Feuille de TD 5 : Espaces vectoriels de dimension finie, bases

Applications linéaires

Exercice 1. Les applications suivantes sont-elles des applications linéaires sur \mathbb{R} ? Si oui, indiquez leur noyau et leur image. En déduire si elles sont injectives, surjectives ou bijectives.

Les applications f_4 , f_5 , et f_6 sont-elles linéaires sur \mathbb{C} ?

Exercice 2. On définit l'application φ :

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (x+y+z,2x+z,2x+y) \end{array} \right.$$

Montrer que φ est un isomorphisme de \mathbb{R}^3 dans lui-même. On considère le sous-espace de \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3; 2x + y + z = 0\}.$$

Calculer $\varphi(F)$.

Familles Libres, Familles Génératrices et Bases

Exercice 3. Les familles suivantes sont-elles libres?

- 1. $v_1 = (1, 0, 1), v_2 = (0, 2, 2)$ et $v_3 = (3, 7, 1)$ dans \mathbb{R}^3 .
- 2. $v_1 = (1,0,0), v_2 = (0,1,1)$ et $v_3 = (1,1,1)$ dans \mathbb{R}^3 .
- 3. $v_1 = (1, 2, 1, 2, 1), v_2 = (2, 1, 2, 1, 2), v_3 = (1, 0, 1, 1, 0)$ et $v_4 = (0, 1, 0, 0, 1)$ dans \mathbb{R}^5 .

Exercice 4. On considère les deux sous-ensembles de \mathbb{R}^4 suivants :

- F est l'ensemble des vecteurs (v_1, v_2, v_3, v_4) qui satisfont $v_1 = v_2$ et $v_3 = v_4$,
- G est l'ensemble des vecteurs (w_1, w_2, w_3, w_4) qui satisfont $w_1 + w_2 w_3 = 0$.
 - 1. Montrer que F et G sont des sev de \mathbb{R}^4 .
 - 2. Déterminer une base de F et une base de G.

Exercice 5. Déterminer une base et la dimension de chacun des espaces vectoriels suivants :

- $E_1 = \{(x, y, z) \in \mathbb{R}^3; x 2y + z = 0\}.$
- $E_2 = \{(x, y, z) \in \mathbb{R}^3; x = 2y = 3z\}.$
- $E_3 = \{(x, y, z) \in \mathbb{R}^3; x + y = 0 \text{ et } y + z = 0\}.$

- $E_4 = \{(x, y, z, t) \in \mathbb{R}^4; x + y + z = 0, x + y = 0 \text{ et } z + t = 0\}.$ $E_5 = \{(u_n) \in \mathbb{R}^\mathbb{N}; \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$ où a, b sont deux réels fixés.

Exercice 6. Soit E un K-espace vectoriel et $f \in L(E)$. Si $x \in E$ et $k \in \mathbb{N}^*$ vérifient $f^k(x) = 0$ et $f^{k-1}(x) \neq 0$, montrer que $(x, f(x), \dots, f^{k-1}(x))$ est une famille libre.

Dans les deux exercices suivants on considère N réels $(N \ge 1)$, $(a_i)_{1 \le i \le N} \in \mathbb{R}^N$, distincts deux à deux, c'est-à-dire : pour tout indices $1 \le i \ne j \le N$ on a $a_i \ne a_j$.

Exercice 7. Pour tout $a \in \mathbb{R}$, on note φ_a la fonction de \mathbb{R} dans \mathbb{R} qui à x associe |x-a|. Montrer que la famille $(\varphi_{a_i})_{1 \le i \le N}$ est libre.

Exercice 8. Pour tout $a \in \mathbb{R}$ on note χ_a , la fonction charactéristique de $[a, +\infty[$. Rappel $\chi_a : \mathbb{R} \to \mathbb{R}$ elle vaut 1 sur $[a, +\infty[$ et est nulle ailleurs. Montrer que la famille $(\chi_{a_i})_{1 \le i \le N}$ est libre.

Exercice 9. Montrer que les vecteurs (a, b) et (c, d) forment une base de \mathbb{R}^2 si et seulement si $ad - bc \neq 0$.

Exercice 10. Déterminer une base de chacun des sous-espaces vectoriels qui figurent dans les exercices 5, 6 et 10 du *TD*3.

Exercice 11. Soit $V \subset C^{\infty}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel engendré par les fonctions

$$f_1 = x$$
, $f_2 = e^x$, $f_3 = xe^x$ et $f_4 = (x+1)e^x$.

- 1. La famille (f_1, \ldots, f_4) est-elle libre?
- 2. Donner une base de V.

Exercice 12. Soit

$$E = \{ f_{a,b}(: x \mapsto (ax+b)e^{2x}) \in \mathcal{A}(\mathbb{R}, \mathbb{R}) : a, b \in \mathbb{R} \}.$$

- 1. Démontrer que E est un \mathbb{R} -espace vectoriel en donner une base.
- 2. Démontrer que l'ensemble F des fonctions $f_{a,b}$ monotones sur $\mathbb R$ est un sous-espace vectoriel de E. En donner une base.

Exercice 13. Soit V le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs

$$v_1 = (1,0,1,0), \quad v_2 = (0,1,0,1), \quad v_2 = (1,1,0,0) \quad \text{et} \quad v_4 = (0,0,1,1).$$

- 1. Donner une base de V et l'étendre en une base de \mathbb{R}^4 .
- 2. Trouver une équation cartésienne de V (dans la base canonique).

Exercice 14. Considérons les deux sous-espaces vectoriels

$$U = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}$$
 et $V = \{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 0\}.$

Déterminer une base de U, de V et de $U \cap V$.

Exercice 15. Soit $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$. Montrer que les matrices de $M_2(\mathbb{R})$ qui commutent à A forment un sous-espace vectoriel dont on donnera une base.

Exercice 16. Soit e_1, e_2, e_3, e_4 la base canonique de \mathbb{R}^4 . Soient $E = \text{Vect}(e_1, e_2 + e_3 + e_4), F = \text{Vect}(e_2, e_1 + e_3)$ $e_3 + e_4$, $G = \text{Vect}(e_3, e_1 + e_2 + e_4)$ et $H = \text{Vect}(e_4, e_1 + e_2 + e_3)$.

- 1. Quelle est la dimension de ces sous-espaces vectoriels?
- 2. Déterminer $E \cap F \cap G \cap H$.

Exercice 17. Soit a un paramètre réel. On pose $X_1=(1,1,1,1), X_2=(-a,2,3,a)$ et $X_3=(a^2,4,9,a^2)$. Calculer le rang de la famille (X_1,X_2,X_3) en fonction de a.

Image, Noyau, Supplémentaire

Exercice 18. Soit E un espace vectoriel de dimension n. Soit $f \in L(E)$ tel que $f^2 = f$. Démontrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$.

Exercice 19. Soit E un espace vectoriel de dimension n. Soit $f \in L(E)$ tel que $\operatorname{rg}(f) = 1$ et $f^2 \neq 0$. Démontrer que $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0\}$. En déduire que $\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = E$.

Faire les derniers exercices de la feuille de TD3.