Scilab Textbook Companion for Fluid Mechanics With Engineering Applications

by R. L. A. Daugherty And J. B. A. Franzini¹

Created by
Ajay Theetla
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Lavitha Pereira

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics With Engineering Applications

Author: R. L. A. Daugherty And J. B. A. Franzini

Publisher: McGraw - Hill

Edition: 8

Year: 1985

ISBN: 0076662673

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	new	5
2	new1	8
3	new3	14
4	new4	16
6	new6	22
7	new7	28
8	new8	30
9	new9	37
10	0 new10	44
11	new11	50
12	2 new12	54
13	3 new13	57
14	1 new14	60
15	$5~\mathrm{new}15$	62

16 new16	66
17 new17	69

List of Scilab Codes

Exa 1.1	example 1 .													5
Exa 1.2	Example 2													6
Exa 1.3	Example 3													7
Exa 2.1	Example 1													8
Exa 2.2	Example 2													9
Exa 2.3	Example 3													10
Exa 2.4	Example 4													10
Exa 2.5	Example 5													11
Exa 2.6	Example 6													12
Exa 2.7	Example 7													13
Exa 3.1	Example 1													14
Exa 3.2	Example 1													14
Exa 4.1	Example 1													16
Exa 4.2	Example 2													17
Exa 4.3	Example 3													17
Exa 4.5	Example 5													18
Exa 4.6	Example 6													18
Exa 4.7	Example 7													19
Exa 4.8	Example 8													19
Exa 4.9	Example 9													20
Exa 4.10	Example 10													20
Exa 4.44	Example 4													21
Exa 6.1	Example 1													22
Exa 6.2	Example 2													23
Exa 6.3	Example 3													23
Exa 6.4	Example 4													24
Exa 6.5	Example 5													25
Eva 6.6	Example 6													26

Exa 6.7	Example 7											27
Exa 7.2	Example 2											28
Exa 7.3	Example 3											29
Exa 8.1	Example 1											30
Exa 8.2	Example 2											30
Exa 8.3	Example 3											31
Exa 8.4	Example 4											32
Exa 8.5	Example 5											32
Exa 8.6	Example 6											33
Exa 8.7	Example 7											33
Exa 8.8	Example 8											34
Exa 8.9	Example 9											35
Exa 9.1	Example 1											37
Exa 9.2	Example 2											37
Exa 9.3	Example 3											38
Exa 9.4	Example 4											39
Exa 9.5	Example 5											39
Exa 9.6	Example 6											40
Exa 9.7	Example 7											41
Exa 9.8	Example 8											42
Exa 9.9	Example 9											43
Exa 10.1	Example 1											44
Exa 10.2	Example 2											45
Exa 10.3	Example 3											45
Exa 10.4	Example 4											46
Exa 10.5	Example 5											46
Exa 10.6	Example 6											47
Exa 10.7	Example 7											47
Exa 10.8	Example 8											48
Exa 10.9	Example 9											49
Exa 11.1	Example 1											50
Exa 11.2	Example 2											50
Exa 11.3	Example 3											51
Exa 11.5	Example 5											52
Exa 11.6	Example 6											52
Exa 12.1	Example 1											54
Exa 12.2	Example 2											55
Exa 12.3	Example 3											55

Exa	12.4	Example 4												56
Exa	13.1	Example 1												57
Exa	13.2	Example 2												57
Exa	13.3	Example 3												58
Exa	13.4	Example 4												59
Exa	14.1.a	Example 1												60
Exa	14.1.b	Example 2												60
Exa	15.1	Example 1												62
Exa	15.2	Example 2												63
Exa	15.3.a	Example 3												64
Exa	15.3.b	Example 4												64
Exa	16.2	Example 2												66
Exa	16.3	Example 3												67
Exa	16.4	Example 4												67
Exa	17.1.b	Example 2												69
Exa	17.1	Example 1												69
Exa	17.2	Example 3												70
Exa	17.3	Example 4												70
Exa	17.4	Example 5												71

new

Scilab code Exa 1.1 example 1

```
1 clc
2 //Initialization of variables
3 \text{ sw} = 62.4 // \text{lb} / \text{ft}^3
4 sw2=9.81 //kN/m^3
5 sg=13.55 //No units
6 \text{ g} = 32.2 // \text{ft/s}^2
7 //calculations
8 dwater=sw/g
9 dwater2=sw2/(9.81)
10 Gmercury=sg*sw
11 Gmercury2=sg*sw2
12 dmercury=sg*dwater
13 dmercury2=sg*dwater2
14 // Results
15 printf ('Density of water = \%.2 \, \text{f slugs/ft}^3', dwater)
16 printf('\n Density of water = \%.2 \,\mathrm{f} g/ml', dwater2)
17 printf('\n Density of mercury = \%.1 \, f \, slugs/ft^3',
      dmercury)
18 printf('\n Density of mercury = \%.2 \text{ f kN/m}^3',
      dmercury2)
19 printf('\n Specific weight of mercury = \%d lb/ft^3',
```

```
Gmercury+1) 20 printf('\n Specific weight of mercury = \%d \ kN/m^3', Gmercury2+1)
```

Scilab code Exa 1.2 Example 2

```
1 clc
2 //Initialization of variables
3 T = 460 + 100 / R
4 P=15 //psia
5 \text{ MW} = 32 \text{ } //1b
6 \text{ g} = 32.2 // \text{ft/s}^2
7 \text{ ratio} = 0.4
8 // Calculations
9 R = 49710/32
10 d=P*144/(R*T)
11 Gamma=d*g
12 \text{ volume=1/d}
13 P2=P*(1/ratio)^1.4
14 P2f=P2*144
15 T2=P2f*ratio/(d*R) -460
16 P3=P/ratio
17 // Results
18 printf('part a')
19 printf('\n Density of oxygen = \%.5 \, \text{f slug/ft}^3',d)
20 printf('\n Specific weight of oxygen = \%.2 \, \text{f lb/ft}^3'
       , Gamma)
21 printf('\n Specific volume of oxygen = \%d ft^3/slug'
       ,volume+1)
22 printf('\n part b')
23 printf('\n Final pressure of oxygen = \%.1 f psia', P2
24 printf('\n Final Temperature of oxygen = \%d F', T2
25 printf('\n part 3')
```

```
26 printf('\n Final pressure of oxygen = %.1f psia ',P3
)
27 printf('\n Final Temperature of oxygen = %d F ',T
-460)
```

Scilab code Exa 1.3 Example 3

new1

Scilab code Exa 2.1 Example 1

```
1 clc
2 //Initialization of variables
3 z = 20000 // ft
4 rate=-0.00356 //F/ft
5 T = 59 //F
6 P=14.7 // psia
7 \text{ gamma} = 0.076 // lb / ft^3
8 //calculations
9 P2=P*144 - gamma*(z)
10 P2f=P2/144
11 P3=P*exp(-gamma*z/(P*144))
12 P4 = ((P*144)^0.285 - 0.285*gamma*z*(P*144)^(-0.715))
      ^(1/0.285)
13 P4f=P4/144.
14 P5=P*((460+T)/(460+T+rate*z))^(gamma*(T+460)/(P*144*)
      rate))
15 //results
16 printf ('Constant density')
17 printf('\n Final pressure = \%.2 f psia', P2f)
18 printf('\n Isothermal')
19 printf('\n Final pressure = \%.2 \, \text{f} psia',P3)
```

```
20 printf('\n Isentropic')
21 printf('\n Final pressure = %.2f psia',P4f)
22 printf('\n Linear decrease')
23 printf('\n Final pressure = %d psia',P5+1)
```

Scilab code Exa 2.2 Example 2

```
1 clc
2 //Initialization of variables
3 \text{ wA} = 53.5 // \text{lb} / \text{ft}^3
4 wA2=8.4 //kN/m^3
5 \text{ wB} = 78.8 // \text{lb} / \text{ft}^3
6 wB2=12.3 //kN/m^3
7 PB=30 //psi
8 PB2=200 //kN/m^2
9 AB=1.3 //ft
10 AB2=40/100 //m
11 BC=6.5 //ft
12 BC2=2 //m
13 CD=10 // ft
14 \text{ CD2=3 } //\text{m}
15 // Calculations
16 \text{ PAbyGB=PB*} 144/\text{wB} - \text{AB*} 13.55*62.4/\text{wB} - (BC+CD) + (AB+C)
       BC)*wA/wB
17 PA = PAbyGB*wB/144.
18 \text{ PAbyGB2} = \text{PB2/wB2} - \text{AB2} * 13.55 * 9.81/\text{wB2} - (\text{BC2} + \text{CD2}) + (
       AB2+BC2)*wA2/wB2
19 PA2 = PAbyGB2 * wB2
20 // Results
21 printf ('English units')
22 printf("\n Final pressure = \%.1 \, \text{f psi}",PA)
23 printf('\n SI Units')
24 printf("\n Final pressure = %d kPa", PA2+1)
```

