Transformations is $\mathfrak{sen}|3*$ oct 2021

I – Introduction

Exercice 1

Soit V un espace vectoriel (réel ou complexe) muni d'un produit scalaire (hermitien) $\langle \cdot | \cdot \rangle$ et $(\mathbf{e}_1, \mathbf{e}_2, \ldots)$ une famille orthogonale de vecteurs non nuls de V.

a) Soit \mathbf{x} un vecteur de V s'écrivant sous la forme $\mathbf{x} = \sum_{i} x_i \, \mathbf{e}_i + \mathbf{y}$ où \mathbf{y} est orthogonal à tous les \mathbf{e}_i .

En calculant le produit scalaire de \mathbf{x} avec \mathbf{e}_i , montrer que $x_i = \frac{\langle \mathbf{e}_i | \mathbf{x} \rangle}{\|\mathbf{e}_i\|^2}$.

- b) Que devient cette formule dans le cas particulier où la famille est orthonormée?
- c) Expliquer comment retrouver facilement a) à partir de b).

Exercice 2

On travaille dans \mathbb{R}^4 muni du produit scalaire usuel.

- a) Quel est l'angle formé par les vecteurs $\mathbf{u}=(1,0,1,0)$ et $\mathbf{v}=(1,1,1,1)$?
- b) Calculer la projection de $\mathbf{w}=(1,2,3,4)$ sur le plan $\mathcal P$ engendré par $\mathbf u$ et $\mathbf v$:
 - en écrivant proj $_{\mathcal{P}}(\mathbf{w}) = a\mathbf{u} + b\mathbf{v}$ et résolvant un système d'équations linéaires 2×2 ;
 - . en fabriquant une base orthogonale de $\mathcal P$ et utilisant la formule de projection orthogonale.

Exercice 3

Soient $\mathbf{x} = (x_1, \dots, x_n)$ et $\mathbf{y} = (y_1, \dots, y_n)$ deux vecteurs dans \mathbb{R}^n . En supposant que les x_i ne sont pas tous égaux, montrer que les coefficients a et b qui minimisent la quantité

$$\Delta(a,b) = \|\mathbf{y} - a\,\mathbf{x} - b\,\mathbf{1}\|^2$$
 où $\mathbf{1} = (1, \dots, 1)$

sont donnés par

$$a = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \qquad \text{et} \qquad b = \frac{(\sum x_i^2)(\sum y_i) - (\sum x_i)(\sum x_i y_i)}{n(\sum x_i^2) - (\sum x_i)^2}$$

- a) en interprétant la question comme un problème de projection orthogonale sur le plan engendré par \mathbf{x} et $\mathbf{1}$;
- b) en déterminant les points critiques de la fonction de 2 variables $\Delta(a,b)$.

Exercice 4

Considérons l'espace vectoriel $V = \mathcal{C}([0, 2\pi], \mathbb{C})$ des fonctions continues $[0, 2\pi] \to \mathbb{C}$.

a) Vérifier que la formule suivante définit un produit hermitien sur V:

$$\langle x | y \rangle = \int_0^{2\pi} \overline{x(t)} y(t) dt.$$

b) Vérifier que les fonctions x(t) = 1, $y(t) = \sin t$ et $z(t) = \cos t$ sont deux à deux orthogonales.

Forment-elles une famille orthonormée?