

1.5 A adjustable and fixed low drop positive voltage regulator

Datasheet - production data

Features

- Typical dropout: 1.3 V at 1.5 A
- Three-terminal adjustable or fixed output voltage: 1.8 V, 2.5 V, 3.3 V, 5 V, 12 V
- Automotive grade (adjustable V_{OUT} in TO-220 and DPAK packages only)
- Output current guaranteed up to 1.5 A
- Output tolerance: ± 1 % at 25 °C and ± 2 % in full temperature range
- Internal power and thermal limit
- Wide operating temperature range 40 °C to 125 °C
- Package available: TO-220, D²PAK, D²PAK/A, DPAK and DFN8 (4x4 mm)
- Pinout compatibility with standard adjustable voltage regulators

Description

The LD1086xx is a low drop voltage regulator capable of providing up to 1.5 A of output current. Dropout is guaranteed at a maximum of 1.2 V at the maximum output current, decreasing at lower loads. The LD1086xx is pin-to-pin compatible with older 3-terminal adjustable regulators, but has better performance in terms of drop and output tolerance. The 2.85 V output version is suitable for SCSI-2 active terminations. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1086xx quiescent current flows into the load, increasing efficiency. Only a 10 μF (minimum) capacitor is needed for stability. The device is available in a TO-220, D²PAK, D²PAK/A, DPAK or DFN8 (4x4

mm) package. On-chip trimming allows the regulator to reach a very tight output voltage tolerance; within ± 1 % at 25 °C. The LD1086xx is available as automotive grade for adjustable output voltages in the TO-220 and DPAK packages. The PAT, SYL, SBL statistical tests have been performed, and the devices are qualified according to the AEC-Q100 specification for the automotive market in the temperature range of - 40 °C to 125 °C.

Table 1. Device summary

Part numbers				
LD1086XX	LD1086XX18	LD1086XX33		
LD1086XX12	LD1086XX25	LD1086XX50		

March 2012 Doc ID 6739 Rev 27 1/44

Contents LD1086xx

Contents

1	Diagram	. 5
2	Pin configuration	. 6
3	Maximum ratings	. 7
4	Schematic application	. 8
5	Electrical characteristics	. 9
6	Typical application	17
7	Package mechanical data	22
8	Order codes	42
9	Revision history	43

LD1086xx List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	7
Table 3.	Thermal data	7
Table 4.	Electrical characteristics of LD1086#18	9
Table 5.	Electrical characteristics of LD1086#25	. 10
Table 6.	Electrical characteristics of LD1086#33	. 11
Table 7.	Electrical characteristics of LD1086#36	. 12
Table 8.	Electrical characteristics of LD1086#50	. 13
Table 9.	Electrical characteristics of LD1086#12	. 14
Table 10.	Electrical characteristics of LD1086#	. 15
Table 11.	Electrical characteristics of LD1086DTTRY and LD1086VY (Automotive Grade)	
Table 12.	TO-220 mechanical data	. 22
Table 13.	D ² PAK mechanical data	. 29
Table 14.	Footprint data	. 30
Table 15.	D ² PAK/A mechanical data	. 33
Table 16.	Footprint data	. 34
Table 17.	DFN8L (4x4 mm.) mechanical data	. 35
Table 18.	Reel DFN8L dimensions	
Table 19.	Order codes	. 42
Table 20.	Document revision history	. 43

