Детекция номеров машин

1. для детекции номера ис	пользую эту	/ peпv:	https://c	github.com	/elson	iose/ci	rop.c	ait

2.	detect_plate.py
	🗋 requirements.txt

создал такой скрипт, которому на вход подаешь папку до картинок (для тест и трейн скрипт надо вызывать отдельно) и скрипт ищет авто номера. Если кратко, пытается найти авто. номер, который ближе к центру, при этом если надо использует zoom и rotate. На выходе json, где для картинки координаты бокса с номером машины

3. чтоб запустить, надо заменить requirements.txt и положить файл detect_plate.py. далее эти скрипты

```
virtualenv -p `which python3` venv
source venv/bin/activate
pip install -r requirements.txt
pip install pyheif

python detect_plate.py --source path_to_folder_with_train
python detect_plate.py --source path_to_folder_with_test
```

_ root_stepik_hacaton_ulyanovsk_dataset_train.json

на выходе полу	учите 2 json файла. один для трэйна, второй - для теста.
Сегментац	ия номеров машин
Из этих фото с	оздала маленький датасет(100-150 картинок) для сегментации
"Segmentatio	on (1).ipynb" is not created yet. Click to create.
и создал модел	пьку, которая может предсказать точные координаты номеров
	о скачать по ссылке oogle.com/file/d/13gKSEzI6CCCTyHgMbctBq9I4k1AsdCEh/view?
	положить в папку plate_dataset/best-upgraded-plate-mask.pt
Основной с	скрипт
	on7.ipynb

сперва с кодом из baseline детектим машины из фото достаем фокусное расстояние и дальше собираем два датафрейма

Первый содержит почти всю информацию (координаты машины, координаты номера, фокусное расстояние, расстояние вычисленное на основе физических формул линз, зная высотку и длину объекта)

Второй датафрейм нужен для случаев, когда первый не нашел координаты машины. Далее координаты пересчитываем с учетом того, что центр теперь - это центр картинки Делаем аугментацию простую, типа отзеркаливаем по вертикали,горизонтали и нового центра. Данных стало в 4 раза больше

Обучаем две модельки по этим двум датафреймам

Во время инференса сперва пытаемся найти расстояние по модели с детекцией машин.
Если не нашли, то по модели с детекцией номера.