



# EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

**DATA**: **25 sierpnia 2015 г.** 

GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

#### Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem 
  i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.



MMA-P1\_**1**P-154

### Zadanie 1. (0-1)

Jeśli  $a = \frac{3}{2}$  i b = 2, to wartość wyrażenia  $\frac{a \cdot b}{a + b}$  jest równa

**A.**  $\frac{2}{3}$ 

- **B.** 1
- C.  $\frac{6}{7}$
- **D.**  $\frac{27}{6}$

#### Zadanie 2. (0-1)

Dany jest prostokąt o wymiarach 40 cm × 100 cm. Jeżeli każdy z dłuższych boków tego prostokąta wydłużymy o 20%, a każdy z krótszych boków skrócimy o 20%, to w wyniku obu przekształceń pole tego prostokata

- A. zwiększy się o 8%.
- **B.** zwiększy się o 4%.
- C. zmniejszy się o 8%.
- **D.** zmniejszy się o 4%.

### **Zadanie 3. (0–1)**

Liczba  $\frac{9^5 \cdot 5^9}{45^5}$  jest równa

- **A.** 45<sup>40</sup>
- В.  $45^{9}$
- C.  $9^4$
- **D.**  $5^4$

# Zadanie 4. (0-1)

Liczba  $\sqrt{\frac{9}{7}} + \sqrt{\frac{7}{9}}$  jest równa

- **A.**  $\sqrt{\frac{16}{63}}$
- **B.**  $\frac{16}{3\sqrt{7}}$
- **C.** 1
- **D.**  $\frac{3+\sqrt{7}}{3\sqrt{7}}$

# Zadanie 5. (0-1)

Wartość wyrażenia  $\log_5 0.04 - \frac{1}{2} \log_{25} 5 \cdot \log_{25} 1$  jest równa

- **A.** -3
- **B.**  $-2\frac{1}{4}$  **C.** -2
- **D.** 0

# Zadanie 6. (0-1)

Wartość wyrażenia  $(a+5)^2$  jest większa od wartości wyrażenia  $(a^2+10a)$  o

- **A.** 50
- **B.** 10
- **C.** 5
- **D.** 25



Strona 3 z 24

#### Zadanie 7. (0-1)

Na jednym z poniższych rysunków przedstawiono interpretację geometryczną układu równań

$$\begin{cases} x + 3y = -5 \\ 3x - 2y = -4 \end{cases}$$

Wskaż ten rysunek.

A.



B.



C.



D.



#### **Zadanie 8.** (0–1)

Najmniejszą liczbą całkowitą spełniającą nierówność  $2(x-2) \le 4(x-1)+1$  jest

$$\mathbf{A.} -2$$

# Zadanie 9. (0-1)

Rozwiązaniem równania  $x^2(x+1) = x^2 - 8$  jest

**B.** 
$$-2$$

# Zadanie 10. (0-1)

Funkcja f jest określona wzorem  $f(x) = \frac{2x-8}{x}$  dla każdej liczby rzeczywistej  $x \neq 0$ . Wówczas wartość funkcji  $f(\sqrt{2})$  jest równa

**A.** 
$$2-4\sqrt{2}$$

**A.** 
$$2-4\sqrt{2}$$
 **B.**  $1-2\sqrt{2}$  **C.**  $1+2\sqrt{2}$  **D.**  $2+4\sqrt{2}$ 

C. 
$$1+2\sqrt{2}$$

**D.** 
$$2 + 4\sqrt{2}$$



Strona 5 z 24

Parabola o wierzchołku W = (-3, 5) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem

**A.** 
$$y = 2 \cdot (x+3)^2 + 5$$

**B.** 
$$y = -2 \cdot (x-3)^2 + 5$$

C. 
$$y = -2 \cdot (x+3)^2 + 5$$

**D.** 
$$y = -2 \cdot (x-3)^2 - 5$$

Zadanie 12. (0-1)

Wykres funkcji liniowej y = 2x - 3 przecina oś Oy w punkcie o współrzędnych

**A.** 
$$(0, -3)$$

**B.** 
$$(-3,0)$$
 **C.**  $(0,2)$ 

**D.** 
$$(0, 3)$$

Zadanie 13. (0-1)