List of figures LD1086xx

List of figures

Figure 1.	Schematic diagram	. 5
Figure 2.	Pin connections (top view)	. 6
Figure 3.	Application circuit	. 8
Figure 4.	Output voltage vs. temp. (V _I = 5 V)	17
Figure 5.	Output voltage vs. temp. (V _I = 15 V)	17
Figure 6.	Output voltage vs. temperature (V _I = 4.25 V)	17
Figure 7.	Short circuit current vs. dropout voltage	17
Figure 8.	Line regulation vs. temperature	17
Figure 9.	Load regulation vs. temperature	17
Figure 10.	Dropout voltage vs. temperature	18
Figure 11.	Dropout voltage vs. output current	18
Figure 12.	Adjust pin current vs. input voltage	18
Figure 13.	Adjust pin current vs. temperature	18
Figure 14.	Adjust pin current vs. output current	18
Figure 15.	Quiescent current vs. output current	18
Figure 16.	Quiescent current vs. input voltage	
Figure 17.	Supply voltage rejection vs. output current	19
Figure 18.	Supply voltage rejection vs. frequency	19
Figure 19.	Supply voltage rejection vs. temperature	19
Figure 20.	Minimum load current vs. temperature	19
Figure 21.	Stability for adjustable	19
Figure 22.	Stability for 2.85 V	20
Figure 23.	Stability for 12 V	20
Figure 24.	Line transient ($V_I = 12$ to 13 V)	20
Figure 25.	Line transient ($I_O = 200 \text{ mA}$)	
Figure 26.	Line transient ($C_{ADJ} = 1 \mu F$)	20
Figure 27.	Load transient	20
Figure 28.	Load transient ($T_{rise} = T_{fall} = 10 \mu s$)	21
Figure 29.	Thermal protection	
Figure 30.	Drawing dimension TO-220 (type STD-ST Dual Gauge)	
Figure 31.	Drawing dimension TO-220 (type STD-ST Single Gauge)	
Figure 32.	Drawing dimension tube for TO-220 Dual Gauge (mm.)	
Figure 33.	Drawing dimension tube for TO-220 Single Gauge (mm.)	
Figure 34.	Drawing dimension D ² PAK (type STD-ST)	
Figure 35.	Drawing dimension D ² PAK (type WOOSEOK-SUBCON.)	
Figure 36.	D ² PAK footprint recommended data	
Figure 37.	Drawing dimension D ² PAK/A (type STD-ST)	31
Figure 38.	Drawing dimension D ² PAK/A (type WOOSEOK-Subcon.)	
Figure 39.	D ² PAK/A footprint recommended data	
Figure 40.	DFN8L package outline	
Figure 41.	DFN8L footprint - recommended data	
Figure 42.	DFN8L carrier tape (dimension are in mm.)	
Figure 43.	Reel DFN8L drawing	39

LD1086xx Diagram

1 Diagram

Figure 1. Schematic diagram

Pin configuration LD1086xx

2 Pin configuration

Figure 2. Pin connections (top view)

Note: The TAB is physically connected to the output (this is valid for the TO-220 package too).

LD1086xx Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Symbol Parameter Value		Unit
V _I	DC input voltage	30	V
Io	Output current	Internally Limited	
P _D	Power dissipation	Internally Limited	mW
T _{STG}	Storage temperature range	-55 to +150	°C
T _{OP}	Operating junction temperature range -40 to +125		°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	D²PAK D²PAK/A	DPAK	DFN8	Unit
R _{thJC}	Thermal resistance junction-case	5	3	8	1.5	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	62.5		33	°C/W

4 Schematic application

Figure 3. Application circuit

5 Electrical characteristics

 V_I = 4.8 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,\, unless$ otherwise specified.

Table 4. Electrical characteristics of LD1086#18

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	$I_O = 0$ mA, $T_J = 25$ °C	1.782	1.8	1.818	V
Vo	Output voltage 🗥	$I_O = 0$ to 1.5A, $V_I = 3.4$ to 30V	1.764	1.8	1.836	V
A\/ -	Line regulation	$I_O = 0$ mA, $V_I = 3.4$ to 18V, $T_J = 25$ °C		0.2	4	mV
ΔV _O	Line regulation	I _O = 0 mA, V _I = 3.4 to 15V		0.4	4	mV
A\/ -	Load regulation	$I_{O} = 0$ to 1.5A, $T_{J} = 25^{\circ}C$		0.5	8	mV
ΔV _O	Load regulation	I _O = 0 to 1.5A		1	16	mV
V _d	Dropout voltage	I _O = 1.5A		1.3	1.5	٧
Iq	Quiescent current	$V_1 \le 30V$		5	10	mA
	Short circuit current	$V_I - V_O = 5V$	1.5	2		Α
I _{sc}	Short circuit current	$V_{I} - V_{O} = 25V$	0.05	0.02		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, C_O = 25 \mu\text{F}, I_O = 1.5\text{A} $ $V_I = 6.8 \pm 3\text{V}$	60	82		dB
eN	RMS Output noise voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1086xx

