

Figure 40.4: Figure (a) shows that a sphere is not convex in \mathbb{R}^3 since the dashed green line does not lie on its surface. Figure (b) shows that a solid ball is convex in \mathbb{R}^3 .

the function f is strictly convex (on C) if for every pair of distinct points $u, v \in C$ ($u \neq v$),

$$f((1-\lambda)u + \lambda v) < (1-\lambda)f(u) + \lambda f(v)$$
 for all $\lambda \in \mathbb{R}$ such that $0 < \lambda < 1$;

see Figure 40.5. The $epigraph^1$ epi(f) of a function $f: A \to \mathbb{R}$ defined on some subset A of \mathbb{R}^n is the subset of \mathbb{R}^{n+1} defined as

$$epi(f) = \{(x, y) \in \mathbb{R}^{n+1} \mid f(x) \le y, \ x \in A\}.$$

A function $f: C \to \mathbb{R}$ defined on a convex subset C is *concave* (resp. *strictly concave*) if (-f) is convex (resp. strictly convex).

It is obvious that a function f is convex iff its epigraph epi(f) is a convex subset of \mathbb{R}^{n+1} .

Example 40.4. Here are some common examples of convex sets.

- Subspaces $V \subseteq E$ of a vector space E are convex.
- Affine subspaces, that is, sets of the form u+V, where V is a subspace of E and $u \in E$, are convex.
- Balls (open or closed) are convex. Given any linear form $\varphi \colon E \to \mathbb{R}$, for any scalar $c \in \mathbb{R}$, the closed half-spaces

$$H_{\varphi,c}^+ = \{ u \in E \mid \varphi(u) \ge c \}, \qquad H_{\varphi,c}^- = \{ u \in E \mid \varphi(u) \le c \},$$

are convex.

¹ "Epi" means above.