Soluções TM² 2024A

Samuel de Araújo Brandão

2 de Agosto de 2025

Uma coleção de soluções para a TM² 2024 nível A, inspirada no estilo de Evan Chen. Todas as soluções foram inteiramente escritas por mim, enquanto me preparava para a International Mathematical Olympiad (IMO).

Caso encontre algum erro ou tiver sugestões ou comentários, sinta-se a vontade para entrar em contato!

Contents

1	Problemas Soluções		
	2.1	Problema 1	3
	2.2	Problema 2	4
		Problema 3	
	2.4	Problem 3	7
	2.5	Problema 4	8
3	Refe	erências	9

1 Problemas

1. Uma palavra é uma sequência de letras maiúsculas do nosso alfabeto (isto é, há 26 possíveis letras). Uma palavra é chamada de palíndromo se tem pelo menos duas letras e ela é a mesma palavra se lida da esquerda para a direita ou da direita para a esquerda. Por exemplo, as palavras ARARA e NOON são palíndromos, mas BOBO e AÑÃ não são palíndromos.

Dizemos que uma palavra x contém uma palavra y se existem letras consecutivas de x que juntas formam y. Por exemplo, a palavra ARARA contém a palavra RARA e também a palavra ARARA, mas não contém a palavra ARRA.

Calcule a quantidade de palavras de 14 letras que contêm algum palíndromo.

2. Mostre que não existem triplas de inteiros não negativos (x,y,z) satisfazendo a equação

$$x^2 = 5^y + 3^z$$
.

3. No triângulo escaleno ABC, sejam I o seu incentro e D o ponto onde AI intersecta BC. Sejam M e N os pontos onde o incírculo de ABC toca AB e AC, respectivamente. Seja F o segundo encontro do circuncírculo (AMN) com o circuncírculo (ABC). Seja T o encontro de AF com o prolongamento de BC. Seja J a interseção de TI com a paralela a FI que passa por D. Prove que AJ é perpendicular a BC.

Figure 1: Uma ilustração do terceiro problema.

Nota: o incentro de um triângulo é a interseção das bissetrizes internas.

4. Encontre todos os inteiros positivos a, b e c tais que $3ab = 2c^2$ e $a^3 + b^3 + c^3$ seja o dobro de um número primo.

2 Soluções

2.1 Problema 1.

Enunciado do problema

Uma palavra é uma sequência de letras maiúsculas do nosso alfabeto (isto é, há 26 possíveis letras). Uma palavra é chamada de palíndromo se tem pelo menos duas letras e ela é a mesma palavra se lida da esquerda para a direita ou da direita para a esquerda. Por exemplo, as palavras ARARA e NOON são palíndromos, mas BOBO e AÑÃ não são palíndromos.

Dizemos que uma palavra x contém uma palavra y se existem letras consecutivas de x que juntas formam y. Por exemplo, a palavra ARARA contém a palavra ARARA e também a palavra ARARA, mas não contém a palavra ARRA.

Calcule a quantidade de palavras de 14 letras que contêm algum palíndromo.

Sabe-se que existem 26^{14} possibilidades de palavras de 14 letras no total. Além disso, podemos afirmar também que toda palavra contém no mínimo um palíndromo de 2 ou 3 letras. Isso ocorre porque, ao retirar as primeira e última letras de um palíndromo, será obtido outro palíndromo (caso tenha mais de 2 letras). É possível repetir isso até chegar a xx (um palíndromo de 2 letras), ou xyx (um palíndromo de 3 letras).

Existem 26 possíveis letras para a 1ª letra de um não palíndromo de 14 totais letras. Afim de evitar um palíndromo, a 2ª deve ser diferente da 1ª, (25 opções). Pelo mesmo motivo, a 3ª é diferente da 1ª e da 2ª, (24 opções). Esse argumento da 3ª letra será válido para todas as outras 11 letras. Com isso podemos concluir que existem $26^{14}-26\cdot25\cdot24^{12}$ palíndromos no total.

2.2 Problema 2.

Enunciado do problema

Mostre que não existem triplas de inteiros não negativos (x, y, z) satisfazendo a equação

$$x^2 = 5^y + 3^z.$$

Já que *impar* + *impar* = par, $5^y + 3^z$ é par, logo x é par. Se x = 2k, $x^2 = 4k^2$, logo $x^2 \equiv 0 \pmod{4}$. Neste caso, $0 \equiv 5^y + 3^z \equiv 1 + (-1)^z \pmod{4}$, por conseguinte, z é um número impar. Claramente, $x \not\equiv 0 \pmod{3}$, pois

$$x \equiv 0 \pmod{3} \Rightarrow 5^y = x^2 - 3^z \Rightarrow 5^y \equiv 0 \pmod{3}$$

Absurdo! Agora, nos resta apenas $x \equiv 1 \pmod 3$ ou $x \equiv 2 \pmod 3$. Perceba abaixo que $x \not\equiv 1 \pmod 3$ e $x \not\equiv 2 \pmod 3$, e como já vimos que $x \not\equiv 0 \pmod 3$, não existem soluções para x.

