Statistical Tests and Distributions: P-Test, T-Test, Z-Test, and F-Distribution

1. P-Test

The **P-Test** is not a distinct test but relates to the calculation and interpretation of the **p-value**, a key concept in hypothesis testing.

Key Concepts

- P-Value Definition:
 - A measure of the probability that the observed data (or something more extreme) occurred under the null hypothesis.
 - Expressed as:

P=P Observed outcome or more extreme | Null Hypothesis true

Threshold for Significance:

- The p-value is compared against a significance level (α), often 0.05 or 0.01.
 - P-value $< \alpha$: Reject the null hypothesis.
 - P-value> α : Fail to reject the null hypothesis.

Usage

- P-values are calculated in conjunction with specific tests (e.g., T-tests, Z-tests).
- A smaller p-value indicates stronger evidence against the null hypothesis.

2. T-Test

A **T-Test** is used to determine if there is a significant difference between the means of two groups, particularly when sample sizes are small.

Types of T-Tests

- 1. One-Sample T-Test:
 - Compares the mean of a single sample to a known value or population mean.
 - Example: Testing if the average test score of a class differs from 70.

2. Two-Sample T-Test (Independent T-Test):

- Compares the means of two independent groups.
- Assumptions:
 - · Samples are independent.
 - Variances between groups are equal (homoscedasticity).
- Example: Comparing average heights of men and women.

3. Paired T-Test:

- Used when measurements are taken on the same subjects under two conditions (e.g., before and after treatment).
- Example: Measuring weight loss before and after a diet.

Key Formula

$$t = \frac{\acute{X}_1 - \acute{X}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Where:

- \dot{X}_1 , \dot{X}_2 : Sample means.
- s_p^2 : Pooled variance.
- n_1 , n_2 : Sample sizes.

Assumptions

- Data is approximately normally distributed.
- Samples are independent (except in paired tests).

Applications

- Comparing performance metrics.
- Testing the effect of an intervention.

3. Z-Test

A **Z-Test** evaluates whether two population means are different, based on samples from the populations. It is generally used for large sample sizes (n>30).

Types of Z-Tests

1. **One-Sample Z-Test**:

 Compares a sample mean to a known population mean when population variance is known.

2. Two-Sample Z-Test:

Compares means of two independent samples.

3. **Proportion Z-Test**:

- Compares proportions between two groups.
- Example: Testing if the proportion of smokers is higher in city A than city B.

Key Formula

$$z = \frac{\dot{X} - \mu}{\sigma / \sqrt{n}}$$

Where:

- \dot{X} : Sample mean.
- μ : Population mean.
- σ : Population standard deviation.
- *n*: Sample size.

Assumptions

- The data follows a normal distribution or sample size is large (Central Limit Theorem applies).
- Population variance (σ^2) is known.

Applications

- Comparing observed data to a hypothesized population value.
- · Quality control and product testing.

4. F-Distribution

The **F-Distribution** is a probability distribution used primarily in variance analysis and comparing multiple group means.

Key Concepts

- Definition:
 - The ratio of two independent chi-squared variables divided by their degrees of freedom.

- Formula:

$$F = \frac{\left(S_1^2 / df_1\right)}{\left(S_2^2 / df_2\right)}$$

Where:

- S_1^2 , S_2^2 : Variances of the two groups.
- df_1 , df_2 : Degrees of freedom of the two groups.

Properties:

- Non-negative values $(F \ge 0)$.
- Skewed distribution, becoming less skewed as sample size increases.

Applications

- 1. Analysis of Variance (ANOVA):
 - Tests if there are significant differences among group means.
 - Example: Comparing test scores across 3 different teaching methods.

2. Regression Analysis:

 Evaluates the significance of regression models by comparing explained and unexplained variances.

3. Equality of Variances (F-Test):

Compares the variances of two datasets.

Assumptions

- Observations are independent.
- Groups are normally distributed.
- Variances between groups are equal.

Relation to Other Tests

• Used to calculate p-values in ANOVA and other statistical analyses.

Summary

- **P-Test** provides the p-value, helping decide the significance of results.
- T-Test and Z-Test compare means, differing by sample size and variance knowledge.

•	F-Distribution is foundational for variance analysis and multi-group comparisons.