

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

CO₂ methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis

Hyungseok Nam ^a, Jung Hwan Kim ^a, Hana Kim ^a, Min Jae Kim ^a, Sang-Goo Jeon ^a, Gyoung-Tae Jin ^a, Yooseob Won ^a, Byung Wook Hwang ^a, Seung-Yong Lee ^a, Jeom-In Baek ^b, Doyeon Lee ^{a, **}, Myung Won Seo ^{a, *}, Ho-Jung Ryu ^a

ARTICLE INFO

Article history: Received 12 March 2020 Received in revised form 16 September 2020 Accepted 18 September 2020 Available online 22 September 2020

Keywords:
CO2 methanation
Ni catalyst
Fluidized bed reactor
Heat transfer coefficient
RSM (response surface methodology)

ABSTRACT

 CO_2 methanation, as a power-to-gas technology, is considered to be an important method to secure energy supply by utilizing CO_2 and H_2 gases. In this study, a 0.2 kW CH_4 bench-scale fluidized bed reactor was used for CO_2 methanation using approximately 13 kg nickel-based catalyst to investigate the effect of temperature, gas velocity, and H_2/CO_2 ratio on CO_2 conversion, CH_4 purity, and CH_4 selectivity. Response surface methodology (RSM) was employed to design the experimental conditions to statistically evaluate the effect of operating variables. Reduced quadratic model equations for CO_2 conversion and CH_4 purity were derived, which determined the optimal conditions within the experimental conditions. The suggested conditions for the highest CO_2 conversion were 297 °C, $4.66H_2/CO_2$, and 4.0 Ug/Umf (velocity ratio), whereas different conditions were determined for the highest CH_4 purity. Among the operating variables, temperature was the most influential factor, followed by the gas ratio. The highest CO_2 conversion and CH_4 purity were 98% and 81.6%, respectively. Additionally, the heat transfer coefficient (h_0) was found to be 115 W/m 2 ·°C during a 10-h continuous CO_2 methanation experiment, which is an important design factor for the further scale-up of the process.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Power-to-gas (P2G) technology has received considerable attention for securing the energy supply by utilizing CO₂ gas in flue gas and H₂ from electrolysis of water. The initial report on CO and CO₂ methanation was prepared by Sabatier and Senderens in 1902, who produced natural gas from combustion flue gas [1]. The produced CH₄ gas is often called green methane because of the green methanation reaction [2] which uses a promising hydrogen carrier, produced from renewable solar and wind energy. The advantages of CH₄ for energy storage include 1) high storage capacity, 2) longer discharge time, and 3) safer transportation using existing natural gas infrastructures. Additionally, CO₂ gas from power plants can be utilized, which eventually reduces the severity of global warming.

The CO₂ methanation reaction is an exothermic reaction which

E-mail addresses: dylee82@kier.re.kr (D. Lee), mwseo82@kier.re.kr (M.W. Seo).

uses H₂ and CO₂ to produce CH₄ and H₂O. Fig. 1 shows the CO₂ conversion and CH₄ purity based on the gas concentrations at equilibrium, calculated using the Gibbs free energy minimization method. A thermodynamic analysis of CO₂ methanation under atmospheric conditions was performed at a temperature of 250 °C–600 °C and H_2/CO_2 ratios of 3.5–4.5. Fig. 1 (a) shows CO_2 conversion with increasing temperature and H_2/CO_2 ratio. A decrease in the temperature and an increase in the gas ratio enhanced CO₂ conversion, whereas a slightly different trend was observed for CH₄ purity under the same conditions. For each gas ratio, the CH₄ purity decreased with increasing temperature because of the lower CO₂ conversion rate as well as the production of H₂ gases over the water-gas shift reaction, as shown in Fig. 1 (c). However, the highest CH_4 purity was obtained with $H_2/CO_2 = 4.0$ at 250 °C because of the relatively high CO2 conversion and low concentration of unreacted H_2 . At $H_2/CO_2 = 4.5$, excess H_2 gas was found to reduce CH₄ purity, although CO₂ conversion was approximately 100%, whereas the lower CO₂ conversion efficiency at H₂/ $CO_2 = 3.5$ reduced CH_4 purity. If carbon deposits are considered in the thermodynamic reaction, CO₂ conversion and CH₄ purity would

^a Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea

^b Korea Electric Power Corporation Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon, 34056, Republic of Korea

^{*} Corresponding author.

^{**} Co-corresponding author.