clock

The MSI is used as system clock source after startup from Reset, configured at 4 MHz.

Figure 12. Clock tree

System Clock—Clock tree

RCC memory address

Table 1. STM32L4x6 memory map and peripheral register boundary addresses (continued)

Bus	Boundary address	Size (bytes)	Peripheral	Peripheral register map
	0x4002 4000 - 0x4002 43FF	1 KB	TSC	Section 23.6.11: TSC register map
	0x4002 3400 - 0x4002 3FFF	1 KB	Reserved	-
	0x4002 3000 - 0x4002 33FF	1 KB	CRC	Section 13.4.6: CRC register map
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved	-
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	FLASH registers	Section 3.7.17: FLASH register map
ANDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved	-
	0x4002 1000 - 0x4002 13FF	1 KB	RCC	Section 6.4.31: RCC register map
	0x4002 0800 - 0x4002 0FFF	2 KB	Reserved	-
	0x4002 0400 - 0x4002 07FF	1 KB	DMA2	Section 10.5.9: DMA register map
	0x4002 0000 - 0x4002 03FF	1 KB	DMA1	Section 10.5.9: DMA register map

RCC registers—CR

6.4.1 Clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 0063. HSEBYP is not affected by reset.

Access: no wait state, word, half-word and byte access

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	PLL SAI2 RDY	PLL SAI2 ON	PLL SAI1 RDY	PLL SAI1 ON	PLL RDY	PLLON	Res.	Res.	Res.	Res.	CSS ON	HSE BYP	HSE RDY	HSE ON
		r	rw	r	rw	r	rw					rs	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	HSI ASFS	HSI RDY	HSI KERON	HSION		MSIRAN	NGE[3:0]		MSI RGSEL	MSI PLLEN	MSI RDY	MSION
				rw	r	rw	rw	rw	rw	rw	rw	rs	rw	r	rw

- 1 \rightarrow Clock ON, 0 \rightarrow Clock OFF
- 1→Clock Ready, 0→Clock not ready

RCC_CR- MSI

Bit 0 MSION: MSI clock enable

This bit is set and cleared by software.

Cleared by hardware to stop the MSI oscillator when entering Stop, Standby or Shutdown mode.

Set by hardware to force the MSI oscillator ON when exiting Standby or Shutdown mode. Set by hardware to force the MSI oscillator ON when STOPWUCK=0 when exiting from Stop modes, or in case of a failure of the HSE oscillator

Set by hardware when used directly or indirectly as system clock.

0: MSI oscillator OFF

Bit 1 MSIRDY: MSI clock ready flag

This bit is set by hardware to indicate that the MSI oscillator is stable.

0: MSI oscillator not ready

1: MSI oscillator ready

Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles.

Bit 2 MSIPLLEN: MSI clock PLL enable

Set and cleared by software to enable/ disable the PLL part of the MSI clock source. MSIPLLEN must be enabled after LSE is enabled (LSEON enabled) and ready (LSERDY set by hardware). There is a hardware protection to avoid enabling MSIPLLEN if LSE is not ready.

This bit is cleared by hardware when LSE is disabled (LSEON = 0) or when the Clock Security System on LSE detects a LSE failure (refer to RCC_CSR register).

0: MSI PLL OFF

1: MSI PLL ON

Bit 3 MSIRGSEL: MSI clock range selection

Set by software to select the MSI clock range with MSIRANGE[3:0]. Write 0 has no effect. After a standby or a reset MSIRGSEL is at 0 and the MSI range value is provided by MSISRANGE in CSR register.

0: MSI Range is provided by MSISRANGE[3:0] in RCC_CSR register

1: MSI Range is provided by MSIRANGE[3:0] in the RCC_CR register

Bits 7:4 MSIRANGE[3:0]: MSI clock ranges

These bits are configured by software to choose the frequency range of MSI when MSIRGSEL is set.12 frequency ranges are available:

0000: range 0 around 100 kHz

0001: range 1 around 200 kHz

0010: range 2 around 400 kHz

0011: range 3 around 800 kHz

0100: range 4 around 1M Hz

0101: range 5 around 2 MHz

0110: range 6 around 4 MHz (reset value)

0111: range 7 around 8 MHz

1000: range 8 around 16 MHz

1001: range 9 around 24 MHz

1010: range 10 around 32 MHz

1011: range 11 around 48 MHz

others: not allowed (hardware write protection)

Note: Warning: MSIRANGE can be modified when MSI is OFF (MSION=0) or when MSI is ready (MSIRDY=1). MSIRANGE must NOT be modified when MSI is ON and NOT ready (MSION=1 and MSIRDY=0)

RCC CR-HSI

Bit 8 HSION: HSI16 clock enable

Set and cleared by software.

