# **CLUSTERING**

# What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



# What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



### Notion of a Cluster can be Ambiguous



How many clusters?

### Notion of a Cluster can be Ambiguous



### Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters

### Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
  - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
  - A set of nested clusters organized as a hierarchical tree

#### Exclusive versus Overlapping versus Fuzzy

- exclusive clusterings: assign each object to a single cluster
  - non-exclusive or overlapping: each object may belong to multiple clusters.

#### Exclusive versus Overlapping versus Fuzzy

- exclusive clusterings: assign each object to a single cluster
  - non-exclusive or overlapping: each object may belong to multiple clusters.
  - fuzzy clustering
    - a point belongs to every cluster with some weight between 0 and 1
    - Weights must sum to 1
    - Probabilistic clustering has similar characteristics

#### Types of Clusters: Well-Separated

#### Well-Separated Clusters:

A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.



3 well-separated clusters

#### Types of Clusters: Center-Based

#### Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster



4 center-based clusters

#### Types of Clusters: Contiguity-Based

- Continuous Cluster
  - two objects are connected only if they are within a specified distance of each other



contiguous clusters

#### Types of Clusters: Density-Based

#### Density-based

- A cluster is a dense region of points, which is separated by lowdensity regions, from other regions of high density.
- Used when the clusters are irregular and when noise and outliers are present.



6 density-based clusters

### K-MEANS CLUSTERING

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

# K-means Clustering – Details

- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- centroid can vary, depending on the proximity measure for the data and the goal of the clustering
- goal of the clustering is typically expressed by an objective function that depends on the proximities of the points to one another or to the cluster centroids
- e.g., minimize the squared distance of each point to its closest centroid

## **Evaluating K-means Clusters**

- Most common measure is Sum of Squared Error (SSE)
  - For each point, the error is the distance to the nearest cluster
  - To get SSE, we square these errors and sum them.

## **Evaluating K-means Clusters**

- Most common measure is Sum of Squared Error (SSE)
  - For each point, the error is the distance to the nearest cluster
  - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C<sub>i</sub> and m<sub>i</sub> is the representative point for cluster C<sub>i</sub>
  - can show that  $m_i$  corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error

### Common choices

Table 8.2. K-means: Common choices for proximity, centroids, and objective functions.

| Proximity Function          | Centroid | Objective Function                                  |
|-----------------------------|----------|-----------------------------------------------------|
| Manhattan $(L_1)$           | median   | Minimize sum of the $L_1$ distance of an ob-        |
|                             |          | ject to its cluster centroid                        |
| Squared Euclidean $(L_2^2)$ | mean     | Minimize sum of the squared L <sub>2</sub> distance |
|                             |          | of an object to its cluster centroid                |
| cosine                      | mean     | Maximize sum of the cosine similarity of            |
|                             |          | an object to its cluster centroid                   |
| Bregman divergence          | mean     | Minimize sum of the Bregman divergence              |
|                             |          | of an object to its cluster centroid                |

#### K-means Clustering

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

#### K-means











#### K-means Clustering – Details

- Initial centroids are often chosen randomly.
  - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
  - Often the stopping condition is changed to 'Until relatively few points change clusters'



### Solutions to Initial Centroids Problem

perform multiple runs, each with a different set of randomly chosen initial centroids, and then select the set of clusters with the minimum SSE

#### Solutions to Initial Centroids Problem

- perform multiple runs, each with a different set of randomly chosen initial centroids, and then select the set of clusters with the minimum SSE
- Sample and use hierarchical clustering to determine initial centroids

### Solutions to Initial Centroids Problem

- perform multiple runs, each with a different set of randomly chosen initial centroids, and then select the set of clusters with the minimum SSE
- Sample and use hierarchical clustering to determine initial centroids
- Select the first point at random
- \* For each successive initial centroid, select the point that is farthest from any of the initial centroids already selected
- Outliers & expensive

## Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
  - Choose the point that contributes most to SSE
  - Choose a point from the cluster with the highest SSE

## Pre-processing and Post-processing

- Pre-processing
  - Normalize the data
  - Eliminate outliers

### Pre-processing and Post-processing

- Pre-processing
  - Normalize the data
  - Eliminate outliers
- Post-processing
  - Eliminate small clusters that may represent outliers
  - Split 'loose' clusters, i.e., clusters with relatively high SSE
  - Merge clusters that are 'close' and that have relatively low SSE

### Limitations of K-means

- K-means has problems when clusters are of differing
  - Sizes
  - Densities
  - Non-globular shapes

 K-means has problems when the data contains outliers.

