CBM414 - Procesamiento digital de señales biomédicas Clase 08 - Respuesta al impulso

David Ortiz, Ph.D.

Escuela de Ingeniería Biomédica Universidad de Valparaíso

Objetivo general

Estudiar con mayor detalle la respuesta al impulso y sus tipos

Clase anterior:

• Sistemas discretos lineales e invariantes en el tiempo 3.2

Clase de hoy:

- Respuesta al impulso 3.3
- Respuesta al impulso finita a infinita (FIR/IIR) 3.4

Esta presentación es una recopilación del texto guía de Orfanidis y no contiene todos los temas abordados en clase. Por favor, reportar posibles errores al correo david ortiz@uv.cl.

Impulso

Definición: delta de Kronecker

$$\delta(n) = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{si } n \neq 0 \end{cases}$$

Nota: El **delta de Kronecker** es discreto, definido solo para valores enteros, y es 1 cuando n=0, y 0 en otros casos. El **delta de Dirac** es continuo, una distribución que es infinita en t=0 y 0 en otros valores, con integral 1 en todo el dominio.

Respuesta al impulso

Un sistema LTI está caracterizado en forma única por su respuesta al impulso. La respuesta al impulso h(n) (discreta) se define como la respuesta del sistema H cuando su entrada es $\delta(n)$ (discreto), i.e., $h(n) = H(\delta(n))$,

$$\{1,0,...,0,...\} \stackrel{H}{\to} \{h_0,h_1,...,h_n,...\}$$

Ver clase 01 para comparación con sistema continuo, donde y(t) = T(x(t)), para T un sistema LTI y su respuesta al impulso $h(t) = T(\delta(t))$

Respuesta al impulso

Notar que una $\mathbf{secuencia}\ x(n)$ arbitraria se puede escribir como

$$x(n) = \cdots + x(0)\delta(n) + x(1)\delta(n-1) + x(2)\delta(n-2) + \cdots$$

Como el sistema es LTI

tema es LTI
$$y(n)=\cdots+x(0)h(n)+x(1)h(n-1)+x(2)h(n-2)+\cdots.$$
 compacta

O en forma compacta

$$y(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$
 (Forma LTI)
$$= \sum_{m=-\infty}^{\infty} h(m)x(n-m)$$
 (Forma Directa)

Filtros FIR (Finite Impulse Responce)

Un filtro FIR tiene una respuesta al impulso h(n) que se extiende solo sobre un intervalo de tiempo finito, digamos $0 \le n \le M$, y es idénticamente cero más allá de ese punto,

$$\mathbf{h} := [h_0, h_1, h_2, ..., h_M, 0, 0, 0] = [h_0, h_1, h_2, ..., h_M], \quad \mathbf{h} \in \mathbb{R}^{M+1}$$

donde M se conoce como el orden del sistema (orden del filtro) y cada $h_0,h_1,h_2,...,h_M$ se le conoce como "Coeficientes del filtro" o "pesos del filtro". Considerando la convolución, la regla I/O del sistema (filtro) FIR se simplifica como

$$y(n) = \sum_{m=0}^{M} h(m)x(n-m)$$

o, en forma explícita

$$y(n) = h_0 x(n) + h_1 x(n-1) + \dots + h_M x(n-M)$$

Filtros FIR (Finite Impulse Responce)

Ejemplo 1: Filtro FIR de segundo orden con coeficientes $\mathbf{h}:=[h_0,h_1,h_2]$, ¿cómo sería de tercer orden?

Ejemplo 2: Determinela respuesta al impulso h de los siguientes filtros FIR:

•
$$y(n) = 2x(n) + 3x(n-1) + 5x(n-2) + 2x(n-3)$$

• $y(n) = x(n) - x(n-4)$

$$y(n) = x(n) - x(n-4)$$

Filtros IIR (Infinite Impulse Responce)

Para un sistema IIR, la forma directa de la convolución es

$$y(n) = \sum_{m=0}^{\infty} h(m) x(n-m), \quad h(n) = 0 \ {
m para} \ n < 0$$

Por su naturaleza infinita, muchos filtros IIR no son factibles computacionalmente. Es por esto que nos restringiremos a los sistemas descritos por ecuaciones de diferencias lineales con coeficientes constantes

Filtros IIR (Infinite Impulse Responce)

Ejemplo: Supongamos que los coeficientes del filtro h(n) satisfacen la ecuación de diferencias

$$h(n) = ah(n-1) + \delta(n), \quad a \in \mathbb{R}$$

Determine la ecuación de diferencias (regla I/O) que relaciona una señal de entrada general x(n) con la salida correspondiente y(n).

Solución: Asumiendo C.I. h(-1) = 0, tenemos

$$h(0) = ah(-1) + \delta(0) = a \cdot 0 + 1 = 1$$

$$h(1) = ah(0) + \delta(1) = a \cdot 1 + 0 = a$$

$$h(2) = ah(1) + \delta(2) = a \cdot a + 0 = a^{2}$$

$$h(3) = ah(2) + \delta(3) = a \cdot a^{2} + 0 = a^{3}$$

Filtros IIR (Infinite Impulse Responce)

Por lo tanto, encontramos la solución

$$h(n) = a^n u(n) = \begin{cases} a^n, & \text{si } n \ge 0\\ 0, & \text{si } n \le -1 \end{cases}$$

Sustituyendo en su forma directa, tenemos

$$y(n) = x(n) + ax(n-1) + a^{2}x(n-2) + a^{3}x(n-3) + \cdots$$

= $x(n) + a \left[x(n-1) + ax(n-2) + a^{2}x(n-3) + \cdots \right]$

La suma en los corchetes ahora se reconoce como la salida anterior y(n-1). Por lo tanto, obtenemos la ecuación de diferencias I/O:

$$y(n) = ay(n-1) + x(n)$$

Como se esperaba, es la misma ecuación de diferencias que satisface h(n).

Comparación filtros FIR e IIR

Izquierda: filtro FIR de orden 100; derecha: filtro IIR de orden 2

Comparación filtros FIR e IIR

Señal de voz, en azul sin filtrar y con pitido a 440Hz, en rojo, señal filtrada.

Comparación filtros FIR e IIR

Desfase de filtro FIR

Corrección de fase

Ejercicios (Orfanidis)

- Ejemplos (resueltos): 3.4.1 3.4.9
- Ejercicios (Solucionario): 3.5, 3.6, 3.11, 3.13, 3.16, 3.17, 3.18

Objetivo general

Estudiar con mayor detalle la respuesta al impulso y sus tipos

Clase de hoy:

- Respuesta al impulso (3.3)
- Filtros FIR e IIR (3.4)

Próxima clase:

Causalidad y estabilidad (3.5)

Referencias:

1. S. J. Orfanidis, *Introduction to signal processing*. Rutgers University, 2010. Disponible en https://eceweb1.rutgers.edu/~orfanidi/intro2sp/2e/