1		
7	Date 1	
	Exercise 15 Page	
	gamma (A, B) = 1 29-1 = 1	d)
Q.1.	gamma (A,B) = 1 2 2 e B	
	(9) 4 5 (9) via	
	Standard form: P(y10) = h(y)exp[n(0)T(y)-	T(8) Y
	" " " " " " " " " " " " " " " " " " "	-1
	Gamma (A,B) = 1/1/1 / 2 e-1/B	
	1 TUDBY	
	Taking 10g and exponents throughout	
	1 exp [-109 T(A) - X109 B + X109 1 - 17	
_	A L P J B J	
	compainy above egn. with standard form:	
110		
160	mobily) and with	
	N(B) = [X, /B] T	
	$T(y) = L\log \lambda, -\lambda J^{-1}$	
1	4(8) = [-109 T(x) - x109 B7] =	-
-	19 (N) P'	

Scanned with CamScanner

Posteriore

DP(0/y) = TT, Gamma (d, + \(\frac{1}{2}\) \(\beta_1\)

+ TT' \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)

+ TT' \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)

+ TT' \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)

+ TT' \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)

+ TT' \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) d) p(0/y) = T, Gamma (8 + Eyi, 0.1) + M2 Gamma (16+ Eyi, 0.1) + TT3 Garoma (24 + Eyi, 0.1 0.10+1) $\Pi'_{1} = 0.33p_{1}(y)$ $0.33p_{1}(y) + 0.33p_{2}(y) + 0.34p_{3}(y)$ $T_2' = 0.33 p_2(y)$ $0.33 p_1(y) + 0.33 p_2(y) + 0.34 p_3(y)$ $TT_3' = 0.34 P_3 (y)$ $0.33 P_1(y) + 0.33 P_2(y) + 0.34 P_3(y)$