#### Limitations of K-means: Differing Sizes





**Original Points** 

K-means (3 Clusters)

#### Limitations of K-means: Non-globular Shapes



**Original Points** 

K-means (2 Clusters)

# Hierarchical Clustering

## Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram

A tree like diagram that records the sequences of

merges or splits





### Hierarchical Clustering

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

### Hierarchical Clustering

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains a point (or there are k clusters)

### Hierarchical Clustering

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

### Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- 6. Until only a single cluster remains

#### Agglomerative Clustering Algorithm

- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms

# Starting Situation

Start with clusters of individual points and a proximity matrix







#### Intermediate Situation

After some merging steps, we have some clusters









#### Intermediate Situation







# After Merging

□ The question is "How do we update the proximity modrix?"









|                        | p1 | p2 | р3 | р4 | p5 | <u>.</u> |
|------------------------|----|----|----|----|----|----------|
| <u>p1</u>              |    |    |    |    |    |          |
| <u>p2</u>              |    |    |    |    |    |          |
| <u>p2</u><br><u>p3</u> |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |
| р4<br>р5               |    |    |    |    |    |          |
| •                      |    |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids



|                        | рl | р2 | р3 | p4 | p5 | <u>.</u> |
|------------------------|----|----|----|----|----|----------|
| <u>p1</u>              |    |    |    |    |    |          |
| <u>p2</u>              |    |    |    |    |    | _        |
| <u>p2</u><br><u>p3</u> |    |    |    |    |    | _        |
| <u>p4</u>              |    |    |    |    |    |          |
| p4<br>p5               |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids



|                        | p1 | р2 | рЗ | p4 | p5 | <u> </u> |
|------------------------|----|----|----|----|----|----------|
| рl                     |    |    |    |    |    |          |
| <b>p</b> 2             |    |    |    |    |    |          |
| <u>p2</u><br><u>p3</u> |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |
| <u>р4</u><br>р5        |    |    |    |    |    |          |
| •                      |    |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids



|                        | p1 | p2 | рЗ | p4 | р5 | <u>.</u> |
|------------------------|----|----|----|----|----|----------|
| рl                     |    |    |    |    |    |          |
| p2                     |    |    |    |    |    |          |
| <u>p2</u><br><u>p3</u> |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |
| <u>р4</u><br>р5        |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids



|                        | рl | p2 | р3 | p4 | p5 | <u> </u> |
|------------------------|----|----|----|----|----|----------|
| <b>p</b> 1             |    |    |    |    |    |          |
| p2                     |    |    |    |    |    |          |
| <u>p2</u><br><u>p3</u> |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |
| <u>p4</u><br><u>p5</u> |    |    |    |    |    |          |
| •                      |    |    |    |    |    |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids

### **Example: MIN**

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
- ❖ Determined by one pair of points, i.e., by one link in the proximity graph



| Figure 8.15. Se | t of 6 two-dime | ensional points. |
|-----------------|-----------------|------------------|
|-----------------|-----------------|------------------|

| Point | x Coordinate | y Coordinate |
|-------|--------------|--------------|
| p1    | 0.40         | 0.53         |
| p2    | 0.22         | 0.38         |
| p3    | 0.35         | 0.32         |
| p4    | 0.26         | 0.19         |
| p5    | 0.08         | 0.41         |
| p6    | 0.45         | 0.30         |

**Table 8.3.** xy coordinates of 6 points.

# Example: MIN

|    | p1   | p2   | p3   | p4   | $p_5$ | p6   |
|----|------|------|------|------|-------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

Table 8.4. Euclidean distance matrix for 6 points.



