

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
<u> </u>	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	01
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-21-01
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Hydrodynamika
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Hydrodynamika

Je část hydromechaniky, která se zabývá pohybem nestlačitelných tekutin – kapalin a jejich působením na tuhá tělesa při vzájemném relativním pohybu.

Pohyb skutečných kapalin je obecně složitý. Pro snazší vyjádření zákonitosti pohybu sledujeme proudění ideální kapaliny. Za ideální kapalinu považujeme dokonale tekutou a nestlačitelnou kapalinu bez vnitřního tření, která nepodléhá změnám teploty. Pro skutečné kapaliny upravujeme odvozené zákony korigujícími členy a součiniteli, které se obvykle určují experimentálně na základě měření.

Ustálený tok ideální kapaliny

Pohyb tekutin se obecně řídí stejnými zákony jako pohyb těles. Ustálený tok ideální tekutiny se řídí zásadně dvěma rovnicemi.

- a) Rovnice spojitosti toku vyjadřuje zákon zachování hmoty.
- b) Rovnice pohybová Bernoulliova vyjadřuje zákon zachování energie.

Rovnice spojitosti toku

Za předpokladu celistvého potrubí je hmotnostní průtok libovolným průřezem potrubí konstantní. Ze zákona zachování hmoty: hmotnostní tok na vstupu = hmotnostní tok na výstupu.

Objemový průtok:

$$Q_V = S \cdot w \quad \left[\frac{m^3}{s}\right];$$

$$S - \text{plocha} [m^2];$$

$$w$$
 – rychlost proudící tekutiny $\left[\frac{m}{s}\right]$;

$$\rho$$
 – měrná hmotnost $[\frac{kg}{m^3}]$.

Hmotnostní tok:

$$Q_m = Q_V \cdot \rho = S \cdot w \cdot \rho$$

U ideální kapaliny, která je nestlačitelná, předpokládáme, že ho = konst
ightarrow Q = konst

$$Q_{m1} = Q_{m2} = konst$$

$$S_1 \cdot w_1 \cdot \rho_1 = S_2 \cdot w_2 \cdot \rho_2 = konst$$

$$S_1 \cdot w_1 = S_2 \cdot w_2 = konst$$

Př.: Odkalovací potrubí je svařeno z bezešvých trubek a připojeno na sběrnou nádrž. Z nádrže se odvádí $30~{\rm m}^3~{\rm vody}$ za hodinu. Kalová voda má $\rho=1{,}04\,kg$ / litr. Určete hmotnostní tok, rychlost v potrubí je–li světlost $J_{\it S}=80~{\rm mm}$, rychlost v trubce $J_{\it S}=50~{\rm mm}$ a čas potřebný k odvedení 1 tuny vody.

$$Q_V = 30m^3/h$$

$$Q_{v} = S \cdot w$$

$$Q_m = \frac{Q_V \cdot \rho}{3600} = \frac{30 \cdot 1040}{3600} = 8.7 \, kg/s$$

$$Q_V = S_1 \cdot w_1 \to w_1 = \frac{Q_V}{S_1} =$$

$$= \frac{30}{3600 \cdot \frac{\pi \cdot 0.08^2}{4}} = 1.66 \, m/s$$

$$Q_V = S_2 \cdot w_2 \to w_2 = \frac{Q_V}{S_2} =$$

$$=\frac{30}{3600 \cdot \frac{\pi \cdot 0.05^2}{4}} = 4.24 \, m/s$$

$$t = \frac{1000}{8.7} = 114,94 = 1,92 \,\text{min}$$

Bernoulliova rovnice

U proudící kapaliny rozlišujeme polohovou, tlakovou a pohybovou energii.

