Durch Zusammenfassen von Summen und Produkten können wir also recht grosse Zahlen bereits im Kopf ausrechen. Wir können sogar Potenzen vereinfachen. Dazu dient der "Kleine Fermat":

Satz 18 (Kleiner Fermat): Sei $p \in \mathbb{N}$ eine Primzahl und $x \in \mathbb{Z} \setminus \{0\}$ mit

ggT(x, p) = 1 Dann ist: $x^{p-1} \equiv 1 \mod p$

Beispiel 55 (Kleiner Fermat): gcd (5,3) = 1

$$p = 2 \Rightarrow 1^{2-1} \equiv 1 \mod 2$$

$$p=2 \Rightarrow 1^{2-1} \equiv 1 \mod 2$$
 $3^{5-1} \equiv 1 \mod 5$

$$p = 3 \Rightarrow 1^{3-1} \equiv 1 \mod 3$$

$$p = 3 \Rightarrow 1^{3-1} \equiv 1 \mod 3$$

 $2^{3-1} \equiv 4 \equiv 1 \mod 3$ 34 %, $g = 81$ %, $g = 1$

Satz 20 (Satz von Euler): Sei $n \in \mathbb{N} \setminus \{0\}$ und $z \in \mathbb{Z}$ mit ggT(z,n) = 1. Dann ist $z^{\varphi(n)} \equiv 1 \mod n$.

2.9 RSA-Verschlüsselung

Die RSA-Verschlüsselung (nach Rivest, Shamir und Adleman) ist ein Public-Key-Verfahren. Funktionsprinzip: Sie vergeben einen öffentlichen Schlüssel, mit dem jeder Botschaften an Sie so verschlüsseln kann, dass nur Sie sie entschlüsseln können.

Beispiel für die Funktionsweise:

- Wählen Sie zwei Primzahlen p_r , q_r , zum Beispiel p=3 und q=11, und berechnen Sie das Produkt $n = p \cdot q$.
- Berechnen Sie $\varphi(n) = \varphi(p \cdot q) = \varphi(p) \cdot \varphi(q) = (p-1) \cdot (q-1) = 20$
- Suchen Sie eine Zahl a mit $0 \le a < \varphi(n) = 20$ und mit $ggT(\varphi(n),a) = ggT(20,a) = 1$, zum Beispiel a=3
- Berechnen Sie das multiplikative Inverse von a in $\mathbb{Z}_{\varphi(n)} = \mathbb{Z}_{20}$:
 - $a \cdot b \mod 20 \equiv 1 \Rightarrow b = 7$
- Veröffentlichen Sie den öffentlichen Schlüssel: n = 33, b = 7V)
- Behalten Sie den privaten Schlüssel a=3vi)
- Vereinbaren Sie eine Buchstaben Tabelle:

А	В	С	D	Е	F	G	Н	Ι	J	K	L	М
1	2	3	4	5	6	7	8	9	10	11	12	13
N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Nun kann jeder Ihnen verschlüsselte Botschaften schicken, die nur Sie lesen können, weil nur Sie den privaten Schlüssel haben.

R chosen randomly &

p=119=13 7 n= 11.13=143 Q(n)= Q(p) · Q(q) = 10 · 12 = 120 7 < a < p(n)=120 gcd (120, a)=4 a:23 1\ a.b mod 120 = 1
4 b = 5.26

if you chose Oor 1 the inverse is either non existant at 0, or useless 7 1 at 1.

