Тема 8

1)
$$\int_{-7}^{0} \frac{x}{\sqrt[3]{x-1}} dx$$
2)
$$\int_{-2}^{1} \frac{dx}{(11+x)^{3}};$$
3)
$$\int_{-\ln 2}^{\ln 2} \frac{e^{x}}{3+2e^{x}} dx$$
4)
$$\int_{1}^{e^{2x}} \frac{dx}{x \cdot \sqrt[3]{2 \ln x + 8}}$$
5)
$$\int_{\pi/4}^{\pi/3} \frac{\cos x}{\sin^{3} x} dx$$
6)
$$\int_{1}^{e} \frac{\sqrt[3]{\ln x}}{x} dx$$
7)
$$\int_{2}^{1} (x+2) \sqrt{x-2} dx$$
8)
$$\int_{0}^{1} \frac{x dx}{1+2x}$$
9)
$$\int_{0}^{1} e^{x} \cos e^{x} dx$$
10)
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{e^{2x}-1}}$$
11)
$$\int_{1}^{e} \frac{dx}{x \cdot \sqrt{5-\ln x}}$$
12)
$$\int_{2}^{3} \frac{x+3}{\sqrt{3x^{2}-11}} dx$$
13)
$$\int_{0}^{1} x(2-x^{2})^{5} dx$$
14)
$$\int_{0}^{1} x(2-x^{2})^{5} dx$$
15)
$$\int_{0}^{1} \frac{2x+\sqrt{\arctan tg^{5}x}}{1+x^{2}} dx$$
16)
$$\int_{0}^{1} \sqrt{2x+x^{2}} dx;$$
17)
$$\int_{\ln 2}^{\ln 6} \frac{e^{x} \sqrt{e^{x}-2} dx}{e^{x}+2};$$
18))
$$\int_{0}^{\ln 2} \sqrt{5e^{x}-1} e^{x} dx;$$
19)
$$\int_{0}^{arctg(1/3)} \frac{(8+tg x) dx}{9\sin^{2} x+\cos^{2} x};$$
20)
$$\int_{1}^{3} \frac{dx}{x \sqrt{x^{2}+5x+1}};$$
21)
$$\int_{0}^{\pi/2} \frac{dx}{1+8\cos^{2} x};$$
22)
$$\int_{9}^{15} \sqrt{\frac{x-6}{18-x}} dx;$$
23)
$$\int_{1}^{4} \frac{1-\sqrt{x}}{\sqrt{x}(x+1)} dx.$$
24)
$$\int_{1}^{e} x \ln x dx;$$
25)
$$\int_{1}^{8} \sqrt[3]{x} \ln x dx;$$
26)
$$\int_{0}^{\pi/2} (2x-1) \cos \frac{x}{4} dx;$$
27)
$$\int_{-1}^{1/2} \arctan \sqrt{1-2x} dx;$$
28)
$$\int_{0}^{\pi/2} (2x+3) \sin 5x dx;$$
29)
$$\int_{\pi/4}^{\pi/3} \frac{x dx}{\sin^{2} x}.$$

- 30) Вычислить среднее значение функции $f(x) = \frac{(x+3)}{(x+1)^2(x^2+1)}$ на отрезке [1, 2].
- 31) Вычислить среднее значение функции $f(x) = x^2 \sqrt{16 x^2}$ на отрезке [0, 4].

Тема 9

1. Найти площадь фигуры, ограниченной линиями:

1)
$$y = x^2 - 2x$$
, $y = x$; 2) $y^2 = 2x + 1$, $x - y - 1 = 0$; 3) $y = x^3$, $x = 1$, $y = -\sqrt[3]{x}$

4)
$$y = x^2 - 2$$
; $y = 0$; $y = 2$; 5) $(y - x)^2 = x^3, x = 1$; 6) $x^3 = (y - 1)^2, y = 0, x = 0$;

7)
$$x = \sqrt{1 - y^2}$$
, $y = \sqrt{\frac{3x}{2}}$, $y = x$; 8) $\frac{x^2}{8} - \frac{y^2}{9} = 1$, $y = -1$, $y = 3$;

9)
$$x^2 + y^2 = 4x$$
, $y^2 = 2x(y^2 \ge 2x)$;

10)
$$y = -x^2 + 2x + 1$$
, $y = -x^2 + 4x - 5$, $y = -3x - 5$;

11)
$$x = 4 - (y - 1)^2$$
, $x = y^2 - 4y + 3$; 12) $x^2 + 2x - y^2 - 1 = 0$, $y^2 = x + 1$.

