#### Database Systems, Even 2020-21



# **Basic Terminologies and ER Model**

- Data: Data is any sort of information which is stored in computer memory
- Database: A collection of information (tables) related to a particular topic or purpose
  - There are two types of databases: Nonrelational and relational
  - A nonrelational database is a database that does not use the tabular schema of rows and columns found in most traditional database systems
    - Instead, non-relational databases use a storage model that is optimized for the specific requirements of the type of data being stored
    - Called NoSQL databases
    - Also called a flat file, stores information in one table
    - Nonrelational databases are useful for information stored in a single list, such as a list of student names,
       addresses, and phone numbers
    - The most popular being MongoDB, DocumentDB, Cassandra, Coachbase, HBase, Redis, and Neo4j

- A relational database is a collection of data items with pre-defined relationships between them
  - These items are organized as a set of tables with columns and rows
  - o Tables are used to hold information about the objects to be represented in the database
  - Also be called relational database management systems (RDBMS) or SQL databases
  - o The most popular of these are Microsoft SQL Server, Oracle Database, MySQL, and IBM DB2
- Database management system: A Database Management System (DBMS) is software designed to store, retrieve, define,
   and manage data in a database
- Database model: The structure of the information stored in the database
  - This model should included how each individual piece of information relates to all the other information in the database
  - Proper planning, even in the initial pencil-and-paper stage, ensures that the database you create and maintain is efficient and provides easy access to the information you need most
  - A well-designed database should eliminate the need to enter the same data repeatedly and prevent duplication of information, thereby maintaining the integrity of the data

- **Database modeling:** The process of strategically planning where to store each piece of information you wish to include in your database
- Information: It is organized or classified data, which has some meaningful values for the receiver
  - Information is the processed data on which decisions and actions are based
  - Data is raw, unprocessed, unorganized facts that are seemingly random and do not yet carry any significance or meaning
  - Information refers to data that has been organized, interpreted, and contextualized by a human or machine so that it possess relevance and purpose
- Record/Tuple/Row: A record is a database entry that may contain one or more values
  - Groups of records are stored in a table, which defines what types of data each record may contain
  - Databases may contain multiple tables which may each contain multiple records

- Field/Attribute/Column: In a database table, a field is a data structure for a single piece of data
  - Fields are organized into records, which contain all the information within the table relevant to a specific entity
  - Fields appear as columns in a table and as cells in a form
  - For example, in a table called *customer contact information*, telephone number would likely be a field in a row that would also contain other fields such as street address and city
  - The records make up the table rows and the fields make up the columns
- Datasheet view: Datasheet view refers to row wise and column wise viewing of data in a table in database applications such as spreadsheets, Access, Excel, and so on
  - The information pertaining to individual records is provided in individual rows and the attributes related to that record is given in the corresponding columns

- Field data types: A characteristic of a field that determines what kind of data it can store
  - For example, a field whose data type is *Text* can store data consisting of either text or number characters, but a
     *Number* field can store only numerical data
- Field list: A small window that lists the fields of a selected table or data source
- Recordset: The set of records and fields that result from running a query
- Form: A structured document with specific areas for viewing or entering data one record at a time
  - Forms can be constructed in columnar, tabular, datasheet, or a simple justified format
  - Displays data from a table or a query one record at a time
- Join line: The line between two tables identifying the common field between them
- **Object:** A component of a database, such as a table, query, form, or report

- **Relationship:** A relationship is a situation that exists between two relational database tables when one table has a foreign key that references the primary key of the other table
  - The direct or indirect association between any two tables in a database
  - Relationships allow relational databases to split and store data in different tables, while linking disparate data items
- One-to-many relationship: A relationship in which a record in the primary table can be related to one or more records in the related table
- One-to-one relationship: A relationship between two tables in which for each record in the first table, there is only one corresponding record in the related table
- Related table: A table with a common field that uses values stored in a primary table
- **Primary key: A** field in a table whose value is uniquely identifies each record in the table



