Comparison tables: BBOB 2009 function testbed

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [14, 9]. The experimental set-up is described in [13].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [13] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 02-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

					1 Sphere	here		,	1	,	•
Δ ftarget	1e+03	1e+0.2	1e+01	1e+00	1e-01	$^{1e-02}$	1e-03	le-04	1e-05	$^{1e-07}$	∆ftarget nn 'n
EKI_{best}/D	0.5	0.5	0.0	2.83	2.83	20	က	n	20	n	ERI_{best}/D
ALPS	1	1	8.	9.7	26	170	290	440	640	920	ALPS [17]
AMaLGaM IDEA	1	1.1	2.1	4.4	11	14	23	28	32	46	AMaLGaM IDEA [4]
avg NEWUOA	1	1	1.9	1.1	1.1		Н		П	1	avg NEWUOA [31]
BayEDAcG	1	1	1.9	4.2	18	43	110	140	160	210	BayEDAcG [10]
BFGS	1	Н	3.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	BFGS [30]
Cauchy EDA	1	1	19	15	27	39	20	63	22	100	Cauchy EDA [24]
BIPOP-CMA-ES	1	1	3.3	3.8	8.5	13	19	24	59	39	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	3.3	3.6	9.2	11	14	18	22	29	(1+1)-CMA-ES [2]
DASA	1	1	39	23	44	52	62	92	92	120	DASA [19]
DEPSO	1	1	2.1	12	27	46	51	96	120	170	DEPSO[12]
DIRECT	1	1	1	1.4	2.2	9.4	15	20	32	56	DIRECT [25]
EDA-PSO	1	1	1.9	ಬ	20	34	53	80	110	210	EDA-PSO [6]
full NEWUOA	1	1	2.7	1.2	1.2	1.2	1.2	1.2	1.2	1.2	full NEWUOA [31]
G3-PCX	1	1	1.9	9	17	19	24	50	34	46	G3-PCX [26]
simple GA	1	1	2.7	7.2	62	310	1100	1800	2600	4500	simple GA [22]
GLOBAL	1	1	1.9	5.7	39	20	54	22	26	28	GLOBAL [23]
iAMaLGaM IDEA	1	1	2.3	3.8	6.7	12	14	19	22	31	iAMaLGaM IDEA [4]
LSfminbnd	-	-	7.8	3.2	3.6	4.1	4.1	4.1	4.1	4.1	LSfminbnd [28]
LSstep	-	-	46	34	62	63	89	89	69	69	LSstep [28]
MA-LS-Chain	П	П	2.4	7.4	56	40	29	82	92	100	MA-LS-Chain [21]
MCS (Neum)	1	1	1	1.5	2.5	5.6	5.6	2.6	2.6	2.6	MCS (Neum) [18]
NELDER (Han)	-	-	2.1	1.3	က	3.9	5.1	6.3	7.4	8.6	NELDER (Han) [16]
NELDER (Doe)	П	П	П	1.5	2.9	4.1	5.3	6.5	9.7	10	NELDER (Doe) [5]
NEWUOA	П	П	8	П	П	-	Н	-	-	П	NEWUOA [31]
(1+1)-ES	П	П	3.5	8.8	6.7	10	14	18	23	30	(1+1)-ES [1]
POEMS	П	П	170	80	110	400	089	1100	1300	2100	POEMS $[20]$
PSO	П	П	2.1	5.3	20	59	120	200	250	470	PSO [7]
PSO_Bounds	П	1.1	2.4	9	56	89	270	460	220	1200	PSO_Bounds [8]
Monte Carlo	П	П	1.5	9.7	49	540	2300	4.8e4	6.8e5	11e-6/1e6	Monte Carlo [3]
Rosenbrock	П	П	5.6	3.1	3.9	4.9	6.2	9.2	∞ ∞.	11	Rosenbrock [27]
IPOP-SEP-CMA-ES	П	П	3.9	5.9	9.2	14	18	24	28	38	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1	5.6	8.9	22	33	37	43	48	09	VNS (Garcia) [11]

Table 2: 02-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		14.3 ERT_{best}/D																							NELDER (Doe) [5]						. Monte Carlo [3]		0 IPOP-SEP-CMA-ES [29]	
	. 1																																	
	1e-0	14	26(13	20	14(4.1	25	20	15	26	45	13	65	18	82	130	13	12	_	7.3	29	3.7	2.6	2.5	26	٠	93(16(53(6.9	18	26
	1e-04	13.6	230	11	17	110	4.1	24	20	14	22	40	12	49	15	85	066	13	12	-	7.5	28	3.3	2.4	2.3	23		270	130	440		6.5	18	56
rable	1e-03	12.9	200	10	14	110	4.1	23	20	14	23	35	9.4	39	13	83	780	13	11	1	7.8	28	3.2	2.2	2.2	19	74e-3/1e6	510	120	400	94e-4/1e6	6.3	18	26
l sepa	$1e-\overline{0}2$	12.7	160	9.1	10	87	3.9	20	18	13	21	31	8.57	56	10	92	540	13	10	-	7.9	24	5.6	7	1.9	15	3.8e5	460	86	360	1e5	5.4	17	25
lipsoid	1e-01	12.3	130	7.5	8.5	83	3.7	18	18	13	21	22	7.1	20	8.3	69	420	13	9.1	-	7.9	20	1.7	1.8	1.7	12	1.2e5	400	83	310	2600	4.4	16	24
2 E	1e+00	9.47	120	7.6	5.6	78	4	18	19	13	22	26	œ	19	5.8	64	320	17	9.5	Н	6.6	22	1.8	1.8	1.9	∞ ∞	4.7e4	420	83	170	1200	3.7	19	27
>	1e + 01	8.2	28	6.2	1.9	80	2.5	18	13	10	19	18	7.5	13	2.4	14	130	19	5.1	-	9.2	17	1.4	1.7	1.6	2.5	8700	380	26	54	240	2.2	14	22
	1e + 02	6.23	24	4.8	1.1	62	1.6	17	5.4	5.1	19	16	5.1	11	1.2	8.4	44	19	3.8	1.2	12	14	1.6	1.8	1.7	1	2400	250	14	24	50	3.1	5.4	15
	1e + 03	4.93	11	4.9	1.2	37	1.7	13	4	4.1	21	10	5.9	8. 8.	1.2	8.6	11	11	2.6	1.4	14	12	1.5	1.9	1.6	-	3.2	140	7.5	6.9	21	2.6	4.5	8.4
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 3: 02-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension $\frac{1}{2}$ Bestriction evaluations.

	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	232	23	13	3.1	64	10	43	6.7	7.8	9.7	6.4	က	22	2.1	39	110	3.1	17	61	П	5.9	5.6	12	1.8	4.1	14	41	11	34		22	8.6	7.7
	1e-05	227	19	13	3.2	65	10	43	6.5	6.7	7.4	5.4	2.7	21	2.1	39	20	3.1	17	63	П	8.8	5.6	12	1.8	4.1	15	32	8.	56		56	9.6	4.7
	1e-04	226	15	12	3.2	65	10	43	6.5	6.7	7.2	ro	2.6	20	2.1	39	55	3.1	17	63	1	2.7	2.6	13	1.8	4.1	15	56	7.2	22	39e-4/1e6	26	9.4	4.5
rable	1e-03	225	12	12	3.2	41	10	43	6.4	7.9	7.1	4.5	2.2	20	2.5	39	40	3.1	17	63	П	2.7	1.6	13	1.8	4.2	15	24	9	18	2.1e4	56	9.5	4.2
ı sepa	$1e-0\overline{2}$	223	11	12	3.2	18	10	33	6.2	6.7	7	4	2.4	19	2.5	40	27	3.1	17	64	П	5.6	1.6	13	1.8	4.2	15	20	4.7	14	3100	56	8.4	4.2
ıstrigiı	1e-01	222	6.4	12	3.2	9.7	10	8.4	5.2	6.7	6.9	2.7	2.4	14	2.5	40	19	3.1	17	43	П	2.5	1.5	13	1.7	4.2	15	14	3.4	8.3	460	56	9.2	4.1
$_3$ R $_3$	1e+00	135	6.7	4.6	1.6	4	3.1	3.3	3.5	3.8	1.8	2.3	Н	6.4	1.8	7.8	13	1.8	6.3	32	1.5	1.7	1.1	4	Н	1.5	ಬ	11	3.3	5.3	29	15	3.4	2.9
		7.33																																
	1e + 02	0.7	1.6	1.1	2.7	1.2	18	9.6	2.2	1.9	22	77	1.1	1.4	4	77	77	1.6	1.4	4.7	120	1.5	1.1	1.8	-	2.4	2.4	200	1.6	1.8	1.5	16	1.5	1.9
	1e+03	0.5	1.1	1.1	-	1.1	1.2	1.1	П	1	6.3	1.8	1	1.2	1	1.1	1	1.1	1.1	2.1	28	-	1	1.2	1	1.5	1.1	31	1.1	1.1	1.1	1	1	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo		IPOP-SEP-CMA-ES	VNS (Garcia)

Table 4: 02-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		ERT_{hest}/D							BIPOP-CMA-ES [15]			DEPSO [12]							iAMaLGaM IDEA [4]									POEMS $[20]$			Monte Carlo [3]	Rosenbrock [27]	IPO	VNS (Garcia) [11]
	1e-07	283	20	45	11	•	8.6	430	110	22	3.4	35	16	20	12	62	100	4.3	54		Н	4.1	2.6	22	က	14	19	41	11	33		42	250	17
	1e-05	272	17	47	12	٠	10	450	66	23	3.4	17	16	19	13	64	09	4.5	52		П	4.1	2.7	23	3	15	20	35	8.7	27	11e-3/1e6	44	260	8.8
arable	1e-04	270	15	46	12	10e-1/2e3	10	450	86	23	3.3	17	14	19	13	65	49	4.5	52		1	4	2.7	23	က	15	20	32	7.4	24	5.5e4	44	260	8.3
ueche separable	1e-03	261	12	48	12	110	11	470	66	24	3.3	17	14	19	13	29	37	4.6	56	10e-1/4e3	1	4.1	2.7	24	3.1	16	20	29	6.4	21	2.8e4	46	270	7.9
igin-B	1e-02	248	9.7	48	13	120	11	410	26	22	3.4	11	6.1	19	14	20	28	4.8	22	230	П	4.2	2.7	22	3.2	16	21	23	5.6	17	8200	48	180	8.2
Rastr	1e-01	230	8.3	51	14	62	12	22	22	27	3.6	6.5	9.9	18	15	92	22	5.2	61	120	п	4.4	5.9	27	3.5	18	23	22	4.6	9.6	620	25	72	8.8
Skew	1e+00	172	7.1	5.6	4	13	5.7	13	6.9	5.5	7	4.2	1.8	6.6	3.9	17	16	1.2	9.5	45	1.3	1.8	1	5.3	1.4	4.5	5.5	8.6	3.3	6.3	29	15	8.7	4.1
7	1e+01	10.9	6	2.6	6.2	4.5	11	8.9	2.6	5.2	15	7.2	1.8	4.2	5.4	20	10	8.52	2.5	-	19	5.6	77	ಬ	1.9	ಬ	4.5	36	4	4.4	8.6	27	က	5.1
	1e + 02	0.5	2.5	2.5	4.5	2.3	13	19	3.8	2.4	82	2.4	1	2.6	3.8	2.1	2.6	2.4	3.8	4.6	220	2.3	1	3.1	2.1	က	3.1	240	3.2	3.3	3.3	71	3.5	5.6
	1e + 03	0.5	П		1	П	1	1	1	1	1		1	П	1	н	1	П	П	н			1	-	1	П	п	1	1.1	П	П	1	1	1
	Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 5: 02-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Afternot	1e±03	10+03	, To+01	_	5 Lineal	\mathbf{r} slope	16-03	16-04	10 d	10-07	Affarat
ERT_{best}/D	0.5	0.5	1.83	2.2	2.2		2.2	2.2	2.2	2.2	$ m ERT_{best}/D$
ALPS	П	1.1	8.8		100		100	100	100	100	ALPS [17]
AMaLGaM IDEA	1	1.1	5.3		18		18	18	18	18	AMaLGaM İDÉA [4]
avg NEWUOA	П	1.2	1.1		1.6		1.6	1.6	1.6	1.6	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1	1	3.3		100		100	100	100	100	BayEDAcG [10]
BFGS	1	1	1.5		2.8		2.9	5.9	5.9	5.9	BFGS [30]
Cauchy EDA	1	1	16		17		17	17	17	17	Cauchy EDA [24]
BIPOP-CMA-ES	1	1	3.4		5.7		5.8 8.0	5.8	5.8	2.8	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	1.9		3.4		3.4	3.4	3.4	3.4	(1+1)-CMA-ES [2]
DASA	1	1.9	19		40		53	09	99	80	DASA $[19]$
DEPSO	1	1	6.1		35		36	36	36	36	DEPSO [12]
DIRECT	1	Н	3.4		4.2		4.2	4.2	4.2	4.2	DIRECT [25]
EDA-PSO	1	1	ಬ		16		17	17	17	17	EDA-PSO [6]
full NEWUOA	1	1.3	1		1.4		1.4	1.4	1.4	1.4	full NEWUOA [31]
G3-PCX	1	1.1	4.1		31		31	31	31	31	G3-PCX [26]
simple GA	1	Н	4.2		2e3		6300	0086	1.5e4	6.8e5	simple GA [22]
GLOBAL	Н	1.1	4.4		20		20	20	20	20	GLOBAL [23]
iAMaLGaM IDEA	1	П	4.6		13		13	13	13	13	iAMaLGaM IDEA [4]
LSfminbnd	П	Н	4.9		8.5		9.1	9.1	9.1	9.1	LSfminbnd [28]
LSstep	1	1.2	59		91		91	91	91	91	LSstep [28]
MA-LS-Chain	П	1.1	4.7		120		130	130	130	130	MA-LS-Chain [21]
MCS (Neum)	1	П	1.2		1		-	-	-	_	MCS (Neum) [18]
NELDER (Han)	П	Н	1.8		2.5		2.5	2.5	2.5	2.5	NELDER (Han) [16]
NELDER (Doe)	1	П	1.3		1.9		1.9	1.9	1.9	1.9	NELDER (Doe) [5]
NEWUOA	1	П	1.1		1.5		1.5	1.5	1.5	1.5	NEWUOA [31]
(1+1)-ES	П	П	1.9		2.5		5.6	5.6	5.6	5.6	(1+1)-ES [1]
POEMS	1	Н	140		170		190	190	190	190	POEMS $[20]$
PSO	1	1.1	4.2		20		21	21	21	21	PSO [7]
PSO_Bounds	1	П	6.1		16		16	16	16	16	PSO_Bounds [8]
Monte Carlo	П	н	4.4		4.9e4	ଣ ଓ					Monte Carlo [3]
Rosenbrock	П	П	3.5		3.5		3.5	3.5	3.5	3.5	Rosenbrock [27]
IPOP-SEP-CMA-ES	1	Н	4		7.1		7.1	7.1	7.1	7.1	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П	1	6.3		27		27	22	22	27	VNS (Garcia) [11]

Table 6: 02-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$1e-07$ Δ ftarget	ERT_{best}/D					.6 BFGS [30]								.5 full NEWUOA [31]										_		(1+1)-ES [1]				1/1e6 Monte Carlo [3]		.4 IPOP-SEP-CMA-ES [29]	7 VNS (Garcia) [11]
	1e-05 1e-																														У			
		5 39.9																																
\mathbf{s}	1e-02 $1e-03$					ŝ																												
6 Attract						72																												
u oy amm	1e+00																																	
e anvia	1e + 01	6.33	2.2	2.1	3.1	1.5	4.2	16	77	2.1	23	3.8	1.4	3.1	3.4	2.3	3.5	2.3	2.4	280	910	2.5	52	Н	1.3	4.4	2.2	66	2.1	2.6	2.7	2.5	1.7	1 0
ins valu	1e + 02	1.4	3.2	1.4	2.1	1.9	4.4	10	က	3.3	29	1.7	П	2.4	2.5	1.5	3.4	2.9	1.9	190	330	2.9	190	1.5	77	2.4	2.5	160	1.1	1.5	2.3	က	3.1	2.7
1 cacii (1e + 03	0.833	3.2	1.1	1.4	2.8	4.3	11	3.9	4.2	30	1.7	1.4	3.4	1	2.3	4.8	3.7	2.7	19	53	4.4	1.4	2.1	1.6	1.2	2.4	200	1.5	2.5	3	4	4.7	2.6
nction evaluations to reach	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Carcia)

Table 7: 02-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	5 1e-07	108 121 ERT_{best}/D	13	2.4 AMa	6	110		2.1	1.6		390	3.6	2.7	14	2.7	19	29	3.9	2.4	096		4.7	9	5.9		12	က	28	4.4			170	1.5 IPO	2
	1e-04	108	11	2.5	10	92		1.9	1.5	П	440	3.1	က	6	2.9	21	47	4.4	2.5	200		4.6	6.5	6.5	5.2	14	3.3	23	3.6	6.7	150	190	1.3	73
		108																			8													
p-ellipsoid	1e-02	2.96	9.2	2.7	ъ	85	76e-2/200	7	1.5	1	240	2.6	2.7	6.2	1.7	19	24	2.7	2.8	55	1500	3.6	2.2	9.9	5.4	9	1.8	21	3.2	ಬ	87	28	1.2	2.1
7 Stel	1e-01	30.2	12	8.1	8.9	62	34	5.3	3.4	5.8	310	4.9	П	6.2	3.7	35	22	7.5	4.7	99	460	4.7	4.5	18	8.5	9.3	4.3	41	4.8	5.8	43	170	2.8	5.1
,	_	10.7																																
	1e + 01	1.6	4.1	3.4	4	4.2	10	19	3.2	2.7	170	6.5	2.1	3.7	77	4.5	5.2	8.9	3.9	6.3	260	5.8	1	2.2	$^{2.6}$	2.2	5.6	180	4.1	6.2	4.6	150	5.5	3.9
	1e + 02	-	1.4	1.5	2.7	1.7	3.7	8.4	1.9	1.4	59	1.7	1	1.8	2.7	1.5	1.6	1.8	1.8	1.1	28	2.3	1.4	1.3	1.6	71	3.3	210	1.3	1.6	1.5	42	2.1	2.4
	1e + 03	0.5	1.1	1.1	1.7	1.5	1.6	5.5	1.9	1.5	30	1.7	1.4	1.5	1.9	1.3	1.6	1.2	1.8	1.3	28	1.7	1.4	1.5	1.8	1.7	2.3	220	1.5	1.3	1.7	16	1	1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbad	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 8: 02-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

1e+03 0.6 2.9	1e+02 1.6 2.8	1e+01 2.7 4.7	8 1e+00 6 19	3 Rose 1e-01 18.3 31	nbrock 1e-02 23.1 66	c original 1e-03 43.2 54	1e-04 46.1 74	1e-05 47 94	1e-07 56 130	$\Delta { m flarget} \ { m ERT}_{ m best}/D \ { m ALPS} \ [17]$
	4.1 2.5	6.2 2.6	10 4.6	6.8 4.4	7.7	4.4 1.4	4.7 1.4	5.1 1.4	5 1.3	AMaLGaM IDEA [4] avg NEWUOA [31]
	2.9	5.6	11	48	350	53e-3/2e3				$\widetilde{\mathrm{BayEDAcG}}$ [10]
	4.9	4.1	5.1	2.4	2.2	1.3	1.3	1.3	1.1	BFGS [30]
	11	10	24	19	21	12	13	14	13	Cauchy EDA [24]
	3.3	3.5	7.1	9.5	11	6.4	6.5	6.7	6.2	BIPOP-CMA-ES [15]
	4.3	3.8	11	6.9	7	4.2	4.1	4.3	4	(1+1)-CMA-ES [2]
	33	110	520	480	089	520	280	200	820	DASA [19]
	3.3	3.6	14	15	22	28	42	65	76e-7/2e3	DEPSO [12]
	1	1.4	22	4.4	8.7	10	16	17	21	DIRECT [25]
	က	5.4	11	20	86	26	140	180	220	EDA-PSO [6]
	3.9	7	7	3.2	2.8	1.6	1.5	1.5	1.3	full NEWUOA [31]
	4	ಬ	24	16	18	11	11	11	9.6	G3-PCX [26]
	2.9	8.4	34	87	170	1300	8900	61e-5/1e5		simple GA [22]
	4.5	14	19	8.5	7.2	4.1	3.9	3.9	3.4	GLOBAL [23]
	8	4.4	12	∞	8.4	ಬ	5.5	5.5	5.2	$iAMaLGaM\ IDEA\ [4]$
	7	420	1500	2300	6300	90e-2/1e4				LSfminbnd [28]
	51	37	1500	3600	6100	32e-2/1e4				LSstep [28]
	3.6	7.2	16	10	15	6	8. 8.	6	8.5	MA-LS-Chain [21]
	1.2	г	г	П	П	1	П	-	1	MCS (Neum) [18]
	1.4	2.1	3.7	7	7	1.1	1.2	1.2	1.2	NELDER (Han) [16]
	3.2	4.6	6.2	2.9	2.7	1.6	1.5	1.6	1.5	NELDER (Doe) [5]
	2.8	4.3	7	3.5	3.2	1.9	1.8	1.8	1.6	NEWUOA [31]
	2.5	47	59	23	34	35	21	20	92	(1+1)-ES [1]
	110	120	110	92	110	74	91	120	130	POEMS $[20]$
	2.6	6.5	11	16	27	26	37	49	29	PSO [7]
	4.3	9	19	24	61	69	120	150	200	PSO_Bounds [8]
	3.2	5.8	19	7.5	029	2200	3.9e4	3.1e5	17e-5/1e6	Monte Carlo [3]
	3.4	4.9	10	5.2	4.8	2.8	2.4	2.8	2.5	Rosenbrock [27]
	3.9	5.2	19	17	17	9.2	9.3	9.6	8.7	IPOP-SEP-CMA-ES [29]
	4.8	8.1	16	10	11	6.9	8.9	7.2	6.7	VNS (Garcia) [11]

Table 9: 02-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IĎEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	46.2	140	2.6	1.9		1.1	14	5.9	4.9	740	26	25	200	1.1	11	1.5e4	4.2	5.3	76e-3/1e4		11	1	1.2	1.4	1.7	160	160	29	240	16e-5/1e6	2.2	6	10
	1e-05	40.7	100	7.7	77		1.2	14	5.8	ಬ	550	45	18	150	1.1	13	1e4	4.5	5.3	3400	76e-3/1e4	10	1	1.2	1.4	1.8	130	130	49	200	3.7e5	2.2	9.4	8.6
	1e-04	38.5	81	7.4	2.1		1.3	14	5.6	ಬ	380	22	14	120	1.2	13	2200	4.7	5.1	3600	3800	10	1	1.2	1.4	1.8	110	110	38	160	6.9e4	2.5	9.3	9.4
k rotated						9																												
enbrock																																		
9 Rose	1e-01	15	41	9.2	4	66	2.3	20	7.1	∞	290	12	ಬ	27	2.5	20	06	11	7.2	029	029	13	1	7	5.6	3.3	120	28	12	27	110	3.1	15	15
		8.9																																
	1e+01	0.5	33	22	22	59	16	29	19	56	320	28	Н	47	24	28	44	30	53	20	750	32	П	10	11	24	19	260	37	48	47	22	16	45
	1e + 02	0.5	7.2	13	10	11	9.2	37	10	6.6	110	12	Н	12	12	10	15	11	7.9	15	610	9.2	Н	3.6	6.9	8.3	8.1	450	15	6	10	12	9.2	21
	1e + 03	0.5	3.3	4.2	7.7	3.8	4.2	16	2.6	3.5	65	2.7	1	3.8	7.1	4.1	ъ	3.5	3.1	6.2	270	ಬ	1	2.7	4.1	5.2	4.4	360	4	3.9	က	8.9	3.1	4.8
	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 10: 02-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	POP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-0.7	48.8	3200	4.4	11		24	8.4	8.9	4.8	8.6e4	•	460	8600	6	25		4	4.1	•		17	3700	1	-	11		6400	1900	2100		က	11	8.3
	1e-05	40.9	2100	4.3	6.6		6.3	∞	7.3	5.2	1e5		220	3e3	8.2	29	23e-3/1e5	4.6	4.2	-		18	1300	1.1	-	10		3700	1100	1900	61e-4/1e6	3.2	12	9.1
	1e-04	37.9	1600	4.1	9.5		2.6	7.7	7.4	5.3	1.1e5		190	2100	7.7	31	3.8e4	4.9	4.1			18	1100	1.1	1	9.6	13e-2/1e6	3200	066	1900	3.8e5	2.8	12	9.4
		34.2										41)																						
) Ellipsoid	1e-02	30.4	350	4	7.6	33e-1/2e3	1.4	2	6.7	5.8	9.5e4	310	89	640	6.4	37	4300	5.8	4.1	-		20	130	1.1	1	7.3	1.5e5	2100	650	830	4.4e4	က	15	111
1(1e-01	26.9	160	3.8	6.9	310	1.4	2	8.5	6.3	6.1e4	330	20	330	9	39	2800	6.4	4.1	15e+0/1e4	15e+0/1e4	19	47	1.1	1	6.5	7.7e4	1400	480	740	3900	3.2	16	12
•	1e+00	22.9	69	က	4.8	190	1.4	6.4	6	9.9	5.2e4	110	9.2	140	4.5	39	200	7.4	3.7	6300	2800	18	8.7	1.1	1	4.3	2.4e4	540	280	220	069	3.4	14	12
	1e+01	14.9	47	က	3.8	09	1	7.4	6.7	7.2	8900	80	3.9	43	3.8	26	22	11	3.3	770	770	13	1.7	1.2	1.2	3.1	8700	300	180	530	110	3.1	16	17
	1e + 02	5.7	22	5.7	3.6	13	1.5	13	12	5.8	15	26	4.3	26	က	9.2	51	19	4	1	1.2	20	1.2	2.5	2.5	1.9	5.3	06	26	24	22	2.8	12	22
	1e + 03	2.9	22	6.7	2.6	17	2.3	14	12	7.3	22	16	3.9	17	77	11	27	18	5.5	1.8	2.1	16	-1	က	3.2	2.3	6.3	110	23	21	23	4.8	8.3	22
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 11: 02-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) $[5]$	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	48.5	3400	4.6	8.8	٠	36	6	8.9	4.7	4.2e4	•	460	36e-6/1e5	8.6	27	٠	4	4	•		17	91e-5/3e4	Н	н	11		7100	1900	5500	•	2.2	11	8.6
	1e-05	40.7	1700	4.4	œ		5.7	8.9	7.5	5.1	4.7e4		270	6500	∞	32		4.6	3.9			20	2e3	1.1	П	8.4		2006	1300	6100		2.6	12	9.4
	1e-04	37.6	1200	4.4	7.3	٠	2.7	8.1	7.6	5.4	5e4	-	190	2900	7.7	33		4.9	3.9	•		20	1300	1.1	н	7.7	63e-3/1e6	6500	1e3	6300	97e-4/1e6	2.2	13	2.6
	1e-03	33.7	880	4.2	8.9		1.9	8.3	∞	5.6	5.3e4	-	28	1900	7	35	14e-2/1e5	5.4	4			20	920	1.1	П	6.9	4.4e5	4e3	860	0029	2.1e5	2.6	13	10
11 Discus	1e-02	30.8	410	3.9	5.4	14e-1/2e3	1.7	∞	8.2	5.7	5.7e4	-	49	066	6.2	36	4.6e4	5.8	3.8	96e-1/1e4	81e-1/1e4	21	300	1	н	6.1	2.3e5	2800	029	5500	4.3e4	2.7	14	11
•	1e-01	25.2	200	4.2	5.1	1100	7	8.1	9.5	9.9	5.4e4	45e-2/2e3	28	460	6.2	28	5e3	6.9	4	5500	2600	23	170	1.1	н	5.5	6e4	2100	099	6300	6300	က	17	12
•	1e+00	22.5	80	3.5	3.3	150	1.6	7.4	8. 8.	6.4	4e4	110	5.2	260	4.4	25	220	7.5	3.3	2900	1800	18	120	1.1	Н	3.2	2.1e4	1400	530	5200	870	2.7	17	12
	1e + 01	17.6	35	က	1.5	31	1.2	6.7	7.9	5.8	9e3	34	2.6	96	2.7	9.7	53	9.5	2.8	200	380	11	87	П	н	1.5	7700	1e3	480	3200	94	2.4	13	12
	1e+02	2.67	40	5.4	1.5	18	1.7	15	8.7	5.9	15	34	5.1	27	3.5	9.1	22	23	9	1.8	Н	15	1.1	2.1	2.4	1.5	820	83	23	21	51	2.9	6.9	14
	1e + 03	4.7	17	4.8	1.3	9.3	1.6	13	4.7	4.8	15	24	3.3	8.6	1.6	9.2	20	17	4.5	2.1	Н	12	1	7	2.5	1.2	4.2	22	10	11	16	2.3	5.4	8.4
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 12: 02-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO[6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	97.4	370	15	1.4		4.2	14	8.2	5.6	2006	45	290	820	2.4	28	1900	4.4	5.4	330	640	10	30	1	1.3	1.4	25e-3/1e6	1.5e4	300	260		3.3	6.3	4.9
	1e-05	76.3	230	16	1.4		2.4	15	9.6	6.5	9200	35	250	1e3	2.7	29	2200	ಬ	5. 8.	410	820	12	39	1	1.4	1.6	1.9e5	2900	220	260		3.9	7	5.6
	1e-04	62.7	210	18	1.5		2.6	17	11	7.6	1.2e4	40	270	1e3	က	31	2700	5.9	9	490	009	13	28	-	1.6	1.8	2.3e5	2100	180	630	38e-4/1e6	4.5	8.1	6.4
ı,		52.4																																
nt ciga	1e-02	47	94	17	1.5	٠	5.9	18	9.1	8.9	8800	48	20	300	3.4	34	1e3	6.3	6.4	630	350	12	56	Т	1.7	2.1	5.5e4	1200	130	510	1.6e4	5.4	8.	7.5
12 Be	1e-01	37.6	92	17	1.5	67e-2/2e3	3.1	19	6.6	10	6100	51	80	160	3.8	34	580	7.2	6.4	220	230	13	32	1	1.6	2.3	2.3e4	1100	110	390	3200	က	9.6	8.8
•	1e+00	23	51	13	1.6	87	3.2	24	12	13	0089	55	35	86	5.2	29	170	8.3	7	1200	230	15	49	1	1.6	2.9	1.7e4	650	22	440	580	3.6	9.2	13
	1e+01	16.9	40	5.8	Н	69	1.2	14	7.9	9.4	2700	41	6.2	40	4.6	12	93	8.1	4.5	590	300	12	62	1	1.1	1.9	0089	83	19	230	26	2.2	9.2	15
	1e + 02	9.17	37	4.1	1.1	26	1.1	6.6	6.1	7	64	16	3.3	24	1.9	6.1	39	11	2.5	1	280	13	1.1	1.4	1.4	1.1	1500	62	12	19	27	2.9	9.5	17
	1e+03	v	19	5.4	1.7	40	1.8	11	9	4.9	16	17	က	11	1.4	9.1	23	11	4.1	1.7	200	13	П	1.9	7	1.5	3.8	64	11	12	18	3.3	7.4	17
	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 13: 02-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	m BayEDAcG~[10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	61.1	2.9e4	4.1	240		67e-5/5e3	8.5	-	9.2	62e-5/1e6		120	27e-5/1e5	1800	61			3.7			22		1	1	150	3.7e4	2.4e4	1.1e4	93e-7/1e5		170	11	8.4
	1e-05	47.4	3700	3.9	140		580	8.5	9.9	6.7	1.4e5		74	3.1e4	260	20			3.6			19	75e-4/3e4	П	1.1	91	8100	6300	2900	3e3		20	13	8.6
	1e-04	41.5	1300	4	130		099	8.6	6.1	9.2	4.7e4		49	4e3	290	55		67e-5/400	3.6	13e-3/1e4		21	2500	1	1	62	4200	2300	1100	1200		43	14	9.1
rp ridge	1e-03	35.4	300	3.9	73	11e-1/2e3	160	8.5	6.4	8.1	1.6e4	18e-3/2e3	24	710	140	20	25e-3/1e5	13	3.6	820	35e-2/1e4	23	2200	-	П	72	200	1100	330	620	32e-3/1e6	28	14	9.2
$13~\mathrm{Sha}$	1e-02	30	170	3.7	54	950	74	8.2	5.9	7.3	4900	120	8.7	270	92	47	2.2e4	9	3.3	470	1500	21	096	П	П	22	370	330	140	260	1.1e5	18	15	8.8
1	1e-01																																	
red by	1e+00	17.6	47	3.2	17	140	15	7.7	5.4	7.3	820	25	4.2	42	12	30	170	9.3	3.1	110	570	17	20	П	1.1	10	94	93	27	43	280	_	20	9.7
lis value divided by	1e+01	11.3	13	$^{2.6}$	6.7	25	8.9	7.3	3.2	5.2	540	8.4	2.2	6.4	8. 5.	13	25	9.5	2.6	52	280	8.7	23	П	1.1	6.3	37	48	6	9.5	18	5.6	13	8.8
	1e+02	2.3	3.2	3.4	6.7	2.4	ಬ	15	4.3	4.4	06	6.1	Н	3.5	5.2	3.9	3.7	8.7	3.3	16	420	3.3	4.7	1.6	2.2	8.7	31	110	3.3	3.8	5.4	4.8	3.7	3.9
O ICACII	1e + 03	0.5	1.3	1.1	1.8	1.4	1.2	4.1	1.3	1.1	13	1.1	Н	1.4	1.5	1.2	1.3	1.3	1.1	Н	28	1.1	Н	1.7	1.3	1.6	1.9	170	1.6	1.1	1.6	3.2	1.1	1.4
iditerion evaluations to reach of	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	m BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 14: 02-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	45.1	530	4.2	8.9	12e-5/2e3	9	8.5	7.1	4.7	3.1e5	17e-7/2e3	32	1100	3.7	11	58e-7/1e5	34e-7/300	3.6			17	8200	1.1	П	5.4	22e-7/1e6	3300	1700	1200	15e-5/1e6	က	11	9.3
	1e-05	33.7	130	3.8	2.5	180	Н	8.9	5.5	4.4	9300	55	12	160	1.5	9.1	3200	8.2	3.5	23e-5/1e4	23e-4/1e4	12	23	1	1	2.1	3400	330	85	180	4.2e5	2.4	10	8.6
vers	1e-04	27.8	83	3.9	1.8	86	1.1	8.6	5.3	3.9	290	18	8.6	74	1.1	9.7	630	6.2	3.4	1500	5100	12	3.1	П	П	1.8	160	180	48	110	1.1e5	1.8	9.7	8.1
nt pov	$1e-\overline{0}3$	18.9	22	4.2	1.6	29	1.4	10	4.6	4	33	17	9	15	П	9.9	280	8.8 8.8	3.9	92	1600	13	2.8	1.2	1.1	1.6	9.5	180	36	7.5	7200	1.9	7.4	6
differe	1e-02	12.2	09	4.7	1.3	22	1.7	11	4.2	3.6	18	16	8.8	12	П	5.9	200	13	4	6.2	120	15	1.7	1.4	1.3	1.5	3.4	160	22	45	260	1.6	4.9	9.4
of mi	1e-01	8.1	14	3.9	1.4	10	1.8	12	က	3.4	16	10	2.1	8.2	П	6.3	41	13	3.9	က	20	9.6	1.4	1.4	1.3	1.6	2.2	73	13	14	31	1.6	4.4	10
14 Sı	1e+00	3.7	2.4	3.3	2.5	1.8	2.8	13	2.5	3.1	22	5.2	1.3	2.9	1.4	6.3	4	5.5	3.7	5.4	73	3.1	-	1.4	1.4	2.4	2.5	98	4.8	2.7	5.6	1.9	1.8	6.2
2 5000	1e + 01	0.7	1.6	1.6	3.4	1.9	2.1	13	1.9	1.7	22	1.4	П	1.4	3.2	1.8	П	1.7	1.6	4.7	40	1.7	П	2.1	1.3	3.7	2.3	190	1.4	1.5	1.8	4	1.6	2.1
	1e + 02	0.5	П	1.2	1.4	-	1.4	4.6	1.1	1.4	18	-	-	1.2	1.4	1.2	1.1	1.1	1.5	1.3	22	1.3	_	1.5	1.1	1.1	1.7	140	1.1	1.1	П	2.5	1.2	П
	1e + 03	0.5	П	-	-	П	-	-	-	1	-	-		-	П	-		П	-	-		-	-	-			П	1		П		1		П
	$\Delta { m ftarget}$	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 15: 02-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Afterost	1e±03	16±03	16±01	16+00	15 H	$ ext{Rastrig}_{1 \sim 0.2}$	jin 1e-03	16-04	750-91	10-07	Afferent
$ m ERT_{best}/D$	0.5	0.6	18.6	146	517	533	556	582	616	706	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1.1	1.6	2.7	8.9	3.4	4.8	5.7	7.1	7.9	9.1	ALPS [17]
MaLGaM IDEA	1.1	8.5	1.1	4.3	2.7	8.7	2.8	2.7	2.6	2.3	AMaLGaM İDEA [4]
avg NEWUOA	1	2.6	2.5	2.5	3.3	3.2	3.1	2.9	2.8	2.4	avg NEWUOA [31]
BayEDAcG	1	2.2	2.1	8.2	9.2	26	16e-2/2e3	٠		٠	BayEDAcG [10]
BFGS	1.2	17	4.2	4.6	7.9	7.7	7.3	-1	9.9	8	BFGS [30]
Cauchy EDA	9.1	38	4.9	2.9	3.2	11	14	14	13	12	Cauchy EDA [24]
IPOP-CMA-ES	1.2	2.9	1.1	1.8	2.1	2.5	2.2	2.1	2.1	1.9	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1.2	2.8	22	7.7	9.7	7.4	7.1	8.9	6.5	2.2	(1+1)-CMA-ES [2]
DASA	4.6	22	64	84	64	62	09	57	54	48	DASA [19]
DEPSO	1.1	1.6	2.9	3.8	1.7	2.5	2.5	5.6	33	6.3	DEPSO[12]
DIRECT	1	1	1	1	П	1	П	1	П	Н	DIRECT [25]
EDA-PSO	1	3.3	77	9.3	6.1	8.3	8.3	8.5	8.4	8.1	EDA-PSO [6]
full NEWUOA	1.2	3.1	1.5	1.4	3.5	3.4	3.3	3.1	က	5.6	full NEWUOA [31]
G3-PCX	1.1	2.3	7.8	13	22	21	20	19	18	16	G3-PCX [26]
simple GA	1.2	2.3	4.2	18	13	34	96	86	100	120	simple GA [22]
GLOBAL	1.1	2.6	က	1.6	5.6	2.2	2.4	2.3	2.2	7	GLOBAL [23]
MaLGaM IDEA	1.1	2.5	1	4.2	5.1	5.1	ಬ	4.8	4.6	4.1	iAMaLGaM IDEA [4]
LSfminbnd	1.1	6.2	3.7	20	36	51	99	210	71e-2/9e3	-	LSfminbnd [28]
LSstep	1.1	47	170	200	80	79	22	74	71	63	LSstep [28]
MA-LS-Chain	1.1	7	1.7	1.9	1.6	1.5	1.5	1.5	1.4	1.3	MA-LS-Chain [21]
MCS (Neum)	П	П	2.1	3.5	1.4	1.4	1.3	1.3	1.2	1.1	MCS (Neum) [18]
VELDER (Han)	-	1.9	8.4	7.3	9.7	9.4	6	8.6	8.2	7.1	NELDER (Han) [16]
VELDER (Doe)	П	3.2	1.1	1.3	1.4	1.3	1.3	1.2	1.2	Н	NELDER (Doe) [5]
NEWUOA	1.1	11	4.1	3.4	3.3	3.2	က	2.9	2.7	2.4	NEWUOA [31]
(1+1)-ES	1.4	3.7	1.1	5.3	8.4	8.2	7.9	7.5	7.1	6.3	(1+1)-ES [1]
POEMS	28	120	16	19	18	20	21	21	22	22	POEMS [20]
PSO	1.1	2.4	1.9	4.1	16	16	16	16	16	15	PSO [7]
PSO_Bounds	1.2	2.3	1.7	9.9	3.9	7.3	9.5	11	11	12	PSO_Bounds [8]
Monte Carlo	1.1	2.1	2.4	64	150	1500	2800	1.2e4	50e-4/1e6		Monte Carlo [3]
Rosenbrock	1.3	19	15	9.7	9.2	9.5	8.9	8.5	∞	-1	Rosenbrock [27]
OP-SEP-CMA-ES	П	3.8	1.5	2.9	2.1	2.5	2.2	2.1	2.1	1.9	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	3.3	3.4	1.9	2.4	2.4	2.3	2.4	2.7	3.7	VNS (Garcia) [11]

Table 16: 02-D, running time excess ERT/ERT $_{\text{best}}$ on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{16} and f_{16} and f_{16} and f_{16} and f_{16} and f_{16} and f_{16} and f_{16} are the median number of function evaluations to reach this value divided by dimension

