Pakningar fléttufræðilegra fyrirbrigða með aðstoð línulegrar bestunnar Stærðfræði á Íslandi 2019

Bjarni Jens Kristinsson, Christian Bean og Henning Úlfarsson

Háskólinn í Reykjavík

13. október 2019

Inngangur

Okkar framlag Orðaklasar

CombCov reikniritið Útskýring með orðaklösum

Umraðanir og möskvamynstur Skilgreiningar Áhugaverðar niðurstöður

Lokaorð og spurningar

Bakgrunnur

- M.Sc. verkefni í tölvunarfræði við Háskólann í Reykjavík
- Byggir á "Automatic discovery of structural rules of permutation classes" (2019) eftir Christian Bean, Bjarka Guðmundsson og Henning Úlfarsson
- Struct einskorðast við umraðanaklasa.

Okkar framlag

- CombCov hugbúnaðarpakka fyrir Python
- Almennt tól fyrir fléttufræðileg fyrirbrigði
- Sjálfvirknivætt eldri niðurstöður um möskvamynstursklasa

Skilgreining

Látum s vera orð með bókstöfum úr stafrófinu $\Sigma = \{a,b\}$. Við táknum tóma orðið með ϵ og það uppfyllir skilyrðin $\epsilon \cdot s = s$ (forskeyti) og $s \cdot \epsilon = s$ (viðskeyti) fyrir öll orð s yfir Σ . Skilgreinum $\operatorname{Av}(s)$ sem mengið af orðum yfir stafrófið Σ sem innihalda ekki s sem hlutorð. Köllum þetta orðaklasa.

Skilgreining

Látum s vera orð með bókstöfum úr stafrófinu $\Sigma = \{a,b\}$. Við táknum tóma orðið með ϵ og það uppfyllir skilyrðin $\epsilon \cdot s = s$ (forskeyti) og $s \cdot \epsilon = s$ (viðskeyti) fyrir öll orð s yfir Σ . Skilgreinum $\operatorname{Av}(s)$ sem mengið af orðum yfir stafrófið Σ sem innihalda ekki s sem hlutorð. Köllum þetta orðaklasa.

Dæmi

 Av(aa) = {ε, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, ...} er orðaklasi.

Skilgreining

Látum s vera orð með bókstöfum úr stafrófinu $\Sigma = \{a,b\}$. Við táknum tóma orðið með ϵ og það uppfyllir skilyrðin $\epsilon \cdot s = s$ (forskeyti) og $s \cdot \epsilon = s$ (viðskeyti) fyrir öll orð s yfir Σ . Skilgreinum $\operatorname{Av}(s)$ sem mengið af orðum yfir stafrófið Σ sem innihalda ekki s sem hlutorð. Köllum þetta orðaklasa.

Dæmi

- Av(aa) = {ε, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, ...} er orðaklasi.
- Er til einfaldari lýsing á Av(aa)?

Skilgreining

Látum s vera orð með bókstöfum úr stafrófinu $\Sigma = \{a,b\}$. Við táknum tóma orðið með ϵ og það uppfyllir skilyrðin $\epsilon \cdot s = s$ (forskeyti) og $s \cdot \epsilon = s$ (viðskeyti) fyrir öll orð s yfir Σ . Skilgreinum $\operatorname{Av}(s)$ sem mengið af orðum yfir stafrófið Σ sem innihalda ekki s sem hlutorð. Köllum þetta orðaklasa.

Dæmi

- Av(aa) = {ε, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, ...} er orðaklasi.
- Er til einfaldari lýsing á Av(aa)?
- Hvað eru mörg orð af lengd n í Av(aa)?

• Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)

• Markmið: Finna k sundurlæg hlutmengi S_i sem bekja Av(S)(1) $\bigcup_{i \in I} S_i = Av(S)$

- Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$

- Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur

- Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- Vandamál: Tölvur kunna ekki að reikna með óendanlega mörgum hlutum

- Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- Vandamál: Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- Lausn: Búum til og vinnum með endanlegar framsetningar

- Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- Vandamál: Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- <u>Lausn</u>: Búum til og vinnum með endanlegar framsetningar
 - $R = \{ w \in \operatorname{Av}(S) \colon |w| \leq \ell \}$

- Markmið: Finna k sundurlæg hlutmengi S_i sem pekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- <u>Vandamál:</u> Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- Lausn: Búum til og vinnum með endanlegar framsetningar
 - $R = \{ w \in \operatorname{Av}(S) \colon |w| \leq \ell \}$
 - $R_i = \{w \in S_i : |w| \leq \ell\}$

- Markmið: Finna k sundurlæg hlutmengi S_i sem þekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- Vandamál: Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- <u>Lausn</u>: Búum til og vinnum með endanlegar framsetningar
 - $R = \{ w \in \operatorname{Av}(S) \colon |w| \leq \ell \}$
 - $R_i = \{w \in S_i : |w| \leq \ell\}$
- Leysum í staðinn endanlega vandamálið

- Markmið: Finna k sundurlæg hlutmengi S_i sem þekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- Vandamál: Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- Lausn: Búum til og vinnum með endanlegar framsetningar
 - $R = \{ w \in \operatorname{Av}(S) \colon |w| \leq \ell \}$
 - $R_i = \{w \in S_i : |w| \leq \ell\}$
- Leysum í staðinn endanlega vandamálið

(1)
$$\bigcup_{i\in I} R_i = R$$

- Markmið: Finna k sundurlæg hlutmengi S_i sem þekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- <u>Vandamál:</u> Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- Lausn: Búum til og vinnum með endanlegar framsetningar
 - $R = \{ w \in \operatorname{Av}(S) \colon |w| \leq \ell \}$
 - $R_i = \{w \in S_i : |w| \leq \ell\}$
- Leysum í staðinn endanlega vandamálið
 - (1) $\bigcup_{i \in I} R_i = R$
 - (2) $R_i \cap R_j = \emptyset$ ef $i \neq j$

- Markmið: Finna k sundurlæg hlutmengi S_i sem þekja Av(S)
 - (1) $\bigcup_{i\in I} S_i = \operatorname{Av}(S)$
 - (2) $S_i \cap S_j = \emptyset$ ef $i \neq j$
- Köllum Av(S) rótina og S_i reglur
- <u>Vandamál:</u> Tölvur kunna ekki að reikna með óendanlega mörgum hlutum
- <u>Lausn:</u> Búum til og vinnum með endanlegar framsetningar
 - $R = \{ w \in \operatorname{Av}(S) \colon |w| \leq \ell \}$
 - $R_i = \{w \in S_i : |w| \leq \ell\}$
- Leysum í staðinn endanlega vandamálið
 - (1) $\bigcup_{i \in I} R_i = R$
 - (2) $R_i \cap R_j = \emptyset$ ef $i \neq j$
- Á næstu glærum förum við í gegn um reikniritið til að finna δ þakningu á ${\rm Av}(aa)$

• $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Hvernig finnum við reglurnar S_i ?

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Hvernig finnum við reglurnar S_i?
- Okkar hugmynd: Prófum reglur af gerðinni uAv(S') þar sem

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Hvernig finnum við reglurnar S_i?
- Okkar hugmynd: Prófum reglur af gerðinni u Av(S') þar sem
 - $u \text{ er orð } i \text{ Av}(S) \text{ að lengd} \leq \max\{|w|: w \in S\} \text{ og }$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Hvernig finnum við reglurnar S_i?
- Okkar hugmynd: Prófum reglur af gerðinni u Av(S') þar sem
 - u er orð í Av(S) að lengd $\leq \max\{|w|: w \in S\}$ og
 - S' er annað hvort allt stafrófið Σ eða mengi af orðum sem eru hlutorð af orðum í $\operatorname{Av}(S)$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Hvernig finnum við reglurnar S_i?
- Okkar hugmynd: Prófum reglur af gerðinni u Av(S') þar sem
 - u er orð í Av(S) að lengd $\leq \max\{|w|: w \in S\}$ og
 - S' er annað hvort allt stafrófið Σ eða mengi af orðum sem eru hlutorð af orðum í $\operatorname{Av}(S)$
- Næsta skref: Kanna hvort reglurnar séu gjaldgengar

• $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$
- Notum bitastrengi til að tákna hlutmengi í R

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$
- Notum bitastrengi til að tákna hlutmengi í R
 - B' = 111111 táknar allt mengið R

