Schemes and Varieties

No Cover Image

Use \coverimage{filename} to add an image

Contents

1	Def	inition and First Properties	1
	1.1	Locally Ringed Space	1
	1.2	Schemes	1
	1.3	Integral, reduced and irreducible	2
	1.4	Fiber product	2
	1.5	Dimension	2
	1.6	Noetherian and finite type	2
	1.7	Separated and proper	2
	1.8	Varieties	2
2	Schemes as functors		
	2.1	The functor of points	2
	2.2	What is a scheme?	2
3	Line	e Bundles and Divisors	2
4	Line	e bundles induce morphisms	2
	4.1	Ample and basepoint free line bundles	2
	4.2	Linear systems	5
	4.3	Asymptotic behavior	5

Definition and First Properties 1

1.1 Locally Ringed Space

1.2 **Schemes**

Example 1.1 (Glue open subschemes). We construct a scheme by gluing open subschemes. Let X_i be schemes for $i \in I$ and $U_{ij} \subseteq X_i$ be open subschemes for $i,j \in I$. Suppose we have isomorphisms $\varphi_{ij}:U_{ij}\to U_{ji}$ such that

- (a) $\varphi_{ii} = \mathrm{id}_{X_i}$ for all $i \in I$; (b) $\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$ for all $i, j \in I$; (c) $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on $U_{ij} \cap U_{ik}$ for all $i, j, k \in I$.

Yang:

Date: August 29, 2025, Author: Tianle Yang, My Homepage

1.4 Fiber product

- 1.5 Dimension
- 1.6 Noetherian and finite type
- 1.7 Separated and proper
- 1.8 Varieties

Definition 1.2. A variety over a field \mathbf{k} is an integral separated scheme of finite type over Spec \mathbf{k} .

2 Schemes as functors

2.1 The functor of points

Let X be a scheme over a base scheme S. The functor of points of X is the functor $h_X(-): (\mathbf{Sch}/S)^{\mathrm{op}} \to \mathbf{Set}$ defined by $T \mapsto h_X(T) = \mathrm{Hom}_S(T,X)$.

2.2 What is a scheme?

For a scheme X over S, we will often identify X with its functor of points h_X . In this way, we can think of a scheme as a functor from $(\mathbf{Sch}/S)^{\mathrm{op}}$ to \mathbf{Set} .

The underlying topological space of X can be recovered from the functor of points h_X as follows: The points of X correspond to the morphisms from the spectrum of a field to X.

The structure sheaf of X can also be recovered from the functor of points h_X .

3 Line Bundles and Divisors

4 Line bundles induce morphisms

4.1 Ample and basepoint free line bundles

The story begins with the following theorem, which uses global sections of a line bundle to construct a morphism to projective space.

2

Schemes and Varieties 3

Theorem 4.1. Let A be a ring and X an A-scheme. Let \mathcal{L} be a line bundle on X and $s_0, ..., s_n \in \Gamma(X, \mathcal{L})$. Suppose that $\{s_i\}$ generate \mathcal{L} , i.e., $\bigoplus_i \mathcal{O}_X \cdot s_i \to \mathcal{L}$ is surjective. Then there is a unique morphism $f: X \to \mathbb{P}_A^n$ such that $\mathcal{L} \cong f^*\mathcal{O}(1)$ and $s_i = f^*x_i$, where x_i are the standard coordinates on \mathbb{P}_A^n .

Proof. Let $U_i := \{ \xi \in X : s_i(\xi) \notin \mathfrak{m}_{\xi} \mathcal{L}_{\xi} \}$ be the open subset where s_i does not vanish. Since $\{s_i\}$ generate \mathcal{L} , we have $X = \bigcup_i U_i$. Let V_i be given by $x_i \neq 0$ in \mathbb{P}^n_A . On U_i , let $f_i : U_i \to V_i \subseteq \mathbb{P}^n_A$ be the morphism induced by the ring homomorphism

$$A\left[\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right] \to \Gamma(U_i, \mathcal{O}_X), \quad \frac{x_j}{x_i} \mapsto \frac{s_j}{s_i}.$$

Easy to check that on $U_i \cap U_j$, f_i and f_j agree. Thus we can glue them to get a morphism $f: X \to \mathbb{P}^n_A$. By construction, we have $s_i = f^*x_i$ and $\mathcal{L} \cong f^*\mathcal{O}(1)$. If there is another morphism $g: X \to \mathbb{P}^n_A$ satisfying the same properties, then on each U_i , g must agree with f_i by the same construction. Thus g = f.

