北京邮电大学 2017 年硕士研究生入学考试试题

考试科目:通信原理

请考生注意:①所有答案(包括选择题)一律写在答题纸上,否则不计成绩。

- ②不允许使用计算器
- 一. 单项选择题 (每空 1.5 分, 共 54 分)

按下面的格式在答题纸上填写最佳答案

空格 编号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案		<u>所有</u>	答案-	-律写	在答匙	5纸上	,否贝	川不计	成绩!	_
空格 编号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案										
空格 编号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案		<u>所有</u> 答	答案一	律写在	主答题	纸上,	否则	不计	龙绩 !	-
空格 编号	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
答案										

● 设有 AM 信号[1+m(t)] cos $2\pi f_c t$,其中基带调制信号m(t)的带宽是 250Hz、平均功率是 $\overline{m^2(t)}$ = 0.25W、最大幅度是 $|m(t)|_{max}$ = 1V。此 AM 信号的带宽是(1)kHz,调制指数是(2),调制效率是(3)。

(1)(2)(3) A. 1/5	B. 1/4	C. 1/2	D. 1	
------------------	--------	--------	------	--

考试科目: 801 通信原理

					号属于频分复用, 号属于码分复用。
(4)(5)(6)	A. 功率	B. 时隙	C. Walsh 码	D. 频带
● 在数字通信系统的设计中,针对频率选择性衰落的技术包括(7)等。					
(7)	(7) A. 部分响应系统、升余弦滚降 B. 科斯塔斯环、平方环				
(/)	C.	时域均衡、直序	扩频、OFDM	D. OQPSK、6	64QAM
● 若二进制基带 PAM 系统的信道带宽是 20Hz,则无符号间干扰传输的最高数据速率是(8)bit/s;若 16ASK 系统的信道带宽是 5Hz,则无符号间干扰传输的最高速率是(9)bit/s。					
(8)	(9)	A. 10	B. 20	C. 30	D. 40
	● 将基带信号 <i>m</i> (<i>t</i>)先 <u>(10)</u> ,再 <u>(11)</u> ,得到的是 FM 信号;先 <u>(12)</u> ,再 <u>(13)</u> ,得到的是 PM 信号。				
(10)(11)(12)(13) A. 微分 B. 积分 C. 调频 D. 调相					
(10)(11)(1	2)(13) A. 微分	B. 积分	C. 调频	D. 调相
●设置	有 FM 号m(M 信号 4 cos [2π t)的带宽是 2kH	$f_{\rm c}t + 2\pi K_{\rm f} \int_{-\infty}^{t} m($	$\left[\left(au \right) \mathrm{d} au \right]$,其中 $\left[m(t) \right]_{\mathrm{max}} = 2 \mathrm{V}$	$K_{\rm f} = 2 { m kHz/V}$,基
● 设 带信 最大	有 FM 号m(频偏。	M 信号4cos[2π t)的带宽是 2kH 是 <u>(14)</u> kHz、调制	$f_c t + 2\pi K_f \int_{-\infty}^{t} m(z) dz$	$[au]$ d $ au$],其中 $[m(t)]_{ ext{max}} = 2V$ 竞宽近似是 <u>(16)</u> k	$K_{\rm f} = 2 { m kHz/V}$,基
● 设 带信 最大 (14)(有 FM 号 m(频偏。 (15)(形星)	M 信号 4 cos [2π t)的带宽是 2kH 是 <u>(14)</u> kHz、调制 16) A. 2 座 16QAM 的星	$f_c t + 2\pi K_f \int_{-\infty}^t m(z) dt$ $f_c t + 2\pi K_f \int_{-\infty}^t m(z) dt$	$egin{aligned} & \left[au ight] ext{d} au \ & \left[au ight] ext{m} & \left[au ight] ext{m} \ & \left[au ight] ext{m} & \left[au ight] ext{d} \ & \left[au ight] ext{C. 8} \end{aligned}$	X _f = 2kHz/V,基 Y。此 FM 信号的 Hz。 D. 12
● 设 带信 最大 (14)(有 FM 号m(频偏。 (15)(形星》 不同。	M 信号 4 cos [2π t)的带宽是 2kH 是 <u>(14)</u> kHz、调制 16) A. 2 座 16QAM 的星	$f_c t + 2\pi K_f \int_{-\infty}^{t} m(z) dt$ $f_c t + 2\pi K_f \int_{-\infty}^{t} m(z) dt$	$egin{aligned} & \left[au ight] ext{d} au \ & \left[au ight] ext{m} & \left[au ight] ext{m} \ & \left[au ight] ext{m} & \left[au ight] ext{d} \ & \left[au ight] ext{C. 8} \end{aligned}$	X _f = 2kHz/V,基 Y。此 FM 信号的 Hz。 D. 12
● 设 带信 最大。 (14)(● 矩 量的。 (17)	有 FM 号m(频偏。 (15)(形星。 不同。 (18)	M 信号 4 cos [2π t)的带宽是 2kH 是(14)kHz、调制 16) A. 2 座 16QAM 的星 分为 3 组,能量 A. 6	$f_c t + 2\pi K_f \int_{-\infty}^{t} m(x) dx$ [z 、最大幅度是 刊指数是(15)、带图,4	$[\tau] d\tau$, 其中 E $m(t) _{max} = 2V$ 完宽近似是(16) E $C. 8$ 星座点,将这二	X _f = 2kHz/V, 基 Y。此 FM 信号的 Hz。 D. 12 16 个点按各自能 。 D. 18
● 设 带信 最大 (14)(● 矩 量的 (17) ● HI	有 FM 号m(频偏。 (15)(形星点 不同。 (18)	M 信号 4 cos [2π t)的带宽是 2kH 是(14)kHz、调制 16) A. 2 座 16QAM 的星 分为 3 组,能量 A. 6	$Ef_ct + 2\pi K_f \int_{-\infty}^{t} m(x_f) dx_f = 0$ $Ef_ct + 2\pi K_f \int_{-$	(τ)dτ], 其中A m(t) _{max} = 2V 方宽近似是(16)k C. 8 星座点, 将这 2、(17)、(18) C. 14 不同之处是 H	X _f = 2kHz/V, 基 Y。此 FM 信号的 Hz。 D. 12 16 个点按各自能 。 D. 18
● 设 带信 最大。 (14)(● 矩 量的。 (17)	有 FM 号m(频偏。 (15)(形星点 不同。 (18)	M 信号 4 cos [2π t)的带宽是 2kH 是(14)kHz、调制 16) A. 2 座 16QAM 的星 分为 3 组,能量 A. 6 码与 AMI 码的共	$Ef_ct + 2\pi K_f \int_{-\infty}^{t} m(x_f) dx_f = 0$ $Ef_ct + 2\pi K_f \int_{-$	(τ)dτ], 其中A m(t) _{max} = 2V 方宽近似是(16)k C. 8 星座点, 将这 2、(17)、(18) C. 14 不同之处是 H	$K_f = 2kHz/V$, 基 V_c 。此 FM 信号的 Hz。 D. 12 16 个点按各自能。 D. 18 DB3 码(20)。 出没有长连零