Scilab code Exa 2.3 Example 3

```
1 clc
2 //Initialization of variables
3 \text{ W} = 500 // \text{lb}
4 width=2 //ft
5 len=4 //ft
6 CGx = 1.2 //ft
7 CGy = 0.9 / ft
8 theta=30 //degrees
9 \text{ gam} = 62.4 // lb / ft^3
10 // Calculations
11 Fv=width*len //multiply by gam*x
12 F=width/(2*cosd(theta)) //multiply by gam*x*x
13 // function[y] = yp(x)
          y=x/(2*\cos d(theta)) + width*(x/\cos d(theta))
      /(12*(\cos d (theta))^4)
15 //endfunction
16 // \operatorname{function} [M] = \operatorname{func} (x)
         M=F*gam*x^2*0.770*x/2 +W*CGx - Fv*gam*x*width
17 //
18 //endfunction
19 x = poly(0, 'x');
20 vector=roots(F*gam*x^2 *0.770*x/2 +W*CGx - Fv*gam*x*
      width)
21 printf ('The gate will remain closed between %.2 f ft
      and \%.2\,\mathrm{f} ft', vector(3), vector(2))
```

Scilab code Exa 2.4 Example 4

```
1 clc
2 //Initialization of variables
3 z1=1 //in
```

```
4 z2=2 //in
  5 z3=2 //in
  6 \text{ sOil} = 0.8
  7 sWater=1
  8 Pa=3 //psi
  9 //calculations
10 Pd=(Pa) + (z2+z1)*s0i1*62.4/144 + 62.4*z3/144
11 Fa=Pa*144*%pi*z3^2
12 \text{Fb} = \text{sOil} * 62.4 * (z2+z1-(z2+z3)*z2/((z2+z1)*\%pi))*(\%pi*
                    z3^2 / 2)
13 Fc=s0i1*62.4*(z2+z1)*(\%pi*z3^2 /2)
14 Fd=62.4*(z2+z3)*z2/((z2+z1)*\%pi)*(\%pi*z3^2 /2)
15 \quad F = Fa + Fb + Fc + Fd
16 \text{ yPa}=z2+z1
17 yCb=z2+z1-(z2+z3)*z2/((z2+z1)*\%pi)
18 ICb = \%pi * (z2+z3)^4 / 128 -0.5 * \%pi * z2^2 * ((z2+z3) * z2/((z2+z3) * z2/((z2+z3)) * z2/((z2+z3) * z2/((z2+z2) * z2/((z2
                    z2+z1)*%pi))^2
19 yPb = yCb + ICb / (yCb * 0.5 * \%pi * z2^2)
20 yPc=z2+z1+(z2+z3)*z2/((z2+z1)*\%pi)
21 ICd=ICb
22 \text{ yPd}=z2+z1 + (z2+z3)*z2/((z2+z1)*\%pi) + ICb/((z2+z3)*z2)
                    z2/((z2+z1)*\%pi)*0.5*\%pi*z3^2)
23 \text{ yP}=(\text{Fa}*\text{yPa}+\text{Fb}*\text{yPb}+\text{Fc}*\text{yPc}+\text{Fd}*\text{yPd})/\text{F}
24 // Results
25 printf('case 1')
26 printf('\n Pressure at the bottom = \%.1 \, \text{f} psi',Pd)
27 printf('\n case 2')
28 printf('\n Net force = \%d lb', F+3)
29 printf('\n Location of net force= %.2 f ft', yP)
```

Scilab code Exa 2.5 Example 5

```
1 clc
2 //Initialization of variables
3 dia=4 //m
```

```
4 P=35 //kN/m^2
5 theta=30 //degrees
6 // Calculations
7 Fx=P*(dia-dia*(1-cosd(theta))/2.)
8 Fz=P*dia*sind(theta)/2
9 dist=(dia-dia*(1-cosd(theta))/2.)
10 Fxb=9.81*dist*dist/2
11 Fzb=9.81*((180+theta)*pi*(dia/2)^2/360 + sqrt(3)/2
       + dia/2
12 // Results
13 printf('part a')
14 printf('\n Horizontal force= \%.1 f kN/m to the right'
15 printf('\n Vertical force = \%.1 \, f \, kN/m upward', Fz)
16 printf('\n part b')
17 printf('\n force by the fluid = \%.1 \, \text{f kN/m} to the
      right', Fxb)
18 printf('\n weight of the cross-hatched volume of
      liquid =\%.1 f \text{ kN/m Upward', Fzb})
```

Scilab code Exa 2.6 Example 6

```
13 x=C(1,1)
14 y=C(2,1)
15 height=depth-x
16 //Results
17 printf('Bottom of the cylinder will be %.2f in above the bottom of hollow cylinder',height)
```

Scilab code Exa 2.7 Example 7

```
1 clc
2 //Initialization of variables
3 v = 180 //m/s
4 angle=40 //degrees
5 a=4 //m/s^2
6 r = 2600 / m
7 \text{ g=9.81 } //\text{m/s}^2
8 //calculations
9 //Assume outward and right as positive
10 \quad an = -v * v / r
11 at=-a
12 ax=at*cosd(angle) +an*sind(angle)
13 az=at*sind(angle) -an*cosd(angle)
14 tangent = ax/(az+g)
15 theta=atand(tangent)
16 // Results
17 printf('Angle made by the free liquid = \%.2f degrees
      ',-theta)
```

new3

Scilab code Exa 3.1 Example 1

```
1 clc
2 //Initialization of variables
3 Q=0.5 // cfs
4 d1=8 //in
5 d2=4 //in
6 R=2 //in
7 h = 0.59 //in
8 //calculations
9 \text{ Aa=\%pi*(d1/12)^2 /4}
10 Va=Q/Aa
11 Ab=2*\%pi*R*h/144
12 Vb=Q/Ab
13 / results
14 printf("Average velocity at section A =%.2 f fps ", Va
15 printf("\n Average velocity at section B=\%.2 f fps ",
      Vb)
```

Scilab code Exa 3.2 Example 1

```
1 clc
2 //Initialization of variables
3 Q=0.5 // cfs
4 d1=8 //in
5 d2=4 //in
6 R=2 //in
7 theta=45//degrees
8 //calculations
9 h=(1-cosd(theta)) // Multiply by r
10 Aa=2*\%pi*h //Multiply by r^2
11 V=Q/Aa //divide by r^2
12 \text{ aA} = 0
13 r = 0.167 // ft
14 V1=V/r^2
15 \text{ dvbydx=V*2/r}^3
16 \quad aB = V1 * dvbydx
17 // results
18 //The answer varies a bit from the text due to
      rounding off error
19 printf ("Acceleration at A = %d since flow is steady"
      ,aA)
20 printf("\n Acceleration at B = \%d ft/s^2", aB)
```

new4

Scilab code Exa 4.1 Example 1

```
1 clc
2 //Initialization of variables
3 d=1.26
4 d=25 //in
5 d2 = 60 / cm
6 \ Q = 25 / c f s
7 Q2 = 700 / L/s
8 \text{ dout}=12 //in
9 \text{ dout2=30/100 } //\text{m}
10 z=3 //ft
11 z2=1 /m
12 P1 = 45 // psi
13 P2=300 //kN/m^2
14 gamma=9.81 //kN/m^3
15 //calculations
16 V1=d/%pi
17 V2=d*4/%pi
18 pf = (P1*144/(1.26*62.4) + (V1^2)/64.4 - V2^2/64.4 + z
      )*1.26*62.4/144
19 V1=Q2/1000/(%pi*dout2^2)
20 V2=4*V1
```

```
21 p2f=((P2/(1.26*gamma)) + V1^2 /(2*gamma) -V2^2 /(2*gamma) +z2)*1.26*gamma
22
23 //results
24 printf("English units")
25 printf("\n Pressure at point 2 = %.1f psi ",pf)
26 printf("\n SI Units")
27 printf("\n Pressure at point 2 = %.d kN/m^2 ",p2f)
```

Scilab code Exa 4.2 Example 2

Scilab code Exa 4.3 Example 3

```
1 clc
2 //Initialization of variables
3 sg=1.26
4 sg2=1.26
5 HP=22
6 HP2=16
7 //calculations
8 hp=HP*550/(sg*62.4) //divide by Q
9 Q=14.2 //cfs
```

```
10 printf("In English units, By trial Q= %.1f cfs",Q)
11 hp2=HP2*1000/(sg2*9.81)
12 Q2=0.42 //m^3/s
13 printf("\n In SI units, By trial Q= %.2f m^3/s",Q2)
```