(b) Single link dendrogram.



(a) Single link clustering.

## Example: MAX

- ✓ Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
- ✓ Determined by all pairs of points in the two clusters

## Example: MAX

✓ Similarity of two clusters is based on the two least similar (most distant) points in the different clusters

✓ Determined by all pairs of points in the two clusters

|    | p1   | p2   | p3   | p4   | $p_5$ | p6   |
|----|------|------|------|------|-------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

Table 8.4. Euclidean distance matrix for 6 points.



### Example: MAX

✓ Similarity of two clusters is based on the two least similar (most distant) points in the different clusters

✓ Determined by all pairs of points in the two clusters

|       | p1   | p2   | p3   | p4   | $p_5$ | p6   |
|-------|------|------|------|------|-------|------|
| p1    | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2    | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3    | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4    | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| $p_5$ | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6    | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

Table 8.4 Fuelidean distance matrix for 6 points

$$\begin{array}{rcl} dist(\{3,6\},\{4\}) & = & \max(dist(3,4),dist(6,4)) \\ & = & \max(0.15,0.22) \\ & = & 0.22. \\ dist(\{3,6\},\{2,5\}) & = & \max(dist(3,2),dist(6,2),dist(3,5),dist(6,5)) \\ & = & \max(0.15,0.25,0.28,0.39) \\ & = & 0.39. \\ dist(\{3,6\},\{1\}) & = & \max(dist(3,1),dist(6,1)) \\ & = & \max(0.22,0.23) \\ & = & 0.23. \end{array}$$





# Group Average

proximity of two clusters is defined as the average pairwise proximity among all pairs of points in the different clusters.

$$proximity(C_i, C_j) = \frac{\sum_{\mathbf{y} \in C_i} proximity(\mathbf{x}, \mathbf{y})}{m_i * m_j}$$

# Group Average

proximity of two clusters is defined as the average pairwise proximity among all pairs of points in the different clusters.

$$proximity(C_i, C_j) = \frac{\sum_{\mathbf{y} \in C_i} proximity(\mathbf{x}, \mathbf{y})}{m_i * m_j}$$

|    | p1   | p2   | р3   | p4   | $p_5$ | p6   |
|----|------|------|------|------|-------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

**Table 8.4.** Euclidean distance matrix for 6 points.



# Group Average

proximity of two clusters is defined as the average pairwise proximity among all pairs of points in the different clusters.

$$proximity(C_i, C_j) = \frac{\sum_{\mathbf{y} \in C_i} proximity(\mathbf{x}, \mathbf{y})}{m_i * m_j}$$

|    | p1   | p2   | р3   | p4   | $p_5$ | p6   |
|----|------|------|------|------|-------|------|
| p1 | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2 | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3 | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4 | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

**Table 8.4.** Euclidean distance matrix for 6 points.

$$\begin{aligned} dist(\{3,6,4\},\{1\}) &= (0.22 + 0.37 + 0.23)/(3*1) \\ &= 0.28 \\ dist(\{2,5\},\{1\}) &= (0.2357 + 0.3421)/(2*1) \\ &= 0.2889 \\ dist(\{3,6,4\},\{2,5\}) &= (0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29)/(6*2) \\ &= 0.26 \end{aligned}$$



## Cluster Similarity: Ward's Method

 Proximity between two clusters is based on the increase in squared error when two clusters are merged

|       | p1   | p2   | p3   | p4   | $p_5$ | p6   |
|-------|------|------|------|------|-------|------|
| p1    | 0.00 | 0.24 | 0.22 | 0.37 | 0.34  | 0.23 |
| p2    | 0.24 | 0.00 | 0.15 | 0.20 | 0.14  | 0.25 |
| р3    | 0.22 | 0.15 | 0.00 | 0.15 | 0.28  | 0.11 |
| p4    | 0.37 | 0.20 | 0.15 | 0.00 | 0.29  | 0.22 |
| $p_5$ | 0.34 | 0.14 | 0.28 | 0.29 | 0.00  | 0.39 |
| p6    | 0.23 | 0.25 | 0.11 | 0.22 | 0.39  | 0.00 |

Table 8.4. Euclidean distance matrix for 6 points.



