

INITIATION AUX RÉSEAUX INFORMATIQUES

PARTIE 2: MODÈLE OSI

SOMMAIRE

- I. Normalisation
- II. Modèle en couches
- III. Vue d'ensemble du modèle OSI
- IV. Couches du modèle OSI

NORMALISATION

PROBLÉMATIQUE

- Nécessité de définir des **règles** pour permettre aux équipements de différents constructeurs de communiquer entre eux et d'accéder aux réseaux des différents opérateurs
 - Standard
 - Norme
 - Protocole

DÉFINITIONS

- Norme: Ensemble de règles de conformité ou de fonctionnement <u>publié par un organisme de</u> <u>normalisation officiel</u>
- Standard: Ensemble de recommandations ou de préférences <u>préconisé par un groupe d'utilisateurs</u> <u>caractéristiques et avisés</u>
- **Protocole**: Ensemble de règles qui régissent l'échange entre des équipements afin d'assurer le bon fonctionnement global

NORMALISATION

- o Il existe plusieurs organismes acteurs de la normalisation pour les réseaux
 - IEEE : Institute of Electrical and Electronics Engineers
 - ISO : International Standards Organisation
 - ANSI: American National Standards Institute
 - NBS : National Bureau of Standard
 - EIA : Electronic Industry Association

• ...

IEEE

- o Organisation professionnelle créée en 1963
 - Publie des normes dans divers domaines relatifs à la télécommunication et l'électricité
 - Composée de plusieurs comités
 - Chaque comité est composé de plusieurs groupes de travail
 - IEEE 802: comité travaillant sur les normes de réseaux

IEEE

• Normes IEEE 802

Groupe	Sujet	Exemples de normes
802.1	Architecture des LAN	802.1Q : VLAN
802.3	Ethernet	802.3a: 10BASE2 802.3ab: 100BASE-T 802.3af: PoE
802.5	Anneau à jeton	802.5
802.11	Réseaux sans fil	802.11g (jusqu'à 54 Mbits/s) 802.11n (jusqu'à 150 Mbits/s)
802.15	WPAN	802.15.1: Bluetooth
802.16	WMAN (WiMAX)	802.16e (30Mbits/s; 3,5 km) 802.16m (jusqu'à 1 Gbits/s)

- o Organisation indépendante créée en 1946
- o Composée des instances de normalisation de 164 pays
 - IMANOR (Maroc)
 - AFNOR (France)
 - ANSI (USA)
 - DIN (Allemagne)
 - PSI (Palestine) ...

ISO

Normes

L'ISO

À PROPOS DE L'ISO

MEMBRES

ISO: un réseau d'organismes nationaux de normalisation. Nos membres sont les organisations de normalisation leaders dans leur pays, à raison d'un membre par pays – chaque membre représentant l'ISO dans son propre pays.

10

- Produit des normes couvrant presque tous les domaines
 - Plus de 24.066 normes déjà publiées
 - ISO 9000 (gestion de la qualité); ISO/IEC 27001 (gestion de la sécurité de l'information), ISO 31000 (gestion de risque) ...

- Comporte 334 comités techniques (TC) chacun spécifique à un domaine
 - ISO/IEC JTC 1 → Technologies de l'information
 - Ils sont numérotés dans l'ordre de leur création

- Comporte 334 comités techniques (TC) chacun spécifique à un domaine
- Chaque TC compte des sous-comités (SC)
- Chaque SC est divisé en groupes de travail (WG)
- o Chaque WG compte des milliers de bénévoles
 - Employés d'entreprises ayant des produits à normaliser
 - Fonctionnaires de gouvernements voulant faire adopter leur propres normes à l'échelle mondiale
 - Chercheurs universitaires

• Procédure de normalisation

- Expression du besoin d'avoir une norme internationale par l'une des instances membres
- Formation d'un WG chargé de produire un avant-projet (Commitee Draft, CD)
- Transmission du CD à tous les membres pour étude pendant une période de 6 mois
- Se le CD est approuvé par la majorité → soumission d'une version révisée (Draft International Standard, DIS) pour commentaires et vote
- Si le DIS est approuvé → préparation du texte final (International Standard) pour approbation et publication