Table 17: 02-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{17} and $f_$

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	828	11	2.1		87e-6/2e3		13	1.1	10	220	2.8	1	7.1		က	69e-8/1e5		2.8			2.9	130	6.3	4		15	21	5.5	30			1.4	32
	1e-05	543	12	2.9		27		16	1.3	16	340	2.4	-	∞	30e-4 /6e3	4.4	150	75e-4/500	4	٠	10e-4/1e4	3.1	140	9.6	5.9	•	23	24	5.5	21			1.5	6.7
10	1e-04	372	12	3.3	75e-4/5e3	8. 8.		11	1	14	230	2.8	1.2	8.2	48	2.6	120	9.6	4.2		390	2.8	44	12	-1	75e-4/5e3	13	23	6.2	15	73e-4/1e6	24e-2/5e3	1.6	2.6
condition	1e-03	198	17	4.5	120	8.7		20	Н	14	93	3.7	1.4	6.6	53	3.2	91	4.4	5.1	16e-3/5e3	82	4.8	9.2	11	3.1	120	8.5	32	8.1	22	7.4e4	350	1.8	2.9
17 Schaffer F7,	1e-02	138	15	2.7	33	7	24e-2/2e3	28	П	14	52	3.7	-	7.4	21	3.9	61	3.9	4.2	55	44	4.3	5.4	14	3	33	4.8	31	6.2	15	4900	200	2.3	2.7
17 Sck	1e-01	66.5	16	4.8	13	∞	90	26	1.5	5.9	37	4.3		3.9	14	6.2	47	4.1	6.2	7.3	35	5.3	4.8	20	3.3	18	6.7	35	ಬ	13	220	140	2.8	4.7
	1e+00	30.4	2.8	1.3	4.6	7	16	120	1.8	3.1	59	1.1	П	77	4.4	4.5	5.1	4	8.8 8.8	1.2	40	2.5	4.3	28	1.5	8.9	5.9	18	1.6	1.3	5.2	83	2.5	2.2
	1e + 01	1.33	1.5	1.5	12	1	15	18	4.1	12	21	2.7	1.4	2.6	8.2	2.2	2.1	2.6	1.3	5.4	42	1.3	1.3	130	1.4	7.7	2.7	110	1.9	1.9	1.7	45	4	2.5
	1e + 02	0.5	1.2	1.5	1.3	1.1	6.4	7.9	1.2	1	1	1.3	П	1.1	1.4	1.1	1.2	1.2	1.2	1.2	73	1.3	1	1.5	1.5	1.9	1.1	110	1.2	1.3	1.1	20	1.9	П
	1e + 03	0.5	1	1	1.1	П	1	1	1	1	1	1	П	1.1	П	П	П	1	П	П	1.1	1.1	1	П	П	П	1	4.5	1.1	П	1	-	П	П
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 18: 02-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Aftarget ERT _{best} /D ALPS [17] AMALGAM IDEA [4] avg NEWUOA [31] BayEDAcG [10] BFGS [30] Cauchy EDA [24] BIPOP-CMA-ES [15] (1+1)-CMA-ES [15] (1+1)-ES [15] DASA [19] DASA [10] NEUDER (12] GLOBAL [23] AMALS-Chain [21] MCS (Neum) [16] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16] PSO [7] PSO [7] PSO [7] POWLE (19] DAMAL CALLO [3] DAMAL CALLO [3]	16-07 1430 1430 1.1 1.1 1.1 6.7 6.7 11 15 85 24e-4/1e5 7 7 7 7 12 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	16-05 1220 3.6 1.1 7.4 1 32e-3/1e4 5900 8.3 4.9 13 99 1200 99 1200 5.8 30e-4/3e4 40 25 75-4/1e6 45 66.5	000 1e-04 1040 8.1 1.2 1.2 7 1 140 4200 9.4 4.8 12 72 680 680 58e-3/1e3 2 3.9 350 47 8.7 8.7 1.4e4 31 5.6 5.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	20ndition 10 1e-03 1e-03 854 854 6.7 1.1 58e-3/6e3 58e-3/6e3 11 83 1800 11 83 1800 11 3.4 11 58e-3/6e3 48 280 7.6 2.8 280 7.6 2.8 280 7.6 3.4 140 88 5.8 98e-3/6e3 4900 23 3.5 10	18 Schaffer F7, cond 333 625 833 1	8 Sch 1e-01 333 5.5 1 10 110 110 110 111 1.9 86 86 8.6 2.1 1.1 7.1 1.9 1.9 1.1 7.1 1.9 2.1 1.1 7.1 1.9 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10+01 1.6 1.7 1.8 1.3 1.3 1.4 2.3 2.2 2.4 2.4 2.4 2.4 2.4 4.3 2.4 4.3 2.4 1.3 1.3 1.3 1.3 1.4 1.3 1.4 1.3 2.4 2.4 2.4 2.4 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	16+02 1.6 1.3 1.3 1.3 1.3 1.5 1.1 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	10+03 1.1 1.1 1.1 1.1 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	Aftarget 1e+03 1e+02 ALPS 1.1 1.3 AMaLGaM IDEA 1.1 1.3 avg NEWUOA 1.7 7.9 BayEDAcG 1.4 1.5 BFGS 5.4 1.1 Cauchy EDA 2.6 2.200 BIPOP-CMA-ES 1.6 2.4 (1+1)-CMA-ES 1.6 2.4 (1+1)-CMA-ES 1.1 22 DASA 3.3 27 DEPSO 1.3 1.3 EDA-PSO 1.3 1.3 FINDER GA 1.1 1.5 GGLOBAL 1.1 1.5 GGLOBAL 1.2 5 GLOBAL 1.3 1.3 I-Step 28 18 MA-LS-Chain 1.7 1.5 MCS (Neum) 1.4 3.6 LSstep 28 18 MA-LS-Chain 1.1 1.5 MCS (Neum) 1.4 3.6 LStep 2.8 18 NELDER (Dee) 1.3 1.3 NELDER (Dee) 1.3 1.3 NELDER (Dee) 1.3 1.3 NELDER (Dee) 1.3 1.3 NELDER (Dee) 1.3 1.3 PSO BOOLMS 1.1 1.5 DOEMS 1.1 1.1 DEN CARIO 1.1 1.1 DEN CARIO 1.1 1.1 DEN CARIO 1.1 1.1
IPOP-SEP-CMA-ES [29]	1.1	1.1	٠ д	1.1	1.3	2.1	6.2	2.1	4.9 9.1	1.5	IPOP-SEP-CMA-ES
Rosenbrock [27]					53e-2/5e3	200	26	61	54	26	Rosenbrock
Monte Carlo [3]				24e-3/1e6	1.1e4	270	21	2.5	1.2	1.1	Monte Carlo
PSO_Bounds [8]	23	17	12	10	8.8 8.8	6.7	5.3	1.5	1.5	1.4	PSO_Bounds
PSO [7]	7.2	6.5	5.6	3.5	3.2	2.8	3.4	1.7	1.3	1.3	PSO
POEMS [20]	42	45	31	23	28	50	120	28	7.5	100	POEMS
(1+1)-ES [1]		75e-4/1e6	1.4e4	4900	1500	620	230	63	2.4	1.5	(1+1)-ES
NEWUOA [31]			•	98e-3/6e3	62	14	12	5.6	13	1.3	NEWUOA
NELDER (Doe) [5]	21	25	8.7	5.8	4.3	2.4	3.1	1.2	1.3	1.3	NELDER (Doe)
NELDER (Han) [16]	34	40	47	38	20	18	44	21	1.3	1.2	NELDER (Han)
MCS (Neum) [18]		30e-4/3e4	350	140	8.4	1.7	2.8	1.3	က	1.4	MCS (Neum)
MA-LS-Chain [21]	7	5.8	3.9	4	3.2	2.2	3.2	1.6	1.5	1.7	MA-LS-Chain
LSstep [28]			·	24e-2/1e4	110	09	79	12	18	28	LSstep
LSfminbnd [28]	٠			58e-3/4e3	33	7	2.1	1.3	3.6	2.1	LSfminbnd
iAMaLGaM IĎEÁ [4]	1.8	7	.21	2.3	1.8	2.9	12	1.4	1.8	1.2	iAMaLGaM IDEA
GLOBAL [23]			58e-3/1e3	7.6	4.8	2.5	3.1	7	1.2	1.3	GLOBAL
simple GA [22]	24e-4/1e5	1200	089	280	110	23	15	4.3	1.5	1.1	simple GA
G3-PCX [26]	82	66	72	48	41	21	10	7	1.1	1.9	G3-PCX
full NEWUOÀ [31]				58e-3/6e3	71	19	16	က	ಬ	1.2	full NEWUOA
EDA-PSO [6]	15	13	12	11	9.1	7.1	5.4	2.4	1.3	1.3	EDA-PSO
DIRECT [25]	11	4.9	4.8	3.4	1.2	1.1	П	Т	1.9	1.4	DIRECT
DEPSO[12]	75e-4/2e3	8.3	9.4	11	3.3	2.1	3.1	2.7	1	1.3	DEPSO
DASA [19]	5e3	2900	4200	1800	740	98	91	26	27	3.3	DASA
(1+1)-CMA-ES [2]		32e-3/1e4	140	83	38	17	13	9.9	22	1	(1+1)-CMA-ES
BIPOP-CMA-ES [15]	П	1	П	П	1.1	1.9	6.5	2.2	2.4	1.6	BIPOP-CMA-ES
Cauchy EDA [24]	6.7	7.4	2	ಬ	6.4	11	55	380	2200	2.6	Cauchy EDA
BFGS [30]					74e-2/2e3	110	30	14	11	5.4	BFGS
$\overline{\mathrm{BayEDAcG}}$ [10]				53e-2/2e3	48	19	19	2.3	1.5	1.4	BayEDAcG
avg NEWUOA [31]				58e-3/6e3	62	6.1	6	5.4	7.9	1.7	avg NEWUOA
AMaLGaM İDÉA [4]	1.1	1.1	1.2	1.1	1	1	4.1	1.3	1.3	1.1	AMaLGaM IDEA
ALPS [17]	13	9.6	8.1	6.7	5.4	5.5	9.9	1.6	1.3	1.1	ALPS
${ m ERT_{best}/D}$	1430	1220	1040	854	625	333	6.99	9.2	1.6	0.5	ERT_{best}/D
$\Delta { m ftarget}$	1e-07	1e-05	1e-04	1e-03	1e-02	1e-01	1e+00	1e + 01	1e+02	1e + 03	$\Delta { m ftarget}$
			000	ondition 1	affer F7, c	8 Sch	, –			!	
										֡	

Table 19: 02-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

19 Griewank-Rosenbrock F8F2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aftarget	1e+03	1e+02	1e+01	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	iewan _{1e-01}	$ extbf{k-Rose}_{1e ext{-}02}$	$rac{\mathbf{enbroc}}{1\mathbf{e} ext{-}03}$,	16-05	1e-07	$\Delta { m ftarget}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ERT_{best}/D	0.5	0.5	0.5	0.5	13.2	108	114		126	138	${ m ERT_{best}/D}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ALPS	1	1.1	5.5	55	17	12	22		41	54	ALPS [17]
1 1.3 8 110 13 22 21 20 19 18 1 1.1 3.9 44 9.9 13 57 $35e_4/2e_3$. . . 1 1.1 37 310 61 30 17 860 1300 280 $18e_4/5e_4$ 1 1.1 16 110 51 170 860 1300 280 18e 7.6 1 1.1 1.6 87 32 32 250 280 18e 14e 14e 14e 14e 14e 15e 15e 28e 17e 36e 26e 27e 26e 27e 36e 27e 36e 37e 36e 36e 36e 37e 36e 36e 37e 36e 37e 36e 37e	MaLGaM IDEA	1	1.1	6.3	40	6.2	18	18		17	16	AMaLGaM İDEA [4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	avg NEWUOA	1	1.3	∞	110	13	22	21		19	18	avg NEWUOA [31]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BayEDAcG	1	1.1	3.9	44	6.6	13	22	0.5			BayEDAcG [10]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BFGS	1	11	37	310	61	30	50		26	24	BFGS [30]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cauchy EDA	1	1.1	16	110	51	170	860		2800	18e-4/5e4	Cauchy EDA [24]
1 1 56 87 33 32 31 29 28 26 1 7.5 42 760 97 250 250 250 260 270 1 1 4.4 59 17 18 35 69 67 80 67 1 1.1 1 4.6 10 9.6 9.1 8.9 50 67 1 1.3 6.7 88 17 17 16 15 14 40 1 1.3 6.7 88 17 17 16 15 14 43 43 44 47 45 43 40 47 47 45 47 46 40 47 48 48 48 48 48 48 48 48 48 48 48 48 48 48 40 40 40 40 40 40 40 40 <th< td=""><td>IPOP-CMA-ES</td><td>1</td><td>1</td><td>9</td><td>31</td><td>10</td><td>12</td><td>12</td><td></td><td>14</td><td>14</td><td>BIPOP-CMA-ES [15]</td></th<>	IPOP-CMA-ES	1	1	9	31	10	12	12		14	14	BIPOP-CMA-ES [15]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1+1)-CMA-ES	1	1	5.6	87	33	32	31		28	26	(1+1)-CMA-ES [2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DASA	1	7.5	42	260	26	250	250		260	270	DASA [19]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DEPSO	1	1	4.4	29	17	18	35		69	29	DEPSO[12]
1 1.1 5.2 37 13 17 30 57 62 72 1 1.3 6.7 88 17 17 16 15 14 1 1.3 6.7 88 17 17 16 15 14 1 1.2 4.5 52 37 49 40 640 4900 1 1.3 4.3 50 9.4 11 10 10 9.6 48 49 1 1.1 9.4 49 10 29 48 46 8.8 1 1.1 6.7 60 7.2 15 14 14 13 1 1.1 1<	DIRECT	1	1	1	1	4.6	10	9.6		8.9	59	DIRECT [25]
1 1.3 6.7 88 17 17 16 15 14 1 1.1 5.3 52 37 49 47 45 43 40 1 1.2 4.5 51 20 21 110 360 640 490 40 1 1.3 4.3 50 94 11 10 36 640 48 48 46 42 1 1.1 5.5 25 63 50 48 46 42 42 1 1.1 9.4 49 10 29 70 120 310 59e-5/5e3 1 1.1 1 <th< td=""><td>EDA-PSO</td><td>1</td><td>1.1</td><td>5.2</td><td>37</td><td>13</td><td>17</td><td>30</td><td></td><td>62</td><td>72</td><td>EDA-PSO [6]</td></th<>	EDA-PSO	1	1.1	5.2	37	13	17	30		62	72	EDA-PSO [6]
1 1 5.3 52 37 49 47 45 43 40 1 1.2 4.5 51 50 24 11 10 10 96 490 1 1.3 4.3 50 9.4 11 10 10 9.6 640 8.8 1 1.1 5.5 25 63 50 48 48 46 49 1 1.1 9.4 49 10 29 70 120 310 59e-5/5e3 1 1.1 9.4 440 27 63 140 580 11e4 13 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Juli NEWUOA	1	1.3	6.7	88	17	17	17		15	14	full NEWUOA [31]
1 1.2 4.5 51 20 21 110 360 640 4900 1 1.3 4.3 50 9.4 11 10 36 640 4900 1 1.1 5.5 25 63 50 48 47	G3-PCX	1	П	5.3	52	37	49	47		43	40	G3-PCX [26]
1 1.3 4.3 50 9.4 11 10 10 9.6 8.8 1 1.1 5.5 25 63 10 10 9.6 8.8 1 1.1 5.5 25 63 48 48 46 46 1 1.1 1.1 6.7 60 7.2 15 15 14 14 13 1 1.1 1 1 1 1 1 1 1 1 1 1.1 4.6 5.2 15 15 14 14 13 1 1.1 4.6 5.2 10 27 26 27 29 27 25 1 1.5 6.2 130 16 27 26 27 20 27 24 27 1 1.6 6.2 13 2.7 2.2 27 30 38 1 1.1 <th< td=""><td>simple GA</td><td>1</td><td>1.2</td><td>4.5</td><td>51</td><td>20</td><td>21</td><td>110</td><td></td><td>640</td><td>4900</td><td>simple GA [22]</td></th<>	simple GA	1	1.2	4.5	51	20	21	110		640	4900	simple GA [22]
1 1.1 5.5 25 63 69 48 48 46 42 1 1.1 9.4 49 10 29 70 120 310 $59e-5/5e3$ 1 1.9 140 440 27 63 14 14 1	GLOBAL	1	1.3	4.3	50	9.4	11	10		9.6	8. 8.	GLOBAL [23]
1 1.1 9.4 49 10 29 70 120 310 $59e-5/5e3$ 1 1.9 140 440 27 63 140 580 $11e-4/1e4$. 1 1.1 1 1 1 1 1 1 1 1 1.1 1 1 1 1 1 1 1 1 1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.1 4.6 52 10 27 26 25 24 22 1 1.6 6.2 100 22 23 24 30 30 30 30 1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.2<	MaLGaM IDEA	1	1.1	5.5	25	63	20	48		46	42	iAMaLGaM IDEA [4]
1 1.9 140 440 27 63 140 580 $11e^{4}/1e^{4}$. 1 1.1 6.7 60 7.2 15 15 14 14 13 1 1.1 1 1 1 1 1 1 1 1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.6 6.2 100 20 20 24 22 1 1.6 6.2 10 2.7 2.6 2.7 2.0 30 30 1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.5 5.1 4.0 7.8 11 20 30 30 30 30 1	LSfminbnd	1	1.1	9.4	49	10	56	20		310	59e-5/5e3	LSfminbnd [28]
1 1.1 6.7 60 7.2 15 15 14 14 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.5 6.2 130 16 27 26 25 24 2.2 1 1.6 6.2 100 22 23 25 27 30 38 1 1.3 340 550 57 210 200 200 190 190 1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.5 4.5 64 16 36 110 310 326 1 1.5 4.3 29 29 28	LSstep	1	1.9	140	440	27	63	140		11e-4/1e4		LSstep [28]
1 2 3 3 3 3 3 3 3 4 4 4	MA-LS-Chain	П	1.1	6.7	09	7.2	15	15		14	13	MA-LS-Chain [21]
1 1 3.1 380 64 32 30 29 27 25 1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.5 6.2 130 16 27 26 25 27 30 38 1 1.6 6.2 100 22 23 26 27 30 38 1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 4.2 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 19 19 19 1 1.5 <td>MCS (Neum)</td> <td>1</td> <td>П</td> <td>1</td> <td>1</td> <td>н</td> <td>н</td> <td>П</td> <td></td> <td>-1</td> <td>-1</td> <td>MCS (Neum) [18]</td>	MCS (Neum)	1	П	1	1	н	н	П		-1	-1	MCS (Neum) [18]
1 1.1 4.6 52 10 8.1 7.8 7.4 7.1 6.5 1 1.5 6.2 130 16 27 26 25 24 22 1 1.6 6.2 130 16 27 26 27 27 30 38 1 1.6 6.2 100 22 27 20 190 190 190 1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 4.2 160 34 30 29 28 26 24 1 1.5 4.3 29 19 19 19 19 19 1 1.2 2.2 4.3 19 19 20 20 20 21	ELDER (Han)	1	П	3.1	380	64	32	30		27	25	NELDER (Han) [16]
1 1.5 6.2 130 16 27 26 25 24 22 1 1.6 6.2 100 22 23 25 27 30 38 1 1.3 340 550 57 210 200 200 190 190 1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 4.2 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 19 19 19 1 1.2 2.2 43 12 19 19 20 20 21	ELDER (Doe)	1	1.1	4.6	52	10	8.1	4.8		7.1	6.5	NELDER (Doe) [5]
1 1.6 6.2 100 22 23 25 27 30 38 1 130 340 550 57 210 200 200 190 190 1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.5 5.1 40 7.8 11 20 36 47 71 1 6.9 42 64 16 36 110 310 720 3.2e4 1 6.9 4.2 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 20 19 19 18 1 1.2 2.2 43 12 19 19 20 20 21	NEWUOA	П	1.5	6.2	130	16	27	56		24	22	NEWUOA [31]
1 130 340 550 57 210 200 200 190 190 1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 42 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 20 19 19 1 1.2 2.2 43 12 19 19 20 20	(1+1)-ES	1	1.6	6.2	100	22	23	22		30	38	(1+1)-ES [1]
1 1.1 5.3 34 9.1 4.7 6 8.7 9.9 16 1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 42 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 19 19 18 18 1 1.2 2.2 43 12 19 19 20 20 21	POEMS	П	130	340	550	22	210	200		190	190	POEMS $[20]$
1 1.5 5.1 40 7.8 11 20 36 47 71 1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 42 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 20 19 18 18 1 1.2 2.2 43 12 19 19 20 20 21	PSO	П	1.1	5.3	34	9.1	4.7	9		6.6	16	PSO [7]
1 1.2 4.5 64 16 36 110 310 720 3.2e4 1 6.9 42 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 20 19 19 18 II 1 1.2 2.2 43 12 19 19 20 20 21	PSO_Bounds	-	1.5	5.1	40	2.8	11	20		47	71	PSO_Bounds [8]
1 6.9 42 160 34 30 29 28 26 24 1 1.5 4.3 29 6.8 19 20 19 19 18 III 1 1.2 2.2 43 12 19 19 20 20 21	Monte Carlo	1	1.2	4.5	64	16	36	110		720	3.2e4	Monte Carlo [3]
1 1.5 4.3 29 6.8 19 20 19 19 18 II 1 1.2 2.2 43 12 19 19 20 20 21	Rosenbrock	П	6.9	42	160	34	30	50		26	24	Rosenbrock [27]
$f{1}$ 1.2 2.2 43 12 19 19 20 20 21	P-SEP-CMA-ES	1	1.5	4.3	29	8.9	19	20		19	18	IPOP-SEP-CMA-ES [29]
	VNS (Garcia)	1	1.2	2.2	43	12	19	19		20	21	VNS (Garcia) [11]

Table 20: 02-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 21: 02-D, running time excess ERT/ERT $_{\text{best}}$ on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 21 Callacher 101 neaks

				21 Gallagher	agher	101 peaks	\mathbf{eaks}				
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.5	0.5	0.833	25.3	87.2	138	145	153	162	165	${ m ERT_{best}/D}$
ALPS	1	1	1.2	2.2	1.8	2.6	4.9	6.4	7.8	12	ALPS [17]
AMaLGaM IDEA	1	1	1.3	28	17	11	11	10	10	10	AMaLGaM IDEA [4]
avg NEWUOA	1	-	6.1	6.5	4.6	5.9	2.8	2.7	5.6	2.7	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1	1	1.7	1.6	9.3	14	39	22	98	82	BayEDAcG [10]
BFGS	1	1	2.6	4.8	က	7	1.9	1.8	1.7	1.8	BFGS [30]
Cauchy EDA	1	1	9	310	93	62	65	62	81	80	Cauchy EDA [24]
BIPOP-CMA-ES	1	1	1.4	11	10	8.2	9.7	9.3	8.9	8.9	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	1.2	12	9.6	6.1	5.9	5.6	5.3	5.3	(1+1)-CMA-ES [2]
DASA	1	1	13	150	140	88	84	80	22	92	DASA [19]
DEPSO	1	1	2.1	2.2	1.5	1.8	2.4	5.6	5.9	5.6	DEPSO [12]
DIRECT	1	1	1.3	П	1	1	Н	7	7	2.3	DIRECT [25]
EDA-PSO	1	1	1	1.8	83	54	53	25	51	25	EDA-PSO [6]
full NEWUOA	1	1	2.5	3.6	က	1.9	1.8	1.7	1.7	1.7	full NEWUOA [31]
G3-PCX	1	1	1.4	2.7	2.9	1.9	1.9	1.8	1.8	1.8	G3-PCX [26]
simple GA	1	1	1.4	1	1.7	4.1	7.7	18	120	270	simple GA [22]
GLOBAL	1	-	1.5	1.1	1.1	П	П	П	П	-	GLOBAL [23]
iAMaLGaM IDEA	1	1	1.6	21	12	6.7	2.8	7.5	7.2	7.1	iAMaLGaM IDEA [4]
LSfminbnd	1	1	2.1	39	20	56	46	09	73	170	LSfminbnd [28]
LSstep	1	1	18	370	150	100	100	100	120	190	LSstep [28]
MA-LS-Chain	1	-	1.4	1.1	1.5	1.5	1.7	1.9	1.9	7	MA-LS-Chain [21]
MCS (Neum)	1	1	1.6	22	14	8. 8.	8.4	∞	9.7	7.5	MCS (Neum) [18]
NELDER (Han)	1	1	1.8	19	20	13	12	12	11	11	NELDER (Han) [16]
NELDER (Doe)	1	1	1.4	2.6	2.6	1.7	1.6	1.5	1.5	1.5	NELDER (Doe) [5]
NEWUOA	1	-	3.5	3.9	4	2.5	2.4	2.3	2.5	2.3	NEWUOA [31]
(1+1)-ES	1	1	2.8	14	19	12	11	11	10	10	(1+1)-ES [1]
POEMS	П	1	130	93	890	260	540	520	490	490	POEMS $[20]$
PSO	1	1	1.2	1.4	83	53	51	48	46	47	PSO [7]
PSO_Bounds	П	-	1.5	33	300	190	180	170	170	170	PSO_Bounds [8]
Monte Carlo	П	н	73	1.8	1.2	3.5	8. 8.	28	42	640	Monte Carlo [3]
Rosenbrock	П	П	2.3	5.5 5.5	3.9	2.2	2.4	2.3	2.5	2.1	Rosenbrock [27]
IPOP-SEP-CMA-ES	П	1	1.3	9.6	6.4	6.3	8.5	8.7	8.6	9.5	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1	1.1	6.1	14	9.1	8. 8.	8.5	8.4	8.4	VNS (Garcia) [11]

Table 22: 02-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{22} , f_{23} ,

				22 G	22 Gallagher 21		peaks				
$\Delta { m ftarget}$	1e + 03	1e + 02	1e + 01	1e+00	1e-01		1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.5	0.5	2.53	13.4	83.9	109	125	142	144	153	${ m ERT_{best}/D}$
ALPS	П	1	1.2	1.3	П	က	5.2	7.1	9.2	15	ALPS [17]
AMaLGaM IDEA	Т	1	1.3	51	18	19	17	15	15	15	AMaLGaM İDEA [4]
avg NEWUOA	П	1	က	3.8	1.3	1.1	1.1	1.1	1.1	1.3	avg NEWUOA [31]
$_{ m BayEDAcG}$	П	1	1.3	3.3	9.2	11	34	29	200	37e-4/2e3	BayEDAcG [10]
BFGS	П	1	5.4	ъ	1.5	1.2	1.1	П	1	П	BFGS [30]
Cauchy EDA	Н	П	27	610	190	270	390	420	540	510	Cauchy EDA [24]
BIPOP-CMA-ES	1	1	1	7.3	11	8.7	10	9.5	9.1	8.7	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	14	26	7.2	5.7	ಬ	4.5	4.4	4.3	(1+1)-CMA-ES [2]
DASA	П	1	11	80	22	21	22	28	40	63	DASA [19]
DEPSO	1	1	2.3	4.7	2.4	4	4.6	22	9.9	8.6	DEPSO[12]
DIRECT	1	1	1.5	2.1	1.3	1.3	1.4	2.5	4.8	5.1	DIRECT [25]
EDA-PSO	Н	П	1.1	4	1.7	4.2	4.9	8.4	11	25	EDA-PSO [6]
full NEWUOA	П	1	6.5	8.9	1.5	1.2	1.1	1.1	1.1	1.2	full NEWUOA [31]
G3-PCX	Н	П	2.1	2.5	1.1	1.1	1.1	1.3	1.4	1.6	G3-PCX [26]
simple GA	Н	П	1.2	က	1.3	3.3	7.1	17	280	1900	simple GA [22]
GLOBAL	Н	П	1.7	2.9	1.3	1.5	1.5	1.3	1.4	1.3	GLOBAL [23]
iAMaLGaM IDEA	П	1	1.5	14	6.6	8.9	∞	7.2	7.1	7.3	iAMaLGaM IDEA [4]
LSfminbad	Н	П	1.4	4.7	5.1	53	49	61	69	460	LSfminbnd [28]
LSstep	1	1	1	80	140	140	150	280	920	920	LSstep [28]
MA-LS-Chain	П	1	1	2.8	1.6	1.9	2.2	2.3	2.4	2.4	MA-LS-Chain [21]
MCS (Neum)	П	П	2.4	40	7.4	9	5.3	4.7	4.8	5.2	MCS (Neum) [18]
NELDER (Han)	н	Н	7.7	39	8.6	9.2	9.9	5.9	5.8	5.5	NELDER (Han) [16]
NELDER (Doe)	Н	П	1.3	8.1	1.8	1.4	1.2	1.1	1.1	1.1	NELDER (Doe) [5]
NEWUOA	П	П	1.9	6.3	1.2	-	П	П	П	1.1	NEWUOA [31]
(1+1)-ES	П	П	1.6	46	11	8.6	9.4	9.4	10	12	(1+1)-ES [1]
POEMS	Н	П	64	940	230	190	160	150	150	150	POEMS $[20]$
PSO	1	П	1.5	2.7	-	1.8	1.9	2.3	3.8	6.5	PSO [7]
PSO_Bounds	Н	Н	1.2	540	87	29	09	26	28	64	PSO_Bounds [8]
Monte Carlo	П	П	1.3	5. 8.	1.5	3.1	7.2	24	93	092	Monte Carlo [3]
Rosenbrock	Н	П	12	17	4.5	3.5	3.1	2.7	2.7	2.6	Rosenbrock [27]
IPOP-SEP-CMA-ES	Н	П	-	7.7	4.4	4.1	3.9	3.6	3.8	3.8	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П	П	7	П	2.8	3.8	4.8	4.7	ಬ	5.3	VNS (Garcia) [11]

Table 23: 02-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock $[27]$	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	190	2.8e4	8.1			73e-3/5e3		12	9.9	7900	-	200	٠	65	7.4			4.6			2	1900	1.7	П	460	0029	190	92	860		66e-7/5e3	12	52
	1e-05	174	4100	8.4			410		12	6.9	8700		210		7.1	5.5			4.7	25e-3/7e3		6.4	1e3	1.8	1	200	2100	180	88	099		29	13	26
	1e-04	157	640	8.9	49e-3/6e3		460		13	7.6	0096	-	230	٠	79	5.8	41e-4/1e5		ro	190		6.7	200	1.9	-	170	1e3	190	43	069		23	14	62
S	1e-03	150	200	6	260		480		13	7.7	8600		240		81	5.8	3300		4.9	200		9.9	210	7	П	130	240	180	73	200		17	14	65
Katsuuras	1e-02	131	140	8.6	100		120	14e-2/5e4	14	8.6	1800		270	13e-2/1e5	46	9	840	21e-2/2e3	5.3	120	24e-2/1e4	7.1	23	2.2	1	68	55	180	59	460	46e-3/1e6	15	16	29
23	1e-01	117	98	10	25	56e-2/2e3	28	860	15	8.4	170	96e-2/2e3	290	1400	24	6.1	330	26	5.5	30	1300	7.4	6.3	2.2	1	32	19	190	42	260	1900	6.6	14	38
•	1e+00	96.5	14	7.5	6.7	11	4.9	16	8.3	5.1	17	24	4.2	18	1.5	1.6	9.9	2.6	5.3	2.1	18	5.5	2.8	1.6	Н	3.2	3.7	28	6	9.4	∞	2.5	8.1	8.3
	1e + 01	3.9	1.4	1.3	4.2	77	4.8	1.8	1.8	2.1	5.7	2.5	1.5	2.3	9	1.9	1.4	1	1.3	1.3	2.6	1.8	3.4	1.3	4.7	7.8	2.6	14	1.3	1.7	1.5	1.9	2.6	1.8
	1e+02	0.5	1	1	1	1	1	П	1	1	1	1	1	П	П	1	1	1	1	П	1	1	1	1	П	П	-	П	П	П	1	П	П	П
	1e + 03	0.5	1	П	1	1	1	1	П	1	П	1	1		1	1	-	1	п	П	-	П	1	1		П	1	П	П	1	1	П	П	1
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 24: 02-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 25: 03-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

nere	e-02 $1e-03$ $1e-04$ $1e-05$ $1e-07$	2.67 2.67 2.67 2.67 ERT _{best} /D	280 450 660 860 1200	26 37 45 54 73 AMs	1.1 1.1 1.1 1.1 1.1	120 160 180 280	1.1 1.1 1.1 1.1 1.1	91 110 140 160 210	18 23 29 34 47	12 15 19 23	63 76 89 100 130	65 96 120 150 200	15 27 38 52 95	56 120 280 390 690	1.4 1.4 1.4 1.4	19 24 29 34 47	1200 2100 3200 4200 6800	41 42 44 45 48	18 24 30 36	5.6 5.6 5.8 5.9 5.9	100 100 100 100 100	57 70 75 82 96	2.4 2.4 2.4 2.4 2.4	5.3 6.7 8.3 9.8 13	5.4 6.9 8.7 10 14	1 1 1 1	11 14 18 22 29	390 1e3 1300 1700	86 160 230 310 500	230 430 650 850 1500	.3e4 1.3e6 15e-4/1e6	5.9 7.5 8.5 10	Odi 11 10 00 00 11
1 Sphere	-01 1e-02	2.67 2.67	60 280	16 26	.1 1.1	96 120	1 1.1	58 91	11 18	3.8 12	19 63	36 65	5.7 15	28 56	.4 1.4	15 19	40 1200	38 41	12 18	5.3 5.6	00 100	36 57	2 2.4	5.4 5.3	5.9 5.4	1 1	7 11	80 390	14 86	58 230	100 3.3e4	6.8	14
	1e+00 1e	2.67 2	31 1	7.4	1.1	9.5	1.1	36	5.1	5.2	37	15	23	10	1.4	12	26 4	22	5.2	4.1	94 1	14	1.6	1.8	2.4	1	4.1	110 1	6.6	13	35 1	3.3	ν.
•	1e+01	1.2	2.6	3.1	2.4	2.4	2.4	40	8.8	1.8	37	5.9	1.2	8.7	5.9	1.9	3.1	3.1	2.4	5.2	130	2.2	П	1.9	7	1.8	3.4	170	3.2	3.1	3.8	4.5	c.
	1e + 02	0.333	1	1.1	1.3	1	П	1.1	-	1	3.1	1	П	1.1	1.3	1.3	1.1	1.1	1.2	2.2	1.2	1.1	-	1.5	1	1	1.3	23	1.1	-	-	1.7	,-
	1e+03	0.333	Т	П	-	1	П	1	П	1	п	1	п	1	п	1	1	1	-	н	п	-	П	н	-	П	1	1	1	-	П	1	-
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	TPOP-SEP-CMA-ES

Table 26: 03-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

2 Fillinsoid separable

ALPS AMALGAM IDEA ALPS AMALGAM IDEA ANDEA ANDEA ANDEA ANDEA ANDEA ANDEA ANDEA ANDEA BRYEDACG BRYEDA BRYEDA ANDEA BRYEDA ANDEA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYEDA BRYED	12.7 66 6 6 11.7 119 13 8.4 11 11 15 15 15 16 17 18 11 11 11 11 11 11 11 11 11 11 11 11	13.8 100 8.1 8.2 26 4 4 21 17 11	14.4 130 10 14 29 4.7	14.6	14.8	15.3	15.6	9	ERT_{best}/D
7.59 1.1 1.59 1.90 1		100 8.1 8.2 26 4 21 17 11		160				,	חכסרי
5.9 3.4 1.5 8.9 8.9 7.8 7.8 7.8 7.9 1.9 1.9 1.9		8.1 8.2 26 4 4 21 11 11 14			190	220	250	310	ALPS [17]
1 3.4 3.4 1.5 6 6 6 6 7.8 7.8 7.8 7.8 1.9 1.9 1.9 1.9		8.2 26 4 4 21 11 11 14		12	14	16	17	20	AMaLGaM IDEA [4]
15 8.9 8.9 8.9 6 6.1 1.9 1.9 1.9 1.9		26 4 4 11 11 14 14		21	30	36	43	22	avg NEWUOA [31]
3.4 8.15 8.9 6.6 6.15 1.8 7.0 7.0 7.0 7.0 1.9 1.9 1.9		21 11 11 14		46	48	22	20	93	BayEDAcG [10]
15 8.9 6 6 1.5 1.9 1.9 1.9		21 11 14		4.9	ಬ	ಬ	5.1	5.2	BFGS [30]
8.9 6 6 1.5 7.8 7.8 7.8 7.0 7.9 1.9 1.9 1.9		71 11 14 1		50	34	36	40	48	Cauchy EDA [24]
6 18 18 7.8 7.8 70 70 10 1.9 1.9 1.9		11 17		21	22	22	23	24	BIPOP-CMA-ES [15]
15 18 78 70 16 16 19 19 19 19 19		14		13	13	13	14	14	(1+1)-CMA-ES [2]
18 7.8 7.8 10 10 1.9 1.9 1.9		C		18	19	21	23	28	DASA [19]
7.8 1.1 16 70 70 70 1.9 2.8 2.4 1.9 1.9		ΓX		58	33	36	40	47	DEPSO[12]
7.8 10 16 16 1.9 1.9 1.9 1.9		7.3		10	12	14	33	38	DIRECT [25]
1 16 70 16 3.2 1.9 2.8 2.4 2.4 1.9		31		84	110	130	150	200	EDA-PSO [6]
16 70 16 3.2 1.9 2.8 2.4 2.4 1.9		4.2		12	16	19	22	59	full NEWUOA [31]
70 3.2 3.2 1.9 2.8 2.4 2.4 1.9		87		130	170	180	200	230	G3-PCX [26]
16 3.2 1.9 1.9 1.9 1.9		410		280	920	1200	1400	1900	simple GA [22]
3.2 1.9 28 12 1.9 1.9		8.9		9.3	9.4	9.4	9.2	9.7	GLOBAL [23]
1.9 28 1.9 1.9 2.4 1.9		6.1		8.9	6.6	Π	12	14	iAMaLGaM IDEA [4]
28 12 1.9 2.4 1.9		1		П	_	-	1	П	LSfminbnd [28]
12 1.9 2.4 1.9		14		14	14	13	13	13	LSstep [28]
1.9 2.4 1.9		19		56	30	33	38	44	MA-LS-Chain [21]
$\begin{array}{c} 2.4 \\ 1.9 \\ 1\end{array}$		1.9		3.7	4.4	ಬ	5.2	6.9	MCS (Neum) [18]
1.9		3.3		4.6	4.8	4.9	5.1	5.4	NELDER (Han) [16]
Н		2.8		3.6	3.8	3.9	4.2	4.6	NELDER (Doe) [5]
		14		33	42	49	56	72	NEWUOA [31]
09		2e4		6.6e4	3.2e5	4.8e5	36e-4/1e6		(1+1)-ES [1]
270		320		450	200	510	620	720	POEMS $[20]$
20		56		83	92	100	120	140	PSO [7]
16		300		510	260	280	640	920	PSO_Bounds [8]
		1.8e5	9						Monte Carlo [3]
2.9		16		22	24	24	24	56	Rosenbrock [27]
		12		14	15	15	16	17	IPOP-SEP-CMA-ES [29]
		56		27	28	58	29	30	VNS (Garcia) [11]

Table 27: 03-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension f_3 Deciminal constants.

