CLOUD COMPUTING

Andrêza Leite andreza.leite@univasf.edu.br

Roteiro

- O que é cloud computing?
- •Classificação
- O que está 'por traz' da cloud?
- Exemplos

Como montar a sua?

O que é cloud computing?

Cloud Computing

O conceito de computação em nuvem (em inglês, cloud computing) refere-se à utilização da memória, das capacidades de armazenamento e cálculo de computadores e servidores compartilhados e interligados por meio da Internet, seguindo o princípio da computação em grade.

Características

O armazenamento de dados é feito em serviços que poderão ser acessados de qualquer lugar do mundo, a qualquer hora, não havendo necessidade de instalação de programas x ou de armazenar dados.

 O acesso a programas, serviços e arquivos é remoto, através da Internet - daí a alusão à nuvem.

 O uso desse modelo (ambiente) é mais viável do que o uso de unidades físicas.

Características

- Num sistema operacional disponível na Internet, a partir de qualquer computador e em qualquer lugar, pode-se ter acesso a informações, arquivos e programas num sistema único, independente de plataforma.
- O requisito mínimo é um computador compatível com os recursos disponíveis na Internet.
- O PC torna-se apenas um chip ligado à Internet—a "grande nuvem" de computadores—sendo necessários somente os dispositivos de entrada (teclado, mouse) e saída (monitor).

Por que pensar em cloud computing?

"Tudo" está na cloud

Classificação

Como podemos classificar a cloud computing?

Classificação

■ Modelo de negócio; e

■ Modelo de implantação

Classificação::Modelo de negócio

SaaS

- Aplicações hospedadas na nuvem;
- O modelo de SaaS proporciona softwares com propósitos específicos que são disponíveis para os usuários através da Internet;
- Os softwares são acessíveis a partir de vários dispositivos do usuário por meio de uma interface thin client como um navegador Web; e
- O SaaS reduz os custos dispensa a aquisição de licenças de softwares.

SaaS::Exemplos

PaaS

- Oferece uma infra-estrutura de alto nível de integração para implementar e testar aplicações na nuvem;
- O usuário não administra ou controla a infra-estrutura:
 - Rede, servidores, sistemas operacionais ou armazenamento; e
 - Possui controle sobre as aplicações implantadas e as configurações de aplicações hospedadas nesta infra-estrutura.
- A PaaS fornece: Sistema Operacional, Linguagens de Programação, Ambientes de Desenvolvimento.

Paas::Exemplos

laaS

- Responsável por prover toda a infraestrutura necessária para a PaaS e o SaaS.
- O principal objetivo é tornar mais fácil e acessível o fornecimento de recursos computação (Servidores, rede, armazenamento) fundamentais para construir um ambiente de aplicação sob demanda.

Podem incluir Sistemas Operacionais e Aplicativo

laaS

Possui algumas características:

Interface única para administração da infraestrutura;

 API para interação com hosts, switches, balanceadores e roteadores;

 Suporte para a adição de novos equipamentos de forma simples e transparente;

laaS::Exemplos

Classificação::Modelo de implantação

Modelo de implantação::Privado

- Operada unicamente por uma organização;
- A infra-estrutura de nuvem é utilizada exclusivamente por uma organização:
 - Nuvem local ou remota;
- Administrada pela própria empresa ou por terceiros;
- São empregados políticas de acesso aos serviço:
 - Gerenciamento de redes;
 - Configurações dos provedores de serviços;
 - Utilização de tecnologias de autenticação e autorização.

Modelo de implantação::Público

 A infra-estrutura de nuvem é disponibilizada para o público em geral;

 Acessível por qualquer usuário que conheça a localização do serviço;

Não podem ser aplicadas restrições de acesso;

· Hospedagem de Sites · Domínios · Cloud · Datacenter · Atendimento · Sobre Central do Cliente

Escalabilidade

No ambiente de Cloud computing Gigahost em grid, você mesmo implementa seu servidor com os recursos que desejar. Ao perceber uma necessidade de upgrade, não é necessário ao menos contactar o suporte, você mesmo via painel, aumenta os recursos do seu servidor (Upgrade) com apenas alguns cliques. O mesmo ocorre caso você precise reduzir os recursos do seu servidor (Downgrade). Com a

utilização dos chamados "Nodes diários" você pode efetuar um upgrade no servidor por apenas alguns dias, somente estes dias serão cobrados. Todos os recursos alocados ao servidor são 100% garantidos e não compartilhados com outros clientes.

Perfomance

Toda nossa estrutura utiliza storages SAN com discos rígidos de alta performance. Além disso, todos os servidores dentro de nossa doud contam com largura de banda de 100mbps para internet e 1gbps(gigabit) para rede local.

Variedade de sistemas operacionais

Nosso Cloud permite a escolha de uma grande lista de distribuições Linux para seu servidor, como CentOS, Ubuntu, Gentoo, etc., e Windows (Server Standard, no valor mensal de R\$ 30,00 e Server Enterprise, no valor de R\$ 80,00, disponíveis nas versões 2003 e 2008). Escolha o que melhor se adequa a sua necessidade e customize da forma que achar apropriada.

Microsoft Windows
Server 2008 R2 Enterprise x64
Server 2008 Enterprise x64
Server 2003 Standard x64

Ubuntu Lucid Lynx 10.04 LTS x64 Hardy Heron 8.04 LTS x64

PROCURA POR MAIS INFORMAÇÕES?

Adquira agora

Cloud Privado

Base de Conhecimento

Conheca nossa Infra-estrutura

Tire suas dúvidas em nosso chat:

Modelo de implantação::Hibrido

- Existe uma composição de duas ou mais nuvers
 - Privadas
 - Pública
- Nuvens híbridas são consideradas como entidades únicas
 - Ligadas por uma tecnologia padronizada ou proprietária
 - Permite a portabilidade de dados e aplicações

Products & Services ▼

Products

Amazon Elastic Compute Cloud (Amazon EC2)

Amazon EC2 Details

EC2 Overview

EC2 FAQs

EC2 Pricing

Amazon EC2 SLA

EC2 Instance Types

EC2 Instance Purchasing Options

Reserved Instances

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers.

Amazon EC2's simple web service interface allows you to obtain and configure capacity with minimal friction. It provides you with complete control of your computing resources and lets you run on Amazon's proven computing environment. Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change. Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios.

Easy to sign up, pay only for what you use

O que está "por traz" da cloud?

Virtualização!

O que está "por traz" da cloud?

Virtualização

- Dividir um servidor físico em vários servidores virtuais e independentes.
- Permite compartilhar e utilizar recursos de um único sistema computacional em vários outros (VM).
- Cada máquina virtual oferece um sistema computacional completo muito similar a uma máquina física.
- Cada máquina virtual pode ter seu próprio sistema operacional, aplicativos e oferecer serviços de rede.
- É possível ainda interconectar (virtualmente) cada uma dessas máquinas.

Virtualização

Vantagens de Virtualização

- Gestão centralizada: A gestão dos servidores virtuais é feita remotamente à distancia de um clique;
- Instalações simplificadas: Por não haver uma disparidade de hardware entre máquinas (servidor físico é unico) as futuras instalações de Sistemas Operacionais é muito mais simples;
- Facilidade para a execução de backups: É possivel copiar uma máquina inteira para outro servidor com a facilidade de um clique ou em ciclos programados, ou seja, possibilita uma redução muito significativa do tempo de downtime fácilitando a recuperação em caso de desastres. A disponibilização de novos servidores poderá ficar reduzida, em alguns casos, somente por uma questão de minutos;
- Suporte e manutenção simplificados: A gestão dos servidores virtuais poderá ser feita a partir de qualquer ponto não exigindo presença fisica na empresa;

Vantagens de Virtualização

- Segurança: Usando VMs, pode-se definir qual é o melhor ambiente para executar cada serviço, com diferentes requerimentos de segurança, diferentes ferramentas e o SO mais adequado para cada serviço. Além disso, cada VM é isolada das demais. Usando uma VM para cada serviço, a vulnerabilidade de um serviço não prejudica os demais(as VMs podem ficar isoladas e independentes umas das outras, inclusive independente da máquina hospedeira);
- Custo: A redução de custos é possível utilizando pequenos servidores virtuais em um único servidor mais poderosos;(Redução do consumo de energia - redução na quantidade de dispositivos – arrefecimento menor)
- Utilização de uma VM como ambiente de desenvolvimento: possibilita testes em SO distintos e, por prover um ambiente isolado, evita que, falhas na configuração e/ou execução, ou até mesmo vírus, danifiquem a máquina;
- Suporte a aplicações: Quando uma empresa decide migrar para um novo SO, é possível manter o SO antigo numa VM, reduzindo custos com a migração.

Ferramentas

OpenNebula.org

The Open Source Toolkit for Cloud Computing

OpenNebula

O Toolkit Open Source para Cloud Computing

 OpenNebula é um motor de infra-estrutura virtual que dinamicamente implementa e realoca máquinas virtuais em um pool de recursos físicos.

Apache Licence 2.0

OpenNebula::Compatibilidade

OpenNebula::Como funciona

Nimbus

 Nimbus é um toolkit de código aberto que permite transformar o seu cluster em uma infra-estrutura-como-um-serviço(laaS) em nuvem.

Apache Licence 2.0

Nimbus::Características

 Três conjuntos de interfaces remotas: Amazon EC2 WSDLs, Amazon EC2 API Query e Grid comunidade WSRF.

 Implementação de virtualização é baseada em Xen e KVM.

Nimbus::Como funciona

workspace nuvem de configuração

Serviço Inicializado

VMM Inicializada

Cliente Inicializado

Eucalyptus

 Elastic Utility Computing Architecture Linking Your Programs To Useful Systems

 É uma infra-estrutura de software livre para implementação de sistemas de computação em nuvem (laaS)

GPL versão 3.

