

SysEng 6542 Model Based Systems Engineering

Lecture - 2 MBSE Methodology

Dr Quoc Do

Leading MBSE Methodologies

- IBM Telelogic Harmony-SE
- INCOSE Object-Oriented Systems Engineering Method (OOSEM)
- JPL State Analysis
- IBM Rational Unified Process for Systems Engineering (RUB SE) for Model-Driven Systems Development (MDSD)
- Vitech Model MBSE

Key Terminologies

 The relationship between process, methods, tools and environment is depicted below (Martin, 1996)

Key Definitions

- A Process is a logical sequence of tasks performed to achieve a particular objective. A process defines <u>"What"</u> is to be done.
- A Method comprises of techniques for performing a task. It defines the "how" of each task.
- A Tool is an instrument or software suite, when applied to a particular method, can enhance a particular task.
- A Methodology is a collection of related processes, methods and tools. Essentially a "recipe" for solving a class of problems.

Essential Components in MBSE Methodology

- In order to shift from doc-centric to model-centric, it requires:
 - A language
 - A tool
 - A method

MBSE Language and Tool

SE Language

- Systems Definition Language
 - Unique to CORE and GENESYS from Vitech
- OMG SysML
- Object Process Language (OPL)
 - Unique to the Dori Object-Process Method (OPM)

Some SysML Tool Vendors:

- Integrity Modeler (PTC);
- Cameo Systems Modeler (No Magic);
- CORE and GENESYS (Vitech);
- Enterprise Architect (Sparx Systems); and
- Rational System Architect (IBM).

IBM Telelogic Harmony SE

- Harmony SE is a subset of a larger integrated system and software development process known as Harmony[®].
- Harmony SE and Harmony were originally developed by I-Logic, Inc.

IBM Telelogic Harmony SE

Harmony-SE Process Elements

Vitech MBSE Methodology

Process Model

State Sta

Schema/Metamodel

Modeling Principles and Concepts

Modeling Principles Concepts

- Models, views, and diagrams
- General modeling concepts for managing complexity
- Architecture
- System Partitioning
- Contrasting Functional vs Object-Oriented System decomposition
- Use Case Flowdown

Models, Views, and Diagrams

- A system model provides a representation of the physical system and its environment
 - includes the semantics and notation
 - can be graphically represented by one or more diagrams
- A viewpoint is the perspective of a set of stakeholders that reflects the stakeholder concerns
- A view is intended to represent the model from a particular viewpoint
- Diagrams, tables, etc. can be used to describe a view

General Modeling Concepts For Managing System Complexity

- Separation of concerns
 - Avoid mixing of independent concerns
- Abstraction
 - Dealing with only what is of interest and deferring unnecessary detail
- Level of decomposition

focus on appropriate level of the system hierarchy (I.e.

system, component)

General Modeling Concepts For Managing Complexity (cont.)

- Information hiding
 - Limiting visibility and access to the interfaces and hiding the detail
- Generalization/specialization
 - A taxonomy that specializes the elements by sharing common features and adding unique features
- Instantiation
 - Unique identification of a member of a class

Architecture

- The inter-relationship among the components of a system
 - Some definitions includes the guidelines for constructing the architecture
- Architecture views reflect different viewpoints (stakeholder perspectives)
 - Operational architecture
 - Functional architecture
 - Physical architecture
 - Software architecture
 - Data architecture
 - Security architecture

- ··· 15

System Partitioning

- Critical aspect of architecture development
- Partition system into replaceable components
 - Logical components that are independent of technology and implementation
 - Physical components that address the functionality of the logical components and include implementation constraints
- Replaceable components should:
 - Include well defined interfaces
 - Be modular and cohesive
 - Can be further decomposable

System Partitioning (cont.)

- Repartitioning (aka refactoring) of functionality is done to separate concerns
- Architecture layers are a form of partitioning of services to minimize impact of changes

Traditional Functional Decomposition and Allocation to Components

Contrasting Functions, Logical, & Allocated Components

- Functions
 - Defines what a system/component does
 - Includes I/O and control
 - Decomposed into lower level functions
- Logical components
 - Derived from decomposition of system class
 - Performs a set of functions (operations) based on partitioning criteria
 - Includes state information
 - Technology/implementation independent
 - Abstraction of physical (allocated) component

Contrasting Functions, Logical, & Allocated Components (Cont.)

- Allocated components
 - Implement operations from one or more logical components
 - Includes physical/implementation constraints, such as weight, size, ..
 - Represents requirements for physical components

Use Case Flowdown

- Use cases at one level of system hierarchy correspond to goals or req'd capabilities for the next lower level to realize
 - Top level mission use cases are based on the desired mission capabilities
 - An enterprise class operation(s) is realized by the system and other external systems which are part of the enterprise
 - Similarly, an operation(s) of the system block is realized by its components

Flowdown of System Operations To Subsystems and Components

- Each Subsystem implements a single system operation
- A component can support multiple subsystems

Program Completed

Missouri University of Science & Technology