Scilab code Exa 4.5 Example 5

Scilab code Exa 4.6 Example 6

```
1 clc
2 //Initialization of variables
3 z=3 //ft
4 s=0.82
5 //calculations
6 ua=sqrt(z*2*32.2)
7 ub=sqrt(2*32.2*(-2*(1-s) +ua^2 /(2*32.2)))
8 //results
9 printf("Velocity at B= %.1f fps",ub)
```

Scilab code Exa 4.7 Example 7

```
1 clc
2 //Initialization of variables
3 d=3 //in
4 x1=0.5^2
5 x2=0.75^2
6 z = 80 //ft
7 z3=10 //ft
8 //calculations
9 disp("Using bernoullis theorem")
10 v3 = 29.7 // fps
11 Q=\%pi /4 *(d/12)^2 *v3
12 hls=5*(x1*v3)^2 /(2*32.2)
13 hld=12*(x2*v3)^2 /(2*32.2)
14 //results
15 printf("Head loss in suction pipe = %.1 f ft", hls)
16 printf("\n Head loss in discharge pipe = \%.1 f ft",
      hld)
17 printf("\n Flow rate = \%.2 \, \text{f cfs}",Q)
```

Scilab code Exa 4.8 Example 8

```
1 clc
2 //Initialization of variables
3 z1=2
4 z2=0.8
5 //calculations
6 disp("From equation of continuity, z1*v1=z2*v2")
7 V1= sqrt((z2-z1)*2*9.81/(1-z1^2 /z2^2))
8 V2=z1*V1/z2
```

```
9 Q=z1*1*V1
10 //results
11 printf("Flow rate = %.2 f m^3/s",Q)
```

Scilab code Exa 4.9 Example 9

```
1 clc
2 //Initialization of variables
3 theta=30 //degrees
4 z=10 //ft
5 x=60 //ft
6 //calculations
7 V=sqrt((0.5*32.2*69.3^2)/((x-sind(theta) *69.3)))
8 //results
9 printf("velocity = %.2f fps",V)
```

Scilab code Exa 4.10 Example 10

```
1 clc
2 //Initialization of variables
3 V=60 //fps
4 theta=15 //degrees
5 ra=6/12 //ft
6 rb=8/12 //ft
7 B=1.5/12 //ft
8 //calculations
9 Vra=V*sind(theta)
10 Q=2* %pi*ra*B*Vra
11 Vratio=ra/rb
12 Vb=Vratio*V
13 flow=(V^2 - Vb^2)/(2*32.2)
14 //results
15 printf("Flow rate = %.2f cfs",Q)
```

```
16 printf("\n Velocity at b = \%d fps", Vb)
17 printf("\n Pressure head = \%.1 f ft", flow)
```

Scilab code Exa 4.44 Example 4

```
1 clc
2 //Initialization of variables
3 g=9810 //N/m^3
4 Q=10 //m^3/s
5 H=20 //m
6 //calculations
7 Rate=g*Q*H/1000
8 //results
9 printf("Rate of energy loss = %d kW", Rate-2)
```

new6

Scilab code Exa 6.1 Example 1

```
1 clc
2 //Initialization of variables
3 \text{ g=9.81 } //\text{kN/m}^3
4 V2=12 //m/s
5 \text{ V3=12 } //\text{m/s}
6 A2=10^2
7 A1=15^2
8 \quad A3 = 7.5^2
9 t1=15
10 t2=30
11 //calculations
12 V1 = (A2 * V2 + A3 * V3) / A1
13 Q1=\%pi /4 *A1*10^-4 *V1
14 \ Q2 = \%pi /4 *A2 *10^-4 *V2
15 \ Q3 = \%pi /4 *A3 *10^-4 *V3
16 \text{ P1g=V3^2} / (2*g) - \text{V1^2} / (2*g)
17 P1=P1g*g
18 rho=10<sup>3</sup>
19 V2x=V2*cosd(t1)
20 \quad V3x = V3 * cosd(t2)
21 V1x=V1
```

Scilab code Exa 6.2 Example 2

```
1 clc
2 //Initialization of variables
3 V1x = 100 //ft/sec
4 V2x=0.866*95
5 V1y=0
6 V2y = .5*95
7 A1=0.0218 // ft^2
8 //calculations
9 Q = A1 * V1x
10 \text{ rho} = 1.94
11 Fx=rho*Q*(V2x-V1x)
12 \quad Fxr = -Fx
13 Fy=rho*Q*(V2y-V1y)
14 // results
15 printf ("Horizontal force on the blade = \%.1 \,\mathrm{f} lb", Fxr
16 printf("\n Vertical force on the blade = %d lb", Fy)
```

Scilab code Exa 6.3 Example 3

```
1 clc
2 //Initialization of variables
3 \text{ v2=36} // \text{fps}
4 beta=150 // degrees
5 u = 60 // fps
6 \text{ rho} = 1.94
7 \quad Qd = 0.0218
8 V1 = 100 // fps
9 \text{ gam} = 62.4
10 g = 32.2
11 //calculations
12 \text{ v2s=v2*sind(beta)}
13 \text{ v2c=u+v2*cosd(beta)}
14 V2 = 34 // fps
15 alpha=32 // degrees
16 Fx=rho*Qd*(v2c-V1)*(V1-u)
17 Fy=-rho*Qd*(V1-u)*v2s
18 Fx2=rho*Qd*V1*(v2c-V1)
19 HPin=gam*Qd*V1*(V1^2/(2*g))/550
20 HPout=gam*Qd*V1*(V2^2 /(2*g))/550
21 HPtransfer=-Fx2*u/550
22 HPfl=HPin-HPout-HPtransfer
23 //results
24 printf ("Force exerted by water on the vane = \%d lb",
25 printf("\n Friction loss = \%.1 f hp ", HPf1)
```

Scilab code Exa 6.4 Example 4

```
1 clc
2 //Initialization of variables
3 z1=35 //ft
4 z3=20 //ft
5 P1=30 //psi
6 g=32.2
```

```
7 z2=10 //ft
8 d2=4 //in
9 \text{ rho} = 1.94
10 be=20 // degrees
11 W = 150 // lb
12 //calculations
13 V3 = sqrt(2*g*(P1*144/55 + z1-z3))
14 Q=3.81 // cfs
15 V2 = 43.6 // fps
16 P2=55*(z3+V3^2/(2*g)-z2-V2^2/(2*g))/144
17 Fx=P2*\%pi/4*d2^2 - rho*55/62.4*Q*(V3*cosd(be) - V2
18 Fy=rho*55/62.4 *Q*(V3*sind(be)) + W
19 Fres=sqrt(Fx^2 + Fy^2)
20 \text{ Fsx=rho*Q*55/62.4*(V3*cosd(be))}
21 //calculations
22 printf("resultant force = %d lb", Fres)
23 printf("\n horizontal component of force = %d lb",
      Fsx)
```

Scilab code Exa 6.5 Example 5

```
1 clc
2 //Initialization of variables
3 omega=300 //rpm
4 r1=1.6 //ft
5 Q=120 //cfs
6 z=0.8 //ft
7 beta1=80 //degrees
8 r2=1 //ft
9 rho=1.94
10 g=32.2
11 gam=62.4
12 //calculations
13 disp("part a")
```

```
14 u1 = (2*\%pi/60)*omega*r1
15 Vr1=Q/(2*%pi*r1*z)
16 v1=Vr1/sind(beta1)
17 \text{ v2c=v1*cosd(beta1)}
18 \ V1c = u1 + v2c
19 u2=(2*\%pi/60)*omega*r2
20 \text{ Vr2=Vr1*(r1/r2)}
21 beta2=atand(Vr2/u2)
22 printf ("required Blade angle = \%.1 f degrees", 180-
      beta2)
23 disp("part b")
24 \quad T=rho*Q*(r1*V1c)
25 \text{ power} = T * u2
26 printf("Torque exerted = \%d ft lb/s", power)
27 disp("part c")
28 h2=u1*V1c/g
29 Power=gam *Q*h2
30 printf("Torque exerted = \%d ft lb/s", Power)
```

Scilab code Exa 6.6 Example 6

```
1 clc
2 //Initialization of variables
3 V1=150*44/30
4 Q=20000/2
5 d=6.5 //ft
6 rho=0.072
7 //calculations
8 A=%pi/4 *(d)^2
9 V=Q/A
10 dV=2*(V-V1)
11 Ft=rho/32.2 *Q*2*dV
12 eta=1/(1+ dV/(2*V1))
13 dP=Ft/2 /(%pi/4) /d^2
14 hpp=Q*dP/550
```

```
15 // results
16 printf("pressure rise = %d psf",dP)
17 printf("\n horsepower input = %d hp ",hpp)
```

