Exercice 0.1

a)
$$DL_3(2)$$
 de $\frac{1}{1+x}$ b) $DL_3(4)$ de e^x c) $DL_2(3)$ de $\sqrt{1+x}$ d) $DL_2(0)$ de $\sqrt{1+\sqrt{1+x}}$

e)
$$\mathrm{DL}_3(\frac{\pi}{4})$$
 de $\sqrt[3]{\tan x}$ f) $\mathrm{DL}_2(0)$ de $\exp\left(\frac{1}{x}\ln\frac{\mathrm{ch}\sqrt{x}}{\cos\sqrt{x}}\right)$ g) $\mathrm{DL}_4(0)$ de $(1+\sin x)^{\frac{1}{x}}$

h)
$$\mathrm{DL}_4(0)$$
 de $\arccos(e^x - e^{-x})$ i) $\mathrm{DL}_5(0)$ de $\arctan(1+x)$ j) $\mathrm{DL}_5(0)$ de $\ln\frac{1+\tan x}{1-\tan x}$

Exercice 0.2

Déterminer les limites suivantes : a)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\tan^2 x}}$$
 b) $\lim_{x\to 0} \frac{1}{\sin^3 x} \left(x - \frac{2}{3}\sin x - \frac{1}{3}\tan x\right)$ c) $\lim_{x\to 0} \frac{\tan nx - n\tan x}{\sin nx - n\sin x}$ $(n \in \mathbb{N} \setminus \{0,1\})$ d) $\lim_{x\to a} \left(2 - \frac{x}{a}\right)^{\tan \frac{\pi x}{2a}}$ e) $\lim_{x\to \frac{\pi}{2}} \frac{\ln(\sin x)}{(\pi - 2x)^2}$

c)
$$\lim_{x\to 0} \frac{\tan nx - n\tan x}{\sin nx - n\sin x}$$
 $(n \in \mathbb{N} \setminus \{0,1\})$ d) $\lim_{x\to a} \left(2 - \frac{x}{a}\right)^{\tan\frac{\pi x}{2a}}$ e) $\lim_{x\to \frac{\pi}{2}} \frac{\ln(\sin x)}{(\pi - 2x)^2}$

f)
$$\lim_{x \to +\infty} \sqrt{1+x^2} + \sqrt{1+4x^2} - \sqrt{9x^2+3x}$$
 g) $\lim_{x \to 1} \frac{x\sqrt{3x-2x^4}-x\sqrt{x}}{1-x^{\frac{2}{3}}}$ h) $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$

f)
$$\lim_{x \to +\infty} \sqrt{1 + x^2} + \sqrt{1 + 4x^2} - \sqrt{9x^2 + 3x}$$
 g) $\lim_{x \to 1} \frac{x\sqrt{3x - 2x^4} - x\sqrt{x}}{1 - x^{\frac{2}{3}}}$ h) $\lim_{x \to 0} \frac{(1 + x)^{\frac{1}{x}} - e}{x}$ i) $\lim_{x \to 0} \frac{x - \arcsin x}{\sin^3 x}$ j) $\lim_{x \to t} \frac{t - x}{x \ln t - t \ln x}$ $(t > 0)$ k) $\lim_{x \to +\infty} \left(\frac{\ln(1 + x)}{\ln x}\right)^{x \ln x}$ l) $\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\tan^2 x}$

m)
$$\lim_{x \to 0} \frac{\sin(\ln(1+x)) - \ln(1+\sin x)}{(\cos x - 1)^2}$$
 n) $\lim_{x \to +\infty} x^2 \left(\sqrt{x^2 + x - 1} - \sqrt[3]{x^3 + \frac{3}{2}x^2 - \frac{9}{8}x + 1} \right)$

o)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 - \sqrt{2x - x^2}}$$
 p) $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{1 - \cos x}}$ q) $\lim_{x \to 0} \frac{e^x(\sin x + \cos x) - (a + bx)}{x}$ (discuter)

Exercice 0.3

Soient f et g 2 fonctions impaires admettant un $DL_7(0)$ de 1^{er} terme x.

Déterminer un $DL_7(0)$ de $f \circ g - g \circ f$ et en déduire que c'est un infiniment petit d'ordre 7.