# Density based Clustering: DBSCAN

- DBSCAN is a density-based algorithm.
  - Density = number of points within a specified radius (Eps)



- DBSCAN is a density-based algorithm.
  - Density = number of points within a specified radius (Eps)

- A point is a core point if it has more than a specified number of points (MinPts) within Eps
  - These are points that are at the interior of a cluster

- DBSCAN is a density-based algorithm.
  - Density = number of points within a specified radius (Eps)
  - A point is a core point if it has more than a specified number of points (MinPts) within Eps
    - These are points that are at the interior of a cluster
  - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
  - A noise point is any point that is not a core point or a border point.

#### DBSCAN: Core, Border, and Noise Points



#### **DBSCAN**

#### Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- Make each group of connected core points into a separate cluster.
- Assign each border point to one of the clusters of its associated core points.

#### DBSCAN: Core, Border and Noise Points



**Original Points** 

Eps = 
$$10$$
, MinPts =  $4$ 

#### DBSCAN: Core, Border and Noise Points





**Original Points** 

Point types: core, border and noise

Eps = 
$$10$$
, MinPts =  $4$ 

### **DBSCAN**





Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

#### DBSCAN: Determining EPS and MinPts

how to determine the parameters *Eps* and *MinPts* 

#### MinPts:

- MinPts=K too small, noise or outliers will be incorrectly labeled as clusters
- \* k is too large, small clusters are likely to be labeled as noise

#### DBSCAN: Determining EPS and MinPts

#### how to determine the parameters *Eps* and *MinPts*

#### Eps:

- look at the behavior of the distance from a point to its kth nearest neighbor(k-dist)
- Points belong to some cluster, the value of k-dist small if k is not larger than the cluster size
- $\diamond$  points not in a cluster, such as noise points, the k-dist relatively large
- $\diamond$  compute the k-dist for all the data points for some k
- sort them in increasing order, and then plot the sorted values
- $\diamond$  a sharp change at the value of k-dist

### DBSCAN: Determining EPS and MinPts





# Clusters of Varying Density

DBSCAN can have trouble with density if the density of clusters varies widely



# Clusters of Varying Density

DBSCAN can have trouble with density if the density of clusters varies widely



- Figs threshold is low enough that DBSCAN finds C and D as clusters, then A and B and the points surrounding them will become a single cluster
- ➤ Eps threshold high enough that DBSCAN finds A and B as separate clusters, and the points surrounding them are marked as noise, then C and D and the points surrounding them will also be marked as noise

# Cluster Validity

## Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
  - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- Then why do we want to evaluate them?
  - To avoid finding patterns in noise
  - To compare clustering algorithms
  - To compare two sets of clusters
  - To compare two clusters

## Clusters found in Random Data



## Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following types.
  - Unsupervised(Internal Index): Used to measure the goodness of a clustering structure without respect to external information.
  - Supervised(External Index): Used to measure the extent to which cluster labels match externally supplied class labels.

$$overall\ validity = \sum_{i=1}^{K} w_i\ validity(C_i)$$

$$overall\ validity = \sum_{i=1}^{K} w_i\ validity(C_i)$$

- Cluster Cohesion: Measures how closely related are objects in a cluster
  - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters

#### Graph- based View

proximity graph has data objects as nodes, a link between each pair of data objects, and a weight assigned to each link that is the proximity between the two data objects connected by the link

#### Graph- based View

proximity graph has data objects as nodes, a link between each pair of data objects, and a weight assigned to each link that is the proximity between the two data objects connected by the link



**Figure 8.27.** Graph-based view of cluster cohesion and separation.

#### Graph- based View

proximity graph has data objects as nodes, a link between each pair of data objects, and a weight assigned to each link that is the proximity between the two data objects connected by the link



Figure 8.27. Graph-based view of cluster cohesion and separation.

$$cohesion(C_i) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_i}} proximity(\mathbf{x}, \mathbf{y})$$

$$separation(C_i, C_j) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_j}} proximity(\mathbf{x}, \mathbf{y})$$

#### **Center-Based View**



Figure 8.28. Prototype-based view of cluster cohesion and separation.

