Ordinary Differential Equations

Autumn 2016

Last updated: 14th October 2016 at 05:04

> James Cannon Kyushu University

http://www.jamescannon.net/teaching/ordinary-differential-equations \$\$ \$\$ http://raw.githubusercontent.com/NanoScaleDesign/OrdinaryDifferentialEquations/master/ode.pdf

License: CC BY-NC 4.0.

Contents

0	Cou	rse information	5					
	0.1	This course	6					
		0.1.1 How this works	6					
		0.1.2 Assessment	7					
		0.1.3 What you need to do	7					
		0.1.4 Details about the spreadsheet	8					
	0.2	Timetable	9					
	0.3	Hash-generation	10					
1	Defi	Definitions 11						
	1.1	Order of a differential equation	12					
	1.2		13					
	1.3		14					
	1.4	Range of valid solutions	15					
2	1st-order differential equations							
	2.1	•	18					
	2.2	· · · · · · · · · · · · · · · · · · ·	19					
	2.3	Solving a simple 1st-order linear equation	21					
	2.4	Separable equations I	22					
	2.5		23					
	2.6	Separable equations III	24					
	2.7	• •	25					
	2.8	Logistic equation	26					
	2.9	· · ·	27					
	2.10		28					
	2.11	The stability of solutions II	29					
		Euler's method	30					
			31					
		Exact differential equations: possible solutions given ψ_x	32					
		Exact differential equations: identification						
		Exact differential equations: solving						

Chapter 0

Course information

0.1 This course

This is the Autumn 2016 Ordinary Differential Equations course studied by 2nd-year undegraduate international students at Kyushu University.

0.1.1 How this works

- In contrast to the traditional lecture-homework model, in this course the learning is self-directed and active via publicly-available resources.
- Learning is guided through solving a series of carefully-developed challenges contained in this book, coupled with suggested resources that can be used to solve the challenges with instant feedback about the correctness of your answer.
- There are no lectures. Instead, there is discussion time. Here, you are encouraged to discuss any issues with your peers, teacher and any teaching assistants. Furthermore, you are encouraged to help your peers who are having trouble understanding something that you have understood; by doing so you actually increase your own understanding too.
- Discussion-time is from 10:30 to 12:00 on Fridays at room W4-529.
- Peer discussion is encouraged, however, if you have help to solve a challenge, always make sure you do understand the details yourself. You will need to be able to do this in an exam environment. If you need additional challenges to solidify your understanding, then ask the teacher. The questions on the exam will be similar in nature to the challenges. If you can do all of the challenges, you can get 100% on the exam.
- Every challenge in the book typically contains a **Challenge** with suggested **Resources** which you are recommended to utilise in order to solve the challenge. A **Solution** is made available in encrypted form. If your encrypted solution matches the encrypted solution given, then you know you have the correct answer and can move on. For more information about encryption, see section 0.3. Occasionally the teacher will provide extra **Comments** to help guide your thinking.
- For deep understanding, it is recommended to study the suggested resources beyond the minimum required to complete the challenge.
- The challenge document has many pages and is continuously being developed. Therefore it is advised to view the document on an electronic device rather than print it. The date on the front page denotes the version of the document. You will be notified by email when the document is updated.
- A target challenge and minimum challenge will be set each week, to be achieved by the beginning of the discussion time.
 - Target challenge: You are expected to complete at least up to this challenge. This is because
 the group learning effect is strongest when everyone is roughly around the same level of
 understanding.
 - Minimum challenge: Due to personal (eg health) or professional (eg conference attendance) issues, or simply difficulties with the challenges, it may occasionally not be possible to reach the target challenge. In this case, you will still be considered to be progressing normally if you achieve the minimum challenge.
 - You may work ahead, even beyond the target challenge, if you so wish. This can build greater flexibility into your personal schedule, especially as you become busier towards the end of the semester.
- Your contributions to the course are strongly welcomed. If you come across resources that you found useful that were not listed by the teacher or points of friction that made solving a challenge difficult (there's no such thing as "you should have learned it in high-school" you're probably not the only one with that specific problem), please let the teacher know about it!

