Learning Objectives

- After this segment, students will be able to
 - Contrast colocations and associations
 - Describe colocation interest measures

Background: Association Rules

Association rule e.g. (Diaper in T => Beer in T)

Transaction	Items Bought		
1	{socks, , milk, , beef, egg,}		
2	{pillow, [], toothbrush, ice-cream, muffin,}		
3	{ 💂, 🧻, pacifier, formula, blanket,}		
n	{battery, juice, beef, egg, chicken,}		

- Support: probability (Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T | Diaper in T) = 2/2
- Apriori Algorithm
 - Support based pruning using monotonicity

How to eliminate infrequent item-sets as soon as possible?

Transaction Id	Time	Item-types bought
1101	18:35	Milk, bread, cookies, juice
792	19:38	Milk, juice
2130	20:05	Milk, eggs
1735	20:40	Bread, cookies, coffee

Support threshold >= 0.5

Eliminate infrequent singleton sets

Transaction Id	Time	Item-types bought	Item-type	Count
1101	18:35	Milk, bread, cookies, juice	Milk	3
792	19:38	Milk, juice	Bread	2
2130	20:05	Milk, eggs	Cookies	2
1735	20:40	Bread, cookies, coffee	Juice	2
Cunn	ort the	Coffee	1	
Supp	ort th	Eggs	1	

Milk Bread Cookies Juice Coffee Eggs

Make pairs from frequent items & prune infrequent pairs!

Transaction Id	Time	Item-types bought	Item-type	Count	Item Pair	Count
1101	18:35	Milk, bread, cookies, juice	Milk	3	Milk, Cookies	2
792	19:38	Milk, juice	Bread	2	Milk, Juice	2
2130	20:05	Milk, eggs	Cookies	2	Bread, Cookies	2
1735	20:40	Bread, cookies, coffee	Juice	2	Milk, Bread	1
Support threshold >= 0.5			Coffee	1	Bread, Juice	1
			Eggs		Cookies, Juice	1

Make triples from frequent pairs & Prune infrequent triples!

Support threshold >= 0.5

	Transaction Id	Time	Item-types bought	Item-type	Count	Item Pair	Count
	1101	18:35	Milk, bread, cookies, juice	Milk	3	Milk, Cookies	2
	792	19:38	Milk, juice	Bread	2	Milk, Juice	2
	2130	20:05	Milk, eggs	Cookies	2	Bread, Cookies	2
	1735	20:40	Bread, cookies, coffee	Juice	2	Milk, Bread	1
_				Coffee	1	Bread, Juice	1
	MBCJ			Eggs	1	Cookies, Juice	1

No triples generated Due to Monotonicity!

Apriori algorithm examined only 12 subsets instead of 64!

Association Rules Limitations

- Transaction is a core concept!
 - Support is defined using transactions
 - Apriori algorithm uses transaction based Support for pruning

Transaction	Items Bought		
1	{socks, , milk, , beef, egg,}		
2	{pillow, [a], toothbrush, ice-cream, muffin,}		
3	{ , j, pacifier, formula, blanket,}		

- However, spatial data is embedded in continuous space
 - Transactionizing continuous space is non-trivial!

Spatial Association vs. Cross-K Function

- A1 C1
 B1
 A2
 B2
 C2
- Input = Feature A,B, and, C, & instances A1, A2, B1, B2, C1, C2

- Spatial Association Rule (Han 95)
- Output = (B,C) with threshold 0.5
- Transactions by Reference feature, e.g. C

Transactions: (C1, B1), (C2, B2) Support (A,B) = $\not O$ Support(B,C)=2 / 2 = 1

Cross-K Function

Cross-K (A, B) =
$$2/4 = 0.5$$

Cross-K(B, C) = $2/4 = 0.5$
Cross-K(A, C) = 0

Output = (A,B), (B, C) with threshold 0.5

Spatial Colocation

Features: A. B. C

Feature Instances: A1, A2, B1, B2, C1, C2

Feature Subsets: (A,B), (A,C), (B,C), (A,B,C)

Participation ratio (pr):

$$\mathbf{pr}(A, (A,B)) = \text{fraction of A instances neighboring feature } \{B\} = 2/2 = 1$$

$$\mathbf{pr}(B, (A,B)) = \frac{1}{2} = 0.5$$

Participation index
$$(A,B) = pi(A,B) = min\{ pr(A, (A,B)), pr(B, (A,B)) \} = min (1, \frac{1}{2}) = 0.5$$

 $pi(B, C) = min\{ pr(B, (B,C)), pr(C, (B,C)) \} = min (1,1) = 1$

Participation Index Properties:

- (1) <u>Computational</u>: Non-monotonically decreasing like support measure
- (2) Statistical: Upper bound on Ripley's Cross-K function

Participation Index >= Cross-K Function

Association Vs. Colocation

	Associations	Colocations
underlying space	Discrete market baskets	Continuous geography
event-types	item-types, e.g., Beer	Boolean spatial event-types
collections	Transaction (T)	Neighborhood N(L) of location L
prevalence measure	Support, e.g., Pr.[Beer in T]	Participation index, a lower bound on Pr.[A in N(L) B at L]
conditional probability measure	Pr.[Beer in T Diaper in T]	Participation Ratio(A, (A,B)) = Pr.[A in N(L) B at L]

Spatial Association Rule vs. Colocation

Input = Spatial feature A,B, C, & their instances

- Spatial Association Rule (Han 95)
- Output = (B,C)
- Transactions by Reference feature C
 Transactions: (C1, B1), (C2, B2)
 Support (A,B) = Ø, Support(B,C)=2 / 2 = 1
- Cross-K Function
 Cross-K (A, B) = 2/4 = 0.5
 Cross-K(B, C) = 2/4 = 0.5
 Output = (A,B), (B, C)

PI(B,C) = min(2/2,2/2) = 1

Colocation - Neighborhood graph
 Output = (A,B), (B, C)
 PI(A,B) = min(2/2,1/2) = 0.5

Spatial Computing

Research Group

Spatial Colocation: Trends

- Algorithms
 - Join-based algorithms
 - One spatial join per candidate colocation
 - Join-less algorithms
- Spatio-temporal
 - Which events co-occur in space and time?
 - (bar-closing, minor offenses, drunk-driving citations)
 - Which types of objects move together?