À l'origine de la norme de communication en réseau:
 Open Systems Interconnection model ou modèle
 d'interconnexion des systèmes ouverts; plus connu sous
 le nom de modèle OSI

• Basé sur le principe de modèles en couches

MODÈLE EN COUCHES

PRINCIPE DES COUCHES

- Les réseaux informatiques sont organisés en des niveaux appelés **couches**
 - Une couche correspond à un niveau d'abstraction
 - Chaque couche assure une fonction bien définie
 - Chaque couche N fournit des services à la couche immédiatement supérieure (N + 1)
 - La couche N + 1 voit la couche N uniquement par les services fournis
 - La couche N + 1 n'a pas besoin de connaître la couche N 1

PRINCIPE DES COUCHES

- Les réseaux informatiques sont organisés en des niveaux appelés **couches**
 - Une couche correspond à un niveau d'abstraction
 - Chaque couche assure une fonction bien définie
 - Chaque couche N fournit des services à la couche immédiatement supérieure (N + 1)
 - La couche N + 1 voit la couche N uniquement par les services fournis
 - La couche N + 1 n'a pas besoin de connaître la couche N 1

Principe des couches

- Les réseaux informatiques sont organisés en des niveaux appelés **couches**
 - Une couche correspond à un niveau d'abstraction
 - Chaque couche assure une fonction bien définie
 - Chaque couche N fournit des services à la couche immédiatement supérieure (N + 1)
 - Chaque couche est composée d'entités
 - Entité = l'élément actif d'une couche qui exécute une tâche spécifique

- Service d'une couche N = Capacités de la couche N qu'elle peut fournir aux entités N + 1 par le biais d'une interface entre les deux couches
- Possède une unité de données qui lui est spécifique **SDU(N)** (i.e. une donnée que la couche N veut transmettre)

Service d'une couche N = Capacités de la couche N
 qu'elle peut fournir aux entités N + 1 par le biais
 d'une interface entre les deux couches

- Deux types de services
 - Avec connexion
 - Établir une connexion **puis** transmettre les données **puis** libérer la connexion
 - L'émetteur et le récepteur peuvent s'engager dans une **négociation** avant (taille maximale des messages, qualité de service, ...)
 - Sans connexion
 - Transmettre les données avant d'établir de connexion

Service	Définition	Exemple	Connexion
Flot de messages fiable	Si plusieurs messages sont envoyés, chacun reste séparé de l'autre	Impression de fichiers	
Flot d'octets fiable	Si n messages de 1024 octets sont envoyés, un message de n × 1024 octets est reçu	Ouverture de session	Avec
Connexion non fiable	Service avec connexion mais sans garantie	Voix numérique	
Datagramme non fiable	Transmission de paquets de données sans garantie de leur arrivée	E-mail	
Datagramme acquitté	\mathcal{L}		Sans
Demande- réponse	Envoi d'un datagramme contenant une demande et réception de la réponse	Requête SQL	

- Un service est formellement défini par des primitives
 de service
 - Opérations employées par un processus utilisateur pour accéder au service
 - Quatre primitives : Demande, Indication, Réponse,
 Confirmation

- Un service est formellement défini par des primitives
 de service
 - 1. **Demande**: permet à la couche N + 1 d'appeler une procédure
 - 2. Indication: permet d'avertir la couche N de la demande faite sur son point d'accès au service (SAP)
 - 3. **Réponse**: permet à la couche n de rendre le service (si possible)
 - 4. Confirmation: permet d'informer la couche N + 1 que le service a été rendu

INTERFACE ENTRE DEUX COUCHES

- \circ Interface N / N + 1
 - Gère la manière avec laquelle la couche N + 1 accède aux services offerts par la couche N

