VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT

on

Database Management Systems (23CS3PCDBM)

Submitted by

Nagaraja G (24BECS426)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING

(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Database Management Systems (23CS3PCDBM)" carried out by **Nagaraja G** (24BECS426), who is bonafide student of **B. M. S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum during the year 2024. The Lab report has been approved as it satisfies the academic requirements in respect of a Database Management Systems (23CS3PCDBM) work prescribed for the said degree.

Dr. Sheethala VA Assistant Professor Department of CSE, BMSCE Dr. Joythi S Nayak Professor & HOD Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	4-10-2024	Insurance Database	4-11
2	9-10-2024	More Queries on Insurance Database	12-14
3	16-10-2024	Bank Database	15-21
4	23-10-2024	More Queries on Bank Database	22-26
5	30-10-2024	Employee Database	27-33
6	13-11-2024	More Queries on Employee Database	34-36
7	20-11-2024	Supplier Database	37-41
8	27-11-2024	NO SQL 01 - Student Database	42-45
9	4-12-2024	NO SQL 02- Customer Database	46-48
10	4-12-2024	NO SQL 03– Restaurant Database	49-54

Insurance Database

Question

(Week 1)

- PERSON (driver_id: String, name: String, address: String)
- CAR (reg_num: String, model: String, year: int)
- ACCIDENT (report_num: int, accident_date: date, location: String)
- OWNS (driver_id: String, reg_num: String)
- PARTICIPATED (driver_id: String,reg_num: String, report_num: int, damage_amount: int)
- Create the above tables by properly specifying the primary keys and the foreign keys.
 Enter at least five tuples for each relation
- Display Accident date and location
- Update the damage amount to 25000 for the car with a specific reg_num (example 'K A053408') for which the accident report number was 12.
- Add a new accident to the database.
- To Do
- Display Accident date and location
- Display driver id who did accident with damage amount greater than or equal to Rs.25000

Schema Diagram

Create database

```
show databases;
create database insurance_426;
use insurance_426;
```

Create table

```
create table person(
driver_id varchar(20),
name varchar(20),
address varchar(20),
primary key(driver_id)
);
create table car(
reg_num varchar(20),
model varchar(10),
year int,
primary key(reg_num));
```

```
create table accident(
report_num int,
accident_date date,
location varchar(20),
primary key(report_num)
);
create table owns(
driver_id varchar(20),
reg_num varchar(10),
primary key(driver_id,reg_num),
foreign key(driver_id) references person(driver_id),
foreign key(reg_num) references car(reg_num)
);
create table participated(
driver_id varchar(10),
reg_num varchar(10),
report_num int,
damage_amount int,
primary key(driver_id, reg_num, report_num),
foreign key(driver_id) references person(driver_id),
foreign key(reg_num) references car(reg_num),
foreign key(report_num) references accident(report_num));
```

Structure of the table

desc person;

desc accident;

Inserting Values to the table

insert into person values("A01", "Richard", "Srinivas nagar"); insert into person values("A02", "Pradeep", "Rajaji nagar"); insert into person values("A03", "Smith", "Ashok nagar"); insert into person values("A04", "Venu", "NR Colony"); insert into person values("A05", "Jhon", "Hanumanth nagar");

select * from person;

insert into car values("KA052250","Indica",1990); insert into car values("KA031181","Lancer",1957); insert into car values("KA095477","Toyota",1998); insert into car values("KA053408","Honda",2008); insert into car values("KA041702","Audi",2005); select * from car;

insert into accident values (11, "2003-01-01", "Mysore Road"); insert into accident values (12, "2004-02-02", "South end Circle"); insert into accident values (13, "2003-01-21", "Bull temple Road"); insert into accident values (14, "2008-02-27", "Mysore road"); insert into accident values (15, "2004-03-05", "Kankapura"); select * from accident;

insert into owns values ("A01","KA052250");
insert into owns values ("A02","KA031181");
insert into owns values ("A03","KA095477");
insert into owns values ("A04","KA053408");
insert into owns values ("A05","KA041702");
select * from owns;

insert into participated values("A01","KA052250",11,10000); insert into participated values("A02","KA053408",12,50000); insert into participated values("A03","KA095477",13,25000); insert into participated values("A04","KA031181",14,3000); insert into participated values("A05","KA041702",15,5000); select * from participated;

