Applications of base editing and prime editing

Matt Coelho

Cancer Research UK Career Development Fellow Wellcome Sanger Institute

The variant to function problem

- Genome sequencing is uncovering DNA variants implicated in human disease at an increasing rate
- Linking DNA variants to their function is a major challenge, both clinically and for our foundational understanding of genetic disease
- This is particularly problematic for missense and non-coding variants

Fowler et al, Genome Biology, 2023 – Atlas of Variant Effects Alliance

Functional genomics approach

Build a map of variant effect in cancer to help translate genomics data into better treatments for patients

gene editing:

- scalable
- rapid
- functional
- sensitive
- mechanistic insight

Functional interrogation of DNA variants at scale

Cooper, Obolenski, Waters, Bassett* & Coelho*, Cell Reports Methods, 2024

Base editing

Base Editing (Cytosine; CBE)

Rees and Liu, Nature Reviews Genetic (2018)

Base editing

Base Editing (Adenine; ABE)

Rees and Liu, Nature Reviews Genetic (2018)

Base editing

Bock, Datlinger, Chardon, **Coelho** et al, Nature Reviews Methods Primer, 2022

BE-FLARE base editing activity reporter

Coelho* et al, BMC Biology, 2018

Prime editing

Anzolone, Nature, 2019

Pathway-level interrogation of variants affecting IFN- γ signaling

Coelho et al, Cancer Cell, 2023

Deep mutagenesis of JAK1 using base editing

Mechanism of action of JAK1 LoF and GoF variants

GOF LOF JAK1 (human) SOCS1 (chicken) ADP Mg

PDB: 6C7Y

see also WRN base editing
Picco et al, *Cancer Discovery*, 2024

Transcriptomic readouts of variant effects in single cells

Cooper[‡], **Coelho**[‡], Strauss[‡] et al, Genome Biology, 2024

scSNV-seq reveals cellular transcriptional heterogeneity

Base editing defines the genetic landscape of cancer drug resistance mechanisms

Bock, Datlinger, Chardon, Coelho *et al*, Nature Reviews Methods Primer, 2022

Variants modulating drug sensitivity cluster into four functional classes

Single-cell RNA seq functionally defines drug resistant cell states

Variants affecting EFGR inhibitor sensitivity

EGFRi gefitinib

EGFRi osimertinib

drug-sensitising

- Splice variant
- Not in the kinase domain

Drug-sensitising mutations in PARP1

A variant function map indicates potential second-line therapies for drug resistant cancers

Prime editing screens of cancer variant function

EGFRi osimertinib resistance

reporter of prime editing

PE-FLARE stop (TAG)

mCherry

productive prime editing (mU6 -> epegRNA)

A fluorescent reporter of prime editing activity enables enrichment of edited cells

Mutagenesis screens to guide drug design

Picco et al, Cancer Discovery, 2024

 Targeting synthetic lethal paralogues pairs with Dave Adams and Ishan Mehta (CRUK Therapeutic Catalyst)

◆ splice variant▲ start lost▼ stop codon

synonymous

22

Summary

- 1. Base editing can prospectively map variants that modulate cancer drug sensitivity across pathways in therapeutically-relevant cell models
- Analysing multiple drugs in parallel can highlight possible of second-line treatments
- Gene editing coupled to scRNA-seq can provide mechanistic insights into cancer variant function
- 4. Druggable domains can be identified and probed at high-resolution using base editing and prime editing
- 5. Functional data is needed to explain the occurrence drug resistance variants, and could help predict them for new drugs

Acknowledgements

Alex Watterson
Luke Brown
Yousra Belattar
Francesca Perrone

Josep Forment Giudi Illuzzi

John MarioniMagdalena Strauss

Mathew GarnettGabriele Picco

Katrina McCarten

Cansu Dincer

Shriram Bhosle

Mamta Sharma

Leopold PartsJonas Koeppel

Chiara Cattaneo

Vivien Veninga

Sari Ward

Zbyslaw Sondka

Andrew Bassett
Sarah Cooper

CASM support lab Flow Cytometry DNA Pipelines

Tim Halim Youhani Samarakoon