 V_I = 5.5 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ} C,\, unless otherwise specified.$

Table 5. Electrical characteristics of LD1086#25

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	2.475	2.5	2.525	V
Vo	Output voltage 🗥	I _O = 0 to 1.5A, V _I = 4.1 to 30V	2.45	2.5	2.55	V
۸\/ .	Line regulation	$I_O = 0$ mA, $V_I = 4.1$ to 18V, $T_J = 25$ °C		0.2	4	mV
ΔV _O	Line regulation	I _O = 0 mA, V _I = 4.1 to 18V		0.4	4	mV
ΔV _O	Load regulation	$I_{O} = 0$ to 1.5A, $T_{J} = 25^{\circ}C$		0.5	8	mV
ΔVO	Load regulation	I _O = 0 to 1.5A		1	16	mV
V _d	Dropout voltage	I _O = 1.5A		1.3	1.5	V
Iq	Quiescent current	$V_1 \le 30V$		5	10	mA
	Short circuit current	$V_I - V_O = 5V$	1.5	2		Α
I _{sc}	Short circuit current	$V_I - V_O = 25V$	0.05	0.2		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, C_O = 25 \mu\text{F}, I_O = 1.5\text{A} \ V_I = 7.5 \pm 3\text{V}$	60	81		dB
eN	RMS Output noise voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

 V_I = 6.3 V, C_I = C_O =10 $\mu F,\ T_A$ = -40 to 125 $^{\circ}C,$ unless otherwise specified.

Table 6. Electrical characteristics of LD1086#33

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	0 1 1 (1)	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	3.267	3.3	3.333	V
V _O	Output voltage (1)	$I_O = 0$ to 1.5A, $V_I = 4.9$ to 30V	3.234	3.3	3.366	V
AV/ -	Line regulation	$I_O = 0$ mA, $V_I = 4.9$ to 18V, $T_J = 25$ °C		0.5	6	mV
ΔV _O	Line regulation	$I_O = 0 \text{ mA}, V_I = 4.9 \text{ to } 18V$		1	6	mV
AV/ -	Load regulation	$I_{O} = 0$ to 1.5A, $T_{J} = 25^{\circ}C$		1	10	mV
ΔV _O	Load regulation	I _O = 0 to 1.5A		7	25	mV
V _d	Dropout voltage	I _O = 1.5A		1.3	1.5	V
Iq	Quiescent current	$V_1 \le 30V$		5	10	mA
	Short circuit current	$V_I - V_O = 5V$	1.5	2		Α
I _{sc}	Short circuit current	$V_I - V_O = 25V$	0.05	0.2		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.008	0.04	%/W
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, C_O = 25 \mu\text{F}, I_O = 1.5\text{A} $ $V_I = 8.3 \pm 3\text{V}$	60	79		dB
eN	RMS Output noise voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1086xx

 V_I = 6.6 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ} C,\, unless otherwise specified.$

Table 7. Electrical characteristics of LD1086#36

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	3.564	3.6	3.636	V
Vo	Output voltage 🗥	$I_O = 0$ to 1.5A, $V_I = 5.2$ to 30V	3.528	3.6	3.672	٧
۸\/ .	Line regulation	$I_O = 0$ mA, $V_I = 5.2$ to 18V, $T_J = 25$ °C		0.5	10	mV
ΔV _O	Line regulation	I _O = 0 mA, V _I = 5.2 to 18V		1	10	mV
ΔV _O	Load regulation	$I_{O} = 0$ to 1.5A, $T_{J} = 25^{\circ}C$		3	15	mV
ΔVO	Load regulation	I _O = 0 to 1.5A		7	25	mV
V _d	Dropout voltage	I _O = 1.5A		1.3	1.5	V
Iq	Quiescent current	$V_1 \le 30V$		5	10	mA
	Short circuit current	$V_I - V_O = 5V$	1.5	2		Α
I _{sc}	Short circuit current	$V_I - V_O = 25V$	0.05	0.2		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	$f=120~Hz,~C_O=25~\mu\text{F},~I_O=1.5\text{A}$ $V_I=8.6\pm3\text{V}$	60	78		dB
eN	RMS Output noise voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

 V_I = 8 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ} C,$ unless otherwise specified.