Cleared by hardware to stop the HSI16 oscillator when entering Stop, Standby or Shutdown mode.

Set by hardware to force the HSI16 oscillator ON when STOPWUCK=1 or HSIASFS = 1 when leaving Stop modes, or in case of failure of the HSE crystal oscillator.

This bit is set by hardware if the HSI16 is used directly or indirectly as system clock.

0: HSI16 oscillator OFF

1: HSI16 oscillator ON

Bit 9 **HSIKERON**: HSI16 always enable for peripheral kernels.

Set and cleared by software to force HSI16 ON even in Stop modes. The HSI16 can only feed USARTs and I²Cs peripherals configured with HSI16 as kernel clock. Keeping the HSI16 ON in Stop mode allows to avoid slowing down the communication speed because of the HSI16 startup time. This bit has no effect on HSION value.

0: No effect on HSI16 oscillator.

1: HSI16 oscillator is forced ON even in Stop mode.

Bit 10 HSIRDY: HSI16 clock ready flag

Set by hardware to indicate that HSI16 oscillator is stable. This bit is set only when HSI16 is enabled by software by setting HSION.

0: HSI16 oscillator not ready

1: HSI16 oscillator ready

Note: Once the HSION bit is cleared, HSIRDY goes low after 6 HSI16 clock cycles.

Bit 11 HSIASFS: HSI16 automatic start from Stop

Set and cleared by software. When the system wakeup clock is MSI, this bit is used to wakeup the HSI16 is parallel of the system wakeup.

- 0: HSI16 oscillator is not enabled by hardware when exiting Stop mode with MSI as wakeup clock.
- 1: HSI16 oscillator is enabled by hardware when exiting Stop mode with MSI as wakeup clock.

RCC_CR- HSE

Bit 16 **HSEON**: HSE clock enable

Set and cleared by software.

Cleared by hardware to stop the HSE oscillator when entering Stop, Standby or Shutdown mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.

0: HSE oscillator OFF 1: HSE oscillator ON

Bit 17 HSERDY: HSE clock ready flag

Set by hardware to indicate that the HSE oscillator is stable.

0: HSE oscillator not ready
1: HSE oscillator ready

Note: Once the HSEON bit is cleared, HSERDY goes low after 6 HSE clock cycles.

Bit 18 HSEBYP: HSE crystal oscillator bypass

Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit set, to be used by the device. The HSEBYP bit can be written only if the HSE oscillator is disabled.

0: HSE crystal oscillator not bypassed

1: HSE crystal oscillator bypassed with external clock

Bit 19 CSSON: Clock security system enable

Set by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if a HSE clock failure is detected. This bit is set only and is cleared by reset.

0: Clock security system OFF (clock detector OFF)

1: Clock security system ON (Clock detector ON if the HSE oscillator is stable, OFF if not).

RCC_CR-PLL

Bit 24 PLLON: Main PLL enable

Set and cleared by software to enable the main PLL.

Cleared by hardware when entering Stop, Standby or Shutdown mode. This bit cannot be reset if the PLL clock is used as the system clock.

0: PLL OFF

1: PLL ON

Bit 25 PLLRDY: Main PLL clock ready flag

Set by hardware to indicate that the main PLL is locked.

0: PLL unlocked

1: PLL locked

Bit 26 PLLSAI1ON: SAI1 PLL enable

Set and cleared by software to enable PLLSAI1.

Cleared by hardware when entering Stop, Standby or Shutdown mode.

0: PLLSAI1 OFF

1: PLLSAI1 ON

Bit 27 PLLSAI1RDY: SAI1 PLL clock ready flag

Set by hardware to indicate that the PLLSAI1 is locked.

0: PLLSAI1 unlocked

1: PLLSAI1 locked

Bit 28 PLLSAI2ON: SAI2 PLL enable

Set and cleared by software to enable PLLSAI2.

Cleared by hardware when entering Stop, Standby or Shutdown mod

0: PLLSAI2 OFF

1: PLLSAI2 ON

Bit 29 PLLSAI2RDY: SAI2 PLL clock ready flag

Set by hardware to indicate that the PLLSAI2 is locked.