Aftarget ERTbest/D ALPS AMALGAM IDEA avg NEWUOA BayEDAcG BRES CAUCHY EDA BIFOP-CMA-ES DASA DIRECT EDA-PSO full NEWUOA G3-PCX simple GA CLOBAL iAMALGAM IDEA LStep MA-LS-Chain MCS (Neum) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han) NELDER (Han)	1e+03 0.333 0.333 1.1 1.1 1.3 1.3 1.1 1.1 1.1 1.1 1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1e+01 12.6 3.6 3.6 3.6 3.7 3.2 3.2 3.2 3.2 4.9 4.9 4.9 4.9 5.6 5.6 5.6 6.8 6.8 6.8 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	10+00 274 6.2 4.2 5.2 7.6 4.7 4.7 4.7 4.1 1.3 3.3 3.3 3.3 3.3 3.3 1.2 1.2 1.2 1.2 1.2 1.3 1.4 1.1 1.3 1.4 1.1 1.3 1.4 1.7 1.1 1.3 1.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	3 Rastrigin 1e-01 277 8.9 14 16 250 250 250 250 250 250 250 250 250 250	1 separable 16-02 278 11 15 33 4.8 17 4.8 17 4.8 17 4.8 17 17 17 17 17 17 17 17 17 17	e le-03 281 281 13 15 33 33 10e-2/5e4 26 37 112 380 380 41 112 12 5.6 17 17 11 100 8.4 11 110 8.4 68	100 100 100 100 100 100 100 100	10-05 282 282 283 17 15 15 15 15 17 11 15 17 18 11 10 10 8.3	16-07 284 21 15 32 15 32 17 49 17 49 18 8.6 11 18 8.6 11 18 8.5 11 10 100 8.3	Aftarget ERT_best_(D ALPS [17] AMALGAM IDEA [4] avg NEWUOA [31] BAyEDAcG [10] BYEDACG [10] BYEDACG [10] BYCOK [30] Cauchy EDA [24] BIPOP-CMA-ES [15] (1+1)-CMA-ES [2] DASA [19] DEPSO [12] DEPSO [12] DEPSO [12] DEPSO [12] DEPSO [23] GA-PSO [6] simple GA [22] GLOBAL [23] GLOBAL [23] IAMALGAM IDEA [4] LSfrainbad [28] LSfrainbad [28] LSfrainbad [28] MA-LS-Chain [18] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16]
DEPSO DIRECT EDA-PSO full NEWUOA G3PCX simple GA GLOBAL iAMALGAM IDEA LSminbnd LSstep MA-LS-Chain MGS. (Neum) NELDER (Han) NELDER (Han) NELDER (Doe) NEWUOA (1+1)-ES POEMS	7.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2 1 1 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	111 4.8 5.6 5.6 8.2 8.2 12 12 12 8.2 8.2 8.2 7.3 8.2 14 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2.4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	4.1 17 17 17 17 17 17 17 17 17 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	4.8 178 179 179 179 179 179 179 179 179 179 179		5.9 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17	7.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 1	8.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17	DEPSO [12] DIRECT [25] EDA-PSO [6] Full NEWUOA [31] G3-PCX [26] Simple GA [22] GLOBAL [23] IAMALGAM IDEA [4] LSstep [28] MA-LS-Chain [21] MA-LS-Chain [21] MCS (Neum) [18] NELDER (Hau) [16] NELDER (Hau) [16] NELDER (Doe) [5] NEWUOA [31] (141)-ES [1] POEMS [20] PSO [7]
PSO_Bounds Monte Carlo Rosenbrock IPOP-SEP-CMA-ES VNS (Garcia)		2.2 1.3 42 2.8 1.7	15 110 41 3.4 8.4	8.6 5500 27 3.7 3.8	18 5.1e4 410 14 7.4	$ \begin{array}{c} 22 \\ 10e-1/1e6 \\ 410 \\ 17 \\ 7.4 \end{array} $		27 400 17 8.6	29 400 17	41 400 17	PSO_Bounds [8] Monte Carlo [3] Rosenbrock [27] IPOP-SEP-CMA-ES [29] VNS (Garcia) [11]

Table 28: 03-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_4 and f_5 and f_6 are f_6 and f_6 and f_6 are f_6 and f_6 are f_6 and f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 and f_6 are f_6 are f_6 are f_6 and f_6 are f_6 are f_6 are f_6 are f_6 and f_6 are $f_$

Aftarget ERTbest/D ALPS AMALGAM IDEA avg NEWUOA BAFDAcG BFGS Cauchy EDA	1.3 1.3 2.9 1.3 1.3 1.3 1.8	1e+02 1.8 1.7 1.2 9.2 1.3 20	4 1 1e+01 13.5 37 23 11 33 48 23	Skew Rasti 1e+00 269 9.6 110 14 47e-1/2e3 1300	igm-Bueck 1e-01 289 16 970 160 30e-1/3e3 13e-1/5e4	he sep 1e-02 307 18 950 150	che separable 1e-02 1e-03 307 317 18 19 950 930 150 150	1e-04 330 21 900 140	1e-05 338 23 880 140	1e-07 348 27 870 130	Aftarget ERTbest/D ALPS [17] AMALGAM IDEA [4] avg NEWUOA [31] BayEDAcG [10] BFGS [30] Cauchy EDA [24]
BIPOP-CMA-ES (1+1)-CMA-ES DASA DEPSO DIRECT	1.1 2 17 2.5	1.4 1.8 29 1.5	9.5 13 12 13 4.8	260 21 1.2 6.8 20	3300 150 2 18 26	4e3 140 2 47 44	3900 140 2 46 83	3800 130 2.1 45 170	3700 130 2.1 44 180	3600 130 2.3 43 180	BIPOP-CMA-ES [15] (1+1)-CMA-ES [2] DASA [19] DEPSO [12] DIRECT [25]
EDA-PSO full NEWUOA GB-PCX simple GA GLOBAL iAMaLGAM IDEA	1.5 1.3 1.3 1.3 1.3 1.3	2.1. 3.5. 1.4. 1.6. 2.0.	16 11 130 90 12 12	24 25 62 19 7.9 130	110 170 430 24 51 860	110 160 400 34 48 820	100 150 390 42 46 800	100 140 380 54 44 770	100 140 370 63 43 760	100 140 360 110 42 740	EDA-PSO [6] full NEWUOA [31] G3-PCX [26] simple GA [22] GLOBAL [23] iAMaLGaM IDEA [4]
Lestep Lestep MA-LS-Chain MCS (Neum) NELDER (Han) NELDER (Doe) NEWUOA	2.1 1.4 1.8 2.3 2.3	$\begin{array}{c} 3.4 \\ 70 \\ 1.2 \\ 1.4 \\ 1.4 \end{array}$	1.7 9.6 5.9 33 24	20e-1/4e3 1 5.6 10 72 7.8 21	; 60 67 320 43 300	1 56 63 300 40 280	55 61 290 39 280	1 53 59 280 37 260	1 52 57 270 37 260	1 51 56 270 36 250	LSstep [28] LSstep [28] MA-LS-Chain [21] MCS (Neum) [18] NELDER (Han) [16] NELDER (Doe) [5] NEWUOA [31]
(1+1)-ES POEMS PSO PSO_Bounds Monte Carlo Rosenbrock IPOP-SEP-CMA-ES VNS (Garcia)	2.5 89 89 11.3 11.5 1.3	1.8 100 1.3 1.1 1.7 1.9	31 48 15 220 220 43 6.3	33 13 6 6 21 1.6e4 44 83	$\begin{array}{c} 230\\ 230\\ 46\\ 98\\ 28\\ 14e-1/1e6\\ 14e-1/1e4\\ 20\\ \end{array}$	210 47 93 36 130	210 48 91 36 130	200 200 89 38	190 53 87 39	190 57 87 51	(1+1)-ES [1] POEMS [20] PSO [7] PSO [7] PSO Bounds [8] Monte Carlo [3] Rosenbrock [27] IPOP-SEP (27) VNS (Garria) [11]

Table 29: 03-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

					$5~\mathrm{Lin}$	ear slope					
$\Delta { m ftarget}$	1e + 03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.333	0.333	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	$\text{ERT}_{ ext{best}}/ ext{D}$
ALPS	1	1.3	27	06	86	100	110	110	110	110	ALPS [17]
AMaLGaM IDEA	Н	1.1	11	20	21	21	21	21	21	21	AMaLGaM IDEA [4]
avg NEWUOA	н	1.5	1.3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1	1.3	22	360	370	370	370	370	370	370	BayEDAcG [10]
BFGS	н	2.6	1.6	2.4	2.2	2.6	5.6	5.6	5.6	2.6	BFGS [30]
Cauchy EDA	Т	13	20	22	23	23	23	23	23	23	Cauchy EDA [24]
BIPOP-CMA-ES	1	1.5	3.6	5.4	5.7	5.8 8.5	5. 8.	2.8	5. 8.	5.8	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.1	2.1	2.7	2.8	2.9	5.9	5.9	5.9	2.9	(1+1)-CMA-ES [2]
DASA	П	21	19	31	36	40	44	49	53	62	DASA [19]
DEPSO	1	1.4	15	35	33	39	39	39	39	39	DEPSO[12]
DIRECT	1	1	3.7	4.6	6.2	6.2	6.2	6.2	6.2	6.2	DIRECT [25]
EDA-PSO	1	1.3	8.5	16	17	17	17	17	17	17	EDA-PSO [6]
full NEWUOA	П	77	1.2	1.7	1.8	1.8	1.8	1.8	1.8	1.8	full NEWUOA [31]
G3-PCX	Т	1.5	9.4	22	25	25	22	22	22	25	G3-PCX [26]
simple GA	1	1.2	14	1100	3e3	4800	7500	1.1e4	1.5e4	22e-8/1e5	simple GA [22]
GLOBAL	П	1.3	31	47	47	48	48	48	48	48	GLOBAL [23]
iAMaLGaM IDEA	Н	1.2	3.5	8.3	8.8	8.8	8. 8.	8.8 8.0	8. 8.	8.8	iAMaLGaM IDEA [4]
LSfminbnd	н	1.1	7.5	11	11	11	11	11	11	11	LSfminbnd [28]
LSstep	Н	28	93	120	120	120	120	120	120	120	LSstep [28]
MA-LS-Chain	П	1.3	22	88	92	92	93	93	93	93	MA-LS-Chain [21]
MCS (Neum)	Н	П	Т	П	П	1	П	П	П	1	MCS (Neum) [18]
NELDER (Han)	н	1.3	1.6	2.4	2.2	2.2	2.5	2.2	2.2	2.5	NELDER (Han) [16]
NELDER (Doe)	П	1.5	1.4	2.4	2.2	2.2	2.5	2.2	2.2	2.5	NELDER (Doe) [5]
NEWUOA	1	1.1	1.1	1.4	1.4	1.4	1.4	1.4	1.4	1.4	NEWUOA [31]
(1+1)-ES	П	1.6	2.3	က	3.1	3.1	3.1	3.1	3.1	3.1	(1+1)-ES [1]
POEMS	П	59	120	150	170	180	180	180	180	180	POEMS $[20]$
PSO	П	1.1	8.2	16	18	18	18	18	18	18	PSO [7]
PSO_Bounds	П	1.3	6.3	14	15	15	15	15	15	15	PSO_Bounds [8]
Monte Carlo	П	1.2	34	1.8e4	6.5e6	32e-2/1e6					Monte Carlo [3]
Rosenbrock	П	ಬ	3.3	3.6	3.6	3.6	3.6	3.6	3.6	3.6	Rosenbrock [27]
IPOP-SEP-CMA-ES	П	1.3	4.1	6.7	7	7.1	7.1	7.1	7.1	7.1	IPOP-SEP-CMA-ES $[29]$
VNS (Garcia)	1	1	18	20	20	20	20	20	20	20	VNS (Garcia) [11]

Table 30: 03-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL $[23]$	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	88.2	72	7.5	4.7	•	3.1	22	3.2	1.6	99	14		92	6.9	4.8	1.6e4	2.3	4.8	190	1700	8.1	210	1.3	Н	4.8	က	110	28	120		1.6	3.6	3.8
	1e-05	71.6	64	6.9	4.3	•	1.9	24	က	1.6	54	13		99	6.1	4.3	4400	2.3	4.3	220	029	8.3	150	1.2	1	4.1	2.1	66	22	120		1.7	3.6	3.9
	1e-04	61.3	61	9.9	4.1	•	1.8	25	3.1	1.6	56	13	23e-3/3e4	62	9	3.5	3800	2.4	4.2	260	260	8.9	130	1.2	Н	4	7	92	22	130		1.8	3.6	4
ctor	1e-03	49.7	28	6.4	3.9		7	26	3.2	1.6	55	14	2700	59	5.7	3.2	4400	2.8	4.1	310	670	9.1	140	1.2	н	4.1	77	100	18	120	26e-3/1e6	1.6	3.6	4.3
ive se	1e-02	38.9	53	6.3	3.8		2.4	27	3.2	1.7	36	13	1300	42	5.4	3.2	4200	3.3	3.7	400	820	9.6	140	1.3	1	4	1.8	93	17	100	1.1e5	1.7	3.5	4.6
Attract	1e-01	30.1	46	5.5	5.9	•	5.9	28	3.1	1.8	30	11	440	28	5.1	5.9	270	4	3.1	510	1e3	10	120	1.3	Н	3.8	1.8	83	13	56	8200	1.7	3.3	4.8
7 9		18.7				ري ري	3.4	31	3.2	1.6	32	11	33	13	5.1	3.3	100	5.5	2.9	810	066	10	160	1.5	П	3.4	77	74	∞	12	200	1.8	3.7	5.9
	1e + 01	11.2	9.2	3.7	2.6	130	3.5	28	2.4	1.3	30	9	က	2.7	4	3.5	6	5.2	2.1	490	1200	4.3	က	1.7	Н	2.1	1.7	31	2.9	2.9	7.7	2.1	2.8	5.6
	1e+02	2.53	3.3	4.3	2.3	10	2.5	33	1.6	1.6	58	3.3	1.1	3.4	3.7	3.2	2.4	3.7	7	220	069	4.6	1.5	1.2	-	1.9	3.2	91	4	2.3	1.9	4	3.6	2.3
	1e+03	1.38	4.9	4.8	1.2	4.2	3.3	24	1.6	1.4	33	2.4	1.4	3.9	1.5	က	2.4	2.5	2.4	14	240	3.8	2.1	1.6	П	1.4	2.1	160	3.8	2.5	2.8	3.9	4.5	2.2
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 31: 03-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	178	11	2.9	37			7	1	1.3	1500	5.3	30	22	6.2	48	250	46	5.4	260		3.9	∞. ∞.	27	∞. ∞.	35	8.4	20	5.1	13	55e-4/1e6		1.4	3.9
	1e-05	161	9.3	က	41	٠		1.9	п	1.4	1600	5.1	34	20	8.9	54	200	21	9	290		3.9	4.1	30	8. 8.	33	9.3	21	5.1	12	1.6e4		1.3	4.1
	1e-04	161	9.3	က	41	•		1.9	П	1.4	1600	5.1	34	20	8.9	54	200	51	9	290		3.9	4.1	30	8. 8.	39	9.3	21	5.1	12	1.6e4		1.3	4.1
						10															es													
p-ellipsoid																																		
7 Ste	1e-01	114	7	2.1	4.8	72	37e-1/100	1.9	1.1	1	120	5.9	2.1	∞.∞	1.4	12	27	4.6	8.1	33	390	2.2	2.4	20	4.3	10	3.9	12	3.1	4.8	130	370	1.4	2.6
i de la companya de l	1e+00	21.6	10	1.6	8.9	52	98	6.1	2.8	2.1	260	6.1	2.8	3.7	П	8.3	24	5.4	15	89	320	4.3	5.7	28	4.2	12	3.6	29	5.3	7.3	30	150	2.9	4.2
	1e + 01	3.8	6.2	5.6	1.2	3.6	17	14	3.3	2.7	82	5.2	2.9	3.3	1	6.2	3.3	6.2	2.6	46	300	6.1	1	œ	7.5	11	73	81	3.5	4.1	ಬ	26	2.7	7.5
	1e + 02	0.867	7	2.1	3.5	1	4.1	16	77	3.5	22	1.7	1.4	1.9	3.4	1.5	2.5	2.5	3.3	19	210	2.1	1.1	က	1.9	2.6	2.3	270	2.5	77	7	140	3.3	3.2
	1e + 03	0.333	1.1	1.2	1.3	1.4	1.8	7.1	1	1.4	24	1.2	Н	1.3	1.2	1.1	1.3	1.3	1.2	8.7	1.6	1.3	П	1.7	1.1	1.3	1.1	170	1.1	1.3	1.3	41	3.2	П
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 32: 03-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

iditetion evaluations to reach this v	s to reac	v cuma u	3	ue aivided by	8 F	\mathbf{s}_{con}	original				
Δ ftarget	1e + 03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{hest}}/\mathrm{D}$	1.4	4.87	9.07	14.9	50.5	58.5	61.6	64.7	62.9	69.4	$\text{ERT}_{\text{hest}}/ ext{D}$
ALPS	2.8	8.5	23	46	33	65	93	120	150	210	ALPS [17]
AMaLGaM IDEA	5.1	2.9	3.8	6.6	5.8	6.3	7	7.5	7.8	8.3	AMaLGaM İDÉA [4]
avg NEWUOA	3.1	1.9	1.9	2.6	-	1	1	1	1	1	avg NEWUOA [31]
BayEDAcG	3.7	4.7	11	110	260	73e-2/2e3					BayEDAcG [10]
BFGS	3.3	2.1	1.4	2.7	1.1	1.1	1.1	1	1	1	BFGS [30]
Cauchy EDA	24	18	21	28	14	14	15	15	16	17	Cauchy EDA [24]
BIPOP-CMA-ES	4.8	3.8	3.5	∞	4.5	4.9	5.2	5.2	5.4	5.6	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1.7	1.6	1.9	6.3	2.8	2.8	က	3.1	3.2	3.4	(1+1)-CMA-ES [2]
DASA	38	22	15	470	470	750	1200	1500	2e3	2800	DASA [19]
DEPSO	6.7	8.1	7.7	14	11	24	64	62e-4/2e3			DEPSO[12]
DIRECT	1.5	1.4	77	22	3.5	9.2	15	22	29	42	DIRECT [25]
EDA-PSO	2.9	4	8.9	74	20	110	160	210	260	370	EDA-PSO [6]
full NEWUOA	3.7	1.9	1.4	2.8	1.1	1	1	1	1	1	full NEWUOĂ [31]
G3-PCX	2.5	4.3	4.2	16	6	9.3	9.3	9.1	9.1	6	G3-PCX [26]
simple GA	2.5	3.4	47	170	400	49e-3/1e5					simple GA [22]
GLOBAL	2.6	9.5	11	8.2	8.8	2.6	2.5	2.5	2.5	2.5	GLOBAL [23]
iAMaLGaM IDEA	2.6	2.4	2.2	8.1	4.5	ಬ	5.1	5.3	5.6	5.9	iAMaLGaM IDEA [4]
LSfminbnd	10	4.4	24	810	2800	2400	2300	2200	96e-2/1e4		LSfminbnd [28]
LSstep	150	20	51	089	2800	2400	2300	2200	2100	73e-2/1e4	LSstep [28]
MA-LS-Chain	4.7	4.5	9.9	14	7.7	6.6	11	11	12	12	MA-LS-Chain [21]
MCS (Neum)	1	1	1	П	7.2	6.3	6.2	9	5.9	5.7	MCS (Neum) [18]
NELDER (Han)	1.6	П	П	2.1	-	1	1.1	1.1	1.1	1.2	NELDER (Han) [16]
NELDER (Doe)	2.1	2.1	1.6	4	1.5	1.4	1.4	1.4	1.5	1.5	NELDER (Doe) [5]
NEWUOA	3.1	1.5	1.4	2.8	1.2	1.2	1.2	1.2	1.2	1.2	NEWUOA [31]
(1+1)-ES	4.5	3.3	2.8	45	20	39	65	91	120	170	(1+1)-ES [1]
POEMS	140	50	37	94	48	69	170	290	330	410	POEMS $[20]$
PSO	2.9	4.4	8.6	46	25	93	150	210	260	380	PSO [7]
PSO_Bounds	2.2	4	17	09	160	290	740	840	920	1e3	PSO_Bounds [8]
Monte Carlo	2.7	6.9	43	1e3	1e4	1.2e5	38e-3/1e6				Monte Carlo [3]
Rosenbrock	4.2	1.8	1.7	6.9	က	3.1	3.1	က	3.1	က	Rosenbrock [27]
IPOP-SEP-CMA-ES	3.8	1.9	က	8.3	6.2	6.7	7	7	7.1	7.2	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	2.2	6.6	7.7	9.4	5.1	5.4	5.7	5.7	5.9	6.1	VNS (Garcia) [11]

Table 33: 03-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

1e+03 1e+02 1e+01 1e+00 0.333 0.333 6.93 21.8		$\frac{1e+00}{21.8}$		9 Rosenbrock 1 $_{1e-01}^{1e-02}$ $_{42.4}^{1e-02}$ $_{49.7}^{1e}$	brock 1 1e-02 49.7	$\begin{array}{c} \textbf{rotated} \\ 1\text{e-}03 \\ 53.2 \end{array}$	1e-04 54.9	1e-05 56.3	1e-07 59.4	$\Delta ext{ftarget}$ ERT $_{ m best}/{ m D}$
130 30 30	30			48	83		130	170	220	ALPS [17]
5.4 6.2	6.2			9	6.5		7.7	8.1	8.6	AMaLGaM IDEA [4]
20 1.7 1.7	1.7			1.2	1.1		1.1	1.2	1.2	avg NEWUOA [31]
12 110	110		12e-	1/2e3						$\operatorname{BayEDAcG}[10]$
20 1.5 1.5	1.5			1.1	1.1		1.1	1.1	1	BFGS [30]
290 24 17	17			16	17		18	19	20	Cauchy EDA [24]
30 3.9 4.6	4.6			4.4	4.7		5.1	5.3	5.6	BIPOP-CMA-ES [15]
36 2.7 4.5	4.5			3.6	3.6		3.8	3.9	4.1	(1+1)-CMA-ES [2]
390 24 790	790			720	086		1900	2500	3600	DASA [19]
77 15 19	19			27	52		46e-4/2e3			DEPSO $[12]$
1 1.5 1.7	1.7			6.2	9.1		27	29	38	DIRECT [25]
42 7.5 49	49			69	120		260	350	490	EDA-PSO [6]
18 1.6 1.4	1.4			Н	1		П	1	1	full NEWUOA [31]
53 5.4 14	14			12	12		12	12	12	G3-PCX [26]
130 49 100	100			3800	2.8e4					simple GA [22]
100 14 6.2	6.2			3.5	3.2		3.1	3.1	3.1	GLOBAL [23]
28 3.3 5	ಬ			4.9	ಬ		5.8	9	6.4	iAMaLGaM IDEA [4]
61 4.7 180	180			310	820		2600	2600	71e-3/1e4	LSfminbnd [28]
3e3 180 400	400			3300	2800					LSstep [28]
73 11 9.9	6.6			8.7	6.6		11	12	13	MA-LS-Chain [21]
1 1 1	П			П	1.1		1.2	1.2	1.2	MCS (Neum) [18]
1.2	1.2			1	1		1.1	1.2	1.3	NELDER (Han) [16]
1.5 1.4	1.4			1.1	1.1		1.1	1.2	1.3	NELDER (Doe) [5]
22 1.7 1.7	1.7			1.2	1.2		1.2	1.3	1.3	NEWUOA [31]
32 2.6 79	42			71	88		150	180	240	(1+1)-ES [1]
69 99 082	69			89	150		380	200	910	POEMS $[20]$
75 11 17	17			34	99		200	270	440	PSO [7]
59 13 77	22			370	530		780	880	1e3	PSO_Bounds [8]
71 43 670	029			1e4	2.9e5					Monte Carlo [3]
23 1.6 2.6	2.6			2.4	2.6		2.8	2.9	2.9	Rosenbrock [27]
28 3.7 5.6	5.6			7.4	8.2		8.2	8.3	8.4	IPOP-SEP-CMA-ES [29]
140 11 6.8	8.9			9	6.2		6.5	6.7	7	VNS (Garcia) [11]

Table 34: 03-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	9.08	7100	3.8	11		92	9.2	4.8	3			2e3	-	7.1	42		2.5	3.3			12		П	1.1	16			1.8e4	1.8e4		6.5	7.8	5.3
	1e-05	72.8	2600	3.6	9.2	٠	5.9	8.7	4.9	က			1e3		9	41		2.3	3.2			12		П		14			6500	2e4		6.9	8.5	5.5
	1e-04	8.89	1900	3.4	8.8		1.5	8.3	4.9	က			480	61e-2/1e5	5.6	33		2.4	3.1			12	29e-2/2e4	Н	1.1	13	36e-4/1e6		6700	2.1e4		6.4	8.2	5.6
	1e-03	64.5	1300	3.2	7.9		1.4	7.8	4.9	3.1			490	1.1e4	4.9	36		2.5	က			13	3800	П	1.1	12	7.6e4	51e-2/1e5	4800	2.2e4		6.5	8. 8.	5.7
biosc	1e-02	60.2	200	2.9	6.9		1.2	7.3	4.9	က	24e-1/1e6		160	7e3	4.4	30	55e-2/1e5	2.6	2.9	61e+0/1e4		12	4100	1	1.1	10	2.3e4	1.2e4	3600	1.1e4	11e-1/1e6	8.9	9.2	5.8
10 Ellipsoid	1e-01	55.9	360	2.7	5.8		1.2	6.7	4.6	2.7	2.5e5	55e-1/2e3	120	4200	3.9	28	1.2e4	2.7	2.6	2500		12	820	1	1.1	8.3	1.2e4	5300	2400	1.2e4	2.5e5	7.2	9.6	5.9
for the	1e+00	50.7	120	2.3	3.4	٠	1.2	6.2	4.1	2.7	4.4e4	110	49	2400	2.6	21	2e3	2.8	2.1	2800	53e+1/1e4	11	170	Н	1.1	5.2	6200	1600	1100	8e3	6e4	7.8	8.6	9
	1e+01	38	20	7	1.9	37e+1/2e3	1	6.3	4.1	2.7	1.1e4	29	9.2	210	1.6	14	200	3.3	1.8	1700	1700	9.6	29	П	1.2	2.8	2100	410	59	2100	2100	8.5	11	5.9
	1e + 02	18	38	က	1.3	1600	1	9.4	5.6	3.1	180	35	8.4	99	1.6	7.2	06	9	2.2	480	2400	13	14	1.3	1.3	1.3	320	72	12	31	210	3.9	17	7.1
	1e+03	9.71	23	3.2	1.1	88	1.4	13	8.1	4.5	130	13	4.1	20	-	8.8	30	6.6	3.3	340	1100	16	23	1.8	73	1.4	28	49	9.5	13	34	2.6	22	9.3
	$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 35: 03-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	109	5e3	2.8	ъ		33e-7/7e3	6.4	3.6	2.5	3.9e4	•			4.7	320		1.7	2.4	•		9.7		1.1		5.1		3200	066	1700		4.7	6.1	4.3
		101																																
	1e-04	96.3	1800	2.3	3.7		11	5.2	3.7	2.5	4.3e4		24e-4/3e4	41e-4/1e5	3.5	210		1.8	2.1			10		1.2	-	3.7		2100	450	1600		ಸು	6.5	4.4
	1e-03	92.5	1100	2.1	3.3		3.7	ಬ	3.7	2.5	3.3e4		220	5100	3.1	180		1.8	7			10	24e-3/2e4	1.2	-	3.2	37e-3/1e6	1700	360	1600		5.1	9.9	4.4
Discus	1e-02	87.7	520	1.9	2.7		1.4	4.3	3.6	2.5	2.2e4		390	1100	2.6	140	90e-2/1e5	1.8	1.9			10	510	1.2	1	2.6	1.7e5	1500	270	1e3	13e-2/1e6	5.3	9.9	4.5
11	1e-01	75.7	250	1.7	2.5	85e-1/2e3	Н	4.1	4	2.7	1.4e4	89e-1/2e3	150	490	2.2	100	2600	7	1.9		·	11	100	1.3	1.1	2.5	1.7e4	830	160	610	6.1e4	5.9	7.4	4.8
62	1e+00	35.1	120	က	3.3	810	1	6.5	7.5	4.6	9300	270	28	290	3.6	93	2100	3.9	3.1	32e+0/1e4	36e+0/1e4	22	82	2.2	77	3.4	1.5e4	1e3	150	740	2200	12	15	9.6
1	1e+01	22.4	31	3.1	77	91	1	7.8	9.2	5.8 8.0	4600	130	13	74	3.2	30	74	5.4	3.1	1800	2900	21	49	2.5	2.3	3.1	8400	370	09	240	130	17	17	14
	1e + 02	3.87	48	7	2.6	23	1.9	24	14	8.6	16	62	6.4	28	6.9	10	99	23	6.7	190	400	24	П	3.4	3.7	8.8 8.8	1300	100	30	25	52	2.7	20	30
	1e+03	3.13	19	5.5	1.9	10	2.1	19	5.7	4.6	15	8.6	5.7	9.6	2.3	8.7	17	14	4.6	2.1	2.1	13	П	က	3.2	1.7	3.7	79	12	6	22	2.7	5.2	12
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 36: 03-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	263	9.3e4	5.2	1.9		43	13	4.1	3.5			240		1.6	8.1		4	4.6			8.9	18	1.1	П	1.2						11	8.9	4.4
	1e-05	232	1.4e4	4.9	1.8	٠	2.3	13	4	3.6		-	49	91e-2/1e5	1.5	7.9		2.8	4.7			9.1	4.5	Н	-	1.1						7.4	7	4.4
	1e-04	208	3400	4.9	1.8		73	13	3.9	3.3		-	53	0089	1.4	∞		2.2	4.7			8.8	2.5	1	1	-				24e-1/1e5		6.9	6.7	4.6
	1e-03	148	1600	5.6	2.2	38e-1/2e3	П	16	4.8	4.2		•	28	9500	1.7	6.6	11e-1/1e5	2.4	5.9			11	2.7	1.3	1.3	1.3	12e-1/1e6	69e-2/1e5				8.9		
Bent cigar	$1e-0\overline{2}$	134	460	5.2	2.2	220	1	16	4.7	4.2	81e-1/1e6	67e-1/2e3	10	1.1e4	1.7	9.2	1.1e4	2.4	9		34e+0/1e4	11	1.2	1.3	1.2	1.2	1.1e5	5e3	1e4	1.1e4		9.4	9.1	5.6
	1e-01	113	170	4.8	2.2	120	1	17	4.5	4.3	3.6e4	260	5.7	2900	1.6	8.9	1.3e4	7	6.1	14e+0/1e4	400	10	1.2	1.3	1.3	1.2	3.9e4	3800	5800	2500		10	8.4	9
>	1e+00	55.9	100	4.2	3.2	82	1.4	26	5.7	6.1	3.6e4	160	6.5	1700	2.2	11	2400	3.1	∞	1200	790	15	1	1.7	1.6	1.6	2.7e4	1600	2700	2200	26e+0/1e6	19	10	9.5
	1e+01	21.6	94	4.7	4.5	29	1.7	34	7.9	8.5	3.1e4	80	-1	096	2.9	9	430	5.9	9.6	200	1400	25	1	7	1.8	7	2.8e4	1800	2400	2e3	1.6e5	38	10	13
	1e + 02	13.2	82	6.4	1.9	26	1.5	56	4.8	4.3	17	25	4.6	260	1.9	4.3	380	8.6	4.4	6.2	73	14	1.1	1.4	1.4	1	7200	170	41	280	1.1e4	1.5	5.6	6.6
	1e+03	9.78	73	5.9	1.1	27	1.9	26	5.2	3.8	17	24	4.6	190	1	4.8	200	11	4.1	9	87	16	1.3	1.5	1.5	1.2	2.7	100	30	110	1700	1.6	5.4	9.3
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 37: 03-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	122	2.2e4	3.4	36e-4 /8e3		25e-6/9e3	9.3	4.6	9	46e-5/1e6		160		51e-5/9e3	210			2.5			12		1	1.1		5.7e4		71e-3/1e5			320	7.1	7.2
	1e-05	93.8	5400	3.5	260		410	9.6	4.8	6.1	1.5e5		61		089	230			2.6			12	22e-4/2e4	1	1.2	12e-4/7e3	3300		1.5e4			130	8.3	7.5
	1e-04	84.9	1600	3.4	280		31	9.5	4.4	5.9	4e4		31	73e-4/1e5	260	220	16e-2/1e5	35e-4/400	2.5			12	830	1	1.2	1200	1600		1.7e4	42e-3/1e5		82	8.5	7.8
$_{ m ridge}$	$1\overline{e}$ -03	71.7	410	3.4	160		2.1	9.4	4.5	5.9	2e4	11e-2/2e3	29	2800	120	160	2e4	88	2.4	39e-2/1e4		13	710	1	1.2	200	1e3	19e-3/1e5	2e4	9200		31	8.9	8.5
Sharp	1e-02	45.3	200	4.3	110		П	12	6.1	6.9	6100	210	16	1400	28	110	1.5e4	8.4	က	1500		17	370	1.3	1.3	62	290	4900	5e3	9e3		20	13	12
13	1e-01	36.2	100	4.2	42	24e-1/2e3	1	12	ಬ	5.9	1600	100	8.9	400	38	26	3600	6.3	3.1	620	65e-1/1e4	17	370	1.2	1.2	42	120	1700	2200	1200	17e-1/1e6	9.5	16	7.8
•	1e+00	28.3	99	3.9	14	120	1	12	3.8	4.5	1100	09	8.9	140	10	73	250	4.5	2.7	220	1500	13	130	1.1	1.1	6	65	029	220	1400	1.6e5	8.6	15	9
	1e+01	16.4	48	3.7	5.6	45	1.1	14	3.7	4.1	320	14	2.9	48	က	20	150	9.9	2.9	120	510	9.7	14	П	-1	4.5	16	73	19	086	1300	ಬ	8.6	7.1
	1e + 02	5.6	12	4.3	1	34	1.5	22	2.6	2.9	52	9.5	1.9	4.7	1	4.8	12	9.4	3.2	14	150	7.9	1.7	1.2	1.3	1	2.3	52	5.8	9.9	13	2.9	က	8.6
	1e+03	0.533	1.5	1.4	2.2	1.5	3.5	39	1.6	1.9	18	1.9	-	1.2	2.5	1.5	2.5	1.3	2.5	5.9	120	2.5	1	1.9	1.5	7	1.7	280	1.2	1.5	1.7	4.5	2.6	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 38: 03-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

				14.	Sum	f differ	rent p	owers			
Δ ftarget	1e + 03	1e + 02		1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.333	0.333	0.733	5.76	9.47	14.4	23.8	30.7	36.7	64.8	$\widetilde{\mathrm{ERT}}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	1.2		10	55	71	69	81	200	2500	ALPS[17]
AMaLGaM IDEA	Н	1.2		2.7	4.5	ಬ	4.5	4.5	4.7	3.6	AMaLGaM IDEA [4]
avg NEWUOA	Н	1.2		1.2	1.1	1.1	1.2	1.6	2.7	6.9	avg NEWUOA [31]
${ m BayEDAcG}$	П	1.1		28	120	110	250	280	780	28e-4/2e3	BayEDAcG [10]
BFGS	П	2.1		1.5	1.5	1.3	1.1	1	1	29	BFGS [30]
Cauchy EDA	Н	1		15	17	18	14	14	14	11	Cauchy EDA [24]
BIPOP-CMA-ES	1	1.3		2.9	3.5	4.2	4.4	6.4	7.1	5.9	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.1		1.4	2.2	$^{2.6}$	5.9	4	4.2	3.6	(1+1)-CMA-ES [2]
DASA	П	13		24	20	23	51	400	2900	4.8e4	DASA [19]
DEPSO	Н	1		4.9	12	16	17	26	130	11e-6/2e3	DEPSO [12]
DIRECT	Н	1		1.7	2.7	5.5	17	45	110	480	DIRECT [25]
EDA-PSO	П	1.1		4.2	11	21	92	130	190	6500	EDA-PSO [6]
full NEWUOA	П	1.3		1.4	1.2	-	П	1.5	2.3	4.4	full NEWUOA [31]
G3-PCX	Н	1.1		4	4.6	4.2	4.9	11	45	280	G3-PCX [26]
simple GA	Н	1		10	160	280	320	1600	6e3	25e-6/1e5	simple GA [22]
GLOBAL	П	П		8.4	11	7.4	5.1	4.8	12	11e-6/300	GLOBAL [23]
iAMaLGaM IDEA	П	1.4		2.4	3.2	3.7	3.1	3.2	3.6	3.2	iAMaLGaM IDEA [4]
LSfminbnd	н	н		4.4	3.5	6.1	29	009	31e-5/1e4		LSfminbnd [28]
LSstep	П	29		84	20	160	930	22e-4/1e4			LSstep [28]
MA-LS-Chain	П	1.1		6.7	11	12	8.6	11	15	13	MA-LS-Chain [21]
MCS (Neum)	П	1		12	11	6.7	2.2	9	20	20e-7/2e4	MCS (Neum) [18]
NELDER (Han)	н	1.3		П	1.2	1.3	1.2	1.3	1.3	П	NELDER (Han) [16]
NELDER (Doe)	1	1		1.1	1.4	1.8	1.5	1.5	1.6	1.2	NELDER (Doe) [5]
NEWUOA	П	1.1		1.1	Н	-	1.2	2.1	က	17	NEWUOA [31]
(1+1)-ES	П	1.1		1.8	1.9	2.2	5.8	110	2400	16e-7/1e6	(1+1)-ES [1]
POEMS	П	140		55	91	110	150	160	220	1e4	POEMS $[20]$
PSO	1	1.1		3.1	14	24	30	45	92	2e3	PSO [7]
PSO_Bounds	1	н		4	33	62	98	140	280	1100	PSO_Bounds [8]
Monte Carlo	Н	1.3		17	430	1.9e4	6e5	43e-4/1e6			Monte Carlo [3]
Rosenbrock	1	2.2		1.4	1.3	1.5	7	2.4	3.1	14	Rosenbrock [27]
IPOP-SEP-CMA-ES	1	1.1		5.6	3.6	4.2	4.8	6.6	11	8.3	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1		7.1	8.7	8.3	7.5	7.7	8.4	7.2	VNS (Garcia) [11]

Table 39: 03-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	7 Δ ftarget) ERT _{best} /D			avg NEWUOA [31]			Cauchy EDA [24]											iAMaLGaM IDEA [4]									POEMS [20]			Monte Carlo [3]		[DG]	
	1e-0	3010	5.1	2.9	2.1	٠	15		1.3	9.9	140	٠	1.7	7.5	6.1	27	150	2.7	3.4	14	48	2.4	1.5	6.5	1.8	3.1	9.3	26	41	22		13	П	4.5
	1e-05	2930	4.8	က	2.2		16	٠	1.3	8.9	140	10e-1/2e3	1.7	7.4	6.3	28	83	2.8	3.5	15	49	2.4	1.6	6.7	1.8	3.2	9.6	22	42	21		14	1	2.9
	1e-04	2860	4.6	က	2.5		16		1.3	6.9	140	5.6	1.7	7.4	6.4	50	64	5.9	3.5	15	20	2.5	1.3	6.9	1.9	3.3	8.6	22	43	22		14	П	2.9
	1e-03	2810	4.4	က	2.3		16		1.3	7.1	150	5.6	1.7	7.3	6.5	50	62	5.9	3.6	15	20	2.5	1.3	-	1.9	3.3	10	28	44	22		14	П	2.8
strigin	$1\overline{e}$ -02	2760	4.2	3.1	2.3	11e-1/2e3	17	78e-3/5e4	1.3	7.2	150	2.6	1.7	7.4	6.7	30	62	က	3.6	15	51	2.5	1.4	7.1	1.9	3.4	10	59	44	21		15	1	2.8
15 Ra	1e-01	2100	3.9	3.7	3.1	14	22	27	1.7	9.2	200	3.3	1	9.2	8.8	39	62	3.9	4.6	20	29	3.3	1.8	9.4	2.5	4.5	13	22	28	27	65e-2/1e6	19	1.3	3.7
•	1e+00	457	5.3	ಬ	3.7	11	17	5.4	1.3	5.8	200	9.9	1.5	7.4	8.8	28	20	3.2	5.6	21	140	1.6	-	4.6	1	3.4	6.2	32	4	27	1500	11	2.5	က
	1e + 01	40.5	7.6	1.2	3.2	3.1	7.3	3.9	1.9	1	26	3.4	-	3.8	2.5	40	14	2.7	6.2	8.4	380	5.6	1.8	2.3	1.4	3.5	3.4	14	2.4	7. 8.	29	11	2.3	3
	1e + 02	0.778	3.3	1.8	3.4	2.4	27	46	4.4	3.9	36	1	1.4	1.6	3.3	2.9	က	2.3	က	5.5	170	3.1	1.4	2.9	2.2	2.5	4.5	190	8	3.8	2.5	38	4.4	2.6
	1e + 03	0.333	1.3	1.3	77	1.5	5.8	9.5	1.9	1.5	8.6	1.5	1	1.2	1.3	1.4	1.4	1.2	1.4	н	1.2	1.5	1	1.3	2.3	1.3	2.2	39	1.5	1.3	1.5	5.9	1.7	1.4
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 40: 03-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

10 9.2 19 50 94 170 4.8 5.6 11 33 21 29 3.4 3.9 12 58 40 57 71 210 41 77 58 170 180 4400
1.2 1.1.1 1.
1.1. 1.19 1.12 1.16 1.13 4.11 1.13 4.11 1.13 4.11 1.13 4.11 1.13 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15

Table 41: 03-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

A figure 1 10 103 10 103 101 10 101 10 10 10 10 10 10 10 10 10 1	101 03	10.109	701-01	7	17 Schaff	er F7,	condition 10			1007	A ft. 0 moot
$\Delta \log_{\mathrm{Best}}/\mathrm{D}$	0.333	0.333	1.2	26.2	93.9	164	378	602	782	1160	$\Delta _{ m Larget}$
ALPS	1	1.2	2.4		13	15	9.5		8.5	8.8	ALPS [17]
AMaLGaM IDEA	1	1.3	3.3		1	1	2.6		3.9	က	AMaLGaM İDÉA [4]
avg NEWUOA	1	1.9	3.3		13	150	32e-3/5e3				avg NEWUOA [31]
${ m BayEDAcG}$	П	1.7	2.3		7.6	17	9.7		32e-4 /2e3	•	BayEDAcG [10]
BFGS	П	2.1	48		44e-2/2e3						BFGS [30]
Cauchy EDA	П	4.9	24		4.1	3.6	2.2		1.8	1.6	Cauchy EDA [24]
BIPOP-CMA-ES	П	1.2	5.3		2.4	2.3	1.5		1.4	1.1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	Н	1.1	32		6.7	32	37		28	76e-5/1e4	(1+1)-CMA-ES $[2]$
DASA	Н	15	65		110	480	006		3900	1.2e4	DASA [19]
DEPSO	П	1.3	5.1		3.5	3.5	2.3		2.3	ಬ	DEPSO [12]
DIRECT	П	Н	1.2		1.2	1.5	П		П	1.2	DIRECT [25]
EDA-PSO	1.1	1.3	2.3		17	29	20		17	16	EDA-PSO [6]
full NEWUOA	Н	1.7	3.9		7.3	31	53				full NEWUOA [31]
G3-PCX	П	1.3	2.6		39	48	47		290	640	G3-PCX [26]
simple GA	Н	1.1	1.4		22	72	72		120	58e-8/1e5	simple GA [22]
GLOBAL	Н	1.5	က		7.3	21	98e-3/400				GLOBAL [23]
iAMaLGaM IDEA	Н	1.4	2.4		3.1	2.7	3.1		3.6	က	iAMaLGaM IDEA [4]
LSfminbnd	П	1.2	14		30	140	21e-3/1e4				LSfminbnd [28]
LSstep	Н	1.5	71		100	880	69e-3/1e4				LSstep [28]
MA-LS-Chain	П	1.4	2.1		4	4.9	3.1		2.3	7	MA-LS-Chain [21]
MCS (Neum)	П	П	Н		5.6	16	180				MCS (Neum) [18]
NELDER (Han)	П	П	62		44	92	92		250	400	NELDER (Han) [16]
NELDER (Doe)	Н	1.2	1.9		8.5	36	69				NELDER (Doe) [5]
NEWUOA	П	1.6	2.7		19	140	32e-3/5e3				NEWUOA [31]
(1+1)-ES	П	2.5	24		870	2300	4100				(1+1)-ES [1]
POEMS	Н	93	140		23	28	17		16	15	POEMS $[20]$
PSO	Н	1.1	8.8		80	52	56		15	14	PSO [7]
PSO_Bounds	П	1.3	2.2		14	21	14		25	28	PSO_Bounds [8]
Monte Carlo	1	1.1	2.4		7200	92e-3/1e					Monte Carlo [3]
Rosenbrock	Н	1.3	81		20e-1/8e3						Rosenbrock [27]
IPOP-SEP-CMA-ES	Н	1.2	8.8		2.1	1.8	1.4		1.1	н	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	П	2.9		1.2	1.7	1.3	7	4.8	18	VNS (Garcia) [11]

Table 42: 03-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	1e-05	1310 1580 1840 ERT _{best} /D	18 140	2.9 2.5 AMaLGaM IDEA [4]				9.9	1.1 1.3 B	. (1+1)			5.3	14 16	full NEWUOA [31]	. G3-PCX [26]			3.4 3.8 i	LSfminbnd [28]		11		_	170 $63e-4/2e4$ N			100 170	110 180	69	Monte Carlo [3]	. Rosenbrock [27]	1 1 IPOP-SEP-CMA-ES [29]	
F7, condition 1000	1e-03	1170	7.2	3.1	76e-3/6e3			4											3.7	-		11	-	120			1.2e4 83						1.1	
		1030	5.2	3.2	88	20e-2/2e3																		45							٠	٠		
18 Schaffer	1e-01	430	5.5	3.5	15	29		9.4	1.8	8.3	460	3.4		13	13	18	42	4.6	1.6	33	330	5.3	20	30	7	34	2800	25	22	65	26e-2/1e6	50e-1/8e3	2.1	
ź	1e+00	48.2	17	6.1	30	9.7	29e-1/3e3	80	3.4	v	086	12	2.7	28	16	11	63	5.7	1	35	360	4.8	2.9	27	5.4	17	300	180	16	170	450	2300	1.8	
	1e+01	13.4	ಬ	1.6	11	4.5	33	280	1.4	2.7	91	3.8	1.1	2.4	4.2	2.4	6.3	3.9	-	8.7	42	က	4	22	1.9	7.2	340	25	73	71	4.7	220	1.2	
	1e + 02	0.4	2.6	3.4	4.8	3	16	31	3.4	3.8	93	2.4	1.5	4.5	4.6	3.3	3.2	2.7	1.9	4.4	22	2.3	1	4.2	3.5	5.1	6	250	2.7	2.7	2.5	160	4.7	
	1e+03	0.333	1.3	1.2	1.3	1.1	1	1.3	1.1	1.2	5.6	1.3	1	1	1.1	1.1	1	1.2	1.1	1	П	1.1	1	1.1	1.1	П	1.8	42	П	П	1.1	1.1	1.2	
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	

Table 43: 03-D, running time excess ERT/ERT $_{\rm best}$ on f_{19} , in italics is given the median function value and the median number of function evaluations to reach this value divided by Girmon, December 61.