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$
- Notum bitastrengi til að tákna hlutmengi í R
 - B' = 111111 táknar allt mengið R
 - B'' = 011001 táknar hlutmengið $\{a, b, bb\}$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$
- Notum bitastrengi til að tákna hlutmengi í R
 - B' = 111111 táknar allt mengið R
 - B'' = 011001 táknar hlutmengið $\{a, b, bb\}$
 - B'''=100000 táknar hlutmengið $\{\epsilon\}$

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$
- Notum bitastrengi til að tákna hlutmengi í R
 - B' = 111111 táknar allt mengið R
 - B'' = 011001 táknar hlutmengið $\{a, b, bb\}$
 - B'''=100000 táknar hlutmengið $\{\epsilon\}$
- Reglan aAv(a) býr til mengið $R' = \{a, ab\} \subseteq R$ með tilsvarandi bitastreng 010100 og er því gjaldgeng

- $Av(aa) = \{\epsilon, a, b, ab, ba, bb, aba, abb, bab, bba, bbb, \ldots\}$
- Veljum nákvæmnina $\ell=2$
- Pá er $R = \{\epsilon, a, b, ab, ba, bb\}$
- Notum bitastrengi til að tákna hlutmengi í R
 - B' = 111111 táknar allt mengið R
 - B'' = 011001 táknar hlutmengið $\{a, b, bb\}$
 - B''' = 100000 táknar hlutmengið $\{\epsilon\}$
- Reglan aAv(a) býr til mengið $R' = \{a, ab\} \subseteq R$ með tilsvarandi bitastreng 010100 og er því gjaldgeng
- Reglan $a\mathrm{Av}(b)$ býr til mengið $R''=\{a,aa\}\nsubseteq R$ svo reglan er ógjaldgeng

Línuleg bestun

• $R = \{\epsilon, a, b, ab, ba, bb\}$

- $R = \{\epsilon, a, b, ab, ba, bb\}$
- Samtals verða til 16 reglur

- $R = \{\epsilon, a, b, ab, ba, bb\}$
- Samtals verða til 16 reglur
 - Þar af eru 15 gjaldgengar

- $R = \{\epsilon, a, b, ab, ba, bb\}$
- Samtals verða til 16 reglur
 - Par af eru 15 gjaldgengar
 - Þær búa til 9 ólíka bitastrengi

- $R = \{\epsilon, a, b, ab, ba, bb\}$
- Samtals verða til 16 reglur
 - Þar af eru 15 gjaldgengar
 - Þær búa til 9 ólíka bitastrengi
- Notum Gurobi eða COIN CLP/CBC LP til að leysa jöfnuhneppið

Min
$$z = x_1 + \dots + x_9$$

b.a. $x_6 + x_8 + x_9 = 1$
 $x_1 = 1$
 $x_2 + x_7 = 1$
 $x_3 + x_8 + x_9 = 1$
 $x_4 + x_7 = 1$
 $x_5 + x_9 = 1$
m.t.t. $x_i \in \{0, 1\}$ fyrir $i = 1, \dots, 9$.

• Ein lausn jöfnuhneppisins er $x_1 = x_7 = x_9 = 1$ og gefur þakninguna

$$\epsilon \text{Av}(a, b) \cup a \text{Av}(a) \cup b \text{Av}(aa).$$

• Ein lausn jöfnuhneppisins er $x_1 = x_7 = x_9 = 1$ og gefur þakninguna

$$\epsilon \text{Av}(a, b) \cup a \text{Av}(a) \cup b \text{Av}(aa).$$

Þetta er röng lausn!

• Ein lausn jöfnuhneppisins er $x_1 = x_7 = x_9 = 1$ og gefur þakninguna

$$\epsilon \text{Av}(a, b) \cup a \text{Av}(a) \cup b \text{Av}(aa).$$

- Petta er röng lausn!
- $abba \in Av(aa)$ en engin af reglunum býr til orðið!

