Date of Deposit: March 11, 2005

MAR 1 2005 WE TRACEMENT 110>

SEQUENCE LISTING

Stashenko, Philip Okamatsu, Yoshimura Sasaki, Hajime Battaglino, Richard Spaete, Ulrike

- <120> Expressed Genes that Define the Osteoclast Phenotype
- <130> 25669-003
- <140> 10/734,692
- <141> 2003-12-11
- <150> 60/432,700
- <151> 2002-12-11
- <160> 49
- <170> PatentIn version 3.2
- <210> 1
- <211> 22
- <212> DNA
- <213> Mus musculus
- <400> 1
- gtgttcatca ttggagtggt gg 22
- <210> 2
- <211> 23
- <212> DNA
- <213> Mus musculus
- <400> 2
- ggttgaacag gtagatgctg gtc 23
- <210> 3
- <211> 1118
- <212> DNA
- <213> Mus musculus
- <400> 3
- cattettaca actgetettg gaatetggge ecagateaca catgeaacag agacaaaaga 120

60

gggccagctg ggtctgccca ctaagaagat gaagcctttt catactgccc tctccttcct

- agtccagagc agtctgaagg cacagcaagg gcttgaaatt gaaatgtttc acatgggctt 180
- tcaagactct tcagattgct gcctgtccta taactcacgg attcagtgtt caagatttat 240
- aggttatttt cccaccagtg gtgggtgtac caggccgggc atcatcttta tcagcaagag 300
- ggggttccag gtctgtgcca accccagtga tcggagagtt cagagatgca ttgaaagatt

qqaqaaaaac tcacaaccac qqacctacaa acaataacat ttgctttaga gaagggtgtg 420 aactgccagc tactttcttt ggtcttcccc agtgaccacc taagtggctc taagtgttta 480 tttttatagg tatataaaca ttttttttt ctgtttccac tttaaagtgg catatctggc 540 600 tttqtcacaq aqqqqaaact tqtctqtqcc aaccccagtc atctgaaaac tcagatqcct qqqaaqqtct qaaqctqacc tcaatqacta cacataatat ttgattqaga taaatgggca 660 720 aggtctggag agatggcttg gtggttaaga gcacctgctg ctcttccaga ggacctgggt 780 tcaattccca cttagatggc agctcaaact atctataatt ccaattccaa agaaaactga tgccctattt tgccccttta gttagtagta tttacagtat tctttataaa ttcaccttga 840 catgaccatc ttgagctaca gccatcctaa ctgcctcaga atcactcaag ttcttccact 900 cggtttccca gcggatttta agtggataaa ctgtgagagt ggtctgtggg actttggaat 960 gtgtctggtt ctgatagtca cttatggcaa cccaggtaca ttcaactagg atgaaataaa 1020 ttctqcctta gcccagtagt atgtctgtgt ttgtaaggac ccagctgatt ttcccaccac 1080 ccctccatca gtccgccact aataaagtgc atctatgc 1118

<210> 4

<211> 122

<212> PRT

<213> Mus musculus

<400> 4

Met Lys Pro Phe His Thr Ala Leu Ser Phe Leu Ile Leu Thr Thr Ala 1 5 10 15

Leu Gly Ile Trp Ala Gln Ile Thr His Ala Thr Glu Thr Lys Glu Val 20 25 30

Gln Ser Ser Leu Lys Ala Gln Gln Gly Leu Glu Ile Glu Met Phe His 35 40 45

Met Gly Phe Gln Asp Ser Ser Asp Cys Cys Leu Ser Tyr Asn Ser Arg 50 55 60

Ile Gln Cys Ser Arg Phe Ile Gly Tyr Phe Pro Thr Ser Gly Gly Cys 70 75 80

Thr Arg Pro Gly Ile Ile Phe Ile Ser Lys Arg Gly Phe Gln Val Cys 85 90 95

Ala Asn Pro Ser Asp Arg Arg Val Gln Arg Cys Ile Glu Arg Leu Glu 100 105

Lys Asn Ser Gln Pro Arg Thr Tyr Lys Gln

<210> 5 <211> 2156

<212> DNA

<213> Homo sapiens

-400 > 5

<400> 5						
	cagaaacaaa	gacttcacgg	acaaagtccc	ttggaaccag	agagaagccg	60
ggatggaaac	tccaaacacc	acagaggact	atgacacgac	cacagagttt	gactatgggg	120
atgcaactcc	gtgccagaag	gtgaacgaga	gggcctttgg	ggcccaactg	ctgcccctc	180
tgtactcctt	ggtatttgtc	attggcctgg	ttggaaacat	cctggtggtc	ctggtccttg	240
tgcaatacaa	gaggctaaaa	aacatgacca	gcatctacct	cctgaacctg	gccatttctg	300
acctgctctt	cctgttcacg	cttcccttct	ggatcgacta	caagttgaag	gatgactggg	360
tttttggtga	tgccatgtgt	aagatcctct	ctgggtttta	ttacacaggc	ttgtacagcg	420
agatctttt	catcatcctg	ctgacgattg	acaggtacct	ggccatcgtc	cacgccgtgt	480
ttgccttgcg	ggcacggacc	gtcacttttg	gtgtcatcac	cagcatcatc	atttgggccc	540
tggccatctt	ggcttccatg	ccaggcttat	acttttccaa	gacccaatgg	gaattcactc	600
accacacctg	cagccttcac	tttcctcacg	aaagcctacg	agagtggaag	ctgtttcagg	660
ctctgaaact	gaacctcttt	gggctggtat	tgcctttgtt	ggtcatgatc	atctgctaca	720
cagggattat	aaagattctg	ctaagacgac	caaatgagaa	gaaatccaaa	gctgtccgtt	780
tgatttttgt	catcatgatc	atctttttc	tcttttggac	cccctacaat	ttgactatac	840
ttatttctgt	tttccaagac	ttcctgttca	cccatgagtg	tgagcagagc	agacatttgg	900
acctggctgt	gcaagtgacg	gaggtgatcg	cctacacgca	ctgctgtgtc	aacccagtga	960
tctacgcctt	cgttggtgag	aggttccgga	agtacctgcg	gcagttgttc	cacaggcgtg	1020
tggctgtgca	cctggttaaa	tggctcccct	tcctctccgt	ggacaggctg	gagagggtca	1080
gctccacatc	tccctccaca	ggggagcatg	aactctctgc	tgggttctga	ctcagaccat	1140
aggaggccaa	cccaaaataa	gcaggcgtga	cctgccaggc	acactgagcc	agcagcctgg	1200
ctctcccagc	caggttctga	ctcttggcac	agcatggagt	cacagccact	tgggatagag	1260