Table 8. Electrical characteristics of LD1086#50

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	4.95	5	5.05	V
V _O	Output voltage 🗥	I _O = 0 to 1.5A, V _I = 6.6 to 30V	4.9	5	5.1	V
AV/ -	Line regulation	$I_O = 0$ mA, $V_I = 6.6$ to 20V, $T_J = 25$ °C		0.5	10	mV
ΔV _O	Line regulation	I _O = 0 mA, V _I = 6.6 to 20V		1	10	mV
AV/ -	Load regulation	$I_{O} = 0$ to 1.5A, $T_{J} = 25^{\circ}C$		5	20	mV
ΔV _O	Load regulation	I _O = 0 to 1.5A		10	35	mV
V _d	Dropout voltage	I _O = 1.5A		1.3	1.5	V
Iq	Quiescent current	$V_1 \le 30V$		5	10	mA
	Short circuit current	$V_I - V_O = 5V$	1.5	2		Α
I _{sc}	Short circuit current	$V_I - V_O = 25V$	0.05	0.2		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, C_O = 25 \mu\text{F}, I_O = 1.5\text{A} \ V_I = 10 \pm 3\text{V}$	60	75		dB
eN	RMS Output noise voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003	_	%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1086xx

 V_I = 15 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ}C,$ unless otherwise specified.

Table 9. Electrical characteristics of LD1086#12

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	$I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	11.88	12	12.12	V
V _O	Output voltage V	$I_O = 0$ to 1.5A, $V_I = 13.8$ to 30V	11.76	12	12.24	V
ΔV _O	Line regulation	$I_O = 0$ mA, $V_I = 13.8$ to 25V, $T_J = 25$ °C		1	25	mV
		$I_O = 0 \text{ mA}, V_I = 13.8 \text{ to } 25\text{V}$		2	25	mV
41/	Lood regulation	I _O = 0 to 1.5A, T _J = 25°C		12	36	mV
ΔV _O	Load regulation	I _O = 0 to 1.5A		24	72	mV
V _d	Dropout voltage	I _O = 1.5A		1.3	1.5	V
Iq	Quiescent current	$V_1 \le 30V$		5	10	mA
	Short circuit current	$V_I - V_O = 5V$	1.5	2		Α
I _{sc}	Short circuit current	V _I - V _O = 25V	0.05	0.2		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, C_O = 25 \mu\text{F}, I_O = 1.5\text{A}$ $V_I = 17 \pm 3\text{V}$	54	66		dB
eN	RMS Output noise voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

 V_I = 4.25 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ} C,$ unless otherwise specified.

Table 10. Electrical characteristics of LD1086#

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage (1)	I _O = 10mA T _J = 25°C	1.237	1.25	1.263	V
Vo	Output voltage (7)	$I_O = 10$ mA to 1.5A, $V_I = 2.85$ to 30V	1.225	1.25	1.275	V
ΔV _O	Line Regulation	$I_O = 10$ mA, $V_I = 2.8$ to 16.5V, $T_J = 25$ °C		0.015	0.2	%
		I _O = 10mA, V _I = 2.8 to 16.5V		0.035	0.2	%
۸۱/	Load Regulation	$I_{O} = 10$ mA to 1.5A, $T_{J} = 25$ °C		0.1	0.3	%
ΔV _O	Load Regulation	I _O = 0 to 1.5A		0.2	0.4	%
V _d	Dropout Voltage	I _O = 1.5A		1.3	1.5	V
I _{O(min)}	Minimum Load Current	$V_I = 30V$		3	10	mA
	Short Circuit Current	$V_I - V_O = 5V$	1.5	2.3		Α
I _{sc}	Short Circuit Current	V _I - V _O = 25V	0.05	0.2		Α
	Thermal Regulation	T _A = 25°C, 30ms pulse		0.01	0.04	%/W
SVR	Supply Voltage Rejection	$ f = 120 \; Hz, \; C_O = 25 \; \mu F, \\ C_{ADJ} = 25 \; \mu F, \\ I_O = 1.5A, \; V_I = 6.25 \pm 3V $	60	88		dB
I _{ADJ}	Adjust Pin Current	V _I = 4.25V, I _O = 10 mA		40	120	μΑ
ΔI_{ADJ}	Adjust Pin Current Change (1)	$I_O = 10$ mA to 1.5A, $V_I = 2.8$ to 16.5V		0.2	5	μΑ
eN	RMS Output Noise Voltage (% of V_O)	T _A = 25°C, f =10Hz to 10kHz		0.003		%
S	Temperature Stability			0.5		%
S	Long Term Stability	T _A = 125°C, 1000Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

Electrical characteristics LD1086xx

 V_I = 4.25 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 $^{\circ} C,$ unless otherwise specified.