INTERFACE ENTRE DEUX COUCHES

- \circ Interface N / N + 1
 - Gère la manière avec laquelle la couche N + 1 accède aux services offerts par la couche N
 - Permet d'échanger en exécutant les primitives de service au niveau des **SAP**
 - Points identifiés où les services sont fournis par l'entité (N)
 à une entité (N+1)

INTERFACE ENTRE DEUX COUCHES

- \circ Interface N / N + 1
 - Gère la manière avec laquelle la couche N + 1 accède aux services offerts par la couche N
 - Permet d'échanger en exécutant les primitives de service au niveau des SAP

- La couche N d'une machine dialogue avec la couche N d'une autre machine par le biais de **protocoles**
 - La couche N passe les données et le contrôle à la couche N – 1 et ainsi de suite, jusqu'à la couche 1 au-dessous de laquelle se trouve le support physique qui véhicule la communication

- La couche N d'une machine dialogue avec la couche N d'une autre machine par le biais de protocoles
- Protocole de couche N
 - Ensemble des règles qui organisent la communication entre les entités de la couche N
 - Possède une unité de données qui lui est spécifique
 PDU(N)
- Pile de protocoles
 - Ensemble des protocoles utilisés par toutes les couches

Andrew S. Tanenbaum and David Wetherall. "Computer networks." Prentice-Hall international editions (1996): I-XVII.

- Deux types de protocoles
 - Protocole point à point
 - Protocole bout en bout

- Protocole point à point
 - Réalise un dialogue entre un système d'extrémité et un relais ou entre deux relais
 - Assure le transport de l'information dans le réseau
 - Fonctionne en mode connecté ou non connecté

- Protocole bout en bout
 - Réalise un dialogue entre les systèmes d'extrémités
 - Vérifie l'intégrité des informations remises aux applications
 - Organise le dialogue applicatif
 - Fonctionne généralement en mode connecté

VUE D'ENSEMBLE DU MODÈLE OSI

Présentation du modèle OSI

- Le modèle **OSI** décrit les concepts utilisés et la démarche suivie pour permettre à des équipements possédant des systèmes d'exploitation variés de communiquer entre eux, i.e. obtenir des **systèmes ouverts**
 - Système ouvert = ensemble d'équipements ouverts à la communication avec d'autres équipements

Présentation du modèle OSI

- Le modèle **OSI** décrit les concepts utilisés et la démarche suivie pour permettre à des équipements possédant des systèmes d'exploitation variés de communiquer entre eux, i.e. obtenir des **systèmes ouverts**
- Il segmente le processus de communication entre deux équipements en **sept couches**

Vue d'ensemble du modèle OSI

- O Couches du modèle OSI
 - Couche 1 : Couche Physique
 - Couche 2 : Couche Liaison de données
 - Couche 3 : Couche Réseau
 - Couche 4 : Couche Transport
 - Couche 5 : Couche Session
 - Couche 6 : Couche Présentation
 - Couche 7 : Couche Application

VUE D'ENSEMBLE DU MODÈLE OSI

Pour Le Réseau Tout Se Passe Automatiquement

- Couche 1 : Couche Physique
- Couche 2 : Couche Liaison de données
- Couche 3 : Couche Réseau
- Couche 4 : Couche Transport
- Couche 5 : Couche Session
- Couche 6 : Couche Présentation
- Couche 7 : Couche Application

Physique

VUE D'ENSEMBLE DU MODÈLE OSI

- Chaque couche correspond à un nouveau besoin d'abstraction nécessaire
- La fonction de chaque couche est définie en visant l'application de protocoles normalisés
- Les limites d'une couche ont été fixées de telle sorte à minimiser la quantité des informations qui doivent passer via ses interfaces

Vue d'ensemble du modèle OSI

- Le nombre de couches a été défini en étant
 - Assez grand pour ne pas regrouper des fonctions différentes dans une même couche
 - Assez petit pour ne pas obtenir une architecture trop complexe

