جامعة عبد الحق بن حمودة جيجــل كلية العلوم الدقيقة والإعلام الآلي

11 ديسمبر 2021

قسم التعليم الأساسي للرياضيات و الإعلام الآلي

الوقت: ساعة و ربع

السنة الأولى

امتحان قصير المدى "الجبر 1"

التمرين الأول:

اذكر طرق الاستدلال المكنة

<u>التمرين الثاني:</u>

1) أكتب نفى القضايا التالية:

 (P_1) $\forall y \in \mathbb{R}^*$, $\exists x \in \mathbb{R}: x^2 - xy + y^2 = 0$.

 $(P_2) \forall (x, y) \in \mathbb{R}^2 : [x < y \Rightarrow f(x) \le f(y)]$.

2) اكتب عكس نقيض القضايا التالية:

 $(P_3) \quad \forall n \in \mathbb{N}: n^2$ زوجی $n \in \mathbb{N}$

 $(P_4) \quad \forall (x,y) \in \mathbb{R}^2 : (x \neq 1 \land y \neq 1) \Rightarrow x + y - xy \neq 1.$

التمرين الثالث:

باستعمال البرهان بعكس النقيض برهن القضية التالية:

(P) A \triangle B = $\emptyset \Rightarrow A = B$

حيث " A,B اجزاء من مجموعة E معطاة " و Δ الفرق التناظري بين المجموعات.

<u>التمرين الرابع :</u>

 \mathbb{R}^* لتكن \mathcal{R} علاقة معرفة على

 $\forall x, y \in \mathbb{R}^* : x\mathcal{R}y \iff \frac{y}{x} \in \mathbb{N}^*$

 \mathbb{R}^* برهن أن ${\mathcal R}$ علاقة ترتيب على \mathbb{R}^* .

2- هل الترتيب كلى ام جزئى؟ علل اجابتك

.- هل \mathcal{R} علاقة تكافؤ على \mathbb{R}^* على اجابتك.

بالتوفيق

التمرين الأول:

طرق الاستدلال الممكنة ستة هي : <mark>0.25*6=1.50</mark>

- .q البرهان المباشر:dثبات القضية $q:p\Rightarrow q$ نفر ض أن p صحيحة و نبرهن صحة q
- 2- البرهان بالنفي: لأثبات صحة القضية $\,p\,$ نفرض أن $\,p\,$ خاطئة و نجد قضية متناقضة (صحيحة و خاطئة)
- $ig(orall x \in H \colon P(x) ig) \quad \forall x \in F \colon P(x) ig)$ نبرهن القضيتين $\forall x \in E = F \cup H \colon P(x)$ و $\forall x \in H \colon P(x)$
 - خاطئة $P(\alpha)$ بحيث $\exists \alpha \in E$ يكفى ايجاد $\forall x \in E : P(x)$ خاطئة خاطئة
 - : البرهان بعكس النقيض :بما أن عكس نقيض القضية $p \Rightarrow q$ هو $\overline{q} \Rightarrow \overline{p}$ و هما متكافئتين اذن يكفي اثبات
 - 6- البرهان بالتراجع: لاثبات القضية $(\forall n \in \mathbb{N}: n \geq n_0 \Rightarrow P_n)$ حيث $n_0 \in \mathbb{N}$ نثبت أن:
 - P_{n_0} أ- صحة القضية
 - (P_{n+1}) ب- نفرض أن (P_n) صحيحة و نبرهن صحة

البرهان بعكس النقيض:

التمـرين الثاني:

0.50 $\exists y \in \mathbb{R}^*, \forall x \in \mathbb{R}: x^2 - xy + y^2 \neq 0$:نفي القضية $\,P_1\,$ هي

 $1.00 \exists (x, y) \in \mathbb{R}^2 : [x < y \land f(x) > f(y)]$:نفي القضية P_2 هي

 $\forall n \in \mathbb{N}: n$ فردي $\Rightarrow n^2$ فردي 0.50 $\forall (x,y) \in \mathbb{R}^2: x+y-xy=1 \Rightarrow (x=1 \lor y=1)$ 1.00 :عكس نقيض القضية P_3 هي $_{2}$ عكس نقيض القضية P_{4} هى