#### **Center-Based View**



Figure 8.28. Prototype-based view of cluster cohesion and separation.

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c}_i)$$

$$separation(C_i, C_j) = proximity(\mathbf{c}_i, \mathbf{c}_j)$$
  
 $separation(C_i) = proximity(\mathbf{c}_i, \mathbf{c})$ 

In some cases, there is also a strong relationship between cohesion and separation

$$TSS = \sum_{i=1}^{K} \sum_{x \in C_i} (x - c)^2$$

In some cases, there is also a strong relationship between cohesion and separation

$$TSS = \sum_{i=1}^{K} \sum_{x \in C_i} (x - c)^2$$

- Example: Squared Error
  - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

■ Where |C<sub>i</sub>| is the size of cluster i

## Measuring Cluster Validity Via Correlation

#### Two matrices

- Proximity Matrix
- "Incidence" Matrix
  - One row and one column for each data point
  - An entry is 1 if the associated pair of points belong to the same cluster
  - An entry is 0 if the associated pair of points belongs to different clusters

## Measuring Cluster Validity Via Correlation

- Two matrices
  - Proximity Matrix
  - "Incidence" Matrix
- Compute the correlation between the two matrices
  - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.

## Measuring Cluster Validity Via Correlation

Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.





$$Corr = 0.9235$$

$$Corr = 0.5810$$

 Order the similarity matrix with respect to cluster labels and inspect visually.



 Order the similarity matrix with respect to cluster labels and inspect visually.





## Clusters in random data are not so crisp





## Clusters in random data are not so crisp





K-means

# Fuzzy Clustering

# **Fuzzy Clustering**

- data objects are distributed in well-separated groups, disjoint clusters seems like an ideal approach.
- in most cases, the objects in a data set cannot be partitioned into well-separated clusters
- an object that lies near the boundary of two clusters
- assign a weight to each object and each cluster
- ❖ wij is the weight with which object xi belongs to cluster Cj
  - √ Fuzzy Approach
  - ✓ Probabilistic Approach

# Fuzzy clustering

$$\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$$

A collection of fuzzy clusters, C1, C2, ..., Ck is a subset of all possible fuzzy subsets of  $\lambda$ 

fuzzy psuedo-partition

# Fuzzy clustering

$$\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$$

A collection of fuzzy clusters, C1, C2, ..., Ck is a subset of all possible fuzzy subsets of  $\lambda$ 

#### fuzzy psuedo-partition

1. All the weights for a given point,  $\mathbf{x}_i$ , add up to 1.

$$\sum_{j=1}^{k} w_{ij} = 1$$

2. Each cluster,  $C_j$ , contains, with non-zero weight, at least one point, but does not contain, with a weight of one, all of the points.

$$0 < \sum_{i=1}^{m} w_{ij} < m$$

#### Algorithm 9.1 Basic fuzzy c-means algorithm.

- 1: Select an initial fuzzy pseudo-partition, i.e., assign values to all the  $w_{ij}$ .
- 2: repeat
- Compute the centroid of each cluster using the fuzzy pseudo-partition. 3:
- Recompute the fuzzy pseudo-partition, i.e., the  $w_{ij}$ . 4:
- until The centroids don't change. (Alternative stopping conditions are "if the change in the error is below a specified

threshold" or "if the absolute change in any  $w_{ij}$  is below a given threshold.")