● 某带通信号的频带范围是 15kHz~18kHz,对其进行理想采样,不发生频谱混叠的最小采样率是(21)kHz。

(21)	A. 6	B. 12	C. 18	D. 36

● 假设数据独立等概,OOK 的误比特率是(22),2FSK 的误比特率是(23),2PSK 的误比特率是(24)。

$$(22)(23)(24) \begin{array}{|c|c|c|c|c|}\hline A. & \frac{1}{2}\mathrm{erfc}\bigg(\sqrt{\frac{E_{\mathrm{b}}}{N_{\mathrm{0}}}}\bigg) & B. & \mathrm{erfc}\bigg(\sqrt{\frac{E_{\mathrm{b}}}{N_{\mathrm{0}}}}\bigg) \\ \hline C. & \frac{1}{2}\mathrm{erfc}\bigg(\sqrt{\frac{2E_{\mathrm{b}}}{N_{\mathrm{0}}}}\bigg) & D. & \frac{1}{2}\mathrm{erfc}\bigg(\sqrt{\frac{E_{\mathrm{b}}}{2N_{\mathrm{0}}}}\bigg) \\ \hline \end{array}$$

ullet 设 $\{a_n\}$ 是零均值平稳独立序列, $\mathrm{E}[a_n^2]=1$ 。 \diamondsuit $x(t)=\sum_{n=-\infty}^{\infty}a_n\delta(t-nT_{\mathrm{s}})$,

则x(t)的功率谱密度是 $P_x(f) = \underline{(25)}$,平均自相关函数是 $\bar{R}_x(\tau) = \underline{(26)}$ 。将x(t)通过一个冲激响应为g(t)、传递函数为G(f)的滤波器后成为 $y(t) = \underline{(27)}$,其功率谱密度是 $\underline{(28)}$ 。

