

BUNDESREPUBLIK

DEUTSCHES PATENTAMT

21) Aktenzeichen:

P 44 00 616.0

2 Anmeldetag:

12. 1.94

43 Offenlegungstag:

13. 7. 95

(71) Anmelder:

VDO Adolf Schindling AG, 60326 Frankfurt, DE

(74) Vertreter:

Klein, T., Dipl.-Ing.(FH), Pat.-Ass., 65824 Schwalbach

2 Erfinder:

Kern, Wolfram, 39114 Magdeburg, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Magnetischer Positionssensor, insbesondere für Kraftfahrzeuge

Die Erfindung betrifft einen magnetischen Positionssensor, bestehend aus einer zweiteiligen, in einem Magnetfeld liegenden Geberanordnung, durch welche die Positionsänderung eines Objektes in eine Abstandsänderung zu einem weichmagnetischen Flußleitkörper umwandelbar ist, auf welchem ein Magnetfeldsensor angeordnet ist, der die durch die Abstandsänderung hervorgerufene Änderung des magnetischen Flusses in ein elektrisches Signal umwandelt. Um einen kostengünstigen, präzisen und für den Einsatz in einem Automobil geeigneten robusten Sensor zur Messung von Positionsänderungen zu schaffen, der als Absolutwertgeber arbeitet und in einem großen Betriebstemperaturbereich einsetzbar ist, ist jedem Teil (1, 2) der zweiteiligen Geberanordnung zur Detektion der Abstandsänderung ein am Flußleitkörper (6) befestigter Magnetfeldsensor (7, 8) gegenüberliegend angeordnet und der Flußleitkörper (6) mit einem Permanentmagneten (4) verbunden, welcher mit der Geberanordnung (1, 2), den Magnetfeldsensoren (8, 9) und dem Flußleitkörper (6) einen geschlossenen Magnetkreis bildet.

E 44 00 616 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen BUNDESDRUCKEREI 05. 95 508 028/184

ling

n magnetischen Positionszweiteiligen, in einem Maanordnung, durch welche die Objektes in eine Abstandsänchmagnetischen Flußleitkörper elchem ein Magnetfeldsensor andurch die Abstandsänderung herung des magnetischen Flusses in ein 10 I umwandelt.

chen Größen Position und Winkel lasie von physikalischen Größen, wie Kapaensität oder magnetischer Feldstärke bzw. r Flußdichte in ein elektrisches Ausgangssi- 15

eiterverarbeitung umsetzen.

ine Méßvorrichtung bekannt, bei welcher auf elle eines Rotationskörpers ein aus zwei Scheistehender einstückiger Geberkörper angeordnet Die Scheiben weisen einen unterschiedlichen Durch- 20 esser auf, wobei eine Scheibe konzentrisch und die ndere Scheibe exzentrisch auf der Welle angeordnet

 ${\mathcal J}$ Durch die exzentrische Anordnung des Geberkörpers während der Rotation ändert sich die Größe des 25 Meßluftspaltes zwischen Geberkörper und dem an seinem Umfang angeordneten Flußleitkörper. Hierdurch ergibt sich auch eine entsprechende Änderung des von einer Erregerspule getriebenen magnetischen Flusses.

Dieser Änderung wird der von einer Kompensations- 30 spule erzeugte magnetische Fluß durch einen elektronischen Regler derart angepaßt, daß das Magnetfeld in dem Luftspalt, in welchem ein Magnetfeldsensor angeordnet ist, zu Null kompensiert wird.

Der durch den Regler eingestellte Strom der Kom- 35 pensationsspule ist somit ein Maß für die jeweilige

Drehstellung des Geberkörpers.

Die beschriebene Lösung ist in ihrer Ausführung sehr montage- und justieraufwendig und somit sehr teuer, so daß sie für einen breiten Einsatz unter extremen Bedin- 40 gungen (Staub, Öl, Wasser, Chemikalien, wie sie z. B. in Kraftfahrzeugen auftreten) nicht nutzbar sind. Eine Temperaturkompensation ist nur in sehr engen Grenzen realisierbar.

Ein Einsatz von robusten Meßelementen wie z. B. 45 Feldplatten oder Hallsensoren war bisher unter den beschriebenen Bedingungen nicht möglich, da bei der Umsetzung der magnetischen Größen Induktion oder Feldstärke in ein elektrisches Signal eine nicht zu vernachlässigende Temperaturabhängigkeit auftritt.