Wierzchołek paraboli będącej wykresem funkcji kwadratowej y = f(x) ma współrzędne (2, 2). Wówczas wierzchołek paraboli będącej wykresem funkcji g(x) = f(x+2) ma współrzędne

$$\mathbf{C}.$$
 (2, 0)

Zadanie 14. (0–1)

Wszystkie dwucyfrowe liczby naturalne podzielne przez 7 tworzą rosnący ciąg arytmetyczny. Dwunastym wyrazem tego ciągu jest liczba

Zadanie 15. (0-1)

Ciąg liczbowy określony jest wzorem  $a_n = \frac{2^n - 1}{2^n + 1}$ , dla  $n \ge 1$ . Piąty wyraz tego ciągu jest równy

**B.** 
$$\frac{31}{33}$$
 **C.**  $\frac{9}{11}$ 

C. 
$$\frac{9}{11}$$

Zadanie 16. (0-1)

Sinus kata ostrego  $\alpha$  jest równy  $\frac{3}{4}$ . Wówczas

$$\mathbf{A.} \quad \cos \alpha = \frac{1}{4}$$

**B.** 
$$\cos \alpha = \frac{\sqrt{7}}{4}$$

$$\mathbf{C.} \quad \cos \alpha = \frac{7}{16}$$

**A.** 
$$\cos \alpha = \frac{1}{4}$$
 **B.**  $\cos \alpha = \frac{\sqrt{7}}{4}$  **C.**  $\cos \alpha = \frac{7}{16}$  **D.**  $\cos \alpha = \frac{\sqrt{13}}{16}$ 



**A.** 
$$\frac{5}{2}$$

**B.** 
$$\frac{2}{5}$$

C. 
$$\frac{2}{\sqrt{29}}$$

**D.** 
$$\frac{5}{\sqrt{29}}$$

# Zadanie 18. (0-1)

Pole rombu o boku 6 i kacie rozwartym 150° jest równe

**A.** 
$$18\sqrt{2}$$

**C.** 
$$36\sqrt{2}$$

### Zadanie 19. (0-1)

W okręgu o środku O dany jest kat o mierze 50°, zaznaczony na rysunku.



Miara kata oznaczonego na rysunku litera  $\alpha$  jest równa

# Zadanie 20. (0-1)

Współczynnik kierunkowy prostej, na której leżą punkty A = (-4,3) oraz B = (8,7), jest równy

**A.** 
$$a = 3$$

**B.** 
$$a = -1$$

**B.** 
$$a = -1$$
 **C.**  $a = \frac{5}{6}$  **D.**  $a = \frac{1}{3}$ 

**D.** 
$$a = \frac{1}{3}$$



#### Zadanie 21. (0-1)

Punkt S = (2, -5) jest środkiem odcinka AB, gdzie A = (-4, 3) i B = (8, b). Wtedy

**A.** 
$$b = -13$$

**B.** 
$$b = -2$$
 **C.**  $b = -1$  **D.**  $b = 6$ 

**C.** 
$$b = -1$$

**D.** 
$$b = 6$$

#### Zadanie 22. (0-1)

Dany jest trójkat prostokatny o długościach boków a, b, c, gdzie a < b < c. Obracając ten trójkat, wokół prostej zawierającej dłuższą przyprostokatną o kat 360°, otrzymujemy bryłę, której objętość jest równa

$$\mathbf{A.} \quad V = \frac{1}{3}a^2b\pi$$

$$\mathbf{B.} \quad V = a^2 b \pi$$

$$\mathbf{C.} \quad V = \frac{1}{3}b^2a\pi$$

**A.** 
$$V = \frac{1}{3}a^2b\pi$$
 **B.**  $V = a^2b\pi$  **C.**  $V = \frac{1}{3}b^2a\pi$  **D.**  $V = a^2\pi + \pi ac$ 

### Zadanie 23. (0-1)

Przekatna przekroju osiowego walca, którego promień podstawy jest równy 4 i wysokość jest równa 6, ma długość

**A.** 
$$\sqrt{10}$$

**B.** 
$$\sqrt{20}$$
 **C.**  $\sqrt{52}$ 

C. 
$$\sqrt{52}$$

#### Zadanie 24. (0-1)

W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę z tej grupy. Prawdopodobieństwo tego, że będzie to kobieta, jest równe

**A.** 
$$\frac{1}{15}$$

**B.** 
$$\frac{1}{33}$$

C. 
$$\frac{15}{33}$$

**D.** 
$$\frac{15}{18}$$

# Zadanie 25. (0-1)

Ile jest wszystkich liczb czterocyfrowych, większych od 3000, utworzonych wyłącznie z cyfr 1, 2, 3, przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?