<u>التمــرين الثا</u>لث**:**

بما أن عكس نقيضَ القضية $(A \neq B) \Rightarrow A = \emptyset$ هو $(A \neq B)$ هو الدينا $(A \neq B) \Rightarrow A \neq B$ $A \triangle B = (A - B) \cup (B - A)$ 0.25

 $A \neq B \implies \exists x : (x \in A \land x \notin B) \lor (x \notin A \land x \in B) \implies (x \in (A - B)) \lor (x \in (B - A)) \implies x \in A \land B \implies$ $A \triangle B \neq \emptyset$ 1.00

<u>التمــرين الرابع:</u>

 $\forall (x,y) \in (\mathbb{R}^*)^2 : x\mathcal{R}y \iff \frac{y}{y} \in \mathbb{N}^*$ بـ: \mathbb{R}^* بـ علاقة معرفة على \mathcal{R}

- (0.25) (تبات أن ${\cal R}$ علاقة ترتيب: $({\cal R}$ علاقة ترتيب $)\Leftrightarrow ($ انعكاسية ,ضد تناظرية ,متعدية ${\cal R}$ اثبات أن
 - $\frac{x}{x}=1\in\mathbb{N}^*$ و هو محقق لأن $(\forall x\in\mathbb{R}^*:x\mathcal{R}x)\Leftrightarrow (\mathbf{z})$ -
 - $(0.25)^{(x,y)} \in (\mathbb{R}^*)^2$: $x \mathcal{R} y \wedge y \mathcal{R} x \Rightarrow x = y) \Leftrightarrow (كافرية) 1$ نعلم أن العدد الوحيد في \mathbb{N}^* الذي مقلوبه في \mathbb{N}^* كذلك هو

$$\begin{array}{ccc}
 & x\mathcal{R}y & \Leftrightarrow \frac{y}{x} \in \mathbb{N}^* \\
 & y\mathcal{R} & \Leftrightarrow \frac{x}{y} = \frac{1}{\frac{y}{x}} \in \mathbb{N}^*
\end{array}\right\} \Rightarrow \frac{y}{x} = \mathbf{1} \Rightarrow x = y$$
Levi

و منه $oldsymbol{\mathcal{R}}$ علاقة ضد تناظرية.

$$0.25$$
 $(\forall (x,y,z) \in (\mathbb{R}^*)^3 :: x \mathcal{R} y \land y \mathcal{R} z \Rightarrow x \mathcal{R} z) \Leftrightarrow (\mathcal{R})$ - $(x,y)\mathcal{R}(x',y') \Leftrightarrow \frac{y}{x} \in \mathbb{N}^*$ $\Rightarrow \frac{y}{x} \cdot \frac{z}{y} = \frac{z}{x} \in \mathbb{N}^* \Rightarrow x \mathcal{R} z$ لدينا: $(x',y')\mathcal{R}(x'',y'') \Leftrightarrow \frac{z}{y} \in \mathbb{N}^*$

و منه اذن $oldsymbol{\mathcal{R}}$ علاقة متعدية فهي علاقة ترتيب.

- (0.25) لدینا $(x,y) \in (\mathbb{R}^*)^2$: $x \in \mathbb{R} y \lor y \in \mathbb{R} x \Leftrightarrow \emptyset$ و هذا غیر محقق دوما $(x,y) \in \mathbb{R}^*$ لدينا مثلا $1 \stackrel{2}{=} 1 \stackrel{1}{=} 1 \stackrel{2}{=} 1$ فالعددين غير مرتبطين بالعلاقة و منه الترتيب جزئي و ليس كلي. $1 \stackrel{0.50}{=} 1$
- $oldsymbol{0.25}$ هل $oldsymbol{\mathcal{R}}$ علاقة تكافؤ $oldsymbol{\mathcal{R}}$ علاقة تكافؤ $oldsymbol{\mathcal{R}}$ علاقة تكافؤ $oldsymbol{\mathcal{R}}$ علاقة تكافؤ $egin{equation} egin{equation} 0.25 \end{pmatrix}$ تناظریة $(x,y) \in (\mathbb{R}^*)^2$: $x\mathcal{R}y \Rightarrow y\mathcal{R}x$ و هذا غیر محقق دوما \mathcal{R}
 - $oldsymbol{0.50}$ مثلا $0 \neq 0$ لكن $0 \neq 0 + 1$ و منه العلاقة $oldsymbol{\mathcal{R}}$ ليست تناظرية فهي ليست علاقة تكافؤ