Der Erfindung liegt somit die Aufgabe zugrunde, einen kostengünstigen, präzisen und für den Einsatz in einem Automobil geeigneten robusten Sensor zur Messung von Positionsänderungen zu schaffen, der als Absolutwertgeber arbeitet und in einem großen Betriebs- 55 temperaturbereich einsetzbar ist. Ein lineares elektrisches Abbildsignal der Positionsänderung soll mit einer kostengünstigen Signalverarbeitung realisierbar sein.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß jedem Teil der zweiteiligen Geberanordnung zur 60 Detektion der Abstandsänderung ein am Flußleitkörper befestigter Magnetfeldsensor gegenüberliegend angeordnet ist und der Flußleitkörper mit einem Permanentmagneten verbunden ist, der mit der Geberanordnung, den Magnetfeldsensoren und dem Flußleitkörper einen 65 geschlossenen Magnetkreis bildet.

Der Vorteil der Erfindung besteht darin, daß aus zwei von der Positionsänderung abhängigen magnetischen

Flüssen, die von zwei separaten Magnetfeldsensoren gemessen werden, ein Differenzsignal bzw. ein Quotient aus Differenz und Summe der beiden magnetischen Flüsse über eine an sich bekannte Auswerteelektronik 5 gebildet werden.

Die erfindungsgemäße Lösung ist somit in einem wei-

ten Betriebstemperaturbereich einsetzbar.

Durch eine Differenzbildung der elektrischen Abbildgrößen kann man Störgrößen, die die Flußdichten durch die beiden Magnetfeldsensoren gleichartig ändern, unterdrücken.

Vorteilhafterweise sind beide Magnetfeldsensoren auf einem Chip angeordnet. Dadurch ist eine gute Paarigkeit bezüglich der Sensorkennlinie und der Temperaturabhängigkeit realisierbar. Die Anordnung bietet au-Berdem die Möglichkeit, Geber und Auswerteschaltung in einer Ebene anzuordnen.

Zur Messung eines Drehwinkels besteht die Geberanordnung aus zwei mit einer Welle eines Rotationskörpers verbundenen Geberscheiben, wobei dem Umfang jeder Geberscheibe gegenüberliegend je ein Magnetfeldsensor angeordnet ist und die Magnetfeldsensoren an einem Schenkel des als Winkel ausgebildeten Flußleitkörpers befestigt sind und der andere Schenkel des Flußleitkörpers die Welle des Rotationskörpers umschließt und über den Permanentmagneten einen geschlossenen Magnetkreis mit den Geberscheiben bildet.

In einer Weiterbildung wird die Abstandsänderung zwischen den beiden Geberscheiben und dem Flußleitkörper entweder über die exzentrische Anordnung mindestens einer Geberscheibe auf der Welle des Rotationskörpers oder über die Kontur der Geberscheiben realisiert, so daß sich für einen beliebigen Drehwinkel innerhalb des Meßbereiches eine eindeutige Differenz zwischen den magnetischen Flüssen bzw. den magnetischen Flußdichten einstellt. Der funktionale Zusammenhang zwischen dem Drehwinkel und dem elektrischen Ausgangssignal ist somit in weiten Bereichen frei wählbar.

Unterschiedliche Feldverläufe, die auf Grund der unterschiedlichen Abstände der Geberscheiben zum Flußleitkörper auftreten, können durch verschiedene Querschnittsgeometrien der Geberscheiben kompensiert werden, so daß ein gleichartiger Feldverlauf auftritt.

Eine weitere Verbesserung des Temperaturverhaltens der Anordnung läßt sich dadurch erreichen, daß die Geberscheiben mit einem dazwischen angeordneten Abstandshalter eine kompakte Einheit bilden.

Soll das System selbst auf Funktionsfähigkeit überprüft werden, ist der Flußleitkörper U-förmig ausgebildet, an seinen Seitenschenkeln sind jeweils zwei Magnetfeldsensoren zum Umfang der Geberscheiben gegenüberliegend angeordnet und die Drehachse der Welle durchsetzt den Flußleitkörper zentrisch.

