

Personal Research and Research Proposal

Jinpeng Liu

liujp22@mails.tsinghua.edu.cn

Education Background

- 2022.08-(exp. 2025) Tsinghua University, M.E. in Data Science
 - Supervisor: Yansong Tang
 - Leader of Multimodal Generation and Interaction Team at IVG@SZ
- 2018.08-2022.07 Sun Yat-sen University, B. E. in Intelligent Science and Technology

Industrial Experience

- Project: 3D Avatar Mesh Recovery
- Works with Dr. Georgios Pavlakos, Dr. Qixing Huang

- Project: 3D Object & Scene Generation
- Works with Dr. Xintao Wang, Dr. Ying Shan

- Project: **3D Avatar Animation**
- Works with Dr. Chunyu Wang, Dr. Xin Tong

Object

Scene

Outline

□ Timeline of previous research

- 2022.06 2023.02 (3D-Avatar). Jinpeng Liu*, Yansong Tang*, Aoyang Liu*, Bin Yang, Wenxun Dai, Yongming Rao, Jiwen Lu, Jie Zhou, Xiu Li. FLAG3D: A 3D Fitness Activity Dataset with Language Instruction. [Accepted by CVPR 2023]
- 2023.02 2023.11 (3D-Avatar). Jinpeng Liu, Wenxun Dai, Chunyu Wang, Yiji Cheng, Yansong Tang, Xin Tong. *Posture, Plan and Go: Towards Open-world Motion Generation*. [Accepted by ECCV 2024]
- 2023.11 2024.04 (3D-Avatar). Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, Yansong Tang. *MotionLCM: Realtime Controllable Motion Generation via Latent Consistency Model.* [Accepted by ECCV 2024]
- 2024.04 2024.10 (3D-Object). Jinpeng Liu, Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Ying Shan, Yansong Tang. NovelGS:
 Consistent Novel-view Denoising via Large Gaussian Reconstruction Model. [Submitted to CVPR]
- 2023.02 2024.03 (3D&Video). Yansong Tang, Aoyang Liu, Jinpeng Liu, Shiyi Zhang, Wenxun Dai, Jie Zhou, Xiu Li, Jiwen Lu. FLAG3D++: A Benchmark for 3D Fitness Activity Comprehension with Language Instruction. [Submitted to TPAMI]
- Others
- Kun Xiang, Xing Zhang, Jinwen She, **Jinpeng Liu**, Haohan Wang, Shiqi Deng, Shancheng Jiang. Toward robust diagnosis: a contour attention preserving adversarial defense for COVID-19 detection. [Accepted by AAAI 2023]
- Jinwen She, **Jinpeng Liu**, et. al. A universal computer-aided diagnosis system for cross-regional skin lesion recognition using deep graph-based network. [Submitted to NAT COMMUN.]

Outline

- **□** Research Projects
 - Avatar: Controllable & Generable
 - Object: Efficient & Diverse
- □ Future Research Proposal
 - Think deeper about "avatar & object"
 - Avatar-object-scene interaction

Object

Broad Application

- > Demand for creative digital products is increasing
- > Research results are expected to promote digital life system

Microsoft Minecraft Meta Quest 2

Apple Vision Pro

Task Description

Language-guided Motion Generation

Put your left tiptoes on the ground, lift your left shoulder and stretch your left arm above your head.

Low Quantity and Poor Quality of Data

FLAG3D: A 3D Fitness Activity Dataset with Language Instruction

Jinpeng Liu*, Yansong Tang*, Aoyang Liu*,
Bin Yang, Wenxun Dai, Yongming Rao, Jiwen Lu, Jie Zhou, Xiu Li
Tsinghua University

FLAG3D features the following three aspects:

Data

Dataset	Subjs	Cats	Seqs	Frames	LA	K3D	SMPL	Resource	Task
PoseTrack [7]	-	_	550	66K	×	×	×	Nat.	HPE
Human3.6M [33]	11	17	839	3.6M	×	\checkmark	-	Lab	HAR,HPE,HMR
CMU Panoptic [37]	8	5	65	594K	×	\checkmark	=	Lab	HPE
MPI-INF-3DHP [57]	8	8	_	> 1.3M	×	\checkmark	-	Lab+Nat.	HPE,HMR
3DPW [96]	7	_	60	51k	×	×	\checkmark	Nat.	HMR
ZJU-MoCap [68]	6	6	9	>1k	\times	\checkmark	\checkmark	Lab	HAR,HMR
NTU RGB+D 120 [51]	106	120	114k	_	×	\checkmark	-	Lab	HAR,HAG
HuMMan [11]	1000	500	400K	60M	×	\checkmark	\checkmark	Lab	HAR,HMR
HumanML3D [26]	-	_	14K	-	√	\checkmark	\checkmark	Lab	HAG
KIT Motion Language [71]	111	_	3911	_	\checkmark	\checkmark	-	Lab	HAG
HumanAct12 [28]	12	12	1191	90K	×	×	\checkmark	Lab	HAG
UESTC [35]	118	40	25K	> 5M	×	\checkmark	-	Lab	HAR,HAG
Fit3D [22]	13	37	-	> 3M	×	√	√	Lab	HPE,RAC
EC3D [115]	4	3	362	_	×	\checkmark	-	Lab	HAR
Yoga-82 [95]	-	82	-	29K	×	×	×	Nat.	HAR,HPE
FLAG3D (Ours)	10+10+4	60	180K	20M	✓	√	√	Lab+Syn.+Nat.	HAR,HMR,HAG

<<

FLAG3D

LAION-5B

20M

2.3B

a man walks forward

In-distribution

Out-of-distribution

Plan, Posture and Go: Towards Open-vocabulary Text-to-Motion Generation

Jinpeng Liu¹, Wenxun Dai¹, Chunyu Wang², Yiji Cheng¹, Yansong Tang¹, Xin Tong²

¹Tsinghua University ²Microsoft

Formulation

"The language of movement cannot be translated into words."
——Barbara Mettler(Dancer)

Is there a novel formulation of the motion generation task that can address general text-to-motion problem without relying on paired text-motion data?

Formulation

Motion? → **Pose sequence** + **Global Information**

Robust Motion In-betweening. SIGGRAPH 20.

Pipeline

divide-and-conquer

Motion Generated by Our Model

Outline

- **□** Research Projects
 - Avatar: Controllable & Generable
 - **Object: Efficient & Diverse**
- Future Research Proposal
 - Think deeper about "avatar & object"
 - Avatar-object-world interaction

Task Description

Image to 3D

Motivation

☐ 3D Representation

- Point Cloud: Poor visual result
- X Voxel, Mesh : GPU-unfriendly
- Triplane: Time consuming
- ✓ Gaussian: Real time and easy to scale up

Rendering 2s (60 frames) video cost 1.5min!

□ Formulation

Pixel-aligned Gaussian

(a) Pixel-aligned Gaussians Reconstruction

(b) NovelGS (Ours)

Pipeline

Time Step T

Time Step T-1

Results

■ Visualization

Outline

- **□** Research Projects
 - Avatar: Controllable & Generable
 - **Object: Efficient & Diverse**
- Future Research Proposal
 - Think deeper about "avatar & object"
 - Avatar-object-scene interaction

Task Description

Input: Language & Scene

Output: Interaction

□ Localization Error

Walk to the glass doors

■ Physical Error

Walk to the bed

Some Thoughts

■ Thoughts

- In the last ten years
 - Recommendation beat Search
- In the future ten years
 - Generation beat Recommendation

Basis

- Vision Pro is the iPhone 1. When iPhone 4 will arrive?
- Aim high. Settled down.

