TripAdvisor: Multiclass Classification on Unlabeled User Reviews

Yucong John Hu, Isaac Heeseok Joo, Zexi Ye Center for Data Science at New York University

Abstract

In association with mentors from **TripAdvisor** (NASDAQ: TRIP), we tested several machine learning models on unlabeled, raw online user reviews on points of interest (POI) to produce a satisfactory accuracy result on 4-class topical classification.

For the final output, we not only predicted a single label class, but also the distribution of probability over the 4 classes to provide more granular data and to allow levels of thresholding.

LDA and Guided LDA

- LDA Unsupervised topic modelling to categorize each review
- Regular LDA produced vague and ambiguous topic words that were not related to our target categories
- Guided LDA is semi-supervised modelling that nudges the model into desired categories by providing seed words
- Qualitatively, Guided LDA was able to produce more reasonable related words to each topic

Categories	Seed Words	Resulting Words
Fact	history, tall, long, old, year, meter, wide	ride, park, visit, people, experience, year, make
Emotion	interesting, fantastic, fun, disgusting, beautiful, terrible	view, great, place,. beautiful, well, must, like, good
Tip	aware, recommend, tip, advice, suggest	get, ticket, go, time, day, line, wait, queue, buy, tour

• Ambiguous words were still produced, so these words were grouped together to make another seed category 'Others', but it only lowered the testing score

Best test accuracy: 25.50%

Data Exploration

- 100,000 rows of unlabeled user reviews on 100 points of interest
- 3,000 reviews manually labeled into categories of 'Facts', 'Emotion', 'Tips', or 'Others'

up with 4,100 reviews to work with

Supervised Models

We select four conventional supervised learning models using 5-fold CV as baselines to see how they compare to

- Random forest
- Linear SVC
- Multinomial NB
- Logistic regression

Best test accuracy: 64%

Motivation: Using Amazon mechanical turk/manual labeling in industry to save engineering time v.s. computationally more expensive models

BERT

- Key components
 - Self-attention
 - Transformer
 - Pre-trained weights
- Architecture
- BERT feature extractor
- Feed-forward network

- Training schemes
 - O Supervised learning
- O Semi-supervised learning using Masked Language Modeling (MLM)
- Evaluation

O Best test accuracy: 77.48%

Training Accuracy on BERT Models						
	Supervised	Supervised	MLM Fine-	MLM Fine-tuned		
	Frozen	Unfrozen	tuned Frozen	Unfrozen		
1-layer classifier	0.6559	0.7079	0.7203	0.7673		
3-layer classifier	0.7079	0.7475	0.7327	0.7748		

Examples of predictions

Sentence	Prediction	Truth
In most cases the presidents only vaguely resembled their live (or previously alive) counterparts.	Fact	Fact
On the night tour it is still day light at the start, and they open up more sections for your to explore.	Tips	Fact

- Ablation Studies
- Weights re-randomization for identifying importance of each layer
- Error compounds throughout forwardpropagation

Conclusion

- Our best model (BERT) achieves superior result, and produces a probability distribution that is relevant to the business goal
- LDA could provide higher accuracy if the parts of speech is known since 'Tips' often had imperative verbs

	Deep Learning	Test accuracy	Algorithms
1 Supervised learning	×	64%	 Naive Bayes Logistic Regression Support Vector Machine (SVM) Random Forests
2 Unsupervised learning	×	25.50%	 Latent Dirichlet Allocation (LDA) & Guided LDA
3 Semi-supervised learning	/	77.48%	 Bidirectional Encoder Representations for Transformers (BERT)

Recommendations

- closely align model output to business goal
- expand training dataset size (manual labeling / feedback from model)
- continuously retrain model

Acknowledgements

• TripAdvisor & the mentors Peimeng Sui, Mihir Rana, and Imri Sofer