Queries

• Display Accident date and location.

select accident_date , location from accident;

• Update the damage amount to 25000 for the car with a specific reg-num (example 'KA053408') for which the accident report number was 12.

update participated set damage_amount=25000

where reg_num='KA053408' and report_num=12;

• Add a new accident to the database.

insert into accident values(16,'2008-03-08',"Domlur"); select * from accident;

• Display driver id who did accident with damage amount greater than or equal to Rs.25000

select driver_id from participated where damage_amount >= 25000;

More Queries on Insurance Database

Question

(Week 2)

- •PERSON (driver_id: String, name: String, address: String)
- •CAR (reg_num: String, model: String, year: int)
- ACCIDENT (report_num: int, accident_date: date, location: String)
- •OWNS (driver_id: String, reg_num: String)
- •PARTICIPATED (driver_id: String,reg_num: String, report_num: int, damage_amount: int)
- •Display the entire CAR relation in the ascending order of manufacturing year.
- •Find the number of accidents in which cars belonging to a specific model (example 'Lancer') were involved.
- Find the total number of people who owned cars that were involved in accidents in 2008.

Schema Diagram

Queries

• LIST THE ENTIRE PARTICIPATED RELATION IN THE DESCENDING ORDER OF DAMAGE AMOUNT.

SELECT * FROM participated ORDER BY damage_amount DESC;

	driver_id	reg num	report num	damage_amount	
-	A02		12	25000	
	A03	KA095477	13	25000	
	A01	KA052250	11	10000	
	A05	KA041702	15	5000	
	A04	KA031181	14	3000	
	NULL	NULL	NULL	NULL	

• FIND THE AVERAGE DAMAGE AMOUNT.

SELECT AVG(damage_amount) FROM participated;

• FIND MAXIMUM DAMAGE AMOUNT.

SELECT MAX(damage_amount) FROM participated;

• DELETE THE RECORDS WHICH IS LESS THAN AVERAGE DAMAGE AMOUNT.

DELETE FROM participated WHERE DAMAGE_AMOUNT < (SELECT AVG(DAMAGE_AMOUNT) FROM (SELECT DAMAGE_AMOUNT FROM participated) as sub);

Bank Database

Question (Week 3)

- branch_426 (branch_name: String, branch_city: String, assets: real)
- bank_account_426 (accno: int, branch_name: String, balance: real)
- bank_customer_426 (customer_name: String, customer_street: String, customer_city: String)
- depositor_426 (customer_name: String, accno: int)
- loan (loan_number: int, branch_name: String, amount: real)
- Create the above tables by properly specifying the primary keys and the foreign keys. Enter at least five tuples for each relation.
- Display the branch_name and assets from all branchs in lakhs of rupees and rename the assets column to 'assets in lakhs'.
- Find all the customers who have at least two accounts at the same branch (ex. SBI_ResidencyRoad).
- Create a view which gives each branch_426 the sum of the amount of all the loans at the branch.

Schema Diagram

Create database

create database bank_426; use bank_426;

Create table

create table branch_426(branch_name varchar(25), branch_city varchar(25), assets int, primary key(branch_name));

```
create table bank_account_426(
acc_no int,
balance int,
branch name varchar(25),
primary key(acc_no),
foreign key(branch name) references branch 426(branch name)
create table bank_customer_426(
customer_name varchar(10),
customer street varchar(25),
customer_city varchar(25),
primary key (customer_name)
);
create table depositor_426(
customer_name varchar(10),
acc_no int,
primary key (customer_name,acc_no),
foreign key(customer_name) references bank_customer_426(customer_name),
foreign key(acc_no) references bank_account_426(acc_no)
create table loan(
loan_no int,
branch_name varchar(25),
amount int,
primary key (loan no),
foreign key(branch_name) references branch_426(branch_name)
);
```