Scilab code Exa 6.7 Example 7

```
1 clc
2 //Initialization of variables
3 V1 = 8.02 // fps
4 V2=16.04 //fps
5 Q = 481 / cfs
6 \text{ rho} = 1.94
7 A = 10 * 6
8 d=3
9 //calculations
10 Fx=62.4*d*A - 62.4*d/2 *A/2 - rho*Q*(V2-V1)
11 V1m = 2.56 //m/s
12 V2m=5.12 //m/s
13 Qm=15.4 //\text{m}^2/\text{s}
14 \, dm = 1
15 \text{ Am} = 2 * 3
16 \text{ rhom}=1
17 Fxm=9.81*dm*Am - 9.81*dm/2 *Am/2 - rhom*Qm*(V2m-V1m)
18 //results
19 printf("Force in x- direction = %d lb",Fx)
20 printf("Force in x- direction = \%.1 \, f \, kN", Fxm)
```

new7

Scilab code Exa 7.2 Example 2

```
1 clc
2 //Initialization of variables
3 Dratio=8
4 \text{ mu} = 0.0006
5 \text{ rho} = 52/32.2
6 vm=1.22*10^-5 //lb s /ft<sup>2</sup>
7 V = 45 // fps
8 \text{ Fm} = 0.8
9 //calculations
10 vp=mu/rho
11 Vm=vm*V/(Dratio*vp)
12 Fratio=rho*V^2 /(1.94*Vm^2 *Dratio^2)
13 \text{ Fp=Fratio}*Fm
14 //results
15 printf ("velocity = \%.2 \, \text{f fps}", Vm)
16 printf("\n Drag force = %d lb", Fp)
17 disp('The answer given in textbook is wrong. Please
      use a calculator')
```

Scilab code Exa 7.3 Example 3

```
1 clc
2 //Initialization of variables
3 L=50
4 Fm=0.02 //N
5 Vm=1 //m/s
6 //calculations
7 Fp=L^3 *Fm
8 Fp=Fp*0.2248
9 Vp=sqrt(L) *Vm
10 Vp=Vp*3.28
11 Hp=Fp*Vp/550
12 //results
13 printf("Required horsepower = %.1 f hp", Hp)
```

new8

Scilab code Exa 8.1 Example 1

```
1 clc
2 //Initialization of variables
3 s=0.85
4 nu=1.8*10^-5 //m^2 /s
5 d=10 //cm
6 flow=0.5 //L/s
7 //calculations
8 Q=flow*10^3
9 A=%pi*d^2 /4
10 V=Q/A
11 V=V/10^2
12 R=d*10^-2 *V/nu
13 //results
14 printf("reynolds number = %d . Hence the flow is laminar", R)
```

Scilab code Exa 8.2 Example 2

```
1 clc
2 //Initialization of variables
3 Vc = 12.7 / cm/s
4 r=2 /cm
5 \text{ r2=5 } //\text{cm}
6 R = 354
7 \text{ rho} = 0.85
8 V = 6.37 / cm/s
9 D=0.1 //m
10 //calculations
11 k=Vc/r2^2
12 f = 64/R
13 \text{ T0=f/4 *rho*V^2 /2}
14 \quad T02 = T0/10
15 hr=f*(V*10^-2)^2 /(2*9.81*D)
16 //results
17 printf ("Friction factor = \%.2 \,\mathrm{f}",f)
18 printf("\n Shear stress at the pipe wall = \%.3 \,\mathrm{f} N/m
       ^2",T02)
19 printf("\n Head loss per pipe length = \%.5 \, \text{f m/m}", hr)
```

Scilab code Exa 8.3 Example 3

```
1 clc
2 //Initialization of variables
3 Q=2
4 A=0.196 //cm^2
5 D=0.5 //ft
6 rho=0.9*1.94
7 mu=0.0008 //lb s/ft^2
8 h1=25
9 g=32.2 //ft/sec^2
10 L=200 //ft
11 r=2 //in
12 //calculations
```

```
13  V=Q/A
14  R=D*V*rho/mu
15  f=h1*D*2*g/(L*V^2)
16  umax=V*(1+1.33*sqrt(f))
17  T0=f*rho*V^2 /8
18  u2=umax - 5.75* sqrt(T0/rho) *log10(D*12/r)
19  //results
20  printf("Center line velocity = %.1 f fps", umax)
21  printf("\n Shear stress = %.2 f lb/ft^2", T0)
22  printf("\n Velcoity at 2 in from center line = %.2 f fps", u2)
```

Scilab code Exa 8.4 Example 4

```
1 clc
2 //Initialization of variables
3 f=0.0131
4 d=0.5 //m
5 //calculations
6 V=2.12 //m/s
7 R=10^6
8 Q=%pi*d^2 /4 *V
9 d1=32.8*10^-6 /(V* sqrt(f))
10 //results
11 printf("flow rate = %.3 f m^3/s",Q)
12 printf("\n nominal thickness = %.2 e m",d1)
```

Scilab code Exa 8.5 Example 5

```
1 clc
2 //Initialization of variables
3 dz=260 //ft
4 ke=0.5
```

```
5  f=0.02
6  l=5000 //ft
7  D=10 //in
8  A2=0.545
9  //calculations
10  V2by2g=dz/(1 + ke + f*1/(D/12))
11  V2=V2by2g*2*32.2
12  V=sqrt(V2)
13  DV=D*V
14  Q=%pi/4 *(D/12)^2 *V
15  //results
16  printf("Flow rate = %.2 f cfs",Q)
```

Scilab code Exa 8.6 Example 6

```
1 clc
2 //Initialization of variables
3 z=260 //ft
4 f=0.02
5 //calculations
6 V2by2g=z/(1.11*256 + 6000*f)
7 V2=V2by2g*2*32.2
8 V=sqrt(V2)
9 Q=0.545*V
10 V3=16*V
11 H=z-f*6000*V2by2g
12 //results
13 printf("rate of discharge = %.2 f cfs",Q)
```

Scilab code Exa 8.7 Example 7

```
1 clc
2 //Initialization of variables
```

```
3 g=52
4 Hp=2
5 //calculations
6 Q=3.48 //cfs
7 V6=3.48/0.196
8 P=-20.9 //ft
9 P2=P*(g/144)
10 //results
11 printf("Flow rate = %.2 f cfs",Q)
12 printf("\n Pressure in the pipe = %.2 f psi",P2)
```

Scilab code Exa 8.8 Example 8

```
1 clc
2 //Initialization of variables
3 h=10 /m
4 g=9.81 //m/s^2
5 f1=0.019
6 f2=0.021
7 f3=0.020
8 z1 = 300 / m
9 z2=150 / m
10 z3 = 250 / m
11 d1=0.3 //m
12 d2=0.2 / m
13 d3 = 0.25 / m
14 //calculations
15 disp("part(a)")
16 Vbyg=h/(f1*z1/d1 + f2*z2/d2 *(d1/d2)^4 + f3*z3/d3 *(
      d1/d3)^4
17 V1=sqrt (2*g*Vbyg)
18 \ Q = \%pi/4 *d1^2 *V1
19 printf("\n Flow rate = \%.3 \, \text{f m}^3/\text{s}",Q)
20 disp('Part b')
21 \text{ Le}2=z2*f2/f1 *(d1/d2)^5
```

```
22 Le3=z3*f3/f1 *(d1/d3)^5
23 Le1=z1
24 Le=Le1+Le2+Le3
25 V1byg=h*d1/Le/f1
26 V2=sqrt(2*g*V1byg)
27 Q1=%pi/4 *d1^2 *V2
28 printf("\n Flow rate = %.3 f m^3/s",Q1)
```

Scilab code Exa 8.9 Example 9

```
1 clc
2 //Initialization of variables
3 d1=6/12 //ft
4 d2 = 4/12 //ft
5 d3 = 8/12 // ft
6 11 = 2000 // ft
7 12 = 1600 // ft
8 13 = 4000 // ft
9 f1=0.020
10 f2=0.032
11 f3=0.024
12 El1=200
13 E12=50
14 El3=120
15 g = 32.2
16 //calculations
17 Vc = sqrt(2*g*(El1-El2)/288.9)
18 \ Qc = \%pi/4 *d3^2 *Vc
19 Va=1.346*Vc
20 \ Qa = \%pi/4 *d1^2 *Va
21 \text{ Vb} = (d3^2 * \text{Vc} - d1^2 * \text{Va})/d2^2
22 \ Qb = \%pi/4 *d2^2 *Vb
23 P=62.4/144 *(El1 - El3 - f1*l1/d1 *Va^2 /(2*g))
24 //results
25 printf ("Flowrate at A = \%.3 f \text{ cfs}", Qa)
```

```
26 printf("\nFlowrate at B = \%.3 \, f \, cfs",Qb)
27 printf("\nFlowrate at C = \%.3 \, f \, cfs",Qc)
28 printf("\nPressure at P = \%.2 \, f \, psi",P)
```

new9

Scilab code Exa 9.1 Example 1

```
1 clc
2 // Initialization of variables
3 T2=30 //C
4 T1=20 //C
5 cv=716
6 m=15 //kg
7 cp=1003
8 // calculations
9 di=cv*(T2-T1)
10 dU=di*m
11 dh=cp*(T2-T1)
12 dH=dh*m
13 // results
14 printf("Change in Internal energy = %d N m",dU)
15 printf("\n Change in Enthalpy = %d Nm",dH)
```