- 1. $Caso\ 1:\ x\equiv 1\pmod 3\Rightarrow x^2-5^y=3^z\Rightarrow y=2w$. Neste caso, podemos afirmar que $x^2-5^{2w}=3^z\Rightarrow (x+5^w)(x-5^w)=3^z$. Para que esta igualdade seja verdadeira, ou $x+5^w\equiv 0\pmod 3$ e $x-5^w=1$, ou, tanto $x+5^w$ quanto $x-5^w$ são múltiplos de 3. Evidentemente $x-5^w\neq 1$, pois se $x-5^w=1$, $5^w+1\equiv 1\pmod 3\Rightarrow 5^w\equiv 0\pmod 3$, absurdo! Mas é impossível também que tanto $x+5^w$ quanto $x-5^w$ sejam múltiplos de 3, pois neste caso, $x\equiv 5^w\pmod 3\Rightarrow x\equiv 5^w\equiv 1\pmod 3$, impossibilitando que $x-5^w\equiv 0\pmod 3$: $x\not\equiv 1\pmod n$
- 2. Caso 2: $x \equiv 2 \pmod{3} \Rightarrow x^2 \equiv 5^w \equiv 1 \pmod{3}$. Evidentemente $x + 5^w \not\equiv 0 \pmod{3}$, logo a única opção é que $x + 5^w = 1$, claramente impossível já que tanto x quanto w são números inteiros positivos $x \not\equiv x \pmod{3}$.

2.3 Problema 3.

Enunciado do problema

No triângulo escaleno ABC, sejam I o seu incentro e D o ponto onde AI intersecta BC. Sejam M e N os pontos onde o incírculo de ABC toca AB e AC, respectivamente. Seja F o segundo encontro do circuncírculo (AMN) com o circuncírculo (ABC). Seja T o encontro de AF com o prolongamento de BC. Seja J a interseção de TI com a paralela a FI que passa por D. Prove que AJ é perpendicular a BC.

Nota: o incentro de um triângulo é a interseção das bissetrizes internas.

Figure 2: Uma figura ilustrando a soluão para o terceiro problema. Fonte.

 \overline{AI} é um diâmetro de (AMN), pois \overline{AB} é tangente a (MND), logo $\angle AMI = 90^\circ$. Por conseguinte, $\angle AIT = 90^\circ$ resulta em $\angle AJ'J = 90^\circ$, quando J' é a projeção de \overline{AJ} sobre o segmento \overline{BC} . Logo, basta que \overline{TI} seja tangente a (AMN).

 ${\sf Alegação}$ — T é o centro radical de (ABC), (AMN) e (BIC).

Prova. Digamos que \overline{TI} é uma tangente de (BIC) passando por I. \overline{AF} é o eixo radical de (ABC) e (AMN) e $T \in \overline{AF}$, logo, $TF \cdot TA = TB \cdot TC$. Isso prova com excelência que \overline{TI} é o eixo radical de (AMN) e (BIC), pois

$$= TB \cdot TC$$

$$Pot_{(AMN)}(T) = TF \cdot TA$$

$$= Pot_{(BIC)}(T).$$

Já que \overline{TI} é tangente à (BIC), tal deve ser tangente a (AMN) também, para que \overline{TI} seja o eixo radical dessas circunferências.

2.4 Problem 3.

Problem Statement

In the scalene triangle ABC, let I be its incentre and D the point where AI meets BC. Let M and N be the points where the incircle of ABC touches AB and AC, respectively. Let F be the second intersection of the circumcircle (AMN) with the circumcircle (ABC). Let T be the intersection of AF with the extension of BC. Let A be the intersection of A parallel to A parallel to A perpendicular to A is perpendicular to A.

Note: the incentre of a triangle is the intersection of its internal angle bisectors.

Figure 3: A figure illustrating the solution to the third problem. Source.

 \overline{AI} is a diameter of (AMN), since \overline{AB} is tangent to (MND), hence $\angle AMI = 90^{\circ}$. Consequently, $\angle AIT = 90^{\circ}$ implies $\angle AJ'J = 90^{\circ}$, where J' is the projection of \overline{AJ} onto segment \overline{BC} . Therefore, it suffices to show that \overline{TI} is tangent to (AMN).

Claim — T is the radical centre of (ABC), (AMN) and (BIC).

Proof. Suppose that \overline{TI} is a tangent to (BIC) at I. The line \overline{AF} is the radical axis of (ABC) and (AMN), and $T \in \overline{AF}$, so

 $TF \cdot TA = TB \cdot TC.$

This shows that \overline{TI} is also the radical axis of (AMN) and (BIC), since

$$= TB \cdot TC,$$

$$Pot_{(AMN)}(T) = TF \cdot TA,$$

$$= Pot_{(BIC)}(T).$$

Since \overline{TI} is tangent to (BIC), it must also be tangent to (AMN), and thus \overline{TI} is the common radical axis of these circles, completing the proof.

2.5 Problema 4.

Enunciado do problema

Encontre todos os inteiros positivos a, b e c tais que $3ab = 2c^2$ e $a^3 + b^3 + c^3$ seja o dobro de um número primo.

3 Referências

Só foi possível escrever este documento graças a ajuda e inspiração dos seguintes:

[1] NOIC - Núcleo Olímpico de Iniciação Científica. Soluções do TM² Nível A, 2025. Disponível em: https://noic.com.br/wp-content/uploads/2025/03/Solucoes_do_TM2_2024_Nivel_A.pdf