0: PLLSAI2 unlocked

1: PLLSAI2 locked

RCC registers—CFGR

6.4.3 Clock configuration register (RCC_CFGR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: $0 \le \text{wait state} \le 2$, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

From 0 to 15 wait states inserted if the access occurs when the APB or AHB prescalers values update is on going.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	M	COPRE[2	:0]	Res.	M	MCOSEL[2:0]		Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
	rw	rw	rw		rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STOP WUCK	Res.	PPRE2[2:0]			F	PPRE1[2:0	0]		HPRE	[3:0]		SWS	6[1:0]	SW	[1:0]
rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	r	rw	rw

RCC_CFGR

RCC CFGR

Bits 1:0 SW[1:0]: System clock switch

Set and cleared by software to select system clock source (SYSCLK).

Configured by HW to force MSI oscillator selection when exiting Standby or Shutdown mode. Configured by HW to force MSI or HSI16 oscillator selection when exiting Stop mode or in case of failure of the HSE oscillator, depending on STOPWUCK value.

00: MSI selected as system clock

01: HSI16 selected as system clock

10: HSE selected as system clock

11: PLL selected as system clock

Bits 3:2 SWS[1:0]: System clock switch status

Set and cleared by hardware to indicate which clock source is used as system clock.

00: MSI oscillator used as system clock

01: HSI16 oscillator used as system clock

10: HSE used as system clock

11: PLL used as system clock

Bits 7:4 HPRE[3:0]: AHB prescaler

Set and cleared by software to control the division factor of the AHB clock.

Caution:

Depending on the device voltage range, the software has to set correctly these bits to ensure that the system frequency does not exceed the maximum allowed frequency (for more details please refer to Section 5.1.7: Dynamic voltage scaling management). After a write operation to these bits and before decreasing the voltage range, this register must be read to be sure that the new value has been taken into account.

0xxx: SYSCLK not divided

1000: SYSCLK divided by 2

1001: SYSCLK divided by 4

1010: SYSCLK divided by 8

1011: SYSCLK divided by 16

1100: SYSCLK divided by 64

1101: SYSCLK divided by 128

1110: SYSCLK divided by 256

1111: SYSCLK divided by 512

Bits 10:8 PPRE1[2:0]:APB low-speed prescaler (APB1)

Set and cleared by software to control the division factor of the APB1 clock (PCLK1).

0xx: HCLK not divided

100: HCLK divided by 2

101: HCLK divided by 4

110: HCLK divided by 8

111: HCLK divided by 16

Bits 13:11 PPRE2[2:0]: APB high-speed prescaler (APB2)

Set and cleared by software to control the division factor of the APB2 clock (PCLK2).

0xx: HCLK not divided

100: HCLK divided by 2

101: HCLK divided by 4

110: HCLK divided by 8

111: HCLK divided by 16

Bit 15 **STOPWUCK:** Wakeup from Stop and CSS backup clock selection

Set and cleared by software to select the system clock used when exiting Stop mode.

The selected clock is also used as emergency clock for the Clock Security System on HSE. Warning: STOPWUCK must not be modified when the Clock Security System is enabled by HSECSSON in RCC_CR register and the system clock is HSE (SWS="10") or a switch on HSE is requested (SW="10").

0: MSI oscillator selected as wakeup from stop clock and CSS backup clock.

1: HSI16 oscillator selected as wakeup from stop clock and CSS backup clock

Bits 26:24 MCOSEL[2:0]: Microcontroller clock output

Set and cleared by software.

000: MCO output disabled, no clock on MCO

001: SYSCLK system clock selected

010: MSI clock selected.

011: HSI16 clock selected.

100: HSE clock selected

101: Main PLL clock selected

110: LSI clock selected

111: LSE clock selected

Note: This clock output may have some truncated cycles at startup or during MCO clock source switching.

Bits 30:28 MCOPRE[2:0]: Microcontroller clock output prescaler

These bits are set and cleared by software.

It is highly recommended to change this prescaler before MCO output is enabled.