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2480	7.1	9	92				3.3	17	480			16	17	94	68e-6/1e5		7.7			2.3	-	40	11	53	2600	59	28	35	79e-4/1e6		2.2	10
	1e-05	2470	5.5	9	92	•		٠	3.2	17	460	٠	10e-3/3e4	13	17	92	81	•	7.7	٠	٠	2.2	-	40	11	54	2600	28	25	30	6100	٠	2.2	6.3
٦ ₂	1e-04	2460	5.2	9	92				3.2	17	460		09	12	17	92	20		7.7			2.5	П	40	11	54	2600	28	22	27	6100		2.4	6.1
nbrock F8F2	1e-03	2460	4.6	5.9	92		86e-3/5e3		3.2	17	460	٠	09	11	17	95	39	94e-3/1e3	7.7	38e-3/7e3	28e-3/1e4	2.2	1	40	11	54	2600	57	24	26	2900	27e-2/1e4	2.4	9
ewank-Rosenb	1e-02	2250	က	3.8	39	64e-3/2e3	33	53e-3/5e4	2.9	8.8	230	43e-3/2e3	29	5.8	11	100	19	3.9	9.2	46	63	1.6	н	17	5.4	25	1800	40	14	13	490	32	2.6	4.8
Griew	1e-01	36.5	46	36	120	43	160	310	49	160	520	41	1	85	26	640	100	46	73	54	56	20	11	120	20	280	3.1e4	170	24	91	810	820	54	36
$1\tilde{9}$	1e+00	0.333	470	120	320	130	870	540	100	920	5100	240	-	370	370	920	930	290	160	270	650	190	-	1500	150	1300	2.1e5	1400	240	250	1e3	3100	190	220
	1e + 01	0.333	11	13	13	6.6	110	22	13	6.1	09	5.4	1	9.1	22	7.6	7.1	14	10	56	8.9	9.7	П	4.1	9.7	20	10	630	10	2.9	11	250	9.1	23
	1e + 02	0.333	Т	1.2	1.5	1.1	37	2.3	1.5	1	3.3	П	Н	1.4	1.7	1.1	1.2	1.1	1.2	က	7	1.1	П	Н	1.1	1.5	2.3	130	1.1	1.1	1.1	15	1.1	1.4
	1e + 03	0.333	1	1	-	1	1	1	1	1	1	1	1	-	1	1	1	1	1	П	1	1	1	П	1	1	1	П	1	-	-	1	-	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 44: 03-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		925 ERT _{hest} /D								7.9 $(1+1)$ -CMA-ES [2]									iAl			1 MA-LS-Chain [21]								80 PSO_Bounds [8]	. Monte Carlo [3]		5.2 IPOP-SEP-CMA-ES [29]	
		828																																
		842																				-												
	1e-03	827	5.3	25	9.2		5.1	31e-2/5e4	10	8.8	40	4.8	8.6	5.1	8.4	21	14	17	18		170	1	3.3	23	2.6	3.6	8.8	63	21	92		9.5	5.4	7.C
$x*\sin(x)$	1e-02	799	4.6	25	9.5		5.3	930	10	9.1	41	4.8	8.7	4.9	8.7	21	10	17	18		180	1	3.4	24	10	3.7	9.1	63	22	78	94e-3/1e6	9.5	5.5	rc cc
20 Schwefel	1e-01	764	3.9	26	6.6	13e-1/2e3	5.5	460	10	9.5	43	4.9	6	4.5	9.1	22	7.1	18	19	42e-2/1e4	180	1	3.5	25	10	3.9	9.2	65	22	52	1600	10	5.5	rc rc
,	1e + 00	128	ಬ	20	2.3	71	1.7	10	8.2	5.6	21	2.4	1	6.7	5.2	17	14	9	16	6.6	28	2.5	3.2	19	3.6	1.1	4.7	7.4	2.6	5.2	56	1.5	7.9	4.4
	1e+01	2.76	5.1	2.7	1.3	3.2	1.9	20	2.3	2.7	37	5.9	5.9	3.6	1.2	3.5	5.1	3.4	3.7	8.9	220	8.8	2.3	1	1.7	1.3	3.1	84	3.7	3.2	3.1	2.2	2.8	2.9
	1e + 02	5.6	4.1	2.2	1.3	က	1.7	18	2.1	2.6	37	4.1	5.2	3.4	1.3	2.8	4.3	2.7	2.9	6.1	180	2.3	2.2	1	1.5	1.4	3.1	87	3.2	2.7	2.6	2.6	2.1	2.8
	1e + 03	1.84	2.8	2.2	1.5	3.1	1.8	17	2.2	2.1	31	1.1	3.7	2.3		1.5		1.3	2.3	6.4	150	2.2	2.9	1	1.5	1.6	2.5	110	1.4		1.3	က	1.7	
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 45: 03-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	161	15	39	7		3.2	860	6.1	7.4	61	7.5	5.8	65	2.6	5.4	230	Н	18	46	220	9.7	4.2	23	2.6	3.4	16	200	100	170	62e-7/1e6	11	17	11
	1e-05	156	11	40	77		3.2	890	6.1	7.5	62	7.1	4.2	62	2.6	5.4	66	П	18	39	200	9.7	4.1	23	2.7	3.4	16	510	100	170	4500	11	17	11
	1e-04	155	8.8	40	77	٠	3.3	650	9	9.7	62	9.9	3.8	29	2.6	5.4	43	Н	18	38	200	9.7	4.1	23	2.7	3.4	16	510	100	170	086	11	17	11
peaks	1e-03	153	7.4	40	77	٠	3.3	200	9	7.7	62	5.3	1.4	28	2.6	5.4	29	П	19	31	190	9.6	4.1	24	2.7	3.4	16	510	100	170	120	11	17	11
er 101	1e-02	146	5.8	41	7	63e-2/2e																												
Gallagh	1e-01	142	3.7	41	2.1	94	3.5	240	9	8.1	99	3.5	1.4	54	8.7	2.2	5.3		20	22	200	9.7	4.4	56	2.9	3.5	17	550	110	180	8.3	12	15	11
21	1e+00	61.3	2.3	17	2.2	7.5	3.3	11	8.9	4.5	93	4.1	1	3.2	3.3	8.6	2.2	1.4	28	21	210	1.7	2.1	16	2.8	2.7	15	089	120	120	2.9	8.1	4.6	9.5
	1e + 01	1.98	1.3	2.5	4	2.1	2.1	16	1.7	1.9	12	1.2	1.9	1.4	2.4	1.6	1.5	1.8	1.6	6.1	15	1.7	6.2	1.6	7	1.6	7	92	1.2	-	1.5	17	1	2.1
	1e + 02	0.333	П	П	П	1	П	Н	П	1	П	1	1	1	1	1	П	П	1	П	П	П	Н	П	П	П	П	П	П	П	П	1	1	н
	1e + 03	0.333	н	П	Н	1	П	Н	Н	П	П	1	1	1	П	1	Н	Н	П	П	Н	Н		П	Н	Н	П	Н	П	Н	н	П	1	1
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 46: 03-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	$\operatorname{BayEDAcG}[10]$	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	138	28	22	3.1	٠	7	2400	13	9.4	120	34	18	42	2.1	9.6	3100	П	42	150		4.3	4.6	12	7	5.7	20	410	120	88	30e-7/1e6	ಬ	29	15
	1e-05	134	21	22	2.9		7	2400	13	9.6	86	26	12	50	1.9	9.7	1600	П	43	22		3.8	4.5	12	7	5.5	19	410	120	92	7100	5.1	29	14
	1e-04	132	17	58	2.9		7	2500	13	9.7	88	18	8.6	22	1.9	9.7	950	1	42	20	16e-2/1e4	3.5	4.6	12	7	5.5	18	420	120	69	1500	5.1	30	14
peaks	$^{-}$ 1e-03	128	12	59	2.8		77	2500	13	8.6	42	14	7.4	16	1.9	8.6	270	П	43	62	320	3.4	4.6	12	2.1	5.6	17	420	120	29	200	5.1	30	13
lagher 21)	121				36																												
22 Gal	1e-01	118	4	26	5.9	48	2.1	640	13	11	69	13	6.3	5.4	1.8	10	6.5	П	43	19	160	2.4	1.2	13	2.5	5.8	17	420	130	64	4.8	5.2	13	12
	_	26.7																																
	1e+01	6.02	1.8	1.1	2.8	7	3.3	12	1.1	3.5	20	4.8	1.5	1.2	2.3	1.4	1	1.6	1.6	14	64	1.4	3.3	5.5	4.1	2.8	23	42	1.1	1.5	1.7	1.7	1.7	1.4
	1e + 02	0.333	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	П	-	1	1	1	1	П	П	1	-	П	1	1
	1e+03	0.333	1	П	1	П	1	П	1	1	П	1	П	1	П	1	1	1	П	Н	П	П	П	1	1	1	П	П	П	1	П	П	1	1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{hest}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 47: 03-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	862	3e4	5.1					4.2	12	5100		22		160	42			4.3			3.1		П	1.4		3500	43	190	890			5.8	23
	1e-05	764	6300	5.1		٠			4.2	12	5300		18		170	43		٠	4.3			3.1		-	1.4		1800	92	200	930			5.9	24
	1e-04	751	890	5.1	46e-3/7e3		-		4.2	12	5400		16	31e-2/1e5	170	30			4.3			3.1	77e-4/2e4	1	1.4	-	1500	75	200	450		31e-3/5e3	5.9	23
	1e-03	738	370	5.1	150				4.2	12	1900		15	2e3	37	17	88e-3/1e5		4.3			2.9	330	1	1.1	68e-3/6e3	510	73	200	440		48	5.9	23
Katsuuras	1e-02	405	200	8.9	82	•	23e-2/5e3		7.1	17	1700	٠	25	3700	40	29	3700	81e-3/1e3	7.5	31e-2/9e3	25e-2/1e4	5.2	39	1.8	1	110	240	130	360	570	13e-2/1e6	88	11	41
23 F	1e-01	302	54	10	22	11e-1/2e3	110	51e-2/5e4	9.3	11	880	12e-1/2e3	31	4900	15	14	520	3.1	9.7	420	490	6.7	12	2.3	1	24	13	130	170	460	2.3e4	10	13	27
2	1e+00	136	12	6.3	2.2	34	8.7	22	6.4	7	71	40	1.5	23	2.4	2.1	16	1.6	8.4	7.1	4.9	2.1	2.7	1.4	п	2.7	2.9	22	11	15	13	1.9	7.1	6.7
	1e+01	0.867	3.7	3.9	11	3.2	17	4.1	4.9	3.7	15	1.9	4.7	2.9	6.7	4.9	4.3	3.1	4.4	3.2	5.6	4.1	П	3.1	6.7	11	21	18	3.2	1.9	5.6	2.4	4.6	4.6
	1e+02	0.333	1	П	-	П	1	1	-	П	П	П		1	п	1	п	П	1	н	1	П	-		п	П	1		1	-	п	н	1	1
	1e + 03	0.333	1	П	1	П	1	1	1	П	1	П		1	П	1	П	П	1	-	-	П	П	-	П	П	1	-	-	П	н	-	-	1
	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 48: 03-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	1.19e5	3.1	5.1		•		•	4.9	٠		•		٠		•		٠	8. 8.	•		•	П	6.3	2.4	•	120	12		12				110
	1e-05	1.19e5	က	4.7					4.9										8.7				1	6.3	2.4		120	12		12				65
	1e-04	1.19e5	က	4.7					4.9										8.7				1	6.3	2.4		120	12		12				64
	1e-03	1.19e5	2.9	4.6					4.1										8.7				1	6.3	2.4		120	12		12				64
oi-Rastrigin	1e-02	1.19e5	2.9	4.5	64e-2/6e3				က	٠	37e-2/1e6	•		٠		10e-1/5e4		٠	8.7				-	6.3	2.4		120	12		12				64
Lunacek bi		34200	6.2	10	2.4			31e-1/5e4	7.9	91e-2/1e4	420		30e-1/3e4		76e-2/6e3	10		27e-1/2e3	6.6	12e-1/1e4	35e-1/1e4		1	10	3.9	45e-2/6e3	40	42	31e-1/1e5	42	10e-1/1e6		13e-1/1e4	110
24 I	_	3460	3.5	9.7	1.2	40e-1/2e3	41e-1/3e3	100	7.6	3.3	85	48e-1/2e3	39	30e-1/1e5	1.2	22	32e-1/1e5	1.1	5.8	6.4	41	30e-1/2e4	7	5.2	1.5	1	13	98	400	410	450	36e-1/1e4	2	1.6
	1e + 01	32.2	7.9	1.5	3.7	4.3	9.3	4.2	1.3	9.5	69	5.8 8.5	2.2	6.4	2.8	19	18	3.4	5.3	1.9	6.5	3.7	17	20	2.3	2.2	23	16	4.7	9.1	10	54	П	2.9
	1e + 02	0.333	1.1	1.2	2.6	1.3	1.8	1.7	1	Н	П	П	Н	1.2	1.7	1.1	1.1	П	1.5	1.1	3.1	1.1	П	н	П	1.5	2.2	28	П	1.1	1.3	1.1	Н	1.6
	1e+03	0.333	1	1	Н	1	1	1.1	1	Н	1	1	1	Н	1	1	1	Н	1	1	က	1	1	П	П	1	Н	1	1	П	н	1	П	П
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 49: 05-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension.

A 64.00000		10.0	•	- 0	$\frac{1}{1}$ Sp	1 Sphere	60	20	, ,	2	A \$4.00000.04
Aitarget	re+n3	1e+02		Te+nn	1e-01	1e-07	Te-03	Te-04	1e-05	16-07	Artarget
${ m ERT_{best}/D}$	0.2	0.2		2.44	2.44	2.44	2.44	2.44	2.44	2.44	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	1.6		140	300	490	089	820	1e3	1400	ALPS [17]
AMaLGaM IDEA	1	1.5		16	50	44	28	72	87	120	AMaLGaM IDEA [4]
avg NEWUOA	-	3.3		1.3	1.3	1.3	1.3	1.3	1.3	1.3	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1	1.2		46	92	130	170	280	390	260	BayEDAcG [10]
BFGS	1	3.4		1.1	1.1	1.1	1.1	1.1	1.1	1.1	BFGS [30]
Cauchy EDA	1	24		06	170	240	310	400	460	009	Cauchy EDA [24]
BIPOP-CMA-ES	1	2.1		6	15	21	27	33	40	53	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.3		5.9	9.7	14	17	21	25	32	(1+1)-CMA-ES [2]
DASA	1	5.2		44	29	71	88	110	120	150	DASA [19]
DEPSO	1	1.3		26	48	22	110	130	170	220	DEPSO [12]
DIRECT	1	П		7	19	31	44	62	84	150	DIRECT [25]
EDA-PSO	1	1.1		20	320	890	1500	2100	2700	3800	EDA-PSO [6]
full NEWUOA	1	5.9	1.9	1.8	1.8	1.8	1.8	1.8	1.8	1.8	full NEWUOA [31]
G3-PCX	1	1.5		12	15	19	22	31	35	45	G3-PCX [26]
simple GA	1	1.5		360	1200	2100	2900	4100	5400	8300	simple GA [22]
GLOBAL	1	1.3		26	28	30	32	33	35	39	GLOBAL [23]
iAMaLGaM IDEA	1	1.4		8.6	19	28	36	47	26	73	iAMaLGaM IĎEA [4]
LSfminbnd	1	2.8		6.3	6.7	6.7	8.9	8.9	8.9	8.9	LSfminbnd [28]
LSstep	1	140		120	130	130	130	130	130	130	LSstep [28]
MA-LS-Chain	1	1.3		22	47	09	74	06	120	140	MA-LS-Chain [21]
MCS (Neum)	1	П		1.8	2.2	2.6	$^{2.6}$	5.6	5.6	5.6	MCS (Neum) [18]
NELDER (Han)	П	1.7		3.3	5.4	7.2	9.5	11	13	17	NELDER (Han) [16]
NELDER (Doe)	1	2.3		3.4	5.6	7.4	9.2	11	13	17	NELDER (Doe) [5]
NEWUOA	-	2.4		-	-	1	-	П	-	П	NEWUOA [31]
(1+1)-ES	1	1.2		ъ	8.4	11	15	18	22	28	(1+1)-ES [1]
POEMS	1	240		130	380	092	1200	1600	2100	2900	POEMS $[20]$
PSO	П	1.3		22	22	110	180	240	320	450	PSO [7]
PSO_Bounds	-	1.2		41	210	430	730	086	1300	1900	PSO_Bounds [8]
Monte Carlo	П	1.4		1700	6.8e5	10e-2/1e6					Monte Carlo [3]
Rosenbrock	П	2.9		4.2	5.5	8.9	8.7	10	12	15	Rosenbrock [27]
IPOP-SEP-CMA-ES	П	1.5		7	14	18	23	50	34	44	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	Н	1.6		18	25	31	38	45	20	64	VNS (Garcia) [11]

Table 50: 05-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension and the median function evaluations to reach this value divided by financial constants.

Aftarget ERTpest/D ALPS AMALGAM IDEA avg NEWUOA BayEDAcG BrGS BRGS Cauchy EDA BIPOP-CMA-ES (1+1)-CMA-ES DASA DEPSO DIRECT	1e+03 9.71 45 5.2 1.2 3.3 3.3 3.3 3.5 10 11 11 4.2	1e+02 14.9 14.9 5.3 2 2 3.8 3.4 3.4 3.5 11 6.6 8.6 11 6.6	1e+01 16.7 73 7.1 6.4 41 3.8 42 42 13 9.4 9.7	2 Ellij 1e+00 17.5 17.5 10 21 46 5.6 49 49 11 11 12 16 16 17 17 10 10 10 10 10 10 10 10 10 10	psoid s 1e-01 17.7 120 13 41 52 6.2 58 18 18 12 13 13 18 18 18 18 18 18 18 18 18 18	separal 16-02 16-02 17.9 150 150 150 150 151 151 151 151 151 151	ble 1e-03 18 170 170 177 75 64 6.6 20 20 14	1e-04 18.2 190 190 92 79 6.8 91 20 14 19 32	1e-05 18.4 210 21 110 21 110 21 110 21 37 22	1e-07 18.8 260 24 150 95 7.1 120 22 15 26 44	Aftarget ERT bast / D ALPS st / D ALPS st / D AMALGAM IDEA [4] avg NEWUOA [31] BAFGDACG [10] BFGS [30] Cauchy EDA [24] BIPOP-CMA-ES [15] (1+1)-CMA-ES [15] DASA [19] DEPSO [12] DEPSO [12]
EDA-PSO full NEWUOA G3-PCX simple GA GLOBAL	8.6 1.5 180 7.1	58 2.7 30 230 5.4		210 19 150 460 6.9	290 36 220 610 7.3	360 50 280 770 7.5	420 69 340 1300 7.8	490 87 410 1500 8	550 100 470 2200 8.2	690 130 620 2500 8.5	EDA-PSO [6] full NEWUOA [31] G3-PCX [26] simple GA [22] GLOBAL [23]
iAMaLGaM IDEA LSfminbnd LSstep MA-LS-Chain MCS (Neun)	1.5 25 7.9 1.3	1.1 1.1 10 10		8.1 1 16 16 1.5	10 10 22 22 2.2	12 12 15 15 15 15 17	13 15 15 15 15 15 15 15	14 15 15 36 36	15 15 15 41 41 6.5	1. 1. 1.5 4.9 2.9	iAMaLGaMIDEA [4] LSfminbnd [28] LSstep [28] MA-LS-Chain [21] MGS (Neum) [18]
NELDER (Han) NELDER (Doe) NEWUOA (1+1)-ES POEMS	2.4 110 110 150	2.7 2.5 1.8 1600 160		6.8 8.1 22 1.6e4 270	7.4 8.9 45 384 330	7.7 9.3 60 4.6e4 380	7.9 9.6 85 1.9e5 440	8.1 9.8 100 2.6e5 470	8.3 10 130 8e5 520	$8.6 \\ 10 \\ 170 \\ 19e-4/1e6 \\ 130 \\ 110 \\ 110 $	NELDER (Han) [16] NELDER (Doe) [5] NEWUOA [31] (1+1)-ES [1] POEMS [20]
PSO_Bounds Monte Carlo Rosenbrock IPOP-SEP-CMA-ES VNS (Garcia)	19 47 1800 2.2 5.4	25 83 1.2e5 8.6 5.7	9	41 190 100 8.5 20	49 260 140 9.4 24	300 140 10 24	68 400	78 590 11 26	88 860 19 12 26	110 1200 240 13	PSO_Bounds [8] Monte Carlo [3] Rosenbrock [27] IPOP-SEP-CMA-ES [29] VNS (Garcia) [11]

Table 51: 05-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension f_3 Deciminal constants.

$\Delta ext{ftarget}$	1e+03	$\frac{1e+02}{6.65}$	1e+01	$egin{array}{c} 3 \ \mathbf{Re} \ ^{1e+00} \ ^{3e+0} \end{array}$	3 Rastrigin separable $\frac{1 - 0.0}{1 - 0.0}$ $\frac{1 - 0.0}{0.0}$ $\frac{1}{0.0}$	$\frac{\mathbf{parabl}}{1e^{-0.2}}$	e 1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.2	2.92	143	324	327	328	329	330	330	331	${ m ERT_{best/D}}$
ALPS	1.5	7	2.2	12	22	24	26	28	59	33	ALPS [17]
AMaLGaM IDEA	1.5	2.1	4.5	65	480	200	510	520	520	520	AMaLGaM IDEA [4]
avg NEWUOA	3.3	4.8	က	130	40e-1/6e3						avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1.2	1.7	2.7	29e-1/2e3		•	-		•		BayEDAcG [10]
BFGS	7.4	26	110	21e+0/4e3							BFGS [30]
Cauchy EDA	35	22	6.7	2200	26e-1/5e4				•		Cauchy EDA [24]
BIPOP-CMA-ES	3.5	1.5	1.4	16	140	140	140	140	140	140	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	2.2	1.3	9.1	440	30e-1/1e4				•	٠	(1+1)-CMA-ES [2]
DASA	8.7	18	1.2	1.6	10	10	10	10	10	11	DASA [19]
DEPSO	1.4	2.9	3.7	29	30	30	30	23e-1/2e3	•		DEPSO [12]
DIRECT	1	5.6	45	300	30e-1/2e4						DIRECT [25]
EDA-PSO	1.4	2.5	12	170	860	860	860	860	820	870	EDA-PSO [6]
full NEWUOA	4.3	3.7	4.2	160	20e-1/7e3						full NEWUOA [31]
G3-PCX	73	က	84	2100	30e-1/5e4				•		G3-PCX [26]
simple GA	1.1	1.6	19	18	25	34	43	53	110	200	simple GA [22]
GLOBAL	1.2	2.4	3.3	50e-1/500		-			-	٠	GLOBAL [23]
iAMaLGaM IDEA	1.2	1.4	1.4	33	180	180	180	190	190	190	iAMaLGaM IDEA [4]
LSfminbnd	11	2.7	-	52	21e-1/4e3		-		•		LSfminbnd [28]
LSstep	81	62	2.5	1	-	-	1	-	П	-1	LSstep [28]
MA-LS-Chain	П	1.3	-	6.4	32	32	32	32	32	32	MA-LS-Chain [21]
MCS (Neum)	П	1	1.2	24	220	210	210	210	210	210	MCS (Neum) [18]
NELDER (Han)	-	1.3	5.4	280	1500	1500	1500	1500	1500	1400	NELDER (Han) [16]
NELDER (Doe)	2.1	1	1.5	33	270	270	270	270	270	270	NELDER (Doe) [5]
NEWUOA	က	1.5	6.1	230	40e-1/5e3	٠			٠	•	NEWUOA [31]
(1+1)-ES	1.8	2.3	16	310	3900	3800	3800	3800	3800	3800	(1+1)-ES [1]
POEMS	170	20	3.8	9.7	35	39	42	45	47	54	POEMS $[20]$
PSO	1.4	1.7	25	55	280	270	280	280	280	280	PSO [7]
PSO_Bounds	1.5	1.6	9.2		38	63	64	65	20	92	PSO_Bounds [8]
Monte Carlo	П	2.1	0089								Monte Carlo [3]
Rosenbrock	5.7	39	24		70e-1/9e3						Rosenbrock $[27]$
IPOP-SEP-CMA-ES	2.5	2.3	1.2		96	96	96	26	26	26	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1.6	2.5	2.2		11	11	12	16	22	40	VNS (Garcia) [11]

Table 52: 05-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	381	63			•					5.9						190				-	160			220		1.8e4	22	3700	140				130
	1e-05	377	59							-	5.7						28				-	160			780		1.8e4	22	3700	110		-		54
	1e-04	370	28							-	5.6						49				-	160			790		1.8e4	49	3800	110		-		20
able	1e-03	363	58			•		•		•	5.6	•		-			41	٠			П	160			810	•	1.9e4	47	3900	110		•		39
eche separable	1e-02	352	58								5.7		11e+0/2e4				33				1	170			840		1.9e4	47	4e3	110				38
strigin-Bue	1e-01	338	59	20e-1/1e6						30e-1/1e4	5.9		250	20e-1/1e5		50e-1/5e4	26		20e-1/1e6		П	180			870	60e-1/7e3	2e4	45	4200	64				39
4 Skew Ras	1e+00	327	28	2e4	50e-1/8e3	69e-1/2e3	24e+0/4e3	78e-1/5e4	20e-1/4e5	460	1.8	30e-1/2e3	110	2e3	30e-1/1e4	2200	20	11e+0/600	2.1e4	42e-1/5e3	1	35	20e-1/1e4	30e-1/1e5	006	300	3700	17	140	30	12e+0/1e6	99e-1/1e4	37e-1/1e4	16
•	1e+01	162	7.1	5.8	14	5.8	170	82	2.7	15	1	3.3	190	14	12	92	18	8.3	3.9	7.8	7	1.7	4.1	56	7.1	27	22	4.5	က	œ	1.6e4	22	1	2.2
	1e+02	3.77	4.4	3.4	10	6.3	29	39	2.9	1.6	13	5.2	2.2	3.5	2.8	4.6	ಬ	4.9	2.3	က	28	3.8	2.3	1.4	-	27	73	29	2.4	3.2	3.4	33	2.1	2.6
	1e + 03	0.2	1.1	1.8	5.4	1.7	33	9.7	1.1	-	15	1.8	Н	1.1	3.9	1.5	1.9	1.3	1.7	21	320	1.5	П	3.1	1.9	4.1	3.3	210	1.7	1.6	1.3	5.1	1.5	7
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 53: 05-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IĎEÁ [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2	160	50	1.9	320	3.1	41	9.9	3.2	63	41	13	17	2.4	28	3.4e4	34	12	14	160	71	-	4.2	2.2	1.5	5.6	220	16	16		4.2	6.9	15
	1e-05	2	160	50	1.9	320	3.1	41	9.9	3.2	22	41	13	17	2.4	28	1.7e4	34	12	14	160	71	-	4.2	2.2	1.5	5.6	220	16	16		4.2	6.9	15
	1e-04	7	160	50	1.9	320	3.1	41	9.9	3.2	52	41	13	17	2.4	28	1.2e4	34	12	14	160	71	-	4.2	2.2	1.5	5.6	220	16	16		4.2	6.9	15
	1e-03	2	160	50	1.9	320	3.1	41	9.9	3.2	49	41	13	16	2.4	28	9200	34	12	14	160	71	-	4.2	2.2	1.5	5.6	220	16	16		4.2	6.9	15
slope	1e-02	2	160	50	1.9	320	3.1	41	9.9	3.2	43	41	13	16	2.4	28	6300	34	12	14	160	71	-	4.2	2.2	1.5	5.6	220	16	16		4.2	6.9	15
near s	1e-01	2	160	50	1.9	320	3.1	41	9.9	3.2	40	41	13	16	2.4	22	4e3	34	12	14	160	20	-	4.2	2.2	1.5	2.2	210	16	16		4.2	8.9	15
5 Li	1e+00	2	130	28	1.9	92	က	41	6.5	3.1	36	37	12	16	2.4	25	2100	33	11	14	160	69	П	4.1	2.4	1.5	2.4	200	14	15	37e-1/1e6	4.2	9.9	15
•	1e+01	2	64	19	1.8	38	1.9	39	4.5	2.3	28	22	9.5	10	2.5	14	480	32	7.1	13	140	53	1	2.2	1.9	1.3	77	150	10	9.5	4300	4	4.8	13
	1e+02	0.293	1.5	77	4.1	1.7	5.9	29	2.5	7	45	77	4.5	1	1.5	1.8	1.9	2.3	1.4	18	180	1.5	က	3.9	3.1	2.9	3	350	1.7	1.6	1.6	11	5.7	2.5
	1e+03	0.2	1	1	-	1	-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	П	-	-	-	1	1	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 54: 05-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	566	37	4.5	2.2		2.8	34	1.3	1.8	150	9.7		89	1.4	5.5		35	2.3	65		3.7	54	5.6	8.5	5.9	П	37	11	92		2.4	1.5	1.4
	1e-05	208	34	4.3	2.4		7	35	1.3	1.6	81	6.3		65	-1	5.1	24e-3/1e5	3.6	2.2	82	21e-2/1e4	4.1	46	7	5.6	2.7	-1	37	10	78		2.8	1.6	1.5
	1e-04	149	39	ಬ	2.6	٠	2.3	43	1.6	1.5	100	-		75	1	5.6	9700	2.7	5.6	110	490	5.1	63	2.3	9.9	3.2	1.2	42	12	92		3.8	7	1.8
		116																																
re sect	1e-02	7.08	41	5.7	5.6	٠	က	28	1.9	1.7	66	∞	1200	82	п	5.1	3700	5.9	3.1	150	420	7.4	61	5.6	4.9	3.6	1.5	20	12	100		2.5	2.4	2.2
$\mathbf{Attractiv}$	1e-01	56.2	40	5.7	2.6		3.4	89	2.2	1.6	20	∞	790	81	1	4.8	380	77	3.1	130	300	6.7	41	2.8	5.6	3.6	1.7	52	11	82	14e-1/1e6	2.4	2.7	2.9
	1e+00	42.7	28	4.3	1.6	13e+0/2e3	3.3	69	2.1	1.4	6	6.4	28	51	П	က	150	2.1	2.3	110	290	8.9	47	1.9	5.6	2.4	1.5	46	6	49	5.7e4	2.8	2.2	2.7
	1e+01	22.8	20	3.2	1.3	250	က	92	2.3	1.4	7.8	5.5	2.3	11	1.2	2.4	99	2.9	2.1	96	410	4.8	2.4	н	5.1	1.7	1.6	27	4.7	14	300	2.5	8.8	3.7
01110 v Cut	1e+02	3.2	32	5.7	2.6	10	4.9	230	5.2	3.3	21	8.3	2.5	4.9	3.6	7.1	81	10	3.6	14	200	11	П	2.4	11	8.8	3.4	80	5.3	4.4	480	5.6	7	12
Cocon	1e + 03	2.28	31	9.9	1.2	8.8	2.9	49	2.2	1.6	21	6.3	2.2	ы	1.5	7.2	09	12	ဂ	9.1	160	12	Н	1.7	2.3	1.4	1.7	92	5.2	4.4	290	က	2.4	7.7
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 55: 05-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	319	9.7	2.4				3.4	П	3.1		8. 5.		19	23	410	520		3.7			24		300	71		790	22	530	130			1.2	7.8
	1e-05	314	6	2.3		٠		5.9	п	3.1		8.3		18	24	410	520		3.7			24		310	7.1		810	21	540	130			1.2	7.8
	1e-04	314	6	2.3				5.9	П	3.1		8.3		18	24	410	520	•	3.7			24		310	71	-	810	21	540	130			1.2	7.8
	1e-03	314	6	2.3	17e-3/8e3	73e-2/2e3		2.9	1	3.1	16e-3/8e5	8.3		18	24	410	520		3.7	40e-2/1e4		24	25e-3/1e4	310	71		810	21	540	130			1.2	7.8
ipsoid	$^{-}$ 1e-02	290	7.7	1.8	130	66		2.9	1	2.1	2e4	7.2	41e-3/2e4	17	14	150	240	82e-2/400	2.9	510	19e-1/1e4	13	140	120	39	32e-2/6e3	370	11	480	140			1.2	9.9
7 Step-el	$1e-0\overline{1}$	234	5.7	1.2	13	120		2.4	1	7	1100	ಬ	120	13	4	45	22	10	က	100	640	13	13	26	15	09	100	9.5	590	170	38e-2/1e6	13e+0/3e3	1.2	8.9
y cumo	1e+00	64.7	10	П	5.9	31		4.9	1.5	5.3	280	က	1.7	24	1.2	18	35	2.7	1.9	64	200	3.2	5.9	33	7.5	13	8.9	15	9.2	13	1200	670	1.8	1.6
are divided	1e+01	4.72	33	5.6	4.4	20	32e+0/100	33	ಬ	3.5	230	14	2.8	22	1	19	20	12	3.8	49	370	8.4	2.8	27	1.4	6.6	5.6	74	11	9.4	39	1200	9	11
ov ciiio	1e+02	1.24	2.3	8.8	2.2	2.4	14	31	2.2	1.6	43	6.5	Н	1.7	3.3	2.2	3.5	2.9	2.3	17	190	3.5	1.3	1.6	1.3	2.5	5.6	180	4	2.3	2.9	220	2.5	3.5
T Cach	1e+03	0.2	1.1	1.3	1.1	1.5	က	10	1.7	1	24	1.2	1	1.3	1.7	1.3	1.4	1.6	1.2	3.8	28	1.1	П	1.1	1.4	1.5	1.9	400	1.1	1.3	1.3	11	1.1	1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 56: 05-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	84.4	340	9.7	1.1		1.5	40	5.4	ಬ	3300		290	840	П	16		2.5	8.4	-		12	1.1	3.2	2.4	1.2	380	1.8e4	1100			36	7.1	46
	1e-05	82	250	9.1	1.1	•	1.5	37	5.1	4.9	2e3		190	620	П	16		2.1	8.1	٠	53e-2/1e4	11	1.1	3.1	2.4	1.2	320	5500	780	12e-5/1e5		30	6.9	47
	1e-04	80.2	210	8.9	1.1	٠	1.5	36	22	4.9	1500		150	520	-	16		2.1	∞		1800	11	1.1	3.1	2.3	1.2	290	2100	620	3e3		27	8.9	48
inal		78.2																		Θ,														
k orig	1e-02	74.5	150	8.1	1.1		1.5	33	4.7	4.9	200		26	300	П	17		2.1	7.7	1900	910	10	П	3.2	2.3	1.2	240	390	310	1200		23	6.7	21
Rosenbro	1e-01	67.3	100	7.7	1.1		1.6	33	4.5	ಬ	390	23e-2/2e3	22	200	1	18	78e-2/1e5	2.1	7.6	450	330	9.6	1	3.3	2.4	1.2	230	200	200	920		22	8.9	7.7
∞	1e+00	54.6	49	6.1	1.2	45e-1/2e3	1.8	31	3.7	5.1	160	18	5.7	100	1	20	840	2.1	7.5	290	92	7.2	1	3.7	2.4	1.1	240	180	150	470	64e-1/1e6	23	5.8	9.9
	1e + 01	14.7	51	5.2	1.2	140	2.1	49	3.2	2.1	19	12	4.1	72	1.6	4.6	190	ಬ	3.4	10	64	8.7	1.5	1.6	2.1	П	15	69	13	30	2e4	32	3.5	5.1
	1e+02	8.77	32	4.3	1.6	11	2.4	32	3.6	2.1	21	7.2	2.8	10	2.5	5.3	110	7.4	2.8	9.1	64	7.3	1.4	1.6	2.3	-	22	40	7.1	12	220	53	2.8	5.9
	1e+03	3.56	11	3.1	1.3	5.5	2.1	24	2.7	2.1	16	4.7	2.5	3.7	2.3	5.5	8.4	11	2.3	5.5	78	5.8	1	1.3	1.1	-	2.7	29	3.8	5.1	10	2.3	1.7	8.9
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 57: 05-D, running time excess ERT/ERT_{best} on f₉, in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

9 Rosenbrock rotated

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	73.8	560	15	1.5	•	1.4	43	6.2	4.7	8900	٠	310	2800	1.3	8.6		2.7	12	٠		16	Н	5.4	7	1.7	270	39e-6/1e5	2800	2e4		14	7.7	10
	1e-05	67.1	370	16	1.6		1.5	42	6.3	4.9	0099		150	1300	1.4	10		2.4	12			16	П	5.8	2.1	1.9	200	1.1e4	2400	2.2e4		14	œ	11
	1e-04	64.8	310	16	1.6	•	1.5	41	6.2	4.9	5300	•	140	1100	1.5	11		2.7	12	•		16	Н	5.9	2.1	1.9	160	1900	1400	1.1e4		14	∞	11
ıted	1e-03	60.1	260	16	1.7		1.6	41	6.4	ಬ	4800		130	200	1.5	11		2.8	13	25e-3/1e4		17	-	6.2	2.1	1.9	130	1100	1100	4e3		14	8.3	11
بخبر		52.7																																
Rosenbro	1e-01	42.8	130	18	2.1		7	45	7.2	5.9	4800	10e-1/2e3	48	270	1.9	14	17e-1/1e5	3.2	15	180	19e-1/1e4	17	1	8.2	2.5	2.5	80	290	089	1600		10	6.6	14
0		25.4				~																												
	1e + 01	6.92	91	9.1	2.4	38	3.6	71	5.8	4.2	230	22	3.2	250	2.6	14	420	11	7	13	520	18	П	3.1	2.4	1.8	5.9	140	25	220	4.1e4	5.3	8.6	11
	1e + 02	0.2	1100	140	26	350	84	910	86	98	7500	370	1	410	72	380	3800	340	120	330	1.3e4	260	Н	62	56	28	64	1700	290	360	1.3e4	150	230	250
	1e+03	0.2	140	53	20	81	31	400	28	30	330	100	-	20	33	94	100	210	42	09	2e3	84	1	13	21	16	59	1200	99	69	180	32	43	09
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 58: 05-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\text{ERT}_{\text{hest}}/ ext{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	176		2.6	14	٠	23	13	2.4	1.7	47e-1/1e6	•		•	17	64		1.7	7			6.9		1.2	н	21		٠		•		37	3.9	2.8
	1e-05	166	21e-5/1e6	2.3	11		1.1	11	2.3	1.7	9e4				13	51		1.7	1.8			6.9		1.2	1	16	67e-5/1e6					29	4	2.8
	1e-04	129	2e4	2.7	12		1	13	2.8	2.1	1.1e5				15	22		2.2	2.2			8.7		1.5	1.2	17	5.8e4					36	ಬ	3.5
	1e-03	125	5300	2.2	10	٠	1	12	2.8	2.1	1.2e5			21e-1/1e5	13	49		7	7			8.8		1.5	1.2	14	1.4e4					37	ಸಾ	3.5
soid	1e-02	121	2e3	2.3	8.1		1	11	2.7	2.1	5.9e4		15e-2/2e4	1.2e4	10	41		1.9	1.9			8.6		1.4	1.2	11	5900					38	ಬ	3.4
10 Ellipsoid	1e-01	115	890	7	9.9		1	9.4	2.7	7	3.9e4		280	3900	8.7	36		1.8	1.7			8.6		1.4	1.2	8.1	4500	45e-1/1e5	10e+0/1e5	20e+0/1e5		40	5.1	3.4
	1e+00	100	320	1.9	4.6	٠	1	6	2.9	2.2	1.8e4	88e+0/2e3	140	1400	6.2	27	15e+0/1e5	1.6	1.6			9.3	17e+0/1e4	1.3	1.3	5.5	2500	2500	3300	1.5e4		44	5.6	3.5
for population	1e+01	6.69	88	1.9	3.1	28e+2/2e3	1	11	3.5	2.5	0069	210	110	890	3.6	22	2400	1.9	1.8	25e+1/1e4		6	280	1.4	1.2	3.1	200	200	1700	3800	10e+1/1e6	24	7.4	4.5
	1e + 02	34.1	54	2.6	2.2	840	1.5	16	5.1	3.8	1100	78	57	130	7	7.2	200	က	2.2	780	25e+2/1e4	6.6	110	1.2		2.6	130	170	120	1200	4.7e4	25	12	6.2
	1e + 03	20.6	29	2.7	1.2	400	1.7	16	5.1	3.2	66	18	8.8 8.8	71	1	3.3	130	3.8	2.5	160	1200	7.1	53	1.1	1	1.5	34	41	15	290	066	11	10	9.9
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 59: 05-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	335	2.2e4	1.1	3.4	٠	32e-6/8e3	5.9	1.3	1.2	4.5e4	٠		٠	6.5	61		8.5	н	٠		3.8		1.6	1.2	2.2		2200	390	1400		13	2.2	1.5
	1e-05	293	1800	1	3.1		200	5.6	1.4	1.3	9200			70e-3/1e5	5.9	56		ಬ	-			4.2		1.5	1.1	7	90e-5/1e6	940	240	1500		14	2.5	1.6
	1e-04	270	1100	П	2.9		21	5.4	1.5	1.4	4200			5500	5.2	25		4.8	-			4.4		1.5	1.2	1.8	2.8e4	800	190	1600		16	2.6	1.6
	1e-03	235	810	П	2.8		8.2	5.3	1.6	1.5	3200	•		6200	5.3	49		ಬ	1			4.9		1.5	1.2	1.8	0029	630	160	1100		18	2.9	1.8
Discus	1e-02	195	540	Н	2.6		1.9	5.5	1.8	1.8	2800			2400	4.9	44	21e-1/1e5	5.1	1.1	-		5.6	-	1.6	1.4	1.7	3800	350	140	1e3		21	3.4	2.1
11 Dis	1e-01	153	300	1	2.7		1.1	9	2.2	2.1	2300		19e-1/2e4	920	5.4	45	9400	3.5	1.2			6.7	13e-1/1e4	1.7	1.5	1.8	3700	270	120	1e3	11e-1/1e6	26	4.2	2.5
,	1e+00	40.4	340	2.7	7.2	15e+0/2e3	1	17	7.2	9.9	5200	10e+0/2e3	2200	650	14	110	7100	5.5	3.8		73e+0/1e4	19	460	ю	4.7	4.7	9300	510	240	1400	1.1e5	88	14	8.7
	1e+01	28.5	54	2.1	5.4	160	1	18	8.4	6.5	1900	140	87	110	11	55	340	4	3.4	61e+0/1e4	4900	15	82	3.2	4.5	3.5	6400	230	91	430	730	120	16	11
	1e + 02	4.88	23	5.4	11	15	1.8	51	15	7	12	22	15	30	20	6.7	34	10	9.9	320	750	8.7	1	2.7	3.4	5.9	6700	61	13	21	30	12	33	34
	1e + 03	2.48	15	4.5	2.6	9.1	2.1	22	6.4	4	11	11	5.8	8.9	2.7	9.7	15	13	6.1	2.7	3.6	6.7	1	5.9	4.4	1.7	8.8	88	8.2	7.2	7.4	2.5	18	11
	Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 60: 05-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

12 Bent cigar

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG~[10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	299	24e-5/1e6	5.2	1.4		49	17	3.3	1.9			21e-6/2e4		1.7	5.1		3.4	2.3	ē		6.5	56	1	1.2	1.1						48	3.3	3.6
	1e-05	261	2.7e4	5.1	1.3		7	17	3.3	1.9			380		1.6	5.2		3.1	2.1			6.7	26	-	1.1	1.1				-		42	3.5	3.8
	1e-04	233	1.4e4	4.9	1.3		1.3	17	3.4	1.9			96		1.6	5.3		က	2.1			6.9	22	1	1.2	1.1			41e-1/1e5			46	3.7	4
	1e-03	92.3	4200	11	က		-	38	7.7	4.1	32e-1/1e6		110		3.3	12		ಬ	4.7			16	22	2.3	2.7	2.6			1.5e4	46e-1/1e5		92	8.6	9.4
ent cigar	1e-02	82.6	1400	8.6	2.9	71e-1/2e3	1	37	7.5	3.9	1.8e5	95e-2/2e3	39	21e-1/1e5	3	13	11e-1/1e5	က	4.3	68e-1/1e4		15	15	2.2	2.7	2.5	23e-1/1e6	17e-1/1e5	2000	1.7e4		100	8.7	9.7
		74.1																																
	1e+00	53.6	170	6.7	8.7	260	-	41	7.4	2.9	5.4e4	47	8.7	3e3	2.6	11	2400	2.7	4.3	1200	1200	13	18	2.5	2.9	2.6	6.1e4	2900	3800	2500		63	11	12
	1e + 01	21.6	130	10	3.5	96	1.1	79	11	4	1.2e4	52	8.5	1100	3.7	14	930	4.6	6.9	310	460	11	1	2.3	4.4	3.5	2.1e4	1900	750	1900		86	12	19
	1e+02	15.9	120	9.5	1.8	46	1	75	6.3	3.4	17	33	œ	390	1.5	4.2	620	ಬ	6.1	3.6	26	11	1.1	1.7	2.4	1.5	1200	210	35	180		1.4	6.2	6
	1e+03	13.3	100	∞. ∞.	1.1	46	1.1	99	5.1	2.8	17	23	9.9	310	1	4				3.4		11	1.2	1.4	1.6	1.1	2.6	180	28	120	19e + 3/1e6	1.4	4.6	6.9
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 61: 05-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

