Министерство образования и науки Российской Федерации Московский физико-технический институт (национальный исследовательский университет)

Физтех-школа Радиотехники и Компьютерных Технологий (ФРКТ) Дисциплина «Проектирование, прототипирование и производство в проектном формате»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ «УНИВЕРСАЛЬНАЯ МУЗЫКАЛЬНАЯ ПЕДАЛЬ»

Выполнили:

Гончаров Марк Александрович группа Б01-908б, Кузнецова Маргарита Витальевна группа Б01-908б

Проверил:

Кандидат технических наук Кузнецов Владимир Евгеньевич

Долгопрудный, 2023

1. Разработчики

- о Гончаров Марк: проектирование корпуса, 3D моделей, сборка.
- о Кузнецова Маргарита: электроника и ПО.

2. Цель работы

Разработать дешёвый и компактный инструмент для одновременного взаимодействия и с компьютером, и с музыкальным оборудованием, и со звуковой системой.

Основная проблема, с которой сталкиваются начинающие музыканты, — это необходимость в большом количестве подключаемых электронных девайсов: микрофоны, звуковые карты, переходники, комбики (аудио-системы), сустейн-педали для синтезатора (для увеличения длительности издаваемого звука), луперы (устройства, запоминающие сыгранную мелодию и затем ее периодически повторяющую). И проблема не только в цене, но и в занимаемом данными инструментами пространстве. У студентов нет ни денег, ни много места в общежитии, поэтому компактность устройства и возможность прошить для его для различных применений, являются важными характеристиками.

Поэтому мы постарались сделать педаль, которая позволяет выполнять сразу несколько функций:

- Сустейн для синтезатора для тех, кто любит заниматься каверами (перепевками известных хитов) или классическими произведениями. Сустейн (англ. Sustain) продолжительность звучания извлечённого звука, то есть суйстен-педаль требуется для синтезаторов и фортепиано для гармоничной мелолии.
- ▶ Генератор инструментального фона для стереосистемы для сольных исполнителей, кому необходимо заполнение созданной мелодии или наличие баса, ритма. Также может быть полезно для инструментальных исполнителей (скрипка, саксофон и т.д.), чтобы была основа для мелодии. Это часто используют люди, которые играют в переходах. С помощью прошивки контроллера можно записать свою мелодию с помощью набора нот и задать время их исполнения.
- Контроль вывода звука в систему для взаимодействия компьютера с аудиосистемой часто используются внешние звуковые карты, которые нужны и для работы с МІDІ-клавиатурой (дешёвый аналог синтезатора для диджеев и начинающих композиторов, который не имеет свою аудиосистему, а вывод звука

- осуществляется только посредством внешнего динамика, и за счёт этого дешёвый и популярный). Наше устройство с помощью встроенного контроллера может напрямую выводить звук во внешний динамик.
- ▶ Контроль работы компьютера использование контроллера Arduino Leonardo и более дорогих моделей позволяют исполнять на компьютере написанные программы, эмулировать нажатия на сочетание клавиш или клик мыши (например, пробел, Ctrl+V), тем самым взаимодействуя с уже написанным программным обеспечением для музыкантов, лишь вызывая функции популярных приложений. В нашем устройстве используется Arduino Uno, который, к сожалению, не имеет функций взаимодействовать с драйверами системы, поэтому у нас эта функция реализована в сжатом виде: посредством внутренней консоли Serial Monitor в Arduino IDE мы можем с помощью нажатия на педаль печатать показания счетчика с указанным шагом.
- > Также возможно одновременное комбинирование данных функций.

3. Использование устройства

На рисунке 1 представлена задняя панель управления устройством.

Рисунок 1. Панель управления устройством

Таблица 1. Описание функций управляющих элементов

№ указателя	Описание		
1	Тумблер для вывода звука в стереосистему		
2	Тумблер для обработки нажатия педали для вывода в "Ардуино"		
3	Тумблер для обработки нажатия педали для вывода в синтезатор		
4	USB 2.0 вход для подключения к внутреннему Arduino UNO		
	• Порт 8 - input - приём состояния нажатия кнопки		
	• Порт 10 - output - вывод в стереосистему		
5	Джек 6.3 - подключение к синтезатору		
6	Джек 6.3 - подключение к стереосистеме		
7	Формат работы тумблеров		

Переключая тумблеры 1 - 3 реализуются функции, описанные выше, в соответствии с таблицей 2.

