Molding CNNs for text: non-linear, non-consecutive convolutions

Tao Lei, Regina Barzilay, and Tommi Jaakkola

Presented by Shih-Ming Wang NLPLab, Institute of Information Science, Academia Sinica

07-5-2016

ntroduction Background Model Description Experiments Error Analysis

OUTLINE

Introduction

BACKGROUND

MODEL DESCRIPTION

EXPERIMENTS

ERROR ANALYSIS

Introduction Background Model Description Experiments Error Analysis

Introduction

MOTIVATION

- Deep learning & Convolution neural network (CNN) have led to success in many NLP problems
- Convolution operation is a linear mapping over n-gram vectors
- Target: non-linear operation over non-consecutive n-grams (e.g., "not that good")

BACKGROUND

Model Description I

TENSOR-BASED FEATURE MAPPING

- Use outer product operation instead of linear combination
- Consider 2-gram (x_1, x_2) (row vectors) as example:

	Linear	Outer Product	3D case
Raw	$[x_1; x_2]$	$x_1^T \cdot x_2$	$x_1 \bigotimes x_2 \bigotimes x_3$
Dim(raw)	2 × <i>d</i>	$d \times d$	$d \times d \times d$
Dim(Kernel)	$h \times 2 \times d$	$h \times d \times d$	$h \times d \times d \times d$
Output	h imes 1	h imes 1	$h \times 1$

,where
$$(x_1 \bigotimes x_2 \bigotimes x_3)_{ijk} = x_{1i} \cdot x_{2j} \cdot x_{3k}$$

MODEL DESCRIPTION II

PARAMETER EXPLOSION

- Kernel T has $h \times d^n$ parameters for n-gram
- Solution: Decompose T in to sum of \bar{h} rank-1 tensors

$$\begin{array}{c|cccc}
 & 2D & 3D \\
\hline
\hline
Dim(T) & h \times d \times d & h \times d \times d \times d \\
\hline
T' & & \sum_{i=1}^{\bar{h}} O_i \otimes P_i \otimes Q_i & \sum_{i=1}^{\bar{h}} O_i \otimes P_i \otimes Q_i \otimes R_i
\end{array}$$

,where $O \in \mathbb{R}^{ar{h} imes h}$; $P, Q, R \in \mathbb{R}^{h imes d}$; $O_i \in \mathbb{R}^h$; $P_i, Q_i, R_i \in \mathbb{R}^d$ For simplity, $ar{h} = h$.

EXPERIMENTS

ERROR ANALYSIS