16	1e+01 26.4 50 50 4.2 4.5 170 1 21 3.9 4.4 200 11	1e+00 38.9 83	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
0.56 2.3 2.4 4.6 1.9 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	26.4 50 50 4.2 4.5 170 1 21 3.9 4.4 4.4 200 11	38.9 83							
2.7 2.3 3.3 3.4 4.6 5.4 5.4 5.4 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7	50 4.2 4.5 170 1 21 3.9 4.4 4.4 111	83		63.9	262	305	350	451	${ m ERT_{best}/D}$
3.3 4.1 9.4 9.4 9.5 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	4.2 4.5 170 1 21 3.9 4.4 200 11	9 1		440	570	2300	3900	76e-7/1e6	ALPS [17]
4.1.9 2.4.4.3 2.4.4.3 2.4.4.3 3.4.4.3 3.4.4.3 3.4.4.3 4.3.3 4.3.3 3.4.4.3 3.4.4.3 3.4.4.3	4.5 170 1 21 3.9 4.4 200 11	4.0		4.9	1.5	1.5	1.4	1.4	AMaLGaM İDEA [4]
1.9 4.6 5.4 5.4 6.4 6.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	170 1 21 3.9 4.4 200 11	8.1		29	89	450	390	15e-4/9e3	avg NEWUOA [31]
4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	1 21 3.9 4.4 200 11	350		٠					BayEDAcG [10]
	21 3.9 4.4 200 11	П		1	4.8	24	140	37e-6/1e4	BFGS [30]
3.4 2.5 3.4 3.4 3.4 3.4 3.5 3.4 4.3 4.3 4.3 3.10	3.9 4.4 200 11	24		25	7.4	7.5	7.3	7.3	Cauchy EDA [24]
2.6 2.4 1.6 1.6 1.9 2.5 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.4 4.3 2.0 2.0 2.0 3.0 3.0 4.3 2.0 3.0 3.0 4.3 4.3 3.0 3.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	4.4 200 11	5.4		5.4	1.6	1.6	1.5	1.7	BIPOP-CMA-ES [15]
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 11	6.3		6.3	1.9	2.9	3.2	3.1	(1+1)-CMA-ES [2]
2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	11	640		7800	5e3	1.4e4	23e-4/1e6		DASA $[19]$
1.6 2.3.3.3.3.3.3.3.3.3.3.4.4 1.0 2.5.0 2.1.2 2.2.0 2.6 2.6 3.10	1	350		240	21e-1/2e3		-		DEPSO [12]
3.4 2.5 3.4 6 2.5 1.9 1.8 2.6 2.6 2.6 2.6 3.10	,	21		140	42	57	120	12e-6/2e4	DIRECT [25]
555 336 346 119 14 120 250 220 220 220 310	150	390		1e4	64e-3/1e5				EDA-PSO [6]
3.3 2.6 2.6 1.9 2.50 2.2 2.2 2.3 2.6 2.3 3.3 3.10	1.8	6.7		82	97	19e-4/1e4			full NEWUOA [31]
2.6 3.4 1.19 1.19 2.50 2.2 2.9 2.6 4.3 3.10	14	09		340	120	260	290	15e-5/5e4	G3-PCX [26]
3.4 1.9 250 1.8 1.8 2.2 2.9 2.6 4.3 310	240	730		2.2e4	20e-2/1e5				simple GA [22]
1.9 14 14 250 1.8 1.8 2.2 2.9 2.6 4.3 310	4.2	6.1		19e-2/300					GLOBAL [23]
14 250 1.8 1.8 2.2 2.9 2.6 3.10	2.6	က		3.3	П	1	-1	1	iAMaLGaM IDEA [4]
250 1.8 1.1 2.2 2.9 2.6 4.3 310	33	150		1100	19e-2/1e4		•	-	LSfminbnd [28]
1.8 1 2.2 0 2.9 2.6 4.3 4.3 3.10	550	1100		22e+0/1e4	•				LSstep [28]
1 2.2 0 2.9 2.6 4.3 4.3	8.3	21		19	5.1	4.8	5.3	4.9	MA-LS-Chain [21]
2.2 2.9 2.6 4.3 310	41	210		2300	550	21e-2/1e4			MCS (Neum) [18]
2.9 2.6 4.3 310	7	3.8		4.9	1.3	1.3	1.2	1.3	NELDER (Han) [16]
2.6 4.3 310	2.4	2.4		6.1	1.9	2.5	3.9	ಬ	NELDER (Doe) [5]
$\begin{array}{c} 4.3 \\ 310 \\ \end{array}$	3.1	9.3		55	54	120	330	17e-4/8e3	NEWUOA [31]
$\frac{310}{}$	20	30		250	160	350	1500	7200	(1+1)-ES $[1]$
•	87	099		1e4	22e-2/1e5				POEMS [20]
PSO 3 8.7	1600	1e4		57e-1/1e5					PSO [7]
1.3	350	2400		1e4	5400	81e-2/1e5			PSO_Bounds [8]
	30e+0/1e6						-		Monte Carlo [3]
8.6	9.2	13		49	39	26	63	290	Rosenbrock [27]
IPOP-SEP-CMA-ES 3.1 2.9	6	11		11	2.8	2.7	2.5	2.3	IPOP-SEP-CMA-ES [29
	4.8	5.6		6.2	1.9	1.9	1.9	2.1	VNS (Garcia) [11]

Table 62: 05-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Aftarget ERT_best/D ALPS AMALGAM IDEA avg NEWUOA BayEDAcG BFGS Cauchy EDA BIPOP-CMA-ES U+1-CMA-ES DASA DEPSO DIRECT EDA-PSO full NEWUOA G3-PCX simple GA GLOBAL iAMALGAM IDEA LStep MA-LS-Chain MCS (Neum) NELDER (Doe) NELDER (Doe) NELDER (Doe) NEWUOA (1+1)-ES POEMS PSO PSO BOUNGS	0.2 0.2 1.1 1.1 1.1	10-4-02 0.2 1.3 1.5 1.5 1.7 1.7 1.8 1.8 1.8 1.1 1.8 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3	1e+01 1.96 2.5 2.1 2.1 2.2 2.2 2.3 2.3 2.3 1.1 1.8 1.9 1.4 1.4 2.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1	1e+00 8.17 3.2 4.5 1.0 1.7 2.8 1.9 1.9 1.9 1.9 1.9 1.9 1.1 1.1	10-01 11.6 66 66 6.1 1 1 220 11.8 40 3.7 2.3 2.3 2.0 8.9 4.8 96 4.3 97 11.1 2.7 2.7 2.7 2.1 1.4 1.4 1.5 1.4 1.5 45	16-02 18 18 6.6 6.6 1 1.5 40 4 40 4 11 11 11 11 11 11 11 11 12 12 13 13 13 13 14 130 14 14 15 11 11 11 11 11 11 11 11 11 11 11 11	$1e_{-1}$ $1e_{-1}$ 27.7 75 5.8 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.7 1.7 1.3 1.4 1.7 1.4 1.7	1e-04 42.2 130 5 1.8 1.8 1.8 2.8 4.3 3.3 4.3 3.3 4.0 1.90 1.4 9.7 3300 2.6 3300 1.4 9.7 3300 1.4 9.7 3300 1.4 9.7 3300 1.4 9.7 3300 1.6 1.7 9.7 1.7 9.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1e-05 50.3 390 5.2 5.2 5.2 7 1 1 28 5.4 4 4 3500 47e-6/2e3 1900 300 3.2 26 13e-5/1e5 3.6 3.6 3.6 3.6 3.6 3.6 1.3 1.10 6.220 6.30 6.30 6.30 6.30	1e-07 95.1 1e4 3.8 1e3 3.8 19 4.5 3.2 3.2 12e-7/1e6 62e-6/2e4 22e-7/1e6 390 59e-7/300 7.	Aftarget
Monte Carlo Rosenbrock		1.1 7.9	1.2 2.4		7.6e4 1.3	3e-3/1e6 1.5	4.6	. 53	. 56		Monte Carlo [3] Rosenbrock [27]
IPOP-SEP-CMA-ES		1.5	1.6		3.6	3.6	5.3	<u>}</u> 6	9.5		IPOP-SEP-CMA-ES [29]
	4 1) () (, ,	0 0) (,	; 1		[2-]

Table 63: 05-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	4270	25	ъ					1.2					24			15e-1/1e5		8.6			5.5	20e-1/1e4	72	29	•	220	340	330	•			П	029
	1e-05	4150	25	5.1		•			1.2	•	-	•		24	-		350		∞. ∞	•		5.6	36	22	69	-	230	320	340	-		•	1	089
	1e-04	4080	25	5.1		•			1.2	•		•		24			350		8.9			5.7	36	42	20	•	230	360	350	•		•	П	069
	1e-03	4010	26	5.2		•			1.2	•		-		23			360		6			2.8	37	80	71	-	240	360	350	-		-	1	089
gin	1e-02	3950	26	5.2				٠	1.2					23		٠	360		9.1			5.9	38	81	7.5		240	370	360				-	069
15 Rastrigin	1e-01	3870	26	5.3	30e-1/6e3	•		24e-1/5e4	1.2	30e-1/1e4	20e-1/1e6	•	99e-2/2e4	24	50e-1/7e3	50e-1/5e4	370	-	9.2		24e+0/1e4	9	38	83	73	30e-1/5e3	250	370	370	20e-1/1e5			1	089
,	1e+00	1860	6	2.6	46	61e-1/2e3	13e+0/3e3	190	1.5	80	1700	41e-1/2e3	9.4	7.5	55	370	91	90e-1/500	7	60e-1/1e4	80	5.3	22	43	20	41	100	130	220	120	83e-1/1e6	16e+0/1e4	1	5.9
	1e+01	102	9.2	1.7	5.8	4.8	87	12	1.6	10	230	6.7	5.4	20	6.3	130	35	9	1	35	1400	5.6	4	20	4.5	5.8 8.0	28	15	16	170	0069	310	1.6	2.4
	1e + 02	5.6	1.9	2.7	7	2.4	46	36	2.3	7	26	5.7	1.2	71	2.9	2.5	1.9	7	1.8	4	80	2.3	-	2.5	ಬ	7.8	1.7	80	1.5	2.3	1.7	190	1.7	3.1
	1e+03	0.2	1.1	1.3	1.3	1.2	2.2	8.7	1	1.4	15	П	П	1.1	1.9	1.3	1.1	1	1.1	Н	1.1	1.1	П	1.7	1.3	1.9	1.3	П	1.1	1.3	1.2	4.4	1.5	П
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 64: 05-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\overline{ ext{ERT}}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]		Щ	(1+			DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2420	830	5.4					1.4	70e-3/1e4			40	61			009	9.9	8.9			75		009	120			54	580				-1	45
	1e-05	2330	160	5.5 5.5									19	61		60e-4/5e4	620	8.9	6.4			20		300	59		73e-4/1e6	52	300	16e-3/1e5			н	34
	1e-04	2280	09	5.6		٠		•	1.3	62			10	49		320	630	7	6.5	•		51		200	27		6200	53	310	620			Н	16
		2090							1.3	31	24e-3/1e6		5.9	53	12e-2/1e4	350	150	3.5	5.9	37e-2/1e4		26		92	13		2200	22	88	320			1	12
Weierstrass	1e-02	2030	6.7	ಸು	35e-2/8e3				1.1	21	1200		2.1	38	32	32	71	1.3	4.4	71		11	30e-2/1e4	25	6.3		290	28	52	140			1	9.1
16 W	1e-01	532	6.3	12	47		49e-1/8e3	15e-1/5e4	2.6	17	086		3.4	85	29	44	93	1	5.5	130	13e-1/1e4	18	130	23	8.6	50e-2/7e3	340	92	59	140	30e-2/1e6	36e-1/1e4	3.5	12
,	1e+00	122	8.6	15	12	35e-1/2e3	096	1200	3.6	10	310	42e-1/2e3	1.6	210	12	22	84	П	8.6	28	280	8.2	18	28	4.8	29	88	74	6.2	36	510	1200	ಬ	12
	1e+01	24.1	2.5	က	2.6	5.7	150	5.6	က	2.5	4.8	11	1.2	4.6	2.7	Н	2.1	1.4	1.9	3.2	14	2.7	1.9	4.4	1.6	2.1	37	12	2.4	2.4	3.5	40	2.1	2.8
	1e + 02	0.24	1.7	1.4	1.2	1.2	4.2	3.4	1.1	1	9.9	1.2	7	1.4	2.3	1.2	1.3	1.3	1.4	1.3	1.1	1.1	1.8	1.5	1.3	1.2	1.1	130	1.2	1.2	1.1	1.8	1.1	1.2
	1e + 03	0.2	1	1	Т	П	П	1	1	1	1	П	П	П	П	П	П	П	1	П	П	П	П	П	П	П	П	П	П	П	П	П	П	1
	$\Delta { m ftarget}$	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 65: 05-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	1e-07 Δ ftarget	$1590 ERT_{best}/D$	68 ALPS [17]	7	. avg NEWUOA [31]		. BFGS [30]		В	(1+	DASA [19]			19 EDA-PSO [6]	ful	. G3-PCX [26]			6.8 iAMaLGaM IDEA [4]	. LSfminbnd [28]	. LSstep [28]	11 MA-LS-Chain [21]	. MCS (Neum) [18]	. NELDER (Han) [16]	. NELDER (Doe) [5]	. NEWUOA [31]	(1+1)-ES [1]	41 POEMS [20]	420 PSO [7]	120 PSO_Bounds [8]	. Monte Carlo [3]	. Rosenbrock [27]	1 IPOP-SEP-CMA-ES [29]	82 VNS (Carcia) [11]
	1e-05	1270	21	3.4		47e-4/2e3						12	9.2	17			550 13		6.3	•		7.3		-	٠	•	-	29	510	61		·	1.1	200
	1e-04	959	10	3.5		15		4.3	1		82e-4/1e6	5.6	6.7	18		٠	320		ಸಂ			7.5		٠				17	420	49			1.1	α σ
r (, condition 10	1e-03	734	7.1	2.7		7.5			П								190	٠	4.6	16e-2/1e4		9.3		54e-3/1e5		٠		19	550	51		·	-	1
F F 1, COLIC	1e-02	572	4.8	2.6	24e-2/1e4	4.1		3.8	1	17e-2/1e4	1800	3.1	2.7	16	250	60e-3/5e4	52		2.9	260		4.1		2500		32e-2/7e3	48e-2/1e6	21	160	35			1	0 7
17 Schaller	1e-01	180	∞	2.7	410	5.4	19e-1/4e3	7	П	110	730	2.8	1.7	28	92	290	36	47e-2/600	3.8	180	26e-1/1e4	3.1	63	290	48	620	3.8e4	14	140	52	48e-2/1e6		1.3	08
	1e+00	43	12	1.5	42	6.7	650	13	1	27	380	3.5	1.4	27	25	130	46	ъ	1.1	64	089	2.8	24	170	10	40	7900	15	170	6.7	840	57e-1/1e4	3.4	9
	1e+01	1.04	2.4	3.9	3.1	2.5	120	44	3.4	4.5	170	7.6	Н	2.4	4.9	2.5	5.4	3.5	2.7	240	150	3.8	1.9	52	1.9	2.3	1200	170	3.3	3.4	4	2700	3.8	9
	1e + 02	0.2	1.1	1.1	1.2	1.3	3.4	П	2.3	1.1	22	П	П	1.1	1.1	1.1	1.3	1.3	Н	1.3	1.1	1.2	П	77	1.1	1.2	7	140	1.1	1.1	1.3	н	1.1	-
	1e+03	0.2	1	П	П	Т	1	П	Н	Т	1	П	П	1	1	П	Н	Н	Н	П	П	Н	П	П	Н	Н	П	П	Н	П	П	Н	Н	-
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VING (Concio)

Table 66: 05-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		臼		7	Я	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2490	53e-7/1e6	3.1				8.6	1.3					28					4.8			140						570					1	1200
	1e-05		420					3.7	1.2				44e-6/2e4	41					3.1			160						300		10e-3/1e5			н	300
	1e-04	2080	240	3.1				2.8	1.1				8.1	34					2.3			84						200		330			П	46
on 1000	1e-03	1860	49	2.4		14e-2/2e3		2.7	1			57e-3/2e3	6.5	17	78e-2/1e4		15e-3/1e5		1.9			88						150	53e-3/1e5	120			П	26
7, condition 1000	1e-02	1690	14	1.5		8.7		2.1	1	37e-2/1e4	64e-3/1e6	4.1	6.2	6.4	88		130	12e-1/500	1.6		60e-1/1e4	23		17e-2/1e5	15e-2/2e4			7.1	250	72			П	8.6
18 Schaffer F	1e-01	794	3.3	7	57e-2/3e4	11		2.4	1	84	1600	2.5	1.9	∞.∞	90						98	1.3	75e-2/1e4	320	43	11e-1/2e4	22e-1/1e6	14	110	69	15e-1/1e6		1.6	3.6
naca <i>by</i> am 18	1e+00	75.5	14	1.7	270	9.6	51e-1/4e3	12	3.4	22	930	5.5	2.9	41	84	800	59	15	1	71	400	4.9	150	230	28	1400	3.1e4	24	9.9	21	9.4e4	16e+0/1e4	ю	4.9
arac arr	1e+01	20.7		1.6	10	4	57	13	1	6	270	2.6	1.4	3.6	10	130	22	3.9	1.1	64	150	2.5	19	45	4.3	31	3100	18	2.5	3.8	18	3400	1.3	2.2
, emin m	1e + 02	0.24	1.5	2.1	5.4	2.6	100	83	2.8	2.9	47	2.4	П	1.3	8.6	1.7	2.3	2.4	7	3.2	160	1.8	1.5	2.9	2.5	5.7	1.9	260	2.6	2.2	1.2	2600	က	1.5
100	1e+03	0.2	1	1.1	1	1	1.8	2.2	1	1	1.9	1.1	1	1	1	П	1:1	1.1	1.2	П	1:1	1	1	1.1	1	1.2	1	41	П	1.1	1	1:1	1	1
TATICOLOGI CVERTEERINGS OF ICACLI UITES VERTEE	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	$iAMaLGaM\ IDEA$	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 67: 05-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	24400	40	4.2					П										12										61				က	260
	1e-05	24200	40	4.2		-		٠	П	-		-							12									-	61				က	130
	1e-04	24200	40	4.2		•		٠	П	·	٠	٠	16e-3/2e4	•	٠	٠	59e-3/1e5	•	12	٠	٠	•	٠		•	·	٠	·	09				အ	81
ck F8F2	1e-03	•	39						1				3.7	66e-3/1e5	19e-2/1e4		09		12			47e-3/2e4			47e-3/2e4				09	80e-3/1e5			က	75
-Rosenbro	1e-02	21000	15	4.5	55e-3/1e5	•	62e-2/6e3		П	19e-2/1e4	13e-2/1e6	•	4.2	71	6.9	50e-2/5e4	89	•	10	•	23e-2/1e4	8.4	16e-3/1e4	59e-3/1e5	14	79e-3/1e5	49e-2/1e6	18e-2/1e5	29	20			2.5	20
19 Griewank-Rosenbrock F8F2	1e-01	48.4	200	360	1e3	45e-2/2e3	1800	48e-2/5e4	160	970	4.7e4								370	38e-2/1e4	1500	250	-1	590	110	1400	2.9e5	1.4e4	2400	2500	36e-2/1e6	38e-1/1e4	160	1300
19	1e+00	0.2	5100	1100	1.6e4	2100	2.2e4	2.1e4	2800	4100	6.7e4	3100	П	0029	1.1e4	9.5e4	1.2e4	7300	1100	3e3	9500	1300	Н	2900	340	2.7e4	4.1e5	7200	3400	1.6e4	1.4e5	7.1e5	1900	2600
	1e+01	0.2	28	38	24	37	1700	300	20	20	290	93	П	37	31	39	35	46	28	54	910	32	1	12	12	14	100	1e3	35	27	38	1.3e4	22	22
	1e + 02	0.2	1.1	1.3	1	1.1	2.5	9.4	1	1	8.8	П	П	1.2	2.7	1.1	1.1	1.3	1.1	5.9	29	1.2	Т	1.3	1.2	1.9	1.3	200	1.1	1.4	1.3	3.2	1.1	1
	1e + 03	0.2	П	1	-	1	1	1	1	1	1	1	П	1	1	-	1	П	-	-	1	П	1	н	П	П	1	П	1	1	П	1	1	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 68: 05-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

eron evaluations to reach time value unvided by	acii uiii	varue	nana a	20	$_{ m chwefel}^{ m zr}$	$\sin(x)$					
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01 $1e-02$	1e-02		1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\text{ERT}_{\text{best}}/\text{D}$	2.71	2.96	3.2	170	7620	10300	10900	10900	11000	11100	ERT_{best}/D
ALPS	5.3	15	18	2	1.3	-		1.1	1.1	1.3	ALPS [17]
AMaLGaM IDEA	3.2	3.8	3.9	29	24	18		17	17	17	AMaLGaM ÌDÉA [4]
avg NEWUOA	1.2	1.1	П	8.4	12	8.6		8.1	8.1	œ	avg NEWUOA [31]
BayEDAcG	2.2	4	œ	20e-1/2e3							m BayEDAcG~[10]
BFGS	1.1	1.5	1.8	2.2	10	9.2		7.2	7.1	7.1	BFGS [30]
Cauchy EDA	44	49	48	460	11e-1/5e4						Cauchy EDA [24]
BIPOP-CMA-ES	2.5	5.9	3.3	8.2	8.7	2.5		2.2	2.2	2.2	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1.5	2.1	2.4	6.4	5.9	4.4		4.1	4.1	4.1	(1+1)-CMA-ES [2]
DASA	24	53	32	13	47	35		33	33	33	DASA [19]
DEPSO	3.6	7.7	9.8	3.2	24e-2/2e3						DEPSO [12]
DIRECT	4.5	4.1	3.8	1.5	47e-2/2e4						DIRECT [25]
EDA-PSO	3.3	4.9	5.7	13	2.5	7		2.1	2.3	2.5	EDA-PSO [6]
full NEWUOA	1.6	1.5	1.4	6.4	47e-2/6e3						full NEWUOA [31]
G3-PCX	3.2	7.7	7.4	36	88	99		62	61	61	G3-PCX [26]
simple GA	5.5	22	47	21	П	П		2.5	5.6	22	simple GA [22]
GLOBAL	4.8	12	17	18	13e-1/500						GLOBAL [23]
iAMaLGaM IDEA	2.1	3	3.2	30	25	19	18	18	18	18	iAMaLGaM IDEA [4]
LSfminbnd	5.8	2	8.2	18	65e-2/1e4						LSfminbnd [28]
LSstep	110	190	230	41	18	14		13	13	13	LSstep [28]
MA-LS-Chain	2.9	5.6	5.8	4.1	1.4	1.1		1	-	1	MA-LS-Chain [21]
MCS (Neum)	2.2	2.8	2.7	П	9.1	8.9		6.4	6.4	6.3	MCS (Neum) [18]
NELDER (Han)	1.1	1.5	1.5	25	24e-2/1e5					٠	NELDER (Han) [16]
NELDER (Doe)	1.8	2.1	2.2	8.5	37	28		56	56	56	NELDER (Doe) [5]
NEWUOA	П	П	Н	3.3	43e-2/6e3						NEWUOA [31]
(1+1)-ES	3.4	3.9	4	16	43	32		30	30	30	(1+1)-ES [1]
POEMS	83	80	78	8.5	14	10		6.6	10	10	POEMS [20]
PSO	2.5	9	8.7	3.1	27	20		19	19	18	PSO [7]
PSO_Bounds	3.1	7	8.1	9.8	21	16		15	15	16	PSO_Bounds [8]
Monte Carlo	6.7	20	29	9200	99e-2/1e6						Monte Carlo [3]
Rosenbrock	5.6	7. 8.	2.9	4.6	47e-2/1e4						Rosenbrock [27]
IPOP-SEP-CMA-ES	2.1	3	3.3	9.9	2.3	1.7	1.7	1.7	1.7	1.7	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	3.7	11	10	7.8	4.3	3.9		4.5	4.6	5.7	VNS (Garcia) [11]

Table 69: 05-D, running time excess ERT/ERT $_{\text{best}}$ on f_{21} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{21} and f_{22} and f_{23} and f_{24} a

		$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$		AM	avg NEWUOA [31]	Ba			В					EDA-PSO [6]	[[n]		simple GA [22]		iAN						4			POEMS $[20]$				Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	351	8.1	38	3.5	85	7	410	25	6.4	310	6.7	19	120	2.7	9.9	290	1	22	44	130	16	n	8.6	1.2	1.9	18	290	250	340		15	10	9.1
	1e-05	346	6.4	38	3.5	83	1.9	420	22	6.5	310	6.2	19	120	2.7	6.7	140	П	22	44	130	16	n	6.6	1.2	1.8	18	290	260	340		15	10	8.3
	1e-04	344	5.6	38	3.5	84	1.9	420	22	6.5	310	5.3	2.9	120	2.7	6.7	22	П	22	44	130	16	വ	10	1.2	1.8	18	290	260	340		15	10	7.8
peaks		341																													17			
21 Gallagher 101	1e-02	338	3.9	35	3.5	82	1.9	430	22	9.9	320	4.7	1.8	110	8.7	6.7	89	П	22	45	120	16	5.1	10	1.2	1.8	18	290	260	340	1.4e4	15	10	9.9
allagh	1e-01	335	2.9	34	3.6	40	1.9	190	24	9.9	320	4.2	1.1	110	8.7	8.9	61	1	22	33	120	16	5.1	10	1.2	1.8	18	290	260	340	270	15	9.9	6.5
21 G	1e+00	231	2.5	37	2.2	8.6	1.4	27	14	4.6	210	5.5	П	160	2.3	4.7	5.5	1.1	27	38	120	22	3.9	8.4	1.5	2.5	19	330	380	380	8.5	6.7	14	7.5
•	1e+01	8.2	3.4	က	1.7	4.1	3.8	20	2.3	4.2	10	4.2	П	4	2.4	2.1	4.6	2.3	2.2	30	260	3.6	П	12	2.9	1.1	45	34	7	3.5	3.2	9.7	3.6	2.4
	1e + 02	0.2	1	П	1	1	1	1	П	1	П	П	П	П	П	П	1	1	П	П	П	П	П	Н	1	1	1	П	П	П	П	П	П	П
	1e+03	0.2	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	1	1	П	-	П	П	-	-1	1	1	П	1	П	П	П	1	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 70: 05-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES $[2]$	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	214	34													12	24e-3/1e5	П	40	220		22	15	12	2.1	2.4	30	1200	420	820		11	55	20
	1e-05	208	24	89	2.4		7	3400	41	4.4	140	16	130	86	က	12	0089	1	41	120		22	11	12	7	2.3	29	1200	430	820	93e-4/1e6	10	26	19
	1e-04	202	21	69	2.3		7	3400	42	4.5	140	14	62	95	က	12	0069	-	41	120		22	11	12	7	2.5	50	1200	430	820	7e4	10	22	18
peaks	1e-03	202	17	69	2.3	•	7	3500	42	4.5	130	11	22	92	2.9	12	1500	П	41	62		22	11	13	77	2.1	56	1200	440	810	7.1e4	10	22	18
gher 21 pc	1e-02	196	13	69	2.3		2.1	1700	43	4.6	130	10	19	06	2.9	12	650	1	41	09	11e-1/1e4	22	11	13	7	77	29	1200	450	820	7500	10	58	18
22 Galla	1e-01	188	8.8	59	2.3	22e-1/2e3	2.1	780	45	4.7	130	7.5	12	68	က	13	390	1	40	56	380	22	12	13	2.1	77	30	1300	470	820	390	10	09	18
ρ 6 τος 10 τος	1e+00	77.3	9.3	19	2.6	75	2.9	280	20	7.1	270	6.3	Н	12	3.7	15	18	1.3	22	47	180	15	1.1	13	2.2	2.1	37	1100	330	870	73	13	23	16
200	1e+01	14.2	9.9	က	3.4	13	3.1	11	6.9	2.8	96	6.5	Н	6.7	4.3	12	9	3.6	1.8	13	190	3.3	Н	19	2.5	2.1	21	470	2.6	510	9.2	19	7.5	5.8
	1e + 02	0.2	Т	П	П	1	1	1	1	1	1	П	П	П	1	-	П	П	П	-	П	П	П	-	П	П	П	1	П	П	П	П	П	1
	1e + 03	0.2	1	1	1	1	1	1	1	1	1	1	1	-	1	П	1	1	-	П	1	-	1	П	1	-	1	1	1	1	-	1	П	1
	$\Delta { m ftarget}$	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 71: 05-D, running time excess ERT/ERT $_{\text{best}}$ on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta \mathrm{ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	6850		1		-			1.8	-									1.1			3.3		5.6				32					1.6	24
	1e-05	6610		1					1.8										1.1			3.4		4.6	38e-4/2e4			33					1.7	25
	1e-04	6480	54e-4/1e6	1					1.8				93e-4/2e4						1.2			3.5		4.6	46			33					1.7	26
		6330	3100	1					1.8	11e-2/1e4			9			44e-3/5e4			1.2			3.6		4	15		14e-3/1e6	25				17e-2/5e3	1.7	23
Katsuuras	1e-02	5580	100	1	15e-2/9e3				2.1	26	88e-3/1e6		3.7		87e-3/1e4	09		23e-2/1e3	1.3		31e-2/1e4	4	16e-2/1e4	3.2				22		30e-2/1e5		13	1.9	26
23		2850	29	1.8	14	12e-1/2e3	69e-2/5e3						5.7	59e-2/1e5	3.8	8.6	49e-2/1e5	4.8	2.1	45e-2/1e4	51	1.7	51	2.7		7.1	52	26	240	240	38e-2/1e6	4.6	3.7	15
•	1e+00	104	21	7	2.5	62	31	230	13	3.3	20	99	3.5	28	77	2.4	59	Т	7.8	11	9.9	2.2	2.4	3.5	Н	2.4	4.8	23	20	28	49	1.8	9.7	9.6
	1e+01	9.0	2.2	1.7	9	1.8	11	2.5	1.7	4.2	6	77	1.5	2.4	5.4	2.6	1.5	1.6	2.6	1.8	1.4	2.6	3.4	2.9	1.5	6.2	3.1	13	2.5	2.1	2.3	1.6	3.1	1
	1e+02	0.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	-	П	1	П	1	1	-	П	1	1	-	1
	1e + 03	0.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	П	1	1	1	П	1
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 72: 05-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES $[2]$	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IĎEÁ [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.57e6	-	5.6		•		•	П	٠				-		•		-	5.6	•		٠		•		•		٠		٠				
	1e-05	2.57e6		5.6					1										5.6				-				-							69e-4/3e7
	1e-04	1.92e6	•	3.7		•		•	П	•				٠		•		٠	7.5			•						•		•				200
gin	1e-03	1.92e6		3.7					1										7.5															46
Rastri	1e-02	1.92e6		3.8					1					•				•	7.5															16
24 Lunacek bi-Rastrigin	1e-01	1.27e6	75e-2/1e6	2.1	30e-1/7e3				1	39e-1/1e4			72e-1/2e4		31e-1/7e3				2.2				37e-1/1e4	12e-1/1e5	15e-1/2e4	26e-1/6e3	14e-1/1e6			60e-1/1e5			53e-1/1e4	13
24 L	1e+00	43300	9.6	2.4	2.2	11e+0/2e3	17e+0/3e3	81e-1/5e4	1.6	1.7	32e-1/1e6	14e+0/2e3	1.9	61e-1/1e5	1.1	61e-1/5e4	54e-1/1e5	91e-1/1e3	2.2	63e-1/1e4	15e+0/1e4	52e-1/2e4	3.5	5.6	1.4	2.1	89	70e-1/1e5	63e-1/1e5	33	96e-1/1e6	19e+0/1e4	н	49
	1e+01	324	8.1	3.3	77	15	69	30	2.1	2.9	250	59	7.5	9.7	2.5	44	21	4.2	3.1	9.1	200	2.1	7	11	1	2.9	31	47	5.7	10	2900	210	1.8	3.3
	1e+02	0.2	5	5.3	14	5.4	160	75	7.8	92	43	ಬ	1	3.6	21	4.9	7.3	6.3	6.3	30	360	3.8	1	10	4.3	12	14	620	6.5	5.2	4.1	200	7.5	3.4
	1e + 03	0.2	1	1	1	1	1	1.1	1	1	1	-	-	П	1	1	-	П	1	-	ಣ	П	1	-	П	-	1	1	1	П	-	-	-	1
	Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 73: 10-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension.

Table 74: 10-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

$\begin{array}{ccc} \Delta \mathrm{frarget} & 1\mathrm{e}{+03} \\ \mathrm{ERT}_\mathrm{best}/\mathrm{D} & 14.6 \end{array}$
58 80

Table 75: 10-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 76: 10-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_4 , in italics is given the median function f_4 and f_5 and f_6 in $f_$

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2880	30								8.9										П	260						13		30				4600
	1e-05	374	190								51			٠							П	2e3				•		97		210				2.7e4
le	1e-04	374	180	٠		•		٠			51	٠					84e-4/1e5				П	2e3				•		94		200		•		2.7e4
parab	1e-03	371	170			•					51						1800				1	2e3						91		200				2.7e4
sche se	1e-02	370	170			•	٠				51	•		٠			310				П	2e3	-	•		٠		88		200		-	٠	2.5e4
in-Bu	1e-01	366	170								22						79				П	2e3						82		200		-		2.5e4
4 Skew Rastrigin-Bueche separable	1e+00	363	100	50e-1/1e6					50e-1/3e5		16	18e+0/2e3	19e+0/1e4	50e-1/1e5			26		50e-1/1e6		1	290	12e+0/4e3	17e+0/1e5			15e+0/1e6	43	80e-1/1e5	190			60e-1/1e4	2900
$4 ext{ SK}$	1e+01	223	14	41	27e+0/1e4	18e+0/2e3	10e+1/5e3	31e+0/5e4	6.5	33e+0/1e4	1	99	180	20	27e+0/1e4	35e+0/5e4	22	57e+0/2e3	29	21e+0/6e3	1.6	5.1	27	3300	20e+0/2e4	55e+0/7e3	6.3e4	6.4	120	37	86e+0/1e6	70e+0/1e4	9.9	7.2
	1e + 02	9.82	39	8.9	42	28	820	100	2.8	20	7.8	9.4	4.2	83	13	200	140	33	5.5	1.6	31	6.1	П	46	2.8	110	120	35	8.5	28	2e4	780	2.7	ಬ
	1e + 03	0.1	2.4	2.6	13	2.1	88	190	5.8	3.3	130	3.1	1	2.5	35	2.9	2.7	2.5	3.5	56	029	2.8	П	5.1	3.1	11	9.2	220	3.3	3.5	2.3	32	6.5	3.2
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 77: 10-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

## 5 Limear slope 5 Linear slope 5 Linear slope 1	IPC	vivo (Garcia)
Section	4 6	
Linear slope 5 Linear slope 1 e-01 1e-02 1e-04 1e-04 1 e+00 1e-01 1e-02 1e-04 1e-04 2.02 2.02 2.02 2.02 2.02 190 220 240 250 250 190 220 240 250 2.02 2.3 2.3 2.3 2.3 2.3 120 140 140 140 140 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 31 36 40 43 47 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.7	I
Linear slope 5 Linear slope 1e+00 1e-02 1e-03 2.02 2.02 2.02 2.03 </td <td>4.4 7.3</td> <td>I</td>	4.4 7.3	I
2.02 190 190 190 2.03 120 2.8 2.8 2.8 3.9 3.9 4.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8		
2.02 190 190 190 2.03 120 2.8 2.8 2.8 3.9 3.9 4.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	4.4 7.3	I
2.02 190 190 190 2.03 120 2.8 2.8 2.8 3.9 3.9 4.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	4.4 7.3	II
2.02 190 190 190 2.03 120 2.8 2.8 2.8 3.9 3.9 4.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.7 4.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	7.2	=======================================
100 mm by mm	27e+0/1e6 4.1 5.4	0.0
1e+03 1e+02 1e+01 0.1 1.64 2.02 0.1 1.64 2.02 1 4.6 39 1 1.3 2.2 1 1.3 2.2 1 2.4 68 1 1.3 2.2 1 1.3 2.2 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.3 2.3 1 1.400 1 1.5 8 1400 1 5.8 1400 1 5.8 170 1 1.8 8.3 170 1 1.6 8.8 1 1 1.1 1 1 1 1.1 1.1 2.1 1 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.	3.7 2.2 5.6 6.7	0.0
		_
Aftarget ERT_best/D ALPS AMALGAM IDEA avg NEWUOA BAYEDAcG BAYEDACG BAYEDACG Cauchy EDA BIPOP-CMA-ES (1+1)-CMA-ES DASA DEPSO DIRECT EDA-PSO full NEWUOA GLOBAL iAMALGAM IDEA LStrep MA-LS-Chain MCS (Neum) NELDER (Doe) NELDER (Han) NELDER (Doe) NELDER (Han) NELDER (Doe) NELDER (Han)	Monte Carlo Rosenbrock IPOP-SEP-CMA-ES VNS (Garcia)	VNS (Garcia)

Table 78: 10-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	237	87	11	1.1		99	66	1.7		200			71	1	5.4		83	4.9	40e-1/1e4		6.4	-	6	14e-6/2e4	6.2	2.6	45	130	160		29	2.1	1.8
	1e-05	184	89	11	1.1		4.5	100	1.7		029			71	-	4.5		4	ಬ	790		7.3		6.3	260	5.9	2.4	44	160	130		31	2.5	1.9
	1e-04	157	29	11	1.1		4.4	110	1.8	21e-4/1e4	620	50e-4/2e3		71	1	4.1		3.3	5.1	920		7.8		6.1	28	5.9	2.4	45	180	130		33	2.3	71
ır		129																					Į											
e secto	1e-02	104	59	12	П	٠	4.6	130	1.9	69	490	24		73	-1	3.8		3.4	5.1	089		9.2	280	5.8	18	4.9	2.2	46	260	150		37	2.4	2.2
3 Attractiv	1e-01	82.6	51	11	1		4.5	140	61	20	350	14		89	П	3.6	28e-1/1e5	3.5	4.8	300	24e+0/1e4	9.7	170	5.5	15	4	2.1	44	320	140		41	2.4	2.3
,	1e+00	61.5	43	8.6	1	25e+0/2e3	4.2	150	2.1	2.6	150	11	34e-1/1e4	62	П	2.4	4700	3.3	4.2	370	2400	9.1	180	5.3	10	3.3	1.9	40	420	120		38	2.3	2.4
	1e+01	39.9	32	7.9	1	360	3.9	190	2.1	1.1	75	8.9	86	49	П	1.7	140	3.2	3.2	220	009	9.9	19	4.2	3.8	2.1	1.8	30	400	45	25e+0/1e6	10	2.5	2.6
	1e + 02	10.2	24	6.1	1.6	20	3.7	550	3.6	1.4	6.6	5.5	3.1	14	2.1	2.5	80	4.6	3.8	82	160	4.9	3.6	4.6	1.1	1.1	2.8	36	4.7	2.6	1500	П	4.2	6.1
	1e+03	2.79	30	∞	1.5	23	2.9	069	2.5	1.7	15	11	4.9	5.7	2.4	ಬ	160	9.3	3.8	8.2	120	10	1.8	1.8	1.3	П	7	92	4.9	4.8	1300	2.2	က	9
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 79: 10-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	$\overline{\mathrm{BayEDAcG}}$ [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	539	56	2.5		•		4.9	1.2	19				100			48e-2/1e5	•	7			110				•		92					-	33
	1e-05	514	59	2.6				4.9	1.3	20				110			2800	•	2.1			120						80					П	34
	1e-04	514	59	2.6				4.9	1.3	20				110			2800	٠	2.1			120						80					-	34
	1e-03	514	59	2.6				4.9	1.3	20				110			2800		2.1			120						80					П	34
osoid	1e-02	510	22	2.6		٠		4.7	1.3	20		14e-1/2e3		110	51e-2/1e4	٠	2900	•	2.1	٠		120		٠		٠		80		13e-1/1e5			н	31
Step-ellipsoid	1e-01	420	22	2.3	73e-2/1e4			4.4	1.3	ಬ	13e-1/6e5	32	70e-2/1e4	130	110	19e-1/2e4	089	45e-1/500	П	40e-1/1e4		110		11e-1/1e5	19e-1/2e4	24e-1/1e4	85e-2/1e6	74	11e-1/1e5	3300			1.1	19
2	1e+00	161						7.2	1.2	5.9	8800	21	89	17	9.2	520	270	20	1	270	93e-1/1e4	15	50e-1/4e3	940	400	1e3	7e3	12	770	730	94e-1/1e6		1.5	4.1
	1e+01	17.2	25	3.9	16	23	13e+1/100	31	2.3	7.4	280	9.2	16	22	-	21	140	11	က	92	720	7.7	53	69	59	27	190	40	10	19	6e4	67e+0/3e3	2.2	3.2
	1e + 02	3.29	15	4.9	1.4	13	150	20	2.8	2.1	33	9.9	1.7	5.6	2.1	3.7	23	6.1	4	12	160	4.8	1.3	1.4	1.1	Н	2.7	88	3.4	4.2	32	400	2.5	8.3
	1e + 03	0.1	1.6	1.5	က	2.4	14	93	3.2	2.5	37	2.1	н	1.7	3.7	2.1	2.7	1.8	1.8	16	110	2.7	1	က	4.5	4.1	6.3	1100	2.5	1.9	2.5	150	2.4	1.4
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 80: 10-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	110	3300	16	1		1.5	120	5.6	6.7	1900	-		46e-8/1e5	1.2	2		1.5	10			15	1.6	5.2	4.4	1.6	340		0029	93e-5/1e5		1300	7.7	6
	1e-05	108	570	15	Н	٠	1.5	120	5.4	9.9	1400	-		092	1.2	8.9	·	1.5	9.6	40e-1/1e4		15	1.6	5.1	4	1.6	270		1500	1.4e4		430	7.5	8.9
	1e-04	106	450	15	П		1.5	110	5.3	9.9	1200	٠		640	1.2	6.7		1.5	9.3	1400		15	1.6	5.1	3.8	1.6	240	-	290	1.4e4		320	7.5	8.8
al		104	330	15	1		1.5	110	5.2	6.5	006			530	1.2	6.7		1.5	9.1	1300	12e-1/1e4	15	1.6	ಬ	3.7	1.6	200		620	1700		170	7.5	8.8
Rosenbrock origina	1e-02	101	250	14	-													1.5	8.9	440	1500	14	1.6	ಬ	3.5	1.6	170	45e-3/1e5	470	820		110	7.4	8.6
8 Rosenbr	1e-01	93.4	170	14	-		1.6	110	20	6.7	420	-	64e-1/1e4	300	1.2	8.9		1.6	8.8	180	470	14	1.5	5.1	3.3	1.6	150	840	350	750		81	7.5	8.7
,	1e+00	9.08	120	13	1	93e-1/2e3	1.7	120	4.7	8.9	200	54e-1/2e3	550	220	1.1	6.9	53e-1/1e5	1.7	8.4	190	180	13	1.6	5.4	2.2	1.7	160	470	270	069		29	7.5	8.4
	1e + 01	32.2	43	7.4	1	75	1.7	99	1.9	1.9	22	12	32	140	1.3	2.9	210	2.1	4	19	63	7.3	-	7	1.4	-	22	64	13	99		12	2.9	3.5
	1e+02	13.2	43	7.4	1.2	22	2.3	82	2.4	2.9	21	6	7.7	130	7	3.5	230	3.2	4.7	7.3	80	6.7	1	2.5	1.3	1.4	13	59	10	44	36e+1/1e6	3.6	2.4	5.6
	1e+03	4.23	53	10	1.2	29	1.9	110	4	3.1	18	11	9.1	65	2.8	4.6	280	7.7	6.5	7.2	140	7.9	1.6	1.6	2.5	П	3.7	80	9.1	17	5400	2.1	3.2	10
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 81: 10-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	m BayEDAcG~[10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	119	6.1e4	16	1.2	٠	1.3	120	5.5	5.8	5800				1.4	6.6		1.4	9.3			22	Н	3.3	9	1.2	330						7.7	12
	1e-05	114	4400	15	1.2	٠	1.3	110	5.5	5.8	4300				1.5	10		1.5	9.1			26	П	3.2	9	1.2	280					12e-5/1e4	7.7	12
	1e-04	111	3e3	15	1.3		1.3	110	5.4	5.8	3700				1.5	10		1.5	8.9			26	1	3.2	5.9	1.2	240						7.7	
	1e-03	107	1900	15	1.3		1.4	110	5.4	5.9	2900			85e-4/1e5	1.5	10		1.5	8.9			27	1	3.2	9	1.2	220					130	7.8	13
k rotated	1e-02	99.3	730	15	1.4		1.4	120	5.5	6.1	2400			1500	1.6	11		1.6	6	14e-2/1e4		28	1	3.1	6.1	1.3	190	18e-2/1e5	11e-2/1e5	78e-3/1e5		87	8.1	13
Rosenbrock	1e-01	85.7	470	15	1.5		1.6	130	5.9	9.9	2e3		17e-1/1e4	540	1.7	12		1.8	9.6	860		31	1	3.4	6.5	1.4	190	1.7e4	1900	1600		20	8.9	12
	1e+00	64.8	320	17	1.8	88e-1/2e3	1.9	150	6.3	7.7	2200	70e-1/2e3	350	340	7	15	79e-1/1e5	2.2	10	120	90e-1/1e4	36	Н	3.7	7.1	1.7	230	220	840	1100		22	10	8.6
	1e + 01	20	99	9.3	1.3	56	2.1	100	3.4	3.3	160	15	9.4	220	1.6	4.7	370	2.9	6.3	51	420	12	П	2.4	2.7	1.7	9.2	110	24	450		27	6.9	4.6
	1e+02	0.1	5e3	200	150	2500	230	1e4	350	350	1.6e4	1100	-	1.7e4	250	470	2.8e4	450	260	1200	3.3e4	870	1	240	150	140	1600	6200	1700	4.3e4	33e+1/1e6	200	780	580
	1e + 03	0.1	1700	350	69	860	88	4400	130	100	750	420	П	3200	140	190	9e3	330	250	230	5800	290	1	45	49	39	100	3100	320	220	3.7e5	79	130	340
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbad	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 82: 10-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	474	-	1.9	10		920	11	1.2	П		-				38		29e-7/1e3	1.1			5.6		27e-5/1e5		12	43e-5/1e6						7	1.5
	1e-05	454		1.6	8.1		1.3	10	1.2	1					79e-4/1e4			1.6				5.7		1600	31e-4/2e4	9.5	1.1e4						7	1.5
	1e-04	308	-	2.5	6.6		-	13	1.7	1.4					240	40		1.2	1.4			8.3				11				٠		٠	5.9	2.2
	1e-03	280		2.5	6		1	13	1.8	1.5					260	37		1.2	1.4			6		240	330	10	3700					-	3.2	2.3
		273		77	9.9		1	12	1.8	1.6	76e-1/1e6				54	30		1.2	1.3			6		100	57	7.4	2400						3.2	2.3
10 Ellipsoid	$1e-\tilde{0}1$	245	30e-1/5e5	7	5.4					1.7			٠		33	56	٠	1.3	1.3	٠	٠	8.6		43	34	9	1700			•		22e+0/1e4	3.4	2.5
		217					1	11	2.1	1.8	2.2e4		-		20			1.2			-	11				3.8			74e+0/1e5			230	3.7	2.7
•	1e+01	184	850	1.8	1.9		1	10	2.3	1.7	7200	-		56e+0/1e5	10	10	12e + 2/1e5	1.2	1.2			11		4.1	9.5	2.1	530	10e+1/1e5	3900	12e+1/1e5		120	4	2.8
	1e+02	104	180	2.2	1.3		1.3	14	2.7	2.1	1500	19e + 2/2e3			5.3				1.5		88e + 2/1e4	∞	11e+2/4e3	2.2	3.7		170		1e3			80	5.6	3.7
	1e+03	46.3	59	2.9	1.3	16e + 3/2e3	1.8	22	3.8	2.8	320	310	88	300	1.9	6.1	3500	2.6	2.1	440	1600	10	170	1.8	2.7	1	43	300	110	640	72e+2/1e6	22	9.3	9
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 83: 10-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