Inserting Values to the tables

```
insert into branch_426 values("SBI_Chamrajpet","Bangalore",50000); insert into branch_426 values("SBI_Residencyroad","Bangalore",10000); insert into branch_426 values("SBI_Shivajiroad","Bombay",20000); insert into branch_426 values("SBI_Parlimentroad","Delhi",10000); insert into branch_426 values("SBI_Jantarmantar","Delhi",20000); select * from branch_426;
```


insert into bank_account_426 values (1,2000,"SBI_Chamrajpet"); insert into bank_account_426 values (2,5000,"SBI_Residencyroad"); insert into bank_account_426 values (3,6000,"SBI_Shivajiroad"); insert into bank_account_426 values (4,9000,"SBI_Parlimentroad"); insert into bank_account_426 values (5,8000,"SBI_Jantarmantar"); insert into bank_account_426 values (6,4000,"SBI_Shivajiroad"); insert into bank_account_426 values (8,4000,"SBI_Residencyroad"); insert into bank_account_426 values (9,3000,"SBI_Parlimentroad"); insert into bank_account_426 values (10,5000,"SBI_Residencyroad"); insert into bank_account_426 values (11,2000,"SBI_Residencyroad"); insert into bank_account_426 values (11,2000,"SBI_Jantarmantar");

select * from bank account 426;

insert into bank_customer_426 values("Avinash","Bull_temple_road","Bangalore"); insert into bank_customer_426 values("Dinesh","Bannergatta_road","Bangalore"); insert into bank_customer_426 values("Mohan","NationalCollege_road","Bangalore"); insert into bank_customer_426 values("Nikil","Akabar_road","Delhi"); insert into bank_customer_426 values("Ravi","Prithviraj_road","Delhi");

select * from bank_customer_426;

insert into depositor_426 values("Avinash",1); insert into depositor_426 values("Dinesh",2); insert into depositor_426 values("Nikil",4); insert into depositor_426 values("Ravi",5); insert into depositor_426 values("Avinash",8); insert into depositor_426 values("Nikil",9); insert into depositor_426 values("Dinesh",10); insert into depositor_426 values("Nikil",11);

select * from depositor_426;

insert into loan values(1,"SBI_Chamrajpet",1000); insert into loan values(2,"SBI_Residencyroad",2000); insert into loan values(3,"SBI_Shivajiroad",3000); insert into loan values(4,"SBI_Parlimentroad",4000); insert into loan values(5,"SBI_Jantarmantar",5000);

select * from loan;

Queries

•Display the branch_name and assets from all branchs in lakhs of rupees and rename the assets column to 'assets in lakhs'.

alter table branch_426 change assets assets_inlakhs real; select branch_name, assets_inlakhs from branch_426;

•Find all the customers who have at least two accounts at the same branch (ex. SBI_ResidencyRoad).

select d.customer_name from depositor_426 d, bank_account_426 b where b.branch_name='SBI_ResidencyRoad' and d.acc_no=b.acc_no group by d.customer_name having

count(d.acc_no)>=2;

• Create a view which gives each branch_426 the sum of the amount of all the loans at the branch.

More Queries on Bank Database

Question

(**Week 4**)

- branch_426 (branch_name: String, branch_city: String, assets: real)
- bank_account_426 (accno: int, branch_name: String, balance: real)
- bank_customer_426 (customer_name: String, customer_street: String, customer_city: String)
- depositor_426 (customer_name: String, accno: int)
- loan (loan_number: int, branch_name: String, amount: real)
- -borrower_426(customer_name: String, loan_number:int)
- Find all the customers who have an account at all the branches located in a specific city (Ex. Delhi).
- Find all customers who have a loan at the bank but do not have an account.
- Find all customers who have both an account and a loan at the Bangalore branch.
- Find the names of all branchs that have greater assets than all branchs located in Bangalore.
- Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).
- Update the Balance of all accounts by 5%

Schema Diagram

Inserting values to the table

```
insert into borrower_426 values("Avinash",1); insert into borrower_426 values("Dinesh",2); insert into borrower_426 values("Mohan",3); insert into borrower_426 values("Nikil",4); insert into borrower_426 values("Ravi",5); select * from borrower_426;
```


Queries

• Find all the customers who have an account at all the branches located in a specific city (Ex. Delhi).