- ✓ As with K-means, FCM can be interpreted as attempting to minimize the sum of the squared error (SSE)
- √ FCM is based on a fuzzy version of SSE

- ✓ As with K-means, FCM can be interpreted as attempting to minimize the sum of the squared error (SSE)
- ✓ FCM is based on a fuzzy version of SSE

$$SSE(C_{1,C_{2},\ldots,C_{k}}) = \sum_{j=1}^{k} \sum_{i=1}^{m} w_{ij}^{p} dist(\mathbf{x}_{i},\mathbf{c}_{j})^{2}$$

√ K-means regarded as a special case of FCM

- ✓ As with K-means, FCM can be interpreted as attempting to minimize the sum of the squared error (SSE)
- √ FCM is based on a fuzzy version of SSE

$$SSE(C_{1}, C_{2}, \dots, C_{k}) = \sum_{j=1}^{k} \sum_{i=1}^{m} w_{ij}^{p} dist(\mathbf{x}_{i}, \mathbf{c}_{j})^{2}$$

√ K-means regarded as a special case of FCM

To minimize objective function, repeat the following:

Fix  $c_j$  and determine  $W_{ij}$ 

Fix  $W_{ij}$  and recompute  $oldsymbol{c}$ 

### **Computing Centroids**

$$c_j = \sum_{i=1}^m w_{ij}^p \mathbf{x}_i / \sum_{i=1}^m w_{ij}^p$$

#### **Computing Centroids**

$$c_j = \sum_{i=1}^{m} w_{ij}^p \mathbf{x}_i / \sum_{i=1}^{m} w_{ij}^p$$

#### **Updating the Fuzzy Pseudo-partition**

weight update formula can be derived by minimizing the SSE subject to the constraint that the weights sum to 1

$$w_{ij} = \left(1/dist(\mathbf{x}_i, \mathbf{c}_j)^2\right)^{\frac{1}{p-1}} / \sum_{q=1}^k \left(1/dist(\mathbf{x}_i, \mathbf{c}_q)^2\right)^{\frac{1}{p-1}}$$

#### **Computing Centroids**

$$c_j = \sum_{i=1}^{m} w_{ij}^p \mathbf{x}_i / \sum_{i=1}^{m} w_{ij}^p$$

#### **Updating the Fuzzy Pseudo-partition**

weight update formula can be derived by minimizing the SSE subject to the constraint that the weights sum to 1

$$w_{ij} = \left(1/\operatorname{dist}(\mathbf{x}_i, \mathbf{c}_j)^2\right)^{\frac{1}{p-1}} / \sum_{q=1}^k \left(1/\operatorname{dist}(\mathbf{x}_i, \mathbf{c}_q)^2\right)^{\frac{1}{p-1}}$$

$$w_{ij} = 1/\operatorname{dist}(\mathbf{x}_i, \mathbf{c}_j)^2 / \sum_{q=1}^k 1/\operatorname{dist}(\mathbf{x}_i, \mathbf{c}_q)^2$$

# Weights and p

$$w_{ij} = \left(1/dist(\mathbf{x}_i, \mathbf{c}_j)^2\right)^{\frac{1}{p-1}} / \sum_{q=1}^k \left(1/dist(\mathbf{x}_i, \mathbf{c}_q)^2\right)^{\frac{1}{p-1}}$$

- $\diamond$  as p goes to infinity, the exponent tends to 0 and weights tend to the value 1/k.
- As p goes to 1, the membership weight goes to 1 for the closest cluster and to 0 for all the other clusters.

# Fuzzy K-means Applied to Sample Data



# 107 Clustering Using Mixture Models

## clustering based on statistical models

- \*assume that data has been generated as a result of a statistical process
- describe the data by finding the statistical model that best fits the data
- deciding on a statistical model for the data
- Estimating the parameters of that model from the data
- one distribution corresponds to a cluster
- \*parameters of each distribution a description of that cluster
- \*mixture models, which model the data by using a number of statistical distributions

#### Mixture Models

Mixture models view the data as a set of observations from a mixture of different probability distributions

- Given several distributions, usually of the same type, but with different parameters
- 2. randomly select one of these distributions
- 3. Generate an object from it
- 4. Repeat the process m times, where m is the number of objects. assume that there are K distributions and m objects, jth distribution have parameters  $\vartheta j$

### Mixture Models

Mixture models view the data as a set of observations from a mixture of different probability distributions