Weitere Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Zwei davon sollen anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. Es zeigen:

Fig. 1 erfindungsgemäßer Drehwinkelsensor

Fig. 2 Drehwinkelsensor mit kompakter Geberein-

Fig. 3 magnetischer Fluß innerhalb des Drehwinkelsensors

Fig. 4 Konturen der Geberscheiben

Fig. 5 redundantes System

Fig. 6 erfindungsgemäßer linearer Wegsensor Gemäß Fig. 1 ist ein Drehwinkelsensor dargestellt, der

aus zwei Geberscheiben 1 und 2 besteht, welche auf der mit dem nicht weiter dargestellten Rotationskörper verbundenen Welle 5 angeordnet sind. Die erste Geberscheibe 1 ist dabei exzentrisch auf der Welle 5 angeordnet, während die zweite Geberscheibe 2 zentrisch befestigt ist. Beide Geberscheiben 1 und 2 weisen den gleichen Durchmesser auf.

Die Geberscheiben 1 und 2 werden durch einen weichmagnetischen Abstandshalter 3 auf konstante Distanz gehalten. Gegenüber dem Umfang einer jeden 10 reich von 180 Grad erzeugt. Geberscheibe 1, 2 ist je ein Magnetfeldsensor 8, 9, entweder Hallgeneratoren oder Feldplatten, angeordnet, welche auf einem gemeinsamen Chip 7 angebracht sind. Das Chip 7 wiederum ist an einem L-förmigen, weichleitkörper 6 ist ortsfest montiert und trägt einen Permanentmagneten 4, welcher ein konstantes Magnetfeld für das Sensorsystem bereitstellt. Der Permanentmagnet 4 kann aber auch drehbar mit der Welle 5 verbunden sein.

Die genannten Elemente bilden einen geschlossenen 20 Magnetkreis.

Die Geberscheiben 1 und 2, der Abstandshalter 3 und der Flußleitkörper 6 besitzen kleine magnetische Widerstände und dienen in diesem Magnetkreis als Flußkonzentratoren.

In der Draufsicht der Fig. 1 ist noch einmal die zentrische bzw. exzentrische Lagerung der Geberscheiben 1 und 2 auf der Welle 5 verdeutlicht.

In Fig. 2 sind die Geberscheiben 1 und 2 und der Abstandshalter 3 als ein kompaktes Element hergestellt. 30 Es besteht als Spritzteil aus einem temperaturstabilen mit ferromagnetischen Partikeln gefüllten Kunststoff, wodurch das Temperaturverhalten der Anordnung weiter verbessert wird.

Die Funktionsweise der Anordnung soll nun anhand 35 Fig. 3 näher erläutert werden.

Durch den Dauermagneten 4 wird ein konstantes Magnetfeld gebildet, welches alle Elemente des Drehwinkelsensors durchsetzt

Aufgrund der unterschiedlichen Anordnung der Ge- 40 berscheiben 10 auf der Welle 5 des Rotationskörpers ändert sich für die exzentrisch angeordnete Geberscheibe 1 der Abstand zum gegenüberliegenden Magnetfeldsensor 8 in Abhängigkeit vom Drehwinkel. Die so hervorgerufene Magnetfelddeformation führt zu einer Än- 45 derung des magnetischen Flusses Ø1, der vom Magnetfeldsensor 8 detektiert wird. Da der magnetische Fluß Φ2, der vom Magnetfeldsensor 9 sensiert wird, aufgrund des definierten Durchmessers und der zentrischen Anordnung der Geberscheibe 2 auf der Welle 5 konstant 50 bleibt, ist für jeden beliebigen Drehwinkel eine eindeutige Differenz zwischen den Flüssen Ф1 und Ф2 herstell-

Die magnetischen Flüsse Ф1 und Ф2 werden von den Magnetfeldsensoren 8 und 9 in elektrische Signale um- 55 gewandelt. Da beide Magnetfeldsensoren 8 und 9 auf einem Chip 7 angeordnet sind, können durch eine Differenzbildung der elektrischen Abbildgrößen der magnetischen Flußdichten B1 und B2 Störgrößen, die die Flußdichten B1 und B2 gleichartig ändern, unterdrückt wer- 60 den. Zu diesen Störgrößen gehören die Temperaturänderung, die den gesamten Magnetkreis beeinflussen, Axial- und Radialspiel der mechanischen Lagerung der Welle 5 und magnetische Störfelder, die bei miniaturisierter Ausführung der Anordnung weitestgehend als 65 Gleichtaktaussteuerung wirken.

Die Abstandsänderung zu den Magnetfeldsensoren kann auch über die Kontur der Geberscheiben derselben realisiert werden.