000: MCO is divided by 1

001: MCO is divided by 2

010: MCO is divided by 4

011: MCO is divided by 8 100: MCO is divided by 16

Others: not allowed

6.4.4 PLL configuration register (RCC_PLLCFGR)

Address offset: 0x0C

Reset value: 0x0000 1000

Access: no wait state, word, half-word and byte access

This register is used to configure the PLL clock outputs according to the formulas:

- f(VCO clock) = f(PLL clock input) × (PLLN / PLLM)
- f(PLL_P) = f(VCO clock) / PLLP
- f(PLL Q) = f(VCO clock) / PLLQ
- f(PLL_R) = f(VCO clock) / PLLR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	PLLI	₹[1:0]	PLL REN	Res.	PLLC	Q[1:0]	PLL QEN	Res.	Res.	PLLP	PLL PEN
					rw	rw	ΓW		rw	rw	rw			rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	PLLN[7:0]							Res.		PLLM[2:0	1	Res.	Res.	PLLSF	RC[1:0]
	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw			rw	rw

Bits 31:27 Reserved, must be kept at reset value.

Bits 26:25 PLLR[1:0]: Main PLL division factor for PLLCLK (system clock)

Set and cleared by software to control the frequency of the main PLL output clock PLLCLK. This output can be selected as system clock. These bits can be written only if PLL is disabled.

PLLCLK output clock frequency = VCO frequency / PLLR with PLLR = 2, 4, 6, or 8

00: PLLR = 2

01: PLLR = 4

10: PLLR = 6

11: PLLR = 8

Caution: The software has to set these bits correctly not to exceed 80 MHz on this domain.

Bit 24 PLLREN: Main PLL PLLCLK output enable

Set and reset by software to enable the PLLCLK output of the main PLL (used as system clock).

This bit cannot be written when PLLCLK output of the PLL is used as System Clock. In order to save power, when the PLLCLK output of the PLL is not used, the value of PLLREN should be 0.

0: PLLCLK output disable

1: PLLCLK output enable

Bit 23 Reserved, must be kept at reset value.

Bits 22:21 PLLQ[1:0]: Main PLL division factor for PLL48M1CLK (48 MHz clock).

Set and cleared by software to control the frequency of the main PLL output clock PLL48M1CLK. This output can be selected for USB, RNG, SDMMC (48 MHz clock). These bits can be written only if PLL is disabled.

PLL48M1CLK output clock frequency = VCO frequency / PLLQ with PLLQ = 2, 4, 6, or 8

00: PLLQ = 2

01: PLLQ = 4

10: PLLQ = 6

11: PLLQ = 8

Caution: The software has to set these bits correctly not to exceed 80 MHz on

this domain.

Bit 20 PLLQEN: Main PLL PLL48M1CLK output enable

Set and reset by software to enable the PLL48M1CLK output of the main PLL.

In order to save power, when the PLL48M1CLK output of the PLL is not used, the value of PLLQEN should be 0.

0: PLL48M1CLK output disable

1: PLL48M1CLK output enable

Bits 19:18 Reserved, must be kept at reset value.

Bit 17 PLLP: Main PLL division factor for PLLSAI3CLK (SAI1 and SAI2 clock).

Set and cleared by software to control the frequency of the main PLL output clock PLLSAI3CLK. This output can be selected for SAI1 or SAI2. These bits can be written only if PLL is disabled.

PLLSAI3CLK output clock frequency = VCO frequency / PLLP with PLLP =7, or 17

0: PLLP = 7

1: PLLP = 17

Caution: The software has to set these bits correctly not to exceed 80 MHz on

this domain.

Bit 16 PLLPEN: Main PLL PLLSAI3CLK output enable

Set and reset by software to enable the PLLSAI3CLK output of the main PLL.

In order to save power, when the PLLSAI3CLK output of the PLL is not used, the value of PLLPEN should be 0.

0: PLLSAI3CLK output disable

1: PLLSAI3CLK output enable

Bit 15 Reserved, must be kept at reset value.

6.4.17 AHB2 peripheral clock enable register (RCC_AHB2ENR)

Address offset: 0x4C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registers read or write access is not

supported.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	RNG EN	Res.	AESEN
													rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 Res.	14 Res.	13 ADCEN	OTGES	11 Res.	10 Res.	9 Res.	8 Res.	7 GPIOH EN	6 GPIOG EN		4 GPIOE EN	3 GPIOD EN	2 GPIOC EN	1 GPIOB EN	0 GPIOA EN

- Bits 31:19 Reserved, must be kept at reset value.
 - Bit 18 RNGEN: Random Number Generator clock enable Set and cleared by software.
 - 0: Random Number Generator clock disabled
 - 1: Random Number Generator clock enabled
 - Bit 17 Reserved, must be kept at reset value.
 - Bit 16 AESEN: AES accelerator clock enable

Set and cleared by software.

