Fundamentals (Numbers, Sets, Words, Functions, and Relations)

Problem 1

How many numbers are there between 100 and 1000 that are

- (a) divisible by 3?
- (b) divisible by 5?
- (c) divisible by 15?

Solution

Using the formula $\left\lfloor \frac{m}{k} \right\rfloor - \left\lfloor \frac{n-1}{k} \right\rfloor$:

- $\left| \frac{1000}{3} \right| \left| \frac{99}{3} \right| = 300$ numbers divisible by 3 (102, 105, . . . , 999);
- $\left| \frac{1000}{5} \right| \left\lfloor \frac{99}{5} \right\rfloor = 181$ numbers divisible by 5 (100, 105, ..., 1000);
- $\left| \frac{1000}{15} \right| \left| \frac{99}{15} \right| = 60$ numbers divisible by 15 (105, 120, . . . , 990).

Problem 2

Let $\Sigma = \{a, b, c\}$ and $\Phi = \{a, c, e\}$.

- (a) How many words are in the set Σ^2 ?
- (b) What are the elements of $\Sigma^2 \setminus \Phi^*$?
- (c) Is it true that $\Sigma^* \setminus \Phi^* = (\Sigma \setminus \Phi)^*$? Why?

Solution

- (a) $\Sigma^2 = \{aa, ab, ac, ba, \dots, cc\}$, hence $|\Sigma^2| = 3 \cdot 3 = 9$.
- (b) $\Sigma^2 \setminus \Phi^* = \{ab, ba, bb, bc, cb\}$, that is, all words in Σ^2 with the letter b.
- (c) No; for example, $ab \in \Sigma^*$ and $ab \notin \Phi^*$, hence $ab \in \Sigma^* \setminus \Phi^*$; but $\Sigma \setminus \Phi = \{b\}$, hence $ab \notin (\Sigma \setminus \Phi)^*$.

Problem 3

Prove that $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Solution

Using the laws of set operations (and the derived DeMorgan's law) we have:

```
(A \setminus B) \cup (B \setminus A) = (A \cap B^c) \cup (B \cap A^c)
                                                                                               (Definition)
                = ((A \cap B^c) \cup B) \cap ((A \cap B^c) \cup A^c)
                                                                                                   (Distrib.)
                = (B \cup (A \cap B^c)) \cap (A^c \cup (A \cap B^c))
                                                                                                (Commut.)
                = ((B \cup A) \cap (B \cup B^c)) \cap ((A^c \cup A) \cap (A^c \cup B^c))
                                                                                                   (Distrib.)
                = ((A \cup B) \cap (B \cup B^c)) \cap ((A \cup A^c) \cap (A^c \cup B^c))
                                                                                                   (Comm.)
                = ((A \cup B) \cap \mathcal{U}) \cap (\mathcal{U} \cap (A^c \cup B^c))
                                                                                          (Complement)
                = ((A \cup B) \cap \mathcal{U}) \cap ((A^c \cup B^c) \cap \mathcal{U})
                                                                                                   (Comm.)
                = (A \cup B) \cap (A^c \cup B^c)
                                                                                                  (Identity)
                = (A \cup B) \cap (A \cap B)^c
                                                                                           (De Morgan's)
                = (A \cup B) \setminus (A \cap B)
                                                                                               (Definition)
```

Solution

Alternative proof: We show in both directions that if an element belongs to $(A \setminus B) \cup (B \setminus A)$ then it also belongs to $(A \cup B) \setminus (A \cap B)$ and vice versa:

- Suppose that an element $x \in (A \setminus B) \cup (B \setminus A)$. Therefore, either $x \in A \setminus B$ or $x \in B \setminus A$. In either case, we conclude that $x \in A \cup B$ and (by the definition of set difference) $x \notin A \cap B$. Therefore, $x \in (A \cup B) \setminus (A \cap B)$.
- Suppose than $x \in (A \cup B) \setminus (A \cap B)$. This means that $x \in A \cup B$ (and, therefore, either $x \in A$ or $x \in B$), but $x \notin A \cap B$. If $x \in A$ and $x \notin A \cap B$, then $x \in A \setminus B$; alternatively, if $x \in B$ and $x \notin A \cap B$, then $x \in B \setminus A$. In either case, we conclude that $x \in (A \setminus B) \cup (B \setminus A)$.

Problem 4

Consider the relation $R \subseteq \mathbb{R} \times \mathbb{R}$ defined by aRb if, and only if, $b + 0.5 \ge a \ge b - 0.5$. Is R

- (a) reflexive?
- (b) antireflexive?
- (c) symmetric?
- (d) antisymmetric?
- (e) transitive?

Solution

- (a) Yes, since $a + 0.5 \ge a \ge a 0.5$ for all $a \in \mathbb{R}$
- (b) No; see (a)
- (c) Yes, since $(b + 0.5 \ge a) \land (a \ge b 0.5)$ implies $(b \ge a 0.5) \land (a + 0.5 \ge b)$.
- (d) No; e.g. $(0,0.1) \in R$ and $(0.1,0) \in R$.
- (e) No; e.g. $(1.1, 1.5) \in R$ and $(1.5, 1.9) \in R$ but $(1.1, 1.9) \notin R$ since 1.9 0.5 > 1.1

Problem 5

For each of the following statements, provide a valid proof if it is true for all sets S and all relations $R_1 \subseteq S \times S$ and $R_2 \subseteq S \times S$. If the statement is not always true, provide a counterexample.

- (a) If R_1 and R_2 are symmetric, then $R_1 \cap R_2$ is symmetric.
- (b) If R_1 and R_2 are antisymmetric, then $R_1 \cup R_2$ is antisymmetric.

Solution

- (a) We will show that if R_1 and R_2 are symmetric, then $R_1 \cap R_2$ is symmetric. Suppose $(a,b) \in R_1 \cap R_2$. Then $(a,b) \in R_1$ and $(a,b) \in R_2$. Because R_1 is symmetric, $(b,a) \in R_1$. Because R_2 is symmetric, $(b,a) \in R_2$. Therefore $(b,a) \in R_1 \cap R_2$. Therefore $R_1 \cap R_2$ is symmetric.
- (b) This is not the case. Consider relations on \mathbb{N} : $R_1 = \leq$ and $R_2 = \geq$. We have $1 \leq 2$, so $(1,2) \in R_1$ and $(2,1) \in R_2$. Therefore, $(1,2), (2,1) \in R_1 \cup R_2$ but $1 \neq 2$.