## 4.1 Sens de variation des fonctions affines

### Théorème.

Soit  $f: x \longmapsto mx + p$  une fonction affine.

m > 0

Pour deux réels u et v :

si u < v alors f(u) < f(v).

On dit que f conserve l'ordre dans  $\mathbb R$  ou encore que f est strictement croissante sur  $\mathbb R$ :

 $f(v) \xrightarrow{f(u)} f(u) \xrightarrow{x} x$ 

m < 0

Pour deux réels u et v:

si u < v alors f(u) > f(v).

On dit que f ne conserve pas l'ordre dans  $\mathbb{R}$  ou encore que f est strictement décroissante sur  $\mathbb{R}$ :



### ▶ Note.

Si m=0 la fonction est alors constante sur  $\mathbb{R}$ .

Exemple 1.4.

Dresser le tableau de variation des fonctions affines suivantes :

$$f(x) = 5x - 14$$
 et  $g(x) = -8x + 1$ 

# 4.2 Sens de variation des suites arithmétiques

### 4.2.1 Sens de variation d'une suite

#### Définitions.

Soit  $u: n \mapsto u_n$  une suite définie pour tout entier naturel n.

- Quand les valeurs de n augmentent, si les valeurs de  $u_n$  augmentent aussi, on dit que la suite  $(u_n)$  est  $croissante: u_{n+1} \ge u_n$ .
- Quand les valeurs de n augmentent, si les valeurs de  $u_n$  diminuent, on dit que la suite  $(u_n)$  est  $d\acute{e}croissante: u_{n+1} \leqslant u_n$ .

### 4.2.2 Variation des suites arithmétiques

| Т            |   |   |   |   | ٠ | , |    | , |   |
|--------------|---|---|---|---|---|---|----|---|---|
| $\mathbf{P}$ | r | റ | n | r | 1 | ρ | t. | ρ |   |
| •            | • | v | м | • |   | · | U  | · | • |

Soit  $(u_n)$  la suite arithmétique de premier terme  $u_0$  et de raison r.

On a alors  $u_{n+1} = u_n + r$ .

- Si r > 0 alors  $(u_n)$  est *croissante*.
- Si r < 0 alors  $(u_n)$  est décroissante.
- Si r = 0 alors  $(u_n)$  est constante.

Exemple 2.4.

Soient les suites arithmétiques  $(u_n)$  et  $(v_n)$  telles que  $u_n = 3n - 2$  et  $v_n = -6n + 1$ .

- 1. Quel est le sens de variation des suites  $(u_n)$  et  $(v_n)$ ?
- 2. Soit la suite  $(w_n)$  définie par  $w_n = u_n + v_n$ .
  - (a) Déterminer la forme explicite de la suite  $(w_n)$ .

(b) En déduire le sens de variation de la suite  $(w_n)$ .