0: AES clock disabled

1: AES clock enabled

- Bits 15:14 Reserved, must be kept at reset value.
 - Bit 13 ADCEN: ADC clock enable

Set and cleared by software.

0: ADC clock disabled

1: ADC clock enabled

Bit 12 OTGFSEN: OTG full speed clock enable

Set and cleared by software.

0: USB OTG full speed clock disabled

1: USB OTG full speed clock enabled

- Bits 11:8 Reserved, must be kept at reset value.
 - Bit 7 GPIOHEN: IO port H clock enable

Set and cleared by software.

0: IO port H clock disabled

1: IO port H clock enabled

Bit 6 **GPIOGEN:** IO port G clock enable Set and cleared by software.

0: IO port G clock disabled

1: IO port G clock enabled

Bit 5 GPIOFEN: IO port F clock enable

Set and cleared by software.

0: IO port F clock disabled

1: IO port F clock enabled

Bit 4 GPIOEEN: IO port E clock enable

Set and cleared by software.

0: IO port E clock disabled

1: IO port E clock enabled

Bit 3 GPIODEN: IO port D clock enable

Set and cleared by software.

0: IO port D clock disabled

1: IO port D clock enabled

Timer

- The timer clock frequencies are automatically defined by hardware. There are two cases:
- 1. If the APB prescaler equals 1, the timer clock frequencies are set to the same frequency as that of the APB domain.
- 2. Otherwise, they are set to twice $(\times 2)$ the frequency of the APB domain

RCC_APB1ENR1

Enable timer

6.4.19 APB1 peripheral clock enable register 1 (RCC_APB1ENR1)

Address: 0x58

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registers read or write access is not

supported.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LPTIM1 EN	OPAMP EN	DAC1 EN	PWR EN	Res.	Res.	CAN1 EN	Res.	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART2 EN	Res.
rw	rw	rw	rw			rw		rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Res.	Res.	WWD GEN	Res.	LCD EN	Res.	Res.	Res.	TIM7 EN	TIM6EN	TIM5EN	TIM4EN	TIM3EN	TIM2 EN
	LIV			02											

Bit 5 **TIM7EN:** TIM7 timer clock enable Set and cleared by software.

0: TIM7 clock disabled

1: TIM7 clock enabled

Bit 4 **TIM6EN:** TIM6 timer clock enable Set and cleared by software.

0: TIM6 clock disabled

1: TIM6 clock enabled

Bit 3 **TIM5EN:** TIM5 timer clock enable Set and cleared by software.

0: TIM5 clock disabled

1: TIM5 clock enabled

Bit 2 **TIM4EN:** TIM4 timer clock enable Set and cleared by software.

0: TIM4 clock disabled

1: TIM4 clock enabled

Bit 1 **TIM3EN:** TIM3 timer clock enable Set and cleared by software.

0: TIM3 clock disabled

1: TIM3 clock enabled

Bit 0 **TIM2EN:** TIM2 timer clock enable Set and cleared by software.

0: TIM2 clock disabled

1: TIM2 clock enabled

RCC APB2ENR

6.4.21 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x60

Reset value: 0x0000 0000

Access: word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registers read or write access is not

supported.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	DFSDM 1 EN	Res.	SAI2 EN	SAI1 EN	Res.	Res.	TIM 17EN	TIM16 EN	TIM15 EN
							rw		rw	rw			rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	USART 1 EN	ı	SPI1 EN		10 SDMMC 1 EN		Res.	7 FW EN	Res.	Res.	Res.	Res.	Res.	Res.	SYS CFGEN

Bit 22 **SAI2EN:** SAI2 clock enable

0: SAI2 clock disabled

1: SAI2 clock enabled

Bit 21 SAI1EN: SAI1 clock enable

Set and cleared by software.

Set and cleared by software.

0: SAI1 clock disabled

1: SAI1 clock enabled

Bit 18 TIM17EN: TIM17 timer clock enable

Set and cleared by software.

0: TIM17 timer clock disabled

1: TIM17 timer clock enabled

Bit 17 TIM16EN: TIM16 timer clock enable

Set and cleared by software.

0: TIM16 timer clock disabled

1: TIM16 timer clock enabled

Bit 16 **TIM15EN:** TIM15 timer clock enable

Set and cleared by software.

0: TIM15 timer clock disabled

1: TIM15 timer clock enabled

Bit 13 TIM8EN: TIM8 timer clock enable

Set and cleared by software.