$\Delta ext{ftarget}$	1e+03	Δ ftarget 1e+03 1e+02 1	e	+01 1e+00 1	$\frac{11}{1e-01}$	$egin{align*} \mathbf{Discus} \ _{1 ext{e-}02} \end{aligned}$	1e-03	1e-04	1e-05	1e-07	Δ ftarget
1.98		2.3	26.6	104	260	295	334	375	409	484	$ ext{ERT}_{ ext{best}}/ ext{D}$
6.3		83	370	460	490	066	4300	14e-4/5e5		-	ALPS [17]
5.5		14	4.4	1.9	1.1	1.2	1.3	1.4	1.4	1.5	AMaLGaM İDEA [4]
10		220	36	18	9.2	12		14		15	avg NEWUOA [31]
4		28	62e+0/2e3								BayEDAcG [10]
ä	~1	7.1	1	1	1.7	9		12e-4/8e3			BFGS [30]
37		200	36	13	7	7.5		8.1		8.8	Cauchy EDA [24]
9		82	13	3.8	1.7	1.6	1.5	1.4	1.3	1.2	BIPOP-CMA-ES [15]
2	^1	42	6.6	3.8	1.9	7		1.8		1.5	(1+1)-CMA-ES [2]
5.0	•	850	1300	1e3	750	1100		1600		3500	DASA [19]
7		140	47e+0/2e3		٠			-		-	DEPSO [12]
1.8	~	7.9	20e+0/1e4								DIRECT [25]
6.	7	200	550	066	5700	57e-2/1e5					EDA-PSO [6]
ñ	,0	820	290	31e-1/1e4							full NEWUOA [31]
5.	_	65	40	22	14	16	17	18	19	21	G3-PCX [26]
ъ.	က	100	1.6e4	17e+0/1e5							simple GA [22]
23	,0	17	2.5	1.7	1.5	8.1	11e-3/2e3				GLOBAL [23]
	10	25	5.7	7	п	1	Н	1	П	1	iAMaLGaM IDEA [4]
7	7	9400	13e+1/1e4		•		-				LSfminbnd [28]
4	<i>ي</i>	6.1e4	14e+1/1e4								LSstep [28]
`	2	31	39	14	9	5.6	5.1	4.6	4.3	3.8	MA-LS-Chain [21]
	-	1	30e+0/4e3								MCS (Neum) [18]
3	∞.	17	15	8.8 8.8	6.9	13	37	85	440	24e-6/1e5	NELDER (Han) [16]
ĸЭ	5.2	17	13	7.8	5.4	9.7	17	34	93	32e-6/2e4	NELDER (Doe) [5]
	4.	41	11	5.5	3.1	3.4	4	4.1	4.3	4.6	NEWUOA [31]
∞	40	2.1e4	5300	2400	1300	1500	1700	1800	1900	3e3	(1+1)-ES [1]
w	98	200	220	200	140	160	210	270	350	1500	POEMS [20]
9	7.	240	220	150	100	130	160	170	190	200	PSO [7]
9	5.5	029	1400	920	029	1200	1400	3900	3600	12e-2/1e5	PSO_Bounds [8]
7	6.	120	5.3e5	12e+0/1e6							Monte Carlo [3]
7	လ	1e3	5500	1400	220	200	440	390	360	300	Rosenbrock [27]
20	5.3	260	29	8.4	3.5	3.2	2.9	2.6	2.4	2.1	IPOP-SEP-CMA-ES [29]
\mathbf{r}	6.	160	17	4.7	7	1.9	1.7	1.6	1.5	1.3	VNS (Garcia) [11]

Table 84: 10-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	515	13e-4/5e5	5.3	10	•	23	34	2.5	3.5					4.7	77		2.9	က			12	110	2.3	6.5	П			•				2.7	5.2
	1e-05	366	1.9e4	5.9	6.9		2.6	42	3.1	3.8		٠			4.4	2.5		1	3.4			16	92	8.7	4.3	1.2							3.4	6.9
	1e-04	197	1.1e4	9.5	12	•	2.2	89	5.2	6.4		•			6.2	4.1		1	5.5	51e-1/1e4		29	27	4.8	6.9	2.1							5.7	12
	1e-03	157	5400	9.1	12	•	1.3	74	5.6	7.2		-	64e-2/1e4	66e-3/1e5	9.9	4.6		1	5.7	890		25	13	5.4	7.7	2.3		•					6.3	15
Bent cigar	1e-02	139	1100	7.9	12	•	1.3	71	5.6	7.4	39e-1/1e6	55e-1/2e3	340	4800	6.2	4.4	18e-1/1e5	1	5.4	1e3		16	11	5.3	7.6	2.3		25e-1/1e5	41e-1/1e5	27e-1/1e5		14e-1/1e4	6.3	16
12 B	1e-01	124	210	9.9	10	71e-1/2e3	1.4	89	5.3	6.1	1.1e5	110	170	810	4.6	4	1.1e4	1	4.9	1100	63e-1/1e4	9.7	2	5.3	7.2	2.1	56e-1/1e6	3300	5200	3300		1200	5.6	17
•	1e+00	9.68	120	9.9	∞	59	1.4	69	4.6	5.5	4.5e4	42	130	300	4.1	3.7	1900	1	4.8	170	730	7.2	3.9	4.7	9	7	4.8e4	2300	1700	1800		340	4.5	5.6
	1e + 01	51.5	22	8.5	4.7	48	1.3	84	3.7	4.2	7100	19	29	490	2.9	2.8	1300	1	ಬ	86	170	∞	3.2	က	က	1.9	1.5e4	1100	310	580		38	က	4.9
	1e + 02	27.5	84	13	1.7	72	1.3	110	3.3	2.3	10	19	31	290	1.4	2.3	490	1.4	7.2	2.4	29	11	1	1.8	1.6	Н	1600	160	20	160		27	2.9	5.1
	1e+03	21.2	98	14	1.1	73	1.5	100	3.7	7	12	19	35	300	1.2	2.5	460	1.8	7.7	2.6	74	12	1.2	1.6	1.8	1.1	1.9	160	19	160	20e+5/1e6	-	3	4.4
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 85: 10-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]			[[n]		simple GA [22]		iΑΛ	Ä		MA		4	Z	Z		POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPO	VNS (Garcia) [11]
	1e-07	778	-	1.8	39e-5/1e4			11	1.8	6.9	14e-5/1e6			•		26e-5/3e4		•	1			43		13	11e-4/2e4		1.9e4			•		31e-5/1e4	7	20
	1e-05	621	54e-5/5e5	1.8	280			11	1.5	4.4	1.1e4					820		٠	1			43		6	480	20e-4/8e3	940						1.8	
	1e-04	534	3e3	1.8	20	٠	14e-4/1e4	11	1.3	3.7	2900	·		22e-3/1e5	130	290		23e-4 /600	П	·		43				69		٠		٠		42	1.9	14
		459					98	11	1.3	3.5	1800	٠						5.3	П	53e-3/1e4	12e+0/1e4	20	86e-3/4e3	5.9	64	59	130	•	44e-1/1e5	86e-1/1e5		15	2.1	9.4
Sharp ridge	1e-02	101	830	8.9	92	٠	П	41	4.8	9.7	3600		28e-2/1e4	2900	99	160		1.2	3.8	460	1500	160	280	21	92	42	66	31e-1/1e5	1.4e4	1.4e4		33	8.4	17
13 SI	1e-01	7.67	480	2	30		1	42	5.6	6.9	1200		580	066	25	96	33e-1/1e5	1.3	3.9	180	1800	140	59	15	40	20	44	5100	1.8e4	1.8e4		15	9.2	20
,	1e+00	59.6	110	6.9	13	26e+0/2e3	1	43	4.2	5.7	380	73e-1/2e3	160	150	12	50	1.1e4	1.4	3.8	20	750	33	44	9.1	16	6	21	2e3	1.1e4	0089		11	10	16
	1e + 01	38.7	53	8.9	က	230	1	46	3.6	4.7	220	28	62	140	1.8	13	480	1.7	3.9	28	470	16	37	4.4	7.2	7	11	270	950	2300		3.4	8.7	4.9
	1e+02	7.75	93	15	1.4	66	1.5	130	5.3	3.3	20	19	22	300	2.1	4.9	490	4.9	9.6	16	300	19	4.2	3.8	2.4	-	8.1	130	25	86	28e+1/1e6	77	5.2	7.7
	1e+03	1.18	22	12	3.6	17	8.8	160	4.5	3.9	24	8.8	2.9	5.9	6.2	8.6	22	11	4.7	6	250	9.9	1	7	73	2.3	4.4	190	9	5.2	25	5.2	4.2	13
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 86: 10-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\widetilde{\mathrm{ERT}}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]		Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	430	28e-7/5e5	1.6	64		11e-7/9e3	11	1.4	1.1	18e-7/1e6			68e-7/1e5	37e-8/1e4	120		23e-7/300	1			3.6		8. 8.	43	570	82e-8/1e6	12e-6/1e5	83e-7/1e5		-	96e-7/1e4	7	1.8
		68.7																																
ers.	1e-04	50.5	320	8.4	2.2		1	22	4.9	3.7	009	35e-5/2e3	23e-4/1e4	190	2.8	5.5	13e-4/1e5	1.3	5.1	30e-5/1e4		15	6.9	3.2	4.5	2.3	44	170	140	260		46	6	9.2
erent power	$1e$ - $\overline{0}$ 3	39.2	85	8.5	1.1	11e-3/2e3	1	09	4.3	2.5	80	33	200	170	1.4	2.9	4200	1.4	ಬ	52	29e-4/1e4	13	2.8	2.6	3.7	1	4.6	120	28	230		6.3	5.2	6.1
f diffe	1e-02	20.5	92	12	1.2	210	1.4	88	4.1	2.4	15	21	110	250	1.7	3.1	400	2.3	7	8.1	170	13	8.8	2.9	3.5	П	2.3	140	22	180		1.7	3.9	5.5
Sum c	1e-01	13.3	74	13	1.3	110	1.6	94	3.8	2.3	14	15	20	240	7	က	370	3.1	7.2	5.6	110	12	5.9	5.9	8.8	П	2.5	110	17	93		1.4	3.7	5.6
14 14	1e+00	9.83	50	6	1.3	75	1.6	85	3.3	1.9	13	9.2	11	130	1.8	2.8	250	3.7	ಬ	5.5	120	8.3	2.4	2.1	2.4	1	77	20	8.6	29	15e-1/1e6	1.3	3.2	5.3
	1e+01	3.69	19	4.7	1.7	7.8	1.6	71	5.6	7	14	9.9	2.2	4.2	3.1	3.9	18	∞	2.5	7.5	150	4.4	1.1	1.2	1.1	П	2.5	89	3.2	3.7	17	2.1	က	7.6
CTTO	1e + 02	0.1	2.7	3.1	9.5	2.5	11	230	9.5	4.9	27	2.5	-	4	7	2.5	3.2	3.1	3.4	45	560	2.7	1	3.7	4.9	7.2	8.9	920	2.9	3.2	2.2	22	4.4	3
	1e+03	0.1	п			П		1	1	П	1	1:1	1	Н	п		1	1.1	1.1	н	1	Н	Н			Н	Н	110	1.1	-	н	1	1	1
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 87: 10-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 88: 10-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	7160		3.9				٠	П			•		92		•			œ					•				92					1.2	1600
	1e-05	6580		4.2				٠	П			•		100		•		٠	8.6					•				62					1.3	029
	1e-04	6510		4.2					-					100					8.6									62					1.3	370
	1e-03	5120	23e-3/5e5	5.1				-	1				21e-3/1e4	130					8.6									62					1.3	180
rass	1e-02	4570	470	4.5		٠		•	-	٠		·	6.6	92	99e-2/1e4	·	91e-2/1e5		8.2			30e-2/5e4		·				61		89e-2/1e5			1.2	37
16 Weierstrass	1e-01	1580	26	5.8	13e-1/1e4			-	-	12e-1/1e4	11e-1/1e6	-	2.4	190	06	75e-2/5e4	910	11e-1/800	6.5			460	33e-1/4e3	75e-2/1e5	69e-2/2e4		12e-1/1e6	28	92e-2/1e5	260			1.6	28
,	1e+00	703	က	4.9	41	95e-1/2e3		76e-1/5e4	1	49	3e3	11e+0/2e3	1.6	130	16	69	130	1.7	1.8	28e-1/1e4	47e-1/1e4	16	98	100	23	25e-1/9e3	3700	4.4	130	140	31e-1/1e6	12e+0/1e4	1.2	3.7
	1e+01	42.5	8.2	8.5	3.3	41	18e+0/1e4	400	က	5.4	190	170	2.5	55	3.6	4.7	28	1	3.3	7.9	51	7	17	17	1.4	4.7	65	12	5.2	42	43	220	2.9	4.1
	1e + 02	0.1	1.5	1.4	1.5	1.3	190	4.3	1.1	1.3	1.7	1.2	2.5	1.5	1.1	1.3	1.5	1.3	1.2	1.4	2.1	1.2	2.4	1.5	1.3	2.3	1.6		1.4	1.5	1.6	2.9	1.5	1.4
	1e + 03	0.1	1	1	П	П	П	1	П	П	Н	П	н	Н	Н	П	Н	1	П	П	П	Н	П	П		П	П	П	П	П	П	Н	н	1
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 89: 10-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2650		4				9.9	1					9.4					12			53						250					1.1	39e-8/7e6
	1e-05	2020		4.1				6.2	П					8.8		•		٠	8.6			56						140					-	330
	1e-04	1530	14e-4/5e5	3.2				6.9	1					9.4			11e-3/1e5		ಬ			21						63		71e-3/1e5			1	28
tion 10	1e-03	985	1100	2.3		18e-3/2e3		9.4	-	٠		28e-3/2e3	44e-4/1e4	11		٠	1500	•	3.6	•	٠	21				٠	٠	28	52e-3/1e5	1400			1.3	7.7
F7, condi	1e-02	633	_	1.7		7.3		12	1			15	23	13			210		2.2			15		11e-1/1e5				33	1e3	1e3			1.3	2.2
17 Schaffer	1e-01	220	19	1.5	10e-1/3e4	6.4		27	1.7	15e-1/1e4	83e-2/1e6	4.9	7.2	22	95e-2/1e4	15e-1/5e4	45		3.3			8.9	18e-1/4e3	0099	77e-2/2e4	14e-1/2e4			230				1.1	1
1,	1e+00	42.9	18	3.8	066	11	36e-1/8e3	35	1.1	620	2e4	6.7	3.7	44	290	5400	22	27e-1/2e3	1.8	26e-1/1e4	73e-1/1e4	ಬ	1400	4200	450	2100	32e-1/1e6	23	ഹ	59	21e-1/1e6	12e+0/1e4	П	1.4
	1e+01	2.64	3.5	2.8	2.5	4	53	29	1.6	14	110	5.5	1.3	2.4	3.1	က	4.8	3.9	1.6	35	096	2.8	П		1.2		3500		1.6		3.2	8300	1.6	5.7
	1e + 02	0.1	1.2	1	1.1	1.3	79	56	1.4	3.9	1	1.5	П	1.1	2.1	1.2	1.5	1.2	1	4.1	110	1.2	1	2.4	1.2	2.9	1.9	290	1.3	1.2	1.3	1.5e4	П	1
	1e + 03	0.1	1	1	1	1	1	П	1	П	1	1	П	-	Н	П	П	1	П	П	П	-	П	П		-	Н	-	П	П	-1	-	П	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 90: 10-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Affarget 1e ERT _{best} /D (1 ALPS AMaLGaM IDEA 1 avg NEWUOA BayEDAcG BFGS 1 Cauchy EDA 1	1e+03 0.1	1e + 02	16+01	1-100	10-01	1e-02	16-03	10.04	1e-05	1e-07	Aftarget
	0.1		10-01	1e+00	10-01		000	Ie-04))		
ALPS AMaLGaM IDEA avg NEWUOA BayEDAcG BFS Cauchy EDA BIPOP-CMA-FS		0.193	23.8	83.6	701	1590	2750	3160	3720	4270	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
AMaLGaM IDEA avg NEWUOA BayEDAcG BFGS Cauchy EDA RIPOP-CMA-FS	1		13	20	09	4700	19e-3/5e5				ALPS [17]
avg NEWUOA BayEDAcG BFGS Cauchy EDA RIPOP_CMA FS	1.2		2.9	2.8	1.4	1.5	2.2	2.3	2.7	2.4	AMaLGaM IDEA [4]
BayEDAcG BFGS Cauchy EDA RIPOP-CMA-FS	П		73	32e-1/9e4							avg NEWUOA [31]
BFGS Cauchy EDA RIPOP-CMA-ES	П	2.3	8.8	13	6.4	19	17e-2/2e3				BayEDAcG [10]
Cauchy EDA RIPOP_CMA_ES	1.7		5e3	16e+0/8e3							BFGS [30]
RIPOP_CMA_FS	1.1		31	24	5.2	3.6	2.8	က	3.1	4.1	Cauchy EDA [24]
DIL OI - CIVIL-LD	П		П	1	П	П	1.2	1.1	1.1	1.2	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1		110	40e-1/1e4					٠	٠	(1+1)-CMA-ES [2]
DASA	1.4		1400		19e-1/1e6						DASA [19]
DEPSO	1	4.4	4.3		13	19e-2/2e3	٠				DEPSO [12]
DIRECT	П	1	2.3	8.1	4.2	28	38e-3/1e4				DIRECT [25]
EDA-PSO	П		28	42	9.5	9	7.5	21	42	43e-6/1e5	EDA-PSO [6]
full NEWUOA	1.1	13	120	1700	39e-1/1e4						full NEWUOA [31]
G3-PCX	1.1		800	51e-1/5e4							G3-PCX [26]
simple GA	_		57	82	120	88e-3/1e5		-			simple GA [22]
GLOBAL	1		84	90e-1/2e3	٠				٠	٠	GLOBAL [23]
iAMaLGaM IDEA	1.1		1.6	3.3	1.4	2.9	3.1	4.8	6.5	9.1	iAMaLGaM IDEA [4]
LSfminbnd	1		210	66e-1/1e4							LSfminbnd [28]
LSstep	1.1	230	19e+0/1e4								LSstep [28]
MA-LS-Chain	1.1		2.5	6.1	12	49	260	13e-3/5e4			MA-LS-Chain [21]
MCS (Neum)	-		57	51e-1/4e3							MCS (Neum) [18]
NELDER (Han)	1	3.5	510	8400	32e-1/1e5						NELDER (Han) [16]
_	1.1		72	3500	34e-1/2e4			-			NELDER (Doe) [5]
NEWUOA :	1.1		260	51e-1/4e4	٠				٠	٠	NEWUOA [31]
(1+1)-ES	7		2.8e5	14e+0/1e6							(1+1)-ES [1]
	2.1		19	28	42	130	240	450	24e-3/1e5		POEMS $[20]$
PSO	_		3.5	2400	2e3	11e-1/1e5		-			PSO [7]
	1.1	2.2	10	140	580	880	38e-2/1e5		٠	٠	PSO_Bounds [8]
Monte Carlo	-		3300	72e-1/1e6		•	•				Monte Carlo [3]
Rosenbrock	1		40e+0/1e4		٠	·			٠	٠	Rosenbrock [27]
IPOP-SEP-CMA-ES	_		4.4	2.8	1.2	1.1		П	П	П	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	_		1.7	1.1	1.8	22	93	1500	85e-6/6e6		VNS (Garcia) [11]

Table 91: 10-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

3F2	1e-03 1e-04 1e-05 1e-07 Δ ftarget	1.37e5 1.37e5 1.38e5 1.39e5 ERT_{best}/D		8.8 8.7 8.6 AMaLGaM IDEA [4]	. avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	. Cauchy EDA [24]	1 1 1 BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]		. DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]		simple GA [22]	GLOBAL [23]	110 110 110 110 iAMaLGaM IDEA [4]					. NELDER (Han) [16]	. NELDER (Doe) [5]	NEWUOA [31]	\cdot	. POEMS [20]		PSO_Bounds [8]	Monte Carlo [3]	. Rosenbrock $[27]$. IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
19 Griewank-Rosenbrock F8F2	1e-02	98400	74e-3/5e5	7.7	·				1			٠	11e-2/1e4	73e-2/1e5			14e-2/1e5		73			13e-2/5e4	16e-3/4e3					57e-2/1e5					10e-2/1e4	302/0000
Griewank-Ros	1e-01	1060	550	83	83e-2/1e5			14e-1/5e4	8.6	55e-2/1e4	13e-1/1e6		16	1300	11e-1/1e4	16e-1/5e4	290	15e-1/2e3	370	18e-1/1e4		87	1	24e-2/1e5	26e-2/2e4	63e-2/1e5	18e-1/1e6	1400	51e-2/1e5	57e-2/1e5			17	1900
19 Gri	1e+00	0.1	7.7e4	7300	7.1e5	20e-1/2e3	51e-1/8e3	3.4e6	9400	8.7e4	1.5e7	29e-1/2e3	П	3.7e5	1.4e5	1.5e6	1.7e5	1.2e5	2.5e5	1.4e6	17e-1/1e4	8600	-	2.8e4	1.2e4	3.2e5	2.8e7	2.1e5	3.7e5	9.2e5	31e-1/1e6	24e+0/1e4	1.6e4	2 101
i de divi	1e+01	0.1	410	160	48	210	1.9e4	1400	25	63	7100	210	-	130	150	3.6e4	1e3	370	78	200	2700	120	1	28	24	27	6500	2500	110	120	200	6.5e5	54	000
NA CITTO	1e+02	0.1	1	1.1	П	1.3	1.7	8.9	1	1	1.1	П	Н	1.1	1.4	1.1	1.1	1.2	П	3.1	55	1.1	Н	П	1.1	2.1	1.5	380	1.3	1.1	1.1	2.2	1	1.4
CICACII	1e + 03	0.1	1	Т	П	1	П	1	1	П	1	П	Н	П	П	Н	Н	П	П	Т	1	Н	Н	П	Н	П	П	Н	Н	П	Н	1	1	-
	$\Delta { m ftarget}$	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	$_{ m DASA}$	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	(Signary) SIVI

Table 92: 10-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep $[28]$	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	58900	9.7	250					-		250			3.7								1.1		-				12		7.4		-		51
	1e-05	58100	9.6	260					1		250			3.7			18e-4/1e5					1.1						12		7				49
	1e-04	27600	9.6	260					-	٠	260			3.7			22					1.1						12		7.1				49
(3	$^{'}_{1e-03}$	57300	9.6	260		-			П		260			3.7		-	2.6					1.1						12		7.1				20
x^* sin(x	1e-02	26700	9.7	260					1		260			3.7			77					1.1						12		7.1				20
20 Schwefel x*sin(x)	1e-01	55000	10	270	12e-1/8e3		65e-2/1e4		1	83e-2/1e4	270	68e-2/2e3		3.8 8.8	10e-1/1e4	85e-2/5e4	1.8	11e-1/1e3	24e-2/1e6	81e-2/1e4	98e-2/1e4	1.1	77e-2/4e3	75e-2/1e5	81e-2/2e4	69e-2/1e4	47e-2/1e6	12	57e-2/1e5	5.1	-	67e-2/1e4	55e-2/1e4	52
20	1e+00	1540	1.5	18	37	27e-1/2e3	1.1	21e-1/5e4	3.6	3.3	1.9	1.1	14e-1/1e4	7.8	10	12	3.2	2.6	38	3.5	8.3	2.2	1	16	5.7	1.9	7.2	1.1	1.5	77	29e-1/1e6	1.7	3.1	1.2
	1e + 01	3.19	61	11	1.2	30	2.4	140	5.5	3.3	30	15	16	92	2.1	6.1	360	11	6.2	13	300	9.3	4.4	2.3	2.3	-	3.1	26	10	38	8200	3.1	4.8	11
	1e + 02	33	52	9.6	1.3	22	1.9	140	5.1	3.2	29	14	17	44	2.2	9	310	11	5.8	11	250	8.5	4.6	1.9	2.1	-	က	92	8.9	29	2400	3.1	4.6	11
	1e + 03	2.58	31	8.1	1.5	16	1.6	110	4.4	5.9	27	11	7.2	15	2.6	5.8	130	12	4.8	9.6	200	7.4	4.8	1.5	1.7	П	2.4	92	8.9	9.4	210	က	3.4	11
	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 93: 10-D, running time excess ERT/ERT $_{\text{best}}$ on f_{21} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension 21 Gallacher 101 neaks

Affarget 1e+03 1e+02 1e+01 ALPS 0.1 0.1 13 AMALGAM IDEA 1 1 21 avg NEWUOA 1 1 27 BAYEDAcG 1 1 48 BAYEDAcG 1 1 48 BIPOP-CMA-ES 1 1 79 BIPOP-CMA-ES 1 1 5.9 (1+1)-CMA-ES 1 1 9.7 DRSA 1 1 9.7 DRSA 1 1 9.7 DRSA 1 1 9.7 DRSA 1 1 9.7 DRSA 1 1 2.5 EDA-PSO 1 1 4.4 full NEWUOA 1 1 4.4 GLOSA 1 1 4.4 GLOBAL 1 1 3.6

Table 94: 10-D, running time excess ERT/ERT $_{\text{best}}$ on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{22} and f_{22} a

Table 95: 10-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Δ ftarget	1e + 03	1e + 02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
ERT_{best}/D	0.1	0.1	0.28	91.5	1640	18400	20400	20600	20900	21400	${ m ERT_{best}/D}$
ALPS	1	1	1.7	42	1e3	14e-2/5e5	-	-			ALPS [17]
AMaLGaM IDEA	1	1	1.6	10	1	1	1	1	1	П	AMaLGaM ÌDÉA [4]
avg NEWUOA	1	-1	11	2.6	21e-2/1e4						avg NEWUOA [31]
BayEDAcG	П	1	1.3	16e-1/2e3		٠	٠				BayEDAcG [10]
BFGS	1	-	17	130	11e-1/5e3						BFGS [30]
Cauchy EDA	1	1	2.3	1700	11e-1/5e4	•	•	•			Cauchy EDA [24]
BIPOP-CMA-ES	1	1	77	21	2.7	1.3	1.2	1.2	1.2	1.2	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	3.4	2.9	22e-2/1e4	٠	٠		٠		(1+1)-CMA-ES [2]
DASA	1	-	5	28	4300	15e-2/1e6					DASA [19]
DEPSO	1	1	1.7	18e-1/2e3	•	٠.	•	•			DEPSO [12]
DIRECT	1	-1	2.1	2.1	65e-2/1e4						DIRECT [25]
EDA-PSO	1	1	1.7	290	87e-2/1e5	٠	٠		٠		EDA-PSO [6]
full NEWUOA	1	1	13	2.9	44	19e-2/1e4					full NEWUOA [31]
G3-PCX	1	1	1.8	4.9	86	19e-2/4e4	•	•			G3-PCX [26]
simple GA	1	1	1.4	390	85e-2/1e5						simple GA [22]
GLOBAL	1	1	2.1	-	32e-2/700						GLOBAL [23]
iAMaLGaM IDEA	1	-	1.8	5.7	3.6	1.1	1	1	П	П	iAMaLGaM IDEA [4]
LSfminbnd	1	-	2.1	26	66e-2/1e4	-	-	-	٠		LSfminbnd [28]
LSstep	1	1	1.2	31	51e-2/1e4						LSstep [28]
MA-LS-Chain	1	П	7	2.3	17	38	35	44e-3/5e4			MA-LS-Chain [21]
ICS (Neum)	-	-	3.4	15	56e-2/4e3						MCS (Neum) [18]
NELDER (Han)	П	-	Н	5.7	40	80	59e-3/1e5				NELDER (Han) [16]
ELDER (Doe)	-	-	1.7	1.4	11	97e-3/2e4					NELDER (Doe) [5]
NEWUOA	П	-	7.5	3.6	34e-2/7e3						NEWUOA [31]
(1+1)-ES	-	-	4.4	7.6	2900	14e-2/1e6					(1+1)-ES [1]
POEMS	1	-	15	31	19	36	69	63e-3/1e5			POEMS $[20]$
PSO	-	-	1.7	91	42e-2/1e5						PSO [7]
PSO_Bounds	П	-	1.5	130	67e-2/1e5						PSO_Bounds [8]
Monte Carlo	1	-	1.6	530	61e-2/1e6						Monte Carlo [3]
Rosenbrock	П	П	2.1	2.2	32e-2/5e3						Rosenbrock [27]
IPOP-SEP-CMA-ES	1	-	2.4	17	12	11e-2/1e4					IPOP-SEP-CMA-ES [29]
VNS (Garcia)	_	-	9 6	0	70	140	700	000	010	2	[FF] (-: C) DIVI

Table 96: 10-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	7.48e6	•	•		•			1					•				•												•				
	1e-05	7.48e6	•	•		•			1					•				•												•				
	1e-04	7.48e6							1																									
	1e-03	7.48e6	•						Н	•								•																
strigin	$^{1e-02}$	7.48e6				•		•	Н	•		•				•		٠														•		•
24 Lunacek bi-Rastrigin	1e-01	7.47e6	•	78e-2/1e6					Н									•	991/2-999															•
24 Luna	1e+00	1.04e5	44e-1/5e5	8.3					-	20e+0/1e4								-	4.2					11e+0/1e5	96e-1/2e4		17e+0/1e6	19e+0/1e5	20e+0/1e5	22e+0/1e5			91e-1/1e4	21e-1/8e6
	1e + 01	9880	10	18	21e+0/8e3	37e+0/2e3	81e+0/4e3	27e+0/5e4	2.7	14	31e+0/1e6	38e+0/2e3	19e+0/1e4	23e+0/1e5	16e+0/1e4	31e+0/5e4	14e+0/1e5	62e+0/1e3	4.2	33e+0/1e4	49e+0/1e4	11e+0/5e4	30e+0/4e3	22	2.6	26e+0/7e3	740	140	140	140	60e+0/1e6	12e+1/1e4	1	3.7
	1e + 02	6.64	24	5.5	1.4	19	350	51	2.5	8.6	1300	8.9	5.9	56	2.6	16	120	7.2	4.2	20	170	5.7	15	8.2	4.7	П	140	48	8.1	22	820	1e4	2.5	4.8
	1e + 03	0.1	1	1	1	1	1	П	П	П	1	П	П	П	1	П	П	1	1	-	က	П	1	-	П	П	П	П	П	П	1	П	П	1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 97: 20-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension.

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.15	1800	550	2.3	1e3	1	7800	57	37	300	44e-7/2e3	1400	5400	5.5	48	74e-5/1e5	∞	270	10	180	200	7	49	40	П	31	3800	3800	1.6e4		17	20	09
	1e-05	2.15	1400	440	2.3	710	1	6100	45	56	200	1400	870	4200	5.5	37	6.7e5	∞	210	10	180	160	7	40	32	П	22	2800	3700	4500		14	33	48
	1e-04	2.15	1100	390	2.3	610	П	5200	39	22	150	810	089	3600	5.5	32	2e5	∞	180	10	180	140	7	36	27	П	22	2300	3600	3800		12	34	41
		2.15																															59	
ere	1e-02	2.15	710	260	2.3	410	П	3500	56	17	98	330	360	2300	5.5	23	1.2e4	∞	120	10	180	100	7	27	16	П	15	1400	3500	2800		9.1	23	29
1 Sph	$1e-\overline{0}1$	2.15	520	200	2.3	310	П	2500	20	13	99	190	220	1700	5.5	18	3200	œ	88	10	180	28	8.9	19	11	П	11	870	3400	2100			18	
	1e+00	2.15	320	130	2.3	200	п	1600	14	9.5	45	81	110	1100	5.4	13	1900	œ	22	10	170	51	6.4	12	6.7	-	8.1	400	3400	1500		5.8	12	17
•	1e+01	2.15	150	55	2.3	110	1	730	7.9	5.4	26	30	48	450	5.4	œ	880	œ	27	9.3	160	21	2.4	5.2	3.3	1	4.9	180	22	120	29e+0/1e6	3.8	7.1	10
	1e+02	0.28	64	58	18	49	7.4	840	9.2	12	09	31	9.8	19	41	31	130	37	13	43	820	19	П	9.1	8.9	7.5	11	830	16	19	170	19	13	28
	1e + 03	0.02	1	П	П	П	П	1	1	1	1	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П		П	П	П
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 98: 20-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 99: 20-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	383	3200			•		•		•	36	•		-		•				•	П	160		•		٠		160		430				630
	1e-05	382	400							-	36							٠			-	160						120		400				630
	1e-04	382	310			•		•		•	35	•		-		•				•	П	160		•		٠		120		380				620
	1e-03	382	270			•		•		•	35	•		-		•				•	П	160		•		٠		120		360				260
<u>e</u>	1e-02	382	240								35			-							-1	160				•		140		360				520
ı separabl	1e-01	382	230			•		٠		•	35	٠		٠		٠	21e-1/1e5		20e-1/1e6	•	н	160		•		•		140		360				490
3 Rastrigin separable	1e+00	381	190	40e-1/1e6					40e-1/3e5		8.3			70e-1/1e5			3700		1.8e4	-	1	92	13e+0/4e3	-	-			69		190	-		60e-1/1e4	340
	1e+01	253	50	27	97e+0/1e4	73e+0/2e3		69e+0/5e4	12	92e+0/1e4	Н	84e+0/2e3	43e+0/5e3	44	88e+0/1e4	13e+1/5e4	29	15e+1/2e3	38	19e+0/6e3	1.5	7	28	81e+0/1e4	47e+0/2e4	13e+1/6e3	81e+0/1e6	9.6	21e+0/1e5	120			10	8.3
	1e+02	12.7	54	43	1e3	85	28e+1/6e3	450	6.7	840	5.9	130	28	150	650	1.2e4	190	1400	19	1.3	27	12	1	260	71	7500	2.3e4	43	21	330	26e+1/1e6	23e+1/7e3	5.2	8.1
	1e+03	0.02	19	17	88	15	570	2900	25	37	210	42	-	22	180	24	26	19	24	190	4e3	20	П	42	24	41	360	4e3	19	28	32	260	28	20
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 100: 20-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

00101	10.1.09	10.101	7	10.01	10.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10.01	10.05	10.07	Aft. 22.00+
37.3		1e+01 236	381	383	384 384	385	386	388	7050	$\Delta \mathrm{Larget}$ $\mathrm{ERT}_{\mathrm{hest}}/\mathrm{D}$
29		150	0086	30e-1/2e5						ALPS[17]
		14e+0/1e6						•		AMaLGaM IDEA [4]
		2e+1/2e4								avg NEWUOA [31]
		69e+0/2e3				٠				BayEDAcG [10]
										BFGS [30]
		11e+1/5e4								Cauchy EDA [24]
		12e+0/3e5		-						BIPOP-CMA-ES [15]
14e+1/1e4										(1+1)-CMA-ES [2]
		П	130	1700	1700	1700	1700	1700	91	DASA [19]
		10e+1/2e3								DEPSO [12]
		88e+0/5e3								DIRECT [25]
		6e3	15e+0/1e5						•	EDA-PSO [6]
		13e+1/1e4								full NEWUOA [31]
19e+1/5e4										G3-PCX [26]
		65	3800	34e-1/1e5						simple GA [22]
										GLOBAL [23]
		13e+0/1e6								$iAMaLGaM\ IDEA\ [4]$
		49e+0/7e3								LSfminbnd [28]
9.5		1.6	1	П	-	П	П	1	П	LSstep [28]
		53	30e-1/1e5							MA-LS-Chain [21]
1 21e ₇	21e+	21e+0/4e3								MCS (Neum) [18]
13e+1/1e4										_
1600 11e	11e	11e+1/2e4								NELDER (Doe) [5]
4300 17e	176	17e+1/1e4								NEWUOA [31]
3.8e5 13e	136	13e+1/1e6								(1+1)-ES [1]
		13	140	220	240	250	250	250	14	POEMS $[20]$
		5900	23e+0/1e5	-						PSO [7]
		190	290	300	360	360	370	380	21	PSO_Bounds [8]
33e+1/1e6										Monte Carlo [3]
										Rosenbrock [27]
2.5 14e		14e+0/1e4								IPOP-SEP-CMA-ES [29]
		27	2.8e4	1.3e5	1.3e5	20e-1/4e6	-			VNS (Garcia) [11]

Table 101: 20-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

			5 Linear slope	5 Lin	near sl	obe					
$\Delta { m ftarget}$	1e + 03		1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.05	1.83	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	${ m ERT_{best}/D}$
ALPS	1	51	160	210	250	280	300	310	320	330	ALPS [17]
AMaLGaM IDEA	Т		75	80	80	80	80	80	80	80	AMaLGaM İDEA [4]
avg NEWUOA	П		2.7	3.2	3.3	3.3	3.3	3.3	3.3	3.3	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1		150	200	200	200	210	210	210	210	BayEDAcG [10]
BFGS	П	1.4	2.4	2.7	8.7	8.8	2.8	8.7	8.8	8.8	BFGS [30]
Cauchy EDA	П		160	170	170	170	170	170	170	170	Cauchy EDA [24]
BIPOP-CMA-ES	1		5.1	6.2	6.3	6.3	6.3	6.3	6.3	6.3	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1		3.1	3.6	3.7	3.7	3.7	3.7	3.7	3.7	(1+1)-CMA-ES [2]
DASA	П		24	29	34	38	43	47	52	64	DASA [19]
DEPSO	П		39	46	48	48	48	48	48	48	DEPSO [12]
DIRECT	1		180	220	230	230	230	230	230	230	DIRECT [25]
EDA-PSO	П		27	34	37	39	39	33	33	39	EDA-PSO [6]
full NEWUOA	П		6.2	6.5	9.9	9.9	9.9	9.9	9.9	9.9	full NEWUOA [31]
G3-PCX	П		19	22	56	27	27	27	27	27	G3-PCX [26]
simple GA	Н		2200	4600	7500	1.1e4	1.4e4	1.8e4	2.2e4	2.3e5	simple GA [22]
GLOBAL	Н		6.6	11	Π	11	11	11	11	11	GLOBAL [23]
iAMaLGaM IDEA	П		8.6	11	Π	11	11	11	11	11	iAMaLGaM IDEA [4]
LSfminbnd	Н		16	16	16	16	16	16	16	16	LSfminbnd [28]
LSstep	П		180	190	190	190	190	190	190	190	LSstep [28]
MA-LS-Chain	Н		41	44	46	46	46	46	46	46	MA-LS-Chain [21]
MCS (Neum)	П		1	П	-	-	_	_		-	MCS (Neum) [18]
NELDER (Han)	н		7.4	8. 8.	9.5	9.5	9.5	9.5	9.5	9.5	NELDER (Han) [16]
NELDER (Doe)	1		5.2	6.2	6.3	6.4	6.4	6.4	6.4	6.4	NELDER (Doe) [5]
NEWUOA	Н		1.2	1.5	1.6	1.6	1.6	1.6	1.6	1.6	NEWUOA [31]
(1+1)-ES	П		3.1	3.5	3.6	3.6	3.6	3.6	3.6	3.6	(1+1)-ES [1]
POEMS	П		260	310	330	320	350	350	320	320	POEMS $[20]$
PSO	П		4.3e4	4.3e4	4.3e4	4.3e4	4.3e4	4.3e4	4.3e4	4.3e4	PSO [7]
PSO_Bounds	Н		160	160	160	160	160	160	160	160	PSO_Bounds [8]
Monte Carlo	н		11e+1/1e6								Monte Carlo [3]
Rosenbrock	1		4.2	4.3	4.3	4.3	4.3	4.3	4.3	4.3	Rosenbrock [27]
IPOP-SEP-CMA-ES	П		6.2	7.3	7.7	7.7	7.7	7.7	7.7	7.7	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П		8.9	9.2	7.8	7.8	2.8	2.8	7.8	7.8	VNS (Garcia) [11]

