BẢNG TÍNH TẢI TRỌNG ĐỘNG ĐẤT

(THEO TCXDVN 9386-2012)

1. Đặc trưng nền đất:

- Địa điểm xây dựng:

Tỉnh/Thành phố: Hải Phòng Quận/Huyện: Hồng Bàng

→ Đỉnh gia tốc nền tham chiếu:

 $a_{gR} = 0.1290$ g

- Giá trị của các tham số mô tả phổ phản ứng đàn hồi:

Loại nền	S	T _B (s)	T _C (s)	T _D (s)
D	1.35	0.20	0.80	2.00

2. Xác định phổ thiết kế Sd(T):

- Đối với các thành phần nằm ngang, phổ thiết kế S_d(T) được xác định bằng các biểu thức:

$$0 \le T \le T_B : S_d(T) = a_g.S. \left[\frac{2}{3} + \frac{T}{T_B} \left(\frac{2.5}{q} - \frac{2}{3} \right) \right]$$

$$T_B \le T \le T_C : S_d(T) = a_g . S. \frac{2.5}{q}$$

$$T_{C} \leq T \leq T_{D} : S_{d}(T) \begin{cases} = a_{g} . S \cdot \frac{2.5}{q} \cdot \frac{T_{C}}{T} \\ \geq \beta . a_{g} \end{cases}$$

$$T_{D} \leq T : S_{d}(T) \begin{cases} = a_{g}.S \cdot \frac{2.5}{q} \cdot \frac{T_{C}T_{D}}{T^{2}} \\ \geq \beta.a_{g} \end{cases}$$

- Trong đó:

- S_d(T): Phổ thiết kế trong phân tích đàn hồi.
- T_B: Giới hạn dưới của chu kì, ứng với đoạn nằm ngang của phổ phản ứng gia tốc.
- T_C: Giới hạn trên của chu kì, ứng với đoạn nằm ngang của phổ phản ứng gia tốc.
- T_B: Giá trị xác định điểm bắt đầu của phần phản ứng dịch chuyển không đổi trong phổ phản ứng.

- Gia tốc nền tham chiếu:

 $a_{cP} = 0.129$

- Hệ số tầm quan trọng:

 $\gamma = 1.25$

- Gia tốc nền thiết kế:

 $a_{q} = 1.5819$ m/s

 $\beta a_q =$

= 0.3164

- Hệ số ứng xử với các tác động theo phương ngang của công trình:

$$q = q_0.k_w \ge 1,5$$

+) Hệ số ứng xử phụ thuộc vào loại kết cấu và tính đều đặn theo phương đứng:

$$q_0 = 3.9$$

+) Hệ số phản ánh dạng phá hoại phổ biến trong hệ kết cấu có tường:

$$k_w = 1.0$$
 $q = 1.5$

- Hệ số ứng với cận dưới của phổ thiết kế theo phương nằm ngang:

$$\beta = 0.2$$

3. Xác định lực cắt đáy ở chân công trình:

- Lực cắt ở chân công trình F_{bk} trong dạng dao động thứ k được xác định theo biểu thức:

$$F_{bk}=S_d(T_k)*M*\alpha_k*\lambda$$

- Trong đó:
 - F_{bk}: Lực cắt ở chân công trình trong dạng dao động thứ k.
 - $S_d(Tk)$: Tung độ của phổ thiết kế động đất tương ứng với dạng dao động cơ bản thứ k.; đơn vị: g
 - λ: Hệ số điều chỉnh, được xác định như sau:

 λ = 0.85 nếu T1<=2T_C với nhà có > 2 tầng, λ = 1 với các trường hợp khác.

$$\lambda = 1.00$$

- M: Tổng khối lượng của toàn công trình.
- α_k: Phần trăm tổng khối lượng đóng góp vào dạng dao động thứ k.
- Các giá trị α_k (%) tương ứng với các dạng dao động:

4. Xác định lực động đất phân bố vào các tầng:

- Lực động đất phân bố vào các tầng thứ i được xác định theo công thức:

$$F_{ki}=F_{bk}.(s_{ki}.M_{ki}/\Sigma s_{i}.M_{i})$$

- Trong đó:
 - F_{bk}: Lực cắt ở chân công trình trong dạng dao động thứ k.
 - F_{ki}: Lực cắt ngang tác dụng tại tầng thứ i trong dạng dao động thứ k.
 - M_{ki}: Khối lượng của tầng thứ i trong dạng dao động thứ k.
 - s_{ki}: Chuyển vị tại tầng thứ i trong dạng dao động thứ k.