	Vanadali										Anzal		Pos	henzei	+ (NAi-	nutan				-
	Verschlüs Öffentlich	sseln: ner Schlüsse	el:		n 3	3 b 7					Dezin	nalstellen	Mi	telwer	t aus	5 Bere		ıngen		
1	Die Nachi	richt (Buch	staben B		MA	ТТ	E R				von /			$\varphi(n)$			m i			
1	(nach Bu	erte der Bud chstabenta	belle)										12 13					.0008 .0021		
	Verschlüs	sseln mit <i>d_i</i>	$c_i = c_i^b \mod$	d <i>n</i>	7 1	1 26 26	14 6	2 27	6 20	0			14					.0059		
1	Reisniele	$13^7 \equiv 7 \text{mo}$	433 30	1 ⁷ – 26 mag	133 57	- 14 mod	33						15 16					.0207 .0533		
1		elte Nachrio) = 26 mod				2 27	6 20	0								chätz		
1												20	00			4.	3 10 ⁷	⁷⁵ Jahr	re	
l												1111	' '		Т			' T		
1	Entschlüs																			
ľ		Schlüssel: ene Nachric	ht (Zahle	en d_i):		3 a 3 1 26 26	14 6	2 27	6 20	0										
ı	Entschlüs	sseln mit <i>e_i</i>	$= d_i^a \mod$	d <i>n</i>	13 1	1 20 20	5 18	8 15	18 14	4										
ļ		ann entsch			M	ч т т	E R	н о	R N	1										
1		-3		-3																
1	Beispiele:	$7^3 = 13 \text{mo}$	d33, 26	5° = 20 mod	133, 14 ³	' = 5 mod:	33													
	Grund für	das Funktio	onieren:																	
-		$d_i^a \equiv \left(c_i^b\right)^a$		$q \cdot \varphi(n) + 1$																
l	e _i mouπ =	$u_i = (c_i)$	$= c_i = c$	= 0	·i															
	Code knac	ken:																		
		Berechne F	Primfakto	rzerlegung	von <i>n</i>	83-	> 3	. 1.	1											
		Berechne																		
	iii)	Berechne S	Schlüssel	a . so das	s <i>a</i> · <i>b</i> ≡ :	1mod φ(n	21	17	= 3	3										
	iv)	⇒ Entsch		4,00 440				•	~											
	,	- Liveson																		
	Cobusionial	veit: Bereck	(n)																	
	Schwierigk	ceit. Dereci	nne $\varphi(n)$	für grosse	Zahlen	n														
	Schwierigk	veit. Dereci	$me \varphi(n)$	für grosse	Zahlen	n														
•	Schwierige	veit. Bereu	$\varphi(n)$	für grosse	Zahlen	n		_												
ſ																				
Į							• \$ \$ \$ i	b/e	olis	ris 8	r									
							ossi imes	s/e	dis	ris o	r									
	prime						ossi imes	ble o	dia	rise	r									
							ossi imes	ble o	din	rise	r									
							ossi imes	s/e	dia	riso	r									
							ossi imes	le or	dialy	ris e	r									
							ossi imes	ble	dialy	ris 8										
							ossimes	ble o	dialy	riso										
							ossi imes	ble	dis	ris 8										
							oss, imes	b/e	din	riso										
							ossi imes	b/e	dialy	7:30										
							oss, imes	b/e on	din	738										
							oss, imes	b/e o	dialy	7:30										
							oss, imes	ble	div	ris 8										
							ines	b/e	din	730										
							ossi imes	ble	oliv											
							ines	b/e	din	7.30										
							ossi imes	b/e	oliv											
							ines	b/e	din	7.38										
							ossi imes	b/e	olin											
							imes	ble	olinaly											
							ossi incs	b/e	olin											

Eucledean:
$$a = 6 \cdot q + V$$
 $a = 270 \quad b = 782 \quad q = ? \quad V = ?$
 $270/182 = 1 \quad vemainder 78$
 $q = 1 \quad v = 78$
 $132/78 = 2 \quad vemainder 36$
 $98/36 = 2 \quad vemainder 6 \quad gcd$
 $= 36/6 = 6 \quad vemainder 0$
 $a = 600 = 6 \quad 7 \quad a = 600 \quad a =$

 $2 = 26 - 2 \times 12$

We replace for 12 by taking our previous line (38 $= 1 \times 26 + 12$) and writing it in terms of 12:

 $2 = 26 - 2 \times (38 - 1 \times 26)$.

Collect like terms, the 26's, and we have

 $2=3\times 26-2\times 38.$

Repeat the process:

 $2 = 3 \times (102 - 2 \times 38) - 2 \times 38$

The final result is our answer:

 $2 = 3 \times 102 - 8 \times 38.$

Thus x and y are 3 and -

Definition 32: Zwei natürliche Zahlen $a \in \mathbb{N}, b \in \mathbb{N}$ heissen tellerfremd, wenn ggT(a,b) = 1.