0.1.2 Assessment

In order to prove to outside parties that you have learned something from the course, we must perform summative assessments. This will be in the form of

overall score =
$$(0.5E_F + 0.3E_M + 0.2C)(0.9 + P/10)$$

Your final score is calculated as $Max(E_F, overall score)$, however you must pass the final exam ($\geq 60\%$) to pass the course.

- $E_F = \%$ correct on final exam
- $E_M = \%$ correct on mid-term exam
- P = participation calculated as P = (F/N)(A/N)(0.5 + L/2) where each terms is as follows
 - -F = Number of weeks where feedback form is submitted 24 hours before discussion time (including spreadsheet update).
 - -A =Number of discussion classes attended
 - -N =Number of discussion classes held
 - -L = Proportion (decimal from 0 to 1) of the number of times that a collected challenge log is satisfactory (this means: available on request, your calculations are clearly shown, it corresponds to your spreadsheet, and it covers all challenges up to at least the minimum challenge for that week).

Note that P is only calculated from 21 October. If $N - F \le 2$ then F is treated as being equal to N (ie, you can forget twice). You can be counted as attending the class even if you are not present if the reason for not attending is unavoidable (eg, health reasons) and you inform the teacher in advance.

Grades will be assigned following the Kyushu University grading system:

- A: $90 \le \text{final score} \le 100$
- B: $80 \le \text{final score} < 90$
- C: $70 \le \text{final score} < 80$
- D: $60 \le \text{final score} < 70$
- F: final score < 60

0.1.3 What you need to do

- Prepare a challenge-log in the form of a workbook or folder where you can clearly write the calculations you perform to solve each challenge. This will be a log of your progress during the course and will be occasionally reviewed by the teacher.
- You will need to maintain a google spreadsheet detailing your work and progress. The purpose of this spreadsheet is to help the teacher optimise the discussion-time. Please ensure that it is up-to-date 24 hours before each discussion-time starts. It is fine for you to continue to work on challenges and update the spreadsheet after the 24-hour deadline.
- You also need to submit a brief report at https://goo.gl/forms/Dj14FEZcJLMpipsY2 24 hours before the discussion time starts. Here you can let the teacher know about any difficulties you are having and if you would like to discuss anything in particular.
- Please bring a wifi-capable internet device to class, as well as headphones if you need to access online components of the course during class. If you let me know in advance, I can lend computers and provide power extension cables for those who require them (limited number).

0.1.4 Details about the spreadsheet

To get started:

- 1. Log into google
- 2. Open http://bit.ly/2cPYyQY
- 3. File \rightarrow Make a copy $[\rightarrow$ rename] \rightarrow ok
- 4. Click "Share" (top right)
- 5. Click "Get shareable link"
- 6. Set "Anyone with the link can edit"
- 7. Copy sharing address
- 8. Send an email to cannon@mech.kyushu-u.ac.jp containing
 - (a) Subject: Ordinary Differential Equations registration
 - (b) Your name
 - (c) Student number
 - (d) The link to your copy of the google sheet

Using the spreadsheet:

- Enter the appropriate challenge number. For example, for challenge 1.4, enter "1" in the **Section** column and "4" in the **Challenge** column.
- After successfully completing a challenge, please enter any particular friction points that you experienced (if any) so the course can be developed to reduce such friction in the future, as well as any extra resources you recommend (if any).
- Please also roughly estimate the amount of effort in required to complete the challenge (starting from when you completed the previous challenge, including any reading, watching videos, looking for resources, writing the answer to the challenge, discussing with peers, etc). This is not used for assessment in any way, but is very valuable in helping the teacher develop the course. Note: Although the column says **Hours**, please specify the time in terms of **minutes**.

Note: Please do not alter column names, ordering, etc. Just add section and challenge numbering and fill in the columns as appropriate. This is because spreadsheet data is downloaded and automatically analysed, and it breaks if anything is inconsistent.

