Plan du cours

l.	Introduction						
II.	Fonctions affines						
	1.	Définition	3				
	2.	Propriétés	4				
	3.	Représentation graphique	6				

I. Introduction

Enoncé:

Un club multi-sports propose à sa clientèle de choisir entre les trois formules suivantes :

Formule A: 10 euros par séance.

Formule B : Un forfait annuel de 150 €auquel s'ajoute une participation de 5 €par séance.

Formule C : Un forfait annuel de 500 €permettant l'accès illimité aux séances.

- 1. Calculer pour chaque formule la dépense annuelle pour : 15 séances ; 40 séances ; 50 séances ; 75 séances ; 90 séances. Dans chaque cas, quelle est la formule la plus intéressante ?
 - 2. Soit x le nombre de séances pendant une année. Exprimer en fonction de x la dépense annuelle pour chaque formule.
- 3. (a) Pour chaque formule, représenter sur un même graphique la dépense annuelle en fonction du nombre d'entrées.
- (b) Déterminer graphiquement la formule la plus avantageuse en fonction du nombre de séances.

Résolution :

1. Pour 15 séances :

FORMULE A: FORMULE B: FORMULE C: $15 \times 10 = 150$ euros $150 + 15 \times 5 = 225$ euros 500 euros

Pour 40 séances :

FORMULE A: FORMULE B: FORMULE C:

 $40 \times 10 = 400 \text{ euros}$ $150 + 40 \times 5 = 350 \text{ euros}$ 500 euros

Pour 50 séances :

FORMULE A: FORMULE B: FORMULE C:

 $50 \times 10 = 500 \text{ euros}$ $150 + 50 \times 5 = 400 \text{ euros}$ 500 euros

Pour 75 séances :

FORMULE A: FORMULE B: FORMULE C:

 $75 \times 10 = 750 \text{ euros}$ $150 + 75 \times 5 = 525 \text{ euros}$ 500 euros

Pour 90 séances :

FORMULE A: FORMULE B: FORMULE C:

 $90 \times 10 = 900 \text{ euros}$ $150 + 90 \times 5 = 600 \text{ euros}$ 500 euros

Au début, la formule la plus intéressante est la A, puis la B et enfin la C.

2. Les différentes formules :

Formule A:

Soit x le nombre de séances : $f(x) = 10 \times x = 10x$

On a alors défini une fonction linéaire.

Formule B:

Soit x le nombre de séances : $f(x) = 150 + 5 \times x = 150 + 5x$

On a alors défini une fonction affine.

Formule C:

Soit x le nombre de séances : f(x) = 500

On a alors défini une fonction constante.

3. (a) Les représentations graphiques :

II. Fonctions affines

1. Définition

Définition

On dit qu'une fonction f est affine s'il existe deux nombres a et b tel que $f: f: x \mapsto ax + b$. Le nombre **a** est appelé **coefficient directeur** de la fonction f et le nombre **b** est appelé **ordonnée à l'origine**.

Remarque:

- Une fonction linéaire est une fonction affine où b = 0.
- Une fonction constante est une fonction affine où a = 0.

Exemples:

Fonction	Linéaire ? Constante ? Affine ?	Coefficients?
$f: x \longmapsto 5x$	linéaire donc affine	a = 5etb = 0
$g: x \longmapsto 5x + 2$	affine	a = 5etb = 2
$h: x \longmapsto 8$	constante donc affine	a = 0etb = 8
$i: x \longmapsto \frac{x-8}{3}$	affine	$a = \frac{1}{3}etb = \frac{8}{3}$
$j: x \longmapsto x^2$	Χ	X

Exercice d'application 1

Calculer des images connaissant les antécédents.

On donne $f: x \longmapsto -4x + 2$ et $g: x \longmapsto \frac{x-1}{2}$. Calculer f(3), g(-1) et g(1).

- Calcul de f(3) : - Calcul de g(-1) : - Calcul de g(1) :

 $f(3) = -4 \times 3 + 2$ $g(-1) = \frac{-1 - 1}{2}$ $g(1) = \frac{1 - 1}{2}$

f(3) = -12 + 2 $g(-1) = \frac{-2}{2}$ $g(1) = \frac{0}{2}$

f(3) = -10 g(-1) = -1 g(1) = 0

Exercice d'application 2

Déterminer des antécédents connaissant les images.

