

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

PROTESIS

Practica#1 SINTESIS ESTADO DEL ARTE ARTICULOS.

NOMBRE	MATRICULA
Juan Ángel Alonso García	1667089
Luis Eduardo Andrade García	1835065
Alida Marlen Castillo Martínez	1823637
César Alonso Cantú Espinosa	1820718
William Harold Carrazco Hernández	1801787

ARTICULOS CIENTIFICOS. ESTADO DEL ARTE REFERENTE A PROTESIS HUMERAL DE BRAZO.

ARTICULO	ABSTRACT OBJETIVO	CAMPO DE APLICACIÓN	CONCLUSION ES Y PALABRAS CLAVE	REFERENCIAS
1.Protesis de mano (ene 2023)	En este artículo se hace una revisión de los tipos de prótesis de mano que se han desarrollado con diferentes tipos de tecnologías, incluyendo ventajas y desventajas de su utilización. Se presenta la evolución tecnológica de las prótesis de mano durante estos últimos años. Finalmente se hace referencia a las nuevas tendencias en la utilización de materiales inteligentes para la construcción de prótesis De mano.	Ingeniería y medicina, enfocado a la prótesis de mano con materiales inteligentes.	*Prótesis de mano *Control *Grados de Libertad *Dieléctrica	Marlon Quinde, David Cusco, Joffre Brito. (2013).Prótesis de mano. En Estado de arte para prótesis de mano (57-64). Ecuador: INGENIUS
2. Diseño de prótesis para un brazo.	Con la intención de poder mejorar la calidad de vida de un individuo en concreto, nace la idea de este proyecto, el cual se basa en el diseño y desarrollo de una prótesis de brazo y mano, fabricada mediante impresión 3D y con una función añadida: la integración de un reloj inteligente y de su propia aplicación para el móvil. Esta prótesis se diseñará a medida para el amigo del autor, cuyo brazo presenta una malformación de	Medicina e ingeniería debido a que se utiliza simulación.	*Síndrome de Palando *Prótesis *Humeral	Eric Blanca Pizarro. (.). Diseño de prótesis para brazo. Cataluja, 1-7. 12-07-2021

		T		T
	nacimiento, debido al			
	Síndrome Poland.	D 1 (1	1175 () 1	
3. prótesis	Recopilación del estado	Robótica,	*Prótesis de	Samuel
robótica de	del arte de las prótesis	programación,	miembro	Bustamante
miembro superior	robóticas de miembro	medicina, ingeniería.	superior	Gómez. (2015).
controlada por	superior, que son		*Prótesis	Prótesis robótica
medio de	dispositivos diseñados		robótica	de miembro
interfaces	para ayudar a las		*Interfaces	
neuronales.	personas amputadas en		neuronales	superior controlada
	diferentes puntos de su		*Interfaz	por medio de
	extremidad. Además, la		cerebro-maquina	interfaces
	ciencia ha explorado			neuronales
	formas de comunicar			Medellín.
	estas prótesis con el			
	sistema nervioso,			
	creando interfaces			
	neuronales que permiten			
	un mejor control y una			
	mejor experiencia de los			
	pacientes con estos			
	dispositivos. El estado			
	del arte contenido en el			
	presente trabajo revisa			
	los nuevos desarrollos de			
	estas interfaces,			
	incluyendo conexiones			
	con el cerebro humano			
	denominadas interfaces			
	cerebro-máquina. Por			
	último, se realiza una			
	propuesta de diseño			
	conceptual de una			
	prótesis robótica			
	transradial de miembro			
	superior, teniendo en			
	cuenta que es apenas un			
	primer paso que apunta a			
	futuros desarrollos en			
	Materia de prótesis.			
4. Desarrollo y	En este trabajo se ha	Medicina e ingeniería	*Prótesis de	Cristina Molina
diseño de una	diseñado una prótesis de		miembro	Moreno. (Junio
prótesis de brazo	brazo para un paciente		superior	`
en código abierto	real con una mal		*Fabricación	2019). Desarrollo
impresa en 3D.	formación congénita en		digital	y diseño de una
	el brazo izquierdo. Se		*Flexo	prótesis de brazo
	enfatiza la importancia		extensión	en código abierto.
				Málaga:
	1	ı	ı	

