РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Архитектура ЭВМ

ОТЧЕТ

по лабораторной работе №1

«Установка и конфигурация операционной системы на виртуальную машину»

Выполнил: Студент группы НКАбд-01-22 Факультета ФМиЕН Гибшер Кирилл Владимирович

Проверила: Велиева Татьяна Рефатовна

Содержание

- 1. Цель работы
- 2. Задание
- 3. Теоретическое введение
- 4. Выполнение лабораторной работы
- 5. Выводы

Цель лабораторной работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

Нам поставлена задача самостоятельно загрузить виртуальную машину, настроить ее, а также пройти процесс установки на нее операционной системы начиная с этапа загрузки образа операционной системы и заканчивая настройкой минимально необходимых для дальнейшей работы сервисов на уже готовой операционной системе.

Теоретическое введение

Операционная система (ОС) — это комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем. Сегодня наиболее известными операционными системами являются ОС семейства Microsoft Windows и UNIX-подобные системы

GNU Linux — семейство переносимых, многозадачных и многопользовательских операционных систем, на базе ядра Linux, включающих тот или иной набор утилит и программ проекта GNU, и, возможно, другие компоненты.

Дистрибутив GNU Linux — общее определение ОС, использующих ядро Linux и набор библиотек и утилит, выпускаемых в рамках проекта GNU, а также графическую оконную подсистему X Window System. Дистрибутив готов для конечной установки на пользовательское оборудование.

Работу ОС GNU Linux можно представить в виде функционирования множества взаимосвязанных процессов. При загрузке системы сначала запускается ядро, которое, в свою очередь, запускает оболочку ОС (от англ. shell «оболочка»). Взаимодействие пользователя с системой Linux (работа с данными и управление работающими в системе процессами) происходит в интерактивном режиме посредством командного языка. Оболочка операционной системы (или командная оболочка, интерпретатор команд) — интерпретирует (т.е. переводит на машинный язык) вводимые пользователем команды, запускает соответствующие программы (процессы), формирует и выводит ответные сообщения. Кроме того, на языке командной оболочки можно писать небольшие программы для выполнения ряда последовательных операций с файлами и содержащимися в них данными — сценарии (скрипты). Из командных оболочек GNU Linux наиболее популярны bash, csh, ksh, zsh. Команда echo \$SHELL позволяет проверить, какая оболочка используется. В качестве предустановленной командной оболочки GNU Linux используется одна из наиболее распространённых разновидностей командной оболочки — bash (Bourne again shell). В GNU Linux доступ пользователя к командной оболочке обеспечивается через терминал (или консоль). Запуск терминала можно осуществить через главное меню « Приложения – стандартные --- Терминал (консоль) или нажав ctrl+alt+t.

Интерфейс командной оболочки очень прост. Обычно он состоит из приглашения командной строки (строки, оканчивающейся символом \$), по которому пользователь вводит команды:

kvgibsher@dk4n31:~\$

Это приглашение командной оболочки, которое несёт в себе информацию об имени пользователя iivanova, имени компьютера dk4n31 и текущем каталоге, в котором находится пользователь, в данном случае это домашний каталог пользователя, обозначенный как ~).

Команды могут быть использованы с ключами (или опциями) — указаниями, модифицирующими поведение команды. Ключи обычно начинаются с символа (-) или (--) и часто состоят из одной буквы. Кроме ключей после команды могут быть использованы аргументы (параметры) — названия объектов, для которых нужно выполнить команду (например, имена файлов и каталогов). Например, для подробного просмотра содержимого каталога documents может быть использована команда Is с ключом -I:

kvgibsher@dk4n31:~\$ ls -l documents

Выполнение лабораторной работы

Начинаю выполнение работы с установки Vitrual Box на свой компьютер с OC Windows 10. (См.рис.1)

рис.1

Далее проверяю в свойствах Virtual Box месторасположение каталога для виртуальных машин. Файл---Свойства---Общие. Здесь «kvgibsher» имя моей учетной записи в дисплейном классе. (См.рис.2)

рис.2

Далее меняю комбинацию хост-клавиши, которая позволяет освободить курсор мыши, который может захватить виртуальная машина. Файл---Свойства---Ввод---Виртуальная машина(См.рис.3)

Рис.3

Далее создаю новую виртуальную машину. «Машина---Создать». Имя виртуальной машины — логин в дисплейном классе, тип ОС Linux,Fedora(64bit).(см.рис.4)*На рисунке указана Fedora-32bit, т.к. изначально я пытался установить ее, но далее возникли проблемы с установкой на жесткий диск ввиду чего я все-таки установил 64-битную Fedora.

Рис.4

Далее указываю размер основной памяти виртуальной машины равный 2048 Мб.(см.рис.5)

Рис.5
Далее создаю новый виртуальный жесткий диск и задаю конфигурацию жесткого диска – загрузочный VDI. (см.рис.6)

Рис.6

Далее выбирая формат хранения, задаю , что виртуальный жесткий диск – динамический.(см.рис.7.)

