Zadanie 3. Kosmos liczb (13 pkt)

Po dotarciu w okolice gwiazdy Proxtar, ludzie zasiedlili 9 krażących wokół niej planet i nazwali je odpowiednio Prox₂, Prox₃, ..., Prox₁₀. Do zapisu liczb na planecie Prox_p jej mieszkańcy używają systemu liczbowego o podstawie p.

Na przykład, rok narodzin Anny Kowalskiej na planecie Prox₁₀ zapisuje się jako 1988, zaś po zakodowaniu w systemie planety Prox₄ zapisuje się go jako 133010.

- a) W układzie Proxtar mieszka dwójka przyjaciółek:
 - Elżbieta mieszkanka Prox₄, jej rok urodzenia zapisany w systemie tej planety to 132313,
 - Joanna mieszkanka Prox₂, urodzona w roku 11110111000 (zapis w systemie dwójkowym).

Elżbieta i Joanna podróżują pomiędzy poszczególnymi planetami, dlatego chcieliby znać rok swojego urodzenia wyrażony w systemach stosowanych na tych planetach. Aby im pomóc, uzupełnij poniższa tabelkę:

Osoba	Rok narodzin zapisany w systemie planety			
	Prox ₂	Prox ₄	Prox ₁₀	
Elżbieta	11110110111(2)	132313	19 76 (10)	
Joanna	11110111000	132320	1976	

b) Stare ziemiańskie nawyki utrudniają też dodawanie. Aby dodać liczby a i b zapisane w systemie planety Prox_p, Ziemianie zamieniają a i b na system dziesiętny, wyliczają ich sume c, a potem zamieniają c na system o podstawie p. Tymczasem można to zrobić bez 1014+511+116414+ zamiany liczb na system dziesiętny. Np. w systemie o podstawie 4:

Podaj algorytm w postaci listy kroków, schematu blokowego lub w języku programowania, który dla dwóch liczb a i b zapisanych w systemie o podstawie p, $2 \le p \le 9$, wyznacza i wypisuje wartość sumy $a +_p b$ zapisaną w systemie o podstawie p. Twój algorytm nie może dokonywać zamiany liczb a i b na inny system liczbowy.

Specyfikacja

Dane:

p – podstawa systemu liczbowego, $2 \le p \le 9$,

n – liczba cyfr w zapisie każdej z liczb naturalnych a, b, $1 \le n \le 200$,

 a_1, \dots, a_n - kolejne cyfry liczby a w zapisie w systemie o podstawie p, a_n jest cyfrą jedności,

 $b_1, ..., b_n$ – kolejne cyfry liczby b w zapisie w systemie o podstawie p, b_n jest cyfra jedności.

Uwaga: jeśli do zapisu liczby wystarczy mniej niż n cyfr, to jej zapis jest uzupełniony od lewej strony zerami do długości n.

Wynik:

liczba $c = a +_p b$ zapisana systemie o podstawie p w postaci ciągu cyfr c_0, \dots, c_n c_n jest cyfrą jedności.

1024+ 7 (8,128+48+ +447= 1916

52+16+8

Przykład

Dla liczb a = 20012 i b = 1221 w systemie trójkowym mamy:

Dane: p = 3, n = 5

ciag $a_1, ..., a_5$ to 2,0,0,1,2

ciąg $b_1,...,b_5$ to 0,1,2,2,1

Wynik: ciag c_0, \dots, c_5 to 0,2,2,0,1,0.

ì 100 102

11 22

c) Liczba cyfr potrzebna do zapisania tej samej liczby w systemach różnych planet może być inna. O liczbie a mówimy, że jest liczbą n-cyfrową w jakimś systemie, gdy można ją zapisać przy użyciu n cyfr w tym systemie, ale n-1 cyfr to za mało.

Przykład

Do zapisania liczby 17_{10} potrzebujemy 5 cyfr, gdy chcemy zapisać ją w systemie dwójkowym (17_{10} = 10001_2) oraz 3 cyfry do zapisania jej w systemie trójkowym (17_{10} = 122_3). A zatem jest ona liczbą 5-cyfrową w systemie dwójkowym i 3-cyfrową w systemie trójkowym.

Uwaga: dolny indeks przy zapisie liczby oznacza podstawę systemu, w którym ta liczba jest zapisana.

(i) Uzupełnij poniższą tabelkę, wpisując w ostatnich dwu kolumnach liczby **zapisane** w systemie o podstawie p:

n: liczba cyfr	<i>p</i> : podstawa systemu	najmniejsza liczba <i>n</i> -cyfrowa w systemie o podstawie <i>p</i>	największa liczba <i>n</i> -cyfrowa w systemie o podstawie <i>p</i>
4	2	1000	1111
6	2	10000	111111
2	5	40 10	44
3	7	100	84 666
4	8	1420 1000	7777

Zauważmy, że:

- liczby 10_p , 100_p , 1000_p , 10000_p itd. są równe odpowiednio p, p^2 , p^3 , p^4 , itd.
- największa liczba n-cyfrowa w dowolnym systemie jest o jeden mniejsza od najmniejszej liczby (n+1)-cyfrowej w tym systemie; na przykład $777_8 = 1000_8 1_8$
- (ii) Korzystając z tych obserwacji i powyższej tabelki, uzupełnij poniższą tabelkę, ale w ostatnich dwu kolumnach wpisz wartości liczb **zapisane w systemie dziesiętnym**:

n: liczba cyfr	<i>p</i> : podstawa systemu	najmniejsza liczba <i>n</i> -cyfrowa w systemie o podstawie <i>p</i>	największa liczba <i>n</i> -cyfrowa w systemie o podstawie <i>p</i>
4	2	8	15
6	2	37	6}
1	3	72 1	2
2	5	5	24
3	7	49	, n
4	8	512	4095

Punktacja

Część zadania	Maks.
a	2
b	7
С	4
Razem	13