PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 4 (Feb 13 – Feb 21)

- 1 (5+5+15+20) For each of the following polynomials, construct a splitting field L over \mathbb{Q} and compute the degree $[L:\mathbb{Q}]$.
 - 1) $t^4 + 7t^2 + 12$
 - 2) $t^4 + t^2 12$
 - 3) $t^{2n} 2^n$, where n = 3, 4.
 - 4) $t^{14} 1$.
- 2 (15) Let K L M be a field extension and K L, L M are algebraic extensions. Prove that K M is also an algebraic extension.
- **3** (15) Let α be transcendental over a field $K \subset \mathbb{C}$. Show that $K(\alpha)$ is not algebraically closed (hint: consider the polynomial $t^2 \alpha$).
- 4 (15) Let L: K be a splitting field extension for a non-constant polynomial $f \in K[t]$. Prove that [L: K] divides $(\deg f)!$ (hint: at the very end look at some binomial coefficients).

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (5+5+15+20) For each of the following polynomials, construct a splitting field L over \mathbb{Q} and compute the degree $[L:\mathbb{Q}]$.
 - 1) $t^4 + 7t^2 + 12$
 - 2) $t^4 + t^2 12$
 - 3) $t^{2n} 2^n$, where n = 3, 4.
 - 4) $t^{14} 1$.

Solution. 1) We have $t^4 + 7t^2 + 12 = (t^2 + 3)(t^2 + 4)(t + i\sqrt{3})(t - i\sqrt{3}) = (t + 2i)(t - 2i)$. Thus $L = \mathbb{Q}(i, i\sqrt{3}) = \mathbb{Q}(i, \sqrt{3})$ is a splitting field of our polynomial. The degree $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]$ is two, the degree $[L:\mathbb{Q}(\sqrt{3})]$ is two (since L is a complex field) and therefore by the tower law $[L:\mathbb{Q}] = 4$.

- 2) We have $t^4 + t^2 12 = (t^2 3)(t^2 + 4)$. Thus $L = \mathbb{Q}(\sqrt{3}, i)$ and the same argument as above shows that $[L : \mathbb{Q}] = 4$.
- 3) We have $t^{2n}-2^n=\prod_{\varepsilon\in \sqrt[2n]{1}}(t-\varepsilon\sqrt{2})$. Thus $L=\mathbb{Q}(\sqrt{2},\varepsilon_{2n})$, where as always $\varepsilon_{2n}=e^{\pi i/n}$ and further $[\mathbb{Q}(\sqrt{2},\mathbb{Q})]=2$. One has $\varepsilon_{2n}+\varepsilon_{2n}^{-1}=2\cos\frac{\pi}{n}$ and $\varepsilon_{2n}\cdot\varepsilon_{2n}^{-1}=1$. Thus by the inverse Vieta theorem ε_{2n} is a root of the following quadratic equation $t^2-2\cos\frac{\pi}{n}\cdot t+1=0$. Compute the coefficient $2\cos\frac{\pi}{n}$ of this quadratic equation. For n=3 this is 1 and for n=4 this is $\sqrt{2}$. In any case we have a quadratic equation over $\mathbb{Q}(\sqrt{2})$. Thus $[L:\mathbb{Q}(\sqrt{2})]=2$ and by the tower law $[L:\mathbb{Q}]=4$.
- 4) We have $t^{14} 1 = \prod_{\varepsilon \in \sqrt[7]{1}} (t^2 \varepsilon)$. Thus $L = \mathbb{Q}(\sqrt{\varepsilon_7}) = \mathbb{Q}(\omega)$, where $\omega = e^{\pi i/7}$. Clearly, $\omega^7 = -1$ and $(t^7 + 1)/(t + 1) = t^6 t^5 + t^4 t^3 + t^2 t + 1 := h(t)$. Thus $h(\omega) = 0$ and hence $\deg(\mu_\omega^\mathbb{Q}) \le 6$. Let us prove that $h = \mu_\omega^\mathbb{Q}$ and hence [L : K] = 6. Indeed, other roots of h are $e^{k\pi i/7}$, where k = 1, 3, 5, 9, 11, 13. It is easy to see that if $h = h_1 h_2$, then $\deg h_1, \deg h_2 > 2$ (otherwise either the sum or the product of roots of our quadratic equation is not in \mathbb{Q}) and hence $\deg h_1 = \deg h_2 = 3$. Finally, by the Vieta formulae, the last case is also impossible.

Another argument. We know (see lectures) that the minimal polynomial of ε_n has degree $\varphi(n)$. Thus $[L:\mathbb{Q}] = \varphi(14) = 6$.

2 (15) Let K - L - M be a field extension and K - L, L - M are algebraic extensions. Prove that K - M is also an algebraic extension.

Solution. For an arbitrary $m \in M$ there is $f \in L[t]$ such that f(m) = 0. One has $f = \sum_{j=0}^{d} l_j t^j$, where $l_j \in L$. Put $L' = K(l_0, l_1, \ldots, l_d)$. Since L is algebraic over K and each $l_j \in L$, it follows that $[L' : K] < \infty$. Also, $f \in L'[t]$, f(m) = 0 and therefore m is algebraic over L'. Thus $[L'(m) : L'] < \infty$. Finally, by the tower law $[L'(m) : K] = [L'(m) : L'][L' : K] < \infty$ and hence m is algebraic over K.

3 (15) Let α be transcendental over a field $K \subset \mathbb{C}$. Show that $K(\alpha)$ is not algebraically closed (hint: consider the polynomial $t^2 - \alpha$).

Solution. Put $L = K(\alpha)$, then clearly, $t^2 - \alpha \in L[t]$. If L is algebraically closed, then it must be $\beta \in L$ such that $\beta^2 = \alpha$. We know that $L = K(\alpha)$ and therefore $\beta = f(\alpha)/h(\alpha)$, where $f, h \in K[t]$. Squaring, we get $f^2(\alpha) = \alpha h^2(\alpha)$ and hence α is a root of the polynomial $f^2(x) - xh^2(x)$. It is easy to check (compare the degrees of $f^2(x)$ and $xh^2(x)$) that this is a non–constant (nonzero) polynomial. We have obtained a contradiction with the assumption that α is transcendental over K.

4 (15) Let L: K be a splitting field extension for a non-constant polynomial $f \in K[t]$. Prove that [L: K] divides $(\deg f)!$ (hint: at the very end look at some binomial coefficients).

Solution. We use induction on the degree d of our polynomial f. We first assume that f is irreducible. Then by the tower law one has $[L:K] = [L:K(\alpha)][K(\alpha):K]$, where $\alpha \in L$ is any root of f. By induction $[L:K(\alpha)]$ divides (d-1)! and $[K(\alpha):K]$ equals exactly d. Thus [L:K] divides (d-1)!d = d!.

Now suppose that f is reducible, that is f = gh, $\deg g = s$, $\deg h = t$, s + t = d, and M be the subfield of L generated by the field K and by the roots of g. In other words, M is a splitting filed for g over K and by induction [M:K] divides s!, [L:M] divides (d-s)!. Thus by the tower law [L:K] divides s!t!. But the binomial coefficient $\binom{d}{s} = \frac{d!}{s!t!}$ is an integer and hence s!t! divides d!. It follows that [L:K] divides d!.