Polohová energie (potenciální, tíhová):

$$E_g = G \cdot h = m \cdot g \cdot h$$
 [J]

Pro 1 kg:

$$e_g = \frac{E_g}{m} = \mathbf{g} \cdot \mathbf{h} \quad \left[\frac{\mathbf{J}}{\mathbf{kg}}\right]$$

$$A = E_P = F \cdot l = p \cdot S \cdot l = p \cdot V = E_P$$

$$m = V \cdot \rho \rightarrow V = \frac{m}{\rho}$$
 $E_p = m \cdot \frac{p}{\rho}$ [J]

Pro 1 kg:
$$e_p = \frac{E_p}{m} = \frac{p \cdot V}{m} = \frac{p \cdot \frac{m}{\rho}}{m} = \frac{p}{\rho} \left[\frac{J}{kg} \right]$$

Energie pohybová – kinetická:

$$E_K = \frac{1}{2}m \cdot w^2$$

Pro 1 kg:

$$e_K = \frac{E_K}{m} = \frac{\frac{1}{2}w^2 \cdot m}{m} = \frac{w^2}{2} \left[\frac{J}{kg} \right]$$

Bernoulliova rovnice je matematickým vyjádřením zákona zachování energie pro proudící tekutiny. Energie se neztrácí ani nevzniká, pouze se přeměňuje z jedné formy na druhou.

$$E_g + E_p + E_K = konst.$$

$$e_g + e_p + e_K = konst.$$

Základní Bernoulliova rovnice (pro 1 kg):

$$g \cdot H_1 + \frac{p_1}{\rho} + \frac{w_1^2}{2} = g \cdot H_2 + \frac{p_2}{\rho} + \frac{w_2^2}{2}$$

Bernoulliovu rovnici můžeme použít v několika různých tvarech:

$$E_C = E_g + E_p + E_K = konst.$$

$$m \cdot g \cdot H_1 + m \cdot \frac{p_1}{\rho} + \frac{m \cdot w_1^2}{2} = m \cdot g \cdot H_2 + m \cdot \frac{p_2}{\rho} + \frac{m \cdot w_2^2}{2}$$

Pro $1 m^3$ má Bernoulliova rovnice tvar (m = V · ρ):

$$V \cdot \rho \cdot g \cdot H_1 + V \cdot \rho \cdot \frac{p_1}{\rho} + \frac{V \cdot \rho \cdot w_1^2}{2} = V \cdot \rho \cdot g \cdot H_2 + V \cdot \rho \cdot \frac{p_2}{\rho} + \frac{V \cdot \rho \cdot w_2^2}{2}$$

$$\rho \cdot g \cdot H_1 + p_1 + \rho \cdot \frac{w_1^2}{2} = \rho \cdot g \cdot H_2 + p_2 + \rho \cdot \frac{w_2^2}{2}$$

 $H \cdot \rho \cdot g$ – hydrostatický tlak p_h ;

$$p_1 = p_{V1} - \text{vnější tlak};$$

$$\rho \cdot \frac{w^2}{2} = p_{D1} - \text{dynamický tlak } p_D;$$

$$p_h + p_V - \text{statický tlak } p_s$$
;

$$p_{\scriptscriptstyle S} + p_{\scriptscriptstyle d} = p_{\scriptscriptstyle C} - {\rm celkov\acute{y}}$$
 tlak.

Při průtoku 1 m³ ideální nestlačitelné tekutiny zůstává celkový tlak tekutiny neměnný a je v každém průřezu stejný. Dochází pouze k přeměně forem energie 1 m³ protékající tekutiny. Bernoulliova rovnice má pak tvar:

$$p_{h1} + p_1 + p_{d1} = p_{h2} + p_2 + p_{d2}$$

Při výpočtu vodních strojů se používá Bernoulliova rovnice ve formě výšek. Získáme ji tak, že rovnici pro 1 kg tekutiny podělíme gravitačním zrychlením g.

$$H_1 + \frac{p_1}{\rho \cdot g} + \frac{w_1^2}{2 \cdot g} = H_2 + \frac{p_2}{\rho \cdot g} + \frac{w_2^2}{2 \cdot g}$$

$$\frac{w^2}{2 \cdot g} = \text{rychlostní výška;}$$

H = geodetická výška;

$$\frac{p}{\rho \cdot g}$$
 = tlaková výška.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.