```
_____
```

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Thu Oct 04 11:34:29 EDT 2007

```
Reviewer Comments:
```

- <210> 17
- <211> 15
- <212> PRT
- <213> Artificial sequence
- <220>
- <223> Motif 3 (coiled coil) CORE SEQUENCE
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Xaa can be a stretch of 1 to 6 amino acids
- <220>
- <221> MISC_FEATURE
- <222> (4)..(5)
- <223> Xaa can be any amino acid
- <220>
- <221> MISC_FEATURE
- <222> (8)..(10)
- <223> Xaa can be any amino acid
- <220>
- <221> MISC_FEATURE
- <222> (12)..(13)
- <223> Xaa can be any amino acid
- <400> 17

Glu Xaa Glu Xaa Xaa Arg Leu Xaa Xaa Leu Xaa Xaa Leu Arg
1 5 10 15

Validated By CRFValidator v 1.0.3

Application No: 10580085 Version No: 1.0

Input Set:

Output Set:

Started: 2007-09-20 09:17:27.983

Finished: 2007-09-20 09:17:29.893

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 910 ms

Total Warnings: 9

Total Errors: 0

No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (5)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 402	Undefined organism found in <213> in SEQ ID (7)
W 402	Undefined organism found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)

SEQUENCE LISTING

```
<110> CropDesign N.V.
<120> Seedyl sequence for making plants having changed growth
      characteristics
<130> CD-105-PCT
<140> 10580085
<141> 2007-09-20
<150> US 60/528,113
<151> 2003-12-09
<150> EP 03104280.7
<151> 2003-11-19
<160> 18
<170> PatentIn version 3.3
<210> 1
<211> 1428
<212> DNA
<213> Nicotiana tabacum
<220>
<221> misc_feature
<223> seedy1 coding sequence (CDS0689)
<400> 1
atgagtgtgt tacaataccc agaagggatt gacccagcag atgttcagat atggaacaat
                                                                     60
                                                                    120
gcagcatttg ataatggaga ttctgaagat ttgtcttcgc tgaaacgttc ttggtctcct
ctgaaacccc tttcggttag gccatcagat tcctttgaat ctgatttgtc aagtaaggaa
                                                                     180
aatcaaactc ctttatttga gaattcatct gttaatctct catctccgtt acccataaag
                                                                     240
ccacttaacc ctaatggggc tctggaaaat tcaagactca agccgaacaa gcccaattcc
                                                                     300
                                                                     360
aaacagagtc ttgatgagat ggcggctaga aagagcggaa agggaaatga tttccgtgat
gagaagaaaa tagacgagga aattgaagaa attcagatgg agattagtag gttgagttca
                                                                     420
agattagagg ctttgagaat tgaaaaggct gagaaaactg ttgctaagac tgttgaaaag
                                                                     480
                                                                     540
cgaggaaggg ttgtggcagc aaagtttatg gagccaaaac aaagtgttat taagattgaa
                                                                     600
gagcgtatat caatgagtgc aagaacaaag gtggagcaga gaaggggtct tagtttagga
ccatctgaga tttttactgg aacgcggcgg cgagggttga gtatggggcc atcagatatt
                                                                     660
                                                                     720
ctagcaggga caacaaaggc acggcaattg ggaaagcaag agatgattat tactcctatt
```

cagccaatac	aaaacaggcg	aaagtcgtgt	ttttggaagc	ttcaagagat	tgaagaagag	780
ggaaaaagtt	caagccttag	tcctaaatca	agaaaaactg	ctgcaagaac	aatggttaca	840
acaaggcagg	cagttactac	aattgcatca	aagaagaatt	tgaaaaaaga	tgatggactt	900
ttgagttcag	ttcagccaaa	gaagttgttt	aaagatctcg	aaaagtctgc	tgctgctaat	960
aagaagcccc	agaggccggg	gagggttgtg	gctagtaggt	ataatcagag	tacaattcag	1020
tcatcagtag	tgagaaagag	gtctttacct	gaaaatgata	aggatgagag	taagagaaat	1080
gataagaaac	ggtcgttatc	tgtagggaaa	acgcgtgtgt	ctcaaactga	gagcaagaat	1140
ttgggtactg	aaagtagggt	gaaaaagaga	tgggaaattc	ctagtgagat	tgtagttcat	1200
ggaaacacag	agagtgagaa	atctccacta	agcattattg	tgaagcctga	tttgcttccg	1260
cgaattagga	ttgctcggtg	tgtgaatgag	actcttaggg	attctggacc	tgctaaaaga	1320
atgatagagt	tgataggcaa	gaaatcgttt	ttcagtagtg	atgaagataa	ggagccacct	1380
gtctgtcaag	ttttaagttt	tgcagaggaa	gatgctgaag	aggaataa		1428