Table 102: 20-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	309	14e-7/2e5	22	1		61		1.6		74			44	1.4	2.4			8.3			9		7.4		1.7	6.7	37	790	220			73	1.6
	1e-05	248	370	22	П		4.9		1.6	٠	63			44	1.4	2.3		•	∞			6.5		4	46e-5/2e4	1.7	6.4	36	570	160			7	1.6
	1e-04	219	150	21	1	٠	4.8	٠	1.5	٠	28			44	1.4	2.2		٠	7.7			6.7		3.5	430	1.6	6.5	35	620	130		21e-2/1e4	1.9	1.6
•.		184																														810		
Ŧ		152																																
6 Attrac	1e-01	123	64	21	1		4.7	17e-1/5e4	1.6	1200	22	13e-1/2e3		44	1.4	2.1		8.5	7.1	1100		∞		3.2	28	1.4	3.9	36	086	140		210	1.9	1.7
	1e+00	87.2	54	22	-	٠	4.7	1700	1.7	180	19	64		45	1.4	7	11e+0/1e5	4.9	8.9	092	59e+0/1e4	8.9		3.3	20	1.3	2.8	37	1400	150		92	1.9	1.9
•	1e + 01	64.7	34	19	П	60e+0/2e3	3.6	1e3	1.5	13	6.6	12	40e+0/5e3	40	1.5	1.4	2e3	3.6	5.4	160	2300	7.5	42e+0/4e3	2.7	9.1	П	2.1	31	1100	120		31	1.7	1.9
	1e + 02	26	25	22	1.1	41	2.7	1500	2.2	4.5	8.9	7.5	31	46	1.9	1.4	130	2.9	5.6	31	260	4.9	33	2.4	2.3	-1	2.2	26	280	45	48e+1/1e6	3.9	2.1	2.8
	1e+03	4.03						6200																										ಌ
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 103: 20-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	10-05 10-07 Afternat	848 E	. ALPS [17]	1 1 AMaLGaM İDEA [4]	avg NEWUOA [31]	. BayEDAcG [10]	. BFGS [30]	14 14 Cauchy EDA [24]	2.2 2.1 BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	. DASA [19]	. DEPSO [12]	. DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	. G3-PCX [26]	simple GA [22]		1.3 1.3 iAMaLGaM IDEA [4]	. LSfminbnd [28]	LSstep [28]	390 380 MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	. (1+1)-ES [1]	. POEMS [20]	PSO [7]	. PSO_Bounds [8]	. Monte Carlo [3]	. Rosenbrock [27]	1.5 1.5 IPOP-SEP-CMA-ES [29]	0 0
	10-01	826		1				14	2.5	٠									1.3			390				٠		٠					1.5	0070
	10.03	826		1				14	2.2	٠		-				•			1.3			390		٠		٠		٠		-			1.5	0000
		826	48e-2/2e5	1				14	2.2	92e-2/1e4									1.3			390						12e-1/1e5					1.5	0070
SIOII 7 C+02 011:200:4	p-empsord	475	930	1.3				18	3.5	300				15e-1/1e5	27e-1/1e4				1			360						3100					2.4	1
	10+00	214	820	2.1	51e-1/2e4	11e+0/2e3		29	4.9	54	13e+0/4e5	77e-1/2e3		920	200	12e+0/1e4	32e-1/1e5		-	15e+0/1e4	29e+0/1e4	120		16e+0/1e4	97e-1/2e4	•		2e3	62e-1/1e5	22e+0/1e5		٠	4	100
divided by c	10±01	67.5	30	3.6	100	57		44	-	30	1.8e4	18	15e+0/6e3	26	4.6	092	22	22e+0/700	1.7	1e3	2200	4.3	38e+0/4e3	2200	370	18e+0/2e4	27e+0/1e6	21	430	9200	10e+1/1e6	•	2.3	7
in tills value	16±09	7.59	26	10	1.4	31	67e+1/100	130	2.8	16	49	7.9	7	65	1.9	2.8	180	2.9	5.8	21	180	5.4	57	4.6	1	43	1100	55	4.8	26	2.1e5	38e+1/3e3	2.8	2
o co reac	10103	0.53	2	က	7.1	4.3	69	130	2.5	1.6	16	2.7	3.5	2.5	14	4.7	5.8 8.0	4.6	77	23	230	3.4	П	4.5	2.5	3.6	3.1	440	2.5	3.3	3.2	200	3.4	-
Tunction evaluations to reach this value divided by difficients of	A ft space	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VING (Cicio)

Table 104: 20-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock $[27]$	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	222	26e-6/2e5	22	Н		1.2	550	4.7	6.7	550				1.7	5.7	·	1.2	11	•		14	1.8	5.6	9.5	П	240		3300	•		670	5.8	6.4
	1e-05	219	3100	21	1		1.2	360	4.6	9.9	420				1.7	5.5		1.2	10			13	1.8	5.3	7.7	П	200		890			62	2.8	6.4
	1e-04	215	1200	21	1		1.2	290	4.6	6.7	350			17e-5/1e5	1.7	5.5		1.2	10			13	1.8	5.1	7.2	-	180		580			55	5.8	6.4
nal	1e-03	211	1e3	20	1		1.2	260	4.5	9.9	280			410	1.7	5.5		1.2	10	40e-1/1e4	12e-1/1e4	14	1.8	4.9	6.5	1	160		470	15e-2/1e5		42	5.8	6.4
k origin	1e-02	207	740	20	1		1.2	250	4.5	9.9	200			330	1.7	5.5		1.2	8.6	720	350	13	1.8	4.5	9	1	140		410	7200		35	5.7	6.4
Rosenbrock origina	1e-01	202	009	19	1		1.2	210	4.3	9.9	120			260	1.6	5.5		1.2	9.2	710	220	13	1.8	4.1	5.5	П	120	74e-1/1e5	350	1800		28	5.7	6.3
8 F	1e+00	187	460	18	1		1.3	180	4.2	6.5	57			220	1.6	5.6		1.3	9.5	120	130	13	1.8	3.9	4.9	П	120	2600	320	450		25	5.6	6.3
>	1e+01	97.9	100	20	1	48e+0/2e3	1.9	200	4.2	3.9	34	17e+0/2e3	64e+0/5e3	190	1.4	2.7	17e+0/1e5	1.7	8.6	9.6	25	14	1.6	3.4	2.9	П	13	590	93	540		4	5.6	9
	1e + 02	21	51	16	1.6	35	77	200	2.4	1.8	26	16	82	110	2.6	77	250	2.4	6.4	17	71	10	1.2	2.9	က	П	11	84	19	160		1.1	1.7	3.1
	1e+03	5.52	20	25	7	55	1.9	360	4	2.7	15	16	25	220	3.4	3.9	480	4.1	13	7.1	150	12	1.4	3.2	3.2	-1	2.5	100	15	88	80e+2/1e6	73	3.5	9
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 105: 20-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IĎEÁ [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	186		22	1.2		1.9	630	6.1	6.9	3700			•	2.5	4.2		1.5	13	•		30	1.6	6.8	9.4	1	200					-	7.2	8.5
	1e-05	180	-	25	1.2		77	470	6.1	7	2700				2.3	4.1		1.6	12			30	1.7	8.8	8.4	1	160					35e-5/1e4	7.2	8.6
	1e-04	176		22	1.2	٠	7	340	6.1	7	2400			-	2.3	4.1		1.6	12			31	1.7	8.6	7.9	П	130	•				820		
	1e-03	173	-	24	1.3		7	310	6.1	-1	2100	٠			2.3	4.1		1.6	12			31	1.6	8.4	7.5	П	110					63	7.3	8.7
tated	1e-02	169	-	24	1.3		2.1	300	6.1	-1	1800	٠			2.3	4.1		1.6	12			59	1.6	2.8	7	П	98					49	7.3	8.7
9 Rosenbrock rota	1e-01	164	-	23	1.2		2.1	290	9	2	1500			14e-2/1e5	2.3	4		1.6	12	32e-1/1e4		27	1.5	7.2	9.9	-	65			20e-1/1e5		37	7.2	8.7
9 Rosen	1e+00	155	48e-1/2e5	22	1.2		2.2	270	5.7	6.7	1300			450	2.2	3.8		1.7	11	470		25	1.3	9.9	6.1	П	52	99e-1/1e5	75e-1/1e5	0026		31	7	8.2
	1e+01	85.8	350	22	1	18e+0/2e3	2.2	190	4.7	4.5	210	18e+0/2e3	22e+0/5e3	280	1.8	2.9	19e+0/1e5	1.7	9.6	52	18e+0/1e4	17	1	3.6	3.3	1	12	2e3	029	200		8.4	6.9	6.9
	1e+02	17.8	37	11	1.5	27	1.9	220	2.6	2.4	22	22	4.7	130	က	3.6	270	77	7.5	6.5	130	7.3	П	2.3	1.4	1.3	2.5	74	40	650		1.2	2.5	3.2
	1e+03	0.05	4800	2e3	230	4800	210	3.3e4	390	260		1400										820	1	200	150	130	260	1e4	1600	8.2e4	68e + 2/1e6	190	320	510
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 106: 20-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]				Д	(1+	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	874	-	2.1	22		77e-8/5e4	25	1.1	1						23		19e-6/2e3	1.1	•		8.9	-			5.8	94e-5/1e6						1.6	2.7
	1e-05	854		1.8	4.2		3.1	21	1.1	-		•				18		5.9	-			6.9				4.7	8700						1.6	2.8
	1e-04	810		1.8	3.9		1.3	21	1.1	П		•		•		16		5.6	П	-		7.2		•		4.3	3500	•		•			1.7	2.9
	1e-03	746		1.7	3.6		1.1	20	1.2	1.1				-		15		7	П			2.8				4	2200						1.8	3.1
	1e-02	682		1.7	3.1		1.1	19	1.3	1.2		•		-		13		1.2	П	•		8.5				3.3	1e3	-					77	3.4
biosc	1e-01	537		1.9	3.1		П		1.6			•		•		12		1.1	1.2	-		11		•		3.3	1e3	•		•			2.4	4.2
10 Ellipsoid	П	433			2.6		1	22	1.8	1.7	72e-1/1e6				67e-1/1e4	10		1.1	1.3			13		30e+0/1e4	57e-1/2e4	2.6	200						2.9	4.7
6 50	1e+01	371	16e+1/2e5	1.8	1.5		1	20	1.9	1.7	3400		-		34	6.5	-	П	1.3			11		390	30	1.7	300		84e+1/1e5			27e+1/1e4	3.1	4.8
	1e + 02	263			1		1	21	1.9	1.7	1200			36e+1/1e5	15	3.4		1	1.3	22e + 2/1e4		12	-	5.3	4.2	1.1		12e + 2/1e5	Ť	41e+1/1e5			3.8	5.7
	1e+03	94	330	3.9	1	42e+3/2e3	1.6	36	3.1	2.5	390	17e+3/2e3	94e+2/5e3	480	6.6	3.1	15e+3/1e5	1.7	2.3	290	18e + 3/1e4	11	72e+2/4e3	2.9	2.5	1.2	20	5100 1	1200	650	11e+4/1e6	27	7.2	8.2
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 107: 20-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-EŠ [29]	VNS (Garcia) [11]
	1e-07	742	٠	1.9	6.1	٠		26	-	7	1500	•			٠	∞	٠	٠	н	•		7.8		•		6.5	089	٠	2e3	12e-4/1e5	٠		1.8	1.4
	1e-05	614		1.8	5.8			25	1.2	2.3	086			-	75e-5/1e4	9.7			-								670			1200			2.1	
	1e-04	554		1.8	5.5		31e-4/1e4	24	1.3	2.4						7.3			1			10	-			6.2	620	34e-4/1e5	140	099			2.3	1.6
		488					150	22	1.4	2.4	730				36	7.1		74e-4/1e3	1			11				6.1	610	086	130	480			2.5	1.8
Discus	1e-02	429	12e-2/2e5	1.6	5.1		2.6	20	1.5	2.3	550				18	6.5		2.5	1			12			75e-3/2e4	5.6	260	190	110	240			2.8	1.9
11 I	1e-01	314	2200	1.9	5.7	٠	1.3	22	1.9	2.4	420	٠		79e-1/1e5	21	7		Н	1.2	٠		14		16e-1/1e4	74	5.8	580	190	110	220			3.7	2.4
	1e+00	111	086	3.7	11	٠	П	44	5.1	5.1	069	•		1.3e4	45	14	20e+0/1e5	П	2.7	•		35		290	24	13	1200	410	190	440			10	6.2
•	1e+01	50.1	490	ы	15	14e+1/2e3	П	64	10	7	570	95e+0/2e3	76e+0/5e3	1900	22	18	2.9e4	1.2	4.4	•		63	62e+0/4e3	41	17	15	1600	440	140	570	67e+0/1e6	11e+1/1e4	20	12
	1e+02	24.1	29	3.3	11	250	1	71	18	5.6	120	110	23	74	40	9.7	120	1.5	5.2	22e+1/1e4	29e+1/1e4	30	53	5.2	4.4	15	1400	52	46	210	930	880	34	23
	1e+03	1.35	5	7	9	4.9	2.9	100	4.1	2.4	4.4	8.2	2.1	4.3	ъ	4	4.2	ъ	4.4	7	2.4	2.6	1	3.3	4.4	1.5	2100	130	4.1	4.4	5.5	2.9	3.1	44
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 108: 20-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	$AMaLGaM\ IDEA\ [4]$	avg NEWUOA [31]	BayEDAcG~[10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER~(Han)~[16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	691		8.4	21		45	1100	7	3.6	13e+0/1e6			57e-3/1e5	100	1.3		3.4	3.9			47	16e-4/4e3			1							2.5	4.4
	1e-05	620		9.2	12		1.8	390	1.9	3.4	2.3e4			2300	35	1.2		1.1	3.6	·				54e-4/1e4			٠					٠	2.4	4.1
		321		12			2.5	360	3.3	9	4.4e4			4400	37	2.1		1	9	-	-	26	87	460	21e-3/2e4	1.8							4.3	
	1e-03	207	33e-3/2e5	15	24		1.6	380	4.5	8.3	6.8e4			0089	38	2.9		П	7.8			150	43	340	1400	2.2						70e-2/1e4	5.9	8.3
$_{ m cigar}$	1e-02	158					1.7	400	4.9	9.6	8.9e4			2600	27	3.3		П	8.1			140	24	28	400	က				64e-1/1e5		910	8.9	9.1
12 Bent	1e-01	137	840	13	18	21e-1/2e3	1.6	420	4.5	6.6	4.7e4		25e+3/5e3	720	26	က		1	7.2	76e-1/1e4	16e+0/1e4	130	12	22	61	က	52e-1/1e6	37e-1/1e5		5100		210	6.4	9.9
	1e+00	6.96	240	12	15	22	1.6	440	4	9.6	2.8e4	77e-1/2e3	240	260	15	2.8		н	9.9	410	089	8.6	8.4	26	45	3	6.7e4	2100	64e-1/1e5	3e3		26	6.7	5.9
	1e+01	52.1	87	19	11	42	1.6	510	က	7.7	2.2e4	89	420	300	11	2.7	14e + 2/1e5	П	8.7	26	230	7.4	1.1	19	13	က	1.2e4	420	1700	200		14	5.8	5.9
	1e + 02	29.6	06	29	1.3	09	1.6	520	က	3.1	16	48	330	250	6.7	2.5	1.5e4	1.1	13	က	35	12	1.3	5.5	4.1	1.3	1.7	170	550	270		П	2.8	3.4
	1e+03	25.4	80	28	1.4	55	1.6	450	က	1.8	13	39	340	230	2.3	2.4	7100	1.1	12	2.9	29	11	1.3	2.7	2.3	1.3	1.7	160	640	240	28e+6/1e6	1	2.7	3.3
	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	$avg \ NEW UOA$	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 109: 20-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	POP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	1510		1.7	67e-5/2e4			23	က	14	51e-6/1e6				30e-4/1e4	330			1								2e3		-			18e-4/1e4	73	1500
	1e-05	1220		1.7	170		96e-5/2e4	23	2.3	6.3	3700				120	130		16e-4/1e3	1	53e-3/1e4		27e-3/1e5		35e-3/1e4	36e-4/2e4	43e-4/9e3	410		22e+0/1e5			120	1.9	540
	1e-04	1090	٠	1.7	57		87	23	1.6	2.2	1200				40	110		4.2	1	130		1300				130			1300			43	1.9	320
	1e-03	937	14e-3/2e5	1.7	14	٠	23	23	1.5	4.2								4.5	-	160		1500	60e-2/4e3	22	86	19	20	·	1500		•	17	1.7	130
ridge	1e-02	175		7.7	30		1	100	6.2	11	1600			12e-2/1e5	49	75		1.1	4.4	150						37			8e3			31	œ	180
13 Sharp 1	1e-01	138	420	∞	14		1	100	5.1	10								1.1	4.3	89	12e+0/1e4	200	61	09	31	9.3	26	59e-1/1e5	1e4	50e-1/1e5		8.3	7.7	120
	1e+00	101	130	∞	5.3	49e+0/2e3	1	100	2.7	7.1	230	53e-1/2e3		330	9	17	10e+0/1e5	1.1	4.1	19	1400	390	37	29	18	က	13	1.4e4	6400	4100		4.2	5.4	55
,	1e+01	32.6	26	18	1.5	910	1.7	210	4.3	4.9	380	64	13e+1/5e3	160	1.8	9.3	5100	7	8.7	19	460	11	34	11	12	1	7.4	1700	6200	2300		2.5	5.8	4.3
	1e+02	8.51	130	41	1.8	150	1.6	410	5.1	3.4	22	40	2400	330	3.6	4.8	200	3.1	18	8.7	310	22	8.4	6.4	3.4	1	3.3	200	1800	310	92e+1/1e6	7	ಬ	6.2
	1e+03	3.21	49	18	2.1	45	1.2	260	3.6	2.9	15	11	15	110	4.1	4.3	290	5.7	9.2	6.2	180	7.3	1.3	2.3	1.5	1	2.5	100	6.1	12	1.5e5	2.5	3.6	5.8
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 110: 20-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	783	-	1.9	26		18e-7/1e4	22	1.2	1.2	43e-7/1e6	•		•	12e-7/1e4	59		28e-7/400	н			9		44e-7/1e4	26e-7/2e4	43	71e-8/1e6	•					1.6	1.4
	1e-05	82.4	34e-6/2e5	14	9.3		1.1	180	6.2	5.6	5200			21e-6/1e5	20	13		1	6.9			23		36	21	9.1	470	94e-6/1e5	44e-6/1e5	78e-6/1e5		71e-6/1e4	10	7.8
		9.99																		6.7			7									26	8.8	6.4
ent powers	1e-03	46.6	190	17	1.3	15e-3/2e3	1.2	210	4.1	2.3	75	44e-4/2e3		130	2.6	2.7	72e-4/1e5	1.1	7.8	22	46e-4/1e4	14	3.2	2.9	က	П	4.8	130	54	380		7.4	8.9	ಬ
of differ	1e-02	22.5																														1.8	3.7	5.1
14 Sum	1e-01	15.2	78	30	1.6	150	77	350	3.7	2.3	12	22	290	200	3.6	2.8	480	2.1	13	5.6	120	13	3.4	3.9	3.5	П	77	120	20	170		1.3	3.2	4.4
	1e+00	12	56	22	1.5	29	1.8	270	2.9	1.9	10	14	150	140	က	2.4	320	2.2	9.3	5.2	110	11	2.1	က	2.1	1	1.8	99	12	100	80e-1/1e6	1.2	2.6	3.9
	1e+01	3.75	41	19	2.7	55	2.7	280	3.9	3.1	16	14	8.4	82	5.9	4.1	280	ಬ	11	8.4	190	7.6	Н	2.3	73	1.5	2.2	110	6.7	23	4.5e4	2.4	3.3	6.4
	1e + 02	0.02	3.7	4.7	38	7.2	23	930	7.6	18	93	13	1	3.8	47	5.7	4.1	7.5	4.3	83	910	4.1	1	23	11	20	17	3100	7.2	4.6	5.3	80	14	3.6
	1e+03	0.02	1	1	1	1	1	П	1	П	1	1	П	П	Н	П	П	1	Н	П	П	1	1	1	П	П	1	П	н	П	П	П	Н	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 111: 20-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	[POP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	23000		1.2		•			1	•		•		•		•		•	5.2														6.4	•
	1e-05	22500		1.2		٠			1										5.3														1.1	•
	1e-04	16100		1.7		٠			1.4										7.4														1	•
	1e-03	16000		1.7					1.4										7.4									-				-	-	
	1e-02	15800		1.7		•			1.4			-				-			7.5									-				-	Н	
15 Rastrigin	1e-01	15600		1.7					1.4										7.5									-				-	-	
15 Ra	1e+00	7330		77					77					80e-1/1e5					14			60e-1/1e5											П	60e-1/6e6
÷	1e+01	1520	20e+0/2e5	1.5	95e+0/1e4	93e+0/2e3		67e+0/5e4	1	85e+0/1e4	11e+1/1e6		10e+1/5e3	36	77e+0/1e4	92e+0/5e4	25e+0/1e5		2.8			6.9	10e+1/4e3	80e+0/1e4	54e+0/2e4	12e+1/6e3	82e+0/1e6	34e+0/1e5	49e+0/1e5	51e+0/1e5			1.1	310
	1e+02	83.5	10	7.1	120	23	25e+1/6e3	89	1.2	73	3e4	12e+1/2e3	110	22	81	550	59	25e+1/1e3	3.1	14e+1/1e4	22e+1/1e4	3.7	20	54	17	1100	5400	23	92	220	26e+1/1e6	35e+1/1e4	П	1.5
	1e + 03	90.0	18	12	26	13	029	1700	17	33	160	12	-	20	120	21	21	13	12	130	2400	10	-	28	22	59	340	2700	16	14	16	7700	14	22
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 112: 20-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 113: 20-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

17 Scha					ffer	F7, condition 10	ion 10				
$\Delta { m ftarget}$	1e+03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.05	0.05	3.15	51.5	200	612	1530	2230	2810	4020	${ m ERT_{best}/D}$
ALPS	1	1.5	19	28	5100	16e-2/2e5					ALPS [17]
AMaLGaM IDEA	1	1.1	14	7.7	4.3	5.1	4.7	3.5	5.1	5.4	AMaLGaM İDÉA [4]
avg NEWUOA	П	2.1	2.4	29e-1/4e4							avg NEWUOA [31]
$\overline{ ext{BayEDAcG}}$	1	77	19	19	48	15e-2/2e3			٠		BayEDAcG [10]
BFGS	1	350	360	56e-1/2e4							BFGS [30]
Cauchy EDA	1.1	200	260	120	62	30	16	16	23	37e-7/5e4	Cauchy EDA [24]
BIPOP-CMA-ES	1	4	2.5	П	1	1	1.2	1.4	1.3	1.4	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	П	1.9	29	49e-1/1e4					٠	٠	(1+1)-CMA-ES [2]
DASA	П	8.5	6.6e4	57e-1/1e6					-		DASA [19]
DEPSO	1	1.5	8.3	18	150	43e-2/2e3				•	DEPSO [12]
DIRECT	П	1	1.8	55	55e-2/5e3						DIRECT [25]
EDA-PSO	1	1.3	13	36	20	22	10	8.1	18	21	EDA-PSO [6]
full NEWUOA	Н	9.4	13	37e-1/1e4					•		full NEWUOA [31]
G3-PCX	П	1.2	4	35e-1/5e4		٠				•	G3-PCX [26]
simple GA	П	1.2	57	92	7100	21e-2/1e5					simple GA [22]
GLOBAL	1	1.6	6.2	44e-1/3e3							GLOBAL [23]
iAMaLGaM IDEA	1	1.5	6.4	2.9	1.5	1.4	6.1	22	59	23	iAMaLGaM IDEA [4]
LSfminbnd	П	8.9	066	82e-1/1e4					٠	·	LSfminbnd [28]
LSstep	н	52	1700	78e-1/1e4	-					٠	LSstep [28]
MA-LS-Chain	П	1.3	3.5	5.1	7.7	10	12	33	59	98	MA-LS-Chain [21]
MCS (Neum)	П	1	1	42e-1/4e3	-				٠	٠	MCS (Neum) [18]
NELDER (Han)	П	1.3	240	62e-1/1e4					٠	·	NELDER (Han) [16]
NELDER (Doe)	П	4	2.1	46e-1/2e4	-						NELDER (Doe) [5]
NEWUOA	П	5.1	16	38e-1/8e4							NEWUOA [31]
(1+1)-ES	П	5.7	5.2e4	73e-1/1e6						•	(1+1)-ES [1]
POEMS	Н	540	94	25	19	200	270	11e-3/1e5	٠		POEMS [20]
PSO	П	1.1	3.2	2500	10e-1/1e5						PSO [7]
PSO_Bounds	П	1.3	က	830	85e-2/1e5						PSO_Bounds [8]
Monte Carlo	1	1.1	120	50e-1/1e6							Monte Carlo [3]
Rosenbrock	1	1.6e4	2.1e4	19e+0/1e4						•	Rosenbrock [27]
IPOP-SEP-CMA-ES	П	1.4	5. 8.	4	3.1	1.6	п	-	П	П	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1.2	5.3	1.2	1.5	5.8	34	2500	10e-5/4e6		VNS (Garcia) [11]

Table 114: 20-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	7330	-	3.7				25e-6/5e4	1.6					47e-5/1e5					18														1	
	1e-05	6530		8.8				38	1.7					220					16														-	
	1e-04	4980		2.7				13	1.8					83					18			43e-4/1e5											1	
on 1000	1e-03	3380	-	1.7				12	1.1					18					19			210						38e-2/1e5					1	40e-4/4e6
onditic	1e-02	1430		-				16	1.6					5.4					3.7			28				-		066		-			1.2	250
18 Schaffer F7, condition	1e-01	876	69e-2/2e5	1		95e-2/2e3		15	1.2			16e-1/2e3	12e-1/5e3	5.2			73e-2/1e5		2.3			26						210		22e-1/1e5			1.1	14
18 Sch	1e+00	199	430	က	10e+0/6e4	17		42	2.4	16e+0/1e4	25e+0/1e6	49	110	15	12e+0/1e4	14e+0/5e4	310		1.2	26e+0/1e4		3.6			14e+0/2e4	11e+0/8e4		140	29e-1/1e5	7100			1	1
	1e+01	31	15	7.3	3200	15	21e+0/2e4	96	1	4800	4.6e5	7.1	9.1	30	950	7100	92	17e+0/4e3	2.7	4500	31e+0/1e4	3.6	17e+0/4e3	20e+0/1e4	4300	1.2e4	24e+0/1e6	21	240	69	18e+0/1e6	97e+0/1e4	1	1.3
	1e + 02	0.14	3.8	3.8	19	6.4	920	270	5.3	12	09	6.7	6.5	4.2	23	2.5	7.8	5.9	3.4	31	610	5.8	1	830	6.5	320	2.9e5	1100	5.2	2.4	7.7	4.8e4	8.5	2.2
	1e+03	0.02	1.1	1.2	1.3	П	П	2.2	1	П	П	П	П	1.1	1.1	1.1	1.1	1.1	1.2	2.2	1.1	1.1	1	П	П	3.9	П	5.1	1.1	1.1	1.1	1.4e4	-	1
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 115: 20-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

				19 Criewar	ank-Rosen	brock FRI	6.5				
$\Delta { m ftarget}$	1e+03	1e + 02	1e + 01	1e+00	1e+00 $1e-01$ $1e-02$ 1	$\frac{1e-02}{1}$	1e-03	1e-04	1e-05	1e-07	Δ ftarget
ERT_{best}/D	0.05	0.02	0.05	0.05	17200	2.34e5	3.11e5	3.33e5	3.34e5	3.37e5	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	-	-	1200	6.2e5	31e-2/2e5	•				•	ALPS [17]
AMaLGaM IDEA	П	1.2	740	3.4e4	7.6	4.5	8. 8.	8.5	8.2	8.1	AMaLGaM ÌDÉA [4]
avg NEWUOA	1	2.9	210	8e6	20e-1/1e5						avg NEWUOA [31]
$_{ m BayEDAcG}$	1	1.1	1500	41e-1/2e3			٠			•	BayEDAcG [10]
BFGS	1	170	1.2e6	12e+0/1e4							BFGS [30]
Cauchy EDA	1	3.4	8400	34e-1/5e4			٠	•		•	Cauchy EDA [24]
BIPOP-CMA-ES	1	1	170	2.4e4	1.2	1	1	1	1	1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	1400	2.8e6	18e-1/1e4		٠			•	(1+1)-CMA-ES [2]
DASA	1	2.1	1.8e6	58e-1/1e6							DASA [19]
DEPSO	1	1.1	430	50e-1/2e3						•	DEPSO [12]
DIRECT	1	1	П		21e-2/5e3						DIRECT [25]
EDA-PSO	П	1.1	4600	2.8e7	26e-1/1e5					•	EDA-PSO [6]
full NEWUOA	П	1.3	480	21e-1/1e4	٠.						full NEWUOA [31]
G3-PCX	1	1.1	800	26e-1/5e4	٠		٠			•	G3-PCX [26]
simple GA	1	1.1	1.4e4	6.5e5	44e-2/1e5						simple GA [22]
GLOBAL	1	1	2600	57e-1/3e3	٠.		•		•	•	GLOBAL [23]
iAMaLGaM IDEA	1	1.1	460	1.8e6	44	72e-3/1e6					iAMaLGaM IDEA [4]
LSfminbnd	1	2.6	1200	38e-1/1e4		•	٠	•		•	LSfminbnd [28]
LSstep	1	130	7800	41e-1/1e4							LSstep [28]
MA-LS-Chain	1	1.1	280	2.9e4	13	11e-2/1e5	٠			•	MA-LS-Chain [21]
MCS (Neum)	1	1	-	1	1	25e-2/4e3					MCS (Neum) [18]
NELDER (Han)	1	1	160	1.4e6	19e-1/1e4		٠	•			NELDER (Han) [16]
NELDER (Doe)	1	1	73	4.3e5	96e-2/2e4						NELDER (Doe) [5]
NEWUOA	-	1.1	92	4.3e6	12e-1/1e5					•	NEWUOA [31]
(1+1)-ES	1	2.2	6.3e6	56e-1/1e6							(1+1)-ES [1]
POEMS	1	170	6200	1.4e6	94e-2/1e5		•	•			POEMS $[20]$
PSO	1	1.1	380	32e-1/1e5							PSO [7]
PSO_Bounds	-	1.1	820	31e-1/1e5						•	PSO_Bounds [8]
Monte Carlo		1.1	5.9e5	78e-1/1e6							Monte Carlo [3]
Rosenbrock	1	3.1e4	33e+0/1e4					•			Rosenbrock [27]
IPOP-SEP-CMA-ES	1	1	150	2.7e4	8.7	29e-2/1e4					IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1	330	8.2e4	21e-2/6e6	•		٠		•	VNS (Garcia) [11]

Table 116: 20-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [17]	AMaLGaM İDÈA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-0.7	2.82e5		•					-	•		•		•		•						•		•				•						
	1e-05	2.8e5	•	•		•			Н	•		•		•		•						•		•				•				•		•
	1e-04	2.78e5							1			•				•								•				•						
	1e-03	2.77e5	•	•		•			1	•		•		•		•		•				•		•				•				•		•
$\sin(x)$	1e-02	2.76e5	•	•		•			1					٠				•		•		24e-2/1e5		•				•						•
20 Schwefel $x^*sin(x)$	1e-01	1.55e5	47e-2/2e5	68e - 2/1e6	12e-1/2e4	•	90e-2/2e4	•	-	11e-1/1e4	40e-2/1e6	•		63e-2/1e5	12e-1/1e4	•	32e-2/1e5	99e-2/4e3	88e-2/1e6	97e-2/1e4	10e-1/1e4	4.8	12e-1/4e3	•	11e-1/2e4	10e-1/2e4	88e-2/1e6	30e-2/1e5	11e-1/1e5	53e-2/1e5		97e-2/1e4	11e-1/1e4	30e-2/1e7
	1e+00	2310	9.2	88	110	31e-1/2e3	5.8	27e-1/5e4	9.5	21	2.1	21e-1/2e3	18e-1/5e3	15	64	12e-1/5e4	2.8	1.6	240	5.9	11	3.3	12	13e-1/1e4	28	15	110	1	20	11		2.9	13	1.1
	1e+01	4.09	23	20	1.3	49	2.1	340	4.3	3.4	20	15	31	230	3.1	ಬ	200	5.2	14	11	280	9.4	4.7	3.5	2.5	-	3.1	120	17	98		5.6	4.5	7.1
	1e+02	3.53	54	22	1.4	51	1.9	330	4.4	3.6	21	16	36	230	3.4	5.4	520	5.6	14	11	260	9.7	5.4	3.4	2.1	П	3.2	120	15	62	15e + 2/1e6	2.7	4.7	7.7
	1e+03	2.78	48	20	1.8	47	1.7	310	4.7	3.5	22	15	17	210	4.2	5.6	470	9.9	14	11	230	œ	5.9	3.1	1.9	П	3.4	130	12		1.7e6			8.1
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 117: 20-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	879	11	1300	2.9		7.3		39	4.7	83	20e-1/2e3		460	3.7	4.1		2.1	490	16	170	180	32	20	1.8	1	7.6		1600	1600		3.8	47	25
	1e-05	778	8.6	1400	3.3		4.3		43	5.3	93	19		520	4.1	4.6	20e-1/1e5	1	540	18	190	210	23	22	73	1.1	8.6		1800	1800		4.3	53	27
	1e-04	754	9.2	1500	3.3	٠	4.4		45	5.4	96	9.3		530	4.2	4.8	890	1	520	19	190	210	24	23	7	1.1	8. 8.	٠	1900	1900		4.4	54	28
aks	1e-03	732	8.3	1500	3.4	•	4.5		46	5.6	66	8.9		550	4.4	4.9	006	Н	530	19	200	220	22	23	2.1	1.2	9.1	•	1900	1900		4.5	26	56
ner 101 peaks	$1e-\overline{0}2$	716	7.7	1500	3.5	•	4.6		47	5.7	100	8.6		260	4.5	ಬ	400	Н	540	20	200	230	22	24	2.1	1.2	9.3	•	2e3	2e3		4.6	22	56
lagi	$1\overline{e}$ -01	705	7	1500	3.5		4.6		48	5.8	100	8.3 8.3	19e-1/5e3	570	4.5	5.1	400	1	540	20	200	230	26	24	7	1.2	9.4		2e3	2e3		4.7	58	29
21 Gal	1e+00	327	13	2400	5.7	60e-1/2e3	5.5	32e-1/5e4	55	7.6	100	13	27	820	3.4	7.2	620	Н	029	27	200	310	32	20	4	2.2	13	67e-1/1e5	4300	1200	٠	9.2	20	55
	1e+01	28.1	14	51	3.2	55	1.9	1e3	3.2	3.6	240	22	3.3	35	7.4	12	06	1	10	30	120	140	26	7.7	9.7	1.7	8.3	2500	1800	260	26e+0/1e6	7.8	15	11
	1e + 02	0.02	1	Н	Н	1	Н	П	1	1	Н	Н	Н	Н	Н	Н	Н	Н	П	Н	1	1	Н	Н	н	Н	Н	1	Н	Н	Н	Н	Н	1
	1e+03	0.02	1	-	1	П	1	1	1	П	1	-	-	П	1	-	-	П	-	-	-	-	1	-	1	П	1	П	-	-	-	-	-	1
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	$iAMaLGaM\ IDEA$	LSfminbad	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 118: 20-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	5 1e-07 Δ ftarget		130 ALPS [17]	AMa	2.4 avg NEWUOA [31]		14 BFGS [30]	. Cauchy EDA [24]	37 BIPOP-CMA-ES [15]	1 $(1+1)$ -CMA-ES [2]		. DEPSO [12]	DIRECT [25]		11 full NEWUOA [31]	4 G3-PCX [26]	. simple GA [22]	1.3 GLOBAL [23]	. iAMaLGaM IDEA [4]	7.2 LSfminbnd [28]	. LSstep [28]	. MA-LS-Chain [21]	. $MCS (Neum) [18]$	_	1.5 NELDER (Doe) [5]	1.2 NEWUOA [31]		. POEMS [20]		210 PS(2.2 Rosenbrock [27]	. IPOP-SEP-CMA-ES [29]	440 VNS (Garcia) [11]
	1e-0	1340	180	٠	12	٠	9.5		190	ro	200	٠		•	53	20		П		34		٠			7.5			٠		1100		11	٠	1100
	1e-04	1310	110		12		7.4		190	5.1	200				54	21		1		35			20e-1/4e3	55	7.7	6.2	10			1100		11		1200
Ω.	1e-03	1250	98		13		7.7		200	5.3	210				22	22		1		36										1100		12		1200
l peaks	$1\bar{e}$ -02	1210	81		13		7.9		210	5.5	210				59	22		1		36			48	59	8.2	9.9	11			1200		12		1200
Gallagher 2	1e-01	1170	42	69e-2/1e6	14	20e-1/2e3	8.1	51e-1/5e4	210	5.6	220	26e-1/2e3	71e-2/5e3	26e-1/1e5	09	23	20e-1/1e5	1	69e-2/1e6	37		20e-1/1e5	20	61	8.3	8.9	11	51e-1/1e5	20e-1/1e5	1200	-	12	69e-2/1e4	1300
22 (1e+00	279	9.7	1900	5.6	31	1.8	1200	13	4.2	75	16	16	1e3	12	9.9	1500	1	440	16	51e-1/1e4	810	20	18	6.5	4.9	ಬ	5e3	410	730	30e+0/1e6	4.3	23	29
	1e + 01	23.3	19	8.2	7	34	2.2	470	8.9	3.5	34	20	8.6	1600	2.5	11	110	1.1	8.1	29	280	3.8	17	17	5.2		11	2300	ಬ	089	6.4e5	3.4	6.2	14
	1e+02	0.02	1	1	1	1	1	1.1	1	1	1	1	1	П	1	1	1	1	1	1	1	П	1	н	1	П	1	П	1	П	П	П	1	1
	1e + 03	0.05	1	1	1	1	1	1.1	1	П	1	1	1	П	1	1	1	1	1	П	1	П	1	Н	1	П	1	П	-	П	-	П	1	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 119: 20-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [17]	$AMaLGaM\ IDEA\ [4]$	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	41900		_		•			1.2	•						•			3.2	•		•												•
	1e-05	40600		1				-	1.2									-	3.3															
	1e-04	25500		1		•		•	1.9	•		-				-			2.5	-		•												٠
	1e-03	24400		-1				•	7										5.1															23e-3/2e6
unras	1e-02	18300		-	·				1.7					-	25e-2/1e4				2.3			61e-3/1e5		20e-2/1e4	17e-2/2e4	39e-2/8e3		59e-3/1e5					81e-3/1e4	1700
ension 23 Katsiiiras	1e-01	3370	29e-2/2e5	1.1	20e-2/2e4		13e-1/5e3			37e-2/1e4			38e-2/5e3	-	44	30e-2/3e4	12e-1/1e5	43e-2/500	1.6	10e-1/1e4	91e-2/1e4	6.8	11e-1/4e3	43	98	32	31e-2/1e6	13	95e-2/1e5	12e-1/1e5	11e-1/1e6	50e-2/4e3	3.8	10
ded by dım	1e+00	80.7	82	23	4.7	23e-1/2e3	300	19e-1/5e4	32	9.1	64	26e-1/2e3	52	16e-1/1e5	7	7.8	4600	1	5.4	210	81	7.1	120	3.3	1.4	3.5	32	42	1600	8400	5.5e4	4.6	18	25
lue divi	1e+01	0.16	1.9	1.7	15	1.6				2.8		1.6	4.1	2.1	14	2.8	1.7	2.8	1.9	4.4	2.5	1.8	1.3	2.1	1.9	12	27	23	2.5	က	5.6	1.7	4.9	1
tnis va	1e+02	0.02	1	1	1	П	-	1	1	П	1	-	-	1	-	-	1	1	1	-	1	П	-	-	1	-	1	1	1	-	-	-	1	1
o reach	1e+03	0.02	1	П	П	1	П	1	Н	1	Н	Н	Н	Н	П	П	Н	1	П	П	Н	1	П	Н	П	Н	Н	П	1	П	Н	Н	Н	1
function evaluations to reach this value divided by dimension 23	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 120: 20-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

