Subspaces of \mathbb{R}^n

Definition 1. Let $A \in M_{m \times n}$.

- (1) The null space of A is the subspace $\text{Null}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$
- (2) The column space of A is the subspace $Col(A) = Span(\mathbf{c}_1(A), \mathbf{c}_2(A), ..., \mathbf{c}_n(A)) \le \mathbb{R}^m$.
- (3) The row space of A is the subspace $\text{Row}(A) = \text{Span}(\mathbf{r}_1(A), \mathbf{r}_2(A), ..., \mathbf{r}_m(A)) \le \mathbb{R}^n$.
- (4) The left null space of A is the subspace $\text{Null}(A^{T}) = \{\mathbf{x} \in \mathbb{R}^{m} : \mathbf{x}^{T}A = \mathbf{0}^{T}\}.$

Fact 2. Let $E \in \mathcal{M}_m$ be a product of elementary matrices and let $\mathbf{b} \in \mathbb{R}^m$. If

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \text{ then } E\mathbf{b} = \begin{pmatrix} c_{11}b_1 + c_{12}b_2 + \dots + c_{1m}b_m \\ c_{21}b_1 + c_{22}b_2 + \dots + c_{2m}b_m \\ \vdots \\ c_{m1}b_1 + c_{m2}b_2 + \dots + c_{mm}b_m \end{pmatrix} \text{ for some } c_{ij} \in \mathbb{R}.$$

Sketch of Proof. We have

$$E_{r \to r + cs} \mathbf{b} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_r + cy_s \\ \vdots \\ y_m \end{pmatrix} \text{ and } E_{r \to cr} \mathbf{b} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ cy_r \\ \vdots \\ y_m \end{pmatrix}.$$

Products of such matrices gives the desired form.

Definition 3. Let $A \in \mathcal{M}_{m \times n}$ with rank(A) = r and let $A\mathbf{x} = \mathbf{b}$ be a system of linear equations. Suppose that E is a product of elementary matrices such that rref(A) = EA and write

$$\begin{bmatrix} 1 & & & \alpha_{1,r+1} & \alpha_{1,r+2} & \cdots & \alpha_{1n} \\ & 1 & & \alpha_{2,r+1} & \alpha_{2,r+2} & \cdots & \alpha_{2n} \\ & & \ddots & & \vdots & & & \\ & & 1 & \alpha_{r,r+1} & \alpha_{r,r+2} & & \alpha_{rn} \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_r \\ x_{r+1} \\ x_{r+2} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_{11}b_1 + c_{12}b_2 + \dots + c_{1m}b_m \\ c_{21}b_1 + c_{22}b_2 + \dots + c_{2m}b_m \\ \vdots \\ c_{r1}b_1 + c_{r2}b_2 + \dots + c_{rm}b_m \\ c_{r+1,1}b_1 + c_{r+1,2}b_2 + \dots + c_{r+1,m}b_m \\ \vdots \\ c_{m1}b_1 + c_{m2}b_2 + \dots + c_{mm}b_m \end{pmatrix}.$$

$$(R)$$

The equations

$$c_{r+1,1}b_1 + c_{r+1,2}b_2 + \dots + c_{r+1,m}b_m = 0$$

$$\vdots$$

$$c_{m1}b_1 + c_{m2}b_2 + \dots + c_{mm}b_m = 0$$
(S)

are called the *constraint* equations. We set

$$\mathbf{v}_{1} = (c_{r+1,1}, c_{r+1,2}, ..., c_{r+1,m})$$

$$\vdots$$

$$\mathbf{v}_{m-r} = (c_{m1}, c_{m2}, ..., c_{mm})$$

Theorem 4. Let $A \in \mathcal{M}_{m \times n}$ with rank(A) = r. The following statements are equivalent for $b \in \mathbb{R}^m$.

- (1) $A\mathbf{x} = \mathbf{b}$ is consistent (i.e. at least one solution).
- (2) $\mathbf{b} \in \operatorname{Col}(A) = \operatorname{Span}(\mathbf{c}_1(A), \mathbf{c}_2(A), ..., \mathbf{c}_n(A)).$
- (3) $\mathbf{v}_i \cdot \mathbf{b} = 0$ for each $i \leq m r$.

Theorem 5. If $A \in \mathcal{M}_{m \times n}$, then $\text{Null}(A) = \text{Row}(A)^{\perp}$.

Proof. (\subseteq) Choose any $\mathbf{x} \in \text{Null}(A)$ so that $A\mathbf{x} = \mathbf{0}$. Since $A\mathbf{x}$ is an $m \times 1$ matrix, we can write all of its entries as $\text{ent}_{i1}(A\mathbf{x}) = \mathbf{r}_i(A) \cdot \mathbf{c}_1(\mathbf{x}) = 0$. But \mathbf{x} is a single column vector and so $\mathbf{c}_1(\mathbf{x}) = \mathbf{x}$. It follows that $\mathbf{r}_i(A) \cdot \mathbf{x} = 0$ for each $i \leq m$. Since $\text{Row}(A) = \text{Span}(\mathbf{r}_1(A), \mathbf{r}_2(A), ..., \mathbf{r}_m(A))$, it must be the case that $\mathbf{x} \cdot \mathbf{v} = 0$ for all $\mathbf{v} \in \text{Row}(A)$. In other words, $\mathbf{x} \in \text{Row}(A)^{\perp}$.

(⊇) Reverse the above argument.

