

Cálculo computacional II

Unidade 4: Gradiente e Derivada direcional

Cristina Vaz

C2-aula 25/6/25

UFPA

Sumário

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações

1 Derivada direcional

Projeto 1: Formação das duplas e orientações

Derivada direcional

Projeto 1: Formação das duplas e orientações

Ideia: Generalizar o conceito de derivada parcial para poder calcular a taxa de variação de uma função em qualquer direção e sentido. Ou seja,

Dado um ponto $P = (x_0, y_0)$ e um vetor \vec{u} unitário, como calcular $\frac{\partial f}{\partial \vec{v}}$?

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações **Lembrete**: \vec{u} unitário $\Leftrightarrow ||\vec{u}|| = 1$

$$\vec{u} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j} \Leftrightarrow ||\vec{u}|| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$

Derivada direcional

Projeto 1: Formação das duplas e orientações

Definição

Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ e o vetor unitário $\vec{u} = \cos \theta \ i + \sin \theta \ j$. A derivada direcional de f no ponto (x_0, y_0) e na direção de \vec{u} é definida por

$$\frac{\partial f}{\partial \vec{u}} = \lim_{h \to 0} \frac{f(x_0 + h\cos\theta, y_0 + h\sin\theta) - f(x_0, y_0)}{h}$$

Derivada direcional

Projeto 1: Formação das duplas e orientações Se $\vec{u} = (a,b)$ tal que $||\vec{u}|| = 1$, podemos escrever a definição anterior do seguinte modo:

Definição

Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ e o vetor unitário $\vec{u} = (a,b)$. A derivada direcional de f no ponto (x_0,y_0) e na direção de \vec{u} é definida por

$$\frac{\partial f}{\partial \vec{u}} = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

Derivada direcional

Projeto 1: Formação das duplas e orientações

Note que:

 $x_0 + ha$ (ou $x_0 + h\cos\theta$) é variação da componente x_0 na direção da componente a (ou $\cos\theta$) do vetor \vec{u}

 $y_0 + hb$ (ou $x_0 + h \operatorname{sen} \theta$) é variação da componente y_0 na direção da componente b (ou $\operatorname{sen} \theta$) do vetor \vec{u}

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações

Note que:

• se $\vec{u} = \mathbf{i} = (1,0)$ (ou $\cos \theta = 1$ e sen $\theta = 0$), temos que

$$\frac{\partial f}{\partial \vec{i}} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = \frac{\partial f}{\partial x}$$

• se $\vec{u} = \mathbf{j} = (0, 1)$ (ou $\cos \theta = 0$ e sen $\theta = 1$), temos que

$$\frac{\partial f}{\partial \vec{j}} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h} = \frac{\partial f}{\partial y}$$

Projeto 1: Formação das duplas e orientações

Conclusão: As derivadas parciais são casos particulares de derivadas direcionais.

$$\frac{\partial f}{\partial x}$$
: derivada direcional na direção do vetor unitário i (eixo x).

$$\frac{\partial \mathbf{r}}{\partial y}$$
: derivada direcional na direção do vetor unitário **j** (eixo y).

Derivada direcional

Projeto 1: Formação das duplas e orientações Sabemos que não é trivial calcular limites para funções do \mathbb{R}^2 . Por esta razão, vamos calcular derivadas direcionais aplicando o seguinte teorema:

Teorema (1)

Se $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em D_f então f tem derivada direcional na direção de qualquer vetor unitário $\vec{u} = \cos\theta$ $\mathbf{i} + \sin\theta$ \mathbf{j} e a derivada direcional é dada por

$$\frac{\partial f}{\partial \vec{u}} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

Derivada direcional

Projeto 1: Formação das duplas e orientações

Se $\vec{u} = (a, b)$ tal que $||\vec{u}|| = 1$, podemos escrever o Teorema (1) do seguinte modo:

$$\frac{\partial f}{\partial \vec{u}} = \frac{\partial f}{\partial x}a + \frac{\partial f}{\partial y}b$$

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações

Exemplo

Calcule
$$\frac{\partial f}{\partial \vec{u}}$$
 para $f(x,y) = x^3 - 3xy + 4y^2$ e $\vec{u} = \cos \theta i + \sin \theta$
 $j \cos \theta = \pi/6$

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações

Exemplo

Calcule
$$\frac{\partial f}{\partial \vec{u}}$$
 para $f(x,y) = x^3 - 3xy + 4y^2$ e $\vec{u} = \cos \theta i + \sin \theta$
 $j \cos \theta = \pi/6$

Solução:
$$\frac{\partial f}{\partial \vec{u}} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

$$\frac{\partial f}{\partial \vec{u}} = \frac{\partial f}{\partial x} \cos(\pi/6) + \frac{\partial f}{\partial y} \sin(\pi/6)$$

$$\frac{\partial f}{\partial \vec{u}} = \frac{\partial f}{\partial x} \frac{\sqrt{3}}{2} + \frac{\partial f}{\partial y} \frac{1}{2}$$

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações

$$\frac{\partial f}{\partial x} = 3x^2 - 3y$$

$$\frac{\partial f}{\partial y} = -3x + 8y$$

$$\frac{\partial f}{\partial u} = (3x^2 - 3y)\frac{\sqrt{3}}{2} + (-3x + 8y)\frac{1}{2}$$

$$\frac{\partial f}{\partial u} = \frac{3\sqrt{3}}{2}x^2 - \frac{3x}{2} + 4y - \frac{3\sqrt{3}}{2}y$$

Projeto 1: Formação das duplas e orientações

Note que podemos re-escreve a expressão da derivada direcional usando o produto escalar do seguinte modo:

$$\frac{\partial f}{\partial \vec{u}} = (f_x, f_y).(a, b) = (f_x, f_y).\vec{u}$$

O vetor (f_x, f_y) é chamado **vetor gradiente** e é representado por **grad** f ou ∇f (letra grega nabla). Assim

Vetor gradiente

Derivada direcional

Projeto 1: Formação das duplas e orientações

Definição

Seja $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$ uma função diferenciável em D_f . O gradiente de f é o vetor dado por

$$\nabla f(x,y) = (f_x(x,y), f_y(x,y)) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

Vetor gradiente

Derivada direcional

Projeto 1: Formação das duplas e orientações

Exemplo

Calcule o vetor gradiente da função $f(x,y) = sen(x) + e^{xy}$.

Vetor gradiente

<u>∂f</u> ∂t

Derivada direcional

Projeto 1: Formação das duplas e orientações

Exemplo

Calcule o vetor gradiente da função $f(x,y) = sen(x) + e^{xy}$.

Solução:
$$\nabla f(x,y) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

$$\frac{\partial f}{\partial x} = \cos(x) + ye^{xy}$$

$$\frac{\partial f}{\partial y} = xe^{xy}$$

$$\nabla f(x,y) = (\cos(x) + ye^{xy})\mathbf{i} + xe^{xy}\mathbf{j}$$

Projeto 1

Derivada direcional

Projeto 1: Formação das duplas e orientações

Projeto 1: Formação das duplas e orientações

OBRIGADA