Scilab code Exa 9.2 Example 2

```
1 clc
2 //Initialization of variables
3 \text{ cv} = 716
4 \text{ m} = 15 / \text{kg}
5 \text{ cp} = 1003
6 T1 = 20 + 273 / K
7 k = 1.4
8 \text{ ratio} = 0.4
9 //calculations
10 T2=(T1)*(1/ratio)^(k-1)
11 P1=95 //kN/m^2
12 P2=P1*T2/(T1)/ratio
13 di=cv*(T2-T1)
14 \, dU = di * m
15 dh = cp * (T2 - T1)
16 \, dH = dh * m
17 //results
18 printf("Final temperature = \%d K", T2)
19 printf("\n Final pressure = \%d \text{ kN/m}^2",P2)
20 printf("\n Change in Internal energy = \%d N m", dU)
21 printf("\n Change in Enthalpy = \%d Nm", dH)
22 //The answers are a bit different due to rounding
       off error.
```

Scilab code Exa 9.3 Example 3

```
1 clc
2 //Initialization of variables
3 k=1.4
4 R=1773
5 v=600 //fps
6 T=660 //K
7 P=100 //psia
8 cp=6210
9 g=32.2
```

```
10  // calculations
11  c=sqrt(k*R*T)
12  M=v/c
13  rho=k*P*144/c^2
14  Ps=P*144 + 0.5*(rho)*v^2 *(1+ 0.25*M^2)
15  Ts= (cp/g *T + v^2 /(2*g))*g/cp
16  // results
17  printf("Stagnation pressure = %d lb/ft^2",Ps)
18  printf("\n Stagnation temperature = %d R",Ts)
19  disp("Please check the units of the answer.")
```

Scilab code Exa 9.4 Example 4

```
1 clc
2 //Initialization of variables
3 g=32.2
4 A=0.0218 //ft^2
5 P1=25.6 //psia
6 T1=540 //K
7 k=1.4
8 R=1715
9 //calculations
10 G=g*A*P1*144/sqrt(T1) *sqrt(k/R *(2/(k+1))^((k+1)/(k-1)))
11 //results
12 printf("Flow rate = %.2 f lb/s",G)
```

Scilab code Exa 9.5 Example 5

```
1 clc
2 //Initialization of variables
3 P1=50 //psia
4 T1=540 //K
```

```
5 g = 32.2
6 R = 1715
7 k=1.4
8 P3=13.5 //psia
9 A2=0.0218 // ft^2
10 \text{ cp} = 6000
11 //calculations
12 \text{ Pc} = 0.528 * P1
13 V32=R*T1/g *k/(k-1) *(1- (P3/P1)^((k-1)/k))
14 V3 = sqrt(V32 * 2 * g)
15 G3=g*A2*P1*144/sqrt(T1) *sqrt(k/R *(2/(k+1))^((k+1))
      /(k-1)))
16 	ext{ T3= T1 - V3^2 /(2*cp)}
17 gam3 = g*P3*144/(R*T3)
18 gam2 = (Pc/P3 * gam3^k)^(1/k)
19 \quad V2=G3/gam2/A2
20 \text{ T2} = (V3^2 - V2^2)/(2*cp) + T3
21 \quad A3=G3/gam3/V3
22 D3= sqrt(4/\%pi *A3)
23 G2=G3
24 //results
25 printf("\n velocity at section 3 = \%d fps", V3)
26 printf("\n Flow rate at section 3 = \%.3 \, \text{f lb/s}", G3)
27 printf("\n temperature at section 3 = \%d R", T3)
28 printf("\n velocity at section 2 = \%d fps", V2)
29 printf("\n Flow rate at section 2 = \%.3 \, \text{f lb/s}", G2)
30 printf("\n temperature at section 2 = \%d R", T2)
31 printf("\n Required Diameter = \%.2 \, \text{f in}", D3*12)
```

Scilab code Exa 9.6 Example 6

```
1 clc 2 // Initialization of variables 3 P1=10 // psia 4 T1=460+40 //R
```

```
5 R = 1715
6 k = 1.4
7 V1 = 1400 // fps
8 //calculations
9 rho1=P1/(R*T1)
10 c1=sqrt(k*R*T1)
11 M1 = V1/c1
12 P2= P1 * (2*k*M1^2 - (k-1))/(k+1)
13 V2 = V1*((k-1)*M1^2 +2)/((k+1)*M1^2)
14 rho2=rho1*V1/V2
15 T2=P2/rho2/R
16 P22=122.5
17 V22=286
18 T22=328
19 //results
20 printf ("Pressure at point 2 = \%.1 \,\mathrm{f} psia and \%.1 \,\mathrm{f} N/m
      ^2",P2,P22)
21 printf("\n Velocity at point 2 = \%d fps and \%d m/s",
      V2, V22)
22 printf("\n Temperature at point 2 = \%d R and \%d K",
      T2,T22)
23 disp("Similarly it can be done for SI units")
```

Scilab code Exa 9.7 Example 7

```
1 clc
2 //Initialization of variables
3 A=140 //in^2
4 P=48 //lb/in^2
5 mu=3.78*10^-7
6 g=32.2
7 G=100 //lb/s
8 p=80 //lb/in^2
9 T=65+460 //R
10 k=1.4
```

```
11 R=1715
12 //calculations
13 \text{ Rh}=A/P /12
14 R1=G*4*Rh/(mu*g*A/144)
15 R2 = R1
16 f=0.0083
17 gam1=p*g*144/(R*T)
18 V1 = G * 144 / gam 1 / A
19 c = sqrt(k*R*T)
20 M1 = V1/c
21 \quad M2=1/sqrt(k)
22 D = 4 * Rh
23 L= ((1-M1^2 /M2^2)/(k*M1^2) - 2*log(M2/M1))*D/f
24 \text{ Ln} = 500 // ft
25 \text{ P2=sqrt}((p*144)^2 - G^2 *R*T/(g^2 *(A/144)^2 *f*Ln/D)
      ))
26 \text{ Pa} = 12.2
27 //results
28 printf("Max. length = \%d ft",L)
29 printf("\n Pressure required = \%.1f psia", P2/144 -Pa
      )
```

Scilab code Exa 9.8 Example 8

```
1 clc
2 //Initialization of variables
3 G=100 //lb/s
4 g=32.2
5 V2=300 //fps
6 V1=250 //fps
7 //calculations
8 Qh= (V2^2 -V1^2)/(2*g)
9 Q=Qh*G
10 //results
11 printf("Thermal energy added = %d ft lb/s",Q)
```

Scilab code Exa 9.9 Example 9

```
1 clc
2 //Initialization of variables
3 \text{ gam} 1 = 0.41
4 g = 32.2
5 V1 = 250 //fps
6 R1=8.2*10<sup>6</sup>
7 f = 0.0083
8 A = 0.97 / ft^2
9 G=100 // lb / s
10 \, k=1.4
11 P=80 // lb / in^2
12 ratio=0.8
13 R=1715
14 //calculations
15 \text{ rho1=gam1/g}
16 X = G^2 / (gam1*A)^2 + 2*k/(k-1) * (P*144/rho1)
17 P2=(k-1)/2/k *(X*ratio*rho1 - G^2 /(g^2 *A^2 *ratio*)
      rho1))
18 L = 563 / ft
19 rho2=ratio*rho1
20 \quad V2=G/(rho2*g*A)
21 T2=P2/(rho2*R)
22 / results
23 printf("Length = %d ft",L)
24 printf("\n velocity = \%d fps", V2)
25 printf("\n Temperature = \%d R", T2)
```

new10

Scilab code Exa 10.1 Example 1

```
1 clc
2 //Initialization of variables
3 nu=0.001 //ft^2 /s
4 L=1.5 //ft
5 U=2 //ft/s
6 s = 0.925
7 \text{ ro} = 1.94
8 b = 6
9 //calculations
10 R=L*U/nu
11 Cf = 1.328/sqrt(R)
12 Ff=Cf*s*ro*U*b/12 *L
13 delta=4.91 *L/sqrt(R)
14 T0=0.332*nu*s*ro*U/L *sqrt(R)
15 //results
16 printf ("Friction drag = \%.3 f lb", Ff)
17 printf("\n Thickness of boundary layer = \%.4 \, \mathrm{f} ft",
      delta)
18 printf("\n Shear stress = \%.4 \,\mathrm{f}\,\mathrm{lb}/\mathrm{ft}\,\mathrm{^2}",T0)
19 // Similar calculations are done for SI units case
```