Find all customers who have a loan at the bank but do not have an account.

```
select b.customer_name from borrower_426 b
```

where b.loan_no not in(select d.acc_no from depositor_426 d where b.loan_no=d.acc_no);

• Find all customers who have both an account and a loan at the Bangalore branch.

select b.customer_name

from borrower_426 b

where b.loan_no in(select d.acc_no from depositor_426 d,bank_account_426 ba, branch_426 b

where b.loan_no=d.acc_no and d.acc_no=ba.acc_no and

ba.branch_name=b.branch_name

and b.branch_city="Bangalore");

• Find the names of all branchs that have greater assets than all branchs located in Bangalore.

select branch_name

from branch_426

where assets_inlakhs>all(select assets_inlakhs from branch_426 where branch_city="Bangalore");

• Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

delete from bank_account_426 ba where ba.branch_name=(select b.branch_name from branch_426 b where branch city="Bombay");

Update the Balance of all accounts by 5%

update bank_account_426 set balance=balance+((5*balance)/100) where acc_no in(1,2,3,4,5,6,8,9,10,11,12); select * from bank_account_426;

Employee Database

Question

(Week 5)

- 1. Using Scheme diagram, Create tables by properly specifying the primary keys and the foreign keys.
- 2.Enter greater than five tuples for each table.
- 3.Retrieve the employee numbers of all employees who work on project located in Bengaluru, Hyderabad, or Mysuru.
- 4.Get Employee ID's of those employees who didn't receive incentives.
- 5. Write a SQL query to find the employees name, number, dept, job_role, department location and project location who are working for a project location same as his/her department location.

Schema Diagram

Schema Diagram

Create database

create database employee_24becs426; use employee_24becs426;

Create table

create table dept_426(

```
d_no int,
d_name varchar(20),
d_loc varchar(20),
primary key(d_no)
);

create table employee_426(
e_no int,
e_name varchar(20),
mngr_no int,
hire_date varchar(10),
salary float,
d_no int,
primary key(e_no,d_no),
```

```
foreign key(d_no) references dept_426(d_no)
);
create table incentives_426(
e no int,
incentive date varchar(20),
incentive_amt float,
primary key(e_no,incentive_date),
foreign key(e_no) references employee_426(e_no)
);
create table project_426(
p_no int,
p_loc varchar(20),
p_name varchar(20),
primary key(p_no)
);
create table assigned_to_426(
e_no int,
p_no int,
jobe_role text,
primary key(e_no,p_no),
foreign key(e_no) references employee_426(e_no),
foreign key(p_no) references project_426(p_no)
);
```

Inserting Values to the table

```
insert into dept_426 values(1,"cse","pj");
insert into dept_426 values(2,"ise","pj");
insert into dept_426 values(3,"csds","pg");
insert into dept_426 values(4,"ece","pg");
insert into dept_426 values(5,"aiml","pj");
select * from dept_426;
```


insert into employee_426 values(101,"mahesh",100,"12/01/1999",100000,1); insert into employee_426 values(201,"kushal",200,"17/01/2020",50000,2); insert into employee_426 values(301,"naga",100,"01/09/2004",30000,3); insert into employee_426 values(401,"chaithanya",101,"03/08/2000",10000,4); insert into employee_426 values(501,"aman",101,"19/02/2008",90000,5); select * from employee_426;

insert into incentives_426 values(101,"12/03/2004",50000); insert into incentives_426 values(201,"17/03/2024",25000); insert into incentives_426 values(301,"01/12/2019",15000); insert into incentives_426 values(401,"03/11/2019",5000); insert into incentives_426 values(501,"29/4/2019",45000);

select * from incentives_426;

insert into project_426 values(10,"bangalore","chatbot"); insert into project_426 values(40,"delhi","ml model"); insert into project_426 values(50,"bombay","blockchain"); insert into project_426 values(30,"chennai","stocks"); insert into project_426 values(80,"mysore","android app"); select * from project_426;

insert into assigned_to_426 values(101,10,"devops"); insert into assigned_to_426 values(201,40,"sde"); insert into assigned_to_426 values(301,50,"manager"); insert into assigned_to_426 values(401,30,"jpa"); insert into assigned_to_426 values(501,80,"pa"); select * from assigned_to_426;

Queries

• Retrieve the employee numbers of all employees who work on project located in Bengaluru, Hyderabad, or Mysuru.

select e_no from assigned_to_426 a,project_426 p where a.p_no=p.p_no and p.p_loc in ("bangalore","mysure","Hyderabad");

• Get Employee ID's of those employees who didn't receive incentives.

