Coursera Course Project Part 1

Patrick 12/28/2016

Part 1

```
## set parameters
numsim <- 1000
n <- 40
lambda <- .20
set.seed(123)

simulation1 <- matrix(rexp(numsim*n, rate = lambda), numsim)
simulationmeans <- apply(simulation1, 1, mean)
hist(simulationmeans)</pre>
```

Histogram of simulationmeans

1.1 Theoretical distribution vs sample distribution

no we compare the distributions of the sample mean versus the theoretical mean

```
actual_mean <- mean(simulationmeans)
theoretical_mean <- 1/lambda
print(actual_mean)</pre>
```

```
## [1] 5.011911
```

```
print(theoretical mean)
```

```
## [1] 5
```

the sample mean (5.01) approximates the theoretical mean (5.0), not quite the same but almost.

1.2 Theoretical Variance vs Sample Variance

```
sample_variance <- var(simulationmeans)
theoretical_variance <- (1/lambda)^2/n
print(sample_variance)</pre>
```

```
## [1] 0.6088292
```

```
print(theoretical variance)
```

```
## [1] 0.625
```

Again the sample mean (.608) approximates the theoretical variance (.625)

1.3 demonstrate distribution approximates normal distribution

hist(simulationmeans)

Histogram of simulationmeans

the looks of the graph our data does indeed seem to be normaly distributed.

We can run a run a Shapiro-Wilk test to support our observation.

```
##
## Shapiro-Wilk normality test
##
## data: simulationmeans
## W = 0.99474, p-value = 0.001491
```