In Fig. 4a ist in Draufsicht noch einmal die bishe diskutierte Anordnung der Geberscheiben dargestellt. wobei das verstärkte Kreuz in allen Darstellungen die Drehachse symbolisieren soll.

Gemäß Fig. 4b haben beide Scheiben denselben Durchmesser, sind aber beide exzentrisch auf der Welle 5 angeordnet. Mit beiden Anordnungen wird ein monotones elektrisches Ausgangssignal über einen Winkelbe-

Die Fig. 4c und 4d zeigen Geberscheibenanordnungen, welche beide zentrisch zur Drehachse gelagert sind. Während Fig. 4c Geberscheiben mit gegenläufigen zunehmenden bzw. abnehmenden Radien zeigen, ist in magnetischen Flußleitkörper 6 befestigt. Dieser Fluß- 15 Fig. 4d nur eine Geberscheibe mit abnehmendem Radius dargestellt. Bei dieser Anordnung verläuft das elektrische Ausgangssignal in einem Winkelbereich von nahezu 360 Grad monoton.

Weitere Formen sind natürlich entsprechend der geforderten Systemkennlinie (Bereichsspreizung, Schaltpunkte) denkbar.

Auf der Basis der in den Fig. 1 und 2 dargestellten Grundanordnungen lassen sich auch Redundanzen entsprechend Fig. 5 implementieren.

Zu diesem Zweck ist der Flußleitkörper 6 U-förmig ausgebildet. An seinen Seitenschenkeln sind jeweils auf einem Chip 7, 12 zwei Magnetfeldsensoren 7, 8; 13, 14 zum Umfang der Geberscheiben 1, 2 gegenüberliegend ... angeordnet. Die Welle 5 durchsetzt dabei den Flußleitkörper 6 zentrisch. Mit dieser Anordnung ist es möglich, das System auf Funktionsfähigkeit zu prüfen. Der von den Magnetfeldsensoren 8, 9 detektierte magnetische Gesamtfluß Og1 ist dabei wertmäßig genauso groß, wie der gegensinnige, von den Magnetfeldsensoren 13, 14 sensierte magnetische Gesamtfluß Og2.

Ein linearer Wegsensor ist in Fig. 6 dargestellt.

Die Geberanordnung besteht dabei aus zwei, eine gegenläufige Keilform aufweisenden Teilen 15 und 16, zu welchen jeweils senkrecht je ein Magnetfeldsensor 8 und 9 angeordnet ist. Die Geberteile 15 und 16 sowie die Magnetfeldsensoren 8 und 9 sind gegenüberliegend auf den Schenkeln des U-förmigen Flußleitkörpers 17 angebracht. Dabei sind beide Magnetfeldsensoren 8 und 9 auf einem gemeinsamen Chip 7 integriert.

Zwischen den Geberteilen 15 und 16 und dem sie tragenden Schenkel des Flußleitkörpers 17 befindet sich der Permanentmagnet 18, dessen N-S-Richtung senkrecht zur Bewegungsrichtung 19 des Sensors verläuft.

Die Geberteile 15 und 16 sowie der Permanentmagnet 18 sind dabei auf einer nicht dargestellten gemeinsamen Führungsschiene angeordnet, so daß bei einer Wegänderung in Bewegungsrichtung 19 alle gleichzeitig beweglich sind.

Aufgrund der Keilform der Geberteile 15,16 wird die Wegänderung eines Objektes in eine Abstandsänderung und somit eine Änderung des magnetischen Flusses erzeugt, weiche zu Meßzwecken in ein elektrisches Signal umgewandelt wird. Ein solcher Geber eignet sich zum Beispiel zur berührungsfreien Füllstandsmessung.

Patentansprüche

1. Magnetischer Positionssensor, bestehend aus einer zweiteiligen, in einem Magnetfeld liegenden Geberanordnung, durch welche die Positionsänderung eines Objektes in eine Abstandsänderung zu einem weichmagnetischen Flußleitkörper umwandelbar ist, auf welchem ein Magnetfeldsensor angeordnet ist, der die durch die Abstandsänderung hervorgerufene Änderung des magnetischen Flusses in ein elektrisches Signal umwandelt, dadurch gekennzeichnet, daß jedem Teil (1, 2; 15, 16) der zweiteiligen Geberanordnung zur Detektion der Abstandsänderung ein am Flußleitkörper (6; 17) befestigter Magnetfeldsensor (7, 8; 13, 14) gegenüberliegend angeordnet ist und der Flußleitkörper (6; 17) mit einem Permanentmagneten (4; 18) verbunden ist, der mit der Geberanordnung (1, 2; 15, 10 16), den Magnetfeldsensoren (8, 9; 13, 14) und dem Flußleitkörper (6; 17) einen geschlossenen Magnetkreis bildet.