• Write a SQL query to find the employees name, number, dept, job_role, department location and project location who are working for a project location same as his/her department location.

select e_name,e.e_no,d.d_name,a.jobe_role,d.d_loc,p.p_loc from employee_426 e,dept_426 d,project_426 p,assigned_to_426 a where e.e_no=a.e_no and e.d_no=d.d_no and p.p_no=a.p_no and p.p_loc=d.d_loc;

More Queries on Employee Database

Question

(Week 6)

- 1. Using Scheme diagram, Create tables by properly specifying the primary keys and the foreign keys.
- 2.Enter greater than five tuples for each table.
- 3.List the name of the managers with the maximum employees.
- 4. Display those managers name whose salary is more than average salary of his employee.
- 5. Find the name of the second top level managers of each department.
- 6. Find the employee details who got the second maximum incentive in January 2019.
- 7. Display those employees who are working in the same department where his the manager is working.

Schema Diagram

Schema Diagram

Queries

• List the name of the managers with the maximum employees.

```
select e_name from employee_426 where mngr_no=(select MAX(mngr_no) from employee_426);
```


 Display those managers name whose salary is more than average salary of his employee.

select e_name from employee_426 where salary > (select AVG(salary) from employee_426);

Find the name of the second top level managers of each department.

select e_name

from employee_426

where salary=(select MAX(salary) from employee_426

where salary < (select MAX(salary) from employee_426));

• Find the employee details who got the second maximum incentive in January 2019.

select * from employee_426

where e_no=(select e_no from incentives_426 where incentive_amt=(select MAX(incentive_amt) from incentives_426 where incentive_amt < (select MAX(incentive_amt) from incentives_426)));

• Display those employees who are working in the same department where his the manager is working.

select * from employee_426 e where e.d_no=(select e1.d_no from employee_426 e1

Supplier Database

Question

(Week 7)

- 1.Using Scheme diagram, Create tables by properly specifying the primary keys and the foreign keys.
- 2.Insert appropriate records in each table.
- 3. Find the pnames of parts for which there is some supplier.
- 4. Find the snames of suppliers who supply every part.
- 5. Find the snames of suppliers who supply every red part.
- 6. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.
- 7. Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).
- 8. For each part, find the sname of the supplier who charges the most for that part.

Schema Diagram

Create database

create database Supplier_426; use Supplier_426;

Create table

create table supplierT_426(
s_id int,

```
s name varchar(20),
city varchar(20),
primary key(s_id)
);
create table parts_426(
p id int,
p name varchar(20),
color varchar(20),
primary key(p_id)
);
create table catalog_426(
s id int,
p_id int,
cost int,
primary key(s_id,p_id),
foreign key(s_id) references supplierT_426(s_id),
foreign key(p_id) references parts_426(p_id)
);
Inserting Values to the table
insert into supplier T 426 values (10001, "Acme widget", "Bangalore");
insert into supplierT_426 values(10002,"Johns","Kolkata");
insert into supplierT_426 values(10003,"Vimal","Mumbai");
insert into supplierT_426 values(10004,"Reliance","Delhi");
select * from supplierT_426;
insert into parts_426 values(20001, "Book", "Red");
insert into parts_426 values(20002,"Pen","Red");
insert into parts_426 values(20003, "Pencil", "Green");
insert into parts_426 values(20004,"Mobile","Green");
insert into parts_426 values(20005,"Charger","Black");
select * from parts_426;
insert into catalog_426 values(10001,20001,10);
insert into catalog_426 values(10001,20002,10);
insert into catalog_426 values(10001,20003,30);
insert into catalog_426 values(10001,20004,10);
insert into catalog 426 values(10001,20005,10);
insert into catalog 426 values(10002,20001,10);
```

```
insert into catalog_426 values(10002,20002,20); insert into catalog_426 values(10003,20003,30); insert into catalog_426 values(10004,20003,40); select * from catalog_426;
```

