Computing Bi-Clusters for Microarray Analysis

Yu Lin

December 21, 2006

General Bi-clustering Problem

- ▶ Input: a $n \times m$ matrix A.
- ▶ Output: a sub-matrix $A_{P,Q}$ of A such that the rows of $A_{P,Q}$ are *similar*. That is, all the rows are identical.

Why sub-matrix?

A subset of *genes* are co-regulated and co-expressed under specific *conditions*. It is interesting to find the subsets of genes and conditions.

▶ 1. All rows are identical

```
11232332
```

▶ 2. All the elements in a row are identical

```
1111111
```

(the same as 1 if we treat columns as rows)

▶ 3. The curves for all rows are similar (additive) $a_{i,j} - a_{i,k} = c(j,k)$ for i = 1,2,...,m. Case 3 is equivalent to case 2 (thus also case 1) if we construct a new matrix $a_{i,j}^* = a_{i,j} - a_{i,p}$ for a fixed p indicate a row.

▶ 4. The curves for all rows are similar (multiplicative)

$$a_{1,1}$$
 $a_{1,2}$ $a_{1,3}$... $a_{1,m}$ $c_{1}a_{1,1}$ $c_{1}a_{1,2}$ $c_{1}a_{1,3}$... $c_{1}a_{1,m}$ $c_{2}a_{1,1}$ $c_{2}a_{1,2}$ $c_{2}a_{1,3}$... $c_{2}a_{1,m}$... $c_{n}a_{1,1}$ $c_{n}a_{1,2}$ $c_{n}a_{1,3}$... $c_{n}a_{1,m}$

Transfer to case 2 (thus case 1) by taking log and subtraction. Case 3 and Case 4 are called bi-clusters with coherent values.

▶ 5. The curves for all rows are similar (multiplicative and additive)

$$a_{i,j} = c_i a_{k,j} + d_i$$

Transfer to case 2 (thus case 1) by subtraction of a fixed row (row i), taking log and subtraction of row i again.

The basic model: All the rows in the sub-matrix are identical.

Cheng and Churchs model

The model introduced a similarity score called the mean squared residue score H to measure the coherence of the rows and columns in the submatrix.

$$H(P,Q) = rac{1}{|P||Q|} \sum_{i \in P, j \in Q} (a_{i,j} - a_{i,Q} - a_{P,j} + a_{P,Q})^2$$

where

$$a_{i,Q} = \frac{1}{|Q|} \sum_{j \in Q} a_{i,j}, \quad a_{P,j} = \frac{1}{|P|} \sum_{i \in P} a_{i,j}, a_{P,Q} = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} a_{i,j}.$$

If there is no error, H(P, Q)=0 for case 1, 2 and 3. A lot of heuristics (programs) have been produced.

Our Problem Definition

- Consensus Sub-matrix Problem
- Bottleneck Sub-matrix Problem

Consensus Sub-matrix Problem

- ▶ Input: a $n \times m$ matrix A, integers I and k.
- ▶ Output: a sub-matrix $A_{P,Q}$ of A with I rows and k columns and a consensus row z (of k elements) such that

$$\sum_{r_i \in P} d(r_i|^Q, z)$$
 is minimized.

Here $d(\ ,\)$ is the Hamming distance.

Bottleneck Sub-matrix Problem

- ▶ Input: a $n \times m$ matrix A, integers I and k.
- ▶ Output: a sub-matrix $A_{P,Q}$ of A with I rows and k columns and a consensus row z (of k elements) such that for any r_i in P

$$d(r_i|^Q, z) \leq d$$
 and d is minimized

Here $d(\ ,\)$ is the Hamming distance.

NP-Hardness Results

► Theorem 1: Both consensus sub-matrix and bottleneck sub-matrix problems are NP-hard.

Proof: We use a reduction from maximum edge bipartite problem.

Approximation Algorithm for Consensus Sub-matrix Problem

- ▶ Input: a $n \times m$ matrix A, integers I and k.
- ▶ Output: a sub-matrix $A_{P,Q}$ of A with I rows and k columns and a consensus row z (of k elements) such that

$$\sum_{r_i \in P} d(r_i|^Q, z)$$
 is minimized.

Here $d(\ ,\)$ is the Hamming distance.

Basic Ideas

- Assumptions: $H_{opt} = \sum_{p_i \in P_{opt}} d(x_{p_i}|^{Q_{opt}}, z_{opt}) = O(kl), H_{opt} \times c' = kl$ and $|Q_{opt}| = k = O(n), k \times c = n$.
- Basic Ideas: We use a random sampling technique to randomly select $O(\log m)$ columns in Q_{opt} , enumerate all possible vectors of length $O(\log m)$ for those columns. At some moment, we know $O(\log m)$ bits of r_{opt} and we can use the partial z_{opt} to select the I rows which are closest to z_{opt} in those $O(\log m)$ bits. After that we can construct a consensus vector r as follows: for each column, choose the (majority) letter that appears the most in each of the I letters in the I selected rows. Then for each of the I columns, we can calculate the number of mismatches between the majority letter and the I letters in the I selected rows. By selecting the best I columns, we can get a good solution.

