

Lecture 19 Data Library Formats

Prof. Brendan Kochunas 11/11/2019 NERS 590-004

Today's Learning Objectives

- Understand what formats are out there
- What formats are better for certain things
- Where to go get more information
- Basic information about each format
 - How they are structured
 - How they are written and read
 - What languages having bindings to the API
 - Where to get the libraries

What is a "file" and how are they

stored?

Ref: https://www.youtube.com/watch?v=KN8YgJnShPM

Why should I care about file formats?

- In your research you will spend a lot of time generating data.
 - You will probably also spend a decent amount of time analyzing the data.
- Doing data analysis is often effort intensive
 - Your analysis is likely unique or has some unique aspects
 - Its probable there is not an analysis tool that already exists that does exactly what you need
 - You're lucky if there is!
 - Complete general data analysis tools kind of exist, but take some effort to use
- Data analysis should not be harder than it needs to be
 - There are requirements to using existing tools
 - Typically this is the format of your data
- Having your data in the "right" format can make your life (as an analyst) easier

What do we desire from a "good" file format?

- Should be portable
- Should be easy to inspect
- Should be as small as possible
- Easy to describe our data sets
- Easy to extract data into other programs for analysis
- Data can be written or read (relatively) fast
- Longevity and archive-ability
- Preserve numerical precision (binary values in memory)

Example: how data compression affects performance

- A quick tangent on compression
- Several open algorithms for compression
 - zip
 - gzip (DEFLATE)
 - SuperZip
 - bzip2 (better zip 2)

Data Libraries

- A collection of numerical and/or geospatial data sets for use in research.
- Include all the good parts of different file formats.
- Abstract away details of file layouts
- Provide standard, portable file formats
- include metadata (data about data, headers) describing contents

Formats

Outline

- Plain Text Formats
 - XML
 - XDF
 - JSON
 - YAML
- Binary Formats
 - netCDF/PnetCDF
 - HDF5
 - SILO

File Formats: Main Types

Plain Text ___

They encode data differently

- Only contain textual data.
- Less likely to become corrupted.
- A typical plain text file contains several lines of text, each followed by an end-of-line character.
- Uses a simple, standard format.

Binary

- Typically contain a sequence of bytes, or ordered groupings of eight bits.
- May include multiple types of data in the same file, such as image, video and audio.
- Data can be interpreted by supporting programs, but will not show up "readable" in a text editor.
- Often contain headers, which identifies the file's contents.

File Formats: Main Types

Plain Text

- Easily readable
- Archivable
- Portable
- Does not preserve precision/binary values well
- Relatively large
- Good compression

Binary

- Not readable
- Less portable
- Preserves exact values
- Usually smaller
- Faster access
- Usually not well compressed
- Less archivable

Plain Text Formats

XML, XDF, JSON, YAML

eXtensible Markup Language (XML)

- Originally developed with the world wide web
 - Not scientists in mind
 - Similar to HTML
 - Designed to store and transport data
- Structure built around tags
 - each tag needs a beginning and end marker
 - tags have attributes and contents
 - no predefined tags
- Lots of libraries and tools available for XML
- Some binary implementations, but nothing standardized
- Plain text, but not always easily readable by a person

```
<person>
<firstName>John</firstName>
<lastName>Smith
<age>25</age>
 <address>
  <streetAddress>21 2nd Street/streetAddress>
  <city>New York</city>
  <state>NY</state>
  <postalCode>10021</postalCode>
</address>
<phoneNumber>
  <type>home</type>
  <number>212 555-1234</number>
</phoneNumber>
<phoneNumber>
  <type>fax</type>
  <number>646 555-4567</number>
</phoneNumber>
</person>
```

eXtensible Data Format (XDF)

- General Science data format
- Maintained by Astronomical Data Center
- http://archive.astro.umd.edu/XDF/
- Perl and Java API's
 - Can probably use xml libraries for compiled languages
- Not widely used outside astrophysics

eXtensible Data Model and Format (XDMF)