Proposition 4.2. Let X be a **k**-scheme for some field **k** and \mathcal{L} is a line bundle on X. Suppose that $\{s_0, ..., s_n\}$ and $\{t_0, ..., t_m\}$ span the same subspace $V \subseteq \Gamma(X, \mathcal{L})$ and both generate \mathcal{L} . Let $f: X \to \mathbb{P}^n_k$ and $g: X \to \mathbb{P}^m_k$ be the morphisms induced by $\{s_i\}$ and $\{t_j\}$ respectively. Then there exists a linear transformation $\phi: \mathbb{P}^n_k \dashrightarrow \mathbb{P}^m_k$ which is well defined near image of f and satisfies $g = \phi \circ f$.

Proof. Yang: To be continued.

Example 4.3. Let $X = \mathbb{P}^n_{\mathbf{k}}$ with \mathbf{k} a field and $\mathcal{L} = \mathcal{O}_{\mathbb{P}^n}(d)$ for some d > 0. Then $\Gamma(X, \mathcal{L})$ is generated by the global sections $S_{i_0,\dots,i_n} = T_0^{i_0} T_1^{i_1} \cdots T_n^{i_n}$ for all (i_0,\dots,i_n) with $i_0 + \dots + i_n = d$, where T_i are the standard coordinates on \mathbb{P}^n . The they induce a morphism $f: X \to \mathbb{P}^N_{\mathbf{k}}$ where $N = \binom{n+d}{d} - 1$. On \mathbf{k} -point level, it is given by

$$[x_0:\dots:x_n]\mapsto [\dots:x_0^{i_0}x_1^{i_1}\cdots x_n^{i_n}:\dots],$$

where the coordinates on the right-hand side are indexed by all $(i_0, ..., i_n)$ with $i_0 + \cdots + i_n = d$. This is called the *d-uple embedding* or *Veronese embedding* of \mathbb{P}^n into \mathbb{P}^N .

Example 4.4. Let $X = \mathbb{P}^m_{\mathbf{k}} \times \mathbb{P}^n_{\mathbf{k}}$ with \mathbf{k} a field and $\mathcal{L} = \pi_1^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes \pi_2^* \mathcal{O}_{\mathbb{P}^n}(1)$, where π_1 and π_2 are the projections. Let T_0, \ldots, T_m and S_0, \ldots, S_n be the standard coordinates on \mathbb{P}^m and \mathbb{P}^n respectively. Then $\Gamma(X, \mathcal{L})$ is generated by the global sections $T_i S_j = \pi_1^* T_i \otimes \pi_2^* S_j$ for $0 \le i \le m$ and $0 \le j \le n$. They induce a morphism $f: X \to \mathbb{P}^{(m+1)(n+1)-1}_{\mathbf{k}}$. On \mathbf{k} -point level, it is given by

$$([x_0:\cdots:x_m],[y_0:\cdots:y_n])\mapsto [\ldots:x_iy_j:\ldots],$$

where the coordinates on the right-hand side are indexed by all (i,j) with $0 \le i \le m$ and $0 \le j \le n$. This is called the *Segre embedding* of $\mathbb{P}^m \times \mathbb{P}^n$ into $\mathbb{P}^{(m+1)(n+1)-1}$.

Example 4.5. Let $X = \mathbb{F}_2$ be the second Hirzebruch surface, i.e., the projective bundle $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-2))$ over \mathbb{P}^1 . Yang: To be continued.

Definition 4.6. A linear system on a scheme X is a pair (\mathcal{L}, V) where \mathcal{L} is a line bundle on X and $V \subseteq \Gamma(X, \mathcal{L})$ is a subspace. The dimension of the linear system is $\dim V - 1$. A linear system is base-point free if V is base-point free. A linear system is complete if $V = \Gamma(X, \mathcal{L})$. Yang: To be continued.

Definition 4.7. A line bundle \mathcal{L} on a scheme X is *ample* if for every coherent sheaf \mathcal{F} on X, there exists $n_0 > 0$ such that for all $n \geq n_0$, $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is globally generated. Yang: To be continued.

Definition 4.8. A line bundle \mathcal{L} on a scheme X is *very ample* if there exists a closed embedding $i: X \to \mathbb{P}_A^n$ such that $\mathcal{L} \cong i^*\mathcal{O}(1)$. Yang: To be continued.

Definition 4.9. Let \mathcal{L} be a line bundle on a scheme X and $V \subseteq \Gamma(X, \mathcal{L})$ a subspace. The base locus of V is the closed subset

$$Bs(V) = \{x \in X : s(x) = 0, \forall s \in V\}.$$

If $Bs(V) = \emptyset$, we say that V is base-point free. Yang: To be continued.

Definition 4.10. A line bundle \mathcal{L} on a scheme X is globally generated if $\Gamma(X,\mathcal{L})$ generates \mathcal{L} , i.e., the natural map $\Gamma(X,\mathcal{L}) \otimes \mathcal{O}_X \to \mathcal{L}$ is surjective. Yang: To be continued.