	De la adaptación de cada		*Diseño	
	prótesis a cada paciente,		protésico	
	para lo cual el diseño			
	asistido por ordenador y			
	la impresión 3D se han			
	convertido en			
	herramientas muy útiles.			
	En primer lugar se han			
	estudiado la anatomía y			
	1			
	las razones fisiológicas			
	por las que son			
	importantes los distintos			
	movimientos que el			
	miembro superior puede			
	realizar. Tras analizar los			
	datos del paciente, y			
	habiendo determinado el			
	rango de movimientos			
	funcionales del miembro			
	superior, se establece			
	nuestra solución a la			
	prótesis. Posteriormente,			
	se detalla el			
	procedimiento del diseño			
	asistido por computador			
	en SolidWorks, además			
	de describir la forma y			
	funcionalidad de cada			
	pieza de la prótesis. Por			
	´último se imprime la			
	prótesis en 3D y se			
	comprueba el			
	funcionamiento en el			
	paciente.			
5. Diseño e	La estructura de este	Robótica, ingeniería,	*Brazo robótico	Javier Martínez Bea.
implementación	TFG abarca, desde su	medicina,	*Discapacitado	(2015). Diseño e
de un brazo robot	justificación, su objetivo,	biomecánica,	*Exoesqueleto	implementación de
para	"Diseño de un brazo	biocinética.	*Autómata	un brazo robot para
discapacitados	robot para			discapacitados.
1	discapacitados" (paciente			Venecia
	con el síndrome de flail			
	arm) que este paciente			
	pueda usar para realizar			
	las funciones más básicas			
	de su vida diaria, hasta			
	los costes del mismo,			
	desarrollándose, además,			

Los siguientes puntos: • Definición del concepto de exoesqueleto, robot, autómata, prótesis, artesas y su historia y aplicación, así como el estado del arte. Análisis bibliográfico y búsqueda de un diseño similar al proyectado en este TFG. • Breve estudio anatómico de la extremidad superior, el movimiento de las articulaciones, conceptos de ergonomía, cinemática y de grados de libertad (GDL), biomecánica y por último, nociones de antropometría, para conocer las medidas de las distintas partes de la extremidad superior para poder dimensionar las distintas partes de dicho brazo robot. • Diseño del brazo robot, con explicación de las características de sus elementos internos, motores, servomotores, etc. Primeros diseños y viabilidad de sus distintos elementos o partes, como muñeca, antebrazo, brazo y hombro. Primer prototipo, estudio de los problemas que este diseño puede presentar. Cálculos, tanto manuales y como virtuales que justifiquen la bonanza del diseño. • Justificación Se justifica el método elegido: la impresión 3D, la técnica de impresión,

	El material, ABS y el proceso de impresión de		
	las distintas piezas, con		
	todos sus condicionantes.		
	• Conclusiones desde los		
	planteamientos iniciales		
	del TFG hasta el		
	resultado final. • Análisis		
	de los costes totales del		
	brazo robot, tanto en		
	términos de diseño,		
	utilización de equipos y		
	materiales		
6. Análisis	Comparar resultados	El ángulo de	Bernal N,
comparativo de	funcionales e	lateralización	Paccot D,
tres modelos de	imageneologicos de tres	fue mayor en el	Franz P, Calvo
prótesis reversa	modelos protésicos según	modelo Arrow y	A, Toro F,
de hombro	el índice de lateralización	distalización en	Reinares F.
basados en los	y fistulización. En un	el modelo Bio-	Análisis
nuevos ángulos	grupo heterogéneo de	RSA. No	comparativo
de fistulización y	diagnósticos (fractura,	encontramos	de tres
lateralización	arropía de manguito,	correlación	modelos de
	secuela de fractura y	clínica-	prótesis
	artrosis glenohumeral).	radiológica en	reversa de
		esta serie	hombro
		heterogénea de	basados en
		pacientes.	los nuevos
		Prótesis	ángulos de
			distalización y
		reversa de	lateralización.
			Acta Ortop
		hombro.	Mex. 2021;
		• Angulo	35(3): 245-
		de	251.
		distalizac	https://dx.doi
		ion del	.org/10.3536
		hombro.	6/102361
		• Angulo	0/102301
		de	
		lateraliza	
		cien del	
		hombro.	
		• Modelos	
		diferente	
		S.	

