第二套题目: 2019/2020学年

考试信息

• 模块代码: COMP0137 / COMPGI14

• 模块名称: Machine Vision

• 适用学年: 2019/2020及之前注册学生

• 说明: 考生需回答所有问题,总分100分,可使用课程幻灯片、视频、笔记及书籍等资源或在线搜索,但禁止与其他考生交流或分享答案。

Section A: A Graphical Model

Question 1

This section uses the same Markov Model as 2020/21, with five variables (X_1) to (X_5) . Refer to the unary, pairwise, and triplet cost tables below.

Unary Costs

Variable	State	Cost
(X_1)	Α	2
(X_1)	В	3
(X_2)	С	1
(X_2)	D	4
(X_2)	Е	2
(X_3)	F	5
(X_3)	G	3
(X_3)	Н	2
(X_4)	I	4
(X_4)	J	1
(X_4)	K	3
(X_5)	L	2
(X_5)	M	5
(X_5)	N	3

Pairwise and Triplet Costs

Combination	States	Cost
(X_1, X_2)	А, С	1

Combination	States	Cost
(X_1, X_2)	A, D	2
(X_1, X_2)	A, E	3
(X_1, X_2)	B, C	4
(X_1, X_2)	B, D	5
(X_1, X_2)	B, E	6
(X_2, X_3)	C, F	2
(X_2, X_3)	C, G	3
(X_2, X_3)	C, H	4
(X_2, X_3)	D, F	5
(X_2, X_3)	D, G	6
(X_2, X_3)	D, H	7
(X_2, X_3)	E, F	8
(X_2, X_3)	E, G	9
(X_2, X_3)	E, H	10
(X_3, X_4)	F, I	3
(X_3, X_4)	F, J	4
(X_3, X_4)	F, K	5
(X_3, X_4)	G, I	6
(X_3, X_4)	G, J	7
(X_3, X_4)	G, K	8
(X_3, X_4)	Н, І	9
(X_3, X_4)	H, J	10
(X_3, X_4)	H, K	11
(X_4, X_5)	I, L	4
(X_4, X_5)	I, M	5
(X_4, X_5)	I, N	6
(X_4, X_5)	J, L	7
(X_4, X_5)	J, M	8
(X_4, X_5)	J, N	9
(X_4, X_5)	K, L	10

Combination	States	Cost
(X_4, X_5)	K, M	11
(X_4, X_5)	K, N	12
(X_1, X_3, X_5)	A, F, L	5
(X_1, X_3, X_5)	A, G, M	6
(X_1, X_3, X_5)	B, H, N	7

_			•		
\mathbf{c}	116	st	ın	n	C
\mathbf{u}	uc	. 3 L	ıv		Э.

(a)	Configuration	A is ACGII	N. Compute the tota	al cost of this configuration: _
١	ω_J	Corningaration	/ (IS / (C C)	iv. Compate the total	ii cost or triis cornigarationi

[7 marks]

(b) Configuration B is AEFKM. Compute the total cost of this configuration: _

[7 marks]

(c) What is the Maximum Likelihood configuration? _ _ _ _

[7 marks]

(d) What is the Maximum a Posteriori configuration? _ _ _ _

[8 marks]

[Total for Question 1: 29 marks]

Section B: Cloud Tracking Task

Question 2

You're installing two wide-field-of-view cameras to track cloud points and infer velocity (m/s).

Questions:

(a) Choose the distance between the cameras: $0.5 \, \text{m} / 50 \, \text{m} / 500 \, \text{m}$

Answer: ___ [6 marks]

(b) Select an interest-point detector: FAST / SUSAN / Canny / SIFT / DoG

Answer: _____ [6 marks]

(c) Do the cameras need to be genlocked?

Answer: True or False?

[4 marks]

(d) in max 4 sente	ences, describe how s	single-airplane te	elemetry aids this	s task and if multiple
airplanes are nee	ded.			

[7 marks]

(e) In max 2 sentences, explain how your system handles clouds at different altitudes.

[Total fo	or Question	2: 29	marks]
-	•		_

Section C: Miscellaneous Qu	uestions
-----------------------------	----------

Question 3 In max 4 sentences, describe a computer vision classification task with 3+ severely imbalanced categories and how to address the imbalance.
[12 marks]
Question 4 In max 3 sentences, discuss if class imbalance applies to regression tasks and how to check for it.
[9 marks]
Question 5 In max 3 sentences, describe an efficient way to identify a mislabeled training example in a large-parameter model.
[9 marks]
Question 6 For each, answer "G" (Generative better), "D" (Discriminative better), "B" (Both), or "N" (Neither preferable): 6.a: Input vector (x) has missing data: 6.b: No access to a prior: 6.c: Access to a prior: 6.d: Model has few parameters: 6.e: Want to draw samples from the model: 6.f: World-state is high-dimensional: [12 marks]
[Total for Questions 3-6: 42 marks] [Total for all questions: 100 marks]

2019/20学年机器视觉考试答案

Section A: A Graphical Model

与2020/21学年相同:

- 1(a): 30
- **1(b)**: 44
- 1(c): A C G I L
- 1(d): A C G I L

Section B: Cloud Tracking Task

题目2

(a) 摄像机距离

立体视觉基线建议为50米。

答案: 50 m

(b) 兴趣点检测器

SIFT 具有尺度不变性,适合云跟踪。

答案: SIFT

(c) 是否需要genlocked

需要同步拍摄以确保立体视觉准确性。

答案: True

(d) 飞机遥测如何帮助

提供云层高度信息辅助速度计算,多架飞机提供更多视角。

答案: Airplane telemetry provides cloud altitude for velocity calculation; multiple airplanes offer diverse viewpoints.

(e) 处理不同高度的方法

使用立体视觉或深度估计。

答案: Use stereo vision or depth estimation to account for varying altitudes.

Section C: Miscellaneous Questions

题目3

任务及应对不平衡

任务:区分罕见疾病图像。方法:过采样少数类或使用加权损失。

答案: Classify rare diseases from medical images; address imbalance with oversampling or weighted loss.

题目4

回归中的不平衡及检查方法

不平衡指目标值分布不均,检查方法为绘制直方图。

答案: Yes, as skewed target distributions; check with histograms.

题目5

识别错误标签的方法

使用交叉验证检测不一致预测。

答案: Use cross-validation to identify inconsistent predictions.

题目6

(a-f) 选择

- 6.a: G
- 6.b: D
- 6.c: G
- 6.d: D
- 6.e: G
- 6.f: D