Definition 4.11. Let \mathcal{L} be a line bundle on a scheme X. Yang: To be continued.

Theorem 4.12. Let X be a scheme of finite type over a noetherian ring A and \mathcal{L} a line bundle on X. Then the following are equivalent:

- (a) \mathcal{L} is ample;
- (b) for some n > 0, $\mathcal{L}^{\otimes n}$ is very ample;
- (c) for all $n\gg 0,\, \mathcal{L}^{\otimes n}$ is very ample.

Yang: To be continued.

Proposition 4.13. Let X be a scheme of finite type over a noetherian ring A and \mathcal{L} , \mathcal{M} line bundles on X. Then we have the following:

- (a) if \mathcal{L} is ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is ample;
- (b) if \mathcal{L} is very ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is very ample;
- (c) if both \mathcal{L} and \mathcal{M} are ample, then so is $\mathcal{L} \otimes \mathcal{M}$;
- (d) if both \mathcal{L} and \mathcal{M} are globally generated, then so $\mathcal{L} \otimes \mathcal{M}$;
- (e) if \mathcal{L} is ample and \mathcal{M} is arbitrary, then for some n > 0, $\mathcal{L}^{\otimes n} \otimes \mathcal{M}$ is ample;

Yang: To be continued.

Proposition 4.14. Let X be a scheme of finite type over a noetherian ring A and \mathcal{L} a line bundle on X. Then \mathcal{L} is very ample if and only if the following two conditions hold:

- (a) (separate points) for any two distinct points $x, y \in X$, there exists $s \in \Gamma(X, \mathcal{L})$ such that s(x) = 0 but $s(y) \neq 0$;
- (b) (separate tangent vectors) for any point $x \in X$ and non-zero tangent vector $v \in T_x X$, there exists $s \in \Gamma(X, \mathcal{L})$ such that s(x) = 0 but $v(s) \neq 0$.

Yang: To be continued.

4.2 Linear systems

In this subsection, when work over a field, we give a more geometric interpretation of last subsection using the language of linear systems.

Definition 4.15. Let X be a normal proper variety over a field \mathbf{k} , D a (Cartier) divisor on X and $\mathcal{L} = \mathcal{O}_X(D)$ the associated line bundle. The *complete linear system* associated to D is the set

$$|D|=\{D'\in \operatorname{CaDiv}(X): D'\sim D, D'\geq 0\}.$$

There is a natural bijection between the complete linear system |D| and the projective space $\mathbb{P}(\Gamma(X,\mathcal{L}))$. Here the elements in $\mathbb{P}(\Gamma(X,\mathcal{L}))$ are one-dimensional subspaces of $\Gamma(X,\mathcal{L})$. Consider the vector subspace $V \subseteq \Gamma(X,\mathcal{L})$, we can define the generate linear system |V| as the image of $V \setminus \{0\}$ in $\mathbb{P}(\Gamma(X,\mathcal{L}))$.

4.3 Asymptotic behavior

Definition 4.16. Let X be a scheme and \mathcal{L} a line bundle on X. The section ring of \mathcal{L} is the graded ring

$$R(X,\mathcal{L}) = \bigoplus_{n\geq 0} \Gamma(X,\mathcal{L}^{\otimes n}),$$

with multiplication induced by the tensor product of sections. Yang: To be continued.

Definition 4.17. A line bundle \mathcal{L} on a scheme X is semiample if for some n > 0, $\mathcal{L}^{\otimes n}$ is base-point free. Yang: To be continued.

Theorem 4.18. Let X be a scheme over a ring A and \mathcal{L} a semiample line bundle on X. Then there exists a morphism $f: X \to Y$ over A such that $\mathcal{L} \cong f^*\mathcal{O}_Y(1)$ for some very ample line bundle $\mathcal{O}_Y(1)$ on Y. Moreover, $Y = \operatorname{Proj} R(X, \mathcal{L})$ and f is induced by the natural map $R(X, \mathcal{L}) \to \Gamma(X, \mathcal{L}^{\otimes n})$. Yang: To be continued.

Definition 4.19. A line bundle \mathcal{L} on a scheme X is big if the section ring $R(X,\mathcal{L})$ has maximal growth, i.e., there exists C>0 such that

$$\dim \Gamma(X,\mathcal{L}^{\otimes n}) \geq C n^{\dim X}$$

for all sufficiently large n. Yang: To be continued.

Example 4.20. Let $X = \mathbb{F}_2$ be the second Hirzebruch surface, i.e., the projective bundle $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(2))$ over \mathbb{P}^1 . Let $\pi : X \to \mathbb{P}^1$ be the projection and E the unique section of π with self-intersection -2. Yang: To be continued.