- Given several distributions, usually of the same type, but with different parameters
- 2. randomly select one of these distributions
- 3. Generate an object from it
- 4. Repeat the process m times, where m is the number of objects. assume that there are K distributions and m objects, jth distribution have parameters  $\vartheta j$

$$\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$$
  $\Theta = \{\theta_1, \dots, \theta_K\}$ 

$$prob(\mathbf{x}_i|\Theta) = \sum_{j=1}^{K} w_j p_j(\mathbf{x}_i|\theta_j)$$

#### Mixture Models

objects are generated in an independent manner

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} prob(\mathbf{x}_i|\Theta) = \prod_{i=1}^{m} \sum_{j=1}^{K} w_j p_j(\mathbf{x}_i|\theta_j)$$
 each distribution describes a different cluster

#### Gaussian Mixture

- √ We cannot use one single Gaussian distribution to model real data sets.
- √A linear combination of Gaussians can give rise to very complex densities densities.
- ✓ By using a sufficient number of Gaussians, and by adjusting their parameters as well as the coefficients in the linear combination, almost any continuous density can be approximated.

#### Gaussian Mixture

 $\checkmark$  Let's consider a random process  $x_i$  that follows a Gaussian mixture distribution with M component

$$x_i \sim GM(w, \mu, \sigma)$$

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_M \end{pmatrix} \quad \sigma = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_M \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{pmatrix}$$

$$f_{x_i}(x_i) = \sum_{j=1}^{M} \frac{w_j}{\sqrt{2\pi}\sigma_j} \exp \frac{-(x_i - m_j)^2}{2\sigma_j^2}.$$

$$prob(x_i|\Theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$prob(x|\Theta) = \frac{1}{2\sqrt{2\pi}} \; e^{-\frac{(x+4)^2}{8}} + \frac{1}{2\sqrt{2\pi}} \; e^{-\frac{(x-4)^2}{8}}$$



$$prob(x_i|\Theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$prob(x|\Theta) = \frac{1}{2\sqrt{2\pi}} \ e^{-\frac{(x+4)^2}{8}} + \frac{1}{2\sqrt{2\pi}} \ e^{-\frac{(x-4)^2}{8}}$$





(b) 20,000 points generated from the mixture model.

#### Gaussian Mixture



#### Gaussian Mixture



Given a statistical model for the data, it is necessary to estimate the parameters of that model.

How estimate the parameters of these distributions from the data and find (clusters)

a set of *m* points that are generated from a one dimensional Gaussian distribution

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - u)^2}{2\sigma^2}}$$

a set of m points that are generated from a one dimensional Gaussian distribution

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \ e^{-\frac{(x_i - u)^2}{2\sigma^2}}$$
 estimate  $v$  and  $\sigma$ 

choose the values of the parameters for which the data is most probable (most likely): maximum likelihood estimation (MLE)

a set of *m* points that are generated from a one dimensional Gaussian distribution

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \ e^{-\frac{(x_i-u)^2}{2\sigma^2}}$$
 estimate  $v$  and  $\sigma$ 

choose the values of the parameters for which the data is most probable (most likely): maximum likelihood estimation (MLE)

$$likelihood(\Theta|\mathcal{X}) = L(\Theta|\mathcal{X}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

a set of *m* points that are generated from a one dimensional Gaussian distribution

$$prob(\mathcal{X}|\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \ e^{-\frac{(x_i - u)^2}{2\sigma^2}}$$
 estimate  $v$  and  $\sigma$ 

choose the values of the parameters for which the data is most probable (most likely): maximum likelihood estimation (MLE)

$$likelihood(\Theta|\mathcal{X}) = L(\Theta|\mathcal{X}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$
 
$$log \ likelihood(\Theta|\mathcal{X}) = \ell(\Theta|\mathcal{X}) = -\sum_{i=1}^{m} \frac{(x_i - \mu)^2}{2\sigma^2} - 0.5m \log 2\pi - m \log \sigma$$

# Example

#### Finding the parameters of Gaussian Distribution



(b) Log likelihood plot of the 200 points for different values of the mean and standard deviation.

$$u = -4.1 \text{ and } \sigma = 2.1$$

# Example

#### Finding the parameters of Gaussian Distribution



(b) Log likelihood plot of the 200 points for different values of the mean and standard deviation.