Vue d'ensemble du modèle OSI

- 1. Couche physique
 - Transmets des bits sur un support physique de transmission
- 2. Couche liaison de données
 - À l'émission, elle assure l'**encapsulation** des données reçues par la couche réseau en **trames** pour les transmettre à la couche physique
 - A la réception, elle regroupe les **trames** pour **reconstruire les paquets** de la couche réseau

VUE D'ENSEMBLE DU MODÈLE OSI

- 3. Couche réseau
 - Contrôle le flux des **paquets** et assure la fonction de **routage**
- 4. Couche transport
 - Segmente les données reçues de la couche session (si nécessaire) et les transmet à la couche réseau

Vue d'ensemble du modèle OSI

- 5. Couche session
 - Permet aux utilisateurs d'établir des sessions offrant plusieurs services (gestion du dialogue, gestion du jeton, synchronisation...)
- 6. Couche présentation
 - Permet de **présenter les données** échangées d'une manière standardisée
- 7. Couche application
 - Assure le rôle de **point de contact** entre l'utilisateur et le réseau

VUE D'ENSEMBLE DU MODÈLE OSI

- Les couches session, présentation et application sont appelées couches hautes ou couches logicielles
 - Ce sont des couches orientées application
- Les couches physique, liaison de données,
 réseau et transport sont appelées couches
 basses ou couches matérielles
 - Ce sont des couches orientées communication

- À l'émission
 - Chaque couche ajoute l'en-tête (et l'en-queue) du protocole qu'elle a utilisé → Encapsulation
 - PDU(N) = SDU(N+1) + en-tête(N) (+ en-queue(N))

- À la réception
 - Chaque couche supprime l'en-tête (et l'en-queue)
 du protocole utilisée par la couche correspondante
 de l'émetteur → Décapsulation

COUCHES DU MODÈLE OSI

COUCHE APPLICATION

- o Couche qui permet l'accès au réseau
- Met en contact les processus d'application et le réseau afin de donner aux utilisateurs des services réseaux (messagerie, transfert de fichiers, consultation de pages Web ...)
- Comporte de nombreux protocoles adaptés aux différentes classes d'application
 - HTTP, HTTPS, FTP, SMTP...

COUCHE PRÉSENTATION

- Couche responsable de la représentation des données échangées d'une manière standardisée (syntaxe et sémantique)
- Fournit les services de conversion, reformatage, compression et cryptage des données
- Elle permet de masquer l'hétérogénéité de techniques de codage utilisées par les différents systèmes

COUCHE PRÉSENTATION

- Principaux protocoles
 - ASCII
 - HTML
 - XML
 - JSON
 - •

COUCHE SESSION

- o Couche responsable de la gestion des sessions entre les applications coopérantes
 - Session: mise en relation pour communiquer
- Fournit les services d'organisation des échanges entre processus distants en assurant la cohérence des données échangées
 - Gérer les jetons à parole pour synchroniser les dialogues, les interrompre, les reprendre... ainsi que les droits d'accès aux processus serveurs

COUCHE SESSION

- Principaux protocoles
 - RPC (Remote Procedure Call) pour gérer la communication dans une architecture client-serveur
 - NetBios (NETwork Basic Input Output System)
 pour établir des sessions entre les différentes
 machines d'un réseau

COUCHE TRANSPORT

- Couche responsable de la transmission bout en bout des données
- S'assure du bon acheminement du message complet, de l'expéditeur au destinataire
- Fournit les services relatifs à la qualité de service (rapport fiabilité / temps de transmission)

COUCHE TRANSPORT

- À l'émission
 - Fragmente les données reçues de la couche Session en **segments** ou **datagrammes** et les transmet à la couche Réseau (segmentation)
- À la réception
 - Rassemble les **segments** ou **datagrammes** pour reformer les données à transmettre à la couche Session

COUCHE TRANSPORT

- PDU : Segment
- Principaux protocoles
 - TCP (Transmission Control Protocol)
 - UDP (User Datagram Protocol)

- Couche responsable d'acheminer des données entre deux systèmes en passant par des systèmes intermédiaires (routeurs)
 - Elle effectue une liaison logique entre l'émetteur et le récepteur en introduisant des adresses logiques de source et de destination dans le paquet