Basic Ideas

- ▶ How to randomly select $O(\log m)$ columns in Q_{opt} while Q_{opt} is unknown?
- ▶ Our new idea is to randomly select a set B of $(c+1)\log m$ columns from A and enumerate all size $\log m$ subsets of B in time $O(m^{c+1})$ which is polynomial in terms of the input size O(mn). We can show that with high probability, we can get a set of $\log m$ columns randomly selected from Q_{opt} .

Algorithm 1 for The Consensus Submatrix Problem

Input: one $m \times n$ matrix A, integers I and k, and $\epsilon > 0$

Output: a size I subset P of rows, a size k subset Q of columns and a length k consensus vector z

Step 1: randomly select a set B of $\lceil (c+1)(\frac{4\log m}{c^2}+1) \rceil$ columns from A.

- (1.1) **for** every size $\lceil \frac{4 \log m}{\epsilon^2} \rceil$ subset R of B **do**
- (1.2) for every $z|^R \in \Sigma^{|R|}$ do
- (a) Select the best I rows $P = \{p_1, ..., p_l\}$ that minimize $d(z|^R, x_i|^R)$.
- (b) for each column j do

Compute $f(j) = \sum_{i=1}^{I} d(s_j, a_{p_i,j})$, where s_j is the majority element of the I rows in P in column j. Select the best k columns $Q = \{q_1, ..., q_k\}$ with minimum value f(j) and let $z(Q) = s_{q_1} s_{q_2} ... s_{q_k}$.

- value f(j) and let $z(Q) = s_{q_1} s_{q_2} \dots s_{q_k}$. (c) Calculate $H = \sum_{i=1}^{l} d(x_{p_i}|^Q, z)$ of this solution.
- **Step 2:** Output P, Q and z with minimum H.

Proofs

- ▶ Lemma 1: With probability at most $m^{-\frac{2}{\epsilon^2c^2(c+1)}}$, no subset R of size $\lceil \frac{4\log m}{\epsilon^2} \rceil$ used in Step 1 of Algorithm 1 satisfies $R \subseteq Q_{opt}$.
- ▶ Lemma 2: Assume $|R| = \lceil \frac{4 \log m}{\epsilon^2} \rceil$ and $R \subseteq Q_{opt}$. Let $\rho = \frac{k}{|R|}$. With probability at most m^{-1} , there is a row x_i in X satisfying

$$\frac{d(z_{opt},x_i|^{Q_{opt}}) - \epsilon k}{\rho} > d(z_{opt}|^R,x_i|^R).$$

With probability at most $m^{-\frac{1}{3}}$, there is a row x_i in X satisfying

$$d(z_{opt}|^R, x_i|^R) > \frac{d(z_{opt}, x_i|^{Q_{opt}}) + \epsilon k}{\rho}.$$

Proofs

- ▶ Lemma 3: When $R \subseteq Q_{opt}$ and $z|^R = z_{opt}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P = \{p_1, \ldots, p_l\}$ selected in Step 1 (a) of Algorithm 1 satisfies $\sum_{i=1}^{l} d(z_{opt}, x_{p_i}|^{Q_{opt}}) > H_{opt} + 2\epsilon kl$.
- Theorem 2: For any $\delta>0$, with probability at least $1-m^{-\frac{8c'^2}{\delta^2c^2(c+1)}}-2m^{-\frac{1}{3}}$, Algorithm 1 will output a solution with consensus score at most $(1+\delta)H_{opt}$ in $O(nm^{O(\frac{1}{\delta^2})})$ time.

Approximation Algorithm for Bottleneck Sub-matrix Problem

- ▶ Input: a $n \times m$ matrix A, integers I and k.
- ▶ Output: a sub-matrix $A_{P,Q}$ of A with I rows and k columns and a consensus row z (of k elements) such that for any r_i in P

$$d(r_i|^Q, z) \leq d$$
 and d is minimized

Here d(,) is the Hamming distance.

Basic Ideas

- Assumptions: $d_{opt} = MAX_{p_i \in P_{opt}} d(x_{p_i}|Q_{opt}, z_{opt}) = O(k),$ $d_{opt} \times c'' = k \text{ and } |Q_{opt}| = k = O(n), k \times c = n.$
- Basic Ideas:
 - (1) Use random sampling technique to know $O(\log m)$ bits of z_{opt} and select l best rows like Algorithm 1.
 - (2) Use linear programming and randomized rounding technique to select k columns in the matrix.

