(그림으로 이해하는) 닥터 배의 술술 보건의학통계

Part_2 중급 보건의학통계 맛보기 라 가 영

- 가. 로지스틱 회귀분석
 - 로짓 변환
 - 로지스틱 회귀모형의 추정
 - 질병이 있을 확률
 - 분류표의 작성
 - 추정된 모형의 유의성 검정
 - 로지스틱 회귀분석에서의 교차비
 - 가변수의 설정
 - Hosmer-Lemeshow's goodness-of-fit test

- 선형회귀분석(linear regression analysis) : 혈압이나 혈당을 예측하고, 이에 영향을 미치는 요인을 밝히는 통계적 방법
- 로지스틱 회귀분석(logistic regression analysis): 특정 질병의 유무에 영향을 미치는 요인을 밝히는 통계적 방법
- 교란변수의 영향을 제거하고 여러 위험인자들이 관련되는 정도를 하나의 모형으로 설명하기 위해서는 <mark>로지스틱 회귀분석</mark>의 도움이 필요

영향을 주는 변수 영향을 받는 변수 통계분석방법

범주형 자료	범주형 자료	카이제곱 검정
	연속형 자료	T검정 분산분석
연속형 자료	연속형 자료	회귀분석 구조방정식
	범주형 자료	로지스틱 회귀분석

교차분석, T 검정 -〉 질병의 유무와 개별 독립변수의 관계를 설명 로지스틱 회귀분석 -〉 여러 위험인자들이 관련되는 정도를 하나의 모형으로 설명

가. 로지스틱 회귀분석

- 질환의 유무는 범주형 자료이기 때문에 회귀분석에 그대로 적용할 수가 없음
- 일반화 선형모형(generalized linear model) : 회귀분석을 확장하여 종속변수 y를 f(x)라는 함수로 치환. 보다 폭넓은 현상들을 회귀모형으로 설명하는 것이 가능

가. 로지스틱 회귀분석

- 로짓 변환

• Ex) 체중(x)과 고혈압 유무(p)의 관계 -> 질병의 유무는 없거나(p = 0) 있는(p = 1) 2가지 값만 취함

- 가. 로지스틱 회귀분석
- 로짓 변환

- 위험요인(체중)의 각 수준에 따른 질병(고혈압)이 있을 확률(p)
- 로짓 변환(f(x) = $\ln \frac{p}{1-p}$, logit transformation)해주면 logit p(= $\ln \frac{p}{1-p}$)값은 $-\infty \sim \infty$ 의 연속형 변수의 형태를 띠게 됨

가. 로지스틱 회귀분석

- 로짓 변환

• 로지스틱 회귀분석(logistic regression analysis): logit p를 대상으로 회귀분석을 적용한 것

- 가. 로지스틱 회귀분석
- 로지스틱 회귀모형의 추정

- 최소제곱법(least square method): 선형회귀분석에서의 회귀모형 추정법
- 최대우도법(maximum likelihood method): 이분형 변수를 대상으로 하는 로지스틱 회귀번 석법에서의 회귀모형 추정법

$$\ln \frac{p}{1-p} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

가. 로지스틱 회귀분석

- 로지스틱 회귀모형의 추정

• 변수를 넣거나(전진) 빼면서(후진) 우도비(LR)를 통해 조건에 맞는 변수들을 선택

우도비 검정(likelihood ratio test): 두 개의 우도의 비를 계산해서 두 모형의 우도가 유의한 차이가 나는지 비교하는 방법

가. 로지스틱 회귀분석

- 질병이 있을 확률

$$\ln \frac{p}{1-p} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

$$\frac{p}{1-p} = e^{(\alpha} + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

$$p = (1-p) \times exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

$$p = exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k) - p \times exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

$$p + p \times exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k) - p \times exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

$$p + p \times exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k) = exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

$$p (1 + exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)) = exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

$$p = \frac{exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}$$

가. 로지스틱 회귀분석

- 로짓 변환

• 질병이 있을 확률(p)을 실제 자료 위에 겹쳐서 그려보면 S자 모양으로 로지스틱 곡선 으로 표현됨

가. 로지스틱 회귀분석

- 분류표의 작성

- 질병이 있을 확률이 0.5이상인 경우 질병이 있을 것으로 예측하고 0.5 미만인 경우 질병이 없을 것으로 예측
- 몇 %에서 예측과 일치하는지를 조사
- 추정된 회귀모형을 평가하는 한 방법

	질병 미발생 예측 (p;≥0.5)	질병 발생 예측 (p _i <0.5)	분류 정확도
질병 미발생	117	13	90.0%
질병 발생	38	21	35,6%
			73.0%

가. 로지스틱 회귀분석

- 추정된 모형의 유의성 검정

선형회귀분석	로지스틱 회귀분석
F-검정을 이용하여 유의성 검정	모형계수 전체 테스트(model chi- square test)를 통해 유의성 검정
결정계수(R²)로 전체 변동 중 회귀모 형에 의해 설명되는 변동의 비율을 설명	$Cox \& Snell의 결정계수(R^2_{CS})와$ Nagelkerke의 결정계수 (R^2_N) 를 통해 회귀식의 설명력을 제시

기무가설 H_0 회귀모형으로 설명할 수 없다($\beta_1 = \beta_2 = \cdots = \beta_k = 0$).