Application:
$$\arctan(\arcsin x) - \arcsin(\arctan x) \sim \frac{x^7}{30}$$
; $\sinh(\tan x) - \tan(\sinh x) \sim -\frac{x^7}{90}$ etc...

Exercice 0.4 Soit $f(x) = \frac{x}{1-x^2}$. Donner en moins de 10 secondes $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$.

Soit
$$f: x \mapsto \frac{1}{\ln(1+x)}$$
 et $g: x \mapsto \frac{x \ln x}{x^2 - 1}$

Etudier f et q au voisinage de 0 (prolongement, dérivabilité du prolongement etc...)

Exercice 0.6

Etudier les branches infinies au voisinage de $+\infty$ de :

a)
$$f: x \mapsto \sqrt{x^2 + 2x + 3} - 4x + 7$$
 b) $g: x \mapsto x^2 \ln\left(1 + \sin^2\frac{1}{x}\right)$

c)
$$h: x \mapsto (x^2 + 2x + 3) \arctan \frac{1}{2x + 3}$$
 d) $k: x \mapsto (x + \sqrt{x})e^{\sqrt{x^2 + x} - x}$.

Exercice 0.7

Soit $f: x \mapsto e^x \sin x$. Montrer que f est localement bijective au voisinage de 0 et déterminer un

 $DL_5(0)$ de f^{-1} .

Exercice 0.8

A l'aide du Théorème des accroissements finis , trouver un équivalent au voisinage de $+\infty$ de : a) $\sin\frac{1}{\ln n} - \sin\frac{1}{\ln(n+1)}$ b) $\arccos\frac{1}{n} - \arccos\frac{1}{n^2}$ c) $\sqrt[n]{n} - \sqrt[n+1]{n+1}$

a)
$$\sin \frac{1}{\ln n} - \sin \frac{1}{\ln(n+1)}$$
 b) an

b)
$$\arccos \frac{1}{n} - \arccos \frac{1}{n^2}$$

c)
$$\sqrt[n]{n} - \sqrt[n+1]{n+1}$$

Exercice 0.9

Donner la partie principale :

au voisinage de
$$0$$
 de : $\ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right) - \frac{3\sin x}{1 - 2\cos x}$ au voisinage de $+\infty$ de : $\frac{\pi}{2} - \arctan n - \sin\frac{1}{n}$

au voisinage de 0 de : $\ln(1+x+ax^2)-\frac{x^n}{1+bx}$ (discuter suivant les valeurs de a et b)

Exercice 0.10

Soit
$$f: x \mapsto \frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1}$$

1) Déterminer le $DL_3(0)$ de f .

- 2) Qu'en déduit-on sur un éventuel prolongement \widetilde{f} de f par continuité en 0 ?
- 3) Qu'en déduit-on sur la nature du point $O\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ de $\mathcal{C}_{\widetilde{f}}$?

Exercice 0.11

Soit
$$(a,b) \in \mathbb{R}^2$$
 et $f(x) = \cos x - \frac{1 + ax^2}{1 + bx^2}$

- Soit $(a,b) \in \mathbb{R}^2$ et $f(x) = \cos x \frac{1+ax^2}{1+bx^2}$. 1) Déterminer le $DL_6(0)$ de $\frac{1+ax^2}{1+bx^2}$ puis , celui de f(x).
- 2) Déterminer a et b pour que f(x) soit , au voisinage de 0 , un infiniment petit d'ordre le plus élevé possible.

Prouver qu'alors : $f(x) \sim \frac{x^6}{480}$

Exercice 0.12

Développement limité d'une fonction réciproque.

- 1) Reprouver que tan admet le $DL_6(0)$: $\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^6)$
- 2) On considère la fonction f définie par : $f(x) = 2 \tan x$
 - a) Prouver que f réalise une bijection de $I=]-\frac{\pi}{2},\frac{\pi}{2}[$ sur une partie de ${\rm I\!R}$ à préciser .
 - b) Justifier que f^{-1} est impaire , de classe \mathcal{C}^{∞} , et admet en particulier un $DL_6(0)$ du type :

$$f^{-1}(x) = a_1 x + a_3 x^3 + a_5 x^5 + o(x^6)$$

3)

- a) Déterminer avec 1) et 2) le $DL_6(0)$ de $f \circ f^{-1}$.
- b) que dire par ailleurs de $f \circ f^{-1}$? En déduire finalement le $DL_6(0)$ de f^{-1} .