0: TIM8 timer clock disabled

1: TIM8 timer clock enabled

Bit 11 TIM1EN: TIM1 timer clock enable

Set and cleared by software.

0: TIM1 timer clock disabled

1: TIM1P timer clock enabled

Timer memory map address

Bus	Boundary address	Size (bytes)	Peripheral	Peripheral register map
	0x4001 6400 - 0x4001 FFFF	39 KB	Reserved	-
	0x4001 6000 - 0x4000 63FF	1 KB	DFSDM1	Section 21.8: DFSDM register map
	0x4001 5C00 - 0x4000 5FFF	1 KB	Reserved	-
APB2	0x4001 5800 - 0x4001 5BFF	1 KB	SAI2	Section 39.5.10: SAI register map
	0x4001 5400 - 0x4001 57FF	1 KB	SAI1	Section 39.5.10: SAI register map
	0x4001 4C00 - 0x4000 53FF	2 KB	Reserved	-
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17	Section 28.6.20: TIM16/TIM17 register map
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16	Section 28.6.20: TIM16/TIM17 register map
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15	Section 28.6.20: TIM16/TIM17 register map
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved	-
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1	Section 36.8.12: USART register map
	0x4001 3400 - 0x4001 37FF	1 KB	TIM8	Section 26.4.31: TIM8 register map
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1	Section 38.6.8: SPI register map
APB2	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	Section 26.4.30: TIM1 register map
APBZ	0x4001 2800 - 0x4001 2BFF	1 KB	SDMMC1	Section 41.8.16: SDMMC register map

Timer memory map address

Bus	Boundary address	Size (bytes)	Peripheral	Peripheral register map
	0x4000 9800 - 0x4000 FFFF	26 KB	Reserved	-
	0x4000 9400 - 0x4000 97FF	1 KB	LPTIM2	Section 30.7.11: LPTIM register map
	0x4000 8C00 - 0x4000 93FF	2 KB	Reserved	-
	0x4000 8800 - 0x4000 8BFF	1 KB	SWPMI1	Section 40.6.10: SWPMI register map and reset value table
	0x4000 8400 - 0x4000 87FF	1 KB	Reserved	-
	0x4000 8000 - 0x4000 83FF	1 KB	LPUART1	Section 37.7.10: LPUART register map
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1	Section 30.7.11: LPTIM register map
ADD4	0x4000 7800 - 0x4000 7BFF	1 KB	ОРАМР	Section 20.5.7: OPAMP register map
APB1				Onetice 47 E 04: DAO manietes

• • •

0x4000 1800 - 0x4000 2400	3 KB	Reserved	-
0x4000 1400 - 0x4000 17FF	1 KB	TIM7	Section 29.4.9: TIM6/TIM7 register map
0x4000 1000 - 0x4000 13FF	1 KB	TIM6	Section 29.4.9: TIM6/TIM7 register map
0x4000 0C00- 0x4000 0FFF	1 KB	TIM5	Section 27.4.23: TIMx register map
0x4000 0800 - 0x4000 0BFF	1 KB	TIM4	Section 27.4.23: TIMx register map
0x4000 0400 - 0x4000 07FF	1 KB	TIM3	Section 27.4.23: TIMx register map
0x4000 0000 - 0x4000 03FF	1 KB	TIM2	Section 27.4.23: TIMx register map

TIMx_CR1

27.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	UIF RE- MAP	Res.	CKD	[1:0]	ARPE	CI	MS	DIR	ОРМ	URS	UDIS	CEN
				rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 0 **CEN**: Counter enable

0: Counter disabled

1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller.

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled.

These events can be:

- Counter overflow/underflow
- Setting the UG bit
- Update generation through the slave mode controller
- 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 3 **OPM**: One pulse mode

- 0: Counter is not stopped at update event
- 1: Counter stops counting at the next update event (clearing the bit CEN)

Bit 4 DIR: Direction

- 0: Counter used as upcounter
- 1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.

TIMx_CR1

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).

01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down.

10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up.

11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1)

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered

1: TIMx_ARR register is buffered

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (t_{DTS})used by the dead-time generators and the digital filters (ETR, Tlx),

00: t_{DTS}=t_{CK_INT}

01: t_{DTS}=2*t_{CK_INT}

10: t_{DTS}=4*t_{CK INT}

11: Reserved, do not program this value

Bit 11 **UIFREMAP**: UIF status bit remapping

0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.

1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.

TIMx_PSC

27.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PSC[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to f_{CK} PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode").

