Algorithm Analysis and Design

Exercises, Ch 2

(Mathematical Analysis)

Solutions are based on book's solution manual

- 1. For each of the following algorithms, indicate (i) a natural size metric for its inputs, (ii) its basic operation, and (iii) whether the basic operation count can be different for inputs of the same size:
 - a. computing the sum of n numbers
 - b. computing *n*!
 - c. finding the largest element in a list of n numbers
 - d. Euclid's algorithm
 - e. pen-and-pencil algorithm for multiplying two n-digit decimal integers

2.

- a. Consider the definition-based algorithm for adding two $n \times n$ matrices. What is its basic operation? How many times is it performed as a function of the matrix order n? As a function of the total number of elements in the input matrices?
- b. Answer the same questions for the definition-based algorithm for matrix multiplication.
- 3. For each of the following functions, indicate how much the function's value will change if its argument is increased fourfold.
 - a. $\log_2 n$
- b. \sqrt{n}
- c. *n*
- $d. n^2$
- $e. n^3$
- $f. 2^n$
- 4. For each of the following pairs of functions, indicate whether the first function of each of the following pairs has a lower, same, or higher order of growth (to within a constant multiple) than the second function.
 - a. n(n+1) and $2000n^2$
 - b. $100n^2$ and $0.01n^3$
 - c. $log_2^2 n$ and $log_2 n^2$
 - d. 2^{n-1} and 2^n
 - e. (*n*-1)! and *n*!

5. Use the informal definitions of O, Θ and Ω to determine whether the following assertions are true or false.

a.
$$n(n+1)/2 \in O(n^3)$$

b.
$$n(n+1)/2 \in O(n^2)$$

c.
$$n(n+1)/2 \in \Theta(n^3)$$

d.
$$n(n+1)/2 \in \Omega(n)$$

6. For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.

a.
$$(n^2 + 1)^{10}$$

b.
$$\sqrt{(10 n^2 + 7n + 3)}$$

c.
$$2n \log(n+2)^2 + (n+2)^2 \log n^2$$

d.
$$2^{n+1} + 3^{n-1}$$

- e. floor $(\log_2 n)$
- 7. Prove that the following are listed in increasing order of their order of growth.

$$\log n$$
,

$$n$$
, n

$$n^2$$

$$n$$
, $n \log n$, n^2 , n^3 , 2^n

8. Prove that every polynomial of degree k, $p(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0$ with $a_k > 1$ 0, belongs to $\Theta(n^k)$.

Answer

9. Compute the following sums.

a.
$$1+3+5+7+\cdots+999$$

b.
$$2+4+8+16+\cdots+1024$$

c. $\sum_{i=3}^{n+1} 1$ **d.** $\sum_{i=3}^{n+1} i$ **e.** $\sum_{i=0}^{n-1} i(i+1)$

c.
$$\sum_{i=3}^{n+1} 1$$

d.
$$\sum_{i=3}^{n+1} i$$

e.
$$\sum_{i=0}^{n-1} i(i+1)$$

10. Find the order of growth of the following sums. Use the $\Theta(g(n))$ notation with the simplest function g(n) possible.

a.
$$\sum_{i=0}^{n-1} (i^2+1)^2$$

b.
$$\sum_{i=2}^{n-1} \lg i^2$$

11. Consider the following algorithm.

ALGORITHM Mystery(n)

$$S \leftarrow 0$$

for $i \leftarrow 1$ to n do $S \leftarrow S + i * i$
return S

- a. What does this algorithm compute?
- b. What is its basic operation?
- c. How many times is the basic operation executed?
- d. What is the efficiency class of this algorithm?
- e. Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.
- 12. Solve the following recurrence relations.
 - a. x(n) = x(n-1) + 5 for n > 1, x(1) = 0
 - b. x(n) = 3x(n-1) for n > 1, x(1) = 4
 - c. x(n) = x(n-1) + n for n > 0, x(0) = 0
 - d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for $n = 2^k$)
- 13. Consider the following recursive algorithm for computing the sum of the first n cubes: $S(n) = 1^3 + 2^3 + ... + n^3$.

```
ALGORITHM S(n)
    //Input: A positive integer n
    //Output: The sum of the first n cubes
```

if
$$n = 1$$
 return 1
else return $S(n - 1) + n * n * n$

- a. Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed.
- b. How does this algorithm compare with the straightforward nonrecursive algorithm for computing this sum?