Why MicroPython

Marco Zennaro, PhD ICTP

Python's growth

Programming languages

Python has brought computer programming to a vast new audience

And its inventor has just stepped down

Python's growth

Python's growth

Python's ecosystem

MicroPython

MicroPython is a **lean and fast** implementation of the Python 3 programming language that is optimised to run on a microcontroller. MicroPython was successfully funded via a Kickstarter campaign and the software is now available to the public under the MIT open source license.

MicroPython

It ensures that the memory size/microcontroller performance is **optimised** and fit for purpose for the application it serves. Many **sensor** reading and reporting applications do not require a PC based processor as this would make the total application over priced and underefficient.

15 min exercise

What other microcontrollers do you know?

What operating system do they use?

What is the cost?

MicroPython options

The MicroPython **pyboard** is a compact electronic circuit board that runs MicroPython on the bare metal, giving you a low-level Python operating system that can be used to control all kinds of electronic projects.

MicroPython is packed full of advanced features such as an interactive prompt, arbitrary precision integers, closures, list comprehension, generators, exception handling and more. Yet it is compact enough to fit and run within just 256k of code space and 16k of RAM.

MicroPython aims to be as compatible with normal Python as possible to allow you to transfer code with ease from the desktop to a microcontroller or embedded system.

MicroPython pyboard feature table

BOARD description SKU	The original pyboard v1.1 PYBv1.1	Pyboard lite v1.0 with accelerometer PYBLITEv1.0-AC	Pyboard lite v1.0 PYBLITEv1.0
PRICE GBP incl. tax approx EUR incl. tax approx USD excl. tax	£28.00 €39.20 \$35.00	£22.60 €31.60 \$28.25	£19.60 €27.40 \$24.50
MICROCONTROLLER			
MCU	STM32F405RGT6	STM32F411RET6	STM32F411RET6
CPU	Cortex-M4F	Cortex-M4F	Cortex-M4F
internal flash	1024k	512k	512k
RAM	192k	128k	128k
maximum frequency	168MHz	96MHz	96MHz
hardware floating point	single precision	single precision	single precision

BOARD FEATURES

micro USB connector	yes	yes	yes
micro SD card slot	yes	yes	yes
accelerometer (MMA7660)	yes	yes	no
real time clock	32kHz crystal	internal oscillator; pads to	internal oscillator; pads to

solder 32kHz crystal solder 32kHz crystal switches USR+RST USR+RST **USR+RST**

R+G+Y+B R+G+Y+B R+G+Y+B hobby servo ports 4 DFU mode for firmware yes ves yes

upgrade

leds

POWER SUPPLY

supply options	USB/V+/VBAT	USB/V+/VBAT	USB/V+/VBAT
input range on V+/VBAT	3.6v-16v	3.6v-16v	3.6v-16v
max output of regulated 3.3v	250mA	250mA	250mA
place for JST connector	yes	yes	yes
backup battery input (VBACK)	yes	yes	yes

POW	/ER	COL	VSL	JM	PTI	ON
		\sim	100	<i>-</i> 171		

running at 168MHz	56mA	-	-
running at 96MHz	37mA	23mA	23mA
running at 48MHz	21mA	13mA	13mA
idling at 168MHz	16mA	-	-
idling at 96MHz	12mA	5mA	5mA
idling at 48MHz	7mA	4mA	4mA
sleep (full RAM retention)	360uA	180uA	180uA
deepsleep (backup retention	6uA	6uA	6uA
only)			

IO CAPABILITIES

IO pins	30	30	30
pins with PWM	20	18	18
pins with A/D	16 (4 shielded)	16 (4 shielded)	16 (4 shielded)
pins with D/A	2	0	0

(AMPv1.0)

PERIPHERALS			
independent timers	13	7	7
hardware random number	yes	no	no
generator			
UART	5	3	3
I2C	2	2	2
SPI	2	2	2
CAN	2	0	0
MICROPYTHON CAPABILITIES internal flash fs approx heap size	112k (94k usable) 100k	64k (46k usable) 83k	64k (46k usable) 83k
ADD-ONS LCD+touch skin compatible (LCD32MKv1.0)	yes	yes	yes
Audio skin compatible	yes	no	no

ESP8266: low cost

ESP8266: characteristics

802.11 b/g/n, built-in TCP / IP protocol stack 802.11b mode + 19.5dBm output power

Built-in PLL, voltage regulator and power management components Built-in temperature sensor Off leakage current is less than 10uA Standby power consumption of less than 1.0mW

Built-in low-power 32-bit CPU: can double as an application processor SDIO 2.0, SPI, UART

ESP32

BBC Micro:bit

(CTP)

BBC Micro:bit

The Micro Bit is an **ARM-based** embedded system designed by the BBC for use in computer education in the UK.

The board has an ARM Cortex-Mo processor, accelerometer and magnetometer sensors, Bluetooth and USB connectivity, a display consisting of 25 LEDs, two programmable buttons, and can be powered by either USB or an external battery pack. The device inputs and outputs are through five ring connectors that are part of the 23-pin edge connector.

Trinket

Feather 32u4 RFM95

Grand Central M4 Express

M5stack

Pycom: LoPy4

Pycom: LoPy4

Espressif ESP32 chipset

Quadruple network MicroPython enabled development board (LoRa, Sigfox, WiFi,

Bluetooth)

RAM: 4MB

External flash: 8MB

Pycom: Expansion Board

Pycom: PySense

Pycom: PySense

Ambient light sensor

Barometric pressure sensor

Humidity sensor

3 axis 12-bit accelerometer

Temperature sensor

USB port with serial access

LiPo battery charger

MicroSD card compatibility

Ultra low power operation (1uA in deep sleep)

Pycom: PyTrack

Pycom: PyTrack

GNSS + Glonass GPS

3 axis 12-bit accelerometer

USB port with serial access

LiPo battery charger

MicroSD and compatibility

Ultra low power operation (1uA in deep sleep)

Summary

We introduced MicroPython.

We learned why it's the best ©

We looked at different boards that support MicroPython.

We learned about Pycom boards.

Feedback?

Email mzennaro@ictp.it