• Ein lausn jöfnuhneppisins er $x_1 = x_7 = x_9 = 1$ og gefur þakninguna

$$\epsilon \text{Av}(a, b) \cup a \text{Av}(a) \cup b \text{Av}(aa).$$

- Þetta er röng lausn!
- $abba \in Av(aa)$ en engin af reglunum býr til orðið!
- Með því að hækka nákæmnina (gildið á ℓ) fæst rétt svar:

$$Av(aa) = \epsilon Av(a, b) \cup aAv(a, b) \cup bAv(aa) \cup abAv(aa)$$

• Ein lausn jöfnuhneppisins er $x_1 = x_7 = x_9 = 1$ og gefur þakninguna

$$\epsilon \text{Av}(a, b) \cup a \text{Av}(a) \cup b \text{Av}(aa).$$

- Þetta er röng lausn!
- $abba \in Av(aa)$ en engin af reglunum býr til orðið!
- Með því að hækka nákæmnina (gildið á ℓ) fæst rétt svar:

$$Av(aa) = \epsilon Av(a, b) \cup aAv(a, b) \cup bAv(aa) \cup abAv(aa)$$

 Hægt er að sýna fram á að talning orðaklasans séu Fibonacci tölurnar (hliðraðar um einn) Inngangur

Okkar viðfangsefni

Umröðun (e. permutation) að lengd n er gagntæk vörpun á $[\![1,n]\!]=\{1,\ldots,n\}.$

Umröðun (e. permutation) að lengd n er gagntæk vörpun á $[\![1,n]\!]=\{1,\ldots,n\}$. Dæmi um umröðun að lengd 4 er $\pi=1342$

Umröðun (e. permutation) að lengd n er gagntæk vörpun á $[\![1,n]\!]=\{1,\ldots,n\}$. Dæmi um umröðun að lengd 4 er $\pi=1342$ sem varpar $1\mapsto 1,\ 2\mapsto 3,\ 3\mapsto 4$ og $4\mapsto 2$.

Umröðun (e. permutation) að lengd n er gagntæk vörpun á $[\![1,n]\!]=\{1,\ldots,n\}$. Dæmi um umröðun að lengd 4 er $\pi=1342$ sem varpar $1\mapsto 1,\ 2\mapsto 3,\ 3\mapsto 4$ og $4\mapsto 2$. Myndræn framsetning á umröðunum lítur svona út:

Umröðun (e. permutation) að lengd n er gagntæk vörpun á $[\![1,n]\!]=\{1,\ldots,n\}$. Dæmi um umröðun að lengd 4 er $\pi=1342$ sem varpar $1\mapsto 1,\ 2\mapsto 3,\ 3\mapsto 4$ og $4\mapsto 2$. Myndræn framsetning á umröðunum lítur svona út:

Við segjum að π innihaldi mynstrið p=21 því 32 (í $1\underline{3}4\underline{2}$) er einsraða (e. order isomorphic) p.

Umröðun (e. permutation) að lengd n er gagntæk vörpun á $[\![1,n]\!]=\{1,\ldots,n\}$. Dæmi um umröðun að lengd 4 er $\pi=1342$ sem varpar $1\mapsto 1,\ 2\mapsto 3,\ 3\mapsto 4$ og $4\mapsto 2$. Myndræn framsetning á umröðunum lítur svona út:

Við segjum að π innihaldi mynstrið p=21 því 32 (í $1\underline{3}4\underline{2}$) er einsraða (e. order isomorphic) p. π inniheldur ekki mynstrið q=312 og þá segjum við að π forðist q.

Möskvamynstur

• Möskvamynstur (e. mesh pattern) er tvennd (π, M) þar sem π er umröðun að lengd n og M er hlutmengi í $[0, n] \times [0, n]$.

Möskvamynstur

- Möskvamynstur (e. mesh pattern) er tvennd (π, M) þar sem π er umröðun að lengd n og M er hlutmengi í $[0, n] \times [0, n]$.
- Dæmi: $p = (213, \{[1, 2], [2, 2], [2, 3]\})$

• Her að ofan sést dæmi um tilvik af möskvamynstrinu $p=(213,\{ [1,2],[2,2],[2,3] \})$ í umröðuninni $\pi=31524$.

- Her að ofan sést dæmi um tilvik af möskvamynstrinu $p=(213,\{ [1,2],[2,2],[2,3] \})$ í umröðuninni $\pi=31524$.
- Mengi allra umraðana sem forðast möskvamynstrið p er Av(p).

