Project Development Phase Model Performance Test

Team ID	PNT2022TMID18451
Project Name	Developing a Flight Delay Prediction Model using Machine Learning
Maximum Marks	10 Marks

ML Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Confusion Matrix, Accuracy Score & Classification Report	In [8]: sns.scatterplot(x='ARR_DELAY',y='ARR_DEL15',data=data) Out[8]: 10 08 110		

			To For	1.
			In [34	decisiontree = classifier.predict(x_test)
			In [47	from sklearn.metrics import accuracy_score acc = accuracy_score(y_test,decisiontree) acc
			Out[47]: 1.0
			In [48	<pre>from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test,decisiontree)</pre>
			In [49]: cm
			Out[49]: array([[1938, 0], [0, 309]], dtype=int64)
2.	Tune the	Hyperparameter	Ti-	
	Model	Tuning - StandardScaler	In [30]:	<pre>from sklearn.preprocessing import StandardScaler sc = StandardScaler() x_train = sc.fit_transform(x_train) x_test = sc.transform(x_test)</pre>
			In [31]:	<pre>from imblearn.over_sampling import SMOTE smote = SMOTE()</pre>
			In [32]:	<pre>x_train_smote,y_train_smote = smote.fit_resample(x_train,y_train)</pre>
			In [33]:	<pre>from sklearn.tree import DecisionTreeClassifier classifier = DecisionTreeClassifier(random_state=0) classifier.fit(x_train_smote,y_train_smote)</pre>
				DecisionTreeClassifier(random_state=0) In a Jupyter environment, please rerun this cell to show the HTML representat On GitHub, the HTML representation is unable to render, please try loading the
			In [34]:	<pre>decisiontree = classifier.predict(x_test)</pre>
			In [47]:	<pre>from sklearn.metrics import accuracy_score acc = accuracy_score(y_test,decisiontree) acc</pre>
			Out[47]:	1.0
I				

BRIEF DETAILED SCREENSHOTS:

METRICS:


```
In [34]:
           decisiontree = classifier.predict(x_test)
In [47]:
          from sklearn.metrics import accuracy_score
           acc = accuracy_score(y_test,decisiontree)
           acc
          1.0
Out[47]:
In [48]:
          from sklearn.metrics import confusion_matrix
           cm = confusion_matrix(y_test,decisiontree)
In [49]:
          cm
Out[49]:
          array([[1938,
                         309]], dtype=int64)
                     0,
```

TUNE THE MODEL:

Out[47]: 1.0

```
In [30]:
          from sklearn.preprocessing import StandardScaler
          sc = StandardScaler()
          x train = sc.fit transform(x train)
          x_test = sc.transform(x_test)
In [31]:
          from imblearn.over_sampling import SMOTE
          smote = SMOTE()
In [32]:
          x_train_smote,y_train_smote = smote.fit_resample(x_train,y_train)
In [33]:
          from sklearn.tree import DecisionTreeClassifier
          classifier = DecisionTreeClassifier(random_state=0)
          classifier.fit(x_train_smote,y_train_smote)
Out[33]: DecisionTreeClassifier(random_state=0)
         In a Jupyter environment, please rerun this cell to show the HTML representat
         On GitHub, the HTML representation is unable to render, please try loading th
In [34]:
          decisiontree = classifier.predict(x_test)
In [47]:
          from sklearn.metrics import accuracy score
          acc = accuracy_score(y_test,decisiontree)
          acc
```