<210> 2

<211> 475

<212> PRT

<213> Nicotiana tabacum

<220>

<221> MISC_FEATURE

<223> seedy1 protein (CDS0689)

<400> 2

Met Ser Val Leu Gln Tyr Pro Glu Gly Ile Asp Pro Ala Asp Val Gln 1 5 10 15

Ile Trp Asn Asn Ala Ala Phe Asp Asn Gly Asp Ser Glu Asp Leu Ser 20 25 30

Ser Leu Lys Arg Ser Trp Ser Pro Leu Lys Pro Leu Ser Val Arg Pro 35 40 45

Ser Asp Ser Phe Glu Ser Asp Leu Ser Ser Lys Glu Asn Gln Thr Pro 50 55 60

Leu Phe Glu Asn Ser Ser Val Asn Leu Ser Ser Pro Leu Pro Ile Lys 65 70 75 80

Pro	Leu	Asn	Pro	Asn 85	Gly	Ala	Leu	Glu	Asn 90	Ser	Arg	Leu	Lys	Pro 95	Asn
Lys	Pro	Asn	Ser 100	Lys	Gln	Ser	Leu	Asp 105	Glu	Met	Ala	Ala	Arg 110	Lys	Ser
Gly	Lys	Gly 115	Asn	Asp	Phe	Arg	Asp 120	Glu	Lys	Lys	Ile	Asp 125	Glu	Glu	Ile
Glu	Glu 130	Ile	Gln	Met	Glu	Ile 135	Ser	Arg	Leu	Ser	Ser 140	Arg	Leu	Glu	Ala
Leu 145	Arg	Ile	Glu	Lys	Ala 150	Glu	Lys	Thr	Val	Ala 155	Lys	Thr	Val	Glu	Lys 160
Arg	Gly	Arg	Val	Val 165	Ala	Ala	Lys	Phe	Met 170	Glu	Pro	Lys	Gln	Ser 175	Val
Ile	Lys	Ile	Glu 180	Glu	Arg	Ile	Ser	Met 185	Ser	Ala	Arg	Thr	Lys 190	Val	Glu
		195					200					205		Gly	
	210					215					220			Gly	
225	_				230					235				Pro	240
				245	_	-	-		250					Gln 255	
			260					265					270	Arg	
		275					280					285		Thr	
Ala	Ser 290	гуз	гуз	Asn	Leu	Lys 295	гуз	Asp	Asp	GТĀ	100 300	Leu	ser	Ser	val

