

Overview

• Fourier Transforms

Material adapted from lectures by
Dr M.E. Angoletta at DISP2003,
a DSP course given by CERN and University of Lausanne (UNIL)

LML Audio Processing and Indexing

Fourier Transforms

- Frequency analysis
- A tour of Fourier Transforms
- Continuous Fourier Series (FS)
- Discrete Fourier Series (DFS)

LML Audio Processing and Indexing

3

Frequency Analysis

- Fast & efficient insight on the signal's components.
- Powerful & complementary to time domain analysis techniques.
- Simplifies the original problem Filtering, solving Part.Diff.Eqns. (PDE),...
- Many transforms: Fourier, Discrete Cosine, Laplace, z, Wavelet, etc.

Polar Coordinates in \mathbb{R}^2 Relation between Polar coordinates (r, φ) and Cartesian coordinates (x,y): $x = r \cos \varphi$ $y = r \sin \varphi$ LML Audio Processing and Indexing

Complex Numbers and Functions

Let $z = r e^{i\phi}$, then $\bar{z} = r e^{-i\phi}$ (alternative notation: z^*)

Let $z_1 = r_1 e^{-i\phi_1}$, and $z_2 = r_2 e^{-i\phi_2}$, then

 $\operatorname{Im} \bigcap_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$ $\operatorname{sin} \varphi$ $0 \cos \varphi$ Re

Let f a given frequency.

Let $h(t) = e^{i2\pi ft}$ then $h(t) = \cos 2\pi ft + i \sin 2\pi ft$, thus h(t) is a function that is 'repeating' over time with frequency f

360°

LML Audio Processing and Indexing

History Fourier Transform (1/2)

- 1669: Newton: light spectra (specter = ghost) but no "frequency" concept (no waves).
- > 18th century: two important problems
 - → celestial bodies orbits: Lagrange, Euler & Clairaut approximate observation data with linear combination of periodic functions; Clairaut, 1754(!) first DFT formula.
 - vibrating strings: Euler describes vibrating string motion by sinusoids (wave equation).
 - → But consensus was: sum of sinusoids only represents smooth curves.
- ➤ 1807: Fourier presents his work on heat conduction ⇒ Fourier analysis born.
 - → <u>Diffusion equation</u> ⇔ series (infinite) of sines & cosines.
 - → Strong criticism by peers blocks publication.
 - → Work published, 1822 ("Theorie Analytique de la chaleur"). LML Audio Processing and Indexing

History Fourier Transform (2/2)

> 19th / 20th century: two paths for Fourier analysis - Continuous & Discrete.

CONTINUOUS

- → Fourier extends the analysis to arbitrary functions (Fourier Transform).
- → Dirichlet, Poisson, Riemann, Lebesgue address Fourier Series convergence.
- → Other FT variants born from varied needs (ex.: Short Time FT speech analysis).

DISCRETE: Fast calculation methods (FFT)

- → 1805 Gauss, first usage of FFT (manuscript in Latin went unnoticed!!! Published 1866).
- → 1965 IBM's Cooley & Tukey "rediscover" FFT algorithm ("An algorithm for the machine calculation of complex Fourier series").
- → Other DFT variants for different applications (ex.: Warped DFT filter design & signal compression).
- → FFT algorithm refined & modified for most computer platforms.
- → Fastest Fourier Transform in the West (FFTW)

LML Audio Processing and Indexing

Fourier Se	ries Prop	erties	
	Time (t)	Frequency (f)	
Homogeneity	a⋅s(t)	a⋅S(f)	
Additivity	s(t) + u(t)	S(f)+U(f)	
Linearity	$a \cdot s(t) + b \cdot u(t)$	$a \cdot S(f) + b \cdot U(f)$	
Time reversal	s(-t)	S(-f)	
Multiplication	s(t)·u(t)	$\frac{1}{T} \cdot \int_{0}^{T} S(f-t) \cdot U(t) dt$	
Convolution	$\sum_{m=-\infty}^{\infty} s(m)u(t-m)$	S(f)·U(f)	
Time shifting	$s(t-\bar{t})$	$e^{-i\frac{2\pi f \cdot t}{T}} \cdot S(f)$	
Frequency shifting	$e^{+i\frac{2\pi m t}{T}} \cdot s(t)$	S(f - m)	