0.2 Timetable

	Discussion	Minimum	Target	Note
1	7 Oct	-	-	
2	14 Oct	1.2	2.2	
3	21 Oct	2.3	2.7	
4	28 Oct	2.7	2.11	
5	4 Nov	2.11	2.18	
6	11 Nov			
7	25 Nov			
8	2 Dec			
9	9 Dec	Midterm exam		Coursework instructions
10	16 Dec			
11	6 Jan			
12	12 Jan			Submission of coursework
13	20 Jan			
14	27 Jan			
15	10 Feb	Final exam		

0.3 Hash-generation

Most solutions to challenges are encrypted using MD5 hashes. In order to check your solution, you need to generate its MD5 hash and compare it to that provided. MD5 hashes can be generated at the following sites:

- Wolfram alpha: http://www.wolframalpha.com/input/?i=md5+hash+of+%22q_1.00%22
- www.md5hashgenerator.com

Since MD5 hashes are very sensitive to even single-digit variation, you must enter the solution exactly. This means maintaining a sufficient level of accuracy when developing your solution, and then entering the solution according to the format below:

Unless specified otherwise, any number from 0.00 to ± 9999.99 should be represented as a normal number to two decimal places. All other numbers should be in scientific form. See the table below for examples.

Solution	Input
1	1.00
-3	-3.00
-3.5697	-3.57
0.05	0.05
0.005	5.00e-3
50	50.00
500	500.00
5000	5000.00
50,000	5.00e4
5×10^{-476}	5.00e-476
5.0009×10^{-476}	5.00e-476
$-\infty$	-infinity (never "infinite")
2π	6.28
i	im(1.00)
2i	im(2.00)
1+2i	re(1.00)im(2.00)
1/i = i/-1 = -i	im(-1.00)
$e^{i2\pi} \left[= \cos(2\pi) + i\sin(2\pi) = 1 + i0 = 1 \right]$	1.00
$e^{i\pi/3} = \cos(\pi/3) + i\sin(\pi/3) = 0.5 + i0.87$	re(0.50)im(0.87)
Choices in order A, B, C, D	abcd

Entry format is given with the problem. So "q_X" means to enter "q_X" replacing "X" with your solution. The first 6 digits of the MD5 sum should match the given solution $(MD5(q_X) = ...)$.

Note that although some answers can usually only be integers (eg, number of elephants), for consistency, to generate the correct hash, the accuracy in terms of decimal places noted above is required.

Chapter 1

Definitions

1.1 Order of a differential equation

Resources

 $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx$

Challenge

What is the sum of the orders of the following equations?

$$\frac{dy}{dx}A = 5x^3 + 3\tag{1.1}$$

$$\cos(y)y'''(x) - y(x) = 25 \tag{1.2}$$

$$\frac{d}{dx}\frac{d^2y}{dx^2} = \frac{x^{-2}}{3} \tag{1.3}$$

Solution

X

 $MD5(e_X) = adb5a9...$

1.2 Linear equations

Resources

• Video: https://www.youtube.com/watch?v=dwNMEMOGO_o

• Text: http://www.myphysicslab.com/classify_diff_eq.html

• Text: http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx

Comment

Using a function x dependent on time t as an example, a differential equation is defined as being linear if it can be written in the form

$$f_n(t)\frac{d^n x}{dt^n} + \dots + f_1(t)\frac{dx}{dt} + a_0(t)x + C = 0$$
 (1.4)

Here, $f_n(t)$ is a function of time only, such as 5t or $2/t^2$ or may even be constant with time (eg, 3). Any of the f_n 's and the constant C may be zero. If it is possible to arrange an equation into the above form, then the equation must be linear. So for a linear equation, x(t), x'(t), tx(t), $3t^2x'''(t)$ are linear terms in x, but $x(t)^2$, x(t)x'(t) and 5tTan(x) are non-linear terms.

Challenge

Sum the points corresponding to the equations that are linear:

1 point: $\frac{dx}{dt} = 5t^3 + 3$.