			Resultados Funcionales.	
7. Desarrollo y diseño de una prótesis de brazo en Código abiertoimpresa en 3D.	En este trabajo se ha disenado una protesis de brazo para un paciente real con malformacion congenita en el brazo izquierdo. Se enfatiza la importancia de la adaptacion de cada protesis a cada paciente, para lo cual el diseno asistido por ordenador y la impresión en 3D se han convertido en herramientas muy utiles. En primer lugar se han estudiado la anatomia y las razones fisiologicas por las que son importantes los distintos movimientos que el miembro superior puede realizar. Tras analizar los datos del paciente, y habiendo determinado el rango de movimientos funcionales del miembro superior, se establece nuestra solucion a la protesis. Posteriormente, se detalla el procedimiento del diseno aasistido por computador en SolidWorks, ademas de describir la forma y funcionalidad de cada pieza de la protesis. Por ultimo se imprime la protesis en 3D y se comprueba el funcionamiento en el paciente.	 Anatomia Humana. Medicina Legal. Historia de la Ciencia 	Se ha conseguido una protesis de facil colocacion por el propio paciente. Gracias al empleo de la protesis el paciente puede manipular objetos bajo un control directo de los mismos y en un campo de referencia espacial funcional. El uso de la protesis aporta una ergonomia muy alta al paciente, siendo considerada por el mismo como util y de facil manejo. SolidWor ks. Protesis del miembro superior. Asistenci as tenicas personal es. Impresió n en 3D. Fabricaci on digital.	• Montero, D. F. A. (2019, 11 diciembre). DESARROLLO Y DISEÑO DE UNA PRÓTESIS DE BRAZO EN CÓDIGO ABIERTO IMPRESA EN 3D. RiUMA. https://riuma.uma.es/xmlui/handle/106 30/19005

	T	Т	<u> </u>	
			 Flexoext 	
			ension.	
			 Diseno 	
			protesic	
			0.	
			• CAD.	
			Focomelia.	
8. Diseno y	El diseno y la	Electronica.	En este artículo	Revista
construccion de	construccion de un			
un mecanismo	mecanismo con topologia	Sistemas de	se ha	Iberoamerica
paralelo para		control.	presentado el	na de
prototipo de	en paralelo para aplicación de protesis de	Protesis humerales.	diseño y	Ciencias,
prototipo de	codo transhumeral se		construcción del	Mendoza
transhumeral	presenta en este trabajo.		codo mecánico	Vázquez, J. R.,
transnumerar	La protesis permite que al		tipo paralelo. Se	Escudero
	menos dos actuadores		ha realizado una	Uribe, A. Z., &
	lineales participen		breve	Rojas Cuevas,
	simultaneamente n cada		descripción de	I. D. (2014,
	unos de los tres		los objetivos	septiembre).
	movimientos activos del		perseguidos en	Diseño y
	codo, mientras que al		su diseño y los	construcción
	menos dos actuadores que		detalles más	de un
	no participan en cada		relevantes de su	mecanismo
	movimientos,		estructura física	paralelo para
	proporcionan rigidez a la		y de su parte	prototipo de
	estructura. Los		mecánica	prótesis
	actuadores electricos		Como	transhumeral
	lineales, tienen la		características	
	capacidad de movimiento			(ISSN 2334-
	y fuerza requerida para		principales de la	2501).
	desarrollar actividades		prótesis	•
	cotidianas de un ser		paralela, cabe	
	humano. La protesis tiene		destacar: es	
	3 movimientos en el		antropomorfa,	
	codo, correspondientes a		con 3 grados de	
	las acciones de		libertad (GDL)	
	pronacion-supinacion,		como	
	flexion-extension y		mecanismo;	
	rotacion humeral;		mecánicamente	
	tambien cuenta con un		auto contenida,	
	sistema mecanico que		para ser	
	permite a la protesis		adaptada al	
	prensar objetos.		paciente;	
			modular, tanto	
			el hardware	
			como el	
	1	<u> </u>	1	

software, lo que facilita la adición, modificación, ampliación 0 reemplazo de partes; posibilidad de incluirle nuevos elementos que aporten mejor control У desempeño. El prototipo se ha inspirado en la operación del codo biológico humano pretende ser un medio para buscar la restauración funcional en pacientes con amputación transhumeral. El diseño del mecanismo se realizó en el ambienteCAD, el cual brinda la posibilidad de realizar simulaciones de movimiento У análisis de esfuerzos en sus componentes. Protesis mioelect

