

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE

DEVELOPMENT

Title: Exe26 - Clusters of Grain

Name: Chong Mun Chen

IC Number: 960327-07-5097

Date: 31/7/2023

Introduction: Practising Kmeans clustering on a dataset of the measurements of samples of grain.

Conclusion : Succeeded in using the best number of clusters to plot the scatter graph to visualize the different clusters of grain varieties.

How many clusters of grain?

This exercise is taken and modified from https://github.com/benjaminwilson/python-clustering-exercises)

This is a class to choose a good number of clusters for a dataset using the k-means inertia graph. You are given a dataset of the measurements of samples of grain. What's a good number of clusters in this case?

This dataset was obtained from the <u>UCI (https://archive.ics.uci.edu/ml/datasets/seeds)</u>.

Step 1: Load the dataset (written for you).

```
In [1]: import pandas as pd

seeds_df = pd.read_csv('../data_samples2/seeds.csv')
# forget about the grain variety for the moment - we'll use this later
del seeds_df['grain_variety']
```

Step 2: Display the DataFrame to inspect the data. Notice that there are 7 columns - so each grain sample (row) is a point in 7D space! Scatter plots can't help us here.

In [2]: ▶ seeds_df

Out[2]:

	area	perimeter	compactness	length	width	asymmetry_coefficient	groove_length
0	15.26	14.84	0.8710	5.763	3.312	2.221	5.220
1	14.88	14.57	0.8811	5.554	3.333	1.018	4.956
2	14.29	14.09	0.9050	5.291	3.337	2.699	4.825
3	13.84	13.94	0.8955	5.324	3.379	2.259	4.805
4	16.14	14.99	0.9034	5.658	3.562	1.355	5.175
205	12.19	13.20	0.8783	5.137	2.981	3.631	4.870
206	11.23	12.88	0.8511	5.140	2.795	4.325	5.003
207	13.20	13.66	0.8883	5.236	3.232	8.315	5.056
208	11.84	13.21	0.8521	5.175	2.836	3.598	5.044
209	12.30	13.34	0.8684	5.243	2.974	5.637	5.063

210 rows × 7 columns

Step 3: Extract the measurements from the DataFrame using its .values attribute:

```
In [3]:
           samples = seeds df.values
           samples
   Out[3]: array([[15.26
                          , 14.84
                                      0.871 , ...,
                                                   3.312 ,
                                                            2.221,
                                                                     5.22 ],
                  [14.88 , 14.57 ,
                                      0.8811, ...,
                                                                     4.956],
                                                   3.333 ,
                                                            1.018 ,
                          , 14.09
                                      0.905, ...,
                  [14.29
                                                   3.337 ,
                                                            2.699 ,
                                                                     4.825 ],
                  . . . ,
                  [13.2
                                      0.8883, ...,
                                                   3.232 ,
                                                            8.315 ,
                          , 13.66 ,
                                                                     5.056],
                  [11.84
                          , 13.21
                                      0.8521, ...,
                                                   2.836 , 3.598 ,
                                                                     5.044 ],
                  [12.3
                          , 13.34 ,
                                     0.8684, ..., 2.974 , 5.637 , 5.063 ]])
```

Step 4: (Written for you). Measure the quality of clusterings with different numbers of clusters using the inertia. For each of the given values of k, perform the following steps:

- Create a KMeans instance called model with k clusters.
- Fit the model to the grain data samples.
- Append the value of the inertia_ attribute of model to the list inertias.

```
In [4]: M from sklearn.cluster import KMeans
import warnings

warnings.filterwarnings('ignore')

inertias = []
for k in range(1, 6):
    model = KMeans(n_clusters = k, init = 'k-means++', max_iter = 300, n_ir
    model.fit(samples)
    inertias.append(model.inertia_)
```

Step 5: Plot the inertia to see which number of clusters is best. Remember: lower numbers are better!

```
In [5]:  import matplotlib.pyplot as plt

plt.plot(range(1, 6), inertias, marker='o')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('Inertias')
plt.show()
```


Excellent work! You can see from the graph the "best" number of clusters. Use this value for the next steps.

Step 6: Create a KMeans model called model with the best value from the above steps.

Step 7: Use the .fit predict() method of model to fit it to samples and derive the cluster labels.

Calling .fit_predict() is the same as calling .fit() and then calling .predict().

Step 8: Create a DataFrame df with two columns named 'labels' and 'varieties', using labels and varieties, respectively, for the column values.

Out[9]:

		labels	varieties		
	0	2	Kama wheat		
	1	2	Kama wheat		
:	2	2	Kama wheat		
	3	2	Kama wheat		
,	4	2	Kama wheat		
20	5	1	Canadian wheat		
20	6	1	Canadian wheat		
20	7	1	Canadian wheat		
20	8	1	Canadian wheat		
20	9	1	Canadian wheat		

210 rows × 2 columns

Step 9: Use the pd.crosstab() function on df['labels'] and df['varieties'] to count the number of times each grain variety coincides with each cluster label. Assign the result to ct.

Step 10: Display ct by evaluating it - and inspect your cross-tabulation! You'll see that your clustering is pretty good.

In [11]: N	ct			
Out[11]:		Canadian wheat	Kama wheat	Rosa wheat
	0	0	1	60
	1	68	9	0
	2	2	60	10

Now you are done. If you wish, you can also try to plot the clusters to visualize it.

Out[13]: <matplotlib.collections.PathCollection at 0x1bfb7a62b90>