- 2. Magnetischer Positionssensor nach Anspruch 1, dadurch gekennzeichnet, daß beide Magnetfeldsensoren (8, 9; 13, 14) auf einem Chip (7) angeordnet sind.
- 3. Magnetischer Positionssensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Geberanordnungen aus zwei mit einer Welle (5) eines Rotationskörpers verbundenen Geberscheibe (1, 2) besteht, wobei dem Umfang jeder Geberscheibe (1, 2) gegenüberliegend je ein Magnetfeldsensor (8, 9) angeordnet ist und die Magnetfeldsensoren (8, 9) an einem Schenkel des als Winkel ausgebildeten Flußleitkörpers (6) befestigt sind und der andere Schenkel des Flußleitkörpers (6) die Welle (5) des Rotationskörpers umschließt und über den Permanentmagneten (4) einen geschlossenen Magnetkreis mit den Geberscheiben (1, 2) bildet.
- 4. Magnetischer Positionssensor nach Anspruch 3, dadurch gekennzeichnet, daß mindestens eine Geberscheibe (1, 2) exzentrisch auf der Welle (5) angeordnet ist.
- 5. Magnetischer Positionssensor nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Zusammenhang zwischen Drehwinkel und elektrischem Ausgangssignal über die Kontur der Geberscheibe (1, 2) realisierbar ist.
- Magnetischer Positionssensor nach einem der 40 Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Geberscheibe (1, 2) unterschiedliche Querschnittsgeometrien aufweist.
- 7. Magnetischer Positionssensor nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die Geberscheiben (1, 2) durch einen weichmagnetischen Abstandshalter (3) auf Distanz gehalten sind.

 8. Magnetischer Positionssensor nach Ansprüch 7, dadurch gekennzeichnet, daß die Geberscheiben (1, 2) und der Abstandshalter (3) eine kompakte Einheit (10) bilden, die auf der Welle (5) des Rotationskörpers angeordnet ist.
- 9. Magnetischer Positionssensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Geberanordnung aus zwei gegenläufigen, keilförmigen Teilen (15, 16) besteht, welche mit dem Permanentmagneten (18) gleichzeitig bewegbar auf einem U-förmigen Flußleitkörper (17) angeordnet sind.
- 10. Magnetischer Positionssensor nach einem der vorhergehenden Ansprüche 1 bis 9, dadurch ge- 60 kennzeichnet, daß die Magnetfeldsensoren (8, 9) Hallgeneratoren sind.
- 11. Magnetischer Positionssensor nach einem der vorhergehenden Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Magnetfeldsensoren (8, 9) 65 Feldplatten sind.
- 12. Magnetischer Positionssensor nach einem der vorhergehenden Ansprüche 1 bis 9, dadurch ge-

- kennzeichnet, daß die Magnetfeldsensoren (8, 9) magnetoresistive Elemente mit Barberpol-Struktur sind.
- 13. Magnetischer Positionssensor nach einem der vorhergehenden Ansprüche 3 bis 7, dadurch gekennzeichnet, daß der Permanentmagnet (4) ortsfest am Flußleitkörper (6) oder drehbar mit der Welle (5) verbunden ist.
- 14. Magnetischer Positionssensor nach einem der vorhergehenden Ansprüche 3 bis 7, dadurch gekennzeichnet, daß der Flußleitkörper (6) U-förmig ausgebildet ist, an dessen Seitenschenkeln jeweils zwei Magnetfeldsensoren (8, 9; 13, 14) zum Umfang der Geberscheiben (1, 2) gegenüberliegend angeordnet sind und die Drehachse der Welle (5) den Flußleitkörper (6) zentrisch durchsetzt.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶; Offenlegungstag:

DE 44 00 616 A1 G 01 B 7/14

13. Juli 1995

508 028/184

Nummer:

)

Int. Cl.⁶: Offenlegungstag:

DE 44 00 616 A1 **G 01 B 7/14** 13. Juli 1995

Figur 4

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 44 00 616 A G 01 B 7/14 13. Juli 1995

Figur 6