	1			
			rica de	
			codo.	
			Diseo	
			mecanic	
			0.	
			Mecanismo	
			paralelo.	
0 Madalasian v	En al massante trobaio de	Dala da	*	C'aulaua E
9. Modelacion y	En el presente trabajo de	• Robots	Se ha	• Giordano, E.
simulacion	tesis se realizó la	Diseño y	desarrollado un	D. Á. (2016, 3
dinamica de un	modelación y la	construcció	modelo	noviembre).
mecanismo de 4	simulación dinámica de	Robots	dinámico de un	Modelación y
GDL para el	un mecanismo de 4	móviles	mecanismo de 4	simulación
desarrollar una	grados de libertad,	Prótesis	GDL, el cual	dinámica de
protesis para	orientado al diseño de	Diseño y	permite el	un
personas con	prótesis activas para	Construcción	desarrollo de	mecanismo
desarticulacion	personas con		prótesis activas	de 4 GDL para
humeral	desarticulación humeral.	Hombre	orientada a	de 4 GDL para desarrollar
	Este modelo facilita el	Locomoción		
	análisis de la biomecánica	•	personas con	una prótesis
	del movimiento en el		desarticulación	para
	miembro superior con el		humeral,	personas con
	fin de obtener parámetros		mediante el	desarticulació
	dinámicos para iniciar un		estudio de la	n humeral.
	posterior diseño de la		biomecánica de	PUCP.
	prótesis. Se realizó un		la extremidad	https://tesis.
	diseño conceptual del		superior,	pucp.edu.pe/
	mecanismo basándolo en		proporcionando	repositorio/h
	las características		un diseño de la	andle/20.500.
	fisiológicas del miembro		propuesta	12404/7398
	superior, de tal manera		conceptual del	12404/7398
	que cumpla con los		·	•
	movimientos naturales y		mecanismo, las	
	mantenga un parecido		ecuaciones	
	antropomórfico. Esto		matemáticas	
	incluye una revisión de la		que componen	
	fisiología para la		el modelo	
	obtención de los		cinemático	
	parámetros		(Denavit-	
	antropométricos		Hartenberg) y	
	necesarios para el		cinético	
	dimensionamiento de los		(formulación de	
	eslabones. En base al		Lagrange	
	diseño preliminar, se		mediante el	
	desarrolló un modelo			
	cinemático para el estudio		algoritmo de	
			Uicker) así como	
	de las características		el algoritmo	

	geométricas del		computacional	
	movimiento, con el cuál		implementado	
	se pueden describir las		en Matlab,	
	coordenadas de cualquier		mostrando	
	componente del		resultados	
	mecanismo respecto a un		numéricos que	
	sistema fijo al cuerpo.		se contrastan	
	Esto se logró empleando			
	las matrices de		con los	
	transformación		disponibles en la	
	homogénea según la		literatura.	
	parametrización Denavit-			
	Hartenberg. Asimismo, el			
	modelo cinético se			
	describió mediante las			
	ecuaciones obtenidas de			
	servirse del algoritmo de			
	Uicker para el estudio,			
	aplicando conceptos de			
	mecánica Lagrangiana,			
	del cual se obtiene los			
	momentos efectivos en			
	cada articulación.			
	Finalmente, el modelo fue			
	implementado en Matlab			
	para proceder con la			
	simulación numérica de			
	la dinámica del			
	mecanismo, donde se			
	realiza el cálculo de los			
	torques efectivas			
	aplicadas, cuyos valores			
	máximos son los			
	parámetros de selección			
	para un posterior diseño.			
	Los resultados aquí			
	presentados, se contrastan			
	con los obtenidos en			
	literatura para validar los			
	datos ofrecidos, los cuáles			
	se encuentran dentro de			
	rangos esperados			
10. Protesis	Paciente de sexo	Hombro.	Esta técnica	Revista
reversa de	femenino, de 39 años de	Necrosis.	surge como una	«Cuadernos»
hombro en	edad y de ocupación	Humero.	potencial	Vol. 62(2). &
necrosis avascular	modista, con antecedentes	· Humero.	alternativa	7 3 02(2). d
	,			