Ablauf	х	У	q	r	u	s	v	t
Initialisieren	99	79	1	20	1	0	0	1
1 Wiederholung	79	20	3	19	0	1	1	-1
2 Wiederholung	20	19	1	1	1	∕ -3	-1	4
3 Wiederholung	19	1	19	0	-3	4	4	-5

Dabei verwenden wir die folgende Vorschrift:

Erweiterter Euklidischer Algorithmus Seien $a,b \in \mathbb{N}, a \neq b, a \neq 0, b \neq 0$

Initialisierung:

Setze x = a, y = b, q = x div y, $r = x - y \cdot q$, (u, s, v, t) = (1, 0, 0, 1)

(d.h. bestimme q und r so, dass $x = q \cdot y + r$ ist)

Wiederhole bis r = 0 ist:

 $x = y_{-1}$ = y aus der vorangegangenen Zeile

 $y = r_{-1}$ = r aus der vorangegangenen Zeile

 $q = x \operatorname{div} y$, $r = x \operatorname{mod} y = x - y \cdot q$

u #s_1 = s aus der vorangegangenen Zeile

 $s \not \equiv u_{-1} - q_{-1} \cdot s_{-1}$ mit u_{-1} , q_{-1} , s_{-1} aus der vorangegangenen Zeile

= t aus der vorangegangenen Zeile

 $t = v_{-1} - q_{-1} \cdot t_{-1}$ mit v_{-1} , q_{-1} , t_{-1} aus der vorangegangenen Zeile

Ergebnis:

In der letzten Zeile gilt $y = ggT(a,b) = s \cdot a + t \cdot b$.

Wenn ggT(a,b) = 1 ist, dann folgt: $t \cdot b \equiv 1 \mod a$

2.8 Der Satz von Euler

Der kleine Fermat kann erfolgreich angewendet werden, um grosse Potenzen zu bestimmen. Der Satz von Euler ist eine Erweiterung davon.

Definition 35 (Eulersche φ -Funktion): Sei $n \in \mathbb{N}$ und

 $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n | x \text{ hat ein multiplikatives Inverses in } \mathbb{Z}_n \}$. Dann berechnet sich die

Eulersche φ -Funktion als

$$\varphi(n) = \text{Anzahl Zahlen } m \in \mathbb{N} \text{ mit } 1 \leq m \leq n \text{ undggT}(n, m) = 1$$

$$\varphi(n)$$
 = Anzahl Elemente $x \in \mathbb{Z}_n$ mit multiplikativem Inversen

$$\varphi(n) = |\mathbb{Z}_n^*|$$

Beispiel 58:

$$\varphi(1) = |\{1\}| = 1$$

$$\varphi(2) = |\{1\}| = 1$$

$$\varphi(3) = |\{1,2\}| = 2$$
 ged 2 and 3 = 1

$$\varphi(4) = |\{1,3\}| = 2$$
 and 4 = 1

$$\varphi(1) = |\{1\}| = 1$$
 $\varphi(2) = |\{1\}| = 1$
 $\varphi(3) = |\{1,2\}| = 2$
 $\varphi(4) = |\{1,3\}| = 2$
 $\varphi(5) = |\{1,2,3,4\}| = 4$
 $\varphi(6) = |\{1,5\}| = 2$
 $\varphi(6) = |\{1,5\}| = 2$

J....

$$\varphi(6) = \left| \{1, 5\} \right| = 2$$

$$\varphi(7) = |\{1, 2, 3, 4, 5, 6\}| = 6$$

$$\varphi(8) = |\{1,3,5,7\}| = 4$$

$$\varphi(9) = |\{1, 2, 4, 5, 7, 8\}| = 6$$

$$\varphi(10) = |\{1, 3, 7, 9\}| = 4$$

$$\varphi(11) = |\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}| = 10$$

$$\varphi(12) = |\{1, 5, 7, 11\}| = 4$$

Formeln zur Berechnung der Eulerschen φ -Funktion

i) Sei
$$p \in \mathbb{N}$$
 eine Primzahl. Dann ist $\varphi(p) = p - 1$

ii) Sei
$$p \in \mathbb{N}$$
 eine Primzahl und $n \in \mathbb{N} \setminus \{0\}$. Dann ist $\varphi(p^n) = p^{n-1} \cdot (p-1)$

iii) Seien
$$m,n\in\mathbb{N}\setminus\{0\}$$
 und $ggT(m,n)=1$. Dann ist $\varphi(n\cdot m)=\varphi(n)\cdot\varphi(m)$