agggaatgta atggtggcct ggggcttctg aggcttctgg ggcttcagtc ttttccatga 1320 acttctcccc tggtagaaag aagatgaatg agcaaaacca aatattccag agactgggac 1380 taagtgtacc agagaagggc ttggactcaa gcaagatttc agatttgtga ccattagcat 1440 1500 ttqtcaacaa aqtcacccac ttcccactat tqcttqcaca aaccaattaa acccagtagt ggtgactgtg ggctccattc aaagtgagct cctaagccat gggagacact gatgtatgag 1560 1620 gaatttctgt tcttccatca cctcccccc cccgccaccc tcccactgcc aagaacttgg aaataqtgat ttccacaqtg actccactct gagtcccaga gccaatcagt agccagcatc 1680 tgcctcccct tcactcccac cgcaggattt gggctcttgg aatcctgggg aacatagaac 1740 tcatgacgga agagttgaga cctaacgaga aatagaaatg ggggaactac tgctggcagt 1800 ggaactaaga aagcccttag gaagaatttt tatatccact aaaatcaaac aattcaggga 1860 gtgggctaag cacgggccat atgaataaca tggtgtgctt cttaaaatag ccataaaggg 1920 qaqqqactca tcatttccat ttacccttct tttctgacta tttttcagaa tctctcttct 1980 tttcaagttg ggtgatatgt tggtagattc taatggcttt attgcagcga ttaataacag 2040 qcaaaaqqaa qcaqqqttgg tttcccttct ttttgttctt catctaagcc ttctggtttt 2100 2156

<210> 6

<211> 355

<212> PRT

<213> Homo sapiens

<400> 6

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly 35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg 50 55 60

Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp 65 70 75 80

Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val

Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val 305 310 315 320

Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu 325 330 335

Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser 340 345 350

Ala Gly Phe 355

<210> 7 <211> 2156 <212> DNA

<213> Homo sapiens

<400> 7

qqcacqaqcc caqaaacaaa gacttcacgg acaaagtccc ttggaaccag agagaagccg 60 qqatqqaaac tccaaacacc acaqaqqact atgacacgac cacagagttt gactatgggg 120 atgcaactcc qtqccaqaaq qtqaacqaqa qqqcctttqq qqcccaactg ctqcccctc 180 tgtactcctt ggtatttgtc attggcctgg ttggaaacat cctggtggtc ctggtccttg 240 tgcaatacaa gaggctaaaa aacatgacca gcatctacct cctgaacctg gccatttctg 300 acctgetett cetgtteacg ettecettet ggategaeta caagttgaag gatgaetggg 360 tttttggtga tgccatgtgt aagatcctct ctgggtttta ttacacaggc ttgtacagcg 420 agatettttt cateateetg etgacgattg acaggtacet ggecategte caegeegtgt 480 ttgccttgcg ggcacggacc gtcacttttg gtgtcatcac cagcatcatc atttgggccc 540 tggccatctt ggcttccatg ccaggcttat acttttccaa gacccaatgg gaattcactc 600 accacactg cagcettcac tttcctcacg aaagcctacg agagtggaag ctgtttcagg 660 ctctqaaact qaacctcttt gggctggtat tgcctttgtt ggtcatgatc atctgctaca 720 cagggattat aaagattctg ctaagacgac caaatgagaa gaaatccaaa gctgtccgtt 780 tgatttttgt catcatgatc atctttttc tcttttggac cccctacaat ttgactatac 840 ttatttctgt tttccaagac ttcctgttca cccatgagtg tgagcagagc agacatttgg 900 acctggctgt gcaagtgacg gaggtgatcg cctacacgca ctgctgtgtc aacccagtga 960 tctacgcctt cgttggtgag aggttccgga agtacctgcg gcagttgttc cacaggcgtg 1020

1080 tggctgtgca cctggttaaa tggctcccct tcctctccgt ggacaggctg gagagggtca qctccacatc tccctccaca ggggagcatg aactctctgc tgggttctga ctcagaccat 1140 aggaggcaa cccaaaataa gcaggcgtga cctgccaggc acactgagcc agcagcctgg 1200 ctctcccagc caggttctga ctcttggcac agcatggagt cacagccact tgggatagag 1260 agggaatgta atggtggcct ggggcttctg aggcttctgg ggcttcagtc ttttccatga 1320 . acttctcccc tggtagaaag aagatgaatg agcaaaacca aatattccag agactgggac 1380 taaqtqtacc aqaqaaqqqc ttqqactcaa qcaagatttc agatttgtga ccattagcat 1440 ttqtcaacaa aqtcacccac ttcccactat tqcttqcaca aaccaattaa acccagtagt 1500 ggtgactgtg ggctccattc aaagtgagct cctaagccat gggagacact gatgtatgag 1560 gaatttctgt tcttccatca cctcccccc cccgccaccc tcccactgcc aagaacttgg 1620 aaatagtgat ttccacagtg actccactct gagtcccaga gccaatcagt agccagcatc 1680 tgcctcccct tcactcccac cgcaggattt gggctcttgg aatcctgggg aacatagaac 1740 tcatqacqqa aqaqttqaqa cctaacqaqa aataqaaatq qqqqaactac tqctqqcaqt 1800 ggaactaaga aagcccttag gaagaatttt tatatccact aaaatcaaac aattcaggga 1860 gtgggctaag cacgggccat atgaataaca tggtgtgctt cttaaaatag ccataaaggg 1920 gagggactca tcatttccat ttacccttct tttctgacta tttttcagaa tctctcttct 1980 tttcaagttg ggtgatatgt tggtagattc taatggcttt attgcagcga ttaataacag 2040 gcaaaaggaa gcagggttgg tttcccttct ttttgttctt catctaagcc ttctggtttt 2100 atgggtcaga gttccgactg ccatcttgga cttgtcagca aaaaaaaaa aaaaaa 2156

<210> 8

<211> 355

<212> PRT

<213> Homo sapiens

<400> 8

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly 35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu

275 280 285
Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val 290 295 300
Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val 305 310 315 320
Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu 325 330 335
Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser 340 345 350
Ala Gly Phe 355
<210> 9 <211> 309 <212> DNA <213> Homo sapiens
<400> 9 accatgaagg tctccgcggc agccctcgct gtcatcctca ttgctactgc cctctgcgct 60
cctgcatctg cctccccata ttcctcggac accacacct gctgctttgc ctacattgcc 120
cgcccactgc cccgtgccca catcaaggag tatttctaca ccagtggcaa gtgctccaac 180
ccagcagtcg tctttgtcac ccgaaagaac cgccaagtgt gtgccaaccc agagaagaaa 240
tgggttcggg agtacatcaa ctctttggag atgagctagg atggagagtc cttgaacctg 300
aacttacac 309
<210> 10 <211> 91 <212> PRT <213> Homo sapiens
<400> 10
Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala 1 5 10 15