Рис.7

Далее в настройках виртуальной машины «Дисплей---Экран» увеличиваю доступный объем видеопамяти до 128 МБ. (см.рис.8)

Рис.8

Далее в настройках виртуальной машины во вкладке «Носители» добавляю новый привод оптических дисков и выбираю ранее установленный iso-образ Fedora.(см.рис.9 и рис.10)

Рис.9

Рис.10

Далее определяю размер виртуального динамического жесткого диска и его расположения.(см.рис.11)

Далее запускаю настроенную виртуальную машину. «Машина--- Запустить» (см.рис.12)

Рис.12

Далее после успешного запуска выскакивает окно запуска установки ОС. Выбираю Install to Hard Drive для установки. (см.рис.13)

Рис.13

Далее перехожу в окно выбора языка установки и выбираю «Русский». (см.рис.14)

*Как я и говорил ранее изначально я устанавливал совсем другую версию Fedora поэтому на дальнейших скринах вы увидите «Fedora 30». В конечном результате моих многих попыток установить ОС, я установил Fedora 36.

Рис.14

Далее переходим в окно настроек установки образа ОС, где можно установить часовой пояс, поменять место установки и добавить раскладку клавиатуры. (см. рис. 15)

Рис.15 Далее устанавливаю нужный часовой пояс. Раскладку клавиатуры

Рис.16

Далее начинается установка ОС. Остается только ждать! (см.рис.17.)

Рис.17 Установка завершена и дальше следует выключить машину.(см.рис.18)

рис.18

После отключения виртуальной машины, необходимо изъять образ диска из дисковода. Нажимаю на значок диска и выбираю пункт изъять. После извлечения в дисководе должно быть пусто(см.рис.19)

Рис.19

После успешного выполнения действий описанных выше, наша виртуальная машина готова к первому запуску.(см.рис.20)

рис.20

Далее для проверки работоспособности машины , запускаю Firefox. Все работает , все исправно! (см.рис.21)

Рис.21
Также для проверки запускаю текстовый процессор LibreOffice Writer. (см.рис.22)

рис.22

Далее для установки необходимого первоначально программного обеспечения запускаю терминал(консоль).(см.рис.23)

Рис.23
Вбиваю команду для установки Midnight Commander – файлового менеджера с терминальным интерфейсом.(см.рис.24)

Рис.24 Установка прошла успешно (см.рис.25)

```
\oplus
                                                  kvgibsher@10:~
                                                                                                  Q ≡
Объем загрузки: 2.2 М
Объем изменений: 8.3 М
Загрузка пакетов:
                                                                              255 kB/s | 21 kB
(1/3): gpm-libs-1.20.7-40.fc36.x86_64.rpm
                                                                                                     00:00
                                                                              166 kB/s | 379 kB
(2/3): slang-2.3.2-11.fc36.x86_64.rpm
                                                                                                     00:02
                                                                              609 kB/s | 1.9 MB
(3/3): mc-4.8.28-2.fc36.x86_64.rpm
                                                                                                     00:03
                                                                              526 kB/s | 2.2 MB
                                                                                                     00:04
Общий размер
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
                                                                                                            1/1
  Подготовка
                  : slang-2.3.2-11.fc36.x86_64
  Установка
                                                                                                            1/3
  Установка : gpm-libs-1.20.7-40.fc36.x86_64
Установка : mc-1:4.8.28-2.fc36.x86_64
                                                                                                            3/3
  Запуск скриптлета: mc-1:4.8.28-2.fc36.x86_64
  Проверка : gpm-libs-1.20.7-40.fc36.x86_64
Проверка : slang-2.3.2-11.fc36.x86_64
                    : slang-2.3.2-11.fc36.x86_64
  Проверка
                  : mc-1:4.8.28-2.fc36.x86_64
Установлен:
  gpm-libs-1.20.7-40.fc36.x86_64
                                                                            slang-2.3.2-11.fc36.x86_64
                                       mc-1:4.8.28-2.fc36.x86_64
Выполнено!
```

Рис.25

Далее прописываю команду для установки Git – системы управления версиями. Успешно установлено! (см.рис.26)

```
[kvgibsher@10 ~]$ sudo dnf install -y git
Последняя проверка окончания срока действия метаданных: 0:01:56 назад, Пн 12 сен 2022 12:43:16.
Пакет git-2.35.1-1.fc36.x86_64 уже установлен.
Вависимости разрешены.
Отсутствуют действия для выполнения.
Выполнено!
[kvgibsher@10 ~]$

рис.26
```

Далее прописываю команду для установки NetWide Assembler – свободный ассемблер для архитектуры Intel x86. Успех!(см.рис.27)

```
Установка 1 Пакет
Объем загрузки: 427 k
Объем изменений: 2.9 М
Загрузка пакетов:
                                                                          353 kB/s | 427 kB
nasm-2.15.05-2.fc36.x86_64.rpm
                                                                                                00:01
Общий размер
                                                                          214 kB/s | 427 kB
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
 Подготовка :
- Установка : nasm-2.15.05-2.fc36.x86_64
 Запуск скриптлета: nasm-2.15.05-2.fc36.x86_64
 Проверка
                 : nasm-2.15.05-2.fc36.x86_64
 nasm-2.15.05-2.fc36.x86_64
Выполнено!
[kvgibsher@10 ~]$
```

Выводы

Как итог выполнения данной работы я приобрел практические навыки установки операционной системы, в данном случае Linux Fedora 36, на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

Скриншот моей виртуальной машины по итогу работы:

