Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 3

Abgabetermin: Freitag, 12.11.2013, 09.30 Uhr

Aufgabe 1 (6 Punkte). Sei K ein Zahlkörper, und sei $\alpha_1, \ldots, \alpha_n$ eine in \mathcal{O}_K gelegene Basis von K über \mathbb{Q} . Zeigen Sie: $d(\alpha_1, \ldots, \alpha_n)$ und d_K unterscheiden sich multiplikativ um ein Quadrat; ist $d(\alpha_1, \ldots, \alpha_n)$ quadratfrei, so bilden $\alpha_1, \ldots, \alpha_n$ eine Ganzheitsbasis von \mathcal{O}_K .

Aufgabe 2 (6 Punkte). Zeigen Sie, dass $\{1, \sqrt[3]{2}, \sqrt[3]{2}^2\}$ eine Ganzheitsbasis von $K := \mathbb{Q}(\sqrt[3]{2})$ ist, und bestimmen Sie die Diskriminante d_K von K.

Aufgabe 3 (6 Punkte). Sei R ein Dedekindring.

- (a) Seien $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ paarweise verschiedene Primideale von R. Zeigen Sie die Existenz eines Elements $x \in R$ mit $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_1^2$ und $x \equiv 1 \mod \mathfrak{p}_i$ für $i = 2, \ldots, n$.
- (b) Falls R nur endlich viele Primideale hat, zeigen Sie, dass R ein Hauptidealring ist.

Aufgabe 4 (6 Punkte). Sei K ein Zahlkörper vom Grad n über \mathbb{Q} . Wir bezeichnen mit $\sigma_1, \ldots, \sigma_n$ die Einbettungen $K \hookrightarrow \overline{\mathbb{Q}}$. Für eine Ganzheitsbasis $\alpha_1, \ldots, \alpha_n$ von \mathcal{O}_K betrachten wir

$$P = \sum_{\tau \in \mathfrak{A}_n} \prod_{i=1}^n \sigma_i \alpha_{\tau(i)} \quad \text{und} \quad N = \sum_{\tau \in \mathfrak{S}_n \setminus \mathfrak{A}_n} \prod_{i=1}^n \sigma_i \alpha_{\tau(i)},$$

wobei \mathfrak{S}_n die symmetrische und \mathfrak{A}_n die alternierende Gruppe bezeichnet. Zeigen Sie:

- (a) Sowohl P + N als auch PN liegen in \mathbb{Q} und sind ganze Zahlen.
- (b) Für die Diskriminante von K gilt $d_K = (P N)^2 4PN$.
- (c) Es gilt $d_K \equiv 1 \mod 4$ oder $d_K \equiv 0 \mod 4$.