Queries

• Find the pnames of parts for which there is some supplier.

select distinct p.p_name from parts_426 p,catalog_426 c where p.p_id=c.p_id;

• Find the snames of suppliers who supply every part.

select distinct s.s_name from catalog_426 c,supplierT_426 s where c.s_id=s.s_id and NOT EXISTS(select p.p_id from parts_426 p where not exists(select c1.s_id from catalog_426 c1 where c1.s_id=c.s_id and c1.p_id=p.p_id));

• Find the snames of suppliers who supply every red part.

select distinct s.s_name from catalog_426 c,supplierT_426 s where c.s_id=s.s_id and not exists(select p.p_id from parts_426 p where p.color="Red" and not exists(select c1.s_id from catalog_426 c1 where c1.s_id=c.s_id and c1.p_id=p.p_id and p.color="Red"));

 Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

```
select p.p_name
from parts_426 p,catalog_426 c,supplierT_426 s
where p.p_id=c.p_id and c.s_id=s.s_id
and s.s_name="Acme widget" and not exists(select * from catalog_426 c1,supplierT_426 s1 where p.p_id=c1.p_id and c1.s_id=s1.s_id and s1.s_name!="Acme widget");
```


• Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).

select distinct c.s_id from catalog_426 c where c.cost>(select AVG(c1.cost) from catalog_426 c1 where c1.p_id=c.p_id);

 For each part, find the sname of the supplier who charges the most for that part.

```
select p.p_id,s.s_name
from parts_426 p,catalog_426 c,supplierT_426 s
where c.p_id=p.p_id and c.s_id=s.s_id
and c.cost=(select MAX(c1.cost)

from catalog_426 c1 where c1.p_id=p.p_id);
```


NoSQL Lab -1

Question

(Week 8)

Perform the following DB operations using MongoDB:

- 1.Create a database "Student" with the following attributes Rollno, Age, ContactNo, Email-Id.
- 2.Insert appropriate values
- 3. Write query to update Email-Id of a student with rollno 10.
- 4. Replace the student name from "ABC" to "FEM" of rollno 11.

Create database

db.createCollection("Student");

Create table & Inserting Values to the table

```
db.Student.insertMany([
```

```
{rollno:1,age:21,cont:9876,email:"anthara.de9@gmail.com"},

{rollno:2,a ge:22,cont:9976,email:"anushka.de9@gmail.com"},

{rollno:3,age:21,cont:5576,email:"anubhav.de9@gmail.com"},

{rollno:10,age:20,cont:2276,email:"rekha.de9@gmail.com"}]); db.student.find();
```

```
| Compage | Managed | Mana
```

Queries

• Write query to update Email-Id of a student with rollno 10.

db.Student.update({rollno:5},{\$set:{email:"abhinav@gmail.com"}});

• Replace the student name from "ABC" to "FEM" of rollno 11.

```
db.Student.insert({rollno:11,age:22,name:"ABC",cont:2276,email:"rea .de9@gmail.co m"});
```

db.Student.update({rollno:11,name:"ABC"},{\$set:{name:"FEM"}});

NoSQL Lab -2

Question (Week 9)

Perform the following DB operations using MongoDB.

- 1.Create a collection by name Customers with the following attributes. Cust_id, Acc_Bal, Acc_Type
- 2.Insert at least 5 values into the table
- 3. Write a query to display those records whose total account balance is greater than 1200 of account type 'Checking' for each customer id.
- 4. Determine Minimum and Maximum account balance for each customer_id.
- 5.Export the created collection into local file system
- 6.Drop the table
- 7.Import a given csv dataset from local file system into mongodb collection.