Scilab code Exa 10.2 Example 2

```
1 clc
2 //Initialization of variables
3 nu=0.00015 // ft^2/s
4 L=35 //ft
5 \text{ U=88 } // \text{fps}
6 g=32.2 //ft/s^2
7 b=10 //ft
8 \text{ w} = 8 // \text{ft}
9 \text{ rho} = 0.0725
10 //calculations
11 R=L*U/nu
12 Cf = 0.455 / (log10(R))^2.58
13 B = 2*b + w
14 \text{ Ff}=\text{Cf}*\text{rho/g} *\text{U}^2 /2 *\text{L}*\text{B}
15 \text{ Rx} = \text{R} / 10^5
16 delta=L*0.377 / (b* Rx^(0.2))
17 T0=0.0587 *rho/g *U^2 /2 *(nu/(L*U))^(0.2)
18 //results
19 printf("Frictional drag = %.1f lb",Ff)
20 printf("\n Thickness of boundary layer = \%.3 f ft",
       delta)
21 printf("\n Shear stress = \%.4 \,\mathrm{f}\,\mathrm{lb}/\mathrm{ft}^2",T0)
```

Scilab code Exa 10.3 Example 3

```
1 clc
2 //Initialization of variables
3 nu=0.0000166 //ft^2 /s
4 U=5.06 //fps
5 L=50 //ft
```

```
6 g=32.2
7 dia=10 //ft
8 //calculations
9 R=L*U/nu
10 Cf=0.0028
11 Ff=Cf*64/g *U^2 /2 *%pi*dia*L
12 Rx=R/L
13 ec=26*nu/U *Rx^(0.25)
14 Rx2=Rx*L/2
15 T02=0.0587*U^2 /2 /(Rx2)^(0.2)
16 delta2=60*nu/sqrt(T02)
17 //results
18 printf("Friction drag = %d lb",Ff)
19 printf("\n Critical roughness = %.4 f ft",ec)
20 printf("\n height of roughness = %.4 f ft",delta2)
```

Scilab code Exa 10.4 Example 4

```
1 clc
2 //Initialization of variables
3 Cd=0.45
4 rho=0.0725/32.2
5 V=88 //fps
6 A=8*10
7 //calculations
8 Fd=Cd*rho*V^2 /2 *A
9 Drag2=23
10 D=Fd-Drag2
11 //results
12 printf("Pressure drag = %d lb",D)
```

Scilab code Exa 10.5 Example 5

```
1 clc
2 //Initialization of variables
3 Cd=0.2
4 D=8.5 //in
5 V=412 //fps
6 nu=1.57*10^-4
7 //calculations
8 Vt=480 //fps
9 //results
10 printf("Free fall velocity = %d fps", Vt)
```

Scilab code Exa 10.6 Example 6

```
1 clc
2 //Initialization of variables
3 nu=1.15*10^-5 //m^2/s
4 D=2*10^-3 //m
5 V=15 //m/s
6 T=-20 //C
7 //calculations
8 R=D*V/nu
9 f=0.2 *V/D *(1+T/R)
10 //results
11 printf("Frequency of oscillation = %d Hz",f)
```

Scilab code Exa 10.7 Example 7

```
1 clc
2 //Initialization of variables
3 n=90 //rpm
4 R=2
5 rho=0.0765/32.2
6 B=25
```

```
7 U=120 //fps
8 //calculations
9 vt=2*%pi*R*n/60
10 T=2*%pi*R*vt
11 Fl=rho*B*U*T
12 theta=asind(-T/(4*%pi*R*U))
13 //results
14 printf("Value of circulation = %d ft62/s",T)
15 printf("\n Transverse or lift force = %d lb",Fl)
16 printf("\n Position of stagnation points = %.1f",180-theta)
```

Scilab code Exa 10.8 Example 8

```
1 clc
2 //Initialization of variables
3 B=36 //ft
4 c=6 //ft
5 C1 = 0.8
6 \text{ tau} = 0.175
7 rho=0.001756
8 V = 300 // fps
9 //calculations
10 alphai=Cl/(%pi*B/c) *(1+tau) *180/%pi
11 \text{ alpha}=5.4
12 lift=-5.6 // degrees
13 alphao=alpha-alphai
14 alphaod=alphao-lift
15 alphaor=alphaod*%pi/180
16 eta=Cl/(2*%pi*alphaor)
17 Fl=Cl*rho*V^2 /2 *B*c
18 Fd=0.047/Cl *13680
19 HP = Fd * V / 550
20 //results
21 printf("Friction coefficient = \%.3 \,\mathrm{f}", eta)
```

```
22 printf("\n weight of the wing = %d lb",F1)
23 printf("\n Horsepower required = %d hp",HP)
```

Scilab code Exa 10.9 Example 9

```
1 clc
2 // Initialization of variables
3 k=1.4
4 R=287
5 T=249 //K
6 v=600 //m/s
7 d=0.2 //m
8 // calculations
9 c=sqrt(k*R*T)
10 M=v/c
11 Cd=0.62
12 rho=47.22*10^3 /(R*T)
13 Fd=Cd*rho*v^2 /2 *%pi*d^2 /4
14 // results
15 printf("Drag = %d N",Fd)
```

new11

Scilab code Exa 11.1 Example 1

```
1 clc
2 //Initialization of variables
3 y=3.4 //ft
4 n=0.016
5 //calculations
6 A=(10+2*y)*y
7 P=10+ 2*sqrt(5) *y
8 Rh=A/P
9 f=116*n^2 /Rh^(1/3)
10 e= 14.8*Rh/ 10^(1/2/sqrt(f))
11 //results
12 printf("absolute roughness of pipe = %.4 f ft",e)
```

Scilab code Exa 11.2 Example 2

```
1 clc
2 //Initialization of variables
3 y=1.495 //ft
```

```
4 Q=14 //cfs
5 g=32.2
6 //calculations
7 yc=(Q^2 /g *2)^(1/5)
8 //results
9 printf("yc = %.2 f ft is greater than uniform flow depth. Hence flow is supercritical",yc)
```

Scilab code Exa 11.3 Example 3

```
1 clc
2 //Initialization of variables
3 q = 27/4
4 g = 32.2
5 Q = 27 / cfs
6 d=2 //ft
7 dz1=0.3 //ft
8 //calculations
9 yc = (q^2 /g)^(1/3)
10 V2=Q/(4*vc)
11 V1=Q/(4*d)
12 dz = d + V1^2 /(2*g) - V2^2/(2*g) - yc
13 y2=1.6 //ft
14 \quad drop = d-(y2+dz1)
15 dz2=0.6 //ft
16 up=2.12 // ft
17 down = 0.66 // ft
18 //results
19 printf("yc = \%.2 \, \text{f} ft. Since, depth is greater than
      critical depth. the flow is subcritical", yc)
20 printf("\n Drop in water height = \%.2 \, \text{f} ft", drop)
21 printf("\n Drop upstream = \%.2 \, \text{f} ft and Downstream =
      \%.2 f ft", up, down)
```

Scilab code Exa 11.5 Example 5

```
1 clc
2 //Initialization of variables
3 \text{ y0} = 2.17 // \text{ft}
4 q = 400/10
5 g = 32.2
6 d=4.8 //ft
7 S0 = 0.0016
8 //calculations
9 yc = (q^2 /g)^(1/3)
10 y2=y0/2 *(-1 + sqrt(1+ 8*q^2 /(g*y0^3)))
11 y1=d/2 *(-1 + sqrt(1+ 8*q^2/(g*d^3)))
12 E1=y0 + (q/yc)^2 /(2*g)
13 E2= y1+ (q/y1)^2 /(2*g)
14 \text{ Vm} = 0.5*(q/yc + q/y1)
15 Rm = 0.5*(y0/1.434 + y1/1.552)
16 S = (0.013*Vm/(1.49*Rm^(2/3)))^2
17 dx = (E1 - E2) / (S - S0)
18 E1d=E2
19 E2d=d+ (q/4.8)^2 /(2*g)
20 HPl=62.4*q*10*(E1d-E2d)/550
21 / results
22 printf ("Power loss = \%.2 \,\mathrm{f} ", HP1)
23 //The answer is a bit different from the textbook
      due to rounding off error
```