13)
$$\begin{cases} x = 4\cos^3 t, \\ y = 8\sin^3 t, \end{cases} \quad y = 1 \quad (y \le 1); \qquad 14) \begin{cases} x = 16\cos^3 t, \\ y = 2\sin^3 t, \end{cases} \quad x = 2(x \ge 2);$$

$$(y = 8\sin^{3} t, (y - 2\sin^{3} t)$$

$$(y = 8\cos^{3} t, (y - 2\sin^{3$$

17)
$$r = \cos 2\varphi$$
; 18) $r = 2\sin 3\varphi$ 19) $r = \frac{3}{2}\sin \varphi$, $r = \frac{5}{2}\sin \varphi$;

- 20) $r = 6\cos 3\varphi$, $r = 3 (r \ge 3)$.
- 21) Найти площадь области, ограниченной кривой $r = a(1 + \cos \varphi)$ и лежащей вне кривой $r = 3a\cos\varphi$.

22)
$$r = \frac{1}{2} + \cos \varphi$$

- 2. Найти длину дуги кривой l, если
- 1) $v^2 = x^3$, отсеченной прямой x = 4/3
- 2) $y = x^2/2 1$, отсеченной осью *OX*.
- 3) $y^2 = (x+1)^3$, отсеченной прямой x = 4
- 4) $9y^2 = x(x-3)^2$, между точками пересечения с осью *OX*.

5)
$$y = \arcsin e^{-x}, 0 \le x \le 1$$
 6) $x = \frac{1}{4}y^2 - \frac{1}{2}\ln y, 1 \le y \le e$

7)
$$l: y = \sqrt{x - x^2} + \arcsin \sqrt{x}, \ 0 \le x \le \frac{1}{2};$$
 8) $l: y = e^x + 6, \ \ln \sqrt{8} \le x \le \ln \sqrt{24}$

9)
$$y = \frac{1 - e^x - e^{-x}}{2}$$
, $0 \le x \le 3$. 10) $y = \ln(1 - x^2)$, если $0 \le x \le 0.5$.

11)
$$l: x = t^2$$
, $y = t - t^3 / 3$, $0 \le t \le \sqrt{3}$; 12) $l: x = 3(t - \sin t)$, $y = 3(1 - \cos t)$, $\pi \le t \le 2\pi$

13)
$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, & (14)l: r = 5\varphi, 0 \le \varphi \le 12/5; \\ y = (2 - t^2)\cos t + 2t\sin t, & (14)l: r = 5\varphi, 0 \le \varphi \le 12/5; \end{cases}$$

$$(y = (2 - t^{2})\cos t + 2t \sin t,$$

$$15) l : r = 2(1 + \cos \varphi).$$

$$16) l : r = e^{4\varphi/3}, -\pi/2 \le \varphi \le \pi/2$$

$$17) y = \int_{-\frac{\pi}{2}}^{x} \sqrt{\cos t} dt$$

3)Вычислить объем тела, образованного вращением вокруг оси ОУ и вокруг оси ОХ фигуры, ограниченной линиями

1)
$$xy = 1$$
, $y = 1$, $y = 4$, $x = 0$.
2) $y = \arcsin x$, $x = 0$, $x = 1$.
3) $y = 2 - x^2$, $y = x$, $x = 0$.
4) $y = \ln x$, $y = 0$, $x = 2$.

3)
$$y = 2 - x^2$$
, $y = x$, $x = 0$. 4) $y = \ln x$, $y = 0$, $x = 2$

5)
$$y = (x-1)^2$$
, $x = 0$, $x = 2$, $y = 0$.