The *instructor* table

- Query: A request for a particular collection of data in a database
  - Lists specific fields and records from a table based on selective criteria
- Select Query: A query that answers a question about one or more tables by limiting the number of records and fields displayed
- Report: A formatted collection of information organized to provide printed data on a specific subject
  - Presents data from a table or query in printable format
- Page: A page is a unit of storage whose size is configurable on a system-wide
  - Database pages are the internal basic structure to organize the data in the database files
- **Macro:** Automates a repetitive series of commands or group of commands as a single unit

#### **Data Flow Diagram:**



## Overview of Database Design

- Conceptual design: (ER Model is used at this stage)
  - What are the entities and relationships in the enterprise?
  - What information about these entities and relationships should we store in the database?
  - What are the integrity constraints or business rules that hold?
  - A database 'schema' in the ER Model can be represented pictorially (ER diagrams)?
  - Can map an ER diagram into a relational schema?

#### **ER Model Basics**

- The ER data mode was developed to facilitate database design by allowing specification of an enterprise schema that represents the overall logical structure of a database
- A database can be modeled as:
  - A collection of entities
  - Relationship among entities
- The ER data model employs three basic concepts:
  - Entity Sets
  - Relationship sets
  - Attributes
- The ER model also has an associated diagrammatic representation, the ER diagram, which can express
  the overall logical structure of a database graphically

## **Entity Sets**

- An entity is an object that exists and is distinguishable from other objects
- Example: specific person, company, event, plant
- An entity set is a set of entities of the same type that share the same properties
- Example: set of all persons, companies, trees, holidays

 An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set

Example:

instructor = (ID, name, salary)
student = (ID, name, dept)

A subset of the attributes form a primary key of the entity set;
 i.e., uniquely identifying each member of the set



instructor

student

Tanaka

Shankar

Zhang

Brown

Chavez

Peltier

Aoi

98988

12345

00128

76543

76653

23121

44553

#### Attributes

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set
- Domain: The set of permitted values for each attribute
- Attribute types:
  - Simple and composite attributes
  - Single-valued and multi-valued attributes
    - o E.g., multivalued attribute: phone-numbers
  - Derived attributes
    - Can be computed from other attributes
    - o E.g. age, given date of birth
- Composite attributes
- Component attributes



#### Relationship Sets

- A relationship is an association among several entities
- Example:

Hayes depositor A-102 customer entity relationship set account entity

• A relationship set is a mathematical relation among  $n \ge 2$  entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

- where  $(e_1, e_2, \dots e_n)$  is a relationship
- Example:

- Example: We define the relationship set **advisor** to denote the associations between **students** and the **instructors** who act as their advisors
- Pictorially, we draw a line between related entities



# Relationship Sets

- An attribute can also be property of a relationship set
- For instance, the depositor relationship set between entity sets customer and account may have the attribute access-date



## Degree of a Relationship Set

- Refers to number of entity sets that participate in a relationship set
- Relationship sets that involve two entity sets are binary (or degree two)
- Generally, most relationship sets in a database system are binary
- Relationship sets may involve more than two entity sets
  - E.g., Suppose employees of a bank may have jobs (responsibilities) at multiple branches, with different jobs at different branches
  - Then there is a ternary relationship set between entity sets *employee*, *job and branch*
- Relationships between more than two entity sets are rare



# Mapping Cardinalities

- Express the number of entities to which another entity can be associated via a relationship set
- Most useful in describing binary relationship sets
- For a binary relationship set the mapping cardinality must be one of the following types:
  - One to one
  - One to many
  - Many to one
  - Many to many



one to one

one to many

Note: Some elements in A and B may not be mapped to any elements in the other set

#### Mapping Cardinalities

- Express the number of entities to which another entity can be associated via a relationship set
- Most useful in describing binary relationship sets
- For a binary relationship set the mapping cardinality must be one of the following types:
  - One to one
  - One to many
  - Many to one
  - Many to many



many to one

many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

# Mapping Cardinalities affect ER Design

 Can make access-date an attribute of account, instead of a relationship attribute, if each account can have only one customer

The relationship from account to customer is many to one, or equivalently, customer to account is one to

many



# **ER Diagram**

#### Thank you for your attention...

Any question?

#### **Contact:**

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

**Phone:** +91-9477678768

E-mail: <a href="mailto:shrutilipi@nitk.edu.in">shrutilipi@nitk.edu.in</a>