TIMx_ARR

27.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ARR[31:16] (depending on timers)														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ARR[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 ARR[31:16]: High auto-reload value (on TIM2 and TIM5)

Bits 15:0 ARR[15:0]: Low Auto-reload Prescaler value

ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 27.3.1: Time-base unit on page 861 for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

TIMx_CNT

27.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNT[31] or UIFCPY	CNT[30:16] (depending on timers)														
rw or r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 31 Value depends on IUFREMAP in TIMx_CR1.

If UIFREMAP = 0

CNT[31]: Most significant bit of counter value (on TIM2 and TIM5)

Reserved on other timers

If UIFREMAP = 1

UIFCPY: UIF Copy

This bit is a read-only copy of the UIF bit of the TIMx_ISR register

Bits 30:16 CNT[30:16]: Most significant part counter value (on TIM2 and TIM5)

Bits 15:0 CNT[15:0]: Least significant part of counter value

TIMx_EGR—UG

27.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	TG	Res.	CC4G	CC3G	CC2G	CC1G	UG								
									W		w	w	w	w	w

Bit 0 **UG**: Update generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action

1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting).

Basic timers –TIM6/TIM7

- 16-bit auto-reload upcounter
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535
- Synchronization circuit to trigger the DAC
- Interrupt/DMA generation on the update event: counter overflow

Figure 330. Basic timer block diagram

General-purpose timers—TIM2/TIM3/TIM4/TIM5

- 16-bit (TIM3, TIM4) or 32-bit (TIM2 and TIM5) up, down, up/down auto-reload counter.
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535.
- Up to 4 independent channels for:
 - Input capture, Output compare, PWM generation(Edge- and Center-aligned modes), One-pulse mode output
- Synchronization circuit to control the timer with external signals and to interconnect several timers
- Interrupt/DMA generation on the following events:
 - Update: counter overflow/underflow, counter initialization (by software orinternal/external trigger)
 - Trigger event (counter start, stop, initialization or count by internal/external trigger)
 - Input capture
 - Output compare
- Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes
- Trigger input for external clock or cycle-by-cycle current management

Figure 249. General-purpose timer block diagram

General-purpose timers—TIM15

- 16-bit auto-reload upcounter
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535
- Up to 2 independent channels for:
 - Input capture, Output compare, PWM generation (edge mode), One-pulse mode output
- Complementary outputs with programmable dead-time (for channel 1 only)
- Synchronization circuit to control the timer with external signals and to interconnect several timers together
- Repetition counter to update the timer registers only after a given number of cycles of the counter
- Break input to put the timer's output signals in the reset state or a known state
- Interrupt/DMA generation on the following events:
 - Update: counter overflow, counter initialization (by software or internal/external trigger)
 - Trigger event (counter start, stop, initialization or count by internal/external trigger)
 - Input capture
 - Output compare
 - Break input (interrupt request)

Figure 298. TIM15 block diagram

General-purpose timers—TIM16/TIM17

- 16-bit auto-reload upcounter
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock
- frequency by any factor between 1 and 65535
- One channel for:
 - Input capture, Output compare, PWM generation (edge-aligned mode), One-pulse mode output
- Complementary outputs with programmable dead-time
- Repetition counter to update the timer registers only after a given number of cycles of the counter
- Break input to put the timer's output signals in the reset state or a known state
- Interrupt/DMA generation on the following events:
 - Update: counter overflow
 - Trigger event (counter start, stop, initialization or count by internal/external trigger)
 - Input capture
 - Output compare
 - Break input

Figure 299. TIM16/TIM17 block diagram

Advanced-control timers—TIM1/TIM8

- 16-bit up, down, up/down auto-reload counter.
- 16-bit programmable prescaler allowing dividing (also "on the fly") the counter clock frequency either by any factor between 1 and 65536.
- Up to 6 independent channels for:
 - Input Capture (but channels 5 and 6), Output Compare, PWM generation (Edge and Center-aligned Mode), One-pulse mode output
- Complementary outputs with programmable dead-time
- Synchronization circuit to control the timer with external signals and to interconnect several timers together.
- Repetition counter to update the timer registers only after a given number of cycles of the counter.
- 2 break inputs to put the timer's output signals in a safe user selectable configuration.
- Interrupt/DMA generation on the following events:
 - Update: counter overflow/underflow, counter initialization (by software or internal/external trigger)
 - Trigger event (counter start, stop, initialization or count by internal/external trigger)
 - Input capture
 - Output compare
- Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes
- Trigger input for external clock or cycle-by-cycle current management