Fourier Transforms

Let s(.) a signal in the time domain: s(t) values as a function of time t (- ∞ < t < ∞)

The same signal can be described as amplitudes and phases (complex values) S(.) in the frequency domain: S(f) values as a function of frequency f $(-\infty < f < \infty)$

One can transform the representation s(t) in the time domain to the representation S(f) in the frequency domain by using the Fourier Transform equation:

$$S(f) = \int_{-\infty}^{\infty} s(t).\dot{e}^{2\pi i f t} dt$$

And back, using the inverse FT-equation:

$$s(t) = \int_{-\infty}^{\infty} S(f) . e^{-2\pi i f t} df$$

LML Audio Processing and Indexing

some bisci	ete Fourier	Series Propertie	es
	Time (n)	Frequency (k)	
Homogeneity	a⋅s[n]	a⋅S(k)	
Additivity	s[n] + u[n]	S(k)+U(k)	
Linearity	a·s[n] + b·u[n]	$a \cdot S(k) + b \cdot U(k)$	
Multiplication	s[n] ·u[n]	$\frac{1}{N} \cdot \sum_{h=0}^{N-1} S(h) U(k-h)$	
Convolution	$\sum_{m=0}^{N-1} s[m] \cdot u[n-m]$	S(k)·U(k)	
Time shifting	s[n - m]	$e^{-i\frac{2\pi k \cdot m}{T}} \cdot S(k)$	
Frequency shifting	$e^{+i\frac{2\pihn}{T}}\cdot s[n]$	S(k - h)	
I	ML Audio Processing and Indexir	ng	

References

 Serge Lang, Linear Algebra, Springer Verlag New York Inc, 3rd Edition 1987.

LML Audio Processing and Indexing

Schedule	tentative	visit	reau	larly).
Schedule	nemanve,	VISIL	regu	iaiiy <i>j</i> .

6-9	Organization and Introduction
13-9	Audio Production and Processing
20-9	ADC and an Algebraic Introduction to FT
27-9	FFT & FFT Workshop
4-10	Project Proposals (presentations by
	students)
11-10	Audio Features & workshop and data
18-10	Machine Learning
25-10	Student Paper Presentations I
1-11	Student Paper Presentations II
8-11	Student Paper Presentations III
15-11	Student Paper Presentations IV
22-11	No Class-Online Project Progress Meetings
29-11	Final Project Presentations Demo's
12-12	Project Deliverables:
	- Final Technical Project
	- Paper (4-8 pages), code, and
	- Web Site (or github)

Assignments (workshops):

- Vocal Tract Workshop. Due: September 20th 2022.
- FFT Workshop and <u>audio_data</u>. Due October 10th 2022.
- 3. Audio Features Workshop. Due 2022.
- 4. Machine Learning Workshop. Due 2022.

39

API Project Proposals (October 4th 2022)

5 minute Presentations (4 slides) addressing:

- Title + group members (1 5 members)
- · Problem description
- Challenges
- What will be the goal for the Final Project Presentation/Demo
- Note: If the group consists of more than 1 member, add a 5th slide with an initial global division of the work between project members. This slide does not have to be presented.

Each API Project member should submit a copy of the pdf with the slides of the API Project Proposal Presentation on Bright space before October 3rd 2022.

LML Audio Processing and Indexing

API Project Proposals (October 4th 2022)

For inspiration:

- See previous projects on https://www.liacs.nl/~erwin/api
- International Society for Music Information Retrieval (ISMIR) http://www.ismir.net/conferences/
- INTERSPEECH https://www.isca-speech.org/iscaweb/index.php/online-archive
- Online proceedings:
 - https://dblp.org/db/conf/index.html
 - https://dblp.org/db/conf/interspeech/index.html
 - https://dblp.org/search?q=eurasip
 - Etc.

LML Audio Processing and Indexing