Math 110A Homework 4

Jiaping Zeng

2/15/2021

- 1. For each pair of polynomials f(x) and g(x) below, use the Euclidean algorithm to compute the gcd(f(x), g(x)), and to find polynomials u(x) and v(x) with (f(x), g(x)) = f(x)u(x) + g(x)v(x):
 - (b) $f(x) = x^5 + x^4 + 2x^3 x^2 x 2$ and $g(x) = x^4 + 2x^3 + 5x^2 + 4x + 4$ in $\mathbb{Q}[x]$.

Answer: As follows:

$$x^{5} + x^{4} + 2x^{3} - x^{2} - x - 2 = (x^{4} + 2x^{3} + 5x^{2} + 4x + 4)(x - 1) + (-x^{3} - x + 2)$$

$$x^{4} + 2x^{3} + 5x^{2} + 4x + 4 = (-x^{3} - x + 2)(-x - 2) + (4x^{2} + 4x + 8)$$

$$-x^{3} - x + 2 = (4x^{2} + 4x + 8)(-\frac{1}{4}x + \frac{1}{4}) + 0$$

Therefore $gcd(f(x), g(x)) = x^2 + x + 2$; now let $u = \frac{1}{4}x + \frac{1}{2}$ and $v = -\frac{1}{4}x^2 - \frac{1}{4}x + \frac{3}{4}$, we have $x^2 + x + 2 = f(x)u(x) + g(x)v(x)$.

(c) $f(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $g(x) = 3x^3 + 5x^2 + 6x$ in $(\mathbb{Z}/7\mathbb{Z})[x]$.

Answer: As follows:

$$4x^{4} + 2x^{3} + 6x^{2} + 4x + 5 = (3x^{3} + 5x^{2} + 6x)(6x) + (5x^{2} + 4x + 5)$$

$$3x^{3} + 5x^{2} + 6x = (5x^{2} + 4x + 5)(2x + 5) + (4x + 3)$$

$$5x^{2} + 4x + 5 = (4x + 3)(3x + 4) \text{ Since } 2(4x + 3) = x + 6 \text{ in } (\mathbb{Z}/7\mathbb{Z}[x]), \text{ gcd}(f(x), g(x)) = x + 6; \text{ now let}$$

$$u = 3x + 4 \text{ and } v = 3x^{2} + 4x + 2, \text{ we have } x + 6 = f(x)u(x) + g(x)v(x).$$

(d) $f(x) = x^3 - ix^2 + 4x - 4i$ and $g(x) = x^2 + 1$ in $\mathbb{C}[x]$.

Answer: As follows:

$$x^{3} - ix^{2} + 4x - 4i = (x^{2} + 1)(x - i) + (3x - 3i)$$
$$3x - 3i = 3(x - i)$$

Therefore gcd(f(x), g(x)) = x - i; now let $u = \frac{1}{3}$ and $v = -\frac{1}{3}(x - i)$, we have x - i = f(x)u(x) + g(x)v(x).

2. Express $x^4 - 4$ as a product of irreducibles in $\mathbb{Q}[x]$, $\mathbb{R}[x]$ and $\mathbb{C}[x]$.

Answer:

$$\mathbb{Q}: \ x^4 - 4 = (x^2 - 2)(x^2 + 2) = (x^2 - 2)(x^2 + 2)$$

$$\mathbb{R}: \ x^4 - 4 = (x^2 - 2)(x^2 + 2) = (x - \sqrt{2})(x + \sqrt{2})(x^2 + 2)$$

$$\mathbb{C}: \ x^4 - 4 = (x^2 - 2)(x^2 + 2) = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{2}i)(x + \sqrt{2}i)$$

- 3. Use unique factorization to find the gcd in $\mathbb{C}[x]$ of $(x-3)^3(x-4)^4(x-i)^2$ and $(x-1)(x-3)(x-4)^3$. **Answer**: Since both polynomials are already expressed as products of irreducibles, the gcd is $(x-3)(x-4)^3$.
- 4. (a) Show that $x^2 + 2$ is irreducible in $(\mathbb{Z}/5\mathbb{Z})[x]$.

Answer: We can show that $x^2 + 2$ has no roots in $\mathbb{Z}/5\mathbb{Z}$ (i.e. $x^2 + 2 = 0$ has no solutions):

1

x	$x^{2} + 2$	is solution?
[0]	$[0]^2 + [2] = [0] + [2] = [2]$	no
[1]	$[1]^2 + [2] = [1] + [2] = [3]$	no
[2]	$[2]^2 + [2] = [4] + [2] = [1]$	no
[3]	$[3]^2 + [2] = [9] + [2] = [1]$	no
[4]	$[4]^2 + [2] = [16] + [2] = [3]$	no

Since $x^2 + 2$ has no roots in $\mathbb{Z}/5\mathbb{Z}$, it is irreducible.

