Prognoza cen surowcow

Agnieszka Wrzos

Pallad (Palladium)

Odczyt

```
## time series starts 2015-01-02
## time series ends 2021-01-29
```

Wczytujemy dane z Yahoo Finance od 2015-01-02 do 2021-01-20. Na podstawie tych notowan dokonano identyfikacji zachowania cen Palladium.

acf, pacf, wykres

Rysunek 1: Notowania cen palladu oraz wykresy ACF i PACF

Wspolczynnik Hursta

Wartosc wspolczynnika Hursta wynosi 0.8810786.

Testy pierwiastka jednostkowego.

```
adf.test(palladium) # czyli stopien integracji jest rozny od 0
##
  Augmented Dickey-Fuller Test
##
##
## data: palladium
## Dickey-Fuller = -2.6407, Lag order = 11, p-value = 0.3071
## alternative hypothesis: stationary
kpss.test(palladium)
##
## KPSS Test for Level Stationarity
##
## data: palladium
## KPSS Level = 16.256, Truncation lag parameter = 7, p-value = 0.01
pp.test(palladium)
##
  Phillips-Perron Unit Root Test
##
## data: palladium
## Dickey-Fuller Z(alpha) = -18.595, Truncation lag parameter = 7, p-value
## = 0.09276
## alternative hypothesis: stationary
```

Dopasowanie modelu ARFIMA

Do oszacowania parametrow wykorzystano Metode Najwiekszej Wiarygodnosci Logarytm z funkcji wiarygodnosci wynosi -7526.3732018.

Tablica 1: Wartosci parametrow dla modelu ARFIMA

	Estimate	Std. Error	z value	$\Pr(> z)$
d	0.499407	0.000836	597.501356	0.000e+00
ma.ma1	-0.718607	0.025149	-28.573732	1.425e-179
ma.ma2	-0.500072	0.029938	-16.703583	1.234e-62
ma.ma3	-0.417917	0.024698	-16.921374	3.130e-64
ma.ma4	-0.406227	0.028831	-14.089718	4.393e-45
ma.ma5	-0.220328	0.029285	-7.523665	5.326e-14

Wykres przedstawia wartosci rzeczywiste oraz wartosci dopasowane oszacowane na podstawie modelu ARFIMA

Notowania cen palladu

Rysunek 2: Dopasowanie cen Palladium za pomoca ARFIMA

Analiza reszt

Badanie normalnosci rozkladu reszt

Rysunek 3: Identyfikacja reszt

Tablica 2: Wyniki testow badania normalnosci rozkladu reszt.

Test	Statystyka	p.val
Shapiro-Wilka	0.8154937	1.641e-38
Lillieforsa	0.1224308	7.500e-62
Andersona-Darlinga	53.1655617	3.700e-24
Cramera von Misesa	9.2949063	7.370e-10

Analiza niezaleznosci reszt

τ	$ ho_{ au}^{arepsilon}$	$\chi^2_{(au)}$	p.val
1	-0.0073717	0.0823835	0.7740930
2	0.0459824	3.2899124	0.1930210
3	0.0560773	8.0635384	0.0447166
4	0.0630735	14.1065920	0.0069625
5	0.1237257	37.3751826	0.0000005
6	0.1919246	93.4024735	0.0000000
7	0.0610030	99.0665452	0.0000000
8	0.0052328	99.1082505	0.0000000
9	0.0759154	107.8916763	0.0000000
10	0.1387283	137.2426816	0.0000000

Predykcja

Data	180	195	u80	u95	rzeczywiste	prognozowane
2021-01-20	2292.777	2269.094	2382.254	2405.937	2397.9	2337.516
2021-01-21	2243.425	2206.102	2384.435	2421.758	2369.8	2313.930
2021-01-22	2192.199	2144.805	2371.259	2418.653	2359.9	2281.729
2021-01-25	2153.255	2097.392	2364.312	2420.175	2341.6	2258.783
2021-01-26	2128.174	2064.397	2369.128	2432.905	2319.7	2248.651
2021-01-27	2108.629	2039.023	2371.605	2441.211	2305.2	2240.117