			,	
De	mórbidos de importancia	 Prótesis. 	Quirúrgica en el	Ossio Ortube,
cabeza	de artritis reumatoide en	• Reversa.	tratamiento de	D. A. X.
humero.	tratamiento con		estos pacientes	(2021).
	corticoides desde los 31		con patologías	PRÓTESIS
	años, presenta		complejas con	REVERSA DE
	sintomatología en la		resultados	HOMBRO EN
	articulación		funcionales	NECROSIS
	glenohumeral derecha de		excelentes post	AVASCULAR
	forma insidiosa con dolor		quirúrgicos.	DE CABEZA
	leve y limitación			HÚMERO
	funcional que va			
	aumentando por ocho			(N.o 42–46
	meses hasta hacerse			ISSN 1562-
	invalidante, siendo			6776).
	controlada únicamente			Cuadernos.
	por consultorio de			•
	reumatología; acude a			
	consultorio de			
	traumatología en			
	diciembre de 2018, al			
	examen físico pre			
	quirúrgico limitación			
	completa de todos los			
	arcos de movimiento de			
	articulación			
	glenohumeral derecha			
	que se encontraba			
	asociada a dolor intenso a			
	la realización de			
	movimientos forzados			
	presentando los			
	siguientes arcos de			
	movimiento: flexión 50°,			
	abducción 15°,			
	rotacióninterna			
	20°, rotación			
	externa 15°, extensión			
	10° y dolor a la			
	movilización pasiva y			
	activa. Por exámenes			
	complementario-			
	radiológicos,			
	topográficos y de			
	resonancia magnética se			
	llega al diagnóstico de			
	necrosis de cabeza			
	humeral derecha con			
	namerar derectia con			

	Ruptura completa de			
	supraespinoso, infra			
	espinoso y subescapular.			
	Se realiza procedimiento			
	en el complejo			
	Hospitalario de			
	Mari aflores; se decide la			
	artroplastia reversa de			
	hombro por el			
	compromiso articular y			
	afección del componente			
	musculo tendinoso del			
	manguito rotador.			
	Teniendo un post			
	quirúrgico con excelentes			
	resultados funcionalesque			
	la devuelven a los arcos			
	de movilidad para			
	Desempeñar una vida			
	cotidiana sin dolor.			
11. Artroplastia	La "artropatía del	Medicina	En este articulo se	Valbuena, S. E.,
reversa de hombro	manguito de los	quirúrgica.	plantean problemas	Seré, I., Pereira, E.
Indicaciones y	rotadores" hace	Anatomía	F -	E., & Valenti, P.
técnica quirúrgica	referencia a aquellas	humana	protesis reversas de	(2009). Artroplastia
	artrosis glenohumerales	2107211002100	hombro, se muestra	reversa de hombro
	secundarias a roturas		•	Indicaciones y
	masivas del manguito, de		plantean indicaciones	-
	tipo excéntrico, en las que		F	Revista de la
	existe una alteración del		técnica de cirugía que	Asociación
	normal centrado de la		plantea la resolución	
	cabeza humeral con la		del problema.	Ortopedia y
	glena. Descrita por Neer			Traumatología,
	en 1983 fue luego		 Artroplastia 	74(3), 290-296.
	clasificada por Hamada y		• Técnica	, , ,
	cols.1 de acuerdo con su		 Cirugía 	
	comportamiento		Cirugia	
	radiográfico. La			
	alteración anatómica y			
	biomecánica resultante			
	puede generar un cuadro			
	clínico muy doloroso e			
	incapacitante,			
	denominado "hombro			
	seudoparalítico",			
	caracterizado por la			
	pérdida de la movilidad			
	activa del hombro con			
	relativa conservación de			
	la movilidad pasiva. El			
	tratamiento de esta			