Create Table

db.createCollection("Customer");

Inserting Values to the table

db.Customer.insertMany([{custid: 1, acc_bal:10000, acc_type: "Saving"}, {custid: 1, acc_bal:20000, acc_type: "Checking"}, {custid: 3, acc_bal:50000, acc_type: "Checking"}, {custid: 4, acc_bal:10000, acc_type: "Saving"}, {custid: 5, acc_bal:2000, acc_type: "Checking"}]);

```
mongosh mongodh+srv://<credentials>@cluster0.muzcl.mongodh.net/
 licrosoft Windows [Version 10.0.22000.2538]
c) Microsoft Corporation. All rights reserved.
 :\Users\STUDENT>mongosh "mongodb+srv://cluster0.muzcl.mongodb.net/" --apiVersion 1 --username NagaDBMS1400
nter password: ********
urrent Mongosh Log ID: 674fa2f3416a7f56466733da
 onnecting to: mongodb+srv://<credentials:
ongoServerError: bad auth : authentication failed</pre>
 :\Users\STUDENT>mongosh "mongodb+srv://cluster0.muzcl.mongodb.net/" --apiVersion 1 --username NagaDBMS1400
  urrent Mongosh Log ID: 674fa31cc7e070dbfba45461
   :\Users\STUDENT>mongosh "mongodb+srv://cluster0.muzcl.mongodb.net/" --apiVersion 1 --username NagaDBMS1400
 Current Mongosh Log ID: 674fa3525ae4a3827bb2de83
Connecting to: mongodb+srv://<credential
   ngosh 2.3.3 is available for download: https://www.mongodb.com/try/download/shell
 or mongosh info see: https://docs.mongodb.com/mongodb-shell/
 Atlas atlas-575vpw-shard-0 [primary] test> db.createCollection("Customer");
{ ok: 1 }
Atlas atlas-575vpw-shard-0 [primary] test> db.Customer.insertMany([{custid: 1, acc_bal:10000, acc_type:
... "Saving"}, {custid: 1, acc_bal:20000, acc_type: "checking"}, {custid: 3,
... acc_bal:50000, acc_type: "checking"}, {custid: 4, acc_bal:10000,
... acc_type: "Saving"}, {custid: 5, acc_bal:2000, acc_type: "Checking"}]);
  acknowledged: true,
  insertedIds: {
   '0': ObjectId("674fa3ab5ae4a3827bb2de84"),
            ObjectId("674fa3ab5ae4a3827bb2de84"),
ObjectId("674fa3ab5ae4a3827bb2de85"),
ObjectId("674fa3ab5ae4a3827bb2de86"),
ObjectId("674fa3ab5ae4a3827bb2de87"),
ObjectId("674fa3ab5ae4a3827bb2de88")
```

Queries

- 1. Write a query to display those records whose total account balance is greater than 1200 of account type 'Checking' for each customer_id.
- 2.Determine Minimum and Maximum account balance for each customer id.(For both 1 & 2 Op below)

Export the created collection into local file system.(In GUI)

• Drop the table.

db.Customer.drop();

• Import a given csv dataset from local file system into mongodb collection.(In GUI)

NoSQL Lab -3

Question

(Week 10)

- 1.Write a MongoDB query to display all the documents in the collection restaurants.
- 2.Write a MongoDB query to arrange the name of the restaurants in descending along with all the columns.
- 3. Write a MongoDB query to find the restaurant Id, name, town and cuisine for those restaurants which achieved a score which is not more than 10.
- 4. Write a MongoDB query to find the average score for each restaurant.
- 5. Write a MongoDB query to find the name and address of the restaurants that have a zipcode that starts with '10'.

Create Table

db.createCollection("Restaurant");

Inserting Values to the table

db.Restaurants.insertMany([

{ _id: "675000fe0fc96cbaf4e1731f", name: "Kyotos", town: "Majestic", cuisine: "Japanese", score: 9, address: { zipcode: "10300", street: "Majestic" } },

{ _id: "675000fe0fc96cbaf4e1731d", name: "Empire", town: "MG Road", cuisine: "Indian", score: 7, address: { zipcode: "10100", street: "MG Road" } },

{ _id: "675000fe0fc96cbaf4e1731e", name: "Chinese WOK", town: "Indiranagar", cuisine: "Chinese", score: 12, address: { zipcode: "20000", street: "Indiranagar" } }]);