- Couche responsable d'acheminer des données entre deux systèmes en passant par des systèmes intermédiaires (routeurs)
- Permet d'interconnecter des réseaux hétérogènes

- Fournit le service de routage
 - Acheminement des données à travers des systèmes intermédiaires (routeurs) en utilisant des algorithmes
- Contrôle le flux des paquets (prendre une route alternative en cas de congestion, ...)
- Détecte et corrige les erreurs non réglées par la couche immédiatement inférieure

- À l'émission
 - Encapsule les segments reçus de la couche Transport dans des **paquets** de taille adéquate, en insérant les adresses logiques de l'émetteur et du destinataire, puis elle transmet ces paquets à la couche Liaison de données
- À la réception
 - Regroupe les **paquets** pour reconstruire des segments qu'elle transmet à la couche Transport

- Principaux protocoles
 - IP (Internet Protocol) pour l'adressage des machines
 - Protocoles de routage (OSPF, RIP, ...)
- PDU: Paquet
- Principaux équipements
 - Routeurs

- Couche responsable d'acheminer des données entre des systèmes immédiatement adjacents
 - Elle effectue une liaison physique entre l'émetteur et le récepteur
- Fournit les services de commutation, détection et correction des erreurs de transmission (nombre de bits reçus différent du nombre émis, bit à 0 au lieu de 1 ...) et régulation du flux de transmission (émetteur rapide / destinataire lent)

- À l'émission
 - Encapsule les paquets reçus de la couche Réseau dans des **trames** en insérant les adresses MAC de l'émetteur et du destinataire, puis elle transmet ces trames à la couche Physique en séquence
- À la réception
 - Regroupe les **trames** pour reconstruire des paquets qu'elle transmet à la couche Réseau

- PDU: Trame
- Principal équipement
 - Commutateur (Switch)
- Principaux protocoles
 - Ethernet pour gérer la communication dans un réseau de typologie en bus
 - FDDI pour connecter plusieurs LANs avec des fibres optiques

- Principaux protocoles
 - CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - Toute station écoute le bus avant de transmettre
 - o Aucune émission si bus occupé
 - En cas de collision
 - La station met fin à l'émission et attend un lapse de temps aléatoire avant de réessayer
 - Utilisé dans les réseaux LAN filaires (Ethernet)

- Principaux protocoles
 - CSMA/CA (CSMA with Collision Avoidance)
 - o Toute station écoute le bus avant de transmettre
 - Tout station écoute, en plus, un canal virtuel
 - Envoie une trame de demande de permission (RTS: Request to send), attend le feu vert (CTS: Clear to send) et doit recevoir une trame d'acquittement (ACK: Acknowledgement) avant un certain délai fixé (s'il expire, la procédure recommence)
 - Utilisé dans les réseaux LAN sans-fil (WiFi)

COUCHE PHYSIQUE

- Couche responsable de la transmission physique des bits sur un support physique de transmission
- Gère tous les aspects physiques de la transmission
- o Définit les standards des supports de transmission

COUCHE PHYSIQUE

- Fournit les services nécessaires pour activer, maintenir et désactiver les connexions physiques assurant la transmission des bits
 - Conversion des bits en signaux électriques ou optiques; Gestion des voltages représentant les 0/1; Sens de transmission (simplex ou duplex); Type de transmission (série ou parallèle); Synchronisation (synchrone ou asynchrone), définition des standards de transmission ...

COUCHE PHYSIQUE

- Principaux protocoles
 - SDH (Synchronous **D**igital **H**ierarchy) pour la transmission à haut-débit
 - SONET (Synchronous Optical NETwork) pour la transmission sur fibre optique...
- PDU: Bit
- Principaux équipements : Supports de transmission (câbles, fibres optiques, ondes...); Répéteur; Concentrateur...

INITIATION AUX RÉSEAUX INFORMATIQUES

PARTIE 2: MODÈLE OSI