Un problema inverso de sismicidad en minería

Roberto Morales Ponce

Laboratorio de Modelación Matemática I

Departamento de Matemática Universidad Técnica Federico Santa María

Segundo semestre de 2022

Introducción

Introducción

La minería es una de las principales actividades económicas en países como Chile, Perú y China. Además es esperable que esto sea así por un largo tiempo.

En general, esta es una labor peligrosa, y por lo tanto se consideran muchas precauciones para prevenir accidentes.

En muchos casos, la falta de seguridad termina en accidentes que pueden ser de algunas heridas o muertes de personal.

En general, los derrumbes de rocas son la principal causa de tales accidentes.

La minería es una labor que induce actividad sísmica. En particular, se producen temblores o microsismos dependiendo de su magnitud al realizar Block caving.

Es por estas razones de que es importante saber cómo se lleva a cabo la propagación de las ondas sísmicas.

Modelo matemático

Modelo matemático

En lo que sigue, asumiremos que los eventos sísmicos son modelados por la ecuación de ondas en un medio isotrópico:

$$\begin{cases} \partial_t^2 u(x,t) - c^2(x) \Delta u(x,t) = \mathbf{f(x)} g(t), & \text{ en } \mathbb{R}^n \times (0,T), \\ u(x,0) = 0, & \text{ en } \mathbb{R}^n, \\ \partial_t u(x,0) = 0, & \text{ en } \mathbb{R}^n. \end{cases}$$

donde

- c denota la velocidad de propagación de la onda,
- f(x)g(t) es una fuerza externa de variables separadas.
- u mide la amplitud de las ondas sísmicas.

Formulación del problema

Consideremos un conjunto $\Omega \subset \mathbb{R}^n$ y consideremos un conjunto de mediciones obtenidas por geófonos, dados por $\partial_t u(x,t)$, que son obtenidos por $\partial\Omega$ para cada tiempo $t\in[0,T]$.

Problema Inverso

El objetivo es reconstruir la parte espacial de la fuente f(x) a partir de las mediciones $\partial_t u$ sobre $\partial\Omega \times (0,T)$.

El operador Λ

Para expresar el problema anterior, podemos definir el operador Λ dado por

$$\Lambda f := \partial_t u \big|_{\partial \Omega \times (0,T)}.$$

Trabajos

Algunas aristas para trabajar

- Resultados teóricos.
- Problemas inversos bayesianos.
- Implementación y simulación.

Referencias

Problemas Inversos

- Brevis, R. I., Ortega, J. H., & Pardo, D. (2017). A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 11(1), 25.
- Uhlmann, G. (2014). Inverse problems: seeing the unseen. Bulletin of Mathematical Sciences, 4(2), 209-279.

Problemas Inversos Bayesianos

- Stuart, A. M. (2010). Inverse problems: a Bayesian perspective. Acta numerica, 19, 451-559.
- Chiachío-Ruano, J., Chiachio-Ruano, M., & Sankararaman, S. (Eds.). (2021). Bayesian Inverse Problems: Fundamentals and Engineering Applications. CRC Press.

¡Muchas gracias por su atención!

Contacto: roberto.moralesp@usm.cl