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro

Cys	Cys	Phe 35	Ala	Tyr	Ile	Ala	Arg 40	Pro	Leu	Pro	Arg	Ala 45	His	Ile	Lys	
Glu	Tyr 50	Phe	Tyr	Thr	Ser	Gly 55	Lys	Cys	Ser	Asn	Pro 60	Ala	Val	Val	Phe	
Val 65	Thr	Arg	Lys	Asn	Arg 70	Gln	Val	Cys	Ala	Asn 75	Pro	Glu	Lys	Lys	Trp 80	
Val	Arg	Glu	Tyr	Ile 85	Asn	Ser	Leu	Glu	Met 90	Ser						
<210 <211 <212 <213	L> : 2> 1	11 10 DNA Homo	sap:	iens												
<400		11														10
<210 <211 <212	L> : 2> 1	12 10 DNA														
<213		Homo 12 aac	sap:	ıens												10
<210 <211 <212	L> : 2> 1	13 10 DNA														
<213		Homo 13 aat	sap:	iens												10
<210 <211 <212 <213	L> : 2> 1	14 10 DNA Homo	sapi	iens												
<400 gcto)> :	14 aac														10
<210 <211 <212 <213	L> (2>]	15 0 DNA No Se	equer	nce I	Data											

<400> 000	15	
<210> <211>	16 18	
<212>		
<213>	Homo sapiens	
<400>	16	18
cacage	tcat taacgcgc	10
<210>	17	
<211>		
<212>	Homo sapiens	
<400>	17	18
grareg	agta attgcgcg	10
<210>	18	
<211>		
<212>		
<213>	Homo sapiens	
<400>	18	
gccaac	ctca agatcccggg cg	22
<210>	19	
<211>		
<212>		
<213>	Homo sapiens	
<400>	19	
ccagtt	tete ggegatggeg ge	22
<210>	20	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	20	
cacggt	ggtg tccactccgg	20
<210>	21	
<211> <212>	20 DNA	
	Homo sapiens	
<400>	21	
	tett eteegaggag	20

<210>	22	
<211>	28	
<212>		
	Homo sapiens	
(213)	nomo saprens	
<400>	22	
ggccate	gaac gccaagcagc ctttcggc	28
<210>	23	
<211>	28	
<212>		
<213>	Homo sapiens	
<400>	23	
	agat gatgcgggtg gatctgcg	28
5-5		
<210>	24	
<21.1>	21	
<212>	DNA	
<213>	Homo sapiens	
	•	
<400>	24	
		21
gaeege	ttct ccaagcacga c	21
<210>	25	
<211>	20	
<212>		
	Homo sapiens	
<213>	nomo saprens	
	25	
ctgcgc	eggt getgttgtag	20
<210>	26	
<211>	18	
<212>	DNA	
<213>	Homo sapiens	
<400>	26	
cacage	tcat taacgcgc	18
_	5 5	
<210>	27	
<211>		
<212>		
<213>	Homo sapiens	
<400>	27	
	taat gagctgtg	18
2-2-2-		- 0
<210>	28	
011	10	

<212> <213>	DNA Arti	ficial					
<220> <223>	Prim	er to Gener	rate Mutated	l Sequence			
<400> gcgcgtt	28 tgct	gagctctg					18
<210><211><211>	29 18 DNA						
<213>	Arti	ficial					
<220> <223>	Prim	er to Gener	rate Mutated	l Sequence			
<400>	29						
cagagct	tcag	caacgcgc					18
<210><211><211>	30 2160 DNA						
<212>	Mus	sp.					
<400>	30						
		agcgagcgca	cgctcgggac	ggaggccggg	cgagccggcg	tgcgcacttt	60
gccgcgg	gact	ttgcgagtgt	tttgtggatt	tttacatgcc	aaggcgccaa	gatgatgtcc	120
atgaaca	agca	agcagcctca	ctttgccatg	catcccaccc	tccctgagca	caagtacccg	180
tcgctg	cact	ccagctccga	ggccatccgg	cgggcctgcc	tgcccacgcc	gccggtaagc	240
gcccca	cgcc	gcggccccgg	tcccggcccg	cgcgctcgcc	ccctcccgcg	tccgcgggtg	300
gcggcag	gctg	ccccgggcgg	ctccgggccg	ctcgcgggcg	ggactgctct	tagagggatc	360
ccgctg	ccag	gcacgcgtgg	cccggggccg	ctggaggccc	gggtcccatc	cgcctgtgcc	420
tctgtc	cagc	gcctgccatc	cgcggggagc	tctcgggccg	cggctgtcga	cttggctcca	480
ctttgt	cggt	taattttacg	cctgcacaag	gcgatctctg	ctcgctcgct	cgctcgctcg	540
ctcgct	cgct	cgctttctcg	ttcgggtgtg	tggcacgggt	ccttagcttc	gagtgacatc	600
tccatt	tctt	ctttttcttc	ttcttttcgc	tctttttgt	cgtctcccac	tgtcttcccc	660
ggaatgt	tgtt	tccgtgtgcg	tccccttcta	cccttccctg	gccctgtgcc	tctccccttc	720
tatttc	cccc	accccggcat	gttctcaaat	cgtcccccgg	tcctccgttg	accctgctct	780
tcccac	cccc	cgttgttatt	ttggtcgctt	tgtgttttgc	cttttgcccg	tgctttcctg	840
cttgtgt	tgtt	tgttttgtgg	tttctttggt	gtttgtcccc	cctttttct	tttttttct	900

ttttctttct tctttttt ttctttcctt ttcttttqq tttqqtttqt gtcgcctgca 960 1020 gctgcagagc aacctcttcg ccagcctgga cgagacgctg ctggcgcggg ccgaggcgct ggcggccgtg gacatcgcgg tgtcccaggg caagagccac cctttcaagc cggacgccac 1080 gtaccacacg atgaatagcg tgccctgcac gtccacgtcc accgtgccgc tggcgcacca 1140 1200 ccaccaccac caccaccacc accaggcgct cgagcccggt gacctgctgg accacatctc 1260 gtegeegteg etegegetea tggeeggege agggggegea ggegeggegg gaggeggegg 1320 eggegeeeac gaeggeeeeg ggggeggagg eggaeegggg ggeggeggtg geeegggegg cggcggcccc gggggtggcg gcggcggcgg cggcccgggg ggcggcggcg gcgccccggg 1380 eggegggete ttgggegget eggegeatee geaceegeae atgeaeggee tgggeeacet 1440 1500 gtegcacece geggeggegg eggecatgaa catgeegtee gggetgeege ateceggget cgtggccgcg gcggcgcacc acggcgcggc ggcggcagcg gcggcggcgg cggcggggca 1560 gqtggcggcg gcgtcggccg cggcggcggt ggtgggcgcg gcgggcctgg cgtccatctg 1620 cgactcggac acggacccgc gcgagctcga ggcgttcgcc gagcgcttca agcagcggcg 1680 catcaagetq qqcqtqacqc aqqccqacqt qqqctcqqcq ctqqccaacc tcaagatecc 1740 gggcgtgggc tcgctcagcc agagcaccat ctgcaggttc gagtcgctca cgctctcgca 1800 caacaacatg atcgcgctca agcccatcct gcaggcgtgg ctggaggagg ccgagggcgc 1860 gcagcgtgag aaaatgaaca agccggagct cttcaacggc ggcgagaaga agcgcaagcg 1920 gacttccatc gccgcgccg agaagcgctc cctcgaggcc tattttgccg tacaaccccg 1980 gccctcgtct gagaagatcg ccgccatcgc cgagaaactg gacctcaaaa agaacgtggt 2040 gcgggtgtgg ttttgcaacc agagacagaa gcagaagcgg atgaaattct ctgccactta 2100 ctgaggaggg tgtgagacgc cgggtggggc acactgggga gctgaggggt gcgtttctgg 2160