Таблица 2. Комбинирование функций

Функция	Стерео-система	Ардуино	Синтезатор
Сустейн	OFF	OFF	ON
Компьютер	OFF	ON	OFF
Стерео-система	ON	OFF	OFF
Бас-педаль	ON	ON	OFF
Фон синтезатора	ON	OFF	ON

4. Внутреннее устройство:

На рисунке 2 приведена электрическая схема устройства. На рисунке 3 показан механизм нажатия на кнопку. На рисунке 4 видно, что каждая функция не может быть использована, пока соответствующий тумблер находится в положении OFF.

Рисунок 2. Электрическая схема устройства

Рисунок 3. Механизм нажатия на кнопку

Рисунок 4. Тумблер для разрешения работы функции

5. Анализ существующих аналогов

На рынке нет средств для комбинирования данных функций, так как немного исполнителей, практикующихся одновременно на фортепьяно, гитаре и в композиторском деле. Поэтому спрос на данный товар не является большим.

Среди аналогов в интернете есть:

 Каскадный усилитель Arduino PedalSHIELD UNO (рисунок 5) – https://radioprog.ru/post/533.

Рисунок 5. Гитарная педаль на Arduino Uno – pedalSHIELD UNO

Отличие: только для гитары, не реализует сустейн, не генерирует фон для аудиосистемы. Однако способен значительно изменить звук инструмента аналоговыми преобразователями.

Стоимость: 30 евро = 2600 рублей. Компоненты по-отдельности примерно в два раза дешевле, проект открытый, поэтому можно повторить, примерно потратив 1200 рублей.

2. Туториалы по созданию отдельных компонент: сустейн педаль своими руками делают в интернете огромное количество людей. Легко сделать отдельно вывод звука в систему с использованием Arduino. Много пособий по созданию фузза для того, чтобы обычная акустическая гитара стала звучать как электрогитара, чего пока не имеется в нашем проекте, но есть в планах для дальнейшего развития

проекта.

Также ниже (рисунки 6-8) приведём и коммерческие аналоги:

Рисунок 6. Педаль сустейн Musedo TB-005 (1000p)

Рисунок 7. Педаль для взаимодействия с аудио-системой, переключатель Stagg SSWB1 (1690p)

Рисунок 8. Взаимодействие с компьютером - Ножной переключатель KG120L11 (7439p)

Итак, главные отличительные черты нашего изделия – это объединение существующих решений для музыкантов и добавление функции генерации музыкального фона, управляемое понятным интерфейсом. Также себестоимость оказалась гораздо ниже, чем если отдельно купить каждое устройство.

6. Процесс проектирования и изготовления

Во время реализации задуманного проекта нам пришлось пройти следующие стадии:

- 1) Поиск и анализ практичной и реализуемой идеи;
- 2) Подбор наиболее простых и дешёвых материалов дерево и пластик;
- 3) Прототипирование и изготовление корпуса;
- 4) Прототипирование панели управления для пользователя;
- 5) Осознание недостатков в масштабе корпуса и их корректировка;
- 6) Перебор способов крепления педали, выбор лучшего и его реализация;
- 7) Добавление функции генерации музыкального фона, внесение изменений в конструкцию;
- 8) Повторное исправление недостатков и переделка внесенных изменений;
- 9) Сборка корпуса;
- 10) Конфигурирование электронных компонент;

- 11) Обеспечение качественных электрических соединений, защита от короткого замыкания, изоляция;
- 12) Создание и отладка программного обеспечения;
- 13) Создание функции генерации музыкального фона по нотам;
- 14) Сборка конечного продукта;
- 15) Тестирование.

На рисунках 9 и 10 представлена модель полусобранного устройства на этапе отладки программного обеспечения и частичного тестирования.

Рисунки 9 и 10. Устройство на этапе изготовления

На рисунках 11-14 представлены ключевые моменты в разработке.

Рисунок 11. Первая идея для реализации сустейна и генератора музыкального фона

Рисунок 12. Ранняя реализация задней панели управления

Рисунок 13. Первый прототип корпуса

Рисунок 14. Прототип корпуса после корректировок

7. Тестирование продукта

Для отладки нашего продукта сделаем перебор всевозможных комбинаций тумблеров и проверим корректность работы системы. Испытание запишем на видеокамеру.

8. Результаты

Тестирование показало, что функционально устройство работает исправно.

Дальнейшее развитие инструмента - подключение функции фузза для гитары, чтобы преобразовывать акустический звук в электрический. Уже есть аналоги (PedalShieldUNO) и даже пособия по сборке. Единственная возникающая сложность — разработка отдельной печатной платы и недостаток места для её размещения в уже имеющемся корпусе.

Ссылка на видеозапись работы устройства: https://disk.yandex.ru/i/w0QsdsulJlbG0w.