대립가설 H_1 회귀모형으로 설명할 수 있다.

가. 로지스틱 회귀분석

- 로지스틱 회귀분석에서의 교차비

질병이 있을 때 위험인자의 $Odds = rac{A}{C}$ 질병이 없을 때 위험인자의 $Odds = rac{B}{D}$

가. 로지스틱 회귀분석

- 로지스틱 회귀분석에서의 교차비

다른 위험인자 (x_2, \dots, x_k) 는 모두 동일하다고 가정할 때 위험인자 x_1 이 질병유무와 관련된 정도가 회귀계수 (β_1) 를 통해 어떻게 표현되는지

가. 로지스틱 회귀분석

- 로지스틱 회귀분석에서의 교차비

- 개별 위험인자의 영향은 $exp(\beta)$ 값을 통해 질병 발생에 대한 교차비(odds ratio)로 표현됨
- 교차비가 1인 경우 요인과 질병은 전혀 관계가 없음
- 1보다 크면 요인에 의해 질병의 위험이 증가하고, 1보다 작으면 감소함을 의미
- 교차비의 95% 신뢰구간이 더 많은 정보를 제공해 줄 수 있기 때문에 교차비, 유의수 준, 95% 신뢰구간을 동시에 제시 하는 것이 좋음

- 가. 로지스틱 회귀분석
- 로지스틱 회귀분석에서의 교차비

- 1의 경우 95% 신뢰구간이 1보다 큰 구간에 위치. 실제 교차비가 1이어서 질병과 위험인자 사이에 연관성이 전혀 없을 가능성은 5% 미만($p \ \langle \ 0.05)$

교차비(Odds ratio)의 95% 신뢰구간

가. 로지스틱 회귀분석

- 가변수의 설정

- 범주가 3개 이상으로 나뉘는 요인(1, 2, 3, ··· 으로 코딩 된 경우)의 경우에는 기준으로 삼을 참조변수(reference)를 정하고 가변수(dummy variables)를 통해 위험도를 분석
- 범주의 수가 n개라면, 가장 낮은 값으로 코딩 된 범주를 참조치로 정하고 가변수의 개수(비교의 횟수)는 n-1개

가. 로지스틱 회귀분석

- 가변수의 설정

가. 로지스틱 회귀분석

- Hosmer-Lemeshow's
goodness-of-fit test

- Hosmer-Lemeshow's goodness-of-fit test : 로지스틱 회귀분석에서 모형의 적합 도를 평가하는 방법 중 하나
- 이 검정에서는 귀무가설이 모형이 적합하다 이므로 p value > 0.05일 때 모형이 적합 하다고 해석
- 표본수가 충분히 클 때만 적용 가능

가. 로지스틱 회귀분석

- Hosmer-Lemeshow's
goodness-of-fit test

- 로지스틱 회귀분석으로 추정된 모형을 평가하는 여러 방법들
 - 모형계수 전체 테스트 : 회귀모형의 유의성 검정은 물론, 분류표를 통해 회귀모형이 현상을 얼만큼 잘 예측하고 있는지 파악 가능
 - Nagelkerke의 결정계수 (R^2_N) : 회귀식의 설명력을 볼 수 있음
 - Hosmer-Lemeshow의 모형적합도 검정법

가. 로지스틱 회귀분석

- Hosmer-Lemeshow's goodness-of-fit test

	선형 회귀분석	로지스틱 회귀분석
종속변수	연속형	범주형
회귀모형	$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$	$ \ln \frac{p}{1-p} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k $
회귀모형의 추정방법	최소제곱법 (Least square method)	최대우도법 (Maximum likelihood method)
회귀모형의 유의성 $(H_0: \beta_1 = \beta_2 = \cdots = \beta_2 = 0)$	최소제곱법 (F 검정)	모형 계수 전체 테스트 (Model chi-square test)
회귀계수의 유의성 (H ₀ : β ₁ = 0)	T 분포를 이용	우도비 검정 (Likelihood ratio test)
		1, 분류표
회귀모형의 평가	R^2	2. Nagelkerke의 R ²
0 - 0		3. Hosmer-Lemeshow 검정
얻고자 하는 값	회귀계수(β)	교차비(<i>exp</i> (β))의 95% 신뢰구간