Met Met Ser Met Asn Ser Lys Gln Pro His Phe Ala Met His Pro Thr 1 5 10 15

Leu Pro Glu His Lys Tyr Pro Ser Leu His Ser Ser Ser Glu Ala Ile 20 25 30

<210> 31

<211> 421

<212> PRT

<213> Mus sp.

<400> 31

Arg Arg Ala Cys Leu Pro Thr Pro Pro Leu Gln Ser Asn Leu Phe Ala Ser Leu Asp Glu Thr Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp Ile Ala Val Ser Gln Gly Lys Ser His Pro Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Ser Val Pro Cys Thr Ser Thr Ser Thr Val Pro Leu Ala His His His His His His His Gln Ala Leu Glu Pro Gly Asp Leu Leu Asp His Ile Ser Ser Pro Ser Leu Ala Leu Met Ala Gly Ala Gly Gly Ala Gly Ala Gly Gly Gly Gly Ala His Asp Gly Pro Gly Gly Gly Gly Gly Gly Pro Gly Gly Gly Gly Gly Ala Pro Gly Gly Gly Leu Leu Gly Gly Ser Ala His Pro His Pro His Met His Gly Leu Gly His Leu Ser His Pro Ala Ala Ala Ala Ala Met Asn Met Pro Ser Gly Leu Pro His Pro Gly Leu Val Ala Ala Ala Ala His His Gly Ala Ala Ala Ala Ala Ala Ala Ala Ala Gly Gln Val Ala Ala Ala Ser Ala Ala Ala Val Val Gly Ala Ala Gly

Leu	Ala	Ser	Ile 260	Cys	Asp	Ser	Asp	Thr 265	Asp	Pro	Arg	Glu	Leu 270	Glu	Ala	
Phe	Ala	Glu 275	Arg	Phe	Lys	Gln	Arg 280	Arg	Ile	Lys	Leu	Gly 285	Val	Thr	Gln	
Ala	Asp 290	Val	Gly	Ser	Ala	Leu 295	Ala	Asn	Leu	Lys	Ile 300	Pro	Gly	Val	Gly	
Ser 305	Leu	Ser	Gln	Ser	Thr 310	Ile	Cys	Arg	Phe	Glu 315	Ser	Leu	Thr	Leu	Ser 320	
His	Asn	Asn	Met	Ile 325	Ala	Leu	Lys	Pro	Ile 330	Leu	Gln	Ala	Trp	Leu 335	Glu	
Glu	Ala	Glu	Gly 340	Ala	Gln	Arg	Glu	Lys 345	Met	Asn	Lys	Pro	Glu 350	Leu	Phe	
Asn	Gly	Gly 355	Glu	Lys	Lys	Arg	Lys 360	Arg	Thr	Ser	Ile	Ala 365	Ala	Pro	Glu	
Lys	Arg 370	Ser	Leu	Glu	Ala	Tyr 375	Phe	Ala	Val	Gln	Pro 380	Arg	Pro	Ser	Ser	
Glu 385	Lys	Ile	Ala	Ala	Ile 390	Ala	Glu	Lys	Leu	Asp 395	Leu	Lys	Lys	Asn	Val 400	
Val	Arg	Val	Trp	Phe 405	Cys	Asn	Gln	Arg	Gln 410	Lys	Gln	Lys	Arg	Met 415	Lys	
Phe	Ser	Ala	Thr 420	Tyr												
<210 <211 <212 <213	L> : !> !	32 123 DNA Homo	sapi	iens												
<400 atga		32 cca t	gaad	cagca	aa go	cagco	ctcac	c tt	gcca	atgc	atco	ccaco	cct o	cctg	gagcac	60
aagt	acco	cgt d	cgcto	gcact	to ca	agcto	ccgag	g gco	catco	egge	ggg	cctgo	cct g	gccca	acgccg	120
ccq																123

```
<211> 1149
<212> DNA
<213> Homo sapiens
<400> 33
                                                                   60
ctgcagagca acctettege cageetggae gagaegetge tggegeggge egaggegetg
qcqqccqtqq acatcqccqt qtcccaqqqc aaqaqccatc ctttcaagcc ggacgccacg
                                                                  120
taccacacga tgaacagcgt gccgtgcacg tccacttcca cggtgcctct gcggcaccac
                                                                  180
caccaccacc accaccacca ccaggegete gaacceggeg atetgetgga ccacatetee
                                                                  240
300
ggcggcggcg gcgcccacga cggcccgggg ggcggtggcg gcccgggcgg cggcggcggc
                                                                  360
                                                                  420
ccgggcgcg gcggccccgg gggaggcggc ggtggcggcc cggggggcgg cggcggcggc
ccgggcggcg ggctcctggg cggctccgcg caccctcacc cgcatatgca cagcctgggc
                                                                  480
cacctgtege acccegege ggeggeegee atgaacatge egteeggget geegeaceee
                                                                  540
gggctggtgg cggcggcggc gcaccacggc gcggcagcgg cagcggcggc ggcggcggcc
                                                                  600
qqqcaqqtqq cagcqgcatc ggcqgcqqcq gccqtqgtqq gcgcagcqgq cctggcqtcc
                                                                  660
atctgcgact cggacacgga cccgcgcgag ctcgaggcgt tcgcggagcg cttcaagcag
                                                                  720
cggcgcatca agctgggcgt gacgcaggcc gacgtgggct cggcgctggc caacctcaag
                                                                  780
atcccgggcg tgggctcact cagccagagc accatctgca ggttcgagtc gctcacgctc
                                                                  840
togcacaaca acatgatogo gotoaagooo atootgoagg ogtggotoga ggaggoogag
                                                                  900
                                                                  960
ggcgcccagc gcgagaaaat gaacaagcct gagctcttca acggcggcga gaagaagcgc
aageggactt ccategeege geeegagaag egeteeeteg aggeetaett egeegtgeag
                                                                 1020
ccccggccct cgtccgagaa gatcgccgcc atcgccgaga aactggacct caaaaagaac
                                                                 1080
                                                                 1140
gtggtgcggg tgtggttttg caaccagaga cagaagcaga agcggatgaa attctctgcc
                                                                 1149
acttactga
```