(b) Factor $x^4 - 4$ as a product of irreducibles in $(\mathbb{Z}/5\mathbb{Z})[x]$.

Answer: We have $x^4 - 4 = (x^2 + 2)(x^2 - 2)$; we can verify that it cannot be reduced further by checking if $(x^2 + 2)$ and $(x^2 - 2)$ have roots in $(\mathbb{Z}/5\mathbb{Z})[x]$:

x	$x^{2} + 2$	is solution?
[0]	$[0]^2 + [2] = [0] + [2] = [2]$	no
[1]	$[1]^2 + [2] = [1] + [2] = [3]$	no
[2]	$[2]^2 + [2] = [4] + [2] = [1]$	no
[3]	$[3]^2 + [2] = [9] + [2] = [1]$	no
[4]	$[4]^2 + [2] = [16] + [2] = [3]$	no
x	$x^{2} - 2$	is solution?
$\frac{x}{[0]}$	$x^{2} - 2$ $[0]^{2} - [2] = [0] - [2] = [3]$	is solution?
[0]	$[0]^2 - [2] = [0] - [2] = [3]$	no
[0] [1]	$[0]^2 - [2] = [0] - [2] = [3]$ $[1]^2 - [2] = [1] - [2] = [4]$	no no

Since neither has roots in $(\mathbb{Z}/5\mathbb{Z})[x]$, $x^4 - 4 = (x^2 + 2)(x^2 - 2)$ cannot be reduced further.

5. Use the factor theorem to show that $x^7 - x$ factors in $(\mathbb{Z}/7\mathbb{Z})[x]$ as x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6), without doing any polynomial multiplication.

Answer: We can do so by showing that x = 0, 1, 2, 3, 4, 5, 6 are all solutions to $x^7 - x = 0$ in \mathbb{Z}/\mathbb{Z} as follows:

x	$x^7 - x$	is solution?
[0]	$[0]^7 - [0] = [0] - [0] = [0]$	yes
[1]	$[1]^7 - [1] = [1] - [1] = [0]$	yes
[2]	$[2]^7 - [2] = [128] - [2] = [0]$	yes
[3]	$[3]^7 - [3] = [2187] - [3] = [0]$	yes
[4]	$[4]^7 - [4] = [16384] - [4] = [0]$	yes
[5]	$[5]^7 - [5] = [78125] - [5] = [0]$	yes
[6]	$[6]^7 - [6] = [279936] - [6] = [0]$	yes

Therefore x = 0, 1, 2, 3, 4, 5, 6 are all roots, so x, (x - 1), (x - 2), (x - 3), (x - 4), (x - 5), (x - 6) are all factors by the factor theorem.

6. Determine if the given polynomial is irreducible:

(a) $x^2 - 7$ in $\mathbb{Q}[x]$.

Answer: $x^2 - 7 = 0 \implies x^2 = 7$ which has no solution in \mathbb{Q} , therefore $x^2 - 7$ is irreducible in $\mathbb{Q}[x]$.

(b) $2x^3 + x^2 + 2x + 2$ in $(\mathbb{Z}/5\mathbb{Z})[x]$.

Answer:

x	$2x^3 + x^2 + 2x + 2$	is solution?
[0]	$2[0]^3 + [0]^2 + 2[0] + [2] = [0] + [0] + [0] + [2] = [2]$	no
[1]	$2[1]^3 + [1]^2 + 2[1] + [2] = [2] + [1] + [2] + [2] = [2]$	no
[2]	$2[2]^3 + [2]^2 + 2[2] + [2] = [16] + [4] + [4] + [2] = [1]$	no
[3]	$2[3]^3 + [3]^2 + 2[3] + [2] = [54] + [9] + [6] + [2] = [1]$	no
[4]	$2[4]^3 + [4]^2 + 2[4] + [2] = [128] + [16] + [8] + [2] = [4]$	no

Therefore $2x^3 + x^2 + 2x + 2$ is irreducible $(\mathbb{Z}/5\mathbb{Z})[x]$.

(c) $x^4 + x^2 + 1$ in $(\mathbb{Z}/3\mathbb{Z})[x]$.

Answer:

x

$$x^4 + x^2 + 1$$
 is solution?