$\Delta ext{ftarget}$ ERT $_{ ext{bost}}/ ext{D}$	1e+03	10+03		1-100	10-01	5		10.01	200	10.07	2
$ERT_{b,ce}^{\dagger}/D$		10 01	1e+01	1e+00	TO-OT	Te-0.7	1e-03	505	25-51	TOLOT	Δ ttarget
	0.05	331	00699	3.74e5	2.6e6	2.6e6	2.6e6	2.6e6	2.6e6	2.6e6	$\overline{\mathrm{ERT}_{\mathrm{best}}}/\mathrm{D}$
ALPS	П	5.7	22e+0/2e5			•		•	•		ALPS [17]
AMaLGaM IDEA	1.1	4.2	5.1	19	23e-1/1e6	٠		•		٠	AMaLGaM İDEA [4]
avg NEWUOA	14	3.3	74e+0/1e4								avg NEWUOA [31]
$_{ m BayEDAcG}$	П	44	11e+1/2e3		•	•	•				BayEDAcG [10]
BFGS	∞	31e+1/6e3									BFGS [30]
Cauchy EDA	1.7	92	91e+0/5e4	•	٠		•	•			Cauchy EDA [24]
BIPOP-CMA-ES	1	5.5	1	П	1	1	П	-	П	-	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	24	90e+0/1e4		•	•		•			(1+1)-CMA-ES [2]
DASA	1.1	16e+1/1e6									DASA [19]
DEPSO	1.1	14e+1/2e3			٠			•			DEPSO[12]
DIRECT	1	15e+1/5e3									DIRECT [25]
EDA-PSO	1.1	28	86e+0/1e5	٠	•			•	٠	٠	EDA-PSO [6]
full NEWUOA	3.7	4.5	71e+0/1e4								full NEWUOA [31]
G3-PCX	1.1	190	11e+1/5e4	•	٠		•	•			G3-PCX [26]
simple GA	1.1	35	42e+0/1e5								simple GA [22]
GLOBAL	1	21e+1/1e3		٠	•			•	٠	٠	GLOBAL [23]
iAMaLGaM IDEA	1.1	1.3	2.8	21e-1/1e6							iAMaLGaM IDEA [4]
LSfminbnd	7.1	15e+1/1e4		•	٠			•			LSfminbnd [28]
LSstep	3.1	210	19e+1/1e4								LSstep [28]
MA-LS-Chain	1.1	2.1	42	25e+0/1e5	•			•	٠	٠	MA-LS-Chain [21]
MCS (Neum)	П	12	10e+1/4e3	•							MCS (Neum) [18]
NELDER (Han)	П	49	10e+1/1e4		٠	٠	•	•		•	NELDER (Han) [16]
NELDER (Doe)	1	3.7	50e+0/2e4								NELDER (Doe) [5]
NEWUOA	6.5	4.3	83e+0/8e3		٠	•		•	•		NEWUOA [31]
(1+1)-ES	4.1	3100	93e+0/1e6	•							(1+1)-ES [1]
POEMS	2.7	10	46e+0/1e5	•	٠			•			POEMS [20]
PSO	1	63	60e+0/1e5								PSO [7]
PSO_Bounds	1.1	81	66e+0/1e5	•	٠			•			PSO_Bounds [8]
Monte Carlo	П	26e+1/1e6									Monte Carlo [3]
Rosenbrock	1.4	37e+1/1e4	-	•	٠			•			Rosenbrock [27]
IPOP-SEP-CMA-ES	1	1	1	23e+0/1e4							IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1.8	89	88e-1/1e7	٠						VNS (Garcia) [11]

Table 121: 40-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	2.08	2800	1200	3.2		1	58	39	340			520	29	1	33		51
		1e-05	2.08	1700	920	3.2	64e-6/2e3	-1	45	31	260			410	55	П	26		41
			2.08																
		1e-03	2.08	1100	069	3.2	790	1	34	23	180		45e-3/1e5	290	42	1	19		30
	$_{ m Sphere}$	$^{-}$ 1e-02	2.08	870	260	3.2	650	1	28	19	130	15e-2/2e3	6.8e5	240	35	1	16		25
usion	<u>-</u>	1e-01	2.08	640	430	3.2	200	1	21	15	94	1.4e4	2.3e4	180	28	1	13		19
y anne		1e+00	2.08	420	290	3.2	350	1	15	11	22	360	3e3	130	21	Н	9.5		14
iviaea r		1e+01	2.08	220	150	3.2	210	1	9.6	7	33	65	1500	73	13	1	5.8		8.7
this value d		1e + 02	2.07	46	46	3.2	09	1	3.1	က	13	12	400	17	3.9	1	2.5	13e+1/1e6	က
o reach		1e + 03	0.025	Т	1	1	П	1	1	Н	П	1	1	П	1	1	П	1	П
inction evaluations to reach thi		$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 122: 40-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this	to reach this	value c	divided by di	mension							
			•	2 Ellip	2 Ellipsoid separable	$_{ m rable}$					
Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT}_{ m best}/{ m D}$	74.3	9.96	118	137	155	172	190	208	221	256	$\text{ERT}_{ ext{best}}/ ext{D}$
ALPS	14	15	17	19	20	23	26	32	46	140	ALPS [17]
AMaLGaM IDEA	14	14	14	14	14	14	14	14	14	14	AMaLGaM İDEA [4]
avg NEWUOA	2	4.7	9	6	10	12	12	13	13	14	avg NEWUOA [31]
$_{ m BayEDAcG}$	13	13	13	14	33e-2/2e3						BayEDAcG [10]
BFGS	4.3	5.5	9	6.1	5.9	5.6	5.4	ಬ	4.8	4.4	BFGS [30]
BIPOP-CMA-ES	7.7	8.6	11	10	10	9.2	6	8.4	∞	7.1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	9	8.1	9.3	9.2	9.2	9.3	8.7	8.2	7.8	8.9	(1+1)-CMA-ES [2]
DASA	1.7	2.1	2.5	2.8	က	3.3	3.4	3.5	3.7	8. 8.	DASA [19]
DEPSO	28	310	65e+1/2e3		-						DEPSO[12]
simple GA	610	2200	24e+1/1e5						٠		simple GA [22]
iAMaLGaM IDEA	6.2	7.4	7.7	7.7	7.7	7.6	7.4	7.3	7.4	7.3	iAMaLGaM IDEA [4]
NELDER (Han)	1.1	П	1	1	П	П	1	1	1	П	NELDER (Han) [16]
NEWUOA	П	2.6	4.4	6.4	8.8	6.6	11	12	13	13	NEWUOA [31]
(1+1)-ES	140	630	1500	2500	3400	4400	8900	1.4e4	6.8e4	93e-5/1e6	(1+1)-ES [1]
Monte Carlo	12e+5/1e6										Monte Carlo [3]
IPOP-SEP-CMA-ES	1.4	1.5	1.5	1.4	1.3	1.3	1.2	1.2	1.2	1.1	IPOP-SEP-CMA-ES [29]

Table 123: 40-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG $[10]$	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	1.59e5	•							1				٠				٠
		1e-05	1.59e5		•				•		1		•				•		
		1e-04	1.59e5								1								
		1e-03	1.59e5	•							1								
	$_{ m rable}$	1e-02	1.59e5								1								
	n sepai	$1e-0\overline{1}$	1.59e5	•							1				٠				٠
mension	3 Rastrigin separable	1e+00	24600		11e+0/1e6						1		11e+0/1e5	90e-1/1e6					
livided by di	•	1e+01	440	16e+0/1e5	2800				12e+0/3e5		-		420	770					16e+0/1e4
this value d		1e+02	116	32	16	38e+1/1e4	24e+1/2e3	64e+1/8e3	1.1	33e+1/1e4	П	28e+1/2e3	39	4.6	38e+1/1e4	46e+1/7e3	42e+1/1e6	87e+1/1e6	1.2
to reach		1e + 03	5.56	11	13	21	19	110	1	4.1	3.5	3.1	92	4	1.9	7.7	300	1.5e4	1
function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 124: 40-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median final function value and the median number of function analysisms to reach this value divided by dimension

		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	nan	•	•										•				
		1e-05	nan	•	•		•		•		•		•	•	•		•		
		1e-04	nan						•				•		•				
	ole	1e-03	nan						•				•		•				
	eparak	$\bar{1}e-02$ $1e-03$	nan						•				•		•				
	Bueche s	1e-01	nan	•	•		•		•		20e-1/1e6		•		•				
nension	4 Skew Rastrigin-Bueche separable	1e+00	1.7e6								1		17e+0/1e5		•				•
ıvıded by dın	4 Skew	1e+01	574	26e+0/1e5	32e+0/1e6				27e+0/3e5		1		2500	34e+0/1e6	•				30e+0/1e/
this value d		1e + 02	134	99	18	36e+1/3e4	25e+1/2e3	97e+1/1e4	3.9	54e+1/1e4	Н	33e+1/2e3	39	4.3	63e+1/1e4	54e+1/2e4	67e+1/1e6	11e+2/1e6	rc cc
o reach		1e+03	11	12	24	7.5	27	1200	1.1	16	2.5	3.4	85	6.4	110	14	2900	6.3e5	-
function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 125: 40-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		-		ď				В					,i	ÄZ				IPOP-SEP-CMA-ES [29]
												I						
	1e-05	3.01	230	100	3.4	220	2.5	4.4	က	20	31	1.9e4	7.1	13	Н	2.9		5.3
	1e-04	3.01	220	100	3.4	220	2.5	4.4	က	41	31	1.5e4	7.1	13	П	2.9		5.3
	1e-03	3.01	210	100	3.4	220	2.5	4.4	က	34	31	1.2e4	7.1	13	П	5.9		5.3
inear	1e-01	က	180	100	3.4	220	2.5	4.4	2.9	23	30	7e3	7.2	13	П	5.9		5.3
5	1e+00	2.89	160	100	3.2	220	2.2	4.5	က	19	30	4800	7.4	13	1	က		5.4
	1e+02	2.13	81	26	3.1	140	1.4	3.2	1.9	12	18	1100	5.6	9.1	1	1.8	36e+1/1e6	3.3
	1e + 03	0.025	п	1	1	1	П	1	п	-	П	1	1	1	1	1	п	1
	Δ ftarget	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
	5 Linear 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 Linear slope 1e+03 1e+02 1e+01 1e+01 1e-01 1e-02 1e-03 1e-04 1e-07 0.025 2.13 2.45 2.89 3 3.01 3.01 3.01 3.01 1 81 140 160 180 200 210 220 230	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 126: 40-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) $[16]$	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	481	-	40	1.1		18	1.4		29			11	89	П	6		7
		1e-05	375	-	41	1.1		4.9	1.4		26			11	16	П	8.6		7
		1e-04	332	-	41	1.2		4.6	1.4		52			11	5.5	П	8.1	٠	7
		1e-03	288		42	1.1		4.5	1.4		46			10	3.5	п	7.4		1.8
	ctor	1e-02	237	24e-3/1e5	43	1.2	•	4.5	1.4		41			10	2.8	Н	8.9		1.8
	ive se	1e-01	179	330	47	1.2		4.6	1.5		36			11	5.6	П	6.1		1.9
nension	6 Attractive sector	1e+00	138	93	48	1.3	-	4.4	1.5	12e+0/1e4	25			6.6	2.5	1	4.6	-	1.8
ivided by dii	,	1e+01	87.7	53	56	1.3	13e+1/2e3	4.2	1.6	360	18	38e+0/2e3	65e+0/1e5	10	2.7	1	3.2		1.9
is value d		1e+02	46	28	29	1.5	160	3.3	1.9	9.9	∞ ∞.∞	19	730	9.4	2.7	П	1.9		1.9
		1e + 03	4.87	56	280	4.7	20	1.9	6.1	3.6	6	12	350	26	3.3	1	3.1	12e+4/1e6	6.5
function evaluations to reach th		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 127: 40-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	1700		-1				2.5		-			1.7					1.6
		1e-05	1660		-1				5.6		-			1.7					1.6
		1e-04	1660		П				5.6					1.7					1.6
		1e-03	1660						5.6					1.7					1.6
		1e-02	1660		Н				$^{2.6}$					1.7					1.6
	soid	1e-01	1030	•	1.3				4		•			Н					2.2
sion	7 Step-ellipsoid	1e+00	446	13e+0/1e5	2.2		-		8.3	12e+0/1e4	•		٠	П	-				5.2
ed by dimens	,	1e+01	267	2e3	2.5	24e+0/4e4	26e+0/2e3		1.2	100	76e+0/2e5	27e+0/2e3	36e+0/1e5	1	70e+0/1e4	77e+0/6e4			2.3
nis value divide		1e+02	30.6	14	12	5.4	23		1	73	2200	7.5	110	4	100	880	24e+1/1e6	54e+1/1e6	П
to reach this		1e+03	2.64	14	14	2.6	24	20e + 2/100	1.5	1.8	9	4.9	96	3.9	1.8	Н	220	260	1.4
unction evaluations to reach th		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 128: 40-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

muction evaluations to reach this value divided by dimension Afrarget Afrarget Afrarget Afrarget ALPS BRCSenbrock original AMALGAM DEA ANALGAM IDEA 16.02 ANALGAM IDEA AT 1.2 ANALGAM IDEA AT 1.2 ANALGAM IDEA AT 1.2 ANALGAM IDEA AT 1.2 ANALGAM IDEA AT 1.2 ANALGAM IDEA AT 1.3 ANALGAM IDEA AT 1.4 ANALGAM IDEA AT 1.5 ANALGAM IDEA ANALGAM IDEA AT 1.5 ANALGAM IDEA AT 1.5 ANALGAM IDEA AT 1.5 ANALGAM IDEA AT 1.5 ANALGAM IDEA AT 1.5 ANALGAM IDEA AT 1.5 ANALGAM IDEA A	
>04 1e-05 89 293 1/1e5 . 43 43 1.6 1.6 . 2.2 2.2 7.9 7.9 7.9 8.8 8.8 90 220 1.6 16 1.6 16 1.0 10	
> 04 889 1/1e5 1/1e5 1.1.6 8.2.2 7.3 9.9 9.9 1.1 1.1 20	9.1
16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
11-03 286 3200 43 43 1.6 7.9 8.8 8.8 150 16 530 100	9.1
origin: 282 283 283 42 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	9.1
275 1900 11-01 11.6 11.6 17.9 8.6 8.6 8.5 15 15 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9	9.5
dimension 8 Rosenbrock original 1 266 275 282 2 1100 1900 2e3 3 40 41 42 4 1.6 1.6 1.6 1 2e3 2.3 2.3 2.3 2.3 7.7 7.9 7.9 7.9 7 8.3 8.6 8.7 8 61 85 120 1 1 6 1.5 1	9.1
ided by dime (ided by dime 8 1e+01 177 177 530 47 1.2 8.7 4.7 1.2 8.3 55 13e+0/1e5 1150 17 150 17 150	. 6
1000 division of 1000 d	· 81
reach this verses this verses this verses this verses 15.2 40 27 1.6 38 1.1 1.8 1.2 6.6 16 270 270 11	87e+3/1e6 1.6
Aftarget le+03 le+02 le+01 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+01 le+02 le+02 le+01 le+02 le+02 le+03 le-02 le-03 le-	Monte Carlo IPOP-SEP-CMA-ES

Table 129: 40-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this value divided by dimension	reach this v	ralue div	ided by dim	ension)					
			6	9 Rosenbrock	brock	rotate	ت ت				
Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01		1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	12.7	34.9	153	325	333	337	341	345	348	354	${ m ERT_{best}/D}$
ALPS	21	36	28e+0/1e5		•		•	•	-	•	ALPS [17]
AMaLGaM IDEA	28	18	54	32	34	35	35	36	36	37	AMaLGaM IDEA [4]
avg NEWUOA	1.7	1.3	1.4	1.1	1.1	1.2	1.2	1.2	1.2	1.2	avg NEWUOA [31]
$_{ m BayEDAcG}$	38	56	38e+0/2e3	÷				•			BayEDAcG [10]
BFGS	1.1	1.4	2.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	BFGS [30]
BIPOP-CMA-ES	1.8	1.5	8.2	6.2	6.4	6.5	6.5	6.5	6.5	6.5	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1.2	1.2	9.7	9.7	10	10	10	10	10	10	(1+1)-CMA-ES [2]
DASA	7.7	12	410	420	520	650	820	086	1100	1600	DASA [19]
DEPSO	14	110	11e+1/2e3								DEPSO [12]
simple GA	270	3500	11e+1/1e5	٠						•	simple GA [22]
iAMaLGaM IDEA	13	8.5	20	12	13	13	13	13	13	14	iAMaLGaM IDEA [4]
NELDER (Han)	1.6	2.3	160	230	460	450	440	440	14e+0/1e4		NELDER (Han) [16]
NEWUOA	П	1	П	Н	П	П	Н	Н	1	П	NEWUOA [31]
(1+1)-ES	1.2	1.4	33	91	92	110	120	130	150	170	(1+1)-ES [1]
Monte Carlo	83e+3/1e6										Monte Carlo [3]
IPOP-SEP-CMA-ES	1.6	1.2	10	6.9	7.1	7.1	7.1	7.1	7.1	7.1	IPOP-SEP-CMA-ES [29]

Table 130: 40-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	1770	-	2.1	2.1	•	40e-6/1e5	1	П	-			1.1	•	2.1	•		1.4
		1e-05	1630	-	1.9	1.9				1.1			٠	-	•	1.9	33e-5/1e6		1.5
		1e-04	1520		1.9	1.9		34	1.2	1:1				1		1.8	1600		1.5
		1e-03	1400		1.9	1.8		2.8	1.2	1.2	٠		-	Н		1.7	1e3		1.7
	oid	1e-02	1290	-	1.8	1.7		2.1	1.3	1.3	-			-		1.5	620		1.8
	Ellipsoid	$1e-\bar{0}1$	920		2.5	1.8	٠	-1	1.7	1.6			-	1.3	٠	1.8	280		2.4
IIIIIEIIISIOII	10	1e+00	759		2.4	1.9		1	1.9	1.7	23e+0/1e6			1.4		1.6	430		2.7
nvided by (1e + 01	647		2.4	1.4		Н	1.9	1.7	2.3e4			1.4		1.2	260		2.9
value o		1e+02	402	-	3.2	1.6		1.2	2.3	7	1e3		•	1.9	35e+1/1e4	Н	130		3.8
s to reach till		1e+03	165	28e+2/1e5	6.3	1.3	16e+4/2e3	1.7	3.6	2.8	290	14e+4/2e3		2.9	5.9	1	46	13e+5/1e6	6.2
Infiction evaluations to reach time		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 131: 40-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	1090	•	2.5	Н	•		1.1	5.6	1e3			1.1	•	က	250		1.7
		1e-05	888		2.2	П			1.3	2.4	630			1.1		က	240		2.1
		1e-04	692	-	2.5	1		29e-4/1e4	1.5	2.3	540			1.1		က	240		2.3
		1e-03	674	•	2.4	П		72	1.6	2.5	490			1.1		က	240		5.6
		1e-02	562	•	2.2	П		2.2	1.9	2.1	440			1.1		3.2	240		က
	Discus	1e-01	292		3.8	1.5		П	3.5	3.1	200		٠	1.8		4.9	320		2.2
mension	11 I				.8.9	2.8	-	1	∞	5.5	790			3.3	-	6.6	650		13
videa by all	,	1e+01	59.2	920	9.5	3.9	-	1	15	7.1	290		43e+0/1e5	າວ	53e+0/1e4	13	870		25
this value di		1e + 02	22.6	240	11	5.5	26e+1/2e3	-1	35	8.6	230	24e+1/2e3	820	8.57 73.	88	18	1100	20e+1/1e6	22
reacn		1e+03	1.78	2.7	$^{2.6}$	3.4	2.3	2.8	66	21	1	9	3.5	1.8	1.6	1	2300	2.4	130
nnction evaluations to reach the		$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 132: 40-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Idilcolon evaluations to reach time v		marantana di manatan anna an			OII						
					12 Bent cigar	gar					
Δ ftarget	1e+03	1e+02	1e + 01	1e+00		1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	36	39.9	104	186	229	269	329	526	269	630	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	29	81	180	069	8100	83e-2/1e5					ALPS [17]
AMaLGaM IDEA	46	48	21	13	14	16	17	13	14	15	AMaLGaM IDEA [4]
avg NEWUOA	1.5	6.5	21	24	31	38	42	32	33	98	avg NEWUOA [31]
BayEDAcG	99	44e+1/2e3			•						BayEDAcG [10]
BFGS	П	1.1	-1	П	П	1	Н	4.6	15	099	BFGS [30]
BIPOP-CMA-ES	2.1	2.8	2.5	2.3	2.5	2.5	2.5	1.8	1.9	1.9	BIPOP-CMÀ-ÉS [15]
(1+1)-CMA-ES	1.4	1.7	2.1	3.1	4.1	4.4	4.6	3.4	3.6	4.1	(1+1)-CMA-ES [2]
DASA	20	27	3.8e4	3.5e4	22e+0/1e6						DASA [19]
DEPSO	12e+4/2e3										DEPSO [12]
simple GA	40e+3/1e5				-		-		-		simple GA [22]
iAMaLGaM IDEA	17	18	8.6	6.4	7	7.3	7.2	5.2	5.4	5.7	iAMaLGaM IDEA [4]
NELDER (Han)	2.4	2.5	15	24	52	190	42e-3/1e4				NELDER (Han) [16]
NEWUOA	П	П	1.4	1.4	1.4	1.5	1.4	1	П	1	NEWUOA [31]
(1+1)-ES	1.2	1300	4800	7700	14e-1/1e6		-				(1+1)-ES $[1]$
Monte Carlo	16e+7/1e6										Monte Carlo [3]
IPOP-SEP-CMA-ES	1.8	2.8	2.8	3.6	4.2	4.2	3.9	2.4	2.7	2.7	IPOP-SEP-CMA-ES [29]

Table 133: 40-D, running time excess ERT/ERT_{boot} on f_{13} , in italics is given the median function value and the median number of

Table 199. 40 -D, 1 mining time excess DAL $f_{\rm DNL}$ $f_{\rm DNL}$ on $f_{\rm 13}$, in traines is given the median inner that value and the inequality of	mining time	CACCOS	אין דעה / דעוי	$+$ on J_1 .	3, 111 162	tiics is giveii	THE TITE	edian mar	Tulicuon va	ine ama me	median number of	
function evaluations to reach this value divided by dimension	s to reach the	is value	divided by	dimensi	on							
			•		$13 \mathrm{ Sk}$	13 Sharp ridge						
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget	
$\text{ERT}_{ ext{best}}/ ext{D}$	3.73	9.74	50.7	173	218	297	1800	2100	2460	2990	${ m ERT_{best}/D}$	
ALPS	80	180	130	190	860	85e-3/1e5			-	-	ALPS [17]	ı
AMaLGaM IDEA	88	93	28	12	12	10	7	7	1.9	1.9	AMaLGaM İDEA [4]	
BayEDAcG	100	160	52e+0/2e3								BayEDAcG [10]	
BFGS	1.2	1.8	1.4	П	П	Н	46	73	16e-4/4e4		BFGS [30]	
BIPOP-CMA-ES	4.6	5.1	2.6	2.6	ಬ	17	4.4	5.2	5.3	5.9	BIPOP-CMA-ES [15]	
(1+1)-CMA-ES	3.3	3.3	1.7	4.2	9.2	20	5.6	9.7	18	48	(1+1)-CMA-ES [2]	
DASA	15	24	40	73	150	540	220	940	2900	21e-5/1e6	DASA [19]	
DEPSO	21	1500	12e+1/2e3						•		DEPSO [12]	
simple GA	540	0089	91e+0/1e5					-			simple GA [22]	
iAMaLGaM IDEA	25	33	11	4.5	4.7	4.8	П	1	1	1	iAMaLGaM IDEA [4]	
NELDER (Han)	4.8	5.9	8.6	20	71	160	41	13e-2/1e4			NELDER (Han) [16]	
NEWUOA	П	1	1	77	က	13	7.3	15	28	88e-5/1e4	NEWUOA [31]	
(1+1)-ES	2.9	3.3	4.7	4.5	18	36	11	37	100	1400	(1+1)-ES [1]	
Monte Carlo	21e+2/1e6								٠		Monte Carlo [3]	
IPOP-SEP-CMA-ES	4.4	4.6	2.1	2.8	6.3	8.2	2.6	2.8	2.8	2.9	IPOP-SEP-CMA-ES [29]	

on f_{14} , in italics is given the median final function value and the median number of Table 134: 40-D. running time excess ERT/ERT.

Table 154: 40-D, Fu	mmmg n	IIIIe exc	ess dut/du.	Thest O	11 J_{14} , 1	11 1talics is g	iven u.	le mechan	IIII IIIICIIO	ıı value allu	table 194: 40-L), running time excess $\text{Enl}/\text{Enl}_{\text{best}}$ on 14 , in trances given the inequal function value and the inequality
function evaluations to reach this	s to reac	sh this v	value divided by dimension	by dim	ension						
				14	Sum o	ent	powers	rs			
Δ ftarget	1e + 03	1e+03 $1e+02$	1e+01	1e+00	1e-01		1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.025	1.01	7.61	15.7	19.4	27.6	55.2		121	1440	$_{ m ERT_{best}/D}$
ALPS	1	2.4	38	59	80	140	510	27e-5/1e5			ALPS [17]
AMaLGaM IDEA	1.1	2.2	44	46	53	20	30	22	20	2.1	AMaLGaM İDEA [4]
BayEDAcG	1	3.3	74	89	180	63e-3/2e3					BayEDAcG [10]
BFGS	П	2.4	1.7	1.6	1.8	1.7	1.2	1	1	29e-7/2e4	BFGS [30]
BIPOP-CMA-ES	П	1.1	2.7	2.5	3.1	3.9	4.4	5.4	9.9	1.1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	2.3	2.1	1.7	7	2.2	2.5	3.2	5.3	1	(1+1)-CMA-ES [2]
DASA	П	4.8	8.7	8.6	13	22	71	200	4600	58e-7/1e6	DASA [19]
DEPSO	1.1	1.7	11	28	300	11e-2/2e3					DEPSO[12]
simple GA	П	3.3	280	390	1.1e4	17e-2/1e5					simple GA [22]
iAMaLGaM IDEA	1	П	13	15	19	19	12	9.5	8.6	1	iAMaLGaM IDEA [4]
NELDER (Han)	П	2.9	2.5	2.8	က	3.4	3.4	11	40e-6/1e4		NELDER (Han) [16]
NEWUOA	1.2	77	П		П	П	П	7	8.6	24	NEWUOA [31]
(1+1)-ES	1.2	77	1.9	1.6	1.8	2.2	5.2	37	400	81e-8/1e6	(1+1)-ES [1]
Monte Carlo	1.1		29e+0/1e6								Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	1.1	2.4	2.3	2.9	3.7	8.9	8.8	10	1.5	IPOP-SEP-CMA-ES [29]

Table 135: 40-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median final function value and the median number of

Table 136: 40-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median final function value and the median number of

and one median number			Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES $[2]$	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
ıı value			1e-07	50500		3.8			П					27					
mai micuo			1e-05	49700	-	3.1	٠	٠	1	·				27		•		•	30e-3/1e4
rearan 1			1e-04	49300		3.1		٠	1	-		٠		23		-			က
п епе п			1e-03	35200		3.4			П	•				17		•			1.4
IS SIVE		rass	1e-02	17800	-	4.8			1.3					22		٠			1
ı ıtanıcı		16 Weierstrass	1e-01	8040		3.6			П	•				24				-	1
$_{ m sst}$ on $J16$, $_{ m II}$	dimension	16 V	1e+00	1800	38e-1/1e5	3.4			1	12e+0/1e4	13e+0/1e6		79e-1/1e5	4.3	10e+0/1e4	78e-1/1e4			1.5
ייים / דיוים	this value divided by dimension		1e + 01	131	11	17	31e+0/2e3	41e+0/2e4	П	550	1.1e5	35e+0/2e3	260	3.1	92	17	15e+0/1e6	22e+0/1e6	1.8
CACCOS	his valu		1e+02	0.025	1.1	1.1	1.3	3.7	1.1	1.1	1.2	1.2	1.1	1.1	1.1	1.2	1	1.1	1.1
ama am			1e + 03	0.025	1	П	П	Т	1	1	Н	1	П	Н	П	П	П	Н	П
rable 150. 40 -D, i uniming time excess $\text{Div}/\text{Div}/\text{Dest}$ on 116 , in italies is given the unculan initial function value and the median	function evaluations to reach		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 137: 40-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

nction evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	BayEDAcG $[10]$	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	6640		4.5			1.4	-				62		•		•	Н
		1e-05	3330		1.6			П	-				100					1.3
		1e-04	2220		1.9			П	•				110		•		•	1.3
	10	1e-03	1300		5.6			-1					54		٠			1.6
)	lition	1e-02	874		က			П					1					1.6
	17 Schaffer F7, condition 10	1e-01	354	12e-1/1e5	4.9	47e-2/2e3		1			97e-2/2e3	89e-2/1e5	1.5					2.4
y dimension	17 Schaffe	1e+00	106	3800	9.3	14	68e-1/3e4	1	68e-1/1e4	98e-1/1e6	31	230	2.6	77e-1/1e4	54e-1/1e5	80e-1/1e6	91e-1/1e6	2.1
, vided b		1e + 01	9.98	7	13	22	410	П	29	9.4e4	4	63	5.2	310	38	5.6e4	2.2e4	н
zalue di		1e + 02	0.025	1.1	1.3	1.1	5.6	-	1	4.2	1.2	1.3	1.4	1.7	1.9	7.4	1.1	1.2
ch this		1e + 03	0.025	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
nction evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 138: 40-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

and one incuran name			Δ ftarget	$_{ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES $[2]$	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
ii vaiu			1e-07	23700		ro		٠	1.1	•		•		43				•	н
Taricon			1e-05	16800		5.6			1.2	•		٠		44					
on mic			1e-04	6420		က			1.2	•				54					П
inomi o		000	1e-02 1e-03	4690	-	2.5		٠	1.1					25					-1
517511 011		tion 10	1e-02	3180		1		٠	1.1	-		-		6					1.1
s realice to		F7, condi	1e-01	1180		1.9	16e-1/2e3		1.4					1					1.7
st on 718, m	dimension	18 Schaffer F7, condition 1000	1e+00	425	39e-1/1e5	3.3	35		1.1			57e-1/2e3	46e-1/1e5	1					1.3
ort / mr pe	this value divided by dimension	18	1e+01	36.1	38	18	23	28e+0/3e4	1.1	25e+0/1e4	41e+0/1e6	25	100	4.6	29e+0/1e4	20e+0/1e5	35e+0/1e6	32e+0/1e6	1
CACCOS	iis value		1e+02	0.403	1	1.1	1.1	620	2.9	3.1	13	1.5	1.3	1.1	12	4.2	100	Н	2.2
g mine	reach th		1e + 03	0.025	1	1	1	3.7	1.1	1	-	1.1	1.1	1.1	1.1	1.1	1	П	
radic 190. 10. Tulling only caces first peet 01 118, in teames is given one median initial information that the median	function evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 139: 40-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median final function value and the median number of

function evaluations to reach this value divided by dimension	s to read	ch this v	alue divided	by dimensic	on On						
				19 Griewa	19 Griewank-Rosenbrock F8F2	brock F8F	5				
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
ERT_{best}/D	0.025	0.025	8.79	1410	34800	4.21e5	6.38e5	1.13e6	1.13e6	1.14e6	${ m ERT_{best}/D}$
ALPS	1	1.2	6.5	620	16e-1/1e5						ALPS [17]
AMaLGaM IDEA	1	1	11	2.4	1	2.6	7.4	4.2	4.2	4.2	AMaLGaM ÌDÉA [4]
BayEDAcG	1	1.1	18	57e-1/2e3							BayEDAcG [10]
BFGS	1	1	19e+0/2e4				•	•	•		BFGS [30]
BIPOP-CMA-ES	1	1	1.1	1	1.2	1	1	1	1	1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	16	38e-1/1e4			•	•	•		(1+1)-CMA-ES [2]
DASA	1	1	1.6e6	16e+0/1e6							DASA [19]
DEPSO	1	1.1	3.9	67e-1/2e3			•	•	•		DEPSO [12]
simple GA	1	1.1	130	1e3	24e-1/1e5						simple GA [22]
iAMaLGaM IDEA	1	1.1	7	11	46	10e-2/1e6	•	•	•		iAMaLGaM IDEA [4]
NELDER (Han)	1	1	12	40e-1/1e4							NELDER (Han) [16]
NEWUOA	П	1.2	П	28e-1/1e5							NEWUOA [31]
(1+1)-ES	1	1.4	7.7e5	16e+0/1e6							(1+1)-ES [1]
Monte Carlo	П	1.1	14e+0/1e6						•		Monte Carlo [3]
IPOP-SEP-CMA-ES	1	1	1.1	4.6	84e-2/1e4						IPOP-SEP-CMA-ES [29]

Table 140: 40-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	$\text{ERT}_{\text{best}}/D$	ALPS [17]	AMaLGaM İDEA [4]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [29]
		1e-07	nan				•		•		•		٠		•			
		1e-05	nan		•		•		•		•		٠		•		•	
		1e-04	nan	•	•		•		٠		•		•		•		٠	
		1e-03	nan		•		•		•		•		•		•		•	
	in(x)	1e-02	nan	-	•		•	17e-2/6e5	•		•		٠		•		٠	
_	20 Schwefel $x*\sin(x)$	1e-01	4.03e6	•	11e-1/1e6	•	11e-1/3e4	1	•	57e-2/1e6	•	65e-2/1e5	•		11e-1/3e4	12e-1/1e6		
y dimension	20 Sc	1e+00	3280	13e-1/1e5	1400	34e-1/2e3	33	22	14e-1/1e4	1	30e-1/2e3	2.9	15e-1/1e6	14e-1/1e4	310	1400		16e-1/1e4
vided b		1e + 01	5.54	40	52	64	1.5	4.1	2.7	14	22	510	23	4.1	Т	5.6	٠	3.5
zalue di		1e + 02	4.33	44	62	75	1.5	4.6	3.1	16	21	570	28	4.6	1	က		4
o reach this v		1e+03	3.12	45	74	82	1.6	5.4	3.6	18	20	630	31	4.8	П	3.4	28e + 3/1e6	4.6
function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 141: 40-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

						4			5					[4]	[9				[59]
			rget	st/D	[17]	AMaLGaM IDEA	.cG [10]	[30]	BIPOP-CMA-ES [15	(1+1)-CMA-ES $[2]$	[19]	[12]	A [22]	IDEA	NELDER (Han) [16]	OA [31]	ES [1]	arlo [3]	POP-SEP-CMA-ES [29
			Δ ftarget	ERT_{best}/D	ALPS	aLGaM	BayEDAcG [10]	BFGS [30]	OP-CM	+1)-CM	DASA [19]	DEPS	simple GA [22]	$_{laLGaM}$	LDER (NEWUOA [31]	(1+1)-ES $[1]$	Monte Carlo [3]	-SEP-C
						$_{ m AM}$	Щ		BIP	(1-			oo	iAM	NE	_		4	IPOP
			1e-07	2560	5.9	1700		9.3	110	1.6	22	٠		840	5.5	-1	2.8		16
			1e-05	2550	4.2	1700		2.1	110	1.6	22	٠		840	5.5	1	2.8	٠	16
			1e-04	2540	3.7	1700		2.1	110	1.7	27	•		840	5.5	1	2.8	-	16
			1e-03	2530	3.3	1700		2.1	110	1.7	27			820	5.5	-	8.8		16
	-	Deaks	02	2530		00		_	0	7	7	/2e3	/1e5	0	2		œ		9
)	5	7											- `						ī
	100	iner 1	e-01	529 2520	2.7	200	-1/2e3	2.1	110	1.7	27	12	260	350	5.6	1	8.8		16
rois		rallag	<u></u>	CI		П	13e	• ,						~			•		
dimen	0	7 7 7	1e+00	529	6.5	1800	œ	2.3	49	1.8	44	16	220	099	14	1	5.2		19
ed by d	2		-01	26.1	0	1	2	6	7	1	9	œ	0	~	2		9	/1e6	4
divid			1e+	26	2	2	37	2	2.	4.	4	Ĥ	12	ñ	-	_	.3	+969	.3
this value divided by dimension	1		1e+02	0.025	-	1	П	П	П	1	-	1	П	1	-	1	-	П	-
			1e + 03	0.025	1	1	_	1	1	1	_	1	1	1	_	1	1	1	П
to rea			Ţ.	0										٠					Ñ
nction evaluations to reach	CITOTOR		get	st/D	Š	AMaLGaM IDEA	AcG	Š	BIPOP-CMA-ES	MA-ES	Ϋ́	SO	GA	iAMaLGaM IDEA	(Han)	JOA	-ES	Carlo	IPOP-SEP-CMA-ES
evalus			Δ ftarget	ERT_{best}/D	ALF	[aLGa	BayEDAcG	$_{ m BFGS}$	POP-C	(1+1)-CMA-ES	DAS	DEPSO	simple GA	MaLGal	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	P-SEP-
ction	11010					AN			BI	\Box				iAl	Z				IPO
1	1																		

on f_{22} , in italics is given the median final function value and the median number of Table 142: 40-D, running time excess ERT/ERT_{bo}

Table 142: 40-D, ful.	uning um	e excess	ע דעם / דעם	ost on /	22, III IUAIICE	s is give	in the mean	an mai	Innection	ı value	Table 142: 40-D, running time excess Ent/Ent_{peg_1} on j_{22} , in trans. Is given the median minor value and the median numb
function evaluations to reach	to reach	this valu	this value divided by dimension	dimen:	sion						
				22 (22 Gallagher 21 peaks	21 pea	$^{\mathbf{k}\mathbf{s}}$				
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{ ext{best}}/ ext{D}$	0.025	0.025	116	988	16200	16200	16300	16300	16300	16400	$\text{ERT}_{ ext{best}}/ ext{D}$
ALPS	1	1	8.5	12	35	110	69e-2/1e5				ALPS [17]
AMaLGaM IDEA	П	П	2200	260	69e-2/1e6						AMaLGaM IDEA [4]
BayEDAcG	П	П	18	10	73e-1/2e3						BayEDAcG [10]
BFGS	П	П	П	1.5	69e-2/8e3						BFGS [30]
BIPOP-CMA-ES	1	1	6.4	09	69e-2/1e5						BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	П	2.7	1.8	7	77	7	77	77	7	(1+1)-CMA-ES [2]
DASA	П	Н	32	31	45	45	45	45	45	45	DASA [19]
DEPSO	1	1	7.3	10	26e-1/2e3						DEPSO [12]
simple GA	1	1	87	180	20e-1/1e5						simple GA [22]
iAMaLGaM IDEA	Н	Н	370	260	69e-2/1e6						iAMaLGaM IDEA [4]
NELDER (Han)	П	Н	4.7	3.8 8.0	6	6	6	8.9	8.9	8.9	NELDER (Han) [16]
NEWUOA	1	П	2.7	1	1	1	1	1	1	1	NEWUOA [31]
(1+1)-ES	П	Н	3.3	2.7	9.9	9.9	9.9	9.9	9.9	9.9	(1+1)-ES [1]
Monte Carlo	Н	Н	71e+0/1e6								Monte Carlo [3]
IPOP-SEP-CMA-ES	1		13	9	69e-2/1e4						IPOP-SEP-CMA-ES [29]

Table 143: 40-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

table 140. 40-D, it mining time excess $DIVI / DIVI $ $Dest$ on 123, in trans is given the inequal initial function value and the inequal limits			$\Delta { m ftarget}$	田	ALPS [17]	AMaLGaM IDEA [4]	BayEDAcG [10]	BFGS [30]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	simple GA [22]	iAMaLGaM IDEA [4]	NELDER (Han) [16]	NEWUOA [31]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ÈS [29]
אם וור			1e-07	84000		1		٠	1.4	٠		٠		7.7		٠		-	
Talle			1e-05	81100		1			1.4			•		œ					
tii iiiiai			1e-04	200062		1			1.4					8.1				٠	
e meme			1e-03	32000		1			77			-		12					
ns given un		uras	1e-02	16500		1			1.6					3.1					89e-3/1e4
23, III Italic	sion	23 Katsuuras	1e-01	1890	80e-2/1e5	2.5		30e-1/5e3	П	82e-2/1e4	68e-2/6e5	•	79e-2/1e5	1.1	29e-2/1e4	46e-2/8e3	73e-2/1e6	•	6.3
$\cot \operatorname{best}$	this value divided by dimension		1e+00	298	150	12	37e-1/2e3	260	4.8	12	92	44e-1/2e3	440	2.3	П	1.8	280	22e-1/1e6	4.9
11.T / TATE	e divide		1e + 01	0.237	1	1.1	1.1	58	5.6	12	1.5	1.2	1.1	1.1	1.3	7.1	24	1.4	6.2
CACCOS	nis valu		1e+02	0.025	1	1	П	Т	1	1	П	П	Н	Н	-1	Т	Н	Н	1
ig tille	reach th		1e + 03	0.025	1	1	п	1	1	1	1		1	1	П	1	1	1	1
anie 149. 40-D, i uiiiii	unction evaluations to reach		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 144: 40-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median function value and the median number of

function evaluations to reach this value divided by dimension	to reach	this value d	ivided by din	mension							is value divided by dimension
				24 Lunacek bi-Rastrigin	bi-Ra	strigin					
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	1e-01	1e-01 1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	2.06	296	1.46e5	2.45e6	7.5e6	7.5e6 7.51e6	7.51e6	7.51e6	7.51e6	7.51e6	$_{ m ERT_{best}/D}$
ALPS	5.8	82	91e+0/1e5						•		ALPS [17]
AMaLGaM IDEA	13	4.2	17	42e+0/1e6	•	٠	•		•		AMaLGaM İDEA [4]
BayEDAcG	15	28e+1/2e3	·								BayEDAcG [10]
BFGS	260	89e+1/8e3	٠		•		٠	•	•		BFGS [30]
BIPOP-CMA-ES	2.3	12	4.6	1	П	1	1	1	1	1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	2.3	34e+1/1e4			•		٠	•	•		(1+1)-CMA-ES [2]
DASA	3200	55e+1/1e6	·								DASA [19]
DEPSO	9.9	37e+1/2e3			٠		٠		•		DEPSO [12]
simple GA	110	1500	14e+1/1e5								simple GA [22]
iAMaLGaM IDEA	9.9	1	8.5	10e+0/1e6	•		٠	•	•		iAMaLGaM IDEA [4]
NELDER (Han)	28	64e+1/1e4									NELDER (Han) [16]
NEWUOA	1	25e+1/9e3			•		•				NEWUOA [31]
(1+1)-ES	1700	49e+1/1e6	-								(1+1)-ES [1]
Monte Carlo	650	82e+1/1e6					•				Monte Carlo [3]
IPOP-SEP-CMA-ES	2.3	1.5		46e+0/1e4							IPOP-SEP-CMA-ES [29]

References

- [1] Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In Rothlauf [32], pages 2447–2452.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2459–2466.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 testbed. In Rothlauf [32], pages 2479–2484.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless black-box optimization benchmarking. In Rothlauf [32], pages 2247–2254.
- [5] Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlström. BBOB: Nelder-mead with resize and halfruns. In Rothlauf [32], pages 2239–2246.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [32], pages 2263–2268.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [32], pages 2269–2274.
- [8] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [32], pages 2275–2280.
- [9] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [10] Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noiseless function testbed. In Rothlauf [32], pages 2281–2286.
- [11] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noiseless BBO-benchmark 2009. In Rothlauf [32], pages 2287–2294.
- [12] José García-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators. In Rothlauf [32], pages 2231–2238.
- [13] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [14] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.

- [15] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2389–2396.
- [16] Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In Rothlauf [32], pages 2403–2408.
- [17] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noiseless testbed.
- [18] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 989.
- [19] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noiseless function testbed. In Rothlauf [32], pages 2295–2302.
- [20] Jirí Kubalik. Black-box optimization benchmarking of prototype optimization with evolved improvement steps for noiseless function testbed. In Rothlauf [32], pages 2303–2308.
- [21] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noise free functions. In Rothlauf [32], pages 2255–2262.
- [22] Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. In Rothlauf [32], pages 2473–2478.
- [23] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 986.
- [24] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Rothlauf [32], pages 2309–2314.
- [25] Petr Posik. BBOB-benchmarking the DIRECT global optimization algorithm. In Rothlauf [32], pages 2315–2320.
- [26] Petr Posik. BBOB-benchmarking the generalized generation gap model with parent centric crossover. In Rothlauf [32], pages 2321–2328.
- [27] Petr Posik. BBOB-benchmarking the Rosenbrock's local search algorithm. In Rothlauf [32], pages 2337–2342.
- [28] Petr Posik. BBOB-benchmarking two variants of the line-search algorithm. In Rothlauf [32], pages 2329–2336.
- [29] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2435–2440.
- [30] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function testbed. In Rothlauf [32], pages 2409–2414.
- [31] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [32], pages 2421–2428.

[32] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.