<400> 34

<210> 33

Met Met Ser Met Asn Ser Lys Gln Pro His Phe Ala Met His Pro Thr
1 5 10 15

<210> 34 <211> 423 <212> PRT <213> Homo sapiens

Leu Pro Glu His Lys Tyr Pro Ser Leu His Ser Ser Ser Glu Ala Ile Arg Arg Ala Cys Leu Pro Thr Pro Pro Leu Gln Ser Asn Leu Phe Ala Ser Leu Asp Glu Thr Leu Leu Ala Arg Ala Glu Ala Leu Ala Val Asp Ile Ala Val Ser Gln Gly Lys Ser His Pro Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Ser Val Pro Cys Thr Ser Thr Ser Thr Val Pro Leu Arg His His His His His His His His Gln Ala Leu Glu Pro Gly Asp Leu Leu Asp His Ile Ser Ser Pro Ser Leu Ala Leu Met Ala Gly Ala Gly Gly Ala Gly Ala Gly Ala Ala Gly Gly Gly Gly Ala His Asp Gly Pro Gly Gly Gly Gly Pro Gly Gly Gly Gly Gly Pro Gly Gly Gly Pro Gly Gly Gly Gly Gly Gly Pro Gly Gly Gly Gly Gly Pro Gly Gly Gly Leu Leu Gly Gly Ser Ala His Pro His Pro His Met His Ser Leu Gly His Leu Ser His Pro Ala Ala Ala Ala Met Asn Met Pro Ser Gly Leu Pro His Pro Gly Leu Val Ala Ala Ala Ala His His Gly Ala Ala Ala Ala Ala Ala Ala Ala Ala

Ala Gly Gln Val Ala Ala Ala Ser Ala Ala Ala Ala Val Val Gly Ala Ala Gly Leu Ala Ser Ile Cys Asp Ser Asp Thr Asp Pro Arg Glu Leu 260 265 Glu Ala Phe Ala Glu Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val 280 275 Thr Gln Ala Asp Val Gly Ser Ala Leu Ala Asn Leu Lys Ile Pro Gly 290 295 Val Gly Ser Leu Ser Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr 305 310 315 Leu Ser His Asn Asn Met Ile Ala Leu Lys Pro Ile Leu Gln Ala Trp Leu Glu Glu Ala Glu Gly Ala Gln Arg Glu Lys Met Asn Lys Pro Glu Leu Phe Asn Gly Gly Glu Lys Lys Arg Lys Arg Thr Ser Ile Ala Ala 355 360 Pro Glu Lys Arg Ser Leu Glu Ala Tyr Phe Ala Val Gln Pro Arg Pro 370 375 380 Ser Ser Glu Lys Ile Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys 385 390 395 400 Asn Val Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg 405 410

Met Lys Phe Ser Ala Thr Tyr 420

<210> 35

<211> 1091

<212> DNA

<213> Mus musculus

<400> 35

tttcaggatc actgtcatta ttattatttt aacgttctgg gaatgctgta ggcacggtgg

eggtggegag eeetgggeeg ggggetteeg gagagagege teacaattee etgetgageg 120 taatgtgtgc cttctactta caattgcaga gcaatatatt cggcgggctg gatgagagtc 180 tgctggcccg tgccgaggct ctggccgccg tggacatcgt ctcccagagt aagagccacc 240 300 accaccatcc gccccaccac agccccttca agccggacgc cacttaccac accatgaaca ccatecegtg caegteggea geeteetett ettetgtgee catetegeae eegteegete 360 tggctggcac ccatcaccac caccaccacc accatcacca ccatcaccag ccgcaccagg 420 cgctggaggg cgagctgctt gagcacctaa gccccgggct ggccctggga gctatggcgg 480 gccccgacgg cacggtggtg tccactccgg ctcacgcacc acacatggcc accatgaacc 540 ccatgcacca agcagccctg agcatggccc acgcacatgg gctgccctca cacatgggct 600 gcatgagcga cgtggatgca gacccgcggg acctggaggc gttcgccgag cgtttcaagc 660 agegaegeat caagetggga gtgaeceagg cagatgtggg eteggegetg geeaacetea 720 agateceggg egtgggeteg eteagecaga geaceatetg eaggtttgag teteteaege 780 tgtcacacaa caacatgatc gcgctcaagc ccatcctgca ggcgtggctg gaggaagctg 840 agaaatccca ccgcgagaag ctcactaagc cggagctctt caatggcgcg gagaagaagc 900 gcaagcgcac gtccatcgcg gcgccggaga agcgctctct ggaagcctac ttcqccatcc 960 agccaaggcc ctcctcggag aagatcgcgg ccatcgccga aaagctggat ctcaagaaaa 1020 atgtggtgcg cgtctggttc tgcaaccaga ggcagaaaca gaagaaggtg aaatactctg 1080 ccggcattta g 1091

<210> 36

<211> 322

<212> PRT

<213> Mus musculus

<400> 36

Met Cys Ala Phe Tyr Leu Gln Leu Gln Ser Asn Ile Phe Gly Gly Leu 1 5 10 15

Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp Ile 20 25 30

Val Ser Gln Ser Lys Ser His His His Pro Pro His His Ser Pro 35 40 45

Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Thr Ile Pro Cys Thr

50 55 60

	Ser 65	Ala	Ala	Ser	Ser	Ser 70	Ser	Val	Pro	Ile	Ser 75	His	Pro	Ser	Ala	Leu 80
į	Ala	Gly	Thr	His	His 85	His	His	His	His	His 90	His	His	His	His	His 95	Gln
	Pro	His	Gln	Ala 100	Leu	Glu	Gly	Glu	Leu 105	Leu	Glu	His	Leu	Ser 110	Pro	Gly
	Leu	Ala	Leu 115	Gly	Ala	Met	Ala	Gly 120	Pro	Asp	Gly	Thr	Val 125	Val	Ser	Thr
	Pro	Ala 130	His	Ala	Pro	His	Met 135	Ala	Thr	Met	Asn	Pro 140	Met	His	Gln	Ala
	Ala 145	Leu	Ser	Met	Ala	His 150	Ala	His	Gly	Leu	Pro 155	Ser	His	Met	Gly	Cys 160
1	Met	Ser	Asp	Val	Asp 165	Ala	Asp	Pro	Arg	Asp 170	Leu	Glu	Ala	Phe	Ala 175	Glu
•	Arg	Phe	Lys	Gln 180	Arg	Arg	Ile	Lys	Leu 185	Gly	Val	Thr	Gln	Ala 190	Asp	Val
•	Gly	Ser	Ala 195	Leu	Ala	Asn	Leu	Lys 200	Ile	Pro	Gly	Val	Gly 205	Ser	Leu	Ser
•	Gln	Ser 210	Thr	Ile	Cys	Arg	Phe 215	Glu	Ser	Leu	Thr	Leu 220	Ser	His	Asņ	Asn
	Met 225	Ile	Ala	Leu	Lys	Pro 230	Ile	Leu	Gln	Ala	Trp 235	Leu	Glu	Glu	Ala	Glu 240
	Lys	Ser	His	Arg	Glu 245	Lys	Leu	Thr	Lys	Pro 250	Glu	Leu	Phe	Asn	Gly 255	Ala
(Glu	Lys	Lys	Arg	Lys	Arg	Thr	Ser	Ile	Ala	Ala	Pro	Glu	Lys	Arg	Ser

Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile

Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Arg Val 290 295 300

Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Lys Val Lys Tyr Ser Ala 305 310 315 320

Gly Ile

<210> 37

<211> 3110

<212> DNA

<213> Homo sapiens

<400> 37

agacctcggc acccgttcag actgacagca gaggcggcga aggagcgcgt agccgagatc 60 120 aggcgtacag agtccggagg cggcggcggg tgagctcaac ttcgcacagc ccttcccagc tecaqeeeeq qetqqeeeqq cactteteqq aqqqteeeqq caqeeqqqae caqtgaqtge 180 ctctacggac cagcgcccg gcgggcggga agatgatgat gatgtccctg aacagcaagc 240 aggegtttag catgeegeac ggeggeagee tgeacgtgga geecaagtae teggeactge 300 acageacete geegggetee teggeteeca tegegeeete ggeeagetee eecageaget 360 cgagcaacgc tggtggtggc ggcggcggcg gcggcggcgg cggcggcggc ggcggaggcc 420 gaagcagcag ctccagcagc agtggcagca gcggcggcgg gggctcggag gctatgcgga 480 gagectgtet tecaaceeca eegageaata tatteggegg getggatgag agtetgetgg 540 cccgcgccga ggctctggca gccgtggaca tcgtctccca gagcaagagc caccaccacc 600 atccacccca ccacagcccc ttcaaaccgg acgccaccta ccacactatg aataccatcc 660 egtgeacgte ggeegeetet tetteategg tgeecatete geaccettge gegttggegg 720 . 780 gcacgcacca ccaccaccac catcaccacc accaccacca ccaaccgcac caggcgctgg agggggaget getggageae etgagteeeg ggetggeeet gggegetatg gegggeeeeg 840 900 acggcgctgt ggtgtccacg ccggctcacg cgccgcacat ggccaccatg aaccccatgc accaagcage geteagcatg geceaegege aegggetgee gtegeaeatg ggetgeatga 960 gcgacgtgga cgccgacccg cgggacctgg aggcattcgc cgagcgcttc aagcagcgac 1020 gcatcaagct gggggtgacc caggcagatg tgggctccgc gctggccaac ctcaagatcc 1080 ccggcgtggg ctcgcttagc cagagcacca tctgcaggtt cgagtccctc acactgtccc 1140

1200 acaataatat gatcgcgctc aaacccatcc tgcaggcatg gctcgaggag gccgagaagt 1260 cccaccgcga gaagctcacc aagcctgaac tettcaatgg cgcggagaag aagcgcaagc 1320 gcacgtccat cgctgcgcca gagaagcgct cgctcgaagc ctactttgcc attcagcctc 1380 ggccctcctc tgaaaagatc gccgccatcg cggagaagct ggacctgaag aaaaacgtgg 1440 tgcgcgtctg gttctgcaac cagaggcaga aacagaaaag aatgaaatat tccgccggca 1500 tttagaagac tettggeete teeagagaeg eeeettteet egteegetet ttteteteet 1560 ctcttctgcc tcttttcact tttggcgact agaaacaatt ccagtaaatg tgaatctcga caaatcgagg actgaagayg gagcgaacga gcgaacaact gagcccaagc cggtgagaat 1620 gtgaaacagt ttctcaaagg aaagaataac aaaagatggt atttgtctgt tgtagcaaag 1680 ttgtcccttt gaaccccacc tcggcttctt cagaggaagt gtggagatgg ctgtttgcag 1740 1800 gaaggcagac gagacagtgt ttaaaaagtc cacaagaatg atcaagtaag atttgttttt 1860 attettacag acateaceeg tgtteaagtt taaaagtaca etttgeaact attttteaga aatagaaatt gattcaggac taaaacttta aactagagtt gatgcttaat gtgatagaga 1920 catctctaaa gtattttgaa ttttaaaaaa agatggcaga ttttctgcat ttacactgta 1980 tattatatat atatttttat tgtggttctt accccctttt ccttctctga agtgttaatg 2040 cttaagaaaa gagttgcgcc tgctgtgttc actgatcttg aaagctatta ttagattatt 2100 gcagaacaac cctctgtaaa ttattaattt atctctctag caacttaatt ttgtgcacat 2160 tctaattaat taaacttctt ccgtctaaaa aaagtggggg aaatgtatag ctagtaacgt 2220 tcaaaaaatt ttgtttgatg agtttaccga atttttacag ctttcctcct atactgtgtt 2280 ccttttgacc catttgtata ttctcacttg aatgaagatt gtttttttct ttgtttttac 2340 2400 tggtagtgtt ctgatttgtg agtcgacact cagtaatgga tgtcttaatc gtgtagacct gattcactgt ctgaagtatt gtttacttcg ttacatattt aatggggatt cccacattgt 2460 2520 cctctaacag aagggaagaa gcagttggaa gcatgaccga tgcaccattt tctagtttta 2580 ggtgcatttg ccacttggtg tttgcccttc agattttaga tttcaccaag gtatttcagt 2640 cttccagttt tcaattgctt tgttggctac atgttaatat ttataggaat acttcagttt 2700 ttccttttgg aggtttgttt gtagaaaaac taatttgaac tataagaaag acagtgcact 2760 gcttgtaaat tcacattgtt tggaaaaatt cttttggaac aaaaaattag gtacatgata 2820

actggtacct tatctactgt aaatattca ttaaaaatga tgcacacata gatatattct 2880
tacaaatttt gctgtattgc tgttctcttt gaggctctcc aaagtcttga gttctgtata 2940
tggcctggtt tcttgttttt attaatagat ggtttattta ctatggtaat gtattaattt 3000
atttttggtg ttgttcgatt gtctttcatt gaagagataa ttttaatgtt ttattggcaa 3060
cgtatgctgc tttttcatta aaatatgcta ttaaaattaa atggctttta 3110