 [0]
 $[0]^4 + [0]^2 + [1] = [0] + [0] + [1] = [1]$
 no

 [1]
 $[1]^4 + [1]^2 + [1] = [1] + [1] + [1] = [0]$
 yes

 [2]
 $[2]^4 + [2]^2 + [1] = [16] + [4] + [1] = [0]$
 yes

Therefore $x^4 + x^2 + 1$ is not irreducible since x = 1, 2 are roots.

7. Let $\varphi : \mathbb{C} \to \mathbb{C}$ be an isomorphism of rings such that $\varphi(a) = a$ for all $a \in \mathbb{Q}$. Suppose that $r \in \mathbb{C}$ is a root of $f(x) \in \mathbb{Q}[x]$. Prove that $\varphi(r)$ is also a root of f(x).

Answer: Since $f(x) \in \mathbb{Q}[x]$ and φ is a ring isomorphism, we have $f(r) = a_0 + a_1 r + \ldots + a_n r^n \implies 0 = \varphi(f(r)) = a_0 + a_1 \varphi(r) + \ldots + a_n \varphi(a_n) = f(\varphi(r))$, therefore $\varphi(r)$ is a root by definition.

8. (a) Prove that the following version of the division algorithm holds in $\mathbb{Z}[i]$: For any $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$, there is some not necessarily unique $q, r \in \mathbb{Z}[i]$ with $\alpha = \beta q + r$ and $N(r) < N(\beta)$.

Answer: Let $z = \frac{\alpha}{\beta} \in \mathbb{C}$ such that $\frac{r}{\beta} = z - q$, we want to show that there exists some $q \in \mathbb{Z}[i]$ such that |z - q| < 1. We can do so by taking the four points in $\mathbb{Z}[i]$ closest to z as follows: let z = x + yi, and let $x_1, x_2, y_1, y_2 \in \mathbb{Z}$ such that $x_1 \leq x < x_2, y_1 \leq y < y_2$ and $x_2 - x_1 = y_2 - y_1 = 1$ (visually, the four points $(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2)$ form a square that contains z). Now if we divide the square into four smaller squares evenly, z must be in or on one of the smaller squares. Since each of the smaller squares contains a point from $\mathbb{Z}[i]$, the distance between z to a point from $\mathbb{Z}[i]$ must be smaller than the diagonal of the smaller square, which is $\frac{\sqrt{2}}{2} < 1$. Therefore |z - q| < 1.

(b) Give an example to show that the q and r you found in part (a) do not need to be unique.

Answer: Let $\alpha = 1 + 2i$ and $\beta = 2 + 4i$, then $\alpha = 1 \cdot \beta + (-1 - 2i)$ with q = 1 and r = -1 - 2i. Similarly, $\alpha = 0 \cdot \beta + (1 + 2i)$ with q = 0 and r = 1 + 2i. Therefore q and r do not need to be unique.

(c) If $\alpha, \beta \in \mathbb{Z}[i]$ are irreducibles and $\alpha | \beta$, prove that α and β are associates.

Answer: Since $\alpha | \beta$, there is some $\gamma \in \mathbb{Z}[i]$ such that $\alpha = \beta \gamma$. Then since α is irreducible, either β or γ is a unit. Since β is irreducible and therefore cannot be a unit by definition, γ is a unit. Then α and β are associates by definition.

- 9. Let p > 0 be a prime number in \mathbb{Z} . Notice that it is possible for a prime in \mathbb{Z} to be no longer be irreducible in $\mathbb{Z}[i]$. For example, 2 = (1+i)(1-i) or 13 = (2+3i)(2-3i). However, some primes are still irreducible in $\mathbb{Z}[i]$.
 - (a) Prove that if $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$, then p is reducible in $\mathbb{Z}[i]$.

Answer: We have $p = a^2 + b^2 = (a + bi)(a - bi)$ for $a, b \in \mathbb{Z}$. Note that $a, b \neq 0$ since p is prime (or else

we would have $p=a^2 \implies a|p$ or $p=b^2 \implies b|p$; therefore neither a+bi nor a-bi is a unit so p is reducible into (a+bi)(a-bi).

(b) Prove that if p is prime in \mathbb{Z} but is reducible in $\mathbb{Z}[i]$ then $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

Answer: Since p is reducible, we have $p = \alpha \beta$ for some $\alpha, \beta \in \mathbb{Z}[i]$ that are not units. Then $N(\alpha)N(\beta) = N(p) = p^2 \implies N(\alpha) = N(\beta) = p$ since $N(\alpha) \neq 1$ and $N(\beta) \neq 1$. Now let $\alpha = a + bi$ where $a, b \in \mathbb{Z}$, then $p = N(\alpha) = N(a + bi) = a^2 + b^2 \implies p = a^2 + b^2$.