Gln Pro Lys Lys Leu Phe Lys Asp Leu Glu Lys Ser Ala Ala Ala Asn

305 310 315 320

Lys Lys Pro Gln Arg Pro Gly Arg Val Val Ala Ser Arg Tyr Asn Gln 325 330 335

Ser Thr Ile Gln Ser Ser Val Val Arg Lys Arg Ser Leu Pro Glu Asn 340 345 350

Asp Lys Asp Glu Ser Lys Arg Asn Asp Lys Lys Arg Ser Leu Ser Val 355 360 365

Gly Lys Thr Arg Val Ser Gln Thr Glu Ser Lys Asn Leu Gly Thr Glu 370 375 380

Ser Arg Val Lys Lys Arg Trp Glu Ile Pro Ser Glu Ile Val Val His 385 390 395 400

Gly Asn Thr Glu Ser Glu Lys Ser Pro Leu Ser Ile Ile Val Lys Pro
405 410 415

Asp Leu Leu Pro Arg Ile Arg Ile Ala Arg Cys Val Asn Glu Thr Leu 420 425 430

Arg Asp Ser Gly Pro Ala Lys Arg Met Ile Glu Leu Ile Gly Lys Lys 435 440 445

Ser Phe Phe Ser Ser Asp Glu Asp Lys Glu Pro Pro Val Cys Gln Val 450 455 460

Leu Ser Phe Ala Glu Glu Asp Ala Glu Glu 465 470 475

<210> 3

<211> 1336

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> seedy1 coding sequence

<400> 3

atggaggagg accegeteat ecegetggte caegtetgga acaaegeege ettegaegae

60

tectegtgtt ceagategge ttggeteece caaageeeeg cegtegegge egteegeaag 120

ggcgacaagg	agaatcaccg	ccccgaggtt	gttgatgtcg	ccgccggcta	cgacgtcgag	180
gccgagatcg	gccacatcga	ggcggagatc	ctgcgcctct	cgtcccggct	ccaccatctc	240
cgcgtctcca	agcagccgga	gcccaaccgc	gacgacgctc	cgatggggga	gatggtcgcg	300
aaggtgaggc	cccggccgag	gggcctcagc	ctcgggcccc	tggatgtgat	ctccatcgtc	360
aatcgtgaga	agcatccgct	gcgcaccaag	cageeteegg	cgacgcgggg	cagggggctc	420
agecteggge	ccatggagat	cgccgcggcg	aaccctaggg	tgcccgcggc	ggcgcagcat	480
cagcaacagc	aacgcgctgg	cacggcgcgg	atcctgaagc	caatcaagga	gcctccggtg	540
cagcgtcgca	ggggcgtcag	cctcgggccg	ttggagatcc	accacggcgt	cggcagcaag	600
gcaccagcgg	cggcgcgagc	caagccgttc	accaccaagc	tcaacgccat	tcgagaagaa	660
acccgaccct	ccaagcaatt	cgccgtcccc	gccaagccat	ggccgtcgag	caatacaagg	720
cagacactgg	actcgaggca	aggaacagca	gcaagtcgag	cgaaggcgag	gagcccgagc	780
cccaggccca	ggaggcaatc	caatggcaag	gctactgaca	caaggggagg	caacaaggtg	840
gtggatgagc	tcaagcccaa	aggtgcgtcg	tcaagtcaga	gcggcagcgc	cgccgccgcc	900
gccactgcca	agaggatggc	ggggagctcc	aagatgaggg	tcatcccgag	ccgctacagc	960
ctcactcctg	gcgcttccct	tggaagcagt	ggagcacagg	agaggcgacg	caagcagtct	1020
ctcccaggat	catcagggga	tgcgaaccag	aatgaggaaa	tcagagcgaa	ggtcatcgag	1080
ccttccaatg	atccactctc	tcctcaaacg	atctccaagg	ttgctgaaat	gctcccaaag	1140
atcaggacca	tgccgcctcc	tgacgagagc	cctcgcgatt	ccggatgcgc	caagcgggtt	1200
gccgaattgg	tcgggaagcg	ctcgttcttc	acggctgcag	ccgaggacgg	gcgggcgctc	1260
gacgtcgaag	cacccgaggc	ggtcgcagaa	gcttgagatg	aaccaccatg	gtttgatccg	1320
ttccttccat	cagctc					1336

<210> 4 <211> 431 <212> PRT

<213> Oryza sativa

<220>

<221> MISC_FEATURE <223> seedyl protein

<400> 4

Met Glu Glu Asp Pro Leu Ile Pro Leu Val His Val Trp Asn Asn Ala

Ala Phe Asp Asp Ser Ser Cys Ser Arg Ser Ala Trp Leu Pro Gln Ser 20 25 30

Pro Ala Val Ala Ala Val Arg Lys Gly Asp Lys Glu Asn His Arg Pro 35 40 45

Glu Val Val Asp Val Ala Ala Gly Tyr Asp Val Glu Ala Glu Ile Gly 50 55 60

His Ile Glu Ala Glu Ile Leu Arg Leu Ser Ser Arg Leu His His Leu 65 70 75 80

Arg Val Ser Lys Gln Pro Glu Pro Asn Arg Asp Asp Ala Pro Met Gly 85 90 95

Glu Met Val Ala Lys Val Arg Pro Arg Pro Arg Gly Leu Ser Leu Gly 100 105 110

Pro Leu Asp Val Ile Ser Ile Val Asn Arg Glu Lys His Pro Leu Arg 115 120 125

Thr Lys Gln Pro Pro Ala Thr Arg Gly Arg Gly Leu Ser Leu Gly Pro 130 135 140

Gln Gln Gln Arg Ala Gly Thr Ala Arg Ile Leu Lys Pro Ile Lys $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Glu Pro Pro Val Gln Arg Arg Gly Val Ser Leu Gly Pro Leu Glu 180 185 190