Scilab code Exa 11.6 Example 6

```
1 clc
2 //Initialization of variables
3 y1=[1.5 1.48]
```

```
4 V1=[2.22 2.29]
5 d=1.2
6 //calculations
7 q = y1.*V1
8 V2=q/d
9 Vm=[2.5 2.56]
10 Rh1=[0.9 0.89]
11 Rh2=[0.88 0.78]
12 Rhm = (Rh1 + Rh2)/2
13 S=(q.*Vm/Rhm.^(2/3)).^2
14 dx = [358 226]
15 yavg=(y1(1) + y1(2))/2
16 \text{ qavg} = (q(1) + q(2))/2
17 B=4.5
18 \ Q=qavg*B
19 // results
20 printf("Flow rate = \%.1 \,\mathrm{f}\,\mathrm{m}^3/\mathrm{s}",Q)
```

new12

Scilab code Exa 12.1 Example 1

```
1 clc
2 //Initialization of variables
 3 P1=10 // psia
 4 Q=0.6 //cfs
 5 \text{ A1=0.0491} // \text{ft}^2
 6 g = 32.2
 7 V = 39.2 // fps
 8 \text{ A0=0.0218} // \text{ft}^2
9 d1=2 //in
10 d2=3 //in
11 //calculations
12 Phead=P1*144/62.4
13 V1 = Q/A1
14 V2i= sqrt(2*g*(Phead + V1^2 /(2*g)))
15 \text{ Cv=V/V2i}
16 \quad A2 = Q/V
17 \, \text{Cc} = \text{A2/A0}
18 \text{ Cd} = \text{Cc} * \text{Cv}
19 hL=(1/Cv^2-1)*(1-(d1/d2)^4)*V^2/(2*g)
20 / results
21 printf ("Cc = \%.2 f", Cc)
```

```
22 printf("\n Cd= %.2 f",Cd)

23 printf("\n Cv= %.2 f",Cv)

24 printf("\n Head loss = %.2 f ft",hL)
```

Scilab code Exa 12.2 Example 2

```
1 clc
2 //Initialization of variables
3 d=2 //in
4 g=32.2
5 d1=3 //in
6 k=1.06
7 //calculations
8 A2 = \%pi/4 *d^2 /144
9 \, dp = d/12
10 Q=k*A2*sqrt(2*g*dp)
11 A = \%pi/4 * (d1/12)^2
12 V1 = Q/A
13 \text{ K2} = 1.04
14 \ Q2 = K2/k *Q
15 // results
16 printf("Flow rate = \%.4 \,\mathrm{f} cfs",Q2)
```

Scilab code Exa 12.3 Example 3

```
1 clc
2 // Initialization of variables
3 P1=700 //kN/m^2
4 P2=400 //kN/m^2
5 D2=12.5 //cm
6 D1=25 //cm
7 C=0.985
8 g=9.81
```

```
9 R=287 //m^2/s^2 K
10 T=273+20 //K
11 //calculations
12 Pr=P2/P1
13 Dr=D2/D1
14 Y=0.72
15 gam1=P1*g/(R*T)
16 G=C*Y*%pi/4 *(D2/100)^2 *sqrt(2*g*gam1*(P1-P2)/(1-Dr^4))
17 //results
18 printf("Weight flow rate = %.4 f kN/s",G)
```

Scilab code Exa 12.4 Example 4

```
1 clc
2 //Initialization of variables
3 V=3 //fps
4 y=1 //ft
5 L=4 //ft
6 //calculations
7 H= (V*y/3.33)^(2/3)
8 P=L-H
9 //results
10 printf("Height of weir = %.2 f ft",P)
```

new13

Scilab code Exa 13.1 Example 1

```
1 clc
2 //Initialization of variables
3 ken=0.5
4 kex=0.2
5 f=0.0018
6 l=10 //ft
7 dia=3 //in
8 z1=8
9 z2=5
10 //calculations
11 x1=ken+kex+f*l*12/dia
12 t=35.5*2/3 *(z1^(3/2) - z2^(3/2))
13 //results
14 printf("Time reqired = %d s",t)
```

Scilab code Exa 13.2 Example 2

```
1 clc
```

```
2 //Initialization of variables
3 disp("For steady state, dV/dt =0")
4 Q=1600/449
5 A2=0.1963
6 g=32.2
7 rp2=2000
8 //calculations
9 V2=Q/A2
10 hp1=32*V2^2 /(2*g) -50
11 hp2=hp1*(rp2/1650)^2
12 hpf=169 //ft
13 Q=4.1 //cfs
14 //results
15 printf("Steady state flow rate = %.2f cfs",Q)
```

Scilab code Exa 13.3 Example 3

```
1 clc
2 //Initialization of variables
3 kl = 0.5
4 f = 0.02
5 L=15 //ft
6 D=0.1 //ft
7 k=3.5
8 g = 9.81
9 \text{ H}=2//\text{ft}
10 //calculations
11 k=kl+f*L/D
12 V0 = sqrt(2*g*H/(1+k))
13 Q = [0.25 \ 0.5 \ 0.75]
14 V = V O * Q
15 V fun = (2.95 + V)./(2.95 - V)
16 lnVfun=log(Vfun)
17 t=1.129*lnVfun
18 // results
```

Scilab code Exa 13.4 Example 4

```
1 clc
2 //Initialization of variables
3 Q = 30 // cfs
4 r=2 //ft
5 \text{ cp} = 3200
6 \text{ rho} = 1.94
7 Q2=10 // cfs
8 z = 300 //ft
9 //calculations
10 V=Q/(\%pi*r^2)
11 ph=rho*cp*V/144
12 \text{ phd} = 4000/\text{cp} / (2*r) *ph
13 dV = (Q2-Q)/(%pi*r^2)
14 \text{ dph=-rho*cp*dV}/144
15 ph3=rho*cp*V/3 /144
16 \text{ ph4=ph3*z*2/cp}
17 //results
18 printf("Water hammer pressure= %.1f psi",ph)
19 printf("\n Water hammer pressure in case 2= %.1f psi
      ", phd)
20 printf("\n Water hammer pressure in case 3= %.1f psi
      ", dph)
21 printf("\n Pressure at valve in case 4 = \%.1 \, \mathrm{f} psi",
      ph3)
22 printf("\n Pressure at 300 ft from reservoir = \%.2 f
      psi", ph4)
```

new14

Scilab code Exa 14.1.a Example 1

```
1 clc
2 //Initialization of variables
3 g=9.81 //kN/m^3
4 Q=3.2 //m^3/s
5 h=25 //m
6 eta=0.82
7 //calculations
8 bp= g*Q*h/eta
9 //results
10 printf("Brake power = %d kW",bp)
```

Scilab code Exa 14.1.b Example 2

```
1 clc
2 //Initialization of variables
3 D1=50
4 n1=1450
5 n2=1200
```

```
6 D2=80
7 Q1=3.2 // cfs
8 h1 = 25 / m
9 g=9.81 / kN/m^3
10 \text{ eta} = 0.82
11 //calculations
12 h2=h1*(D2/D1)^2 *(n2/n1)^2
13 Q2=Q1*(D2/D1)^3*(n2/n1)
14 \text{ bp=g*Q}2*h2/eta
15 \text{ h1} = 82 // \text{ft}
16 \ Q1 = 50700 \ //gpm
17 h2=143.8 //ft
18 \quad Q2 = 171800 \quad //gpm
19 Ns1=n1*sqrt(Q1) /h1^(3/4)
20 \text{ Ns2=n2*sqrt(Q2) /h2^(3/4)}
21 //results
22 printf("Brake power = %d kW", bp)
23 printf("\n Pumps are homologous. We expect them to
      have same specific speed and their speeds are %.1
      f and \%.1 \, f , Ns1, Ns2)
24 disp("14.1c is included in this example itself")
```

new15

Scilab code Exa 15.1 Example 1

```
1 clc
2 //Initialization of variables
3 z2=500 // ft
4 z1=300 //ft
5 D=[1 1.5 2 2.5 3 4 6]
6 g = 32.2
7 \text{ gam} = 62.4
8 //calculations
9 \, \text{Dj} = \text{D} / 12
10 Vj = sqrt((z2-z1)*2*g./(1.04 + 640.*Dj.^4))
11 Aj=%pi/4 *Dj.^2
12 Q = Aj \cdot *Vj
13 Pjet=gam*Q.*Vj.^2 /(2*g) /550
14 Pj=max(Pjet)
15 for i=1:length(Pjet)
       if(Pjet(i) ==Pj)
16
17
            break
18 end
19 end
20 diameter=D(i)
21 / results
```

22 printf("Thus a pipe of %d in will be the optimum", diameter)

