Devoir N°4

Exercice: 01

On considère un dé cubique équilibré à six faces dont deux portent le chiffre 1 et les autres portent le chiffre 2.

On dispose de deux urnes U₁ et U₂ contenant des boules indiscernables au toucher.

- L'urne U₁ contient une boule blanche et trois boules rouges.
- L'urne U₂ contient deux boules blanches et deux boules rouges.

Une épreuve consiste à lancer une fois le dé : Si la face supérieure porte le chiffre 1, on tire au hasard une boule de l'urne U_1 ; si la face supérieure porte le chiffre 2, on tire au hasard une boule de l'urne U_2 .

On considère les événements suivants :

D: « La face supérieure du dé porte le chiffre 1 ».

B: « Tirer une boule blanche ».

- 1) a) Montrer que $p(D) = \frac{1}{3}$
 - b) Recopier et compléter l'arbre pondéré ci-contre.

- 2) a) Montrer que p(B) = $\frac{5}{12}$.
 - b) Sachant que l'on a tiré une boule blanche, quelle est la probabilité qu'elle provienne de l'urne U₂?
- On répète l'épreuve cinq fois de suite en remettant à chaque fois la boule tirée dans son urne.

Soit X la variable aléatoire égale au nombre de boules blanches obtenues.

- a) Déterminer la loi de probabilité de X.
- b) Calculer la probabilité d'obtenir une seule fois une boule blanche.
- c) Soit q la probabilité d'obtenir au moins une boule rouge. Calculer q .

Tel: 20 549 351 Page 1

Exercice:02

On considère les intégrales $K = \int_{\sqrt{e}}^{e} \frac{x \ln x}{(x^2 - 1)^2} dx$ et $J = \int_{\sqrt{e}}^{e} \frac{1}{x(x^2 - 1)} dx$

- 1) a) Vérifier que pour tout $x \in \left[\sqrt{e}, e \right], \frac{1}{x(x^2-1)} = \frac{x}{x^2-1} \frac{1}{x}$
 - b) Calculer alors l'intégrale J.
- 2) a) Montrer, à l'aide d'une intégration par parties, que $2 K = J + \frac{1}{2(e+1)^2}$
 - b) En déduire que $K = -\frac{1}{4} + \frac{1}{4} ln(e+1) + \frac{1}{4(e+1)}$.

Exercice: 03

On considère la fonction f définie sur $[0, +\infty [par : \begin{cases} f(x) = -x + 2x \ln x & \text{si } x \in]0, +\infty[\\ f(0) = 0 \end{cases}$

et on note (C) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a Montrer que f est continue à droite en 0.
 - b Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat obtenu.
- 2) a Montrer que $\lim_{x \to +\infty} f(x) = +\infty$.
 - b Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter graphiquement le résultat obtenu.
- 3) a Montrer que pour tout réel $x \in]0, +\infty[$ on a $f'(x)=1+2\ln x$.
 - b Dresser le tableau de variations de f.
 - c Vérifier que $f(\sqrt{e}) = 0$.
 - d Déterminer le deuxième point d'intersection autre que O de la courbe (C) et de la droite Δ d'équation cartésienne y = x.
 - e Tracer la droite Δ et la courbe (C). (On prendra e \approx 2,7)

Tel: 20 549 351 Page 2

- 4) Soit g la restriction de la fonction f à l'intervalle $\left[\sqrt{e}, +\infty\right[$ et (C_1) sa représentation graphique dans le repère $(0, \vec{i}, \vec{j})$.
 - a- Montrer que g admet une fonction réciproque g-1 définie sur un intervalle J que l'on précisera.
 - b-Tracer dans le même repère la courbe (C₂) de g⁻¹.
- 5) On désigne par A l'aire, en u.a, de la partie (E) du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x = √e et x = e et par A' l'aire, en u.a, de la partie (E') limitée par les courbes (C₁), (C₂) et les axes des abscisses et des ordonnées.
 a Justifier que A' = e² -2A.
 - b Montrer que $\int_{\sqrt{e}}^{e} (x \ln x) dx = \frac{1}{4} e^{2}.$
 - c En déduire la valeur de A'.