- Standardized method to exchange data between HPC codes and tools
- Categorizes data by two main attributes: size and function
- In addition to raw values, data can refer to format (rank and dimensions of an array), or model
- Three major components
 - elements
 - entities
 - processing
- http://www.xdmf.org/index.php/XDMF Model and Format

```
<DataItem ItemType="HyperSlab"</pre>
           Dimensions="25 50 75 3"
           Type="HyperSlab">
    <DataItem Dimensions="3 4"</pre>
               Format="XML">
         0 0 0 0
         2 2 2 1
        25 50 75 3
    </DataItem>
    <DataItem</pre>
        Name="Points"
        Dimensions="100 200 300 3"
        Format="HDF">
        MyData.h5:/XYZ
    </pataItem>
</DataItem>
```

JavaScript Object Notation (JSON)

- Used to transmit data objects consisting of keyvalue pairs
- Developed for web applications
 - Not scientific computing
 - Needed for server-tobrowser communication
- Allows one to "serialize" an object (like a C-struct)


```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office",
    "number": "646 555-4567"
    "type": "mobile",
    "number": "123 456-7890"
"children": [],
"spouse": null
```

Yet Another Markup Language (YAML)

YAML Ain't Markup Language

- Competes for same applications as XML
 - simplifies notation
- Superset of JSON
- Lots of libraries interfaces to languages
 - C/C++, Ruby, Java, Python, Perl, and others

```
firstName: John
lastName: Smith
age: 25
address:
   streetAddress: 21 2nd Street
   city: New York
   state: NY
   postalCode: '10021'
phoneNumber:
   - type: home
    number: 212 555-1234
   - type: fax
    number: 646 555-4567
gender:
   type: male
```

Comparison

```
<person>
<firstName>John</firstName>
 <lastName>Smith
 <age>25</age>
 <address>
  <streetAddress>21 2nd Street/streetAddress>
  <city>New York</city>
  <state>NY</state>
  <postalCode>10021</postalCode>
 </address>
 <phoneNumber>
  <type>home</type>
  <number>212 555-1234</number>
 </phoneNumber>
 <phoneNumber>
  <type>fax</type>
  <number>646 555-4567</number>
</phoneNumber>
</person>
```

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office",
    "number": "646 555-4567"
    "type": "mobile",
    "number": "123 456-7890"
"children": [],
"spouse": null
```

```
firstName: John
lastName: Smith
age: 25
address:
streetAddress: 21 2nd Street
city: New York
state: NY
postalCode: '10021'
phoneNumber:
- type: home
  number: 212 555-1234
- type: fax
  number: 646 555-4567
gender:
   type: male
```

Binary Formats

HDF5, netCDF, and SILO

Hierarchical Data Format, version 5 (HDF5)

What is it?

- Open file format
- Open source software
- Designed for:
 - high volume and/or complex data
 - every size/type of system (portable)
 - efficient storage and I/O
 - support long-term data preservation
- Fundamentally array based
- https://www.hdfgroup.org/

HDF5 is like...

Background: hierarchical file system

To store more than one file at a time

- To tell the computer where the files begin and end
- You need directory file kept right at the front of storage, location 0

DIRECTORY FILE FILE A FILE B FILE C FILE D									
DIRECTORY FILE	0 (0 () () () () () () () () () () () () ()								
NAME	CREATED	LAST MODIFIED	OWNER	READ/WRITE	BEGIN	LENGTH			
"todo.txt"	03:14 2/27/14	03:14 3/1/17	carrieanne	r/w	10	8			
"carrie.bmp"	12:22 9/12/15	12:22 8/20/16	carrieanne	r/w	18	13			
"theme.wav"	08:00 8/2/16	08:00 1/12/17	stan	r	31	6			
"script.doc"	22:54 2/25/14	22:54 11/13/16	carrieanne	r/w	37	8			

Hierarchical file system

DIR:"root"	1010101010111011	010 101010 101010	101010101010101010101	101018-016			
NAME	IS DIRECTORY	CREATED	LAST MODIFIED	BLOCKS			
"todo.txt"	no	03:14 2/27/14	03:14 3/1/17	1,2,3			
"theme.wav"	no	08:00 8/2/16	08:00 1/12/17	5			
"script.doc"	no	22:54 2/25/14	22:54 11/13/16	4			
"music"	yes	7:01 3/4/13	08:22 5/21/17	6			
"photos"	yes	13:55 3/5/14	09:20 4/18/17	8			
rataratara ala	01010101010101	10:0 (0:0101010	01010101010101010101	0)1111111111111111111111111111111111111			
DIR:"music"							
NAME	IS DIRECTORY	CREATED	LAST MODIFIED	BLOCKS			
"beat.mp3"	no	03:14 2/27/14	03:14 3/1/17	9,11,25			
"believe.wav"	по	08:00 8/2/16	08:00 1/12/17	13,37,23			
"royals.mp3"	no	22:54 2/25/14	22:54 11/13/16	24,26,27,28			
"magic.aiff"	по	7:01 3/4/13	08:22 5/21/17	19			
"breathe.mp3"	no	13:55 3/5/14	09:20 4/18/17	20,29,30			

"A file contains a file system": HDF5

HDF Data Models & Concepts

Data Model

- Datatype
 - Like a basic variable (e.g. an int)
 - Describes a single data element
- Dataspace
 - Describes how data elements are laid out.
 - e.g. is this an array? what are dimensions
- Dataset
 - Organize and contain data elements (of a single data type with a dataspace)
- **Group:** Collection of datasets and other groups (like a folder on a file system)
- Attribute: Contain metadata and can be associated with other model "objects"
- File: Collection of groups & datasets
- <u>Link:</u> Like a shortcut

Attribute

Dataspace options

Data elements stored physically adjacent to each other

Chunked

Better access time for subsets; extendible

Chunked & Compressed

Improves storage efficiency, transmission speed

How chunking and compression can help you

- Tied up in the details of how data is arranged on disk
- Think about how multidimensional arrays are actually handled

