Machine Learning

Computer Engineering

Fabio Vandin

October 2nd, 2023

Machine Learning

6 credits:

- 48 hours in class lectures
 - Some hours will be in a lab: more decisions to come later
- 102 hours individual study

Everything (lectures, exams, homeworks) in English!

Note: if you are enrolled in "ICT for Internet and Multimedia" or in "Control Systems Engineering", you should follow a different section!

Course Website

Course website: from https://stem.elearning.unipd.it/

Register today if not done yet!

Lectures: When and Where

Monday 10:30-12:30pm, room Ae: How should we split the lecture?

— 10:30-12:00pm; no break ☺

Friday 10:30am-12:30pm, room Ae: How should we split the lecture?

— 10:30-12:00pm; no break ☺

Lectures: When and Where

Lectures are not live streamed.

Material from analogous lectures from 2021/2022 are available on the course website.

See the material posted on the website to see if there are differences in the material covered.

Labs and Homeworks

Labs:

 some (6?) lectures will be done in the lab, dates to be fixed

Homeworks:

- (up to) 3 homeworks
- will give up to 3 points for the final grade
- not compulsory but highly recommended
- will require to complete the code in Jupyter notebooks
- typical schedule:
 - day X: homework released
 - day X+14: deadline for homework submission

Grading

Written test (**NEW FORMAT**):

- Part 1: multiple choice questions, pass/fail [30 mins]
- Part 2: questions and exercises [1.5-2 hours]
 - graded only if part 1 is passed
 - see sample tests from previous years in elearning
 - will be graded on a scale from 0 to 30L.

Homeworks [not compulsory]: some (3?) homeworks. Up to 3 points as a bonus on the written test grade.

Final Grade = grades written test + homeworks

Example

24.5 written test + 2.66 homeworks = 27 final grade

Note: there may be an oral exam just to confirm the grade of the written exam.

Final Exam: dates

1. Tuesday, January 23rd, 2023

time: 2pm

rooms: De, Ke, Ve

2. Tuesday, February 13th, 2023

time: 9:30am

room: De, Ke, Ve

3. Tuesday, July 2nd, 2023

time: 9:30am

room: Ke

4. Tuesday, September 10th, 2023

time: 9:30am

room: Le

Material

Main Book

• [UML] Shalev-Shwartz, S. and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge University Press, 2014.

Material in class will be related to the book as much as possible

PDF available from the

authors http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html

Material (2)

Other Books (NOT Mandatory)

- M. Hardt, B. Recht, PATTERNS, PREDICTIONS, AND ACTIONS A story about machine learning. Princeton University Press, 2022 (available from the authors at https://mlstory.org/).
- T. Hastie, R. Tibshirani, J. Friedman. *The Elements of Statistical Learning*. Springer, 2008.

PDF from authors online

- C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006
- K.P. Murphy. *Machine Learning A Probabilistic Perspective*, MIT Press. 2012.
- Yaser S.Abu-Mostafa, M. Magdon-Ismail, H. Lin. Learning from Data. AMLBook, 2012.

Part of other books may be used: will provide handouts whenever possible...

Additional material: course website (*stem.elearning.unipd.it*)

- draft slides: provided sometime (...) before the lecture
- slides used in class: published after lectures
- links, etc.

If you are missing background notions (probability, algebra): ask me for material

Programming and more

Language: python (https://www.python.org)

Some libraries: scikit-learn, numpy,...

Jupyter lab:

- https://jupyterlab.readthedocs.io/en/stable/getting_st arted/overview.html
- Allows for a mix of text and code;
- Suggestion: install it through Anaconda as suggested on Jupyter website, you get a lot of other packages/libraries for ML, visualization, etc.

https://www.anaconda.com/download/

(That's what we are going to use for homeworks, etc.)

Why Python

Install User Guide API Examples More >

GitHub

Regression

Easy! (...)

learn

A lot of support for ML!

scikit-learn

Machine Learning in Python

Accessible to everybody, and reusable in various contexts Built on NumPy, SciPy, and matplotlib

- Open source, commercially usable BSD license

Simple and efficient tools for predictive data analysis

Clustering

Automatic grouping of similar objects into Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, and more...

Go

Used in industry, academia, research labs...

Homework 0

- 1. Go home and install Anaconda (version with Python 3.11):
 - https://www.anaconda.com/download/
- Go through the following tutorial (it's for Python 3.7, but still useful):
 - http://cs231n.github.io/python-numpy-tutorial/
- 3. Read Chapter 1 and Chapter 2 from *Data Structures and Algorithms in Python* [Goodrich, Tamassia, Goldwasser]
 - available on course website
- 4. Get used to Jupyter lab/Jupyter notebooks
- 5. Go through the following tutorial running the Jupyter notebook and in script mode
 - https://github.com/marcc-hpc/python3tutorial/blob/master/python3-tutorial.ipynb

Lecturer

Fabio Vandin, Professor, DEI (Department of Information Engineering)

Email: fabio.vandin@unipd.it

Website: www.dei.unipd.it/~vandinfa

Office: 410 (4th floor, DEI/G), phone: 049-827-7946

Office hours: Tuesday, 9-10am, by appointment (email before Monday at 5pm)

Lecturer

CV

- Laurea Triennale in Computer Engineering (2004)
- Laurea Specialistica in Computer Engineering (2006)
- Ph.D. at DEI (2010)
- 2010-May/2015: Researcher/Assistant Prof.
 - Brown University (USA)
 - University of Southern Denmark
- 2015-2020: Associate Prof. at DEI
- February 2020-now: Prof. at DEI

Research Interests:

- Methods: algorithms for machine learning, data mining, and big data
- Applications: Biology, Medicine, Social Networks, ...

Example: Ad Click Prediction

Goal: predict if a user will click on a given ad if the ad is shown to the user

Why is it important?

Social networks...

How would you solve the problem?

You have data about the user and about the ad

Ad Click Prediction: Data

A Solution that is NOT Machine Learning

Somebody (an "expert") manually builds a model/formula/algorithm that decides if the user will click on the ad or not

"If the age is <25
and
the gender is male
and
the ad is about soccer
then
he will click on the ad"

A Machine Learning Solution

You use previous data about:

- user and ad that was displayed to user
- whether the user clicked on the ad (label: YES/NO)

You give a lot of such pairs (vector, label) to a machine learning system which then produces in output a *model* to make the prediction

Learning: A Difficult Problem

Note: coming up with a model that performs very well on the data I already have is very easy!

The difficulty is about making predictions for data we have not seen!

Questions?

Example

Want to predict whether a student that just graduated from Computer Engineering will have a fun job or not based on some features:

- age at graduation
- LM final grade
- Machine Learning (ML) grade
- height

See Jupyter notebook.