(25)	A. $\delta(f)$	B. $\frac{1}{T_s}$	C. $\sum_{n=-\infty}^{\infty} \delta$	$\left(f-\frac{n}{T_{\rm s}}\right)$	$D. \frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{j2\pi f n T_s}$
(26)	A. $\frac{1}{T_s}\delta(\tau)$	B. 1	$C. \sum_{n=-\infty}^{\infty} e^{j2}$	$2\pi \frac{n}{T_{\rm s}} \tau$	D. $\frac{1}{T_s} \sum_{n=-\infty}^{\infty} \delta(\tau - nT_s)$
	A. $x(t)g(t)$			B. $g(t)$	
(27)	$C. \sum_{n=-\infty}^{\infty} g(t-n)$	$(T_{\rm s})$		D. $\sum_{n=-\infty}^{\infty} a_n$	$g\left(t-nT_{\mathrm{s}}\right)$
(28)	$A. \frac{1}{T_s} \sum_{n=-\infty}^{\infty} G\left(\frac{1}{2}\right)$	$\left(\frac{n}{T_{\rm s}}\right)$		B. $\frac{1}{T_s} \sum_{n=-\infty}^{\infty}$	$G\left(f-\frac{n}{T_{\rm s}}\right)$
(28)	$C. \frac{1}{T_{\rm s}} G(f) ^2$			D. $\frac{1}{T_s} \sum_{n=-\infty}^{\infty} G\left(\frac{n}{T_s}\right) \mathcal{S}\left(f - \frac{n}{T_s}\right)$	

● 卷积码编码输出通过 BSC 信道传输,接收端用 Viterbi 算法译码,此译码算法属于(29)译码。

考试科目: 801 通信原理

(29)	A. MAP	B. ML	C. MMSE	D. Max-Lloyd		
● 设发送数据速率是 2kb/s,正交 2FSK 信号的主瓣带宽最小是(30)kHz。						
(30)	A. 3	B. 4	C. 5	D. 6		
● 设基	● 设基带信号 $x(t)$ 的带宽是 W ,傅氏变换是 $X(f)$ 。对 $x(t)$ 按速率 $R_s=1/T_s$					
进行理想采样得到 $x_s(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} x(nT_s) \delta(t - nT_s)$ 。 $x_s(t)$						
的频谱	婚是 $X_{s}(f) = (31)$ 。	采样后频谱不发	生混叠的条件是(<u>(32)</u> °		

(21)	A. $X(f)\sum_{n=-\infty}^{\infty}\delta$	$\left(f-\frac{n}{T_{\rm s}}\right)$	B.	$\frac{1}{T_{\rm s}} \sum_{n=-\infty}^{\infty} x(nT_{\rm s})$	$\delta\left(f-\frac{n}{T_{\rm s}}\right)$
(31)	4 75 ($\frac{1}{T_s} \sum_{n=-\infty}^{\infty} x(nT_s)$	
(32)	A. $R_{\rm s} \ge 2W$	B. $R_{\rm s} \ge W$	C.	$R_{\rm s} \le 2W$	D. $R_{\rm s} \leq W$

● 第一类部分响应系统的冲激响应 $h_{\rm I}(t)$ 满足 $\underline{(33)}$ 。若相关编码的输入是二电平序列 $\{a_n\}$, $a_n\in\{\pm 1\}$,那么在无噪声情况下,接收端在 $t=nT_{\rm b}$ 时刻的采样值为 $c_n=\underline{(34)}$ 。

		B. $h_{\rm I}(nT_{\rm b}) = \begin{cases} 1, & n = 0 \\ 0, & n = \pm 1, \pm 2, \cdots \end{cases}$
(33)	C. $h_{\rm I}(nT_{\rm b}) = \begin{cases} 1, & n = 0, 1 \\ 0, & n$ 为其他值	D. $h_{\rm I}(nT_{\rm b}) = \begin{cases} 1, & n = 0,1 \\ -1, & n$ 为其他值
(34)	A. $a_n + a_{n-1}$ B. $a_n - a_{n-1}$	C. $a_n + a_{n-2}$ D. $a_n - a_{n-2}$

● 令 H_N 表示N阶哈达玛矩阵,其元素取值于 ± 1 ,则 $H_{2N} = (35)$ 。

(35) A. H_N^2 B. $\begin{bmatrix} H_N & H_N \\ H_N & -H_N \end{bmatrix}$	$C. \begin{bmatrix} H_N & -H_N \\ H_N & -H_N \end{bmatrix}$	D. 2 <i>H</i> _N
--	---	----------------------------

● 四进制信源符号X的概率分布是 $\{1/2,1/4,1/8,1/8\}$,经过哈夫曼编码后平均每符号的码长是(36)bit。

(36)	LA 1	LB. 1.5	l C. 1.75	l D. 2
(50)	11. 1	D. 1.3	C. 1.75	D. 2

考试科目: 801 通信原理

二. (16 分)