2 points: cos(x)x'''(t) - x(t) = 25.

4 points: $\frac{d}{dt}\frac{d^2x}{dt^2} = \frac{t^{-2}}{3}$.

8 points: $x'(t) - \sin(x(t)) = 0$.

16 points: x'(t) - x(t) = 0.

32 points: tx'(t) - x(t) = 0.

Solution

 \mathbf{X}

 $MD5(r_X) = 9aea7d...$

1.3 Valid solutions

Resources

 $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx$

Challenge

Use substitution to prove that

$$y = \frac{5}{5+x} \tag{1.5}$$

is a solution to the equation

$$xy' + y = y^2 \tag{1.6}$$

and state the value of x for which the solution is undefined.

Solution

Value of x for which solution is undefined: X

 $MD5(t_X) = c69a20...$

1.4 Range of valid solutions

Resources

 $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx$

Challenge

Use substitution to prove that

$$y = -\sqrt{100 - x^2} \tag{1.7}$$

is a solution to the equation

$$x + yy' = 0 ag{1.8}$$

and state the range of x for which the solution is valid. Enter the value of the lower range as the solution below.

Solution

Χ

 $MD5(y_X) = ef0eb9...$

Chapter 2

1st-order differential equations

2.1 Determining a simple DE from a description

Resources

 $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/Definitions.aspx$

• Book: Chapter 1.2

Challenge

Newton's law of cooling states that the rate of cooling of an object is proportional to the temperature difference with the ambient surroundings. (a) Write a differential equation describing this situation. (b) Assuming a proportionality constant of 0.2 /hour, what is the rate of temperature change when the object is at $30\,^{\circ}\text{C}$?

Solution

X °C/hour

 $MD5(q_X) = 078383...$

2.2 Direction (Slope) fields

Resources

- $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/DirectionFields.aspx$
- Video 1: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/differential-equations-intro/v/creating-a-slope-field
- Video 2: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/differential-equations-intro/v/slope-field-to-visualize-solutions
- Book: Chapters 1.1, 1.2

Comment

It is good practise to try drawing the below fields before looking at the next page. You need to be able to go in both directions (ie, drawing and recognising).

Question

Try drawing the slope field for at least 3 of the equations given below (your choice). Then, put the slope fields given on the next page in the same order as these equations.

- 1. y' = x
- 2. y' = 0.2y
- 3. y' = 0.2y(1 y/6)
- 4. y' = (x y)/(x + y)
- 5. y' = 2(y-1)/x
- 6. y' = 2y/(x+5)

Solution

X (eg, "abcdef")

 $\mathrm{MD5}(q_X) = 743eb9.\dots$

2.3 Solving a simple 1st-order linear equation

Resources

• Video: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/differential-equations-intro/v/finding-particular-linear-solution-to-differential-equation

Comment

It's not easy to see when equations can be solved simply, like in the challenge below, and when they can not. But for a 1st-order linear differential equation, this method is often good to try first. If it's not 1st order and not linear, you know to try a different approach.

Challenge

Determine the value of y(x = 1) for the following equation:

$$y' = 2y - 5x + 2 \tag{2.1}$$

Solution

Χ

 $MD5(u_X) = 505c7b...$

2.4 Separable equations I

Resources

- $\bullet \ \ \, Video\ I: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/separable-equations/v/separable-differential-equations-introduction \\$
- Video II: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/separable-equations/v/particular-solution-to-differential-equation-example
- Text:http://tutorial.math.lamar.edu/Classes/DE/Separable.aspx

Challenge

Given the following equation: $r' = -Sin(\theta) \tag{2.2}$

Determine the function $r(\theta)$ that passes through the point (0,1) in $\theta-r$ space, and then solve for $\theta=\pi/4$.