Queries

• Write a MongoDB query to display all the documents in the collection restaurants.

```
_id: ObjectId("675000fe0fc96cbaf4e17320"),
name: 'WOW Momos',
town: 'Malleshwaram',
cuisine: 'Indian',
score: 5,
address: { zipcode: '10400', street: 'Malleshwaram' }
_id: ObjectId("675000fe0fc96cbaf4e1731c"),
name: 'Meghna Foods',
town: 'Jayanagar',
cuisine: 'Indian',
score: 8,
address: { zipcode: '10001', street: 'Jayanagar' }
_id: ObjectId("675000fe0fc96cbaf4e1731f"),
name: 'Kyotos',
town: 'Majestic',
cuisine: 'Japanese',
score: 9,
address: { zipcode: '10300', street: 'Majestic' }
_id: ObjectId("675000fe0fc96cbaf4e1731d"),
name: 'Empire',
town: 'MG Road',
cuisine: 'Indian',
score: 7,
address: { zipcode: '10100', street: 'MG Road' }
_id: ObjectId("675000fe0fc96cbaf4e1731e"),
name: 'Chinese WOK',
town: 'Indiranagar',
cuisine: 'Chinese',
score: 12,
address: { zipcode: '20000', street: 'Indiranagar' }
```

 Write a MongoDB query to arrange the name of the restaurants in descending along with all the columns.

db.Restaurants.find().sort({ name: -1 });

```
"_id": "675000fe0fc96cbaf4e1731e",
    "name": "WOW Momos",
    "town": "Malleshwaram",
    "cuisine": "Indian",
    "score": 5,
    "address": {
        "zipcode": "10400",
        "street": "Malleshwaram"
}
},
{
    "_id": "675000fe0fc96cbaf4e1731c",
    "name": "Meghna Foods",
    "town": "Jayanagar",
    "cuisine": "Indian",
    "score": 8,
    "address": {
        "zipcode": "10001",
        "street": "Jayanagar"
}
},
{
    "_id": "675000fe0fc96cbaf4e1731f",
    "name": "Kyotos",
    "town": "Majestic",
    "cuisine": "Japanese",
    "score": 9,
    "address": {
        "address":
```

```
"address": {
   "zipcode": "10300",
},
{
  "_id": "675000fe0fc96cbaf4e1731d",
  "town": "MG Road",
 "cuisine": "Indian",
  "address": {
    "zipcode": "10100",
    "street": "MG Road"
},
  "_id": "675000fe0fc96cbaf4e1731e",
  "name": "Chinese WOK",
  "town": "Indiranagar",
  "cuisine": "Chinese",
   address": {
   "zipcode": "20000",
```

• Write a MongoDB query to find the restaurant Id, name, town and cuisine for those restaurants which achieved a score which is not more than 10.

```
db.Restaurants.find(
    { score: { $lte: 10 } },
    { _id: 1, name: 1, town: 1, cuisine: 1 }
);
```

```
"_id": "675000fe0fc96cbaf4e17320",
  "name": "WOW Momos",
  "town": "Malleshwaram",
  "cuisine": "Indian"
},
  "_id": "675000fe0fc96cbaf4e1731c",
  "name": "Meghna Foods",
  "town": "Jayanagar",
  "cuisine": "Indian"
},
  "_id": "675000fe0fc96cbaf4e1731f",
  "name": "Kyotos",
  "town": "Majestic",
  "cuisine": "Japanese"
},
  "_id": "675000fe0fc96cbaf4e1731d",
  "name": "Empire",
  "town": "MG Road",
  "cuisine": "Indian"
```

• Write a MongoDB query to find the average score for each restaurant.

• Write a MongoDB query to find the name and address of the restaurants that have a zipcode that starts with '10'.

```
db.Restaurants.find(
    { "address.zipcode": { $regex: "^10" } },
    { name: 1, address: 1, _id: 0 }
    _id
);
```

```
{
    "name": "WOW Momos",
    "address": {
        "zipcode": "10400",
        "street": "Malleshwaram"
}
},
{
    "name": "Meghna Foods",
    "address": {
        "zipcode": "10901",
        "street": "Jayanagar"
}
},
{
    "name": "Kyotos",
    "address": {
        "zipcode": "10300",
        "street": "Majestic"
}
},
{
    "name": "Empire",
    "address": {
        "zipcode": "10100",
        "street": "MG Road"
}
}
```