Table 11. Electrical characteristics of LD1086DTTRY and LD1086VY (Automotive Grade)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Output voltage ⁽¹⁾	I _O = 10 mA T _A = 25°C	1.237	1.25	1.263	V
Vo	Output voitage (**)	I_{O} = 10 mA to 1.5 A, V_{I} = 2.85 to 30 V	1.225	1.25	1.275	V
ΔV _O	Line regulation	$I_O = 10 \text{ mA}, V_I = 2.8 \text{ to } 16.5 \text{ V}$		0.035	0.2	%
ΔV _O	Load regulation	I _O = 0 to 1.5 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 1.5 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V _I = 30 V		3	10	mA
	I _{sc} Short circuit current	$V_1 - V_0 = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	1.5	2.3		Α
'sc		V _I - V _O = 25 V, T _A = 25°C	0.05	0.2		Α
	Thermal regulation	T _A = 25°C, 30ms pulse		0.01	0.04	%/W
SVR	Supply voltage rejection		60	88		dB
I _{ADJ}	Adjust pin current	V _I = 4.25 V, I _O = 10 mA		40	120	μΑ
ΔI_{ADJ}	Adjust pin current change (1)	$I_O = 10 \text{ mA to } 1.5 \text{ A}, V_I = 2.8 \text{ to } 16.5 \text{ V}$		0.2	5	μΑ
eN	RMS output noise voltage (% of V_O)	T _A = 25°C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125°C, 1000 Hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.

LD1086xx Typical application

6 Typical application

Unless otherwise specified $T_J = 25$ °C, $C_I = C_O = 10 \mu F$.

Figure 4. Output voltage vs. temp. $(V_1 = 5 \text{ V})$ Figure 5. Output voltage vs. temp. $(V_1 = 15 \text{ V})$

Figure 6. Output voltage vs. temperature $(V_I = 4.25 \text{ V})$

Figure 7. Short circuit current vs. dropout voltage

Figure 8. Line regulation vs. temperature

Figure 9. Load regulation vs. temperature

Typical application LD1086xx

Figure 10. Dropout voltage vs. temperature

Figure 11. Dropout voltage vs. output current

Figure 12. Adjust pin current vs. input voltage Figure 13. Adjust pin current vs. temperature

Figure 14. Adjust pin current vs. output current

Figure 15. Quiescent current vs. output current

LD1086xx Typical application

Figure 16. Quiescent current vs. input voltage Figure 17. Supply voltage rejection vs. output current

Figure 18. Supply voltage rejection vs. frequency

Figure 19. Supply voltage rejection vs. temperature

Figure 20. Minimum load current vs. temperature

Figure 21. Stability for adjustable

Typical application LD1086xx

Figure 22. Stability for 2.85 V

Figure 23. Stability for 12 V

Figure 24. Line transient $(V_I = 12 \text{ to } 13 \text{ V})$

Figure 25. Line transient $(I_0 = 200 \text{ mA})$

Figure 26. Line transient ($C_{ADJ} = 1 \mu F$)

Figure 27. Load transient

Figure 28. Load transient ($T_{rise} = T_{fall} = 10 \mu s$) Figure 29. Thermal protection

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 12. TO-220 mechanical data

	Type STD - ST Dual Gauge			Type STD - ST Single Gauge				
Dim.		mm.			mm.			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	4.40		4.60	4.40		4.60		
b	0.61		0.88	0.61		0.88		
b1	1.14		1.70	1.14		1.70		
С	0.48		0.70	0.48		0.70		
D	15.25		15.75	15.25		15.75		
D1		1.27						
Е	10.00		10.40	10.00		10.40		
е	2.40		2.70	2.40		2.70		
e1	4.95		5.15	4.95		5.15		
F	1.23		1.32	0.51		0.60		
H1	6.20		6.60	6.20		6.60		
J1	2.40		2.72	2.40		2.72		
L	13.00		14.00	13.00		14.00		
L1	3.50		3.93	3.50		3.93		
L20		16.40			16.40			
L30		28.90			28.90			
ØP	3.75		3.85	3.75		3.85		
Q	2.65		2.95	2.65		2.95		

In spite of some difference in tolerances, the packages are compatible.