```
>>> a = np.array([ ["A","B"], ["C","D"] ])
>>> print a
[['A' 'B']
['C' 'D']]
```

Mathematically, 2D object

Stored in 1D buffer

• The first rule (really, the only one) for dealing with data on disk, *locality*: reads are generally faster when the data being accessed is all stored together.

Storage mechanism should match your access pattern

- Consider as an example a dataset containing one hundred 640×480 grayscale images.
- Let's say the shape of the dataset is (100, 480, 640)

HDF chunk tree 64x64 chunk at [0, 0, 0] 64x64 chunk at [0, 0, 64] 64x64 chunk at [0, 0, 64] Chunk Tree 64x64 chunk at [99, 448, 512]

Users can choose the chunk size that they preferred or use auto chunk.

64x64 chunk at [99, 448, 576]

The filter pipeline

- Each filter is free to do anything it wants to the data in the chunk: compress it, checksum it, add metadata, etc.
- When the file is read, each filter is run in "reverse" mode to reconstruct the original data.
- You have to specify your filters when the dataset is created.

HDF5 Software Layers & Storage

The HDF5 API

- HDF5 library implemented in C
 - Native API is C interface
 - Library also provides Fortran and C++ interfaces
- Other interfaces readily available
 - Python: h5py
 - Java: JHI5
 - MATLAB
 - Microsoft .NET
- Not all C interfaces are exposed in other language API's

Basics calls for creating and writing/reading data to/from file

```
H5Fcreate (H5Fopen) create (open) File

H5Screate_simple/H5Screate create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File
```

HDF5 Tools and Software

- HDFView
 - Java program for viewing files
- Compiler wrappers
 - h5cc, h5c++, h5fc
- Command line tools
 - h5dump output file to text
 - h5repack compress and change data layouts
 - h5ls list contents of files
 - h5copy copy parts of files to other files

Network Common Data Format (netCDF)

- Purpose: create, access, and share array oriented data
 - Self-describing
 - Portable
- Written in C
 - Native API is C
 - Library has API's for Fortran, C++
 - Also a Java and Python API
- Interoperable with HDF5 v1.8.x series
 - Links to HDF5 "on back end"
- https://www.unidata.ucar.edu/softwa re/netcdf/

- Parallel-netCDF derivative also exists
 - https://trac.mcs.anl.gov/projects/parallel -netcdf

netCDF Data Model

- Very similar to HDF5 data model
- Hierarchical with groups
- User-definable types
- Support for attributes/metadata
- Dimension info about logical layout of data

UML Diagram of NetCDF Datamodel

SILO

 Mesh and Field library that builds on top of HDF5 and other I/O libraries

- Primarily processed by visualization tools Paraview and VisIt
- API in C and Fortran
 - experimental support for JSON
- https://wci.llnl.gov/simulation/computercodes/silo

Arbitrary Polyhedral

Unstructured