<210> 38

<211> 410

<212> PRT

<213> Homo sapiens

<400> 38

Met Met Met Met Ser Leu Asn Ser Lys Gln Ala Phe Ser Met Pro His 1 5 10 15

Gly Gly Ser Leu His Val Glu Pro Lys Tyr Ser Ala Leu His Ser Thr 20 25 30

Ser Pro Gly Ser Ser Ala Pro Ile Ala Pro Ser Ala Ser Ser Pro Ser 35 40 45

Gly Gly Gly Gly Arg Ser Ser Ser Ser Ser Ser Gly Ser Ser 65 70 75 80

Gly Gly Gly Ser Glu Ala Met Arg Arg Ala Cys Leu Pro Thr Pro 85 90 95

Pro Ser Asn Ile Phe Gly Gly Leu Asp Glu Ser Leu Leu Ala Arg Ala 100 105 110

Glu Ala Leu Ala Ala Val Asp Ile Val Ser Gln Ser Lys Ser His His 115 120 125

His His Pro Pro His His Ser Pro Phe Lys Pro Asp Ala Thr Tyr His 130 135 140

Thr Met Asn Thr Ile Pro Cys Thr Ser Ala Ala Ser Ser Ser Ser Val 145 150 155 160

Pro	Ile	Ser	His	Pro 165	Cys	Ala	Leu	Ala	170	Thr	HIS	HIS	HIS	175	HIS
His	His	His	His 180	His	His	His	Gln	Pro 185	His	Gln	Ala	Leu	Glu 190	Gly	Glu
Leu	Leu	Glu 195	His	Leu	Ser	Pro	Gly 200	Leu	Ala	Leu	Gly	Ala 205	Met	Ala	Gly
Pro	Asp 210	Gly	Ala	Val	Val	Ser 215	Thr	Pro	Ala	His	Ala 220	Pro	His	Met	Ala
Thr 225	Met	Asn	Pro	Met	His 230	Gln	Ala	Ala	Leu	Ser 235	Met	Ala	His	Ala	His
Gly	Leu	Pro	Ser	His 245	Met	Gly	Cys	Met	Ser 250	Asp	Val	Asp	Ala	Asp 255	Pro
Arg	Asp	Leu	Glu 260	Ala	Phe	Ala	Glu	Arg 265	Phe	Lys	Gln	Arg	Arg 270	Ile	Lys
Leu	Gly	Val 275	Thr	Gln	Ala	Asp	Val 280	Gly	Ser	Ala	Leu	Ala 285	Asn	Leu	Lys
Ile	Pro 290	Gly	Val	Gly	Ser	Leu 295	Ser	Gln	Ser	Thr	Ile 300	Cys	Arg	Phe	Glu
Ser 305	Leu	Thr	Leu	Ser	His 310	Asn	Asn	Met	Ile	Ala 315	Leu	Lys	Pro	Ile	Leu 320
Gln	Ala	Trp	Leu	Glu 325	Glu	Ala	Glu	Lys	Ser 330	His	Arg	Glu	Lys	Leu 335	Thr
Lys	Pro	Glu	Leu 340	Phe	Asn	Gly	Ala	Glu 345	Lys	Lys	Arg	Lys	Arg 350	Thr	Ser
Ile	Ala	Ala 355	Pro	Glu	Lys	Arg	Ser 360	Leu	Glu	Ala	Tyr	Phe 365	Ala	Ile	Gln
Pro	Arg 370	Pro	Ser	Ser	Glu	Lys 375	Ile	Ala	Ala	Ile	Ala 380	Glu	Lys	Leu	Asp

Leu Lys Lys Asn Val Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys 385 390 395 400

Gln Lys Arg Met Lys Tyr Ser Ala Gly Ile 405 410

<210> 39

<211> 1594

<212> DNA

<213> Mus musculus

<400> 39

caagcgagag	ggcgagggga	gcgctggcgc	tgagcggcgc	tcacttggag	cgcggagagc	60
tagcaagacg	agcttgattc	catgtccccc	gctgcctccc	tgccagactc	ccgaagatga	120
tggccatgaa	cgccaagcac	cgtttcggca	tgcaccccgt	actgcaagaa	cccaaattct	180
ccagcctaca	ctccggctct	gaggccatgc	gccgagtttg	tctcccagcc	ccgcaggtac	240
gtagcggacg	ataattaccg	ctctaaggca	cattttttga	caggcactag	cttcatgttt	300
ttttcatgtc	gcccagaaca	atcgccgctg	tctgaacccc	tcgccttgtc	tccccgcgc	360
tctctcgcgg	ctctctct	ctctctct	ctctctct	ctctctct	ctctcattca	420
tgtctctgat	ccacacgtct	gttccaacag	agaggctgcc	tccgtattaa	tttttatgac	480
ctgggctttg	aggagaggca	tctcggttgc	ttgaaaatgt	gttttaatcc	tgagttgaca	540
gtattcccca	ctgaccgtgc	tgtgcgcctt	ctcgcttgca	gctgcagggt	aatatatttg	600
gaagctttga	tgagagcctg	ctggcacgcg	ccgaagctct	ggcggcggtg	gatatcgtct	660
cccacggcaa	gaaccatccg	ttcaagcccg	acgccaccta	ccataccatg	agcagcgtgc	720
cctgcacttc	tacctcgccc	acggtgccca	tctctcaccc	ggctgcactc	acctcgcacc	780
cgcatcacgc	ggtacatcag	ggcctcgagg	gcgacttact	tgagcacatc	tcgcccacgc	840
tgagcgtgag	tggcctaggg	gccccggagc	actcggtgat	gccggcgcag	atccacccgc	900
atcatctagg	cgccatgggc	cacttgcatc	aggccatggg	catgagtcac	ccgcatgccg	960
tagcaccgca	cagtgccatg	cccgcgtgtc	tcagcgatgt	ggagtcagac	cctcgagagc	1020
tggaagcgtt	cgccgagcgc	ttcaagcaga	ggcgcatcaa	gttgggggtc	acccaggcgg	1080
acgtgggcgc	ggctttagcc	aatcttaaga	tccccggtgt	gggctcgctc	agccagagca	1140
ccatctgcag	gttcgagtct	cttactctgt	cgcacaacaa	catgatcgct	ctcaagccgg	1200
tcctccaggc	ctggctggag	gaggccgagg	ccgcctaccg	agagaagaac	agcaagccag	1260
agctcttcaa	cggcagtgag	cgtaagcgca	aacgcacgtc	catcgccgcg	ccagagaagc	1320

geteactega ageetatte gecatecage caegteette ateegagaag ategeggeea 1380
tegeggagaa aetggaeett aaaaagaatg tggtgagggt etggttetgt aaceagagae 1440
agaaacagaa aegaatgaaa taetetgetg tggaetgatt geggegggtg etgegteegg 1500
aggageetgg agageetaat geategeee etteegatgg gaggggaget taegggaeae 1560
teeagggtgt tteetggeag gteaggttet ttee 1594

