Pol Sci 630: Problem Set 2 Solutions - Properties of Random Variables

Prepared by: Anh Le (anh.le@duke.edu)

Due Date for Grading: Friday, September 11, 2015, 10 AM (Beginning of Class)

1. Expected Value and Its Properties

a.

(1/4 point) (DeGroot, p. 216) Suppose that one word is to be selected at random from the sentence 'the girl put on her beautiful red hat'. If X denotes the number of letters in the word that is selected, what is the value of E(X)?

Solution

As the number of letters in a word, X can take on following values: $x \in$ $\{2, 3, 4, 9\}$, with probability as follows:

$$P(X=2) = \frac{1}{8}$$
 (1 word ("on") out of 8 words in the sentence) (1)

$$P(X=3) = \frac{5}{8} \tag{2}$$

$$P(X = 2) = \frac{1}{8}$$
 (1 word ("on") out of 8 words in the sentence) (1)
 $P(X = 3) = \frac{5}{8}$ (2)
 $P(X = 4) = \frac{1}{8}$ (3)

$$P(X=9) = \frac{1}{8} \tag{4}$$

Therefore,

$$E(X) = \sum_{allx_i} x_i P(X = x_i) = 3.75$$

b.

(2/4 point) (Degroot p. 216) Suppose that one letter is to be selected at random from the 30 letters in the sentence given in Exercise 4. If Y denotes the number of letters in the word in which the selected letter appears, what is the value of E(Y)?

Hint: 1a) and 1b) force you to think carefully about the definition of expectation value. For each problem, think about what is your random variable (X), which values it takes on $(x \in \{?, ?, ...\})$ and with what probability (P(X = x) = ?)

c.

(1/4 point) (Degroot, p. 224) Suppose that three random variables X_1 , X_2 , X_3 are uniformly distributed on the interval [0, 1]. They are also independent. Determine the value of $E[(X_12X_2 + X_3)^2]$.

2. Variance and its properties

For this problem, you can use the properties of expected value.

a.

(1/4 point) Prove that $Var(aX + b) = a^2Var(X)$.

b.

(2/4 point) Prove that if two random variables are independent, the variance of the sum is the sum of the variance. In other words, if X_1, X_2 are independent, then

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2)$$

c.

(1/4 point) (Degroot, p. 232) Suppose that one word is selected at random from the sentence 'the girl put on her beautiful red hat'. If X denotes the number of letters in the word that is selected, what is the value of Var(X)?

3. Binomial distribution

(Credit to Jan) This problem is taken from Pitman (1993) Probability

Suppose a fair coin is tossed n times. Find a simple formula in terms of n and k for the following probability: $Pr(k \ heads | k-1 \ heads \ or \ k \ heads)$. Please pay close attention to the formula, particularly what event is conditioned on what events. (Ch. 2.1, Problem 10 b) (p. 91)

Hint 1: Use the binomial distribution to model this.

Hint 2: Because those events are mutually exclusive, calculate the following: $Pr(k \ heads)$

$$Pr(k \ heads) + Pr(k-1 \ heads)$$

This is true because: $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$

The intersection of events A and B in this case, $Pr(k \ heads \cap (k \ heads \cup k-1 \ heads))$, reduces to $Pr(k \ heads)$ because the two events are mutually exclusive.

4. Plotting distribution

For this problem, you'll need to Google some R techniques (e.g. side-by-side / overlapping plot). Also, label the axes and the plots accordingly.

a.

(1/4 point) Download a variable you are interested in, using WDI. Plot the histogram, density plot, boxplot, and normal quantile plot.

b.

(1/4 point) Plot the histogram of that variable for Europe and Asia, 1) side by side (Hint: par(mfrow=c(?, ?))), and 2) overlapping in the same plot.

c.

(1/4 point) Draw the scatterplot of that variable against another variable.

d.

(1/4 point) Label the point that represents your country (Hint: Tutorial) and color it red (Some Googling involved)