Rysunek ponizej przedstawia wartoci notowania cen Palladium od 2020-05-01 do 2021-01-20 - kolor granatowy. W celu weryfikacji prognoz rowniez na wykresie zaznaczono wartoci rzeczywiste (kolor granatowy) oraz prognozowane (kolor czerwony). Dodatkowo wynaczono przedziały ufnosci dla poziomu 80% oraz 95%.

Kakao (Cocoa)

Odczyt

```
## time series starts 2015-01-02
## time series ends 2021-01-29
```

Wczytujemy dane z ... od 2015-01-02 do 2021-01-20. Na podstawie tych notowan dokonano identyfikacji zachowania cen kakao.

acf, pacf, wykres

Wspolczynnik Hursta

Wartosc wspolczynnika Hursta wynosi 0.8699671.

Notowania cen kakao 3000 War And Mark 2500 2000 2016 2018 2020 Data **ACF PACF** 1.00 00.1 0.75 0.75 0.50 0.50 0.25 0.25

Rysunek 4: Notowania cen kakao oraz wykresy ACF i PACF

100

00.0

25

50

Lag

75

100

Testy pierwiastka jednostkowego

25

50

Lag

75

00.0

```
adf.test(cocoa) # czyli stopien integracji jest rozny od 0
##
    Augmented Dickey-Fuller Test
##
##
## data: cocoa
## Dickey-Fuller = -2.5001, Lag order = 11, p-value = 0.3666
## alternative hypothesis: stationary
kpss.test(cocoa)
##
   KPSS Test for Level Stationarity
##
## data: cocoa
## KPSS Level = 6.3654, Truncation lag parameter = 7, p-value = 0.01
pp.test(cocoa)
##
    Phillips-Perron Unit Root Test
##
```

```
## data: cocoa
## Dickey-Fuller Z(alpha) = -12.32, Truncation lag parameter = 7, p-value
## = 0.4225
## alternative hypothesis: stationary
```

Dopasowanie modelu ARFIMA

Do oszacowania parametrow wykorzystano Metode Najwiekszej Wiarygodnosci Logarytm z funkcji wiarygodnosci wynosi -7898.6623707, natomiast tabela ponizej podaje wartosci parametrow strukturalnych oraz wyniki testu istotnosci tych parametrow

Tablica 5: Wartosci parametrow dla modelu ARFIMA

	Estimate	Std. Error	z value	$\Pr(> z)$
d	0.021605	0.021080	1.024875	3.054e-01
ar.ar1	0.992524	0.003343	296.937221	0.000e+00

Wykres przedstawia wartości rzeczywiste oraz wartości dopasowane oszacowane na podstawie modelu ARFIMA

Rysunek 5: Dopasowanie cen kakao za pomoca ARFIMA

Analiza reszt

Rysunek 6: Identyfikacja reszt

Tablica 6: Wyniki testow badania normalnosci rozkladu reszt.

Test	Statystyka	p.val
Shapiro-Wilka	0.9893052	4.040e-09
Lillieforsa	0.0235210	4.796e-02
Andersona-Darlinga	1.3643132	1.558e-03
Cramera von Misesa	0.1811432	9.350e-03

Analiza niezaleznosci reszt

τ	$ ho_{ au}^{arepsilon}$	$\chi^2_{(au)}$	p.val
1	-0.0195193	0.5802711	0.4462061
2	0.0269985	1.6911479	0.4293109
3	0.0241179	2.5782072	0.4613229
4	0.0243218	3.4809219	0.4807851
5	0.0202764	4.1087337	0.5338697
6	-0.0219230	4.8431328	0.5640844
7	0.0643499	11.1747599	0.1311757
8	-0.0418324	13.8522749	0.0856980
9	0.0164322	14.2656869	0.1131831
10	-0.0090962	14.3924518	0.1558314