	artropatía representa un verdadero desafío terapéutico y continúa siendo controvertido.			
12. Estudio anatómico y foto elástico de las prótesis invertidas de hombro	La artroplastia invertida de hombro ha presentado un aumento global de su uso debido a sus buenos resultados clínicos. No solo se aprecia la mejoría en el postoperatorio inmediato, sino que se mantiene a medio y largo plazo. Sin embargo, éstas no están exentas de complicaciones. La tasa de alteraciones neurológicas, encontradas mediante estudios neurofisiológicos, es mayor que la encontrada en las prótesis anatómicas de hombro. Una de las justificaciones que se podrían dar a este hecho es el alargamiento del brazo que se produce al implantar una prótesis invertida, ya que la base biomecánica de estas consiste en descender y medicalizar el centro de rotación del hombro para ofrecer mayor brazo de palanca al deltoides y así poder restablecer el	• Anatomía humana	 Estudios neurofisiológi cos prótesis invertida Biomecánica 	Serrano Mateo, L. (2020). Estudio anatómico y foto elástico de las prótesis invertidas de hombro. Ene, 14, 27.

<u>-</u>		
balance articular.		
Este descenso del	centro	
de rotación	de la	
articulación prod	uce un	
alargamiento del		
brazo, que podría	ı llevar	
asociado un alarga	amiento	
de las estr	ructuras	
neurológicas del		
mismo, predispon	iendo a	
su lesión.		
Otra de	las	
complicaciones		
encontradas es	la de	
implantación aség	otica de	
los		
componentes,		
principalmente	el	
glenoideo. Es po	or esto,	
que los estudios fí		
biomecánicos ay	udan a	
comprender	el	
funcionamiento	y	
comportamiento		
biomecánico		
de las prótesis, p	para así	
prevenir	futuras	
complicaciones y	poder	
ajustar los diseños	en	
futuros trabajos.		
Es por todo ello qu	ie se ha	
llevado a cabo un	estudio	
desde dos puntos o	le vista:	
uno		
anatómico y otro f	ísico	

Conclusiones

Alida Marlen Castillo Martínez 1823637

En esta práctica se investigó diferentes artículos los cuales nos hablan sobre la prótesis, sobre su diseño y materiales, el cómo se modela una prótesis entre otras cosas. Es importante tener en claro que es una prótesis y todo relacionado a ella ya que de esto consta nuestro proyecto final. Aprendimos que hay diferentes tipos de prótesis en las cuales cambia su estructura y materiales dependiendo de cada una de ellas y debemos de saber bien su composición para lograr el resultado esperado.

César Alonso Cantú Espinosa 1820718

Uno de los pasos mas importantes al inicio de cualquier proyecto o actividad es la investigación inicial, es por esto que esta primera actividad sirve como una gran base para las futuras actividades, dejando una base muy grande para comprender que existen múltiples tipos de prótesis, técnicas e información de la cual podremos disponer para lograr un buen desempeño.

Luis Eduardo Andrade García 1835065

En la actualidad hay personas que, a pesar de los grandes avances tecnológicos, todavía deben vivir mutiladas debido a que la tecnología no está al alcance de todos, entonces ¿para qué sirven tantos estudios y avances?, quizás eso deben darse cuenta las personas que se dedican a este tipo de actividades y hacer un análisis e intentar que lo que hacen llegue a todo el mundo.

Como ha sido es y seguirá siendo los avances tecnológicos respecto a prótesis de brazos y demás partes del cuerpo seguirán evolucionando y perfeccionándose, entonces los gobiernos de todos los países del mundo deberían preocuparse un poco en esto y aportar económicamente al desarrollo de estos proyectos e introducir dinero para que las prótesis sean mucho más asequibles para las personas de más bajos recursos.

William Harold Carrazco Hernández 1801787

Las prótesis ayudan a que las personas con alguna discapacidad física vuelvan a tener esa confianza que se tuvo desde un inicio, hoy en día el avance científico sobre las prótesis nos ha permitido ver diferentes modelos o mejoras que antes ni se tenían pensado que podía ser posible, pero eso sí, estas aun representan un gasto económico muy fuerte que no todas las personas tienen permitido darse.

Juan Ángel Alonso García 1667089

En esta práctica, nos pudimos dar cuenta del avance significativo que tiene la tecnología en la medicina, ya que las prótesis actualmente son de gran ayuda para que las personas que la requieran puedan tener una mejor calidad de vida, y tengan la oportunidad de seguir haciendo su vida cotidiana sin ningún contratiempo, existen asociaciones que ayudan a costear este tipo de prótesis pero lamentablemente no se dan abasto y hay mucha gente que no puede tener una buena calidad de vida debió a este tema económico de no poder conseguir una prótesis