# Zadanie 26. (0-2)

Rozwiąż równanie  $\frac{2x-4}{x} = \frac{x}{2x-4}$ , gdzie  $x \neq 0$  i  $x \neq 2$ .



Odpowiedź: .....

#### Zadanie 27. (0-2)

Mamy dwa pudełka: w pierwszym znajduje się 6 kul ponumerowanych kolejnymi liczbami od 1 do 6, a w drugim – 8 kul ponumerowanych kolejnymi liczbami od 1 do 8. Losujemy po jednej kuli z każdego pudełka i tworzymy liczbę dwucyfrową w ten sposób, że numer kuli wylosowanej z pierwszego pudełka jest cyfrą dziesiątek, a numer kuli wylosowanej z drugiego – cyfrą jedności tej liczby. Oblicz prawdopodobieństwo, że utworzona liczba jest podzielna przez 11.



| aggaminator | Nr zadania          | 26. | 27. |
|-------------|---------------------|-----|-----|
|             | Maks. liczba pkt    | 2   | 2   |
|             | Uzyskana liczba pkt |     |     |

# Zadanie 28. (0-2)

Rozwiąż nierówność  $20x \ge 4x^2 + 24$ .



Odpowiedź: .....

# Zadanie 29. (0-2)

Kąt α jest ostry i spełnia równość  $tg\alpha + \frac{1}{tg\alpha} = \frac{7}{2}$ . Oblicz wartość wyrażenia  $sin\alpha \cdot cos\alpha$ .



Odpowiedź:

| Wypełnia<br>egzaminator | Nr zadania          | 28. | 29. |
|-------------------------|---------------------|-----|-----|
|                         | Maks. liczba pkt    | 2   | 2   |
|                         | Uzyskana liczba pkt |     |     |

# Zadanie 30. (0–2)

Wykaż, że dla wszystkich nieujemnych liczb rzeczywistych x, y prawdziwa jest nierówność  $x^3 + y^3 \ge x^2y + xy^2$ .



# Zadanie 31. (0-2)

W prostokącie ABCD punkt P jest środkiem boku BC, a punkt R jest środkiem boku CD. Wykaż, że pole trójkąta APR jest równe sumie pól trójkątów ADR oraz PCR.





| aggaminator | Nr zadania          | 30. | 31. |
|-------------|---------------------|-----|-----|
|             | Maks. liczba pkt    | 2   | 2   |
|             | Uzyskana liczba pkt |     |     |

Strona 17 z 24

# Zadanie 32. (0–4)

Wyznacz równanie osi symetrii trójkąta o wierzchołkach A = (-2, 2), B = (6, -2), C = (10, 6).





Odpowiedź:

|             | Nr zadania          | 32. |
|-------------|---------------------|-----|
| Wypełnia    | Maks. liczba pkt    | 4   |
| egzaminator | Uzyskana liczba pkt |     |

#### Zadanie 33. (0–4)

Podstawą ostrosłupa *ABCDS* jest prostokąt, którego boki pozostają w stosunku 3: 4, a pole jest równe 192 (zobacz rysunek). Punkt *E* jest wyznaczony przez przecinające się przekątne podstawy, a odcinek *SE* jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 30°. Oblicz objętość ostrosłupa.



Strona 20 z 24 MMA\_1P



Odpowiedź:

|             | Nr zadania          | 33. |
|-------------|---------------------|-----|
| Wypełnia    | Maks. liczba pkt    | 4   |
| egzaminator | Uzyskana liczba pkt |     |

### Zadanie 34. (0–5)

Funkcja kwadratowa f określona jest wzorem  $f(x) = ax^2 + bx + c$ . Zbiorem rozwiązań nierówności f(x) > 0 jest przedział (0,12). Największa wartość funkcji f jest równa 9. Oblicz współczynniki a, b i c funkcji f.



Strona 22 z 24 MMA\_1P



Odpowiedź:

|             | Nr zadania          | 34. |
|-------------|---------------------|-----|
| Wypełnia    | Maks. liczba pkt    | 5   |
| egzaminator | Uzyskana liczba pkt |     |