possède-t-il de diviseurs entiers naturels?

(6)

DS n°9 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

	Darce.	oo iiiiiiatee	, carcaratire				
Nom et prénom :					No	ote:	
Porter	directeme	ent les ré	ponses su	ır la feuil	le, sans jus	stificatio	n.
Intégration							
Une valeur appro	ochée ration	nelle de $$	\sqrt{e} à 10^{-2} p	rès est :			
							(1)
Déterminer un é	quivalent lo	rsque n —	$\rightarrow +\infty$ de la	a quantité	suivante.		
$\sum_{k=1}^{n} \frac{k}{k^4}$	$\frac{k}{+ n^4} \underset{n \to +\infty}{\sim}$						(2)
Dénombrement	t						
On constitue ur referme. Les perles qui peuvent s'obter identiques.	peuvent a	lors circule	er autour d	e la boucle	e ainsi formé	e. Deux o	configurations
On suppose que les de colliers différent former en alternant	s que l'on p	eut forme	*		-		
a =			(3)	b =			(4)
Combien peut-on f toujours adjacentes		lliers de n	nanière à c	e que les d	leux perles d	e même n	numéro soient
							(5)
Soit p_1, \ldots, p_k d	les nombres	premiers	distincts d	eux à deux	x, notons n :	$= p_1 \dots p_l$	k. Combien n

Algèbre linéaire

Soit $P = 3X^2 - 5X + 2$, $Q = X^2 + 3X - 1$, $R = 5X^2 - X + 4$, $S = 3X^2 - 6X + 4$. Dans $\mathbb{R}[X]$, donner une base de Vect(P, Q, R, S).

On considère l'application linéaire de \mathbb{R}^4 dans $\mathbb{R}^3 \varphi : \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} 3x & - & y & + & z & + & t \\ x & + & y & - & 2z & - & t \\ -x & + & y & & - & t \end{pmatrix}$.

$$rg(\varphi) =$$
 (8) $dim(Ker \varphi) =$ (9)

Dans $\mathbb{R}_{2n}[X]$, on considère

$$F = \left\{ P \in \mathbb{R}_{2n}[X] \mid P(1) = P'(1) = \dots = P^{(n-1)}(1) = 0 \right\}.$$

Alors,

$$\dim(F) = \boxed{ \qquad \qquad }. \tag{10}$$

Un supplémentaire de F dans $\mathbb{R}_{2n}[X]$ est :

Probabilités

Dans une urne, on dispose deux boules bleues, trois boules vertes, quatre boules rouges. On réalise un premier tirage, à la suite duquel on retire de l'urne toutes les boules de la même couleur que la boule tirée. On réalise ensuite un deuxième tirage, auquel nous nous intéressons maintenant. On note p la probabilité de tirer une boule bleue, et c la couleur la plus probable de la boule tirée.

$$p = \boxed{ \qquad \qquad (12) \qquad \qquad c = \boxed{ }}$$

Soit X une variable aléatoire à valeurs dans $[\![0,n]\!]$ telle qu'il existe $a\in\mathbb{R}$ tel que pour tout $k\in[\![0,n]\!],\, P(X=k)=a\binom{n}{k}.$ Alors :