Solution

Χ

 $MD5(i_X) = 7b35e2...$

2.5 Separable equations II

Resources

- $\bullet \ \ \, Video\ I: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/separable-equations/v/separable-differential-equations-introduction \\$
- Video II: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/separable-equations/v/particular-solution-to-differential-equation-example
- Text:http://tutorial.math.lamar.edu/Classes/DE/Separable.aspx

Challenge

Given the following equation:

$$r'\cot(\theta) + r = 2 \tag{2.3}$$

Determine the function $r(\theta)$ that passes through the point (0,1) in $\theta-r$ space, and then solve for $\theta=\pi/4$.

Solution

Χ

 $MD5(o_X) = 87ee92...$

2.6 Separable equations III

Resources

- $\bullet \ \ \, Video\ I: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/separable-equations/v/separable-differential-equations-introduction \\$
- Video II: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/separable-equations/v/particular-solution-to-differential-equation-example
- Text:http://tutorial.math.lamar.edu/Classes/DE/Separable.aspx

Challenge

Given the following equation:

$$y'x^2 - y = 0 (2.4)$$

Determine the function y(x) that passes through the point x = 2, y = 1 and then solve for the given x value. State the value of x where the solution is undefined.

Solution

Solve for x = 4:

Χ

 $MD5(p_X) = 09bb0e...$

Value of x where solution is undefined:

Χ

 $MD5(a_X) = b30fe7...$

2.7 Compound increase

Challenge

If the amount of bacteria on a surface increases by 20% every 25 hours, how much does the amount grow per hour in percentage terms? Ie, if one observes the amount of bacteria one hour from now, by what percentage should one expect the amount of bacteria to have increased?

X% MD5(s_X) = 4288d8...

2.8 Logistic equation

Resources

• Videos: The 5 videos on the logistic differential equation and function starting at: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/logistic-differential-equation/v/modeling-population-with-differential-equations

Challenge

Using the logistic equation, assuming an increase in the amount of bacteria measured in mg of 20% every 25 hours, an initial amount of bacteria of 20 mg and a limiting amount of 400 mg, how much time, rounded to the nearest integer hours, must one wait to reach 300 mg of bacteria?

Solution

X hours (expressed as an integer) $MD5(d_X) = b0d406...$

2.9 Autonomous differential equations

Resources

- $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/EquilibriumSolutions.aspx$
- Wikipedia: https://en.wikipedia.org/wiki/Autonomous_system_(mathematics)

Challenge

Add the points of the autonomous differential equations in the following list:

```
1 point: y' = cos(y) - 5
```

2 points:
$$y' = cos(y)/x - 5$$

4 points:
$$y' = cos(y)/x - 5/x$$

8 points:
$$y^2 = y'y + 5$$

16 points:
$$xy' = 5y$$

32 points:
$$y' = 1$$

Solution

Χ

$$MD5(f_-X) = 9bf043...$$

2.10 The stability of solutions I

Resources

 $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/EquilibriumSolutions.aspx$

Challenge

Considering the logistic equation N' = 0.2t(1 - N/6), make 3 separate lists containing any equilibrium, semi-stable and unstable y-values.

To check your answer, sum the value of each list. If there are no values in a list, simply enter "none" to check the result.

Solution

Equilibrium

Χ

 $MD5(g_X) = 2c32d8...$

Semi-stable

Χ

 $MD5(h_X) = 8b595d...$

Unstable

Χ

 $MD5(j_X) = 4fd3f6...$

2.11 The stability of solutions II

Resources

 $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/EquilibriumSolutions.aspx$

Challenge

Considering the differential equation $y' = (y^2 - 16)(y + 3)^2$, make 3 separate lists containing any equilibrium, semi-stable and unstable y-values.

To check your answer, sum the value of each list. If there are no values in a list, simply enter "none" to check the result.

Solution

Equilibrium

Χ

 $MD5(k_X) = 667798...$

Semi-stable

Χ

 $MD5(z_X) = 200aa3...$

Unstable

Χ

 $MD5(x_X) = d1ee5b...$

2.12 Euler's method

Resources

- Videos and exersizes in the "Euler's Method" section of Khan academy: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/eulers-method-tutorial/v/eulers-method
- $\bullet \ \, {\rm Text:} \ \, http://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx$

Challenge

Considering the differential equation y' = 10 - y, an initial value of y(0) = 1 and a step size of $\Delta x = 0.2$, use Euler's method to estimate the value of y(x = 1). The actual solution, $y(x) = 10 - 9e^{-x}$, is shown below.

Solution

Χ

 $MD5(c_X) = 1f90fa...$

2.13 Exact differential equations: derivation

Resources

• Videos: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exact-equations/v/exact-equations-intuition-1-proofy

Challenge

If

$$\frac{d\psi(x,y)}{dx} = \cos(x)\sin(y) + x^2y' - (x+y)/100$$
 (2.5)

what is $\frac{\partial \psi}{\partial x}$?

To check your answer, substitute x = 3.1 and y = -2x into the resulting equation.

Solution

Χ

 $MD5(v_X) = a51df7...$

2.14 Exact differential equations: possible solutions given ψ_x

Resources

- Videos: Exact equations intuition 1,2 and examples 1,2,3 starting from https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exact-equations/v/exact-equations-intuition-1-proofy
- Text: http://tutorial.math.lamar.edu/Classes/DE/Exact.aspx

Challenge

Sum the points of all the possible solutions to the integral of the differential equation:

$$\psi_x = 6x - 3e^x \sin(y) \tag{2.6}$$

1 point: $3x^2 - 3e^x sin(y) + 4$ 2 points: $3x^2 - 3e^x sin(y) + x$ 4 points: $3x^2 - 3e^x sin(y) + y$ 8 points: $3x^2 - 3e^x sin(y) + yx$ 16 points: $3x^2 - 3e^x sin(y) + y^2$ 32 points: $3x^2 - 3e^x sin(y) + 5sin(y)$ 64 points: $3x^2 - 3e^x sin(y) + 5sin(y)cos(x)$

Solution

Χ

 $MD5(b_X) = 408993...$

2.15 Exact differential equations: identification

Resources

- Videos: Exact equations intuition 1,2 starting from https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exact-equations/v/exact-equations-intuition-1-proofy
- Text: http://tutorial.math.lamar.edu/Classes/DE/Exact.aspx

Challenge

Sum the points of the equations below that are exact differential equations:

1 point:
$$(3x^2y + 8xy^2)dx + (x^3 + 8x^2y + 12y^2)dy = 0$$

2 points:
$$sin(x)cos(y)dx + cos(x)sin(y)dy = 0$$

4 points:
$$sin(x)cos(y)dx + sin(x)sin(y)dy = 0$$

8 points:
$$\frac{dx}{x} + \frac{dy}{y} = 0$$

16 points:
$$-\frac{ydx + xdy}{x^2} = 0$$

32 points:
$$-\frac{ydx - xdy}{x^2} = 0$$

Solution

Χ

$$MD5(n_X) = 868f48...$$

2.16 Exact differential equations: solving

Resources

- Videos: Exact equations examples 1,2,3 starting from https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/exact-equations/v/exact-equations-example-
- Text: http://tutorial.math.lamar.edu/Classes/DE/Exact.aspx

Challenge

Solve the exact differential equations (EDE's) in challenge 2.15 applying the following conditions in the same order as the EDE's appeared before.

1st EDE

No need to try to solve this one.

2nd EDE

Use the condition $y(\pi/4) = \pi/4$ to find an explicit solution for the equation and then evaluate y at $x = \pi$.

3rd EDE

Use the condition y(1) = 3 to find an explicit solution for the equation and then evaluate y at x = 4.

4th EDE

Use the condition y(1) = 2 to find an explicit solution for the equation and then evaluate y at x = 1.

Solution

2nd EDE

Χ

 $MD5(m_X) = af87e2...$

3rd EDE

X

 $MD5(aa_X) = d01c3d...$

4th EDE

X

 $MD5(bb_X) = 5e1074...$

Study-time (from end of previous challenge to end of this challenge): $\underline{\qquad \qquad \text{minutes}}$