On donne la fonction $f: x \mapsto -2x + 3$. Déterminer les antécédents de -5 et de 3. Pour calculer le ou les antécédents de -5 par la fonction f, on résout l'équation -2x + 3 = -5.

$$-2x + 3 = -5$$

$$-2x = -5 - 3$$

$$-2x = -8$$

$$\frac{-2x}{-2} = \frac{-8}{-2}$$

L'antécédent de -5 par la fonction f est 4.

Pour calculer le ou les antécédents de 3 par la fonction f, on résout l'équation -2x + 3 = 3.

$$-2x + 3 = 3$$
$$-2x = -3 - 3$$
$$-2x = 0$$
$$x = 0$$

L'antécédent de 3 par la fonction f est 0.

2. Propriétés

Propriété

Soient f une fonction affine, x_1 et x_2 deux nombres.

Si
$$x1 \neq x2$$
 alors $a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Exemple:

 \rightarrow Déterminer la fonctions affine telle que f(1) = 2 et f(3) = -4.

Étape 1 : Calcul du coefficient a.

Pour trouver le coefficient a, nous allons utiliser la propriété ci-dessus. On a f(1) = 2 et f(3) = -4.

Ainsi,
$$a = \frac{f(3) - f(1)}{3 - 1}$$
 On remplace par les valeurs :
$$a = \frac{-4 - 2}{3 - 1}$$
$$a = \frac{-6}{2}$$
 $a = -3$

Dès lors, on obtient que, pour tout réel x, f(x) = -3x + b.

Étape 2 : Calcul du coefficient b.

Pour cela, il faut utiliser une des 2 égalités de l'énoncé. Prenons, f(1)=2. Cela signifie de l'image de 1 est 2 par la fonction f(x)=-3x+b.

f(1) = 2 et f(x) = -3x + b implique que :

$$-3 \times 1 + b = 2$$

$$-3 + b = 2$$

Il n'y a plus qu'à résoudre l'équation.

$$b = 2 + 3$$

$$b = 5$$

Étape 3 : Expression de la fonction f.

L'expression de la fonction affine f est donc f(x) = -3x + 5.

Exercice d'application 3 —

Déterminer une fonction affine à l'aide de deux nombres et de leur image.

Déterminer la fonction affine f telle que f (1) = 3 et f (-2) = 0.

Étape 1 : Calcul du coefficient a.

Pour trouver le coefficient a, nous allons utiliser la propriété ci-dessus. On a f(1) = 3 et f(-2) = 0.

Ainsi, $a = \frac{f(-2) - f(1)}{-2 - 1}$ On remplace par les valeurs :

$$a = \frac{0 - 3}{-2 - 1}$$

$$a = \frac{-3}{-3} \qquad a = 1$$

Dès lors, on obtient que, pour tout réel x, f(x) = 1x + b.

Étape 2 : Calcul du coefficient b.

Pour cela, il faut utiliser une des 2 égalités de l'énoncé. Prenons, f(1)=2. Cela signifie de l'image de 1 est 2 par la fonction f(x)=1x+b.

f(1) = 3 et f(x) = 1x + b implique que :

$$1 \times 1 + b = 3$$

$$1 + b = 3$$

Il n'y a plus qu'à résoudre l'équation.

$$b = 3 - 1$$

$$b = 2$$

Étape 3 : Expression de la fonction f.

L'expression de la fonction affine f est donc f(x) = 1x + 2.

3. Représentation graphique

Propriété

La représentation graphique d'une fonction affine est une droite.

<u>Méthode :</u>

On remplit le tableau suivant où l'on choisit librement (mais intelligemment!) les deux nombres de la première ligne et on calcule leur image.

Χ	
f(x)	

On place ensuite les deux points dont les coordonnées sont en colonnes et on trace la droite.

Exemples:

Tracer les représentations graphiques des fonctions f et g telles que g(x) = 6x - 7 et $f(x) = \frac{x}{2} - 4$

Vous pouvez commencer par exemple à remplir les tableaux de valeurs ci-dessous. Nous voulons obtenir une droite donc 2 valeurs suffisent pour les x.

Х	0	2
g(x)	-7	5

Χ	0	2
f(x)	-4	-3