Predykcja

Rysunek ponizej przedstawia wartoci notowania cen kakao od 2020-05-01 do 2021-01-20 - kolor granatowy. W celu weryfikacji prognoz rowniez na wykresie zaznaczono wartoci rzeczywiste (kolor granatowy) oraz prognozowane (kolor czerwony). Dodatkowo wynaczono przedizały ufnosci dla poziomu 80% oraz 95%.

Olej opalowy (Heating Oil)

odczyt

```
## time series starts 2015-01-02
## time series ends 2021-01-29
```

acf, pacf, wykres

Rysunek 7: Notowania cen oleju opalowego oraz wykresy ACF i PACF

Wspolczynnik Hursta

Wartosc wspolczynnika Hursta wynosi 0.8653364.

$Testy\ pierwiastka\ jednostkowego$

```
adf.test(heating_oil)
##
##
   Augmented Dickey-Fuller Test
##
## data: heating_oil
## Dickey-Fuller = -1.9948, Lag order = 11, p-value = 0.5805
## alternative hypothesis: stationary
kpss.test(heating_oil)
##
##
   KPSS Test for Level Stationarity
##
## data: heating_oil
## KPSS Level = 2.388, Truncation lag parameter = 7, p-value = 0.01
pp.test(heating oil)
##
##
   Phillips-Perron Unit Root Test
##
## data: heating_oil
## Dickey-Fuller Z(alpha) = -7.2979, Truncation lag parameter = 7, p-value
## = 0.7027
## alternative hypothesis: stationary
```

Dopasowanie modelu ARFIMA

Do oszacowania parametrow wykorzystano Metode Najwiekszej Wiarygodnosci Logarytm z funkcji wiarygodnosci wynosi 2838.1158225

Szacowanie parametrow MNK

Tablica 8: Wartosci parametrow dla modelu ARFIMA

	Estimate	Std. Error	z value	$\Pr(> z)$
d	0.499150	0.001197	417.069156	0.000e+00
ma.ma1	-0.509375	0.019853	-25.657247	3.510e-145
ma.ma2	-0.427076	0.022100	-19.324770	3.325e-83
ma.ma3	-0.323421	0.020824	-15.531094	2.137e-54
ma.ma4	-0.317724	0.022349	-14.216328	7.256e-46
$\underline{\text{ma.ma5}}$	-0.188645	0.022943	-8.222209	1.998e-16

Notowania cen oleju opalowego 2.5 Wartosci — rzeczywiste — dopasowane 2017 2018 2019 2020 2021

Rysunek 8: Dopasowanie cen oleju opalowego za pomoca ARFIMA

Data

Analiza reszt

Normalnosc rozkladu reszt

Tablica 9: Wyniki testow badania normalnosci rozkladu reszt.

Statystyka	p.val
0.9427525	8.374e-24
0.0548795	1.488e-11
10.0560152	3.700e-24
1.6897135	7.370e-10
	0.9427525 0.0548795 10.0560152

Analiza niezaleznosci reszt

τ	$ ho_{ au}^{arepsilon}$	$\chi^2_{(\tau)}$	p.val
1	0.0225386	0.7736649	0.3790857
2	0.0532837	5.1005420	0.0780605
3	0.0765013	14.0255781	0.0028705
4	0.1099740	32.4816467	0.0000015
5	0.1455716	64.8409526	0.0000000
6	0.2316309	146.8242747	0.0000000
7	0.1376363	175.7900636	0.0000000
8	0.1392203	205.4460096	0.0000000
9	0.1109233	224.2841904	0.0000000
10	0.1072079	241.8931977	0.0000000

Rysunek 9: Identyfikacja reszt

Wartosci notowania cen oleju opalowego