- Her að ofan sést dæmi um tilvik af möskvamynstrinu $p=(213,\{ \begin{smallmatrix} r\\ L 1,2 \end{smallmatrix}, \begin{smallmatrix} r\\ L 2,2 \end{smallmatrix}, \begin{smallmatrix} r\\ L 2,2 \end{smallmatrix}, \begin{smallmatrix} r\\ L 2,3 \end{smallmatrix}\})$ í umröðuninni $\pi=31524$.
- Mengi allra umraðana sem forðast möskvamynstrið p er Av(p).
- Mengi allra umraðana af lengd n sem forðast p er $\operatorname{Av}_n(p)$.

- Her að ofan sést dæmi um tilvik af möskvamynstrinu $p=(213,\{[1,2],[2,2],[2,3]\})$ í umröðuninni $\pi=31524$.
- Mengi allra umraðana sem forðast möskvamynstrið p er $\operatorname{Av}(p)$.
- Mengi allra umraðana *af lengd n* sem forðast p er $\operatorname{Av}_n(p)$.
- Talning möskvamynstursklasans $\operatorname{Av}(p)$ er talnaruna $(F_n)_{n=0}^{+\infty}$ b.a. $|\operatorname{Av}_n(p)| = F_n$.

- Her að ofan sést dæmi um tilvik af möskvamynstrinu $p=(213,\{[1,2],[2,2],[2,3]\})$ í umröðuninni $\pi=31524$.
- Mengi allra umraðana sem forðast möskvamynstrið p er $\mathrm{Av}(p)$.
- Mengi allra umraðana af lengd n sem forðast p er $\operatorname{Av}_n(p)$.
- Talning möskvamynstursklasans $\operatorname{Av}(p)$ er talnaruna $(F_n)_{n=0}^{+\infty}$ β .a. $|\operatorname{Av}_n(p)| = F_n$.
- Summan $\sum_{n=0}^{+\infty} F_n x^n$ er framleiðnifall möskvamynstursklasans. Av(p).

Áhugaverðar niðurstöður

Næst skoðum við nokkrar áhugaverðar niðurstöður.

Enumerations of Permutations Simultaneously Avoiding a Vincular and a Covincular Pattern of Length 3 (2017)

$$Av\left(\begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \right) = \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right) \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right)$$

Af þessari þakningu sjáum við að um framleiðnifallið F(X) gildir

$$F(x) = 1 + xF(x) + x^2F(x)^2$$

sem gefa okkur Motzkin tölurnar M_n .

Wilf-Classification of Mesh Patterns of Short Length (2015)

$$\operatorname{Av}\left(\begin{array}{c} \mathcal{B} \\ \mathcal{A} \end{array}\right) = \left[\begin{array}{c} \mathcal{B} \\ \bullet \end{array}\right] \left[\begin{array}{c} \bullet & \mathfrak{S} \\ \bullet \end{array}\right]$$

$$\operatorname{Co}\left(\frac{\mathcal{B}}{\mathcal{B}}\right) = \frac{\mathcal{B}}{\mathcal{B}}$$

$$\mathcal{B} = \operatorname{Av}\left(\stackrel{\text{\tiny{ω}}}{\longrightarrow} \right)$$

$$\mathcal{B}$$

0000

Umraðanir og möskvamynstur

 \mathcal{B}

$$\operatorname{Co}\left(\begin{array}{c} & & & \\ & & & \\ & & & \end{array}\right) =$$

$$\mathcal{B} = \operatorname{Av}\left(\begin{array}{c} \swarrow \\ \swarrow \end{array} \right)$$

Inngangur

$$\operatorname{Co}\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) =$$

Umraðanir og möskvamynstur

0000

Generalized Pattern Avoidance (2001)

Hægt er að leiða út framleiðnifallið sem gæfi okkur Bell tölurnar B_n .

Wilf classification of bi-vincular permutation patterns (2009)

Wilf classification of bi-vincular permutation patterns (2009)

$$Av\left(\begin{array}{c} 2 & 2 & 2 \\ \hline \end{array}\right) = \begin{array}{c} \bullet \\ \hline \\ \bullet \\ \hline \end{array}$$

$$Av\left(\begin{array}{c} & & & \\ & & \\ & & \end{array}\right) = \begin{array}{c} & & \\ &$$

Inngangur

Einhverjar spurningar?

