1.3 Rappels d'algèbre linéaire (suite)

1.3.1 Éléments de théorie spectrale

Démonstration.

Définition 1.42. Soit A une matrice carré. On appelle polynôme caractéristique et
on note $P_A(\lambda)$ le polynôme définie par

Ce polynôme de degré n admet n racines complexes appelées valeurs propres. La multiplicité d'une racine est appelée multiplicité algébrique de la valeur propre.

Définition 1.43. On appelle vecteur propre \mathbf{x} associé à la valeur propre λ un vecteur non nul vérifiant $A\mathbf{x} = \lambda \mathbf{x}$.

Remarque. Si λ est valeur propre, alors il existe au moins un vecteur propre associé car $det(A - \lambda I) = 0$

Définition 1.44. On appelle rayon spectrale et on note $\rho(A)$ le maximum des modules des valeurs propres.

Définition 1.45. On appelle sous espace propre associé à la valeur propre λ l'e.v. défini par $E(\lambda) = \ker(A - \lambda I)$.

Définition 1.46. On appelle *multiplicité géométrique* de la dimension du sous espace propre associé.

Proposition 1.47 (Admis). La multiplicité algébrique est supérieure ou égale à la multiplicité géométrique.

Proposition 1.48. Soit $\mathbf{x} \in E(\lambda_1)$ et $\mathbf{y} \in E(\lambda_2)$ où $\lambda_1 \neq \lambda_2$ et $\mathbf{x}, \mathbf{y} \neq 0$. Les vecteurs propres \mathbf{x} et \mathbf{y} sont linéairement indépendants.

L			

Définition 1.49. On dit qu'une matrice A est diagonalisable si et seulement si il existe une matrice inversible P t.q. $A = PDP^{-1}$ où D est diagonale.

Remarque. Dire qu'une matrice est diagonalisable revient à dire qu'il existe une base dans laquelle A est diagonale. P représente alors la matrice de passage de cette base dans la base canonique. On dira que A et D sont des matrices semblables.

Proposition 1.50 (Admis). A est diagonalisable si et seulement si la multiplicité géométrique est égale à multiplicité algébrique pour toutes les valeurs propres. De plus D est formé des valeurs propres de A.

Exercice. Les matrices suivantes sont elles diagonalisables?

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Theorem 1.51 (Factorisation de Schur, admis).

Toute matrice A est triangularisable dans une base orthonormale, ç.à.d admet une décomposition

$$A = UTU^*$$

où U une matrice unitaire et T une matrice triangulaire supérieure.

Remarque.

- 1. On rappelle qu'une matrice unitaire vérifie $U^*U = I$.
- 2. Les coefficients des matrices U et T sont à priori complexes, même si A est à coefficients réels.
- 3. Les coefficients diagonaux de T sont égaux aux valeurs propres de A. En effet :

Définition 1.52. On appelle A une matrice normale si elle commute avec son adjointe :

$$AA^* = A^*A$$
.

Theorem 1.53 (Diagonalisation base orthonormale).

Une matrice A est diagonalisable dans une base orthonormale si et seulement si elle est normale

Demonstration.

roposition 1.54 (voir TD). Se	oit A une ma	trice telle que	$A = A^*$. On a	alors :
\dot{u} le spectre de A est $\lambda(A) = \{\lambda\}$			12.1	

1.3.2 Série de matrices

Définition 1.55. Soit P(x) un polynôme définie par $P(x) = \sum_{i=0}^{n} a_i x^i$. On note P(A) une matrice définie par $P(A) = \sum_{i=0}^{n} a_i A^i$.

Proposition 1.56. Si λ est valeur propre de A, alors $P(\lambda)$ est valeur propre de P(A).

	Démonstration.	
I I		

istique $P_A(\lambda) = \det(A - \lambda I)$, on a	
monstration.	

- 1. On déduit de ce théorème que pour toute matrice A, on peut exprimer A^n en fonction de A^0, \ldots, A^{n-1} .
- 2. On appelle polynôme minimal le polynôme P de plus petit degré satisfaisant P(A)=0

On déduit du théorème ci-dessus que $deg(P) \leq n$.

Définition 1.58. On dira qu'une suite de matrices $(A_i)_{i\geq 0}$ converge vers A si

où $\|\cdot\|$ est une norme matricielle.

Remarque. Dans la définition ci-dessus, le choix de la norme ne compte pas. En effet, l'espace des matrices est de dimension fini, et on sait que toutes les normes sont alors équivalentes.

Proposition 1.59 (voir TD).

Pour toute matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ et pour tout $\varepsilon > 0$, il existe une norme matricielle

 $subordonn\'ee \parallel \cdot \parallel \ telle \ que$

$$\rho(A) \le ||A|| \le \rho(A) + \varepsilon.$$

On verra par la suite que la convergence des méthodes itératives nécessite une étude de la convergence suivante

$$\lim_{i \to +\infty} A^i = 0.$$

Proposition 1.60 (CNS). Soit $A \in \mathbb{M}_{n \times n}(\mathbb{R})$, alors les conditions suivante sont équivalentes

- $(i) \ \lim_{i \to +\infty} A^i = 0,$
- (ii) $\forall \mathbf{x}, \lim_{i \to +\infty} A^i \mathbf{x} = 0$
- (iii) $\rho(A) < 1$
- (iv) Pour au moins une norme subordonnée $\|A\| < 1$

	<u>Démonstration.</u>		
П			
			П