$$u = -4.1 \text{ and } \sigma = 2.1$$

Graphing the likelihood of the data for different values of the parameters is not practical: Optimization

for a Gaussian distribution, it can be shown that the mean and standard deviation of the sample points are the maximum likelihood estimates of the corresponding parameters

- simplest case: We know which data objects come from which distributions
- For most common distributions, the maximum likelihood estimates of the parameters are calculated from simple formulas involving the data.
- In a more general (and more realistic) situation, we do not know which points were generated by which distribution
- solution is the EM algorithm

- given a guess for the parameter values, the EM algorithm calculates probability that each point belongs to each distribution
- 2. uses these probabilities to compute a new estimate for the parameters

# EM algorithm

#### **Algorithm 9.2** EM algorithm.

- Select an initial set of model parameters.
   (As with K-means, this can be done randomly or in a variety of ways.)
- 2: repeat
- 3: **Expectation Step** For each object, calculate the probability that each object belongs to each distribution, i.e., calculate  $prob(distribution j|\mathbf{x}_i, \Theta)$ .
- 4: Maximization Step Given the probabilities from the expectation step, find the new estimates of the parameters that maximize the expected likelihood.
- 5: until The parameters do not change. (Alternatively, stop if the change in the parameters is below a specified threshold.)



(b) 20,000 points generated from the mixture model.

- ✓ assume that we know that the standard deviation of both distributions is 2.0
- points were generated with equal probability from both distributions

guess 
$$\mu_1 = -2$$
 and  $\mu_2 = 3$   
 $\theta_1 = (-2, 2)$  and  $\theta_2 = (3, 2)$   $\Theta = \{\theta_1, \theta_2\}$ 

 $prob(distribution \ j|x_i, \theta)$ 



(b) 20,000 points generated from the mixture model.

- ✓ assume that we know that the standard deviation of both distributions is 2.0
- ✓ points were generated with equal probability from both distributions

guess 
$$\mu_1 = -2$$
 and  $\mu_2 = 3$   
 $\theta_1 = (-2, 2)$  and  $\theta_2 = (3, 2)$   $\Theta = \{\theta_1, \theta_2\}$ 

$$prob(distribution \ j|x_i, \theta) = \frac{0.5 \ prob(x_i|\theta_j)}{0.5 \ prob(x_i|\theta_1) + 0.5 \ prob(x_i|\theta_2)},$$

$$prob(0|\theta_1) = 0.12$$
  $prob(0|\theta_2) = 0.06$   $prob(distribution 1|0,\Theta) = 0.12/(0.12+0.06) = 0.66$ 

After computing the cluster membership probabilities for all 20,000 points, we compute new estimates for  $\mu_1$  and  $\mu_2$ 

new estimate for the mean of a distribution is just a weighted average of the points

After computing the cluster membership probabilities for all 20,000 points, we compute new estimates for  $\mu_1$  and  $\mu_2$ 

new estimate for the mean of a distribution is just a weighted average of the points

$$\mu_1 = \sum_{i=1}^{20,000} x_i \frac{prob(distribution \ 1|x_i, \Theta)}{\sum_{i=1}^{20,000} prob(distribution \ 1|x_i, \Theta)}$$

$$\mu_2 = \sum_{i=1}^{20,000} x_i \frac{prob(distribution~2|x_i,\Theta)}{\sum_{i=1}^{20,000} prob(distribution~2|x_i,\Theta)}$$

| Iteration | $\mu_1$ | $\mu_2$ |
|-----------|---------|---------|
| 0         | -2.00   | 3.00    |
| 1         | -3.74   | 4.10    |
| 2         | -3.94   | 4.07    |
| 3         | -3.97   | 4.04    |
| 4         | -3.98   | 4.03    |
| 5         | -3.98   | 4.03    |

### EM Algorithm on Sample Data Sets



- \* We modeled this data as a mixture of three two-dimensional Gaussian distributions with different means and identical covariance matrices.
- Each point was assigned to the cluster in which it had the largest membership weigh



EM clustering of a two-dimensional point set with two clusters of differing density