Eucalyptus::Componentes

- Cloud Controller (CLC) É o ponto de entrada na nuvem para: administradores, projetistas, desenvolvedores e usuários finais. É responsáveis pelas consultas aos nodes e decisões de escalonamento por meio de requisições aos cluster controllers;
- Cluster Controller (CC) Geralmente é executado na máquina front-end ou em alguma máquina que tem conexão com todos os nodes. São responsáveis por tomar informações sobre as VMs ou sobre o tempo de execução das Vms;
- Node Controller (NC) -É executado em todo Node que hospeda uma VMs. É responsável por gerenciar a execução, inspeção e finalização das VMs;
- Storage Controller (SC) Implementa um bloco de armazenamento na rede. Um bloco de armazenamento elástico é um dispositivo de bloco que pode ser conectado a uma VM;
- Walrus (put/get storage) Permite aos usuários armazenar dados persistentes organizados como registros e objetos (Cria e apaga listas de registros, Retorna e apaga objetos, Controla política de acesso).

Eucalyptus::Como funciona

Eucalyptus::Benefícios

- Expansibilidade
 - Arquitetura simples e APIs internas
- Interface para o cliente
 - Interface e funcionalidades do Amazon EC2
- Rede
 - Redes privadas virtuais por nuvem
- Segurança
 - Deve ser compatível com as regras de segurança locais
- Virtualização
 - Servidores, rede, armazenamento, etc

A Cloud está ao seu alcance!

Mão à obra!

O que precisamos?

- CD de Instalação do Ubuntu Enterprise cloud;
 - Eucalyptus 2.0

Um Pc para instalação dos componentes CC, CLC,
 SC e o W;

 Um computador que possua processador com extensões de virtualização para o NC;

UEC

Uma alternativa à instalação através de pacotes, que é mais complicado, é utilizando a versão mais recente da distribuição Ubuntu Linux, o Ubuntu Enterprise Cloud (UEC), que fornece suporte completo para a execução de cloud baseada em Eucalyptus.

O Ubuntu Enterprise Cloud (UEC) é uma nova iniciativa de software livre da Ubuntu para facilitar a implementação, configuração e o uso de infraestruturas de cloud compatíveis com a interface dos serviços providos pelo Amazon WS, EC2 e S3.

O que precisamos?

Requisitos para instalação dos componentes CC, CLC, SC e o W:

Hardware	Mínimo	Sugerido
CPU	1 GHz	2 x 2 GHz
Memória	512 MB	2 GB
Disco	IDE 5400 rpm	SATA 7200 rpm
Espaco em Disco	40 GB	200 GB
Rede	100 Mbp	1 Gbps

Inicialmente faça o download da versão mais recente do Ubuntu UEC (no mo- mento, a 10.04), grave em um CD, selecione um computador para ser o CC, CLC, SC e Walrus. Este computador sera chamada daqui para frente de frontend.

Instalação FrontEnd[#1]

Ao iniciar o frontend com o CD do Ubuntu UEC, escolha a opção Install Ubuntu Enterprise Cloud.

Install Ubuntu Server
Install Ubuntu Enterprise Cloud
Check disc for defects
Test memory
Boot from first hard disk
Rescue a broken system

Os demais passos são os passos normais de uma instalação Linux: detecção do layout do teclado, formatação das parti- çoes, muitas coisas são feitas automáticas e serão detalhadas apenas os passos referente à configuração do serviços de cloud.

Instalação FrontEnd[#2]

Após o passo de configuração do nome do host, o instalador ira informar que não encontrou nenhum Cloud Controller na rede e que caso não existe nenhum que seja pressionado ENTER, neste caso específico a instalação deverá ser continuada pressionando a tecla

ENTER

Instalação FrontEnd[#3]

Será preciso especificar uma faixa de endereços IPs que serão atribuídas às instâncias das VMs que executarão nos nós. No caso de nenhuma faixa ser informada, durante a execução da imagem deverá ser solicitado uma endereçamento privado explicidamente.

Instalação FrontEnd[#4]

Após esse passo será solicitado a remoção do CD de instalação e a reinicialização do frontend.

O que precisamos?

Requisitos para instalação do componente NC:

Hardware	Mínimo	Sugerido
CPU	Extensão VT	VT, 64 bits, vários núcleos
Memória	1 GB	4 GB
Disco	IDE 5400 rpm	SATA, SCSI ou SAS 7200/10000 rpm
Espaco em Disco	40 GB	100 GB
Rede	100 Mbps	1 Gbps

Instalação NC[#2]

 Aqui ele deve informar já o endereço do cloud controller encontrado. Caso não encontre terá que informar manualmente

Instalação NC[#3]

 O registro dos nós no frontend é feito de forma automática, deste modo após o termino da instação a infraestrutura privada estara pronta para uso.

Banco de Dados

- □ Como isso funciona na cloud?
- Pesquisa.
 - NoSQL-database.org
 - Wide Column Store / Column Families
 - Document Store
 - Key Value / Tuple Store
 - Graph Databases
 - Multimodel Databases
 - Multivalue Databases
 - Grid & Cloud Database Solutions
 - Multidimensional Databases
 - XML Databases

CLOUD COMPUTING