Figure 30. Drawing dimension TO-220 (type STD-ST Dual Gauge)

Note: 1 Maximum resin gate protrusion: 0.5 mm.

2 Resin gate position is accepted in each of the two positions shown on the drawing, or their symmetrical.

577

Figure 31. Drawing dimension TO-220 (type STD-ST Single Gauge)

** SECTION A-A

Figure 32. Drawing dimension tube for TO-220 Dual Gauge (mm.)

DPAK mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
Е	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		2.28			0.090	
e1	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8			0.031	
L4	0.6		1	0.023		0.039
R		0.2			0.008	
V2	0°		8°	0°		8°

E1 c2-L1 D1 b_{-} THERMAL PAD b2 SEATING PLANE A 1 COPLANARITY R 0.25 GAUGE PLANE V2_ 0079457/L

Figure 34. Drawing dimension D²PAK (type STD-ST)

– E1 —**→** c2-L1 D1 D *L2* THERMAL PAD b2 _e1_**_** SEATING PLANE A1→ GAUGE PLANE 0.25 V2. 0079457/L

Figure 35. Drawing dimension D²PAK (type WOOSEOK-SUBCON.)

Table 13. D2PAK mechanical data

	Type STD-ST mm.			Type WOOSEOK-Subcon. mm.			
Dim.							
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	4.30		4.70	
A1	0.03		0.23	0		0.20	
b	0.70		0.93	0.70		0.90	
b2	1.14		1.70	1.17		1.37	
С	0.45		0.60	0.45	0.50	0.60	
c2	1.23		1.36	1.25	1.30	1.40	
D	8.95		9.35	9	9.20	9.40	
D1	7.50			7.50			
Е	10		10.40	9.80		10.20	
E1	8.50			7.50			
е		2.54			2.54		
e1	4.88		5.28		5.08		
Н	15		15.85	15	15.30	15.60	
J1	2.49		2.69	2.20		2.60	
L	2.29		2.79	1.79		2.79	
L1	1.27		1.40	1		1.40	
L2	1.30		1.75	1.20		1.60	
R		0.4			0.30		
V2	0°		8°	0°		3°	

Note: The D²PAK package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

Figure 36. D²PAK footprint recommended data

Table 14. Footprint data

Values						
	mm.	inch.				
Α	12.20	0.480				
В	9.75	0.384				
С	16.90	0.665				
D	3.50	0.138				
Е	1.60	0.063				
F	2.54	0.100				
G	5.08	0.200				

Figure 37. Drawing dimension D²PAK/A (type STD-ST)

– E1 – c2-D1 D (3x) b_ THERMAL PAD -b2 SEATING PLANE A1-GAUGE PLANE 0.25 *V2* 7106164/E

Figure 38. Drawing dimension D²PAK/A (type WOOSEOK-Subcon.)

Table 15. D2PAK/A mechanical data

		Type STD-ST		Туре	WOOSEOK-Su	bcon.
Dim.		mm.		mm.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	4.30		4.70
A1	0.03		0.23	0		0.20
b	0.70		0.93	0.70		0.90
b1	0.80		1.30			
b2	1.14		1.70	1.17		1.37
С	0.45		0.60	0.45	0.50	0.60
c2	1.23		1.36	1.25	1.30	1.40
D	8.95		9.35	9	9.20	9.40
D1	7.50			7.50		
E	10		10.40	9.80		10.20
E1	8.50			7.50		
е		2.54			2.54	
e1	4.88		5.28		5.08	
Н	15		15.85	15	15.30	15.60
J1	2.49		2.69	2.20		2.60
L	2.29		2.79	1.79		2.79
L1	1.27		1.40	1		1.40
R		0.4			0.30	
V2	0°		8°	0°		3°