图 1(a)中r(t) = s(t) + n(t),其中 $s(t) = m(t)\cos 2\pi f_{c}t - \hat{m}(t)\sin 2\pi f_{c}t$ 是已调信号,载频为 $f_{c} = 5$ kHz;m(t)是功率为 3W、带宽为 2kHz 的基带信号; $\hat{m}(t)$ 是m(t)的希尔伯特变换;n(t)是窄带噪声,其功率谱密度 如图 1(b)所示,图中纵坐标的单位是 W/kHz;LPF 是截止频率为 2kHz 的理想低通滤波器。试:

- (1)问s(t)是什么调制方式,并求s(t)的带宽及功率;
- (2)求 $y_1(t)$, $y_2(t)$ 的表达式;
- (3)求两个输出端各自的信噪比(折算为 dB 值);
- (4)画出n(t)的同相分量 $n_c(t)$ 的功率谱密度。

图 1

三. (16分)

设二进制双极性传输系统的接收信号为

$$y(t) = \begin{cases} s(t) + n_{w}(t), \$$
 若发送 1
 $-s(t) + n_{w}(t), \$ 若发送 0

其中 $n_w(t)$ 是双边功率谱密度为 $N_0/2$ 的高斯白噪声,s(t)的波形如图 2(a) 所示。接收信号经过一个冲激响应为h(t)=s(-t)的滤波器后,在 $t=t_0$ 时刻进行采样判决,如图 2(b)所示。试:

- (1)求s(t)的能量;
- (2)若 $t_0 = 0$,求采样时刻有用信号的值、噪声功率、判决错误率;
- (3)若 $t_0 = 1$,求采样时刻有用信号的值、噪声功率、判决错误率。

图 2

四. (16分)

设某 8 电平非均匀量化编码器的输入 X 在[-8, +8]内均匀分布,编码器输出码字由 3 个比特 $b_1b_2b_3$ 构成,其中 $b_1=1$ 、0表示 X 的极性为正、负; b_2b_3 取 00、01、10、11 分别表示 X 的绝对值落在[0,1)、[1,2)、[2,4)、[4,8]区间中。每个区间的量化电平取为区间的中点。试求:

- (1)量化输入信号 X 的功率 $E[X^2]$;
- (2)量化电平 Y 的各可能取值及其出现概率;
- (3)量化噪声功率 $N_q = E \left[(Y X)^2 \right]$;
- $(4)b_1, b_2, b_3$ 各自取 1 的概率。

考试科目: 801 通信原理

第6页共8页

五. (16分)

已知(7,4)系统循环码编码器的输入为u = 0010时,输出为 c = 0010110。 试:

- (1) 求生成多项式;
- (2) 若编码器的输入是u = 0011, 写出编码器输出的码字c;
- (3) 若译码器的输入是 v=1101101,写出译码器输出码字 \hat{c} ;
- (4) 若已知编码器输出 $\mathbf{c} = c_6 c_5 \cdots c_0 + c_3 = c_2 = c_1 = 0$, $c_0 = 1$, 求 c_6 、 c_5 、 c_4 。

六. (16 分)

图 3 中 m 序列的周期是 7,特征多项式是 $f(x) = 1 + x^2 + x^3$ 。输出的 m 序列通过卷积码编码后映射为 8PSK 符号,编码器的初始状态为全零。

已知 m 序列的输出速率是 40kbit/s, 信道带宽是 60kHz。试:

- (1)求 8PSK 系统的符号速率、滚降系数,画出功率谱密度图、画出调制框图:
- (2)画出 m 序列发生器的框图:
- (3)画出该卷积码的状态转移图。

图 3

七. (8分)

设X是二进制符号,其概率分布为 $\{p_1,p_2\}$, $p_1+p_2=1$ 。试:

- (1)写出X的熵H[X]随 p_1 变化的函数式,画出函数曲线图;
- (2)证明熵在 $p_1 = p_2 = \frac{1}{2}$ 时最大,写出熵的最大值。

考试科目: 801 通信原理

第7页共8页

八. (8分)

设某二进制通信系统等概发送 $s_1 = (+1,+1)$ 和 $s_2 = (-1,-1)$ 之一,接收信号 是 $r = (r_1,r_2) = s + n$,其中 $n = (n_1,n_2)$ 是零均值高斯噪声向量, n_1 和 n_2 独立同分布,方差均为 1。试:

- (1)画出星座图;
- (2)写出发送 $\mathbf{s}_1 = (+1, +1)$ 条件下 \mathbf{r}_1 的条件概率密度函数 $f(\mathbf{r}_1 | + 1)$ 以及似 然概率 $f(\mathbf{r} | \mathbf{s}_1)$;
- (3)画出最大似然判决域。