Linear programming Given a set of rows $P = \{p_1, \dots, p_l\}$, we want to find a set of k columns Q and vector z such that bottleneck score is minimized.

$$egin{aligned} \min d; \ \sum_{i=1}^n \sum_{j=1}^{|\Sigma|} y_{i,j} &= k, \ \sum_{j=1}^{|\Sigma|} y_{i,j} &\leq 1, i = 1, 2, \dots, n, \ \sum_{i=1}^n \sum_{i=1}^{|\Sigma|} \chi(\pi_j, x_{
ho_{m{s}}, i}) y_{i,j} &\leq d, s = 1, 2, \dots, I. \end{aligned}$$

 $y_{i,j}=1$ if and only if column i is in Q and the corresponding bit in z is π_i .

Here, for any $a, b \in \Sigma$, $\chi(a, b) = 0$ if a = b and $\chi(a, b) = 1$ if $a \neq b$.

- Randomized rounding To achieve two goals:
 - (1) Select k' columns, where $k' \geq k \delta d_{opt}$.
 - (2) Get integers values for $y_{i,j}$ such that the distance (restricted on the k' selected columns) between any row in P and the center vector thus obtained is at most $(1+\gamma)d_{opt}$. Here $\delta>0$ and $\gamma>0$ are two parameters used to control the errors.

Lemma 4: When $\frac{n\gamma^2}{3(cc'')^2} \geq 2\log m$, for any $\gamma, \delta > 0$, with probability at most $\exp(-\frac{n\delta^2}{2(cc'')^2}) + m^{-1}$, the rounding result $y' = \{y'_{1,1}, \ldots, y'_{1,|\Sigma|}, \ldots, y'_{n,1}, \ldots, y'_{n,|\Sigma|}\}$ does not satisfy at least one of the following inequalities,

$$\sum_{i=1}^{n}(\sum_{i=1}^{|\Sigma|}y'_{i,j})>k-\delta d_{opt},$$

and for every row $x_{p_s}(s=1,2,\ldots,I)$,

$$\sum_{i=1}^{n}(\sum_{j=1}^{|\Sigma|}\chi(\pi_{j},x_{p_{s},i})y_{i,j}')<\overline{d}+\gamma d_{opt}.$$

Algorithm 2 for The bottleneck Sub-matrix Problem Input:

one matrix $A \in \Sigma^{m \times n}$, integer I, k, a row $z \in \Sigma^n$ and small numbers $\epsilon > 0$, $\gamma > 0$ and $\delta > 0$.

Output: a size I subset P of rows, a size k subset Q of columns and a length k consensus vector z.

if $\frac{n\gamma^2}{3(cc'')^2} \le 2 \log m$ then try all size k subset Q of the n columns and all z of length k to solve the problem.

if $\frac{n\gamma^2}{3(cc'')^2} > 2\log m$ then

Step 1: randomly select a set B of $\lceil \frac{4(c+1)\log m}{\epsilon^2} \rceil$ columns from A. **for** every $\lceil \frac{4\log m}{2} \rceil$ size subset R of B **do**

for every $z|^R \in \Sigma^{|R|}$ do

- (a) Select the best I rows $P = \{p_1, ..., p_l\}$ that minimize $d(z|^R, x_i|^R)$.
- (b) Solve the optimization problem by linear programming and randomized rounding to get Q and z.

Step 2: Output P,Q and z with minimum bottleneck score d.

Proofs

- ▶ Lemma 5: When $R \subseteq Q_{opt}$ and $z|^R = z_{opt}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P = \{p_1, \ldots, p_l\}$ obtained in Step 1(a) of Algorithm 2 satisfies $d(z_{opt}, x_{p_i}|^{Q_{opt}}) > d_{opt} + 2\epsilon k$ for some row $x_{p_i}(1 \le i \le l)$.
- Theorem 3: With probability at least $1-m^{-\frac{2}{\epsilon^2c^2(c+1)}}-2m^{-\frac{1}{3}}-\exp(-\frac{n\delta^2}{2(cc'')^2})-m^{-1}, \text{ Algorithm 2}$ runs in time $O(n^{O(1)}m^{O(\frac{1}{\epsilon^2}+\frac{1}{\gamma^2})})$ and obtains a solution with bottleneck score at most $(1+2c''\epsilon+\gamma+\delta)d_{opt}$ for any fixed $\epsilon,\ \gamma,\ \delta>0.$

Thanks

► Acknowledgements

This work is fully supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative
Region, China [Project No. CityU 1070/02E].

This work is collaborated with Dr. Lusheng Wang and
Xiaowen Liu in City University of Hong Kong, Hong Kong,
China.

Let X_1, X_2, \ldots, X_n be n independent random 0-1 variables, where X_i takes 1 with probability p_i , $0 < p_i < 1$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Then for any $0 < \epsilon \le 1$,

$$\Pr(X > \mu + \epsilon \, n) < e^{-\frac{1}{3}n\epsilon^2},$$

$$\Pr(X < \mu - \epsilon \, n) \leq e^{-\frac{1}{2}n\epsilon^2}.$$