Note: The D²PAK/A package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

Figure 39. D2PAK/A footprint recommended data

Table 16. Footprint data

Values						
	mm.	inch.				
А	12.20	0.480				
В	9.75	0.384				
С	16.90	0.665				
D	3.50	0.138				
E	1.60	0.063				
F	2.54	0.100				
G	5.08	0.200				

G

Table 17. DFN8L (4x4 mm.) mechanical data

Dim.		mm.					
Dilli.	Min.	Тур.	Max.				
А	0.80	0.90	1				
A1	0	0.02	0.05				
A3		0,20					
b	0.23	0.30	0.38				
D	3.90	4	4.10				
D2	2.82	3	3.23				
E	3.90	4	4.10				
E2	2.05	2.20	2.30				
е		0.80					
L	0.40	0.50	0.60				

BOTTOM VIEW D2 — EXPOSED PAD PIN 1 ID -2 E2 L 8x - b 8x e/2 \perp e \downarrow ___ // 0.1 C -*A3* SEATING PLANE C0.08 C LEADS COPLANARITY PIN 1 ID -_D/2→ TOP VIEW 7869653_B D-

Figure 40. DFN8L package outline

Figure 41. DFN8L footprint - recommended data

4

Figure 42. DFN8L carrier tape (dimension are in mm.)

Figure 43. Reel DFN8L drawing

Table 18. Reel DFN8L dimensions

Dim.		mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			330			12.992	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	

Tape & reel	DPAK-PPAK mechanical	data
-------------	-----------------------------	------

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Tape & reel D²PAK-P²PAK/A-P²PAK/A mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Order codes LD1086xx

8 Order codes

Table 19. Order codes

Packages							
TO-220	D²PAK	D²PAK/A	DPAK DFN8		Output voltages		
LD1086V18	LD1086D2T18TR		LD1086DT18TR		1.8 V		
	LD1086D2T25TR		LD1086DT25TR		2.5 V		
LD1086V33	LD1086D2T33TR	LD1086D2M33TR	LD1086DT33TR		3.3 V		
	LD1086D2T50TR		LD1086DT50TR		5.0 V		
	LD1086D2T12TR				12.0 V		
LD1086V	LD1086D2TTR	LD1086D2MTR	LD1086DTTR	LD1086PUR	ADJ		
LD1086V-DG ⁽¹⁾					ADJ		
LD1086VY ⁽²⁾			LD1086DTTRY (2)		ADJ		

^{1.} TO-220 Dual Gauge frame.

^{2.} Automotive Grade products.

LD1086xx Revision history

9 Revision history

Table 20. Document revision history

Date	Revision	Changes	
16-May-2006	14	Order codes updated and new template.	
19-Jan-2007	15	D²PAK mechanical data updated and add footprint data.	
05-Apr-2007	16	Order codes updated.	
07-Jun-2007	17	Order codes updated.	
19-Jul-2007	18	Add note on Figure 2.	
03-Dec-2007	19	Modified: Table 19.	
31-Jan-2008	20	Added new order codes for Automotive grade products.	
18-Feb-2008	21	Modified: Table 19 on page 42.	
14-Jul-2008	22	Modified: Table 1 on page 1 and Table 19 on page 42.	
10-Mar-2010	23	Added: Table 12 on page 22, Figure 30 on page 23, Figure 31 on page 24, Figure 32 and Figure 33 on page 25.	
15-Nov-2010	24	Modified: R _{thJC} value for TO-220 <i>Table 3 on page 7</i> .	
11-Jul-2011	25	Modified: Figure 24, Figure 25 on page 20 and Table 19 on page 42.	
10-Feb-2012	26	Added: order code LD1086V-DG Table 19 on page 42.	
15-Mar-2012	27	Added: new order code LD1086PUR Table 19 on page 42 and new packag mechanical data DFN8 (4x4 mm) Table 17 on page 35, Figure 40 on page Figure 41 on page 37, Figure 42 on page 38 and Figure 43 on page 39.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES. ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

44/44 Doc ID 6739 Rev 27