Definition 6. Two subspaces $V, W \leq \mathbb{R}^n$ are called orthogonal subspaces if $\mathbf{v} \cdot \mathbf{w} = 0$ for all $\mathbf{v} \in V$ and $\mathbf{w} \in W$.

Lemma 7. Let $V, W \leq \mathbb{R}^n$.

- (1) If V, W are orthogonal, then $V \subseteq W^{\perp}$ and $W \subseteq V^{\perp}$.
- (2) If $V = W^{\perp}$ then V, W are orthogonal.
- (3) If $V \subseteq W$, then $W^{\perp} \subseteq V^{\perp}$.

Proof.

- (1) Choose any $\mathbf{v} \in V$. Since V, W are orthogonal, $\mathbf{v} \cdot \mathbf{w} = 0$ for all $\mathbf{w} \in W$. It follows from the definition of orthogonal complement that $\mathbf{v} \in W^{\perp}$. A symmetric argument shows that $W \subseteq V^{\perp}$.
- (2) Choose any $\mathbf{v} \in V$ and $\mathbf{w} \in W$. Since $V = W^{\perp}$, we have $\mathbf{v} \in W^{\perp}$. It follows from the definition of orthogonal complement that $\mathbf{v} \cdot \mathbf{w} = 0$.
- (3) Choose any $\mathbf{x} \in W^{\perp}$. Then $\mathbf{x} \cdot \mathbf{w} = 0$ for all $\mathbf{w} \in W$. Since $V \subseteq W$, it is certainly true that $\mathbf{x} \cdot \mathbf{v} = 0$ for all $\mathbf{v} \in V$. Therefore,

Theorem 8. If $A \in \mathcal{M}_{m \times n}$, then $\operatorname{Col}(A) = \operatorname{Null}(A^{\mathrm{T}})^{\perp}$.

Proof. Setting $A = A^{T}$ in Theorem 4, we have that $\text{Null}(A^{T}) = \text{Row}(A^{T})^{\perp}$. One easily checks that $\text{Row}(A^{T}) = \text{Col}(A)$ and so $\text{Null}(A^{T}) = \text{Col}(A)^{\perp}$.

- (⊆) By Lemma 7(2), Null(A^{T}) and Col(A) are orthogonal. By Lemma 7(3), we have that Col(A) ⊆ Null(A^{T}) $^{\perp}$.
- (\supseteq) Bring A to rref in (R) and set $V = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{m-r})$ as in Theorem 4. Since $\mathbf{x} \in \operatorname{Col}(A)$ if and only if $\mathbf{v}_i \cdot \mathbf{x} = 0$ for each $i \leq m-r$ it follows that $\operatorname{Col}(A) = V^{\perp}$. Hence, $\operatorname{Col}(A)$ and V are orthogonal and Lemma 7 gives

$$V \subseteq \operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^{\mathrm{T}})$$

 $\Longrightarrow \operatorname{Null}(A^{\mathrm{T}})^{\perp} \subseteq V^{\perp} \text{ (Lemma 7(3))}$
 $\Longrightarrow \operatorname{Null}(A^{\mathrm{T}})^{\perp} \subseteq \operatorname{Col}(A)$

Example 9. We compute Null(A), Col(A), Row(A), $Null(A^T)$ of

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{array} \right].$$

We have

$$rref(A) = \left[egin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}
ight].$$

We can see immediately that

$$Null(A) = \{\mathbf{0}\}\$$

and so

$$\operatorname{Row}(A) = \operatorname{Null}(A)^{\perp} = \{\mathbf{0}\}^{\perp} = \mathbb{R}^2.$$

Now consider the transpose

$$A^{\mathrm{T}} = \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 2 \end{array} \right]$$

and

$$rref(A^{\mathrm{T}}) = \left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \end{array} \right].$$

To find $Null(A^T)$ we solve the corresponding system

$$x + z + w = 0$$
$$y - z = 0$$

and find that

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -z - w \\ z \\ z \\ w \end{pmatrix} = z \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

That is,

$$\operatorname{Null}(A^{\operatorname{T}}) = \operatorname{Span}\left(\left(egin{array}{c} -1 \ 1 \ 1 \ 0 \end{array}
ight), \left(egin{array}{c} -1 \ 0 \ 0 \ 1 \end{array}
ight)
ight).$$

Incidently, we can see from $Null(A^T)$ that the constraint equations are

$$-b_1 + b_2 + b_3 = 0$$

$$-b_1 + b_4 = 0.$$

Using the fact that $Col(A) = Null(A^T)^{\perp}$, we are led to solving

$$\left[\begin{array}{cccc} -1 & 0 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{array} \right] \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \\ b_4 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right).$$

As usual, we find rref:

$$\left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & -1 \end{array}\right] \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \\ b_4 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

and so

$$\operatorname{Col}(A) = \operatorname{Span}\left(\left(\begin{array}{c} 1\\1\\0\\1 \end{array}\right), \left(\begin{array}{c} 0\\-1\\1\\0 \end{array}\right)\right)$$

Exercises Section 3.2: Due 10/19/2015

- 1. Read and Understand Example 3 of this section.
- 2. Find Null(A), Row(A), $Null(A^T)$, Col(A) for the matrices in 2(a), 3(c), 4.
- 3. Do Exercises 6-8 (Computational)
- 4. Do Exercise 2.5.15 (The section on Transpose)
- 5. Do Exercise 10-13 (Proofs).