E&U

Perko: Differential Equations and Dynamical Systems

(Springer): a reference

Notation

For a vector $x \in \mathbb{R}^n$ (typically for us n=1 or 2), let $|x| = \sqrt{x_1^2 + ... + x_n^2}$, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

be its Euclidean length.

Let DCR be an open set,

e.g. take D=R"

ball of radius r>0 around x.ER"

[Technically DSR" is open if for every point in D, there is r>0 such that $B_r(x) \leq D$.]

interior is an open set; the boundary is excluded

Why care? $f(x) = \lim_{x \to h} \frac{f(x+h) - f(x)}{h}$

outside o

D= domain of f $\frac{1}{x}$ has domain $(-\infty, 0) \cup (0, \infty)$

Notation

i)
$$C(D) = C(D, \mathbb{R}^n)$$

 $= \{f : D \to \mathbb{R}^n \mid f \text{ is continuous}\}$
ii) $C'(D) = \{f : D \to \mathbb{R}^n \mid f \text{ is differentiable}\}$
and $\frac{\partial f}{\partial x_i}$ are all continuous}

Rmk. if all 2^{nd} derivatives exist, then $f \in C'$.

iii) $C^k(D) = \{f : D \to \mathbb{R}^n \mid f \text{ is } k\text{-times differentiable} \}$ and k^{th} derivative is continuous

Lipschitz Functions

Def. A continuous $f: D \to \mathbb{R}^n$ is Lipschitz if there is L>0 such that $|f(x_i) - f(x_i)| \le L|x_i - x_i|$ for all x_i , $x_i \in D$. L is called Lipschitz constant.

Prop. Let I SR be an open interval, I=(c,d).

Suppose [a,b] SI.

Suppo

If fec'(I), then f is Lipschitz on [a, b].

= L.

More generally, if $f \in C^1(D)$, then f is Lipschitz on every closed ball $\overline{B_r(x_0)} = \{x \in \mathbb{R}^n \mid |x_0 - x| \le r\} \le D$

Ex. i) The function $f(x) = x^2$ is Lipschitz on every interval [a, b] (since f(x) = 2x is continuous \Rightarrow proposition applies) but NOT Lipschitz on $R: \frac{|f(x_i)-f(x_2)|}{|x_i-x_2|} = \frac{|x_i^2-x_2^2|}{|x_i-x_2|} = \frac{|x_i-x_2||x_i-x_2|}{|x_i-x_2|} = \frac{|x_i-x_2||x_i-x_2|}{|x_i-x_2|} = \frac{|x_i-x_2||x_i-x_2|}{|x_i-x_2|} = \frac{|x_i-x_2||x_i-x_2|}{|x_i-x_2|}$

 $\rightarrow \infty$ if e.g. x=0, $x\to\infty$

ii) The function $f(x) = \sqrt{x}$ is NOT Lipschitz on [0, 1] because $\frac{\sqrt{x_1 - \sqrt{x_2}}}{|x_1 - x_2|} = \frac{(\sqrt{x_1} - \sqrt{x_2})(\sqrt{x_1} + \sqrt{x_2})}{|x_1 - x_2|(\sqrt{x_1} + \sqrt{x_2})}$ $= \frac{|x_1 - x_2|}{|x_1 - x_2|(\sqrt{x_1} + \sqrt{x_2})}$ if $x_1, x_2 \to 0$

So there is no constant L>0 such that $\frac{\sqrt{x_1-\sqrt{x_2}}}{|x_1-x_2|} \le L$, and f is not Lipschitz on [0,1] note: $f(x) = \frac{1}{2\sqrt{x}} \to \infty$ as $x \to 0$.

Higher-order ODEs as 1st order systems

Ex. Consider

(1)
$$\begin{cases} y'' + ay' + by = g(x) \\ y(0) = y_0, y'(0) = y'_0 \end{cases}$$

This is a second order ODE because y" is the highest derivative.

Then
$$\begin{cases} y_1' = y_2 \\ y_2' = y'' = g(x) - ay' - by \\ = g(x) - ay_2 - by, \\ y_1(0) = y_0, y_2(0) = y_0' \end{cases}$$
is a 1st order ODE system

is a 1st order ODE system equivalent to (1).

Note that the vector $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ satisfies $\frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = f(x_1, y_1, y_2) = \left(g(x_1 - ay_1 - by_2)\right)$

A similar trick (introducing a new variable for every derivative) works for any nth order ODE, thus it satisfies to study 1st order systems. y'= f(x, y)