Ile His His Gly Val Gly Ser Lys Ala Pro Ala Ala Ala Arg Ala Lys 195 200 205

Pro Phe Thr Thr Lys Leu Asn Ala Ile Arg Glu Glu Thr Arg Pro Ser 210 215 220

Lys Gln Phe Ala Val Pro Ala Lys Pro Trp Pro Ser Ser Asn Thr Arg 225 230 235 240

Gln Thr Leu Asp Ser Arg Gln Gly Thr Ala Ala Ser Arg Ala Lys Ala 250 Arg Ser Pro Ser Pro Arg Pro Arg Gln Ser Asn Gly Lys Ala Thr 260 265 270 Asp Thr Arg Gly Gly Asn Lys Val Val Asp Glu Leu Lys Pro Lys Gly 275 280 285 Ala Ser Ser Gln Ser Gly Ser Ala Ala Ala Ala Thr Ala Lys 290 295 300 Arg Met Ala Gly Ser Ser Lys Met Arg Val Ile Pro Ser Arg Tyr Ser 310 315 320 Leu Thr Pro Gly Ala Ser Leu Gly Ser Ser Gly Ala Gln Glu Arg Arg 325 330 Arg Lys Gln Ser Leu Pro Gly Ser Ser Gly Asp Ala Asn Gln Asn Glu 340 345 350 Glu Ile Arg Ala Lys Val Ile Glu Pro Ser Asn Asp Pro Leu Ser Pro 360 355 365 Gln Thr Ile Ser Lys Val Ala Glu Met Leu Pro Lys Ile Arg Thr Met 370 375 380 Pro Pro Pro Asp Glu Ser Pro Asp Ser Gly Cys Ala Lys Asg Val 385 390 395 400 Ala Glu Leu Val Gly Lys Arg Ser Phe Phe Thr Ala Ala Ala Glu Asp 405 410 415 Gly Arg Ala Leu Asp Val Glu Ala Pro Glu Ala Val Ala Glu Ala 425 420

<210> 5 <211> 1860 <212> DNA

<213> Medicago trunculata

<400> 5

(400) J						
aaaaacgtta	aggactaaaa	atataataaa	atttaagtag	ggattcataa	tggaagcacc	60
cctatttaca	gggatcttaa	atataattaa	ccctaatatt	tatgacagaa	acccttttga	120
aatcacatcg	gagcgtgtat	gagtagccgt	ttcacatcca	acggccagta	agagcgtaac	180
tttatttctt	ccctcttcaa	tctccaacgg	tcacataatc	tcttccaaat	acaaataatt	240
ccctctttca	acctcactct	tcatttcttc	aacccaaacc	caaaaaacta	atcagattct	300
tcttaaatct	tgaaaccttt	ctcccaaaag	cacttaaata	aaaaagcact	taaccatgaa	360
taacacaaac	aacaacaaca	ttcttcttca	ttccacacag	gttcaagtgt	ggaacaacgc	420
agcattcgat	ggtgaagatt	tcgccatgaa	ttcatcttct	gattccatca	aagagaatct	480
aaacccatcc	gcattcaaca	ttgttccttc	ttcaaacaaa	agaactattg	atgatgaaat	540
tgcggaaatt	gaaagtgaaa	ttaagcgatt	aacttcgaag	ctggaattgc	ttcgtgttga	600
aaaagctgaa	agaaaaatcg	cttctgaaaa	gcgtgttagt	ggaattggta	ctggaagaat	660
agtagcagcg	aagtttatgg	aaccgaagaa	aaacgttaca	ccgaaacgaa	acggtgtcgt	720
tttcaaggag	gagacaccga	aacgaaacgg	tgtcgtttcg	gatacgccga	aatctagggt	780
taattggaga	agagggatga	gtttaggtcc	gatggagatt	gccgggaaag	tgatggcacc	840
gccggcgatg	acgattactc	cggcgacggt	gaatcggagg	aagtcttgtt	tctggaaacc	900
gcaggaaagt	tgtgaagtaa	tgccgtcggg	gattactccg	gcgacggtga	ataggaggaa	960
atcttgtttt	ttgaaacctc	aagaaagttg	tgaagaaaat	cgaagaaaaa	cgatttgcaa	1020
accgaatttg	aatttgaatt	caaattcagt	taattctgcg	gttggatcga	ttaagcgtgt	1080
gaagaagaaa	gatgaagaaa	ttgctcaggt	tcaaccgaag	aagctgtttg	aaggtgaaaa	1140
atcagtgaag	aaatcgttga	aacaaggtag	aattgttgca	agccggtata	attccggtgg	1200
tggtggtggt	gatgcgagga	aaagatcgtt	ttcggagaat	aataagggtt	tagggagtga	1260
aatcagggct	aagaagagat	gggagatacc	aattgaagaa	gtggatgtga	gtggttttgt	1320
tatgttaccg	aagatttcga	caatgaggtt	tgttgatgag	agtcctagag	attctggtgc	1380
tgttaaaaga	gttgctgaat	tgaatggaaa	aagatcttac	ttttgtgatg	aagatgagga	1440
ggagagagtg	atggtggagg	aagaaggtgg	ttctgtttgt	caggttttga	attttgctga	1500
agatgatgat	gatgatgatg	attatggtga	acaagggtaa	ttgtggaaat	tggaattgat	1560
ttgtttttgt	ggggttgtgt	ggaactggct	atgttctgct	tgattctttt	gcattttggt	1620

