# Efficient Real-time Similarity Detection for Video Caching and Streaming



#### Victor K.Y. Wu and Constantine Polychronopoulos

### Video Similarity Detection System

- Enterprise-level video cache system between Internet users and content providers
- Generalize a "cache hit"
- Byte-wise identical
- Similar, human perception-wise
- Upon cache hit, deliver an identical or similar version, compared to requested video
- Real-time detection
  - Small video signatures
  - Extract information from incoming video byte stream

- Motivations and benefits
- Internet videos: Many duplicates and similars, due to diversity of processing situations
- Codec/format agnostic
- Reduce cache storage requirements
- Reduce cache processing load
- Enrich user experience and analytics

## **Similarity Metric**

- Associate feature vectors with each video
- Each feature vector based on a subset of time-averaged DCT coefficients of I-frames within a time epoch, extracted directly and efficiently from the video byte stream
- Similarity metric between 2 videos is the sum of the L2 norms between their respective feature vectors

## **Similarity Detection**

- Cumulative error between 2 videos is their similarity metric up to a certain time in the videos
- Used thresholding to determine similarity

#### Experiments

- Take 20 YouTube videos, which are obviously dissimilar
- For each video, generate similar versions, using simple video processing (e.g. filtering) techniques
- We have ground truth of similarity
- Use metric to count similars
- Calculate empirical CDFs of cumulative errors of pair-wise similar and dissimilar videos
- Calculate false negative rates and false positive rates
- Results indicate that thresholding can be used to push both false negative rates and false positive rates to zero, simultaneously

#### Similar Videos











Original Video

Sharpened Video

Blurred Video

Logo in Top Left

Logo in Bottom Right

## System Diagram



#### Results