Scilab code Exa 15.2 Example 2

```
1 clc
2 //Initialization of variables
3 \text{ phi} = 0.46
4 g = 32.2
5 k = 0.44
6 \text{ cv} = 0.98
7 d=10 //in
8 A=0.545 //ft^2
9 beta=160 // degrees
10 //calculations
11 u=phi*sqrt(2*g)
12 V1 = cv * sqrt (2*g)
13 gQ = 62.4 * A * V1
14 \text{ T=d/2 } *gQ/g *(1 - \cos d(beta) / sqrt(1+k)) * sqrt(2*g)*(
       cv-phi)
15 Power=T*2*u/d
16 //results
17 printf("Torque required = %d ft lb",T)
18 printf("\n Power transferred = \%d ft lb/s", Power)
19 Pi = gQ
20 He=Power/Pi
21 printf("\n Hydraulic efficiency = \%.2 \, \text{f}", He)
22 v1 = V1 - u
23 v2=v1/(sqrt(1+k))
24 \text{ hl}=k*v2^2 /(2*g)
25 printf("Head loss in bucket friction = \%.4 \, \text{f}", hl*100)
26 \text{ Hn} = (1/\text{cv}^2 - 1) * \text{V1}^2 / (2*g)
27 printf("\n Head loss in nozzle = \%.4 \, \text{f}", Hn*100)
28 \quad V2\cos=u+v2*\cos d(beta)
29 V2sin=v2*sind(beta)
```

```
30 alpha=acot(V2cos/V2sin)
31 V2=V2sin/sin(alpha)
32 Hd=V2^2/(2*g)
33 printf("\n Head loss at discharge = %.2f", Hd*100)
34 Htotal=Hd+Hn+hl
35 printf("\n Total head loss = %.2f", Htotal*100)
```

Scilab code Exa 15.3.a Example 3

```
1 clc
2 //Initialization of variables
3 \text{ cv} = 0.98
4 g = 32.2
5 h = 1320 //ft
6 A = 0.196 / ft^2
7 eta=0.85
8 \text{ ne} = 400
9 \text{ phi} = 0.45
10 //calculations
11 V=cv*sqrt(2*g*h)
12 Q=A*V
13 bhp=eta*62.4*Q*h/550
14 ns=ne*sqrt(bhp) /h^(5/4)
15 u=phi*sqrt(2*g*h)
16 D=u*60/\%pi/ne
17 //results
18 printf ("Pitch diameter = \%.2 \, \text{f} ft",D)
```

Scilab code Exa 15.3.b Example 4

```
1 clc
2 //Initialization of variables
3 cv=0.98
```

```
4 g=32.2
5 h=1320 //ft
6 A = 0.196 // ft^2
7 \text{ eta} = 0.85
8 \text{ ne} = 400
9 \text{ phi} = 0.45
10 //calculations
11 V=cv*sqrt(2*g*h)
12 Q = A * V / 3
13 bhp=eta*62.4*Q*h/550
14 ne2=600
15 ns1=ne2*sqrt(bhp) /h^(5/4)
16 D = 2500/ne2
17 Dj=sqrt(Q*4/V/%pi)
18 //results
19 printf("Jet diameter = \%.3 f ft",Dj)
20 printf("\n Specific speed = %.2 f ",ns1)
21 printf("\n Pitch Diameter = %.2 f ft",D)
22 printf("\n Operating speed = %d rpm", ne2)
```

new16

Scilab code Exa 16.2 Example 2

```
1 clc
2 //Initialization of variables
3 \text{ ns} = 20
4 \text{ eta} = 0.925
5 \text{ etah} = 0.94
6 \text{ BD=0.1}
7 phie=0.72
8 g = 32.2
9 alpha2=90 // degrees
10 //calculations
11 Cr=ns^2 /(67100*phie^2 *BD*eta)
12 c1cos=etah/(2*phie)
13 alpha=atan(Cr/c1cos)
14 C1=Cr/sin(alpha)
15 beta1=acotd((C1*cos(alpha) -phie)/(C1*sin(alpha)))
16 //results
17 printf("Alpha = \%.2 \, \text{f} \, \text{degrees}", alpha*180/%pi)
18 printf("\n Beta = \%.2 \, f degrees", beta1)
19 disp("part b")
20 h=402
21 n = 600 // rpm
```

```
22 bhp=3600
23 ns=n*sqrt(bhp) /h^(5/4)
24 D=153.2*phie*sqrt(h) /n
25 B=BD*D
26 Dt=D*0.735
27 Ac=0.95*%pi*D*B
28 Vr=Cr*sqrt(2*g*h)
29 Q=Ac*Vr
30 //results
31 printf("\n Breadth= %.3 f ft",B)
32 printf("\n depth D= %.3 f ft",D)
33 printf("\n velocity Vr= %d ft/s",Vr)
34 printf("\n Flow rate Q= %.1 f cfs",Q)
```

Scilab code Exa 16.3 Example 3

```
1 clc
2 //Initialization of variables
3 ns=70
4 z1=10 //ft
5 z2=5000 //ft
6 //calculations
7 P1=12.2*144/62.4
8 P2=0.26*144/62.4
9 sigmac=0.31
10 h=(P1-P2-z1)/sigmac
11 //results
12 printf("Max permissible head to assure against cavitation = %d ft",h)
```

Scilab code Exa 16.4 Example 4

```
1 clc
```

```
2 //Initialization of variables
3 Q = 600 / cfs
4 z = 350 //ft
5 \text{ eta} = 0.9
6 //calculations
7 power = 62.4*Q*z*eta/550
8 \text{ rpm} = 75
9 n=2
10 ns=rpm*sqrt(power/n) /z^(5/4)
11 phi=0.45
12 D=153.3*sqrt(z) *phi/rpm
13 \text{ rpm2=600}
14 \text{ ns2=rpm2*sqrt(power/n)} /z^{(5/4)}
15 // results
16 printf("For two turbines, ns=\%.2 f",ns)
17 printf("\n For francis turbines, ns= \%d", ns2)
```

new17

Scilab code Exa 17.1.b Example 2

```
1 clc
2 //Initialization of variables
3 ne=600
4 gpm=1600
5 Ns=500
6 Head=900 //ft
7 //calculations
8 h=(ne*sqrt(gpm) /Ns)^(4/3)
9 n=Head/h
10 //results
11 printf("No. of stages = %d",n+1)
```

Scilab code Exa 17.1 Example 1

```
1 clc
2 //Initialization of variables
3 Ns=500
4 h=900 //ft
```

```
5 Q=1600 //gpm
6 //calculations
7 ne=Ns*h^(3/4) /sqrt(Q)
8 //results
9 printf("Minimum rotative speed = %d rpm",ne)
```

Scilab code Exa 17.2 Example 3

```
1 clc
2 //Initialization of variables
3 \text{ ne} = 600
4 \text{ gpm} = 2000
5 h = 150
6 \text{ num}=2
7 //calculations
8 \text{ ns=ne*sqrt(gpm)/h}^{(3/4)}
9 \text{ gpm2=num*gpm}
10 h2=num^2 *h
11 Ns=2*ne*sqrt(gpm2) /h2^(3/4)
12 Ne2=Ns*(h/2)^(3/4) / sqrt(gpm)
13 //results
14 printf("Specific speed in case1 = %d",ns)
15 printf("\nFlow rate in case 2 = \%d gpm", gpm2)
16 printf("\n Head in case 2 = \%d ft", h2)
17 printf("\n Specific speed in case 2 = \%d", Ns)
18 printf("\n required operating speed in case 2 = \%d
      rpm", Ne2)
```

Scilab code Exa 17.3 Example 4

```
1 clc
2 //Initialization of variables
3 ne=600/2
```

```
4 gpm=1450
5 h=140
6 NPSH=10.4
7 //calculations
8 Ns=gpm*sqrt(ne) /h^(3/4)
9 sigmac=NPSH/h
10 zsmax=-3 //ft
11 //results
12 printf("Sigma C for the pump = %.4f", sigmac)
13 printf("\n Position of pump = %d ft", zsmax)
```

Scilab code Exa 17.4 Example 5

```
1 clc
2 //Initialization of variables
3 \text{ ne} = 600
4 gpm=84500
5 h = 225
6 f = 0.95
7 phie=1.1
8 g = 32.2
9 //calculations
10 Ns=ne*sqrt(gpm) /h^(3/4)
11 u2=phie*sqrt(2*g*h)
12 D=153.2*phie*sqrt(h) /ne
13 D0=1.06*D*12 //in
14 B=0.155*D0*12 //in
15 De=0.6*D0
16 \quad u0=1.06*u2
17 \quad Vm2 = 0.15 * u0
18 Area=0.95*%pi*D/144 *B
19 Q = Area * Vm2
20 / results
21 printf("Specific speed = %d", Ns)
22 printf("\n Flow rate = \%d cfs",Q)
```

23 printf("\n Eye diameter = $\%.1\,\mathrm{f}$ in",De)