<210> 40

<211> 338

<212> PRT

<213> Mus musculus

<400> 40

Met Met Ala Met Asn Ala Lys His Arg Phe Gly Met His Pro Val Leu 1 5 10 15

Gln Glu Pro Lys Phe Ser Ser Leu His Ser Gly Ser Glu Ala Met Arg 20 25 30

Arg Val Cys Leu Pro Ala Pro Gln Leu Gln Gly Asn Ile Phe Gly Ser 35 40 45

Phe Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp 50 55 60

Ile Val Ser His Gly Lys Asn His Pro Phe Lys Pro Asp Ala Thr Tyr 65 70 75 80

His Thr Met Ser Ser Val Pro Cys Thr Ser Thr Ser Pro Thr Val Pro 85 90 95

Ile Ser His Pro Ala Ala Leu Thr Ser His Pro His His Ala Val His
100 105 110

Gln Gly Leu Glu Gly Asp Leu Leu Glu His Ile Ser Pro Thr Leu Ser 115 120 125

Val Ser Gly Leu Gly Ala Pro Glu His Ser Val Met Pro Ala Gln Ile 130 135 140

His Pro His His Leu Gly Ala Met Gly His Leu His Gln Ala Met Gly 145 150 155 160

Met Ser His Pro His Ala Val Ala Pro His Ser Ala Met Pro Ala Cys 170 175 165 Leu Ser Asp Val Glu Ser Asp Pro Arg Glu Leu Glu Ala Phe Ala Glu 180 185 Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val 195 Gly Ala Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser 215 Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn 225 230 235 Met Ile Ala Leu Lys Pro Val Leu Gln Ala Trp Leu Glu Glu Ala Glu 245 250 Ala Ala Tyr Arg Glu Lys Asn Ser Lys Pro Glu Leu Phe Asn Gly Ser 260 265 Glu Arg Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser 275 280 Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile 290 295 Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Arg Val 310 315

Val Asp

<210> 41 <211> 120 <212> DNA <213> Homo sapiens

<400> 41
atgatggcca tgaactccaa gcagcctttc ggcatgcacc cggtgctgca agaacccaaa

Trp Phe Cys Asn Gln Arq Gln Lys Gln Lys Arq Met Lys Tyr Ser Ala

60

ttctccagtc tgcactctgg ctccgaggct atgcgccgag tctgtctccc agccccgcag 120 <210> 42 897 <211> <212> DNA <213> Homo sapiens <400> 42 ctgcagggta atatatttgg aagctttgat gagagcctgc tggcacgcgc cgaagctctg 60 gcggcggtgg atatcgtctc ccacggcaag aaccatccgt tcaagcccga cgccacctac 120 cataccatga gcagcgtgcc ctgcacgtcc acttcgtcca ccgtgcccat ctcccaccca 180 gctgcgctca cctcacaccc tcaccacgcc gtgcaccagg gcctcgaagg cgacctgctg 240 gagcacatct cgcccacgct gagtgtgagc ggcctgggcg ctccggaaca ctcggtgatg 300 cccgcacaga tccatcaca ccacctgggc gccatgggcc acctgcacca ggccatgggc 360 atgagtcacc cgcacaccgt ggcccctcat agcgccatgc ctgcatgcct cagcgacgtg 420 gagtcagacc cgcgcgagct ggaagccttc gccgagcgct tcaagcagcg gcgcatcaag 480 ctgggggtga cccaggcgga cgtgggcgcg gctctggcta atctcaagat ccccggcqtg 540 ggctcgctga gccaaagcac catctgcagg ttcgagtctc tcactctctc gcacaacaac 600 atgategete teaageeggt geteeaggee tggttggagg aggeegagge egeetaeega 660 gagaagaaca gcaagccaga gctcttcaac ggcagcgaac ggaagcgcaa acgcacgtcc 720 ategeggege eggagaageg tteactegag gestattteg statesages aegteettea 780 tctgagaaga tcgcggccat cgctgagaaa ctggacctta aaaagaacgt ggtgagagtc 840 tggttctgca accagagaca gaaacagaaa cgaatgaagt attcggctgt ccactga 897 <210> 43 <211> 338 <212> PRT

<213> Homo sapiens

<400> 43

Met Met Ala Met Asn Ser Lys Gln Pro Phe Gly Met His Pro Val Leu 1 5 10 15

Gln Glu Pro Lys Phe Ser Ser Leu His Ser Gly Ser Glu Ala Met Arg
20 25 30

Arg Val Cys Leu Pro Ala Pro Gln Leu Gln Gly Asn Ile Phe Gly Ser

45

Phe	Asp	Glu	Ser	Leu	Leu	Ala	Arg	Ala	Glu	Ala	Leu	Ala	Ala	Val	Asp
	50					55					60				

40

35

- Ile Val Ser His Gly Lys Asn His Pro Phe Lys Pro Asp Ala Thr Tyr 65 70 75 80
- His Thr Met Ser Ser Val Pro Cys Thr Ser Thr Ser Ser Thr Val Pro 85 90 95
- Ile Ser His Pro Ala Ala Leu Thr Ser His Pro His His Ala Val His
 100 105 110
- Gln Gly Leu Glu Gly Asp Leu Leu Glu His Ile Ser Pro Thr Leu Ser 115 120 125
- Val Ser Gly Leu Gly Ala Pro Glu His Ser Val Met Pro Ala Gln Ile 130 135 140
- His Pro His His Leu Gly Ala Met Gly His Leu His Gln Ala Met Gly 145 150 155 160
- Met Ser His Pro His Thr Val Ala Pro His Ser Ala Met Pro Ala Cys 165 170 175
- Leu Ser Asp Val Glu Ser Asp Pro Arg Glu Leu Glu Ala Phe Ala Glu 180 185 190
- Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val
 195 200 205
- Gly Ala Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser 210 215 220
- Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn 225 230 235 240
- Met Ile Ala Leu Lys Pro Val Leu Gln Ala Trp Leu Glu Glu Ala Glu 245 250 255
- Ala Ala Tyr Arg Glu Lys Asn Ser Lys Pro Glu Leu Phe Asn Gly Ser 260 265 270

Glu Aı	rg Lys 275		Lys	Arg	Thr	Ser 280	Ile	Ala	Ala	Pro	Glu 285	Lys	Arg	Ser	
Leu Gl		Tyr	Phe	Ala	Ile 295	Gln	Pro	Arg	Pro	Ser 300	Ser	Glu	Lys	Ile	
Ala Al 305	la Ile	Ala	Glu	Lys 310	Leu	Asp	Leu	Lys	Lys 315	Asn	Val	Val	Arg	Val 320	
Trp Ph	ne Cys	Asn	Gln 325	Arg	Gln	Lys	Gln	Lys	Arg	Met	Lys	Tyr	Ser 335	Ala	
Val Hi	is														
<210><211><211><212><213>	44 18 DNA Homo	sap:	iens												
<400> cacago	44 ctcat	taac	gcgc												18
<210><211><212><212><213>		sap:	iens												
<400> cactco	45 ctcat	taac	gege												18.
<210><211><212><212><213>	46 18 DNA Homo	sap:	iens												
<400> cacago	46 ctcat	taagt	cgc												18
<210><211><212><213>	47 18 DNA Homo	sapi	iens												
<400>	47														

cacgcatgcg taatgcgc