Roll	No.:	 			 •	•	•	••	 •	•	•	••	•	

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch

: EEE

Semester

: 5th

Title of the Course

: Power System Analysis

Course Code

: EEL302

Time: 2 Hours

Maximum Marks: 25

Note: 1. Answer all the questions.

- 2. Do not write anything on the question paper except Roll number
- 3. Assume any data suitably if found missing

Q.1. Find the Y_{bus} for the following line data.

[5]

Line between Bus No.	Conductance	Susceptance	Shunt admittance
1-2	2	-j20	
2-3	3.5	-j18	-j6
3-4	3	-j15	
4-1	4.5	-j28	j5
1-3	6	-j30	-j8

Further modify the Y_{bus} if a line having admittance of (8-j15) is connected in between buses 2 to 4 with a transformer of turn ratio 1:50.

Q.2 For a network, bus data is as follows at the base of 100MVA, 230kV.

[8]

Bus No	Bus No P _G		P_{D}	Q_D	V (pu)		
1	250	150	-	-	1		
2	100	75	80	100	.95		
3	125	60	100	105	.98		
4	200	60	100	_	1.05		

Line Data is as follows

Line between Bus No.	Conductance	Susceptance	Shunt admittance
1-2	2.5	-j21	-j6
1-3	3.8	-j22	-j6
2-4	4.2	-j15	-j6
3-4	4.5	-j28	-j6

Using fast decoupled method determine the first iteration solution to the power flow problem.

- Q.3 Compute all the generalized terms of J matrix for N-R load flow problem in polar form. [4]
- Q.4 Develop a node equation for a line of admittance Y_{jk} between buses j and k if a transformer of turns ratio 1:20 and a phase shifter $1.5 \angle 30^{\circ}$ connected in series between j and k. [4]
- **Q.5** Determine the Z_{bus} for the network shown in Fig. 1. [4]