Figure 188. Advanced-control timer block diagram

Low-power timer

- 16 bit upcounter
- 3-bit prescaler with 8 possible dividing factor (1,2,4,8,16,32,64,128)
- Selectable clock
 - Internal clock sources: LSE, LSI, HSI16 or APB clock
 - External clock source over ULPTIM input (working with no LP oscillator running, used by Pulse Counter application)
- 16 bit ARR autoreload register
- 16 bit compare register
- Continuous/one shot mode
- Selectable software/hardware input trigger
- Programmable Digital Glitch filter
- Configurable output: Pulse, PWM
- Configurable I/O polarity
- Encoder mode

Low-power timer

• The LPTIM is a 16-bit timer that benefits from the ultimate developments in power consumption reduction. Thanks to its diversity of clock sources, the LPTIM is able to keep running in all power modes except for Standby mode. Given its capability to run even with no internal clock source, the LPTIM can be used as a "Pulse Counter" which can be useful in some applications. Also, the LPTIM capability to wake up the system from low-power modes, makes it suitable to realize "Timeout functions" with extremely low power consumption.

Flash Read Access Latency

To correctly read data from Flash memory, the number of wait states (LATENCY) must be correctly programmed in the *Flash access control register (FLASH_ACR)* according to the frequency of the CPU clock (HCLK) and the internal voltage range of the device V_{CORE}. Refer to *Section 5.1.7: Dynamic voltage scaling management. Table 8* shows the correspondence between wait states and CPU clock frequency.

Table 8. Number of wait states according to CPU clock (HCLK) frequency

Wait states (WS)	HCLK (MHz)						
(LATENCY)	V _{CORE} Range 1	V _{CORE} Range 2					
0 WS (1 CPU cycles)	≤ 16	≤ 6					
1 WS (2 CPU cycles)	≤ 32	≤ 12					
2 WS (3 CPU cycles)	≤ 48	≤ 18					
3 WS (4 CPU cycles)	≤ 64	≤ 26					
4 WS (5 CPU cycles)	≤ 80	≤ 26					

After reset, the CPU clock frequency is 4 MHz and 0 wait state (WS) is configured in the FLASH_ACR register.

Flash Read Access Latency

When changing the CPU frequency, the following software sequences must be applied in order to tune the number of wait states needed to access the Flash memory

Increasing the CPU frequency:

- Program the new number of wait states to the LATENCY bits in the Flash access control register (FLASH_ACR).
- Check that the new number of wait states is taken into account to access the Flash memory by reading the FLASH_ACR register.
- Modify the CPU clock source by writing the SW bits in the RCC_CFGR register.
- 4. If needed, modify the CPU clock prescaler by writing the HPRE bits in RCC_CFGR.
- Check that the new CPU clock source or/and the new CPU clock prescaler value is/are taken into account by reading the clock source status (SWS bits) or/and the AHB prescaler value (HPRE bits), respectively, in the RCC_CFGR register.

Decreasing the CPU frequency:

- Modify the CPU clock source by writing the SW bits in the RCC_CFGR register.
- If needed, modify the CPU clock prescaler by writing the HPRE bits in RCC_CFGR.
- Check that the new CPU clock source or/and the new CPU clock prescaler value is/are taken into account by reading the clock source status (SWS bits) or/and the AHB prescaler value (HPRE bits), respectively, in the RCC_CFGR register.
- Program the new number of wait states to the LATENCY bits in Flash access control register (FLASH_ACR).
- Check that the new number of wait states is used to access the Flash memory by reading the FLASH_ACR register.

FLASH ACR

3.7.1 Flash access control register (FLASH_ACR)

Address offset: 0x00

Reset value: 0x0000 0600

Access: no wait state, word, half-word and byte access

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	SLEEP _PD	RUN_ PD	DCRST	ICRST	DCEN	ICEN	PRFTEN	Res.	Res.	Res.	Res.	Res.	LATENCY[2:0]		
	rw	rw	rw	rw	rw	rw	rw						rw	rw	rw

Bits 2:0 LATENCY[2:0]: Latency

These bits represent the ratio of the SYSCLK (system clock) period to the Flash access time.

000: Zero wait state 001: One wait state 010: Two wait sates 011: Three wait sates

100: Four wait sates

others: reserved

Reference

http://www.st.com/resource/en/reference_manual/dm00083560.pdf