gtgaaactaa agatgaggtg aaaagtttat gcttgttaaa ttggattggt ttatatgttt tgaaataata acaacaagca tgtgtcttgc ttaataattg tatattgttt tgtttgtttt 1740 1800 tcgttcagta ttcattctga ttttagtgtt tatctcattc tagaagattg tattttgttg 1860 <210> 6 <211> 394 <212> PRT <213> Medicago trunculata <220> <221> MISC_FEATURE <223> seedy1 protein <400> 6 Met Asn Asn Thr Asn Asn Asn Ile Leu Leu His Ser Thr Gln Val 10 Gln Val Trp Asn Asn Ala Ala Phe Asp Gly Glu Asp Phe Ala Met Asn 20 25 Ser Ser Ser Asp Ser Ile Lys Glu Asn Leu Asn Pro Ser Ala Phe Asn 35 40 45 Ile Val Pro Ser Ser Asn Lys Arg Thr Ile Asp Asp Glu Ile Ala Glu 50 55 60 Ile Glu Ser Glu Ile Lys Arg Leu Thr Ser Lys Leu Glu Leu Leu Arg 65 70 75 Val Glu Lys Ala Glu Arg Lys Ile Ala Ser Glu Lys Arg Val Ser Gly 85 90 95 Ile Gly Thr Gly Arg Ile Val Ala Ala Lys Phe Met Glu Pro Lys Lys 105 100 Asn Val Thr Pro Lys Arg Asn Gly Val Val Phe Lys Glu Glu Thr Pro 115 120 125

Lys Arg Asn Gly Val Val Ser Asp Thr Pro Lys Ser Arg Val Asn Trp

130 135 140

Arg Arg Gly	Met Ser	Leu Gly	Pro	Met	Glu	Ile 155	Ala	Gly	Lys	Val	Met 160
Ala Pro Pro	Ala Met 165	Thr Ile	Thr	Pro	Ala 170	Thr	Val	Asn	Arg	Arg 175	Lys
Ser Cys Phe	Trp Lys	Pro Gln	Glu	Ser 185	Cys	Glu	Val	Met	Pro 190	Ser	Gly
Ile Thr Pro		Val Asn	Arg 200	Arg	Lys	Ser	Суз	Phe 205	Leu	Lys	Pro
Gln Glu Ser 210	Cys Glu	Glu Asn 215	_	Arg	Lys	Thr	Ile 220	Суз	Lys	Pro	Asn
Leu Asn Leu 225	Asn Ser	Asn Ser 230	Val	Asn	Ser	Ala 235	Val	Gly	Ser	Ile	Lys 240
Arg Val Lys	Lys Lys 245	Asp Glu	Glu	Ile	Ala 250	Gln	Val	Gln	Pro	Lys 255	Lys
Leu Phe Glu	Gly Glu 260	Lys Ser		Lys 265	Lys	Ser	Leu	Lys	Gln 270	Gly	Arg
Ile Val Ala 275	_	Tyr Asn	Ser 280	Gly	Gly	Gly	Gly	Gly 285	Asp	Ala	Arg
Lys Arg Ser 290	Phe Ser	Glu Asn 295		Lys	Gly	Leu	Gly 300	Ser	Glu	Ile	Arg
Ala Lys Lys 305	Arg Trp	Glu Ile 310	Pro	Ile	Glu	Glu 315	Val	Asp	Val	Ser	Gly 320
Phe Val Met	Leu Pro 325	Lys Ile	Ser	Thr	Met 330	Arg	Phe	Val	Asp	Glu 335	Ser
Pro Arg Asp	Ser Gly 340	Ala Val	Lys	Arg 345	Val	Ala	Glu	Leu	Asn	Gly	Lys