Olimpiada Naţională de Matematică 2007 Etapa finală, Piteşti 11 aprilie 2007 CLASA A XI-A, SOLUȚII ȘI BAREMURI

Subiectul 1. Fie $A, B \in \mathcal{M}_2(\mathbb{R})$ astfel încât $A^2 + B^2 = AB$. Să se arate că $(AB - BA)^2 = 0_2$.

Soluție. Fie $\varepsilon \in \mathbb{C} \setminus \mathbb{R}$ o rădăcină de ordinul trei a unității. Atunci

$$(A+\varepsilon B)(A+\bar{\varepsilon}B) = A^2 + B^2 + \bar{\varepsilon}AB + \varepsilon BA = (1+\bar{\varepsilon})AB + \varepsilon BA = \varepsilon (BA - AB)$$

Egalitatea obținută conduce la

$$|\det(A+\varepsilon B)|^2 = \det(A+\varepsilon B) \cdot \overline{\det(A+\varepsilon B)} = \det(A+\varepsilon B) \cdot (A+\overline{\varepsilon}B) =$$

$$\varepsilon^2 \det(BA - AB)$$

Subiectul 2. Dacă numerele reale a și b (a < b) sunt în imaginea unei funcții continue $f : \mathbb{R} \to \mathbb{R}$, arătați că există un interval $I \subset \mathbb{R}$ astfel încât f(I) = [a, b].

Mulţimea $A = \{x \mid a' \leq x \leq b' \text{ si } f(x) = a\}$ este nevidă, mărginită superior. Fie $\alpha = \sup A$. Din continuitatea funcţiei f rezultă că $f(\alpha) = a \dots 1$ punct Mulţimea $B = \{x \mid \alpha x \leq b' \text{ si } f(x) = b\}$ este nevidă şi mărginită inferior.

Fie $\beta = \inf B$. Din continuitatea funcției f rezultă că $f(\beta) = b$ 1 punct Arătăm că $I = [\alpha, \beta]$ verifică cerința. Intr-adevăr, incluziunea $[a, b] \subset f(I)$ rezultă din teorema valorii intermediare. Dacă există $x \in (\alpha, \beta)$ astfel încât f(x) < a, atunci există $x' \in (x, \beta)$ astfel încât f(x') = a ceea ce

contrazice alegera lui α . În mod analog, dacă ar exista $x \in (\alpha, \beta)$ astfel încât f(x) > b, atunci am contrazice definiția lui β . Deci $f(I) \subset [a, b]$. . . 4 puncte

Subjectul 3. Definim
$$H_n = \{x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n | \sum_{i=1}^n |x_i| = 1 \}$$
. Să se arate

că există un număr finit de matrici $A \in \mathcal{M}_n(\mathbb{R})$ pentru care transformarea $f: \mathbb{R}^n \to \mathbb{R}^n$ dată de f(x) = Ax are proprietatea $f(H_n) = H_n$:

- a) pentru n=2;
- b) pentru orice $n \geq 3$.

Soluţie. a) Considerăm $A \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in H_2$, $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in H_2$, $y_1 = \frac{1}{2}(x_1 - x_2) \in H_2$ şi $y_2 = \frac{1}{2}(x_1 + x_2) \in H_2$.

Scriind că $Ax_1 \in H_2, Ax_2 \in H_2, Ay_1 \in H_2$ şi $Ay_2 \in H_2$, obţinem relaţiile |a| + |c| = 1 = |b| + |d| şi $|a \pm b| + |c \pm d| = 2. \dots 1$ punct

De aici rezultă |a-b|=|a+b|=|a|+|b| şi |c-d|=|c+d|=|c|+|d|, posibile doar dacă ab=cd=0. Cum a și c nu pot fi simultan nule, iar b și d la fel, rezultă că $a=\pm 1, c=0, d=\pm 1, b=0$, sau $a=0, c=\pm 1, b=\pm 1, d=0$. Așadar există 8 matrice care verifică condiția 2 puncte

b) Procedăm analog și considerăm
$$A = (a_{ij}) \dim \mathcal{M}_n(\mathbb{R})$$
 și $e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in$

$$H_n, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \in H_n.$$

Din $Ae_i \in H_n$ rezultă $\sum_{i=1}^n |a_{ij}| = 1$ pentru orice $j = 1, 2, \ldots, n$, deci pe fiecare coloană măcar un element este nenul. Avem $x = \frac{1}{2}(e_1 \pm e_2) \in H_n$ şi prin urmare $Ax \in H_n$ deci

$$\sum_{i=1}^{n} |a_{i1} + a_{i2}| = \sum_{i=1}^{n} |a_{i1} - a_{i2}| = 2.$$

Dacă pe coloana 1 avem $a_{i1} \neq 0$ rezultă $a_{i2} = \cdots = a_{in} = 0$. Deci şi pe fiecare linie şi pe fiecare coloană un singur element est enenul şi acesta aparține mulțimii $\{\pm 1\}$. Aceasta înseamnă că cel mult $2^n n!$ matrici cu această proprietate (de fapt toate matricile găsite verifică $f(H_n) = H_n$). 2 puncte

Subiectul 4. Spunem că o funcție $f: \mathbb{R} \to \mathbb{R}$ are proprietatea (\mathcal{P}) dacă f este derivabilă cu derivata continuă și satisface relația

$$f(x + f'(x)) = f(x)$$

pentru orice $x \in \mathbb{R}$. Arătați că

- a) Dacă f are proprietatea (\mathcal{P}) , atunci ecuația f'(x) = 0 are cel puțin o soluție;
 - b) Dați un exemplu de funcție neconstantă cu proprietatatea (\mathcal{P}) ;
- c) Dacă f are proprietatea (\mathcal{P}) și ecuația f'(x) = 0 are cel puțin două soluții, atunci f este o funcție constantă.

Soluție. a) dacă $f'(x) \neq 0$, teorema lui Lagrange pe [x, x + f'(x)] (sau [x + f'(x), x]) implică

$$0 = f(x + f'(x)) - f(x) = f'(x)f'(c_x)$$
 cu

 c_x punctintermediar(1)1punct

- b) $f(x) = -x^2 + c$ (singurele soluții polinoame neconstante!)..2 puncte
- c) Pasul 1. Dacă f'(a)=0, atunci $f'(x)\leq 0$ pe $[a,\infty)$ și $f'(x)\geq 0$ pe $(-\infty,a]$.

Pasul 2. Dacă a < b, f'(a) = f'(b) = 0 rezultă f constantă pe [a, b].

Pasul 3. Dacă $M = \{x \in \mathbb{R} \mid f'(x) = 0\}$ conţine 2 puncte atunci $M = \mathbb{R}$. Demonstraţie. Fie $\alpha = \inf M$, $\beta = \sup M$; din pasul 2, M este interval şi f(x) = k constantă pe M. Presupunem $\beta < \infty$. Dacă există $\gamma > \beta$ cu $g(\gamma) = \gamma + f'(\gamma) \ge \beta$, atunci din (1) pe $[\gamma + f'(\gamma), \gamma]$ ajungem la o contradicţie. Altfel, pentru orice $x > \beta$: $g(x) < g(\beta) = \beta$. În acest caz există $\delta > \beta$ astfel ca pe intervalul (β, δ) avem $\alpha < g(x) < \beta$. În acest caz, pentru $x \in (\beta, \delta)$ f(x) = f(g(x)) = k, contradicţie. Analog se demonstarează că $\alpha = -\infty$.