Тема 10

Вычислить несобственный интеграл или доказать его расходимость

1)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^2 + 4x + 1}}$$
 2) $\int_{1}^{\infty} \frac{dx}{(4+x)\sqrt{x}}$ 3) $\int_{-\infty}^{-2} \frac{xdx}{x^3 + 1}$

4)
$$\int_{0}^{\infty} \frac{\arctan x dx}{\sqrt{\left(x^2+1\right)^3}}$$

5)
$$\int_{1}^{\infty} \frac{x \ln x dx}{\left(x^2 + 5\right)^2}$$
 6)
$$\int_{e^2}^{\infty} \frac{dx}{x \ln \ln x}$$

$$6) \int_{e^2}^{\infty} \frac{dx}{x \ln \ln x}$$

$$7) \int_{2}^{\infty} \sqrt{\frac{4x+1}{x+3}} \frac{dx}{x^2}$$

8)
$$\int_{e}^{\infty} \frac{\ln^2 x \, dx}{\sqrt{x^5}}$$

8)
$$\int_{e}^{\infty} \frac{\ln^2 x \, dx}{\sqrt{x^5}}$$
 9) $\int_{-\infty}^{1} \frac{\arctan x \, dx}{x^2 (x^2 + 1)}$

7)
$$\int_{2}^{\infty} \sqrt{\frac{4x+1}{x+3}} \frac{dx}{x^{2}}$$
10)
$$\int_{1}^{\infty} \frac{(x^{5}+4)dx}{x^{6}+x^{2}+1}$$

11)
$$\int_{0}^{2} \frac{(6-x)dx}{\sqrt{12-4x-x^2}}$$
 12) $\int_{2}^{4} \frac{(x+9)dx}{x\sqrt{x-2}}$

12)
$$\int_{2}^{4} \frac{(x+9)dx}{x\sqrt{x-2}}$$

13)
$$\int_{0}^{1} \ln^2 x \, dx$$

14)
$$\int_{0}^{\pi/4} (\operatorname{ctg}^{2} x + \operatorname{ctg}^{4} x) dx$$

15)
$$\int_{-1}^{1} \frac{\ln(2+\sqrt[3]{x})dx}{\sqrt[3]{x}}$$

16)
$$\int_{-\infty}^{-3} \sqrt{\frac{x-5}{x+3}} dx$$
 17) $\int_{2}^{\infty} \frac{(x+5)dx}{x^3+8}$

17)
$$\int_{2}^{\infty} \frac{(x+5)dx}{x^3+8}$$

$$18) \int_{0}^{\infty} \frac{dx}{x\sqrt{x^2 + 4x + 1}}$$

Тема11

Исследовать несобственный интеграл на сходимость

1)
$$\int_{1}^{\infty} \frac{(x^{2} - x + 5)dx}{\sqrt[3]{x^{11} + 4x^{5} + 1}}; 2) \int_{0}^{+\infty} \frac{(x^{5} + 2x - 1)}{x^{6} + x^{3}} dx 3) \int_{0}^{\infty} \frac{\arctan x dx}{\sqrt{x^{3} + x^{2}}}; 4) \int_{0}^{\infty} \frac{(2 - \sin^{3} x)dx}{x + \sqrt{5x + x^{3}}};$$

$$5)\int_{-1}^{\infty} \frac{5-\sin x}{\sqrt[3]{x^2+5}} \, dx; \ 6)\int_{0}^{+\infty} \frac{\sin x \, dx}{x\sqrt{x}}; \ 7)\int_{0}^{+\infty} \frac{x \arctan x \, dx}{\sqrt{x^6+12x}}; \ 8)\int_{0}^{\infty} \frac{\ln(1+6x) dx}{x^2} \ 9)\int_{0}^{\pi/2} \frac{\ln \sin x dx}{\sqrt{x}};$$

$$10) \int_{0}^{1} \frac{dx}{\lg x - \sin x} \quad 11) \int_{0}^{1} \frac{1}{x^{4}} \left(\operatorname{arctg} \frac{x^{3}}{1 + x^{2}} \right)^{5} dx$$